# **Bomb Defuser Game - Complete Guide**

A Python debugging game where players defuse bombs by fixing code errors. Perfect for learning Python programming and debugging skills!



# **Installation & Setup**

### **Prerequisites**

- Python 3.8 or higher
- pip (Python package manager)

## **Step 1: Install Dependencies**

bash

pip install -r requirements.txt

# Required packages:

- (PyQt5==5.15.10) GUI framework
- (PyQt5-svg==5.15.6) SVG support for graphics
- (Pygments==2.17.2) Syntax highlighting
- (PyInstaller==6.3.0) For creating executable (optional)

# **Step 2: Test Installation**

Run the test script to verify all components work:

bash

python test\_game.py

#### You should see:

✓ ALL TESTS PASSED - Game should work correctly!

## Step 3: Launch the Game

bash

python bomb\_defuser.py

# How to Play

- 1. **Start Screen**: Click " START GAME" to begin
- 2. Game Interface:
  - **Left Panel**: Code editor with broken Python code
  - **Right Panel**: Bomb with 4 colored wires and countdown timer
- 3. **Your Mission**: Fix the broken code to defuse the bomb before time runs out!
- 4. **Submit Code**: Click " TEST CODE" to validate your solution
- 5. **Success**: All 4 wires get cut when you fix all bugs correctly
- 6. **Failure**: Timer expires = bomb explodes! Use " RESTART LEVEL" to try again

#### **Game Features**

- 10 Progressive Levels: From basic syntax to advanced statistics
- **Hint System**: Hints appear when 80% of timer has elapsed
- Error Feedback: Shows specific errors when code fails validation
- Wire Cutting Animation: Visual feedback for successful solutions

# Level Guide & Solutions

#### **Level 1: Quadratic Discriminant**

**Difficulty**: Beginner | **Timer**: 60 seconds

**Problem**: Calculate discriminant of  $ax^2 + bx + c = 0$ 

| Line | Broken Code                         | Issue         | Correct Code                         |
|------|-------------------------------------|---------------|--------------------------------------|
| 2    | def calculate_discriminant(a, b, c) | Missing colon | def calculate_discriminant(a, b, c): |
| 4    | '                                   | 1             |                                      |

## **Level 2: Linear Equation Solver**

**Difficulty**: Beginner | **Timer**: 90 seconds

**Problem**: Solve linear equation ax + b = 0

| Line | Broken Code                                                                                                         | Issue                       | Correct Code                                                                                   |
|------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|
| 9    | $ \begin{array}{ c c }\hline print(f"\{a\}x + \{b\} = 0 => x = \\\hline \hline \{solution\}" \\\hline \end{array} $ | Missing closing parenthesis | $ \frac{\text{print}(f''\{a\}x + \{b\} = 0 => x = \text{solution}\}'')}{\text{solution}\}''} $ |
| 4    |                                                                                                                     |                             | ▶                                                                                              |

#### **Level 3: Prime Number Checker**

**Difficulty**: Beginner | **Timer**: 120 seconds

**Problem**: Check if a number is prime

| Line | Broken Code                        | Issue         | Correct Code                        |
|------|------------------------------------|---------------|-------------------------------------|
| 5    | for i in range(2, int(n**0.5) + 1) | Missing colon | for i in range(2, int(n**0.5) + 1): |
| 4    | '                                  | 1             | <b>•</b>                            |

#### **Level 4: Greatest Common Divisor**

**Difficulty**: Intermediate | **Timer**: 180 seconds

**Problem**: Find GCD using Euclidean algorithm

| Line | Broken Code      | Issue              | Correct Code            |
|------|------------------|--------------------|-------------------------|
| -    | No actual errors | Testing validation | Code is already correct |
| 4    | '                | '                  | •                       |

Note: This level tests the validation system with correct code

# **Level 5: Fibonacci Sequence**

**Difficulty**: Intermediate | **Timer**: 240 seconds

**Problem**: Generate Fibonacci numbers

| Line     | Broken Code          | Issue                               | Correct Code               |
|----------|----------------------|-------------------------------------|----------------------------|
| 12       | fib_seq = [next_fib] | Replacing list instead of appending | (fib_seq.append(next_fib)) |
| <b>■</b> |                      |                                     | <b>&gt;</b>                |

#### **Level 6: Statistical Calculations**

**Difficulty**: Intermediate | **Timer**: 300 seconds

**Problem**: Calculate mean, median, and variance

| Line | Broken Code                                    | Issue                                   | Correct Code                             |
|------|------------------------------------------------|-----------------------------------------|------------------------------------------|
| 16   | n == len(sorted_nums)                          | Equality operator instead of assignment | n = len(sorted_nums)                     |
| 23   | return sorted_nums[n//2 + 1]                   | Wrong median index for odd length       | return sorted_nums[n//2]                 |
| 32   | return sum(squared_diffs) / (len(numbers) - 1) | Sample variance instead of population   | return sum(squared_diffs) / len(numbers) |
| •    |                                                |                                         | •                                        |

# **Level 7: Matrix Operations**

**Difficulty**: Advanced | **Timer**: 375 seconds

**Problem**: Perform matrix multiplication and transpose

| Line | Broken Code                              | Issue               | Correct Code                             |
|------|------------------------------------------|---------------------|------------------------------------------|
| 11   | C = [[0 for _ in range(rows_A)] for _ in | Wrong result matrix | C = [[0 for _ in range(cols_B)] for _ in |
| 11   | range(cols_B)]                           | dimensions          | range(rows_A)]                           |
| 16   | CERTI - ACREA * PRACT                    | Swapped indices in  | CERE AGREA * DELAGE                      |
| 16   | C[j][i] += A[i][k] * B[k][j]             | assignment          | C[i][j] += A[i][k] * B[k][j]             |
| 25   | (transposed = [[0 for _ in range(cols)]  | Wrong transpose     | transposed = [[0 for _ in range(rows)]   |
| 23   | for _ in range(rows)]                    | dimensions          | for _ in range(cols)]                    |
| 29   | (transposed[i][i] = matriv[i][i]         | Swapped transpose   | transpased[i][i] = matriv[i][i]          |
| 23   | transposed[i][j] = matrix[j][i]          | indices             | transposed[j][i] = matrix[i][j]          |
| 4    |                                          | •                   | •                                        |

### **Level 8: Standard Deviation Calculator**

**Difficulty**: Advanced | **Timer**: 450 seconds

**Problem**: Calculate population standard deviation and Z-scores

| Line       | Broken Code                               | Issue                      | Correct Code                                                   |  |  |
|------------|-------------------------------------------|----------------------------|----------------------------------------------------------------|--|--|
|            | variance = sum(squared_diffs) /           | Sample variance instead of | variance = sum(squared_diffs) /                                |  |  |
| 6          | (len(numbers) - 1)                        | population                 | len(numbers)                                                   |  |  |
| 23         | $z_{scores} = [(x - mean) / variance for$ | Using variance instead of  | $z_{\text{scores}} = [(x - \text{mean}) / \text{std_dev for}]$ |  |  |
| 23         | x in numbers]                             | std_dev                    | x in numbers]                                                  |  |  |
| 49         | print(f" Z-scores: {[round(z, 2) for z    | Missing closing bracket    | print(f" Z-scores: {[round(z, 2) for z                         |  |  |
| 49         | in z_scores}")                            | Wissing closing bracket    | in z_scores]}")                                                |  |  |
| Missing    | No division by zero check                 | Missing defensive          | Add (if std_dev == 0: return [0] *                             |  |  |
| iviissirig | Tho division by zero check                | programming                | len(numbers)                                                   |  |  |
| 4          | •                                         |                            |                                                                |  |  |

# **Level 9: Correlation Coefficient**

**Difficulty**: Advanced | **Timer**: 525 seconds

**Problem**: Calculate Pearson correlation coefficient

| Line | Broken Code                             | Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Correct Code                           |
|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|      | numerator = sum((x - mean_x) * y -      | Missing parentheses in calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | numerator = sum((x - mean_x) * (y -    |
| 21   | mean_y for x, y in zip(x_values,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mean_y) for x, y in zip(x_values,      |
|      | <u>y_values))</u>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y_values))                             |
| 26   | denominator = (sum_sq_x +               | Wrong correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | denominator = (sum_sq_x *              |
| 26   | sum_sq_y)**0.5                          | formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sum_sq_y)**0.5                         |
| 73   | print(f" Correlation: {[r:.4f if r else | Maria a la constanta de la con | print(f" Correlation: {r:.4f if r else |
|      | 'None'}")                               | Wrong bracket type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 'None'}")                              |
| 4    |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                      |

### **Level 10: Advanced Statistics Suite**

**Difficulty**: Expert | **Timer**: 600 seconds

**Problem**: Complete statistical analysis class with multiple bugs

| Line | Broken Code                                  | Issue                 | Correct Code                               |
|------|----------------------------------------------|-----------------------|--------------------------------------------|
| 15   | self.mean = sum(self.data) / self.n          | Division by zero risk | self.mean = self.calculate_mean() if       |
| 15   |                                              |                       | self.n > 0 else 0                          |
| 10   |                                              | Using potentially     | self.std_dev = math.sqrt(self.variance)    |
| 19   | self.std_dev = math.sqrt(self.variance)      | invalid variance      | if self.variance >= 0 else 0               |
|      |                                              | Inverted              |                                            |
| 31   | (divisor = self.n if sample else self.n - 1) | sample/population     | divisor = self.n - 1 if sample else self.n |
|      |                                              | logic                 |                                            |
|      | python<br>for x in self.data:<br>            |                       | python<br>cubed_diffs = [((x -             |
| 42-  | for _ in range(1): # unnecessary < br/>      | Unnecessary nested    | self.mean) / self.std_dev) ** 3 for x in   |
| 45   | result += ((x - self.mean) / self.std_dev)   | loop in skewness      | self.data] < br/>return sum(cubed_diffs)   |
|      | ** 3                                         |                       | / self.n                                   |
|      | python < br/>for x in self.data: < br/>      |                       |                                            |
| 54-  | for _ in range(2): # double counting!        | Nested loop double-   | self.mean) / self.std_dev) ** 4 for x in   |
| 57   | <br><br>result += ((x - self.mean) /         | counts values         | self.data] < br/>return (sum(fourth_diffs) |
|      | self.std_dev) ** 4                           |                       | <u>/ self.n) - 3</u>                       |
|      | return sorted_data[lower_index] *            | Reversed              | return sorted_data[lower_index] * (1 -     |
| 75   | weight + sorted_data[upper_index] * (1 -     | interpolation weights | weight) + sorted_data[upper_index] *       |
|      | weight)                                      | interpolation weights | weight                                     |
| 82   | if self.n < 2: missing in                    | No edge case          | if self.n < 2 or self.std_dev == 0: return |
| 02   | confidence_interval                          | handling              | (self.mean, self.mean)                     |
| 22   | return sum(self.data) / self.n in            | Division by zoro risk | return sum(self.data) / self.n if self.n > |
| 22   | calculate_mean                               | Division by zero risk | 0 else 0                                   |
| 20   | if divisor == 0: check placement             | Wrong condition       | if self.n < 2: return 0 (before divisor    |
| 28   |                                              | handling              | calculation)                               |
| 27   | Missing (if self.std_dev == 0 or self.n <    | No edge case          | Add (if self.std_dev == 0 or self.n < 2:   |
| 37   | 2: in skewness                               | handling              | return 0                                   |
| 40   | Missing (if self.std_dev == 0 or self.n <    | No edge case          | Add (if self.std_dev == 0 or self.n < 2:   |
| 48   | 2: in kurtosis                               | handling              | return 0                                   |
| 64-  | Missing single-element handling in           | Index out of bounds   | Add if self.n == 1: return                 |
| 66   | percentile                                   | risk                  | sorted_data[0]                             |
| 4    |                                              | I                     | •                                          |

# **o** Tips for Success

## **General Debugging Strategy**

- 1. Read the Error Messages: They often point to the exact problem
- 2. **Check Syntax First**: Missing colons, parentheses, brackets
- 3. Understand the Algorithm: Know what the code should accomplish
- 4. **Test Edge Cases**: Consider empty lists, single elements, zero values
- 5. **Use Print Statements**: Add debugging output to understand data flow

### **Common Python Bugs by Category**

### **Syntax Errors** (Levels 1-3):

- Missing colons after function definitions and loops
- Missing closing parentheses or brackets
- Typos in keywords

#### **Logic Errors** (Levels 4-6):

- Wrong operators (= vs ==)
- Incorrect index calculations
- Off-by-one errors in loops

#### Mathematical Errors (Levels 7-10):

- Sample vs population formulas
- Swapped variables in calculations
- Missing edge case handling

## **Level-Specific Hints**

**Level 6**: Remember that median calculation differs for odd vs even length arrays **Level 7**: Pay attention to matrix dimension ordering (rows × columns) **Level 8**: Population variance divides by N, sample variance by N-1 **Level 9**: Correlation requires proper parentheses in the numerator calculation **Level 10**: Classbased code needs defensive programming for edge cases

# **K** Troubleshooting

#### Common Installation Issues

## **PyQt5 Installation Problems**:

#### bash

# Try installing with specific version pip install PyQt5==5.15.10

# On Ubuntu/Debian, might need system packages sudo apt-get install python3-pyqt5

#### **Import Errors**:

- Make sure you're in the correct directory with all game files
- Check that Python can find all modules: (python -c "import PyQt5; print('PyQt5 OK')")

#### **Game Issues**

#### **Game Won't Start:**

- 1. Run (python test\_game.py) to identify the problem
- 2. Check that all required files are present
- 3. Verify Python version: (python --version) (needs 3.8+)

### **Code Editor Not Working**:

- Try clicking in the editor area to focus
- Make sure you're typing valid Python syntax
- Use the restart button if editor becomes unresponsive

#### Timer Issues:

- Hints appear at 80% of countdown time
- Timer is automatically doubled from original specs for better gameplay

# 🙎 Completion Certificate

Congratulations on defusing all 10 bombs! You've mastered:

- V Python syntax debugging
- Algorithm implementation
- Mathematical programming
- Statistical calculations
- Object-oriented programming

• Z Edge case handling

Share your achievement: "I successfully completed all 10 levels of the Bomb Defuser Python debugging game! \*\* "

**Game Version**: 1.0

**Created for**: Coding Club Educational Presentations

**GitHub**: [Repository Link]

Happy debugging! 星 💣