Q.1) Consider standard unit vectors e, ez, ez in R³. What is the trace of matrix of linear transformation which acts on e, ez, ez as follows:

follows:

$$e_1 \mapsto \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$
 $e_2 \mapsto \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ $e_3 \mapsto \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

Q.2) Let
$$a = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
. Construct rotators

Q1 and Q2 such that $Q_2^T Q_1^T \alpha = \begin{bmatrix} * \\ 0 \\ 0 \end{bmatrix}$.

Compute $Q = Q_2^T Q_1^T$. Further, compute L_{21} and L_{31} , lower triangular matrices such that

Compute L= 131 L21.

(clearly show all the steps and final answers).

Q.3) Let $A \in \mathbb{R}^{3\times 2}$ be a matrix with full column rank. Let $n \in \mathbb{R}^{3\times 1}$ be a nonzero vector such that n = 0. Then prove that for any $b \in \mathbb{R}^{3\times 1}$ such that n = 0, the system of equations n = 0, the system of equations n = 0, always has a unique solution.

Q.4) Let
$$\mathcal{I} = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mid x_1 + x_2 + x_3 = 0 \right\} \subseteq \mathbb{R}^3$$
.

- i) Prove that I is a subspace of IR3.
- ii) Construct a reflector Q which reflects every vector of \mathbb{R}^3 through Z.

Q.5) For $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$, check whether the following transformations are linear? Justify your answer in each case.

