# Modelos Determinísticos de Investigação Operacional

## 8 de Janeiro de 2020

| Grupo nr. | 15               |
|-----------|------------------|
| a83899    | André Morais     |
| a84577    | José Pedro Silva |
| a85954    | Luís Ribeiro     |
| a84783    | Pedro Rodrigues  |



Mestrado Integrado em Engenharia Informática Universidade do Minho

## Conteúdo

| 1 | Intr | odução  | O         |  |  |  |  |  |  |  |  |  |  |  |  | 2  |
|---|------|---------|-----------|--|--|--|--|--|--|--|--|--|--|--|--|----|
| 2 | Que  | estões  |           |  |  |  |  |  |  |  |  |  |  |  |  | 3  |
|   | 2.1  | Parte   | 0         |  |  |  |  |  |  |  |  |  |  |  |  | 3  |
|   |      | 2.1.1   | Questão 1 |  |  |  |  |  |  |  |  |  |  |  |  | 3  |
|   |      | 2.1.2   | Questão 2 |  |  |  |  |  |  |  |  |  |  |  |  | 6  |
|   | 2.2  | Parte   | 1         |  |  |  |  |  |  |  |  |  |  |  |  | 8  |
|   |      | 2.2.1   | Questão 1 |  |  |  |  |  |  |  |  |  |  |  |  | 8  |
|   |      | 2.2.2   | Questão 2 |  |  |  |  |  |  |  |  |  |  |  |  | 9  |
|   |      | 2.2.3   | Questão 3 |  |  |  |  |  |  |  |  |  |  |  |  | 10 |
|   |      | 2.2.4   | Questão 4 |  |  |  |  |  |  |  |  |  |  |  |  | 11 |
|   | 2.3  | Parte : | 2         |  |  |  |  |  |  |  |  |  |  |  |  | 12 |
|   |      | 2.3.1   | Questão 1 |  |  |  |  |  |  |  |  |  |  |  |  | 13 |
|   |      | 2.3.2   | Questão 2 |  |  |  |  |  |  |  |  |  |  |  |  | 14 |
|   |      | 2.3.3   | Questão 3 |  |  |  |  |  |  |  |  |  |  |  |  | 15 |
|   |      | 2.3.4   | Questão 4 |  |  |  |  |  |  |  |  |  |  |  |  | 16 |
|   |      | 2.3.5   | Questão 5 |  |  |  |  |  |  |  |  |  |  |  |  | 17 |

## 1 Introdução

O presente relatório irá abordar a elaboração do projeto realizado no âmbito da Unidade Curricular **Modelos Determinísticos de Investigação Operacional**. Este trabalho está dividido em 3 partes. Na **parte 0** baseiase a construir um novo grafo, com algumas restrições. Na **parte 1** e **parte 2** foram nos proposto dois problemas a partir do grafo obtido anteriormente.

Para tal, foi-nos fornecido um gráfico (Figura 12) que inicialmente já era definido o caminho crítico que correspondia às actividades 6,7,4,2 e 3, com uma duração de 29 unidades, que é também o tempo mínimo necessário para a realização de todo o projeto.



Figura 1: Gráfico Inicial

## 2 Questões

## 2.1 Parte 0

#### 2.1.1 Questão 1

"Apresente a rede que representa o projecto depois de eliminar as actividades indicadas na secção "Determinação da lista de actividades", no final do texto, identificando os vértices da rede e os arcos e respectivos custos.".

Sendo ABCDE o maior número mecanográfico do grupo, analisando os mesmos concluímos que a85954 é o maior. Através do conjunto de regras definidas no enunciado do trabalho prático completamos o gráfico, obtendo o seguinte gráfico (Figura 2).



Figura 2: Grafo com direções

A rede anteriormente apresentada tem as seguintes características:

#### Vértices da Rede

• Só houve alteração nos vértices 4 e 5, sendo estes removidos.Por isso temos um conjunto de 12 vértices, que posteriormente vão nos ajudar os arcos deste grafo.

```
t_i, t_0, t_1, t_2, t_3, t_6, t_7, t_8, t_9, t_{10}, t_{11}, t_f
```

#### Arcos da Rede

• Seja  $t_{ij}$  o número de vezes que um arco é percorrido, onde i corresponde ao vértice de origem e j ao vértice de chegada. Isto é, o arco  $t_{01}$  corresponde ao número que o arco que liga o vértice 0 ao vértice 1 é percorrido.

```
Arcos com Duração 0 - t_{i0}, t_{i6}

Arcos com Duração 2 - t_{23}, t_{9f}

Arcos com Duração 3 - t_{3f}

Arcos com Duração 4 - t_{01}, t_{02}, t_{03}, t_{83}, t_{8f}, t_{89}

Arcos com Duração 5 - t_{67}, t_{610}

Arcos com Duração 6 - t_{12}, t_{72}, t_{78}

Arcos com Duração 7 - t_{119}

Arcos com Duração 8 - t_{108}, t_{1011}
```

#### Custos dos Arcos

• O custo de cada arco, ou melhor dizendo, a duração deste, é por consequente aprensentado no vértice. Considerando um exemplo aleatório, a atividade 10 tem duração de 8, isto é, todos os arcos  $t_{10j}$  vão ter um custo de 8, como é o caso de  $t_{1011}$  e  $t_{108}$  no nosso caso.

#### Restrições

As restrições são baseada na soma das durações do caminho que fomos percorrendo, como podemos verificar na figura abaixo evidenciada.
Sendo p<sub>i</sub> a duração da atividade i, a variável t<sub>i</sub>, é uma variável de decisão, que é igual ao instante de início da execução da tarefa i.Depois temos restrições disjuntivas: o instante do fim da execução de uma tarefa é anterior ao instante de início da outra, isto é

$$t_i + p_i \leq t_j$$

### Função objetivo

 $\bullet$ Como o objetivo visa calcular o caminho crítico, então é necessário minimizar a duração de  $t_f,$ obtendo então a seguinte função objetivo:

$$\min = t_f$$

```
/* Objective function */
min:tf;
/* Variable bounds */
arco i0: t0 >= ti + 0 ;
arco i6: t6 >= ti + 0 ;
arco 01: t1 >= t0 + 4 ;
arco 02: t2 >= t0 + 4 ;
arco 03: t3 >= t0 + 4 ;
arco_12: t2 >= t1 + 6;
arco_23: t3 >= t2 + 7 ;
arco_67: t7 >= t6 + 5 ;
arco_78: t8 >= t7 + 6;
arco_72: t2 >= t7 + 6;
arco_89: t9 >= t8 + 4 ;
arco 83: t3 >= t8 + 4 ;
arco 610: t10 >= t6 + 5
arco 108: t8 >= t10 + 8
arco 119: t9 >= t11 + 7
arco 1011: t11 >= t10 + 8;
arco 3f: tf >= t3 + 2 ;
arco 9f: tf >= t9 + 2 ;
arco_8f: tf >= t8 + 4;
```

Figura 3: Gráfico com as restrições

#### 2.1.2 Questão 2

Apresente o diagrama de Gantt (que resulta de resolver o modelo com as variáveis de decisão  $t_i$ ,  $\forall_i$ ), e indique a duração do projecto.

O valor da variável de decisão  $t_i$  na solução óptima define o tempo de início de execução da actividade i , permitindo construir um plano de execução do projecto, designado por diagrama de Gantt. O Diagrama de Gantt do projecto em análise é apresentado na Figura 5, com uma solução ótima de 23

| Variables | result |
|-----------|--------|
|           | 22     |
| tf        | 22     |
| tO        | 0      |
| ti        | 0      |
| t6        | 0      |
| t1        | 5      |
| t2        | 11     |
| t3        | 20     |
| t7        | 5      |
| t8        | 16     |
| t9        | 20     |
| t10       | 5      |
| t11       | 13     |

Figura 4: Resultado LPSolve



Figura 5: Diagrama de Gantt

#### 2.2 Parte 1

Para este trabalho, identifique 3 actividades que, no diagrama de Gantt da PARTE 0, decorrem em paralelo; uma das actividades que seleccionar deve pertencer ao caminho crítico. Considere agora que existe apenas um equipamento para realizar as três actividades. O objectivo continua a ser realizar o projecto na menor duração possível.

#### 2.2.1 Questão 1

Explique a forma que escolheu para formular este problema. Identifique claramente o significado das novas restrições e da função objectivo do novo modelo de programação linear inteira mista. Teça todos os comentários que considere adequados.

Após a observação do diagrama obtido na Parte 0, podemos concluir que apenas 3 atividades ocorrem em paralelo sendo estas as atividades 1, 7 e 10. Como no enunciado desceve que apenas uma atividade se pode realizar de cada vez, tivemos que acrescentar algumas restrições à nossa solução. Primeiramente criamos variávels binárias,  $y_{ij}$ , que tomam o valor de 1 se a atividade i precede a atividade j ou 0 se a atividade j precede a atividade i Restrições de não-simultaneidade

$$t_i + p_i \le t_j + M(1-y_{ij})$$
  
$$t_i + p_i \le t_j + My_{ij}$$

#### 2.2.2 Questão 2

Apresente o ficheiro de input (cut-and-paste).

```
/* Objective function */
min:tf;
/* Variable bounds */
arco i0: t0 >= ti + 0 ;
arco i6: t6 >= ti + 0 ;
arco_01: t1 >= t0 + 4 ;
arco_02: t2 >= t0 + 4 ;
arco_03: t3 >= t0 + 4 ;
arco 12: t2 >= t1 + 6;
arco 23: t3 >= t2 + 7;
arco 67: t7 >= t6 + 5;
arco 78: t8 >= t7 + 6;
arco_72: t2 >= t7 + 6;
arco 89: t9 >= t8 + 4 ;
arco 83: t3 >= t8 + 4 ;
arco_610: t10 >= t6 + 5 ;
arco 108: t8 >= t10 + 8 ;
arco_119: t9 >= t11 + 7 ;
arco_1011: t11 >= t10 + 8;
arco 3f: tf >= t3 + 2;
arco 9f: tf >= t9 + 2 ;
arco 8f: tf >= t8 + 4;
t1 + 6 <= t7 + 1000000 - 1000000y17;
t7 + 6 <= t1 + 1000000y17;
t1 + 6 <= t10 + 1000000 - 1000000y110;
t10 + 8 <= t1 + 1000000y110;
t7 + 6 <= t10 + 1000000 - 1000000y710;
t10 + 8 <= t7 + 1000000y710;
bin y17, y110, y710;
```

Figura 6: Resultado LPSolve

## 2.2.3 Questão 3

Apresente o ficheiro de output produzido pelo programa (cut-and-paste).

| Variables | MILP  | result |
|-----------|-------|--------|
|           | 33,00 | 33,00  |
| tf        | 33,00 | 33,00  |
| ŧO        | 0     | 0      |
| ti        | 0     | 0      |
| t6        | 0     | 0      |
| t1        | 4     | 4      |
| t2        | 24,00 | 24,00  |
| t3        | 31,00 | 31,00  |
| t7        | 10,00 | 10,00  |
| t8        | 24,00 | 24,00  |
| t9        | 31,00 | 31,00  |
| t10       | 16,00 | 16,00  |
| t11       | 24,00 | 24,00  |
| y17       | 1     | 1      |
| y110      | 1     | 1      |
| y710      | 1     | 1      |

Figura 7: Resultado LPSolve

#### 2.2.4 Questão 4

Apresente o plano de execução (diagrama de Gantt) do projecto. Verifique sumariamente que o plano obedece às novas restrições.

```
t_{1} + 6 \leq t_{7} + 1000000 - 1000000y_{17}
t_{7} + 6 \leq t_{1} + 1000000 - 1000000y_{17}
t_{1} + 6 \leq t_{10} + 1000000 - 1000000y_{110}
t_{10} + 8 \leq t_{1} + 1000000 - 1000000y_{110}
t_{7} + 6 \leq t_{10} + 1000000 - 1000000y_{710}
t_{10} + 8 \leq t_{7} + 10000000y_{710}
```

Observando a Figura 7, podemos retirar de lá os valores para validar as nossas restrições

```
4 + 6 \le 10 + 1000000 - 10000000 * 1 \Leftrightarrow 10 \le 10
10 + 6 \le 4 + 1000000 * 1 \Leftrightarrow 16 \le 1000004
4 + 6 \le 16 + 1000000 - 10000000 * 1 \Leftrightarrow 10 \le 16
16 + 8 \le 4 + 1000000 * 1 \Leftrightarrow 24 \le 100004
10 + 6 \le 16 + 1000000 - 10000000 * 1 \Leftrightarrow 16 \le 16
16 + 8 \le 10 + 1000000 * 1 \Leftrightarrow 24 \le 1000010
```



Figura 8: Diagrama de Gantt

#### 2.3 Parte 2

Considere que é possível, aumentando os recursos aplicados e com custos suplementares, reduzir a duração de uma actividade, num caso em que o custo da redução é não-linear. Um modelo com funções não-lineares pode ser aproximado por um modelo em que cada uma dessas funções é aproximada por uma função contínua linear por partes. Neste trabalho, para aproximar a função não-linear, vamos usar uma função linear com 2 partes. Esses valores estão apresentados na seguinte Tabela (considere apenas aqueles que dizem respeito às actividades da lista do grupo):

| Actividade | Custo Normal | $c_1$ | Máx. red. a custo $c_1$ | $c_2$ | Máx. red. a custo $c_2$ |
|------------|--------------|-------|-------------------------|-------|-------------------------|
| 0          | 400          | 200   | 0,5                     | 100   | 0,5                     |
| 1          | 1000         | 600   | 1                       | 300   | 1                       |
| 2          | 1400         | 1000  | 3                       | 500   | 1                       |
| 3          | 300          | 200   | 0,5                     | 100   | 0,5                     |
| 6          | 800          | 180   | 1                       | 90    | 1                       |
| 7          | 900          | _     | 0                       | _     | 0                       |
| 8          | 600          | 200   | 0,5                     | 100   | 0,5                     |
| 9          | 300          | _     | 0                       | _     | 0                       |
| 10         | 1600         | 1000  | 0,5                     | 500   | 0,5                     |
| 11         | 1400         | 600   | 1                       | 300   | 1                       |

Figura 9: Tabela de Custos

Pretende-se que o tempo de execução do projecto encontrado na PARTE 0 seja reduzidoem 3 U.T. .O objectivo do problema é decidir como devem ser reduzidas as durações das actividades, de modo a realizar o projecto na nova duração desejada, com um custo suplementar mínimo.

#### 2.3.1 Questão 1

Explique a forma que escolheu para formular este problema. Identifique claramente o significado das novas restrições e da função objectivo do novo modelo de programação linear inteira mista. Teça todos os comentários que considere adequados. Primeiramente tivemos que definir a nossa função obje-

tivo que era minimizar o custo, e definir que  $t_f$  menor que 19, pois tinhamos de subtrair 3 unidades ao nosso antigo valor que é pedido no enunciado. A função min é a soma de todos os custos, mas tendo em conta que as reduções variam e por isso tivemos de criar duas variáveis,  $r_i$  e  $z_i$ .

As primeiras restrições mantinham se iguais as da parte 0 e parte 1, mas com o acrescente que agora iriamos ter de retirar o custo de r e o custo de r, como por exemplo:

$$arco_{01}$$
:  $t_1 \ge t_0 - r_0 - z_0 + 4$ ;

Seguidamente temos de impôr restrições nos  $r_i$  e nos  $z_i$  em que os  $r_i$  não podem ser maiores que o Máx.red. a custo  $c_1$  (tendo que depois verificar que se o caminho está a ser usado, ou seja, verificar se  $y_{ij}$  é 0 ou 1). Nos  $z_i$  também não podem ser maior do que o Máx.red. a custo  $c_2$  verificando se a atividade está a decorrer ou não.

### 2.3.2 Questão 2

Apresente o ficheiro de input (cut-and-paste).

```
// subjective function // mini 2000 - 6001 + 10002 + 2003 + 180x6 + 0x7 + 200x8 + 0x9 + 1000x10 + 600x11 + 100x0 + 300x1 + 500x2 + 100x3 + 50x6 + 0x7 + 100x8 + 0x9 + 500x10 + 300x11;

/* Variable bounds */ 
trails to bounds */ 
trails to bounds */ 
arco_01: 13 > 60.00 + 10; 
arco_01: 13 > 60.00 + 0; 
ar
```

Figura 10: Tabela de Custos

## 2.3.3 Questão 3

Apresente o ficheiro de output produzido pelo programa (cut-and-paste).

|           | LUI D |        |
|-----------|-------|--------|
| Variables | MILP  | result |
| -0        | 870   | 870    |
| r0<br>r1  | 0     | 0      |
|           |       |        |
| r2        | 0     | 0      |
| r3        | 0     | 0      |
| r6        | 1     | 1      |
| r7        | 0     | 0      |
| r8        | 0     | 0      |
| r9        | 0     | 0      |
| r10       | 0     | 0      |
| r11       | 1     | 1      |
| z0        | 0     | 0      |
| z1        | 0     | 0      |
| z2        | 0     | 0      |
| z3        | 0     | 0      |
| z6        | 1     | 1      |
| z7        | 0     | 0      |
| z8        | 0     | 0      |
| z9        | 0     | 0      |
| z10       | 0     | 0      |
| z11       | 0     | 0      |
| tf        | 19    | 19     |
| tO        | 0     | 0      |
| ti        | 0     | 0      |
| t6        | 0     | 0      |
| t1        | 4     | 4      |
| t2        | 10    | 10     |
| t3        | 17    | 17     |
| t7        | 4     | 4      |
| t8        | 11    | 11     |
| t9        | 17    | 17     |
| t10       | 3     | 3      |
| t11       | 11    | 11     |
| y0        | 0     | 0      |
| у1        | 0     | 0      |
| у2        | 0     | 0      |
| у3        | 0     | 0      |
| у6        | 1     | 1      |
| у8        | 0     | 0      |
| y10       | 0     | 0      |
| y11       | 1     | 1      |
| y7        | 0     | 0      |
| y9        | 0     | 0      |
|           |       |        |

Figura 11: Resultado LPSolve

## 2.3.4 Questão 4

Apresente o plano de execução (diagrama de Gantt) do projecto representando as actividades com as durações que elas têm após a respectiva redução.



Figura 12: Diagrama de Gantt

#### 2.3.5 Questão 5

Verifique que o custo da solução está correcto.

```
\min = 200r_0 + 600r_1 + 1000r_2 + 200r_3 + 180r_6 + 0r_7 + 200r_8 + 0r_9 + 1000r_{10} + 600r_{11} + 100z_0 + 300z_1 + 500z_2 + 100z_3 + 90z_6 + 0z_7 + 100z_8 + 0z_9 + 500z_{10} + 300z_{11}
```

se substituirmos os valores obtidos no LPSolve, verificamos que o  $\min = 870$ 

```
\min = 200 * 0 + 600 * 0 + 1000 * 0 + 200 * 0 + 180 * 1 + 0 + 200 * 0 + 0 + 1000 * 0 + 600 * 1 + 100 * 0 + 300 * 0 + 500 * 0 + 100 * 0 + 90 * 1 + 0 + 100 * 0 + 0 + 500 * 0 + 300 * 0
```

Fazendo as contas:

$$\min = 180 + 600 + 90 \Leftrightarrow \min = 870$$