

Network Adapters for NFS at 10Gb and Beyond

Tom Hotchkiss

VP, Engineering

Emulex Corporation

Tom.Hotchkiss@emulex.com

Overview

- Networking Issues at 10Gb and Beyond
 - Protocol Processing
 - Memory Bandwidth
- The Role of the Network Adapter
 - Standard NIC
 - TCP Offload Adapter
 - RDMA Adapter
 - NFS Acceleration Adapter
- Multi-Protocol Network Adapters
 - Flexible Solutions

CPU and Network Trends

NFS Industry Conference

October 22-23, 2002

Page 3 of 18

Beyond 10Gbps

10Gb Protocol Processing

- Requires a 10x Increase in I/O Processing
- Performance Limited by Host
 - Protocol Processing
 - Interrupts
 - Buffer Copies

Standard NIC

N I C F N O S D N U F S E T R R E Y N C

Standard NIC

- Will not Allow 10Gb Performance
 - TCP Processing on Host
 - Buffer Copy on Receive
- Overloaded Host CPU and Memory
 - Poor Application Performance

TCP Offload Adapter

N I C F N O S D N U F S E T R R E Y N C

TCP Offload Adapter

- TCP/IP Processing on Adapter
 - Not Just TCP Assist
- Eliminates Host TCP Processing Requirements
- But...
 - Still Requires Buffer Copy on Receive

Direct Data Placement

Buffer Copy

- Requires 3x Memory BW
- Wastes Host CPU Cache BW
- Consumes Host CPU Cycles

NIC NIC

NIC DMA

2x CPU Copy

Network Buffer Rx Buffer

Host Cache

Host CPU

Host Memory

Network Adapter

Network Adapter Direct Data Placement (DDP)

NFS Industry Conference

Page 9 of 18

3x

October 22-23, 2002

NIC FNO SDN UF SE TR RE YN

Memory BW Requirements

Wire	Network BW	Memory BW
Speed	(MB/sec)	(MB/sec)
1 Gb/sec	125	375
10 Gb/sec	1,250	3,750

*Memory BW = 3x Network BW due to Buffer Copy

Zero Copy Receive with Remote DMA (RDMA)

- Direct Data Placement in Receive Data Buffer
- Requires 1/3 the Memory BW
- Eliminates Host CPU Copy Overhead

RDMA Adapter

N I C F N O S D N U F S E T R R E Y N C

RDMA Adapter

- Modified RPC Layer Supports RDMA Protocol
- Transparent to Applications
- High Performance
 - Zero Copy Receives
 - TCP Protocol Offload
- Requires a New Transport Protocol
 - RDMA Protocol Supported by Server and Client

NFS Acceleration Adapter

N I C F N O S D N U F S E T R R E Y N C

Host IO Bus (PCI) RPC (Lower Layer) **NFS** TCP/IP Acceleration Adapter MAC/Phy Wire

October 22-23, 2002

NFS Industry Conference

Page 14 of 18

NFS Acceleration Adapter

- Modified RPC Layer
- Direct Data Placement
- Transparent to Applications
- High Performance
 - Zero Copy Receives
 - TCP Protocol Offload
- No New Protocols
 - Single Ended: Client or Server can Implement Independently

Multi-protocol Adapter

RDMA Adapter NFS Adapter TOE Adapter Standard NIC

Zero Copy RDMA TCP Offload Zero Copy TCP/IP TCP Offload
Buffer Copy
TCP/IP

Host TCP
Buffer Copy
TCP/IP

Green=Host
Purple=Adapter
Blue=Transport

October 22-23, 2002

NFS Industry Conference

Page 16 of 18

NICFNOSDNUFSETREYN

Multi-Protocol Adapter

- Intelligent Network Adapter Supports Multiple Protocols
 - Standard NIC Mode
 - TCP Offload
 - NFS Acceleration
 - RDMA

Summary

- Standard NICs will not Support 10Gb Performance
- Intelligent Network Adapters Needed
 - TCP Protocol Offload
 - Zero Copy Receive via Direct Data Placement
- Multi-Protocol Adapters Provide Flexible Solutions