

CLAIMS

1. A process for preparing an optically active 1-substituted amino-2,3-epoxypropane represented by formula (6):

5

(wherein * represents an asymmetric carbon atom, R¹ and R² independently represent a hydrogen atom or a carbamate-, acyl- or aroyl-type amino protecting group, or R¹ and R² represent together an imide-type amino protecting group),

10 the process comprising reacting an optically active 1-substituted amino-2,3-propanediol represented by formula (1):

15 (wherein * represents an asymmetric carbon atom, and R¹ and R² represent the same as the above) with a compound represented by formula (2) or (3):

(wherein R^3 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, and R^4 represents an alkyl group having 1 to 6 carbon atoms),

(wherein Y represents a halogen atom or a lower alkoxy group) to produce an optically active compound represented by formula (4):

[wherein * represents an asymmetric carbon atom or an asymmetric sulfur atom, A represents a carbon atom or a sulfur atom, B^1 represents R^3 (representing the same as the above), and B^2 represents OR^4 (wherein R^4 represents the same as the above) or B^1 and B^2 represent together an oxygen atom, and R^1 and R^2 represent the same as the above]; opening the ring of the compound represented by formula (4) to produce

an optically active compound represented by formula (5):

[wherein * represents an asymmetric carbon atom, X

5 represents a halogen atom, R⁵ represents COR³ (wherein R³ represents the same as the above) or a hydrogen atom, and R¹ and R² represent the same as the above]; and further subjecting the compound represented by formula (5) to ring closure in the presence of a base.

10 2. A process for preparing an optically active compound represented by formula (4):

15 [wherein * represents an asymmetric carbon atom or an asymmetric sulfur atom, A represents a carbon atom or a sulfur atom, B¹ represents R³ (representing the same as the above), and B² represents OR⁴ (wherein R⁴ represents the same

as the above) or B¹ and B² represent together an oxygen atom, and R¹ and R² represent the same as the above], the process comprising reacting an optically active 1-substituted amino-2,3-propanediol represented by formula (1):

5

(wherein * represents an asymmetric carbon atom, R¹ and R² independently represent a hydrogen atom or a carbamate-, 10 acyl- or aroyl-type amino protecting group, or R¹ and R² represent together an imide-type amino protecting group) with a compound represented by formula (2) or (3):

15 (wherein R³ represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, and R⁴ represents an alkyl group having 1 to 6 carbon atoms),

20 SOY₂ (3)

(wherein Y represents a halogen atom or a lower alkoxy

group).

3. An optically active compound represented by formula (4):

5 [wherein * represents an asymmetric carbon atom or an asymmetric sulfur atom, A represents a carbon atom or a sulfur atom, B¹ represents R³ (representing the same as the above), and B² represents OR⁴ (wherein R⁴ represents the same as the above) or B¹ and B² represent together an oxygen atom, 10 and R¹ and R² represent the same as the above].

4. A process for preparing an optically active compound represented by formula (5):

15

[wherein * represents an asymmetric carbon atom, X represents a halogen atom, R⁵ represents COR³ (wherein R³ represents the same as the above) or a hydrogen atom, and R¹

and R^2 represent the same as the above], the process comprising opening the ring of an optically active compound represented by formula (4):

5

[wherein * represents an asymmetric carbon atom or an asymmetric sulfur atom, A represents a carbon atom or a sulfur atom, B^1 represents R^3 (representing the same as the above), and B^2 represents OR^4 (wherein R^4 represents the same as the above) or B^1 and B^2 represent together an oxygen atom, and R^1 and R^2 represent the same as the above].

10 5. A process for preparing an optically active 1-substituted amino-2,3-epoxypropane represented by formula
15 (6):

(wherein * represents an asymmetric carbon atom, and R^1 and R^2 represent the same as the above], the process comprising preparing an optically active compound represented by

formula (5):

[wherein * represents an asymmetric carbon atom, X represents a halogen atom, R⁵ represents COR³ (wherein R³ represents the same as the above) or a hydrogen atom, and R¹ and R² represent the same as the above], and then subjecting the compound to ring closure in the presence of a base.