Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (МФТИ)

Кафедра вакуумной электроники Отчет по лабораторной работе

Электронно-оптический преобразователь

Работу выполнили:	
t deery sumounnam.	Н.А.Григорьев А.В. Захаров Д.Ю.Салтыкова
Работу принял, оценка	

Цель работы: Ознакомление с принципами работы ЭОП

Теоретическое введение

Электронно-оптический преобразователь представляет собой электровакуумную колбу, внутри которой размещены фотокатод, люминесцентный экран, фокусирующая и ускоряющая электронно-оптические системы. В нашем случае применяется микроканальная пластина.

МКП представляет собой многоканальный электронный умножитель. Конструктивно МКП — это сотовая структура, образованная большим числом стеклянных каналов. Обычно диаметр канала находится в диапазоне 2-15 мкм, а типичный период каналов 5-25 мкм, что обеспечивает плотность от 0,5 до 5 миллионов каналов на см².

МКП нашли широкое применение в технике (приборы ночного видения) и в научном приборостроении (электронная спектроскопия и микроскопия, массспектрометрия, рентгеновская астрономия, ядерные исследования), так как имеют уникальное сочетание свойств — большой коэффициент усиления, высокое пространственное и временное разрешение. Как правило, в конкретном приложении важна только часть характеристик, поэтому МКП оптимизируют под решаемые задачи.

Времяанализирующий электронно-оптический преобразователь PV201. 1 – стекловолоконное входное окно, 2 – фотокатод, 3 – анод, 4 – отклоняющие пластины, 5 – микроканальная плата, 6 – выходное стекловолоконное окно

Рисунок 1. Схема внутреннего устройства электронно-оптического преобразователя

Рисунок 2. Электрическая схема подключения электронно-оптического преобразователя

Выполнение работы

Получим зависимость яркости изображения на экране от напряжения на МКП.

Изображение получаем с помощью веб-камеры.

Значения яркости оценочные, рассчитываемые по шкале от 0 (отсутствие света) до 255 (максимальное насыщение сенсора камеры). Точность эксперимента ограничена динамическим диапазоном камеры, применяемой для захвата изображения.

Напряжение на МКП, В	Яркость
1500	154,54
1400	86,96
1300	42,835
1200	18,284
1100	8,261
1000	4,705
900	3,665
800	3,472
700	3,33
600	3,273
500	3,295

Получим зависимость яркости изображения на экране от напряжения на катоде.

Напряжение на катоде, В	Яркость
4000	75,658
3600	68,199
3200	57,295
2800	39,363
2400	19,308
2000	6,24

Получим зависимость яркости изображения на экране от напряжения на экране.

Напряжение на экране, В	Яркость
3860	71,89
3600	54,048
3200	29,281
2800	11,034
2400	4,699
2000	3,301

Исследуем зависимость яркости изображения от частоты излучаемого света. Для этого установим светофильтры с известной зависимостью пропускной способности от длины волны.

Фильтр	Яркость	
Отсутствует	151,9	
ЖС-19	138,4	
C3C-20	90,9	
OC-14	58,4	
3C-1	43,9	
Нормированные	по максимальной	
	бности фильтров	
ЖС-19	138,4	
C3C-20	101	
OC-14	58,4	
3C-1	109,75	
80% пропускания, нм		
ЖС-19	540-700	
C3C-20	400-480	
OC-14	600-700	
3C-1	520-580	

Сопоставив спектральные характеристики пропускания светофильтров и полученные результаты, мы можем сделать следующие выводы о спектральной характеристике источника:

- 1. Наибольшая интенсивность в области действия светофильтра ЖС-19: 560-600 нм
- 2. Минимальная 600-700 нм

Исследования производились на длинах волн 400-700 нм

Общий вывод работы

В результате работы мы ознакомились с принципами работы ЭОП, а также оценили спектральные характеристики диода.