Basic RL.5

Judy Tutorial

Before we dive into DQN

Logistic Regression & Neural Networks

MNIST dataset

[Lecun 1998]

```
000000000000000
   222222
      6666
```

Classification Problem

[Iris dataset 1988]

- Find a discriminant line of the labeled dots
- Classify a new dot

Binary Labels $y \in \{0,1\}$

Hypothesis function

$$h(\boldsymbol{\theta}) = g(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{X})$$
parameters

Activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

Objective function

$$J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log h(\theta)^{(i)} + (1 - y^{(i)}) \log (1 - h(\theta)^{(i)})$$

Cross entropy loss

Objective function

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log h(\boldsymbol{\theta})^{(i)} + \left(1 - y^{(i)}\right) \log \left(1 - h(\boldsymbol{\theta})^{(i)}\right)$$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Gradient Descent

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t - \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Negative Log-Likelihood of Bernoulli distribution

Bernoulli Distribution

Wiki:

 a model for the set of possible outcomes of any single experiment that asks a yes-no question

Examples:

- What's the probability of getting a 'head' when tossing a coin?
- Which probability is higher? Ppl who like Coca-cola or Pepsi?
- A success or a failure? Cancer or not? Boy or girl? Quit a
 job or not? Label o or label 1? etc

• Given a random variable: $x \in \{0,1\}$

Bernoulli Distribution

$$\begin{array}{c|c}
\mu \\
1-\mu \\
\hline
0 & 1
\end{array}$$

$$Ber(x|\mu) = \mu^x (1 - \mu)^{1-x}$$
 $0 \le \mu \le 1$ distribution parameter

•
$$Ber(x = 1|\mu) = \mu^{1}(1 - \mu)^{1-1} = \mu$$

•
$$Ber(x = 0|\mu) = \mu^0(1 - \mu)^1 = 1 - \mu$$

$$Ber(x|\mu) = \mu^{x}(1-\mu)^{1-x}$$

$$p(y|h(\theta)) = h(\theta)^{y}(1-h(\theta))^{1-y}$$

$$p(g|h(\theta)) = h(\theta)^{y}(1-h(\theta))^{1-y}$$

Wiki:

 Describes the joint probability of the observed data as a funcion of the parameters of the chosen statistical model

Likelihood

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{X}) = p(\boldsymbol{X}|\boldsymbol{\theta}) = p(x_1, x_2, \dots |\boldsymbol{\theta})$$

— Distribution parameters

•
$$P(HH|p(H) = 0.3) = 0.3 * 0.3 = 0.09$$

•
$$P(HH|p(H) = 0.6) = 0.6 * 0.6 = 0.36$$

•
$$\mathcal{L}(p(H) = 0.3|HH) = 0.09$$

•
$$\mathcal{L}(p(H) = 0.6|HH) = 0.36$$

Maximum Likelihood Estimation

$$\widehat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\theta}|\boldsymbol{X})$$

MLE for Logistic Regression

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{N} p(y^{(i)}|h(\boldsymbol{\theta})^{(i)}) \quad \text{Bernoulli Likelihood}$$

$$= \prod_{i=1}^{N} h(\boldsymbol{\theta})^{(i)} y^{(i)} (1 - h(\boldsymbol{\theta})^{(i)})^{1 - y^{(i)}}$$

$$\sum_{i=1}^{\mathbf{\theta}} \left[y^{(i)} \log h(\boldsymbol{\theta})^{(i)} + \left(1 - y^{(i)}\right) \log(1 - h(\boldsymbol{\theta})^{(i)}) \right]$$

Objective function

$$\frac{\min_{\theta} J(\theta)}{-\frac{1}{N}} \sum_{i=1}^{N} \left[y^{(i)} \log h(\theta)^{(i)} + (1 - y^{(i)}) \log(1 - h(\theta)^{(i)}) \right]$$

Cross entropy loss

Cross Entropy Loss

$$Log Loss = -\frac{1}{N} \sum_{i=1}^{N} \log p^{(i)}$$

id	actual	predicted	corrected	log	-log
0	1	0.94	0.94	-0.02687	0.02687
1	1	0.9	0.9	-0.04576	0.04576
2	1	0.78	0.78	-0.10791	0.10791
3	0	0.56	0.44	-0.35655	0.35655
4	0	0.51	0.49	-0.3098	0.3098
5	1	0.47	0.47	-0.3279	0.3279
6	1	0.32	0.32	-0.49485	0.49485
7	0	0.1	0.9	-0.04576	0.04576

Cross Entropy Loss =

$$-\frac{1}{N}\sum_{i=1}^{N} \left[y^{(i)} \log p^{(i)} + \left(1 - y^{(i)}\right) \log(1 - p^{(i)}) \right]$$

Objective function

$$\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log h(\boldsymbol{\theta})^{(i)} + (1 - y^{(i)}) \log(1 - h(\boldsymbol{\theta})^{(i)})$$

Gradient

$$\nabla_{\theta_{j}} J(\theta_{j}) = \nabla_{\theta_{j}} - \frac{1}{N} \sum_{i=1}^{N} y^{(i)} \log h(\theta_{j})^{(i)} + (1 - y^{(i)}) \log (1 - h(\theta_{j})^{(i)})$$

$$= \frac{1}{N} \sum_{i=1}^{N} - \left[\frac{y^{(i)}}{h(\theta_{j})^{(i)}} - \frac{1 - y^{(i)}}{1 - h(\theta_{j})^{(i)}} \right] \nabla_{\theta_{j}} h(\theta_{j})^{(i)}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left[h(\theta_{j})^{(i)} - y^{(i)} \right] x^{(i)}$$
Element-wise

$$= \frac{1}{N} X [h(\theta) - Y]^T \quad \text{Vector-wise} \quad \text{gradient ?!}$$

same as linear regression

Gradient Descent
$$\theta_{t+1} \leftarrow \theta_t - \alpha \nabla_{\theta} J(\theta)$$

Batch

Mini Batch

&

Stochastic Gradient Descent

Require a batch/entire dataset

$$\nabla_{\theta_j} J(\theta_j) = \frac{1}{N} \sum_{i=1}^N \left[h(\theta_j)^{(i)} - y^{(i)} \right] x^{(i)}$$

Sample random mini batch from the entire dataset

$$\nabla_{\theta_j} J(\theta_j) = \frac{1}{N_{mini}} \sum_{i=1}^{N_{mini}} \left[h(\theta_j)^{(i)} - y^{(i)} \right] x^{(i)}$$

Require only one data point

$$\nabla_{\theta_j} J(\theta_j) = \left[h(\theta_j)^{(i)} - y^{(i)} \right] x^{(i)}$$
Mini batch

batch

in python

```
def sigmoid(x):
    return 1/(1+np.exp(-x))

def crossentropy_loss(X,y,theta):
    h=sigmoid(X@theta)
    return ((1/len(y))*(((-y).T@np.log(h+1e-5))-((1-y).T@np.log(1-h+1e-5))))[0][0]

def predict(X,theta):
    avoid underflow

return np.round(sigmoid(X@theta)) round up probabilities
```

```
X,y=Xy[:,:2],Xy[:,2]
X=np.hstack((np.ones((len(X),1)),X))
y=y[:,np.newaxis]
                                         X:(100,3)
theta=np.zeros((X.shape[1],1))
                                         y: (100,1)
                                         theta: (3,1)
N=3000 #number of iterations
lr=0.05
n=len(y) #number of data points
                                         h=X@theta:
                                         (100,1)<-(100,3)(3,1)
for i in range(N):
                                         grad=X.T@(h-y):
    h=sigmoid(X@theta)
                                         (3,1)<-(3,100)(100,1)
    grad=X.T@(h-y)
    theta=theta-(lr/n)*grad
```

Learning behavior

•
$$h(\boldsymbol{\theta}) = g(\boldsymbol{\theta}^{\mathrm{T}}X) = g(\theta_0 + \theta_1x_1 + \theta_2x_2)$$

•
$$h(\theta) = \begin{cases} 1 & \text{if } \theta_0 + \theta_1 x_1 + \theta_2 x_2 > 0 \\ 0 & \text{if } \theta_0 + \theta_1 x_1 + \theta_2 x_2 < 0 \end{cases}$$

•
$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 = 0 \Rightarrow x_2 = -\frac{\theta_1}{\theta_2} x_1 - \frac{\theta_0}{\theta_2}$$
 Decision boundary

prediction

- Given a new data: $x_1 = 5.6$, $x_2 = 3.3$
- $\theta_0 = -0.8966967$, $\theta_1 = 3.51427467$, $\theta_2 = -5.85710308$
- $h(\theta) = g(\theta^{T}X) = g(\theta_0 + \theta_1x_1 + \theta_2x_2) = 0$ setosa

Behaviors of different gradient descent methods

- Mini batch_size=1 <=> stochastic gradient
- Mini batch_size=N <=> batch gradient
- SGD converges the fastest but may oscillating around the optimal minimum