

Introduction to VLSI Circuits and Systems 積體電路概論

Chapter 03

Physical Structure of CMOS Integrated Circuits

賴秉樑

Dept. of Electronic Engineering
National Chin-Yi University of Technology
Fall 2007

Outline

- ☐ An Overview CMOS Fabrication
- □ Integrated Circuit Layers
- MOSFETs
- CMOS Layers
- Designing FET Arrays

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
- Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Wafer

Inverter Cross-section

- ☐ Typically use p-type substrate for nMOS transistors
- Requires n-well for body of pMOS transistors

Well and Substrate Taps

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

- ☐ Transistors and wires are defined by *masks*
- Cross-section taken along dashed line

Introduction to VLSI Circuits and Systems, NCUT 2007

Detailed Mask Views

□ Six masks

- » n-well
- » Polysilicon
- » n+ diffusion
- » p+ diffusion
- » Contact
- » Metal

Layout

- Chips are specified with set of masks
- ☐ Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - » Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \Box Express rules in terms of = f/2
 - » E.g. = $0.3 \mu m$ in $0.6 \mu m$ process

Simplified Design Rules

Conservative rules to get you started

Outline

- □ An Overview CMOS Fabrication
- ☐ Integrated Circuit Layers
- MOSFETs
- CMOS Layers
- Designing FET Arrays

Integrated Circuit Layers

- □ Physical design: CMOS integrated circuits are electronic switching networks that are created on small area of a silicon wafer using a complex set of physical and chemical processes
 - » Metal
 - » Insulator
 - » Substrate

Figure 3.1 Two separate material layers

Three-dimensional Structure

- Combining the top and side views of an integrated circuit allows us to visualize the three-dimensional structure
 - » The side view illustrates the order of the stacking
 - » Insulating layers separate the two metal layers so that they are electrically distinct
 - » The patterning of each layer is shown by a top view perspective
- ☐ The stacking order is established in the manufacturing process, and can not be altered by the VLSI designer

Figure 3.2 Layers after the stacking process is completed

Figure 3.3 Addition of another insulator and a second metal layer

Interconnect Resistance and Capacitance

- □ Logic gates communicate with each other by signal flow paths from one point to another
 - » Using patterned metal lines
 - » Current flow is governed by the physical characteristics of the material and the dimensions of the line
 - » Ohm's law

$$V = IR \tag{3.1}$$

» Line resistance R_{line} : a parasitic (unwanted) electrical element that cannot be avoided

$$A = wt (3.2)$$

$$R_{line} = \frac{l}{\sigma A}$$
 (3.3) (σ :conductivity)

Since
$$\rho = \frac{1}{\sigma}$$
 (3.4) (ρ :resistivity)

$$\Rightarrow R_{line} = \rho \frac{l}{A}$$
 (3.5)

Figure 3.4 Symbol for a linear resistor

Figure 3.5 Geometry of a conducting line

Sheet Resistance Model

 $\square \text{ Sheet resistance } R_s, \text{ rewriting } R_{line} = \rho \frac{l}{A}$

$$\Rightarrow R_{line} = \left(\frac{1}{\sigma t}\right) \left(\frac{l}{w}\right) \tag{3.6}$$

$$R_s = \frac{1}{\sigma t} = \frac{\rho}{t}$$
 (3.7) (sheet resistance)

$$\Rightarrow R_{line} = R_s n \tag{3.9}$$

where
$$n = \frac{1}{w}$$
 (3.10)

(a) Top-view geometry

(b) Sheet resistance contributions

Figure 3.6 Top-view geometry of a patterned line

Capacitor

- □ Interconnect lines also exhibit the property of capacitance
 - » In electronics, the element that stores charge is called *capacitor*

$$Q = CV$$
 (3.11)
C: F (farad), 1 F = 1 C/V

» Since electric current is defined by the time derivative I = (dQ/dt), differentiating gives the I-V equation

$$I = C\frac{dV}{dt}$$
 (3.12)

- » Capacitance exists between any two conducting bodies that are electrically separated
 - > For the interconnect line, the conductor is isolated from the substrate by an insulating layer of silicon dioxide glass
 - > So, the capacitance depends on the geometry of the line

$$C_{line} = \frac{\varepsilon_{ox} wl}{T_{ox}}$$
 (3.13) (parallel-plate formula)

Where ε_{ox} is the permittivity of the insulating oxide F/cm

Figure 3.7 Circuit symbol for a capacitor

Figure 3.8 Geometry for calculating the line capacitance

Delay: RC Time Constant

- The interconnect line exhibits both parasitic resistance R_{line} [] and capacitance C_{line} [F]
 - » Forming the product of these two quantities gives

$$\tau = R_{line}C_{line}[s] \tag{3.14}$$

- In high speed digital circuits, signals on an interconnect line are delayed by τ , which places a limiting factor on the speed of the network
 - » VLSI processing are directed toward minimizing both R_{line} and C_{line}
 - » Circuit designers are then faced with creating the fastest switching network within the limits of delay

Figure 3.9 Time delay due to the interconnect time constant

Outline

- □ An Overview CMOS Fabrication
- Integrated Circuit Layers
- **■** MOSFETs
- CMOS Layers
- Designing FET Arrays

MOSFETs

- MOSFET is a small area set of two basic patterned layers that together act like a controlled switch
 - » The voltage applied to the gate determines the electrical current flow between the source and drain terminals
- ☐ Assuming that the drain and source are formed on the same layer, then this behavior can be used to deduce that

The gate signal G is responsible for the absence or presence of the conducting region between the drain and source region

Figure 3.10 nFET circuit symbol and layer equivalents

(a) Open switch

(b) Closed Switch

Figure 3.11 Simplified operational view of an nFET

Physical Structure of MOSFET

- ☐ The drain and source regions are patterned into a silicon wafer
- □ L has units of centimeters [cm] and is called the **channel length** of the FET
- ☐ The width W of the drain and source regions is called the **channel width** and also has units of centimeters
- ☐ The aspect ratio of the FET is defined as (*W/L*) and is the most important parameter to the VLSI designer

Figure 3.12 Layers used to create a MOSFET

Figure 3.13 Views of a MOSFET

Electrical Conduction in Silicon (N-type)

- Silicon is a semiconductor because it can conduct small amounts of electrical current, making it a "partial" conductor
- N-type

$$N_{Si} \approx 5 \times 10^{22}$$

(The atomic density of Si cm⁻³)

$$n_i \approx 1.45 \times 10^{10} \ cm^{-3}$$
 (3.16)

 $n_i \approx 1.45 \times 10^{10} \ cm^{-3}$ (3.16) (Intrinsic carrier density)

$$n = p = n_i$$

(3.17) (Pure silicon)

$$np = n_i^2$$

(3.18) (mass-action law)

(3.19) (n-type donor atom, majority carrier)

$$p_n = \frac{n_i^2}{N_d} cm^{-3}$$
 (3.20) (minority carrier)

Key

• Electron (-q)

$$\circ$$
 Hole $(+q)$

Figure 3.14 Creation of electron-hole pairs in silicon

Electrical Conduction in Silicon (P-type)

□ *P-type*: has more positively charged holes than negatively charged electrons

$$p_{p} = N_{a}$$
 $n_{p} = \frac{n_{i}^{2}}{N_{a}}$ (3.24)

$$\sigma = q(\mu_n n + \mu_p p)$$
 (3.25) (conductivity)

$$\mu_n = 1360$$
 $\mu_p = 480$ (3.26) (the electron and hole mobility cm²/V-sec)

$$\Rightarrow \sigma \approx 4.27 \times 10^{-6} [\Omega - cm]^{-1} \text{ or } \rho \approx 2.34 \times 10^{5} [\Omega - cm]$$

$$\sigma = q\mu_n n_n$$
 (3.27) (n-type, since $n_n >> p_n$)

$$\sigma = q\mu_p p_p$$
 (3.28) (p-type, since $p_p >> n_p$)

PN Junction

- ☐ In CMOS processing, most doped regions have both donors and acceptors
- \square To create an n-type region, we need $N_d > N_a$

$$n_n = N_d - N_a$$
 $p_n = \frac{n_i^2}{(N_d - N_a)}$ (3.35)

 \square For a p-type region, we need $N_a > N_d$

$$p_p = N_a - N_d$$
 $n_p = \frac{n_i^2}{(N_a - N_d)}$ (3.36)

(a) A pn junction

(b) Forward current

(c) Reverse blocking

Figure 3.15 Formation and characteristics of a pn junction

nFET and pFET

- □ The polarity of a FET (n or p) is determined by the polarity of the drain and source regions
- □ *nFET*: the drain and source regions are labeled as "n+" to indicate that they are **heavily doped** as Figure 3.16 (a) showing
- □ *pFET*: the source and drain regions are p+ sections that are embedded in an n-type "well" layer as Figure 3.16 (b) showing
- ☐ All pn junction are used to prevent current flow between adjacent layers

(a) nFET cross-section

(b) pFET cross-section

Figure 3.16 nFET and pFET layers

Current Flow in a FET

☐ The creation of the conducting layer underneath the gate is due to the property of the capacitance that is Area = A built into the gate region of the MOSFET itself

$$Q = CV \tag{3.38}$$

Since
$$C = \frac{\varepsilon A}{t_{ins}}$$
 (3.39) (a parallel-plate structure)

where ε is the permittivity of the insulator in units of F/cm

$$\Rightarrow C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}}$$
 (3.40) (oxide capacitance)

$$\Rightarrow C_G = C_{ox} A_G$$
 (3.41) (gate capacitance)

$$\varepsilon_{ox} = 3.9\varepsilon_0$$
 (3.42) (the permittivity of the glass insulating layer)

Figure 3.17 A parallel-plate capacitor

Figure 3.18 The gate capacitance in an n-channel MOSFET

 $\varepsilon_0 \approx 8.854 \times 10^{-14} \, F \, / \, cm \, is \, the \, perittivit \, y \, of \, free \, space$

Channel for NMOS Current Flow

- □ Applying a positive voltage to the gate as in Figure 3.19 (b)
 - » The capacitive MOS structure induces a layer of negatively charged electrons underneath the gate oxide → decided by the *threshold voltage*

$$Q_c = -C_G(V_G - V_{T_n})$$
 (3.47) (channel charge)

$$\Rightarrow I = \frac{|Q_c|}{\tau} C / \text{sec}$$
 (3.48) (channel current)

Where
$$\tau_t = \frac{L}{v}$$
 (3.49) (transit time)

$$\Rightarrow I \approx \frac{C_G}{(L/\nu)}(V_G - V_{T_n}) = \nu C_{ox} W(V_G - V_{T_n})$$
 (3.50)

Where
$$v = \mu_n E$$
 (3.51) (the velocity of a charged particle moving in a FET)

$$\Rightarrow E = \frac{V}{I}$$
 (3.52) (electric field between n+)

$$\Rightarrow I = \mu_n C_{ox} \left(\frac{W}{L} \right) (V_G - V_{Tn}) V$$
 (3.53)

(a) Zero gate voltage

(b) Positive gate voltage

Figure 3.19 Controlling current flow in an nFET

Linear Resistance R_n of the n-device

 \Box The linear resistance R_n of the device is

Note:
$$\Rightarrow I = \mu_n C_{ox} \left(\frac{W}{L} \right) (V_G - V_{Tn}) V$$

$$R_{n} = \frac{V}{I} = \frac{1}{\beta_{n}(V_{G} - V_{Tn})}$$
 (3.54)

Where
$$\beta_n = \mu_n C_{ox} \left(\frac{W}{L} \right)$$
 (3.55) (device transconductance A/V²)

nFET open: $R \rightarrow nFET$ closed: $R \rightarrow R_n$

☐ In fact, MOSFETs are intrinsically non-linear devices

$$R_n = R_{c,n} \left(\frac{L}{W} \right) \tag{3.56}$$

Where
$$R_{c,n} = \frac{1}{\mu_n C_{ox} (V_G - V_{Tn})}$$
 (3.57)

Outline

- An Overview CMOS Fabrication
- Integrated Circuit Layers
- MOSFETs
- CMOS Layers
- Designing FET Arrays

N-well Process

□ CMOS fabrication process: In simplest terms, this refers to the sequence of steps that we use to take a bare "wafer" of silicon to the finished form of an electronic integrated circuit

- p-substrate
- n-well
- n+ (nFET drain/source)
- p+ (pFET drain/source)
- gate oxide
- gate (polysilicon)

Figure 3.23 MOSFET layers in an n-well process

Fabrication Process

■ Modern processes tend to allow for five or more metal interconnect layers to ease the problem of massive wiring in complex circuits

Figure 3.26 Interconnect layout example

Figure 3.24 Top view FET patterning

n-well

Figure 3.25 Metal interconnect layers

Outline

- An Overview CMOS Fabrication
- Integrated Circuit Layers
- MOSFETs
- CMOS Layers
- Designing FET Arrays

CMOS Switching Networks (1/2)

CMOS logic gates are switching networks that are controlled by the input variables

Figure 3.27 Silicon patterning for two series-connected nFETs

Figure 3.28 Three series-connected nFETs

CMOS Switching Networks (2/2)

Figure 3.29 Parallel-connected FET patterning

Figure 3.30 Alternate layout strategy for parallel FETs

Basic Gate Designs

Design note

- » Both the power supply (VDD) and ground (Gnd) are routed using the Metal layer
- » n+ and p+ regions are denoted using the same fill pattern. The difference is that pFETs are embedded within an n-well boundary
- Contacts are needed from Metal to n+ or p+ since they are at different levels in the structure

Figure 3.31 Translating a NOT gate circuit to silicon

Figure 3.32 Alternate layout for a NOT gate
Introduction to VLSI Circuits and Systems, NCUT 2007

Basic Gate (1/3)

Figure 3.33 Two NOT gates that share power supply and ground

(a) Logic diagram

(b) Layout

Figure 3.34 Non-inverting buffer

Basic Gate (2/3)

(a) Logic diagram

Figure 3.35 Layout of a transmission gate with a driver

Out

Gnd

a

b

(b) Layout

(a) Circuit

Figure 3.37 NOR2 gate design

Introduction to VLSI Circuits and Systems, NCUT 2007

Basic Gate (3/3)

Figure 3.38 NAND2-NOR2 layout comparison

Figure 3.39 Layout for 3-input gates

Introduction to VLSI Circuits and Systems, NCUT 2007

Complex Logic Gate (1/2)

- ☐ Figure 3.40 shows the function
 - » The signal placement order is critical to obtaining the logic output

$$f = \overline{a + b \cdot c} \tag{3.68}$$

□ Dual logic: In physical circuit, suppose that we flip the metal wiring pattern around an imaginary horizontal line. We will get

$$g = \overline{a \cdot (b+c)} \tag{3.69}$$

☐ This is the same relationship that we found for the NOR-NAND gates

Figure 3.40 Extension of layout technique to a complex logic gate

Figure 3.41 Creation of the dual network
Introduction to VLSI Circuits and Systems, NCUT 2007

Complex Logic Gate (2/2)

Figure 3.42 A general 4-input AOI gate

General Discussion

- ☐ A basic techniques that it was possible to share n+ or p+ regions among several transistors
 - » Randomly placed polygons should be avoided
 - » It can reduce the area and wiring complexity
 - » A power supply (VDD), a ground (VSS) connection, and pFETs will be embedded in n-wells around VDD
 - » nFETs are closer to the ground rail
- ☐ One approach to layout is based on the concept of simple *stick diagram*
 - » It often used to perform quick layouts or
 - » To study large complex routing problems
- ☐ Moreover, any CMOS circuit can be translated into an *equivalent graph* consisting of edges and vertices

Figure 3.43 General gate layout geometry

Figure 3.44 Basic stick layout diagram

Euler Graph (1/2)

□ Euler graph

- » The drain and source nodes x and y of the transistor translate to connection nodes called vertices
- » An edge that corresponds to the signal flow path
- » If it is possible to trace the entire graph without passing over an edge more than once, then it is possible to use common n+/p+ regions for nFETs/pFETs

Euler path

- » It is used to construct the Euler graph
- » If an Euler path cannot be found, then it means that it is not possible to use FET chains to build the circuit

Figure 3.45 Representation of a FET in graph theory

Figure 3.46 Construction of an Euler graph

Introduction to VLSI Circuits and Systems, NCUT 2007

Euler Graph (2/2)

α

OUT

a

vss 🔇

OUT

Figure 3.47 Layout using an Euler graph