In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits

In [2]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\ma

Out[2]:

	date	BEN	CO	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	
0	2009-10-01 01:00:00	NaN	0.27	NaN	NaN	NaN	39.889999	48.150002	NaN	50.680000	18.2
1	2009-10-01 01:00:00	NaN	0.22	NaN	NaN	NaN	21.230000	24.260000	NaN	55.880001	10.5
2	2009-10-01 01:00:00	NaN	0.18	NaN	NaN	NaN	31.230000	34.880001	NaN	49.060001	25.1
3	2009-10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.5
4	2009-10-01 01:00:00	NaN	0.41	NaN	NaN	0.12	61.349998	76.260002	NaN	38.090000	23.7
215683	2009-06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998	10.8
215684	2009-06-01 00:00:00	NaN	0.31	NaN	NaN	NaN	76.110001	101.099998	NaN	41.220001	9.9
215685	2009-06-01 00:00:00	0.13	NaN	0.86	NaN	0.23	81.050003	99.849998	NaN	24.830000	12.4
215686	2009-06-01 00:00:00	0.21	NaN	2.96	NaN	0.10	72.419998	82.959999	NaN	NaN	13.0
215687	2009-06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998	15.3

215688 rows × 17 columns

```
In [3]:
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215688 entries, 0 to 215687
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype					
0	date	215688 non-null	object					
1	BEN	60082 non-null	float64					
2	CO	190801 non-null	float64					
3	EBE	60081 non-null	float64					
4	MXY	24846 non-null	float64					
5	NMHC	74748 non-null	float64					
6	NO_2	214562 non-null	float64					
7	NOx	214565 non-null	float64					
8	OXY	24854 non-null	float64					
9	0_3	204482 non-null	float64					
10	PM10	196331 non-null	float64					
11	PM25	55822 non-null	float64					
12	PXY	24854 non-null	float64					
13	S0_2	212671 non-null	float64					
14	TCH	75213 non-null	float64					
15	TOL	59920 non-null	float64					
16	station	215688 non-null	int64					
dtyp	<pre>dtypes: float64(15), int64(1), object(1)</pre>							
memo	ry usage:	28.0+ MB						

In [4]: b=a.fillna(value=98)

Out[4]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3
0	2009-10-01 01:00:00	98.00	0.27	98.00	98.00	98.00	39.889999	48.150002	98.00	50.680000
1	2009-10-01 01:00:00	98.00	0.22	98.00	98.00	98.00	21.230000	24.260000	98.00	55.880001
2	2009-10-01 01:00:00	98.00	0.18	98.00	98.00	98.00	31.230000	34.880001	98.00	49.060001
3	2009-10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998
4	2009-10-01 01:00:00	98.00	0.41	98.00	98.00	0.12	61.349998	76.260002	98.00	38.090000
215683	2009-06-01 00:00:00	0.50	0.22	0.39	0.75	0.09	22.000000	24.510000	1.00	82.239998
215684	2009-06-01 00:00:00	98.00	0.31	98.00	98.00	98.00	76.110001	101.099998	98.00	41.220001
215685	2009-06-01 00:00:00	0.13	98.00	0.86	98.00	0.23	81.050003	99.849998	98.00	24.830000
215686	2009-06-01 00:00:00	0.21	98.00	2.96	98.00	0.10	72.419998	82.959999	98.00	98.000000
215687	2009-06-01 00:00:00	0.37	0.32	0.99	1.36	0.14	54.290001	64.480003	1.06	56.919998

215688 rows × 17 columns

In [6]: c=b.head(11)

Out[6]:

	date	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	O_3	PN
0	2009-10-01 01:00:00	98.00	0.27	98.00	98.00	98.00	39.889999	48.150002	98.00	50.680000	18.260
1	2009-10-01 01:00:00	98.00	0.22	98.00	98.00	98.00	21.230000	24.260000	98.00	55.880001	10.580
2	2009-10-01 01:00:00	98.00	0.18	98.00	98.00	98.00	31.230000	34.880001	98.00	49.060001	25.190
3	2009-10-01 01:00:00	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998	26.530
4	2009-10-01 01:00:00	98.00	0.41	98.00	98.00	0.12	61.349998	76.260002	98.00	38.090000	23.760
5	2009-10-01 01:00:00	98.00	0.29	98.00	98.00	98.00	43.200001	50.080002	98.00	35.840000	21.870
6	2009-10-01 01:00:00	98.00	0.20	98.00	98.00	98.00	35.430000	38.520000	98.00	33.549999	17.350
7	2009-10-01 01:00:00	98.00	0.15	98.00	98.00	98.00	27.309999	33.150002	98.00	53.549999	16.520
8	2009-10-01 01:00:00	98.00	0.21	98.00	98.00	0.39	33.889999	40.799999	98.00	58.549999	16.650
9	2009-10-01 01:00:00	98.00	0.32	98.00	98.00	98.00	46.349998	60.540001	98.00	45.340000	15.160
10	2009-10-01 01:00:00	98.00	0.24	98.00	98.00	98.00	30.860001	35.590000	98.00	56.520000	14.420

In [7]: d=c[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3']]

Out[7]:

	BEN	СО	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3
0	98.00	0.27	98.00	98.00	98.00	39.889999	48.150002	98.00	50.680000
1	98.00	0.22	98.00	98.00	98.00	21.230000	24.260000	98.00	55.880001
2	98.00	0.18	98.00	98.00	98.00	31.230000	34.880001	98.00	49.060001
3	0.95	0.33	1.43	2.68	0.25	55.180000	81.360001	1.57	36.669998
4	98.00	0.41	98.00	98.00	0.12	61.349998	76.260002	98.00	38.090000
5	98.00	0.29	98.00	98.00	98.00	43.200001	50.080002	98.00	35.840000
6	98.00	0.20	98.00	98.00	98.00	35.430000	38.520000	98.00	33.549999
7	98.00	0.15	98.00	98.00	98.00	27.309999	33.150002	98.00	53.549999
8	98.00	0.21	98.00	98.00	0.39	33.889999	40.799999	98.00	58.549999
9	98.00	0.32	98.00	98.00	98.00	46.349998	60.540001	98.00	45.340000
10	98.00	0.24	98.00	98.00	98.00	30.860001	35.590000	98.00	56.520000

In [8]:

Out[8]: <AxesSubplot:>


```
In [9]:
Out[9]: <seaborn.axisgrid.PairGrid at 0x15228f57eb0>
In [10]: x=d[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY']]
In [11]: from sklearn.model_selection import train_test_split
In [12]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[12]: LinearRegression()
In [13]:
         -2.1316282072803006e-14
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [14]:
Out[14]:
                    Co-efficient
                 1.002284e-15
            BEN
             CO -4.236772e-14
             EBE -1.779152e-16
            MXY -6.386554e-16
           NMHC -6.769435e-17
           NO_2 1.006278e-15
            NOx 1.000000e+00
            OXY -5.039871e-17
In [15]: prediction=lr.predict(x_test)
Out[15]: <matplotlib.collections.PathCollection at 0x1522c531550>
           60
           55
           50
           45
           40
           35
                          40
                                  45
                                          50
                                                  55
                  35
                                                           60
In [16]:
          1.0
In [17]:
In [18]: rr=Ridge(alpha=10)
Out[18]: Ridge(alpha=10)
In [19]:
Out[19]: 0.9932959728090598
In [20]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
```

```
In [21]:
Out[21]: 0.9980831728379033
In [22]:
           a1=b.head(3000)
Out[22]:
                             BEN
                                     CO
                                          EBE
                                                       NMHC
                       date
                                                 MXY
                                                                   NO_2
                                                                               NOx
                                                                                      OXY
                                                                                                 O_3
                 2009-10-01
                             98.00
                                    0.27
                                         98.00
                                                98.00
                                                        98.00
                                                               39.889999
                                                                           48.150002 98.00 50.680000 1
                    01:00:00
                  2009-10-01
                             98.00
                                    0.22 98.00 98.00
                                                        98.00
                                                               21.230000
                                                                          24.260000 98.00 55.880001 1
                    01:00:00
                  2009-10-01
                             98.00
                                    0.18 98.00 98.00
                                                        98.00
                                                               31.230000
                                                                           34.880001 98.00 49.060001 2
                    01:00:00
                  2009-10-01
                              0.95
                                    0.33
                                           1.43
                                                 2.68
                                                         0.25
                                                               55.180000
                                                                          81.360001
                                                                                      1.57
                                                                                           36.669998 2
                    01:00:00
                  2009-10-01
                             98.00
                                    0.41
                                         98.00 98.00
                                                         0.12
                                                               61.349998
                                                                           76.260002 98.00
                                                                                          38.090000 2
                    01:00:00
                  2009-10-06
            2995
                              1.10
                                    0.75
                                           1.16
                                                 2.85
                                                         0.66
                                                              128.300003
                                                                          192.100006
                                                                                      0.92
                                                                                             0.600000 5
                    00:00:00
                  2009-10-06
            2996
                                                               88.220001 108.199997 98.00
                             98.00
                                    0.33
                                         98.00
                                                98.00
                                                        98.00
                                                                                           20.520000 4
                    00:00:00
                 2009-10-06
            2997
                              1.10
                                  98.00
                                           0.39
                                                98.00
                                                        0.42 124.400002 221.800003 98.00
                                                                                             6.190000 5
                    00:00:00
                  2009-10-06
            2998
                                   98.00
                              2.75
                                           1.55
                                                98.00
                                                        0.25
                                                             129.399994 166.000000 98.00
                                                                                           98.000000 2
                    00:00:00
                  2009-10-06
            2999
                              2.23
                                    0.83
                                           2.36
                                                 7.03
                                                        0.44 126.300003 246.699997
                                                                                      3.18
                                                                                             8.110000 6
                    00:00:00
           3000 rows × 17 columns
           e=a1[['BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', 'O_3',
In [23]:
           f=e.iloc[:,0:14]
In [24]:
In [25]:
          logr=LogisticRegression(max_iter=10000)
Out[26]: LogisticRegression(max_iter=10000)
           from sklearn.model_selection import train_test_split
```

```
In [29]: prediction=logr.predict(i)
        [28079021]
In [30]: ___
Out[30]: array([28079003, 28079004, 28079006, 28079007, 28079008, 28079009,
               28079011, 28079012, 28079014, 28079016, 28079017, 28079018,
               28079019, 28079021, 28079022, 28079023, 28079024, 28079025,
               28079026, 28079027, 28079036, 28079038, 28079039, 28079040,
               28079099], dtype=int64)
In [31]:
Out[31]: 5.665341540178148e-99
In [32]:
Out[32]: 1.705432077416329e-33
In [33]:
Out[33]: 0.588888888888888
In [34]: | from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[34]: ElasticNet()
In [35]:
        [-0. 0.
                              -0.01381274 -0.0013857 -0.00329021 0.13429634
          0.88971371 -0.
In [36]:
        1.5507170991143298
In [37]: | prediction=en.predict(x_test)
        0.9988450094456112
In [38]: from sklearn.ensemble import RandomForestClassifier
        rfc=RandomForestClassifier()
         Out[38]: RandomForestClassifier()
In [39]: parameters={'max_depth':[1,2,3,4,5],
         'min_samples_leaf':[5,10,15,20,25],
         'n_estimators':[10,20,30,40,50]
```

```
In [40]: from sklearn.model selection import GridSearchCV
                          grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
Out[40]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                param_grid={'max_depth': [1, 2, 3, 4, 5],
                                                                                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                                                                                    'n_estimators': [10, 20, 30, 40, 50]},
                                                                scoring='accuracy')
In [41]:
Out[41]: 0.5780952380952381
In [42]:
In [43]: from sklearn.tree import plot_tree
                          plt.figure(figsize=(80,50))
Out[43]: [Text(1923.3191489361702, 2491.5, 'X[10] <= -0.853\ngini = 0.96\nsamples = 13
                           21\nvalue = [87, 94, 80, 90, 92, 88, 81, 85, 71, 89, 72, 81\n90, 104, 87, 73,
                           65, 87, 88, 77, 76, 79, 90, 83\n91]'),
                             Text(831.063829787234, 2038.5, 'X[7] <= -2.742\ngini = 0.661\nsamples = 152\
                           Text(379.9148936170213, 1585.5, 'X[5] <= -0.393 \setminus gini = 0.316 \setminus gini = 52 \setminus gini = 0.316 \setminus gini = 0.316 \setminus gini = 52 \setminus gini = 0.316 \setminus gini = 0.316 \setminus gini = 52 \setminus gini = 0.316 \setminus gini = 0.316 \setminus gini = 0.316 \setminus gini = 0.316 \setminus gini = 52 \setminus gini = 0.316 \setminus gini 
                           nvalue = [0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 58, 0, 0, 0, 0, 0,
                           0, 0, 6]'),
                             Text(189.95744680851064, 1132.5, 'X[2] \leftarrow -1.637  | mgini = 0.166 | nsamples = 3
                           9\nvalue = [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 51, 0, 0, 0, 0,
                           0, 0, 0, 2]'),
                             Text(94.97872340425532, 679.5, 'gini = 0.0\nsamples = 27\nvalue = [0, 0, 0, 0]
                           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 38, 0, 0, 0, 0, 0, 0, 0]'),
                             Text(284.93617021276594, 679.5, X[6] <= -0.816 \setminus 1 = 0.438 \setminus 1 = 12
                           nvalue = [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 13, 0, 0, 0, 0, 0,
                           0, 0, 2]'),
                             Text(189.95744680851064, 226.5, 'gini = 0.625 \setminus samples = 7 \setminus samples = [0, 0, 0]
                           2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 4, 0, 0, 0, 0, 0, 0, 2]'),
```

From this observation I had observe that the ELASTICNET is a highest accuracy of 0.9988450094456112

```
In [ ]:
```