# SD-TSIA204 Statistical hypothesis testing (for linear model)

Pavlo Mozharovskyi, François Portier Telecom ParisTech

December 19, 2018

# 1. Statistical hypothesis testing Definition

The *p*-value
Tests for linear regression

2. Illustration: forward variable selection

# General principle

#### Context

- We observe  $X_1, \ldots, X_n$  from a common distribution  $\mathcal{P}$
- We are interested in  $\theta \in \Theta$ , a parameter of  $\mathcal{P}$

#### Goal

To decide whether an assumption on  $\theta$  is likely (or not)

$$\mathcal{H}_0 = \{\theta \in \Theta_0\}$$

against some alternative

$$\mathcal{H}_1 = \{\theta \in \Theta_1\}$$

Call  $\mathcal{H}_0$  the null hypothesis,  $\mathcal{H}_1$ : the alternative

# General principle

#### Means

Determine a test statistic  $T(X_1, \ldots, X_n)$  and a region R such that if

$$T(X_1, \dots, X_n) \in R \implies \text{we reject } \mathcal{H}_0$$

In other words the observed data discriminates between  $H_0$  and  $H_1$ 

# Hypothesis testing for "heads or tails"

When flipping a coin the model is a Bernoulli distribution with parameter p,  $\mathcal{B}(p)$ .

Is the coin fair?

$$\mathcal{H}_0 = \{ p = 0.5 \}$$
 against  $\mathcal{H}_1 = \{ p \neq 0.5 \}$ 

Is the coin possibly unfair?

$$\mathcal{H}_0 = \{0.45 \leq p \leq 0.55\} \quad \mathrm{against} \quad \mathcal{H}_1 = \{p \notin [0.45, 0.55]\}$$

# Do we reject or do we accept?

In most practical situations,  $\mathcal{H}_0$  is simple, i.e.,

$$\Theta_0 = \{\theta_0\}$$

and  $\Theta_1 = \Theta \backslash \Theta_0$  is large

 $(\mathcal{H}_0$  is often an hypothesis on which we care particularly, e.g., something acknowledged to be true, easy to formulate)

### We only reject $\mathcal{H}_0$

If  $\mathcal{H}_0$  is not rejected we cannot conclude  $\mathcal{H}_0$  is true because  $\mathcal{H}_1$  is too general

e.g.  $\{p \in [0, 0.5[\cup]0.5, 1]\}$  can not be rejected!

### 2 types of error

|                                 | $\mathcal{H}_0$        | $\mathcal{H}_1$        |  |  |  |
|---------------------------------|------------------------|------------------------|--|--|--|
| $\mathcal{H}_0$ is not rejected | Correct                | Wrong (False negative) |  |  |  |
| $\mathcal{H}_0$ is rejected     | Wrong (False positive) | Correct                |  |  |  |

• Type I: probability of a wrong reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)$$

• Type II: probability of wrong non-reject

$$\mathbb{P}(T(X_1,\ldots,X_n)\notin R\mid \mathcal{H}_1)$$

# Significance level and power

### Significance level $\alpha$ if

$$\limsup_{n\to+\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)\leq \alpha$$

(We speak of 95%-test when  $\alpha$  is 0.05%)

### Consistency

A test statistics (given by  $T(X_1, ..., X_n)$  and a region R) is said to be  $\alpha$ -consistent if the significant level is  $\alpha$  and if the power goes to one, i.e.,

$$\limsup_{n\to+\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_0)\leq \alpha$$

$$\lim_{n\to\infty} \mathbb{P}(T(X_1,\ldots,X_n)\in R\mid \mathcal{H}_1)=1$$

### Test statistic and reject region

Goal: to build a  $\alpha$ -consistent test

- (1) Define the test statistic  $T(X_1, \ldots, X_n)$  and the level  $\alpha$  you wish
- (2) Do some maths to determine a reject region R that achieves a significance level  $\alpha$
- (3) Prove the consistency
- (4) Rule decision: reject whenever  $T_n(X_1, \dots, X_n) \in R$

#### Famous tests

- Test of the equality of the mean for 1 sample
- Test of the equality of the means between 2 samples
- Chi-square test for the variance
- Chi-square test of independence
- Regression coefficient non-effects test

# Example: Gaussian mean

- Model:  $\Theta = \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe  $(X_1, \ldots, X_n)$  i.i.d. from this model
- Null hypothesis:  $\mathcal{H}_0$ :  $\{\theta = 0\}$
- Under  $\mathcal{H}_0$ ,  $T_n(X_1,\ldots,X_n) = \frac{1}{\sqrt{n}} \sum_i X_i \sim \mathcal{N}(0,1)$
- Critical region for  $T_n$ ? Gaussian quantile:

$$\mathbb{P}(T_n \in [-1.96, 1.96] \mid \mathcal{H}_0) = 0.95$$

- Take  $R = ]-\infty, -1.96[\cup]1.96, +\infty[$ .
- Numerical example: If  $T_n = 1.5$ , we do not reject  $\mathcal{H}_0$  at level 95%

#### 1. Statistical hypothesis testing

Definition

### The p-value

Tests for linear regression

2. Illustration: forward variable selection

# Usage of the *p*-value

- The decision to accept or reject  $\mathcal{H}_0$  is subject to the chosen significance level  $\alpha$ .
- To avoid making this choice in advance, in particular in software, the notion of the p-value is used to represent the result of a test.
- The p-value is the probability that, under  $\mathcal{H}_0$ , the test statistic  $\mathcal{T}_n$  takes a value at least as extreme as its observed value.
- Relation to the critical region:
  - If the test is one-sided with  $R = \{t \mid t > c\}$  then for the observed  $T_n$  the p-value is  $\mathbb{P}(T > t_0 \mid \mathcal{H}_0)$ .
  - If the test is one-sided with  $R = \{t \mid t < c\}$  then for the observed  $T_n$  the p-value is  $\mathbb{P}(T < T_n \mid \mathcal{H}_0)$ .
  - If the test is two-sided with  $R = \{t \mid t \in ]-\infty; c_1) \cup (c_2; +\infty[]\}$  then for the observed  $T_n$  the p-value is  $2\mathbb{P}(T < T_n \mid H_0)$  if  $T_n$  is smaller than the median, and  $2\mathbb{P}(T > T_n \mid H_0)$  if  $T_n$  is larger than the median.

# Usage of the p-value: example

- Model:  $\Theta = \mathbb{R}, \mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$
- Observe  $(X_1, \ldots, X_n)$  i.i.d. from this model
- Null hypothesis:  $\mathcal{H}_0: \{\theta \leq 5\}$
- Under  $\mathcal{H}_0$ ,  $T_n(X_1,\ldots,X_n) = \frac{\overline{X}_n-5}{\frac{1}{\sqrt{n}}} \sim \mathcal{N}(0,1)$

#### The test decision:

• Reject  $\mathcal{H}_0$  if  $\overline{X}_n > 5 + z_{1-\alpha} \frac{1}{\sqrt{n}}$ .

#### Using the *p*-value:

- Assume n = 10 and  $\overline{X}_n = 5.75$ .
- The *p*-value equals  $\mathbb{P}(\overline{X} > 5.75)$  with  $\overline{X} \sim \mathcal{N}(5, \frac{1}{10})$ , i.e.  $\mathbb{P}(Z > 2.3717)$  with  $Z \sim \mathcal{N}(0, 1)$ , which equals 0.0089.
- This indicates directly that one should reject at a level 0.05 and even 0.01.
- If the test would be two sided, *i.e.* with  $\mathcal{H}_0: \{\theta = 5\}$ , the *p*-value for  $\overline{X}_n = 5.75$  would be  $0.0089 \times 2 = 0.0178$  implying **reject** at a level 0.05 but **not** 0.01.

#### 1. Statistical hypothesis testing

Definition
The p-value
Tests for linear regression

2. Illustration: forward variable selection

# Test of no-effect: Gaussian case

#### Gaussian Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} x_{i,k} + \varepsilon_{i}$$

$$x_{i}^{\top} = (1, x_{i,1}, \dots, x_{i,p}) \in \mathbb{R}^{p+1} \text{ (deterministic)}$$

$$\varepsilon_{i} \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^{2}), \text{ for } i = 1, \dots, n$$

#### Theorem

Let  $X = (x_1, \dots, x_n)^{\top} \in \mathbb{R}^{n \times (p+1)}$  of full rank, and  $\widehat{\sigma}^2 = \|\mathbf{y} - X\widehat{\boldsymbol{\theta}}\|_2^2 / (n - (p+1))$ , then

$$\widehat{T}_{j} = \frac{\widehat{\theta}_{j} - \theta_{j}^{*}}{\widehat{\sigma} \sqrt{(X^{\top}X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

where  $\mathcal{T}_{n-p}$  is a Student law (with n-(p+1) degrees of freedom)

-16/27

### Test of no-effect: Gaussian case

### Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently,  $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$ 

Under  $\mathcal{H}_0$ , we know the value of  $\widehat{T}_j$ :

$$\mathcal{T}_j := rac{\widehat{ heta_j}}{\widehat{\sigma}\sqrt{(X^ op X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-(p+1)}$$

Choosing  $R = [-t_{1-\alpha/2}, t_{1-\alpha/2}]^c$  with  $t_{1-\alpha/2}$  the  $1 - \alpha/2$ -quantile of  $\mathcal{T}_{n-(p+1)}$ , we decide to reject  $\mathcal{H}_0$  whenever

$$|\widehat{T}_j| > t_{1-\alpha/2}$$

# Test of no-effect: Random-design case

### Random design Model

$$y_{i} = \theta_{0}^{\star} + \sum_{k=1}^{p} \theta_{k}^{\star} \mathbf{x}_{i,k} + \varepsilon_{i}$$

$$\mathbf{x}_{i}^{\top} = (1, \mathbf{x}_{i,1}, \dots, \mathbf{x}_{i,p}) \in \mathbb{R}^{p+1}$$

$$(\varepsilon_{i}, \mathbf{x}_{i}) \stackrel{i.i.d}{\sim} (\varepsilon, \mathbf{x}), \text{ for } i = 1, \dots, n$$

$$\mathbb{E}(\varepsilon | \mathbf{x}) = 0, \, \mathbb{V}\text{ar}(\varepsilon | \mathbf{x}) = \sigma^{2}$$

#### Theorem

If var(x) has full rank, then

$$\widehat{T}_j = rac{\widehat{ heta}_j - heta_j^*}{\widehat{\sigma} \sqrt{(X^ op X)_{j,j}^{-1}}} \stackrel{ ext{d}}{\longrightarrow} \mathcal{N}(0,1)$$

# Test of no-effect : Random-design case

### Null hypothesis

Aim is to test

$$\mathcal{H}_0: \theta_i^* = 0$$

equivalently,  $\Theta_0 = \{ \theta \in \mathbb{R}^p : \theta_i = 0 \}$ 

Under  $\mathcal{H}_0$ , we know the value of  $\widehat{T}_j$ :

$$\mathcal{T}_j := rac{\widehat{ heta}_j}{\widehat{\sigma}\sqrt{(X^ op X)_{j,j}^{-1}}} \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0,1)$$

Choosing  $R = [-z_{1-\alpha/2}, z_{1-\alpha/2}]^c$  with  $z_{1-\alpha/2}$  the  $1 - \alpha/2$ -quantile of  $\mathcal{N}(0,1)$ , we decide to reject  $\mathcal{H}_0$  whenever

$$|\widehat{T}_j| > z_{1-\alpha/2}$$

### Link between IC and test

Reminder (Gaussian model):

$$IC_{\alpha} := \left[\widehat{\theta}_{j} - t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}, \widehat{\theta}_{j} + t_{1-\alpha/2}\widehat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}\right]$$

is a CI at level  $\alpha$  for  $\theta_j^*$ . Stating " $0 \in IC_{\alpha}$ " means

$$|\widehat{\theta}_j| \le t_{1-\alpha/2} \widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\widehat{\theta}_j|}{\widehat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \le t_{1-\alpha/2}$$

It is equivalent to accepting the hypothesis  $\theta_j^* = 0$  at level  $\alpha$ . The smallest  $\alpha$  such that  $0 \in IC_{\alpha}$  is called the *p*-value.

Rem: Taking  $\alpha$  close to zero  $IC_{\alpha}$  covers the full space, hence one can find (by continuity) an  $\alpha$  achieving equality in the aforementioned equations.

- 1. Statistical hypothesis testing
- 2. Illustration: forward variable selection Data set "diabetes"

### "Diabetes" data set

|         | age | sex | bmi  | bp  | Serum measurements |     |    |    |     | Resp |     |
|---------|-----|-----|------|-----|--------------------|-----|----|----|-----|------|-----|
| patient | x1  | x2  | x3   | x4  | x5                 | x6  | x7 | x8 | x9  | x10  | у   |
| 1       | 59  | 2   | 32.1 | 101 | 157                | 93  | 38 | 4  | 4.9 | 87   | 151 |
| 2       | 48  | 1   | 21.6 | 87  | 183                | 103 | 70 | 3  | 3.9 | 69   | 75  |
|         |     |     |      |     |                    |     |    |    |     |      |     |
|         |     |     |      |     |                    |     |    |    |     |      |     |
| 441     | 36  | 1   | 30.0 | 95  | 201                | 125 | 42 | 5  | 5.1 | 85   | 220 |
| 442     | 36  | 1   | 19.6 | 71  | 250                | 133 | 97 | 3  | 4.6 | 92   | 57  |

n=442 patients having diabetes, p=10 variables "baseline" body mass index (bmi), average blood pressure (bp), etc... have been measured.

**Goal**: predict disease progression one year in advance after the "baseline" measurement [EHJT04].

- Each variable of the data set from *sklearn* has been previously standardized.
- We apply an "expensive" version of the **forward variable selection** method (see, e.g., [Zha09])

### "Diabetes" data set

• We define a vector of covariates with intercept  $\tilde{X} = (1, x_1, \dots, x_{10})$ .

### Step 0

• for each variable  $\tilde{X}_k$ , k = 1, ..., 11, we consider the model

$$\mathbf{y} \simeq \beta_k \mathbf{x}_k$$

• we test whether its regression coefficient equals zero, i.e.

$$H_0: \beta_k = 0$$

using the statistic  $\frac{\widehat{\beta}_k}{\widehat{s}_k}$  with  $\widehat{s}_k$  being the estimated standard deviation.

• we compare all of the p-values, and keep the one possessing the smallest p-value. We save the residuals in the vector  $\mathbf{r}_0$ .

# "Diabetes" data set

### Step $\ell$

We have selected  $\ell$  variable(s) :  $\tilde{X}^{(\ell)} \in \mathbb{R}^{\ell}$ . Those not selected are noted  $\tilde{X}^{(-\ell)} \in \mathbb{R}^{p-\ell}$ . We possess the vector of residuals  $\mathbf{r}_{\ell-1}$  calculated on the previous step.

• for each variable  $\mathbf{x}_k$  in  $\tilde{X}^{(-\ell)}$ , we consider the model

$$\mathbf{r}_{\ell-1} \simeq \beta_k \mathbf{x}_k$$

• we test if its regression coefficient equal zero, *i.e.* 

$$H_0: \beta_k = 0$$

using the test statistic  $\frac{\widehat{\beta}_k}{\widehat{s}_k}$  with  $\widehat{s}_k$  being the estimated standard deviation.

• we compare all of the p-values, and keep the one possessing the smallest p-value. We save the residuals in the vector  $\mathbf{r}_{\ell}$ .

### Values of the test statistics at each step



- The test statistic of the selected variable is 0 on the following steps.
- The intercept is the first selected variable, then  $x_3$ , etc...

# Values of the test statistics at each step



• Sequence of the selected variables wit the test size 0.1:

### References I

- [EHJT04] B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani. Least angle regression. *Ann. Statist.*, 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.
  - [Zha09] Tong Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural Information Processing Systems, pages 1921–1928, 2009.
  - Some of these slides have been prepared by Anne Sabourin and Josef Salmon, the authors express their gratitude for this.