

EN.600.475 Machine Learning

Linear Regression

Raman Arora Lecture 6 February 15, 2017

- · Bayes predictor, error decomposition
- · Gaussian noise model

Slides credit: Greg Shakhnarovich 1

Review

Review: loss and risk

- Assume that data are sampled from (unknown) $p(\mathbf{x}, y)$
- ullet Choose loss function L, parametric model family $f(\mathbf{x}; \mathbf{w})$
- The ultimate goal is to minimize the *expected loss*, also known as *risk*:

$$R(\mathbf{w}) = E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[\ell \left(f(\mathbf{x}_0; \mathbf{w}), y_0 \right) \right]$$

• Measurable proxy: empirical loss on training set

$$\widehat{R}_n(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^N \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

• This is called empirical risk minimization (ERM)

Review: least squares linear regression

- Mapping $f: \mathbf{x} \in \mathbb{R}^d \to y \in \mathbb{R}$
- Two choices: linear model $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$, and squared loss $\ell(\widehat{y}, y) = (\widehat{y} y)^2$
- Least squares fitting:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (\mathbf{w} \cdot \mathbf{x}_{i} - y_{i})^{2}$$
$$\Rightarrow \mathbf{w}^{*} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

 \bullet Computationally: need to compute pseudo-inverse of the data matrix \mathbf{X}

Review

Linear regression - generalization

ullet Toy experiment: fit a line to varying number of points drawn from the same distribution $p(\mathbf{x},y)$

- A paradox?
 - The more training data we have, the "worse" is the fit;
 - But at the same time our prediction ability seems to improve.

Best unrestricted predictor

• What is the *best possible* predictor of y, in terms of expected squared loss, if we do not restrict \mathcal{H} at all?

$$f^* = \underset{f:\mathcal{X} \to \mathbb{R}}{\operatorname{argmin}} E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[(f(\mathbf{x}_0) - y_0)^2 \right]$$

ullet Any $f:\mathcal{X} \to \mathbb{R}$ is allowed.

The *chain rule* of probability: $p(\mathbf{x}, y) = p(y|\mathbf{x})p(\mathbf{x})$

By definition: $E_{p(y,\mathbf{x})}\left[g(y,\mathbf{x})\right] = \int_{\mathbf{x}} \int_{y} g(y,\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{x}) dy d\mathbf{x}$

$$E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[(f(\mathbf{x}_0) - y_0)^2 \right] = E_{\mathbf{x}_0 \sim p(\mathbf{x})} \left[E_{y_0 \sim p(y|\mathbf{x})} \left[(f(\mathbf{x}_0) - y_0)^2 \mid \mathbf{x}_0 \right] \right]$$

∢ 🗗 ▶

Error analysis

Best unrestricted predictor

$$E_{(\mathbf{x}_0,y_0)\sim p(\mathbf{x},y)}\left[\left(f(\mathbf{x}_0)-y_0\right)^2\right] = E_{\mathbf{x}_0\sim p(\mathbf{x})}\left[E_{y_0\sim p(y|\mathbf{x})}\left[\left(f(\mathbf{x}_0)-y_0\right)^2\mid\mathbf{x}_0\right]\right]$$
$$= \int_{\mathbf{x}_0}\left\{E_{y_0\sim p(y|\mathbf{x})}\left[\left(f(\mathbf{x}_0)-y_0\right)^2\mid\mathbf{x}_0\right]\right\}p(\mathbf{x}_0)d\mathbf{x}_0$$

ullet Must minimize the inner conditional expectation for each ${f x}_0!$

$$\frac{\delta}{\delta f(\mathbf{x})} E_{p(y|\mathbf{x})} \left[(f(\mathbf{x}_0) - y_0)^2 \mid \mathbf{x}_0 \right] = 2E_{p(y|\mathbf{x})} \left[f(\mathbf{x}_0) - y_0 \mid \mathbf{x}_0 \right] \\
= 2 \left(f(\mathbf{x}_0) - E_{p(y|\mathbf{x})} \left[y_0 \mid \mathbf{x}_0 \right] \right) = 0$$

• We minimize the expected loss by setting f to the conditional expectation of y for each \mathbf{x} :

$$f^*(\mathbf{x}_0) = E_{p(y|\mathbf{x}_0)}[y_0|\mathbf{x}_0]$$

Generative versus discriminative approach

• Conceptually, if we know $p(y | \mathbf{x})$ we can find the best unrestricted predictor by taking for each \mathbf{x}_0 the expectation

$$\hat{y}(\mathbf{x}_0) = f(\mathbf{x}_0) = E_{y \sim p(y \mid \mathbf{x}_0)} [y \mid \mathbf{x}_0]$$

- Generative approach:
 - Estimate the joint probability density $p(\mathbf{x}, y)$
 - Normalize to find the conditional density $p(y|\mathbf{x})$
- Discriminative approach:
 - Estimate/infer the conditional density $p(y|\mathbf{x})$ directly from the data; don't bother with $p(\mathbf{x}, y)$.
- Non-probabilistic approach: don't deal with probabilities, fit $f(\mathbf{x})$ directly to the data.

Error analysis

Decomposition of error

Let's take a closer look at the expected loss:

- \bullet $\hat{\mathbf{w}}$ are LSQ estimates from training data.
- ullet w* are *optimal* linear regression parameters (generally unknown!)

$$E_{p(\mathbf{x},y)} \left[(y - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right] = E_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x})^2 \right]$$

$$+ 2E_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x}) (\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x}) \right]$$

$$+ E_{p(\mathbf{x},y)} \left[(\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right].$$

• The second term vanishes since prediction errors $y - \mathbf{w}^* \cdot \mathbf{x}$ are uncorrelated with *any* linear function of \mathbf{x} including $\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x}$.

Decomposition of error

$$E_{p(\mathbf{x},y)} \left[(y - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right] = E_{p(\mathbf{x},y)} \left[(y - \mathbf{w}^* \cdot \mathbf{x})^2 \right] + E_{p(\mathbf{x},y)} \left[(\mathbf{w}^* \cdot \mathbf{x} - \hat{\mathbf{w}} \cdot \mathbf{x})^2 \right].$$

- Approximation error $E_{p(\mathbf{x},y)}\left[\left(y-\mathbf{w}^*\cdot\mathbf{x}\right)^2\right]$ measures inherent limitations of the chosen hypothesis class (linear function). This error will remain even with infinite training data.
- Estimation error $E_{p(\mathbf{x},y)}\left[\left(\mathbf{w}^*\cdot\mathbf{x}-\hat{\mathbf{w}}\cdot\mathbf{x}\right)^2\right]$ measures how close to the optimal \mathbf{w}^* is $\hat{\mathbf{w}}$ estimated from (finite) training data.
- Note: since training data X, Y are random variables drawn from $p(\mathbf{x}, y)$, the estimated $\hat{\mathbf{w}}$ is a random variable as well.

Error analysis

Decomposition of error

Approximation error

$$E\left[\left(\mathbf{y} - \mathbf{w}^* \cdot \mathbf{x}\right)^2\right]$$

Estimation error

$$E\left[\left(\mathbf{w}^*\cdot\mathbf{x} - \hat{\mathbf{w}}\cdot\mathbf{x}\right)^2\right]$$

- For a *consistent* estimation procedure, $\lim_{N\to\infty} \hat{\mathbf{w}} = \mathbf{w}^*$, and so the estimation error decreases to zero with N.
- The approximation error can not be removed without changing the hypothesis class
- Approximation error depends on f^* . If $f^* \in \mathcal{H}$, it is minimized; is it zero then?

Statistical view of regression

• We will now explicitly model the randomness in the data:

$$y = f(\mathbf{x}; \mathbf{w}) + \nu$$

where the noise ν accounts for everything not captured by f.

• Quadratic component is noise on the left (linear model), part of signal on the right (quadratic model).

Gaussian noise model

Statistical view of regression

$$y = f(\mathbf{x}; \mathbf{w}) + \nu$$

• Under this model, the best predictor is

$$E_{p(y|\mathbf{x})}[f(\mathbf{x};\mathbf{w}) + \nu | \mathbf{x}] = f(\mathbf{x};\mathbf{w}) + E_{p(\nu)}[\nu]$$

- Typically, $E_{p(\nu)}\left[\nu\right]=0$ (white noise).
- Under such a model, $f(\mathbf{x}; \mathbf{w})$ captures the expected value of $y|\mathbf{x}$ if we believe the distribution in the model.
 - If the model is "correct", f is optimal.
 - Real data unlikely to have a "correct" parametric model.

4 🗗 ▶

Gaussian noise model

$$y = f(\mathbf{x}; \mathbf{w}) + \nu, \quad \nu \sim \mathcal{N}(\nu; 0, \sigma^2)$$

ullet Given the input ${\bf x}$, the label y is a random variable

$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \mathcal{N}(y; f(\mathbf{x}; \mathbf{w}), \sigma^2)$$

that is,

$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - f(\mathbf{x}; \mathbf{w}))^2}{2\sigma^2}\right)$$

• This is an explicit model of y that allows us, for instance, to sample y for a given x.

4 🗇 ▶

Gaussian noise model

Likelihood

• The *likelihood* of the parameters \mathbf{w} given the observed data $X = [\mathbf{x}_1, \dots, \mathbf{x}_N], Y = [y_1, \dots, y_N]^T$ is defined as

$$p(Y|X; \mathbf{w}, \sigma)$$

i.e., the probability of observing these ys for the given xs, under the model parametrized by w and σ .

• Under the assumption that data are i.i.d. (independently, identically distributed) according to $p(\mathbf{x})$,

$$p(Y|X; \mathbf{w}, \sigma) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w}, \sigma)$$

Maximum likelihood estimation

• Maximum likelihood (ML) estimation principle:

$$\hat{\mathbf{w}}_{ML} = \operatorname*{argmax}_{\mathbf{w}} p(Y|X; \mathbf{w}, \sigma)$$

- Here we focus on likelihood as a function of w.
- For Gaussian noise model:

$$\hat{\mathbf{w}}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{N} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_i - f(\mathbf{x}_i; \mathbf{w}))^2}{2\sigma^2}\right)$$

• This may become numerically unwieldy...

Gaussian noise model

Log-likelihood

- Properties of log:
 - Defined for any x > 0.
 - Monotonically increasing.
 - $\log(AB) = \log A + \log B$, $\log A^B = B \log A$.

 \bullet Maximum likelihood $\max_{\mathbf{w}} p(Y|X;\mathbf{w},\sigma)$ equivalent to maximizing log-likelihood

$$\log p(Y|X; \mathbf{w}, \sigma) = \log \prod_{i=1}^{N} p(y_i|\mathbf{x}_i, \mathbf{w}, \sigma)$$
$$= \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \mathbf{w}, \sigma)$$

Log-likelihood, Gaussian noise

$$p(y|\mathbf{x}; \mathbf{w}, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y - f(\mathbf{x}; \mathbf{w}))^2}{2\sigma^2}\right)$$

$$\log p(Y|X; \mathbf{w}, \sigma) = \sum_{i=1}^{N} \log p(y_i|\mathbf{x}_i, \mathbf{w}, \sigma)$$

$$= \sum_{i=1}^{N} \left[-\frac{(y_i - f(\mathbf{x}_i; \mathbf{w}))^2}{2\sigma^2} - \log \sigma \sqrt{2\pi} \right]$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2 - N \log \sigma \sqrt{2\pi}.$$

Red terms are independent of w

◆ 🗗 ▶

Gaussian noise model

Maximum likelihood

• A new loss function: *log-loss* – negative conditional log-probability of the training data

$$L(f(\mathbf{x}; \mathbf{w}), y) = -\log p(y|\mathbf{x}; \mathbf{w}, \sigma)$$

- Maximizing log-likelihood is always equivalent to minimizing log-loss
- Maximizing log-likelihood under the Gaussian noise model

$$\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i; \mathbf{w}, \sigma) = \underset{\mathbf{w}}{\operatorname{argmax}} - \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$
$$= \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - f(\mathbf{x}_i; \mathbf{w}))^2$$

is equivalent to minimizing squared loss

