SAUL SCHAFFER

504.400.1798 Saul.Schaffer@gmail.com Pittsburgh, PA linkedin.com/in/saulschaffer/

EDUCATION

Ph.D., Mechanical Engineering, Carnegie Mellon UniversityAug 2019 - Aug 2024M.S., Mechanical Engineering, Carnegie Mellon UniversityAug 2019 - May 2022B.S., Mechanical Engineering, University of Maryland, College ParkAug 2015 - May 2019

LEADERSHIP. SERVICE & OUTREACH

STEM Outreach Coordinator & Volunteer

Aug 2019 - Present

Carnegie Mellon University Gelfand Center for Service Learning and Outreach

- Coordinated 10-week program pairing talks from researchers and hands-on STEM activities for 6th-8th graders (Link)
- Led session about 3D printing including a hands-on activity with a 3D printed catapult (Video)
- Designed biohybrid robot workshop for middle schoolers resulting in a STEM Outreach Award

Vice President & Social Committee Chair

Sept 2020 - May 2023

CMU Mechanical Engineering Graduate Student Organization (MEGSO)

- Managed yearly budget of \$25,000+, planned and coordinated 20+ social events for 430+ graduate students
- Enhanced the reputation and quality of MEGSO events, setting a new standard for graduate student activities at CMU
- Initiated and oversaw MEGSO structural overhaul, creating needed roles and eliminating superfluous positions

Undergraduate Course Creator, University of Maryland, College Park

Aug 2017 - Aug 2019

ENME289P: Additive Manufacturing for Prosthetic Design (Syllabus)

- Proposed and taught a new student-run course on leveraging 3D printing to improve prosthetic design
- · Hosted speakers from FDA, non-profits, industry, and academia; facilitated quantitative destructive testing
- · Successfully led two semesters before transitioning leadership to ensure the course's sustainability

Digital Fabrication Specialist & Educator (Phnom Penh, Cambodia)

Summer 2019

Cambodian School of Prosthetics and Orthotics + Nia Technologies Inc.

- Created free scan-to-prosthetic tutorial using the Meshmixer software, garnering 44,000+ views on YouTube (Playlist)
- Coordinated and led two-day workshop on 3D printing, scanning, & digital prosthetic design to 23 prosthetist students
- · Leveraged low-cost 3D scanning hardware to capture anatomy of residual limbs of amputees

RESEARCH AND ENGINEERING EXPERIENCE

Carnegie Mellon University

Aug 2019 - Present

Advisor: Prof. Victoria A. Webster-Wood | (Biohybrid and Organic Robotics Group (BORG))

National Science Foundation Graduate Research Fellow

- · Created living machines powered by biological muscle tissue towards sustainable, biodegradable soft robots
- · Bioprinted living muscle actuators from bioink harvested from primary chicken skeletal muscle
- · Deployed reinforcement learning models (PPO) to leverage muscle adaptability in biohybrid robot systems

National Science Foundation Innovation (NSF I-Corps) Fellow, Technical Lead

Aug 2023 - Present

- · Conducted 100+ customer discovery interviews as part of National Cohort hosted by MIT
- Identified customer requirements for a 3D printable resin for low-cost, high-fidelity surgical simulation
- Engaged in product-market fit validation through data-driven hypothesis testing

University of Maryland, College Park

Summer 2018 - Spring 2019

Advisor: Prof. Axel Krieger | (Intelligent Medical Robotic Systems and Equipment (IMERSE) Lab)

- Supported development of a semi-autonomous robotic system for pre-hospital assessment (publication)(patent)
- Developed inexpensive, 3D printed ultrasound phantom for robotic trauma hemorrhage diagnosis (publication)

National Science Foundation International Research Experience Fellowship

Summer 2019 Explosive Ordinance Disposal Robotics (NSF IRES Cambodia)

- · Led interdisciplinary research team in Cambodia for 3 months developing low-cost robots for landmine removal
- · Interfaced with local humanitarian organizations to understand system needs and requirements
- Prototyped ordnance situational awareness sensor stack (LIDAR + RGB-D) for explosive ordnance disposal operators

University of Maryland, College Park

Aug 2018 - May 2019

Advisor: Prof. Ryan D. Sochol (Biohybrid and Advanced Manufacturing (BAM) Lab)

Designed and characterized novel 3D-printed soft-rigid interface for fluidic capacitors and transistors (publication)

HONORS & AWARDS

Carnegie Mellon University

National Science Foundation Graduate Research Fellowship Program (GRFP) Competitive fellowship for top STEM graduate students including full tuition and stipend	2021-2024
 Mechanical Engineering Outreach Stars (MEOS) Award – Silver Level Awarded by the DEI Taskforce's Outreach Subcommittee of the CMU Mechanical Engineering 	2022 Dept.
 Nam Pyo and Young Suh Fellowship Supports graduate students identified as future technology leaders at Carnegie Mellon University 	2021-2022 sity
Gelfand Student Educational Outreach Award Recognizes excellence in STEM outreach at Carnegie Mellon University	2020-2021

University of Maryland, College Park

•	Mechanical Engineering Chairman's Award	2019
	Recognizing excellence in scholarship, service, and outstanding leadership for graduating seniors	

· President's Scholarship 2015-2019 \$50,000 scholarship based on academic achievement

• Research Honors Program "Freshman of the Year" 2015 Awarded to "the most outstanding first-year student who demonstrates enthusiasm for interdisciplinary research"

PUBLICATIONS

Selected Journal Publications (Google Scholar for complete list)

• W. Sun, S. Schaffer, K. Dai, L. Yao, A. Feinberg, V. A. Webster-Wood, "3D Printing Hydrogel-Based Soft and Biohybrid Actuators: A Mini Review on Fabrication Techniques, Applications and Challenges", Frontiers in Robotics and AI, 2021, doi:10.3389/frobt.2021.673533

Selected Conference Proceedings

• S. Schaffer et al., "The Tall, the Squat, & the Bendy: Parametric Modeling and Simulation Towards Multi-functional Biohybrid Robots", 12th International Conference on Biomimetic and Biohybrid Systems (Living Machines 2023), Presented, doi:10.1007/978-3-031-39504-8_15

Patents

- S. Schaffer, R, Kubicek, V.A. Webster-Wood, "LIFE Vessel: Lateral Imaging and Fabrication with Electrical Stimulation", USPTO Provisional Patent Application No. 63/627,597, January 2024, Pending
- A. Krieger, T. Fleiter, H. Saeidi, B. Mathur, S. Schaffer et al., "Systems, methods, and media for remote trauma assessment," US 2020/0194117A1, 18 June 2020

ADDITIONAL SKILLS

Python, MATLAB, Linux, SolidWorks, ImageJ, ANSYS, Meshmixer, C++, LaTeX Computation **3D Printing** FRESH Bioprinting, PolyJet, Extrusion (FDM), UV-based (SLA & DLP) **Embedded Systems** Raspberry Pi 3/4, NVIDIA Jetson TX1, Arduino, Duet3D 3D/CNC printing boards Cell & Molecular Biology 3D mammalian & chick muscle culture, IHC staining, immunofluorescence, microscopy

PERSONAL

I enjoy mountaineering/rock climbing, glass blowing, and 3D printed sculpture. I am a citizen of the USA, UK, and Canada.