Numerical Analysis Programming Assignment #3

Name: 廖洲洲

Student ID: PB17081504

问题 1、

- 1. 分别编写用Newton法和弦截法求根的通用程序.
- 2. 再利用你的通用程序分别求下面方程的根

$$f(x) = 2x^4 + 24x^3 + 61x^2 - 16x + 1 = 0$$

其中,**Newton**迭代法分别取初值 $x_0 = 0$ 和 $x_0 = 3$; 弦截法的初值分别取为 $x_0 = 0$, $x_1 = 0.5$ 以及 $x_0 = 0.1$, $x_1 = 1.5$;

3. 取误差限 ϵ 为1.0e-9,即当 $|f(x_k)| < \epsilon$ 时,停止迭代。 将计算结果列成表格,要求给出初值、每步的迭代结果,以 及最终的迭代结果(包括迭代步数);比较或分析两种计算 方法的优劣。

1、 计算方法及计算结果

● Newton 法

1) x0=0

选代步数k	x_k	f(x_k)
k-0	0.0000000000e+000	1.0000000000e+000
k-1	6.25000000000e-002	2.4417114258e-001
k-2	9.2675144823e-002	6.0357821710e-002
k-3	1.0750916023e-001	1.4994760152e-002
k-4	1.1485323376e-001	3.7248898748e-003
k-5	1.1848368152e-001	9.1626064336e-004
k-6	1.2024260677e-001	2.1577268802e-004
k-7	1.2102581790e-001	4.2847681852e-005
k-8	1.2128383271e-001	4.6530959359e-006
k-9	1.2131962667e-001	8.9569062833e-008
k=10	1.2132034327e-001	3.5900726836e-011

2) x0=3

迭代步	x_k	f(x_k)
k=0	3.00000000000e+000	1.3120000000e+003
k=1	1.9192751236e+000	3.9180729077e+002
k=2	1.1936133228e+000	1.1368262566e+002
k=3	7.3112145458e-001	3.1859876182e+001
k=4	4.5362080609e-001	8.6190504416e+000
k=5	2.9663693142e-001	2.2633471161e+000
k=6	2.1197535112e-001	5.8197426653e-001
k=7	1.6779403531e-001	1.4770709460e-001
k=8	1.4519438879e-001	3.7206334228e-002
k=9	1.3376760731e-001	9.3253679860e-003
k=10	1.2803649704e-001	2.3222638207e-003
k=11	1.2519603327e-001	5.6755417123e-004
k=12	1.2383872242e-001	1.2927049695e-004
k=13	1.2327102895e-001	2.2587102744e-005
k=14	1.2311856261e-001	1.6284754711e-006
k=15	1.2310571808e-001	1.1556329893e-008
k=16	1.2310562562e-001	5.9885429948e-013

● 弦截法

1) x0=0,x1=0.5

请输入x0,x1:0	0.5	
迭代步 数k	x_k	f(x_k)
k=0	0.0000000000e+000	1.00000000000e+000
k=1	5.0000000000e-001	1.1375000000e+001
k=2	-4.8192771084e-002	1.9100839450e+000
k=3	-1.5882177241e-001	4.9849583298e+000
k=4	2.0528956326e-002	6.9745241532e-001
k=5	4.9704099508e-002	3.5839401507e-001
k=6	8.0543024888e-002	1.1965360731e-001
k=7	9.5999095782e-002	4.7582804260e-002
k=8	1.0620354980e-001	1.7777847602e-002
k=9	1.1229022963e-001	6.8102183582e-003
k=10	1.1606968076e-001	2.5795784215e-003
k=11	1.1837415259e-001	9.7415265691e-004
k=12	1.1977247782e-001	3.6072356011e-004
k=13	1.2059475518e-001	1.2741741436e-004
k=14	1.2104383231e-001	3.9878767168e-005
k=15	1.2124841215e-001	9.3453570276e-006
k=16	1.2131102788e-001	1.1695181286e-006
k=17	1.2131998479e-001	4.4816937383e-008
k=18	1.2132034170e-001	2.3240176450e-010

2) x0=0.1,x1=1.5

请输入x0,x1:0.1 1.5				
迭代步 数k	x_k	f(x_k)		
k=0	1.00000000000e-001	3.4200000000e-002		
k=1	1.50000000000e+000	2.0537500000e+002		
k=2	9.9766826661e-002	3.4920022729e-002		
k=3	9.9528703766e-002	3.5662994682e-002		
k=4	1.1095871197e-001	8.7722830757e-003		
k=5	1.1468740718e-001	3.8969392942e-003		
k=6	1.1766781216e-001	1.3876451955e-003		
k=7	1.1931598272e-001	5.3099453171e-004		
k=8	1.2033760050e-001	1.9023231922e-004		
k =9	1.2090792407e-001	6.3397280115e-005		
k=10	1.2119299484e-001	1.7038550552e-005		
k=11	1.2129776891e-001	2.8550135170e-006		
k=12	1.2131885895e-001	1.8556909953e-007		
k=13	1.2132032505e-001	2.3119210990e-009		
k=14	1.2132034354e-001	1.9196866319e-012		

2、 算法(结果)分析

首先,使用 matlab 绘出 f(x)的局部图像。

• -3<x<3

\bullet -0.5<x<0.5

● 0<x<0.2

比较函数图像和 Newton 法、弦截法求根的结果,可以看出两种方法都求出了误差很小的结果。

对于 Newton 法,发现当 x 的初值离 f(x)=0 的根更接近且要求的误差限相同时,其所需迭代的次数更少。

对于弦截法,其需要两个初始值,可以发现弦截法的收敛速度 慢于 Newton 法。

小结(总结)

- 1、 当给定初值越接近于方程的根时,所需的迭代次数越少
- 2、 Newton 法的收敛速度快于弦截法