The Metamathematics of Algorithmic Randomness

Jan Reimann (joint work with Theodore Slaman)

Department of Mathematics University of California, Berkeley

Logic Colloquium 2006, Nijmegen

The Initial Question

Question

For which reals $X \in 2^{\omega}$ does there exist (a representation of) a measure μ such that X is random for μ ?

Representation of Measures

We want to generalize Martin-Löf randomness to arbitrary measures. For this, we have to access measures as oracles.

- ▶ In Cantor space we can simply code the rational approximations to a measure in a real.
- More general, if a space X is Polish, so is the space $\mathcal{M}(X)$ of all probability measures on X (under the weak topology). Also, if X is compact metrizable, so is $\mathcal{M}(X)$.

Note that there are various ways to represent a measure: Cauchy sequences, list of basic open balls it is contained in, etc.

► There might not be a least representation in terms of Turing-degree.

Martin-Löf tests

Definition

Let m be a representation of some $\mu \in \mathcal{M}(2^{\omega})$, and let $n \geqslant 1$.

▶ An *n*-Martin-Löf test for m is a sequence $(V_n)_{n\in\mathbb{N}}$ of subsets of $2^{<\omega}$ such that (V_n) is uniformly r.e. in $m^{(n-1)}$ and for each n,

$$\sum_{\sigma \in V_n} \mu(N_\sigma) \leqslant 2^{-n}.$$

A real X is n-random for m if for every n-Martin-Löf test for m,

$$X \not\in \bigcap_{k} \bigcup_{\sigma \in V_k} N_{\sigma}$$

Non-Trivial Randomness

Note that every real is trivially random with respect to some μ if it is an atom of μ .

▶ We are interested in the case when a real is non-trivially random.

Theorem (Reimann and Slaman)

For any real X, there exists (a representation of) a measure μ such that $\mu(\{X\}) \neq 0$ and X is 1-random for μ if and only if X is not recursive.

In the proof there is no control over the measure obtained.

- Atoms cannot be avoided.
- ▶ Uses a special (though natural) representation of $\mathcal{M}(2^{\omega})$ as a particular Π_1^0 class.

Non-Trivial Randomness

Features needed in the proof:

- Conservation of randomness:
 - ▶ If $f: 2^{\omega} \to 2^{\omega}$ is continuous, μ a measure, then $\mu_f(A) := \mu(f^{-1}(A))$ defines the image measure.
 - ▶ If f is effective and X is random for μ , f(X) is random for μ_f .
- Randomness of cones:
 - ightharpoonup Kucera's coding argument shows that every degree above \emptyset' is random.
 - ▶ Relativize this using the Posner-Robinson Theorem.

Neutral Measure

A similar result can be obtained by using a neutral measure, relative to which every real looks random.

Theorem (Levin; Gacs)

There exists a measure μ such that for every X, $t_{\mu}(X) \leqslant 1$, where $t_{\mu}(X)$ is a universal test for randomness for μ .

- ▶ The proof uses the combinatorial Sperner Lemma.
- Works only for compact spaces.

Continuous Randomness

In the following, we will concentrate on continuous, i.e. non-atomic measures.

- ► For these, the transformation of measures and randomness (and with it the representation of the measure) is particularly well-behaved.
- ► Classical result: For every continuous measure μ there is a Borel isomorphism f of 2^{ω} such that $\mu = \lambda_f$, λ being Lebesgue measure.

Continuous Randomness

An effective version

Theorem (Levin; Kautz; Reimann and Slaman)

Let X be a real. The following are eqivalent.

- (i) X is truth-table equivalent to a Martin-Löf random real.
- (ii) X is random for a continuous recursive measure.
- (iii) X is random for a continuous dyadic recursive measure.
- (iv) There exists a recursive functional Φ which is an order-preserving homeomorphism of 2^{ω} such that $\Phi(X)$ is Martin-Löf random.

Hence we can define (continuous) randomness degree-theoretically.

The Class NCR

Question

Which level of logical complexity guarantees continuous randomness?

Let NCR_n be the set of all reals which are not n-random relative to any continuous measure.

- Kjos-Hanssen and Montalban: Every member of a countable Π₁⁰ class is contained in NCR₁. (It follows that elements of NCR₁ can be found at arbitrary high levels of the hyperarithmetical hierarchy.)
- ▶ Reimann and Slaman: $NCR_1 \subseteq \Delta_1^1$.

The proofs are arguments tailored for n = 1 and do not carry over to higher levels of randomness.

The Class NCR

Examples of higher order

Theorem

Kleene's 0 is an element of NCR₃.

Based on this, one can use the theory of jump operators (Jockusch ans Shore) to obtain a whole class of examples.

Proof:

- ► Tree representation of ①:
 - $0 = \{e : \text{ the eth recursive tree } T_e \subseteq \omega^{<\omega} \text{ is well-founded}\}.$
- ▶ Suppose \emptyset is 3-random for some μ .
- We want to use domination properties of random reals.

The Class NCR

Examples of higher order

- ▶ Well-known (Kurtz and others): If X is n-random for μ , n > 1, then every function $f \leqslant_T X$ is dominated by a function recursive in μ' .
- ▶ Therefore, μ' computes a uniform family $\{g_e\}$ of functions dominating the leftmost infinite path of T_e .
- ▶ Use compactness to infer: For every e, the following are equivalent.
 - (i) T_e is well-founded.
 - (ii) The subtree of T_e to the left of g_e is finite.
- ▶ The latter condition is $\Pi_1^0(\mu')$, hence \mathfrak{O} is $\Pi_2^0(\mu)$.
- But this is impossible if O is 3-random for μ.

Lower Bounds for Continuous Randomness

In general, can we give a distinct bound on NCR_n like in the case n = 1?

- ▶ There is some evidence that NCR_n grows very quickly with n.
- Can we give an upper bound?

Theorem (Slaman)

For all n, NCR_n is countable.

NCR_n is Countable

Proof:

- Show that the complement of NCR_n contains an upper Turing cone.
 - Show that the complement of NCR_n contains a Turing invariant and cofinal Borel set. We can use the set of all Y that are Turing equivalent to some $Z \oplus R$, where R is (n+1)-random relative to Z.
 - Use Martin's result on Borel Turing sets to infer that the complement of NCR_n contains a cone.
- ▶ Go on to show that the elements of NCR_n are definable at a rather low level of the constructible universe.
 - ▶ $NCR_n \subseteq L_{\beta_n}$, where β_n is the least ordinal such that
 - $L_{\beta_n} \vDash \mathsf{ZFC}^- + \mathsf{there} \ \mathsf{exist} \ n \ \mathsf{many} \ \mathsf{iterates} \ \mathsf{of} \ \mathsf{the} \ \mathsf{power} \ \mathsf{set} \ \mathsf{of} \ \omega,$
 - where ZFC^- is $\mathsf{Zermelo}\text{-}\mathsf{Fraenkel}$ set theory without the Power Set Axiom .
 - ▶ Note that L_{β_n} is countable.

Is the Metamathematics Necessary?

Question

Do we need to use metamathematical methods to prove the countability of NCR_n ?

We make fundamental use of Borel determinacy; this suggests to analyze the metamathematics in this context.

Friedman's Result on Borel Determinacy

The necessity of iterates of the power set is known from a famous result by Friedman.

- Martin's proof of Borel determinacy starts with a description of a Borel game and produces a winning strategy for one of the players.
- ► The more complicated the game is in the Borel hierarchy, the more iterates of the power set of the continuum are used in producing the strategy.

Theorem (Friedman)

ZFC⁻ \nvdash All Σ_5^0 -games on countable trees are determined.

Martin later improved this to Σ_4^0 .

Friedman's Result on Borel Determinacy

Inductively one can infer from Friedman's result that in order to prove full Borel determinacy, a result about sets of reals, one needs infinitely many iterates of the power set of the continuum.

- ▶ The proof works by showing that there is a model of ZFC⁻ for which Σ_4^0 -determinacy does not hold.
- ▶ This model is L_{β_0} .

NCR and Iterates of the Power Set

We can work along similar lines to obtain a similar result concerning the countability of NCR_n .

Theorem

For every k, the statement

For every n, NCR_n is countable.

cannot be proven in

 $ZFC^- + there \ exists \ k \ many \ iterates \ of \ the \ power \ set \ of \ \omega$.

The proof (for k=0) shows that there is an n such that NCR_n is cofinal in the Turing degrees of L_{β_0} . Hence, NCR_n is not countable in L_{β_0} .