Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 3

Aufgabe 3.1. Eine (möglicherweise nicht die beste) Art die Zahl π anzunähern liefert die als *Leibniz-Reihe* bekannte Formel

$$\pi = \sum_{k=0}^{\infty} \frac{4(-1)^k}{2k+1}.$$

Die n-te Partialsumme

$$P(n) = \frac{4(-1)^n}{2n+1} + P(n-1)$$

können wir also als rekursive Funktion auffassen, für die $\lim_{n\to\infty}P(n)=\pi$ gilt. Implementieren Sie eine Funktion double P(int n) die obige Funktionalität realisiert. Schreiben Sie auch ein Hauptprogramm, das n über die Tastatur einliest und das obige Partialsumme berechnet und ausgibt. Speichern Sie den Source-Code unter piRekursiv.c in das Verzeichnis serie03.

Aufgabe 3.2. Schreiben Sie eine rekursive Funktion double powN(double x, int n), welche x^n für einen ganzzahligen Exponenten $n \in \mathbb{Z}$ berechnet. Es gilt $x^0 = 1$ für alle $x \in \mathbb{R} \setminus \{0\}$ und für n < 0 gilt $x^n = (1/x)^{-n}$. Weiters gilt $0^n = 0$ für n > 0. Die Potenz 0^n ist für $n \le 0$ nicht definiert. Die Funktion soll in diesem Fall den Wert 0.0/0.0 zurückgeben. Für diese Aufgabe dürfen Sie die Funktion pow aus der Mathematikbibliothek nicht verwenden. Speichern Sie den Source-Code unter powN.c in das Verzeichnis serie03.

Aufgabe 3.3. Schreiben Sie zwei Funktionen:

- die Funktion double skalarProdukt(double u[3], double v[3]), die zu gegebenen Vektoren $\mathbf{u}=(a,b,c)^T$ und $\mathbf{v}=(x,y,z)^T$ das Skalarprodukt $w=\mathbf{u}\cdot\mathbf{v}=ax+by+cz$ berechnet und zurückgibt;
- die Funktionvoid vektor Produkt
(double u[3], double v[3], double w[3]), die zu gegebenen Vektoren
 $\mathbf{u}=(a,b,c)^T$ und $\mathbf{v}=(x,y,z)^T$ das Vektorprodukt $\mathbf{w}=\mathbf{u}\times\mathbf{v}$ mit

$$w_1 = bz - cy,$$

$$w_2 = cx - az,$$

$$w_3 = ay - bx$$

berechnet.

Schreiben Sie ferner ein aufrufendes Hauptprogramm, in dem die sechs Parameter a, b, c und x, y, z über die Tastatur eingelesen und die zwei Ergebnisse ausgegeben werden. Speichern Sie den Source-Code unter produkte.c in das Verzeichnis serie03.

Aufgabe 3.4. Schreiben Sie ein Programm, das einen statischen Vektor x der Länge 1000 anlegt. Für die Koeffizienten x[i] soll gelten, dass x[i] = i für alle $i \in \{0, 1, \dots, 999\}$. Anschließend soll der Vektor am Bildschirm ausgegeben werden. Sie dürfen keine Schleifen verwenden. Speichern Sie den Source-Code unter array.c in das Verzeichnis serie03.

Hinweis: Schreiben Sie Funktionen createVector und printVector, die im Hauptprogramm aufgerufen werden.

Aufgabe 3.5. Die Fibonacci-Folge ist definiert durch $x_0 := 0$, $x_1 := 1$ und $x_{n+1} := x_n + x_{n-1}$. Schreiben Sie eine rekursive Funktion fibonacciVec, die zu gegebenem Index n das Folgenglied x_n berechnet. Die Funktion fibonacciVec soll im Gegensatz zur Aufgabe 2.7 alle Zwischenergebnisse x_0, \ldots, x_{n-1} im Vektor x speichern. Beachten Sie, dass diese nur einmal berechnet werden. Die Zahl n bezeichnet eine Konstante in Hauptprogramm. Schreiben Sie ferner ein aufrufendes Hauptprogramm, in dem der Vektor x geeignet deklariert und das Ergebnis ausgegeben wird. Was sind Vor- und Nachteile gegenüber der Funktion fibonacci aus Aufgabe 2.7. Speichern Sie den Source-Code unter fibonacciVec.c in das Verzeichnis serie03.

Aufgabe 3.6. Gegeben sei eine stetige Funktion $f:[a,b]\to\mathbb{R}$ auf einem Intervall [a,b] mit

$$f(a) \cdot f(b) \le 0.$$

Dann hat f eine Nullstelle x_0 , die im Folgenden mittels Bisektion approximiert werden soll: Man definiert c := (a + b)/2 als Intervallmittelpunkt. Laut Voraussetzung gilt

$$f(a) \cdot f(c) \le 0$$
 oder $f(c) \cdot f(b) \le 0$.

Im Fall $f(a) \cdot f(c) \leq 0$ ruft man den Bisektionsalgorithmus für das Intervall [a,c] auf, anderenfalls für das Intervall [c,b]. Als Abbruchbedingung verwende man $|b-a| \leq \varepsilon$. Wegen $x_0 \in [a,b]$ ist dann beispielsweise c (oder auch a und b) eine Approximation der Nullstelle bis auf einen Fehler ε . Der Funktion int bisektion (double ab[2], double eps) werden also die Parameter $a,b \in \mathbb{R}$ und $\varepsilon > 0$ übergeben. Im Fall $f(a) \cdot f(b) > 0$ soll abgebrochen werden. Man realisiere die Übergabe von a und b mittels eines Vektors [a,b] (Call by Reference), sodass der Return-Value angibt, ob beim Bisektionsverfahren ein Fehler (Rückgabewert -1) aufgetreten ist oder nicht (Rückgabewert 0). Bei jedem Funktionsaufruf sollen a,b,|b-a| und f(c) ausgegeben werden. Als Testfunktion verwende man $f(x)=x^2+\exp(x)-2$ auf $[0,\infty)$, die man als eigene Funktion realisiere. Schreiben Sie ferner ein Hauptprogramm, das $a,b,\varepsilon>0$ einliest und eine entsprechende Approximation der Nullstelle ausgibt. Speichern Sie den Source-Code unter bisektion.c in das Verzeichnis serie03.

Aufgabe 3.7. Gegeben sei ein sortierter Vektor x der Länge n. Schreiben Sie eine rekursive Funktion findBisection(x,y), die einen Index i zurückgibt, für den $x_i = y$ gilt. Falls y nicht in x vorkommt soll 0 zurückgegeben werden. Um einen schnellen Code zu erhalten, durchsuchen Sie nicht einfach den Vektor x on vorne nach hinten (oder umgekehrt). Sondern nutzen Sie die Idee des Bisektionsalgorithmus aus Aufgabe 3.6 geeignet. Wieviele Funktionsaufrufe brauchen Sie maximal falls x einen Vektor der Länge 32 ist? Speichern Sie den Source-Code unter findBisection.m in das Verzeichnis serie03.

Aufgabe 3.8. Schreiben Sie die Funktion int geraden (double u[3], double v[3], double s[2]), die zwei Geraden auf ihre Lage in der Fläche untersucht: Mit vorgegebenen $\mathbf{u}=(a,b,c)^T\in\mathbb{R}^3$ und $\mathbf{v}=(d,e,f)^T\in\mathbb{R}^3$ werden durch die Gleichungen

$$ax + by = c,$$
$$dx + ey = f$$

zwei Geraden in der Ebene festgelegt. Die Funktion geraden bestimmt, ob die gegebenen Geraden parallel (Rückgabe 1), ident (Rückgabe 0) oder schneidend (Rückgabe -1) sind. In letzterem Fall sollen auch die Koordinaten des Schnittpunktes berechnet und zurückgegeben werden (in s [2]). Schreiben Sie ferner ein aufrufendes Hauptprogramm, in dem die Parameter über die Tastatur eingelesen werden und geraden aufgerufen wird. Speichern Sie den Source-Code unter geraden.c in das Verzeichnis serie03.