Алгебра. Неофициальный конспект

Лектор: Алексей Владимирович Степанов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Гом	ологическая алгебра	2
	1.1	Абелевы категории	2
	1.2	Компле́ксы	4

Глава 1

Гомологическая алгебра

Лекция I 12 февраля 2024 г.

1.1 Абелевы категории

Напомним некоторые определения из предыдущей лекции.

Определение 1.1.1 (Предаддитивная категория \mathscr{A}). $\forall A, B \in \mathscr{A} : \mathrm{Mor}_{\mathscr{A}}(A, B)$ образует абелеву группу, и везде, где определена, выполнена дистрибутивность:

$$\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$$
 $(\beta + \gamma)\alpha = \beta\alpha + \gamma\alpha$

Определение 1.1.2 (Бипроизведение). Такая диаграмма, что

$$A \stackrel{\pi_1}{\longleftarrow} C \stackrel{\pi_2}{\longleftarrow} B$$

- 1. $\pi_1 \iota_1 = \mathrm{id}_A$.
- 2. $\pi_2 \iota_2 = id_B$.
- 3. $\iota_2 \pi_2 + \iota_1 \pi_1 = id_C$.
- 4. $\pi_2 \iota_1 = 0$.
- 5. $\pi_1 \iota_2 = 0$.

Определение 1.1.3 (Аддитивная категория). Предаддитивная категория с финальным объектом и произведениями (любых двух объектов).

Эквивалентно, существуют инициальный объект и копроизведения, эквивалентно существуют нулевой объект и бипроизведения.

Определение 1.1.4 (Предабелева категория). Аддитивная категория, в которой у всех морфизмов есть ядро и коядро.

Определение 1.1.5 ((Ко)нормальный мономорфизм (эпиморфизм)). Он является (ко)эквалайзером (какой-то, неважно какой, пары стрелок).

Определение 1.1.6 (Абелева категория). Предабелева категория, в которой все мономорфизмы нормальны.

Пусть \mathscr{C} — категория. Вспомним про категорию стрелок $\mathscr{Arr}\mathscr{C}$, в которой объекты — стрелки из $\mathrm{Mor}(\mathscr{C})$, множество морфизмов между ϕ, ψ — это

$$\operatorname{Mor}_{\mathscr{Apr}_{\mathscr{C}}}(\phi,\psi) = \{(\alpha,\beta) | \alpha : \operatorname{source}(\phi) \to \operatorname{source}(\psi), \beta : \operatorname{target}(\phi) \to \operatorname{target}(\psi), \beta \phi = \psi \alpha \}$$

$$\begin{array}{ccc}
 & \xrightarrow{\phi} & \bullet \\
\downarrow^{\alpha} & \downarrow^{\beta} \\
 & \xrightarrow{\psi} & \bullet
\end{array}$$

Далее будем обозначать за $\ker f$ ядро стрелки, как уравнитель стрелки и нуля, а за $\ker f := \operatorname{source}(\ker f)$ — объект (в конкретных категориях типа $\operatorname{mod-R}$ это докатегорное понятие ядра — подмодуль без стрелки-вложения).

Лемма 1.1.1. ker, coker — функторы $\mathcal{A}rr\mathcal{A} \to \mathcal{A}rr\mathcal{A}$.

Доказательство. Достаточно доказать для ядер, для коядер двойственно.

Определим действие ker на морфизмах:

$$\operatorname{Ker} f \xrightarrow{\ker f} A \xrightarrow{f} B$$

$$\downarrow \exists ! \phi \qquad \qquad \downarrow \alpha \qquad \qquad \downarrow \beta$$

$$\operatorname{Ker} f' \xrightarrow{\ker f'} A' \xrightarrow{f'} B'$$

 $f \cdot \ker f = 0 \Rightarrow \beta \cdot f \cdot \ker f = 0 \Rightarrow f' \cdot \alpha \cdot \ker f = 0$, откуда по универсальному свойству ядра $\exists ! \phi : \ker f' \cdot \phi = \alpha \cdot \ker f$.

Положим $\ker(\alpha,\beta)=(\phi,\alpha)$. Далее несложно проверить, что данное определение сохраняет композицию и id.

Определение 1.1.7 (Точный функтор). Функтор, сохраняющий ядра и коядра.

 $\mathit{Интересный}\ \phi \mathit{акт}\ ($ Теорема Фрейда — Митчелла (Freyd — Mitchell)). Для любой малой абелевой категории $\mathscr{A}\colon \exists R\in \mathscr{R}ing\ ($ необязательно коммутативное кольцо с единицей) и строгий, полный, точный функтор $\mathscr{A}\to mod\text{-}R.$

Предложение 1.1.1. Для всякого морфизма $f:A\to B$ найдётся пунктирная стрелка, делающая диаграмму коммутативной.

$$\operatorname{Ker} f \xrightarrow{\ker f} A \xrightarrow{f} B \xrightarrow{\operatorname{coker} f} \operatorname{CoKer} f$$

$$\operatorname{coker} \ker f \downarrow \qquad \qquad \uparrow \ker \operatorname{coker} f$$

$$\operatorname{CoKer} \ker f \xrightarrow{-\frac{\exists !}{}} \operatorname{Ker} \operatorname{coker} f$$

Более того, в абелевой категории эта стрелка — изоморфизм.

Доказательство. Следует из эпи-моно разложения, доказанного на прошлой лекции, или из теоремы Митчелла.

Само построение пунктирной стрелки получается из универсальных свойств, а доказательство того, что это — изо — непростое. \Box

Лемма 1.1.2. Пусть \mathscr{C} — полная подкатегория в абелевой категории \mathscr{A} . Следующие условия равносильны

- С является абелевой.
- $-0_{\mathscr{A}} \in \mathscr{C}$, здесь, как обычно, $0_{\mathscr{A}}$ нулевой объект категории \mathscr{A} .
 - в содержит бипроизведение любых двух своих объектов.

- Ядра и коядра (взятые в А) любых морфизмов из С лежат в С.

Доказательство.

- ←. Очевидно.
- ⇒. Чуть сложнее, доказывать не будем (и использовать тоже).

1.2 Комплексы

Если противное не оговорено, то всё происходит в абелевой категории \mathcal{A} , большими буквами обозначены объекты данной категории, маленькими — морфизмы.

Определение 1.2.1 (Компле́кс). Такая диаграмма, что $\forall k \in \mathbb{Z} : d_k \cdot d_{k+1} = 0$.

$$\cdots \xrightarrow{d_{n+1}} C_{n+1} \xrightarrow{d_n} C_n \xrightarrow{d_{n-1}} C_{n-1} \xrightarrow{d_{n-2}} \cdots$$

Альтернативно, комплекс можно рассматривать, как функтор из категории (\mathbb{Z}, \geqslant) (полученной из частично упорядоченного множества) в \mathscr{A} (при котором образ композиции любых двух нетождественных морфизмов нулевой).

Ещё один, следующий, взгляд на комплексы работает только для конкретной категории, уже вложенной в R-модули.

Определение 1.2.2 (Градуированный объект). $C_{ullet} = \bigoplus_{n \in \mathbb{Z}} C_n$ с морфизмом $d: C_{ullet} \to C_{ullet}$, таким, что $d(C_n) \subset C_{n+p}$ для некоторой фиксированной *степени объекта p* (чаще всего она равна ± 1).

Определение 1.2.3 (Дифференциальный модуль). Градуированный объект (C_{\bullet}, d) со свойством $d^2 = 0$.

Определение 1.2.4 (Комплекс). Дифференциальный модуль степени -1.

При развороте стрелок получается дифференциальный модуль степени +1, также известный, как кокомплекс:

$$\cdots \xleftarrow{d^{n+2}} C^{n+1} \xleftarrow{d^{n+1}} C^n \xleftarrow{d^n} C^{n-1} \xleftarrow{d^{n-1}} \cdots$$

Предостережение. У кокомплекса несколько другая нумерация стрелок, но кокомплексы мы практически не будем использовать.

Определение 1.2.5 (Сдвиг комплекса (C_{\bullet},d) на $p \in \mathbb{Z}$). Комплекс $(C[p]_{\bullet},d[p])$, где $C[p]_n = C_{n+p}$ и $d[p]_n = (-1)^p d_{n+p}$.