

This document is sponsored by

The Science Foundation College Kiwanga- Namanve
Uganda East Africa
Senior one to senior six

Dr. Brosa Science Based on, best for sciences

Continuous probability distribution

A probability density function (p.d.f) is continuous if it takes on values between an interval.

Properties of a continuous probability density functions

(i)
$$\int f(x)dx = 1$$

(ii)
$$f(x) \ge 0$$

Example 1

A random variable X of continuous p.d.f is given by $f(x) = \begin{cases} kx & 0 \le x \le 5 \\ 0 & elsewhere \end{cases}$

Find the value of k

Solution

$$\int_{0}^{5} kx dx = 1$$

$$k\left(\frac{5^{2}}{2} - \frac{0^{2}}{2}\right) = 1$$

$$k\left[\frac{x^{2}}{2}\right]_{0}^{5} = 1$$

$$k^{\frac{25}{2}} = 1$$

Example 2

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx & 0 \le x \le 2\\ 2k(x-1), & 2 \le x \le 4\\ 0, & elsewhere \end{cases}$

Solution

$$\int_{0}^{2} kx dx + \int_{2}^{4} 2k(x-1) dx = 1$$

$$k \left[\frac{x^{2}}{2} \right]_{0}^{2} + 2k \left[\frac{x^{2}}{2} - x \right]_{2}^{4} = 1$$

$$2k + 8k = 1; k = \frac{1}{10}$$

Sketching f(x)

- find the initial and final points of f(x)
- join the initial and final points of f(x) using a line or curve.

Note

- A line is in the form of y = mx + c
- A curve has a power of x being 2 and above or fractional power e.g. $y = x^2$.
- A curve has a positive coefficient of x² has a minimum turning point while a curve with a negative coefficient has a maximum turning point

Example 3

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx & 0 \le x \le 3 \\ 0, & elsewhere \end{cases}$

Find the value of the constant k and sketch f(x)

Solution

$$\int_0^3 kx dx = 1$$

$$k = \frac{2}{a}$$

$$k\left[\frac{x^2}{2}\right]_0^3 = 1$$

When x = 0, f(x) =
$$\frac{2}{9} x 0 = 0$$

= 1 When x = 3, f(x) = $\frac{2}{9} x 3 = \frac{2}{3}$

$$k\left(\frac{3^2}{2} - \frac{0^2}{2}\right) = 1$$

When x = 3, f(x) =
$$\frac{2}{9}$$
 x 3 = $\frac{2}{3}$

Example 4

A random variable X of continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 3 \\ k(6-x), & 3 \le x \le 6 \\ 0. & elsewhere \end{cases}$

Find the value of the constant k and sketch x

Solution

$$\int_{0}^{3} kx dx + \int_{3}^{6} k(6-x) dx = 1$$

$$k \left[\frac{x^{2}}{2} \right]_{0}^{3} + k \left[6x - \frac{x^{2}}{2} \right]_{3}^{6} = 1$$
When $x = 0$, $f(x) = k(0) = 0$

$$\text{When } x = 3$$
, $f(x) = k(3) = 3k$

$$\text{When } x = 6$$
, $f(x) = k(6-6) = 0$

When
$$x = 0$$
, $f(x) = k(0) = 0$

When
$$x = 3$$
, $f(x) = k(3) = 31$

When
$$x = 6$$
, $f(x) = k(6-6) = 0$

Example 5

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} k(x+2), \\ k(2-x), \\ 0 \end{cases}$

$$-2 \le x \le 0$$
$$0 \le x \le 2$$
elsewhere

Find the value of k and sketch f(x)

When
$$x = -2$$
, $f(x) = k(-2+2) = 0$

$$k \left[\frac{x^2}{2} + 2x \right]_{-2}^{0} + k \left[2x - \frac{x^2}{2} \right]_{0}^{2} = 1$$

$$k = \frac{1}{4}$$
When $x = -2$, $f(x) = k(-2+2) = 0$
When $x = 0$, $f(x) = k(0+2) = 2k$
When $x = 2$, $f(x) = k(-2+2) = 0$

When
$$x = -2$$
, $f(x) = k(-2+2) = 0$
When $x = 0$, $f(x) = k(0+2) = 2k$
When $x = 2$, $f(x) = k(2-2) = 0$

Finding Probabilities

Example 6

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx & 0 \le x \le 6 \\ 0 & elsewhere \end{cases}$

Find

(i) the value of k (ii) P(X > 4) (iii) P(X < 3) (iv) P(1 < x < 3) (v)
$$P(X > 2/X \le 4)$$

Solution

(i)
$$\int_0^6 kx dx = 1$$
$$k \left[\frac{x^2}{2} \right]_0^6 = k \left[\frac{6^2}{2} - \frac{0^2}{2} \right] = 1$$
$$k = \frac{1}{18}$$

(ii)
$$P(X > 4) = \frac{1}{18} \int_4^6 x dx = 1$$

= $\frac{1}{18} \left[\frac{x^2}{2} \right]_4^6 = \frac{1}{18} \left[\frac{6^2}{2} - \frac{4^2}{2} \right] = \frac{5}{9} = 0.5556$

(iii)
$$P(X < 3) = \frac{1}{18} \int_0^3 x dx = 1$$

$$= \frac{1}{18} \left[\frac{x^2}{2} \right]_0^3 = \frac{1}{18} \left[\frac{3^2}{2} - \frac{0^2}{2} \right] = \frac{1}{4} = 0.25$$

$$dx = 1$$

$$\int_{0}^{6} = k \left[\frac{6^{2}}{2} - \frac{0^{2}}{2} \right] = 1$$

$$= \frac{1}{18} \int_{4}^{6} x dx = 1$$

$$= \frac{1}{18} \left[\frac{x^{2}}{2} \right]_{4}^{6} = \frac{1}{18} \left[\frac{6^{2}}{2} - \frac{4^{2}}{2} \right] = \frac{5}{9} = 0.5556$$

$$3) = \frac{1}{18} \int_{0}^{3} x dx = 1$$

$$= \frac{1}{18} \left[\frac{x^{2}}{2} \right]_{0}^{3} = \frac{1}{18} \left[\frac{3^{2}}{2} - \frac{0^{2}}{2} \right] = \frac{1}{4} = 0.25$$

$$(iii) 1 < x < 3) = \frac{1}{18} \int_{1}^{3} x dx = 1$$

$$= \frac{2}{9} = 0.2222$$

(iv)
$$P(X > 2/X \le 4) = \frac{P(X > 2 \cap X \le 4)}{P(X \le 4)} = \frac{P(2 < X < 4)}{P(X \le 4)} = \frac{\frac{1}{18} \int_{2}^{4} x dx = 1}{\frac{1}{18} \int_{0}^{4} x dx = 1} = \frac{3}{4}$$

Example 7

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx(6-x) & 0 \le x \le 6 \\ 0 & elsewhere \end{cases}$

Find the (i) value of k and sketch f(x)

(i)
$$\int_0^6 kx(6-x)dx = 1$$

 $k \left[3x^2 - \frac{x^3}{3}\right]_0^6 = k\left[\left(3x \ 6^2 - \frac{6^3}{3}\right) - \left(3x \ 0^2 - \frac{0^3}{3}\right)\right] = 1$
 $k = \frac{1}{36}$
When $x = 0$, $f(x) = \frac{1}{36}(0)(6-0) = 0$

When x = 0, $f(x) = \frac{1}{36}(0)(6 - 0) = 0$

When x = 6, $f(x) = \frac{1}{36}(6)(6-6) = 0$

(ii)
$$P(X \ge 5) = \frac{1}{36} \int_5^6 x(6-x) dx$$

= $\frac{1}{36} \left[3x^2 - \frac{x^3}{3} \right]_5^6 = \frac{1}{36} \left[\left(3x \ 6^2 - \frac{6^3}{3} \right) - \left(3 \ x \ 5^2 - \frac{5^3}{3} \right) \right] = 0.074$

A random variable of continuous p.d.f is given by $f(x) = \begin{cases} kx^2 & 0 \le x \le 4 \\ 0, & elsewhere \end{cases}$

Find (i) value of k and sketch f(x)

(ii) $P(1 \le x \le 3)$

Solution

Sketch

When x = 0,
$$f(x) = \frac{3}{64}0^2 = 0$$

When x = 4,
$$f(x) = \frac{3}{64} 4^2 = \frac{3}{4}$$

(ii)
$$P(1 \le x \le 3) = \frac{3}{64} \int_1^3 kx^2 dx = 1$$

= $\frac{3}{64} \left[\frac{x^3}{3} \right]_1^3 = \frac{3}{64} \left[\frac{3^3}{3} - \frac{1^3}{3} \right] = 0.4063$

Example 9

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x^2 + 1) & 0 \le x \le 3 \\ 0, & elsewhere \end{cases}$

Find (i) value of k and sketch f(x)

(ii) $P(1 \le x \le 3)$

When x = 0, $f(x) = \frac{1}{12}(0^2 + 1) = \frac{1}{12}$

When x = 3, f(x) =
$$\frac{1}{12}[3^2 + 1] = \frac{10}{12}$$

(ii) $P(1 \le x \le 3)$ $\frac{1}{12} \int_{1}^{3} (x^2 + 1) dx = \frac{1}{12} \left[\frac{x^3}{3} + x \right]_{1}^{3} = \frac{1}{12} \left[\left(\frac{3^3}{3} + 3 \right) - \left(\frac{1^3}{3} + 1 \right) \right] = 0.8889$

Example 10

A random variable X of continuous p.d.f is given by $f(x) = \begin{cases} k, & 0 \le x \le 2 \\ k(2x - 3), & 2 \le x \le 3 \\ 0, & elsewhere \end{cases}$

Find (i) value of k and sketch f(x) (ii) P(X<1) (ii) P(X > 2.5) (iv) $0 \le X \le 2/X \ge 1$

Solution

$$\int_{0}^{2} k dx + \int_{2}^{3} k(2x - 3) dx = 1$$

$$k[x]_{0}^{2} + k[x^{2} - 3x]_{2}^{3} = 1$$

$$k = \frac{1}{4}$$
When $x = 2$, $f(x) = k = \frac{1}{4}$

$$k = \frac{1}{4}$$
When $x = 3$, $f(x) = \frac{1}{4}$ (2 x3 - 3)

When
$$x = 0$$
, $f(x) = k = \frac{1}{4}$

When x = 2,
$$f(x) = k = \frac{1}{4}$$

When x = 3, f(x) =
$$\frac{1}{4}$$
 (2 x3 - 3)
= $\frac{3}{4}$

(ii) P(X<1)
$$=\frac{1}{4}\int_0^1 dx = \frac{1}{4}[x]_0^1 = \frac{1}{4}$$

(iii)
$$P(X > 2.5) = \frac{1}{4} \int_{2.5}^{3} (2x - 3) dx = \frac{1}{4} [x^2 - 3x]_{2.5}^{3} = 0.3125$$

(iv)
$$P\left(0 \le X \le 2 / X \ge 1\right) = \frac{P(0 \le X \le 2)}{P(X \ge 1)} = \frac{P((0 \le X \le 2) \cap (X \ge 1))}{P(X \ge 1)} = \frac{\frac{1}{4} \int_{1}^{2} dx}{\frac{1}{4} \int_{1}^{2} dx + \frac{1}{4} \int_{2}^{3} (2x - 3) dx} = \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{2}} = \frac{1}{3}$$

Example 11

A random variable X of continuous p.d.f is given by $f(x) = \begin{cases} k(x+2)^2, & -2 \le x \le 0 \\ 4k, & 0 \le x \le \frac{4}{3} \\ 0, & elsewhere \end{cases}$

Find

- (i) the value of the constant k and sketch f(x)
- (ii) P(-1 < x < 1) (iii) P(X > 1)

Solution

$$\int_{-2}^{0} k(x+2)^2 dx + \int_{0}^{2} 4k dx = 1$$

$$k \left[\frac{(x+2)^3}{3} \right]_{-2}^0 + 4k[x]_0^2 = 1$$

$$k = \frac{1}{8}$$

When
$$x = -2$$
, $f(x) = \frac{1}{8}(-2 + 2)^2 = 0$

When
$$x = 0$$
, $f(x) = \frac{1}{8}(0+2)^2 = \frac{1}{2}$

When
$$x = \frac{4}{3}$$
, $f(x) = 4 \times \frac{1}{8} = \frac{1}{2}$

(ii) P(-1 < x< 1) =
$$\int_{-1}^{0} k(x+2)^2 dx + \int_{0}^{1} 4k dx$$

= $\frac{1}{8} \left[\frac{(x+2)^3}{3} \right]_{-12}^{0} + 4x \frac{1}{8} [x]_{0}^{1} = \frac{7}{24} + \frac{1}{2} = \frac{19}{24}$

(iii)
$$P(X > 1) = \int_0^{\frac{4}{3}} 4k dx = 4x \frac{1}{8} [x]_1^{4/3} = \frac{1}{6}$$

Finding the constant k from a sketch graph

Example 12

A random variable X of continuous p.d.f is given by $f(x) = \begin{cases} kx \\ 0 \end{cases}$ $0 \le x \le 4$ elsewhere

- (a) Sketch and find the value of constant k
- (b) Find (i) $P(X \le 1)$
- (ii) P(1 < x < 2)

Solution

Area under the curve = $\frac{1}{2}$ x 4 x 4k = 1 $k = \frac{1}{8}$

(b)(i)
$$P(X \le 1) = \frac{1}{8} \int_0^1 x dx = \frac{1}{8} \left[\frac{x^2}{2} \right]_0^1$$

$$= \frac{1}{8} \left(\frac{1^2}{2} - \frac{0^2}{2} \right) = \frac{1}{16}$$
(ii) $P(1 < x < 2) = \frac{1}{8} \int_1^2 x dx = \frac{1}{8} \left[\frac{x^2}{2} \right]_1^2$

$$= \frac{1}{8} \left(\frac{2^2}{2} - \frac{1^2}{2} \right) = \frac{3}{16}$$

Example 13

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 2\\ k(4-x), & 2 \le x \le 4\\ 0, & elsewhere \end{cases}$

- (a) Sketch f(x) and find the value of k

- (b) Find (i) P(X< 1) (ii) P(X > 3) (iii) P(1 \le x \le 3) (iv) $P(X \ge 1/X < 3)$

Solution

When x = 0, f(x) = k(0) = 0

When x = 2, $f(x) = k \times 2 = 2k$

When x = 4, f(x) = k(4 - 4) = 0

Area under the curve = $\frac{1}{2} x 4 x 2k = 1$ $k = \frac{1}{4}$

(b)(i)
$$P(X < 1) = \frac{1}{4} \int_0^1 x dx = \frac{1}{4} \left[\frac{x^2}{2} \right]_0^1$$

$$= \frac{1}{4} \left(\frac{1^2}{2} - \frac{0^2}{2} \right) = \frac{1}{8}$$
(ii) $P(X > 3) = \frac{1}{4} \int_3^4 (4 - x) dx$

$$= \frac{1}{4} \left[4x - \frac{x^2}{2} \right]_3^4 = 0.125$$
(iii) $P(1 \le x \le 3) = \frac{1}{4} \int_1^2 x dx + \frac{1}{4} \int_2^3 4 - xk dx$

$$= \frac{1}{4} \left[\frac{x^2}{2} \right]_1^2 + \frac{1}{4} \left[4x - \frac{x^2}{2} \right]_3^3 = \frac{3}{4}$$

(iv)
$$P\left(X \ge \frac{1}{X} \le 3\right) = \frac{X \ge 1 \cap X \le 3}{X \le 3} = \frac{P(1 \le x \le 3)}{X \le 3} = \frac{\frac{3}{4}}{\frac{1}{4} \int_{0}^{2} x dx + \frac{1}{4} \int_{2}^{3} 4 - x k dx} = \frac{\frac{3}{4}}{\frac{7}{8}} = \frac{6}{7}$$

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k, & 2 \le x \le 3 \\ k(x-2), & 3 \le x \le 4 \\ 0, & elsewhere \end{cases}$

Find (i) the value of k and sketch the graph (ii) P(|X-2.5| > 0.5) (iii) P(|X-2.5| < 0.5)Solution

(i) When
$$x = 2$$
, $f(x) = k$

When
$$x = 3$$
, $f(x) = k$

When
$$x = 4$$
, $f(x) = k(4 - 2) = 2k$

Area under the curve = 1 x k + $\frac{1}{2}(k + 2k)x$ 1 = 1

$$k = \frac{2}{5}$$

(ii)
$$P(|X - 2.5| > 0.5) = P(-0.5 < X-2.5 < 0.5)$$

$$= P(2 < X < 3)$$

$$=\frac{2}{5}\int_{2}^{3}dx = [x]_{2}^{3}$$

$$=\frac{2}{5}$$

Finding p.d.f from a sketch graph

Example 15

A random variable X of a continuous p.d.f is given by

(a) Area =
$$1 = \frac{1}{2} x 3 x k$$

 $K = \frac{2}{3}$

(b) Find f(x)

Let
$$f(x) = y$$

For interval: $0 \le x \le 1$ coordinates are (0, 0) and (1, k)

grad =
$$\frac{y-0}{x-0} = \frac{\frac{2}{3}-0}{1-0}$$

v = $\frac{2}{x}$

For interval 1≤ x≤ 3

Coordinates are (3,0) and (1, k)

grad =
$$\frac{y-0}{x-3} = \frac{\frac{2}{3}-0}{1-3}$$

$$y = -\frac{1}{3}(x-3)$$

$$y = -\frac{1}{3}(x - 3)$$

$$f(x) = \begin{cases} \frac{2}{3}x, & 0 \le x \le 1\\ \frac{1}{3}(x - 3), & 1 \le x \le 3\\ 0, & elsewhere \end{cases}$$

A continuous random variable X has a probability density function (p.d.f) f(x) as shown in the graph below

- (a) Find the
 - (i) value of k
 - (ii) expression for the probability density function
- (b) Calculate the
 - (i) The mean
 - (ii) P(X<1.5/X>0.5)

Solution

(i) Area under the graph = 1 $\frac{1}{2} x 2 x k = 1; k = 1$

(ii) Let f(x) = yFor interval: $0 \le x \le 1$ coordinates are (0, 0) and (1, k)

$$grad = \frac{y-0}{x-0} = \frac{1-0}{1-0}$$

$$y = x$$

For interval: $1 \le x \le 2$ coordinates are

(1, k) and (2, 0)

grad =
$$\frac{y-1}{x-1} = \frac{0-1}{2-1}$$

$$y = 2 - x$$

$$f(x) = \begin{cases} x, & 0 \le x \le 1\\ (2-x), & 1 \le x \le 2\\ 0, & elsewhere \end{cases}$$

(b)(i)
$$E(X) = \sum x f(x)$$

$$= \int_0^1 x \cdot x dx + \int_1^2 x (2 - x) dx$$

$$= \left[\frac{x^3}{3} \right]_0^1 + \left[x^2 - \frac{x^3}{3} \right]_1^2$$

$$= \left(\frac{1}{3} - 0 \right) + \left[\left(4 - \frac{8}{3} \right) - \left(1 - \frac{1}{3} \right) \right]$$

$$= \frac{1}{3} + \frac{4}{3} - \frac{2}{3} = 1$$

(b)(ii) P(X<1.5/X> 0.5) =
$$\frac{P(x<1.5 \cap x>0.5)}{P(X>0.5)} = \frac{P(0.5< x \ 1.5)}{P(X>0.5)} = \frac{\int_{0.5}^{1} x dx + \int_{1}^{1.5} (2-x) dx}{1 - \int_{0}^{0.5} x dx}$$
$$= \frac{\left[\frac{x^{2}}{2}\right]_{0.5}^{1} + \left[2x - \frac{x^{2}}{2}\right]_{1}^{1.5}}{1 - \left[\frac{x^{2}}{2}\right]_{0}^{0.5}} = 0.8751$$

The departure time T of pupils from a certain day primary school can be modelled as in the diagram below, where t is the time in minutes after the final bell at 5.00pm

Determine the

(i) value of k

Area under the curve = 1 $\frac{1}{2} x 10 x k = 1$ $k = \frac{1}{5}$

(ii) equation of the p.d.f

Gradient of \overline{AC} = Gradient of \overline{AR}

$$\frac{\frac{1}{5}-0}{5-0} = \frac{f(x)-1}{t=0}$$

$$\frac{1}{25} = \frac{f(x)}{t}$$

$$f(x) = \frac{1}{25}t$$

Gradient of \overline{BC} = Gradient of \overline{BS}

$$\frac{\frac{1}{5}-0}{5-10} = \frac{f(x)-0}{t=10}$$
$$-\frac{1}{25} = \frac{f(x)}{t-10}$$
$$f(x) = \frac{10-t}{25}$$

Hence
$$f(x) = \begin{cases} \frac{1}{25}t, & 0 \le x \le 5\\ \frac{1}{25}(10-t), & 5 \le x \le 10\\ 0, & elsewhere \end{cases}$$

- (iii) E(T): since the graph is symmetrical about t = 5; Hence E(T) = 5
- (iv) Probability that a pupil leaves between 4 and 7 minutes after the bell

$$P(4 < t < 7) = \frac{1}{25} \int_{4}^{5} t dx + \frac{1}{25} \int_{5}^{7} (10 - t) k dx$$
$$= \frac{1}{25} \left[\frac{t^{2}}{2} \right]_{4}^{5} + \frac{1}{25} \left[10t - \frac{t^{2}}{2} \right]_{5}^{7} = 0.5$$

Revision exercise 1

1. A random variable X of a continuous p.d.f is given by
$$f(x) = \begin{cases} kx^2 & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$$

- (a) Find the value of the constant k ($=\frac{3}{8}$) and sketch f(x)
- (b) Find (i) $P(X \ge 1) = \frac{3}{8}$ (ii) $P(0.5 \le x \le 1.5) = \frac{13}{32}$
- 2. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k & -2 \le x \le 3 \\ 0, & elsewhere \end{cases}$
 - Sketch f(x)
 - Find the value of the constant $k = \frac{1}{5}$. (ii)
 - Find P($-1.6 \le x \le 2.1$) = 0.74
- 3. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(4-x) & 1 \le x \le 3 \\ 0, & elsewhere \end{cases}$
 - Sketch f(x) (i)
 - (ii) Find the value of the constant $k = \frac{1}{4}$.
 - Find $P(1.2 \le x \le 2.4) = 0.66$
- 4. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x+2)^2 & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch f(x)

 - Find the value of the constant $k = \frac{1}{56}$. Find (i) $P(0 \le x \le 1) = \frac{19}{56}$ (ii) $P(X \ge 1) = \frac{37}{56}$
- 5. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x)^3 & 0 \le x \le c \\ 0, & elsewhere \end{cases}$ Given that $P(X \le 0.5) = \frac{1}{16}$
 - Find the value of k and c (k = 1 and k = 4)
 - Sketch f(x)
- 6. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx & 0 \le x \le 4 \\ 0 & elsewhere \end{cases}$
 - (i) Sketch f(x)
 - Find the value of the constant $k = \frac{1}{6}$
 - (iii) Find $P(1 \le x \le 2.5) = 0.328$
- 7. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k, & 0 \le x \le 2 \\ k(2x 3), & 2 \le x \le 3 \\ 0, & elsewhere \end{cases}$
 - (i) Sketch f(x)
 - Find the value of the constant $k = \frac{1}{4}$. (ii)
 - Find (i) $P(X > 1) = \frac{1}{4}$ (ii) P(X > 2.5) = 0.3125 (iii) $P(1 \le x \le 2.3) = 0.3475$ (iii)

8. A random variable X of a continuous p.d.f is given by
$$f(x) = \begin{cases} a, & 0 \le x \le 1.5 \\ \frac{a}{2}(2-x), & 2 \le x \le 3 \\ 0, & elsewhere \end{cases}$$

Find (i) value of
$$a = \frac{16}{25}$$
 (ii) P(X < 1.6) = 0.9744

Expectation or mean of X

Example 18

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx^2 & 0 \le x \le 3 \\ 0, & elsewhere \end{cases}$

Find the

- (i) value of the constant k and sketch f(x)
- (ii) the mean, μ
- (iii) $P(X \leq \mu)$

Solution

(i)
$$\int_0^3 kx^2 dx = 1$$
$$k \left[\frac{x^3}{3} \right]_0^3 = 1, k = \frac{1}{9}$$
When $x = 0$, $f(x) = \frac{1}{9}(0)^2 = 0$ When $x = 3$, $f(x) = \frac{1}{9}(3)^2 = 1$

(ii)
$$E(X) = \int_0^3 x \cdot x^2 dx$$
$$= \frac{1}{2} \left[\frac{x^4}{2} \right]^3 = 2.25$$

(ii)
$$E(X) = \int_0^3 x \cdot x^2 dx$$
$$= \frac{1}{9} \left[\frac{x^4}{4} \right]_0^3 = 2.25$$
(iii)
$$P(X \le \mu) = \frac{1}{9} \int_0^{2.25} x^2 dx$$
$$= \frac{1}{9} \left[\frac{x^4}{4} \right]_0^{2.25}$$
$$= 0.42$$

Example 19

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx^3 & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$

Find (i) the value of the constant k

$$\int_0^3 kx^3 dx = 1$$
$$k \left[\frac{x^4}{4} \right]_0^2 = 1 , k = \frac{1}{4}$$

(ii)

$$E(X) = \frac{1}{4} \int_0^3 x \cdot x^3 dx = \frac{1}{4} \left[\frac{x^5}{5} \right]_0^2 = 1.6$$

(iii)
$$P(X \le 1) = \frac{1}{4} \int_0^1 x^3 dx = \frac{1}{4} \left[\frac{x^4}{4} \right]_0^1 = 0.0625$$

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(4x - x^2), & 0 \le x \le 2\\ 0, & elsewhere \end{cases}$

Find

(i) the value of constant k
$$\int_{0}^{2} k(4x - x^{2}) dx = 1$$

$$k \left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{2}, k = \frac{3}{16}$$

(ii) E(X)
$$\frac{3}{16} \int_0^2 x(4x - x^2) dx = \frac{3}{16} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_0^2 = 0.25$$

(iii)
$$P(X \le 1) = \frac{3}{16} \int_0^1 (4x - x^2) dx = \frac{3}{16} \left[2x^2 - \frac{x^3}{3} \right]_0^1 = 0.3125$$

Example 21

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} 3x^k, & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$

$$3\int_0^1 x^k dx = 1$$

$$3\left[\frac{x^{k+1}}{k+1}\right]_0^1 = 1$$

$$3\left[\frac{1^{k+1}}{k+1} - \frac{0^{k+1}}{k+1}\right] = 1$$

$$\frac{3}{k+1} = 1$$

$$k = 2$$

(ii) Find the mean

$$E(X) = \int_0^1 x(3x^2) dx = 3\left[\frac{x^4}{4}\right]_0^1 = 0.75$$

(iii) Find the value of a such that $P(X \le a) = 0.5$

$$P(X \le a) = 3 \int_0^a x^2 dx = 0.5$$
$$= 3 \left[\frac{x^3}{3} \right]_0^a = a^3 - 0^3 = 0.5$$
$$= a^3 = 0.5; a = 0.794$$

Example 22

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{4}x, & 0 \le x \le 2\\ \left(1 - \frac{1}{4}x\right), & 2 \le x \le 4\\ 0, & elsewhere \end{cases}$

(i) Sketch f(x)

When x = 0, f(x) =
$$\frac{1}{4} x (0) = 0$$

When x = 2, f(x) = $\frac{1}{4} x (2) = 0.25$
When x = 4, f(x) = $\left(1 - \frac{1}{4}(4)\right) = 0$

(ii) Mean
$$E(X) = \frac{1}{4} \int_0^2 x \cdot x dx + \int_2^4 x \left(1 - \frac{1}{4}x\right) dx$$

$$\frac{1}{4} \left[\frac{x^3}{3}\right]_0^2 + \left[\frac{x^2}{2} - \frac{x^3}{12}\right]_2^4 = 2$$
(iii) $P(X > 3) = \int_3^4 \left(1 - \frac{1}{4}x\right) dx$

$$= \left[x - \frac{x^2}{8}\right]_3^4 = 0.125$$

(iii)
$$P(X > 3) = \int_3^4 \left(1 - \frac{1}{4}x\right) dx$$
$$= \left[x - \frac{x^2}{8}\right]_3^4 = 0.125$$

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x+2), & -1 \le x \le 0 \\ 2k(1-x), & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$

Sketch

(i) Sketch f(x)

When x = -1, f(x) = k(-1 + 2) = k

When x = 0, f(x) = k(0 + 2) = 2k

When x = 1, f(x) = 2k(1-1) = 0

(ii) value of k

Area under the graph = 1

$$\frac{1}{2} x 1(k+2k) + \frac{1}{2} x 1 x 2k = 1$$

$$k = \frac{2}{5}$$

(iii)
$$k = \frac{2}{5}$$
$$P\left(0 < x < 0.5/X > 0\right)$$

$$P\left(0 < x < 0.5 \middle/_{X > 0}\right) = \frac{P(0 < x < 0.5)}{P(X > 0)} = \frac{\frac{4}{5} \int_{0}^{0.5} (1 - x) dx}{\frac{4}{5} \int_{0}^{1} (1 - x) dx} = \frac{\left[x - \frac{x^{2}}{2}\right]_{0}^{0.5}}{\left[x - \frac{x^{2}}{2}\right]_{0}^{1}} = \frac{\frac{3}{8}}{1/2} = 0.75$$

(iv)

$$E(X) = \frac{2}{5} \int_{-1}^{0} x(x+2) dx + \frac{4}{5} \int_{0}^{1} x(1-x) dx$$
$$= \frac{2}{5} \left[\frac{x^{3}}{3} + x^{2} \right]_{-1}^{0} + \frac{4}{5} \left[\frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{0}^{1} = -\frac{2}{15}$$

Properties of the mean

(i)
$$E(a) = a$$

(ii)
$$E(ax) = a.E(x)$$

(iii)
$$E(ax + b) = aE(x) + b$$

(iv)
$$E(ax - b) = aE(x) - b$$

Where a and b are constants

Example 24

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{20}(x+3), & 0 \le x \le 4\\ 0, & elsewhere \end{cases}$

- Sketch f(x) (i)
- (ii) Find E(X)

(iii) Find
$$E(2X + 5)$$

Solution

(i) When x = 0, f(x) =
$$\frac{1}{20}$$
(0 + 3) = $\frac{3}{20}$
When x = 4, f(x) = $\frac{1}{20}$ (4 + 3) = $\frac{7}{20}$

Sketch

(ii) E(X) =
$$\frac{1}{20} \int_0^4 x(x+3) dx$$

= $\frac{1}{20} \left[\frac{x^3}{3} - \frac{3x^2}{2} \right]_0^4$
= 2.266

(iii)
$$E(2X + 5) = 2 \times 2.266 + 5 = 9.533$$

Example 25

A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{3}{32}x^2, & 0 \le x \le 2\\ \frac{3}{32}(6-x), & 2 \le x \le 6\\ 0, & elsewhere \end{cases}$

(i) Sketch f(x)

When x = 0,
$$f(x) = \frac{3}{32}(0)^2 = 0$$

When x = 2,
$$f(x) = \frac{3}{32}(2)^2 = \frac{3}{8}$$

When x = 6,
$$f(x) = \frac{3}{32}(6-6) = 0$$

(ii) Find P(X< 4)

$$P(X<4) = \frac{3}{32} \int_0^2 x^2 dx + \frac{3}{32} \int_2^4 (6-x) dx$$
$$= \frac{3}{32} \left[\frac{x^3}{3} \right]_0^2 + \frac{3}{32} \left[6x - \frac{x^2}{2} \right]_2^4 = \frac{13}{16}$$

(iii) find the mean

$$E(X) = \frac{3}{32} \int_0^2 x \cdot x^2 dx + \frac{3}{32} \int_2^4 x (6 - x) dx$$
$$= \frac{3}{32} \left[\frac{x^4}{4} \right]_0^2 + \frac{3}{32} \left[3x^2 - \frac{x^3}{3} \right]_2^6$$
$$= 2.875$$

(iv) Find E(100x -20) $E(100X -20) = 100 \times 2.875 - 20 = 267.50$

Revision exercise 2

- 1. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx^2, & 0 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (i) Sketch f(x) (ii) Find E(x) = 3 (iii) find E(2X + 5) = 11

- 2. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx^2(10-x), & 0 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (i) Find value of $k = \frac{3}{2500}$ (ii) Find E(x) = 6 (iii) find E(3X 4) = 14
- 3. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 5 \le x \le 10 \\ 0, & elsewhere \end{cases}$
 - (i) Sketch f(x) (ii) Find value of $k = \frac{2}{75}$ (iii) Find E(x) = $\frac{70}{9}$ (iii) find P(X > 8) = 0.48
- 4. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k[1-(x-2)^2], & 1 \le x \le 3\\ 0, & elsewhere \end{cases}$
 - (i) Find value of $k = \frac{3}{4}$ (ii) sketch f(x) (iii) find E(X) = 2
- 5. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} kx(5-x), & 0 \le x \le 5 \\ 0, & elsewhere \end{cases}$
 - (i) Find value of $k = \frac{6}{125}$ (ii) sketch f(x) (iii) find E(X) = 2.5
- 6. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(1-cosx), & 0 \le x \le \pi \\ 0, & elsewhere \end{cases}$
 - (i) Find value of $k = \frac{1}{\pi}$ (ii) sketch f(x) (iii) find mean of x = 0.9342
- 7. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{k}{3}x, & 0 \le x \le 3 \\ k, & 3 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (i) Sketch f(x) (ii) find $k = \frac{2}{5}$ (iii) find E(X) = 2.6
 - (iv) find value of c such that P(X>c) = 0.85; c = 1.5
- 8. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x \frac{1}{a}), & 1 \le x \le 3 \\ 0, & elsewhere \end{cases}$ Given that P(X > 1) = 0.8,

Find (i) values of a and k $(\frac{2}{15}, -1)$ (ii) probability between 0.5 and 2.5 = 0.6667 (iii) E(X) =1.8

- 9. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x+2) & -1 \le x \le 0 \\ 2k, & 0 \le x \le 1 \\ \frac{k}{2}(5-x) & 1 \le x \le 3 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch the function f(x)
 - (b) Find the value of k (= $\frac{2}{13}$) and the mean (= $\frac{12}{13}$)
- 10. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} 2kx, & 0 \le x \le 1 \\ k(3-x) & 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch f(x)
 - (b) Find the value of k (= $\frac{2}{5}$) and the mean = $\frac{17}{15}$
- 11. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \alpha(1 cosx), & 0 \le x \le \frac{\pi}{2} \\ \alpha sinx, & \frac{\pi}{2} \le x \le \pi \\ 0, & elsewhere \end{cases}$
 - (i) Find value of $\alpha (=\frac{2}{\pi})$ (ii) mean, $\mu (=1+\frac{\pi}{4})$ (iii) $P(\frac{\pi}{3} < x < \frac{3\pi}{4}) = 0.6982$
- 12. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k_1 x, & 1 \le x \le 3 \\ k_2 (4-x), & 3 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (a) Show that $k_2 = 3k_1$
 - (b) Find (i) values of k_1 and $k_2\,$ (ii) mean, μ

13. A random variable X of a continuous p.d.f is given by
$$f(x) = \begin{cases} \frac{y+1}{4} & 1 \le y \le k \\ 0, & elsewhere \end{cases}$$

Find

(i) Value of
$$k = 2$$

(ii) Expectation
$$Y = 1.6667$$

(iii)
$$P(1 \le y \le 1.5) = 0.2813$$

Solutions to revision exercise 2

8. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x - \frac{1}{a}), & 1 \le x \le 3 \\ 0, & elsewhere \end{cases}$ Given that P(X> 1) = 0.8,

Find

(i) values of a and k
$$(\frac{2}{15}, -1)$$

$$\int_0^3 k\left(x - \frac{1}{a}\right) dx = 1$$

$$k\left[\frac{x^2}{2} - \frac{x}{a}\right]_0^3 = 1$$

$$k\left(\frac{9}{2} - \frac{3}{a}\right) = 1$$

Given
$$P(X>1) = 0.8$$

$$\Rightarrow \int_1^3 k \left(x - \frac{1}{a} \right) dx = 0.8$$
$$k \left[\frac{x^2}{2} - \frac{x}{a} \right]_1^3 = 0.8$$

$$k\left[\left(\frac{9}{2} - \frac{3}{a}\right) - \left(\frac{1}{2} - \frac{1}{a}\right)\right] = 1$$

Eqn.(i) and (ii),
$$a = -1$$
, $k = \frac{2}{15}$

(ii) probability between 0.5 and 2.5

$$P(0.5 < x < 2.5) = \frac{2}{15} \int_{0.5}^{2.5} (x+1) dx$$

$$= \frac{2}{15} \left[\frac{x^2}{2} - \frac{x}{a} \right]_{0.5}^{2.5} = 0.6667$$

(iii) mean

$$E(X) = \frac{2}{15} \int_0^3 x(x+1) dx$$

$$=\frac{2}{15}\left[\frac{x^3}{3}+\frac{x^2}{2}\right]_0^3=1.8$$

- 9. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k(x+2) & -1 \le x \le 0 \\ 2k, & 0 \le x \le 1 \\ \frac{k}{2}(5-x) & 1 \le x \le 3 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch the function f(x)For $-1 \le x \le 0$, f(x) = k(x + 2)When x = -1, f(x) = kWhen x = 0, f(x) = 2k

For
$$0 \le x \le 1$$
, $f(x) = 2k$,
When $x = 0$, $f(x) = 2k$
When $x = 1$, $f(x) = 2k$
For $1 \le x \le 3$, $f(x) = \frac{k}{2}(5 - x)$
When $x = 1$, $f(x) = \frac{k}{2}(5 - 1) = 2k$
When $x = 3$, $f(x) = \frac{k}{2}(5 - 3) = k$
Sketch

(b)(i) find value of k

Area under the graph = 1

$$\frac{1}{2}x \ 1 \ (k+2k) + 1 \ x \ 2k + \frac{1}{2}x \ 2 \ (k+2k) = 1$$

or

$$k \int_{-1}^{0} (x+2)dx + 2k \int_{0}^{1} dx + \frac{k}{2} \int_{1}^{3} (5-x)dx = 1$$

$$k\left[\frac{x^2}{2} + 2x\right]_{-1}^0 + 2k[x]_0^1 + \frac{k}{2}\left[5x - \frac{x^2}{2}\right]_1^3 = 1$$

$$k = \frac{2}{13}$$

(b) (ii) Find the mean

$$E(X) = \frac{2}{13} \int_{-1}^{0} x(x+2) dx + \frac{4}{13} \int_{0}^{1} x dx + \frac{1}{13} \int_{1}^{3} x(5-x) dx$$
$$= \frac{2}{13} \left[\frac{3}{3} + x^{2} \right]_{1}^{0} + \frac{4}{13} \left[\frac{x^{2}}{2} \right]_{0}^{1} + \frac{1}{13} \left[\frac{5x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{3} = \frac{12}{13}$$

- 10. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} 2kx, & 0 \le x \le 1 \\ k(3-x) & 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch f(x)For $0 \le x \le 1$, f(x) = 2kxWhen x = 0, f(x) = 2k(0) = 0When x = 1, f(x) = 2k(1) = 2kFor $1 \le x \le 2$, f(x) = k(3-x)When x = 1, f(x) = k(3-1) = 2k

When
$$x = 1$$
, $f(x) = k(3 - 1) = 2k$
When $x = 3$, $f(x) = k(3 - 2) = k$
Sketch

(b) Find value of k

Area under the graph = 1

$$\frac{1}{2} x1 x 2k + \frac{1}{2} x 1 (k + 2k) = 1$$

Alternatively

$$2k\int_0^1 x dx + k\int_1^2 (3-x) dx = 1$$

$$2k\left[\frac{x^2}{2}\right]_0^1 + k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$$

$$k = \frac{2}{5}$$

(b) Find the mean

$$E(X) = \frac{4}{5} \int_0^1 x^2 dx + k \int_1^2 x (3 - x) dx = 1$$
$$= \frac{4}{5} \left[\frac{x^3}{3} \right]_0^1 + \frac{4}{5} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_1^2 = \frac{17}{15} = 1.133$$

- 11. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} \alpha(1-cosx), & 0 \le x \le \frac{\pi}{2} \\ \alpha sinx, & \frac{\pi}{2} \le x \le \pi \\ 0, & elsewhere \end{cases}$
 - (i) Find value of α $\alpha \int_0^{\frac{\pi}{2}} (1 \cos x) dx + \alpha \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x dx = 1$ $\alpha [x \sin x]_0^{\frac{\pi}{2}} + \alpha [-\cos x]_{\frac{\pi}{2}}^{\frac{\pi}{2}} = 1$ $\alpha = \frac{2}{\pi}$
 - (ii) mean, μ $E(X) = \frac{2}{\pi} \int_0^{\frac{\pi}{2}} x(1 \cos x) dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$ $= \frac{2}{\pi} \int_0^{\frac{\pi}{2}} (x x \cos x) dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$ $= \frac{2}{\pi} \left[\left[\frac{x^2}{2} \right]_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} x \cos x dx \right] + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x dx$ $= \frac{2}{\pi} \left[\left[\frac{x^2}{2} \right]_0^{\frac{\pi}{2}} \left[x \sin x + \cos x \right]_0^{\frac{\pi}{2}} \right] + \frac{2}{\pi} \left[-x \cos x + \sin x \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ $= \frac{2}{\pi} \left[\frac{x^2}{2} (x \sin x + \cos x) \right]_0^{\frac{\pi}{2}} = 1 + \frac{\pi}{4}$

(iii)
$$P\left(\frac{\pi}{3} < x < \frac{3\pi}{4}\right)$$

$$P\left(\frac{\pi}{3} < x < \frac{3\pi}{4}\right) = \frac{2}{\pi} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} (1 - \cos x) dx + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \sin x dx = 1$$

$$\alpha [x - \sin x]_{\frac{\pi}{3}}^{\frac{\pi}{2}} + \alpha [-\cos x]_{\frac{\pi}{4}}^{\frac{3\pi}{4}} = 0.6982$$

- 12. A random variable X of a continuous p.d.f is given by $f(x) = \begin{cases} k_1 x, & 1 \le x \le 3 \\ k_2 (4 x), & 3 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (a) Show that $k_2 = 3k_1$ For $1 \le x \le 3$, $f(x) = k_1(x)$ $f(3) = 3k_1$(i) For $3 \le x \le 4$, $f(x) = k_2(4 - x)$ $f(3) = k_2$ Eqn. (i) and eqn. (ii) $k_2 = 3k_1$
 - (b) Find (i) values of k_1 and k_2

$$k_1 \int_1^3 x dx + 3k_1 \int_3^4 (4 - x) dx = 1$$

$$k_1 \left[\frac{x^2}{2} \right]_1^3 + 3k_1 \left[4x - \frac{x^2}{2} \right]_2^4 = 1$$

$$k_1 = \frac{2}{11}$$

$$k_2 = \frac{6}{11}$$

$$E(X) = \frac{2}{11} \int_{1}^{3} x^{2} dx + \frac{6}{11} \int_{3}^{4} x(4 - x) dx$$
$$\frac{2}{11} \left[\frac{x^{3}}{3} \right]_{1}^{3} + 3k_{1} \left[2x^{2} - \frac{x^{3}}{3} \right]_{3}^{4} = 2.485$$

13. A random variable X of a continuous p.d.f is given by
$$f(x) = \begin{cases} \frac{y+1}{4} & 1 \le y \le k \\ 0, & elsewhere \end{cases}$$

Find

(a) The value of k (06marks)

$$\int_0^k \frac{(y+1)}{4} dy = \frac{1}{4} \left[\frac{y^2}{2} + y \right]_0^k = 1$$

$$\frac{1}{4} \left[\left(\frac{k^2}{2} + k \right) - 0 \right] = 1$$

$$k^2 + 2k - 8 = 0$$

$$(k+4)(k-2) = 0$$

$$(k + 4)(k-2) =$$

Either

$$k + 4 = 0$$
; $k = -4$

Or

$$k-2 = 0; k = 2$$

$$\therefore k = 2$$
 (since k is greater than zero)

(b) The expectation of Y (03marks)

$$E(Y) = \int_0^2 y \, dy$$

$$= \int_0^2 y \left[\frac{y+1}{4} \right] \, dy$$

$$= \int_0^2 \left(\frac{y^2 + y}{4} \right) \, dy$$

$$= \frac{1}{4} \left[\frac{y^3}{3} - \frac{y^2}{2} \right]_0^2$$

$$= \frac{1}{4} \left[\left(\frac{8}{3} - \frac{4}{2} \right) - 0 \right] = \frac{7}{6} = 1.166$$

(c)
$$P(1 \le Y \le 1.5)$$
 (03marks)

$$P(1 \le Y \le 1.5) = \int_{1}^{1.5} \left[\frac{y+1}{4} \right] dy$$

$$= \frac{1}{4} \left[\frac{y^{2}}{2} + y \right]_{1}^{1.5}$$

$$= \frac{1}{4} \left[\left(\frac{(1.5)^{2}}{2} + 1.5 \right) - \left(\frac{1}{2} + 1 \right) \right]$$

$$= \frac{1}{4} (2.625 - 1.5)$$

$$= 0.28125$$

Variance of X

For a continuous random variable with p.d.f, f(x)

$$Var(X) = EX^2 - [E(X)]^2$$
 or $Var(X) = E(X^2) - \mu^2$

Where
$$E(X^2) = \int x^2(x) dx$$
 and $\mu = \text{mean}$

Properties of variance

(i) Var(a) = 0

 $Var(ax) = a^2Var(x)$ (ii)

 $Var(ax + b) = a^2Var(x)$ (iii)

 $Var(ax - b) = a^2Var(X)$ (iv)

Where a and b are constants

Example 26

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} k(1-x^2), & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$

Find

(i) the value of k

$$k \int_{0}^{1} (1 - x^{2}) dx = 1$$

$$k \left[x - \frac{x^{3}}{3} \right]_{0}^{1} = 1$$

$$k = 1.5$$
(ii) E(X)
$$E(X) = 1.5 \int_{0}^{1} x^{2} (1 - x^{2}) dx$$

$$= 1.5 \left[\frac{x^{3}}{3} - \frac{x^{5}}{5} \right]_{0}^{1} = \frac{1}{5}$$

$$Var(X) = EX^{2} - [E(X)]^{2}$$

$$= \frac{1}{5} - \left(\frac{3}{8} \right)^{2} = \frac{19}{320}$$

$$= 1.5 \left[\frac{x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{1} = \frac{3}{8}$$

Example 27

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{8}x, & 0 \le x \le 4\\ 0, & elsewhere \end{cases}$

Find

(i) E(X)

$$E(X) = \frac{1}{8} \int_0^4 x \cdot x \, dx = \frac{1}{8} \left[\frac{x^3}{3} \right]_0^4 = 2.667$$

$$E(X^{2}) = \frac{1}{8} \int_{0}^{4} x^{2} \cdot x \, dx = \frac{1}{8} \left[\frac{x^{4}}{4} \right]_{0}^{4} = 8$$

$$Var(X) = EX^{2} - [E(X)]^{2}$$

$$= 8 - (2.667)^{2} = 0.887$$

$$E(X) = \frac{1}{8} \int_0^4 x \cdot x \, dx = \frac{1}{8} \left[\frac{x^3}{3} \right]_0^4 = 2.667$$
(iii) Var(X)
$$E(X^2) = \frac{1}{8} \int_0^4 x^2 \cdot x \, dx = \frac{1}{8} \left[\frac{x^4}{4} \right]_0^4 = 8$$
(iii) Standard deviation
$$s.d = \sqrt{Var(X)}$$

$$= \sqrt{0.887} = 0.942$$
(iv) Var(3x + 2) = 0.887 x 3 = 7.983
$$Var(X) = EX^2 - [E(X)]^2$$

Example 28

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{4}{25}(5-2x), & 0 \le x \le 2.5\\ 0, & elsewhere \end{cases}$

Find

(i) Mean

$$E(X) = \frac{4}{25} \int_0^{2.5} x(5 - 2x) dx = \frac{4}{25} \left[\frac{5x^2}{2} - \frac{2x^3}{3} \right]_0^{2.5} = 0.833$$

(ii) Standard deviation

$$E(X^{2}) = \frac{4}{25} \int_{0}^{2.5} x^{2} (5 - 2x) dx = \frac{4}{25} \left[\frac{5x^{3}}{3} - \frac{2x^{4}}{4} \right]_{0}^{2.5} = 1.041$$

$$Var(X) = EX^{2} - [E(X)]^{2} = 1.041 - (0.5625)^{2} = 0.347$$

$$s.d = \sqrt{Var(X)} = \sqrt{0.347} = 0.59$$

Example 29

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{3}{4}(1+x^2), & 0 \le x \le 1\\ 0, & elsewhere \end{cases}$

Find

(i) Mean

$$E(X) = \frac{3}{4} \int_0^1 x(1+x^2) dx = \frac{3}{4} \left[\frac{x^2}{2} + \frac{x^4}{4} \right]_0^1 = 0.5625$$

$$E(X^{2}) = \frac{3}{4} \int_{0}^{1} x^{2} (1 + x^{2}) dx = \frac{3}{4} \left[\frac{x^{3}}{3} + \frac{x^{5}}{5} \right]_{0}^{1} = 0.4$$

$$Var(X) = 0.4 - (0.525)2 = 0.835$$

$$s.d = \sqrt{0.0835} = 0.289$$

(iii)
$$P(|X - \mu| < \sigma)$$

 $P(|X - \mu| < \sigma) = P(|X - 0.5625| < x < 0.289)$
 $= P(0.2735 < x < 0.8515)$

$$\frac{3}{4} \int_{0.2735}^{0.8515} (1+x^2) dx = \frac{3}{4} \left[x + \frac{x^3}{3} \right]_{0.2735}^{0.8515} = 0.583$$

Revision exercise 3

- 1. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx^2, & 0 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (a) Sketch f(x)
- (a) Sketch f(x)

 (b) Find (i) value of k (= $\frac{3}{64}$) (ii) E(X) = 3 and var (X) = 0.6 (iii) P(1<X<2) = $\frac{7}{64}$ 2. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 1 \\ k(2-x) & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$

- Find (i) constant k = 1 (ii) E(X) = 1 (iii) var(X) = $\frac{1}{6}$ (iv)P(0.75 < X < 1.5) = $\frac{19}{32}$ (v) mode = 1

 3. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{27}x^2, & 0 \le x \le 3\\ \frac{1}{3} & 3 \le x \le 5\\ 0 & elsewhere \end{cases}$
 - (a) Sketch f(x)
 - (b) Find (i) E(X) = 3417 (ii) standard deviation = 1.008
- 4. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{k}{x(4-x)}, & 1 \le x \le 3\\ 0, & elsewhere \end{cases}$

(i) Show that
$$k = \frac{3}{Inx}$$

(ii) Find (i) E(X) = 2 (ii) Var(X) =
$$4 - \frac{4}{lnx}$$

- 5. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} k(ax x^2), & 0 \le x \le 2\\ 0, & elsewhere \end{cases}$
 - (i) Show that $k = \frac{8}{6a-8}$
 - (ii) Given that E(X) = 1, find the values of a (=2) and k(=0.75)
 - (iii) For the above values of a and k, find Var(X) = 0.2
- 6. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} 12(x^2 x^3), & 0 \le x \le 1 \\ 0, & elsewhere \end{cases}$ Find the (i) mean = 0.6 (ii) standard deviation = 0.2
- 7. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{k}{\beta}, & 0 \le x \le \beta \\ 0, & elsewhere \end{cases}$ Find (i) value of k (=1) (ii) mean = $\frac{\beta}{2}$ (iii) standard deviation = $\frac{\beta}{2\sqrt{3}}$
- 8. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{8}(x+1), & 2 \le x \le 4\\ 0, & elsewhere \end{cases}$ Find (i) mean = $\frac{37}{12}$ (ii) var(X) = $\frac{47}{144}$ (iii) P(2.5 < x< 3) = 0.234
- 9. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} k(1-x)^2, & 2 \le x \le 4 \\ 0, & elsewhere \end{cases}$ Find (i) constant $k = \frac{3}{26}$ (ii) mean $= \frac{1}{4}$ (iii) standard deviation = 0.94
- 10. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 2 \\ k(4-x) & 2 \le x \le 4 \\ 0, & elsewhere \end{cases}$ Find (i) value of k = $\frac{1}{4}$ (ii) E(X) = 2 (iii) Var(X) = $\frac{2}{3}$ (iv) P(X< 1) = $\frac{1}{8}$ (iv) P(X<X<3) = $\frac{3}{8}$

Mode

This is the value of f(x) is maximum in the given range of x.

- (i) The mode is obtained from $\frac{d}{dx}(fx) = 0$ The maximum value is confirmed if $\frac{d^2}{dx^2}(fx) = \text{negative}$
- (ii) When a sketch of f(x) is drawn, the value of x for which f(x) is maximum gives the mode.

Note: for any line the mode can be determined from a sketch of f(x)

Example 30

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} k(2+x)(4-x), & 0 \le x \le 4 \\ 0, & elsewhere \end{cases}$

Find

(i) Value of k

$$k \int_0^4 (2+x)(4-x)dx = 1$$

 $k \int_0^4 (8+2x-x^2)dx = 1$

[8x + x -
$$\frac{x^3}{3}$$
]₀⁴ = 1; k = $\frac{3}{80}$
(ii) Mode
$$\frac{d}{dx}(fx) = 0$$

$$\frac{d}{dx}\frac{3}{80}(8 + 2x - x^2) = 0$$

$$\frac{3}{80}(2 - 2x) = 0; x = 1$$

$$\therefore \text{mode} = 1$$

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{108}x(6-x)^2, & 0 \le x \le 6 \\ 0, & elsewhere \end{cases}$

Find

(i) Mean
$$E(X) = \int_0^6 \frac{1}{108} x^2 (6 - x)^2 dx$$

$$= \frac{1}{108} \int_0^6 (36x^2 - 12x^3 + x^4) dx$$

$$= \frac{1}{108} \left[12x^3 - 3x^4 + \frac{x^5}{5} \right]_0^6 = 2.4$$
(ii) Standard deviation

(ii)

$$E(X^{2}) = \int_{0}^{6} \frac{1}{108} x^{3} (6 - x)^{2} dx$$

$$= \frac{1}{108} \int_{0}^{6} \frac{1}{108} (36x^{3} - 12x^{4} + x^{5}) dx$$

$$= \frac{1}{108} \left[9x^{4} - \frac{12x^{5}}{5} + \frac{x^{6}}{6} \right]_{0}^{6} = 7.2$$
s.d = $\sqrt{7.2 - (2.4)^{2}} = 1.2$

Mean
$$E(X) = \int_0^6 \frac{1}{108} x^2 (6-x)^2 dx$$

$$= \frac{1}{108} \int_0^6 (36x^2 - 12x^3 + x^4) dx$$

$$= \frac{1}{108} \left[12x^3 - 3x^4 + \frac{x^5}{5} \right]_0^6 = 2.4$$
Standard deviation
$$E(X^2) = \int_0^6 \frac{1}{108} x^3 (6-x)^2 dx$$

$$= \frac{1}{108} \int_0^6 \frac{1}{108} (36x^3 - 12x^4 + x^5) dx$$

$$= \frac{1}{108} \left[9x^4 - \frac{12x^5}{5} + \frac{x^6}{6} \right]_0^6 = 7.2$$

$$s.d = \sqrt{7.2 - (2.4)^2} = 1.2$$
(iii) mode
$$\frac{d}{dx} (fx) = 0$$

$$\frac{d}{dx} \frac{1}{108} x (6-x)^2 = 0$$

$$\frac{d}{dx} \frac{1}{108} (36x - 12x^2 + x^3) = 0$$

$$(6-x)(2-x) = 0$$

$$x = 6 \text{ or } x = 2$$

$$\therefore \text{ mode} = 2 \text{ or } 6$$

Example 31

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} ksinx, & 0 \le x \le \pi \\ 0, & elsewhere \end{cases}$

Find

(i) value k
$$\int_0^{\pi} k \sin x \, dx = 1$$

$$k[-\cos x]_0^{\pi} = 1$$

$$k[-\cos \pi - \cos 0] = 1$$

$$k = \frac{1}{2}$$
 (ii) $P(X \ge \frac{\pi}{2})$

(ii)
$$P(X \ge \frac{n}{3})$$

(iii)
$$P\left(\geq \frac{\pi}{3}\right) = \frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} \sin x \, dx = k[-\cos x]_{\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{3}{4}$$

(iv) Mean
$$E(x) = \frac{1}{2} \int_0^{\pi} x \sin x \, dx$$

integral sign $k[-\cos x]_0^{\pi} = 1 \\ k[-\cos \pi - \cos 0] = 1 \\ k = \frac{1}{2}$ (ii) $P(X \ge \frac{\pi}{3})$ (iii) $P(\ge \frac{\pi}{3}) = \frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} \sin x \, dx = k[-\cos x]_{\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{3}{4}$ (iv) Mean $E(x) = \frac{1}{2} \int_{0}^{\pi} x \sin x \, dx$ $= \frac{1}{2} [-x \cos x + \sin x]_{0}^{\pi}$ $= \frac{\pi}{2}$

(v) Var (X)

$$E(X^2) = \frac{1}{2} \int_0^{\pi} x^2 \sin x \, dx$$

Sign	Derivative	Integral sign
+	x ²	sinx
-	2x	-cosx
+	2	-sinx
-	0	cosx

$$\Rightarrow E(X^{2}) = \frac{1}{2} \int_{0}^{\pi} x^{2} \sin x \, dx = \frac{1}{2} \left[-x^{2} \cos x + 2x \sin x + 2 \cos x \right]_{0}^{\pi} = \frac{\pi^{2} - 4}{2}$$

$$\therefore Var(X) = \frac{\pi^{2} - 4}{2}$$

(vi) Mode
$$\frac{d}{dx} \left(\frac{1}{2} sinx \right) = 0$$

$$\frac{1}{2} cosx = 0$$

$$x = 90^{0}$$

$$\therefore mode = \frac{\pi}{2}$$

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 6 \\ 0, & elsewhere \end{cases}$

(a) Sketch f(x)

When
$$x= 0$$
, $f(x) = k(0) = 0$
When $x= 6$, $f(x) = k(6) = 6k$

(b) value of k

Area under the graph = 1

$$\frac{1}{2} x k x 6 x 6 = 1$$

$$k = \frac{1}{18}$$

Median

This is the value of f(x) for which $\int_a^m f(x) = 0.5$; where m is the median, and a is the lower limit.

Example 33

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{8}x, & 0 \le x \le 4\\ 0, & elsewhere \end{cases}$

Find the median

$$\int_0^m \frac{1}{8} x dx = 0.5$$

$$\left[\frac{1}{16}x^2\right]_0^m = 0.5$$

$$\frac{m^2}{16} = 0.5$$
; m = $\sqrt{8} = \pm 2.828$

Median = 2.828 (since it falls in the range)

Example 34

A random variable x of a continuous p.d.f is given by
$$f(x) = \begin{cases} \frac{2}{5}(x+2), & -1 \le x \le 0 \\ \frac{4}{5}(1-x) & 0 \le x \le 10 \\ 0, & elsewhere \end{cases}$$

Find the median

Solution

We need to first integrate the first interval to check if it is \geq 0.5. if not the median lies in the second interval

$$\int_{-1}^{0} \frac{2}{5} (x+2) dx = \frac{2}{5} \left[\frac{x^2}{2} + 2x \right]_{-1}^{0} = 0.6$$

It shows that the median lies in the first interval

Then
$$\int_{-1}^{m} \frac{2}{5} (x+2) dx = \frac{2}{5} \left[\frac{x^2}{2} + 2x \right]_{-1}^{m} = 0.5$$

$$m = -0.129$$
 or $m = -3.871$

the median = -0.129 since it lies in the range

Example 34

A random variable x of a continuous p.d.f is given by
$$f(x) = \begin{cases} \frac{2}{3}(x+1), & -1 \le x \le 0 \\ \frac{1}{3}(2-x) & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$$

Find the median

We need to first integrate the first interval to check if it is \geq 0.5. if not the median lies in the second interval

$$\int_{-1}^{0} \frac{2}{3} (x+1) dx = \frac{2}{5} \left[\frac{x^2}{2} + x \right]_{-1}^{0} = \frac{1}{3}$$

It shows that the median lies in the second interval

Then
$$\frac{1}{3} + \frac{1}{3} \int_0^m (2 - x) dx = \frac{1}{2}$$

$$\frac{1}{3} \left[2x - \frac{x^2}{2} \right]_0^m = \frac{1}{6}$$
; m = 0.268

Revision exercise 4

- 1. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx(4-x^2), & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$ Find
 - (i) value of the constant =0.25 (iii) mean = 1.067
 - median x = 2.613 (iv) standard deviation = 0.442 (ii)
- 2. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx, & 0 \le x \le 1 \\ k(2-x) & 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$

Find

- constant k = 1 (ii) median = 1(i) (iii) mode = 1
- 3. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} kx(4-x^2), & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$ Find
 - value of the constant $=\frac{1}{4}$ (i) (iii) mean = 1.0667
 - median x = 2.6131(iv) standard deviation = 0.4422 (ii)
- 4. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \alpha, & 2 \le x \le 3 \\ \alpha(x-2) & 3 \le x \le 4 \\ 0, & elsewhere \end{cases}$
 - (a) sketch f(x)
 - (b) find (i) constant $\alpha = 0.4$ (ii) median, m = 3.225 (iii) P(2.5 < x < 3.5) = 0.65
- 5. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \beta, & 0 \le x \le 2 \\ \beta(3-x) & 2 \le x \le 3 \\ 0, & elsewhere \end{cases}$ Find (i) value of $\beta = 0.4$ (ii) mean $= \frac{19}{15}$ (iii) standard deviation $= \frac{5}{4}$ (iv) $P(X < \mu \sigma) = 0.207$ 6. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} x^2, & 0 \le x \le 1 \\ \frac{1}{2} & 1 \le x \le k \\ 0 & elsewhere \end{cases}$

- - Find (i) value of $k = \frac{7}{3}$ (ii) mean $= \frac{49}{36}$ (iii) median $= \frac{4}{3}$
- (ii) Find (i) value of $K = \frac{1}{3}$ (ii) mean $-\frac{1}{36}$ (iii) means $\frac{1}{36}$ (iii) $\frac{1}{$
 - (i)
- (ii) Find (i) value of $k = \frac{2}{3}$ (ii) mean $= \frac{49}{36}$ (iii) median = 1.25 (iv) $P(|X m| > 0.5) = \frac{17}{48}$ 8. A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} 2k(x+1), & -1 \le x \le 0 \\ k(2-x) & 0 \le x \le 2 \\ 0, & elsewhere \end{cases}$
 - (i) Sketch f(x)
 - Find (i) value of $k = \frac{1}{3}$ (ii) mean $= \frac{1}{3}$ (iii) $Var(X) = \frac{5}{18}$ (iv) mode =0

Cumulative distribution function, F(x)

The cumulative distribution function F(x) is defined by F(x) = $\int_a^x fx dx$

Steps in finding F(x)

- For each interval, integrate its function from lower limit to x with respect to x.
- Substitute the upper limit in the integral and carry it forward to the next interval
- Continue the process until when the last upper limit has been substituted to get a 1.

Example 35

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{1}{6}(x+1), & 1 \le x \le 3\\ 0, & elsewhere \end{cases}$

Find F(x)

Solution

$$F(x) = \frac{1}{6} \int_{1}^{x} (x+1) dx = \frac{1}{6} \left[\frac{x^{2}}{2} + x \right]_{1}^{x} = \frac{1}{6} \left\{ \left(\frac{x^{2}}{2} + x \right) - \left(\frac{1^{2}}{2} + 1 \right) \right\}$$

$$F(x) = \frac{1}{6} \left(\frac{x^2}{2} + x - \frac{3}{2} \right)$$

$$F(3) = \frac{1}{6} \left(\frac{3^2}{2} + 3 - \frac{3}{2} \right) = 1$$

Example 36

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{3}{26}(1-x)^2, & 2 \le x \le 4\\ 0, & elsewhere \end{cases}$

Find F(x)

$$F(x) = \frac{3}{26} \int_{2}^{x} (1-x)^{2} dx = \frac{3}{26} \int_{2}^{x} (1-2x+x^{2}) dx = \frac{3}{26} \left[x-x^{2} + \frac{x^{3}}{3} \right]_{2}^{x}$$
$$= \frac{3}{26} \left\{ \left(x-x^{2} + \frac{x^{3}}{3} \right) - \left(2-2^{2} + \frac{2^{3}}{3} \right) \right\} = \frac{3}{26} \left(x-x^{2} + \frac{x^{3}}{3} - \frac{2}{3} \right)$$

$$F(4) = \left(4 - 4^2 + \frac{4^3}{3} - \frac{2}{3}\right) = 1$$

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} x, & 0 \le x \le 1 \\ (2-x), & 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$

Find F(x)

For
$$0 \le x \le 1$$
, $F(x) = \int_0^x x dx = \left[\frac{x^2}{2}\right]_0^x = \left(\frac{x^2}{2} - \frac{0^2}{2}\right) = \frac{x^2}{2}$

$$F(1) = \frac{1^2}{2} = \frac{1}{2}$$

For
$$1 \le x \le 2$$
; $F(x) = \frac{1}{2} + \int_{1}^{x} (2 - x) dx = \frac{1}{2} + \left[2x - \frac{x^{2}}{2} \right]_{1}^{x} = \frac{1}{2} + \left\{ \left(2x - \frac{x^{2}}{2} \right) - \left(2 - \frac{1^{2}}{2} \right) \right\}$
$$= \left(2x - \frac{x^{2}}{2} \right) - 1$$

$$F(x) = \left(2x2 - \frac{2^2}{2}\right) - 1 = 1$$

Example 38

A random variable x of a continuous p.d.f is given by $f(x) = \begin{cases} \frac{2}{5}, & 0 \le x \le 2\\ \frac{2}{5}(3-x), & 2 \le x \le 3\\ 0, & elsewhere \end{cases}$

Find F(x)

For
$$0 \le x \le 2$$
, $F(x) = \frac{2}{5} \int_0^x dx = \frac{2}{5} [x]_0^x = \frac{2}{5} \{x - 0\} = \frac{2}{5} x$

$$F(2) = \frac{2}{5}x2 = \frac{4}{5}$$

For
$$2 \le x \le 3$$
, $F(X) = \frac{4}{5} + \frac{2}{5} \int_0^x (3-x) dx = \frac{4}{5} + \frac{2}{5} \left[3x - \frac{x^2}{2} \right]_0^x = \frac{4}{5} + \frac{2}{5} \left(3x - \frac{x^2}{2} \right) - \left(3x^2 - \frac{2^2}{2} \right)$

$$F(x) = \frac{2}{5} \left(3x - \frac{x^2}{2} \right) - \frac{4}{5}$$

$$F(3) = \frac{2}{5} \left(3x3 - \frac{3^2}{2} \right) - \frac{4}{5} = 1$$

$$\therefore F(x) = \begin{cases}
0 & x \le 0 \\
\frac{2}{5}x, & 0 \le x \le 2 \\
\frac{2}{5}\left(3x - \frac{x^2}{2}\right) - \frac{4}{5}, & 2 \le x \le 3 \\
1, & x \ge 3
\end{cases}$$

Finding the median, quartiles and probability from F(x)

- The median is the value of m for which F(m) = 0.5
- The lower quartile is the value q_1 for which $F(q_1) = 0.25$
- The upper quartile is the value q_3 for which $F(q_3) = 0.75$

Example 39

The continuous random variable X has a cumulative distribution function given below

$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{16} & 0 \le x \le 4 \\ 1 & x \ge 4 \end{cases}$$

Find

(i)
$$P(0.3 \le X \le 1.8)$$

 $P(0.3 \le X \le 1.8) = F(1.8) - F(0.3) = \frac{1.8^2}{16} - \frac{0.3^2}{16} = 0.197$

(ii) Median, m
$$F(m) = 0.5$$

$$\frac{m^2}{16} = 0.5; m = \pm 2.828$$

$$median = 2.828 \ (since it is within the range)$$

(iii) Interquartile range
$$F(q_1) = 0.25$$

$$\frac{q_1^2}{16} = 0.25; \ q_1 = 2$$

$$F(q_3) = 0.75$$

$$\frac{q_3^2}{16} = 0.75; \ q_3 = 3.464$$
 Interquartile range = $3.464 - 2 = 1.464$

Example 40

The continuous random variable X has a c.d.f given by $F(x) = \begin{cases} 0 & x \leq 0 \\ 2x - x^2 & 0 \leq x \leq 1 \\ 1 & x \geq 4 \end{cases}$

Find

(i) F(X≤0.5)

$$F(X \le 0.5) = F(0.5) - F(0) = (2(0.5) - (0.5)^2) - (2(0) - (0)^2) = 0.75$$

(ii) Median, m F(m) = 0.5 $(2(m) - (m)^2) = 0.5$ $m^2 - 2m + 0.5 = 0$ m = 1.71 or m = 0.293m = 0.293 (since it is in the range)

Interquartile range

(iii) Interquartile range
$$F(q_1) = 0.25$$

$$2q_1 - q_1^2 = 0.25; \ q_1 = 0.134$$

$$F(q_3) = 0.75$$

$$2q_3 - q_3^2 = 0.75; \ q_3 = 0.5$$
 Interquartile range = $0.5 - 0.134 = 0.366$

Example 40

The cumulative distribution function is given by
$$F(x) = \begin{cases} 0 & x \le 0 \\ \frac{x^2}{6} & 0 \le x \le 2 \\ -\frac{x^2}{3} + 2x - 2 & 2 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$$

Find

(i)
$$P(1 \le x \le 2.5)$$

 $P(1 \le x \le 2.5) = P(2.5) - P(1)$
 $-\frac{2.5^2}{3} + 2x \ 2.5 - 2 - \frac{1^2}{6} = 0.75$

(ii) Median, m

$$P(0 \le x \le 2) = F(2) - F(0)$$

 $= \frac{2^2}{2^2} - \frac{0^2}{2^2} = \frac{0^2}{2^2} - \frac{0^2}{2^2} - \frac{0^2}{2^2} = \frac{0^2}{2^2} - \frac{0^2}{2^2} - \frac{0^2}{2^2} = \frac{0^2}{2^2} - \frac{0^2}{2^2} - \frac{0^2}{2^2} - \frac{0^2}{2^2} = \frac{0^2}{2^2} - \frac{0^2}{2$

 $=\frac{2^2}{6}-\frac{0^2}{6}=\frac{2}{3}$ Since $\frac{2}{3}>0.5$ the median lies between $0\leq x\leq 2$

$$F(m) = 0.5$$

$$\frac{m^2}{6} = 0.5$$

$$m = \pm 1.73$$

Median = 1.73

Revision exercise 5

1. The random variable X has a probability density function $f(x) = \begin{cases} \frac{3}{8}x^2 & 0 \le x \le 2\\ 0 & elsewhere \end{cases}$ Find

(i) Sketch F(X)

(i) Sketch F(X)
$$(ii) \qquad \text{Cumulative distribution function; } F(x) = \begin{cases} 0 & x < 2 \\ \frac{1}{8}x^3 & 0 \le x \le 2 \\ 1 & x \ge 0 \end{cases}$$

(iii) Median, m = 1.59

2. The random variable X has a probability density function
$$f(x) = \begin{cases} \frac{1}{4}(4-x) & 1 \le x \le 3\\ 0 & elsewhere \end{cases}$$

(i) cumulative mass function;
$$F(x) = \begin{cases} 0 & x \le 1 \\ \frac{1}{8}(8x - x^2 - 7) & 1 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

- (ii) $P(1.5 \le x \le 2) = \frac{9}{32}$
- (iii) median, m = 1.764
- (iv) sketch F(x)
- 3. The random variable X has a probability density function $f(x) = \begin{cases} k & 1 \le x \le 6 \\ 0 & elsewhere \end{cases}$
 - (i) Value of $k = \frac{1}{5}$

(ii) Cumulative function,
$$F(x) = \begin{cases} 0 & x \le 1 \\ \frac{1}{5}(x-1) & 1 \le x \le 6 \\ 1 & x \ge 6 \end{cases}$$

- (iii) Interquartile range =2.5
- 4. The random variable X has probability density function $f(x) = \begin{cases} \frac{1}{4} & 0 \le x \le 2\\ \frac{1}{4}(2x-3) & 2 \le x \le 3\\ 0 & elsewhere \end{cases}$ Find

(i) Cumulative function, F(x) =
$$\begin{cases} \frac{0}{\frac{x}{4}} & x \le 1 \\ \frac{1}{4}(x^2 - 3x + 4) & 2 \le x \le 3 \\ 1 & x > 3 \end{cases}$$

- (ii) Median, m= 2
- (iii) Sketch F(x)

5. The random variable X has a cumulative distribution function,
$$F(x) = \begin{cases} 0 & x \le 0 \\ x^4 & 1 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$$

Find

- (i) $P(0.3 \le x \le 0.6) = 0.1215$
- (ii) Median, m = 0.841
- (iii) The value of a such that P(X>a) = 0.88

6. The random variable X has a probability density function
$$f(x) = \begin{cases} \frac{1}{3} & 0 \le x \le 3 \\ 0 & elsewhere \end{cases}$$

Find (i)
$$E(x) = 1.5$$
 (ii) $Var(X) = 0.75$ (iii) $P(X > 1.8) = 0.4$ (iv) $P(1.1 < x < 1.7) = 0.2$

(v) cumulative distribution function, F(x) =
$$\begin{cases} 0 & x \le 0 \\ \frac{1}{3}x & 0 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$$

7. The random variable X has a probability density function
$$f(x) = \begin{cases} kx^2 & 1 \le x \le 2 \\ 0 & elsewhere \end{cases}$$

(i) Value of
$$k = \frac{3}{7}$$
 (ii) standard deviation = 0.272 (iii) median, m = 1.65

(ii) Cumulative mass function, F(x) =
$$\begin{cases} 0 & x \le 1 \\ \frac{1}{7}(x^3 - 1) & 1 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$$

- (ii) Cumulative mass function, $F(x) =\begin{cases} 0 & x \le 1 \\ \frac{1}{7}(x^3 1) & 1 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$ 8. The continuous random variable X has a p.d.f given by $f(x) =\begin{cases} k(4 x^2) & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$
 - Find (i) constant k (= $\frac{3}{16}$) (ii) E(x) = $\frac{3}{4}$ (iii) Var(X) = $\frac{19}{80}$ (iv) median = 0.695 (v) cumulative distribution function, F(X) = $\begin{cases} 0 & x \le 0 \\ \frac{3}{4}x \frac{1}{16}x^3 & 0 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$
 - $(vi) = P(0.69 \le x \le 0.7) = 0.007$
- 9. The continuous random variable X has a p.d.f given by $f(x) =\begin{cases} \frac{1+x}{6} & 1 \le x \le 3 \\ 0 & elsewhere \end{cases}$
 - (i) Sketch f(x)
 - Find the mean = $\frac{19}{9}$ (ii)
 - Find m such that $P(X \le m) \ 0.5$; m = 2.16 (iii)
 - (iv) Determine cumulative function, F(X) and sketch it

$$F(X) = \begin{cases} 0 & x \le 0\\ \frac{1}{5}x + \frac{1}{12}x^2 - \frac{1}{4} & 1 \le x \le 3\\ 1 & x \ge 3 \end{cases}$$

10. A factory is supplied with flour at the beginning of each week. The weekly demand, X thousand tones for flour from this factory is a continuous random variable having a probability density function $f(x) = \begin{cases} k \\ 0 \end{cases}$ $1 \le x \le 3$

Find

- Value of k = 5(i)
- Mean of $x = \frac{1}{6}$
- Variance of x = $\frac{5}{252}$ (iii)
- 11. The continuous random variable X has a p.d.f given by $f(x) = \begin{cases} \frac{1}{4} & 0 \le x \le 1 \\ \frac{x^3}{5} & 1 \le x \le 2 \end{cases}$ Find Find

Cumulative mass function, F(x) and sketch it F(x) = $\begin{cases} 0 & x < 0 \\ \frac{1}{4}x & 0 \le x \le 1 \\ \frac{1}{5} + \frac{x^4}{20} & 1 \le x \le 2 \end{cases}$ (i)

- Median, m=1.565 (iii) interquartile range = 0.821 (ii)
- 12. The continuous random variable X has a p.d.f given by $f(x) = \begin{cases} k(x+3) & -3 \le x \le 3 \\ 0 & elsewhere \end{cases}$
 - (a) Show that $k = \frac{1}{10}$
 - (b) Find (i) E(x) = 1, (ii) Var(x) = 2 (iii) Lower quartile, $q_1 = 0$
 - (c) Given that E(ax + b) = 0 and Var(ax+b) = 1, find the values of a and b where a>0 (a = b) = $\frac{1}{\sqrt{2}}$
- 13. The continuous random variable X has a p.d.f given by $f(x) = \begin{cases} kx & 0 \le x \le 8 \\ 8k & 8 \le x \le 9 \\ 0 & elsewhere \end{cases}$
 - (a) Sketch f(x)

(b) Find value of
$$k = 0.025$$
 (ii) $P(X>6) = 0.55$

(b) Find value of k = 0.025 (ii) P(X>6) = 0.55
(c) Find F(X) ==
$$\begin{cases} 0 & x < 0 \\ 0.0125x & 0 \le x \le 8 \\ 0.2x - 0.8 & 8 \le x \le 9 \\ 1 & X \ge 9 \end{cases}$$

14. The continuous random variable X has a p.d.f given by
$$f(x) = \begin{cases} ax - bx^2 & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$$

(i) values of a and b (a= 1.5, b= 0.75) (ii)
$$Var(x) = 0.2$$

(ii)
$$F(X) = \begin{cases} 0 & x < 0 \\ 0.75x^2 - 0.25x^3 & 0 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$$

(i) values of a and b (a= 1.5, b= 0.75) (ii)
$$Var(x) = 0.2$$

(ii) $F(X) = \begin{cases} 0 & x < 0 \\ 0.75x^2 - 0.25x^3 & 0 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$
15. The continuous random variable X has a p.d.f given by $f(x) = \begin{cases} \frac{k}{x} & 1 \le x \le 9 \\ 0 & elsewhere \end{cases}$
Find (i) value of k = 0.455, (ii) median = 3 (iii) mean = 3.64 (iv) $Var(X) = 4.95$

(v) F(X) =
$$\begin{cases} 0 & x < 1 \\ \frac{1}{\ln 9} \ln x & 1 \le x \le 9 \\ 1 & x \ge 9 \end{cases}$$

16. The continuous random variable X has a p.d.f given by
$$f(x) = \begin{cases} \frac{20}{5^5} w^3 (5 - w) & 0 \le w \le 5 \\ 0 & elsewhere \end{cases}$$

Find (i)
$$P(2 < w < 5) = 0.5$$
 (ii) mean = 3.33 (iii) $Var(X) = 0.794$ (iv) mode = 3.5

(v)
$$F(X) = \begin{cases} 0 & w < 0 \\ \frac{w^4}{5^5} (25 - w) & 0 \le x \le 5 \\ 1 & w \ge 5 \end{cases}$$

Find (i) P(2 (v) F(X) = \begin{cases} 0 & w < 0 \\ \frac{w^4}{5^5}(25 - w) & 0 \le x \le 5 \\ 1 & w \ge 5 \end{cases}
17. The continuous random variable X has a p.d.f given by
$$f(x) = \begin{cases} kx & 0 \le x \le 1 \\ k(4 - x^2) & 1 \le x \le 2 \\ 0 & elsewhere \end{cases}$$

Find (i) value of
$$k = \frac{6}{13}$$
 (ii) $E(X) = 1.1923$ (iii) $Var(x) = 0.1399$

Find (i) value of k =
$$\frac{3}{13}$$
 (ii) E(X) = 1.1923
(iv) F(x) =
$$\begin{cases} 0 & x < 0 \\ \frac{3}{13}x & 0 \le x \le 1 \\ \frac{1}{13}(24x - 2x^3 - 19) & 1 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$$
The probability density function f(x) of a random value

18. The probability density function
$$f(x)$$
 of a random variable x takes on the form shown in the diagram below

Find

- (i) Expression for f(x)
- F(x), cumulative distribution function (ii)

(iii) Mean
$$=\frac{2}{3}$$
 and $Var(x) =\frac{2}{9}$

Finding f(x) from F(X)

f(x) can be obtained from; f(x) = $\frac{d}{dx}F(X)$

Example 41

The continuous random variable X has a c.d.f F(X) = $\begin{cases} 0 & x < 0 \\ \frac{x^3}{27} & 0 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$

Find the probability density function f(x) and sketch f(x)

$$f(x) = \frac{d}{dx}F(X) = \frac{d}{dx}\left(\frac{x^3}{27}\right) = \frac{3x^2}{27} = \frac{x^2}{9}$$

$$f(x) = \begin{cases} \frac{x^2}{9} & 0 \le w \le 3\\ 0 & elsewhere \end{cases}$$

When x = 0,
$$f(x) = \frac{0^2}{9} = 0$$

When x = 3,
$$f(x) = \frac{3^2}{9} = 1$$

Example 42

The continuous random variable X has a c.d.f F(X) = $\begin{cases} 0 & x < 0 \\ kx^3 & 0 \le x \le 4 \end{cases}$

Find

(i) Value of k

$$F(4) - F(0) = 1$$

 $K(4^3) = 1$; $k = \frac{1}{64}$

(ii) Probability density function, f(x)

$$f(x) = \frac{d}{dx} F(X) = \frac{d}{dx} \frac{x^3}{64} = \frac{3x^2}{64}$$

$$f(x) = \begin{cases} \frac{3x^2}{64} & 0 \le w \le 4\\ 0 & elsewhere \end{cases}$$

$$f(x) = \begin{cases} \frac{3x}{64} & 0 \le w \le 4\\ 0 & elsewhere \end{cases}$$

Example 43

The continuous random variable X has a c.d.f F(X) = $\begin{cases} 0 & x < 0 \\ 2x - 2x^2 & 0 \le x \le 0.25 \\ a + x & 0.25 \le x \le 0.5 \\ b + 2x^2 - x & 0.5 \le x \le 0.75 \\ 1 & x > 0.75 \end{cases}$

Find

Value of constants a and b (i) For $0 \le x \le 0.25$, F(X) = $2x - 2x^2$ $F(0.25) = 2x0.25 - 2(0.25)^2 = 0.375$

For
$$0.25 \le x \le 0.5$$
; $F(X) = a + x$
 $F(0.25) = a + 0.25 = 0.375$
 $a = 0.125$
For $0.5 \le x \le 0.75$; $F(X) = b + 2x^2 - x$
 $F(0.75) = b + 2(0.75)^2 - 0.75 = 1$; $b = 0.625$
(ii) Probability density function $f(x)$
 $f(x) = \frac{d}{dx} F(X)$

$$f(x) = \frac{d}{dx} F(X)$$

$$f(x) = \begin{cases} 2 - 4x & 0 \le x \le 0.25 \\ 1 & 0.25 \le x \le 0.5 \\ 4x - 1 & 0.5 \le x \le 0.75 \\ 0 & elsewhere \end{cases}$$

(iii)

Revision exercise 6

1. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 2 \\ 0.25x - 0.5 & 2 \le x \le 6 \\ 1 & x \ge 6 \end{cases}$$

The continuous random variable X has cumulative distribution funct
$$F(X) = \begin{cases} 0 & x < 2 \\ 0.25x - 0.5 & 2 \le x \le 6 \\ 1 & x \ge 6 \end{cases}$$
Find the

(i) probability density function $f(x)$; $f(x) = \begin{cases} \frac{1}{4} & 2 \le x \le 6 \\ 0 & elsewhere \end{cases}$

(ii)
$$E(X) = 4$$
 (iii) interquartile range = 2 (iv) sketch $f(x)$

2. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 0 \\ x^3 & 0 \le x \le 1 \\ 1 & x \ge 1 \end{cases}$$

Find (i) median (m=0.794) (ii) mean (μ =0.75)

3. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 0 \\ x - kx^2 & 0 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$$

Find the (i) value of k= 0.25, (ii) median (m= 0.586) (iii) variance of x (Var(x) = $\frac{2}{9}$)

(iv) probability density function;
$$f(x) = \begin{cases} 1 - 0.5x & 0 \le x \le 2 \\ 0 & elsewhere \end{cases}$$

4. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 0 \\ \frac{2x}{3} & 0 \le x \le 1 \\ \frac{x}{3} + k & 1 \le x \le 2 \\ 1 & x \ge 2 \end{cases}$$
Find (i) value of $k = \frac{1}{3}$ (ii) mean $(\mu = \frac{5}{6})$ (iii) standard deviation =0.5528 (iv) $P(|\mu - \sigma| < \sigma) = 0.608$

(iv)
$$P(|\mu - \sigma| < \sigma) = 0.608$$

(v) p.d.f; f(x) =
$$\begin{cases} \frac{2}{3} & 0 \le x \le 2\\ \frac{1}{3} & 1 \le x \le 2\\ 0 & elsewhere \end{cases}$$
 (vi) sketch f(x)

5. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 1 \\ \frac{(x-1)^2}{12} & 1 \le x \le 3 \\ \frac{(14x-x^2-25)}{24} & 3 \le x \le 7 \\ 1 & x \ge 7 \end{cases}$$

Find

Find

(i) probability density function,
$$f(x) = \begin{cases} \frac{1}{6}(x-1) & 1 \le x \le 3\\ \frac{1}{12}(7-x) & 3 \le x \le 7\\ 0 & elsewhere \end{cases}$$

(ii) sketch $f(x)$ (iii) mean of $X(\mu = \frac{11}{3})$ (iv) $Var(x) = \frac{14}{9}$ (v) median of $X(m = 3.45)$

(ii) sketch f(x) (iii) mean of X (
$$\mu = \frac{11}{3}$$
) (iv) Var (x) = $\frac{14}{9}$ (v) median of X (m= 3.45)

(vi)
$$P(2.8 < x < 5.2) = 0.595$$

6. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < -1 \\ \frac{x+1}{8} & -1 \le x \le 0 \\ \frac{3x+1}{8} & 0 \le x \le 2 \\ \frac{x+5}{8} & 2 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$$

Find (i) probability density function, f(x) (ii) $P(3 \le 2x \le 5)$ (iii) mean and variance

7. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 0 \\ \alpha x & 0 \le x \le 1 \\ \frac{x}{3} + \beta & 1 \le x \le 1 \\ 1 & x \ge 2 \end{cases}$$
Find (i) values of α and β ($\alpha = \frac{2}{3}$; $\beta = \frac{1}{3}$) (ii) mean ($\mu = \frac{5}{6}$) (iii) $Var(X) = \frac{19}{36}$

(iv)
$$P(X < 1.5/X > 1) = 0.4998$$
 (v) probability density function, f(x) and sketch it

8. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 1 \\ \frac{x^2 - 1}{2} - x & 1 \le x \le 2 \\ 3x - \frac{x^2}{2} & 2 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$$

Find

- Probability density function, f(x) and sketch it (i)
- (ii) P(1.2 < x < 2.4) = 0.8
- Mean ($\mu = 2$) (iii)
- 9. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 0 \\ \frac{k}{2}x^2 & 0 \le x \le 2 \\ k(6x - x^2 - 6) & 2 \le x \le 3 \\ 1 & x \ge 3 \end{cases}$$

- (a) Determine the value of $k = \frac{1}{3}$. Hence sketch graph of F(X)
- (b) Find the probability density function.

Uniform or rectangular distribution

A continuous random variable X is said to be uniformly distributed over the interval a and b, if the

p.d.f is given by
$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & elsewhere \end{cases}$$

Graph of f(x)

Example 44

X is uniformly distributed between 6 and 9.

(i)

$$f(x) = \begin{cases} \frac{1}{9-6} & 6 \le x \le 9\\ 0 & elsewhere \end{cases}$$
Find P(7.2 < x < 8.4)

(ii)

$$P(7.2 < x < 8.4) = \int_{7.2}^{8.4} \frac{1}{3} dx = \frac{1}{3} [x]_{7.2}^{8.4} = 0.4$$

Example 45

X is uniformly distributed between 0 and $\frac{\pi}{2}$.

(i)

$$f(x) = \begin{cases} \frac{1}{\frac{\pi}{2} - 0} & 0 \le x \le \frac{\pi}{2} \\ 0 & elsewhere \end{cases}$$

Find $P(\frac{\pi}{3} < x < \frac{\pi}{2})$

(iii)
$$P(\frac{\pi}{3} < x < \frac{\pi}{2} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{2}{\pi} dx = \frac{2}{\pi} [x]_{\frac{\pi}{3}}^{\frac{\pi}{2}} = \frac{1}{3}$$

Expectation of X, E(x)

$$\mathsf{E}(\mathsf{x}) = \int_a^b x f(x) dx = \int_a^b \frac{1}{b-a} x dx = \frac{1}{2(b-a)} [x^2]_a^b = \frac{1}{2(b-a)} (b^2 - a^2) = \frac{(b+a)(b-a)}{2(b-a)} = \frac{(b+a)}{2(b-a)} = \frac{(b+a)(b-a)}{2(b-a)} =$$

Variance of x, Var(X)

$$\begin{aligned} \operatorname{Var}(\mathbf{x}) &= \int_{a}^{b} x^{2} f(x) dx - [E(x)]^{2} = \int_{a}^{b} \frac{1}{b-a} x^{2} dx - \left[\frac{(b+a)}{2} \right]^{2} = \frac{1}{3(b-a)} [x^{3}]_{a}^{b} - \left[\frac{(b+a)}{2} \right]^{2} \\ &= \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} - \left[\frac{(b+a)}{2} \right]^{2} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)} - \frac{b^{2}+2ab+a^{2}}{4} \\ &= \frac{4b^{2}+4ab+4a^{2}-3b^{2}-6ab-3a^{2}}{12} = \frac{b^{2}-2ab+a^{2}}{12} = \frac{(b-a)^{2}}{12} \end{aligned}$$

X is a rectangular distribution between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

(i) Write the probability density function;
$$f(x) = \begin{cases} \frac{1}{\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)} & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ 0 & elsewhere \end{cases}$$

(ii) Find the mean =
$$\frac{(b+a)}{2} = \frac{(\frac{\pi}{2} + (-\frac{\pi}{2}))}{2} = 0$$

(iii) Find the variance of
$$x = \frac{(b-a)^2}{12} = \frac{\left[\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right]^2}{12} = \frac{\pi^2}{12}$$

Example 46

X is a rectangular distribution between over the interval $-3 \le x \le -1$

Find

(i)
$$P(-2 \le X \le -1.5) = \int_{-2}^{-1.5} \frac{1}{2} dx = \frac{1}{2} (x)_{-2}^{-1.5} = \frac{1}{4}$$
(ii)
$$Mean = \frac{(b+a)}{2} = \frac{(-1+(-3))}{2} = -2$$
(iii)
$$Var(x) = \frac{(b-a)^2}{12} = \frac{(-1--3)^2}{12} = \frac{1}{3}$$

(ii) Mean =
$$\frac{(b+a)}{2} = \frac{(-1+(-3))}{2} = -2$$

(iii)
$$\operatorname{Var}(x) = \frac{(b-a)^2}{12} = \frac{(-1-3)^2}{12} = \frac{1}{3}$$

Revision exercise 7

- 1. X follows a uniform distribution with probability density function $f(x) = \begin{cases} k & 3 \le x \le 6 \\ 0 & elsewhere \end{cases}$ Find (i) value of $k = \frac{1}{3}$ (ii) E(X) = 4.5 (iii) Var(X) = 0.75 (iv) Var(X) = 0.75 (iv) Var(X) = 0.75
- 2. X is distributed uniformly over $-5 \le x \le -2$ Find (i) $P(-4.3 \le X \le -2.8) = 0.5$ (ii) E(X) = -2.5 (iii) standard deviation = 0.865
- 3. The continuous random variable has a probability density function $f(x) = \begin{cases} \frac{1}{4} & 1 \le x \le k \\ 0 & elsewhere \end{cases}$ Find (i) value of k = 5 (ii) P(2.1 \le X \le 3.4) =0.325 (iii) E(X) = 3 (jv) Var (X) = $1\frac{1}{2}$
- 4. The continuous random variable has a probability density function $f(x) = \begin{cases} \frac{1}{5} & 32 \le x \le 37 \\ 0 & elsewhere \end{cases}$

Find the probability that y lies within one standard deviation of the mean= 0.577

5. The continuous random variable X has cumulative distribution function

$$F(X) = \begin{cases} 0 & x < 2\\ \frac{x-2}{5} & 2 \le x \le 7\\ 1 & x \ge 7 \end{cases}$$

Find (i) E(X) = 4.5 (ii) $Var(X) = 2\frac{1}{12}$

- 6. The continuous random variable X is uniformly distributed in the interval $a \le x \le b$. the lower quartile is 5 and the upper quartile is 9. Find
 - Values of a and b (a=3, b=11)
 - $P(6 \le X \le 7) = 0.125$ (ii)
 - Cumulative distribution function; $F(X) = \begin{cases} 0 & x < 3 \\ \frac{x-3}{8} & 3 \le x \le 11 \end{cases}$ (iii)
- 7. The number of patients visiting a certain hospital is uniformly distributed between 150 and 210
 - Write down the probability density function of the number of patients

f(x) =
$$\begin{cases} \frac{1}{210-150} & 150 \le x210\\ 0 & elsewhere \end{cases}$$
(ii) Find P(170< x< 194) = 0.4

Thank you Dr. Bbosa Science