

OptiMOS™-T2 Power-Transistor

AEC® © Qualified

Product Summary

V_{DS}	60	V
R _{DS(on),max} ⁴⁾	15.5	mΩ
I _D	20	Α

Features

- Dual N-channel Normal Level Enhancement mode
- AEC Q101 qualified
- MSL1 up to 260°C peak reflow
- 175°C operating temperature
- Green Product (RoHS compliant)
- 100% Avalanche tested
- Feasible for automatic optical inspection (AOI)

8 7 6 5 RG-TOSON-8
1 2 3 4

PG-TDSON-8-10

Туре	Package	Marking
IPG20N06S4-15A	PG-TDSON-8-10	4N0615

Maximum ratings, at T_j =25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value	Unit	
Continuous drain current one channel active	I _D	T _C =25 °C, V _{GS} =10 V ¹⁾	20	А	
		T _C =100 °C, V _{GS} =10 V ²⁾	20		
Pulsed drain current ²⁾ one channel active	I _{D,pulse}	-	80		
Avalanche energy, single pulse ^{2, 4)}	E _{AS}	I _D =10A	90	mJ	
Avalanche current, single pulse ⁴⁾	IAS	-	15	А	
Gate source voltage	V_{GS}	-	±20	V	
Power dissipation one channel active	P_{tot}	T _C =25 °C	50	W	
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$	-	-55 +175	°C	

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics ²⁾						
Thermal resistance, junction - case	R_{thJC}	-	-	-	3	K/W
SMD version, device on PCB	R_{thJA}	minimal footprint	-	100	-	
		6 cm ² cooling area ³⁾	-	60	-	

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	$V_{(BR)DSS}$	$V_{\rm GS}$ =0 V, $I_{\rm D}$ = 1 mA	60	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	$V_{\rm DS}=V_{\rm GS}, I_{\rm D}=20~\mu{\rm A}$	2.0	3.0	4.0	
Zero gate voltage drain current ⁴⁾	I _{DSS}	$V_{\rm DS} = 60 \text{ V}, V_{\rm GS} = 0 \text{ V}, $ $T_{\rm j} = 25 \text{ °C}$	-	0.01	1	μA
		$V_{\rm DS}$ =60 V, $V_{\rm GS}$ =0 V, $T_{\rm j}$ =125 °C ²⁾	-	5	100	
Gate-source leakage current ⁴⁾	I _{GSS}	V _{GS} =16 V, V _{DS} =0 V	1	1	100	nA
Drain-source on-state resistance ⁴⁾	R _{DS(on)}	V _{GS} =10 V, I _D =17 A	-	12.9	15.5	mΩ

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Dynamic characteristics ²⁾						
Input capacitance ⁴⁾	Ciss		-	1740	2260	pF
Output capacitance ⁴⁾	Coss	V _{GS} =0 V, V _{DS} =25 V, f=1 MHz	-	430	560	
Reverse transfer capacitance ⁴⁾	C _{rss}		-	19	38	
Turn-on delay time	$t_{d(on)}$		•	12	-	ns
Rise time	t _r	$V_{\rm DD} = 30 \text{ V}, \ V_{\rm GS} = 10 \text{ V},$	-	2	-	
Turn-off delay time	$t_{d(off)}$	$I_{\rm D}$ =20 A, $R_{\rm G}$ =11 Ω	-	17	-	
Fall time	t_{f}		-	9	-	
Gate Charge Characteristics ^{2, 4)}						
Gate to source charge	Q _{gs}		-	9	12	nC
Gate to drain charge	Q _{gd}	V _{DD} =48 V, I _D =20 A,	-	2.2	4.4	1
Gate charge total	Qg	V _{GS} =0 to 10 V	-	22	29	
Gate plateau voltage	V _{plateau}		-	5.3	-	V
Reverse Diode						
Diode continous forward current ²⁾ one channel active	Is		-	-	20	А
Diode pulse current ²⁾ one channel active	I _{S,pulse}	- <i>T</i> _C =25 °C	-	-	80	
Diode forward voltage	V_{SD}	V _{GS} =0 V, I _F =17 A, T _j =25 °C	-	0.95	1.3	V
Reverse recovery time ²⁾	t _{rr}	V_{R} =30 V, I_{F} = I_{S} , di_{F}/dt =100 A/ μ s	-	35	-	ns
Reverse recovery charge ^{2, 4)}	Q _{rr}		-	35	-	nC

 $^{^{1)}}$ Current is limited by bondwire; with an $R_{\rm thJC}$ = 3K/W the chip is able to carry 43A at 25°C.

²⁾ Specified by design. Not subject to production test.

 $^{^{3)}}$ Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 μm thick) copper area for drain connection. PCB is vertical in still air.

⁴⁾ Per channel

1 Power dissipation

 $P_{\text{tot}} = f(T_{\text{C}}); V_{\text{GS}} \ge 6 \text{ V}; \text{ one channel active}$

2 Drain current

 $I_D = f(T_C)$; $V_{GS} \ge 6 \text{ V}$; one channel active

3 Safe operating area

 $I_{\rm D}$ =f($V_{\rm DS}$); $T_{\rm C}$ =25°C; D=0; one channel active parameter: $t_{\rm p}$

4 Max. transient thermal impedance

 $Z_{thJC} = f(t_p)$

parameter: $D=t_p/T$

5 Typ. output characteristics⁴⁾

 $I_{\rm D} = f(V_{\rm DS}); T_{\rm j} = 25 \,{}^{\circ}{\rm C}$

parameter: V_{GS}

80 60 60 20 20 5.5 V 5 V 5 V 7 V 6 S V 6 S V 6 S V 6 S V 6 S V 6 S V 6 S V 7 S V 8 S V 8 S V 8 S V 9

6 Typ. drain-source on-state resistance⁴⁾

 $R_{DS(on)} = f(I_D); T_j = 25 \text{ °C}$

parameter: V_{GS}

7 Typ. transfer characteristics⁴⁾

 $I_D = f(V_{GS}); V_{DS} = 6V$

parameter: T_i

8 Typ. drain-source on-state resistance⁴⁾

$$R_{DS(on)} = f(T_j); I_D = 17 \text{ A}; V_{GS} = 10 \text{ V}$$

9 Typ. gate threshold voltage

 $V_{GS(th)} = f(T_j); V_{GS} = V_{DS}$

parameter: I_D

10 Typ. Capacitances⁴⁾

 $C = f(V_{DS}); V_{GS} = 0 V; f = 1 MHz$

11 Typical forward diode characteristicis⁴⁾

 $IF = f(V_{SD})$

parameter: T_i

12 Avalanche characteristics⁴⁾

 $I_{AS} = f(t_{AV})$

parameter: T_{i(start)}

13 Avalanche energy⁴⁾

$$E_{AS} = f(T_i), I_D = 10A$$

14 Drain-source breakdown voltage

$$V_{BR(DSS)} = f(T_j); I_D = 1 \text{ mA}$$

15 Typ. gate charge⁴⁾

 $V_{GS} = f(Q_{gate}); I_D = 20 A pulsed$

parameter: V_{DD}

16 Gate charge waveforms

Published by Infineon Technologies AG 81726 Munich, Germany

© Infineon Technologies AG 2015 All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History

Version	Date	Changes
Revision 1.0	17.09.2015	Data Sheet revision 1.0