10. Um mapa de contorno de uma função f é apresentado. Utilize--o para estimar $f_{y}(2, 1)$ e $f_{y}(2, 1)$.

- **11.** Se $f(x, y) = 16 4x^2 y^2$, determine $f_x(1, 2)$ e $f_y(1, 2)$ e interprete esses números como inclinações. Ilustre ou com um esboço à mão ou utilizando o computador.
- **12.** Se $f(x, y) = \sqrt{4 x^2 4y^2}$, determine $f_x(1, 0)$ e $f_y(1, 0)$ e interprete esses números como inclinações. Ilustre ou com um esboço à mão ou utilizando o computador.
- 13–14 Determine f_x e f_y e faça os gráficos f, f_x e f_y com domínios e pontos de vista que lhe permitam ver a relação entre eles.

13.
$$f(x, y) = x^2 y^3$$

14.
$$f(x, y) = \frac{y}{1 + x^2 y^2}$$

15-40 Determine as derivadas parciais de primeira ordem da função.

15.
$$f(x, y) = y^5 - 3xy$$

16.
$$f(x, y) = x^4 y^3 + 8x^2 y$$

17.
$$f(x, t) = e^{-t} \cos \pi x$$

18.
$$f(x, t) = \sqrt{x} \ln t$$

19.
$$z = (2x + 3y)^{10}$$

20.
$$z = \lg xy$$

21.
$$f(x, y) = \frac{x}{y}$$

22.
$$f(x, y) = \frac{x}{(x + y)^2}$$

23.
$$f(x, y) = \frac{ax + by}{cx + dy}$$
 24. $w = \frac{e^{v}}{u + v^{2}}$

24.
$$w = \frac{e^{v}}{u + v^2}$$

25.
$$a(u, v) = (u^2v - v^3)^5$$

25.
$$g(u, v) = (u^2v - v^3)^5$$
 26. $f(x, t) = arctg(x\sqrt{t})$

27.
$$w = \operatorname{sen} \alpha \cos \beta$$

28.
$$f(x, y) = x^y$$

29.
$$F(x, y) = \int_{y}^{x} \cos(e^{t}) dt$$

30.
$$F(\alpha, \beta) = \int_{\alpha}^{\beta} \sqrt{t^3 + 1} dt$$

31.
$$f(x, y, z) = xz - 5x^2y^3z^4$$

32.
$$f(x, y, z) = x \operatorname{sen}(y - z)$$

33.
$$w = \ln(x + 2y + 3z)$$

$$34. w = ze^{xyz}$$

35.
$$u = xy \operatorname{sen}^{-1}(yz)$$

36.
$$u = x^{y/z}$$

37.
$$h(x, y, z, t) = x^2 y \cos(z/t)$$

38.
$$\phi(x, y, z, t) = \frac{\alpha x + \beta y^2}{\gamma z + \delta y^2}$$

39.
$$u = \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2}$$

40.
$$u = \text{sen}(x_1 + 2x_2 + \cdots + nx_n)$$

41-44 Determine as derivadas parciais indicadas.

41.
$$f(x, y) = \ln(x + \sqrt{x^2 + y^2});$$
 $f_x(3, 4)$

42.
$$f(x, y) = arctg(y/x);$$
 $f_x(2, 3)$

43.
$$f(x, y, z) = \frac{y}{x + y + z}$$
; $f_y(2, 1, -1)$

44.
$$f(x, y, z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z};$$
 $f_z(0, 0, \pi/4)$

45–46 Use a definição de derivadas parciais como limites 4 para encontrar $f_x(x, y)$ e $f_y(x, y)$.

45.
$$f(x, y) = xy^2 - x^3y$$

45.
$$f(x, y) = xy^2 - x^3y$$
 46. $f(x, y) = \frac{x}{x + y^2}$

47–50 Use a derivação implícita para encontrar $\partial z/\partial x$ e $\partial z/\partial y$.

47.
$$x^2 + 2y^2 + 3z^2 = 1$$

47.
$$x^2 + 2y^2 + 3z^2 = 1$$
 48. $x^2 - y^2 + z^2 - 2z = 4$

49.
$$e^z = xyz$$

50.
$$yz + x \ln y = z^2$$

51–52 Determine $\partial z/\partial x$ e $\partial z/\partial y$.

51. (a)
$$z = f(x) + g(y)$$

(b)
$$z = f(x + y)$$

52. (a)
$$z = f(x)g(y)$$

(b)
$$z = f(x)$$

$$(a) \subset f(x)$$

(b)
$$z = f(xy)$$

(c)
$$z = f(x/y)$$

53.
$$f(x, y) = x^3y^5 + 2x^4y$$
 54. $f(x, y) = \sin^2(mx + ny)$

54.
$$f(x, y) = \text{sen}^2(mx + r)$$

55.
$$w = \sqrt{u^2 + v^2}$$
 56. $v = \frac{xy}{x - y}$

56.
$$v = \frac{xy}{x-y}$$

57.
$$z = \arctan \frac{x+y}{1-xy}$$
 58. $v = e^{xe^y}$

58.
$$v = e^{xe^{\lambda}}$$

59-62 Verifique se a conclusão do Teorema de Clairaut é válida, isto \acute{e} , $u_{xy} = u_{yx}$.

59.
$$u = x^4y^3 - y^4$$

60.
$$u = e^{xy} \text{sen } y$$

61.
$$u = \cos(x^2y)$$

62.
$$u = \ln(x + 2y)$$

63-70 Determine a(s) derivada(s) parcial(is) indicada(s).

63.
$$f(x, y) = x^4y^2 - x^3y$$
; f_{xxx} , f_{xyx}

64.
$$f(x, y) = \text{sen}(2x + 5y)$$
; f_{yxy}

65.
$$f(x, y, z) = e^{xyz^2}$$
; f_{xyz}

66.
$$g(r, s, t) = e^r \text{sen}(st);$$
 g_{rss}

67.
$$u = e^{r\theta} \operatorname{sen} \theta; \qquad \frac{\partial^3 u}{\partial r^2 \partial \theta}$$

68.
$$z = u\sqrt{v - w}$$
; $\frac{\partial^3 z}{\partial u \, \partial v \, \partial w}$

69.
$$w = \frac{x}{y + 2z}$$
; $\frac{\partial^3 w}{\partial z \partial y \partial x}$, $\frac{\partial^3 w}{\partial x^2 \partial y}$

70.
$$u = x^a y^b z^c$$
; $\frac{\partial^6 u}{\partial x \partial y^2 \partial z^3}$

- **71.** Se $f(x, y, z) = xy^2z^3 + \arcsin(x\sqrt{z})$, determine f_{xzy} . [Dica: Qual ordem de diferenciação é a mais fácil?]
- **72.** Se $q(x, y, z) = \sqrt{1 + xz} + \sqrt{1 xy}$, determine q_{xyz} . [Dica: Use uma ordem de diferenciação diferente para cada termo.]
- 73. Use a tabela de valores de f(x, y) para estimar os valores de $f_x(3, 2), f_x(3, 2, 2) e f_{xy}(3, 2).$

x y	1,8	2,0	2,2
2,5	12,5	10,2	9,3
3,0	18,1	17,5	15,9
3,5	20,0	22,4	26,1