Schnittstellen

ITT-Netzwerk

Sebastian Meisel

12. Dezember 2022

1 Physische Netzwerkschnittstellen

Abbildung 1: Von © Raimond Spekking / CC BY-SA 4.0

Physikalische Netzwerkschnittstellen sind Hardwarekomponenten, die

- Verbindung zu einem Übertragungsmedium herstellen, in dem sie
 - einen Anschluss (Buchse) für ein Kabel mit einem passenden Stecker bereitstellen.
 - * **oder** einen Sender (Antenne / Emitter) und einen Empfänger (Antenne / Sensor) für ein kabelloses Signal.
 - einen Chip (PHY) bereitstellen, der

- * eingehende Signale entschlüsselt.
- * ausgehende Signale verschlüsselt.

In beiden Fällen ist schlicht die Übersetzung aus dem, bzw. in das *Netzwerksignal* gemeint, keine Verschlüsselung im Sinnen, dass die Daten geschützt werden.

Die Netzwerkschnittstellen können jeweils fest auf dem *Motherboard* verlötet sein, wobei der *PHY* auch im Sinne eines *Systems on a Chip (SoC)* im selben Chip, wie die CPU integriert sein kann.

Häufiger sind *Netzwerkschnittstellen* aber als PCI(e)-Karten umgesetzt. Zudem gibt es Adapter über *USB*, *Thunderbolt* oder *Lightning* (früher auch über *PCMCIA*).

Wie man physische *Netzworkschnittstellen* unter Windows findet haben wir schon bei den Grundbegriffen gesehen. Unter Linux gibt es verschiedene Möglichkeiten. Am komfortabelsten geht es mit dem Befehl:

```
lshw -c net
```

der allerdings zumeist nachinstalliert werden muss – z.B. mit sudo apt install lshw unter debian-basierten Distributionen wie Ubuntu oder Kali-Linux.

*-network

Beschreibung: Kabellose Verbindung

Produkt: Wireless-AC 9260 Hersteller: Intel Corporation

Physische ID: 0

Bus-Informationen: pci@0000:01:00.0

Logischer Name: wlp1s0

Version: 29

Seriennummer: 18:56:80:e5:88:5f

Breite: 64 bits

Takt: 33MHz

Fähigkeiten: pm msi pciexpress msix bus_master cap_list ethernet physical wireless

Konfiguration: broadcast=yes driver=iwlwifi driverversion=5.15.0-10053-tuxedo

firmware=46.fae53a8b.0 9260-th-b0-jf-b0- ip=192.168.0.10 latency=0 link=yes multicast=yes wireless=IEEE 802.11

Ressourcen: irq:19 memory:dfa00000-dfa03fff

*-network

Beschreibung: Ethernet interface

Produkt: RTL8111/8168/8411 PCI Express Gigabit Ethernet Controller

Hersteller: Realtek Semiconductor Co., Ltd.

Physische ID: 0.1

Bus-Informationen: pci@0000:02:00.1

Logischer Name: ens1f1

Version: 12

Seriennummer: 80:fa:5b:5c:df:4d

Größe: 1Gbit/s Kapazität: 1Gbit/s Breite: 64 bits

Takt: 33MHz

Fähigkeiten: pm msi pciexpress msix vpd bus_master cap_list ethernet physical tp mii 10bt 10bt-fd 100bt-fd 100bt-fd autonegotiation

Konfiguration: autonegotiation=on broadcast=yes driver=r8169
driverversion=5.15.0-10053-tuxedo duplex=full firmware=rt18411-2_0.0.1 07/08/13
ip=192.168.24.1 latency=0 link=yes multicast=yes port=twisted pa ir speed=1Gbit/s
Ressourcen: irq:16 ioport:e000(Größe=256) memory:df014000-df014fff m

emory:df010000-df013fff

1.1 Ethernet

1.1.1 PCI

Abbildung 2: By Dmitry Nosachev - Own work, CC BY-SA 4.0

Bereits als vor allem noch *Thin Ethernet* über Koaxialkabel verwendet wurde, gab es dafür PCI-Karten.

Es gibt PCIe Karten mit einem, aber auch mit bis zu 8 Ethernetports. Man muss zudem beachten, welche Bandbreite die Karte unterstützt.

Außerdem muss man bei CAT 7a-Kabeln und CAT 8.2-Kabeln beachten, dass die Karten den passenden Port (TERA, ARJ45, OG45) bietet.

1.1.2 USB-Adapter

Adapter ermöglichen es Ethernet an Geräten zu nutzen, die keinen Ethernetport haben und keine Erweiterung über PCIe bieten - vor allem Notebooks. Es ist damit auch auf einfache Weise möglich

Abbildung 3: (C) Christian Hart, Public Domain

Abbildung 4: Von © Raimond Spekking / CC BY-SA 4.0

eine schnellere Schnittstelle zur Verfügung zu stellen, als das Gerät es ursprünglich bietet (10 statt 1 Gbs).

1.2 WLAN

Abbildung 5: By Markus Säynevirta, CC BY-SA 4.0

Viele Motherboards bieten inzwischen WLAN *onBoard*, also mit einem festverlöteten *PHYs* oder in der CPU integriert. Allerdings nutzen diese oft sehr kleine Antennen. Eine dezidierte PCIe-Karte kann höhere Reichweiten ermöglichen.

Das WLAN-Modul kann auch über Mini-PCIe eingebunden werden.

Abbildung 6: By Sadenäyttely - Own work, CC BY-SA 4.0

Abbildung 7: By Reise Reise - Own work, CC BY-SA 4.0

1.3 Ethernet over USB

Eine Alternative zum Ethernet über CAT-Kabel ist das Ethernet over USB Protokoll, dass es erlaubt eine Ethernetverbindung über ein USB-Kabel aufzubauen, was bei den hohen Geschwindigkeiten von USB 4 (bis 40 Gbs) vor allem für Peer-to-Peer-Verbindungen über kurze Entfernungen eine Alternative ist.

Diese Funktionalität ist zum Beispiel in den Linuxkernel eingebaut.

2 Virtuelle Netzwerkschnittstellen

Neben den *Physischen* gibt es auch verschiedene Arten von **Virtuellen Netzwerkschnittstellen**. Sie werden auf Betriebssystemebene vom *Kernel* bereitgestellt.

```
ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> ~~~

2: ens1f1: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

3: wlp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

4: virbr0: <NO-CARRIER,BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

5: cni-podman0: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

6: veth171e7929@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

7: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

8: br-f80eeef712c7: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

10: veth3e38908@if9: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~

12: veth0f30863@if11: <BROADCAST,MULTICAST,UP,LOWER_UP> ~~~
20: tun0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> ~~~
```

2.1 Loopbackdevices

Loopbackdevices dienen dazu Netzwerkdienste, wie Web- oder E-Mailserver, die auf einer Netzwerkschnittstelle lauschen, lokal zu nutzen.

Anders als Windows stellt Linux immer ein Loopbackdevice mit der Bezeichnung *lo* zur Verfügung, über das der *Localhost*, also der eigene Rechner unter der IP *127.0.0.1* (IPv4) bzw. *::1* (IPv6) erreichbar ist.

2.2 Tunnelschnittstellen

Verschlüsselte Netzwerkverbindungen, sogenannte *Netzwerktunnel* können auf der *Anwendungsebene* oder über eine *virtuelle Netzwerkschnittstelle* bereitgestellt werden. Letzteres ermöglicht es z. B. ein VPN mit jeder beliebigen Clientsoftware zu nutzen.

Unter Linux werden Netzwerkschnittstellen zu Netzwerktunneln mit tun gekennzeichnet.

Abbildung 8: Loopbackdevice im Windowsgerätemanager

2.2.1 VPN

Vitual Private Networks (VPNs) werden noch ausführlich ein Thema sein. Zur Nutzung wird eine viruelle Netzwerkschnittstelle eingerichtet über die man sich mit dem entfernten Rechner oder Netzwerk verbindet.

2.2.2 SSH-Tunnel

Es ist auch möglich über SSH *Netzwerktunnel* über eine *virtuelle Netzwerkschnittstelle* herzustellen. Das ist allerdings keine sehr zuverlässige Methode. Häufiger ein *Tunnel* auf der *Anwendungsebene* hergestellt.

So kann man mit dem Befehl:

```
ssh -N -L 2810:localhost:8000 user@entfer.nt
```

einen Dienst, der auf dem Rechner *entfer.nt* als lokaler Dienst nur über den *localhost* erreichbar ist, über einen Tunnel auf meinem Rechner an Port 2810 verfügbar machen.
Umgekehr kann ich mit

```
ssh -N -R 2810:localhost:8000 user@entfer.nt
```

einen Dienst der auf meinem Rechner über *localhost:2810* erreichbar ist auf dem Rechner *entfer.nt* verfügbar machen.

Abbildung 9: VPN-Tunnel-Adapter im Windowsgerätemanager

2.2.3 Fernwartung

Auch Fernwartungssoftware erstellt zum Teil *virtuelle Schnittstellen*. Teilweise werden aber auch *VPN-Verbindungen* oder ein *Tunnel* auf der *Anwendungsebene* genutzt.

2.3 Virtuelle Schnittstellen für Virtuelle Maschinen und Container

Damit *virtuelle Maschinen* mit einem Netzwerk kommunizieren können brauchen sie ebenfalls eine *virtuelle Netzwerkschnittstelle*.

Hierfür wird häufig eine *virtuelle Bridge* genutzt. Diese ermöglicht es zwei physisch getrennte Netzwerke zu einem zu verbinden. Zwei *Netzwerkschnittstellen* an einem Gerät sind normalerweise zwei getrennten Netzwerken zugeordnet. Sie können nicht *direkt* mit einander kommunizieren. Eine *Bridge* überbrückt diese Trennung der Netzwerke und macht zu einem.

2.4 WAN Miniports (Windows)

WAN Miniports sind eine spezielle Lösung von Windows mit Wide Area Networks also Weitverkehrsnetzwerken zu kommunizieren. Meist kommt hier das Point to Point over Ethernet (PPOE)- Protokoll zum Einsatz.

In der Praxis wird die Verbindung zum WAN heute von einem zentralen Router hergestellt, sodass diese Netzwerkschnittstellen meist nicht genutzt werden.

Abbildung 10: Microsoft Windows WAN Miniports