Teoría de Galois

Carlos Gómez-Lobo

1 Anillos

A continuación vamos a repasar algunos conceptos sobre anillos y especialmente anillos de polinomios, empezando por la definición de anillo.

Definición 1.1: Anillo

Un **anillo** es un conjunto no vacío dotado de dos operaciones, que denotaremos como suma (+) y multiplicación (\cdot) y que cumplen las siguientes propiedades:

- (R, +): grupo abeliano
- $\bullet \ (R,\cdot)$: operación binaria interna y cumple la propiedad asociativa

Si además (R, \cdot) tiene identidad, es decir, existe un elemento $e \in R$ tal que $e \cdot r = r \cdot e = r \ \forall r \in R$, diremos que R es un anillo con unidad y si además es abeliano, entonces será un anillo conmutativo.

A nosotros en esta asignatura nos interesarán especialmente estos últimos y nos referiremos a estos simplemente como anillos sin especificar que son conmutativos y sin unidad.

Ejemplos: $\mathbb{Z}, \mathbb{Z}_n, \mathbb{R}, \mathbb{C}, \mathbb{Q}, M_n(\mathbb{R})$ (no conmutativo), etc.

Notación:

- 0 para el elemento neutro de la suma
- -a para el elemento inverso aditivo (opuesto).
- 1 para el elemento neutro de la multiplicación
- \bullet a^{-1} para el inverso multiplicativo, si existe
- $na = \underbrace{a + \dots + a}_{\text{n veces}}$ • $a^n = \underbrace{a \cdot \dots \cdot a}_{\text{veces}}$

Definición 1.2: Cuerpo

Un anillo (R, +, -) es un **cuerpo** si $(R^* = R \setminus \{0\}, \cdot)$ es un grupo abeliano.

Ejemplos: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ p primo, etc.

Notación:
$$\mathbb{Z}_n$$
 $\begin{cases} \text{grupo aditivo} \to \mathbb{C}_n \\ \text{anillo} \to \mathbb{Z}_n \\ \text{cuerpo} \to \mathbb{F}_n(\text{n primo}) \end{cases}$

Definición 1.3: Divisor de cero

Sea R un anillo. Diremos que un elemento $a \in R$, $a \neq 0$ es un **divisor de cero** si $\exists b \in R$, $b \neq 0$ tal que $a \cdot b = 0$.

Ejemplo: En $\mathbb{Z}_6: \bar{2}, \bar{3} \neq \bar{0}$ y $\bar{2} \cdot \bar{3} = 0$.

Definición 1.4: Dominio de integridad

Sea R un anillo, si R no tiene divisores de cero, entonces se dice que es un **dominio de integridad**.

Ejemplos: $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p$

Definición 1.5: "Divide a"

Diremos que a divide a b en R si $\exists c \in R$ tal que $b = a \cdot c$ y escribiremos a|b.

1.1 Subanillos

Definición 1.6: Subanillo

Diremos que $S \subset R$ es un subanillo si $(S, +, \cdot)$ es un anillo.

Observación: $S \subset R$ es un subanillo s y solo si:

- 1) $S \neq \emptyset$
- 2) $\forall a, b \in S, a + b \in S$
- 3) $\forall a, b \in S, a \cdot b \in S$
- 4) $1 \in S$

Ejemplo: $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

Definición 1.7: Menor subanillo que contiene a un elemento

Dado un anillo R y un elemento a, podemos definir el **menor subanillo que contiene a R y al elemento a** como $R[a] = \left\{\sum r_i \cdot a^k, \forall r \in R; i, k \in \mathbb{N}\right\}$

Ejemplo: $\mathbb{Z}[i] = \{a + bi, a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Otra forma de ver este anillo es como la intersección de todos los subanillos de \mathbb{C} que contienen a \mathbb{Z} y a i.

Observación: De la misma forma podemos definir el menor cuerpo que contiene a un elemento y que denotamos como R(a).

$$\underline{\text{Ejemplo:}} \ \mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, \ a, b \in \mathbb{Q}\}, \ \mathbb{Q}(\sqrt{2}) = \left\{\underbrace{\frac{a + b\sqrt{2}}{c + d\sqrt{2}}}_{\neq 0}, \ a, b, c, d \in \mathbb{Q}\right\}, \ \mathbb{Q} \subset \mathbb{Q}[\sqrt{2}] \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$$

2

1.2 Anillos de polinomios

Definición 1.8: Anillo de polinomios

Sea R un anillo, llamaremos a R[x] al **anillo de polinomios con coeficientes en R** y que será de la forma $R[x] = \left\{ \sum_{k=0}^{n} r_k x^k, \ \forall r \in R \right\}.$

Ejemplos: $\mathbb{C}[x]$, $\mathbb{R}[x]$, $\mathbb{Q}[x]$, $\mathbb{Z}[x]$, etc.

Definición 1.9: Coeficiente director

El **coeficiente director** de un polinomio es el coeficiente distinto de 0 que multiplica a la x de mayor grado.

Notación: Grado de p(x) := deg(p(x))

Proposición 1.1

El grado del producto de dos polinomios puede tener distintos valores en función de si el anillo sobre el que se construye es o no un DI:

$$deg(p(x) \cdot q(x)) = \begin{cases} deg(p(x)) + deg(q(x)) \text{ si } R \text{ es dominio de integridad} \\ \leq deg(p(x)) + deg(q(x)) \text{ si no lo es} \end{cases}$$

Demostración: Obvio.

$$\underline{\text{Ejemplo:}} \ \mathbb{Z}_4, \ \frac{p(x) = 2x + 1}{q(x) = 2x} \right\} deg(p(x) \cdot q(x) = 1 < 2$$

Proposición 1.2

Sea R un cuerpo, entonces R es siempre dominio de integridad y para cualesquiera polinomios de R[x] se cumple que $deg(p(x)) \cdot deg(q(x)) = deg(p(x)) + deg(q(x))$.

<u>Demostración</u>: Para demostrar que un cuerpo siempre es un DI vamos a ver por reducción al absurdo que todo elemento de un anillo que tenga inverso multiplicativo no es divisor de cero.

Suponemos que $r \neq 0 \in R$ es divisor de cero, es decir, $\exists r^{-1}$ tal que $r' \neq 0, r \cdot r' = 0$. Ahora suponemos además que r es invertible, es decir, $\exists r^{-1}$ tal que $r \cdot r^{-1} = 1$. Entonces $r \cdot r^{-1} = 1 \implies (r' \cdot r) \cdot r^{-1} = b \implies 0 = b$. Contradicción.

De la misma forma se puede ver que una unidad no puede ser un divisor de cero y como en un cuerpo todos sus elementos son unidades, no hay ningún divisor de cero y por tanto es un dominio de integridad. Por esto y por la proposición 1.1, queda demostrado.

3

Proposición 1.3

Sea K un cuerpo, entonces el anillo de polinomios asociado a K, K[x] **no** es un cuerpo y sus únicos elementos invertibles son los pertecientes al cuerpo K no nulos.

<u>Demostración:</u> Sea $p(x) \in K[x]$, $p(x) \neq 0$ invertible en K[x]. Entonces $p(x) \cdot p^{-1}(x) = 1$, deg(1) = 0 y como por la proposición 1.1, $deg(p(x) \cdot p^{-1}(x)) \leq deg(p(x)) + deg(p^{-1}(x))$, se tiene que $deg(p(x)) = deg(p^{-1}(x)) = 0$, por lo que los únicos elementos invertibles en K[x] son los de grado 0, que son los no nulos que pertenecen a K. Entonces, puesto que no todos los elementos de K[x] son invertibles, K[x] no es un cuerpo.

Definición 1.10: Polinomio mónico

Un **polinomio mónico** es aquel cuyo coeficiente director es 1.

1.3 Ideales en un anillo

Definición 1.11: Ideal

Sea R un anillo. Un **ideal** en R es un subconjunto no vacío $I \subset R$ tal que:

- i) (I, +) es un subgrupo de R.
- ii) $\forall r \in R, \ \forall a \in I, \ r \cdot a \in I \ (Propiedad de absorción).$

Proposición 1.4: Criterio para ideales

Para que un subanillo $I\subset R,\ I\neq\emptyset$ sea un ideal tiene que cumplir que:

- i) $\forall a, b \in I, a b \in I (a + b \in I).$
- ii) $\forall r \in R, \ \forall a \in I, \ r \cdot a \in I.$

Ejemplos:

- 1) R anillo cualquiera
 - i) R es un ideal (el ideal trivial).
 - ii) {0} siempre es un ideal.

Si $I \subset R$ es un ideal e $I \neq R$, diremos que I es un ideal propio.

- 2) En \mathbb{Z} todos los anillos de la forma $I = \{2n : n \in \mathbb{Z}\}$ son ideales.
- 3) $\mathbb{Q}[x]$, $I = \{p(x) : p(r_0) = 0, r_0 \in \mathbb{Q}\}$

Comprobación: Sean $p(x), q(x), t(x) \in \mathbb{Q}[x]$ tal que $p(r_0) = q(r_0) = 0$, t(x) cualquiera, entonces:

- i) $s(r_0) = p(r_0) q(r_0) = 0 \implies s(x) \in I$.
- ii) $z(r_0) = p(r_0) \cdot t(r_0) = 0 \implies z(x) \in I$.

4)

Proposición 1.5

Todos los ideales de \mathbb{Z} son de la forma $\{kn : n \in \mathbb{Z}\}.$

Demostración: Sale del algoritmo de la división.

Observación: Sea R un anillo y sean $I, J \subset R$ ideales, entonces:

- i) En general, $I \cup J$ no es un ideal.
- ii) $I \cap J$ es un ideal

Proposición 1.6

Sea K un anillo, entonces K es un cuerpo si y solo si continene dos ideales: $\{0\}$ y K.

Demostración:

 \implies) Sea $I \in K$, $I \neq \{0\}$ un ideal y $r \in I$, $r \neq 0$ uno de sus elementos. Por ser K un cuerpo $\exists r^{-1}$ tal que $r \cdot r^{-1} = 1 \in I$ (Propiedad de absorción) $\implies I = K$.

 \Leftarrow) Sea K un anillo y $r \in K$, $r \neq 0$. Vamos a ver que r tiene un inverso.

Definimos $I := \{rs : s \in K\}$ que es un ideal. Puesto que $I \neq \{0\}$ y solo hay dos ideales, $I = K \implies 1 \in K \implies \exists s \in K \text{ tal que } s \cdot r = 1 \implies s = r^{-1}$.

Definición 1.12: Ideal generado

Sea R un anillo y $\{r_i\}$ una familia de elementos de R. Diremos que el **ideal generado** por $\{r_i\}_{i\in I}$ es el ideal más pequeño que contiene a $\{r_i\}_{i\in I}$ y lo denotamos por $\{r_i\}_{i\in I} = \{\sum s_j r_i : s_j \in R\}$.

Ejemplo: En $\mathbb{Z}[x]$ el ideal generado por $\langle 2, x \rangle = \{2q(x) + xp(x) : q(x), p(x) \in \mathbb{Z}\}$

Definición 1.13: Ideal principal

Sea R un anillo , diremos que $I \subset R$ es un **ideal principal** si $\exists a \in R$ tal que $I = \langle a \rangle$.

Ejemplo:

- 1) En \mathbb{Z} todos los ideales son principales.
- 2) $\langle 2, x \rangle \subset \mathbb{Z}[x]$ no es principal.

Comprobación: Suponemos que $\exists g(x) \in \mathbb{Z}[x]$ tal que < 2, x > = < g(x) >, entonces $\exists q(x)$ tal que $g(x) \cdot q(x) = 2 \implies deg(g(x)) = 0 \implies g(x) = k \in \mathbb{Z} \implies k = \pm 1, \pm 2$

Supongamos que $k=\pm 1$. Entonces < $g(x)>=<\pm 1>=<2, x>=\mathbb{Z}[x]$. Sin embargo, $1=\underbrace{2p(x)}_{\text{coef. par}}+\underbrace{q(x)x}_{\text{grad}\geq 1}$. Contradicción.

Ahora si suponemos que $k=\pm 2 \implies < g(x)> = < \pm 2> = < 2, x> = polinomios con coeficientes pares, pero <math>x \notin < \pm 2>$. Contradicción.

Definición 1.14: Dominio de ideales principales (DIP)

Sea R un anillo , si todos los ideales contenidos en R con principales se dice que es un **dominio** de ideales principales.

Proposición 1.7

Sea K un cuerpo entonces K[x] es un dominio de ideales principales.

<u>Demostración:</u> Sea $I \subset K[x]$ un ideal.

- Si $I = \{0\}$
- Suponemos que $I \neq \{0\} \implies \exists p(x) \in I, \ p(x) \neq 0 \ \text{y podemos definir} \ \Lambda = \{deg(p(x)) : p(x) \in I\} \neq \emptyset, \ \Lambda \subset \mathbb{N}.$ Por la propiedad de buen orden de \mathbb{N} podemos afirmar que Λ tiene un elemento mínimo n, por lo que $\exists p(x) \in I$ tal que deg(px) = n y además $\langle p(x) \rangle \subseteq I$. Ahora vamos a demostrar por el algoritmo de la división de polinomios que $\langle p(x) \rangle = I$.

Sea $s(x) \in I \implies s(x) = q(x)p(x) + r(x)$ y hay dos posibilidades para r(x):

$$\circ r(x) = 0 \implies p(x) \mid q(x) \checkmark$$

$$\circ \ r(x) \neq 0, \ \underbrace{\underbrace{s(x)}_{\in I} = q(x) \underbrace{p(x)}_{\in I} + r(x)}_{\in I} + r(x) \stackrel{Prop.1}{\Longrightarrow} r(x) \in I. \text{ Contradicción porque } deg(r(x)) < deg(p(x))$$

que es el grado mínimo en I.

Ejemplo: Usando un argumento similar con el algoritmo de la división en \mathbb{Z} se puede probar que este es un DIP.

Observación: El generador de un ideal $I \subset K[x]$ no tiene por qué ser único: si $I = \langle p(x) \rangle$ y $a \in K$, entonces $I = \langle ap(x) \rangle$. Para describir estos anillos de forma canónica utilizaremos como generador un polinomio mónico.

1.4 Anillos cociente

Definición 1.15: Anillo conciente

Sea $I \subset R$ un ideal en R, podemos definir como en los grupos al conjunto R/I como el **anillo** cociente según la relación de equivalencia $a = b \iff a - b \in I$.

Ahora vamos a comprobar algunas cosas sobre la definición anterior:

1. La relación de equivalencia usada es realmente una relación de equivalencia estudiando sus tres propiedades:

- i) Reflexiva: $a a = 0 \in I \checkmark$
- ii) Simétrica: $a=b \implies a-b \in I \implies (a-b) \cdot -1 \in I \implies (b-a) \in I \implies b=a$
- iii) Transitiva: a = b y $b = c \implies a b \in I$ y $b c \in I \stackrel{\text{Prop. } 1}{\Longrightarrow} a b + b c = a b \in I \implies a = c$
- 2. El conjunto cociente resultado tiene estructura de anillo. Para ello solo es necesario comprobar que el producto está bien definido, es decir, de dos elementos no depende del representante escogido.

Sean
$$\bar{a} = \{a+I\}, \bar{b} = \{b+I\}, \text{ entonces } (a+I)(b+I) = ab + \underbrace{aI}_{\in I} + \underbrace{bI}_{\in I} + I = ab + I \implies \bar{a}\bar{b} = \bar{a}\bar{b} \checkmark$$

Observación:

- 1. Si el anillo R es conmutativo y con unidad, entonces $R_{/I}$ tamibién lo es y su unidad es $\bar{1}$.
- 2. $\forall a \in I, \ \bar{c} = 0.$

Ejemplos:

- 1) $\mathbb{Z}_{n\mathbb{Z}} = \mathbb{Z}_n$
- 2) $R_R = \{0\}$
- 3) $R_{10} = R$
- 4) $S = \mathbb{R}[x] / \langle x^2 + 1 \rangle$: ¿Qué pinta tiene? En primer lugar, vamos a comprobar que todo elemento de S es equivalente a un elemento de la forma ax + b, $a, b \in \mathbb{R}$. Sea $p(x) \in \mathbb{R}[x]$, ¿ $\overline{p(x)}$? $p(\underline{x}) = q(x)(x^2 + 1) + r(x)$ donde r(x) = 0 ó $deg(r(x)) \le 1 \implies p(x) r(x) \in \langle x^2 + 1 \rangle \implies p(x) = r(x)$.

1.5 Homomorfismos de anillos

Definición 1.16: Homomorfismo de anillos

Sean R y T anillos. Un homomorfismo de anillos $f:R\longrightarrow T$ es una función que verifica las siguientes propiedades:

- i) $f(r+r') = f(r) + f(r'), \forall r, r' \in R$
- ii) $f(r \cdot r') = f(r) \cdot f(r'), \ \forall r, r' \in R$
- iii) (Homomorfismo de anillos unitarios) $f(1_R) = 1_T$

 $\underline{\text{Observaci\'on:}}$ Nosotros siempre utilizaremos homomorfismos de anillos unitarios y nos referiremos a ellos simplemente como homomorfismos.

Ejemplos:

1) Con este ejemplo vamos a comprobar cuántos homomorfismos existen de \mathbb{Z} en \mathbb{Z} . Si utilizamos las propiedades vistas anteirormente, tenemos que $1 \longrightarrow 1 \stackrel{\text{Prop. 1}}{\Longrightarrow} n = \underbrace{1 + \dots + 1}_{\text{Prop. 2}} \longrightarrow f(n) = \underbrace{1 + \dots + 1}_{\text{Prop. 2}}$

$$\underbrace{f(1) + \cdots f(1)}_{\text{n veces}} \implies f = Id$$

2) Sea R un anillo cualquiera:

$$\begin{array}{ccc} f: \mathbb{Z} & \longrightarrow R \\ 1 & \longrightarrow 1_R \\ n & \longrightarrow f(n) = \underbrace{1_R + \cdots 1_R}_{\text{n veces}} \end{array}$$

7

Un caso especial de este tipo es cuando $p \in \mathbb{Z}$ es un primo y $f(p) = 0_R$, entonces la función:

$$\bar{F}: R \longrightarrow R$$
 $a \longrightarrow a^p$

Es un homomorfismo de anillos llamado el "homomorfismo de frobenius" y cumple que en R, $(a+b)^p = a^p + b^p$.

3) En este comprobaremos si existe algún homomorfismo de $\mathbb{Z}[i]$ en $\mathbb{Z}[\sqrt{2}]$:

$$\begin{array}{ccc} f: \mathbb{Z}[i] & \longrightarrow & \mathbb{Z}[\sqrt{2}] \\ & 1 & \longrightarrow & 1 \\ n \in \mathbb{Z} & \longrightarrow & n \in \mathbb{Z} \end{array}$$

La función f mandará al elemento i a un elemento de $\mathbb{Z}[\sqrt{2}]$ de la forma $a + b\sqrt{2}$, sin embargo:

$$f(i^2) = \begin{cases} f(i)^2 = (a + b\sqrt{2})^2 \ge 0 \\ f(-1) = -1 \end{cases} \implies \text{Contradicción}$$

4) Sea $\mathbb{Z}[x]$ el anillos de polinomios con coeficientes enteros y T un anillo cualquiera:

$$f: \mathbb{Z}[x] \longrightarrow T$$

$$x \longrightarrow t \in T$$

$$p(x) \longrightarrow p(t)$$

Proposición 1.8: Propiedades de los homomorfismos de anillos

Sea $f: R \longrightarrow T$ un homomorfismo de anillos:

- 1) Si $S \in R$ es un subanillo, entonces $f(S) \in T$ es un subanillo
- 2) Si $J \in T$ es un ideal, entonces $f^{-1}(J)$ es un ideal de R.
- 3) Si f es sobreyectivo e $I \in R$ un ideal, entonces f(I) es un ideal en T.
- 4) $Ker f = f^{-1}(\{0\})$ es un ideal en R.
- 5) f es inyectivo $\iff Ker \ f = \{0\}.$

Demostración:

- 1) Por las propiedades de homomorfismos f(S) es un grupo aditivo y el producto es interno y asociativo.
- 2) Teniendo que $\forall s_1, s_2 \in f^{-1}(J)$, $\exists t_1, t_2 \in J$ tal que $s_1 = f^{-1}(t_1)$, $s_2 = f^{-1}(t_2)$, vamos a comprobar que cumple las propiedades de un ideal:

i)
$$\underbrace{t_1 - t_2}_{\in f^{-1}(J)} = f(s_1) - f(s_2) = f(s_1 - s_2) \in f^{-1}(J) \implies s_1 - s_2 \in J$$

ii)
$$\forall t \in T, \ t_1 \cdot t \in f^{-1}(J) \implies \exists r \in R \text{ tal que } f(r) = t_1 \cdot t = f(s_1) - t \implies t = f(\underbrace{r - s_1}_{r'}) \implies t_1 \cdot t = f(s_1 \cdot s') \in f(J) \implies s_1 \cdot s' \in J$$

3) Como f es sobreyectivo, podemos afirmar que $\forall t \in T, \exists r \in R$ tal que f(r) = t y teniendo $t_1, t_2 \in f(I)$ tal que $t_1 = f(s_1), t_2 = f(s_2), s_1, s_2 \in I$ entonces:

i)
$$t_1 - t_2 = f(s_1) - f(s_2) = f(\underbrace{s_1 - s_2}_{\in I}) \in f(I)$$

ii)
$$t_1 \cdot t \stackrel{\text{sobre}}{=} f(s_1) \cdot f(s) = f(\underbrace{s_1 \cdot s}_{\in I}) \in f(I)$$

- 4) Comprobamos una vez más que cumple las propiedades de un ideal teniendo $s_1, s_2 \in Ker f$:
 - i) $f(s_1 s_2) = f(s_1) f(s_2) = 0 \implies s_1 s_2 \in Ker f$
 - ii) $\forall r \in R$, $f(s_1 \cdot r) = f(s_1) \cdot f(r) = 0 \cdot f(r) = 0 \implies s_1 \cdot r \in I$
- 5) Vamos a demostrar ambas implicaciones:
 - \implies) Es obvio que la antiimagen del 0_T es el 0_S , y por ser inyectiva es el único.
 - \Leftarrow) Vamos a demostrarlo por reducción al absurdo. Supongamos que f no es inyectiva, es decir, $\exists r_1, r_2 \in R, \ r_1 \neq r_2$ tal que $f(r_1) = f(r_2) = t, t \in T$, entonces:

$$f(r_1-r_2)=f(r_1)-f(r_2)=t-t=0 \implies r_1-r_2 \in Ker \ f \implies r_1-r_2=0 \implies r_1=r_2 \implies \text{Contradicción}$$

Observación: Si $I \in R$ es un ideal, en general $f(I) \in T$ no es un ideal.

Corolario 1.1

Sea K un cuerpo y $f: K \longrightarrow T$, entonces f es necesariamente inyectivo.

<u>Demostración</u>: Como $Ker\ f$ es un ideal en K y este es un cuerpo, entonces por la proposición 1.6 $Ker\ f$ tiene que ser o bien K, que no puede ser porque 1_K no iría a 1_T , o bien $\{0\}$, por lo que es inyectivo.

Observación: Si $f: R \longrightarrow T$ es un homomorfismo de anillos biyectivo, entonces su inverso $f^{-1}: T \longrightarrow R$ es un homomorfismo de anillos. Por tanto, todo homomorfismo de anillos biyectivo es un isomorfismo.

Teorema 1.1: 1^{er} Teorema de isomorfía

Sea $f: R \longrightarrow T$ es un homomorfismo de anillos, entonces:

1) Existe un homomorfismo de anillos \bar{f} de $R/Ker\ f$ en T que está bien definido tal que $\forall r\in R,\ \bar{f}(\bar{r}):=f(r).$

2) \bar{f} es inyectivo y por tanto hay un isomorfismo:

$$R_{\not/Ker\ f} \simeq f(R) \in T$$

Definición 1.17: Carácterística de un anillo

Sea R un anillo cualquiera y f un homomorfismo de \mathbb{Z} en R