Introduction to Linear Bandits

Yoan Russac

CNRS, Inria, ENS, Université PSL

Roadmap

1 Stochastic Multi Armed Bandits

- 2 Linear Bandits
- 3 Non-Stationary Bandits
- 4 Empirical Performances

Stochastic Bandit Model

 ν_{ι}

Setting:

- \blacksquare K arms. Each arm associated with an unknown distribution ν_a with mean μ_a
- action $A_t \in \{1, ..., K\}$ is chosen at time t based on previous observations and rewards
- \blacksquare reward X_t observed

$$X_t = \mu_{A_t} + \epsilon_t$$
 (ϵ_t centered noise)

 $a^* = \arg\max_{a \in \{1, \dots, K\}} \mu_a$

Specificity of Bandit Models

- Sequential Learning: learning on the fly
- Incomplete information: at time t we don't know the rewards we would have obtained by selecting a different arm
- Difference with General Reinforcement Learning: choosing an action does not impact the state of the environment

Stochastic Bandit Model: Mesure of performance

Objective: maximize the expected sum of the rewards or equivalently minimizing the regret

 $N_a(t)$: number of times the arm a has been pulled up to time t $\Delta_a=\mu_{a^\star}-\mu_a$: sub-optimality gap of arm a

Regret of an algorithm ${\cal A}$ on a bandit instance ν :

$$R(T) = T\mu_{a^*} - \mathbb{E}\left[\sum_{t=1}^T X_t\right]$$
$$= \sum_{a=1}^K \Delta_a \mathbb{E}[N_a(T)]$$

Strategy with small regrets

How to design a strategy with a small regret ?

$$R(T) = \sum_{a=1}^{K} \Delta_a \mathbb{E}[N_a(T)]$$

 \hookrightarrow Not selecting too frequently the arms where $\Delta_a>0$

<u>Problem:</u> The μ_a are unknown, so Δ_a is unknown! Need to try all the arms to estimate Δ_a 's

Exploration and Exploitation

- Naive idea for exploration: Select each arm T/K times
- Naive idea for exploitation: Select the arm with the best empirical mean: $A_t = \arg\max_{a \in \{1,...K\}} \hat{\mu}_a(t)$, where

$$\hat{\mu}_a(t) = \frac{1}{N_a(t-1)} \sum_{s=1}^{t-1} X_s \mathbb{1}(A_s = a)$$

 \hookrightarrow Linear regret !

Optimism in the face of uncertainty

lacksquare For each arm build a confidence interval on the mean μ_a

Figure: Confidence interval for the different arms at time t

Act as if the best possible model is the true model

 \hookrightarrow Select the arm

$$A_t = \underset{a=\{1,\dots,K\}}{\operatorname{arg\,max}} \mathsf{UCB}_{t-1}(a)$$

$UCB(\alpha)$ algorithm

Under the assumption of Gaussian rewards,

$$UCB_t(a) = \hat{\mu}_a(t) + \sqrt{\frac{\alpha \log(t)}{N_a(t-1)}}$$

Problem dependent Bound [Auer et al. 2002]

 $UCB(\alpha)$ with $\alpha=2$ and gaussian rewards with variance 1, satisfies

$$R(T) \le 8 \left(\sum_{a \ne a^*} \frac{1}{\Delta_a} \right) \log(T) + (1 + \pi^2/3) \sum_{a=1}^K \Delta_a$$

$UCB(\alpha)$ algorithm

Sometimes we prefer problem independent bounds.

$$\varepsilon(K,G)=\{\nu=(\nu_1,...,\nu_K), \text{ where } \forall i\in\{1,...,K\},\ \nu_i=\mathcal{N}(\mu_i,1), \text{ with } \mu_i\in[0,1]\}$$

Problem independent Bound

If $\delta=\frac{1}{n^2}$, the regret of UCB(α) with $\alpha=2$ on any bandit instance in $\varepsilon(K,G)$ is bounded by

$$R(T) \le 4\sqrt{KT\log(T)} + (1 + \pi^2/3)$$

Roadmap

1 Stochastic Multi Armed Bandit

- 2 Linear Bandits
- 3 Non-Stationary Bandits
- 4 Empirical Performances

Contextual bandits

Use case: Recommender system

- lacktriangle At time t a user arrives on a website with some characteristics
- Several items with some characteristics could be recommended to the user
- For each item a context $A \in \mathbb{R}^d$ is build based on the user features + item features. Those contexts form a set \mathcal{A}_t
- By choosing a context A the associated product is displayed to the user
- lacksquare A reward X_t depending on A_t is then observed

$$X_t = f(A_t) + \epsilon_t$$

Contextual bandits

How to specify f?

- Linear Models: $\exists \theta^{\star}, X_t = A_t^{\top} \theta^{\star} + \epsilon_t$
- Generalized Linear Models $\exists \theta^{\star}, X_t = \mu(A_t^{\top}\theta^{\star}) + \epsilon_t$ $\hookrightarrow \mu$ is called inverse link function

In this talk we focus on Linear Models

Linear Bandits Setting

- In round t a set of K actions $A_t = \{A_{t,1}, ..., A_{t,K}\}$ is available
- By selecting the context A_t , one observes the reward

$$X_t = A_t^{\top} \theta^* + \epsilon_t$$

- Assumption on the noise: ϵ_t are supposed to be i.i.d and normally distributed $\epsilon_t \sim \mathcal{N}(0,1)$
- Bounded Actions
- Bounded θ^*

Best action at time t:

$$A_t^{\star} = \operatorname*{arg\,max}_{a \in \mathcal{A}_t} a^{\top} \theta^{\star}$$

Difference with the Stochastic Bandit Model

- In the Stochastic Bandit Model the arms are independent
- The Linear Bandit model is a structured bandit problem: The rewards of each arm are connected by a common unknown parameter θ^\star
 - \hookrightarrow Learning transfer from one context to another

Goal

Regret Minimization

$$\max \mathbb{E}\left(\sum_{t=1}^{T} X_{t}\right) \iff \min \mathbb{E}\left[\sum_{s=1}^{T} \max_{a \in \mathcal{A}_{t}} \langle a, \theta^{\star} \rangle - \sum_{t=1}^{T} X_{t}\right]$$
$$\iff \min \mathbb{E}\left(\sum_{t=1}^{T} \max_{a \in \mathcal{A}_{t}} \langle a - A_{t}, \theta^{\star} \rangle\right)$$

Estimating the unknown parameter θ^{\star}

- Say we already played t-1 rounds where the actions $A_1,....,A_{t-1}$ have been selected and the rewards $X_1,...,X_{t-1}$ have been collected
- How to estimate θ* based on those observations?

 → Regularized Least-Squares Estimator

$$\hat{\theta}_t = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^{t-1} (X_s - A_s^{\top} \theta)^2 + \frac{\lambda}{2} \|\theta\|_2^2$$

■ Closed form solution: $\hat{\theta}_t = V_{t-1}^{-1} \sum_{s=1}^{t-1} A_s X_s$, where

$$V_{t-1} = \sum_{s=1}^{t-1} A_s A_s^{\top} + \lambda I_d$$

Link with the Linear Regression

- Closed form solution $\hat{\theta}_t = (\sum_{s=1}^{t-1} A_s A_s^\top + \lambda I_d)^{-1} \sum_{s=1}^{t-1} A_s X_s$
- For $\lambda=0$ we find the usual estimator for the Linear Regression $(X^{\top}X)^{-1}X^{\top}Y$, where X is the matrix containing the data of up time t-1 and Y is the associated reward vector

Optimism in the face of uncertainty

- Acting as if the environment is as nice as plausibly possible
- In the stochastic bandit model it means selecting the action with the largest Upper Confidence Bound
- In the Linear Model, the form of the confidence bound is more complicated because rewards received give information about more than just the arm played.
 - \hookrightarrow Constructing a confidence set $\mathcal{C}_t \in \mathbb{R}^d$ that contains the unknown parameter θ^* with high probability given the observations available up to time t-1

Exploration/Exploitation dilemna and Linear Bandits

lacktriangle Greedy Policy: Chooses the action A_t that maximizes

$$A_t = \underset{a \in \mathcal{A}_t}{\arg\max} \ a^{\top} \hat{\theta}_t$$

- \hookrightarrow not enough exploration
- Linear Upper Confidence Bound algorithm (LinUCB): Chooses the action A_t that maximizes

$$A_t = \operatorname*{arg\,max\,max}_{a \in \mathcal{A}_t} \ a^{\top} \theta$$

with a particular C_t

How to choose the confidence ellipsoid?

Let $\beta_t(\delta) = \lambda + \sqrt{2\log(1/\delta) + d\log\left(1 + \frac{t}{\lambda d}\right)}$. The confidence ellipsoid is defined as:

$$C_t(\delta) = \{ \theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_t\|_{V_{t-1}} \le \beta_{t-1}(\delta) \}$$

Theorem

 $C_t(\delta)$ is a confidence set for θ^* at level $1 - \delta$,

$$\forall \delta > 0, \mathbb{P} (\forall t \ge 1, \, \theta^* \in \mathcal{C}_t(\delta)) \ge 1 - \delta$$

 With this choice of confidence ellipsoid the previous optimization program is equivalent to maximizing

$$A_{t} = \arg\max_{a \in \mathcal{A}_{t}} \left(a^{\top} \hat{\theta}_{t} + \beta_{t-1}(\delta) ||a||_{V_{t-1}^{-1}} \right)$$

LinUCB

Algorithm 1: LinUCB

Input: Probability δ , dimension d, regularization λ .

Initialization:
$$b=0_{\mathbb{R}^d}$$
, $V=\lambda I_d$, $\hat{\theta}=0_{\mathbb{R}^d}$

for $t \geq 1$ do

Receive A_t , compute

$$\beta_{t-1} = \sqrt{\lambda} + \sqrt{2\log\left(\frac{1}{\delta}\right)} + d\log\left(1 + \frac{t-1}{\lambda d}\right)$$

for $a \in \mathcal{A}_t$ do

Compute
$$UCB(a) = a^{\top} \hat{\theta} + \beta_{t-1} \sqrt{a^{\top} V^{-1} a}$$

 $A_t = \arg \max_a (UCB(a))$

Play action A_t and receive reward X_t

Updating phase:
$$V = V + A_t A_t^{\top}$$

 $b = b + X_t A_t$

$$\hat{\theta} = V^{-1}b$$

LinUCB

Regret of LinUCB

Under the previous assumptions, with probability $1-\delta$ the regret of LinUCB satisfies

$$R_T \le \sqrt{dT} \sqrt{8\beta_T(\delta) \log\left(1 + \frac{TL^2}{\lambda d}\right)} = \tilde{O}(d\sqrt{T})$$

 \hookrightarrow Independent of the number of actions K

Roadmap

1 Stochastic Multi Armed Bandits

- 2 Linear Bandits
- 3 Non-Stationary Bandits
- 4 Empirical Performances

Linear Bandits Setting

- In round t a set of K actions $\mathcal{A}_t = \{A_{t,1}, ..., A_{t,K}\}$ is available
- By selecting the context A_t , one observes the reward

$$X_t = A_t^{\top} \theta_t^{\star} + \epsilon_t$$

- Assumption on the noise: ϵ_t are supposed to be i.i.d and normally distributed $\epsilon_t \sim \mathcal{N}(0,1)$
- Bounded Actions
- Bounded θ_t^{\star}

Best action at time t:

$$A_t^{\star} = \operatorname*{arg\,max}_{a \in \mathcal{A}_t} a^{\top} \theta_t^{\star}$$

Optimality Criteria

Dynamic Regret Minimization

$$\max \mathbb{E}\left(\sum_{t=1}^{T} X_{t}\right) \Longleftrightarrow \min \mathbb{E}\left[\sum_{s=1}^{T} \max_{a \in \mathcal{A}_{t}} \langle a, \theta_{t}^{\star} \rangle - \sum_{t=1}^{T} X_{t}\right]$$

$$\iff \min \mathbb{E}\left(\sum_{t=1}^{T} \max_{a \in \mathcal{A}_{t}} \langle a - A_{t}, \theta_{t}^{\star} \rangle\right)$$

$$\text{dynamic regret}$$

Our Approach

We only focus on robust policies

With that in mind, the non-stationarity in the θ_t^\star parameter is measured with the variation budget

$$\sum_{s=1}^{T-1} \|\theta_s^{\star} - \theta_{s+1}^{\star}\|_2 \le B_T$$

 \hookrightarrow A large variation budget can be either due to large scarce changes of θ_t^{\star} or frequent but small deviations

Weighted Least Squares Estimator

Least Squares Estimator

$$\hat{\theta}_t = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^t (X_s - A_s^\top \theta)^2 + \frac{\lambda}{2} \|\theta\|_2^2$$

Weighted Least Squares Estimator

$$\hat{\theta}_t = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^t \frac{\mathbf{w}_s}{(X_s - A_s^\top \theta)^2} + \frac{\lambda_t}{2} \|\theta\|_2^2$$

The Case of Exponential weights

Exponential Discount (Time-Dependent Weights)

$$\hat{\theta}_t = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{s=1}^t \underbrace{\gamma^{t-s}}_{w_{t,s}} (X_s - A_s^\top \theta)^2 + \frac{\lambda}{2} \|\theta\|_2^2$$

D-LinUCB Algorithm (1)

Algorithm 2: D-LinUCB

Input: Probability δ , dimension d, regularization λ , discount factor γ .

Initialization:
$$b=0_{\mathbb{R}^d}$$
, $V=\lambda I_d$, $\widetilde{V}=\lambda I_d$, $\widehat{\theta}=0_{\mathbb{R}^d}$ for $t\geq 1$ do

Receive A_t , compute

$$\beta_{t-1} = \sqrt{\lambda} + \sqrt{2\log\left(\frac{1}{\delta}\right) + d\log\left(1 + \frac{1 - \gamma^{2(t-1)}}{\lambda d(1 - \gamma^2)}\right)}$$

for $a \in \mathcal{A}_t$ do

Compute
$$\operatorname{UCB}(a) = a^{\top} \hat{\theta} + \beta_{t-1} \sqrt{a^{\top} V^{-1} \tilde{V} V^{-1} a}$$

 $A_t = \arg\max_a(\operatorname{UCB}(a))$

Play action A_t and receive reward X_t

Updating phase:
$$V = \gamma V + A_t A_t^{\top} + (1 - \gamma) \lambda I_d$$
, $\widetilde{V} = \gamma^2 \widetilde{V} + A_t A_t^{\top} + (1 - \gamma^2) \lambda I_d$ $b = \gamma b + X_t A_t$, $\hat{\theta} - V^{-1} b$

Roadmap

1 Stochastic Multi Armed Bandits

- 2 Linear Bandits
- 3 Non-Stationary Bandits
- 4 Empirical Performances

Performance in Abruptly-Changing Environment

Figure: Performances of the algorithms in the abruptly-changing environment. The plot on the left correspond to the estimated parameter and the one on the right to the accumulated regret, averaged on N=100 independent experiments

Performance in Slowly-Changing Environment

Figure: Performances of the algorithms in the slowly-varying environment. The plot on the left correspond to the estimated parameter and the one on the right to the accumulated regret, averaged on N=100 independent experiments

Empirical Performances

Thank you!

Concentration Result in Stationary Environments

Theorem 1

Assuming that $\theta_t^\star = \theta^\star$, for any \mathcal{F}_t -predictable sequences of actions $(A_t)_{t\geq 1}$ and positive weights $(w_t)_{t\geq 1}$ and for all $\delta>0$, with probability higher than $1-\delta$,

$$\mathbb{P}\left(\forall t, \|\hat{\theta}_t - \theta^*\|_{V_t \tilde{V}_t^{-1} V_t} \le \frac{\lambda_t}{\sqrt{\mu_t}} S + \sigma \sqrt{2\log(1/\delta) + d\log\left(1 + \frac{L^2 \sum_{s=1}^t w_s^2}{d\mu_t}\right)}\right)$$

where

$$V_t = \sum_{s=1}^t w_s A_s A_s^\top + \lambda_t I_d,$$
$$\widetilde{V}_t = \sum_{s=1}^t w_s^2 A_s A_s^\top + \mu_t I_d$$

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment $X_s = A_s^\top \theta_s^\star + \eta_s$ and assuming that $w_s = \gamma^{-s}$, $\lambda_s = \lambda \gamma^{-s}$

Let
$$\bar{\theta}_t = V_{t-1}^{-1} \left(\sum_{s=1}^{t-1} \gamma^{-s} A_s A_s^\top \theta_s^\star + \gamma^{t-1} \theta_t^\star \right)$$
 denote a "noiseless" proxy value for θ_t^\star

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment $X_s = A_s^{\top} \theta_s^{\star} + \eta_s$ and assuming that $w_s = \gamma^{-s}$, $\lambda_s = \lambda \gamma^{-s}$

Let $\bar{\theta}_t = V_{t-1}^{-1} \left(\sum_{s=1}^{t-1} \gamma^{-s} A_s A_s^\top \theta_s^\star + \gamma^{t-1} \theta_t^\star \right)$ denote a "noiseless" proxy value for θ_t^\star

Theorem 2

Let $C_t = \{\theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_{t-1}\|_{V_{t-1}\widetilde{V}_{t-1}^{-1}V_{t-1}} \le \beta_{t-1}\}$ denote the confidence ellipsoid with

$$\beta_t = \lambda \sqrt{S} + \sigma \sqrt{2\log(1/\delta) + d\log\left(1 + \frac{L^2(1 - \gamma^{2t})}{\lambda d(1 - \gamma^2)}\right)}$$

Then, $\forall \delta > 0$,

$$\mathbb{P}\left(\forall t \ge 1, \bar{\theta}_t \in \mathcal{C}_t\right) \ge 1 - \delta$$