Listing of Claims

1	1. (Currently Amended) A method of amplifying an optical a polarized input beam-with a
2	number of spaced, optical-amplifier slabs, with the slabs having two opposed
3	surfaces through which the beam is passed, comprising the steps of:
4	aligning at least four amplifier-slabs spaced from adjacent slabs, each of the slabs
5	having a thickness dimension of not more than 0.31 centimeter, spaced
6	from adjacent slabs, wherein the slab surfaces of the at least four slabs are
7	rendered essentially non-reflective by being-placed within about 1 degree
8	of the Brewster angle with respect to the polarized optical input beam, and
9	wherein no two of the slab surfaces are within 0.1 degree of parallel with
10	respect to each other;
11	optically pumping the at least four slabs; and
12	passing a-the polarized input beam through the slab surfaces, wherein the
13	polarized input beam is optically amplified in the at least four slabs., and
14	wherein the input beam is of an eye-safe wavelength, whereby controlling
15	reflections and the use of multiple relatively thin slabs to reduce slab
16	temperature greatly increases efficiency, and the high efficiency together
17	with an eye-safe beam-wavelength makes the system commercially
18	practical for use outside of research laboratories.
1	2. (Currently Amended) The method of claim 1, wherein the beam is passed through at
2	least four slabs and passed within about 1 degree of a Brewster angle of the slab
3	surfaces, wherein half of the slabsslab surfaces are slanting slanted in one

4	direction and half of the slabs-slab surfaces have are slanted in an opposite

- 5 slantdirection, wherein using the opposite slanting slabs-slab surfaces avoids being
- 6 <u>configured to control beam-spreading in-ofthe an</u> output beam.
- 1 3. (Currently Amended) The method of claim 1, wherein the at least four slabs are
- 2 <u>comprise</u> Cr:YAG slabs.
- 4. (Currently Amended) The method of claim 1, wherein further including passing
- 2 cooling fluid is passed between the at least four slabs.
- 5. (Currently Amended) The method of claim 1, wherein the slabs surfaces being
- 2 rendered include essentially non-reflective by-dielectric surface coatings, and by
- 3 being placed within about 1 degree of the Brewster angle with respect to the
- 4 polarized optical input beam.
- 6. (Currently Amended) The method of claim 1, wherein-further including pumping the at
- 2 least four slabs are pumped directly byusing pump diodes.
- 7. (Currently Amended) The method of claim 1, wherein the beam is passed through the
- 2 slabs within about 1 degree of a Brewster angle with all the at least four slabs are
- 3 tilted in the a same direction and such that a cross-sectional area of a line shaped
- 4 <u>beam is reduced during amplification. a line-shaped beam is entered into the</u>
- 5 amplifier, and spread into an area during amplification, and the area of the output
- 6 beam is then optically reduced.
- 8. (Currently Amended) The method of claim 1, wherein the polarized input beam has a

^	11	. 1 400	1	1000	
/	wavelength of herweet	1 Дин)	วทก	IXIIII	nm
∸	wavelength of betweer	1 1700	anu	1000	11111

1	9. (Currently Amended) The method of claim 1, wherein the thickness dimension is	less
2	than 2-3 millimeters.	

- 1 10. (Currently Amended) A method of amplifying an a polarized optical input beam with 2 a number of spaced, optical amplifier slabs, with the slabs having two surfaces 3 perpendicular to a thickness dimension, comprising the steps of: 4 aligning at least two optical-amplifier slabs separated by an intervening space. 5 each optical-amplifier slab having two slab surfaces approximately 6 parallel to each other and each optical-amplifier slab having a thickness 7 dimension of less than one centimeter, having a thickness dimension of 8 less than one centimeter, with surfaces parallel to, and spaced from 9 adjacent slabs, and withthe slab surfaces being rendered essentially non-10 reflective by being placed disposed at the approximately a Brewster angle 11 with respect to the a polarized optical input beam; 12 optically pumping the optical-amplifier slabs; and 13 passing the polarized input beam of an eye-safe wavelength through the slab 14 surfaces wherein the beam is optically amplified in the slabsto amplify the 15 polarized input beam.
 - 11. (Currently Amended) A method of amplifying an optical beam-with a number of spaced, optical-amplifier slabswith the slabs having two opposed surfaces, comprising the steps of:
- 4 aligning at least four optical-amplifier slabs, each of the optical-amplifier slabs

1

2

5	having two opposed slab surfaces that are substantially perpendicular to
6	having a thickness dimension, the thickness dimension being of less than
7	one centimeter, the slab surfaces of a first of the four optical-amplifier
8	slabs being substantially parallelslightly non-parallel to slab surfaces of an
9	adjacent member of the four optical-amplifier slabs, and the first of the
10	four optical-amplifier slabs being separated by an intervening space from
11	the adjacent member of the four optical-amplifier slabsspaced from
12	adjacent slabs, wherein the slab surfaces are rendered being essentially
13	non-reflective;
14	optically pumping the optical-amplifier slabs; and
15	passing an inputthe optical beam through the slab surfaces wherein to amplify the
16	optical beam, is optically amplified in the slabs, and wherein the input
17	optical beam is ofbeing of an eye-safe wavelength.
1	12. (Currently Amended) The method of claim 11, wherein no twothe slab surfaces of the
2	first of the four optical-amplifier slabs of the slab surfaces are precisely not within
3	0.1 degree of being parallel to each other and are not within 0.1 degree of being
4	parallel to the slab surfaces of other members of the four optical-amplifier slabs.
1	12 (Compared to Amound ad) The most had a falcine 11 who will the algha have a that this house
1	13. (Currently Amended) The method of claim 11, wherein the slabs have a the thickness
2	dimension of each optical-amplifier slab is of less than 3 mm and a diameter of the
3 .	slab surfaces is at least 5 mm.
1	14. (Currently Amended) The method of claim 11, wherein the optical beam has a
2	wavelength-of between 1400 and 1800 nm.

1	13. (Currently Amended) The method of claim 11, wherein further comprising pumping
2	the at least four optical-amplifier slabs are pumped directly by using pump diodes
1	16. (Currently Amended) The method of claim 11, wherein the optical beam is passed
2	through the at least four optical-amplifier slabs and passed within about 1 degree
3	of a Brewster angle of the slab surfaces, wherein half of the at least four optical-
4	amplifier slabs are slanting slanted in one direction and half of the at least four
5	optical-amplifier slabs have an opposite slantare slanted in an opposite direction,
6	wherein theusing opposite slanting half of the at least four optical-amplifier slabs
7	being configured to controlavoids beam spreading inof the an output beam.
1	17. (New) The method of claim 10, wherein the at least two optical-amplifier slabs are
2	each wedge-shaped.
1	18. (New) An amplification system, comprising:
2	a plurality of wedge-shaped slabs each having a thickness dimension of less than
3	1 centimeter and two slab surfaces that are slightly non-perpendicular to a
4	thickness dimension, the plurality of wedge-shaped slabs disposed such
5	that facing slab surfaces of adjacent wedge-shaped slabs are slightly non-
6	parallel and the wedge-shaped slabs are separated by an intervening
7	volume;
8	a cooling fluid in the intervening volume between the adjacent wedge-shaped
9	slabs; and
10	a polarized input beam passed through the slab surfaces of the wedge-shaped
11	slabs near a Brewster angle.

- 1 19. (New) The amplification system of claim 18, wherein the slab surfaces include an
- 2 anti-reflection surface coating.
- 1 20. (New) The amplification system of claim 18, wherein half of the slab surfaces of the
- wedge-shaped slabs are slanted in one direction and half of the slab surfaces of
- 3 the wedge-shaped slabs are slanted in an opposite direction, the opposite slanting
- 4 slab surfaces of the wedge-shaped slabs being configured to control spreading of
- 5 an output beam.
- 1 21. (New) The amplification system of claim 18, wherein one of the slab surfaces of the
- wedge-shaped slabs includes a grating.
- 1 22. (New) The amplification system of claim 18, wherein the polarized input beam has a
- wavelength of between 1400 nm and 1800 nm.
- 1 23. (New) The amplification system of claim 18, wherein the thickness dimension of
- 2 each wedge-shaped slab is less than 3 mm.