

How many nodes? 6 nodes

How many bright bands? 5 (each has width of Δx)

of maxima

Example 2:

An air wedge with thickness of 257um is struck with a beam of 359nm light. The length of the bottom plate is 15cm. What is the distance between nodes?

$$\Delta X = \frac{LX}{2\ell} = \frac{0.15 (359 \times 10^{-9})}{2(257 \times 10^{-6})}$$

$$\Delta x = 1.05 \times 10^{-4} \text{m}$$

Example 3:

A 7.2cm long air wedge is formed with two glass plates. Light of 640nm is reflected from the wedge showing 65 bright fringes when a piece of paper is inserted between the plates. What is the thickness of the paper?

$$\Delta x = \frac{L}{m} = \frac{0.072m}{63}$$

$$t = \frac{L^2}{262} = \frac{0.072(6402)0^{-9}}{2(1.1120^{-3})}$$

ample 4:		
heet of paper 0.015cm thick s	eparates two glass plates whi	ch are 9.3cm long. The distance
ween center of the first and s	venth dark fringe is 1.3cm. W	hat wavelength of light was used?
t=0.015×10 ⁻² m		
L=9.3×10-2m	t = <u>L2</u>	
L 1,5710 M	λ= 2tax	
	5 2(0.015×10 ⁻²)(0 9,3×10 ⁻²)	2.002(7)
1.3x10 ⁻² m	= 6.99×10 ⁻⁶ m	
$\Delta x = \frac{1.3 \times 10^{-2}}{6} = 0.00217m$	= 6.99 µm	
6		