# Uncertainty quantification in Machine Learning

Gabriel Gros

Under the supervision of Cédric Pradalier and Aishwarya Venkataramanan

### **Summary**

- I. Presentation of the project's interest
- II. The two types of uncertainties
- III. Tests on splitting uncertainties
- IV. Trying to estimate epistemic uncertainty
- V. Samples classification as functions of uncertainty



### I. Presentation of the project's interest

#### **Uncertainty quantification**

- Informative purpose
- Many kinds of applications (including vision)

### The problem

Diatoms are hard to classify using AI and often require the eyes of an expert

### The proposed solution

Classify diatoms as functions of their classification uncertainty

- Identify uncertainties
- Measure uncertainties empirically
- Develop existing methods to predict potential outliers
- Use a framework to classify diatoms







### I. Presentation of the project's interest

### The pipeline (1) Object detection

Image of diatoms **(1)** (2)

One instance

- (2) Training given batch of instances
- (3) Framework calculating uncertainty



Neural Network

Classification given confidence

### II. The two kinds of uncertainties

#### **Epistemic uncertainty**

- Accounts for uncertainty in the model parameters
- Uncertainty on the model generated by the data
- Can be reduced with training



#### **Aleatoric uncertainty**

- Captures noise inherent in the observations (sensor noise or motion noise for instance)
- Doesn't depend on the model
- Cannot be reduced



### III. Tests on splitting uncertainties

#### Why?

Could be useful to understand if uncertainty more comes from noised data or from model parameters.

#### A simple classifier : the 1D classifier

$$f(x,\lambda) = \begin{cases} -1, & x < \lambda \\ 1, & x \ge \lambda \end{cases} \quad \text{with } \lambda \sim N(0,\sigma^2)$$

Homoscedastic case → constant standard deviation

#### 2 simple datasets

- Uniform distributions
- Gaussian distributions





### III. Tests on splitting uncertainties

#### **Uniform** case





### III. Tests on splitting uncertainties

#### **Gaussian case**





### IV. Trying to estimate epistemic uncertainty

#### **Fisher Information Matrix**

$$I( heta) = E\left[\left(rac{\partial}{\partial heta} \log f(X; heta)
ight)^2 igg| heta
ight]$$

- Used in Cramer Rao bound (lower bound of the variance of an estimator)
- The epistemic uncertainty is high in sparsely populated regions without training examples.
- The larger the region, the higher the epistemic uncertainty
- Therefore, it can be seen as a confidence region





### IV. Trying to estimate epistemic uncertainty

#### **Obtaining Fisher Information**

$$\theta = \sigma^2$$

$$\lambda \sim N(0, \sigma^2) \xrightarrow{yields} f_{\lambda}(\lambda_i, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{\lambda_i^2}{2\sigma^2}}$$

$$I(\sigma^2) = \frac{N^2(N-1)}{4\sigma^4} \approx \frac{N^4(N-1)}{4\sum_{i=1}^{N}\sum_{j=1}^{N}\lambda_i^2\lambda_j^2}$$

Regarding the results, it seems to have failed...

Therefore, it may be aimless trying to split uncertainties.

#### The results

```
1 fisher_uni = fisher(lambda_uni,n_test)
2 1/fisher_uni
```

3.980242134859097e-10

2.3169135765420645e-10

### V. Samples classification as functions of uncertainty

#### **Process**

1. Extract instances from images (each instance is a diatom and there can be several in one image)

2. Train a network with the extracted instances

Calculate Mahalanobis distances of samples from centroids

4. Identify and rank the diatoms given the confidence returned for each instance



### V. Samples classification as functions of uncertainty

#### Let's look at the results

Test on individuals belonging to the NPAE class give **bad results**...



Very high confidence (to belong to UULN)



Low confidence (to belong to NPAE)



Predicted outlier (while it belongs to NPAE)

### **Conclusion**

 Uncertainty can be split empirically but it seems hard to do it theoretically as shown with Fisher Information Matrix

 Mahalanobis distance is a good way to take into account data covariance but is not always efficient

 Disappointing results with the neural network and the framework: the network is overconfident on predicting a wrong class

- Hard problem since :
  - diatoms of different classes can look very similar
  - diatoms of the same class can look very different

### Individuals from class NPAE





## Thank you for your attention. Don't hesitate if you have any questions!

And thanks, once again, to Cédric Pradalier and Aishwarya Venkataramanan for their help during the whole project