WEKA

PREPARACIÓN DE DATOS

Al cargar el archivo credit-g.arff en Weka se inicia con la preparación y visualización de datos en el programa.

- Visualización de los datos:

Matriz de correlación:

- Visualizar el scatter:

- Remover variables duplicadas: No hay variables duplicadas.

- Remover valores faltantes: El dataset no tiene valores nulos.

- Normalizar las variables para eliminar datos atípicos:

MÉTODOS NO SUPERVISADOS

Se eligen 10 clusters teniendo en cuenta los propósitos por los cuales el usuario solicita el crédito.

- Método Particional:

K-Means:

2	3	4	5	
(38.0)	(92.0)	(121.0)	(154.0)	
0<=X<200	0<=X<200	<0	0<=X<200	n
0.18	0.2206	0.2737	0.2161	
existing paid	existing paid	existing paid	existing paid	exi
radio/tv	radio/tv	new car	radio/tv	furniture
0.0751	0.1348	0.1559	0.1182	
<100	no known savings	<100	<100	
>=7	>=7	<1	1<=X<4	
0.8246	0.7717	0.6474	0.6017	
male mar/wid	male single	female div/dep/mar	female div/dep/mar	m
none	none	none	none	
0.6754	0.7645	0.7355	0.3701	
real estate	life insurance	car	real estate	life
0.3186	0.3651	0.1964	0.2043	
bank	none	none	none	
own	own	rent	own	
0.0877	0.1522	0.0964	0.0563	
unskilled resident	skilled	skilled	skilled	
0.0263	0.1196	0.0579	0.039	
none	none	none	none	
yes	yes	yes	yes	
good	good	bad	good	

5	6	7	8	
(154.0)	(134.0)	(98.0)	(170.0)	(45.0
0<=X<200	no checking	no checking	no checking	no checkin
0.2161	0.2194	0.1567	0.3012	0.318
existing paid	existing paid	critical/other existing credit	existing paid	existing paid
radio/tv	furniture/equipment	new car	radio/tv	new ca:
0.1182	0.1631	0.1272	0.1935	0.249
<100	<100	<100	<100	<10
1<=X<4	4<=X<7	1<=X<4	>=7	>=
0.6017	0.5249	0.5476	0.7392	0.651
le div/dep/mar	male single	male single	male single	male single
none	none	none	none	none
0.3701	0.4975	0.5374	0.6471	0.925
real estate	life insurance	real estate	car	no known propert
0.2043	0.2601	0.3519	0.3097	0.467
none	none	none	none	ban
own	own	own	own	for free
0.0563	0.0995	0.2177	0.149	0.133
skilled	skilled	unskilled resident	skilled	skille
0.039	0.1119	0.5408	0.1706	0.422
none	none	none	yes	ye
yes	yes	yes	yes	уе
good	good	good	good	goo

Time taken to build model (full training data) : 0.1 seconds === Model and evaluation on training set ===

Clustered Instances

0	73	(7%)
1	75	(8%)
2	38	(4%)
3	92	(9%)
4	121	(12%)
5	154	(15%)
6	134	(13%)
7	98	(10%)
8	170	(17%)
9	45	(5%)

- Métodos Jerárquicos:

COBWEB

Clusterer output

```
=== Clustering model (full training set) ===
Number of merges: 348
Number of splits: 272
Number of clusters: 1466
node 0 [1000]
  node 1 [222]
       node 2 [61]
       | node 3 [15]
         | node 4 [2]
          | | leaf 5 [1]
           | node 4 [2]
          | | leaf 6 [1]
          node 3 [15]
          | node 7 [6]
             | leaf 8 [1]
             node 7 [6]
            | leaf 9 [1]
             node 7 [6]
             | leaf 10 [1]
              node 7 [6]
             | node 11 [2]
            | | leaf 12 [1]
         | | node 11 [2]
            | | leaf 13 [1]
         | node 7 [6]
```

```
Clusterer output
 Time taken to build model (full training data): 0.52 seconds
 === Model and evaluation on training set ===
 Clustered Instances
             1 ( 0%)
    6
             1 ( 0%)
   10
             1 ( 0%)
   11
             1 ( 0%)
             1 ( 0%)
   12
   13
            1 ( 0%)
   16
             1 ( 0%)
   17
             1 ( 0%)
   18
            1 ( 0%)
             1 ( 0%)
   20
   21
             2 ( 0%)
   22
             1 ( 0%)
   24
             1 ( 0%)
   26
             1 ( 0%)
   27
             3 ( 0%)
             2 ( 0%)
   29
   30
             1 ( 0%)
   33
             1 ( 0%)
             2 ( 0%)
   35
   37
             1 ( 0%)
   38
             1 ( 0%)
```


Método probabilístico:

EM

Number of clusters: 10										
Number of iterations performed: 4										
	Cluster									
Attribute	0	1	2	3	4	5	6	7	8	9
	(0.12)		(0.06)		(0.09)		(0.05)	(0.3)	(0.08)	(0.1)
<0	8.6472	22.1285	18.3224	15.6245	41.9421	7.6323	3.072	93.619	41.1783	31.8339
0<=X<200	22.1919	20.7996	34.6178	5.0409	22.0223	18.9024	12.5008	84.7057	18.0826	40.1358
>=200	7.9662	7.3463	1.3021	5.4971	9.5287	1.6201	1.5723	27.9934	6.4408	3.733
no checking	89.9761	53.2622	12.5589	22.057	23.4958	20.3138	39.1081	95.3499	15.3516	32.5266
[total]	128.7813	103.5365	66.8012	48.2196	96.9889	48.4687	56.2532	301.668	81.0533	108.2294
duration										
mean	0.2434	0.1683	0.5145	0.0796	0.2586	0.3781	0.3723	0.1513	0.3645	0.3088
std. dev.	0.1197	0.0971	0.1879	0.065	0.1443	0.2284	0.1754	0.0863	0.2229	0.1467
credit history										
no credits/all paid	2.8854	2.0257	7.1165	1.2978	2.2863	1.3632	2.6905	4.9434	8.226	17.1651
all paid	1.1225	1.8993	2.5471	5.0062	5.1398	4.4907	2.4908	13.5506	9.2691	13.4839
existing paid	49.6467	17.4057	36.5293	7.7913	83.0332	29.4472	13.0324	253.4463	32.0009	17.667
delayed previously	11.6817	5.5178	7.6255	4.0282	3.3809	5.6176	13.7585	9.6916	8.9887	27.7093
critical/other existing credit	64.445	77.6879	13.9828	31.0961	4.1486	8.5499	25.2809	21.0361	23.5685	33.2041
[total]	129.7813	104.5365	67.8012	49.2196	97.9889	49.4687	57.2532	302.668	82.0533	109.2294
purpose										
new car	18.4621	26.5781	14.228	29.577	24.4609	16.7872	8.1512	67.3539	18.1014	20.3002
used car	22.0358	3.898	9.4013	1.1547	5.6329	13.3362	17.5575	11.3856	20.3317	8.2662

```
Clusterer output
                                                 126./813 101.5365 64.8012 46.2196 94.9889 46.468/ 54.2532 299.668 /9.0533 106.2294
   class
                                                113.4945 93.7015 21.476 40.2539 56.7012 33.3122 49.7715 210.2252 34.5484 56.5158 13.2868 7.835 43.3252 5.9657 38.2877 13.1565 4.4817 89.4428 44.5049 49.7136 126.7813 101.5365 64.8012 46.2196 94.9889 46.4687 54.2532 299.668 79.0533 106.2294
    good
    bad
    [total]
   Time taken to build model (full training data) : 0.41 seconds
   === Model and evaluation on training set ===
   Clustered Instances
            468 ( 47%)
             85 ( 9%)
             19 ( 2%)
             42 ( 4%)
             38 ( 4%)
            217 ( 22%)
             38 ( 4%)
             38 ( 4%)
             46 ( 5%)
              9 ( 1%)
   Log likelihood: -7.32939
```

Reglas de asociación:

Apriori:

• Convertir variables numéricas a categóricas:

• Aplicar Apriori:

