EE P 538 Analog Circuits for Sensor Systems

Spring 2020

Instructor: Jason Silver, PhD

Announcements

- Solutions for Assignment 2 are posted on Canvas
- Office hours moved to Friday at 7pm
- Assignment 3 due Saturday, April 25 at midnight
- Assignment 4 will be posted April 24
 - Due Saturday, May 2 at midnight

Week 4

- AoE Section 2.5 Negative Feedback
- AoE Chapter 4 Operational Amplifiers

Overview

- Last time...
 - Small-signal BJT model
 - Current sources
 - Differential amplifiers
 - Field effect transistors
 - Small-signal model of a MOSFET
- Today...
 - Basic opamp behavior
 - Feedback
 - Frequency response
 - Non-ideal behavior

Lecture 4 – Opamps

Analog Signal Conditioning

- The goal of signal conditioning is to prepare analog signals for analog-todigital conversion while adding minimal noise
- Gain is used ensure that signals are optimized for ADC resolution and range, while filtering is required to ensure an acceptable signal-to-noise ratio (SNR)
- All components should be designed to minimize loading between stages

Ideal Opamp Characteristics

- Input impedance = ∞
- Output impedance = 0
- Voltage gain = ∞
- Common-mode rejection = ∞
- Offset voltage = 0
- No added noise
- Output can change instantaneously

Opamp "Golden Rules"

$$v_o = A_v (v_i^+ - v_i^-)$$

$$i_+ = i_- = 0$$

- 1. The output tries to do whatever it takes to make the voltage difference between the inputs zero
- 2. The inputs draw no current

Opamp Design Caveats

- 1. Inputs and outputs should be within their prescribed ranges
 - Voltages outside these ranges can damage the opamp
- 2. Feedback should *always*¹ be negative and shouldn't introduce excessive phase shift
 - Phase lag in the feedback path can lead to oscillation!
- 3. Feedback is required at DC to set the operating point
 - This ties into 1, as the input voltage is otherwise ill-defined
- 4. Supply voltages should be bypassed with capacitors to avoid instabilities due to supply rail wiring inductance
 - Most important for opamps with wide bandwidths

¹Electronic oscillators use positive feedback to compensate for energy losses in resonant structures, but this is outside the realm of linear circuit design.

Inverting/Non-inverting Amps

Inverting Amplifier

$$\frac{V_{in}}{R_1} = -\frac{V_{out}}{R_2}$$

$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$

Non-inverting Amplifier

$$\frac{V_{in}}{R_1} = \frac{V_{out} - V_{in}}{R_2}$$

$$\frac{V_{out}}{V_{in}} = \left(1 + \frac{R_2}{R_1}\right)$$

Difference Amplifier

$$V_{out} = -\frac{R_2}{R_1} V_{im} + \frac{R_2}{R_1} V_{ip}$$
$$= \frac{R_2}{R_1} (V_{ip} - V_{im})$$

- R_1 and R_2 form a divider which sets the non-inverting terminal voltage
- V_{ip} sees an inverting gain, while V_{im} sees a non-inverting gain
- Output voltage can be determined by superposition
- Can be used to achieve gain or perform differential to single-ended conversion (or both)

Opamp Integrator

$$V_{out} = -\frac{Z_C}{R}V_{in} = -\frac{V_{in}}{sRC}$$

$$\Delta V_{out} = -\frac{V_{in}}{RC} \Delta t$$

- Opamps allow the design of nearly perfect integrators
- V_{in}/R is a constant current that is integrated onto C
- Avoids the restriction of $V_{out} \ll V_{in}$ for RC "integrators"
- Requires feedback at DC to have stable operating point!

"Leaky" Integrator

$$\frac{V_{out}}{V_{in}} = -\frac{R_2||\frac{1}{sC}}{R_1} = \frac{-R_2/R_1}{sCR_2 + 1}$$

- R_2 (or a reset switch, closed periodically) required to provide DC feedback
- At DC, the capacitor looks like an open circuit, so we just have an inverting amplifier
- At high frequency, the capacitor impedance dominates R_2 , so the structure behaves like an integrator (with some leakage current through R_2)

Feedback

$$A_{CL} = \frac{V_o}{V_i} = \frac{A_{OL}}{1 + \beta A_{OL}}$$

as
$$A_{OL} \to \infty$$
, $A_{CL} \to \frac{1}{\beta}$

- We use *negative* feedback to process the error $V_i \beta V_o$, and A_{OL} should be "large" to minimize this error
- The combination of negative feedback and open-loop gain that is high enough desensitizes the transfer function to variations in open-loop gain
- The feedback factor β is the fraction of the output signal that is fed back to the input

Non-inverting Amplifier

$$v_i^- = \frac{R_1}{R_1 + R_2} V_{out} \longrightarrow \beta = \frac{R_1}{R_1 + R_2}$$

$$A_{CL} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta} = 1 + \frac{R_2}{R_1}$$

- The output voltage, scaled by β , is fed back to the inverting terminal of the opamp
- The opamp only processes the error voltage, $v_i^+ v_i^-$
 - This gives credence to our small-signal assumption when analyzing BJT/MOS circuits

Open-loop Frequency Response

- For internally-compensated opamps, the frequency response is approximately first-order (one pole) within the opamp's bandwidth
- The opamp bandwidth is its unitygain, or transit, frequency ω_T
- The open-loop (DC) gain and bandwidth are related by the open-loop pole frequency:

$$\omega_T \approx A_0 \cdot \omega_{3dB}$$

Transfer function:

$$A_{OL}(j\omega) = \frac{A_0}{1 + j\omega\tau}$$

Magnitude:

$$|A_{OL}(j\omega)| = \frac{A_0}{\sqrt{1 + \omega^2/\omega_{3dB}^2}}$$

Phase:

$$\angle A_{OL}(j\omega) = -\tan^{-1}\omega\tau$$

Open-loop Frequency Response

- As with any first-order system, the magnitude rolls off at 20dB per decade
- The single in-band pole results in 45° of phase lag at the pole frequency, f_{3dB}
- Beyond the unity-gain frequency (f_T) , "non-dominant" poles create additional phase lag and steeper roll-off (not shown)

Closed-loop Frequency Response

- Opamps exhibit a constant *gain-bandwidth product*, approximately equal to f_T
- As the loop βA_0 increases, the 3dB bandwidth increases proportionally

Gain-Bandwidth Product

$$|A_{OL}(j\omega)| = \frac{A_0}{\sqrt{1 + \omega_T^2/\omega_{3dB}^2}} = 1$$
 (1)

$$A_0^2 = 1 + \omega_T^2 / \omega_{3dB}^2 \tag{2}$$

$$\omega_{3dB}^2 A_0^2 = \omega_{3dB}^2 + \omega_T^2 \tag{3}$$

$$\omega_{3dB}A_0 \approx \omega_T \tag{4}$$

Closed-loop Bandwidth

- Because ω_{3dB} and A_0 are constants, so is the gain-bandwidth product
- For different values of β, the magnitude response follows the same roll-off, but "breaks" at a different frequency
- An implicit assumption here is that the feedback network is frequency-independent (i.e. resistors only)

Closed-loop Settling Time

 As expected, settling time decreases with higher feedback factors

$$A_{CL}(s) = \frac{A_0}{1 + s\tau + \beta A_0}$$

$$\tau_{CL} = \frac{\tau}{\beta A_0}$$

$$V_o(t) = u(t)(1 - e^{\frac{-t}{\tau_{CL}}})$$

Real Opamp Characteristics

- Input impedance 1MΩ 1TΩ
- Output impedance: 1Ω 1kΩ
- Voltage gain < 150dB</p>
- Common-mode rejection < 120dB
- Offset voltage: 1µV 1mV
- Nonzero input-referred noise
- Finite slew rate

LM741 Architecture

- LM741 general-purpose opamp from Texas Instruments
- Q_{1,2} form a common-emitter input pair
- C₁ is an internal compensation capacitance which sets the bandwidth
- Q_{14,20} form a push-pull output stage

Finite Gain

A_{OL}	β=1	β = 0.1
40 dB	1%	9%
60 dB	0.1%	1%
80 dB	0.01%	0.1%
100 dB	0.001%	0.01%

- Real opamps exhibit gain based on finite physical parameters (such as transconductance and output resistance)
- Finite open-loop gain results in an error in the output voltage

Finite Gain

$$V_{out} = A_v(v^+ - v^-)$$

$$\frac{V_{out}}{V_{in}} = -\frac{\frac{R_2}{R_1}}{\frac{1}{A_v} \left(1 + \frac{R_2}{R_1}\right) + 1}$$

- Opamp inputs are only exactly equal if the open loop gain is infinite
- Finite open-loop gain of the opamp affects the precision of the closed-loop gain
- Even if R_1 and R_2 are *exactly* their expected values, there will be an error in the output voltage

Loading with Feedback

Without loading:

$$V_{out} = \frac{A_v}{1 + \beta A_v} V_{in}$$

With loading:

$$V_{out} = \frac{A_v}{\frac{R_o}{R_1 + R_2} + 1 + \beta A_v} V_{in}$$

- The feedback network comprising R_2 and R_1 loads the opamp's output
- The effect of the loading depends on the magnitude of the opamp's output resistance relative to the feedback network resistance
- Loading due to the feedback network affects precision, but the effect is substantially alleviated by high open-loop gain

Input Mismatch

- Amplifier does "whatever it takes" to ensure $I_{D1} = I_{D2} = I_{bias}/2$
- Manufacturing variations result in a mismatch in the threshold voltages of M₁/M₂
- Because the source node is common to both transistors, their gate (or base, for BJT's) voltages must differ
- Mismatch of other device parameters plays a role, but threshold mismatch dominates

Input Mismatch

$$I_D = \kappa (V_{GS} - V_{th})^2$$

$$V_{GS1} = \sqrt{\frac{I_{tail}}{2\kappa}} + V_{th1} \quad V_{GS2} = \sqrt{\frac{I_{tail}}{2\kappa}} + V_{th2}$$

$$\Delta V_{th} = V_{th1} - V_{th2} = v_{os}$$

$$v^- = v^+ + v_{os}$$

Input Offset Voltage

$$\frac{V_{in} - v_{os}}{R_1} = \frac{v_{os} - V_{out}}{R_2}$$

$$V_{out} = -\frac{R_2}{R_1}V_{in} + v_{os}\left(1 + \frac{R_2}{R_1}\right)$$

- Use superposition to include the effect of amplifier offset on the output voltage
- Input offset "sees" the gain of a non-inverting amplifier, while V_{in} is amplified as expected
- In general, offset voltage is much worse for FET-based opamps, primarily due to threshold voltage mismatch (<u>Ltspice: BJT OTA offset</u>)

Offset Nulling

- I_{+} and I_{-} nominally equal, and $V_{\rm out} = V_{\rm in} v_{\rm OS}$
- R_{null} increases the effective "size" of Q_7 in the current mirror, making I_{\perp} greater than $I_{+}(I_{+}+I_{\perp}=I_{tail})$
- Since more current flows through Q_5 , its V_{BE} increases as R_{null} decreases
- R_{null} is adjusted until $V_{out} = V_{in}$
- Offset nulling (LTspice)

Offset Voltage Drift

Before offset nulling: $V_{out} = v_{OS}(T)$

After offset nulling: $V_{out} = v_{OS}(T) - v_{OS}(T_0)$

- Dependence of offset voltage on temperature confounds simply "trimming" the offset at a given temperature as a blanket solution
- Nulling is performed at a single temperature (say, $T_0 = 25$ °C)
- However, an offset voltage drift of 10µV/°C can cause output errors of a mV or more over typical operating ranges (e.g. –40 to 125°C)

Input Bias Current

$$v_i^- = 0$$

$$I_{R2} = I_B$$

$$V_{out} = I_B R_2$$

- Opamp input currents cause an offset error in the output voltage proportional to the resistance of the feedback network
- Input currents can be as low as single-digit picoamperes (FET inputs), into the microamperes (BJT inputs)
- To avoid large voltage errors, use smaller resistances (but not so small as to load the opamp)

Bias Current Compensation

$$v_i^+ = -I_B R_3 = v_i^-$$

$$V_{out} = I_B R_2 - \left(1 + \frac{R_2}{R_1}\right) I_B R_3 = 0$$

- Solution: Add a resistor to the non-inverting terminal to equalize the voltage drops due to input bias current
- If the value of R_3 is equal to the *parallel combination of* R_1 *and* R_2 , the offset is cancelled
- It is good practice to keep R_1 and R_2 small, to minimize mismatch errors

Input Offset Current

$$I_{OS} = I_B^- - I_B^+$$

$$V_{out} = -\left(1 + \frac{R_2}{R_1}\right)I_B^+ R_3 + I_B^- R_2$$

$$V_{out} = R_2(I_B^- - I_B^+) = R_2 I_{OS}$$

- Input bias current is less problematic for balanced circuits
- However, a mismatch between I_{B}^{+} and I_{B}^{-} (I_{OS}) will cause an error
- The only recourse is to use small resistance values in the feedback network (ensuring minimal loading of the opamp output)
- Input offset current is typically around 10 25% of input bias current

Opamp Supply Voltage

- Both bipolar and unipolar (ground-referenced) options abound
- Bipolar amplifiers can avoid ACcoupling for ground-referenced sensors
- Opamp power supply should be compatible with that of the ADC
- Most digital systems are unipolar, level conversion may be needed

$$V^- \leq v_i^+, v_i^-, v_o \leq V^+$$

Opamp Quiescent Current

- Supply current opamps varies widely, dependent on application
- Both bandwidth and noise scale favorably with increasing supply current
- However, higher current means more heat generation
- For power-sensitive applications (e.g. energy harvesting or batterypowered), power efficiency is critical

$$f_T \propto I_Q \quad e_n \propto \frac{1}{\sqrt{I_Q}}$$

LM741 Specifications

Parameter	Typical
Open-loop gain	106 dB
Bandwidth	1.5 MHz
Input resistance	2 ΜΩ
Input offset voltage	1 mV
Offset voltage drift	15 μV/°C
Input bias current	80 nA
Input offset current	20 nA
Supply current	1.7 mA