

Security

Security Topics

Chapters

- **Chapter 29** Cryptography
- Chapter 30 Message Authentication, User
 Authentication, and Key
 Management
- **Chapter 31** Security Protocols in The Internet

Chapter 29

Cryptography

29.1 Introduction

Introduction to Cryptography

Figure 29.1 Cryptography components

In cryptography, the encryption/decryption algorithms are public; the keys are secret.

29.2 Symmetric-Key Cryptography

Traditional Cipher

Block Cipher

Operation Modes

In symmetric-key cryptography, the same key is used by the sender (for encryption) and the receiver (for decryption). The key is shared.

In symmetric-key cryptography, the same key is used in both directions.

Symmetric-key cryptography is often used for long messages.

Encryption algorithm

Substitute top row character with bottom row character

Decryption algorithm

Substitute bottom row character with top row character

Key

In monoalphabetic substitution, the relationship between a character in the plaintext to the character in the ciphertext is always one-to-one.

Figure 29.6

Character in plaintext

Character in Ciphertext

Key = (Position of character in the text) mod 26

In polyalphabetic substitution, the relationship between a character in the plaintext and a character in the ciphertext is one-to-many.

Figure 29.7 Transpositional cipher

Figure 29.13 General scheme of DES

The DES cipher uses the same concept as the Caesar cipher, but the encryption/decryption algorithm is much more complex due to the sixteen 48-bit keys derived from a 56-bit key.

IV: Initialization Vector P_N : Plaintext Block N C_N : Ciphertext Block N

29.3 Public-Key Cryptography

RSA

Choosing Public and Private Keys

Public-key algorithms are more efficient for short messages.

