Laboratórna úloha č. 6

Určenie momentov zotrvačnosti tuhých telies metódou torzných kmitov

Úloha: Zmerať direkčný moment pružiny torzného kyvadla a využiť ho na meranie momentov zotrvačnosti vybraných telies.

Teoretický úvod

Moment zotrvačnosti J telesa je fyzikálna veličina charakterizujúca zotrvačnosť telesa voči otáčavému pohybu. J závisí nielen od hmotnosti telesa, ale aj od jeho tvaru a od polohy osi otáčania.

Momenty zotrvačnosti určíme na základe doby kmitu torzného kyvadla. Zariadenie, ktoré umožňuje realizovať zadané úlohy, pozostáva z masívneho stojana v ktorom je v ložiskách upevnená zvislá osová tyč - os otáčania (obr. 1). Špirálová pružina je pripevnená jedným koncom k stojanu a druhým na osovú tyč. Na os budeme prichytávať aj symetrické telesá rôzneho tvaru, napr. guľu alebo aj vodorovnú tyč s posuvnými závažiami (situácia znázornená na obr. 1), ktorých momenty zotrvačnosti chceme určiť. Ak teleso pootočíme

Obr. 1: Zariadenie na uskutočnenie torzných kmitov. Obrázok znázorňuje situáciu, keď je na (zvislú) os torzného kyvadla upevnená vodorovná tyč s posuvnými závažiami. Z nameranej periódy torzných kmitov budeme vedieť určiť moment zotrvačnosti vodorovnej tyče so závažiami.

o uhol φ , bude ho moment sily špirálovej pružiny tlačiť späť do rovnovážnej polohy. Pohybová rovnica telesa bude mať tvar

$$J \frac{\partial^2 \varphi}{\partial t^2} \vec{u} = \vec{M} \tag{1}$$

kde \vec{u} je jednotkový vektor rovnobežný s osou otáčania a \vec{M} je moment sily vyvolaný pružinou. J je moment zotrvačnosti kyvadla (jeho rotujúcej časti). Hodnota J teda zahŕňa jednak príspevok od telesa upevneného na os kyvadla a aj príspevok samotnej (zvislej) osi kyvadla. Ten však zanedbáme, nakoľko je os veľmi tenká. Predpokladáme, že moment sily je priamoúmerný výchylke φ . Potom

$$\vec{M} = -\kappa \,\varphi \,\vec{u} \tag{2}$$

V rovnici (2) vystupuje tzv. **direkčný moment pružiny** κ , čo je silová konštanta torzných kmitov. Znamienko mínus vyjadruje skutočnosť, že moment sily pôsobí proti výchylke – pružina sa snaží vrátiť teleso do rovnovážnej polohy, kedy výchylka $\varphi = 0$.

Dosadením vyjadrenia (2) do rovnice (3) dostaneme pohybovú rovnicu torzného kyvadla

$$\frac{\partial^2 \varphi}{\partial t^2} = -\frac{\kappa}{J} \varphi \tag{3}$$

čo je rovnica harmonického oscilátora. Jej všeobecným riešením je

$$\varphi(t) = \varphi_0 \sin\left(\sqrt{\frac{\kappa}{J}} t + \beta\right) \tag{4}$$

Kyvadlo teda vykonáva periodický pohyb s periódou (dobou kmitu) $T=2\pi\sqrt{J/\kappa}$. Ak teda poznáme direkčný moment κ a odmeriame periódu T, nájdeme moment zotrvačnosti kyvadla

$$J = \frac{T^2}{(2\pi)^2} \,\kappa \tag{5}$$

Metóda merania a postup práce

1. Určenie direkčného momentu pružiny

Na to, aby sme torzné kyvadlo mohli v ďalšom postupe využiť na zistenie momentov zotrvačností rôznych telies, potrebujeme najprv poznať hodnotu direkčného momentu κ jeho pružiny. Zmeriame ju nasledovným postupom. Na os otáčania upevníme vodorovnú tyč (obr. 1). Vo vzdialenosti r od osi otáčania zavesíme na tyč silomer tak, aby bol kolmý na vodorovnú tyč aj na os otáčania. Ak potom ťaháme silomer silou F, tak pôsobíme na zariadenie momentom sily M=rF, kde údaj r je ramenom sily. Aby sa háčik silomeru nepokĺzol po vodorovnej tyči, upevníme na tyč posuvné závažie tak, aby podopieralo háčik silomera. V tejto podúlohe teda závažie nemá nijaký podstatný fyzikálny význam, len pomáha pohodlne a presne umiestniť háčik silomera.

Zvolíme rameno sily rovné r=10 cm. Tyč vychýlime z rovnovážnej polohy postupne o uhly $\varphi=\pi$, 2π , 3π a 4π a zakaždým odmeriame silomerom silu potrebnú na udržanie tyče vo vychýlenej polohe. Dôležité je, aby tyč a silomer boli pri meraní na seba kolmé. Súčinom nameranej sily a ramena sily r dostaneme príslušný moment sily, ktorý budeme značiť $M_{10}(\varphi)$ a zapíšeme jeho hodnoty do príslušnej tabuľky.

Zo vzťahu (5) vyplýva, že presnosť získaných hodnôt momentu zotrvačnosti závisí od toho, ako presne poznáme hodnotu direkčného momentu κ . Preto na zvýšenie presnosti zmerania κ spravíme meranie momentu sily ešte aj pre r=15 a r=20 cm. Potom pre každý uhol φ vypočítame strednú hodnotu momentu sily

$$\langle M(\varphi) \rangle = \frac{1}{3} \left[M_{10} + M_{15} + M_{20} \right] \equiv M(\varphi) \tag{6}$$

kde M_{10} je moment sily zmeraný pre rameno sily 10 cm pri uhle φ a obdobne M_{15} a M_{20} . [Miesto zložitejšieho zápisu $\langle M(\varphi) \rangle$ budeme ďalej zvyčajne písať $M(\varphi)$ alebo len M.] Treba si uvedomiť, že nameraný moment sily M a ani pomocné hodnoty M_{10} , M_{15} a M_{20} v princípe nemajú závisieť od ramena sily. Ako od premennej majú závisieť len od uhla výchylky φ (a samozrejme aj od direkčného momentu pružiny, čo je však podľa predpokladu konštanta). Napriek tomu nemusia byť namerané hodnoty M_{10} , M_{15} a M_{20} pre daný uhol φ navzájom úplne rovné, čo je spôsobené rôznymi zdrojmi experimentálnych chýb. Preto z nich robíme vyššie uvedený priemer. Získané hodnoty M vynesieme do grafu závislosti M od výchylky φ . Presvedčíme sa, že $M(\varphi)$ lineárne rastie s φ (teda $M = \kappa \varphi$) v súlade s rovnicou (2). Lineárnou regresiou typu y = bx nájdeme smernicu tejto závislosti, ktorá je rovná direkčnému momentu κ .

2. Meranie periódy

Momenty zotrvačnosti budeme určovať z periódy kmitov torzného kyvadla. Periódu meriame nasledovným postupom. Postavíme snímač do takej vzdialenosti od osi otáčania, aby svetelný lúč snímača mohol byť prerušený tenkým hrotom na telese. V rovnovážnej polohe musí by svetelný lúč prerušený hrotom, čo indikuje červené svetielko na snímači. Ďalšie detaily postupu merania periódy nájdete v návode priloženom k snímaču.

Teleso vychýlime z rovnovážnej polohy vždy o rovnaký uhol, napr. $\pi/2$ a pustíme. Merací prístroj zaznamená čas medzi dvoma prechodmi hrotu cez svetelný lúč, teda polovicu periódy (tzv. kyv, čo je polovica kmitu). Meranie opakujeme 3-krát pri vychýlení telesa na jednu aj druhú stranu a nájdeme strednú hodnotu periódy T.

3. Meranie momentu zotrvačnosti rôznych telies

Dostávame sa k hlavým náplniam tejto praktickej úlohy. Vybrané teleso pripevníme na os otáčania a podľa časti 2 odmeriame jeho dobu kmitu T. Zo vzťahu (5) nájdeme moment zotrvačnosti J. V tabuľke nájdeme hmotnosť telesa, odmeriame jeho rozmery, vypočítame teoretickú hodnotu momentu zotrvačnosti J_{teor} a porovnáme ju s hodnotou J. Využijeme analytické vzťahy pre momenty zotrvačnosti vybraných telies: 1

teleso	disk, valec	guľa	plášť valca	tyč
$J_{ m teor}$	$\frac{1}{2}mR^2$	$\frac{2}{5}mR^2$	$\frac{1}{2}m(R_1^2 + R_2^2)$	$\frac{1}{12}m_{\rm T}\ell^2$

 $^{^1}$ Fyzikálny význam veličín v tabuľke je zrejmý: m je hmotnosť uvažovaného telesa, R je jeho polomer. R_1 a R_2 označujú vnútorný a vonkajší polomer dutého valca. m_T je hmotnosť tyče a ℓ je jej dĺžka.

4. Určenie hmotností závaží a tyče

V tejto podúlohe budeme pracovať so špecifickým telesom, ktorým bude vodorovná tyč so symetricky umiestnenými závažiami podľa obr. 1. Analytický vzťah pre moment zotrvačnosti vodorovnej tyče so závažiami má tvar

$$J = J_{\rm T} + 2mr^2 \tag{7}$$

kde m je hmotnosť závažia, r je vzdialenosť jednotlivého závažia od osi otáčania a $J_{\rm T}$ je moment zotrvačnosti tyče. Ak je dĺžka tyče ℓ a jej hmotnosť $m_{\rm T}$, potom

$$J_{\rm T} = \frac{1}{12} m_{\rm T} \ell^2 \tag{8}$$

Upevníme závažia na tyč do vzdialeností r od osi otáčania a odmeriame periódu kmitov takéhoto telesa. Z rovnice (5) vypočítame moment zotrvačnosti J. Úlohu zopakujeme pre $r=5,\ 10,\ 15,\ 20$ a 25 cm. Do grafu vynesieme závislosť J od r^2 . Presvedčíme sa, či táto závislosť je lineárna, ako by mala byť podľa teoretického vzťahu (7). Z lineárnej regresie a porovnaním so vzťahom (7) nájdeme smernicu (2m) ako aj konštantný člen (J_T) . Odmeriame dĺžku tyče ℓ a z rovnice (8) odvodíme vzťah pre hmotnosť tyče:

$$m_{\rm T} = \frac{12J_{\rm T}}{\ell^2} \tag{9}$$

Presnosť merania

Podstatným faktorom, ktorý ovplyvňuje presnosť získaných výsledkov, je hodnota direkčného momentu κ lineárnej charakteristiky pružiny. Preto sa presvedčíme, či

- (i) pre danú hodnotu výchylky φ hodnota súčinu M = rF naozaj nezávisí od r. Rôzne hodnoty M pre ten istý uhol φ indikujú nepresnosť merania sily silomerom.
- (ii) v lineárnej regresii $M(\varphi) = k\varphi + q$ dostaneme q = 0, pretože nulová výchylka $\varphi = 0$ znamená nulový moment M. Nenulová hodnota q by indikovala buď nepresnosť merania alebo nelineárnu charakteristiku pružiny [t.j. že by neplatil predpoklad (2)].

Jednotlivé zistenia zapíšeme do zhodnotenia výsledkov v závere protokolu.

Iným zdrojom nepresnosti merania je skutočnosť, že sme v teoretickom modeli zanedbali tlmenie torzných kmitov. Ak tyč vychýlime a necháme ju kmitať dlhšiu dobu (napr. 5 periód), spozorujeme, že jej výchylka po každej perióde klesá. Z teórie tlmeného oscilátora vieme, že tlmenie predlžuje peródu kmitov. Preto nami nameraná perióda T je o niečo väčšia, ako perióda netlmených kmitov, ktorá vystupuje v rovnici (5). Tento rozdiel periód pri meraní zanedbáme.

Tretím faktorom, ktorý ovplyvňuje presnosť merania v časti 4, je zanedbanie priestorových rozmerov závaží. Závažia sme považovali za hmotné body s momentom zotrvačnosti

 $2mr^2.$ Presnejší výpočet, ktorý by zahrnul výšku valčekov $h=4~{\rm cm},$ dá moment zotrvačnosti závaží

 $2mr^2 + \frac{2}{3}mh^2 (10)$

Výpočtom sa dá presvedčiť, že jeho korekciu $(2/3)mh^2$ môžeme zanedbať.

Meno: Krúžok: Dátum merania:

Protokol laboratórnej úlohy č. 6

Určenie momentov zotrvačnosti tuhých telies metódou torzných kmitov

Stručný opis metódy merania

Vzťahy, ktoré sa používajú pri meraní

Prístroje a pomôcky

Záznam merania, výpočty a výsledky

Meranie direkčného momentu ²

	r = 1	0 cm	r = 15 cm		r = 20 cm		
φ	F	M_{10}	F	M_{15}	F	M_{20}	M
π							
2π							
3π							
4π							
	(údaje sú v N a v Nm)						

Koeficient determinovanosti z regresie	$ig \mathcal{R}_{ ext{det}}^2 =$
Direkčný moment pružiny	$\kappa =$

Meranie momentov zotrvačnosti telies ³

(časy a momenty zotrvačnosti v základných jednotkách SI)

Prvé teleso:

teleso:		m =		R =		
i	1	2	3	4	5	6
$T_i/2$						
T_i						
priemerná hodnota periódy			T =			
moment zotrvačnosti			$J = J_{\text{teor}} =$			

 $^{^2}$ Symbol \mathcal{R} v druhej tabuľke zodpovedá veľkému <u>písanému</u> R. Uvádzame ho takto preto, aby bol odlíšený od polomerov, ktoré v tejto úlohe píšeme veľkými tlačenými R.

 $^{^3}$ Ak je teleso valcovým plášťom, uvedieme do príslušnej tabuľky namiesto údaja R hodnoty R_1 a R_2 .

Druhé teleso:

teleso:		m =		R =		
i	1	2	3	4	5	6
$T_i/2$						
T_i						
priemerná hodnota periódy		T =				
moment zotrvačnosti			J =		$J_{\text{teor}} =$	

Meranie hmotností závaží a tyče

(časy a momenty zotrvačnosti v základných jednotkách SI)

r (cm)	5	10	15	20	25
T/2					
T					
J					

Výpočet hmotnosti tyče podľa vyjadrenia (9) s uvedením hodnôt a rozmerov veličín, bez zaokrúhlení:

$$m_{\rm T} = \frac{12J_{\rm T}}{\ell^2} =$$

Hmotnosť závažia z regresie	m	=
Hmotnosť závažia z váženia	$m_{ m v}$	=
Relatívna chyba	$\frac{m - m_{\rm v}}{m_{\rm v}}$	=
Dĺžka tyče	ℓ	=
Moment zotrvačnosti tyče z regresie	$J_{ m T}$	=
Hmotnosť tyče podľa (9)	$m_{ m T}$	=

Prílohy

- graf závislosti $M(\varphi)$
- $\bullet \,$ graf závislosti $J(r^2)$

Zhodnotenie výsledkov

Dátum odovzdania protokolu:

Podpis študenta:

Hodnotenie a podpis učiteľa: