Использование отношения Хигмана-Крускала для прерывания рекурсивной специализации функций

Студент группы ИУ9-82: Кошелев А. А. Научный руководитель: Коновалов А. В.

Постановка задачи

Устранить зацикливание компилятора языка Рефал-5λ, возникающее при специализации функций, с помощью отношения Хигмана-Крускала.

Для этого необходимо:

- изучить причины возникновения зацикливания и способы его прерывания;
- разработать и реализовать алгоритм применения отношения Хигмана-Крускала и алгоритм обобщения сигнатур;
- проверить корректность работы реализованных алгоритмов и измерить изменение времени выполнения компиляции.

Специализация функций

Пусть F — функция, F(args) — вызов функции F. Специализация — такое порождение новой функции F' и замена вызова F(args) на вызов F'(args'), что в F' учтена часть статически известной информации о её вызове (например, значения некоторых аргументов в args). Тогда:

- юда.
- F' экземпляр функции F;
- ullet информация, учтённая о вызове F(args) сигнатура экземпляра F'.

Алгоритм специализации функций

- 1. Происходит поиск вызова специализируемой функции.
- 2. Определяется сигнатура.
- 3.1. Если была получена уже встречавшаяся сигнатура, указывается вызов уже построенного экземпляра.
- 3.2. Если сигнатура новая, строится новый экземпляр функции, указывается её вызов, запоминается сигнатура.

Специализация рекурсивных функций

Зацикливание специализации

Обнаружение зацикливания

- Сравниваем сигнатуры с помощью отношения Хигмана-Крускала (обозначается знаком ⊴).
- Интуитивное определение отношения Хигмана-Крускала:
- для сигнатур S_1 , S_2 выполняется $S_1 ext{ } ext{ }$
- Примеры:

$$x \trianglelefteq (x)$$
$$y z \trianglelefteq f(g(x), y)$$

Формальное определение

Отношение Хигмана-Крускала имеет индуктивное определение:

- 1. $x ext{ } ext{$
- 2. $X ext{ ≤ } f(Y_1, Y_2, ..., Y_n)$, если $f ext{ − }$ функция и
- $\exists i: X \leq Y_i$.
- 3. $f(X_1, X_2, ..., X_n) ext{ } ext{ } ext{ } f(Y_1, Y_2, ..., Y_n)$, если f функция и $\forall \ i = 1, ..., n \ X_i ext{ } ex$

Теорема Хигмана-Крускала

Отношение Хигмана-Крускала является отношением хорошего предпорядка для выражений в конечном алфавите.

Для любой бесконечной последовательности сигнатур $\{S_i\}_{i\in\mathbb{N}}$, имена переменных в которых составлены из конечного алфавита:

 $\exists i, k \in \mathbb{N}, i < k : S_i \leq S_k$

Обобщение сигнатур

- Пусть для сигнатур S_1 , S_2 выполнилось отношение Хигмана-Крускала: $S_1 extttle S_2$.
- Обобщение S_1 и S_2 сигнатура S_{gen} , из которой можно подстановками получить S_1 , S_2 .
- Пример:

$$S_1 = () y, S_2 = ('a') y.$$

 $S_{gen} = (x) y.$

При
$$x = \varepsilon$$
 получаем $S_{gen} \rightarrow S_1$.

При
$$x = 'a'$$
получаем $S_{gen} \rightarrow S_2$.

Частный случай обобщения

$$S_i \leq S_k$$

$$S_{gen} = S_i$$

Обобщение снизу

Специализация функций в языке Рефал-5х

- Была реализована путём введением *статических* и *динамических* параметров функции.
- В теле экземпляра вместо всех вхождений статического параметра подставляется его фактическое значение (из аргумента).
- При этом значением параметра может быть выражение с переменными и вызовами функций.

Разработка и реализация

- 1) Распознавание зацикливаний в цепочках экземпляров по отношению Хигмана-Крускала:
- отслеживание истории сигнатур;
- использование следствий из определения отношения для проверки его выполнения.
- 2) Обобщение похожих вызовов:
- использование алгоритма глобального сложнейшего обобщения.

Тестирование

- Проверена корректность работы алгоритмов.
- Проведены замеры времени компиляции исходного кода компилятора, в каждом случае 13 замеров:

Версия компилятора	Время	Время	Время
	компиляции,	компиляции,	компиляции,
	медиана, с	I квартиль, с	III квартиль, с
Без внесённых	36.59	36.44	37.17
изменений			
С внесёнными	36.97	36.83	37.09
изменениями	30.97	30.03	37.09

- Медианное время увеличилось на 1%.
- Вывод: для программы, написанной в рекомендованном стиле программирования Рефала-5λ, логика проверки зацикливания не является узким местом.

Заключение

- Было рассмотрено использование отношения Хигмана-Крускала и алгоритма обобщения снизу для решения проблемы зацикливания рекурсивной специализации.
- Методы были разработаны и реализованы в компиляторе языка Рефал-5λ.
- Тестирование показало корректность работы реализованных методов и незначительное изменение времени выполнения компиляции.