第6章 统计分析建模方法

主要内容

- □主成分分析法
- □聚类分析

主成分分析法 Principal Component Analysis PCA

内容

- ◆ 一、前言
- ◆ 二、<u>问题的提出</u>
- ◆ 三、主成分分析
 - 1. 二维数据的例子
 - 2. 主成分分析法的几何解释
 - 3. 主成分分析法的基本原理和相关概念
 - 4. 主成分分析法的性质
 - 四、主成分分析算法步骤
- ◆ 五、<u>PCA应用实例</u>
- ◆ 六、 结论

1. 前言

●汇报什么?

- 假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。
- 如果让你介绍公司状况,你能够把这些指标和 数字都原封不动地摆出去吗?
- · 当然不能。<u>实例1</u> 实例2
- 你必须要把各个方面作出高度概括,用一两个 指标简单明了地把情况说清楚。

前言

- 多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性.
 - 问题:能否用较少的新变量尽可能多地保留原来较多的变量 所反映的信息?
 - 事实上,这种想法是可以实现的。因为在许多实际问题中, 多个变量之间是具有一定的相关关系的。
 - 主成分分析原理:是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
 - 主成分分析方法就是综合处理这种问题的一种强有力的方法。

2. 问题的提出

在力求数据信息丢失最少的原则下,对高维的变量空间降维,即研究指标体系的少数几个线性组合,并且这几个线性组合所构成的综合指标将尽可能多地保留原来指标变异方面的信息。这些综合指标就称为主成分。要讨论的问题是:

(1) 如何作主成分分析?

当分析中所选择的变量具有不同的量纲, 变量水平差异很大,应该选择基于相关系数矩 阵的主成分分析。

444.94	40.62	68.43	84.44	4.39
439.74	39.72	67.48	84.38	4.12
436.9	34.76	68.66	85.47	4.27
425.47	38.31	63.13	78.61	8.44
425.17	32.94	59.51	79.82	4.75
422.56	29.85	61.53	80.51	5.72
422.19	32.22	59.8	78.43	6.82
421.91	31.4	58.15	78.38	6.28
416.9	29.82	57.38	77.91	7.07
412.59	30.73	55.72	74.49	9.1
404.88	25.98	51.9	71.98	9.25
396.83	26.98	50.04	68.93	10.67
	→ × × × × × ⊢	→ 		

各个变量之间差异很大

(2) 如何选择几个主成分。

主成分分析的目的是简化变量,一般情况下主成分的个数应该小于原始变量的个数。 关于保留几个主成分,应该权衡主成分个数 和保留的信息。

(3)如何解释主成分所包含的几何意义或经济意义或其它。

实例1: 经济分析

美国的统计学家斯通(Stone)在1947年关于国民 经济的研究是一项十分著名的工作。他曾利用美国 1929-1938年各年的数据,得到了17个反映国民收 入与支出的变量要素,例如雇主补贴、消费资料和 生产资料、纯公共支出、净增库存、股息、利息、 外贸平衡等等。

● 在进行主成分分析后,竟以97.4%的精度,用 三个新变量就取代了原17个变量。

根据经济学知识,斯通给这三个新 变量分别命名为总收入F1、总收入变化 率F2和经济发展或衰退的趋势F3。更有 意思的是,这三个变量其实都是可以直 接测量的。

主成分分析就是试图在力保数据信息丢失最少的原则下,对这种多变量的数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。

很显然,识辨系统在一个低维空间要比在一个高维空间容易得多。

实例2: 成绩数据

· 100个学生的数学、物理、化学、语文、历史、英语的成绩如下表(部分)。

学生代码	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
4	80	69	75	74	74	63
5	74	70	80	84	81	74
6	78	84	75	62	71	64
7	66	71	67	52	65	57
8	77	71	57	72	86	71
9	83	100	79	41	67	50
•••	•••	•••	•••	•••	•••	•••

从本例可能提出的问题

- · 目前的问题是,能不能把这个数据的 6个变量用一两个综合变量来表示呢?
- 这一两个综合变量包含有多少原来的信息呢?
- 能不能利用找到的综合变量来对学生排序呢?这一类数据所涉及的问题可以推广到对企业,对学校进行分析、排序、判别和分类等问题。

PCA: 二维数据分析

学生代码	数学	物理	化学	语文	历史	英语
1	65	61	72	84	81	79
2	77	77	76	64	70	55
3	67	63	49	65	67	57
4	80	69	75	74	74	63
5	74	70	80	84	81	74
6	78	84	75	62	71	64
7	66	71	67	52	65	57
8	77	71	57	72	86	71
9	83	100	79	41	67	50
•••	•••	•••	•••	•••	•••	•••

例中的的数据点是六维的;也就是说,每个观测值(学生成绩)是6维空间中的一个点。我们希望把6维空间用低维空间表示。

成绩

学生代码	数学	物理	化学	语文	历史	英语	平均成绩
1	65	61	72	84	81	79	73.7
2	77	77	76	64	70	55	69.8
3	67	63	49	65	67	57	61.3
4	80	69	75	74	74	63	72.5
5	74	70	80	84	81	74	77.2
6	78	84	75	62	71	64	72.3
7	66	71	67	52	65	57	63
8	77	71	57	72	86	71	72.3
9	83	100	79	41	67	50	70
	•••	•••	•••			•••	
単科平均 成绩	74.1	74	70	66.4	73.6	63.3	

- 为了方便,我们在二维空间中讨论主成分的几何 意义。
- 假定数据只有二维,即只有两个变量,它们由横 坐标和纵坐标所代表,因此每个观测值都有相应 于这两个坐标轴的两个坐标值。
- 如果这些数据形成一个椭圆形状的点阵(这在变量的二维正态的假定下是可能的)。

设有n个样本 ,每个样本有 两个观测变量 x_l和x₂,在由 变量x₁和x₂所 确定的二维平 面中,n个样 本点所散布的 情况如椭圆状

设有n个样本有量本有量本有量和x₂,和x₂,和二个种一个和型。由所平的,所有是由所平的,所有是由所平的。

设有n个样本有量本有量本有量和x₂,和x₂,和量定中点次和量之中点次,和工作的,所有是由所平样的状态。

由图可以看出这n个样本点 无论是沿着x₁轴方向或x₂轴 方向都具有较大的离散性, 其离散的程度可以分别用观 测变量x₁的方差和x₂的方 差定量地表示。显然,如果 只考虑xi和x。中的任何一个, 那么包含在原始数据中的信 息将会有较大的损失。

如果我们将x1轴 和x2轴先平移,再 同时按逆时针方向 旋转一个角度,得 到新坐标轴 F_1 和 F_2 。 F_1 和 F_2 是两个新变 量。

轴

绘

轴

新坐标 F_1 , F_2 除了可以对包含在 X_1 , X_2 坐标系中的信息起着浓缩作用之外,还具有不相关的性质,这就使得在研究复杂问题时避免了信息重叠所带来的虚假性。二维平面上的个点的方差大部分都归结在 F_1 轴上,而 F_2 轴上的方差很小。 F_1 和 F_2 称为原始变量 X_1 和 X_2 的综合变量。

新坐标体系 F_1 , F_2 简化了信息结构,抓住了主要矛盾。

椭圆有一个长轴和一 个短轴。在短轴方向上, 数据变化很少: 在极端的 情况,短轴如果退化成一 点,那只有在长轴的方向 才能够解释这些点的变化 了;这样,由二维到一维 的降维就自然完成了。

- 当坐标轴和椭圆的长短轴平行,那么代表长轴的变量就描述了数据的主要变化,而代表短轴的变量就描述了数据的次要变化。
- 但是,坐标轴通常并不和椭圆的长短轴平行。因此,需要寻找椭圆的长短轴,并进行<u>变换,使得</u> 新变量和椭圆的长短轴平行。
- 如果长轴变量代表了数据包含的大部分信息,就用该变量代替原先的两个变量(舍去次要的一维),降维就完成了。
- 椭圆(球)的长短轴相差越大,降维也越有道理。

- 对于多维变量的情况和二维类似,也有高维的椭球,只不过无法直观地看见罢了。
- 首先把高维椭球的主轴找出来,再用 代表大多数数据信息的最长的几个轴 作为新变量;这样,主成分分析就基 本完成了。
- · 注意,和二维情况类似,高维椭球的主轴也是互相正交的。这些互相正交的的新变量是原先变量的线性组合,叫做主成分(principal component)。

- 正如二维椭圆有两个主轴,三维椭球有三个主轴一样,有几个变量,就有几个主成分。
- 选择越少的主成分,降维就越好。
- 选取标准是什么呢?
- 一一这些被选的主成分所代表的主轴的长度 之和占了主轴长度总和的大部分。有些文献 建议,所选的主轴总长度占所有主轴长度之 和的大约85%即可,其实,这只是一个大体 的说法:具体选几个,要看实际情况而定。

假定有n个数据样本,每个样本共有p个变量,构成一个 $n \times p$ 阶的数据矩阵

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

当p较大时,在p维空间中考察问题比较麻烦。 为了克服这一困难,就需要进行降维处理。

一一用较少的几个综合指标代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多变量指标所反映的信息,同时它们之间又是彼此独立的。

定义:记 $x_1, x_2, ..., x_p$ 为原变量指标, $z_1, z_2, ..., z_m$ ($m \le p$)为新变量指标

$$\begin{cases} z_1 = l_{11}x_1 + l_{12}x_2 + \dots + l_{1p}x_p \\ z_2 = l_{21}x_1 + l_{22}x_2 + \dots + l_{2p}x_p \\ \dots \\ z_m = l_{m1}x_1 + l_{m2}x_2 + \dots + l_{mp}x_p \end{cases}$$

系数l_{ii}的确定原则:

① z_i与z_j (i≠j; i, j=1, 2, ..., m) 相互无关;

② z_1 是 $x_1, x_2, ..., x_p$ 的一切线性组合中方差最大者, z_2 是与 z_1 不相关的 $x_1, x_2, ..., x_p$ 的所有线性组合中方差最大者;

• • •

 z_{m} 是与 $z_{1}, z_{2}, ..., z_{m-1}$ 都不相关的 $x_{1}, x_{2}, ..., x_{p}$ 的所有线性组合中方差最大者。

则新变量指标 $z_1, z_2, ..., z_m$ 分别称为原变量指标 $x_1, x_2, ..., x_p$ 的第1,第2,...,第m主成分。

主成分分析的实质就是确定原来变量 x_j (j=1, 2, ..., p)在诸主成分 z_i (i=1, 2, ..., m)上的<mark>荷载 l_{ij} (i=1, 2, ..., m; j=1, 2, ..., p)。</mark>

从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。

设有n个样本,每个样本观测p个指标(变量): X_1 , X_2 , ..., X_n , 得到原始数据矩阵:

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{p1} & x_{p2} & \cdots & x_{pn} \end{bmatrix}_{p \times n}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{X}_{1} \quad \mathbf{X}_{2} \qquad \mathbf{X}_{n}$$

样本均值

$$\mathbf{M} = \frac{1}{n} (\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n).$$

显然,样本均值是数据散列图的中心。

设 \bar{X}_k 为样本k的均值偏差列向量

$$\overline{X}_k = X_k$$
-M

于是 p*n 矩阵B具有零样本均值(均值归零),称为平均偏差形式

$$\mathbf{B} = [\overline{X}_1, \ \overline{X}_2, \ \cdots, \ \overline{X}_n]$$

样本协方差(sample covariance)

对于二维随机向量,设(X1, Y1), ...(Xn, Yn)是从二维总体F(x,y)中抽取的样本,则

(sample covariance).

样本协方差(sample covariance)

协方差表示的是两个变量的总体的误差,这与 只表示一个变量误差的方差不同。

样本协方差矩阵

根据前面所述平均偏差形式B,也可以描述协方差矩阵S

$$\mathbf{S} = \frac{1}{n-1} \mathbf{B} \mathbf{B}^T$$

注意: 协方差矩阵 是对称矩阵且半正定

协方差的大小在一定程度上反映了多变量之间的 关系,但它还受变量自身度量单位的影响.

定义 A为 n 阶方阵, λ 为实数,X为 n 维非零向量, 若 $AX = \lambda X$,则 λ 为 A 的特征值, X为 A 的特征向量。

- 注 ① 特征向量 $X \neq 0$,特征值问题只针对于方阵;
 - ② λ, X 并不一定唯一;
 - ③ n 阶方阵 A 的特征值,就是使齐次线性方程组 $(\lambda I A)x = 0$ 有非零解的 λ 值,即满足 $|\lambda I A| = 0$ 的 λ 都是方阵 A 的特征值。

定义 称以 λ 为未知数的一元 n 次方程 $|\lambda I - A| = 0$ 为 A 的特征方程。

PCA的性质

若S是p阶<u>实对称阵</u>,则一定可以找到正交阵U,使

$$\mathbf{U}^{-1}S\mathbf{U} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_p \end{bmatrix} p \times p$$

其中 λ_i , i=1.2...p 是S的特征根。

若上述矩阵的特征根所对应的单位特征向量为

$$\mathbf{u}_{1}, \dots, \mathbf{u}_{p}$$

$$\mathbf{v} = (\mathbf{u}_{1}, \dots, \mathbf{u}_{p}) = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1p} \\ u_{21} & u_{22} & \cdots & u_{2p} \\ \vdots & \vdots & & \vdots \\ u_{p1} & u_{p2} & \cdots & u_{pp} \end{bmatrix}$$

则实对称阵S属于不同特征根所对应的特征向量是正交的,即有 U'U = UU' = I

PCA的性质

方差为所有特征根之和

$$\sum_{i=1}^{p} Var(F_i) = \lambda_1 + \lambda_2 + \dots + \lambda_p = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2$$

两个线性代数推导的结论

- 一、主成分分析法把P个随机变量的总方差分解成为P个不相关的随机变量的方差之和。
- 二、协方差矩阵Σ的对角线上的元素之和等于特征 根之和。

精度分析

- 1) 贡献率: 第i个主成分的方差在全部方差中所占比重 $\lambda_i / \sum_{i=1}^{p} \lambda_i$,称为贡献率,反映了原来P个指标多大的信息,有多大的综合能力。
 - 2) 累积贡献率:前k个主成分共有多大的综合能力,用这k个主成分的方差和在全部方差中所占比重

$$\sum_{i=1}^k \lambda_i / \sum_{i=1}^p \lambda_i$$

来描述,称为累积贡献率。

精度分析

我们进行主成分分析的目的之一是希望用尽可能 少的主成分 F_1 , F_2 , ..., F_k ($k \le p$) 代替原来的P个指 标。到底应该选择多少个主成分,在实际工作中,主 成分个数的多少取决于能够反映原来变量85%以上的信 息量为依据,即当累积贡献率≥85%时的主成分的个数 就足够了。最常见的情况是主成分为2到3个。

例设 x_1, x_2, x_3 的协方差矩阵为

$$\Sigma = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

解得特征根为 $\lambda_1 = 5.83$, $\lambda_2 = 2.00$, $\lambda_3 = 0.17$

$$U_{1} = \begin{bmatrix} 0.383 \\ -0.924 \\ 0.000 \end{bmatrix} \qquad U_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad U_{3} = \begin{bmatrix} 0.924 \\ 0.383 \\ 0.000 \end{bmatrix}$$

第一个主成分的贡献率为5.83/(5.83+2.00+0.17) =72.875%,尽管第一个主成分的贡献率并不小,但小于85%。所以需要取两个主成分,贡献度为97.88%

一、基于协方差矩阵方法

$$\mathbf{X}_{l} = (x_{1l}, x_{2l}, \dots, x_{pl})'(l = 1, 2, \dots, n)$$

$$\hat{\Sigma}_{x} = \left(\frac{1}{n-1} \sum_{l=1}^{n} (x_{il} - \overline{x}_{i})(x_{jl} - \overline{x}_{j})\right)_{p \times p}$$

第1步:由X的协方差阵 Σ_x ,求出其特征根,即解方程 $|\Sigma - \lambda \mathbf{I}| = 0$,可得特征根 $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p \ge 0$ 。

第2步:求出分别所对应的特征向量 U_1 , U_2 ,…, U_p ,

$$\mathbf{U_i} = \begin{pmatrix} u_{1i}, & u_{2i}, \cdots, & u_{pi} \end{pmatrix}^T$$

第3步: 计算累积贡献率,给出恰当的主成分个数。

$$F_i = \mathbf{U}^T_i \mathbf{X}, \quad i = 1, 2, \dots, \quad k(k \le p)$$

第4步: 计算所选出的k个主成分的得分。将原始数据的中心化值:

$$\mathbf{X}_{i}^{*} = \mathbf{X}_{i} - \overline{\mathbf{X}} = \left(x_{1i} - \overline{x}_{1}, \quad x_{2i} - \overline{x}_{2}, \cdots, \quad x_{pi} - \overline{x}_{p}\right)^{T}$$

代入前k个主成分的表达式,分别计算出各单位k个主成分的得分,并按得分值的大小排队。

二、基于相关系数矩阵方法

实际应用时,指标的量纲往往不同,所以在主成分分析计算之前 应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将 原始数据标准化,即做如下数据变换:

$$x_{ij}^* = \frac{x_{ij} - \overline{x}_j}{s_j} \qquad i = 1, 2, ..., n; \ j = 1, 2, ..., p$$

其中:

$$\overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$$
 $s_{j}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}$

根据数学公式知道,①任何随机变量对其作标准化变换后,其协方差与其相关系数是一回事,即标准化后的变量协方差矩阵就是其相关系数矩阵。②另一方面,根据协方差的公式可以推得标准化后的协方差就是原变量的相关系数,亦即,标准化后的变量的协方差矩阵就是原变量的相关系数矩阵。也就是说,在标准化前后变量的相关系数矩阵不变化。

二、基于相关系数矩阵方法

根据以上论述,为消除量纲的影响,将变量标准化后再计算其协 方差矩阵, 就是直接计算原变量的相关系数矩阵

(一) 计算相关系数矩阵

$$R = egin{bmatrix} r_{11} & r_{12} & \cdots & r_{1p} \ r_{21} & r_{22} & \cdots & r_{2p} \ dots & dots & dots \ r_{p1} & r_{p2} & \cdots & r_{pp} \end{bmatrix}$$

 $r_{ij} (i, j=1, 2, ..., p) 为原变量x_i 与x_j 的相关系数,$ $r_{ij} = r_{ji}, 其计算公式为$ $r_{ij} = \frac{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)}{\sqrt{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)^2 \sum_{k=1}^{n} (x_{kj} - \bar{x}_j)^2}}$

$$r_{ij} = \frac{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)}{\sqrt{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)^2 \sum_{k=1}^{n} (x_{kj} - \bar{x}_j)^2}}$$

- 二、基于相关系数矩阵方法
 - (二) 计算特征值与特征向量
- ① 解特征方程 $|\lambda I R| = 0$,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$;
- ② 分别求出对应于特征值 λ_i 的特征向量 e_i ($i = 1, 2, \dots, p$)

要求 $||e_i||=1$,即 $\sum_{j=1}^p e_{ij}^2 = 1$,其中 e_{ij} 表示向量i的第j个分量。

二、基于相关系数矩阵方法

③ 计算主成分贡献率及累计贡献率

✓ 贡献率

$$\frac{\lambda_i}{\sum_{k=1}^p \lambda_k} \qquad (i = 1, 2, \dots, p)$$

✓累计贡献率

$$\frac{\sum_{k=1}^{i} \lambda_k}{\sum_{k=1}^{p} \lambda_k} \qquad (i = 1, 2, \dots, p)$$

一般取累计贡献率达85%~95%的特征值 $\lambda_1, \lambda_2, \dots, \lambda_m$ 所对应的第1、第2、...、第 \mathbf{m} ($\mathbf{m} \leq \mathbf{p}$)个主成分。

二、基于相关系数矩阵方法

4 计算主成分载荷

主成分载荷是反映主成分F_i与原变量X_i之间的相互关联程度,

原来变量 X_i (j=1,2,…,p)在诸主成分 F_i (i=1,2,…,

m)上的荷载 I_{ij}(i=1,2,...,m; j=1,2 ,...,p)。:

$$l_{ij} = p(z_i, x_j) = \sqrt{\lambda_i} e_{ij} (i, j = 1, 2, \dots, p)$$

二、基于相关系数矩阵方法

⑤ 各主成分的得分

$$Z = \begin{bmatrix} z_{11} & z_{12} & \cdots & z_{1m} \\ z_{21} & z_{22} & \cdots & z_{2m} \\ \vdots & \vdots & & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nm} \end{bmatrix}$$

⑥ 主成分载荷阵中各列元素的平方和 $S_j = \Sigma_i 1_{ij}^2$ 称为公共 因子 F_i 对X诸变量的方差贡献之总和

例1: 应收账款是指企业因对外销售产品、材料、提供劳务 及其它原因,应向购货单位或接受劳务的单位收取的款项,包括 应收销货款、其它应收款和应收票据等。出于扩大销售的竞争需 要,企业不得不以赊销或其它优惠的方式招揽顾客,由于销售和 收款的时间差,于是产生了应收款项。应收款赊销的效果的好坏, 不仅依赖于企业的信用政策,还依赖于顾客的信用程度。由此, 评价顾客的信用等级,了解顾客的综合信用程度,做到"知己知 彼,百战不殆",对加强企业的应收账款管理大有帮助。某企业 为了了解其客户的信用程度,采用西方银行信用评估常用的5C方 法,5C的目的是说明顾客违约的可能性。

- 1、品格(用X₁表示),指顾客的信誉,履行偿还义务的可能性。企业可以通过过去的付款记录得到此项。
- 2、能力(用X₂表示),指顾客的偿还能力。即其流动资产的数量和质量以及流动负载的比率。顾客的流动资产越多,其转化为现金支付款项的能力越强。同时,还应注意顾客流动资产的质量,看其是否会出现存货过多过时质量下降,影响其变现能力和支付能力。
- 3、资本(用X₃表示),指顾客的财务势力和财务状况,表明顾客可能偿还债务的背景。
- **4、**附带的担保品(用**X₄**表示),指借款人以容易出售的资产 做抵押。
- 5、环境条件(用X₅表示),指企业的外部因素,即指非企业本身能控制或操纵的因素。

首先并抽取了10家具有可比性的同类企业作为样本,又请8位专家分别给10个企业的5个指标打分,然后分别计算企业5个指标的平均值,如表。

76.5	81.5	76	75.8	71.7	85	79.2	80.3	84.4	76.5
70.6	73	67.6	68.1	78.5	94	94	87.5	89.5	92
90.7	87.3	91	81.5	80	84.6	66.9	68.8	64.8	66.4
77.5	73.6	70.9	69.8	74.8	57.7	60.4	57.4	60.8	65
85.6	68.5	70	62.2	76.5	70	69.2	71.7	64.9	68.9

计算协方差矩阵:

$$\hat{\Sigma}_{x} = \left(\frac{1}{n-1} \sum_{l=1}^{n} (x_{il} - \overline{x}_{i})(x_{jl} - \overline{x}_{j})\right)_{p \times p}$$

结果:

17.467	77	23.8520	-9.9489	-20.6757	-9.5172
23.852	20	121.7307	-87.7656	-68.0747	-13.8078
-9.948	39	-87.7656	110.3156	52.9433	26.8544
-20.675	57	-68.0747	52.9433	55.7677	23.0128
-9.517	72	-13.8078	26.8544	23.0128	41.5361

协方差矩阵计算结果

	特征值	差值	贡献	累计贡献
新指标1	253.6856	210.2479	0.731467	0.731467
新指标2	43.4377	6.9483	0.125247	0.856713
新指标3	36.4894	29.1793	0.105212	0.961926
新指标4	7.3101	1.4153	0.021078	0.983003
新指标5	5.8948	0	0.016997	1

特性向量	瞉
------	---

	新指标1	新指标2	新指标3	新指标4	新指标5
X1	0.1343	0.0143	0.4766	-0.3259	0.8053
X2	0.6526	-0.4857	0.1822	0.5521	0.0155
X3	-0.5945	-0.2363	0.6916	0.2721	-0.1958
X4	-0.4172	-0.0789	-0.4457	0.5551	0.5594
X5	-0.169	-0.8378	-0.2506	-0.4547	0.0074

第一主成份的贡献率为73.15%,第一主成份 Z_1 =0.1343 X_1 +0.6526 X_2 =5945 X_3 =0.4172 X_4 =0.169 X_5 将原始数据的值中心化后,代入第一主成份 Z_1 的表示式,计算各企业的得分,并按分值大小排序:

序号	1	2	3	4	5	6	7	8	9	10
得分	21. 8039	13. 0278	18. 6173	10. 8926	8. 2699	-9. 1318	-17. 8851	-13. 4903	-17. 4549	9-14. 6463
排序	1	3	2	4	5	6	10	7	9	8

在正确评估了顾客的信用等级后,就能正确制定出对 其的信用期、收帐政策等,这对于加强应收帐款的管理 大有帮助。

- 例2 基于相关系数矩阵的主成分分析。对美国纽约上市的有关化学产业的三个证券和石油产业的2个证券做了100周的收益率调查。下表是其相关系数矩阵。
 - 1) 利用相关系数矩阵做主成分分析。
 - 2)决定要保留的主成分个数,并解释意义。

1	0.577	0.509	0.387	0.462
0.577	1	0.599	0.389	0.322
0.509	0.599	1	0.436	0.426
0.387	0.389	0.436	1	0.523
0.462	0.322	0.426	0.523	1

Eigenvalues of the Correlation Matrix

	特征值	差值	贡献	累计贡献
PRIN1	2.85671	2.04755	0.571342	0.57134
PRIN2	0.80916	0.26949	0.161833	0.73317
PRIN3	0.53968	0.08818	0.107935	0.84111
PRIN4	0.45150	0.10855	0.090300	0.93141
PRIN5	0.34295	0. 0	0.068590	1.00000

Eigenvectors

	PRIN1	PRIN2	PRIN3	PRIN4	PRIN5
X1	0.463605	240339	611705	0.386635	0.451262
X2	0.457108	509305	0.178189	0.206474	-0.676223
X3	0.470176	260448	0.335056	662445	0.400007
X4	0.421459	0.525665	0.540763	0.472006	0.175599
X5	0.421224	0.581970	435176	382439	-0.385024

根据表1给出的数据,对某农业生态经济系统做主成分分析。

表1 某农业生态经济系统各区域单元的有关数据

样本 序号	人口密度 x ₁ /(人.km ⁻²)	人均耕 地面积 x ₂ /hm ²	森林覆 盖率 x ₃ /%	农民人均纯收入 $x_4/(元. 人^{-1})$	人均粮食产量 x ₅ /(kg. 人 ⁻¹)	经济作物占农 作物播面比例 $x_6/\%$	耕地占土地 面积比率 x ₇ /%	果园与林 地面积之 比 <i>x</i> ₈ /%
1	363.912	0.352	16.101	192.11	295.34	26.724	18.492	2.231
2	141.503	1.684	24.301	1 752.35	452.26	32.314	14.464	1.455
3	100.695	1.067	65.601	1 181.54	270.12	18.266	0.162	7.474
4	143.739	1.336	33.205	1 436.12	354.26	17.486	11.805	1.892
5	131.412	1.623	16.607	1 405.09	586.59	40.683	14.401	0.303

样本序号	x ₁ : 人 口密度 (人 /km ²)	x ₂ : 人 均耕地 面积 (ha)	x ₃ :森 林覆盖 率(%)	x ₄ : 农 民人均 纯收入 (元/人)	x ₅ : 人 均粮食 产量 (kg/ 人)	x ₆ : 经济 作物占农 作物播面 比例(%)	x ₇ : 耕地 占土地面 积比率 (%)	x ₈ : 果 园与林 地面积 之比	x ₉ : 灌溉 田占耕地 面积之比 (%)
1	363.91	0.352	16.101	192.11	295.34	26.724	18.492	2.231	26.262
2	141.5	1.684	24.301	1752.35	452.26	32.314	14.464	1.455	27.066
3	100.7	1.067	65.601	1181.54	270.12	18.266	0.162	7.474	12.489
4	143.74	1.336	33.205	1436.12	354.26	17.486	11.805	1.892	17.534
5	131.41	1.623	16.607	1405.09	586.59	40.683	14.401	0.303	22.932
6	68.337	2.032	76.204	1540.29	216.39	8.128	4.065	0.011	4.861
7	95.416	0.801	71.106	926.35	291.52	8.135	4.063	0.012	4.862
8	62.901	1.652	73.307	1501.24	225.25	18.352	2.645	0.034	3.201
9	86.624	0.841	68.904	897.36	196.37	16.861	5.176	0.055	6.167
10	91.394	0.812	66.502	911.24	226.51	18.279	5.643	0.076	4.477
11	76.912	0.858	50.302	103.52	217.09	19.793	4.881	0.001	6.165
12	51.274	1.041	64.609	968.33	181.38	4.005	4.066	0.015	5.402
13	68.831	0.836	62.804	957.14	194.04	9.11	4.484	0.002	5.79
14	77.301	0.623	60.102	824.37	188.09	19.409	5.721	5.055	8.413
15	76.948	1.022	68.001	1255.42	211.55	11.102	3.133	0.01	3.425

步骤如下:

(1) 将表1中的数据作标准差标准化处理,然后计算相

$$r_{ij} = \frac{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)}{\sqrt{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)^2 \sum_{k=1}^{n} (x_{kj} - \bar{x}_j)^2}}$$

表2 相关系数矩阵

	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	X 8	X 9
X ₁	1	-0.327	-0.714	-0.336	0.309	0.408	0.79	0.156	0.744
X ₂	-0.33	1	-0.035	0.644	0.42	0.255	0.009	-0.078	0.094
X ₃	-0.71	-0.035	1	0.07	-0.74	-0.755	-0.93	-0.109	-0.924
X ₄	-0.34	0.644	0.07	1	0.383	0.069	-0.05	-0.031	0.073
X ₅	0.309	0.42	-0.74	0.383	1	0.734	0.672	0.098	0.747
x ₆	0.408	0.255	-0.755	0.069	0.734	1	0.658	0.222	0.707
X ₇	0.79	0.009	-0.93	-0.046	0.672	0.658	1	-0.03	0.89
X 8	0.156	-0.078	-0.109	-0.031	0.098	0.222	-0.03	1	0.29
X 9	0.744	0.094	-0.924	0.073	0.747	0.707	0.89	0.29	1

(2) 由相关系数矩阵计算特征值,以及各个主成分的贡献率与累计贡献率(表3)。由表3可知,第1,第2,第3主成分的累计贡献率已高达86.596%(大于85%),故只需要求出第1、第2、第3主成分z₁, z₂, z₃即可。

表3 特征值及主成分贡献率

主成分	特征值	贡献率/%	累计贡献率/%
Z ₁	4.661	51.791	51.791
Z ₂	2.089	23.216	75.007
Z 3	1.043	11.589	86.596
Z_4	0.507	5.638	92.234
Z 5	0.315	3.502	95.736
Z ₆	0.193	2.14	97.876
Z ₇	0.114	1.271	99.147
Z ₈	0.045 3	0.504	99.65
Z 9	0.0315	0.35	100

特征值:

17		Ι.
Y	7	

0	0	0	0	0	0	0	0	0.0315
0	0	0	0	0	0	0	0.0453	0
0	0	0	0	0	0	0.1144	0	0
0	0	0	0	0	0.1926	0	0	0
0	0	0	0	0.3152	0	0	0	0
0	0	0	0.5074	0	0	0	0	0
0	0	1.0430	0	0	0	0	0	0
0	2.0895	0	0	0	0	0	0	0
4.6611	0	0	0	0	0	0	0	0

特征向量: (与特征值对应)

0.2334	-0.1128	-0.5593	0.3125	0.3548	-0.3747	-0.0599	0.3679	0.3421
0.0470	0.0190	-0.0322	-0.1099	0.7615	0.1551	-0.0276	-0.6135	0.0572
-0.6923	0.2028	-0.4671	0.2060	0.0450	-0.0678	0.0929	-0.0661	-0.4464
0.1395	-0.0040	0.0962	0.3946	-0.3098	-0.5977	0.0362	-0.6006	0.0193
0.0082	0.0622	-0.5798	-0.5077	-0.3957	0.0980	-0.0107	-0.3068	0.3765
-0.0788	-0.0397	-0.0445	0.6383	-0.1543	0.6204	0.1222	-0.1241	0.3793
-0.2354	0.7772	0.2411	0.0042	0.0687	-0.1476	-0.2461	0.0920	0.4322
0.0856	0.2313	0.0443	-0.0926	0.0784	-0.0855	0.9497	0.0695	0.0914
-0.6128	-0.5318	0.2458	-0.1358	0.0712	-0.2240	0.0898	0.0173	0.4464

(3) 对于特征值=4.661, 2.089, 1.043分别求出其特征向量 e_1 , e_2 , e_3 , 再计算各变量 x_1 , x_2 , ..., x_9 在主成分 z_1 , z_2 , z_3 上的载荷。

 $\mathbf{z_3}$ 上的载荷。 $l_{ij} = p(z_i, x_j) = \sqrt{\lambda_i} e_{ij}(i, j = 1, 2, \dots, p)$, $\mathbf{S_j} = \Sigma_i \mathbf{1_{ij}}^2$

—	<u> </u>
表4	主成分载荷
7 54	T NV 'T 'TV 461
~ ·	

				占方差的百分数/%				
	Z ₁	Z ₂	Z ₃					
<i>X</i> ₁	0.739	0.532	-0.061	82.918				
X ₂	0.123	-0.887	-0.028	80.191				
X ₃	-0.964	-0.096	0.095	92.948				
<i>X</i> ₄	0.04 2	-0.868	0.037	75.346				
X ₅	0.813	-0.444	-0.011	85.811				
x ₆	0.819	-0.179	0.125	71.843				
X ₇	0.933	0.133	-0.251	95.118				
<i>X</i> ₈	0.197	0.1	0.97	98.971				
X 9	0.964	0.025	0.092	92.939				

上述计算过程,可以借助于Matlab软件系统实现,但需要掌握计算方法。

分析:

- (1)第1主成分 z_1 与 x_1 , x_5 , x_6 , x_7 , x_9 呈现出较强的正相关,与 x_3 呈现出较强的负相关,而这几个变量则综合反映了生态经济结构状况,因此可以认为第1主成分 z_1 是生态经济结构的代表。
- (2)第2主成分 z_2 与 x_2 , x_4 , x_5 呈现出较强的正相关,与 x_1 呈现出较强的负相关,其中,除了 x_1 为人口总数外, x_2 , x_4 , x_5 都反映了人均占有资源量的情况,因此可以认为第2主成分 z_2 代表了人均资源量。

- (3)第3主成分 z_3 与 x_8 呈现出的正相关程度最高,其次是 x_6 ,而与 x_7 呈负相关,因此可以认为第3主成分在一定程度上代表了农业经济结构。
- (4)另外,表4中最后一列(占方差的百分数),在一定程度上反映了3个主成分 z_1 、 z_2 、 z_3 包含原变量(x_1 , x_2 , ..., x_9)的信息量多少。

显然,用3个主成分 \mathbf{z}_1 、 \mathbf{z}_2 、 \mathbf{z}_3 代替原来9个变量(\mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_9)描述农业生态经济系统,可以使问题更进一步简化、明了。

主成分分析方法总结

根据主成分分析的定义及性质,我们已大体上能看出主成分分析的一些应用。概括起来说,主成分分析主要有以下几方面的应用。

1. 主成分分析能降低所研究的数据空间的维数。

用研究m维的Y空间代替p维的X空间(m<p),而低维的Y空间代替高维的x空间所损失的信息很少。即使只有一个主成分Y₁(即m=1)时,这个Y₁仍是使用全部X变量(p个)得到的。例如要计算Y₁的均值也得使用全部x的均值。在所选的前m个主成分中,如果某个X_i的系数全部近似于零的话,就可以把这个X_i删除,这也是一种删除多余变量的方法。

主成分分析方法总结

2. 多维数据的一种图形表示方法。

我们知道当维数大于3时便不能画出几何图形,多元统计研究的问题大都多于3个变量。要把研究的问题用图形表示出来是不可能的。然而,经过主成分分析后,我们可以选取前两个主成分或其中某两个主成分,根据主成分的得分,画出n个样品在二维平面上的分布况,由图形可直观地看出各样本在主分量中的地位。

主成分分析方法总结

3. 由主成分分析法构造回归模型。

把各主成分作为新自变量代替原来自变量x做回归分析。

4. 用主成分分析筛选回归变量。

回归变量的选择有着重的实际意义,为了使模型本身 易于做结构分析、控制和预报,好从原始变量所构成 的子集合中选择最佳变量,构成最佳变量集合。用主 成分分析筛选变量,可以用较少的计算量来选择量, 获得选择最佳变量子集合的效果。

- 物以类聚、人以群分;
- 但根据什么分类呢?
- 如要想把中国的县分类,就有多种方法
- 可以按照自然条件来分,比如考虑降水、土地、日照、湿度等,
- 也可考虑收入、教育水准、医疗条件、基础设施等指标;
- 既可以用某一项来分类,也可以同时考虑多项指标来分类。

聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术。

"物以类聚",对事物分门别类进行研究,有利于我们做出正确的判断。

数理统计中的数值分类有两种问题:

- 判别分析: 已知分类情况, 将未知个体归入正确类别
- 聚类分析: 分类情况未知, 对数据结构进行分类

通过分类,有利于抓住重点,从总体上去把握事物, 找出解决问题的方法。如将股票进行分类,可以投资 提供参考。

- 对一个数据,既可以对变量(指标)进行分类(相当于对数据中的列分类),也可以对观测值(事件,样品)来分类(相当于对数据中的行分类)。
- 当然,不一定事先假定有多少类,完全可以按 照数据本身的规律来分类。
- · 聚类分析(cluster analysis)中对变量(列)的聚类称为R型聚类,而对观测值(行)聚类称为Q型聚类。它们在数学上是无区别的。

要做聚类分析,首先得按照我们聚类的目的,从对象中提取出能表现这个目的的特征指标;然后根据亲疏程度进行分类。

聚类过程与方法

聚类的主要过程一般可分为如下四个步骤:

- 1. 数据预处理(标准化)
- 2. 构造关系矩阵(亲疏关系的描述)
- 3. 聚类(根据不同方法进行分类)
- 4. 确定最佳分类(类别数)

聚类分析根据分类对象的不同可分为Q型和R型两大类

Q型是对样本进行分类处理,其作用在于:

- 1. 能利用多个变量对样本进行分类
- 2. 分类结果直观,聚类谱系图能明确、清楚地表达 其数值分类结果
- 3. 所得结果比传统的定性分类方法更细致、全面、 合理

R型是对变量进行分类处理,其作用在于:

- 1. 可以了解变量间及变量组合间的亲疏关系
- 2. 可以根据变量的聚类结果及它们之间的关系, 选择主要变量进行回归分析或Q型聚类分析

- 如果想要对100个学生进行分类,而仅知道他们的数学成绩,则只好按照数学成绩分类;这些成绩在直线上形成100个点。这样就可以把接近的点放到一类。
- 如果还知道他们的物理成绩,这样数学和物理成绩就形成二维平面上的100个点,也可以按照距离远近来分类。
- 三维或者更高维的情况也是类似; 只不过三维以上的图形无法直观地画出来而已。

区域经济情况划分某地区九个农业区的七项经济指标数据

区代号	人均耕地 X ₁ (hm ² /人)	劳均耕地 x ₂ (hm ² /个)	水田比重 X ₃ (%)	复种指数 X ₄ (%)	粮食亩产 x ₅ (kg/ hm²)	人均粮食 x ₆ (kg/人)	稻谷占粮食 比重x ₇ (%)
G_1	0.294	1.093	5.63	113.6	4510.5	1036.4	12.2
G_2	0.315	0.971	0.39	95.1	2773.5	683.7	0.85
G_3	0.123	0.316	5.28	148.5	6934.5	611.1	6.49
G_4	0.179	0.527	0.39	111	4458	632.6	0.92
G_5	0.081	0.212	72.04	217.8	12249	791.1	80.38
G_6	0.082	0.211	43.78	179.6	8973	636.5	48.17
G_7	0.075	0.181	65.15	194.7	10689	634.3	80.17
G_8	0.293	0.666	5.35	94.9	3679.5	771.7	7.8
G_9	0.167	0.414	2.9	94.8	4231.5	574.6	1.17

- 数据样本X,由d个属性值组成: $X=(x_1,x_2,...,x_d)$,其中 x_i 表示样本中的各属性,d是样本或样本空间的维数(或属性个数)。

$$\begin{bmatrix} x_{11} & \dots & x_{1f} & \dots & x_{1d} \\ & \cdot & \cdot & \cdot & \cdot \\ x_{i1} & \dots & x_{if} & \dots & x_{id} \\ & \cdot & \cdot & \cdot & \cdot \\ x_{n1} & \dots & x_{nf} & \dots & x_{nd} \end{bmatrix}$$

- 数据样本集X分成k个簇,每个簇C_i是相应数据样本的集合,相似样本在同一簇中,相异样本在不同簇中。
- 簇 C_i (i=1,2,...,k) 中样本的数量 n_i 。簇记为 $C_i = \{X_{i1}^{\ \ i}, X_{i2}^{\ \ i}, ..., X_{ini}^{\ \ i}\}$,
- C_i (i=1,...,k) 是X的子集: $C_1 \cup C_2 \cup ... \cup C_k = X$ 且 $C_i \cap C_j = \Phi$, $i \neq j$

- 用下面的特征来描述簇:
- ①簇的质心(centroid):即样本的平均值,是簇的"中间值"(middle),但并不需要是簇中实际点。

令n_i表示簇C_i中样本的数量, M_i表示对应样本的均值:

$$M_i = \frac{1}{n_i} \sum_{X \in C_i} X$$

②簇的半径,是簇中两个点间的均方差的平方根。

- 聚类定义: 给定一数据样本集X $\{X_1, X_2, ..., X_n\}$,根据数据点间的相似程度将数据集合分成k簇: $\{C_1, C_2, ..., C_k\}$ 的过程称为聚类, $\bigcup_{i=1}^k C_i = \alpha$, $C_i \cap C_i = \Phi$, $i \neq j$
- 相似样本在同一簇中, 相异样本在不同簇中。
- *关于同一簇中的样本比来自不同簇的样本更为相似的判断 问题*主要涉及以下两个独立的子问题:
 - a.怎样度量样本之间的相似性(亲疏关系);
 - b.怎样衡量对样本集的一种划分的好坏。

• 相异度矩阵 (dissimilarity matrix) 用来存储n个样本两两之间的相似性,表现形式是一个n×n维的矩阵:

$$\begin{bmatrix} 0 \\ d(X_2, X_1) & 0 \\ d(X_3, X_1) & d(X_3, X_2) & 0 \\ \vdots & \vdots & \vdots \\ d(X_n, X_1) & d(X_n, X_2) & \vdots & 0 \end{bmatrix}$$

- $d(X_i, X_j)$ 是样本 X_i 和样本 X_i 间相异性的量化表示。
- 最明显的相似性度量是样本之间的距离。

- X_i $\{x_{i1},...,x_{id}\}$ 和 X_j $\{x_{j1},...,x_{jd}\}$ 是两个具有d个属性的两个样本。距离度量标准d(X_i , X_j)表示第i个样本与第j个样本间的距离。
- 在聚类分析中,最常用的距离定义如下:
- 最著名的距离度量标准是d维空间中的**欧几里德距离:**

$$d(X_i, X_j) = \left(\sum_{k=1}^{d} (x_{ik} - x_{jk})^2\right)^{1/2}$$

· 更广义的d维空间中的度量为明考斯基距离(Minkowski)度量

$$d(X_i, X_j) = (\sum_{k=1}^{d} |x_{ik} - x_{jk}|^p)^{1/p}$$

- 通常也被称为L_k范数,欧几里德距离即L₂范数。而L₁范数则常被称为 曼哈坦(Manhattan)距离或城区距离。
- 平方欧氏距离、夹角余弦(相似性测度)、皮尔逊相关系数、切比雪夫 距离、自定义距离

例:对于一个4维向量 X_1 ={1,0,1,0}和 X_2 ={2,1,-3,-1},这些距离的度量标准(L_k 范数)

$$L_1 (X_1, X_2) = 1+1+4+1=7,$$
 $L_2 (X_1, X_2) = (1+1+16+1)^{1/2}=4.36$
 $L_3 (X_1, X_2) = (1+1+64+1)^{1/3}=4.06$
 $L_p(X_i, X_j) = (\sum_{k=1}^4 |x_{ik} - x_{jk}|^p)^{1/p}$

Manhattan distance: 曼哈顿距离

$$d(x, y) = \sum_{i} |x_{i} - y_{i}|$$

Cosine: 夹角余弦(相似性测度)

$$\cos(x, y) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2} \cdot \sum_{i} y_{i}^{2}}}$$

用途: 计算两个向量在原点处的夹角余弦。当两夹角为0°时,取值为1,说明极相似;当夹角为90°时,取值为0,说明两者不相关。取值范围:0~1

Pearson correlation: 皮尔逊相关系数

$$\frac{\sum Zx_iZy_i}{\cos(x,y) = \frac{i}{n-1}}, \quad Zx_i \neq x_i \text{ in white } i$$

用途: 计算两个向量的皮尔逊相关系数

Chebychev: 切比雪夫距离

$$d_{\infty}(x,y) = \max_{i} |x_{i} - y_{i}|$$

用途: 计算两个向量的切比雪夫距离

Block: 绝对值距离 (一阶Minkowski度量)

(又称Manhattan度量或网格度量)

$$d_1(x,y) = \sum_i |x_i - y_i|$$

用途: 计算两个向量的绝对值距离

Customized: 自定义距离

$$d_q(x,y) = \left[\sum_i |x_i - y_i|^q\right]^{1/r}$$

用途: 计算两个向量的自定义距离

• 当分类要素的对象确定之后,在进行聚类分析之前,首先要对聚类要素进行数据预处理。假设有n个聚类的对象, 每一个聚类对象都有d个要素构成。

聚类对象	要素						
对象	\mathbf{x}_1	X_2	• • •	X _j	• • •	X_d	
1	X ₁₁	x ₁₂	• • •	X _{1j}	•••	x _{1d}	
2	x ₂₁	X ₂₂	• • •	X_{2j}	• • •	X _{2d}	
:	• • •	• • •	• • •	• • •	• • •	• • •	
i	X _{i1}	X _{i2}	• • •	X _{ij}	• • •	X _{id}	
	• • •	•••	• • •	•••	• • •	• • •	
n	X _{n1}	X _{n2}	• • •	X _{nj}	• • •	X _{nd}	

- 在聚类分析中,常用的聚类要素的数据处理方法有如下几种:
- ① 总和标准化。分别求出各聚类要素所对应的数据的总和,以各要素的数据除以该要素的数据的总和,即

$$x_{ij}' = \frac{x_{ij}}{\sum_{i=1}^{n} x_{ij}} \qquad (i = 1, 2, ..., n; j = 1, 2, ..., d)$$

这种标准化方法所得到的新数据满足

$$\sum_{i=1}^{n} x_{ij} = 1 \quad (j = 1, 2, ..., d)$$

②标准差标准化,即

$$x_{ij} = \frac{x_{ij} - \overline{x}_{j}}{s_{j}} \qquad (i = 1, 2, ..., n; j = 1, 2, ..., d)$$

$$\overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij} \qquad s_{j} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \overline{x}_{j})^{2}}$$

由这种标准化方法所得到的新数据,各要素的平均值为0,标准差为1,即有

$$\bar{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{ij}^{'} = 0 \qquad s'_{j} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x'_{ij} - \overline{x'}_{j})^{2}} = 1$$

③ 极大值标准化,即

$$x'_{ij} = \frac{x_{ij}}{\max_{i} \{x_{ij}\}}$$
 $(i = 1, 2, ..., n; j = 1, 2, ..., d)$

经过这种标准化所得的新数据,**各要素的极大值为1,其余各数值小** 于1。

4 极差的标准化,即

$$x'_{ij} = \frac{x_{ij} - \min_{i} \{x_{ij}\}}{\max_{i} \{x_{ij}\} - \min_{i} \{x_{ij}\}} \qquad (i = 1, 2, ..., n; j = 1, 2, ..., d)$$

经过这种标准化所得的新数据,**各要素的极大值为1,极小值为0,其** 余的数值均在0与1之间。

• 经过极差标准化处理后的某地区九个农业区的七项经济指标数据

区代号	人均耕地 X ₁ (hm ² /人)	劳均耕地 x ₂ (hm ² /个)	水田比重 X ₃ (%)	复种指数 X ₄ (%)	粮食亩产 x ₅ (kg/ hm²)	人均粮食 x ₆ (kg/人)	稻谷占粮食 比重x ₇ (%)
G_1	0.91	1.00	0.07	0.15	0.18	1.00	0.14
G_2	1.00	0.87	0.00	0.00	0.00	0.24	0.00
G_3	0.20	0.15	0.07	0.44	0.44	0.08	0.07
G_4	0.44	0.38	0.00	0.13	0.18	0.13	0.00
G_5	0.03	0.03	1.00	1.00	1.00	0.45	1.00
G_6	0.03	0.03	0.61	0.69	0.65	0.13	0.59
G_7	0.00	0.00	0.90	0.81	0.84	0.13	1.00
G_8	0.91	0.53	0.07	0.00	0.10	0.43	0.09
G_9	0.38	0.26	0.04	0.00	0.15	0.00	0.00

· 九个农业区之间的曼哈坦(Manhattan)距离矩阵

$$D = (d_{ij})_{9\times 9} = \begin{bmatrix} 0 \\ 1.52 & 0 \\ 3.10 & 2.70 & 0 \\ 2.19 & 1.47 & 1.23 & 0 \\ 5.86 & 6.02 & 3.64 & 4.77 & 0 \\ 4.72 & 4.46 & 1.86 & 2.99 & 1.78 & 0 \\ 5.79 & 5.53 & 2.93 & 4.06 & 0.83 & 1.07 & 0 \\ 1.32 & 0.88 & 2.24 & 1.29 & 5.14 & 3.96 & 5.03 & 0 \\ 2.62 & 1.66 & 1.20 & 0.51 & 4.84 & 3.06 & 3.32 & 1.40 & 0 \end{bmatrix}$$

$$d(x, y) = \sum_{i} |x_{i} - y_{i}|$$

- 原理:先把各个分类对象单独视为一类,然后根据距离最小的原则,依次选出一对分类对象,并成新类。
- ▶如果其中一个分类对象已归于一类,则把另一个也 归入该类;
- ▶如果一对分类对象正好属于已归的两类,则把这两类并为一类。

每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次就可以把全部分类对象归为一类,这样就可以根据归并的先后顺序作出聚类谱系图。

用直接聚类法对某地区的九个农业区进行聚类分析, 步骤如下:

- ①在距离矩阵D中,除去对角线元素以外,d₄₉=d₉₄=0.51 为最小者, 故将第4区与第9区并为一类,划去第9行和第9列;
- ②在余下的元素中,除对角线元素以外,d₇₅=d₅₇=0.83 为最小者, 故将第5区与第7区并为一类,划掉第7行和第7列;
- ③在第二步之后余下的元素之中,除对角线元素以外, d_{82} = d_{28} =0.88 为最小者,故将第2区与第8区并为一类,划去第8行和第8列:

$$D = (d_{ij})_{9\times 9} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3.10 & 2.70 & 0 & 0 \\ 2.19 & 1.47 & 1.23 & 0 & 0 \\ 5.86 & 6.02 & 3.64 & 4.77 & 0 \\ 4.72 & 4.46 & 1.86 & 2.99 & 1.78 & 0 \\ 5.79 & 5.53 & 2.93 & 4.06 & 0.83 & 1.07 & 0 \\ 1.32 & 0.88 & 2.24 & 1.29 & 5.14 & 3.96 & 5.03 & 0 \\ 2.62 & 1.66 & 1.20 & 0.51 & 4.84 & 3.06 & 3.32 & 1.40 & 0 \end{bmatrix}$$


```
D = (d_{ij})_{9\times 9} = \begin{bmatrix} 0 \\ 1.52 & 0 \\ 3.10 & 2.70 & 0 \\ 2.19 & 1.47 & 1.23 & 0 \\ 5.86 & 6.02 & 3.64 & 4.77 & 0 \\ 4.72 & 4.46 & 1.86 & 2.99 & 1.78 & 0 \\ 5.79 & 5.53 & 2.93 & 4.06 & 0.83 & 1.07 & 0 \\ 1.32 & 0.88 & 2.24 & 1.29 & 5.14 & 3.96 & 5.03 & 0 \\ 2.62 & 1.66 & 1.20 & 0.51 & 4.84 & 3.06 & 3.32 & 1.40 & 0 \end{bmatrix}
```

- ④在第三步之后余下的元素中,除对角线元素以外,d₄₃=d₃₄=1.23为最小者,故将第3区与第4区并为一类,划去第4行和第4列,此时,第3、4、9区已归并为一类;
- ⑤在第四步之后余下的元素中,除对角线元素以外,d₂₁=d₁₂=1.52为最小者,故将第1区与第2区并为一类,划去第2行和第2列,此时,第1、2、8区已归并为一类;
- ⑥在第五步之后余下的元素中,除对角线元素以外,d₆₅=d₅₆=1.78 为最小者,故将第5区与第6区并为一类,划去第6行和第6列,此时,第5、6、7区已归并为一类;

- ⑦在第六步之后余下的元素中,除对角线元素以外,d₃₁=d₁₃=3.10 为最小者,故将第1区与第3区并为一类,划去第3行和第3列,此时,第1、2、3、4、8、9区已归并为一类;
- **⑧**在第七步之后余下的元素中,除去对角线元素以外, 只有d₅₁= d₁₅=5.86,故将第1区与第5区并为一类,划去 第5行和第5列,此时,第1、2、3、4、5、6、7、8、9、 区均归并为一类;

1.选择一个含有<u>随机选择样本的k个簇</u>的初始划分, 计算这些簇的质心。

2.根据距离把剩余的每个样本分配到距离(比如欧式距离)它最近的簇质心的一个划分。

3.计算被分配到每个簇的样本的均值向量,作为新的簇的质心。

4.重复2,3直到k个簇的质心点不再发生变化或准则函数收敛。

step 0

- 坐标表示5个点 $\{X_1, X_2, X_3, X_4, X_5\}$ 作为一个聚类分析的二维样本: $X_1 = (0,2)$, $X_2 = (0,0)$, $X_3 = (1.5,0)$, $X_4 = (5,0)$, $X_5 = (5,2)$ 。 **假设要求的簇的数量k=2**。
- 第1步: 由样本的随机分布形成两个簇: $C_1 = \{X_1, X_2, X_4\} \ \, \text{和} C_2 = \{X_3, X_5\} \ \, \text{这两个簇的质心M}_1 \text{和M}_2 \text{是:} \\ M_1 = \{(0+0+5)/3, (2+0+0)/3\} = \{1.66, 0.66\}; \\ M_2 = \{(1.5+5)/2, (0+2)/2\} = \{3.25, 1.00\};$

• 样本初始随机分布之后, 方差是:

$$e_1^2 = [(0-1.66)^2 + (2-0.66)^2] + [(0-1.66)^2 + (0-0.66)^2] + [(5-1.66)^2 + (0-0.66)^2] = 19.36;$$

 $e_2^2 = 8.12$;

• 总体平方误差是: $E^2 = e_1^2 + e_2^2 = 19.36 + 8.12 = 27.48$

$$J_e = \sum_{i=1}^k \sum_{X \in C_i} |X - m_i|^2$$

• 第2步: 取距离其中一个质心 (M,或M,) 最小的距离 分配所有样本, 簇内样本的重新分布如下: $d(M_1,X_1)=(1.66^2+1.34^2)^{1/2}=2.14$ $d(M_2,X_1)=3.40 ==>X_1 \in C_1$; $d(M_1,X_2)=1.79 \text{ for } d(M_2,X_2)=3.40 ==>X_2 \in C_1$ $d(M_1,X_3)=0.83 \text{ for } d(M_2,X_3)=2.01 ==>X_3 \in C_1$ $d(M_1, X_1) = 3.41 \text{ for } d(M_2, X_1) = 2.01 = > X_1 \in C_2$ $d(M_1,X_5)=3.60 \text{ for } d(M_2,X_5)=2.01 ==>X_5 \in C_2$ 新簇 $C_1 = \{X_1, X_2, X_3\}$ 和 $C_2 = \{X_4, X_5\}$

• 第3步: 计算新的质心:

$$M_1 = \{0.5, 0.67\}; M_2 = \{5.0, 1.0\}.$$

• 相应的方差及总体平方误差分别是:

$$e_1^2 = 4.17;$$
 $e_2^2 = 2.00;$ $E = 6.17;$

- 可以看出第一次迭代后,总体误差显著减小(从值27.48到6.17)。
- 在这个简单的例子中,**第一次迭代同时也是最后一次 迭代**,因为如果继续分析新中心和样本间的距离,样 本将会全部分给同样的簇,不将重新分配,算法停止。

- K-Means的优点是速度非常快,因为只是计算数据点和 质心点之间的距离,涉及到的计算量非常少!因此它的 算法时间复杂度只有O(n)。
- 另一方面, K-Means有两个缺点。一是必须一开始就决定数据集中包含多少个聚类。这个缺点并不总是微不足道的, 理想情况下, 问题目标其实是用一种算法来分类这些数据, 并从结果中观察出一些规律, 而不是限制几个条件强行聚类。二是一开始质心点的选取是随机的, 算法可能会初始化出差异巨大的点。这个缺点导致的结果是质心点的位置不可重复且缺乏一致性。

- 1、主成分分析法(方法1-基于协方差矩阵方法)
- >由X的协方差阵Σx,求出其特征根;
- ▶求出分别所对应的特征向量;
- >计算累积贡献率,给出恰当的主成分个数;
- ➤ 计算所选出的k个主成分的得分。将原始数据的中心化值。

- 2、主成分分析法(方法2-基于相关系数矩阵方法)
- ▶计算相关系数矩阵;
- >计算特征值与特征向量;
- >计算主成分贡献率及累计贡献率;
- ▶计算主成分载荷;
- >各主成分的得分。

• 3、聚类分析法(方法1-直接聚类法)

原理: 先把各个分类对象单独视为一类, 然后根据距离最小的原则, 依次选出一对分类对象, 并成新类。

- ▶ 性质1:如果其中一个分类对象已归于一类,则把另一个也归入该类;
- ➤ 性质2: 如果一对分类对象正好属于已归的两类,则把这两类 并为一类。

每一次归并,都划去该对象所在的列与列序相同的行。经过n-1次就可以把全部分类对象归为一类,根据归并的先后顺序作出聚类谱系图。

- 4、聚类分析法(方法2-k-means聚类算法)
- ➤ 选择一个含有随机选择样本的k个簇的初始划分,计算这些簇的 质心。
- ▶ 根据距离把剩余的每个样本分配到距离它最近的簇质心的一个划分。
- > 计算被分配到每个簇的样本的均值向量,作为新的簇的质心。
- ▶ 重复2,3步,直到k个簇的质心点不再发生变化或准则函数收敛。
- 注:聚类分析中要考虑相似性度量(L_k 范数)和数据处理方法(4种方法)。