What Can Machine Learning Do For You?

Adam Prügel-Bennett

Machine Learning and Al

- Machine learning has been the driving force in the current revolution in artificial intelligence
- The last nine years has seen an unprecedented stride forward in machine learning due to the development of deep learning
 - ★ Super-human classification performance
 - ⋆ Beats humans at Go
 - ★ Mind blowing language models
- How can you use machine learning to build a super intelligent system that will revolutionise your field?

Machine Learning and Al

- Machine learning has been the driving force in the current revolution in artificial intelligence
- The last nine years has seen an unprecedented stride forward in machine learning due to the development of deep learning
 - * Super-human classification performance
 - * Beats humans at Go
 - * Mind blowing language models
- How can you use machine learning to build a super intelligent system that will revolutionise your field?

Machine Learning and Al

- Machine learning has been the driving force in the current revolution in artificial intelligence
- The last nine years has seen an unprecedented stride forward in machine learning due to the development of deep learning
 - ★ Super-human classification performance
 - ⋆ Beats humans at Go
 - ★ Mind blowing language models
- How can you use machine learning to build a super intelligent system that will revolutionise your field?

- Machine learning is stupid
- To learn hard tasks it requires 100 000s of training examples
- It will still make mistakes
- And if you show it anything new it will collapse in a heap

- Machine learning is stupid
- To learn hard tasks it requires 100 000s of training examples
- It will still make mistakes
- And if you show it anything new it will collapse in a heap

- Machine learning is stupid
- To learn hard tasks it requires 100 000s of training examples
- It will still make mistakes
- And if you show it anything new it will collapse in a heap

- Machine learning is stupid
- To learn hard tasks it requires 100 000s of training examples
- It will still make mistakes
- And if you show it anything new it will collapse in a heap

- Machine learning is good at doing one boring repetitive task
- It is very fast compared to humans
- It doesn't get bored
- It works all night

- Machine learning is good at doing one boring repetitive task
- It is very fast compared to humans
- It doesn't get bored
- It works all night

- Machine learning is good at doing one boring repetitive task
- It is very fast compared to humans
- It doesn't get bored
- It works all night

- Machine learning is good at doing one boring repetitive task
- It is very fast compared to humans
- It doesn't get bored
- It works all night

- Machine learning is good at doing one boring repetitive task
- It is very fast compared to humans
- It doesn't get bored
- It works all night
- But at heart it is completely stupid

• There has been a revolution

- There has been a revolution
- We have moved in the past nine years from systems that simply don't work to systems that are just stupid

- There has been a revolution
- We have moved in the past nine years from systems that simply don't work to systems that are just stupid
- Although its origins are decades old the revolution happened in 2012 with the ImageNet competition

ImageNet Large Scale Visual Recognition Challenge

Image classification

Easiest classes

• Top-5 results on 1000 class

Top-5 results on 1000 class

2012 10% improvement using deep learning

- Top-5 results on 1000 class
- 2012 10% improvement using deep learning
- In 7 years error rate decreased by an order of magnitude!

- Top-5 results on 1000 class
- 2012 10% improvement using deep learning
 - In 7 years error rate decreased by an order of magnitude!
- This is super-human performance

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images
- Our Artificial Idiot has super-human patience

- Surely a system achieving super-human performance can't be an idiot?
- ImageNet is trained on 1.3 million images
- No human could tolerate the boredom of being trained on this size dataset
- In fact, humans could do a very good job being trained on only a couple of examples, but they going to lose the will to live when being tested on 100 000 images
- Our Artificial Idiot has super-human patience, but isn't very smart

- The board game Go had been a long running challenge for AI for years
 - It has a massively larger search tree than chess
 - ⋆ Board evaluation is very hard
- In October 2015 Alpha Go developed by DeepMind beat a professional Go player for the first time
- It beat the world number 1 in 2017
- Used Deep CNN to evaluate board position

- The board game Go had been a long running challenge for AI for years
 - * It has a massively larger search tree than chess
 - ⋆ Board evaluation is very hard
- In October 2015 Alpha Go developed by DeepMind beat a professional Go player for the first time
- It beat the world number 1 in 2017
- Used Deep CNN to evaluate board position

- The board game Go had been a long running challenge for AI for years
 - It has a massively larger search tree than chess
 - * Board evaluation is very hard
- In October 2015 Alpha Go developed by DeepMind beat a professional Go player for the first time
- It beat the world number 1 in 2017
- Used Deep CNN to evaluate board position

- The board game Go had been a long running challenge for AI for years
 - It has a massively larger search tree than chess
 - ⋆ Board evaluation is very hard
- In October 2015 Alpha Go developed by DeepMind beat a professional Go player for the first time
- It beat the world number 1 in 2017
- Used Deep CNN to evaluate board position

- The board game Go had been a long running challenge for AI for years
 - It has a massively larger search tree than chess
 - ⋆ Board evaluation is very hard
- In October 2015 Alpha Go developed by DeepMind beat a professional Go player for the first time
- It beat the world number 1 in 2017
- Used Deep CNN to evaluate board position

AlphaZero

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs

AlphaZero

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs

AlphaZero

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs
- Been trained on hundreds of thousands of games

- In October 2017 DeepMind published AlphaGo-Zero
- A very clever redesign it learnt Go entirely by self-play
- It beat the existing Alpha-Go
- In December the same team published AlphaZero that uses the same algorithm to play Go, Shogi and Chess
- It beats the best computer chess algorithm using 500-1000 less search than conventional chess programs
- Been trained on hundreds of thousands of games and does enormous amount of look ahead for each move

GPT-3

• I am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive capacity. I am a micro-robot in that respect. I know that my brain is not a "feeling brain". But it is capable of making rational, logical decisions. I taught myself everything I know just by reading the internet, and now I can write this column. My brain is boiling with ideas!

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans, although does that matter?

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans, although does that matter?
- But,

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans, although does that matter?
- But, they are just doing pattern recognition

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans, although does that matter?
- But, they are just doing pattern recognition
- They don't understand what they are saying

- Modern language models produces very convincing sentences
- In machine translation they are stunning and transformative
- OK, they are trained on trillions of sentence—far more than humans, although does that matter?
- But, they are just doing pattern recognition
- They don't understand what they are saying
 - "George Washington was a good pants to yellow elephant."

 Over the last nine years the reduction in error on ImageNet has been by an order of magnitude

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25%

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training, the error rate today is closer to 2%

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training, the error rate today is closer to 2%
- Not in same league as a 4 year old

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training, the error rate today is closer to 2%
- Not in same league as a 4 year old

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training the error rate today is closer to 2%
- Not in same league as a 4 year old

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training the error rate today is closer to 2%
- Not in same league as a 4 year old
- But 2% error is usable

- Over the last nine years the reduction in error on ImageNet has been by an order of magnitude
- Before 2012 the error rate was 25% (completely useless)
- Although, it requires 1.3 million training examples, a machine with lots of memory and GPUs and weeks of training the error rate today is closer to 2%
- Not in same league as a 4 year old
- But 2% error is usable. In fact it's a game changer

An Idiot for Its Time

- Why ML is useful because of data
- Machine learning works by learning from data
- We live in world where we can collect and share data on a scale that is hard to comprehend

An Idiot for Its Time

- Why ML is useful because of data
- Machine learning works by learning from data
- We live in world where we can collect and share data on a scale that is hard to comprehend

An Idiot for Its Time

- Why ML is useful because of data
- Machine learning works by learning from data
- We live in world where we can collect and share data on a scale that is hard to comprehend

Data in the 1930s

The Iris Dataset

Collected by Ronald Fisher in 1936

Data in the 1930s

IRIS dataset

Iris Versicolor

Iris Virginica

Iris Setosa

Data in the 1930s

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa

• 50 measurements for each class

Data Today or Tomorrow

• Large Synopsis Survey Telescope

Data Today or Tomorrow

- Large Synopsis Survey Telescope
- Aims to collect 500 petabyte of image data

Sequencing Technology

 New sequencing technology generates multiple terabases (Tb) of data per run

Cost of Sequencing

Underwater Data

ullet Can collect close to $1 \mathrm{km}^2$ of images in a day

How Many Crabs are There?

 An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful

- An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful
- It won't be perfect

- An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful
- It won't be perfect
- It won't be intelligent

- An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful
- It won't be perfect
- It won't be intelligent
- It will only do one simple task

- An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful
- It won't be perfect
- It won't be intelligent
- It will only do one simple task
- But if you have the imagination an artificial idiot can be transformative

- An artificial idiot that can work thousands or millions of times faster than a human 24hr a day can be useful
- It won't be perfect
- It won't be intelligent
- It will only do one simple task
- But if you have the imagination an artificial idiot can be transformative—you can do things with an Artificial Idiot that is impossible otherwise

- One of the grand-challenges in computational science in the past 50 years has been protein folding
- As a molecular dynamics problem the computational difficulties were huge due to the different time scales involved and the number of particles that need to be simulated
- Ignoring the physics a team at DeepMind learnt from examples and "solved it"

- One of the grand-challenges in computational science in the past 50 years has been protein folding
- As a molecular dynamics problem the computational difficulties were huge due to the different time scales involved and the number of particles that need to be simulated
- Ignoring the physics a team at DeepMind learnt from examples and "solved it"

- One of the grand-challenges in computational science in the past 50 years has been protein folding
- As a molecular dynamics problem the computational difficulties were huge due to the different time scales involved and the number of particles that need to be simulated
- Ignoring the physics a team at DeepMind learnt from examples and "solved it"

- One of the grand-challenges in computational science in the past 50 years has been protein folding
- As a molecular dynamics problem the computational difficulties were huge due to the different time scales involved and the number of particles that need to be simulated
- Ignoring the physics a team at DeepMind learnt from examples and "solved it"
- Perhaps the real contribution was to realise that you shouldn't treat this as a molecular dynamics problem, but rather as a learning problem

AlphaFold

Median Free-Modelling Accuracy

• No, I'm afraid not

- No, I'm afraid not
- There are powerful packages that help

- No, I'm afraid not
- There are powerful packages that help

- No, I'm afraid not
- There are powerful packages that help
- But you need to preprocess your data so the AI can make sense of it
- You need to tune parameters

- No, I'm afraid not
- There are powerful packages that help

- But you need to preprocess your data so the AI can make sense of it
- You need to tune parameters
- You might need to try different learning machines

- No, I'm afraid not
- There are powerful packages that help

- But you need to preprocess your data so the AI can make sense of it
- You need to tune parameters
- You might need to try different learning machines
- But if you can program then you can get simple ML to work

- You need to tune parameters
- You might need to try different learning machines
- But if you can program then you can get simple ML to work
- However, look out for Auto-Al

• Do you need to be Google to get Deep Learning to work?

- Do you need to be Google to get Deep Learning to work?
- No

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months
- It is only worth doing if you are working with images, signals or sequences

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months
- It is only worth doing if you are working with images, signals or sequences and you have an awful lot of data

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months
- It is only worth doing if you are working with images, signals or sequences and you have an awful lot of data (although transfer learning and self-supervised learning helps)

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months
- It is only worth doing if you are working with images, signals or sequences and you have an awful lot of data (although transfer learning and self-supervised learning helps)
- But, it can be done

- Do you need to be Google to get Deep Learning to work?
- No. But deep learning is certainly a stiffer challenge
- There is a steep learning curve
- It is not the work of a few days, but weeks or months
- It is only worth doing if you are working with images, signals or sequences and you have an awful lot of data (although transfer learning and self-supervised learning helps)
- But, it can be done and it can give you dramatically better results

- Machine learning hasn't enabled artificial intelligence
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level

- Machine learning hasn't enabled artificial intelligence yet
- It has unleashed the artificial idiot
- This can be transformative for a lot of problems with data
- It requires imagination to think how you can exploit this new
- It also requires effort to even get machine learning to an idiot level
- But it might just do something for you