Clase 6 Series de Tiempo

Felipe Elorrieta Lopez

Universidad de Santiago de Chile

April 28, 2025

Descomposición de Series de Tiempo.

- Descomposición de Series de Tiempo.
- Validación de los Supuestos.

- Descomposición de Series de Tiempo.
- Validación de los Supuestos.
- ► Operador de Rezago y de Diferencia.

- Descomposición de Series de Tiempo.
- Validación de los Supuestos.
- ► Operador de Rezago y de Diferencia.
- Proceso Lineal General.

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice autoregresivo de orden p AR(p) si:

$$Y_t - \phi_1 Y_{t-1} - \ldots - \phi_p Y_{t-p} = \epsilon_t \tag{1}$$

donde $p \geq 1$ y $\{\epsilon_t\} \sim RB$.

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice autoregresivo de orden p AR(p) si:

$$Y_t - \phi_1 Y_{t-1} - \ldots - \phi_p Y_{t-p} = \epsilon_t \tag{1}$$

donde $p \geq 1$ y $\{\epsilon_t\} \sim RB$.

lacksquare Además, $Cov(\epsilon_t, Y_{t-j}) = \mathbb{E}(\epsilon_t Y_{t-j}) = 0 \ \ orall j > 0$

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice autoregresivo de orden p AR(p) si:

$$Y_t - \phi_1 Y_{t-1} - \ldots - \phi_p Y_{t-p} = \epsilon_t \tag{1}$$

donde $p \geq 1$ y $\{\epsilon_t\} \sim RB$.

- Además, $Cov(\epsilon_t, Y_{t-j}) = \mathbb{E}(\epsilon_t Y_{t-j}) = 0 \quad \forall j > 0$
- $ightharpoonup \phi_1, \ldots, \phi_p$ son coeficientes fijos (a estimar).

▶ Un proceso estocástico $\{Y_t\}$, $t \in T$ se dice autoregresivo de orden p AR(p) si:

$$Y_t - \phi_1 Y_{t-1} - \ldots - \phi_p Y_{t-p} = \epsilon_t \tag{1}$$

donde $p \geq 1$ y $\{\epsilon_t\} \sim RB$.

- lacksquare Además, $Cov(\epsilon_t, Y_{t-j}) = \mathbb{E}(\epsilon_t Y_{t-j}) = 0 \ \ \forall j > 0$
- $ightharpoonup \phi_1, \ldots, \phi_p$ son coeficientes fijos (a estimar).
- ightharpoonup Se definen los valor iniciales $Y_i = \epsilon_i$, con $i = 1, \ldots, p$

Equivalentemente, se puede definir el proceso autoregresivo de orden p AR(p) como:

$$\Phi_{\rho}(B)Y_t = \epsilon_t \tag{2}$$

donde $\Phi_p(B) = 1 - \phi_1 B - \ldots - \phi_p B^p$ es el polinomio autoregresivo de orden p.

Equivalentemente, se puede definir el proceso autoregresivo de orden p AR(p) como:

$$\Phi_{\rho}(B)Y_t = \epsilon_t \tag{2}$$

donde $\Phi_p(B) = 1 - \phi_1 B - \ldots - \phi_p B^p$ es el polinomio autoregresivo de orden p.

Notación: $Y_t \sim AR(p)$

Ejemplo: Considere $Y_t \sim AR(1)$, es decir

$$Y_{t} = \phi Y_{t-1} + \epsilon_{t}$$

$$Y_{t} - \phi Y_{t-1} = \epsilon_{t}$$

$$Y_{t} - \phi B Y_{t} = \epsilon_{t}$$

$$Y_{t}(1 - \phi B) = \epsilon_{t}$$

$$\Phi_{1}(B) Y_{t} = \epsilon_{t}$$
(3)

donde $\Phi_1(B) = 1 - \phi B$.

Ejemplo: Considere $Y_t \sim AR(1)$, es decir

$$Y_{t} = \phi Y_{t-1} + \epsilon_{t}$$

$$Y_{t} - \phi Y_{t-1} = \epsilon_{t}$$

$$Y_{t} - \phi B Y_{t} = \epsilon_{t}$$

$$Y_{t}(1 - \phi B) = \epsilon_{t}$$

$$\Phi_{1}(B) Y_{t} = \epsilon_{t}$$
(3)

donde $\Phi_1(B) = 1 - \phi B$.

Es el proceso $Y_t \sim AR(1)$ un proceso estacionario?

▶ El proceso $Y_t \sim AR(1)$ es un proceso estacionario bajo $|\phi| < 1$ con las siguientes propiedades,

▶ El proceso $Y_t \sim AR(1)$ es un proceso estacionario bajo $|\phi| < 1$ con las siguientes propiedades,

1.
$$\mathbb{E}(Y_t) = 0$$

- ▶ El proceso $Y_t \sim AR(1)$ es un proceso estacionario bajo $|\phi| < 1$ con las siguientes propiedades,
 - **1.** $\mathbb{E}(Y_t) = 0$
 - **2.** $\mathbb{V}(Y_t) = \frac{\sigma^2}{1-\phi^2} = \sigma_y^2$

- ▶ El proceso $Y_t \sim AR(1)$ es un proceso estacionario bajo $|\phi| < 1$ con las siguientes propiedades,
 - **1.** $\mathbb{E}(Y_t) = 0$
 - **2.** $\mathbb{V}(Y_t) = \frac{\sigma^2}{1-\phi^2} = \sigma_y^2$
 - 3. $\mathbb{C}(Y_t, Y_{t-k}) = \frac{\sigma^2 \phi^{|k|}}{1-\phi^2} = \sigma_y^2 \phi^{|k|}$

- ▶ El proceso $Y_t \sim AR(1)$ es un proceso estacionario bajo $|\phi| < 1$ con las siguientes propiedades,
 - **1**. $\mathbb{E}(Y_t) = 0$

2.
$$\mathbb{V}(Y_t) = \frac{\sigma^2}{1-\phi^2} = \sigma_y^2$$

3.
$$\mathbb{C}(Y_t, Y_{t-k}) = \frac{\sigma^2 \phi^{|k|}}{1-\phi^2} = \sigma_y^2 \phi^{|k|}$$

4.
$$\rho(k) = \phi^{|k|}$$

Mencionamos anteriormente que una condición requerida para la estacionaridad es $|\phi| < 1$.

- Mencionamos anteriormente que una condición requerida para la estacionaridad es $|\phi| < 1$.
- Esta condición es equivalente a decir que la raíz del polinomio $\Phi_1(B)=1-\phi B$ está fuera del circulo unitario

- Mencionamos anteriormente que una condición requerida para la estacionaridad es $|\phi| < 1$.
- Esta condición es equivalente a decir que la raíz del polinomio $\Phi_1(B) = 1 \phi B$ está fuera del circulo unitario
- Es decir,

$$|\phi| < 1 \iff |B| > 1$$

Representación Causal Proceso AR(1)

► Sea el proceso AR(1)

$$Y_t = \phi Y_{t-1} + \epsilon_t$$

Representación Causal Proceso AR(1)

► Sea el proceso AR(1)

$$Y_t = \phi Y_{t-1} + \epsilon_t$$

▶ Bajo $|\phi| < 1$, el proceso anterior puede ser escrito como,

$$Y_t = \sum_{j=0}^{\infty} \phi^j \epsilon_{t-j}$$

la cual es una representación causal del proceso AR(1)

Representación Causal Proceso AR(p)

► En general, para probar que un proceso AR(p) sea causal (y estacionario), debemos verificar que las raices del polinomio:

$$\Phi_p(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p = 0$$

estan todas fueras del circulo unitario. Es decir, $|z_j*|>1 \ \, \forall j=1,\ldots,p$, donde z_j* es la j-ésima raiz del polinomio $\Phi_p(z)$

Proceso AR(2)

▶ Un proceso autoregresivo $\{Y_t\}$ se dice de orden 2 AR(2) si:

$$Y_t - \phi_1 Y_{t-1} - \phi_2 Y_{t-2} = \epsilon_t \tag{4}$$

Usando el operador de rezago, se puede reescribir el proceso como:

$$Y_t(1 - \phi_1 B - \phi_2 B^2) = \epsilon_t \tag{5}$$

donde $\Phi_2(B) = (1 - \phi_1 B - \phi_2 B^2)$ es el polinomio autoregresivo de orden 2.

Proceso AR(2)

En este caso, se puede verificar que las raices del polinomio $\Phi_2(z) = (1 - \phi_1 z - \phi_2 z^2) = 0$ son,

$$z_{j}* = -\frac{\phi_{1} \pm \sqrt{\phi_{1}^{2} + 4\phi_{2}}}{2\phi_{2}}$$
 (6)

Si $|z_j*|>1$ $\forall j=1,2$ el proeso es causal y estacionario.

- Una condición equivalente es,
 - i) $\phi_1 + \phi_2 < 1$
 - ii) $\phi_2 \phi_1 < 1$
 - iii) $|\phi_2| < 1$

todas se deben cumplir