Homework 2 QueuesUnit 7 Data structures

Homework 2: Queues

- 1. A keyboard buffer on a computer's operating system is implemented as a circular queue.
 - (a) Explain why a circular queue is an appropriate data structure choice. [2]
 - (b) A particular keyboard buffer consists of five cells in a circular queue. The queue **kBuffer** is initialised by setting a variable **size** (containing the number of items in the array) to 0, pointers **front** to 0 and **rear** to -1. A variable **maxSize** holds the maximum size of the queue.
 - (i) Complete the table to show the results after the following operations.

[4]

			kBuffer					
	[0]	[1]	[2]	[3]	[4]	size	fro nt	rear
Initial state						0	0	-1
Enqueue S								
Enqueue W								
Dequeue								
Enqueue E								

(ii) Complete the table to show the results after the following operations. [3]

			kBuffer					
	[0]	[1]	[2]	[3]	[4]	size	fro nt	rear
Current state	J	U	Х	L	М	3	1	3
Enqueue T								
Enqueue R								
Dequeue								

- (c) Code for the keyboard buffer operations needs to be written.

 Use the variables defined in part (b): kBuffer, maxSize, size, front, and rear.
 - (i) Write the pseudocode for the isFull() operation, including function header. [2]

Homework 2 QueuesUnit 7 Data structures

Homework 2 Queues Unit 7 Data structures

(i	i)	Write the pseudocode for the deQueue operation.	[4]
(d) (i)	Describe, with the aid of an example, the operation of a priority queue from the user's point of view.	e [2]
(i	i)	Explain how the principles of data abstraction and encapsulation can used to hide the details of implementation of a priority queue.	be [3]
		asea to mae the details of implementation of a priority queue.	ادا