Производящая функция дискретной случайной величины. Характеристическая функция случайной величины. Семинар 9. 30 октября 2018 г.

Подготовил: Горбунов Э.

Источники: [НатанТВ, Гл. 7], [Ширяев, Гл. 2 $\S12$], [Боровков, Гл. 7 $\S1$ -3, 6, 8], [Гнеденко, Гл. 7 $\S32$ -37]

Ключевые слова: производящая функция дискретной случайной величины, характеристическая функция случайной величины и случайного вектора, многомерное нормальное распределение

Производящая функция дискретной случайной величины

Рассмотрим вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ и дискретную случайную величину ξ , принимающую целые неотрицательные значения с вероятностями $\mathbb{P}\{\xi=n\}=p_n$.

Определение 1. Производящей функцией целочисленной неотрицательной случайной величины ξ называется функция комплексного аргумента

$$g_{\xi}(z) \stackrel{\text{def}}{=} \mathbb{E}\left[z^{\xi}\right] = \sum_{n=0}^{\infty} p_n z^n, \quad z \in \mathbb{C}.$$

В силу $\sum_{n=0}^{\infty} p_n = 1$ имеем: $g_{\xi}(1) = 1$. Следовательно, радиус сходимости не меньше единицы.

Перечислим некоторые важные свойства производящей функции дискретной случайной величины.

- 1. $g_{\xi}(0) = p_0, g_{\xi}(1) = 1.$
- 2. $g_{\xi}^{(k)}(0) = k! p_k$.
- 3. Производящая функция однозначно определяет распределение целочисленной неотрицательной случайной величины, т. е. $g_{\xi}(z) \equiv g_{\eta}(z)$ тогда и только тогда, когда ξ и η имеют одинаковые распределения.
- 4. $\mathbb{E}\xi = g_{\xi}'(1)$ (при условии, что $\mathbb{E}|\xi| < \infty$) и $\mathbb{D}\xi = g_{\xi}''(1) + g_{\xi}'(1) (g_{\xi}'(1))^2$ (при условии, что $\mathbb{E}\left[\xi^2\right] < \infty$).
- 5. Если $\xi_1, \xi_2, \dots, \xi_n$ независимые в совокупности случайные величины, то для случайной величины $\eta_n = \sum_{k=1}^n \xi_k$ производящая функция равна

$$g_{\eta_n}(z) = \prod_{k=1}^n g_{\xi_k}(z).$$

Упражнение 1. Найдите производящую функцию случайной величины ξ такой, что:

- a) $\xi \sim \text{Be}(p)$;
- b) $\xi \sim \text{Binom}(n, p)$;
- c) $\xi \sim \text{Poisson}(\lambda)$;
- d) $\xi \sim \text{Geom}(p)$;
- e) $\xi \sim NB(n, p)$.

Упражнение 2. Пусть ξ_1, ξ_2, \ldots — одинаково распределённые случайные величины, независимые вместе со случайной величиной N (все величины целочисленные). Пусть $\eta = \sum\limits_{k=1}^N \xi_k$. Найдите производящую функцию η . Рассмотрите случай, когда $N \sim \operatorname{Poisson}(\lambda), \xi_i \sim \operatorname{Be}(p)$ (прореживание пуассоновского процесса).

Характеристическая функция случайной величины

До этого момента полное описание свойств случайной величины мы могли получить из функции распределения. Оказывается, существует и другой способ не менее полного описания свойств случайной величины, который опирается на характеристическую функцию случайной величины.

Для начала нужно договориться, что под **комплекснозначной случаной величиной** x мы будем понимать такой случайный объект ξ , что $\xi = \xi_1 + i\xi_2$, где ξ_1, ξ_2 — случайные величины. Естественно положить $\mathbb{E}[\xi] = \mathbb{E}\xi_1 + i\mathbb{E}\xi_2$. Комплекснозначные величины $\xi = \xi_1 + i\xi_2$ и $\eta = \eta_1 + i\eta_2$ называются **независимыми**, если σ -алгебры $\sigma(\xi_1, \xi_2)$ и $\sigma(\eta_1, \eta_2)$, порождённые случайными векторами $(\xi_1, \xi_2)^{\top}$ и $(\eta_1, \eta_2)^{\top}$, являются независимыми.

Определение 2. Характеристической функцией вещественной случайной величины ξ называется комплекснозначная функция действительного аргумента $t \in \mathbb{R}$:

$$\varphi_{\xi}(t) \stackrel{\text{def}}{=} \mathbb{E}\left[e^{it\xi}\right] = \int_{\mathbb{R}} e^{itx} dF(x),$$

где интеграл справа называется интегралом Фурье-Стильтьеса.

Замечание 1. Заметим, что характеристическая функция существует для любой случайной величны ξ , т. к. всегда существует соответствующий интеграл, что следует из простой выкладки:

$$|\varphi_{\xi}(t)| = \left| \int_{\mathbb{D}} e^{itx} dF(x) \right| \le \int_{\mathbb{D}} \left| e^{itx} \right| dF(x) = \int_{\mathbb{D}} dF(x) = 1.$$

Замечание 2. Если случайная величина ξ имеет дискретное распределение, то

$$\varphi_{\xi}(t) = \sum_{k} e^{itx_k} \mathbb{P}\{\xi = x_k\},$$

где x_1, x_2, \ldots — не более чем счётный набор значений, которые принимает случайная величина ξ . Заметим, что в случае целочисленной неотрицательной случайной величины характеристическая функция связана с производящей функцией формулой:

$$\varphi_{\xi}(t) = \sum_{n=0}^{\infty} e^{it \cdot n} \mathbb{P}\{\xi = n\} = g_{\xi}(e^{it}).$$

Замечание 3. Если случайная величина ξ имеет абсолютно непрерывное распределение с плотностью f(x), то

$$\varphi_{\xi}(t) = \int_{\mathbb{T}} e^{itx} f(x) dx,$$

то есть характеристическая функция есть (обратное) преобразование Φ урье функции f(x).

Из определения характеристической функции случайной величины видно, что она однозначно определяется функцией распределения случайной величины. Оказывается, верно и обратное.

Теорема 1. (Теорема единственности). Характеристическая функция $\varphi_{\xi}(t)$ случайной величины ξ однозначно определяет её функцию распределения $F_{\xi}(x)$. Кроме того, верна формула обращения: для любых точек непрерывности x и y функции $F_{\xi}(x)$ выполняется

$$F_{\xi}(y) - F_{\xi}(x) = \frac{1}{2\pi} \lim_{\sigma \to 0} \int_{\mathbb{R}} \frac{e^{-itx} - e^{-ity}}{it} \varphi_{\xi}(t) e^{-t^2 \sigma^2} dt.$$

Если функция $\frac{\varphi_{\xi}(t)}{t}$ интегрируема на бесконечности, то становится законным предельный переход под знаком интеграла, и можно записать

$$F_{\xi}(y) - F_{\xi}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{e^{-itx} - e^{-ity}}{it} \varphi_{\xi}(t) dt.$$

Характеристические функции очень удобны для исследования свойств сумм случайных величин.

Перечислим важнейшие свойства характеристических функций.

- 1. $\varphi_{\xi}(0) = 1$ и $|\varphi_{\xi}(t)| \leq 1$ для всех $t \in \mathbb{R}$.
- 2. $\varphi_{a\xi+b}(t)=e^{itb}\varphi_{\xi}(ta)$, где $a,b\in\mathbb{R}$ константы.
- 3. Если ξ_1, \ldots, ξ_n независимые случайные величины, то характеристическая функция суммы $S_n = \xi_1 + \ldots + \xi_n$ равна

$$\varphi_{S_n}(t) = \prod_{k=1}^n \varphi_{\xi_k}(t).$$

- 4. Характеристическая функция равномерна непрерывна на всей прямой.
- 5. Если существует абсолютный момент n-го порядка $\mathbb{E}\left[|\xi|^n\right]<\infty, n\geqslant 1$, то существует непрерывная n-я производная функции $\varphi_{\xi}(t)$ и $\varphi_{\xi}^{(n)}(0)=i^n\mathbb{E}\left[\xi^n\right]$.
- 6. $\overline{\varphi_{\mathcal{E}}}(t) = \varphi_{\mathcal{E}}(-t) = \varphi_{-\mathcal{E}}(t)$.

Пример 1. Пусть $\xi \sim \mathcal{N}(\mu, \sigma^2)$. Покажите, что $\varphi_{\xi}(t) = e^{it\mu - \frac{t^2\sigma^2}{2}}$.

Пример 2. Пусть $\xi \sim \text{Poisson}(\lambda)$. Докажите, что $\varphi_{\xi}(t) = \exp \left(\lambda(e^{it}-1)\right)$.

Как ответить на вопрос является ли та или иная функция характеристической? Иногда это можно сделать с помощью перечисленных нами свойств.

Упражнение 3. Может ли функция $\varphi(t)$ быть характеристической функцией некоторой случайной величины, если

- 1) $\varphi(t) = \frac{1}{1+t};$
- 2) $\varphi(t) = 1 + t$;
- 3) $\varphi(t) = \sin t$;
- 4) $\varphi(t) = \cos t$?

В общем случае ответ на вопрос, является ли та или иная функция характеристической, достаточно сложен. Следующая теорема даёт критерий того, является ли функция характеристической для некоторой случайной величины.

Теорема 2. Теорема Бохнера-Хинчина. Для того, чтобы непрерывная функция $\varphi(t)$, обладающая свойством $\varphi(0) = 1$, была характеристической, необходимо и достаточно, чтобы она была **неотрицательно определённой**, т. е. чтобы для любого $n \in \mathbb{N}$ для любых действительных t_1, \ldots, t_n и любых комплексных чисел $\lambda_1, \ldots, \lambda_n$ выполнялось

$$\sum_{k,j=1}^{n} \varphi(t_k - t_j) \lambda_k \overline{\lambda_j} \geqslant 0.$$

Теорема 3. (Теорема непрерывности). Пусть $\varphi_n(t) = \int\limits_{\mathbb{R}} e^{itx} dF_n(x)$ есть последовательность характеристических функций и $\varphi_n(t) \to \varphi(t)$ при $n \to \infty$ и при каждом t. Тогда следующие условия эквивалентны:

а) $\varphi(t)$ является характеристической функцией,

- b) $\varphi(t)$ непрерывна в точке t=0,
- с) существует такая функция распределения F(x), что во всех её точках неперывности $F_n(x) \to F(x)$ при $n \to \infty$, причём $\varphi(t) = \int\limits_{\mathbb{R}} e^{itx} dF(x)$.

Часто теоремой непрерывности называют следующий факт, вытекающий из сформулированной выше теоремы.

Следствие 1. Для сходимости $F_n(x)$ к F(x) во всех точках непрерывности F(x) необходимо и достаточно, чтобы $\varphi_n(t) \to \varphi(t)$ при каждом t, где $\varphi(t)$ — характеристическая функция, соответствующая F.

Пример 3. Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность случайных величин таких, что $\xi_n \sim \mathcal{U}[-n,n]$. Показать, что последовательность их характеристических функций сходится к разрывной в нуле функции.

Многомерное нормальное распределение

Определение 3. Характеристической функцией случайного вектора $\xi = (\xi_1, \dots, \xi_n)^\top$ называется комплекснозначная функция от вещественного вектора $t = (t_1, \dots, t_n)^\top$, равная

$$\varphi_{\xi}(t) \stackrel{\text{def}}{=} \mathbb{E}\left[e^{it^{\top}\xi}\right] = \mathbb{E}\left[\exp\left(i\sum_{k=1}^{n} t_{k}\xi_{k}\right)\right] = \int_{\mathbb{R}^{n}} \exp\left(i\sum_{k=1}^{n} t_{k}x_{k}\right) d\mathbb{P}_{\xi_{1},\dots,\xi_{n}}(x_{1},\dots,x_{n}).$$

Характеристические функции случайных векторов обладают всеми свойствами (с некоторыми несложными изменениями в формулировках), которые были получены для характеристических функций случайных величин (более подробно см. в [Боровков, Гл. 7, §6] и [Гнеденко, Гл. 7, §37]).

Если существует смешанный момент $\mathbb{E}\left[\xi_1^{k_1}\dots\xi_n^{k_n}\right]$, то $\varphi_{\xi}(t)$ имеет производную порядка $k_1+\dots+k_n$:

$$\frac{\partial \varphi_{\xi}^{k_1+\ldots+k_n}(t)}{\partial t_n^{k_1}\ldots\partial t_n^{k_n}}\Big|_{t=0} = i^{k_1+\ldots+k_n} \mathbb{E}\left[\xi_1^{k_1}\ldots\xi_n^{k_n}\right].$$

Определение 4. Нормальным случайным вектором $\xi \sim \mathcal{N}(\mu, \Sigma)$ будем называть случайный вектор, имеющий характеристическую функцию

$$\varphi_{\varepsilon}(t) = e^{it^{\top}\mu - \frac{1}{2}t^{\top}\Sigma t}.$$

Пусть случайные векторы $\xi \in \mathbb{R}^{d_1}$ и $\eta \in \mathbb{R}^{d_2}$ имеют совместное нормальное распределение

$$(\xi, \eta) \sim \mathcal{N}\left(\begin{pmatrix} \mu_{\xi} \\ \mu_{\eta} \end{pmatrix}, \begin{pmatrix} \Sigma_{\xi\xi} & \Sigma_{\xi\eta} \\ \Sigma_{\eta\xi} & \Sigma_{\eta\eta} \end{pmatrix}\right),$$

где $\mu_{\xi} \in \mathbb{R}^{d_1}$, $\mu_{\eta} \in \mathbb{R}^{d_2}$, $\Sigma_{\xi\xi} \in \mathbb{R}^{d_1 \times d_1}$, $\Sigma_{\xi\eta} = \Sigma_{\eta\xi}^{\top} \in \mathbb{R}^{d_1 \times d_2}$, $\Sigma_{\eta\eta} \in \mathbb{R}^{d_2 \times d_2}$.

Тогда

$$\xi \sim \mathcal{N}\left(\mu_{\xi}, \Sigma_{\xi\xi}\right)$$
.

Если $\Sigma_{\xi\xi}$ – невырожденная матрица, то

$$(\eta|\xi=x) \sim \mathcal{N}\left(\mu_{\eta} + \Sigma_{\eta\xi}\Sigma_{\xi\xi}^{-1}(x-\mu_{\xi}), \Sigma_{\eta\eta} - \Sigma_{\eta\xi}\Sigma_{\xi\xi}^{-1}\Sigma_{\xi\eta}\right).$$