

Business Analytics 2 – Lecture 4: Decision Making Under Uncertainty

- Structuring decision problems under uncertainty
- Decision trees: Structuring, Solving, Examples
- Value of perfect and sample information

Decision making under uncertainty

- Until now we have focused on modelling uncertainty with probabilities
 - Probability fundamentals, random variables, distributions, MC simulation
- Now we harness these tools for building models to support decision making under uncertainty
- Learning objectives: Ability to
 - build, solve and analyze decision trees to support decision making under uncertainty
 - estimate subjective probabilities and awareness of human biases (next week)

Decision making under uncertainty

A decision problem under uncertainty is characterized by:

Probability model components

- States of nature: Possible future events
 - Should be mutually exclusive and collectively exhaustive

Sample space and simple events

- The DM cannot control/select which of them occurs
- <u>Decision alternatives</u>: Different possible strategies the decision maker (DM) can employ

Random variables

 Resulting payoffs: Capture the outcome associated with each decision alternative in each state of nature

Values of random variables

Structuring decision problems under uncertainty

Example: Selecting the size of condominium complex to build under uncertain demand

TABLE 14.1 PAYOFF TABLE FOR THE PDC CONDOMINIUM PROJECT (PAYOFFS IN \$ MILLION)

Decision Alternative	State of Nature		
	Strong Demand s ₁	Weak Demand s	
Small complex, d_1	8	7	
Medium complex, d_2	14	5	
Large complex, d_3	20	-9	

Payoff table

Decision trees

- Decision node (square):
 - Each path corresponds to a decision alternative
- Chance/uncertainty node (circle):
 - Each path corresponds to a state of nature and has a probability (sum to one)
- Outcome 1 p_1 p_2 Outcome 2 p_3 Outcome 3
- Decisions and chance events are displayed in logical temporal sequence from left to right
- Consequences are specified with a single performance measure and listed at the right end of the tree
 - E.g. Profit, cost, revenue, utility
 - Path-dependent consequences can be readily handled

Alternative 1

Alternative 2

Alternative 3

Decision tree as a Decision Support Model

- A conceptual model for relationships among uncertainties and decisions
 - In which order are decisions made?
 - What information is available when making a specific decision?
- A normative model for identifying the (sequence of) optimal decisions
 - Solution procedure: Go through the nodes from right to left
 - Chance node: compute expected value over outcomes
 - Decision node: select the alternative with maximum value

$$7 = 0.3 * 0 + 0.7 * 10$$

Oil Wildcatting Example

- An oil wildcatter must decide whether to drill (d) or not to drill $(\sim d)$ a well on a particular site of the company's property.
- He is uncertain whether the hole is dry (dr), wet (we) or soaking (so)
 - He believes the probabilities for these states are P(dr)=0.5, P(we)=0.3 and P(so)=0.2.
- The cost of drilling is 70,000\$.
 - If the well is judged to be soaking, the revenue would be 270,000\$.
 - But if the well is wet, the revenue would be 120,000\$
- Question: What are the decision alternatives and uncertainties?

Oil Wildcatting Example: Decision tree

Oil Wildcatting Example: Spreadsheet implementation and Solution

Expected value for uncertainty nodes: =F3*G3+F5*G5+F7*G7

Maximum value for decision nodes: =MAX(C4;G11)

Question: To drill or not to drill?

Decision tree as a Decision Support Model

Question: Consider the decision tree on the right. What is the optimal decision? What is its expected value?

Value of information

- ☐ How much could the expected value be <u>expected</u> to increase, if
 - 1. Additional information was received before the decision, and then
 - 2. The decision would be made according to this information?
 - Note: this analysis is done <u>before</u> any information is obtained
 - Examples: market research, medical test, consulting report, etc.
- Perfect Information: certain information about how the uncertainties are resolved
 - Expected Value of Perfect information: EVPI = EVwPI EVwoPI
 - EVwoPI: Expected value without perfect information
 - The expected value of the optimal decision in the basic problem (cf. oil Wildcatting example: \$20000)
 - EVwPI: Expected value with perfect information
 - The expected value if the state of nature was known when making the decision

Oil Wildcatting Example: Expected value of perfect information

EVwPI is computed through a reversed decision tree in which all chance nodes precede all decision nodes

EVPI = [0*0.5 + 50,000 * 0.3 + 200,000 * 0.2] - [20,000] = 35,000

Expected value of perfect information

Question: Imagine that you were somehow able to find out whether the event called for formal or casual wear. What would be the value of such perfect information?

Oil Wildcatting Example: Sample Information

• At a cost of 10,000\$, the wildcatter can take seismic soundings which will help determine the underlying geological structure at the site

Calauria Tant Danulta (D)

- Data on seismic sounding tests for dry, wet, and soaking oil wells:

Amount of Oil (O) $P(R \mid O)$	Seismic Test Results (R)			
	No Structure (ns)	Open Structure (os)	Closed Structure (cs)	
Dry (dr)	0.600	0.300	0.100	
Wet (we)	0.300	0.400	0.300	
Soaking (so)	0.100	0.400	0.500	

 Question: Think of one decision node and one uncertainty node we have to add to the model.

Oil Wildcatting Example: Computing Probabilities

Amount of Oil (O) $P(R \mid O)$	Seismic Test Results (R)			
	No Structure (ns)	Open Structure (os)	Closed Structure (cs)	
Dry (dr)	0.600	0.300	0.100	
Wet (we)	0.300	0.400	0.300	
Soaking (so)	0.100	0.400	0.500	

p(dr)=0.5, p(we)=0.3, p(so)=0.2.

Test result probabilities using the law of total probability:

$$P(ns) = P(ns|dr)P(dr) + P(ns|we)P(we) + P(ns|so)P(so)$$

= 0.6 * 0.5 + 0.3 * 0.3 + 0.1 * 0.2 = 0.41

$$P(os) = 0.35$$

$$P(cs) = 0.24$$

"Oil probabilities" conditioned on test results using Bayes rule:

$$P(dr | ns) = \frac{P(ns|dr)P(dr)}{P(ns)} = \frac{0.6*0.5}{0.41} = 0.732$$

Expected value of sample information (EVSI)

EVSI = EVwSI - EVwoSI

- EVwoSI: Expected value without sample information
 - The optimal expected value in the original problem
 - No option to get additional information about the state of nature
 - E.g. oil wildcatting: \$20000
- EVwSI: Expected value with sample information
 - The expected value of the optimal decisions when you get some (imperfect) information (for free) on the state of nature before making the decision
 - E.g. oil wildcatting: \$32500
- Fact: The value of sample information cannot exceed the value of perfect information, i.e., EVSI ≤ EVPI
 - E.g. oil wildcatting: \$12500 vs. \$32500

