Workshop 2: solutions for week 3

- 1. Assume a is a cluster point of D. Then, for each $\varepsilon > 0$, there exists $x \in D$ such that $0 < |x a| < \varepsilon$, and hence $x \in D \setminus \{a\}$ such that $|x a| < \varepsilon$. This is true, in particular, if $\varepsilon = 1/n$, where $n \in \mathbb{Z}^+$. That is, for each $n \in \mathbb{Z}^+$, there exists $x_n \in D \setminus \{a\}$ such that $|x_n a| < 1/n$. The sequence (x_n) lies in $D \setminus \{a\}$ and converges to a by the Squeeze Rule.
 - Conversely, assume that a sequence (x_n) in $D\setminus\{a\}$ exists such that $x_n\to a$. Then, given any $\varepsilon>0$, there exists $N\in\mathbb{Z}^+$ such that for all $n\geq N$, $|x_n-a|<\varepsilon$. In particular, $|x_N-a|<\varepsilon$. But $x_N\neq a$ (since (x_n) is a sequence in $D\setminus\{a\}$), so $|x_N-a|>0$. Hence, x_N is a point in D satisfying $0<|x_N-a|<\varepsilon$. Since such a point exists for any $\varepsilon>0$, a is a cluster point of a.
- 2. First note that the maximal domain of the function $f(x) = (x+2)/(x^3+8)$ is $D = \mathbb{R}\setminus\{-2\}$, and -2 is a cluster point of D. Let $\varepsilon > 0$ be given. Then let $\delta = \min\{1, \varepsilon\}$. Then for all $x \in D$ such that $0 < |x+2| < \delta$,

$$\left| f(x) - \frac{1}{12} \right| = \left| \frac{1}{x^2 - 2x + 4} - \frac{1}{12} \right|$$

$$= \left| \frac{x^2 - 2x - 8}{12(x^2 - 2 + 4)} \right|$$

$$= \frac{|x - 4||x + 2|}{12((x - 1)^2 + 3)}$$

$$\leq \frac{|x - 4|}{36} |x + 2|$$

$$< \frac{7}{36} |x + 2| \quad \text{(since } |x + 2| < 1, \text{ so } x - 4 \in (-7, -5))}$$

$$\leq |x + 2|$$

$$< \varepsilon \quad \text{(since } |x + 2| < \delta \leq \varepsilon \text{)}.$$

- 3. Assume, towards a contradiction, that $\lim_{x\to 0}\frac{1}{x}=L$ for some $L\in\mathbb{R}$. Then, for each $\varepsilon>0$, there exists $\delta>0$ such that for all $x\in\mathbb{R}\setminus\{0\}$ with $0<|x-0|<\delta$, $|1/x-L|<\varepsilon$. This is true, in particular, for $\varepsilon=|L|+1$: there exists $\delta>0$ such that for all $x\in\mathbb{R}\setminus\{0\}$ with $0<|x|<\delta$, |1/x-L|<|L|+1, and hence $1/x<L+|L|+1\le 2|L|+1$. Consider $x_*=\min\{\delta/2,1/(2|L|+1)\}$. Note that $x_*\in\mathbb{R}\setminus\{0\}$ and $0<|x_*|<\delta$. Hence (by the definition of δ), $1/x_*<2|L|+1$. But $x_*\le 1/(2|L|+1)$, so $1/x_*\ge 2|L|+1$, a contradiction.
- 4. (a) $x_n = 50 + 1/n \to 50$, but $f(x_n) = 7 \to 7 \neq f(50) = 26$. Hence $f(x_n) \to f(50)$, so f is discontinuous at 50.
 - (b) Let x_n be any sequence that converges to 49.9. We must prove that $f(x_n) \to f(49.9) = 26$. So, let $\varepsilon > 0$ be given. Since $x_n \to 49.9$, there exists $N \in \mathbb{Z}^+$ such that, for all $n \geq N$, $|x_n 49.9| < 0.1$, and hence $x_n < 49.9 + 0.1 = 50$. Hence, for all $n \geq N$, $f(x_n) = 26$. So, for all $n \geq N$, $|f(x_n) 26| = 0 < \varepsilon$. Hence $f(x_n) \to f(49.9)$.