$$uc = \gamma \, C_t^{\, \left(-\eta^C \right)}$$

$$ucp = \gamma \, C_{t+1} ^{\left(-\eta^C\right)}$$

$$ul = (-\psi) (1 - L_t)^{(-\eta^L)}$$

$$fk = \frac{\alpha Y_t}{K_{t-1}}$$

$$fl = \frac{Y_t \ (1 - \alpha)}{L_t}$$

$$uc_t = \beta \, ucp_t \, \left(1 - \delta + R_{t+1} \right) \tag{1}$$

$$W_t = \frac{(-ul_t)}{uc_t} \tag{2}$$

$$K_t = K_{t-1} (1 - \delta) + I_t \tag{3}$$

$$Y_t = C_t + I_t \tag{4}$$

$$Y_t = A_t K_{t-1}{}^{\alpha} L_t{}^{1-\alpha} \tag{5}$$

$$MC_t = 1 (6)$$

$$W_t = MC_t f l_t (7)$$

$$R_t = MC_t f k_t \tag{8}$$

$$log(A_t) = \rho^A log(A_{t-1}) + \varepsilon^A_t$$
(9)

Table 1: Endogenous

Variable	ĿŒX	Description
У	Y	output
С	C	consumption
k	K	capital
1	L	labor
a	A	productivity
r	R	interest Rate
W	W	wage
iv	I	investment
mc	MC	marginal Costs

Table 2: Exogenous

Variable	₽TEX	Description
epsa	ε^A	Productivity Shock

Table 3: Parameters

Variable	Ŀ₽ŢĘX	Description
BETA	β	Discount Factor
DELTA	δ	Depreciation Rate
GAMMA	γ	Consumption Utility Weight
PSI	ψ	Labor Disutility Weight
ETAC	η^C	Risk Aversion
ETAL	η^L	Inverse Frisch Elasticity
ALPHA	α	Output Elasticity of Capital
RHOA	$ ho^A$	Discount Factor

Table 4: Parameter Values

Parameter	Value	Description
β	0.990	Discount Factor
δ	0.025	Depreciation Rate
γ	1.000	Consumption Utility Weight
ψ	1.600	Labor Disutility Weight
η^C	2.000	Risk Aversion
η^L	1.000	Inverse Frisch Elasticity
α	0.350	Output Elasticity of Capital
$ ho^A$	0.900	Discount Factor

$$uc = \gamma \, C_t^{\, \left(-\eta^C \right)}$$

$$ucp = \gamma \, C_{t+1} \left(-\eta^C \right)$$

$$ul = (-\psi) (1 - L_t)^{(-\eta^L)}$$

$$fk = \frac{\alpha Y_t}{K_{t-1}}$$

$$fl = \frac{Y_t \ (1 - \alpha)}{L_t}$$

$$uc_t = \beta \, ucp_t \, \left(1 - \delta + R_{t+1}\right) \tag{10}$$

$$W_t = \frac{(-ul_t)}{uc_t} \tag{11}$$

$$K_t = K_{t-1} (1 - \delta) + I_t \tag{12}$$

$$Y_t = C_t + I_t \tag{13}$$

$$Y_t = A_t K_{t-1}{}^{\alpha} L_t{}^{1-\alpha} \tag{14}$$

$$MC_t = 1 (15)$$

$$W_t = MC_t f l_t \tag{16}$$

$$R_t = MC_t f k_t \tag{17}$$

$$log(A_t) = \rho^A log(A_{t-1}) + \varepsilon^A_t$$
(18)

$$uc = \gamma C^{\left(-\eta^C\right)}$$

$$ucp = \gamma C^{\left(-\eta^C\right)}$$

$$ul = (-\psi) (1 - L)^{\left(-\eta^L\right)}$$

$$fk = \frac{\alpha Y}{K}$$

$$fl = \frac{Y (1 - \alpha)}{L}$$

$$uc = \beta \, ucp \, (1 - \delta + R) \tag{19}$$

$$W = \frac{(-ul)}{uc} \tag{20}$$

$$K = K (1 - \delta) + I \tag{21}$$

$$Y = C + I \tag{22}$$

$$Y = A K^{\alpha} L^{1-\alpha} \tag{23}$$

$$MC = 1 (24)$$

$$W = MC fl (25)$$

$$R = MC fk (26)$$

$$log(A) = log(A) \rho^{A} + \varepsilon^{A}$$
(27)