4. Точки на сгъстяване и подредици. Основни свойства. Теорема на Болцано-Вайерщрас. Необходимо и достатъчно условие на Коши за сходимост на редици

Точка на сгъстяване на редица

околност на $\pmb{a} \in \mathbb{R}$ — всеки интервал от вида $(\pmb{a} - \varepsilon, \pmb{a} + \varepsilon), \, \varepsilon > 0$

Дефиниция

Казваме, че $a \in \mathbb{R}$ е точка на сгъстяване на $\{a_n\}$, ако всяка околност на a съдържа безбройно много членове на редицата.

За сравнение: казваме, че $\mathbf{a} \in \mathbb{R}$ е граница на $\{\mathbf{a}_n\}$, ако всяка околност на \mathbf{a} съдържа всички членове на редицата от известно място нататък (това място зависи от околността) \iff извън всяка околност на \mathbf{a} има само краен брой членове на редицата.

Пример: $0, 1, 0, 1, \dots, 0, 1, \dots$

$$1, 1, 1, \frac{1}{2}, 1, \frac{1}{3}, \dots, 1, \frac{1}{n}, \dots$$

Граница и точка на сгъстяване

Твърдение 1.

Ако $\ell = \lim a_n$, то ℓ е единствената точка на сгъстяване на $\{a_n\}$.

Д-во: От $\ell = \lim a_n$ следва, че всяка околност на ℓ съдържа всички членове на редицата от известно място нататък

- ⇒ съдържа безбройно много нейни членове
- $\Longrightarrow \ell$ е точка на сгъстяване на $\{{\pmb a}_{\pmb n}\}.$

Да вземем произволно реално число $\boldsymbol{a} \neq \ell$.

Фиксираме $\varepsilon > 0$ толкова малко, че интервалите

$$(\ell - \varepsilon, \ell + \varepsilon)$$
 и $(\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon)$ (1

да не се пресичат.

Първият интервал съдържа всички членове на редицата от известно място нататък

- ⇒ извън него остават само краен брой членове
- ⇒ във втория интервал попадат само краен брой членове

Подредици

Дефиниция

Ако отстраним част от членовете на редица, но така че да останат безбройно много, получаваме редица, която наричаме нейна подредица.

Примери:

$$1,2,\ldots,n,\ldots \tag{2}$$

нейни подредици се явяват, например:

$$1,3,\ldots,2n-1,\ldots \tag{3}$$

И

$$2, 4, \dots, 2n, \dots$$
 (4)

както и

$$2,3,\ldots,n+1,\ldots \tag{5}$$

Подредици

Общо означение:

дадена е редицата $\{a_n\}$ да означим номерата на членове и́, които запазваме (остават след отстраняването на членове), с

$$n_1, n_2, \ldots, n_k, \ldots \tag{6}$$

Тогава подредицата има вида

$$a_{n_1}, a_{n_2}, \dots, a_{n_k}, \dots \tag{7}$$

накратко: $\{a_{n_k}\}_{k=1}^{\infty}$

Да забележим, че:

$$n_1 < n_2 < \dots < n_k < \dots$$
 и $n_k \ge k$ (8)

Свойства на подредиците

Твърдение 2.

Всяка подредица на сходяща редица също е сходяща и то към същата граница.

Д-во: Нека $\lim_{n\to\infty} a_n = \ell$ и $\{a_{n_k}\}_{k=1}^\infty$ е подредица на $\{a_n\}_{n=1}^\infty$. Нека $\varepsilon>0$ е произволно фиксирано.

$$\lim_{n \to \infty} \mathbf{a}_n = \ell \quad \Longrightarrow \quad \exists \nu \in \mathbb{R} : \quad |\mathbf{a}_n - \ell| < \varepsilon \quad \forall n > \nu$$
 (9)

$$\stackrel{n_k \ge k}{\Longrightarrow} |a_{n_k} - \ell| < \varepsilon \quad \forall k > \nu \tag{10}$$

$$\Longrightarrow \lim_{k \to \infty} a_{n_k} = \ell. \tag{11}$$

Връзка между подредици и точки на сгъстяване

Теорема 1

Ако a е точка на сгъстяване на $\{a_n\}$, то съществува подредица на $\{a_n\}$, която е сходяща с граница a. Обратно, границата на всяка сходяща подредица на $\{a_n\}$ е точка на сгъстяване на $\{a_n\}$.

Без д-во.¹

¹Когато оставим теорема или твърдение без доказателство, последното не влиза в материала за изпита, но формулировката на теоремата или твърдението влиза.

Теорема на Болцано-Вайерщрас

Теорема 2 (Б.-В.)

Всяка ограничена редица има точка на сгъстяване.

Еквивалентно (Теорема 1): Всяка ограничена редица има сходяща подредица.

Д-во: Нека $\{c_n\}$ е ограничена редица.

Нека $[a_1, b_1]$ е интервал, който съдържа всичките и членове.

Разделяме $[a_1, b_1]$ чрез средата му на два подинтервала:

$$\left[a_1,\frac{a_1+b_1}{2}\right] \bowtie \left[\frac{a_1+b_1}{2},b_1\right].$$

Поне единият от тях съдържа безбройно много членове на редицата.

Да означим който и да е от тях с това свойство с $[a_2,b_2]$.

Разделяме $[a_2, b_2]$ на два подинтервала чрез средата му.

Поне единият от така получените подинтервали съдържа безбройно много членове на редицата.

Да означим който и да е от тях с това свойство с $[a_3, b_3]$.

Продължавайки така, получаваме безбройно много интервали:

$$[a_1, b_1], [a_2, b_2], \dots, [a_n, b_n], \dots,$$
 (12)

които имат следните свойства:

(a)
$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n], \quad n = 1, 2, ...;$$

(6)
$$b_n - a_n = \frac{b_{n-1} - a_{n-1}}{2} = \cdots = \frac{b_1 - a_1}{2^{n-1}}, \quad n = 2, 3, \ldots;$$

(в) всеки от тях съдържа безбройно много членове на $\{c_n\}$.

$$(a) \implies$$

$$a_n \le a_{n+1} \quad \forall n \implies \{a_n\}$$
 е монотонно растяща (13)

И

$$b_n \geq b_{n+1} \quad \forall n \implies \{b_n\}$$
 е монотонно намаляваща (14)

$$\{a_n\}$$
 и $\{b_n\}$ са ограничени (членовете им се съдържат в $[a_1,b_1]$)

Теоремата за ограничените монотонни редици (тема 3) $\implies \{a_n\}$ и $\{b_n\}$ са сходящи.

Полагаме $a := \lim a_n$ и $b := \lim b_n$.

Според (б)

$$b_n - a_n = \frac{b_1 - a_1}{2^{n-1}} \tag{15}$$

В това равенство правим граничен преход $n \to \infty$. Получаваме

$$b_{n} - a_{n} = \frac{b_{1} - a_{1}}{2^{n-1}}$$

$$\downarrow \quad \downarrow \qquad \downarrow$$

$$b \quad a \qquad 0$$

$$(16)$$

$$\implies b-a=0 \implies a=b. \tag{17}$$

Ще докажем, че \boldsymbol{a} е точка на сгъстяване на $\{\boldsymbol{c_n}\}$.

Нека $\varepsilon > 0$ е произволно фиксирано.

$$\lim a_n = \lim b_n = a \quad \Longrightarrow \quad \exists \, n_0 \in \mathbb{N} : \, a_{n_0}, b_{n_0} \in (a - \varepsilon, a + \varepsilon) \quad (18)$$

$$\implies [\mathbf{a}_{n_0}, \mathbf{b}_{n_0}] \subset (\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon)$$
 (19)

(в)
$$\Longrightarrow$$
 $(\mathbf{a} - \varepsilon, \mathbf{a} + \varepsilon)$ съдържа безбройно много членове на $\{\mathbf{c}_n\}$.

т.е. **а** е точка на сгъстяване на $\{c_n\}$.

НДУ на Коши за сходимост на редици

Дефиниция

Казваме, че $\{a_n\}$ удовлетворява условието на Коши, ако

$$\forall \varepsilon > 0 \quad \exists \nu \in \mathbb{R} : \quad |\mathbf{a}_{n} - \mathbf{a}_{m}| < \varepsilon \quad \text{при} \quad m, n > \nu.$$
 (21)

Теорема 3

Редица е сходяща ⇔ удовлетворява условието на Коши.

Без д-во.