

Куляшов Михаил, м.н.с. НТУ «Сириус»

Telegram: @mishakula

ТИПЫ ДАННЫХ

Boolean (логические типы Numbers (числа) String (строки) данных)

(Тут могла бы List (списки) быть ваша

реклама)

Set (множества) Tuples (кортежи) Dictionaries (словари)

ТИПЫ ДАННЫХ ПО ИЗМЕНЯЕМОСТИ

Boolean (логические типы данных)

Numbers (числа)

String (строки)

ИЗМЕНЯЕМЫЕ НЕИЗМЕНЯЕМЫЕ

List (списки)

Set (множества)

Tuples (кортежи)

Dictionaries (словари)

ТИПЫ ДАННЫХ ПО УПОРЯДОЧЕННОСТИ

Упорядоченные Неупорядоченные

List (списки)

String (строки)

Set (множества)

Tuples (кортежи)

Dictionaries (словари)

ЧИСЛА

Integer (1)

- **Х** Сложение
- **Х** Вычитание
- **Х** Деление
- **Умножение**
- Х Преобразование в Float

Float (1.0)

- Х Сложение
- **X** Вычитание
- **Х** Деление
- **У** Умножение
- X Преобразование в Integer

ОПЕРАТОРЫ ДЛЯ РАБОТЫ С ЧИСЛАМИ

Оператор	Значение
+	Сложение
_	Вычитание
/	Деление
//	Целочисленное деление
*	Умножение
0/	Остаток от деления
**	Возведение в степень
abs(число)	Модуль числа
round(число, колво знаков	Округление числа

```
In [10]:
         # Просто вычитание
         1 - 3
Out[10]: -2
In [11]:
         #Пример простого умножения
         5 * 6
Out[11]: 30
In [12]:
         #Деление
         30 / 5
Out[12]: 6.0
```


БИБЛИОТЕКИ

Разработанная библиотека

Ручная реализация библиотеки

РЕПОЗИТОРИИ ДЛЯ БИБЛИОТЕК

- x pip
- x anaconda

ИМПОРТ БИБЛИОТЕКИ

```
In [26]:
                                                                                                                           Slide Type Slide
          # Использование sqrt из библиотеки Math
          import math
          math.sqrt(4)
Out[26]: 2.0
In [27]:
                                                                                                                           Slide Type Slide
          import math as m
          m.sqrt(4)
Out[27]: 2.0
In [29]:
                                                                                                                          Slide Type Fragment v
         #Импорт метода sqrt из библиотеки math с названием sq
         from math import sqrt as sq
         sq(4)
Out[29]: 2.0
```

ПРИМЕНЕНИЕ БИБЛИОТЕКИ МАТН

In [30]:		Slide Type	Fragment V
	# Другие функции библиотеки math для работы с числами. Посчитаем косинус пи с помощью math из Python math.cos(math.pi)		
Out[30]:	-1.0		
In [31]:		Slide Type	Fragment 🗸
	# Использование натурального логарифма math.log(2)		
Out[31]:	0.6931471805599453		
In [32]:		Slide Type	Fragment 🗸
	# Использование 10 го логарифма math.log10(10)		
Out[321:	1.0		

Переменные и числа

Переменные и числа

Альпака 1

Альпака 2

Альпака 3

Альпака 4

Альпака 5

Альпака 6

Альпака 7

Глобальные переменные

Альпака 1

Альпака 3

Альпака 4

Глобальные переменные

Альпака 1

Альпака 2

Альпака 3

Альпака 4

Глобальные переменные

Альпака 1

Альпака 3

Альпака 2

НАЗНАЧЕНИЕ ПЕРЕМЕННЫХ

```
In [33]:
                                                                                                                          Slide Type Fragment v
         x = 1 + 2
In [35]:
                                                                                                                          Slide Type Fragment v
         #Способ 1. Просто назначим переменную у = 8
         y = 8
Out[35]: 8
                                                                                                                          Slide Type Fragment >
In [36]:
         #Назначи переменную у с помощью переменной х, увеличив ее на 5
         y = x + 5
Out[36]: 8
 In [37]:
                                                                                                                           Slide Type Fragment >
          #Проверим, чем равна переменная у
 Out[37]: 8
 In [38]:
                                                                                                                           Slide Type Fragment v
          # Увеличим переменную у на 5, чтобы получить 13
          y = y + 5
 Out[38]: 13
```

Операторы работы с переменными

Оператор	Значение
+=	эквивалентна $x = x + 'что-то'$
-=	эквивалентна $x = x - 'что-то'$
*=	X = X * '4TO-TO'
%=	x = x % 'что-то'
/=	X = X / 'ЧТО-ТО'
/ /=	x = x // 'что-то'
**=	X = X ** '4TO-TO'

ПРИМЕНЕНИЕ ОПЕРАТОРОВ ДЛЯ РАБОТЫ С ПЕРЕМЕННЫМИ

```
In [4]:
                                                                                                                           Slide Type Slide
         #Также данный оператор может вычитать, умножать или делить или возводить в степень
         k *= 5
 Out[4]: 15
                                                                                                                           Slide Type Fragment v
In [42]:
         1 = 10
         1 -= 3
Out[42]: 7
In [43]:
                                                                                                                           Slide Type Fragment v
         n = 3
         n **= 2
Out[43]: 9
```

ЛОГИЧЕСКИЕ ТИПЫ ДАННЫХ, TRUE И FALSE

```
In [44]:

# проверим равенство чисел
0 == 1

Out[44]: False

In [45]:

# Проверим, соответсвует типу Integer
type(1) == int

Out[45]: True
```

INPUT

```
In [48]:

# Попробуем получить 2 числа из input и сложить их
first_input = input()
second_input = input()
res = first_input + second_input
res
```

INPUT

```
In [48]:

# Попробуем получить 2 числа из input и сложить их
first_input = input()
second_input = input()
res = first_input + second_input
res

1
2
Out[48]: '12'
```

І ПРИТ ДЛЯ РАБОТЫ С ЧИСЛАМИ

```
In [49]:

# Попробуем получить 2 числа из input и сложить их с учетом преобразования
first_input = int(input())
second_input = int(input())
res = first_input + second_input
res

1
2
Out[49]: 3
```

PRINT

```
In [50]:

# Haneчamaeм строку res
print(res)
```

3

ПАРАМЕТРЫ, КОТОРЫЕ МОЖНО ПЕРЕДАТЬ PRINT

```
In [54]:
                                                                                                                          Slide Type Slide
         # Использование параметра sep для разделения переменных в print(). Разделим перменные
         #с помощью сивола переноса строки \п
         n1 = 2
         n2 = 5
         n3 = 6
         print(n1, n2, n3, sep='\n')
In [55]:
                                                                                                                          Slide Type Fragment >
         # Тоже самое без разделителя
         n1 = 2
         n2 = 5
         n3 = 6
         print(n1, n2, n3)
         2 5 6
In [56]:
                                                                                                                          Slide Type Slide
         # Использование параметра end для установления последнего сивола в выводимом сообщении
         print(n1, n2, n3, end='|тут заканчивается строка|')
         2 5 6 тут заканчивается строка
```

ОБЪЕДИНЕНИЕ INPUT И PRINT

```
In [53]:

print('Ввведите первое чилсло')
first_input = int(input())
print('Первое введенное чило =', first_input)
print('Ввведите второе чилсло')
second_input = int(input())
print('Второе введенное чило =', second_input)
res = first_input + second_input
print('Результат сложения first_input и second_input =', res)

Ввведите первое чилсло
2
Первое введенное чило = 2
Ввведите второе чилсло
3
Второе введенное чило = 3
Результат сложения first_input и second_input = 5
```

JOINYECKNE KOHCTPYKUNN IF, ELIF, ELSE

РАБОТА ОПЕРАТОРА IF

```
In [58]:
                                                                                                                          Slide Type Fragment >
         year = int(input())
         if (2021 - year) > 18:
             print('Действительно больше 18')
          1998
          Действительно больше 18
In [59]:
                                                                                                                         Slide Type Fragment >
         year = int(input())
         age = 2021 - year
         if (age > 18) and (age < 150):
             print('Действительно больше 18 и меньше 150')
         1950
         Лействительно больше 18 и меньше 150
                                                                                                                         Slide Type Fragment >
In [60]:
         # Применение слова or
         year = int(input())
         age = 2021 - year
         if (age > 18) or (age == 13):
             print('Действительно больше 18 или равно 13')
          2008
         Действительно больше 18 или равно 13
```

KOHCTPYKUNA IF ELSE

Меньше

```
In [62]:
    inp_number = int(input())
    if inp_number > 10:
        print('Больше')
    else:
        print('Меньше')
```

KOHCTPYKUNA IF, ELIF, ELSE

```
In [63]:
                                                                                                                         Slide Type Slide
         a = 2
         if a > 0:
             print(1)
         elif a == 2:
             print(2)
                                                                                                                          Slide Type Slide
In [64]:
          # Использование конструкции if elif else
          inp_num = int(input())
          if inp_num > 100:
              print('Слишком большое число')
          elif inp_num > 50 and inp_num < 90:
              print('Число между 50 и 90')
          elif inp_num > 10 and inp_num < 50:
              print('Число между 10 и 50')
          else:
              print('Число явно меньше 10')
          13
          Число между 10 и 50
```