GPU-based speedup of EACirc project

Author: Jiří Novotný

Supervisor: RNDr. Petr Švenda, Ph.D.

Faculty of Informatics Masaryk University

Spring 2015

- 1. Introduction & Objective
- 2. Solution
- 3. My contribution
- 4. Summary

Distinguishes input streams from one another.

How EACirc works?

Speeding-up the evaluation could move the EACirc capabilities further.

CUDA

CUDA is a platform enabling general purpose computing on GPU.

Different device & architecture

Complex memory design

GPU circuit

- natural data parallelism
- different implementation than the original circuit due to the CUDA memory restrictions

Benchmarks

- CUDA needs different building process
- previously for each platform a separate makefile
- hard to maintain

- solved by CMake integration
- separation of EACirc modules into static libraries

The GPU circuit

- designed to utilize the GPU
- implemented
- integration tested
- benchmarked on GeForce GTX 460
- ▶ 160x speed-up
- expected to be integrated into production

The new build-system

- easy to maintain
- conditional building of modules & features
- refactored filesystem structure
- integrated into production

