Homological theory of orthogonal modules

Hongxing Chen

Capital Normal University, Beijing

February 2nd, 2023 FD Seminar

Contents

1 Classical homological conjectures

2 Tachikawa's Second Conjecture

3 Recollements of (relative) stable categories

Global notation

Joint work with Changehang Xi (CNU).

In the talk:

A: Artin algebra (e.g. finite-dim. k-algebra over a field k);

A-Mod: the category of left A-modules;

A-mod: the category of finitely generated (left) A-modules.

§ 1. Classical homological conjectures

(NC) Nakayama Conjecture [Nakayama, 1958]: If A has infinite dominant dimension \implies A: self-injective.

Dominant dimension of A:

 $\operatorname{domdim}(A) := \sup\{n \mid I^j : \text{projective } \forall \ 0 \le j < n\}$

where $0 \to {}_{A}A \to I^0 \to I^1 \to \cdots \to I^{n-1} \to I^n \to \cdots$ is a minimal injective coresolution.

A is **self-injective** if projectives = injectives.

How to describe infinite dominant dimension?

Morita-Tachikawa; Mueller (1968):

Theorem

Let Λ be an algebra. Then $\operatorname{domdim}(\Lambda) = \infty \iff \Lambda = \operatorname{End}_A(M)$, where M is

- generator (i.e. $A \in \operatorname{add}(M)$);
- cogenerator (i.e. $D(A_A) \in \operatorname{add}(M)$);
- orthogonal (i.e. $\operatorname{Ext}_A^n(M,M) = 0$ for any $n \geq 1$).

D: the usual duality over A-mod (e.g. $D = \operatorname{Hom}_{k}(-,k)$).

Tachikawa's conjectures

- (TC1) Tachikawa's First Conjecture [Tachikawa, 1973]: If $\operatorname{Ext}_A^n(D(A), A) = 0 \ \forall \ n \geq 1 \Longrightarrow A$: self-injective. In (TC1), the A-module $A \oplus D(A)$ is orthogonal.
- (TC2) Tachikawa's Second Conjecture [Tachikawa, 1973]: If A: self-injective and ${}_{A}M$: finitely generated, orthogonal $\Longrightarrow M$: projective.

Proposition

(NC) holds for all algebras \Leftrightarrow (TC1)+(TC2) hold for all algebras.

Tachikawa's Second Conjecture (TC2)

TC2

If A: self-injective, ${}_{A}M$: finitely generated, orthogonal $\Longrightarrow M$: projective.

In (TC2), we can assume M is a generator (e.g. $_AM = A \oplus M_0$).

Lemma

The pair (A, M) satisfies $(TC2) \Leftrightarrow End_A(M)$ satisfies (NC).

(TC2) holds for (A, M) where AM is **arbitrary**, but A is

- symmetric alg./local self-injective alg. with radical³ = 0 [Hoshino, 1984];
- group alg. of a finite group [Schulz, 1986];
- self-injective alg. of finite represent. type [Schulz, 1986].

Related conjectures

- Generalized Nakayama Conjecture
 [Auslander-Reiten, 1975]
- Auslander-Reiten Conjecture in commutative algebra [Avramov, Iyengar, Nasseh, Sather-Wagstaff, Takahashi, Yoshino,, 2017-2022.]

§ 2. Tachikawa's Second Conjecture

Consider (TC2) for the pair (A, M) where

- A: arbitrary self-injective alg.
- $M \in A$ -mod: generator.

Aim of the talk

Try to understand (TC2) by studying homological properties of orthogonal modules over self-injective algebras.

- Provide equivalent characterizations of (TC2).
- Introduce new homological conditions and Gorenstein-Morita algebras.
- Show that Gorenstein-Morita algebras satisfy the Nakayama Conjecture.

Gorenstein-projective modules

B: (arbitrary) Artin algebra

Definition

A module Y over B is Gorenstein-projective if \exists exact complex of projective B-modules

$$P^{\bullet}: \cdots \to P^{-2} \to P^{-1} \to P^0 \xrightarrow{d^0} P^1 \to P^2 \to \cdots$$

such that Im $(d^0) = Y$ and the complex $\operatorname{Hom}_B^{\bullet}(P^{\bullet}, B)$ is exact.

Gorenstein-injective modules can be defined dually.

Notation: *B*-GProj (resp., *B*-Gproj): the cat. of (resp., finitely generated) Gorenstein-projective *B*-modules.

Stable module category

Definition

The stable module category B- $\underline{\text{Mod}}$ of B:

Objects: all B-modules;

Morphisms: $\forall X, Y \in B\text{-Mod}$,

$$\underline{\operatorname{Hom}}_{B}(X,Y) := \operatorname{Hom}_{B}(X,Y)/\mathcal{P}(X,Y)$$

where $\mathcal{P}(X,Y)$ consists of homos. factorizing through projective B-modules.

- B- $\underline{\text{Mod}}$ is triangulated for a self-injective algebra B.
- ullet B-GProj is always triangulated.

Compact objects in categories

 \mathscr{C} : additive category with set-indexed coproducts.

Definition

An object $X \in \mathscr{C}$ is compact if $\operatorname{Hom}_{\mathscr{C}}(X,-):\mathscr{C} \to \mathbb{Z}$ -Mod commutes with coproducts.

 $\mathscr{C}^{\mathbf{c}}$: the subcat. of $\mathcal C$ consisting of compact objects.

- B- $\underline{\text{mod}} = B$ - $\underline{\text{Mod}}^c$ for a self-injective algebra B.
- B-Gproj $\subseteq B$ -GProj^c.

Notation

```
A: self-injective algebra (i.e. Projectives = Injectives); 

A-Proj: the cat. of projective A-modules; 

M \in A-mod: generator; 

add ({}_{A}M) (resp., Add ({}_{A}M)): direct summands of finite (resp., arbitrary) direct sums of copies of M; 

{}^{\perp}>0M:=\{X\in A\text{-Mod}\mid \operatorname{Ext}_A^n(X,M)=0, \forall n>0\}; 

M^{\perp}>0:=\{X\in A\text{-Mod}\mid \operatorname{Ext}_A^n(M,X)=0, \forall n>0\}; 

\mathscr{G}:={}^{\perp}>0M\cap M^{\perp}>0:
```

 $\mathscr{G}^{\text{fin}} := \mathscr{G} \cap A\text{-mod};$ $\lim_{\longrightarrow} \mathscr{G}^{\text{fin}}$: filtered colimits in A-Mod of modules from \mathscr{G}^{fin} .

- $\lim_{\longrightarrow} \mathscr{G}^{fin} \subseteq \mathscr{G}$.
- If M = A, then $\mathscr{G}^{fin} = A$ -mod and $\mathscr{G} = A$ -Mod = $\lim \mathscr{G}^{fin}$.

Relative stable category

Definition

The M-stable category A-Mod/[M] of A-Mod:

Objects: all A-modules;

Morphisms: $\forall X, Y \in A\text{-Mod}$,

$$\underline{\operatorname{Hom}}_{M}(X,Y) := \operatorname{Hom}_{A}(X,Y) / \mathcal{M}(X,Y)$$

where $\mathcal{M}(X,Y)$ consists of homos. factorizing through objects in $\mathrm{Add}\,(M)$.

A-Mod/[A] = A-Mod (stable module category of A)

Pretriangulated category

In general, $\mathscr{D} := A\text{-Mod}/[M]$ is **not** a triangulated category, but a **pretriangulated** category.

 $X \in A\operatorname{-Mod};$

 $\ell_X: X \to M^X$: minimal left Add (M)-approximation of X;

 $r_X: M_X \to X$: minimal right Add (M)-approximation of X.

Remark

The M-cosyzygy and M-syzygy functors

$$\Omega_M: \mathscr{D} \to \mathscr{D}, \quad X \mapsto \mathrm{Ker}\ (r_X),$$

$$\Omega_M^-: \mathscr{D} \to \mathscr{D}, \quad X \mapsto \operatorname{Coker} (\ell_X)$$

are **not** necessarily equivalences.

Minimal left approximations

 \mathcal{C} : additive category, \mathcal{B} : full subcat. of \mathcal{C} .

Definition

A morphism $f: X \to B$ (or the object B) in $\mathcal C$ is a minimal left $\mathcal B$ -approximation of X if

- $B \in \mathcal{B}$,
- $\operatorname{Hom}_{\mathcal{C}}(f,Y) : \operatorname{Hom}_{\mathcal{C}}(B,Y) \to \operatorname{Hom}_{\mathcal{C}}(X,Y)$ is surjective $\forall Y \in \mathcal{B}$,
- $g \in \text{End}_{\mathcal{C}}(B)$ is an isomorphism whenever f = fg.

Minimal right \mathcal{B} -approximations can be defined dually.

What happen if M is orthogonal?

Proposition

Suppose ${}_{A}M$: orthogonal (i.e. $M \in {}^{\perp > 0}M$). Then:

- (1) \mathscr{G} (resp., \mathscr{G}^{fin}) is a **Frobenius category**. Its full subcategory of projective-injective objects equals Add(M) (resp., add(M)).
- (2) Let $\Lambda := \operatorname{End}_A(M)$. Then $\operatorname{Hom}_A(M,-) : A\operatorname{-Mod} \to \Lambda\operatorname{-Mod}$ induces triangle equivalences

$$\mathscr{G}/[M] \xrightarrow{\simeq} \Lambda \text{-} \underline{\mathrm{GProj}} \quad \text{and} \quad \mathscr{G}^{\mathrm{fin}}/[M] \xrightarrow{\simeq} \Lambda \text{-} \underline{\mathrm{Gproj}}.$$

 \mathscr{G} is called the M-Gorenstein subcategory of A-Mod.

Nakayama-stable generators

Nakayama functor:

$$\nu_A = {}_A D(A) \otimes_A - : A \text{-Mod} \xrightarrow{\simeq} A \text{-Mod}.$$

If A: symmetric algebra (i.e. $D(A) \simeq {}_{A}A_{A}$), then $\nu_{A} \simeq \operatorname{Id}$.

Definition

A generator _AM is Nakayama-stable if

$$\operatorname{add}(AM) = \operatorname{add}(\nu_A(M)).$$

Auslander-Reiten formula:

$$D\underline{\operatorname{Hom}}_{A}(M,-) \simeq \underline{\operatorname{Hom}}_{A}(-,\nu_{A}(M)[-1]).$$

where $[-1] := \Omega_A$ (autoequivalence of A-Mod).

Minimal left \mathcal{G} -approximations of modules

 ${}_AM$: orthogonal generator. $\Omega_A^-(M) \to W$: minimal left \mathscr{G} -approximation of $\Omega_A^-(M)$; M-resdim $(X) < \infty$ if \exists exact sequence in A-mod $0 \longrightarrow M_n \longrightarrow \cdots \longrightarrow M_1 \longrightarrow M_0 \longrightarrow X \longrightarrow 0$ with $M_i \in \operatorname{add}(M)$ for $0 \le i \le n \in \mathbb{N}$; $\mathscr{M} := \{X \in A\text{-mod} \mid M\text{-resdim}(X) < \infty\}.$

Remk: $\mathcal{M} \subset \mathcal{G}^{\perp > 0} \subset W^{\perp 1}$.

Equivalent characterizations of (TC2)

Assumptions:

A: self-injective Artin algebra;

 $M \in A$ -mod: orthogonal, Nakayama-stable generator.

Theorem

The following statements are equivalent:

- (1) _AM is projective.
- $(2) \mathscr{G} = \lim_{\longrightarrow} \mathscr{G}^{fin}.$
- $(3) W \in \lim_{\longrightarrow} \mathscr{G}^{fin}.$
- (4) $\operatorname{Ext}_{A}^{1}(W, \bigoplus_{i \in \mathbb{N}} M_{i}) = 0$ for all $M_{i} \in \mathcal{M}$.

Modules of finite projective dimension

$$\begin{split} \mathscr{P}^{<\infty}(B) &:= \{Y \in B\text{-mod} \mid \operatorname{proj.dim}\left(Y\right) < \infty\} \\ \operatorname{fin.dim}\left(B\right) &:= \sup\{\operatorname{proj.dim}\left(Y\right) \mid Y \in \mathscr{P}^{<\infty}(B)\}. \end{split}$$

What is a "compact" version of the equality

$$\mathscr{P}^{<\infty}(B) \cap B\text{-}\mathrm{Gproj} = B\text{-}\mathrm{proj}$$
?

Recall: B-Gproj $\subseteq B$ -GProj c .

Finitely generated to infinitely generated modules

Definition

A B-module X is compactly filtered if it has a countable filtration in B-Mod

$$0 = X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n \subseteq \cdots \subseteq X$$

such that
$$X = \bigcup_{n=0}^{\infty} X_n$$
 and $X_{n+1}/X_n \in \mathscr{P}^{<\infty}(B)$, $\forall n \in \mathbb{N}$.

Compactly filtered modules \Longrightarrow countably generated.

Definition

A B-module X is compactly Gorenstein-projective if it is compact in B-GProj.

Finitely generated Gorenstein-projective modules \Longrightarrow compactly Gorenstein-projective.

Two homological conditions

Notation:

B-CF: compactly filtered B-modules.

B-Proj_{ω}: countably generated projective B-modules.

B-GProj^c: compactly Gorenstein-projective B-modules.

B-GProj $_{\omega}$: countably generated Gorenstein-projective B-modules.

(HC1):
$$\operatorname{Ext}_B^{>0} \left(B\operatorname{-GProj}_\omega, \bigoplus_{i\in\mathbb{N}} M_i \right) = 0 \text{ for all } M_i \in \mathscr{P}^{<\infty}(B).$$

(HC2):
$$B$$
-CF $\cap B$ -GProj^c = B -Proj _{ω} .

Remk: $\mathscr{P}^{<\infty}(B) \subseteq B\text{-}\mathrm{GProj}^{\perp>0}$.

Implication and invariance of properties

Lemma

- (1) $\operatorname{fin.dim}(B) < \infty \Longrightarrow (HC1) \Longrightarrow (HC2)$.
- (2) B-GProj $^{\perp>0} \subseteq B$ -Mod: closed under direct sums \Longrightarrow (HC1).
- (3) If B is virtually Gorenstein, then (HC1) holds.
- (4) (HC2) is preserved under
 - derived equivalences,
 - stable equivalences of Morita type,
 - certain singular equivalences of Morita type with level.

Open question:

Does (HC1) (resp., HC2) hold for all Artin algebras?

• Finitistic Dimension Conjecture [Rosenberg, Zelinsky; Bass, 1960]: fin.dim $(B) < \infty$, $\forall B$.

Virtually Gorenstein algebras

Definition (Beligiannis, 2005)

B is virtually Gorenstein if B-GProj^{\perp >0} = $^{\perp$ >0</sup>B-GInj.

B-GInj: the cat. of Gorenstein-injective B-modules.

Theorem (Beligiannis, 2005)

Virtually Gorenstein algebras satisfy the Gorenstein Symmetric Conjecture.

(GSC): If inj.dim $(BB) < \infty$, then inj.dim $(BB) < \infty$.

[A. Beligiannis, Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras, *J. Algebra.* 288 (2005), 137-211.]

Gorenstein-Morita algebras

Definition

An algebra B is called a Gorenstein-Morita algebra if

- $B = \operatorname{End}_A(M)$ where
 - A: self-injective algebra;
 - $\bullet \ M \colon Nakayama\text{-}stable \ generator \ for \ A\text{-}mod.$
- B satisfies the condition (HC2):

$$B$$
-CF $\cap B$ -GProj ^{c} = B -Proj _{ω} .

Corollary

Let B be a Gorenstein-Morita algebra.

If $domdim(B) = \infty$, then B is self-injective.

Thus B satisfies the Nakayama Conjecture.

§ 3. Recollements of (relative) stable categories

A: (arbitrary) self-injective algebra, $M \in A$ -mod: generator.

• Given (A, M), we construct two pairs of triangle endofunctors of the **stable module category** of A:

$$(\diamondsuit) \quad (\Phi, \Psi) \ \ \mathrm{and} \ \ (\Phi', \Psi'): \ \ \textit{A-$\underline{\mathrm{Mod}} \longrightarrow A$-$\underline{\mathrm{Mod}}$}.$$

- If ${}_{A}M$ is **orthogonal** or Ω -**periodic**, then these functors can be embedded into a **recollement** of A- $\underline{\text{Mod}}$. (M is called Ω -**periodic** if $\Omega^{n}_{A}(M) \simeq M$ in A- $\underline{\text{Mod}}$ for some $n \geq 1$.)
- If _AM is orthogonal and Nakayama-stable, then this recollement can be restricted to a recollement of the M-stable category of A-Mod.

Recollements of triangulated categories

Beilinson, Bernstein and Deligne [1982]:

A recollement $(\mathcal{Y}, \mathcal{D}, \mathcal{X})$:

- 6 triangle functors;
- 4 adjoint pairs: $(i^*, i_*), (i_!, i^!), (j_!, j^!)$ and (j^*, j_*) ;
- 3 fully faithful functors (pointing to \mathcal{D} , e.g. i_*);
- 3 zeros of composition (along the same level, e.g. $i^*j_!=0$);
- 2 triangles: $\forall X \in \mathcal{D}, \exists \text{ triangles in } \mathcal{D}$: $j_! j^!(X) \stackrel{counit}{\longrightarrow} X \stackrel{unit}{\longrightarrow} i_* i^*(X) \longrightarrow j_! j^!(X)[1],$ $i_! i^!(X) \stackrel{counit}{\longrightarrow} X \stackrel{unit}{\longrightarrow} j_* j^*(X) \longrightarrow i_! i^!(X)[1].$

Thick subcategories of module categories

Definition

A full subcat. $\mathcal{U} \subseteq A$ -Mod is **thick** if

- it is closed under direct summands in A-Mod;
- $\forall \ 0 \to X \to Y \to Z \to 0$ exact seq. in A-Mod with two terms in \mathcal{U} , the third term also belongs to \mathcal{U} .

Notation:

 \mathcal{S} : the smallest **thick** subcat. of A-Mod containing M and being closed under **direct sums**.

- \mathcal{L} : localizing subcat. of A-Mod containing M.
- If M = A, then $\mathscr{S} = A$ -Proj.

A recollement of A- $\underline{\text{Mod}}$ with explicit functors

Theorem

If $_AM$ is orthogonal or Ω -periodic, then \exists a recollement:

$$\underline{M}^{\perp} \xrightarrow{\widetilde{\Psi}} A - \underline{Mod} \xrightarrow{\widetilde{\Phi}} \underline{\mathscr{S}}$$

where $\underline{M}^{\perp} := \{ X \in A \text{-}\underline{\text{Mod}} \mid \underline{\text{Hom}}_A(M, X[n]) = 0 \ \forall \ n \in \mathbb{Z} \},$

$$\boldsymbol{\Phi} = \operatorname{inc} \circ \widetilde{\boldsymbol{\Phi}}, \quad \boldsymbol{\Psi} = \operatorname{inc} \circ \widetilde{\boldsymbol{\Psi}}, \quad \boldsymbol{\Psi}' = \operatorname{inc} \circ \widetilde{\boldsymbol{\Psi}'} \quad \text{and} \quad \boldsymbol{\Phi}'' = \boldsymbol{\Phi}' \circ \operatorname{inc}.$$

Explicit constructions of the functors (Φ, Ψ) and $(\Phi', \Psi') : A-\underline{\text{Mod}} \to A-\underline{\text{Mod}}$.

Orthogonal generators over self-injective algebras

A: self-injective Artin algebra; M: orthogonal, Nakayama-stable generator for $A{\text{-}}\mathrm{mod}.$ In this case,

$$\mathscr{G} = \{X \in A\text{-Mod} \mid \operatorname{\underline{Hom}}\nolimits_A(M[n],X) = 0, \forall \, \operatorname{\underline{n}} \neq \operatorname{\underline{0}},\operatorname{\underline{1}} \}.$$

Now, let

 $\Lambda := \operatorname{End}_A(M)$: the endomorphism algebra of M in A-Mod;

 $\Gamma := \underline{\operatorname{End}}_A(M)$: the endomorphism algebra of M in A- $\underline{\operatorname{Mod}}$;

$${\color{red}\mathscr{E}}:=\{X\in\mathscr{G}\mid \underline{\operatorname{Hom}}_{A}(M,X),\underline{\operatorname{Hom}}_{A}(M[1],X)\in {\color{blue}\Gamma\text{-mod}}\};$$

 $\pi: \underline{\mathscr{G}} = \mathscr{G}/[A] \to \mathscr{G}/[M]$: the quotient functor.

Recollements of relative stable categories

Theorem

 \exists a recollement of triangulated categories:

$$\underline{M}^{\perp} \xrightarrow{\widetilde{\Psi}'} \mathcal{G}/[M] \xrightarrow{\widetilde{\Phi}} (\mathcal{G} \cap \mathcal{S})/[M]$$

which restricts to a recollement

$$\underline{M}^\perp \xrightarrow{\mathscr{E}/[M]} \underbrace{\mathscr{E}\cap\mathscr{S})/[M]}.$$

Remk: ${}_AM$ is projective \Leftrightarrow $(\mathscr{G} \cap \mathscr{S})/[M] = 0 \Leftrightarrow (\mathscr{E} \cap \mathscr{S})/[M] = 0$.

Compact objects and generating sets

Proposition

- (1) Each nonzero object of $(\mathcal{E} \cap \mathcal{S})/[M]$ is compact in $\mathcal{G}/[M]$ and infinitely generated as an A-module.
- (2) Let S be the set of isomorphism classes of simple objects of the heart of a torsion pair in A- $\underline{\text{Mod}}$ determined by M.

 Then

$$(\mathscr{G} \cap \mathscr{S})/[M] = \langle \operatorname{Add}(\mathcal{S}) \rangle_{2n}^{\{0,1\}},$$
$$((\mathscr{G} \cap \mathscr{S})/[M])^{\mathbf{c}} = (\mathscr{E} \cap \mathscr{S})/[M] = \langle \mathcal{S} \rangle_{2n}^{\{0,1\}}.$$

where n is the Loewy length of Γ .

(3) dim $((\mathscr{E} \cap \mathscr{S})/[M]) \le \min\{2n-1, 2m+1\} < \infty$, where m is the global dimension of Γ .

Heart of a torsion pair in A-Mod defined by M

Let

$$\mathscr{Y} := \{ Y \in A\text{-}\underline{\mathrm{Mod}} \mid \underline{\mathrm{Hom}}_{A}(M[n], Y) = 0 \ \forall \, \mathbf{n} \geq \mathbf{0} \},$$

$$\mathscr{X} := \{X \in A\text{-}\underline{\mathrm{Mod}} \mid \underline{\mathrm{Hom}}_A(X,Y) = 0 \ \forall Y \in \mathscr{Y}\}.$$

 $\implies (\mathscr{X}, \mathscr{Y})$: torsion pair in A-Mod.

[Beilinson, Bernstein and Deligne(1982)]:

The category $\mathscr{H} := \mathscr{X} \cap \mathscr{Y}[1]$, called the **heart** of $(\mathscr{X}, \mathscr{Y})$, is an abelian category.

Lemma

 \exists equivalence of abelian categories:

$$\mathscr{H} \xrightarrow{\simeq} \Gamma\text{-Mod}.$$

[M. Hoshino, Y. Kato and J-I. Miyachi, On t-structures and torsion theories induced by compact objects, *J. Pure Appl. Algebra* **167** (2002) 15-35.]

Construction of (Φ, Ψ) : A- $\underline{\text{Mod}} \to A$ - $\underline{\text{Mod}}$

Let ${}_AM = A \oplus M_0$, $\Lambda := \operatorname{End}_A(M)$, $e^2 = e \in \Lambda$ corresponding to the direct summand A of M, $S_e : \Lambda\operatorname{-Mod} \to A\operatorname{-Mod}$, $Y \mapsto eY$ the Schur functor $(A = e\Lambda e)$. For $\mathcal{X} \subseteq A\operatorname{-Mod}$ and $\mathcal{Y} \subseteq \Lambda\operatorname{-Mod}$, define

$$\mathscr{K}_{\mathrm{ac}}(\mathcal{X}) := \{ X^{\bullet} \in \mathscr{K}(\mathcal{X}) \mid X^{\bullet} \text{ is exact} \},$$

$$\mathscr{K}_{e-ac}(\mathcal{Y}) := \{ Y^{\bullet} \in \mathscr{K}(\mathcal{Y}) \mid S_e(Y^{\bullet}) \text{ is exact} \}.$$

If $S_e: \mathcal{Y} \xrightarrow{\simeq} \mathcal{X}$ as additive categories, then

$$S_e: \mathscr{K}_{e-\mathrm{ac}}(\mathcal{Y}) \xrightarrow{\simeq} \mathscr{K}_{\mathrm{ac}}(\mathcal{X}).$$

Construction of $(\Phi, \Psi) : A-\underline{\text{Mod}} \to A-\underline{\text{Mod}}$

$$A-\underline{\operatorname{Mod}} \xrightarrow{S} \mathcal{K}_{\operatorname{ac}}(A-\operatorname{Proj}) \xrightarrow{\operatorname{Hom}_A(M,-)} \mathcal{K}_{\operatorname{e-ac}}(\operatorname{Add}(\Lambda e)) \xrightarrow{\operatorname{inc}} \mathcal{K}_{\operatorname{e-ac}}(\Lambda-\operatorname{Proj})$$

$$\Phi \left(\operatorname{Id} \right) \Psi \qquad Q_{\lambda} \circ Q \left(\operatorname{Id} \right) I \circ I_{\lambda}$$

$$A-\underline{\operatorname{Mod}} \overset{Z^0}{\simeq} \mathcal{K}_{\operatorname{ac}}(A-\operatorname{Proj}) \xrightarrow{\ell_M} \mathcal{K}_{\operatorname{ac}}(\operatorname{Add}(M)) \overset{S_e}{\simeq} \mathcal{K}_{\operatorname{e-ac}}(\Lambda-\operatorname{Proj})$$

$$\operatorname{inclusion}$$

$$\mathscr{K}_{\mathrm{ac}}(\Lambda\operatorname{-Proj}) \xrightarrow[I:\mathrm{inclusion}]{I_{\lambda}} \mathscr{K}(\Lambda\operatorname{-Proj}) \xrightarrow[Q:\mathrm{localization}]{Q_{\lambda}} \mathscr{G}(\Lambda) \ .$$

 \mathcal{K} : homotopy category;

 \mathcal{D} : derived category;

 Q_{λ} : taking homotopically projective resolutions;

 ℓ_M : taking total complexes of Cartan-Eilenberg injective coresolutions of complexes.

[H.X.Chen, Applications of hyperhomology to adjoint functors, Comm. Algebra 50

(1) (2022) 19-32.]

Related papers

- [1] H.X.Chen and C.C.Xi, Homological theory of orthogonal modules, 1-40, arXiv:2208.14712.
- [2] H.X.Chen, Ming Fang and C.C.Xi, Mirror-reflective algebras and Tachikawa's second conjecture, 1-27, arXiv:2211.08037.

Theorem (Chen-Fang-Xi)

The following are equivalent for a field k.

- (1) Tachikawa's Second Conjecture holds for all symmetric algebras over k.
- (2) Each indecomposable symmetric algebra over k has no stratifying ideal apart from itself and 0.
- (3) The supremum of stratified ratios of all indecomposable symmetric algebras over k is less than 1.

I:=AeA with $e^2=e$ is a *stratifying* ideal of A if $Ae\otimes_{eAe}eA\simeq AeA$ and $\operatorname{Tor}_n^{eAe}(Ae,eA)=0,\,\forall n>0.$

Thank you very much!