Trees & Forests

02/18/19

Andreas C. Müller

(Adapted and modified for CC 6021236 @ PCC/Ciencias/UCV by

Eugenio Scalise, September 2019)

Why Trees?

- Very powerful modeling method non-linear!
- Doesn't care about scaling of distribution of data!
- "Interpretable"
- Basis of very powerful models!

Decision Trees for Classification

Idea: series of binary questions

Building Trees

- "questions" are thresholds on single features.
- Minimize impurity

Prediction

Visualizing trees with sklearn

Visualizing trees with sklearn

Parameter Tuning

- Limit tree size (pick one, maybe two):
 - max_depth
 - max_leaf_nodes
 - min_samples_split
 - min_impurity_decrease

0

No pruning

$max_depth = 4$

$max_leaf_nodes = 8$

min_samples_split = 50

Instability

Feature importance

Ensemble Models (Random Forests)

Poor man's ensembles

- Build different models
- Average the result
- More models are better if they are not correlated.
- Also works with neural networks
- You can average any models as long as they provide calibrated ("good") probabilities.
- Scikit-learn: VotingClassifier

Bagging (Bootstrap AGGregation)

- Generic way to build "slightly different" models
- BaggingClassifier, BaggingRegressor

Random Forests

21/24

Randomize in two ways

- For each tree:
 - Pick bootstrap sample of data
- For each split:
 - Pick random sample of features
- More trees are always better

Tuning Random Forests

- Main parameter: max_features
 - o around sqrt(n_features) for classification
 - Around n_features for regression
- n_estimators > 100
- max_depth, max_leaf_nodes, min_samples_split again