Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	M32113	К работе допущен		
17 —	Зыонг Тхи Хуэ Линь		Работа выполнена	
_	атель Алексанлр А л		Отчет принят	

Рабочий протокол и отчёт по моделированию №2

1. Цель работы

На основании модели Кронига-Пени промоделировать зонную структуру одномерного кристалла. Проанализировать изменение ширины запрещенных зон для двух крайних случаев, когда электрон совершенно свободен и когда электрон заперт внутри одной потенциальной ямы, т.е. стенки непроницаемы, а так же промежуточные случаи.

$$V(x) = \begin{cases} 0, nc < x < nc + a & (I) \\ U, (nc + a) < x < (n + 1)c & (II) \end{cases}$$

где а — ширина ямы, b — ширина барьера, c — постоянная кристаллической решетки, $n=0,\pm 1,\pm 2...$

2. Теория

В модели почти свободных электронов, которую предложили Крониг и Пенни, рассматривается движение электрона в линейной цепочке прямоугольных потенциальных ям. Ширина ям равна а, и они отдельны друг от друга потенциальными барьерами толщиной b и высотой U0. Длина цепочки равна L, а период цепочки равен c = a + b.

Пусть E — энергия электрона. Состояние электрона описывается уравнением Шредингера:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{2m}{\hbar^2} (E - u)\psi = 0$$

Решение для области I:

$$\psi_1(x) = Ae^{i\alpha x} + Be^{-i\alpha x}$$

Первое слагаемое соответствует прямой волне, а второе – волне, отражённой от барьера.

Решение для области II:

$$\psi_2(x) = Ce^{\beta x} + De^{-\beta x}$$

Где коэффициенты: $\alpha=\sqrt{\frac{2mE}{h^2}}$, $\beta=\sqrt{\frac{2m(U_o-E)}{h^2}}$ A, B, C, D – константы.

Вместо ψ 1 и ψ 2 подставим одномерную функцию Блоха: $\psi(x) = U(x)e^{ikx}$

$$U_1(x) = Ae^{(\alpha - ik)x} + Be^{-(\alpha + ik)x} \qquad o \le x \le a$$

$$U_2(x) = Ce^{(\beta - ik)x} + De^{-(\beta + ik)x} \qquad o \le x \le a + b \quad (1)$$

Последние выражения содержат четыре неизвестных A, B, C и D, которые находят из условия непрерывности волновой функции и ее первых производных, а также с учетом периодичности потенциального рельефа решетки.

$$U_1 = U_2$$
 при $x = n(a+b)$

$$\frac{d(U_1)}{d(x)} = \frac{d(U_2)}{d(x)}$$
 при $x = a + n(a+b)(2)$

Подставляя (2) в (1) и решая систему уравнений нетрудно убедится, что условие существования решения системы задается уравнением::

$$\frac{\beta^2 - \alpha^2}{2\alpha\beta} \sinh(\beta b) \sin(\alpha a) + \cosh(\beta b) \cos(\alpha a) = \cos(k)(a+b)$$
(3)

Уравнение (3) связывает величины α и β , содержащие собственные значения энергии электрона E, с волновым вектором \bar{k} . Таким образом, равенство (3) можно рассматривать как соотношение между Е и К.

Пусть $b \to 0$, а $U_o \to \infty$, но так, чтобы произведение ширины барьера на высоту в U_o оставалось конечным причем $eta^2 b$ - конечно, eta b o 0 , (т.е. мы рассматриваем тонкие высокие барьеры). При, $\cosh(\beta b) \to 1$, $\sinh(\beta b) \to$ βb , $c \to a$ и, наконец, $cosk(a + b) \to cos ka$

С учетом этого, вместо (3) можно записать

$$\frac{\beta^2 - \alpha^2}{2\alpha\beta}\beta b \sin(\alpha a) + \cos(\alpha a) = \cos(ka) (4)$$

А также учтем, что $\beta^2 \gg \alpha^2$

$$\frac{\beta^2 ab}{2} \frac{\sin{(\alpha a)}}{\alpha a} + \cos(\alpha a) = \cos{(ka)}$$
 Обозначим $P = \lim_{\beta \to \infty, b \to 0} \frac{\beta^2 ab}{2} = \frac{ma}{h} U_o b$

Обозначим
$$P = \lim_{\beta \to \infty, b \to 0} \frac{\beta^2 ab}{2} = \frac{ma}{h} U_o b$$

Величина Р представляет собой меру эффективной площади каждого барьера. Он характеризует степень прозрачности барьера для электрона или, другими словами, степень связанности электрона в потенциальной яме. С учетом этого можно записать уравнение Кронига-Пенни в следующем (окончательном) виде:

$$\frac{P\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$

Данное уравнение называется уравнением Кронига-Пенни. Уравнение выражает зависимость энергии электрона, которая входит в коэффициент α, от волнового числа k для барьеров различной прозрачности P. Поскольку $\cos(ka)$ не может быть больше $\pm 1(-1 \le \cos(ka) \le 1)$, то и левая часть уравнения лежит в этих же пределах. Эти значения определяют области

разрешенных энергий электрона — энергетические зоны. Они отделены друг от друга полосами запрещенных энергий — запрещенными зонами. Ширина зон зависит от параметра прозрачности барьера Р.

Рассмотрим случай, когда электрон свободен (P = 0):

Рассмотрим случай, когда стенки непроницаемы (P $\rightarrow \infty$):

Рассмотрим 2 промежуточных случая (P = 3, P = 10):

Выводы:

При $P \to \infty$ разрешенные зоны сужаются, превращаясь в дискретные уровни, соответствующие $\alpha a = \pi n$, где $n = \{\pm 1, \pm 2, ...\}$. Тем самым мы приходим к случаю электрона в изолированном атоме. При стремлении прозрачности барьера к нулю, наоборот, исчезают запрещенные зоны, и электрон становится свободным.

Для промежуточных значений прозрачности барьера возникает чередование запрещенных и разрешённых зон, причём отдалении αa от нуля ширина запрещённых зон уменьшается. Соответствующие запрещённые зоны становятся шире при увеличении параметра P.

Koд:https://colab.research.google.com/drive/1uW4Li237Zyzz6vutQBseXG7 yoeHryd2V#scrollTo=u_4BgeYgOwLE