Apresentação final

Eduardo Augusto Simão Vasconcellos 196240 Victória Pedrazzoli Ferreira 206664 Arthur Biscaino Fruch 164373 José Carlos Cieni Júnior 170859

Etapa 3: Análise SQL

UniProt - Human Diseases

Base de dados

https://www.uniprot.org/diseases/

- Banco de doenças;
- Nome das doenças, categoria e descrição;
- Necessário padronização;

Modelo conceitual - ER

Análises

Confianças

Predição

Propostas

- Retornar as 10 categorias de doenças mais comuns
- Retornar o suporte de cada categoria de doença
- Retornar o numero de ocorrência de doenças com duas categorias
- Retornar a confiança dessas associações
- Retornar às probabilidade de uma doença ser de uma categoria mais específica em relação a uma menos específica

Exemplo: Suporte das 10 categorias mais comuns

Categoria	Suporte
Síndrome	0.20334
Deficiência	0.08707
Autossomo Recessivo	0.06495
Displasia	0.04078
Congênita	0.03931

Categoria	Suporte
Autossomo Dominante	0.03637
X-Linked	0.02939
Mental	0.02663
Infantil	0.02094
Encefalopatia	0.01891

Exemplo: Ocorrências e Confianças

	Síndrome	Autossomo Dominante	Mental
Síndrome	-	9	26
Autossomo Dominante	9	-	1
Mental	26	1	-

	Síndrome	Autossomo Dominante	Mental
Síndrome	1	0,008	0,023
Autossomo Dominante	0,045	1	0,005
Mental	0,163	0,006	1

Exemplo: Probabilidades

P(A/B)	Autossomo	Total
Autossomo Dominante	0.35563	0.03637
Autossomo Recessivo	0.66197	0.06495

Etapa 3: Análise SQL

Breast Cancer Wisconsin (Diagnostic) Data Set

Base de dados

https://www.kaggle.com/uciml/breast-cancer-wisconsin-data https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

A base contém informações sobre diversos atributos físicos observados no núcleo celular de amostras de tumores na região da mama.

As informações foram agrupadas por paciente, contendo o diagnóstico (M = maligno, B = benigno) e as características da célula: raio (média da distância do centro da célula até o os pontos do perímetro), textura (desvio padrão dos valores em escala de cinza), perímetro, área, suavidade (variação local em raios diferentes), compacidade (perímetro²/área - 1), concavidade (grau de concavidade em pontos do contorno), pontos côncavos (total no contorno), simetria e dimensão fractal (aproximação do contorno - 1). Cada registro possui o valor médio, erro padrão e valor para o pior caso observado para cada paciente.

Nossa análise (no notebook) leva em consideração apenas o valor médio e o erro padrão.

Modelo conceitual - ER

Resultados

Através de consultas em SQL, foram comparadas as características obtidas de forma a tentar identificar quais são maiores indicativos de um tumor maligno.

Com base nos valores médios das amostras malignas e benignas foram feitas algumas comparações para determinarmos qual destes atributos eram mais relevantes para predizer justamente se uma amostra seria maligna ou benigna. Após algumas consultas foi identificado que os atributos mais relevantes para predição seriam a área, perímetro, compacidade, concavidade e os pontos côncavos.

Foi calculada a correlação entre a área e as demais características (identificamos que a área pode ser um bom ponto de partida, pois há diferenciação mais perceptível entre diagnósticos benignos e malignos - o que também faz sentido biologicamente).

Encontramos correspondência maior entre área x raio (0,987), área x perímetro (0,986) e área x n de pontos côncavos (0,823), o que era de se esperar, já

RAIO_MEDIA	12.14652380952381
TEXTURA_MEDIA	17.914761904761903
PERIMETRO_MEDIA	78.07540616246499
AREA_MEDIA	462.7901960784314
SUAVIDADE_MEDIA	0.0924776470588235
COMPACIDADE_MEDIA	0.0800846218487394
CONCAVIDADE_MEDIA	0.0460576210084033
PONTOSCONCAVOS_MEDIA	0.0257174061624649
SIMETRIA_MEDIA	0.1741859943977591
DIMENSAOFRACTAL_MEDIA	0.0628673949579832

Figura 1 - médias dos valores atribuídos às características observadas em pacientes com diagnóstico benigno

observadas em pacientes com diagnostico benigno	
RAIO_MEDIA	17.462830188679245
TEXTURA_MEDIA	21.60490566037736
PERIMETRO_MEDIA	115.36537735849056
AREA_MEDIA	978.3764150943397
SUAVIDADE_MEDIA	0.10289849056603774
COMPACIDADE_MEDIA	0.14518778301886792
CONCAVIDADE_MEDIA	0.16077471698113208
PONTOSCONCAVOS_MEDIA	0.08799
SIMETRIA_MEDIA	0.19290896226415094
DIMENSAOFRACTAL_MEDIA	0.06268009433962264

Figura 2 - médias dos valores atribuídos às características observadas em pacientes com diagnóstico maligno

Etapa 4: XQuery

UniProt - UniParc

Base de dados

https://www.uniprot.org/uniparc/

Banco de proteínas;

 Informações de vacinas, taxonomia, genes;

Análises

Característica hereditária das informações dificulta busca por grupos com algo em comum

Pesquisas em camadas, por taxonomia, nome da proteína e afins

Proposta final:

Problema: Algumas pessoas possuem alergias a proteínas

Proposta: Analisar as proteínas e suas propriedades relacionadas a algum tipo de vacina

Exemplo

```
<dbReference xmlns="http://uniprot.org/uniparc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="UniProtKB/Swiss-Prot</pre>
 cproperty type="NCBI GI" value="55977540"/>
 cproperty type="NCBI taxonomy id" value="10254"/>
 cproperty type="protein name" value="Protein E7"/>
  cproperty type="gene name" value="VACWR063"/>
</dbReference>
<dbReference xmlns="http://uniprot.org/uniparc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="EMBL" id="AAO89342"</pre>
 cproperty type="NCBI GI" value="29692169"/>
 cproperty type="NCBI_taxonomy_id" value="10254"/>
  cproperty type="protein name" value="soluble, myristylprotein"/>
 cproperty type="gene name" value="VACWR063"/>
 cproperty type="proteome id" value="UP000000344"/>
 cproperty type="component" value="Genome"/>
</dbReference>
<dbReference xmlns="http://uniprot.org/uniparc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" type="UniProtKB/Swiss-Prot</pre>
 cproperty type="NCBI GI" value="137632"/>
 cproperty type="NCBI taxonomy id" value="10254"/>
 property type="protein name" value="Probable FAD-linked sulfhydryl oxidase E10"/>
 cproperty type="gene name" value="VACWR066"/>
</dbReference>
```

Problema

A base escolhida não possui muitos níveis hierárquicos pois foi projetada para ser funcional também em uma abordagem relacional

Etapa 4: XQuery

TB Database

Base de dados

http://tbdb.bu.edu/tbdb_sysbio/Downloads.html

- TBD (Tuberculosis Database)
- Banco de genes relacionados a tuberculose
- Necessário conversão de dados

Analises

Análise dos genes da Rhodbacter Sphaeroides, um tipo notável de bactéria relacionada a Tuberculose

Um dos organismos mais importantes no estudo da fotossíntese bacteriana, não requer condições incomuns de crescimento e é incrivelmente eficiente em baixos níveis de O2

Modelo

Incontáveis propriedades por tipo

Propostas

- Contar o número de propriedades relacionadas a um tipo de cromossomo
- Contar o número de códons de parada(feature = 'stop_codon')
- Retornar de todas as propriedades de um certo tipo que começam depois de uma certa posição (start >1200)
- Encontrar as propriedades de um certo tipo relativas a um gene específico
- Retornar propriedades com tamanho pequeno (start end <10)
- Retornar todos os genes de um certo tipo que são códons de começo e parada

Exemplo 1: Propriedades relativas a um mesmo gene

```
xquery
let $doc := doc("file2.xml")

for $c in ($doc//type[@value = 4]/property)
where $c/@gene_id = 'RSP_2483'

return $c
```

Exemplo 2: Propriedades que ocupam uma porção pequena do Cromossomo

xquery

let \$doc := doc("file2.xml")

```
for $c in ($doc//type[@value = 1]/property)
where $c/@end - $c/@start <= 10
return $c
score="." strand="+" frame="0" gene_id="RSP_1425" transcript_id="null"/>
score="." strand="+" frame="0" gene id="RSP 3003" transcript id="null"/>
score="." strand="+" frame="0" gene_id="RSP_3004" transcript_id="null"/>
score="." strand="+" frame="0" gene id="RSP 3004" transcript id="null"/>
score="." strand="-" frame="0" gene id="RSP 3005" transcript id="null"/>
score="." strand="+" frame="0" gene id="RSP 3006" transcript id="null"/>
```

Etapa Final: Neo4j

Virus-Host DB

Base de dados

https://www.genome.jp/virushostdb/

 Virus-Host DB é uma base de dados sobre a relação entre os vírus e seus hospedeiros, com informações do genoma e mais.

Modelo Conceitual - ER

Análises

```
USING PERIODIC COMMIT 10

LOAD CSV WITH HEADERS FROM

'file:///virushostdb.csv' AS line

WITH line

WHERE NOT line.host_tax_id IS NULL

MERGE (v:Virus {virus_name:line.virus_name,virus_id:line.virus_tax_id})

MERGE (h:Host{host_id:line.host_tax_id,host_name:line.host_name})

MERGE (v)-[i:Infects]->(h)
```

- Comandos usados na criação do grafo no Neo4j, foi necessá-rio o uso do comando MERGE() para evitar duplicatas.
- É importante notar que não utilizamos todos campos da base de dados originais, apenas os campos Id e Nome tanto dos hospedeiros quanto dos virus.

Exemplo 1

```
MATCH p=(v:Virus)-[r:Infects]->(h:Host {host_name:"Homo sapiens"})
RETURN count(v)
```

• Consulta simples que retorna todos vírus que tem como hospedeiro o ser humano (espécie "Homo sapiens").

Exemplo 1

Foto ilustrativa da consulta do exemplo 1. Para apenas 300 valores (são mais de 1300).

Exemplo 2: Teste de comunidades.

```
CALL algo.unionFind('Host','Infects', {
   write: true,
   writeProperty: 'community'
})
YIELD nodes, setCount, loadMillis, computeMillis, writeMillis
```

 Aqui utilizamos um dos algoritmos disponibilizados pelo Neo4j para fazer a análise por comunidades como um teste e, pudemos constatar que nosso grafo não se adaptou bem a este tipo de problema, tendo em vista que o número de comunidades encontradas foi o mesmo do número de nós de hospedeiros.