

Ethernet Switching

Andreas Grupp

Andreas.Grupp@zsl-rstue.de

Carina Haag

haag.c@lanz.schule

Tobias Heine

tobias.heine@springer-schule.de

Uwe Thiessat

uwe.thiessat@gbs-sha.de

Warum Ethernet?

- In lokalen Netzen faktisch nur noch Ethernet und WLAN!
- Ethernet gibt es schon bis zu 400 Gbs, somit kein Alternativbedarf
- Lernziele in diesem Modul
 - Ethernet-Sublayers und deren Bezug zu Feldern im Ethernet-Frame
 - Ethernet-MAC-Adresse beschreiben
 - Woher kommt die MAC-Adress-Tabelle im Switch
 - Wie leitet ein Switch die eingehenden Frames weiter
 - Forwarding-Methoden und Port-Settings bei Layer 2 Switches

Ethernet generell

- Geschwindigkeiten: 10, 100 Mbps. 1, 10, 40, ... 100, 400 Gbps
- Relevante Standards sind: IEEE 802.2 and 802.3
- Ethernet im OSI-Modell umfasst (siehe auch Modul 6):
 - Logical Link Control (2b) Software
 - Media Access Control (2a)
 - Physical Layer (1)
- Encapsulation bei 802.3
 - Ethernet-Frame erstellen
 - Ethernet-Adressierung (Source- & Destination MAC-Adressen)
 - Ethernet-Fehlererkennung gewährleisten mittels Frame Check Sequence (FCS)

Ethernet - Medienzugriff

- Varianten unterscheiden sich insbesondere beim Media-Access
- Legacy Ethernet (nutzte) jeweils ein shared Medium

Data Link	LLC Sublayer	LLC Sublayer-IEEE 802.2				
	MAC Sublayer	Ethernet-IEEE 802.3				
		IEEE 802.3u	IEEE 802.3z Gigabit Ethernet	IEEE 802.3ab Gigabit Ethernet	IEEE 802.3ae 10 Gigabit	F#a
Physical		Fast Ethernet	over Fiber	over Copper	Ethernet over Fiber	Etc.

- "Heutiges" Ethernet …
 - nutzt nur noch Full-Duplex
 - kollisionsfrei
 - ohne CSMA/CD

Struktur und Felder eines Ethernet-Frames

- > < 64 Bytes: Kollisions-Fragment / Runt → werden verworfen
 </p>
- > > 1518 Bytes: Jumbo-/Baby-Giant-Frames → klappen normalerw.
- Preamble (7 Bytes), Start Frame Delimiter (SFD) (1 Byte)
- Destination MAC (Unicast-, Multicast- oder Broadcast-Adresse)
- Source MAC (immer Unicast)
- EtherType/Type/Length: zum Beispiel 0x800 für IPv4, 0x86DD für IPv6 oder 0x806 für ARP. Kann auch Längenangabe sein.
- Data: Layer 3 PDU, 46 1500 Bytes, ggf. Padding auf 46 Bytes!
- > FCS → CRC32-Prüfsumme. Nur Fehlererkennung möglich!

64-1518 bytes 8 bytes 6 bytes 6 bytes 46 -1500 bytes 4 bytes 2 bytes Preamble and **Destination MAC** Source MAC Type / Length Data **FCS** SFD Address Address

Ethernet MAC-Adressen - Zahlensysteme

- Sind 48-Bit groß Darstellung mit 12 Hexadezimalziffern
- Auch IPv6 in Hexadezimal
- Umrechnung Dezimal ↔ Hexadezimal ist relevant!
 - > 16 Dezimalwerte
 - > 16 4-Bit-Muster
 - > 16 Hex-Ziffern
- Beachte: Im Binärbereich sind alle Kombinationsmöglichkeiten erschöpft.

Ethernet MAC-Adressen - Zahlensysteme

- Typisch ist aber der Umgang mit Bytes, statt mit 4-Bit Nibbles
- Binär ↔ Hexadezimal ist ziemlich einfach
 - Immer 4-Bit → 1-Hexziffer
 - Nach Wertigkeit anfügen
- Hex-Zahlen meist durch voranstellen von 0x, oder durch H am Ende klar machen
- Dezimal zu Binär ist leider aufwändiger
 - Dezimal \rightarrow Binär \rightarrow Hex!

Decimal	Binary	Hexadecimal
0	0000 0000	00
1	0000 0001	01
2	0000 0010	02
3	0000 0011	03
4	0000 0100	04
5	0000 0101	05
6	0000 0110	06
7	0000 0111	07
8	0000 1000	08
10	0000 1010	0A
15	0000 1111	0F
16	0001 0000	10
32	0010 0000	20
64	0100 0000	40
128	1000 0000	80
192	1100 0000	C0
202	1100 1010	CA
240	1111 0000	F0
255	1111 1111	FF

Ethernet MAC-Adressen – müssen eindeutig sein

Im jeweiligen LAN-Segment muss MAC eindeutig sein!

- Hersteller müssen sich u.a. deshalb bei IEEE registrieren.
 - Erhalten "Organizationally Unique Identifier (OUI)"

Beachte: "Burned-In Address (BIA)" ist somit kein Sicherheitsfeature!! Wird beim Booten ins RAM kopiert!

Z.B. bei Herstellerfehlern → MAC per Software eindeutig machen

Ethernet-Eingangskontrolle

- Grundsätzlich gilt: Jeder eingehende Frame wird schon von der Netzwerkkarte kontrolliert.
- Falls Destination-MAC
 als nicht passend beurteilt
 wird, wird der Frame
 verworfen
- Erreicht dann das Betriebssystem erst gar nicht mehr → keine Last

Unicast-MAC & woher stammt das Wissen dazu?

Server

IP: 192.168.1.200

- IP-Packet zielgerichtet an ein Ziel → Unicast
- Ziel-MAC ebenfalls Unicast-MAC → NIC-Adresse des Ziels

Server.

I need to send this frame to

- Feststellung der MAC durch Absender?
 - Bei IPv4 → ARP
 - ▶ Bei IPv6 → ND

Dazu mehr in Modul 9

Ach ja ... die Source-MAC ist immer eine **Unicast-MAC**

Ethernet-Broadcast

- Z.B. IP-Packet als Broadcast an alle Rechner im LAN-Segment, oder bei anderen Protkoll-Nachrichten die Broadcasts brauchen
- Abbildung auf Ziel-Ethernet-MAC FF:FF:FF:FF:FF:FF

- Router leiten Broadcasts typischerweise nicht weiter!
- Absender-Adresse ist weiterhin immer Unicast-MAC

Multicast-Groups und andere Adressen für Multicasting

- Hosts können Mitglied in einer Multicast-Gruppe werden
 - "Hören" dann auch auf Ethernet-Frames der jeweiligen Gruppe
 - Multicast-MACs beginnen mit 01:00:5E im vorderen OUI-Bereich
 - Hintere drei Bytes repräsentieren die Multicast-Gruppe
 - Werden aus der IP-Multicast-Gruppenadresse abgeleitet.
 - IPv4 224.0.0.0 bis 239.255.255.255, IPv6 ff00::/8
- Diverse Protokolle verwenden weitere reservierte Multicast-MACs
 - > z.B. Spanning Tree Protocol (STP), Link Layer Disc. Prot. (LLDP)
- Router leiten Multicasts auch im Normalfall nicht weiter
- Switches benötigen "zusätzliches Wissen" um zielgerichtet zu unterstützen, und sich damit vom Hub zu unterscheiden.

Und wie arbeitet nun ein Switch?

Destination MAC

00-0D

1.) Nach dem Start hat das Gerät keinerlei Wissen über Geräte!

Type

Data

2.) Mit jedem Frame lernt der Switch!

Source MAC

00-0A

Beachte die Lernbasis!? Es ist die Source-MAC!

3.) Die Weiterleitung, so lange keine klare Informationen in der MAC-Adress-Tabelle vorliegen

Und mit der Zeit entlastet der Switch dann "Unbeteiligte"

4. Frame von D an A Switch lernt neue MAC!

5. Und kann in diesem Fall schon zielgerichtet arbeiten

6. Auch die Gegenrichtung funktioniert!

MAC	Address Table	
Port	MAC Address	6
1	00-0A	O
4	00-0D	

Weiteres zu Switches, Weiterleitungen, MAC-Adress-Table

- MAC-Adress-Tabelle auch Content Addressable Memory (CAM)
- Destination-MAC nicht in MAC-Adress-Tab → Frame wird aus allen aktiven Ports gesendet, außer auf dem Empfangsport
- Pro Port, können mehrere MAC-Adressen gespeichert sein
 - Insbesondere immer bei Up-/Downlink-Ports zu anderen Switches
- Einträge in MAC-Adress-Tabelle "altern" und verschwinden …
 - ohne Auffrischung
 - wenn Port inaktiv wird
- IP-Pakete mit Ziel außerhalb des eigenen LANs werden vom Endgerät (z.B. PC) in Ethernet-Frame mit Router-MAC als Zieh verpackt & versandt

Frame Forwarding Methoden beim Switching

- Store-and-Forward
 - Frame wird komplett empfangen
 - CRC-kontrolliert
 - Switching auf Basis der Infos aus MAC-Adresstabelle
 - z.B. bei QOS-Anwendung / Prio.-Queues immer nötig
- Cut-Through (2 Untervarianten)
 - Fast-Forward
 - Destination-MAC im Switch, Rest noch gar nicht angekommen
 - Switching auf Basis der Infos aus MAC-Adresstabelle
 - Fragment-Free
 - Die ersten 64 Bytes werden eingelesen (Kontrolle ob Kollisionsfrag.)
 - Switching auf Basis der Infos aus MAC-Adresstabelle

Switch – Arten / Modi

Memory Buffering in Switches, z.B.

- ... bei Store-and-Forward
- > ... bei Ports mit unterschiedlichen Geschwindigkeiten (asymmetric)
- > ... falls Sendeport gerade anderweitig am senden
- Zwischenpuffern der Framedaten ...
 - Port-based memory. Queue an Ports, kann blockierend wirken
 - Shared memory. Zentral für alle Ports gemeinsam

Einstellungen für Bandwith/Speed, Duplex

- Einstellung der direkt über ein LAN-Medium gekoppelten Systeme
 - Full Duplex: Beide Seiten können gleichzeitig senden
 - Half Duplex: Immer nur eine Seite darf senden
 - Bandbreiten-Einstellung auf beiden Seiten
- Heute meist typisch → automatische Aushandlung / Autonegotiation
- Fehleinstellungen problematisch
- Gigabit-Ports nur Full-Duplex

Automatisches kreuzen ... Auto-MDIX

- Adernpaare bis 100Mbps mit spezieller Senderichtung
- "Layer-2"- und "Layer-3+"-Geräte mit unterschiedlicher Pin-Beleg.
- Legacy-Technik
 - → richtiges Kabel
- Heute
 - \rightarrow Auto-MDIX
- Konfiguration im Int-Config-Mode:
 - > mdix auto

Quizze, Activities, Laborübungen, ... dieses Moduls

- 7.1.5 Quiz zu "Ethernet Switching"
- 7.1.6 Labor: Ethernet Frames mit Wireshark untersuchen
- 7.2.7 Labor: Network Device MAC Addresses
- 7.3.6 Activity Switch It!
- 7.3.7 Lab View the Switch MAC Address Table
- 7.4.6 Quiz Switch Speeds and Forwarding Methods
- 7.5.2 Module Quiz Ethernet Switching

Fragen

