160

Résoudre dans $\mathbb R$ les équations suivantes :

- 1. $2e^x 3 = 0$
- **2.** $e^{-x+2} 1 = 0$
- 3. $e^{2x} = 4$
- **4.** $(2e^x 1)(e^x + 6) = 0$.

161

Résoudre dans \mathbb{R} les équations suivantes :

- 1. $\ln(x) 5 = 0$
- **2.** $3\ln(x) 1 = 0$
- 3. $(\ln(x) + 5)(5 4\ln(x)) = 0$
- **4.** $(\ln(x))^2 = 4\ln(x)$.

162

Résoudre en posant $X = \ln x$ ou $X = e^x$:

- 1. $(\ln x)^2 + \ln x 2 = 0$
- **2.** $2(\ln x)^2 \ln x 15 = 0$
- 3. $e^{2x} 5e^x + 4 = 0$

163

À partir de sa mise en culture, l'évolution d'une population de bactéries est fonction du temps est donnée par $g(t) = 10^6 e^{0.25t}$ où t est exprimé en heures. Calculer :

- 1. la population initiale à t = 0,
- 2. le temps au bout duquel la population initiale aura triplé.

164

On note f(t) la concentration plasmatique, exprimée en microgramme par litre $(\mu g.L^{-1})$, d'un médicament, au bout de t heures après administration par voie intraveineuse

Le modèle mathématique est :

$$f(t) = 20e^{-0.1t}$$
, avec $t \in [0; +\infty[$.

La concentration plasmatique initiale du médicament est donc $f(0) = 20 \mu \text{g.L}^{-1}$.

1. La demi-vie du médicament est la durée (en heure) après laquelle la concentration plasmatique du médicament est égale à la moitié de la concentration initiale.

Déterminer cette demi-vie, notée $t_{\frac{1}{\alpha}}$.

2. On estime que le médicament est éliminé dès que la concentration plasmatique est inférieure à $0, 2\mu g.L^{-1}$. Déterminer le temps à partir duquel le médicament est éliminé. On donnera le résultat arrondi au dixième.

165

Exprimer en fonction de ln 3:

- 1. $a = \ln(9)$
- **2.** $b = \ln\left(\frac{1}{3}\right)$

- 3. $c = \ln(3\sqrt{3})$
- **4.** $d = \ln(36) 2\ln(2)$

166

Simplifier les nombres suivants pour les écrire en fonction de ln(2) et de ln(5) uniquement :

- 1. $a = \ln(10) \ln\left(\frac{1}{4}\right)$
- **2.** $b = \ln(0, 05)$
- 3. $c = \ln\left(\frac{\sqrt{5}}{3}\right)$
- 4. $d = 2\ln(5e^2) + \ln(4e^{-1})$

167

Simplifier les expressions suivantes :

- 1. $a = \ln(e^4) + 3\ln(e^{-1})$
- **2.** $b = e^{2 \ln(5)} \ln((e^5)^2)$
- 3. $c = \ln(e^{-3}) \times \ln(e^{3})$
- 4. $d = 20 \ln(\sqrt{e}) e^{3 \ln(2)}$

168

Soit (u_n) la suite géométrique de raison q > 0 et de premier terme $u_0 > 0$. On pose $v_n = \ln(u_n)$.

Démontrer que la suite (v_n) est une suite arithmétique en précisant sa raison et son premier terme.

169

Déterminer la valeur exacte du nombre réel :

$$A = \ln\left(\frac{1}{2}\right) + \ln\left(\frac{2}{3}\right) + \ln\left(\frac{3}{4}\right) + \dots + \ln\left(\frac{2020}{2021}\right).$$

170

1. Démontrer que pour tout réel x > -1 on a :

$$2\ln(x+1) = \ln(x^2 + 2x + 1)$$

2. Démontrer que pour tout réel x, on a :

$$\ln(1 + e^{-2x}) = -2x + \ln(1 + e^{2x})$$

171

Résoudre dans \mathbb{R} les inéquations suivantes :

- 1. $\ln x < 10$
- **2.** $2 \ln x + 200 > 0$
- 3. $1 2\ln(x) \ge 0$
- **4.** $2\ln(x) 6\ln(3) < 0$

172

On considère la fonction f définie sur $]0; +\infty[$ par :

$$f(x) = 1 - \ln(x).$$

- 1. Déterminer les coordonnées du point d'intersection de la courbe représentative de la fonction f et l'axe des abscisses.
- 2. Étudier la position relative de la courbe représentative de la fonction f et l'axe des abscisses.

173

Déterminer le plus petit entier naturel n tel que :

- 1. $0.99^n \le 10^{-30}$
- **2.** $1,02^n > 10^{2020}$

Déterminer l'ensemble de définition des fonctions suivantes définies par :

- 1. $f_1(x) = \ln(3x 7)$
- **2.** $f_2(x) = \ln(-x^2 + 4x 3)$
- 3. $f_3(x) = \ln(x) 3\ln(2-x)$

Résoudre les équations suivantes après avoir déterminé que quel ensemble on peut les résoudre :

- 1. $\ln(x^2) = \ln(x) + \ln(6)$
- **2.** $\ln(x+1) + \ln(x-4) = \ln(5)$
- 3. $2\ln(x) = \ln(5x 3)$.

Résoudre les équations suivantes après avoir déterminé que quel ensemble on peut les résoudre :

- 1. $\ln[(x-3)(2x+1)] = \ln(4)$
- **2.** $\ln(x-3) + \ln(2x+1) = 2\ln(2)$

Résoudre les inéquations suivantes après avoir déterminé que quel ensemble on peut les résoudre :

- 1. $\ln(3x-4) < 0$
- **2.** $\ln(-x+3) \ge 1$
- 3. $\ln(1-x) \leq \ln(x)$
- **4.** $\ln(3+2x) < \ln(x-3)$

178

On détermine le pH d'une solution en mesurant la concentration en ions H_3O^+ .

Le pH est défini par la relation pH = $-\log[\mathrm{H}_3\mathrm{O}^+]$, où $[\mathrm{H}_3\mathrm{O}^+]$ est la concentration en mol·L⁻¹ d'ions $\mathrm{H}_3\mathrm{O}^+$ de la solution. On admet que $\log(x) = \frac{\ln(x)}{\ln(10)}$ pour tout réel x > 0.

- 1. Quel est le pH d'une solution dont la concentration en ions H_3O^+ est de $10^{-6,5}$ mol·L⁻¹?
- **2.** Quelle est la concentration en ions H_3O^+ d'une solution de pH égal à 8,4?
- 3. Si la concentration en ions H₃O⁺ d'une solution est multipliée par 10 000, quelle augmentation du pH cela produit-il?

Déterminer les limites des fonctions suivantes aux bornes de leur ensemble de définition D :

- 1. $f_1(x) = \ln(2x 6)$ et $D = |3| + \infty$
- **2.** $f_2(x) = \ln(e^x + 3) \text{ sur } D = \mathbb{R}.$
- 3. $f_2(x) = \ln(1 + e^{-2x})$ sur $D = \mathbb{R}$.

On considère la fonction f définie sur $\left]\frac{1}{2}; +\infty\right[$ par :

$$f(x) = \ln(2x - 1) - x + 1.$$

- 1. Calculer la limite de f en $\frac{1}{2}$ et interpréter graphiquement le résultat obtenu.
- **2.** a. Démontrer que pour tout réel $x > \frac{1}{2}$:

$$f(x) = \ln(x) - x + 1 + \ln\left(2 - \frac{1}{x}\right).$$

- **b.** En déduire la limite de f en $+\infty$.
- 3. Démontrer que l'équation f(x)=0 admet deux solutions distinctes α et β dans l'intervalle $\left]\frac{1}{2}; +\infty\right[$ avec $\alpha < \beta$.
- 4. Donner la valeur exacte de α et une valeur approchée de β au dixième près.

Soit f la fonction définie sur $]0; +\infty[$ par :

$$f(x) = x^2 \ln x.$$

- 1. Démontrer qu'il existe une unique tangente à \mathscr{C}_f passant par O.
- 2. Préciser l'équation de cette tangente.

Partie A

Soit u la fonction définie sur]0; $+\infty[$ par

$$u(x) = x^2 - 2 + \ln x.$$

- 1. Étudier les variations de u sur]0; $+\infty[$ et préciser ses limites en 0 et en $+\infty$.
- **2. a.** Montrer que l'équation u(x) = 0 admet une solution unique sur $]0 ; +\infty[$.

On note α cette solution.

- **b.** À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
- **3.** Déterminer le signe de u(x) suivant les valeurs de x.
- **4.** Montrer l'égalité : $\ln \alpha = 2 \alpha^2$.

Partie B

On considère la fonction f définie et dérivable sur $]0\ ;\ +\infty[$ par

$$f(x) = x^2 + (2 - \ln x)^2.$$

On note f' la fonction dérivée de f sur]0; $+\infty[$.

- **1.** Exprimer, pour tout x de]0; $+\infty[$, f'(x) en fonction de u(x).
- **2.** En déduire les variations de f sur]0; $+\infty[$.

Soit la fonction f définie sur]0; $+\infty[$ par :

$$f(x) = \frac{\ln(x)}{2x+1}.$$

- 1. Calculer la limite de f en 0.
- **2. a.** Vérifier que pour tout réel x > 0:

$$f(x) = \frac{\ln(x)}{x} \left(\frac{1}{2 + \frac{1}{x}} \right).$$

- **b.** En déduire la limite de f en $+\infty$.
- **c.** Interpréter graphiquement les résultats précédents.

Soit n un entier naturel non nul. On rappelle le résultat : $\lim_{x\to +\infty} \frac{\ln x}{x^n} = 0$.

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par :

$$f(x) = x - \frac{\ln x}{x^2}.$$

On note $\mathscr C$ sa courbe représentative dans un repère orthonormal $\left(\mathcal O,\stackrel{\to}{\imath},\stackrel{\to}{\jmath}\right)$.

- 1. Soit u la fonction définie sur l'intervalle]0; $+\infty[$ par $u(x) = x^3 1 + 2 \ln x.$
 - **a.** Étudier le sens de variation de la fonction u sur l'intervalle $[0; +\infty[$.
 - **b.** Calculer u(1) et en déduire le signe de u(x) pour x appartenant à l'intervalle]0; $+\infty[$.
- **2.** a. Calculer les limites de f en 0 et en $+\infty$.
 - **b.** Déterminer la fonction dérivée de f et construire le tableau de variations de la fonction f.
- 3. Soit la droite (Δ) d'équation y=x. Étudier la position de $\mathscr C$ par rapport à (Δ) .
- **4.** Pour tout entier naturel k supérieur ou égal à 2, on note respectivement M_k et N_k les points d'abscisse k de \mathscr{C} et (Δ) .
 - a. Déterminer la limite de $M_k N_k$ lorsque k tend vers $+\infty$.
 - b. Écrire un algorithme en langage naturel permettant de déterminer le plus petit entier k_0 supérieur ou égal à 2 tel que la distance $M_k N_k$ soit inférieure ou égale à 10^{-2} .

On considère la fonction f définie sur]0 ; $+\infty[$ par :

$$f(x) = 3x - 3x\ln(x).$$

On note $\mathscr C$ sa courbe représentative dans un repère orthonormé et $\mathscr T$ la tangente à la courbe $\mathscr C$ au point d'abscisse a>0.

Quelle est la position relative de \mathscr{C} et \mathscr{T} ?

Soit k un réel strictement positif. On considère les fonctions f_k définies sur \mathbb{R} par :

$$f_k(x) = x + ke^{-x}.$$

On note \mathcal{C}_k la courbe représentative de la fonction f_k dans un plan muni d'un repère orthonormé.

On a représenté ci-dessous quelques courbes \mathcal{C}_k pour différentes valeurs de k.

Pour tout réel k strictement positif, la fonction f_k admet un minimum sur \mathbb{R} . La valeur en laquelle ce minimum est atteint est l'abscisse du point noté A_k de la courbe \mathscr{C}_k . Il semblerait que, pour tout réel k strictement positif, les points A_k soient alignés.

Est-ce le cas?

Soit f la fonction définie sur l'intervalle $]0; +\infty[$ par

$$f(x) = \frac{\ln(x)}{x}.$$

1. Démontrer tous les éléments du tableau : limites, extremum, signe de la dérivée.

x	0	e	$+\infty$
signe de $f'(x)$		+ 0	_
Variation $de f$	n	$\frac{1}{e}$	0

- 2. Démontrer que, pour $n \ge 3$, l'équation $f(x) = \frac{1}{n}$ possède une unique solution sur [1; e] notée α_n .
- **3. a.** En utilisant l'égalité, $n \ge 3$, $f(\alpha_n) = \frac{1}{n}$, comparer, pour tout entier $n \ge 3$, $f(\alpha_n)$ et $f(\alpha_{n+1})$.
 - **b.** Démontrer que la suite (α_n) est décroissante.
 - **c.** La suite (α_n) est-elle convergente? Justifier.