FENÔMENOS DE TRANSPORTE EXPERIMENTAL I

ESVAZIAMENTO DE TANQUE

Considere um tanque de armazenamento de água sendo esvaziado por um bocal localizado próximo à sua base:

A partir de balanços de massa e energia entre a superfície do tanque (1) e saída do bocal (2), podemos estimar o nível do tanque para diferentes valores de tempo a partir do início do esvaziamento.

Considerando que a densidade do fluido se mantem constante durante o esvaziamento, o balanço de massa gera a seguinte equação:

$$V_1 A_1 = V_2 A_2 \tag{1}$$

Balanço de energia entre (1) e (2):

$$\frac{P_2 - P_1}{\rho g} + \frac{V_2^2 - V_1^2}{2g} + (z_2 - z_1) + \frac{h_l}{g} = 0$$
 (2)

Onde h_l é a perda de carga associada ao escoamento devido à passagem do fluido no bocal. Esta perda de carga pode ser calculada pela equação (3):

$$h_l = k \frac{V_2^2}{2} \tag{3}$$

Sendo *k* um parâmetro que depende do bocal.

O nível do tanque e a saída do bocal estão em pressão atmosférica. Além disso, apesar de V_1 não ser igual à zero, pode ser considerada muito menor do que V_2 , e por esse motivo, desprezada do banco de energia. Definindo $z_1 - z_2 = h(t)$ e substituindo a equação (3) em (2), temos:

$$\frac{V_2^2}{2g}(1+k) - h(t) = 0 (4)$$

Isolando o V_2 e substituindo em (1):

$$V_1 A_1 = A_2 \cdot \sqrt{\frac{2g}{1+k}} \cdot \sqrt{h(t)} \tag{5}$$

Onde:

$$V_1 = -\frac{dh(t)}{dt} \tag{6}$$

Logo, para obter o valor de h em função do tempo, podemos resolver o seguinte PVI:

$$\frac{dh(t)}{dt} = -\left(\frac{r_2^2}{r_1^2} \cdot \sqrt{\frac{2g}{1+k}}\right) \sqrt{h(t)} \qquad h(0) = h_0 \tag{7}$$

Objetivo da prática: Comparar os dados experimentais de h(t) por tempo de esvaziamento com os preditos pela equação (7) para diferentes bocais.

Procedimento experimental: Medir o tempo a cada 5 cm de redução de nível a partir de h_0 . A última medida será feita quando h(t) = 5 cm.

Resultados esperados:

ESVAZIAMENTO DE TANQUE

Temperatura ambiente:

Bocal 1: 4 mm de diâmetro

h(m)	t(s)	t(s)	t(s)
40			
35			
30			
h(m) 40 35 30 25 20			
20			
15			
10			
5			

Bocal 2: 7 mm de diâmetro

h(m)	t(s)	t(s)	t(s)
40			
40 35 30 25 20 15			
30			
25			
20			
15			
10 5			
5			

Bocal 3: 10 mm de diâmetro

1 ()	.()	.()	.()
h(m)	t(s)	t(s)	t(s)
40			
35			
30			
h(m) 40 35 30 25 20			
20			
15			
10			
5			

Sem bocal: 21 mm de diâmetro

h(m)	t(s)	t(s)	t(s)
40 35 30 25 20			
30			
25			
20			
15			
10			
5			