	<u> </u>	
Student ID	Name	Instructor Jang Soo Kim

Problem 1. (5 points) Determine whether each proposition is true or false.

- (1) For any sets X, Y, Z of integers, we have $(X \times Z) Y = X \times Z$.
- (2) For any sets X, Y, Z, we have $(X \times Z) Y = X \times Z$.
- (3) For any set X, we have $(X \times X) X = X \times X$.
- (4) If R is a symmetric relation on a set X, then R is not antisymmetric.
- (5) If R is an antisymmetric relation on a set X, then R is not symmetric.

Problem 2. (10 points) For each algorithm, answer the question. You don't have to explain your answer.

```
(1) Input : a, b, c (integers)
    Output: k (integer)
    \mathbf{Alice}(a,b,c) {
         k = a
        if (b < k)
             k = b + 7
        if (c < k)
             k = c + 1
         return k
```

What is the output of the algorithm **Alice** for the input a = 5, b = 2, c = 8?

```
(2) Input: s, n (s is a sequence of n numbers: s = (s_1, s_2, \dots, s_n))
    Output: k (integer)
    \mathbf{Bob}(s,n)
         k = s_1
         for i = 2 to n
              if (s_i > k)
                   k = s_i
         return k
```

```
(3) Input: s, n (s is a sequence of n numbers: s = (s_1, s_2, \dots, s_n))
    Output: k (integer)
    \mathbf{Chris}(s,n)
         k = 0
         for i = 1 to n - 1
              for j = i + 1 to n
                   if (s_i > s_j)
                       k = k + 1
         return k
```

What is the output of the algorithm **Chris** for the input s = (8, 9, 12, 5, 3, 5, 4, 7) and

Problem 3. (10 points) Let $X = \{1, 2, \dots, 2019\}$. Suppose that R is a relation on X satisfying the following conditions:

- \bullet R is symmetric.
- R is transitive.
- \bullet In the matrix of the relation R, every row has at least one nonzero entry.

Prove that R is an equivalence relation.

What is the output of the algorithm **Bob** for the input s = (8, 9, 12, 5, 3, 5, 4, 7) and | **Problem 4.** (15 points) Prove that a base b integer m has $\lfloor 1 + \log_b m \rfloor$ digits.

Problem 5.	2019.
Problem 5.)

Problem 7. (15 points) Let L be the set of all strings, including the null string, that can be constructed by repeated application of the following rules:

- If $\alpha \in L$, then $a\alpha b \in L$ and $b\alpha a \in L$.
- If $\alpha \in L$ and $\beta \in L$, then $\alpha \beta \in L$.

Prove that if $\alpha \in L$, then α has equal numbers of a's and b's.

Problem 6. (15 points) Prove that

$$\sum_{i=1}^{n} i^2 \lg i = \Theta(n^3 \lg n).$$

Problem 8. (15 points) Let $X = \{1, 2, \dots, 9\}$. Suppose that f is a function from X to X given by

$$f = \{(1,6), (2,6), (3,9), (4,2), (5,8), (6,9), (7,4), (8,1), (9,7)\}.$$

Find the values $f^2(1)$, $f^{20}(3)$, $f^{201}(5)$, and $f^{2019}(8)$, where

$$f^n = f \circ f \circ \dots \circ f$$

is the n-fold composition of f.

2019-1. Discrete Math Midterm Solutions P1. T, F, F, F, F. (1 point each) P2. (1) 9 (2 pts) (2) 12 (3 pts) (3) 18 (5 pts)

P3. Let XEX. Since the motive of relation has a nonzero entry in the

How X, we have at least one $y \in X$ such that $(\alpha, y) \in R$. (2 pts) Since R is symmetric and $(a_1u) \in R$, we have $(y_1x) \in R$ (2 pts)

Since R is transitive and (a,y), (y,x), we have (a,a) ER (2 pts)

Therefore R is reflexive, (2 pts) Thus R is an equivalence relation. (2 pts).

Then m= a, bd+ a, bd-1+...+ a.b°

for $0 \le a \le b-1$, $(o \le i \le d-1)$ and $1 \le a \le b-1$ (5 pts)

Thus $b^d \leq m \leq (b-1) \cdot (b^d + b^{d-1} + \dots + 1) = b^{d+1} - 1 < b^{d+1}$ (5 pts)

By taking Logb, we obtain

 $d \leq log_{+} m < d+1$ (5 pts).

Thus LlogbmJ=d.

$$2019 = 7.283 + 38$$

$$283 = 7.38 + 17$$

$$38 = 2.17 + 4$$
 $17 = 4.4 + 1$ (5 pts)

P5.

$$1 = 17 - 44 = 17 - 4(38 - 2 \cdot 17)$$

$$= -4 \cdot 38 + 9 \cdot 17 = -4 \cdot 38 + 9 (283 - 7 \cdot 38)$$

$$= -60.2019 + 408.263.$$
 (5 pts)
Thus the answer (5 283. (5 pts)

 $\sum_{i=1}^{m} i^{2} Lg i \leq n \quad \text{mbgn} \quad \Rightarrow \quad O(n^{2} Lg n)$ (5 pts) P6. $\sum_{i=1}^{M} i^{2} \lg i \geqslant \left(\frac{n}{2}\right)^{2} \lg \left(\frac{n}{2}\right) + \dots + n \lg n$ (3 pts) $\geq \left(\frac{n^2}{4} \lg \frac{n}{2}\right) \cdot \frac{m}{2}$ (2pts) $= \frac{m^s}{R} \lg \frac{m}{2} \geqslant \frac{1}{R} n^s \lg n$ (3 pts) $\sum_{i=1}^{\infty} i^2 \lg i = \Omega \left(n^3 \lg n \right).$ (2 pts). Therefore $\sum_{i=1}^{n} i^2 \lg i = \Theta(n^3 \lg n)$. P7 We prove by induction on the number n of letters in a. If M=0, then α is the null string, so $\#\alpha's = \#b's = 0$. (5 pts) Suppose that the statement is true for all strings in L with less than on letters and that $\alpha \in L$ has m letters. By the construction of L, we have either O α=aβb or bβα for some B∈L @ a=pr for some p, r = L. with p, r = a. In the first case O, B has the same numbers of a's and b's, then so does a. (5 pts) In case 10, B, & have smaller number of letters. Thus by induction hypothesis, B, & have the same number of a's and b's and so does a. (5 pts) Threfore by induction the statement is time for all n. ps let's represent f by the following diagram with an arrow from i to fir): Then for every $i \in \{2,6,9,7,4\}$ we have f⁵(i)=i. Thus $f^{2}(i) = 9$. (2 pts) $f^{20}(3) = f^{19}(9) = f^{4}(9) = 6$ (2 pts) $t_{50}(2) = t_{18}(2) = t_{3}(2) = 4$ (5 pts) $f_{29/3}(8) = f_{20/3}(7) = f_{5}(9) = 1$ (5 pts)