

Technische Universität Berlin Fakultät IV - Elektrotechnik und Informatik Institut für Energie- und Automatisierungstechnik Fachgebiet für Energieversorgungsnetze und Integration Erneuerbarer Energien

PROTOKOLLVORLAGE

Protokoll

zum 1. Praktikumstermin

im Laborpraktikum

des Moduls

Elektrische Netzwerke

im Sommersemester 2021

Autor: Juan Nicolas Pardo Martin (389772)

Betreuer: Jeanne Mustertutorin

Labortermin: Samstag, 30. Mai 2021, 16-18 Uhr

Eingereicht am: Montag, den 17. Mai 2021

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die mit meinem Namen gekennzeichneten Teile für das vorliegende Protokoll

Protokollvorlage

zum 1. Praktikumstermin im Laborpraktikum des Moduls Elektrische Netzwerke selbstständig und eigenhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Berlin, 17. Mai 2021

Juan Nicolas Pardo Martin (389772)

Inhaltsverzeichnis

1	Einleitung	4		
2	Versuchsdurchführung	5		
	2.1 Messung	5		
	2.2 Simulation	7		
3	Versuchsergebnisse	9		
	3.1 Messdaten	9		
	3.2 Ergebnisplots	10		
4	Versuchsauswertung	15		
5	Zusammenfassung	16		
Tā	abellenverzeichnis	17		
Αl	bbildungsverzeichnis	18		
Qı	uellenverzeichnis	19		
Αı	nhang A Verwendeter Matlab-Code 2			

1 Einleitung

Wir werden die Ortskurver der RC-Schaltung untersuchen, den Ziel der versuchung ist die Admittanzortkurve und Impedanz einer RC-Schaltung als funktion von Frequenz. So können wir eine Idee haben wie reagiert der Spannung und Strom an einen bestimmte Frequenz, diese Information ist nützliche um Filtern zu bauen.

Juan Nicolas Pardo Martin

2 Versuchsdurchführung

2.1 Messung

Abbildung 1: Ersatzschaltbild der untersuchten RC-Reihenschaltung

Für das experiment benötigen folgendes:

- 470 ohm Widerstand
- 680 nF Kondensator
- Ozilloskop
- Steckbrett
- Draht, Leitendes Kabeln.
- Stecker z. B BNC-Bananenstecker und BNC-BNC-Stecker
- Wechselstromquelle bzw Funktiongenerator

Schritte für die Messung

- 1. Wir bauen die Schaltung auf den Steckbrett, wobei die Kondensator und Widerestand in Reihe angeschlossen sein sollen.
- 2. Unsere quelle wird eine Funktionsgenerator und der Osczilloscope wird parallel zu der Widerstand angeschlossen sein, das ist unsere Ausgangsspannung in Kanal 2, in Kanal 1 stellen wir unsere Funktiongenerator zw Eingangspannung bhinein.
- 3. Unsere Eingangsspannung ist eine Sinus kurve mit eine Amplitude von 7 Volts, wir stellen das in der Funktiongenerator.

- 4. In der Frequenzgenerator werden Frequenzen von 100 bis 1000 eingestellt, wir erhöhen die Frequenz schrittweise 100 Hz jedes mal.
- 5. In der Osczilloscope gibt es eine Funktion um die Zeitunterschied (Δt) zu lesen, wir Notieren unsere Werte. Und die Messung ist schon fertig.

2.2 Simulation

Im Anschluss an den praktischen Versuchsteil wurde die RC-Reihenschaltung in der frei verfügbaren Simulationssoftware LTspice¹ nachgebaut und simuliert. Dabei wurden die gleichen Bauteilwerte von $R=470\,\Omega$ und $C=680\,\mathrm{nF}$ verwendet. Am Eingang der Schaltung wurde eine Wechselspannung u_E mit einem Amplitudenwert von $\hat{u}=10\,\mathrm{V}$ angelegt.

Dabei war zu beachten, dass die in der Simulation verwendete ideale Spannungsquelle einen Innenwiderstand von $R_{\rm i}=0\,\Omega$ hatte, so dass es nicht zu einem Einbruch der Spannung in Abhängigkeit von der angeschlossenen Versuchsschaltung kam. Die Einstellwerte für die Spannungsquelle sind in Abb. 2 dokumentiert.

Abbildung 2: Simulation: Einstellwerte der Spannungsquelle

Die resultierende Simulationsschaltung ist in Abb. 3 dargestellt. Darin befindet sich neben den passiven Bauelementen und der Spannungsquelle auch ein Masse-Element zur Festlegung des Bezugspotentials. Messgeräte zur Erfassung der gewünschten Zustandsgrößen müssen in LTspice nicht gesondert eingefügt werden; die Simulation umfasst immer alle vorhandenen Zustandsgrößen.

¹siehe [LTspice]

Abbildung 3: Simulation: Schaltung in LTspice

Im Rahmen der Simulation konnte die Frequenz der Eingangsspannung über einen großen Wertebereich mit sehr vielen Stützwerten verändert werden. Während die Frequenz im Versuch zwischen 100 Hz und 1 kHz variiert wurde – bei insgesamt 10 Stützstellen –, wurden für die Simulation Frequenzen von 10 Hz bis 100 kHz mit 100 Stützstellen pro Dekade verwendet. Die entsprechenden Einstellungen sind Abb. 4 zu entnehmen.

Abbildung 4: Simulation: Einstellwerte der Simulationsparameter

Im Anschluss an die Simulation wurden die Ergebnisse aus LTspice exportiert und mit Hilfe der readLTspice-Funktion² in Scilab³ eingelesen. Dort wurden die Daten ausgewertet.

²siehe [readLTspice]

 $^{^3}$ siehe [?]

3 Versuchsergebnisse

3.1 Messdaten

Tabelle 1: Gemmessene daten, Eingangspannung, Ausgangspannung und Δt

U_{Epp} [V]	U_{Rpp} [V]	$\Delta t [s]$	f [Hz]
14,16	2,96	2,16E-3	100
13,92	5,36	960E-6	200
13,76	7,2	540E-6	300
13,6	8,48	360E-6	400
13,36	9,44	256E-6	500
13,28	10,16	192E-6	600
13,12	10,64	148E-6	700
13,12	11,12	116E-6	800
13,12	11,28	96E-6	900
13,12	11,52	80E-6	1000
	•		

Tabelle 2: Erzeugene Daten die von der Gemessene Daten berechnet wurden.

ϕ [Rad]	ϕ [$^{\circ}$]	$I_{pp} [\mathrm{mA}]$	$ z [k\Omega]$	y [mS]	$\operatorname{Re}(z) [k\Omega]$	$\operatorname{Im}(z) [k\Omega]$	Re(y) [mS]	Im(y) [mS]
1,357	77,76	6,298	2,248	0,445	0,477	-2,197	0,094	0,435
1,206	69,12	11,404	1,221	0,819	$0,\!435$	-1,14	$0,\!292$	0,765
1,018	58,32	$15,\!319$	0,898	1,113	$0,\!472$	-0,764	0,585	0,947
0,905	51,84	18,043	0,754	1,327	$0,\!466$	-0,593	0,82	1,043
0,804	46,08	20,085	0,665	1,503	0,461	-0,479	1,043	1,083
0,724	$41,\!472$	21,617	0,614	1,628	$0,\!46$	-0,407	1,22	1,078
0,651	37,296	22,638	$0,\!58$	1,725	0,461	-0,351	1,373	1,046
0,583	33,408	23,66	$0,\!555$	1,803	$0,\!463$	-0,305	1,505	0,993
0,543	31,104	24	0,547	1,829	0,468	-0,282	1,566	0,945
0,503	28,8	$24,\!511$	0,535	1,868	$0,\!469$	-0,258	1,637	0,9

3.2 Ergebnisplots

Im Folgenden werden die theoretischen, die Mess- und die Simulationsergebnisse in Vergleichsplots dargestellt.

Abbildung 5 zeigt einen Vergleich der theoretischen Ergebnisse mit den Simulationsergebnissen.

(a) Plot der Impedanzortskurve

(b) Plot der Admittanzortskurve

Abbildung 5: Plot der theoretischen und der Simulationsergebnisse

Es wird deutlich, dass die Kurven sowohl in Abb. 5a als auch in Abb. 5b nahezu identisch und mit bloßem Auge nicht unterscheidbar sind. In den Tab. 3 und 4 wurden daraufhin die Werte des theoretischen Verlaufs sowie der Simulationsdaten für ausgewählte Stützstellen miteinander verglichen.

Tabelle 3: Impedanzortskurve: Vergleich von Theorie und Simulation

	The	eorie	Simulation		
$f_{\rm E}$ in Hz	$\operatorname{Re}\{\underline{Z}_{\mathrm{RC}}\}\ \mathrm{in}\ \mathrm{k}\Omega$	$\operatorname{Im}\{\underline{Z}_{\operatorname{RC}}\}$ in $k\Omega$	$\operatorname{Re}\{\underline{Z}_{\mathrm{RC}}\}\ \text{in } \mathbf{k}\Omega$	$\operatorname{Im}\{\underline{Z}_{\operatorname{RC}}\}$ in $k\Omega$	
10	0,47	$-23,\!40514$	0,47	-23,40514	
100	0,47	$-2,\!34052$	0,47	$-2,\!34052$	
1000	0,47	-0,23405	0,47	$-0,\!23405$	
10000	0,47	-0,0234	0,47	-0,0234	
100 000	0,47	-0,00233	0,47	-0,00233	

Tabelle 4: Admittanzortskurve: Vergleich von Theorie und Simulation

	The	eorie	Simu	lation
$f_{ m E}$ in Hz	$Re{\underline{Y}_{RC}}$ in mS	$\operatorname{Im}\{\underline{Y}_{\operatorname{RC}}\}$ in mS	$Re{\underline{Y}_{RC}}$ in mS	$\operatorname{Im}\{\underline{Y}_{\operatorname{RC}}\}\ \text{in mS}$
10	$0,\!0008576$	0,0427084	$0,\!0008576$	$0,\!0427084$
100	0,082472	$0,\!4106954$	0,082472	$0,\!4106954$
1000	1,7048749	$0,\!8489965$	1,7048749	$0,\!8489965$
10000	$2{,}1223963$	$0{,}1056914$	$2{,}1223963$	$0{,}1056914$
100000	$2{,}1276068$	$0,\!0105951$	$2{,}1276068$	$0,\!0105951$

Es ergeben sich – im Rahmen der begrenzten Genau
igkeit der Zahlenrepräsentation – exakt gleiche Werte.

Weitere, hier aus Platzgründen nicht dokumentierte Untersuchungen ergaben außerdem die Übereinstimmung der Simulationsdaten aller simulierten Frequenzen mit den theoretischen Werten; Theorie und Simulation liefern also für die untersuchte RC-Reihenschaltung dieselben Ergebnisse. Aus diesem Grund wurde darauf verzichtet, Theorie und Simulation getrennt mit den Messdaten zu vergleichen, und nur ein Vergleich mit den theoretischen Ergebnissen vorgenommen, wobei diese implizit mit den Simulationsdaten gleichzusetzen sind.

Abbildung 6 zeigt die theoretischen Ergebnisse zusammen mit denen der praktischen Messung.

(b) Plot der Admittanzortskurve

Abbildung 6: Plot der theoretischen und der Messergebnisse

Abbildung 7 zeigt den für die Messdaten relevanten Ausschnitt der Kurven aus Abb. 6.

(a) Plot der Impedanzortskurve

Abbildung 7: Plot der theoretischen und der Messergebnisse (Ausschnitt)

4 Versuchsauswertung

5 Zusammenfassung

Tabellenverzeichnis

1	Gemmessene daten, Eingangspannung, Ausgangspannung und Δt	9
2	Erzeugene Daten die von der Gemessene Daten berechnet wurden	10
3	Impedanzortskurve: Vergleich von Theorie und Simulation	12
4	Admittanzortskurve: Vergleich von Theorie und Simulation	12

Abbildungsverzeichnis

1	Ersatzschaltbild der untersuchten RC-Reihenschaltung	5
2	Simulation: Einstellwerte der Spannungsquelle	7
3	Simulation: Schaltung in LTspice	8
4	Simulation: Einstellwerte der Simulationsparameter	8
5	Plot der theoretischen und der Simulationsergebnisse	11
6	Plot der theoretischen und der Messergebnisse	13
7	Plot der theoretischen und der Messergebnisse (Ausschnitt)	14

Quellenverzeichnis

[Laborskript] Teske, P., Gornig, C.: "Einführung in das Praktikum Elektrische Netzwerke",

Skript zum 0. Versuch im Laborpraktikum des Moduls Elektrische Netzwerke,

SoSe 2018, TU Berlin

https://isis.tu-berlin.de/pluginfile.php/900997/mod_resource/

content/1/PR00_Einf%C3%BChrung.pdf

Stand: 19.04.2018

[LTspice] ©1995 - 2021 Analog Devices, Inc. All Rights Reserved

https://www.analog.com/en/design-center/design-tools-and-

calculators/ltspice-simulator.html

Stand: 11.05.2021

[readLTspice] readLTspice.m, SoSe 2021, TU Berlin

https://isis.tu-berlin.de/mod/folder/view.php?id=1095222

Stand: 11.05.2021

Anhang A Verwendeter Matlab-Code

Code zum Berechnung der Tabelle 2

```
1 messwerte=load('ELNW_PR_01_Vorgabe_Messwerte.mat');
2 %das ganze hier ist um , als Dezimaltrenner im Matlab auszudrücken
3 df=java.text.DecimalFormat("##0.####E0", ...
      java.text.DecimalFormatSymbols.getInstance(java.util.Locale.GERMAN));
5 df.setMaximumFractionDigits(3);
6 dfs=java.text.DecimalFormat("0", ...
      java.text.DecimalFormatSymbols.getInstance(java.util.Locale.GERMAN));
8 dfs.setMaximumFractionDigits(3);
9 fi = @(varargin)varargin{length(varargin)-varargin{1}};
10 paren = @(x, varargin) x(varargin{:});
11 curly = @(x, varargin) x{varargin{:}};
12 asd = @(x, varargin) vertcat(x{:});
13 nformat=0(num)(string(fi(log10(num)>4||log10(num)<-2.6,df.format(num),
     dfs.format(num)));
15 everyarr= @(lol) asd(arrayfun(nformat,lol,"UniformOutput",false));
16 neumess=structfun(everyarr,messwerte,'UniformOutput',false);
17 writetable(struct2table(neumess), "messwertelab1.txt", 'Delimiter', ';')
_{18} R=470;
19 messwerte.phi=messwerte.dt.*messwerte.f.*2*pi;
20 messwerte.Ipp=messwerte.U_Rpp./R;
21 messwerte.z=(((messwerte.U_Epp-messwerte.U_Rpp))./((messwerte.Ipp))+R);
22 messwerte.y=1./messwerte.z;
23 messwerte.rez=messwerte.z.*cos(-messwerte.phi);
24 messwerte.imz=messwerte.z.*sin(-messwerte.phi);
25 messwerte.rey=messwerte.y.*cos(messwerte.phi);
26 messwerte.imy=messwerte.y.*sin(messwerte.phi);
27 writetable(table(everyarr(messwerte.phi), ...
      everyarr(messwerte.phi.*(360/(2*pi))), ...
      everyarr(messwerte.Ipp*1000), ...
     everyarr(messwerte.z./1000), ...
     everyarr(messwerte.y.*1000), ...
31
      everyarr(messwerte.rez./1000), ...
      everyarr(messwerte.imz./1000), ...
33
```

```
everyarr(messwerte.rey.*1000), ...

everyarr(messwerte.imy.*1000), 'VariableNames', ...

{'phi in rad','phi in grad','Ipp in mA', ...

'|z| in kOhm','|y| in mS','Re(z) in kOhm', ...

'Im(z) in kOhm','Re(y) in mS','Im(y) in mS'}), ...

"messwertelab1p.txt",'Delimiter',';');
```

Juan Nicolas Pardo Martin