Logistic Regression

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Logistic function

Many types of sigmoid functions

- Sigmoid function is
 - Bounded
 - Differentiable
 - Real function
 - Defined for all real inputs
 - With positive derivative
- Logistic function is

$$f(x) = \frac{1}{1 + e^{-x}}$$

- In relation to the population growth
- Why is this good?
 - Sigmoid function
 - Particularly, easy to calculate the derivative...

$$f(x) = \log(\frac{x}{1 - x})$$

Logistic Function Fitting

Linear Regression:

$$\hat{f} = X\theta \quad \theta = (X^T X)^{-1} X^T Y$$

Very similar to the linear regression.
Turning to the multivariate case

$$f(x) = \log\left(\frac{x}{1-x}\right) \to x = \log\left(\frac{p}{1-p}\right) \to ax + b = \log\left(\frac{p}{1-p}\right) \to X\theta = \log\left(\frac{p}{1-p}\right)$$

Logit → Logistic
Inverse of X and Y
X in Logit is the probability

Linear shift for a better function fitting

- When we are fitting the linear regression to approximate P(Y|X)
 - $X\theta = P(Y|X)$
 - Though, this is not going to keep the probability axiom
- Now we are fitting to the logistic function to approximate P(Y|X)

•
$$X\theta = \log\left(\frac{P(Y|X)}{1 - P(Y|X)}\right)$$

From linear to logistic

Logistic Regression

- Logistic regression is a probabilistic classifier to predict the binomial or the multinomial outcome
 - by fitting the conditional probability to the logistic function.
- You can see the problem from the different view.
 - This way is actually closer to the formal definition.
- Given the Bernoulli experiment

•
$$P(y|x) = \mu(x)^y (1 - \mu(x))^{1-y}$$

•
$$\mu(x) = \frac{1}{1 + e^{-\dot{\theta}^T x}} = P(y = 1 | x)$$

- Here, $\mu(x)$ is the logistic function
- From the previous slide,

•
$$X\theta = \log\left(\frac{P(Y|X)}{1 - P(Y|X)}\right) \to P(Y|X) = \frac{e^{X\theta}}{1 + e^{X\theta}}$$

Logistic Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

The goal, finally, becomes finding out θ , again