

### GRADO EN INGENIERÍA INFORMÁTICA

## Programación Concurrente y de Tiempo Real

AnálisisOpResaltado

## Práctica 5

Autor: Fecha:

Raúl Arcos Herrera 18 de Noviembre de 2021



# Índice

1. Gráficas y Comentarios

2



### 1. Gráficas y Comentarios

En este caso la máquina utilizada dispone de un procesador Ryzen 5 3600 capado a  $4.15 \,\mathrm{Ghz}$  y 12 hilos, en este programa, al igual que el anterior volvemos a observar comportamientos similares en cuanto al uso de los hilos y % de CPU en uso.

De hecho, podemos observar la misma tendencia que el anterior, de forma incluso más clara:

| Hebras     | Tiempo(s) | Speed-Up |
|------------|-----------|----------|
| Secuencial | 2,86      | -        |
| 2          | 1,2       | 2,38     |
| 4          | 0,67      | 4,27     |
| 6          | 0,52      | 5,41     |
| 8          | 0,54      | 5,26     |
| 10         | 0,57      | 4,96     |
| 12         | 0,59      | 4,83     |
| 14         | 0,6       | 4,7      |

Cuadro 1: Speed-Up y Hebras frente a Tiempo para k = 40.000.





Figura 1: Tiempo frente a Hebras



Figura 2: Speed-Up frente a Hebras



Al igual que en el ejemplo anterior, parece que Runnable entiende Hebra = núcleo, debido a que el píco de rendimiento se encuentra en las 6 hebras, teniendo en cuenta que estamos ejecutando estos programas en un ordenador de 6 núcleo físicos.

Nota: Hay una pequeña errata en la Figura 1, el primer valor (1 hebra) no es de casi cinco como marca la gráfica, es de 2,86 tal y como muestra el cuadro 1.