Chapter 7.1

- 1. Since $A = \begin{bmatrix} 3 & 5 \\ 5 & -7 \end{bmatrix} = A^T$, the matrix is symmetric.
- 2. Since $A = \begin{bmatrix} 3 & -5 \\ -5 & -3 \end{bmatrix} = A^T$, the matrix is symmetric.
- 3. Since $A = \begin{bmatrix} 2 & 3 \\ 4 & 4 \end{bmatrix} \neq A^T$, the matrix is not symmetric.
- **4.** Since $A = \begin{bmatrix} 0 & 8 & 3 \\ 8 & 0 & -4 \\ 3 & 2 & 0 \end{bmatrix} \neq A^T$, the matrix is not symmetric.
- 5. Since $A = \begin{bmatrix} -6 & 2 & 0 \\ 2 & -6 & 2 \\ 0 & 2 & -6 \end{bmatrix} = A^T$, the matrix is symmetric.
- **6.** Since A is not a square matrix $A \neq A^T$ and the matrix is not symmetric.
- 7. Let $P = \begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$, and compute that $P^T P = \begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix} \begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$. Since P is a square matrix, P is orthogonal and $P^{-1} = P^{T} = \begin{bmatrix} .6 & .8 \\ .8 & -.6 \end{bmatrix}$
- **8.** Let $P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, and compute that $P^T P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I_2 \neq I_2$. Thus P is not orthogonal.
- **9.** Let $P = \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}$, and compute that $P^T P = \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix} \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$. Since P is a square matrix, P is orthogonal and $P^{-1} = P^{T} = \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}$.

10. Let
$$P = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$
, and compute that
$$P^{T}P = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_{3}. \text{ Since } P \text{ is a square matrix,}$$

P is orthogonal and
$$P^{-1} = P^{T} = \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$$
.

- 13. Let $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$. Then the characteristic polynomial of A is $(3-\lambda)^2 1 = \lambda^2 6\lambda + 8 = (\lambda 4)(\lambda 2)$, so the eigenvalues of A are 4 and 2. For $\lambda = 4$, one computes that a basis for the eigenspace is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which can be normalized to get $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. For $\lambda = 2$ one computes that a basis for the eigenspace is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, which can be normalized to get $\mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Let $P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$. Then P orthogonally diagonalizes A, and $A = PDP^{-1}$.
- 23. Let $A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}$. Since each row of A sums to 2, $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with corresponding eigenvalue $\lambda = 2$. The eigenvector may be

normalized to get
$$\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$
. For $\lambda = 5$, one computes that a basis for the eigenspace is

$$\left\{ \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}, \text{ so } \lambda = 5 \text{ is an eigenvalue of } A. \text{ This basis may be converted via orthogonal}$$

projection to an orthogonal basis $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\2 \end{bmatrix} \right\}$ for the eigenspace, and these vectors can be

normalized to get
$$\mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$
 and $\mathbf{u}_3 = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}$. Let

$$P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}. \text{ Then } P \text{ orthogonally } P = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix}$$

diagonalizes A, and $A = PDP^{-1}$.

- 25. a. True. See Theorem 2 and the paragraph preceding the theorem.
 - **b.** True. This is a particular case of the statement in Theorem 1, where **u** and **v** are nonzero.
 - **c.** False. There are *n* real eigenvalues (Theorem 3), but they need not be distinct (Example 3).
 - d. False. See the paragraph following formula (2), in which each u is a unit vector.
- **29**. Since *A* is orthogonally diagonalizable, $A = PDP^{-1}$, where *P* is orthogonal and *D* is diagonal. Since *A* is invertible, $A^{-1} = (PDP^{-1})^{-1} = PD^{-1}P^{-1}$. Notice that D^{-1} is a diagonal matrix, so A^{-1} is orthogonally diagonalizable.

Chapter 7.2

2. a.
$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 3 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3x_1^2 + 2x_2^2 + 4x_1x_2 + 2x_2x_3$$

b. When
$$\mathbf{x} = \begin{bmatrix} -2 \\ -1 \\ 5 \end{bmatrix}$$
, $\mathbf{x}^T A \mathbf{x} = 3(-2)^2 + 2(-1)^2 + 4(-2)(-1) + 2(-1)(5) = 12$.

c. When
$$\mathbf{x} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
, $\mathbf{x}^T A \mathbf{x} = 3(1/\sqrt{2})^2 + 2(1/\sqrt{2})^2 + 4(1/\sqrt{2})(1/\sqrt{2}) + 2(1/\sqrt{2})(1/\sqrt{2}) = 11/2$.

- 5. **a.** The matrix of the quadratic form is $\begin{bmatrix} 3 & -3 & 4 \\ -3 & 2 & -2 \\ 4 & -2 & -5 \end{bmatrix}$.
 - **b**. The matrix of the quadratic form is $\begin{bmatrix} 0 & 3 & 2 \\ 3 & 0 & -5 \\ 2 & -5 & 0 \end{bmatrix}$.
- 7. The matrix of the quadratic form is $A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$. The eigenvalues of A are 6 and -4. An eigenvector for $\lambda = 6$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which may be normalized to $\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. An eigenvector for $\lambda = -4$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, which may be normalized to $\mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Then $A = PDP^{-1}$, where $P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \text{ and } D = \begin{bmatrix} 6 & 0 \\ 0 & -4 \end{bmatrix}$. The desired change of variable is $\mathbf{x} = P\mathbf{y}$, and

the new quadratic form is $\mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T D \mathbf{y} = 6y_1^2 - 4y_2^2$.

9. The matrix of the quadratic form is $A = \begin{bmatrix} 4 & -2 \\ -2 & 4 \end{bmatrix}$. The eigenvalues of A are 6 and 2, so the quadratic form is positive definite. An eigenvector for $\lambda = 6$ is $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, which may be normalized to $\mathbf{u}_1 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. An eigenvector for $\lambda = 2$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, which may be normalized to $\mathbf{u}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Then

$$A = PDP^{-1}$$
, where $P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$ and $D = \begin{bmatrix} 6 & 0 \\ 0 & 2 \end{bmatrix}$. The desired change of variable is $\mathbf{x} = P\mathbf{y}$, and the new quadratic form is

$$\mathbf{x}^T A \mathbf{x} = (P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T P^T A P \mathbf{y} = \mathbf{y}^T D \mathbf{y} = 6y_1^2 + 2y_2^2$$

- 21. a. True. See the definition before Example 1, even though a nonsymmetric matrix could be used to compute values of a quadratic form.
 - **b**. True. See the paragraph following Example 3.
 - c. True. The columns of P in Theorem 4 are eigenvectors of A. See the Diagonalization Theorem in Section 5.3.
- **d**. False. $Q(\mathbf{x}) = 0$ when $\mathbf{x} = \mathbf{0}$.
- e. True. See Theorem 5(a).
- **f**. True. See the Numerical Note after Example 6.

Chapter 7.3

1. The matrix of the quadratic form on the left is $A = \begin{bmatrix} 5 & 2 & 0 \\ 2 & 6 & -2 \\ 0 & -2 & 7 \end{bmatrix}$. The equality of the quadratic

forms implies that the eigenvalues of A are 9, 6, and 3. An eigenvector may be calculated for each

forms implies that the eigenvalues of
$$A$$
 are 9, 6, and 3. An eigenvector may be calculated for each eigenvalue and normalized: $\lambda = 9$: $\begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}$, $\lambda = 6$: $\begin{bmatrix} 2/3 \\ 1/3 \\ 2/3 \end{bmatrix}$, $\lambda = 3$: $\begin{bmatrix} -2/3 \\ 2/3 \\ 1/3 \end{bmatrix}$. A desired change of variable is $\mathbf{x} = P\mathbf{y}$, where $P = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$.

of variable is
$$\mathbf{x} = P\mathbf{y}$$
, where $P = \begin{bmatrix} 1/3 & 2/3 & -2/3 \\ 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$.

- 3. a. By Theorem 6, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$ is the greatest eigenvalue λ_1 of A. By Exercise 1, $\lambda_1 = 9$.
 - b. By Theorem 6, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$ occurs at a unit eigenvector **u** corresponding to the greatest eigenvalue λ_1 of A. By Exercise 1, $\mathbf{u} = \pm \begin{bmatrix} -1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$.
 - c. By Theorem 7, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraints $\mathbf{x}^T \mathbf{x} = 1$ and $\mathbf{x}^T \mathbf{u} = 0$ is the second greatest eigenvalue λ_2 of A. By Exercise 1, $\lambda_2 = 6$.
- 7. The eigenvalues of the matrix of the quadratic form are $\lambda_1 = 2$, $\lambda_2 = -1$, and $\lambda_3 = -4$. By Theorem 6, the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$ occurs at a unit eigenvector \mathbf{u}

corresponding to the greatest eigenvalue
$$\lambda_1$$
 of A . One may compute that $\begin{bmatrix} 1/2 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector

corresponding to
$$\lambda_1 = 2$$
, so $\mathbf{u} = \pm \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}$.

- 9. This is equivalent to finding the maximum value of $\mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$. By Theorem 6, this value is the greatest eigenvalue λ_1 of the matrix of the quadratic form. The matrix of the quadratic form is $A = \begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix}$, and the eigenvalues of A are $\lambda_1 = 5 + \sqrt{5}$, $\lambda_2 = 5 \sqrt{5}$. Thus the desired constrained maximum value is $\lambda_1 = 5 + \sqrt{5}$.
- 11. Since **x** is an eigenvector of *A* corresponding to the eigenvalue 3, A**x** = 3**x**, and $\mathbf{x}^T A \mathbf{x} = \mathbf{x}^T (3\mathbf{x}) = 3(\mathbf{x}^T \mathbf{x}) = 3 ||\mathbf{x}||^2 = 3$ since **x** is a unit vector.