Algorithmes gloutons

N. TSOPZE

Département d'Informatique - Université de Yaoundé I

Plan du chapitre

- Problèmes d'optimisation
- 2 Stratégie gloutonne
- 3 Problèmes

un problème \Rightarrow plusieurs solutions une solution \Rightarrow une valeur

problème d'optimisation

recherche d'une solution de valeur optimale (minimum ou maximum)

algorithme de résolution:

- reconnaissance d'une solution
- évaluation d'une solution
- sélection d'une des meilleures solutions

Optimisation

Cas possibles:

- problème de petite taille ⇒ énumération possible
- ② problème de grande taille ⇒ énumération impossible
- problèmes faciles ⇒ algorithme de complexité polynomiale
- problèmes "difficiles" ⇒ tous les algorithmes connus sont de complexité exponentielle

Plan du chapitre

- Problèmes d'optimisation
- 2 Stratégie gloutonne
- 3 Problèmes

étapes

- Transformation du problème d'optimisation en un problème dans lequel on fait un choix à la suite duquel on se retrouve avec un seul sous-problème à résoudre.
- ② Démonstration qu'il y a toujours une solution optimale du problème initial qui fait le choix glouton, de sorte que le choix glouton est toujours approprié.
- Oémonstration que, après avoir fait le choix glouton, on se retrouve avec un sous-problème tel que, si l'on combine une solution optimale du sous-problème et le choix glouton que l'on a fait, on arrive à une solution optimale du problème originel.

Deux éléments clefs: propriété du choix glouton + sous-structure optimale

choix glouton

idée

arriver à une solution globalement optimale en effectuant un choix localement optimal

- quand on considère le choix à faire, on fait le choix qui paraît le meilleur pour le problème courant, sans tenir compte des résultats des sous-problèmes;
- 2 faire le choix qui semble le meilleur pour l'instant, puis résoudre le sous-problème qui survient après le choix;
- 3 Choix ne dépend jamais de futur.

Propriété

Un problème exhibe une sous-structure optimale si une solution optimale du problème contient les solutions optimales des sous-problèmes.

résumé

- remarque 1: faire toujours le choix qui semble être le meilleur pour l'instant;
- remarque 2: Choix localement optimal espèrant qu'il sera la solution globalement optimal;
- remarque 3: Possiblité de ne pas toujours obtenir la solution optimale;
- remarque 4: Tous les problème n'admettent pas une solution gloutonne.

Plan du chapitre

- Problèmes d'optimisation
- 2 Stratégie gloutonne
- 3 Problèmes
 - Choix d'activités
 - Knapsack problem

Problème du choix d'activités problème du sac à dos

- contexte $S = \{a_1, a_2, ..., a_n\}$ n activités proposées qui veulent utiliser une ressource a_i a une heure de début s_i et une heure de fin f_i , $(0 < s_i < f_i < \infty)$.
- compatibilité a_i et a_j sont compatibles si les intervalles $[s_i, f_i)$ et $[s_i, f_i)$ ne se chevauchent pas
 - problème sélectionner un sous-ensemble, de taille maximale, d'activités mutuellement compatibles

Exemple

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	2 13	14

- Cas 1: $\{a_3, a_9, a_{11}\}$ est un ensemble d'activités mutuellement compatibles, pas un sous-ensemble maximum,
- cas 2: $\{a_1, a_4, a_8, a_{11}\}$ plus grand est un sous-ensemble maximum d'activités mutuellement compatibles

•
$$S_{ij} = \{a_k \in S/f_i \le s_k < f_k \le s_j\}$$

- ajout de a_0 et a_{n+1} telles que: $f_0 = 0$ et $s_{n+1} = \infty$; alors, $S = S_{0,n+1}$ et les intervalles de i et j sont donnés par $0 \le i, j \le n+1$.
- trier les activités : $f_0 \le f_1 \le f_2 \le ... \le f_n < f_{n+1}$

principe

toute solution d'un sous-problème non vide S_{ij} contient une certaine activité a_k , et que toute solution optimale contient en elle des solutions optimales des instances de sous-problème S_{ik} et S_{kj} .

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

- 0 $n \leftarrow longueur(s)$
- $A \leftarrow \{a_1\}$
- $i \leftarrow 1$
- opour m allant de 2 à n faire
 - si $s_m \leq f_i$ alors

 - $\mathbf{0}$ $i \leftarrow m$
- retourner A

sac à dos

Entrées :
$$X = \{x_1, x_2, ..., x_n\}$$
 donc l'objet i a un poids p_i , $x_i \in \{0, 1\}$

d'un sac donc le poids max W

Sortie :
$$X_1 \subset X$$
 tel que $\forall x_i \in X_1 \sum_{i=1}^{|X_1|} x_i p_i \leq W$

Problème: Comment trouver X_1 ?

Deux variantes:

- variable entière
- variable fractionnaire

Variantes

Variable entière : considérer le chargement de valeur maximale pesant au plus W. Si l'on retire l'objet j du sac, le chargement restant doit être le meilleur que puisse contenir le sac pour un poids maximum de $W-w_j$ à partir des n-1 objets initiaux, j étant exclus

Variable fractionnaire: considérer que si l'on retire un poids w d'un objet j dans le chargement optimal, le reste du chargement doit être le meilleur que le sac puisse contenir pour un poids maximum de W-w à partir des n-1 objets initiaux, et des w_j-w kilos de l'objet j.