> Bayesowska estymacja parametrów strukturalnych ciągłego modelu GARCH i procesu zmienności przy wykorzystaniu markowowskich algorytmów Monte Carlo

> > Przemysław Ryś

Gala finałowa konkursu na najlepszą pracę dyplomową z obszaru Data Science, Warszawa, 4 czerwca 2020

- Wprowadzenie i motywacja
- 2 Estymacja zmienności i parametrów strukturalnych modelu
- 3 Test metod na danych symulowanych
- 4 Wyniki części aplikacyjnej indeks S&P500
- 6 Podsumowanie

Wprowadzenie i motywacja

Instrumenty pochodne

- Proces cen St
- Wartość instrumentu wolnego od ryzyka B_t, odpowiada oprocentowaniu rachunku bankowego.
- Instrument pochodny instrument wypłacający w chwili T kwotę zależną od przebiegu procesu cen.
 - kontrakt terminowy forward wypłaca $(S_T K)$ dla $K \in \mathbb{R}$
 - ullet opcja europejska kupna (call) wypłaca $(S_T-K)^+$ dla $K\in\mathbb{R}$
 - ullet opcja binarna kupna (call) wypłaca $\chi_{(S_{\mathcal{T}}-\mathcal{K}>0)}$ dla $\mathcal{K}\in\mathbb{R}$

Przedmiotem zainteresowania jest cena instrumentu pochodnego tj. koszt zawarcia kontraktu.

Wycena bezarbitrażowa (martyngałowa)

Uczciwa cena instrumentu pochodnego o wypłacie postaci $f(S_T)$:

• Obecna wartość portfela ϕ_t replikującego wypłatę $f(S_T)$.

$$\Pi_{f(S_T),0} = \phi_0^0 B_0 + \phi_0^1 S_0$$

 Zdyskontowana wartość oczekiwana wypłaty względem miary martyngałowej \mathbb{Q} :

$$\Pi_{f(S_T),0} = \frac{1}{B_T} \mathbb{E}_{\mathbb{Q}} f(S_T)$$

gdzie Q - miara martyngałowa.

Model Blacka-Scholesa

Filtracja \mathcal{F}_t jest generowana przez proces Wienera W_t , a S_t jest geometrycznym ruchem Browna:

$$dS_t = \mu S_t dt + \sigma S_t dW_t, \quad \mu \in \mathbb{R}, \sigma > 0, S_0 > 0$$

$$S_t = S_0 e^{(\mu - 0.5\sigma^2)t + \sigma W_t}$$

- jeden z pierwszych, powszechnie stosowany model,
- łatwy do kalibracji,
- wzory analityczne na ceny niektórych instrumentów,
- łatwe symulowanie obserwacji procesu cen na potrzeby metod Monte Carlo

Notowania indeksu S&P500

Godzinowe przyrosty logarytmiczne indeksu S&P500

Przyrosty logarytmiczne indeksu S&P500

Odchylenie standardowe przyrostów logarytmicznych, nazywane **zmiennością** nie jest stałe w czasie.

Stochastyczna zmienność

Godzinowe przyrosty logarytmiczne indeksu S&P500

Godzinowe przyrosty logarytmiczne w modelu Blacka-Scholesa kalibrowanym dla indeksu S&P500

Ciągły model GARCH

Filtracja \mathcal{F}_t jest generowana przez dwuwymiarowy proces Wienera (W_t, \tilde{W}_t) , a S_t jest określony przez następujący układ stochastycznych równań różniczkowych:

$$\begin{cases} dS_t = \mu_t S_t dt + \sqrt{\nu_t} S_t dW_t \\ d\nu_t = \kappa(\nu - \nu_t) dt + \eta \nu_t d\tilde{W}_t, \end{cases}$$

gdzie S_0 jest stałą dodatnią.

- uwzględnia stochastyczną zmienność ν_t jest procesem stochastycznym o wahaniach proporcjonalnych do η ,
- ullet własność powrotu procesu u_t do poziomu u z siłą κ ,
- wymagający proces kalibracji parametrów,
- symulowanie obserwacji procesu cen na potrzeby metod Monte Carlo tylko w przybliżeniu poprzez schematy dyskretyzacyjne.

Estymacja zmienności i parametrów strukturalnych modelu

Problem estymacji

Dysponujemy obserwacjami notowań S_t w dyskretnych, równoodległych momentach $\{t_1,...,t_n\}$, co Δ_t .

Celem jest estymacja wartości procesu zmienności $\sqrt{\nu_t}$ w tych punktach czasu oraz wartości parametrów ciągłego modelu GARCH: $\delta, \kappa, \nu, \eta$.

Przekształcenie i dyskretyzacja

Rozpatrujemy przyrosty logarytmiczne $R_t = ln(S_t) - ln(S_{t-\Delta_t})$. Po zastosowaniu wzoru Itô i dyskretyzacji Eulera–Maruyamy dostajemy:

$$\begin{cases} R_t \approx \delta \Delta_t \nu_{t-\Delta_t} + \sqrt{\nu_{t-\Delta_t}} (W_t - W_{t-\Delta_t}) \\ \nu_t \approx \nu_{t-\Delta_t} + \kappa (\nu - \nu_{t-\Delta_t}) \Delta_t + \eta \nu_{t-\Delta_t} (\tilde{W}_t - \tilde{W}_{t-\Delta_t}) \end{cases}$$

co daje schemat:

$$\begin{cases} R_i = \gamma V_{i-1} + \sqrt{V_{i-1}} \tilde{\epsilon}_i \\ V_i = \alpha + \beta V_{i-1} + \eta V_{i-1} \bar{\epsilon}_i \end{cases}$$

gdzie
$$(\epsilon_1,...,\epsilon_n,\bar{\epsilon_1},...,\bar{\epsilon_n}) \sim_{iid} \mathcal{N}(0,\Delta_t)$$
 oraz $\gamma = \delta \Delta_t$, $\alpha = \kappa \nu \Delta_t$, $\beta = 1 - \kappa \Delta_t$.

Standardowe podejście do estymacji zmienności

Wariancja historyczna o oknie estymacji długości n to szereg estymatorów wariancji stóp zwrotu postaci $V_t \approx \frac{1}{\Delta_t} \frac{1}{n+1} \sum_{i=0}^n (R_{t-i} - \bar{R})^2$. Czynnik $\frac{1}{\Delta_t}$ odpowiada za przeskalowanie do jednostki bazowej, zwykle okresu jednego roku, co pozwala na porównywanie wariancji (zmienności) dla szeregów o różnej częstotliwości.

Standardowo w procesie pomija się średnią stopę zwrotu, zakładając, że jest równa 0. Taki szereg estymatorów nazywany jest wariancja zrealizowaną - $V_t \approx \frac{1}{\Delta_t} \frac{1}{n+1} \sum_{i=0}^n R_{t-i}^2$.

Zmienność historyczna i **zmienność zrealizowana** wyznaczamy jako pierwiastek z odpowiednio wariancji historycznej i zrealizowanej.

Estymacja parametrów oparta o estymator zmienności

Dysponując estymatorem szeregu zmienności możemy wprost wyznaczyć estymatory parametrów strukturalnych modelu.

$$\begin{cases} \hat{\gamma} = \frac{1}{n} \sum_{i=1}^{n} \frac{R_{i}}{V_{i-1}} \\ \hat{\beta} = \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{V_{i}}{V_{i-1}} - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1} \\ 1 - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1} \\ \hat{\alpha} = \left(\frac{1 - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1}}{1 - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1}} \right) \frac{1}{n} \sum_{i=1}^{n} V_{i} \\ \hat{\eta} = \left(\frac{1}{\Delta_{t}} \left(\frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1} \right)^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} \frac{V_{i}}{V_{i-1}} \right)^{2} - \left(\frac{1 - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1}}{1 - \frac{1}{n} \sum_{i=1}^{n} V_{i} \frac{1}{n} \sum_{i=1}^{n} V_{i-1}^{-1}} \right)^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} V_{i} \right)^{2} \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{V_{i-1}} \right)^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} \frac{1}{V_{i-1}} \right)^{2} \right) \right) \right)^{0.5} \end{cases}$$

Podejście bayesowskie i MCMC

Chcemy uzyskać estymator bayesowski parametrów oraz kolejnych stanów szeregu V_i , czyli wektor wartości oczekiwanych rozkładu warunkowego $\rho(\gamma,\alpha,\beta,\eta^2,V_0,...,V_n|R_1,...,R_n)$.

- Jednoczesna, łączna estymacja wszystkich parametrów strukturalnych modelu i zmienności.
- Uwzględnienie informacji o specyfikacji modelu w procesie estymacji $V_0, ... V_n$.
- Wyniki dużo mniej wrażliwe na początkowe założenia (a priori) od standardowych metod (n).
- Możliwość szacowania przedziałów ufności dla estymatorów.
- Wygodne porównywanie dopasowania różnych modeli poprzez funkcje wiarygodności.

Zasadnicza trudność

- Rozkład łączny jest wielowymiarowy i ma bardzo skomplikowaną postać, trudną do wyznaczenia analitycznie.
- Dla danych minutowych w rozpatrywanym w tej pracy przypadku liczba estymowanych wielkości, czyli wymiar rozkładu warunkowego przekracza 1 500 000.
- Ze względu na charakterystyka problemu każda para wielkości jest warunkowo zależna. Problem estymacji nie sprowadza się do rozłącznych estymacji analogicznych jednowymiarowych parametrów.

Podstawy markowowskiego Monte Carlo (MCMC)

 Problem daje się sformułować jako wyznaczenie wartości oczekiwanej pewnego rozkładu

$$\mathbb{E}Y = ?$$

- Nie możemy generować obserwacji z dokładnego rozkładu Y.
- Możemy skonstruować łańcuch Markowa $(Y_t)_{t=1}^N$ o rozkładzie ergodycznym Y tj. $Y_t \stackrel{d}{\to} Y$.
- Wtedy na mocy Prawa Wielkich Liczb dla łańcuchów Markowa:

$$\frac{1}{n}\sum_{t=0}^{n}Y_{t}\xrightarrow{t\to\infty}\mathbb{E}Y$$

Próbnik Gibbsa (1/2)

Jak skonstruować taki łańcuch Markowa?

Założenie 1: Docelowy rozkład jest wielowymiarowy, to znaczy dla pewnego p > 1 zmienna losowa o docelowym rozkładzie X spełnia $X = (X_1, ..., X_p)$ dla pewnych $X_1, ..., X_p$.

Założenie 2: Możemy symulować obserwacje z pełnych rozkładów warunkowych:

$$X_t|x_1,...,x_{i-1},x_{i+1},...,x_p\sim f_i(x_i|x_1,...,x_{i-1},x_{i+1},...,x_p)$$
dla $i=1,2,...,p$.

Próbnik Gibbsa (2/2)

Algorytm Krok próbnika Gibbsa z $X^{(t)}$ do $X^{(t+1)}$:

$$X_1^{(t+1)} \sim f_1(x_1|x_2^{(t)},...,x_p^{(t)})$$
 $X_2^{(t+1)} \sim f_2(x_2|x_1^{(t)},x_3^{(t)}...,x_p^{(t)})$
...
 $X_p^{(t+1)} \sim f_p(x_p|x_1^{(t)},...,x_{p-1}^{(t)})$

Podejście bayesowskie i MCMC (2)

Postaci tych rozkładów warunkowych wyznaczamy, wykorzystując podejście bayesowskie, na podstawie obserwacji oraz przyjętych rozkładów a priori:

- jednowymiarego rozkład normalnego dla γ ,
- dwuwymiarowego rozkład normalnego o macierzy diagonalnej dla (α, β) ,
- ullet rozkładu *inverse-gamma* dla nieujemnej zmiennej η^2 ,
- nieinformatywnych dla $V_0, ..., V_n$.

Ich parametry wyznaczamy metodą momentów na podstawie estymatorów uzyskanych standardową metodą.

Podejście bayesowskie i MCMC (3)

Wykorzystamy w tym celu próbnik Gibbsa, który bazuje na symulowaniu obserwacji z rozkładów:

- $\rho(\gamma|\alpha,\beta,\eta,V,R) \propto \rho(R|\gamma,V)\rho(\gamma)$,
- $\rho(\alpha, \beta | \gamma, \eta, V, R) \propto \prod_{i=1}^{n} \rho(V_i | \alpha, \beta, \eta, V_{i-1}) \rho(\alpha, \beta)$,
- $\rho(\eta^2|\gamma,\alpha,\beta,V,R) \propto \rho(V|\alpha,\beta,\eta^2)\rho(\eta^2)$,
- $\rho(V_0|\gamma,\alpha,\beta,\eta,R,V_{-0}) \propto \rho(V_1|V_0,\alpha,\beta,\eta^2)\rho(R_1|V_0,\gamma)\rho(V_0)$,
- ...,
- $\rho(V_n|\gamma,\alpha,\beta,\eta,R,V_{-n})$.

Projekt i implementacja metody

Finalnie algorytm markowowskiego Monte Carlo ma następujący krok:

- $\rho(\gamma | \alpha, \beta, \eta, V, R) \sim \mathcal{N}$,
- $\rho(\alpha, \beta|\gamma, \eta, V, R) \sim \mathcal{N}$,
- $\rho(\eta^2|\gamma,\alpha,\beta,V,R) \sim Inverse Gamma$,
- $\rho(V_0|\gamma,\alpha,\beta,\eta,R,V_{-0}) \sim algorytm \ Metropolisa Hastingsa,$
- $\forall_{t \in \{1,...,n-1\}} \rho(V_t | \gamma, \alpha, \beta, \eta, R, V_{-t}) \sim \text{algorytm MH},$
- $\rho(V_n|\gamma,\alpha,\beta,\eta,R,V_{-n}) \sim \mathcal{N}$,

Algorytm został zaimplementowany na potrzeby pracy w środowisku R oraz języku C++. Punktami startowymi były oszacowania parametrów uzyskane standardowymi metodami.

Test metod na danych symulowanych

Konstrukcja testu (1/2)

- Przygotowanie zestawów danych tj. szeregu zmienności oraz szeregu logarytmicznych stóp zwrotu zgodnych z postacią modelu przy wykorzystaniu schematu dyskretyzacyjnego Eulera - Maruyamy
 - trzy zestawy danych o zróżnicowanych własnościach odwzorowywujących stosunkowo bezpieczne oraz ryzykowne aktywa finansowe,
 - agregacja każdego szeregu do trzech częstotliwości minutowej, godzinowej oraz dziennej.
- Estymacja parametrów strukturalnych modelu oraz wartości szeregu zmienności za pomocą metody MCMC dla każdego z dziewięciu przypadków.

Konstrukcja testu (2/2)

- Benchmark: Estymacja szeregu zmienności za pomocą zmienności zrealizowanej dla trzech długości okna estymacji, dopasowanego każdorazowo do częstotliwości danych oraz standardowa estymacja parametrów strukturalnych w oparciu o wyznaczoną zmienność zrealizowaną dla każdego przypadku.
- Porównanie rozkładów błędów względnych i bezwzględnych estymatorów zmienności w czasie, uzyskanych różnymi metodami dla różnych częstotliwości danych.
- Porównanie uzyskanych oszacowań parametrów strukturalnych różnymi metodami dla różnych częstotliwości danych.

Ewolucja oszacowań parametrów w czasie

Nie ma podstaw do kwestionowania poprawności metody.

Przebieg estymacji parametrów metodą markowowskiego Monte Carlo - wartości parametrów wylosowanych w kolejnych krokach próbnika Gibbsa - Zestaw A

Wyniki estymacji zmienności

Statystyki błędów względnych przyjmowanych przez estymatory szeregu zmienności na różnych częstotliwościach dla zestawu parametrów A [%]

	C	bserwa	cje mir	utowe		0	bserwac	je godz	obserwacje dzienne						
	MCMC	RVH	RVD	RVW	RVM	MCMC	RVD	RVW	RVM	RVQ	MCMC	RVW	ŘVM	RVQ	RV6M
min	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Q1%	0.03	0.11	0.05	0.03	0.03	0.06	0.35	0.16	0.08	0.07	0.08	0.43	0.20	0.12	0.07
Q5%	0.12	0.57	0.22	0.13	0.15	0.28	1.67	0.80	0.39	0.36	0.38	1.79	1.14	0.57	0.37
sr.	1.53	7.25	2.83	1.59	1.90	3.25	21.30	9.75	5.01	4.32	5.91	21.58	12.47	7.68	5.72
med.	1.31	6.11	2.39	1.35	1.61	2.80	18.14	8.35	4.13	3.53	4.63	18.70	10.83	6.38	4.94
Q95%	3.66	17.81	6.88	3.79	4.71	7.56	52.15	23.76	12.65	11.10	14.87	49.79	30.51	19.30	14.22
Q99%	4.95	23.45	8.99	5.12	5.98	9.73	68.94	31.20	16.88	14.02	19.39	63.94	38.93	24.53	17.84
maks.	7.67	42.39	16.56	8.42	8.92	12.80	114.39	44.28	25.14	19.18	23.47	100.65	54.42	33.26	21.23
SD	1.14	5.48	2.12	1.18	1.44	2.32	16.07	7.25	3.85	3.35	4.66	15.68	9.01	5.82	4.33

Uzyskane oszacowania parametrów

Estymatory parametrów strukturalnych ciągłego modelu GARCH wyznaczone na podstawie danych o różnej częstotliwości dla zestawu parametrów A

_		obse	erwacje r	ninute	owe			obse	rwacje į	godzin	owe	obserwacie dzienne						
	par	MCMC	RVH	RVD	RVW	RVM	par	MCMC	RVD	RVW	RVM	RVQ	par	MCMC	RVW	RVM	RVQ	RV6M
γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
α	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.02	0.01	0.00	0.00
β	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.86	0.98	1.00	1.00	0.99	1.00	0.86	0.96	0.99	1.00
η	0.30	0.03	10.83	1.58	0.32	0.08	0.30	0.04	16.48	2.46	0.57	0.19	0.30	0.04	6.46	1.60	0.50	0.17
δ	0.10	-0.26	-0.09	-0.19	-0.21	-0.18	0.10	-0.28	0.81	-0.43	-0.20	-0.21	0.10	-0.23	0.47	-0.32	-0.26	-0.20
κ	2.00	0.04	1229.07	69.93	3.26	-0.18	2.00	0.01	238.41	40.39	5.41	-0.22	2.00	-0.01	34.77	10.59	2.14	-0.46
ν	0.15	0.12	0.15	0.15	0.15	0.15	0.15	-0.22	0.15	0.15	0.15	0.15	0.15	0.26	0.14	0.14	0.14	0.14

Tendencja do nadmiernego wygładzenia - niskie η

- Metoda MCMC ma tendencję do nadmiernego wygładzania estymatora szeregu zmienności, czyli zaniżania wartości η .
- Proponowanym rozwiązaniem jest rozważenie algorytmu dla różnych wartości ustalonego parametru η , na poziomie zgodnym z intuicją biznesową.

Uzyskane oszacowania parametrów metodą bez η (1/2),

Estymatory parametrów strukturalnych ciągłego modelu GARCH wyznaczone na podstawie danych o różnej częstotliwości dla zestawu parametrów A i algorytmu z zadanym poziomem wygładzenia

		obs	erwacje i	ninuto	we			obse	rwacje g	godzin	owe		obserwacje dzienne					
	par	MCMC	RVH	RVD	RVW	RVM	par	MCMC	RVD	RVW	RVM	RVQ	par	$_{\rm MCMC}$	RVW	RVM	RVQ	RV6M
γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00
α	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	-	0.02	0.01	0.00	0.00
β	1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.86	0.98	1.00	1.00	0.99	-	0.86	0.96	0.99	1.00
η	0.30	0.30	10.83	1.58	0.32	0.08	0.30	0.30	16.48	2.46	0.57	0.19	0.30	-	6.46	1.60	0.50	0.17
δ	0.10	-0.27	-0.09	-0.19	-0.21	-0.18	0.10	-0.23	0.81	-0.43	-0.20	-0.21	0.10	-	0.47	-0.32	-0.26	-0.20
κ	2.00	2.10	1229.07	69.93	3.26	-0.18	2.00	1.63	238.41	40.39	5.41	-0.22	2.00	-	34.77	10.59	2.14	-0.46
ν	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.19	0.15	0.15	0.15	0.15	0.15	-	0.14	0.14	0.14	0.14

Uzyskane oszacowania parametrów metodą bez η (2/2)

- Ustalenie poziomu wygładzenia jest decyzją podobną do typowego problemu wyboru długości okna estymacji dla estymatorów ruchomych.
- Arbitralnie ustalony poziom parametru η w teście okazał się mieć zdecydowanie niższy (wręcz zaniedbywalny) wpływ na osiągane wyceny opcji niż wybór długości okna estymacji.
- Dla stosunkowo niskiej częstotliwości obserwacji algorytm MCMC nie osiągnął zbieżności w zadowalającym czasie.
- Wyższa częstotliwość danych pozwala na poprawienie jakości estymatorów uzyskiwanych metodą MCMC.

Wyniki części aplikacyjnej - indeks S&P500

Wyniki estymacji zmienności

Estymator szeregu zmienności indeksu S&P500 uzyskany metodą MCMC dla ustalonego poziomu $\eta=200\%$ dla danych minutowych oraz dzienne i miesięczne szeregi zmienności zrealizowanej

Uzyskane oszacowania parametrów

Estymatory parametrów strukturalnych ciągłego modelu GARCH wyznaczone na podstawie kwotowań indeksu S&P500 o częstotliwości minutowej

				alg	estymacja ze zmienności zrealizowanej									
	40%	80%	120%	160%	200%	240%	280%	320%	360%	400%	RVH	RVD	RVW	RVM
gamma	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
alpha	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
beta	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.998	1.000	1.000	1.000
eta	0.400	0.800	1.200	1.600	2.000	2.400	2.800	3.200	3.600	4.000	1075.898	64.300	15.690	3.094
delta	1.518	1.475	1.421	1.359	1.267	1.192	0.717	1.000	0.625	0.847	-4.519	3.050	2.588	3.622
kappa	-0.733	-0.583	-0.319	0.048	0.498	1.066	0.637	2.469	2.202	4.200	196.104	19.999	3.268	0.661
nu	0.004	0.000	-0.016	0.267	0.048	0.037	0.082	0.036	0.053	0.042	0.025	0.025	0.025	0.025

Uzyskane ceny opcji kupna

Ceny miesięcznych opcji kupna (call) wyznaczone metodą Monte Carlo zgodnie z wyestymowanymi modelami oraz rzeczywiste notowania tych instrumentów

Podsumowanie

Podsumowanie i wnioski

- Przedstawiona metoda MCMC pozwoliła na uzyskanie dokładniejszych oszacowań obserwacji procesu zmienności w terminach błędów względnych i bezwzględnych od standardowo używanych zmienności zrealizowanych.
- Metoda w podstawowej postaci nie daje lepszych estymatorów parametrów strukturalnych modelu od standardowych metod.
- ullet Metoda z zadanym η zwraca **zdecydowanie lepsze wyniki**.
- Wrażliwość uzyskiwanych wycen na przyjęty poziom η jest zadowalająco niska.
- Metoda może być wykorzystywana w praktyce do wyceny instrumentów pochodnych, a także zarządzania ryzykiem finansowym.