CHAPITRE OS6 Oscillateur harmonique

Question: Quel est le point commun à toutes ces images?

FIGURE 1 : Balançoire, horloge atomique, horloge à balancier, vibration d'une molécule diatomique

> Réponse :

Gdr φ : oscillations sinusoïdales

> Problématique

Phénomènes φ ≠ ⇒ modèle math unique de l'oscillateur harmonique

Lycée M. Montaigne – MP2I

1 Signal sinusoïdal

- 1.1 Signal périodique
- > Période

Définition :

> Fréquence

Définition :

> Pulsation

Définition :

$$f = \frac{1}{T}$$
 (Hz)

$$\omega = 2\pi f = \frac{2\pi}{T} \left(\text{rad.s}^{-1} \right)$$

1.2 Expression mathématique

Définition: signal sinusoïdal s(t)

$$s(t) = S_M \cos(\omega t + \varphi)$$

$$S_M$$
: amplitude de $s(t)$ (tjrs > 0)
 $\omega = \frac{2\pi}{T} = 2\pi f$: pulsation (rad.s⁻¹)

 φ : phase à l'origine (à t = 0) (rad)

 $\omega t + \varphi$: phase instantanée du signal (rad)

> 3 caractéristiques

$$S_M$$
 ET f (ou T ou ω) ET φ

CHAPITRE OS6 Oscillateur harmonique

1 Signal sinusoïdal

1.3 Représentation temporelle

FIGURE 2: Représentation temporelle d'un signal sinusoïdal

- > Mesures à l'aide des curseurs
 - Période
 - Amplitude crête à crête
 - Amplitude
 - Phase à l'origine

1.4 Composante continue ou valeur moyenne

> Définition

$$\langle s(t) \rangle = S_0 = \frac{1}{T} \int_0^T s(t) dt$$

- > Cas du signal sinusoïdal
- > Signal continu

2.1 Modèle de l'oscillateur harmonique électrique

> Circuit étudié

FIGURE 3 : Circuit LC

- C initialement chargé sous U_0
- t = 0: on ferme l'interrupteur
- t > 0 : C se décharge dans L et provoque la circulation d'un courant i(t)

2.2 Équation différentielle vérifiée par $u_c(t)$

> Mise en équation

$$LC\frac{d^2u_C(t)}{dt^2} + u_C(t) = 0$$

équation différentielle d'ordre 2

> Forme normalisée

$$\frac{d^2 u_C(t)}{dt^2} + \omega_0^2 u_C(t) = 0$$

Définition

 ω_0 : pulsation propre de l'osc. harm. (rad.s⁻¹)

Osc. harm. électrique :

> Homogénéité

- 2.3 Conditions initiales
- 2.4 Expression de $u_c(t)$: résolution de l'équation différentielle
- Outils mathématiques 3 : Résolution d'une équation différentielle du second ordre (sans dérivée première)
- 2.5 Représentations graphiques de $u_c(t)$ et i(t)
- Expression de l'intensité du courant i(t)
- > Graphes temporels

2.6 Etude énergétique

- > Bilan de puissance instantanée
- > Energie totale

Propriété:

L'énergie totale se conserve au cours du tps

$$\mathcal{E}_{totale} = \frac{1}{2}Li^{2}(t) + \frac{1}{2}Cu_{c}^{2}(t) = \mathcal{E}_{m}(t) + \mathcal{E}_{e}(t) = cste$$

- > Expression de l'énergie totale
 - À partir des conditions initiales
 - À partir des expressions temporelles

$$\mathcal{E}_{totale} = rac{1}{2}CU_0^2$$

Animation : Figures animées pour la physique : Électricité / Régimes Faphes d'énergies

Animation: Figures animees pour la physique: Electricité transitoires / Décharge du condensateur (aspect énergétique)

> http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Elec/ Transitoire/NRJ_FJ.php

2.7 Validité du modèle de l'oscillateur harmonique

- > Oscillateurs réels
- Interaction avec l'environnement : perte d'énergie
 - Oscillations ≠ sinusoïdales : osc. non harmonique
 - Amplitude ≠ cste : osc. harm. amorti
- > Modèle de l'osc. harm. non amorti insuffisant pour expliquer le comportement réel des syst.

Évolution du modèle (Osc. harm. amorti)