Nature of Invention: Chemical molecule and synthesis route

Applicant: Chimique Inc.

Inventors: Anisurya Jana

Lokesh Yada

Sujal Jain

Chemical Formula: C₂₉H₃₀N₆O₆

Chemical Name: Olmesartan medoxomil

Chemical synthesis routes:

Raw Materials -

- Imidazole ethyl ester derivative
- 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide
- N,N-Dimethylacetamide
- Acetone
- Tetrahydrofuran
- Ethanol
- Aqueous sodium hydroxide
- 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one
- Sodium iodide
- Ethyl acetate
- Sodium metabisulphite
- Diisopropyl ether
- Aqueous acetic acid
- Methylene chloride
- Sodium bicarbonate
- Demineralized water
- Sodium chloride solution

Reaction steps -

1. Preparation of Trityl Olmesartan Ethyl Ester –

- Add powdered anhydrous potassium carbonate (72 g, 0.5217 mol) to a solution of imidazole ethyl ester derivative (100 g, 0.4166 mol) in N,N-Dimethylacetamide (300 mL) followed by 4-[2-(trityltetrazol-5-yl)phenyl]benzyl bromide (227.5 g, 0.4084 mol) at 25–30°C.
- After completion of the reaction, add acetone (700 mL) to the reaction mass at 35-40°C, which resulted in a slurry mass.
- To this slurry mass, add demineralized water (300 mL) at 20–25°C and cool to 0–5°C to produce **trityl olmesartan ethyl ester** (268 g, 90%) as a white crystalline solid with 98% purity by HPLC (high performance liquid chromatography).

2. Preparation of Trityl Olmesartan Medoxomil -

- Add ethanol (200 ml) and pre-cooled aqueous sodium hydroxide (11.73 g, 0.2932 mol) solution in demineralized water (1200 mL) to a pre-cooled solution of **trityl olmesartan ethyl ester** in a mixture of tetrahydrofuran (1200 mL) at 10–15°C.
- Concentrated the reaction mass to below 20°C under reduced pressure to afford **trityl olmesartan sodium salt** as a thick oily mass.
- To the solution of trityl olmesartan sodium salt in DMA (dimethyl acetamide) (600 mL) add **4-(chloromethyl)-5-methyl-1,3-dioxol-2-one** (50.69 g, 0.3072 mol) and sodium iodide (6 g, 3% w/w) at 25-30°C. The contents were heated and stirred for 5 h at 30–35°C.
- To the resulting clear solution add ethyl acetate (2000 mL), demineralized water (2000 mL), followed by sodium metabisulphite (2 g) at 30–35°C and stir for 15 min.
- Separate the layers and wash the organic layer with 20% w/w aqueous sodium chloride solution at 30-35°C. Concentrate the organic layer at 30–40°C under reduced pressure till the distillate volume becomes 1150 mL, and then add diisopropyl ether (1000 mL).
- Cool the slurry to 0–5°C and stir for 30 min. Filter the product to obtain **trityl olmesartan medoxomil** as a white powder (203 g, 90%) with 99.47% purity by HPLC.

- 5 Trityl olmesartan sodium salt
- **6** 4-(chloromethyl)-5-methyl-1,3-dioxol-2-one
- 7 Trityl olmesartan medoxomil
- 1 Olmesartan medoxomil (final product)

3. Preparation of Olmesartan Medoxomil –

- Stir the suspension of **trityl olmesartan medoxomil** (175 g) in 75% v/v aqueous acetic acid (875 mL) at 25–30°C for 10 h. Filter the byproduct, trityl alcohol, through hyflo (filtration agent) and wash with 75% v/v aqueous acetic acid (200 mL).
- Add methylene chloride (1225 mL) to the filtrate followed by demineralized water (875 mL), at 20–30°C and stir for 15 min. The layers were separated and the aqueous layer was extracted with methylene chloride (525 mL) at 20–30°C.
- Wash the combined organic extract with demineralized water at 20-30°C. Add water at 20-30°C to the organic layer and to adjust its pH to 7.30-7.50 add 5% w/w aqueous sodium bicarbonate (4.3 g in 81 mL of DM water) at 20-30°C.
- The organic layer has to be separated and concentrated at 30-40 °C under reduced pressure. Add acetone (700 mL) to the concentrated mass and continue distillation at 50-55°C, at ambient pressure, till the distillate volume becomes 600 mL. Cool the resulting slurry to 0-5°C and continue stirring for 1 h.
- Fiter the product and dry it to afford olmesartan medoxomil (109 g, 89%) with 99.7% purity by HPLC.

References: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4727774/#ref6

List the contributions of each author:

- Author 3, 4 and 5 carried out the literature search
- Authors 1,2 and 3 found the reaction steps, product yield, necessary separation steps to achieve desired product purity.

Name	Roll No	Signature
Mehek Agarwal	220646	Magne
Anisurya Jana	220152	Land
Sujal Jain	221100	
Lokesh Yadav	220594	लीकैस यास्व
Ram Aggarwal	220864	#
Vyom Pratap Singh	221211	blingh