Definite Integrals and Areas

Suppose we have a non-negative function f(x). Let [a, b] be an interval within the domain of f(x). We may consider the area under the curve y = f(x) and above the x-axis, bounded between two vertical lines x = a and x = b.

Definite integral. The area under the curve y = f(x) from a to b is called the definite integral of the function f(x) from a to b. It is written as

$$\int_a^b f(x) \ dx \ .$$

For example, let $f(x) = x^2 + 1$ and the interval be [0,2]. We are finding

$$\int_0^2 x^2 + 1 \, dx \, .$$

The area under $f(x) = x^2 + 1$ from 0 to 2 can be approximated by rectangles below the curve $y = x^2 + 1$. First we use four rectangles.

The pink rectangles above are called *left rectangles*, because each has a height equal to the height of the curve at the left-hand edge of the rectangle.

The approximate area by these four rectangles is

$$S_4 = 0.5(f(0) + f(0.5) + f(1) + f(1.5)) = 0.5(1 + 1.25 + 2 + 3.25) = 3.75$$

in square units. This approximate area doesn't count the area under the curve $y = x^2 + 1$ outside the red-shaded region. It can be improved by using more left-rectangles. Let say this time we use 8 left-rectangles to estimate the area under $y = x^2 + 1$.

The new approximate area is

$$S_8 = 0.25(1 + 1.0625 + 1.25 + \dots + 3.25 + 4.0625) = 4.1875$$
.

This figure is closer to the definite integral $\int_0^2 x^2 + 1 \, dx$ than $S_4 = 3.75$, since the unshaded region under the curve $y = x^2 + 1$ is smaller in the upper graph.

So, what is the value of $\int_0^2 x^2 + 1 dx$?

Fundamental Theorem of Integral Calculus.

Suppose f(x) is a continuous function on an interval [a, b]. If F(x) is one antiderivative of f(x), i.e. F'(x) = f(x). Then,

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a).$$

Before going on, we introduce a notation here. Suppose F(x) is the above function. We set

$$F(x)\big|_a^b = F(b) - F(a).$$

Example. Find $\int_0^2 x^2 dx$. We know that

$$\int x^2 dx = \frac{1}{3}x^3 + C.$$

So we ignore the arbitrary constant C and let $F(x) = \frac{1}{3}x^3$.

$$\int_0^2 x^2 dx = \left(\frac{1}{3}x^3\right)\Big|_0^2 = \left(\frac{2^3}{3}\right) - \left(\frac{0}{3}\right) = \frac{8}{3}.$$

** When you are finding a definite integral, always write down your antiderivative "F(x)" in your answer. Don't just jump to a numerical figure!

Q. Find
$$\int_{0}^{2} x^{2} + 1 dx$$
.
> $\int X^{2} + 1 dx = \int X^{2} dx + \int 1 dx = \frac{1}{3} X^{3} + X + C$
> $\int_{0}^{2} X^{2} + 1 dx = \left(\frac{1}{3} X^{3} + X\right) \Big|_{0}^{2}$
> $= \left(\frac{8}{3} + 2\right) - \left(0\right) = \frac{14}{3} \approx 4.67$

Properties of definite integrals follow from properties of indefinite integral.

3. Constant-multiple rule for definite integrals. For any constant k,

$$\int_{a}^{b} c \cdot f(x) \ dx = c \cdot \int_{a}^{b} f(x) \ dx.$$

4. Sum-Difference rule for definite integrals.

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Q. Find the definite integral $\int_2^4 (1+x^{-2}) dx$.

Q. Find the definite integral
$$\int_0^1 12e^{3x} dx$$
.
> = $12 \int_0^4 e^{3x} dx = 12 \cdot (\frac{1}{3}e^{3x}) \Big|_0^1$
> = $12 \left(\frac{1}{3}e^3 - \frac{1}{3}e^6\right) = 4e^3 - 4$

Q. Find the definite integral

$$\int_{1}^{2} \frac{(x+1)^{2}}{x} dx.$$
> = $\int_{1}^{2} \frac{X^{2}+2x+1}{X} dx = \int_{1}^{2} X+2+\frac{1}{X} dx$
> = $\left(\frac{X^{2}}{2}+2x+\ln |X|\right) \Big|_{1}^{2}$
> = $(2+4+\ln 2)-\left(\frac{1}{2}+2+\ln 1\right)=\frac{7}{2}+\ln 2$ #

Q. Find the definite integral

Example. [Area under curve]

Find the area under
$$f(x) = \frac{1}{x}$$
 from $x = 1$ to $x = 13$.
* Note $\frac{1}{x}$ is non-negative and continuous on [1,13].
> $\frac{\text{Solin}}{\text{Area}} = \int_{1}^{13} \frac{1}{x} dx = \left(\ln |x| \right) \Big|_{1}^{13} = \ln |3| - \ln |1|$
> $= \ln |3|$ square units $= \ln |3|$

Q. Find the area under
$$f(x) = \frac{\sqrt{x+1}}{x}$$
 from $x = 1$ to $x = 2$.
> Area = $\int_{\frac{1}{2}}^{2} \frac{\sqrt{x+1}}{x} dx = \int_{\frac{1}{2}}^{2} \frac{1}{\sqrt{x}} + \frac{1}{x} dx$
> = $\int_{1}^{2} x^{-1/2} + x^{-1} dx = \left(2x^{1/2} + \ln |x|\right) \Big|_{1}^{2}$
> = $\left(2(2^{1/2}) + \ln 2\right) - \left(2 + \ln 1\right)$
= $\left(2\sqrt{2} - 2\right) + \ln 2$ square units #

Example. [Cost of succession of units, textbook P.336]

For a marginal cost function MC(x), the total cost of units a to b is

$$\int_a^b MC(x) \ dx \ .$$

A company's marginal cost function is

$$MC(x) = 8e^{-0.01x} + 4$$

where x is the number of units. Find the total cost of producing the first hundred units.

> Total cost of units 0 to 100
> =
$$\int_{0}^{100} MC(x) dx = \int_{0}^{100} 8e^{-0.01X} + 4 dx$$

> = $\left(-\frac{8}{-0.01}e^{-0.01X} + 4x\right)\Big|_{0}^{100}$
> = $\left(-800e^{-0.01X} + 4x\right)\Big|_{0}^{100}$
> = $\left(-800e^{-1} + 400\right) - \left(-800 + 0\right)$
> = $1200 - 800e^{-1} \approx 905.70$
> Therefore, the cost to produce the first 100 units
> $4905.70 \cdot xx$

In general, we find the total accumulation at a given rate by definite integral.

The total accumulation at rate f(x) from a to b is

$$\int_a^b f(x) \ dx \ .$$

Example. An average child of age x years grows at the rate of $6x^{-1/2}$ inches per year (for $2 \le x \le 16$). Find the total height gain from age 4 to age 9.

>
$$f(x) = 6x^{-1/2}$$
 (in inches per year)
> Total height gain from age 4 to age 9
> = $\int_4^9 f(x) dx = \int_4^9 6x^{-1/2} dx$
> = $(6 \cdot 2 \times 1/2) \Big|_4^9$
> = $(12 \times 1/2) \Big|_4^9 = (12 \cdot 3) - (12 \cdot 2)$
> = $36 - 24 = 12$ inches.
> Therefore, the total height gain from age 4
to age 9 is 12 inches.

>

>