Analysis of population activity in balanced spiking neural

NETWORKS AFTER NEURON LOSS

Stanford ENGINEERING

Electrical Engineering

Vassilis Alexopoulos¹, Stephen E. Clarke², Paul Nuyujukian^{1,3,2,4,5} for the Brain Interfacing Lab

¹Electrical Engineering, ²Department of Bioengineering, ³Neurosurgery, ⁴Wu Tsai Neurosciences Institute, ⁵Bio-X Institute; Stanford University

email: valex@stanford.edu

STROKE CIRCUITRY AND REHABILITATION

Yearly, more than **795,000** people in the U.S. have a stroke. **80%** will experience some degree of motor impairment and **33%** of those have neuron-loss-related residual disability that is unresolveable by current rehabilitation methods.

- In homeostasis, excitatory (**E**) and inhibitory (**I**) neural populations are balanced
- Allows for high fidelity outputs via **interhemispheric** and **local** shaping
- Understanding disruption of this balance could enable tailored deficit recovery

Boddington and Reynolds, 2017

Experimental Design

Spiking neural networks (SNN) were developed in Python using the Neural Engineering Framework Nengo

Inter-ensemble connection weights were determined under conditions of "sparse balance" using:

$$\sum_{i} a_{ij} = 0$$
 for every i^{th} neuron

To simulate neuron loss, an ablation framework was designed that randomly annihilates neurons at the population level

Main Results

Neural rasters indicate:

- conserved **periodicity** between input and spike encodings
- post-lesion rate adaptation in non-adaptive neuron types

Ablation:

- reduces input fidelity in both unconnected and connected populations
- **preserves** trajectory geometry while **translating** starting position in PC-space

State Space

t-ablation trajectory, $\lambda=18.43$, $\theta=18.13^{\circ}$

pre-ablation trajectory, $\lambda = 19.76$

Example Sparse E:I Connectivity Map

Parameter Sweeps

At the cost of reduced amplitude-matching, balanced E:I neural circuits exhibit intrinsic dynamics that facilitate **robustness to population-level ablation**. Characterizing this balance is a first step for future work on restoring functionality in damaged populations.