Circuitos Electricos II

Roberto Sanchez Figueroa

brrsanchezfi@unal.edu.co

Soluciones propuestas para los ejercicios del taller 14

Simulación

Dado el circuito resistivo,

$$R_1 = 10\Omega, \ R_2 = 20\Omega, \ R_3 = 50\Omega, \ R_4 = 100\Omega$$

Figure: Circuito resistivo reconfigurable con los interruptores s_1, s_2 .

La señal de control, externa al circuito, y su codificación, se muestran a continuación.

Figure: La señal de control x se codifica como θ_1, θ_2 .

Cuando las probabilidades son menores a 0.5, el estado de los interruptores es $|s_2s_1>=|11>$, |0> abierto y |1> cerrado. Al aplicar la señal de control, el estado de los interruptores $|s_2s_1>$ cambia,

$$|00>, p_1>0.5$$

 $|01>, p_2>0.5$
 $|10>, p_3>0.5$
 $|11>, p_4>0.5$

Donde,

$$p_1(t) = [\cos \theta_1(t) \cos \theta_2(t)]^2$$

$$p_2(t) = [\cos \theta_1(t) \sin \theta_2(t)]^2$$

$$p_3(t) = [\sin \theta_1(t) \cos \theta_2(t)]^2$$

$$p_4(t) = [\sin \theta_1(t) \sin \theta_2(t)]^2$$

Dibujar el voltaje de salida $v_0(t)$ para entrada escalón unitario, $v_i(t) = 1.0 V$, cuando la señal de control y los parámetros son,

$$x(t) = A \sin \omega t$$
 $\Delta = \{0.1, 1.0\}, \ A = \{1.0, 10.0\}, \ \omega = \{2.0, 5.0\} rad/s$

Simulacion

%Codigo del controlador
% function [s2, s1] = Controlador(u)

```
%
%
      delta = 0.1;
%
          if u < -delta
%
%
              theta1 = 0;
%
               theta_2 = pi/2;
%
%
          elseif ( u \ge -delta) && (u < 0)
%
               theta_1 = (pi/2)*((u/delta)+1);
%
               theta_2 = -(pi/2)*(u/delta);
%
%
          elseif u == 0
%
               theta_1 = pi/2;
%
               theta_2 = 0;
%
%
          elseif (u > 0) && (u <= delta)
%
               theta_1 = (pi/2)*(-(u/delta)+1);
%
               theta_2 = (pi/2)*(u/delta);
%
%
          elseif u > delta
%
               theta 1 = 0;
%
               theta_2 = pi/2;
%
%
          else
%
               theta_1 = 0;
%
               theta_2 = pi/2;
%
          end
%
%
               p1 = (cos(theta_1)*cos(theta_2))^2;
%
               p2 = (cos(theta_1)*sin(theta_1))^2;
%
               p3 = (\sin(\tanh 1) \cdot \cos(\tanh 2))^2;
%
               p4 = (sin(theta_1)*sin(theta_2))^2;
%
%
          if p1 > 0.5
%
               s1 = 0;
%
               s2 = 0;
%
          elseif p2 > 0.5
%
               s1 = 1;
%
               s2 = 0;
%
          elseif p3 > 0.5
%
               s1 = 0;
%
               s2 = 1;
%
          elseif p4 > 0.5
%
               s1 = 1;
%
               s2 = 1;
%
          else
%
               s1 = 1;
%
               s2 = 1;
%
          end
% end
```

Solucion

A = 1

 $\Delta = 0.1$

 $\omega = 2$

A = 1

 $\Delta = 1$

 $\omega = 2$

A = 10

 $\Delta = 0.1$

 $\omega = 2$

A = 10

 $\Delta = 1$

 $\omega = 2$

Solucion

A = 1

 $\Delta = 0.1$

 $\omega = 5$

A = 1

 $\Delta = 1$

 $\omega = 5$

A = 10

 $\Delta = 0.1$

 $\omega = 5$

A = 10

 $\Delta = 1$

 $\omega = 5$

