

# Systèmes temps réel embarqués



## Présentation générale

#### Volume horaire :

**CM**: 16h (12 séances d'1h20)

**TD**: 16h (12 séances d'1h20)

**TP**: 16h (12 séances d'1h20)



#### Coordonnées :

Audrey Queudet, Bureau 121 (UFR Sciences) / Bureau 501 (IRCCyN)

audrey.queudet@univ-nantes.fr

#### Ressources :

Cours, TD et TP en ligne sur Madoc

## Plan du cours

- Taxonomie des systèmes informatiques
- Systèmes temps réel
- Spécificités des OS pour le temps réel
- L'OS Xenomai pour le temps réel
- Systèmes embarqués
- Linux pour l'embarqué
- Marché des OS pour le temps réel et l'embarqué
- Modélisation d'applications temps réel avec UML 2.x

## Plan du cours

- Taxonomie des systèmes informatiques
- Systèmes temps réel
- Spécificités des OS pour le temps réel
- L'OS Xenomai pour le temps réel
- Systèmes embarqués
- Linux pour l'embarqué
- Marché des OS pour le temps réel et l'embarqué
- Modélisation d'applications temps réel avec UML 2.x

## Classification des systèmes informatiques

#### Selon leur architecture :

- Systèmes centralisés
- Systèmes distribués

## Selon leur support matériel d'exécution :

- Systèmes monoprocesseur
- Systèmes multiprocesseur
- Systèmes multicoeur

#### Selon leurs contraintes :

- Systèmes temps réel
- Systèmes embarqués

## Architectures des systèmes informatiques (1)

## Systèmes centralisés

- La ressource demandée n'est disponible qu'en un point central du réseau et les clients ne sont que des demandeurs de cette ressource
- Architecture client-serveur
- Exemples d'applications :

Consultation de pages sur un site web Courriels et serveur de messagerie

Base de données centralisée



Architecture client-serveur

## Architectures des systèmes informatiques (2)

Avantages des systèmes centralisés



- Simplification des contrôles de sécurité
- Mise à jour des données et des logiciels facilitée

Inconvénients des systèmes centralisés



- Risque de surcharge du serveur central
- Problèmes liés aux indisponibilités/pannes du serveur central

## Architectures des systèmes informatiques (3)

## Systèmes distribués

- Toutes les ressources ne se trouvent pas au même endroit ou sur la même machine
- Architecture pair-à-pair



Architecture client-serveur

Architecture pair-à-pair

8

Module X7IA010 : Systèmes temps réel embarqués

Audrey Queudet 2015-2016

## Architectures des systèmes informatiques (4)

Architectures hybrides (n-tiers)





## Architectures des systèmes informatiques (5)

#### Exemples d'applications :

Calcul réparti

Flux multimédia continus (streaming)

Séquençage de motifs d'ADN

Décryptage de signaux spatiaux

Téléphonie sur Internet

Partage de fichiers







Audrey Queudet 2015-2016

# Architectures des systèmes informatiques (6)

Avantages des systèmes distribués



Présence des ressources même en cas de pannes

Inconvénients des systèmes distribués



Applications pair-à-pair beaucoup plus difficiles à concevoir

## **Supports matériel d'exécution (1)**

## Systèmes monoprocesseur

 Un seul processeur exécute un ou plusieurs processus (pseudoparallélisme)





## **Supports matériel d'exécution (2)**

## Systèmes multiprocesseur

→ Plusieurs processeurs travaillent simultanément à l'exécution d'un ou plusieurs processus (vrai parallélisme)



## **Supports matériel d'exécution (3)**



## Systèmes multicoeurs

→ Plusieurs coeurs travaillent simultanément à l'exécution d'un ou plusieurs processus (vrai parallélisme)







14

## Supports matériel d'exécution (4)

- Le multicore, pourquoi ?
  - Evolution technologique des processeurs



## **Supports matériel d'exécution (5)**

- Le multicore, pourquoi ?
  - Limitations physiques : problème de la dissipation thermique





## Supports matériel d'exécution (6)

- Le multicore, pourquoi ?
  - Optimiser la consommation énergétique



## **Supports matériel d'exécution (7)**

- Le multicore, pourquoi ?
  - Consommation énergétique vs. performances



## Supports matériel d'exécution (8)

- Le multicore, pourquoi ?
  - Augmentation de la fréquence vs. augmentation du nb de coeurs



# Supports matériel d'exécution (9)

- Le multicore, pourquoi ?
  - L'importance de la taille des caches



## Supports matériel d'exécution (10)

- Le multicore, pourquoi ?
  - La rapide croissance du nombre de coeurs



# Quelques processeurs du marché (1)

#### Chez AMD:

→ AMD Athlon LE/ Sempron







| AMD Athlon LE / Sempron |           |               |                  |            |     |             |      |  |  |  |  |
|-------------------------|-----------|---------------|------------------|------------|-----|-------------|------|--|--|--|--|
| Modèle                  | Fréquence | VCore         | Socket           | L2         | L3  | Freq.<br>HT | TDP  |  |  |  |  |
| Athlon LE-1640          | 2.7 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 1x 512 Ko  | N/A | 1.0 GHz     | 45 W |  |  |  |  |
| Athlon LE-1620          | 2.4 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 1x 1 Mo    | N/A | 1.0 GHz     | 45 W |  |  |  |  |
| Sempron LE-2100*        | 1.8 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2 x 256 Ko | N/A | 800 MHz     | 65 W |  |  |  |  |
| Sempron LE-1300         | 2.3 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 1x 512 Ko  | N/A | 800 MHz     | 45 W |  |  |  |  |
| Sempron LE-1250         | 2.2 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 1x 512 Ko  | N/A | 800 MHz     | 45 W |  |  |  |  |
| Sempron LE-1200         | 2.1 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 1x 512 Ko  | N/A | 800 MHz     | 45 W |  |  |  |  |

# Quelques processeurs du marché (2)

#### Chez AMD:

- AMD Athlon X2 Dual-Core







| AMD Athlon X2 Dual-Core |           |               |                  |           |      |             |       |  |  |  |
|-------------------------|-----------|---------------|------------------|-----------|------|-------------|-------|--|--|--|
| Modèle                  | Fréquence | VCore         | Socket           | L2        | Core | Freq.<br>HT | TDP   |  |  |  |
| Athlon X2 7750          | 2.7 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K10  | 1.8 GHz     | 95 W  |  |  |  |
| Athlon X2 7550          | 2.5 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K10  | 1.8 GHz     | 95 W  |  |  |  |
| Athlon X2 6000*         | 3.1 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 89 W  |  |  |  |
| Athlon X2 5800          | 3.0 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 125 W |  |  |  |
| Athlon X2 5600          | 2.9 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 65 W  |  |  |  |
| Athlon X2 5400          | 2.8 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 65 W  |  |  |  |
| Athlon X2 5200          | 2.7 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 1 Mo   | K8   | 1.0 GHz     | 65 W  |  |  |  |
| Athlon X2 5050e         | 2.6 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 45 W  |  |  |  |
| Athlon X2 5000          | 2.6 GHz   | 1.30 - 1.35 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 65 W  |  |  |  |
| Athlon X2 4850e         | 2.5 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 45 W  |  |  |  |
| Athlon X2 4450e         | 2.3 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 45 W  |  |  |  |
| Athlon X2 4050e         | 2.1 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 2x 512 Ko | K8   | 1.0 GHz     | 45 W  |  |  |  |

# Quelques processeurs du marché (3)

#### Chez AMD:

- AMD Athlon Phenom X3







| AMD Phenom X3 Triple-Core Serie 8000 |           |               |                  |           |      |             |      |  |  |  |  |  |
|--------------------------------------|-----------|---------------|------------------|-----------|------|-------------|------|--|--|--|--|--|
| Modèle                               | Fréquence | VCore         | Socket           | L2        | L3   | Freq.<br>HT | TDP  |  |  |  |  |  |
| Phenom X3 8850                       | 2.5 GHz   | 1.20 - 1.25 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 95 W |  |  |  |  |  |
| Phenom X3 8750*                      | 2.4 GHz   | 1.20 - 1.25 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 95 W |  |  |  |  |  |
| Phenom X3 8650                       | 2.3 GHz   | 1.20 - 1.25 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 95 W |  |  |  |  |  |
| Phenom X3 8550                       | 2.2 GHz   | 1.20 - 1.25 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 95 W |  |  |  |  |  |
| Phenom X3 8450                       | 2.1 GHz   | 1.20 - 1.25 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 95 W |  |  |  |  |  |
| Phenom X3 8450e                      | 2.1 GHz   | 1.12 - 1.20 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.8 GHz     | 65 W |  |  |  |  |  |
| Phenom X3 8250e                      | 1.9 GHz   | 1.12 - 1.20 V | AM2+ (DDR2-1066) | 3x 512 Ko | 2 Mo | 1.6 GHz     | 65 W |  |  |  |  |  |

# Quelques processeurs du marché (4)

#### Chez AMD:

- AMD Athlon Phenom X4







| AMD Phenom X4 Quad-Core Serie 9000 |           |               |                  |           |      |             |       |  |  |  |
|------------------------------------|-----------|---------------|------------------|-----------|------|-------------|-------|--|--|--|
| Modèle                             | Fréquence | VCore         | Socket           | L2        | L3   | Freq.<br>HT | TDP   |  |  |  |
| Phenom X4 9950*                    | 2.6 GHz   | 1.20 - 1.30 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 2.0 GHz     | 125 W |  |  |  |
| Phenom X4 9850*                    | 2.5 GHz   | 1.20 - 1.30 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 2.0 GHz     | 95 W  |  |  |  |
| Phenom X4 9750                     | 2.4 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.8 GHz     | 95 W  |  |  |  |
| Phenom X4 9650                     | 2.3 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.8 GHz     | 95 W  |  |  |  |
| Phenom X4 9550                     | 2.2 GHz   | 1.15 - 1.25 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.8 GHz     | 95 W  |  |  |  |
| Phenom X4 9450e                    | 2.1 GHz   | 1.07 - 1.13 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.8 GHz     | 65 W  |  |  |  |
| Phenom X4 9350e                    | 2.0 GHz   | 1.07 - 1.13 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.8 GHz     | 65 W  |  |  |  |
| Phenom X4 9150e                    | 1.8 GHz   | 1.07 - 1.13 V | AM2+ (DDR2-1066) | 4x 512 Ko | 2 Mo | 1.6 GHz     | 65 W  |  |  |  |

# Quelques processeurs du marché (5)

#### Chez Intel :

Intel Celeron







| Intel Celeron           |           |         |          |              |        |              |      |  |  |  |  |
|-------------------------|-----------|---------|----------|--------------|--------|--------------|------|--|--|--|--|
| Modèle                  | Fréquence | Gravure | FSB      | Ratio        | L2     | VCore        | TDP  |  |  |  |  |
| Celeron DC <b>E1500</b> | 2.20 GHz  | 65 nm   | 800 MT/s | 11 x 200 MHz | 512 Ko | 1.16 - 1.31V | 65 W |  |  |  |  |
| Celeron DC <b>E1400</b> | 2.00 GHz  | 65 nm   | 800 MT/s | 10 x 200 MHz | 512 Ko | 1.16 - 1.31V | 65 W |  |  |  |  |
| Celeron DC E1200        | 1.60 GHz  | 65 nm   | 800 MT/s | 8 x 200 MHz  | 512 Ko | 1.16 - 1.31V | 65 W |  |  |  |  |
| Celeron 450             | 2.20 GHz  | 65 nm   | 800 MT/s | 11 x 200 MHz | 512 Ko | 1.00 - 1.34V | 35 W |  |  |  |  |
| Celeron 440             | 2.00 GHz  | 65 nm   | 800 MT/s | 10 x 200 MHz | 512 Ko | 1.00 - 1.34V | 35 W |  |  |  |  |
| Celeron 430             | 1.80 GHz  | 65 nm   | 800 MT/s | 9 x 200 MHz  | 512 Ko | 1.00 - 1.34V | 35 W |  |  |  |  |
| Celeron 420             | 1.60 GHz  | 65 nm   | 800 MT/s | 8 x 200 MHz  | 512 Ko | 1.00 - 1.34V | 35 W |  |  |  |  |

## Quelques processeurs du marché (6)

#### Chez Intel:

→ Intel Pentium Dual-Core







| Intel Pentium Dual-Core |           |         |          |                |      |              |      |  |  |  |  |  |
|-------------------------|-----------|---------|----------|----------------|------|--------------|------|--|--|--|--|--|
| Modèle                  | Fréquence | Gravure | FSB      | Ratio          | L2   | VCore        | TDP  |  |  |  |  |  |
| Pentium DC <b>E5300</b> | 2.60 GHz  | 45 nm   | 800 MT/s | 13 x 200 MHz   | 2 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Pentium DC <b>E5300</b> | 2.50 GHz  | 45 nm   | 800 MT/s | 12.5 x 200 MHz | 2 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Pentium DC E2220        | 2.40 GHz  | 65 nm   | 800 MT/s | 12 x 200 MHz   | 1 Mo | 1.16 - 1.31V | 65 W |  |  |  |  |  |
| Pentium DC <b>E2200</b> | 2.20 GHz  | 65 nm   | 800 MT/s | 11 x 200 MHz   | 1 Mo | 1.16 - 1.31V | 65 W |  |  |  |  |  |
| Pentium DC <b>E2180</b> | 2.00 GHz  | 65 nm   | 800 MT/s | 10 x 200 MHz   | 1 Mo | 1.16 - 1.31V | 65 W |  |  |  |  |  |
| Pentium DC <b>E2160</b> | 1.80 GHz  | 65 nm   | 800 MT/s | 9 x 200 MHz    | 1 Mo | 1.16 - 1.31V | 65 W |  |  |  |  |  |
| Pentium DC E2140        | 1.60 GHz  | 65 nm   | 800 MT/s | 8 x 200 MHz    | 1 Mo | 1.16 - 1.31V | 65 W |  |  |  |  |  |

# **Quelques processeurs du marché (7)**

#### Chez Intel :

→ Intel Core 2 Duo





|                         | Intel Core 2 Duo (2 Core) |         |           |                |      |              |      |  |  |  |  |  |
|-------------------------|---------------------------|---------|-----------|----------------|------|--------------|------|--|--|--|--|--|
| Modèle                  | Fréquence                 | Gravure | FSB       | Ratio          | L2   | VCore        | TDP  |  |  |  |  |  |
| Core 2 Duo <b>E8600</b> | 3.33 GHz                  | 45 nm   | 1333 MT/s | 10 x 333 MHz   | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E8500</b> | 3.16 GHz                  | 45 nm   | 1333 MT/s | 9.5 x 333 MHz  | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E8400</b> | 3.00 GHz                  | 45 nm   | 1333 MT/s | 9 x 333 MHz    | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E8300</b> | 2.83 GHz                  | 45 nm   | 1333 MT/s | 8.5 x 333 MHz  | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E8200</b> | 2.66 GHz                  | 45 nm   | 1333 MT/s | 8 x 333 MHz    | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E8190</b> | 2.66 GHz                  | 45 nm   | 1333 MT/s | 8 x 333 MHz    | 6 Mo | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E7400</b> | 2.80 GHz                  | 45 nm   | 1066 MT/s | 10.5 x 266 MHz | 3 Мо | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E7300</b> | 2.66 GHz                  | 45 nm   | 1066 MT/s | 10 x 26 d MHz  | 3 Мо | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E7200</b> | 2,53 GHz                  | 45 nm   | 1066 MT/s | 9.5 x 266 MHz  | Mo   | 0.85 - 1.36V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6850</b> | 3.00 GHz                  | 65 nm   | 1333 M7/s | 9 x 883 MHz    | Mo   | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6750</b> | 2.66 GHz                  | 65 nm   | 1333 MT/s | 333 MHz        | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6700</b> | 2.66 GHz                  | 65 m    | 1/46/MT/s | 10 × 266 MHz   | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6600</b> | 2.40 GHz                  | 6.5 nm  | 1066 MT/s | 9 x 266 MHz    | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6550</b> | 2.33 GHz                  | 65 l m  | 1332 MT/s | 7 x 333 MHz    | 4 Mo | 0.85 - 1,50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6540</b> | 2,33 GHz                  | 65 nm   | 1333 MT/s | 7 x 333 MHz    | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6420</b> | 2.13 GHz                  | 65 nm   | 1066 MT/s | 8 x 266 MHz    | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6400</b> | 2.13 GHz                  | 65 nm   | 1066 MT/s | 8 x 266 MHz    | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E6300</b> | 1.86 GHz                  | 65 nm   | 1066 MT/s | 7 x 266 MHz    | 4 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E4700</b> | 2.60 GHz                  | 65 nm   | 800 MT/s  | 13 x 200 MHz   | 2 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E4600</b> | 2,40 GHz                  | 65 nm   | 800 MT/s  | 12 x 200 MHz   | 2 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E4500</b> | 2.20 GHz                  | 65 nm   | 800 MT/s  | 11 x 200 MHz   | 2 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E4400</b> | 2.00 GHz                  | 65 nm   | 800 MT/s  | 10 x 200 MHz   | 2 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |
| Core 2 Duo <b>E4300</b> | 1.80 GHz                  | 65 nm   | 800 MT/s  | 9 x 200 MHz    | 2 Mo | 0.85 - 1.50V | 65 W |  |  |  |  |  |

# Quelques processeurs du marché (8)

#### Chez Intel:

Intel Core 2 Quad







| Intel Core 2 Quad (4 Core) |           |         |           |               |          |              |       |  |  |  |  |
|----------------------------|-----------|---------|-----------|---------------|----------|--------------|-------|--|--|--|--|
| Modèle                     | Fréquence | Gravure | FSB       | Ratio         | L2       | VCore        | TDP   |  |  |  |  |
| Core 2 Quad <b>Q9650</b>   | 3.00 GHz  | 45 nm   | 1333 MT/s | 9 x 333 MHz   | 2 x 6 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q9550</b>   | 2.83 GHz  | 45 nm   | 1333 MT/s | 8.5 x 333 MHz | 2 x 6 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q9400</b>   | 2.66 GHz  | 45 nm   | 1333 MT/s | 8 x 333 MHz   | 2 x 3 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q9450</b>   | 2.66 GHz  | 45 nm   | 1333 MT/s | 8 x 333 MHz   | 2 x 6 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q9300</b>   | 2.50 GHz  | 45 nm   | 1333 MT/s | 7.5 x 333 MHz | 2 x 3 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q8300</b>   | 2.50 GHz  | 45 nm   | 1333 MT/s | 7.5 x 333 MHz | 2 x 2 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q8200</b>   | 2.33 GHz  | 45 nm   | 1333 MT/s | 7 x 333 MHz   | 2 x 2 Mo | 0.85 - 1.36V | 95 W  |  |  |  |  |
| Core 2 Quad <b>Q6700</b>   | 2.66 GHz  | 65 nm   | 1066 MT/s | 10 x 266 MHz  | 2 x 4 Mo | 0.85 - 1.50V | 105 W |  |  |  |  |
| Core 2 Quad <b>Q6600</b>   | 2.40 GHz  | 65 nm   | 1066 MT/s | 9 x 266 MHz   | 2 x 4 Mo | 0.85 - 1.50V | 105 W |  |  |  |  |

# Quelques processeurs du marché (9)

#### Chez Intel :

→ Intel Core i7







| Intel Core i7 (Quad Core) |           |         |          |              |      |              |       |  |  |  |  |
|---------------------------|-----------|---------|----------|--------------|------|--------------|-------|--|--|--|--|
| Modèle                    | Fréquence | Gravure | QPI      | Ratio        | LЗ   | VCore        | TDP   |  |  |  |  |
| Core i7-965 XE            | 3.20 GHz  | 45 nm   | 6.4 GT/s | 24 x 133 MHz | 8 Mo | 0.80 - 1.37V | 130 W |  |  |  |  |
| Core i7-940               | 2.93 GHz  | 45 nm   | 4.8 MT/s | 22 x 133 MHz | 8 Mo | 0.80 - 1.37V | 130 W |  |  |  |  |
| Core i7-920               | 2.66 GHz  | 45 nm   | 4.8 MT/s | 20 x 133 MHz | 8 Mo | 0.80 - 1.37V | 130 W |  |  |  |  |

# **Comparatifs de performances (1)**

## • Applications multimédia :

#### Comparatif CPU (Multimedia)

Index de performances (100% = Core 2 Quad Q6600) Core i7 965 182.4% 163.9% Core i7 940 Core i7 920 152.4% 138.1% Core 2 Quad Q9650 131.3% Core 2 Quad Q9550 120.8% Core 2 Quad Q9400 Core 2 Quad Q8300 105.8% Phenom X4 9950 Core 2 Duo E8600 101.2% Core 2 Quad Q6600 100.0% Core 2 Duo E8400 Phenom X4 9650 92.1% Core 2 Duo E7400 83.3% Core 2 Duo E8200 74.1% Phenom X3 8450 67.5% Pentium DC E5300 66.7% Core 2 Duo E4700 Athlon X2 7750+ 63.8% Athlon X2 6000+ Pentium DC E2220 Pentium DC E2200 Athlon X2 5000+ 53.6% 42.0% Celeron DC E1500 36.1% Sempron LE-2100 29.1% Athlon LE-1640 28.9% Celeron 450 Sempron LE-1300 26.0% Celeron 430 100% 150%

Module X7IA010 : Systèmes temps réel embarqués

Audrey Queudet 2015-2016

31

# **Comparatifs de performances (2)**

#### Jeux :

#### **Comparatif CPU (Jeux)**

Index de performances (100% = Core 2 Quad Q6600)



32

## **Comparatifs de performances (5)**

#### Consommations:



# **Choix d'un processeur (1)**

# Multi-Core Processing DUMMIES

## Identifier le profil applicatif :

- Usage bureautique classique
- Création multimédia
- Jeux
- Serveurs
- Applications embarquées





## Caractéristiques de base influant sur les performances :

- Fréquence
- Nombre de coeurs
- Cache



# Choix d'un processeur (2)



- Identifier les contraintes du système :
  - Mémoire



- Consommation électrique
- Dégagement de chaleur...
- Coûts...



## Systèmes critiques et/ou fortement contraints

## Systèmes temps réel

- Contraintes de temps
- Déterminisme
- Temps de réponse borné

## Systèmes embarqués

- Contraintes de mémoire (faible empreinte)
- Contraintes de consommation (faible énergie)
- Contraintes d'encombrement