1.2. Generadores. Grupos cíclicos, diédricos y cuaterniones

Generadores

Sean (G, *) grupo y $R \subseteq G$ un subconjunto no vacío de G. Se denomina **subgrupo de** G **generado por** R al menos subgrupo de (G, *) que contiene a R. Se nota por $\langle R \rangle$:

$$\langle R \rangle = \{ a_1^{r_1} * \cdots * a_n^{r_n} : \text{ donde } a_i \in R, r_i \in \mathbb{Z}, \text{ y } n \in \mathbb{N} \}$$

- Un conjunto $R \subseteq G$ es un **conjunto generador** del grupo (G, *) si verifica que $G = \langle R \rangle$.
- El grupo (G,*) es **cíclico** si tiene un conjunto generador con un único elemento:

$$\exists a \in G \text{ tal que } G = \langle a \rangle = \{a^n : n \in \mathbb{Z}\},$$
 En notación aditiva: $G = \langle a \rangle = \{n \ a : n \in \mathbb{Z}\}$

En tal caso se dice que a es generador del grupo.

Orden de un elemento

Sean (G, *) grupo y $a \in G$. Si existe $n \in \mathbb{N}$ tal que $a^n = e_G$, se llama **orden de** a al menor entero positivo $r \in \mathbb{N}$ tal que $a^r = e_G$, y se escribe |a| = r. Si para todo $n \in \mathbb{N}$ se verifica que $a^n \neq e_G$, se dice que el orden de a es infinito y se escribe $|a| = \infty$.

Relación entre el orden de un elementos y el subgrupo que genera

Sean
$$(G,*)$$
 grupo y $a \in G$. Si $|a|=n$ entonces: $\langle a \rangle = \{e,a,\cdots,a^{n-1}\}$ y $|\langle a \rangle| = n$. Si $|a|=\infty$ entonces: $\langle a \rangle = \{\cdots,a^{-n},\cdots,a^{-2},a^{-1},e,a,a^2,\cdots,a^n,\cdots\}$ y $|\langle a \rangle| = \infty$.

Propiedades de grupos cíclicos

- 1. Todo grupo cíclico es abeliano.
- 2. Todo subgrupo de un grupo cíclico es cíclico.

Orden de elementos de un grupo cíclico

Sean (G,*) grupo y $a \in G$ con |a| = n

- 1. Para todo $k \in \mathbb{Z}$, se verifica que $a^k = e_G \Leftrightarrow n$ divide a k.
- 2. El orden de $a^k \in G$ es: $|a^k| = \frac{n}{\operatorname{mcd}(k,n)}$.

Grupo grupos diédricos y cuaterniones

- Se llama grupo cuatro de Klein al grupo $D_2 = \langle g, s : |g| = 2, |s| = 2, sg = gs \rangle$.
- Para todo n > 2, se llama **grupo diédrico** D_n al grupo:

$$D_n = \langle g, s : |g| = n, |s| = 2, sg = g^{-1}s \rangle$$

El grupo de las simetrías de un polígono regular de n lados, es grupo diédrico D_n .

• Se llama grupo de cuaterniones Q_8 al grupo:

$$Q_8 = \langle a, b : |a| = 4, |b| = 4, ba = a^{-1}b, b^2 = a^2 \rangle$$

Grupo cuatro de Klein $D_2 = \langle g, s : |g| = 2, |s| = 2, sg = gs \rangle$

•	e	g	s	gs
e	e	g	s	gs
g	$\mid g \mid$	e	gs	s
s	s	gs	e	g
gs	gs	s	g	e

$$\langle g = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$$

Grupo $D_3 = \langle g, s : |g| = 3, |s| = 2, sg = g^2 s \rangle$

*	e	g	g^2	s	gs	g^2s
e	e	g	g^2	s	gs	g^2s
g	g	g^2	e	gs	g^2s	s
g^2	g^2	e	g	g^2s	s	gs
s	s	g^2s	gs	e	g^2	g
gs	gs	s	g^2s	g	e	g^2
g^2s	g^2s	gs	s	g^2	g	e

$$\langle g = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$$

Grupo $D_4 = \langle g, s : |g| = 4, |s| = 2, sg = g^3 s \rangle$

•	e	g	g^2	g^3	s	gs	g^2s	g^3s
e	e	a	a^2	a^3	s	gs	g^2s	g^3s
g	$\mid g \mid$	g^2	g^3	e	gs	g^2s	g^3s	s
g^2	g^2	g^3	e	g	g^2s	g^3s	s	gs
g^3	g^3	e	g	g^2	g^3s	s	gs	g^2s
s	s	g^3s	g^2s	gs	e	g^3	g^2	g
gs	gs	s	g^3s	g^2s	g	e	g^3	g^2
g^2s	g^2s	gs	s	g^3s	g^2	g	e	g^3
g^3s	g^3s	g^2s	gs	s	g^3	g^2	g	e

$$\langle g = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$$

Grupo $Q_8 = \langle a, b : |a| = 4, |b| = 4, ba = a^{-1}b, a^2 = b^2 \rangle$

*	e	a	a^2	a^3	b	ab	a^2b	a^3b
e								
a								
a^2								
$\begin{bmatrix} a \\ a^2 \\ a^3 \end{bmatrix}$								
b								
ab								
a^2b								
$ \begin{array}{c} b\\ ab\\ a^2b\\ a^3b \end{array} $								

$$\langle a = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \rangle$$

Diagrama de Cayley de un grupo

Sea (G,*) un grupo finito con elementos $G=\{a_1,\cdots,a_n\}$ y sea $R\subset G$ un conjunto generador del grupo. El digrafo $\operatorname{Cay}(G,R)$ con conjunto de vértices $\{a_1,\cdots,a_n\}$ y conjunto de aristas $\{(a,a*r)\in G\times G:a\in G,r\in R\}$, se denomina digrafo de Cayley del grupo.

1.2.17. Problemas

- 1. Dado un grupo (G,*), demostrar que para todos $a,b,g\in G$ se verifica:
 - a) $|a| = |a^{-1}|$
 - b) $|a| = |g^{-1}ag|$
 - c) |ab| = |ba|
- 2. Qué orden puede tener el elemento $a \in G$ si $a^{24} = e$.
- 3. Sea (G,*) un grupo y sean $a,b\in G$ tales que $b\neq e$. Si |a|=2 y $b^2=aba$ ¿qué puede decirse sobre el orden de b?
- 4. Sea (G,*) un grupo y sean $a,b \in G$ tales que $b \neq e$
 - a) Demostrar que si $aba^{-1} = b^k$ entonces $a^rba^{-r} = b^{k^r}$
 - b) Si |a| = 5 y $b^2 = aba^{-1}$; qué puede decirse sobre el orden de b?
- 5. Escribir al menos 5 elementos de cada uno de los siguientes subgrupos cíclicos:
 - $a) \langle 25 \rangle \leq (\mathbb{Z}, +)$
 - b) $\langle \frac{1}{2} \rangle \leq (\mathbb{Q}^*, \cdot)$
 - $c) \langle \pi \rangle \leq (\mathbb{R}^*, \cdot)$
- 6. Indicar cuáles de los siguientes grupos son cíclicos y obtener sus generadores.

$$(H_1, *_1) = (\mathbb{Z}, +)$$
 $(H_2, *_2) = (\mathbb{Q}, +)$ $(H_3, *_3) = (\mathbb{Q}^* = \mathbb{Q} - \{0\}, \cdot)$ $(H_4, *_4) = (6\mathbb{Z}, +)$ $(H_5, *_5) = (\{6^n : n \in \mathbb{Z}\}, \cdot)$

- 7. Encontrar un generador de cada uno de los siguientes subgrupos de $(\mathbb{Z}_{12}, +_{12})$:
 - $a) \langle 2, 3 \rangle$
- b) $\langle 4, 6 \rangle$
- c) $\langle 6, 8, 10 \rangle$
- 8. Se considera el grupo $G = \langle g \rangle = \{e = g^6, a_1 = g, a_2 = g^2, a_3 = g^3, a_4 = g^4, a_5 = g^5\}$. Calcular los subgrupos $\langle a_2 \rangle$, $\langle a_3 \rangle$, $\langle a_4 \rangle$, $\langle a_5 \rangle$. ¿Cuáles son los generadores de G?
- 9. Obtener el orden de cada uno de los elementos del grupo ($\mathbb{Z}_2 \times \mathbb{Z}_4$, +) y encontrar un generador en caso de que fuera cíclico o un conjunto generador en caso de no ser cíclico.
- 10. Encontrar el número de generadores de los grupos cíclicos de órdenes 6, 8, 12 y 60.
- 11. Demostrar que si (G,*) es un grupo que no tiene subgrupos propios no triviales, entonces es cíclico.
- 12. Demostrar que si (G,*) es un grupo que no tiene subgrupos propios no triviales, entonces su orden es primo.

- 13. Encontrar el número de elementos de cada uno de los subgrupos cíclicos indicados:
 - a) $H_a = \langle 25 \rangle \leq \mathbb{Z}_{30}$
 - b) $H_b = \langle 30 \rangle \leq \mathbb{Z}_{42}$
 - c) $H_c = \langle i \rangle \leq \mathbb{C}^* = \mathbb{C} \{0\}$
 - d) $H_d = \langle \frac{1+i}{\sqrt{2}} \rangle \leq \mathbb{C}^* = \mathbb{C} \{0\}$
 - e) $H_e = \langle i+1 \rangle \le \mathbb{C}^* = \mathbb{C} \{0\}$
- 14. Sea $n \in \mathbb{N}$, demostrar que para todo k divisor n, el grupo $(\mathbb{Z}_n, +_n)$ tiene un único subgrupo de orden k, que es $H_k = \langle \frac{n}{k} \rangle$.
- 15. Sea H un subgrupo propio de $(\mathbb{Z}, +)$. Estudiar si puede determinarse el subgrupo H en cada uno de los siguientes casos:
 - a) Si $18, 30, 40 \in H$
 - b) Si 12, 30, $54 \in H$
- 16. Dibujar el diagrama de Cayley del grupo de cuaterniones y del producto directo: $\mathbb{Z}_4 \times \mathbb{Z}_2$.
- 17. Se considera el grupo de matrices (G, \cdot) , siendo: $G = \left\{ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, J = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, K = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, -Y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, -J = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, -K = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} \right\}.$ Calcular el orden de cada elemento y un conjunto, con cardinal mínimo, generador del grupo.
- 18. Describir el grupo de simetrías de un rectángulo y encontrar un conjunto generador.
- 19. Describir el grupo de simetrías de un rombo y encontrar un conjunto generador.
- 20. Se considera el grupo diédrico (D_n, \circ) , $D_n = \langle a, b : |a| = n, b^2 = e, ba = a^{-1}b \rangle$.
 - a) Demostrar que $ba^r = a^{-r}b$ para todo $0 \le r < n$
 - b) Demostrar que todo elemento de la forma a^rb tiene orden 2
 - c) Encontrar el centro de D_n
- 21. Encontrar en cada caso, un grupo con las condiciones requeridas:
 - a) G contiene elementos a y b tales que |a| = |b| = 2 y |ab| = 3
 - b) G contiene elementos a y b tales que |a| = |b| = 2 y |ab| = 4
 - c) G contiene elementos a y b tales que |a| = |b| = 2 y |ab| = 5
- 22. Demostrar que D_6 tiene un subgrupo de orden 4
- 23. Demostrar que D_3 no tiene un subgrupo de orden 4