Team GARCH Approach

CSC Hackathon 2023

Track 1: Image Deduplication task by ЛУН

HACKATHON 2023 30/06 - 09/07

Task & Key observation

- Images in pairs are extremely similar
- 18% of pairs are identical pixelwise
- Sources of divergency: crops, watermarks, slight difference in angles or illumination

- perceptual hashes
- keypoints detection and matching (SIFT, ORB + FLANN)

Perceptual Hashes

Keypoints detection: SIFT & ORB

- Needed to handle shrinks, crops etc.
- Used as 1 number: similarity score
- Tuning results: more points is better
- ORB: 9 times faster alternative to SIFT
- Keypoints matching using FLANN

ORB similarity distribution

Preprocessing: unpadding

Preprocessing: garbage in - garbage out

Review errors, and manually fix mislabeling

True label is 0, predicted 1

Table-driven data science goes brrrr...

preprocessed images

- hash differences
- ORB/SIFT similarity %

15 features_v2 = [

- image sizes

- 5 folds cross-val
- Grid-search threshold for the best F1 macro

Diversity

- Boosting tends to overfit to good predictors
- Features should be diverse, not precise
- Lower dimensional hashes better results in the final model

"Light" model

- faster
- better on validation

pair prediction time: **0.264** s (on 1 CPU) (no batches, no image loading time included)

Features:

- "unpadded.ahash 8",
- "unpadded.colorhash 21",
- "unpadded.dhash 8",
- "unpadded.phash 8",
- "unpadded.orb similarity",
- "unpadded.whash 8 haar"

LightGBM

- num_iterations: 38
- threshold: 0.5

Results: out of fold validation (train)

		precision	recall	f1-score	support
0	.0	0.999676	0.999919	0.999797	61685
1	.0	0.999827	0.999309	0.999568	28953
accura	су			0.999724	90638
macro a	vg	0.999752	0.999614	0.999683	90638
weighted a	νg	0.999724	0.999724	0.999724	90638

pair prediction time: 0.264 s (on 1 CPU) (no batches, no image loading time included)

Results: test

	precision	recall	f1-score	support
0	0.999805	0.998963	0.999384	15431
1	0.997791	0.999585	0.998687	7229
accuracy			0.999162	22660
macro avg	0.998798	0.999274	0.999036	22660
weighted avg	0.999163	0.999162	0.999162	22660

pair prediction time: 0.264 s (on 1 CPU) (no batches, no image loading time included)

"Heavy" model

- slower
- better on test

pair prediction time: **0.9836** s (on 1 CPU) (no batches, no image loading time included)

Features:

```
"unpadded.ahash 4",
"unpadded.ahash 8",
 "unpadded.colorhash 21",
"unpadded.dhash 4",
"unpadded.dhash 8",
"unpadded.height diff",
"unpadded.height ratio",
"unpadded.left height",
"unpadded.left width",
"unpadded.phash 4",
"unpadded.phash 8",
"unpadded.right height",
"unpadded.right width",
"unpadded.sift similarity",
"unpadded.whash 4 haar",
"unpadded.whash 8 haar",
"unpadded.width diff",
"unpadded.width ratio"
```

LightGBM

- num_iterations: 43
- threshold: 0.5

Results: out of fold validation (train)

	precision	recall	f1-score	support	
0.0	0.999514	0.999870	0.999692	61685	
1.0	0.999723	0.998964	0.999344	28953	
accuracy			0.999581	90638	
macro avg	0.999619	0.999417	0.999518	90638	
weighted avg	0.999581	0.999581	0.999581	90638	
roc_auc_score(y, y_pred)=0.9998494195693741					

pair prediction time: 0.9836 s (on 1 CPU) (no batches, no image loading time included)

Results: test ("heavy" model)

	precision	recall	f1-score	support
0	0.999741	0.999222	0.999481	15431
1	0.998342	0.999447	0.998894	7229
accuracy			0.999294	22660
macro avg	0.999041	0.999335	0.999188	22660
weighted avg	0.999294	0.999294	0.999294	22660

pair prediction time: 0.9836 s (on 1 CPU) (no batches, no image loading time included)

Further work

- * thorough feature selection
- better preprocessing
- data augmentation
- 🤔 crop resistant hash
- 😕 neural networks

Side note: tools

- DB for features
- code in VCS
- Notion & WandB for experiments tracking

mongoDB

Thank you for your attention! Any questions?

github.com/nikiandr/csc hackathon lun

Time for demo