2/2

2/2

-1/2

0/2

2/2

2/2

2/2

2/2

2/2

2/2

TITER Controls (55 questions), septembre 2010	
Nom et prénom, lisibles :	Identifiant (de haut en bas):
FALARREGVES	
Acm and	
,	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. ② J'ai lu les instructions et mon sujet est complet: les 4 entêtes sont +124/1/xx+···+124/4/xx+.	
Q.2 Un alphabet est:	
une suite finie un ensemble ordonn	né 🔲 un ensemble 🔣 un ensemble fini
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = (\{a\}^* \{b\}^*)^*$:	
$\Box L_1 \subseteq L_2 \qquad \qquad \Box L_1 \ \not\sqsubseteq \ L_2$	
Q.4 L'ensemble des programmes écrits en langage	Java est un ensemble
 ☑ récursif ☐ récursivement énumérable mais pas récursif ☐ ni récursivement énumérable ni récursif ☐ récursif mais pas récursivement énumérable 	
Q.5 Que vaut Suff((ab, c)):	
	\square \emptyset \square $\{a,b,c\}$ \square $\{b,\varepsilon\}$
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$	
	* \Box $\{a\}\{b\}^*\{a\}$ \Box $\{a\}\{b\}^* \cup \{b\}^*$ \cup $\{a\}\{a\}\{a\}^*$
Q.7 Pour toute expression rationnelle e , on a $e + \emptyset$	$\equiv \emptyset + e \equiv e.$
💆 vrai	☐ faux
Q.8 Pour toutes expressions rationnelles e, f , on a	$(e+f)^* \equiv (e^*f^*)^*.$
☐ faux	wrai
Q.9 Pour $e = (ab)^*, f = (a+b)^*$:	
$\Box L(e) \supseteq L(f) \qquad \Box L(e) \stackrel{\not\subseteq}{\supseteq} L(f)$	$L(e) \subseteq L(f) \qquad \qquad \square L(e) = L(f)$
Q.10 Si e et f sont deux expressions rationnelles, q	quelle identité n'est pas nécessairement vérifiée?
	$(f^*)^* \otimes (ef)^* \equiv e(fe)^* f \qquad \square \otimes^* \equiv \varepsilon$ $f^* \equiv (f^*(ef)^* e^*)^*$
Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :

0/2	☐ '-42-42' ☐ '42+42' ☑ '42+(42*42)' ☐ '-42'
	Q.12 Pour un langage rationnel donné il existe un unique automate fini non-déterministe à transitions spontanées qui reconnaît ce langage
2/2	faux □ vrai
	Q.13 Combien d'états a l'automate de Thompson de (abc)*[abcd]*.
0/2	\square 26 \boxtimes 24 \square 22 \square Thompson ne s'applique pas ici. \square 32 \square $\frac{\sqrt{\pi}}{2}$
0,2	Q.14 Combien d'états a l'automate de Thompson auquel je pense?
2/2	№ 4 □ 7 □ 9 □ 1
,	a h c
	Quel est le résultat d'une élimination arrière des transitions spontanées? Quel est le résultat d'une élimination arrière des transitions spontanées?
-1/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\square \xrightarrow{a \qquad b \qquad c \qquad c} \square \xrightarrow{a \qquad b \qquad c \qquad b} \square$
	Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?
2/2	$\square \longrightarrow \stackrel{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{\overset{b}{$
	☐ Aucune de ces réponses n'est
	correcte.
	Q.17 Le langage $\{\mathfrak{S}^n \mid \forall n \in \mathbb{N}\}$ est
2/2	🗌 non reconnaissable par automate fini 🏻 🗓 rationnel 🔲 fini 🔲 vide
	Q.18 Un automate fini qui a des transitions spontanées
2/2	\square accepte ε \square n'est pas déterministe \square est déterministe \square n'accepte pas ε
	Q.19 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):
2/2	$\frac{n(n+1)}{2}$ $n+1$ $n = 2^n$ $n = 11$ n'existe pas.
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^*a(a + b + c + d)^{n-1}$):
-1/2	$\boxtimes 2^n$ $\square \frac{n(n+1)(n+2)(n+3)}{4}$ $\square $ Il n'existe pas. $\bigcirc 4^n$
	a b

Q.21 Déterminiser cet automate.

2/2

Q.22 Duelle(s) opération(s) préserve(nt) la rationnalité?

0/2 ☑ Union ☑ Différence symétrique ☑ Différence ☑ Complémentaire ☑ Intersection ☐ Aucune de ces réponses n'est correcte.

Q.23 & Quelle(s) opération(s) préserve(nt) la rationnalité?

Q.24 Soit *Rec* l'ensemble des langages reconnaissables par DFA, et *Rat* l'ensemble des langages définissables par expressions rationnelles.

2/2 \square Rec \subseteq Rat \square Rec $\not\subseteq$ Rat \square Rec \supseteq Rat \square Rec \supseteq Rat

Q.25 On peut tester si un automate déterministe reconnaît un langage non vide.

0/2 ☑ Oui ☐ Cette question n'a pas de sens ☐ Seulement si le langage n'est pas rationnel ☐ Non

Q.26 On peut tester si un automate nondéterministe reconnaît un langage non vide.

0/2 □ rarement □ oui, toujours □ jamais □ souvent

Q.27 Si L_1 , L_2 sont rationnels, alors:

2/2 $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2)$ aussi $\Box \overline{L_1 \cap L_2} = \overline{L_1} \cap \overline{L_2}$ $\Box L_1 \subseteq L_2$ ou $L_2 \subseteq L_1$ $\Box \bigcup_{n \in \mathbb{N}} L_1^n \cdot L_2^n$ aussi

Q.28 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

2/2 □ Il n'existe pas. □ 6 □ 7 ■ 4

Q.29 Combien d'états a l'automate minimal qui accepte le langage $\{a, b, c, \dots, y, z\}^+$?

2/2 □ 52 □ 1 □ 26 ■ 2 □ Il en existe plusieurs!

Q.30 Combien d'états a l'automate minimal qui accepte le langage $\{a,b\}^+$?

Q.31

a
b
c
Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

- ☐ (abc)*
- a*b*c*
- \Box $(a+b+c)^*$
- $\Box a^* + b^* + a$

Q.32 🕏 Quels états peuvent être fusionnés sans changer le langage reconnu.

- ☐ 0 avec 1 et avec 2
- 1 avec 2
- 2 avec 4
- ☐ 1 avec 3
- ☐ Aucune de ces réponses n'est correcte.

Q.33 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

0/2

- \square Il existe un NFA qui reconnaisse \mathcal{P}
- P ne vérifie pas le lemme de pompage
- \square Il existe un ε -NFA qui reconnaisse ${\cal P}$
- $\ \square$ II existe un DFA qui reconnaisse ${\cal P}$

Q.34 Sur $\{a,b\}$, quel est le complémentaire de

0/2

Q.35 Sur {a, b}, quel automate reconnaît le complémentaire du langage de

0/2

 $\square \circlearrowleft \stackrel{a}{\longleftrightarrow} \stackrel{b}{\longleftrightarrow} \stackrel{\downarrow}{\circlearrowleft}$

Q.36

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- \Box $(ab^* + (a + b)^*)(a + b)^+$
- \square $(ab^* + (a+b)^*)a(a+b)^*$
- $\boxtimes (ab^+ + a + b^+)(a(a + b^+))^*$