# Class 07: Machine Learning

Lana (PID:A17013518)

# **Clustering Methods**

The broad goal here is to find grouping (clusters) in your input data.

### **K**means

First, let's make up some data to cluster.

```
x <- rnorm(1000)
hist(x)</pre>
```

# Histogram of x -3 -2 -1 0 1 2 3

Make a vector of length 60 with 30 points centered at -3 and 30 points centered at +3

```
tmp \leftarrow c(rnorm(30, mean = -3), rnorm(30, mean=3))
  tmp
 [1] -4.2636379 -4.2655327 -3.2921880 -3.1532843 -2.0853496 -3.3542151
 [7] -2.6278981 -3.5762702 -3.8662051 -3.5534463 -2.7073550 -4.2948711
[13] -2.5434864 -3.8787771 -2.8245481 -3.1000712 -2.3996220 -5.4969447
[19] -3.6359823 -3.4217302 -2.5206616 -3.6814908 -3.3113487 -3.6836124
[25] -0.9114059 -3.5052324 -5.3590019 -2.8990608 -0.9126699 -2.8240840
[31]
     2.9669712 3.2297234 1.7828317 2.9304934 2.7824536 3.2346053
[37]
     2.9082036 2.4601156 2.0678986 2.6143794 2.8871483 4.5250711
[43]
     3.8571460 2.8892992 4.2444765 4.0408944 2.4964628 3.2191740
[49]
     3.8705715 4.3421666
                           2.5293236 2.0007628 5.1667340 0.6551775
[55]
     2.9369875
               2.4235691 3.4345135 4.6592965 1.4338930 4.8880406
```

I will now make a wee x and y dataset with 2 groups of points.

```
rev(c(1:5))
[1] 5 4 3 2 1

x <- cbind(x=tmp, y=rev(tmp))
plot(x)</pre>
```



```
k <- kmeans(x, centers = 2)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

x y 1 3.115946 -3.264999 2 -3.264999 3.115946

Clustering vector:

Within cluster sum of squares by cluster:

[1] 61.33383 61.33383 (between\_SS / total\_SS = 90.9 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

Q. From your result object k how many ponts are in each cluster?

k\$size

[1] 30 30

Q. What "component" of your result object details the cluster membership?

k\$cluster

Q. Cluster centers?

k\$centers

```
x y
1 3.115946 -3.264999
2 -3.264999 3.115946
```

Plot for clustering results

```
plot(x, col = k$cluster)
points(k$centers, col = "pink", pch = 15, cex = 2)
```



### We can cluster into 4 groups

```
# kmeans
k4 <- kmeans(x, centers = 4)
# plot results
plot(x, col = k4$cluster)</pre>
```



A big limitation of kmeans is that it does what you ask even if you ask for silly clusters.

### **Hierarchical Clustering**

The main base R function for Hierarchical Clustering is hclust(). Unlike kmeans() you can not just pass it your data as input. You first need to calculate distance matrix.

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

### Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

Use plot() to view results

```
plot(hc)
abline(h=10, col = "pink")
```

## **Cluster Dendrogram**



d hclust (\*, "complete")

To make the "cut" and get our cluster membership vector we can use the  ${\tt cutree}$ () function.

```
grps <- cutree(hc, h=10)
grps</pre>
```

Make a plot of data colored by hclust results

```
plot(x, col=grps)
```



### principal Component Analysis (PCA)

Here we will do principal component analysis (PCA) on some food data from the UK.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names = 1)

# rownames(x) <- x[,1]
# x <- x[, -1]
# x</pre>
```

Q1. How many rows and columns are in your new data frame named x? What R functions could you use to answer this questions?

### dim(x)

### [1] 17 4

Q2. Which approach to solving the 'row-names problem' mentioned above do you prefer and why? Is one approach more robust than another under certain circumstances?

# I prefer the first approach just because it looks more simple and clean in the code and

Q3: Changing what optional argument in the above barplot() function results in the following plot?

# Changing beside to false results in changing the barplot because if false, columns of he barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))



Q5: Generating all pairwise plots may help somewhat. Can you make sense of the following code and resulting figure? What does it mean if a given point lies on the diagonal for a given plot?

pairs(x, col=rainbow(10), pch=16)



Q6. What is the main differences between N. Ireland and the other countries of the UK in terms of this data-set?

### PCA to the Rescue

The main "base" R function of PCA is called prcomp().

```
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 324.1502 212.7478 73.87622 2.921e-14
Proportion of Variance 0.6744 0.2905 0.03503 0.000e+00
Cumulative Proportion 0.6744 0.9650 1.00000 1.000e+00
```

Q7. Complete the code below to generate a plot of PC1 vs PC2. The second line adds text labels over the data points.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500)) text(pca$x[,1], pca$x[,2], colnames(x))
```



Q8. Customize your plot so that the colors of the country names match the colors in our UK and Ireland map and table at start of this document.

```
plot(pca$x[,1], pca$x[,2], xlab="PC1", ylab="PC2", xlim=c(-270,500))
text(pca$x[,1], pca$x[,2], colnames(x))
```



Q. How much variance is captured in 2 PCs

96.5%

To make our main "PC score plot" or "PC1 vs PC2 plot", or "PC plot" or "ordination plot"

### \$names

[1] "sdev" "rotation" "center" "scale" "x'

### \$class

[1] "prcomp"

We are after the pca\$x result component to make our main PCA plot.

### pca\$x

PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13

```
mycols <- c("orange", "red", "blue", "darkgreen")
plot(pca$x[,1], pca$x[,2], col=mycols, pch=16, xlab = "PC1 (67.4%)", ylab = "PC2 (29%)")</pre>
```



Another important result from PCA is how the original variables (in this case foods) contribute to the PCs.

This is contained in the pca\$rotation object - folks often call this the "loading" or "contributions" to the PCs

### pca\$rotation

|                | PC1          | PC2          | PC3         | PC4          |
|----------------|--------------|--------------|-------------|--------------|
| Cheese         | -0.056955380 | 0.016012850  | 0.02394295  | -0.409382587 |
| Carcass_meat   | 0.047927628  | 0.013915823  | 0.06367111  | 0.729481922  |
| Other_meat     | -0.258916658 | -0.015331138 | -0.55384854 | 0.331001134  |
| Fish           | -0.084414983 | -0.050754947 | 0.03906481  | 0.022375878  |
| Fats_and_oils  | -0.005193623 | -0.095388656 | -0.12522257 | 0.034512161  |
| Sugars         | -0.037620983 | -0.043021699 | -0.03605745 | 0.024943337  |
| Fresh_potatoes | 0.401402060  | -0.715017078 | -0.20668248 | 0.021396007  |
| Fresh_Veg      | -0.151849942 | -0.144900268 | 0.21382237  | 0.001606882  |
| Other_Veg      | -0.243593729 | -0.225450923 | -0.05332841 | 0.031153231  |

```
Processed_potatoes
               Processed_Veg
                -0.036488269 -0.045451802 0.05289191 0.021250980
Fresh_fruit
                -0.632640898 -0.177740743 0.40012865 0.227657348
Cereals
                -0.047702858 -0.212599678 -0.35884921 0.100043319
Beverages
                -0.026187756 -0.030560542 -0.04135860 -0.018382072
Soft_drinks
                0.232244140 0.555124311 -0.16942648 0.222319484
Alcoholic_drinks
                Confectionery
                -0.029650201 0.005949921 -0.05232164 0.001890737
```

We can make a plot along PC1.

```
library(ggplot2)

contrib <- as.data.frame(pca$rotation)

ggplot(contrib) +
  aes(PC1, rownames(contrib)) +
  geom_col(col = "pink")</pre>
```

