We chose the following feature sets:

- 1. $POS_{t-1} + POS_t$
- 2. $POS_{t-2} + POS_{t-1} + POS_{t}$
- 3. $POS_{t-1} + POS_t + POS_{t+1}$
- 4. $POS_{t-2} + POS_{t-1} + POS_{t} + POS_{t+1}$
- 5. $POS_{t-2} + POS_{t-1} + POS_t + POS_{t+1} + POS_{t+2}$

We tested these features with the following machine learning methods:

- Logistic Regression
- Decision Trees

We conducted experiments with each combination of these two sets. We obtained the following results:

	Precision	Recall	F1 Score
$POS_{t-1} + POS_t$	0.88	0.89	0.88
$POS_{t-2} + POS_{t-1} + POS_{t}$	0.89	0.90	0.89
$POS_{t-1} + POS_t + POS_{t+1}$	0.91	0.92	0.91
$POS_{t-2} + POS_{t-1} + POS_t + POS_{t+1}$	0.92	0.92	0.92
$POS_{t-2} + POS_{t-1} + POS_{t} + POS_{t+1} + POS_{t+2}$	0.92	0.92	0.92

Table 1: Precision, Recall and F1 Score metrics for each feature set obtained using Logistic Regression.

	Precision	Recall	F1 Score
$POS_{t-1} + POS_t$	0.89	0.90	0.89
$POS_{t-2} + POS_{t-1} + POS_{t}$	0.92	0.92	0.91
$POS_{t-1} + POS_t + POS_{t+1}$	0.93	0.93	0.93
$POS_{t-2} + POS_{t-1} + POS_{t} + POS_{t+1}$	0.96	0.96	0.96
$POS_{t-2} + POS_{t-1} + POS_{t} + POS_{t+1} + POS_{t+2}$	0.98	0.98	0.98

Table 2: Precision, Recall and F1 Score metrics for each feature set obtained using Decision Trees.

We also tried using tokens (first column in the data) in features; but with that approach, we think that our model over-fit and we obtained lower scores.

We observed that increasing the number of POS tags in a feature set increases performance.

Here are graphs showing performance of each combination.

Figure 1: Precision values of feature sets.

Figure 2: Recall values of feature sets.

Figure 3: F1 Scores of feature sets.