Calculus I

Derivatives of arbitrary radicals, part 2

Todor Miley

2019

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) =$?
Let $g(u) =$?
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = ?$
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2+x+1}}$$
.
Let $h(x) = x^2+x+1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= (?)$ (?)

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)$ (?)

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)$ (?

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$
 $= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)(2x + 1)$

$$\frac{d}{dx}[h(x)]^n = n[h(x)]^{n-1} \cdot h'(x)$$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x) \qquad \text{(notation 1)}$$

$$(g(u))' = g'(u)u' \qquad \text{where } u = h(x) \text{ (notation 2)}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} \qquad \text{where } y = g(u) \text{ (notation 3)} .$$

Differentiate
$$f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$$
.
Let $h(x) = x^2 + x + 1$.
Let $g(u) = u^{-\frac{1}{3}}$.
Then $f(x) = g(h(x))$.
Chain Rule: $f'(x) = g'(h(x))h'(x)$

$$= \left(-\frac{1}{3}(h(x))^{-\frac{4}{3}}\right)(2x + 1)$$

$$= -\frac{2x + 1}{3}(x^2 + x + 1)^{-\frac{4}{3}}$$
.