Лекция 12 Надежность вычислительных систем

Ефимов Александр Владимирович E-mail: alexandr.v.efimov@sibguti.ru

Курс «Архитектура вычислительных систем» СибГУТИ, 2018

Основные понятия теории надежности. «Отказ»

Отказ - событие, при котором ЭВМ теряет способность выполнять заданные функции по переработке информации.

Полный отказ приводит к абсолютному нарушению работоспособности ЭВМ, или, говоря иначе, к потере её способности выполнять любые из заданных функций по переработке информации.

Частичный отказ ЭВМ вызывает ухудшение качества её функционирования или сокращение количества выполняемых функций.

Основные понятия теории надежности. «Отказ»

Под отказом будем понимать устойчивое событие, которое само не устраняется, и может быть устранено только в результате ремонта (или восстановления) машины.

Событие отказа, имеющие временный характер и способные самоустраняться, называется сбой.

Далее будем рассматривать устойчивые отказы, не различая полный и частичный отказы.

В случае, когда в машине произошел отказ, и он не устранен, то говорят, что ЭВМ находится в неработоспособном состоянии (в состоянии отказа).

Основные понятия теории надежности. «Восстановление»

Восстановлением называется событие, заключающееся в том, что отказавшая ЭВМ полностью приобретает способность выполнять заданные функции по обработке информации.

Восстановление отказавшей ЭВМ может быть осуществлено автоматически (в общем случае с помощью аппаратурно-программных средств) или полуавтоматически (с участием бригады технического обслуживания).

Далее будем считать, что восстановление производится средством, называемым восстановливающим устройством (ВУ).

Основные понятия теории надежности. «Производительность»

$$\omega(\tau) = \begin{cases} 1, & \text{если в момент времени } \tau \geq 0 & \text{ЭВМ} \\ & \text{находится в работоспос обном состоянии;} \\ 0, & \text{если в момент времени } \tau \geq 0 & \text{ЭВМ} \\ & \text{находится в неработоспособном состоянии;} \end{cases}$$

 $\omega(\tau)$ - производительность ЭВМ в момент времени $\tau \geq 0$ - случайная величина, являющаяся моментом возникновения первого отказа в работе ЭВМ.

$$0 \quad \tau \quad \xi \quad 0 \quad \xi \quad \tau$$

$$\omega(\tau) = 1 \quad \omega(\tau) = 0$$

Функция надежности

Функция надежности (или вероятность безотказной работы) ЭВМ характеризует способность ЭВМ обеспечить на промежутке времени потенциально возможную производительность.

Функцией надежности ЭВМ называется:

$$r(t) = P\{ \forall \tau \in [0, t) \rightarrow \omega(\tau) = 1 \}$$

Вероятность

для всякого au

Производительность ЭВМ, равна потенциально возможной

принадлежащего промежутку времени от 0 до *t*

Функция надежности

Второе определение функции:

$$r(t) = P\{\xi > t\},$$
 Вероятность Момент возникновения первого отказа наступит после $t \geq 0$

Свойства функции надежности

- **1.** r(0) = 1; событие $\xi > 0$ считается достоверным, (т.е. в момент начала функционирования ЭВМ работоспособна) $P\{\xi > 0\} = 1$;
- **2.** $r(+\infty) = 0$; событие $\xi > +\infty$ считается невозможным, (т.е. ЭВМ работоспособна на конечном промежутке времени) $P\{\xi > (+\infty)\} = 0$;
- **3.** $r(t_1) \ge r(t_2)$ для $t_1 \le t_2$, события $\xi > t_2$ и $t_2 \ge \xi > t_1$ не совместимы, следовательно по теореме сложения вероятностей:

$$r(t_1) = P\{\xi > t_1\} = P\{(\xi > t_2) \cup (t_2 \ge \xi > t_1)\} =$$

$$= P\{\xi > t_2\} + P\{t_2 \ge \xi > t_1\} \ge P\{\xi > t_2\} = r(t_2).$$

Функция ненадежности

$$q(t) = 1 - r(t).$$

Может рассматриваться как интегральная функция распределения случайной величины ξ .

Для оценки q(t) на практике пользуются формулой:

$$q(t) \approx \widetilde{q}(t) = n(t)/N,$$

N - число работоспособных ЭВМ в начале испытаний

n(t)- число отказавших машин в промежутке времени [0, t).

Среднее время безотказной работы

$$\mathcal{G} = \int_{0}^{\infty} t dq(t) = -\int_{0}^{\infty} t dr(t) = -tr(t) / \int_{0}^{\infty} + \int_{0}^{\infty} r(t) dt = \int_{0}^{\infty} r(t) dt;$$

$$\tilde{\mathcal{G}} = \frac{1}{N} \sum_{i=1}^{N} t_i,$$

 t_i - Время безотказной работы *i-*ой машины $i \in \{1, 2, ..., N\}$.

Интенсивность отказов

$$\lambda(t) = \frac{1}{1 - q(t)} \frac{dq(t)}{dt} = -\frac{1}{r(t)} \frac{dr(t)}{dt},$$
 (1)

$$\lambda(t) \approx \widetilde{\lambda}(t) = n(\Delta t)/[N(t) \cdot \Delta t],$$
 (2)

- $n(\Delta t)$ число отказавших ЭВМ в промежутке времени $[t,t+\Delta t);$
- N(t) число безотказно работающих ЭВМ в момент времени t.

Расчет функции надежности

Подставив в (2) оценки:

$$n(\Delta t) = n(t + \Delta t) - n(t) \approx N[q(t + \Delta t) - q(t)]$$
$$N(t) = N - n(t) \approx N[1 - q(t)]$$

и осуществив предельный переход при $\Delta t \to 0$, получим (1).

Расчет функции надежности

Интегрируя от 0 до t выражение (1), получаем:

$$\int_{0}^{t} \lambda(\tau)d\tau = -\ln r(t); \qquad r(t) = \exp\left[-\int_{0}^{t} \lambda(\tau)d\tau\right].$$

Практически установлено, что зависимость интенсивности отказов от времени имеет место на периоде приработки ЭВМ.

После приработки ЭВМ интенсивность отказов остается постоянной .

Функция надежности

$$r(t) = \exp(-\lambda t); \quad \mathcal{G} = \int_{0}^{\infty} e^{-\lambda t} dt = -\frac{1}{\lambda} e^{-\lambda t} \int_{0}^{\infty} = \frac{1}{\lambda}$$

 $\lambda = const, \;\;$ – среднее число отказов, появляющихся в машине в единицу времени.

 $\mathcal{V}(t)$ – вероятность того, что в ЭВМ произойдет ноль отказов за время t

Функция надежности

Вероятность появления в ЭВМ $\it k$ отказов за время $\it t$ равна:

$$r_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}; \qquad \sum_{k=0}^{\infty} r_k(t) = 1; \qquad r_0(t) = r(t).$$

Среднее число отказов, появляющихся на промежутке времени [0,t) равно:

$$\sum_{k=1}^{\infty} k r_k(t) = e^{-\lambda t} \lambda t \sum_{k=1}^{\infty} \frac{(\lambda t)^{k-1}}{(k-1)!} = \lambda t,$$

Таким образом, поток отказов в ЭВМ является пуассоновским или простейшим.

Функция восстановимости

Функция восстановимости ЭВМ (вероятность восстановления работоспособного состояния) характеризует способность ЭВМ восстанавливать производительность после отказа с помощью ВУ.

принадлежащего промежутку времени от 0 до *t*

Свойства функции восстановимости

- **1.** u(0) = 0;
- **2.** $u(+\infty) = 1$;
- **3.** $u(t_1) \le u(t_2)$ для $t_1 \le t_2$.
- u(t) интегральная функция распределения времени восстановления отказавшей ЭВМ.

Оценка на практике:

$$u(t) \approx \widetilde{u}(t) = m(t)/M,$$

- M число отказавших машин в начале восстановления.
- m(t) число восстановленных машин за время t при условии, что ремонт каждой ЭВМ осуществляется своим ВУ.

Расчет функции восстановимости

$$u(t) = 1 - \exp(-\mu t); \quad \tau = \int_{0}^{\infty} t du(t) = 1/\mu,$$

- т среднее время восстановления работоспособного состояния ЭВМ.
- интенсивность восстановления ЭВМ или среднее число восстановлений ЭВМ, которое может произвести ВУ в единицу времени.

Примечания

- 1. Проведение статистических экспериментов, для машин 1-го и 2-го поколений и для мощных ЭВМ 3-го поколения было невозможным.
- 2. При оценке показателей надежности ЭВМ целесообразно "эксплуатировать" эргодическую гипотезу, кт. позволяет вместо статистических результатов наблюдения за большим числом машин воспользоваться результатами наблюдения за одной машиной в течении длительного времени

Примечания

- 3. Справедливость экспоненциального закона распределения времени безотказной работы ЭВМ подтверждена обработкой статистических данных по эксплуатации ЭВМ 1 3 поколений.
- 4. Среднее время безотказной работы современных микропроцессорных ЭВМ оценивается в пределах: 10^5 10^8 ч. Для отыскания оценок показателей надежности ЭВМ разработаны методики ускоренных экспериментов (например, использующие нагревание интегральных схем).

Литература

Хорошевский В.Г. Архитектура вычислительных систем.

Учебное пособие. – М.: МГТУ им. Н.Э. Баумана, 2005; 2-е издание, 2008.

Хорошевский В.Г. Инженерные анализ функционирования вычислительных машин и систем. – М.: "Радио и связь", 1987.