实外 CCF CSP2022-J模拟赛

(入门组:第5场)

时间: 2022年 10月 22日 8:00~12:00

一. 题目概况

中文题目名称	蚂蚁	马农	单元格	围攻
英文题目与子目录名	ant	horse	cell	war
可执行文件名	ant	horse	cell	war
输入文件名	ant.in	horse.in	cell.in	war.in
输出文件名	ant.out	horse.out	cell.out	war.out
每个测试点时限	1秒	1秒	1秒	1秒
测试点数目	10	10	10	10
每个测试点分值	10	10	10	10
附加样例文件	有	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)			
题目类型	传统	传统	传统	传统
运行内存上限	256M	256M	256M	256M

二. 提交源程序文件名

对于 C++语言	ant.cpp	horse.cpp	cell.cpp	war.cpp
对于 C 语言	ant.c	horse.c	cell.c	war.c
对于 pascal 语言	ant.pas	horse.pas	cell.pas	war.pas

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o ant	g++ -o horse	g++ -o cell	g++ -o war
	ant.cpp -lm	horse.cpp -lm	cell.cpp -lm	war.cpp -lm
对于 C 语言	gcc -o ant	gcc -o horse	gcc -o cell	gcc -o war
	ant.c -lm	horse.c -lm	cell.c -lm	war.c -lm
对于 pascal 语言	fpc ant.pas	fpc horse.pas	fpc cell.pas	fpc war.pas

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) II x2 240 processor, 2.8GHz, 内存 4G, 上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、提交的程序代码文件的放置位置请参照各省的具体要求。
- 6、特别提醒:评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

1. 蚂蚁

(ant.cpp/c/pas)

【问题描述】

n 只蚂蚁以每秒 1cm 的速度在长为 Lcm 的竿子上爬行。当蚂蚁爬到竿子的端点时就会掉落。由于竿子太细,两只蚂蚁相遇时,它们不能交错通过,只能各自反向爬回去。对于每只蚂蚁,我们知道它距离竿子左端的距离 x_i,但不知道它当前的朝向。请计算各种情况当中,所有蚂蚁落下竿子所需的最短时间和最长时间。

例如: 竿子长10cm, 3 只蚂蚁位置为 2、 6、7, 最短需要 4 秒(左、右、右) ,最长需要 8 秒 (右、右、右) 。

【输入格式】

输入文件名为 ant.in。

第 1 行: 2 个整数 N 和 L, N 为蚂蚁的数量,L 为杆子的长度(1 <= L <= 10^9 , 1 <= N <= 50000)

第 2 - N + 1 行: 每行一个整数 A_i , 表示蚂蚁的位置(0 < A_i < L)

【输出格式】

输出文件名为 ant.out。

输出2个数,中间用空格分隔,分别表示最短时间和最长时间。

【输入样例1】

3 10

2

6

7

【输出样例1】

4 8

【数据说明】

对于 10% 的数据 N≤1

对于 20% 的数据 N < 2

对于 50% 的数据 N≤5

对于 60% 的数据 N ≤ 50

对于 70% 的数据 N < 500

对于 80% 的数据 N ≤ 5000

对于 100% 的数据 N ≤ 50000

2. 马农

horse.cpp/c/pas)

【问题描述】

在观看完战马检阅之后,来自大草原的两兄弟决心成为超级"马农",专门饲养战马。兄弟两回到草原,将可以养马的区域,分为 N*N 的单位面积的正方形,并实地进行考察,归纳出了每个单位面积可以养马所获得的收益。接下来就要开始规划他们各自的马场了。首先,两人的马场都必须是矩形区域。同时,为了方便两人互相照应,也为了防止马匹互相走散,规定两个马场的矩形区域相邻,且只有一个交点。最后,互不认输的两人希望两个马场的收益相当,这样才不会影响他们兄弟的感情。现在,兄弟两找到你这位设计师,希望你给他们设计马场,问共有多少种设计方案。

【输入格式】

输入文件名为 horse.in。

第一行一个整数 N, 表示整个草原的大小为 N*N。

接下来 N 行,每行 N 个整数 A(i,j),表示第 i 行第 j 列的单位草地的收成。 (注意:收益可能是负数,养马也不是包赚的,马匹也可能出现生病死亡等意外。)

【输出格式】

输出文件名为 horse.out。 输出符合两人要求的草原分配方案数。

【输入样例】

3

1 2 3

4 5 6

7 8 9

【输出样例】

2

【样例解释】

【数据规模与约定】

40%的数据, N<=10。

100%的数据, N<=50, -1000<A(i, j)<1000。

3. 单元格

(cell.cpp/c/pas)

【问题描述】

在一个 R 行 C 列的表格里,我们要选出 3 个不同的单元格。但要满足如下的两个条件:

- (1) 选中的任意两个单元格都不在同一行。
- (2) 选中的任意两个单元格都不在同一列。

假设我们选中的单元格分别是: A, B, C, 那么我们定义这种选择的"费用"=f[A] [B]+f[B][C]+f[C][A]。 其中 f[A][B] 是指单元格 A 到单元格 B 的距离,即两个单元格所在行编号的差的绝对值+两个单元格所在列编号的差的绝对值。例如:单元格A在第 3 行第 2 列,单元格 B 在第 5 行第 1 列,那么f[A][B]=|3-5|+|2-1|=2+1=3。至于f[B][C]、f[C][A]的意义也是同样的道理。

现在你的任务是:有多少种不同的选择方案,使得"费用"不小于给定的数minT,而且不大于给定的数 maxT,即"费用"在[minT, maxT]范围内有多少种不同的选择方案。答案模1000000007。所谓的两种不同方案是指:只要它们选中的单元格有一个不同,就认为是不同的方案。

【输入格式】

输入文件名为 cell.in。

一行, 4 个整数, R、C、minT、maxT。3≤R,C≤4000, 1≤minT≤maxT≤20000。

【输出格式】

输出文件名为 cell.out。

一个整数,表示不同的选择方案数量模 1000000007 后的结果。

【输入输出样例】

	cell.in	cell.out
Sample 1	3 3 1 20000	6
Sample 2	3 3 4 7	0
Sample 3	4 6 9 12	264
Sample 4	7 5 13 18	1212
Sample 5	4000 4000 4000 14000	859690013

【数据规模与约定】

对于30%的数据. 3 <= R. C <= 70

对于100%的数据, 3 <= R, C <= 4000

4. 围攻

(war.cpp/c/pas)

【问题描述】

经过刘邦的严密缉查,项羽的位置也就水落石出了。刘邦便趁机集合军队,进行对项羽的围攻。为了增加胜率,张良研究出一种全新的战法,目的就是一举打败难缠的项羽。这种军队共有 N 个单位,一个接着一个排成一排,每个单位可以是士兵,或者是战车,这样的组合可以爆发出意想不到的强大战斗力;但有一点,两辆战车不能相邻,否则会发生剐蹭等不好的事故。刘邦希望知道这 N 个单位的军队都多少种不同的排列方法,以便在战场中随机应变。两种军队的排列方法是不同的,当且仅当某一个单位对应不同,如:第 i 位 这种是士兵,那种是战车……

【输入格式】

输入文件名为war.in。 输入仅一行,一个整数N。

【输出格式】

输出文件名为 war.out。 输出仅一行,一个整数,表示排列的方案数。 答案对 10 ^ 8 + 7 取模。

【输入样例】

3

【输出样例】

5

【数据规模与约定】

对于30%的数据: N≤15; 对于70%的数据: N≤10^6; 对于100%的数据: N≤10^18。