Examen d'Estadística Enginyeria Edificació. Juny 2010

Problema 1 La següent taula mostra les dades de consum de ciment (en tones) i de nombre d'aturats a les Illes Balears entre els mesos de gener i desembre de l'any 2008.

Ciment	88218	94935	77395	96706	76975	75862	62318	41726	50628	60192	50970	36850
Aturats	50518	48335	45184	41233	36439	36929	39927	43540	46807	56982	70144	73298

Es demana calcular, amb dues xifres decimals de precissió en els càlculs:

- a) Mediana, primer i tercer quartils i percentil 90 de la variable "nombre d'aturats".
- b) Mitjana i desviació típica de la variable "nombre d'aturats".
- c) Mitjana i desviació típica de la variable "consum de ciment".
- d) Covariància i coeficient de correlació entre les variables "nombre d'aturats" i "consum de ciment", donant una interpretació del valor trobat.

Problema 2 Rafel y Carlos juegan un partido de tenis. Al final del partido, Carlos coge por error una pelota de las que originalmente traía Rafel. Inicialmente Rafel traía 7 pelotas marca Funlop y 3 marca Milson, y Carlos traía 5 pelotas marca Funlop y 6 marca Milson.

- (a) Identifica y da nombre a los sucesos más significativos del problema.
- (b) Si al finalizar el partido cogemos una pelota de las que lleva Carlos, cuál es la probabilidad de que sea de marca Funlop?
- (c) Si al final del partido cogemos una pelota de Carlos y es de marca Milson, cuál es la probabilidad de que la pelota cogida por error a Rafel sea de esta marca?

Problema 3 Al apostar en un juego de azar la probabilidad de ganar es igual a $\frac{7}{20}$ y la de perder, $\frac{13}{20}$. De un total de 19 apuestas:

- (a) Cuál es la probabilidad de ganar exactamente en 5 de ellas?
- (b) Cuál es la probabilidad de ganar más de la mitad de las apuestas?
- (c) Cuál es la probabilidad de ganar más de 5 y menos de 15 apuestas?
- (d) Cuál es el valor esperado y la varianza del número de apuestas ganadas?

Consideremos un total de 100 apuestas.

- (e) Si cada apuesta vale 3 euros y cobramos 5 euros en caso de ganarla, cuál es el valor esperado y la varianza de la cantidad ganada tras 100 apuestas?
- (f) Cuál es la probabilidad de perder dinero en 100 apuestas?
 (Indicación: Usa la distribución normal para aproximar la distribución que has utilizado en este problema.)

Problema 4 En una encuesta hecha a 500 constructores, 196 contestaron afirmativamente a la siguiente pregunta: "cree usted que el precio de las viviendas es razonable?".

- (a) Halla un intervalo de confianza, con un nivel de confianza del 95%, para el porcentaje de constructores que cree que el precio de las viviendas es razonable. Sin hacer cálculos, razona si un intervalo de 99% de nivel de confianza es mayor, igual o menor que el de 95%.
- (b) Hace 5 años, el porcentaje de constructores que creía que el precio de la vivienda era razonable era del 41,9 %. Con un nivel de significación de 0,05, los datos de la muestra permiten asegurar que este porcentaje ha disminuido?

Variables aleatòries usuals

V.A. (X)	$f_X(x)$		E(X)	Var(X)	Altres propietats
Binomial $B(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	$si x \in \Omega_X$	np	np(1-p)	
$\Omega_X = \{0, 1, \cdots, n\}$	0	si $x \notin \Omega_X$			
Poisson $Po(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	si $x \in \Omega_X$	λ	λ	
$\Omega_X = \{0, 1, \cdots\}$	0	si $x \notin \Omega_X$			
Uniforme $\mathcal{U}(a,b)$	$\frac{1}{b-a}$	si $x \in [a, b]$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$F_X(x) = \begin{cases} \frac{x-a}{b-a} & x \in [a,b] \\ 0 & x < a \\ 1 & x > b \end{cases}$
$\Omega_X = [a, b]$	0	si $x \notin [a, b]$			`
Gaussiana $X(\mu, \sigma^2)$			μ	σ^2	$Z \sim N(0,1)$ normal estándar
$\Omega_X = \mathbb{R}$					$F_Z(-z) = 1 - F_Z(z)$
					$F_X(x) = F_Z(\frac{x-\mu}{\sigma})$

Estadístics més usuals

Paràmetre mostral (estadístic)	Esperança	Variància	Distribució de probabilitat	
$ar{X}$	$E(\bar{X}) = \mu$	$\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$	$\begin{split} \bar{X} &\sim N(\mu, \frac{\sigma^2}{n}) \\ \frac{\bar{X} - \mu}{\hat{s}_X / \sqrt{n}} &\sim t_{n-1} \\ \bar{X} &\sim N(\mu, \frac{\hat{s}_X^2}{n}) \end{split}$	població normal, σ conegut
			$\frac{X-\mu}{\hat{s}_X/\sqrt{n}} \sim t_{n-1}$	població normal, σ desconegut, $n \leq 30$
				σ desconegut, $n > 30$
\hat{s}_X^2	$E(\hat{s}_X^2) = \sigma^2$	$\operatorname{Var}(\hat{s}_X^2) = \frac{2\sigma^4}{n-1}$	$\frac{n-1}{\sigma^2}\hat{s}_X^2 \sim \chi_{n-1}^2$	població normal
\hat{p}_X	$E(\hat{p}_X) = p$	$\operatorname{Var}(\hat{p}_X) = \frac{p(1-p)}{n}$	$\hat{p}_X \sim N(p, \frac{p(1-p)}{n})$ $\hat{p}_X \sim t_{n-1}$	$n > 30$ població normal, $n \leq 30$

Intervals de confiança més usuals

Paràmetre mostral	Interval de confiança	
Mitjana	$ar{X} \pm z_{lpha/2} rac{\sigma}{\sqrt{n}}$	població normal, σ conegut
	$\bar{X} \pm t_{n-1,\alpha/2} \frac{\hat{s}_X}{\sqrt{n}}$	població normal, σ desconegut i $n \leq 30$
	$ar{X} \pm z_{lpha/2} rac{\hat{s}_X}{\sqrt{n}}$	si $n > 30$
Variància	$\left[\frac{n-1}{\chi_{n-1,1-\alpha/2}^2}\hat{s}_X^2, \frac{n-1}{\chi_{n-1,\alpha/2}^2}\hat{s}_X^2\right]$	si la població segueix una llei normal
Proporció	$\hat{p}_X \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_X (1 - \hat{p}_X)}{n}}$	si $n > 30$