FINM 33000: HW 6 Solutions

November 21, 2024

Problem 1

(a) The plan's payoff is (# of shares you acquire) \times (market value of each share) -3000, which is

$$\begin{split} \frac{3000}{\min(30,\ 0.75\times S_1)}\times S_1 - 3000 &= \max\left(\frac{3000}{30},\ \frac{3000}{0.75\times S_1}\right)\times S_1 - 3000 & \text{d1=0.3373} \\ &= \max\left(100S_1,\ 4000\right) - 3000 &= 100\max\left(S_1 - 40,\ 0\right) + 10000 \end{split}$$

the same as 100 calls struck at 40, plus 1000 dollars. Each call has time-0 value 4.4811 by the Black-Scholes formula, so the total value of the plan is $100 \times 4.4811 + 1000e^{-0.05} = 1399.34$

- (b) Go short 100 one-year 40-strike calls. This position does not need to be rebalanced.
- (c) Calls are unavailable, but we can dynamically *replicate*, using stock, the position short 100 one-year 40-strike calls. Black-Scholes delta at time 0 is $N(d_1) = 0.6243$, so we should be short $100 \times 0.6243 = 62.43$ shares. This position must be rebalanced.

Problem 2

Note: we won't need to use the assumption $\beta > 1$. Our calculations will be valid for *general* leverage ratios β , including $\beta < 0$ (which would model an "inverse ETF").

(a) Let b_t be the number of units of the bank account. The total portfolio value is

$$L_t = \beta \frac{L_t}{S_t} S_t + b_t B_t$$

Therefore

$$b_t = (1 - \beta) \frac{L_t}{B_t}.$$

(b) By definition of self-financing,

$$\mathrm{d}L_t = \beta \frac{L_t}{S_t} \mathrm{d}S_t + b_t \mathrm{d}B_t$$

Plugging in $dS_t = \mu S_t dt + \sigma S_t dW_t$ and $dB_t = rB_t dt$, and the b_t solution from (a),

$$dL_t = \beta L_t (\mu dt + \sigma dW_t) + (1 - \beta)rL_t dt$$
$$= (\beta \mu + (1 - \beta)r)L_t dt + \beta \sigma L_t dW_t$$

which is GBM with drift $\beta \mu + (1 - \beta)r$ and volatility $\beta \sigma$. Intuition: drift μ and volatility σ both get multiplied by β . Moreover, pay interest if $\beta > 1$ (or earn interest if $\beta < 1$)

(Follow-up question: what are the risk-neutral drift and volatility of L?)

Problem 3

(a) Call price C_t equals put price P_t plus value of a forward with the same strike and same expiry as the call and put:

$$C_t = P_t + S_t - Ke^{-r(T-t)}$$

(b) Using put-call parity, the B-S call formula, and the fact that N(x) + N(-x) = 1,

$$P_{t} = C_{t} - S_{t} + Ke^{-r(T-t)}$$

$$= S_{t}N(d_{1}) - Ke^{-r(T-t)}N(d_{2}) - S_{t} + Ke^{-r(T-t)}$$

$$= S_{t}(N(d_{1}) - 1) - Ke^{-r(T-t)}(N(d_{2}) - 1)$$

$$= S_{t}(-N(-d_{1})) - Ke^{-r(T-t)}(-N(-d_{2}))$$

$$= Ke^{-r(T-t)}N(-d_{2}) - S_{t}N(-d_{1})$$

(c) By put-call parity, delta of the put = delta of the call, minus delta of the forward contract. The call's delta is $N(d_1)$.

The forward contract's delta is the S-derivative of $S - Ke^{-r(T-t)}$, which is 1.

(d) By put-call parity, gamma of put = gamma of call, minus gamma of forward contract. The call has gamma $N'(d_1)/(S_t\sigma\sqrt{T-t})$.

The forward contract's gamma is the second S-derivative of $S - Ke^{-r(T-t)}$, which is 0. So the put has the same gamma $N'(d_1)/(S_t\sigma\sqrt{T-t})$.