

(11)Publication number: 08-194964

(43) Date of publication of application: 30.07.1996

(51)Int.Cl. G11B 7/0

G11B 7/12

G11B 7/22

(21)Application number: 07-004088 (71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing: 13.01.1995 (72)Inventor: HASHIMOTO TETSUFUMI

KONAGAYA MASARU

(54) OBJECTIVE LENS DRIVER AND MANUFACTURE THEREOF

(57) Abstract:

PURPOSE: To obtain an objective lens driver for enhancing the productivity while stabilizing the quality by forming an objective lens and a coil bobbin constituting the movable part of an optical system integrally in an optical disc recorder/reproducer.

CONSTITUTION: An objective lens and a coil bobbin constituting the movable part of an optical system are formed integrally of the same material and the part of the objective lens 1 is subjected to secondary thermal forming thus ensuring the stabilized performance of the objective lens 1. The coil bobbin 2 is provided with a groove 2c in the gap between the objective lens 1 and the tracking coil 4 in order to protect the objective lens 1 against the adverse effect of heating of the tracking coil 4. Since means for fixing the objective lens 1 and the coil bobbin 2 is not required, characteristics of the lens can be protected against deterioration.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-194964

(43)公開日 平成8年(1996)7月30日

(51) Int.Cl.⁶

識別記号 庁内整理番号

D 9368-5D

FΙ

技術表示箇所

G11B 7/09 7/12

7/22

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号

特願平7-4088

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出願日 平成7年(1995)1月13日

(72)発明者 橘本 哲文

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(72)発明者 小長谷 賢

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 小鍜治 明 (外2名)

(54)【発明の名称】 対物レンズ駆動装置およびその製造方法

(57)【要約】

【目的】 光学式ディスク記録再生装置において光学系 の可動部を構成する対物レンズとコイルボビンとを一体 に形成することにより、生産性の向上と安定した品質を 確保した対物レンズ駆動装置を提供する。

【構成】 可動部を構成する対物レンズ1とコイルボビ ン2とを同一材料で一体に形成し、かつ対物レンズ1の 部分を二次成形により加熱形成して対物レンズ1の安定 した性能を確保し、またコイルボビン2には対物レンズ 1とトラッキングコイル4との間隙に溝2cを設け、こ れによりトラッキングコイル4の発熱による対物レンズ 1への悪影響を防ぎ、また対物レンズ1とコイルボビン 2を固定する手段を必要としなくなるため、そのための レンズ特性の劣化を防ぐことができる。

1 対物レンズ

2 コイルポピン

20 突出部

2 b 孔

2 c

フォーカスコイル

4 トラッキングコイル

6 金属線ばね

【特許請求の範囲】

【請求項1】 対物レンズと、

前記対物レンズと同一材料で一体に形成され対物レンズを保持するほぼ直方体形状の枠体と、

前記枠体に設けられた駆動のためのコイルまたはマグネットとを有する可動部を備え、

前記可動部は支持部材により前記対物レンズが光を収束 しようとするディスクのディスク面に対し垂直な軸方向 および前記ディスク面に対し平行な軸方向に移動自在に 保持され、かつ前記対物レンズを二次成形により加熱形 10 成したことを特徴とする対物レンズ駆動装置。

【請求項2】 対物レンズと、

前記対物レンズと同一材料で一体に形成され対物レンズを保持するほぼ直方体形状のコイルボビンと、

ディスク面に対し垂直な軸を中心に前記コイルボビンの 側面のほぼ中央部に巻装したフォーカスコイルと、

ディスク面に対し平行な軸を中心に前記対物レンズに対して対称的に前記コイルボビンに巻装したトラッキングコイルとを有する可動部を備え、

前記可動部は支持部材により前記ディスク面に対し垂直 20 な軸方向および前記ディスク面に対し平行な軸方向に移動自在に保持され、かつ前記対物レンズを二次成形により加熱形成したことを特徴とする対物レンズ駆動装置。

【請求項3】 可動部において、コイルボビン上の対物 レンズとトラッキングコイルとの間隙に溝を設けたこと を特徴とする請求項2に記載の対物レンズ駆動装置。

【請求項4】 可動部において、コイルボビンに支持部材の位置を決めるための孔を少なくとも4個設けたことを特徴とする請求項1または2に記載の対物レンズ駆動装置。

【請求項5】 対物レンズと、

前記対物レンズと同一材料で一体に形成され対物レンズを保持するほぼ直方体形状の枠体と、

前記枠体に設けられた駆動のためのコイルまたはマグネットとを有する可動部を備え、

前記可動部は支持部材により前記対物レンズが光を収束 しようとするディスクのディスク面に対し垂直な軸方向 および前記ディスク面に対し平行な軸方向に移動自在に 保持され、かつ前記対物レンズを二次成形により加熱形 成したことを特徴とする対物レンズ駆動装置の製造方 法。

【請求項6】 可動部を一次成形するときのゲートを対物レンズ素材部分より少なくとも0.5mm以上間隔を設けて配置したことを特徴とする請求項5記載の対物レンズ駆動装置の製造方法。

【請求項7】 可動部において、対物レンズ部の二次成形にプレス型を用いて加熱形成したことを特徴とする請求項5記載の対物レンズ駆動装置の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は光学式記録または再生装置において、光ディスクに光スポットを投射して記録または再生を行う光ピックアップの一部を構成する対物レンズ駆動装置およびその製造方法に関する。

[0002]

【従来の技術】近年、対物レンズ駆動装置は、生産コストを下げるため対物レンズを保持するコイルボビンに直接駆動用コイルを巻装したものが主流となってきており、自動組み立てが容易にでき、また小型でかつ軽量な構造が必要とされている。

【0003】以下図面を参照しながら、上述した従来例の対物レンズ駆動装置について説明する。図5は従来例の対物レンズ駆動装置のコイルボビンを含む可動部の断面図、図6は同じくその対物レンズ駆動装置の構成を示す分解斜視図である。

【0004】図において、対物レンズ21は、ほぼ直方体形状のコイルボビン22の上方に保持され、このコイルボビン22には、ディスク面に対して垂直な軸を中心として側面のほぼ中央部にフォーカスコイル23が巻装され、ディスク面に対して平行な軸を中心として、かつ対物レンズ21の両側に2つのトラッキングコイル24が直接巻装されている。

【0005】4本の金属線バネ26の各一端は、コイル ボビン22の凸出部22aの孔22bを貫通して、コイ ルボビン22に固定された4つの端子板25に半田付け され、各他端は固定側のホルダー29の孔29aを貫通 してホルダー29に固定されたホルダー基板27に半田 付け固定され、その結果ホルダー29は4本の金属線バ ネ26の位置を決めてそれらを保持している。そしてコ 30 イルボビン22を、フォーカス方向の矢印34a,34 bとトラッキング方向の矢印35a, 35bの2方向に 移動可能に片持ち支持する。4枚の端子板25のうち2 枚には、フォーカスコイル23の両端が半田付けにより 結線されており、他の2枚の端子板25には、2つのコ イルに分割されているが連続した巻線であるトラッキン グコイル24の両端が半田付けにより結線されており、 4本の金属線バネ26からそれぞれのコイルに電流を供 給できるようになっている。ホルダー29に設けた容器 状の孔29 aにはシリコン系のゲル素材を充填した後、 紫外線の照射によりゲル化しゲル28としたもので、金 **属線バネ26の動きを制動することにより、コイルボビ** ン22を含む可動部の1次共振振動を制動するものであ

【0006】ヨークベース30は、ディスク面に対し平行な面を有するベース部30aと、このベース部30a からディスク側に凸となるよう、かつディスクに対し垂直に配置した2個の板状の外ヨーク30bと2個の内ヨーク30cとが一体に形成されている。外ヨーク30bにそれぞれ1個づつの厚み方向に着磁したマグネット3501を同一極たとえばN極同士を対向させて密着固定し、 3

さらに内ヨーク30cにこのマグネット31を対向させて磁気ギャップを形成しているため磁束を集中し易く、この磁気ギャップにフォーカスコイル23の一部を挿入し、マグネット31にトラッキングコイル24の一部を対向させることにより、対物レンズ21を含む可動部を、ディスク面に対し垂直なフォーカス方向34a,34bと、ディスク面に対し平行な方向のトラッキング方向35a,35bの2軸方向に駆動できる。固定側のホルダー29とホルダー基板27とは、取付ネジ32によって、外ヨーク30bのねじ穴(図示せず)に固定され 10 る。

[0007]

【発明が解決しようとする課題】しかしながら上記のような従来例の対物レンズ駆動装置は、対物レンズ21をコイルボビン22に固定する必要があり、固定方法には、たとえば圧入や接着等があるが、対物レンズ21に不要な力(圧入の場合には圧縮力、接着剤による場合には膨張収縮力)がかかり、性能を著しく悪化させるため、対物レンズ21やコイルボビン22の形状を工夫し、かつ圧入力や接着剤の種類・量・塗布の位置・方向20など細かい管理が必要であるという問題点を有していた。

【0008】また一次成形のみの場合形状が複雑なため、成形歪みが残留しレンズ性能を確保できないという問題点を有していた。さらに対物レンズ21とトラッキングコイル24が近接している場合コイルから発生する熱がレンズに伝わり易く、レンズ性能が劣化するという問題点を有していた。

【0009】本発明は上記従来例の問題点を改善するもので、対物レンズとコイルボビンとを一体に形成し、か 30 つ対物レンズを二次成形により加熱形成することで、残留歪みを除去して対物レンズの性能を確保でき、生産性を向上でき、また対物レンズとトラッキングコイルの間に溝を設けることにより、コイルの熱を伝わりにくくし、安定した品質を確保する対物レンズ駆動装置を提供することを目的としてなされたものである。

[0010]

【課題を解決するための手段】上記目的を達成するために本発明の対物レンズ駆動装置は、対物レンズと、前記対物レンズと同一材料で一体に形成され対物レンズを保 40 持するほぼ直方体形状の枠体と、前記枠体に設けられた駆動のためのコイルまたはマグネットとを有する可動部を備え、前記可動部は支持部材により前記対物レンズが光を収束しようとするディスクのディスク面に対し垂直な軸方向および前記ディスク面に対し平行な軸方向に移動自在に保持され、かつ前記対物レンズを二次成形により加熱形成した構成となっている。

【0011】そしてさらに可動部において、枠体がコイ 固定され、その結果ホルダー9は4本の金属線ばね6の ルボビンの場合は対物レンズとトラッキングコイルとの 位置を決めてそれらを保持している。その結果コイルボ 間隙に溝を設け、また可動部において、枠体に支持部材 50 ビン2を、図示しないディスク面に垂直なフォーカス方

4

の位置を決めるための孔を少なくとも4個設けた構成も 持つことができる。

【0012】また上記目的を達成するための本発明の対物レンズ駆動装置の製造方法は、上記構成の対物レンズ駆動装置において、前記枠体を前記対物レンズと同一材料で一体に一次成形し前記対物レンズ部を二次成形により加熱形成することを特徴とするものであり、また可動部を一次成形するときのゲートを対物レンズ部分より少なくとも0.5mm以上間隔を設けて配置すること、さらに可動部において、対物レンズ部分の二次成形にプレス型を用いて加熱形成したことを特徴とするものである。

[0013]

【作用】本発明の対物レンズ駆動装置は上記した構成および製造方法によって、別部品の対物レンズをコイルボビンまたは枠体に圧入、接着等の方法で固定することなく同一材料で一体に形成されているので、そのため対物レンズに不要な力がかからず、二次成形により対物レンズの残留歪みも除去されてレンズ性能を十分に確保でき、またコイルボビンまたはマグネットを保持する枠体の役割も十分に発揮できることから、対物レンズ駆動装置の生産性と、品質の安定性を向上させ、さらに一体形成により小型化も可能となる。

[0014]

【実施例】以下本発明対物レンズ駆動装置の実施例につ いて、図1および図2を参照しながら詳細に説明する。 図1は本発明の対物レンズ駆動装置の可動部の断面図、 図2は同じくその対物レンズ駆動装置の構成を示す分解 斜視図である。図1において、対物レンズ1は、ほぼ直 方体形状のコイルボビン2の上方にコイルボビン2と同 一材料により一体に形成され、このコイルボビン2に は、ディスク面に対して垂直な軸を中心として側面のほ ぼ中央部にフォーカスコイル3が巻装され、ディスク面 に対して平行な軸を中心として、かつ対物レンズ1の両 側に2つのトラッキングコイル4が直接巻装されてお り、また対物レンズ1とトラッキングコイル4との間隙 に溝2cを設けている。また、コイルボビン2の突出部 2 a にはコイルボビンを支持するための支持部材である 金属線ばね6を貫通させ、その位置を決めるための孔2 bを設けている。なおこの突出部2aの孔bを設けず に、成型時に突出部2aに直接金属線ばね6をインサー トしてもよい。

【0015】図2において、4本の金属線ばね6の各一端は、コイルボビン2の凸出部2aの孔2bを貫通して、コイルボビン2に固定された4つの端子板5に半田付けされ、各他端は固定側のホルダー9の孔9aを貫通してホルダー9に固定されたホルダー基板7に半田付け固定され、その結果ホルダー9は4本の金属線ばね6の位置を決めてそれらを保持している。その結果コイルボビン2を、図示しないディスク面に垂直なフォーカス方

向の矢印14a, 14bと図示しないディスク面に平行 で、かつディスクの半径方向であるトラッキング方向の 矢印15a, 15bの2方向に移動自在に片持ち支持す

【0016】コイルボビン2に固定された4枚の端子板 5のうち2枚には、フォーカスコイル3の両端が半田付 けにより結線されており、他の2枚の端子板5には、2 つのコイルに分割されているが連続した巻線であるトラ ッキングコイル4の両端が半田付けにより結線されてお り、4本の金属線ばね6からそれぞれのコイルに電流を 供給できるようになっている。ホルダー9に設けた容器 状の孔9aにはシリコン系のゲル素材を充填した後、紫 外線の照射によりゲル化してゲル8としたもので、金属 線ばね6の動きを制動することにより、コイルボビン2 を含む可動部の1次共振振動を制動するものである。

【0017】ヨークベース10は、ディスク面に対し平 行な面を有するベース部10aと、このベース部10a からディスク側に凸となるよう、かつディスクに対し垂 直に配置した2個の板状の外ヨーク10bと2個の内ヨ ーク10cとが一体に形成されている。外ヨーク10b 20 にそれぞれ1個づつの厚み方向に着磁したマグネット1 1を同一極たとえばN極同士を対向させて密着固定し、 さらにコイルボビン2の孔2d内に挿入した内ヨーク1 Ocにこのマグネット11を対向させて磁気ギャップを 形成しているため磁束を集中し易くなっている。固定側 のホルダー9とホルダー基板7とは、孔9bを貫通した 取付ネジ12によって、外ヨーク10bのねじ穴(図示 せず)に固定される。

【0018】以上のように構成された本実施例の対物レ ンズ駆動装置について、以下その動作を説明する。内ヨ 30 ーク10cと対向するマグネット11との間の磁気ギャ ップに磁束が集中しているため、この磁気ギャップに一 部が挿入されたフォーカスコイル3と、マグネット11 にその一部が対向したトラッキングコイル4との両コイ ルに金属線ばね6を通じて電流を供給することにより、 ホルダー9に対して金属線ばね6で保持された対物レン ズ1、コイルボビン2を含む可動部を、ディスク面に対 し垂直な方向のフォーカス方向14a, 14bと、ディ スク面に対し平行なトラッキング方向15a, 15bの 2方向に効率高く駆動できる。

【0019】つぎに本発明の対物レンズ駆動装置におけ るコイルボビン2および対物レンズ1を形成する工法に ついて説明する。図3は本発明の一次成形時の工法を示 す断面図である。図3において、金型16a, 16b, 16 c は一次成形用の金型の断面であり、この金型によ って射出成形法により対物レンズ素材部1aを一体に含 んたほぼ直方体形状のコイルボビン2を一次成形品とし て形成する。この場合ゲート部分16 dは少なくとも対 物レンズより0.5mm以上間隔を設けて配置するのが よい。これはゲートから注入された熱可塑性樹脂の金型 50

内での流れ、いわゆる湯流れによって、ゲート近辺にお いて対物レンズ1のレンズ素材部に材料内部の歪みが残 留するのを軽減するためである。成形材料の例としては 光学性能および成形条件からメタクリル樹脂、ポリオレ フィン系樹脂、ノルボルネン系樹脂、ポリカーボネイト 樹脂およびアモルファスポリオレフィン樹脂等が好適で あるが、これに限定するものではない。

【0020】なお、図では一次成形においてレンズ素材 部1aは上下面が平行であるように図示したが、ある程 度レンズの完成品に近い形状に一次成形の段階で形成し ておいてもよい。

【0021】図4は図3において形成されたコイルボビ ン2上に対物レンズ1を二次成形によって形成する工法 を示す断面図である。図4において、図3に示す工程に おいて対物レンズ素材部1aを一体に含んで一次成形に て形成されたほぼ直方体形状のコイルボビン2に対し て、二次成形用金型17a,17bによって矢印18 a, 18b方向から対物レンズ素材部1aをプレスして 対物レンズ1を形成することによって、レンズとしての 形状を形成するとともに一次成形時に生じた残留成形歪 みを除去してレンズ性能を確保する。この場合適度な温 度を保ち、一定時間プレスするもので、温度および時間 は成形品の素材、大きさおよび厚さにより異なり、レン ズの最終形状を仕上げるとともに残留成形歪みを取り除 けるように条件を選定する。

【0022】本実施例では対物レンズ1を保持するのは コイルボビン2であるとして説明したが、対物レンズ駆 動装置の変形として対物レンズ1を保持する枠体にマグ ネットを固着して可動部とし、フォーカスコイルおよび トラッキングコイルはホルダー側に固定する形式のもの があり、本発明はこのような形式のものにも適用できる のは言うまでもない。

【0023】以上のように本実施例によれば対物レンズ とそれを保持するコイルボビンまたは枠体を同一材料で 一体に一次成形し、対物レンズ部分を二次成形すること により従来例の問題点を解決することができる。

[0024]

40

【発明の効果】以上説明したように本発明の対物レンズ 駆動装置は、対物レンズと、対物レンズと同一材料で一 体に形成され対物レンズを保持するほぼ直方体形状の枠 体と、枠体に設けられた駆動のためのコイルまたはマグ ネットとを有する可動部を備え、可動部は支持部材によ り対物レンズが光を収束しようとするディスクのディス ク面に対し垂直な軸方向およびディスク面に対し平行な 軸方向に移動自在に保持され、かつ対物レンズを二次成 形により加熱形成した構成である。

【0025】そしてさらに可動部において、枠体がコイ ルボビンの場合は対物レンズとトラッキングコイルとの 間隙に溝を設け、また可動部において、枠体に支持部材 の位置を決めるための孔を少なくとも4個設けた構成も 7

持つことができる。

【0026】また本発明の対物レンズ駆動装置の製造方 法は、上記の対物レンズ駆動装置において対物レンズ部 と枠体とを同一材料で一体に一次成形したものを二次成 形により加熱形成することを特徴とするものであり、ま た可動部を一次成形するときのゲートを対物レンズ部分 より少なくともO.5mm以上間隔を設けて配置するこ と、さらに可動部において、対物レンズ部の二次成形に プレス型を用いて形成したことを特徴とするものであ る。

【0027】上記の構成と製造方法によって、

(1) 別部品の対物レンズをコイルボビンに固定する必 要がないため、成形されたままの性能を維持できる。

【0028】(2)対物レンズをコイルボビンに固定す る必要がないため、固定のための形状工夫を必要とせ ず、小型化が可能となる。

【0029】(3)二次成形により形成するため対物レ ンズ部の成形に起因する歪みの影響を少なくし、十分な レンズ性能を確保できる。

【0030】(4) コイルボビンにおいて対物レンズと 20 9 ホルダー トラッキングコイルとの間隙に溝を設けることにより、 コイルの発熱による対物レンズ性能への影響をなくすこ とができる。

【0031】等の優れた特性を得ることができ、これに より対物レンズ駆動装置の小型化と、生産性、品質の安 定性を向上させることができる。

【図面の簡単な説明】

【図1】本発明の一実施例の対物レンズ駆動装置のコイ ルボビンを含む可動部の断面図

【図2】同じく対物レンズ駆動装置の構成を示す分解斜 30 16 d ゲート 視図

【図3】同じく対物レンズ駆動装置のコイルボビンの一 次成形工法を示す断面図

【図4】同じく対物レンズの二次成形工法を示す断面図 【図5】従来例の対物レンズ駆動装置のコイルボビンを 含む可動部の断面図

【図6】同じく対物レンズ駆動装置の構成を示す分解斜 視図

【符号の説明】

- 1 対物レンズ
- 10 2 コイルボビン
 - 2 a 突出部
 - 2b 孔
 - 2 c 溝
 - 3 フォーカスコイル
 - 4 トラッキングコイル
 - 5 端子板
 - 6 金属線ばね
 - 7 ホルダー基板
 - 8 ゲル
- - 10 ヨークベース
 - 10a ベース部
 - 10b 外ヨーク
 - 10c 内ヨーク
 - 11 マグネット
 - 12 取付ネジ
 - 14a, 14b フォーカス方向
 - 15a, 15b トラッキング方向
 - 16a, 16b, 16c 一次成形用金型

 - 17a, 17b 二次成形用金型

【図5】

2/28/05, EAST Version: 2.0.1.4

【図4】

17a,17b 二次成形金型

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the objective lens driving gear which constitutes a part of optical pickup which projects an optical spot on an optical disk and performs record or playback, and its manufacture approach in optical recording or a regenerative apparatus.

[0002]

[Description of the Prior Art] In recent years, in order that an objective lens driving gear may lower a production cost, what looped the coil bobbin holding an objective lens around the coil for direct drives has become in use, and an automatic assembly can be performed easily, and small and lightweight structure is needed.

[0003] The objective lens driving gear of the conventional example mentioned above is explained referring to a drawing below. The sectional view of the moving part where <u>drawing 5</u> contains the coil bobbin of the objective lens driving gear of the conventional example, and <u>drawing 6</u> are the decomposition perspective views showing the configuration of the objective lens driving gear similarly.

[0004] in drawing, an objective lens 21 is mostly held above the coil bobbin 22 of a rectangular parallelepiped configuration -- having -- this coil bobbin 22 -- a disk side -- receiving -- a core [shaft / vertical] -- carrying out -- a side face -- a center section is mostly looped around the focal coil 23, and the both sides of an objective lens 21 are directly looped around two tracking coils 24 centering on the parallel shaft to the disk side.

[0005] One edge each of four metal wire springs 26 penetrates hole 22b of salient 22a of the coil bobbin 22. It is soldered to four terminal assemblies 25 fixed to the coil bobbin 22, and soldering immobilization of each other end is carried out at the electrode-holder substrate 27 which penetrated hole 29a of the electrode holder 29 of a fixed side, and was fixed to the electrode holder 29. As a result, an electrode holder 29 determines the location of four metal wire springs 26, and holds them. And the cantilevered suspension of the coil bobbin 22 is carried out to the 2-way of the arrow heads 34a and 34b of the direction of a focus, and the arrow heads 35a and 35b of the direction of tracking movable. Among the terminal assemblies 25 of four sheets, connection of the ends of the focal coil 23 is carried out to two sheets by soldering, connection of the ends of the tracking coil 24 which is the coil which continued although divided into two coils is carried out to other terminal assemblies 25 of two sheets by soldering, and a current can be supplied now to each coil from four metal wire springs 26. After filling up with the gel raw material of a silicon system hole 29a of the shape of a container prepared in the electrode holder 29, it is what gelled by the exposure of ultraviolet rays and was made into gel 28, and a primary resonance oscillation of the moving part containing the coil bobbin 22 is braked by braking a motion of the metal wire spring 26.

[0006] Yoke 30b and two inner yokes 30c are formed in one outside [of two pieces vertically arranged to a disk] tabular so that the yoke base 30 may be from base section 30a which has an parallel field to a disk side, and this base section 30a on a disk side with a convex. Make the same pole, for example, N poles, counter, and adhesion immobilization of the magnet 31 magnetized in the thickness direction per piece to outside yoke 30b, respectively is carried out. Since this magnet 31 is made to counter inner yoke 30c furthermore and the magnetic gap is formed, it is easy to concentrate magnetic flux. By inserting some focal coils 23 in this magnetic gap, and making some tracking coils 24 counter a magnet 31 The moving part containing an objective lens 21 can be driven to the vertical directions 34a and 34b of a focus, and a disk side to a disk side in the biaxial direction of the directions 35a and 35b of tracking of an parallel direction. The electrode holder 29 and the electrode-holder substrate 27 of a fixed side are fixed to the tapped hole (not shown) of outside yoke 30b with the mounting screw 32.

[Problem(s) to be Solved by the Invention] However, although the above objective lens driving gears of the conventional example need to fix an objective lens 21 to the coil bobbin 22 and the fixed approach has press fit, adhesion, etc. In order to apply the unnecessary force (it is an expansion shrinkage force when depending at

compressive force and adhesives in press fit) to an objective lens 21 and to worsen the engine performance remarkably, The configuration of an objective lens 21 or the coil bobbin 22 was devised, and it had the trouble that fine managements, such as insertion pressure, and a location, a direction of the class, the amount, and spreading of adhesives, were required.

[0008] Moreover, only in primary shaping, since the configuration was complicated, shaping distortion remained and it had the trouble that the lens engine performance was not securable. When the objective lens 21 and the tracking coil 24 are furthermore close, the heat generated from a coil tended to get across to a lens, and it had the trouble that the lens engine performance deteriorated.

[0009] It is made for the purpose of offering the objective lens driving gear which is [the heat of a coil] propagation-hard, carries out, and secures the stable quality by this invention's being improving the trouble of the above-mentioned conventional example, and forming an objective lens and a coil bobbin in one, and carrying out heating formation of the objective lens by secondary forming, being able to remove residual distortion, being able to secure the engine performance of an objective lens, and being able to improve productivity, and preparing a slot between an objective lens and a tracking coil.

[0010]

[Means for Solving the Problem] In order to attain the above-mentioned object the objective lens driving gear of this invention it is formed in one with the same ingredient as an objective lens and said objective lens, and an objective lens is held -- with the frame of a rectangular parallelepiped configuration mostly It has the moving part which has the coil or magnet for the actuation prepared in said frame. Said moving part has composition which was held free [migration to parallel shaft orientations] to vertical shaft orientations and said disk side to the disk side of a disk where said objective lens tends to converge light by supporter material, and carried out heating formation of said objective lens by secondary forming.

[0011] And it can also have the configuration which prepared at least four holes for establishing a slot in the gap of an objective lens and a tracking coil when a frame is a coil bobbin, and deciding the location of supporter material to be a frame in moving part in moving part further.

[0012] Moreover, the manufacture approach of the objective lens driving gear of this invention for attaining the above-mentioned object It is what is characterized by fabricating said frame primarily to one with the same ingredient as said objective lens, and carrying out heating formation of said objective lens section by secondary forming in the objective lens driving gear of the above-mentioned configuration. Moreover, it is characterized by to prepare the gate when fabricating moving part primarily from an objective lens part, and to arrange at least 0.5mm or more spacing, and having used the press die for secondary forming of an objective lens part, and carrying out heating formation in moving part, further.

[0013]

[Function] Since the objective lens driving gear of this invention is formed in one with the same ingredient of the above-mentioned configuration and the above-mentioned manufacture approach, without fixing the objective lens of another components to a coil bobbin or a frame by approaches, such as press fit and adhesion Therefore, the unnecessary force is not applied to an objective lens, but the residual distortion of an objective lens is also removed by secondary forming, and the lens engine performance can fully be secured. Moreover, since the role of the frame holding a coil bobbin or a magnet can also fully be demonstrated, the productivity of an objective lens driving gear and the stability of quality are raised, and a miniaturization also really becomes possible by formation further.

[Example] The example of this invention objective lens driving gear is explained to a detail below, referring to drawing 1 and drawing 2. Drawing 1 is the sectional view of the moving part of the objective lens driving gear of this invention, and the decomposition perspective view in which drawing 2 is the same and showing the configuration of the objective lens driving gear. In drawing 1, an objective lens 1 is mostly formed above the coil bobbin 2 of a rectangular parallelepiped configuration with the same ingredient as the coil bobbin 2 at one. In this coil bobbin 2 A center section is mostly looped around the focal coil 3, and it centers on an parallel shaft to a disk side. A disk side a disk side of a core [shaft / vertical] -- carrying out -- a side face -- And the both sides of an objective lens 1 are directly looped around two tracking coils 4, and slot 2c is prepared in the gap of an objective lens 1 and the tracking coil 4. Moreover, lobe 2a of the coil bobbin 2 was made to penetrate the metal wire spring 6 which is the supporter material for supporting a coil bobbin, and hole 2b for deciding the location is prepared. In addition, the hole of this lobe 2a -- the direct metal wire spring 6 may be inserted to lobe 2a at the time of molding, without preparing b. [0015] In drawing 2 one edge each of four metal wire springs 6 Penetrate 2b and it is soldered to four terminal assemblies 5 fixed to the coil bobbin 2. the hole of salient 2a of the coil bobbin 2 -- Soldering immobilization of each other end is carried out at the electrode-holder substrate 7 which penetrated holder 9 determines the location of four metal side, and was fixed to the electrode holder 9, and as a result, an electrode holder 9 determines the location of four metal

wire springs 6, and holds them. As a result, the cantilevered suspension of the migration of the coil bobbin 2 to the 2-way of the arrow heads 14a and 14b of the direction of a focus vertical to the disk side which is not illustrated and the arrow heads 15a and 15b of the direction of tracking which it is parallel to the disk side which is not illustrated, and is radial [of a disk] is made free.

[0016] Among the terminal assemblies 5 of four sheets fixed to the coil bobbin 2, connection of the ends of the focal coil 3 is carried out to two sheets by soldering, connection of the ends of the tracking coil 4 which is the coil which continued although divided into two coils is carried out to other terminal assemblies 5 of two sheets by soldering, and a current can be supplied now to each coil from four metal wire springs 6. After filling up with the gel raw material of a silicon system hole 9a of the shape of a container prepared in the electrode holder 9, it is what gelled by the exposure of ultraviolet rays and was made into gel 8, and a primary resonance oscillation of the moving part containing the coil bobbin 2 is braked by braking a motion of the metal wire spring 6.

[0017] Yoke 10b and two inner yokes 10c are formed in one outside [of two pieces vertically arranged to a disk] tabular so that the yoke base 10 may be from base section 10a which has an parallel field to a disk side, and this base section 10a on a disk side with a convex. The same pole, for example, N poles, is made to counter, and adhesion immobilization of the magnet 11 magnetized in the thickness direction per piece to outside yoke 10b, respectively is carried out, and since this magnet 11 is made to counter inner yoke 10c further inserted into 2d of holes of the coil bobbin 2 and the magnetic gap is formed, it is easy to concentrate magnetic flux. The electrode holder 9 and the electrode-holder substrate 7 of a fixed side are fixed to the tapped hole (not shown) of outside yoke 10b with the mounting screw 12 which penetrated hole 9b.

[0018] About the objective lens driving gear of this example constituted as mentioned above, the actuation is explained below. Since magnetic flux is concentrating on the magnetic gap between inner yoke 10c and the magnet 11 which counters, By supplying a current to both the coils of the focal coil 3 with which the part was inserted in this magnetic gap, and the tracking coil 4 with which that part countered the magnet 11 through the metal wire spring 6 the moving part containing the objective lens 1 held by the metal wire spring 6 to the electrode holder 9, and the coil bobbin 2 -- a disk side -- receiving -- the directions 14a and 14b of a focus and disk side of a vertical direction -- receiving -- the 2-way of the parallel directions 15a and 15b of tracking -- effectiveness -- it can drive highly.

[0019] The method of construction which forms the coil bobbin 2 and objective lens 1 in an objective lens driving gear of this invention next is explained. Drawing 3 is the sectional view showing the method of construction at the time of primary shaping of this invention. In drawing 3, metal mold 16a, 16b, and 16c is the cross section of the metal mold for primary shaping, and forms the coil bobbin 2 of a ********** rectangular parallelepiped configuration in one for objective lens raw material section 1a as primary mold goods by the injection-molding method this metal mold. In this case, 16d of gate parts is good to prepare and arrange 0.5mm or more spacing from an objective lens at least. This is for mitigating that the distortion inside an ingredient remains in the lens raw material section of an objective lens 1 in the gate neighborhood by the flow within the metal mold of the thermoplastics poured in from the gate, and the so-called fluidity. Although methacrylic resin, polyolefine system resin, norbornene system resin, polycarbonate resin, amorphous polyolefin resin, etc. are suitable from optical-character ability and a process condition as an example of a molding material, it does not limit to this.

[0020] In addition, although lens raw material section 1a was illustrated in primary shaping in drawing so that in parallel [a vertical side], you may form in the configuration near the finished product of a lens to some extent in the phase of primary shaping.

[0021] <u>Drawing 4</u> is the sectional view showing the method of construction which forms an objective lens 1 by secondary forming on the coil bobbin 2 formed in <u>drawing 3</u>. The coil bobbin 2 of a rectangular parallelepiped configuration is received mostly. in <u>drawing 4</u>, in the process shown in <u>drawing 3</u>, objective lens raw material section 1a was included in one, and it was formed with primary shaping -- By pressing [arrow-head 18a and] objective lens raw material section 1a from 18b, and forming an objective lens 1 with the metal mold 17a and 17b for secondary forming, while forming the configuration as a lens, residual shaping distortion produced at the time of primary shaping is removed, and the lens engine performance is secured. In this case, moderate temperature is maintained, a fixed time amount press is carried out, and it changes with the raw materials, magnitude, and thickness of mold goods, and temperature and time amount select conditions so that residual shaping distortion may be removed, while finishing the last configuration of a lens.

[0022] Although it explained holding an objective lens 1 by this example that it was the coil bobbin 2, a magnet is fixed to the frame which holds an objective lens 1 as deformation of an objective lens driving gear, it considers as moving part, a focal coil and a tracking coil have the thing of the format fixed to an electrode-holder side, and it cannot be overemphasized that this invention is applicable also to the thing of such a format.

[0023] As mentioned above, according to this example, the coil bobbin or frame holding an objective lens and it can be primarily fabricated to one with the same ingredient, and the trouble of the conventional example can be solved by

carrying out secondary forming of the objective lens part. [0024]

[Effect of the Invention] As explained above, the objective lens driving gear of this invention it is formed in one with the same ingredient as an objective lens and an objective lens, and an objective lens is held -- with the frame of a rectangular parallelepiped configuration mostly It has the moving part which has the coil or magnet for the actuation prepared in the frame. Moving part is the configuration which was held free [migration to parallel shaft orientations] to vertical shaft orientations and a disk side to the disk side of a disk where an objective lens tends to converge light by supporter material, and carried out heating formation of the objective lens by secondary forming.

[0025] And it can also have the configuration which prepared at least four holes for establishing a slot in the gap of an objective lens and a tracking coil when a frame is a coil bobbin, and deciding the location of supporter material to be a frame in moving part in moving part further.

[0026] Moreover, the manufacture approach of the objective lens driving gear of this invention It is what is characterized by carrying out heating formation of what fabricated the objective lens section and a frame primarily to one with the same ingredient in the above-mentioned objective lens driving gear by secondary forming. Moreover, it is characterized by to prepare the gate when fabricating moving part primarily from an objective lens part, and to arrange at least 0.5mm or more spacing, and using and forming a press die in secondary forming of the objective lens section in moving part further.

[0027] By an above-mentioned configuration and the above-mentioned manufacture approach, since it is not necessary to fix the objective lens of (1) another components to a coil bobbin, the engine performance [being fabricated] is maintainable.

- [0028] (2) Since it is not necessary to fix an objective lens to a coil bobbin, don't need the configuration device for immobilization but a miniaturization becomes possible.
- [0029] (3) In order to form by secondary forming, effect of distortion resulting from shaping of the objective lens section is lessened, and sufficient lens engine performance can be secured.
- [0030] (4) By establishing a slot in the gap of an objective lens and a tracking coil in a coil bobbin, the effect on the objective lens engine performance by generation of heat of a coil can be lost.
- [0031] The property which was excellent in ** can be acquired and, thereby, the miniaturization of an objective lens driving gear, and productivity and the stability of quality can be raised.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The sectional view of the moving part containing the coil bobbin of the objective lens driving gear of one example of this invention

[<u>Drawing 2</u>] The decomposition perspective view showing the configuration of an objective lens driving gear similarly [<u>Drawing 3</u>] The sectional view showing the primary shaping method of construction of the coil bobbin of an objective lens driving gear similarly

[<u>Drawing 4</u>] The sectional view showing the secondary-forming method of construction of an objective lens similarly [<u>Drawing 5</u>] The sectional view of the moving part containing the coil bobbin of the objective lens driving gear of the conventional example

[Drawing 6] The decomposition perspective view showing the configuration of an objective lens driving gear similarly [Description of Notations]

- 1 Objective Lens
- 2 Coil Bobbin
- 2a Lobe
- 2b Hole
- 2c Slot
- 3 Focal Coil
- 4 Tracking Coil
- 5 Terminal Assembly
- 6 Metal Wire Spring
- 7 Electrode-Holder Substrate
- 8 Gel
- 9 Electrode Holder
- 10 Yoke Base
- 10a Base section
- 10b Outside yoke
- 10c Inner yoke
- 11 Magnet
- 12 Mounting Screw
- 14a, 14b The direction of a focus
- 15a, 15b The direction of tracking
- 16a, 16b, 16c Primary molding die
- 16d Gate
- 17a, 17b Metal mold for secondary forming

[Translation done.]