4. Множественная проверка гипотез.

Рябенко Евгений riabenko.e@gmail.com

I/2016

Поиск экстрасенсов

(Rhine, 1950): исследования возможности экстрасенсорного восприятия. Первый этап — поиск экстрасенсов.

Испытуемому предлагается угадать цвет 10 карт.

 H_0 : испытуемый выбирает ответ наугад.

 H_1 : испытуемый может предсказывать цвета карт.

Статистика t — число карт, цвета которых угаданы.

$$P(t \ge 9 | H_0) = 11 \cdot \frac{1}{2}^{10} = 0.0107421875,$$

т. е. при t=9 получаем достигаемый уровень значимости $p\approx 0.01$ можно отклонять H_0 .

Поиск экстрасенсов

Постановка задачи

Процедуру отбора прошли 1000 человек. Девять из них угадали цвета 9 из 10 карт, двое — цвета всех 10 карт. Ни один в последующих экспериментах не подтвердил своих способностей.

Вероятность того, что из 1000 человек хотя бы один случайно угадает цвета 9 или 10 из 10 карт: $1 - \left(1 - 11 \cdot \frac{1}{2}^{100}\right)^{1000} \approx 0.9999796$.

Математическая формулировка

Постановка задачи

•000

 $X^n = (X_1, \ldots, X_n), X \sim P \in \Omega;$ выборка:

 $H_0: P \in \omega, \ \omega \in \Omega;$ нулевая гипотеза:

 $H_1: P \notin \omega$; альтернатива:

 $T(X^n)$, $T(X^n) \sim F(x)$ при $P \in \omega$; статистика:

$$T\left(X^{n}\right) \not\sim F\left(x\right)$$
 при $P\notin\omega;$

реализация выборки:

$$x^n = (x_1, \dots, x_n);$$

реализация статистики:

 $t = T(x^n)$:

достигаемый уровень значимости: $p(x^n)$ — вероятность при H_0 получить

 $T(X^n) = t$ или ещё более экстремальное;

$$p\left(x^{n}\right) = P\left(T \ge t \left| H_{0}\right.\right)$$

Гипотеза отвергается при $p\left(x^{n}\right) \leq \alpha, \ \alpha$ — уровень значимости.

Правило проверки гипотезы

0.00

Несимметричность задачи проверки гипотезы

	H_0 верна	H_0 неверна
H_0 принимается	H_0 верно принята	Ошибка второго рода
H_0 отвергается	Ошибка первого рода	H_0 верно отвергнута

Вероятность ошибки первого рода жёстко ограничивается малой величиной:

$$p = P(T(X^n) \ge t | H_0) = P(p \le \alpha | H_0) \le \alpha.$$

Вероятность ошибки второго рода минимизируется путём выбора достаточно мощного критерия.

Математическая постановка

данные: $\mathbf{X} = \{X_1^{n_1}, \dots, X_m^{n_m}\}, X_i \sim P_i \in \Omega_i;$

нулевые гипотезы: $H_i \colon P_i \in \omega_i, \ \omega_i \in \Omega_i;$

альтернативы: H_i' : $P_i \notin \omega_i$;

статистики: $T_i = T\left(X_i^{n_i}\right)$ проверяет H_i против H_i' ;

реализации статистик: $t_i = T\left(x_i^{n_i}
ight);$

достигаемые уровни значимости: $p_i = p\left(x_i^{n_i}\right), \ i = 1, \dots, m;$

 $\mathbf{M} = \{1, 2, \dots, m\}$; $\mathbf{M}_0 = \mathbf{M}_0 \ (P) = \{i \colon H_i \text{ верна}\}$ — индексы верных гипотез, $|\mathbf{M}_0| = m_0$; $\mathbf{R} = \mathbf{R} \ (P, \alpha) = \{i \colon H_i \text{ отвергнута}\}$ — индексы отвергаемых гипотез, $|\mathbf{R}| = R$; $V = |\mathbf{M}_0 \cap \mathbf{R}|$ — число ошибок первого рода.

	Число верных H_i	Число неверных H_i	Всего
Число принятых H_i	U	T	m-R
Число отвергнутых H_i	V	S	R
Всего	m_0	$m-m_0$	m

Многомерные обобщения ошибки первого рода

Групповая вероятность ошибки первого рода (familywise error rate):

$$FWER = P(V > 0).$$

Контроль над групповой вероятностью ошибки на уровне lpha означает

$$FWER = P(V > 0) \le \alpha \ \forall P.$$

Как этого добиться?

Параметры α_1,\dots,α_m — уровни значимости, на которых необходимо проверять гипотезы H_1,\dots,H_m ; задача — выбрать их так, чтобы обеспечить $\mathrm{FWER} \leq \alpha.$

Поправка Бонферрони

Метод Бонферрони:

$$\alpha_1 = \ldots = \alpha_m = \alpha/m.$$

Теорема

Если гипотезы $H_i, i=1,\ldots,m,$ отвергаются при $p_i \leq \alpha/m,$ то FWER $<\alpha.$

Доказательство.

$$FWER = P(V > 0) = P\left(\bigcup_{i=1}^{m_0} \{p_i \le \alpha/m\}\right) \le \sum_{i=1}^{m_0} P(p_i \le \alpha/m) \le \sum_{i=1}^{m_0} \alpha/m = \frac{m_0}{m} \alpha \le \alpha.$$

Альтернативный вид — переход к модифицированным достигаемым уровням значимости:

$$\tilde{p}_i = \min\left(1, mp_i\right).$$

Поправка Бонферрони

При увеличении m в результате применения поправки Бонферрони мощность статистической процедуры резко уменьшается — шансы отклонить неверные гипотезы падают.

Пример: критерий Стьюдента для независимых выборок, $X_1^n, X_1 \sim N\left(\mu_1, 1\right), \ \ X_2^n, X_2 \sim N\left(\mu_2, 1\right), \ \ \mu_1 - \mu_2 = 1,$ $H_0 \colon \mathbb{E} X_1 = \mathbb{E} X_2, \ \ H_1 \colon \mathbb{E} X_1 \neq \mathbb{E} X_2.$

m	n	Мощность
1	23	0.9
10	23	0.67
100	23	0.37
1000	23	0.16
1000	62	0.9

Если проверяется одновременно 1000000 гипотез, при размере выборок n=10 мощность 0.9 достигается при расстоянии между средними выборок в пять стандартных отклонений.

$$n = 20, m = 200, m_0 = 150;$$

 $X_i^n, X_i \sim N(0, 1), i = 1, \dots, m_0;$
 $X_i^n, X_i \sim N(1, 1), i = m_0 + 1, \dots, m;$
 $H_i : \mathbb{E}X_i = 0, H'_i : \mathbb{E}X_i \neq 0.$

Для проверки используем одновыборочный критерий Стьюдента.

Без поправок:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	142	0	142
Отвергнутых H_i	8	50	58
Всего	150	50	200

Бонферрони:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	27	177
Отвергнутых H_i	0	23	23
Всего	150	50	200

Нисходящие методы множественной проверки гипотез

Составим вариационный ряд достигаемых уровней значимости:

$$p_{(1)} \le p_{(2)} \le \ldots \le p_{(m)},$$

 $H_{(1)}, H_{(2)}, \dots, H_{(m)}$ — соответствующие гипотезы.

- $lackbox{0}$ Если $p_{(1)} \geq lpha_1$, принять все нулевые гипотезы $H_{(1)}, H_{(2)}, \dots, H_{(m)}$ и остановиться; иначе отвергнуть $H_{(1)}$ и продолжить.
- $m{Q}$ Если $p_{(2)} \geq lpha_2$, принять все нулевые гипотезы $H_{(2)}, H_{(3)}, \dots, H_{(m)}$ и остановиться; иначе отвергнуть $H_{(2)}$ и продолжить.
- **3** ...

Каждый достигаемый уровень значимости $p_{(i)}$ сравнивается со своим уровнем значимости α_i .

Метод Холма

Метод Холма — нисходящая процедура со следующими уровнями значимости:

$$\alpha_1 = \frac{\alpha}{m}, \ \alpha_2 = \frac{\alpha}{m-1}, \ \dots, \ \alpha_i = \frac{\alpha}{m-i+1}, \ \dots, \ \alpha_m = \alpha.$$

Метод обеспечивает контроль над FWER на уровне α при любых p_i и $T_i.$

Модифицированные достигаемые уровни значимости:

$$\tilde{p}_{(i)} = \min\left(1, \max\left(\left(m-i+1\right)p_{(i)}, \tilde{p}_{(i-1)}\right)\right).$$

Метод Холма

Метод Холма равномерно мощнее поправки Бонферрони, поскольку все его уровни значимости α_i не меньше:

Отсортированные достигаемые уровни значимости:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	27	177
Отвергнутых H_i	0	23	23
Всего	150	50	200

Модифицированные достигаемые уровни значимости, метод Холма:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	24	174
Отвергнутых H_i	0	26	26
Всего	150	50	200

Постановка задачи

- Дополнительно оценить m_0 .
- Сделать дополнительные предположения:
 - о характере зависимости между статистиками;
 - о совместном распределении статистик.
- Учесть зависимость между статистиками с помощью перестановочных методов.

Предварительное оценивание m_0

Многие методы контролируют FWER на уровне $\alpha_T = \frac{m_0}{m} \alpha \Rightarrow$ можно оценить m_0 и выбрать α так, чтобы α_T было равно желаемой величине.

Метод Шведера-Спьётволла:

$$\hat{m}_0\left(\lambda\right) = \frac{1}{1-\lambda} \left(1 + \sum_{i=1}^m \left[p_i > \lambda\right]\right), \ \lambda \in \left[0, 1\right).$$

Имеет положительное смещение, а также большую дисперсию, особенно при сильно коррелированных p, поэтому FWER не контролируется.

Одношаговый метод Шидака

Метод Шидака:

$$\alpha_1 = \alpha_2 = \ldots = \alpha_m = 1 - (1 - \alpha)^{\frac{1}{m}}.$$

Метод обеспечивает контроль над FWER на уровне α при условии, что статистики T_i независимы или выполняется следующее свойство:

$$P(T_1 \le t_1, ..., T_m \le t_m) \ge \prod_{i=1}^m P(T_i \le t_i) \ \forall t_1, ..., t_m$$

(positive lower orthant dependence).

Модифицированные достигаемые уровни значимости:

$$\tilde{p}_i = 1 - \left(1 - p_i\right)^m.$$

Нисходящая модификация

Нисходящий метод Шидака (метод Шидака-Холма) — нисходящая процедура со следующими уровнями значимости:

$$\alpha_1 = 1 - (1 - \alpha)^{\frac{1}{m}}, \ldots, \alpha_i = 1 - (1 - \alpha)^{\frac{1}{m-i+1}}, \ldots, \alpha_m = \alpha.$$

Метод обеспечивает контроль над FWER на уровне lpha при условии, что статистики T_i независимы.

Модифицированные достигаемые уровни значимости:

$$\tilde{p}_{(i)} = \max\left(1-\left(1-p_{(i)}\right)^{(m-i+1)}, \tilde{p}_{(i-1)}\right).$$

Нисходящая модификация

На практике при достаточно больших m не слишком отличается от метода Холма:

Модифицированные достигаемые уровни значимости, метод Холма:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	24	174
Отвергнутых H_i	0	26	26
Всего	150	50	200

Модифицированные достигаемые уровни значимости, нисходящий метод

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	24	174
Отвергнутых H_i	0	26	26
Всего	150	50	200

Постановка задачи

Зависимость между статистиками

- Не учитывая характер зависимости между статистиками, нельзя построить контролирующую FWER процедуру мощнее, чем метод Холма.
- Если статистики независимы, нельзя построить контролирующую FWER процедуру мощнее, чем метод Шидака-Холма.
- Чем сильнее связь между статистиками, тем меньше нужно модицифировать уровни значимости.

Для построения мощной процедуры множественной проверки гипотез необходимо учесть структуру зависимости статистик.

Если совместное нулевое распределение статистик T_1, \dots, T_m известно, константы α_i могут быть так, что контроль над FWER будет точным (FWER = α).

Примеры:

- метод HSD Тьюки для попарных сравнений нормально распределённых выборок друг с другом;
- ullet критерий Даннета для сравнения средних m нормально распределённых выборок со средним контрольной выборки.

Перестановочные методы

Неявно учесть зависимости между статистиками можно при помощи перестановочных методов. Подробнее: Bretz, раздел 5.1.

Методы обеспечивают контроль над FWER на уровне α при условии выполнения свойства subset pivotality:

$$P\left(\bigcap_{i\in\mathbf{M}^*} \left\{T_i \ge t^*\right\} \middle| \bigcap_{i\in\mathbf{M}^*} H_i\right) = P\left(\bigcap_{i\in\mathbf{M}^*} \left\{T_i \ge t^*\right\} \middle| \bigcap_{i\in\mathbf{M}} H_i\right) \ \forall \mathbf{M}^* \in M$$

(нулевое распределение любого подмножества статистик T_i не зависит от того, верны или неверны соответствующие оставшимся статистикам гипотезы).

Примеры задач:

- проверка гипотез о средних коррелированных нормальных выборок;
- проверка гипотез о линейных комбинациях средних нормальных выборок;
- попарные сравнения средних в нормальных выборках.

Многомерные обобщения ошибки первого рода

Ожидаемая доля ложных отклонений гипотез (false discovery rate):

$$FDR = \mathbb{E}\left(\frac{V}{\max(R, 1)}\right).$$

Контроль над ожидаемой долей ложных отклонений на уровне lpha означает

$$FDR = \mathbb{E}\left(\frac{V}{\max(R, 1)}\right) \le \alpha \ \forall P.$$

Для любой процедуры множественной проверки гипотез $\mathrm{FDR} \leq \mathrm{FWER}$.

Составим вариационный ряд достигаемых уровней значимости:

$$p_{(1)} \le p_{(2)} \le \ldots \le p_{(m)},$$

 $H_{(1)}, H_{(2)}, \dots, H_{(m)}$ — соответствующие гипотезы.

- **①** Если $p_{(m)} \leq \alpha_m$, отвергнуть все нулевые гипотезы $H_{(1)}, H_{(2)}, \dots, H_{(m)}$ и остановиться; иначе принять $H_{(m)}$ и продолжить.
- **2** Если $p_{(m-1)} \le \alpha_{m-1}$, отвергнуть все нулевые гипотезы $H_{(1)}, H_{(2)}, \dots, H_{(m-1)}$ и остановиться; иначе принять $H_{(m-1)}$ и продолжить.
- **3** . . .

Постановка задачи

Каждый достигаемый уровень значимости $p_{(i)}$ сравнивается со своим уровнем значимости α_i .

FDR

000000

Восходящие методы множественной проверки гипотез

Восходящая процедура всегда отвергает не меньше гипотез, чем нисходящая с теми же уровнями значимости:

Метод Бенджамини-Хохберга

Метод Бенджамини-Хохберга — восходящая процедура со следующими уровнями значимости:

$$\alpha_1 = \frac{\alpha}{m}, \ldots, \alpha_i = \frac{\alpha i}{m}, \ldots, \alpha_m = \alpha.$$

Метод обеспечивает контроль над ${
m FDR}$ на уровне lpha при условии, что статистики T_i независимы или выполняется следующее свойство:

$$P(X \in D | T_i = x)$$
 неубывает по $x \forall i \in M_0$,

где D — произвольное возрастающее множество, то есть, такое, что из $x \in D$ и $y \geq x$ следует $y \in D$.

(PRDS on $T_i, i \in M_0$ (positive regression dependency on each one from a subset)).

Модифицированные достигаемые уровни значимости:

$$\tilde{p}_{(i)} = \min\left(1, \frac{mp_{(i)}}{i}, \tilde{p}_{(i+1)}\right).$$

PRDS выполняется, например, для многомерного нормального распределения с нулевыми средними и неотрицательными корреляциями элементов из M_0 , а также для некоторых его производных.

Примеры задач:

- анализ непересекающихся подгрупп при сравнении двух выборок критерием Стьюдента с общей оценкой дисперсии;
- сравнение одной нормальной выборки с многими при использовании общей оценки дисперсии;
- multiple endpoints.

FDR

0000000

Метод Бенджамини-Хохберга

FWER

Модифицированные достигаемые уровни значимости, метод Холма:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	24	174
Отвергнутых H_i	0	26	26
Всего	150	50	200

FDR

0000000

Модифицированные достигаемые уровни значимости, нисходящий метод Бенджамини-Хохберга:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	148	4	152
Отвергнутых H_i	2	46	48
Всего	150	50	200

FDR

0000000

FDR

Метод Бенджамини-Иекутиели — восходящая процедура со следующими уровнями значимости:

$$\alpha_1 = \frac{\alpha}{m \sum_{j=1}^m \frac{1}{j}}, \dots, \alpha_i = \frac{\alpha i}{m \sum_{j=1}^m \frac{1}{j}}, \dots, \alpha_m = \frac{\alpha}{\sum_{j=1}^m \frac{1}{j}}.$$

Метод обеспечивает контроль над ${
m FDR}$ на уровне ${m_0\over m}lpha\le lpha$ при любых p_i и T_i . При отсутствии информации о зависимости между статистиками метод неулучшаем.

Модифицированные достигаемые уровни значимости:

$$\tilde{p}_{(i)} = \min \left(1, \frac{mp_{(i)} \sum_{j=1}^{m} \frac{1}{j}}{i}, \tilde{p}_{(i+1)} \right).$$

Метод Бенджамини-Иекутиели

FDR

0000000

Модельный эксперимент

Модифицированные достигаемые уровни значимости, метод Холма:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	24	174
Отвергнутых H_i	0	26	26
Всего	150	50	200

Модельный эксперимент

Модифицированные достигаемые уровни значимости, нисходящий метод Бенджамини-Хохберга:

	Верных H_i	Неверных H_i	Всего
Принятых H_i	148	4	152
Отвергнутых H_i	2	46	48
Всего	150	50	200

FDR

000000

Модельный эксперимент

Модифицированные достигаемые уровни значимости, нисходящий метод

	Верных H_i	Неверных H_i	Всего
Принятых H_i	150	10	160
Отвергнутых H_i	0	40	40
Всего	150	50	200

FDR

0000000

Метод Бенджамини-Иекутиели

Если доля неверных гипотез мала, метод Бенджамини-Иекутиели отвергает меньше гипотез, чем метод Холма.

FDR

Постановка задачи

	Контроль (100)	Больные (100)	p
Мутация	1 из 100	8 из 100	0.0349
Фамилия начинается с гласной	36 из 100	40 из 100	0.6622

Бонферрони, Холм: p_1 сравнивается с $\frac{0.05}{2}=0.025$ Шидак: p_1 сравнивается с $1-(1-0.05)^{\frac{1}{2}}\approx 0.02532$

Подгруппы

(Lee et al., 1980): 1073 пациента с ишемической болезнью сердца были

искусственно разделены на две случайные группы, лечение в двух группах проходило одинаково. Исследовалась выживаемость пациентов.

Важными факторами, влияющими на выживаемость, являются число поражённых артерий (одна, две, три) и тип сокращений левого желудочка (нормальный, абнормальный).

Для одной из шести подгрупп по этим уровням фактора были обнаружены значимые различия между в выживаемости пациентов первого и второго типов.

Подгруппы

Постановка задачи

Подгруппы

Постановка задачи

(Ishitani, Lin, 2008): анализировалась связь потребления кофеина, кофе и чая и риска возникновения рака груди, всего около 50 подгрупп. Показано, что:

- употребление четырёх и более чашек кофе в день связано с увеличением риска злокачественного рака груди (p=0.08);
- потребление кофеина связано с увеличением риска возникновения эстроген- и прогестерон-независимых опухолей и опухолей больше 2 cm (p = 0.02 u p = 0.02);
- потребление кофе без кофеина связано со снижением риска рака груди у женщин в постменопаузе, принимающих гормоны (p = 0.02).

См. также:

- (Гален, II в. н.э.): "Все больные, принявшие это средство, вскоре выздоровели, за исключением тех, кому оно не помогло — они умерли. Отсюда очевидно, что это средство помогает во всех случаях, кроме безнадежных."
- http://youtu.be/QysrgLXMPwA
- http://xkcd.com/882/
- http://wmbriggs.com/blog/?p=9308

Метод cherry-picking:

- ullet выбираем произвольное множество ${f R}$ гипотез, которые мы хотим отвергнуть;
- оцениваем сверху долю ложных отклонений:

$$FDP = \frac{V}{R}.$$

Оценка справедлива сразу для всех 2^m-1 возможных множеств ${f R}.$

Большая часть исследований неверна

Постановка задачи

loannidis, Why most published research findings are false, 2005.

Примеры

Сравнение качества модификаций алгоритма C4.5: https://yadi.sk/d/KY2TqTuZeuxM9

Транскриптом лейкоцитов детей, больных астмой (для самостоятельной работы):

http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS4896 https://yadi.sk/i/av5eYc9teuxMd

- попроще Bretz, посложнее Dickhaus, хороший краткий обзор Goeman, 2014;
- перестановочные методы (permutation methods) Westfall, 2008, и другие работы этого автора;
- cherry-picking Goeman, 2011;
- случайные поля Nichols, 2003; fil.ion.ucl.ac.uk/spm/. coursera.org/course/fmri.

Bretz F., Hothorn T., Westfall P. Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.

Dickhaus T. Simultaneous Statistical Inference With Applications in the Life Sciences. Heidelberg: Springer, 2014.

Goeman J.J., Solari A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4), 584-597.

Goeman J.J., Solari A. (2014). Multiple hypothesis testing in genomics. Statistics in Medicine, 33(11), 1946–1978.

Ioannidis J.P.A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.

Литература

Ishitani K., Lin J. (2008). Caffeine consumption and the risk of breast cancer in a large prospective cohort of women. Archives of Internal Medicine, 168(18), 2022–2031.

Lee K.L., McNeer J.F., Starmer C.F., Harris P.J., Rosati R.A. (1980). Clinical judgment and statistics. Lessons from a simulated randomized trial in coronary artery disease. Circulation, 61(3), 508–515.

Nichols T.E., Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12(5), 419–446.

Westfall P., Troendle J. (2008). *Multiple testing with minimal assumptions*. Biometrical Journal, 50(5), 745–755.