- 1. Sean \vec{a} y \vec{b} dos vectores con origen común formando un ángulo θ ,
 - (a) Demostrar geométricamente que

$$\left(\vec{a} - \vec{b}\right)^2 = a^2 + b^2 - 2ab\cos\theta$$
, (Teorema del coseno). (1)

- (b) Escribir el producto escalar $\vec{a} \cdot \vec{b}$ en función de $\cos \theta$.
- (c) Obtener la relación del ángulo θ con los cosenos directores de \vec{a} y \vec{b} .
- 2. Utilizando las definiciones

$$\vec{a} \cdot \vec{b} = a_i b_i ,$$

$$(\vec{a} \times \vec{b}) \cdot \vec{c} = \epsilon_{ijk} a_i b_j c_k ,$$
(2)

(donde existe una suma sobre i, j, k) y la relación $\epsilon_{ijk}\epsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}$, demostrar las siguientes identidades vectoriales:

(a) Producto vectorial triple:

$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} , \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot b) \vec{c} .$$
 (3)

(b) Producto escalar cuádruple:

$$\left(\vec{a} \times \vec{b} \right) \cdot \left(\vec{c} \times \vec{d} \right) = \left(\vec{a} \cdot \vec{c} \right) \left(\vec{b} \cdot \vec{d} \right) - \left(\vec{a} \cdot \vec{d} \right) \left(\vec{b} \cdot \vec{c} \right) .$$
 (4)

(c) Mostrar que

$$|\vec{a} \times \vec{b}| = ab\sin\theta , \qquad \forall \ 0 \le \theta < \pi . \tag{5}$$

(d) Dado $\vec{c} = \vec{a} \times \vec{b}$, probar que

i.
$$\vec{c} \cdot \vec{a} = \vec{c} \cdot \vec{b} = 0$$
,

ii.
$$0 < (\vec{c} \times \vec{a}) \cdot \vec{b}$$
,

lo que indica que \vec{c} es perpendicular a \vec{a} y \vec{b} .

- 3. Sean los siguientes vectores ortonormales $\vec{a} = \frac{1}{\sqrt{2}}(1,1,0)$, $\vec{b} = \frac{1}{\sqrt{2}}(-1,1,0)$ y $\vec{c} = (0,0,1)$, y sea $\mathbf{R}_{\hat{u},\phi}$ una rotación de ángulo ϕ alrededor del eje caracterizado por el vector unitario \hat{u} . Obtener \hat{u} y ϕ en los siguientes casos:
 - (a) $\mathbf{R}\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} = \left\{\vec{a}, \vec{b}, \vec{c}\right\}$.
 - (b) $\mathbf{R}\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} = \left\{\vec{c}, \vec{a}, \vec{b}\right\}$.
 - (c) $\mathbf{R}\{\vec{e}_1, \vec{e}_2, \vec{e}_3\} = \{\vec{b}, \vec{c}, \vec{a}\}$.

Use la relación $\operatorname{Tr} \mathbf{R}_{\hat{u},\phi} = 1 + 2\cos\phi$, donde $\operatorname{Tr} \mathbf{R}$ es la traza de la matriz \mathbf{R} .

- 4. Demostrar las siguientes propiedades bajo rotaciones:
 - (a) Conservación del producto escalar

$$\mathbf{R}\vec{a}\cdot\mathbf{R}\vec{b} = \vec{a}\cdot\vec{b} \ . \tag{6}$$

(b) Transformación del producto vectorial

$$\mathbf{R}\vec{c} = \mathbf{R}\vec{a} \times \mathbf{R}\vec{b} , \qquad (7)$$

donde $\vec{c} = \vec{a} \times \vec{b}$.

- 5. Sean \vec{a} , \vec{b} y \vec{c} tres vectores constantes que unen el origen con los puntos A, B y C.
 - (a) Calcular la distancia del origen al plano definido por A, B y C.
 - (b) Calcular el área del triángulo ABC.