PROBABILIDADE E PROCESSOS ESTOCÁSTICOS (CKP7366)

Prof. João Paulo Pordeus Gomes

VARIÁVEIS ALEATÓRIAS CONTÍNUAS (AULA 1)

Variáveis aleatórias contínuas

- v.a contínuas
 - Diversas variáveis são naturalmente modeladas como v.a. continuas
 - Cálculo (somatórios -> Integrais)
- Mesma abordagem para o caso discreto
 - Definições, notação
 - Propriedades do valor esperado e da variância
 - Condicionamento e independência
 - Teoremas da probabilidade total e esperança total

v.a. contínuas e Funções Densidade de Probabilidade (PDF)

- Função densidade de probabilidade
 - Propriedades
 - Exemplos
- Esperança e suas propriedades
 - Regra do valor esperado
 - Linearidade
- Variância e suas propriedades
- V.a. uniforme e exponencial
- Função distribuição acumulada (CDF)
- V.a. Normal
 - Esperança e variância
 - Linearidade

$$P(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$$

$$f_X(x)$$

a b

$$P(a \le X \le b) = \sum_{x: a \le x \le b} p_X(x)$$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

$$f_X(x)$$

a b

$$P(a \le X \le b) = \sum_{x:a \le x \le b} p_X(x)$$

- $p_X(x) \ge 0$
- $\sum_{x} p_X(x) = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

- $f_X(x) \ge 0$
- $\int_{-\infty}^{\infty} f_X(x) dx = 1$

$$f_X(x)$$

a b

$$P(a \le X \le b) = \sum_{x: a \le x \le b} p_X(x)$$

- $p_X(x) \ge 0$
- $\sum_{x} p_{x}(x) = 1$

$$P(a \le X \le b) = \int_{a}^{b} f_X(x) dx$$

- $f_X(x) \ge 0$ $\int_{-\infty}^{\infty} f_X(x) dx = 1$

Uma variável aleatória é continua se esta puder ser descrita pela sua PDF

Exercício

Seja X uma v.a continua cuja PDF é dada por:

•
$$f_X(x) = \begin{cases} c(1-x), & \text{se } x \in [0,1], \\ 0, & \text{caso contrário} \end{cases}$$

- Encontre os valores de:
- a) **C**
- b) P(X=0.5)
- c) P(X<0.5)

Distribuição Uniforme

Distribuição Uniforma

Distribuição Uniforme

PDF constante por partes

Esperança e Variância de uma v.a. contínua

$$E[X] = \sum_{x} x p_X(x)$$

Esperança e Variância de uma v.a. contínua

$$E[X] = \sum_{x} x p_X(x)$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

- Se $X \ge 0$ então $E[X] \ge 0$
- Se $a \le X \le b$ então $a \le E[X] \le b$

- Se $X \ge 0$ então $E[X] \ge 0$
- Se a $\leq X \leq b$ então a $\leq E[X] \leq b$
- Regra do valor esperado
 - $E[g(X)] = \sum_{x} g(x) p_X(x)$

- Se $X \ge 0$ então $E[X] \ge 0$
- Se a $\leq X \leq b$ então a $\leq E[X] \leq b$
- Regra do valor esperado
 - $E[g(X)] = \sum_{x} g(x) p_X(x)$
 - $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$

- Se $X \ge 0$ então $E[X] \ge 0$
- Se a $\leq X \leq b$ então a $\leq E[X] \leq b$
- Regra do valor esperado
 - $E[g(X)] = \sum_{x} g(x) p_X(x)$
 - $E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$
- Linearidade
 - $\bullet \ E[aX+b] = aE[X] + b$

Propriedades da Variância

- Definição
 - $var(X) = E[(X \mu)^2]$
- Usando a regra do valor esperado

•
$$var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x)$$

- $var(aX + b) = a^2 var(X)$
- $var(X) = E[X^2] + E[X]^2$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$var(X) =$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X^2] = \int_a^b x^2 \frac{1}{b-a} dx$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X^2] = \int_a^b x^2 \frac{1}{b-a} dx = \frac{1}{b-a} \left(\frac{b^3}{3} - \frac{a^3}{3} \right)$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{a+b}{2}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X^2] = \int_a^b x^2 \frac{1}{b-a} dx = \frac{1}{b-a} \left(\frac{b^3}{3} - \frac{a^3}{3} \right)$$

•
$$var(X) = \frac{(b-a)^2}{12}$$

• Parâmetro $\lambda > 0$

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

• Parâmetro $\lambda > 0$

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

$$P(X \ge a) =$$

• Parâmetro $\lambda > 0$

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

X

$$P(X \ge a) = \int_{a}^{\infty} \lambda e^{-\lambda x} \, dx$$

• Parâmetro $\lambda > 0$

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

$$P(X \ge a) = \int_{a}^{\infty} \lambda e^{-\lambda x} \, dx$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

• Parâmetro $\lambda > 0$

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{se } x \ge 0 \\ 0, & \text{se } x \le 0 \end{cases}$$

$$P(X \ge a) = \int_{a}^{\infty} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{a}^{\infty}$$
$$P(X \ge a) = e^{-\lambda a}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

Valor Esperado da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Valor Esperado da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx$$

Valor Esperado da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

•
$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

Variância da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X] = \frac{1}{\lambda}$$

•
$$E[X^2] =$$

Variância da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X] = \frac{1}{\lambda}$$

•
$$E[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx$$

Variância da Exponencial

•
$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & se \ x \ge 0 \\ 0, & se \ x \le 0 \end{cases}$$

•
$$var(X) = E[X^2] - E[X]^2$$

•
$$E[X] = \frac{1}{\lambda}$$

•
$$E[X^2] = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

•
$$var(X) = \frac{1}{\lambda^2}$$

- Definição
 - $F_X(x) = P(X \le x)$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. contínua
 - $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(k) dk$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. contínua
 - $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(k) dk$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. contínua
 - $F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(k) dk$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. contínua

•
$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(k) dk$$

$$P(X \le 3) = P(X \le 2) + P(2 \le X \le 3)$$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. contínua

•
$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(k) dk$$

$$P(X \le 3) = P(X \le 2) + P(2 \le X \le 3)$$

•
$$g(x) = \int_a^x h(k)dk$$

•
$$g'(x) = h(x)$$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. discreta

•
$$F_X(x) = P(X \le x) = \sum_{k \le x} p_X(k)$$

- Definição
 - $F_X(x) = P(X \le x)$
- · v.a. discreta

•
$$F_X(x) = P(X \le x) = \sum_{k \le x} p_X(k)$$

Propriedades da CDF

- $F_X(x) = P(X \le x)$
 - Não decrescente
 - se $y \ge x$ então $F_X(y) \ge F_X(x)$
 - $F_X(x) \rightarrow 1$, quando $x \rightarrow \infty$
 - $F_X(x) \to 0$ quando $x \to -\infty$

v.a. Normal (Gaussiana)

- Importante para teoria de probabilidade
 - Teorema central do limite
- Muitas aplicações
 - Modela diversos fenômenos
 - Propriedades matemáticas interessantes

•
$$N(0,1)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

•
$$N(0,1)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

•
$$N(0,1)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

$$E[X] =$$

•
$$N(0,1)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

$$E[X] = 0$$

•
$$N(0,1)$$
: $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$

$$E[X] = 0$$
$$var(X) = 1$$

Normal (caso geral)

•
$$N(\mu, \sigma^2)$$
: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$

Normal (caso geral)

•
$$N(\mu, \sigma^2)$$
: $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$

$$E[X] = \mu$$
$$var(X) = \sigma^2$$

Funções lineares de uma v.a. Normal

• Seja Y = aX + b $X \sim N(\mu, \sigma^2)$

Funções lineares de uma v.a. Normal

- Seja Y = aX + b $X \sim N(\mu, \sigma^2)$
- $E[Y] = a\mu + b$
- $var(Y) = a^2 \sigma^2$

Funções lineares de uma v.a. Normal

- Seja Y = aX + b $X \sim N(\mu, \sigma^2)$
- $E[Y] = a\mu + b$
- $var(Y) = a^2 \sigma^2$
- Nova propriedade
 - $Y \sim N(a\mu + b, a^2\sigma^2)$

DÚVIDAS?