MAT 191 Fall 2015 Midterm Exam

Name					
ID					
	Problem 1 Score	2	3	4	
 use of your class no the CCLE website f - An Introductio freely available at h the above are the o 	present your own work only tes (including corrected and or this course, and of the to n to Statistical Learning by ttp://www-bcf.usc.edu/- only materials you can use	d annot extbook James gareth ; in pa	t, Witte /ISL/ rticula	en, Ha r, no	ork assignments), of material posted estie, and Tibshirani, other books, no internet resources, you need some clarification) are allow
slide the exam unde	class on Monday, Nove r r my office door, in MS 731 or partial submissions will	.0.	v	_	efer to hand it in earlier, you can alwa
Signed statement: I chat this represents my own					nis written take-home examination, as

Explain all your answers, and PLEASE write clearly and neatly.

Problem 1 (10p)

(a)(5p) Let X be a random variables distributed uniformly $\sim \text{Unif}([-1,1])$ and let $Y = X^2$. Are X, Y correlated? Are they independent?

(b)(5p) Compute the characteristic function of the following distribution

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b\\ 0, & \text{if } x \notin (a,b) \end{cases}$$

Problem 2 (10p)

Assume that x_1, x_2, \ldots, x_n are independent identically distributed instances of a p-dimensional random variable X with mean μ (of size $p \times 1$) and covariance C (of size $p \times p$). Given that the sample mean is defined as

$$\mu_n = \frac{1}{n} \sum_{k=1}^n x_k$$

show the following result: $\mathbf{Var}[\mu_n] = \frac{1}{n}C$.

Problem 3 (10p) Problem 9 from the textbook, Chapter 3, page 122

Problem 4 (10p)

(a)(5p) When we discussed multidimensional scaling in class, we made the following claim. If $x_1, \ldots, x_n \in \mathbb{R}^p$, $D_{ij} = ||x_i - x_j||_2^2$, $s_i = \sum_{j=1}^n D_{ij}$, and $s = \sum_{i=1}^n s_i$ then

$$D_{ij} - \frac{1}{n}s_i - \frac{1}{n}s_j + \frac{1}{n^2}s = -2x_i^T x_j$$

Prove this claim.

(b)(5p) Download the associated data set from CCLE, named "midtermDistanceMatrix.data" and perform multidimensional scaling on it. After loading the file, with the command load(file = 'midtermDistanceMatrix.data'), the matrix of distances is called DIST. More precisely, you are asked to:

(i) Build the matrix B we constructed in class, and explore its spectrum. Show a barplot of the top 10 eigenvalues. What do you observe, and what can you conclude about the space in which the point x_1, \ldots, x_n live?

(ii) Compute a 2-dimensional embedding, by using the spectral decomposition of B, as shown in class (You may want to reflect one of the axes in your plot, to make the end result more visually appealing). Include the embedding in your submission, as well as the code used for the entire part (b).