Computer Organization and Architecture

Me lol

July 24, 2025

Contents

1	Intr	roduction 4
	1.1	Computer organization and architecture
	1.2	Structure and function
	1.3	Designing for performance
	1.4	Interconnection structures
	1.5	Bus interconnection
	1.6	PCI
	1.0	
2	Cen	tral Processing Unit 5
	2.1	CPU Structure and Function
	2.2	Arithmetic and Logic Unit
	2.3	Instruction Formats
	2.4	Data Transfer and Manipulation
	2.5	Addressing Modes
	$\frac{2.5}{2.6}$	RISC and CISC
	$\frac{2.0}{2.7}$	
	2.1	64 – Bit Processor
3	Con	trol Unit
J	3.1	Control Memory
	3.1	V
	3.3	0 1 0
	3.4	Microinstruction Format
	3.5	Symbolic Microinstructions
	3.6	Symbolic Microprogram
	3.7	Control Unit Operation
	3.8	Design of Control Unit
4	D.	1. 1.77
4	_	eline and Vector processing
	4.1	Pipelining
	4.2	Parallel Processing
	4.3	Arithmetic Pipeline
	4.4	Instruction Pipeline
	4.5	RISC Pipeline
	4.6	Vector Processing
	4.7	Array Processing
5		nputer Arithmetic 10
	5.1	Addition Algorithm
	5.2	Subtraction Algorithm
	5.3	Multiplication Algorithm
	5.4	Division Algorithm
	5.5	Logical Operation
6	Meı	mory System 12
	6.1	Microcomputer Memory
	6.2	Characteristics of memory systems
	6.3	The Memory Hierarchy
	6.4	Internal and External memory

	6.5	Cache memory principles	12
	6.6	Elements of Cache design	12
		6.6.1 Cache size	12
		6.6.2 Mapping function	12
		6.6.3 Replacement algorithm	
		6.6.4 Write policy	12
		6.6.5 Number of caches	
7	Inp	ut-Output organization	13
	7.1^{-}	Peripheral devices	13
	7.2	I/O modules	13
	7.3	Input-Output interface	13
	7.4	Modes of transfer	13
		7.4.1 Programmed I/O	13
		7.4.2 Interrupt-driven I/O	
		7.4.3 Direct Memory access	13
	7.5	I/O Processors	
	7.6	Data Communication Processor	13
8	Mu	ltiprocessors	14
	8.1	Characteristics of multiprocessors	14
	8.2	Interconnection Structures	14
	8.3	Interprocessor Communication and Synchronization	14

1 Introduction

(3 Hours/6 Marks)

1.1 Computer organization and architecture

- 1. Define computer architecture. [2] (**75 Ch**) [1.5] (81 Bh) [1] (**72 Ch**)
- 2. Define computer organization. [1.5] (81 Bh) [1] (72 Ch)
- 3. Differentiate between computer organization and architecture. [2] (71 Ch, 78 Ka) [3] (72 Ka)
- 4. Explain the design goals and performance metrics for a computer system regarding its organization and architecture. [5] (76 Ash)

1.2 Structure and function

- Define structure and function of a computer system.
 Explain about the structural and functional viewpoint of a computer.
 (80 Ba)
 (79 Bh)
- 2. Explain the functional view and four types of operations used in computer. [6] (68 Ch)

1.3 Designing for performance

- 1. What are the driving factors behind the need to design for performance? [4] (71 Shr)
- 2. How can we maintain a performance balance between processor and memory? [2] (72 Ch)
 |→What is performance balance and why it is required? [3] (70 Asa)

1.4 Interconnection structures

- 1. Explain the Interconnection structures of computer. [6] (75 Ash)
 - $|\rightarrow \text{Definition}|$ [2] (73 Shr)
 - \rightarrow Explain different types. [4] (73 Shr)
- 2. Explain the interconnection of CPU with Memory and I/O devices along with different operations over them. [3+3] (70 Ch)

1.5 Bus interconnection

- 1. What do you understand by Bus Interconnection. [2] (71 Shr)
- 2. What does the width of address bus represent in a system? [2] (75 Ch,71 Ch)
- 3. Explain different elements of bus design. [2] (79 Bh) [3] (70 Asa)
- 4. Discuss the limitations of using single bus system to connect different devices.
- [2] (**75 Ch,72 Ch**) 5. Compare and explain the bus structure of typical computer system. [4] (**78 Ka**)
- 6. Explain different types of bus arbitration and compare them. [6] (78 Bh)
- 7. Why is bus hierarchy required? [2] (71 Ch)
- 8. Discuss about the usage of a Multiple Hierarchical Bus Architecture over single bus system.

 [6] (80 Bh)

1.6 PCI

1. What is PCI? [1] (76 Ash) \rightarrow Describe PCI bus configuration. [3] (81 Ba)

2 Central Processing Unit

(10 Hours/18 Marks)

2.1 CPU Structure and Function

1. Explain the component of CPU.	[2] (78 Ch)
2. Draw the instruction cycle state diagram with example.	[6] (76 Ch)
\rightarrow Draw instruction cycle, state diagram with interrupt and explain it.	[6] (74 Ch)
\rightarrow Explain instruction cycle state diagram.	[3] (81 Ba)
$\mid \rightarrow$ Explain instruction cycle state diagram with interrupt handling.	[2] (80 Ba) [3] (81 Bh)
\rightarrow Explain the computer functions with different cycles.	[3] (72 Ka)
3. Explain the general organization of register in CPU.	[6] (71 Ch)

2.2 Arithmetic and Logic Unit

1. What do you mean by instruction format?

3. Explain Instruction Format with its types?

2. What are the different types of instructions?

p. Y = AB + (F/G) + CD [8] (67 Asa)

- 1. Design a 1-bit ALU which can perform addition, AND, OR, and X-OR operations. Explain the different types of instruction formats. [4+4] (80 Bh)
- 2. Design a 2-bit ALU that can perform subtraction, AND, OR and XOR. [8] (75 Ch)
- 3. What are the stages of ALU design? Explain with the example of 2-bit ALU performing addition, subtraction, OR and XOR. [8] (70 Asa)

[4] (**72** Ch)

[3] (**71 Ch**)

[2] (71 Shr)

2.3 Instruction Formats

o. Explain instruction format with its types.	
4. What are the most common fields in an instruction.	[2] (68 Ch)
5. Write down the code to evaluate in three address, two address, one	address and zero address
instruction format.	
a. $Y = (A-B/C)*[D+(E*G)]$	[8] (81 Bh, 76 \mathbf{Ch})
b. $N = ((P-QxR)/S) + (T/U) + VxW$	[8] (81 Ba)
c. $X = \frac{A-B+Cx(DxE-F)}{G+HxK}$	[8] (80 Ba)
	[6] (60 Ba)
d. $X = ((A+B)/C) + (D-E)$	[8] (79 Bh)
e. $Y = (A-B/C) \times (D+E\times G)/F$	[8] (78 Ka)
f. $Y = (W+X) * (Y-Z)$	[8] (76 Ash)
g. $Y = (A+B)/C + D/(E*F)$	[8] (75 Ch)
h. (In present sources, operation is not given. If found, please contact	(8) (75 Ash)
i. $X = (P+Q) \times (R+S)$	[8] (74 Ch)
j. $Y = A * (B+D/C)+(G*E)/F$	[8] (73 Shr)
k. $X = (A-B*F)*C+D/E$	[8] (72 Ch)
l. $Y = (A+B)*(C+D)+G/E*F$	[8] (72 Ka)
m. $X = (A+B) \times (C+D)$ [5] (7)	Ch) [6] (68 Ch , 71 Shr)
n. $Y = A/B + (CxD) + F(H/G)$	[8] (70 Ch
o. $Y = A + (B*C) + D$	[8] (68 Ba)
77 (D (D (D))	

2.4 Data Transfer and Manipulation

- 1. Explain data transfer instruction with example. [4] (81 Bh)
- 2. Explain different types of data manipulation instructions with example. [8] (78 Bh)

 $|\rightarrow$ What are the three types of data manipulation instructions used in computer? Explain.

[8] **(67 Asa)**

2.5 Addressing Modes

- 1. What is addressing mode? [2] (80 Bh,76 Ch,68 Ch)
- 2. Differentiate between Immediate and direct addressing modes. [4] (81 Bh)
- 3. Write down the need for addressing modes. [2] (74 Ch)
- 4. Comparision of different types of addressing modes. [6] (76 Ch) [8] (76 Ash) [10] (72 Ka) |→ with adv/disadv. [10] (78 Ka)
 - $|\rightarrow$ with algorithm as well as adv/disadv. [8] (68 Ba)
- 5. Write down different types of addressing mode and:
 - \rightarrow Explain with adv/disadv. [8] (81 Ba, 80 Ba) [10] (70 Ch)
 - \rightarrow Explain with suitable example. [6] (80 Bh, 79 Bh,74 Ch) [8] (68 Ch, 70 Asa)
- 6. Following instructions are give: [10] (73 Shr)
 - a. LDA 2000H
 - b. MVI B, 32H
 - c. STAX D
 - d. MOV A, B

Which addressing modes are used in the above instructions? Explain briefly about them.

7. Describe the operation of LD (load) instruction under various addressing modes with syntax.

[4] (**71** Ch)

2.6 RISC and CISC

1. Comparison between RISC and CISC architecture. [6] (78 Bh,72 Ch, 75 Ash)

2.7 64 – Bit Processor

3 Control Unit

(6 Hours/10 Marks)

3.1 Control Memory

3.2 Addressing sequencing

1. Explain address sequencing with the help of a block diagram.

[5] (**80** Bh)

2. What is address sequencing?

[3] (71 Ch,67 Asa)

- 3. How does a sequencing logic work in micro-programmed control unit to execute a micro-program?

 [6] (70 Ch)
- 4. Explain the address sequencing capabilities required in a control memory.

[5] **(67 Asa)**

3.3 Computer configuration

3.4 Microinstruction Format

1. Explain the microinstruction format.

[3] (**80 Bh**) [4] (81 Ba) [5] (72 Ka)

 \rightarrow with example.

[5] (**81 Bh**) [6] (71 Shr)

 \rightarrow Explain various fields in micro-instruction format with neat and clean block diagram.

[3] (**68 Ch**)

3.5 Symbolic Microinstructions

1. How address of micro instruction is generated by next address generator in control unit? Explain with suitable diagram. [8] (76 Ch)

3.6 Symbolic Microprogram

1. Write a microprogram for the fetch cycle and addition cycle.

[5] **(81 Bh)**

2. Differentiate between symbolic and bianry micro instruction.

[4] (81 Ba)

3. Explain the operation of microprogram sequencer used in microprogrammed control unit.

[5] (**79 Bh**) [6] (78 Ka)

- 4. Explain with diagram the working of microprogram sequencer for control memory.
- 5. Write down the symbolic microprogram for fetch routine and addition execute routine.

5. Write down the symbolic inicroprogram for fetch routine and addition execute routine.

[4] (78 Ka)

6. Describe various fields in micro-instruction format with diagram showing different fields.

[6] (76 Ash)

7. Write micro program for fetch cycle.

[4] (73 Shr)

3.7 Control Unit Operation

1. What are the types of control signals?

[3] **(68 Ba)**

3.8 Design of Control Unit

	S		
1.	1. Differentiate between hardwired and microprogrammed control unit.		
	[4] (74 Ch, 70 Asa) [5] (75 Ch,	70 Ch , 80 Ba)	
2.	Describe the operation of hardwired control unit with a typical diagram.	[5] (79 Bh)	
	\rightarrow Explain the key steps of hardware implementation of control unit.	[7] (68 Ba)	
3.	Explain microprogrammed control unit with block diagram.	[5] (80 Ba)	
4.	Explain the organization structure of a microprogram control unit and the general	ation of control	
	signals using microprogram.	[10] (78 Bh)	
5.	Explain block diagram of micro-programmed control organization.	[4] (76 Ash)	
6.	Draw and explain block diagram of micro-programmed sequencer for control memory	ory.	
		[5] (75 Ch)	
	$\mid \rightarrow$ Draw the diagram of Micro-programmed sequencer for a control memory and e	,	
		[10] (75 Ash)	
	\rightarrow Explain the micro program sequencer used in microprogrammed control unit.	[6] (74 Ch)	
7.	Explain microinstruction format used in microprogramming control unit.	[6] (73 Shr)	
	What factors cause micro-programmed control unit to be selected over hardwired		
	•	[3] (72 Ch)	
9.	9. Explain with block diagram, how address of control memory is selected in micro-		
	control unit.	[7] (72 Ch)	
	\rightarrow Describe how address of control memory is selected.	[7] (68 Ch)	
10.	Explain the address sequencer with the help of a block diagram.	[5] (72 Ka)	
	Explain the selection of address for control memory with its block diagram.	[7](71 Ch)	
	Explain the organization of a control memory.	[4] (71 Shr)	
	Explain with steps involved when you are designing micro-program control unit.	[6] (70 Asa)	
		. 1 /	

4 Pipeline and Vector processing

(5 Hours/10 Marks)

- 4.1 Pipelining
- 4.2 Parallel Processing
- 4.3 Arithmetic Pipeline
- 4.4 Instruction Pipeline
- 4.5 RISC Pipeline
- 4.6 Vector Processing
- 4.7 Array Processing

5 Computer Arithmetic

(8 Hours/14 Marks)

5.1 Addition Algorithm

Explain the floating-point addition and subtraction process
 |→ with example. [3+3] (81 Bh, 79 Bh, 78 Bh) [7] (73 Shr)
 |→ with flowchart and example. [6] (78 Ka) [10] (74 Ch)

2. Draw a flowchart of floating point subtraction.

[4] (70 Asa)

5.2 Subtraction Algorithm

2. Explain booth's algorithm.

5.3 Multiplication Algorithm

1. Draw a flowchart for Booth's multiplication algorithm for signed multiplication. [4] (78 Ka) [5] (81 Bh)

[3] (70 Ch) [4] (80 Bh,68 Ch,67 Asa, 72 Ka) [5] (76 Ch)

|→ with example and give hardware requirement diagram. [10] (75 Ash) |→ Explain with hardware algorithm with diagram. [5] (72 Ch) |→ Write the algorithm. [5] (76 Ash, 71 Shr) 3. Design a booth multiplication algorithm hardware. [4] (71 Ch)

3. Design a booth multiplication algorithm hardware.4. Multiply using Booth's multiplication algorithm.

 $\begin{array}{l} |\!\!\!\rightarrow -6 \times 7 \\ |\!\!\!\!\rightarrow -7 \times 3 \\ |\!\!\!\!\rightarrow -6 \times 12 \\ |\!\!\!\rightarrow -6 \times 12 \\ |\!\!\!\rightarrow 10 \times (-7) \\ |\!\!\!\rightarrow 10 \times (-5) \\ |\!\!\!\rightarrow 5 \times -6 \\ |\!\!\!\!\rightarrow (9) \times (-3) \\ |\!\!\!\rightarrow 23 \times -21 \end{array} \hspace{1cm} \begin{array}{l} [5] \ \textbf{(81 Bh, 80 Ba)} \\ [6] \ \textbf{(74 Ch)} \\ [6] \ \textbf{(72 Ka)} \\ [6] \ \textbf{(81 Ba)} \\ [6] \ \textbf{(72 Ch)} \\ [6] \ \textbf{(72 Ch)} \\ [7] \ \textbf{(51 (71 Shr))} \\ [8] \ \textbf{(68 Ch)} \end{array}$

 $\begin{vmatrix} -23 \times -21 \\ -9 \times 4 \\ -8 \times 4 \end{vmatrix}$ $\begin{vmatrix} -8 \times 4 \\ -8 \times 9 \\ -6 \times 7 \end{vmatrix}$ $\begin{vmatrix} -4 & (68 \text{ Ch}) \\ (80 \text{ Bh}) \\ (5) & (76 \text{ Ash}) \\ (3) & (70 \text{ Ch}) \\ (4) & (67 \text{ Asa}) \end{vmatrix}$

 $| \rightarrow -7 \times -10$ [4] (78 Ka) $| \rightarrow -6 \times -11$ [6] (75 Ch) $| \rightarrow -5 \times -9$ [5] (72 Ch)

5.4 Division Algorithm

1. How division operation can be performed? Explain with its hardware implementation.

[10] (70 Asa)

2. Draw the flowchart for Restoring Division. [4] (81 Ba, 72 Ka)

3. Draw the flowchart for Non-restoring Division. [4] (79 Bh)
|→Explain signed binary division algorithm. [4] (73 Shr)

4. Explain non-restoring division algorithm. [3] (75 Ch) [5] (78 Bh)

 $|\rightarrow$ with flowchart. [5] (80 Ba) $|\rightarrow$ with flowchart and example. [8] (70 Ch)

5. Draw the flowchart for division of floating point numbers. [4] (**72** Ch,**71** Ch) 6. Explain floating point division algorithm. [6] (**68 Ch**) 7. Compare restoring division algorithm with non restoring algorithm. [4] (71 Shr) [6] (**80 Bh**, 76 Ash, 75 Ash) [6] (**76** Ch) [8] (**68** Ba) $|\rightarrow$ with example. 8. Divide using restoring division. $|\!\rightarrow\!\frac{11}{5}\\|\!\rightarrow\!13/5$ [6] (81 Ba) [6] (**79 Bh**) $\rightarrow 10/3$ [7] (**75** Ch) 9. Divide using non-restoring algorithm. $\rightarrow 12/5$ [5] (80 Ba) [5] (**78 Bh**) $\rightarrow 10/5$ $\rightarrow 15/4$ [4] (73 Shr)

5.5 Logical Operation

6 Memory System

(5 Hours/8 Marks)

- 6.1 Microcomputer Memory
- 6.2 Characteristics of memory systems
- 6.3 The Memory Hierarchy
- 6.4 Internal and External memory
- 6.5 Cache memory principles
- 6.6 Elements of Cache design
- 6.6.1 Cache size
- 6.6.2 Mapping function
- 6.6.3 Replacement algorithm
- 6.6.4 Write policy
- 6.6.5 Number of caches

7 Input-Output organization

(6 Hours/10 Marks)

- 7.1 Peripheral devices
- 7.2 I/O modules
- 7.3 Input-Output interface
- 7.4 Modes of transfer
- 7.4.1 Programmed I/O
- 7.4.2 Interrupt-driven I/O
- 7.4.3 Direct Memory access
- 7.5 I/O Processors
- 7.6 Data Communication Processor

8 Multiprocessors

(2 Hours/4 Marks)

- 8.1 Characteristics of multiprocessors
- 8.2 Interconnection Structures
- 8.3 Interprocessor Communication and Synchronization