

TSA20N50M 500V N-Channel MOSFET

General Description

This Power MOSFET is produced using Truesemi's advanced planar stripe DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

Features

- 20A,500V,Max. $R_{DS(on)}$ =0.28 Ω @ V_{GS} =10V
- Low gate charge(typical 70nC)
- High ruggedness
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings

T_J=25 °C unless otherwise specified

Symbol	Parameter		Value	Units
V _{DSS}	Drain-Source Voltage		500	V
V _{GS}	Gate-Source Voltage		£30	V
	Drain Current	T _C = 25°C	20	А
l _D	Drain Current	T _C = 100°C	13	А
I _{DM}	Pulsed Drain Current	(Note 1)	80	А
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1110	mJ
E _{AR}	Repetitive Avalanche Energy	(Note 1)	28	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
Б	Power Dissipation (T _C = 25°C)		280	W
P_{D}	P _D -Derate above 25°C		2.3	W/°C
T _J , T _{STG}	Operating and Storage Temperatur	-55 to +150	$^{\circ}$	
T _L	Maximum lead temperature for sold 1/8" from case for 5 seconds	lering purposes,	300	$^{\circ}$

Thermal Resistance Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1	0.44	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink Typ.	0.24	1	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Electrical Characteristics T_J=25 °C unless otherwise specified

Parameter

On Characteristics						
V_{GS}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \text{ uA}$	2.0		4.0	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 10 A		0.21	0.28	Ω

Test Conditions

Min

Тур

Max

Units

Off Characteristics

Symbol

BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \text{ uA}$	500		-	V
∆BVDSS / ∆TJ	Breakdown Voltage Temperature Coefficient	ID = 250 uA, Referenced to 25℃	1	0.5	1	V/°C
	I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$	1	-	1	uA
DSS		V _{DS} = 400 V, T _J = 125°C			10	uA
I _{GSSF}	Gate-Body Leakage Current,Forward	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage Current,Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05.V V 0.V	1	4000	1	pF
C _{oss}	Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$	1	400	1	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.0 1011 12		40		pF

Switching Characteristics

t _{d(on)}	Turn-On Time	V _{DS} = 250 V, I _D = 20 A,	 100		ns
t _r	Turn-On Rise Time	$R_{G} = 25 \Omega$	 400	1	ns
t _{d(off)}	Turn-Off Delay Time	(Note 4,5)	 100	1	ns
t _f	Turn-Off Fall Time		 100	1	ns
Q_g	Total Gate Charge	$V_{DS} = 400 \text{ V}, I_{D} = 20 \text{ A},$	 70	1	nC
Q_gs	Gate-Source Charge	V _{GS} = 10 V	 18	1	nC
Q_{gd}	Gate-Drain Charge	(Note 4,5)	 35		nC

Source-Drain Diode Maximum Ratings and Characteristics

Is	Continuous Source-Drain Diode Forwa			20	Α	
I _{SM}	Pulsed Source-Drain Diode Forward C	1	1	80	A	
V _{SD}	Source-Drain Diode Forward Voltage	1	-	1.5	V	
t _{rr}	Reverse Recovery Time	I _S = 20 A, V _{GS} = 0 V	1	500	1	ns
Q _{rr}	Reverse Recovery Charge	$di_F/dt = 100 \text{ A/}\mu\text{s}$ (Note 4)	1	7.2	1	uC

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. L=5.0mH, I_{AS}=20A, V_{DD}=50V, R_G=25 Ω , Starting TJ=25 $^{\circ}$ C 3. I_{SD}<20A, di/dt < 200A/us, V_{DD} < BV_{DSS}, Starting TJ = 25 $^{\circ}$ C

- 4. Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2%
 5. Essentially Independent of Operating Temperature Typical Characteristics

Typical Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance Variation

Figure 4. Body Diode Forward Voltage

Figure 5. Capacitance Characteristics

Figure 6. Gate Charge Characteristics

Typical Characteristics

Figure 7. Breakdown Voltage Variation

Figure 8. On-Resistance Variation

Figure 9. Maximum Safe Operating Area

Figure 10. Maximum Drain Current vs Case Temperature

Figure 11. Transient Thermal Response Curve

Fig 12. Gate Charge Test Circuit & Waveform

Fig 13. Resistive Switching Test Circuit & Waveforms

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

Package Dimension

TO-3P

-m	П		ППП	,	U
					•

DIM	MILLIMETERS
A	15.60 \pm 0.30
В	13.60 \pm 0.30
С	9.50 ± 0.30
D	8.00±0.30
E	11.85±0.30
F	15.65 \pm 0.30
G	3.80 ± 0.30
G1	5.00 ± 0.30
Н	ф3.50±0.30
I	Φ 1. 50 \pm 0. 30
1	深 0.15±0.15
J	3.20±0.30
K	1.00±0.15
L	3.10 ± 0.15
M	2.10 ± 0.15
N	5.45 ± 0.30
О	8.40 ± 0.30
P	13.90 ± 0.30
Q	18.70 ± 0.30
R	40.00 ± 0.60
S	20.00 ± 0.40
T	2.40 ± 0.30
U	4.80 ± 0.30
V	1.50±0.15
W	0.60 ± 0.15
X	1.80 ± 0.40
Y	7.00 ± 0.30
Z	3.20 ± 0.30