AMaSiNe User Manual

Jun Ho Song & Woochul Choi

Correspondence: Prof. Se-Bum Paik

sbpaik@kaist.ac.kr

Manual version: 07272020

What's New

• We implemented Elastix [1,2] and multithreading functions for image registration in Step 5

→ > x 8 times faster

- Reported errors caused by Matlab version compatibility issues (2018,2019, and 2020)
 and some minor bugs were resolved
- Variables/parameters that are not used were removed from the scripts

- 1. Klein, Stefan, et al. "Elastix: a toolbox for intensity-based medical image registration." *IEEE transactions on medical imaging* 29.1 (2009): 196-205.
- 2. Rob Campbell. MATLAB Elastix (https://github.com/raacampbell/matlab_elastix), GitHub. (2020)

Algorithm pipeline of AMaSiNe

Preparation - Elastix

1. Download Elastix binary codes from:

https://github.com/SuperElastix/elastix/releases/tag/5.0.0

* Elastix 5.0.0 was used when developing/testing this Amasine update

2. Uncompress the file and add the unzipped folder to your system path

Windows: Link Linux: Link

Preparation

- MATLAB (> 2017a) is required
- 3. The following MATLAB packages are required
 - Computer Vision Toolbox
 - Image Processing Toolbox
 - Parallel Computing Toolbox
- 4. Make a new empty folder. Then, unzip the "Core Functions.zip" and "Images.zip (or your images)" and place the Amasine scripts in the same folder

MUY IMPORTANTE: Don't put a space in your folder name Ejemplo) "PV Cre Mouse" **X** "PV_Cre_Mouse" **O**

이름	수정한 날짜	유형	크기
Core Functions	2020-04-21 오후	파일 폴더	
Images	2020-04-21 오후	파일 폴더	
AMaSiNe_User_Manual_190618.pdf	2019-06-18 오후	Chrome HTML D	2,203 K B
음 Core Functions.zip	2020-04-21 오후	압축(ZIP) 파일	227,481 K B
음 Images.zip	2020-04-21 오후	압축(ZIP) 파일	103,662 K B
🖺 STEP_O_Parameters.m	2020-02-17 오후	MATLAB Code	3 K B
🖺 STEP_1_Slice_Outline.m	2019-07-04 오전	MATLAB Code	5KB
🖺 STEP_2_Anchor_Image_Selection.m	2019-10-30 오후	MATLAB Code	2 K B
🖺 STEP_3_Optional_Redraw_Slice_Boundar	2018-09-10 오후	MATLAB Code	3 K B
🖺 STEP_4_Angle_Finder.m	2019-07-04 오전	MATLAB Code	22 K B
🖺 STEP_4to5_Cell_Detection.m	2020-02-17 오후	MATLAB Code	5KB
🖺 STEP_5_Transform_and_ROI_drawing.m	2020-04-21 오후	MATLAB Code	24 K B
🖺 STEP_6_Labelled_Cell_Inspection.m	2018-09-10 오후	MATLAB Code	18 K B
🖺 STEP_7_Reconstruction.m	2020-02-20 오후	MATLAB Code	6KB
🖺 STEP_8_Data_Visualisation.m	2019-06-25 오전	MATLAB Code	17 K B

Preparation

- 4. In "Images", experimental images obtained from a "single" brain should be placed
 - Make sure that other images are not included in the folder (including the mother directory)
 - If you want to analyze images from a different brain, you have to make a new folder, unzip the downloaded files, and copy&paste your images in the "Images" folder again.

5. Run MATLAB and change your directory to the mother folder

- There are 16 parameters to be set before moving on;
 - Once these are set, you will need to change only 3~5 parameters to analyze image sets obtained from different mouse brains

Double Click and open the script "STEP_0_Parameters.m"

Image directory

Set "main_folder_dir" as the folder directory that contains all the functions and images (mother directory)

e.g. main_folder_dir = 'C:\Users\WChoi\Documents\MATLAB\AMaSiNe_Tutorial'

```
%% 1. Image Directory
main_folder_dir='C:\Users\Users\Usercommondocuments\UnderLAB\AMaSiNe_Tutorial';
```

Image names and slice orders

img_format : set it as either 'tif' or 'jpg', depending on your image format
Slice_AP_orPA : The direction in which you sliced your mouse brain
If you sliced anterior → posterior, the value is 1
If you sliced posterior → anterior, the value should be -1

(Continued) Image names and slice orders

slide_digit, scene_digit, channel_digit : determined by your 'filename' format

Anchor Image IDs for Angle Finding

Leave it empty for now; you will come back to this after Step_2

Image Parameters

```
xy_pix = Pixel size (um/pixel)
```

Name_Channels = image channel names...

e.g. if channel 1= DAPI & channel 2= eGFP

→ Name_Channels={'DAPI', 'eGFP'};

Color_Channel_Structure = index of the channel for finding the slicing angles & slice AP pos. e.g. if you'd like to use DAPI for angle searching in the case of the example above, set this value as "1"

Structure_stain = Staining method of the images to be used for angle searching Choose one of the three : 'DAPI','AutoF','Nissl'

Color_Channel_Interest = Color channel index in which labelled cells are imaged e.g. in the example case mentioned above, set this value as "2" i.e. eGFP channel

Detection Parameters

```
soma_radius = rough range of radius (not diameter) of labelled soma (um)
```

cell_det_thresh = Minimum intensity difference between a cell and background for a cell to be detected

Lower this value, you'd get a better chance of detecting cells dim

but you also risk detecting noise as a cell

cf) you can modify the code in "SomaDetection0827.m" to customize/implement your own algorithm for cell detection

Allen Reference Brain (CCFv3)

You probably wouldn't want to change these parameters...

STEP_1_Slice_Outline

- This step is to remove image regions other than brain tissues, thus saving computional time and memory
- In the command window, type "STEP_1_Slice_Outline" and press Enter;
 You can also run the script in the Editor window
- A status bar showing the progress of automatic background removal will pop up

"You have 8 images from 4 slices in the test image set"

STEP_1_Slice_Outline

- Sometimes, automatic slice boundary detection fails to give you the correct output
 - → For these images, you can manually draw ROUGH boundaries by clicking-and-dragging
 - → The algorithm will re-search for the correct slice boundaries within the rough boundaries you drew

"Press the Space Bar and manually draw a rough boundary around slices"

Images appearing on these figure windows are edge-boosted

STEP_1_Slice_Outline

 Having finished running this step, a file—"Step1_Outline_result.mat"—containing slice boundary in formation of each brain slice will be saved. This file contains the slice boundary information of individual brain slice images

- In this step, you will
 - **1. Sample "anchor images"** to find the slicing angles of the brain & AP positions of each slice
 - the AP positions of unsampled non-anchor images are interpolated between the anchors
 - 2. Inspect the automatic slice boundary detection results performed in Step_1 and choose images the boundaries of which must be redrawn
- In the command window, type "STEP_2_Anchor_Image_Selection" and press Enter;
 Image figure windows will pop up

- Once all image figures have appeared, double-click on the "STEP_0_Parameters.m" and open the script
- Type the indices of images sampled as "anchors"
- (Optional) If you find any images with weird boundaries drawn in Step_2,

Important When Choosing anchor Images:

- 1. When sampling your anchor images, make sure that their qualities are good enough
- → Not-so-great ones will hinder you from finding the correct slicing angles and make you sad

Good

Bad

Important When Choosing anchor images:

2. The AP positions of **non-anchor images** will be **INTERpolated** between the anchor image positions

Say, if you have Images #1,#2,....#7, and set Images #2 & #6 as anchors, Images #1 and #7 will not be further processed in the later stages, because their AP positions can't be interpolated

(Optional) STEP_3_Optional_Redraw_Slice_Boundary

This is an OPTIONAL step to redraw the slice boundaries that you are unhappy with
 → Change the "threshold_scale" value in the "Step_0_Parameters" script

```
%% 3. Anchor Image IDs :
anc_img_IDs= sort([1 3]);
img_IDs_reBoundary=[2];
threshold_scale = 1.5;
```

• Run the code, and you will be asked to draw a rough slice boundary;

Example Image #2

Binary masks of an example image with varying threshold values

threshold_scale =

1.5

0.1

STEP_4_Angle_Finder

- The AP positions of the anchor imgs & the slicing angles of the brain are found in this step
- In the command window, type "STEP_4_Angle_Finder"

>> [yaw_stage5_max pitch_stage5_max] **Output:** The AP Positions of the anchor imgs & slicing angles (yaw & pitch) of the brain Current Folder Name -Core Functions Step 4 Angle Search Result.ma 🖺 STEP_O_Parameters.m. 🖺 STEP_1_Slice_Outline.m 🖺 STEP_2_Anchor_Image_Selection.m 🕍 STEP_3_Optional_Redraw_Slice_Boundar... 🖺 STEP_4_Angle_Finder.m STEP_4to5_Cell_Detection.m. 🖺 STEP_5_Transform_and_ROI_drawing.m. 🖺 STEP_6_Labelled_Cell_Inspection.m. 🖺 STEP 7 Reconstruction.m. 🖺 STEP_8_Data_Visualisation.m

"Experimentally obtained imgs & corresponding Allen slice"

STEP_4to5_Cell_Detection

- In the command window, type "STEP_4_Angle_Finder" (or run the script in the editor)
- In this step, labeled cells in each slice image are automatically detected
 - This step uses the script "SomaDetection0827.m" in the "Core Functions" folder for cell detection
 - You are free to edit this code for your own purposes:

e.g. a CNN-based cell detection module

- If you are using the function that we included in the package,
 you may need to adjust parameter 'cell_det_thresh' in "STEP_0_Parameters.m"
- When finished, "Step_4to5_Cell_Detection_Result.mat" that has the coordinates of the detected neurons in each slice will be saved.
 - Note that these coordinates are NOT the Allen-registered coordinates... not yet....

STEP_5_Transform_and_ROI_drawing

 This step registers experimentally obtained images to their corresponding Allen crosssectional images & warps the cell coordinates accordingly.

STEP_5_Transform_and_ROI_drawing

You may wish to

- 1. remove false-positive neurons detected
- 2. manually mark the neurons that are not automatically detected
- In the command window, type "STEP_6_Labelled_Cell_Inspection"
- → A GUI window will appear
- → Set the color channel that you'd like to inspect (if multi-color) and Click on the "INITIALIZE" button

The first image of the ARA-matched image set will appear

Contrast adjustment window

- To add neurons,
 - 1) Click on the "Add Cell" button in the GUI panel
 - 2) Left-click on the neurons that you want to mark
 - 3) Right-click if you are happy with adding new (false-negative) labeled neurons

- To delete neurons,
 - 1) Click on the "Remove Cell" button in the GUI panel
 - 2) Left-click & drag window the cells you want to "undetect"
 - 3) Press "Del" on the keyboard to delete

- After inspection,
 - 1) Click on "Save Temporarily"; otherwise the edited results will not be updated
 - 2) Click on "Next Image" or "Prev Image" to move on
 - You can also select your image from the dropdown menu and click on the "Update" button
 - 3) When you are done with all the images, click the "Save All" button.
 - Otherwise, your effort will not be saved, and you will be sad.
 I have been sad quite a few times

- 2) Click Next Image / Prev Image to move on
- 2b) Choose the image in dropdown menu & click Update button
- 1) Click otherwise the edited result will not be updated
 - 3) Press "Save All" to update and save all neuron data

STEP_7_Reconstruction

- Run the "STEP_7_Reconstruction" script.
 - This script annotates detected neurons to their ROIs

STEP_7_Reconstruction

- (Optional) If you need to access the position coordinates of detected neurons in ARA,
- Load the saved .mat file
- 2. Navigate to the ROI that you are interested in
- 3. You'll see the 3-d coordinates of your detected cells

 1st, 2nd, and 3rd Columns = ML, DV, AP coords (um), resp.

cells_ROI(447).Color_ch.RL(2).cells_pos cells_ROI(447).Color_ch.RL(2).cells_pos						
	1	2	3			
1	-2.3914e+03	-3.5070e+03	-2.2713e+03			
2	-2.5283e+03	-3.3870e+03	-2.2502e+03			
3	-2.5003e+03	-3.4914e+03	-2.2574e+03			
4	-2.6792e+03	-3.4966e+03	-2.2356e+03			
5	-2.4429e+03	-3.4209e+03	-2.2619e+03			
6	-2.4867e+03	-3.3530e+03	-2.2542e+03			
7	-2.4630e+03	-3.2564e+03	-2.2537e+03			

- Run the "STEP_8_Data_Visualisation" script.
 - → A GUI window will appear

Add the result from Step7 that you wish to have a look in 3d.

- *** If you'd like to compare the results from multiple mice,
- 1. Change the result file names.
- e.g. Mouse # 1's Step_7_3D_Reconstructed_cells_Result.mat → Mouse_1_VISp.mat Mouse # 2's Step_7_3D_Reconstructed_cells_Result.mat → Mouse_2_VISp.mat
- 2. Locate the name-changed files in a same folder
- 3. Run Step 8

Add the ROIs that you want to visualize

Click on VISUALIZE button

*** If you wish to modify the visualization settings,
Change the plotting options in Lines 284-372 in "STEP 8 Data Visualization"

• If you wish to export your cell-counting results, type in the save name and click the "Save as .xls"

1	Α	В	C	D
1	ROI name		Step_7_3D_Reconstructed_cells_Result.mat	
2			Left hemi (cells) Right hemi (cells)	
3		Dorsal part of the lateral geniculate complex	0	55
4				
5				
6				
7				
8				

Troubleshooting

- Most of the errors were caused by uses' putting incorrect parameters settings
 Please re-check the parameters you have set in the "STEP_0_Parameters"
- If you are coming back after working on other stuff with MATLAB, (e.g. you finished working through Step 0 to 6; you now want to work on Step 7) and MATLAB gives you an error mentioning something like "directory, no such file found"
 - 1) Go to the "mother" directory that you have made in Slide # 5
 - 2) Run STEP_0_Parameters
 - 3) Re-run your script (e.g. STEP_7)
- If you still get errors after trying the aforementioned measures or have any other queries, contact the corresponding author, Prof. Se-Bum Paik (sbpaik@kaist.ac.kr)

Tips if you use AxioScanner (Zeiss)

We have done the following steps when exporting slice images using ZEN

1. Intensity Normalization

- Check the "Scene" box
- Click on the Reset button
- then check the "Auto" box
- Save the . czi file (ctrl+s for Windows)
 - → Intensity normalized for each slices

Tips if you use AxioScanner (Zeiss)

2. Check your image metadata → Check parameters in STEP_0_Parameters

Tips if you use AxioScanner (Zeiss)

- 3. Export Settings
 - Convert to 8-Bit
 - Optional (Resize factor = 50%)
 - → This will downsample images by 50%
 - → In this case, the xy_pix should be doubled i.e. xy_pix = 0.650 *2 in STEP_0
 - → This will speed up the computation
 - Please check "Individual channel images "
 - Please DO NOT check "Use channel names"