内容简介

一、分别编写用复化 Simpson 积分公式和复化梯形积分公式计算积分的通用程序。

Error = 0.591851262520

二、用如上程序计算积分

$$I(f) = \int_0^4 \sin(x)dx \tag{1}$$

Order = 0.0000

取节点 x_i , $i = 0, \dots, N$, N 为 2^k , $k = 1, \dots, 12$, 并分析误差。 利用公式计算算法的收敛阶:

$$Ord = \frac{\ln(Error_{old}/Error_{now})}{\ln(N_{now}/N_{old})}$$
 (2)

输出结果

Integrate[sin(x), 0, 4] = 1.653643620864

Composite Trapezoid Method: I(k = 1) = 1.061792358343

I(k = 2) = 1.513487172039	Error = 0.140156448824	Order = 2.0782
I(k = 3) = 1.619048306831	Error = 0.034595314033	Order = 2.0184
I(k = 4) = 1.645021908709	Error = 0.008621712154	Order = 2.0045
I(k = 5) = 1.651489878133	Error = 0.002153742731	Order = 2.0011
I(k = 6) = 1.653105290366	Error = 0.000538330498	Order = 2.0003
I(k = 7) = 1.653509044811	Error = 0.000134576053	Order = 2.0001
I(k = 8) = 1.653609977261	Error = 0.000033643602	Order = 2.0000
I(k = 9) = 1.653635209989	Error = 0.000008410875	Order = 2.0000
I(k = 10) = 1.653641518146	Error = 0.000002102717	Order = 2.0000
I(k = 11) = 1.653643095184	Error = 0.000000525679	Order = 2.0000
I(k = 12) = 1.653643489444	Error = 0.000000131420	Order = 2.0000
Composite Simpson Method:		
I(k = 1) = 1.920258141330	Error = 0.266614520466	Order = 0.0000
I(k = 2) = 1.664052109938	Error = 0.010408489075	Order = 4.6789
I(k = 3) = 1.654235351762	Error = 0.000591730898	Order = 4.1367
I(k = 4) = 1.653679776002	Error = 0.000036155138	Order = 4.0327
I(k = 5) = 1.653645867940	Error = 0.000002247077	Order = 4.0081
I(k = 6) = 1.653643761110	Error = 0.00000140246	Order = 4.0020
I(k = 7) = 1.653643629626	Error = 0.00000008762	Order = 4.0005
I(k = 8) = 1.653643621411	Error = 0.00000000548	Order = 4.0001
I(k = 9) = 1.653643620898	Error = 0.00000000034	Order = 4.0000
I(k = 10) = 1.653643620866	Error = 0.000000000002	Order = 3.9997
I(k = 11) = 1.653643620864	Error = 0.000000000000	Order = 4.0053
I(k = 12) = 1.653643620864	Error = 0.000000000000	Order = 3.6742

n	Composite Trapezoid Error	order	Composite Simpson Error	order
1	5.9185E-01	-	2.6661E-01	_
2	1.4015E-01	2.0782	1.0408E-02	4.6789
3	3.4595E-02	2.0184	5.9173E-04	4.1367
4	8.6217E-03	2.0045	3.6155E-05	4.0327
5	2.1537E-03	2.0011	2.2470E-06	4.0081
6	5.3833E-04	2.0003	1.4024E-07	4.0020
7	1.3457E-04	2.0001	8.7623E-09	4.0005
8	3.3643E-05	2.0000	5.4759E-10	4.0001
9	8.4108E-06	2.0000	3.4224E-11	4.0000
10	2.1027E-06	2.0000	2.1394E-12	3.9997
11	5.2567E-07	2.0000	1.3322E-13	4.0053
12	1.3141E-07	2.0000	1.0436E-14	3.6742

表 1: L_{∞} 范数意义下的精度检验

误差分析

一、本实验中使用的复化梯形公式为:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{2^{k} - 1} f(a+ih) + f(b) \right)$$
 (3)

其中 $h = \frac{b-a}{2^k}$,记结点为 x_0, \cdots, x_{2^k} 。下面对其作简单推导并分析该公式的误差。对子区间 $[x_i, x_{i+1}] = [a+ih, a+(i+1)h]$,用 Lagrange 插值法逼近 f 得:

$$f(x) = p(x) + \frac{1}{2!}f''(\xi_i)(x - x_i)(x - x_{i+1})$$
(4)

其中

$$p(x) = f(x_i) \frac{x_{i+1} - x}{x_{i+1} - x_i} + f(x_{i+1}) \frac{x - x_i}{x_{i+1} - x_i}$$

$$(5)$$

$$= \frac{1}{h} \left(f(x_i)(x_{i+1} - x) + f(x_{i+1})(x - x_i) \right) \tag{6}$$

故

$$\int_{x_i}^{x_{i+1}} f(x)dx = \int_{x_i}^{x_{i+1}} p(x)dx + \frac{1}{2} \int_{x_i}^{x_{i+1}} f''(\xi_i)(x - x_i)(x - x_{i+1})dx$$
$$= \frac{h}{2} \left(f(x_i) + f(x_{i+1}) \right) + \frac{1}{12} f''(\xi_i)h^3$$

对等号两端求和:

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{2^{k}-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

$$= \frac{h}{2} \sum_{i=0}^{2^{k}-1} \left(f(x_{i}) + f(x_{i+1}) + \frac{1}{12} f''(\xi_{i}) h^{3} \right)$$

$$= \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{2^{k}-1} f(a+ih) + f(b) \right) + \frac{h^{3}}{12} \sum_{i=0}^{2^{k}-1} f''(\xi)$$

设 f''(x) 连续。那么在 (a, b) 中存在一点 ξ 使得

$$f''(\xi) = \frac{1}{n} \sum_{i=0}^{n-1} f''(\xi_i) \tag{7}$$

其中 $\xi_i \in (x_i, x_{i+1})$, $n = \frac{b-a}{h} = 2^k$ 。那么:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{2^{k}-1} f(a+ih) + f(b) \right) + \frac{h^{2}}{12} (b-a)f''(\xi)$$
 (8)

误差项为 $O(h^2)$, 与实验所得结果是一致的。

二、本实验使用的复化 Simpson 公式为:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{6} \left(f(a) + 2 \sum_{i=1}^{2^{k-1}-1} f(a+ih) + 4 \sum_{i=0}^{2^{k-1}-1} f(a+(i+\frac{1}{2})h) + f(b) \right)$$
(9)

其中 $h=\frac{b-a}{2^{k-1}}$ 。这里不再列出误差项推导,而直接由 [1] 得该公式的误差项为 $-\frac{1}{180}(2h)^4f^{(4)}(\xi)=-\frac{8}{45}h^4f^{(4)}(\xi)=O(h^4)$, $\xi\in(a,b)$ 。

 $O(h^4)$ 的误差项与实验结果基本一致。但注意到实验中,在 k=12 处收敛阶突然减小。为进一步观察此现象,修改源代码,增加 k,得如下结果:

Integrate $[\sin(x), 0, 4] = 1.65364362086361182946$

. .

Composite Simpson Method:

. . .

I(k = 11) =	1.65364362086374505623	Error = 1.332268e-13	Order = 4.0053
I(k = 12) =	1.65364362086362226556	Error = 1.043610e-14	Order = 3.6742
I(k = 13) =	1.65364362086361538218	Error = 3.552714e-15	Order = 1.5546
I(k = 14) =	1.65364362086361005311	Error = 1.776357e-15	Order = 1.0000
I(k = 15) =	1.65364362086362137738	Error = $9.547918e-15$	Order = -2.4263
I(k = 16) =	1.65364362086360472404	Error = $7.105427e-15$	Order = 0.4263
I(k = 17) =	1.65364362086360938697	Error = 2.442491e-15	Order = 1.5406
I(k = 18) =	1.65364362086363958504	Error = 2.775558e-14	Order = -3.5064
I(k = 19) =	1.65364362086361693649	Error = 5.107026e-15	Order = 2.4422
I(k = 20) =	1.65364362086360716653	Error = $4.662937e-15$	Order = 0.1312

注意到 k=15 比 k=14 误差反而更大,说明数值积分中的舍入误差影响此时不可忽视。

另外,python3.7 的 numpy.float64 类型的精度为 52 位,而 2^{52} 的十进制数量级为 10^{16} 。本实验中,由 scipy 包的 integrate 函数计算出的积分值量级为 10^0 ,将其视为精确值。k>11 后,数值积分值与精确值的偏差的量级在 10^{-15} 左右,接近 float64 的精度极限。计算误差 Error 中浮点数减法导致的有效位数字损失的影响在 k>11 后将不可忽略。

工作环境

主要程序语言: python

软件: JupyterLab

使用的包: numpy, scipy

参考资料

[1] David R. Kincaid & E. Ward Cheney. Numerical Analysis: Mathematics of Scientific of Computing Third Edition, Brooks/Cole, 2002.