

Sieci komputerowe

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.140.01925.22

Języki wykładowe : polski

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0612 Projektowanie i administrowanie baz danych i sieci

Kod USOS: WMI.TCS.SK.OL

Koordynator przedmiotu

Grzegorz Gutowski

Prowadzący zajęcia

Grzegorz Gutowski

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Okres Semestr 3 Forma prowadzenia i godziny zajęć

wykład: 30 ćwiczenia laboratoryjne: 30

Cele kształcenia dla przedmiotu

Liczba punktów ECTS 6.0

W trakcie kursu student pozna teoretyczne modele i praktyczne rozwiązania wykorzystywane
C1 w projektowaniu, zarządzaniu i działaniu sieci komputerowych różnego typu oraz nauczy się
wykorzystywać zdobytą wiedzę w projektach programistycznych.

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	student po zakończeniu kursu zna i rozumie teoretyczne i praktyczne zagadnienia związane z architekturami, technologiami i aplikacjami sieciowymi.	IAN_K1_W03, IAN_K1_W16	egzamin pisemny, projekt, prezentacja
Umiejętności – Student potrafi:			
U1	student po zakończeniu kursu potrafi analizować, projektować, wykorzystywać i programować rozwiązania sieciowe.	IAN_K1_U04, IAN_K1_U11, IAN_K1_U12, IAN_K1_U13, IAN_K1_U17, IAN_K1_U18, IAN_K1_U19, IAN_K1_U21	egzamin pisemny, projekt, prezentacja
Kompetencji społecznych – Student jest gotów do:			
K1	student po zakończeniu kursu jest gotów do dyskusji na temat społecznych aspektów związanych z technologiami sieciowymi.	IAN_K1_K01, IAN_K1_K06	egzamin pisemny, projekt, prezentacja

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	30
ćwiczenia laboratoryjne	30
przygotowanie do zajęć	15
przygotowanie projektu	45

rozwiązywanie zadań	45	
przygotowanie do egzaminu	13	
uczestnictwo w egzaminie	2	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
	W trakcie kursu student spotka się z następującymi tematami: - metody komunikacji	
	- podstawowe zagadnienia z teori sygnałów - warstwowe modele sieci	
	komputerowych - zagadnienia warstwy łącza danych - problemy, technologie i	

związane z sieciami WiFi - zagadnienia warstwy sieci - problemy, technologie i algorytmy związane z siecią Internet - zagadnienia związne z buforowaniem pakietów - zagadnienia warstwy transportowej - problemy, technologie i algorytmy stosowane w protokole TCP - zagadnienia związane z implementacją protokołów sieciowych - problemy, technologie i algorytmy związane z protokołem HTTP - zagadnienia bezpieczeństwa komunikacji sieciowej - zagadnienia związane z sieciami peer-to-peer

algorytmy związane z sieciami Ethernet - problemy, technologie i algorytmy

W1, U1, K1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, ćwiczenia laboratoryjne

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	Student otrzymuje ocenę końcową na podstawie sumy punktów przyznawanych na ćwiczeniach (0-60) oraz punktów uzyskanych podczas egzaminu pisemnego (0-40). Warunkiem pozytywnego zaliczenia jest otrzymanie pozytywnej oceny z ćwiczeń oraz zgromadzenie minimalnej liczby 60 punktów.

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
ćwiczenia laboratoryjne	projekt, prezentacja	Student otrzymuje ocenę końcową na podstawie punktów przyznawanych za aktywny udział w ćwiczeniach, projekty zaliczeniowe, oraz systematycznie oddawane rozwiązania zadań domowych i zadań programistycznych (0-60pkt). Warunkiem pozytywnego zaliczenia jest oddanie wszystkich projektów, wszystkich zadań obowiązkowych oraz zgromadzenie minimalnej liczby 40 punktów.

Literatura

Obowiązkowa

1. dokumentacja omawianych technologii sieciowych

Dodatkowa

1. Andrew S. Tanenbaum, David J. Wetherall, Computer Networks