

Photonics Curriculum Version 7.0

Lecture Series

Introduction to WDM Systems
Systems 1

Module Prerequisites

- Introduction to Fiber-Optic Communications I & II
- Recommended Fibers I and Optical Amplifiers I

Module Objectives

- Wavelength Division Multiplexing (WDM) concepts
- WDM System components
- Key Issues in WDM System design

WDM Concepts

Optical Fiber - transmission of many λ's

Which wavelengths?

WDM Concepts

Coarse WDM

Simple, wide separation, independent

WDM Concepts

Dense WDM (DWDM)

Higher capacity, greater design challenges

DWDM System Components

- Transmitters
- Multiplexer
- Optical Fiber
- Optical Amplifiers
- Demultiplexer
- Receivers

DWDM System Capacity

- Optical Bandwidth
- Bit rate per Channel
- Channel Density

WDM Capacity is related to Component Performance

Laser

- Fluctuations in each mode
- Side Mode Suppression Ratio (SMSR)
- Side mode may interfere with other channels

Directly or externally modulated Laser?

- Direct simple, cheap but has lower bit rates and chirp
- External expensive, higher bit rates and low chirp

Multiplexer

- loss per channel, temperature sensitivity
- rejection of adjacent channels
- passband width of each channel

Multiplexer, Laser noise and side mode

- Frequency independent or selective
- Laser noise higher or lower
- Laser side mode interference

Demultiplexer

- flat passband, sharp transition to stopband
- low passband, high stopband attenuation
- linear phase response

Demultiplexer and channel density

- High spectral efficiency:
 - sharp filters
 - good out-of-band rejection

Optical Fibers

- Attenuation
- Group Velocity Dispersion (GVD)
- Self Phase Modulation (SPM)
- Cross Phase Modulation (XPM)
- Four Wave Mixing (FWM)
- Stimulated Raman Scattering (SRS)
- Stimulated Brillouin Scattering (SBS)
- Polarization Mode Dispersion (PMD)

Optical Amplifiers

• Gain Flatness, Low Noise, Wide Bandwidth

Receivers

• Receiver Noise, Receiver Sensitivity

Other components

- Add-Drop Multiplexers (ADM)
- Optical Cross Connects (OXC)

Performance Issues

- insertion Loss
- cross talk
- wavelength stability
- optical bandwidth per channel
- optical phase response per channel

Other Performance Improvement Schemes

Efficient Modulation Schemes

- Increase spectral efficiency
 Spectral Efficiency = (bits per second)/Bandwidth
- Example: NRZ modulation
 Needs 25 GHz bandwidth needed per 10 Gb/s channel
 ⇒NRZ Spectral Efficiency = 10/25 = 0.4 bit/s/Hz
- Duobinary, *m*-ary and single-sideband schemes
 - Increase Spectral Efficiency to > 1 bit/s/Hz

Other Performance Improvement Schemes

Forward Error Correction

- Coding to correct bit errors
- Disadvantage
 - Increases overhead (extra bits for error correction)
 - Reduces actual amount of transmitted data
- Advantage
 - improve BER ~ 10 orders of magnitude
 - Overhead typical a few percent of data rate

Summary of DWDM Component Limitations

Completing the Cube

Dispersion Flatness
Wideband Dispersion
Compensation
Wide Low-Loss Window
Broadband Amplifiers

Summary

- WDM System concepts
- WDM System components
- How WDM capacity related to component performance
- Other WDM system performance schemes
 - Spectrally efficient modulation
 - Forward error correction

Proceed with the Interactive Learning Module