Эконометрика, 2020-2021, 3 модуль Семинар 9 15.03.21 Для Группы Э_Б2018_Э_3 Семинарист О.А.Демидова

Системы одновременных уравнений

Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Глава 9.

9.2. Рассмотрим проблему идентифицируемости каждого из уравнений в следующей модели:

$$\begin{cases} P_t + \beta_{12}W_t & + \gamma_{11}Q_t & + \gamma_{13}P_{t-1} & = \varepsilon_{1t}, \\ \beta_{21}P_t + W_t + \beta_{23}N_t & + \gamma_{22}S_t & + \gamma_{24}W_{t-1} = \varepsilon_{2t}, \\ + \beta_{32}W_t + N_t & + \gamma_{32}S_t + \gamma_{33}P_{t-1} + \gamma_{34}W_{t-1} = \varepsilon_{3t}, \end{cases}$$

где P_t , W_t , N_t — индекс цен, зарплата, профсоюзный взнос соответственно (эндогенные переменные), а Q_t и S_t — производительность труда и количество забастовок (экзогенные переменные). Как выглядят порядковое и ранговое условия, если известно, что:

- a) $\gamma_{11} = 0$,
- 6) $\beta_{21} = \gamma_{22} = 0$,
- B) $\gamma_{33} = 0$?

9.3. Опишите процедуру оценивания каждого из уравнений следующей системы:

$$\begin{cases} y_{1t} + \beta_{12}y_{2t} & + \gamma_{11} + \gamma_{12}x_{2t} & = \varepsilon_{1t}, \\ y_{2t} & + \gamma_{21} & + \gamma_{23}x_{3t} & = \varepsilon_{2t}, \\ \beta_{32}y_{2t} + y_{3t} + \gamma_{31} & + \gamma_{33}x_{3t} & = \varepsilon_{3t}. \end{cases}$$

9.4. Рассматривается следующая система уравнений:

$$\begin{cases} y_{1t} = \gamma_{10} + \beta_{12}y_{2t} + \beta_{13}y_{3t} + \gamma_{11}x_{1t} + \gamma_{12}x_{2t} + \varepsilon_{1t}, \\ y_{2t} = \gamma_{20} + \beta_{21}y_{1t} + \gamma_{21}x_{1t} + \gamma_{21}x_{1t} + \varepsilon_{2t}, \\ y_{3t} = \gamma_{30} + \beta_{31}y_{1t} + \beta_{32}y_{2t} + \gamma_{31}x_{1t} + \gamma_{33}x_{3t} + \varepsilon_{3t}. \end{cases}$$

Идентифицируемо ли каждое из уравнений системы? Что получится, если применить к первому уравнению двухшаговый метод наименьших квадратов?

9.5. Задана система одновременных уравнений $(y_1, y_2, y_3 -$ эндогенные переменные).

$$\begin{cases} y_{1t} = \gamma_{10} & + \beta_{12}y_{2t} & + \gamma_{11}x_{1t} & + \varepsilon_{1t}, \\ y_{2t} = \gamma_{20} & + \beta_{23}y_{3t} + \gamma_{21}x_{1t} & + \gamma_{23}x_{3t} + \varepsilon_{2t}, \\ y_{3t} = & \beta_{31}y_{1t} + \beta_{32}y_{2t} & + \gamma_{31}x_{1t} + \gamma_{32}x_{2t} + \gamma_{33}x_{3t} + \varepsilon_{3t}, \end{cases}$$

- а) Для каждого из трех уравнений определите, выполняются ли порядковые и ранговые условия идентифицируемости.
- б) Повторите а) при дополнительном ограничении: $\gamma_{32} = 0$.
- в) Повторите а) при дополнительном ограничении: γ₃₂ = 1.
- г) Повторите а) при дополнительном ограничении: $\gamma_{32} = \gamma_{33}$.

Задача 5.

Рассмотрим систему одновременных уравнений

$$\begin{cases} Y_1 = \gamma_1 Y_2 + \beta_{11} X_1 + \beta_{12} X_2 + \beta_{13} X_3 + \varepsilon_1 \\ Y_2 = \gamma_2 Y_1 + \beta_{21} X_1 + \beta_{22} X_2 + \beta_{23} X_3 + \varepsilon_2 \end{cases}.$$

Здесь Y_j — эндогенные переменные, а X_j — экзогенные. С помощью условий ранга и порядка проверьте идентифицируемость системы

- а) в общем случае;
- б) при наложении дополнительных ограничений $\gamma_1 \gamma_2 = \beta_{23} = 0$.

Задача 6.

Рассмотрим систему одновременных уравнений

$$\begin{cases} y_{1t} = \gamma_{10} + \beta_{12}y_{2t} + \beta_{13}y_{3t} + \gamma_{11}x_{1t} + \gamma_{12}x_{2t} + \varepsilon_{1t} \\ y_{2t} = \gamma_{20} + \beta_{21}y_{1t} + \gamma_{21}x_{1t} + \varepsilon_{2t} \\ y_{3t} = \gamma_{30} + \beta_{31}y_{1t} + \beta_{32}y_{2t} + \gamma_{31}x_{1t} + \gamma_{33}x_{3t} + \varepsilon_{3t} \end{cases}$$

- а) Идентифицируемо ли каждое из уравнений системы?
- б) К чему приведёт применение к первому уравнению двухшагового метода наименьших квадратов?

Краткое решение (Б.Демешев)

- а) Условие порядка о том, что количество не включённых в правую часть уравнения переменных должно быть не меньше числа включённых эндогенных, выполняется только для второго уравнения системы. Остаётся проверить для второго уравнения условие ранга, оно также окажется выполнено.
- б) К жёсткой мультиколлинеарности на втором шаге.На первом шаге будут построены регрессии:

$$\hat{y}_{2t} = \hat{\alpha}_0 + \hat{\alpha}_1 x_{1t} + \hat{\alpha}_2 x_{2t} + \hat{\alpha}_3 x_{3t}$$

$$\hat{y}_{3t} = \hat{\delta}_0 + \hat{\delta}_1 x_{1t} + \hat{\delta}_2 x_{2t} + \hat{\delta}_3 x_{3t}$$

На втором шаге строим регрессию

$$\hat{y}_{1t} = \hat{\gamma}_{01} + \hat{\beta}_{12}\hat{y}_{2t} + \hat{\beta}_{13}\hat{y}_{3t} + \hat{\gamma}_{11}x_{1t} + \hat{\gamma}_{12}x_{12t}$$

Однако \hat{y}_{2t} и \hat{y}_{3t} являются линейными комбинациями x_{1t}, x_{2t}, x_{3t} , а значит, в регрессии второго шага есть линейно зависимые регрессоры. Поэтому МНК-оценки получить нельзя.

Упражнение 1. Используя данные файла klein.dta с ежегодными данными за 1920-1941, Оцените систему уравнений

$$\begin{aligned} &\mathsf{consump} = \beta_0 + \beta_1 \, \mathsf{wagepriv} + \beta_2 \, \mathsf{wagegovt} + \epsilon_1 \\ &\mathsf{vagepriv} = \beta_3 + \beta_4 \, \mathsf{consump} + \beta_5 \, \mathsf{govt} + \beta_6 \, \mathsf{capital1} + \epsilon_2 \end{aligned}$$

уг	year	
consump	consumption	
profits	private profits	
wagepriv	private wage bill	
invest	investment	
capital1	lagged value of capital stock	
totinc	total income/demand	
wagegovt	government wage bill	
wagegovt	government wage biii	
govt	government wage bill government spending	
govt	government spending	
govt taxnetx	government spending indirect bus taxes + net export	
govt taxnetx wagetot	government spending indirect bus taxes + net export total US wage bill	

С помощью МНК, двухшагового МНК и трехшагового МНК. Сравните полученные результаты.

В пакете STATA можно использовать команды:

reg 3 (consumption wagepriv wagegovt) (wagepriv consump govt capital 1), ols est store ols

reg 3 (consumption wagepriv wagegovt) (wagepriv consump govt capital1), 2sls est store tsls

reg 3 (consumption wagepriv wagegovt) (wagepriv consump govt capital1), 3sls est store threesls

est tab ols tsls threesls, star(0.1 0.05 0.01)

Упражнение 2. Используя данные файла klein2.dta с ежегодными данными за 1920-1941, Оцените систему уравнений:

$$c = \beta_0 + \beta_1 p + \beta_2 L.p + \beta_3 w + \epsilon_1$$

$$i = \beta_4 + \beta_5 p + \beta_6 L.p + \beta_7 L.k + \epsilon_2$$

$$wp = \beta_8 + \beta_9 y + \beta_{10} L.y + \beta_{11} yr + \epsilon_3$$

$$y = c + i + g$$

$$p = y - t - wp$$

$$k = L.k + i$$

$$w = wg + wp$$
Short name Log

Short name	Long name	Variable definition
С	consump	Consumption
p	profits	Private industry profits
wp	wagepriv	Private wage bill
wg	wagegovt	Government wage bill
W	wagetot	Total wage bill
i	invest	Investment
k	capital	Capital stock
У	totinc	Total income/demand
g	govt	Government spending
t	taxnetx	Indirect bus. taxes + net exports
yr	year	Year—1931

С помощью МНК, двухшагового МНК и трехшагового МНК. Сравните полученные результаты.

В пакете STATA можно использовать команды:

reg 3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), end(w p y) exog(t wg g) ols est store ols

reg 3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), end(w p y) exog(t wg g) 2sls est store tsls

reg 3 (c p L.p w) (i p L.p L.k) (wp y L.y yr), end(w p y) exog(t wg g) 3sls est store threesls

est tab ols tsls threesls, star(0.1 0.05 0.01)

Упражнение 3. Используя данные файла auto.dta, содержащего данные о машинах,

make	Make and Model
price	Price
mpg	Mileage (mpg)
rep78	Repair Record 1978
headroom	Headroom (in.)
trunk	Trunk space (cu. ft.)
weight	Weight (lbs.)
length	Length (in.)
turn	Turn Circle (ft.)
displacement	Displacement (cu. in.)
gear_ratio	Gear Ratio
foreign	Car type

оцените систему внешне не связанных уравнений:

1-е уравнение: зависимая переменная price, независимые переменные foreign weight length

2-е уравнение: зависимая переменная mpg, независимые переменные foreign weight

3-е уравнение: зависимая переменная displacement, независимые переменные foreign weight

Сравните с оцененными по-отдельности с помощью МНК уравнениями.

В пакете STATA можно использовать команды:

sur (price foreign weight length) (mpg foreign weight) (displacement foreign weight)

reg price foreign weight length

reg mpg foreign weight

reg displacement foreign weight