IMO 1971

Day 1

1 Let

$$E_n = (a_1 - a_2)(a_1 - a_3) \dots (a_1 - a_n) + (a_2 - a_1)(a_2 - a_3) \dots (a_2 - a_n) + \dots + (a_n - a_1)(a_n - a_2) \dots (a_n - a_{n-1}).$$

Let S_n be the proposition that $E_n \ge 0$ for all real a_i . Prove that S_n is true for n = 3 and 5, but for no other n > 2.

- 2 Let P_1 be a convex polyhedron with vertices A_1, A_2, \ldots, A_9 . Let P_i be the polyhedron obtained from P_1 by a translation that moves A_1 to A_i . Prove that at least two of the polyhedra P_1, P_2, \ldots, P_9 have an interior point in common.
- 3 Prove that we can find an infinite set of positive integers of the from $2^n 3$ (where n is a positive integer) every pair of which are relatively prime.

IMO 1971

Day 2

- 1 All faces of the tetrahedron ABCD are acute-angled. Take a point X in the interior of the segment AB, and similarly Y in BC, Z in CD and T in AD.
 - **a.)** If $\angle DAB + \angle BCD \neq \angle CDA + \angle ABC$, then prove none of the closed paths XYZTX has minimal length;
 - **b.)** If $\angle DAB + \angle BCD = \angle CDA + \angle ABC$, then there are infinitely many shortest paths XYZTX, each with length $2AC\sin k$, where $2k = \angle BAC + \angle CAD + \angle DAB$.
- 2 Prove that for every positive integer m we can find a finite set S of points in the plane, such that given any point A of S, there are exactly m points in S at unit distance from A.
- 3 Let $A = (a_{ij})$, where i, j = 1, 2, ..., n, be a square matrix with all a_{ij} non-negative integers. For each i, j such that $a_{ij} = 0$, the sum of the elements in the *i*th row and the *j*th column is at least n. Prove that the sum of all the elements in the matrix is at least $\frac{n^2}{2}$.