Notacja \mathcal{O}

dr inż. Bartłomiej Pawlik

19 czerwca 2024

W całym wykładzie przyjmujemy, że zbiór liczb naturalnych to zbiór liczb całkowitych dodatnich.

Jeżeli n jest liczbą naturalną, to

$$\dots \leqslant \sqrt[4]{n} \leqslant \sqrt[3]{n} \leqslant \sqrt{n} \leqslant n \leqslant n^2 \leqslant n^3 \leqslant n^4 \leqslant \dots$$

Dużo ogólniej:

Jeżeli n jest liczbą naturalną i α,β są liczbami rzeczywistymi takimi, że $0\leqslant \alpha\leqslant \beta$, to

$$n^{\alpha} \leqslant n^{\beta}$$
.

Zauważmy, że jeżeli założymy dodatkowo, że n>1, to powyższe nierówności będą ostre.

B. Pawlik Notacja O 19 czerwca 2024 2/20

Dla dowolnej liczby naturalnej n mamy

$$n < 2^{n}$$
.

Dowód.

Dla n=1 nierówność jest oczywista.

Dla dowolnej liczby naturalnej n>1 mamy

$$n = \underbrace{2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n-1}{n-2} \cdot \frac{n}{n-1}}_{n-1} \leqslant \underbrace{2 \cdot 2 \cdot 2 \cdot \dots \cdot 2 \cdot 2}_{n-1} = 2^{n-1} < 2^{n}.$$

Zauważmy, że powyżej uzasadniliśmy mocniejszą nierówność

$$n \leqslant 2^{n-1}$$

dla n > 1.

- (ロ) (団) (注) (注) 注 り(()

B. Pawlik

Dla dowolnej liczby naturalnej n > 4 mamy

$$n^2 < 2^n$$
.

Dowód.

Mamy

$$n^{2} = 4^{2} \cdot \underbrace{\left(\frac{5}{4}\right)^{2} \cdot \left(\frac{6}{5}\right)^{2} \cdot \ldots \cdot \left(\frac{n-1}{n-2}\right)^{2} \cdot \left(\frac{n}{n-1}\right)^{2}}_{2}.$$

Zauważmy, że $\left(\frac{5}{4}\right)^2 < 2$ i że jest to największy spośród powyższych ułamków.

Zatem

$$n^2 < 4^2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 4^2 \cdot 2^{n-4} = 2^n.$$

B. Pawlik

Notacja 🔿

19 czerwca 2024

Dla dowolnej liczby naturalnej n mamy

$$\log_2 n < n$$
.

Dowód.

Nierówność otrzymujemy po zlogarytmowaniu stronami wyrażenia $n < 2^n$, które wcześniej udowodniliśmy.

Z powyższej nierówności wynika, że dla dowolnej liczby dodatniej lpha mamy

$$\log_2 n^{\alpha} < n^{\alpha}.$$

W szególności

$$\log_2 \sqrt{n} < \sqrt{n}.$$

Dla dowolnej liczby dodatniej α i dla dostatecznie dużych wartości n zachodzi

$$\log_2 n^{\alpha} < n.$$

Dowód.

Mamy

$$\log_2 n^{\alpha} = \alpha \cdot \log_2 n = 2\alpha \cdot \frac{1}{2} \log n = 2\alpha \cdot \log \sqrt{n} < 2\alpha \cdot \sqrt{n} = \frac{2\alpha}{\sqrt{n}} \cdot n.$$

Zauważmy że dla $n > 4\alpha^2$ zachodzi

$$\frac{2\alpha}{\sqrt{n}} \cdot n < \frac{2\alpha}{\sqrt{4\alpha^2}} \cdot n = n,$$

więc ostatecznie dla $n > 4\alpha^2$ mamy $\log_2 n^{\alpha} < n$.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Z nierówności $\log_2 n^{\alpha} < n$ dla $n > 4\alpha^2$ wynikają następujące fakty:

Dla dowolnej liczby dodatniej α zachodzą nierówności

$$n^{\alpha} < 2^n \qquad \text{oraz} \qquad \log_2 n < \sqrt[\alpha]{n}$$

dla dostatecznie dużych wartości n.

Reasumując:

- ullet 2^n rośnie szybciej niż jakakolwiek potęga z n
- ullet $\log_2 n$ rośnie wolniej niż jakikolwiek pierwiastek z n

Zatem dla dowolnego $\alpha>1$ mamy

$$\log_2 n < \sqrt[\alpha]{n} < n < n^{\alpha} < 2^n$$

dla dostatecznie dużych $\,n.\,$

7/20

B. Pawlik Notacja 🔿 19 czerwca 2024

Nierówność

$$2^n < n!$$

zachodzi dla każdej liczby naturalnej n>3.

Dowód.

Mamy $2^4 < 4!$ oraz

$$2^n = 2^4 \cdot \underbrace{2 \cdot 2 \cdot \ldots \cdot 2 \cdot 2}_{n-4} < 4! \cdot \underbrace{2 \cdot 2 \cdot \ldots \cdot 2 \cdot 2}_{n-4} < 4! \cdot \underbrace{5 \cdot 6 \cdot \ldots \cdot (n-1) \cdot n}_{n-4} = n!$$

Ш

$$100^n < n!$$

zachodzi dla każdej dostatecznie dużej liczby naturalnej n.

Powyższą nierówność można udowodnić podobnie jak poprzednią $(2^n < n!)$, znajdując najmniejszą liczbę k taką, że $100^k < k!$ i przeprowadzić szacowanie lub indukcję. Poniżej pokażemy dowód nie odwołujący się do poszukiwania tej najmniejszej liczby.

Dowód.

Zauważmy, że dla $n>200\ \mathrm{mamy}$

$$n! > \underbrace{201 \cdot 202 \cdot \dots \cdot (n-1) \cdot n}_{n-200} > \underbrace{200 \cdot 200 \cdot \dots \cdot 200 \cdot 200}_{n-200} = 200^{n-200} = 100^n \cdot 2^n \cdot \frac{1}{200^{200}} = 100^n \cdot \frac{2^n}{200^{200}}.$$

Oczywiście 2^n jest funkcją rosną i nieograniczoną z góry, więc począwszy od pewnego n mamy $2^n > 200^{200}$, więc $100^n \cdot \frac{2^n}{200^{200}} > 100^n$, co kończy dowód.

9/20

Analogicznie możemy pokazać, że dla każdej liczby dodatniej ${\cal C}$ mamy

$$C^n < n!$$

dla dostatecznie dużych n, co oznacza że

• n! rośnie szybciej niż jakikolwiek ciąg geometryczny

Dla dowolnej liczby naturalnej n > 1 mamy

$$n! < n^n$$

Dowód.

$$n! = 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n < n \cdot n \cdot \ldots \cdot n \cdot n = n^n$$

$$\log_2 n < n < 2^n < n! < n^n$$

Precyzyjniej:

$$1 < \ldots < \log_3 n < \log_2 n < \ldots < \sqrt[3]{n} < \sqrt{n} < n < n^2 < n^3 < \ldots$$

oraz

$$\dots < \sqrt[3]{n} < \sqrt{n} < n < n^2 < n^3 < \dots < 2^n < 3^n < \dots < n! < n^n$$

Oczywiście prawdziwe są również nierówności typu

$$n < n\sqrt{n} < n^2$$
, $n < n \cdot \log_2 n < n^2$,

itp.

19 czerwca 2024

11 / 20

Definicja

Niech f i g będą ciągami liczb rzeczywistych. Przyjmujemy, że

$$f_n = \mathcal{O}(g_n)$$

gdy istnieje dodatnia stała C taka, że

$$|f_n| < C \cdot |g_n|$$

dla dostatecznie dużych n.

Wyrażenie "
$$f_n=\mathcal{O}(g_n)$$
" czytamy " f_n jest O od g_n ".

12 / 20

B. Pawlik Notacja $\mathcal O$

ia O 19 czerwca 2024

Przykład 1

Z prezentowanych wcześniej nierówności wynika, że

•
$$\sqrt{n} = \mathcal{O}(n)$$
,

•
$$n = \mathcal{O}(2^n)$$
,

•
$$200^n = \mathcal{O}(n!),$$

•
$$n = \mathcal{O}(n^2)$$
,

•
$$n^2 = \mathcal{O}(2^n)$$
,

$$\bullet \ n! = \mathcal{O}(n^n),$$

•
$$n = \mathcal{O}(2^{n-1}),$$

$$\bullet \ 2^n = \mathcal{O}(n!),$$

$$\bullet \ n\log_2 n = \mathcal{O}(n^2),$$

itp.

Notacja O służy do szacowania szybkości wzrostu rozpatrywanego ciągu poprzez porównanie ją z szybkością wzrostu prostszego (dobrze znanego) ciągu.

Przykład 2

Rozpatrzmy ciąg

$$2n^5 + 9n^3 + 2024.$$

Dla dużych n wartość wyrażenia n^5 jest dużo większa niż wartość wyrażenia $9n^3+2024$, zatem dla dostatecznie dużych n mamy

$$2n^5 + 9n^3 + 2024 < 2n^5 + n^5 = 3n^5.$$

Zatem

$$2n^5 + 9n^3 + 2024 = \mathcal{O}(n^5).$$

Uwaga! Zauważmy, że możemy również szacować:

- $2n^5 + 9n^3 + 2024 = \mathcal{O}(n^6)$,
- $2n^5 + 9n^3 + 2024 = \mathcal{O}(n^5 \log_2 n)$,
- $2n^5 + 9n^3 + 2024 = \mathcal{O}(n!)$,

itp., ale zaproponowane w powyższym przykładzie $\mathcal{O}(n^5)$ jest dużo precyzyjniejszą informacją.

Przykład 3 (1/2)

Rozpatrzmy ciąg $h_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$ dla $n\geqslant 1$. Pokażemy, że $h_n=\mathcal{O}(\log_2 n)$.

Zauważmy, że

$$h_2 = 1 + \frac{1}{2} < 2,$$

$$h_4 = h_2 + \left(\frac{1}{3} + \frac{1}{4}\right) < 2 + \left(\frac{1}{2} + \frac{1}{2}\right) = 2 + 1 = 3,$$

$$h_8 = h_4 + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) < 3 + \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) = 3 + 1 = 4,$$

itd. Ogólnie mamy

$$h_{2k} < k+1$$
,

co można łatwo uzasadnić indukcyjnie.

←□ → ←□ → ← = → → = → へ ○

15 / 20

B. Pawlik Notacja O

19 czerwca 2024

Przykład 3 (2/2)

Niech n będzie liczbą ograniczoną kolejnymi potęgami dwójki: $2^k < n \leqslant 2^{k+1}$. Zauważmy, że pierwsza z tych nierówność daje nam $k < \log_2 n$. Mamy zatem

$$h_n \leqslant h_{2^{k+1}} < (k+1) + 1 = k+2 < \log_2 n + 2.$$

Dla dostatecznie dużych n mamy

$$\log_2 n + 2 < \log_2 n + \log_2 n = 2\log_2 n,$$

więc ostatecznie

$$h_n = \mathcal{O}(\log_2 n).$$

4□ ト 4回 ト 4 三 ト 4 三 り 9 ○ ○

16/20

B. Pawlik Notacja ${\mathcal O}$

Notacja \mathcal{O} — własności

lacksquare Jeżeli $f_n = \mathcal{O}(a_n)$ i c jest stałą, to

$$c \cdot f_n = \mathcal{O}(a_n).$$

 $oldsymbol{2}$ Jeżeli $f_n=\mathcal{O}(a_n)$ i $g_n=\mathcal{O}(a_n)$, to

$$f_n + g_n = \mathcal{O}(a_n).$$

ullet Jeżeli $f_n=\mathcal{O}(a_n)$ i $g_n=\mathcal{O}(b_n)$, to

$$f_n + g_n = \mathcal{O}(\max\{|a_n|, |b_n|\}) \quad \text{oraz} \quad f_n \cdot g_n = \mathcal{O}(a_n \cdot b_n).$$

• Jeżeli $a_n = \mathcal{O}(b_n)$ i $b_n = \mathcal{O}(c_n)$, to

$$a_n = \mathcal{O}(c_n).$$

(Zauważmy, że powyższe własności pozwalają nam szybko ustalić szacowanie w przykładzie 2: mamy $2n^5+9n^3+2024=\mathcal{O}(n^5)$.)

Dowód (1/3).

• Jeżeli $f_n=\mathcal{O}(a_n)$, to istnieje stała C>0 taka, że $|f_n|\leqslant C\cdot |a_n|$ dla dostatecznie dużych n. Mamy

$$|c \cdot f_n| = |c| \cdot |f_n| \leqslant |c| \cdot C \cdot |a_n| = (|c| \cdot C) \cdot |a_n|$$

dla dostatecznie dużych n, więc $c \cdot f_n = \mathcal{O}(a_n)$.

f 2 Jeżeli $f_n=\mathcal O(a_n)$ oraz $g_n=\mathcal O(a_n)$, to istnieją dodatnie stałe C i D takie, że

$$|f_n| \leqslant C \cdot |a_n|$$
 oraz $|g_n| \leqslant D \cdot |a_n|$

dla dostatecznie dużych n. W poniższym szacowaniu skorzystamy z nierówności trójkąta $|x+y|\leqslant |x|+|y|$ dla dowonych $x,y\in\mathbb{R}.$ Mamy

$$|f_n + g_n| \leqslant |f_n| + |g_n| \leqslant C \cdot |a_n| + D \cdot |a_n| = (C + D) \cdot |a_n|,$$

wiec $f_n + q_n = \mathcal{O}(a_n)$.

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

18 / 20

B. Pawlik Notacja $\mathcal O$ 19 czerwca 2024

Dowód (2/3).

 $lackbox{0}$ Ježeli $f_n=\mathcal{O}(a_n)$ oraz $g_n=\mathcal{O}(b_n)$, to istnieją dodatnie stałe C i D takie, że

$$|f_n| \leqslant C \cdot |a_n|$$
 oraz $|g_n| \leqslant D \cdot |b_n|$

dla dostatecznie dużych n. Ponownie korzystając z nierówności trójkąta mamy

$$|f_n + g_n| \le |f_n| + |g_n| \le C \cdot |a_n| + D \cdot |b_n| \le C \cdot \max\{|a_n|, |b_n|\} + D \cdot \max\{|a_n|, |b_n|\} = (C + D) \cdot \max\{|a_n|, |b_n|\},$$

więc $f_n + g_n = \mathcal{O}(\max\{|a_n|, |b_n|\})$ Ponadto

$$|f_n \cdot g_n| = |f_n| \cdot |g_n| \leqslant C \cdot |a_n| \cdot D \cdot |b_n| = (C \cdot D) \cdot |a_n \cdot b_n|,$$

wiec $f_n \cdot q_n = \mathcal{O}(a_n \cdot b_n)$.

B. Pawlik Notacja ${\mathcal O}$

Dowód (3/3).

lacktriangle Jeżeli $a_n=\mathcal{O}(b_n)$ oraz $b_n=\mathcal{O}(c_n)$, to istnieją dodatnie stałe B i C takie, że

$$|a_n| \leqslant B \cdot |b_n|$$
 oraz $|b_n| \leqslant C \cdot |c_n|$

dla dostatecznie dużych n. Zatem

$$|a_n| \leqslant B \cdot |b_n| \leqslant B \cdot |C \cdot c_n| = (B \cdot C) \cdot |c_n|,$$

więc
$$a_n = \mathcal{O}(c_n)$$

