Aphelion Music: Model Training & Testing Report

Team 5:

Aditya Panwar Prasanna Aneesh Naman

INTRODUCTION

For the project implementation, many libraries are employed, models are tested and finally Music Genre is classified.

This report focuses solely on Models' outputs (training & testing), for the full report kindly refer to the file named *Aphelion Music Report (Team 5).pdf*.

You may also refer the GitHub repo: https://github.com/adityapanwar94/ME781/

Models:

Various models as described in the full report were tested against the extracted features (MFCC) of the GTZAN dataset.

1. ANN (artificial neural network): a. Code file: ANN.ipynb

- b. Model Summary:

		Param #
flatten (Flatten)	(None, 1690)	0
dense (Dense)	(None, 512)	865792
dense_1 (Dense)	(None, 512)	262656
batch_normalization (BatchN ormalization)	(None, 512)	2048
dropout (Dropout)	(None, 512)	0
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 256)	65792
<pre>batch_normalization_1 (Batc hNormalization)</pre>	(None, 256)	1024
dropout_1 (Dropout)	(None, 256)	0
dense_4 (Dense)	(None, 128)	32896
dense_5 (Dense)	(None, 128)	16512
<pre>batch_normalization_2 (Batc hNormalization)</pre>	(None, 128)	512
dropout_2 (Dropout)	(None, 128)	0
dense_6 (Dense)	(None, 64)	8256
dense_7 (Dense)	(None, 64)	4160
<pre>batch_normalization_3 (Batc hNormalization)</pre>	(None, 64)	256
dropout_3 (Dropout)	(None, 64)	0
dense_8 (Dense)	(None, 10)	650
Fotal params: 1,391,882 Frainable params: 1,389,962 Won-trainable params: 1,920		

Fig: ANN model summary

c. Confusion Matrix:

d. Plots:

2. CNN (convolutional neural network): a. Code file: CNN.ipynb

b. Model Summary:

ayer (type)	Output Shape	Param #
onv2d (Conv2D)	(None, 130, 13, 256)	6656
oatch_normalization (BatchN ormalization)	(None, 130, 13, 256)	1024
max_pooling2d (MaxPooling2D	(None, 65, 6, 256)	0
onv2d_1 (Conv2D)	(None, 65, 6, 128)	819328
oatch_normalization_1 (Batc Normalization)	(None, 65, 6, 128)	512
max_pooling2d_1 (MaxPooling	(None, 32, 3, 128)	0
onv2d_2 (Conv2D)	(None, 32, 3, 64)	204864
oatch_normalization_2 (Batc Normalization)	(None, 32, 3, 64)	256
max_pooling2d_2 (MaxPooling DD)	(None, 16, 1, 64)	0
latten (Flatten)	(None, 1024)	0
lense (Dense)	(None, 128)	131200
oatch_normalization_3 (Batc Normalization)	(None, 128)	512
ropout (Dropout)	(None, 128)	0
ense_1 (Dense)	(None, 64)	8256
oatch_normalization_4 (Batc Normalization)	(None, 64)	256
ropout_1 (Dropout)	(None, 64)	0
lense_2 (Dense)	(None, 10)	650

Fig: CNN model summary

c. Confusion Matrix:

d. Plots:

3. LSTM (Long Short term Memory):

a. Code file: LSTM.ipynb

b. Model Sumary:

Fig: LSTM model summary

c. Confusion Matrix:

d. Plots:

4. RNN (Recurrent Neural Networks): a. Code file: RNN.ipynb

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 44, 64)	19968
lstm_1 (LSTM)	(None, 64)	33024
dense (Dense)	(None, 64)	4160
dropout (Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 10)	650

Fig: RNN model summary

b. Plots:

5. ML models (Long Short term Memory):

a. Code file: ML.ipynb

b. kNN Confusion Matrix:

Train Accuracy: 0.9988883948421521 Test Accuracy: 0.851

c. Random Forest Confusion Matrix:

Train Accuracy: 0.9851044908848378

Test Accuracy: 0.747

d. SVM Confusion Matrix:

Train Accuracy: 0.8724988883948421

Test Accuracy: 0.778

Log Files:

Navigate through the base submission folder > Log Files

Find the relevant log files for various models:

- CNN_logs
- ANN_logs
- LSTM_logs
- RNN_logs