Curso: LCC 2024/2025

Soluções da Folha Prática 5

1. (a)
$$F(c) = \begin{cases} 0 & se & c < -1 \\ c + \frac{1}{2}c^2 + \frac{1}{2} & se & -1 \le c < 0 \\ c - \frac{1}{2}c^2 + \frac{1}{2} & se & 0 \le c < 1 \\ 1 & se & c \ge 1 \end{cases}$$
 (b) $0; \frac{7}{8}; \frac{3}{8}; \frac{1}{8}; \frac{5}{9}$

2. (a)
$$k = \frac{1}{2}$$
, $F(c) = \begin{cases} \frac{1}{2}e^c & se \quad c < 0\\ 1 - \frac{1}{2}e^{-c} & se \quad c \ge 0 \end{cases}$
(b) $\frac{1}{2}$; $\frac{1}{2}$; $\frac{1}{2}$ (1 - e^{-1}); $\frac{1}{2}$ (1 - e^{-1}); 1 - e^{-1} (c) $Exp(1)$

3. (a)
$$F(c) = \begin{cases} 0 & se \quad c < 0 \\ 1 - e^{-\lambda c} & se \quad c \ge 0 \end{cases}$$
; $P(T > c) = \begin{cases} 1 & se \quad c < 0 \\ e^{-\lambda c} & se \quad c \ge 0 \end{cases}$ (b) — (c) $\frac{3e^{-4}}{3e^{-4} + e^{-2}}$

4. (a)
$$a = 0; b = 1; k = 2; f(x) = \begin{cases} 0 & se \quad x \le 0 \lor x \ge 2 \\ 1 - \frac{x}{2} & se \quad 0 < x < 2 \end{cases}$$
 (b) $\frac{1}{16}$ (c) 0.0344 (d) 20kg

5.
$$Y \sim Exp(1)$$

7. (a)
$$0.4718; \frac{1}{2}; 0.0562; 0.1147$$
 (b) 0.1442

9. (d)

10. 0.0455

11. (a)
$$F(c) = \begin{cases} 0 & se \quad c < 2 \\ \frac{c-2}{10} & se \quad 2 \le c \le 12 \\ 1 & se \quad c > 12 \end{cases}$$
 (b)
$$U([2,12]) \quad \text{(c) } 0.6; \ 0.1209$$

12. (a)
$$0.25$$
 (b) 0.25 (c) 0.6 (d) 359 ml

14.
$$P(Y=0) = 1 - e^{-\lambda a}$$
, $F_Y(c) = \begin{cases} 0 & se \ c < 0 \\ 1 - e^{-\lambda(c+a)} & se \ c \ge 0 \end{cases}$

15. (a) — (b)
$$H_1(t) = \begin{cases} 0 & se \quad t < -1 \\ 1 & se \quad t \ge -1 \end{cases}$$
 e $H_2(t) = \begin{cases} 0 & se \quad t < \frac{1}{2} \\ \frac{2t-1}{3} & se \quad \frac{1}{2} \le t \le 2 \\ 1 & se \quad t > 2 \end{cases}$

- 1. —
- 2. (a)

	E[X]	Var[X]	σ_X	$\chi_{0.25}$	$\chi_{0.5}$	$\chi_{0.75}$
5. (a)	$\frac{70}{36}$	$\frac{2660}{1296}$	$\sqrt{\frac{2660}{1296}}$	1	2	3
5. (b)	$\frac{161}{36}$	$\frac{2555}{1296}$	$\sqrt{\frac{2555}{1296}}$	3	5	5
5. (c)	$\frac{91}{36}$	$\frac{2555}{1296}$	$\sqrt{\frac{2555}{1296}}$	1	2	3
5. (d)	1	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$ $\frac{\sqrt{2}}{2}$	0	1	1
5. (e)	1	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	0	1	1
5. (f)	7	$\frac{210}{36}$	$\sqrt{\frac{210}{36}}$	5	7	9

(b)

(0)						
	E[X]	Var[X]	σ_X	$\chi_{0.25}$	$\chi_{0.5}$	$\chi_{0.75}$
1.	0	$\frac{1}{6}$	$\frac{1}{\sqrt{6}}$	$-1 + \frac{\sqrt{2}}{2}$	0	$1 - \frac{\sqrt{2}}{2}$
2.	0	2	$\sqrt{2}$	$-\log(2)$	0	$\log(2)$
4.	$\frac{2}{3}$	$\frac{2}{9}$	$\frac{\sqrt{2}}{3}$	$2-\sqrt{3}$	$2-\sqrt{2}$	1

- 3. E[Y] existe e $E[Y] = \frac{1 e^{-\lambda}}{\lambda}$
- 4. (a) $\frac{1}{2}$ (b) $Y \sim U([0,1]), E[Y] = \frac{1}{2} e Var[Y] = \frac{1}{12}$

5. (a)
$$F(c) = \begin{cases} 0 & se & c < 0 \\ 4c^3 - 3c^4 & se & 0 \le c \le 1 \\ 1 & se & c > 1 \end{cases}; E[X] = \frac{3}{5} e \ Var[X] = \frac{1}{25}$$
(b)
$$E[L] = \frac{8v_1 + 40v_2 + 33v_3}{81} - k; \ \sigma_L = \sqrt{\frac{8v_1^2 + 40v_2^2 + 33v_3^3}{81} - \left(\frac{8v_1 + 40v_2 + 33v_3}{81}\right)^2}$$

(b)
$$E[L] = \frac{8v_1 + 40v_2 + 33v_3}{81} - k; \ \sigma_L = \sqrt{\frac{8v_1^2 + 40v_2^2 + 33v_3^3}{81} - \left(\frac{8v_1 + 40v_2 + 33v_3}{81}\right)^2}$$

- 6. —
- 7. —