

DS(ML)B: Data Science (& Machine Learning) for Business

Profs. Anton Ovchinnikov, Theos Evgeniou, Spyros Zoumpoulis

Sessions 07-08

- Wrap-up of Supervised Learning
- Discussion of Assignment 2
- Advanced Classification, cont.: Support Vector Machines, Regularizations (LASSO/Ridge)
- [Optional / Time-permitting]: Deep Learning

Big Picture: Structure of the course

SESSIONS 1-2: Data analytics process; from Excel to R

Tutorial 1: Getting comfortable with R

SESSIONS 3-4: Time Series Models

SESSIONS 5-6: Intro to Classification, Logistic Regression and CART Trees

Tutorial 2: Mid-term help with R

SESSIONS 7-8: Wrap-up of Supervised Learning, Discuss Assignment 2, Advanced Classification

SESSIONS 9-10: Unsupervised Learning: Clustering, Segmentation and Dimensionality Reduction

Tutorial 3: automatic machine learning with DataRobot

Assignment 3 and Project Proposals

Hands-on help with projects

SESSIONS 11-12: Guest speaker

SESSIONS 13-14: Project presentations

Plan for the day Learning objectives

- Main objective: wrap-up/cristalize our understanding of supervised learning
- How:
 - Discussion of Assignement 2
 - Peer-to-peer group presentations + Q&A, each pair selects one
 - Round of 4 peer-to-peer presentations, each 4 selects one
 - « Winners » of each 4 present to us all + Q&A
 - We all vote to select one group « to invest in »
 - I then reveal their \$\$\$ made, we all discuss the results + Q&A
 - Advanced classification:
 - Support Vector Machines
 - Regularizations: LASSO, Ridge
 - [Optional / Time-permitting]: Deep Learning with TensorFlow
 - Summary: « from regression to deep learning »

[30mins]

[20mins]

[30mins]

Assignment 2: process

- Two tasks on hand:
 - 1. How to predict default probabilities
 - 2. How to decide which threshold to use?
- Task 1 is easy, e.g., here is an MVP:

```
credit_data_24000<-read.csv(file.choose(), header=TRUE)
new_applicants<-read.csv(file.choose(), header=TRUE)
str(credit_data_24000)
credit_data_24000$default_0<-as.factor(credit_data_24000$default_0)
ctree_tree<-ctree(default_0 ~ . -ID, data=credit_data_24000)
ctree_probabilities<-predict(ctree_tree, newdata=new_applicants)
write.csv(ctree_probabilities, file="pred_default_probs_new_applicants.csv")</pre>
```

- Task 2 is harder: how to know which threshold will bring the most money on the new applicants?
 - How to replicate giving credit on the data we have? →Holdout!

Assignment 2: process Estimating threshold

- How to replicate giving credit on the data we have? →Holdout!
- Split the data into training and testing

```
training<-subset(credit_data_24000, ID<=23000)
testing<-subset(credit_data_24000, ID>23000)
```

Train on training, predict on testing:

```
ctree_tree<-ctree(default_0~. -ID, data=training)
ctree_probabilities<-predict(ctree_tree, newdata=testing)
write.csv(ctree_probabilities, file="pred_default_probs_ctree_testing.csv")</pre>
```

- Construct a profit curve, e.g., in Excel with a data table
 - In R this will require coding custom functions to loop and test all thresholds (beyond the scope of the course)

Assignment 2: process Profit curve

- Construct a profit curve, e.g., in Excel with a data table
- Then repeat for different methods, models, data, etc.

Profit Curve: "Implied" classification metric

- Measure business profit if we only select the "top" cases in terms of the probability of "response"
- For this, we need to define values and costs of correct classifications and misclassifications

Predicted: default Predicted: no default

Actual: default \$0 -\$5000

Actual: no default \$0 \$1500

Profit = # of 1's correctly predicted * value of capturing a 1
+ # of 0's correctly predicted * value of capturing a 0
+ # of 1's incorrectly predicted as 0 * cost of missing a 1
+ # of 0's incorrectly predicted as 1 * cost of missing a 0

Profit Curve: "Implied" classification metric

- Given a classifier, rank instances in the test data from highest predicted probability of belonging to class 1 (= default) to lowest
- Can put the cutoff for giving vs. not giving credit at any rank
- As you move the cutoff, calculate the corresponding profit... [here with 4000 in testing]

Moving beyond the MVP

Better models

on MVP data: $[T^*, \pi^*]$

Logistic + stepAIC: 0.24, 423K

• cart: 0.21, 437.5K

• randomforest: 0.25, 510K

 "advanced blender" from DataRobot: 0.24, 581K

Better data

- Feature engineering
- Examples of "out of the box" impactful features:
 - NoOfDelay_Sum
 - NoOfDelay_Count
 - SumOfAll_PAYSTATUS
 - 2month_Delay_Count
 - SD BILL
 - TotalPayment_6Months
 - TotalPayment_3Months
 - Single_and_male
 - Retiree_60

Feature Engineering

Key idea: Your data may have more information than what is contained in your existing variables

- Spend lots of time thinking of ways to combine your variables into new ones!
 - Or generally, where/how to get more information that would help your models learn better and make more accurate predictions
- "Engineering" good features may be more important than using a better method
- Requires contextual knowledge of the business
 - Can not be outsourced
 - Too many permutations to be fully automated

[How hard] have you thought about feature engineering?

C NI-	Feature	Example	Definition	Formula
5.NO	C Feature Noofdefaults Count	2	Count of all pay status where pay status > o	=IF(G2>0,1,0)+IF(H2>0,1,0)+IF(I2>0,1,0)+IF(J2>0,1,0)+IF(K2>0,1,0)+IF(L2>0,1,0)
2	Feature_Noofdefaults_Sum	4	Sum of all pay status where pay status > o	=IF(G2>0,G2,0)+IF(H2>0,H2,0)+IF(I2>0,I2,0)+IF(J2>0,J2,0)+IF(K2>0,K2,0)+IF(L2>0,L2,0)
3	C Feature Improve Pay1	No Change	If Pay Status in Pay X improved from PayX-1	=IF(G2=H2,"No Change",IF(G2 <h2,"improved","decreased"))< td=""></h2,"improved","decreased"))<>
4	C_Feature_Improve_Pay2	Decreased	If Pay Status in Pay X improved from PayX-1	=IF(H2=I2,"No Change",IF(H2 <i2,"improved","decreased"))< td=""></i2,"improved","decreased"))<>
5	C_Feature_Improve_Pay3	No Change	If Pay Status in Pay X improved from PayX-1	=IF(I2=J2,"No Change",IF(I2 <j2,"improved","decreased"))< td=""></j2,"improved","decreased"))<>
6	C_Feature_Improve_Pay4	Decreased	If Pay Status in Pay X improved from PayX-1	=IF(J2=K2,"No Change",IF(J2 <k2,"improved","decreased"))< td=""></k2,"improved","decreased"))<>
7	C Feature Improve Pays	No Change	If Pay Status in Pay X improved from PayX-1	=IF(K2=L2,"No Change",IF(K2 <l2,"improved","decreased"))< td=""></l2,"improved","decreased"))<>
8	C Feature Paystatus Notchanged 6		If Pay Status in Pay1 - Pay6 remains same	=SUM(G2:L2)/6=G2
9	C Feature Paystatus Notchanged 3		IF Pay Status in Pay1 - Pay3 remains same	=SUM(G2:12)/3=G2
10	Feature Limit Log	4.301029996	Log of Limit Balance	=LOG(B2)
11	Feature Limit TANH	0.999632614	TANH of log of limit balance	=TANH(AI2)
12	Feature Standarized LimitBal	-1.138344866	Standarized Z value of limit balance	=STANDARDIZE(B2,AVERAGE(\$B\$2:\$B\$24001),STDEV.P(\$B\$2:\$B\$24001))
13	C Feature Sex Marriage	Female AND Married	Interaction of Sex and Marital Status	=IF(C2=1,"Male",IF(C2=2,"Female","Other"))&" AND
14	C Feature Retired60	Not Retired	Capture Retirement assuming age 60	=IF(F2>60,"Retired","Not Retired")
15	C Feature Retired65	Not Retired	Capture Retirement assuming age 65	=IF(F2>65, "Retired", "Not Retired")
16	C_Feature_Education_Missingflag	0	Surrogate variable for Education missing values	=IF(D2=0,1,0)
17	C Feature Marriage Missingflag	0	Surrogate variable for Marital status missing valu	
18	C_Feature_Fullpayment_PayM1	Not Fully Paid	If Pay amount in month 1 is fully paid or not	=IF((N2-S2)<=0,"Fully Paid","Not Fully Paid")
19	C Feature Fullpayment PayM2	Fully Paid	If Pay amount in month 2 is fully paid or not	=IF((O2-T2)<=0,"Fully Paid","Not Fully Paid")
20	C_Feature_Fullpayment_PayM3	Fully Paid	If Pay amount in month 3 is fully paid or not	=IF((P2-U2)<=0,"Fully Paid","Not Fully Paid")
21	C_Feature_Fullpayment_PayM4	Fully Paid	If Pay amount in month 4 is fully paid or not	=IF((Q2-V2)<=0,"Fully Paid","Not Fully Paid")
22	C Feature Fullpayment PayM5	Fully Paid	If Pay amount in month 5 is fully paid or not	=IF((R2-W2)<=0,"Fully Paid","Not Fully Paid")
23	C Feature NospendMonths	3	Count of months where bill amount = o	=IF(M2=0,1,0)+IF(N2=0,1,0)+IF(O2=0,1,0)+IF(P2=0,1,0)+IF(Q2=0,1,0)+IF(R2=0,1,0)
24	C Feature NoPaymentMonths	5	Count of months where payment amount = 0	=IF(S2=0,1,0)+IF(T2=0,1,0)+IF(U2=0,1,0)+IF(V2=0,1,0)+IF(W2=0,1,0)+IF(X2=0,1,0)
25	Feature Ratio NPM NSM	1.666666667	Ratio of No payment months / No spend month	=IFERROR(AW2/AV2,0)
26	Feature Payment Percent 1	0	Payment 1 month ago / bill 2 month ago	=IFERROR(S2/N2,0)
27	Feature_Payment_Percent_2	1	Payment 2 month ago / bill 3 month ago	=IFERROR(T2/O2,0)
28	Feature_Payment_Percent_3	0	Payment 3 month ago / bill 4 month ago	=IFERROR(U2/P2,0)
29	Feature_Payment_Percent_4	0	Payment 4 month ago / bill 3 month ago	=IFERROR(V2/Q2,0)
30	Feature_Payment_Percent_5	0	Payment 5 month ago / bill 4 month ago	=IFERROR(W2/R2,0)
31	Feature_Average_Percent	0.2	Average of all Payment Ratio (M1 - M5)	=AVERAGE(AY2:BC2)
32	C_Feature_Bill_Adjustment1	0	Flag if the bill amount < 0 to identify adjustments	=IF(M2<0,1,0)
33	C_Feature_Bill_Adjustment2	0	Flag if the bill amount < 0 to identify adjustments	=IF(N2<0,1,0)
34	C_Feature_Bill_Adjustment3	0	Flag if the bill amount < 0 to identify adjustments	=IF(O2<0,1,0)
35	C_Feature_Bill_Adjustment4	0	Flag if the bill amount < 0 to identify adjustments	
36	C_Feature_Bill_Adjustment5	0	Flag if the bill amount < 0 to identify adjustments	
37	C_Feature_Bill_Adjustment6	0	Flag if the bill amount < 0 to identify adjustments	=IF(R2<0,1,0)
38	C_Feature_AllMonth_minus2	FALSE	Flag if all the pay status is -2	=SUM(G2:L2)=-12
39	C_Feature_AllMonth_minus1	FALSE	Flag if all the pay status is -1	=SUM(G2:L2)=-6
40	C_Feature_AllMonth_zero	FALSE	Flag if all the pay status is o	=SUM(G2:L2)=0
41	Feature_sumofall_paystatus	-2	Sum of all pay status	=SUM(G2:L2)
42	Feature_Averageborrowing	1284	Average spending per month	=AVERAGE(M2:R2)
43	Feature_exposure	0.0642	Average spending / total limit to check exposure	=BO2/B2
44	C_Feature_Agebucket	20-25	Continious variable age divided into buckets of 5	=VLOOKUP(F2,Age!A:B,2,0)
45	Feature_totaloutstanding	7015	Total Spending - Total Payments	=SUM(M2:R2)-SUM(S2:X2)
46	C_Feature_outstanding_neg_flag	0	Flag to see if total payments > total spending	=IF(BR2<0,1,0)
47	C_Feature_1month_delay_count	О		=IF(\$G2=1,1,0)+IF(\$H2=1,1,0)+IF(\$I2=1,1,0)+IF(\$J2=1,1,0)+IF(\$K2=1,1,0)+IF(\$L2=1,1,0)
48	C_Feature_2month_delay_count	2		=IF(\$G2=2,1,0)+IF(\$H2=2,1,0)+IF(\$I2=2,1,0)+IF(\$J2=2,1,0)+IF(\$K2=2,1,0)+IF(\$L2=2,1,0)
49	C_Feature_3month_delay_count	0		=IF(\$G2=3,1,0)+IF(\$H2=3,1,0)+IF(\$I2=3,1,0)+IF(\$J2=3,1,0)+IF(\$K2=3,1,0)+IF(\$L2=3,1,0)
50	C_Feature_4month_delay_count	0		=IF(\$G2=4,1,0)+IF(\$H2=4,1,0)+IF(\$I2=4,1,0)+IF(\$J2=4,1,0)+IF(\$K2=4,1,0)+IF(\$L2=4,1,0)
51	C_Feature_5month_delay_count	0		=IF(\$G2=5,1,0)+IF(\$H2=5,1,0)+IF(\$I2=5,1,0)+IF(\$J2=5,1,0)+IF(\$K2=5,1,0)+IF(\$L2=5,1,0)
52	C_Feature_6month_delay_count	0		=IF(\$G2=6,1,0)+IF(\$H2=6,1,0)+IF(\$I2=6,1,0)+IF(\$J2=6,1,0)+IF(\$K2=6,1,0)+IF(\$L2=6,1,0)
53	C_Feature_6monthplus_delay_coun			=IF(\$G2>6,1,0)+IF(\$H2>6,1,0)+IF(\$I2>6,1,0)+IF(\$J2>6,1,0)+IF(\$K2>6,1,0)+IF(\$L2>6,1,0)
54	C_Feature_AbvAvg_Month1	TRUE	Flag to see if spend in Month 1 > Average	=M2>\$BO2
55	C_Feature_AbvAvg_Month2	TRUE	Flag to see if spend in Month 2 > Average	=N2>\$BO2
56	C_Feature_AbvAvg_Month3	FALSE	Flag to see if spend in Month 3 > Average	=02>\$B02
57	C_Feature_AbvAvg_Month4	FALSE	Flag to see if spend in Month 4 > Average	=P2>\$BO2
58	C_Feature_AbvAvg_Month5	FALSE	Flag to see if spend in Month 5 > Average	=Q2>\$BO2
59	C_Feature_AbvAvg_Month6	FALSE More than once	Flag to see if spend in Month 6 > Average	=R2>\$BO2 =IF(IF(G2>0,1,0)+IF(H2>0,1,0)+IF(I2>0,1,0)+IF(J2>0,1,0)+IF(K2>0,1,0)+IF(I2>0,1,0)=1,"Rare
60	C_Feature_PayStatus_Category		How many times payment were delayed in last 6	
61	C_Feature_old_but_not_married Feature TotalPayment 6Months	0	Flag to check if client is over 40 and not yet marri- Total Payment in last 6 months	=IF(AND(F2>40,E2>=2),1,0) =SUM(S2:X2)
62	Feature_TotalPayment_6Months Feature_TotBill_TotPymt	689	Total Payment in last 6 months Total Bill - Total Payments in last 6 months	=SUM(S2:X2) =SUM(M2:R2)-SUM(S2:W2)
63	reature_10tBiii_10tFyiiit	7015	Total Bill - Total Payments in last 6 months	(-SUBI(BL:R2)-SUBI(S2.W2)

S.No.	Feature	Example	Definition	Formula
80	Feature_overpayment_Amt_5	0	Amount of overpayment	
81	Feature_total_overpymt_Amt	0	Sum of all overpayments	
82	C_Feature_no_overpymt	1	Flag to check if no overpa	IF(DB2=0,1,0)
83	C_Feature_Range_PayMonth	4	Range of pay status over	=MAX(G2:L2)-MIN(G2:L2)
84	C_Feature_minus2_count	2	Count of how many	=IF(G2=-2,1,0)+IF(H2=-2,1,0)+IF(I2=-2,1,0)+IF(J2=-2,1,0)+IF(K2=-2,1,0)+IF(L2=-2,1,0)
85	Feature_Exposure_Month1	0.19565	Bill amount 1 / total limi	
86	C_Feature_Limit_Bin	1	Continious variable	=IF(B2<100000,1,IF(B2<200000,2,IF(B2<300000,3,IF(B2<400000,4,IF(B2<500000,5,6)))))
87	C_Feature_Diminishing	0	Flag to see if the	=IF((G2-L2)=5,1,0)
88	C_Feature_Abnormal_Tx1	1	Flag to check if the	=IF(M2>AVERAGE(\$M\$2:\$R\$2)*2,1,0)
89	C_Feature_Abnormal_Tx2	1	Flag to check if the	=IF(N2>AVERAGE(\$M\$2:\$R\$2)*2,1,0)
90	C_Feature_Abnormal_Tx3	0	Flag to check if the	=IF(O2>AVERAGE(\$M\$2:\$R\$2)"2,1,0)
91	C_Feature_Abnormal_Tx4	0	Flag to check if the	=IF(P2>AVERAGE(\$M\$2:\$R\$2)*2,1,0)
92	C_Feature_Abnormal_Tx5	0	Flag to check if the	=IF(Q2>AVERAGE(\$M\$2:\$R\$2)"2,1,0)
93	C_Feature_Abnormal_Tx6	0		=IF(R2>AVERAGE(\$M\$2:\$R\$2)*2,1,0)
94	C_Feature_all_zeros	0	Count of pay status = o in	=IF(G2=0,1,0)+IF(H2=0,1,0)+IF(I2=0,1,0)+IF(J2=0,1,0)+IF(K2=0,1,0)+IF(L2=0,1,0)
95	Feature_status_growth	-1	% increase in Pay Status	=IFERROR(G2/L2,0)
96	Feature_SD_growth	1.699673171	Standard Deviation of pa	=STDEV.P(G2:L2)
97	C_Feature_Pay_last2_status	2 AND 2	Pay Status of M1 and M2	=G2&" AND "&H2
98	Feature_SD_bill	1608.143754	Standard Deviation of bil	
99	Feature_SD_payment	256.7751394	Standard Deviation of pa	=STDEV.P(S2:X2)
100	Feature_SDB_div_SDP	6.262848333	Ratio of SD of bill over S	=IFERROR(DS2/DT2,0)
101	Feature_Pay1	0	% of payment in M1 / Bil	=IFERROR(S2/N2,0)
102	Feature_Pay2	1	% of payment in M2 / Bil	=IFERROR(T2/O2,0)
103	Feature_Pay3	0	% of payment in M ₃ / Bil	=IFERROR(U2/P2,0)
104	Feature_Pay4	0	% of payment in M4 / Bil	=IFERROR(V2/Q2,0)
105	Feature_Pay5	0	% of payment in M ₅ / Bil	=IFERROR(W2/R2,0)
106	Feature_Avg_Pay1_to_5	0.2	Average % of payment	=AVERAGE(DV2:DZ2)
107	C_Feature_Limit_Method2	1-1	Alternative method to bis	=LEFT(A2,2)&"-"&LEN(A2)
108	Feature_Correl	-3014.188114	Correlation with limit ba	=-0.150709405692922*B2
109	Feature_Kurtosis_Spending	-1.382080958		=IFERROR(KURT(M2,N2,O2,P2,Q2,R2),0)
110	Feature_Kurtosis_Payment	6	Kurtosis of all payment a	=IFERROR(KURT(S2,T2,U2,V2,W2,X2),0)
111	Feature_Kurtosis_Pay_mult_Spend	-8.29248575	Product of Kurtosis of bil	=EE2*ED2
112	C_Feature_Mode_PayStatus	2	Mode of pay status	=IFERROR(MODE.SNGL(G2:L2),0)
113	C_Feature_Sex_Education_Marriage	2 AND 2 AND 1	Interaction of Sex, Educa	=C2&" AND "&D2&" AND "&E2
114	C_Feature_Sex_Education_Marriage	2 AND 2 AND 1 AND 20-	Interaction of Sex, Educa	=C2&" AND "&D2&" AND "&E2&" AND "&BQ2
115	C_Feature_Sex_Education_Marriage	2 AND 2 AND 1 AND 20-	Interaction of Sex,	=C2&" AND "&D2&" AND "&E2&" AND "&BQ2&" AND "&DG2
116	C_Feature_Sex_Habit	2 AND More than once	Interaction of Sex and H	=C2&" AND "&CG2
117	C_Feature_Sex_Marriage_Habit	Female AND Married AN	Interaction of Sex, Marita	=AL2&" AND "&EK2
118	C_Feature_PayStatus_PayScore_Mor			=IF(S2=N2,"Equal Payment",IF(S2 <n2,"under","over"))&" "="" &g2<="" and="" td=""></n2,"under","over"))&">
119	C_Feature_PayStatus_PayScore_Mor	Equal Payment AND 2	Interaction of Pay Status	=IF(T2=O2,"Equal Payment",IF(T2 <o2,"under","over"))&" "="" &h2<="" and="" td=""></o2,"under","over"))&">
120	C_Feature_PayStatus_PayScore_Mor	Equal Payment AND -1	Interaction of Pay Status	=IF(U2=P2,"Equal Payment",IF(U2 <p2,"under","over"))&" "="" &i2<="" and="" td=""></p2,"under","over"))&">
121	C_Feature_PayStatus_PayScore_Mor	Equal Payment AND -1	Interaction of Pay Status	=IF(V2=Q2,"Equal Payment",IF(V2 <q2,"under","over"))&" "="" &j2<="" and="" td=""></q2,"under","over"))&">
122	C_Feature_PayStatus_PayScore_Mor	Equal Payment AND -2		=IF(W2=R2,"Equal Payment",IF(W2 <r2,"under","over"))&" "="" &k2<="" and="" td=""></r2,"under","over"))&">
123	Feature_NospendMonths_Num	3	Numeric Value of C_Feat	
124		5	Numeric Value of C_Feat	
125	Feature_imonth_delay_count_Num		Numeric Value of C_Feat	
126	Feature_2month_delay_count_Num		Numeric Value of C_Feat	
127	Feature_3month_delay_count_Num		Numeric Value of C_Feat	
128	Feature_4month_delay_count_Num		Numeric Value of C_Feat	
129	Feature_5month_delay_count_Num		Numeric Value of C_Feat	
130	Feature_6month_delay_count_Num		Numeric Value of C_Feat	
131	Feature_6monthplus_delay_count_N	o	Numeric Value of C_Feat	
132	Feature_allM_overpayment_Num	0	Numeric Value of C_Feat	
133	Feature_Range_PayMonth_Num	4	Numeric Value of C_Feat	
134	Feature_Mode_PayStatus_Num	2	Numeric Value of C_Feat	
135	C_Feature_Increasing_Delays	0		=IF(AND(G2-H2=1,H2-I2=1,I2-J2=1,J2-K2=1,K2-L2=1),1,0)
136	C_Feature_Allzero_with_minus12	0		=IF(AND(SUM(M2:X2)=0,SUM(G2:L2)>=-12),1,0)
137	C_Feature_Allzero_with_minus18	О		=IF(AND(SUM(M2:X2)=0,SUM(G2:L2)>=-18),1,0)
138	C_Feature_PAY1_Weighted	20	Pay status weigher (on so	
139	C_Feature_PAY2_Weighted	18	Pay status weigher (on so	
140	C_Feature_PAY3_Weighted	-8	Pay status weigher (on so	
141	C_Feature_PAY4_Weighted	-7	Pay status weigher (on so	
142	C_Feature_PAY5_Weighted	-12	Pay status weigher (on so	=K2*6

Additional/advanced classification methods

- CART-based tree ensembles
 - randomforest
 - gradient boosting machines (xgboost)
- "inbetween" regressions and trees:
 - support vector machines (svm)
- Regularizations (LASSO/Ridge)
 - SVM is also a regularization
- [Optional / Time-permitting] "Deep Learning" -- Artificial Neural Networks
 - ANN (Deep Learning) is also a regularization

Tree Ensemble Methods

Both **random forests** and **boosted trees** generate multiple random samples from the training set (with replacement), and train a different CART for each sample of the data. This is called "bagging."

- Random Forests
 - The samples are completely random. No adaptiveness.
 - Use fully grown CARTs (each with low bias, high variance). Reduce variance by bagging together many uncorrelated trees.
 - Final prediction is the simple average
- Boosted trees
 - Based on small trees: weak learners with high bias, low variance
 - But adaptive: instances modeled poorly by the overall system before, have larger probability of being picked now → higher weight
 - Final prediction is a weighted average

Random Forest

Main idea: Fit many trees to different samples of data, then ensemble them

 In addition to simply making a prediction, random forest provides an important insight into which variables show up in many trees - "important variables"

- Why does this work? "Wisdom of Crowds"
- Analogy to the decision making by a committee: Parliament vs Dictator, Board of a company vs sole proprietor, etc.
- Requires specifying hyper-parameters: number of trees and columns, depth of trees, voting rules, etc.
- Hyper-parameters are tuned via grid search

Illustration of Ensembling: @Risk "Monte Carlo" simulation

3 models; each correct with this prob

A2 implementation:

randomforest

```
model_forest <- randomForest (default_0 ~ . -ID,
data=training, importance=TRUE, proximity=TRUE,
cutoff = c(0.5,0.5), type="classification")
varImpPlot (model_forest)

forest_probabilities<-predict (model_forest,
newdata=testing, type="prob")[,2]
write.csv(forest_probabilities,
file="predicted_default_probs_forest_testing.csv")

forest_probabilities<-predict (model_forest,
newdata=new_applicants, type="prob")[,2]
write.csv(forest_probabilities,
file="predicted_default_probs_forest_new_applicants.csv")</pre>
```


model_forest

Gradient Boosted Trees:

xgboost

Main idea: Notice which data points are not explained well by the existing tree, make those data points more important ("higher weight") and re-fit to describe them better

Combine variables and add new splits to explain those higher weight data points

- Requires specifying additional hyper-parameters: number of trees, depth and learning/decay rate
- Hyper-parameters are tuned via grid search

CART-like Methods in Excel

Part of XLMiner Pro by Frontline Systems (same company that makes Solver)

"In-between" Regressions and Trees: Support Vector Machines

Main idea: Draw a line ("hyperplane", "kernel") dividing parameter space in two regions so that the margin on the sides is maximal

- Observe: CART-like methods draw vertical or horizontal lines only
- Why does this work? "Complicated" lines may work better than just vertical or horizontal ones

Radial basis (Gaussian) kernel

A2 implementation:

svm

```
INSEAD
```

```
pacman::p_load("caret", "ROCR", "lift", "glmnet", "MASS", "e1071")

model_svm <- svm(default_0 ~ . -ID, data=training, probability=TRUE)
summary(model_svm)

svm_probabilities<-attr(predict(model_svm, newdata=testing,
probability=TRUE), "prob")[,1]
write.csv(svm_probabilities, file="predicted_default_probs_SVM_testing.csv")

svm_probabilities<-attr(predict(model_svm, newdata=new_applicants,
probability=TRUE), "prob")[,1]
write.csv(svm_probabilities,
file="predicted_default_probs_SVM_new_applicants.csv")</pre>
```

Regularizations

[Idea Before] Main Idea:

How can we further improve prediction accuracy? [Nonlinear] "Feature Engineering"

$$Y = a + b * X + error$$

versus

$$Y = a + \sum_{k=1}^{\infty} b_k * \varphi_k(x) + error$$

For example:
$$\varphi_k(x) = x^k$$

$$\varphi_k(x) = \cos(kx)$$

$$\varphi_k(x) = IF[M\&single, ...$$

Regularization: Feature Engineering & Overfitting

Karl Popper

Theory of Knowledge: Falsifiability "All swans are white"

Albert Einstein

Theory of Knowledge: **Complexity** "Everything Should Be Made as Simple as Possible, But Not Simpler", (KISS) E=mc²

Complexity: Underfitting and Overfitting

Regularizations

[Idea Before] Main Idea:

How can we further improve prediction accuracy? [Nonlinear] "Feature Engineering"

$$Y = a + b * X + error$$

versus

$$Y = a + \sum_{k=1}^{\infty} b_k * \varphi_k(x) + error$$

For example:
$$\varphi_k(x) = x^k$$

 $\varphi_k(x) = \cos(kx)$
 $\varphi_k(x) = IF[M\&single, ...]$

Main Idea: ...but penalize for having too much complexity (too many variables) to avoid overfitting. Add penalty parameter, λ , into the "regression" objective to control complexity

Examples of Complexity Control

		rm 1" of coefficients vector		
LASSO regression, $y \equiv f(x_i) = a + bX$	$\min_{f} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \lambda \ \boldsymbol{b}\ _1$	Penalizes the absolute values of the coefficients: Most coefficients will be zero, only the most important coefficients will be non-zero ("concentrating the weights")		
Linear Ridge regression, $y \equiv f(x_i) = a + bX$	$\min_{f} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \lambda \boldsymbol{b} _2^2$	Penalizes sum of squares of coefficients: will end-up having many		
Support Vector Machines $y \equiv f(x_i) = a + bX$	$\min_{f} \sum_{i=1}^{m} f(x_i) - y_i _e + \lambda b _2^2$	small coefficients ("redistributing the weights")		
Generalized Ridge regression, $y \equiv f(x_i) = \sum_{k=1}^{\infty} b_k * \varphi_k(x)$	$\min_{f} \sum_{i=1}^{m} (f(x_i) - y_i)^2 + \lambda \boldsymbol{b} _K^2$	Most flexible, but hardest to interpret coefficients		

Understanding LASSO/Ridge package glmnet

$$\min_{(eta_0,eta)\in \mathbb{R}^{p+1}} rac{1}{2N} \sum_{i=1}^N (y_i - eta_0 - x_i^Teta)^2 + \lambda \left[(1-lpha) ||eta||_2^2/2 + lpha ||eta||_1
ight]$$

 β s are regression coefficients

 λ is the penalty parameter

α:=1 LASSO

 α =0: Ridge \rightarrow

Understanding LASSO/Ridge: selecting *λ*

Understanding LASSO/Ridge: selecting [→]

How to determine the [optimal] value of penalty, λ ?

> Through cross-validation (of course!)

[1] -7.217623

LASSO/Ridge for A2 package glmnet


```
pacman::p_load("caret", "ROCR", "lift", "glmnet", "MASS", "e1071")
#create the y variable and matrix (capital X) of x variables (will make the code below easier to read + will ensure that all levels exist)
y<-training$default_0
X<-model.matrix(ID ~. - default_0 , data=credit_data_24000)[,-1]</pre>
X<-cbind(credit_data_24000$ID,X)
# split X into testing, trainig/holdout and prediction as before
X.training < -subset(X, X[, 1] < = 23000)[, -1]
X.testing < -subset(X, X[,1] > = 23001)[,-1]
# create model matrix for the new applicants, first adjust data for some minor "glitches" in formatting
new_applicants<-new_applicants[,-25]</pre>
new_applicants[,1] <-c(1:1000)
X.prediction<-model.matrix(ID ~. , data = new_applicants)[,-1]</pre>
                                                                                                                   #ridge (alpha=0)
lasso.fit<-glmnet(x = X.training, y = y, alpha (1) family="binomial")</pre>
plot(lasso.fit, xvar = "lambda")
#selecting the best penalty lambda
crossval <- cv.glmnet(x = X.training, y = y, alpha { 1, family="binomial")</pre>
plot(crossval)
penalty.lasso <- crossval$lambda.min #determine optimal penalty parameter, lambda
log(penalty.lasso) #see where it was on the graph
plot(crossval, xlim=c(-8, -4), ylim=c(0.92, 0.95)) # lets zoom
                                                        1, lambda = penalty.lasso, family="binomial") #estimate the model with the optimal penalty
lasso.opt.fit <-glmnet(x = X.training, y = y, alpha</pre>
coef(lasso.opt.fit) #resultant model coefficients
# predicting the performance on the testing set
lasso_probabilities <- predict(lasso.opt.fit, s = penalty.lasso, newx =X.testing, family="binomial",type="response")
write.csv(lasso_probabilities, file="predicted_default_probs_LASSO_testing.csv")
```

[Optional/Time-permitting] Artificial Neural Networks (Deep Learning)

Example: <u>ImageNet</u>

Deep Learning = Non-linear feature engineering + BIG Data + Regularizations

ImageNet classification with deep convolutional neural networks

Authors: Alex Krizhevsky University of Toronto

<u>Ilya Sutskever</u> <u>University of Toronto</u> <u>Geoffrey E. Hinton</u> <u>University of Toronto</u>

Published in:

Proceeding

NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1

Pages 1097-1105

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

Deep Learning = "sexy" rebranding of Neural Networks (+ BIG Data)

Deep neural network

Deep Learning in R packages TensorFlow and Keras

- What is TensorFlow? https://tensorflow.rstudio.com/
 - Library for training Deep Learning models by Google (~90th percentile for R downloads = popular)
 - "Tensor" = matrix, "Flow" = process of training the neural network

Data	Tensor
Vector data	2D tensors of shape (samples, features)
Timeseries data	3D tensors of shape (samples, timesteps, features)
Images	4D tensors of shape (samples, height, width, channels)
Video	5D tensors of shape (samples, frames, height, width, channels)

- What is Keras?
 - (Python-based) library for controlling TensorFlow at the "high-level" (without too much coding)

Key Concepts of Neural Networks (Deep Learning)

Layers, units, representations, weights, activation functions

Units at Layers transform the data: "represent" it differently Weights and activation functions control how the transformations work

Key Concepts of Neural Networks (Deep Learning)

Key Concepts of Neural Networks (Deep Learning)

quantifying the presence of the filter's pattern at

different locations

output t+1

Awesome cheat-sheet: https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

Deep Learning for A2 packages TensorFlow and Keras

Note: installing Tensorflow and Keras for the first time requires 2 extra steps:

install_tensorflow()

install_keras()

Main steps: **data pre-processing into Tensors** \rightarrow defining the model (layers, activations, etc.) \rightarrow compiling \rightarrow training/fitting \rightarrow ... [the rest is the same as with other methods]

```
# Preprocessing data for inputting into Keras
# Tensors are matrices... hence the input data has to be in a form of a matrix

x_train <- data.matrix(training[,-25]) #matrix of features ("X variables") for
training; remove the "default_0" column number 25
y_train <- training$default_0 #target vector ("Y variable") for training

x_test <- data.matrix(testing[,-25])
y_test <- testing$default_0

x_train <- array_reshape(x_train, c(nrow(x_train), 24)) # Reshape -- Keras interprets
data using row-major semantics (as opposed to R's default column-major semantics)
x_test <- array_reshape(x_test, c(nrow(x_test), 24))

# final data preparation steps: scaling for X and converting to categorical for Y
x_train <- scale(x_train)
x_test <- scale(x_test)
y_train <- to_categorical(y_train, 2)
y_test <- to_categorical(y_test, 2)</pre>
```

Deep Learning for A2 packages TensorFlow and Keras

Main steps: data pre-processing into Tensors \rightarrow defining the model (layers, activations, etc.) \rightarrow compiling \rightarrow training/fitting \rightarrow ... [the rest is the same as with other methods]

```
model <- keras model sequential()</pre>
model %>%
 layer dense (units = 256, activation = 'relu') %>% # 1st layer and its parameters
 layer dropout(rate = 0.4) %>%
                                              # 2nd layer and its parameters
 layer dense(units = 128, activation = 'relu') %>%
 layer dropout (rate = 0.3) %>%
 layer dense(units = 2, activation = 'softmax')  # last layer for classification
model %>% compile(
 loss = 'binary crossentropy',
 optimizer = 'adam',
 metrics = c('accuracy'))
history <- model %>% fit(
 x train, y train, # on what data to train
 epochs = 30, # how many repetitions to have
 validation split = 0.2) # percentage of training data to keep for cross-validation
summary(model)
plot(history)
```

Deep Learning for A2 packages TensorFlow and Keras

So what is Deep Learning?

INSEAL

Deep Learning =

- Highly-non-linear feature engineered learning through representations
- + Big Data
- + Regularizations

In practice:

- LOTS of experimentation (many more hyper-parameters than other models)
- VERY computationally intensive
- ... but allows for transfer learning
- ... and achieves amazing results when truly BIG data is available (lots or it, and feature-rich / "high-entropy")

Common carbon footprint benchmarks

in lbs of CO2 equivalent Roundtrip flight b/w NY and SF (1 1,984 11,023 36,156 626,155

Training a single AI model can emit as much carbon lifetimes

as five cars in their

Summarizing: Supervised Learning from lm to Deep Learning

- Start by understanding your data
 - Data-generating ("business") process, Data dictionary, Visualizations (Tableau, etc.), Structure/Summary of data
- Add feature engineering
 - Use many and highly non-linear functions
 - On high dimensional ("feature-rich") data
- Tune hyper-parameters / "regularize", i.e., manage over-fitting
 - The goal is not to build a model that explains past, but rather one that predicts future: Train/Test/Cross-validate
- All is improved using Big Data (more opportunities for feature engineering)
- And all is fueled by open source (R/python + packages, >18000 as of Feb 2020) and online collaboration (online communities, GitHub)

What is GitHub? Leading soft for coding collaborations ("version control")

Our DS(ML)B course is also on GitHub:

http://inseaddataanalytics.github.io/INSEADAnalytics/home.html [undergoing some updating]

Next...

- Sessions 9-10: Unsupervised Learning:
 - Clustering and Segmentation: K-means, hierarchical clustering
 - Dimensionality Reduction: Principle Component Analyses (PCA)
 - [Time-permitting]: Association rules, Anomaly detection
- Assignment 3 [due by the beginning of 11-12]: Market segmentation for Boats (A) case
- Proposal for final project due TBA
 - Feedback will be provided ASAP to give you more time for projects
- Tutorial 3: "Democratizing AI: auto-ML, AI PaaS DataRobot demo/speaker
- Sessions 11-12: Guest speaker, Elias Baltassis, BCG: "Al in business: Data science process and use-cases"
- Sessions 13-14: Project presentations

Europe | Asia | Middle East