Name:

Math 32, Spring 2010, Section 101 Quiz 9 Solutions

(1) (3 pts) Use half-angle identities (given below) to compute (a) $\sin 105$ ° and (b) $\cos 105$ °. Don't worry too much about simplification. Recall that " \pm " in half-angle formulas doesn't mean plus *and* minus, it means plus *or* minus, and you have to figure out which one.

Identities: $\sin \frac{\theta}{2} = \pm \sqrt{\frac{1-\cos\theta}{2}}, \cos \frac{\theta}{2} = \pm \sqrt{\frac{1+\cos\theta}{2}}, \tan \frac{\theta}{2} = \frac{\sin\theta}{1+\cos\theta}.$

(a) We'll use $\theta = 210^{\circ}$, so

$$\sin 105^\circ = \sqrt{\frac{1 - \cos 210^\circ}{2}} = \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{2}} = \frac{\sqrt{2 + \sqrt{3}}}{2}.$$

We chose + out of the \pm because 105° is in the second quadrant, and therefore $\sin 105^{\circ}$ is positive. (b) Similarly, $\cos 105^{\circ}$ should be negative, so we get

$$\cos 105^{\circ} = -\sqrt{\frac{1 + \cos 210^{\circ}}{2}} = -\sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = -\frac{\sqrt{2 - \sqrt{3}}}{2}.$$

(2) (3 pts) Evaluate each of the quantities that is defined. If a quantity is undefined, say so.

(a)
$$\sin^{-1}(\sqrt{3}/2)$$

(b)
$$\cos(\cos^{-1}(\frac{3}{4}))$$

(c)
$$arccos(cos(2\pi))$$

(a) The answer is the number x such that $-\pi/2 \le x \le \pi/2$ and $\sin x = \sqrt{3}/2$. From our unit circle knowledge, we know that this number is $\pi/3$.

(b) Note that $\frac{3}{4}$ is in the domain of \cos^{-1} . Thus $\cos^{-1}(\frac{3}{4})$ is some number whose cose in $\frac{3}{4}$. So $\cos(\cos^{-1}(\frac{3}{4})) = \frac{3}{4}$.

(c)
$$arccos(cos(2\pi)) = arccos(1) = 0$$
.

(3) (4 pts) Determine the amplitude, period, and phase shift for the function

$$y = 3\cos\left(\frac{2x}{3} + \frac{\pi}{6}\right).$$

Graph the function over one period. Indicate the x-intercepts and the x-coordinates of the highest and lowest points on the graph.

The amplitude is 3, the period is 3π , and the shift is $\pi/4$ to the left. The x-intercepts in the graph are $\pi/2$ and 2π . The highest point is at $x = 11\pi/4$ and the lowest point is at $x = 5\pi/4$. These last two points could be different if you started the period of your graph somewhere else (e.g. $x = -\pi/4$).