

人工智能与自动化学院

模式识别

第十讲 神经网络到深度学习(From Neural Networks to Deep Learning)

- rning Constitution
- 10.1 神经网络动机 (Motivation of Neural Networks)
- 10.2 神经网络模型(Neural Network Hypothesis)
- 10.3 神经网络学习 (Neural Network Learning)
- 10.4 深度神经网络 (Deep Neural Networks)

人工智能与自动化学院

多个感知器的线性集成(Linear Aggregation of Perceptrons)

人工智能与自动化学院

3

10.1 神经网络动机

多个感知器的线性集成(Linear Aggregation of Perceptrons)

人工智能与自动化学院

多个感知器的线性集成(Linear Aggregation of Perceptrons)

人工智能与自动化学院

5

10.1 神经网络动机

多个感知器的线性集成(Linear Aggregation of Perceptrons)

$$G(\mathbf{x}) = sign\left(\sum_{t=1}^{T} \alpha_t sign(\mathbf{w}_t^T \mathbf{x})\right)$$

$$g_t(\mathbf{x})$$

一共两层,每层都有权向量: w_t 和 α

每层用符号函数sign()分别得到: g_t 和G

集成后得到分类面6的边界是怎样的?

人工智能与自动化学院

用集成方式实现逻辑运算

 $G(\mathbf{x}) = sign(-1 + g_1(\mathbf{x}) + g_2(\mathbf{x}))$

if $g_1(\mathbf{x}) = g_2(\mathbf{x}) = +1$: $G(\mathbf{x}) = +1$

G(x) = -1otherwise:

集成也能实现逻辑运算OR、NOT $G(\mathbf{x}) \equiv AND(g_1(\mathbf{x}), g_2(\mathbf{x}))$

人工智能与自动化学院

7

10.1 神经网络动机

两层集成的强大能力:

足够多的感知器可得到 光滑的非线性分类面

8 perceptrons

16 perceptrons

target boundary

两层集成的不足:

在两层结构下,做不到 "线性可分",无法实现 "异或(XOR)"逻辑

 g_2

 $XOR(g_1,g_2)$

人工智能与自动化学院

如何实现"异或"逻辑?

途径1:非线性变换

• 途径2: 在两层实现简单逻辑基础上, 再增加层数

 $XOR(g_1, g_2) = OR(AND(-g_1, g_2) + AND(g_1, -g_2))$

多层感知机—基本的神经网络

人工智能与自动化学院

9

第十讲 神经网络到深度学习(From Neural Networks to Deep Learning)

- rning
- 10.1 神经网络动机 (Motivation of Neural Networks)
- 10.2 神经网络模型参数空间(Neural Network Hypothesis)
- 10.3 神经网络学习 (Neural Network Learning)
- 10.4 深度神经网络 (Deep Neural Networks)

人工智能与自动化学院

激活(activation)/变换(transformation)函数:

激活函数可以是任意形式吗?

/: 线性网络,作用不大

$$s = \mathbf{w}^{(3)} (\mathbf{w}^{(2)} (\mathbf{w}^{(1)} \mathbf{x} + b^{(1)}) + b^{(2)}) + b^{(3)}$$

= $\mathbf{W} \mathbf{x} + b$

: 非线性变换,增强网络的性能

 $s = \mathbf{w}^{(3)} \phi (\mathbf{w}^{(2)} \phi (\mathbf{w}^{(1)} \mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}) + \mathbf{b}^{(3)}$

21

人工智能与自动化学院

10.2 神经网络模型参数空间

激活(activation)/变换(transformation)函数:

Sigmoid

$$1/(1+e^{-x})$$

人工智能与自动化学院

激活(activation)/变换(transformation)函数:

tanh

$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

人工智能与自动化学院

23

10.2 神经网络模型参数空间

激活(activation)/变换(transformation)函数:

ReLU

 $\max(0, x)$

人工智能与自动化学院

激活(activation)/变换(transformation)函数:

Leaky ReLU

 $\max(0.1x, x)$

人工智能与自动化学院

25

10.2 神经网络模型参数空间

激活(activation)/变换(transformation)函数:

Sigmoid

$$1/(1+e^{-x})$$

tanh

$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$

ReLU $\max(0, x)$

- 每一个感知器单元都应具有非线性特性
- 非线性函数应该具有可导性质便于训练

人工智能与自动化学院

符号含义:

 $d^{(l)}$: 网络的第l层

 $\mathbf{w}_{ii}^{(l)}$: 网络的第l-1层到第l层的权系数矩阵

 $S_i^{(l)}$: 网络第l层第j个神经元的输入

 $x_i^{(l)}$: 网络第l层第j个神经元的输出

, 人工智能与自动化学院

$$S_j^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)}$$

$$x_j^{(l)} = \begin{cases} \tanh(S_j^{(l)}) & \text{if } l < L \\ S_j^{(l)} & \text{if } l = L \end{cases}$$

将输入样本 \mathbf{x} 作为input layer, 经过hidden layers得到 $\mathbf{x}^{(l)}$, 在output layer去预测 $x_1^{(L)}$

27

第十讲 神经网络到深度学习(From Neural Networks to Deep Learning)

- 10.1 神经网络动机 (Motivation of Neural Networks)
- 10.2 神经网络模型 (Neural Network Hypothesis)
- 10.3 神经网络学习 (Neural Network Learning)
- 10.4 深度神经网络 (Deep Neural Networks)

人工智能与自动化学院

神经网络中如何求解梯度: $rac{\partial L_n}{\partial w_i^{(l)}}$

$$L_n = (y_n - NNet(\mathbf{x}_n))^2 = (y_n - S_1^{(L)})^2 = (y_n - \sum_{i=0}^{d^{(L-1)}} \mathbf{w}_{i1}^{(L)} x_i^{(L-1)})^2$$

$$\mathbf{x}_{ij}^{(l)} : \begin{cases} 1 \le l \le L \\ 0 \le i \le d^{(l-1)} \\ 1 \le j \le d^{(l)} \end{cases}$$

$$\mathbf{S}_{j}^{(l)} = \begin{cases} \sum_{i=0}^{d^{(l-1)}} \mathbf{w}_{ij}^{(l)} x_{i}^{(l-1)} \\ \sum_{i=0}^{d^{(l)}} \mathbf{w}_{ij}^{(l)} x_{i}^{(l-1)} \end{cases}$$

$$\mathbf{x}_{j}^{(l)} = \begin{cases} \tanh(S_{j}^{(l)}) & \text{if } l < L \\ S_{i}^{(l)} & \text{if } l = L \end{cases}$$

33

工智能与自动化学院

10.3 神经网络学习

神经网络中如何求解梯度: $\delta_j^{(l)} = \frac{\partial L_n}{\partial s_j^{(l)}}$

$$S_{j}^{(l)} \xrightarrow{\tanh} x_{j}^{(l)} \xrightarrow{\boldsymbol{w}_{jk}^{(l+1)}} \begin{pmatrix} S_{1}^{(l+1)} \\ \vdots \\ S_{k}^{(l+1)} \end{pmatrix} \longrightarrow \cdots \longrightarrow L_{n}$$

$$\delta_j^{(l)} = \frac{\partial L_n}{\partial S_j^{(l)}} = \sum_{k=1}^{d^{(l+1)}} \frac{\partial L_n}{\partial S_k^{(l+1)}} \cdot \frac{\partial S_k^{(l+1)}}{\partial x_j^{(l)}} \cdot \frac{\partial x_j^{(l)}}{\partial S_j^{(l)}}$$
$$= \sum_{k=1}^{d^{(l+1)}} (\delta_k^{(l+1)}) \cdot (\mathbf{w}_{jk}^{(l+1)}) \cdot (\tanh(S_j^{(l)}))$$

 $\delta_i^{(l)}$ 能够通过反传 $\delta_k^{(l+1)}$ 求得

$$\mathbf{w}_{ij}^{(l)} : \begin{cases} 1 \le l \le L \\ 0 \le i \le d^{(l-1)} \\ 1 \le j \le d^{(l)} \end{cases}$$

$$S_{j}^{(l)} = \sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_{i}^{(l-1)}$$

$$\mathbf{x}_{j}^{(l)} = \begin{cases} \tanh(S_{j}^{(l)})if \ l < L \\ S_{j}^{(l)} \quad if \ l = L \end{cases}$$

利用反向传播算法实现神经网络学习(Back propagation (Backprop) Algorithm)

初始化所有的权系数 $\mathbf{w}_{ii}^{(l)}$

for t = 0,1,...T

- ① 随机性(stochastic): 从训练样本集中任选一个 \mathbf{x}_n , $n \in \{1,2,...N\}$
- ② 前向传播(forward): 利用 $\mathbf{x}^{(0)} = \mathbf{x}_n$ 计算所有的 $x_i^{(l)}$
- ③ 后向传播(backward): 在 $\mathbf{x}^{(0)} = \mathbf{x}_n$ 基础上,计算所有的 $\delta_i^{(l)}$
- ④ 梯度下降(gradient descent): $\mathbf{w}_{ij}^{(l)} \leftarrow \mathbf{w}_{ij}^{(l)} \eta x_i^{(l-1)} \delta_j^{(l)}$

返回结果: $g_{NNET}(\mathbf{x}) = \left(\cdots \tanh \left(\sum_{j} \mathbf{w}_{jk}^{(2)} \cdot \tanh \left(\sum_{i} \mathbf{w}_{ij}^{(1)} x_{i} \right) \right) \right)$

- 所有梯度下降法的技巧都可使用
- 步骤①②③可并行处理,提高效率

反向传播算法是当前神经网络学习的有效技术

人工智能与自动化学院

35

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f = (x + y)z$$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f = (x + y)z$$

if:
$$x = -2, y = 5, z = -4$$

want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

人工智能与自动化学院

37

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f = (x + y)z$$

if:
$$x = -2, y = 5, z = -4$$

want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f = (x + y)z$$

$$if: x = -2, y = 5, z = -4$$

want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

人工智能与自动化学院

39

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

ij.

want:

 $\partial f \ \partial f \ \partial f$

Chain Rule: $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$

 $\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 \rightarrow $\frac{df}{dx} = e^x$ $f(x) = \frac{1}{x}$ \rightarrow $\frac{df}{dx} = -1/x^2$ $f_a(x) = ax$ \rightarrow $\frac{df}{dx} = a$ $f_c(x) = c + x$ \rightarrow $\frac{df}{dx} = 1$

人工智能与自动化学院

43

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 \rightarrow $\frac{df}{dx} = e^x$ $f(x) = \frac{1}{x}$ \rightarrow $\frac{df}{dx} = -1/x^2$ $f_c(x) = ax$ \rightarrow $\frac{df}{dx} = 1$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 o $\dfrac{df}{dx} = e^x$ $f_a(x) = ax$ o $\dfrac{df}{dx} = a$ $f_c(x) = c + x$ o $\dfrac{df}{dx} = -1/x^2$

人工智能与自动化学院

45

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 o $\dfrac{df}{dx} = e^x$ $f(x) = \dfrac{1}{x}$ o $\dfrac{df}{dx} = -1/x^2$ $f_c(x) = c + x$ o $\dfrac{df}{dx} = 1$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = \frac{1}{x}$$
 \rightarrow $\frac{df}{dx} = -1/x^2$
 $f_{-}(x) = c + x$ \rightarrow $\frac{df}{dx} = 1$

47

10.3 神经网络学习

【工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 o $\dfrac{df}{dx} = e^x$ $f(x) = \dfrac{1}{x}$ o $\dfrac{df}{dx} = -1/x^2$ $f_c(x) = ax$ o $\dfrac{df}{dx} = 1$

智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

人工智能与自动化学院

49

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(x) = e^x$$
 o $\dfrac{df}{dx} = e^x$ $f(x) = \dfrac{1}{x}$ o $\dfrac{df}{dx} = -1/x^2$ $f_c(x) = ax$ o $\dfrac{df}{dx} = 1$

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

人工智能与自动化学院

51

10.3 神经网络学习

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

人工智能与自动化学院

用计算图求解梯度反传(Computational Graph for Gradient Backpropagation):

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
 $heta(x)=rac{1}{1+e^{-x}}$ sigmoid function

$$\frac{d\theta(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\theta(x))\theta(x)$$

53

第十讲 神经网络到深度学习(From Neural Networks to Deep Learning)

- 10.1 神经网络动机 (Motivation of Neural Networks)
- 10.2 神经网络模型(Neural Network Hypothesis)
- 10.3 神经网络学习 (Neural Network Learning)
- 10.4 深度神经网络 (Deep Neural Networks)

工智能与自动化学院

THE STATE OF STATE OF

为什么要用深度网络?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

 $f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{M}}$

只要有足够多神 经元,一个隐含 层的网络结构也 能拟合出任意复 杂的连续曲面

按照学习理论,参数多、性能好

人工智能与自动化学院

为什么要用深度网络?

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)
1 X 2k	24.2		
2 X 2k	20.4		
3 X 2k	18.4		
4 X 2k	17.8		
5 X 2k	17.2	1 X 3772	22.5
7 X 2k	17.1	1 X 4634	22.6
		1 X 16k	22.1

人工智能与自动化学院

61

10.4 深度神经网络

Neural Networks practitioner

人工智能与自动化学院

深度学习存在的挑战和关键技术

> 如何设计或确定网络结构

人工智能与自动化学院

63

10.4 深度神经网络

深度学习存在的挑战和关键技术

> 如何设计或确定网络结构

人工智能与自动化学院

深度学习存在的挑战和关键技术

- > 如何设计或确定网络结构
 - "领域知识"有助于选择网络结构,如计算机视觉中常常用卷积神经网络

人工智能与自动化学院

65

10.4 深度神经网络

深度学习存在的挑战和关键技术

- > 如何设计或确定网络结构
 - "领域知识"有助于选择网络结构,如计算机视觉中常常用卷积神经网络
- ▶ 模型复杂度高影响泛化能力

人工智能与自动化学院

深度学习存在的挑战和关键技术

- > 如何设计或确定网络结构
 - "领域知识"有助于选择网络结构,如计算机视觉中常常用卷积神经网络
- ▶ 模型复杂度高导致过拟合
 - "大数据"有助于增加训练集,提升泛化能力
 - "正则化"—如Dropout等手段,增强对噪声的容忍度
- ▶ 模型复杂难以找到最优解
 - 仔细选择初始值,避免落入局部极值,包括预训练等
 - 防止梯度消失,采用合适的激活函数、设计更好的网络结构
- ▶ 计算复杂度高
 - 平行化、批量化、GPU等

人工智能与自动化学院

67

第十讲 神经网络到深度学习(From Neural Networks to Deep Learning)

- 10.1 神经网络动机 (Motivation of Neural Networks)
 - 多层网络结构具有更强的分类能力
- 10.2 神经网络模型参数空间(Neural Network Hypothesis)

基于线性模型构建多层结构

10.3 神经网络学习 (Neural Network Learning)

通过反向传播法有效实现梯度计算

10.4 深度神经网络 (Deep Neural Networks) 介绍了其优越性和面临的挑战

人工智能与自动化学院