

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Cálculo Numérico Semestre: 2023/2 Prof. Dr. Luiz C. M. de Aquino

Lista I

- 1. Use o Método da Bisseção para encontrar uma solução aproximada das seguintes equações (considere uma tolerância de 10^{-4}):
 - (a) $\cos(2^x) = \frac{1}{5}2^x$.
 - (b) $x^3 \sqrt{2}x^2 + x \sqrt{2} = 0$.
- 2. Utilize os conhecimentos de Cálculo para provar que os gráficos das funções definidas por $f(x) = \cos(x^2)$ e $g(x) = x^3$ possuem um único ponto de interseção. Em seguida, utilize o Método da Bisseção para determinar de modo aproximado esse ponto (considere uma tolerância de 10^{-4}).
- 3. Dê exemplo de uma função contínua que possua uma única raiz no intervalo [1; 3], mas para a qual não é possível aplicar o Método de Newton para aproximar o valor dessa raiz. Justifique porque não é possível usar o método no seu exemplo.
- 4. Utilize o Método de Newnton para determinar uma aproximação para a raiz da função polinomial definida por $p(x) = 2x^4 2x^3 22x^2 10x + 8$ no intervalo [0; 1] (considere uma tolerância de 10^{-5}).
- 5. Seja x um número natural qualquer. Considere que n seja um quadrado perfeito mais próximo de x. Prove que $\sqrt{x} \approx \frac{x+n}{2\sqrt{n}}$. (Observação: dizemos que n é um quadrado perfeito se existe um natural m tal que $n=m^2$.)

Gabarito

[1] (a) $x \approx 0,3856201171875$. (b) $x \approx 1,41418457031250$. [2] Sugestão: considerando h(x) = f(x) - g(x), analise o valor de h(0)h(1) e de h' em [0; 1]. Ponto de interseção aproximado:

(0,889282226562501; 0,703264730191224). [3] Observação: esse exercício admite várias respostas. [4] $x \approx 0,41421$. [5] Sugestão: aplique o Método de Newton na resolução aproximada (em u) da equação $u^2 - x = 0$. Use como valor inicial $u_0 = \sqrt{n}$.