# **Data Analysis**

Practice 2: Supervised learning with scikit-learn lib

Dr. Nataliya K. Sakhnenko

# Scikit-learn

- Simple and efficient tools for data mining and data analysis
- Accessible to everybody, and reusable in various contexts
- •Built on NumPy, SciPy, and matplotlib
- Open source, commercially usable





# Clustering Automatic grouping of similar objects into sets. Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more... K-means dustering on the digits dataset (PCA-reduced data)







# Preprocessing Feature extraction and normalization. Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and more...

# Core interface of Scikit-learn



#### **Linear Models**

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train, y_train)
model.predict(X_test)
```

#### **Normal Equation**

model.get\_params()

# $J(\theta) = MSE(\theta) + \frac{\lambda}{2} \sum_{i=1}^{n} \theta_i^2$

#### Stochatic gradient descent

```
from sklearn.linear_model import SGDRegressor
model =SGDRegressor(loss='squared_error',penalty='12',alpha=0.0001,
max_iter=1000,learning_rate='invscaling', eta0=0.01, power_t=0.25)

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='12', class_weight=None,
random_state=None, solver='lbfgs')
```

If we want Logistic Regression trained with gradient descent, we use SGDClassifier (loss='log\_loss') or choose a solver based on gradient descent (saga) in LogisticRegression.

# Scikit-learn

#### **kNN**

```
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier(n_neighbors=5, weights = 'uniform')

from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=5, weights = 'uniform')
```

#### **Decision Tree**

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier(criterion="gini", max_depth=None,
min_samples_split=2)
```

```
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor(criterion="squared_error")
```

# SVM in sklearn lib

```
from sklearn.svm import LinearSVC
from sklearn.linear_model import SGDClassifier
from sklearn.svm import SVC
```

```
SGDClassifier(loss='hinge')
SVC(kernel='rbf')
```

| Class         | Time complexity                                 | Scaling required | Kernel trick |
|---------------|-------------------------------------------------|------------------|--------------|
| LinearSVC     | O(mxn)                                          | Yes              | No           |
| SGDClassifier | O(mxn)                                          | Yes              | No           |
| SVC           | O(m <sup>2</sup> xn) to<br>O(m <sup>3</sup> xn) | Yes              | Yes          |



SVMs are sensitive to the feature scaling!!!

```
from sklearn.svm import LinearSVR
from sklearn.svm import SVR
```

#### SVM software packages:

- libsvm most commonly used implementation of kernalized svm, sklearn uses wrapper over it
- liblinear gradient descent based implementation of linear SVM

# Scikit-learn-ensemble

Scikit-learn also provides the ensemble module, which implements ensemble learning methods

These models combine the predictions of multiple "weak learners" (often decision trees) to build a stronger, more accurate model.

- ✓ RandomForest bagging of many decision trees
- ✓ **AdaBoost** boosting that reweights errors to focus on harder samples

# sklearn.model\_selection

The model\_selection module provides tools for splitting datasets (train\_test\_split), cross-validation (KFold, cross\_val\_score), and hyperparameter tuning (GridSearchCV).

#### Train Test split

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=True,
stratify=None, test_size = 0.2)
```

#### GridSearch

```
param_grid = {'C': [0.1, 1, 10, 100, 1000], 'gamma':
[1,0.1,0.01,0.001,0.0001], 'kernel': ['rbf']}
grid = GridSearchCV(SVC(), param_grid,
cv=5,refit=True)
grid.fit(X_train,y_train)
```

# **Recap: Binary Classifier**



#### **Confusion matrix**

|                |     | Predicted Class |     |
|----------------|-----|-----------------|-----|
|                |     | No              | Yes |
| Observed Class | No  | TN              | FP  |
| Observed Class | Yes | FN              | TP  |

TN True Negative
FP False Positive
FN False Negative
TP True Positive









# Type II error (false negative)





- Low precision, high recall: predict almost everything as positive
- High precision, low recall: predict positive when very sure
- If we want to find an optimal blend of precision and recall we can combine the two metrics using what is called the F1 score

### sklearn.metrics

#### **Model Evaluation**

```
from sklearn.metrics import classification_report
from sklearn.metrics import confusion matrix
```

```
y_true = [0, 0, 0, 1, 1, 2, 2, 2]
y_pred = [0, 0, 1, 1, 1, 2, 1, 2]
print(classification_report(y_true, y_pred))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 1.00      | 0.67   | 0.80     | 3       |
| 1            | 0.50      | 1.00   | 0.67     | 2       |
| 2            | 1.00      | 0.67   | 0.80     | 3       |
|              |           |        |          |         |
| accuracy     |           |        | 0.75     | 8       |
| macro avg    | 0.83      | 0.78   | 0.76     | 8       |
| weighted avg | 0.88      | 0.75   | 0.77     | 8       |

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

```
print(confusion_matrix(y_
true, y_pred))
```

```
[[2 1 0]
[0 2 0]
[0 1 2]]
```

import seaborn as sns
sns.heatmap(confusion\_matrix(y\_
true, y\_pred), annot = True)



# sklearn.preprocessing

#### **Data Normalization**



from sklearn.preprocessing import
StandardScaler

Standardize features by removing the mean and scaling to unit variance

from sklearn.preprocessing import
MinMaxScaler

Transform features by scaling each feature to a given range

#### Usage

- ✓ fit(X) compute statistics (mean / min-max) from the data
- ✓ transform(X) apply scaling to the data
- √ fit\_transform(X) do both in one step