Lenguajes de Programación y Procesadores de Lenguajes

(1º parcial)

11 de noviembre de 2013

1. Dada la siguiente gramática:

- a) (1 ptos.) Construid la tabla de análisis LL(1). ¿Es una gramática LL(1)? Justificad la respuesta.
- b) (0,5 ptos.) Realizad la traza de análisis LL(1) para la cadena add id (id) end
- 2. (1 pto.) Transformad la siguiente gramática para obtener una gramática LL(1). No olvidad demostrar que la gramática obtenida es LL(1).

3. Dada la siguiente gramática:

$$S \rightarrow (S) \mid S \mid T \mid \epsilon \qquad T \rightarrow a$$

- a) (2 ptos.) Construid la colección canónica de conjuntos de elementos LR(1).
- b) (1 ptos.) A partir de dicha colección, construid la tabla de análisis LALR(1).
- c) (0,5 ptos.) Haced la traza de análisis LALR(1) para la cadena: (a)
- 4. (1,5 ptos.) Para la gramática del ejercicio anterior, escribid un ETDS que permita calcular el número de pares de paréntesis de apertura-cierre y el número de a de cualquier cadena de entrada.
- 5. Cuestiones teóricas (contestad brevemente):
 - a) (1,5 ptos.) Indicad cuáles son las funciones más importantes de un analizador léxico y escribid una expresión regular que case con todos los lexemas siguientes: +5.12, 5.12, -5.12, 0.512E1, +51.2E-1
 - b) (1 ptos.) Indicad si las siguientes afirmaciones son ciertas o falsas:
 - i) Toda gramática LL(1) es LALR(1)
 - ii) Una gramática LR(1) no puede ser ambigua
 - iii) Si G es una gramática LR(1), su autómata LALR(1) no puede tener conflictos reducción/reducción
 - iv) Una gramática LR(1) puede ser recursiva a izquierdas

1. Dada la siguiente gramática:

```
S -> add D L end \mid id D -> id RD \mid \epsilon RD -> , id RD \mid \epsilon L -> (S) \mid \epsilon
```

a) Construye la tabla de análisis LL(1). ¿Es una gramática LL(1)? Justifica tu respuesta.

	add	id	,	()	end	\$
S	1, add D L	2, id					
	end						
D		3, id RD		4, ε		4, ε	
RD			5, ,id RD	6, ε		6, ε	
L				7, (S)		8, ε	
add	Рор						
id		Pop					
,			Pop				
(Pop			
)					Pop		
end						Рор	
\$							Aceptar

b) Realiza la traza de análisis LL(1) para la cadena "add id into (id) end"

```
|- (add D L end $ , add id ( id ) end $ , 1) |- (D L end $ , id ( id ) end $ , 1) |- (id RD L end $ , id ( id ) end $ , 1-3) |- (L end $ , (id ) end $ , 1-3-6) |- (C S ) end $ , (id ) end $ , 1-3-6-7) |- (S ) end $ , id ) end $ , 1-3-6-7-2) |- (Part of the state of
```

3. Dada la siguiente gramática:

$$S \rightarrow (S) \mid S \mid T \mid \epsilon \qquad T \rightarrow a$$

- a) (2 ptos.) Construid la colección canónica de conjuntos de elementos LR(1).
- b) (1 ptos.) A partir de dicha colección, construid la tabla de análisis LALR(1).
- c) (0,5 ptos.) Haced la traza de análisis LALR(1) para la cadena: (a)
- a) Los estados de la colección de conjuntos de items LR(1) son:

I_0	S'	\rightarrow	· S	,\$
	S	\rightarrow	· (S)	,\$ a
	S	\rightarrow	\cdot L T	,\$ a
	S	\rightarrow	•	,\$ a
I_1	S'	\rightarrow	S·	,\$
	S	\rightarrow	$S \cdot T$,\$ a
	Т	\rightarrow	·a	,\$ a
I_2	S	\rightarrow	(·S)	,\$ a
			(~)	N 1
	S	\rightarrow	\cdot (S)	,) a
	$\begin{array}{ c c } S \\ S \end{array}$	\rightarrow \rightarrow	· (S) · S T	,) a ,) a
		$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$		- ' i
I_3	S	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \hline \rightarrow \end{array}$,) a
I_3 I_4	S S	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \hline \rightarrow \\ \end{array}$	· S T	,) a ,) a

I_5	S	\rightarrow	(S·)	,\$ a
	\mathbf{S}	\rightarrow	$S \cdot T$	$,) \mid a$
	T	\rightarrow	·a	$,) \mid a$
I_6	S	\rightarrow	(·S)	,) a
	S	\rightarrow	· (S)	$,) \mid a$
	S	\rightarrow	\cdot S T	$,) \mid a$
	S	\rightarrow	•	$,) \mid a$
I_7	S	\rightarrow	(S)·	,\$ a
I_8	S	\rightarrow	ST·	,) a
I_9	Т	\rightarrow	a ·	,) a
I_{10}	S	\rightarrow	(S ·)	,) a
	\mathbf{S}	\rightarrow	$S \cdot T$	$,) \mid a$
	S T	$\overset{\rightarrow}{\rightarrow}$	$S \cdot T$ $\cdot a$,) a ,) a

y las transiciones:

b) La tabla de análisis LALR(1) quedará:

	()	a	\$	S	Τ
0	2-6		r3	r3	1	
1			4-9	acc		3-8
2-6	2-6	r3	r3		5-10	
2-6 3-8 4-9		r2	r2	r2		
4-9		r4	r4	r4		
5-10		7-11	4-9			3-8
7-11		r1	r1	r1		

c) La traza será:

4. (1,5 ptos.) Para la gramática del ejercicio anterior, escribid un ETDS que permita calcular el número de pares de paréntesis de apertura-cierre y el número de a de cualquier cadena de entrada.

El ETDS será:

4. Transforma la siguiente gramática para obtener una gramática LL(1). No olvides demostrar que la gramática obtenida es LL(1).

```
A \rightarrow ABC \mid x \mid C
B \rightarrow xC \mid xCy \mid \epsilon
C -> z
A \rightarrow x A' \mid C A'
A' \rightarrow B C A' \mid \epsilon
B \rightarrow x C B' \mid \epsilon
B' \rightarrow \epsilon \mid y
C -> z
PRIM (x A' SIG(A)) = \{a\}
PRIM (C A' SIG(A))= \{z\}
PRIM(BCA' SIG(A')) = \{x,z\}
PRIM(epsilon SIG(A'))= {$}
PRIM(x C B' SIG(B))=\{x\}
PRIM(epsilon SIG(B)) = {z}
PRIM(epsilon SIG(B')) = \{z\}
PRIM(y SIG(B')) = \{y\}
```

5. Indica cuáles son las funciones más importantes de un analizador léxico y escribe un patrón que case con todos los lexemas siguientes:

```
+5.12, 5.12, -5.12, 0.512E1, +51.2E-1
```

La función principal es leer una secuencia de caracteres de la entrada y devolver los símbolos léxicos que casan con la entrada.

Otras funciones son:

- Ignorar comentarios
- Ignorar símbolos (espacio en blanco, tabuladores, fines de línea)
- Llevar la cuenta de la línea del fichero de entrada que se está leyendo
- En algunos casos puede realizar tareas de preprocesador

Ejemplo de expresión regular para constante real (ctr): digito: [0|1|2|3|4|5|6|7|8|9] natural: {digito}+

ctr: $(+|-|\epsilon)$ {natural}"."{natural}(E(+|-|\epsilon){natural}|\epsilon)

(Indica si las siguientes afirmaciones son ciertas o falsas

- a) Toda gramática LL(1) es LALR(1)
- b) Una gramática LR(1) no puede ser ambigua
- c) Si G es una gramática LR(1), su autómata LALR(1) no puede tener conflictos reducción/reducción
- d) Una gramática LR(1) puede ser recursiva a izquierdas
- a) Falso
- b) Cierto
- c) Falso
- d) Cierto