Session 2: Statistics Critical to Experimentation I

Shan Huang, HKU

Outline

- Hypothesis testing
- t-test, z-test
- p-value
- Type I error
- Multiple Testing
- Confidence Interval (CI)
- Bootstrap CIs

Why You Care

- Statistics are fundamental to designing and analyzing experiments.
- I won't overwhelm you with maths.
- It's not a coding class.
- My objectives are to make you:
 - 1. Accurately understand the concepts and theories in the statistics critical to A/B testing.
 - 2. Apply them to solve problems in practice.
 - 3. Creatively deal with the new problems in practice.

Can you conclude the treatment increases ads clicks?

Treatment: a new ranking algorithm to target users for ads on WeChat Moments

Population vs. Sample

Population

- the entire group that you want to draw conclusions about.
 - e.g., all the WeChat Moments users (abstract and infinitely large)

Sample

- the specific group that you collect data from.
 - e.g., the random 10% users who logged in the WeChat Moments during the experiment (2 weeks)
- Different samples can be drawn from the same population.
 - e.g., we run an experiment draw samples of different groups from the population.

What do we want to learn from experiments?

Sample Characteristics or Population Characteristics

Statistical Inference

- Our focus is Population Characteristics
- However, we do not observe the entire population, just a sample.
- We infer the population characteristics (e.g., mean, median) based on a sample (or samples) drawn from that population.

Population vs. Sample in Experiments

- Both the control and treatment groups are randomly drawn from the same population.
- We want to conclude whether there is a change in OEC when the population is treated differently (e.g., with a new feature or not).
- We use the sample difference between two variants to infer whether there is a change.

Class Exercise

- What are the population and sample for the experiment
 - 41 shades of blue?

Class Exercise

- What are the population and sample for the experiment on Amazon Prime?
 - As an engineer, you want to find the best parameters for your algorithm to optimize the user clicks on the movies recommended on Amazon Prime.
 - Assume that there are 8
 combinations of the parameters
 (k, b).
 - Could you design an experiment to find the (k, b) which optimizes user clicks?

Treatment Effects by potential outcomes framework

Setup:

- A random sample of units: i = 1, ..., n
- Treatment: $D_i \in \{0,1\}$, randomly assigned

Potential Outcome: the outcome for an individual under a potential treatment.

- Potential outcomes: $Y_i(0)$, $Y_i(1)$ We cannot observe Yi (1) if unit_i was assigned
- Observed outcome: $Y_i = Y_i(D_i)$

We cannot observe Yi (1) if unit_i was assigned to the control group, vice versa.

• Number of treated/untreated units: $n_1 = \sum_{i=1}^n D_i$ and $n_0 = n - n_1$

Two causal estimands, corresponding to where interest lies:

Sample average treatment effect (SATE):

SATE =
$$\frac{1}{n} \sum_{i=1}^{n} \{Y_i(1) - Y_i(0)\}$$

The assignment of variants is uncorrelated with all the factors impacting the potential outcomes.

• Population average treatment effect (PATE):

$$PATE = \mathbb{E}[Y_i(1) - Y_i(0)]$$
 (note what \mathbb{E} here represents!)

Random assignment of treatment still implies: $\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp D_i$

Estimation of Average Treatment Effect

Estimator = Observed difference in means between groups in sample:

$$\Delta = \frac{1}{n_1} \sum_{i=1}^{n_1} D_i \cdot Y_i - \frac{1}{n_0} \sum_{i=1}^{n_1} (1 - D_i) \cdot Y_i = m_1 - m_0$$

• Δ is an unbiased estimator for SATE & PATE:

- Repeated random treatment assignments on a sample
- $E(\Delta \mid O) = SATE$, O = the current sample.
- $E(\Delta) = E[E(\Delta \mid O)] = E(SATE) = PATE$

Repeated *random* sampling (& random assignment)

We infer PATE (e.g. whether = 0) based on a realization of Δ observed from an experiment (sample).

Class Exercise

Di		Yi (0)	Yi (1)	Yi (1) - Yi (0)	Yi	DiYi	(1-Di)Yi
	0	0	1	1	0	0	0
	0	0	1	1	0	0	0
	1	0	0	0	0	0	0
	1	0	1	1	1	1	0
	1	1	1	0	1	1	0
	0	0	1	1	0	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
	0	1	1	0	1	0	1
	1	0	0	0	0	0	0
	0	1	1	0	1	0	1
	0	1	1	0	1	0	1
	1	1	0	-1	0	0	0
	1	1	0	-1	0	0	0
	1	1	1	0	1	1	0
	1	0	0	0	0	0	0
	1	0	1	1	1	1	0
	0	0	0	0	0	0	0
	1	1	0	-1	0	0	0
	0	0	1	1	0	0	0
SATE=				0.15		0.4	0.3
Delta=							0.1
N=10							

Users are randomized into control (Di=0) and treatment (Di=1) groups. Yi indicates whether user_i clicked the ads or not during the experiment.

Open the file:

potential_outcome, and get the values of all the unfinished fields and calculate STAE and Δ for the experiment.

If we randomized users into two groups for 1000 times and get Δ for each randomization , Will the average Δ get closer to SATE?

If we randomly sample users from the population 1000 times and get Δ over 1000 randomizations for each sample for the experiment,

Will the average Δ get closer to PATE?

Does the new feature increase CTR?

New Feature: a new ranking algorithm to target users for ads

Can we conclude that the treatment increases the population mean of CTR?

$$\Delta = m_1 - m_0 = 3.6 - 3 = 0.6$$

Can we conclude that the treatment increases the population mean of CTR?

Does the new feature increase CTR?

New Feature: a new ranking algorithm to target users for ads

If you find that there is a difference in sample means between Treatment and Control groups:

- If we involve many more users or collect another sample for the experiment, would we expect to continue to see the improvement?
- Is it due to a systematic factor (new algorithm makes ads targeting better) or due to chance?

Chance vs. Systematic Factors

- Systematic Factor
 - e.g., the algorithm targets more relevant users for ads and users tend to click more
 - The improvement is there when you observe an entire population.
- Chance
 - e.g., the improvement in CTR happens randomly to each observed sample
 - If you collect another sample or more users for the experiment, the improvement may disappear (i.e., specific to a sample).
- Statistically Significant Difference the difference is this big, which is unlikely to have occurred by chance.

t-test

- The most common statistical test to compare the means of *independent* groups.
- The most common way to determine whether the difference we see between Treatment and Control groups is systematic or just by chance.
- *t* looks at how many standard errors the observed size of difference is away from the hypothesized difference, such as o (no difference).
- If t value indicates that the difference is too many standard errors (e.g., t > 2) away from the hypothesized value,
 - The difference is regarded as extreme compared to the differences under the *null distribution*.
 - We would then reject the Null, e.g., two groups are thus *statistically* significantly different from each other.

Hypothesis Testing

Ho (Null Hypothesis): $\delta = \mu_1 - \mu_0 = 0$ (population mean difference = 0)

H1 (Alternative Hypothesis): $\delta \neq 0$ ($\mu_1 \neq \mu_2$)

• Y is the metric of interest (OEC, e.g., click)

$$\Delta = m_1 - m_0$$
 (sample mean difference)

• m1, mo are sample means for control and treatment groups.

$$\hat{t} = \frac{\hat{\Delta} - \delta}{se(\Delta)} = \frac{\hat{\Delta}}{se(\Delta)}$$

- Δ is an estimator of δ
- t looks at how many standard errors away $\hat{\Delta}$ from δ

User	Click	Treatment	
111	1	1	
112	0	0	
113	1	1	
114	0	0	
115	0	0	
116	1	0	
117	0	1	
118	0	0	
119	0	1	
120	1	1	
121	1	1	
122	1	0	
123	1	1	
124	0	0	
125	1	1	
126	0	0	
127	0	1	
128	0	0	

t-test

- Obtain the null distribution for t-stat, $t = \frac{\Delta}{se(\Delta)}$
 - When null is true (e.g., no difference), t would follow a student distribution with mean = o
 - We draw a sample and calculate t based on our sample.
- Compare t to the null distribution and see how "extreme" it is.
 - If this \hat{t} is extreme to happen (e.g., t>2), we would say this \hat{t} is unlikely to be obtained from the null distribution
 - Our observation from the sample is thus inconsistent with the null hypothesis
 - Therefore, we reject the null hypothesis.

Class Exercise

• Which is more extreme to happen, under the null distribution?

Class Exercise

• Could you describe/define how extreme they happen under the null distribution?

p-value

- p-value evaluates how extreme t (or Δ) occurs under the null distribution.
- p-value is the probability of observing *t* or more extreme assuming the Null is true.
 - $p = Pr(|T| \ge t | H_0)$
 - e.g., the probability of observing such difference or more extreme difference if there really is no difference between Treatment and Control groups (null is true).

Assume *t* is positive

p-value

- Any difference with a p-value smaller than α , e.g., 0.05 or 0.01, is considered to be extreme enough to reject the null & is called statistically significant (unlikely happen by chance)
- p-value cannot tell you about the effect size.
- It can only tell you whether the difference is statistically significantly different from 0, the hypothesized value.
- e.g., an 0.0001% increase can be statistically significantly larger than 0, but may not be practically significant.

Three Cases

- The two samples are independent, and the variances of the populations are equal.
- 2. The two samples are independent, and the variances of the populations are not equal.
- 3. The two samples are not independent, e.g., the same users experience two conditions

Three Cases

- The two samples are independent, and the variances of the populations are equal.
- 2. The two samples are independent, and the variances of the populations are not equal.
- 3. The two samples are not independent, e.g., the same users experience two conditions

It depends on whether the treatment changes the variances.

A Step-by-Step Example

	Treatment	Control		
1	1	2		
2	2	3		
3	1	2		
4	2	4		
5	1	3		
6	4	5		
7	3	4		
8	2	3		
9	4	5		
10	3	5		
11	2	4		
12	3	3		
n1=n0=12				
Mean	2.33333333	3.58333333		
VAR(Y)	1.15151515	1.17424242		
VAR(m)	0.0959596	0.09785354		
VAR(m1-m0)	0.19381313			
se(m1-m0)	0.44024213			
t	-2.8393466			

Var
$$(Y) = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$Var(\bar{Y}) = \frac{1}{n} Var(Y)$$

$$\operatorname{Var}(\Delta) = \operatorname{Var}(\overline{Y}_1 - \overline{Y}_0) = \operatorname{Var}(\overline{Y}_1) + \operatorname{Var}(\overline{Y}_0)$$

se
$$(\Delta) = \sqrt{Var(\Delta)}$$

Student's t Distribution Table

For example, the t value for

18 degrees of freedom

is 2.101 for 95% confidence

interval (2-Tail $\alpha = 0.05$).

27

28

30

1.3137

1.3125

1.3114

1.3104

1.7033

1.7011

1.6991

1.6973

2.0518

2.0484

2.0452

2.0423

2.4727

2.4671

2.4620

2.4573

2.7707

2.7633

2.7564

2.7500

3.6896

3.6739

3.6594

3.6460

	$\frac{\alpha}{2} = 0.$	025				$\frac{\alpha}{2}$	= 0.02	25	
4	-3	-z	4	0	1	2	3	4	t value

1-Tail Confidence Level
2-Tail Confidence Level

1-Tail Alpha

2-Tail Alpha

					4 -3	-2 -1 0	1 2	
		90%	95%	97.5%	99%	99.5%	99.95%	
			90%	95%	98%	99%	99.9%	Γ
		0.100	0.050	0.025	0.010	0.005	0.0005	
	df	0.20	0.10	0.05	0.02	0.01	0.001	Γ
	1	3.0777	6.3138	12.7062	31.8205	63.6567	636.6192	
	2	1.8856	2.9200	4.3027	6.9646	9.9248	31.5991	
	3	1.6377	2.3534	3.1824	4.5407	5.8409	12.9240	
	4	1.5332	2.1318	2.7764	3.7469	4.6041	8.6103	
	5	1.4759	2.0150	2.5706	3.3649	4.0321	6.8688	
	6	1.4398	1.9432	2.4469	3.1427	3.7074	5.9588	
	7	1.4149	1.8946	2.3646	2.9980	3.4995	5.4079	
	8	1.3968	1.8595	2.3060	2.8965	3.3554	5.0413	
	9	1.3830	1.8331	2.2622	2.8214	3.2498	4.7809	
	10	1.3722	1.8125	2.2281	2.7638	3.1693	4.5869	
	11	1.3634	1.7959	2.2010	2.7181	3.1058	4.4370	
	12	1.3562	1.7823	2.1788	2.6810	3.0545	4.3178	
	13	1.3502	1.7709	2.1604	2.6503	3.0123	4.2208	
	14	1.3450	1.7613	2.1448	2.6245	2.9768	4.1405	
	15	1.3406	1.7531	2.1314	2.6025	2.9467	4.0728	
	16	1.3368	1.7459	2.1199	2.5835	2.9208	4.0150	
	17	1.3334	1.7396	2.1098	2.5669	2.8982	3.9651	
	18	1.3304	1.7341	2.1009	2.5524	2.8784	3.9216	
	19	1.3277	1.7291	2.0930	2.5395	2.8609	3.8834	
df= n1+ n2 -2	20	1.3253	1.7247	2.0860	2.5280	2.8453	3.8495	
GI	21	1.3232	1.7207	2.0796	2.5176	2.8314	3.8193	
	22	1.3212	1.7171	2.0739	2.5083	2.8188	3.7921	
	23	1.3195	1.7139	2.0687	2.4999	2.8073	3.7676	
	24	1.3178	1.7109	2.0639	2.4922	2.7969	3.7454	
	25	1.3163	1.7081	2.0595	2.4851	2.7874	3.7251	
	26	1.3150	1.7056	2.0555	2.4786	2.7787	3.7066	
i						1	ı	1

Reject the Null, when t-stat > 2.0739 or t-stat < -2.0739

Course Website

- https://github.com/shanmit/Course---Digital-Experimentation-Methods-A-B-Testing
 - All the updates will be post here!

t-statistic

- Sample sizes of different groups can be different.
- You can allocate different amounts of traffic to control and treatments.
 - e.g., you may assign less traffic to an "unsafe" feature.
 - N1 unnecessarily equals No.
- Treatment may also change the variance.
 - Var(Y1) can different from Var(Y0)
 - Use welsh tests with unequal variances

A Simple Example with python

```
1. import numpy as np, statsmodels.stats.api as sms
2. test0 s = [1,2,1,2,1,4,3,2,4,3,2,3]
3. ctrl0 s = [2,3,2,4,3,5,4,3,5,5,4,3]
4. cm0 = sms.CompareMeans(sms.DescrStatsW(test0 s),
  sms.DescrStatsW(ctrl0 s))
5. print(cm0.ttest ind(alternative='two-sided',
  usevar='pooled')) Equal Variance
(-2.8393466239285283, 0.009541766673068929, 22.0)
                         p-value
     t-statistic
```

A Simple Example with python

```
1. import numpy as np, statsmodels.stats.api as sms
2. test0 s = [1,2,1,2,1,4,3,2,4,3,2,3]
3. ctrl0 s = [2,3,2,4,3,5,4,3,5,5,4,3]
4. cm0 = sms.CompareMeans(sms.DescrStatsW(test0_s),
  sms.DescrStatsW(ctrl0 s))
5. print(cm0.ttest_ind(alternative='two-sided',
  usevar='unequal')) Unequal Variance
0.4402421280535648
(-2.8393466239285283, 0.009542324891921597, 21.997899382545775)
                            p-value
     t-statistic
```

Class Exercise

- Considering WeChat wants to use algorithms to rank the feeds on WeChat Moments instead of showing the organic feeds chronologically.
- Control Group: show feeds chronologically
- Treatment Group: Rank feeds with algorithms
- OEC: the number of days that a user clicks any feeds on WeChat Moments during the recent 30 days/during experiment.

 What distribution?
- Variants: Control vs. Treatment

Common Distributions of Metrics

- **Bernoulli Distribution** is a discrete probability distribution that represents the outcomes of a single trial that can result in one of two possible outcomes, often labeled as "success" (1) or "failure" (0).
 - These outcomes are typically labeled 1 (success) and 0 (failure), although they can represent any two distinct outcomes.
 - Parameter: p is the probability of success in each trial.
 - Examples: click, purchase, initiate chat (0,1)

$$P(X=x)=p^x(1-p)^{(1-x)}$$
 for $x=0,1$, where p is the probability of success.

- mean=p, variance=p(1-p)
- **Binomial Distribution** is a discrete probability distribution that describes the number of successes in a fixed number of independent Bernoulli trials, each with the same probability of success.
 - Two parameters: n is the number of trials and p

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$
 for $k=0,1,2,\ldots,n$, where:

- mean=np, variance = np(1-p)
- Example: the number of days with click/visit/purchase during experiments

Lift

$$lift = m_1/m_0$$

$$\Delta = m_1 - m_0 = (lift - 1) \cdot m_0$$

- Lift is also called relative risk, and percent change is (lift -1)
- In practice, we often use lift to interpret the changes.
 - For example, we want this new feature improve 10% CTR.
- We can use difference Δ in statistical tests and then transform/interpret them to/as lifts.

Simulate Data of the Experiment

Population (we draw sample from but cannot observe)

- Lift: CTR(treatment)/CTR(control)
- Lift = 1.1,
- Control Group ~ B(n,p) = B(30,0.5)

We assume there is a lift in population after using the algorithm to rank the feeds. & CTR for now is p=0.5/day

```
lift = 1.1
ctr0=0.5
delta_p = 30*ctr0*(lift-1)
se_p_0 = np.sqrt(30*ctr0*(1-ctr0))
se_p_1 = np.sqrt(30*ctr0*lift*(1-ctr0*lift))
print(delta_p,se_p_0,se_p_1)
Binomial distribution
• Mean = np
• Variance = np(1-p) — Changed by
Treatment
Treatment
```

• We collect one sample from each the groups = randomly draw a sample from the population of control and treatment groups.

Sample - We draw samples from population for an experiment to infer δ , k = 1000

```
ctrl = np.random.binomial(30, p=ctr0, size=1000) * 1.0
test = np.random.binomial(30, p=ctr0*lift, size=1000) * 1.0
delta_s=np.mean(test)-np.mean(ctrl)
se0 = np.std(ctrl)
se1 = np.std(test)
print(delta_s,se0,se1)
```

Visualize the Data

```
import matplotlib.pyplot as plt
bins = np.linspace(0, 15, 15)
plt.hist(test, bins=bins, label='Test')
plt.hist(ctrl, bins=bins, label='Control', color='orange')
plt.title('Test/Ctrl Data')
plt.legend()
```


Can you decide whether the treatment is significantly larger than the control?

t-test unequal variance

How about a larger sample size, k=2000?

How about a smaller sample, k=20?

Will you trust the result? Why?

Review

Compare means between two groups with hypothesis testing.

HO (Null Hypothesis): $\delta = \mu_1 - \mu_2 = 0$

H1 (Alternative Hypothesis): $\delta \neq 0$

The two samples are independent, and the variances of the populations are equal/unequal

What is t statistics and p value?

Hypothesis Testing

Ho (Null Hypothesis): $\delta = \mu_1 - \mu_0 = 0$ (population mean difference = 0)

H1 (Alternative Hypothesis): $\delta \neq 0$ ($\mu_1 \neq \mu_2$)

• Y is the metric of interest (OEC, e.g., click)

 $\Delta = m_1 - m_0$ (sample mean difference)

• m1, mo are sample means for control and treatment groups.

$$t_{stat} = \frac{\Delta - \delta}{se(\Delta)} = \frac{\Delta}{se(\Delta)}$$

- Δ is an estimator of δ
- t looks at how many standard errors away Δ from δ

User	Click	Treatment	
111	1	1	
112	0	0	
113	1	1	
114	0	0	
115	0	0	
116	1	0	
117	0	1	
118	0	0	
119	0	1	
120	1	1	
121	1	1	
122	1	0	
123	1	1	
124	0	0	
125	1	1	
126	0	0	
127	0	1	
128	0	0	

Review: p-value

- p-value evaluates how extreme t occurs under the null distribution.
- p-value is the probability of observing *t* or more extreme assuming the Null is true.
 - $p = Pr(|T| \ge t | H_0)$
 - the probability of observing such difference or more extreme difference if there really is no difference between Treatment and Control groups (null is true).
 - A very small *p*-value means that such an extreme observed t would be very unlikely under the null hypothesis.

 most likely observation

Are they correct or misinterpretations of p-value?

- 1. If the p-value = 0.06, the null hypothesis has a 6% chance of being true.
- 2. The p-value is calculated assuming that the Null hypothesis is true.
- 3. A non-significant difference (e.g., p-value > 0.05) means there is no difference between groups.
- 4. p-value = 0.05 means that we observed data that would occur only 5% of the time under the Null.
- 5. You are more confident to reject the Null, if p value is smaller.

t and z Distributions

- t-test is for small samples.
- t-distribution's shape depends on degrees of freedom

•
$$df = n_1 + n_2 - 2$$

• When N (df) is large enough, t-distribution approximates z-distribution, a standard normal distribution N(0,1).

Degrees	Significance level							
of	20%	10%	5%	2%	1%	0.1%		
freedom	(0.20)	(0.10)	(0.05)	(0.02)	(0.01)	(0.001)		
1	3.078	6.314	12.706	31.821	63.657	636.619		
2	1.886	2.920	4.303	6.965	9.925	31.598		
3	1.638	2.353	3.182	4.541	5.841	12.941		
4	1.533	2.132	2.776	3.747	4.604	8.610		
5	1.476	2.015	2.571	3.365	4.032	6.859		
6	1.440	1.943	2.447	3.143	3.707	5.959		
7	1.415	1.895	2.365	2.998	3.499	5.405		
8	1.397	1.860	2.306	2.896	3.355	5.041		
9	1.383	1.833	2.262	2.821	3.250	4.781		
10	1.372	1.812	2.228	2.764	3.169	4.587		
11	1.363	1.796	2.201	2.718	3.106	4.437		
12	1.356	1.782	2.179	2.681	3.055	4.318		
13	1.350	1.771	2.160	2.650	3.012	4.221		
14	1.345	1.761	2.145	2.624	2.977	4.140		
15	1.341	1.753	2.131	2.602	2.947	4.073		
					il de la company o	9.49.59.2		
16	1.337	1.746	2.120	2.583	2.921	4.015		
17	1.333	1.740	2.110	2.567	2.898	3.965		
18	1.330	1.734	2.101	2.552	2.878	3.922		
19	1.328	1.729	2.093	2.539	2.861	3.883		
20	1.325	1.725	2.086	2.528	2.845	3.850		
01	1 202	1.701	0.000	0.510	0.021	2.010		
21	1.323	1.721	2.080	2.518	2.831	3.819		
22	1.321	1.717	2.074	2.508	2.819	3.792		
23	1.319	1.714	2.069	2.500	2.807 2.797	3.767		
24	1.318	1.711	2.064	2.492		3.745		
25	1.316	1.708	2.060	2.485	2.787	3.725		
26	1.315	1.706	2.056	2.479	2.779	3.707		
27	1.314	1.703	2.052	2.473	2.771	3.690		
28	1.313	1.701	2.048	2.467	2.763	3.674		
29	1.311	1.699	2.043		2.756	3.659		
30	1.310	1.697	2.043	2.457	2.750	3.646		
	2.020	1.007	2.072	2.107	, 00	0.010		
40	1.303	1.684	2.021	2.423	2.704	3.551		
60	1.296	1.671	2.000	2.390	2.660	3.460		
120	1.289	1.658	1.980	2.158		3.373		
∞	1.282	1.645	1.960	2.326		3.291		

z-tests

• t-statistic follow student distribution at df=n1+no-2, T ~ t(df)

$$t = \frac{\Delta}{se(\Delta)}$$

- When sample size is sufficiently large, which is often the case in A/B tests
 - t distribution converge to z distribution, which is the standard normal distribution N(0,1), because of the *Central Limit Theorem*.
- z distribution does not depend on sample size.
- When sample is large, we reject the Null if z-statistics are larger than 1.96 or smaller than -1.96. (about 2 standard errors away)
- This also makes the calculation of Confidence Interval easier.

Central Limit Theorem

The distribution of sample means (*m*) approximates a normal distribution as the sample size gets larger, regardless of the population's (*Y*) distribution,

even if the original variables (Y) themselves are not normally distributed.

z-test

Ho (Null Hypothesis): $\delta = \mu_1 - \mu_0 = 0$ (population mean difference)

Hı (Alternative Hypothesis): $\delta \neq 0$ ($\mu_1 \neq \mu_2$)

 $\Delta = m_1 - m_0$ (sample mean difference)

• m1, mo are sample means for control and treatment groups.

$$z_{stat} = \frac{\Delta - \delta}{se(\Delta)} = \frac{\Delta}{se(\Delta)}$$
 Same with t tests!

- Δ is an estimator of δ
- z looks at how many standard errors away from δ
- Null distributions: Z distribution, Z ~ N(0,1)
 - different from $(T \sim t(df))$, when sample size is small

z distribution

$$z = 2$$
, $p = 2.2\% \times 2 = 0.044$

$$z = 1.96, \quad p = 2.5\% \times 2 = 0.05$$

If z > 1.96, we reject the null at $\alpha = 0.05$

wsing t tests. What will you conclude?
when N= 1000

N = 1000, t-test

print(cm.ttest_ind(alternative='two-sided',
usevar='unequal'))

(12.844694125583048, 2.4384482151865567e-36, 1993.3911532892944)

Multiple Testing

- You may compare many outcome variables (metrics) between control and treatments in one experiment.
- If you find some irrelevant metrics significantly different between control and treatments, with no theory suggesting the significant difference
 - the metrics unaffected by the new feature show significant differences, e.g., users' age, gender, and the behaviors irrelevant to the new feature.
- Will you conclude something wrong with the experiment?

In other words, if you find a metric significant, can you be 100% sure about there is a treatment effect?

at what chance?

Type I error occurs when concluding a significant difference between Treatment and Control when there is no real difference.

Reject the Null, when Null is true.

p-value < 0.05: The observed difference can still happen when Null is true, although the difference is unlikely to happen.

Type I Error

- We reject the Null if the observed difference is unlikely under the Null.
- However, it still can happen with low probability and commit Type I error.
 - For a specific test, what will be the chance of committing a Type I error? α is set before experiments/tests;
- t-tests with a significance level (α) of 5%
 - 5% chance you will commit a Type I error when you run multiple tests.

a characteristic of tests rather

than for a specific test.

- There are ongoing debates calling for a smaller significance level to decrease type I error.
 - Decrease the chance of concluding significant results, especially when there is unlikely a difference in theory.

Type I Error: Right or Wrong?

$\alpha = 5\%$

- 1. There is 5% probability that you incorrectly reject the null for a single t-test.
- 2. There are 5% of the t tests that may incorrectly reject the null.
- 3. For a single test, it's either correctly reject the null or incorrectly reject the null.
- 4. p-value = 0.05 means that if you reject the Null, the probability of a false positive for the test is 5%.

If you compute 20 (*independent*) metrics for your experiment, with the significance level = 5%, around 1 (1/20=5%) metric can still show significant results, even if the new feature does nothing to them.

Type I Error:

When you run 100 tests, you would wrongly reject 5% of the tests (5 test), if $\alpha = 5\,\%$.

How many tests would you wrongly reject, if $\alpha=1\,\%$.

If you create 100 metrics for your experiment, you find 4 significant results?

Should you conclude the treatment has effects and new feature works?

- The data (exp_data.csv) is from an experiment run by a company to test a new feature.
- The users were assigned to 3 different groups (conditions, variants).
- Please use t-tests at 5% significance level to compare users' characteristics (the first 14 users' variables).
- Would these users' characteristics be affected by the treatment?
- Will you expect significant differences in users' characteristics between any of the two groups?
- Will you assume equal/unequal variances between groups?

How many significant differences in 42 tests are allowed by Type I Error , α = 5% ?

```
(0.9707276306009271, 0.3317187109438976, 6750.0)
(1.338773515763321, 0.18068950041259244, 6750.0)
                                                     (0.3147506430846481, 0.7529608999543934, 6626.0)
(0.9053695111401618, 0.36530258109856395, 6626.0)
                                                     (-0.6519002384228214, 0.5144881696069725, 6618.0)
(-0.41833581824238186, 0.6757151790218867, 6618.0)
                                                     interests Natural
                                                     (-1.0612678410854939, 0.2886061658249812, 6750.0)
(-0.2258780702654209, 0.8213030931691397, 6750.0)
(0.9497330944934246, 0.3422825277496915, 6626.0)
                                                     (-1.8427709795172764, 0.06540709922408983, 6626.0)
                                                     (-1.3663540716083276, 0.17187427850386666, 6618.0)
(1.1687121493699624, 0.24256172111339383, 6618.0)
                                                     interests_Cars
                                                     (0.6187802423559168, 0.5360820204981972, 6750.0)
(0.10889071847020237, 0.9132924051645153, 6750.0)
                                                     (-1.3893444622272728, 0.1647747146564894, 6626.0)
(0.5134641434648958, 0.6076438065780314, 6626.0)
                                                     (-1.7725664974397572, 0.07634656053156527, 6618.0)
(0.41388040743233595, 0.6789751051271262, 6618.0)
                                                     interests Foods
                                                     (1.0184637185219496, 0.30849413623581146, 6750.0)
(-1.2845094396946113, 0.19900784380497932, 6750.0)
                                                     (2.0767837483140696, 0.0378599681773576, 6626.0)
(-1.6808531965006905, 0.0928385650413649, 6626.0)
                                                     (1.016626487214549, 0.3093683127187254, 6618.0)
(-0.40792621277474284, 0.6833410435536809, 6618.0)
                                                     (-0.3262239225314997, 0.7442650563623125, 6750.0)
(-0.5234272052816967, 0.6006941789213049, 6750.0)
                                                     (0.715621661229616, 0.4742502108804256, 6626.0)
(0.23350129033532566, 0.8153793808681323, 6626.0)
                                                     (0.9673603471637802, 0.3333992746546236, 6618.0)
(0.6736860794427328, 0.5005344408716177, 6618.0)
                                                     interests Digital
                                                     (-1.7427156587400414, 0.08142883367459593, 6750.0)
(0.06482087845276627, 0.9483185373224183, 6750.0)
                                                     (-2.227313101078629, 0.025959817302320727, 6626.0)
(-0.5013152001110853, 0.6161659636359065, 6626.0)
                                                     (-0.45167712090086365, 0.6515164041179344, 6618.0)
(-0.5394472710402294, 0.5895964190860086, 6618.0)
                                                     (0.27387057610143695, 0.7841924640867347, 6750.0)
(-0.6847791455098242, 0.4935068089879331, 6750.0)
                                                     (1.7190916772349614, 0.08564438610483052, 6626.0)
(1.2351380997665236, 0.2168229057175556, 6626.0)
                                                     (1.4489976215244424, 0.14738562626501506, 6618.0)
(1.9446141119994387, 0.0518637481483557, 6618.0)
```

If p-value of one of the tests is very small, 0.0001, will you have more concerns?

Decrease α , and see whether it still holds.

How many significant differences in 42 tests are allowed by Type I Error α =1%?

```
(0.9707276306009271, 0.3317187109438976, 6750.0)
(1.338773515763321, 0.18068950041259244, 6750.0)
                                                     (0.3147506430846481, 0.7529608999543934, 6626.0)
(0.9053695111401618, 0.36530258109856395, 6626.0)
                                                     (-0.6519002384228214, 0.5144881696069725, 6618.0)
(-0.41833581824238186, 0.6757151790218867, 6618.0)
                                                     interests Natural
                                                    (-1.0612678410854939, 0.2886061658249812, 6750.0)
(-0.2258780702654209, 0.8213030931691397, 6750.0)
(0.9497330944934246, 0.3422825277496915, 6626.0)
                                                     (-1.8427709795172764, 0.06540709922408983, 6626.0)
                                                     (-1.3663540716083276, 0.17187427850386666, 6618.0)
(1.1687121493699624, 0.24256172111339383, 6618.0)
                                                     interests_Cars
                                                     (0.6187802423559168, 0.5360820204981972, 6750.0)
(0.10889071847020237, 0.9132924051645153, 6750.0)
                                                     (-1.3893444622272728, 0.1647747146564894, 6626.0)
(0.5134641434648958, 0.6076438065780314, 6626.0)
                                                     (-1.7725664974397572, 0.07634656053156527, 6618.0)
(0.41388040743233595, 0.6789751051271262, 6618.0)
                                                     interests Foods
                                                    (1.0184637185219496, 0.30849413623581146, 6750.0)
(-1.2845094396946113, 0.19900784380497932, 6750.0)
                                                     (2.0767837483140696,
                                                                                 0.0001
                                                                                              6626.0)
(-1.6808531965006905, 0.0928385650413649, 6626.0)
                                                     (1.016626487214549, 0.3093683127187254, 6618.0)
(-0.40792621277474284, 0.6833410435536809, 6618.0)
                                                     (-0.3262239225314997, 0.7442650563623125, 6750.0)
(-0.5234272052816967, 0.6006941789213049, 6750.0)
                                                     (0.715621661229616, 0.4742502108804256, 6626.0)
(0.23350129033532566, 0.8153793808681323, 6626.0)
                                                     (0.9673603471637802, 0.3333992746546236, 6618.0)
(0.6736860794427328, 0.5005344408716177, 6618.0)
                                                     interests Digital
                                                     (-1.7427156587400414, 0.08142883367459593, 6750.0)
(0.06482087845276627, 0.9483185373224183, 6750.0)
                                                     (-2.227313101078629, 0.025959817302320727, 6626.0)
(-0.5013152001110853, 0.6161659636359065, 6626.0)
                                                     (-0.45167712090086365, 0.6515164041179344, 6618.0)
(-0.5394472710402294, 0.5895964190860086, 6618.0)
                                                     (0.27387057610143695, 0.7841924640867347, 6750.0)
(-0.6847791455098242, 0.4935068089879331, 6750.0)
                                                     (1.7190916772349614, 0.08564438610483052, 6626.0)
(1.2351380997665236, 0.2168229057175556, 6626.0)
                                                     (1.4489976215244424, 0.14738562626501506, 6618.0)
(1.9446141119994387, 0.0518637481483557, 6618.0)
```

How many significant differences in 42 tests are allowed by Type I Error α =1%?

```
(0.9707276306009271, 0.3317187109438976, 6750.0)
(1.338773515763321, 0.18068950041259244, 6750.0)
                                                     (0.3147506430846481, 0.7529608999543934, 6626.0)
(0.9053695111401618, 0.36530258109856395, 6626.0)
                                                     (-0.6519002384228214, 0.5144881696069725, 6618.0)
(-0.41833581824238186, 0.6757151790218867, 6618.0)
                                                     interests Natural
                                                    (-1.0612678410854939, 0.2886061658249812, 6750.0)
(-0.2258780702654209, 0.8213030931691397, 6750.0)
(0.9497330944934246, 0.3422825277496915, 6626.0)
                                                     (-1.8427709795172764, 0.06540709922408983, 6626.0)
                                                     (-1.3663540716083276, 0.17187427850386666, 6618.0)
(1.1687121493699624, 0.24256172111339383, 6618.0)
                                                     interests_Cars
                                                     (0.6187802423559168, 0.5360820204981972, 6750.0)
(0.10889071847020237, 0.9132924051645153, 6750.0)
                                                     (-1.3893444622272728, 0.1647747146564894, 6626.0)
(0.5134641434648958, 0.6076438065780314, 6626.0)
                                                     (-1.7725664974397572, 0.07634656053156527, 6618.0)
(0.41388040743233595, 0.6789751051271262, 6618.0)
                                                     interests Foods
                                                    (1.0184637185219496, 0.30849413623581146, 6750.0)
(-1.2845094396946113, 0.19900784380497932, 6750.0)
                                                     (2.0767837483140696, 0.0378599681773576, 6626.0)
(-1.6808531965006905, 0.0928385650413649, 6626.0)
                                                     (1.016626487214549, 0.3093683127187254, 6618.0)
(-0.40792621277474284, 0.6833410435536809, 6618.0)
                                                     (-0.3262239225314997, 0.7442650563623125, 6750.0)
(-0.5234272052816967, 0.6006941789213049, 6750.0)
                                                     (0.715621661229616, 0.4742502108804256, 6626.0)
(0.23350129033532566, 0.8153793808681323, 6626.0)
                                                     (0.9673603471637802, 0.3333992746546236, 6618.0)
(0.6736860794427328, 0.5005344408716177, 6618.0)
                                                     interests Digital
                                                     (-1.7427156587400414, 0.08142883367459593, 6750.0)
(0.06482087845276627, 0.9483185373224183, 6750.0)
                                                     (-2.227313101078629, 0.025959817302320727, 6626.0)
(-0.5013152001110853, 0.6161659636359065, 6626.0)
                                                     (-0.45167712090086365, 0.6515164041179344, 6618.0)
(-0.5394472710402294, 0.5895964190860086, 6618.0)
                                                     (0.27387057610143695, 0.7841924640867347, 6750.0)
(-0.6847791455098242, 0.4935068089879331, 6750.0)
                                                     (1.7190916772349614, 0.08564438610483052, 6626.0)
(1.2351380997665236, 0.2168229057175556, 6626.0)
                                                     (1.4489976215244424, 0.14738562626501506, 6618.0)
(1.9446141119994387, 0.0518637481483557, 6618.0)
```

What should you do when a metric is unexpectedly significant?

- Bonferroni Correction Too Conservative!
 - Use smaller p-value (p-value/# tests)
- A practical simple two-step rule-of-thumb:
 - 1. Separate all metrics into three groups:
 - First-order metrics: those you expect to be impacted by the new feature 5%
 - Second-order metrics: those potentially to be impacted (e.g., through cannibalization) 1%
 - Third-order metrics: those not to be impacted **0.1%**
 - 2. Apply tiered significance levels to each group