ST2334 (2018/2019 Semester 2) Solutions to Questions in Tutorial 5

Ouestion 1

(a) $E(X) = \sum x f_X(x) = 4.11$. $E(X^2) = \sum x^2 f_X(x) = 17.63$

(b) $V(X) = \sum (x - \mu)^2 f_X(x) = 0.7379$.

Alternatively, $V(X) = E(X^2) - [E(X)]^2 = 0.7379$.

(c) E(Z) = 3E(X) - 2 = 10.33. $V(X) = 3^2V(X) = 6.6411$

(d)

X	2	3	4	5	6
Z	4	7	10	13	16
$f_Z(z)$	0.01	0.25	0.40	0.30	0.04

 $E(Z) = \sum z f_Z(z) = 10.33$. $V(Z) = \sum (z - \mu)^2 f_Z(z) = 6.6411$

(e) W = aZ + b. E(W) = aE(Z) + b = 10.33a + b. $V(W) = a^2V(Z) = 6.6411a^2$ Question 2

X	0	1	2	3	4	5
$f_X(x)$	1/15	2/15	2/15	3/15	4/15	3/15

$$E(X) = \sum x f_X(x) = 3.0667$$
. Profit = revenue - cost = $1.65X + \frac{3}{4}(1.20)(5 - X) - 5(1.20) = 0.75X - 1.50$. Expected Profit, $E(Profit) = 0.75X - 1.50 = 0.80 Ouestion 3

We find $Pr(M \ge k)$, where $k = 1, 2, \dots, 6$.

Let X_i be the number that turns up on die i, where i = 1, 2, 3. Then

$$\Pr(M \ge k) = \Pr(X_1 \ge k, X_2 \ge k, X_3 \ge k) = \Pr(X_1 \ge k) \Pr(X_2 \ge k) \Pr(X_3 \ge k) = \left(\frac{6 - (k - 1)}{6}\right) \left(\frac{6 - (k - 1)}{6}\right) \left(\frac{6 - (k - 1)}{6}\right) = \left(\frac{7 - k}{6}\right)^3$$
 Hence, by the tail sum formula

$$E(M) = \sum_{k=1}^{\infty} \Pr(M \ge k) = \sum_{k=1}^{6} \Pr(M \ge k) = \sum_{i=1}^{6} \left(\frac{7-k}{6}\right)^3 = \frac{1^3 + 2^3 + \dots + 6^3}{6^3} = 2.0417$$
Question 4

(a)
$$E(X) = \int_0^1 x \, f_X(x) \, dx = \int_0^1 x (2 - 2x) \, dx = \int_0^1 (2x - 2x^2) dx = \left[x^2 - \frac{2}{3} x^3 \right]_0^1 = \frac{1}{3}$$

 $V(X) = \int_0^1 \left(x - \frac{1}{3} \right)^2 (2 - 2x) dx = \int_0^1 \left(x^2 - \frac{2}{3} x + \frac{1}{9} \right) (2 - 2x) dx = \int_0^1 \left(-2x^3 + \frac{10}{3} x^2 - \frac{14}{9} x + \frac{2}{9} \right) dx = \left[-\frac{1}{2} x^4 + \frac{10}{9} x^3 - \frac{7}{9} x^2 + \frac{2}{9} x \right]_0^1 = \frac{1}{18}.$

(b)
$$Y = 3X - 2$$
. $E(Y) = 3E(X) - 2 = 3\left(\frac{1}{3}\right) - 2 = -1$. $V(Y) = 3^2V(X) = 9\left(\frac{1}{18}\right) = \frac{1}{2}$.

Question 5

We make use of the properties (1) $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and (2) E(X) = 3/5 to set up 2 equations with 2 unknowns a and b. $\int_0^1 (a + bx^2) dx = 1$ gives $a + \frac{b}{3} = 1$ and

 $\int_0^1 x(a+bx^2) dx = 3/5$ gives a/2 + b/4 = 3/5. Solving these 2 equations, we have a =3/5 and b = 6/5.

Question 6

$$E[(X-1)^2] = 10 \text{ implies } E[X^2 - 2X + 1] = E(X^2) - 2E(X) + 1 = 10$$
 (1)

$$E[(X-2)^2] = 6 \text{ implies } E[X^2 - 4X + 4] = E(X^2) - 4E(X) + 4 = 6$$
 (2)

Eq(1) – Eq(2), we have 2E(X) - 3 = 4 or E(X) = 7/2.

Substitute E(X) = 7/2 into Eq(1), we have $E(X^2) = 16$.

Hence $V(X) = E(X^2) - [E(X)]^2 = 15/4$.

Question 7

 $E(X) = 10 \text{ and } V(X) = 4 \text{ or } \sigma = 2.$

(a) $\Pr(5 < X < 15) = \Pr[10 - (5/2)(2) < X < 10 + (5/2)(2)] = \Pr(|X - 10| < (5/2)(2))$

Applying Chebyshev's Inequality with k = 5/2, we have $\Pr(|X - 10| < (5/2)(2)) \ge 1 - \frac{1}{(5/2)^2} = \frac{21}{25}$.

- (b) $\Pr(6 < X < 14) = \Pr[10 2(2) < X < 10 + 2(2)] = \Pr(|X 10| < 2(2))$ Applying Chebyshev's Inequality with k = 2, we have $\Pr(|X - 10| < 2(2)) \ge 1 - \frac{1}{2^2} = \frac{3}{4}$. Hence, $\Pr(5 < X < 14) \ge \Pr(6 < X < 14) \ge \frac{3}{4}$.
- (c) $\Pr(|X 10| < 3) = \Pr(|X 10| < (3/2)2)$ Applying Chebyshev's Inequality with k = 3/2, we have $\Pr[10 - (3/2)(2) < X < 10 + (3/2)(2)] \ge 1 - \frac{1}{(3/2)^2} = \frac{5}{9}$.
- (d) $\Pr(|X 10| \ge 3) = \Pr(|X 10| \ge (3/2)(2))$ Applying Chebyshev's Inequality with k = 3/2, we have $\Pr(|X - 10| \ge (3/2)(2)) \le \frac{1}{(3/2)^2} = \frac{4}{9}$.
- (e) $\Pr(|X 10| \ge c) \le 0.04 = \frac{1}{5^2}$. Hence, k = 5. $c = k\sigma = 5(2) = 10$

Question 8

 $\mu = 900$ and $\sigma = 50$. Hence $700 = \mu - 4\sigma$ or k = 4.

 $\Pr(X < 700 \text{ or } X > 1100) \le 1/4^2 = 0.0625$. Since X is symmetric, $\Pr(X < 700) = \Pr(X > 1100)$ and $\Pr(X < 700) = (1/2)(0.0625) = 0.03125$.

Question 9

$$E(X) = \int_0^1 x \, f_X(x) \, dx = \int_0^1 6x^2 (1 - x) dx = \left[2x^3 - \frac{3}{2}x^4 \right]_0^1 = 0.5$$

$$E(X^2) = \int_0^1 x^2 f_X(x) dx = \int_0^1 6x^3 (1-x) dx = \left[\frac{3}{2}x^4 - \frac{6}{5}x^5\right]_0^1 = 0.3$$

$$V(X) = E(X^2) - [E(X)]^2 = 0.05. \ \sigma = \sqrt{0.05}.$$

 $\Pr(\mu - 2\sigma < X < \mu + 2\sigma) = \Pr(0.5 - 2\sqrt{0.05} < X < 0.5 + \sqrt{0.05})) = \Pr(0.0528 < X < 0.9472) = \int_{0.0528}^{0.9472} 6x(1-x)dx = [3x^2 - 2x^3]_{0.0528}^{0.9472} = 0.9839.$

Chebyshev's theorem: $Pr(\mu - 2\sigma < X < \mu + 2\sigma) \ge 1 - 1/2^2 = 0.75$

The exact probability is 0.9839 while Chebyshev's theorem states that it is at least 0.75. Question 10

f (x x	у		
$J_{X,Y}(X, y)$	y) = c x - y	-2	3
	-2	0 <i>c</i>	5 <i>c</i>
x	0	2 <i>c</i>	3 <i>c</i>
	2	4 <i>c</i>	1 <i>c</i>

 $\sum_{i} \sum_{i} f_{X,Y}(x_{i}, y_{i}) = 1$ implies 15c = 1. Hence, c = 1/15.