Clustering

COMP4211

Supervised Learning vs Unsupervised Learning

Supervised learning

- The learner is provided with a set of inputs together with the corresponding desired outputs
- Given training set: $(x_1, y_1), (x_2, y_2), \dots, (x_N; y_N)$
- Find a general function y = h(x)
- An approximation to a target (true) function y = f(x)
 - h: hypothesis

Unsupervised learning

- training examples as input patterns, with no associated output patterns
- Given training set x₁, x₂,...,x_N
- unlabeled training examples
- no teacher

Clustering

find clusters

• in the early stages of an investigation, it may be helpful to perform exploratory data analysis to gain some insight into the nature or structure of the data

Problem

Given:

- \bullet X_1, X_2, \ldots, X_n
- they fall into *k* clusters

Determine: the cluster centers (centroids) m_1, m_2, \ldots, m_k

k-Means Clustering

- Make initial guesses for m_1, m_2, \ldots, m_k
 - usually, just randomly choose *k* of the examples
- Use the estimated cluster centers to put the patterns into clusters
 - put x_j into cluster i if $||x_j m_i||$ is the minimum of all the k distances
 - the feature space is partitioned into k clusters
- for i = 1 to k, replace m_i with the mean of all examples for cluster i
- Go back to step 2 until there are no changes in the m_i's

(demo)

Distance Measures

- Euclidean distance: $d(x,z) = \sqrt{\sum_{i=1}^{n} (x_i z_i)^2}$
- scaled Euclidean distance: $d(x,z) = \sqrt{\sum_{i=1}^{n} w_i(x_i z_i)^2}$
- L_1 distance: $d(x,z) = \sum_{i=1}^n |x_i z_i|$
- L_{∞} distance: $d(x,z) = \max(|x_i z_i|)$

Similarity Measures

similarity functions

• gives a large value when two feature vectors are similar

Example

Normalized inner product

$$s(x_1, x_2) = \frac{x_1' x_2}{\|x_1\| \cdot \|x_2\|}$$

- cosine of angle between vectors
- \bullet for binary-valued (0/1) features, the normalized inner product gives a relative count of features shared by the two vectors
- a simple variation is the fraction of features shared:

$$s(\mathsf{x}_1,\mathsf{x}_2) = \tfrac{\mathsf{x}_1'\mathsf{x}_2}{d}$$

Different initialization means that you may get different clusters each time

- multiple runs
- pick the solution with minimum sum of squared error $\sum_{i=1}^K \sum_{\mathbf{x} \in C_i} \|\mathbf{x} \mathbf{m}_i\|^2$

Implicit assumptions about the shapes of clusters

• can get wrong results when clusters have other shapes

Issues...

Data points are assigned to only one cluster (hard assignment)

You have to pick the number of clusters

ullet in general, clustering result depends on k

(demo)