Práctico 3 Matemática Discreta I – Año 2021/1 FAMAF

(2) a) Si $a = b \cdot q + r$, con $b \le r < 2b$, hallar el cociente y el resto de la división

(3) Dado $m \in \mathbb{N}$, hallar los restos posibles de m^2 y m^3 en la división por

b) Repetir el ejercicio anterior, suponiendo ahora que $-b \le r < 0$.

c) 135 por -23.

f) -98 por -73.

b) -135 por 23.

e) 127 por 99.

(1) Hallar el cociente y el resto de la división de:

a) 135 por 23.

d) -135 por -23.

de *a* por *b*.

3, 4, 5, 7, 8, 11.

(4)	Expresar en base 10 l	resar en base 10 los siguientes enteros:		
	<i>a</i>) (1503) ₆	<i>b</i>) (1111) ₂	c) (1111) ₁₂	
	<i>d</i>) (123) ₄	<i>e</i>) (12121) ₃	<i>f</i>) (1111) ₅	
(5)	Convertir			
	a) (133) ₄ a base 8,		b) (B38) ₁₆ a base 8,	
	c) (3506) ₇ a base 2,		d) (1541) ₆ a base 4.	
(6)	Calcular:			
	a) $(2234)_5 + (2310)_5$,		b) $(10101101)_2 + (10011)_2$.	
(7) Expresar en base 5: $(1503)_6 + (1111)_2$.				
(8)	8) Sean $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones:			
	a) Si $a \neq 0$ y $a \mid 1$, entonces $a = 1$ ó $a = -1$.			
	b) Si $a \neq 0$, $a b$ y $a c$, entonces $a (rb+sc)$ para cualesquiera $r,s \in \mathbb{Z}$.			
	c) Si $a \neq 0$ y $a b$, entonces $a b \cdot c$.			
	d) Si $a \neq 0$, $a b$ y $a (b+c)$, entonces $a c$.			
(9)	Dados $b, c \in \mathbb{Z}$, proba	ır las siguien	tes propiedades:	
a) 0 es par y 1 es impar.				
	b) Si b es un número par no nulo y $b \mid c$, entonces c es par. (Por lo tanto, si b es par, también lo es $-b$).			
c) Si un número par no nulo divide a 2, entonces ese número es			le a 2, entonces ese número es 2 ó -2 .	

d) Si b y c son pares, entonces b + c también lo es.

1

- e) La suma de un número par y uno impar es impar.
- f) b + c es par si y sólo si b y c son ambos pares o ambos impares.
- g) b es par si y sólo si b^2 es par.
- (10) Probar que n(n + 1) es par para todo $n \in \mathbb{Z}$.
- (11) Sean $a, b, c \in \mathbb{Z}$ (no nulos cuando el enunciado lo requiera). ¿Cuáles de las siguientes afirmaciones son verdaderas? Justificar las respuestas.
 - a) $a \mid b \cdot c \Rightarrow a \mid b \circ a \mid c$.
 - b) $a \mid (b+c) \Rightarrow a \mid b \circ a \mid c$.
 - c) $a \mid c \mid b \mid c \Rightarrow a \cdot b \mid c$.
 - d) $a \mid c \mid b \mid c \Rightarrow (a + b) \mid c$.
 - e) $b, c \in \mathbb{N}$ y $a = b \cdot c \Rightarrow a \ge b$ y $a \ge c$.
- (12) Probar que para todo $n \in \mathbb{N}$:
 - a) $3^{2n+2} + 2^{6n+1}$ es múltiplo de 11.
 - b) $3^{2n+2} 8n 9$ es divisible por 64.
- (13) Decidir si las siguientes afirmaciones son verdaderas o falsas, justificar la respuesta.
 - a) $\forall n \in \mathbb{N}$, $3^n + 1$ es múltiplo de n.
 - b) $\forall n \in \mathbb{N}$, $3n^2 + 1$ es múltiplo de 2.
 - c) $\forall n \in \mathbb{N}$, $(n+1) \cdot (5n+2)$ es múltiplo de 2.
- (14) Probar que para todo $n \in \mathbb{Z}$, $n^2 + 2$ no es divisible por 4.
- (15) Probar que todo entero impar que no es múltiplo de 3, es de la forma $6m \pm 1$, con m entero.
- (16) *a)* Probar que el producto de tres enteros consecutivos es divisible por 6.
 - b) Probar que el producto de cuatro enteros consecutivos es divisible por 24 (ayuda: para todo $n \in \mathbb{N}$, el número combinatorio $\binom{n+3}{4} \in \mathbb{N}$).
 - c) Sea $m \ge 2$. Probar que el producto de m enteros consecutivos es divisible por m!.
- (17) Probar que si a y b son enteros entonces $a^2 + b^2$ es divisible por 7 si y sólo si a y b son divisibles por 7. ¿Es lo mismo cierto para 3? ¿Para 5?

(18) Encontrar

a) (7469, 2464),

b) (2689, 4001),

c) (2447, –3997),

d) (-1109, -4999).

(19) Calcular el máximo común divisor y expresarlo como combinación lineal de los números dados, para cada uno de los siguientes pares de números:

- *a*) 14 y 35,
- *b*) 11 y 15,
- c) 12 y 52,

- *d*) 12 y −52,
- *e*) 12 y 532, *f*) 725 y 441,
- *q*) 606 y 108.

(20) Probar que no existen enteros a y b que satisfagan a + b = 100 y (a, b) = 3.

- (21) *a*) Sean $a \ y \ b$ coprimos. Probar que si $a \mid b \cdot c$ entonces $a \mid c$.
 - *b*) Sean $a \ y \ b$ coprimos. Probar que si $a \ | \ c \ y \ b \ | \ c$, entonces $a \cdot b \ | \ c$.

(22) Encontrar todos los enteros positivos a y b tales que (a, b) = 10 y [a, b] = 100.

- (23) *a)* Probar que si *d* es divisor común de *a* y *b*, entonces $\frac{(a,b)}{d} = \left(\frac{a}{d}, \frac{b}{d}\right)$.
 - b) Probar que si $a, b \in \mathbb{Z}$ no nulos, entonces $\frac{a}{(a,b)}$ y $\frac{b}{(a,b)}$ son coprimos.
- (24) Probar que 3 y 5 son números primos.
- (25) Dar todos los números primos positivos menores que 100.
- (26) Determinar con el criterio de la raíz cuáles de los siguientes números son primos: 113, 123, 131, 151, 199, 503.
- (27) Probar que si $n \in \mathbb{Z}$, entonces los números 2n + 1 y n(n + 1) son coprimos.
- (28) Demostrar que si $a \cdot b$ es un cuadrado y (a,b) = 1, entonces a y b son cuadrados.
- (29) *a)* Probar que $\sqrt{5}$ no es un número racional.
 - b) Probar que $\sqrt{15}$ no es un número racional.
 - c) Probar que $\sqrt{8}$ no es un número racional.
- (30) a) Probar que $\sqrt[3]{4}$ no es un número racional.
 - b) Probar que $\sqrt[4]{54}$ no es racional.
 - c) Probar que no existen enteros m, n no nulos tal que $21n^5 = m^5$.

(31) Probar que si p_k es el k-ésimo primo positivo entonces

$$p_{k+1} \leq p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1$$

(32) Calcular el máximo común divisor y el mínimo común múltiplo de los siguientes pares de números usando la descomposición en números primos.

a)
$$a = 12$$
 y $b = 15$.

b)
$$a = 11$$
 y $b = 13$.

c)
$$a = 140 \text{ y } b = 150.$$

d)
$$a = 225 \text{ y } b = 44.$$

e)
$$a = 60$$
 y $b = 70$.