Матан

Сергей Григорян

6 октября 2024 г.

Содержание

1	Лекция 7		
	1.1	Критерий Коши	3
	1.2	Частичные пределы	4
2	Лекция 8		
	2.1	$\S 3$: Топология $\mathbb R$	7
3	Лекция 9		
	3.1	§4: Непрерывные ф-ции	14
		3.1.1 Предел ф-ции в точке	14
4	Лекция 10		
	4.1	Критерий Коши для предела ф-ции	19
		Односторонние пределы	

1 Лекция 7

1.1 Критерий Коши

Определение 1.1. Посл-ть $\{a_n\}_1^\infty$ наз-ся фундаментальной, если:

$$\forall \varepsilon > 0, \exists N : \forall n, m \ge N(|a_n - a_m| < \varepsilon)$$

Лемма 1.1. Всякая фундаментальная п-ть огр-на

 \mathcal{A} оказательство. Пусть $\{a_n\}_1^\infty$ - фундаментальна. По опр-ю:

$$\exists N : \forall n, m \geq N(|a_n - a_m| < 1)$$

В част-ти:

$$a_N - 1 < a_n < a_N + 1$$

для всех $n \ge N \ (m = N)$

Положим

$$\alpha = min(a_1, \dots, a_{N-1}, a_N - 1)$$

$$\beta = \max(a_1, \dots, a_{N-1}, a_N + 1)$$

. Тогда:

$$\alpha < a_n < \beta$$

при всех $n \in \mathbb{N}$

 $\underline{\text{Теорема}}_{ma, rp \mu a}$ 1.2 (Коши). П-ть $\{a_n\}_1^{\infty}$ - $cxodumcs \iff \{a_n\}_1^{\infty}$ - $\phi y \mu da Me \mu$ -

 ${\it Доказательство.} \implies$) Пусть $\lim_{n \to \infty} a_n = a$. Зафикс. $\varepsilon > 0$. По опр-ю предела:

$$\exists N, \forall n \in \mathbb{N}(|a_n - a| < \frac{\varepsilon}{2})$$

Тогда при всех $n, m \ge N$:

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < \frac{\varepsilon}{2} * 2 = \varepsilon$$

 \Leftarrow) По предыдущей лемме, п-ть $\{a_n\}_1^\infty$ - ограничена \Rightarrow по т. Больцано-Вейерштрасса (Б-В) $\{a_n\}_1^\infty$ имеет сход. подпосл-ть $\{a_{n_k}\}_1^\infty \to a$

Покажем, что $a=\lim_{n\to\infty}$. Зафикс. $\varepsilon>0$. По опр-ю фундаментальности:

$$\exists N, \forall n, m \ge N(|a_n - a_m| < \frac{\varepsilon}{2})$$

 $T. K. \{a_{n_k}\} \rightarrow a \Rightarrow$

$$\exists K : \forall k \ge K(|a_{n_k} - a| < \frac{\varepsilon}{2})$$

Положим $M=\max(N,K)$. Тогда $n_M\geq M\geq N; n_M\geq M\geq K$ Поэтому при всех $n\geq N$:

$$|a_n - a| \le |a_n - a_{n_M}| + |a_{n_M} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

<u>Замечание</u>. Критерий Коши позволяет доказывать существование предела, без явного нахождения его значения

Кроме того, критерий позволяет **оценить скорость сходимости к пределу** (перейдём к пределу по т в определении фунд-ти):

$$|a_n - a| \le \varepsilon$$
, npu $\sec n \ge N$

Задача 1.1. Покажите, что если всякая фундаментальная посл-ть сх-ся (сходится), то выполняется аксиома непрерывности. А именно:

Пусть \mathbb{F} - упоряд. поле, на котором выполняется аксиома Архимеда

1.2 Частичные пределы

Определение 1.2. Точка $a \in \overline{\mathbb{R}}$ наз-ся частичным пределом числовой посл-ти $\{a_n\}_1^\infty$, если $\exists \{a_{n_k}\}$ - подпосл-ть $\{a_n\}$: $\lim_{k\to\infty} a_{n_k} = a$

$$L\left\{a_{n}\right\}$$
 — мн-во частичных пределов $\left\{a_{n}\right\}$

<u>Пример</u>. ± 1 - частичные пределы $a_n = (-1)^n$

$$a_{2k} \to 1, a_{2k-1} \to -1$$

Пусть задана числовая посл-ть $\{a_n\}$

Положим $M_{\pi} = \sup \{$

$$M_n = \sup_{k \ge n} \{ a_k \}$$

$$m_n = \inf_{k > n} \left\{ a_k \right\}$$

Пусть $\{a_n\}$ огр. сверху. Тогда все $M_n \in \mathbb{R}$

Поскольку при переходе к подмн-ву sup не увеличивается, то $\{M_n\}$ нестрого убывает

 $\Rightarrow \exists \lim_{n\to\infty} M_n$

Пусть $\{a_n\}$ не огр. сверху. Тогда все $M_n=+\inf$ Положим $\lim_{n\to\infty}M_n=+\infty$

Аналогично для $\{m_n\}$ (Огр./Неогр. снизу).

Итак, посл-ти $\{m_n\}$ и $\{M_n\}$ имеют предел в $\overline{\mathbb{R}}$

Определение 1.3. Величина $\lim_{n\to\infty}\sup_{k\geq n}\{a_k\}$ - верхний предел $\{a_n\}$ и об-ся $\overline{\lim_{n\to\infty}}a_n$

Величина $\lim_{n\to\infty}\inf_{k\geq n} \{\,a_k\,\}$ - нижний предел $\{\,a_n\,\}$ и об-ся $\varliminf_{n\to\infty}a_n$

Замечание. $T. \kappa. m_n \leq M_n, \forall n \in \mathbb{N}, morda:$

$$\lim_{n \to \infty} a_n \le \overline{\lim}_{n \to \infty} a_n$$

Задача 1.2.

$$\overline{\lim}_{n\to\infty}(-a_n) = -\lim_{n\to\infty}a_n$$

Теорема 1.3. Верхний (нижний) предел - наибольший (наименьший) из част. пределов посл-ти.

Доказательство.

$$M = \overline{\lim}_{n \to \infty} a_n, m = \lim_{n \to \infty} a_n$$

Нужно показать, что M, m - это ч. п. $\{a_n\}$ и любой ч. п. лежит между ними.

1) Покажем, что есть подп-ть $\{a_n\}$, сх-ся к M:

I. $M \in \mathbb{R}$. Имеем

$$M = \inf \{ M_n \}$$

По опр-ю sup, $\exists n_1 \colon (M - 1 < a_{n_1})$

$$M_{n_1+1} = \sup_{k \ge n_1+1} \{ a_k \} \Rightarrow \exists n_2 > n_1 : (M - \frac{1}{2} < a_{n_2})$$

и т. д.

Таким образом, по индукции, будет построена подп-ть $\{a_{n_k}\}$, т. ч.

$$M - \frac{1}{k} < a_{n_k}$$

Имеем:

$$M - \frac{1}{k} < a_{n_k} \le M_{n_k}$$

Края нер-ва сх-ся к $M\Rightarrow$ по т. о зажатой посл-ти, $a_{n_k}\to M$

- II. $M=+\infty$, тогда $\{a_n\}$ неогр. сверху \Rightarrow (по Теореме 8') она имеет под-пть, сх-ся к $+\infty$
- III. $M=-\infty$. T. K. $a_n \leq M_n, \forall n \Rightarrow \lim_{n \to \infty} a_n = -\infty$
- 2) Для m док-во аналогично, или сводиться к M по задаче prot-pred
- 3) Пусть $\{a_{n_k}\}, a_{n_k} \to a$. Тогда:

$$m_{n_k} \leq a_{n_k} \leq M_{n_k}, \forall k \Rightarrow m \leq a \leq M$$
(част. пределы)

Следствие. $\exists \lim_{n\to\infty} a_n \ (e \ \overline{\mathbb{R}}) \iff \overline{\lim_{n\to\infty}} a_n = \underline{\lim_{n\to\infty}} a_n$ В этом случае все три предела равны.

$$\Leftarrow$$

$$m_n \le a_n \le M_n$$

для всех $n \Rightarrow a_n \to a \text{ (Края } \to a)$

<u>Лемма</u> 1.4. Для $c \in \mathbb{R}$ верно:

$$c = \overline{\lim}_{n \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n < c + \varepsilon) \ (1) \\ \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n > c - \varepsilon) \ (2) \end{cases}$$

$$c = \lim_{\underline{n} \to \infty} a_n \iff \begin{cases} \forall \varepsilon > 0, \forall N, \exists n \ge N (a_n < c + \varepsilon) \\ \forall \varepsilon > 0, \exists N, \forall n \ge N (a_n > c - \varepsilon) \end{cases}$$

Доказательство. Докажем, для верх предела:

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} M_n, M_n = \sup_{k > n} \{ a_k \}$$

(1)
$$\iff \forall \varepsilon > 0, \exists N(M_N < c + \varepsilon)$$

(2)
$$\iff \forall \varepsilon > 0, \forall N(M_n > c - \varepsilon)$$

Напомним, что $\{M_n\}$ - нестрого убыв.

Тогда
$$(1) \wedge (2) \iff c = \lim_{n \to \infty} M_n \ (= \inf \{ M_n \})$$

2 Лекция 8

2.1 §3: Топология $\mathbb R$

Пусть $a \in \mathbb{R}$ и $\varepsilon > 0$.

Обозначение. •
$$B_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon)$$
 - ε -окрестность a

•
$$\overset{\circ}{B_{\varepsilon}}(a)=B_{\varepsilon}(a)\setminus\{a\}=(a-\varepsilon,a)\cup(a,a+\varepsilon)$$
 - проколотая ε -окр-ть $m.$ a

Определение 2.1. Пусть $E \subset \mathbb{R}$ и $x \in \mathbb{R}$

1) Точка x наз-ся внутренней точкой мн-ва E, если $\exists \varepsilon > 0 (B_{\varepsilon}(x) \subset E)$

$$(int)E$$
 - мн-во всех внут. точек E

2) Точка x наз-ся внешней точкой мн. E, если $\exists \varepsilon > 0(B_{\varepsilon}(x) \subset \mathbb{R} \backslash E)$ (ext)E - мн-во внешних точек E

3) Точка x наз-ся граничной точкой мн-ва E, если

$$\forall \varepsilon > 0(B_{\varepsilon}(x) \cap E \neq \emptyset \land B_{\varepsilon}(x) \cap (\mathbb{R} \backslash E) \neq \emptyset)$$

 σE - мн-во всех граничных точек E

Замечание. Из опр-я следует:

$$\mathbb{R} = (int)E \sqcup (ext)E \sqcup \sigma E$$

Пример.

$$E = (0, 1], (int)E = (0, 1), (ext)E = (-\infty, 0) \cup (1, +\infty), \sigma E = \{0, 1\}$$

Определение 2.2. Мн-во $G \subset \mathbb{R}$ наз-ся открытым, если все его точки яв-ся внутренними (т. е. G = (int)G)

Определение 2.3. Мн-во $F\subset\mathbb{R}$ наз-ся замкнутым, если $\mathbb{R}\backslash F$ - открыто.

Пример. 1) (a,b) - открытое.

- (a,b) замкнутое.
- <u>Лемма</u> **2.1.** а) Объединение любого семейства открытых мн-в открыто.
 - b) Пересечение конечного сем-ва открытых мн-в открыто.
 - c) \mathbb{R}, \emptyset $om \kappa p \omega m \omega$

 \mathcal{A} оказательство. а) Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ - семейство открытых мн-в.

$$G = \bigcup_{\lambda \in \Lambda} G_{\lambda}$$
 и $x \in G$

По опр-ю:

$$\exists \lambda_0 \in \Lambda(x \in G_\lambda$$
 - открыто) $\iff \exists \varepsilon > 0 \colon B_\varepsilon(x) \subset G_\lambda \subset G$

Сл-но, $B_{\varepsilon}(x)\subset G$, т. е. x - внут. точка G

b) ПУсть $\{G_k\}_{k=1}^m$ - семейство открытых мн-в, $G=\bigcap_{k=1}^m G_k, x\in G$. По опр. пересечения:

$$\forall k, x \in G_k \Rightarrow \forall k, \exists \varepsilon_k > 0 \colon B_{\varepsilon_k}(x) \subset G_k$$
$$\varepsilon = \min_{1 \le k \le m} \{ \varepsilon_k \}$$

Тогда $\varepsilon>0$ и $B_\varepsilon(x)\subset B_{\varepsilon_k}(x)\subset G_k, \forall k\Rightarrow B_\varepsilon(x)\subset G=\bigcap_{k=1}^m$, т. е. x - внут. точка G

с) Открытость \mathbb{R}, \emptyset следует из опр-я.

<u>Лемма</u> **2.2.** а) Объединение конечного семейства замкнутых мн-в замкнуто

- b) Пересечение любого семейства замкнутых мн-в замкнуто
- c) \mathbb{R}, \emptyset замкнуты

Доказательство. а, b)

$$\mathbb{R}\backslash(\bigcap_{\lambda\in\Lambda}F_{\lambda})=\bigcup_{\lambda\in\Lambda}(\mathbb{R}\backslash F_{\lambda}).$$

$$\mathbb{R}\backslash(\bigcup_{k=1}^{m}F_{k})=\bigcap_{k=1}^{m}(\mathbb{R}\backslash F_{k})$$

с) Очев.

Определение 2.4. Пусть $E \subset \mathbb{R}$ и $x \in \mathbb{R}$. Точка x наз-ся предельной точкой мн-ва E, если:

$$\forall \varepsilon > 0(B_{\varepsilon}(x) \cap E \neq \emptyset)$$

<u>Лемма</u> **2.3.** Точка x - предельная точка \iff

$$\exists \{x_n\}_{x_n \neq x} \subset E \colon (x_n \to x)$$

 $\begin{subarray}{ll} \begin{subarray}{ll} \begin$

$$x_n \in \overset{\circ}{B_{\frac{1}{n}}}(x) \cap E, \forall n \Rightarrow x_n \neq x \text{ и } x_n \in E \Rightarrow x - \frac{1}{n} < x_n < x + \frac{1}{n} \Rightarrow x_n \to x$$

<=) Зафикс. $\varepsilon>0$. Тогда $\exists N\colon \forall n\geq N(x_n\in(x-\varepsilon,x+\varepsilon))$ Сл-но, $x_N\in \overset{\circ}{B}_{\varepsilon}(x)\cap E$

Теорема 2.4 (Критерий замкнутости). Следующие утв. эквивалентны:

- 1) E замкнуто;
- 2) Е содержит все свои граничные точки;
- 3) Е содержит все свои предельные точки;
- 4) Если п-ть $\{x_n\}$ точек из E сходится κ x, то $x \in E$

Доказательство.

- 1=>2) Пусть $x\in\mathbb{R}ackslash E$ (открытое) $\Rightarrow\exists B_{arepsilon}(x)\subset\mathbb{R}ackslash E$, т. е. x внешняя точка E. Тогда $\sigma E\subset E$
- 2 = > 3) E содержит все свои граничные точки. Рассм. 2 случая:
 - а) x внутренняя точка $\Rightarrow x \in E$
 - b) x граничная точка $E\Rightarrow x\in E$ по усл. 2)
- 3 = > 4) Пусть $\{x_n\} \subset E, x_n \to x$

Предположим, что $x \not\in E \stackrel{\mbox{\scriptsize J}2}{\Rightarrow} x$ - предельная точка E

 $4 => 1) \ x \in R \backslash E.$ Предположим, что x - не внутренняя точка E. Тогда:

$$\forall n \colon B_{\frac{1}{n}}(x) \cap E \neq \emptyset$$

Пусть $x_n \in B_{\frac{1}{n}}(x)$. Имеем $\{x_n\} \subset E \Rightarrow x_n \to x \in E!!!!!!!$

<u>Пример.</u> Пусть L - мн-во част. пределов числовой n-ть $\{a_n\}$. Покажем, что L - замкнуто.

Доказательство. Пусть $\{x_n\} \subset L, x_n \to x$

По опр-ю част. предела, найдётся строго возрастающая п-ть номеров $\{\,n_k\,\},$ что $|a_{n_k}-x_k|<\frac{1}{k}$

Сл-но:

$$|a_{n_k} - x| \le |a_{n_k} - x_k| + |x_k - x| < \frac{1}{k} + |x_k - x|$$

Т. е. $x \in L$, по эквив. п.1 и п. 4 (Теоремы 2.4) заключаем, что L - замкнуто. \square

Определение 2.5. $\overline{E}=E\cup\sigma E$ - замыкание мн-ва E

 $\underline{\underline{\mathbf{Леммa}}}$ **2.5.** \underline{M} н-во \overline{E} является замкнутым. Кроме того, $\overline{E} = E \cup \{x\colon x \text{ - } npe$ дельная точка $E\}$

Доказательство. Пусть $x \in \mathbb{R} \backslash \overline{E} \Rightarrow x$ - внешн. точка E, т. е.

$$\exists B_{\varepsilon}(x) \subset \mathbb{R} \backslash E$$

Если $B_{\varepsilon}(x) \cap \sigma E \neq \emptyset$, то $B_{\varepsilon}(x) \cap E \neq \emptyset$!!!

Сл-но,
$$B_{\varepsilon}(x)\subset\mathbb{R}\backslash\overline{E}$$
, т. е. x - внут. точка $\mathbb{R}\backslash\overline{E}$

Вторая часть следует из наблюдений:

- (1) любая предельная точка E либо внутренняя, любо граничная.
- (2) граничная точка E, не принадлежащая E, является предельной.

Задача **2.1.** 1)
$$x \in \overline{E} \iff \exists \{x_n\} \subset E(x_n \to x)$$

2) $\overline{E} = \bigcap \{ F \colon F$ - замкнуто или $F \supset E \}$

3 Лекция 9

Определение 3.1. Семейство $\{G_{\lambda}\}$ наз-ся покрытием мн-ва E, если $E\subset\bigcup_{\lambda\in\Lambda}G_{\lambda}$. Покрытие наз-ся открытым, если все G_{λ} открыты.

<u>Пример</u>. $\left\{\left(\frac{1}{n},1\right)\right\}_{n\in\mathbb{N}}$ - открытое покр-е (0,1)

$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n}, 1\right)$$

Теорема 3.1 (Лемма Гейне-Бореля). Если $\{G_{\lambda}\}_{{\lambda} \in \Lambda}$ образует открытое покр-е отрезка [a,b], то:

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda : ([a, b] \subset G_{\lambda_1} \cup \dots \cup G_{\lambda_n})$$

Доказательство. Предположим, что из открытого покр-я $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ отрезка [a,b] нельзя выбрать конечное подпокрытие.

Разделим [a,b] пополам и обозначим за $[a_1,b_1]$ ту его половину, кот. не покрыв-ся конечным набором G_{λ} .

Разделим $[a_1,b_1]$ пополам и обозначим за $[a_2,b_2]$ ту его половину, кот. не покр-ся конечным набором G_{λ}

. . .

По индукции будет построена стягивающаяся п-ть отрезков, каждый из кот. не покрыв-ся конечным набором G_{λ}

По т. Кантора о вложенных отрезках, найдётся т. $c \in \bigcap_{i=1}^n [a_i, b_i]$. Т. к.

$$c \in [a,b] \subset \bigcup_{\lambda \in \Lambda} G_{\lambda} \Rightarrow \exists \lambda_0 \in \Lambda(c \in G_{\lambda} \text{ - открытое})$$

$$\Rightarrow \exists B_{\varepsilon}(c) \subset G_{\lambda_0}$$

Выберем k так, что $b_k - a_k = \frac{b-a}{2^k} < \varepsilon$

Сл-но, $c-a_k<\varepsilon$ и $b_k-c<\varepsilon$. Откуда:

$$[a_k,b_k]\subset B_{arepsilon}(c)\subset G_{\lambda_0}!!!(c$$
 построением п-ти $\{\,[a_n,b_n]\,\})$

Следствие. Если F - замкнутое огр. мн-во в \mathbb{R} и $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ - откр. покр-е F, то:

$$\exists \lambda_1, \dots, \lambda_n \in \Lambda \colon (F \subset G_{\lambda_1} \cup \dots \cup G_{\lambda_n})$$

Доказательство. Т. к. F - огр., то $\exists [a,b]\colon F\subset [a,b]$. Сем-во $\{G_\lambda\}_{\lambda\in\Lambda}\cup\{\mathbb{R}\backslash F\}$ отк-е покр-е [a,b], т. к. $\bigcup_{\lambda\in\Lambda}G_\lambda\cup(\mathbb{R}\backslash F)=\mathbb{R}$

По т. Гейне-Бореля $\exists \lambda_1, \dots, \lambda_n \in \Lambda$:

$$[a,b] \subset G_{\lambda_1} \cup G_{\lambda_2} \cup \ldots \cup G_{\lambda_n} \cup (\mathbb{R} \backslash F)$$
$$\Rightarrow F \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_n}$$

Введм следующее обозначение:

Обозначение.

$$B_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty) \cup \{+\infty\} - \varepsilon\text{-окр-ть} +\infty$$

$$\mathring{B}_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}, +\infty) - \text{проколотая } \varepsilon\text{-окр-ть} +\infty$$

$$B_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon}) \cup \{-\infty\}$$

$$\mathring{B}_{\varepsilon}(-\infty) = (-\infty, -\frac{1}{\varepsilon})$$

Поскольку все определения этого параграфа давались на языке окртей, то всё это верно и для $\overline{\mathbb{R}}$

 $E\subset\overline{\mathbb{R}}$. В част-ти $+\infty(-\infty)$ - предел. точка мн-ва $E\subset\overline{\mathbb{R}}\iff E\setminus\{+\infty\}$ неогр. сверху $(E\setminus\{-\infty\}$ - неогр. снизу).

На языке окр-ти можно дать общее определение предела:

Определение 3.2. Точка в $b \in \overline{\mathbb{R}}$ наз-ся пределом числовой п-ти $\{a_n\}$, если:

$$\forall \varepsilon > 0, \exists N \colon \forall n \ge N(a_n \in B_{\varepsilon}(b))$$

3.1 §4: Непрерывные ф-ции

3.1.1 Предел ф-ции в точке

Пусть $\exists \in \mathbb{R}$, задана ф-ция $f: E \to \mathbb{R}$. Пусть $a, b \in \overline{\mathbb{R}}$

Определение 3.3 (по Коши). Точка b наз-ся пределом ф-ции f в т. a, если a - предельная точка мн-ва E и:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(x \in \overset{\circ}{B_{\delta}}(a) \to f(x) \in B_{\varepsilon}(b))$$

Пишут $b = \lim_{x \to a} f(x)$ или $f(x) \to b$ при $x \to a$

$$(f(\overset{\circ}{B_{\delta}}(a)\cap E)\subset B_{\varepsilon}(b))$$

Замечание. Если для ф-ции $f:\mathbb{N}\to\mathbb{R}$ - положить $a=+\infty$: дост-но положить $N=\left\lfloor \frac{1}{\delta}\right\rfloor +1$

Определение 3.4. Число b наз-ся пределом ф-ции f в точке $a \in \mathbb{R}$, если a - предельная точка мн-ва E и:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in E(0 < |x - a| < \varepsilon \Rightarrow |f(x) - b| < \varepsilon)$$

Определение 3.5 (по Гейне). Точка b наз-ся пределом ф-ции f в точке a, если a - предельная точка мн-ва E и:

$$\forall \{x_n\}, x_n \in E \setminus \{a\} (x_n \to a \Rightarrow f(x_n) \to b)$$

Замечание. Поскольку a - предельная точка мн-ва E, то

$$\forall \delta > 0 \colon \overset{\circ}{B_{\delta}}(a) \cap E \neq \emptyset$$

 $u \ cyu -em \{x_n\} \subset E \setminus \{a\}, x_n \to a$

Пример.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

 $a \in \mathbb{R}$ - предельная точка \mathbb{R}

Покажем, что:

$$\lim_{x \to a} x^2 = a^2$$

Зафикс. $\varepsilon > 0$ и пусть $\delta \leq 1$:

$$0 < |x - a| < \delta \le 1$$

$$|x + a| = |x - a + 2a| < |x - a| + 2|a| \le 1 + 2|a|$$

Возъмем $\delta = \min\{1, \frac{\varepsilon}{2|a|+1}\}$:

$$0<\left|x-a\right|<\delta\iff 0<\left|x-a\right|<\frac{\varepsilon}{2\left|a\right|+1}\iff \left|x^{2}-a^{2}\right|<\left|x-a\right|\left(2\left|a\right|+1\right)<\varepsilon$$

Рассм. по Гейне:

$$x_n \neq a, x_n \to a \Rightarrow x_n^2 \to a^2 \iff f(x_n) \to f(a)$$

Теорема 3.2. Определения по Коши и по Гейне равносильны.

Доказательство. Пусть $f: E \to \mathbb{R}$ и a - предельная точка мн-ва E.

Опр. $1 \Rightarrow$ **Опр.** 2) Пусть $b = \lim_{x \to a} f(x)$ по Коши

Рассм. произвольную п-ть $\{x_n\}$, $x_n \in E \setminus \{a\}$ и $x_n \to a$. Заф. $\varepsilon > 0$. По опр-ю предела ф-ции $\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E \colon (f(x) \in B_{\varepsilon}(b))$

Т. к. $x_n \to a$, то $\exists N, \forall n \geq N (x_n \in B_{\delta}(a))$. Имеем $x_n \in B_{\delta}(a) \cap E$ при всех $n \geq N$, а значит, $f(x_n) \in B_{\varepsilon}(b)$ при всех $n \geq N$. Сл-но, $f(x_n) \to b$. Опр. 2 выполн-ся.

Опр. 2 \Rightarrow **Опр. 1**) Пусть $b = \lim_{x \to a} f(x)$ по Гейне. Предположим, что Опр. 1 не выполняется:

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x \in E(x \in \overset{\circ}{B_{\delta}}(a) \land f(x) \not\in B_{\varepsilon}(b))$$

Положим $\delta = \frac{1}{n}, n \in \mathbb{N}$ и соотв. знач-е x обозначим через x_n . По индукции будет построена посл-ть $\{x_n\}$, т. ч. $x_n \in \mathring{B}_{\frac{1}{n}}(a) \cap E$.

Имеем $\{x_n\}\subset E\backslash\{a\}$ и по т. о зажатой п-ти $x_n\to a$, а значит $f(x_n)\to b$

По опр-ю предела посл-ти $\exists N, \forall n \geq N(f(x_n) \in B_{\varepsilon}(b))!!!$

Сл-но опр. 2 не выполняется !!!

<u>Замечание</u>. Опр-е предела по Гейне можно ослабить, считая, что $\{x_n\}$ монотонна. (Задача !)

Св-ва предела ф-ции:

Пусть $f, g, h : E \to \mathbb{R}$ и a - предел. точка E:

C1: (Единственность предела) Если $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$, то b=c

Доказательство. Рассм. произвольую п-ть $\{x_n\}, x_n \in E \setminus \{a\}$ и $x_n \to a$

По опр-ю Гейне $f(x_n) \to b$ и $f(x_n) \to c$. Т. к. предел посл-ти единственнен, то b=c

С2: (Предел по подмн-ву) Если a - предел. точка мн-ва $D \subset E$ и

$$\lim_{x \to a} f(x) = b$$

Тогда $\lim_{x\to a} (f|_D) = b$

Доказательство. Рассм. произв. $\{x_n\}, x_n \in D \setminus \{a\}, x_n \to a$. Тогда:

$$(f|_D)(x_n) = f(x_n) \to b$$

По опр-ю Гейне $b = \lim_{x \to a} (f|_D)(x)$

С3: (Предел зажатой ф-ции) Если:

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E \colon (f(x) \le h(x) \le g(x))$$

и $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = b$, то сущ-ет $\lim_{x\to a} h(x) = b$

Доказательство. Рассм. произв. $\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$. Тогда $\exists N, \forall n \geq N (x_n \in \overset{\circ}{B_{\delta}}(a) \cap E)$, а значит:

$$f(x_n) \le h(x_n) \le g(x_n), \forall n \ge N$$

По т. о зажатой п-ти:

$$\begin{cases} f(x_n) \to b \\ g(x_n) \to b \end{cases} \Rightarrow h(x_n) \to b$$

По опр-ю Гейне $b = \lim_{x \to a} h(x)$

- С4: (Свойство локализации) Если f и g совпадают на $\overset{\circ}{B}_{\delta}(a) \cap E$ и $\lim_{x\to a} f(x) = b$, то сущ-ет $\lim_{x\to a} g(x) = b$
- С5: **(Арифм. операции с пределами)** Пусть $\lim_{x\to a} f(x) = b, \lim_{x\to a} g(x) = c.$ Тогда:

$$\lim_{x \to a} (f(x) \pm g(x)) = b \pm c$$

$$\lim_{x \to a} (f(x)g(x)) = bc$$

3) Если $c \neq 0$ и $g(x) \neq 0$ на E, то:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{b}{c}$$

Следствие. Если сущ-ет величина справа, то сущ-ет величина справа и рав-во выполняется

Доказательство. Рассм. произвольную п-ть:

$$\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$$

Тогда $f(x_n) \to b$ и $g(x_n) \to c$. По св-вам предела п-ти:

$$f(x_n) \pm g(x_n) \to b \pm c$$

 $f(x_n)g(x_n) \to bc$
 $\frac{f(x_n)}{g(x_n)} \to \frac{b}{c}$

⇒ По опр. предела ф-цию по Гейне:

$$(f \pm g)(x) \to b \pm c$$

$$(fg)(x) \to bc$$

 $\left(\frac{f}{g}\right)(x) \to \frac{b}{c}$

При $x \to a$.

C6: (Лок. огр-ть) Если сущ. конечный $\lim_{x\to a} f(x)$, то

$$\exists \delta > 0, \exists C > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x)| \le C)$$

Доказательство. Пусть $\lim_{x\to a} f(x) = b$. Тода

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(b-1 < f(x) < b+1)(\varepsilon = 1)$$

Положим тогда C = |b| + 1.

С7: (Предел композиции) Пусть заданы ф-ции:

$$f: E \to \mathbb{R}, f(E) \subset D, g: D \to \mathbb{R}$$
:

$$\lim_{x \to a} f(x) = b, \lim_{y \to b} g(y) = c$$

Пусть вып-но хотя бы одно из условий:

- 1) $f(x) \neq b$ в некот. проколотой окр-ти a
- $2) \quad g(b) = c$

Тогда $\lim_{x\to a} g(f(c)) = c = \lim_{y\to b} g(y)$

Доказательство. Зафикс. $\varepsilon > 0$. По опр-ю предела ф-ции:

$$\exists \sigma > 0, \forall y \in \overset{\circ}{B_{\sigma}}(b) \cap D(g(y) \in B_{\varepsilon}(c))$$

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(f(x) \in B_{\sigma}(b))$$

1) Уменьшая $\delta>0$, если необ-мо, можно считать, что $f(x)\neq b$ для всех $x\in \overset{\circ}{B_{\delta}}(a)\cap E.$

Тогда
$$f(x) \in \overset{\circ}{B_{\sigma}}(b), a$$
 - ...,

$$g(f(x)) \in B_{\varepsilon}(c)$$

Сл-но,
$$c = \lim_{x \to a} (g \circ f)(x)$$

2) Если
$$f(x) = b$$
, для некот. т. $x \in \overset{\circ}{B_{\delta}}(a) \cap E$, то

$$g(f(x)) = g(b) = c \in B_{\varepsilon}(c)$$

Сл-но,
$$g(f(x))\in B_{\varepsilon}(c)$$
, для всех $x\in \overset{\circ}{B_{\delta}}(a)$. Так что $c=\lim_{x\to a}(g\circ f)(x)$

<u>Замечание</u>. Выполнение хотя бы одного из условий **существенно** для \exists предела.

Пример.

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 1, x = 0 \\ 0, x \neq 0 \end{cases}$$

$$g = f$$

$$\lim_{x \to 0} f(x) = 0, \lim_{y \to 0} g(y) = 0, g(f(x)) = \begin{cases} 1, x \neq 0 \\ 0, x = 0 \end{cases}$$

$$\lim_{x \to 0} g(f(x)) = 1 \pm \lim_{y \to 0} g(y)$$

4 Лекция 10

4.1 Критерий Коши для предела ф-ции

Теорема 4.1 (Критерий Коши сущ-е предела ф-ции). Пусть:

$$f: E \to \mathbb{R}$$

а предельная точка мн-ва Е

$$\exists \lim_{x \to a} f(x) \in \mathbb{R} \iff \forall \varepsilon > 0, \exists \delta > 0 \colon \forall x, x' \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x) - f(x')| < \varepsilon)$$
(1)

Доказательство.

 \Rightarrow) Заф. $\varepsilon > 0$. Пусть предел ф-ции = b. По опр. предела ф-ции:

$$\exists \delta > 0, \forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(|f(x) - b| < \frac{\varepsilon}{2})$$

Тогда для любых $x, x' \in \overset{\circ}{B_{\delta}}(a) \cap E$:

$$|f(x) - f(x')| \le |f(x) - b| + |f(x') - b| < \frac{\varepsilon}{2} \cdot 2 = \varepsilon$$

 \Leftarrow) Пусть для f выполнено (1). Покажем, что f удов-ет опр-ю предела по Гейне. Заф. $\varepsilon>0$ и выберем соотв. $\delta>0$ из (1).рассм. произ. п-ть:

$$\{x_n\}, x_n \in E \setminus \{a\}, x_n \to a$$

Тогда $\exists N, \forall n \geq N(x_n \in \overset{\circ}{B_{\delta}}(a) \cap E)$, а значит:

$$|f(x_n) - f(x_m)| < \varepsilon, \forall n, m \ge N$$

Так что п-ть $\{f(x_n)\}$ - фундаментальна \Rightarrow по критерию Коши для п-тей $f(x_n) \to b \in \mathbb{R}$.

Рассм. ещё п-ть $\{y_n\}, y_n \in E \setminus \{a\}, y_n \to a$. Тогда:

$$\varepsilon > 0, \exists n_0, \forall n \ge n_0(x_n, y_n \in \overset{\circ}{B_\delta}(a) \cap E)$$

Значит:

$$|f(x_n) - f(y_n)| < \varepsilon$$

Сл-но, $f(x_n) - f(y_n) \to 0$, откуда $f(y_n) \to b$. По Гейне,

$$b = \lim_{x \to a} f(x)$$

4.2 Односторонние пределы

Определение 4.1. Пусть $f: E \to \mathbb{R}, a \in \mathbb{R}$.

Если a - предельная точка мн-ва $(a; +\infty) \cap E$, то:

$$\lim_{x \to a} f|_{(a; +\infty) \cap E}(x)$$

наз-ся **пределом справа** ф-ции f в т. a.

Если a предельная точка мн-ва $(-\infty;a)\cap E,$ то:

$$\lim_{x \to a} f|_{(-\infty;a) \cap E}(x)$$

наз-ся **пределом слева** ф-ции f

Обозначение.

$$f(a+0)$$
 или $\lim_{x\to a+0} f(x)$

$$f(a-0)$$
 или $\lim_{x\to a-0} f(x)$

По опр-ю:

$$f(+\infty - 0) = \lim_{x \to +\infty} f(x)$$

$$f(-\infty + 0) = \lim_{x \to -\infty} f(x)$$

<u>Лемма</u> 4.2. Пусть $a \in \mathbb{R}$ и задана $f : E \to \mathbb{R}$

Пусть a - предел. точка мн-ва $(-\infty; a) \cap E$ и $(a; +\infty) \cap E$. Тогда:

$$\exists \lim_{x \to a} f(x)(e \mathbb{R}) \iff f(a+0) = f(a-o)$$

 $\Leftarrow f(a=0) = b = f(a-0)$. Заф. $\varepsilon > 0$. По опр-ю одност. пределов:

$$\exists \delta_1 > 0, \forall x \in (a - \delta_1, a) \cap E(f(x) \in B_{\varepsilon}(b))$$

$$\exists \delta_2 > 0, \forall x \in (a, a + \delta_2) \cap E(f(x \in B_{\varepsilon}(a)))$$

Положим $\delta = min(d_1, d_2)$. Тогда:

$$\forall x \in \overset{\circ}{B_{\delta}}(a) \cap E(f(x) \in B_{\varepsilon}(b))$$

Сл-но, $\exists \lim_{x \to a} f(x) = b$

Определение 4.2. Пусть $f: E \to \mathbb{R}$ и $D \subset E$.

 Φ -ция f наз-ся нестрого возрастающей (убывающей) на D, если:

$$\forall x_1, x_2 \in D(x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)) (\text{ cootb. } (f(x_1) \ge f(x_2)))$$

Теорема 4.3 (О пределе монотонной ф-ции). Пусть $a, b \in \overline{\mathbb{R}}; a < b$. Если ф-ция f нестрого возрастает на (a,b), то:

$$\exists \lim_{x \to a+0} f(x) = \inf_{(a,b)} f(x)$$

$$\exists \lim_{x \to b-0} f(x) = \sup_{(a,b)} f(x)$$

Eсли f нестрого убыв., то $\sup u$ inf меняются местами.

Доказательство. Пусть f нестрого возрастает на (a,b). Положим $s=\sup_{(a,b)}f(x)\in\overline{\mathbb{R}}.$ По опр-ю sup:

$$\forall r < s, \exists x_r \in (a,b) \colon (f(x_r) > r)$$

Откуда в силу возрастания вып-но:

$$r < f(x) < s, \forall x \in (x_r, b)$$

Зафикс. $\varepsilon>0$. Положим $s-\varepsilon=r,$ если $s\in\mathbb{R},$ и $\frac{1}{\varepsilon}=r,$ если $s=+\infty.$ Тогда:

$$f(x) \in B_{\varepsilon}(s), \forall x \in (x_r, b)$$

Если $b \in \mathbb{R}$, то $\delta = b - x_2 \Rightarrow (b - \delta, b) \subset (x_r, b)$

Если
$$b=+\infty$$
, то $\delta=\frac{1}{|x_r|+1}\Rightarrow (\frac{1}{\delta},+\infty)\subset (x_2,b)$

Следствие. Если ф-ция f монотонна на (a,b) и $c \in (a,b)$, то сущ-ют конечные f(c-0) и f(c+0), причём

$$f(c-0) \le f(c) \le f(c+0)$$
, - если f нестрого возр-ет;

$$f(c-0) \ge f(c) \ge f(c+0)$$
 - если f нестрого убыв-ет.

Доказательство. Для опред-ти, пусть f нестрого возр-ет на (a,b). Тогда:

$$f(x) \le f(c), \forall x \in (a, c) \Rightarrow f(c - 0) = \sup_{(a, c)} f(x) \le f(c)$$

$$f(c) \le f(x), \forall x \in (c,b) \Rightarrow f(c+0) = \inf_{(b,c)} f(x) \ge f(c)$$