

INT354 Machine Learning Foundations

Machine Learning Classifiers using Scikit-learn

Introduction to scikit-learn

- Machine Learning in Python
- Simple and Effective tools for data mining and data Analysis
- Built on Numpy, Scipy, Matplotlib
- Open source, commercially usable BSD license
- Accessible to everybody, reusable in various contexts

How to Install?

Python Idle

pip install scikit-learn

Anconda

conda install scikit-learn

Jupyter Note Book

!pip install scikit-learn

No Free Lunch Theorem

No Classifier works best across all possible scenarios.

Choosing a classification Algorithm?

Parameters for choosing a classification algorithm

- Performance may depends on
 - Number of features
 - Number of samples
 - The amount of noise in dataset
 - Classes are linearly separable or NOT.

Selection of Features

Features to classify dissimilar Object

Tiger Vs Leopard

Selection of Features

Features to classify similar Object

Jaguar Vs Leopard

Training a machine learning algorithm

Training a machine learning algorithm can be summarized in 5 main steps.

- 1. Selection of features
- 2. Choosing a performance Metrics
- 3. Choosing a classifier and Optimization Algorithm.
- 4. Evaluating the performance of model
- 5. Tuning the algorithm.

Perceptorn

- 2 class classifier
- Linear separable patterns

Training Perceptron using scikit-rearn

- Major Steps involved
 - 1. Load dataset
 - 2. Divide the data in train and test
 - 3. Feature Scaling
 - 4. Train Perceptron model
 - 5. Check accuracy
 - 6. Plot Decision Boundary

Available Datasets in scikit

- load_boston()
- load_iris()
- load_diabetes()
- load_digits()
- load_linnerud()
- load_wine()
- load_breast_cancer()

Load Dataset

from sklearn import datasets
Iris=datasets.load_iris()
x=iris.data
y=iris.target

Split data in train and test

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test =
train_test_split(x,y,test_size=0.2,random_state=0)
print(np.shape(x))
print(np.shape(x_train))
print(np.shape(x_test))
```


Feature Scaling

```
from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc.fit(x_train) x_train_std=sc.transform(x_train) x_test_std=sc.transform(x_test)
```

Note:

- fit() method estimates the sample mean(μ) and standard deviation (σ) for each feature dimension from the training data.
- transform() method standardized the training data and test data using the estimated parameters.

Train Perceptron Model

from sklearn.linear_model import Perceptron ppn=Perceptron(eta0=0.1, random_state=0) ppn.fit(x_train_std, y_train)

Note:

- If learning rate is too large, then algorithm will overshoot the global cost minimum.
- If learning rate is too small, then algorithm requires more epochs until convergence.

Prediction on new data

```
y_pred=ppn.predict(x_test_std)
print('Misclassified Samples: %d' %(y_test != y_pred).sum())
```


Compute Accuracy

from sklearn.metrics import accuracy_score
print('Accuracy: %f '%accuracy_score(y_test,y_pred))

Logistic Regression and Conditional Probabilities

- Measures the relationship between a target and one or more independent variables by plotting the dependent variable's probability score.
- For example:
 - To predict whether an email is spam or not.
 - Whether the tumor is malignant or not.

Odds Ratio

Odds_Ratio=
$$\frac{P}{1-P}$$

Where P stands for the Probability of positive event.

$$logit(p) = log \frac{p}{(1-p)}$$

$$logit(p(y=1|x)) = wTx$$

To predict the probability whether a sample belongs to certain class, take the inverse of logit function.

$$\emptyset(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$

Where z is net input.

$$z = wTx = w_0 + w_1x_1 + \dots + wmxm$$

Activation Function in Logistic Regression

Sigmoid Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

Decision Boundary

- Set threshold to predict the class of sample.
- Can be linear or nonlinear.
- Increase polynomial order to get complex decision boundary.

Cost Function

$$j(w) = \sum_{i=1}^{n} -\log \left(\emptyset(\mathbf{z}^{(i)})\right) - \left(\mathbf{1} - \mathbf{y}^{(i)}\right) \log(\mathbf{i} - \emptyset(\mathbf{z}^{(i)}))$$

$$j(\emptyset(\mathbf{z}), y; w) = \begin{cases} -\log(\emptyset(\mathbf{z})) & \text{if } y = 1\\ -\log(\mathbf{1} - \emptyset(\mathbf{z})) & \text{if } y = 0 \end{cases}$$

Weight Updating in Logistic Regression

$$wj = wj + \eta \sum_{i=1}^{n} (y^{(i)} - \emptyset(z^{(i)}))x^{(i)}$$

$$w := w + \Delta w$$

$$\Delta wj = -\eta \frac{\partial J}{\partial wj} = \eta \sum_{i=1}^{n} (y^{(i)} - \emptyset(z^{(i)})x^{(i)})$$

Over-fitting and Under-fitting

Note:

- Bias measures how far off the predictions from the correct values.
- Variance measures the consistency of the model prediction for a particular sample instance

Regularization

- Handle collinearity
- Filters out noise from data.
- Prevent over-fitting.
- Introduces additional information (bias) to penalize parameter weights.

L2 Regularization

$$\frac{\lambda}{2} ||w||^{2=\frac{\lambda}{2}} \sum_{j=1}^{m} w^2$$

Here, λ is regularization parameter.

To apply regularization, add regularization term to the cost function.

$$j(w) = \left[\sum_{i=1}^{n} -\log\left(\emptyset(\mathbf{z}^{(i)})\right) - \left(1 - \mathbf{y}^{(i)}\right)\log(i - \emptyset(\mathbf{z}^{(i)}))\right] + \frac{\lambda}{2}||w||^{2}$$

By increasing the value of $\overline{\lambda}$, regularization strength can be increased.

Training logistic regression model with scikit-learn

from sklearn.linear_model import LogisticRegression lr=LogisticRegression(C=1000, random_state=0) lr.fit(x_train_std, y_train)

Advantages of logistic regression

- Doesn't require input features to be scaled.
- Doesn't require any tunning.
- Easy to implement.

Disadvantages of logistic regression

Can't solve non-linear problems.

Support Vector Machine

Objective is to maximize the margin.

Maximum margin

$$w_0 + wTxp_{os} = 1$$
 (1)
 $w_0 + wTxne_g = -1$ (2)

Subtract eq. 1 and 2

$$w^T(x_{pos} - xne_g) = 2$$

Normalize this by the length of vector w,

$$||w|| = \sqrt{\sum_{j=1}^m w^2}_j$$

So, equation becomes:

$$\frac{w^T(xpo_s - xne_g)}{||w||} = \frac{2}{||w||}$$

Left side of equation is called margin.

Non-linear Separable Data

Non-linear separable case

- Slack variables are added for nonlinearly separable data to allow convergence.
- Positive values slack variables are added to the linear constraints:

$$\mathbf{w}^T \mathbf{x}^{(i)} \ge 1 \text{ if } \mathbf{y}^{(i)} = 1 - \xi^{(i)}$$

$$\mathbf{w}^T \mathbf{x}^{(i)} < -1 \text{ if } \mathbf{y}^{(i)} = 1 + \boldsymbol{\xi}^{(i)}$$

Objective Function

Minimize

$$\frac{1}{2}||w||^2+C(\sum_i\xi^{(i)})$$

- C controls the penalty for misclassification.
- C is used to control the width of margin.

Support Vector Machine (Kernels)

- Linear Kernel SVM
- Polynomial Kernel SVM
- Radial Kernel SVM

Linear Kernel SVM

Dot-product

$$K(x,xi) = sum(x*xi)$$

 Defines similarity or distance measure between new data and the support vectors.

Polynomial Kernel SVM

$$K(x,xi) = 1 + sum(x * xi)^{\wedge}d$$

d is the degree of polynomial.

Radial Kernel SVM

$$K(x,xi) = exp(-gamma * sum((x-xi^2)))$$

- Good default value for gamma is 0.1
- Gamma lies in range of 0 to 1.

SVM Advantages

- Works well with unstructured data like text and images.
- The kernel trick is real strength of SVM.
- The risk of over-fitting is less in SVM.
- It scales relatively well to high dimensional data.

SVM Disadvantages

- Choosing a "good" kernel function is not easy.
- Long training time for large datasets.
- Difficult to understand and interpret the final model.

