Словарик

- \circ Для заданных множеств X, Y их *объединение* $X \cup Y$ состоит из всех элементов, принадлежащих хотя бы одному из множеств X, Y; *пересечение* $X \cap Y$ состоит из всех элементов, принадлежащих одновременно каждому из множеств X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества X, Y; *разность* $X \setminus Y$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех элементов множества $X, Y \in X$ состоит из всех $X \in X$ состоит из всех $X \in X$ состоит из всех $X \in X$ состоит
- \circ Множество X, явбляющееся объединением двух непересекающихся множеств Y и Z, называется ∂ изъюнктным объединением $Y \sqcup Z$.
- \circ Множество $X \times Y$, элементами которого являются всевозможные пары (x, y) с $x \in X$, $y \in Y$, называется декартовым произведением множеств X и Y.
- \circ Множество всех таких точек $x \in X$, образ которых равен заданной точке $y \in Y$, называется *полным прообразом* точки y или *слоем* отображения f над y и обозначается $f^{-1}(y) \stackrel{\text{def}}{=} \{x \in X \mid f(x) = y\}$.
- Множетсво $y \in Y$, имеющих непустой прообраз, называется образом отображения f и обозначается $f(X) = \text{im}(f) \stackrel{\text{def}}{=} \{ y \in Y \mid \exists x \in X : f(x) = y \}.$
- \circ Отображение $f: X \to Y$ называется наложением (а также сюръекцией или эпиморфизмом), если $\operatorname{im}(f) = Y$. Мы будем отображать сюръективные отображения стрелками $f: X \twoheadrightarrow Y$.
- \circ Отображение $f: X \to Y$ называется вложение (а также инъекцией или мономорфизмом), если $f(x_1) \neq f(x_2)$ при $x_1 \neq x_2$. Мы будем отображать сюръективные отображения стрелками $f: X \hookrightarrow Y$.
- \circ Отображение $f: X \to Y$, которое является и вложением, и наложемнием называется взаимно однозначным (а также биекцией или изоморфизмом). Мы будем обозначать биекцию стрелками $X \xrightarrow{\sim} Y$.
- \circ Назовём *отношением* на множестве X любое подмножество $R \subset X \times X = \{(a,b) \mid a,b \in X\}.$
- \circ Отношение $\mathcal{R} \subset \mathcal{X} \times \mathcal{X}$ называется *эквивалетностью*, если оно обладает тремя свойствами: (i) рефлексивность: $a \sim a$, $\forall a \in \mathcal{X}$; (ii) транзитивность: для любых $a,b,c \in \mathcal{X}$ из $a \sim b$ и $b \sim c$ вытекает $a \sim c$; (iii) симметричность: $a \sim b \iff b \sim a$, $\forall a,b \in \mathcal{X}$.

Задачи

- 1. Даны множества $A = \{\{1,2\},3,4\}, B = \{1,2,\{3\},4\}$ и $C = \{1,2,3,4\}$.: (a) какие множества являются подмножествами других; (b) количество элементов каждого множества; (c) количество подмножеств каждого множества; (d) найлите $A \cup B$; (e) найдите $(A \cap B) \cup C$; (f) доказать, что $(A \cup C) \cap B = (A \cap B) \cup (C \cap B)$, и (g) доказать, что $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- 2. Нарисуйте все отображения $\{0,1,2\} \rightarrow \{0,1\}$ и $\{0,1\} \rightarrow \{0,1,2\}$. Сколько среди них сюръекций и инъекций?
- 3. Из отображений: (a) $\mathbb{N} \to \mathbb{N}: x \mapsto x^2$; (b) $\mathbb{Z} \to \mathbb{Z}: x \mapsto x^2$, и (c) $\mathbb{Z} \to \mathbb{Z}: x \to 7x$ выделите все вложения, наложения и биекции.
- 4. Найдите слои отображения $\mathbb{Z} \to \mathbb{Z}, x \mapsto x^4$ над точками 0 и 1.
- 5. Отображение $\mathbb{N} \to \mathbb{N}, x \mapsto |x| + 1$. Найдите полный прообраз точки 5.
- 6. Покажите, что если $A \subset B$, то $A \times A \subset B \times B$.
- 7. На множестве $\mathbb Z$ задано отношение $x \sim y \iff x+y$ кратно 2. Докажите, что это является отношением эквивалентности. Найдите классы эквивалентности для чисел 0, 1, 5, -3.
- 8. Рассмотрите множество чисел от 1 до 50. Определите классы эквивалентности так, чтобы два числа были эквивалентны, если они имеют одинаковое

- количество простых делителей. Сколько всего будет классов эквивалентности? Укажите по одному представителю от каждого класса.
- 9. Сколько имеется таких отображений из пятиэлементного множества в двухэлементное, чтобы у каждой точки было не менее двух прообразов.
- 10. Из отображений: (a) $\mathbb{Z}/(12) \to \mathbb{Z}/(12)$, $x \mapsto 2x$; (b) $\mathbb{Z}/(12) \to \mathbb{Z}/(12)$, $x \mapsto 3x$, и (c) $\mathbb{Z}/(12) \to \mathbb{Z}/(12)$, $x \mapsto 7$ выделите все инъекии, сюръекции, а также биекции. Везде найдите образ. А также прообразы каждой точки, проверьте, что множество $\mathbb{Z}/(12)$ распадается в дизъюнктное объединение слоёв.
- 11. Фиксируем $m,n \in \mathbb{N}$. Сколько всего имеется отображений $\{1,2,\ldots,m\} \to \{1,2,\ldots,n\}$: (а) произвольных; (b) биективных; (c) возрастающих; (d) инъективных; (e) неубывающих; (f) сюръективных неубывающих, и (g) сюръективных.
- 12. Про каждое из следующим множеств выясните, существует ли биекция из первого во второе¹ (а) множество натуральных чисел; (b) множество чётных натуральных чисел; (c) множество натуральных чисел без числа 3.
- 13. На квадратном листе $[O;1]^2$ введено отношение, где $(a,b)\sim (c,d)$, если |a-c|=1 и b+d=1. Докажите, что это является отношением эквивалетности, а также назовите получившуюся поверхность.

 $^{^{1}}$ Ноль здесь является натуральным числом.