사회통계 Introduction to Social Statistics 전공필수(3-3-0)

2022년 1학기

Instructor 김현우 (hxk271@psu.edu)

Office Address N15동 414호

Office Hours 메일로 연락후 면담

Classroom N15동 427호

Class Hours 01:00 PM-03:50 PM, 금요일

강의 개요

이 수업에서는 인구, 조직, 정치, 경제, 여론, 미디어, 종교, 교육, 금융, 환경 등을 아우르는 다양한 분야의 현실사회 데이터(공공개방 데이터 포함)를 계량적으로 분석하는 절차와 방법 에 관해 배웁니다. 여러분이 중고등학교 시절에 배운 수학 과목을 기초로 하여, 확률분포와 가설검정의 논리를 직접 실험해보고, 자료 리코딩/변수구축, 평균비교과 분산비교, 상관분석 과 회귀분석 등 기초적인 통계학의 도구를 반복 숙달하게 됩니다.

이 수업은 여러분의 관련 자격증 취득과도 직접적으로 연관되어 있습니다. 이 수업을 포함하여 다음 학기 **사회통계연습**에까지 학습하여 여러분은 컴퓨터활용능력 2급의 스프레드 시트 및 실기 과목과 사회조사분석사 2급의 사회통계 과목에 해당하는 내용을 배우게 됩니다.

이 수업은 사회학과 학부과정 2학년생을 기준으로 설계되었으며 그동안 어떠한 사회통계 과목도 이수하지 않았을 것을 전제로 합니다. 타 학과에서 이미 수학과 통계학 분야 과목을 충분히 이수한 학생을 위한 수업이 아니므로 해당 학생들은 수강 신청에 신중을 기하여야 합니다(최종 점수에 일정한 패널티가 부여됩니다).

여러분은 매일매일 빠지지 않고 수업에 참석해야 하고 수업 후에도 복습을 거듭해야 합니다. 이 수업에서 사용하는 통계분석 패키지는 마이크로소프트 엑셀(Microsoft Excel)입니다. 여러분은 충북대학교가 구입한 마이크로소프트 오피스 라이센스를 무료로 사용할 수 있습니다. 엑셀은 SPSS나 Stata, SAS, R, Python과 같은 전문적인 분석도구는 아니지만 현업에서 폭넓게 사용되는 툴입니다.

선수 과목

없음.

강의 교재

일차적으로 GitHub에서 다운로드 받을 수 있는 유인물을 충실히 공부하면서 장혜정·김현우 (2021)을 통해 복습해야 합니다. 유인물과 교재는 앞으로 최소한 1년 반 이상 전공필수 수업 (사회통계연습 및 사회조사방법론)에서 계속 사용합니다. 수업시간에는 큰 그림과 논리적 흐름을 강조하므로 세밀한 내용을 모두 다룰 수 없습니다. 그러므로 수업이 끝난 뒤 강의교재를 활용해 개인적으로도 반드시 복습을 해야 합니다. (수업에서 다루어진 주제에 한하여) 책에 제시된 문제들도 충실히 풀어보아야 합니다.

- 장혜정·김현우. 2022. 『기초통계학 노트』. 한빛아카데미. (**필수**)
- Jaggia, Sanjiv, Alison Kelly, Kevin Lertwachara, Leida Chen. 2021. 『비즈니스 애널리틱스』. 한빛아카데미. 그린. (참고)

학습 보조자료

• YouTube 또는 Google에서 궁금한 주제를 Excel과 연관검색어로 하여 찾아보면 엄청 나게 많은 자료가 있습니다. 궁금한 점이 있으면 망설이지 말고 즉시 영어로 검색해 보기를 추천합니다. 초보자가 가질만한 거의 모든 질문은 이미 누군가가 던졌고 게다가 대답도 이미 있을 가능성이 높습니다!

강의 구성

- 강의 및 실습: 모든 학생은 반드시 수업에 참여해야 합니다. 수업을 통해 기초적인 개념 과 방법을 복습한 뒤, 엑셀을 사용하여 실습합니다. 수업 내용은 진행될수록 누적되기 때문에 결석 혹은 지각은 향후 이해에 큰 방해가 됩니다. 비대면 수업인만큼 카메라를 켜고 얼굴을 비추어 주십시오. 강의 중간중간에 실습이 함께 진행됩니다. 실습 시간에는 각자의 컴퓨터 환경에서 엑셀을 사용하여 실제 분석을 진행합니다.
- 퀴즈: 거의 매주 퀴즈(take-home quiz)가 아주 조금씩 주어집니다. 각 퀴즈는 반드시 혼자서 도전해야 합니다. 다음 주 수업 전일까지 제출해야 하며, (수업이 끝날때 제출하는 등) 이 데드라인을 넘기면 무효 처리됩니다.
- 시험: 중간고사와 기말고사가 예정되어 있습니다. 컴퓨터를 사용하여 시험을 치릅니다. 원한다면 책이나 인터넷을 참고할 수도 있지만 과연 그럴 시간이 있을까요?

학점 안내사항

모든 과제와 시험 점수는 종합정보시스템에 그때그때 업로드됩니다. 이의사항이 있는 경우점수가 업로드된 즉시 제시되어야 합니다. 최종 학점은 다음 기준에 따라 산출됩니다.

출석 및 수업 참여 (10%)

• 중가시험 (30%)

• 퀴즈 (30%)

• 기말시험 (30%)

수강생 유의사항

- 모든 수업은 별도의 안내가 없는 이상 원칙적으로 대면으로 진행됩니다.
- 수업 전일에 해당 주차 유인물이 GitHub에 업로드됩니다.
- 전체 수업의 4분의 1이상을 결석한 경우 시험에 응시할 수 없습니다.
- 시험관련 부정행위자로 판명되었을 때는 학칙 또는 내규에 의거 해당 교과목의 성적을 취소합니다.

장애학생 수업안내

장애학생은 본 수업과 관련하여 본인 희망시 다음과 같은 지원이 가능합니다. 담당교수 및 장애지원센터와 언제든지 상담 바랍니다.

- 학습지원: 강의 파일 제공, 대필 도우미 및 속기 지원 허락, 강의 녹음 허락, 과제 제출 기간 연장(시각, 손사용 불편 학생), 보조기구 사용 가능 등
- 평가지원: 영어교과 듣기 시험 대체(청각장애학생), 장애종류 및 정도에 따라 시험 시간 1.5배 1.7배 연장, 별도 시험장소 및 시험지 제공, 필요한 경우 학습기자재 사용을 허용

고마우신 분들

종종 잘 알려져 있지 않지만 교육은 사실 집단적 과업의 결과물입니다. "아이 하나를 키우려면 마을 하나가 필요하다(It takes a village to raise a child)"라는 격언처럼 대학원 과목을 하나를 만드는데도 집단적인 노력이 필요합니다. 이 수업의 많은 부분은 제가 스스로 만든 것이 아닙니다. 여기에는 Sarah Font (Penn State), 장혜정(경희대), 박희제(경희대) 등 많은 분들의 강의자료를 활용하였습니다. 도움을 주신 모든 분들께 감사드립니다. 여러분의 피드백은 다음 이 수업을 더욱 발전시키는데 큰 도움이 됩니다.

토픽 개요

기술통계, 교차분석, 그리고 통계적 추정의 논리	1주차	통계학과 자료의 이해
	2주차	자료의 시각화
	3주차	자료의 수치요약
	4주차	자료의 연관성 측도
	5주차	확률이론
	6주차	이론적 확률분포
	7주차	통계적 추정
	8주차	중간시험
목표: 기술통계분석, 교차표/그래프, 확률분포/표집, 가설검정의 논리를 설명할 수 있다.		
분석기법의 활용	9주차	단일집단 가설검정
	10주차	두집단 가설검정
	11주차	분산분석
	12주차	카이제곱분석
	13주차	상관분석과 단순회귀분석
	14주차	세 변수 이상의 관계분석
	15주차	기말시험
목표: t-test/ANOVA, 상관분석/회귀분석을 수행하고 해석할 수 있다.		

4

세부 일정

1주차 통계학과 자료의 이해

TOPICS 사회통계연습의 필요성; 수업의 구성과 당부사항; 통계분석 패키지 비교; Empir-

ical Science; Methods/Methodology; Statistics; Data; Variables; Observations; Quantification; Measurement; Descriptive Statistics; Nominal, Ordinal, Interval,

and Ratio Scales; Continuous and Categorical Scales; Likert Scale

Goal 이 수업의 구성과 진행 방식을 파악한다; 왜 사회통계학을 새삼 "연습"할 필요가

있는지 이해한다; 데이터의 개념을 이해한다; 측정도구와 척도의 개념을 이해한다

2주차 자료의 시각화

Topics Histogram; Boxplot; Pie Chart; X-axis/Y-axis;

GOAL 다양한 그래프의 양식을 살펴보고 Excel로 그것들을 구현한다; 그래프의 조작을

둘러싼 트릭을 살펴본다

3주차 자료의 수치요약

TOPICS Central Tendency; Mean, Median, and Mode; Frequency distribution table; Dis-

persion; Range, Variance, and Standard Deviation; 데이터 불러오기와 저장; 레

이블; Unit of Analysis

GOAL 평균, 최빈치, 중위값 개념에서 출발하여 분산 및 표준편차를 복습한다; Excel로

실제 데이터의 기술통계치를 구한다

4주차 자료의 연관성 측도

TOPICS Covariance; Correlation; Scatterplot; Time-Series Analysis; Cross-Sectional

Analysis; Hypothesis; Independent and Dependent Variable; 변수간 연관성;

Marginals; Mediating, Moderating, and Spurious relationships

GOAL 두 개의 변수 사이의 관계를 살펴볼 수 있는 그래프와 수치요약에 관해 이해한다; 교

차표(cross-tabulations)의 논리와 해석을 이해한다; 조건부 관계와 허위적 관계를

이해하다

세부 일정 (계속)

5주차 확률이론

Topics Probability; Marginal Probability; Conditional Probability; Bayes Rule; Ran-

dom Variable; Probability Distribution; Discrete Random Variable; Continuous

Random Variable; Probability Density Function

GOAL 확률의 기초적인 개념을 이해한다; 한계확률와 조건부확률을 계산할 수 있다; 확률

변수와 확률분포의 아이디어를 이해한다

6주차 이론적 확률분포

Topics Bernoulli Distribution; Binomial Distribution; Uniform Distribution; Normal

Distribution; Unit Variance; Standardization; z-Score; Standard Normal Distri-

bution

GOAL 대표적인 이산확률분포와 연속확률분포를 학습한다; 정규분포와 표준정규분포의

특성을 이해한다; 원점수의 z-score 변환을 수행할 수 있다

7주차 통계적 추정

TOPICS Probability and Non-probability Sampling; Sampling Distribution; Standard Er-

ror of the Mean; Central Limit Theorem; Law of Large Numbers; The 68, 95, and 99 Rule; Statistical Estimation; Point and Interval Estimation; Confidence

Interval (CI); Degree of Freedom

GOAL 표집과정을 좀 더 구체적으로 이해한다; 대수의 법칙과 중심극한명제를 실험적으로

살펴본다; 통계적 추정의 논리를 이해한다

8주차 중간시험

세부 일정 (계속)

9주차 단일집단 가설검정

TOPICS Sampling Error; Sampling Distribution of the Mean; Standard Error of the

Mean; Confidence Interval and Confidence Level; Confidence Intervals for Mean-s/Proportions; Standard Error of the Means/Proportions; p-value; Margin of

Error

GOAL 표집분포의 평균과 표집오차 개념을 실습한다; 평균과 비율의 신뢰구간 개념을

실습한다

10주차 두집단 가설검정

TOPICS Sampling Distribution of the Differences between Means; Null and Research

Hypotheses for Comparing Means; Type I error or α ; z-test; t-distribution; t-

test

GOAL 평균비교의 의미와 목적을 파악한다; t-test를 수행하고 그 결과를 해석한다.

11주차 분산분석

TOPICS F value; F-Distribution; One-Way ANOVA; Two-Way ANOVA

GOAL 분산분석의 의미와 목적을 파악한다; 간단한 ANOVA를 수행하고 그 결과를 해석

한다

12주차 카이제곱분석

TOPICS Chi-square Test; Observed Frequencies; Expected Frequencies

GOAL 카이제곱 검정을 수행하고 그 결과를 해석한다

세부 일정 (계속)

13주차 상관분석과 단순회귀분석

Topics Pearson's Correlation Coefficient; Correlation and Causation; Visualization

of the Correlation; Positive/negative Relations; Non-relationship; Trend Line; Best-Fitting Line; Error and the Least Square; The Sum of the Squared Error;

Slopes and the Intercept of the Regression Equation; Prediction

GOAL 상관관계의 존재 여부와 강도를 그림으로 살펴본다; Pearson의 상관계수의 논리

를 이해하고 실제로 계산한다; 이변량(bivariate) 회귀분석의 아이디어을 복습하고

실행한다; 회귀계수와 표준오차를 해석한다

14주차 세 변수 이상의 관계분석

TOPICS Control Variable; Total, Explained, and Unexplained Variations; The Coefficient

of Determination

GOAL 다중(multiple) 회귀분석의 아이디어를 복습하고 실행한다; 다변량 맥락에서 회귀

계수와 표준오차를 해석한다

15주차 기말시험