Feuille de TD 4: Différentiabilité

Exercice 1.

Étudier la différentiabilité en (0,0) des applications définies par :

1.
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$
 2. $f(x,y) = \begin{cases} \frac{x^5 - y^5}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

2.
$$f(x,y) = \begin{cases} \frac{x^5 - y^5}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Exercice 2.

Étudier la différentiabilité des applications définies sur \mathbb{R}^2 par :

1.
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$
4. $f(x,y) = \begin{cases} \frac{x^3y}{x^4+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
5. $f(x,y) = \begin{cases} \frac{x^3-y^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
6. $f(x,y) = \begin{cases} \frac{x^3-y^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
7. $f(x,y) = \begin{cases} \frac{x^3-y^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
8. $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
8. $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
9. $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
9. $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$
9. $f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2+y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$

Exercice 3.

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par :

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. Etudier l'existence des dérivées partielles et les calculer s'il y a lieu.
- 2. Etudier la continuité des dérivées partielles.
- 3. f est-elle différentiable en (0,0)?

Exercice 4.

Pour les applicatuins suivantes, étudier la continuité de f, l'existence et la continuité des dérivées partielles de f:

1.
$$f(x,y) = \begin{cases} \frac{\sin(x^3) - \sin(y^3)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$
2.
$$f(x,y) = \begin{cases} \frac{\sin(x^2) + \sin(y^2)}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Exercice 5.

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par $f(x,y) = \begin{cases} \frac{x^3 + y^3}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$.

- 1. Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- 2. f est-elle différentiable sur \mathbb{R}^2 ? Préciser s'il y a lieu sa différentielle.

Exercice 6. Différentielle d'une application linéaire

Montrer que toute application linéaire $f: \mathbb{R}^n \to \mathbb{R}$ est différentiable sur \mathbb{R}^n et qu'en tout point a de $\mathbb{R}^n: df_a = f$.

Exercice 7.

Vérifier que l'application f définie par $f(x,y) = x^2y + \cos(x+y)$, est différentiable sur \mathbb{R}^2 et préciser sa différentielle en tout point de \mathbb{R}^2 .

Exercice 8.

Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$.

- 1. Vérifier que $f(x,y) = o(||(x,y)||_2)$.
- 2. En déduire que f est différentiable en (0,0) et préciser $df_{(0,0)}$.

Exercice 9.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ la fonction définie par f(x,y) = (x+y,x-y). Montrer que f est différentiable sur \mathbb{R}^2 et préciser $df_{(a,b)}$ en tout point $(a,b) \in \mathbb{R}^2$.

Exercice 10.

Calculer la différentielle de f au point a indiqué, après avoir justifié son existence, pour :

- 1. $f(x,y) = x^y$ au point a = (1,1).
- 2. $f(x, y, z) = (x + y)e^{x \cos z}$ au point a = (0, 0, 0).
- 3. f(x, y, z, t) = xy + zt en tout point a de \mathbb{R}^4 .
- 4. $f(x_1,\ldots,x_n)=x_1^2+\ldots+x_n^2$ en tout point a de \mathbb{R}^n .