Conversão de NFA- ε em DFA

- NFA- ε $N = \langle \Sigma, S, s_0, \delta, F \rangle$.
- Elementos da transformação NFA/NFA- ε $N \to DFA$ M:
 - (i) Fecho- ε de um estado $s_i \in S$:

$$\mathcal{F}_{\varepsilon}(s_i) = \{s_i\} \cup \{\delta(s_i, \varepsilon) \mid s_i \in \mathcal{F}(s_i)\}.$$

(ii) Função τ de transições de um NFA- ε :

$$\tau(s_i, a) = \bigcup_{s_j \in \mathcal{F}(s_i)} \mathcal{F}(\delta(s_j, a))$$

• DFA $M = \langle \Sigma, S', s'_0, \delta', F' \rangle$, onde $S' = \mathcal{P}(S)$; $s'_0 = \mathcal{F}_{\varepsilon}(s_0)$; $\delta'(Q, a) = \bigcup_{q \in Q} \tau(q, a)$, com $a \in \Sigma$ e $Q \in S'$; e $F' = \{Q' \in S' \mid Q' \cap F \neq \emptyset\}$.

$\mathcal{L}_1 = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_{01} > 0 \text{ ou } |w|_{10} > 0 \}$

- $\mathcal{ER} = ((0^*1^*)^*01 \cup (0^*1^*)^*10)(0 \cup 1)^*$.
- NFA que reconhece a linguagem \mathcal{L}_1 :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_1\} & \{s_0, s_2\} \\ s_1 & \varnothing & \{s_3\} \\ s_2 & \{s_3\} & \varnothing \\ s_3 & \{s_3\} & \{s_3\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_1 :

$\mathcal{L}_2 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ representa um número binário ímpar (sem zeros à esquerda)}\}$

- $\mathcal{ER} = 1 \cup 1(0 \cup 1)^*1$.
- NFA que reconhece a linguagem \mathcal{L}_2 :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \varnothing & \{s_1, s_2\} \\ s_1 & \{s_1\} & \{s_1, s_2\} \\ s_2 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_2 :

$\mathcal{L}_3 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ representa um número binário e } w \pmod{3} = 1\}$

$\mathcal{L}_4 = \{w \in \Sigma^* = \{0,1\}^* \mid w ext{ representa um número binário e } w \geqslant 7\}$

$\mathcal{L}_5 = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ contém } 001 \text{ ou } 110 \}$

- $\mathcal{ER} = (0 \cup 1)^*(001 \cup 110)(0 \cup 1)^*$.
- NFA que reconhece a linguagem \mathcal{L}_5 :

(i)
$$\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$$

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_1\} & \{s_0, s_2\} \\ s_1 & \{s_3\} & \varnothing \\ s_2 & \varnothing & \{s_4\} \\ s_3 & \varnothing & \{s_5\} \\ s_4 & \{s_5\} & \varnothing \\ s_5 & \{s_5\} & \{s_5\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_5 :

 $\mathcal{L}_6 = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém } 001 \text{ ou não contém } 110\}$

 $\mathcal{L}_7 = \{w \in \Sigma^* = \{0,1\}^* \mid \text{ todo } 0 \text{ em } w \text{ \'e adjacente \`a esquerda e \`a direita a um } 1\}$

$\mathcal{L}_8 = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ cont\'em as subcadeias } 01 \text{ e } 10 \}$

- $\mathcal{ER} = (0^+1^+0 \cup 1^+0^+1)(0 \cup 1)^*$.
- NFA que reconhece a linguagem \mathcal{L}_8 :

(i)
$$\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}.$$

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1, s_3\} & \{s_2, s_4\} \\ s_1 & \{s_1, s_3\} & \varnothing \\ s_2 & \varnothing & \{s_2, s_4\} \\ s_3 & \varnothing & \{s_3, s_5\} \\ s_4 & \{s_4, s_6\} & \varnothing \\ s_5 & \{s_7\} & \varnothing \\ s_6 & \varnothing & \{s_7\} \\ s_7 & \{s_7\} & \{s_7\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_8 :

$$\mathcal{L}_9 = \{ w \in \Sigma^* = \{0,1\}^* \mid w = xyz, \text{ com } x \in \{0\}^*, |x| = 2k, y \in \{1\}^+ \text{ e } z \in \{0\}^*, |z| = 0 \text{ ou } |z| = 2k' + 1; \ k, k' \in \mathbb{N} \}$$

$$\mathcal{L}_{10} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = x0y0z \text{ com } |y| = 2k \text{ ou } w = x1y1z \text{ com } |y| = 2k' + 1; \ x,y,z \in \Sigma^*; \ k,k' \in \mathbb{N} \}$$

$$\mathcal{L}_{11} = \{w \in \Sigma^* = \{0,1\}^* \mid \mathbf{pelo} \ \mathbf{menos} \ \mathbf{um} \ 0 \ \mathbf{em} \ w \ \mathbf{n\~ao} \ \mathbf{\acute{e}} \ \mathbf{seguido} \ \mathbf{de} \ 1\}$$

$\mathcal{L}_{12} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém } 101 \text{ e termina com } 1\}$

- $\mathcal{ER} = (0 \cup 1^+00)^*1^+$.
- NFA que reconhece a linguagem \mathcal{L}_{12} :

$$(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$$

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0\} & \{s_1, s_3\} \\ s_1 & \{s_2\} & \{s_1\} \\ s_2 & \{s_0\} & \varnothing \\ s_3 & \varnothing & \{s_3\} \\ \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{12} :

$\mathcal{L}_{13} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 3 \text{ e o terceiro e o penúltimo símbolos de } w \text{ não são 1}\}$

- $\mathcal{ER} = (0 \cup 1)00^+(\varepsilon \cup 1) \cup ((0 \cup 1)10 \cup (0 \cup 1)00^+1(0 \cup 1^+))(1(0 \cup 1^+0) \cup 0^+1(0 \cup 1^+0))^*(1 \cup 0^+(\varepsilon \cup 1)).$
- NFA que reconhece a linguagem \mathcal{L}_{13} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

τ	0	1
s_0	$\{s_1\}$	$\{s_1\}$
s_1	$\{s_2, s_3, s_4\}$	$\{s_2,s_3\}$
s_2	$\{s_5\}$	Ø
s_3	$\{s_6\}$	Ø
s_4	$\{s_8\}$	Ø
s_5	$\{s_5, s_7\}$	$\{s_5\}$
s_6	$\{s_8\}$	$\{s_8\}$
s_7	$\{s_8\}$	$\{s_8\}$
s_8	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_{13} :

 $\mathcal{L}_{14} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém uma quantidade par da subcadeia } 010\}$

 $\mathcal{L}_{15} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém uma quantidade par da subcadeia } 000\}$

$\mathcal{L}_{16} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \pmod{3} = 1 \}$

- $\mathcal{ER} = (1*01*01*0)*1*01*$.
- NFA que reconhece a linguagem \mathcal{L}_{16} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1, s_2\} & \{s_0\} \\ s_1 & \varnothing & \{s_1\} \\ s_2 & \{s_3\} & \{s_2\} \\ s_3 & \{s_0\} & \{s_3\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{16} :

$\mathcal{L}_{17} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 \geqslant 3 \text{ e } |w|_1 \leqslant 2 \}$

- $\mathcal{ER} = (1100 \cup 1010 \cup 1001 \cup 0110 \cup 0101 \cup 0011)0^+ \cup (100 \cup 010 \cup 001)0^+ (\varepsilon \cup 10^*) \cup 0000^* (\varepsilon \cup 10^* \cup 10^*10^*).$
- NFA que reconhece a linguagem \mathcal{L}_{17} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}.$
- (ii) Função τ de transições:

au	0	1
s_0	$\{s_0, s_1, s_2, s_3, s_4, s_5\}$	$\{s_1,s_2\}$
s_1	$\{s_4,s_5\}$	$\{s_2\}$
s_2	$\{s_5\}$	Ø
s_3	$\{s_4, s_5, s_6, s_7, s_8\}$	$\{s_4, s_5\}$
s_4	$\{s_4, s_5, s_7, s_8\}$	$\{s_5\}$
s_5	$\{s_8\}$	Ø
s_6	$\{s_9, s_{10}, s_{11}\}$	$\{s_7,s_8\}$
s_7	$\{s_{10}, s_{11}\}$	$\{s_8\}$
s_8	$\{s_{11}\}$	Ø
s_9	$\{s_{10}, s_{11}\}$	$\{s_{10}, s_{11}\}$
s_{10}	$\{s_{10}, s_{11}\}$	$\{s_{11}\}$
s_{11}	$\{s_{11}\}$	Ø

• DFA que reconhece a linguagem \mathcal{L}_{17} :

$$\mathcal{L}_{18} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w|_0 \geqslant 3 \text{ ou } |w|_1 = 2, \text{ e } w \text{ n\~ao cont\'em } 11 \}$$

$\mathcal{L}_{19} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém exatamente uma ocorrência de } 00 \text{ ou de } 11\}$

$\mathcal{L}_{20} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 3 \text{ e o penúltimo símbolo é } 0\}$

- $\mathcal{ER} = (0 \cup 1)^+ 0 (0 \cup 1)$.
- NFA que reconhece a linguagem \mathcal{L}_{20} :

$$N_{\mathcal{L}_{20}} \xrightarrow{0,1} 0,1 \longrightarrow 0 \longrightarrow 0,1 \longrightarrow 0$$

$$(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$$

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0, s_1\} & \{s_0, s_1\} \\ s_1 & \{s_2\} & \varnothing \\ s_2 & \{s_3\} & \{s_3\} \\ s_3 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{20} :

$\mathcal{L}_{21} = \{ w \in \Sigma^* = \{0,1\}^* \mid |w|_{00} \geqslant 1 \text{ e } |w|_{11} = 0 \}$

- $\mathcal{ER} = (0 \cup 10)(10)*0(0 \cup 10)*(\varepsilon \cup 1).$
- NFA que reconhece a linguagem \mathcal{L}_{21} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_2\} & \{s_1\} \\ s_1 & \{s_2\} & \varnothing \\ s_2 & \{s_4, s_6\} & \{s_3\} \\ s_3 & \{s_2\} & \varnothing \\ s_4 & \{s_4, s_6\} & \{s_6\} \\ s_5 & \{s_4\} & \varnothing \\ s_6 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{21} :

 $\mathcal{L}_{22} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 2 \text{ e os dois primeiros símbolos de } w \text{ são iguais aos dois últimos} \}$

$\mathcal{L}_{23} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não começa com } 10, \text{ mas termina com } 10 \}$

- $\mathcal{ER} = (1 \cup 0^+)1^+0(0^*1^+0)^*$.
- NFA que reconhece a linguagem \mathcal{L}_{23} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_2\} \\ s_1 & \{s_1\} & \{s_3\} \\ s_2 & \varnothing & \{s_3\} \\ s_3 & \{s_4\} & \{s_3\} \\ s_4 & \{s_1\} & \{s_3\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{23} :

 $\mathcal{L}_{24} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um } 0 \text{ e pelo menos dois 1's}\}$

$$\mathcal{L}_{25} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = 0u \text{ e } |w| \text{ \'e par ou } w = 1u' \text{ e } |u'| \text{ \'e par, com } u,u' \in \Sigma^* \}$$

$$\mathcal{L}_{26} = \{w \in \Sigma^* = \{0,1\}^* \mid |w|_0 + |w|_1 = 2k+1, \ k \in \mathbb{N} \ \mathbf{e} \ w \ \mathbf{n\~{ao} \ cont\'{e}m} \ 10\}$$

$$\mathcal{L}_{27} = \{ w \in \Sigma^* = \{0,1\}^* \mid w = xyz, \ x,z \in \{0\}^*, \ y \in \{1\}^+; \ |x|_0 + |z|_0 = 2k, \ |y|_1 = 2k'+1, \ k,k' \in \mathbb{N} \}$$

- $\mathcal{ER} = (00)^*1(11)^*(00)^* \cup 0(00)^*1(11)^*0(00)^*$.
- NFA que reconhece a linguagem \mathcal{L}_{27} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii)Função τ de transições:

au	0	1
s_0	$\{s_1,s_2\}$	$\{s_5\}$
s_1	$\{s_3\}$	Ø
s_2	$\{s_0\}$	$\{s_4\}$
s_3	$\{s_1\}$	$\{s_5\}$
s_4	$\{s_8\}$	$\{s_6\}$
s_5	$\{s_9\}$	$\{s_7\}$
s_6	Ø	$\{s_4\}$
s_7	Ø	$\{s_5\}$
s_8	$\{s_9\}$	Ø
s_9	$\{s_8\}$	Ø

• DFA que reconhece a linguagem \mathcal{L}_{27} :

$\mathcal{L}_{28} = \{w \in \Sigma^* = \{0,1\}^* \mid w = xcycz, \ c \in \Sigma, \ x,y,z \in \Sigma^*; \ |x| = 2k+1, \ |z| = 2k', \ k,k' \in \mathbb{N}; \ |y| = 2\}$

- $\mathcal{ER} = (0 \cup 1)((0 \cup 1)(0 \cup 1))^*(0(0 \cup 1)(0 \cup 1)0 \cup 1(0 \cup 1)(0 \cup 1)1)((0 \cup 1)(0 \cup 1))^*$
- NFA que reconhece a linguagem \mathcal{L}_{28} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii)Função τ de transições:

τ	0	1
s_0	$\{s_1\}$	$\{s_1\}$
s_1	$\{s_2,s_3\}$	$\{s_2, s_4\}$
s_2	$\{s_1\}$	$\{s_1\}$
s_3	$\{s_5\}$	$\{s_5\}$
s_4	$\{s_6\}$	$\{s_6\}$
s_5	$\{s_7\}$	$\{s_7\}$
s_6	$\{s_8\}$	$\{s_8\}$
s_7	$\{s_9\}$	Ø
s_8	Ø	$\{s_9\}$
s_9	$\{s_{10}\}$	$\{s_{10}\}$
s_{10}	$\{s_9\}$	$\{s_9\}$

• DFA que reconhece a linguagem \mathcal{L}_{28} :

$\mathcal{L}_{29} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém uma, duas ou três ocorrências do símbolo } 0\}$

- $\bullet \ \mathcal{ER} = 1^*01^*(\varepsilon \cup 01^*(\varepsilon \cup 01^*)).$
- NFA que reconhece a linguagem \mathcal{L}_{29} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

τ	0	1
s_0	$\{s_1, s_2, s_3\}$	$\{s_0\}$
s_1	$\{s_2\}$	$\{s_1\}$
s_2	$\{s_3\}$	$\{s_2\}$
s_3	Ø	$\{s_3\}$

• DFA que reconhece a linguagem \mathcal{L}_{29} :

$$\mathcal{L}_{30} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = u01^n, \ u \in \Sigma^*, \ n \in \mathbb{N}^+ \}$$

$\mathcal{L}_{31} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ não começa com } 0 \text{ e não termina com } 000 \}$

- $\bullet \ \mathcal{ER} = \varepsilon \cup 1 \cup 10 \cup 100 \cup 1(0 \cup 1)^*(1 \cup 10 \cup 100).$
- NFA que reconhece a linguagem \mathcal{L}_{31} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii)Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \varnothing & \{s_1, s_4\} \\ s_1 & \{s_2\} & \varnothing \\ s_2 & \{s_3\} & \varnothing \\ s_3 & \varnothing & \varnothing \\ s_4 & \{s_4\} & \{s_1, s_4\} \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{31} :

$$\mathcal{L}_{32} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w = uc, \ u \in \Sigma^*, \ c \in \Sigma, \ |u|_c \leqslant 2 \}$$

$\mathcal{L}_{33} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ não contém } 0110 \text{ e não termina com } 01\}$

- $\mathcal{ER} = (1 \cup 0(0 \cup 10)^*111)^*(\varepsilon \cup 0(0 \cup 10)^*(\varepsilon \cup 11)).$
- NFA que reconhece a linguagem \mathcal{L}_{33} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_0\} \\ s_1 & \{s_1\} & \{s_2, s_3\} \\ s_2 & \{s_1\} & \varnothing \\ s_3 & \varnothing & \{s_4\} \\ s_4 & \varnothing & \{s_0\} \\ \hline \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{33} :

 $\mathcal{L}_{34} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| \geqslant 4, \text{ começa com } 0 \text{ e contém pelo menos um 1 do terceiro ao penúltimo símbolo}\}$

 $\mathcal{L}_{35} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k+1, \ k \in \mathbb{N}, \ w \text{ termina com } 1 \text{ e cont\'em pelo menos mais um } \mathbf{1}\}$

$$\mathcal{L}_{36} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k, \ k \in \mathbb{N}, \ w \ extbf{n ilde{ao}} \ extbf{cont ilde{e}m} \ 11\}$$

$\mathcal{L}_{37} = \{w \in \Sigma^* = \{0,1\}^* \mid w = u11, \ u \in \Sigma^* \text{ e todo } 0 \text{ em } u \text{ \'e seguido de um par de símbolos distintos}\}$

- $\mathcal{ER} = 1^+1$.
- NFA que reconhece a linguagem \mathcal{L}_{37} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cc}
\tau & 0 & 1 \\
\hline
s_0 & \varnothing & \{s_0, s_1\} \\
s_1 & \varnothing & \{s_2\} \\
s_2 & \varnothing & \varnothing
\end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{37} :

$\mathcal{L}_{38} = \{ w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém os símbolos } 0 \text{ e } 1, \text{ mas não contém } 00 \}$

$\mathcal{L}_{39} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um 1, mas não contém } 11\}$

- $\mathcal{ER} = 0*1(0+1)*$.
- NFA que reconhece a linguagem \mathcal{L}_{39} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii)Função τ de transições:

$$\begin{array}{c|ccc} \tau & 0 & 1 \\ \hline s_0 & \{s_0\} & \{s_1\} \\ s_1 & \{s_2\} & \varnothing \\ s_2 & \{s_2\} & \{s_1, s_3\} \\ s_3 & \{s_2\} & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{39} :

$\mathcal{L}_{40} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ cont\'em } 00, \text{ mas n\~ao cont\'em } 011\}$

- $\mathcal{ER} = 1*0(10)*0(0 \cup 10)*(\varepsilon \cup 1)$.
- NFA que reconhece a linguagem \mathcal{L}_{40} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii) Função τ de transições:

$$\begin{array}{c|cccc} \tau & 0 & 1 \\ \hline s_0 & \{s_1\} & \{s_0\} \\ s_1 & \{s_3\} & \{s_2\} \\ s_2 & \{s_1\} & \varnothing \\ s_3 & \{s_3\} & \{s_4, s_5\} \\ s_4 & \{s_3\} & \varnothing \\ s_5 & \varnothing & \varnothing \end{array}$$

• DFA que reconhece a linguagem \mathcal{L}_{40} :

 $\mathcal{L}_{41} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém pelo menos um } 00, \text{ mas não contém } 11\}$

 $\mathcal{L}_{42} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ começa com } 0 \text{ e contém } 010 \text{ ou } w \text{ começa com } 1 \text{ e contém } 101\}$

 $\mathcal{L}_{43} = \{w \in \Sigma^* = \{0,1\}^* \mid w \text{ contém dois 1's separados por uma quantidade par de símbolos}\}$

 $\mathcal{L}_{44} = \{w \in \Sigma^* = \{0,1\}^* \mid |w|_0 = 2k, \ k \in \mathbb{N}, \ \text{e cada } 0 \ \text{\'e seguido de pelo menos dois 1's consecutivos} \}$

- $\mathcal{ER} = 1^*(011^+011^+)^*$.
- NFA que reconhece a linguagem \mathcal{L}_{44} :

- $(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$
- (ii)Função τ de transições:

au	0	1
s_0	$\{s_0\}$	$\{s_1\}$
s_1	Ø	$\{s_1,s_3\}$
s_2	Ø	$\{s_0\}$
s_3	Ø	$\{s_5\}$
s_4	Ø	$\{s_2, s_4\}$
s_5	$ \{s_4\} $	$\{s_5\}$

• DFA que reconhece a linguagem \mathcal{L}_{44} :

$\mathcal{L}_{45} = \{w \in \Sigma^* = \{0,1\}^* \mid |w| = 2k, \ k \in \mathbb{N}, \ \mathbf{e} \ w \ \mathbf{começa} \ \mathbf{com} \ 1 \ \mathbf{ou} \ \mathbf{termina} \ \mathbf{com} \ 11\}$

- $\bullet \ \mathcal{ER} = 1 (0 \cup 1) (00 \cup 01 \cup 10 \cup 11)^* \cup 0 (0 \cup 1) (00 \cup 01 \cup 10 \cup 11)^* 11.$
- NFA que reconhece a linguagem \mathcal{L}_{45} :

$$(i) \mathcal{F}_{\varepsilon}(s_0) = \{s_0\}.$$

au	0	1
s_0	$\{s_3\}$	$\{s_1\}$
s_1	$\{s_2\}$	$\{s_2\}$
s_2	$\{s_1\}$	$\{s_1\}$
s_3	$\{s_4\}$	$\{s_4\}$
s_4	$\{s_3\}$	$\{s_3,s_5\}$
s_5	Ø	$\{s_6\}$
s_6	Ø	Ø

• DFA que reconhece a linguagem \mathcal{L}_{45} :

$\mathcal{L}_{46} = \{ w \in \Sigma^* = \{0, 1\}^* \mid w \text{ \'e diferente de } 0, 00, 1, 11 \text{ e } 010 \}$

- $\mathcal{ER} = \varepsilon \cup 01 \cup (10 \cup (11 \cup 00)(0 \cup 1) \cup 01(1 \cup 0(0 \cup 1)))(0 \cup 1)^*$.
- NFA que reconhece a linguagem \mathcal{L}_{46} :

- (i) $\mathcal{F}_{\varepsilon}(s_0) = \{s_0, s_1, s_2\}.$
- (ii) Função τ de transições:

au	0	1
s_0	$\{s_3\}$	$\{s_4\}$
s_1	$\{s_3\}$	Ø
s_2	Ø	$\{s_4\}$
s_3	$\{s_5\}$	$\{s_7\}$
s_4	$\{s_6\}$	$\{s_8\}$
s_5	$\{s_9\}$	$\{s_9\}$
s_6	$\{s_{10}\}$	$\{s_{10}\}$
s_7	$\{s_{11}\}$	$\{s_9\}$
s_8	$ \{s_{10}\} $	$\{s_{10}\}$
s_9	$\{s_9\}$	$\{s_9\}$
s_{10}	$\{s_{10}\}$	$\{s_{10}\}$
s_{11}	$ \{s_9\} $	$\{s_9\}$

• DFA que reconhece a linguagem \mathcal{L}_{46} :

$$\mathcal{L}_{47} = \{ w \in \Sigma^* = \{0, 1\}^* \mid |w|_0 = 2k \ \mathbf{e} \ |w|_1 = 3k', \ k, k' \in \mathbb{N} \}$$