

五插针土壤变送器 (485型)

PR-3001-TR-ECTHPH-N01 Ver 2.0

目录

1章 产品简介	3
1.1 产品概述	3
1.2 功能特点	3
1.3 主要参数	3
1.4 系统框架图	5
1.5 产品选型	6
2 章 硬件连接	
2.1 设备安装前检查	6
2.2.1 传感器接线	
3 章 使用方法	7
6章 常见问题及解决方法	
	1.1 产品概述

第 1 章 产品简介

1.1 产品概述

该变送器性能稳定灵敏度高,响应快,输出稳定,适用于各种土质。是观测和研究盐渍土的发生、演变、改良以及水盐动态的重要工具。通过测量土壤的介电常数,能直接稳定地反映各种土壤的真实水分含量。可测量土壤水分的体积百分比,是符合目前国际标准的土壤水分测量方法。可长期埋入土壤中,耐长期电解,耐腐蚀,抽真空灌封,完全防水。

该变送器适用于土壤墒情监测、科学试验、节水灌溉、温室大棚、花卉蔬菜、草地牧场、土壤速测、植物培养、污水处理、精细农业等场合的温湿度、电导率、PH 值测试。

1.2 功能特点

- 土壤含水率、电导率、温度、氮磷钾以及 PH 值七项合一。
- 门槛低,步骤少,测量快速,无需试剂,不限检测次数。
- 电极采用特殊处理的合金材料,可承受较强的外力冲击,不易损坏。
- 完全密封,耐酸碱腐蚀,可埋入土壤或直接投入水中进行长期动态检测。
- 精度高,响应快,互换性好,探针插入式设计保证测量精确,性能可靠。
- 也可用于水肥一体溶液、以及其他营养液与基质的电导率。
- PH 值测量精度高,可达±0.3PH 准确度,响应速度快,互换性好。

1.3 主要参数

直流供电 (默认)		DC 4.5-30V	
最大功耗		0.5W(24V DC 供电)	
工作温度		-20°C~+60°C	
内核芯片耐温	85℃		
	量程	0-20000us/cm	
山 日 云 分 坐	分辨率	1us/cm	
电导率参数	精度	0-10000us/cm 范围内为±3%FS;	
		10000-20000us/cm 范围内为±5%FS	
	量程	0-100%	
1 1声 1. 八 会 火	分辨率	0.1%	
土壤水分参数	W± 1→	0-50%内±2%,50-100%内±3%	
	精度	(棕壤,60%,25℃)	
土壤温度参数	量程	-40~80°C	

	分辨率	分辨率: 0.1℃	
	精度	±0.5℃ (25℃)	
	量程	3 [~] 9PH	
土壤 PH 参数	分辨率	0.1	
	精度	±0.3PH	
	量程	1-1999 mg/kg(mg/L)	
氮磷钾参数	分辨率	1 mg/kg(mg/L)	
	精度	±2%FS	
电导率温度补偿	内置	温度补偿传感器,补偿范围 0-50℃	
防护等级		IP68	
探针材料		防腐特制电极	
密封材料	黑色阻燃环氧树脂 2米,线缆长度可按要求定制 45*15*123mm		
默认线缆长度			
外形尺寸			
输出信号		RS485(Modbus 协议)	

壳体尺寸

设备尺寸图 (单位: mm)

1.4 系统框架图 单接

本产品也可以多个传感器组合在一条 485 总线使用,理论上一条总线可以 254 个 485 传感器,另一端接入带有 485 接口的 PLC、通过 485 接口芯片连接单片机,或者使用 USB 转 485 即可与电脑连接,使用我公司提供的传感器配置工具进行配置和测试(在使用该配置软件时只能接一台设备)。

多接

1.5 产品选型

PR-					公司代号
	3001-				
		TR-			土壤检测外壳
			NPKPH-		氮磷钾 PH 变送器
			THNPKPH-		温度水分氮磷钾 PH 变送器
			ECNPKPH-		电导率氮磷钾 PH 变送器
			ECTHNPKPH-		电导率温度水分氮磷钾 PH 变送器
			ТНРН-		温度水分 PH 变送器
			ЕСРН-		电导率 PH 变送器
			ЕСТНРН-		电导率温度水分 PH 值变送器
				N01	RS485(Modbus-RTU 协议)

第 2 章 硬件连接

2.1 设备安装前检查

设备清单:

- ■变送器设备1台
- ■合格证、接线说明等
- ■USB 转 485 (选配)

2.2 接口说明

宽电压电源输入 4.5~30V 均可。485 信号线接线时注意 A/B 两条线不能接反,总线上多台设备间地址不能冲突。

2.2.1 传感器接线

线色	说明	备注
棕色	电源正	4.5~30V DC
黑色	电源地	GND
黄色	485-A	485-A
蓝色	485-B	485-B

第 3 章 使用方法

由于电极直接测定土壤中的可溶盐离子的电导率,因此土壤体积含水率需高于约 20%时土壤中的可溶离子才能正确反映土壤的电导率。在长期观测时,灌溉或者降雨后的测量值更接近真实水平。如果进行速测,可先在被测土壤处浇水,

待水分充分渗透后进行测量。

如果在较坚硬的地表测量时,应先钻孔(孔径应小于探针直径),再插入土壤中并将土压实然后测量;变送器应防止剧烈振动和冲击,更不能用硬物敲击。由于变送器为黑色封装,在强烈阳光的照射下会使变送器使急剧升温(可达 50℃以上),为了防止过高温度对变送器的温度测量产生影响,请在田间或野外使用时注意遮阳与防护。

3.1 速测方法

选定合适的测量地点,避开石块,确保钢针不会碰到坚硬的物体,按照所需测量深度抛开表层土,保持下面土壤原有的松紧程度,紧握传感器垂直插入土壤,插入时不可左右晃动,一个测点的小范围内建议多次测量求平均值。

3.2 埋地测量法

垂直挖直径>20cm 的坑,在既定的深度将变送器钢针水平插入坑壁,将坑填埋严实,稳定一段时间后,即可进行连续数天,数月乃至更长时间的测量和记录。

3.3 注意事项

- 1、测量时钢针必须全部插入土壤里。
- 2、避免强烈阳光直接照射到变送器上而导致温度过高。野外使用注意防雷击。
- 3、勿暴力折弯钢针,勿用力拉拽变送器引出线,勿摔打或猛烈撞击变送器。
- 4、变送器防护等级 IP68,可以将变送器整个泡在水中。
- 5、由于在空气中存在射频电磁辐射,不宜长时间在空气中处于通电状态。

第 4 章 配置软件安装及使用

我司提供配套的"485参数配置软件",可以方便的使用电脑读取传感器的参数,同时灵活的修改传感器的设备 ID 和地址。

注意,使用软件自动获取时需要保证 485 总线上只有一个传感器。

4.1 传感器接入电脑

将传感器通过 USB 转 485 正确的连接电脑并提供供电后,可以在电脑中看到正确的 COM 口("我的电脑—属性—设备管理器—端口"里面查看 COM端口)。

打开资料包,选择"调试软件"---"485参数配置软件",找到 21.exe 开即可。

如果在设备管理器中没有发现 COM 口,则意味您没有安装 USB 转 485 驱动(资料包中有)或者没有正确安装驱动,请联系技术人员取得帮助。

4.2 传感器监控软件的使用

- ①、配置界面如图所示,首先根据 3.1 章节的方法获取到串口号并选择正确的串口。
- ②、点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为4800bit/s,默认地址为0x01。
- ③、根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④、如果测试不成功,请重新检查设备接线及485驱动安装情况。

第 5 章 通信协议

5.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC(冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

5.2 数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 = 1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数

据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低位	校验码高位
1 字节	1字节	2 字节	2 字节	1字节	1字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	第二数据区	第 N 数据区	校验码
1 字节	1字节	1 字节	2 字节	2 字节	2 字节	2 字节

5.3 寄存器地址

寄存器地址	PLC或组态地址	内容	操作	定义说明
0000 H	40001 (十进制)	含水率	只读	含水率实时值(扩大10 倍)
0001 H	40002 (十进制)	温度值	只读	温度实时值(扩大10倍)
0002 H	40003 (十进制)	电导率	只读	电导率实时值
0003 H	40004 (十进制)	PH值	只读	PH实时值(扩大十倍)
0004H	40005(十进制)	氮含量	只读	氮含量实际值
0005H	40006(十进制)	磷含量	只读	磷含量实际值
0006Н	40007(十进制)	钾含量	只读	钾含量实际值
0007 H	40008(十进制)	盐度	只读	盐度实时值
0008 H	40009 (十进制)	总溶解固体 TDS	只读	TDS实时值
0022 H	40035 (十进制)	电导温度系数	读写	0-100对应0.0%-10.0% 默认0.0%
0023 H	40036 (十进制)	盐度系数	读写	0-100 对应 0.00-1.00 默认55 (0.55)
0024 H	40037 (十进制)	TDS 系数	读写	0-100 对应 0.00-1.00 默认50 (0.5)
0050 H	40081 (十进制)	温度校准值	读写	整数(扩大10倍)
0051 H	40082 (十进制)	含水率校准值	读写	整数(扩大10倍)

0052 H	40083 (十进制)	电导率校准值	读写	整数
0053 H	40083 (十进制)	PH校准值	读写	整数
04E8 H	41001 (十进制)	氮含量系数 高十六位	读写	真实值
04E9 H	41002 (十进制)	氮含量系数 低十六位	读写	(IEEE754标准 浮点型)
04EA H	41003 (十进制)	氮含量校准值	读写	整数
04F2 H	41011 (十进制)	磷含量系数 高十六位	读写	真实值
04F3 H	41012 (十进制)	磷含量系数 低十六位	读写	(IEEE754标准 浮点型)
04F4 H	41013 (十进制)	磷含量校准值	读写	整数
04FC H	41021 (十进制)	钾含量系数 高十六位	读写	真实值
04FD H	41022 (十进制)	钾含量系数 低十六位	读写	(IEEE754标准 浮点型)
04FE H	41023 (十进制)	钾含量校准值	读写	整数
07D0 H	42001 (十进制)	设备地址	读写	1~254(出厂默认1)
07D1 H	42002 (十进制)	设备波特率	读写	0代表2400 1代表4800 2代表9600

注意: 电导率水分设备无温度值及其校准值寄存器

5.4 通讯协议示例以及解释

举例: 读取电导率温度水分 PH 四合一设备(地址 0x01)的参数值

问询帧

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x00	0x00 0x04	0x44	0x09

应答帧

地址码	功能 码	返回有效 字节数	水分值	温度值	电导率值	PH 值	校验码 低字节	校验码 高字节
0x01	0x03	0x08	0x02 0x92	0xFF 0x9B	0x03 0xE8	0x00 0x38	0x57	0xB6

温度计算:

当温度低于 0 ℃ 时温度数据以补码的形式上传。

温度: FF9B H(十六进制)= -101 => 温度 = -10.1℃

水分计算:

水分: 292 H (十六进制)= 658 => 湿度 = 65.8%, 即土壤体积含水率为 65.8%。

电导率计算:

电导率: 3E8 H (十六进制)= 1000 电导率 = 1000 us/cm

PH 值计算:

PH 值: 38H(十六进制)=56 => PH 值=5.6

第 6 章 常见问题及解决方法

无输出或输出错误

可能的原因:

- ①、电脑有 COM 口,选择的口不正确。
- ②、波特率错误。
- ③、485 总线有断开,或者 A、B线接反。
- ④、设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120Ω终端电阻。
- ⑤、USB 转 485 驱动未安装或者损坏。
- ⑥、设备损坏。