Inter-/intra-performer similarity

Johanna Devaney
Assistant Professor of Music Theory and Cognition
School of Music
The Ohio State University

IntroductionMotivations.

1

A brief history

Quantitative approaches to performance analysis.

2

Inter-/Intra-singer similarity

Experiments with solo vocalists.

3

Conclusions

Summary and future directions.

4

Introduction

Similarity in performance

Modeling style

- style as self- or group-similarity
- relationship between inter-performer similarity and intraperformer consistency
- the need to sound spontaneous
 - Chaffin, Lemieux, Chen (2007)

Introduction

What do I mean by studying performance?

- Using (live) recorded performances
- Measuring performance parameters
 - timing
 - dynamics
 - tuning
 - timbre
- Assessing relationship between performance of various parameters and musical materials

Introduction
Motivations.

A brief history

Quantitative approaches to performance analysis.

2

Inter-/Intra-singer similarity

Experiments with solo vocalists.

3

Conclusions

Summary and future directions.

4

A brief history

Pioneers

Binet and Courtier Sears Miller

1895–1930 195

1920-40s

1960s

1980s and 90s

1990s and 2000s

A brief history

University of Iowa

- Carl Seashore (1938) and colleagues studied timing, dynamics, intonation, and vibrato in pianists, violinists, and singers
 - artistic performance conceived as deviations from the exact

Wave recorder for use with disk phonograph; the lever, acting like a pantograph, traces the waves on a revolving smoked drum

The tonoscope for analyzing the pitch of the tones on a disk phonograph record

Performance Scores

University of Iowa

How did Seashore model data?

Statistical methods used in Seashore's lab

		Cycle-to-cycle regularity of ex Differences in extent			Differences in rate		
	N cycles	Average	%.1 step and less	%.2 step and less	Average	%.5 c.p.s. and less	%1.0 c.p.s. and less
Baker	583	.07	90	95	.53	70	95
Homer	207	.06	90	95	.46	80	95
Kraft 1	168	.14	60	85	.53	65	90
Kraft 2	201	.14	60	80	.57	70	90
Marsh	428	.07	85	95	.50	70	. 95
Seashore	303	.09	75	90	.51	70	90
Stark	436	.07	90	95	.50	70	95
Thompson	163	.09	80	95	.60	75	85
Tibbett	260	.06	85	95	.56	65	90

Seashore (1936)

Performance Scores

Digitizing the data

A brief history

A brief history

Popularity of the piano

- Large amount of solo repertoire
- Instrument's percussive nature
- Feasibility of using specially equipped pianos (e.g., MIDI)
 - cannot study existing recordings
 - new recordings are typically done in a lab environment

Bosendorfer SE piano at BRAMS, Montreal

How did these psychologists model data?

Statistical methods used in Repp's piano studies

Averaging performances

Factor analysis

Qualitative descriptions

Beethovenian	un-Beethovenian		
Fast	slow		
Expressive	inexpressive		
Relaxed	tense		
Superficial	deep		
Cold	warm		
Powerful	weak		
Serious	playful		
Pessimistic	optimistic		
Smooth	rough		
Spontaneous	deliberate		
Consistent	variable		
Coherent	incoherent		
Sloppy	precise		
Excessive	restrained		
Rigid	flexible		
Effortful	facile		
Soft	hard		
Realistic	idealistic		
Usual	unusual		

Repp (1990)

How did these psychologists model data?

Statistical methods used in Todd's piano studies

Regression analysis

"the faster the louder, the slower the softer"

Todd (1992)

A brief history

A brief history

How do computer scientists model data?

Summary of statistical approaches used by Widmer et al.

Case-based reasoning

Tobudic and Widmer 2003

Performance worms

Goebl, Pampalk, and Widmer 2004

Performance alphabets

Widmer and Goebl 2004

Linear-basis functions

Grachten and Widmer 2012

How do computer scientists model data?

Summary of statistical approaches used by Sapp

Nearest-Neighbour

Piano data sets

What do they contain?

Vienna datasets (Bosendorfer)

- Magaloff performing the complete Chopin piano works
- Batik performing 13 complete Mozart sonatas

Mazurka dataset (Commercial)

- 2926 recordings, between ~45–100 recordings per
 Chopin Mazurka one recording per performer per era
- Commercial recordings are a curated product

A brief history

Quantitative approaches to performance analysis.

2

Inter-/Intra-singer similarity

Experiments with solo vocalists.

3

Conclusions

Summary and future directions.

4

Experiments with Singers

Overview

- Intonation in trained singers in the Western Art Music tradition
- Various aspect of the work was done in collaboration with Dan Ellis (Columbia), Ichiro Fujinaga (McGill), Michael Mandel (Ohio State), and Jon Wild (McGill)

Overview

Experiment design

- Musical Material
 - Schubert's "Ave Maria"
 - 3x a cappella & 3x accompanied
- Singers
 - 6 non-professional singers: undergraduate vocal majors
 - 6 professional singers: possess at least one graduatelevel degree in voice performance
- Melodic semitones and whole tones analyzed
- Singers listened to and approved their own recordings

Data Extraction

Using MIDI-audio alignment

Loudness: Glasberg and Moore (2002)

F₀ Estimation: de Cheveigné and Kawahara (2002)

Pitch: Gockel, Moore, and Carlyon (2001)

Slope/Curvature: Devaney, Mandel and Fujinaga (2011)

www.ampact.org

Data Analysis

Linear regression

Dependent variable

interval size in cents

Independent variables

- direction
- singer or level of experience
- harmonic context
 - leading tone or not
- accompaniment
 - versus a cappella

Commonality between performers

Observable trends

General tuning trends

- No strict adherence, on average smaller than equal temperament (more so for semitones than whole tones)
- Ascending semitones were significantly larger on average than descending semitones

Harmonic context

- Non-pros exhibited a significant difference between semitones in leading tone and non-leading tone contexts
 - semitones in a leading context were significantly smaller on average

Is there an effect of training?

Professionals versus non-professionals

Effect of training

Accompaniment

- Solo non-pros' accompanied semitones were 3 cents larger on average than their a cappella semitones

Consistency

- Pros were more consistent with one another

Interval size

- Pros' semitones were significantly larger on average (closer to equal temperament)

Incorporating Seashore data

Comparative analysis of Seashore and contemporary data

Singer Identity

Framing as a classification problem

Experiments

- Predicting singer identity within openings and closings using cross=validation
- Predicting singer identity of closing trained on opening

Support vector machine, with L1-regularization

using the feature vectors for feature selection

Singer Identity

Framing as a classification problem

Pitch	Timing	Loudness
Interval size	Inter-onset interval	Long-term loudness
Distance from opening note	Duration	
Slope		
Curvature		
Vibrato extent		
Vibrato rate		

Cross-validation: A Cappella

Opening→Closing: A Cappella

Cross-validation: Accompanied

Opening -> Closing: Accompanied

Non-professional

Professional

Conclusions

Summary and future directions.

Experiments with solo vocalists.

4

Summary

Where we have been

This talk has

- provided a brief overview of the history of quantitative performance analysis with a particular focus on performance modeling
- described the results of descriptive and predictive analysis of data from an experiment with twelve singers to explore inter- and intra-singer similarity

Future Work

Where might we be going?

- Different features
 - timbre
- More sophisticated musical models
 - looking at variance at particular points in the piece
- categorical perception
- Integrating more qualitative information
 - performer intentionality
 - listener perception/reception
 - categorical perception of features mid-level representation?

Acknowledgements

- School of Music and College of Arts and Sciences (OSU)
- Center for New Music and Audio Technologies (CNMAT)
- Distributed Digital Music Archives and Libraries (DDMAL)
- Centre for Research in Music Media and Technology (CIRMMT)
- Fonds de recherche sur la société et la culture (FQRSC)
- Social Sciences and Humanities Research Council of Canada (SSHRC)
- Advancing Interdisciplinary Research in Singing (AIRS)

Thank you!

References

Cary, H. 1922. "Are You a Musician? Professor Seashore's Specific Psychological Tests for Specific Musical Abilities." Scientific America.

Chaffin, R., A. Lemieux, and C. Chen. 2007. "It is different each time I play": Variability in highly prepared musical performance. Music Perception 24 (5): 455–72.

de Cheveigné, A., and H. Kawahara. 2002. YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America 111, 1917–1930.

Devaney, J., M. Mandel, D. Ellis, and I. Fujinaga. 2011. Automatically extracting performance data from recordings of trained singers. Psychomusicology: Music, Mind and Brain 21 (1–2).

Devaney, J., M. I. Mandel, and I. Fujinaga. 2012. Study of Intonation in Three-Part Singing using the Automatic Music Performance Analysis and Comparison Toolkit (AMPACT). Proceedings of International Society for Music Information Retrieval conference. 511–6.

Devaney, J., J. Wild, and I. Fujinaga. 2011 Intonation in solo vocal performance: A study of semitone and whole tone tuning in undergraduate and professional sopranos. In Proceedings of the International Symposium on Performance Science. 219–24.

Glasberg, B.R., and B.C.J. Moore. 2002. A Model of Loudness Applicable to Time-Varying Sounds. Journal of the Audio Engineering Society 50, 331–342.

Gockel, H., B.C.J. Moore, and R.P. Carlyon. 2001. Influence of rate of change of frequency on the overall pitch of frequency-modulated tones. Journal of the Acoustical Society of America 109, 701–712.

Goebl, W., E. Pampalk, and G. Widmer. 2004. Exploring expressive performance trajectories: Six famous pianists play six Chopin pieces. In Proceedings of the 8th International Conference on Music Perception and Cognition.

Grachten, M., and G. Widmer. 2012. Linear basis models for prediction and analysis of musical expression. Journal of New Music Research. 41 (4): 311–22.

Repp, B. 1990. Patterns of expressive timing in performances of a Beethoven minuet by nineteen famous pianists. Journal of the Acoustical Society of America 88 (2): 622–41.

Sapp, C. 2008. Hybrid Numeric/Rank Similarity Metrics for Musical Performance Analysis. In Proceedings of the International Society for Music Information Retrieval conference, 501–6.

Seashore, C. 1938. Psychology of Music. Iowa City, IA: University of Iowa Press.

Seashore, H. G. 1936. An objective analysis of artistic singing. In University of Iowa Studies in the Psychology of Music. Vol. IV: Objective Analysis of Musical Performance, ed. C. Seashore, 12–157. Iowa City, IA: University of Iowa.

Tobudic, A., and G. Widmer. 2003. Playing Mozart phrase by phrase. In Case-Based Reasoning Research and Development, 552–866: Springer Berlin Heidelberg.

Todd, N. 1992. The dynamics of dynamics: A model of musical expression. Journal of the Acoustical Society of America 91 (6): 3540–50.

Widmer, G., and W. Goebl. 2004. Computational models of expressive music performance: The state of the art. Journal of New Music Research 33 (3): 206–16.