Introduction to Homogenisation

Motivation: Physical system with fine periodic structure:

e.g. wave propagation in crystal.

Simplest interesting case:

$$\begin{cases} -\operatorname{div}\left(A_{\varepsilon}\nabla u\right) = f & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where $A_{\varepsilon}(x) = A(\frac{x}{\varepsilon})$ and $A \in L^{\infty}(\mathbb{R}^{n}; \mathbb{R}^{n \times n})$ is

1- periodic and 3 x, B >0:

α|<u>ξ|² ξ·λξ</u> ∀ξ ∈ R", α, e, × ∈ R".

Solution u = ue expected to oscillate on legth scale E. Bad.

ms Approximate us by simpler function us wich describes macroscopic behaviour of us, but without "wiggles"

~> Question:

- · Does (ue) converge for E->B?
- · If so, can limit us be characterised by some reasonable PDE?

Oue-dimensional case

$$\Omega = (a,b) \subset \mathbb{R}$$
.

$$\frac{d}{dx}\left(a_{\varepsilon}\frac{du}{dx}\right) = f, \quad a_{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right)$$

Weak formulation:

$$\int_{a}^{b} a_{\varepsilon} u_{\varepsilon}^{!} \Phi^{!} dx = \int_{a}^{b} f \Phi dx$$

~s a-priori bound:

~> subsequence u_e → u in H¹.

By periodicity,
$$a_{\varepsilon} \stackrel{*}{\longrightarrow} \langle a \rangle$$
 in $L^{\infty}(a_{\varepsilon}b)$, where $\langle a \rangle = \int_{0}^{1} a(y) dy$

Denote
$$P_{\varepsilon} := a_{\varepsilon} u_{\varepsilon}^{1}$$
. Then
$$\|P_{\varepsilon}\|_{L^{2}}^{2} \leq \|a\|_{L^{\infty}}^{2} \|u_{\varepsilon}^{1}\|_{L^{2}}^{2}$$

$$\leq C \|f\|_{L^{2}}^{2} \qquad \Longrightarrow P_{\varepsilon} \text{ bold. in } H^{1}$$

$$\|P_{\varepsilon}\|_{L^{2}}^{2} = \|f\|_{L^{2}}^{2}$$

Compact embedding \Rightarrow Subsequence $p_{\varepsilon} \xrightarrow{\varepsilon \to 0} p$ in L^{2} $=> a_{\varepsilon}^{-1}p_{\varepsilon} \longrightarrow \langle a^{-1}\rangle p$ weakly in L^{2} But also $a_{\varepsilon}^{-1}p_{\varepsilon} = u_{\varepsilon}^{1} \longrightarrow u_{\varepsilon}^{1}$ weakly in L^{2}

$$=>$$
 $\langle a^{-1} \rangle p = u'$

Use that p'= f:

$$f = \varphi' = \frac{d}{dx} \left(\left\langle a^{-1} \right\rangle^{-1} \frac{du}{dx} \right)$$

"Homogenised problem".