Red Wine Quality

Nailah Rawnaq

12/6/2021

Datasets

This data set consist of 1,599 rows and 12 columns. The description of the columns are given below.

- fixed acidity: most acids involved with wine or fixed or nonvolatile.
- volatile acidity: the amount of acetic acid in wine, which at too high of levels can lead to an unpleasant, vinegar taste.
- citric acid: found in small quantities, citric acid can add 'freshness' and flavor to wines.
- residual sugar : the amount of sugar remaining after fermentation stops.
- chlorides: the amount of salt in the wine.
- free sulfur dioxide : the free form of SO2 exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion.
- total sulfur dioxide: amount of free and bound forms of S02.
- density : the density of water is close to that of water depending on the percent alcohol and sugar content.
- pH: describes how acidic or basic a wine is on a scale from 0 (very acidic) to 14 (very basic).
- sulphates: a wine additive which can contribute to sulfur dioxide gas (S02) levels.
- alcohol: the percent alcohol content of the wine
- quality (score between 0 and 10)

This is a data set from kaggle in a title of "Red Wine Quality".

Basic Stats

```
df %>%
    summary()
```

```
fixed acidity
                    volatile acidity citric acid
                                                      residual sugar
   Min.
           : 4.60
                    Min.
                           :0.1200
                                      Min.
                                             :0.000
                                                      Min.
                                                             : 0.900
   1st Qu.: 7.10
                                                      1st Qu.: 1.900
##
                    1st Qu.:0.3900
                                      1st Qu.:0.090
   Median : 7.90
                    Median :0.5200
##
                                      Median :0.260
                                                      Median : 2.200
##
   Mean
         : 8.32
                           :0.5278
                                             :0.271
                                                            : 2.539
                    Mean
                                      Mean
                                                      Mean
##
   3rd Qu.: 9.20
                    3rd Qu.:0.6400
                                      3rd Qu.:0.420
                                                      3rd Qu.: 2.600
##
   Max.
          :15.90
                    Max.
                           :1.5800
                                      Max.
                                             :1.000
                                                      Max.
                                                             :15.500
##
      chlorides
                      free sulfur dioxide total sulfur dioxide
                                                                    density
##
   Min.
           :0.01200
                      Min. : 1.00
                                           Min.
                                                  : 6.00
                                                                Min.
                                                                        :0.9901
##
   1st Qu.:0.07000
                      1st Qu.: 7.00
                                           1st Qu.: 22.00
                                                                1st Qu.:0.9956
##
   Median :0.07900
                      Median :14.00
                                           Median : 38.00
                                                                Median :0.9968
   Mean
                                                 : 46.47
##
           :0.08747
                      Mean :15.87
                                           Mean
                                                                Mean
                                                                        :0.9967
   3rd Qu.:0.09000
                      3rd Qu.:21.00
                                           3rd Qu.: 62.00
                                                                 3rd Qu.:0.9978
   Max.
                      Max. :72.00
                                                  :289.00
                                                                        :1.0037
##
           :0.61100
                                           Max.
                                                                Max.
##
                      sulphates
                                         alcohol
          рΗ
                                                         quality
##
           :2.740
                    Min.
                           :0.3300
                                             : 8.40
                                                      Min.
                                                              :3.000
   Min.
                                      Min.
   1st Qu.:3.210
                    1st Qu.:0.5500
                                      1st Qu.: 9.50
                                                      1st Qu.:5.000
##
   Median :3.310
                    Median :0.6200
                                      Median :10.20
                                                      Median :6.000
   Mean :3.311
                           :0.6581
                                             :10.42
##
                    Mean
                                      Mean
                                                      Mean
                                                             :5.636
   3rd Qu.:3.400
                    3rd Qu.:0.7300
                                      3rd Qu.:11.10
                                                      3rd Qu.:6.000
##
   Max.
           :4.010
                    Max.
                           :2.0000
                                      Max.
                                            :14.90
                                                      Max.
                                                             :8.000
```

Boxplot for the variables according to the wine quality

```
df %>%
    pivot_longer(-quality) %>%
    mutate(quality = as.factor(quality)) %>%
    ggplot(aes(quality, value, fill = name)) +
    geom_boxplot(show.legend = F) +
    facet_wrap(~name, scales = "free_y") +
    scale_y_continuous(labels = NULL) +
    labs(title = "Boxplot for the variables according to the wine quality")
```

Boxplot for the variables according to the wine quality

We can see from this plot that mean level of some variables like alcohol, citric acid, pH, sulphates and volatile acidity.

Correlation among the variables

corrplot::corrplot(cor(df))

Table for shoing the important variable as a output of linear regression with highest magnitude

```
cor(select(df, -quality)) %>%
  as.data.frame() %>%
  rownames_to_column() %>%
  pivot_longer(-rowname) %>%
  filter(value != 1) %>%
  arrange(-abs(value)) %>%
  group_by(name) %>%
  summarise(mean_corr = mean(abs(value))) %>%
  arrange(-mean_corr) %>%
  pander::pander()
```

name	mean_corr	
fixed acidity	0.2999	
citric acid	0.2998	
рН	0.2691	
density	0.2691	
alcohol	0.1708	
volatile acidity	0.1679	
sulphates	0.1667	
total sulfur dioxide	0.153	
$\operatorname{chlorides}$	0.1525	
free sulfur dioxide	0.1299	
residual sugar	0.1194	

Since fixed acidity has the higher mean absolute correlation so we going to eliminate this and fit a linear regression model to see find out the most important sets of variables.

Important variables

```
(df %>%
    select(-`fixed acidity`) %>%
    lm(formula = quality ~ .) %>%
    summary())$coefficients %>%
    as.data.frame() %>%
    rownames_to_column() %>%
    filter(`Pr(>|t|)` < .05) %>%
    arrange(-abs(Estimate)) %>%
    pander::pander()
```

rowname	Estimate	Std. Error	t value	$\Pr(> t)$
chlorides	-1.968	0.4077	-4.828	1.51e-06
volatile acidity	-1.078	0.1209	-8.911	1.353e-18
sulphates	0.8996	0.113	7.961	3.232e-15
pH	-0.5462	0.1333	-4.099	4.358e-05
alcohol	0.2901	0.02223	13.05	4.917e-37
free sulfur dioxide	0.004592	0.002158	2.128	0.03352
total sulfur dioxide	-0.003427	0.0007089	-4.835	1.463 e-06

So according to this, variable chlorides and volatile acidity are the important variabes. So we will plot those two variables according to the quatity of wine.

Seperating the high and low class points (important variables)

```
df %>%
    select(chlorides, `volatile acidity`, quality) %>%
    mutate(quality = if_else(quality <= 6,"Low", "high")) %>%
    ggplot(aes(chlorides, `volatile acidity`, fill = quality)) +
    geom_hex(alpha = .7) +
    scale_fill_viridis_d() +
    scale_x_log10() +
    labs(title = "Wine quality according to the top important variables")
```

Wine quality according to the top important variables

We can see that this plot is not performing great to seperate the points. we will perform pca for this.

Separating the high and low class points (PCA)

```
(df %>%
    select(-quality) %>%
    princomp())$score %>%
    as.data.frame() %>%
    select(Comp.1, Comp.2) %>%
    bind_cols(quality = df$quality) %>%
    mutate(quality = if_else(quality <= 6,"Low", "high")) %>%
    ggplot(aes(Comp.1, Comp.2, fill = quality)) +
    geom_hex(alpha = .7) +
    scale_fill_viridis_d()
```


This is not also performing well to seperate the points. we will use LDA for it

Seperating the high and low class points (LDA)

The output is much better than the previous two. And there is a seperable line for that.

Seperating the high and low class points (UMAP)

```
umap::umap(select(df, - quality))$layout %>%
   as.data.frame() %>%
   bind_cols(quality = if_else(df$quality <= 6,"Low", "high")) %>%
   ggplot(aes(V1, V2, fill = quality)) +
   geom_hex(alpha = .7) +
   scale_fill_viridis_d()
```


No the performance of Umap is not better than the LDA.