UDAAN 2025

Mathematics Triangles

DHA: 02

Q1 In a \triangle ABC,D and E are points on the sides AB and AC respectively. For each of the following case show that DE||BC:

AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18cm.

Q2 In Figure, state if PQ||EF.

- Q3 If D and E are points on sides AB and AC respectively of a Δ ABC such that DE||BC and BD = C E. Prove that \triangle ABC is isosceles.
- Q4 M and N are points on the sides PQ and PR respectively of a Δ PQR. For the following case, state whether MN||QR:

$$\begin{split} \mathrm{PM} &= 4~\mathrm{cm}, \mathrm{QM} = 4.5~\mathrm{cm}, \mathrm{PN} = 4~\mathrm{cm}, \\ \mathrm{NR} &= 4.5~\mathrm{cm} \end{split}$$

Q5 In the given figure, PQ||AB and PR||AC. Prove that QR||BC.

Q6 In the figure given along side, DE||OQ| and DF||OR|Show that EF||QR.

Q7 In the given figure, $AB\|DC$ and diagonals A C & B D intersect at O. If A O=(3 x-1) cm, B O=(2 x+1) cm, O C=(5 x-3) cm and O D=(6 x-5) cm, then x=

(A) 2

(B) 3

(C) 2.5

(D) 3.5

Answer Key

Q1	Proof	Q5	(Use BPT and converse of BPT)
Q2	So PQ is not parallel to EF	Q6	(Use BPT and converse of BPT)
Q3	Proof	Q7	(A)
Q4	Yes MNIIQR		

Hints & Solutions

Q1 Text Solution:

(i) AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18cm.

$$\therefore DB = AB - AD$$

$$= 12 - 8$$

= 4 cm

$$EC = AC - AE$$

$$= 18 - 12$$

 $=6 \mathrm{cm}$

Now AD/DB = 8/4 = 2

AE/EC = 12/6 = 2

Thus DE dvides side AB and AC of $\triangle ABC$ in same ratio

Then by the converse of basic proportionality theorem.

DE||BC

Video Solution:

Q2 Text Solution:

$$egin{aligned} {
m DP/PE} &= 3 \cdot 9/3 = 1 \cdot 3/1 = 13/10 \ {
m DQ/QF} &= 3 \cdot 6/2 \cdot 4 = 36/24 = 3/2 \ {
m DP/PE} &
eq {
m DQ/QF} \end{aligned}$$

So PQ is not parallel to EF

Video Solution:

Q3 Text Solution:

We have DE||BC

by the converse of proportionalify theorem

$$AD/DB = AE/EC$$

$$AD/DB = AE/DB[BD = CE]$$

$$AD = AE....(1)$$

$$BD = CE....(2)$$

Adding equation (1) and (2)

$$AD + BD = AE + EC$$

$$AB = AC$$

 ΔABC is isosceles

Video Solution:

Q4 Text Solution:

we have

$$PM = 4 \text{ cm}, QM = 4.5 \text{ cm}, PN = 4$$

 ${
m cm}\, and\, NR = 4.5 {
m \, cm}$

Hence PM||QM = 4/4.5 = 40/45 = 8/9

$$PN/NR = 4/4 \cdot 5 = 40/45 = 8/9$$

PM/QM = PN/NR

By the converse of proportionality theorem

Video Solution:

Q5 Text Solution:

In ∆AOB,

AB || PQ (given)

OP/OA = OQ/QB(i) [By Basic

proportionality theorem]

In ∆AOC,

AC || PQ (given)

OP/OA = OR/RC.....(ii) [By Basic

proportionality theorem]

From equations (i) and (ii)

OP/OA = OQ/QB = OR/RC

OQ/QB = OR/RC

Now, In ∆OBC

OQ/QB = OR/RC

Thus, BC || QR [By Converse of Basic

proportionality theorem]

Video Solution:

Q6 Text Solution:

In ΔPOQ

DE || OQ (given)

PE/EQ = PD/DO.....(1)

In ΔPOR

DF || OR (given)

From equation (1) and (2)

PE/EQ = PF/FR = PD/DO

PE/EQ = PF/FR

In **APQR**

PE/EQ = PF/FR

: QR | EF (Converse of Basic Proportionality

theorem)

Video Solution:

Q7 Text Solution:

$$OA= 3x-1$$
, $OC= 5x-3$, $OD= 6x-5$, $BO= 2x+1$
 $AO/OC= BO/OD$

The diagonals of a Trapezium divide each other proportionally]

$$(3x-1)/(5x-3) = (2x+1)/(6x-5)$$

$$(3x-1)(6x-5) = (5x-3)(2x+1)$$

$$3x(6x-5)-1(6x-5) = 2x(5x-3)+1(5x-3)$$

$$18x^2 - 15x - 6x + 5 = 10x^2 - 6x + 5x - 3$$

$$18x^2 - 21x + 5 = 10x^2 - x - 3$$

$$18x^2 - 10x^2 - 21x + x + 5 + 3 = 0$$

$$8x^2 - 20x + 8 = 0$$

$$4(2x^2-5x+2)=0$$

$$2x^2 - 5x + 2 = 0$$

$$2x^2 - 4x - x + 2 = 0$$

[By factorization]

$$2x(x-2) - 1(x-2) = 0$$

$$(2x-1)(x-2)=0$$

$$(2x-1) = 0$$
 or $(x-2) = 0$

$$x = \frac{1}{2}$$
 or $x = 2$

If we put $x = \frac{1}{2}$ in OD , The value of OD is negative.

Hence, the value of is x = 2.

Video Solution:

