Annex to Econ homework

Run required function from main book first.

Annex

Simulate a random walk processes $y_t=y_{t-1}+e_t, y_0=0, e_t\sim IID(0,\sigma^2)$ analog to (14.03) White Noise and Random Walk

Simulate two AR(1) processes according to $x_t = \phi x_{t-1} + u_t$, with $\phi = 0.5$ and with $\phi = 1$. The ACFs of two processes indicate that in latter significant autocorrelation persists at least up to 20 lags, while the former autocorrelation becomes insignificant after 3 lags. Hence, in the case of AR(1), autocorrelation is a function of the parameter ϕ .

ACF, AR(1) NON-stationary

ACF, AR(1) stationary

Define a function to produces N AR(1) simulations.

Plot the simulated error terms of the two AR(1)s, that is $u_{x,t}$ and $u_{y,t}$. The respective ACFs indicate that the error terms are not autocorrelated.

AR innovation: ux.t

AR innovation: u_{y, t}

ACF, AR: $y_t = \phi_2 y_{t-1} + u_{v,t}$

Scatterplot of $u_{x,t}$ and $u_{y,t}$. The error terms, while individually and randomly generated, appear to to correlated, which is confirmed by the regression of $u_{y,t}$ on $u_{x,t}$. The resulting t_{β} is significant.


```
##
##
                          Dependent variable:
##
##
                              u_sim[, 2]
  u_sim[, 1]
                               0.438***
##
                                (0.147)
##
  Constant
                                0.053
##
                                (0.125)
##
##
## Observations
                                 61
## R2
                                0.131
## Adjusted R2
                                0.116
## Residual Std. Error
                            0.943 (df = 59)
## F Statistic
                         8.895*** (df = 1; 59)
## Note:
                      *p<0.1; **p<0.05; ***p<0.01
##
## lm(formula = u_sim[, 2] ~ u_sim[, 1])
##
## Residuals:
##
               1Q Median
                               3Q
                                     Max
##
  -2.2890 -0.5590 -0.0190 0.4804
                                  2.0071
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
              0.05336
                          0.12516
                                   0.426 0.67143
               0.43838
                          0.14699
                                   2.982 0.00415 **
## u_sim[, 1]
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9435 on 59 degrees of freedom
## Multiple R-squared: 0.131, Adjusted R-squared: 0.1163
```

F-statistic: 8.895 on 1 and 59 DF, p-value: 0.004152

Compare ACF of the two AR processes. Autocorrelation is present and takes a fading wave pattern.

AR:
$$x_t = \phi_1 x_{t-1} + u_{x, t}$$

$$AR \colon y_t = \varphi_2 y_{t-1} + u_{y,\,t}$$

ACF, AR:
$$x_t = \phi_1 x_{t-1} + u_{x, t}$$

ACF, AR: $y_t = \phi_2 y_{t-1} + u_{y, t}$

Run a regression of two AR(1) processes.

##		
##		
##		Dependent variable:
##		
##		AR_sim[, 2]
##		
##	AR_sim[, 1]	0.274***
##		(0.091)
##		
##	Constant	0.110
##		(0.290)
##		.
##		
	Observations	61
	R2	0.132
		* : = * =
	Adjusted R2	0.118
##	Residual Std. Error	
##	F Statistic	8.997*** (df = 1; 59)
##	=======================================	
##	Note:	*p<0.1; **p<0.05; ***p<0.01
##		
##	Call:	
##	<pre>lm(formula = AR_sim </pre>	[, 2] ~ AR_sim[, 1])
##		

```
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
   -3.7395 -1.1474 0.2007 1.4091
                                     2.9137
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.11036
                            0.29011
                                       0.38 0.70500
                                       3.00 0.00396 **
## AR_sim[, 1] 0.27438
                            0.09148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.777 on 59 degrees of freedom
## Multiple R-squared: 0.1323, Adjusted R-squared: 0.1176
## F-statistic: 8.997 on 1 and 59 DF, p-value: 0.003956
                                              y<sub>t</sub> vs. x<sub>t</sub>
```


Compare the regression results. The errors as well as the AR(1) are correlated given significant β s

ππ			
##		Dependent variable:	
## ## ##		(1)	AR_sim[, 2] (2)
## ## ## ##	u_sim[, 1]	0.438***	
	AR_sim[, 1]		0.274*** (0.091)
## ## ##	Constant	0.053 (0.125)	0.110 (0.290)
	Observations	61 0.131	61 0.132
##	Adjusted R2 Residual Std. Error (df = 59) F Statistic (df = 1; 59)		0.118 1.777 8.997***
	Note:		0.05; ***p<0.01

##