Package 'CrossClustering'

May 14, 2024

```
Type Package
Title A Partial Clustering Algorithm
Version 4.1.2
Date 2024-05-01
Maintainer Paola Tellaroli <paola.tellaroli@gmail.com>
Description Provide the 'CrossClustering' algorithm (Tellaroli et al.
     (2016) <doi:10.1371/journal.pone.0152333>), which is a partial
     clustering algorithm that combines the Ward's minimum variance and
     Complete Linkage algorithms, providing automatic estimation of a
     suitable number of clusters and identification of outlier elements.
License GPL-3
URL https://CRAN.R-project.org/package=CrossClustering
BugReports https://github.com/CorradoLanera/CrossClustering/issues
Depends R (>= 4.1)
Imports checkmate, cli, cluster, crayon, dplyr, flip, mclust, purrr,
Suggests covr, devtools, lintr, roxygen2, spelling, testthat, usethis
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Language en-US
NeedsCompilation no
Author Paola Tellaroli [cre, aut],
     Marco Bazzi [aut],
     Michele Donato [aut],
     Livio Finos [aut],
     Philippe Courcoux [aut],
     Corrado Lanera [aut]
Repository CRAN
Date/Publication 2024-05-14 09:30:19 UTC
```

2 ari

R topics documented:

ari		Comp aring			,								•	,	ce	in	ter	vai	l, c	con	ı-
Index																					19
	worms		٠	 ٠		•	 ٠		٠		٠	•	 •		 ٠	•		٠	•		18
	twomoons																				
	toy																				17
	reverse_table																				16
	prune_zero_tail																				15
	nb_data																				
	is_zero																				
	consensus_cluster																				
	chain_effect																				
	cc_test_ari_permutation																				
	cc_test_ari																				
	cc_get_cluster																				
	cc_crossclustering																				
	ari																				2

Description

Computes the adjusted Rand index and the confidence interval, comparing two classifications from a contingency table.

print method for ari class

Usage

```
ari(mat, alpha = 0.05, digits = 2)
## S3 method for class 'ari'
print(x, ...)
```

Arguments

mat	A matrix of integers representing the contingency table of reference
alpha	A single number strictly included between 0 and 1 representing the significance level of interest. (default is 0.05)
digits	An integer for the returned significant digits to return (default is 2)
Х	an object used to select a method.
	further arguments passed to or from other methods.

ari 3

Details

The adjusted Rand Index (ARI) should be interpreted as follows:

ARI >= 0.90 excellent recovery; 0.80 = < ARI < 0.90 good recovery; 0.65 = < ARI < 0.80 moderate recovery; ARI < 0.65 poor recovery.

As the confidence interval is based on the approximation to the Normal distribution, it is recommended to trust in the confidence interval only in cases of total number of object clustered greater than 100.

Value

An object of class ari with the following elements:

AdjustedRandIndex

The adjusted Rand Index

CI The confidence interval

Methods (by generic)

```
• print(ari):
```

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>;

References

L. Hubert and P. Arabie (1985) Comparing partitions, Journal of Classification, 2, 193-218.

E.M. Qannari, P. Courcoux and Faye P. (2014) Significance test of the adjusted Rand index. Application to the free sorting task, Food Quality and Preference, (32)93-97

M.H. Samuh, F. Leisch, and L. Finos (2014), Tests for Random Agreement in Cluster Analysis, Statistica Applicata-Italian Journal of Applied Statistics, vol. 26, no. 3, pp. 219-234.

D. Steinley (2004) Properties of the Hubert-Arabie Adjusted Rand Index, Psychological Methods, 9(3), 386-396

D. Steinley, M.J. Brusco, L. Hubert (2016) The Variance of the Adjusted Rand Index, Psychological Methods, 21(2), 261-272

```
#### This example compares the adjusted Rand Index as computed on the
### partitions given by Ward's algorithm with the ground truth on the
### famous Iris data set by the adjustedRandIndex function
### {mclust package} and by the ari function.

library(CrossClustering)
library(mclust)

clusters <- iris[-5] |>
```

```
dist() |>
  hclust(method = 'ward.D') |>
  cutree(k = 3)

ground_truth <- iris[[5]] |> as.numeric()

mc_ari <- adjustedRandIndex(clusters, ground_truth)
mc_ari

ari_cc <- table(ground_truth, clusters) |>
  ari(digits = 7)
  ari_cc

all.equal(mc_ari, unclass(ari_cc)[["ari"]], check.attributes = FALSE)
```

cc_crossclustering

A partial clustering algorithm with automatic estimation of the number of clusters and identification of outliers

Description

This function performs the CrossClustering algorithm. This method combines the Ward's minimum variance and Complete-linkage (default, useful for finding spherical clusters) or Single-linkage (useful for finding elongated clusters) algorithms, providing automatic estimation of a suitable number of clusters and identification of outlier elements.

Usage

```
cc_crossclustering(
   dist,
   k_w_min = 2,
   k_w_max = attr(dist, "Size") - 2,
   k2_max = k_w_max + 1,
   out = TRUE,
   method = c("complete", "single")
)

## S3 method for class 'crossclustering'
print(x, ...)
```

Arguments

dist A dissimilarity structure as produced by the function dist

k_w_min (int) Minimum number of clusters for the Ward's minimum variance method.

By default is set equal 2

k_w_max (int) Maximum number of clusters for the Ward's minimum variance method

(see details)

k2_max	(int) Maximum number of clusters for the Complete/Single-linkage method. It can not be equal or greater than the number of elements to cluster (see details)
out	(lgl) If TRUE (default) outliers must be searched (see details)
method	(chr) "complete" (default) or "single". CrossClustering combines Ward's algorithm with Complete-linkage if method is set to "complete", otherwise (if method is set to 'single') Single-linkage will be used.
x	an object used to select a method.
	further arguments passed to or from other methods.

Details

See cited document for more details.

Value

A list of objects describing characteristics of the partitioning as follows:

Optimal_cluster

number of clusters

cluster_list_elements

a list of clusters; each element of this lists contains the indices of the elements

belonging to the cluster

Silhouette the average silhouette width over all the clusters

n_total total number of input elements

n_clustered number of input elements that have actually been clustered

Functions

• print(crossclustering):

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>;; Marco Bazzi, <bazzi at stat dot unipd dot it>; Michele Donato, <mdonato at stanford dot edu>

References

Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333

#' Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2017). E1829: Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. CMStatistics 2017, London 16-18 December, Book of Abstracts (ISBN 978-9963-2227-4-2)

```
library(CrossClustering)
#### Example of Cross-Clustering as in reference paper
#### method = "complete"
data(toy)
### toy is transposed as we want to cluster samples (columns of the
### original matrix)
toy_dist <- t(toy) |>
  dist(method = "euclidean")
### Run CrossClustering
cc_crossclustering(
  toy_dist,
  k_w_min = 2,
  k_w_max = 5,
  k2_max = 6,
  out = TRUE
)
#### Simulated data as in reference paper
#### method = "complete"
set.seed(10)
sg <- c(500, 250, 700, 300, 100)
# 5 clusters
t \leftarrow matrix(0, nrow = 5, ncol = 5)
t[1, ] \leftarrow rep(6, 5)
t[2, ] <- c( 0, 5, 12, 13, 15)
t[3, ] \leftarrow c(15, 11, 9, 5, 0)
t[4, ] <- c(6, 12, 15, 10, 5)
t[5, ] <- c(12, 17, 3, 7, 10)
t_mat <- NULL
for (i in seq_len(nrow(t))) {
 t_mat <- rbind(
    matrix(rep(t[i, ], sg[i]), nrow = sg[i], byrow = TRUE)
  )
}
data_15 <- matrix(NA, nrow = 2000, ncol = 5)</pre>
data_15[1:1850, ] <- matrix(</pre>
  abs(rnorm(sum(sg) * 5, sd = 1.5)),
  nrow = sum(sg),
 ncol = 5
) + t_mat
set.seed(100) # simulate outliers
```

```
data_15[1851:2000, ] <- matrix(
  runif(n = 150 * 5, min = 0, max = max(data_15, na.rm = TRUE)),
  nrow = 150,
  ncol = 5
)
### Run CrossClustering
cc_crossclustering(
  dist(data_15),
  k_w_min = 2,
  k_w_max = 19,
  k2_max = 20,
  out = TRUE
#### Correlation-based distance is often used in gene expression time-series
### data analysis. Here there is an example, using the "complete" method.
data(nb_data)
nb_dist <- as.dist(1 - abs(cor(t(nb_data))))</pre>
cc_crossclustering(dist = nb_dist, k_w_max = 20, k2_max = 19)
#### method = "single"
### Example on a famous shape data set
### Two moons data
data(twomoons)
moons_dist <- twomoons[, 1:2] |>
  dist(method = "euclidean")
cc_moons <- cc_crossclustering(</pre>
  moons_dist,
  k_w_max = 9,
  k2_max = 10,
  method = 'single'
moons_col <- cc_get_cluster(cc_moons)</pre>
plot(
  twomoons[, 1:2],
  col = moons_col,
  pch
          = 19,
           = "",
  xlab
          = "",
  ylab
           = "CrossClustering-Single"
  main
)
### Worms data
```

8 cc_get_cluster

```
data(worms)
worms_dist <- worms[, 1:2] |>
  dist(method = "euclidean")
cc_worms <- cc_crossclustering(</pre>
  worms_dist,
  k_w_max = 9,
  k2_max = 10,
  method = "single"
)
worms_col <- cc_get_cluster(cc_worms)</pre>
plot(
  worms[, 1:2],
  col = worms_col,
  pch = 19,
 xlab = "",
 ylab = "",
 main = "CrossClustering-Single"
)
### CrossClustering-Single is not affected to chain-effect problem
data(chain_effect)
chain_dist <- chain_effect |>
  dist(method = "euclidean")
cc_chain <- cc_crossclustering(</pre>
  chain_dist,
  k_w_max = 9,
  k2_max = 10,
  method = "single"
)
chain_col <- cc_get_cluster(cc_chain)</pre>
plot(
  chain_effect,
  col = chain_col,
  pch = 19,
 xlab = "",
 ylab = "",
  main = "CrossClustering-Single"
)
```

cc_get_cluster 9

Description

Provides the vector of clusters' ID to which each element belong to.

Usage

```
cc_get_cluster(x, n_elem)

## Default S3 method:
cc_get_cluster(x, n_elem)

## S3 method for class 'crossclustering'
cc_get_cluster(x, n_elem)
```

Arguments

x list of clustered elements or a crossclustering object
n_elem total number of elements clustered (ignored if x is of class crossclustering)

Value

An integer vector of clusters to which the elements belong (1 for the outliers, ID + 1 for the others).

Methods (by class)

- cc_get_cluster(default): default method for cc_get_cluster.
- cc_get_cluster(crossclustering): automatically extract inputs from a crossclustering object

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>;; Marco Bazzi, <bazzi at stat dot unipd dot it>; Michele Donato, <mdonato at stanford dot edu>.

References

Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333

```
library(CrossClustering)

data(toy)

### toy is transposed as we want to cluster samples (columns of the ### original matrix)
toy_dist <- t(toy) |>
    dist(method = "euclidean")
```

10 cc_test_ari

```
### Run CrossClustering
toyres <- cc_crossclustering(
  toy_dist,
  k_w_min = 2,
  k_w_max = 5,
  k2_max = 6,
  out = TRUE
)

### cc_get_cluster
cc_get_cluster(toyres[], 7)

### cc_get_cluster directly from a crossclustering object
cc_get_cluster(toyres)</pre>
```

cc_test_ari

A test for testing the null hypothesis of random agreement (i.e., adjusted Rand Index equal to 0) between two partitions.

Description

A test for testing the null hypothesis of random agreement (i.e., adjusted Rand Index equal to 0) between two partitions.

Usage

```
cc_test_ari(ground_truth, partition)
```

Arguments

ground_truth (int) A vector of the actual membership of elements in clusters

partition The partition coming from a clustering algorithm

Value

A list with six elements:

Rand the Rand Index

ExpectedRand expected value of Rand Index

AdjustedRand Adjusted Rand Index var_ari variance of Rand Index

nari nari

p-value the p-value of the test

cc_test_ari_permutation 11

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>; Philippe Courcoux, <philippe dot courcoux at oniris-nantes dot fr>

References

E_M. Qannari, p. Courcoux and Faye p. (2014) Significance test of the adjusted Rand index. Application to the free sorting task, Food Quality and Preference, (32)93-97

L. Hubert and p. Arabie (1985) Comparing partitions, Journal of Classification, 2, 193-218.

Examples

```
library(CrossClustering)

clusters <- iris[-5] |>
   dist() |>
   hclust(method = 'ward.D') |>
   cutree(k = 3)

ground_truth <- iris[[5]] |>
   as.numeric()

cc_test_ari(ground_truth, clusters)
```

```
cc_test_ari_permutation
```

A permutation test for testing the null hypothesis of random agreement (i.e., adjusted Rand Index equal to 0) between two partitions.

Description

A permutation test for testing the null hypothesis of random agreement (i.e., adjusted Rand Index equal to 0) between two partitions.

Usage

```
cc_test_ari_permutation(ground_truth, partition)
```

Arguments

```
ground_truth (int) A vector of the actual membership of elements in clusters
partition The partition coming from a clustering algorithm
```

12 chain_effect

Value

A data_frame with two columns:

ari the adjusted Rand Index p_value the p-value of the test

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>; Livio Finos, dot finos at unipd dot it>

References

Samuh M. H., Leisch F., and Finos L. (2014), Tests for Random Agreement in Cluster Analysis, Statistica Applicata-Italian Journal of Applied Statistics, vol. 26, no. 3, pp. 219-234.

L. Hubert and P. Arabie (1985) Comparing partitions, Journal of Classification, 2, 193-218.

Examples

```
library(CrossClustering)

clusters <- iris[-5] |>
    dist() |>
    hclust(method = 'ward.D') |>
    cutree(k = 3)

ground_truth <- iris[[5]] |>
    as.numeric()

cc_test_ari_permutation(ground_truth, clusters)
```

chain_effect

A toy dataset for illustrating the chain effect.

Description

A toy dataset for illustrating the chain effect.

Usage

```
chain_effect
```

Format

A data frame with 28 rows and 2 variables:

X numx coordinates 0 is negative.

Y numy coordinates.

consensus_cluster 13

consensus	cluster
COHSCHSUS	CIUSICI

Get clusters which reach max consensus

Description

Computes the consensus between Ward's minimum variance and Complete-linkage (or Single-linkage) algorithms (i.e., the number of elements classified together by both algorithms).

Usage

```
consensus_cluster(k, cluster_ward, cluster_other)
```

Arguments

k (int) a vector containing the number of clusters for Ward and for Complete-

linkage (or Single-linkage) algorithms, respectively

cluster_ward an object of class helust for the Ward algorithm

cluster_other an object of class helust for the Complete-linkage (or Single-linkage) algorithm

Value

an object of class consensus_cluster with the following elements:

elements list of the elements belonging to each cluster

;

a_star contingency table of the clustering

;

max_consensus maximum clustering consensus

•

Author(s)

Paola Tellaroli, <paola dot tellaroli at unipd dot it>;; Marco Bazzi, <bazzi at stat dot unipd dot it>; Michele Donato, <mdonato at stanford dot edu>.

References

Tellaroli P, Bazzi M., Donato M., Brazzale A. R., Draghici S. (2016). Cross-Clustering: A Partial Clustering Algorithm with Automatic Estimation of the Number of Clusters. PLoS ONE 11(3): e0152333. doi:10.1371/journal.pone.0152333

is_zero is_zero

Examples

```
library(CrossClustering)
data(toy)
### toy is transposed as we want to cluster samples (columns of the
### original matrix)
toy_dist <- t(toy) |>
  dist(method = "euclidean")
### Hierarchical clustering
cluster_ward <- toy_dist |>
  hclust(method = "ward.D")
cluster_other <- toy_dist |>
  hclust(method = "complete")
### consensus_cluster
consensus_cluster(
  c(3, 4),
  cluster_ward,
  cluster_other
```

is_zero

Check for zero

Description

Check if a given, single, number is 0 or not

Usage

```
is_zero(num)
```

Arguments

num

a numerical vector of length one

Value

```
a boolean, TRUE if num is 0
```

```
is_zero(1)
is_zero(0)
```

nb_data 15

nb_data

RNA-Seq dataset example

Description

nb_data contains a subset of a bigger normalized negative binomial simulated dataset.

Usage

nb_data

Format

A data frame with 100 observations on 36 numeric variables.

Details

This dataset is part of a larger simulated and normalized dataset with 2 experimental groups, 6 time-points and 3 replicates. Simulation has been done by using a negative binomial distribution. The first 20 genes are simulated with changes among time.

Source

Data included in the bioconductor package maSigPro. https://doi.org/doi:10.18129/B9.bioc.maSigPro

prune_zero_tail

Prune tail made of zeros

Description

Given a diagonal matrix which is supposed to have no non-zero entry in the diagonal after the first one (if any) the function returns the diagonal (sub-)matrix without the columns and the row corresponding to the zero-entries in the diagonal (if any).

Usage

```
prune_zero_tail(diag_mat)
```

Arguments

diag_mat

a diagonal matrix which must satisfy the following property: in the diagonal, every element after a zero is a zero.

16 reverse_table

Value

a diagonal matrix without zeros in the diagonal, composed by the first rows and columns of the original matrix with non zeros in the diagonal (which are also the only ones)

Examples

reverse_table

Reverse the process of create a contingency table

Description

Reverse the process of create a contingency table

Usage

```
reverse_table(x)
```

Arguments

Х

a contingency table

Value

a list of 2 vector corresponding to the unrolled table

```
clust_1 <- iris[, 1:4] |>
  dist() |>
  hclust() |>
  cutree(k = 3)
clust_2 <- iris[, 1:4] |>
  dist() |>
  hclust() |>
  cutree(k = 4)
cont_table <- table(clust_1, clust_2)
reverse_table(cont_table)</pre>
```

toy 17

toy

A toy example matrix

Description

A toy example matrix

Usage

toy

Format

A matrix of 10 row and 7 columns

twomoons

A famous shape data set containing two clusters with two moons shapes and outliers

Description

A famous shape data set containing two clusters with two moons shapes and outliers

Usage

twomoons

Format

A data frame with 52 rows and 3 variables:

x numx coordinates

y numy coordinates.

clusters integercluster membership (outliers classified as 3rd cluster).

18 worms

worms	A famous shape data set containing two clusters with two worms shapes and outliers

Description

A famous shape data set containing two clusters with two worms shapes and outliers

Usage

worms

Format

A data frame with 87 rows and 3 variables:

- x numx coordinates
- y numy coordinates.

cluster integercluster membership (outliers classified as 3rd cluster).

Index

```
\ast datasets
    chain_effect, 12
    nb_data, 15
    toy, 17
    twomoons, 17
    worms, 18
ari, 2
cc_crossclustering, 4
cc\_get\_cluster, 8, 9
cc\_test\_ari, 10
cc\_test\_ari\_permutation, 11
chain_effect, 12
consensus_cluster, 13
is_zero, 14
nb\_data, 15
print.ari(ari), 2
print.crossclustering
        (cc_crossclustering), 4
prune_zero_tail, 15
reverse_table, 16
toy, 17
twomoons, 17
worms, 18
```