

$$p(A|B) = \frac{p(A \land B)}{p(B)}$$

$$p(A \wedge B) = p(A|B) * p(B)$$

Bayes Rules

 $p(A \wedge B) = p(B|A) * p(A)$ Writing $p(A \wedge B)$ in two different ways:

$$p(A \wedge B) = p(A|B) * p(B)$$

$$p(A|B) = \frac{p(B|A) * p(A)}{p(B)}$$

p(A|B) is called posterior (posterior distribution on A given B.)

p(A) is called prior. p(B) is called evidence.

p(B|A) is called likelihood.

	Α	not A	Sum
В	P(A and B)	P(not A and B)	P(B)
Not B	P(A and not B)	P(not A and not B)	P(not B)
	P(A)	P(not A)	1

- This table divides the sample space into 4 mutually exclusive events.
- The probability in the margins are called marginals and are calculated by summing across the rows and the columns.

Another form:

$$p(A|B) = \frac{p(B|A) * p(A)}{p(B|A) * p(A) + p(B|\neg A) * p(\neg A)}$$

Example

$$p(A|B) = \frac{p(B|A) * p(A)}{p(B|A) * p(A) + p(B|\neg A) * p(\neg A)}$$

- A: patient has cancer.
- B: patient has a positive lab test.

p(A) = 0.008 $p(\neg A) = 0.992$

p(B|A) = 0.98 $p(\neg B|A) = 0.02$

 $p(B|\neg A) = 0.03$ $p(\neg B|\neg A) = 0.97$

$$p(A|B) = \frac{0.98 \times 0.008}{0.98 \times 0.008 + 0.03 \times 0.992} = 0.21$$

Discriminative Algorithms • Discriminative Algorithms: 直接学后验概率 -Idea: model p(y|x), conditional distribution of y given x. -In Discriminative Algorithms: find a decision boundary that 的3找到决策边界 separates positive from negative example. -To predict a new example, check on which side of the decision boundary it falls. -Model p(y|x) directly. Generative Algorithms Generative Algorithms adopt a different approach: -Idea: Build a model for what positive examples look like. -Build a different model for what negative example look like. -To predict a new example, match it with each of the models 直接学先验概率,再通过见叶斯公式就得后验概率. (实际上无需计算) and see which match is best. -Model p(x|y) and p(y)! -Use Bayes rule to obtain $p(y|x) = \frac{p(x|y)p(y)}{p(x)}$ -To make a prediction: $\operatorname{argmax}_{y}p(y|x) = \operatorname{argmax}_{y} \frac{p(x|y)p(y)}{p(x)}$) 由于PW是给它的. 故上下等价. $\operatorname{argmax}_y p(y|x) \approx \operatorname{argmax}_y p(x|y) p(y)$ Naive Bayes · Probabilistic model. · Highly practical method. Application domains to natural language text documents. • Naive because of the strong independence assumption it makes (not realistic). · Simple model. • Strong method can be comparable to decision trees and neural networks in some cases. Setting • A training data (x_i, y_i) , x_i is a feature vector and y_i is a discrete label. • *d* features, and *n* examples. • Example: consider document classification, each example is a documents, each feature represents the presence or absence of a particular word in the document. · We have a training set. • A new example with feature values $x_{new} = (a_1, a_2, ..., a_d)$ • We want to predict the label γ_{new} of the new example. $y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} \ p(y|a_1, a_2, \cdots, a_d)$ Use Bayes rule to obtain: $y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} \quad \frac{p(a_1, a_2, \cdots, a_d | y) * p(y)}{p(a_1, a_2, \cdots, a_d)}$ $y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} \ p(a_1, a_2, \cdots, a_d | y) * p(y)$ Can we estimate these two terms from the training data? 1. p(y) can be easy to estimate: count the frequency with which each label y. $p(a_1, a_2, ..., a_d | y)$ is not easy to estimate unless we have a very very large sample. (We need to see every example many times to get reliable estimates)

Naive Bayes Classifier

Makes a simplifying assumption that the feature values are conditionally independent given the label. Given the label of the example, the probability of observing the conjunction $a_1, a_2, ..., a_d$ is the product of the probabilities for the individual features:

$$p(a_1, a_2, \cdots, a_d|y) = \prod_j p(a_j|y)$$

Naive Bayes Classier:

$$y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} \ p(y) \prod_{i} p(a_j|y)$$

多了一个假设· a, az, ..., a, 是至相独立的

Can we estimate these two terms from the training data?
Yes!

Algorithm

Learning: Based on the frequency counts in the dataset:

- 1. Estimate all p(y), $\forall y \in Y$.
- 2. Estimate all $p(a_i|y)$, $\forall y \in Y$, $\forall a_i$

Classification: For a new example, use:

$$y_{new} = \operatorname{argmax}_{y \in \mathbb{Y}} p(y) \prod_{i} p(a_{i}|y)$$

Note: No model per se or hyperplane, just count the frequencies of various data combinations within the training examples.

Example

Highest Degree	Work Experience	Favorite Language	Needs Work Visa	Hire
Bachelors	Mobile Dev	Objective-C	TRUE	yes
Masters	Web Dev	Java	FALSE	yes
Masters	Mobile Dev	Java	TRUE	yes
PhD	Mobile Dev	Objective-C	TRUE	yes
PhD	Web Dev	Objective-C	TRUE	no
Bachelors	UX Design	Objective-C	TRUE	no
Bachelors	Mobile Dev	Java	FALSE	yes
PhD	Web Dev	Objective-C	FALSE	no
Bachelors	UX Design	Java	FALSE	yes
Masters	UX Design	Objective-C	TRUE	no
Masters	UX Design	Java	FALSE	yes
PhD	Mobile Dev	Java	FALSE	no
Masters	Mobile Dev	Java	TRUE	yes
Bachelors	Web Dev	Objective-C	FALSE	no

Highest Degree	Work Experience	Favorite Language	Needs Work Visa	
Masters	UX Design	Java	TRUE	?

$$p(yes) = 8/14 = 0.572$$

 $p(no) = 6/14 = 0.428$

Conditional probabilities:

$$p(masters|yes) = 4/8 \quad p(masters|no) = 1/6$$

$$p(UX \ Design|yes) = 2/8 \quad p(UX \ Design|no) = 2/6$$

$$p(Java|yes) = 6/8$$
 $p(Java|no) = 1/6$

$$p(TRUE|yes) = 4/8$$
 $p(TRUE|no) = 3/6$

 $p(yes)*p(Masters|yes)*p(UX\ Design|yes)*p(Java|yes)*p(TRUE|yes) = 0.026$ $p(no)*p(Masters|no)*p(UX\ Design|no)*p(Java|no)*p(TRUE|no) = 0.002$

$$y_{new} = yes$$

Estimating probability

m-estimate of the probability: $p(a_j|y) = \frac{n_c + m*p}{n_y + m}$ where:

 n_y : total number of examples for which the class is y. n_c : total number of examples for which the class is y and feature x_i

= a_j m: called equivalent sample size

Intuition:

Augment the sample size by m virtual examples, distributed according to prior p (prior estimate of each value).

If prior is unknown, assume uniform prior: if a feature has k values, we can set ρ =1/k.

