

Universidad Nacional de Cuyo - Facultad de Ingeniería

Química General e Inorgánica

TRABAJO PRÁCTICO 11:

Redox

Profesora Titular: Dra. Graciela Valente

Profesora Adjunta: Dra. Cecilia Medaura

Jefes de Trabajos Prácticos:

Lic. Sebastián Drajlin Gordon

Lic. Liliana Ferrer
Prof. Inés Grillo
Ing. Carina Maroto
Dra. Rebeca Purpora
Ing. Alejandra Somonte

Ing. Silvina Tonini

Contenido: Reacciones de óxido-reducción. Balanceo por el método ion-electrón.

ÍNDICE

I.	EJERCICIOS	. 3
II.	RESPUESTAS	. 4

I. EJERCICIOS

Balancee las siguientes reacciones por el método del ion-electrón, indicando las hemireacciones de oxidación y de reducción y en cada caso indicando el agente oxidante y el agente reductor.

- 1. CuSO₄ + Fe → Cu + FeSO₄
- 2. Cloro + Ioduro de Potasio → Cloruro de Potasio + Iodo

Indicar el número de moléculas de lodo que se forman en la ecuación balanceada.

 Ácido Nítrico_(cc) + Sulfuro de Cadmio → Dióxido de Nitrógeno + Agua + Azufre + Nitrato de Cadmio

Indicar el número de moles de ácido que son necesarios para obtener un mol de sal.

 Clorato de Potasio + KBr + H₂SO₄ → Cloruro de Potasio + Bromo + Agua + Sulfato de potasio

Indicar el número de moles de agua que se forman en la ecuación balanceada.

- 5. FeCl₃ + SnCl₂ → FeCl₂ + SnCl₄
 - a. Indicar el número de moles de agente reductor necesarios para que se formen 60 gramos de cloruro ferroso.
 - b. Calcule la masa equivalente del agente reductor y del agente oxidante.
- 6. Cu + HNO_{3(cc)} → Dióxido de Nitrógeno + Agua + Nitrato Cúprico

Indique el volumen de HNO₃ (MM= 63,01 g/mol; concentración = 65 %p/p; densidad= 1,4 g/mL) necesarios para reaccionar con 50 gramos de cobre.

7. Dicromato de Potasio + Ácido Sulfúrico + Sulfato de Hierro (II) → Sulfato de Potasio + Sulfato de Cromo (III) + Agua + Sulfato de Hierro (III)

Indique la masa de dicromato de potasio necesaria para:

- a. Obtener 3 moles de Sulfato de Hierro (III).
- b. Obtener 1 mol de Sulfato Hierro (III).
- c. Obtener 56 gramos del catión Férrico.
- 8. Permanganato de Potasio + Ácido Clorhídrico → Cloruro de Manganeso (II) + Cloruro de Potasio + Agua + Cloro
 - a. Indique la masa necesaria del Agente Oxidante para producir 112 L de cloro en CNPT.
 - b. Calcule la masa equivalente para el agente oxidante.
- Dicromato de Potasio + H₂O₂ + Ácido Sulfúrico → Oxígeno + Sulfato de Cromo (III) + Agua + Sulfato de Potasio

Indique el número de moles de H₂O₂ necesarios para reducir 100 g del agente oxidante.

 Bromo + Hidróxido de Sodio en caliente → Bromuro de Sodio + Bromato de Sodio + Agua

Indique la masa de Bromato de Sodio que se produce en la reacción balanceada.

II. RESPUESTAS

- 1. $Cu^{2+} + Fe^0 \rightarrow Cu^0 + Fe^{2+}$
 - Cu²⁺: Agente Oxidante; Fe⁰: Agente Reductor
- 2. Cl₂: Agente Oxidante; I⁻: Agente Reductor
 - Se forman 6,02.10²³ moléculas de lodo
- 3. HNO₃: Agente Oxidante; S²-: Agente Reductor
- 4. $KCIO_3 + 6 KBr + 3 H_2SO_4 \rightarrow KCI + 3 Br_2 + 3 H_2O + 3 K_2SO_4$

Se forman 3 moles de agua.

- 5. Fe³⁺: Agente Oxidante; Sn²⁺: Agente reductor
 - a. Se necesitan 0,23 moles de Agente Reductor para obtener 60g de cloruro ferroso.
 - b. masa equivalente Agente Reductor: 94,53 g/eq; masa equivalente Agente Oxidante: 162,85 g/eq
- 6. Cu⁰: Agente Reductor; HNO₃: Agente Oxidante;

Volumen de HNO₃: 218,05 mL

7.

- a. 294 g de K₂Cr₂O₇
- b. 98 g de K₂Cr₂O₇
- c. 49 g de K₂Cr₂O₇
- 8. $2 \text{ KMnO}_4 + 16 \text{ HCl} \rightarrow 2 \text{ MnCl}_2 + 2 \text{ KCl} + 8 \text{ H}_2\text{O} + 5 \text{ Cl}_2$

Se necesitan 316g de KMnO₄

9. $K_2Cr_2O_7 + 3 H_2O_2 + 4 H_2SO_4 \rightarrow 3 O_2 + Cr_2(SO_4)_3 + 7 H_2O + K_2SO_4$

K₂Cr₂O₇: Agente Oxidante; H₂O₂: Agente Reductor;

Se necesitan 1,02 moles de H₂O₂

10. 6 Br₂ + 12 NaOH → 10 NaBr + 2 NaBrO₃ + 6 H₂O

Se producen 302g de NaBrO₃