

Functions and Fractals: Sierpinski triangles ★ Points: 553.1800000000001 Rank: 1150

Problem	Submissions	Leaderboard
RATE THIS CHAL	LENGE	
***	*	
		1
		.111
		1
		_11
		111_1111
		111
		11
		111_111
		111111
		_1111
		111_111_111_111
	111	111
		111
		111_111 111
11	11111	111111
		11111 111_111_11
		11111
		111111
		1111111 111_1111111
		11111
		111111111
		_111111111 111_111_111_
Sierpinski Triang	le	
The Sierpinski Tria	ingle is a pretty fractal wh	ch consistes of layers of self-similar triangles, nested inside each other. This challenge involves t
construction of su	ch triangles, in the form o	f ASCII Art. The restriction is, that you need to accomplish this with functional programming, and
	e even local variables!	
		so we cannot keep repeating the pattern infinitely. So, we will provide you a number of iteration
		of the Sierpinski Triangle for those many iterations (or, levels of recursion). A few samples are
provided below.	enerate the Asen version	of the sterphisk mangle for those many terrations (or, levels of recarsion). When sumples are
Iteration #0		
	-	which points upwards. There are 32 rows and 63 columns in this matrix. The triangle is compose
of underscores an	d ones as shown below.	
		1
	11	11
	111	111

11111111111
1111111111111
11111111111111
1111111111111111
11111111111111111
1111111111111111111
1111111111111111111111
11111111111111111111111
11111111111111111111111111
1111111111111111111111111111
111111111111111111111111111111
111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
1111111111111111111111111111111111
11111111111111111111111111111111111
11111111111111111111111111111111111
111111111111111111111111111111111111
1111111111111111111111111111111111111
_11111111111111111111111111111111111111
111111111111111111111111111111111111111

Iteration #1

The "Fractalization" now begins. We create a new triangle, which points downwards, and its vertices co-incide with the midpoints of the outer, upward-pointing triangle. The ones are flipped into underscores. Note, that the original upward-pointing triangle has now been split into four segments: one downward-pointing triangle, filled with underscores - and three triangles which point upwards and are filled with ones.

11	.1
	.11
1111	111
	1111
	11111
	111111
	1111111
	11111111
	111111111
	1111111111
	11111111111
	1111111111111
	.1111111111111
111111111111111111	
	.111111111111111
1	1
	111111
111	111
1111	111
111	111 11111 1111111
111	111
111	111
111	111
111	111
111	111111111

We repeat the process on the three smaller upward-pointing triangles created at the end of Iteration #1. We create a downward pointing triangle inside each of those.

	:	1					
111							
11111							
1111111							
111111111							
1111111111							
11111111111							
11111111111111							
	11						
	111						
	11111						
		1111111					
		111111111					
		11111111111					
111111111111111111111111111111111							
111							
		111					
		11111					
		1111111					
		111111111					
		11111111111					
		111111111111					
		111111111111111					
	1						
	111						
	11111						
	1111111						
	1111111111						
11111111111	11111111111	11111111111	11111111111				
_1111111111111	11111111111111	11111111111111	1111111111111				

Input Format

One Integer N which is the Iteration Number for which you need to generate the Sierpinski triangle, in accordance with the triangles displayed above.

Generate the Nth triangle in the series shown above.

Input Constraint

N <= 5

Notes about the Triangle

As in the figures above, the canvas has a total of 32 rows and 63 columns. The outermost, upward-pointing triangle has a perpendicular height of 32 characters. The height of each of the downwards-pointing triangle, drawn in each iteration, is half of the upward-pointing one in which it is drawn.

Output Format

The Nth triangle of the series shown above. The output will consist of 32 rows and 63 columns, and will be composed of ones (1) and underscores as in the triangles above.


```
makeup :: (Int, Int) -> [[Char]]
 5
     makeup (h,w) = build (w `div` 2)
         where build 0 = [replicate w '1']
 6
               build n = (replicate n '_' ++ replicate (w-2*n) '1' ++ replicate n '_') :
     build (n-1)
8
     makeup' :: [[Char]] -> [[Char]]
9
10
     makeup' xs = let w = length (head xs)
                      h = length xs
11
12
                      n1 = (w+1) `div` 2
13
                       up = (\x -> replicate n1 '_' ++ x ++ replicate n1 '_') \langle xs
14
                       down = (\x -> x ++ ('_':x)) < xs
                   in up ++ down
15
16
17
18
     breakup :: (Int, Int) -> (Int, Int)
19
20
     breakup (h,w) = (h 'div' 2, w 'div' 2)
21
22
     applyNTimes :: Int \rightarrow (a \rightarrow a) \rightarrow a \rightarrow a
     applyNTimes 0 _ a = a
23
     applyNTimes 1 f a = f a
24
25
     applyNTimes n f a = f $ applyNTimes (n-1) f a
26
27 iterateN :: Int -> [[Char]]
                                                                                          Line: 35 Col: 1
                                                                            Run Code
                                                                                           Submit Code
Test against custom input
```

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature

