Model Families for Correlated Data

LMMs: Conditional Model

Conditional/Hierarchical specification of LMM

$$Y_{ij} = \mathbf{X}_{ij}^T \boldsymbol{\beta} + \mathbf{Z}_{ij}^T \mathbf{b}_i + \epsilon_{ij}$$

- Y_{ij} : the *jth* outcome of the *ith* subject.
- β : regression coefficient vector $(p \times 1)$.
- \mathbf{b}_i : random effects for the *ith* subject, $\mathbf{b}_i \sim N\{0, \mathbf{D}(\boldsymbol{\theta})\}$
- θ is a $q \times 1$ vector of variance components.
- ϵ_{ij} : residual, and $\epsilon_i = (\epsilon_{i1}, \cdots, \epsilon_{in_i})^T \sim N\{0, \mathbf{R}(\boldsymbol{\theta})\}.$
- (X_{ij}, Z_{ij}) : covariate design matrices.

Equivalently:

$$\mathbf{Y}_i | \mathbf{b}_i \sim N(\mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{b}, \mathbf{R}_i)$$

 $\mathbf{b}_i \sim N(\mathbf{0}, \mathbf{D})$

LMMs: Marginal Model

$$f_i(\mathbf{y}) = \int f_i(\mathbf{y}_i|\mathbf{b}_i)f(\mathbf{b}_i)d\mathbf{b}_i$$

Then the marginal model is

$$\mathbf{Y}_i \sim N(\mathbf{Z}_i \boldsymbol{eta}, \mathbf{Z}_i \mathbf{D} \mathbf{Z}_i' + \mathbf{R})$$

- Estimation and Inference are derived from the marginal model
- Nearly seamless/interchangeable with conditional model
 - Some constraints on the variance components

Model Families: Gaussian Case

Marginal Model:

$$E[Y_{ij}|\mathbf{X}_{ij}] = \mathbf{X}_{ij}\boldsymbol{\beta} \tag{1}$$

Conditional Model:

$$E[Y_{ij}|\mathbf{b}_i,\mathbf{X}_{ij}] = \mathbf{X}_{ij}\boldsymbol{\beta} + \mathbf{Z}_{ij}\mathbf{b}_i$$
 (2)

Transition Model:

$$E[Y_{ij}|Y_{i,j-1},\ldots,Y_{i,1},\mathbf{X}_{ij}] = \mathbf{X}_{ij}\boldsymbol{\beta} + \alpha Y_{i,j-1}$$
(3)

- (2) follows directly from (1) $\Rightarrow \beta$ has marginal AND conditional interpretation, simultaneously
 - Marginalize over \mathbf{b}_i or condition on $\mathbf{b}_i = \mathbf{0}$

Non-normal data: Connection between marginal/conditional models is no longer straightforward!

Model Families: General Case

Marginal Model:

- Responses modeled marginalized over all other responses
- (usually) GEEs
- (possibly) likelihood based models

Conditionally Specified Models:

- Responses in sequence are conditioned upon other outcomes
- (e.g.) Transition models

Subject-Specific (Conditional) Model:

- Responses independent conditionally on subject-specific parameters
- (usually) Mixed models
- (possibly) fixed subject specific effects; conditional logistic model