ASTRONOMICAL SIMULATIONS

Yuxiang.Qin@anu.edu.au

Woolley Building W22

W1-6

Bash, shell, ssh

High-Performance Computing

Python

 \mathbf{C}

Parallel Computing

W7,8,9

Data Processing

Statistics

Plotting

Regression

Clustering

Model Selection

Tick all simulations you know

Answered: 8 Skipped: 5

N-body simulation

Isaac Newton gained renown for solving the two-body problem, showing how gravitational attraction binds the Earth and the Sun into elliptical orbits.

Moving on to the chaotic 3-body problem:

Leonhard Euler studied solutions when the three masses are in the same line.

Joseph-Louis Lagrange later discovered special solutions when the three masses form an equilateral triangle.

Then we have computers...

N-body simulation Pseudocode

```
def n_body_simulation(N, dt, total_time):
    positions = np.random.rand(N, 3) * volume_size  # initialize positions
    velocities = np.random.rand(N, 3) * velocity_scale # initialize velocities
    masses = np.ones(N) * mass_scale  # initialize masses

for step in range(int(total_time / dt)): # loop through all steps
    forces = calculate_forces(positions, N) # gravity!

# Update velocities and position based on forces
    for i in range(N):
        velocities[i] += forces[i] / masses[i] * dt  # v_new = v_old + (F/m) * dt
        positions[i] += velocities[i] * dt  # r_new = r_old + v * dt
        positions %= box_size  # periodic boundary conditions

return positions, velocities
```


N-body simulation Pseudocode

$$\ddot{\vec{r}}_j = -G \sum_{i \neq j}^N \frac{m_i}{\left| \vec{r}_i - \vec{r}_j \right|^3} (\vec{r}_i - \vec{r}_j)$$

```
def calculate_forces(positions, N):
  forces = np.zeros((N, 3)) # Initialize force array

for i in range(N):
    for j in range(i + 1, N):
        # Calculate gravitational force between particles i and j
        distance_vector = positions[j] - positions[i]
        distance = np.linalg.norm(distance_vector)
        force_magnitude = G * (masses[i] * masses[j]) / (distance ** 2 + soften **2)
        force_vector = force_magnitude * distance_vector / distance
        forces[i] += force_vector # Force on particle i
        forces[j] -= force_vector # Equal and opposite force on particle j

return forces
```


8

Planetary system

Kerbal Space Program

Star cluster

Stellar group R136 in the 30 Doradus nebula, in LMC

Andromeda colliding with the Milky Way

11

Cosmological N-body simulation

Cosmological N-body simulations

Hydrodynamic simulation Pseudocode

```
def n body hydrodynamics simulation(N, dt, total time):
  positions = np.random.rand(N, 3) * volume size # initialize positions
  velocities = np.random.rand(N, 3) * velocity scale # initialize velocities
  masses = np.ones(N) * mass scale
                                                # initialize masses
  pressures = np.ones(N) * pressure scale
                                                  # initialize pressure
  for step in range(int(total time / dt)): # loop through all steps
    forces = calculate forces(positions, N) # gravity!
    forces += calculate pressure forces(positions, pressures, N) # hydrodynamics
    # Update velocities and position based on forces
    for i in range(N):
            velocities[i] += forces[i] / masses[i] * dt # v new = v old + (F/m) * dt
            positions[i] += velocities[i] * dt
                                                   \#r \text{ new} = r \text{ old} + v * \text{ dt}
                                                 # periodic boundary conditions
            positions %= box size
    # Update fluid properties
          pressures = update pressures(positions, masses, N)
  return positions, velocities, pressures
```


Hydrodynamic simulation Pseudocode

$$\rho_{j} = \sum_{i \neq j}^{N} m_{i} W(\vec{r}_{i} - \vec{r}_{j}, h)$$

$$P = K \rho^{\gamma}$$

Smoothed Particle Hydrodynamics (SPH)

Hydrodynamic simulation Pseudocode

```
def calculate_pressure_forces(positions, pressures, N):
    forces = np.zeros((N, 3)) # Initialize force array

for i in range(N):
    for j in range(i+1, N):
        # Calculate distance and direction
        distance_vector = positions[j] - positions[i]
        distance = np.linalg.norm(distance_vector)

    pressure_gradient = (pressures[j] - pressures[j]) / densities[i] # Averaged pressure
    pressure_force_magnitude = pressure_gradient / (distance**2 + soften ***2)
    force_vector = pressure_force_magnitude * distance_vector
    pressure_forces[i] += force_vector # Force on particle i
    pressure_forces[j] -= force_vector # Equal and opposite force on particle j

return pressure_forces
```

$$\vec{F}_{j} = \sum_{i \neq j}^{N} \left(\frac{P_{i} - P_{j}}{\rho_{j}} \frac{\vec{r}_{i} - \vec{r}_{j}}{\left(\vec{r}_{i} - \vec{r}_{j}\right)^{2}} \right)$$

16

Hydrodynamic simulation + star formation Pseudocode

```
def n body hydrodynamics simulation with star formation(N, dt, total time):
                 # initialize positions, velocities, masses, pressure
  star particles = []
                       # List to store new star particles
  stellar masses = [] # List to store masses of new stars
  for step in range(int(total_time / dt)): # loop through all steps
    ... # gravity, hydrodynamics, update velocities and position, fluid properties
    for i in range(N):
      if density[i] > density threshold:
        star formation rate = star formation efficiency * densities[i] # Modify as needed
        new star mass = star formation rate * dt
        if new star mass > random number: # Stochastically create a new star particle
          star particles.append(positions[i]) # Store position of new star
           stellar masses.append(new star mass) # Store mass of new star
           densities[i] -= new star mass # Decrease gas density due to star formation
    supernova feedback(star particles, stellar masses, positions, densities, dt, feedback radius)
  return positions, velocities, pressures star particles, stellar masses
```


Hydrodynamic simulation + star formation Pseudocode

```
def supernova feedback(star particles, stellar masses, positions, densities, dt, feedback radius):
  for star position, star mass in zip(star particles, stellar masses):
          if stellar mass > 0:
      feedback energy = energy per supernova * fraction supernova * star mass/m p
      for i in range(len(positions)):
        distance = np.linalg.norm(positions[i] - star position)
        if distance < feedback radius:
          # Calculate feedback impact based on distance
          influence = (1 - distance / feedback radius) # Influence decreases with distance
          # Update density and temperature of neighboring gas particles
          densities[i] += feedback energy * influence / (dt * feedback radius**3) # Energy to density conversion
          # Here, we might want to also consider temperature updates if needed:
          # temperature[i] += feedback energy * influence / (densities[j] * specific heat capacity)
          # Optional: Implement a more complex model for feedback (e.g., modifying velocity)
          # velocities[i] += influence * velocity feedback factor # Modify velocities based on feedback influence
```


MHD simulation Pseudocode

19

MHD simulation Pseudocode

```
def calculate magnetic forces(positions, velocities, magnetic fields, N):
  magnetic forces = np.zeros((N, 3)) # Initialize magnetic force array
  for i in range(N):
    for j in range(N):
      if i != j:
         distance vector = positions[i] - positions[i]
         distance = np.linalg.norm(distance vector)
         if distance < h: # smoothing length for neighbor interactions
           # Calculate magnetic field interaction
           magnetic force magnitude = np.cross(velocities[i], magnetic fields[i]) / (distance**2 + soften**2)
           magnetic forces[i] += magnetic force magnitude # Force on particle i
  return magnetic forces
```

$$\vec{F}_j = \sum_{i \neq j}^N \left(\frac{\vec{v}_j \times \vec{B}_i}{\left(\vec{r}_i - \vec{r}_j \right)^2} \right)$$

20

MHD simulation Pseudocode

```
def update magnetic fields(magnetic fields, velocities, positions, dt, N):
  updated magnetic fields = np.zeros like(magnetic fields) # Initialize updated magnetic fields
  for i in range(N):
    # Initialize advection and diffusion components
    advection_term = np.zeros(3)
    diffusion term = np.zeros(3)
    for j in range(N):
      if i != j:
         distance vector = positions[i] - positions[i]
         distance = np.linalg.norm(distance vector)
         if distance < h:
           # Advection term (contribution from neighboring magnetic fields)
           advection term += velocities[i] * magnetic fields[j] / (distance ** 2 + soften ** 2)
           # Diffusion term (simplified Laplacian)
           diffusion term += (magnetic fields[i] - magnetic fields[i]) / (distance ** 2 + soften ** 2)
    # Update magnetic field based on advection and diffusion
    updated magnetic fields[i] = magnetic fields[i] + dt * (advection term - eta * diffusion term)
```

$$\frac{\partial \vec{B}}{\partial t} + \nabla \cdot (\vec{v}\vec{B}) = \nabla \cdot (\eta \nabla \vec{B})$$

return updated magnetic fields

Adaptive Mesh Refinement

- Smoothed Particle Hydrodynamics (SPH) is particle-based, e.g., GADGET, PHANTOM.
- AMR is grid-based, with the simulation domain divided into a hierarchy of grids (with varying resolutions to dynamically refine simulation regions that need high accuracy), e.g., RAMSES, FLASH, Enzo.
 - Compared to SPH, AMR saves time by only increasing resolution in interested regions
 - deals better with sharp features like shocks (as SPH smooth out shock due to the kernel).
 - But its implementation is more complex and must be careful when dealing with boundaries.

 There are codes trying to combine both, e.g. AREPO, GIZMO.

22

AMR vs SPH

Well-known cosmological/zoom-in simulations

	SPH	AMR	Hybrid
Cosmological	EAGLE (1407.7040) Magneticum (1509.05134) FLAMINGO (2306.04024)	Horizon-AGN (1402.1165)	Illustris (1405.1418) IllustrisTNG (1707.03395)
Zoom-ins	FIRE (1608.04133)	Renaissance (1604.07842)	Illustris (1605.08205) Auriga (1601.01159)

AMR vs SPH

$$dN_2 = d\vec{x}d\vec{v} \left[f(\vec{x}, \vec{v}, t) + \frac{\partial f}{\partial t} + \frac{d\vec{x}}{dt} \cdot \nabla_x f + \frac{d\vec{v}}{dt} \cdot \nabla_v f \right]$$

$$dN_2 = dN_1^* \rightarrow Vlasov equation: \frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_x f + \frac{\vec{F}}{m} \cdot \nabla_v f = 0$$

^{*}assuming no particle leaving or added to the phase space (e.g., star formation or stellar death, accretion onto black holes)

AMR vs SPH

Solving Vlasov-Poisson equation:

$$\int d\vec{v} \, \vec{U}_k \left[\frac{\partial f}{\partial t} + \vec{v} \cdot \nabla_x f + \frac{\vec{F}}{m} \cdot \nabla_v f \right] = 0 \qquad \qquad \rho(\vec{x}, t) = \int d\vec{v} \, f(\vec{x}, \vec{v}, t)$$

$$\begin{split} \overrightarrow{U}_k &= 1 \text{ (continuity equation): } \int \mathrm{d}\vec{v} \, \frac{\partial f}{\partial t} + \int \mathrm{d}\vec{v} \, \vec{v} \cdot \nabla_x f + \int \mathrm{d}\vec{v} \, \frac{\vec{F}}{\mathrm{m}} \cdot \nabla_v f = \frac{\partial}{\partial t} \int \mathrm{d}\vec{v} f + \nabla_x \cdot \int \mathrm{d}\vec{v} \, \vec{v} f + 0 = \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\ \overrightarrow{U}_k &= \vec{v} \text{ (momentum equation): } \int \mathrm{d}\vec{v} \, \vec{v} \left[m \frac{\partial f}{\partial t} + m \vec{v} \cdot \nabla_x f + \vec{F} \cdot \nabla_v f \right] = \frac{\partial \int \mathrm{d}\vec{v} m \vec{v} f}{\partial t} + \nabla_x \cdot \int \mathrm{d}\vec{v} \, m \vec{v} \vec{v} f + \int \mathrm{d}\vec{v} \, \vec{v} \vec{F} \cdot \nabla_v f = \frac{\partial \vec{F}}{\partial t} + \nabla_x \cdot T - \int \mathrm{d}\vec{v} \, \vec{F} f = \frac{\partial \vec{F}}{\partial t} + \nabla_x \cdot T - \vec{F} = 0 \\ \overrightarrow{U}_k &= v^2 \text{ (energy equation): } \int \mathrm{d}\vec{v} \, v^2 \left[0.5 m \frac{\partial f}{\partial t} + 0.5 m \vec{v} \cdot \nabla_x f + 0.5 \vec{F} \cdot \nabla_v f \right] = \frac{\partial \int \mathrm{d}\vec{v} 0.5 m v^2 f}{\partial t} + \nabla_x \cdot \nabla_v f + \int \mathrm{d}\vec{v} \, 0.5 v^2 \vec{F} \cdot \nabla_v f = \frac{\partial \vec{F}}{\partial t} + \nabla_x \cdot \vec{Q} - \mathbf{W} = 0 \end{split}$$

 $^{*\}vec{P}$, \vec{T} , \vec{Q} , \vec{V} are momentum and its flux tensor, energy and its flux vector and work done on the system.

```
class AMRSimulation:
 def init (self, domain size, num cells):
    self.domain size = domain size
    self.num cells = num cells
    self.grid = create root grid(self.domain size, self. num cells) # Create an initial coarse mesh grid
    self.initialize variables(self.grid)
 def create root grid(domain size, num cells):
   x min, x max, y min, y max, z min, z max = domain size
    grid = []
    # Loop through each spatial dimension and create cells
    for i in range(num cells[0]):
      for j in range(num_cells[1]):
        for k in range(num cells[2]):
          # Calculate the position of the cell in the grid
          cell position = [x min + i * (x max - x min) / num cells[0],
                    y min + j * (y max - y min) / num cells[1],
                    z min + k * (z max - z min) / num cells[2]]
           # Define the size of each cell (constant for uniform root grid)
          cell size = [(x max - x min) / num cells[0],
                  (y max - y min) / num cells[1],
                  (z max - z min) / num cells[2]]
          # Initialize the cell with default physical properties (density, velocity, pressure, etc.)
          grid.append({"id": (i, j, k), # Unique identifier for the cell
               "position": cell position,
               "size": cell size.
               "refined": False, # This cell is not refined yet
               "children": []}) # Placeholder for children cells if this cell is refined
    return grid
```

class AMRSimulation:

```
def initialize variables(grid):
 for cell in grid:
    # Initialize density based on position, or set a constant value
    cell["density"] = initial density(cell["position"])
    # Initialize momentum based on position, or set initial velocity to zero
    velocity = initial velocity(cell["position"]) # velocity could be a vector
    cell["momentum"] = cell["density"] * velocity # Momentum = density * velocity
    # Initialize internal energy, can depend on density or be a fixed value
    cell["energy"] = initial energy(cell["density"], velocity)
  return grid
def initial density(position):
  # Example: Uniform density
  return 1.0
def initial velocity(position):
  # Example: Zero velocity
  return np.array([0.0, 0.0, 0.0])
def initial energy(density, velocity):
  # Example: Internal energy per unit mass (could be based on an equation of state)
  thermal energy = 1.0e5 # Set an arbitrary thermal energy
  kinetic energy = 0.5 * density * np.linalg.norm(velocity)**2 # K = 1/2 * rho * v^2
  return thermal energy + kinetic energy
```


class AMRSimulation:

```
# Main time-stepping loop
def run simulation(grid, total time, dt):
  time = 0
  while time < total time:
    # Refine cells based on error indicators
    refine grid(grid)
    # Compute fluxes for each cell
    fluxes = compute fluxes(grid)
    # Update cell variables using fluxes
    update cell variables(grid, fluxes, dt)
    # Apply boundary conditions
    apply boundary conditions(grid)
    # Advance time
    time += dt
# Adaptive mesh refinement based on error indicators
def refine grid(grid):
  for cell in grid:
    error indicator = evaluate error indicator(cell)
    if needs refinement(error indicator):
      create refined cells(cell) # subdivide the cell into finer cells
```

```
# Evaluate error indicators to decide whether a cell needs refinement
def evaluate error indicator(cell):
  density gradient = np.gradient(cell["density"])
  error indicator = np.linalg.norm(density gradient)
  return error indicator
# Check if a cell needs to be refined
def needs refinement(error indicator):
  if error indicator > refinement threshold:
    return True
  return False
# Create finer cells by subdividing the parent cell
def create refined cells(cell):
  # Subdivide cell into 2<sup>3</sup> = 8 smaller cells for 3D
  sub cells = subdivide cell(cell)
  cell.refined = True # mark the parent cell as refined
  cell.children = sub cells # store refined cells as children
```


class AMRSimulation:

```
# Main time-stepping loop
def run simulation(grid, total time, dt):
  time = 0
  while time < total time:
    # Refine cells based on error indicators
    refine grid(grid)
    # Compute fluxes for each cell
    fluxes = compute fluxes(grid)
    # Update cell variables using fluxes
    update cell variables(grid, fluxes, dt)
    # Apply boundary conditions
    apply boundary conditions(grid)
    # Advance time
    time += dt
# Compute fluxes for each cell
def compute fluxes(grid):
  fluxes = {}
  for cell in grid:
    flux = calculate flux(cell)
    fluxes[cell.id] = flux
  return fluxes
```

```
def calculate flux(grid):
  fluxes = {
    "density flux": np.zeros((len(grid), 3)), # Assuming 3D grid
    "momentum flux": np.zeros((len(grid), 3)),
    "energy flux": np.zeros((len(grid), 3))
  for cell in grid:
    # Get the cell properties
    den = cell["density"]
    mom = cell["momentum"]
    ene = cell["energy"]
    # Calculate velocity, potential energy and pressure
    vel. PE. P = calculate gas properties(den. mom. ene)
    # Example flux calculations (simplified, need flows from nearby cells)
    for dim in range(3): # For each dimension (x, y, z)
      fluxes["density flux"][cell["id"], dim] = den * vel[dim]
      fluxes["momentum flux"][cell["id"], dim] = mom[dim] * vel[dim] + P
      fluxes["energy flux"][cell["id"], dim] = (PE + 0.5 * den *\
                   (np.linalg.norm(vel) ** 2) + P) * vel[dim]
  return fluxes
```


class AMRSimulation:

```
# Main time-stepping loop
def run simulation(grid, total time, dt):
  time = 0
  while time < total time:
    # Refine cells based on error indicators
    refine grid(grid)
    # Compute fluxes for each cell
    fluxes = compute fluxes(grid)
    # Update cell variables using fluxes
    update cell variables(grid, fluxes, dt)
    # Apply boundary conditions
    apply boundary conditions(grid)
    # Advance time
    time += dt
# Update cell variables based on fluxes
def update cell variables(grid, fluxes, dt):
  for cell in grid:
    # Update cell quantities based on fluxes and the time step
    cell.density += fluxes[cell.id]["density flux"] * dt
    cell.momentum += fluxes[cell.id]["momentum flux"] * dt
    cell.energy += fluxes[cell.id]["energy flux"] * dt
```


class AMRSimulation:

```
# Main time-stepping loop
def run simulation(grid, total time, dt):
  time = 0
  while time < total time:
    # Refine cells based on error indicators
    refine grid(grid)
    # Compute fluxes for each cell
    fluxes = compute fluxes(grid)
    # Update cell variables using fluxes
    update cell variables(grid, fluxes, dt)
    # Apply boundary conditions
    apply boundary conditions(grid)
    # Advance time
    time += dt
# Apply boundary conditions
def apply boundary conditions(grid):
  for cell in grid.boundary cells:
    enforce boundary condition(cell)
```

```
def enforce boundary condition(cell):
  # needs to first identify the boundaries, e.g. left, right, up...:
  if cell["is boundary"]:
     # Example 1: Periodical boundary condition in cosmological v
     # find the opposite boundary, e.g., opposite(left) = right
     ghost cell = opposite(cell)
     # pretend this ghost cell is next to the boundary cell
     ghost fluxes = compute flux(ghost cell)
     # add flux from the ghost cell to the boundary cell
     cell.density += ghost fluxes [cell.id]["density flux"] * dt
     cell.momentum += ghost fluxes [cell.id]["momentum flux"] * dt
     cell.energy += ghost fluxes [cell.id]["energy flux"] * dt
     # Example 2: Consider a star with a solid core surrounded
     # by a fluid outer layer. The inner solid core has a much
     # higher density and rigidity, in this case, we can set
     # velocity to zero for no movement
    if cell.distance to core() < self.core radius:
      # Solid core: Dirichlet boundary condition
      cell.velocity = 0
      # update cell properties, e.g., pressure
      cell.pressure = self.calculate pressure(cell)
```

return updated_cell

Cosmological hydrodynamic simulations

Zoom in simulations

Galaxy formation

MACS1149-JD1

Star formation

Molecular cloud

Planet formation

t=0 yrs 1000 2000 3000 surface density [g/cm] 10 AU

Blackhole

Radiative Transfer

$$\frac{\mathrm{d}I_{v}}{\mathrm{d}s} = j_{v} - \alpha_{v}I_{v}$$

Optical depth: $\tau_v = \int_0^s \mathrm{d}s' \; \alpha_v$

$$I_v = I_{v,0}e^{-\tau_v} + \int_0^s \mathrm{d}s' j_v e^{-\tau_v(s')}$$

Radiative Transfer Pseudocode

$$\frac{\mathrm{d}I_{v}}{\mathrm{d}s} = j_{v} - \alpha_{v}I_{v}$$

Optical depth: $au_v = \int_0^s \mathrm{d}s' \; lpha_v$

$$I_v = I_{v,0}e^{-\tau_v} + \int_0^s ds' j_v e^{-\tau_v(s')}$$

```
grid = initialize_grid(GRID_SIZE)
# Main ray tracing loop
for i in range(NUM_RAYS):
    ray = initialize_ray()
    trace_ray(ray, grid)
```

Apply recombination in the grid after processing all photons for cell in grid:

```
cell["ionization fraction"] *= (1 - RECOMBINATION RATE)
```

```
def initialize ray():
  # Initialize ray properties (starting position, direction)
  ray = {
    "position": SOURCE POSITION,
    "direction": random direction(),
    "distance traveled": 0.0,
    "absorbed": False
  return ray
def random direction():
  # Generate random spherical coordinates
 theta = np.random.uniform(0, 2 * np.pi) # azimuthal angle
  phi = np.random.uniform(0, np.pi)
                                        # polar angle
  # Convert spherical coordinates to Cartesian coordinates
  x = np.sin(phi) * np.cos(theta)
 y = np.sin(phi) * np.sin(theta)
  z = np.cos(phi)
  # Normalize the vector to ensure it has a length of 1
 direction = np.array([x, y, z])
  return direction
```


Radiative Transfer Pseudocode

```
def trace ray(ray, grid):
  while ray.distance traveled < MAX DISTANCE:
    # Update ray position based on direction
    ray.position += ray.direction * TIME STEP # Move ray forward
    ray.distance traveled += TIME STEP
    # Check for grid boundaries
    cell = get cell at position(grid, ray.position)
    if cell:
      # Check for absorption based on grid properties
      if check for absorption(ray, cell):
         rav.absorbed = True
         cell["ionization fraction"] += (CELL VOLUME * IONIZATION EFFICIENCY) # update ionization fraction
         break # Stop tracing this ray if absorbed
def get cell at position(grid, position):
  for cell in grid:
    if (cell["x min"] <= position[0] <= cell["x max"] and
      cell["y min"] <= position[1] <= cell["y max"] and
      cell["z min"] <= position[2] <= cell["z max"]):</pre>
      return cell
  return None
def check for absorption(ray, cell):
  # Determine if the ray is absorbed based on the cell properties
  tau = cell["optical depth"] * cell["cross section"] * distance
  absorption probability = 1 - np.exp(-tau)
  return random.uniform(0, 1) < absorption probability(cell)
```


IGM Reionization Simulation

Tick all simulations you know

Answered: 8 Skipped: 5

Semi-analytic models balance between using theoretical models and numerical simulations, widely used to study galaxy formation and evolution

Features	Semi-Analytic Models (SAM)	Hydrodynamic Simulations
Complexity	Simplified physical models with parametrized equations	Full treatment of physical processes
Computational Cost	Low; O(#halos)	High; O(#particles)
Input	Halo merger trees from N-body simulations	N-body + hydrodynamics
Spatial resolution	Coarse, not resolving halos	High, resolving galaxy substructure
Mass resolution	High	Low

Features	Semi-Analytic Models (SAM)	Hydrodynamic Simulations
Flexibility	Highly flexible due to the simplicity of models, allowing exploration of a wide range of parameters.	Less flexible, constrained by physical laws and computational limitations.
Precision	Less precise, as it relies on parametrizations and approximations for complex processes.	High precision due to detailed physical modeling, including non-linear effects.
Scalability	Easily scalable, allowing for simulations of large cosmological volumes	Less scalable, as computational costs increase steeply with volume and resolution.
Applications	Ideal for statistical studies of galaxy populations, galaxy mergers, reionization.	Ideal for studying individual galaxies, gas accretion, star formation, and feedback in detail.

49

Halo Merger Trees

Semi-Analytic Model

Baryonic Physics

Gas infall
Gas cooling
Star Formation
Supernovae
Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

...

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir}=10^{15}{\rm M}_{\odot}$$

$$M_{\rm hot} = 10^{14} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13} \rm M_{\odot}$$

$$M_* = 10^{12} \rm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} {\rm M}_{\odot}$$

$$M_{\rm bh} = 10^9 \rm M_{\odot}$$

$$M_{\rm bh,acc} = 10^9 \rm M_{\odot}$$

$$f_{\text{mod}} = 1$$

Semi-Analytic Model

Baryonic Physics

Gas infall

Gas cooling **Star Formation** Supernovae Metal Enrichment Black Hole Growth **Reionization Heating** AGN Feedback Star Burst

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

 $f_{\rm b} = \Omega_{\rm b} / \Omega_{\rm m} = 0.157$

$$M_{\rm vir} = 10^{15} {\rm M}_{\odot}$$

$$M_{\rm hot} = 10^{14.16} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13} \rm M_{\odot}$$

$$M_* = 10^{12} \rm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} {\rm M}_{\odot}$$

$$M_{\rm bh} = 10^9 \rm M_{\odot}$$

$$M_{\rm bh,acc} = 10^9 \rm M_{\odot}$$

$$f_{\text{mod}} = 1$$

Semi-Analytic Model

Baryonic Physics

Gas infall

Gas cooling **Star Formation** Supernovae Metal Enrichment Black Hole Growth **Reionization Heating** AGN Feedback Star Burst

Baryonic Physics

Gas infall

Gas cooling

Star Formation
Supernovae
Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

..

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir} = 10^{15} \rm M_{\odot}$$

$$M_{\rm hot} = 10^{14.16} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13} {\rm M}_{\odot}$$

$$M_* = 10^{12} \rm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} {\rm M}_{\odot}$$

$$M_{\rm bh} = 10^9 \rm M_{\odot}$$

$$M_{\rm bh,acc} = 10^9 {\rm M}_{\odot}$$

$$f_{\text{mod}} = 1$$

$\Delta M_{\rm cold} = \dot{M}_{\rm cold} \Delta t = 10^6 M_{\odot} \text{yr}^{-1} \times 11 \text{Myr} = 1.1 \times 10^{13} M_{\odot}$

Semi-Analytic Model

Baryonic Physics

Gas infall

Gas cooling

Star Formation
Supernovae
Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

..

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir} = 10^{15} \rm M_{\odot}$$

$$M_{\rm hot} = 10^{14.13} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13.3222} \rm M_{\odot}$$

$$M_* = 10^{12} \rm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} \rm M_{\odot}$$

$$M_{\rm bh} = 10^9 {\rm M}_{\odot}$$

$$M_{\rm bh,acc} = 10^9 \rm M_{\odot}$$

$$f_{\text{mod}} = 1$$

$\Delta M_{\rm cold} = \dot{M}_{\rm cold} \Delta t = 10^6 {\rm M}_{\odot} {\rm yr}^{-1} \times 11 {\rm Myr} = 1.1 \times 10^{13} {\rm M}_{\odot}$

RESEARCH SCHOOL OF ASTRONOMY & ASTROPHYSICS | NEURAL NETWORKS

Semi-Analytic Model

Baryonic Physics

Gas infall

Gas cooling

Star Formation
Supernovae
Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

...

Convert surface density to mass assuming exponential disc profile.

$$\dot{M}_* = \frac{M_{\text{cold}} - M_{\text{crit}}}{t_{\text{H}}}$$
$$= \alpha_{\text{sf}} \frac{M_{\text{cold}} - M_{\text{crit}}}{t_{\text{dyn,dics}}}$$

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir} = 10^{15} {\rm M}_{\odot}$$

$$M_{\rm hot} = 10^{14.13} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13.3222} \rm M_{\odot}$$

$$M_* = 10^{12} \rm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} \rm M_{\odot}$$

$$M_{\rm bh} = 10^9 {\rm M}_{\odot}$$

$$M_{\rm bh,acc} = 10^9 {\rm M}_{\odot}$$

$$f_{\text{mod}} = 1$$

Semi-Analytic Model

Baryonic Physics

Gas infall
Gas cooling

Star Formation

Supernovae
Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

...

 $\Delta M_* = \dot{M}_* \Delta t = 2000 \text{M}_{\odot} \text{yr}^{-1} \times 11 \text{Myr} = 2.2 \times 10^{10} \text{ M}_{\odot}$

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir} = 10^{15} {\rm M}_{\odot}$$

$$M_{\rm hot} = 10^{14.13} \rm M_{\odot}$$

$$M_{\rm cold} = 10^{13.3218} \rm M_{\odot}$$

$$M_* = 10^{12.01} \mathrm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11} {\rm M}_{\odot}$$

$$M_{\rm bh} = 10^9 \rm M_{\odot}$$

$$M_{\rm bh,acc} = 10^9 \rm M_{\odot}$$

$$f_{\text{mod}} = 1$$

Semi-Analytic Model

Baryonic Physics

Gas infall
Gas cooling

Star Formation

Supernovae

Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

...

 $\Delta M_* = \dot{M}_* \Delta t = 2000 \text{M}_{\odot} \text{yr}^{-1} \times 11 \text{Myr} = 2.2 \times 10^{10} \text{ M}_{\odot}$

$$E_{\rm SN} = \eta_{\rm SN} \Delta M_* \times 10^{51} \text{erg}$$

$$\varepsilon_{\rm energy} E_{\rm SN} = \frac{1}{2} \Delta M_{\rm hot} V_{\rm vir}^2 + \frac{1}{2} \Delta M_{\rm eject} (V_{\rm esc}^2 - V_{\rm vir}^2)$$

$$= \frac{1}{2} \varepsilon_{\rm mass} \Delta M_* V_{\rm vir}^2 + \frac{1}{2} \Delta M_{\rm eject} V_{\rm vir}^2$$

Stellar recycling:

$$\Delta M_* = -0.01 \, \Delta M_* = -2.2 \times 10^8 \, \mathrm{M_{\odot}}$$

 $\Delta M_{\mathrm{cold}} = 0.01 \, \Delta M_* = 2.2 \times 10^8 \, \mathrm{M_{\odot}}$

SN heating:

$$\Delta M_{\rm hot} = \varepsilon_{\rm mass} \Delta M_* = 6\Delta M_* = 1.32 \times 10^{11} \,{\rm M}_{\odot}$$

 $\Delta M_{\rm cold} = -6 \,\Delta M_* = -1.32 \times 10^{11} \,{\rm M}_{\odot}$

SN ejecting (given $\varepsilon_{\rm energy}$):

$$\Delta M_{\rm eject} = 10^{11} \rm M_{\odot}$$
$$\Delta M_{\rm hot} = 10^{11} \rm M_{\odot}$$

$$\Omega_{\rm m}$$
, $\Omega_{\rm b} = 0.308$, 0.0484 (Planck15)

$$f_{\rm b} = \Omega_{\rm b}/\Omega_{\rm m} = 0.157$$

$$M_{\rm vir} = 10^{15} {\rm M}_{\odot}$$

$$M_{\rm hot} = 10^{14.1301} {\rm M}_{\odot}$$

$$M_{\rm cold} = 10^{13.3191} \rm M_{\odot}$$

$$M_* = 10^{12.0099} \mathrm{M}_{\odot}$$

$$M_{\rm eject} = 10^{11.3} \rm M_{\odot}$$

$$M_{\rm bh} = 10^9 \rm M_{\odot}$$

$$M_{\rm bh,acc} = 10^9 \rm M_{\odot}$$

$$f_{\text{mod}} = 1$$

 $\Delta M_* = \dot{M}_* \Delta t = 2000 \text{M}_{\odot} \text{yr}^{-1} \times 11 \text{Myr} = 2.2 \times 10^{10} \text{M}_{\odot}$

Semi-Analytic Model

Baryonic Physics

Gas infall
Gas cooling
Star Formation

Supernovae

Metal Enrichment
Black Hole Growth
Reionization Heating
AGN Feedback
Star Burst

...

Radio mode (accretion from hot gas)

Bondi-Hoyle accretion rate:

$$\dot{m_{\rm bh}} \approx \kappa_{\rm h} 5.9 G m_{\rm bh} \mu m_{\rm p} k T_{\rm hot} \Lambda^{-1}$$

AGN heating

$$m_{\text{heat}} = \kappa_{\text{r}} \eta m_{\text{bh}} \Delta t \ c^2 \times 2V_{\text{vir}}^{-2}$$

Black hole growth

$$\Delta m_{\rm bh} = (1 - \eta) \, m_{\rm bh}^{\cdot} \Delta t$$

Quasar mode (accretion from cold gas)

Triggered by merger:

$$\Delta m_{\rm bh,acc} = \kappa_{\rm c} \gamma m_{\rm cold} (1 + 280 \,\mathrm{km \, s^{-1}} V_{\rm vir}^{-1})^{-2}$$

Limited by Eddington luminosity:

$$\eta \dot{m}_{\rm bh} c^2 = \epsilon m_{\rm bh} c^2 t_{\rm Edd}^{-1}$$

Observable:

$$L_{\rm bol} = \epsilon m_{\rm bh} c^2 t_{\rm Edd}^{-1}$$

Population study using SAM

