Path Finder Algorithm

The first 3 algorithm called set-up algorithm or starting algorithm

Last one is called loop algorithm or process algorithm

Condition for Algorithm

- 1) The dimension of one side should be up to 4 meter
- 2) The filed should a rectangle with 1:2 ratio (landscape)
- 3) Contain a complete border

Field set up

- 1) X = total field length
- 2) Y = total field breadth
- 3) M = m1 = m2 = m3 = m4 = margin
- 4) TM = turning margin

$$X = (x + x_offset) + x'$$

$$Y = (x + y_offset) + y'$$

Orientation

Centroid Algorithm

- Step 1
 Check x and x'
 Check y and y'
- 2) Step 2If any two values are not equalStart algorithm if equal terminate from algorithm
- 3) Step 3 (for x coordinate) Check x and x' x - x' = weight(w) w0 . w = Delayweigth (Dw) x - x' = w w0 . w = Dw

w0 :
$$w = Dw$$

 $w0 = 4000$
check $x > x'$
if x' is grater

turn 90 right

- 4) Step 4Move forward with delay weight Stop
- 5) Step 5 Turn left 90 Stop
- 6) Step 6 Repeat step 1

Centroid for Y coordinate

1) Step 1

```
Check y and y'

y-y'=w

w0.w=Dw \mid w0=4000

check y>y'

if y is grater
```

- 2) Step 2Move forward with delay timeStop
- 3) Step 3
 Repeat step 1

Orientation

- 1) Step 1 Check x,x' Check y ,y'
- 2) Step 2
 x>y
 no change
 ornt_1
- 3) Step 3
 X<y
 Rotate 90
 Ornt_1</pre>

Stabilization

1) Step 1
Check value of x and x'
Store values
Give w0 = 3000

2) Step 2
If x<x'
Clockwise
If x>x'
Anti clockwise

3) Step 3
Store new x and x'
Stop

4) Step 4

Plot graph

Take avg
Set new value of x and x'

5) Step 5

Check value of x and x'x-x' = ww . w0 = Dw

6) Step 6 Check with ref Adjust the coordinate

Corner left algorithm

1) Step 1 Reverse up to margin

- 2) Step 2Rotate 90 leftCall stabilization function
- 3) Step 3
 Forward
- 4) Step 4
 Stop
 Rotate 90 right
 Call stabilization function
- 5) Step 5 termination

Square wave Algorithm

Step 1
 Go forward
 Check stebilization

2) Step 2

Stop

Right turn

Stebilization

Right turn

Reset cordinate x

 $X + x_offset$

 $X' - x_offset$

Stebilization function

3) Step 3

Forward

Left turn

Stebilization

Left turn

Reset coordinate

 $2x + x_offset$

 $2x' - x_offset$

4) Step 4

Repete step 1

