Московский физико-технический институт

В.В.Сидоренко

УРАВНЕНИЕ ГАМИЛЬТОНА-ЯКОБИ

Аннотация

Пособие посвящено методу отыскания законов движения механических систем, предложенному Карлом Якоби. Метод Якоби основан на построении частного решения уравнения Гамильтона-Якоби - уравнения с частными производными первого порядка от одной неизвестной функции. Особое внимание в пособии уделяется содержательным примерам использования данного метода (в частности, в небесной механике и в астрофизике). Показано, каким образом теория уравнения Гамильтона-Якоби позволяет перейти от классического к квантомеханическому описанию движущихся объектов. Кратко обсуждается аналог уравнения Гамильтона-Якоби в теории оптимального управления - уравнение Беллмана.

МЕТОД ЯКОБИ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ

1.Уравнение Гамильтона-Якоби. Полный интеграл. Основным фактом теории уравнений с частными производными первого порядка от одной неизвестной функции является взаимосвязь процедуры поиска их решений с интегрированием обыкновенных дифференциальных уравнений.

Пусть $H(q_i, p_i, t)$ - функция Гамильтона механической системы с n степенями свободы. В начале XIX века немецким математиком Карлом Якоби было установлено, что интегрирование уравнений движения в канонической форме

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i}, \quad i = \overline{1, n}$$
 (1)

тесно связано с интегрированием следующего уравнения в частных производных:

$$\frac{\partial S}{\partial t} + H(q_i, \frac{\partial S}{\partial q_i}, t) = 0.$$
 (2)

Уравнение (2) называют *уравнением Гамильтона-Якоби*. Оно получено подстановкой производных $\frac{\partial S}{\partial q_i}$ вместо обобщенных импульсов p_i в выражение для гамильтониана $H(q_i,p_i,t)$ с последующим его суммированием с производной $\frac{\partial S}{\partial t}$.

Определение. Полным интегралом уравнения Гамильтона-Якоби называют такое его решение $S(q_i,\alpha_i,t)$, которое зависит от n параметров α_1,\ldots,α_n и удовлетворяет условию невырожденности

$$\det\left(\frac{\partial^2 S}{\partial q_i \partial \alpha_j}\right) \neq 0. \tag{3}$$

Полный интеграл не содержит всех решений уравнения (2) — общее решение этого уравнения в частных производных включает произвольные функции. Тем не менее, полный интеграл позволяет получить все решения канонических уравнений (1).

Теорема Якоби. Если известен полный интеграл уравнения Гамильтона-Якоби $S(q_i, \alpha_i, t)$, то общее решение уравнений движения (1) получается из соотношений

$$\frac{\partial S}{\partial q_i} = p_i, \quad \frac{\partial S}{\partial \alpha_i} = \beta_i, \quad i = \overline{1, n}, \tag{4}$$

где α_1,\ldots,α_n и β_1,\ldots,β_n следует рассматривать как произвольные постоянные.

Доказательство. Сначала убедимся в том, что соотношения (4) являются первыми интегралами уравнений движения (1).

Подстановка в уравнение Гамильтона-Якоби полного интеграла $S(q_i, \alpha_i, t)$ приводит к тождеству

$$\frac{\partial S}{\partial t}(q_i, \alpha_i, t) + H(q_i, \frac{\partial S}{\partial q_i}(q_i, \alpha_i, t), t) \equiv 0.$$
 (5)

Продифференцируем данное тождество по α_i :

$$\frac{\partial^2 S}{\partial t \partial \alpha_i} + \sum_{k=1}^n \frac{\partial H}{\partial p_k} \frac{\partial^2 S}{\partial q_k \partial \alpha_i} = 0.$$
 (6)

Теперь, принимая во внимание соотношения $\frac{dq_k}{dt} = \frac{\partial H}{\partial p_k}$ $(k = \overline{1,n})$, получим:

$$0 = \frac{\partial^2 S}{\partial t \partial \alpha_i} + \sum_{k=1}^n \frac{\partial^2 S}{\partial \alpha_i \partial q_k} \frac{dq_k}{dt} = \frac{d}{dt} \left(\frac{\partial S}{\partial \alpha_i} \right). \tag{7}$$

Дифференцируя (5) по q_i и воспользовавшись соотношениями (1), найдем:

$$0 = \frac{\partial^{2} S}{\partial t \partial q_{i}} + \frac{\partial H}{\partial q_{i}} + \sum_{k=1}^{n} \frac{\partial H}{\partial p_{k}} \frac{\partial^{2} S}{\partial q_{k} \partial q_{i}} =$$

$$= \frac{\partial^{2} S}{\partial t \partial q_{i}} - \frac{dp_{i}}{dt} + \sum_{k=1}^{n} \frac{\partial^{2} S}{\partial q_{i} \partial q_{k}} \frac{dq_{k}}{dt} = \frac{d}{dt} \left(\frac{\partial S}{\partial q_{i}} - p_{i} \right)$$
(8)

По теореме о неявной функции соотношения

$$\frac{\partial S}{\partial \alpha_i} = \beta_i \quad (i = \overline{1, n})$$

при условии невырожденности $\det \left(\frac{\partial^2 S}{\partial q_i \partial \alpha_j} \right) \neq 0$ ($S(q_i, \alpha_i, t)$ - полный интеграл!)

позволяют выразить обобщенные координаты q_1, \ldots, q_n через время t и 2n произвольных постоянных $\alpha_1, \ldots, \alpha_n$ и β_1, \ldots, β_n :

$$q_i = Q_i(t, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n), i = \overline{1, n}.$$
(9)

Подстановка (9) в формулу $\frac{\partial S}{\partial q_i} = p_i$ приводит к соотношению,

определящему изменение обобщенных импульсов:

$$p_i = P_i(t, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n), i = \overline{1, n}.$$
(10)

Теорема Якоби доказана.

Данная теорема является обоснованием предложенного К.Якоби метода интегрирования уравнений движения. Метод состоит в нахождении полного интеграла уравнения Гамильтона-Якоби с последующим построением общего

решения уравнений (1) на основе соотношений (4). Переход от соотношений (4) к формулам, определяющим общее решение

$$q_i = Q_i(t, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n), \quad p_i = P_i(t, \alpha_1, \dots, \alpha_n, \beta_1, \dots, \beta_n), \quad i = \overline{1, n},$$

явным образом, может оказаться достаточно трудоемким. Тем не менее, он не связан с рассмотрением дифференциальных уравнений.

Ynpaжнение. Показать, что попарные скобки Пуассона интегралов $F_i = \frac{\partial S}{\partial q_i} - p_i \ (i=\overline{1,n})$ равны нулю.

2. Смысл термина «полный интеграл». Полный интеграл содержит в себе информацию об уравнении Гамильтона-Якоби, которому он удовлетворяет.

Покажем, как восстановить исходное уравнение по известному полному интегралу $S(q_i, \alpha_i, t)$. Рассмотрим совокупность функций

$$f_0(q_i,\alpha_i,t), f_1(q_i,\alpha_i,t), \ldots, f_n(q_i,\alpha_i,t),$$

возникающую после дифференцирования полного интеграла по t и α_i соответственно:

$$f_0(q_i, \alpha_i, t) = \frac{\partial S}{\partial t},\tag{11}$$

$$f_1(q_i, \alpha_i, t) = \frac{\partial S}{\partial q_1}, \dots, f_n(q_i, \alpha_i, t) = \frac{\partial S}{\partial q_n}.$$
 (12)

Величины α_i $(i=\overline{1,n})$ выразим через t,q_i и частные производные $\frac{\partial S}{\partial q_i}$,

воспользовавшись соотношениями (12). Правомерность обеспечена условием невырожденности ($S(q_i, \alpha_i, t)$ - полный интеграл!)

$$\frac{\partial(f_1, \dots, f_n)}{\partial(\alpha_1, \dots, \alpha_n)} = \det\left(\frac{\partial^2 S}{\partial q_i \partial \alpha_j}\right) \neq 0.$$
 (13)

После подстановки

$$\alpha_1(q_i, \frac{\partial S}{\partial q_i}, t), \dots, \alpha_n(q_i, \frac{\partial S}{\partial q_i}, t)$$
 (14)

в соотношение (11) возникнет исходное уравнение в частных производных.

3. Существование полных интегралов. В расширенном координатном пространстве рассмотрим область D, обладающую следующим свойством: если точки $\{q_i^0,t_0\}$ и $\{q_i^1,t_1\}$ (где $t_1\!>\!t_0$) лежат в D, то уравнения движения (1) имеют решение $q_i(t), p_i(t),$ котором обобщенных изменение удовлетворяет краевым условиям

$$q_i(t_0) = q_i^0, \quad q_i(t_1) = q_i^1 \quad (i = \overline{1,n}).$$
 (15)

Вычисляя интеграл действия вдоль прямого пути, соединяющего эти точки (рис. 1), мы определим функцию $V(q_i^1,t_1,q_i^0,t_0)$, называемую главной функцией Гамильтона:

$$V(q_i^1, t_1, q_i^0, t_0) = \int_{t_0}^{t_1} L(q_i(t), \frac{dq_i}{dt}(t), t) dt.$$
 (16)

Воспользовавшись формулой для вариации функционала действия на семействе прямых путей [1], несложно доказать, что

$$dV = p_i^1 dq_i^1 - H_1 dt_1 - p_i^0 dq_i^0 + H_0 dt_0. (17)$$

Здесь

$$p_i^0 = p_i(t_0), \ H_0 = H(q_i^0, p_i^0, t_0)$$
 (18)

и, соответственно,

$$p_i^1 = p_i(t_1), \ H_1 = H(q_i^1, p_i^1, t_1).$$
 (19)

Далее мы будем опускать индекс "1", записывая t, q_i, p_i, H вместо t_1, q_i^1, p_i^1, H_1 .

Из выражения (17) для дифференциала главной функции Гамильтона следует:

$$\frac{\partial V}{\partial q_i} = p_i \ (i = \overline{1, n}), \tag{20}$$

$$\frac{\partial V}{\partial t} = -H(q_i, p_i, t). \tag{21}$$

Заменив теперь в равенстве (21) обобщенные импульсы p_i на производные $\frac{\partial V}{\partial q_i}$, мы установим, что функция V удовлетворяет уравнению Гамильтона-Якоби:

$$\frac{\partial V}{\partial t} + H(q_i, \frac{\partial V}{\partial q_i}, t) = 0. \tag{22}$$

Таким образом, располагая главной функцией Гамильтона, несложно получить полный интеграл - зафиксируем $t_0 = t_0^*$ и будем рассматривать q_i^0 $(i = \overline{1,n})$ как параметры.

Уравнение (22) впервые было выписано Гамильтоном. Он также показал, что соотношения (20) в совокупности с аналогичными соотношениями

$$\frac{\partial V}{\partial q_i^0} = -p_i^0 \ (i = \overline{1, n}) \tag{23}$$

определяют законы движения

$$q_i = q_i(t, q_i^0, p_i^0), \quad p_i = p_i(t, q_i^0, p_i^0), \quad i = \overline{1, n}.$$
 (24)

Тем не менее, нового способа находить законы движения Гамильтон не предложил - при построении функции V эти законы предполагаются известными. В учебных руководствах по аналитической механике ситуация характеризуется как порочный круг [1]: главная функция Гамильтона позволяет записать законы движения (24), но если эти законы нам неизвестны, мы не сможем найти функцию V. Порочный круг был разорван К.Якоби: оказалось, что для построения законов движения подойдет любой полный интеграл $S(q_i,\alpha_i,t)$.

4. Полный интеграл как производящая функция канонического преобразования. Используем полный интеграл $S(q_i,\alpha_i,t)$ в качестве производящей функции свободного унивалентного канонического преобразования

$$q_i, p_i \longrightarrow \alpha_i, \beta_i'.$$
 (25)

Соотношения, связывающие старые и новые переменные, имеют вид:

$$\frac{\partial S}{\partial q_i} = p_i, \quad \frac{\partial S}{\partial \alpha_i} = -\beta_i', \quad i = \overline{1, n}. \tag{26}$$

3амечание. Соотношения (26) отличаются от соотношений (4) знаком перед переменными β_i' . Это необходимо для построения канонического преобразования.

Формулы, определяющие изменение гамильтониана при канонических преобразованиях, позволяют установить, какой вид в новых переменных приобретет гамильтониан H, фигурирующий в уравнении Гамильтона-Якоби с полным интегралом $S(q_i,\alpha_i,t)$:

$$\aleph(\alpha_i, \beta_i', t) = \left[H(q_i, \frac{\partial S}{\partial q_i}, t) + \frac{\partial S}{\partial t} \right]_{q = q(\alpha_i, \beta_i, t)} \equiv 0.$$
 (27)

Так как преобразованный гамильтониан тождественно равен нулю, новые обобщенные переменные будут иметь неизменные значения вдоль решений уравнений движения.

Если теперь α_i и β_i' в соотношениях (26) рассмотреть как некоторые неизменные параметры, эти соотношения будут определять законы движения системы с гамильтонианом H - они задают q_i и p_i в виде функций времени t и

2n параметров α_i, β_i' (или параметров α_i, β_i , где $\beta_i = -\beta_i'$)

Итак, метод Якоби, состоящий в переходе от интегрирования уравнений движения к интегрированию уравнения в частных производных, можно интерпретировать как поиск канонического преобразования, после которого гамильтониан интересующей нас системы тождественно равен нулю.

«Это самый сильный из существующих методов точного интегрирования, и многие задачи, решенные Якоби, вообще не поддаются решению другими методами»[2].

4. Полные интегралы обобщенно-консервативных систем и систем с циклическими переменными. Функция Гамильтона обобщенно-консервативной системы не зависит от $t: H = H(q_i, p_i)$. В этом случае полный интеграл уравнения Гамильтона-Якоби

$$\frac{\partial S}{\partial t} + H(q_i, \frac{\partial S}{\partial q_i}) = 0 \tag{28}$$

можно разыскивать в виде

$$S = -ht + W(q_i, \alpha_1, \dots, \alpha_{n-1}, h).$$
 (29)

Подстановка (29) в (28) приводит к следующему уравнению для функции W:

$$H(q_i, \frac{\partial W}{\partial q_i}) = h. \tag{30}$$

Функцию W называют характеристической функцией, уравнение (30) - укороченным уравнением Гамильтона-Якоби (в этом уравнении меньше переменных: отсутствует переменная t). Нас будут интересовать решения уравнения (30), зависящие от n параметров $\alpha_1, ..., \alpha_{n-1}, h$ и удовлетворяющие условию невырожденности

$$\det\left(\frac{\partial^2 W}{\partial q_i \partial \alpha_j}\right) \neq 0 \quad (здесь \, \alpha_n \equiv h). \tag{31}$$

Если какой-либо полный интеграл уравнения (31) известен, то соотношения

$$\frac{\partial W}{\partial q_i} = p_i \ (i = \overline{1, n}), \quad \frac{\partial W}{\partial \alpha_i} = \beta_i \ (i = \overline{1, n-1}), \quad \frac{\partial W}{\partial h} = t - t_*$$
 (32)

определяют неявным образом решения уравнений движения в канонической форме, зависящие от 2n параметров t_* , h, α_i , β_i $(i = \overline{1, n-1})$:

$$q_i = Q_i(t - t_*, \alpha_1, \dots, \alpha_{n-1}, \beta_1, \dots, \beta_{n-1}, h),$$
 (33)

 $p_i = P_i(t - t_*, \alpha_1, \dots, \alpha_{n-1}, \beta_1, \dots, \beta_{n-1}, h).$

Уравнения Гамильтона-Якоби можно «укоротить» и в том случае, когда какие-то обобщенные координаты являются циклическими. Пусть, например, циклическими будут координаты q_{k+1},\ldots,q_n : $H=H(q_1,\ldots,q_k,p_1,\ldots,p_n,t)$. Разыскивая полный интеграл в виде

$$S = \sum_{j=k+1}^{n} \alpha_{j} q_{j} + W_{*}(t, q_{1}, \dots, q_{k}, \alpha_{1}, \dots, \alpha_{n}),$$
(34)

получим для W_* уравнение

$$\frac{\partial W_*}{\partial t} + H(q_1, \dots, q_k, \frac{\partial W_*}{\partial q_1}, \dots, \frac{\partial W_*}{\partial q_k}, \alpha_{k+1}, \dots, \alpha_n) = 0.$$
 (35)

Пример. Отвесное падение материальной точки в однородном поле тяжести описывается уравнениями:

$$\frac{dx}{dt} = \frac{\partial H}{\partial p}, \quad \frac{dp}{dt} = -\frac{\partial H}{\partial x},\tag{36}$$

где

$$H = \frac{p^2}{2} + gx \quad (\text{масса точки } m = 1)$$
 (37)

Уравнение Гамильтона-Якоби, соответствующее гамильтониану (37), имеет вид

$$\frac{\partial S}{\partial t} + \frac{1}{2} \left(\frac{\partial S}{\partial x} \right)^2 + gx = 0.$$
 (38)

Легко проверить, что функция

$$S(x,h,t) = -ht - \frac{2\sqrt{2}}{3g}(h - gx)^{3/2}$$
(39)

является полным интегралом уравнения (38). Общее решение уравнений (36) найдем из соотношений

$$\frac{\partial S}{\partial x} = \sqrt{2}(h - gx)^{1/2} = p, \quad \frac{\partial S}{\partial h} = -t - \frac{\sqrt{2}}{g}(h - gx)^{1/2} = -t_*. \tag{40}$$

Разрешая выражения (40) относительно x и p, получим:

$$x = \frac{h}{g} - \frac{g(t - t_*)^2}{2}, \quad p = -g(t - t_*).$$

МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ

1. Идея метода. Поиск решения уравнения Гамильтона-Якоби методом разделения переменных сводится к построению полного интеграла специального вида:

$$S(q_i, \alpha_i, t) = S_0(t, \alpha_i) + S_1(q_1, \alpha_i) + \dots + S_n(q_n, \alpha_i).$$
 (1)

Предполагается, что после подстановки (1) в уравнение Гамильтона-Якоби

$$\frac{\partial S}{\partial t} + H(q_i, \frac{\partial S}{\partial q_i}, t) = 0 \tag{2}$$

мы сможем выделить совокупность независимых обыкновенных дифференциальных уравнений, позволяющих определить S_0, S_1, \ldots, S_n .

Полный интеграл вида (1) существует при наличии у изучаемой механической системы некоторой группы симметрий и, кроме того, при использовании обобщенных координат, учитывающих эти симметрии.

При рассмотрении обобщенно консервативных систем метод разделения целесообразно применять для поиска решения укороченного уравнения

$$H(q_i, \frac{\partial W}{\partial q_i}) = h. \tag{3}$$

Характеристическую функцию W разыскивают в виде суммы

$$W(q_i, \alpha_j) = W_1(q_1, \alpha_j) + \dots + W_n(q_n, \alpha_j),$$
 (4)

где $\alpha_1, \ldots, \alpha_{j-1}$ - параметры.

Метод разделения переменных не является "гарантированным" способом нахождения полных интегралов. В общем случае переменные в уравнении Гамильтона-Якоби не разделяются (п. 4). Тем не менее, данное обстоятельство не уменьшает значимости обсуждаемого метода. Гамильтонианы многих систем можно записать в виде

$$H(q_i, p_i, t) = H_0(q_i, p_i, t) + H_1(q_i, p_i, t),$$
(5)

где H_0 - гамильтониан интегрируемой системы, а второе слагаемое удовлетворяет условию

$$H_1 \ll H_0. \tag{6}$$

Интегрируемую систему можно использовать как отправную точку в исследовании свойств системы с гамильтонианом (5) методами *теории возмущений*.

2. Гамильтониан с иерархическим вхождением переменных ("матрешка"). Покажем, что метод разделения переменных позволяет найти полный интеграл уравнения Гамильтона-Якоби для системы с гамильтониан следующего вида:

$$H = F(f_n(\dots f_3(f_1(q_1, p_1), q_2, p_2), q_3, p_3) \dots q_n, p_n), t).$$
 (7)

Для нахождения функций S_0, S_1, \dots, S_n в выражении для полного интеграла (1) используем соотношения

$$f_1(q_1, \frac{dS_1}{dq_1}) = \alpha_1,$$

$$f_2(\alpha_1, q_2, \frac{dS_2}{dq_2}) = \alpha_2,$$
(8)

$$f_n(\alpha_{n-1}, q_n, \frac{dS_n}{dq_n}) = \alpha_n$$

И

$$F(\alpha_n, t) = \frac{dS_0}{dt} \,. \tag{9}$$

Здесь $\alpha_1, \dots, \alpha_n$ - произвольные постоянные.

Будем считать, что функции $f_1(q_1, p_1), f_2(\alpha_1, q_2, p_2), ..., f_n(\alpha_{n-1}, q_n, p_n)$ действительно зависят от обобщенных импульсов:

$$\frac{\partial f_i}{\partial p_i} \neq 0, \quad i = \overline{1, n}. \tag{10}$$

Если условие (10) выполнено, то соотношения (8) можно разрешить относительно производных функций S_i :

$$\frac{dS_1}{dq_1} = g_1(q_1, \alpha_1),$$

$$\frac{dS_2}{dq_2} = g_2(q_2, \alpha_1, \alpha_2),$$
(11)

$$\frac{dS_n}{dq_n} = g_n(q_n, \alpha_{n-1}, \alpha_n).$$

Теперь, основываясь на соотношениях (9) и (11), выпишем полный интеграл с разделенными переменными:

$$S(q_i, \alpha_i, t) = \int F(\alpha_n, t) dt +$$

$$\int g_1(q_1, \alpha_1) dq_1 + \dots + \int g_n(q_n, \alpha_{n-1}, \alpha_n) dq_n.$$
(12)

Функция (12) является полным интегралом, так как она зависит от n параметров $\alpha_1, \dots, \alpha_n$, удовлетворяет уравнению Гамильтона-Якоби (2) и условию невырожденности:

$$\det\left(\frac{\partial^2 S}{\partial q_i \partial \alpha_j}\right) = \prod_{i=1}^n \frac{\partial g_i}{\partial \alpha_i} = \prod_{i=1}^n \left(\frac{\partial f_i}{\partial p_i}\right)^{-1} \neq 0.$$

Замечание. Выражение

$$\int g_i(q_i, \alpha_i) dq_i \tag{13}$$

в формуле (12) обозначает интеграл

$$\int_{q_i^0}^{q_i} g_i(q_i', \alpha_i) dq_i' \tag{14}$$

с фиксированным нижним пределом, независящем от α_i .

 Π ример. Рассмотрим движение материальной точки массы m в центральном ньютоновском поле.

Если в качестве обобщенных координат использовать сферические координаты r, φ, ϑ , то выражения для кинетической энергии T и потенциальной энергии Π будут иметь следующий вид:

$$T = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\mathcal{G}}^2 + r^2 \dot{\varphi}^2 \sin^2 \mathcal{G}), \quad \Pi = -\frac{\kappa m}{r}.$$
 (15)

Здесь κ - гравитационный параметр.

Уравнения движения могут быть записаны в гамильтоновой форме

$$\frac{d(r,\varphi,\vartheta)}{dt} = \frac{\partial H}{\partial p_{(r,\varphi,\vartheta)}}, \quad \frac{dp_{(r,\varphi,\vartheta)}}{dt} = -\frac{\partial H}{\partial (r,\varphi,\vartheta)}, \quad (16)$$

где

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_g^2}{r^2} + \frac{p_{\varphi}^2}{r^2 \sin^2 \theta} \right) - \frac{\kappa m}{r}.$$
 (17)

Гамильтониан (17) является гамильтонианом с иерархическим вхождением переменных:

$$H = f_r(f_{\mathcal{G}}(f_{\varphi}(p_{\varphi}), \mathcal{G}, p_{\mathcal{G}}), r, p_r),$$

$$f_{\varphi}(p_{\varphi}) = p_{\varphi}^2, \ f_{\mathcal{G}}(f_{\varphi}, \mathcal{G}, p_{\mathcal{G}}) = p_{\mathcal{G}}^2 + \frac{f_{\varphi}}{\sin^2 \mathcal{G}},$$

$$f_r(f_{\mathcal{G}}, r, p_r) = \frac{1}{2m} \left(p_r^2 + \frac{f_{\mathcal{G}}}{r^2} \right) - \frac{\kappa m}{r}.$$

$$(18)$$

Следовательно, метод разделения переменных позволит построить полный интеграл уравнения Гамильтона-Якоби

$$\frac{\partial S}{\partial t} + \frac{1}{2m} \left[\left(\frac{\partial S}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial S}{\partial \theta} \right)^2 + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial S}{\partial \phi} \right)^2 \right] - \frac{\kappa m}{r} = 0.$$
 (19)

3. Разделение переменных при агрегированном вхождении сопряженных переменных. Пусть в функцию Гамильтона H обобщенная координата q_i и отвечающий ей импульс p_i входят в виде функции (агрегата) $f_i(q_i, p_i)$:

$$H = F[f_1(q_1, p_1), \dots, f_n(q_n, p_n), t].$$
(20)

Покажем, что при таком "разделении" переменных в H полный интеграл уравнения Гамильтона-Якоби

$$F\left[f_1(q_1, \frac{\partial S}{\partial q_1}), \dots, f_n(q_n, \frac{\partial S}{\partial q_n}), t\right] + \frac{\partial S}{\partial t} = 0$$
(21)

может иметь вид (1).

Подстановка выражения (1) в (21) дает нам соотношение

$$F\left[f_{1}(q_{1},\frac{dS_{1}}{dq_{1}}),\ldots,f_{n}(q_{n},\frac{dS_{n}}{dq_{n}}),t\right] + \frac{dS_{0}}{dt} = 0.$$
(22)

Соотношение (22) должно быть тождеством при любых значениях координат . Это возможно только тогда, когда при изменении q_1, \ldots, q_n агрегаты

$$f_1(q_1, \frac{dS_1}{dq_1}), \dots, f_n(q_n, \frac{dS_n}{dq_n})$$
 (23)

сохраняют свою величину. Принимая во внимание данное обстоятельство, для отыскания S_i ($i=\overline{0,n}$) получим следующую систему уравнений:

$$F[\alpha_1, \dots, \alpha_n, t] + \frac{dS_0}{dt} = 0$$
 (24)

И

$$f_i(q_i, \frac{dS_i}{dq_i}) = \alpha_i, \quad i = \overline{1, n},$$
 (25)

где α_1,\ldots,α_n - произвольные постоянные.

Далее будет предполагаться, что

$$\frac{\partial f_i}{\partial p_i} \neq 0, \quad i = \overline{1, n}. \tag{26}$$

При выполнении условия (26) соотношения (25) можно разрешить относительно производных функций S_i :

$$\frac{dS_i}{dt} = g_i(q_i, \alpha_i), \quad i = \overline{1, n}.$$
(27)

Теперь, проинтегрировав (24) и (27), мы найдем интересующее нас выражение для полного интеграла:

$$S(q_i, \alpha_i, t) = \int F(\alpha_1, \dots, \alpha_n, t) dt + \sum_{i=1}^n \int g_i(q_i, \alpha_i) dq_i.$$
 (28)

Функция (28) является полным интегралом, так как она зависит от n параметров $\alpha_1, \ldots, \alpha_n$, удовлетворяет уравнению Гамильтона-Якоби (2) и условию невырожденности:

$$\det\left(\frac{\partial^2 S}{\partial q_i \partial \alpha_j}\right) = \prod_{i=1}^n \frac{\partial g_i}{\partial \alpha_i} = \prod_{i=1}^n \left(\frac{\partial f_i}{\partial p_i}\right)^{-1} \neq 0.$$
 (29)

Рассмотрим более сложный вариант агрегированного вхождения переменных в гамильтониан:

$$H = F \left[\frac{f_1(q_1, p_1) + \dots + f_n(q_n, p_n)}{g_1(q_1, p_1) + \dots + g_n(q_n, p_n)}, t \right].$$
(30)

После подстановки выражения (1) в уравнение Гамильтона-Якоби, соответствующее такому гамильтониану, получим соотношение

$$F\left[\frac{f_{1}(q_{1},\frac{dS_{1}}{dq_{1}}) + \dots + f_{n}(q_{n},\frac{dS_{n}}{dq_{n}})}{g_{1}(q_{1},\frac{dS_{1}}{dq_{1}}) + \dots + g_{n}(q_{n},\frac{dS_{n}}{dq_{n}})} + \frac{dS_{0}}{dt} = 0.$$
(31)

Тождеством при любых значениях $q_1,...,q_n$ и t это соотношение будет только тогда, когда

$$\frac{f_1(q_1, \frac{dS_1}{dq_1}) + \dots + f_n(q_n, \frac{dS_n}{dq_n})}{g_1(q_1, \frac{dS_1}{dq_1}) + \dots + g_n(q_n, \frac{dS_n}{dq_n})} = \alpha_1$$
(32)

$$F[\alpha_1, t] + \frac{dS_0}{dt} = 0, \qquad (33)$$

где α_1 - произвольная постоянная.

Формулу (32) перепишем следующим образом:

$$\sum_{i=1}^{n} \left[f_i(q_i, \frac{dS_i}{dq_i}) - \alpha_1 g_i(q_i, \frac{dS_i}{dq_i}) \right] = 0.$$
 (34)

В уравнении (34) переменные разделяются: равенство нулю при произвольных $q_1, ..., q_n$ суммы выражений, включающих только одну из этих переменных, возможно только при равенстве каждого из выражений постоянной величине:

$$f_i(q_i, \frac{dS_i}{dq_i}) - \alpha_i g(q_i, \frac{dS_i}{dq_i}) = \alpha_{i+1}, \quad i = \overline{1, n}.$$
(35)

Постоянные $\alpha_2,...,\alpha_{n+1}$ в (35) должны удовлетворять условию

$$\alpha_2 + \ldots + \alpha_{n+1} = 0. \tag{36}$$

Примем для определенности, что $\alpha_2,...,\alpha_n$ принимают произвольные значения,

$$\alpha_{n+1} = -\alpha_2 - \dots - \alpha_n. \tag{37}$$

Уравнения (35) будем считать разрешимыми относительно $\frac{dS_i}{dq_i}$:

$$\frac{dS_i}{dq_i} = u_i(q_i, \alpha_1, \alpha_{i+1}), \ i = \overline{1, n}.$$
(38)

Интегрируя (33) и (38), найдем полный интеграл уравнения Гамильтона-Якоби

$$S(q_{i},\alpha_{i},t) = -\int F(\alpha_{1},t)dt + \sum_{i=1}^{n} \int u_{i}(q_{i},\alpha_{1},\alpha_{i+1})dq_{i}.$$
 (39)

Завершая обсуждение разделения переменных в гамильтонианах с агрегированным вхождением сопряженных переменных, отметим, что в руководствах по теоретической механике обычно разбирается построение полного интеграла системы с гамильтонианом

$$H = \frac{f_1(q_1, p_1) + \dots + f_n(q_n, p_n)}{g_1(q_1, p_1) + \dots + g_n(q_n, p_n)},$$
(40)

являющимся частным случаем (30).

Упражнение. Системой Лиувилля называют систему, у которой кинетическая и потенциальная энергии имеют вид

$$T = \frac{1}{2} \left(\sum_{i=1}^{n} a_i \right) \sum_{i=1}^{n} b_i \dot{q}_i^2, \quad \Pi = \left(\sum_{i=1}^{n} a_i \right)^{-1} \sum_{i=1}^{n} \Pi_i,$$
 (41)

где a_i, b_i, Π_i - функции от одной переменной q_i (i = 1, n). Показать, что общее решение уравнений движения данной системы может быть получено с помощью квадратур ($meopema\ Лиувилля$).

Указание. Гамильтониан системы Лиувилля имеет вид (40).

3. Критерии разделения переменных. При обсуждении метода разделения переменных возникает естественный вопрос: если необходимо найти полный интеграл какого-то конкретного уравнения Гамильтона-Якоби, то имеет ли смысл применять данный метод или нет?

Ограничимся обсуждением ситуации в классе обобщенно консервативных систем. Условие разделения переменных в гамильтониане $H(p_i, q_i)$ было выписано Леви-Чевита (1904):

$$\frac{\partial H}{\partial p_{j}} \left(\frac{\partial H}{\partial p_{k}} \frac{\partial^{2} H}{\partial q_{j} \partial q_{k}} - \frac{\partial H}{\partial q_{k}} \frac{\partial^{2} H}{\partial q_{j} \partial p_{k}} \right) - \frac{\partial H}{\partial q_{j}} \left(\frac{\partial H}{\partial p_{k}} \frac{\partial^{2} H}{\partial p_{j} \partial q_{k}} - \frac{\partial H}{\partial q_{k}} \frac{\partial^{2} H}{\partial p_{j} \partial p_{k}} \right) = 0,$$

$$1 \le j < k \le n.$$
(42)

Соотношения (42) можно интерпретировать как систему из n(n-1)/2 уравнений в частных производных, общее решение которой определяет всю совокупность гамильтонианов $H(p_i,q_i)$, допускающих решение уравнения Гамильтона-Якоби разделением переменных (задача Морера). К сожалению, все усилия проинтегрировать эти соотношения оказались безрезультатными.

Более успешными были попытки выделить гамильтонианы с разделяющимися переменными при каких-то дополнительных предположениях о структуре функции H.

Рассмотрим, например, механические системы с гамильтонианами, содержащими только квадраты импульсов p_i :

$$H(q_i, p_i) = \frac{1}{2} \sum_{j=1}^{n} a_j(q_1, ..., q_n) p_j^2 + \Pi(q_1, ..., q_n).$$
 (43)

Укороченное уравнение Гамильтона-Якоби, соответствующее такой системе, имеет вид:

$$\frac{1}{2} \sum_{j=1}^{n} a_j(q_1, \dots, q_n) \left(\frac{\partial W}{\partial q_j} \right)^2 + \Pi(q_1, \dots, q_n) = h$$

$$(44)$$

Теорема Штекеля (1895). Уравнение (44) допускает разделение переменных тогда и только тогда, когда существует неособая матрица $\Phi(q_i)$, в которой элементы φ_{kr} зависят только от переменной q_r , и вектор $\Psi = (\psi_1, ..., \psi_n)^T$, где ψ_r тоже зависит только от q_r , такие, что

$$a_{j}(q_{i}) = \frac{1}{\Delta} \frac{\partial \Delta}{\partial \varphi_{1j}} = \frac{\Delta_{1j}}{\Delta}, \quad \Pi(q_{i}) = \sum_{j=1}^{n} \frac{\psi_{j}}{\Delta} \frac{\partial \Delta}{\partial \varphi_{1j}} = \sum_{j=1}^{n} a_{j} \psi_{j}(q_{j}). \tag{45}$$

Здесь $\Delta = \det \Phi$, Δ_{1j} - алгебраическое дополнение к элементу φ_{1j} $(j=\overline{1,n})$.

Доказательство теоремы Штекеля можно найти, например, в [3]. Подробное описание других классов гамильтонианов с разделяющимися переменными приведено в [4].

Упражнение. Показать, что системы Лиувилля (41) являются частным случаем систем Штекеля.

УРАВНЕНИЕ ГАМИЛЬТОНА-ЯКОБИ В НЕБЕСНОЙ МЕХАНИКЕ И АСТРОФИЗИКЕ

1. Проблема выбора "удачных" координат. В большинстве случаев рассмотрение уравнение Гамильтона-Якоби в небесной механике и астрофизике связано с анализом условий разделения переменных. Если переменные разделяются, то построенная математическая модель исследуемой системы интегрируема, динамика системы в рамках данной модели будет относительно простой и может быть достаточно подробно изучена. Кроме того, интегрируемая модель важна как основа для дальнейшего анализа поведения системы методами теории возмущений.

Разделение переменных происходит тогда, когда для задания положения объекта (звезды в поле галактики или пробной частицы в окрестности черной дыры) используются координаты, отражающие в каком-то смысле "геометрию" задачи - геометрию силового поля или геометрию искривленного пространства времени.

Далее для простоты мы предполагаем ограничиться обсуждением движения в полях, обладающих осевой симметрией. В этом случае в качестве примера "удачных" координатами, позволяющих решить ряд интересных задах, следует отметить эллиптические координаты (вытянутые и сжатые).

Вытянутые эллиптические координаты ξ, η, φ с декартовыми координатами x, y, z связаны соотношениями

$$x = \sigma \sqrt{(\xi^2 - 1)(1 - \eta^2)} \cos \varphi,$$

$$y = \sigma \sqrt{(\xi^2 - 1)(1 - \eta^2)} \sin \varphi,$$

$$z = \sigma \xi \eta,$$
(1)

где σ - параметр, смысл которого будет установлен ниже. Справедливы следующие равенства:

$$\frac{x^{2} + y^{2}}{\sigma^{2}(\xi^{2} - 1)} + \frac{z^{2}}{\sigma^{2}\xi^{2}} = 1,$$

$$\frac{x^{2} + y^{2}}{\sigma^{2}(1 - \eta^{2})} - \frac{z^{2}}{\sigma^{2}\eta^{2}} = 1,$$

$$x - y \operatorname{tg} \varphi = 0.$$
(2)

Равенства (2) позволяют дать наглядное описание "геометрии" эллиптических координат. Поверхности $\xi = const$ $(1 \le \xi < +\infty)$ являются вытянутыми эллипсоидами вращения (именно этим и объясняется название системы

координат). Большие и малые полуоси эллипсоидов имеют величины $\sigma\xi$ и $\sigma\sqrt{\xi^2-1}$ соответственно, их фокусы располагаются в точках

$$x = y = 0, \ z = \pm \sigma. \tag{3}$$

Рис. 2.

Поверхность $\eta = const \quad (-1 \le \eta \le 1)$ представляет одну ИЗ компонент двуполостного гиперболоида софокусного вращения, $\xi = const$. Условие эллипсоидами $\varphi = const$ определяет плоскость, содержащую ось Ozмеридиплоскость. Изображение ональную координатных поверхностей и линий приведено на рис. 2.

Укажем еще одно важное свойство эллиптических координат. Пусть r_+ и r_- - расстояния от точки с координатами ξ, η, φ до фокусов (3). После элементарных манипуляций с формулами (1) мы получим:

$$r_{+} = \sqrt{x^{2} + y^{2} + (z - c)^{2}} = \sigma(\xi - \eta),$$

$$r_{-} = \sqrt{x^{2} + y^{2} + (z + c)^{2}} = \sigma(\xi + \eta).$$
(4)

Из соотношений (4) вытекает, что эллиптические координаты ξ, η пропорциональны полусумме и полуразности расстояний до фокусов:

$$\xi = \frac{r_{+} + r_{-}}{2\sigma}, \quad \eta = \frac{r_{+} - r_{-}}{2\sigma}.$$
 (5)

Выражение для кинетической энергии точки массой m как функции эллиптических координат и их производных имеет следующий вид:

$$T = \frac{m\sigma^2}{2} \left\{ (\xi^2 - \eta^2) \left(\frac{\dot{\xi}^2}{\xi^2 - 1} + \frac{\dot{\eta}^2}{1 - \eta^2} \right) + (\xi^2 - 1)(1 - \eta^2)\dot{\phi}^2 \right\}.$$
 (6)

Уравнения движения частицы в поле с потенциалом $\Pi(\xi,\eta,\phi)$ можно получить в форме уравнений Лагранжа с лагранжином

$$L(\xi, \eta, \varphi, \dot{\xi}, \dot{\eta}, \dot{\varphi}) = T - \Pi \tag{7}$$

или в форме уравнений Гамильтона с гамильтонианом

$$H(\xi, \eta, \varphi, p_{\xi}, p_{\eta}, p_{\varphi}) = \frac{1}{2m\sigma^{2}} \left[(\xi^{2} - 1)p_{\xi}^{2} + (1 - \eta^{2})p_{\eta}^{2} + \left(\frac{1}{\xi^{2} - 1} + \frac{1}{1 - \eta^{2}}\right)p_{\varphi}^{2} \right] + \Pi(\xi, \eta, \varphi).$$
(8)

Сжатые эллиптические координаты λ, μ, φ вводятся формулами

$$x = \sigma \sqrt{(1 + \lambda^2)(1 - \mu^2)} \cos \varphi,$$

$$y = \sigma \sqrt{(1 + \lambda^2)(1 - \mu^2)} \sin \varphi,$$

$$z = \sigma \lambda \mu.$$
(9)

Координатными поверхностями в этом случае будут сплюснутые эллипсоиды вращения ($\lambda = const$), однополостные гиперболоиды ($\mu = const$) и плоскости ($\phi = const$).

2.Задача о движении в поле двух неподвижных притягивающих центров. Предположим, что неподвижно закрепленные материальные точки с массами m_+ и m_- имеют координаты

$$x = y = 0, \quad z = \sigma \tag{10}$$

И

$$x = y = 0, \quad z = -\sigma \tag{11}$$

соответственно. Нужно установить, каким образом в их гравитационном поле будет двигаться материальная точка с массой m.

Принимая во внимание формулы (4), получим, что в эллиптических координатах (1) потенциал данного гравитационного поля имеет вид

$$\Pi = -m\kappa \left(\frac{m_{+}}{r_{+}} + \frac{m_{-}}{r_{-}}\right) = -m\kappa\sigma \left(\frac{m_{+}}{\xi + \eta} + \frac{m_{-}}{\xi - \eta}\right). \tag{12}$$

где κ - универсальная гравитационная постоянная.

Гамильтониану (8) с потенциалом (12) соответствует укороченное уравнение Гамильтона-Якоби

$$\frac{1}{2m\sigma^{2}(\xi^{2}-\eta^{2})}\left[(\xi^{2}-1)\left(\frac{\partial W}{\partial \xi}\right)^{2}+(1-\eta^{2})\left(\frac{\partial W}{\partial \eta}\right)^{2}+\right. \\
+\left.\left(\frac{1}{\xi^{2}-1}+\frac{1}{1-\eta^{2}}\right)\left(\frac{\partial W}{\partial \varphi}\right)^{2}\right]-m\kappa\sigma\left(\frac{m_{+}}{\xi+\eta}+\frac{m_{-}}{\xi-\eta}\right)=h.$$
(13)

Уравнение (13) будем решать методом разделения переменных. Учитывая, что φ является циклической переменной, выражение для характеристической функции W запишем следующим образом:

$$W = \alpha_1 \varphi + W_{\xi}(\xi) + W_{\eta}(\eta) . \tag{14}$$

После подстановки (14) в уравнение Гамильтона-Якоби получим:

$$(\xi^{2} - 1) \left(\frac{dW_{\xi}}{d\xi} \right)^{2} + (1 - \eta^{2}) \left(\frac{dW_{\eta}}{d\eta} \right)^{2} + \alpha_{1}^{2} \left(\frac{1}{\xi^{2} - 1} + \frac{1}{1 - \eta^{2}} \right) - m^{2} \sigma^{2} \kappa \left[m_{\perp} (\xi - \eta) + m_{\perp} (\xi + \eta) \right] = 2m \sigma^{2} h(\xi^{2} - \eta^{2}).$$
(15)

Сгруппировав слагаемые, зависящие только от ξ и только от η , запишем уравнение (15) в виде суммы

$$f_{\xi}(\xi, \frac{dW_{\xi}}{d\xi}) + f_{\eta}(\eta, \frac{dW_{\eta}}{d\eta}) = 0. \tag{16}$$

Здесь

$$f_{\xi} = (\xi^{2} - 1) \left(\frac{dW_{\xi}}{d\xi} \right)^{2} + \frac{\alpha_{1}^{2}}{\xi^{2} - 1} - 2m\sigma^{2}h\xi^{2} - m^{2}\sigma^{2}\kappa(m_{+} + m_{-})\xi,$$

$$f_{\eta} = (1 - \eta^{2}) \left(\frac{dW_{\eta}}{d\eta} \right)^{2} + \frac{\alpha_{1}^{2}}{1 - \eta^{2}} + 2m\sigma^{2}h\eta^{2} + m^{2}\sigma^{2}\kappa(m_{+} - m_{-})\eta.$$
(17)

Уравнение (16) будет тождеством при условии

$$f_{\xi}(\xi, \frac{dW_{\xi}}{d\xi}) = \alpha_2, \quad f_{\eta}(\eta, \frac{dW_{\eta}}{d\eta}) = -\alpha_2, \tag{18}$$

где α_2 - постоянная величина. Разрешив соотношения (18) относительно

производных
$$\frac{dW_{\xi}}{d\xi}$$
 и $\frac{dW_{\eta}}{d\eta}$, получим
$$\frac{dW_{\xi}}{d\xi} = \frac{\sqrt{g_{\xi}(\xi)}}{\xi^2 - 1}, \quad \frac{dW_{\eta}}{d\eta} = \frac{\sqrt{g_{\eta}(\eta)}}{1 - \eta^2},$$

$$g_{\xi} = -\alpha_1^2 + (\xi^2 - 1)[2hm\sigma^2\xi^2 + m\sigma^2\kappa(m_+ + m_-)\xi + \alpha_2],$$

$$g_{\eta} = -\alpha_1^2 - (1 - \eta^2)[2hm\sigma^2\eta^2 + m\sigma^2\kappa(m_+ - m_-)\xi + \alpha_2].$$
 (19)

Проинтегрировав (19), мы выпишем полный интеграл уравнения Гамильтона-Якоби нашей задачи:

$$S(\xi, \eta, \varphi, \alpha_1, \alpha_2, h) = -ht + \alpha_1 \varphi + W_{\xi} + W_{\eta} =$$

$$= -ht + \alpha_1 \varphi + \int \frac{\sqrt{g_{\xi}(\xi)}}{\xi^2 - 1} d\xi + \int \frac{\sqrt{g_{\eta}(\eta)}}{1 - \eta^2} d\eta.$$
(20)

Упражнение. Описать, каким образом с помощью интеграла (20) можно получить законы движения.

Задача о движении материальной точки в поле притяжения двух неподвижных центров была поставлена Л.Эйлером в XVIII веке. Ограничившись анализом плоских движений, Эйлер выписал решение уравнений движения в квадратурах. В пространственном случае решение было дано Лагранжем и Якоби.

Длительное время задача двух неподвижных центров была темой абстрактно-математических исследований, несвязанных с анализом конкретных небесно-механических систем.

Ситуация изменилась в середине XX века, когда выяснилось, что поле двух неподвижных центров хорошо аппроксимирует поле сжатой сфероидальной планеты при формальном размещении центров ... на чисто мнимом расстоянии друг от друга! Движение в этом случае обладает многими свойствами реального движения искусственного спутника в гравитационном поле, отсутствующими в кеплеровском приближении (Земля - материальная

точка). Более подробно применение задачи двух центров в теории движения ИСЗ описано в [5].

Предельным случаем задачи двух неподвижных центров можно считать задачу о движении точки в поле притягивающего центра при наличии еще одной силы, постоянной по величине и направлению ("тяги") [5]. Предельный переход состоит в перенесении одного центров на бесконечность в направлении силы тяги при одновременном увеличении его массы пропорционально квадрату удаления, что обеспечивает приблизительное постоянство "тяги" в окрестности другого центра.

3. Проблема построения моделей с разделяющимися переменными в звездной динамике. Звездной динамикой называют раздел астрономии, изучающий строение и эволюцию звездных систем - звездных скоплений, галактик, скоплений галактик. Одно из направлений исследований в звездной динамике связано с анализом движения звезд в усредненном поле галактики без учета случайных близких пролетов. Рассмотрение модельных потенциалов, более или менее согласованных с реальным распределением вещества в галактике и обеспечивающих разделение переменных в уравнении Гамильтона-Якоби, было начато А.Эдингтоном (1915). Внимание к таким моделям обусловлено не только возможностью дать полное описание движения отдельной звезды в поле галактики. Использование интегрируемых моделей существенно упрощает изучение статистических характеристик звездных систем (в частности, эволюции плотности распределения звезд).

В звездной динамике заключение о разделении переменных уравнении Гамильтона-Якоби в большинстве случаев основывается на теореме Штекеля. Потенциалы $\Pi(\mathbf{r})$, удовлетворяющие условиям этой теоремы, называют *штекелевыми*. Таким образом, построение интегрируемых моделей движения звезд сводится к поиску распределений вещества в галактике, обладающих штекелевым гравитационным потенциалом.

В вытянутых сферических координатах гамильтониан звезды, движущейся в осесимметричном галактическом поле, имеет вид

$$H = \frac{1}{2} (a_{\xi} p_{\xi}^2 + a_{\eta} p_{\eta}^2 + a_{\varphi} p_{\varphi}^2) + \Pi(\xi, \eta).$$
 (21)

Выражения для коэффициентов $a_{\xi}, a_{\eta}, a_{\varphi}$ в (21) можно записать следующим образом (масса звезды m=1):

$$a_{\xi} = \frac{\xi^2 - 1}{\sigma^2} = \frac{1}{\Delta} \frac{\partial \Delta}{\partial \varphi_{11}}, \ a_{\eta} = \frac{1 - \eta^2}{\sigma^2} = \frac{1}{\Delta} \frac{\partial \Delta}{\partial \varphi_{12}},$$

$$a_{\varphi} = \frac{1}{(\xi^2 - 1)(1 - \eta^2)} = \frac{1}{\Delta} \frac{\partial \Delta}{\partial \varphi_{13}},$$
(22)

где

$$\Delta = \det \Phi, \quad \Phi = \begin{pmatrix}
\sigma^{2} & \sigma^{2} & 0 \\
-\frac{1}{\xi^{2} - 1} & \frac{1}{1 - \eta^{2}} & 0 \\
-\frac{1}{(\xi^{2} - 1)(1 - \eta^{2})} & -\frac{1}{(\xi^{2} - 1)(1 - \eta^{2})} & 1
\end{pmatrix}.$$
(23)

Гамильтониан (21) будет удовлетворять условиям теоремы Штекеля в том случае, когда

$$\Pi(\xi, \eta) = \frac{1}{\xi^2 - \eta^2} [\Psi_{\xi}(\xi) + \Psi_{\eta}(\eta)]. \tag{24}$$

Упражнение. Показать, что потенциал двух притягивающих центров (14) является штекелевым.

Рассмотрим некоторые примеры галактических потенциалов вида (24).

Пример 1. Многие галактики состоят из относительно плоского звездного диска и более утолщенного центрального ядра. В качестве модели звездного диска Γ . Г. Кузьмин (1953) предложил использовать распределение масс в плоскости z=0 с поверхностной плотностью

$$\overline{\rho} = \frac{a^3 \overline{\rho}_0}{(x^2 + y^2 + a^2)^{3/2}}, \quad \overline{\rho}_0 = \frac{M_D}{2\pi a^2}.$$
 (25)

Здесь M_D - полная масса диска, a - параметр модели.

Гравитационное поле диска Кузьмина обладает интересным свойством: в полупространстве z>0 оно совпадает с полем притягивающего центра с координатами $x=y=0,\ z=-a$; в полупространстве z<0 - с полем центра с координатами $x=y=0,\ z=a$.

Если дополнить ∂uck Kyзьмина притягивающим центром - аналогом галактического ядра, то в полупространствах z>0 и z<0 их общее поле будет совпадать с полем двух притягивающих центров, т.е. будет полем со штекелевым потенциалом.

Пример 2. Распределение вещества в R^3 с локальной плотностью

$$\rho = \frac{\rho_0}{\left(1 + \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2}$$
 (26)

в звездной динамике называют *идеальным* эллипсоидом: эквиденситные поверхности этого распределения образуют семейство подобных эллипсоидов

$$\frac{x^2}{s^2a^2} + \frac{y^2}{s^2b^2} + \frac{z^2}{s^2c^2} = 1,$$
 (27)

где s > 0 - параметр семейства. Гравитационный потенциал распределения (26) используют как аппроксимацию галактического потенциала при изучении движения звезд в эллиптических галактиках.

Если в выражении (26) взять

$$a = b > c, (28)$$

то эквиденситные поверхности будут сплюснутыми эллипсоидами вращения. В вытянутых эллиптических координатах ξ, η, ϕ с параметром $\sigma = \sqrt{a^2 - c^2}$ потенциал распределения (26) при условии (28) имеет вид

$$\Pi(\xi, \eta) = \frac{G(\xi) + G(\eta)}{\xi^2 - \eta^2},$$
(29)

где

$$G(\chi) \sim \frac{c}{\sigma \chi} arctg \frac{\sigma \chi}{c}, \quad \chi = \xi, \eta.$$
 (30)

Так как потенциал (29) штекелев, полный интеграл уравнения Гамильтона-Якоби в задаче о движении звезды в гравитационном поле распределения (26) при условии (28) может быть найден методом разделения переменных (Г.Г.Кузьмин, 1956).

Условие (28) не является необходимым условием интегрируемости движения в поле распределения (26). Де 3ю и Линденбелл показали, что и в общем случае ($a \neq b \neq c \neq a$) переменные будут разделяться при использовании эллипсоидальных координат Якоби [6]. К сожалению, в данном кратком руководстве мы не можем дать более подробного описания подхода указанных авторов.

4. Уравнение Гамильтона-Якоби в общей теории относительности (ОТО). Одна из важнейших проблем современной физики состоит в необходимости понять взаимосвязь свойств пространства, времени и материи. В астрофизике уделяется большое внимание построению различных моделей Вселенной и анализу динамики пробных частиц в искривленном пространствевремени на основе общей теории относительности (А.Эйнштейн, 1916). Вариационные принципы ОТО позволяют использовать в таких исследованиях идеи и методы гамильтоновой механики. Уравнение Гамильтона-Якоби для частицы в гравитационном поле в ОТО приобретает следующий вид [7]:

$$g^{ik} \frac{\partial S}{\partial x^i} \frac{\partial S}{\partial x^k} - m^2 c^2 = 0. \tag{31}$$

Здесь m - масса частицы, c - скорость света, g^{ik} - (контравариантный) метрический тензор, определяющий геометрию пространства-времени. Компоненты метрического тензора являются функциями пространственных координат x^1, x^2, x^3 и временной координаты x^0 . В соответствии с правилами записи формул ОТО повторяющиеся индексы в (31) предполагают суммирование.

Поиск случаев разделения переменных в уравнении (31) сводится к построению таких моделей Вселенной, в которых метрика пространствавремени обладает определенными свойствами. Можно сказать, что в ОТО условия разделения переменных получают "вселенское" значение!

Связь теории Гамильтона-Якоби с геометрической оптикой и волновой механикой

1. Оптико-механические аналогии. Рассмотрим материальную точку с массой m, движущуюся в потенциальном поле $U(\mathbf{r})$, и запишем уравнение Гамильтона-Якоби, соответствующее данной механической системе:

$$\frac{\partial S}{\partial t} + \frac{1}{2m} |\nabla S|^2 + U(\mathbf{r}) = 0. \tag{1}$$

Здесь

$$\nabla S = \left(\frac{\partial S}{\partial x}, \frac{\partial S}{\partial y}, \frac{\partial S}{\partial z}\right)^{T}.$$
 (2)

Будем предполагать, что нам известен полный интеграл уравнения (1)

$$S(\mathbf{r},\alpha_1,\alpha_2,E,t) = W(\mathbf{r},\alpha_1,\alpha_2) - Et, \qquad (3)$$

где характеристическая функция $W(\mathbf{r},\alpha_1,\alpha_2)$ является полным интегралом "укороченного" уравнения Гамильтона-Якоби

$$\frac{1}{2m} \left| \nabla W \right|^2 + U(\mathbf{r}) = E \tag{4}$$

или (в несколько другой записи)

$$\left|\nabla W\right|^2 = 2m(E - U(\mathbf{r})). \tag{5}$$

В конфигурационном пространстве $S = \sigma$ (σ системы поверхность некоторая константа) момент времени t = 0совпадает поверхностью $W = \sigma$. Спустя время Δt данная поверхность совпадет с поверхностью $W = \sigma + \Delta t$. Перемещение поверхности $W = \sigma$ в положение положения $W = \sigma + \Delta t$ напоминает странение фронта некоторой волны (рис. 3). Так как

Рис. 3.

$$\mathbf{v} = \frac{\mathbf{p}}{m} = \frac{1}{m} \nabla S = \frac{1}{m} \nabla W, \tag{6}$$

траектория материальной точки всегда нормальна к поверхности $S=\sigma$.

Упражнение. Показать, что абсолютная величина локальной скорости распространения волны $S = \sigma$

$$u(\mathbf{r}) = \frac{E}{\sqrt{2m(E - U(\mathbf{r}))}} = \frac{E}{m |\mathbf{v}|}.$$
 (7)

Покажем, что траектория точки и перемещение поверхности $S = \sigma$ находятся в таком же соотношении, как луч и волновая поверхность в геометрической оптике.

В геометрической оптике изучаются ситуации, когда длина световой волны λ существенно меньше характерного расстояния, на котором проявляется неоднородность коэффициента преломления $n(\mathbf{r})$ (коэффициент преломления равен отношению скорости света в вакууме c к скорости света данной среде):

$$\lambda |\nabla n| << 1. \tag{8}$$

Распространение электромагнитной волны описывается волновым уравнением

$$\nabla^2 \psi - \frac{n^2}{c^2} \frac{\partial^2 \psi}{\partial^2 t} = 0, \tag{9}$$

где ψ - скалярный электромагнитный потенциал. Ограничившись рассмотрением волн с частотой ω , будем искать решение уравнения (9) в виде

$$\psi = \Psi(\mathbf{r})e^{i[k_0L(\mathbf{r})-\omega t]}.$$
 (10)

Здесь $k_0 = \frac{\omega}{c}$ - волновое число в вакууме, $\Psi(\mathbf{r})$ и $L(\mathbf{r})$ - вещественные скалярные функции. В геометрической оптике функцию $L(\mathbf{r})$ называют эйконалом.

Если показатель преломления среды имеет неизменную величину $n(\mathbf{r}) \equiv n$, то в формуле (10) следует взять

$$\Psi(\mathbf{r}) \equiv \Psi_0, \quad L(\mathbf{r}) = n(\mathbf{r}, \mathbf{e}),$$
 (11)

где ${\bf e}$ - единичный вектор. Решение будет соответствовать плоской волне, распространяющейся в направлении ${\bf e}$.

В случае $\lambda |\nabla n| << 1$ подстановка формулы (10) в (9) приводит в главном приближении к *уравнению эйконала*

$$\left|\nabla L\right|^2 = n^2. \tag{12}$$

Соотношение

$$k_0 L(\mathbf{r}) - \omega t = \varphi_0 \tag{13}$$

определяет положение волновой поверхности (поверхности постоянной фазы $\varphi = \varphi_0$) в каждый момент времени t. Световые лучи распространяются перпендикулярно к поверхности (13).

Сравнив выражения (3) и (13), можно заключить, что характеристическая функция W напоминает в некотором смысле функцию $L(\mathbf{r})$: уравнение Гамильтона-Якоби в форме (5) является уравнением эйконала для среды с "коэффициентом преломления" $\sqrt{2m[E-U(\mathbf{r})]}$.

Изучение оптико-механических аналогий было начато У.Гамильтоном в первой половине XIX века. Гамильтон полагал, что сходство оптики и механики есть отражение общих принципов, определяющих движение твердых

тел и световых лучей. Эквивалентность уравнения (4) и уравнения эйконала (12) была обнаружена Гамильтоном в 1834 г.

2. Волновая механика. Развивая аналогию между оптикой и механикой дальше, естественно задать вопрос: какие величины для механической системы будут иметь смысл частоты и длины волны?

В предыдущем пункте мы интерпретировали поверхность $S=\sigma$ как аналог поверхности равной фазы $\varphi=\varphi_0$. Если параметр σ принять за величину, пропорциональную "фазе" φ_0 механической системы с коэффициентом \hbar , получим:

$$\varphi_0 = \frac{S}{\hbar} = \frac{W}{\hbar} - \omega t \,, \tag{14}$$

где

$$\omega = \frac{E}{\hbar} \tag{15}$$

следует рассматривать как "частоту" эквивалентной волны. Длину этой волны дает формула

$$\lambda = \frac{2\pi u}{\omega} = 2\pi \left(\frac{E}{|\mathbf{p}|}\right) : \left(\frac{E}{\hbar}\right) = \frac{2\pi \hbar}{|\mathbf{p}|}.$$
 (16)

Теперь нас будут интересовать свойства "волнового" уравнения, соответствующее "уравнению эйконала" (5). Перепишем уравнение (9) следующим образом:

$$\nabla^2 \psi - \frac{1}{u^2} \frac{\partial^2 \psi}{\partial t^2} = 0. \tag{17}$$

Здесь u = c/n - скорость света в среде. Разыскивая решение (17) в виде

$$\psi = \Psi(\mathbf{r})e^{i\omega t},\tag{18}$$

нетрудно установить, что функция $\Psi(\mathbf{r})$ должна удовлетворять уравнению

$$\nabla^2 \Psi + \frac{\omega^2}{u^2} \Psi = 0. \tag{19}$$

После подстановки в соотношение (19) выражений для локальной скорости распространения "волны" (7) и ее частоты (15) получим:

$$\nabla^2 \Psi + \frac{2m(E - U(\mathbf{r}))}{\hbar^2} \Psi = 0.$$
 (20)

Уравнение (20) представляет волновое уравнение Шредингера для материальной точки в стационарном потенциальном поле. Коэффициент пропорциональности \hbar называют *постоянной Планка*:

$$\hbar = 1.054 \cdot 10^{-27} \text{ эрг \cdot сек}.$$
 (21)

Гамильтон, опираясь на свои оптико-механические аналогии и уравнение (1), вполне мог провести рассуждения, подобные приведенным рассуждениям Э.Шредингера, и в итоге получить уравнение (20) еще в первой половине XIX

века. Но стало бы это благом для человечества? Достаточно быстро "новая" физика позволила создать атомное оружие. Агрессивная и бескомпромиссная философия XIX века, еще незнакомого с ужасами мировых войн, привела бы к гибели европейской цивилизации в результате неограниченного применения атомного оружия в многочисленных военных конфликтах того времени.

Упражнение. Переход от квантомеханического описания к классическому соответствует пределу $S/\hbar \to \infty$. Покажите, что при $S/\hbar >> 1$ уравнение Шредингера

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi$$
, $\hat{H} = -\frac{\hbar^2}{2m} + U(\mathbf{r})$ (22)

допускает решение вида

$$\psi = ae^{iS/\hbar}, \tag{23}$$

где в главном приближении функция S удовлетворяет уравнению Гамильтона-Якоби (1), а функция $a(\mathbf{r},t)$ - уравнению непрерывности плотности вероятности

$$\frac{\partial a^2}{\partial t^2} + div \left(a^2 \frac{\nabla S}{m} \right) = 0. \tag{24}$$

УРАВНЕНИЕ БЕЛЛМАНА

1. Управляемые системы. В 50-ых годах XX века оказалось, что методы классического вариационного исчисления не позволяют решить многие актуальные на тот момент проблемы динамики ракет и других сложных технических устройств. Усилиями многих математиков и инженеров была разработана новая теория - *теория оптимального управления*.

Движение объектов, изучаемых в теории оптимального управления, обычно описывается системой обыкновенных дифференциальных уравнений

$$\frac{d\mathbf{q}}{dt} = \mathbf{f}(\mathbf{q}, \mathbf{u}, t). \tag{1}$$

Здесь $\mathbf{q} = (q_1, \dots, q_n)^T$ - фазовый вектор, определяющий состояние системы в момент времени t, $\mathbf{u} = (u_1, \dots, u_m)^T$ - вектор управляющих воздействий или управление.

Управляющие воздействия осуществляются элементами конструкции объекта, величины этих воздействий ограничены:

$$\mathbf{u} \in G_{\mathbf{u}},\tag{2}$$

где $G_{\mathbf{u}}$ - множество допустимых управлений.

Изменение фазовых переменных, положения объекта в начальный и конечный моменты времени t_0 и t_1 также могут стеснены какими-то ограничениями:

$$\mathbf{q}(t) \in G_{\mathbf{q}},\tag{3}$$

$$\mathbf{q}(t_0) \in G_0, \quad \mathbf{q}(t_1) \in G_1. \tag{4}$$

Цель управления состоит в минимизации или максимизации заданного функционала I (функционала качества). Чаще всего встречаются интегральные функционалы (задача Лагранжа)

$$I = \int_{t_0}^{t_1} F(\mathbf{q}(t), \mathbf{u}(t), t) dt$$
 (5)

и терминальные (задача Майера)

$$I = \Phi(\mathbf{q}(t_1), t_1). \tag{6}$$

Управление $\tilde{\mathbf{u}}(t)$ и отвечающую ему траекторию $\tilde{\mathbf{q}}(t)$, доставляющую функционалу I интересующее нас экстремальное значение, будем называть оптимальным управлением и оптимальной траекторией соответственно.

Мы ограничимся рассмотрением интегральных функционалов (5). Общая ситуация обсуждается в учебниках по теории оптимального управления [8].

Пример. Космический аппарат (КА), движущийся по круговой орбите радиуса R_0 , необходимо перевести на круговую орбиту радиуса $R_1 > R_0$. Начальная, конечная и все промежуточные орбиты должны лежать в одной и той же плоскости Π . Маневр осуществляется с помощью электрореактивного двигателя, расходующего пренебрежимо малое количество рабочего тела, но потребляющего достаточно много электроэнергии (электропотребление пропорционально тяге двигателя). Задача оптимального управления состоит в минимизации энергетических затрат.

Движение КА описывается уравнением

$$m\frac{d^2\mathbf{r}}{dt^2} = -\frac{\mu m}{|\mathbf{r}|^3}\mathbf{r} + \mathbf{Q} \tag{7}$$

где m - масса КА, ${\bf r}$ - координаты его центра масс, μ - гравитационный параметр, ${\bf Q}$ - реактивная сила ($|{\bf Q}| \le Q_0$).

Уравнение (7) перепишем в форме (1):

$$\frac{dq_1}{dt} = q_3, \quad \frac{dq_2}{dt} = q_4,
\frac{dq_3}{dt} = q_1 q_4^2 - \frac{\mu}{q_1^2} + u_1,
\frac{dq_4}{dt} = -\frac{2q_3 q_4}{q_1^2} + \frac{u_2}{q_1^2}.$$
(8)

Здесь q_1, q_2 - полярные координаты в плоскости Π , u_1, u_2 - "нормированные" проекции реактивной силы на оси полярной системы координат:

$$u_1 = \frac{Q_r}{m}, \quad u_2 = \frac{Q_{\varphi}}{m}.$$
 (9)

Множество допустимых управлений имеет вид

$$G_{\mathbf{u}} = \{ \mathbf{u} \mid u_1^2 + u_2^2 \le u_0^2 \}, \quad u_0 = \frac{Q_0}{m}.$$
 (10)

Множество начальных условий G_0 и терминальное множество G_1 определены условиями

$$q_1(0) = R_0, \ q_3(0) = 0, \ q_4(0) = \sqrt{\frac{\mu}{R_0^3}}$$
 (11)

И

$$q_1(T) = R_1, \ q_3(T) = 0, \ q_4(T) = \sqrt{\frac{\mu}{R_1^3}}$$
 (12)

соответственно. Кроме того, маневр должен удовлетворять естественному фазовому ограничению

$$\mathbf{q}(t) \in G_{\mathbf{q}} = \{ \mathbf{q} \mid q_1 \ge R_3 \}, \tag{13}$$

где R_3 - радиус Земли.

Оптимальное управление должно обеспечивать минимальное значение функционала

$$I = \int_{0}^{T} \sqrt{u_1^2 + u_2^2} dt , \qquad (14)$$

характеризующего энергозатраты на проведение маневра КА.

2. Уравнение Беллмана. В расширенном фазовом пространстве (\mathbf{q},t) введем в рассмотрение функцию

$$S(\mathbf{q},t) = \min_{\substack{\mathbf{u}(t') \in G_{\mathbf{u}}, \mathbf{q}(t') \in G_{\mathbf{q}}, t' \in [t_0, t] \\ \mathbf{q}(t_0) \in G_0, \ \mathbf{q}(t) = \mathbf{q}}} \int_{t_0}^{t} F(\mathbf{q}(t'), \mathbf{u}(t'), t') dt'.$$
(15)

Функция $S(\mathbf{q},t)$ дает минимальное значение выписанного интегрального функционала на совокупности траекторий, стартующих в момент времени t_0 с множества G_0 и достигающих точке \mathbf{q} в момент времени t_1 . Если таких траекторий не существует, то функция $S(\mathbf{q},t)$ неопределена в данной точке.

Функция $S(\mathbf{q},t)$ обладает следующим свойством: при любом выборе $\Delta t \in (0,t-t_0)$

$$S(\mathbf{q},t) = \sum_{\mathbf{u}(t') \in G_{\mathbf{u}}, \ \mathbf{q}(t') \in G_{\mathbf{q}}, t' \in [t-\Delta t,t]} \left[S(\mathbf{q}(t-\Delta t), t-\Delta t) + \int_{t-\Delta t}^{t} F(\mathbf{q}(t'), \mathbf{u}(t'), t') dt' \right].$$

$$(16)$$

Здесь $\mathbf{q}(t-\Delta t)$ - значение фазового вектора в момент времени $t-\Delta t$ на траектории, вдоль которой вычисляется интегральный функционал в (16).

Если Δt достаточно мало, то справедливы следующие соотношения:

$$\int_{t-\Delta t}^{t} F(\mathbf{q}(t'), \mathbf{u}(t'), t') dt' = F(\mathbf{q}, \mathbf{u}, t) \Delta t + O(\Delta t^{2}),$$
(17)

$$\mathbf{q}(t - \Delta t) = \mathbf{q} - \mathbf{f}(\mathbf{q}, \mathbf{u}, t) \Delta t + O(\Delta t^2),$$

где ${\bf u}$ - управление в момент t на движении, используемом для вычисления функционала в первом из соотношений. Используя эти соотношения, найдем:

$$S(\mathbf{q},t) = \min_{\mathbf{u} \in G_{\mathbf{u}}} \left[F(\mathbf{q},\mathbf{u},t)\Delta t + S(\mathbf{q} - \mathbf{f}(\mathbf{q},\mathbf{u},t)\Delta t, t - \Delta t) \right] + O(\Delta t^{2}).$$
 (18)

Будем считать, что функция $S({f q},t)$ дифференцируема по всем аргументам. В этом случае

$$S(\mathbf{q} - \mathbf{f}(\mathbf{q}, \mathbf{u}, t) \Delta t, t - \Delta t) =$$

$$= S(\mathbf{q}, t) - \left[\left(\frac{\partial S}{\partial \mathbf{q}}, \mathbf{f}(\mathbf{q}, \mathbf{u}, t) \right) + \frac{\partial S}{\partial t} \right] \Delta t + O(\Delta t^{2}).$$
(19)

После подстановки выражения (19) в формулу (18) при $\Delta t \to 0$ можно получить уравнение в частных производных

$$\frac{\partial S}{\partial t} = \min_{\mathbf{u} \in G_{\mathbf{u}}} \left[F(\mathbf{q}, \mathbf{u}, t) - (\frac{\partial S}{\partial \mathbf{q}}, \mathbf{f}(\mathbf{q}, \mathbf{u}, t)) \right]. \tag{20}$$

Уравнение (20) называют *уравнением Беллмана*. Функция Беллмана $S(\mathbf{q},t)$ удовлетворяет уравнению (20) и условию

$$S(\mathbf{q}, t_0) = 0, \ \mathbf{q} \in G_0. \tag{21}$$

В теории оптимального управления уравнение Беллмана является аналогом уравнения Гамильтона-Якоби. Для того, чтобы подчеркнуть эту аналогию, перепишем (20) следующим образом:

$$\frac{\partial S}{\partial t} + \max_{\mathbf{u} \in G_{\mathbf{u}}} H(\mathbf{q}, \frac{\partial S}{\partial \mathbf{q}}, \mathbf{u}, t) = 0,$$
(22)

где "гамильтониан"

$$H(\mathbf{q}, \mathbf{p}, \mathbf{u}, t) = (\mathbf{p}, \mathbf{f}(\mathbf{q}, \mathbf{u}, t)) - F(\mathbf{q}, \mathbf{u}, t). \tag{23}$$

является важным объектом теории необходимых условий оптимальности управления $\tilde{\mathbf{u}}(t)$, построенной Л.С.Понтрягиным (п. 3).

Предположим, что решение уравнение (22) нам известно. В терминальном множестве G_1 выберем точку

$$\mathbf{q}^1 = \underset{\mathbf{q} \in G_1}{\operatorname{arg\,min}} \ S(\mathbf{q}, t). \tag{24}$$

и рассмотрим "обратную" задачу Коши

$$\mathbf{q}(t_1) = \mathbf{q}^1$$
, найти $\mathbf{q}(t)$ при $t < t_1$ (25)

для системы обыкновенных дифференциальных уравнений

$$\frac{d\mathbf{q}}{dt} = \mathbf{f}(\mathbf{q}, \widetilde{\widetilde{\mathbf{u}}}(\mathbf{q}, t), t) \tag{26}$$

где

$$\widetilde{\widetilde{\mathbf{u}}}(\mathbf{q},t) = \underset{\mathbf{u} \in G_{\mathbf{u}}}{\arg \max} H(\mathbf{q}, \frac{\partial S}{\partial \mathbf{q}}, \mathbf{u}, t).$$
 (27)

Решение задачи (25) определяет оптимальную траекторию $\widetilde{\mathbf{q}}(t)$ и оптимальное управление $\widetilde{\mathbf{u}}(t) = \widetilde{\widetilde{\mathbf{u}}}(\widetilde{\mathbf{q}}(t), t)$, минимизирующие функционал I.

3. Необходимые условия оптимальности. Уже отмечалось, что уравнению с частными производными первого порядка от одной неизвестной функции может быть сопоставлена некоторая система обыкновенных дифференциальных уравнений. Уравнению Гамильтона-Якоби соответствуют канонические уравнения Гамильтона. Подобная двойственность существует и в теории оптимального управления.

Рассмотрим совокупность 2*n* дифференциальных уравнений

$$\frac{d\mathbf{q}}{dt} = \frac{\partial H}{\partial \mathbf{p}} = \mathbf{f}(\mathbf{q}, \mathbf{u}, t), \qquad (28)$$

$$\frac{d\mathbf{p}}{dt} = -\frac{\partial H}{\partial \mathbf{q}},\tag{29}$$

где гамильтониан H задан формулой (23).

Если при движении по траектория $\tilde{\mathbf{q}}(t)$ с управлением $\tilde{\mathbf{u}}(t)$ достигается минимальное значение функционала (5), то сопряженная система (29) имеет решение $\tilde{\mathbf{p}}(t)$, удовлетворяющее краевым условиям, вид которых определяется строением множеств G_0 и G_1 , и примечательное тем, что при любом $t \in [t_0, t_1]$

$$H(\widetilde{\mathbf{q}}(t), \widetilde{\mathbf{u}}(t), \widetilde{\mathbf{p}}(t), t) = \max_{\mathbf{u} \in G_{\mathbf{u}}} H(\widetilde{\mathbf{q}}(t), \mathbf{u}, \widetilde{\mathbf{p}}(t), t).$$
(30)

Данное утверждение в не вполне строгой форме выражает *принцип* максимума Понтрягина - необходимое условие оптимальности траектории $\tilde{\mathbf{q}}(t)$ и управления $\tilde{\mathbf{u}}(t)$ [8].

Упражнение. Управляемый объект, описываемый системой уравнений $d\mathbf{q}/dt = \mathbf{u} \ (\mathbf{q}, \mathbf{u} \in R^n)$, необходимо перевести из состояния $\mathbf{q}(t_0) = \mathbf{q}^0$ в состояние $\mathbf{q}(t_1) = \mathbf{q}^1$, обеспечив минимальное значение функционала

$$I = \int_{t_0}^{t_1} L(\mathbf{q}(t), \mathbf{u}(t), t) dt.$$
(31)

Показать, что для данной задачи уравнение Беллмана совпадает с уравнением Гамильтона-Якоби механической системы с лагранжианом $L(\mathbf{q}, \dot{\mathbf{q}}, t)$.

ЛИТЕРАТУРА

- 1. Гантмахер Ф.Р. Лекции по аналитической механике. 3-е изд. М.: Физматлит, 2001.
- 2. Арнольд В.И. Математические методы классической механики. 2-е изд. М.: Наука, 1979. 432 с.
- 3. Лурье А.И. Аналитическая механика. М.: Физматлит, 1961. 824 с.
- 4. Переломов А.М. Интегрируемые системы классической механики и алгебры Ли. М. Ижевск: РХД, 2002. 237 с.
- 5. Белецкий В.В. Очерки о движении космических тел. 2-е изд. М.: Наука, 1977. 432 с.

- 6. De Zeeuw P.T., Lynden-Bell D. Best approximate quadratic integrals in stellar dynamics. MNRAS, **215** (1985), 713-730.
- 7. Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд. М.: Наука, 1973. 504 c.
- 8. Моисеев Н.Н. Элементы теории оптимальных систем. М.: Наука. 1975.