Package 'saeSim'

May 16, 2014

Type Package

Date 2014-05-12

Title Simulation Tools for Small Area Estimation

Version 0.2	2
Author Sel	bastian Warnholz
Maintainei	· Sebastian Warnholz <sebastian.warnholz@fu-berlin.de></sebastian.warnholz@fu-berlin.de>
URL waha	ni.github.io/saeSim
Depends R	c(>= 3.0),dplyr,spdep,ggplot2,MASS,methods
Suggests to	estthat
Description	Tools for the simulation of data in the context of small area estimation.
Roxygen li	st(wrap = FALSE)
License Gl	PL-2 file LICENSE
ag ca ge m sa sa sa sii sii sii	g_standard 2 lc_var 2 n_norm 3 ake_id 4 mple_csrs 4 mple_sampleWrapper 5 m 6 m_agg 6 m_base_standard 7 m_calc 7 m_gen 8 m_sample 10 m_setup 10
Index	12

2 calc_var

|--|--|

Description

This is one implementation for aggregating data in a simulation set-up. It is designed to be used as argument to sim_agg. See the examples there.

Usage

```
agg_standard(splitVars = "idD")
```

Arguments

splitVars

variable names as character to split the data

Details

This function follows the split-apply-combine idiom. I.e. each data set is split by the defined variables. Then the variables within each subset are aggregated (reduced to one row). Logical variables are reduced by any; for characters and factors the most frequent value is taken; and for numerics the mean (removing NAs).

See Also

```
sim_agg
```

calc_var

Calculator function

Description

This function can be used to calculate some new variables on the data. This function is supposed to be used with sim_calc. See the examples there.

Usage

```
calc_var(varName = "y", funList = list(mean = mean, var = var),
  exclude = NULL, by = "idD", newName = varName)
```

Arguments

varName	a chracter giving the name of the variable in the data, on which a function is applied.
funList	list of functions to be applied on varName. Can be named, see newName
exclude	charcter vector of variable names in the data used to exclude observations from the calculation or NULL. The variables must be logical, TRUEs will be excluded.
by	variable names as character for which the data is split. Computed values will be constant within each subset

gen_norm 3

newName

name of the new variable. If length(funList) > 1 it can be vector. If equal to varName the name will be pasted with the function name (if the list is named) or appended by a increasing sequence of integer

See Also

sim_calc

gen_norm

Generator functions

Description

This function family is designed to draw random numbers according to the setting for domains and units. fe stands for fixed effects, e for the model error and v for an additional error component defined on area level (random effect). These functions are used in combination with the sim_gen function family. These functions are not called directly but via sim_gen

Usage

```
gen_norm(mean = 0, sd = 1)
gen_v_norm(mean = 0, sd = 1)
gen_v_sar(mean = 0, sd = 1, rho = 0.5, type = "rook")
```

Arguments

mean	the mean passed to the random number generator, for example rnorm
sd	the standard deviation passed to the random number generator, for example rnorm
rho	the correlation used to create the variance covariance matrix for a SAR process - see cell2nb $$
type	either "rook" or "queen". See cell2nb for detials

Details

gen_norm is used to draw random numbers from a homoscedastic normal distribution. This generator is used for the fixed effects part and model error.

gen_v_norm and gen_v_sar will create an area-level random component. In the case of v_norm, the error component will be from a normal distribution and i.i.d. from an area-level perspective (all units in an area will have same value, all areas are independent). v_sar will also be from a normal distribution, but the errors are correlated. The variance covariance matrix is constructed for a SAR(1) - spatial/simultanous autoregressive process. mvrnorm is used for the random number generation.

See Also

For examples: sim_gen, sim_gen_fe, sim_gen_e, sim_gen_ec, sim_gen_re and sim_gen_rec

4 sample_csrs

make_id

Construct ID-Variables

Description

This function can be used to construct a data frame with id* variables. This is helpful for user written generator functions.

Usage

```
make_id(nDomains, nUnits, ...)
## S4 method for signature 'numeric,numeric'
make_id(nDomains, nUnits, ...)
```

Arguments

nDomains The number of domains. Can be considered as cluster variable.

nUnits The number of units in each domain. If length(nUnits) > 1 each elemnt is

the number of units in each domain respectively.

... arguments passed to methods

Examples

```
make_id(2, 2)
make_id(2, c(2, 3))
```

sample_csrs

Sampling function

Description

This function controls the sampling mechanism. They are designed to be used with sim_sample. sample_csrs will draw with simple random sampling in each cluster. The cluster is hard coded as idD.

Usage

```
sample\_csrs(size = 0.05)
```

Arguments

size

can either be >= 1 giving the sample size (in each cluster) or < 1 where it is treated as proportion (in each cluster). Additionally size can have length(size) > 1 which will be interpreted as different sample sizes in each cluster/domain.

See Also

```
{\tt sample\_srs}, {\tt sample\_sampleWrapper}, {\tt sim\_sample}
```

sample_sampleWrapper

```
sample_sampleWrapper Sampling function
```

Description

These function control the sampling mechanism. They are designed to be used with sim_sample. sample_sampleWrapper is a wrapper of the sample function already implemented in R. The arguments will simply be passed to sample

Usage

```
sample_sampleWrapper(...)
```

Arguments

... Arguments passed to sample

See Also

```
sample_srs, sample_csrs, sim_sample
```

sample_srs

Sampling function

Description

This function controls the sampling mechanism. They are designed to be used with sim_sample. sample_srs will draw with simple random sampling.

Usage

```
sample_srs(size = 0.05, ...)
```

Arguments

```
size can either be >= 1 giving the sample size or < 1 where it is treated as proportion
... Arguments passed to sample.int
```

See Also

```
sample_sampleWrapper, sample_csrs, sim_sample
```

6 sim_agg

sim

Start simulation

Description

This function can be applied to a sim_setup object or sim_base. It will start the simulation. Use the printing method as long as you are testing the scenario.

Usage

```
sim(x, ...)
## S4 method for signature 'sim_base'
sim(x, ...)
## S4 method for signature 'sim_setup'
sim(x, ..., R = NULL)
```

Arguments

```
x a sim_setup or sim_base constructed with sim_setup() or sim_base_standard()
... simulation components added with sim_*

R the number of desired repetitions in the simulation
```

Examples

```
setup <- sim_lm()
resultList <- sim(setup, R = 1)

# Will return a data frame
dat <- sim(sim_base_standard(), sim_gen_fe(), sim_gen_e())</pre>
```

sim_agg

Aggregation component

Description

Aggregating the data is another component which can be used on the population or sample. The aggregation will simply be done after the sampling, if you haven't specified any sampling component, the population is aggregated (makes sense if you draw samples directly from the model). The unit identifier idU will be lost.

Usage

```
sim_agg(aggFun = agg_standard())
```

Arguments

aggFun

function which controls the aggregation process. At the moment only agg_standard is defined.

sim_base_standard 7

See Also

```
agg_standard
```

Examples

```
# Aggregating the population:
sim_lm() %+% sim_agg()

# Aggregating after sampling:
sim_lm() %+% sim_sample() %+% sim_agg()
```

sim_base_standard

Basics for a simulation setup

Description

Use the 'sim_base_*' functions to start a new simulation setup. Everything else are just preconfigured setups.

Usage

```
sim_base_standard(nDomains = 100, nUnits = 100)
sim_lm()
sim_lmm()
sim_lmc()
sim_lmmc()
```

Arguments

nDomains the number of domains nUnits the number of units

sim_calc

Add new variables

Description

These functions can be used for adding new variables to the data.

8 sim_gen

Usage

```
sim_calc(calcFun = calc_var(), level = "population")
sim_n()
sim_N()
sim_popMean(exclude = NULL)
sim_popVar(exclude = NULL)
```

Arguments

calcFun a function used for calculation

level character given the level on which the variable is to be calculated. One in

c("population", "sample", "agg")

exclude charcter vector of variable names in the data used to exclude observations from

the calculation or NULL. The variables must be logical, TRUEs will be excluded.

See Also

calc_var

Examples

```
# Standard behavior
sim_base_standard() %+% sim_gen_fe() %+% sim_calc()
# Custom data modifications
## Add predicted values of a linear model
library(saeSim)

calc_lm <- function(dat) {
   dat$linearPredictor <- predict(lm(y ~ x, data = dat))
   dat
}

sim_base_standard() %+% sim_gen_fe() %+% sim_gen_e() %+% sim_calc(calc_lm)</pre>
```

sim_gen

Add generated data

Description

These functions can be used to add data to a setup. The terminology comes from mixed models.

sim_gen 9

Usage

```
sim_gen(generator, const = 0, slope = 1, name = "variableName",
    nCont = NULL, level = NULL, fixed = NULL)

sim_gen_fe(generator = gen_norm(0, 4), const = 100, slope = 1,
    name = "x")

sim_gen_e(generator = gen_norm(0, 4), name = "e")

sim_gen_ec(generator = gen_norm(mean = 0, sd = 150), nCont = 0.05,
    level = "unit", fixed = TRUE, name = "e")

sim_gen_re(generator = gen_v_norm(), name = "v")

sim_gen_rec(generator = gen_v_norm(mean = 0, sd = 40), nCont = 0.05,
    level = "area", fixed = TRUE, name = "v")
```

Arguments

generator	generator function used to generate random numbers
const	constant/intercept in a fixed effects part
slope	slope in a fixed effects part
name	variable name used in the resulting data.frame
level	"unit", "area" or "none" - is the whole area contaminated, units inside an area or random observations in the data $$
nCont	gives the number of contaminated observations. Values between 0 and 1 will be trated as proportion. If length is larger 1, the expected length is the number of domains, you can specify something else in each domain. Integers are expected in that cas - numeric will be converted to integer
fixed	TRUE fixes the observations which will be contaminated. FALSE will result in a random selection of contaminated observations. Default is NULL for noncontaminated scenarios.

See Also

```
gen_norm, gen_v_norm, gen_v_sar
```

Examples

```
# Data setup for a mixed model
sim_base_standard() %+% sim_gen_fe() %+% sim_gen_re %+% sim_gen_e()
# Adding contamination in the model error
sim_base_standard() %+% sim_gen_fe() %+% sim_gen_re %+% sim_gen_e() %+% sim_gen_ec()
```

10 sim_setup

sim_sample

Sampling component

Description

This component can be used to add a sampling mechanism to the simulation set-up. A sample will be drawn after the population is generated (sim_gen) and variables on the population are computed (sim_calc)

Usage

```
sim_sample(smplFun = sample_csrs(size = 5L))
```

Arguments

smplFun

function which controls the sampling process. sample_csrs is the default

See Also

```
sample_srs, sample_csrs, sample_sampleWrapper
```

Examples

```
# Simple random sample - 5% sample:
sim_lm() %+% sim_sample(sample_srs())
# Simple random sampling proportional to size - 5% in each domain:
sim_lm() %+% sim_sample(sample_csrs())
```

 sim_setup

Construct a simulation set-up

Description

This function is used to construct a new simulation set-up. There are several ways to work with it. Please see the examples and documentation.

Usage

```
sim_setup(base, ...)
## S4 method for signature 'sim_base'
sim_setup(base, ..., R = 500, simName = "test")
## S4 method for signature 'sim_setup'
sim_setup(base, ...)
```

sim_setup 11

Arguments

base a object constructed by the sim_base_* family or a sim_setup object, con-

structed with sim_setup

... simulation components, like sim_gen, etc.

R the number of desired repetitions in the simulation

simName the name of the simulation. It is simply added as character to the data

Value

An objects of class sim_setup. Should be used in conjunction with methods for this class.

See Also

sim, sim_base_standard

Index

```
agg\_standard, 2, 6, 7
any, 2
calc_var, 2, 8
cel12nb, 3
gen_norm, 3, 9
gen_v_norm, 9
gen_v_norm (gen_norm), 3
gen_v_sar, 9
gen_v_sar (gen_norm), 3
make_id, 4
make_id,numeric,numeric-method
         (make_id), 4
mvrnorm, 3
rnorm, 3
sample, 5
sample.int, 5
sample_csrs, 4, 5, 10
sample_sampleWrapper, 4, 5, 5, 10
sample_srs, 4, 5, 5, 10
sim, 6, 11
sim, sim_base-method (sim), 6
sim, sim_setup-method (sim), 6
sim_agg, 2, 6
sim_base_standard, 7, 11
sim_calc, 2, 3, 7, 10
sim_gen, 3, 8, 10
sim_gen_e, 3
sim_gen_e (sim_gen), 8
sim_gen_ec, 3
sim_gen_ec(sim_gen), 8
sim_gen_fe, 3
sim_gen_fe (sim_gen), 8
sim_gen_re, 3
sim_gen_re (sim_gen), 8
{\tt sim\_gen\_rec}, {\it \color{red} 3}
sim_gen_rec(sim_gen), 8
sim_lm (sim_base_standard), 7
sim_lmc (sim_base_standard), 7
sim_lmm (sim_base_standard), 7
sim_lmmc (sim_base_standard), 7
```