CS 221: Artificial Intelligence

Reinforcement Learning

Peter Norvig and Sebastian Thrun

Slide credit: Dan Klein, Stuart Russell, Andrew Moore

Review: Markov Decision Processes

An MDP is defined by:

- set of states s ∈ S
- set of actions a ∈ A
- transition function P(s' | s, a) aka T(s,a,s')
- reward function R(s, a, s') or R(s, a) or R(s')

Problem:

• Find policy $\pi(s)$ to maximize $\sum \gamma^t R(s, \pi(s), s')$

Value Iteration

- Idea:
 - Start with $U_0(s) = 0$
 - Given U_i(s), calculate:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U_i(s')$$

- Repeat until convergence
- Theorem: will converge to unique optimal utilities

$$U^{\pi}(s) = R(s) + \gamma \, \sum_{s'} P(s' \, | \, s, \pi(s)) U^{\pi}(s') \; .$$

But: Requires model (R and P)

Reinforcement Learning

What if the state transition function P and the reward function R are unknown?

Example: Backgammon

- Reward only for win / loss in terminal states, zero otherwise
- TD-Gammon (Tesauro, 1992) learns a function approximation to U(s) using a neural network
- Combined with depth 3 search, one of the top 3 human players in the world – good at positional judgment, but mistakes in end game beyond depth 3

Example: Animal Learning

- RL studied experimentally for more than 60 years in psychology
 - Rewards: food, pain, hunger, drugs, etc.
 - Mechanisms and sophistication debated

- Bees learn near-optimal foraging plan in field of artificial flowers with controlled nectar supplies
- Bees have a direct neural connection from nectar intake measurement to motor planning area

What to Learn

- If you don't know P, R, what you learn depends on what you want to do
 - Utility-based agent: learn U(s)
 - Q-learning agent: learn utility Q(s, a)
 - Reflex agent: learn policy $\pi(s)$
- And on how patient/reckless you are
 - **Passive:** use a fixed policy π
 - Active: modify policy as you go

Passive Temporal-Difference

```
function PASSIVE-TD-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s' and reward signal r'
persistent: \pi, a fixed policy
              U, a table of utilities, initially empty
              N_s, a table of frequencies for states, initially zero
              s, a, r, the previous state, action, and reward, initially null
if s' is new then U[s'] \leftarrow r'
if s is not null then
     increment N_s[s]
     U[s] \leftarrow U[s] + \alpha(N_s[s])(r + \gamma U[s'] - U[s])
if s'. TERMINAL? then s, a, r \leftarrow \text{null else } s, a, r \leftarrow s', \pi[s'], r'
return a
```

0	0	0	+1
0		0	-1
0	0	0	0

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

0 ~	0	0.9	+1
0		0	-1
0	0	0	0

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

0	7	0.8	0.92	+1
0			0	-1
0		0	0	0

$$U^{\pi}(s) \leftarrow U^{\pi}(s) + \alpha(R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

.20	.28	.36	+1
.17		12	-1
.12	-0.01	16	2

Sample results

Figure 21.5 The TD learning curves for the 4×3 world. (a) The utility estimates for a selected subset of states, as a function of the number of trials. (b) The root-mean-square error in the estimate for U(1,1), averaged over 20 runs of 500 trials each. Only the first 100 trials are shown to enable comparison with Figure 21.3.

Problem

The problem

- Algorithm computes the value of one specific policy
- May never try the best moves
- May never visit some states
- May waste time computing unneeded utilities

Quiz

Is there a fix?

Can we explore different policies (active reinforcement learning), yet still learn the optimal policy?

Greedy TD-Agent

- Learn U with TD-Learning
- After each change to U, solve MDP to compute new optimal policy π(s)
- Continue learning with new policy

Greedy Agent Results

Wrong policy

- Too much exploitation, not enough exploration
- Fix: higher U(s) for unexplored states

Exploratory Agent

Converges to correct policy

Alternative: Q-Learning

- Instead of learning U(s), learn
 Q(a,s): the utility of action a in state s
- With utilities, need a model, P, to act:

$$\pi^*(s) = \operatorname*{argmax}_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U(s')$$

- With Q-values, no model needed
 - Compute Q-values with TD/exploration algorithm

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma Q(s',a') - Q(s,a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma Q(s',a') - Q(s,a))$$

• Q-learning produces tables of q-values:

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - ... but not decrease it too quickly!
 - Basically doesn't matter how you select actions (!)
- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats, see SARSA)

Practical Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Generalization Example

Let's say we discover through experience that this state is bad:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a Q-state (s, a) with features (e.g. action moves closer to food)

Linear Feature Functions

 Using a feature representation, we can write a Q function (or Utility function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [error]$$

 $w_i \leftarrow w_i + \alpha [error] f_i(s, a)$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features (prudence or superstition?)

Summary: MDPs and RL

Things we know how to do:

- If we know the MDP
 - Compute U*, Q*, π* exactly
 - Evaluate a fixed policy π
- If we don't know the MDP
 - We can estimate the MDP then solve
 - We can estimate U for a fixed policy π
 - We can estimate Q*(s,a) for the optimal policy while executing an exploration policy

Techniques:

- Model-based DP
 - Value Iteration
 - Policy iteration
- Model-based RL
- Model-free RL:
 - Value learning
 - Q-learning