

FIG. 1

OIAE
DEC 23 2004
SEARCHED INDEXED SERIALIZED FILED

FIG. 2

FIG. 3

FIG. 4A

FIG. 4B

FIG. 5B

FIG. 5A

FIG. 7

FIG. 8

O I P E
DEC 23 2004
PATENT & TRADEMARK RECEIVED 988

FIG. 9

FIG. 10

Datasets **DNC17[Edition 9: Eastern United States]**

Scale **A1708375[Currituck Beach Light to Wimbl]**

Features **Bottom Characteristics points[Hydrography]**

Query **Q1: Bottom Characteristics points[Hydrography]**

Results for Selected Query

201 Bottom Characteristics points[Hydrography]:A1708375
198 Bottom Characteristics points[Hydrography]:A1708375
200 Bottom Characteristics points[Hydrography]:A1708375
[...]

Attributes for Selected Result

Secondary Material Characteristics -- Unknown
Material Composition Category -- Unknown
Material Composition Underlying -- Unknown
Underlying Material -- Unknown
FACC Code -- BF010: US-Bottom Characteristics UK-Quality of the Physical Surface Characteristics -- Soft
Material Composition Secondary -- Unknown

Click here for attribute-level query

Geometrical **Topological** **Clear** **Done**

Up:Selected **Up:All** **Delete Set** **Delete All**

FIG. 11

M. Select Time Range

Start Time:	Year:	Month:	Day:	Hour:
	1980 1981 1982 1983 1984 1985 1986	January February March April May June	01 02 03 04 05 06 07	00 01 02 03 04 05 06
End Time:	1995 1996 1997 1998 1999 2000	January February March April May June	01 02 03 04 05 06	00 01 02 03 04 05 06

Continue **Exit**

[Unsigned Java Applet Window]

FIG. 12

FIG. 13

FIG. 14


```
GeoPoint gpPoint1 = (GeoPoint)vtrGeopoints.elementAt(i);
GeoPoint gpPoint2 = (GeoPoint)vtrGeopoints.elementAt(i+1);
double distance = gpPoint1.greatCircleDistance(gpPoint2) * 6000 * 0.3048; // returns nautical miles.
multiply by 6000 for feet. multiply by 0.3048 to get meters.
```

```
public class GeoPoint{
```

```
    public double greatCircleDistance(GeoPoint point2) {
        double nauticalMiles = 0.0f;
        double step1;
        double degreesPerRadian = 180.0 / Math.PI;
        double nauticalMilesPerDegree = 60.0;
        double lat1 = latInRadians();
        double lon1 = lonInRadians();
        double lat2 = point2.latInRadians();
        double lon2 = point2.lonInRadians();

        // Calculate step 1 in radians
        step1 = Math.acos(Math.sin(lat1) * Math.sin(lat2) +
        Math.cos(lat1) * Math.cos(lat2) * Math.cos(lon1 - lon2));

        nauticalMiles = step1 * degreesPerRadian * nauticalMilesPerDegree;
        return nauticalMiles;
    }

}
```

FIG. 14A

FIG. 15

FIG. 16

FIG. 17

FIG. 18A

FIG. 18B

FIG. 19


```
VRMLObject
 VRMLBuilding
 VRMLHydroArea
 VRMLVegArea
 VRMLLineFeature
 VRMLBarrierLine
 VRMLHydroLine
 VRMLTransLine
 VRMLUtilityLine
 VRMLPointFeature
```

FIG. 20

FIG. 21

```
STRUCTURE SHAPE OF ROOF
Flat
ssr = 41
Pitched
ssr = 42
```

VPF	VRML
#bldpopa	#VRMLBuilding
#bldinda	#VRMLBuilding
#plazaa	#VRMLPlazaArea
#lakeresa	#VRMLHydroArea
#inshorel	#VRMLHydroLine
#watrcrsI	#VRMLHydroLine
#roadl	#VRMLTransLine
#trackl	#VRMLTransLine
#barrierl	#VRMLBarrierLine
#polbndl	#VRMLBarrierLine
#telel	#VRMLUtilityLine
#obstrp	#VRMLPointFeature
#landmrkp	#VRMLPoint Feature

FIG. 22

O I P E
DEC 23 2004
JCG
SIGHTING & TRANSFERRED

```
LOD {  
    level [  
        Inline {url "FireHydrant1.wrl"}  
        Inline {url "FireHydrant2.wrl"}  
        Group {children []}  
        range [100, 200]  
        center 0 0 0  
    ]  
}
```

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

FIG. 29

FIG. 30

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.