CS 267 Lecture 17b: Parallel Machine Learning, Part 2

(Unsupervised Learning)

Aydin Buluc

https://sites.google.com/lbl.gov/cs267-spr2019/

Outline of the lecture

Tuesday: Part 1, Intro and Supervised Learning

- Machine Learning & Parallelism Intro
- Neural Network Basics
- Scaling Deep Neural Network Training
- Support Vector Machines

Today: Part 2, Unsupervised Learning

- Non-Negative Matrix Factorization
- Spectral and Markov Clustering
- Sparse Inverse Covariance Matrix Estimation

Non-negative matrix factorization (NMF)

$$\min_{W \ge 0, H \ge 0} f(W, H) = \frac{1}{2} ||A - WH||_F^2$$

- Dimensionality reduction with non-negativity constraints
- The name "factorization" is a misnomer; NMF is just a low-rank approximation as exact factorization is NP-hard
- NMF is a family of methods, not just one algorithm

The Alternating Updates Framework

Initialize H

Repeat until convergence:

- 1. For fixed H, solve $\min_{W \ge 0} \|H^T W^T A^T\|_F^2$
- 2. For fixed W, solve $\min_{H \ge 0} ||WH A||_F^2$

Lots of algorithms fall into this framework.

- Multiplicative update (MU)
- Alternating least squares (ALS)
- Alternating non-negative least squares (ANLS)

J. Kim and H. Park. "Fast nonnegative matrix factorization: An active-set-like method and comparisons." SIAM Journal on Scientific Computing, 2011

Caveat emptor: This is not the only method for finding an NMF

Gemulla, Rainer, et al. "Large-scale matrix factorization with distributed stochastic gradient descent." KDD, 2011

The Alternating Updates Framework

Main computation is large-scale matrix multiplications:

- HH^T and AH^T for updating W, given a fixed H
- 2. W^TW and W^TA for updating H, given a fixed W

- In general W and H are dense, but short-fat or tall-skinny
- A is often sparse but can be dense depending on application
- For increased interpretability, **H** or **W** can also be sparse

Figure: Kim and Park

The Alternating Updates Framework

Main computation is large-scale matrix multiplications

Choose the best distribution and algorithm depending on:

1- the relative sizes of the dimensions of the matrices

2- the number of processors

This work: Never communicate A, because it is asymptotically larger than H and W

(b) 2D Distribution with $p_r = 3$ and $p_c = 2$.

Kannan, Ballard, Park. "MPI-FAUN: An MPI-Based Framework for Alternating-Updating Nonnegative Matrix Factorization". 2016.

Outline of the lecture

Tuesday: Part 1, Intro and Supervised Learning

- Machine Learning & Parallelism Intro
- Neural Network Basics
- Scaling Deep Neural Network Training
- Support Vector Machines

Today: Part 2, Unsupervised Learning

- Non-Negative Matrix Factorization
- Spectral and Markov Clustering
- Sparse Inverse Covariance Matrix Estimation

Clustering

Many families of methods

- Centroid based (k-means, k-medians, and variations)
- Flow based (Markov clustering)
- Spectral methods
- Density based (DBSCAN, OPTICS)
- Agglomerative methods (single linkage clustering)
- ...
- Often the right method depends on the input characteristics and require some domain knowledge.
- We will talk about parallel algorithms for two: Spectral Clustering and Markov Clustering (MCL).

Spectral Clustering

- ° Input: Similarities between data points
- ° Many ways to compute similarity, some are domain specific: cosine, Jaccard index, Pearson correlation, Spearman's rho, Bhattacharyya distance, LOD score, ...
- ° We can represent the relationships between data points in a graph.
- ° Weight the edges by the similarity between points

Graph definitions

- ε-neighborhood graph
 - Identify a threshold value, ε , and include edges if the affinity between two points is greater than ε .
- k-nearest neighbors
 - Insert edges between a node and its k-nearest neighbors.
 - Each node will be connected to (at least) k nodes.
- Fully connected
 - Insert an edge between every pair of nodes.

Spectral Clustering Intuition

- The minimum cut of a graph identifies an optimal partitioning of the data.
- Spectral Clustering
 - Recursively partition the data set
 - Identify the minimum cut
 - Remove edges
 - Repeat until k clusters are identified
- Problem: Identifying a minimum cut is NP-hard.
- There are efficient approximations using linear algebra, based on the Laplacian Matrix, or graph Laplacian

The Graph Laplacian

- Graph Laplacian
 - unnormalized graph Laplacian : L = D W
 - normalized graph Laplacian

$$L_{sym} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$$
 $L_{rw} = D^{-1}L = I - D^{-1}W$ related to random walk

Example

Assume the weights of edges are 1.

One Spectral Clustering Algorithm

- ☐ I recommend the **normalized symmetric Laplacian**, as the numerical eigenvalue problem there is easier to solve.
- □ Normalized Spectral Clustering [Ng2002]
 - 1. Construct a similarity graph and compute the normalized graph Laplacian L_{sym} .
 - 2. Compute the k smallest eigenvectors u_1, u_2, \dots, u_k of L_{sym} .
 - 3. Let $U = [u_1 u_2 \cdots u_k] \in \mathbb{R}^{n \times k}$.
 - 4. Normalized the rows of U to norm 1.

$$U_{ij} \leftarrow \frac{U_{ij}}{(\sum_k U_{ik}^2)^{1/2}}$$

- 5. Let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*th row of U.
- 6. Thinking of y_i 's as points in \mathbb{R}^k , cluster them with k-means algorithms.

Why does it work? One intuitive explanation

Ideal Case

2	-1	-1	0	0	0
-1	2	-1	0	0	0
-1	-1	2	0	0	0
0	0	0	2	-1	-1
0	0	0	-1	2	-1
0	0	0	-1	-1	2

$$Lv = \lambda v$$

1	0
1	0
1	0
0	1
0	1
0	1

- The multiplicity of the eigenvalue 0 gives the number of clusters (in this ideal case: the number of connected components).
- The real case is assumed to be an approximation to this situation.

How to compute those smallest Eigenvectors?

- Implementation via the Lanczos Algorithm
 - Workhorse is sparse-matrix-vector (SpMV) multiply
 - SpMV has no/minimal data reuse, bound by communication
 - To optimize sparse-matrix-vector multiply and minimize its communication, we graph partition (next lecture)
- Alternative algorithms are possible
 - Power iteration is cheaper but numerically unstable
 - LOBPCG (Locally-Optimized Block Preconditioned Conjugate Gradient) uses sparse-matrix times multiple vectors, thus has more favorable performance profile due to possible data reuse.
- In the end, you probably just want to call something existing.
 - ARPACK implements reverse communication eigensolvers: You implement the SpMV, its implements the numerical outer logic
 - PARPACK is its parallel version, The following code uses it: https://github.com/openbigdatagroup/pspectralclustering

Outline of the lecture

Tuesday: Part 1, Intro and Supervised Learning

- Machine Learning & Parallelism Intro
- Neural Network Basics
- Scaling Deep Neural Network Training
- Support Vector Machines

Today: Part 2, Unsupervised Learning

- Non-Negative Matrix Factorization
- Spectral and Markov Clustering
- Sparse Inverse Covariance Matrix Estimation

Philosophy of the Markov Cluster Algorithm (MCL)

The number of edges or higher-length paths between two arbitrary nodes in a cluster is greater than the number of paths between nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of random walks through the graph and removes lower probability terms to form clusters,

The MCL Algorithm

Input: Adjacency matrix A (sparse & column stochastic)

At each iteration:

Step 1 (Expansion): Squaring the matrix

[corresponds to computing random walks of higher length]

Step 2 (Inflation): Hadamard power of a matrix (taking powers entrywise)

[boost the probabilities of intra-cluster walks and demote inter-cluster walks]

The expansion step of the MCL algorithm

- ☐ Goal: Compute random walks of higher length
- Input: A column stochastic matrix (A)
- □ Algorithm
 - 1. Sparse matrix-sparse matrix multiplication (SpGEMM): A²
 - 2. Sparsify A² by removing low probability terms
 - Prune entries in A² that are smaller than a threshold
 - Recover (if overdone pruning): Keep at least R entries (column-wise top-K selection)
 - Selection (if underdone pruning): Sparsify denser columns by keeping at most S entries (column-wise top-K selection)
- After sparsification at most max(R,S) (default to 1400)
 entries remains in each column of A²

A combined expansion and pruning step

- □ b: number of columns in the output constructed at once
 - Smaller b: less parallelism, memory efficient (b=1 is equivalent to sparse matrix-sparse vector multiplication used in MCL)
 - Larger b: more parallelism, memory intensive

A combined expansion and pruning step

- □ b: number of columns in the output constructed at once
 - HipMCL selects b dynamically as permitted by the available memory
 - The algorithm works in h=N/b phases where N is the number of columns (vertices in the network) in the matrix

Current sparse matrix-matrix multiply algorithm in HipMCL

- ☐ Sparse SUMMA algorithm.
- □ Do this for each phase.
- ☐ Issue: repeated broadcast of A.
- Better ideas are brewing.

Other algorithmic steps of HipMCL

- ☐ There is more than sparse matrix multiply here.
 - Parallel k-selection algorithm for each column of the matrix (for Recovery and Selection). We will cover some algorithms in the sorting and searching lecture
 - Parallel pruning algorithm
 - Parallel connected component algorithm (to identify clusters after MCL is converged). Very fundamental graph algorithm, though we won't cover it this year.
 - Parallel file I/O. Reading terabytes of text efficiently is a challenge.

Scaling of HipMCL

On 1024 nodes, we need fewer phases because of more aggregated memory

Outline of the lecture

Tuesday: Part 1, Intro and Supervised Learning

- Machine Learning & Parallelism Intro
- Neural Network Basics
- Scaling Deep Neural Network Training
- Support Vector Machines

Today: Part 2, Unsupervised Learning

- Non-Negative Matrix Factorization
- Spectral and Markov Clustering
- Sparse Inverse Covariance Matrix Estimation

Sparse Inverse Covariance Matrix Estimation

- ° Precision matrix = Inverse covariance matrix
- ° Goal: Estimating graphical model structure
- ° "The zeros of a precision matrix correspond to zero partial correlation, a necessary and sufficient condition for conditional independence (Lauritzen, 1996)"
- ° Sparsity often enforced by regularization
- ° One algorithm (HP-CONCORD)'s objective function:

$$\underset{\Omega \in \mathbf{R}^{p \times p}}{\text{minimize}} -\log \det(\Omega_D^2) + \mathbf{tr}(\Omega S \Omega) + \lambda_1 \|\Omega_X\|_1 + \frac{\lambda_2}{2} \|\Omega\|_F^2,$$

 $^{\circ}\,\Omega$ is the sparse inverse covariance matrix we are trying to estimate

Why care? Finding Direct Associations

Partial Correlation (a.k.a. sparse inverse covariance estimation):

direct association without confounders

- Gene Regulatory Network (GRN) estimation
- Joint modeling of SNPs and GRN
- Linkage Disequilibrium (LD) estimation
- Canonical Correlation Analysis (CCA)
- Genome-wide association studies (GWAS)

Data-driven hypothesis generation!

Fig. 1. Conditionally on the height of snow, the number of snowmen is independent of the intensity of traffic jams. This is represented by a two edges graph.

- Computationally challenging;
- HP-CONCORD on distributed memory increases scalability

HP-CONCORD Algorithm

Algorithm 2 The Cov variant of HP-CONCORD, for computing a sparse estimate of the inverse covariance matrix.

```
Input: data matrix X \in \mathbf{R}^{n \times p}; tuning parameters \lambda_1, \lambda_2 \geq 0; optimization tolerance \epsilon > 0
Output: estimate \hat{\Omega} \in \mathbf{R}^{p \times p} of the underlying inverse covariance matrix \Omega^0
 1: \Omega^{(0)} \leftarrow I
 2: Compute S \leftarrow \frac{1}{n}X^TX
                                                                              ▷ Compute (once) via a distributed dense-dense matrix multiplication
 3: Compute W^{(0)} \leftarrow \Omega^{(0)} S
                                                                                        ▷ Compute via a distributed sparse-dense matrix multiplication
 4: for k = 0, 1, 2, \dots
           Form (W^{(k)})^T
 5:
                                                                                                                          ▶ Form via a distributed matrix transpose
           G^{(k)} \leftarrow -(\Omega_D^{(k)})^{-1} + \frac{1}{2}((W^{(k)})^T + W^{(k)}) + \lambda_2 \Omega^{(k)}
                                                                                                                                                           \triangleright \text{ Use } W^{(k)}, (W^{(k)})^T
           g(\Omega^{(k)}) \leftarrow -2\sum_{i} \log(\Omega^{(k)}_{ii}) + \mathbf{tr}(W^{(k)}\Omega^{(k)}) + \frac{\lambda_2}{2} \|\Omega^{(k)}\|_F^2
                                                                                                                                      \triangleright Use (W^{(k)})^T; see text for details
 7:
           for \tau = 1, \frac{1}{2}, \frac{1}{4}, \dots
                \Omega^{(k+1)} \leftarrow \mathcal{S}_{\tau\lambda_1}(\Omega^{(k)} - \tau G^{(k)})
                                                                   \triangleright Apply the soft-thresholding operator, S_{\tau\lambda_1}, in a distributed manner
 9:
                Compute W^{(k+1)} \leftarrow \Omega^{(k+1)} \dot{S}
                                                                                        ▷ Compute via a distributed sparse-dense matrix multiplication
10:
                 g(\Omega^{(k+1)}) \leftarrow -2\sum_{i} \log(\Omega_{ii}^{(k+1)}) + \mathbf{tr}(W^{(k+1)}\Omega^{(k+1)}) + \frac{\lambda_2}{2} \|\Omega^{(k+1)}\|_F^2
11:
                                                                                                                                                           ▷ See text for details
           until g(\Omega^{(k+1)}) \leq g(\Omega^{(k)}) - \mathbf{tr}((\Omega^{(k)} - \Omega^{(k+1)})^T G^{(k)}) + \frac{1}{2\tau} \|\Omega^{(k)} - \Omega^{(k+1)}\|_F^2
12:
                                                                                                                                                           ▷ See text for details
13: until a stopping criterion is satisfied, using \epsilon
14: return the estimate \hat{\Omega} \leftarrow \Omega^{(k)}
```

- Repeated use of sparse times dense matrix multiplication (SpDM³)
- SpDM³ is the bottleneck by a large margin.

Koanantakool et al. Communication-avoiding optimization methods for distributed massive-scale sparse inverse covariance estimation. In AISTATS, 2018.

Sparse Matrix times Dense Matrix

Sometimes it pays off to communicate A instead.

How much of these ranges apply to real life NMF scenarios is open question (class project?)

Koanantakool, Penporn, et al. "Communication-avoiding parallel sparse-dense matrix-matrix multiplication." IPDPS, 2016

HP-CONCORD Advantages

- HP-CONCORD makes fewer assumptions about the data (in particular, no Gaussianity is assumed) compared to competitors
- Thanks to communication-avoiding matrix multiplication algorithms, it reaches unprecedented scales

- BigQUIC: previous state-of-the-art
- Obs-K are the other variant of HP-CONCORD algorithm (K: number of nodes)
- Experiment is trying to recover a random graph structure.

