CMC Research at NASA Glenn in 2013: Recent Progress and Plans

Joseph E. Grady Ceramics Branch

for the 37th Annual Conference on Composites, Materials and Structures January 28-31, 2013 in Cocoa Beach

NASA Aeronautics Programs

Fundamental Aeronautics Program

Conduct fundamental research that will produce innovative concepts, tools, and technologies to enable revolutionary changes for vehicles that fly in all speed regimes.

Integrated **Systems Research Program**

Conduct research at an integrated system-level on promising concepts and technologies and explore/assess/demonstrate the benefits in a relevant environment

Airspace Systems Program

Directly address the fundamental ATM research needs for NextGen by developing revolutionary concepts, capabilities, and technologies that will enable significant increases in the capacity, efficiency and flexibility of the NAS.

Aviation Safety Program

Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to improve the intrinsic safety attributes of current and future aircraft.

Aeronautics Test Program

Preserve and promote the testing capabilities of one of the United States' largest, most versatile and comprehensive set of flight and ground-based research facilities.

2012 Accomplishments

- Fabricated and tested SiC/SiC turbine and combustor subelements
- Evaluated advanced Environmental Barrier Coatings in simulated engine environment
- Demonstrated oxide CMC subelements for engine noise reduction
- Developed processing approach and measured creep properties of CMCs with 2700°F hybrid CVI/PIP SiC matrix

Durability testing of turbine vane subelement in simulated turbine environment has been initiated

turbine vane subelement

EBC

- 5-10 mil thick multilayer coating with hafniasilicon bond coat and rare earth silicate coatings
- 2700 °F temperature capability
- Plasma Spray / PVD application process

1. Prepreg MI SiC/SiC

- Hi-Nic Type S fibers
- BN interface coatings
- 0/90/0/0/90/0° tapes
- 22% Fiber volume ratio

2. CVI SiC/SiC

- Hi-Nic Type S fibers
- BN interface coatings
- 5 HS weave
- 35% fiber volume ratio

High Pressure Burner Rig simulated turbine operating conditions

30 hours of testing has been completed at 2500°F, 10 atmospheres and 200 m/s gas velocity

Bend tests showed strength and modulus loss in fabricating vane subelement shapes

Porosity after infiltration of complex shape reduced strength, stiffness and thermal conductivity of vane subelements

3D CMC concepts for small turbine components

Vane preform

trailing edge cooling holes

Innovations:

- Sylramic fiber tows served with rayon fiber for weavability & to minimize fiber damage
- Mo rods (removed after sinter) inserted in preform to form cooling holes

Challenge:

Retain cooling holes after SiC infiltration

blade preform with spanwise cooling holes

Preform: TEAM CVI: Hyper Therm

Oxide CMC components for engine noise reduction demonstrated

Quarter-scale exhaust mixer for reduction of engine exhaust noise

- N610/AS CMC fabricated by ATK/COIC
- Aerodynamic and acoustic performance measured at Fluidyne and NASA
- Improves durability and reduces weight
- Full-scale (AE3007) test article in fabrication

CMC acoustic liner concept for reduction of engine core noise

- N312/AS CMC fabricated by ATK/COIC
- For assessment of acoustic attenuation and model validation
- CMC construction enables use at higher temperatures near noise source

Fundamental Aeronautics Projects in 2013

Fundamental Aeronautics
Program Office

Aeronautical Sciences

Aeronautical Sciences (AS)

Enable efficient design & analysis of aviation systems through physics-based tools & advanced technologies.

Fixed Wing

Fixed Wing (FW)

Develop technologies for energy efficiency & environmental compatibility

Rotary Wing

Rotary Wing (RW)

Develop tools & technologies to address key barriers to large rotary wing vehicles

High Speed

High Speed (HS)

Address environmental & performance barriers to civil supersonic airliners.

Hybrid (CVI + PIP) SiC Matrix

- Reduced porosity; higher MCS and thermal conductivity
- Better oxidation resistance & off-axis properties

Fabrication Process for 2700°F Fiber

Boron-Sintered SiC Fiber Preform

(formed from commercial "Sylramic" Fiber)

Blade Preform

Preform Treatment in High-Pressure N₂

(Boron removal for SOA creep-rupture resistance)

Preform Treatment Furnace

Super Sylramic-iBN Preform

(in-situ grown BN surface layer on each fiber for environmental protection)

iBN coating between every fiber

Fiber treatment process improves on 2009 NASA patent for Sylramic-iBN fiber

Hybrid Matrix CMC: Durability Comparison

- Hybrid matrix performs better than PIP due to greater creep-resistance of the annealed CVI SiC component
- Hybrid matrix performs better than CVI due to better oxidation resistance of PIP component
- Advanced fiber is needed to meet 2700°F turbine goal

Aerothermal Testing of Cooled CMC Panels

- up to 325 ft/sec gas velocity

-1 to 6+ atmospheres pressure

- impingement and film cooling

Testing Planned for July in Aerothermal Rig at National Energy Technology Labs

2013 Plans

- Demonstrate feasibility of alternate fabrication process for 2700°F SiC fiber
- Fabricate hybrid-matrix composites & characterize mechanical properties and durability
- Conduct aerothermal rig testing of cooled CMC panels in collaboration with National Energy Technologies Labs
- Complete 250-hour durability testing and characterization of vane and combustor subelements in engine environment
- Complete fabrication and rig testing of 3D-reinforced vane and blade subelements for small (rotorcraft-size) engines