Week 9 Graph Sketching & Kinematics Lecture Note

Notebook: Computational Mathematics

Created: 2020-04-21 2:48 PM **Updated:** 2020-05-22 5:27 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

Graph Sketching & Kinematics

Course: BSc Computer Science

Class: Computational Mathematics[Lecture]

Date: May 22, 2020

Essential Question:

What is a function and what are its applications to kinematics (simple motion)?

Questions/Cues:

- What is the definition of a function?
- What are surjective, injective and bijective functions?
- What are Cartesian Coordinates?
- What is the Distance Formula used to find the distance between two points P and Q?

Notes

What is a function?

A function f(x) links elements x,y of two sets X and Y

f(x) tells you what to do with an input x:

ex. f(x)=2x+4 multiply by 2 and add 4

 $f(3)=2\times3+4=10$ $f(-1)=2\times(-1)+4=2$

 $f(13)=2\times13+4=143$

<u>Domain of a function:</u> elements of X on which f is defined ex. -4<x<4 or (-4,4): all values between -4 and 4 excluding -4,4

-4≤x≤4 or [-4,4] includes -4,4

-4<x≤4 or (-4,4],includes 4 not -4

 $-4 \le x < 4 \cup 6 < x < 8 \text{ or } [-4,4) \cup (6,8) \text{ etc...}$

Codomain of a function: elements of Y linked by f to X

(codomain also called range or image)

- o the function f(x) = 2x+4 maps a real number to a real number; the domain is the set of all real number
- The domain and range can also be restricted and written in interval notation by inequalities or braces like above

What is a function?

Domain X Codomain Y

<u>Surjective function</u>: to each $y \in Y \rightarrow at least one x \in X$

Injective function:

to each $x \in X \rightarrow \text{only one distinct } y \in Y$

Bijective function: Injective+Surjective

• A bijective function has one-to-one correspondence, it's a one-to-one function

Cartesian Coordinates

System of two perpendicular axes, *x*,*y*, to map and label points on the plane:

each point P is labeled by a pair of numbers (x,y)

x is the length of the projection of the point on the *x*-axis

and y is the length of the projection of the point on *y*-axis

Generic point on *y*-axis P(0,y)Generic point on *x*-axis P(x,0)

Distance between P and Q:

Using Pythagoras theorem

$$d_{PO} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Examples: f(x) = -2x+4 Domain R

x	-5	-4	-3	-2	-1	0
f(x)	=-2(-5)+4=14	=12	=10	=8	=6	=4
coordinates	(-5, 14)	(-4,12)	(-3,10)	(-2,8)	(-1,6)	(0,4)

х	1	2	3	4	5	
f(x)	=-2(1)+4=2	=0	=-2	=-4		
coordinates	(1,2)	(2,0)	(3,-2)	(4,-4)		

Note: $\beta = 180 - \alpha$ tan(β)=a/b=4/2 =2

In general for a straight line y=mx+n

with $m=tan(\alpha)$

In our case n=4 m=tan(α)=-tan(β)=-2

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=-2(0)+4=4 Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=0 Solve -2x₀+4=0 \rightarrow 2 x₀=4 \rightarrow x₀=2

Examples: quadratic function $f(x) = x^2-4x$ D= R

х	-3	-2	-1
f(x)	=(-3)2+12=21	=12	=5
coordinates	(-3,21)	(-2,12)	(-1,5)

х	0	1	2	
f(x)	=0	=-3	=-4	
coordinates	(0,0)	(1,-3)	(2,-4)	

х	3	4	5	6
f(x)	=(3)2 -12=-3	=0	=5	=12
coordinates	(1,-3)	(4,0)	(5,5)	(6,12)

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=(0)²-4(0)=0 Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=x₀²-4x₀=0

Solve
$$x_0^2-4x_0=x_0(x_0-4)=0 \rightarrow x_0=0$$
, $x_0=4$

Generic quadratic function $f(x) = ax^2 + bx + c$

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=a(0)²+b(0)+c=c Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=ax₀²+bx₀+c=0

Solve $ax_0^2+bx_0+c=0 \rightarrow x_0=(-b\pm\sqrt{(b^2-4ac)})/(2a)$

Cubic function $f(x) = ax^3 + bx^2 + cx + d$ Ex: $x^3 - 4x$ D=R

х	-4	-3	-2	-1	0	1
f(x)	=(-4) ³ -4(-4)=-48	=(-3) ³ -4(-3)=-15	=(-2) ³ -4(-2)=0	=3	=0	=-3
coordinates	(-4,-48)	(-3,-15)	(-2,0)	(-1,3)	(0,0)	(1,-3)

x	2	3	4
f(x)	=(2) ³ -4(2)=0	=(3) ³ -4(3)=15	=48
coordinates	(2,0)	(3,15)	(4,48)

Intersection with y-axis \rightarrow x=0 \rightarrow y₀=f(0)=(0)³-4(0)=0

Intersection with x-axis \rightarrow y=0 \rightarrow f(x₀)=x₀³-4x₀=0

Solve $x_0^3-4x_0=x_0(x_0^2-4)=0$, $\rightarrow x_0=0$, $x_0=\pm 2$

Note: a vertical line intersects the curve in <u>only one point</u>

→ single-valued functions

In this week, we learned about what a function, surjective/injective functions, the Cartesian coordinate system and distance formula.