I. Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended) A compound of Formula I, or a salt, solvate, or hydrate thereof:

I

wherein

$$\begin{split} R^1 \text{ and } R^2 \text{ are each independently selected from H, OH, } C_{\downarrow,6} \text{ alkyl, } C_{\downarrow,6} \text{ alkyl, } C_{\downarrow,6} \text{ alkyl, } C_{\downarrow,6} \text{ alkyl, } NH_3; \\ NH - C_{\downarrow,6} \text{ alkyl, } N(C_{\downarrow,6} \text{ alkyl, } C_{\downarrow,6} \text{ alkyl, } C_{\downarrow,6} \text{ alkyl, } NO_3; CF_3, OCF_3 \text{ and halo, or } R^1 \text{ and } R^2 \text{ together represent } O-C_{\downarrow,6} \text{ alkyl, } O, \text{ thereby forming a ring both } OH \text{ or } R^1 \text{ and } R^2 \text{ are both } OCH_3; \end{split}$$

 R^3 is selected from H, OH, C_{L+6} alkyl, C_{L+6} alkyl, C_{L+6} alkyl, C_{L+6} alkyl), C_{L+6} alkyl, C_{L+6} alkyl

 R^4 is selected from $C(X)R^5$, SO_2Ar , NH_2 , $NH-C_{1-6}$ alkyl, $N(C_{1-6}$ alkyl), $P(O)(OH)_2$, $P(O)(OC_{1-6}$ alkyl), and $C(NH_2)=C(CN)_2$:

X is selected from O, S, NH and N-C₁₋₆alkyl;

 R^5 is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH, (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy, NHNH₂, NHC(O)NH₂, NHC(O)C₁₋₆alkoxy, N-morpholino and N-pyrrolidino; and

Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4 substituents, independently selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH. S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo;

n is 0 to 4; and

p is 1-4;

provided that at least one of \mathbb{R}^1 , \mathbb{R}^2 , and \mathbb{R}^3 is selected from \mathbb{C}_{1-6} alkylCO₂, \mathbb{C}_{1-6} alkylCO-0)N(L₁₋₆alkyl) or

3

R¹-and R²-together represent O-C₁₋₆alkyl-O, thereby forming a ring.

- 2-5. (Cancelled)
- (Currently Amended) The compound according to claim 1, wherein R³ is selected from H,
 OH, G₁₋₄alkyl, C₁₋₄alkyl, C₂, NH₂, NH-G₁₋₄alkyl, N(G₁₋₄alkyl)(C₁₋₄alkyl), C₁.

 (Alkyl)(C=O)NH, or C₁₋₄alkyl(C=O)N(C₁₋₄alkyl), SH, S-G₁₋₄alkyl, NO₂ and halo.
- (Currently Amended) The compound according to claim 6, wherein R³ is selected from H₃
 OH₃ CCH₃CO₂, SH₃ SMe₂ NO₂ CH₃CONH, or CH₃CONCH₃-and-hale.
- (Cancelled)
- (Previously Presented) The compound according to claim 1, wherein R⁴ is selected from C(X)R⁵ and C(NH₂)=C(CN)₂.
- 10. (Original) The compound according to claim 9, wherein R⁴ is C(X)R⁵.
- 11. (Previously Presented) The compound according to claim 10, wherein X is selected from O and S.
- (Previously Presented) The compound according to claim 10, wherein R⁵ is selected from NH₂, OH, NH(CH₂)₅Ar, NH(CH₂)₅OH and C₁₋₄alkoxy.
- 13. (Original) The compound according to claim 12, wherein p is 1-3.
- (Currently Amended) The compound according to claim 43 12, wherein R⁵ is selected from NH₂, OH, NH(CH₂)₀Ar, NH(CH₂)₀OH and OCH₃.

- 15. (Original) The compound according to clam 14, wherein p is 1-2.
- 16. (Currently Amended) The compound according to claim 1, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally independently selected from OH, C₁₋₆alkyl, C₁₋₆alkyl, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl), CH₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.
- 17. (Currently Amended) The compound according to claim 14, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally independently selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.
- 18. (Currently Amended) The compound according to any of claims 16 and 17, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents optionally independently selected from OH, C₁₋₄alkyl, C₁₋₄alkoxy, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl)(C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂, CF₃, OCF₃ and halo.
- (Currently Amended) The compound according to claim 18, wherein Ar is an unsubstituted
 phenyl group or phenyl group substituted with 1-2 substituents eptienally independently selected
 from OH. OCH., NH2, NHCH., N(CH1), SH, SCH1, CF1, OCF1 and halo.

20. (Previously Presented) A compound selected from:

(Currently Amended) A composition comprising a compound according to claim 1 or claim
 in admixture with a pharmaceutically acceptable diluent or carrier.

22-29 (Cancelled)

- 30. (Currently Amended Withdrawn) A method of modulating cell proliferation comprising administering an effective amount of a compound capable of modulating cell proliferation according to claim 1 or claim 38 or a composition according to claim 21 to a cell or animal in need thereof.
- 31. (Currently Amended Withdrawn) A method of inhibiting cell proliferation comprising administering an effective amount of a compound capable of inhibiting cell proliferation according to claim 1 or claim 38 or a composition according to claim 21 to a cell or animal in need thereof.
- 32. (Currently Amended Withdrawn) A method of inhibiting cancer cell proliferation comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to claim 1 or claim 38 or a composition according to claim 21 to a cell or animal in need thereof.

- 33. (Currently Amended Withdrawn) A method of treating cancer comprising administering an effective amount of a compound capable of inhibiting cancer cell proliferation according to claim 1 or claim 38 or a composition according to claim 21 to a cell or animal in need thereof.
- (Currently Amended Withdrawn) A method according to claim 32 or 33 wherein said cancer is a hematopoietic cell cancer.
- 35. (Currently Amended Withdrawn) A method according to claim 32 or 33 wherein said cancer is a leukemia, a lymphoma, a myeloma or a carcinoma.
- 36. (Previously Presented Withdrawn) A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia, aggressive Philadelphia+ leukemia, acute myelocytic leukemia, chronic myeloid leukemia, chronic lymphocytic leukemia or juvenile myelomonocyte leukemia,
- (Previously Presented Withdrawn) A method according to claim 35 wherein said leukemia is acute lymphoblastic leukemia.
- 38. (New) A compound of Formula I, or a salt, solvate, or hydrate thereof:

I

wherein

R1 is OCH3 and R2 is OH;

 R^3 is selected from C_{1-6} alkyl CO_2 , C_{1-6} alkyl(C=O)NH, or C_{1-6} alkyl $(C=O)N(C_{1-6}$ alkyl);

 $R^4 \text{ is selected from } C(X)R^5, SO_3Ar, NH_2, NH-C_{1-6}alkyl, N(C_{1-6}alkyl)(C_{1-6}alkyl), P(O)(OH)_2, NH-C_{1-6}alkyl), P(O)(OH)_2, NH-C_{1-6}alkyl$

 $P(O)(OC_{1-6}alkyl)_2$, and $C(NH_2)=C(CN)_2$;

X is selected from O, S, NH and N-C₁₋₆alkyl;

R⁵ is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH, (CH₂)_pOC₁₋₆alkyl, C₁₋₆alkyl, C₁₋₆alkoxy,

7

 $NHNH_2, NHC(O)NH_2, NHC(O)C_{1\text{-}6}alkoxy, N-morpholino \ and \ N-pyrrolidino; \ and$

Ar is an aromatic or heteroaromatic group, unsubstituted or substituted with 1-4 substituents,

independently selected from OH, C₁₋₆alkyl, C₁₋₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo; and p is 1-4.

- (New) The compound according to claim 38, wherein R³ is selected from C₁₋₄alkylCO₂, C₁₋₄alkyl(C=O)NH, or C₁₋₄alkyl(C=O)N(C₁₋₄alkyl).
- (New) The compound according to claim 39, wherein R³ is selected from CH₃CO₂, CH₃CONH, or CH₃CONCH₃.
- (New) The compound according to claim 38, wherein R⁴ is selected from C(X)R⁵ and C(NH₂)=C(CN)₂.
- 42. (New) The compound according to claim 41, wherein R⁴ is C(X)R⁵.
- 43. (New) The compound according to claim 42, wherein X is selected from O and S.
- 44. (New) The compound according to claim 42, wherein R⁵ is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and C_{1.4}alkoxy.
- 45. (New) The compound according to claim 44, wherein p is 1-3.
- 46. (New) The compound according to claim 44, wherein R⁵ is selected from NH₂, OH, NH(CH₂)_pAr, NH(CH₂)_pOH and OCH₃.
- 47. (New) The compound according to clam 46, wherein p is 1-2.
- 48. (New) The compound according to claim 38, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents optionally selected from OH, C₁₋₆alkyl, C₁₋₆alkyl, NH-C₁₋₆alkyl, N(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.

- 49. (New) The compound according to claim 46, wherein Ar is an unsubstituted phenyl group or a phenyl group substituted with 1-4 substituents independently selected from OH, C₁₋₆alkyl, C₁. ₆alkoxy, NH₂, NH-C₁₋₆alkyl, N(C₁₋₆alkyl)(C₁₋₆alkyl), SH, S-C₁₋₆alkyl, NO₂, CF₃, OCF₃ and halo.
- 50. (New) The compound according to claim 48, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents independently selected from OH, C₁₋₄alkyl, C₁. 4alkoxy, NH₂, NH-C₁₋₄alkyl, N(C₁₋₄alkyl), (C₁₋₄alkyl), SH, S-C₁₋₄alkyl, NO₂, CF₃, OCF₃ and halo.
- 51. (New) The compound according to claim 50, wherein Ar is an unsubstituted phenyl group or phenyl group substituted with 1-2 substituents independently selected from OH, OCH₃, NH₂, NHCH₃, N(CH₃)₂, SH, SCH₃, CF₃, OCF₃ and halo.
- (New Withdrawn) A method according to claim 33 wherein said cancer is a hematopoietic cell cancer.
- (New Withdrawn) A method according to claim 33 wherein said cancer is a leukemia, a lymphoma. a myeloma or a carcinoma.