Université d'Aix-Marseille, Licence SV, 1^{re} année, 2^e semestre Mathématiques pour la biologie : correction TD3

4 mars 2016 Hugo Raguet

Exercice 3.

On définit les évènements suivants :

M: "la personne considérée est malade (de l'hépatite)";

P: "le test est positif";

et on note \overline{M} et \overline{P} leur complémentaires respectifs.

L'énoncé donne $\mathbb{P}(M) = \frac{3}{100}$, $\mathbb{P}(P|M) = \frac{95}{100}$, et $\mathbb{P}(P|\overline{M}) = \frac{10}{100}$. On peut en déduire $\mathbb{P}(\overline{M}) = 1 - \mathbb{P}(M) = \frac{97}{100}$.

De plus, (P, \overline{P}) est un système total, donc $\mathbb{P}(\overline{P}|M) + \mathbb{P}(P|M) = \frac{\mathbb{P}(\overline{P}\cap M)}{\mathbb{P}(M)} + \frac{\mathbb{P}(P\cap M)}{\mathbb{P}(M)} = \frac{\mathbb{P}(M)}{\mathbb{P}(M)} = 1$. On en déduit $\mathbb{P}(\overline{P}|M) = 1 - \mathbb{P}(P|M) = \frac{5}{100}$. De même $\mathbb{P}(\overline{P}|\overline{M}) = 1 - \mathbb{P}(P|\overline{M}) = \frac{90}{100}$.

On peut alors établir l'arbre de probabilité suivant :

1. On cherche $\mathbb{P}(M|P)$. D'après la formule de Bayes, $\mathbb{P}(M|P) = \frac{\mathbb{P}(P|M)\mathbb{P}(M)}{\mathbb{P}(P)}$.

Or, (M, M) est un système total, donc

$$\begin{split} \mathbb{P}(P) &= \mathbb{P}(P|M)\mathbb{P}(M) + \mathbb{P}(P|\overline{M})\mathbb{P}(\overline{M}) \ , \\ &= \frac{95}{100}\frac{3}{100} + \frac{10}{100}\frac{97}{100} \ . \end{split}$$

Finalement, $\mathbb{P}(M|P) = \frac{\frac{95}{100}\frac{3}{100}}{\frac{95}{100}\frac{3}{100} + \frac{10}{100}\frac{97}{100}} = \frac{285}{1255} = \frac{57}{251}$.

- 2. On cherche $\mathbb{P}(\overline{M}|P)$. Or, de même que précèdement, $\mathbb{P}(\overline{M}|P) = 1 \mathbb{P}(M|P)$, et d'après la question 1, $\mathbb{P}(\overline{M}|P) = \frac{194}{251}$.
- 3. On cherche $\mathbb{P}(M|\overline{P})$. De même que précèdement, $\mathbb{P}(M|\overline{P}) = \frac{\mathbb{P}(P|M)\mathbb{P}(M)}{\mathbb{P}(\overline{P})}$, et $\mathbb{P}(\overline{P}) = \frac{\mathbb{P}(P|M)\mathbb{P}(M)}{\mathbb{P}(\overline{P})}$ $1 - \mathbb{P}(P)$. On en déduit $\mathbb{P}(M|\overline{P}) = \frac{\frac{5}{100} \frac{3}{100}}{1 - (\frac{95}{100} \frac{3}{100} + \frac{10}{100} \frac{97}{100})} = \frac{15}{8745} = \frac{1}{583}$.
- 4. On cherche $\mathbb{P}(\overline{M}|\overline{P})$. Or, de même que précèdement, $\mathbb{P}(\overline{M}|\overline{P}) = 1 \mathbb{P}(M|\overline{P})$, et d'après la question 3, $\mathbb{P}(\overline{M}|\overline{P}) = \frac{582}{583}$