0007441

A-LVV-O-UVA

STATISTICS

Paper I

Time Allowed: Three Hours

Maximum Marks: 200

INSTRUCTIONS

Please read each of the following instructions carefully before attempting the questions:

There are EIGHT questions divided under TWO sections.

Candidate has to attempt FIVE questions in ALL.

Questions no. 1 and 5 are compulsory and out of the remaining, THREE are to be attempted choosing at least ONE from each section.

The number of marks carried by a question/part is indicated against it.

Unless otherwise mentioned, symbols and notations have their usual standard meanings.

Assume suitable data, if necessary, and indicate the same clearly.

Candidates should attempt questions/parts as per the instructions given in the section.

All parts and sub-parts of a question are to be attempted together in the answer book.

Attempts of questions shall be counted in chronological order. Unless struck off, attempt of a question shall be counted even if attempted partly.

Any page or portion of the page left blank in the answer book must be clearly struck off.

Answers must be written in ENGLISH only.

Required tables (Normal Distribution table and 't table) are attached with the question paper.

SECTION A

1. Answer **all** of the following:

 $5 \times 8 = 40$

- (a) For random variables X, Y, show that $V[Y] = E_{\mathbf{X}}[V(Y \mid X)] + V_{\mathbf{Y}}[\Xi(Y \mid X)].$
- (b) Prove that for r = 1, 2, ..., n

$$\frac{1}{\Gamma(r)} \int\limits_{\mu}^{\infty} t^{r-1} \; e^{-t} \; dt \; = \; \sum_{x \; = \; \zeta}^{r \; -1} \frac{e^{-\mu} \; \mu^x}{x \; !} \; .$$

(c) Let X have pdf

$$f(x) = \begin{cases} \frac{1}{3}, & -1 < x < 2 \\ 0, & \text{otherwise.} \end{cases}$$

Obtain the cdf of $Y = X^2$.

- (d) Let X be a random variable with E(X) = 3, $E(X^2) = 13$. Use Chebyshev's inequality to obtain P(-2 < X < 8).
- (e) Using Central Limit Theorem, show that

$$e^{-n}\sum_{k=0}^{n} \frac{n^k}{k!} \doteq \frac{1}{2}.$$

2. (a) Let C be a circle of unit area with centre at origin and let S be a square of unit area with $\left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, -\frac{1}{2}\right), \left(-\frac{1}{2}, \frac{1}{2}\right)$ and $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ as the four vertices. If X and Y be two

$$\iint_{C} \phi(x) \phi(y) dx dy \ge \iint_{S} \phi(x) \phi(y) dx dy$$

where $\phi(\cdot)$ is the pdf of N(0, 1) distribution.

- (b) Let X follow log-normal with parameters μ and σ^2 . Find the distribution of $Y=aX^b,\ a>0,\ -\infty < b < \infty.$
- (c) Let $\{X_n\}$ be a sequence of pairwise, uncorrelated random variables with

$$E(X_i) = \mu_i$$
 and $V(X_i) = \sigma_i^2$, $i = 1, 2, ...$

If
$$\sum_{i=1}^{n} \sigma_i^2 \to \infty$$
 as $n \to \infty$, then show that

$$\sum_{i=1}^n \left(\frac{X_i - \mu_i}{\sum_{j=1}^n \sigma_j^2} \right) \xrightarrow{p} 0 \text{ as } n \to \infty.$$

- 3. (a) Let $X_1, X_2, ..., X_n$ be independent Poisson variates with $E(X_i) = \mu_i$. Find the conditional distribution of $X_1, ..., X_n$ $\left| \sum_{i=1}^n X_i = y_i \right|$
 - (b) Let Y_1 denote the first order statistic in a random sample of size n from a distribution that has the pdf $f(x) = \begin{cases} e^{-(x-\theta)}, & \theta < x < \infty \\ 0, & \text{otherwise} \end{cases}$

Obtain the distribution of $Z_n = n(Y_1 - \theta)$.

- (c) Two points are chosen at random on a line of unit length. Find the probability that each of the 3 line segments will have length greater than $\frac{1}{4}$.
- 4. (a) Obtain the characteristic function of X whose pdf is

$$f(x) = \frac{\lambda}{\pi}, \ \frac{1}{\lambda^2 + (x - \mu)^2}, \ -\infty < x < \infty.$$

(b) Let $\{X_n\}$ be a sequence cf random variables with

$$P(X_n = \pm n^{\alpha}) = \frac{1}{2} n^{-\alpha}$$

$$P(X_n = 0) = 1 - n^{-\alpha}$$

For what values of α does weak law of large numbers (WLLN) hold?

(c) Three urns U_1 , U_2 and U_3 each contain 5 black balls and 7 white balls initially. A ball is drawn at random from U_1 and 2 balls of the drawn colour are added to U_2 . Then a ball is drawn at random from U_2 and 3 balls of the drawn colour are added to U_3 . Find the probability of drawing a white ball from U_3 .

46

49

SECTION B

5. Answer all of the following:

5×8=40

- (a) Let (X, Y) be distributed as bivariate normal BVN (3, 1; 13, 25; $\frac{3}{5}$). Calculate $P(4 < Y < 11.84 \mid X = 7)$.
- (b) With 3 variables X_1 , X_2 and X_3 , it is given that $r_{13} = 0.71$, $R_{1.23} = 0.78$. Find $r_{12.3}$.
- (c) Suppose the given values of x_i are such that $a \le x_i \le b$ for i = 1, 2, ..., n. Show that

$$0 \leq s^2 \leq \frac{(b-a)^2}{4} \,.$$

- (d) Let X have F(m, n) distribution. Obtain $E(X^{-r})$, r > 0.
- (e) If X follows binomial $b(n_1, p_1)$ distribution and Y follows $b(n_2, p_2)$, provide an appropriate exact test at level α for $H_0: p_1 = p_2$ against $H_1: p_1 > p_2$.
- 6. (a) By using Euler Maclaurin formula, find the $\operatorname{sum} \frac{1}{51^2} + \frac{1}{53^2} + \dots + \frac{1}{99^2}.$

(b) Given the random samples

X: 1, 5, 7, 9, 15, 17, 21, 23

Y: 2, 6, 10, 12, 18, 20, 26, 28, 32

from the populations having the distribution function respectively as F_1 and F_2 , test the hypothesis

$$\mathbf{H}_0: \mathbf{F}_1 = \mathbf{F}_2$$

against
$$H_1: F_1 \neq F_2$$

at 5% level of significance by the Wald – Wolfowitz run test. It is given that the critical number of runs at sample sizes (8, 9) at 5% level is 5.

(c) Compute Yule's coefficient of association (Q) and Yule's coefficient of colligation (Y) for the following table:

	Disease on-set						
		Yes	No				
Medicine	A	19	587				
used	В	193	2741				

(a) By making use of the difference table and a suitable interpolation formula, find the number of students who obtained less than 45 marks in an examination, from the following table:

Marks	30 - 40	40 – 50	50 - 60	60 – 70	70 – 80
Number of Students	31	42	51	35	31

- Consider the two samples as follows: (b) Sample I = 6, 7, 8, 10, 12, 14, 16, 23Sample II = 9, 11, 13, 15, 17, 18, 19, 20, 24 whether the samples have Test come populations from the using same Wilcoxon-Mann-Whitney (WMW) test at 10% level of significance. [You can use normal approximation].
- (c) For 20 pairs of heights of father (X) and sor. (Y) measured in cm, the following data were obtained:

$$\bar{x} = 168.17, \ \Sigma (x_i - \bar{x})^2 = 777.80$$

$$\sum (y_i - \bar{y})^2 = 939.42, \ y = 9.25 + 0.932x$$

Test whether the cut on the X-axis can be assumed to be zero, at 5% level of significance.

40

- 8. (a) Compute the value of $\int_{4}^{l} \ln x \, dx$ by Simpson's $\frac{1}{3}^{rd}$ rule. Given that $\ln 4.0 = 1.39$, $\ln 4.2 = 1.43$, $\ln 4.4 = 1.48$ $\ln 4.6 = 1.53$, $\ln 4.8 = 1.57$, $\ln 5.0 = 1.61$, $\ln 5.2 = 1.65$.
 - (b) Let $X_1, X_2, ..., X_{12}$ be a random sample from a normal $N(\mu_1, \sigma^2)$ distribution and $Y_1, Y_2, ..., Y_0$ be another random sample from normal $N(\mu_2, \sigma^2)$, independently of each other. Carry out an appropriate test for testing

$$H_0: \mu_1 = \mu_2$$

against $H_1: \mu_1 \neq \mu_2$

at 5% level of significance It is given that $\bar{x} = 2$, $s_x^2 = 16$, $\bar{y} = 8$ and $s_y^2 = 15$.

(c) Fit the exponential curve y = a + bx to the following data:

x: 0 2 4

 $y: 5.01 \quad 10 \quad 31.62$

46

***************************************	····	00	.01	.02	03	.04	05	.06	.07	.08	.09
***************************************	0	.5000	.5C40	.5080	.5120	.5160	.5199	5239	.5279	.5319	5359
	1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
	2	.5793	5832	.5871	.5910	5948	.5987	6026	.6064	.6103	.ゔ*4*
	3	.6179	£217	.6255	6293	.6331	.6368	.6406	6443	6480	.3517
	.4	.6554	.6591	.6628	.6664	.6700	6736	.6772	.6808	.6844	.5879
	.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
	.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	,7486	.7517	.7549
	.7	7580	.7611	.7642	.7673	.7704	.7734	7764	.7794	7823	.7852
	8.	.7861	.7910	.7939	.7967	.7995	.8023	.8051	8078	.8106	.3133
	.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.3389
1	.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.∂621
1	1,1	8643	.8665	.8686	8708	.8729	.8749	8770	.8790	8810	.3830
1	.2	8849	.8869	8888	.8907	6925	.8 94 4	.8962	.8980	.8997	.9015
1	.3	.9032	9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1	.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1	.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	,3441
	.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	3545
4	.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	9616	.9625	.3633
1	1.₿	9641	.9649	.9656	.9664	.9671	.9678	.9686	9693	.9699	.3706
1	9	,9713	.9719	.9726	9732	.9738	.9744	.9750	.9756	.9761	.3767
2	2.0	9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
7	2,1	.9821	.9826	.9830	.9834	.9838	.9842	.9346	9850	.9854	.9857
2	2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	9890
7	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	9916
4	2.4	9918	.9920	.9922	9925	.9927	9929	.9931	.9932	.9934	.9936
2	2.5	.9838	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	9952
7	2.6	.9953	.9955	.9956	.9357	.9959	.9960	.9961	9962	.9963	9964
7	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9371	.9972	.9973	.9974
*	2.8	.9974	9975	.9976	.9977	.9977	.9978	.9379	.9979	9980	.9981
4	2.9	9961	.9982	.9982	.9983	.9984	9984	9985	.9985	.9986	9986
	3.0	.9987	.9937	.9987	.9988	.9988	.9989	.9989	.9989	.9990	9990
	3.1	.9990	.9991	.9991	.9991	9992	9992	.9992	.9992	.9993	9993
	3.2	.9993	.9993	.9994	9994	.9994	.9394	.9994	.9995	.9995	9995
	3.3	.9995	.9935	.9995	. 9 996	.9996	,9396	.9996	.9996	.9996	9997
	3.4	9997	.9997	.9997	.9997	.9997	.9397	.9997	.9997	.9997	9998

A-LVV-O-UVA

t Table											
cum. prob	£.50	1.74	4					4	*		
· I		0.25	₹,m 0.20	(_{A)}	₹.30 O.40	1.14	t _{an}	1,00	1,995	1,893	F.janes
one-tail	0.50			0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tail	1.00	0,50	0.40	0.30	0.20	0.10	0.05	0.02	9.01	0.002	0.001
dſ			المتعادات		* * * * * *						
1	0.000	1,000	1.376	1.963	3.078	6.314	12.71	31.32	63.66	318.3	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.973	1.250	1.638	2.353	3.182	4,541	5.84	10.2-5	12.924
4	0.000	0.741	0.941	1.190	1.533	2,132	2.776	3,747	4.604	7.173	8.610
- 5 6	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
7	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
8	0.000	0.711 0.706	0.896	1,119	1.415	1.895	2.365	2.998	3,499	4.785	5.408
9	0.000	0.763	0.883		1.397	1.860	2.306	2.896	3.355	4.50	5.041
10	0.000	0.700	0.883 0.879	1.100	1.383 1.372	1.833 1,812	2.262 2.228	2.821 2.754	3.250	4.297	4.781
-11	0.000	0.700	0.873	1.088	1.363	1.796	2.201		3.169	4.144	4.587
12	0.000	0.695	0.873	1.083	1.356	1.782	2.201	2.718 2.681	3.106 3.055	4.025 3.93 0	4.437 4.318
13	0.000	0.694	0.873	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2,624	2.977	3.767	4,140
15	0.000	0.691	0.863	1.074	1.341	1.753	2.131	2.602	2.947	3.753	4.073
	0.000	0.690	0.865	1.071	1.337	1,746	2.120	2.583	2.921	3.656	4.015
Fi	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.557	2.898	3.646	3.965
ia	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1,066	1.328	1.729	2.093	2.539	2.86	3.579	3.883
20	0.000	0.687	0.860	1,064	1.325	1.725	2.086	2.528	2.845	3,552	3,850
21	C.000	0.686	0.850	1.063	1.323	1.721	2.080	2.518	2.831	3,527	3.819
22	0.000	0.656	0.858	1.061	1.321	1,717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.856	1,060	1,319	1,714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.348	1,711	2.064	2.492	2,797	3.467	3.745
25	0.000	0,684	0.856	1.058	1.316	1,708	2.060	2.485	2,787	3,450	3.725
26	0.000	0.684	0.858	1.058	1.315	1.706	2.056	2,479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1,701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1,310	1.607	2.042	2.457	2.750	3,385	3,646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.367	3.551
80	0.000	0.679	0.848	1.045	1.296	1,671	2.000	2.390	2.560	3.232	3,460
80	0.000	0.678	0.846	1.043	1.292	1.864	1.990	2.374	2.639	3.195	3,416
100	0.000	0.677	0.845	1,042	1.290	1,660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1,646	1.962	2.330	2,581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1,845	1.960	2.325	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					A	4	A				

Confidence Level