Verjetnostne metode v računalništvu - zapiski s predavanj prof. Marca

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Intr	roduction	1
	1.1	Probability	1
	1.2	Random variables	2
2	Qui	Quicksort, min-cut	
	2.1	Quicksort	4
	2.2	Min-cut	6
3	Cor	mplexity classes	9
4	Che	ernoff bounds	11

Introduction

1.1 Probability

```
\begin{split} &(\Omega, F, P_r): \\ &\circ \ \emptyset \in F, \\ &\circ \ A \in F \implies A^c \in F, \\ &\circ \ A_1, A_2 \cdots \in F \implies \cup_{i=1}^\infty A_i \in F. \\ &P_r(A) \geq 0, \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P_r(A_i) \text{ if } A_i \text{ disjoint,} \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) \leq \sum_{i=1}^\infty P_r(A_i), \\ &\Omega = \left\{\omega_1, \omega_2 \dots\right\} - \text{countable case.} \\ &\left(\omega_1 \quad \omega_2 \quad \dots \right) \\ &Primer. \\ &\text{Alg():} \\ &\text{while True:} \\ &\text{B = sample as random from } \{0,1\} \quad \text{\# 1 with probability p} \\ &\text{if B = 1:} \end{split}
```

return

$$\Omega = \{1, 01, 001, 0001 \dots\}$$

$$\begin{pmatrix} 1 & 01 & 001 & 0001 & \dots \\ p & (1-p)p & (1-p)^2p & (1-p)^3p & \dots \end{pmatrix}.$$

1.2 Random variables

 $X:\Omega\to\mathbb{Z}.$

 $E[X] = \sum_{c \in \mathbb{Z}} c \cdot P_r(X = c)$ expected value of X.

Properties:

$$\circ E[f(X)] = \sum_{c \in \mathbb{Z}} f(c) \cdot P_r(X = c),$$

$$\circ \ E[aX + bY] = aE[X] + bE[Y],$$

$$\circ E[X \cdot Y] = E[X] \cdot E[Y]$$
 if X, Y independent,

$$\circ P_r(X \ge a) \le \frac{E[X]}{a} \, \forall a > 0 \, X \ge 0 \, \text{Markov inequality.}$$

Primer. (Continuing from before).

X = number of trials before return.

$$X:\Omega\to\mathbb{Z}.$$

Trditev 1.2.1. $E[X] = \frac{1}{p}$.

Dokaz 1.2.2. $X = \sum_{i=1}^{\infty} X_i$.

$$X_i = \begin{cases} 1 & \text{if trial } i \text{ is executed} \\ 0 & \text{else} \end{cases}$$

$$E[X] = E[\sum_{i=1}^{\infty} X_i] = \sum_{i=1}^{\infty} E[X_i] =$$

$$= \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{i=0}{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

$$E[X] = \frac{1}{p}.$$

 $P_r(X \ge 100 \cdot \frac{1}{p}) \le \frac{E[X]}{\frac{1}{p}} = \frac{1}{100}.$

Definicija 1.2.3.
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{i=1}^{\infty} \frac{1}{i}$$
.

Izrek 1.2.4. $H_n \le 1 + \ln(n)$.

Dokaz 1.2.5.

$$H_n = 1 + \sum_{i=2}^n \frac{1}{i} \stackrel{\text{integral}}{\leq} 1 + \int_1^n \frac{dx}{x} = 1 + \ln(x)|_1^n = 1 + \ln(n).$$

Quicksort, min-cut

2.1 Quicksort

```
Input: set (no equal element) (unordered list) S \in \mathbb{R}
      (or whatever you can compare linearly)

Output: ordered list

Code:
    def Quicksort(S):
    if |S| = 0 or 1:
      return S

    else:
      a = uniformly at random from S

      S^- = {b \in S | b < a}
      S^+ = {b \in S | a < b}
      return Quicksort(S^-), a, Quicksort(S^+)</pre>
```

C(n) - random variable, the number of comparisons in evaluation of Quicksort with |S|=n.

Izrek 2.1.1.
$$E[C(n)] = O(N \log(n))$$
.

Dokaz 2.1.2.
$$C(0) = C(1) = 0$$
.

$$E[C(n)] = n - 1 + \sum_{i=1}^{n} (E[C(i-1)] + E[C(n-i)]) \cdot P_r(a \text{ is } i\text{-it element}) \le 1 + \frac{2}{n} \sum_{i=1}^{n-1} E[C(i)].$$

Induction:

 $n=1:\checkmark$

 $n-1 \rightarrow n$:

$$\begin{split} E[C(n)] &\leq n + \frac{2}{n} \sum_{i=1}^{n} E[C(i)] \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{n} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log i + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log \frac{n}{2} + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log n \leq \\ &(\log \frac{n}{2} = \log n - 1) \\ &\leq n + \frac{2}{n} \left(\sum_{i=1}^{n} 5i \log n - \sum_{i=1}^{\frac{n}{2}} 5i \right) = \\ &= n + \frac{10}{n} \left(\frac{n(n-1)}{2} \log n - \frac{\frac{n}{2}(\frac{n}{2} + 1)}{2} \right) \leq \\ &\leq n + 5(n-1) \log n - n < \\ &< 5n \log n. \end{split}$$

$$P\left(C(n) \geq b \cdot 5n \log n\right) \overset{\text{Markov}}{\leq} \tfrac{1}{b}.$$

Dokaz 2.1.3.

2:

Let $S_1, S_2 \dots S_n$ sorted elements of S.

Define random variable $X_{ij} = \begin{cases} 1 \text{ if } S_i \text{ and } S_j \text{ are compared} \\ 0 \text{ else} \end{cases}$

$$\begin{split} &C(n) = \sum_{1 \leq i < j \leq n} E[X_{ij}]. \\ &E[X_{ij}] = P(S_i \text{ and } X_j \text{ compared}). \\ &S_{ij} \text{ - the last set including } S_i \text{ and } S_j. \\ &E[X_{ij}] = \frac{2}{|S_{ij}|} \leq \frac{2}{j-i+1}. \\ &|S_{ij}| \geq j-i+1. \\ &S_{ij} \text{ has everything in between.} \end{split}$$

$$\implies E[C(n)] \le \sum_{1 \le i < j \le n} \frac{2}{j - i + 1} = \sum_{k=j-i+1}^{n-1} \sum_{j=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le$$

$$\leq 2 \cdot n \cdot H_n \leq$$

$$\leq 2n(1+\log n).$$

2.2 Min-cut

G multigraph.

Cut: $U \subset V(G), \ U \neq \emptyset, V(g)$.

$$(U,V(G)\setminus U)=\{uv\in E(G)\mid u\in U,v\in V(G)\setminus U\}.$$

Problem min-cut:

Input: G.

Output: $\min |(U, V(G) \setminus U)|$ - cut size.

Algorithm 1:

 $x \in V(G)$

Call maxFlow(G, x, y) $\forall y \in V(G)$

Take min

maxFlow is Edmonds-Karp algorithm $O(|V||E|^2)$.

Algorithm 2 (Stoer Wagner)

Is
$$O(|E||V| + |V|log|V|)$$
.

Algorithm randMinCut:

$$\begin{split} & \texttt{G_0} = \texttt{G} \\ & \texttt{i} = \texttt{0} \\ & \texttt{while} \ | \texttt{V}(\texttt{G}_i) | > 2 \colon \\ & \texttt{e}_i = \texttt{uniformly at random from } \texttt{G}_i \\ & \texttt{G}_{i+1} = \texttt{G}_i \ / \ e_i \\ & \texttt{i} = \texttt{i} + \texttt{1} \\ & \texttt{u, v} = \texttt{V}(\texttt{G}_{n-2}) \ / / \ n = | \texttt{V}(\texttt{G}) | \\ & \texttt{U} = \{ \texttt{w} \in \texttt{V}(\texttt{G}) \ | \ \texttt{w is merged into u} \} \\ & \texttt{return (U, V(\texttt{G}) \setminus U)} \end{split}$$

Izrek 2.2.1. Algorithm randMinCut gives you a minimal cut with probability greater or equal to $\frac{2}{n(n-1)}$.

Dokaz 2.2.2.

Fact 1: $minCut(G_i) \leq minCut(G_i)$;

 \geq : minCut remains.

Fact 2: $minCut(G) < \delta(G)$.

k := minCut(G).

Let (A,B) be an optimal cut.

 ϵ_i not in (A,B).

 $P_r(Algorithm not returning (A,B))$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-3})$$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-4}) \cdot P_r(\epsilon_{n-3} \mid \epsilon_0 \cap \cdots \cap \epsilon_{n-4})$$

$$= P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i) \cdot P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i)$$

$$\dots P_r(\epsilon_1 \mid \epsilon_0) \cdot P_r(\epsilon_0).(*)$$
(2.1)

$$P_r(\overline{\epsilon_i} \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) = \frac{k}{|E(G_i)|} \stackrel{(**)}{\leq} \frac{k}{\frac{(n-i)k}{2}} = \frac{2}{n-i}$$
$$|E(G_i)| \geq \frac{(n-i)\delta(G)}{2} \geq \frac{(n-i)k}{2}.(**)$$
(2.2)

$$P_r(\epsilon_i \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) \ge 1 - \frac{2}{n-i} = \frac{n-2-i}{n-i}.$$

$$(*) \ge \frac{n-2}{n} \cdot \frac{n-3}{n-1} \dots \frac{1}{3} = \frac{2}{n(n-1)}.$$

Izrek 2.2.3. Running $randMinCut\ n(n-1)$ times and taking best output gives correct solution with probability ≥ 0.86 .

Dokaz 2.2.4. A_i - event that *i*-th run gives sub-optimal solution.

$$\begin{split} P_r(\text{solution not correct}) &= P_r(A_1 \cap \dots \cap A_{n(n-1)}) \\ &= \prod_{i=1}^{n(n-1)} P_r(A_i) \le (1 - \frac{2}{n(n-1)})^{n(n-1)} \\ &\le e^{-\frac{2}{n(n-1)} \cdot n(n-1)} = e^{-2} \le 0.14. \end{split}$$

 $1 - x \le e^x \ \forall x \in \mathbb{R}.$

If we run n(n-1)log(n) times $\to O\left(\frac{1}{n}\right)$. $O\left(n^2 \log n \cdot n\right)$.

Improved: $O(n^2 \log^3 n)$.

Complexity classes

Decision problem - yes/no question on a set of inputs = asking $w \in \Pi$. Randomized algorithms:

- Las Vegas algorithms: always gives correct solution, example: Quicksort.
- Monte Carlo algorithms: it can give wrong answers. Monte Carlo algorithms subtypes:

$$- \text{ type}(1) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{1}{2} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 0 \end{cases}$$

$$- \text{ type}(2) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 1 \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

$$- \text{ type}(3) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{3}{4} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

type(1) and type(2): one-sided error, type(3): 2-sided error. $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ arbitrary numbers, can be something different (for type(3) better than coin flip).

Primer. Decisional problem: does a graph G have $minCut \leq k$?

```
Run randMinCut(G) n(n-1) times. 
 Algorithm randMinCut: 
 if one of runs gives |(A,B)| \leq k: 
 return true 
 else: 
 return false
```

Complexity classes:

- RP (randomized polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(1) with polynomial time complexity (worst case).
- co-RP: decisional problems for which there exists Monte Carlo algorithm of type(2) with polynomial time complexity (worst case).
- BRP (bounded-error probabilistic polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(3) with polynomial time complexity (worst case).
- ZPP (zero-error probabilistic polynomial time): decisional problems for which there exists Las Vegas algorithm with expected polynomial time complexity (worst case).

```
ZPP = RP \cap co-RP.
```

Chernoff bounds

Izrek 4.0.1. Let $X_1, X_2 ... X_n$ independent random variables with image $\{0, 1\}$.

Let $p_i = P_r(X_i = x_i), X = \sum_{i=1}^n X_i$ and $\mu = E(X) = p_1 + \dots + p_n$. For every $\delta \in (0,1)$:

$$P_r(X - \mu \ge \delta\mu) \le e^{-\frac{\delta^2 \mu}{3}}$$

$$P_r(\mu - X \le \delta\mu) \le e^{-\frac{\delta^2 \mu}{2}}$$

$$\implies P_r(|X - \mu| \ge \delta\mu) \le e^{-\frac{\delta^2 \mu}{3}}.$$

Probability falls extremely quickly after E(X).