Motivation

The original kernel model assumed that the distribution of ages for each name could be well approximated by a normal distribution. Since we found that the assumption does not hold, it is better to just use the discrete empirical distribution.

Formulation

The negative binomial expression is the same as before:

$$y_{ik} \sim \text{NegBin}(\omega_k \mu_{ik}, \omega_k)$$
 $E(y_{ik}) = \mu_{ik}$ $Var(y_{ik}) = \mu_{ik} + \frac{\mu_{ik}}{\omega_k}$

Now let $a_i \in \{0, ..., 100\}$ and $g_i \in \{M, F\}$ denote the age and gender of ego i, respectively, while we let g_k denotes the gender of alter name k. Then we can derive the mean expression as follows:

$$\mu_{ik} = N_i p(k|a_i, g_i) = N_i \sum_{s=2}^{100} p(k|s, g_k) p(s, g_k|a_i, g_i) = N_i \sum_{s=2}^{100} p(k|s, g_k) p(s|a_i) p(g_k|g_i)$$

$$= N_i p(g_k|g_i) \sum_{s=2}^{100} p(k|s, g_k) p(s|a_i) = N_i p_{g_i g_k} \sum_{s=2}^{100} \frac{p(k, s, g_k)}{p(s, g_k)} \frac{1}{C_{g_i g_k}} \mathcal{K}_{g_i g_k}(a_i, s)$$

$$= \frac{N_i p_{g_i g_k}}{C_{g_i g_k}} \sum_{s=2}^{100} \frac{p(k, s, g_k)}{p(s, g_k)} \mathcal{K}_{g_i g_k}(a_i, s)$$

The kernel is defined similar to before but with a discrete normalizing constant:

$$\mathcal{K}_{g_i g_k}(a_i, a_k) = e^{-\frac{(a_i - a_k)^2}{2\lambda g_i g_k}} \qquad C_{g_i g_k} = \sum_{s=2}^{100} \mathcal{K}_{g_i g_k}(a_i, s)$$

We thus need to estimate $p_{g_ig_k}$ (2 values), $\lambda_{g_ig_k}$ (4 values), N_i (N values), and ω_k (K values).

Simulation

We simulate responses to questions about 12 names using estimated age means/variances (for each name) and simulated respondent degrees, name overdispersions, and kernel lambdas in an attempt to see whether our model can recover the correct degrees, overdispersions, and lambdas:

$$\lambda = \begin{pmatrix} \lambda_{FF} & \lambda_{FM} \\ \lambda_{MF} & \lambda_{MM} \end{pmatrix} = \begin{pmatrix} 225 & 100 \\ 144 & 256 \end{pmatrix} \qquad M = \begin{pmatrix} p_{FF} & p_{FM} \\ p_{MF} & p_{MM} \end{pmatrix} = \begin{pmatrix} 0.6 & 0.4 \\ 0.45 & 0.55 \end{pmatrix}$$

Results

The model does a decent job of recovering the gender mixing probabilities:

$$M_{BAYES} = \left(\begin{array}{cc} 0.587 & 0.413\\ 0.435 & 0.565 \end{array}\right)$$

The model does a terrible job of recovering the lambdas, the with values off by a factor of 1000.

$$\lambda_{BAYES} = \left(\begin{array}{cc} 16019 & 9651 \\ 14805 & 1129 \end{array}\right)$$

The degrees are not recovered very well either, with a correlation of only 0.68 between the simulated values and their posterior means.

None of the overdispersions are contained within the central 95% of their posterior distributions.

