Math 132 Homework 3

Jiaping Zeng

10/20/2020

- 2.4.33 Suppose that f = u + iv is analytic in a region Ω . Show that
 - (a) $f'(z) = u_x iu_y$, also $f'(z) = v_y + iv_x$

Answer: By Cauchy-Riemann equations, we have $u_x = v_y$ and $u_y = -v_x$. Starting from $f'(z) = u_x + iv_x$ (differentiate f with respect to x), we can substitute in $v_x = -iv_y$, which give us $f'(z) = u_x - iu_y$. Similarly, we can substitute in $u_x = v_y$, which gives us $f'(z) = v_y + iv_x$.

(b) $|f'(z)|^2 = u_x^2 + u_y^2 = v_x^2 + v_y^2$

Answer: From part (a), $f'(z) = u_x - iu_y \implies |f'(z)|^2 = (\sqrt{u_x^2 + u_y^2})^2 = u_x^2 + u_y^2$; similarly, $f'(z) = v_y + iv_x \implies |f'(z)|^2 = (\sqrt{v_x^2 + v_y^2})^2 = v_x^2 + v_y^2$.

(c) Conclude from (a) or (b) that either Re f or Im f is constant in Ω , then f is constant in Ω .

Answer: On the one hand, if Re f = u is constant, we have $u_x = u_y = 0 \implies |f'(z)|^2 = u_x^2 + u_y^2 = 0$. On the other hand, if Im f = v is constant, we have $v_x = v_y = 0 \implies |f'(z)| = v_x^2 + v_y^2 = 0$. Since the magnitude of the f'(z) is 0 in either case, f'(z) is constant in Ω .

 $2.5.3 e^x \cos y$

Answer: Let $u = e^x \cos x$, then $\Delta u = \frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = \frac{\delta}{\delta x} (e^x \cos y) - \frac{\delta}{\delta y} (e^x \sin y) = e^x \cos y - e^x \cos y = 0$. Therefore $e^x \cos y$ is harmonic on $\Omega = \mathbb{C}$.

 $2.5.14 \ x^2 - y^2 - xy$

Answer: Let $u = x^2 - y^2 - xy$, then $u_x = 2x - y$ and $u_y = -2y - x$. By Cauchy-Riemann, v must satisfy $u_x = v_y \implies v_y = 2x - y \implies v = 2xy - \frac{1}{2}y^2 + c(x)$. Again by Cauchy-Riemann, v must also satisfy $u_y = -v_x \implies -2y - x = -2y - c'(x) \implies c'(x) = x \implies c(x) = \frac{1}{2}x^2 + C$. Therefore $v = 2xy + \frac{1}{2}x^2 - \frac{1}{2}y^2 + C$. We can check Cauchy-Riemann as follows:

$$u_x = 2x - y$$
, $v_y = 2x - y \implies u_x = v_y$
 $u_y = -2y - x$, $-v_x = -2y - x \implies u_y = -v_x$

2.5.19 Show that if u and u^2 are both harmonic in a region Ω , then u must be constant.

Answer: Since u^2 is harmonic in Ω , we have $\frac{\delta^2}{\delta x^2}(u^2) + \frac{\delta^2}{\delta y^2}(u^2) = 0 \implies \frac{\delta}{\delta x}(2uu_x) + \frac{\delta}{\delta y}(2uu_y) = 0 \implies 2(uu_{xx} + u_x^2) + 2(uu_{yy} + u_y^2) = 0 \implies u(u_{xx} + u_{yy}) + u_x^2 + u_y^2 = 0$. Then, since u is harmonic, we also have $\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0 \implies u_{xx} + u_{yy} = 0$. Combining the last two equalities we have $u_x^2 + u_y^2 = 0$, implying that $u_x = u_y = 0$ as u is a real function. Therefore u is constant.

3.1.1 The line segment with initial point $z_1 = 1 + i$ and terminal $z_2 = -1 - 2i$.

Answer:
$$\gamma(t) = z_0 + t(z_1 - z_0) = (1+i) - t((1+i) - (-1-2i)) = t(-2-3i) + 1+i$$

1

3.1.3 The counterclockwise circle with center at 3i and radius 1.

Answer: $\gamma(t) = z_0 + re^{it} = 3i + e^{it}$

3.1.4 The clockwise circle with center at -2 - i and radius 3.

Answer: $\gamma(t) = z_0 + re^{it} = -2 - i + 3e^{-it}$

P1 For what values of z is the sequence $\{z^n\}_{n=1}^{\infty}$ bounded? For which values of z does the sequence converge to 0?

Answer: Let $r = |z| \in \mathbb{R}$, then as $n \to \infty$, we have $r \le 1 \implies r^n \le 1$ and $r > 1 \implies r^n \to \infty$. Therefore $\{z^n\}_{n=1}^{\infty}$ is bounded for $|z| \le 1$ and unbounded otherwise. Similarly, since $r = |z| \to 0$ when r < 1, $\{z^n\} \to 0$ when |z| < 1.

P2 Let $f(z) = |z|^2$ for all $z \in \mathbb{C}$.

(a) Use the definition of the complex derievative, show that f is not differentiable at any **nonzero** point $z_0 = x_0 + iy_0$.

Answer: $\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = \lim_{h\to 0} \frac{|z_0+h|^2+|z_0|^2}{h} = \lim_{h\to 0} \frac{(z_0+h)\overline{(z_0+h)}-z_0\overline{z_0}}{h}$, which evaluates to 0 only if z=0 and has different partial derievatives otherwise.

(b) Use the definition of the complex derievative, show that f'(0) exists.

Answer: $f'(z_0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|^2}{h} = \lim_{h \to 0} \frac{h\bar{h}}{h} = \lim_{h \to 0} \bar{h} = 0.$

(c) If f analytic at $z_0 = 0$?

Answer: No because f is not differentiable on any open set containing $z_0 = 0$.

2

P3 Show that $f(z) = \bar{z}^2$ does not satisfy the Cauchy-Riemann equations and hence is not analytic on \mathbb{C} . **Answer:** Let z = x + iy, then $f(z) = \bar{z}^2 = \overline{x - iy}^2 = x^2 - y^2 - 2ixy$. So $u = \text{Re } f = x^2 + y^2$ and

v = Im f = -2xy. Then we can test the Cauchy-Riemann equations as follows:

$$u_x = 2x, v_y = -2x \implies u_x \neq -2x$$

$$u_y = 2y, -v_x = 2y \implies u_y = -v_x$$

Therefore $f(z) = \bar{z}^2$ does not satisfy the Cauchy-Riemann equations and hence is not analytic on \mathbb{C} .

- P4 Let $f(z) = z^7 z^5$.
 - (a) Recall from lecture the reverse triangle inequality:

$$|w-z| \ge ||w| - |z||$$
 for all $w, z \in \mathbb{C}$.

Use this to show that $|f'(1-i)| \ge 56-20=36$ and hence $f'(1-i) \ne 0$.

Answer:
$$f'(z) = 7z^6 - 5z^4 \implies |f'(1-i)| = |7(1-i)^6 - 5(1-i)^4| \ge |7|1-i|^6 - 5|1-i|^4| = |7 \cdot \sqrt{2}^6 - 5 \cdot \sqrt{2}^4| = 36 \ne 0.$$

(b) Combining part (a) with the theorem from class, we see that f^{-1} exists and is analytic near f(1-i). What is $(f^{-1})'((1-i)^7-(1-i)^5)$?

Answer: Since $f'(1-i) \neq 0$, we have $(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}$. Let $w = (1-i)^7 - (1-i)^5 = z^7 - z^5$, then $f^{-1}(w) = z \implies z = 1+i$. So $(f^{-1})'(w) = \frac{1}{f'(z)} = \frac{1}{7(1-i)^6 - 5(1-i)^4} = \frac{1}{-i^7 + 7i^6 - 21i^5 + 35i^4 - 35i^3 + 21i^2 - 7i + 1025}$.

- P5 Let $f(z) = e^{z^2}$.
 - (a) Find the real and imaginary parts u and v of f so that f(z) = u(x,y) + iv(x,y). **Answer**: Let z = x + iy, then $z^2 = x^2 - y^2 + 2ixy$. So $f(z) = e^{z^2} = e^{x^2 - y^2 + 2ixy} = e^{x^2 - y^2}$. $e^{2ixy} = e^{x^2 - y^2}(\cos(2xy) + i\sin(2xy)) = e^{x^2 - y^2}\cos(2xy) + ie^{x^2 - y^2}\sin(2xy)$. Therefore we have

 $u = e^{x^2 - y^2} \cos(2xy)$ and $v = e^{x^2 - y^2} \sin(2xy)$.

(b) Show that $e^{x^2-y^2}\cos(2xy)$ is a harmonic function and find a harmonic conjugate.

Answer: Let $u = e^{x^2 - y^2} \cos(2xy) = e^{x^2} e^{-y^2} \cos(2xy)$, then we need to verify that $\Delta u = \frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0$. Differentiating twice gives us $\frac{\delta^2 u}{\delta x^2} = 2e^{x^2 - y^2}[(2x^2 - 2y^2 + 1)\cos(2xy) - 4xy\sin(2xy)]$ and $\frac{\delta^2 u}{\delta y^2} = 2e^{x^2 - y^2}[4xy\sin(2xy) - (2x^2 - 2y^2 + 1)\cos(2xy)]$. Therefore $\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0$ and u is harmonic.

We can verify that $v = e^{x^2 - y^2} \sin(2xy)$ from part (a) is the harmonic conjugate of u by verifying Cauchy-Riemann:

$$u_x = e^{x^2 - y^2} [2x\cos(2xy) - 2y\sin(2xy)] = v_y \implies u_x = v_y$$

$$u_y = e^{x^2 - y^2} [-2x\sin(2xy) - 2y\cos(2xy)] = -v_x \implies u_y = -v_x$$

Therefore $v = e^{x^2 - y^2} \sin(2xy)$ is the harmonic conjugate of u.

P6 Let $f: D \to \mathbb{C}$ be an analytic function defined on a region D such that f'(z) = f(z) for all $z \in D$. Show that $f(z) = \alpha e^z$ for some constant $\alpha \in \mathbb{C}$.

Answer: Let $g(z) = e^{-z} f(z)$, then $g'(z) = e^{-z} f'(z) - e^{-z} f(z)$. Since f'(z) = f(z), we have g'(z) = 0.

In addition, since f and e^{-z} are both analytic in D, so is g(z). Therefore $g(z) = \alpha$ for some constant α and by substitution we have $e^{-z}f(z) = \alpha \implies f(z) = \alpha e^z$.

P7 Plot the given path:

(a) $\gamma(t) = te^{-it}$ for $t \in [0, 4\pi]$.

Answer: Since e^{-it} , $t \in [0, 4\pi]$ is a doubly traced, clockwise circle, te^{-it} is a clockwise spiral with radius increasing from 0 to 4π .

(b) $\gamma(t) = t + i \sin(\pi t)$ for $t \in [0, 2]$.

Answer: We have x(t) = t and $y(t) = \sin(\pi t)$, so the graph is $y(x) = \sin(x)$ from 0 to 2π .

