Избранные главы дискретной математики. Весна 2024Γ

Решения этих задач будут обсуждаться на следующем занятии. Внятно записанные (а лучше затеханные) решения нужно присылать на почту georgmikheenkov@gmail.com , до 24:00 четверга перед следующим занятием.

Задание со 2 занятия.

- (1) Перечислите все (с точностью до изоморфизма) кольца из 4 элементов.
- (2) Докажите, что если простое число p > 2, то в группе обратимых элементов кольца $(\mathbb{Z}/p^n)^*$ есть элемент порядка $\varphi(p^n) = p^n p^{n-1}$.
- (3) Докажите, что если n > 2, то в группе обратимых элементов кольца $(\mathbb{Z}/2^n)^*$ нет элемента порядка $\varphi(2^n) = 2^{n-1}$, но есть элемент порядка 2^{n-2} .
- (4) Докажите, что если линейный оператор f в конечномерном векторном пространстве V над некоторым полем \mathbb{K} идемпотентен (т.е. $f^2 = f$ и $f \neq 0$ и $f \neq \mathrm{Id}_V$), то он является проектированием на некоторое подпространство (т.е. существует такое разложение V в прямую сумму подпространств $V = U \oplus W$, так что любой вектор $v \in V$ однозначно представляется в виде v = u + w, $u \in U$, $w \in W$, и тогда действие оператора состоит в том, что f(v) = u).
- (5) Верно ли утверждение предыдущей задачи без условия конечномерности V?