HOME WORK 1 **SOLUTIONS**

Problem 1. (10pts) Prove that if $n \in \mathbb{Z}$, then $n^2 + 3n + 4$ is even.

Solution: Proving by Direct proof we consider the two cases:

• Case 1: Assume n is even. This implies $n = 2k, k \in \mathbb{Z}$

$$\implies n^2 + 3n + 4 = 4k^2 + 6k + 4$$
$$= 2(2k^2 + 3k + 2)$$
$$= 2m, m = 2k^2 + 3k + 2 \in \mathbb{Z}$$

• Case 2: assume n is odd i.e $n = 2k + 1, k \in \mathbb{Z}$

$$\implies n^2 + 3n + 4 = 4k^2 + 10k + 8$$
$$= 2(2k^2 + 5k + 4)$$
$$= 2m, m = 2k^2 + 5k + 4 \in \mathbb{Z}$$

Problem 2. (10pts) Prove that there exists no integers a and b for which 24a+6b=

Solution: Proving by contradiction we suppose there exist integers a and b for which $24a + 6b = 1 \iff 6(4a + 1) = 1 \implies 4a + 1 = \frac{1}{6} \notin \mathbb{Z}$ which is a contradiction since $4a + 1 \in \mathbb{Z}$

Problem 3. (10pts) Prove by induction that for all $n \in \mathbb{Z}_+ = \{1, 2, \dots\}$ we have

$$\sum_{k=1}^{n} (-1)^{k} k^{2} = \frac{(-1)^{n} (n+1)n}{2}.$$

Solution:

• Base case: Verify for n = 1

LHS:
$$\sum_{k=1}^{n} (-1)^{k} k^{2} = -1$$
RHS:
$$\frac{(-1)^{n} (n+1)n}{2} = -1$$

Hence statement is true for the case n=1. • Assume the statement is true for n .i.e. $\sum_{k=1}^{n} (-1)^k k^2 = \frac{(-1)^n (n+1)n}{2}$.

• Verify if statement is true n+1.

$$\sum_{k=1}^{n+1} (-1)^k k^2 = \sum_{k=1}^n (-1)^k k^2 + (-1)^{n+1} (n+1)^2$$

$$\stackrel{I.H}{=} \frac{(-1)^n (n+1)n}{2} + (-1)^{n+1} (n+1)^2$$

$$= \frac{(-1)^n (n+1)n + 2(-1)^{n+1} (n+1)^2}{2}$$

$$= \frac{(-1)^{n+1} (n^2 + 3n + 2)}{2}$$

$$= \frac{(-1)^{n+1} (n+1)(n+2)}{2}$$

Hence statement is true for n+1. Therefore statement is true $\forall n \in \mathbb{N}$.

Problem 4. (10pts) Define a relation \sim on \mathbb{R} by $a \sim b$ if and only if $a \leq b$. Check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive, and prove it if it does. If it does not satisfy the property you are checking, give an example to show it.

Solution:

- (i) Reflexive: $a \le a \Longrightarrow a \sim a$ hence reflexive.
- (ii) Symmetry: If $a \le b$ it's not generally true that $b \le a$ e.g $1 \le 2$ but $2 \not\le 1$ hence the relation is not symmetric
- (iii) Transitive: If $a \le b$ and $b \le c \Longrightarrow a \le c$ hence transitive.