T.Y.B.Sc. Computer Science Semester V A.Y. 2025 - 2026

Project Proposal
On
Advanced Malware Analysis Tool

Name: Shezan Merajuddin Shaikh

Roll No: 43

Title: MalScan – Advanced Malware Analysis Tool

Name: Shezan Shaikh

1. Introduction

Malware threats are evolving rapidly, with attackers employing sophisticated obfuscation and evasion techniques. **MalScan** is a Python-based malware analysis tool designed to automate static and dynamic analysis of suspicious files. It aims to provide cybersecurity professionals and researchers with a lightweight yet powerful solution for dissecting malware behavior, extracting Indicators of Compromise (IOCs), and generating actionable reports.

2. Objectives

Primary Goal:

To develop an automated malware analysis system capable of:

- Performing static analysis (file hashing, header inspection, YARA rule matching).
- Conducting **dynamic analysis** (monitoring file, process, and network activity in a sandboxed environment).
- Generating **comprehensive reports** (IOCs, risk scoring, behavioral summaries).

Key Objectives:

- **1.** Achieve **85%+ detection accuracy** for common malware families (e.g., ransomware, trojans).
- 2. Implement heuristic analysis to identify zero-day threats.
- **3.** Ensure **safe execution** via isolated sandboxing.

3. Scope

• **Supported File Types:** PE (Windows), ELF (Linux), scripts (Python, PowerShell).

• Analysis Modes:

- **Static:** Structural analysis, entropy checks, string extraction.
- **Dynamic:** API call tracing, registry monitoring, network traffic capture.

• Limitations:

- No kernel-level analysis (e.g., rootkit detection).
- Limited to user-mode monitoring.

4. Methodology

1. Static Analysis Phase:

- File hashing (SHA-256, MD5).
- PE/ELF parsing (pefile, lief).
- YARA rule matching (yara-python).

2. Dynamic Analysis Phase:

- Sandboxed execution (Python subprocess + Cuckoo Sandbox integration).
- Real-time monitoring (ProcMon, psutil, scapy).

3. Reporting Phase:

o JSON/HTML report generation (pandas, Jinja2).

5. Tools & Technologies

Category	Tools/Libraries	Purpose					
Static Analysis	pefile, yara-python, lief	File structure, signature matching					
Dynamic Analysis	volatility3, Frida, scapy	Behavior monitoring, memory forensics					
Sandboxing	Cuckoo Sandbox, Docker	Safe execution environment					
Reporting	Jinja2, pandas	HTML/JSON report generation					

6. Timeline:

T.Y.B.Sc Computer Science		Year 2025-2026											
		July			August				September				
Semester V Project Gantt Chart	Time Requirement	wı	W2	W3	W4	W1	W2	W3	W4	W1	W2	W3	W4
Research & Design	Estimated												
Static Analysis	Estimated												
Dynamic Analysis	Estimated												
Coding / Implementation	Estimated												
Testing & Refinement	Estimated												
Malware Testing	Estimated												
Documentation & Demo Recording	Estimated												

7. Resources

- Hardware: Virtual machines (Windows/Linux), 16GB RAM.
- **Datasets:** Malware samples from <u>MalwareBazaar</u>.
- References:
 - o "Practical Malware Analysis" by Michael Sikorski.
 - MITRE ATT&CK Framework (attack.mitre.org).

8. Expected Outcomes:

1. Functional CLI Tool

- Static analysis (file hashes, headers, YARA rules)
- Dynamic analysis (processes, registry, network activity)
- Sandboxed execution

2. Automated Reports

- JSON/HTML outputs with:
 - IOCs (hashes, IPs, C2 domains)
 - Risk score (1-10)
 - Behavior summary

3. Documentation

- Installation guide (Windows/Linux)
- Sample malware analysis reports
- API does for customization

4. Performance Targets

• 85%+ detection rate for common malware

5. Extensible Design

- Supports adding new YARA rules
- Modular for future upgrades

0

9. References

- 1. Ligh, M. H., Adair, S., Hartstein, B., & Richard, M. (2014). *Malware Analyst's Cookbook*. Wiley.
- 2. Sikorski, M., & Honig, A. (2012). Practical Malware Analysis. No Starch Press.
- 3. Ligh, M. H., Case, A., Levy, J., & Walters, A. (2014). *The Art of Memory Forensics*. Wiley.
- 4. Microsoft Corporation. (2021). PE Format Specification. Microsoft Docs.
- 5. MITRE Corporation. (2023). MITRE ATT&CK Framework. Technical Report.
- 6. National Institute of Standards and Technology. (2013). *Guide to Malware Incident Prevention and Handling* (NIST SP 800-83 Rev. 1).
- 7. YARA Project. (2022). YARA: The Pattern Matching Swiss Knife for Malware Researchers. Documentation.
- 8. Cuckoo Foundation. (2021). *Cuckoo Sandbox: Open-Source Automated Malware Analysis*. Technical Whitepaper.