

the art of data pre-processing

improving the performance of deep learning models

absolute necessity.

sometimes data preprocessing is necessary before moving on with building our machine learning model.

good-to-have.

and sometimes data preprocessing is not necessary but it's good to have because it boosts performance.

01

inside the model

preprocessing is done inside a pipeline to reduce the **training - serving skew**.

02

outside the model

preprocessing is done outside a pipeline for **better understanding** of the data.

keras preprocessing layers api

Keras preprocessing layers are composable and customizable building blocks that cover all common steps of the data preprocessing workflow.

keras.layers.TextVectorization keras.layers.CategoryEncoding keras.layers.Rescaling etc...

practical example #1

Structured data

Graphical Data

keras.layers.Normalization keras.layers.StringLookup

• • •

General purpose
import numpy as np
import pandas as pd
from sklearn.model_selection import
train_test_split

For data visualization
import seaborn as sns
import matplotlib.pyplot as plt

from keras.layers import Dense

For building neural network using Ke import tensorflow as tf from tensorflow import keras from keras import Sequential

df = pd.read_csv("/content/Social_Network_Ads.csv")
df

_	User ID	Gender	Age	EstimatedSalary	Purchased				
0	15624510	Male	19	19000	0				
1	15810944	Male	35	20000	0				
2	15668575	Female	26	43000	0				
3	15603246	Female	27	57000	0				
4	15804002	Male	19	76000	0				
395	15691863	Female	46	41000	1				
396	15706071	Male	51	23000	1				
397	15654296	Female	50	20000	1				
398	15755018	Male	36	33000	0				
399	15594041	Female	49	36000	1				
400 rows × 5 columns									

	Age	EstimatedSalary	Purchased
0	19	19000	0
1	35	20000	0
2	26	43000	0
3	27	57000	0
4	19	76000	0

395	46	41000	1
396	51	23000	1
397	50	20000	1
398	36	33000	0
399	49	36000	1
400 rc	ws × 3	3 columns	

seems quite normal?


```
X = data.iloc[:, 0:2]
y = data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=42)
```


							Gender	Age	EstimatedSalary	Purchas
	User ID	Gender	Age	EstimatedSalary	Purchased	0	Male	19	19000	
0	15624510	Male	19	19000	0	1	Male	35	20000	
1	15810944	Male	35	20000	0	2	Female	26	43000	
2	15668575	Female	26	43000	0	1 200				
3	15603246	Female	27	57000	0	3	Female	27	57000	
4	15804002	Male	19	76000	0	4	Male	19	76000	
395	15691863	Female	46	41000	1	39	5 Female	46	41000	
396	15706071	Male	51	23000	1	39	6 Male	51	23000	
397	15654296	Female	50	20000	1	5361656				
398	15755018	Male	36	33000	0	39	7 Female	50	20000	
399	15594041	Female	49	36000	1	39	B Male	36	33000	
00 ro	ws × 5 colur	nns				39	9 Female	49	36000	
400 rows × 4 columns										

		Age	EstimatedSalary	Purchased	gender_male	gender_female
from keras.layers import StringLookup	0	19	19000	0	1.0	0.0
	1	35	20000	0	1.0	0.0
<pre>layer = StringLookup(vocabulary=['Male',</pre>	2	26	43000	0	0.0	1.0
<pre>'Female'], output_mode='one_hot')</pre>	3	27	57000	0	0.0	1.0
<pre>gender_ohe = layer(data2['Gender']).numpy()</pre>	4	19	76000	0	1.0	0.0
Senace_cone case_(acces_[conec_ 1/onempy(/	***					
<pre>gender_df = pd.DataFrame({'gender_male':</pre>	395	46	41000	1	0.0	1.0
<pre>gender_ohe[:,1], 'gender_female':</pre>	396	51	23000	1	1.0	0.0
<pre>gender_ohe[:,2]})</pre>	397	50	20000	1	0.0	1.0
<pre>data2.drop(['Gender'], axis=1, inplace=True)</pre>	398	36	33000	0	1.0	0.0
<pre>data2 = pd.concat([data2, gender_df],</pre>	399	49	36000	1	0.0	1.0
axis=1)	400 ro	ws × 5	5 columns			
data2						

What is **normalization**?

original data

scaled data

min max scaling:
$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

```
X = data2.drop('Purchased', axis=1)
y = data2['Purchased']

X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=.2, random_state=42)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```

```
# If done in Keras
adapt_data = np.array([1., 2., 3., 4., 5.],
dtype='float32')

input_data = np.array([1., 2., 3.], dtype='float32')

layer = tf.keras.layers.Normalization(axis=None)
layer.adapt(adapt_data)
layer(input_data)
# <tf.Tensor: shape=(3,), dtype=float32, numpy=
# array([-1.4142135, -0.70710677, 0.], dtype=float32)</pre>
```



```
• • •
model2 = Sequential()
                                                                 0.950
model2.add(Dense(128,activation='relu',input_dim=4))
                                                                 0.925
model2.add(Dense(1,activation='sigmoid'))
                                                                 0.900
model2.compile(optimizer='adam',loss='binary_crossentropy',
                                                                 0.875
metrics=['accuracy'])
                                                                 0.850
history2 =
model2.fit(X_train_scaled,y_train,validation_data=
                                                                 0.825
(X_test_scaled,y_test),epochs=100)
                                                                 0.800
• • •
                                                                 0.775
plt.plot(history2.history['val_accuracy'])
                                                                                  20
                                                                                                       60
                                                                                                                 80
                                                                                             40
                                                                                                                           100
```


practical example #2

Structured data

Graphical Data

keras.layers.Rescaling

keras.layers.BatchNormalization

keras.preprocessing.image.lmageDataGenerator

Image classification

Dogs - 1000 Samples

Cats - 1000 Samples


```
model = Sequential()
                                                                   tf.keras.layers.Rescaling(scale, offset=0.0, **kwargs)
model.add(Rescaling(scale = 1./255, input_shape=(256, 256, 3)))
model.add(Conv2D(32, kernel_size=(3, 3), padding='valid',
activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=2,
padding='valid'))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(1, activation='sigmoid'))
```


overfitting?

but how do i prevent overfitting?

Batch Normalization

(1)
$$\mu = \frac{1}{n} \sum_{i} Z^{(i)}$$
 (2) $\sigma^2 = \frac{1}{n} \sum_{i} (Z^{(i)} - \mu)^2$

(1)
$$\mu = \frac{1}{n} \sum_{i} Z^{(i)}$$
 (2) $\sigma^2 = \frac{1}{n} \sum_{i} (Z^{(i)} - \mu)^2$

(3)
$$Z_{norm}^{(i)} = \frac{Z^{(i)} - \mu}{\sqrt{\sigma^2 - \epsilon}}$$
 (4) $\tilde{Z} = \gamma * Z_{norm}^{(i)} + \beta$

keras.layers.BatchNormalization

Batch normalization

Ensure the output statistics of a layer are fixed.


```
model2.add(Conv2D(32, kernel_size=(3, 3),
padding='valid', activation='relu'))
model2.add(BatchNormalization()) # Normalization
model2.add(MaxPooling2D(pool_size=(2, 2), strides=2,
padding='valid'))
model2.add(Conv2D(64, kernel_size=(3, 3),
padding='valid', activation='relu'))
model2.add(BatchNormalization()) # Normalization
model2.add(MaxPooling2D(pool_size=(2, 2), strides=2,
padding='valid'))
model2.add(Conv2D(128, kernel_size=(3, 3),
padding='valid', activation='relu'))
model2.add(BatchNormalization()) # Normalization
model2.add(MaxPooling2D(pool_size=(2, 2), strides=2,
padding='valid'))
```


data augmentation

keras.preprocessing.image.lmageDataGenerator

keras.preprocessing.image.lmageDataGenerator

now we have 4000 + 4000 samples

```
• • •
datagen = ImageDataGenerator(
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    fill_mode='nearest'
```


that's it for today!

- improve the model i showed
- continue learning how data
 preprocessing affects deep learning
 model
- explore the keras api
- enjoy rest of the sessions

thank you!

hoping to see y'all again