

Mini-projet NSIUM

Antoine MAROT (antoine.marot@ensemblescolaire-niort.com)

David SALLÉ (david.salle@ensemblescolaire-niort.com)

Julien SIMONNEAU (julien.simonneau@ensemblescolaire-niort.com)

Ce document est mis à disposition selon les termes de la licence Creative Commons BY-NC-SA 4.0

Version du document v0.3

Date 09/05/2023

Table des matières

L - Introduction	2
2 - Cahier des charges	3
2.1 - Contexte	4
2.2 - Synoptique	4
2.3 - Expression du besoin	5
2.4 - Contraintes	
2.5 - IHM	6
2.5.1 - IHM pilotage/visualisation	7
2.5.2 - IHM exploitation	7
2.6 - Ressources	9
2.6.1 - Matérielles	9
2.6.2 - Logicielles	10

1 - Introduction

Ce document présente un mini-projet à réaliser en section terminale NSI. L'objectif est de réinvestir différentes notions abordées depuis la classe de première :

- langage Python
- programmation objet, évènementielle, multitâches
- base de données et requêtes SQL
- page web dynamique avec Flask
- client/serveur en réseau
- sécurisation des échanges

Ce mini-projet sera réalisé en équipe de 2 à 3 élèves. Chaque membre travaillera sur une problématique particulière et collaborera avec les autres membres de l'équipe.

2 - Cahier des charges

2.1 - Contexte

Une équipe de chercheurs de l'université de Balnave vient de découvrir un nouvel élément : le **nsium** . Dans la classification de Mendeleïev, il s'agit de l'élément 119, un métalloïde aux propriétés étonnantes puisqu'il permettrait de tripler les performances des panneaux photovoltaïques actuels !

Ce métalloïde ne se trouve sur terre que dans les régions naturellement radioactives et donc dangereuses pour l'exploration. Plus précisément, on le trouve dans le sous-sol de grottes où une fumée épaisse empêche l'utilisation de caméra traditionnelle.

L'idée serait donc de piloter à distance un **robot d'exploration** équipé d'un capteur de nsium pour cartographier une zone donnée. Il sera équipé d'un capteur ultra-son en remplacement d'une caméra pour visualiser son environnement comme ce que peuvent faire les chauves souris (les ultra-sons sont utilisables dans les épaisses fumées contrairement aux ondes lumineuses)

2.2 - Synoptique

Ci-dessous le synoptique du système :

2.3 - Expression du besoin

Ci-dessous le diagramme SysML des exigences. Chaque bloc exprime une fonctionnalité à réaliser.

2.4 - Contraintes

Afin de ne pas surcharger le diagramme des exigences, les contraintes et précisions liées à chaque exigence sont rappelées dans le tableau ci-dessous.

Exigence	Contraintes/précisions
1.1 Pilotage	Le pilotage du robot se fera via le clavier d'un ordinateur. On retrouvera 6 ordres de pilotage associés à 6 touches
1.2 Capteurs	Le robot renverra au système différentes informations • le taux de nsium mesuré dans le sol (en pourcentage) • la distance robot/obstacle (en mm) • la position angulaire du robot (en degrés) • la position angulaire des 2 roues (en degrés)
1.3 Transmission	La transmission des ordres de pilotage et des informations se fera via une liaison réseau wifi. Idéalement cette liaison sera cryptée pour éviter toute fuite d'informations Les données devront arriver toutes les secondes environ
1.4 Stockage	Le stockage des informations en provenance du robot se fera dans une base de données relationnelle afin de faciliter son exploitation ultérieure
1.5 Visualisation	Le pilote du robot pourra visualiser en temps réel (délai<1s) sur une IHM la zone d'exploration avec : • la position du robot (à calculer à partir des données des capteurs) • les obstacles • les points d'échantillons des taux de nsium Voir le détail de l'IHM attendue au 2.5.1
1.6 Exploitation	Le scientifique pourra à distance depuis une interface web dédiée effectuer différentes actions : • rechercher une campagne d'exploration particulière en fonction d'un nom ou d'un date • visualiser la carte d'exploration avec les obstacles et les zones nsium • afficher les valeurs brutes ainsi que les minimum, maximum, moyenne des taux de nsium • exporter les données brutes au format CSV Voir le détail de l'IHM attendue au 2.5.2

2.5 - IHM

2.5.1 - IHM pilotage/visualisation

L'IHM de pilotage/visualisation contiendra a minima les éléments suivants. Libre à vous de la modifier/améliorer.

Point de mesure Nsium : plus le taux est important, plus la couleur est foncée

Résultat possible en dessinant chaque rayon se terminant par un point sombre pour matérialiser les obstacles

2.5.2 - IHM exploitation

Page de recherche d'une campagne

Page d'exploitation graphique d'une campagne

Les points verts matérialisent ici les obstacles

Page d'exploitation des données brutes d'une campagne

Campagne Date					Grotte des marcassins
					15/03/2021
Taux de nsi	ium				-
Date	Taux nsi	ium La	titude	Longitude	
09h32m45	10	32	2	21	
09h32m46	12	33	3	20	
09h32m47	12	33	3	20	
Obstacles		-			
Date	Latitude Longitude		tude		
09h32m45	47	55			
09h32m46	48	56			
09h32m47	49 57				

2.6 - Ressources

2.6.1 - Matérielles

Le **robot** utilisé sera un EV3 de chez LEGO équipé d'un système d'exploitation Linux Debian 9 (strech) + micropython et d'un dongle wifi afin de pouvoir le piloter à distance et récupérer les mesures effectuées.

Le robot portera un **capteur** de nsium . Ce capteur envoie un signal spécial dans le sol. Si celui-ci revient à 100 % c'est qu'il n'y a pas de nsium en dessous. Si le signal ne revient que faiblement par exemple à 10 %, c'est que du nsium se trouve en dessous et qu'il a absorbé une grande partie de l'énergie du signal d'origine. Son taux serait alors de 90%.

Le robot utilisera également un **capteur ultrason**. Ce dernier permettra de mesurer la distance entre d'éventuels obstacles et le robot. Le pilote à l'instar d'une chauve souris pourra ainsi éviter les obstacles présents sur la zone de recherche.

Pour le positionnement, plusieurs capteurs pourront être utilisés dont le capteur **gyroscopique** et le capteur **tachymétrique** intégré aux moteurs.

Plus d'informations ici : https://pybricks.github.io/ev3-micropython/

Informations WiFi:

SSID : LEGOBOXclef : p4ssw0rd!

2.6.2 - Logicielles

Quelques pistes concernant les ressources logicielles :

Ressource	Description			
Langages	Python, HTML/CSS, SQL			
IDE	Visual Studio Code + lego-education.ev3-micropython			
Base de données	SQLite			
Serveur web	Flask, SVG			
IHM pilotage	pygame, tkinter			
Réseau	ssh, netcat			
Collaboration	Discord, Office365, Google docs, github			