

Выявление спам сайтов на основе анализа контента страниц

План лекции

- Актуальность проблемы
- Почему спам существует, в чем основная проблема
- Методы воздействия спама на поисковик и способы противодействия
- Детекция спама на основе анализа контента страниц
- Методика выявление спам-сайтов
- Антифрод (роботы, мошенничество)
- Спам в других приложениях

Актуальность проблемы

- Поисковики
- Соц.сети VK, ОК (группы, видео)
 - Добавление в друзья
 - Сообщения
 - Спам в постах групп
 - Спам в комментах
- Месенджеры (viber, whatsapp, instagram)
- Любые сайты где пользователи могут что-то писать (магазины, кинопоиск, форумы и тд)

Объемы рекламного рынка

Сегменты	Январь-Сентябрь
	2015 года,
	млрд.руб.
Телевидение	90,30
Радио	9,40
Печатные СМИ	16,10
Наружная реклама	24,10
Интернет	64,70
Прочие	2,60
ИТОГО	208,50

Реклама в интернете

Сегменты	Яі	нварь-Сентябрь 2015 года, млрд.руб.	
Медийная		12,00	
реклама			
Контекстная		F2 70	
реклама		52,70	

Переходы с различных источников

Источник	Переходы <i>,</i> мл.
Соц. сети	212
Поисковики	2562
Каталоги	4
Ссылки	18

Eye-Tracking Study: Как пользователи просматривают результаты поиска

53 – участника

43 – поисковых задачи

85% запросов получают клики в 1 результат

Клики получают, в основном, первые 3 – 5 позиций

2005 201

Source: The Evolution of Google Sourch Results Pages, Mediative, 2014

Мотивация

• Попадание в топ выдачи имеет под собой чисто экономическое обоснование

• Больше пользователей - больше выгода

А в чем проблема?

Телевизоры, домашние кинотеатры, фотоаппараты, видеокамеры, автомагнитолы, ноутбуки. Товары для отдыха и спорта

Что можно купить в Ашане?

servstory.ru/index.php/roznitsa1...

Home Розница Супермаркеты Что можно **купить в Ашане?** ... В электроннм отделе есть часы-радио, фотоаппараты, плейеры, **телевизоры**.

А в чем проблема?

Генерация большого количества мусорного контента

Что мы хотим получить?

• Уменьшить вероятность попадания спама в индекс

• Уменьшение количества поискового спама в выдаче поиска

Куда бьет спам?

Куда бьет спам?

Куда бьет спам?

- Индекс его объем ограничен и спам занимает место полезных документов
- Обработка запросов накручивают нужные саджесты
- Ранжирование пытаются пробиться в топ выдачи и мешают ранжированию
- На самом деле бьет и по всем остальным частям:
 - Crawler забивает очередь обкачки (падает актуальность)
 - Тратит ресурсы классификаторов (порно и тд)
 - Фронтенд только не задеват явно

Как воздействовать на систему ранжирования?

Основные компоненты ранжирования

- 1. Поведенческое ранжирование
- 2. Ссылочное ранжирование
- 3. Текстовое ранжирование

Поведенческое ранжирование CTR

Click Through Rate

$$CTR_q = \frac{C_q}{V_q}$$

 \mathcal{C}_q - количество кликов для запроса q

 V_q - количество показов для запроса q

Поведенческий спам CTR

$$CTR_{qf} = \frac{C_{qu} + C_{qf}}{V_{qu} + V_{qf}} = \frac{C_{qu}}{V_{qu}} \left(\frac{1 + \frac{C_{qf}}{c_{qu}}}{1 + \frac{C_{qf}}{c_{qu}}} \right)$$

f - спам клики и показы

u – чистые клики и показы

$$f/_u \propto {^C_{qf}}/_{C_{qu}} \propto {^V_{qf}}/_{V_{qu}} \sim$$
 доля оригинальной статистики

Поведенческий спам CTR

Статистика запросов за месяц: купить телевизор ~ 61 845, купить холодильник ~ 50 074

На частотных запросах клик спам может стать экономически невыгодным, требуется сгенерировать статистику равноценную оригинальной.

На какие запросы можно повлиять

- •Средне и низкочастотные, особенно если хорошего релевантного сайта нет
 - Как вставить наушники в iphone7 (и тут сайт с гаджетами, которые сверлят дырку)
- •Трендовые заранее прокачанные:
 - Игра престолов 9 сезон
 - Физрук 5 сезон
 - Если заранее сделать спам под будущие тренды можно попасть временно, а если сайт не совсем гавно то и длительно в топ выдачи

Как влияют на поведение

- •Владельцы сайтов накликивают свой сайт и просят друзей
- •Боты кликающие, боты просто сканирующие выдачу
- •Люди выполняющие задания за деньги («заработок в интернете»)

Поведенческое ранжирование vs спам Learning to Rank

Поведение как признаки модели.

 $X = \{x_1, ..., c_1, ... c_m, ..., x_n\}$; - полное пространство признаков N – размер вектора, M – количество поведенческих признаков $F(X; \{\alpha, \beta\}) = \sum_{i=0}^K \alpha_i \cdot h_i(X, \beta_i)$; - модель $P = \{\alpha, \beta\}$ - параметры модели > $\arg\min F(P)$ | $\arg\max F(P)$ тогда > $c_i = c_{iu} + c_{if}$

 c_u - клики реальных пользователей

 \mathbf{c}_f - спам клики, можно считать шумом

Выбрать алгоритм устойчивый к шуму.

Ссылочное ранжирование

- •PageRank (по запросу «pagerank алгоритм» куча бредовых статей SEO)
- TrustRank
- PersonalizedPageRank
- •Тексты ссылок

Ссылочное ранжирование

Модель веб графа:

$$G = (V, E)$$

V – вершины графа – страницы

Е – ребра графа – ссылки между страницами.

 w_{ij} - вес ребра между страницами p_i и p_j ; $(i,j) \in E$

$$w_{ij} = \frac{1}{|Out(p_i)|}$$

 $|\mathit{Out}(p_i)|$ - количество исходящих ссылок со страницы p_i Матрица переходов

$$M = \begin{vmatrix} w_{01} & w_{01} & w_{0j} \\ w_{11} & \cdots & w_{1j} \\ w_{i0} & w_{i1} & w_{ij} \end{vmatrix} \implies M = \begin{cases} w_{ij}, & if(i,j) \in E \\ 0 \end{cases}$$

Идея PageRank

Идея заключается в том, чтобы посчитать вероятность того, что пользователь окажется на данной странице, если будет случайно блуждать по интернету (когда это придумали интернет был маленький и это было даже реалистично).

Очевидно, что эта вероятность зависит от кол-ва ссылок, входящих на страницу А,

а вероятность что по ссылкам перейдут с В на А

обратно пропорциональна кол-ву исходящих с В ссылок

Let N be the total number of pages. We create an $N \times N$ matrix **A** by defining the (i, j)-entry as

$$a_{ij} = \begin{cases} \frac{1}{L(j)} & \text{if there is a link from } j \text{ to } i, \\ 0 & \text{otherwise.} \end{cases}$$

In Example 1, the matrix **A** is the 4×4 matrix

Соответственно вероятность оказаться на каждой странице в начальный момент времени это вектор р состоящий из компонент 1/кол-во страниц

$$p_2 = Mp_1$$

$$p_3 = Mp_2 = MMp_1$$

$$p_n = \prod_{n=1}^{\infty} Mp_0$$

$$\begin{bmatrix} 0 & 0 & 1/2 & 1/2 \\ 1/3 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/2 \\ 1/3 & 1 & 1/2 & 0 \end{bmatrix}$$

Ссылочное ранжирование PageRank

Вес страницы подбирается итерационно:

$$\vec{\pi} = (1 - c) M^T \vec{\pi} - c \vec{r}$$

c – дампинг фактор \vec{r} - статический вектор.

 $\vec{r} = \left(\frac{1}{|V|}, ..., \frac{1}{|V|}\right)$ - для не персонализированного PageRank. Гарантирует существование стационарного распределения $\vec{\pi}$ соответствующей цепи Маркова, описанной не стохастической матрицей М.

Ссылочный спам

М – стохастическая матрица $\mathbf{p_{ij}}>0$; $\sum_{j=1}^V p_{ij}=1$; $\forall i$ для цепи Маркова $\vec{\pi}$ - стационарное распределение матрицы М

Для влияния на стационарное распределение расширим матрицу М

Увеличиваем ранк целевой страницы через ферму ссылок

Ссылочный антиспам Распространение меток

Ключевая идея:

$$V = \{p_1, \dots, p_v\}$$
 – множество страниц $\widetilde{V} \subseteq V$ - множество страниц с метками.

Цель: рассчитать значение меток для остальных сайтов через правила распространения меток.

Ссылочный антиспам Распространение меток

- TrustRank \tilde{V} доверенные страницы + персонализированный PR
 - Для определения доверия используем обратный PR
 - Размечаем К лучших страниц получаем $ilde{V}$
 - Делаем персонализированный вектор $ec{r}$
 - Считаем PR

Ссылочный антиспам Признаки из ссылок

Степень ссылочности (входные, выходные ссылки) PageRank (PR, In-degree/PR, Out-degree/PR, STD(PR)) TrustRank (TrustRank, TrustRank/PR, TrustRank/In-degree)

```
X = (x_1, ..., x_n); - полное пространство признаков F(X; \{\alpha, \beta\}) = \sum_{i=0}^K \alpha_i \cdot h_i(X, \beta_i); - классификатор P = \{\alpha, \beta\} - параметры модели > \arg\min F(P)
```


Ссылочный антиспам Подкрепление меток

Маркируем спам страницы используя классификатор

Кластеризуем страницы, используя граф ссылок G = (V, E)

Страница получает метку спам если большинство страниц в кластере спам и наоборот

Ссылочный антиспам Признаки

- PageRunk, TrustRank, PersonalizedPageRank
- •Признаки по кол-ву исходящих/входящих ссылок
- •Принадлежность компоненте связности и признаки этой компоненты
- •Lapel propagnation с точно спамовых страниц по ссылкам
- •P.S. Надо понимать что ссылочные алгоритмы могут не работать на небольшой подвыборке

Текстовое ранжирование.

Модели для текстового ранжирования:

- Модель векторного пространства
- BM25
- Статистическая языковая модель

Текстовое ранжирование. Модель векторного пространства

 $D_i = \{w_{i1}, w_{i2}, w_{i3}, ..., w_{it}\}$ - вектор документа t - размерность вектора. |V| - размерность словаря w_{ij} - вес j-го терма в документе i

 $s(Q,D_i)$ - Мера сходства документа и запроса

$$w_{ij} = \underbrace{tf_{ij \in Q}(t_j, d_i) \cdot idf_j(t_j, D)}$$

 $tf_{ij\in Q}$ - частота ј слова в документе і idf_j - инвертированная частота слова ј

Текстовое ранжирование ВМ25

Вес слова ј в документе і

в документе І
$$w_{ij} = \frac{(k_1+1)\cdot tf_{ij}}{k_1+((1-b)+b\frac{l_i}{avg(l_i)})} \log \frac{|D|-df_j+0.5}{df_j+0.5}$$

Вес документа d для запроса q:

$$W(q,d) = \sum_{j} w_{j}(d) \cdot q_{j}$$

 k_1 и b — параметры l_i - длина документа tf_{ij} - частота слова в документе df_j - частота слова в коллекции |D| - количество документов

 $\propto idf_j(t_j, D)$

Текстовое ранжирование. Вероятностная языковая модель

Модель – Бернулли. Слово w есть или нет в документе d $p\left(q=\left(x_{1},x_{2},...,x_{|V|}\right)\middle|d\right)=\prod_{i=1;x_{i}=1}^{|V|}p\left(w_{i}=1\middle|d\right)\prod_{i=1;x_{i}=0}^{|V|}p(w_{i}=0\middle|d)$

Мульти-номинальная модель. Моделирование частоты слов

$$p(q=q_1\dots q_m\mid d)=\prod_{i=1}^{|V|}p(w_i\mid d)^{c(w_i,q)};\sum_{i=1}^{|V|}p(w_i\mid d)=1$$
 $q=q_1,\dots,q_m$ - слова запроса, $c(w_i,q)$ - частота слова і в запросе q

Ранжирование на основе правдоподобия запроса

$$\log p(q|d) = \sum_{i=1}^{|V|} c(w_i,q) \cdot p(w_i \mid d)$$
 - $p(w|d) = \frac{c(w,d)+1}{|d|+|V|}$ - вероятность вхождения слова в документ

C (w, d) - частота слова в документе $\propto t f_{ij}$

Текстовое ранжирование Что общего?

$$tfidf(q,p)=tf_{ij}ig(t_j,d_iig)\cdot idf_jig(t_j,Dig)$$
 $idf_j=\lograc{|D|}{n_d}$ - инверсная частота терма

$$\widehat{tf_{ij}ig(t_j,d_iig)} = rac{f_j}{\sum_{l=1}^L f_l}$$
 - частота терма ј в документе і

Увеличивая частоту слова в документе, увеличиваем вероятность его нахождения

Текстовое ранжирование ВМ25 зоны

Зоны – различные части документа, по которым можно считать ранк ВМ25.

Пусть документ разбит на К зон тогда суммарный ранк документа:

$$W(q, d, v) = \sum_{i=1}^{K} v_i W_i(q, d)$$

v – вес зоны документа

Увеличение частоты слова в различных зонах документа, по разному влияет на его вероятность нахождения.

Контекстный антиспам классификатор

 $X = (x_1, ..., x_n)$; - полное пространство признаков

$$F(X; \{\alpha, \beta\}) = \sum_{i=0}^{K} \alpha_i \cdot h_i(X, \beta_i);$$
 - классификатор

$$P = \{\alpha, \beta\}$$
 - параметры модели > $\arg\min F(P)$

Контекстный антиспам прочее

Выявление спама через нахождение дубликатов ("Detecting phrase-level duplication on the world wide web." Dennis Fetterly)

Выявление спама через сравнение языковых моделей ("Blocking Blog Spam with Language Model Disagreement" Gilad Mishne)

$$KL(\Theta_1||\Theta_2) = \sum_{w} p(w|\Theta_1) \log \frac{p(w|\Theta_1)}{p(w|\Theta_2)}$$

• • •

Методы воздействия на поисковый механизм:

- Перенасыщение заголовков ключевыми словами.
- Перенасыщение текстов ключевыми словами.
- Оптимизация текстов под одно ключевое слово.
- Оптимизация текстов под большое количество ключевых слов.
- Оптимизация анкоров ссылок под ключевые слова.
- Активный обмен ссылками.
- Фермы ссылок.
- ...

Классификация воздействий на поисковый механизм

- Воздействие при помощи оптимизации контента страницы.
- Воздействие при помощи оптимизации ссылок.
- Воздействие на поведенческие факторы.

. . .

Вопрос:

Разработка в каком направлении даст лучшие результаты?

В 2006 году в рамках материалов конференции IW3C2 была опубликована статья: «Выявление спам-страниц через анализ контента» («Detecting Spam Web Pages through Content Analysis". A. Ntoulas и коллектив авторов).

В статье показано, что 86% спама можно вычислить на основе анализа контента страниц.

Разработка в направлении детекции контекстного спама даст лучший профит.

Нам интересны более простые методы выявления искусственности страниц.

Достаточно просто Поддерживать в актуальном классификации спама с

состоянии.

высокой точностью.

Рассмотрим проблему обнаружения спам страниц как задачу бинарной классификации.

Требуется:

- 1. Определить пространство признаков.
- 2. Определиться с методом классификации.

Качество классификации напрямую зависит от качества признаков, описывающих пространство.

Линейно разделимые признаки

Линейно неразделимые признаки.

Выделение небольшого количества хорошо разделимых признаков позволит нам решить задачу классификации с большей эффективностью.

Распределение количества слов на странице в спамовых и неспамовых множествах

Распределение количества слов в заголовке страниц в спамовых и неспамовых множествах.

Распределение средней длины слова в спамовых и неспамовых множествах

Количество слов в анкорах ссылок для спамовых и неспамовых множеств

Степень сжатия документов в спамовых и неспамовых множествах

Сравнивая приведенные данные с ранними исследованиями, приходим к выводу, что спам подвергается мутациям, в сторону обычных страниц.

Хотя, в распределениях все еще присутствует явная «искусственность».

Распределение усредненного веса ключевых слов для спам- и обычных страниц

Распределение отношения веса значимых ключевых слов к общему количеству слов в спамовых и неспамовых множествах

Усредненное значение веса значимых ключевых слов.

Усредненное значение веса значимых ключевых слов документа:

 $w^{imp} = \frac{\sum_{i=1}^{K}}{w_{i}}$

- w_i вес ключевого слова
- N КОЛИЧЕСТВО КЛЮЧЕВЫХ СЛОВ
- к количество значимых слов

Мы привели несколько характеристических языковых признаков и увидели, что они дают лучшее разделение, чем признаки, полученные на основе параметров страницы.

В эксперименте мы рассчитали 10 дополнительных признаков, основанных на статистике распределения слов в текстах. Теперь, имея хороший набор факторов, перейдем к решению поставленной задачи, а именно — попробуем создать классификатор на основе описанных признаков.

Карта классов (SOM)

Классификатор — многослойный персептрон:

Входной слой — 80 нейронов,

Скрытый слой — 96 нейронов

Выходной слой — 2 нейрона спам=1 и не-спам=0

Функция активации — сигмоид

Для тренировки нашего классификатора мы использовали страницы, отобранные асессорами.

Middle Layer

Обучающий вектор - 80 признаков.

Размер обучающего множества — 20000 страниц. Размер

тестового множества — 50000 страниц.

Точность - 0,97

Полнота - 0,94

F-мера - 0,96

Результат показывает, что использование признаков, связанных со статистикой распределения слов и грамматических конструкций в текстах, привело к значительному улучшению качества классификации спам-страниц, даже несмотря на использование слабого алгоритма классификации.

Что делать дальше.

Можно ли использовать информацию, полученную из контентента страниц, для классификации сайтов?

Спам или нет?

100% = спам

Не спам сайт

0% = не спам

Спам или нет?

Причины:

- Хороший сайт со спам страницами:
- Ошибка классификатора.
- Взломанный сайт.
- Переоптимизированный контент.
- Спам сайт с полезными страницами:
- Ошибка классификатора.
- Разбавление спама не спам страницами.

Характеристики сайта:

- 1. Доля спам страниц.
- 2. Расположение спам страниц.
- 3. Вероятность прихода/ухода на спам страницу с сайта.
- 4. На какие страницы ведут входящие/исходящие ссылки.
- 5. Вероятность участия в спам-ферме.

Доля спам страниц

Участие в спам ферме

1.Вычисляем вероятность того, что сайт раскручивается спамсайтами.

Вероятность участия в спам-ферме

На отобранных признаках строим классификатор

Всего получили 20 признаков

Используем алгоритм Expectation Maximization для выделения из множества сайтов двух центров, соответствующих классам: спам и не спам.

Используем полученные центры как исходные данные для классификации при помощи алгоритма *k-nearest neighbor*.

Результаты:

Уменьшение количества спама в выдаче в среднем на 20%.

Точность анализатора - 90%.

Доля спам сайтов - 17%.

Другие применения антиспама и антифрода

- Покупные комментарии, как положительные так и отрицательные
- Рекламные сообщения и добавления в друзья
- Фейковые объявления (аренда, продажа и тд)
- Несоответствующие тематике объявления (интим услуги на авито и тд)
- Кредиты по поддельным пасспортам (вклеивают фото распознавание лиц)
- Спорные транзакции в банках (приложения списывающие деньги, мошенники)
- Накликивание рекламы, скликивание конкурентов
- Фейковые пользователи и посещаемость (через iframe сайты покупают фейковых пользователей ловили интернет кинотеатры)

Как бороться с накрутками поведения в интернете

Основным инструментом в первую очередь являются различные статистические метрики:

- •распределение по ір кликов/запросов/пользователей
- •распределение по времени (ботов пишут люди и запускают обкачку в одно и тоже время)
- •Анализ энтропии (разноообразния) действий пользователя
- •Время сессий

Анализ собственной дистрибуции

Retention и тд

Тут как раз слишком хорошие показатели должны вызывать сомнения Если высокий показатель установок при открытии ссылки или стабильное время установки после открытия и тд

Сервисы таски

Хитрые клиенты и хитрые водители

Банки

Обналичивание и тд

Спасибо!

Вопросы.