CPE301 – SPRING 2019

MIDTERM 1

Student Name: Shaquille Regis

Student #: 2000686590

Student Email: regis@unlv.nevada.edu

Primary Github address: https://github.com/regis-shaquille/submissions-SR

Directory: https://github.com/regis-shaquille/submissions-SR/tree/master/Midterms/

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used

- ESP8266-01 Module Chip
- ATMega328P Xplained Mini
- LM35 Temperature Sensor
- Breadboard

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
Invoid read_adc(void) {
    unsigned char i =4;
    adc_temp = 0; //initialize
    while (i--) {
        ADCSRA |= (1<<ADSC);
        while(ADCSRA & (1<<ADSC));
        adc_temp+= ADC;
        _delay_ms(50);
    }
    adc_temp = adc_temp / 4; // Average a few samples

}

/* INIT USART (RS-232) */
Invoid USART_init( unsigned int ubrr ) {
        UBRR0H = (unsigned char)(ubrr>>8);
        UBRR0L = (unsigned char)ubrr;
        UCSR0B |= (1 << TXEN0) | (1 << RXCIE0); // Enable receiver, transmitter & RX interrupt
        UCSR0C |= (1<<UCSZ01) | (1 << UCSZ00);
}</pre>
```

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

The Above COM Terminal output shows the temperature readings from the LM35 sensor.

4. FIRMWARE FOR ESP8266


```
AT+GMR
AT version:1.1.0.0(May 11 2016 18:09:56)
SDK version:1.5.4(baaeaebb)
Ai-Thinker Technology Co. Ltd.
Jun 13 2016 11:29:20
OK
```

The ESP8622 was flashed with the firmware as shown from the demonstration videos. The firmware was verified using ESPlorer.

5. THINGSPEAK ACCOUNT

6. SEND DATA TO ESP8266 WITH AT COMMANDS

To verify proper operation of the ESP8266, I sent various AT commands using ESPlorer. Shown below, I was able to set the mode of operation, search for networks and connect to my home WIFI.

```
OK
AT+CWMODE=?
+CWMODE:(1-3)
OK
AT+CWMODE=1
OK
AT+CWJAP?
No AP
OK
AT+CWLAP
+CWLAP:(4,"DVW326.EC8FF0-2.4G",-79,"34:68:95:ec:8f:f0",1,-7,0)
+CWLAP:(4,"HotBitches143",-91,"9c:1e:95:67:6f:b5",1,-9,0)
+CWLAP:(3,"ComoLaFlor",-84,"70:3a:cb:a8:2a:b8",1,16,0)
+CWLAP:(4,"D2F06A",-87,"10:0d:7f:d2:f0:6a",1,-9,0)
+CWLAP:(3,"KX-HNB700_DAA655",-39,"bc:c3:42:da:a6:55",4,-21,0)
+CWLAP:(3,"ORBI89",-80,"7e:d2:94:c0:05:f4",4,23,0)
+CWLAP:(3,"NETGEAR27",-80,"10:da:43:80:c4:1d",4,-9,0)
+CWLAP:(3,"Empire2.4",-83,"38:2c:4a:5d:49:40",6,-9,0)
+CWLAP:(3,"TheNewRegis",-39,"e4:f4:c6:12:20:a7",9,-12,0)
+CWLAP:(3,"mhome2",-89,"10:7b:44:af:27:00",10,3,0)
+CWLAP:(4,"CenturyLink9259",-88,"8c:59:73:2d:da:07",11,30,0)
OK
AT+CWJAP="TheNewRegis",
WIFI CONNECTED
WIFI GOT IP
OK
```

7. OUTPUT TO THINGSPEAK

The following shows the transmitted temperature data on thingspeak.

Channel Stats

Created: a day ago

Updated: <u>5 minutes ago</u>
Last entry: <u>5 minutes ago</u>

Entries: 51

• Add Visualizations

8. CODE

```
⊟/*
  * Midterm 1.c
  * Created: 4/6/2019 4:32:35 PM
  * Author : regis
 #define F_CPU 1600000UL
 #define BAUD 9600
 #define MYUBRR F_CPU/16/BAUD-1
 #include <avr/io.h>
 #include <util/delay.h>
 #include <stdio.h>
 #include <avr/interrupt.h>
 #include <stdlib.h>
                                        //Read ADC
 void read_adc(void);
 void adc_init(void);
                                       //initialize ADC
 void USART_init( unsigned int ubrr ); //initialize USART
 void USART_tx_string(char *data);
                                       //Print String USART
 volatile unsigned int adc temp;
 char outs[256]; //array
 volatile char received_data;
```

```
□void usart_send(unsigned char ascii) //send data to USART
     while(!(UCSR0A & (1<<UDRE0 )));</pre>
     UDR0 = ascii;
}
□unsigned char usart_receive(void) //received data
 {
     while(!(UCSR0A & (1<< RXC0)));</pre>
     return received_data;
 }
□int main(void) {
                     // Initialize the ADC (Analog / Digital Converter)
     adc_init();
     USART_init(MYUBRR); // Initialize the USART (RS232 interface)
     _delay_ms(500); // wait a bit
                         //interrupt
     sei();
     while(1){}
}
```

- 11 1 11/ 11/ 11/ 11/ 11/ 11/ 18/

```
□void adc_init(void) //initialize ADC
 {
    ADMUX = (0<<REFS1) | // Reference Selection Bits
    (1<<REFS0) | // AVcc - external cap at AREF
    (0<<ADLAR) | // ADC Left Adjust Result
     (1<<MUX1) // ADC2 (PC2 PIN25)
    (0<<MUX0);
    ADCSRA = (1 << ADEN) | // ADC ENable
    (0<<ADSC) | // ADC Start Conversion
    (0<<ADATE) | // ADC Auto Trigger Enable
    (0<<ADIF) | // ADC Interrupt Flag
    (1<<ADPS2) | // ADC Prescaler Select Bits
     (0<<ADPS1)
    (1<<ADPS0);
    // Timer/Counter1 Interrupt Mask Register
    TIMSK1 = (1 << TOIE1);
                               // enable overflow interrupt
    TCCR1B |= (1<<CS12)|(1<<CS10); // native clock
    TCNT1 = 49911;
                                 //((16MHz/1024)*1)-1 = 15624
 }
```

```
□void read_adc(void) {
       unsigned char i =4;
       adc_temp = 0; //initialize
       while (i--) {
           ADCSRA |= (1<<ADSC);
            while(ADCSRA & (1<<ADSC));</pre>
           adc temp+= ADC;
            _delay_ms(50);
       adc_temp = adc_temp / 4; // Average a few samples
 }
  // INIT USART (RS-232)
□void USART_init( unsigned int ubrr ) {
       UBRR0H = (unsigned char)(ubrr>>8);
       UBRROL = (unsigned char)ubrr;
       UCSROB |= (1 << TXENO) | (1 << RXENO)| ( 1 << RXCIEO); // Enable receiver, transmitter & RX interrupt
       UCSR0C |= (1<<UCSZ01) | (1 << UCSZ00);
 }
Pvoid USART_tx_string( char *data ) {
       while ((*data != '\0')) {
            while (!(UCSR0A & (1 <<UDRE0)));</pre>
            UDR0 = *data;
            data++;
       }
 }
□ISR(TIMER1_OVF_vect) //timer overflow interrupt to delay for 1 second
     char TEMP[256];
     unsigned char AT[] = "AT\r\n"; //AT Commands
     unsigned char CWMODE[] = "AT+CWMODE=1\r\n"; //set MODE
unsigned char CWJAP[] = "AT+CWJAP=\"SSID\",\"PASSWORD\"\r\n"; // Do not turn in with personal wifi/password
     unsigned char CIPMUX[] = "AT+CIPMUX=0\r\n";
     unsigned char CIPSTART[] = "AT+CIPSTART=\"TCP\",\"184.106.153.149\",80\r\n";
     unsigned char CIPSEND[] = "AT+CIPSEND=100\r\n";
     _delay_ms(200);
     USART_tx_string(AT); //send commands
     delay ms(5000);
     USART_tx_string(CWMODE); //set mode
     delay ms(5000);
     USART_tx_string(CWJAP); //connect to Wifi
     delay ms(15000);
     USART_tx_string(CIPMUX); //select MUX
     delay ms(10000);
     USART_tx_string(CIPSTART);//connect TCP
     delay ms(10000);
     USART_tx_string(CIPSEND);//send size
     _delay_ms(5000);
     PORTC^=(1<<5);
     read_adc(); //read ADC
     snprintf(outs, sizeof(outs), "GET https://api.thingspeak.com/update?api_key=9HD0YXSMDWBFG607&field2=%3d\r\n", adc_temp);// print it
     USART_tx_string(outs);//send data
     _delay_ms(10000);
     TCNT1 = 49911; //reset
```

9. BOARD IMPLEMENTATION

10. GITHUB LINK OF THIS DA

https://github.com/regis-shaquille/submissions-SR/tree/master/Midterms/Midterm%201

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Shaquille Regis