Project Report on Midterm Marks Analysis using PySpark

Dataset Description

The dataset contains midterm marks of students across multiple sections. Each subject is scored out of **20 marks**.

During the initial inspection, the following issues were observed:

- All first 20 displayed records belonged to **ALPHA section only**, suggesting possible data imbalance in sample display.
- **Data types**: All marks columns were stored as strings, making them unsuitable for direct numerical analysis.
- **Invalid entries**: Some non-numeric values were found, such as "A", "MP", "o", "2o", and "I9".
- Typographical errors in section names were identified (e.g., "GAMA" \rightarrow "GAMMA", "SGMA" \rightarrow "SIGMA").

This indicated the need for thorough data cleaning and preprocessing before analysis.

Data Cleaning Process

The preprocessing steps carried out were as follows:

- 1. Section corrections
 - Missing section values were replaced with "ZETA".
 - o Typographical corrections were made:
 - "GAMA" → "GAMMA"
 - "SGMA" → "SIGMA"
- 2. Subject-wise corrections
 - o **DV** (**Design & Verification**):
 - "A", "MP" \rightarrow 0
 - "2o" → 20
 - "I9" → 19
 - **M-II (Mathematics-II)**:
 - "A", "o", "AB" \rightarrow 0
 - "I2" → 12
 - "II" → 11
 - "I" → 1
 - o PP (Programming Principles):

3. Final conversion

 All subject marks were cast from string to integer type for valid statistical analysis.

Analysis Observations

1. Subject-wise Trends

- **Strong subjects**: Fundamentals of Logic (FL) and BEEE showed consistently higher marks, with many students scoring **15 or above**.
- Weak subjects: Mathematics-II (M-II) and Programming Principles (PP) displayed significant weaknesses. Some students scored **0** in these subjects, even if they performed well in others.

2. Section-wise Performance

- After cleaning, student distribution across sections was **balanced**.
- Section averages were largely uniform.
- However, **failure counts in M-II** were slightly higher in some sections, indicating a broader struggle with Mathematics.

3. Student Performance Groups

- **High Achievers**: Consistently scored between **18–20** across subjects.
- **Average Performers**: Scored in the **15–18** range, showing balanced performance with room for improvement.
- Low Performers: Scored below 15, often with weaknesses in M-II and PP.

4. Hidden Performance Gap – Programming Weakness

- Some high scorers (overall achievers) still showed poor results in PP (Programming Principles).
- This suggests a **skills gap**: students may excel in theoretical or non-programming subjects but struggle with practical programming concepts.

Visualizations Observed

The notebook generated several useful plots:

- **Bar charts** for subject-wise mark distributions (highlighting stronger vs weaker subjects).
- **Histograms** showing performance clustering of students.
- Section-wise average marks plots, which confirmed near-uniform performance.
- Grade distribution charts, clearly segmenting students into High, Average, and Low achievers.

Recommendations

- 1. For Low Performers (<15 marks)
 - o Conduct **remedial classes** in weak subjects, particularly **M-II and PP**.
 - o Provide **extra practice sessions**, doubt-clearing classes, and mentoring.
- 2. For Average Performers (15–18 marks)
 - o Encourage with **continuous evaluation tasks** and **weekly assignments**.
 - Motivate them with small improvement goals to push into the high achiever category.
- 3. For High Achievers (≥18 marks)
 - o Challenge them with advanced problem-solving tasks and competitions.
 - o Engage them in **peer mentoring** to help weaker classmates.
- 4. For High Achievers with Poor Programming Skills (Strong overall, Weak in PP)
 - Introduce specialized programming classes (extra labs, coding practice sessions).
 - o Focus on **hands-on coding exercises** rather than theory.
 - Pair them with programming mentors or encourage participation in hackathons, coding clubs, and project-based learning.

Conclusion

The PySpark-based analysis of midterm marks shows:

- Strengths in subjects like FL and BEEE.
- Weaknesses in M-II and PP that need urgent attention.
- Sectional performance remains fairly balanced across groups.
- Students can be clearly classified into **High, Average, and Low performers**.