Final Algebraic Coding Theory Math 525

Stephen Giang RedID: 823184070

Problem 2: Before starting this problem, you will need to obtain two words of length four, namely, s_1 and s_3 , as follows. If the last three letters in your last name are one of:

$$s_1 = 0011$$
 $s_3 = 1011$

Consider the field $GF(2^4)$ constructed from $1 + x + x^4$, see Table 5.1, p. 114. Let C_{15} be the BCH code of length 15 with generator polynomial $g(x) = m_1(x) \cdot m_3(x)$ where $m_1(x)$ and $m_3(x)$ are the minimal polynomials of β and β^3 , respectively, with β a primitive element of $GF(2^4)$, exactly as in Table 5.1. Suppose messages are encoded using C_{15} and a certain received vector r has syndrome equal to $[s_1, s_3]$. Determine the location of the errors (if any) in r. Note: Each location is an integer in [0..14].

(1)
$$s = [s_1, s_3] = [0011, 1011] = [\beta^6, \beta^{13}]$$

(2)
$$s_1 \neq 0 \text{ and } s_3 \neq s_1^3$$

$$x^{2} + s_{1}x + \left(\frac{s^{3}}{s_{1}} + s_{1}^{2}\right) = 0$$
$$x^{2} + \beta^{6}x + \left(\beta^{7} + \beta^{12}\right) = 0$$
$$x^{2} + \beta^{6}x + \beta^{2} = 0$$

Notice the following:

$$\beta^6 = \beta^7 + \beta^{10}$$
 and $\beta^7 \cdot \beta^{10} = \beta^{17} = \beta^2$

So
$$e(x) = x^2 + x^3$$

(3) So locations are 3 and 4