I Formulation vaniationnelle

Soit (8) {-u" + u = } dama I =]0,11[u(0) = u(1) = 0

. On se donne: [. V espace de Hilbert de nome 11.11

Pour booke $| v : \overline{\Sigma} \to \mathbb{R}$ régulière, $\int_0^1 u^i v^i dv + \int_0^1 u^v dv = \int_0^1 \int_0^1 v^i dv$

Soit V= { re H^(Jost) / r(0)=r(1)=0} = H_0(I). Alors pour u, re V, l'égalité présidente a un rens.

. <u>DEF</u>: On dit que us est solution faible de (\mathcal{P}) hi us vérific (\mathcal{Q}) { us $H_0^+(x)$ } On dit que (\mathcal{Q}) set la formulation variationable de (\mathcal{P}). { $\int_0^\infty u'v' + \int_0^\infty uv' \mp \int_0^\infty \int_0^\infty v' + \int_0^\infty uv' + \int_0^\infty u'v' + \int_0^\infty u$

(II) Résultats abstraits

. V apace de Hitbert de nome ||.||
. a: V×V - R une forme béliéraire que l'an suppose { continue - 34x0, \(\forall u, v \in V, \|a(v,v)\) \(\epsilon u) \) \(\forall N \)
. L: V - R une forme linéaire continue { Velliptiqu - 34x0, \(\forall v \in V), \(\alpha(v,v)\) \(\pi u) \)

On definit alors le problème : (Q) $\begin{cases} u \in V \\ a(u, \tau) \neq L(\tau) \end{cases}$, $\forall \tau \in V$, est appelé "problème voisationnel abstrait "-

. Thorine de lax Hilgran: Sous ces neves legsothèles, le problèm (a) admet une unique solution. Si de plus "a" est symétrique, alors "a" définit un noveau produit sculaire.

. This rime: On suppose de plus que la forme bilinewire "a" est squietrique.

Alors: $\begin{bmatrix} u & \text{bolishande} & \begin{cases} u \in V \\ a(u,v) = L(v), \forall v \in V \end{bmatrix} \Leftrightarrow \begin{bmatrix} u & \text{bolishande} & \begin{cases} u \in V \\ \overline{\sigma}(u) = \inf_{v \in V} & \overline{\sigma}(v) \end{cases} & \frac{1}{L}a(v,v) - L(v) \end{bmatrix}$

III) Exemples de problèmes aux limites

1) Exemple 1

[. $\alpha(u,v) = \int_0^x a'v' dx + \int_1^x uv dx$, form bilineaire symphogre.

. $|\alpha(u,v)| \le \|u\|_{H^n} \cdot \|v\|_{H^n}$ continue

. $\alpha(v,v) = \|v\|_{H^n}$ V-elliptique . L(v) =), f v dn , form lineaire. . | L(v) | ≤ || f||₂ . || v||₂ ≤ || f||₁ . || v||₄₁ , pour f ∈ L²(x) ! done L wt c°.

le théorème de lox. Hilgram nous assure que la solution u existe et est unique.

. Interpretation: Ho (I) = 6° (I), done:

M Art. de (Q) co { MeV } (our = 10 for, 4re 80(E) } (our = 10 for, 4re 80(E) } (our = 10 for, 4re 80(E) }

 $\Leftrightarrow \begin{cases} \pi_1 \in H_+(x) & \text{if } (\pi_1), z = -\left(\frac{1}{2} - \pi \right) \\ \text{if } (\pi_1) + \pi = \frac{2}{3} \end{cases} (\text{gave } \Gamma_+(x))$

2) Exemple 2 Existence et unicité par le Mérène de lax- Hilgram. . Interpretation : It sol. de $(\mathbb{Q}) \iff \begin{cases} u \in H^1(\Sigma) \\ -u'' + u = 0 \end{cases}$ down $L^1(\Sigma)$ u'(o) = u'(A) = 0

. <u>Remarque</u> : 2 types de condition aux limites : [- celles contoures dans la définition de V [- celle que l'on trove par IPP