AD-A248 195

SPRO S 199.

DLA-92-P10090

A COMPARATIVE COST ANALYSIS OF MATERIAL HANDLING EQUIPMENT FOR THE CONNECTOR BUILDING COMPLEX

October 1991

OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE

This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF DEFENSE
DEFENSE LOGISTICS AGENCY

92 4 02 108

92-08454

DLA-92-P10090

A COMPARATIVE COST ANALYSIS OF MATERIAL HANDLING EQUIPMENT FOR THE CONNECTOR BUILDING COMPLEX

October 1991

Henry J. Kostanski

Accesio	n For		
NTIS	CRA&I	dz d	
DTIC	TAB		
Unanno			
Justific	ation		
Distribution / Availability Codes			
	-		,
Dist	Avail a Spec		
1	i		
1A-1			
L	<u> </u>		

DEPARTMENT OF DEFENSE DEFENSE LOGISTICS AGENCY

OPERATIONS RESEARCH AND ECONOMIC ANALYSIS OFFICE
CAMERON STATION
ALEXANDRIA, VA 22304-6100

DEFENSE LOGISTICS AGENCY

HEADQUARTERS
CAMERON STATION
ALEXANDRIA, VIRGINIA 22304-6100

DLA - LO

FOREWORD

This report identifies the cost of implementing an automated guided vehicle system and compares this to the cost of utilizing conventional equipment for the same functions in the Connector Building Complex at Defense Depot Richmond, Virginia. The report provides the information necessary to decision makers to select an appropriate type of equipment.

The results of this study indicate that several alternatives are feasible and cost effective. The study also describes in detail the resources required to implement each alternative. Finally, the analysis shows that investment in a full scale automated guided vehule system is not cost effective. Implementation of a more conventional type of equipment would provide Defense Depot Richmond, Virginia, with the ability to meet all processing goals and afford an opportunity for DLA to experience a savings of \$6.2 million in discounted dollars.

RØGERY C. ROY

Assistant Director

Office of Policy and Plans

CONTENTS

T	itle	<u>P</u>	age
Conte List List	ents of 'of '	TablesFigurese Summary	v vii .ix
I.	INTI A. B. C. D.	RODUCTION. Background. Purpose. Study Objectives. Scope.	1
II.	CON	CLUSIONS	3
III.	RECO	DMMENDATIONS	3
IV.	SAVI A. B.	INGS AND BENEFITS	3
V .	METI A.	HODOLOGYGeneral Methodology	
VI.	ANAI A. B.	LYSIS Operational Procedures for the AGV System and Alternate Equipment Equipment Capabilities and System Requirements Performance Throughput	6
VII.	COST A. B. C.	T ANALYSIS General Least Cost Alternative Additional Alternative.	.13 .17
APPEN	DIX	A	A - 1
A DDra	INTU	ħ.	

LIST OF TABLES

Number	<u>Title</u>	<u>Page</u>
1	Daily Workload Bin and Bulk Areas	5
2	Equipment Characteristics	11
3	Pallet and Module Movement Capabilities	14
4	Cost Factors	14
5	Total Workload 10-Year Life Cycle	15
6	Least Cost Combination 10-Year Life Cycle	21

LIST OF FIGURES

Number	<u>Title</u> Page
1	Connector Building Complex2
2	Connector Building Complex10
3	Total Cost/10-Year Life Cycle16
4	Cumulative CostDiscounted18
5	Total Cost/10-Year Life Cycle20
6	Total Cost/10-Year Life Cycle Bin AreaBaseline Workload22
7	Package Conveyer/Transporter Baseline Workload

EXECUTIVE SUMMARY

The construction of the Connector Building Complex (CBC) at Defense Depot Richmond, Virginia (DDRV), is well under way and due to be completed in February 1992. The original concept for the CBC included an automated guided vehicle (AGV) system to be installed throughout. However, based on depot consolidation efforts in progress for all of Defense Logistics Agency (DLA), the mission of DDRV may be changing. For this reason, the Directorate of Supply Operations, Depot Operations Division (DLA-OWM), asked DLA Operations Research and Economic Analysis Management Support Office (DORO) to perform an analysis to determine if an AGV system or an alternative type of equipment would be most cost effective for the CBC.

The results of the study indicate that an AGV system would not be cost effective at any foreseeable workload level. Implementation of a full scale AGV system, which would handle a workload similar to that which DDRV currently handles, would have a 10-year life cycle cost of \$8.4 million in discounted dollars. In this study, we propose using forklifts and transporters to handle the same workload, at a cost of \$2.2 million in discounted dollars, over the same life cycle. Selection of this alternative would result in a cost savings to DLA of \$6.2 million in discounted dollars over the AGV system.

I. INTRODUCTION

A. Background.

The contract for the Connector Building at Defense Depot Richmond Virginia (DDRV) was awarded in December 1989. This contract provided for a building to be built which would connect buildings 11 and 14 in the bulk warehousing area with buildings 60 and 59 in the bin warehousing area. The contract also called for other common connections between existing buildings which when combined with connections already in place resulted in the DDRV Connector Building Complex (CBC) (See Figure 1). The CBC at completion would consist of nine connected warehouse buildings and the Connector Building itself. original design called for an Automated Guided Vehicle (AGV) system to be used in the CBC to move pallet and module size loads throughout the complex. AGV system would extend to every building in the complex utilizing 16,850 feet of guidepath. The AGV system as well as other mechanization for the CBC was under a separate contract. Requests for bids were to be released in June of 1991 and could be modified before then to accomodate any changes in requirements. We briefed our results in May of 1991 to provide the necessary information for modifications.

Currently, depot consolidation efforts are underway in the Defense Logistics Agency (DLA). As a result of these efforts, the workload at DDRV is expected to change. This change will probably be manifested in the overall volume of workload, as well as in the ratio of bin to bulk items processed. For this reason, the Directorate of Supply Operations, Depot Operations Division, (DIA-OWM), asked DLA Operations Research and Economic Analysis Management Support Office (DORO) to perform an analysis to determine whether the use of an AGV system or the use of conventional material handling equipment is most cost effective for the CBC.

B. <u>Purpose</u>. Determine the economic impact of implementing a full scale AGV system or utilizing conventional equipment in regard to the changing role of DDRV in the DLA Depot System.

C. Study Objectives.

- 1. Estimate the cost of moving material throughout the CBC using an ΔGV system and using conventional equipment.
 - 2. Cost each of the systems using several workload scenarios.
- 3. Cost each of the systems using present value analysis to project and compare costs over a predetermined life cycle.
- D. \underline{Scope} . The study will be limited to material handling equipment for the CBC that is related to the functions that would be performed by an AGV system.

CONNECTOR BUILDING COMPLEX

II. CONCLUSIONS

The analysis yielded the following conclusion:

- o An AGV system is not as cost effective as other material handling equipment under any foreseeable workload scenario.
- III. <u>RECOMMENDATIONS</u>. Proceed with the use of conventional material handling equipment, such as transporters, forklifts and mule trains, in the CBC, instead of an AGV system.

IV. SAVINGS AND BENEFITS

- A. <u>Savings</u>. The discounted cost for an AGV system which would handle a baseline workload is \$8.4 million over a 10-year life cycle. The cost of using the least costly combination of alternative equipment over the same period is \$2.2 million. The difference in discounted dollars is then \$6.2 million.
- B. <u>Benefits</u>. The benefits of using one of the conventional equipment types fall into two categories, flexibility and maintainability. Any alternative which requires installation of a guidepath or in-floor mechanization would configure the CBC to a particular operational plan. Changing this configuration at a later date to adapt to different requirements could be difficult. The use of transporters, mule trains and forklifts does not disturb the useable floor space in the storage areas. Should the missions for these areas change, the areas could be re-configured without regard to problems of moving guidepath or towline.

DDRV already has extensive experience maintaining the equipment in use there. Naturally, this experience has allowed them to become efficient in keeping this equipment up and operating. Furthermore, there is no reason to think that maintaining this equipment in the future will be any different than it has been in the past.

Even under ideal circumstances, the implementation of a new type of equipment is going to cause some maintenance problems. There will be learning curves and training requirements. Additionally, equipment such as AGV systems tends to be maintenance intensive, needing expensive replacement parts and specially trained technicians.

V. METHODOLOGY

- A. <u>General Methodology</u>. The basic approach for this analysis involved costing the AGV system as designed by Depot Operations Support Office (DOSO) and comparing that cost with the cost of available alternatives which would perform the same functions as the AGV system. This was accomplished using the following five step process:
- 1. Review of the Design and Operation of the CBC. The CBC was originally designed with an AGV system to move pallets and modules throughout

the complex. Any alternative equipment, therefore, would have to satisfy the requirements associated with the AGV system. In order to isolate the tasks performed by the AGV system, DORO reviewed the design specifications with DOSO and DDRV. We then developed flow charts to record pallet and module movements. These flow charts included the number of pallets and modules to be moved from each location as well as distances between locations. Ultimately, the distances from location to location were used to calculate travel times for the various types of equipment.

In reviewing the operation it became evident that the bin and bulk areas were serviced by a contiguous AGV system. For all practical purposes the bin and bulk areas are separate and distinct operations. The areas are located at opposite ends of the complex and have separate packing and receiving operations. It was one of our initial proposals that bin and bulk be examined as distinct areas particularly from the aspect of using different alternatives in each one.

- 2. Establish Workload Levels. The number of pallet and module movements in the DOSO design of the AGV system are derived from a baseline workload which approximates what DDRV is currently handling. One problem that exists in estimating pallet and module loads is that the density of the load often varies. There is no way to convert a given number of items directly to a module or pallet load. This fact is particularly evident in the bin area. We were aware of the variation in module and pallet loads, and we also knew that the workload at DDRV would change. In order to compensate for these two conditions, we conducted the analysis using several workload levels. The different workload levels used were percentage increases and decreases to the baseline workload for bin and bulk. These percentages and the associated number of modules and pallets are listed in Table 1.
- 3. Determine equipment alternatives and configurations. DDRV uses a variety of equipment to move material. This equipment includes transporters, mule trains, fork lifts and conveyors (both pallet and package conveyors). Since these types of equipment are already used successfully they were obvious candidates for alternatives to an AGV system. Also considered as an alternative was a towveyor system. Towveyers are not in use at DDRV, but are in use at other DLA depots.

The final list of alternatives we presented to DLA-OWM was as follows:

AGVs
Transporters
Mule Trains
Towveyors
Forklifts (Exclusively)
Conveyors

The conveyor alternative consisted of powered pallet conveyors in the bulk area and package conveyors in the bin area. These conveyors would be installed to basically overlay the AGV guidepath. From the onset it was evident that this alternative would be far too costly. By mutual agreement with DIA OWM and DOSO the CBC-wide conveyor system was dropped as an

Table 1

DAILY WORKLOAD BIN AND BULK AREAS

DAILY WORKLOAD - BIN AREA

SCENARIO

MODULE MOVES
RECEIVING TO STORAGE
STORAGE TO PACKING
PACKING TO LTL
TOTAL

30%	60%	BASE	120%
30	60	100	120
18	36	60	72
20	41	68	82
68	137	228	274

DAILY WORKLOAD - BULK AREA

SCENARIO

PALLET MOVES	75%	BASE	125%
STORAGE TO PACKING	157	209	261
RECEIVING TO STORAGE	288	384	480
TOTAL	445	593	741

alternative. Some additional explanation is required regarding the forklift alternative. Forklifts are required to some extent with several of the other alternatives. For example, if mule trains are being used as the primary method to move pallets and modules, forklifts are required to unload the mule trains at the packing induction points. When the cost estimates were done for the mule train alternative the total cost included the required forklift and forklift operator. The forklift alternative involves using forklifts exclusive of any other equipment to replace an AGV system.

4. Cost the Equipment and Personnel. The cost of the AGV was developed by DOSO. This cost was based on current industry data for comparable systems, and itemized by all major components. Because the costs were itemized, it was possible to configure and cost an AGV system for each workload scenario considered.

The conventional material handling equipment used in this analysis is already in use at DDRV. The purchase price and maintenance costs for this equipment were readily available.

The personnel costs were computed using the current pay scale for wage grade personnel at DDRV. In addition to the basic hourly wage rate, factors were also added to account for leave and benefits. This will be discussed in further detail in the following sections.

5. Perform a present value analysis over a 10-year life cycle. A 10-year life cycle was chosen as a reasonable analysis period based on the fact that the equipment involved has an approximate life span of 10 years. Present value factors were applied to the costs for all alternatives in the same manner. All of the equipment involved in the analysis was for the most part homogeneous in type. Therefore, it was unlikely that inflation would have a signifigantly different effect on any one type. The labor costs for the entire analysis involved the wage grade labor force at DDRV.

VI. ANALYSIS

A. Operational Procedures for the AGV System and Alternate Equipment.

1. \underline{AGV} . The AGV system was designed to operate throughout the CBC. The guidepath of the AGV system would extend to every building. Additionally, each building in the bin and bulk areas would have many pick-up and deposit stands (P & D stands). The P & D stands would be located as follows:

In the bin area:

Buildings 59 and 66--along the West Wall. Buildings 60 and 65--along the East Wall.

In the bulk area:

Building 7--along the West Wall Building 10--along the East Wall Building 11--along the West Wall Building 14--along the East Wall Building 15--along the West Wall

There would also be P & D stands, as well as induction and discharge conveyor interfaces located throughout LTL packing and receiving. These provisions enable the AGV system to perform any point to point movement of pallets or modules almost anywhere in the CBC.

2. <u>Alternative Equipment</u>. In order to make comparisons between the proposed AGV system and alternative types of equipment, it was first necessary to design operational procedures for the alternate types of equipment. These operational procedures would ensure that the alternative equipment would in fact be capable of fulfilling the functions of the AGV system.

a. Towveyor.

A towveyor is a conveyance system which consists of a vehicle that is pulled by a mechanism installed along a path in the floor. The mechanism in the floor is generally a series of sprockets and chains which are driven by electric motors. The vehicle itself has no propulsion system, only a lever or rod which can be set to direct it into particular spurs off of the main path. Towveyor vehicles will follow a path similiar in layout to the AGV guidepath. The vehicles will be staged on spurs in the same general locations as the AGV P & D stands throughout the bin and bulk areas.

In the bin area stock pickers will place modules on the towveyor vehicle and activate it. The vehicle will transport the module to the induction conveyor in bin packing. The vehicle would then pick up an empty module and return it to one of the spurs in the bin area. Towveyer vehicles would also transport modules from bin receiving to the staging spurs in the bin area, where stock pickers will remove the modules and store the items.

In the bulk area stock pickers will place pallets on towveyor vehicles and activate the vehicle. The vehicle will transport the pallet to the induction point at the pallet conveyor in Section A of CBC. Pallets from LTL receiving will be transported by pallet conveyor to Section A where a towveyor vehicle will pick up the pallet and transport it to a spur in the bulk area. Once in the bulk area a stock picker will remove the pallet and store it.

The towveyor system would operate for the most part automatically in regard to traveling. It may be necessary to have operators activate and direct vehicles coming from the receiving areas.

b. Transporters.

A transporter is a single axle flatbed truck that has powered rollers across the entire bed. This truck works in conjunction with a special roller dock.

A transporter can load and unload modules or pallets from these docks at the rate of ten at a time. Transporters currently operate throughout DDRV on established routes. Inbound and outbound transporter docks are already in place in the existing buildings.

In the bin areas stock pickers will place modules on outbound docks. When a dock is full a transporter will be dispatched to remove the modules and take them to a transporter dock in bin packing. In the bin packing area a fork lift will unload modules from the inbound dock and place them on an induction conveyor. In bin receiving, a forklift will place modules on an outbound dock and a transporter will take the modules to an inbound dock in the bin storage area. Stock pickers will then remove the modules from the dock for storage.

In the bulk storage areas stock pickers will stage pallets on outbound transporter docks. Pallets can also be staged in staging areas inside the building immediately behind the docks. When the outbound docks become full, a transporter is dispatched to pick up the pallets and deliver them to less than truck load (LTL) packing. In LTL packing the inbound docks are designed to interface with the pallet induction conveyors. The flow of pallets from the inbound transporter docks to LTL packing would be essentially continuous. In LTL receiving the dock and conveyor system would be basically the same, so that pallets could flow directly from the receiving area to the outbound docks. A transporter would then take the pallets from an outbound dock in the bulk storage area. In the bulk storage area stock pickers will remove the pallets from the dock and place them into storage.

c. Mule Trains.

A mule train is a series of carts which are towed one behind the other by a small tractor called a tug. They can operate inside or outside the warehouse buildings. Mule trains are currently in use at DDRV.

In the bin area empty mule train carts will be staged in locations similiar to the AGV P & D stands. Stock pickers will place modules on the carts and tugs will cycle through the area and tow the carts to the bin packing area. In bin packing a forklift will offload modules from the carts onto the induction conveyor. In bin receiving modules will be placed on mule train carts by forklift and a tug will tow the carts back to the staging area in bin storage, where stock pickers will remove the modules and store the items.

d. Forklifts.

Forklifts are currently used extensively at DDRV. Forklifts could be used extensively throughout the CBC as the sole means of conveying modules and pallets. In the bin storage area stock pickers will stage modules on the floor in locations similiar to the P & D stands. In the bulk area, the same procedure would be followed. Forklifts would then retrieve staged pallets and modules from the floor areas and transport them to the proper induction point. The forklifts would also transport the pallets and modules from the LTL and bin receiving areas to the floor staging areas in bin and bulk storage.

B. Equipment Capabilities and System Requirements.

The next phase of the analysis involved integrating the capabilities of each equipment type with the actual system requirements. These system requirements are dependent on two basic factors, the distances the equipment will travel and the workload levels. The operational procedures provided a fundamental framework for the routes that vehicles would have to travel. From these routes we calculated round trip distances for modules and pallet movements. Figure 2 is a diagram of the CBC annotated with the lengths of the main sections.

The essential component in evaluating the capabilities of each alternative type was the individual equipment characteristics. These characteristics consist of speed, capacity and specific travel distances. Speed refers to the average speed in miles per hour at which vehicles travel. Capacity refers to the number of modules or pallets that the equipment will handle as a single Specific travel distances refer to the exact route a particular type of equipment would use. These routes may vary because of the varying nature of the equipment. For example, a transporter travels on the road system outside and around the CBC, traveling exterior to the building adds distance to the transporter routes. A mule train can travel through the interior of the CBC, this reduces the travel distance over an exterior route. The mule train, however, has restrictions even other interior vehicles do not have. A mule train requires wide aisles and open floor space to turn around. It is very likely that a mule train would have to travel some distance past the intended pick-up point in order to find a suitable place to turn around and begin the return trip. Other interior vehicles such as a forklift can turn and maneuver in much less space, shortening their travel distances. The AGV and towveyor vehicles follow a predetermined guidepath that is usually in the form of a large loop. This loop is often not a direct route and lengthens the travel distances.

Because of the many differences in equipment capabilities, each type of equipment was evaluated separately. A summary of the characteristics of all the alternative equipment is shown in Table 2.

Maximum distance to travel and maximum travel time refer to the longest round trip cycle a vehicle travels. The data for the equipment was obtained by observing and timing the equipment currently in use at DDRV. For equipment not currently in use at DDRV, specifically the towveyor and the AGV, industry standard data was used.

Figure 2

CONNECTOR BUILDING COMPLEX

Bldgs 7,10,11,14,15 - Bulk

Bldgs 59,60,65,66 - Bin

A - RFCC

B - LTL Packing/Receiving

C - Bin Receiving/Packing

Table 2

EQUIPMENT CHARACTERISTICS

•	^	47
n	u	٧

Speed-1.76 MPH

Capacity-1 module or 1 pallet

Bin Area

Maximum distance to travel -5,000 feet
Maximum travel time -32 minutes

Bulk Area

Maximum distance to travel -3,500 feet Maximum travel time -23 minutes

TOWVEYOR

Speed-20 MPH

Capacity-1 module or 1 pallet

Bin Area

Maximum distance to travel -5,000 feet Maximum travel time -32 minutes

Bulk Area

Maximum distance to travel -3,500 feet Maximum travel time -23 minutes

TRANSPORTER

Speed-20 MPH

Capacity-10 modules or 10 pallets Load and unload time-1 minute

Bin Area

Maximum distance to travel -10,000 feet
Maximum travel time -6 minutes

Bulk Area

Maximum distance to travel -15,000 feet Maximum travel time -9 minutes

MULE TRAIN

Speed-5 MPH

Capacity- 1 module or 1 pallet

<u>Bin Area</u>

Maximum Distance to travel -4,500 feet
Maximum travel time -11 minutes

Bulk Area

Maximum distance to travel -3,300 feet Maximum travel time -8 minutes

It is important to note certain aspects of the data. The speeds for the transporters, mule trains and lift trucks represent average speeds and are somewhat conservative. The speeds for the AGV and towveyor are more precise as those systems can be set to operate at an exact and constant speed. There are time factors associated with the transporter and the mule train that involve the acquisition and discharge of the load. For the transporter this is the load and unload time or the time it takes to roll pallets or modules from the dock to the transporter and vice versa. For a mule train this is the time required to attach and detach the cart from the tug. With the other forms of equipment, the transfer times are not as distinct of an operation and their transfer times are factored into the overall travel time. As an example, a forklift delivering a pallet deposits that pallet in almost a simultaneous action without stopping to turn around. In any case, we have included all the time elements required for the equipment to complete its function, either as a discrete time element or part of a continuous travel time period.

- C. <u>Performance Throughput</u>. Based on the capabilities and operational procedures for the alternative equipment, it was possible to model the performance of each type of equipment. Each type was evaluated on the basis of throughput for a single 8-hour shift. This throughput was then compared to the various workload levels required in an 8-hour shift.
- AGV System. The AGV system was evaluated using a computer simulation model written in the SLAM language. The AGV system was the only alternative evaluated in this way. The reason for this was twofold. system is a dynamic system which continuously readjusts itself to make the optimum use of all its vehicles. The other equipment follows set routes and schedules. Also, every individual AGV vehicle is very expensive. It was very important to define exactly how many vehicles were required for each workload So, where mule trains, transporters and forklifts could be evaluated on a component by component basis, the AGV system had to be evaluated as a whole, taking into consideration the synergistic effects of all vehicles working together. The simulation of the AGV system was designed using 8 full hours per shift and using the number of vehicles as an input variable. Several iterations of the model were run using different workloads and varying the total number of vehicles within the same workload framework. We reviewed the results of the model runs and identified the least number of vehicles which could handle a given workload.
- 2. <u>Towveyors</u>. The towveyor system operates similiar to the AGV system. However, there are two major differences. The towveyor carts are not dynamically allocated; rather they are set in motion to a particular destination, and must complete a round-trip cycle before they can be reassigned. The other difference is that the carts are relatively inexpensive, so that increasing the number of carts does not signifigantly increase cost. Because of these differences the towveyor system could be evaluated using a mathematical model. The main output variable to the model was, as with the AGV system, the number of vehicles or carts. The towveyor system was modeled with all of the workload scenarios and generally required more carts as the workload increased. The towveyor also requires two operators to activate the

carts and send them to their destination. The towveyor system like the AGV system was modeled to operate 8 hours in a shift.

3. Transporters, <u>Mule Trains and Forklifts</u>. Transporters, mule trains and forklifts do not operate as a unified system in the same way that an AGV system or a towveyor system does. For this reason it was only necessary to model a single unit of equipment from each of the types. This was done using a simple mathematical model. Once the performance capabilities of one unit were identified, it was a simple matter of calculating what two or more units would do. In this way, the equipment could be matched rather easily to the workload requirements.

Transporters, mule trains and forklifts have to be manned by operators at all times. It was therefore necessary to apply Personal, Fatigue and Delay (P.F. and D) factors to the 8-hour shift time. The P.F. and D. factor used was 12.6 percent. This figure represents a conservative approach to estimating productive time as it is at the high end of factors used for standards with depot operations. Reducing the 8-hour shift by 12.6 percent yielded slightly less than 7 hours of productive time per shift. This 7-hour time, and the throughput capacity of each type of equipment were input into the models. The results are summarized in Table 3.

VII. COST ANALYSIS

A. General.

Using the previously developed data we projected three cost configurations over a 10-year life cycle. These cost configurations covered the baseline workload scenario, the low workload scenario, and the high workload scenario. The baseline workload scenario consisted of the baseline workloads for both the bin and bulk areas. The low workload scenario consisted of the 30 percent of baseline workload for the bin area and the 75 percent of baseline workload for the bulk area. The high workload scenario consisted of the 120 percent workload for the bin area and the 125 percent workload for the bulk area.

The projection included all costs for systems, vehicles maintenance and personnel. The personnel costs are based on the current wage grade pay scale for DDRV and include an 18 percent factor for leave and a 29.55 percent factor for benefits. The mid-range of each pay grade was used as the hourly wage. The annual maintenance cost for the AGV system was 11 percent of the purchase price. The factor for all other equipment was 7 percent annually. The AGV is somewhat higher due to the higher costs for parts.

Several of the alternative types of equipment are already in place at DDRV, but for the purpose of this analysis all equipment required for every alternative was purchased as new. The cost factors for each alternative are shown in Table 4.

Table 3

PALLET AND MODULE MOVEMENT CAPABILITIES

<u>Transporters</u> (per vehicle) Bin area-410 modules per shift Bulk area-370 pallets per shift

Mule Trains (per tug with 4 carts) Bin Area-160 modules per shift Bulk Area-160 pallets per shift

<u>Forklifts</u> (per vehicle) Bin Area 69 modules per shift Bulk Area-59 pallets per shift

Vehicles required for each workload scenario.

Bin Area	Workload			
	30 Percent	60 Percent	Baseline	120 Percent
Transporters	1	1	1	1
Mule Trains	1	1	2	2
Forklifts	2	3	4	4
Bulk Area				
	75 Percent	Base	line	125 Percent
Transporters	2	2		2
Mule Trains	3	4		5
Forklifts	8	10		13

Table 4

COST FACTORS

	System	Vehicle (each)
AGV	\$2,961,190	\$64,110
Towveyer	\$2,244,420	\$1,500
Transporter	\$368,000	\$110,000
Mule Trains	\$0	\$15,000
<u>ForkLift</u>	\$0	\$24,000

The system cost for the AGV system includes the computer hardware and software which control the system, the guidepath and the battery charging equipment. The system cost for the towveyor includes the motors, the towline and the spurs. The transporter alternative does not have a system cost as such; however, a cost factor has been included here to insure that all docks will be in proper working order and to cover the cost of new modules for the bin area which would be required if transporters are used. Mule trains and forklifts have no system cost. The total cost for a 10-year life cycle for the low, baseline and high workload scenarios is shown in Table 5 in undiscounted and discounted dollars. Figure 3 is a graphical representation of this data.

Table 5

TOTAL COST 10-YEAR LIFE CYCLE

Low Workload Scenario	Discounted	Undiscounted
AGV	7,337,148	9,345,708
Towveyer	5,321,178	6,570,491
Transporter	2,170,600	3,020,808
Mule Train	1,837,931	2,734,589
Forklift	2,404,337	3,614,771
Baseline Workload Scenario	Discounted	Undiscounted
AGV	8,403,336	10,692,020
Towveyer	5,553,897	6,918,561
Transporter	2,411,034	3,382,286
Mule Train	2,856,246	4,257,377
Forklift	3,366,072	5,060,679
High Workload Scenario	Discounted	Undiscounted
AGV	8,936,430	11,365,170
Towveyer	5,591,838	6,964,461
Transporter	2,411,034	3,382,286
Mule Train	3,124,197	4,656,359
Forklift	4,087,373	6,145,110

Figure 3

TOTAL COST/10-YEAR LIFE CYCLE HIGH WORKLOAD LEVEL

BASELINE WORKLOAD LEVEL

LOW WORKLOAD LEVEL

Two significant things are evident from the graphs. The first is that the cost of each alternative increases and decreases as the workload level increases and decreases. The second is that the AGV system is not cost effective at any of these levels.

The reason that the AGV is so costly is twofold. The initial cost for the system is very high and the individual vehicle cost is very high. It is true that there are not any direct labor costs involved with the operation of an AGV system, but the savings in labor is not sufficient to offset the other high costs.

Figure 4 is a line graph showing the cumulative discounted costs for all the alternatives under a baseline workload scenario. This graph shows that even though the slope of the lines is similiar, the high initial costs are the predominant factor.

B. Least Cost Alternatives.

The initial cost comparisons in this analysis viewed each alternative as a single system to be used throughout the CBC. The bin and bulk areas serve as natural divisions within the CBC. In order to identify a least cost alternative for bin and bulk it was necessary to isolate these areas and examine the differences in each. To some extent the equipment that is an integral part of the bin and bulk operations dictated the least cost alternatives. As an example, in bin packing there is no established link between the dock area and induction conveyors. If a transporter were used in this area, some other type of equipment would still be required to move modules from the dock to the induction point. The degree to which equipment interfaced became an important factor in identifying the least cost alternative. The bin and bulk areas have some similarities but have enough differences to require different equipment. The manner in which the proprietary equipment in bin and bulk interfaced with the alternative equipment ultimately dictated the least cost equipment for that area.

Figure 5 illustrates the cost of the alternative equipment, for bin and bulk, for a 10-year life cycle under the baseline workload scenario. The least cost alternatives are forklifts in the bin area and transporters in the bulk area. The total cost of the combination of these two alternatives is shown in Table 6, as well as the difference in cost between the least cost alternative combination and the AGV system. The difference in discounted dollars of using the least cost combination verses the AGV system is \$6.2 million. This difference would vary under different workload scenarios.

Also, the least cost alternative equipment would vary for different workload scenarios in the bin area. The transporter alternative remains the least cost alternative in the bulk area under all workload scenarios as its degree of efficiency in that area is far superior to the other alternatives. In the bin area, the difference in the alternatives is not that pronounced among the forklifts, mule trains and transporters. An exhaustive look at all possible combinations is not appropriate for this study. In any case, the alternatives presented as least cost are for cost comparison purposes and not intended to

Figure -

CUMULATIVE COST - DISCOUNTED BASELINE WORKLOAD

be specific operational recommendations. It is important to note that with the costs shown in Figure 5 for the AGV system the towveyor system in bin and bulk add up to a cost which is greater than the cost previously shown for the total system. This is because the AGV and the towveyor system have high fixed costs which are not proportionally reduced by reducing the size of the system. The other alternative equipment can be reduced in somewhat of a constant ratio.

C. Additional Alternative.

When we briefed our findings to DDRV, they requested that we consider one additional alternative. DDRV expressed reservations about operating the bin area with mule trains, transporters or forklifts. Their recommendation was to use a package conveyor and a module tug system in the bin area. As previously discussed in the analysis, a conveyor system which traversed the entire CBC was absolutely cost prohibitive. However, the DDRV recommendation was for a very limited, basic conveyor system in the bin area, that would operate in one direction only. This conveyor would carry the picked bin items to bin packing. Items from bin receiving would be brought to the bin storage area in modules towed by a special module tug. DDRV felt that this alternative was operationally the most efficient and safe.

DOSO completed a basic design for the requested alternative in June 1991. The cost for implementing the package convejor alternative over a 10-year life cycle for the baseline workload is \$1.3 million in discounted dollars. This would be approximatley \$300,000 more over 10-years than the forklift alternative. A comparison of this cost is shown on the graph in Figure 6. A comparison of the cost of the combination of the transporters in the bulk area/package conveyor in the bin area, and the other alternatives, is shown in Figure 7.

Figure 5

TOTAL COST/10-YEAR LIFE CYCLE BIN AREA - BASELINE WORKLOAD

BULK AREA - BASELINE WORKLOAD

Table 6

LEAST COST COMBINATION 10-YEAR LIFE CYCLE

	COST UNDISCOUNTED	COST DISCOUNTED
BIN AREA - FORKLIFTS	1,445,908	961,735
BULK AREA - TRANSPORTERS	1,723,301	1,225,318
TOTAL	3,169,209	2,187,053

LEAST COST COMBINATION VERSES AGVs

	COST UNDISCOUNTED	COST DISCOUNTED
AGVs	10,692,018	8,403,336
LEAST COST ALTERNATIVE	3,169,209	2,187,053
DIFFERENCE	7,522,809	6,216,283

TOTAL COST/10-YEAR LIFE CYCLE BIN AREA - BASELINE WORKLOAD

UNDISCOUNTED

DISCOUNTED

Figure

PACKAGE CONVEYOR/TRANSPORTER BASELINE WORKLOAD

APPENDIX A

Figure A-1, A-2 and A-3 provide the annual cost amounts for the 10-year life cycle for each major cost element within the different alternatives. These figures represent the baseline, high and low workload scenarios respectively. Figures A-4, A-5 and A-6 show the annual cost totals and cummulative costs for each alternative under the same scenarios in both discounted and undiscounted dollars.

Figure A-1

CETABLES COST INFORMATION RASELINE WORKLOAD LEVE.

RABETUME WERKLOAD BEVE.		YEAR 1	YEAR 2	rear :	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 5	YEAR 9	YEAR 10	TOTAL
	COSTIGATA :										- -	:
ENVIRMENT COSTS SYSTEM COST YEARCLE COST	.12,961,190	2761190										29511
REQUIRED VEHICLES MAINTENANCE COST	30 1 0.11	1923300 537294	537294	507294	537274	53?294	537794	537294	537294	537294	517774	19233 53729
PSESONNEL COSTS	:											:
VENTEUR OFERANGAS OTHER OFERATORS OFFICE PAY FATE												;
MAIN'ENAN'E FERGUNALI GRACE FAY RATE	WG11-17.62	43450	43459	4:459	43459	40459	43459	43459	43459	43459	45477	4341
\mathbf{v}_{H} , ψ_{i}		-										1886,792,0
EQUIPMENT COSTS												
SYSTEM COST CART COST RECOMPRES CARTS	\$7,370,000 \$1,500 111	3370000 166500										3370(166)
MAINTENANCE COST	1.27 (247555	247555	247555	247555	247555	247555	T47555	247555	247555	247555	24755
FERRINNEL (OSTA FRICKE CREMATOR)	: ;											
SHADE FAY RATE	M3418 47 3	90651	90651	70651	90651	90651	90651	90651	90651	90651	90551	776!
Ngegereas	·											1,819,84
ETRITHENT COSTS												
CYSTEM COST THANSPORTER COST FORY(IFT EOST	\$368,000 \$(\$0,000 \$,\$,000	#8000 170000 168000										79 720 798
REDUIRED TRANSFORTER" REDUIRED FORKLIFTS MAINTENANCE COST	4,7	52720	52220	52220	52220	5222 0	52220	52220	52220	52220	52270	522
FERSENNEL TOSTS												
TRANSOTRIER OFERVIOUS	1 1977 11.86	117525	113529	113525	113529	113579	113529	117529	113529	1:3520	1175,9	1175
DISPATUHER	96.	33744 84175	73744 64175	33744 64135	33744 £4135	33744 64135	33744 64135	31744 54175	33744 64135	33744 64135	*1744 54175	377 641
GRADE PAY PATE	WG5 1 1/5	(-1)		61173	51133	0.1130	04132	34.73	04133	04133	774 7	!
E TRAINS												: \$3,382,1
EQUIFMENT COSTS												
SYSIEM COST TUG COST TAKE (0051 FORM: 151 COST	815,000 \$1,100 \$24,000	90000 151809 120000										904 1511 121
REGUIPED TUGG REGUIRED CAPTS REGUIFED FORVLIFTS MAINTENANCE COST	1-8	25326	25326	25326	25326	25326	25326	25325	25326	25326	25724	253
FERSONNEL COSTS	:											
TUS OPERATORS GRACE/FAY RATE	4 : #56/10.65	203893	203673	203893	203893	207897	203893	203893	203893	2,3842	2,2852	2^389
CONFILE OLEGATOR :	6 ↑ 10 . 5	FITOAL	150339	160339	160337	160332	160339	160337	140739	150339	160779	15077
e reng						-						14,257,3
SHI HEME DISTS												
SYSTEM COST COMPLIFT COST	1 1 (1,1)0	776010										336
REQUIRED FORKLIFTS MAINTENANCE COST	11	23 5 20	21520	23520	21570	23520	23520	23520	27520	23520	20520	2357
EFSONNEL COSTS												

Figure A-2

BETAILED COST INFURMATION

भ्या	S CELL	á,	(E)EC
------	---------------	----	-------

HITH WORK THE CERES							•••••	· · · · · · · · · · · · · · · · · · ·				, · · · ·
		FEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	/EAR 7	YEAR 6	FEAR 9	YEAP 10	TO*AL
TVS EQUIPMENT COSTS	10051-DATA :											:
SYSTEM FOST	\$2,951,151	2761190										: : [96][9
VEHECLE TOST REQUIRED VEHICLES	\$64,110 T	2243850	£775£4	E-7554	572554	577554	572554	572554	EIREA	572554	E 7.75 C A	224385 572554
MAINTENANCE COST	€.11 .	572554	572554	572554	3,7334	572554	3/2234	3/2334	572554	3/4354	572554	1 874015
PERSONNEL COSTS												
VEMICLE OPERATORS OTHER OPERATORS BRADE/FAY RATE	1 0											
MAINTENANCE FERSONNE SRADE/PA+ RATE		43459	43459	43459	43459	43459	43459	43459	43459	43459	43459	43458
	:											**************************************
DHVEYDES						•••••					• • • • • • • • • • • • • • • • • • • •	:
OGUERMENT COCES												:
SYSTEM COST CART COST	\$3,370,000 \$1,500	7370000 193 5 00										: 117600 177 5 1
REGUIRED CARTS MAINTENANTE COST	129	249445	249445	249445	249445	249445	249445	249445	249445	249445	249445	249445
FERSONNEL COSTS												
VEHICLE JEERATORS	0		****		****	20151	00.00	2/151	84.11	54.51		
GRADE/PAY RATE	#64/9.47	90651	90651	90651	90651	90651	90651	70651	76651	99653	\$06\$1	79651 :
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·								\$6,964,4
ANSFORTERS	:											
SYSTEM COST	#368,000	368000										14800
TRANSPORTER COST FORKLIFT TUST	\$110,000 : \$24,000 :	330000 48000										: 33000 • 4800
REDUIRED TRANSFORTER	2 1	F737A	53334	F725A	52224	£533A	67770	52234	E2224	F2326	£255.	; ; ; ;
MAINTENANCE COST	0.07	52220	52220	52220	52220	52220	52220	52220	52220	52220	52227	: 52720k :
FFRSCHNEL COSTS												:
TRANSPORTER OPERATOR	WG8/11.86	113529	113529	113529	113529	113529	113529	113529	113529	117529	113579	11352
DISPATCHER GRADE/FA: PATE FORVLIFT DEERATOR	656	33744 64135	33744 64135	33744 5413 5	33744 64135	33744 64135	33744 64135	33744 64135	33744 64135	33744 64135	33744 64135	33'41 64135
GRADE / PAY RATE	W65/10.05	04173	04:13	24130	64133	6-175	01100	54133	04135	44177	0-132	
W.F. TOATUS	1	*** ****										*1,1879
ULE TRAINS EQUIPMENT COSTS												
SYSTEM COST	: 0 !											
T203 BUT 1 APT 1 (PT)	\$15,000 :	105000 171600										195-95 17169
TORKLIET 1961 REQUIRED 1963 PEQUIRED CARTS	\$74,000 7 1 156 1	126 0 00										1,500
REGUIRED FORKLIFTS MAINTENANCE COST	0.07	27762	27762	27762	27762	27762	27762	27762	27762	27762	27762	277620
PERSONNEL COS'S					****	•						
TUG OPEPATORS GRADE/FAY PATE	WG6/10.65	237875	237875	237875	237875	237875	237875	237875	237875	237875	237875	2378754
FORKLIFT OPERATOR GRADE/PAY PATE	1 MG5/10.05	160339	160339	160339	160339	160339	160339	160339	160339	160339	160735	1603085
												\$4,656,753
ENT TETS	: ;					*					*	
EQUIPMENT COSTS												
SYSTEM COST FORMLIFT COST REQUIRED FURKLIFTS	\$24,000	408000										4380n
REGUIRED FORKLIFTS MAINTENANCE COST	0.07	28569	28560	28560	28560	28560	28560	28560	28560	28560	28560	285610
FERSONNEL COSTS												
FORKLIEF GREP419RS	17	545151	545151	545151	545151	545151	545151	545151	545151	545151	545151	545151
SPADE / PRY RATE	WG5/10.05											
	:											16,145,116

Figure A-3

DETAILED COST INFORMATION

CM MPRFEDAS (EUS)												
		YEAR I	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	FEAR 9	YEAR 10	TOTAL
49.5	COST/DATA :								- / 			!
ESPIEMENT COSTS		***										
SYSTEM COST VEHICLE COST	\$2,961,190 ' \$64,110	2961190										2961199
REQUIRED VEHICLES MAINTENANCE COST	0.11	1282200 466773	466773	466773	466773	466773	466773	466773	466773	466773	466773	1282200 4667729
PERSONNEL COSTS												!
VEHICLE OPERATORS	. 0											:
OTHER OPERATORS GPADE/PAY RATE	2	47450	41450	47400	47450	17450		47450		47454	4.450	434500
MAINTENANCE FERSONNEL GRADE/FAY RATE	W611/13.62	43459	43459	43459	434 5 9	43459	43459	47459	43459	43459	43459	434569
			,			<u>-</u>						\$9,345,768
TOWER MAN												:
FOUTFMENT COSTS SYSTEM COST	183,370,000	1370000										: 327 0 060
CART COST REPUTRED CARTS	\$1,500	139500										13950
MATHTENANCE COST	9,67	245665	245665	245665	245665	245665	245665	245665	245665	245665	245865	2456453
FERSONNEL COSTS	: :											
-EHICLE OPERATORS OTHER OPERATORS	. 0	60434	60434	60434	60434	60434	60434	60434	60434	60434	65474	604341
SRADE FAY RATE	W54-7,47	60434	604)4	00434	00474	80434	00434	97434	00434	07434	0,4.4	. 674341 !
	<u> </u>			· · · · · · · · · · · · · · · · · · ·			·	·				\$6,570,491
TEANSFORTERS EQUIPMENT COSTS												•
SYSTEM COST	\$783,000	362000										748000
TRANSPORTER COST FORKLIFT COST	\$119,000 ; \$24,000 !	330000 24000										368000 330000 24000
FEGUIRED TRANSPORTERS REQUIRED FORKLIFTS	3	24000										24/29/1
MAINTENANCE COST	0.07	50540	50540	50540	50540	50540	50540	50540	50540	50540	50540	505400
FERSONNEL COSTS												
TRANSPORTER OPERATORS		113529	113529	113529	113529	113529	113529	113529	113529	113529	113529	1135293
GRADE/FAY RATE DISPATCHER	1468/11.86	33744	37744	33744	33744	33744	33744	33744	33744	33744	33744	337439
GRADE/PAY RATE FORELLET DEERATOR GRADE/PAY RATE	1956 	32068	32048	32068	32048	32048	32068	32068	37068	32068	*2069	320477
grape and												\$3,020,808
MULE TRAINS	:						*					
EQUIPMENT COSTS												
SYSTEM COST F16 COST	\$15,000	60000									:	60000
LART COST FORMLIFT COST	\$1,100 \$24,000	111199 72000										111100 72000
REQUIRED TUSS REQUIRED CARTS	101	•										
REQUIRED FORKLIFTS MAINTEMANCE COST	0.07	17017	17017	17017	17017	17017	17017	17017	17017	17017	17017	170170
PERSONNEL COSTS												
TUS OPERATORS	4	135929	135929	135929	135929	135929	135929	135920	135929	135929	135929	1359288
GRADE/PAY RATE FORKLIFT OPERATOR SRADE/PA- RATE	1MG5/10.65 1MG5/10.65	98203	96203	96203	96203	96203	96203	96203	96203	94203	96203	962031
mage, and												\$2,73 4,58 9
FORKLIFTS					••••••							, - ,
EQUIPMENT COSTS												
SYSTEM COST FORMLIFT COST	0 \$24,000	240000										2400 0 0
REQUIRED FORKLIFTS MAINTENANCE COST	10	14800	1680C	16800	14800	16800	14800	15800	16800	19800	16800	168900
								•				
FERSONNEL COSTS FORVLIFT OPERATORS	10	320677	320677	320677	320677	320677	320677	320677	320677	320677	320677	3206771
SPADE/PAY PATE	WG5:10.05	360011	15.4811	15.001.	JEAG! (344017	35/01/	354011	250411	349011	340011	360011[
· · · · ·												\$3,614,771

Figure A-4

15.46	: CC3	`3
54FF	NE N	GREL CAE

nsens her kear - Undiscounted	rEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	FEAR 6	YEAR 7	YEAR 8	YEAR 9	FEAR 10	TOTAL
4389	5465243	5 867 5 3	580753	580753	580753	580753	580753	580753	580753	580753	10692918
TOWNEROFS	1874796	118206	138206	338206	338208	308206	33820 6	308206	339206	338206	1426194
THINGE HATERS	1 -74629	26.1629	28,2629	267677	263629	267629	263629	263629	161629	262629	3162286
HILE TRAINS	751.3 5 8	389558	389558	389558	387558	189558	389558	389558	189558	389558	4257377
EDER (TELE	808458	472468	472468	472468	472468	472468	472468	477468	472468	472468	5060679
JOSTS FER YEAR - 01500 NIED	rEAR 1	rear 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR R	FEAR 9	YEAR 10	18 [†] AL
AG.S	5213942	503513	457633	416490	378070	343806	317445	287969	258435	215205	8473336
10aVEYORS	3696470	293225	266506	242494	220172	200218	181955	165383	15050?	176973	5551997
TRANSPRATERS	967185	228566	207739	189022	171622	156068	141802	128714	117315	106770	2411934
MULE TRAINS	715195	127747	306971	279313	257602	2*0618	209582	100494	173353	157771	2856246
FORF (FTS	771278	409630	372305	338759	307577	279701	254188	231037	210248	191349	2769012
SUMMULATIVE COSTS - UNDISCOUNTED	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAF 6	YEAR 7	YEAR B	FEAR 7	YEAR 10	
A61-3	5465243	6045776	5626748	7207501	7788254	8369007	8949760	9530513	19111265	10697018	
*CW-EYURS	3814706	4212912	4551118	4889324	5227530	5565737	5903943	6242149	5580755	6918501	
TRINSPLATERS	1009629	1273257	1536886	1800514	2064143	2327771	2591400	2855028	0118657	3782286	
MULE TOAINS	751358	1140915	1570473	1920001	2309589	2599146	3088704	1478262	3867819	4257777	
FFFF, JFTŠ	808468	1280936	1753404	2225872	2698339	3170807	3643275	4115743	4588211	5060679	
[UMMILATIVE CISTO CISCOUNTED	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	1EAR 10	
#TV\$	5213842	5717354	6174788	6591387	6969457	7313267	7625708	7909696	8158131	8403335	
194/EYERS	3696470	1989694	4255201	4498694	4718867	4919085	5101040	5266422	5416924	5551307	
THUNSPORTERS	963185	1191752	:399491	1598513	1760135	1916203	2058035	2186949	2394264	2411004	
MACE TRAINS	115795	1054542	1361513	1640826	1694428	2125046	2334628	2525172	2598475	08560å6	
FSF, [FTS	7712°B	1190908	1553213	1891972	2199549	2479250	2737437	2964474	11/4/22	3366070	

Figure A-5

, ;	AF.	٠	Ĺ	ŀ¢	ΙĊ
,,	000	¥.	٠.;	٠1	0.55

C STEER YEAR UNDISCOUNTED	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	FEAR 10	TOTAL
47, 7	SASTOST	616013	616013	616013	616013	616013	616013	616013	710818	616013	11755173
ting to or ;	1907/196	3411076	346076	340076	340096	340036	\$40076	340076	340074	\$40076	454444
I As from a	100 5+23	257427	263623	267629	263629	P74747	763679	263629	763629	767679	T192784
Migration (A) He	P77474	425776	425976	475976	425976	425776	425976	475976	425774	175976	4456357
40.6 i.b	721711	573711	577711	573711	577711	57741	5/3/11	573711	573711	93211	6145114
THE ENGLISHED TO SET WHEEP	ı FAZı	YEAR 2	rear 1	YEAR 4	YEAR 5	TEAP A	(EAR)	FFAR 8	FAR 9	HAR 10	191 4 (
to	5553285	514984	485418	441682	401625	344680	331415	301211	274176	747485	8518 110
104 f (87.)	7774031	774847	267776	74 3849	271463	261337	182972	1563 17	151713	177777	5571979
, dvPdeGaléra	353186	779566	207737	187022	171627	154069	141932	179914	117315	196770	2411074
mer e Ledinić	784737	369121	335659	305475	277310	252119	2.71 -5	208302	187557	177524	7174197
Edzi () t uz	73 655 7	477407	451084	411351	377486	179611	308657	28/1545	25 5711	232353	נגנ. פֿרן
चच विद्यार १९३६ - सुप्रहाद्वरणकाहरू	1 243,	TEAR 2	t arbe	FAP 4	YEAR 5	reap 5	AEDE .	YEAR 9	AEDE 3	·kus iv	
A4.5	5921053	5437061	7953080	7669093	8285107	8901120	\$517133	10133147	10749157	11365173	
Tractions	1903596	4241692	4593798	4923984	576;9 9 0	5604077	5744173	6284249	5624345	4761461	
that context	1007679	1273257	1536886	1800514	2064147	7327771	2571400	2955028	3119657	**P2786	
H → (cδth	902576	1249552	1474578	2199564	7574479	2957455	3378431	1804407	47101B1	1454155	
Care Hils	991711	1555422	2129173	2702844	3276555	1850561	4423777	4997688	5571379	+145110	
CAMMEN OFF COSES DESCRIPTION	AEUB 1	YEAR 7	t RABIT	1€AR 4	YEAR 5	YFAP A	YEAR ?	YEAR R	YEAR ?	FERR 15	
(Mos. 2)	55517 85	6082368	6572787	7014448	7415493	7780173	8111589	8417819	9694445	P216430	
मा बर्ग्स्स् स्ट्राह	1.774031	4018924	4296890	4536739	4752141	4951479	5136450	5302157	5454110	5531848	
(sawacob)tb3	263186	1191752	1399471	1588513	1760135	1916253	2058035	2186749	2304264	2411034	
My & TRAINS	794737	1154059	1489728	1795152	2077443	2324641	2553815	2762118	2951677	1124197	
tiek leid	936552	1473760	1996044	2297395	2670881	101-1518	1319174	3579719	3855020	4-87373	

Figure A-6

*EARL: TESTS O. WORLDAS											
COSTS FER HEAR _ DHU(SCENMIEC	1EAR 1	YEAR 2	FEAR J	YEAR 4	YEAR S	rEAR 6	YEAR ?	tEAF A	YEAR +	vear (C	τρτρι
AC.	4753622	\$16232	519232	510002	510237	510212	510232	51/172	510232	516002	4715718
TT#+EYBRS	3815579	366099	106699	306099	306099	*06099	304979	105099	316099	306099	55*1471
THIRN SECRIFFE	951981	229881	179881	229881	229681	229881	225881	129891	227621	229881	1020818
MILE TRAINS	472249	249149	249149	249149	249149	249149	249149	249145	249149	247149	277,4589
FORE LIFTS	577477	337477	337477	337477	237477	327477	327477	337477	337477	11411	3614771
COSTS PER YEAR - BIESCUNTED	rEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR B	EAR 9	YEA9 10	1014
47.45	4534755	442371	402063	365936	372161	302057	274505	24956*	227053	206644	7337146
TILLE FERENCE	3640082	265188	241206	219473	199270	191211	164681	149687	176214	127976	5171719
teanfeof ters	908074	199307	181146	164825	149652	136089	123676	112412	102297	93102	717065-
MULE TRAINS	469605	216012	196329	179640	162196	147476	134042	121674	110871	10/905	.23797!
FORM OF IS	550913	292593	255932	241971	219698	199786	181543	165076	150177	176678	24 (4327
CUMMULATIVE COST) - ENGISCOUNTED	VEAR 1	∙€4R ?	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAF B	FEAR 9	OJ RAJY	
At. VS	4753622	\$260954	5774085	6284317	6794549	7304781	7815013	8325145	8535476	¢345748	
10#4 E 70R3	3815599	4171698	4427797	4733896	5079995	5346054	5652193	5958293	6264392	6570471	
194419091898	951881	1181762	1411643	1641523	1871404	2101285	2331166	2561047	2790928	302086 8	
MOLE TRAINS	492249	741398	990547	1239696	1488845	1737923	1987142	2236271	2465440	2774589	
FOFKLIFTS	577477	9:4954	1252431	1589708	1927385	2764862	2602339	7939815	3277294	3614771	
CUMMULATIVE COST: - DISCOUNTED	YEAR I	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	YEAR 10	
4649	4534955	4977326	5379389	5745225	6077386	6379443	6653948	6903451	7139504	7337148	
TOWVEYORS	3640082	3905469	4146675	4366148	4565419	4746636	4711311	5060993	5197207	5721178	
THONGRERTERS	76809 \$	1107401	1288547	1453372	1603024	1739114	1842789	1975261	2077498	2176696	
₩ C TRATHS	469495	585419	891747	1060587	1222783	1370279	1564721	1676155	1737026	1837511	

c. 2, 1: 5

550313 343506 1109438 1351409 1571106 1770893 1952455 2117482 2267659 2404337

APPENDIX B

Figure B-1 provides the detailed annual cost amounts for the major cost elements within the package conveyer alternative. Also, included are the annual cost totals and the cumulative costs in both discounted and undiscounted dollars.

Figure B-1

25 FATS ED COLO THE BRHATTON												
POTENTE 13NVEY3RS												
EGO, HENT FOSIS												:
# 17# 40%; 118 : 111 Madule Gest 86201863 1065	1 4 5 (13) 4 10,955 1 4 1,750	630660 19603 120010										6 thags 170 cm
KEĞÜLEĞÜ VEHLELET HALMIENAWIŞ TÖŞT		441 20	441:10	44100	44109	44105	44190	44100	44169	44106	44; 10	441176 -
FFET New Control												1
UPNULLE TERRATORS TUD OFFIATORS UPDE TAY FAIF	₩65°10.05	12063	3296B	32068	32068	32048	32068	32968	32058	3296 8	30068	3206**
												· •
												\$1,511,677
RAGE INF WIRKLINAS												
		t€AF [YEAR ?	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	FAR 9	1EAF 10	IGTAL
Alteria	· 4167	936(58	76169	76168	76168	76168	76158	75168	76168	76168	16178	1521677
one the Peach Baseon	V1E0	79*704	66037	60020	54612	4 9585	45091	40978	37246	33852	10948	1216017
CUMMU ATTIE COSTS - UND	ISCOUNTED	676168	912335	988503	1064671	1140839	12170^6	1293174	1369342	1445509	1521 577	

TUMMATRIE TOSTS - DISCOUNTED 797794 853741 923762 978374 1027959 1073050 1114029 1151274 1185169 1216017

REPORT DOCUMENTATION PAGE

Form Approved

()M8 No. 0704 0188

on the product content for this content on product and producting the bounger obspires and degree tome for reviewing instructions specified by the bounger of the content of the production of the content of the conten

	22272.4302, and to the other it Management	and Builtier. Paperwiger Reduction Project	(9764-0185) Washington (3: 2053)
1. AGENCY USE ONLY (Leave	blank) 2. REPORT DATE October 1991	3. REPORT TYPE AND Final	DATES COVERED
4. TITLE AND SUBTITLE	PULLUDET 1991		. FUNDING NUMBERS
	Analysis of Material		
	Connector Building Con		
6. AUTHOR(S)			
Henry J. Kostanski			
7. PERFORMING ORGANIZATION	I MANAGES AND ADDRESSES		PERFORMING ORGANIZATION
	• •	1°	REPORT NUMBER
HQ Defense Logistic	and Economic Analysis	office (DIA-IO)	
Cameron Station	and Economic Analysis	1	NI A D10000
Alexandria, VA 223	04-6100		DLA-92-P10090
Atexandita, VA 223	04-0100		
9. SPONSORING/MONITORING A	AGENCY NAME(S) AND ADDRESS	ES) IC	. SPONSORING / MONITORING
Defense Logistics A	gency (DLA-OW)		AGENCY REPORT NUMBER
Cameron Station	(======================================	ļ	
Alexandria, VA 2230	04-6100 ~		
11. SUPPLEMENTARY NOTES			
2a. DISTRIBUTION / AVAILABILIT	Y STATEMENT	12	b. DISTRIBUTION CODE
		•	
Public Release; Unli	imited Distribution	i	
•			
3. This study compare	s the cost of implemen	nting an automated of	juided Venicle
system to the cost	of utilizing convent	ional equipment for	the same functions
in the Connector B	uilding Complex (CBC)	at Derense Depot Ri	comono, virginia
(DDRV). The origin	nal concept for the Co	onnector Bullaing Co	mplex included an
automated guided vo	ehicle system to be in rts in progress throu	mstatted unroughout.	on of DDDV may be
consolidation ello	therefore necessary to	prouc DIA, die mussi pronform an analysi	s to determine
if an ACV cristian of	r an alternate type of	f conjument would be	a most cost
offective for the	CBC. The results of t	the study indicate t	hat an AGV system
everem would not be	e cost effective at a	ny foreseeable workl	oad level.
	a full scale AGV syste		
	ich DDRV currently	handles, would have	a 10-vear life
cycle cost of \$8.4	million in discounted		
forklifts and trans	sporters to handle the	same workload, at	a cost of \$2.2
million in discount	ted dollars, over the	same life cycle. Se	election of this
alternative would i	result in a cost savir	ngs to DLA of \$6.2 m	uillion in
	over the AGV system.		
. SUBJECT TERMS			15. NUMBER OF PAGES
Analysis Automated	Guide Vehicle, Mater	sial Wandling Fauinm	43
Analysis, Adeomated	Guide venicie, macei	rai nandiing Equip	16. PRICE CODE
SECURITY CLASSIFICATION OF REPORT	18 SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFITD	l
CHOMMODIFIED	GOODHOOTETIN	1	i '