35

5

10

CLAIMS

1. A method for detecting interlace motion artifacts comprising:
a) detecting a presence of multiple vertical frequencies in an image;
b) analyzing relative levels of the presence of multiple vertical frequencies; and
c) deriving an indication of a presence of motion artifacts.
2. The method of claim 1 further comprising:
a) determining an overall measure of image intensity and dynamic range; and
b) compensating the indication of the presence of motion artifacts in areas of low luminosity or contrast.
3. A method for the detection of interlaced motion artifacts comprising:
a) obtaining eight vertically aligned luma data samples;
b) calculating a partial discrete fourier transform for a f_{max} value;
c) calculating a partial discrete fourier transform for a $f_{\text{max}}/2$ value; and
d) calculating a partial discrete fourier transform for a $f_{\text{max}}/4$ value.
4. The method of claim 3 further comprising:
a) obtaining four vertically aligned luma data samples;
b) calculating a second f_{max} value; and

c) passing the f_{max} value, the $f_{\text{max}}/2$ value, the $f_{\text{max}}/4$ value and the second f_{max} value

though a filter resulting in a filtered f_{max} value, a filtered $f_{\text{max}}/2$ value, a filtered $f_{\text{max}}/4$ value

60472-302101 (DVDOP021)/PLH/JPK

35

5

10

and a filtered second $f_{\mbox{\tiny max}}$ value.

- 5. The method of claim 4 wherein the filtered values are obtained by:
- a) obtaining a first and second previous f_{max} values, a current f_{max} value and a next and second next f_{max} values;
 - b) doubling the first previous, current and next f_{max} values;
- c) summing the doubled first previous, current and next f_{max} values with the second previous and second next f_{max} value; and
 - d) dividing the sum by 8.
- 6. A method for boosting frequency detection values in areas of low brightness and contrast comprising:
 - a) obtaining a plurality of input pixel data values;
 - b) determining a maximum value;
 - c) determining a range value; and
- d) selectively boosting a frequency detection value based upon the maximum value, the range value and a plurality of filtered frequency detection values.
- 7. The method of claim 6 wherein the selective boosting of a frequency detection value comprises:
 - a) comparing the range value to a first range threshold;
 - b) comparing the maximum value to a first maximum threshold;
- c) multiplying the frequency detection value by a first scale factor if the range value is less than the first range threshold and the maximum value is less than the first maximum threshold; and

10

- d) taking no further action if the range value is less than the first range threshold and the maximum value is less than the first maximum threshold.
- 8. The method of claim 7 further comprising:
 - a) comparing the range value to a second range threshold;
 - b) comparing the maximum value to a second maximum threshold;
- c) multiplying the frequency detection value by a second scale factor if the range value is less than the second range threshold and the maximum value is less than the second maximum threshold; and
- d) taking no further action if the range value is less than the second range threshold and the maximum value is less than the second maximum threshold.
- 9. The method of claim 8 further comprising:
 - a) comparing the range value to a third range threshold;
 - b) comparing the maximum value to a third maximum threshold;
- c) multiplying the frequency detection value by a third scale factor if the range value is less than the third range threshold and the maximum value is less than the third maximum threshold; and
- d) taking no further action if the range value is less than the third range threshold and the maximum value is less than the third maximum threshold.
- 10. A method for the prevention of false detection of interlace motion artifacts comprising:
 - a) obtaining a plurality of f_{max} frequency detection values;
 - b) comparing the plurality of f_{max} frequency detection values to a threshold; and

30

10

- c) adjusting the plurality of $f_{\text{\scriptsize max}}$ frequency detection values based upon the comparison.
- 11. The method of claim 10 wherein the plurality of f_{max} frequency detection values comprises a composite f_{max} frequency detection value, a level-boosted $f_{max}/2$ frequency detection value and a level-boosted $f_{max}/4$ frequency detection value.
- 12. The method of claim 11 wherein the composite f_{max} frequency detection value is adjusted by:
- a) comparing the composite f_{max} frequency detection value to a first low frequency threshold;
- b) multiplying a first low frequency scale factor by the level-boosted $f_{\text{max}}/2$ frequency detection value and subtracting from the composite f_{max} frequency detection value if the composite f_{max} frequency detection value is less than the first low frequency threshold; and
- c) multiplying a second low frequency scale factor by the level-boosted $f_{\text{max}}/2$ frequency detection value and subtracting from the composite f_{max} frequency detection value if the composite f_{max} frequency detection value is greater than the first low frequency threshold.
- 13. The method of claim 12 wherein the composite f_{max} frequency detection value is adjusted by:
- a) comparing the level-boosted $f_{\text{max}}/4$ frequency detection value to a second low frequency threshold;
- b) multiplying a third low frequency scale factor by the level-boosted $f_{\text{max}}/4$ frequency detection value and subtracting from the composite f_{max} frequency detection value if the level-boosted $f_{\text{max}}/4$ frequency detection value is less than the second low frequency threshold; and
 - c) multiplying a fourth low frequency scale factor by the level-boosted $f_{\text{max}}/4$

35

30

35

frequency detection value and subtracting from the composite f_{max} frequency detection value if the level-boosted $f_{max}/4$ frequency detection value is greater than the second low frequency threshold.

- 5
- 14. The method of claim 13 further comprising setting the composite f_{max} frequency detection value to zero if the composite f_{max} frequency detection value is less than zero.
- 15. The method of claim 13 wherein the composite f_{max} frequency detection value is lowpass filtered.
- 10
- 16. The method of claim 15 wherein the lowpass filtering is comprises:
- a) obtaining a first and second previous f_{max} values, the composite f_{max} frequency detection value and a next and second next f_{max} values;
 - b) doubling the first previous, and next f_{max} values;
 - c) octupling the composite f_{max} frequency detection value;
- d) summing the doubled first previous f_{max} value, the doubled next f_{max} value, the octupled f_{max} frequency detection value with the second previous and second next f_{max} value; and
 - e) dividing the sum by 8.
- 17. A system for the reduction of interlace motion artifacts by vertical frequency analysis comprising:
- a) a four-point partial discrete fourier transform module responsive to a set of four vertically aligned luma data sample inputs selected from and approximately centered about a set of eight vertically aligned luma data sample inputs and operative to develop a first frequency detection value;
- b) an eight-point partial discrete fourier transform module responsive to the set of eight vertically aligned luma data sample inputs and operative to develop a second, third and fourth frequency detection value;

5

- c) a dynamic range/maximum detection module responsive to the set of eight vertically aligned luma data sample inputs in conjunction with pixel data from a two-dimensional array surrounding a current input pixel and operative to develop a maximum data value and a range value;
- d) a horizontal lowpass filter module responsive to the first, second, third and fourth frequency detection values and operative to develop filtered first, second, third and fourth frequency detection values;
- e) a detection value boost module responsive to the filtered first, second, third and fourth frequency detection values, the maximum data value and the range value, operative to develop a level boosted four-point f_{max} frequency detection value, a level boosted eightpoint f_{max} frequency detection value, a level boosted $f_{max}/2$ frequency detection value and a level boosted $f_{max}/4$ frequency detection value;
- f) an averaging module responsive to the level boosted four-point frequency detection value and the level boosted eight-point frequency detection value, operative to develop a numeric average;
- g) a threshold comparison/level correction module responsive to the numeric average, the level boosted $f_{\text{max}}/2$ frequency detection value and the level boosted $f_{\text{max}}/4$ frequency detection value, operative to develop a level-corrected f_{max} frequency detection value;
- h) a horizontal weighted average module responsive to the level-corrected f_{max} frequency detection value and operative to develop a center-weighted horizontal frequency detection value; and
- i) a threshold adjust module responsive to the center-weighted horizontal frequency detection value and operative to develop a final frequency detection value.