

Instituto de Computação UNIVERSIDADE ESTADUAL DE CAMPINAS

Organização Básica de computadores e linguagem de montagem

Organização do IAS e execução de instruções

Prof. Edson Borin

https://www.ic.unicamp.br/~edson

Institute of Computing - UNICAMP

O Computador IAS

- Programar o ENIAC era uma tarefa tediosa e demorada.
- Em 1945, projetistas do ENIAC, incluindo John von Neumann, propuseram o "conceito de programa armazenado". O programa é armazenado na memória, juntamente com os dados.
 - A ideia também foi concebida por Alan Turing.

O Computador IAS

- De 1946 a 1952, Neumann e seus colegas no Instituto de Estudos Avançados (IAS) de Princeton desenvolveram o computador "IAS".
- O IAS serviu como protótipo para vários computadores de propósito geral subseqüentes.

Estrutura do Computador IAS

Estrutura do Computador IAS

- Memória do IAS
- I024 palavras de 40 bits
 - Números e instruções representados na forma binária

Endereços

- Memória do IAS
- 1024 palavras de 40 bits
 - Números e instruções representados na forma binária

Dados ou Instruções

Armazenamento de um Número

Armazenamento de um Número

Palavra para armazenamento de instruções

- Operação: execução de instruções, uma a uma.
- Processo de execução é dividido em dois ciclos:
 - 1) <u>ciclo de busca</u>: a instrução é lida da memória
 - 2) <u>ciclo de execução</u>: uma vez lida da memória, a instrução é executada

Ciclo de busca (Simplificado)

- Unidade de controle envia o endereço contido em PC (contador do programa) para a memória
- 2. A memória lê o conteúdo da memória a partir do endereço fornecido.
- 3. A Unidade de controle copia o dado lido para o registrador IR (registrador de instrução)

Ciclo de execução

- Unidade de controle decodifica a instrução no registrador IR.
- 2. Se necessário, a unidade de controle lê operandos da memória.
- 3. A unidade de controle envia sinais para a unidade lógica e aritmética para realizar a operação.
- 4. Se necessário, a unidade de controle escreve o resultado na memória.

Exemplo: Execução da instrução LOAD M(X)

- Transfere M(X) para o acumulador
- acumulador = registrador AC
- M(X) = conteúdo da memória no endereço X
- Código de operação: 00000001

LOAD M(12)
Transfere o dado no
endereço 12 da
memória para o
registrador AC.

Ciclo de busca completo

- O código da instrução a ser executada está em IR
- O valor do campo endereço da instrução a ser executada está em MAR

O próximo passo é executar o ciclo de execução

Ciclo de execução completo

- O conteúdo da memória no endereço 12 foi copiado para o registrador AC.
- A próxima instrução pode ser executada a partir do ciclo de busca.
 - Note que o ciclo de busca da próxima instrução deve buscar a instrução do IBR, em vez da memória!
 - Ciclo de busca à direita!

Ciclo de execução completo

- O conteúdo da memória no endereço 12 foi copiado para o registrador AC.
- A próxima instrução pode ser executada a partir do ciclo de busca.
 - Note que o ciclo de busca da próxima instrução deve buscar a instrução do IBR, em vez da memória!
 - Ciclo de busca à direita!

E a instrução subsequente (3^a)? De onde ela deve ser buscada?

Estrutura do Computador IAS: Exercício

A instrução ADD M(X) soma o valor na posição X da memória com o valor do registrador AC e grava o resultado no registrador AC.

- Qual a diferença entre o ciclo de busca desta instrução e o ciclo de busca da instrução LOAD M(X)?
- 2. Descreva o ciclo de execução da instrução ADD M(X).

Computadores de Propósito Geral

Leitura

Apostila: Programando o Computador IAS