Problem Set #4

Reiko Laski

Exercise 6.6

$$f(x,y) = 3x^2y + 4xy^2 + xy$$

$$Df(x,y) = \begin{bmatrix} 6xy + 4y^2 + y \\ 3x^2 + 8xy + x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\implies x = -\frac{1}{3}, \quad y = 0$$

$$x = -\frac{1}{9}, \quad y = -\frac{1}{12}$$

$$x = 0, \quad y = -\frac{1}{4}$$

$$x = 0, \quad y = 0$$

$$D^2 f(x,y) = \begin{bmatrix} 6y & 6x + 8y + 1 \\ 6x + 8y + 1 & 8x \end{bmatrix}$$

$$D^2 f\left(-\frac{1}{3}, 0\right) = \begin{bmatrix} 0 & -1 \\ -1 & -\frac{8}{3} \end{bmatrix} \implies \lambda = -\frac{1}{3}, 3$$

$$D^2 f\left(-\frac{1}{9}, -\frac{1}{12}\right) = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{8}{9} \end{bmatrix} \implies \lambda = -1.08, -0.31$$

$$D^2 f\left(0, -\frac{1}{4}\right) = \begin{bmatrix} -\frac{3}{2} & -1 \\ -1 & 0 \end{bmatrix} \implies \lambda = \frac{1}{2}, -2$$

$$D^2 f(0, 0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \implies \lambda = -1, 1$$

 $(-\frac{1}{3}, 0) \Longrightarrow \text{ saddle point}$ $(-\frac{1}{9}, -\frac{1}{12}) \Longrightarrow \text{ maximizer}$ $(0, -\frac{1}{4}) \Longrightarrow \text{ saddle point}$ $(0, 0) \Longrightarrow \text{ saddle point}$

Exercise 6.7

(i) For any square matrix A the matrix $Q = A^T + A$ is symmetric, and $\mathbf{x}^T Q \mathbf{x} = \mathbf{x}^T A^T \mathbf{x} + \mathbf{x}^T A \mathbf{x} = 2\mathbf{x}^T A \mathbf{x}$. Then

$$\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x} + c = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} - \mathbf{b}^T \mathbf{x} + c.$$

Proof:

Let A be a square matrix. Then $Q = A + A^T \implies Q^T = (A + A^T)^T = A + A^T = Q$, so $Q = A + A^T$ is symmetric. Then

$$\mathbf{x}^{T}Q\mathbf{x} = \mathbf{x}^{T}(A + A^{T})\mathbf{x}$$
$$= \mathbf{x}^{T}A\mathbf{x} + \mathbf{x}^{T}A^{T}\mathbf{x}$$
$$= \mathbf{x}^{T}A\mathbf{x}.$$

By substitution, we can show that the objective function of the problem is

$$\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x} + c = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} - \mathbf{b}^T \mathbf{x} + c.$$

(ii) Any minimizer \mathbf{x}^* of f is a solution of the equation

$$Q^T \mathbf{x}^* = \mathbf{b}.$$

Proof:

This follows from the FONC: $f'(\mathbf{x}) = Q^T \mathbf{x} - b$.

(iii) The quadratic minimization problem will have a unique solution if and only if Q is positive definite, and in that cause, the mnimizer is the solution of the linear system in part (i).

Exercise 6.11

Consider the quadratic function $f(x) = ax^2 + bx + c$, where a > 0, and $b, c \in \mathbb{R}$. For any initial guess $x_0 \in \mathbb{R}$, one iteration of Newton's method lands at the unique minimizer of f.

Proof:

As shown in the textbook, for an intial guess x_0 we have that

$$q(x_0) = f(x_0) = ax_0^2 + bx_0 + c$$

$$q'(x_0) = f'(x_0) = 2ax_0 + b$$

$$q''(x_0) = f''(x_0) = 2a$$

Solving for x_1 , we find that

$$x_1 = x_0 - \frac{2ax_0 + b}{2a} = x_0 - x_0 - \frac{b}{2a} = -\frac{b}{2a}.$$

Recall that this is the formula for the minimizer of a parabola, and thus Newton's method solved for the unique minimizer in one iteration.

Exercise 7.1

If S is a nonempty subset of V, then conv(S) is convex. Proof:

Let $\mathbf{x}, \mathbf{y} \in S$ s.t.

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \in S \tag{1}$$

$$\mathbf{y} = \beta_1 \mathbf{x}_1 + \dots + \beta_k \mathbf{x}_k \in S \tag{2}$$

where $x_1, ..., x_k \in S$, $\sum_{i=1}^k \alpha_i = 1$, $\sum_{i=1}^k \beta_i = 1$. Multiplying equation (1) by λ and equation (2) by $1 - \lambda$, we get

$$\lambda \mathbf{x} = \lambda \alpha_1 \mathbf{x}_1 + \dots + \lambda \alpha_k \mathbf{x}_k$$
$$(1 - \lambda) \mathbf{y} = (1 - \lambda) \beta_1 \mathbf{x}_1 + \dots + (1 - \lambda) \beta_k \mathbf{x}_k$$

where $\sum_{i=1}^k \lambda \alpha_i = \lambda \sum_{i=1}^k \alpha_i = \lambda$ and $\sum_{i=1}^k (1-\lambda)\beta_i = (1-\lambda)\sum_{i=1}^k \beta_i = 1-\lambda$. Then we know that

$$\lambda \alpha_1 \mathbf{x}_1 + \dots + \lambda \alpha_k \mathbf{x}_k + (1 - \lambda)\beta_1 \mathbf{x}_1 + \dots + (1 - \lambda)\beta_k \mathbf{x}_k$$

= $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in S$

This shows that conv(S) is convex.

Exercise 7.2

(i) A hyperplane is convex.

Proof:

Let P be a hyperplane and let $\mathbf{x}, \mathbf{y} \in P$, i.e. $\langle \mathbf{a}, \mathbf{x} \rangle = b$ and $\langle \mathbf{a}, \mathbf{y} \rangle = b$. Then for some $0 \le \lambda \le 1$,

$$\langle \mathbf{a}, \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \rangle = \langle \mathbf{a}, \lambda \mathbf{x} \rangle + \langle \mathbf{a}, (1 - \lambda) \mathbf{y} \rangle$$
$$= \lambda \langle \mathbf{a}, \mathbf{x} \rangle + (1 - \lambda) \langle \mathbf{a}, \mathbf{y} \rangle$$
$$= \lambda b + (1 - \lambda) b$$
$$= b$$

which means that $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in P$.

(ii) A half space is convex.

Proof:

Let H be a half space and let $\mathbf{x}, \mathbf{y} \in H$, i.e. $\langle \mathbf{a}, \mathbf{x} \rangle = c$ and $\langle \mathbf{a}, \mathbf{y} \rangle = d$ where $c, d \leq b$. Then for some $0 \leq \lambda \leq 1$,

$$\langle \mathbf{a}, \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \rangle = \langle \mathbf{a}, \lambda \mathbf{x} \rangle + \langle \mathbf{a}, (1 - \lambda) \mathbf{y} \rangle$$

$$= \lambda \langle \mathbf{a}, \mathbf{x} \rangle + (1 - \lambda) \langle \mathbf{a}, \mathbf{y} \rangle$$

$$= \lambda c + (1 - \lambda) d$$

$$\leq \lambda b + (1 - \lambda) b$$

$$= b$$

which means that $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in H$.

Exercise 7.4

Let $C \subset \mathbb{R}^n$ be nonempty, closed, and convex. A point $\mathbf{p} \in C$ is the projection of \mathbf{x} onto C if and only if

$$\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \ge 0, \ \forall \mathbf{y} \in C.$$
 (3)

Proof:

First, prove the following statements:

(i)
$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$
.

Subproof:

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{p} + \mathbf{p} - \mathbf{y}\|^2$$

$$= \langle (\mathbf{x} - \mathbf{p}) + (\mathbf{p} - \mathbf{y}), (\mathbf{x} - \mathbf{p}) + (\mathbf{p} - \mathbf{y}) \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle + \langle \mathbf{p} - \mathbf{y}, \mathbf{p} - \mathbf{y} \rangle + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$= \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

(ii) If the equality in (i) holds, then $\|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\|$ for all $\mathbf{y} \in C, \mathbf{y} \neq \mathbf{p}$. Subproof:

If the equality in part (i) holds, then $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$. Then

$$\|\mathbf{x} - \mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + \|\mathbf{p} - \mathbf{y}\|^2 + 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle$$

$$\implies \|\mathbf{x} - \mathbf{y}\|^2 > \|\mathbf{x} - \mathbf{p}\|^2$$

$$\implies \|\mathbf{x} - \mathbf{y}\| > \|\mathbf{x} - \mathbf{p}\|$$

(iii) If
$$\mathbf{z} = \lambda \mathbf{y} + (1 - \lambda)\mathbf{p}$$
, where $0 \le \lambda \le 1$, then

$$\|\mathbf{x} - \mathbf{z}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2.$$

Subproof:

$$\|\mathbf{x} - \mathbf{z}\|^{2} = \|\mathbf{x} - \lambda \mathbf{y} - (1 - \lambda)\mathbf{p}\|^{2}$$

$$= \|\mathbf{x} - \lambda \mathbf{y} - \mathbf{p} - \lambda \mathbf{p}\|^{2}$$

$$= \langle (\mathbf{x} - \mathbf{p}) - \lambda(\mathbf{y} - \mathbf{p}), (\mathbf{x} - \mathbf{p}) - \lambda(\mathbf{y} - \mathbf{p}) \rangle$$

$$= \langle \mathbf{x} - \mathbf{p}, \mathbf{x} - \mathbf{p} \rangle - 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{y} - \mathbf{p} \rangle + \lambda^{2} \langle \mathbf{y} - \mathbf{p}, \mathbf{y} - \mathbf{p} \rangle$$

$$= \|\mathbf{x} - \mathbf{p}\|^{2} + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^{2} \|\mathbf{y} - \mathbf{p}\|^{2}$$

(iv) If **p** is a projection of **x** onto the convex set C, then $\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle \geq 0$ for all $\mathbf{y} \in C$. Subproof:

From part (iii), we know that

$$\|\mathbf{x} - \mathbf{z}\|^2 = \|\mathbf{x} - \mathbf{p}\|^2 + 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2$$

$$\implies \|\mathbf{x} - \mathbf{z}\|^2 - \|\mathbf{x} - \mathbf{p}\|^2 = 2\lambda \langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda^2 \|\mathbf{y} - \mathbf{p}\|^2$$

Since $\mathbf{p} = proj_C \mathbf{x}$ and $\mathbf{z} \in C$,

$$\|\mathbf{x} - \mathbf{p}\| \le \|\mathbf{x} - \mathbf{z}\|$$

$$\implies \|\mathbf{x} - \mathbf{p}\|^2 \le \|\mathbf{x} - \mathbf{z}\|^2$$

$$\implies 0 \le \|\mathbf{x} - \mathbf{z}\|^2 - \|\mathbf{x} - \mathbf{p}\|^2$$

Therefore,

$$0 \le 2\langle \mathbf{x} - \mathbf{p}, \mathbf{p} - \mathbf{y} \rangle + \lambda \|\mathbf{y} - \mathbf{p}\|^2, \quad \forall \mathbf{y} \in C, \lambda \in [0, 1].$$

Exercise 7.8

If $f: \mathbb{R}^m \to \mathbb{R}$ is convex, if $A \in M_{m \times n}(\mathbb{R})$, and if $\mathbf{b} \in \mathbb{R}^m$, then the function

 $g: \mathbb{R}^m \to \mathbb{R}$ given by $g(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b})$ is convex. *Proof:*

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}$. Then we know that

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

We want to know if g is convex:

$$g(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) = f(A(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) + \mathbf{b})$$

$$= f(A\lambda \mathbf{x}_1 + A(1 - \lambda)\mathbf{x}_2 + \mathbf{b})$$

$$= f(\lambda(A\mathbf{x}_1 + \mathbf{b}) + (1 - \lambda)(A\mathbf{x}_2 + \mathbf{b}))$$

$$\leq \lambda f(A\mathbf{x}_1 + \mathbf{b}) + (1 - \lambda)f(A\mathbf{x}_2 + \mathbf{b})$$

$$= \lambda g(\mathbf{x}_1) + (1 - \lambda)g(\mathbf{x}_2)$$

Exercise 7.12

(i) The set $PD_n(\mathbb{R})$ of positive-definite matrices in $M_n(\mathbb{R})$ is convex. *Proof:*

Let $A, B \in PD_n(\mathbb{R})$. Then for all $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^T A \mathbf{x} > 0$$
 and $\mathbf{x}^T B \mathbf{x} > 0$

We want to know if $\lambda A + (1 - \lambda)B \in PD_n(\mathbb{R})$:

$$\mathbf{x}^{T}(\lambda A + (1 - \lambda)B)\mathbf{x} = \lambda \mathbf{x}^{T}A\mathbf{x} + (1 - \lambda)\mathbf{x}^{T}B\mathbf{x} > 0$$

Therefore the set $PD_n(\mathbb{R})$ is convex.

- (ii) The function $f(X) = -\log(\det(X))$ is convex on $PD_n(\mathbb{R})$. *Proof:* To do this, we must prove the following:
- (a) The function f is convex if for every $A, B \in PD_n(\mathbb{R})$ the function $g(t) : [0, 1] \to \mathbb{R}$ given by g(t) = f(tA + (1 t)B) is convex.

Subproof: Let g be convex. Then we know that

$$g(\lambda t_1 + (1 - \lambda)t_2) \leq \lambda g(t_1) + (1 - \lambda)g(t_2)$$

$$\implies f[(\lambda t_1 + (1 - \lambda)t_2)A + (1 - (\lambda t_1 + (1 - \lambda)t_2))B]$$

$$\leq \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B)$$

$$\implies f[(\lambda t_1 + (1 - \lambda)t_2)A + (1 - (\lambda t_1 + (1 - \lambda)t_2))B]$$

$$\leq \lambda f(t_1 A + (1 - t_1)B) + (1 - \lambda)f(t_2 A + (1 - t_2)B)$$

Expanding LHS of the equation,

$$f[(\lambda t_1 + (1 - \lambda)t_2)A + (1 - (\lambda t_1 + (1 - \lambda)t_2))B]$$

$$= f[(\lambda t_1 + (1 - \lambda)t_2)A + (\lambda + (1 - \lambda) - (\lambda t_1 + (1 - \lambda)t_2))B]$$

$$= f[\lambda t_1 A + (1 - \lambda)t_2 A + \lambda B + (1 - \lambda)B - \lambda t_1 B + (1 - \lambda)t_2 B]$$

$$= f[\lambda t_1 A + (1 - \lambda)t_2 A + \lambda (1 - t_1)B + (1 - \lambda)(1 - t_2)B]$$

$$= f[\lambda (t_1 A + (1 - t_1)B) + (1 - \lambda)(t_2 A + (1 - t_2)B)]$$

The inequaity above becomes

$$f[\lambda(t_1A + (1 - t_1)B) + (1 - \lambda)(t_2A + (1 - t_2)B)]$$

$$\leq \lambda f(t_1A + (1 - t_1)B) + (1 - \lambda)f(t_2A + (1 - t_2)B)$$

Letting $X = t_1 A + (1 - t_1) B$ and $Y = t_2 A + (1 - t_2) B$, we get

$$f[\lambda X + (1 - \lambda)Y] \le \lambda f(X) + (1 - \lambda)f(Y)$$

and we can see that f is a convex function.

(b) There is an S such that $S^H S = A$ and

$$g(t) = -\log(\det(S^H(tI + (1-t)(S^H)^{-1}BS^{-1})S))$$

= -\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})S))

Subproof:

Since A is positive definite, we know that there exists an S such that $A = S^H S$.

$$g(t) = f(tA + (1 - t)B)$$

$$= -\log(\det(tA + (1 - t)B))$$

$$= -\log(\det(tS^{H}S + (1 - t)B))$$

$$= -\log(\det(tS^{H}S + S^{H}(S^{H})^{-1}(1 - t)BS^{-1}S))$$

$$= -\log(\det(S^{H}(tI + (1 - t)(S^{H})^{-1}BS^{-1}S))$$

Then

$$\begin{split} g(t) &= -\log(\det(S^H S) \det(tI + (1-t)(S^H)^{-1}BS^{-1})) \\ &= -\log(\det(S^H S)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) \\ &= -\log(\det(A)) - \log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) \end{split}$$

(c)

$$g(t) = -\sum_{i=1}^{n} \log(t + (1-t)\lambda_i) - \log(\det(A)),$$

where $\lambda_1, ..., \lambda_n$ are the eigenvalues of $(S^H)^{-1}BS^{-1}$.

Subproof: Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of $(S^H)^{-1}BS^{-1}$. Then we know that

$$\det(tI + (1-t)(S^H)^{-1}BS^{-1}) = \prod_{i=1}^n (t + (1-t)\lambda_i)$$

and the last equality in part (b) becomes

$$g(t) = -\log(\det(tI + (1-t)(S^H)^{-1}BS^{-1})) - \log(\det(A))$$

$$= -\log(\prod_{i=1}^{n} (t + (1-t)\lambda_i)) - \log(\det(A))$$

$$= -\sum_{i=1}^{n} \log(t + (1-t)\lambda_i) - \log(\det(A))$$

(d) $g''(t) \ge 0$ for all $t \in [0, 1]$. Subproof:

$$g(t) = -\sum_{i=1}^{n} \log(t + (1 - t)\lambda_i) - \log(\det(A))$$

$$\implies g'(t) = -\sum_{i=1}^{n} \frac{1 - \lambda_i}{t + (1 - t)\lambda_i}$$

$$\implies g''(t) = -\sum_{i=1}^{n} \frac{-(1 - \lambda)^2}{(t + (1 - t)\lambda_i)^2} = \sum_{i=1}^{n} \frac{(1 - \lambda)^2}{(t + (1 - t)\lambda_i)^2} \ge 0$$

Exercise 7.13

If $f: \mathbb{R}_n \to \mathbb{R}$ is convex and bounded above, then f is constant. *Proof:*

On the contrary, suppose f is not constant. WLOG, assume that $f(\mathbf{x}_1) < f(\mathbf{x}_3)$ for some $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$. Since f is convex, we know that for there exists an \mathbf{x}_2 s.t.

$$f(\mathbf{x}_2) = f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_3) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_3)$$

$$< f(\mathbf{x}_3)$$

Since f is bounded above by hypothesis, we know that there exists some $M \in \mathbb{R}$ s.t. $f(\mathbf{x}) \leq M$ for all $\mathbf{x} \in \mathbb{R}^n$. Letting $f(\mathbf{x}_2) = M$, we know that $f(\mathbf{x}_3) > M$, which is a contradiction. Therefore, f must be constant.

Exercise 7.20

If $f: \mathbb{R}_n \to \mathbb{R}$ is convex and -f is also convex, then f is affine. *Proof:*

Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$. Since f is convex,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

Since -f is also convex,

$$-f(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) \le -\lambda f(\mathbf{x}_1) - (1-\lambda)f(\mathbf{x}_2)$$

$$\implies f(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) > \lambda f(\mathbf{x}_1) + (1-\lambda)f(\mathbf{x}_2)$$

Therefore,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) = \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

We can define another function $g(\mathbf{x}) = f(\mathbf{x}) - f(\mathbf{0})$, which has the property $g(\mathbf{0}) = 0$.

$$g(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) = f((\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)) - f(\mathbf{0})$$

$$= \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) - \lambda f(\mathbf{0}) - (1 - \lambda)f(\mathbf{0})$$

$$= \lambda (f(\mathbf{x}_1) - f(\mathbf{0})) + (1 - \lambda)(f(\mathbf{x}_2) - f(\mathbf{0}))$$

$$= \lambda g(\mathbf{x}_1) + (1 - \lambda)g(\mathbf{x}_2)$$

To show that f is affine, it suffices to show that g is linear. It is obvious that $g(\lambda \mathbf{x}) = \lambda g(\mathbf{x})$ for $\lambda \in [0, 1]$. For $\lambda > 1$, note that $\frac{1}{\lambda} \in (0, 1)$.

$$g(\mathbf{x}) = g\left(\lambda \frac{1}{\lambda} \mathbf{x} + \left(1 - \frac{1}{\lambda}\right)(\mathbf{0})\right)$$
$$= \frac{1}{\lambda} g(\lambda \mathbf{x}) + (1 - \frac{1}{\lambda})g(\mathbf{0})$$
$$= \frac{1}{\lambda} g(\lambda \mathbf{x})$$

$$\implies \lambda g(\mathbf{x}) = g(\lambda \mathbf{x})$$

We use the above equality to show that $g(\mathbf{x}_1 + \mathbf{x}_2) = g(\mathbf{x}_1) + g(\mathbf{x}_2)$.

$$g(\mathbf{x}_1 + \mathbf{x}_2) = g\left(\frac{1}{2}(2\mathbf{x}_1 + \frac{1}{2}(2\mathbf{x}_2))\right)$$
$$= \frac{1}{2}g(2\mathbf{x}_1) + \frac{1}{2}g(2\mathbf{x}_2)$$
$$= g(\mathbf{x}_1) + g(\mathbf{x}_2)$$

This shows that g is linear $\implies f$ is affine.

Exercise 7.21

If $D \subset \mathbb{R}$ with $f : \mathbb{R}_n \to D$, and if $\phi : D \to \mathbb{R}$ is a strictly increasing function, then \mathbf{x}^* is a local minimizer for the problem

minimize
$$\phi \circ f(\mathbf{x})$$

subject to $G(\mathbf{x}) \leq \mathbf{0}$
 $H(\mathbf{x}) = \mathbf{0}$

if and only if \mathbf{x}^* is a local minimizer for the problem

minimize
$$f(\mathbf{x})$$

subject to $G(\mathbf{x}) \leq \mathbf{0}$
 $H(\mathbf{x}) = \mathbf{0}$

Proof:

Let \mathbf{x}^* be a minimizer of f. Then $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all \mathbf{x} in an open neighborhood U around \mathbf{x}^* . Since ϕ is strictly increasing, we know that $\phi(f(\mathbf{x}^*)) \leq \phi(f(\mathbf{x}))$ for all $\mathbf{x} \in U$. Therefore \mathbf{x}^* is a minimizer of $\phi \circ f$.

Now let \mathbf{x}^* be a minimizer of $\phi \circ f$. Then $\phi(f(\mathbf{x}^*)) \leq \phi(f(\mathbf{x}))$ for all \mathbf{x} in an open neighborhood V. Since ϕ is strictly increasing, we know that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in V$. Therefore \mathbf{x}^* is a minimizer of f.