DSP | Audio Handling | Assignment 3

Sourish Chatterjee (EE22MTECH02002)

Aim: Sample Audio Signal Decimation and Interpolation

Implemented System Diagram:

Procedure:

- 1. Audio file is loaded into MATLAB using "audioread()" function.
- 2. M, L are declared and calculation of cut-off frequency "fc" using r/2*M where r is sampling frequency of audio signal.
- 3. Use the system model built in assignment 2 to pass the audio signal
- 4. Save decimated & interpolated output using "audiowrite()" function.
- 4. Get decimated and interpolated spectrograms for M = L = [2,4,8]

Observations:

- 1. After iterating same process various M,L values we see that higher frequencies are getting clipped.
- 2. Above mentioned iterative method leads to decrease in the audio quality.
- 3. The original spectrogram shows that the audio file has frequencies are up to 10Khz
- 4. Cut-off frequency = sampling frequency

M/L Values	Fc (Cut-off Frequencies) Hz
2	5512
4	2756
8	1378

5. Above mentioned Cut-off Frequencies can be seen in the spectrogram.

Spectrograms:

Figure 1 M=L=2

Figure 2: M=L=4

Figure 3: M=L=8