

	Day 1	During AP
6	4	Problem 4: In how many alt nearly can two of the five applicants be vanted first and second?
6		3 5C2 = 51 = 5x4x31 2 20 2! (5-2)! 8!3! 2!*3!
5		20 ve have 10 dt nomp.
	Ħ	Problem 5: We induction to show that for all n>4,2" Ln!.
9	•	Base Case: - n = 5 since n > 4 LHS => RHS 2 ⁵ L 5!
•		2x2x2x2x2 < 5x4x3x2x1 32 < 120 which is True
3 3	P	Industive Step assunt 2n L n! for n >4 is Frue ionse want to show 2nt L (n+1)!
3		LHS => $(n+1)!$ = $2^n \times 2!$ = $(n+1) \times (n!)$ = $2^n \times 2$ = $(n+1) \times n!$
9 9 9	•	in LHS L RHS = 2 (n+1) (2") from inductive hypothesis LHS L RHS = 2 x2 L (n+1) (2") 2 L n+1 2 2^2 2^! for n > 4 holds true
-		as de tre for 11 4 will

```
public class Problem6 {
   public static void main(String[] args) {
        System.out.println(log2( x: 5));
   public static double log2(double x){
       return Math.log(x)/Math.log(2);
"C:\Program Files\Java\jdk-15.0.2\bin\java.exe" "-javaagent:C:\Program Files\Je
2.321928094887362
Process finished with exit code 0
```

Problem 7: Compute the Following derivative. d 3 log x From division rule of $f(x) = g(x) \cdot f'(x) - f(x) \cdot g'(x)$ $\int_{-\infty}^{\infty} \frac{1}{2} (3 \log x) \frac{1}{2} (2x) \left(3 \log x\right) \frac{1}{2} (3x) \left(3 \log x\right)$ 3. 2x - (2 x 62) (3 logx) $\frac{2^{2x}}{2^{2x}}$ $= \frac{3(2^{x} \cdot (\log(x)) - \log(x) \cdot (2x)}{(2x)^{x}}$ 3 (1 - logxln2)

Problem 10° prove An3+n is $\theta(n3)$ f(n) is $\theta(g(n))$ if $\lim_{n\to\infty} \frac{4n^3+n}{n^3} \times \frac{1}{3} \frac{1}{n^3}$ $\lim_{n\to\infty} \frac{4n^3/n^3 + n/n^3}{1} = \lim_{n\to\infty} \frac{4}{n^3} = \frac{4}{2} \quad \text{since } \neq 0 \text{ ten True}$ (B) Log A is o (n) den (log 1)' - o L'Hopital rule lin 1/n dege = 0 % log(n) is o(n) -> is True (c) 2" is w (n2) lon lim (n2)! 2 lim 2M 2 Develore, 2° is week Bound by n2 (b) 2" is o(3") 2" is 0(3")

lim 2" 2(2)" 20 ". 2" is 0 (3") from "21"

f(x) o (9(x))

iff lim (fn) = 0

(E) 2" 150 (2"-1) (F) log n is O (log31) løm (logn) L'Hopital lim 1/n ln2 2 1 . 18 ln3 2 lin 2 ln3 2 ln3 2 ln3 n 30 1/n ln3 aln2 1 n 30 ln2 ln2 so was(n) is olloggn)