D - 61 - 2017

플레어시스템의 역화방지설비 설계 및 설치에 관한 기술지침

2017. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자 : 전남대학교 화학공정안전센터 정창복 교수 전남대학교 화학공정안전센터 마병철 교수
- O 제·개정 경과
 - 2017년 11월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - API RP 520, "Sizing, Selection, and Installation of Pressure relieving Devices in Refineries", 2014
 - API STD 521, "Pressure relieving and Depressuring Systems", 2014
- O 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 교정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2017년 11월 27일

제 정 자 : 한국산업안전보건공단 이사장

D - 61 - 2017

플레어시스템의 역화방지설비 설계 및 설치에 관한 기술지침

1. 목적

이 지침은 플레어팁 등으로부터 공기가 유입되어 역화가 일어나는 것을 방지하기 위하여 설치하는 플레어시스템의 역화방지설비 설계 및 설치에 관하여 필요한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 플레어스택 상부 및 플레어 헤더로 부터 공기가 유입되어 화염 등이 역화되는 것을 방지하기 위하여 설치하는 역화방지설비에 적용한다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "플레어시스템 (Flare System)"이라 함은 안전밸브 등에서 방출되는 물질을 모아 플레어스택에서 소각시켜 대기 중으로 방출하는 데 필요한 일체의 설비를 말하며 플레어헤더, 녹아웃드럼, 액체 밀봉드럼 및 플레어스택 등과 같은 설비를 포함한다.
 - (나) "플레어스택 (Flare stack)"이라 함은 플레어시스템 중 스택형식의 소각탑으로서 스택지지대, 플레어팁, 파이롯버너 및 점화장치 등으로 구성된 설비 일체를 말한다.
 - (다) "플레어헤더 (Flare header)"라 함은 안전밸브 등에서 배출된 가스 및 액체를 그룹별로 모아서 플레어스택으로 보내기 위하여 설치되는 주배관을 말한다.
 - (라) "액체 밀봉드럼 (Liquid seal drum)"이라 함은 플레어스택의 화염이 플레어시스템 으로 거꾸로 전파되는 것을 방지하거나 또는 플레어헤더에 약간의 진공이 형성 되는 경우 플레어스택으로부터 공기가 빨려 들어가는 것을 방지하기 위하여

D - 61 - 2017

설치한 설비를 말한다.

- (마) "플레어팁 (Flare tip)"이라 함은 플레어스택의 최상부에 설치되어 플레어 가스를 화염과 함께 직접 연소시키는 설비를 말한다.
- (바) "건식실 (Dry seal)"이라 함은 플레어스택 내로 공기가 유입되는 것을 방지하기 위해 연속적으로 주입되는 퍼지 가스의 양을 줄이기 위해 플레어팁 또는 그 하부에 설치하는 설비를 말하며 그 구조에 따라 몰레큘러실, 벨로시티실로 구분된다.
- (사) "몰레큘러실 (Molecular seal)"이라 함은 퍼지 가스와 공기의 분자량 차이를 이용하여 플레어스택 내로 공기가 유입되는 것을 방지하는 설비를 말한다.
- (아) "벨로시티실 (Velocity seal)"이라 함은 방해판을 이용하여 공기가 벽면을 통해 시스템 내로 들어오지 못하게 하고 퍼지가스 흐름과 함께 스택 외부로 배출되도록 하는 설비를 말한다.
- (자) "플레어가스 회수시스템 (Flare gas recovery system)"이라 함은 배출되는 플레어가스의 일부를 회수하여 플레어링 (flaring)되는 가스의 양을 줄이고, 연료가스 등으로 재사용하기 위해 설치하는 일체의 설비를 말한다.
- (차) "단계식 플레어 (Staged flare)"라 함은 플레어가스 유량에 따라 단계적으로 운영되는 둘 이상의 플레어시스템을 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정의하는 바에 따른다.

4. 역화방지설비의 구성 및 종류

- 4.1 플레어시스템의 역화방지설비의 구성
 - (1) 액체 밀봉드럼(Liquid seal drum)
 - (2) 건식실(Dry seal)

D - 61 - 2017

- (3) 퍼지시스템(Purge system)
- 4.2 역화방지설비의 종류 및 특징
- 4.2.1 액체 밀봉드럼 (Liquid seal drum)
 - (1) 액체 밀봉드럼은 플레어헤더의 토출배관, 드럼, 폐수 처리설비, 액체 공급 배관 등으로 구성되어 있다.
 - (2) 액체 밀봉드럼은 형태에 따라 수직 밀봉드럼과 수평 밀봉드럼으로 구분할 수 있다.
 - (3) 밀봉액은 주로 물을 사용하지만 다른 유체도 사용 가능하며 이때에는 액체의 동결, 액체의 인화성과 반응성을 고려하여 설계하여야 한다.
 - (4) 밀봉액의 비말동반을 방지하기 위하여 드럼 내에 충분한 공간을 유지하여야 한다.
 - (5) 플레어헤더 내에서 형성되는 진공으로 밀봉상태가 파괴되지 않도록 액체 밀봉드럼 의 부피와 밀봉배관의 밀봉 높이는 충분히 커야 한다.
 - (6) 매우 낮은 온도의 유체가 안전밸브 등으로부터 방출되어 액체 밀봉드럼으로 유입되는 경우에는 밀봉액체 동결 등을 고려하여야 한다.
 - (7) 동결로 관이 막힐 위험이 있는 경우에는 글리콜-물 혼합물과 같은 빙점이 낮은 물질을 밀봉액으로 사용하거나 온도를 감지하여 밀봉액체를 가열 또는 배출시키 는 방법 등의 동결방지조치를 하여야한다.

4.2.2 건식실(Dry seal)

- (1) 건식실은 몰레큘러실(Molecular seal)과 벨로시티실(Velocity seal)로 구분된다.
- (2) 부식성 물질, 연소 생성물, 물의 동결, 내화물 잔해 등으로 몰레큘러실이 막히는 것을 방지하기 위하여 배수구를 항시 개방 상태로 유지하고, 추운 날씨에서는 동결 방지를 위한 수단을 고려하여야 한다.

D - 61 - 2017

- (3) 벨로시티실을 통과하는 플레어가스에 수소나 에틸렌과 같이 폭발 위험성이 높은 가스가 포함되어 있을 경우에는 폭발을 방지하기 위해 퍼지 가스의 속도를 높여 주어야 한다.
- (4) 건식실은 플레어시스템으로 주입하는 퍼지가스 주입량을 줄이는 것이 목적으로 그 자체가 역화를 방지할 수는 없으므로 액체 밀봉드럼 등 이에 대한 대안을 고려하여야 한다.

5. 액체 밀봉드럼의 설계

5.1 액체 밀봉드럼의 높이

- (1) 플레어헤더에 진공이 형성되는 경우 밀봉액이 플레어헤더로 역류되어 밀봉상태가 파괴되는 것을 방지할 수 있도록 밀봉되는 배관의 끝단 또는 관 끝의 V자 홈의 최상부로부터 플레어헤더의 수평바닥까지의 높이는 수직으로 최소한 3m 이상을 유지하여야 한다.
- (2) 밀봉액에 잠기는 플레어헤더의 밀봉높이(h)는 플레어헤더의 출구 측 배압(P)을 이용하여 다음과 같이 산출한다.

여기서 h : 밀봉높이(m)

P : 플레어헤더의 출구 측에서의 압력(kPa·G)

 ρ_L : 밀봉액체밀도 (kg/m^3) ρ_V : 밀봉액체밀도 (kg/m^3)

(3) 액체 밀봉드럼에서 폐수처리장으로 배출되는 밀봉액 배수 배관의 높이는 최소한 밀봉드럼의 운전압력을 수두로 환산한 값의 1.75배가 되도록 하며 <그림 1>과 같이 설계 및 설치할 수 있다.

D - 61 - 2017

주: 처리설비로 가는 밀봉배관의 높이는 최소한 밀봉드림 최대운전압력의 1.75배가 되도록 설계한다.

<그림 1> 액체 밀봉드럼의 설계·설치 예

5.2 액체 밀봉드럼의 설계압력

- (1) 내부 폭발을 고려하여 설계압력은 최소한 3.5 kg_f/cm²·G 이상을 유지하여야 한다.
- (2) 가스가 실(seal)을 통과하기 시작하는 플레어헤더의 압력은 액체 밀봉의 목적에 따라 $50\sim3,050 \text{ mmH}_2\text{O} (0.005\sim0.305 \text{ kg}_t/\text{cm}^2\cdot\text{G})$ 범위, 또는 그 이상으로 적용이 가능하다. 일반적인 밀봉 깊이는 다음 <표 1>과 같다.

<표 1> 액체 밀봉 목적에 따른 전형적인 밀봉깊이

액체 밀봉 목적	밀봉깊이(mm)
일반 플레어시스템	150
플레어가스 회수 시스템	700 ~ 1,400
단계식 플레어	1,400 ~ 3,500

KOSHA GUIDE

D - 61 - 2017

5.3 액체 밀봉드럼의 용량 산정

액체 밀봉드럼의 용량은 증기가 최대로 방출될 때를 기준으로 산출하여야 한다.

- (1) 플레어가스 유량의 급격한 증가로 인한 맥동을 방지하기 위해 액체 밀봉드럼의 지름은 밀봉드럼으로 인입되는 플레어헤더 지름의 2배 이상이어야 하며 길이는 밀봉드럼 지름의 3배로 한다.
- (2) 수직밀봉드럼의 구조에 대한 예시는 <그림 2>와 같으며, 기/액의 원활한 분리를 위하여 밀봉 액면으로부터 증기 공간까지의 수직높이는 밀봉드럼 지름의 0.5~1배가 되도록 하여야 하며 수직높이는 최소한 1m가 유지되도록 설계한다.

<그림 2> 수직밀봉드럼의 구조

D - 61 - 2017

(3) 수직 밀봉드럼에 요구되는 최소 지름(D)은 다음과 같이 산출한다.

$$D = d\sqrt{\left(\frac{H}{h} + 1\right)} \qquad -----(2)$$

여기서 D : 드럼의 지름(m)

d : 밀봉배관 직경(m)

H : 지정된 진공의 밀봉에 필요한 밀봉액의 깊이(m)

h : 밀봉높이(m)

- (4) 수평 밀봉드럼의 경우, 최소 액체 표면적은 밀봉드럼으로 인입되는 플레어헤더 단면적의 3배 이상이어야 한다.
- (5) 수평 밀봉드럼은 드럼의 길이(L)를 조절하여 밀봉액 부피를 조절할 수 있다. 수평 밀봉드럼에 요구되는 최소 길이(L)는 다음과 같이 산출한다.

$$L \cdot w = \frac{\pi}{4} d^2 \frac{H}{h}$$
 ----(3)

여기서 L : 액면의 길이(m)

w : 액면의 폭(m)

d : 밀봉배관 직경(m)

H : 지정된 진공의 밀봉에 필요한 밀봉액의 깊이(m)

h : 밀봉높이(m)

6. 플레어시스템의 역화방지설비 설치

6.1 액체 밀봉드럼의 설치

- (1) 액체 밀봉드럼은 플레어시스템 내에 양압을 유지시켜 외부로부터 공기가 유입되어 역화가 일어나는 것을 방지하기 위하여 설치한다. 특히, 엘리베이트 스택의경우 높이에 따른 영향으로 시스템 내부에 부압이 발생되므로, 이를 방지하기위하여 반드시 설치하여야 한다.
- (2) 플레어가스 회수 시스템을 사용하는 경우, 플레어량이 적은 경우에 회수 등으로

D - 61 - 2017

인하여 플레어헤더 내 음압이 형성될 수 있고, 플레어회수 시스템의 운전압력이 플레어헤더의 배압으로 작용할 수 있으므로 액체 밀봉드럼을 통해 회수 시스템 에 연결하여야 한다.

(3) 액체 밀봉드럼은 주 녹아웃드럼과 플레어스택 사이에 위치하되, 가능한 한 플레어스택 하부 가까이에 함께 설치한다. 다만, 액체 밀봉드럼이 플레어스택 자체의 일부분으로 설계되는 경우에는 플레어스택의 하부에 설치한다.

6.2 건식실의 설치

- (1) 건식실은 시스템 내로 공기유입을 방지하기 위한 퍼지가스의 양을 최소화하기 위해 설치하는 것으로 플레어팁 바로 밑 또는 멀리 떨어지지 않은 위치에 설치한다.
- (2) 몰레큘러실은 퍼지 가스와 공기의 분자량 차이를 이용하는 원리이며, 플레어팁으로 향하는 가스의 흐름을 <그림 3>과 같이 두 번 변하게 만들어 분자량이 높은 가스 등은 하단부에 체류하고 분자량이 낮은 가스 등은 상단부에 체류하면서 공기등이 플레어스택 내부로 침투하지 못하도록 방지하는 구조로 되어 있다.
- (3) 몰레큘러실의 내부에 액체가 축적될 수 있으므로 배출할 수 있는 시설(Drain)을 갖추어야 하며, 보통 액체 밀봉드럼으로 연결되도록 한다.
- (4) 몰레큘러실을 설치한 경우, 플레어팁을 통과하는 퍼지가스의 속도를 10.8 m/hr $(0.003 \, \text{m/s})$ 까지 낮출 수 있고, 장치하부에서의 산소 농도를 0.1% 미만으로 유지할 수 있다.
- (5) 벨로시티 실은 원추형 방해판을 이용하여 공기를 벽으로부터 분리시켜 퍼지 가스 흐름과 함께 탑 외부로 배출시키는 설비로 <그림 4>와 같은 구조로 되어 있다.
- (6) 벨로시티 실의 방해판에 액체가 축적되면 부식이나 동결의 위험이 있으므로 판에 구멍을 내어 액체가 배출되도록 해야 한다.
- (7) 벨로시티 실을 설치한 경우, 플레어팁을 통과하는 퍼지가스의 속도를 21.6 m/hr (0.006 m/s)내지 43.2 m/hr(0.012 m/s)까지 낮출 수 있고, 장치하부에서의 산소 농도를 4~8%로 유지할 수 있다.

<그림 3> 몰레큘러실의 구조

<그림 4> 벨로시티 실의 구조

D - 61 - 2017

7. 플레어헤더의 봉입 및 퍼지가스

7.1 플레어헤더의 봉입

- (1) 플레어시스템 내에서의 역화 및 공기가 혼입되는 것을 방지하기 위해 불활성 가스 등으로 플레어헤더를 봉입해야 한다.
- (2) 플레어헤더의 봉입은 질소 등 불활성가스를 사용하는 것을 원칙으로 하며 연료 가스를 사용할 경우에는 공기보다 가벼운 가스로서 폭발범위에 들지 않도록 하여야 한다.

7.2 공기의 혼합 가능 조건

- (1) 가스가 공기보다 가벼운 경우 스택 하단부가 대기압 이하일 때
- (2) 더운 가스의 방출 후 헤더 내의 증기가 냉각 응축할 때
- (3) 자연통풍식의 스택인 경우 플랜지 및 접속 부위

7.3 퍼지가스의 연속 주입

- (1) 역화 및 공기의 혼입을 방지하기 위한 퍼지가스 주입배관 위치와 특징은 다음과 같다.
 - (가) 플레어스택 상부와 가까운 위치에서 퍼지가스를 주입해 하는 경우에는 건식실 등의 설치유무에 따라 연속으로 주입해야 하는 퍼지의 양이 다르다.
 - (나) 주 배관 말단에 설치하는 경우에는 유량조절 등을 위해서 오리피스 또는 로터 미터 등과 같은 유량장치 등을 사용한다.
 - (다) 공정과 연결된 서브헤더 말단 혹은 시운전(Start-Up)시 서브헤더 등에 퍼지 가스를 흘려보내 폭발 등을 예방해야 한다.
- (2) 스팀 또는 응축성 가스는 퍼지가스로 부적합하다.

D - 61 - 2017

- (3) 고정 오리피스, 로터미터 등을 사용하여 퍼지가스 주입속도를 제어할 수 있다.
- (4) 다음과 같은 상황에서는 식 (4), (5)의 계산 값보다 더 큰 퍼지속도가 요구될 수 있다.
- (가) 운전을 개시할 때, 산소가 전혀 없어야 하거나 혹은 산소 농도가 매우 낮은 조건에서 플레어링을 해야 하는 경우
- (나) 태양열에 의해 가열된 헤더가 비바람에 의해 냉각되어 음압 등이 형성되는 경우
- (다) 고온의 응축성 가스를 플레어헤더로 방출하는 경우
- (라) 쉽게 폭발하거나 넓은 폭발한계를 갖는 화합물을 상당량 포함한 흐름이 방출 되는 경우

7.4 플레어스택 퍼지가스 주입

(1) 건식실이 설치되어 있지 않은 경우, 플레어스택 상부와 액체 밀봉드럼 사이에 퍼지가스를 주입하여야 하며, 공기보다 가벼운 퍼지가스의 주입유량을 다음과 같이 산출할 수 있다.

$$Q = 190.8D^{3.46} \frac{1}{y} ln(\frac{20.9}{O_2}) (\sum_{i=0}^{n} C_i^{0.65} K_i) \qquad -----(4)$$

여기서 Q : 퍼지가스 주입유량(m³/hr)

D : 플레어스택의 지름(m)

v : 산소의 농도가 예측되는 스택의 깊이

O₂ : 산소 농도(Volume%)

 C_i : 구성성분 i의 농도(Volume%)

K; : 구성성분 i의 상수

대표적인 성분별 K_i 값은 <표 3>과 같다.

<표 3> 구성성분 i의 상수(Ki) 값

구성성분	K_{i}
수소	5.783
헬륨	5.078
메탄	2.328
질소(바람이 없는 경우)	1.067
질소(약 7 m/s 바람이 있는 경우)	1.707
에탄	-1.067
프로판	-2.651
이산화탄소	-2.651
C_{4+}	-6.586

(2) 일반적 기준인 플레어스택의 7.62 m 깊이에서 산소 농도를 6%로 제한할 때의 퍼지가스의 주입유량은 다음과 같이 산출할 수 있다.

$$Q = 31.25D^{3.46} \left(\sum_{i=1}^{n} C_{i}^{0.65} K_{i}\right) \qquad ------(5)$$

(3) 공기보다 무거운 퍼지가스의 경우, 질소의 K_i 값을 사용한다.

7.5 플레어헤더 퍼지가스 주입

- (1) 운전 시 플레어헤더에서 뜨거운 가스가 통과한 후 대기냉각 또는 빠른 가스의 냉각 등으로 가스수축이 발생할 수 있고 이로 인하여 음압이 형성되어 가스켓 등으로 외부산소가 유입될 수 있다.
- (2) 수축된 부피만큼 퍼지가스를 주입하여 음압 발생에 따른 산소유입을 방지하여야 한다.
- (3) 퍼지가스는 헤더 말단 등에서 공급하며 고정 오리피스 방식, 압력 또는 온도변화와 연동되는 컨트롤밸브 방식 및 두 가지 방법의 혼합방식 등을 사용하여 공급한다.
- (4) 퍼지가스 양은 다음과 같이 감소된 플레어가스 체적의 부피에 해당한다. 이 경우,

D - 61 - 2017

시간당 온도변화는 플레어가스가 배관에 정체한 상태에서 대기와의 열전달로 인해하강하는 온도속도이며 열전달(전도, 대류, 복사 등)을 고려하여 결정하여야 한다.

$$\Delta\,V_{shrinkage}\,=\,V_{flare\,header}\times\frac{\Delta\,T_{gas}}{T_{gas-abs}}\quad------(6)$$

여기서 $\Delta V_{shrikage}$: 감소된 플레어헤더의 부피(m^3/s)

 $V_{flare\ header}$: 플레어헤더의 부피(m^3)

△Tgas : 플레어가스의 온도변화 속도(℃/s)

Tgas-abs : 플레어가스의 온도(℃)