1 Definitionen

Definiere folgendes Formal korrekt:

- 1. $\mathcal{O}(f(n)), \Omega(f(n)), \Theta(f(n))$
- 2. Das Master-Theorem
- 3. L^*, L^+

2 Aussagenlogik

Finde möglichst einfache Aussagenlogische Formeln C, D, E in Abhängigkeit von A und B für folgende Tabelle:

A	В	С	D	Е
0	0	0	1	0
0	1	1	1	1
1	0	1	0	0
1	1	1	0	0

3 Master-Theorem

Wenden Sie, falls möglich, das Master-Theorem auf folgende Funktionen an. Jede Funktion hat \mathbb{N}_0 als Definitions- und Zielmenge.¹

- 1. $f(n) := 2 \cdot 5 + 3f(\frac{n}{2})$
- 2. $g(n) := 2 \cdot 5 3g(\frac{n}{2})$
- 3. $h(n) := h(\frac{n}{3}) + 1$
- 4. $i(n) := 9 \cdot i(\frac{n}{3}) + n^2$
- 5. $j(n) := 8 \cdot j(\frac{n}{3}) + n^2$
- 6. $k(n) := 8 \cdot k(\frac{n}{3}) + \frac{1}{2}n^2$
- 7. $l(n) := 8 \cdot l(\frac{n}{9}) + 1/n$
- 8. $m(n) := 2 \cdot m(\frac{n}{2}) + nlog(n)^{2}$

¹An dieser Stelle sollte man Frage 5.20 beantworten.

 $^{^2}$ Folie 310, LEHRSTUHL KRYPTOLOGIE und IT-SICHERHEIT der Uni Bochum

4 Formale Sprachen

Sei
$$\Sigma = \{a, b, c\}$$

4.1 Dies und das

- 1. Wieviele Sprachen gibt es über Σ^* ?
- 2. Wie viele endliche Sprachen gibt es über Σ^* ?
- 3. Wie viele Wörter hat die Sprache $L = \{w \in \Sigma^* | |w| \le 2\}$?

4.2 Palindrome

Sei L die Sprache der Palindrome. Ein Palindrom ist ein Wort, das von links nach rechts gelesen genauso aussieht, wie von rechts nach links gelesen.

Beispiele:

- Anna
- Die Liebe ist Sieger; stets rege ist sie bei Leid.
- Rentner

Aufgaben:

- 1. Beschreiben Sie L als Menge
- 2. Geben Sie eine Grammatik G an, sodass gilt: L = L(G).
- 3. Geben Sie, falls möglich, einen Endlichen Automaten an, der L erkennt. Falls das nicht möglich ist, begründen Sie warum.
- 4. Geben Sie, falls möglich, eine Ableitung von "abcba" an. Falls das nicht möglich ist, begründen Sie warum.
- 5. Geben Sie, falls möglich, einen/den Ableitungsbaum zu "abcba" an. Falls das nicht möglich ist, begründen Sie warum.
- 6. Geben Sie, falls möglich, einen regulären Ausdruck zu L an, sodass $L = \langle R \rangle$. Falls das nicht möglich ist, begründen Sie warum.

5 Wahr oder Falsch

#	Frage	Wahr	Falsch
1	Alle Sprachen sind regulär.		
2	Alle endlichen Sprachen sind regulär.		
3	3 Alle regulären Sprachen sind endlich.		
4	4 Es gibt unentscheidbare Probleme.		
5	5 Es gibt Probleminstanzen unentscheidbarer Probleme, die ent- scheidbar sind.		
6			
0	bare Funktion.		
7	7 Es gibt keine Funktion $f(n)$, für die gilt: $f(n) \notin \mathcal{O}(n^n)$		
8	8 Es gibt keine berechenbare Funktion $f(n)$, für die gilt:		
	$f(n) \notin \mathcal{O}(n^n)$		
9	9 Eine Turingmaschine erkennt genau die Kontextfreien Sprachen.		
10			
11	11 Es gibt zu jeder regulären Sprache L eine Grammatik G,		
	sodass $L = L(G)$.		
12	Es gibt zu jeder kontextfreien Sprache L eine Grammatik G,		
	sodass L = L(G).		
13	$\mathcal{O}(f(n)) \cap \Omega(f(n)) = \Theta(f(n))$		
14	1 Mebibyte = 2^{20} Byte		
15	$1 \text{ Megabyte} = 2^6 \text{ Byte}$		
16	$L = \{w\} \Rightarrow \forall n \in \mathbb{N}_0 : L^n = \{w^n\}$		
17	$L = \{w\} \Rightarrow \exists n \in \mathbb{N}_0 : L^n = \{w^n\}$		
18	$L = \{w\} \Rightarrow \exists n, m \in \mathbb{N}_0 : n \neq m \land L^n = \{w^n\} \land L^m = \{w^m\}$		
19	Sei $G(V, E)$ ein Graph und $n = V $. Dann existiert eine obere		
	Schranke in Abhängigkeit von n für $ E $		
20	Sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ eine Funktion und $\varepsilon, a, b > 0$. Dann gilt entweder		
	$f \in \mathcal{O}(n^{\log_b a - \varepsilon})$ oder		
	$f \in \Theta(n^{\log_b a}) \text{ oder}$		
	$f \in \Omega(n^{\log_b a + \varepsilon})$		