Statistics 305/605: Introduction to Biostatistical Methods for Health Sciences

Chapter 18, part 2: Inference in Simple Linear Regression

Jinko Graham

2018-10-19

Inference in Regression

▶ Estimate the population conditional means $\mu_{y|x} = \alpha + \beta x$ by

$$\hat{\mu}_{y|x} = \hat{y} = \hat{\alpha} + \hat{\beta}x.$$

If we could observe the errors, $\epsilon = Y - \mu_{y|x}$, we could estimate $\sigma_{y|x}$ by

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}^{2}}$$

- ▶ But we can't observe the errors because we don't know the population conditional means $\mu_{V|X}$.
- ▶ Instead, substitute the *residuals*, $e = y \hat{\mu}_{y|x} = y \hat{y}$, and estimate $\sigma_{y|x}$ by:

$$s_{y|x} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}e_i^2} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}.$$

Divide by n-2, the sample size less the number of parameters used to estimate the conditional mean.

Hypothesis Test for β

▶ We can test the null hypothesis of no association between X and Y vs. the alternative of association; i.e.,

$$H_0: \beta = 0 \text{ vs. } H_a: \beta \neq 0.$$

- ▶ The test statistic is derived from the sampling distribution of $\hat{\beta}$.
- Assuming that the error terms, ϵ , in the regression model are normally distributed, the sampling distribution of $\hat{\beta}$ is normal with mean β and SD

$$SD(\hat{\beta}) = \frac{\sigma_{y|x}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

▶ Replace $\sigma_{y|x}$ by $s_{y|x}$ to get standard error of $\hat{\beta}$, $SE(\hat{\beta})$.

▶ Replace $\sigma_{y|x}$ by $s_{y|x}$ to get standard error of $\hat{\beta}$:

$$SE(\hat{\beta}) = \frac{s_{y|x}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

- We will always use computer software to get the SE.
- ► The pivotal quantity

$$\frac{\hat{\beta} - \beta}{\mathsf{SE}(\hat{\beta})}$$

has a *t*-distribution with n-2 df.

▶ To test $H_0: \beta = 0$ vs. $H_a: \beta \neq 0$, the test statistic is

$$T = \frac{\hat{\beta} - 0}{SE(\hat{\beta})} = \frac{\hat{\beta}}{SE(\hat{\beta})}$$

Testing Example

- ► For the low-birthweight babies, let *X* be the gestational age (in weeks) and *Y* be the head circumference (in cm).
- ▶ The regression coefficient β summarizes the association between X and Y. Test for association using hypotheses $H_0: \beta = 0$ vs. $H_a: \beta \neq 0$

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9142641 1.82914689 2.13994 3.48424e-02
## gestage 0.7800532 0.06307441 12.36719 1.00121e-21
```

- ▶ The test statistic value is about 12.37 and the p-value is tiny.
- ► There is strong statistical evidence of an association between gestational age and head circumference in the data.

Confidence Intervals

ightharpoonup Following the typical development, a CI for eta can be derived from the pivotal quantity

$$\frac{\hat{\beta} - \beta}{\mathsf{SE}(\hat{\beta})}$$

▶ The level-C CI is of the usual form

estimate \pm margin of error,

where

- the estimate is $\hat{\beta}$,
- ▶ the margin of error is $SE(\hat{\beta})$ times a critical value t^* , the upper (1-C)/2 critical value from the t-distribution with n-2 df.

Confidence Interval Example

```
## 2.5 % 97.5 %
## (Intercept) 0.2843817 7.5441466
## gestage 0.6548841 0.9052223
```

- ▶ From the above R output, the 95% CI for β is about (0.65, 0.91); i.e., in 95 out of 100 samples, we expect the CI to cover the true β
- One way to interpret (from text):
 - "With 95% confidence, we estimate that a one-week increase in gestational age is associated with an increase in head circumference of between 0.65 to 0.91 cm."

Inference about the Regression Line

- ▶ The conditional mean, $\mu_{y|x} = \alpha + \beta x$, is a population parameter.
- ▶ The fitted value at x, $\hat{y} = \hat{\alpha} + \hat{\beta}x$, is an estimate of $\mu_{y|x}$
- ▶ The statistic \hat{y} has a sampling distribution whose SD can be estimated by $SE(\hat{y})$, the standard error given on page 429 of the text (text's notation is $\hat{se}(\hat{y})$).
- ▶ We can construct a level-C CI for $\mu_{y|x}$ of the usual form estimate \pm margin of error, where
 - the estimate is \hat{y} , and
 - ▶ the margin of error is $SE(\hat{y})$ times t^* , the upper (1-C)/2-critical value of the t-distribution with n-2 df.
- We will always use a computer to calculate CIs for the regression line.

Cls at Observed Values of Explanatory Variable

```
##
    headcirc gestage
                         fit
                                  lwr
                                           upr
          27
## 1
                  29 26.53581 26.21989 26.85172
## 2
          29
                  31 28.09591 27.68437 28.50745
          30
                  33 29.65602 29.05247 30.25956
## 3
                  31 28.09591 27.68437 28.50745
## 4
          28
## 5
         29
                  30 27.31586 26.97102 27.66070
## 6
          23
                  25 23.41559 22.83534 23.99584
```

In the R output above:

- ► The values y of the response variable are in the column headcirc.
- ► The values *x* of the explanatory variable are in the column gestage.
- ▶ The fitted values \hat{y} of the response variable from the regression model are in the column fit.
- ▶ The lower limits of the CIs for $\mu_{y|x}$ are in the column lwr and the upper limits are in the column upr.

Cls at New Values of Explanatory Variable

► The output below gives 90% CIs at **new** values of the explanatory variable; i.e., gestage of 25.5 and 30.5 weeks.

```
## gestage fit lwr upr
## 1 25.5 23.80562 23.36311 24.24813
## 2 30.5 27.70589 27.39254 28.01923
```

- ▶ The fitted values \hat{y} of headcirc for gestages of 25.5 and 30.5 are in the column fit and are about 23.8 and 27.7, respectively.
- ▶ The lower limits of the 90% Cls are in the column lwr and the upper limits are in the column upr.