MLOPS Project Report: Credit Risk Classification

Team: Prateek Majumder, Neha Roy Choudhury, Pranjal Grover, Anshuman Jha, Rahul Sanjay Trivedi

Introduction & Approach

This project aims to classify customer credit ratings as good or bad using an end-to-end MLOps pipeline. The solution includes data ingestion, validation, model training, deployment, and monitoring.

Key Steps

• Dataset Preparation:

- o Defined dataset schema and validated data using Pydantic.
- Stored the dataset in Parquet format and split it into training, testing, and production sets.

Version Control:

 All dataset versions and notebooks were tracked and organized in a GitHub repository.

• ML Pipeline & Experimentation:

- Built an ML pipeline using scikit-learn and tracked multiple experiments using MLflow.
- The best-performing model was identified as Random Forest based on crossvalidation and test metrics.

• Deployment:

The selected model was deployed as a RESTful API using FastAPI.

User Interface:

 A Streamlit application was developed to interact with the API, allowing users to enter data and receive predictions.

Monitoring:

 Implemented data drift analysis (both numeric and categorical) to monitor production data for consistency.

Snapshots & Artifacts

GitHub Repository: https://github.com/RahulSTrivedi/Credit_data_ML

Model Pipeline Flow

Experiment Tracking

Data Drift Results

	Feature	Distance	p-value	Drift Detected
0	Status of checking account	0.028333	0.999504	No
1	Duration in months	0.098333	0.102750	No
2	Credit history	0.055000	0.733331	No
3	Purpose	0.085000	0.215975	No
4	Credit amount	0.093333	0.137514	No
5	Savings account/bonds	0.020000	1.000000	No
6	Employment duration	0.023333	0.999992	No
7	Installment rate	0.043333	0.929149	No
8	Personal status and sex	0.038333	0.974206	No
9	Other debtors/guarantors	0.011667	1.000000	No
10	Present residence	0.030000	0.998722	No
11	Property	0.075000	0.350163	No
12	Age	0.068333	0.465057	No
13	Other installment plans	0.026667	0.999840	No
14	Housing	0.035000	0.989933	No
15	Number of existing credits	0.020000	1.000000	No
16	Job	0.040000	0.962226	No
17	Dependents	0.051667	0.798538	No
18	Telephone	0.070000	0.434555	No
19	Foreign worker	0.003333	1.000000	No
20	Extra Feature	0.028333	0.999504	No

UI Predictions

Key Results & Inferences

• Model Performance:

- Random Forest was the best-performing model, achieving a cross-validation accuracy of 76% and test accuracy of 74%.
- Other models (e.g., Logistic Regression, Decision Tree, SVM) showed slightly lower accuracy, confirming Random Forest as the best candidate.

• Data Drift Monitoring:

- Numeric Drift: No significant drift detected. P-values were well above 0.05, indicating stability between training and production data.
- Categorical Drift: Most features remained stable.

This project demonstrates a complete MLOps pipeline, from data validation and model training to deployment and monitoring. The results indicate that the deployed model is robust, with strong performance and minimal data drift in production.