Lecture Comprehension, Wrenches (Chapter 3.4)

TOTAL POINTS 2

1. A wrench \mathcal{F}_a consists of a linear force $f_a \in \mathbb{R}^3$ and a moment $m_a \in \mathbb{R}^3$, both expressed in the frame {a}. How do we usually write the wrench?

1/1 point

- $\mathcal{F}_a = (m_a, f_a)$
- \bigcirc $\mathcal{F}_a = (f_a, m_a)$

Just as a twist $\mathcal{V}=(\omega,v)$ has the angular terms first, so does a wrench, so the dot product $\mathcal{F}\cdot\mathcal{V}=\mathcal{F}^{\mathrm{T}}\mathcal{V}$ is power when \mathcal{F} and \mathcal{V} are expressed in the same frame.

2. We know that the power associated with a wrench and twist pair $(\mathcal{F}, \mathcal{V})$ does not depend on whether they are represented in the frame {a} as $(\mathcal{F}_a, \mathcal{V}_a)$ or the frame {b} as $(\mathcal{F}_b, \mathcal{V}_b)$. Therefore, we can write $\mathcal{F}_a^{\mathrm{T}}\mathcal{V}_a = \mathcal{F}_b^{\mathrm{T}}\mathcal{V}_b$ and then use which identity to derive the equation $\mathcal{F}_a = [\mathrm{Ad}_{T_{bc}}]^{\mathrm{T}}\mathcal{F}_b$ relating the representations \mathcal{F}_a and \mathcal{F}_b ? (Also, remember the matrix identity $(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$.)

1/1 point

- $\mathcal{V}_a = T_{ab}V_b$
- $\mathcal{V}_a = T_{ba} \mathcal{V}_b$
- $\mathcal{V}_a = [Ad_{T_{ba}}]\mathcal{V}_b$
- \bigcirc $V_a = [Ad_{T_{ab}}]V_b$

Correct

This is a modified subscript cancellation rule.