

nvcc編は革流程上5 GPUは十算能力」

CUDA并行编程系列课程

主讲: 权双

01 nvcc编译流程

02 GPU计算能力

nvcc编译流程

- ★ 1、nvcc分离全部源代码为: (1) 主机代码 (2) 设备代码
- ★ 2、主机 (Host) 代码是C/C++语法,设备 (device) 代码是C/C++扩展语言编写
- ★ 3、nvcc先将设备代码编译为PTX (Parallel Thread Execution) 伪汇编代码,再将PTX代码编译为二进制的cubin目标代码
- ★ 4、在将源代码编译为 PTX 代码时,需要用选项-arch=compute_XY指定一个虚拟架构的计算能力,用以确定代码中能够使用的CUDA功能。
- ★ 5、在将PTX代码编译为cubin代码时,需要用选项-code=sm_ZW指定一个真实架构的计算能力,用以确定可执行文件能够使用的GPU。

nvcc编译流程

具体cuda编译链接流程参考: https://docs.nvidia.com/cuda/cuda-compiler-driver-

★ 包含编译流程,编译指令

nvcc/index.html

PTX

- PTX (Parallel Thread Execution) 是CUDA平台为基于 GPU的通用计算而定义的虚拟机和指令集
- ★ nvcc编译命令总是使用两个体系结构:一个是虚拟的中间体系结构,另一个是实际的GPU体系结构
- ★ 虚拟架构更像是对应用所需的GPU功能的声明
- ★ 虚拟架构应该尽可能选择低----适配更多实际GPU 真实架构应该尽可能选择高----充分发挥GPU性能
- ★ PTX 文档: https://docs.nvidia.com/cuda/parallel-threadexecution/index.html

03

GPU架构与计算能力

表 1.1: 各个 GPU 主计算能力的架构代号与发布年份。

主计算能力	架构代号	发布年份
X = 1	特斯拉(Tesla)	2006
X = 2	费米(Fermi)	2010
X = 3	开普勒(Kepler)	2012
X = 5	麦克斯韦(Maxwell)	2014
X = 6	帕斯卡 (Pascal)	2016
X = 7	伏特(Volta)	2017
X.Y = 7.5	图灵(Turing)	2018

sm_50, sm_52 and sm_53	Maxwell support				
sm_60, sm_61, and sm_62	Pascal support				
sm_70 and sm_72	Volta support				
sm_75	Turing support				
sm_80, sm_86 and sm_87	NVIDIA Ampere GPU architecture support				
sm_89	Ada support				
sm_90, sm_90a	Hopper support				

1、每款GPU都有用于标识"计算能力" (compute capability) 的版本号

★ 2、形式X.Y, X标识主版本号, Y表示次版本号

GPU架构与计算能力

并非GPU 的计算能力越高,性能就越高

表 1.3: 若干 GPU 的主要性能指标。					
GPU 型号	计算能力	显存容量	显存带宽	浮点数运算峰值	
Tesla K40	3.5	12 GB	288 GB/s	1.4 (4.3) TFLOPS	
Tesla P100	6.0	16 GB	732 GB/s	4.7 (9.3) TFLOPS	
Tesla V100	7.0	32 GB	900 GB/s	7 (14) TFLOPS	
GeForce RTX 2070	7.5	8 GB	448 GB/s	0.2 (6.5) TFLOPS	
GeForce RTX 2080ti	7.5	11 GB	616 GB/s	0.4 (13) TFLOPS	

#