1. Slika prikazuje jednofazni fazno upravljivi ispravljač opterećen čisto induktivnim trošilom L. Nacrtajte valne oblike napona na tiristoru $T - u_T$, induktivitetu $L - u_L$, valni oblik struje induktiviteta i_L , napona mreže u_S . Izračunajte vršnu vrijednost struje tiristora I_{Tmax} . Poznato je:

$$u_{\rm S} = 230 \cdot \sqrt{2} \cdot \sin(314 \cdot t)$$

$$L = 70mH$$

$$\alpha = 90^{\circ}$$

$$I_{\rm Tmax} = \underline{\qquad}$$

2. Poluvodička učinska sklopka služi za upravljanje srednjom vrijednosti struje izrazito induktivnog tereta $(\omega \cdot L >> R)$. To se postiže odgovarajućom promjenom faktora vođenja (opterećenja) D učinske sklopke. Iznad simbola mehaničke sklopke nacrtajte simbol odgovarajuće poluvodičke sklopke.

Izračunajte faktor vođenja D učinske sklopke da bi srednja vrijednost struje tereta $I_{\rm d}$ iznosila 10 A. Zadano je: napon istosmjernog izvora $U_{\rm B}=200$ V, djelatni otpor tereta $R_{\rm d}=15$ Ω , sklopna frekvencija sklopa f=1 kHz.

U odgovarajući prostor ucrtajte valne oblike napona i struje tereta u_d i i_d za izračunati faktor vođenja D i jednu karakterističnu periodu u ustaljenom stanju. Na osima obavezno označite vrijednosti napona, struje i vremena.

3. Na slici 1 je prikazan pravokutni izvor napajanja, valnog oblika prikazanog na slici 2. Na slici 2 nacrtajte kvalitativno valni oblik struje i_L . Izračunajte iznos struje $i_L(t_x)$ za $t_x = 7$ ms. Početni uvjeti sklopa jednaki su nuli.

L = 100 mH

 $i_L(t_{\mathrm{x}}) = \underline{\hspace{1cm}}$

Slika 1 Slika 2