Find the extremal of the function Ex 3 $\int_{0}^{\pi/2} (y'^{2} - y^{2} + 2xy) dy \quad \text{with} \quad y(0) = 0, \ y(\frac{\pi}{2}) = 0$ here, $F = y'^2 + 2xy$ solution! clearly, F contains x, y, y' :. The Ewer Lagrange equation is $\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$ since, $F = y'^{2} - y^{2} + 2xy$ $\Rightarrow \frac{\partial F}{\partial Y} = -2y + 2x$ and $\frac{\partial F}{\partial Y'} = 2y'$ equation 1 becomes $-2y + 2x - \frac{d}{dx}(2y') = 0$ -2y+2x-2y''=0y'' + y - x = 0 $\frac{d^2y}{dx^2} + y = x$ The Auxillary equation is $p^{2}+1=0$ ⇒ D=1,-i .. The C.F is Yc = C, cosx + C2sinx Now, $P.I = y_p = \frac{1}{f(D)} \cdot X = \frac{1}{D^2+1} \times$ $= \frac{1}{1+D^2} \times = \left[1 - D^2 + D^4 - D^6 + \cdots\right] \times$ $= \left[\chi - D^2 \chi + D^4 \chi - \cdots \right]$

. The complete solution is

$$Y = Yc + Yp$$

$$\Rightarrow$$
 $y(x) = c_1 \cos x + c_2 \sin x + x$

But
$$y(0)=0$$
 and $y(\frac{\pi}{2})=0$

$$0 = c_1 \cos 0 + c_2 \sin 0 + 0 \Rightarrow c_1 = 0$$

$$0 = c_1 \cos \frac{\pi}{2} + c_2 \sin \frac{\pi}{2} + \frac{\pi}{2} \Rightarrow c_2 + \frac{\pi}{2} = 0$$

.. The required solution is

$$y(x) = -\frac{\pi}{2} \sin x + x$$

ie
$$y(x) = x - \frac{\pi}{2} \sin x$$

- In find the extremals of $\int_{x_1}^{x_2} \sqrt{1+y'^2} dx$
 - (Ars: $y = -\frac{\sqrt{1-c^2z^2} + c_1}{c}$)

 Using the relation—that—the length of the are between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by $3 = \int_{x_1}^{x_2} \sqrt{1+{y'}^2} \, dx$ show that—the shortest smooth plane curve between two points on a plane is straight line.
 - (3) find the extremal of $\int_{y_1}^{x_2} [y^2 y'^2 2y \cosh x] dx$ (Ans: $y = c_1 \cos x + c_2 \sin x + \frac{1}{2} \cosh x$)

* Isoperimetre problem:

suppose we required to make the given integral $\int_{\chi_2}^{\chi_2} F(\chi, y, y') d\chi$

maximum or minimum under a condition that another integral, say $\int_{4}^{2} G(x,y,y') dx$

i's equal to a constant

such types of problem are called as isoperimetric problem

* Lagranges method:

let λ be the Lagranges mult pl and $H = F + \lambda G$

Therefore, the functional $\int_{y}^{x_{2}} H(x,y,y') dx$

can be solve using. Eulers equation

OH d (24)

$$\frac{\partial H}{\partial y} - \frac{d}{dx} \left(\frac{\partial H}{\partial y'} \right) = 0$$

$$\frac{\partial H}{\partial x} - \frac{d}{dx} \left[F - y' \frac{\partial H}{\partial y'} \right] = 0$$

EX 1) show that the extremal of the isoperimetric problem I [y(x)] = \(\frac{1}{2} y'^2 dx \text{ subject to the} \) condition $\int_{x}^{\pi 2} y dx = k$ is a parabola. solution: here, $F = y'^2$ and G = y' $H = F + \lambda G = y'^2 + \lambda y$ where a is Lagranges multiplies Now consider the functional, $\int_{-\infty}^{\infty} H(x, y, y') dx = \int_{-\infty}^{\infty} (y'^{2} + \lambda y) dx$ clearly, Hi does not contain & explicitely : The Ewel Lagranges equation is $H - y' \frac{\partial H}{\partial y'} = C$ here, $H = y'^{2} + \lambda y \Rightarrow \frac{\partial H}{\partial y'} = 2y'$ · equation 1 becomes $y'^{2} + \lambda y - y'(2y') = e$ $y'^2 + \lambda y - 2y'^2 = 0$ $-y'^2 + \lambda y = c$ \Rightarrow $y'^2 - \lambda y = -c = c_1$ $y'^2 = c_1 + \lambda y$ $y' = \sqrt{91+34}$

i.e.
$$\frac{dy}{dx} = \sqrt{c_1 + \lambda y}$$

$$\Rightarrow \frac{1}{\sqrt{c_1 + \lambda y}} dy = dx$$
Integrating both stace we get
$$\int \frac{1}{\sqrt{c_1 + \lambda y}} dy = \int dx + c_2$$

$$\int ((c_1 + \lambda y)^{\frac{1}{2}} dy = \int dx + c_2$$

$$\Rightarrow \frac{(c_1 + \lambda y)^{\frac{1}{2}}}{\frac{1}{2}\lambda} = x + c_2$$

$$\Rightarrow \frac{2}{\lambda^2} (c_1 + \lambda y)^{\frac{1}{2}} = x + c_2$$

$$\Rightarrow \frac{4}{\lambda^2} (c_1 + \lambda y) = (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x^2 + 2xc_2 + c_2^2)$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow y(x) = \frac{\lambda}{4} x^2 + \frac{\lambda^2}{2} x c_2 + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\Rightarrow x + c_2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_2 + \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_2 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_1 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow c_2 + \lambda y = \frac{\lambda^2}{4} (x + c_2)^2$$

$$\Rightarrow$$

Find the curve y = f(x) for which $\int_{0}^{\infty} (y'^{2} - y^{2}) dx$ is extremum if $\int_{0}^{\infty} y dx = 1$ solution: here, $F = y'^2 - y^2$ and G = y: $H = F + \lambda G = (y'^2 - y^2) + \lambda y$ where, a is lagranges multiplier Novo consider the extremal f H(x, y, y') dx clearly, H does not contains & variable : The Eulers lagranges equation is $H - Y' \frac{\partial H}{\partial Y} = C$ here, $H = y'^2 - y^2 + \lambda y \Rightarrow \frac{\partial H}{\partial u'} = 2y'$: equation 1 becomes $y' - y^2 + \lambda y - y'(2y') = c$ $-9'^{2}-9^{2}+39=0$ \Rightarrow $y'^{2} + y^{2} - \lambda y = -C = c_{1}$ $y'^2 = c_1 - y^2 + \lambda y$ $y' = \sqrt{c_1 - y^2 + \lambda y}$ = i'e $\frac{dy}{dx} = \int c_1 - y^2 + \lambda y$ $\frac{dy}{\int c_1 - y^2 + \lambda y} = dx$

$$\Rightarrow \frac{dy}{\sqrt{c_1 - (y^2 - \lambda y + \frac{\lambda^2}{4}) + \frac{\lambda^2}{4}}} = dx$$

$$\Rightarrow \frac{dy}{\sqrt{(c_1 + \frac{\lambda^2}{4}) - (y - \frac{\lambda}{2})^2}} = dx$$

$$\Rightarrow \frac{1}{\sqrt{(c_1 + \frac{\lambda^2}{4}) - (y - \frac{\lambda}{2})^2}} = \int dx + c_2$$

$$\Rightarrow \sin^{-1}\left(\frac{(y - \frac{\lambda}{2})}{\sqrt{c_1 + \frac{\lambda^2}{4}}}\right) = x + c_2$$

$$\Rightarrow \frac{y - \frac{\lambda}{2}}{\sqrt{c_1 + \frac{\lambda^2}{4}}} = \sin(x + c_2)$$

$$\Rightarrow y(x) = \frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} + c_1} \cdot \sin(x + c_2)$$

$$y(x) = \frac{\lambda}{2} = \sqrt{\frac{c_1 + \frac{\lambda^2}{4}}{4}} \cdot \sin(x + c_2)$$

$$y(x) = \frac{\lambda}{2} + \sqrt{\frac{\lambda^2}{4} + c_1} \cdot \sin(x + c_2)$$
is required solution

Him: find the curve y = f(x) for which Ja y Jit y'2 da is minimum subject to the constraint $\int_{\infty}^{x_2} \int 1+y'^2 dx = 1$

(Ans:
$$y = c_1 \cosh\left(\frac{x+c_2}{c_1}\right) - \lambda$$
)

Scanned by CamScanner