Answers to Exercises

Stochastic Calculus for Finance I: The Binomial Asset Pricing Model by Steven E. Shreve

Chapter 6 Interest-Rate-Dependent Assets

Answers by Aaron Fu

20 April, 2019

Please refer to the book for the exercises themselves. The text in front of each answer serves only as a summary of the question.

Please refer to the table below for notation conversion. I convert the symbols to make them more compact, and make the forward measure more distinguishable from the risk-neutral one.

Book Answers Note

$B_{n,m}$	B_n^m	time- n price of a bond that matures at time m
$\Delta_{n,m}$	Δ_n^m	number of m -maturity zero-coupon bonds held by the agent between time n and $n+1$
$\widetilde{\mathbb{P}}^m$	$\widehat{\mathbb{P}}^m$	probability under the m -forward measure
$\widetilde{\mathbb{E}}_n^m$	$\widehat{\mathbb{E}}_n^m$	time- n conditional expectation under the m -forward measure

Exercise 6.2 Verify that the discounted value of the static hedging portfolio for a forward is a martingale under $\widetilde{\mathbb{P}}$.

Answer: To hedge a short position in a forward contract that is initiated at time n with delivery date m, the agent should, at time n, long 1 share of stock and short S_n/B_n^m unit of m-maturity zero-coupon bond. This constructs a static hedging portfolio. The time-n value of the hedging portfolio is

$$X_n = S_n - \left(\frac{S_n}{B_n^m}\right) B_n^m \ (=0)$$

To show its discounted value is $\widetilde{\mathbb{P}}\text{-martingale, note that}$

$$\widetilde{\mathbb{E}}_{n}(D_{n+1}X_{n+1}) = \widetilde{\mathbb{E}}_{n} \left[D_{n+1} \left(S_{n+1} - \left(\frac{S_{n}}{B_{n}^{m}} \right) B_{n+1}^{m} \right) \right] \\
= \widetilde{\mathbb{E}}_{n}(D_{n+1}S_{n+1}) - \left(\frac{S_{n}}{B_{n}^{m}} \right) \widetilde{\mathbb{E}}_{n}(D_{n+1}B_{n+1}^{m}) \qquad \dots \text{ linearity} \\
= D_{n}S_{n} - \left(\frac{S_{n}}{B_{n}^{m}} \right) D_{n}B_{n}^{m} \qquad \dots \text{ discounted stock, bond prices are } \widetilde{\mathbb{P}}\text{-martingale} \\
= D_{n}X_{n}$$

Note: that discounted bond prices are $\widetilde{\mathbb{P}}$ -martingale can be shown by, for $0 \leq k \leq n \leq m$,

$$\widetilde{\mathbb{E}}_k(D_nB_n^m) = \widetilde{\mathbb{E}}_k\Big[D_n\widetilde{\mathbb{E}}_n\big(\frac{D_m}{D_n}\big)\Big] = \widetilde{\mathbb{E}}_k[\widetilde{\mathbb{E}}_n(D_m)] = \widetilde{\mathbb{E}}_k(D_m) = \widetilde{\mathbb{E}}_k\big(D_k \cdot \frac{D_m}{D_k}\big) = D_k\widetilde{\mathbb{E}}_k\big(\frac{D_m}{D_k}\big) = D_kB_k^m$$

Exercise 6.3 Use properties of conditional expectations to show that

$$\frac{1}{D_n}\widetilde{\mathbb{E}}_n[D_{m+1}R_m] = B_n^m - B_n^{m+1}$$

Answer: Note that $(1+R_m)=rac{D_m}{D_{m+1}} \implies R_m=rac{D_m}{D_{m+1}}-1.$ We have

Remark: What's the difference between

- (a) the time-n contract price to pay R_m at time m+1 (see page 155), and
- (b) the time-n forward price to deliver R_m at time m+1 (see page 156)?

Expressed in formula, the former is $B_n^{m+1}F_n^m=B_n^m-B_n^{m+1}$ while the latter is just F_n^m .

But the fundamental difference is that the former is the price to pay at time n, while the latter, as any other strike price of a forward contract, is the price to pay at time m+1.

An example with concrete numbers.

Say
$$n=3, m=7$$
. At time $n=3$, let's say $B_n^m=B_3^7=\$0.93$ and $B_n^{m+1}=B_3^8=\$0.87$.

It can be calculated that the time-n forward interest rate for the period between times m and m+1 is

$$F_n^m = \frac{B_n^m}{B_n^{m+1}} - 1 = \frac{\$0.93}{\$0.87} - 1 = 6.90\%$$

At time n=3, we do not know $R_m=R_7$ which is not unveiled until time m=7.

However, we may, at time n=3, sign a contract that promises to pay $R_m=R_7$ at time m+1=8.

For this contract we charge a no-arbitrage price at $B_n^{m+1}F_n^m=\$0.87\times6.90\%=\0.06 , which the counterparty must pay immediately at time n=3, for the entitlement to receive R_7 at time m+1=8. This amount can also be worked out by $B_n^m-B_n^{m+1}=\$0.93-\$0.87=\$0.06$.

As another case, we may short a forward contract, which promises to deliver $R_m=R_7$ at time m+1=8. Out counterparty, who long the forward contract, is required to pay a strike price fixed at $F_n^m=\$0.069$ at time m+1=8 in exchange for the delivery of $R_m=R_7$.

Exercise 6.4 Using data provided in the book, construct a hedge for a short position in a caplet paying $(R_2 - \frac{1}{3})^+$ at time three. In particular,

- (i) Determine $V_1(H)$ and $V_1(T)$.
- (ii) Show how to begin with $\frac{2}{21}$ at time zero and invest in the money market and maturity-two bond in order to have a portfolio X_1 at time one that agrees with V_1 . Why do we invest in the maturity-two bond rather than the maturity-three bond?
- (iii) Show how to take the portfolio value X_1 at time one to a portfolio value X_2 at time two that agrees with V_2 . Why do we at this step invest in the maturity-three bond rather than the maturity-two bond?

Answer: (i) According to the risk-neutral pricing formula, , $D_1V_1=\widetilde{\mathbb{E}}_1(D_2V_2)$, or $V_1=\widetilde{\mathbb{E}}_1(\frac{D_2}{D_1}V_2)=\widetilde{\mathbb{E}}_1(\frac{1}{1+R_1}V_2)$. In particular,

$$\begin{split} V_1(H) &= \frac{1}{1 + R_1(H)} \Big[\widetilde{\mathbb{P}} \{ \omega_2 = H \mid \omega_1 = H \} \cdot V_2(HH) + \widetilde{\mathbb{P}} \{ \omega_2 = T \mid \omega_1 = H \} \cdot V_2(HT) \Big] = \frac{1}{1 + \frac{1}{6}} \cdot \left(\frac{2}{3} \cdot \$ \frac{1}{3} + \frac{1}{3} \cdot \$ 0 \right) = \$ \frac{4}{21} \\ V_1(T) &= \frac{1}{1 + R_1(T)} \Big[\widetilde{\mathbb{P}} \{ \omega_2 = H \mid \omega_1 = T \} \cdot V_2(TH) + \widetilde{\mathbb{P}} \{ \omega_2 = T \mid \omega_1 = T \} \cdot V_2(TT) \Big] = \frac{1}{1 + \frac{2}{5}} \cdot \left(\frac{1}{2} \cdot \$ 0 + \frac{1}{2} \cdot \$ 0 \right) = \$ 0 \end{split}$$

(ii) The number of maturity-two zero-coupon bonds to hold between times zero and one is

$$\Delta_0^2 = rac{V_1(H) - V_1(T)}{B_1^2(H) - B_1^2(T)} = rac{rac{4}{21} - 0}{rac{6}{7} - rac{5}{7}} = rac{4}{3}$$

Since we have sold the caplet for $X_0 = V_0 = \$\frac{2}{21}$, the money-market account position is

$$X_0 - \Delta_0^2 B_0^2 = \$ \frac{2}{21} - \frac{4}{3} \cdot \$ \frac{11}{14} = -\$ \frac{20}{21}$$

The negative number indicates we should borrow $\$\frac{20}{21}$ from the money market.

If the first coin toss is H, then at time one, the hedging portfolio has value

$$X_1(H) = \Delta_0^2 B_1^2(H) + (1+R_0)(X_0 - \Delta_0^2 B_0^2) = \frac{4}{3} \cdot \$ \frac{6}{7} - (1+0) \cdot (-\$ \frac{20}{21}) = \$ \frac{4}{21}$$

If the first coin toss is V, then at time one, the hedging portfolio has value

$$X_1(T) = \Delta_0^2 B_1^2(T) + (1+R_0)(X_0 - \Delta_0^2 B_0^2) = rac{4}{3} \cdot \$rac{5}{7} - (1+0) \cdot (-\$rac{20}{21}) = \$0$$

Note that the hedging portfolio has a time-one value X_1 that agrees with V_1 , regardless of the coin-toss result.

· Why do we invest in the maturity-two bond?

Because at time zero, we want to hedge against the stochastic interest rate R_1 which is unveiled at time one, which is incorporated in the price of the maturity-two bond. In fact, the price of the maturity-two bond is fully determined by two interest rates: R_0 , which is known at time zero, and R_1 , which we want to hedge against.

Why do we not invest in the maturity-three bond?

The price of the maturity-three bond additionally depends on R_2 , which we shouldn't worry about at time zero. Moreover, in this case, $B_1^3(H) = B_1^3(T) = \frac{4}{7}$, which means it has no randomness between times zero and one, and thus cannot be used as a hedge. A binomial model requires 0 < d < 1 + r < u, and this violates the assumption as d = u.

(iii) If the first coin toss is H, the number of maturity-three zero-coupon bonds to hold between times one and two is

$$\Delta_1^3(H) = rac{V_2(HH) - V_2(HT)}{B_2^3(HH) - B_2^3(HT)} = rac{rac{1}{3} - 0}{rac{1}{2} - 1} = -rac{2}{3}$$

The negative number indicates that we should short $-\frac{2}{3}$ unit of the maturity-three bond. The cash generated will be invested in the money market.

With hedging portfolio value $X_1(H)=\$rac{4}{21}$, the money market position is

$$X_1(H) - \Delta_1^3(H)B_1^3(H) = \$rac{4}{21} - (-rac{2}{3}) \cdot \$rac{4}{7} = \$rac{4}{7}$$

If the first two coin tosses are HH, the hedging portfolio has value

$$X_2(HH) = \Delta_1^3(H)B_2^3(HH) + [1 + R_1(H)][X_1(H) - \Delta_1^3(H)B_1^3(H)] = (-\frac{2}{3}) \cdot \$\frac{1}{2} + (1 + \frac{1}{6}) \cdot \$\frac{4}{7} = \$\frac{1}{3}$$

If the first two coin tosses are HT, the hedging portfolio has value

$$X_2(HT) = \Delta_1^3(H)B_2^3(HT) + [1 + R_1(H)][X_1(H) - \Delta_1^3(H)B_1^3(H)] = (-\frac{2}{3}) \cdot \$1 + (1 + \frac{1}{6}) \cdot \$\frac{4}{7} = \$0$$

If, however, the first coin toss is T, the hedging strategy is trivial. We start with $X_1(T) = \$0$ and do nothing, as $V_2(TH) = V_2(TT) = \$0$.

We have shown that the hedging portfolio has time-two value X_2 that agrees with V_2 . That is, $X_2(HH)=V_2(HH)=\$\frac{1}{3}$, and they are both zero in all other cases.

It is by the same token that we invest in the maturity-three bond rather than the maturity-two bond at this step, since the randomness of R_2 , which we want to hedge against, is not incorporated in the price of the latter.

Exercise 6.5 (i) Use (6.4.8) and (6.2.5) to show that F_n^m , $n=0,1,\cdots,m$ is a martingale under the (m+1)-forward measure $\widehat{\mathbb{P}}^{m+1}$.

(ii) Compute F_0^2 , $F_1^2(H)$, and $F_1^2(H)$ in an example in the book and verify the martingale property $\widehat{\mathbb{E}}^3[F_1^2]=F_0^2$

Answer: (i) For $0 \le k \le n \le m$,

$$\begin{split} \widehat{\mathbb{E}}_{k}^{m+1}(F_{n}^{m}) &= \frac{1}{D_{k}B_{k}^{m+1}} \widetilde{\mathbb{E}}_{k}(D_{m+1}F_{n}^{m}) & \cdots (6.4.8) \\ &= \frac{1}{D_{k}B_{k}^{m+1}} \widetilde{\mathbb{E}}_{k} \left[D_{m+1} \frac{B_{n}^{m} - B_{n}^{m+1}}{B_{n}^{m+1}} \right] & \cdots \text{definition} \\ &= \frac{1}{D_{k}B_{k}^{m+1}} \widetilde{\mathbb{E}}_{k} \left[D_{m+1} \frac{B_{n}^{m} - B_{n}^{m+1}}{\frac{1}{D_{n}} \widetilde{\mathbb{E}}_{n}(D_{m+1})} \right] & \cdots \text{definition, take out what is known} \\ &= \frac{1}{D_{k}B_{k}^{m+1}} \widetilde{\mathbb{E}}_{k} \left[(D_{n}B_{n}^{m} - D_{n}B_{n}^{m+1}) \frac{D_{m+1}}{\widetilde{\mathbb{E}}_{n}(D_{m+1})} \right] & \cdots \text{rearranging} \\ &= \frac{1}{D_{k}B_{k}^{m+1}} (D_{k}B_{k}^{m} - D_{k}B_{k}^{m+1}) \widetilde{\mathbb{E}}_{k} \left[\frac{D_{m+1}}{\widetilde{\mathbb{E}}_{n}(D_{m+1})} \right] & \cdots (6.2.5), \text{ take out what is known} \\ &= F_{k}^{m} \widetilde{\mathbb{E}}_{k} \left[\frac{D_{m+1}}{\widetilde{\mathbb{E}}_{n}(D_{m+1})} \right] & \cdots \text{definition} \\ &= F_{k}^{m} \widetilde{\mathbb{E}}_{k} \left[\widetilde{\mathbb{E}}_{n} \left(\frac{D_{m+1}}{\widetilde{\mathbb{E}}_{n}(D_{m+1})} \right) \right] & \cdots \text{take out what is known} \\ &= F_{k}^{m} \widetilde{\mathbb{E}}_{k} \left[\frac{\widetilde{\mathbb{E}}_{n}(D_{m+1})}{\widetilde{\mathbb{E}}_{n}(D_{m+1})} \right] & \cdots \text{take out what is known} \end{aligned}$$