16. Teorema de Norton

Um **circuito I** e um **circuito II** estão ligados entre si por dois condutores ideais e isolados de outros circuitos, verificando-se as seguintes condições:

- O circuito I e o circuito II são lineares, podendo conter:
 - o resistências;
 - o fontes ideais independentes;
 - o fontes ideais dependentes lineares.
- Se o circuito I tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito I.
- Se o circuito II tiver **fontes ideais dependentes lineares**, as tensões e correntes que controlam essas fontes pertencem todas ao circuito II.

Nestas circunstâncias, todas as tensões e correntes que existem no circuito II continuam a ser as mesmas se o circuito I for substituído pelo seu Equivalente de Norton.

16.1 Determinação de I_N

Se os dois condutores ideais que ligam o circuito I ao circuito II forem cortados, no circuito I formam-se dois terminais, A e B.

 I_N é a corrente de curto-circuito (I_{cc}) relativa aos terminais A e B, ou seja, a corrente que passa num condutor ideal colocado entre esses terminais.

16.2 Determinação de $R_{\rm N}$ com o circuito desactivado, por análise de associações de resistências

Este método não se pode aplicar quando o circuito possui fontes ideais dependentes.

16.3 Determinação de R_N sem desactivação do circuito

16.4 Determinação de $R_{\rm N}$ quando $I_{\rm N}$ é nulo, sem análise de associações de resistências

Quando I_N = 0, não é possível calcular R_N recorrendo à tensão de circuito aberto, uma vez que esta também é nula.

16.4.1 Recurso a uma fonte ideal de corrente

16.4.2 Recurso a uma fonte ideal de tensão

Exemplo: Recorrendo ao Teorema de Norton, determinar o valor da corrente que atravessa a resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a resistência de 2Ω ao circuito equivalente e calcular I.

Exemplo: Recorrendo ao Teorema de Norton, determinar o valor da potência em jogo na fonte ideal de tensão.

Tópicos de Resolução:

1. Retirar a fonte ideal de tensão.

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a fonte ideal de tensão ao circuito equivalente e determinar a potência em jogo nessa fonte.

Exemplo: Recorrendo ao Teorema de Norton, determinar o valor da potência em jogo na resistência de 2Ω .

Tópicos de Resolução:

1. Retirar a resistência de 2Ω .

2. Calcular I_N .

3. Calcular $\mathbf{R}_{\mathbf{N}}$.

4. Ligar a resistência de 2Ω ao circuito equivalente e determinar a potência em jogo nessa resistência.

Exemplo: Determinar o equivalente de Norton do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular I_N .

2. Calcular R_N a partir da tensão de circuito aberto U_{ca} .

Exemplo: Determinar o equivalente de Norton do circuito representado, relativamente aos terminais A e B.

Tópicos de Resolução:

1. Calcular I_N .

3. Calcular \mathbf{R}_{N} recorrendo à fonte ideal de tensão de 1V.

17. Relação Existente Entre o Equivalente de Thévenin e o Equivalente de Norton

 $U_{ca} = R_N \cdot I_N$

 $E_{TH} = R_N \cdot I_N$

$$I_{cc} = \frac{E_{TH}}{R_{TH}}$$

 $I_{cc} = I_N$

$$I_{\rm N} = \frac{E_{\rm TH}}{R_{\rm TH}}$$

 $R_{AB} = R_{TH}$

 $R_{AB} = R_{N}$

 $R_{TH} = R_N$

18. Fontes Lineares de Energia

Numa fonte linear de energia, a característica U=f(I) é uma recta.

18.1 Tensão (U) Existente nos Terminais de uma Fonte Linear de Energia e Corrente (I) Debitada pela mesma Fonte quando esta Possui uma Carga Resistiva (R_C).

18.1.1 Análise Recorrendo ao Equivalente de Thévenin da Fonte Linear de Energia

A característica **U=f(I)** corresponde à equação:

$$U = U_0 - \frac{U_0}{I_{CC}} \cdot I$$

$$U = U_0 - \frac{U_0}{I_{CC}} \cdot I \qquad \frac{U_0}{I_{CC}} = R_i \implies \boxed{U = U_0 - R_i \cdot I}$$

A partir do modelo equivalente obtêm-se as equações $U=f(R_c)$ e $I=f(R_c)$:

$$U = \frac{R_C}{R_i + R_C} \cdot U_0$$

$$I = \frac{U_0}{R_i + R_C}$$

18.1.2 Análise Recorrendo ao Equivalente de Norton da Fonte Linear de Energia

A característica **I=f(U)** corresponde à equação:

$$I = I_{CC} - \frac{U}{\frac{U_0}{I_{CC}}}$$

$$\frac{U_0}{I_{CC}} = R_i \quad \Rightarrow \quad \boxed{I = I_{CC} - \frac{U}{R_i}}$$

A partir do modelo equivalente obtêm-se as equações $I=f(R_c)$ e $U=f(R_c)$:

$$I = \frac{R_i}{R_i + R_C} \cdot I_{CC}$$

$$U = \frac{R_i \cdot R_C}{R_i + R_C} \cdot I_{CC}$$

18.2 Aproximação de uma Fonte Linear de Energia a uma Fonte Ideal de Tensão ou a uma Fonte Ideal de Corrente

• Fonte ideal de tensão ($I_{CC} = \infty$)

$$\frac{U_0}{I_{CC}} = R_i = 0\Omega$$

• Fonte linear de energia com uma carga resistiva

 $\overline{Se\ R_C} >> R_i$ a fonte aproxima-se de uma fonte ideal de tensão, uma vez que U varia pouco com R_C .

• Fonte ideal de corrente ($U_0 = \infty$)

$$\frac{U_0}{I_{CC}} = R_i = \infty$$

• Fonte linear de energia com uma carga resistiva

Se $R_C \ll R_i$ a fonte aproxima-se de uma fonte ideal de corrente, uma vez que I varia pouco com R_C .

Exemplo:

I = f(Rc)

