

MIDTERM UPDATE: QUANTUM CONTRASTIVE REPRESENTATION LEARNING

DO LE DUY • 23th July 2024

Mentors:
Sergei Gleyzer
K.C. Kong
Prof. Konstantin Matchev

PROJECT OVERVIEW

Contrastive Representation Learning: Learn the latent space to predict a metric (distance) instead of a likelihood

Objectives:

- Self-supervised Contrastive Learning
- Supervised Contrastive Learning

Methods:

- Quantum Variational Circuits Encoder
- Equivariant Network Encoder
- Data Augmentations

Datasets:

- MNIST
- HEP Data: Photon Electron Image, Quark Gluon Image, Quark Gluon Particle Cloud
- Molecule Data: QM7, QM9

Contrastive Losses

Temperature-Scaled CE Loss

$$\mathcal{L} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

Fidelity Loss in QVC

For pure states *psi* and *phi*, the fidelity loss:

$$\mathcal{L}_{fidelity} = 1 - F(|\psi\rangle, |\phi\rangle)$$

Pairwise Contrastive Loss

$$\mathcal{L} = -\log \frac{\exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbf{1}_{[k\neq i]} \exp(\operatorname{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)} \quad \mathcal{L} = \frac{1}{2N} \sum_{i=1}^{N} \left(y_i d^2 + (1 - y_i) \max(m - d, 0)^2 \right)$$

Alignment and Uniformity in Contrastive Representation Learning

Alignment Loss:
$$\mathcal{L}_{align} = \frac{1}{N} \sum_{i=1}^{N} \|f(x_i) - f(x_i^+)\|^2$$

- Distance between the embeddings of positive pairs
- Ensures similar pairs are close in feature space

Uniformity Loss:
$$\mathcal{L}_{uniform} = \log \frac{1}{N^2} \sum_{i \neq j} \exp(-2\|f(x_i) - f(x_j)\|^2)$$

 Ensures that the feature embeddings are uniformly distributed over the feature space

T. Wang and P. Isola, "Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere." arXiv, Aug. 15, 2022. doi: 10.48550/arXiv.2005.10242.

QUANTUM REUPLOADING CNN CONTRASTIVE MODEL

```
0 - RZ RY RZ RZ RY RZ
```

```
IMG_DIM = 10

DRCs = 1
EPOCHS = 10

KERNEL_SIZE = 5
STRIDE = 5

DATA_QBITS = 4 # int(((INPUT_DATA_SIZE - KERNEL_S LATENT_QBITS = 3
AUX_QBITS = 1
```


PHOTON - ELECTRON DATASET

Scatter VMF KDE Plot

QUARK GLUON IMAGES DATASET

QUARK GLUON IMAGES DATASET

QUARK GLUON IMAGES DATASET

SELF-SUPERVISED LEARNING WITH GRAPH

- ROTATION
- MOMENTUM PERTURBATION
- RANDOM (OR MOMENTUM PRIORITY) SUBSAMPLING
- NOISE ADDITION

