Adversarial Robustness of Streaming Algorithms through Importance Sampling

Model

- ❖ Input: Elements of an underlying data set *S*, which arrives sequentially and *adversarially*. Adversary can choose future inputs after seeing previous outputs by honest algorithm
- Output: Evaluation (or approximation) of a given function
- ❖ Goal: Use space *sublinear* in the size *m* of the input *S*
- Surprising separation between "classic" streaming model where the stream input is fixed but the order of the updates may be given adversarially
- \clubsuit Hardt and Woodruff [HW13] showed that Linear sketches are NOT robust to adversarial attacks, must use $\Omega(n)$ space by giving an attack on AMS F_2 algorithm

Applications / Motivations

- ❖ Adversarial machine learning: ML problems where the input is chosen by an adversary
- ❖ Database queries: For multiple queries to a database, each query may depend on the responses to the previous queries
- Transparency of Algorithms: Internal state of honest algorithms may be entirely revealed or otherwise compromised

Coresets

- **\Leftrightarrow** Coreset: Returns an ϵ -approximation on a query space
- \clubsuit Merge and reduce framework: Each $C_{1,j}$ is an $\frac{\epsilon}{\log n}$ coreset of the corresponding partition of the substream
- * Applications: *k*-means clustering, *k*-median clustering, projective clustering, principal component analysis, Bayesian logistic regression, generative adversarial networks, *k*-line center, *M*-estimators

Vladimir Braverman (Johns Hopkins University, Google) Avinatan Hassidim (Google) Yossi Matias (Google) Mariano Schain (Google) Sandeep Silwal (MIT) Samson Zhou (Carnegie Mellon University)

Row Sampling Algorithms for Linear Algebra

- Row-arrival model: $M_1, ..., M_n \in \mathbb{R}^d$ rows of a matrix M
- ❖ Sample each row based on its "importance" to obtain $(1 + \epsilon)$ approximate solutions to each problem
- \Leftrightarrow Linear Regression: Output $x \in \mathbb{R}^d$ to minimize $||Mx b||_2$
- **\$\struct\$ Spectral Sparsification / Subspace Embedding:** Output $A \in R^{m \times d}$ so that $||Mx||_2 \approx ||Ax||_2$ for all $x \in R^d$ and $m \ll n$
- **❖** Low-Rank Approximation: Output $A ∈ R^{m \times d}$ so that $||M MP||_F ≈ ||A AP||_F$ for all rank k projection matrices P
- ❖ L_1 Subspace Embedding: Output $A \in R^{m \times d}$ so that $||Mx||_1 \approx ||Ax||_1$ for all $x \in R^d$ and $m \ll n$

Edge Sampling Algorithms for Graphs

- \Leftrightarrow Edge-arrival model: e_1, \dots, e_m edges of a graph G
- ❖ Sample each edge based on its "importance" to obtain $(1 + \epsilon)$ -approximate solutions to each problem
- ❖ Graph Sparsification: Output H so that $Cut_H(S, V \setminus S) \approx Cut_G(S, V \setminus S)$ for any $S \subset V$

Results and Related Work

- Our result: Importance sampling based algorithms are adversarially robust!
- ❖ Intuition: Importance is a robust metric and sampling based algorithms use public randomness that is independent of previous randomness
- Corollary: Merge-and-reduce is adversarially robust
- Corollary: Row sampling algorithms are adversarially robust
- Corollary: Edge sampling algorithm is adversarially robust

Empirical Evaluations

❖ Streaming *k*-means clustering: a series of point batches where all points except the last batch are randomly sampled from a two-dimensional standard normal distribution. Points in the last batch sampled but around a distant center

❖ Streaming linear regression: all batches except the last one are sampled around a constellation of four points in the plane such that the optimal regression line is of -1 slope through the origin. The last batch is at (L, L), far from the origin so the resulting optimal regression line has slope 1 through the origin

❖ Sampling vs. sketching: For a random unit sketching matrix *S* (each of its elements is sampled from {−1,1} with equal probability), we create an adversarial data stream *M* such that its columns are in the nullspace of *S* for linear regression

References

- ❖ [HW13] Moritz Hardt, David P. Woodruff: How robust are linear sketches to adaptive inputs? STOC 2013: 121-130
- ❖ [KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, Uri Stemmer: Separating Adaptive Streaming from Oblivious Streaming. CRYPTO 2021 (to appear)