Readings 11.1, 11.2, 11.3, except 11.3.3

Self test 11.1-1, 11.2-1, 11.2-2

Lecture 09

Hashing

Problem 1: Read a text file, keep track of number of occurences of each character (ASCII codes 0 - 127). Solution \rightarrow Direct-access table: store number of occurences of each character in array with 128 positions.

All operations $\Theta(1)$ and memory usage small.

Problem 2: Read a data file, keep track of each integer value (from 0 to $2^{32} - 1$).

Solution \rightarrow Wasteful: use array with 2^{32} positions as above. Time is $\Theta(1)$ but memory required is huge. Instead, allocate array with 10000 positions (for example), and figure out how to map each integer to one position - "hashing."

universe:= set of all possible keys

hash table T:= array with m positions, each location called a "slot" or a "bucket"

hash function:= $h: U \to \{0, 1, \dots, m-1\}, h(k)$ maps keys to buckets

Collisions

$$|u| > m \Rightarrow \exists \ k \neq k', h(k) = h(k')$$

Strategies for Collision Resolution

- (a) pointer to new locatation / overflow
- (b) rule to find the overflow

Chaining ("closed hashing")

Each location of T stores linked list of items that hash to this location.

Simple Uniform Hashing

$$P[h(x) = i] = \sum_{x \in U, h(x) = i} P[x] = \frac{1}{m} \text{ for } i = 0, 1, \dots, m - 1$$

It is equally likely for a key to go into any bucket.

$$\sum_{x \in U, h(x) = i} P[x] = \frac{1}{m}$$

Define load factor $\alpha=$ expected number of items in each bucket, $\alpha=\frac{n}{m}$ Random variables:

N(x) = number of elements examined on search for x

 $L_i = \text{number of elements in bucket } i$

$$\sum_{i=0}^{m-1} L_i = n$$

Probability space? \rightarrow pick uniformly at random from U

$$\begin{split} E[T] &= \sum_{x \in U} P[x] \cdot N(x) \\ &= \sum_{i=0}^{m-1} \left(\sum_{x \in U, h(x) = i} P(x) \cdot N(x) \right) \\ &\leq \sum_{i=0}^{m-1} P[h(x) = i] \cdot L_i = \frac{1}{m} \sum_{i=0}^{m-1} L_i = \frac{n}{m} = \alpha \end{split}$$

Concern: In practical applications |U| >> m. So analysis above computes expectation for keys most likely not in the table. Intuitively: searching for a key not in the table requires traversing one complete linked list with average size α .