Consider a network as defined in (3.1) and (3.2). Assume that $n_L=1$, find an algorithm to calculate $\nabla \mathcal{L}^{LJ}(x)$. Some element: $\{h_{\bar{i}}\}_{\bar{i}=1}^{L}$ where $h_{\bar{i}}\in \mathbb{N}$ for all $\bar{i}=1,2,...,2$ and $h_L=1$. $W^{L\bar{i}}\in \mathbb{R}^{h_{\bar{i}}}$, $b^{L\bar{i}}\in \mathbb{R}^{h_{\bar{i}}}$ and $A^{L\bar{i}}\in \mathbb{R}^{h_{\bar{i}}}$ for all $\bar{i}=1,2,...,2$.

by (3.2), we have $a^{[L]} = \sigma(W^{[L]} a^{[L-1]} + b^{[L]}) \in \mathbb{R}^{n_L}$ for l = 1, 2, ..., L

Then he can construct a algorithm by following to get $\nabla \alpha^{(L)}(x)$.

Input: $\{\Lambda_{\bar{\lambda}}\}_{\bar{a}=1}^{L}$ in N, $\chi \in \mathbb{R}^{n}$, $\{V^{\bar{a}}\}_{\bar{a}=2}^{L}$ the collection of weight, $\{b^{\bar{a}\bar{a}}\}_{\bar{a}=2}^{L}$ the collection of $b\bar{a}$ is $\sigma(x)$.

Output: $\nabla A^{(L^2}(X)$.

ALIJ = X.

for a from 2 to L;

8[i]= W[i] A[i-1] + b[i]

Q[i] = \(\tall{z}[i]\)

S[L] = \(\sigma'(\gamma[L])

for $\bar{\lambda}$ from l-1 to 2j $\delta[\bar{\lambda}] = (W[\bar{\lambda}+1])^T \delta[\bar{\lambda}+1] \cdot \sigma'(Z[\bar{\lambda}])$

 $\nabla \mathcal{A}^{[L]}(x) = (W^{[L]})^{\mathsf{T}} \delta^{[L]}$ return.