Documentation

This document provides information about the software that was used to investigate non-Poisson continuous time random walks in our paper [6]. We discuss the requirements necessary to run the software in section I and provide an outline of the components of the software in section II.

I. REQUIREMENTS & SETUP

The software is based on a number of libraries that need to be installed before the software can be run. In particular, you will need to have the following software installed on your machine

- Python 2.6 or later (but not the 3.* version of python which is not backwards compatible) [4],
- Numpy and Scipy [5],
- NetworkX [3],
- (MatPlotLib [2] is required to run the example).

The easiest way to install all of the above is to use the free Enthought Python Distribution [1] which is available for all major operating systems. After having installed the Enthought package you can install NetworkX by issuing the command

sudo easy_install networkx

We have implemented parts of the software in C because evaluating the probability distribution functions associated with the waiting times can be computationally intensive. You need to compile the C source before being able to run the software by executing the following steps

- Issue the command python _distributionssetup.py
- 2. Navigate to the build directory and copy the compiled file into the source directory such

that it is visible to the python implementation. For example, on a Mac OSX system the compilation process creates a file distributions.so in the folder <source directory>/build/lib.macosx-10.5-i386-2.7/. The file distributions.so needs to be copied into the source directory.

You should be ready to go!

II. COMPONENTS

Each file contains commentary to explain its functionality. Thus, we will only give a brief summary of each file's content here.

_distributions.c contains C implementations to evaluate probability distribution functions and cumulative distribution functions quickly.

_distributionssetup.py is a helper script that you can use to compile the C source. It will create a library file which you need to copy to the source directory.

distributions.py is a python wrapper for the C library and defines probability distribution functions as classes.

walker.py contains the main functionality of the software which can be categorized into two groups

- Monte-Carlo simulations that approximate the walker density on networks by generating a large number of random walks,
- Calculation of effective transition matrices and resting times to obtain steady state solutions.

example.py is a self-explanatory example. It creates a toy network of three nodes, approximates the walker density through simulations and obtains the steady-state solution explicitly.

^[1] Enthought python distribution. URL http://www.enthought.com/products/epd_free.php.

^[2] matplotlib. URL http://matplotlib.org/.

^[3] Networkx. URL http://networkx.lanl.gov/.

^[4] Python programming language. URL http://python.org/.

^[5] Scipy. URL http://scipy.org/.

^[6] Till Hoffmann, Mason A. Porter, and Renaud Lambiotte. Generalized master equations for non-poisson dynamics on networks. *Phys. Rev. E*, 86:046102, October 2012. doi: 10. 1103/PhysRevE.86.046102. URL http://link.aps.org/ doi/10.1103/PhysRevE.86.046102.