

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS SÃO GONÇALO DO AMARANTE

Fundamentos de Lógica e Algoritmos

#EquivalênciaLógica

Eliezio Soares elieziosoares@ifrn.edu.br

Equivalência Lógica

- ▶ As proposições p ∧ q e q ∧ p possuem tabelas verdade iguais.
- Logo, dizemos que são proposições equivalentes.

Exemplo:

- ▶ P) p ^ q
- ▶ Q) q ∧ p

р	q	p ^ q	q ^ p
٧	V	V	V
V	F	F	F
F	V	F	F
F	F	F	F

Equivalência Lógica

- Portanto, dizemos que duas proposições são equivalentes se, e somente se, o resultado de suas tabelas-verdade forem idênticos.
- A equivalência lógica entre duas proposições P e Q, pode ser representada simbolicamente como:
 - ▶ P ⇔ Q

Propriedades

Idempotente

Uma proposição composta pela mesma proposição simples equivale a proposição simples.

Comutativa

A ordem das proposições não altera a tabela verdade.

Associativa

Utilizando um mesmo conectivo a ordem de montagem da tabela verdade não altera os seus resultados.

Identidade

Na conjunção a falsidade determina o valor da proposição composta. Na disjunção a verdade determina o valor da proposição composta.

Distributiva

Utilizando os conectivos E e OU pode-se distribuir o conectivo de fora dos parênteses para dentro.

Idempotência

Uma proposição composta pela mesma proposição simples equivale a proposição simples.

- Sejam p,q e r proposições simples.
- Propriedade da IDEMPOTÊNCIA:
 - Conjunção:
 - \square $P \land P \Leftrightarrow P$
 - Disjunção
 - □ P V P ⇔ P
- Exemplo:
 - ▶ C > D ∧ C > D ⇔ C > D

Comutativa

A ordem das proposições não altera a tabela verdade.

- Sejam p,q e r proposições simples.
- Propriedade COMUTATIVA:
 - Conjunção:
 - $\ \ \square \ \ P \land Q \Leftrightarrow Q \land P$
 - Disjunção
 - \square P \vee Q \Leftrightarrow Q \vee P
- Exemplo:
 - \rightarrow A > B \land 10 > 0 \Leftrightarrow 10 > 0 \land A > B

Associativa

Utilizando um mesmo conectivo a ordem de montagem da tabela verdade não altera os seus resultados.

- Sejam p,q e r proposições simples.
- Propriedade ASSOCIATIVA:
 - Conjunção:
 - $\square (P \land Q) \land R \Leftrightarrow P \land (Q \land R)$
 - Disjunção
 - $\square (P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$
- Exemplo:
 - $(A > B \land 10 > 0) \land N > C \Leftrightarrow A > B \land (10 > 0 \land N > C)$

Identidade

Na conjunção a falsidade determina o valor da proposição composta. Na disjunção a verdade determina o valor da proposição composta.

- Sejam p, q e r proposições simples.
- Para:
 - V(q) = V
 - V(r) = F
- Conjunção:
 - □ p ∧ q ⇔ p
 - □p∧r⇔r
- Disjunção
 - □ p ∨ q ⇔ q
 - \Box p \forall r \Leftrightarrow p

Distributiva

Utilizando os conectivos E e OU pode-se distribuir o conectivo de fora dos parênteses para dentro.

- Sejam P,Q e R proposições simples.
- Propriedade DISTRIBUTIVA:
 - Conjunção:
 - $\square P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
 - Disjunção
 - $\square P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Distributiva

Propriedade DISTRIBUTIVA:

- \square P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)
- $\square P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$
- A primeira equivalência exprime que a conjunção é distributiva em relação a disjunção e a segunda equivalência exprime que a disjunção é distributiva em relação a conjunção.

Exemplo I:

- As violetas são azuis e as rosas são vermelhas ou amarelas.
- As violetas são azuis e as rosas são vermelhas ou as violetas são azuis e as rosas amarelas.

Exemplo 2:

- Faz calor ou chove e venta.
- Faz calor ou chove e faz calor ou venta.

Resumo das Propriedades

P ∧ P ⇔ P
P ∨ P ⇔ P
P ∧ Q ⇔ Q ∧ P
P ∨ Q ⇔ Q ∨ P
(P ∧ Q) ∧ R ⇔ P ∧ (Q ∧ R)
(P ∨ Q) ∨ R ⇔ P ∨ (Q ∨ R)
P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
Distributiva

Leis de Morgan

- **(i)** ~(p ∧ q) ⇔ ~p ∨ ~q
- **(ii)**~(p ∨ q) ⇔ ~p ∧ ~q
- (i) Negar que duas dadas proposições são ao mesmo tempo verdadeiras equivale a afirmar que uma pelo menos é falsa.
 - "negar a simultaneidade de p e q é afirmar pelo menos não p ou não q"
- (ii) Negar que uma pelo menos de duas proposições é verdadeira equivale a afirmar que ambas são falsas.
 - \blacktriangleright "negar a ocorrência de pelo menos p ou q é afirmar nem p nem q"

Leis de Morgan

A negação transforma a conjunção em disjunção e a disjunção em conjunção.

- Segundo (i), a negação da proposição "É inteligente e estuda" é:
 - "Não é inteligente ou não estuda"
- Segundo (ii), a negação da proposição "É médico ou professor"
 é:
 - "Não é médico e não é professor"

Dúvidas

Exercício

- I- Se V(a) = V e V(b) = F, determine as equivalentes as proposições abaixo:
 - $p \wedge b$
 - p V a
 - $p \wedge a$
 - p V b
- 2- Determine as proposições equivalentes a cada uma das proposições abaixo:
 - $P = p \wedge (q \vee r)$
 - $Q = p \vee (q \vee r)$
 - $R = p \vee p$
 - $S = P \wedge P$

Exercício

- 3- Demonstrar por tabelas verdade as equivalências:
 - a) $p \rightarrow q \wedge r \Leftrightarrow (p \rightarrow q) \wedge (p \rightarrow r)$
 - b) $p \rightarrow q \vee r \Leftrightarrow (p \rightarrow q) \vee (p \rightarrow r)$
- 4- Dar a negação em linguagem corrente das seguintes proposições:
 - a)Rosas são vermelhas e violetas são azuis.
 - b)É falso que não está frio ou que está chovendo.
 - c) Não é verdade que o pai de Marcos é pernambucano ou que a mãe é gaúcha.
 - d)Não é verdade que as vendas estão diminuindo e as vendas estão aumentando.
 - e) Não é verdade que Jorge estuda química, mas não física.