

Operation PSHOT-KNOTHO

March - June 1953

NORATED RALL COMMUNICATION CONTRACTOR

Key list

FORCE SPECIAL WEAPONS CENTER

10,45° UNCLASSIFED

18671

If this report is no longer needed, return it to AEC Technical Information Service P. O. Rox 401 Oak Ridge, Tennessee

WT-703

This document consists of 104 pages No. 142 of 205 copies. Series A

Report to the Test Director

AIR WEATHER SERVICE PARTICIPATION

By

Lt Col Dewitt N. Morgan Lt Col William H. Wyatt and

A/1C Robert L. Ligon

Air Force Special Weapons Center Kirtland Air Force Base Albuquerque, New Mexico July 1953

This material contains information affecting the national defense of the United States within the meaning of the espionage laws Title 11, U. S. C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

CONTENTS

													Pag
1	INTRODUC	CTION		BEST W			1 7 3 1						7
2	OPERATIO	ONS											7
3	METEORO	LOGICAL DATA		-19-7 1 -55	2.0		•	•	•	•		•	8
A	PPENDIX A	AIR WEATHER	SERVIC	E ORGA	NIZA	TION	IAL C	HAR	T				11
A	PPENDIX B	PERSONNEL AS	SIGNEI	TO WE	EATH	ER S	ECTIO	ONS					15
A	PPENDIX C	LOCATOR CHAP	RT_LC	CATIO	N ANI	TY	PE O	F WE	ATHI	ER			
		STATION .											19
A	PPENDIX D	LOCATIONS OF	SATEL	LITE W	EATE	ER S	TAT	ONS					23
A	PPENDIX E	UPPER-AIR DA	TA, GR	OUND Z	ERO								27
A	PPENDIX F	ACTUAL WEAT	HER CO	ONDITIO	NS F	OR G	ROUN	DZE	ERO A	AND			
		BURST HEIGHT											41
A	PPENDIX G	RAWINSONDE O	BSERV.	ATIONS									55
Al	PPENDIX H	PIBAL OBSERV	ATIONS										71
Al	PPENDIX I	CONTROL POIN	T SURF	ACE OF	BSERV	ITA	ONS						87
11	LUSTRA	ATION											
•													
A	PPENDIX C	LOCATOR CHAI	RT — LA	OCATIO	N AN	D TY	PE O	F WE	HTA	ER			
	C.1 Loca	ation and Type of V	Weather	Station		•			٠			•	21
T	ABLES												
A	PPENDIX B	PERSONNEL AS	SIGNEI	TO WE	EATH	ER SI	ECTIO	ONS					
	B.1 Per	sonnel Assigned to	Weath	er Secti	ons			•		•	•		17
A	PPENDIX D	LOCATIONS OF	SATEL	LITE W	EATI	ER 8	TAT	IONS					
	D.1 Loc	ations of Satellite	Weathe	r Station	ns .			•		•			25
A	PPENDIX E	UPPER-AIR DA	TA, GR	OUND Z	ERO								
	E.1 Up	per-air Data, Gro	und Zer	o. 17 M	arch !	1953							29
		per-air Data, Gro									1		30
		per-air Data, Gro											31
		per-air Data, Gro								•			32

TABLES (Continued)

		Part Industriant							Page
	E.5	Upper-air Data, Ground Zero, 11 April 1953							33
	E.6	Upper-air Data, Ground Zero, 18 April 1953							34
	E.7	Upper-air Data, Ground Zero, 25 April 1953							35
	E.8	Upper-air Data, Ground Zero, 8 May 1953							36
	E.9	Upper-air Data, Ground Zero, 19 May 1953							37
	E.10	Upper-air Data, Ground Zero, 25 May 1953							38
	E.11	Upper-air Data, Ground Zero, 4 June 1953		•					39
API	PENDE	K F ACTUAL WEATHER CONDITIONS FOR G BURST HEIGHT	ROU	IND ZE	RO A	ND			
	F.1	Actual Weather Conditions for Nuclear Detona				rch			
		1953				:	•		43
	F.2	Actual Weather Conditions for Nuclear Detona 1953			Ma	rch		200	44
	F.3	Actual Weather Conditions for Nuclear Detona	tion	Three.	31 M	larch			
		1953							45
	F.4	Actual Weather Conditions for Nuclear Detona			Apr	il			
		1953							46
	F.5	Actual Weather Conditions for Nuclear Detona	tion	Five. 1	1 Ap	ril			
		1953							47
	F.6	Actual Weather Conditions for Nuclear Detona			Apri	1			199
		1953			all in	1			48
	F.7	Actual Weather Conditions for Nuclear Detona	tion	Seven.	25 A	pril			327/1
	• • •	1953							49
	F.8	Actual Weather Conditions for Nuclear Detona			R Ma	v .			
	1.0	1953		Birc,		,			50
	F.9	Actual Weather Conditions for Nuclear Detona		Nine 1	9 Ma	v	13	10	•
	F.0	1953			0 1410	.,			51
	E-10	Actual Weather Conditions for Nuclear Detona			Ma	,	•	12000	
	F.10	1953							52
	F.11				4 .T.	ine.	•		02
	F.11	1953	LLIOII	Dieven	, 20,	une			53
		1800	•	•	•	•	•		33
A DI	DENDE	X G RAWINSONDE OBSERVATIONS							
AP	ENDL								
	G.1	Rawinsonde Observation, Yucca Lake, 17 Mar	ch 1	953					57
	G.2	Rawinsonde Observation, Yucca Lake, 24 Mar	ch 1	953					57
	G.3	Rawinsonde Observation, Yucca Lake, 31 Mar	ch 1	953					58
	G.4	Rawinsonde Observation, Yucca Lake, 6 April	195	3 .					59
	G.5	Rawinsonde Observation, Yucca Lake, 11 April							59
	G.6	Rawinsonde Observation, Yucca Lake, 18 April							60
	G.7	Rawinsonde Observation, Yucca Lake, 25 April							61
	G.8	Rawinsonde Observation, Yucca Lake, 8 May							61
	G.9	Rawinsonde Observation, Yucca Flat, 19 May							62
	G.10	Rawinsonde Observation, Yucca Flat, 25 May						144.1	63
	G.11	Rawinsonde Observation, Yucca Flat, 4 June 1							63
	G.12	Rawinsonde Observation, Tonopah, 17 March							64
	G.13	Rawinsonde Observation, Tonopah, 24 March							65
	G.14	Rawinsonde Observation, Tonopah, 31 March							65
		, , , arate on .		100	-				

TABLES (Continued)

					Page
G.15	Rawinsonde Observation, Tonopah, 6 April 1953				66
G.16	Rawinsonde Observation, Tonopah, 11 April 1953				67
G.17	Rawinsonde Observation, Tonopah, 18 April 1953				67
G.18	Rawinsonde Observation, Tonopah, 25 April 1953				68
G.19	Rawinsonde Observation, Tonopah, 8 May 1953 .				69
G.20	Rawinsonde Observation, Tonopah, 19 May 1953				69
G.21	Rawinsonde Observation, Tonopah, 25 May 1953				70
G.22	Rawinsonde Observation, Tonopah, 4 June 1953 .		•		70
APPENDI	X H PIBAL OBSERVATIONS				
H.1	Pibal Observation, 17 March 1953				73
H.2	Pibal Observation, 24 March 1953				74
H.3	Pibal Observation, 31 March 1953				75
H.4	Pibal Observation, 6 April 1953				76
H.5	Pibal Observation, 11 April 1953				77
H.6	Pibal Observation, 18 April 1953				78
H.7	Pibal Observation, 25 April 1953				80
H.8	Pibal Observation, 8 May 1953				81
H.9	Pibal Observation, 19 May 1953				82
H.10	Pibal Observation, 25 May 1953				83
H.11	Pibal Observation, 4 June 1953	•			85
APPENDI	X I CONTROL POINT SURFACE OBSERVATIONS				
I.1	Surface Observations, Control Point, 17 March 1953				89
I.2	Surface Observations, Control Point, 24 March 1953				90
1.3	Surface Observations, Control Point, 31 March 1953				91
1.4	Surface Observations, Control Point, 6 April 1953				92
1.5	Surface Observations, Control Point, 11 April 1953				93
1.6	Surface Observations, Control Point, 18 April 1953				94
1.7	Surface Observations, Control Point, 25 April 1953				95
1.8	Surface Observations, Control Point, 8 May 1953				96
1.9	Surface Observations, Control Point, 19 May 1953				97
I.10	Surface Observations, Control Point, 25 May 1953				98
I.11	Surface Observations, Control Point, 4 June 1953				99

AIR WEATHER SERVICE PARTICIPATION

1 INTRODUCTION

The primary purpose of this report is to record pertinent meteorological data that were taken in support of the atomic tests at the Nevada Proving Grounds (NPG). These data, comprising the major portion of this report, are tabulated in the appendixes and discussed in Sec. 3, Meteorological Data.

Operational, administrative, and logistical details were analogous to those of previous tests. For background information on these matters reference is made to the following reports: Air Weather Service Participation in Operation Buster-Jangle, WT-342, December 1951, and Air Weather Service Participation in Operation Tumbler-Snapper, WT-508, January 1953.

2 OPERATIONS

The Mercury Weather Station, 4th Weather Group, began full-scale operations on 2 March 1953. This allowed approximately two weeks to get all personnel acquainted with the specific requirements of the task ahead and to develop adequate teamwork. In particular it permitted indoctrination of forecasters in the procedures and techniques which would be used. This was essential in view of the fact that, of the forecasters assigned, only three had previous experience with the NPG weather requirements. Personnel augmentation from other weather units is indicated in Appendix B.

The principal functions and responsibilities are indicated in the Air Weather Service Organizational Chart of Appendix A.

By 10 March 1953 all off-site observing sections (upper air) were in operation. Types and locations of these stations are given in Appendix C and Appendix D.

The forecast requirement and briefing schedule remained about the same as on previous tests. For the first time in the Nevada operations, and in accordance with the wishes of the Test Director, the forecaster-in-charge presented the weather briefings.

Detailed forecasts were required with primary emphasis on winds aloft and clouds. The decision to proceed with a scheduled nuclear detonation was influenced largely by the expected fall-out of radioactive particles and blast effects. These fall-outs were dependent upon the winds, the forecasts of which obviously were desired to the highest degree of accuracy. Since the atomic cloud from a large percentage of the detonations rose to the tropopause and above, it was necessary to forecast winds from the surface to approximately 40,000 ft MSL. These were given in increments of 5000 ft above the 10,000-ft MSL.

Cloud cover, including cirrus at altitudes up to 35,000 and 40,000 ft, was usually of critical importance for one or more of the following reasons: visual bomb drops and aircraft tracking and sampling of the atomic cloud. Generally more than \(^3\)\(_6\) cloud cover, uniformly distributed, was considered unsatisfactory.

Additional requirements included a forecast lapse rate for computations of blast effects, forecasts regarding precipitation downstream through which the atomic cloud might pass, and 24-hr trajectories at selected levels of 10,000, 20,000, 30,000, and 40,000 ft MSL.

The map analyses needed for forecasting purposes were the 1000-mb (surface) and the 700-, 500-, 300-, and 200-mb levels for all synoptic reporting times. The map area extended from the Mississippi Valley westward to approximately 150° east longitude on Weather Bureau WBAN #1 plotting chart. Standard "differential-analysis" techniques were used over the Pacific areas to get the most accurate and detailed analyses possible. Map analyses upon which the forecasts were based (1500 Z for upper air) required approximately 7 hr of intensive effort of three forecasters.

With the additional time required for discussions and preparation of the forecasts, the 48-hr forecast was not available until approximately 36 hr and the 24-hr forecast not until some 10 hr before shot time. The briefing schedule was as follows: The 48-hr forecast was given informally to the Test Director on the day it was prepared. This forecast, with indicated modifications, was given to the Test Director and key operating personnel in a formal briefing at approximately 0800 hr on D-1 day, at which time a decision was made on the advisability of proceeding with test preparations. The 24-hr forecast was presented at the evening briefing (2100 PST) to the Test Manager and his staff. For planning purposes, particularly if any elements of the 24-hr forecast were unfavorable, a 48-hr outlook was also given at this time.

Briefing aids in the form of basic meteorological charts were held to a minimum. Generally the map discussion was restricted to significant features and expected developments on the 500-mb chart which was presented as a streamline analysis.

3 METEOROLOGICAL DATA

Prior to the tests at the NPG the program directors of all projects submitted their requirements for meteorological data to the Director of Weapons Effects Tests, Field Command AFSWP, Sandia Base, N. Mex. An analysis of these test requirements by the Project Weather Officer indicated that they could be satisfactorily met with the equipment on hand at the Mercury Weather Station and the proposed personnel complement.

The following tabulation of on-site observation facilities indicates the location, type of data, and observing schedules used to meet these needs:

Type of data	Location	Schedule
Standard surface observations	Control Point	Hourly (24 per day plus specials at H-hour)
Rawinsonde observations	Yucca Lake	Four per day plus three specials hourly, from H-6 to H+24 including one at H-hour
Surface winds, temperatures, and relative humidity	Yucca Flat (EG&G shelter) (#351)	Continuous automatic recording
Surface winds, temperatures, and relative humidity	Frenchman Flat (EG&G shelter) (#370)	Continuous automatic recording

The instrumentation for obtaining surface data in the Yucca and Frenchman shot areas consisted of Friez Aerovane wind equipment remoted to the Control Point and Friez hygrothermographs installed in standard Air Force instrument shelters.

The "fixed" observations were supplemented in several ways. On the airdrop and cannon shot in Frenchman Flat. a set of Beckman-Whitley surface-wind equipment was installed at approximately 1500 ft from Ground Zero and remoted to the Control Point. This was for smoke-screen control purposes rather than for meteorological effects on experiments.

For each of the tower shots at Yucca Flat the EG&G company supplied and installed in the tower cab remote-indicating temperature (wet and dry bulb) and pressure equipment which was calibrated by weather station personnel on D-2 day using a standard aneroid barometer and a sling psychrometer. These parameters were recorded in the control room of the Control Point.

Plans were made to take wiresonde data at Frenchman Flat for the two shots scheduled in that area. Because of strong surface winds on shot days, however, it was impossible to operate this equipment. The desirability of having this data from the surface to at least 1000 ft is obvious since the rawinsonde section was located north on Yucca Lake at an elevation of approximately 850 ft above that of Ground Zero for Frenchman Flat.

The meteorological data for shot days are found in the appendixes under such headings as Upper-air Data for H-hour, Surface Observations, Actual Weather Conditions at Burst Height and Ground Zero, and Rawinsonde and Pibal Observations. Perhaps the most useful and readily usable tabulation of data will be found in Appendix E, which gives the more commonly required meteorological elements for every 1000 ft from the surface to the maximum height of the rawinsonde observation. It also includes the special levels of Ground Zero and burst height.

The data in Appendix E are based largely upon the H-hour rawinsonde data of Appendix G but have been modified and extended in the low levels where indicated by the supplementary information from tower and surface observations. Based upon a very careful correlation of all available data and further checked by standard height-pressure computations in the lowest levels, these data are considered to be applicable to conditions over Ground Zero within the accuracy tolerances of upper-air observation equipment.

As on previous tests a network of six upper-air observing stations was established at selected points surrounding the NPG to furnish data supplementary to those normally available from Air Force and Weather Bureau stations. The locations of these sections and other pertinent information will be found in Appendixes C and D.

The data from these stations served a twofold purpose. They were used primarily by Radiological Safety (Rad-Safe) personnel to compute accurate postshot analysis trajectories by streamline methods. They were also valuable for monitoring the winds aloft that had been forecast during the few hours preceding shot time. The rawinsonde data, given in Appendix G, proved very useful in weather analysis and forecasting.

All the afore-mentioned collected data were recorded and are available for utilization by the using agencies. They are stored at Detachment 22, 4th Weather Group, Post Office Box 1663, Los Alamos, N. Mex., Attention: H-6 Weather Station.

Appendix A

AIR WEATHER SERVICE ORGANIZATIONAL CHART

<u>UNCLASSIFIED</u>

Appendix B

PERSONNEL ASSIGNED TO WEATHER SECTIONS

Table B.1 — PERSONNEL ASSIGNED TO WEATHER SECTIONS

Section	Location	Personnel*
Forecast		10
Observing		16
Rawinsonde	Yucca Flat	15
Rawinsonde	Tonopah	11
Pibal	Beatty	3
Pibal	Warm Springs	3
Pibal	Caliente	3
Pibal	Currant	3
Pibal	St. George	3

*Some personnel were assigned to more than one section and are included in the totals. One officer was in charge of all rawinsonde and pibal sections; he is not included in the totals given for these units.

Appendix C

LOCATOR CHART—LOCATION AND TYPE OF WEATHER STATION

Fig. C-1 — Location and type of weather station. Φ, weather station. ⊗, rawinsonde station; equipment, rawin set (GMD-1) and radiosonde set (FMQ-1). Φ, pibal station; equipment, theodolite. Θ, radio.

Appendix D

LOCATIONS OF SATELLITE WEATHER STATIONS

Table D.1 — LOCATIONS OF SATELLITE WEATHER STATIONS

Location	Call letter	Type station	Latitude, north	Longitude, west	Elevation, ft
Beatty	BTY	Pibal	36°04′	117°06′	5413
Caliente	CAL	Pibal	37°43′	114°27′	4621
Currant	CUR	Pibal	38°42'	115°31′	4974
St. George	SGU	Pibal	37°05′	113°35′	2905
Tonopah	TPH	Rawinsonde	38°04′	117°06′	5413
Warm Springs	WSP	Pibal	38°13′	116°21′	5458
Nevada Proving Grounds (Yucca Lake)	AEC	Rawinsonde	36°57′	116°03′	3927

Appendix E

UPPER-AIR DATA, GROUND ZERO

UNCLASSIFIED

27-28

Table E.1 — UPPER-AIR DATA, GROUND ZERO, 17 MARCH 1953 [0520 PST (1320 Z)]

	Atmospheric		Relative		Virtual	Wind			
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed		
Ground Zero	876	2.7	43	-8.5	3.0	Light and	variable		
Burst height	866	7.9	38	-5.4	8.3	250	2		
5	845	7.5	39	-6.5	7.9	250	4		
6	816	6.8	32	-8.5	7.2	290	8		
7	785	5.0	34	-9.5	5.4	270	9		
8	757	3.0	33	-11.5	3.3	280	6		
9	728	1.0	34	-12.9	1.3	270	24		
10	700	-1.2	34	-14.9	-0.9	270	25		
11	675	-3.5	28	-19.5	-3.3	270	25		
12	648	-6.2	29	-21.2	-6.0	270	25		
13	624	-9.0	30	-23.2	-8.8	270	23		
14	599	-11.5	31	-25.0	-11.3	270	21		
15	576	-14.0	32	-26.8	-13.9	280	32		
16	554	-16.0	32	-28.7	-15.9	280	34		
17	530	-17.8	31	-30.5	-17.7	280	38		
18	509	-19.7	31	-32.3	-19.6	270	42		
19	488	-21.8	29	-35.0	-21.7	270	48		
20	470	-24.1	Dry	Dry		270	54		
21	450	-26.9				270	50		
22	432	-29.5				270	46		
23	414	-32.0				270	43		
24	398	-34.0				270	40		
25	380	-37.0				270	47		
26	365	-40.0				270	47		
27	348	-42.9				270	50		
28	332	-45.5				270	52		
29	319	-48.1				270	60		
30	304	-51.5				270	68		
31	290	-53.8				270	66		
32	278	-55.8				270	64		
33	263	-57.8				270	60		
34	250	-60.5				260	56		
35	239	-62.5				260	53		
36	228	-64.5				260	60		
37	218	-60.0				260	65		
38	205	-56.5				260	71		
39	197	-55.5				260	80		
40		-53.0				260	89		
41		-52.0				260	79		
42	171	-53.0				260	73		
43		-54.0				260	70		
44		-55.2				260	66		
45		-56.0				260	63		
46	142	-57.3				260	61		
47	135	-59.0				250	60		
48	129	-60.2				250	59		
49		-61.5				240	58		
50	118	-62.9				240	58		

Table E.2 — UPPER-AIR DATA, GROUND ZERO, 24 MARCH 1953 [0510 PST (1310 Z)]

	Atmospheric		Relative		Virtual	Wind		
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed	
Ground Zero	870	9.9	39	-3.6	10.4	310	2	
Burst height	860	13.3	31	-3.2	13.9	Calm	Calm	
5	852	12.0	30	-4.6	12.5	Calm	Caln	
6	821	11.4	13	-14.0	11.6	210	16	
7	792	8.9	33	-6.0	9.3	150	12	
8	764	6.4	32	-8.2	6.5	150	16	
9	736	4.1	32	-10.3	4.2	150	12	
10	703	2.7	Dry	Dry		150	12	
11	683	0.4				160	13	
12	657	-2.0				170	9	
13	632	-4.1				200	18	
14	608	-6.4				200	18	
15	584	-8.7				220	12	
16	561	-11.0				210	16	
17	538	-13.3				210	12	
18	517	-15.6				190	11	
19	497	-17.8				180	15	
20	477	-20.0				210	20	
21	458	-22.0				220	25	
22	440	-24.1				220	24	
23	422	-26.2				230	25	
24	404	-28.4				210	25	
25	387	-30.6				210	25	
26	371	-33.0				210	25	
27	355	-35.2			in in	220	25	
28	340	-37.4				210	28	
29	324	-39.8				230	25	
30	311	-42.1				220	31	
31	296	-44.3				230	34	
32	283	-47.1				230	30	
33	272	-49.4				220	29	
34	258	-52.2				220	31	
35	247	-54.7				210	27	
	236	-56.3				210	28	
36 37	224	-50.5 -57.7				220	27	
38	214	-59.3				220	30	
39	203	-60.8				220	32	
40	194	-61.1				220	32	
	184	-58.2				220	32	
41 42	176	-59.3				220	37	
	166	-60.3				220	39	
43	159	-61.3				220	31	
		-61.3 -62.3						
45	152					220	37	
46	144	-63.0				220	35	
47	137	-63.6				220	41	
48	131	-64.1				230	30	
49	124	-64.8				230	27	
50	118	-65.2				230	25	

Table E.3 — UPPER-AIR DATA, GROUND ZERO, 31 MARCH 1953 [0500 PST (1300 Z)]

	Atmospheric		Relative		Virtual	Win	
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	873	4.4	48	- 5.3	4.8	360	4
Burst height		8.2	32	-7.4	8.5	020	7
5	846	9.0	30	-7.4	9.4	020	9
6	816	8.0	34	-16.8	8.4	010	12
7		5.7	39	-8.0	6.1	360	12
8	757	3.1	42	-8.5	3.5	350	13
9	729	0.9	46	-9.0	1.2	330	12
10	701	-1.4	49	-10.6	-1.1	310	18
11	675	-4.4	65	-10.0	-4.0	300	16
12	649	-7.3	60	-14.0	-7.0	310	16
13	625	-8.7	32	-22.0	-8.5	320	16
14	600	-10.3	Dry	Dry		320	20
15		-12.2	2.,	2.,		300	22
16		-14.3				330	24
17		-16.2				330	26
18	512	-18.0				320	30
19	491	-20.7				320	28
20	471	-23.0				310	29
21	452	-25.6				310	31
22	432	-28.1				320	31
23	414	-30.7				320	36
24	397	-32.8				320	39
25	378	-35.0				310	30
26	363	-37.9				330	36
27	348	-40.7				330	34
28	332	-42.8				330	34
29		-45.4				330	36
		-47.0				330	38
30							
31	290	-50.3				330	38
32	277	-53.0				330	34
33	264	-55.2				320	42
34	251	-57.9				320	44
35	240	-60.0				320	48
36	229	-60.9				320	51
37	218	-60.5				310	46
38	207	-60.7				300	37
39	197	-60.9				300	41
40	188	-60.6				290	58
41	178	-58.8				290	48
42	170	-56.1				290	41
49	162	-55.7				290	41
43	154	-55.9				290	41
45	147	-56.8				290	40
46	139	-57.4				290	40
47	133	-56.8				290	35
48	127	-56.8				280	34
49	122	-57.0				280	34
50	116	-58.7				280	34

UNCLASSIFIED Table E.4-

Table E.4—UPPER-AIR DATA, GROUND ZERO, 6 APRIL 1953
[0730 PST (1530 Z)]

Altitude,	Atmospheric		Virtual	Wind			
103 ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	861	15.5	25	-4.1	16.1	015	7
5	834	12.0	29	-5.0	12.6	030	2
6	806	9.1	31	-7.0	9.6	300	3
7	776	5.7	33	-9.2	6.2	310	10
8	744	3.6	38	-9.8	4.0	310	13
9	720	1.9	41	-10.0	2.3	280	21
10	694	0.0	38	-12.1	0.4	280	28
Burst height	686	-0.6	36	-13.7	-0.2	280	29
11	666	-2.3	31	-17.7	-2.1	280	31
12	642	-4.0	27	-20.0	-3.8	280	33
13	618	-6.4	Dry	Dry		280	45
14	594	-8.8				280	48
15	574	-10.8				280	31
16	550	-13.1				280	34
17	528	-14.5				280	37
18	506	-15.7				290	64
19	486	-17.9				290	73
20	468	-20.1				290	72
21	448	-22.3				290	78
22	428	-24.7				290	80
23	412	-27.0				290	73
24	396	-29.2				290	73
25	375	-32.5				290	68
26	363	-34.8				290	57
27	345	-38.0				290	60
28	331	-40.0				290	83
29	316	-42.9				290	94
30	302	-45,2				290	92
31	289	-47.9				290	96
32	276	-50.2				290	106
33	263	-52.9				290	80
34	251	-55,1				290	72
35	239	-57.9				290	68
36	229	-59.1				290	64
37	217	-59.9				290	73
38	207	-60.1				290	126
39	198	-60.8				290	120
40	188	-59.0				290	122
41	179	-56.2				290	122
42	171	-55.0				290	120
43	162	-54.7				290	114
44	154	-54.6				290	123
45	148	-54.9				290	119
46	141	-55.0				290	104
47	134	-55.1				290	89
48	127	-55.3				290	
							81
49 50	122 116	-55.6 -56.4				290 290	78 78

	Atmospheric	ospheric Relative				Win	d
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	869	-0.3	43	-11.3	0.0	045	5
Burst height	866	-0.1	40	-11.7	0.2	030	7
5	830	0.5	45	-10.0	0.9	010	15
6	813	-1.7	45	-11.7	-1.6	360	18
7	780	-4.0	48	-13.2	-4.0	360	23
8	739	-6.5	53	-14.2	-6.6	360	31
9	720	-8.5	42	-23.5	-8.4	360	36
10	695	-10.0	32	-32.8	-10.0	360	31
11	668	-12.5	28	-32.5	-12.7	360	23
12	640	-15.0	27	-32.2	-15.2	360	23
13	608	-18.7	24	-32.1	-17.7	350	26
14	590	-20.4	Dry	Dry		350	23
15	568	-22.8				310	28
16	545	-25.4				300	33
17		-25.9				300	49
18	500	-27.9				300	49
19	481	-29.7				300	46
20	459	-31.0				300	44
21	440	-32.0				300	63
22	420	-33.4				300	83
23	403	-34.5				300	95
24	383	-34.5				300	106
25	368	-36.0				300	112
26	352	-37.5				290	121
27	338	-39.2				290	135
28	325	-41,4				290	150
29	308	-44.0				290	180
30	297	-45.9				260	185
31	278	-47.1				280	137
32	270	-46.5				280	117
33	257	-49.6				290	115
34	247	-51.8				290	120
35	235	-52.0				280	134
36	223	-52.6				270	144
37	217	-53.0				270	152
38	205	-50.6				270	140
39	195	-50.0				260	133
40	187	-49.3				260	138
41	178	-48.7				260	135
42	171	-48.9				250	116
43	164	-49.2				270	105
44	157	-49.5				270	100
45		-51.3				260	115
	148					280	
46 47	143 137	-52.3 -53.4				280	148
48	128	-55.4				280	184
		-55.4 -57.2				280	195
49	123						
50	118	-58.2				280	203

	Atmospheric		Relative		Virtual	'irtual Win	
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	862	7.7	40	-3.9	8.2	360	9
Burst height	852	7.2	39	-4.1	7.5	360	12
5	845	7.0	41	-4.8	7.5	010	20
6	815	4.9	44	-6.3	5.4	010	24
7	785	3.0	46	-7.2	3.5	360	19
8	754	3.2	42	-8.0	3.6	290	6
9	725	0.3	45	-9.7	0.8	270	9
10	699	-0.7	48	-10.2	-0.2	270	17
11	674	-1.4	46	-11.4	-1.0	270	23
12	648	-3.9	61	-10.0	-3.5	280	26
13	624	-6.5	70	-11.0	-6.1	300	29
14	600	-8.5	70	-12.7	-8.1	310	30
15	576	-8.7	49	-17.4	-8.5	320	30
16	555	-9.4	38	-20.8	-9.3	310	30
17	534	-11.4	49	-20.0	-11.2	310	31
18	512	-13.4	52	-23.0	-13.3	300	33
19	492	-15.4	50	-23.6	-15.3	290	35
20	472	-17.5	48	-25.9	-17.4	290	35
21	453	-18.7	37	-29.8	-18.6	290	36
22	435	-21.0	34	-32.5	-21.0	290	43
23	417	-23.4	Dry	Dry		290	50
24	401	-25.0				290	50
25	384	-27.5				290	43
26	368	-30.0				300	43
27	351	-32.9				300	40
28	338	-35.1				300	43
29	322	-38.2				310	40
30	308	-40.4				310	46
31	294	-42.2				300	58
32	283	-43.9				300	60
33	270	-46.5				300	57
34	258	-48.9				300	50
35	246	-51.7				300	54
36	236	-54.2				300	49
37	225	-56.8				290	43
38	214	-59.3				290	47
39	202	-61.6				300	60
40	194	-62.8				300	68
41	184	-64.2				300	78
42	175	-65.5				300	68
43	167	-66.3				290	43
44	158	-65.6				280	44
45	150	-62.8				280	52
46	142	-62.2				280	77
47	135	-61.9				280	61
48	131	-61.5				280	68
49	122	-61.9				290	21
50	117	-62.3				290	17

Table E.7—UPPER-AIR DATA, GROUND ZERO, 25 APRIL 1953 [0430 PST (1230 Z)]

	Atmospheric		Relative		Virtual	Wine	d
Altitude,	pressure,	Temperature,	humidity,	Dew point,	temp.,	Direction,	
10 ³ ft MSL	mb	°C	%	°C	°C	deg	knots
Ground Zero	870	11.7	26	-7.3	12.3	340	5
Burst height	860	15.3	26	-4.7	15.8	040	7
5	846	17.3	21	-4.8	17.9	010	8
6	817	15.7	21	-6.4	16.0	030	8
7	789	13.9	21	-8.0	14.2	040	4
8	760	11.8	22	-9.1	12.2	070	3
9	732	9.4	24	-10.0	9.7	180	4
10	706	7.2	26	-10.3	7.5	200	9
11	681	5.0	30	-10.8	5.4	270	11
12	656	2.1	32	-12.3	2.5	280	12
13	632	-0.7	39	-12.6	-0.3	270	15
14	607	-3.7	41	-14.7	-3.3	270	11
15	585	-6.2	46	-15.8	-5.8	290	9
16	562	-8.8	44	-18.5	-8.6	280	8
17	540	-11.0	38	-22.3	-10.8	270	9
18	519	-13.2	30	-27.2	-13.0	270	26
19	499	-15.7	33	-28.0	-15.6	280	
20	478	-18.4			-13.6		12
			Dry	Dry		280	26
21	457	-19.8				280	30
22	441	-22.7				280	23
23	422	-25.0				280	25
24	405	-28.2	31		-28.1	280	22
25	387	-30.0	51		-29.9	280	20
26	371	-32.0	Dry			280	23
27	354	-34.4				280	29
28	340	-36.9				280	31
29	325	-39.0				270	28
30	312	-41.7				280	41
31	297	-44.1				280	40
32	284	-46.4				280	39
33	272	-49.1				280	42
34	260	-51.8				280	40
35	248	-54.0				280	36
36	236	-56.9				270	39
37	226	-58.9				270	41
38	215	-61.2				270	
39	204	-63.4					43
	194	-63.4 -63.0				270	42
40						270	48
41 42	184 176	-62.0 -59.0				270 270	50 48
43	167	-58.4				270	42
44	159	-58.1				270	26
45	151	-58.3				270	30
46	144	-58.9				276	24
47	127	-59.8				270	22
48	131	-59.5				270	22
49	124	-59.6				270	22
50	119	-60.8				270	24

UNCLASSII ICD. E.S.

E.8—UPPER-AIR DATA, GROUND ZERO, 8 MAY 1953 [0730 PST (1530 Z)]

	Atmospheric		Relative		Virtual	Win	d
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	900	16.7	19	-07.0	17.0	190	5
Burst height	825	8.0	23	-12.5	8.3	250	5
5	837	9.4	21	-12.0	9.8	230	6
6	806	6.6	24	-12.3	6.9	270	5
7	781	4.3	26	-13.4	4.6	310	10
8	752	1.3	29	-15.0	1.6	320	10
9	720	-1.3	40	-13.0	-0.9	300	10
10	695	-3.4	50	-12.0	-3.0	260	12
11	669	-5.1	50	-14.0	-4.7	250	20
12	644	-6.2	30	-21.2	-6.0	250	26
13	620	-7.6	Dry	Dry		260	30
14	596	-9.3				260	35
15	574	-11.0				260	44
16	550	-12.9				250	48
17	529	-14.5				250	53
18	505	-17.2				250	58
19	486	-19.8				250	56
20	466	-22.4				250	57
21	447	-24.8				250	51
22	428	-27.4				250	52
23	412	-30.0				250	62
24	396	-32.6				250	68
25	377	-35.3				250	78
26	361	-37.7				250	78
27	348	-38.5				250	83
28	333	-40.1				250	101
29	316	-42.4				250	109
30	304	-44.0				240	103
31	291	-45.7				240	100
32	278	-47.3				240	102
33	266	-49.1				240	111
34	254	-50.6				240	127
35	243	-52.3				240	170
36	233	-52.8				240	168
37	223	-53.5				240	144
38	211	-55.3				240	140
39	202	-56.9				240	142
40	192	-54.3				240	146
41	182	-55.3				240	150
42	174	55.2				Balloon	
43	165	-56.7				range of equipm	
44	157	-56.3				-4b.m	
45	151	-55.4					
46	144	-55.7					
47	137	-56.2					
48	125	-55.5					
49	124	-56.4					
50	118	-57.2					

UNCLASSIFIED

36

Table E.9 — UPPER-AIR DATA, GROUND ZERO, 19 MAY 1953 [0405 PST (1205 Z)]

	Atmospheric			Virtual	Wine		
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity,	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	874	14.3	35	-0.6	14.9	020	5
Burst height	864	18.3	35	4.5	18.9	200	5
5	843	17.2	30	-0.2	17.8	200	10
6	814	15.2	32	-1.1	15.8	200	20
7	786	13.3	34	-1.9	13.9	200	25
8	756	11.3	37	-2.8	11.8	200	26
9	728	8.7	40	-4.2	9.2	210	23
10	704	6.3	44	-4.8	7.0	210	18
11	678	4.0	50	-5.2	4.6	210	15
12	652	1.3	54	-6.6	1.8	200	15
13	629	-1.3	59	-9.2	-0.7	210	15
14	605	-4.0	64	-9.9	-3.4	220	17
15	584	-6.5	69	-11.2	-5.9	230	21
16	561	-6.6	75	-10.2	-6.1	260	30
17	540	-6.8	72	-10.7	-6.3	270	35
18	520	-7.7	62	-13.4	-7.3	270	37
19	497	-10.5	64	-16.0	-10.2	270	37
20	478	-11.0	69	-15.7	-10.7	280	38
21	460	-15.6	71	-19.2	-15.3	280	42
22	440	-18.4	71	-22.2	-18.2	280	48
23	423	-20.8	70	-24.8	-20.6	280	50
24	406	-23.1	67	-27.4	-23.0	280	55
25	389	-25.1	Dry	Dry	-25.0	280	54
26	374	-27.4	Diy	Diy		290	50
27	357	-30.0				290	46
28	342	-32.6				280	44
29	332	-34.0				280	50
30	314	-37.6				290	60
31	300						
32	287	-40.0 -42.4				290 290	70 67
33	275	-45.5					
						290	64
34	262	-48.0				290	64
35	250	-51.0				290	63
36 37	239 228	-53.5 -56.2				290 290	64 67
38	217	-59.0				290	64
39	206	-61.7				300	60
40	196	-64.5				300	67
41	186	-67.6				300	74
42	177	-68.4				300	79
43	168	-68.4				280	78
44	161	-67.5				280	76
45	153	-65.5				280	77
46	145	-65.6				280	75
47	138	-66.1				280	76
48	131	-66.4				280	80
49	125	-66.7				280	73
50	119	-67.0				280	63

Table E.10 — UPPER-AIR DATA, GROUND ZERO, 25 MAY 1953 [0730 PST (1530 Z)]

	Atmospheric			Virtual	Win	d	
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	901	14.8	32	-3.8	15.4	360	4
Burst height	884	13.1	23	-7.2	13.6	220	7
4	872	11.8	23	-8.3	12.3	220	10
5	840	7.9	21	-12.7	8.3	220	14
6	809	4.0	20	-16.8	4.2	190	21
7	781	3.5	20	-17.2	3.7	180	30
8	752	1.9	25	-16.0	2.1	190	21
9	722	-0.6	31	-15.4	-0.3	200	21
10	697	-2.3	30	-17.3	-2.0	200	30
11	665	-4.2	24	-21.8	-4.0	200	30
12	644	-6.0	Dry	Dry		200	31
13	621	-8.1				200	32
14	596	-10.9				200	33
15	574	-13.0				200	35
16	551	-15.0				200	48
17	529	-15.1				210	55
18	508	-14.7				210	74
19	488	-15.7	29	-29.6	-15.6	210	74
20	468	-17.3	36	-28.3	-17.2	220	74
21	449	-19.1	41	-29.0	-19.0	220	75
22	431	-21.3	40	-31.0	-21.2	220	76
23	413	-23.7	38	-33.9	-23.6	220	82
24	396	-26.4	38	-36.1	-26.0	220	88
25	378	-29.2	40	-38.3	-28.7	220	65
26	355	-31.0	Dry	Dry		220	55
27	348	-31.8				220	89
28	334	-34.0				220	89
29	320	-37.0				220	80
30	305	-40.0				220	85
31	292	-42.1				220	108
32	278	-45.0				220	110
33	266	-47.2				220	109
34	254	-50.0				220	104
35	243	-53.1				220	120
36	232	-55.0				220	122
37	222	-55.0				220	87
38	212	-56.0				220	90
39	202	-56.2				220	83
40	192	-56.0				220	65
41	182	-55.2				220	74
42	174	-54.2				220	79
43	167	-55.0				220	62
44	158	-55.2				220	53
45	152	-56.0				220	57
46	144	-56.3				220	56
47	137	-57.0				220	55
48	130	-57.0				220	67
49	124	-57.0				220	52
50	118	-58.4				220	33

Table E.11—UPPER-AIR DATA, GROUND ZERO, 4 JUNE 1953
[0315 PST (1115 Z)]

	Atmospheric		Relative		Virtual	Win	d
Altitude, 10 ³ ft MSL	pressure, mb	Temperature, °C	humidity, %	Dew point, °C	temp., °C	Direction, deg	Speed
Ground Zero	867	13.3	30	-3.9	14.0	045	3
Burst height	824	12.2	38	-1.5	12.9	010	8
5	842	14.1	37	0.1	14.8	010	10
6	812	12.1	37	-2.0	12.7	360	6
7	783	10.2	37	-3.8	10.8	010	8
. 8	755	8.3	37	-5.1	8.9	020	6
9	727	6.0	38	-7.0	6.5	020	10
10	701	3.6	40	-8.6	4.1	140	3
11	674	0.9	42	-10.4	1.4	220	4
12	650	-1.6	45	-11.8	-1.2	200	3
13	623	-4.6	48	-13.7	-4.2	190	6
14	600	-7.0	49	-15.8	-6.7	170	8
15	577	-9.7	51	-17.6	-9.4	170	6
16	555	-11.2	40	-22.0	-11.0	210	4
17	534	-12.7	Dry	Dry		250	10
18	513	-14.8				270	15
19	493	-17.0				270	16
20	474	-19.0				280	13
21	454	-21.2				280	16
22	435	-23.3				310	18
23	416	-25.6				320	17
24	399	-27.5				310	20
25	384	-30.3				310	19
26	367	-33.0				310	24
27	350	-36.0				310	24
28	335	-38.5				310	28
29	321	-41.1				310	24
30	307	-43.8				310	28
31	293	-46.6				310	28
32	280	-48.9				310	26
33	268	-51.3				300	24
34	254	-54.0				280	20
35	243	-56.3				270	17
36	232	-57.3				260	16
37	222	-56.7				250	19
38	211	-58.0				260	21
39	201	-59.3				280	22
40	192	-57.3				250	24
41	183	-57.3				250	23
42	173	-57.1				240	28
43	166	-56.7				260	24
44	158	-55.8				270	16
45	150	-56.2				280	12
46	143	-56.6				270	12
47	137	-57.0				270	20
48	130	-57.3				270	22
49	124	-57.8				270	18
50	117	-58.0				270	11

Appendix F

ACTUAL WEATHER CONDITIONS
FOR GROUND ZERO AND BURST HEIGHT

Table F.1—ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION ONE, 17 MARCH 1953 (0520 PST)

Cloud cover: 6/10 cirrus stratus above 30,000 ft MSL

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4025 ft MSL

Burst height: 4325 ft MSL

Pressure: Ground Zero, 876 mb

Burst height, 866 mb

Virtual temperature: Ground Zero, 37.4°F

Burst height, 47.0°F

Actual temperature: Ground Zero, 36.9°F

Burst height, 46.2°F

Relative humidity: Ground Zero, 43 %

Burst height, 38 %

Altimeter setting: 29.98 in. at Ground Zero

Height of tropopause: 37,000 ft MSL

	Winds			Winds		
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots	
Surface	Light and v	ariable	16,000	280	34	
6,000	290	8	18,000	270	42	
8,000	280	6	20,000	270	54	
10,000	270	25	25,000	270	47	
12,000	270	25	30,000	270	68	
14,000	270	21	35,000	260	53	
15,000	280	32	40,000	260	89	

Table F.2—ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION TWO, 24 MARCH 1953 (0510 PST)

Cloud cover: clear

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4308 ft MSL

Burst height: 4608 ft MSL

Pressure: Ground Zero, 870 mb

Burst height, 860 mb

Virtual temperature: Ground Zero, 10.4°C

Burst height, 13.9°C

Actual temperature: Ground Zero, 9.9°C

Burst height, 13.3°C

Relative humidity: Ground Zero, 39 %

Burst height, 31 %

Altimeter setting: 30.09 in. at Ground Zero

Height of tropopause: 39,300 ft MSL

Winds			Winds				
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots		
Surface	310	2	20,000	210	20		
6,000	140	4	25,000	210	25		
8,000	150	16	30,000	220	31		
10,000	150	12	35,000	210	27		
15,000	220	12	40,000	220	32		

Table F.3—ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION THREE, 31 MARCH 1953 (0500 PST)

Cloud cover: clear

Precipitation: no precipitation within 500 miles downstream

Height Ground Zero: 4164 ft MSL

Burst height: 4464 ft MSL Pressure: Ground Zero, 873 mb

Burst height, 863 mb

Virtual temperature: Ground Zero, 4.8°C

Burst height, 8.5°C

Actual temperature: Ground Zero, 4.4°C

Burst height, 8.2°C

Relative humidity: Ground Zero, 48 %

Burst height, 32 %

Altimeter setting: 30.00 in. at Ground Zero

Height of tropopause: 35,500 ft MSL,

Winds			Winds		
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed knots
Surface	360	4	15,000	300	22
6,000	010	12	20,000	310	29
8,000	350	13	25,000	310	30
10,000	310	18			

Table F.4—ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION FOUR, 6 APRIL 1953 (0730 PST)

Cloud cover: 3/10 at 30,000 ft

Precipitation: no precipitation within 500 miles downstream

Height Ground Zero: 4191 ft MSL Burst height: 10,211 ft MSL Pressure: Ground Zero, 861 mb Burst height, 686 mb

Virtual temperature: Ground Zero, 16.1°C

Burst height, -0.2°C

Actual temperature: Ground Zero, 15.5°C

Burst height, -0.6°C

Relative humidity: Ground Zero, 25 %

Burst height, 36 %

Altimeter setting: 29.66 in. at Ground Zero

Height of tropopause: 38,500 ft MSL

	Winds		Winds			
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots	
Surface	015	7	25,000	290	68	
6,000	300	3	30,000	290	92	
8,000	310	13	35,000	290	68	
10,000	280	28	40,000	290	122	
15,000	280	31	45,000	290	119	
20,000	290	72	50,000	290	78	

Table F.5 — ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION FIVE, 11 APRIL 1953 (0445 PST)

Cloud cover: clear

Precipitation: no precipitation within 300 miles downstream

Height Ground Zero: 4240 ft MSL

Burst height: 4340 ft MSL

Pressure: Ground Zero, 869 mb

Burst height, 866 mb

Virtual temperature: Ground Zero, 0.0°C

Burst height, 0.2°C

Actual temperature: Ground Zero, -0.3°C

Burst height, -0.1°C

Relative humidity: Ground Zero, 43 %

Burst height, 40 %

Altimeter setting: 29.99 in. at Ground Zero

Height of tropopause: 38,330 ft MSL

Winds			Winds				
Height above MSL, ft	Deg from true north	Speed, knots	Heights above MSL, ft	Deg from true north	Speed, knots		
Surface	045	5	15,000	310	28		
6,000	360	18	20,000	300	44		
8,000	360	31	25,000	300	112		
10,000	360	31					

Table F.6 - ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION SIX, 18 APRIL 1953 (0435 PST)

Cloud cover: clear

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4492 ft MSL

Burst height: 4792 ft MSL

Pressure: Ground Zero, 862 mb

Burst height, 852 mb

Virtual temperature: Ground Zero, 8.2°C

Burst height, 7.5°C

Actual temperature: Ground Zero, 7.7°C

Burst height, 7.2°C

Relative humidity: Ground Zero, 40 %

Burst height, 39 %

Altimeter setting: 30.03 in. at Ground Zero

Height of tropopause: 39,320 ft MSL

	Winds			Winds	
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots
Surface	360	9	25,000	290	43
6,000	010	24	30,000	310	46
8,000	290	6	35,000	300	54
10,000	270	17	40,000	300	68
15,000	320	30	45,000	280	52
20,000	290	35	50,000	290	17

Table F.7 — ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION SEVEN, 25 APRIL 1953 (0430 PST)

Cloud cover: 5/10 clouds at 33,000 ft; 2/10 clouds at 16,000 Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4238 ft MSL

Burst height: 4538 ft MSL

Pressure: Ground Zero, 870 mb Burst height, 860 mb

Virtual temperature: Ground Zero, 12.3°C

Burst height, 15.8°C

Actual temperature: Ground Zero, 11.7°C

Burst height, 15.3°C

Relative humidity: Ground Zero, 26 %

Burst height, 26 %

Altimeter setting: 30.02 in. at Ground Zero

Height of tropopause: 39,350 ft MSL

	Winds		Winds						
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed knots				
Surface	340	5	25,000	280	20				
6,000	030	8	30,000	280	41				
8,000	070	3	35,000	280	36				
10,000	260	9	40,000	270	48				
15,000	290	9	45,000	270	30				
20,000	280	26	50,000	270	24				

Table F.8 — ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION EIGHT, 8 MAY 1953 (0730 PST)

Cloud cover: clear

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 3078 ft MSL

Burst height: 5501 ft MSL

Pressure: Ground Zero, 900 mb

Burst height, 825 mb

Virtual temperature: Ground Zero, 17.0°C

Burst height, 8.3°C

Actual temperature: Ground Zero, 16.7°C

Burst height, 8.0°C

Relative humidity: Ground Zero, 19 %

Burst height, 23 %

Altimeter setting: 29.81 in. at Ground Zero

Height of tropopause: 39,000 ft MSL

	Winds		Winds						
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed knots				
Surface	190	5	22,000	250	52				
5,000	230	6	25,000	250	78				
6,000	270	5	30,000	240	103				
8,000	320	10	35,000	240	170				
10,000	260	12	40,000	240	146				
15,000	260	44	45,000	*					
20,000	250	57	50,000	*	*				

^{*}Balloon out of range of wind equipment.

Table F.9 — ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION NINE, 19 MAY 1953 (0405 PST)

Cloud cover: scattered 18,000; overcast 35,000

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4009 ft MSL

Burst height: 4309 ft MSL

Pressure: Ground Zero, 874 mb

Burst height, 864 mb

Virtual temperature: Ground Zero, 14.9°C

Burst height, 18.9°C

Actual temperature: Ground Zero, 14.3°C

Burst height, 18.3°C

Relative humidity: Ground Zero, 35 %

Burst height, 35 %

Altimeter setting: 29.89 in. at Ground Zero

Height of tropopause: 40,500 ft MSL

	Winds		Winds					
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots			
Surface	20	5	20,000	280	38			
6,000	200	20	25,000	280	54			
8,000	200	26	30,000	290	60			
10,000	210	18	35,000	290	63			
15,000	230	21	40,000	300	67			

Cloud cover: scattered 26,000

Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 3078 ft MSL

Burst height: 3602 ft MSL

Pressure: Ground Zero, 901 mb

Burst height, 884 mb

Virtual temperature: Ground Zero, 15.4°C

Burst height, 13.6°C

Actual temperature: Ground Zero, 14.8°C

Burst height, 13.1°C

Relative humidity: Ground Zero, 32 %

Burst height, 23 %

Altimeter setting: 29.83 in. at Ground Zero

Height of tropopause: 35,400 ft MSL

	Winds			Winds	
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed, knots
Surface	360	4	25,000	220	65
6,000	190	21	30,000	220	85
8,000	190	21	35,000	220	120
10,000	200	30	40,000	220	65
15,000	200	35	45,000	220	57
20,000	220	74	50,000	220	33

Table F.11—ACTUAL WEATHER CONDITIONS FOR NUCLEAR DETONATION ELEVEN, 4 JUNE 1953 (0315 PST)

Cloud cover: clear, except for few cumulus clouds to east Precipitation: no precipitation within 1000 miles downstream

Height Ground Zero: 4191 ft MSL

Burst height: 5525 ft MSL Pressure: Ground Zero, 867 mb Burst height, 824 mb

Virtual temperature: Ground Zero, 14.0°C

Burst height, 12.9°C

Actual temperature: Ground Zero, 13.3°C

Burst height, 12.2°C

Relative humidity: Ground Zero, 30 %

Burst height, 38 %

Altimeter setting: 29.79 in. at Ground Zero

Height of tropopause: 39,060 ft MSL

	Winds		Winds						
Height above MSL, ft	Deg from true north	Speed, knots	Height above MSL, ft	Deg from true north	Speed knots				
Surface	045	3	25,000	310	19				
6,000	360	6	30,000	310	28				
8,000	020	6	35,000	270	17				
10,000	140	3	40,000	250	24				
15,000	170	6	45,000	280	12				
20,000	280	13	50,000	270	11				

Appendix G

RAWINSONDE OBSERVATIONS

Table G.1 — RAWINSONDE OBSERVATION, YUCCA LAKE, 17 MARCH 1953

				0.00			0400 P	3T					7 100
1	AEC12												
0	00000	42502	2504	62908	2709	82806	2724	02725	22725	42721	52832	62834	82742
0	2754	22746	42740	52747	62747	82752	02768	52653	02689	52663	02689	52663	02689
	2663	02458	52659	02640	52647	00738	50618	00816	52650	00809	52712	02712	52714
0	2710												
	AEC12					00550		20001				-	
		57511			-				51642				02742
		34990	02738	55555	11837	07582	20806	08585	33680	52697	44585	63761	55484
1	2853												
1	AEC62	1											
3	0010	01998	02764	20843	06990	02652	15449	06990	02657	10278	10997	02242	05679
1	3996	02630	66666	22615	21207	19205	18701	10715	09411	08809	07615	06216	05911
C	5808	10158											
							0700 PS	ST					
1	EC15												
0	0000	40000	00000	63607	3509	83310	2714	02712	22615	42820	52820	62820	82842
0	2742	22752	42704	52760	62759	82658	02660	52671	02693	52652	02557	52260	02654
	AEC15												
_			00000	00055	85195	08546	00000	70010	52681	02715	50857	69994	02743
		82995							33777				
	1000			10168		00011	22010	00001		00001	11.02	01000	00020
	1010	00101	10001	10100	04040								
A	EC65	2000											
3	0022	50990	02660	20854	09992	02687	15463	04990	02556	10301	09992	02460	66666
3	5690	22015	18201	16800	14206	13505	10813	09205	07012	10168	04036	10190	05352
1	0158												

Table G.2—RAWINSONDE OBSERVATION, YUCCA LAKE, 24 MARCH 1953

AEC11 00000 40000 0604 61205 1408 81414 1213 01816 21913 42014 52012 62110 82112 02218 22318 52327 52332 62329 82327 02327 52426 02536 52638 02635 52719 02727 52514 AEC11 88652 63011 00000 00065 85505 12999 00603 70032 02657 01717 50891 66786 02215 40431 78992 02330 55555 11872 11999 22834 13537 33698 02659 44560 59996 55525 64780 66464 10168 08983

Table G.2 - (Continued)

AEC61

30087 92990 02431 20947 11994 02634 15539 10998 02639 10350 10998 02715 66666 19612 17308 11217 08419 07416 06918 05510 10190 05057 10158

0500 PST

AEC13

00000 40000 0000 61404 1512 81516 1512 01512 21709 42018 52012 62116 81911 02120 22224 42125 52125 62125 82128 02231 52127 02237 52237 02326 52325 02407

AEC13

88652 59214 00000 00070 85505 11549 00000 70028 02990 01512 50886 67994 01815 40423 78999 02125 55555 11869 11522 22855 12541 33830 12531 44731 03605 55712 03661

AEC63

30076 93998 02235 20531 11991 02232 15518 12995 02229 10325 17990 02329 05700 09994 66666 24505 15211 18708 06016 10158

Table G.3 — RAWINSONDE OBSERVATION, YUCCA LAKE, 31 MARCH 1953

0400 PST

AEC12

 00000
 40000
 3610
 60111
 0113
 83615
 3420
 03320
 23020
 42922
 52921
 63124
 83231

 03128
 23135
 43127
 53125
 63229
 83130
 03144
 53142
 03059
 52726
 02826
 52730
 62926

AEC12

88100 55911 00000 00047 85489 08567 03510 70007 51605 03320 50853 70993 03230 40380 83996 03127 55555 11865 08541 22834 09581 33630 57639 44579 64672 55531 66807

AEC61

30052 99997 03244 20894 09994 02963 15491 07994 02738 10327 10990 02828 05741 11990 66666 22211 19209 18805 09012 08310 06913 06508 10158

0600 PST

AEC14

88151 64111 00000 00051 85488 09672 00000 70007 51609 03114 50853 69996 03230 40383 82996 03240 55555 11870 05996 22863 08992 33816 08663 44640 58645 55630 58713 66604 60750

AEC14

00000 40000 0209 60112 0112 83511 3312 03114 23116 43220 53322 63323 83229 03231 23231 43240 53332 63335 83332 03338 53248 02857 52940 02835 53010 03016 53008

AEC64

30026 98997 03338 20867 10999 03035 15462 06994 02941 10299 09994 02825 05723 08998 03008 66666 23411 18310 17706 07613 06807 06509 10158

Table G.4—RAWINSONDE OBSERVATION, YUCCA LAKE, 6 APRIL 1953

					0	600 PS	Т					
AEC14												
03205	43205	3421	63423	3318	83017	2718	02622	22834	42838	52944	62944	82844
02855	22960	43070	53073	63083	83087	02986	22997	53088	02952	52955	02970	52727
02948	52965											
AEC14												
86910	55811	03405	00501	85453	10553	03317	70976	01591	02622	50835	66991	02844
40373	79994	02968	55555	11746	05585	22673	51604	33662	52615	44650	52623	55617
55716	66666	58659	57459									
AEC64												
30022	96991	02987	20869	10990	03088	15467	06990	02960	10309	11997	02938	05736
06998	02956	66666	21611	19259	18307	13404	10511	09113	08207	07009	10158	
					0	800 PS'	r					
AEC16												
00903	40803	0202		3010		2820			-		62836	82964
02972	22979	42974	52968	62960	82988	02992	52970	07923	57912	02978	52934	
AEC16	1											
86915	53614	00903	00500	85454	13547	00602	70976	00616	02624	50831	66992	02568
40368	78994	02573	55555	11710	01601	22637	54711	66666	55063			
AEC66												
30020	96990	02992	20869	90996	07928	15469	04998	07923	10313	10998	02994	05737
05991	66666	23409	17405	11906	08412	08210	07213	06807	10158			

Table G.5—RAWINSONDE OBSERVATION, YUCCA LAKE, 11 APRIL 1953

AEC09 03505 43505 3420 63527 3627 83622 3517 03515 23410 43115 53016 62915 83224 03060 23078 43094 58012 68020 87955 07912 57720 07720 AEC09 87750 60414 03505 00044 85475 51616 03416 70975 60744 03516 50791 81998 03223 40306 86993 02979 55555 11755 56680 22638 65807 66666 47381 AEC59 30950 95998 07923 20826 98997 07810 15440 01997 10285 11999 05711 08991 66666 37487 23700 22498 16003 15701 14005 12405 08313 07407 06106 10158

Table G.5—(Continued)

0500 PST

	50115	63618	3623	83631	3636	03631	23623	43523	53128	63033	83049	
23083	48006	58012	67921	87950	07685	57834	07638	57615	02803	00200		
65014	00306	00049	85481	01582	00211	70982	59829	03628	50801	78990	03043	
84996	03185	55555	11868	02583	22738	57657	33608	68824	66666	54475		
95992	07764	20833	00992	07718	15484	00998	02889	10330	07991	05768	04997	
34089	20801	17899	12008	09205	08806	06707	06502	05507	10158			
	40307 23083 65014 84996 95992	40307 50115 23083 48006 65014 00306 84996 03185 95992 07764	40307 50115 63618 23083 48006 58012 65014 00306 00049 84996 03185 55555 95992 07764 20833	40307 50115 63618 3623 23083 48006 58012 67921 65014 00306 00049 85481 84996 03185 55555 11868 95992 07764 20833 00992	40307 50115 63618 3623 83631 23083 48006 58012 67921 87950 65014 00306 00049 85481 01582 84996 03185 55555 11868 02583 95992 07764 20833 00992 07718	40307 50115 63618 3623 83631 3636 23083 48006 58012 67921 87950 07685 65014 00306 00049 85481 01582 00211 84996 03185 55555 11868 02583 22738 95992 07764 20833 00992 07718 15484	40307 50115 63618 3623 83631 3636 03631 23083 48006 58012 67921 87950 07685 57834 65014 00306 00049 85481 01582 00211 70982 84996 03185 55555 11868 02583 22738 57657 95992 07764 20833 00992 07718 15484 00998	40307 50115 63618 3623 83631 3636 03631 23623 23083 48006 58012 67921 87950 07685 57834 07638 65014 00306 00049 85481 01582 00211 70982 59829 84996 03185 55555 11868 02583 22738 57657 33608 95992 07764 20833 00992 07718 15484 00998 02889	40307 50115 63618 3623 83631 3636 03631 23623 43523 23083 48006 58012 67921 87950 07685 57834 07638 57615 65014 00306 00049 85481 01582 00211 70982 59829 03628 84996 03185 55555 11868 02583 22738 57657 33608 68824 95992 07764 20833 00992 07718 15484 00998 02889 10330	40307 50115 63618 3623 83631 3636 03631 23623 43523 53128 23083 48006 58012 67921 87950 07685 57834 07638 57615 02803 65014 00306 00049 85481 01582 00211 70982 59829 03628 50801 84996 03185 55555 11868 02583 22738 57657 33608 68824 66666	40307 50115 63618 3623 83631 3636 03631 23623 43523 53128 63033 23083 48006 58012 67921 87950 07685 57834 07638 57615 02803 00200 65014 00306 00049 85481 01582 00211 70982 59829 03628 50801 78990 84996 03185 55555 11868 02583 22738 57657 33608 68824 66666 54475 95992 07764 20833 00992 07718 15484 00998 02889 10330 07991 05768	40307 50115 63618 3623 83631 3636 03631 23623 43523 53128 63033 83049 23083 48006 58012 67921 87950 07685 57834 07638 57615 02803 00200 65014 00306 00049 85481 01582 00211 70982 59829 03628 50801 78990 03043 84996 03185 55555 11868 02583 22738 57657 33608 68824 66666 54475 95992 07764 20833 00992 07718 15484 00998 02889 10330 07991 05768 04997

Table G.6-RAWINSONDE OBSERVATION, YUCCA LAKE, 18 APRIL 1953

0400 PST

AEC1	2												
03205	43205	0120	60124	3619	82906	2709	02717	22826	43130	53230	63130	83033	
02935	22943	42950	52943	63043	83043	03146	53054	03068	52852	02917			
AEC12	1												
88005	54111	03205	00043	85486	07993	00119	70003	50617	02717	50863	64728	03034	
40407	75991	02948	55555	11868	08992	22845	07543	33787	02579	44760	03584	55711	
51611	66668	51627	77609	58619	88563	58727	99521	61704	00426	72841	10168	08884	
AEC6	2												
00069	91998	03154	20932	12990	03063	15509	12998	02860	10330	14990	05741	07996	
66666	15615	12811	09015	08009	07212	06212	10158						
						700 PS							
					·	100 PB.							
AEC15	i												
03611	43611	0215	60215	0213	83410	2815	03023	23126	43127	52930	62931	83330	
03534	22753	43048	53147	63145	83144	03143	53152	03143	53113	03117	53125	03115	
53108													
AEC15	,												
88211	53811	03610	00048	85493	08552	00215	70008	00594	03023	50870	64731	03330	
40414	74998	03048	55555	11760	00609	22720	51611	33666	52596	44588	55704	55521	
62716	66472	66805											
AEC6	,												
30077	91998	03144	20937	12990	03137	15513	14993	03114	10335	12996	03130	05785	
05997	03109	66666	31489	18016	16216	12611	08714	08212	10158				

Table G.7—RAWINSONDE OBSERVATION, YUCCA LAKE, 25 APRIL 1953

					(400 PS	T					
AEC12												
88109	57411	00000	00038	85492	17557	00107	70022	06609	02710	50890	65784	02812
55555	11853	17557	22574	57664	33507	64786	44482	68762	66666	46419	10150	10168
04846	10159											
AEC12												
00000	40000	0108	60308	0404	80703	1804	02609	22812	42711	52909	62908	82709
02826	22826	42823	52822	62823	82832	02841	52836	02748	52730	02724	42724	
AEC62												
10150	10159											

						0700 PS	T						
AEC15													
00000	40000	0506	60809	0909	81404	2606	02707	22712	42509	52510	62209	83113	
02818	22822	42835	52828	62826	82820	02826	52826	02843	52837	02832			
AEC1	,												
88115	56111	00000	00038	85493	15567	00506	70023	05612	02707	50887	65996	03113	
40423	79995	02828	55555	11874	17542	22738	09611	33580	57675	44522	63787	55478	
68824	66440	74832	77423	76885									
AEC65													
30074	96990	02828	20914	15990	02842	15499	09997	02839	66666	33190	20317	19713	
18914	18411	12614	10614	10168	04033	10190	10316	10155					

Table G.8—RAWINSONDE OBSERVATION, YUCCA LAKE, 8 MAY 1953

					(700 PS	T						
AEC1	5												
01404	41504	2306	62705	3110	83210	3010	02612	22526	42635	52644	62548	82558	
02557	22552	42568	52578	62578	87501	07403	57470	07446					
AEC1	5												
87312	60414	01404	00015	85466	10616	02106	70982	52619	02710	50834	68990	02555	
40366	81995	02568	55555	11752	01651	22680	54627	33635	56741				
AEC6	5												
30045	94995	07403	20909	07994	07443	15510	05992	10357	08999	05579	05992	66666	
19104	16307	10307	09511	08106	06809	10158							

Table G.8 — (Continued)

1000 PST

AEC18
87116 53314 02015 00004 85460 13501 02212 70977 53639 02810 50814 71995 02456 40341 82992 02468 55555 11780 04604 22650 59675 33597 64782 66666 55967 54417

AEC18
02015 42015 2212 62210 2408 82708 2810 02810 22618 42624 52530 62440 82454 02465 22462 42472 52472 62470 82481 02485 52310 07410 57400 07435

AEC68
30986 95994 02484 20858 02991 07417 15465 02995 07404 10314 08996 05087 03991 66666 27100 23701 22298 17405 16702 09203 08008 07605 06408 05604 10158

Table G.9—RAWINSONDE OBSERVATION, YUCCA FLAT, 19 MAY 1953

0400 PST

AEC12
02003 42003 2010 62020 2025 82926 2123 02118 22015 42217 52321 62630 82737
02837 22848 42855 52854 62950 82844 02960 52963 03067 52877 02863 52860 02856
52824

AEC12
87615 51211 02003 00019 85477 17007 02007 70011 06543 02116 50883 60653 02737
40433 73787 02856 55555 11864 18005 22580 56618 33552 56596 44520 57636

AEC62
30100 90990 02969 20961 14990 03064 15531 15996 02876 10334 18991 02754 05727
09997 02814 66666 18418 16218 09518 07414 06510 05212 10158

0700 PST

AEC15
00000 40000 0000 62017 2020 82021 2117 02217 22220 42626 52732 62836 82837
02739 22841 42750 52753 62753 82754 02860 52878 02870 52862 02860 52816

AEC15
87617 00111 00000 00018 85477 15517 00000 70010 06588 02217 50884 61651 02736
40433 72768 02753 55555 11797 13531 22778 12558 33558 56605 44529 58621

AEC65
30102 89991 02870 20965 12994 02868 15539 17994 02862 10342 19990 02825 66666
18816 18013 15319 14315 09320 07815 10151

Table G.10—RAWINSONDE OBSERVATION, YUCCA FLAT, 25 MAY 1953

					(400 PS	T						
AEC12	2												
87209	58011	01811	00016	85462	07607	01922	70978	51674	02036	50834	60997	02262	
40380	75892	02393	55555	11782	04672	22768	04991	33735	01686	44656	55663	55626	
56757	66574	61999	77504	60990	88460	67837	99432	71822					
AEC12	2												
01811	1811	61930	2033	82036	2035	02038	22139	42330	52333	62344	82264	02266	
22289	42392	52396	62398	87304	07305	57322	07337	52387	02237	52232			
AEC62	2												
30040	91998	07310	20901	10990	07320	15498	03997	02387	10338	11990	02324	66666	
21210	18710	17609	17205	16406	15202	14606	12906	08714	07607	06809	10190	05761	
10147													
					(700 PS	T						
AEC15	,												
01816	41915	2214	61921	1830	81921	2021	02030	22031	42038	52035	62048	82174	
02274	22276	42288	52265	62255	82289	02285	57220	02265	52257	02233	52211	02209	
AEC1	5												
87412	58114	01816	00017	85469	09611	02112	70984	52671	02030	50837	64998	02187	
40381	75861	02290	55555	11804	03664	22772	03664	33657	54725	44535	66991	55522	
64991	66498	64807	77452	68787									
AEC65													
30044	90998	02295	20906	06992	02162	15507	06990	02159	10345	10996	02113	05778	
04992	55555	88366	81893	66666	35182	30590	23605	20607	12506	11808	11107	09114	
08207	07709	07406	06509	06205	05807	10158							

Table G.11—RAWINSONDE OBSERVATION, YUCCA FLAT, 4 JUNE 1953

AEC12 00000 40000 0110 63606 0108 80206 0210 01403 22003 41708 51706 62104 82715 02813 23118 43120 53119 63124 83128 03128 52717 02524 52812 02711 52604 02704 AEC12 87505 59311 00000 00027 85473 14001 00211 70001 03586 01603 50861 66991 02716 40399 77995 03120 55555 11873 10524 22866 14006 33560 61698 44542 61767 AEC62 30053 95990 03129 20906 09996 02822 15504 06992 02712 10343 09993 02609 05767 07990 66666 24606 18606 09210 10158

Table G.11—(Continued)

0700 PST

							_						
AEC15													
00000	0000	0206	60509	0607	80504	0303	02803	22208	42307	52303	60000	80000	
02930	22928	42829	52828	62827	82928	03027	53047	03031					
AEC1	,												
87615	57014	00000	00023	85477	17002	00000	70010	05587	02704	50875	99999	00000	
40421	76990	02829	55555	11864	17017	22732	09561	33600	55667	44569	59720	55551	
60990	44444	77492	63787	88432	72852	10168	05749						
AEC65	,												
30080	93992	03032	20937	10990	15541	03990	66666	24705	20311	18803	10808	10190	
10388	10155												

Table G.12—RAWINSONDE OBSERVATION, TONOPAH, 17 MARCH 1953

					0-	400 PS7	r					4.11
TPH	112											
8310	2 6791	1 00211	00041	85482	90993	54992	02736	50832	72823	02639	40359	83995
0285	54 5555	5 11822	04644	22642	58756	33549	68787	44522	69806	55474	73859	
TPH	112											
0021	1 63613	3 3411	83319	3123	02736	22634	42634	52734	62732	82629	02646	22644
4285	51 5274	4 62754	82652	02575	52444	02574	22577					
TPH	162											
3099	7 0099	5 02755	20835	11990	02542	66666	23408	21413	19308	17084	10190	15434
1015	59											
					0'	700 PS1	•					
TPH	115											
8330	3 5701	4 03405	00048	85488	70996	55995	02836	50834	72820	02751	40359	85896

TPH15 83303 57014 03405 00048 85488 70996 55995 02836 50834 72820 02751 40359 85896 02754 55555 11828 02643 22710 55712 33677 56999 44620 62777 55587 65767 TPH15 03405 63405 3410 83320 3126 02934 22628 42728 52730 62738 82751 02743 22747 42752 52752 62952 82752 02527 52656 02577 52752 02765 22778 TPH65 30992 01998 02557 20827 06995 02572 15935 03999 02745 10279 09998 05703 08993 66666 37390 23812 17401 11906 08707 07211 07009 05210 10158

Table G.13—RAWINSONDE OBSERVATION, TONOPAH, 24 MARCH 1953

0400 PST

TPH12
83650 60511 03609 00062 85498 70019 01618 01718 50878 67990 02124 40415 77999
01925 55555 11831 09521 22779 09561 33651 51695 66666 47171 46221

TPH12
03609 62309 1512 81618 1720 01718 21820 44444 45689 02120 22022 41926 51923
62023 81933 02035 52234 02224 12150

TPH62
30069 94993 02039 20994 11994 02332 55555 19112 18211 10159

0700 PST

TPH15
83501 60411 03604 00061 85434 70015 02993 01733 50872 67783 01825 40410 79995

TPH15
03604 60910 1416 81522 1629 01631 21831 42026 52026 61926 81825 01825 22035
41944 52143 62339 82436 02435 52350 02243 52139 02140 52228 02307 32303
TPH65

01944 55555 11827 08557 22784 08562 33723 03600 44704 02655 55599 58993 66517

65794 77472 69828

30066 93992 02335 20923 10997 02239 15514 10990 02145 10331 13990 02234 66666 36482 20311 18909 11016 08516 06214 10190 05717 10158

Table G.14—RAWINSONDE OBSERVATION, TONOPAH, 31 MARCH 1953

0400 PST

TPH12
83400 63211 03409 00053 85491 70003 54604 03115 50846 71993 03233 40373 83996
03235 55555 11815 06556 22684 56611 33657 58665 44651 57724 55630 58736

TPH12
03409 63409 3412 83315 3115 03115 23122 43230 53224 63230 83230 03135 23134
43287 53244 63335 83344 03340 53154 02952

TPH62
30011 00991 03340 30850 10990 03152 66666 23711 21609 18211 17708 10159

Table G.14—(Continued)

0700 PST

TPH15	,												
83603	55711	03606	00056	85496	70009	54627	03216	50857	70996	03330	40386	83992	
03231	55555	11828	05654	22797	04665	33680	56637	44654	55719	55600	59995		
TPH15	i												
03606	63507	3509	83410	3212	03216	23521	43326	53327	63329	83330	03231	23231	
43231	53236	63236	83235	03245	53242	02941	52934	02820	52617	03027	50908	02503	
TPH65	;												
30022	00990	03247	20862	10994	03135	15453	05997	02926	10298	08999	02719	05722	
06998	02703	66666	22412	21810	17812	11305	06809	06406	05912	10158			

Table G.15—RAWINSONDE OBSERVATION, TONOPAH, 6 APRIL 1953

0700 PST

					·	100 FB	•					
TPH1	,											
82507	58711	02911	00009	85458	70976	52662	02839	50820	70996	02871	40349	81910
02873	55555	11760	01604	22625	59765	66666	41032					
TPH15												
02911	63015	3120	83124	2928	02839	22944	42951	52943	62947	82868	02871	22979
42980	52923	62989	82991	07915	57916	07912	62962	02955	12950			
ТРН65	;											
30655	96992	07916	20850	05999	02997	15453	65990	02968	66666	23407	12409	10706
10190	10294	10158										
					1	000 PS	г					
TDUIS												

TPH68 30995	and the second	07917	20852	03990	02981	66666	22808	17803	10159			
42992	53061	63197	88713	07917	57960	02965	12960					
TPH18	63226	3126	83030	2839	02745	22853	42848	52950	63054	82987	02961	22999
08011 60461	55555	11817	07613	22755	50632	33738	50638	44727	50650	55668	55736	66666
82410		03226	00005	85456	70972	52684	02743	50818	72990	02987	40347	80995

Table G.16—RAWINSONDE OBSERVATION, TONOPAH, 11 APRIL 1953

0400 PST

TPH12
83256 59311 03309 00062 85487 70983 62663 00118 50796 81991 03325 40304 89996
03362 55555 11805 53578 22664 03362 33572 73859 66666 43388

TPH12
03309 63309 3310 83612 0116 00117 23510 43423 52323 63324 83328 03328 23059
43263 53266 63173 83097 07906 52971 02874

TPH62
30938 96991 07912 20808 98998 02864 66666 25501 24600 22201 17699 10159

TPH15
83350 58714 03306 00060 85490 70985 62716 03415 50798 81994 03129 40308 89990
03180 55555 11740 60674 22598 70854

TPH15
03306 63308 3412 83415 3416 03415 23415 43213 53118 63122 83135 03148 23156 48011 58023 68031 88074 02942 00200 52943 00200 57796

Table G.17—RAWINSONDE OBSERVATION, TONOPAH, 18 APRIL 1953

30940 96998 02930 00200 20808 00991 07799 15426 00995 10274 08991 05721 04999

66666 34495 25002 17997 12902 07805 06308 05803 10158

TPH65

0400 PST

TPH12
83550 52111 03612 00061 85494 70003 55617 03111 50859 65728 03135 40399 75998 02942 55555 11830 03560 22821 03549 33688 54605 44671 54685 55638 54707 66576 59683 77553 60717 88484 67731 99436 71847

TPH12
02612 63613 3612 83310 3310 03111 22934 43141 53145 63235 83138 02843 22933 42942 52950 62948 53057 03053 53067 02882

TPH62
30057 93991 03056 20919 11991 03038 66666 24301 18514 10159

Table G.17—(Continued)

0700 PST

TPH15
83604 53311 03610 00060 85497 70008 54614 03213 50867 64752 03133 40411 74997
02944 55555 11817 03578 22670 54710 33635 53706 44586 57668 55452 69834

TPH15
03610 63609 0207 80207 3609 03212 23024 43230 53130 63132 83133 03031 22934
42943 52945 62938 82942 03036 53042 02953 52848 02851 52910 01909 52317 02929

TPH65
30076 91990 03146 20940 09998 02944 15521 12556 02852 10347 11993 02910 05778
03993 03417 66666 22207 17715 11510 07608 07011 06005 05507 10158

Table G.18—RAWINSONDE OBSERVATION, TONOPAH, 25 APRIL 1953

0400 PST

83708 57011 03207 00048 85498 70029 06603 02002 50897 64789 02713 40438 78833 02820 55555 11830 12540 22812 13546 33592 55641 44542 59744 55480 67814 66462 69996 77438 72857 TPH12 03207 60107 0804 81703 2402 02605 22513 42512 52711 62909 82711 02816 22916 42819 52819 62816 82822 02728 52737 02738 TPH62 30090 97998 02728 20940 12999 02738 55555 88354 86900 66666 19412 10159 0700 PST TPH15 83712 55711 03213 00044 85497 70029 06602 02211 50897 65990 02911 40438 78836 02816 55555 11830 13560 22782 12569 33630 51628 44562 57736 55496 65897 TPH15 03213 63607 0916 81406 1906 02110 22416 42409 52308 62508 82910 02814 22819 42818 52818 62718 82727 02817 52731 02735 52741 02525 52617 02706 50906 00809 TPH65 30091 94991 02716 20943 12990 02736 15532 06994 02727 10366 10999 02622 05786

07998 00806 55555 66354 85896 66666 19813 10158

TPH12

Table G.19 - RAWINSONDE OBSERVATION, TONOPAH, 8 MAY 1953

07	200	PST	r

TPH15
82906 65911 03215 00028 85474 70987 54701 02918 50825 70996 02552 40353 82995
02371 55555 11714 54700 22644 60733 33615 60756 44536 66666 53670

TPH15
03215 63116 3117 83218 3115 02917 22215 42426 52433 62537 82550 02563 22468
42465 52762 62473 82487 02592 52497 02432 52435 00000 50631 02407 52509 00000

TPH65
30995 95995 02592 20874 50990 02492 15489 02998 02455 10346 03993 07409 05806
03998 02409 66666 33693 23496 22299 13804 12899 10606 07206 06702 10158

TPH18
82909 99811 03017 00026 85473 70987 56674 02817 50814 76997 02532 40336 83991
02649 55555 11824 06614 22564 69832

TPH18
03017 63117 3119 83017 2916 02817 22623 42530 52530 62630 82631 02536 22643
42551 52557 62557 82360 02463 52463 02548

TPH68
30980 94999 02462 20862 08990 02444 66666 24298 22695 18299 10159

Table G.20—RAWINSONDE OBSERVATION, TONOPAH, 19 MAY 1953

0400 PST

TPH12
83114 03111 00000 00017 85478 70042 05524 02221 50881 61644 02646 40430 72766 02646 55555 11557 57595

TPH12
00000 60000 3009 82614 2416 02220 22327 42525 52527 62534 82645 02747 22842 42646 52649 62653 82660 02758 52766 02777

TPH62
30102 88994 02757 20970 11994 02777 55555 22320 84894 66666 19214 10159

TPH15
83114 02211 01604 00018 85477 70010 06530 02320 50882 62643 02740 40430 73773 02649 55555 11556 58600

TPH15
01604 61804 2006 82111 2215 02319 22519 42626 52734 62739 82744 02630 22746 42745 52653 62654 82663 02683 52687 02797 17709

TPH65
30099 88993 02693 20969 10992 02790 55555 22313 85899 66666 18813 18411 10158

Table G.21 — RAWINSONDE OBSERVATION, TONOPAH, 25 MAY 1953

0400 PST

TPH12

82601 55711 03209 00022 85467 70975 54641 02014 50816 69991 02274 40353

76868 07203 55555 11614 61711 22564 66811 33488 69995 44438 73869

TPH12

03209 63110 2909 82607 2109 62014 21921 42030 52237 62248 82273 02285

27200 42299 57210 67225 87227 07201 57234 07013

TPH62

30013 92995 07207 20880 04998 02295 55555 55380 79897 66666 21006 18102 10158

0700 PST

TPH15

82705 54711 03209 00015 85468 70979 55639 01910 50819 67998 02273 40357

77991 02107 55555 11660 59671 22604 61779 33546 67995 44482 69832

TPH15

03209 63109 2907 82503 2006 01910 21927 42032 52133 62242 82271 02282 22189

47108 57107 62297 82195 07128 57265 07208 52276 02185 52118 00324 52126 02119

TPH65

30016 91990 07129 20885 04994 07111 15495 02997 02276 10353 06998 03107

05809 02990 02110 55555 55366 81897 66666 21005 17201 11302 10158

Table G.22 — RAWINSONDE OBSERVATION, TONOPAH, 4 JUNE 1953

0400 PST

TPH12

83107 50211 03309 00029 85479 70007 03558 03303 50869 65752 02617 40409

77904 02827 55555 11824 11024 22813 12021 33762 09524 44527 64686

TPH12

03309 63410 3510 83509 3508 03303 22207 42210 52213 62314 82615 02723

22827 42828 52828 62828 82826 03032 52837 02732 32718

TPH62

30063 55990 03033 20911 10997 02733 66666 23009 20511 18007 16007 10190 15545

10158

0700 PST

TPH15

83212 50411 03309 00024 85481 70013 04547 01703 50877 65754 02723 40418

77828 02737 55555 11764 10514 22536 63691

TPH15

03309 63406 3604 80405 0604 01803 22313 42511 52612 62613 82619 02728

22831 42737 52636 62635 82638 02744 52843 02830 52729 02721 52812 02708

50910 03103

TPH65

30073 73939 02747 20930 09993 02830 15531 74993 02824 10374 07996 02812

05807 06997 00908 55555 33359 83898 66666 22208 21006 19710 17804 10158

Appendix H
PIBAL OBSERVATIONS

Table H.1—PIBAL OBSERVATION, 17 MARCH 1953

Beatty

0400 PST

BTY12

00604 41603 1804 61905 2007 82413 2513 02714 22521 42518

0700 PST

BTY15

00403 40308 0210 60107 3208 83109 2709 2410 22518 42623 52236 62444 82458 92467

Caliente

0400 PST

CAL12

00000 0000 62010 2024 82126 2475 02526 22626 42631 52628 62729 82732 02720 52725

0700 PST

CAL15

00000 0000 62509 2614 82718 2719 02718 22821 42824 52727 62730 82730 02739 22744 42748 52744 62735

Currant

0400 PST

CUR12

01903 62112 23138 82616 2616 02588 22525 40441 52444 62343 82345

0700 PST

CUR15

03322 63327 3223 82914 2612 02413 22532 42538 52539 62541 82450 02554 22578 42570 52577 62574 82477 02275 52464 82469

St. George

0500 PST

BGU13

00000 0000 41006 1804 62508 2513 82416 2317 02320 22425 42631 52632 62633

82643 02644 22643 42653 52658 82656 02657

0700 PST

SGU15

 00000
 0000
 43505
 3303
 62804
 2507
 82311
 2314
 02617
 22828
 42827
 52626
 62532

 83736
 02645
 22646
 42650
 52757
 62757
 82757
 02765

Warm Springs

0400 PST

WSP12

02812 62817 2824 82729 2633 02637 22641 42641 52641 62653 82670 02677 22666 42655 52655 62659 82669

73

Table H.1 - (Continued)

0700 PST

WSP15

03203 63103 3008 82916 2824 02828 22743 42743 52744 62744 82749 02775

Table H.2—PIBAL OBSERVATION, 24 MARCH 1953

Beatty

0400 PST

BTY12

00407 40605 1103 61606 1709 81712 1615 01618 21822 42022 52018 62014 81912 02019 22123 42027 51929 61924 81923 02129 12129

0700 PST

BTY15

00604 40704 1005 61511 1516 81717 1621 01620 21621 41925 51927 61930 81932 01830 21827 41929 51929 62030 82133 02231 52235 02135 22236

Caliente

0400 PST

CAL12

03503 3603 60304 0808 80910 1208 01706 21310 41608 51908 62109 82611 02617 22319 42118 52117 62217 82118 02127 22228

0700 PST

CAL15

00904 1004 61105 1209 81313 1513 01513 21912 42110 52113 62212 82513 02317 22323 42327 52224 62121 82124 02125 52337 62327

Currant

0400 PST

CUR12

00000 61103 1705 81706 1608 01609 21512 41816 51914 61913 82012 02219 21921 41923 51925 61827 71825

St. George

0400 PST

SGU12

00000 0000 40000 0807 60807 0909 81109 1210 01109 21110 41908 51910 62205 82405 02615 22516 42514 52214 62214 82314 02115 52125 02438 12439

0700 PST

SGU15

00703 0703 40707 0808 61111 1313 81415 1515 01413 21608 41910 52007 02307 82409 02418 22321 42222 52120 62118 82221 02425 52432 02233 52343 72334

Table H.2—(Continued)

Warm Springs

0400 PST

WSP12

01803 61803 1805 81913 1916 01819 21820 41922 61923 82115 02215 22122 42324 52325 62129 82130 01930 52129 62130

0700 PST

WSP15

00000 60000 1808 81615 01523 1627 21825 42028 52027 62026 82023 02030 21930 42038 52036 62035 82132 02232 52143 02143 52243 72245

Table H.3 - PIBAL OBSERVATION, 31 MARCH 1953

Beatty

0400 PST

BTY12

03407 43510 3615 63618 3519 83317 3016 03116 23120 43423 53325 63324 83229 03129 23234 43333 53333 63234 83241 03242 33243

0700 PST

BTY15

03609 43610 3613 63615 3616 83614 3112 03013 23418 43322 53323 63326 83330 03131 23233 43336 53325 63333 83337 03346 23345

Caliente

0400 PST

CAL12

00000 0000 63103 3106 83209 3411 03314 23118 42922 52926 62925 83021 03022 23020 43024 53026 63020 83023 03022 13027

0700 PST

CAL15

03603 3604 60104 3609 83615 3518 03517 23418 43221 53325 63329 83326 03332 23331 43333 53237 63241 83239 03237

Currant

0400 PST

CUR12

03204 63109 83118 3022 03023 22715 42719 52826 62829 82928 02838 22841 42850 52854 62860 82074 02884

CUR1

03005 63009 3116 83118 3021 03022 23024 43022 53025 63030 82931 03042 22944 42941 52941 62940 82942 02938

Table H.3—(Continued)

St. George

0400 PST

SGU12

00000 0000 40704 0203 63105 2816 82719 2719 02022 22220 42118 53022 63025 83022 03023 12028

0700 PST

SGU15

00000 0000 40000 2804 62809 2810 83110 3209 23015 42923 53024 63024 83030 03121 23126 43127 53129 63140 82134 03236 53262 63265

Warm Springs

0300 PST

WSP11

03603 63603 3605 83607 3507 03407 23208 43016 53017 63123 83129 03133 23232 43233 53235 63235 83243 03249 23342

0700 PST

WSP15

00203 63303 0303 83505 3205 03208 23416 43323 53321 63327 83229 03232 23237 43241 53242 63243 83247 03243 53258 03126

Table H.4—PIBAL OBSERVATION, 6 APRIL 1953

Beatty

0700 PST

BTY15

00906 40408 0112 63614 3312 82910 2716 02725 22733 42942 52949 62955 82955 03060 23079 43086 52987 62988 82990 02997

1000 PST

BTY18

03003 43303 3102 62704 2706 82812 2720 02825 22934 42949 52853 62868 82978 03171 23288 33293

Caliente

0700 PST

CAL15

00000 0000 63008 3016 83020 3019 02920 22927 42844 52848 62847 82748 02762 22872 42774 52877 62880 87802 07807

1000 PST

CAL18

02608 2608 62610 2712 82715 2717 02721 22731 42741 52753 62753 82935 02841 22850 42854 52850 62861 82969 02956 12956

Table H.4-(Continued)

Currant

0700 PST

CUR15

03005 63009 2914 82615 2516 02415 22519 42536 52541 62544 82559 92563

1000 PST

CUR18

02609 62613 2616 82515 2415 02418 22325 42331 52333

St. George

0700 PST

SGU15

02509 2509 42516 2516 62517 2417 82715 2915 02923 22933 42736 52638 62742

1000 PST

8GU18

02514 2514 42416 2515 62515 2617 82619 2721 02722 22725 42938 52742 62749 82753 02756 22760

Warm Springs

0700 PST

WSP15

02909 62914 2921 82927 2932 02936 22939 42943 52849 62855

1100 PST

WSP19

02839 62839 2848 82869 2882 02875 22862 42851

Table H.5-PIBAL OBSERVATION, 11 APRIL 1953

Beatty

0400 PST

BTY12

00513 40214 6196 63626 3623 83622 3618 03615 23414 2321 53223 63133 83039

03056 23078 48005 58027 60932 87901

0700 PST

BTY15

00113 43612 3614 63619 3622 83620 3518 03417 23316 43321 53225 63330 83140

03055 23080 4800 52998 62997 87921 07928

Caliente

0400 PST

CAL12

00000 3603 63610 3619 83621 3620 03620 23518 43517 53518 63418 83317 03134

23045 43065 53074 62983 83097 08001 38005

Table H.5—(Continued)

0700 PST

CAL15

00000 3604 61609 3615 80116 0215 00115 23520 43518 53517 63518 83320 03324 23231 43051 53053 62979 82988 02991 52772 02866 22762

Currant

0400 PST

CUR12

00000 60000 3016 83117 3217 03318 23319 43118 53119 83124 03228 23037 43041 53043 63048

0700 PST

CUR15

02807 22807 62908 3613 83117 3218 03211 23016 43017 53019 63011

St. George

0400 PST

SGU12

00000 0000 43209 3406 60000 0000 83204 3608 03617 23323 43123 53122 63030 83037 02942 22959 42977 52978 62975 82974 02982

0700 PST

SGU15

00000 0000 41703 2104 62006 1204 80403 0104 03609 23417 43418 53419 63319 83126 03039 22960 42971 52876 62987 87901 02983 52880 72876

Warm Springs

0400 PST

WSP12

00000 60000 3306 83409 3514 00119 20119 43618 53519 63422 83424 03423 23334 43338 53450 63269 83184 03187

0700 PST

WSP15

00000 60000 0304 83506 3509 00108 20213 43417 53317 63316 83114 03223 23042 43065 53069 63075

Table H.6—PIBAL OBSERVATION, 18 APRIL 1953

Beatty

0400 PST

BTY12

03609 40114 0117 60218 0118 83516 3314 02712 22732 43027 53232 63236 83129 02927 22936 42947 52956 62857 82991 92980

UNCLASSIEIEU

78

Table H.6 - (Continued)

0700 PST

BTY15

03610 43012 0113 60215 3617 83013 2606 02912 23018 43224 53223 63223 83129 02929 22836 43034 53036 63045 83040 03046 43043

Caliente

0400 PST

CAL12

00000 0000 60208 0915 80112 3611 03418 22835 42938 53240 63044 82961 02955 22973 42981 53068 63172 82973 92977

0700 PST

CAL15

00000 0000 60305 0411 80612 0712 00511 23616 43034 52939 62934 83147 03144 23049 43151 53150 63150 82955 03054 53266 03287 23268

Currant

0400 PST

CUR12

03303 60104 3310 83314 3314 03211 23012 42823 52833 62842 82743 02743 22741 42870 52778 62785 82794 97705

0700 PST

CUR15

23406 43410 53410 63210 82935 02948 22849 42747 52649 62748 82860 02761 42654

St. George

0400 PST

SGU12

00000 0000 42307 2707 63008 3511 83412 3214 02918 22728 42738 52945 63056 83055 03053 22953 42853 52853 62955 82958 02979

0700 PST

SGU15

00000 0000 40000 0906 61007 01004 83209 3017 02919 22833 42840 52941 63040 82944 02942 22942 42945 53047 62953 82958 02953 12953

Warm Springs

0400 PST

WSP12

00803 60703 0407 80212 0117 03515 23122 42942 53043 63146 83151 03154 23151 43042 53056 63058 83063 03059 53075 63079

0700 PST

WSP15

00503 60504 0507 80511 0512 00410 23315 43029 53130 63136 83134 03141 23139 43143 53153 63051 83040 03156 53159 63161

Table H.7—PIBAL OBSERVATION, 25 APRIL 1953

Beatty

0400 PST

BTY12

00109 40210 0210 60407 1106 81506 1604 02604 22513 42612 52609 62709 82815 02917 22926 42929 52931 62929 82831

0700 PST

BTY15

00704 40407 0603 61502 1610 81510 1606 01905 22111 42215 52314 62511 83111 03022 22823 42825 52927 62927 82829 02829 12826

Caliente

0400 PST

CAL12

00000 0000 60507 0607 80705 0406 03609 23220 42828 52820 62818 83224 03322 23121 43128 53134 63139 83144 03144 23166

0700 PST

CAL15

00000 0000 60807 0910 80808 0604 00106 23016 43019 52924 62924 83020 03015 22914 42817 52818 62821 83023 03026 53035 02945 52947

Currant

0100 PST

CUR09

03003 63504 3404 83309 3211 03011 22608 42618 52619 62618 82716 02715 22735 42748 52758 62763 82780 02796

0500 PST

CUR13

00000 60000 1005 80904 0403 00103 22811 42617 52621 62722 82720 02620 22619 42619 52618 62619 82622 02627

St. George

0400 PST

SGU12

00000 0000 40812 0714 60614 0711 80704 0303 03308 23120 43026 53027 63126 83122 03221 23219 43119 52927 62931 83029 03133 13134

0700 PST

SGU15

00404 40509 0809 61009 1305 82303 2803 03107 23113 43121 53122 63123 83115 03115 22919 42821 52823 62926 83026 02925 53035 02948 52938 02925 42930

Table H.7—(Continued)

Warm Springs

0400 PST

WSP12

00404 60404 0406 80510 0610 00710 22912 42919 52922 62823 86823 02916 23019 42819 52817 62823 82929 02823 52833 82937

0700 PST

WSP15

00000 60502 0505 80608 1009 01410 22617 42622 52618 62614 82711 02713 22715 42820 52823

Table H.8 - PIBAL OBSERVATION, 8 MAY 1953

Beatty

0600 PST

BTY14

00204 40106 3608 60108 0110 80113 0211 03602 22623 42738 52746 62660 82562 02560 22669 42562 52562 62562 82581 02599 27517

0900 PST

BTY17

00103 43508 3406 63405 3407 83408 3104 02407 22423 42534 52638 62644 82654 02667 22466 42575 52583 62488 87405 97414

Caliente

0700 PST

CAL15

00000 0000 62303 2507 82414 2316 02320 22225 42434 52435 62435 82548 02452 22355 42357 52370 62369 82481 07401 27415

1000 PST

CAL18

02309 2309 62410 2109 82007 22080 02215 22325 42330 52332 62335 82444 02354 22359 42378 52389 62485 82491 02396 17306

Currant

0700 PST

CUR15

02709 63012 3012 83007 2809 02411 22416 42226 52130 62035 82044 02059 22165 4220 52068 62170 82190 92193

1000 PST

CUR18

00104 61908 2905 83003 3204 02405 22209 42920 52121 62121

Table H.8 - (Continued)

St. George

0700 PST

SGU15

00000 0000 42206 1807 61811 1813 81813 2013 02115 22221 42436 52540 62340 82441 22350 22351 42363 52369 62372 82388 07402

1000 PST

SGU18

02314 2314 42315 2216 62113 2210 82209 02106 02106 22321 42331 52234 62238 82242 02352 22359 42465 52476 62480 82487 07415 17421

Warm Springs

0700 PST

WSP15

02203 62503 2903 83009 3014 03016 22916 42429 52434 62436 82443 02462 22464 42466 52471 62473 82496 07410 17418

1000 PST

WSP18

02709 62816 2929 83035 2827 02622 22803 42209 52513 62518 82525 02441 22356 42375

Table H.9 - PIBAL OBSERVATION, 19 MAY 1953

Beatty

0400 PST

BTY12

00000 40000 1102 61704 1810 81915 1922 02023 22222 42320 52419 62522 82740 02849 22849 42850 52853 62856

0700 PST

BTY15

02303 42103 1905 61807 2008 82010 1912 02117 22322 42706 52831 62935 82935 02846 22844 42849 52751 62756 82762 02762

Caliente

0400 PST

CAL12

00000 0000 61911 2117 82221 2324 02322 22220 42220 52221 62325 72424

0700 PST

CAL15

01803 1807 61916 1919 82024 2128 02129 22134 42137 52137 62136 82135 02230

Table H.9 - (Continued)

Currant

0400 PST

CUR12

00000 60000 1811 81915 2117 02119 22026 32028

0700 PST

CUR15

00000 10145

St. George

0400 PST

SGU12

00603 0603 40807 1404 61905 2210 82316 2322 02323 22219 42018 52116 62216 82628 02736 22741 42845 52740 62738 82738 02839 22844

0700 PST

SGU15

00000 00000 40910 1507 61609 2114 82221 2223 02126 22029 42141 52130 62230 82529 92525

Warm Springs

0400 PST

WSP12

02603 62608 2616 82616 2417 02220 22337 42345 52443 62530 72530

0700 PST

WSP15

02511 62412 2316 82319 2222 02121 22239 42345 52540 62636 82736

Table H.10-PIBAL OBSERVATION, 25 MAY 1953

Beatty

0400 PST

BTY12

01503 41504 1806 62009 2013 82018 2026 02030 22729 42338 52356 62374 82269 02287 27201 37203

0700 PST

BTY15

01608 41708 1809 61811 1914 82018 2027 02036 21927 42145 52250 62348 82278 02297 27204 47226 57230 67227

Table H.10-(Continued)

Caliente

0400 PST

CAL12

00000 1703 61715 1722 81828 2034 02037 22038 42031 52235 62355 82291 07200 17308 0700 PST

CAL15

01604 1608 61715 1720 81825 1929 02935 22042 42043 52148 62259 82274 02279 22291 37200

Currant

0400 PST

CUR12

00000 60000 1914 81817 1717 01717 21818 41936 52039 62140 82261 02266 22288 42297 0700 PST

CUR15

01707 62012 1913 81914 1917 01819 21925 41942 51944 62045 82245 02178 22181 47117 57119 67117 87117

St. George

0400 PST

SGU12

00000 0000 41411 1612 61715 1818 81821 1925 02032 22146 42144 52144 62142 82163 02276 22185 42298 57202 67212 87205 92298

0700 PST

SGU15

01103 1103 41310 1415 61615 1718 81920 2021 02027 22048 42056 52058 62049 82064 02177 22186

Warm Springs

0400 PST

WSP12

02005 61907 1810 82012 2009 02112 22035 41937 52033 62135 82246 02191 22294 47222 57230 67226 77210

0700 PST

WSP15

02507 62409 2209 82006 1806 01808 21930 41938 52037 62143 82273 02192 12192

Table H.11 - PIBAL OBSERVATION, 4 JUNE 1953

Beatty

0400 PST

BTY12

00811 40414 3617 60117 0216 80115 3513 03411 22903 41803 51604 61706 82715 02919 23131 43023 53026 63026 83129 03343 13350

0600 PST

BTY14

00207 40112 0114 60116 0116 80216 0213 00110 22504 42005 51906 62010 82612 02918 23022 43029 52934 62934 82942 02840 53037 03056

Caliente

0500 PST

CAL13

03204 3406 60409 0412 80613 0715 0814 20504 43605 53004 62505 82211 02514 22714 42811 52711 62612 82515 02417 52817 02721

0700 PST

CAL15

00000 0000 60407 0610 80813 0815 00812 20704 40000 50000 62604 82311 02615 22714 42614 52615 62617 82819 02820 52824 02528 52419 02525 52623 72715

Currant

0400 PST

CUR12

00000 60000 3605 80103 0103 03303 22503 42510 52310 62211

0700 PST

CUR15

00000 60000 0000 80000 1704 01805 22006 42407 52509 62511 82518 02618 22520 42523 52522 62522 82432 02228

St. George

0400 PST

SGU12

00000 0000 40403 0000 60000 1804 82806 2808 03007 23504 40000 51904 61810 82018 02409 22510

0700 PST

SGU15

00000 0000 42204 2309 62307 2507 82708 0000 00000 21004 41603 51806 62009 82205 02908 22617 42418 52317 62314 82412 02613 52717 62717

Table H.11 — (Continued)

Warm Springs

0400 PST

WSP12

00000 60201 0205 80310 0412 00407 22902 42508 52310

0700 PST

WSP15

00000 60702 0704 80706 0606 01203 22304 42710 52517 62419 2416 02520 22720 42629 52736 62736 82644 02534 12532

Appendix I

CONTROL POINT SURFACE OBSERVATIONS

Time, PST	Ceiling, × 100 ft	Sky	Visibility, miles	Temp.,	Visibility, Temp., Dew point, miles °F °F	Wind	Wind speed, knots	Pressure, in. Hg	humidity,
30	None	Clr	20	53	27	SW	7	25.760	36
0130	None	Clr	20	51	24	WSW	80	25.760	33
30	None	Clr	20	51	22	SW	12	25.750	31
30	None	Clr	20	20	19	SW	12	25,750	58
30	None	Clr	20	48	25	W	8	25.765	4
02	300	7/10	20	43	22	NE	60	25.775	42
30	300	6/10	20	4	23	NE	•	25.775	43
30	300	2/10	20	44	20	WN	9	25.810	38
30	300	6/10	20	47	24	NE	6	25.820	38
0830	300	3/10	20	54	26	田	87	25.840	32
0830	300	3/10	20	57	22	Calm	Calm	25.850	25
30	300	3/10	20	99	21	Calm	Calm	25.850	22
30	300	9/10	20	63	31	S	10	25.840	29
30	300	4/10	20	63	28	SW	6	25.830	26
30	300	4/10	20	63	53	S	6	25.820	27
1430	160-300	2/10-3/10	20	49	25	82	9	25.810	22
00	160	2/10	20	62	22	WM	80	25.800	20
00	160-250	2/10-2/10	20	62	19	Ø	0.	25.775	18
00	160-250	1/10-3/10	20	28	16	SSW	7	25.775	19
90	250	2/10	20	28	17	SW	7	25.775	21
0	250	2/10	20	52	16	WN	4	25.785	83
00	250	2/10	20	52	16	SW	8	25.800	24
0	None	Clr	20	47	13	NE	တ	25.800	24
2230	None	Clr	20	41	10	MM	*	25.815	88
9	None	בוב	20	38	8	NNE	•	25.815	28

* Total precipitation for period, none.

Table I.2—SURFACE OBSERVATIONS, CONTROL POINT, 24 MARCH 1953*

Time, PST	Ceiling, × 100 ft	Sky	Visibility, miles	Temp., °F	Visibility, Temp., Dew point, miles °F °F	Wind	Wind speed, knots	Pressure, in. Hg	humidity,
030	None	Clr	20	43	21	Z	8	25.905	40
1130	None	Clr	20	43	21	Z	•	25.905	4
230	None	Clr	20	41	21	z	8	25.890	45
330	None	Clr	20	40	20	z	•	25.885	#
430	None	Clr	20	39	20	z	4	25.880	46
510	None	Clr	20	46	23	Z	*	25.875	9
530	None	Clr	20	46	23	z	•	25.880	39
630	None	Clr	20	45	24	NNE	4	25.880	43
730	None	Clr	20	49	27	z	8	25.880	42
830	250	1/10	20	28	30	NE	2	25.875	32
0810	250					Calm	Calm		
930	250	7/10	20	49	29	Calm	Calm	25.870	28
030	250	4/10	20	89	30	SE	7	25.850	24
130	250	5/10	20	11	41	S	6	25.830	34
200	250		20			SSW	9		
230	250	7/10	20	72	30	SW	15	25.800	21
330	200-250	4/10-8/10	20	72	26	SW	14	25.870	18
430	200-250	4/10-10/10	20	72	26	SW	14	25.850	18
530	140-250	4/10-6/10	20	20	22	82	17	25,750	16
630	140 - 250	4/10-6/10	20	69	19	SW	19	25.730	15
730	140-250	4/10-2/10	20	64	19	WS	14	25,730	17
830	140	4/10	20	49	20	SSW	10	25.730	18
930	140	3/10	20	61	20	SSW	15	25.730	20
030	140	2/10	20	29	19	SW	14	25.730	20
2130	140-250	2/10-3/10	20	83	26	SW	13	25.730	34
2230	140-250	2/10-3/10		4	88	SW	14	25.740	25
000	110 950	01/10 01/10		70	•	-		002 30	90

* Total precipitation for period, none.

Relative humidity,	26	32	41	51	38	84	20	42	4	88	24	23	25	21	18	22	16	14	17	22	20	19	25	34	33
Pressure, in. Hg	25.760	25,775	25.780	25.790	25.795	25,800	25,810	25.840	25.860	25.865	25.870	25,870	25.860	25.840	25.820	25.810	25.800	25.780	25.780	25.780	25.780	25.800	25,800	25,810	25.810
Wind speed, knots	11	8	Calm	ø	7	Calm	Calm	4	e	4	က	က	6	60	80	6	6	7	7	7	12	*	83	83	Calm
Wind	WSW	*	Calm	z	WM	Calm	Calm	Z	NE	NNE	Z	NE	SE	NE	E	702	SSE	SSE	Ø	SW	A	A	z	A	Calm
Temp., Dew point, F. F.	20	22	22	23	20	21	23	22	28	23	23	24	26	25	23	26	20	16	15	23	20	18	19	23	20
Temp.,	54	48	4	38	43	39	9	43	47	22	99	62	49	92	89	99	88	49	99	19	62	8	53	49	41
Visibility, miles	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Sky	1/10	1/10	Clr	4/10	4/10	4/10	4/10	5/10	4/10	4/10	2/10	Clr	clr	Clr	Clr										
Celling, × 100 ft	180	180	None	300	300	250	250	250	250	250	250	None	None	None	None										
Time, PST	0030	0130	0230	0330	0430	0200	0230	0630	0730	0830	0830	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	2130	2230	2330

Table I.3 —SURFACE OBSERVATIONS, CONTROL POINT, 31 MARCH 1953*

*Total precipitation for period, none.

UNCLASSIFIED

ive ity,																						
Relative humidity,	23	20	27	27	27	26	25	24	20	20	22	17	19	17	18	35	14	13	90	15	15	-
Pressure, in. Hg	25.520	25.495	25.500	25.495	25.475	25.465	25.485	25.495	25,495	25,495	25.470	25.440	25.410	25.390	25.360	25.350	25.340	25.345	25.365	25.395	25.435	007 30
Wind speed, knots	6	8	2	8	12	7	8	Calm	•	9	11	9	13	13	20	11	18	15	17	20	22	10
Wind	A	WNW	Z	NNW	NNW	z	MM	Calm	ENE	ENE	82	S	02	0	SW	WN	WW	WW	z	NNE	Z	7
Temp., Dew point, F	25	21	24	22	22	21	21	23	22	22	27	23	24	22	24	27	13	80	9	2	8	-
Temp.,	83	83	28	22	54	55	26	29	83	63	99	69	88	69	88	99	62	29	53	20	47	48
Visibility, miles	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	15	10	10	92	2
Sky	2/10	Clr	Clr	3/10	2/10	3/10	5/10	3/10	2/10	2/10	2/10	2/10	1/10-2/10	2/10	2/10	6/10	5/10	2/10	2/10	3/10	2/10	2/10
Ceiling, × 100 ft	300	None	None	320	320	320	320	300	300	300	300	300	50-300	20	20	20	20	20	99	90	9	80
rime, PST	0000	0130	0230	0330	0430	0230	0630	0730	0830	0880	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	9180

Table I.4—SURFACE OBSERVATIONS, CONTROL POINT, 6 APRIL 1953*

*Total precipitation for period, none.

Table I.5—SURFACE OBSERVATIONS, CONTROL POINT, 11 APRIL 1953*

Time,	Ceiling,		Visibility,	Temp.,	Dew point,	Wind	Wind speed,	Pressure,	humidity,
101	1001	Can's	mires	•	- 100	-			
0030	None	Clr	20	36	14	MM	12	25.710	39
0130	None	Clr	20	34	14	MN	6	25.740	42
0230	None	Clr	20	34	12	NE	80	25.780	39
0330	None	Clr	20	29	15	NNE	4	25.755	22
0445	None	Clr	20	30	=	WW	7	25.780	45
0530	None	Clr	20	30	11	Z	4	25.790	46
0630	None	Clr	20	35	11	Z	7	25.800	37
0730	None	Clr	20	39	20	Calm	Calm	25.810	46
0830	None	Clr	20	42	18	MNN	4	25.820	38
0830	80	1/10	20	4	19	NE	2	25.820	36
1030	80	1/10	20	46	21	NNW	6	25.805	36
1130	80	2/10	20	20	17	NE	6	25, 790	26
1230	80	3/10	20	49	13	NE	10	25.775	23
1330	80	6/10	20	20	13	ш	ຕ	25.765	22
1430	98	6/10	20	51	12	Œ	80	25.745	20
1530	08	6/10	20	22	14	NE	4	25.730	19
1630	80	4/10	20	53	10	MM	8	25.730	17
1730	80	2/10	20	51	10	MM	•	25,730	19
1830	80	1/10	20	47	11	MM	10	25.740	23
1930	80	1/10	20	46	10	WN	10	25.760	22
2030	None	Clr	20	45	10	WN	10	25.780	23
2130	None	Clr	20	44	10	MM	10	25,790	24
2230	None	Clr	20	43	10	WN	10	25.800	25
2330	None	Clr	20	40	10	WW	6	25,810	28

^{*} Total precipitation for period, none.

Relative	humidity,	80	38	38	39	42	#	41	31	31	27	56	22	20	17	21	15	21	21	20	28	29	87	28	31	31
	Pressure,	in. Hg	25.780	25.780	25.800	25.810	25.825	25.850	25.860	25.880	25.890	25.890	25.865	25,850	25.850	25,830	25.810	25.800	25,800	25,790	25,790	25,790	25,810	25,810	25,825	25.830
	Wind speed,	knots	111	13	15	13	16	13	13	15	12	11	11	9	က	9	7	6	Calm	Calm	Calm	4	Calm	2	Calm	4
	Wind	direction	NNW	NNW	NNW	NNW	NNW	WNN	NNW	Z	NNE	NNE	NE	ENE	NNE	ы	ENE	Œ	Calm	Calm	Calm	SE	Calm	SW	Calm	WN
	Temp., Dew point,	F	24	22	23	24	24	23	19	23	23	24	26	23	21	27	19	28	28	27	28	53	26	25	27	26
	Temp.,	Ę.	48	46	46	45	44	45	48	52	26	28	62	64	99	89	88	69	69	69	61	61	28	28	57	26
	Visibility,	miles	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
		Sky	1/10	Clr																						
	Ceiling,	× 100 ft	180	None																						
	Time,	PST	0030	0130	0230	0330	0430	0530	0630	0730	0830	0860	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	2130	2230	2330

Table I.6—SURFACE OBSERVATIONS, CONTROL POINT, 18 APRIL 1953*

*Total precipitation for period, none.

Table I.7—SURFACE OBSERVATIONS, CONTROL POINT, 25 APRIL 1953*

Time,	Ceiling,		Visibility,		Dew point,	Wind	Wind speed,	A	humidity,
PST	× 100 ft	Sky	miles	ħ.	ř.		knots	in. Hg	86
0030	300	1/10		99	24	WW	6	25.795	20
0130	300	7/10		64	25	NNN	6	25.800	22
0230	300	3/10	20	63	25	WW	10	25.810	22
0330	300	1/10		64	26	WW	12	25.815	23
0430	160-330	2/10-5/10		63	26	WW	4	25.815	24
0530	160-300	2/10-9/10		63	26	WW	6	25.820	24
0630	160-300	1/10-9/10	20	64	28	WW	12	25.830	25
0730	160-300	1/10-9/10	20	88	33	WW	6	25.850	27
0830	300	10/10	20	2	30	Z	4	25.850	23
0860	300	9/10	20	74	32	ENE	S.	25.850	21
1030	300	8/10	20	62	33	Ø	က	25.850	19
1130	300	8/10	20	81	35	SE	10	25.830	19
1230	300	8/10	20	81	32	SSE	10	25.820	16
1330	300	8/10	20	82	32	Ø	12	25.800	16
1430	300	9/10	20	81	32	co.	14	25.780	17
1530	300	9/10	20	82	22	SW	10	25.770	==
1630	300	9/10	20	81	17	SSW	16	25.740	60
1730	300	9/10	20	42	16	SSW	11	25,730	60
1830	300	7/10	20	91	20	SSW	10	25,730	12
1930	300	7/10	20	75	11	SSW	6	25.740	11
2030	300	5/10	20	73	16	SW	11	25,750	==
2130	300	4/10	20	5	17	SW	80	25.760	12
2230	300	3/10	20	23	18	SW	7	25.765	12
2330	300	6/10	20	72	19	Calm	Calm	95 770	13

*Total precipitation for period, none.

Table I.8—SURFACE OBSERVATIONS, CONTROL POINT, 8 MAY 1953*

Time, PST	Ceiling, × 100 ft	Sky	Visibility, miles		Temp., Dew point,	Wind	Wind speed, knots	Pressure, in. Hg	humidity,
0030	None	Clr	20	55	15	SW	14	25,580	20
0130	None	Clr	20	53	15	WSW	15	25,595	22
0230	None	Clr	20	53	15	WNW	13	25.610	22
0330	None	Clr	20	53	20	WNW	15	25,610	27
0430	None	Clr	20	20	18	WNW	8	25.620	27
0530	None	Clr	20	51	20	Calm	Calm	25,620	29
0630	None	Clr	20	51	20	ENE	8	25.630	29
0730	None	Clr	20	26	25	A	co	25,630	30
0830	None	Clr	20	28	22	W	4	25.635	24
0830	150	1/10	20	61	80	WSW	80	25.640	12
1030	80	1/10	20	62	23	W	6	25,625	23
1130	80	2/10	20	63	22	Ø	80	25,590	20
1200	80		20			Ø	6		
1230	80	6/10	20	92	21	SSW	6	25.590	18
1330	80	8/10	20	65	21	SW	10	25,580	19
1430	80	10/10	20	28	23	MM	23	25.570	25
1530	80	7/10	20	29	24	z	11	25.570	25
1630	80	4/10	20	29	24	WW	17	25.570	25
1730	80	1/10	20	99	25	MM	17	25.590	29
1830	None	Clr	20	54	21	MM	17	25.600	27
1930	None	Clr	20	20	24	z	17	25.630	35
2030	None	Clr	20	47	23	z	20	25,660	38
2130	None	Clr	20	45	24	z	15	25,680	42
2230	None	Clr	20	44	28	NNW	20	25.670	51
2330	None	Clr	20	43	15	MM	17	25,670	32

*Total precipitation for period, none.

Table I.9 — SURFACE OBSERVATIONS, CONTROL POINT, 19 MAY 1953*

Time, PST	Ceiling, × 100 ft	Sky	Visibility, miles		Temp., Dew point,	Wind	Wind speed, knots	Pressure, in. Hg	Relative humidity,
0030	270	4/10	20	02	33	Ø	4	25.710	26
130	270	2/10	20	89	35	SSW	6	25,705	29
0230	270	2/10	20	89	35	SSW	co	25,700	29
330	180-250	2/10-6/10	20	49	34	WSW	9	25.695	29
0405	180-350†	2/10-10/10	20	28	34	Calm	Calm	25.695	40
1430	180-250	2/10-10/10	20	29	35	Calm	Calm	25,685	40
530	180-250	2/10-10/10	20	63	35	Calm	Calm	25.695	35
9830	180-250	2/10-10/10	20	65	34	Calm	Calm	25,695	31
1730	180-250	3/10-10/10	20	69	33	S	6	25,690	97
0830	180-250	4/10-10/10	20	89	32	SSW	23	25,680	26
0830	180-250	3/10-10/10	20	11	27	00	20	25,660	19
030	140-250	3/10-5/10	20	72	28	S	21	25,650	19
130	140-250	3/10-5/10	20	74	25	S	20	25.640	16
230	140-250	3/10-8/10	20	74	32	S	18	25,620	20
330	140-250	3/10-10/10	20	75	38	SSW	16	25,610	26
	100-150-250	1/10-3/10-10/10	20	92	40	Ø	80	25,580	27
	100-150-250	1/10-2/10-10/10	20	77	40	S	15	25.560	97
	100-250	2/10-10/10	20	77	40	WSW	7	25.525	97
	100-250	1/10-10/10	20	92	36	SW	6	25,510	23
1830	100-250	2/10-10/10	20	74	38	SSW	14	25.500	27
1930	150-250	3/10-10/10	20	11	39	SW	12	25,500	30
030	150-250	2/10-10/10	20	69	42	SW	6	25.510	36
1130	150-250	2/10-9/10	20	88	39	W	13	25,530	34
2230	150-250	3/10-6/10	20	67	37	W	6	25.570	32
330	150-250	4/10-5/10	20	65	35	MM	6	25.590	32

UNCLASSIFIED

*Total precipitation for period, none. †Aircraft report.

		rable I.10—	SURFACE O	BSERVA	TIONS, CON	TROL POI	Table I.10—SURFACE OBSERVATIONS, CONTROL POINT, 25 MAY 1953*	1953*	
rime, PST	Ceiling, × 100 ft	Sky	Visibility, miles	Temp.,	Temp., Dew point,	Wind	Wind speed, knots	Pressure, in. Hg	Relative humidity %
0030	None	Clr	50	20	20	Ø	6	25.565	30
0130	None	Clr	20	49	19	v2	10	25,570	29
0230	None	Clr	20	47	24	SSW	10	25,580	39
0330	None	Clr	20	48	21	SSW	13	25,580	33
0430	300	8/10	20	47	20	Ø	10	25,595	33
0530	300	8/10		49	19	SW	14	25,610	30
0630	130-260	1/10-8/10	20	57	22	Ø	10	25,620	31
0220	260	4/10		53	26	WSW	6	25,650	34
0830	150-260			26	26	Ø	13	25,650	31
0860	120	3/10		28	29	Ø	13	25,660	32
1030	150	2/10	20	61	33	SW	22	25,650	34
1130	150	1/10	20	61	33	SW	22	25,650	34
1230	150	2/10	20	64	33	S	17	25,650	31
1330	150	2/10	20	64	33	SSW	22	25,650	31
1430	160	1/10	20	64	21	SSW	20	25,650	19
1530	170	1/10	20	64	22	κα	18	25,640	20
1630	180	1/10	20	63	19	SSW	22	25.640	18
1730	None	Clr	20	62	23	SSW	20	25.650	22
1830	None	Clr	20	29	22	SSW	13	25,650	24
1930	None	Clr	20	57	22	SW	10	25.645	26
2030	None	Clr	20	55	24	SW	14	25,655	30
2130	None	Clr	20	53	25	SSW	18	25,670	33
2230	None	Clr	20	25	26	SSW	18	25,680	36
2330	None	Clr	20	20	30	SSW	13	25.685	46

*Total precipitation for period, none.

UNCLASSIFIED

								Kelative
eiling,		Visibility,	Temp.,	Dew point,	Wind	Wind speed,	Д	humidity,
× 100 ft	Sky	miles	Ę4	miles °F °F	direction	knots	in. Hg	88
None		20	28	19	WW	က	25,650	21
None		20	54	21	MM	വ	25,650	27
None		20	54	22	z	1	25.645	28
None		20	54	25	z	8	25,655	32
None		20	54	22	z	က	25.655	32
None		20	20	25	Calm	Calm	25.660	37
None		20	54	28	Calm	Calm	25.670	35
None		20	53	22	Calm	Calm	25.680	29
None		20	89	37	z	4	25,680	31
300		20	73	36	A	2	25,680	25
300	10/10	20	75	39	Calm	Calm	25.670	32
80-300	_	20	92	39	ы	8	25,660	20
80-300	_	20	81	37	SW	6	25.640	21
85-300	_	20	81	31	w	13	25.640	21
300		20	80	32	SW	12	25,620	17
300		20	81	33	S	16	25,600	18
300		20	80	81	SW	14	25.600	21
300		20	80	32	SW	4	25,600	17
300		20	79	32	SW	7	25,600	18
70-300	_	20	92	30	SW	2	25.600	18
300		20	74	30	SW	7	25.600	19
300		20	72	29	SW	9	25,610	20
300		20	72	53	W	10	25,620	20
300		20	11	30	WNW	12	25.640	22
None		2	80	21	MM	10	OF BAD	76

Table I.11—SURFACE OBSERVATIONS, CONTROL POINT, 4 JUNE 1953*

*Total precipitation for period, none.

DISTRIBUTION

	Copy
ARMY ACTIVITIES	
Asst. Chief of Staff, G-1, D/A, Washington 25, D. C., ATTN: Human Relations and	
Research Board	1
Asst. Chief of Staff, G-2, D/A, Washington 25, D. C.	2
Asst. Chief of Staff, G-3, D/A, Washington 25, D. C., ATTN: Dep. CofS, G-3, (RR&SW)	3
Asst. Chief of Staff, G-4, D/A, Washington 25, D. C.	4
Chief of Ordnance, D/A, Washington 25, D. C., ATTN: ORDTX-AR	5-6
Chief Signal Officer, D/A, P&O Division, Washington 25, D. C., ATTN: SIGOP	7-8
The Surgeon General, D/A, Washington 25, D. C., ATTN: Chairman, Medical R&D Board	9
Chief Chemical Officer, D/A, Washington 25, D. C.	10-1
Chief of Engineers, D/A, Military Construction Division, Protective Construction	
Branch, Washington 25, D. C., ATTN: ENGEB	12-13
The Quartermaster General, CBR, Liaison Office, Research and Development Division,	
D/A, Washington 25, D. C.	14-1
Provost Marshal General, Main Navy Bldg., Washington 25, D. C.	16-1
Chief of Transportation, Military Planning and Intelligence Division, D/A,	
Washington 25, D. C.	18-19
Chief, Army Field Forces, Ft. Monroe, Va.	20-2
Army Field Forces Board #1, Ft. Bragg, N. C.	24
Army Field Forces Board #2, Ft. Knox, Ky.	25
Army Field Forces Board #3, Ft. Benning, Ga.	26
Army Field Forces Board #4, Ft. Bliss, Tex.	27
Commanding General, First Army, Governor's Island, New York 4, N. Y., ATTN: G-4	28
Commanding General, Second Army, Ft. George G. Meade, Md., ATTN: AIABD	29
Commanding General, Third Army, Ft. McPherson, Ga., ATTN: ACofS, G-3	30
Commanding General, Fourth Army, Ft. Sam Houston, Tex., ATTN: G-3 Section	31
Commanding General, Fifth Army, 1660 E. Hyde Park Blvd., Chicago 15, Ill.,	
ATTN: ALFEN	32
Commanding General, Sixth Army, Presidio of San Francisco, Calif., ATTN: AMGCT-4	33
Commander-in-Chief, European Command, APO 403, c/o PM, New York, N. Y.	34
Commander-in-Chief, Far East Command, APO 500, c/o PM, San Francisco,	
Calif., ATTN: ACofS, J-3	35
Commanding General, U. S. Army Alaska, APO 942, c/o PM, Seattle, Wash.	36
Commanding General, U. S. Army Caribbean, Fort Amador, C. Z., ATTN: Cml. Off.	37
Commanding General, U. S. Army Pacific, APO 958, c/o PM, San Francisco, Calif.,	
ATTN: Cml. Off,	38
Commandant, Command and General Staff College, Ft. Leavenworth, Kans.,	
ATTN: AL 'S(AS)	39
Commandant, Army War College, Carlisle Barracks, Pa., ATTN: Library	40
Commandant, The Infantry School, Ft. Benning, Ga., ATTN: C.D.S.	41
Commandant, The Artillery School, Ft. Sill, Okla.	42
Commandant, The AA&GM Branch, The Artillery School, Ft. Bliss, Tex.	43

Commandant, The Armored School, Ft. Knox, Ky., ATTN: Classified Document Section,	
Evaluation and Res. Division	44
Commandant, The Army General School, Ft. Riley, Kans.	45
Director of Special Weapon's Developments, OCAFF, Ft. Bliss, Tex., ATTN:	
Maj Hale Mason, Jr.	46
RD Control Officer, Aberdeen Proving Ground, Md., ATTN: Director,	
Ballistics Research Laboratory	47
Commanding Officer, Engineer Research and Development Laboratory, Ft. Belvoir,	
Va., ATTN: Chief, Technical Intelligence Branch	48
Commanding Officer, Chemical Corps Chemical and Radiological Laboratory,	
Army Chemical Center, Md., ATTN: Technical Library	49
Commanding Officer, Signal Corps Engineering Laboratory, Ft. Monmouth, N. J.	50
Director, Technical Documents Center, Evans Signal Laboratory, Belmar, N. J.	51
Director, Operations Research Office, Johns Hopkins University, 6410	
Connecticut Ave., Chevy Chase, Md., ATTN: Library	52
NAVY ACTIVITIES	
Chief of Naval Operations, D/N, Washington 25, D. C., ATTN: OP-36	53
Chief, Bureau of Medicine and Surgery, D/N, Washington 25, D. C., ATTN:	
Special Weapons Defense Division	54
Chief, Bureau of Ordnance, D/N, Washington 25, D. C.	55
Chief of Naval Personnel, D/N, Washington 25, D. C., ATTN: Pers ALA	56
Chief of Naval Personnel, D/N, Washington 25, D. C., ATTN: Pers C123	57
Chief of Naval Personnel, D/N, Washington 25, D. C., ATTN: Pers C	58
Chief of Naval Personnel, D/N, Washington 25, D. C., ATTN: Pers 112	59
Chief of Naval Personnel, D/N, Washington 25, D. C., ATTN: Pers 15	60
Chief, Bureau of Ships, D/N, Washington 25, D. C., ATTN: Code 348	61
Chief, Bureau of Supplies and Accounts, D/N, Washington 25, D. C.	62
Chief, Bureau of Yards and Docks, D/N, Washington 25, D. C., ATTN: P-312	63
Chief, Bureau of Aeronautics, D/N, Washington 25, D. C.	64
Chief of Naval Research, Code 219, Rm 1807, Bldg. T-3, Washington 25, D. C.,	•
ATTN: RD Control Officer	65
Commander-in-Chief, U. S. Atlantic Fleet, U. S. Naval Base, Norfolk 11, Va.	66
Commander-in-Chief, U. S. Pacific Fleet, Fleet Post Office, San Francisco, Calif.	67
Commander, Operational Development Force, U. S. Atlantic Fleet, U. S. Naval	0,
Base, Norfolk 11, Va., ATTN: Tactical Development Group	68
Commander, Operational Development Force, U. S. Atlantic Fleet, U. S. Naval	00
	69
Base, Norfolk 11, Va., ATTN: Air Department Commandant, U. S. Marine Corps, Washington 25, D. C., ATTN: Code AO3H	70
Commander, U. S. Naval Ordnance Laboratory, Silver Spring 19, Md., ATTN: E	71
Commander, U. S. Naval Ordinance Laboratory, Silver Spring 19, Md., ATTN: EE	72
	73-74
Commander, U. S. Naval Ordnance Laboratory, Silver Spring 19, Md., ATTN: R Commander, U. S. Naval Ordnance Laboratory, Silver Spring 19, Md., ATTN: EH	
	75
Director, U. S. Naval Research Laboratory, Washington 25, D. C.	76
Commanding Officer, U. S. Naval Radiological Defense Laboratory, San Francisco	
24, Calif., ATTN: Technical Information Division	77
Commanding Officer and Director, David W. Taylor Model Basin, Washington 7,	
D. C., ATTN: Library	78
AIR FORCE ACTIVITIES	
Asst. for Atomic Energy, Headquarters, USAF, Washington 25, D. C., ATTN: DCS/O	79
Asst. for Atomic Energy, Headquarters, USAF, Washington 25, D. C., ATTN:	
BW&CW Division, AFOAT	80
Asst. for Development Planning, Headquarters, USAF, Washington 25, D. C.	81-82
Deputy for Materiel Control, Asst. for Materiel Program Control, DCS/M,	-
Headquarters, USAF, Washington 25, D. C., ATTN: AFMPC-AE	83

UNULAD	VH - 6 - 11
Director of Operations, Headquarters, USAF, Washington 25, D. C.	84
Director of Operations, Headquarters, USAF, Washington 25, D. C., ATTN: Operations Analysis Division	85
Director of Plans, Headquarters, USAF, Washington 25, D. C., ATTN: War	
Plans Division	86
Directorate of Requirements, Headquarters, USAF, Washington 25, D. C., ATTN: AFDRQ-SA/M	87
Directorate of Research and Development, Armament Division, DCS/D, Meadquarters, USAF, Washington 25, D. C.	88
Directorate of Intelligence, Headquarters, USAF, Washington 25, D. C., ATTN: AFOIN-1B2	89-90
The Surgeon General, Headquarters, USAF, Washington 25, D. C., ATTN: Bio. Def. Br., Pre. Med. Div.	91
Commanding General, U. S. Air Forces Europe, APO 633, c/o PM, New York, N. Y.	92
Commanding General, Far East Air Forces, APO 925, c/o PM, San Francisco, Calif.	93
Commanding General, Alaskan Air Command, APO 942, c/o PM, Seattle, Wash.,	
ATTN: AAOTN	94 - 95
Commanding General, Northeast Air Command, APO 862, c/o PM, New York, N. Y.,	
ATTN: Def. Division, D/O	96-97
Commanding General, Strategic Air Command, Offutt AFB, Omaha, Neb., ATTN: Chief, Operations Analysis	98
Commanding General, Tactical Air Command, Langley AFB, Va., ATTN:	36
Documents Security Branch	99-101
Commanding General, Air Defense Command, Ent AFB, Colo.	102
Commanding General, Air Materiel Command, Wright-Patterson AFB, Dayton,	
Ohio, ATTN: MCAIDS	103-104
Commanding General, Air Training Command, Scott AFB, Belleville, Ill.	105-106
Commanding General, Air Research and Development Command, P. O. Box 1395, Baltimore, Md., ATTN: RDDN	107-109
Commanding General, Air Proving Grounds Command, Eglin AFB, Fla.,	
ATTN: AG/TRB	110
Commanding General, Air University, Maxwell AFB, Ala.	111-112
Commandant, Air Command and Staff School, Maxwell AFB, Ala.	113-114
Commandant, Air Force School of Aviation Medicine, Randolph AFB, Tex. Commanding General, Wright Air Development Center, Wright-Patterson AFB,	115-116
Dayton, Ohio, ATTN: WCOESP	117-118
Commanding General, Air Force Cambridge Research Center, 230 Albany Street, Cambridge 39, Mass., ATTN: Atomic Warfare Directorate	119
Commanding General, Air Force Cambridge Research Center, 230 Albany Street,	110
Cambridge 39, Mass., ATTN: CRTSL-2	120
Commanding General, Air Force Special Weapons Center, Kirtland AFB, N. Mex.,	
ATTN: Chief, Technical Library Branch Commandant, USAF Institute of Technology, Wright-Patterson AFB, Dayton,	121-123
Ohio, ATTN: Resident College	124
Commanding General, Lowry AFB, Denver, Colo., ATTN: Dept. of Armament	141
Training	125-129
Commanding General, 1009th Special Weapons Squadron, Tempo "T," 14th and	
Constitution Sts., N. W., Washington 25, D. C.	130-132
The RAND Corporation, 1700 Main St., Santa Monica, Calif., ATTN: Nuclear	
Energy Division	133-134
OTHER DEPARTMENT OF DEFENSE ACTIVITIES	
Executive Secretary, Joint Chiefs of Staff, Washington 25, D. C.	135
Director, Weapons Systems Evaluation Group, OSD, Rm 2E1006, Pentagon,	
Washington 25, D. C.	136
Asst. for Civil Defense, OSD, Washington 25, D. C.	137
Asst. Secretary of Defense, Research and Development, Washington 25, D. C.,	
ATTN: Technical Library	138

Executive Secretary, Military Liaison Committee, PO Box 1814, Washington 25, D. C.	139
Commandant, National War College, Washington 25, D. C., ATTN: Classified	
Records Section, Library	140
Commandant, Armed Forces Staff College, Norfolk 11, Va. ATTN: Secretary	141
Commanding General, Field Command, Armed Forces Special Weapons Project,	
PO Box 5100, Albuquerque, N. Mex.	142-147
Chief, Armed Forces Special Weapons Project, PO Box 2610, Washington 13, D. C.	148-156
ADDITIONAL DISTRIBUTION	
Assistant Chief of Engineers for Troop Operations, Office, Chief of Engineers, D/A,	
Washington 25, D. C.	157
Commander, Technical Training Air Force, Gulfport, Miss., ATTN: TA&G	158
Commander, Flying Training Air Force, Waco, Tex., ATTN: Director of	
Observer Training	159-170
U. S. National Military Representative, Headquarters, SHAPE, APO 55, c/o PM,	
New York, N. Y., ATTN: Col. J. P. Healy	171
ATOMIC ENERGY COMMISSION ACTIVITIES	
U. S. Atomic Energy Commission, Classified Document Room, 1901 Constitution Ave.,	
Washington 25, D. C., ATTN: Mrs. J. M. O'Leary (for DMA)	172-174
Los Alamos Scientific Laboratory, Report Library, PO Box 1663, Los Alamos,	
N. Mex., ATTN: Helen Redman	175-179
Sandia Corporation, Classified Document Division, Sandia Base, Albuquerque,	
N. Mex., ATTN: Martin Lucero	180-184
University of California Radiation Laboratory, PO Box 808, Livermore, Calif.,	
ATTN: Margaret Folden	185-186
Special Projects Branch, Technical Information Service, Oak Ridge, Tenn.	187
Technical Information Service, Oak Ridge, Tenn. (surplus)	188-205

AEC, Oak Ridge, Tenn., A33