Yakeen NEET 2.0 2026

Physics

Vectors

DPP: 6

- **Q1** If $\vec{A}=7\hat{i}-2\hat{j}+3\hat{k}$, what is the vector $-3\vec{A}$?
 - (A) $-21\hat{i} + 6\hat{j} 9\hat{k}$
 - (B) $-7\hat{i}+2\hat{j}-3\hat{k}$
 - (C) $21\hat{i}-6\hat{j}+9\hat{k}$
 - (D) $-7\hat{i} + 6\hat{j} 9\hat{k}$
- **Q2** Two vectors are given by $\vec{A} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $ec{B}=3\hat{i}\,+6\hat{j}+2\hat{k}$. Another vector $ec{C}$ has the same magnitude as $ec{B}$ but has the same direction as \hat{A} . Then which of the following vectors represent $ec{C}$
 - (A) $rac{7}{3}(\hat{i}+2\hat{j}+2\hat{k})$
 - (B) $rac{3}{7}(\hat{i}-2\hat{j}+2\hat{k})$
 - (C) $\frac{7}{9}(\hat{i}-2\hat{j}+2\hat{k})$
 - (D) $\frac{9}{7}(\hat{i} + 2\hat{j} + 2\hat{k})$
- Q3 A unit vector parallel to the resultant of the vectors $\overrightarrow{A}=4\hat{i}+3\hat{j}+6\hat{k}$ and

$$\overrightarrow{B} = -\hat{\mathbf{i}} + 8\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$$

- (A) $\frac{3\hat{i}+11\hat{j}-2\hat{k}}{2}$
- (B) $\frac{\hat{i}+2\hat{j}-3\hat{k}}{\sqrt{166}}$ (C) $\frac{3\hat{i}+11\hat{j}-2\hat{k}}{\sqrt{134}}$
- (D) $\frac{4\hat{i}+6\hat{j}+8\hat{k}}{\sqrt{11}}$
- Let $\overrightarrow{A} = \hat{i} A \cos \theta + \hat{j} A \sin \theta$, be any vector. Another vector $\stackrel{\frown}{\mathrm{B}}$ which is normal to $\stackrel{\frown}{A}$ is:
 - (A) $\hat{i} B \cos \theta + \hat{j} B \sin \theta$
 - (B) $\hat{\mathbf{i}} \mathbf{B} \sin \theta + \hat{\mathbf{j}} \mathbf{B} \cos \theta$

- (C) $\hat{\mathbf{i}} \mathbf{B} \sin \theta \hat{\mathbf{j}} \mathbf{B} \cos \theta$
- (D) $\hat{\mathbf{i}} \mathbf{A} \cos \theta \hat{\mathbf{j}} \mathbf{A} \sin \theta$
- **Q5** When two vectors of magnitudes P and Q are inclined at an angle θ , the magnitude of their resultant 2P. When the inclination is changed to $180 - \theta$, the magnitude of the resultant is halved. Find the ratio of P to Q.
 - (A) $\sqrt{2} : \sqrt{3}$
 - (B) $1:\sqrt{3}$
 - (C) $1:\sqrt{2}$
 - (D) $\sqrt{3} : \sqrt{2}$
- **Q6** If $ec{r}=0.2\hat{i}+a\hat{j}-0.3\hat{k}$ is a unit vector, the value of a is
 - (A) $\sqrt{0.87}$
 - (B) 0.87
 - (C) 1.13
 - (D) $\sqrt{1.13}$
- Q7 If \hat{i} , \hat{j} and \hat{k} represent unit vectors along the x, y and z axes respectively, then the angle θ between the vectors $\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}$ is equal to
 - (A) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
 - (B) $\sin^{-1}\left(\sqrt{\frac{2}{3}}\right)$
 - (C) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
 - (D) 90°
- **Q8** Two equal forces of magnitude 'A' act at a point inclined to each other at an angle of 60° . The magnitude of their resultant is:

(A)
$$\sqrt{3}A$$

(B) 2A

(D) $\sqrt{2}A$

- Q9 A unit vector parallel to the resultant of the vectors $\overset{
 ightarrow}{A}=4\hat{i}\,+3\hat{j}+6\hat{k}$ and $\overrightarrow{B} = -\hat{i} + 8\hat{j} - 8\hat{k}$
 - (A) $\frac{3\hat{i}+11\hat{j}-2\hat{k}}{2}$

 - (B) $\frac{\hat{i}+2\hat{j}-3\hat{k}}{\sqrt{166}}$ (C) $\frac{3\hat{i}+11\hat{j}-2\hat{k}}{\sqrt{134}}$ (D) $\frac{4\hat{i}+6\hat{j}+8\hat{k}}{\sqrt{11}}$
- **Q10** If $\overrightarrow{M}=2\hat{i}-3\hat{j}~and~\overrightarrow{N}=4\hat{i}+7\hat{j}$ then match the columns $\left(\hat{i}\,,\;\hat{j},\;\hat{k}
 ight)$ are unit vectors along X, Y and Z axis respectively

Column-I		Column-II	
(A)	$\overrightarrow{M} + 2\overrightarrow{N}$	P.	-7 8
(B)	\overrightarrow{M} . $6\overrightarrow{N}$	Q.	$\sqrt{949}$
(c)	$\overrightarrow{1M} + 4\overrightarrow{N}$ (in unit)	R.	26 \hat{k}
(D)	$\overrightarrow{M} imes \overrightarrow{N}$	S.	$10\hat{i} + 11\hat{j}$

ABCD

- (1) P Q R S
- (2) Q R P S
- (3) S P Q R
- (4) R S P P
- (A) 1

(B) 2

(C)3

(D) 4

Q11 Three vectors as shown in the fig have magnitudes $\left|\overrightarrow{a}\right|=3,\left|\overrightarrow{b}\right|=4$ and $\left|\overrightarrow{c}\right|=10.$ Find the numbers p and q such that $\overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b}$.

(A) $-\frac{20}{3}, \frac{5\sqrt{3}}{2}$ (B) $\frac{20}{3}, \frac{5\sqrt{3}}{2}$ (C) $-\frac{10}{3}, \frac{\sqrt{3}}{2}$ (D) None of

Q12 Match List-I with List-II.

List-I			List-II	
(A)	$egin{bmatrix} \overrightarrow{C} - \overrightarrow{A} - \overrightarrow{B} \ = \overrightarrow{0} \end{bmatrix}$	(1)	\overrightarrow{C}	
(B)	$\overrightarrow{A} - \overrightarrow{C} - \overrightarrow{B}$ $= \overrightarrow{0}$	(11)	\overrightarrow{C}	
(C)	$\begin{vmatrix} \overrightarrow{B} - \overrightarrow{A} - \overrightarrow{C} \\ = \overrightarrow{0} \end{vmatrix}$	(III)	Z A B	
(D)	$\overrightarrow{A} + \overrightarrow{B} = $ $-\overrightarrow{C}$	(IV)	\overrightarrow{C}	

Choose the **correct** answer from the options given below:

- (A) A-I, B-IV, C-II, D-III
- (B) A-IV, B-III, C-I,
- (C) A-III, B-II, C-IV, D-I
- (D) A-IV, B-I, C-III, D-II

Answer	Kev
--------	-----

Q1	(A)	Q 7	(A)
Q2	(A)	Q7 Q8 Q9 Q10 Q11	(A)
Q3	(C)	Q9	(C)
Q4	(C)	Q10	(C)
Q5	(A)	Q11	(A)
Q6	(A)	Q12	

