1.11) A solid fueled rocket is fitted with a convergent—divergent nozzle with an exit plane diameter of 30 cm. The pressure and velocity on this nozzle exit plane are $75\,\mathrm{kPa}$ and $750\,\mathrm{m/s}$, respectively, and the mass flow rate through the nozzle is $350\,\mathrm{kg/s}$. Find the thrust developed by this engine when the ambient pressure is (a) $100\,\mathrm{kPa}$ and (b) $20\,\mathrm{kPa}$.

Solution:

Given: $\dot{m}_e=350\,\mathrm{kg/s},\,V_e=750\,\mathrm{m/s},\,p_e=75\,\mathrm{kPa},\,D_e=\varnothing0.3\,\mathrm{m}.$ To calculate:

- (a) Thrust when $p_{\rm amb} = 100 \, \text{kPa}$.
- (b) Thrust when $p_{\rm amb}=20\,{\rm kPa}.$

The schematic diagram of the problem description is shown in Fig. 1.

Fig. 1: Schematic diagram for problem description

(a) Thrust when $p_{\rm amb} = 100 \, \text{kPa}$.

Applying the conservation of momentum on the control-volume around the rocket,

Thrust = rate of momentum exiting - rate of momentum entering + pressure force at exit - pressure force at inlet
Thrust =
$$\dot{m}_e V_e - 0 + (p_e - p_{\rm amb}) A_{\rm exit}$$

Thrust = $350 \times 750 - 0 + (75 \times 10^3 - 100 \times 10^3) \times \frac{\pi}{4} \times 0.3^2$
when $p_{\rm amb} = 100 \, \text{kPa} \implies \text{Thrust} = 260732.85 \, \text{N}$.

(b) Thrust when $p_{\rm amb} = 20 \, \text{kPa}$.

Applying the conservation of momentum on the control-volume around the rocket,

Thrust = rate of momentum exiting - rate of momentum entering + pressure force at exit - pressure force at inlet
Thrust =
$$\dot{m}_e V_e - 0 + (p_e - p_{\rm amb}) A_{\rm exit}$$

Thrust = $350 \times 750 - 0 + (75 \times 10^3 - 20 \times 10^3) \times \frac{\pi}{4} \times 0.3^2$
when $p_{\rm amb} = 20 \, \text{kPa} \implies \text{Thrust} = 266387.72 \, \text{N}$.