Want more content like this? Subscribe here to be notified of new releases!

Variance

Compute probabilities

Using a distribution table

Compute confidence intervals Mean

CME 106 - Introduction to Probability and Statistics for Engineers

English

3

Some key concepts explained

By Afshine Amidi and Shervine Amidi

Use a distribution table to compute a probability

Let $X \sim \mathcal{N}(\mu, \sigma)$ with μ, σ known and $a, b \in \mathbb{R}$.

 \square Question: Compute $P(a \leqslant X \leqslant b)$.

 \square Step 1 — Standardize X

We introduce Z, such that

$$Z = rac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

We have:

 $\ \square$ Step 2 — Express the probability in terms of Z

$$P(a \leqslant X \leqslant b) = P\left(\frac{a-\mu}{\sigma} \leqslant \underbrace{\frac{X-\mu}{\sigma}} \leqslant \frac{b-\mu}{\sigma}\right) = P\left(Z \leqslant \frac{b-\mu}{\sigma}\right) - P\left(Z \leqslant \frac{a-\mu}{\sigma}\right)$$

Given that the values of $\frac{a-\mu}{\sigma}$ and $\frac{b-\mu}{\sigma}$ are known, we just have to look them up in a distribution table similar to this one.

□ Step 3 — Find each term using the distribution table

□ **Summing up** — We just computed the value of the probability by standardizing the normal variable to be able to look up

Confidence intervals

Compute the confidence interval for μ

the values in a standard normal distribution table.

<u>Note</u>: the example below is specific to the case where the variance is known and n is large. The following reasoning can be reproduced for other cases in a similar fashion.

Let $X_1,...,X_n$ be a random sample with mean μ and standard deviation σ where **only** σ is **known**, and let $\alpha \in [0,1]$.

 \square Question: Compute a confidence interval on μ with confidence level $1-\alpha$, that we note $CI_{1-\alpha}$.

☐ Step 1 — Write in mathematical terms what we are seaching for

We want to find a confidence interval CI_{1-lpha} of confidence level 1-lpha for μ :

$$P(\mu \in CI_{1-lpha}) = 1-lpha$$

We consider \overline{X} , which is such that:

 $\hfill \Box$ Step 2 — Consider the sample mean of X

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

We introduce Z, such that:

 \square Step 3 — Standardize \overline{X}

$$Z=\frac{\overline{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \underset{n\gg 1}{\sim} \mathcal{N}(0,1)$$
 In general, this relationship is valid for large n but it is always true in the particular case when the X_i are normal.

We can find the quantiles of Z which are such that:

 \square Step 5 — Re-write Z in terms of \overline{X}

 $\ \square$ Step 4 — Use Z to find the quantiles

 $P(-z_{rac{lpha}{2}}\leqslant Z\leqslant z_{rac{lpha}{2}})=1-lpha$

Knowing that $Z=rac{\overline{X}-\mu}{rac{\sigma}{\sqrt{n}}}$, we can re-write the previous expression:

Given that
$$Z$$
 follows a standard normal distribution, the quantity $z_{rac{lpha}{2}}$ can be found in the distribution table.

$$P\left(\overline{X}-z_{rac{lpha}{2}}rac{\sigma}{\sqrt{n}}\leqslant\mu\leqslant\overline{X}+z_{rac{lpha}{2}}rac{\sigma}{\sqrt{n}}
ight)=1-lpha$$

□ Step 6 — Deduce the confidence interval By taking into account steps 1 and 5, we can now deduce the confidence interval for μ :

$$CI_{1-lpha} = \left[\overline{X} - z_{rac{lpha}{2}} rac{\sigma}{\sqrt{n}}, \overline{X} + z_{rac{lpha}{2}} rac{\sigma}{\sqrt{n}}
ight]$$

Let $X_1,...,X_n$ be a random sample with mean μ and standard deviation σ where σ is **unknown**, and let $\alpha \in [0,1]$.

Compute the confidence interval for σ^2

 \square Question: Compute a confidence interval on σ^2 with confidence level $1-\alpha$, that we note $CI_{1-\alpha}$.

We want to find a confidence interval $CI_{1-\alpha}$ of confidence level $1-\alpha$ for σ^2 :

□ Step 1 — Write in mathematical terms what we are seaching for

 $P(\sigma^2 \in CI_{1-\alpha}) = 1 - \alpha$

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

\Box Step 3 — Standardize s^2

 $\hfill \square$ Step 4 — Use K to find the quantiles

 $\hfill \Box$ Step 2 — Consider the sample variance of X

We consider s^2 , which is such that:

We introduce K, such that:

$$K = \frac{s^2(n-1)}{\sigma^2} \sim \chi^2_{n-1}$$
 Here, K follows a χ^2 distribution with $n-1$ degrees of freedom.

We can find the quantiles χ^2_1,χ^2_2 of K which are such that:

 $P(\chi_1^2 \leqslant K \leqslant \chi_2^2) = 1 - \alpha$

Given that K follows a χ^2 distribution with n-1 degrees of freedom, the quantiles can be found in the distribution table.

 $\ \square$ Step 5 — Re-write K in terms of s^2

$$P\left(rac{s^2(n-1)}{\chi_2^2}\leqslant\sigma^2\leqslantrac{s^2(n-1)}{\chi_1^2}
ight)=1-lpha$$

□ Step 6 — Deduce the confidence interval

Knowing that $K=rac{s^2(n-1)}{\sigma^2}$, we can re-write the previous expression:

$$CI_{1-lpha} = \left[rac{s^2(n-1)}{\chi_2^2}, rac{s^2(n-1)}{\chi_1^2}
ight]$$

By taking into account steps 1 and 5, we can now deduce the confidence interval for σ^2 :