$K^*(1410)$

$$I(J^P) = \frac{1}{2}(1^-)$$

K*(1410) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	DOCUMENT ID		CHG	COMMENT
1421± 9 OUR	AVERA	GE				
$1437 \pm 8 \pm 16$	190k	¹ AAIJ	16N	LHCB		$D^0 ightarrow (K_S^0 \pi^\mp) K^\pm$
$1426 \pm 8 \pm 24$	190k	² AAIJ	16N	LHCB		$D^0 \rightarrow K_S^0(K^{\pm}\pi^{\mp})$
$1380\!\pm\!21\!\pm\!19$		ASTON	88	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
$1420 \pm 7 \pm 10$		ASTON	87	LASS	0	$11 K^- p \rightarrow \overline{K}{}^0 \pi^+ \pi^- n$
• • • We do no	ot use th	e following data for	avera	ges, fits,	limits	, etc. • • •
1276^{+72}_{-77}		3,4 BOITO	09	RVUE		$ au^- ightarrow \ \kappa_S^0 \pi^- u_ au$
1367 ± 54		BIRD	89	LASS	_	$11~{\it K}^- ho ightarrow ~{\overline {\it K}}^0 \pi^- ho$
1474 ± 25		BAUBILLIER	82B	HBC	0	8.25 $K^- p \rightarrow \overline{K}^0 2\pi n$
1500 ± 30		ETKIN	80	MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$

¹Using a parametrization for the $K\pi$ S-wave similar to ASTON 88 with fixed resonance

K*(1410) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
236± 18 OUR	AVERA	GE				
$210\pm\ 20\pm60$	190k	$^{ m 1}$ AAIJ	16N	LHCB		$D^0 ightarrow (K_S^0 \pi^\mp) K^\pm$
$270 \pm 20 \pm 40$	190k	¹ AAIJ	16N	LHCB		$D^0 \rightarrow K_S^0(K^{\pm}\pi^{\mp})$
$176 \pm 52 \pm 22$		ASTON	88	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
$240 \pm 18 \pm 12$		ASTON	87	LASS	0	11 $K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$
• • • We do no	ot use th	e following data for	avera	ges, fits,	limits	, etc. • • •
$198^{+}_{-}{}^{61}_{87}$		^{2,3} BOITO	09	RVUE		$ au^- ightarrow au_S^0 \pi^- u_ au$
114 ± 101		BIRD	89	LASS	_	11 $K^- p \rightarrow \overline{K}^0 \pi^- p$
275 ± 65		BAUBILLIER	82 B	HBC	0	8.25 $K^- p \to \overline{K}^0 2\pi n$
500 ± 100		ETKIN	80	MPS	0	$6 K^- p \rightarrow \overline{K}^0 \pi^+ \pi^- n$

¹Using a $K\pi$ S-wave parametrization with resonant and non-resonant contributions.

Created: 5/30/2017 17:21

width. 2 Using a $K\pi$ S-wave parametrization with resonant and non-resonant contributions.

³ From the pole position of the $K\pi$ vector form factor in the complex s-plane and using EPIFANOV 07 data.

⁴ Systematic uncertainties not estimated.

 $^{^2}$ From the pole position of the $K\pi$ vector form factor in the complex s-plane and using EPIFANOV 07 data.

3 Systematic uncertainties not estimated.

K*(1410) DECAY MODES

	Mode	Fraction (Γ_i/Γ)		Confidence level
$\overline{\Gamma_1}$	$K^*(892)\pi$	> 40	%	95%
Γ_2	$K\pi$	(6.6 ± 1.3)) %	
Γ_3	$K \rho$	< 7	%	95%
Γ_4	$K \rho \gamma K^0$	< 2.2	$\times 10^{-4}$	90%

K*(1410) PARTIAL WIDTHS

$\Gamma(\gamma K^0)$					Γ4
VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT	
<52.9	90	ALAVI-HARATI02B	KTEV	$K + A \rightarrow K^* +$	Α

K*(1410) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(8))$	$892)\pi)$						Γ_3/Γ_1
VALUE	CL%	DOCUMENT ID	١	TECN	CHG	COMMENT	
<0.17	95	ASTON	84	LASS	0	11 $K^-p \rightarrow$	$\overline{K}^0 2\pi n$
$\Gamma(K\pi)/\Gamma(K^*(S))$	392) π)						Γ_2/Γ_1
<u>VALUE</u>	CL%	DOCUMENT ID	ı	TECN	<u>CHG</u>	<u>COMMENT</u>	_
<0.16	95	ASTON	84	LASS	0	11 $K^-p \rightarrow$	$\overline{K}^0 2\pi n$
$\Gamma(K\pi)/\Gamma_{total}$							Γ_2/Γ
<u>VALUE</u>	_	DOCUMENT ID	TEC	N CHG	COM	<u>IMENT</u>	
$0.066 \pm 0.010 \pm 0.0$	800	ASTON 88	LAS	SS 0	11 <i>F</i>	$K^- p \rightarrow K^-$	π^+ n

K*(1410) REFERENCES

AAIJ BOITO	16N 09	PR D93 052018 EPJ C59 821	R. Aaij <i>et al.</i> D.R. Boito, R. Escribano,	(LHCb Collab.) M. Jamin
EPIFANOV	07	PL B654 65	D. Epifanov et al.	(BELLE Collab.)
ALAVI-HARATI	02B	PRL 89 072001	A. Alavi-Harati <i>et al.</i>	(FNAL KTeV Collab.)
BIRD	89	SLAC-332	P.F. Bird	` (SLAC)
ASTON	88	NP B296 493	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	87	NP B292 693	D. Aston et al.	(SLAC, NAGO, CINC, INUS)
ASTON	84	PL 149B 258	D. Aston et al.	(SLAC, CARL, OTTA) JP
BAUBILLIER	82B	NP B202 21	M. Baubillier et al.	(BÌRM, CERN, GLAS+)
ETKIN	80	PR D22 42	A. Etkin <i>et al.</i>	` (BNL, CUNY) JP

Created: 5/30/2017 17:21