Trabajo Práctico 4,5 - Polinomios

Santiago

- 1. Sean $p, q, r \in \mathbb{K}[x]$, probar que:
 - (a) Si $p|q \neq p|r$ entonces p|(mq+nr) para todo $m, n \in \mathbb{K}[x]$.

Como p|q y p|r

$$\rightarrow q = pa$$
 y $r = pb$ $a, b \in \mathbb{K}[x]$

Entonces, dado $m, n \in \mathbb{K}[x]$

$$mq = mpa$$
 y $nr = npb$

Al sumar las dos igualdades

$$mq + nr = mpa + npb$$

Sacando factor común

$$mq + nr = p(ma + nb)$$

Por lo tanto

$$p|(mq+nr)$$

(b) Si p|q y p|q + r entonces p|r.

$$\begin{aligned} p|q \wedge p|q + r &\to q = pa \wedge q + r = pb \\ &\to q + r - q = pb - pa \\ &\to r = p(b-a) \\ &\to p|r \end{aligned}$$

(c) Si p|q y gr(p) = gr(q) entonces existe $k \in \mathbb{K}$ tal que p = kq.

Primero, tenemos que q = pk. Y como gr(p) = gr(q) ya que $gr(q) = gr(p) + gr(k) \to gr(k) = 0 \to k \in \mathbb{K}$

- 2. Determinar si los siguientes conjuntos de polinomios son subespacios de $\mathbb{K}[x]$.
 - (a) $\mathbb{K}^{(n)}[x] = \{ p \in \mathbb{K}[x] : gr(p) \le n \} \cup \{0\}.$
 - (b) $\{p \in \mathbb{K}[x] : gr(p) = n\} \cup \{0\}.$
 - (c) $\{p \in \mathbb{K}[x] : gr(p) \text{ es impar}\} \cup \{0\}.$
- 3. Raíces de polinomios de grado dos. Sea $p(x) = x^2 + bx + c \in \mathbb{R}[x]$. Probar que

$$p(x) = (x - \lambda_1)(x - \lambda_2)$$
 para $\lambda_1, \lambda_2 \in \mathbb{R}$,

si y sólo si $b^2 \ge 4c$.

4. Probar que en $\mathbb{R}[x]$ no existen polinomios no nulos tales que $p^2+q^2=0$. ¿Ocurre lo mismo en $\mathbb{C}[x]$?

5.	. Sean $p(x) = 2x^3 - 3x^2 + 1$ y $q(x) = 2x^2 + 4x - 1$, mostrar que no existen c y r en $\mathbb{Z}[x]$ tales que $p = cq + r$ y $gr(r) < r$	$\langle qr(q)\rangle$
	¿Qué se puede decir de la exitencia del algoritmo de división en $\mathbb{Z}[x]$?	0 (1)

6. Hallar el m.c.d. entre los siguientes polinomios de $\mathbb{R}[x]$.

(a)
$$p(x) = x^5 - 4x^4 - 3x + 1$$
 y $q(x) = 3x^2 + 2x + 1$.

(b)
$$p(x) = x^4 - 2x^3 + 1$$
 y $q(x) = x^2 - x + 2$.

(c)
$$p(x) = 2x^3 - 4x^2 + x - 1$$
 y $q(x) = x^3 - x^2 + 2x$.

- 7. Decir cuáles de los siguientes conjuntos son ideales:
 - (a) $\{p \in \mathbb{K}[x] : gr(p) \ge 2\} \subset \mathbb{K}[x]$.
 - (b) $\{p(x^2+4) \in \mathbb{R}[x] : p \in \mathbb{R}[x]\} \subset \mathbb{R}[x].$
 - (c) $p\mathbb{K}[x] \subset \mathbb{K}[x]$, para $p \in \mathbb{K}[x]$.
 - (d) Dado $\alpha \in \mathbb{K}, \{p \in \mathbb{K}[x] : p(\alpha) = 0\} \subset \mathbb{K}[x].$
- 8. En el álgebra de polinomios con coeficientes reales $\mathbb{R}[x]$, consideremos el ideal $M = (x-1)\mathbb{R}[x] + (x^2-1)\mathbb{R}[x]$. Mostrar que $M = (x-1)\mathbb{R}[x]$. ¿Cambia algo si reemplazamos al cuerpo \mathbb{R} por otr cuerpo arbitrario \mathbb{K} ?
- 9. Hallar el generador mónico de los siguientes ideales de $\mathbb{Q}[x]$.

(a)
$$M = \{ p \in \mathbb{R}[x] : p(1) = p(2) = 0 \}.$$

(b)
$$M = \{ p \in \mathbb{R}[x] : (x - \pi)|p \}.$$

(c)
$$M = \{ p \in \mathbb{R}[x] : p \text{ es divisible por } x^2 + 4 \text{ y } x^4 - 16 \}.$$

- 10. Sea $p(x) = 1 + x + x^2 + x^3$.
 - (a) Calcular p(A) para

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}.$$

- (b) Probar que A y p(A) conmutan.
- 11. Sean $T \in L(\mathbb{R}^3)$ dada por T(x, y, z) = (-x, -z, 2y) y $p(x) = x^2 + 3 \in \mathbb{R}[x]$.
 - (a) Hallar p(T) y calcular (pT)(1,0,-1).

- (b) Probar que $p(T) \in L(\mathbb{R}^3)$.
- (c) Escribir la representación matricial de p(T) en la base canónica de $\mathbb{R}^3.$
- (d) Probar que $[p(T)]_{\mathcal{E}} = p([T]_{\mathcal{E}})$.