时间序列分析Lab1 实验报告

1.1

读入数据

- 1 #install.packages("fBasics")
- 2 library(fBasics)
- 3 da=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-3stocks9908.txt",header=T)

•	date [‡]	axp [‡]	cat [‡]	sbux [‡]
1	19990104	-0.009756	0.029891	-0.040089
2	19990105	-0.019089	-0.002639	-0.034803
3	19990106	0.043063	0.026455	-0.008413

将简单收益率转化成百分比

1 ibm = da[,2:4]
2 sibm = ibm * 100
3 sibm

•	axp	cat [‡]	sbux [‡]
1	-0.9756	2.9891	-4.0089
2	-1.9089	-0.2639	-3.4803
3	4.3063	2.6455	-0.8413

计算各个统计量

1 basicStats(sibm)

股票	均值	标准差	偏度	超额峰度	最大值	最小值
axp	0.014565	2.446218	-0.034606	6.048051	17.926600	-17.594900
cat	0.059504	2.169648	0.011671	4.453264	14.722900	-14.517500
sbux	0.048054	2.682622	-0.082427	8.745578	14.635400	-28.286200

把简单收益率转换为对数收益率, 并用百分比表示

```
1 | libm=log(1+ibm)*100
```

2 libm

•	ахр	cat [‡]	sbux [‡]
1	-0.98039016	2.94529714	-4.09147072
2	-1.92735473	-0.26424883	-3.54230534
3	4.21615769	2.61111182	-0.84485890

计算各个统计量

1 basicStats(libm)

股票	均值	标准差	偏度	超额峰度	最大值	最小值
axp	-0.015434	2.452898	-0.336435	6.486498	16.489221	-19.352286
cat	0.035949	2.171483	-0.201745	4.694747	13.734947	-15.685851
sbux	0.011885	2.695888	-0.597068	12.895473	13.658647	-33.248699

零均值检验

```
1 t.test(libm[,1])
```

2 t.test(libm[,2])

3 t.test(libm[,3])

股票	t	p-value
axp	-0.31555	0.7524
cat	0.83023	0.4065
sbux	0.2211	0.825

p-value均大于5%, 所以不拒绝原假设, 均值与0没有显著性差异。

1.2

读入数据

```
1 library(fBasics)
```

2 da=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/m-gm3dx7508.txt",header=T)

```
3 ibm = da[,2:5]
```

•	gm [‡]	vw	ew [‡]	sp [‡]
1	0.252033	0.141600	0.299260	0.122812
2	0.028571	0.058411	0.053918	0.059886
3	0.054487	0.030191	0.081497	0.021694

将简单收益率转化成百分比

1 sibm = ibm * 100

2 sibm

^	gm [‡]	vw	ew [‡]	sp [‡]
1	25.2033	14.1600	29.9260	12.2812
2	2.8571	5.8411	5.3918	5.9886
3	5.4487	3.0191	8.1497	2.1694

计算各个统计量

1 basicStats(sibm)

股票	均值	标准差	偏度	超额峰度	最大值	最小值
GM	0.556755	9.272704	-0.383475	2.048076	27.661900	-38.931300
VW	1.011799	4.507473	-0.742662	2.666032	14.160000	-22.536300
EW	1.331385	5.595899	-0.300123	4.333664	29.926000	-27.224800
SP	0.730084	4.359929	-0.570545	2.268600	13.176700	-21.763000

把简单收益率转换为对数收益率,并用百分比表示

1 libm=log(1+ibm)*100

2 libm

•	gm [‡]	vw	ew [‡]	sp [‡]
1	22.4768630	13.243078718	26.17948716	11.58362530
2	2.8170460	5.676872681	5.25146482	5.81613552
3	5.3054393	2.974422194	7.83461925	2.14620340

计算各个统计量

1 basicStats(libm)

股票	均值	标准差	偏度	超额峰度	最大值	最小值
GM	0.110182	9.590276	-1.023664	4.020752	24.421518	-49.317073
VW	0.904567	4.560585	-1.051001	3.937548	13.243079	-25.536075
EW	1.166997	5.625982	-0.836133	5.242452	26.179487	-31.779495
SP	0.631937	4.402206	-0.854843	3.334693	12.378013	-24.542750

零均值检验

```
1  t.test(libm[,1])
2  t.test(libm[,2])
3  t.test(libm[,3])
4  t.test(libm[,4])
```

股票	t	p-value
GM	0.23206	0.8166
VW	4.0064	7.332e-05
EW	4.1899	3.425e-05
SP	2.8996	0.003939

股票GM的p-value大于5%,不拒绝原假设,均值与0没有显著性差异;

股票VE、EW、SP的p-value均远小于5%, 拒绝原假设, 均值与0有显著性差异。

1.3

读入数据

```
1 library(fBasics)
2 da=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/m-gm3dx7508.txt",header=T)
3 ibm = da[,5]
```

计算平均年对数收益率

```
1 libm=log(1+ibm)
2 yibm = mean(libm) * 12
3 yibm
```

平均年对数收益率为0.07583247。

计算2008年年底投资的价值

```
1 exp(yibm * (2008-1975+1))
```

2008年年底投资的价值为13.17477美元。

读入数据, 计算对数收益率

```
1 library(fBasics)
2 da=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-
3stocks9908.txt",header=T)
3 libm = da[,2]
4 libm=log(1+ibm)
```

这里对对数收益率进行检验,检验偏度为零的零假设

检验超额峰度为零的零假设

```
1 k=kurtosis(libm)
2 t2=k/sqrt(24/length(libm))
3 pv2=2*(1-pnorm(t2))
```

t =66.4, p-value=0.00。p-value远小于5%, 拒绝超额峰度为零的零假设。

1.5

读入数据

```
1 library(fBasics)
2 da1=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-caus.txt",header=T)
3 da2=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-useu.txt",header=T)
4 da3=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-usuk.txt",header=T)
5 da4=read.table("D:/USTC/时间序列分析/第三版数据/chapter1/d-jpus.txt",header=T)
6 da=cbind(da1[,4],da2[,4],da3[,4],da4[,4])
7 colnames(da) <- c("CA","EU","UK","JP")
```

•	CA	EU [‡]	UK [‡]	JP [‡]
1	1,4518	1.0309	1.6370	103.09
2	1,4518	1.0335	1.6415	103.77
3	1,4571	1.0324	1.6475	105.19

计算日对数收益率,并以百分比的形式展示

- 1 | ibm=da[2:length(da[,1]),]/da[1:length(da[,1])-1,]-1
- 2 | libm=log(ibm+1)*100

•	CA [‡]	EU [‡]	UK [‡]	JP [‡]
1	0.000000000	0.25188930	0.274515957	0.65745185
2	0.364399317	-0.10649113	0.364852944	1.35913271
3	-0.453983446	-0.29100806	-0.553883153	-0.01901502

计算各种统计量

1 | basicStats(libm)

股票	均值	标准差	偏度	超额峰度	最大值	最小值
CA	-0.006819	0.587648	-0.238885	8.245334	3.806962	-5.071599
EU	0.010990	0.653943	0.125932	2.804500	4.620792	-3.003101
UK	-0.005747	0.617662	-0.394828	7.061154	4.434858	-4.966250
JP	-0.002185	0.663232	-0.670617	4.580879	2.708365	-5.215648