## Chapter 7: Sequences and Series of Functions

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 7.1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

*Proof (Cauchy criterion).* Let  $\{f_n\}$  be a uniformly convergent sequence of bounded functions.

- (1) Since  $f_n$  is bounded, there exists  $M_n$  such that  $|f_n(x)| \leq M_n$ .
- (2) Since  $\{f_n\}$  converges uniformly, given 1 > 0 there exists an integer N such that

$$|f_n(x) - f_m(x)| \le 1$$
 whenever  $n, m \ge N$ 

(Theorem 7.8 (Cauchy criterion for uniformly convergence)). Especially,

$$|f_n(x)| \le |f_n(x) - f_N(x)| + |f_N(x)| \le 1 + M_N$$
 whenever  $n \ge N$ .

(3) Thus,  $\{f_n\}$  is uniformly bounded by  $M = \max\{M_1, \dots, M_{N-1}, M_N + 1\}$ .

**Exercise 7.2.** If  $\{f_n\}$  and  $\{g_n\}$  converge uniformly on a set E, prove that  $\{f_n+g_n\}$  converge uniformly on E. If, in addition,  $\{f_n\}$  and  $\{g_n\}$  are sequences of bounded functions, prove that  $\{f_ng_n\}$  converges uniformly on E.

*Proof.* Let  $\{f_n\} \to f$  uniformly and  $\{g_n\} \to g$  uniformly.

(1) Show that  $\{f_n + g_n\}$  converges uniformly. Given  $\varepsilon > 0$ . Since  $\{f_n\} \to f$  uniformly and  $\{g_n\} \to g$  uniformly, there exist two integers  $N_1$  and  $N_2$  such that

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2}$$
 whenever  $n \ge N_1, x \in E$   
 $|g_n(x) - g(x)| \le \frac{\varepsilon}{2}$  whenever  $n \ge N_2, x \in E$ .

Take  $N = \max\{N_1, N_2\}$ , we have

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))|$$

$$= |(f_n(x) - f(x)) + (g_n(x) - g(x))|$$

$$\leq |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

whenever  $n \geq N$ ,  $x \in E$ . Hence  $\{f_n + g_n\}$  converges to f + g uniformly on E.

- (2) Show that  $\{f_ng_n\}$  converges uniformly if, in addition,  $\{f_n\}$  and  $\{g_n\}$  are sequences of bounded functions. Given  $\varepsilon > 0$ .
  - (a) By Exercise 7.1, both  $\{f_n\}$  and  $\{g_n\}$  are uniformly bounded. So there exist  $M_1$  and  $M_2$  such that

$$|f_n(x)| \leq M_1$$
 and  $|g_n(x)| \leq M_2$ 

for all n and  $x \in E$ . Also,  $|f(x)| \le M_1 + 1$  and  $|g(x)| \le M_2 + 1$ .

(b) Since  $\{f_n\} \to f$  uniformly and  $\{g_n\} \to g$  uniformly, there exist two integers  $N_1$  and  $N_2$  such that

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2(M_2 + 1)}$$
 whenever  $n \ge N_1, x \in E$   
 $|g_n(x) - g(x)| \le \frac{\varepsilon}{2(M_1 + 1)}$  whenever  $n \ge N_2, x \in E$ .

(Note that each denominator of  $\frac{\varepsilon}{2(M_j+1)}$  (j=1,2) is well-defined and positive!) Take  $N=\max\{N_1,N_2\}$ , we have

$$|f_{n}(x)g_{n}(x) - f(x)g(x)|$$

$$= |[f_{n}(x) - f(x)]g_{n}(x) + f(x)[g_{n}(x) - g(x)]|$$

$$\leq |f_{n}(x) - f(x)||g_{n}(x)| + |f(x)||g_{n}(x) - g(x)|$$

$$\leq \frac{\varepsilon}{2(M_{2} + 1)} \cdot M_{2} + (M_{1} + 1) \cdot \frac{\varepsilon}{2(M_{1} + 1)}$$

$$\leq \varepsilon$$

whenever  $n \geq N$ ,  $x \in E$ . Hence  $\{f_n g_n\}$  converges to fg uniformly on E.

Proof (Cauchy criterion).

(1) Show that  $\{f_n + g_n\}$  converges uniformly. Given  $\varepsilon > 0$ . Since  $\{f_n\}$  and  $\{g_n\}$  converge uniformly, there exist two integers  $N_1$  and  $N_2$  such that

$$|f_n(x) - f_m(x)| \le \frac{\varepsilon}{2}$$
 whenever  $n, m \ge N_1, x \in E$   
 $|g_n(x) - g_m(x)| \le \frac{\varepsilon}{2}$  whenever  $n, m \ge N_2, x \in E$ .

Take  $N = \max\{N_1, N_2\}$ , we have

$$|(f_n(x) + g_n(x)) - (f_m(x) + g_m(x))|$$

$$= |(f_n(x) - f_n(x)) + (g_n(x) - g_m(x))|$$

$$\leq |f_n(x) - f_n(x)| + |g_n(x) - g_m(x)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

whenever  $n, m \ge N, x \in E$ . Hence  $\{f_n + g_n\}$  converges uniformly on E.

- (2) Show that  $\{f_ng_n\}$  converges uniformly if, in addition,  $\{f_n\}$  and  $\{g_n\}$  are sequences of bounded functions. Given  $\varepsilon > 0$ .
  - (a) By Exercise 7.1, both  $\{f_n\}$  and  $\{g_n\}$  are uniformly bounded. So there exist  $M_1$  and  $M_2$  such that

$$|f_n(x)| \leq M_1$$
 and  $|g_n(x)| \leq M_2$ 

for all n and  $x \in E$ . Also,  $|f(x)| \leq M_1 + 1$  and  $|g(x)| \leq M_2 + 1$ .

(b) Since  $\{f_n\} \to f$  uniformly and  $\{g_n\} \to g$  uniformly, there exist two integers  $N_1$  and  $N_2$  such that

$$|f_n(x) - f_m(x)| \le \frac{\varepsilon}{2(M_2 + 1)}$$
 whenever  $n, m \ge N_1, x \in E$   
 $|g_n(x) - g_m(x)| \le \frac{\varepsilon}{2(M_1 + 1)}$  whenever  $n, m \ge N_2, x \in E$ .

Take  $N = \max\{N_1, N_2\}$ , we have

$$\begin{split} &|f_n(x)g_n(x) - f_m(x)g_m(x)| \\ = &|[f_n(x) - f_m(x)]g_n(x) + f_m(x)[g_n(x) - g_m(x)]| \\ \leq &|f_n(x) - f_m(x)||g_n(x)| + |f_m(x)||g_n(x) - g_m(x)| \\ \leq &\frac{\varepsilon}{2(M_2 + 1)} \cdot M_2 + M_1 \cdot \frac{\varepsilon}{2(M_1 + 1)} \\ \leq &\varepsilon \end{split}$$

whenever  $n \geq N$ ,  $x \in E$ . Hence  $\{f_n g_n\}$  converges uniformly on E.

**Exercise 7.3.** Construct sequences  $\{f_n\}$ ,  $\{g_n\}$  which converge uniformly on some set E, but such that  $\{f_ng_n\}$  does not converge uniformly on E (of course,  $\{f_ng_n\}$  must converge on E).

We provides some examples here.

Proof 
$$(f_n(x) = x + \frac{1}{n})$$
.

- (1) Define  $\{f_n(x)\}\$  on  $E = \mathbb{R}$  by  $f_n(x) = x + \frac{1}{n}$  and f(x) = x. Clearly,  $\{f_n(x)\}$  converges to f(x) pointwise.
- (2) Show that  $\{f_n\}$  converges uniformly. Given  $\varepsilon > 0$ . There exists an integer  $N \geq \frac{1}{\varepsilon}$  such that

$$|f_n(x) - f(x)| = \frac{1}{n} \le \frac{1}{N} \le \varepsilon$$

whenever  $n \geq N$  and  $x \in E$ . Hence  $\{f_n\} \to f$  uniformly.

(3) Show that  $\{f_n^2\}$  does not converge uniformly. Clearly,  $\{f_n(x)^2\}$  converges to  $f(x)^2$  pointwise. Hence

$$\sup_{x \in E} |f_n(x)|^2 - f(x)^2| = \sup_{x \in E} \left| \frac{2x}{n} + \frac{1}{n^2} \right| \to \infty$$

as  $n \to \infty$  (by considering  $x = n^2 \in E$ ). Hence  $\{f_n^2\}$  does not converge uniformly (Theorem 7.9).

Proof  $(f_n(x) = \frac{1}{x}, g_n(x) = \frac{1}{n}).$ 

- (1) Let E = (0,1). Let  $\{f_n(x)\}$  on E be  $f_n(x) = \frac{1}{x}$  and  $\{g_n(x)\}$  on E be  $g_n(x) = \frac{1}{n}$ . Clearly,  $\{f_n(x)\}$  converges to  $f(x) = \frac{1}{x}$  pointwise and  $\{g_n(x)\}$  converges to g(x) = 0 pointwise.
- (2) Show that  $\{f_n\}$  converges uniformly. Given  $\varepsilon > 0$ . There exists an integer N=1 such that

$$|f_n(x) - f(x)| = 0 < \varepsilon$$

whenever  $n \geq N$  and  $x \in E$ . Hence  $\{f_n\} \to f$  uniformly.

(3) Show that  $\{g_n\}$  converges uniformly. Given  $\varepsilon > 0$ . There exists an integer  $N \geq \frac{1}{\varepsilon}$  such that

$$|g_n(x) - g(x)| = \frac{1}{n} \le \frac{1}{N} \le \varepsilon$$

whenever  $n \geq N$  and  $x \in E$ . Hence  $\{g_n\} \to g$  uniformly.

(4) Show that  $\{f_ng_n\}$  does not converge uniformly. Clearly,  $\{f_n(x)g_n(x)\}$  converges to f(x)g(x) = 0 pointwise. Hence

$$\sup_{x \in E} |f_n(x)g_n(x) - 0| = \sup_{x \in E} \left| \frac{1}{nx} \right| \to \infty$$

as  $n \to \infty$  (by considering  $x = \frac{1}{n^2} \in E$ ). Hence  $\{f_n g_n\}$  does not converge uniformly (Theorem 7.9).

Proof (Exercise 9.2 in Tom M. Apostol, Mathematical Analysis, 2nd edition).

(1) Let  $E = [\alpha, \beta] \subseteq \mathbb{R}$  be a bounded interval. Define two sequences  $\{f_n\}$  and  $\{g_n\}$  on E as follows:

$$f_n(x) = x\left(1 + \frac{1}{n}\right) \text{ if } x \in \mathbb{R}, \ n = 1, 2, \dots,$$

$$g_n(x) = \begin{cases} \frac{1}{n} & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ b + \frac{1}{n} & \text{if } x \text{ is rational} \neq 0, \text{ say } x = \frac{a}{b}, b > 0. \end{cases}$$

Here we assume that gcd(a, b) = 1. Clearly, f(x) = x and

$$g(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ b & \text{if } x \text{ is rational} \neq 0, \text{ say } x = \frac{a}{b}, \ b > 0. \end{cases}$$

Let  $M = \max\{|\alpha|, |\beta|\} \ge 0$ .

(2) Show that  $\{f_n\}$  converges uniformly. Given  $\varepsilon > 0$ . There exists an integer  $N \geq \frac{M}{\varepsilon}$  such that

$$|f_n(x) - f(x)| = \frac{|x|}{n} \le \frac{M}{N} \le \varepsilon$$

whenever  $n \geq N$  and  $x \in E$ . Hence  $\{f_n\} \to f$  uniformly.

(3) Show that  $\{g_n\}$  converges uniformly. Given  $\varepsilon > 0$ . There exists an integer  $N \geq \frac{1}{\varepsilon}$  such that

$$|g_n(x) - g(x)| = \frac{1}{n} \le \frac{1}{N} \le \varepsilon$$

whenever  $n \geq N$  and  $x \in E$ . Hence  $\{g_n\} \to g$  uniformly.

- (4) Show that  $\{f_ng_n\}$  does not converge uniformly.
  - (a) Clearly,  $\{f_n(x)g_n(x)\}\$  converges to f(x)g(x) pointwise where

$$f(x)g(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ a & \text{if } x = \frac{a}{b} \text{ is rational} \neq 0, b > 0. \end{cases}$$

(b) Note that

$$f_n(x)g_n(x) = \begin{cases} \frac{x}{n} \left(1 + \frac{1}{n}\right) & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ \left(a + \frac{x}{n}\right) \left(1 + \frac{1}{n}\right) & \text{if } x = \frac{a}{b} \text{ is rational} \neq 0, b > 0. \end{cases}$$

Therefore,

$$f_n(x)g_n(x) - f(x)g(x) = \begin{cases} \frac{x}{n} \left(1 + \frac{1}{n}\right) & \text{if } x = 0 \text{ or if } x \text{ is irrational,} \\ \frac{x}{n} \left(1 + b + \frac{1}{n}\right) & \text{if } x = \frac{a}{b} \text{ is rational} \neq 0, \ b > 0. \end{cases}$$

(c) Hence

$$\sup_{x \in E} |f_n(x)g_n(x) - f(x)g(x)| \ge \sup_{x \in E \cap \mathbb{Q}} |f_n(x)g_n(x) - f(x)g(x)|$$

$$= \sup_{x \in E \cap \mathbb{Q}} |a| \left(\frac{1}{n} + \frac{1}{bn} + \frac{1}{bn^2}\right)$$

$$\ge \sup_{x \in E \cap \mathbb{Q}} |a| \left(\frac{1}{n}\right)$$

$$= \sup_{x \in E \cap \mathbb{Q}} \frac{|a|}{n}.$$

(d) Given any irrational number  $\gamma \in E$ , there exists a sequence

$$\left\{ r_m = \frac{a_m}{b_m} \right\}$$

of nonzero rational numbers in E such that  $\lim r_m = \gamma$ . Show that  $\{a_m\}$  is unbounded. If it is true, we can find  $x_n = r_{m_n} = \frac{a_{m_n}}{b_{m_n}}$  such that  $|a_{m_n}| \geq n^2$  and

$$\sup_{x \in E} |f_n(x)g_n(x) - f(x)g(x)| \ge \sup_{x \in E \cap \mathbb{Q}} \frac{|a|}{n} \ge \frac{n^2}{n} = n \to \infty$$

as  $n \to \infty$ .

(e) (Reductio ad absurdum) If  $\{a_m\}$  were bounded, then there exists a **constant** subsequence of  $\{a_{m_k}\}$  such that  $\lim a_{m_k} = a \in \mathbb{Z}$ . Since  $\lim_{m \to \infty} r_m = \gamma$ ,  $\lim_{k \to \infty} r_{m_k} = \gamma$  or

$$\lim_{k \to \infty} b_{m_k} = \lim_{k \to \infty} \frac{a_{m_k}}{r_{m_k}} = \frac{a}{\gamma}$$

(it is well-defined since  $r_{m_k}$  and  $\gamma$  cannot be zero). Since all  $b_{m_k}$  are positive integers, the limit  $\lim b_{m_k} = b$  is a positive integer too, or  $b = \frac{a}{\gamma} \in \mathbb{Z}^+$ , or  $\gamma = \frac{a}{b} \in \mathbb{Z}$ , which is absurd.

Therefore,  $\{f_ng_n\}$  does not converge uniformly.