Improved Meet-in-the-Middle Attacks on Reduced-Round DES

Halil İbrahim Kaplan

2021

Overview

Description of DES

Meet-in-the-Middle Attack on 4-Round DES

Attack on 5-Round DES

Attack on 6-Round DES

Description of DES

Fig. 1. General structure of the Data Encryption Standard

$$Y [a-b] = bits a, \ldots, b of Y$$
.

Description of DES

Fig. 2. F-function of DES

Fig. 3. An alternative description of DES F-function

Suppose that G_K , H_K : M × K \rightarrow M are two block ciphers and let $F_K = H_K \circ G_K$.

Attacker tries to deduce K from a given plaintext ciphertext pair $c = F_K(p)$ by trying to solve

$$G_K(\mathbf{p}) = H_K^{-1}(\mathbf{c})$$

In some of the cases, the equation is not tested for all the bits of the intermediate encryption value, but rather to only some of them.

Fig. 4. 4-Round DES

It was observed in [3] that in order to compute d'[9–12] and d''[9–12], it is sufficient to guess only 37 key bits.

 $d'[9-12] \neq d''[9-12] \implies \text{Key guess is not correct}$

IDEA:

d'[9–12] and d''[9–12] can be computed by guessing less key bits in exchange for guessing internal bits.

Consider d'[9-12], this value is equal to:

$$d'[9-12] = L_0[9-12] \oplus S_3[EP(R_0)[13-18] \oplus K_1[13-18]]$$
(2)

and d''[9-12] is equal to

$$d''[9-12] = L_4[9-12] \oplus S_3[EP(L_3)[13-18] \oplus K_3[13-18]].$$

Let $L_3 = [\alpha_1 - \alpha_{32}]$, then

$$EP(L_3)[13-18] = [\alpha_{17}\alpha_1\alpha_{15}\alpha_{23}\alpha_{26}\alpha_5].$$

If we guess $K_1[13-18]$ and $K_3[13-18]$, the only remaining unknowns in the computation of d"[9-12] are

$$[\alpha_{17} \ \alpha_1 \ \alpha_{15} \ \alpha_{23} \ \alpha_{26} \ \alpha_5]$$

Table 2. Key bits determining the 'middle' bits of 4-round DES

Round/S-box	Key bits	Bit determined	Bits appearing once †
1/3	5, 9, 13, 20, 24, 27		24
1/8	30, 33, 37, 43, 47, 51	α_{17}	30, 33, 37, 43, 47, 53
3/3	2, 8, 12, 16, 23, 27		
4/1	2, 7, 11, 17, 20, 23	α_1	7, 11, 17
4/2	6, 9, 12, 16, 21, 27	α_5	6, 21
4/4	5, 8, 13, 19, 22, 26	α_{15}	19, 22, 26
4/6	29, 36, 39, 46, 51, 54	α_{23}	29, 36, 39, 46, 51, 54
4/7	31, 34, 40, 45, 50, 55	α_{26}	31, 34, 40, 45, 50, 55
Bits of K			
not affecting (1)	1,3,4,10,14,15,18,25,28,32,38,41,42,44,48,49,52,56		
† 701 1 1	1 .	, 1/ 1 1//	

[†] — These bits appear only once in computing d' and d''.

If we guess $K_1[13-18]$ and $K_3[13-18]$, the only remaining unknowns in the computation of d"[9-12] are

$$[\alpha_{17} \ \alpha_1 \ \alpha_{15} \ \alpha_{23} \ \alpha_{26} \ \alpha_5]$$

HERE WE HAVE 2 OPTIONS

We can guess 37 key bits

<u>OR</u>

We can directly guess one or more bits from remaining unknowns

Lets say we are guessing α_{17}

For each guess of 31 bits

try 2 possibilities of α_{17}

If $d'[9-12] \neq d''[9-12]$ for all possibilty of α_{17} , then guess of 31 bits is wrong.

If d'[9-12] = d''[9-12] at least one possibilty of α_{17} , then guess of 31 bits may be correct.

Probability that a wrong 31-bit key guess has at least one α_{17} for which the equality is satisfied = $1 - (\frac{15}{16})^2 \approx 1/8$.

So,

With guessing 31 bits and trying 2 possibilities of α_{17} , we can reduce the possible key candidates to $2^{31} * 2^{-3} = 2^{28}$

Guess more α_i values \longrightarrow Reduces number of \longrightarrow Increase the probability possible keys that a wrong key remains

# of guessed bits	Probability
2	$1 - \left(\frac{15}{16}\right)^4 \approx 2^{-2.1}$
3	$1 - \left(\frac{15}{16}\right)^8 \approx 2^{-1.3}$
4	$1 - \left(\frac{15}{16}\right)^{16} \approx 2^{-0.6}$

Using One Known Plaintext:

Attacking S_x in round 2 means that :

Using One Known Plaintext:

For example, performing a meet-in-the-middle on S3 of round 2:

Guess

 $K_1[1-12], K_1[19-24], K_2[13-18], K_4[13-18]$ (a total of 19 bits),

Guess

3 intermediate encryption values (α_{17} , α_{23} , α_{26}).

Apply attack for the 2¹⁹ possible values for the 19bit key,

 $2^{19} * 2^{-1.3} = 2^{17.7}$ key values remain.

Round	S-box	Number of Guessed		Number of Remaining	
		Key Bits	Intermediate Bits	Key Guess	
2	S3	19	3	$2^{19} \cdot 2^{-1.3} = 2^{17.7}$	
3	S2	+3	4	$2^{17.7} \cdot 2^3 \cdot 2^{-0.6} = 2^{20.1}$	
2	S1	+2	4	$2^{20.1} \cdot 2^2 \cdot 2^{-0.6} = 2^{21.5}$	
3	S4	+3	3	$2^{21.5} \cdot 2^3 \cdot 2^{-1.3} = 2^{23.2}$	
2^{\dagger}	S4	+1	3	$2^{23.2} \cdot 2^1 \cdot 2^{-1.3} = 2^{22.9}$	
3	S3	-	3	$2^{22.9} \cdot 2^{-1.3} = 2^{21.6}$	
2	S2	-	4	$2^{21.6} \cdot 2^{-0.6} = 2^{21.0}$	
3	S1	-	4	$2^{21.0} \cdot 2^{-0.6} = 2^{20.4}$	
2	S8	+9	$(-2)^{\ddagger}$	$2^{20.4} \cdot 2^9 \cdot 2^{-4} = 2^{25.4}$	
3	S5	+5	$1(-5)^{\ddagger}$	$2^{25.4} \cdot 2^5 \cdot 2^{-8} = 2^{22.4}$	_
3	S6	+4	$(-5)^{\ddagger}$	$2^{22.4} \cdot 2^4 \cdot 2^{-7} = 2^{19.4}$	
2	S7	+4	$1(-4)^{\ddagger}$	$2^{19.4} \cdot 2^4 \cdot 2^{-7} = 2^{16.4}$	
3	S7	+3	$(-5)^{\ddagger}$	$2^{16.4} \cdot 2^3 \cdot 2^{-7} = 2^{12.4}$	
3	S8	+2	1 (-9)‡	$2^{12.4} \cdot 2^2 \cdot 2^{-12} = 2^{2.4}$	

Exhaustively search the remaining $2^{3.4}$ keys.

$$2^{-5} * 2^{-3} \approx 2^{-8}$$

[†] — At this point the entire half of the key is known.

[‡] — The (-i) means that there i bits that were earlier guessed are now known (and can be used to discard wrong guesses).

Using Multiple Known Plaintexts:

Guess

3 intermediate bits,

With first plaintext/ciphertext pair

Reduce the number of possible keys to $2^{19} * 2^{-1.3} = 2^{17.7}$

Repeat the analysis with the next plaintext/ciphertext pair.

Probability that a key remains after each iteration of the analysis is $1 - (\frac{15}{16})^8 \approx 2^{-1.3} \approx 0.4$

$$t \ge 15 \implies 2^{19} * (0.4)^t < 1$$

Thus, after 15 plaintext/ciphertext pairs, we expect to have only the right value for 19 key bits

Using chosen Ciphertexts:

<u>IDEA</u>: Choose ciphertexts so that intermediate encryption bits which are guessed same for all ciphertexts.

Guess the 19 key bits

Apply attack 1 time

For the next Attacks

For each key candidate which is not discarded,

Test only with the intermediate encryption values which satisfied the meet-in-the-middle condition earlier.

Using chosen Ciphertexts:

For a given key,

probabilty to be discarded with first P/C = $1 - 2^{-1.3} \approx 1 - (0.4) = 0.6$

$$G_K = Round 1 \& Round 2$$

 $H_K = Round 3 \& Round 4 \& Round 5$

$$G_K \circ H_K = 5 \text{ Round DES}$$

In order to compute d'[41–44] and d" [41–44], it is sufficient to guess only 47 key bits.

$$d'[41-44] = R_0[9-12] \oplus S_3[EP(R_1)[13-18] \oplus K_2[13-18]]$$

$$d''[41-44] = L_5[9-12] \oplus S_3[EP(L_4)[13-18] \oplus K_4[13-18]].$$

Let
$$R_1 = [\beta_1 - \beta_{32}]$$
, $L_4 = [\gamma_1 - \gamma_{32}]$. Then,

$$EP(R_1)[13-18] = [\beta_{17}\beta_1\beta_{15}\beta_{23}\beta_{26}\beta_5],$$

$$EP(L_4)[13-18] = [\gamma_{17}\gamma_1\gamma_{15}\gamma_{23}\gamma_{26}\gamma_5].$$

If we guess $K_2[13-18]$ and $K_4[13-18]$, the only remaining unknowns in the computation of d'[41-44] and d" [41-44] are

$$[\beta_{17} \beta_1 \beta_{15} \beta_{23} \beta_{26} \beta_5] \qquad [\gamma_{17} \gamma_1 \gamma_{15} \gamma_{23} \gamma_{26} \gamma_5]$$

If we guess $K_2[13-18]$ and $K_4[13-18]$, the only remaining unknowns in the computation of d'[41-44] and d" [41-44] are

$$[\beta_{17} \beta_1 \beta_{15} \beta_{23} \beta_{26} \beta_5] \qquad [\gamma_{17} \gamma_1 \gamma_{15} \gamma_{23} \gamma_{26} \gamma_5]$$

HERE WE HAVE 2 OPTIONS

We can guess 47 key bits

<u>OR</u>

We can directly guess one or more bits from remaining unknowns

Lets say we are guessing β_1

Table 3. Key bits determining the 'middle' bits of 5-round DES

Round/S-box	Key bits	Bit determined	Bits appearing once †
1/1	2,6,12,15,18,25	eta_1	2, 12
1/2	1,4,7,11,16,22	eta_5	16
1/4	3,8,14,17,21,28	eta_{15}	3, 17
1/5	32,38,42,48,53,56	eta_{17}	
1/6	31,34,41,46,49,52	eta_{23}	34, 46
1/7	29,35,40,45,50,54	eta_{26}	40, 50, 54
2/3	6,10,14,21,25,28		
4/3	1,4,10,14,18,25		
5/1	4,9,13,19,22,25	γ_1	9, 13, 19
5/2	1,8,11,14,18,23	γ_5	23
5/4	7,10,15,21,24,28	γ_{15}	24
5/5	32,35,39,45,49,55	γ_{17}	39,55
5/6	31,38,41,48,53,56	γ_{23}	
5/7	29,33,36,42,47,52	γ_{26}	33, 36, 47
Bits of K			
not affecting (1)		5,20,26,27,30,37,43	3,44,51

[†] — These bits appear only once in computing d' and d''.

For each guess of 45 bits

try 2 possibilities of β_1

If $d'[41-44] \neq d''[41-44]$ for 2 posssibilty, then guess of 45 bits is wrong.

If d'[41-44] = d''[41-44] at least one possibilty of α_{17} , then guess of 31 bits may be correct.

Probability that a wrong 45-bit key guess has at least one β_1 for which the equality is satisfied = $1 - (\frac{15}{16})^2 \approx 1/8$.

So,

With guessing 45 bits and trying 2 possibilities of β_1 , we can reduce the possible key candidates to $2^{45} * 2^{-3} = 2^{42}$

More Efficient Attack:

Table 3. Key bits determining the 'middle' bits of 5-round DES

Round/S-box	Key bits	Bit determined	Bits appearing once †
1/1	2,6,12,15,18,25	eta_1	2, 12
1/2	1,4,7,11,16,22	eta_5	16
1/4	3,8,14,17,21,28	eta_{15}	3, 17
1/5	32,38,42,48,53,56	eta_{17}	
1/6	31,34,41,46,49,52	eta_{23}	34, 46
1/7	29,35,40,45,50,54	eta_{26}	40, 50, 54
2/3	6,10,14,21,25,28		
4/3	1,4,10,14,18,25		
5/1	4,9,13,19,22,25	γ_1	9, 13, 19
5/2	1,8,11,14,18,23	γ_5	23
5/4	7,10,15,21,24,28	γ_{15}	24
5/5	32,35,39,45,49,55	γ_{17}	39,55
5/6	31,38,41,48,53,56	γ_{23}	
5/7	29,33,36,42,47,52	γ_{26}	33, 36, 47
Bits of K			
not affecting (1)	5,20,26,27,30,37,43,44,51		

To determine β_{17} and γ_{23} it is sufficient to guess only bits 31,32,38,41,42,48,53,56

8

[†] — These bits appear only once in computing d' and d''.

More Efficient Attack:

Guess values of $\beta_{23} \beta_{26} \gamma_{17} \gamma_{26}$

8 + 24 = 32 bits remains for determining values of d'[41–44] and d" [41–44]

Probability that a key remains after each iteration of the analysis is $2^{-0.6} \approx 0.65$

$$2^{32} * (0.65)^t < 1 \implies t \ge 51$$

Thus,

With 51 known plaintext, we can obtain 32 bits of the key.

$$G_K = Round 1 \& Round 2 \& Round 3$$

$$H_K = Round 4 \& Round 5 \& Round 6$$

$$G_K \circ H_K = 6$$
 Round DES

In order to compute d'[5–8] and d" [5–8], it is sufficient to guess 54 key bits.

$$d'[5-8] = R_0[5-8] \oplus S_2[EP(R_1)[7-12] \oplus K_2[7-12]]$$

$$d''[5-8] = R_6[5-8] \oplus S_2[EP(L_4)[7-12] \oplus K_4[7-12]]$$
$$\oplus S_2[EP(L_6)[7-12] \oplus K_6[7-12]].$$

$$EP(R_1)[7-12] = [\beta_{21}\beta_{29}\beta_{12}\beta_{28}\beta_{17}\beta_1],$$

$$EP(L_4)[7-12] = [\gamma_{21}\gamma_{29}\gamma_{12}\gamma_{28}\gamma_{17}\gamma_1].$$

If we guess $K_2[7-12]$, $K_4[7-12]$ and $K_6[7-12]$, the only remaining unknowns in the computation of d'[5-8] and d" [5-8] are

$$[\beta_{21} \beta_{29} \beta_{12} \beta_{28} \beta_{17} \beta_{1}]$$

 $[\gamma_{21} \gamma_{29} \gamma_{12} \gamma_{28} \gamma_{17} \gamma_1]$

HERE WE HAVE 2 OPTIONS

We can guess 54 key bits

<u>OR</u>

We can directly guess one or more bits from remaining unknowns

Lets say we are guessing γ_1

Table 4. Key bits determining the 'middle' bits of 6-round DES

Round/S-box	Key bits	Bit determined	Bits appearing once †
1/1	2,6,12,15,18,25	β_1	
1/3	5,9,13,20,24,27	β_{12}	
1/5	32,38,42,48,53,56	eta_{17}	
1/6	31,34,41,46,49,52	eta_{21}	
1/7	29,35,40,45,50,54	eta_{28}	
1/8	30,33,37,43,47,51	eta_{29}	
2/2	2,5,8,12,17,23		
4/2	6,9,12,16,21,27		
5/1	4,9,13,19,22,25	γ_1	4, 19
5/3	3,6,12,16,20,27	γ_{12}	
5/5	32,35,39,45,49,55	γ_{17}	
5/6	31,38,41,48,53,56	γ_{21}	
5/7	29,33,36,42,47,52	γ_{28}	36
5/8	30,37,40,44,50,54	γ_{29}	
There are no key bits of round 6 that appear only once in computing d' and d'' .			
Bits of K			
not affecting (I)	7,28		

[†] — These bits appear only once in computing d' and d''.

For each guess of 52 bits

try 2 possibilities of γ_1

If $d'[5-8] \neq d''[5-8]$ for 2 posssibilty, then guess of 52 bits is wrong.

Attacker can reduce the # of possible keys to $2^{52}*2^{-3}=2^{49}$ with trying 2 possibilties of γ_1

References

- Chaum, D., Evertse, J.-H.: Cryptanalysis of DES with a Reduced Number of Rounds: Sequences of Linear Factors in Block Ciphers. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer, Heidelberg (1986)
- Dunkelman O., Sekar G., Preneel B. (2007) Improved Meet-in-the-Middle Attacks on Reduced-Round DES. In: Srinathan K., Rangan C.P., Yung M. (eds) Progress in Cryptology INDOCRYPT 2007. INDOCRYPT 2007. Lecture Notes in Computer Science, vol 4859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77026-8_8