Concrete Strength

Katherine Huynh, Larry Lu, Victoria Aye, Alina Beaman, Elena Flauto, Warren Wu

Project Goal

Predict the strength of concrete using a variety of predictors.

Data Set

1030 observations

Response Variable

Concrete Compressive Strength (MPa - Pressure)

8 Predictor Variables (Density)

- 1. Cement (kg/m³)
- 2. Blast Furnace Slag (kg/m³)
- 3. Fly Ash (kg/m³)
- 4. Water (kg/m³)
- 5. Superplasticizer (kg/m³)
- 6. Coarse Aggregate (kg/m³)
- 7. Fine Aggregate (kg/m³)
- 8. Age (day

O1 CLEANING & FULL MODEL

CLEANING THE DATASET

Replace instances where Blast Furnace Slag, Fly Ash, or Superplasticizer = 0 with 1e-100

FULL MODEL SUMMARY

Call:

lm(formula = Strength ~ Cement + Blast.Furnace.Slag + Fly.Ash + Water + Superplasticizer + Fine.Aggregate + Coarse.Aggregate + Age, data = concrete)

Residuals:

Min 1Q Median 3Q Max -28.654 -6.302 0.703 6.569 34.450

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-23.331214	26.585504	-0.878	0.380372
Cement	0.119804	0.008489	14.113	< 2e-16 ***
Blast.Furnace.Slag	0.103866	0.010136	10.247	< 2e-16 ***
Fly.Ash	0.087934	0.012583	6.988	5.02e-12 ***
Water	-0.149918	0.040177	-3.731	0.000201 ***
Superplasticizer	0.292225	0.093424	3.128	0.001810 **
Fine.Aggregate	0.020190	0.010702	1.887	0.059491 .
Coarse.Aggregate	0.018086	0.009392	1.926	0.054425 .
Age	0.114222	0.005427	21.046	< 2e-16 ***

--

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' '

Residual standard error: 10.4 on 1021 degrees of freedom Multiple R-squared: 0.6155, Adjusted R-squared: 0.6125 F-statistic: 204.3 on 8 and 1021 DF, p-value: < 2.2e-16

F - statistic: 204.3

P-value of anova = < 2.2e-16

TRANSFORMED MODEL

02

INVERSE RESPONSE PLOT SUMMARY

inverseResponsePlot Output

lambda	RSS
<dbl></dbl>	<dbl></dbl>
0.9911575	67960.75
-1.0000000	119174.3
0.0000000	79501.38
1 0000000	67061 40

POWER TRANSFORM SUMMARY

powerTransform Output

bcPower Transformations to Multinormality
Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd

_ <u>-</u> .	SCI OVVCI I	Rouliaca i Wi W	aid Evvi Dila	Wala Opi bil
Y1	0.5460	0.50	0.4773	0.6147
Y2	0.4257	0.50	0.2943	0.5571
Y3	0.0023	0.00	0.0014	0.0032
Y4	-0.0025	0.00	-0.0034	-0.0016
Y5	0.9917	1.00	0.6940	1.2894
Y6	0.0072	0.01	0.0062	0.0082
Y7	1.1501	1.00	0.5571	1.7431
Y8	1.8035	2.00	1.3873	2.2197
Y9	-0.0313	0.00	-0.0673	0.0048

Suggested Transformations

Y1 (Strength) \rightarrow take square root

Y2 (Cement) \rightarrow take square root

Y3 (Blast Furnace Slag) → take log

Y4 (Fly Ash) \rightarrow take log

Y5 (Water) \rightarrow none

Y6 (Superplasticizer) → take log

Y7 (Coarse Aggregate) → none

Y8 (Fine Aggregate) → square

Y9 (Age) → take log

TRANSFORMED MODEL

```
\sqrt{\text{(Strength)}} = \beta_0
                      + β<sub>1</sub> * √(Cement)
                       + β<sub>2</sub> * log(Blast Furnace Slag)
                       -\beta_3 * \log(Fly Ash)
                       + β<sub>4</sub> * log(Superplasticizer)
                       - β<sub>5</sub> * (Water)
                       - β<sub>6</sub> * (Coarse Aggregate)
                       -\beta_7* (Fine Aggregate)<sup>2</sup>
                       + \beta_8 * log(Age)
                       3+
```

TRANSFORMED MODEL SUMMARY

Call:

 $Im(formula = I(Strength ^0.5) \sim I(Cement ^0.5) + log(Blast.Furnace.Slag) + log(Fly.Ash) + Water + log(Superplasticizer) + Coarse.Aggregate + log(Superplasticizer) + Coarse.Aggregate + log(Superplasticizer) + log(Blast.Furnace.Slag) + log(Fly.Ash) + Water + log(Superplasticizer) + Coarse.Aggregate + log(Superplasticizer) + log(Superplastic$

+ (I(Fine.Aggregate^2)) + log(Age), data = concrete)

Residuals

Min 1Q Median 3Q Max -2.2762 -0.3687 0.0305 0.3828 1.7664

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	6.264e+00	7.902e-01	7.928	5.82e-15 ***
l(Cement^0.5)	2.185e-01	8.734e-03	25.013	< 2e-16 ***
log(Blast.Furnace.Slag)	2.543e-03	2.391e-04	10.638	< 2e-16 ***
log(Fly.Ash)	-5.226e-04	2.642e-04	-1.978	0.0482 *
Water	-2.128e-02	1.627e-03	-13.078	< 2e-16 ***
log(Superplasticizer)	2.608e-03	3.088e-04	8.443	< 2e-16 ***
Coarse.Aggregate	-1.149e-03	3.862e-04	-2.975	0.0030 **
I(Fine.Aggregate^2)	-1.764e-06	2.533e-07	-6.963	5.95e-12 ***
log(Age)	7.598e-01	1.643e-02	46.257	< 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.617 on 1021 degrees of freedom Multiple R-squared: 0.82, Adjusted R-squared: 0.8186 F-statistic: 581.5 on 8 and 1021 DF, p-value: < 2.2e-16 $R^2 = 0.8186$

F - statistic: 581.5

P-value of anova = < 2.2e-16

FINAL REGRESSION MODEL

INTERPRETATION OF MODEL IN CONTEXT

Intercept	When all predictor variables = 0, square root of strength is estimated to be 6.264 MPa.
Cement	An increase of 1 kg in square root of cement leads to a 0.2185 MPa average increase in square root of strength.
Blast Furnace Slag	An increase of 1 in log of blast furnace slag leads to a 0.002534 MPa average increase in square root of strength.
Fly Ash	An increase of 1 in log of fly ash leads to a 0.0005226 MPa average decrease in square root of strength.
Water	An increase in 1 kg of water leads to a 0.02128 MPa average decrease in square root of strength.
Superplasticizer	An increase of 1 kg of log of superplasticizer leads to a 0.002608 MPa average increase in square root of strength.
Coarse Aggregate	An increase in 1 kg of coarse aggregate leads to a 0.001149 MPa average decrease in square root of strength.
Fine Aggregate	An increase in 1kg of fine aggregate squared leads to a 0.000001764 MPa average decrease in square root of strength.
Age	An increase in 1 in log of age leads to a 0.7598 MPa average increase in square root of strength.

THANK YOU!

SOURCES

• Yeh,I-Cheng. (2007). Concrete Compressive Strength. UCI Machine Learning Repository. https://doi.org/10.24432/C5PK67.