1 第一章: Pandas的基础知识

数据小鱼Rexa

CSDN: https://blog.csdn.net/qq_38395376?spm=1011.2124.3001.5343

Blibli: https://space.bilibili.com/283181288

Github: https://github.com/Rexa-Yu

1.1 加载数据集

In [1]:

import pandas as pd
data=pd.read_csv(r'E:\jupyter notebook storage\Practice in Pandas\data\gapminder.tsv
data.head(5)

Out[1]:

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

1.2 数据集的描述性分析函数describe()

In [2]:

data.describe()

Out[2]:

	year	lifeExp	рор	gdpPercap
count	1704.00000	1704.000000	1.704000e+03	1704.000000
mean	1979.50000	59.474439	2.960121e+07	7215.327081
std	17.26533	12.917107	1.061579e+08	9857.454543
min	1952.00000	23.599000	6.001100e+04	241.165877
25%	1965.75000	48.198000	2.793664e+06	1202.060309
50%	1979.50000	60.712500	7.023596e+06	3531.846989
75%	1993.25000	70.845500	1.958522e+07	9325.462346
max	2007.00000	82.603000	1.318683e+09	113523.132900

1.2.1 查看数据类别type和强制转化格式DataFrame

```
In [3]:
```

```
print(type(data))
data=pd.DataFrame(data)
```

<class 'pandas.core.frame.DataFrame'>

1.2.2 获取行数和列数shape(shape函数后面无括号)

```
data.shape
```

```
Out[4]:
(1704, 6)
```

In [4]:

1.2.3 获取列名(与shape一样不需要加括号)

```
In [5]:
```

```
data.columns
```

```
Out[5]:
```

```
Index(['country', 'continent', 'year', 'lifeExp', 'pop', 'gdpPercap'],
dtype='object')
```

1.2.4 查看更多的数据信息可以用info()或者dtypes

In [6]:

```
print(data.info())
data.dtypes
```

RangeIndex: 1704 entries, 0 to 1703 Data columns (total 6 columns): # Column Non-Null Count Dtype _____ _____ 0 country 1704 non-null object continent 1704 non-null 1 object 2 year 1704 non-null int64 float64 3 1704 non-null lifeExp 1704 non-null int64 pop gdpPercap 1704 non-null float64 dtypes: float64(2), int64(2), object(2) memory usage: 80.0+ KB

<class 'pandas.core.frame.DataFrame'>

Out[6]:

None

country object
continent object
year int64
lifeExp float64
pop int64
gdpPercap float64
dtype: object

1.3 查看列和单元格

1.3.1 显示前5行和后5行

In [7]:

```
print(data.head())
print(data.tail())
```

	country	continent	year	${ t lifeExp}$	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106
	country	continent	year	lifeExp	pop	gdpPercap
16	-	continent Africa	year 1987	lifeExp 62.351	pop 9216418	gdpPercap 706.157306
16: 17:	99 Zimbabwe		4	-		<i>J</i> 1
	99 Zimbabwe 00 Zimbabwe	Africa	1987	62.351	9216418	706.157306
17	99 Zimbabwe 00 Zimbabwe 01 Zimbabwe	Africa Africa	1987 1992	62.351 60.377	9216418 10704340	706.157306 693.420786

1.3.2 获取子集loc和iloc

In [8]:

```
data.iloc[:,1]
Out[8]:
0
          Asia
          Asia
1
2
          Asia
3
          Asia
          Asia
         . . .
1699
        Africa
1700
        Africa
1701
        Africa
1702
        Africa
        Africa
1703
Name: continent, Length: 1704, dtype: object
```

In [9]:

```
data.loc[1]
```

Out[9]:

country	Afghanistan
continent	Asia
year	1957
lifeExp	30.332
pop	9240934
gdpPercap	820.853
Name: 1, dty	pe: object

1.3.3 获取子集列 使用loc和iloc

In [10]:

```
subset=data.loc[:,['year','pop']]
subset.head(5)
```

Out[10]:

	year	pop
0	1952	8425333
1	1957	9240934
2	1962	10267083
3	1967	11537966
4	1972	13079460

In [11]:

```
subset1=data.iloc[:,[2,4,-1]]
subset1.head()
```

Out[11]:

	year	pop	gdpPercap
0	1952	8425333	779.445314
1	1957	9240934	820.853030
2	1962	10267083	853.100710
3	1967	11537966	836.197138
4	1972	13079460	739.981106

1.3.4 Python 切片法使用

In [12]:

```
subset2=data.iloc[:,0:3:1]
subset2.head()
```

Out[12]:

	country	continent	year
0	Afghanistan	Asia	1952
1	Afghanistan	Asia	1957
2	Afghanistan	Asia	1962
3	Afghanistan	Asia	1967
4	Afghanistan	Asia	1972

In [13]:

```
subset3=data.iloc[:,0::2]
subset3.head()
```

Out[13]:

	country	year	рор
0	Afghanistan	1952	8425333
1	Afghanistan	1957	9240934
2	Afghanistan	1962	10267083
3	Afghanistan	1967	11537966
4	Afghanistan	1972	13079460

In [14]:

```
subset4=data.iloc[:,0:6:]
subset4.head()
```

Out[14]:

	country	continent	year	lifeExp	pop	gdpPercap
0	Afghanistan	Asia	1952	28.801	8425333	779.445314
1	Afghanistan	Asia	1957	30.332	9240934	820.853030
2	Afghanistan	Asia	1962	31.997	10267083	853.100710
3	Afghanistan	Asia	1967	34.020	11537966	836.197138
4	Afghanistan	Asia	1972	36.088	13079460	739.981106

1.4 分组与聚合

1.4.1 分组方式groupby函数

In [15]:

```
group=data.groupby('year')['lifeExp'].mean()
group
```

Out[15]:

```
year
1952
        49.057620
1957
        51.507401
        53.609249
1962
        55.678290
1967
        57.647386
1972
1977
        59.570157
1982
        61.533197
        63.212613
1987
1992
        64.160338
        65.014676
1997
2002
        65.694923
2007
        67.007423
Name: lifeExp, dtype: float64
```

In [16]:

```
group1=data.groupby(['year','continent'])[['lifeExp','gdpPercap']].mean()
group1
```

Out[16]:

		lifeExp	gdpPercap
year	continent		
	Africa	39.135500	1252.572466
	Americas	53.279840	4079.062552
1952	Asia	46.314394	5195.484004
	Europe	64.408500	5661.057435
	Oceania	69.255000	10298.085650
	Africa	41.266346	1385.236062
	Americas	55.960280	4616.043733
1957	Asia	49.318544	5787.732940
	Europe	66.703067	6963.012816
	Oceania	70.295000	11598.522455
	Africa	43.319442	1598.078825
	Americas	58.398760	4901.541870
1962	Asia	51.563223	5729.369625
	Europe	68.539233	8365.486814
	Oceania	71.085000	12696.452430
	Africa	45.334538	2050.363801
	Americas	60.410920	5668.253496
1967	Asia	54.663640	5971.173374
	Europe	69.737600	10143.823757
	Oceania	71.310000	14495.021790
	Africa	47.450942	2339.615674
	Americas	62.394920	6491.334139
1972	Asia	57.319269	8187.468699
	Europe	70.775033	12479.575246
	Oceania	71.910000	16417.333380
	Africa	49.580423	2585.938508
	Americas	64.391560	7352.007126
1977	Asia	59.610556	7791.314020
	Europe	71.937767	14283.979110
	Oceania	72.855000	17283.957605
1982	Africa	51.592865	2481.592960
	Americas	66.228840	7506.737088

		lifeExp	gdpPercap
year	continent		
	Asia	62.617939	7434.135157
	Europe	72.806400	15617.896551
	Oceania	74.290000	18554.709840
	Africa	53.344788	2282.668991
	Americas	68.090720	7793.400261
1987	Asia	64.851182	7608.226508
	Europe	73.642167	17214.310727
	Oceania	75.320000	20448.040160
	Africa	53.629577	2281.810333
	Americas	69.568360	8044.934406
1992	Asia	66.537212	8639.690248
	Europe	74.440100	17061.568084
	Oceania	76.945000	20894.045885
	Africa	53.598269	2378.759555
	Americas	71.150480	8889.300863
1997	Asia	68.020515	9834.093295
	Europe	75.505167	19076.781802
	Oceania	78.190000	24024.175170
	Africa	53.325231	2599.385159
	Americas	72.422040	9287.677107
2002	Asia	69.233879	10174.090397
	Europe	76.700600	21711.732422
	Oceania	79.740000	26938.778040
	Africa	54.806038	3089.032605
	Americas	73.608120	11003.031625
2007	Asia	70.728485	12473.026870
	Europe	77.648600	25054.481636
	Oceania	80.719500	29810.188275

1.4.2 重置index使用reset_index()函数

In [17]:

group1.index.values

Out[17]:

```
array([(1952, 'Africa'), (1952, 'Americas'), (1952, 'Asia'),
       (1952, 'Europe'), (1952, 'Oceania'), (1957, 'Africa'),
       (1957, 'Americas'), (1957, 'Asia'), (1957, 'Europe'),
       (1957, 'Oceania'), (1962, 'Africa'), (1962, 'Americas'),
       (1962, 'Asia'), (1962, 'Europe'), (1962, 'Oceania'),
              'Africa'), (1967, 'Americas'), (1967, 'Asia'),
       (1967, 'Europe'), (1967, 'Oceania'), (1972, 'Africa'),
       (1972, 'Americas'), (1972, 'Asia'), (1972, 'Europe'),
       (1972, 'Oceania'), (1977, 'Africa'), (1977, 'Americas'),
       (1977, 'Asia'), (1977, 'Europe'), (1977, 'Oceania'),
       (1982, 'Africa'), (1982, 'Americas'), (1982, 'Asia'),
       (1982, 'Europe'), (1982, 'Oceania'), (1987, 'Africa'),
       (1987, 'Americas'), (1987, 'Asia'), (1987, 'Europe'),
       (1987, 'Oceania'), (1992, 'Africa'), (1992, 'Americas'),
       (1992, 'Asia'), (1992, 'Europe'), (1992, 'Oceania'),
       (1997, 'Africa'), (1997, 'Americas'), (1997, 'Asia'),
       (1997, 'Europe'), (1997, 'Oceania'), (2002, 'Africa'),
       (2002, 'Americas'), (2002, 'Asia'), (2002, 'Europe'),
       (2002, 'Oceania'), (2007, 'Africa'), (2007, 'Americas'),
       (2007, 'Asia'), (2007, 'Europe'), (2007, 'Oceania')], dtype=obj
ect)
```

In [18]:

group1.reset_index(inplace=True)
group1

Out[18]:

	year	continent	lifeExp	gdpPercap
0	1952	Africa	39.135500	1252.572466
1	1952	Americas	53.279840	4079.062552
2	1952	Asia	46.314394	5195.484004
3	1952	Europe	64.408500	5661.057435
4	1952	Oceania	69.255000	10298.085650
5	1957	Africa	41.266346	1385.236062
6	1957	Americas	55.960280	4616.043733
7	1957	Asia	49.318544	5787.732940
8	1957	Europe	66.703067	6963.012816
9	1957	Oceania	70.295000	11598.522455
10	1962	Africa	43.319442	1598.078825
11	1962	Americas	58.398760	4901.541870
12	1962	Asia	51.563223	5729.369625
13	1962	Europe	68.539233	8365.486814
14	1962	Oceania	71.085000	12696.452430
15	1967	Africa	45.334538	2050.363801
16	1967	Americas	60.410920	5668.253496
17	1967	Asia	54.663640	5971.173374
18	1967	Europe	69.737600	10143.823757
19	1967	Oceania	71.310000	14495.021790
20	1972	Africa	47.450942	2339.615674
21	1972	Americas	62.394920	6491.334139
22	1972	Asia	57.319269	8187.468699
23	1972	Europe	70.775033	12479.575246
24	1972	Oceania	71.910000	16417.333380
25	1977	Africa	49.580423	2585.938508
26	1977	Americas	64.391560	7352.007126
27	1977	Asia	59.610556	7791.314020
28	1977	Europe	71.937767	14283.979110
29	1977	Oceania	72.855000	17283.957605
30	1982	Africa	51.592865	2481.592960
31	1982	Americas	66.228840	7506.737088
32	1982	Asia	62.617939	7434.135157

	year	continent	lifeExp	gdpPercap
33	1982	Europe	72.806400	15617.896551
34	1982	Oceania	74.290000	18554.709840
35	1987	Africa	53.344788	2282.668991
36	1987	Americas	68.090720	7793.400261
37	1987	Asia	64.851182	7608.226508
38	1987	Europe	73.642167	17214.310727
39	1987	Oceania	75.320000	20448.040160
40	1992	Africa	53.629577	2281.810333
41	1992	Americas	69.568360	8044.934406
42	1992	Asia	66.537212	8639.690248
43	1992	Europe	74.440100	17061.568084
44	1992	Oceania	76.945000	20894.045885
45	1997	Africa	53.598269	2378.759555
46	1997	Americas	71.150480	8889.300863
47	1997	Asia	68.020515	9834.093295
48	1997	Europe	75.505167	19076.781802
49	1997	Oceania	78.190000	24024.175170
50	2002	Africa	53.325231	2599.385159
51	2002	Americas	72.422040	9287.677107
52	2002	Asia	69.233879	10174.090397
53	2002	Europe	76.700600	21711.732422
54	2002	Oceania	79.740000	26938.778040
55	2007	Africa	54.806038	3089.032605
56	2007	Americas	73.608120	11003.031625
57	2007	Asia	70.728485	12473.026870
58	2007	Europe	77.648600	25054.481636
59	2007	Oceania	80.719500	29810.188275

1.4.3 分组频率统计

In [19]:

```
flt=data.groupby('continent')['country'].nunique()
flt
```

Out[19]:

continent
Africa 52
Americas 25
Asia 33
Europe 30
Oceania 2

Name: country, dtype: int64

In [20]:

```
flt1=data.groupby('continent')['country'].value_counts()
flt1
```

Out[20]:

continent	country		
Africa	Algeria	12	
	Angola	12	
	Benin	12	
	Botswana	12	
	Burkina Faso	12	
		• •	
Europe	Switzerland	12	
	Turkey	12	
	United Kingdom	12	
Oceania	Australia	12	
	New Zealand	12	
Name: count	try, Length: 142,	dtype:	int64

总结: nunique会以groupby()后的属性为一类分类,value_counts()会以它之前的属性为细小分类,同时也会根据groupby()进行大类分类

1.5 基本绘图

In [21]:

```
group.plot()
```

Out[21]:

<AxesSubplot:xlabel='year'>

2 第二章: Pandas的数据结构

2.1 Series和DataFrame 结构建立

```
In [22]:
```

```
s=pd.Series(['Banana','42'])
s1=pd.DataFrame(['Banana','42'])
```

2.2 Series 的index和keys()具有相同小果果

```
In [23]:
```

```
s.index
```

Out[23]:

RangeIndex(start=0, stop=2, step=1)

In [24]:

s.keys()

Out[24]:

RangeIndex(start=0, stop=2, step=1)

2.3 类似于ndarray的Series

In [25]:

data_scientists = pd.read_csv(r'E:\jupyter notebook storage\Practice in Pandas\data\
data_scientists.head()

Out[25]:

	Name	Born	Died	Age	Occupation
0	Rosaline Franklin	1920-07-25	1958-04-16	37	Chemist
1	William Gosset	1876-06-13	1937-10-16	61	Statistician
2	Florence Nightingale	1820-05-12	1910-08-13	90	Nurse
3	Marie Curie	1867-11-07	1934-07-04	66	Chemist
4	Rachel Carson	1907-05-27	1964-04-14	56	Biologist

In [26]:

```
ages=data_scientists['Age']
# 检测ages是不是Series格式
print(type(ages))
```

<class 'pandas.core.series.Series'>

In [27]:

```
ages.hist()
```

Out[27]:

<AxesSubplot:>

7

77

Name: Age, dtype: int64

```
In [28]:
ages.describe()
Out[28]:
         8.000000
count
mean
         59.125000
std
         18.325918
         37.000000
min
25%
         44.000000
50%
         58.500000
         68.750000
75%
         90.000000
max
Name: Age, dtype: float64
In [29]:
ages.values
Out[29]:
array([37, 61, 90, 66, 56, 45, 41, 77], dtype=int64)
In [30]:
# 返回唯一的值组成一个np数组(去重)
ages.unique()
Out[30]:
array([37, 61, 90, 66, 56, 45, 41, 77], dtype=int64)
In [31]:
# 获取大于平均值的年龄
ages[ages>ages.mean()]
Out[31]:
     61
1
2
     90
     66
3
```

2.4 操作自动对齐和向量化(广播)

In [32]:

```
# 可以相加相乘
ages+ages
Out[32]:
0
     74
1
     122
2
     180
3
     132
4
     112
5
      90
      82
7
     154
Name: Age, dtype: int64
In [33]:
ages*ages
Out[33]:
0
     1369
     3721
1
2
     8100
3
     4356
4
     3136
5
     2025
     1681
     5929
7
Name: Age, dtype: int64
In [34]:
# 可以直接数字加减,比如加100
ages+100
Out[34]:
0
     137
1
     161
2
     190
3
     166
4
     156
5
     145
6
     141
     177
7
Name: Age, dtype: int64
```

In [35]:

```
# 不同向量之间的计算会出错,前提shape要一样,即长度格式一样
ages+pd.Series([1,100])
Out[35]:
0
      38.0
1
     161.0
2
       NaN
3
       NaN
       NaN
4
5
       NaN
       NaN
7
       NaN
dtype: float64
In [36]:
# 带有常见的索引标签的向量(自动对齐)
rev ages=ages.sort index(ascending=False)
rev_ages
Out[36]:
7
     77
6
     41
5
     45
     56
     66
     90
2
1
     61
     37
0
Name: Age, dtype: int64
In [37]:
ages*2
Out[37]:
      74
     122
1
2
     180
3
     132
4
     112
      90
5
      82
6
     154
7
Name: Age, dtype: int64
```

4

5

6

1964-04-14

1858-06-16 1954-06-07

1855-02-23

Name: Died, dtype: datetime64[ns]

```
In [38]:
```

```
ages+rev ages
# 所以向量会自己找到合适的索引进行操作
Out[38]:
      74
0
1
     122
2
     180
3
     132
4
     112
5
      90
      82
7
     154
Name: Age, dtype: int64
2.5 更改Series和DataFrame
In [39]:
# 将字符化的日期改为日期格式
born_datatime=pd.to_datetime(data_scientists['Born'],format='%Y-%m-%d')
# format 即年月日
born datatime
Out[39]:
    1920-07-25
0
1
    1876-06-13
2
    1820-05-12
    1867-11-07
3
    1907-05-27
    1813-03-15
5
    1912-06-23
    1777-04-30
Name: Born, dtype: datetime64[ns]
In [40]:
died_datatime=pd.to_datetime(data_scientists['Died'])
died datatime
Out[40]:
0
    1958-04-16
1
    1937-10-16
2
    1910-08-13
    1934-07-04
```

In [41]:

```
# 使用Python的多重赋值法可以操作
data_scientists['Born_dt'],data_scientists['Died_dt']=(born_datatime,died_datatime)
data_scientists
```

Out[41]:

	Name	Born	Died	Age	Occupation	Born_dt	Died_dt
0	Rosaline Franklin	1920-07-25	1958-04-16	37	Chemist	1920-07-25	1958-04-16
1	William Gosset	1876-06-13	1937-10-16	61	Statistician	1876-06-13	1937-10-16
2	Florence Nightingale	1820-05-12	1910-08-13	90	Nurse	1820-05-12	1910-08-13
3	Marie Curie	1867-11-07	1934-07-04	66	Chemist	1867-11-07	1934-07-04
4	Rachel Carson	1907-05-27	1964-04-14	56	Biologist	1907-05-27	1964-04-14
5	John Snow	1813-03-15	1858-06-16	45	Physician	1813-03-15	1858-06-16
6	Alan Turing	1912-06-23	1954-06-07	41	Computer Scientist	1912-06-23	1954-06-07
7	Johann Gauss	1777-04-30	1855-02-23	77	Mathematician	1777-04-30	1855-02-23

2.6 打乱顺序函数

x[i], x[j] = x[j], x[i]

In [42]:

```
import random
random.seed(42)
random.shuffle(data scientists['Age'])
print(data scientists['Age'])
0
     66
     56
1
2
     41
3
     77
4
     90
5
     45
     37
7
     61
Name: Age, dtype: int64
E:\anaconda\lib\random.py:307: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas
-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 (https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.htm
l#returning-a-view-versus-a-copy)
```

In [43]:

data_scientists["Age"]=data_scientists["Age"].sample(len(data_scientists["Age"]),rar
data_scientists["Age"]

Out[43]:

0 61 1 90 2 45 3 41 4 56 5 66 6 37 7 77

Name: Age, dtype: int64

2.7 转换日期,比如日-月,月-年

In [44]:

data_scientists['age_days_dt']=data_scientists['Died_dt']-data_scientists['Born_dt']
data_scientists

Out[44]:

	Name	Born	Died	Age	Occupation	Born_dt	Died_dt	age_days_dt
0	Rosaline Franklin	1920-07- 25	1958-04- 16	61	Chemist	1920-07- 25	1958-04- 16	13779 days
1	William Gosset	1876-06- 13	1937-10- 16	90	Statistician	1876-06- 13	1937-10- 16	22404 days
2	Florence Nightingale	1820-05- 12	1910-08- 13	45	Nurse	1820-05- 12	1910-08- 13	32964 days
3	Marie Curie	1867-11- 07	1934-07- 04	41	Chemist	1867-11- 07	1934-07- 04	24345 days
4	Rachel Carson	1907-05- 27	1964-04- 14	56	Biologist	1907-05- 27	1964-04- 14	20777 days
5	John Snow	1813-03- 15	1858-06- 16	66	Physician	1813-03- 15	1858-06- 16	16529 days
6	Alan Turing	1912-06- 23	1954-06- 07	37	Computer Scientist	1912-06- 23	1954-06- 07	15324 days
7	Johann Gauss	1777-04- 30	1855-02- 23	77	Mathematician	1777-04- 30	1855-02- 23	28422 days

In [45]:

利用astype函数去转换年月日

data_scientists['age_days_dt']=data_scientists['age_days_dt'].astype('timedelta64[Y]
data_scientists

Out[45]:

	Name	Born	Died	Age	Occupation	Born_dt	Died_dt	age_days_dt
0	Rosaline Franklin	1920-07- 25	1958-04- 16	61	Chemist	1920-07- 25	1958-04- 16	37.0
1	William Gosset	1876-06- 13	1937-10- 16	90	Statistician	1876-06- 13	1937-10- 16	61.0
2	Florence Nightingale	1820-05- 12	1910-08- 13	45	Nurse	1820-05- 12	1910-08- 13	90.0
3	Marie Curie	1867-11- 07	1934-07- 04	41	Chemist	1867-11- 07	1934-07- 04	66.0
4	Rachel Carson	1907-05- 27	1964-04- 14	56	Biologist	1907-05- 27	1964-04- 14	56.0
5	John Snow	1813-03- 15	1858-06- 16	66	Physician	1813-03- 15	1858-06- 16	45.0
6	Alan Turing	1912-06- 23	1954-06- 07	37	Computer Scientist	1912-06- 23	1954-06- 07	41.0
7	Johann Gauss	1777-04- 30	1855-02- 23	77	Mathematician	1777-04- 30	1855-02- 23	77.0

2.8 文件的导入与导出

In [46]:

names=data_scientists['Name']

In [47]:

输出文件

names.to_pickle("E:\jupyter notebook storage\Practice in Pandas/ouput file/names.pic

注意: \和转译字符会报错, 建议/代替。