MH1812 Tutorial Chapter 2: Propositional Logic

Q1: Decide whether the following statements are propositions. Justify your answer.

1. 2+2=5.

Solution: Yes, because this statement always takes the truth value "false". \Box

2. 2+2=4.

Solution: Yes, because this statement always takes the truth value "true". \Box

3. x = 3.

Solution: No, because this statement can be "true" when x is 3 and "false" when x is not 3.

4. Every week has a Sunday.

Solution: Yes, because this statement always takes the truth value "true". \Box

5. Have you read "Catch 22"?

 $oldsymbol{Solution}$: No, because the truth value depends on who is answering the question.

Q2: Show that

$$\neg (p \lor q) \equiv \neg p \land \neg q.$$

This is the second law of De Morgan.

Solution: We show the equivalence using truth tables:

p	q	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	F	F	F
\mathbf{T}	F	F	Т	\mathbf{F}
F	Γ	Τ	F	F
F	F	Τ	Т	${ m T}$

p	q	$p \lor q$	$\neg(p\vee q)$
Т	Т	Т	F
T	F	Τ	F
\mathbf{F}	Т	Τ	F
F	F	F	Τ

Since both truth tables are the same, the two logical expressions are equivalent. \Box

Q3: Show that second absorption law $p \land (p \lor q) \equiv p$ holds.

Solution: We show the equivalence using a truth table:

p	q	$p \lor q$	$p \land (p \lor q)$
\overline{T}	Т	Т	T
Τ	F	Τ	m T
F	T	Т	F
F	F	F	F

Since the columns of p and $p \land (p \lor q)$ are identical, so these two logical expressions are equivalent.

Q4: These two laws are called distributivity laws. Show that they hold:

1. Show that $(p \wedge q) \vee r \equiv (p \vee r) \wedge (q \vee r)$.

Solution:

p	q	$\mid r \mid$	$p \wedge q$	$(p \land q) \lor r$	$p \vee r$	$q \vee r$	$(p\vee r)\wedge (q\vee r)$
\overline{T}	Т	Т	Т	T	Т	Т	T
\mathbf{T}	Т	F	Τ	${ m T}$	Т	Т	${ m T}$
\mathbf{T}	F	Т	F	${ m T}$	Т	Т	${ m T}$
Τ	F	F	F	F	Т	F	${ m F}$
F	Т	Т	F	${ m T}$	Т	Т	${ m T}$
F	Т	F	F	F	F	Т	${ m F}$
F	F	Т	F	${ m T}$	Т	Т	${ m T}$
F	F	F	F	F	F	F	F

2. Show that $(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$.

Solution:

p	q	r	$p \lor q$	$(p \lor q) \land r$	$p \wedge r$	$q \wedge r$	$(p \wedge r) \vee (q \wedge r)$
\overline{T}	Т	Т	Т	Т	Т	Т	Т
Τ	Т	F	Τ	F	F	F	F
Τ	F	Т	Τ	${ m T}$	T	F	T
T	F	F	Τ	F	F	F	F
F	Т	Т	Τ	${ m T}$	F	Т	T
\mathbf{F}	Т	F	Τ	F	F	F	F
\mathbf{F}	F	Т	F	F	F	F	F
\mathbf{F}	F	F	F	F	F	F	F

Q5: Verify $\neg (p \lor \neg q) \lor (\neg p \land \neg q) \equiv \neg p$ by

• constructing a truth table,

Solution:

p	q	$\neg p$	$\neg q$	$p \vee \neg q$	$\neg (p \lor \neg q)$	$\neg p \land \neg q$	$ \mid \neg (p \vee \neg q) \vee (\neg p \wedge \neg q) $
Т	Т	F	F	Т	F	F	F
\mathbf{T}	F	\mathbf{F}	Τ	Τ	F	F	F
F	Т	Τ	F	F	Γ	F	T
\mathbf{F}	F	Τ	Τ	Т	F	T	Γ

• developing a series of logical equivalences.

Solution:

$$\neg (p \vee \neg q) \vee (\neg p \wedge \neg q) \equiv (\neg p \wedge q) \vee (\neg p \wedge \neg q) \text{ DeMorgan}$$

$$\equiv \neg p \wedge (q \vee \neg q) \text{ Distributivity}$$

$$\equiv \neg p \wedge T \text{ since } (q \vee \neg q) \equiv T$$

$$\equiv \neg p.$$

Q6: Using a truth table, show that:

$$\neg q \to \neg p \equiv p \to q.$$

Solution:

p	q	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$	$p \to q$
Т	Т	F	F	Т	Т
Τ	F	F	Τ	F	F
T F	Т	Τ	F	${ m T}$	Τ
\mathbf{F}	F	Τ	Τ	T	Т

Q7: Show that $p \lor q \to r \equiv (p \to r) \land (p \to r)$.

Solution:

$$\begin{split} p \vee q &\to r \equiv (p \vee q) \to r \text{ precedence} \\ &\equiv \neg (p \vee q) \vee r \text{ conversion theorem} \\ &\equiv (\neg p \wedge \neg q) \vee r \text{ De Morgan} \\ &\equiv (\neg p \vee r) \wedge (\neg q \vee r) \text{ Distributivity} \\ &\equiv (p \to r) \wedge (p \to r) \text{ conversion theorem} \end{split}$$

Q8: Are $(p \to q) \lor (q \to r)$ and $p \to r$ equivalent statements ?

Solution: They are not equivalent. Here is a proof using truth table:

p	q	$\mid r \mid$	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \lor (q \to r)$	$p \rightarrow r$
Т	Т	Т	Т	Т	Τ	Т
Τ	Т	F	Τ	F	T	F
T	F	Т	F	Τ	${ m T}$	Τ
T	F	F	F	Т	${ m T}$	F
\mathbf{F}	Τ	Т	Τ	Τ	${ m T}$	Τ
\mathbf{F}	Т	F	Т	F	${ m T}$	Τ
\mathbf{F}	F	Т	Т	Т	${ m T}$	Τ
F	\mathbf{F}	F	Т	Τ	${ m T}$	Т

We can see that the second row are giving different truth values, for example. This can be done using equivalences as well:

$$(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (\neg q \lor r)$$
 conversion theorem
$$\equiv \neg p \lor r \lor T \text{ since } \neg q \lor q \equiv T$$

$$\equiv T$$

Since $p \to r$ is not equivalent to T, both statements cannot be equivalent.

Q9: Show that this argument is valid:

$$\neg p \to F; :: p.$$

Solution: The premise is $\neg p \to F \equiv p \lor F$, which is true only when p is true. \Box

Q10: Show that this argument is valid, where C denotes a contradiction.

$$\neg p \to C; :: p.$$

Solution: The premise is $\neg p \to C \equiv p \lor C$, which is true only when p is true.

Q11: Determine whether the following argument is valid:

$$\neg p \to r \land \neg s$$

$$t \to s$$

$$u \to \neg p$$

$$\neg w$$

$$u \lor w$$

$$\therefore t \to w.$$

Solution: We start by noticing that we have

$$u \lor w; \neg w; \therefore u.$$

Indeed, if $u \lor w$ and $\neg w$ are both true, then w is false, and u must be true (case elimination). Next

$$u \to \neg p; u; \therefore \neg p.$$

Indeed, if $u \to \neg p$ is true, either u is true and $\neg p$ is true, or u is false. But u is true, thus $\neg p$ is true (Modus Ponens). Then

$$\neg p \rightarrow r \land \neg s; \neg p; :: r \land \neg s,$$

this is again Modus Ponens. Then

$$r \wedge \neg s$$
; $\neg s$.

Indeed, for $r \wedge \neg s$ to be true, it must be that $\neg s$ is true. Finally,

$$t \to s; \neg s; \therefore \neg t$$

Since for $t \to s$ to be true, we need either t to be false, or t and s to be true, but since s is false, t must be false (Modus Tollens), and

$$\neg t : \neg t \lor w$$

or equivalently

$$\neg t \vee w \equiv t \to w$$

using the Conversion theorem, which shows that the argument is valid.

Q12: Determine whether the following argument is valid:

$$p$$

$$p \lor q$$

$$q \to (r \to s)$$

$$t \to r$$

$$\therefore \neg s \to \neg t.$$

Solution: For this question, there is no obvious way to combine the known statements with inference rules. The only 2 related statements are p and $p \lor q$, and assuming that both are true, all can be deduced is that q is either true or false (this gives no information about q at all). Now if q is false, $q \to (r \to s)$ is always true, while if q is true, $q \to (r \to s)$ is true only if $(r \to s)$ is true, which excludes the possibility

r=T and s=F. Now we look at the last premise $t\to r$. For it to be true, we need t false, or t true and r true. If s is true, then $\neg s$ is always false, and the conclusion is always true. We thus focus on s is false, and $\neg t$ is false, that is t is true. So we have a counter-example (which makes all premises true and conclusion false):

$$q = F, r = T, s = F, t = T.$$

One can also draw the truth table, and find the counter-example from the critical rows. \Box