# Monte Carlo: symulacja rozpraszania fotonów w ośrodku częściowo przeźroczystym

Filip Brodacz

4 czerwca 2025

## 1 Wstęp teoretyczny

Symulacja rozpraszania i absorpcji promieniowania świetlnego w ośrodkach wielowarstwowych jest istotna w wielu dziedzinach fizyki, biologii i inżynierii (np. obrazowanie medyczne, fotonika).

W zadaniu wykorzystano metodę Monte Carlo (MC) do symulacji trajektorii pojedynczych wiązek (fotonów) światła w dwuwymiarowym układzie warstw o różnych właściwościach optycznych.

#### 1.1 Model fizyczny

Ośrodek składa się z n warstw, zdefiniowanych przez następujące parametry:

- Współczynnik absorpcji  $\mu_a$  [1/cm],
- Współczynnik rozpraszania  $\mu_s$  [1/cm],
- Grubość warstwy d [cm],
- Współczynnik anizotropii g[-],
- Współczynnik załamania n [-].

Światło pada na dolna krawedź obszaru, a symulacja śledzi ruch fotonów, ich absorpcję, odbicie i transmisje.

#### 1.2 Algorytm Monte Carlo

- Każdy foton jest emitowany z losowego punktu źródła o zadanym położeniu i kierunku.
- Ruch fotonu modelowany jest jako skok o długości wyznaczonej przez rozkład wykładniczy zależny od sumy  $\mu_a + \mu_s$ .
- Po każdym skoku foton może zostać pochłonięty (absorpcja) lub ulec rozproszeniu.
- ullet Kierunek rozproszenia jest generowany zgodnie z rozkładem Henyeya-Greensteina uwzględniającym anizotropię g.
- Algorytm stosuje metodę ruletki do przyspieszenia symulacji i uniknięcia śledzenia fotonów o bardzo małej wadze.
- Symulacja kończy się, gdy foton opuści obszar lub jego waga stanie się zbyt mała.

#### 1.3 Kluczowe wzory

Rozkład długości kroku:

$$s = -\frac{\ln(\xi)}{\mu_a + \mu_s}$$

gdzie  $\xi$  to losowa liczba z przedziału (0,1).

Rozkład kata rozproszenia w 2D wg Henyeya-Greensteina:

$$p(\theta) = \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$$

# 2 Wyniki

#### 2.1 Parametry symulacji:

W symulacjach przyjęto następujące parametry podstawowe. W kolejnych przypadkach zmieniano jedynie wybrane parametry względem tego zestawu.

#### Ustawienia ogólne symulacji

• Liczba warstw: nlayers = 3

• Wymiar siatki: nx = ny = 100

• Zakres osi x: x\_max = 0.2 cm

• Pozycja źródła: x\_source = 0.1 cm, szerokość: dx\_source = 0.0 cm

• Pozycja detektora: x\_detect = 0.15 cm, szerokość: dx\_detect = 0.01 cm

• Kierunek padania wiązki:  $r_x = 0.0, r_y = 1.0$ 

• Liczba fotonów:  $N=200\,000$ 

#### Parametry optyczne warstw

| Warstwa | $\mu_a \left[\frac{1}{cm}\right]$ | $\mu_s \left[ \frac{1}{cm} \right]$ | d [cm] | g $[-]$ | n $[-]$ |
|---------|-----------------------------------|-------------------------------------|--------|---------|---------|
| 1       | 1                                 | 10                                  | 0.02   | 0.75    | 1.3     |
| 2       | 1                                 | 190                                 | 0.02   | 0.075   | 1.0     |
| 3       | 10                                | 90                                  | 0.02   | 0.95    | 1.0     |

Tabela 1: Podstawowe parametry optyczne warstw ośrodka.

### 2.2 Symulacje z wewnętrznym odbiciem wiązki

W tej części przeprowadzono symulacje z parametrami wiązki o kierunku padania zmienionym na  $r_x = 0.8$ ,  $r_y = 0.6$  oraz różnymi wartościami współczynnika załamania n w warstwach, zgodnie z zadaniem.

**Przypadek 1:**  $n^{(2)} = 1.5$ 



Rysunek 1: Rozkład absorpcji energii,  $r_x = 0.8$ ,  $r_y = 0.6$ ,  $n^{(2)} = 1.5$ .

## **Przypadek 2:** $n^{(2)} = 2.5$



Rysunek 2: Rozkład absorpcji energii,  $r_x=0.8,\,r_y=0.6,\,n^{(2)}=2.5.$ 

## **Przypadek 3:** $n^{(1)} = 1.0, n^{(2)} = 1.5$



Rysunek 3: Rozkład absorpcji energii,  $r_x=0.8,\,r_y=0.6,\,n^{(1)}=1.0,\,n^{(2)}=1.5.$ 

Przypadek 4: $n^{(1)}=1.0,\,n^{(2)}=1.5,\,\mu_s^{(2)}=10$ 



Rysunek 4: Rozkład absorpcji energii,  $r_x=0.8,\,r_y=0.6,\,n^{(1)}=1.0,\,n^{(2)}=1.5,\,\mu_s^{(2)}=10$ 

## 2.3 Symulacje z wiązką padającą prostopadle

Tutaj przedstawiono wyniki symulacji dla wiązki padającej prostopadle do obiektu, zarówno dla podstawowego zestawu parametrów, jak i ich modyfikacji.

Przypadek 1: Zestaw podstawowy (parametry z tabeli)



Rysunek 5: Rozkład absorpcji energii dla wiązki prostopadłej, zestaw podstawowy.

Przypadek 2:  $n^{(1)}=1.0,\,\mu_a^{(2)}=10,\,\mu_s^{(2)}=210,\,n^{(2)}=1.5$ 



Rysunek 6: Rozkład absorpcji energii dla zmienionych parametrów z przypadku 2.

Przypadek 3: 
$$n^{(1)}=1.0,\,\mu_a^{(2)}=1,\,\mu_s^{(2)}=210,\,n^{(2)}=1.5$$



Rysunek 7: Rozkład absorpcji energii dla zmienionych parametrów z przypadku 3.

**Przypadek 4:** 
$$n^{(1)} = 1.0$$
,  $\mu_a^{(2)} = 10$ ,  $\mu_s^{(2)} = 210$ ,  $n^{(2)} = 1.5$ ,  $q^{(2)} = 0.75$ 



Rysunek 8: Rozkład absorpcji energii dla zmienionych parametrów z przypadku 4, uwzględniający anizotropię  $q^{(2)} = 0.75$ .

#### 2.4 Analiza uzyskanych wyników

Przeprowadzone symulacje pokazują, że zmiany parametrów optycznych mają istotny wpływ na rozkład absorpcji oraz wartości współczynników A, R i T:

- ullet Zwiększenie  $n^{(2)}$  prowadzi do silniejszego wewnętrznego odbicia, co zwiększa absorpcję i zmniejsza transmisję.
- Zmniejszenie  $\mu_s^{(2)}$  skutkuje głębszą penetracją fotonów i wyraźnym przesunięciem maksimum absorpcji.
- $\bullet\,$  Ukośne padanie wiązki  $(r_x=0.8)$  przesuwa miejsce absorpcji i zwiększa liczbę odbić.
- Wysoka anizotropia ( $g^{(2)}=0.75$ ) sprzyja propagacji fotonów w głab ośrodka.
- Duże wartości  $\mu_s^{(2)}$  i  $\mu_a^{(2)}$  powodują silną lokalną absorpcję i tłumienie sygnału.

Sumy A+R+T we wszystkich przypadkach były bliskie jedności, co potwierdza poprawność symulacji.

#### 3 Podsumowanie

W pracy przeprowadzono symulacje Monte Carlo propagacji światła w ośrodkach wielowarstwowych o różnych parametrach optycznych. Analiza wyników pokazała istotny wpływ zmian współczynników załamania, rozpraszania, absorpcji oraz anizotropii na rozkład absorpcji i skuteczność transmisji światła. Wyniki potwierdzają zgodność modelu fizycznego oraz poprawność implementacji, co widać po zachowaniu bilansu energetycznego  $A+R+T\approx 1$  w każdym przypadku.