PD - 9.1095B

IRF7103

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- Dual N-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Dynamic dv/dt Rating
- Fast Switching

Description

Fourth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and dual-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application.

Absolute Maximum Ratings

	•		
	Parameter	<u>Max.</u>	Units
ID @ TA = 25°C	Continuous Drain Current, VGS @ 10V	3.0	_
$I_D @ T_A = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V	2.3	Α
I _{DM}	Pulsed Drain Current ①	10	
$P_{\rm D}$ @T _C = 25°C	Power Dissipation	2.0	W
	Linear Derating Factor	0.016	W/°C
V _G s	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ②	4.5	V/nS
TJ, TSTG	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance Ratings

	Parameter	Min.	Typ.	Max.	Units
ReJA	Maximum Junction-to-Ambient 4			62.5	°C/W

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Tvp.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	50			V	V _{GS} = 0V, I _D = 250μA
ΔV _{(BR)DSS} /ΔT _J		-	0.049		V/°C	Reference to 25°C, I _D = 1mA
- (60)000 - 0			0.11	0.13		V _{GS} = 10V, I _D = 3.0A ③
R _{DS(ON)}	Static Drain-to-Source On-Resistance	_	0.16	0.20	Ω	V _{GS} = 4.5V, I _D = 1.5A ③
V _{GS(th)}	Gate Threshold Voltage	1.0	_	3.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
g _{fs} _	Forward Transconductance		3.8		S	V _{DS} = 15V, I _D = 3.0A ③
	Drain to Source Leakage Current			2.0	μА	$V_{DS} = 40V, V_{GS} = 0V$
DSS	Drain-to-Source Leakage Current			25	μΛ	$V_{DS} = 40V$, $V_{GS} = 0V$, $T_{J} = 55$ °C
la aa	Gate-to-Source Forward Leakage		<u>_</u>	100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100	_ ''	V _{GS} = - 20V
Qg	Total Gate Charge		12	30		$I_D = 2.0A$
Q_{gs}	Gate-to-Source Charge		1.2		nC	$V_{DS} = 25V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.5		<u> </u>	V _{GS} = 10V ③
td(on)	Turn-On Delay Time		9.0	20	I	$V_{DD} = 25V$
tr	Rise Time		8.0	20	ns	$I_D = 1.0A$
t _{d(off)}	Turn-Off Delay Time		45	70	lis	$R_G = 6.0\Omega$
t _f	FallTime		25	50	l	$R_D = 25\Omega$ ③
L _D	Internal Drain Inductance	_	4.0		nH	Between lead,6mm(0.25in.)
L _S	Internal Source Inductance		6.0			from package and center of die contact
C _{iss}	Input Capacitance	T	290			V _{GS} = 0V
Coss	Output Capacitance		140		рF	V _{DS} ≈ 25V
C _{rss}	Reverse Transfer Capacitance		37		1	f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current			20	r	MOSFET symbol
	(Body Diode)			2.0		showing the
sм	Pulsed Source Current	ource Current		A	integral reverse	
	(Body Diode) ①	[12	12	p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.5A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		70	100	ns	$T_J = 25^{\circ}C$, $I_F = 1.5A$
Q _{rr}	Reverse RecoveryCharge		110	170	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ③ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- $\begin{tabular}{l} @ I_{SD} \le 1.8A, \ di/dt \le 90A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ T_J \le 150 ^{\circ}C \end{tabular}$
- 4 Surface mounted on FR-4 board, $t \le 10 sec.$

Fig 1. Typical Output Characteristics,

Fig 2. Typical Output Characteristics,

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12a. Basic Gate Charge Waveform

Fig 12b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

Fig 13. For N-Channel HEXFETS

IRF7103

Package Outline

Part Marking Information

SO8

Tape & Reel Information

SO8

Dimensions are shown in millimeters (inches)

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without notice. 8/97