Actividad #1 – Librería

Modelo E-R (entidad relación)

En el modelo entidad relación se identifican las siguientes entidades:

- Editoriales.
- Libros.
- Autores.
- Clientes.

Estas entidades se relacionan a través de los siguientes verbos:

- Publicar.
- Comprar.
- Escrito.

Transformación de E-R (entidad relación) a M-R (modelo relacional)

Se transforman las entidades en tablas con sus respectivos atributos y al existir un atributo multivaluado (telefono) en el modelo E-R, se crea una nueva tabla llamada tb_telefono_cliente".

	tb_editorial
PK	nombre_editorial
	ciudad
	complemento

tb_libro	
PK	ISBN
	titulo
	num_paginas
FK	nombre_editorial

tb_autor	
PK	codigo_autor
	fecha_nacimiento
	nacionalidad

	tb_cliente
PK	id_cliente
	nombre
	telefono

	tb_telefono_cliente
PK	cedula_cliente
PK	numero

Imagen 2.

Al evidenciar en el modelo E-R relaciones de muchos a muchos, se crean las siguientes dos tablas de detalle.

	dll_libro_autor	
FK	ISBN	
FK	codigo_autor	

	dll_libro_cliente	
FK	ISBN	
FK	id_cliente	

Imagen 3.

Por último, se crean las relaciones dando como resultado el siguiente modelo relacional.

Imagen 4.

Diagrama generado en Workbench

Imagen 5.

Realizando la comparación entre el modelo relacional de la *imagen 4*. con la *imagen 5* se logra evidenciar que cumple con el proceso de normalización de la siguiente manera:

Primera forma normal.

- Contiene atributos atómicos.
- Los atributos dependen únicamente de la clave primaria de cada tabla.

Nota: Lo anterior nos permite eliminar los valores repetidos en la BD.

Segunda forma normal.

- Cumple con la primera forma normal.
- Existe una relación entre tablas con sus respectivas claves foráneas.

Tercera forma normal.

- Cumple con la segunda forma normal.
- Se crean tablas de detalle a causa de la relación muchos a muchos:

Sentencias SQL

Estas sentencias se podrán visualizar con más detalle en un archivo aparte, llamado "script_librería.sql" donde se encontrarán sentencias de SQL como: crear la base de datos, las tablas con sus respectivas relaciones y la inserción de datos en cada una de las tablas.

Las sentencias de SQL que se utilizaron fueron las siguientes:

Crear una base de datos

```
CREATE DATABASE databasename;
```

Crear una tabla

```
CREATE TABLE table_name (
    column1 datatype,
    column2 datatype,
    column3 datatype,
    ....
);
```

Crear una clave foránea o ajena (ejemplo)

VALUES (value1, value2, value3, ...);

```
CREATE TABLE tb_libro (
    ISBN_libro VARCHAR(10) NOT NULL,
    titulo VARCHAR(45) NOT NULL,
    numero_paginas VARCHAR(45) NOT NULL,
    nombre_editorial VARCHAR(50) NOT NULL,
    PRIMARY KEY (ISBN_libro),
    FOREIGN KEY (nombre_editorial) REFERENCES tb_editorial(nombre_editorial)
);
Crear una tabla con una clave compuesta (ejemplo)
CREATE TABLE tb_telefono_cliente (
    cedula VARCHAR(15) NOT NULL,
    telefono VARCHAR(15) NOT NULL,
    PRIMARY KEY (cedula, telefono),
    FOREIGN KEY (cedula) REFERENCES tb_cliente (cedula_cliente)
);
Insertar datos en una tabla
INSERT INTO table_name (column1, column2, column3, ...)
```