ПРОСТЕЙШИЕ ТИПЫ ТОЧЕК ПОКОЯ

Рассмотрим, линейную однородную систему

$$\begin{cases} y' = a_{11}y + a_{12}z, \\ z' = a_{21}y + a_{22}z, \end{cases}$$

где a_{ij} – числа и $\left| \mathbf{A} \right| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$. Это автономная система. Мы знаем,

что вид ее решения зависит от характеристических корней матрицы ${\bf A}$. Изучив все возможные случаи решений, мы получим следующие расположения траекторий в окрестности точки покоя O(0;0):

- 1) Если $\lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 \neq \lambda_2$, $\lambda_1 < 0$, $\lambda_2 < 0$ рисунок 1. Точка покоя асимптотически устойчива. Точку покоя при таком расположении траекторий называют *устойчивым узлом*.
- 2) Если $\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 \neq \lambda_2, \ \lambda_1 > 0, \ \lambda_2 > 0$ рисунок 2. Точка покоя неустойчива. Ее называют **неустойчивым узлом**.
- 3) Если $\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 \neq \lambda_2, \ \lambda_1 > 0, \ \lambda_2 < 0$ рисунок 3. Точка покоя неустойчива. Ее называют *седлом*.

- 4) Если $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha < 0$ рисунок 4. Точка покоя асимптотически устойчива. Ее называют *устойчивым фокусом*.
- 5) Если $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha > 0$ рисунок 5. Точка покоя неустойчива. Ее называют **неустойчивым фокусом**.
- 6) Если $\lambda_{1,2} = \alpha \pm \beta i$ ($\beta \neq 0$), $\alpha = 0$ рисунок 6. Точка покоя устойчива. Ее называют **центром**.

7) Если $\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 = \lambda_2 < 0$ — рисунок 7 или 8. Точка покоя асимптотически устойчива. При таком расположении траекторий, как на рисунке 7, ее называют устойчивым вырожденным узлом. Если траектории располагаются как на рисунке 8 – дикритическим узлом.

Рисунок 8

8) Если $\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 = \lambda_2 > 0$ — рисунок 9 или 10. Точка покоя неустойчива. Ее называют неустойчивым вырожденным узлом.

Итак, мы исчерпали все возможности, поскольку случай $\lambda_1=0$ (или $\lambda_2 = 0$) исключен условием $|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$.