《线性代数》

2023-2024 学年第一学期期末考试 A 卷

2025 202 4 1 4 1 4 1	
一、判断题 (2分×8=16分)	
1.若 A , B 为满足 $BA=0$ 的任意两个非零矩阵,则 A 的行向	
2.向量组 $\{a_1,a_2,\cdots,a_s\}$ 可由向量组 $\{m{eta}_1,m{eta}_2,\cdots,m{eta}_t\}$ 线性表出,	则 $r\{a_1, a_2, \cdots, a_s\} \leq r\{\beta_1, \beta_2, \cdots, \beta_r\}$
	()
3.2023 个 2024 维实向量可以生成至多 2023 维的空间, 2024	个 2023 维实向量也可以生成至多 2023
维的空间.	()
4.设 A 为 n 阶方阵,则 A^{2023} , A 的伴随矩阵 A^* 的特征向量者	都与A的特征向量相同. ()
5.若齐次线性方程组AX=0有唯一零解,则非齐次线性方程	
6.设 A , B 均为 n 阶实矩阵,对任意的 n 维实向量 X ,都有 X	$\mathbf{X}^T \mathbf{A} \mathbf{X} = \mathbf{X}^T \mathbf{B} \mathbf{X}, \mathbf{M} \mathbf{A} = \mathbf{B}. ()$
7.设 A 是 2024 阶实对称阵, $AB + B^T A$ 是正定矩阵,则矩阵	FB可逆. ()
8.任意两个 2023 阶的正定矩阵必等价.	()
二、填空题(4 分×5=20 分)	
1.设D= 1 1 ··· 1 0 2 ··· 2	D的所有元素的代数余子式之和
=	
2. 设 A , B 均 为 2023 阶 方 阵 , 且 A =2023 , A+B-1 =	$ B = 2024$, $ A^{-1} + B = 2024$, $ A $
3. 设 4 为 2024 阶方阵, A 的每行元素之和均为=	2024,则A ²⁰²³ 全部元素的和
4.设向量组{a ₁ ,a ₂ ,a ₃ } 为 B ³ 的 组基, 当k 满足条件	bt. A. = 2a = 24 a = 2a
P3 = 21 + (k + 1) 23 也为限3的 组基。	
5. $\mathcal{U} \subseteq \mathcal{K} \boxtimes f(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + (a+1)x_3^2 + 2x_1x_2$	的规范形为 1= v2+v2. 则
	11.14

三、(10分 设n(n≥3

四、(1

设 f(x

三、(10分)

《线性代数》历年题

设 $n(n \ge 3)$ 阶方阵A的行列式|A| = a,将A的每一列减去A的其余所有各列得到方阵B,求|B|。

四、(10分)

设
$$f(x)=1+x+x^2+x^3+x^4$$
, $A=\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&0&1\\0&0&0&0\end{bmatrix}$, 求 $f(A)$, $[f(A)]^{-1}$.

「我們是你是不多的。 数 1 cm で 2 cm に

If should the collect water and

(线性代数) 历年题

五、(12分)

设矩阵
$$A = \begin{bmatrix} 1 & -1 & -1 \\ 2 & a & 1 \\ -1 & 1 & a \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 2 \\ 1 & a \\ b & -2 \end{bmatrix}$, 当 a , b 为何值时,矩阵方程 $AX = B$ 无解、有唯一解、

有无穷多解? 在有解时,求解此方程.

大、(12分)

已知实二次型 $f(x_1,x_2,x_3)=X^TAX$ 在正交变换X=QY下的标准形为 $-y_1^2-y_2^2$,且Q的第3列为

$$\left[\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right]^T$$
.

- (1) 求矩阵 4:
- (2) 证明: 4+21为正定矩阵, 其中1为单位矩阵.

已知 $\alpha_1 = [1,0,1]^T$, $\alpha_2 = [1,1,1]^T$, $\alpha_3 = [1,0,0]^T$ 为3阶方阵A的特征向量,对应的特征值分别

Legislance 2 Third I "

- (1) 证明: 方阵 4 可以相似对角化:
- (2) 设向量 $\beta = [1,0,-1]^T$, 求 $A\beta$ 在基 $\{a_1,a_2,a_3\}$ 下的坐标.

Assis Calebra

(特性性数) 元年麗

八、(10分)

设向量组 $\alpha_j = [a_{1j}, a_{2j}, \cdots, a_{nj}]^T, j = 1, 2, \cdots n$ 満足

$$|a_{ii}| > \sum_{\substack{j=1,\ j\neq i}}^{n} |a_{ij}| \quad i=1,2,\cdots n,$$

证明:向量组 $\{a_j, j=1,2,\cdots n\}$ 线性无关.

2023-2024 学年第一学期期末考试 A 卷参考答案 【本套试题学霸详细解析 (实时更新)】

扫码关注并回复本资料编码【HH51】免费查看最新完整详解

【本套试题参考简答如下】

一、判断题 (2分×8=16分)

1.【正解】 √ 2.【正解】 √ 3.【正解】 √ 4.【正解】× 5.【正解】×

6.【正解】× 7.【正解】 √ 8.【正解】 √

二、填空题(4分×5=20分)

1.【正解】2024! 2.【正解】2023 3.【正解】2024²⁰²⁴ 4.【正解】 $k \neq -\frac{1}{2}$

5.【正解】1

三、(10分)

【正解】 $|B| = a(2-n)2^{n-1}$

四、(10分)

$$\begin{bmatrix}
\mathbf{E} & \mathbf{F} & \mathbf{F}$$

五、(12分)

【正解】当a≠1且a≠-2时,AX=B有唯一解

$$X = \begin{pmatrix} \frac{2a^2 + ab + a - b - 3}{(a - 1)(a + 2)} & \frac{3a}{a + 2} \\ -\frac{3(a + b + 1)}{(a - 1)(a + 2)} & \frac{a - 4}{a + 2} \\ \frac{b + 2}{a - 1} & 0 \end{pmatrix};$$

- ① 当a=1且 $b\neq -2$ 时,AX=B 无解;
- ② 当a=1且b=-2时,AX=B有无穷多解

$$X = \begin{pmatrix} 1 & 1 \\ -k_1 - 1 & -k_2 - 1 \\ k_1 & k_2 \end{pmatrix} (k_1, k_2$$
 为任意常数);

FREADY COMPANY

③ 当a=-2时,AX=B无解.

六、(12分)

【正解】(1)

$$\mathbf{A} = \mathbf{Q} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \mathbf{Q}^T = \begin{pmatrix} -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & -\frac{1}{2} \end{pmatrix}.$$

(2) 略

七、(10分)

【正解】(1) 略

(2) AB在基 $\{a_1, a_2, a_3\}$ 下的坐标为 $(1, 0, -4)^T$.

八、(10分)

【正解】略

2022-2023 学年第一学期期末考试试卷

- 一、判断题(2分×8=16分)
- 1. 设A为n阶可逆矩阵, P(x)为非0多项式,则P(A)一定可逆。
- 2. 存在二阶矩阵 A, 使得 $A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- 3. 若 n 阶方阵 A 满足 A2=0,则 A 的秩 r(A)最大为 2.
- 4. 若 AX=0 只有零解,则非齐次线性方程组 AX=b 有唯一解,
- 5. 设 A 为 n 阶方阵,则它一定可以表达成两个可逆矩阵之和,
- 6. 设 $A=[\alpha_1,\alpha_2,\cdots,\alpha_n]=[\beta_1,\beta_2,\cdots\beta_n]^T$ 为 n 阶方阵,则由 n 维列向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 生成的向量空间与由 n 维列向量 $\beta_1,\beta_2,\cdots\beta_n$ 生成的向量空间相同。
- 7. 设 A,B 均为实对称正定矩阵,则 AB 正定.
- 8. 若n阶实对称矩阵 A 正定, 并且 A2=1, 其中 I 为单位矩阵, 则一定有 A=1.
- 二、填空题(4 分×5=20 分)

- 2. 设 A 为 n 阶 可 逆阵, |A|=2 , A^* 是 A 的 伴 随 矩 阵, 则 $\begin{bmatrix} O & A^* \\ A & O \end{bmatrix}^{-1} = _____.$
- 4. 若 A= [2 1], 矩阵 B= A³- /, 则 B 的特征值为______.
- 5. 已知二次型 $f(x_1,x_2,x_3)=x_1^2+4x_2^2+4x_3^2+2ax_1x_2-2x_1x_3+4x_2x_3$ 正定,则
- a的收值花圈是____

 $\frac{\mathbf{v}}{\mathbf{v}} = \mathbf{v} - \mathbf{v} - \mathbf{v}$

Thursday engine

Charles and

- , 4 Passe be 5, . .

** 正型影響Wine A The A Print Spanish To The Total

图、(10分)设A为n阶矩阵, a,为n维非0列向量.若

 $A\alpha_1 = 3\alpha_1$, $A\alpha_2 = 3\alpha_2 + 2\alpha_1$, $A\alpha_3 = 3\alpha_3 + 2\alpha_2$, $A\alpha_4 = 2\alpha_4$

(1)4,.42,4,能否由 /4,./42,./4,线性表出?请说明理由.

(2)山 明: a,,a,丝性无关.

THE RESERVE OF THE PARTY OF THE

五、(12 分)讨论a, b 取何值时线性方程组 $\begin{cases} ax_1 + x_2 + x_3 = 4 \\ x_1 + bx_2 + x_3 = 3 \end{cases}$ 有解,并求解该方程组.

大、(12分)设三阶实矩阵 A 使得

$$A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ -3 \end{bmatrix}, A \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, A \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -4 \end{bmatrix}$$

(1)给出 A 的特征值.

$$(2)$$
计算 A^{2022} $\begin{bmatrix} 0\\2\\1 \end{bmatrix}$.

《线性代数》 历年题 七、(10 分)已知实二次型 $f(x_1,x_2,x_3)=ax_1^2+2x_2^2+3x_3^2+2x_1x_2$ 通过正交变换 X=CY 化为标准 $by_1^2 + 3y_2^2 + y_3^2$, 求参数a, b 及正交矩阵 C.

八、(10 分)设 A 为 n 阶实矩阵,向量 $\alpha, \beta \in R^n$,

(1)讨论αβ^τ的秩.

(2)证明:存在 $a,b\in R$,使得行列式 $|A+slphaeta^T|=a+bs$ 对任意的实数scR 都成立。

2022-2023 学年第一学期期末考试试卷参考答案

一、判断题(2分×8=16分)

1. 【正解】×

【解析】设A的特征值为 λ_i ($1 \le i \le n$), 显然 $\lambda_i \ne 0$, 因为A可逆, 取多项式

$$P(x) = \prod_{i=1}^{n} (x - \lambda_i)$$

 $x \wedge P(A)$ 的特征值为 $P(\lambda)$, 显然有 0 特征值, 那么也不可逆

【考点延伸】《考试宝典》知识点 5 矩阵的逆

2. 【正解】×

【解析】假设矩阵为
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $\cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$;

則一定要有
$$\begin{cases} a^2 + bc = bc + d^2 = 0 \\ b(a+d) = 1 \end{cases}$$
 $\Longrightarrow \begin{cases} a = d \\ b = c \\ a^2 + b^2 = 0 \end{cases}$ 且 $2ab = 1$,不可能。

【考点延伸】《考试宝典》知识点 4 矩阵的概念和基本运算

3. 【正解】×

【解析】由题意可知: $r(A)+r(A) \leq n \Longrightarrow r(A) \leq \frac{n}{2}$ 。

【考点延伸】(考试宝典) 知识点 5 矩阵的逆

4. 【正解】×

【解析】设A为m imes n矩阵,由于AX = 0只有零解,因此r(A) = n,因此m > n,对于增广矩阵、

【考点延伸】(考试宝典) 知识点 17 非齐次线性方程组

S. LIEMIV

【解析】设入为 n 阶实矩阵,A=(xE+A)+(-xE),行列式|(xE+A)|是一个关于x 的 n 次多项

式,它全多有 a 个实權,因此一定有非零实数 x 使得 | (xE + A) | 不为零,一定可以找到一个 x,

を得|(-xE)|不为0、则(xE+A)、(-xE)均可逆。

【考点延伸】(考试室典) 知识点 | 打划式的概念及其性质 6. (EM) .

【解析】不妨设
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix}$ 。

【考点延伸】《考试宝典》知识点 15 向量空间

7. 【正解】错

【解析】实对称正定矩阵乘积不一定正定,需要加 AB=BA 此条件才能说明正定.

【考点延伸】《考试宝典》知识点 24 正定二次型和正定矩阵

8. 【正解】√

【解析】实对称矩阵一定可以对角化,那么存在正交矩阵T成立, $T^{-1}AT = \Lambda$.

其中 $A = diag\{\lambda_1, \lambda_2, \dots, \lambda_n\}$, 那么

$$T^{-1}A^2T = T^{-1}T = E = \text{diag}\{\lambda_1^2, \lambda_2^2, \dots, \lambda_n^2\}$$

因此 $\lambda^2 = 1$,由于A是正定矩阵,那么 $\lambda = 1$,因此A = I.

【考点延伸】《考试宝典》知识点 24 正定二次型和正定矩阵

二、填空题(4分×5=20分)

1. 【正解】(0.0.0)7

【解析】对矩阵 A 进行行变换:
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$
, $r(A) = 3$, 所以解空间为 $n - r(A) = 3 - 3 = 0$. 新以解为 $(0,0,0)^T$

所以解为(0,0,0)"。

【考点延伸】《考试宝典》知识点 16 齐次线性方程组

2. (III)
$$\begin{bmatrix} 0 & 4 \\ \frac{4}{2} & 0 \end{bmatrix}$$

【解析】根据更知阵的定义:

$$\begin{bmatrix} 0 & A^{*} \\ A & 0 \end{bmatrix}^{*} = \begin{bmatrix} 0 & A^{*} \\ (A^{*})^{*} & 0 \end{bmatrix} = \begin{bmatrix} 0 & A^{*} \\ \frac{A}{|A|} & 0 \end{bmatrix} = \begin{bmatrix} 0 & A^{*} \\ \frac{A}{2} & 0 \end{bmatrix}.$$
(4) Since 5 weak string.

【考点延伸】《考试宝典》知识点 5 矩阵的逆

3. 【正解】(3,4,4)

【解析】

 $\alpha = 1$

3a, +

【考》

4. [

【解析

【考点

5. LE

【解析】

 $D_1 = 1 >$

【考点延

三、(10分

【解析】书 D. - D.

 $= D_1 + 2^0 (L$

 $D_a = 3 + 4(2^n)$

【考点延伸】

四、(10分)

【解析】(1)(Aa,

所以 $(a_1,a_2,a_3)=($

$$\alpha = 2\beta_1 - \beta_2 + 3\beta_3 = 2(\alpha_1 - \alpha_2) - (2\alpha_1 + 3\alpha_2 + 2\alpha_3) + 3(\alpha_1 + 3\alpha_2 + 2\alpha_3)$$
$$3\alpha_1 + 4\alpha_2 + 4\alpha_3$$

【考点延伸】《考试宝典》知识点 15 向量空间

4. 【正解】 \(\lambda = 0, 26\)

【解析】
$$A^3-I=\begin{bmatrix} 13 & 13 \\ 13 & 13 \end{bmatrix}$$
,特征值对应矩阵: $\begin{bmatrix} \lambda-13 & -13 \\ -13 & \lambda-13 \end{bmatrix}$,解得: $\lambda=0$. 26.

【考点延伸】《考试宝典》知识点 19 特征值与特征向量

5. 【正解】-2<a<1

【解析】二次型对应矩阵:
$$\begin{pmatrix} 1 & a & -1 \\ a & 4 & 2 \\ -1 & 2 & 4 \end{pmatrix}$$
, 顺序主子式:

$$D_1 = 1 > 0, D_2 = \begin{vmatrix} 1 & a \\ a & 4 \end{vmatrix} = 4 - a^2 > 0, D_3 = -4a^2 - 4a + 8 > 0, \quad \text{解得} - 2 < a < 1.$$

【考点延伸】《考试宝典》知识点 24 正定二次型和正定矩阵 三、(10分)

【解析】将行列式按第一行展开: $D_n = 3D_{n-1} - 2D_{n-2}$;

$$D_n - D_{n-1} = 2(D_{n-1} - D_{n-2}) = \dots = 2^{n-2}(D_2 - D_1)$$

$$D_n = D_{n-1} + 2^{n-2}(D_2 - D_1) = D_{n-2} + 2^{n-3}(D_2 - D_1) + 2^{n-2}(D_2 - D_1) =$$

$$=D_1+2^{n}(D_2-D_1)+\cdots+2^{n-3}(D_2-D_1)+2^{n-2}(D_2-D_1)$$

=
$$D_1 + (2^{s-1} - 1)(D_2 - D_1)$$
; $D_1 = 3, D_2 = 7$, 所以

$$D_n = 3 + 4(2^{n-1} - 1) = 2^{n+1} - 1$$

【考点延伸】《考试宝典》知识点上 行列式的概念及其性质

图. (10分)

斯以
$$(u_1,u_2,u_3)=(Au_1,Au_2,Au_3)\begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
,故 u_1,u_2,u_3 能由 Au_1,Au_3,Au_3 线性表出。

(线性代数) 历年歷
$$(2)$$
有 $(A-3I)a_1=0$, $(A-3I)a_2=2a_1$, $(A-3I)a_3=2a_2$,不妨没有。 a_2 。 4. 线性用 年,则不妨意

在一组不全为零的数 k_1 , k_2 , k_3 , 满足

则

$$(A-3I)(k_1a_1+k_2a_2+k_3a_3)=2k_2a_1+2k_3a_2=0$$
 (2)
$$(A-3I)(2k_2a_1+2k_3a_2)=4k_3a_1=0$$

由于 a_1 非零,因此 $k_3=0$,带入2中得到 $k_2=0$,再带入1中,得到 $k_1=0$,与 a_1 · a_2 · a_3 战性相关 矛盾, 因此 01, 02, 03线性无关.

【考点延伸】《考试宝典》知识点 13 等价向量组

五、【解析】方程组对应矩阵
$$A = \begin{bmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 2b & 1 \end{bmatrix}$$

$$|A| = \begin{vmatrix} a & 0 & 1 \\ 1 & b - 1 & 1 \\ 1 & 2b - 1 & 1 \end{vmatrix} = a \begin{vmatrix} b - 1 & 1 \\ 2b - 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & b - 1 \\ 1 & 2b - 1 \end{vmatrix} = -ab + b$$

当 $b \neq 0$ 且 $a \neq 1$ 时,方程组只有唯一解,根据克拉默法则,解为

$$\begin{cases} x_1 = \frac{-2b+1}{b(1-a)} \\ x_2 = \frac{1}{b} \\ x_3 = \frac{-2ab+4b-1}{b(1-a)} \end{cases}$$

当 b=0 时,
$$\overline{A} = \begin{bmatrix} a & 1 & 1 & 4 \\ 1 & 0 & 1 & 3 \\ 1 & 0 & 1 & 4 \end{bmatrix} = \begin{bmatrix} a & 1 & 1 & 4 \\ 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
,方程组无解,

当 a=1 时,
$$A = \begin{bmatrix} 1 & 1 & 14 \\ 1 & b & 13 \\ 1 & 2b & 14 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 4 \\ 0 & b-1 & 0-1 \\ 0 & b & 0 & 1 \end{bmatrix}$$
,当 $b = \frac{1}{2}$ 时,方程组有解,解为: $\begin{cases} x_1 = 2^{-k} \\ x_2 = 2 \end{cases}$, $x_1 = k$

WE

特征

当 a=1 时, $b \neq \frac{1}{2}$ 时, 方程组无解。

【考点延伸】(考试宝典) 知识点 17 非齐次线性方程组

六、(12分)

【解析】(1)A 的特征值: -3, 0, 2.

(2)A 的特征值: -3, 0, 2 对应的特征向量分别为:

$$A^{2022} \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = A^{2022} \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \right) = \lambda_1^{2022} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \lambda_2^{2022} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = (-3)^{2022} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

【考点延伸】《考试宝典》知识点 19 特征值与特征向量 七、(10分)

【解析】二次型对应矩阵A为 $\begin{bmatrix} a & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. 由題意可知矩阵的特征值为 b,3,1;

$$|\lambda E - A| = \begin{vmatrix} \lambda - a & -1 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix} = (\lambda - 3) [(\lambda - a)(\lambda - 2) - 1] = 0,$$

 $将\lambda=1$ 代入,解得a=2,特征值为 b,3,1. 故 b=3:

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -1 & 0 \\ -1 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 3 \end{vmatrix}, \quad \lambda = 3 \text{ lef}, \quad |\lambda E - A| = \begin{vmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix},$$

特征向量
$$\alpha_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$;

$$\lambda = 1 \text{ H}^{\frac{1}{2}}, \ |\lambda E - A| = \begin{vmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & -2 \end{vmatrix}, \ \alpha_3 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{bmatrix},$$

$$C = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & 1 & 0 \end{bmatrix}.$$

【考点延伸】《考试宝典》知识点 21 实对称矩阵的对角化

八、(10分)

【解析】(1)当 α . β 有一个或均为0向量时,秩为0, 否则秩为1。

$$(2) \triangleq |\mathbf{A} + s\boldsymbol{\alpha}\boldsymbol{\beta}^{T}| = \begin{vmatrix} \mathbf{A}_{1} + s\boldsymbol{\alpha}_{1}\boldsymbol{\beta}^{T} \\ \mathbf{A}_{2} + s\boldsymbol{\alpha}_{2}\boldsymbol{\beta}^{T} \\ \vdots \\ \mathbf{A}_{n} + s\boldsymbol{\alpha}_{n}\boldsymbol{\beta}^{T} \end{vmatrix} = \begin{vmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} + s\boldsymbol{\alpha}_{2}\boldsymbol{\beta}^{T} \\ \vdots \\ \mathbf{A}_{n} + s\boldsymbol{\alpha}_{n}\boldsymbol{\beta}^{T} \end{vmatrix} + \begin{vmatrix} s\boldsymbol{\alpha}_{1}\boldsymbol{\beta}^{T} \\ \mathbf{A}_{2} + s\boldsymbol{\alpha}_{2}\boldsymbol{\beta}^{T} \\ \vdots \\ \mathbf{A}_{n} + s\boldsymbol{\alpha}_{n}\boldsymbol{\beta}^{T} \end{vmatrix}$$

$$= \begin{vmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_n + s \mathbf{a}_n \boldsymbol{\beta}^T \end{vmatrix} + \begin{vmatrix} \mathbf{A}_1 \\ s \mathbf{a}_2 \boldsymbol{\beta}^T \\ \vdots \\ \mathbf{A}_n + s \mathbf{a}_n \boldsymbol{\beta}^T \end{vmatrix} + \begin{vmatrix} s \mathbf{a}_1 \boldsymbol{\beta}^T \\ \mathbf{A}_2 + s \mathbf{a}_2 \boldsymbol{\beta}^T \\ \vdots \\ \mathbf{A}_n + s \mathbf{a}_n \boldsymbol{\beta}^T \end{vmatrix}$$

$$=\begin{vmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ A_2 \\ \vdots \\ s\alpha_n \beta^T \end{vmatrix} + \dots + \begin{vmatrix} A_1 \\ s\alpha_2 \beta^T \\ \vdots \\ A_n + s\alpha_n \beta^T \end{vmatrix} + \begin{vmatrix} s\alpha_1 \beta^T \\ A_2 + s\alpha_2 \beta^T \\ \vdots \\ A_n + s\alpha_n \beta^T \end{vmatrix}$$

故令第一项为a,由于后面几项均为s的函数,故可令其为bs,

所以存在 $a,b \cdot R$,使得行列式 $|A + sa\beta^T| = a + bs$ 对任意的实数 $s \in R$ 都成立.

【考点延伸】《考试宝典》知识点 2 行列式的展开

如帝反馈错误或者查看实时勒误 请扫描关注并回复本资料编码【HH51】 一.判断题

1.设 A.B 比

2. 设 A 为 /

3.己知 n 4

交基.

4.设 A 为

6.设4为

7.设 1.8 5

式相同.

8. 若力阶分

..填空機 1.上班34

次线性与附

2. 改/为/

5. 次型/(.

2021-2022 学年第一学期期末考试 A 卷

一.判断题(2 分×8=16 分)

1.设A,B均为n阶方阵且6AB=3A+2B,则AB=BA.

2.设 A 为 n 阶方阵,则(aA)*=a"A*,其中 a 为常数.

3.已知 n 维列向量 $\alpha=\left[\frac{1}{2},0,\cdots,0,\frac{1}{2}\right]^{r}$,则 $A=I-4\alpha\alpha^{r}$ 的列向量是 n 维向量空间的一组标准正 交基.

4.设 A 为 n 阶方阵, α 为 n 维列向量,满足秩的等式: $r(\begin{bmatrix} A & \alpha \\ \alpha^T & 0 \end{bmatrix}) = r(A)$,则齐次线性方程组 $\begin{bmatrix} A & \alpha \\ \alpha^T & 0 \end{bmatrix} X = 0$ 只有零解.

5.若 $A^2 = 0, A \neq 0$,则必不可相似于对角矩阵.

6.设A为n阶方阵, $r(\lambda_0 I - A) = t$,则 λ_0 必为A的n-t 重特征值.

7.设A,B均为实对称矩阵,则存在正交矩阵Q,使得 $Q^TAQ=B$ 的充分必要条件是A,B的特征多项 式相同.

8.若n阶实对称矩阵A正定,则A的主对角线上元素都大于0.

二.填空题(4 分×5=20 分)

1.已知 3 维列向量 a_1, a_2, a_3 满足 $a_1 + 2a_2 + 3a_3 = 0$, a_2, a_3 线性无关,3 阶方阵 $A = [a_1, a_2, a_3]$,则齐 次线性方程组 AX=0 的通解为_____

2.设I为n阶单位阵,则 $\begin{bmatrix} I & I \\ 0 & I \end{bmatrix}^{-1} = _____.$

3.设三维向量 α 在基 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标为 $\left[3,2,1\right]^T$,则 α 在基 $\beta_1=\alpha_1,\beta_2=\alpha_1+\alpha_2$, $\beta_3=\alpha_1+\alpha_2+\alpha_3$ 下的坐标

4.若
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & a & -c \\ 2 & -c & b \end{bmatrix}$$
合同于 $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, 则 A 的迹 $tr(A) =$ _____.

5.二次型 $f(x_1,x_2,x_3) = (-2x_1 + x_2 - x_3)(3x_1 - 2x_2 + 5x_3)$ 的正惯性指数为____

(1)求D: (2)求D的第一行元素对应的代数余子式之和 $\sum_{j=1}^{n} A_{ij}$.

五.(12分)已知非齐汉

- (1)求 a,b,c 的值及该
- (2)该非齐次线性方程

图
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, 且矩阵 X 满足: $AXA + BXB = AXB + BXA$$$

(1)求(A-B)-1; (1)求X.

大.(12分)设三阶实对

$$a_1 - 2a_3 = [-3, 0, 6]$$

$$(1)证明A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

五.(12 分)已知非齐次线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -1 \\ ax_1 + bx_2 + 5x_3 - x_4 = -1 \\ 2x_1 + x_2 + 3x_3 - 3x_4 = c \end{cases}$$
 《线性代数》

a)求 a,b,c 的值及该非齐次线性方程组的通解.

②)该非齐次线性方程组有多少线性无关的解?说明理由.

大.(12 分)设三阶实对称矩阵 $A=[a_1,a_2,a_3]$ 有二重特征值 $\lambda_1=\lambda_2=2$,且满足:

$$[-2\alpha_3 = [-3, 0, 6]^T$$
.

I.

(1)证明
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$$

[2]求正交变换X = CY,将 $f(x_1, x_2, x_3) = X^T(A + A^{-1})X$ 化为标准形.

《线性代数》 历年题 七.(10 分)已知 A 为三阶方阵, X_1, X_2 为齐次方程(I-A)X=0 的基础解系,且 |A-2I|=0

(1)证明 4 可以相似对角化;

(2)求(A-I)(A-2I).

八.(10分)设A为n阶实矩阵,证明A为正交矩阵的充要条件是:对任意 $\alpha,\beta \in \mathbb{R}^n, (A\alpha,A\beta) = (\alpha,\beta).$ 其中 $(\alpha,\beta) = \alpha^T \beta$ 为 \mathbb{R}^n 中的内积.

一.判断题

1.【正解】✓

【解析】6AB

 $\Rightarrow (2B-I)$

【考点延伸】

2. 【正解】×

【解析】 aA =

【考点延伸】

3.【正解】✓

【解析】 42=

 $=I=AA^{T}=$

【考点延伸】

4.【正解】×

【考点延伸】《

5.【正解】✓

【解析】由42:

r(A), 又 $A \neq 0$

【考点延伸】《

6.【正解】×

【解析】考虑矩

$$\to \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ \emptyset$$

(线性代数) 历年舞

一.判断题

1.【正解】 ✓

【解析】
$$6AB = 3A + 2B \Rightarrow 3A(2B - I) = 2B \Rightarrow (3A - I)(2B - I) = I \Rightarrow 2B - I = (3A - I)^{-1}$$

 $\Rightarrow (2B - I)(3A - I) = I \Rightarrow 6BA = 3A + 2B \Rightarrow BA = AB$

【考点延伸】《考试宝典》知识点 4-9, 题型 3, 求抽象矩阵的逆矩阵

2.【正解】×

【解析】
$$aA = a(a_{ij})_{n \times n}$$
 ,则 $(aA)^* = a^{n-1}(A_{ij})_{n \times n} = a^{n-1}A^*$

【考点延伸】《考试宝典》知识点 4-9, 题型 4: 伴随矩阵的计算

3.【正解】✓

【解析】
$$A^2 = (I - 4\alpha\alpha^T)(I - 4\alpha\alpha^T) = I - 8\alpha\alpha^T + 16\alpha(\alpha^T\alpha)\alpha^T = I - 8\alpha\alpha^T + 8\alpha\alpha^T = I = AA^T = A^TA$$
,故 A 是正交阵,所以 A 的列向量是一组标准正交基。

【考点延伸】《考试宝典》知识点 12: 极大线性无关组,知识点 14: 标准正交向量组

4.【正解】x

【解析】 若
$$\begin{pmatrix} A & \alpha \\ \alpha^r & 0 \end{pmatrix}$$
 $X = 0$ 仅有零解,则 $r\begin{pmatrix} A & \alpha \\ \alpha^r & 0 \end{pmatrix} = n+1 > r(A)$,与题设矛盾

【考点延伸】《考试宝典》知识点 16: 齐次线性方程组

5.【正解】 🗸

【解析】由 $A^2=0\Rightarrow\lambda_A=0$,因此 $(\lambda_AI-A)x=0=Ax$ 必有 n 个线性无关解而dim(N(A))=n-r(A),又 $A\neq 0$,故dim(N(A))< n,这表明 A 不可能相似于对角阵

【考点延伸】《考试宝典》知识点 21: 矩阵相似对角化

6.【正解】×

【解析】考虑矩阵
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
,则 $\lambda = 3$ 是 2 重特征值,但是 $\lambda I - A = \begin{pmatrix} 0 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$\rightarrow \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ \ \text{则} \ r(\lambda I - A) = 2 \ , \ \ \text{此时} \ n - t = 1 \ , \ \ \text{与} \ \lambda = 3 \, \text{起} \ 2 \, \text{重特征值矛盾}.$$

【考点延伸】《考试宝典》知识点 19: 特征值与特征向量

7.【正解】 ✓

专

7. 【正解】 \checkmark 【解析】) 充分性: A, B 特征多项式相同,则存在对角阵 $A = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$, $Q_1^T A Q_1 = A = Q_1^T B Q_1$ 【解析】 $1^{16.7}$ $1^{17.6}$ 1^{1 为几文明 ②必要性:由于 Q 是正交阵,因此 $Q^T = Q^{-1}$,故 A 与 B 相似,则 A, B 具有相同的解 **非顶式**

【考点延伸】《考试宝典》知识点 20: 矩阵相似对角化,知识点 21: 实对称矩阵的对角化 8【正解】✓

【解析】由正定阵的性质可得,或由 $e_i^T A e_i = a_{ii} > 0$ 即知

【考点延伸】《考试宝典》知识点 24: 正定二次型和正定矩阵

二.填空廳

1.【正解】k(1,2,3)7, k为任意常数

【解析】由 $a_2.a_3$ 线性无关,则 $r(A) \ge 2$,又由 $a_1 + 2a_2 + 3a_3 = 0$,则r(A) < 3,故r(A) = 2. ① dim(N(A))=3-2=1, 易知 $(1,2,3)^T$ 是Ax=0的一个解,故通解为 $x=k(1,2,3)^T$, 其中k 矩 **多常数**

【考点延伸】《考试宝典》知识点 16: 齐次线性方程组

2 [IEM] (1 -1)

$$\mathbf{I} \neq \mathbf{I} \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{I} & -\mathbf{I} \\ \mathbf{0} & \mathbf{I} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \end{pmatrix}$$

【考点延伸】《考试宝典》知识点 5: 逆矩阵

3 【证解】(1,1,1)。

【解析】
$$(\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3)P$$
,其中 $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$,故 $\alpha = (\alpha_1,\alpha_2,\alpha_3)(3, 2, 1)^T$
 $= (\beta_1, \beta_2, \beta_3)P^{-1}(3, 2, 1)^T = (\beta_1,\beta_2,\beta_3)\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = (\beta_1,\beta_2,\beta_3)(1,1,1)^T$.

24 正版書 O length

24 正版第 O 1802402445 / 2

【考

4.【正解】9

【解析】由题 $\begin{pmatrix} 1 & -2 & 2 \\ -2 & a & -c \\ 2 & -c & b \end{pmatrix}$ 与diag(3,0,0)合同,则 A 与diag(3,0,0)有相同的正负惯性指数,

故
$$r(A)=1$$
, 又 $\begin{pmatrix} 1 & -2 & 2 \\ -2 & a & -c \\ 2 & -c & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 \\ 0 & a-4 & 4-c \\ 0 & a-c & b-c \end{pmatrix}$, 从而 $a=4$, $c=4$, $b=c$, 故

$$tr(A) = a + b + 1 = 9$$

【考点延伸】《考试宝典》知识点 23: 矩阵的合同

5.【正解】1

【解析】令
$$z = \begin{pmatrix} -2 & 1 & -1 \\ 3 & -2 & 5 \\ 0 & 0 & 1 \end{pmatrix} x = Cx$$
,则 $|C| = 4 - 3 = 1$,C可逆, $f(x) = \frac{z = Cx}{2} z_1 z_2$

再令
$$z = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} y = By$$
,则 $|B| = -1 - 1 = -2$,B可逆,故 $f(x) = z_1 z_2 \xrightarrow{z = By} y_1^2 - y_2^2$

故正惯性指数为1.

【考点延伸】《考试宝典》知识点 23: 矩阵的合同,知识点 24: 正定二次型和正定阵,知识点 22: 二次型

三(1)【解析】
$$\begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = \begin{vmatrix} x + (n-1)a & x + (n-1)a & x + (n-1)a & \cdots & x + (n-1)a \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & a & a & \cdots & x \end{vmatrix}$$

$$=[x+(n-1)a]\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = [x+(n-1)a]\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x-a & 0 & \cdots & 0 \\ 0 & 0 & x-a & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & x-a \end{vmatrix}$$

$$=(x-a)^{n-1}[x+(n-1)a]$$

【考点延伸】《考试宝典》知识点 3:几种特殊的行列式

2,则 k为任

 $Q_2^T B Q_2$

(2) []
$$A_{11} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = (x-a)^{n-1}$$

【考点延伸】(考试宝典) 知识点 4-9, 题型 4: 伴随矩阵的计算

图。(1)【解析】 $AXA - AXB + BXB - BXA = I \Rightarrow (A - B)X(A - B) = I$,由题知A - B可造。

$$X = (A - B)^{-2}$$
, $\overline{m}(A - B)^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

【考点延伸】《考试宝典》知识点 4-9, 题型 3: 求抽象矩阵的逆矩阵

$$(2) \ \begin{array}{c} (2) \ (3) \ (4) \ (4) \ (2) \ (4) \$$

【考点延伸】《考试宝典》知识点 4-9,题型 3:求抽象矩阵的逆矩阵

五.(1)【解析】(A:b)=
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ a & b & 5 & -1 & 1 & -1 \\ 2 & 1 & 3 & -3 & 1 & c \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & -1 & 1 & -5 & c+2 \\ 0 & 0 & 5+b-2a & 4a-5b-1 & a-1+(c+2)(b-a) \end{pmatrix},$$

 $\operatorname{Hr}(A)=2$, Ax=b有解, 故r(A:b)=2,

$$\text{W.m} \begin{cases} 5+b-2a=0 \\ 4a-5b-1=0 \\ a-1+(c+2)(b-a)=0 \end{cases} \Rightarrow a=4,b=3,c=1$$

因此(
$$A:b$$
) $\rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & 2 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 故方程组的通解为

(2)【解析】非齐次线性万程组的线性无关的解的个数为11-1-4-2+1=3。 【考点延伸】(考试宝典》知识点 17; 非齐次线性万程组

25 正版版 Q 1802493445 / 3091371067 首徵 huakeda1037

大(1) 【

因此明

【考点

(2) 【解

【考点 七.(1)

2 重林 【考点

(2) [f

A-2

【考点

八. [

②充分

的任意

【考点

(2) [
$$m \neq 1$$
] $\sum_{i=1}^{n} A_{ii} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = (x-a)^{n-1}$

【考点延伸】(考试宝典) 知识点 4-9, 题型 4: 伴随矩阵的计算

图
$$AXA - AXB + BXB - BXA = I \Rightarrow (A - B)X(A - B) = I$$
, 由题知 $A - B$ 可读

$$X = (A - B)^{-2}$$
, $\overline{m}(A - B)^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

【考点延伸】《考试宝典》知识点 4-9, 题型 3: 求抽象矩阵的逆矩阵

(2) **C C A E A T**
$$X = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^2 = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

【考点延伸】《考试宝典》知识点 4-9,题型 3: 求抽象矩阵的逆矩阵

五月)【解析】(A:b)=
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & -1 \\ a & b & 5 & -1 & 1 & -1 \\ 2 & 1 & 3 & -3 & 1 & c \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & -1 \\ 0 & -1 & 1 & -5 & c+2 \\ 0 & 0 & 5+b-2a & 4a-5b-1 & a-1+(c+2)(b-a) \end{pmatrix},$$

由r(A) = 2, Ax = b有解, 故r(A : b) = 2,

$$4a - 5b - 1 = 0$$

$$a - 1 + (c + 2)(b - a) = 0$$

$$3a = 4, b = 3, c = 1$$

因此
$$(A:b) \rightarrow \begin{pmatrix} 1 & 0 & 2 & -4 & 2 \\ 0 & 1 & -1 & 5 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
,故方程组的通解为

【考点延伸】《考试宝典》知识点 17: 非齐次线性方程组

(2)【解析】非齐次线性方程组的线性无关的解的个数为用一个+1=4-2+1=3。 【考点矩件】(考试宝典》知识点 17: 非齐次线性方程组

因此91

【考点

(2) 【解

七.(1)

2重報 【考点

(2) [

A - 2

【考点

八.[

②充分

的任意

【考点

大.(1)【解析】由 $a_1-2a_2=A(1,0,-2)^T=(-3,0,6)^T=-3(1,0,-2)^T$,故 $\lambda_1=-3$,由A实对

称,故存在正文阵
$$Q$$
, $A = QAQ^{T} = (q_{1}, q_{2}, q_{3}) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} q_{1}^{T} \\ q_{2}^{T} \\ q_{3}^{T} \end{pmatrix}$, 易知 $q_{3} = \left(\frac{1}{\sqrt{5}}, 0, -\frac{2}{\sqrt{5}}\right)^{T}$,

 $q_1^T q_1 = q_1^T q_2 = 0$, $q_1^T q_2 = 0$, $\bar{m} = 5$ $\bar{m} = \frac{1}{\sqrt{5}} x_1 - \frac{2}{\sqrt{5}} x_2 = 0$ $\bar{m} = k_1 (2, 0, 1)^T + k_2 (0, 1, 0)^T$

$$\bigotimes q_1 = \left(\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right)^T, q_2 = (0, 1, 0)^T, \quad \bigotimes Q = \begin{pmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \end{pmatrix}, \quad \bigotimes A = QAQ^T = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{pmatrix}$$

【考点延伸】《考试宝典》知识点 16: 齐次线性方程组,知识点 21: 实对称矩阵的对角化 (2)【解析】由(1)知 $A = QAQ^{T}$,则 $A^{-1} = QA^{-1}Q^{T}$,故

$$A + A^{-1} = Q(A + A^{-1})Q^{T} = Q \operatorname{diag}\left(\frac{5}{2}, \frac{5}{2}, -\frac{10}{3}\right)Q^{T}$$

$$=\frac{5}{2}y_1^2+\frac{5}{2}y_2^2-\frac{10}{3}y_1^2$$

逆,故

【考点延伸】《考试宝典》知识点 21:实对称矩阵的对角化,知识点 27:二次型

七(1)【解析】由于 x_1, x_2 是方程(1-A)x=0的基础解系,故r(1-A)=1,又|A-2I|=0,故A的

一个特征值为 2. 又由r(I-A)=1, 得 |I-A|=0, 所以 A 的一个特征值为 1. 且为特征多项式的

2重根,因此 A 可以相似对角化

【考点延伸】《考试宝典》知识点 20: 矩阵相似对角化

(2)【解析】由(1)知, 存在P, 使A=PAP = Pdiag(1,1,2)P , 则A-I=Pdiag(0,0,1)P-1

 $A-2I = P \operatorname{diag}(1,1,0)P^{-1}$, $\operatorname{diag}(A-1)(A-2I) = P \operatorname{diag}(0,0,0)P^{-1} = 0$

【考点延伸】(考试宝典》知识点 9、矩阵的秩和矩阵等价、知识点 20、矩阵相似对角化

人。【解析】①必要性: 若 A 是正交降,则 $(Aa,Ab)=a^{\dagger}A^{\dagger}AB=a^{\dagger}B=a^{\dagger}B=(a,B)$

②允分性: $\chi_i(Aa,A\beta) = (a,\beta)$ 好 $\forall a$, $\beta \in R^*$ 成立,则 $a'A'A\beta = a'\beta \Rightarrow a'(A'A-1)\beta = 0$,由 a,β

的任意性,则必有 4" 4 = 1 ,即 4 为正交阵

【考点延伸】《考试室典》知识点 19-24, 题型 8, 正文矩阵的性质和证明

1

2019-2020 学年第一学期期末考试 A 卷

	、 判断题 (2分×8=16分)	
-	、 判断地 、 则对任意的自然数k,	均有 $(AB)^* = A^*B^*$.
1.	、 判断題($2分\times8=16分)$ 若矩阵 A,B 满足 $AB=BA$,则对任意的自然数 k ,	

- 2. 设C是一个正交矩阵,则C的行列式为 1
- 关.
- 4. 设R"为n维实向量的全体,设 $\alpha \in R$ "且 α 与R"中所有向量都正交,则 α 必为0向量。
- 5. 设A为m×n矩阵, B是n×m矩阵, 若m>n, 则必有AB的行列式为 0.
- 6. 设A是一个非零的n阶方阵,若存在一个正整数k使得 $A^k = 0$,则A必不可相似对角k.
- 7. 若A是一个n阶正定矩阵,I是n阶单位矩阵,则A+I的行列式大于 1.
- 8. 设A是一个 $m \times n$ 矩阵,B是一个 $n \times p$ 矩阵,且 $A \ne 0$,若AB = 0,则B的行向量组一定线性 关.

填空题 (4分×5=20分)

- 1. 己知A为 3 阶方阵,其行列式|A|=2。用 $|A^*|$ 表示A的伴随矩阵 A^* 的行列式, A^T 表示A的特置。 则/4*|·AT的行列式的值为_____
- 2. 设方阵A满足A²-3A+I=0, 其中I是单位阵。若未知方阵B满足AB=A+B, 则 ______(表示成A的矩阵多项式).
- 3. 已知3阶方阵A的特征值为 $1,\sqrt{2},\pi$,则矩阵 $A-A^2$ 的行列式的值为 ____
- 4. 设 A 为 3 阶方阵, β 是一个三维向量,设 $\{\alpha_1,\alpha_2,\alpha_3\}$ 是 A 的列向量组且秩为 2. 若 $\alpha_3=2\alpha_1$ 是 $\beta = a_1 - 3a_2$,则非齐次线性方程组 $AX = \beta$ 的通解为___
- 5. 若二次型 $f(x_1,x_2,x_3)=2x_1^2+x_2^2+x_3^2+2x_1x_2+tx_2x_3$ 是正定的,则t的取值范围为。

四、

₹. (

己知知

值范围

如本衙

$$\leq$$
、(8分) 计算 n 阶行列式 $D_n = \begin{vmatrix} x+1 & x & \cdots & x \\ x & x+\frac{1}{2} & \cdots & x \\ \vdots & \vdots & & \vdots \\ x & x & \cdots & x+\frac{1}{n} \end{vmatrix}$

(10分) 四、

已知矩阵
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & t \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 3 & 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}, 分别确定t的取值或者取$$

值范围, 使得A与B等价, A与C相似, A与D合同.

五、(12分)

已知线性方程组
$$\begin{cases} x_1 + 2x_2 + 4x_3 + 2x_4 = 2\\ x_2 + 2x_3 - x_4 = 1\\ 3x_1 - x_2 - ax_3 + 15x_4 = 3\\ 2x_1 - 3x_2 - 6x_3 + 14x_4 = b + 2 \end{cases}$$

讨论方程组解的情况,并在方程组有无穷多解时(如果存在的话),求出方程组的通解,

六、(12分)

此 A 为 , 次型 $f(x_1,x_2,x_3)=3x_1^2+ax_2^2+3x_3^2+4x_1x_2+4x_2x_3+8x_3x_1$ 对应的对称矩阵,已知 8 是 8 的 一个特征值,求 a 及正交矩阵 C 使得 $C^{-1}AC$ 为对角矩阵。

组。

设

 $\{\alpha$

七 (12分)

 $_{\partial \alpha_1,\alpha_2,...,\alpha_m},\beta_1,\beta_2,...,\beta_n$ 都是 d 维向量,其中 $m \ge n \ge 2$,记 $\alpha_{m+1}=\alpha_1$,已知向量组 $\{\alpha_1,\alpha_2,...,\alpha_m\}$ 线性 无关,且

$$\beta_1 = \alpha_1 + \alpha_2, \beta_2 = \alpha_2 + \alpha_3, \dots, \beta_{n-1} = \alpha_{n-1} + \alpha_n, \beta_n = \alpha_n + \alpha_{n+1}$$

试型断向量组 $\{\beta_1,\beta_2,...,\beta_n\}$ 的线性相关性和线性无关性

八、(10分)

设AE一个 $m \times n$ 矩阵, β 是一m维向量, A^T 表示矩阵A的转置。证明:若 AA^T 可逆,则线性方程 $\pm AX = \beta$ 的解存在,如果将条件改为 A^TA 可逆呢?

2019-2020 学年第一学期期末考试 A 卷参考答案

判断题 (2分×8=16分)

1. 【正解】正确

【解析】下面用数学归纳法给出证明:

当k=1时,(AB)1=A1B1, 命题成立

当k = n时,假设 $(AB)^n = A^nB^n$ 成立

剛当k = n + 1时,有 $(AB)^{n+1} = (AB)^n (AB) = A^n B^n AB = A^n B^{n-1} AB^2 = \dots = A^{n+1} B^{n+1}$

所以命题得证

【考点延伸】《考试宝典》知识点 4: 矩阵的概念和基本运算

2. 【正解】错误

【解析】因为C是正交矩阵,所以 $C^rC=E$,取行列式得 $|C|^2=1\Longrightarrow |C|=\pm 1$

【考点延伸】《考试宝典》知识点 19-24【重要题型】题型 8: 正交矩阵的性质和证明

3. 【正解】错误

【解析】反例: 取
$$a_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $\beta_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, 满足所有题设要求

但是
$$a_1 + \beta_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $a_2 + \beta_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 明显它们是线性无关的

【考点延伸】《考试宝典》知识点 11: 向量组的线性相关和线性表示 4. 【正解】正确

Ŧ

【解析】设a=[a,,a,,...,a,] , 依次取向量

則有 $(a, \epsilon_i) = 0$ (i = 1, 2, ..., n),故而有 $a_i = 0$ (i = 1, 2, ..., n),即 $\alpha = \vec{0}$

【考点延伸】(考试宝典) 知识点 10; 向量的概念与运算

5. 【正解】止确

【解析】因为 $R(AB) \in R(A) \in \min\{m,n\} = n < m$,而AB是一个 $m \times m$ 矩阵,故|AB| = 0

【考点延伸】(考试宝典) 知识点 4-9【直要圈型】题型 6: 矩阵的秩 6. 【正解】止编

【解析】不妨反设A可相似对角化,则存在可逆矩阵P,使得A=P 'diag $(\lambda_1,\lambda_2,...,\lambda_s)P$ 22 正版官 Q 1802493445 / 3091371067 首後 huakeda1037

从而 阶方

【考

7.

【解核

故而

【考点

8. C

【解析

向量组

【考点

i. (I

【解析】

从而归

【考点及

2. (E)

【解析】

又因为书

所以B=

【考点延伸

3. 【正解

【解析】令

所以以一个

【考点延伸】

【正解】

(线性代数) 历年题

2019-2020 学年第一学期期末考试 A 卷参考答案

判断题 (2分×8=16分)

1. 【正解】正确

【解析】下面用数学归纳法给出证明:

当k=1时, $(AB)^1=A^1B^1$,命题成立

当k=n时,假设(AB)"=A"B"成立

则当k = n + 1时,有 $(AB)^{n+1} = (AB)^n (AB) = A^n B^n AB = A^n B^{n-1} AB^2 = \dots = A^{n+1} B^{n+1}$

所以命题得证

【考点延伸】《考试宝典》知识点 4: 矩阵的概念和基本运算

2. 【正解】错误

【解析】因为C是正交矩阵,所以 $C^{\dagger}C=E$,取行列式得 $|C|^2=1\Longrightarrow |C|=\pm 1$

【考点延伸】《考试宝典》知识点 19-24【重要题型】题型 8: 正交矩阵的性质和证明

3. 【正解】错误

₹

【解析】反例: 取
$$a_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $\beta_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\beta_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, 满足所有题设要求

但是
$$\mathbf{a}_1 + \boldsymbol{\beta}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, $\mathbf{a}_2 + \boldsymbol{\beta}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 明显它们是线性无关的

【考点延伸】(考试宝典) 知识点 11: 向量组的线性相关和线性表示

4. 《正解》正确

【解析】设a = [a1,a2,...,an] r, 依次取向量

$$e_1 = [1,0,0...,0], e_2 = [0,1,0,...,0], ..., e_n = [0,0,0,...,1]$$

 $\{1,2,...,n\}, \quad \text{dim} \{a_i = 0,0,...,0\}, ..., e_n = [0,0,0,...,1]$

则有(u,e,)=0(i=1,2,...,n),故而有 $u_i=0$ (i=1,2,...,n),即 $\alpha=\vec{0}$

【考点延伸】(考试宝典》知识点 10;向量的概念与运算

5. [##] ##

【解析】因为 $K(AB) \leq K(A) \leq \min\{m,n\} = n < m$,而AB 是一个 $m \times m$ 矩阵,故|AB| = 0【考点延伸】(考试室與) 知识点 4-9【重要题型】趣型 6, 矩阵的秩

6. 【正解】』编

【解析】不妨反设A可相似对角化,则存在可逆矩阵P,使得A=P 'diag $(\lambda_1,\lambda_2,...,\lambda_n)P$

从而人

阶方图

【考点

7. [.

【解析

故而区

【考点

8. KI

向量组

【解析

【考点

1. KIE

【解析】

从而 1/4*

【考点列

2. 【正

【解析】

又因为4

所以8=(

【考点延伸

3. 【正解

【解析】令

所以以一个

【考点延伸】

【正解】

正版官 Q 1802493445 / 3091371067 肯微 huakeda1037 山上青江

严禁盗印盗卖 侵权必免

从而 $A^k=P^{-1}\mathrm{diag}(\lambda_1^k,\lambda_2^k,...,\lambda_n^k)P=O\Longrightarrow \lambda_i=0 (i=1,2,...,n)\Longrightarrow A=O$,这和A是一个非零的n阶方阵产生矛盾, 所以命题正确

【考点延伸】《考试宝典》知识点 20: 矩阵的相似对角化

7. 【正解】正确

【解析】设A的特征值分别为 $\lambda_1,\lambda_2,...,\lambda_n(\lambda_i>0)$,则A+I的特征值为 $1+\lambda_1,1+\lambda_2,...,1+\lambda_n$ 故而 $|A+I| = (1+\lambda_1)(1+\lambda_2).....(1+\lambda_n) > 1$

【考点延伸】《考试宝典》知识点 19-24【重要题型】题型 7: 正定矩阵的性质和证明 8. 【正解】正确

【解析】因为 $AB=0\Longrightarrow R(A)+R(B)\leqslant n$,因为 $A\neq 0$,故而 $R(B)\leqslant n$,所以B非行满秩。其行 向量组一定线性相关

【考点延伸】《考试宝典》知识点 10-15【重要题型】题型 1; 利用矩阵的秩证明线性相关性 二、 填空题 (4分×5=20分)

1. 【正解】128

【解析】由题意有 $AA^* = |A|E = 2E \Longrightarrow A^* = 2A^{-1} \Longrightarrow |A^*| = 2^3|A^{-1}| = 4$

从而 $|A^*|A^T| = |4A^T| = 4^3|A| = 64 \times 2 = 128$

【考点延伸】《考试宝典》知识点 4-9【重要题型】题型1:矩阵的运算与矩阵行列式的计算

2. 【正解】 42-24

【解析】 $AB = A + B \Longrightarrow (A - I)B = A$

又因为 $A^2 - 3A + I = 0 \Longrightarrow A^2 - 3A + 2I = I \Longrightarrow (A - 2I)(A - I) = I \Longrightarrow (A - I)^{-1} = A - 2I$

Fig. $B = (A - I)^{-1}A = (A - 2I)A = A^2 - 2A$

【考点延伸】《考试宝典》知识点 5;矩阵的逆

3. 【证解】0

=0

 $\{y_i\} \neq f(x) = x - x^2, \ f(1) = 0, f(\sqrt{2}) = \sqrt{2} - 2, f(x) = x - x^2$

 $|h_1||J_1||A - A^2| = f(1)f(\pi)f(\sqrt{2}) = 0$

【考点延伸】《考试室典》知识点 20: 知阵的相似对角化

(正解) c 2 + [1] (c 可为任意常数)

下面考虑 AX=0 的基础解系,因为R(A)=2,3-R(A)=1,且 $[\alpha_1,\alpha_2,\alpha_3]$ $\begin{bmatrix} 0\\2\\-1\end{bmatrix}=2\alpha_2-\alpha_3=0$

所以
$$\begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
 是 $AX = 0$ 的一个基础解系,综上 $AX = \beta$ 的通解为 $c \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}$ $(c$ 可为任意意数)

【考点延伸】《考试宝典》知识点 17: 非齐次线性方程组

(IEW) -√2 < t < √2

【解析】此二次型对应的矩阵
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & \frac{t}{2} \\ 0 & \frac{t}{2} & 1 \end{bmatrix}$$
,由二次型正定可知:

$$2 > 0$$
. $\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} > 0$, $\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & \frac{t}{2} \\ 0 & \frac{t}{2} & 1 \end{vmatrix} > 0$

$$4.60 - \sqrt{2} < 1 < \sqrt{2}$$

ń

【考点延伸】(考试宝典) 知识点 24: 正定二次型和正定矩阵

(8分)【解析】记
$$a = [x,x,...,x]^T$$
, $\beta = [1,2,...,n]$

を 対象 的
$$\begin{bmatrix} E & a \\ B & 1 \end{bmatrix}$$
 、 因为 $\begin{bmatrix} E & a \\ B & 1 \end{bmatrix}$ → $\begin{bmatrix} E + aB & 0 \\ -B & 1 \end{bmatrix}$, 另一方面 $\begin{bmatrix} E & a \\ -B & 1 \end{bmatrix}$ → $\begin{bmatrix} E & a \\ 0 & 1 + \beta a \end{bmatrix}$

$$\begin{vmatrix} E + \alpha \beta & 0 \\ \beta & 1 \end{vmatrix} = \begin{vmatrix} E & \alpha \\ 0 & 1 + \beta \alpha \end{vmatrix} \longrightarrow |E + \alpha \beta| - |E|(1 + \beta \alpha) = 1 + [1, 2, ..., n] \begin{bmatrix} x \\ x \\ \vdots \\ x \end{bmatrix} = 1 + \frac{n(n+1)}{2}$$

从而 D.=

【考点延信

【解析】

A与C相似

diag (1, 3,

因为日一人

此时A的特

A与D合同

A的特征值:

【考点延伸

【解析】记增

$$\rightarrow \begin{bmatrix} 1 & 2 & & & \\ 0 & 1 & & & \\ 0 & 0 & -a & \\ 0 & 0 & & 0 \end{bmatrix}$$

从而
$$D_n = \frac{1 + \frac{n(n+1)}{2}x}{n!}$$
.

【考点延伸】《考试宝典》知识点 3: 几种特殊的行列式

四、(10分)

【解析】 A = B 等价的充分必要条件: R(A) = R(B) = 2, 故而必有I = 0

A = C相似:因为 $|C - \lambda I| = 0 \Longrightarrow \lambda_1 = 1$, $\lambda_2 = 3$, $\lambda_3 = 5$,特征值无重根,所以C必定可以和对角矩阵 diag(1,3,5)相似,由相似的传递性,这里要求A也和diag(1,3,5)相似

因为
$$|A-\lambda I| = \begin{vmatrix} 2-\lambda & 1 & 0 \\ 1 & 2-\lambda & 0 \\ 0 & 0 & t-\lambda \end{vmatrix} = (t-\lambda)(3-\lambda)(1-\lambda) = 0$$
,从而必然有 $t=5$

此时 A 的特征值也为 1,3,5。 无重根, 因此可以和 diag (1,3,5) 相似

A与D合同:因为A与D都为实对称矩阵,所以他们合同的充要条件为拥有相同的正负惯性指数

因为
$$|D-\lambda I|$$
 = $\begin{vmatrix} 2-\lambda & 0 & 0 \\ 0 & 2-\lambda & 1 \\ 0 & 1 & -\lambda \end{vmatrix}$ = $(2-\lambda)(\lambda^2-2\lambda-1)=0$

解得 $\lambda_1 = 2, \lambda_2 = 1 + \sqrt{2}, \lambda_3 = 1 - \sqrt{2}$,正惯性指数为 2,负惯性指数为 1

A的特征值为 1,3, t, 从而必有t<0

【考点延伸】《考试宝典》知识点 4-9【重要题型】题型 5: 矩阵等价

知识点 20: 矩阵相似对角化

知识点 23: 矩阵的合同

五、 (12分)

【解析】记增广矩阵
$$[A,b] = \begin{bmatrix} 1 & 2 & 4 & 2 & 2 \\ 0 & 1 & 2 & -1 & 1 \\ 3 & -1 & -a & 15 & 3 \\ 2 & -3 & -6 & 14 & b+2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 2 & 2 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & -7 & -a-12 & 9 & -3 \\ 0 & -7 & -14 & 10 & b-2 \end{bmatrix}$$

解: 当4=2时,等价的同解方程组对应的矩阵为

 $=2a_2-a_3=0$

丁为任意常数)

(线性代数) 历年题

(线性代数) が年起

$$\begin{bmatrix} 1 & 2 & 4 & 2 & 2 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 & b+5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 2 & 2 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & b-1 \end{bmatrix}$$

所以此时当 $b \ne 1$ 时,方程组无解;当b = 1时,R(A) = R(A,b) = 3 < 4,方程组有无穷3组织

这时候同解的方程组对应的矩阵为

$$\begin{bmatrix} 1 & 2 & 4 & 2 & 2 \\ 0 & 1 & 2 & -1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & -8 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Longrightarrow \begin{cases} x_1 = -8 \\ x_2 + 2x_3 = 3 \\ x_4 = 2 \end{cases}$$

 $x_3 = c$, $y_1 = -8$, $y_2 = 3 - 2c$, $y_3 = c$, $y_4 = 2$

通解为
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -8 \\ 3-2c \\ c \\ 2 \end{bmatrix} = c \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -8 \\ 3 \\ 0 \\ 2 \end{bmatrix} (c可为任意常数)$$

【考点延伸】《考试宝典》知识点 17:非齐次线性方程组

大。 (12分)

【解析】
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & a & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 & 4 \\ 2 & a - \lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix} = -\lambda^3 + (a+6)\lambda^2 - (6a-15)\lambda + 8 - 7a = 0$$

$$\text{At } \lambda = 8, \ \text{At } a = 0, \ \text{At } B = 0.$$

代入 $\lambda = 8$, 得a = 0, 并且 $|\lambda - \lambda I| = -\lambda^3 + 6\lambda^2 + 15\lambda + 8 = 0 \Longrightarrow \lambda_1 = 8, \lambda_2 = -1, \lambda_3 = -1$

所任
$$|A-AI| = -\lambda^3 + 6\lambda^2 + 15\lambda + 8 = 0 \Longrightarrow \lambda_1 = 8$$

耐于特征値 8, $|A-8I| = \begin{bmatrix} -5 & 2 & 4 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 \\ 2 & -8 & 2 \\ 4 & 2 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -4 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 0 \end{bmatrix}$
解得一个特征信息。

解得一个特征向量
$$p_i = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

对于特征值-1,
$$A+I = \begin{bmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, 解得两个正交的并且是线性无关的^{校准}

【考点及

【解析】

记矩阵C

故 R(B) = { B1, B2, ...,

【考点延伸

٨, (1 【解析】先

所有A'X=

所有满足AA

命题得证, 所

当AAT 可逆时

如果ATA可逆 所以如果出现人

$$p_2 = \begin{bmatrix} -1 \\ 4 \\ -1 \end{bmatrix}, p_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$_{\frac{1}{2}C} = \left[\frac{p_1}{||p_1||}, \frac{p_2}{||p_2||}, \frac{p_3}{||p_3||} \right] = \begin{bmatrix} \frac{2}{3} & -\frac{\sqrt{2}}{6} & -\frac{1}{\sqrt{2}} \\ \frac{1}{3} & \frac{2\sqrt{2}}{3} & 0 \\ \frac{2}{3} & -\frac{\sqrt{2}}{6} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \text{(e} @ C^{-1}AC = \text{diag}(8, -1, -1))$$

【考点延伸】《考试宝典》知识点 21:实对称矩阵的对角化 七、 (12分)

[解析]
$$[\beta_1, \beta_2, ..., \beta_n] = [\alpha_1, \alpha_2, ..., \alpha_n]$$

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

记矩阵
$$C = \begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$
, $A = [\alpha_1, \alpha_2, ..., \alpha_n], B = [\beta_1, \beta_2, ..., \beta_n]$, 则 $B = AC$, 且已知 $R(A) = n$,

bR(B) = R(AC) = R(C),因为 $|C| = 1 + (-1)^{n+1}$,当n为奇数时,R(B) = n,此时向量组 $\{\beta_1,\beta_2,...,\beta_n\}$ 线性无关,当n为偶数时,R(B) < n,此时向量组 $\{\beta_1,\beta_2,...,\beta_n\}$ 线性相关【考点延伸】《考试室典》知识点 10-15【重要题型】题型 1,利用矩阵的秩证明线性相关性

八 (10分)

【解析】先证明一个命题: $R(AA^T) = R(A^T)$, 即证明 $AA^TX = 0$ 与 $A^TX = 0$ 同解

M = 0 的解,必然使得 $AA^TX = 0$;

所有满足 $AA^TX=0$ 的解,必然也满足 $X^TAA^TX=0\Longrightarrow (A^TX)^T(A^TX)=0\Longrightarrow A^TX=0$

^{有數得证,}所以有 $R(A) = R(A^T) = R(A^T A)$

 $^{5}AA^{T}$ 可逆时,有 $R(A)=R(AA^{T})=m$,所以有 $R(A)=R(A,\beta)=m$,故 $AX=\beta$ 有解得证

MU如果出现 $R(A,\beta)=n+1$,R(A)=n,则方程组无解。

向量

《线性代数》历年题

如果 $R(A,\beta) = R(A) = n$,则方程组有唯一解:

【考点延伸】《考试宝典》知识点 17: 非齐次线性方程组

the shall no in

1 1-1-4-2-11

· 中国的第三人称单位

the little plant of the

一、判断

1、设A,

2、若向:

3、设A,

4、设A

5、设45

6、若方阵

7、记A*;

8、设A是

有 X^TAX

二、填空

1、设A是

2、设A是

代数余子式

3、设α₁,α

 $B = (\alpha_1 +$

4、已知f(a

5、设矩阵/

 $AX = \beta$ 的

《线性代数》历年题

2018-2019 学年第二学期期末考试 A 卷

٠.	判断题	(每小题	2分,	共16分)	
-	7.4				

- $_{\parallel}$ 、设 $_{\parallel}A,B,C$ 是三个 $_{\parallel}$ 的 能零矩阵,如果 $_{\parallel}AB=BA$,则 $_{\parallel}A^{2}B+ACA=A(B+C)A$
- 2、若向量 $\alpha_1,\alpha_2,...,\alpha_m$ 线性无关,则必有 $\alpha_1+\alpha_2+...+\alpha_m\neq 0$
- $_{3}$ 、设 $_{A}$, $_{B}$ 为满足 $_{AB}=0$ 的两个非零矩阵,则 $_{A}$ 的列向量组线性相关, $_{B}$ 的列向量组也线性相关。
- $_4$ 、设 $_A$ 为三阶非零矩阵满足 $_A^2=0$,则齐次线性方程组 $_AX=0$ 的线性无关的解向量的个数为 2.
- 5、设A为m imes n 阶实矩阵,则矩阵 A^TA 与A有相同的秩,其中 A^T 是A的转置
- 6、若方阵A的各行元素和为1,则1必为A的一个特征值
- 7、记A 为方阵A的伴随矩阵,若A为正定矩阵,则A 也为正定矩阵。
- 8、设A是n阶实反对称矩阵,即 $A^T = -A$,其中 A^T 是A的转置,则对任意的n维实向量X,均 $f(X^TAX) = 0$.
- 二、填空题(每小题 4 分, 共 20 分)
- I、设A是n阶方阵,I 为n 阶单位矩阵,且 $A^2 = A$ 则 $(A 2I)^{-1} =$
- 2, 设A是n阶可逆矩阵,A的行列式|A|=a,且A的各行元素之和均为b,则A的第1列元素的 代数余子式之和 $A_{11} + A_{21} + ... + A_{n1} = ______$
- $\frac{1}{2}$ 设 $\alpha_1,\alpha_2,\alpha_3$ 为三个三维(列)向量,记矩阵 $A=(\alpha_1,\alpha_2,\alpha_3)$,已知A的行列式|A|=1,记矩阵 $B=(lpha_1+lpha_2+lpha_3,lpha_1+2lpha_2+4lpha_3,lpha_1+3lpha_2+9lpha_3)$,则行列式|B|=___
- 4 已知 $f(x_1,x_2,x_3)=x_1^2+tx_2^2+tx_3^2+2x_1x_2+4x_1x_3$ 为正定二次型,则t 的取值范围

5. 设矩阵A=(a _v) _{3×3} 是正交矩阵,	且 $a_{11} = 1$.设向量 $\beta = (1,0,0)^T$,	则非齐次线性方程组
AX = B 的解 X =		

(线性代数) 历年题
$$= \begin{bmatrix} 1+a_1 & 1 & ... & 1 \\ 1 & 1+a_2 & ... & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & ... & 1+a_n \end{bmatrix}, 其中 $a_i \neq 0, i=1,2,...,n$$$

因、(12 分) 设线性方程组为
$$\begin{cases} x_1+x_2-2x_3+3x_4=0\\ 2x_1+x_2-6x_3+4x_4=-1\\ 3x_1+2x_2+ax_3+7x_4=-1\\ x_1-x_2-6x_3-x_4=b \end{cases}$$

- (1) 讨论a,b 为何值时, 方程组有解或无解;
- (2) 当有解时,求出方程组的解。

20 M 基 (-)

THE BURNEY OF THE STREET

-11 Mar La equit Sign 1, an

$$eta$$
、 $(10 分)$ 设矩阵 A , B 满足 $A^*BA=2BA-8I$,其中 $A=\begin{pmatrix} 1 & 2 & -2 \\ 0 & -2 & 4 \\ 0 & 0 & 1 \end{pmatrix}$, A^* 表示 A 的伴随矩阵, I 为三阶单位矩阵,求矩阵 B .

and the state of the property of the state o

 $\stackrel{\mathrm{MFC}}{,}$ 使得 $C^{T}AC$ 为对角矩阵,并写出此对角矩阵。

《线性代数》
$$历年题$$
 七、(10 分) 已知方阵 $A,I-A,I-A^{-1}$ 均可逆,其中 I 为单位矩阵,证明:
$$(I-A)^{-1}+(I-A^{-1})^{-1}=I$$

八、(12分)证明题

设A,B为n阶方阵,已知A可相似对角化,又有 $A^2+A=0$, $B^2+B=I$,且有秩关系 R(AB) = 2

Continue and a continue

F.WHSU

证明: (1) B 可逆;

(2) $|A+2I|=2^{n-2}$, 其中I 为n 阶单位矩阵.

⁷、【正

2018-2019 学年第二学期期末考试 A 卷参考答案

1、【正解】 ✓

一、判断题

【解析】由于AB = BA, $A(B+C)A = (AB+AC)A = ABA+ACA = A^2B+ACA$ 【考点延伸】《考试宝典》知识点 4——矩阵的概念和基本运算

2.【正解】✓

【解析】由于线性无关,则 $\alpha_1 + \alpha_2 + \cdots + \alpha_m \neq 0$

【考点延伸】《考试宝典》知识点 11——向量组的线性相关和线性表示

1.【正解】×

【解析】由题干知:AB=0,且 $A\neq 0$, $B\neq 0$,则线性齐次方程组AX=0有非零解,则A的列向 量组线性相关;由 $AB = 0 \rightarrow (AB)^T = B^TA^T = 0$,即齐次线性方程组 $B^TY = 0$ 有非零 解。则 B^T 的列向量组线性相关,即B的行向量组线性相关。

【考点延伸】《考试宝典》知识点 16——齐次线性方程组

4.【正解】✓

【解析】 $A_{m\times n}B_{n\times s}=0$,则 $R(A)+R(B)\leq n$ 。故 $r(A)+r(A)\leq 3$,且A非零矩阵, $r(A)\geq 1$ 。 故r(A)=1,因此Ax=0线性无关解向量个数为2

【考点延伸】《考试宝典》知识点 16——齐次线性方程组

5.【正解】 /

【解析】对于方程组 $\mathbb{Q} Ax=0$,② $A^TAx=0$, 其中 \mathbb{Q} 的解显然必是②的解,对于②的解 $\hat{A}^T Ax = 0 \Rightarrow x^T A^T Ax = 0 \Rightarrow (Ax)^T Ax = 0$,所以②的解显然必是②的解,两方程 组同解,故 $r(A) = r(A^T A)$

【考点延伸】《考试宝典》知识点 4——矩阵的概念和基本运算

(E#) /

$$\{\mathbf{x}_{h}\}$$
 由趣可知 $\mathbf{A}\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}=\begin{bmatrix}1\\1\\\vdots\\1\end{bmatrix}$,故由定义,显然 $\mathbf{1}$ 为矩阵的一个特证值

【考点延伸】《考试宝典》知识点 19——特征值和特征向量 1. (E#1 /

《线性代数》历年题

eta性代数》eta年题 eta,eta,eta,eta,eta,eta,eta,eta,eta,eta,eta,eta,eta,eta eta eta

因此矩阵A*正定

【考点延伸】《考试宝典》知识点 24——正定二次型和正定矩阵

8、【正解】✓

【解析】注意到 X^TAX 是一个数,所以 $X^TAX = (X^TAX)^T = X^TA^TX$ 又: A^T 为反对称矩阵,故 $X^TA^TX = -X^TAX$,即 $X^TAX = 0$

【考点延伸】《考试宝典》知识点 4——矩阵的概念和基本运算

二、填空煙

1. [E#]
$$-\frac{1}{2}(A+I)$$

【解析】
$$A^2 = A \Rightarrow A^2 - A - 2I = -2I \Rightarrow (A - 2I)(A + I) = -2I$$
 故 $(A - 2I)^{-1} = -\frac{1}{2}(A + I)$

【考点延伸】《考试宝典》知识点 5——矩阵的逆

2、【正解】 a/b

【解析】由题可知
$$A$$
 $\begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} = \begin{bmatrix} b\\b\\\vdots\\b \end{bmatrix}$,又 A 可逆,因此 $b \neq 0$,因此有 $\begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix} = A^{-1} \begin{bmatrix} b\\b\\\vdots\\b \end{bmatrix}$

$$=\frac{1}{|A|}A^{\bullet}\begin{bmatrix}b\\b\\b\\b\end{bmatrix}=A^{\bullet}\begin{bmatrix}\frac{b}{a}\\\frac{b}{a}\\\frac{b}{a}\\\frac{b}{a}\end{bmatrix}, \quad 可得(A_{11}+A_{21}+\cdots+A_{n1})\frac{b}{a}=1, \quad 故$$

$$A_{11} + A_{21} + \dots + A_{n1} = \frac{a}{b}$$

【考点延伸】《考试宝典》知识点 5——矩阵的逆

3.【正解】2

[解析]
$$B = (\alpha_1 \ \alpha_2 \ \alpha_3) \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$$
,故 $|B| = |A| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = 1 \times 2 = 2$

【考点延伸】《考试宝典》知识点 4——矩阵的概念和基本运算

4.【正解】t>5

E,

【解析】二次型对应矩阵为 $\begin{pmatrix} 1 & 1 & 2 \\ 1 & t & 0 \\ 2 & 0 & t \end{pmatrix}$,为正定矩阵,故顺序主子式大于零,故

$$\begin{vmatrix} 1 & 1 \\ 1 & t \end{vmatrix} > 0, \begin{vmatrix} 1 & 1 & 2 \\ 1 & t & 0 \\ 2 & 0 & t \end{vmatrix} > 0, \quad \text{ix} \ t > 5$$

【考点延伸】《考试宝典》知识点 24——正定二次型和正定矩阵

【解析】由于矩阵A为正交矩阵,而 $a_{11}=1$ 因此矩阵 $A=\begin{pmatrix}1&0&0\\0&0&1\\0&1&0\end{pmatrix}$ 或 $A=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}$

故
$$AX = \beta$$
的解 $X = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

【考点延伸】《考试宝典》知识点 17——非齐次线性方程组

$$\Xi$$
、【解析】 $D_n = \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 \\ 1 & 1+a_1 & 1 & \cdots & 1 \\ 1 & 1 & 1+a_2 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1+a_n \end{vmatrix} = \begin{vmatrix} 1 & -1 & -1 & \cdots & -1 \\ 1 & a_1 & 0 & \cdots & 0 \\ 1 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a_n \end{vmatrix}$ (爪型行列式)

$$=\left(1+\sum_{i=1}^{n}\frac{1}{a_{i}}\right)\left(\prod_{i=1}^{n}a_{i}\right)$$

【考点延伸】《考试宝典》知识点 1——行列式的概念及其性质

$$\mathbb{E}_{A}$$
 [解析] $1.A$ 为系数矩阵 $(A|b) = \begin{pmatrix} 1 & 1 & -2 & 3 & 0 \\ 2 & 1 & -6 & 4 & -1 \\ 3 & 2 & a & 7 & -1 \\ 1 & -1 & -6 & -1 & b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & 3 & 0 \\ 0 & -1 & -2 & -2 & -1 \\ 0 & 0 & a + 8 & 0 & 0 \\ 0 & 0 & 0 & 0 & b + 2 \end{pmatrix}$

当b≠-2时,方程无解;当b=-2时,方程有解

2.3b = -2, $a \neq -8$ 时r(A) = R(A|b) = 3, 因此通解为

(线性代数) 历年题
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = k \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 $k \in R$
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = k \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + k \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 $k \in R$
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = k_1 \begin{bmatrix} 4 \\ -2 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ -2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 $k_1, k_2 \in R$
$$x = x$$
 $x = x$ $x = x$ $x = x$

$$A'BA = 2BA - 8I, \quad \text{(iii)} |A| = 2AB - 8I \Rightarrow 8I = (2A - |A|I)B$$

$$|A|A^{T}B = 2B - 8A^{T} \Rightarrow |A|B = 2AB - 8I \Rightarrow 8I = (2A - |A|I)B$$

$$B = 8(2A - |A|I)^{-1} = 8 \begin{bmatrix} 4 & 4 & -4 \\ 0 & -2 & 8 \\ 0 & 0 & 4 \end{bmatrix}^{-1}$$

$$\begin{bmatrix} 4 & 4 & -4 & 1 & 0 & 0 \\ 0 & -2 & 8 & 0 & 1 & 0 \\ 0 & 0 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 0 & 0 & 1 & 2 & -3 \\ 0 & -2 & 0 & 0 & 1 & -2 \\ 0 & 0 & 4 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{4} & \frac{1}{2} & -\frac{3}{4} \\ - & 0 & 1 & 0 & 0 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0 & 0 & \frac{1}{4} \end{bmatrix} \qquad B = 8 \begin{bmatrix} \frac{1}{4} & \frac{1}{2} & -\frac{3}{4} \\ 0 & -\frac{1}{2} & 1 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 2 & 4 & -6 \\ 0 & -4 & 8 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\begin{vmatrix} \lambda & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix}, \quad |\lambda E - A| = \begin{vmatrix} \lambda & 1 & -1 \\ 1 & \lambda & -1 \\ -1 & -1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda & 1 \\ 1 - \lambda & \lambda \\ \lambda - 1 & 0 \end{vmatrix}$$

$$\begin{vmatrix} \lambda + 1 & 1 & 1 & 0 \\ \lambda + 1 & 1 & 1 & 0 \\ \lambda & \lambda & 1 & \lambda & 1 \end{vmatrix} = (\lambda - 1) \begin{vmatrix} \lambda + 1 & -1 \\ \lambda - 1 & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 (\lambda + 2)$$

$$\begin{vmatrix} \lambda & \lambda_{-1} & \lambda_{-1} \\ \lambda & \lambda_{-1} & \lambda_{-2} \\ \lambda & 1 & 1 \end{vmatrix} = (\lambda - 1)^{2} (\lambda + 2)$$

【考点延伸】

七、【解析】(Ⅰ

【考点延伸】

mir

A2c

【考点延伸】

#UZ493446 / 3091371067 首徽 huakeda1037 严禁盗印盗卖 侵权公宾

$$\lambda_1 = \lambda_2 = 4$$
, $\lambda_3 = 1$. A 的特征值的和最小时, $a = 1$

$$(E-A) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,取单位正交特征向最

$$\eta_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \eta_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} (-2E - A) = \begin{pmatrix} -2 & 1 & -1 \\ 1 & -2 & -1 \\ -1 & -1 & -2 \end{pmatrix},$$

$$\rightarrow \begin{pmatrix} -1 & 2 & 1 \\ 1 & -2 & -1 \\ -1 & -1 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix}. \quad 取单位特征向量 $\eta_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$$

$$\therefore C = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix} \qquad C^T A C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

【考点延伸】《考试宝典》知识点 22——二次型

【*点延伸】《考试宝典》知识点 4——矩阵的概念和基本运算

【解析】(1)
$$B^2 + B = I \Rightarrow B(B + E) = I$$
; $|B| |B + E| = |I| = 1$; $|B| \neq 0, B$ 可逆

(2) 而A可相似对称化

$$\min(r(A),r(B)) \ge r(AB) = 2 \ge r(A) + r(B) - n = r(A), \ \forall r(A) = 2$$

 α,x 分别为A的特征向量,特征值 $A\alpha = \lambda \alpha \Rightarrow A^2\alpha = \lambda A\alpha = \lambda^2\alpha$

$$A^2\alpha = -A\alpha = x^2\alpha = -\lambda\alpha$$
; $\lambda^2 = -\lambda$, 因此A的特征值为0或-1, $r(A) = 2$

$$A \cdot \begin{bmatrix} -1 & & & & \\ & -1 & & & \\ & & \ddots & & \\ & & & 0 & \end{bmatrix} \qquad \exists a \mid A + 2I \mid = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 2 & \\ & & \ddots & \\ & & & 2 \end{bmatrix}_{n \times n} = 2^{n-2}$$

(4.6.6.6.14) (考试宝典) 知识点 19——特征值与特征问题

(线性代数)历年题

2017-2018 学年第二学期期末考试 A 卷

一、判断题(16分, 每题 2分, 共8 题) 一、判断题(16分, 每题 2分, 共8 题) 1.若矩阵A的所不有阶子式都为0,则A的所有r+1阶子式,如果存住, 也都为 0.() 2.两个n维向量组等价的充分必要条件是它们有相同的秩.()	
3.初等矩阵的乘积仍然是似乎不)	
4.若方阵A的行列式 $ A =0$,则A的列问里十一之一 5.设A是一个 n 阶方阵, $f(A)$ 是一个常数项不为 0 的m次多项式,其中 $m>0$.如果有 $f(A)=0$,	lA-
定可逆()	-1
个() 7.由 r 个 n 维向量 $lpha_1,lpha_2,\cdots,lpha_r$ 生成的向量空间 $L(lpha_1,lpha_2,\cdots,lpha_r)$ 的维数为 $min(r,n)$.()	
8. 设n阶方阵A, B均为正交矩阵,则AB也为正交矩阵.()	
二、填空廳(20分,每題4分,共5題)	
1.已知一个4阶行列式第一行元素依次是-4,0,1,3,第3行元素的代数余子式依次为-2,5,1,4,	Ħ
* =	
2.设A是三阶方阵,将A的第1列与第2列交换得矩阵B,再把B的第2列加到第3列得矩阵C,则	記
AQ = C的可逆矩阵Q为	
3.设 $\lambda = 1$ 是方阵 $A = \begin{bmatrix} -4 & 0 & 4 \\ -2 & a & 2 \\ -2 & 0 & 3 \end{bmatrix}$ 的一个特征值,则 $a = $	
是一个人。可是件A的列向量依次为QuQuQuQuqquan	1
$\beta = \alpha_1 - 2\alpha_2 - 3\alpha_3$,那么非齐次线性方程组 $AX = \beta$ 的通解为:	
5.设4。是一个水料软件。	
5.设A _{n×n} 是一个实对称矩阵,且存在整数m≥1使得A ^m =0,则A=	

≡, (8

四、(12

- (1) a
- (3) a

$$(8 ag{6})$$
 计算 n 阶行列式 $D_n = \begin{vmatrix} a_1 & 1 & 1 & \cdots & 1 \\ 1 & a_2 & 1 & \cdots & 1 \\ 1 & 1 & a_3 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & a_n \end{vmatrix}$, 其中 $a_i \neq 1, i = 1, 2, \dots, n$.

性、(12分) 设三维向量
$$\alpha_1=\begin{bmatrix}a+3\\a\\3(a+1)\end{bmatrix}, \alpha_2=\begin{bmatrix}1\\a-1\\a\end{bmatrix}, \alpha_3=\begin{bmatrix}2\\1\\a+3\end{bmatrix},\ \beta=\begin{bmatrix}a\\a\\3\end{bmatrix},\ \beta:$$

- (1) a为何值时, β 能由 $\alpha_1,\alpha_2,\alpha_3$ 唯一的线性表示?
- $^{(2)}$ a 为何值时, $^{\beta}$ 能由 $\alpha_{1},\alpha_{2},\alpha_{3}$ 线性表示,但表示不唯一?此时给出所有可能的表示。
- ⁽³⁾ ^α为何值时,β不能由α₁,α₂,α₃线性表示.

足

a 🚅

$$($$
8世代数 $)$ 历年题 5. $(10 \, eta)$ 设矩阵 $A = \begin{bmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & b \end{bmatrix}$ 和矩阵 $B = \begin{bmatrix} -1 & 2 \\ & c \end{bmatrix}$ 相似,求 a,b,c

大、(12分) 已知二次型 $f(x,y,z) = x^2 + 4xy + 4xz + y^2 + 4yz + z^2$, 试用正交变换将此二次型化 为标准型给出其标准型,及所使用的正交变换矩阵。

阵K使 $\{\beta_1,\beta_2,\cdot$ & 证明**题**(10分)设A,B,A+B都是n阶可逆矩阵,证明 $A^{-1}+B^{-1}$ 也是可逆矩阵。

七二次型化

K 证明题(10 分)设 $A=(\alpha_1,\alpha_2,\cdots,\alpha_n),B=(\beta_1,\beta_2,\cdots,\beta_n)$ 是两个m imes n 矩阵,已知存在n 阶方 $\pm K$ 使得B=AK,且矩阵 A 的列向量组 $\{\alpha_1,\alpha_2,\cdots,\alpha_n\}$ 线性无关.证明:矩阵 B 的列向量组 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 也线性无关当且仅当K 是可逆矩阵.

* TWEET KINGS

2017-2018 学年第二学期期末考试 A 卷参考答案

判断題 (16分, 毎題2分, 共8題)

1、【正解】对

【解析】若矩阵A的所有r阶子式都为0,那么r(A) < r,因此 A 的所有 r+1 阶子式。 如果存在都要为 0,否则 $r(A) \ge r+1$ 就会出现矛盾.

【考点延伸】《考试宝典》【知识点9】矩阵的秩

2、【正解】错

【解析】"两个n维向量组等价的充分必要条件是它们有相同的秩"这个命题是错的。

我们用反例:
$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times 1} \right\}$$
、 $\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{n \times 1} \right\}$ 是n维向量组,且它们的秩都是 1。

显然它们不等价. (不能相互线性表示)

【考点延伸】《考试宝典》【知识点 13】等价向量组

3、【正解】错

【解析】
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
是两个初等矩阵,但是 $AB = \begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$ 不是初等矩阵

【考点延伸】(考试宝典》【知识点8】初等矩阵

4. 【正解】对

【解析】若n阶方阵A的行列式|A|=0,则说明r(A)< n,因此A的列向量线性相关, 所以一定有一列可由其余列线性表示。

【考点延伸】《考试宝典》 【知识点 10-15 重要题型】题型 1;利用矩阵的秩证明线性相关性 5.【正鲜】对

【解析】依随意
$$f(A) = a_m A^m + a_{m-1} A^{m-1} + \dots + a_1 A + a_0 I = 0$$
,且 $a_m \neq 0, a_0 \neq 0$,

那么
$$A(a_m A^{m-1} + a_{m-1} A^{m-2} + \dots + a_1 I) = -a_0 I$$
,

反证法: 假设A不可逆, 那么|A|=0,

所以 $|A||(a_mA^{m-1}+a_{m-1}A^{m-2}+\cdots+a_1I)|=|-a_0I|$, 等式左边为 0, 右边为 $(-a_0)^m$.

由于40 ≠ 0, 那么左右两边矛盾, 所以A可逆

【考点延伸】(考试室典)【知识点 5】矩阵的逆

6. 【正解】锗

7. []

【角

13

8. [1

【解

【考

【考

2, LE

CAR.

【考点

3, [E 【解析 [解析] 举个反例:假设 $A=[1,1], \beta=1, r=r(A)=1, n=2$,那么 $AX=\beta$ 的展开形式为 $x_1 + x_2 = 1$,其通解为: $x = a \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (1-a) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, a是任意常数

所以非齐次线性方程组 $AX = \beta$ 的线性无关的解的个数为大于n-r=1. 【考点延伸】《考试宝典》知识点 16-18【重要题型】题型 2: 非齐次线性方程的解 、[正解] 错

【解析】令 $r=2, n=2, lpha_1=lpha_2=egin{bmatrix}1\\1\end{bmatrix}$,显然生成的向量空间 $L(lpha_1,lpha_2)$ 的维数为1,

而不是 $\min(r,n)=2$. (思考: 题目改为r个线性无关的n维向量才正确) [考点延伸]《考试宝典》【知识点 15】向量空间

《【正解】对

【解析】设 n 阶方阵 A, B 均为正交矩阵,根据正交矩阵的定义,那么 $AA^T = BB^T = I$. 则 $AB(AB)^T = ABB^TA^T = AIA^T = I$,所以AB也为正交矩阵.

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 8: 正交矩阵的性质和证明 二 填空题(18分,每题3分,共6题)

【正解】-3

【解析】根据行列式的性质: (-4,0,1,3)和(-2,5,1,x)是正交的。因此8+1+3x=0, 所以<math>x = -3

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 8: 正交矩阵的性质和证明

【解析】由初等矩阵的性质,
$$A\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = B, B\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = C$$
,那么。

$$A \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = C \Rightarrow Q = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

【考点处伸】《考试宝典》【知识点 4-9 重要题型】题型 2, 划等变换与划等矩阵

[解析] 先来A的特征值,由 $\det(A-\lambda I)=0$,那么可以化简得到,(注:这里的符号 $\det(A-\lambda I)$ 表示方阵 $A-\lambda I$ 的行列式,下同) $[(4+\lambda)(3-\lambda)-8](\lambda-a)=0$, 58 仅供 HUSTer 内部复习参考 58

生相关性

力为(-00)"。

历年题 由于A=1起该式的一个解,而A=1时前面[中括号]的一项不为 0, 因此 (线性代数) 历年题 $(\lambda - a) = 0$,那么a = 1.

$$(\lambda - a) = 0$$
, $\overline{M} \wedge a = 1$.

【考点延伸】《考试宗典》【知识点 19】特征值与特征向量

【解析】根据各行元素和为
$$0$$
,那么 A $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ $= \mathbf{0}_{5 \times 1}$,由于 $r(A) = 3$, $n = 4$,那么解集中,线质

关的解的个数不超过n-r=1个,因此我们找到了方程的齐次解。 $\beta=\alpha_1-2\alpha_2-3\alpha_1$ 发

个条件告诉我们
$$\left[\alpha_1,\alpha_2,\alpha_3,\alpha_4\right]$$
 $\begin{bmatrix}1\\-2\\-3\\0\end{bmatrix}$ $=\beta$,所以我们找到了特解.所以通解为:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ -3 \\ 0 \end{bmatrix}, k 为任意常数$$

【考点延伸】《考试宝典》【知识点 16-18 重要题型】线性方程组的解

5. [E#] O

【解析】对4...是一个实对称矩阵,那么 A 一定可相似对角化,所以我们可知:

$$A = P$$
 λ_2 λ_n P^{-1} ,那么 $A^m = P$ λ_2^m λ_2^m λ_m P^{-1} ,

由于A'''=0,那么r(A''')=0,根据性质,与可逆矩阵相乘不改变矩阵的^{秩,}

$$r\left[\begin{bmatrix} \lambda_1^m & & & \\ & \lambda_2^m & & \\ & & \ddots & \\ & & & \lambda_n^m \end{bmatrix}\right] = r(A^m) = 0 \Rightarrow \lambda_i = 0 (i = 1, 2, \dots, n)$$

$$XA = P\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} P^{-1}, \quad \text{Milk} r(A) = r\begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} - 0$$

也就是说A

【考点延伸】《考试宝

$$D_n = \begin{vmatrix} a_1 & 1 \\ 1 & a_2 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{vmatrix}$$

从第二行开

$$D_{n+1} = \begin{bmatrix} 1 \\ - \\ - \\ \vdots \end{bmatrix}$$

【考点延伸】《考试字

(12分)

$$\begin{bmatrix}
a + \\
a \\
3(a + a)
\end{bmatrix}$$

(1) B能由

$$x_1 = -$$

那么
$$\begin{cases} x_2 = 2 \\ x_3 = x \end{cases}$$

【考点延伸】《考试宝典》【知识点 21】实对称矩阵的对角化 云 (8分)

从第二行开始,每一行都减去第一行,那么:

$$D_{n+1} = \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ -1 & a_1 - 1 & & & & \\ -1 & & a_2 - 1 & & & \\ -1 & & & a_3 - 1 & & \\ \vdots & & & \ddots & & \\ -1 & & & & a_n - 1 \end{bmatrix} = \left(1 + \sum_{i=1}^{n} \frac{1}{a_i - 1}\right) \prod_{i=1}^{n} (a_i - 1)$$

【考点延伸】《考试宝典》【知识点 3: 几种特殊的行列式】爪型行列式的计算方法 以 (12分)

[Eq.]
$$A = \begin{bmatrix} a+3 & 1 & 2 \\ a & a-1 & 1 \\ 3(a+1) & a & a+3 \end{bmatrix}, [A \mid B] = \begin{bmatrix} a+3 & 1 & 2 & a \\ a & a-1 & 1 & a \\ 3(a+1) & a & a+3 & 3 \end{bmatrix}$$

(1) β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一的线性表示意味着AX = B仅有唯一解.

所以 $r(A) = r(A \mid B) = 3$,那么A可逆,则 $\det(A) \neq 0$.由于 $\det(A) = a^3(a-1)$ 所以,当 $a \neq 0$ 且 $a \neq 1$ 时, β 能由 $\alpha_1, \alpha_2, \alpha_3$ 唯一的线性表示。

此时, $r(A)=r(A\mid B)<3$, β 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。但表示不確立。

主元列在第一列和第二列,因此我们将23看作自由变量

主元列在第一列和第二列,因此我们将
$$x_3$$
看作自由 x_3 是 x_4 是 x_4 是 x_5 — x_5 —

中,线性无

 $lpha_2 - 3lpha_3$ 这

解为:

车的秩, 那么:

(线性代数) 历年题
$$(线性代数) = \begin{bmatrix} 3 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 3 & 0 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 3 & 0 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $由于r(A) \neq r(A|B)$,因此B不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示 【考点延伸】《考试宝典》【知识点 11】向量组的线性表示

(10分)
(正解】由于A=
$$\begin{bmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & b \end{bmatrix}$$
和矩阵 $B=\begin{bmatrix} -1 & 2 \\ 2 & c \end{bmatrix}$ 相似,

那么A、B有相同的特征值,则tr(A)=tr(B), $\det(A)=\det(B)$ 由于B的特征值为对角线上元素-1,2,c,那么A也有这三个特征值。

由于
$$A = \begin{bmatrix} -2 & 0 & 0 \\ 2 & a & 2 \\ 3 & 1 & b \end{bmatrix}$$
是下三角的分块矩阵,

所以其特征值为: -2,以及 $\begin{bmatrix} a & 2 \\ 1 & b \end{bmatrix}$ 的两个特征值.那么c=-2.

由于
$$\det(B) = -1 \times 2 \times (-2) = 4$$
, $tr(B) = -1 + 2 + (-2) = -1$

因此:
$$\det(A) = -2 \times (ab-2) = 4$$
, $tr(A) = a+b-2 = -1$

解得:
$$a=0,b=1$$
(或者 $a=1,b=0$)

【考点延伸】(考试宝典)【知识点 19-24 重要题型】题型 5: 相似矩阵 (12分)

(IFF)
$$f(x,y,z) = x^2 + 4xy + 4xz + y^2 + 4yz + z^2$$

对应的矩阵形式表示为
$$f(x,y,z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

我们令
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
,那么由于 A 是对称矩阵,所以 A 一定可以相似对角化

$$\phi$$
 det $(A-\lambda I)=0$,所以 $(\lambda-\delta)(\lambda+1)^2=0$,解得 $\lambda_1=\lambda_2=-1$, $\lambda_3=\delta$ 当 $\lambda_1=\lambda_2=-1$ は

当
$$\lambda_i = \lambda_i = -1$$
 时,根据 $(A - \lambda I)x = 0$ 可以解得对应的特征向量为

$$\mathbf{p}_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{p}_{2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{p}_{3} = \mathbf{p}_{4}$$
 将其进行施密特正变化,那么

人

【考点延伸】

【证明】根据

【考点延伸】

(10分

因止

$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{split} q_i &= p_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, q_2 = p_2 - \frac{q_1 \cdot p_2}{q_1 \cdot q_1} q_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1 \end{bmatrix} \\ & \text{单位化后为:} \quad \epsilon_1 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}, \epsilon_2 = \begin{bmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{bmatrix} \end{split}$$

同理:
$$\lambda_3=5$$
 对应的标准化后的特征向量为 $\epsilon_3=egin{bmatrix}1/\sqrt{3}\\1/\sqrt{3}\\1/\sqrt{3}\end{bmatrix}$

那么所使用的正交变换矩阵
$$P = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{bmatrix}$$
 $(P$ 正交 $)$

因此
$$A = P \begin{bmatrix} -1 \\ -1 \\ 5 \end{bmatrix} P^{-1} \Rightarrow P^{T}AP = \begin{bmatrix} -1 \\ -1 \\ 5 \end{bmatrix} (利用 $P^{-1} = P^{T}$)$$

我们令:
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, V = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, X = PV$$

所以
$$f(x,y,z) = X^T \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} X = V^T P^T \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} PV = V^T \begin{bmatrix} -1 \\ & -1 \\ & 5 \end{bmatrix} V$$

因此,标准型为 $f = -v_1^2 - v_2^2 + 5v_3^2$

⁽¹⁰分) 《考试宝典》【知识点 19-24 重要题型】题型 6: 二次型的标准化

因此
$$A^{-1}(A+B)B^{-1} = A^{-1}AB^{-1} + A^{-1}BB^{-1} = B^{-1} + A^{-1}$$

划此
$$(A^{-1}+B^{-1})^{-1}=\{A^{-1}(A+B)B^{-1}\}^{-1}=B(A+B)^{-1}A$$

"发伸】《考试宝典》【知识点 5】矩阵的逆

化.

(线性代数) 历年重

【证明】由于矩阵 A 的列向最组 $\{lpha_1,lpha_2,\cdots,lpha_n\}$ 线性无关,因此 $m\geq n$.

由于 $m\geq n$,且A的列向量组 $\{lpha_1,lpha_2,\cdots,lpha_n\}$ 线性无关,因此r(A)=n

(1) K是可逆矩阵时,那么由于B=AK,因此r(B)=r(A)=n,

因此矩阵B的列向量组 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 也线性无关

(注: 与可逆矩阵相乘不改变矩阵的秩)

必要性:

(2) 当矩阵B的列向量组 $\{\beta_1,\beta_2,\cdots,\beta_n\}$ 线性无关时,那么r(B)=n

因此,我们可以得到r(B) = r(A) = n

由應意存在B = AK,注意到K 是 n阶方阵.

我们用反证法:假设K不可逆,那么一定有r(K) < n,

因此 $r(AK) \le \min(r(A), r(K)) = r(K) < n$

性: 秩的不等式 $r(AB) \leq \min(r(A), r(B))$

义因为r(B) = n, B = AK, 所以r(AK) = n

因此产生了矛盾

也就是说K一定是可逆矩阵.

【考点延伸】(考试宝典)【知识点 11】向量组的线性相关

一、判断是

I、设A是

2、两个同

3、任意一

4、若两个

5、设A=

6、设向量约

7、设A是

8、设A是

二、填空题

1,设在=(1

2. 设 A,B 是

3、设矩阵A

4、设5×4阶

方程组AX=

5. 如果矩阵 A

三、计算n+1的

5

2016-2017 学年第二学期期末考试试卷

一、判断應

- $_1$ 、设A是n阶方阵,如果A行列式非零,则对任意的 $1 \le k \le n$,A一定有一个非零的k阶子式
- 2、两个同型矩阵等价当且仅当它们有相同的秩
- 1. 任意一个可逆矩阵均可经过有限次初等变换为单位矩阵
- 4、若两个n阶方阵 A,B 相似,那么对任意的多项式 f(x) ,均有 f(A) 相似于 f(B)
- 5、设 $A = a_{ij}$ 是 n 阶矩阵, $\lambda_i = (1 \le i \le n)$ 是 A 的特征值,则有 $\sum_{1 \le i \le n} \lambda_i^2 = \sum_{1 \le i \le n} \sum_{1 \le i \le n} a_{ij}^2$
- 6、设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,则向量组 $\alpha_1+\alpha_2+\alpha_3,\alpha_2+\alpha_3,\alpha_3$ 也线性无关
- 7、设A是实对称矩阵,如果A的特征值均为0,则A=0
- 8. 设A是n阶实矩阵,则ATA是正定矩阵
- 二、填空题
- 1, $\partial_t \alpha = (1, -1, 1)^T$, $\beta = (1, 1, 1)^T$, $A = \alpha \beta^T$, $A'' = (1, 1, 1)^T$
- 2、设 A.B 是两个三阶可逆矩阵,如果将 A 的第一行乘以 5 加到第三行上就得到矩阵 B,则 AB 1

3. 设矩阵
$$A = \begin{bmatrix} 1 & 5 & 9 \\ 0 & 2 & 8 \\ 0 & 0 & 2 \end{bmatrix}$$
, 多项式 $f(x) = x^3 - x + 2$.则 $f(A)$ 的行列式_____

4、设 5×4 阶矩阵 A 的行向量表示为 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4)$, 其秩为 4.设向量 $\beta=\alpha_1-2\alpha_2-3\alpha_3$ 那么线性

5. 如果矩阵
$$A = \begin{bmatrix} t & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & t-1 \end{bmatrix}$$
是正定矩阵,则 t 的取值范围为_____

… 计算
$$n+1$$
阶行列式 $D_{n+1} = \begin{bmatrix} a_0 & b_1 & \cdots & b_n \\ c_1 & a_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ c_n & 0 & \cdots & a_n \end{bmatrix}$, 其中 $a_i \neq 0$, $i=1,2,\cdots,n$

(线性代数) 历年题

- ② 当 和 即 什 么 值 时 无解 ? 当 和 取 什 么 值 时 有 无 穷 个 解 ? 当 有 无 穷 个 解 时 , 求 出 其 通 解 。

五. 设三阶方阵 A 的特征值为 1, 1, -1, 属于它们的特征向量分别是 $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ 求矩阵A

方。用正交矩阵将三维空间中的二次曲面2xy + 2yz + 2zx = 1化为标准方程,给出使用的 $\mathbb{E}^{\overline{y}}$ 矩阵, 并指出曲面类型

七.设A是一个 的基础解系, β

① 证明: *β,β*

② 问AX=b7

八. 证明题 设A是n阶

- ① A 是可逆
- ② A 是可相

- ② 当从取什么值时有唯一解?
- 当A取什么值时无解?当A取什么值时有无穷个解?当有无穷个解时,求出其通解。

兼作能 A

EFS

4.8是两个三四、上二年、如果将人的第一行项以为起源等之11、*

矩阵, 黄指出曲面类型

2 日本選手が は、これのよう

七、设A是一个 $m \times n$ 矩阵,b是一个m维非零列向量,设m, α_1 是齐次线性方程组AX=0

的基础解系, β 的非齐次线性方程组AX=b的一个特解

m i. 【种 i.】...

题 推注 ,--

① 证明: $\beta, \beta + \alpha_1, \beta + \alpha_2, \dots, \beta + \alpha_r$ 是AX = b的一个特解

② 问AX=b有可能有t+2个线性无关的解吗? 说明理由

医髓束连套 李田 【静斯紫癜过程。"

【考点经确定:考试完施》证试就下自研究的图:企识性观

新山 【新山】 1

【考点被伸】、考试生类、知识从中其识的影响和中心。

八. 证明歷

柳节【种刊》

① A 是可逆的

1

② A 是可相似对角化

工業 "北京市" 【基本工工》 1世紀第四年 新版作文 医视的内部下沟 全地工

诗《《新五》

【考点运性】。1至1至2年,中国总型。12至11年前最低的政

入的【稿刊】

東京 大大 (大 The Omth かい) 1 22 後に (日本)

【《一旦公主、专比主》, 电阻应 14 标准值/转信中报

It's I . 'a ray + all + k. a. - 1 to a restar reflection of the delayers

kind Kkmo Khithinu

【五二级种工工多价价值》制现成 1 如新四州境内山大和 21-2 以 總市立 1

用式指用物

2016-2017 学年第二学期期末考试试卷参考答案 The Armen & the dear throughout the ways

一、判断應

1、【正解】正确

【解析】 $|A| \neq 0, R(A) = n \Longrightarrow R(A') = n \Longrightarrow$ 存在非零的n-1阶子式

也就是存在一个n-1阶矩阵满足 $R(A_{n-1})=n-1\Longrightarrow$ 存在的非零的n-2阶子式

以此类推,任意1 < k < n 皆满足

【考点延伸】《考试宝典》知识点1 行列式的概念及其性质

2、【正解】正确

【解析】 $R(A) = R(B) \iff A 和 B$ 等价

【考点延伸】《考试宝典》知识点 9 矩阵的秩和矩阵等价

3、【正解】正确

THE P

【解析】n 所 A 矩阵可逆 \Longrightarrow R(A)=n, $\bigvee R(E)=n\Longrightarrow A$ 和 E 等价 \Longrightarrow A 经过有限次初等变量 可变为单位矩阵 (2可性)

【考点延伸】《考试宝典》知识点 9 矩阵的秩和矩阵等价

人們相似对為化

4、【正解】正确

【解析】存在P为可逆矩阵, $A=P^{-1}BP$,取f(x)中任一单项式 kx^n,k,n 为任意常数。

$$kA^n = k(P^{-1}BP)^n = kP^{-1}BPP^{-1}BP \cdots P^{-1}BP = P^{-1}(kB^n)P \Longrightarrow kA^n \sim kB^n \Longrightarrow f(A) \sim f(B)$$

【考点延伸】《考试宝典》知识点 19 特征值与特征向量

5、【正解】错误

【解析】反例:
$$A = \begin{bmatrix} 0 & 4 \\ 1 & 0 \end{bmatrix}$$
, $|\lambda E - A| = 0 \Longrightarrow \lambda_1 = 2$, $\lambda_2 = -2$, $\sum_{1 \le i \le 2} \lambda_i^2 = 4$, $\sum_{1 \le i \le 2} \sum_{1 \le j \le 2} a_j^2 = 1$?

【考点延伸】(考试宝典) 知识点 19 特征值与特征向量

6、【正解】正确

【解析】设
$$k_1(a_1+a_2+a_3)+k_2(a_2+a_3)+k_3a_3=0 \Longrightarrow k_1a_1+(k_1+k_2)a_2+(k_1+k_2+k_3)a_3=0$$

又
$$a_1, a_2, a_3$$
无关 \Longrightarrow
$$\begin{cases} k_1 = 0 \\ k_1 + k_2 = 0 \\ k_1 + k_2 + k_3 = 0 \end{cases} \Longrightarrow k_1 = k_2 = k_3 = 0 \Longrightarrow a_1 + a_2 + a_3, a_2 + a_3, a_3$$
 维性形

【考点延伸】(考试宝典》知识点 11 向量组的线性相关和线性表示 题型 2 用定义和重要结论。 明线性相关性 明线性相关性

(a) 正确 又特征值均为 0,所以 3 正交矩阵 Q,使 $Q^{-1}AQ = 0$,【记记】, $Q(0) = 0 \Longrightarrow A = 0$

 $A^{R(A)} = R(0) = 0 \Longrightarrow A = 0$ 》 知识点 21 实对称矩阵的对角化 编制 《考试宝典》知识点 21 实对称矩阵的对角化

 $AX^{T}A^{T}AX = (AX)^{T}(AX) = a_{11}^{2} + a_{22}^{2} + \dots + a_{nn}^{2} \ge 0$, $(X \ne 0)$ 这里需要讨论 A $AX \neq 0 \Longrightarrow (AX)^T (AX) > 0$,正定

AX=0有解 $\Longrightarrow (AX)^T(AX) \ge 0$,不正定

【考证伸】《考试宝典》知识点 24 正定二次型和正定矩阵 reserved in the state of the state of the

 $\mathbf{E}[\mathbf{F}] \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix} \\
\mathbf{F}[\mathbf{F}] \beta^{T} \alpha = 1, A^{n} = \alpha (\beta^{T} \alpha)^{n-1} \beta^{T} = \alpha \beta^{T} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$

 $\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{bmatrix}$

斯显然 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix}$ 可逆,则 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix}$ $A = B \Longrightarrow AB^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix}$

^{[[編集]}《考试宝典》知识点 5 矩阵的逆

[編] 128

 $|k_1|$ $|k_2-A|=0$ $\Longrightarrow \lambda=1,2,2$ $\Longrightarrow f(A)$ 的特征值为2,8,8 $\Longrightarrow |f(A)|=128$

^城城伸】《考试宝典》知识点 19 特征值与特征向量 (i, -2, -3, 0) T

 $R(A)=4 \Rightarrow AX=0$ 只有零解 $\Rightarrow AX=\beta$ 有唯一解

AX = 0 只有零解 $\longrightarrow AX = p$. $2a_2 - 3a_3 = A(1, -2, -3, 0)^T \longrightarrow X = (1, -2, -3, 0)^T$. 仅供

【考点延伸】《考试宝典》知识点 17 非齐次线性方程组

5、【正解】1>3

【解析】A 为正定矩阵 \Longrightarrow A 的各阶顺序子式均大于 $0\Longrightarrow t>0$, $\begin{vmatrix} t & 1 \\ 1 & 1 \end{vmatrix} = t-1>0$,

$$\begin{vmatrix} t & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & t-1 \end{vmatrix} = (t-3)(t+1) > 0 \Longrightarrow t > 3$$

【考点延伸】(考试宝典) 知识点 24 正定二次型和正定矩阵

三 【解析】由于 $a_i \neq 0$,第二列乘以 $\left(-\frac{c_1}{a_1}\right)$ 加到第一列,第三列乘以 $\left(-\frac{c_2}{a_2}\right)$ 加到第一列, $\frac{c_2}{a_1}$

乘以 $\left(-\frac{c_3}{a_3}\right)$ 加到第一列,…,第 n+1 列乘以 $\left(-\frac{c_n}{a_n}\right)$ 加到第一列,得到

$$\mathbf{D}_{n+1} = \begin{vmatrix} \mathbf{a}_0 - \frac{\mathbf{b}_1 c_1}{\mathbf{a}_1} - \frac{\mathbf{b}_2 c_2}{\mathbf{a}_2} - \dots - \frac{\mathbf{b}_n c_n}{\mathbf{a}_n} & b_1 & \dots & b_n \\ \mathbf{0} & a_1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ \mathbf{0} & 0 & 0 & a_n \end{vmatrix} = \prod_{i=1}^n a_i \left(a_0 - \sum_{i=1}^n \frac{b_i c_i}{a_i} \right)$$

【考点延伸】(考试宝典》知识点 1-3 题型 2 加边法和爪形行列式

四. 《解析》设该方程组为AX=β,先将 A 矩阵进行初等行变换, 以发展 集立 和 计 【制道院

$$\begin{bmatrix} \lambda + 3 & 1 & 2 & \lambda \\ \lambda & \lambda - 1 & 1 & \lambda \\ 3(\lambda + 3) & \lambda & \lambda + 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 1 & 2 - \lambda & 3\lambda - 3 \\ 0 & \lambda - 1 & 1 - \lambda & 3\lambda - 3 \\ \lambda & 0 & \lambda & 3 - 2\lambda \end{bmatrix}, |A| = 0 \text{ By}, \lambda_1 = 0, \lambda_2 = 1 \begin{bmatrix} 8\pi \end{bmatrix}$$

① 当 1 ≠ 0 且 1 ≠ 1 时, R(A) = R(Ā) = 3,方程组有唯一解

A=1时, $R(A)=R(\overline{A})=2<3$,方程组有无穷解

由
$$\begin{bmatrix} 3 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
 $X = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ \Longrightarrow 基础解系 $\eta = (-1, 2, 1)^T$,

特解
$$\eta_* = (0, -1, 1)^T \Longrightarrow X = \begin{bmatrix} -k \\ 2k-1 \\ k+1 \end{bmatrix}, k 为任意常数$$

【考点延伸】(考试宝典) 知识点 17 非齐次线性方程组 10.2 104 11.11

五 【解析】 $\begin{bmatrix} 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} A \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $= \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \text{ th} |\lambda E - A| = \begin{vmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & \lambda & -1 \end{vmatrix} = (\lambda - 2)(\lambda + 1)^2 = 0 \Longrightarrow \lambda_1 = \lambda_2 = -1, \lambda_3 = 2$$

(-E-A)X = 0 得 $\lambda = -1$ 对应的两个线性无关的特征向量为 $\alpha_1 = (-1,1,0)^T$, $\alpha_2 = (-1,0,1)^T$ (2E-A)X = 0 得 $\lambda = 2$ 对应的一个线性无关的特征向量为 $\alpha_3 = (1,1,1)^T$, 利用 Gram-Schmidt 正交化将 α_1, α_2 正交化得到 $\beta_1 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$, $\beta_2 = \left(-\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$, 将 α_3 单位化得到 $\beta_3 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, 此时 $\beta_1, \beta_2, \beta_3$ 相互垂直,得到正交矩阵

$$Q = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

经过坐标变化 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = Q \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ 下,二次型 $f = -x_1^2 + y_1^2 + 2x_1^2 + 1$,该曲面为双叶双曲线

「考点延伸」《考试宝典》知识点 22 二次型 题型 6 二次型的标准化 七、【解析】①由于 $A\alpha_i=0$, $A\beta=b\Longrightarrow A(\beta+\alpha_i)=b$,所以 $\beta,\beta+\alpha_i,\beta+\alpha_2,\cdots,\beta+\alpha_i$ 都是 4X=b的特解

②不可能,证明,若有t+2个线性无关解,不妨设解为 $\eta_1,\eta_2,\dots,\eta_{t+2}$,则存在t+1个线性无关的向量的向量组 $\eta_1-\eta_2,\eta_1-\eta_2,\dots,\eta_1-\eta_{t+2}$ 为齐次方程AX=0的基础解系,又AX=0的基

础解系只有1个线性无关的向量,矛盾,所以AX=b不可能存在1+2个线性无关的解。 【考点延伸】《考试宝典》知识点 18 方程组解的延伸

八. 【解析】① $A^2-2A-3E=0 \Longrightarrow A(A-2E)=3E \Longrightarrow A\frac{A-2E}{3}=E$, A矩阵可逆

②要证明 A 可对角化,即确定 A 的线性无关的特征向量的个数,等价于求 A 的所有特征的 的几何重数,由于 A 的特征值满足 $\lambda^2-2\lambda-3=0$,解得 $\lambda=3$ 或 $\lambda=-1$, 【 …) 当 $\lambda=3$ 和 $\lambda=-1$ 均是 A 的特征值时。

 $A^{2}-2A-3E=0 \Longrightarrow (A+E)(3E-A)=0 \Longrightarrow R(A+E)+R(3E-A) \leqslant n,$ $\mathbb{R}(A+E)+R(3E-A) \geqslant R(A+E+3E-A)=R(4E)=n$ $\Longrightarrow R(3E-A)+R(E+A)=n,$ (1=7)

(A+E)中有R(A+E)个线性无关解向量,(3E-A)(A+E)=0,所以对于

(3E-A)X=0,有n-R(3E-A)个线性无关的解向量,同理

(A+E)X=0,有n-R(A+E)个线性无关的解向量,说明 A 有 n-R(3E-A)+n-R(E+A)=n

个线性无关的特征向量,因此,A是可相似对角化

ii)当 $\lambda=3$ 是 A 的特征值,但 $\lambda=-1$ 不是 A 的特征值时,此时 $\lambda=3$ 的几何重数为 n-R(3E-A)

但 $|E+A|\neq 0$,说明E+A为可逆矩阵,由(A+E)(3E-A)=0得到3E-A=0,那么 A 的线性无关特征向量的个数为n-R(3E-A)=n,所以 A 可对角化。 iii)当 $\lambda=-1$ 是 A 的特征值,但 $\lambda=3$ 不是 A 的特征值时,同 ii),因此 A 可对角化 【考点延伸】(考试宝典)知识点 20 矩阵相似对角化

9: 23:11 2 全代性人、新学本道: 本道:24:1

2014-2015 学年第二学期期末考试 A 卷

-	判断题 (16分, 每题 2分, 共8題) ()
1.	设A为阶方阵 (n≥3),则对于任意数 K,有 (KA)*=KA*, A*为A的伴随矩阵.()
2	设A为m×n 阶实矩阵,若A ^T A=0,则 A=0.()
3.	设 n 阶方阵 A 与 B 相似,则对于任意的多项式 $f(\lambda)$,有 $f(A)$ 相似于 $f(B)$ ()
4.	着 n 阶行列式 D_n 的数值相同的元素大于 n^2-n 个,则行列式的值等于零.(
5.	若齐次线性方程组 AX=0 只有零解,则对应的非齐次线性方程组 AX=b 有唯一解(
6.	
7.	者齐次线性方程组 $AX=0$ 只有零解,则对应的非齐次线性方程组 $AX=b$ 有唯一解() 若,阶方阵 A 的特征值为 1 或 0 ,则 $A^2=A.($
	设 $A=(a_{ij})_{n\times n}$ 为 n 阶正定矩阵,则 A 的主对角线元素 $a_{ii}>0$, $i=1,2,$, $n.($) 和 3 i
Ξ,	填空屋(20分, 每题 4分, 共 5 题)
1. D	$ \begin{bmatrix} 1 & x & y & z \\ x & 1 & 0 & 0 \\ y & 0 & 1 & 0 \\ z & 0 & 0 & 1 \end{bmatrix} = \frac{1}{2} $
	发矩阵 $A=(a_1, a_2, a_3, a_4)$,其中 a_1, a_2, a_3, a_4 都是四维列向量, P 为四阶矩阵,若 $AP=$
	$(a_1, a_2, a_3, a_1 + a_4), \ MP =$
	K=0 的基础解系为
4. į	已知三阶方阵 A 的特征值为 1, -1, 2, 设 $B=A^3-5A^2$, 则 $ B =$
	的二次型 $f=(x_1, x_2, x_3)=x_1^2+4x_2^2+4x_3^2+2tx_1x_2+2x_1x_3+4x_2x_3$ 是正定的,则 t 的取值范围、
+	[
	(8分) 计算n阶行列式Dn =
=	1 a+b ab
~,	(87) 计算 n 阶行列式 $D_n = 1$ $a+b$ …
	1 #TD

图、(10分) 已知 3 阶矩阵
$$A$$
 的逆矩阵为: $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix}$.求 A 的伴随矩阵 A 的逆矩阵(A).

五、(12分) 已知线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \end{cases}$ 求参数 a, b 的取值,使得方程组 $\begin{cases} 3x_1 + 2x_2 + x_3 + ax_4 = -1 \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$

- 1. 有唯一解
- 2. 无解
- 3. 有无穷多解,并求通解

18\$ 2- 1a1. a2. a. a4 11 11 11 11 11 11 11 11

as as as as + a4), # Pa _____ & 60%

5.4 阶形耳:的四个列前员a1、a2、a3、a3、a3、a4。c3、a4a;u2、c3·u4 = 0.

学0约基础保证。

集工的方法。由"特征债务"1、1、1、2、4、A3 SAT。

大、(12分) 设矩阵 A= 1 -1 1 a 4 b 有三个线性无关的特征向量、λ=2是 A 的二重特征值,试验 a -3 -3 5

参数 a, b 及可逆矩阵 P, 使得 P-IAP 为对角矩阵。

· drawing of the

七、(12分) 用正交变换 X=CY 化二次型 f=(x1, x2,, x3)=x1²+x2²+x3²+4x1x2+4x1x3+4x2x3 为标准型.

* [* *]

1 - 10 1

10000

人、(10分) 设 A, B 为 n 阶方阵, I 为单位矩阵, 且 $A^2=B^2=I$, |A|=-|B|,证明矩阵(A+B)不可逆.

the state of the s

W. Carlot Thomas and The server

14 11

THE THE PROPERTY OF THE PROPERTY OF

server in the time was to be a

7 7 7 7 1

The state of the s

Since the second of the second

Broad Well Broad

THE REPORT OF THE PROPERTY OF

The state of the s

e la maria distributati

2014-2015 学年第二学期期末考试 A 卷参考答案

判断層(10分,每題2分,共5點)

1、【正解】错

【解析】矩阵的伴随矩阵相关问题。记住公式即可,即; 由公式 $(kA)^n = k^{n-1}A^n$ 知,当且仅当k=1时,题述公式成立

【考点延伸】(考试宝典)【知识点 4-9 重要题型】题型 4, 伴随矩阵的计算

2. 【正解】对

【解析】由公式 $r(A) = r(A^T) = r(AA^T) = r(A^TA)$ 知r(A) = 0,则A = 0。

【考点证伸】 (考试宝典》【知识点 9】矩阵的秩

附常用矩阵秩的公式如下:

(1) $0 \le R(A_{man}) \le \min\{m, n\}$

(2) $R(A) = R(A^T) = R(A^TA) = R(AA^T)$

(3) 若A等价于B, 即A~B, 则R(A) = R(B)

(4) 设A是m×n矩阵, PQ分别为m,n 阶矩阵, 若P。Q 可逆, 则 R(PA) = R(AQ) = R(PAQ) = R(A)

(5) $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$

(6) 设A, B分别为 $m \times s$ 与 $n \times s$ 阶矩阵,则 $R\binom{A}{B} \le R(A) + R(B)$). 数 (书句).

(7) 设A, B为同型矩阵,则R(A±B)≤R(A)+R(B)

(8) $R(AB) \leq \min\{R(A), R(B)\}, \ \mathbb{H}(AB) \leq R(A), \ R(AB) \leq R(B)$

(9) 设A是 $m \times n$ 阶矩阵,设B是 $n \times s$ 阶矩阵,若AB = 0,则 $R(A) + R(B) \le n$

(10) 设A是n阶矩阵
$$(n \ge 2)$$
, 则 $R(A^n) = \begin{cases} n, & R(A) = n \\ 1, & R(A) = n - 1 \\ 0, & R(A) < n - 1 \end{cases}$

3. 【正解】对

【解析】 $f(A) = \sum_{i=1}^{\infty} a_i A^i$, $f(B) = \sum_{i=1}^{\infty} a_i B^i$, 由于A = B相似, 可知 $A^i = B^i$ 相似 数 $\sum_{i=1}^{\infty} a_i A^i$ 与 $\sum_{i=1}^{\infty} a_i B^i$ 相似,即f(A)与f(B)相似

【考点延伸】相似矩阵与矩阵的多项式

4. 【正解】错

【解析】應目表述不易直接分析,考虑特殊法(举反例);

 $\mathbb{R}A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$,其中 1 有 3 个,符合题目要求,而A对应行列式的值为 1

【考点延伸】行列式的值

5、【正解】错

【解析】此题中。由齐次线性方程组只有零解知,A的列向量线性无关,而对应非齐次线生^{方是} 组有唯一解笔价于A66种24 不可以 组有唯一解等价于A的秩等于对应增广矩阵的秩且A为列满秩矩阵,由以上分析。很整

易得到反例,取
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $b = (0,0,1)^T$,则方程组 $AX = b$ 无解

70 亚版官 Q 1802493445 / 3091371067 "金钱 huakeda1037" 。 严酷连印迹类 侵权必免

【考点延伸】(考试宝典) 。(正解) 错 【考点延伸】特征值 7.【正解】对 【解析】由A可逆知,AP A行向量线性和

【考点延伸】《考试宝典 8. [正解] 对

【解析】取n 阶列向量 x A其他主对角方 【考点延伸】《考试宝典

二、 填空题(18分。每题

1. 【正解】D4 = 1~x2-【解析】此类题一般两种

用后一 种方法

式阶数较小,

 $-z^2 + y \begin{vmatrix} x \\ y \end{vmatrix}$

【考点延伸】《考试宝典

2. 【正解】P = 0 1 0 0 0 1

【解析】此类题很基础。 某个复杂问题中,需要自 【考点延伸】向量的表示

3. 【正算】(1, -1,1,-1)^下 【解析】此题体现上题分

** AX = 0基础解: 【考点延伸】(考试宝典

LEW1-288 【解析】由已知可得B的 28 - 5 x 21 =

【考点延伸】(考试宝典) 1 (-1,2)

【展析】对于正定矩阵的 W. H. LEE

【考点延伸】《考试宝典》【知识点 17】非齐次线性方程组

6、【正解】错

「解析】取A =
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 则A特征值为 1 或 0,满足要求 而A² = $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ = A

【考点延伸】特征值

7、【正解】对

【解析】由A可逆知,A行向量线性无关,A的任何一行都不能由其余行线性组合来表示.否则, A行向量线性相关,与已知矛盾

【考点延伸】《考试宝典》【知识点 11】向量组的线性相关和线性表示

8、【正解】对

【解析】取n 阶列向量 $x = (1,0,0,...,0)^T$,根据正定矩阵性质,知 $x^TAx = a_{11} > 0$,同理,可证 A其他主对角元素均大于零

【考点延伸】《考试宝典》【知识点 19-24 重要题型】正定矩阵的性质和证明

二、 填空懸(18分, 每题3分, 共6趣)

 $1 - [EF] D_4 = 1 - x^2 - y^2 - z^2$

【解析】此类题一般两种思路:根据行列式形式特征,对其进行变化以简化求解过程;在行列式阶数较小,且一时不能很快发现化简方法,则可直接展开,细心计算即可.此题可使

用后一种方法.将D₄按最后一列展开,得D₄ =
$$-z$$
 $\begin{vmatrix} x & 1 & 0 \\ y & 0 & 1 \\ z & 0 & 0 \end{vmatrix}$ + $\begin{vmatrix} 1 & x & y \\ x & 1 & 0 \\ y & 0 & 1 \end{vmatrix}$

$$=-z^2+y\begin{vmatrix} x & 1 \\ y & 0 \end{vmatrix}+1-x^2=1-x^2-y^2-z^2$$

【考点延伸】《考试宝典》【知识点 2】行列式的展开

2. [F(x)]
$$P = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

【解析】此类题很基础,可以直接得出结果.一般这种求P的问题不会单独考察。更多的是在解决某个复杂问题中,需要自己得到结果并应用

【考点延伸】向量的表示

11 行。安治、智沙区如。

3、【正解】(1;-1,1,-1)T 0 0 0

【解析】此题体现上题分析内容,由已知得Ax = 0,其中 $x = (1, -1, 1, -1)^T$.因为r(A) = 3,则 AX = 0基础解析只含4 - 3 = 1个线性无关向量,故其基础解系可表示为 $(1, -1, 1, -1)^T$ 【考点延伸】《考试宝典》【知识点 16-18 重要题型】题型 5,齐次(非齐次)方程组解的结构

4. (E#1 -288

【解析】由已知可得B的三个特征值分别为 $1^3 - 5 \times 1^2 = -4$; $-1^3 - 5 \times 1^2 = -6$;

 $2^2 - 5 \times 2^2 = -12.$ $||B|| = -4 \times 6 \times 12 = -288$

【考点延伸】《考试宝典》【知识点 19-24 重要歷型】求特征值 "气候" 计分文字 。

TALL OF LAW

5、【正解】(-1,2)

【解析】对于正定矩阵的应用,有很多思路,如配方法,顺序主子式法。特值法等等.此题中出现

《线性代数》历年题 历年题 三阶正定矩阵,考虑用顺序主子式判别法进行讨论,二次型对应矩阵为 [1 t 1] 1 t 1 2 4] 由顺序主子式大于零,即 $\begin{vmatrix} 1 & t \\ t & 4 \end{vmatrix} > 0$, $\begin{vmatrix} 1 & t & 1 \\ t & 4 & 2 \\ 1 & 2 & 4 \end{vmatrix} > 0$,化简并解得 $t \in (-1,2)$ 【考点延伸】《考试宝典》【知识点 24】正定二次型和正定矩阵 【正解】将 D_n 按第一列展开,得 $D_n = (a+b)D_{n-1} - abD_{n-2}$ = $(1) a \neq b b b$, $D_1 = a + b = \frac{a^2 - b^2}{a - b}$, $D_2 = (a + b)^2 - ab = a^2 + b^2 + ab = \frac{a^3 - b^3}{a - b}$ 于是猜想 $D_n = \frac{a^{n+1}-b^{n+1}}{a-b}$,下面使用数学归纳法证明此猜想: 当n = 1,2时等式均成立.假设当n ≤ k时等式成立,则 易得当n = k + 1时, $D_{k+1} = (a+b)D_k - abD_{k-1} = \frac{a^{k+2} - b^{k+2}}{a-b}$. 猜想成立 (2) a = b时 此时利用递推式也可得到正确结果,但过程较为繁琐.下面展示一种利用极限求取答案 $a \neq b | b | b | b | b | b | c | \frac{a^{n+1}-b^{n+1}}{a-b} = \frac{(a-b)(a^n+a^{n-1}b+a^{n-2}b^2+\cdots+b^n)}{a-b}$ 的方法: 令 $a \to b$,便可得 $D_n = (n+1)a^n$,综上,可得 $D_n = \begin{cases} \frac{a^{n+1}-b^{n+1}}{a-b}, \ a \neq b \\ (n+1)a^n, \ a = b \end{cases}$ 【考点延伸】《考试宝典》【知识点 3】几种特殊的行列式 $s = 4v = 60 \Rightarrow 100 = 1 + 1 \Rightarrow 100 = 2$ (10分) **LEMI** $(A^*)^{-1} = \frac{A}{|A|} = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ $(A^*)^{-1} = \frac{A}{|A|} = \begin{bmatrix} 5 & -2 & -1 \\ -2 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 【考点延伸】《考试宝典》【知识点 4-9 重要题型】题型 6: 矩阵的秩 1 0 (12分) """""不多多一块品供养到物质。不可以医学性了市界1 【正解】对增广矩阵进行初等行变换,得矩阵如下所示

[1 1 1 1 0 0 1 2 2 1 0 1 0 0 a-1 0 b+1] 1.由已知得r(A) = r(A|b) = 4, 则a-1≠0即a≠1(此时对b无取值要求)有唯一解 2.由己知得r(A) < r(A|b),则a-1 = 0且 $b+1 \neq 0$ 即a=1,且 $b \neq -1$ 。无解 3. 由己知得r(A) = r(A|b) < 4. 则a-1=0且b+1=0即a=1. b=-1. (在) 对应齐次线性方程组,基础解系由两个线性无关的解向量构成,对于 $\xi_1 = (1, -2, 0, 1)^T$, $\xi_2 = (1, -2, 1, 0)^T$ 非齐次方程组一特解 $\xi_3 = (-1,1,0,0)^T$,故通解 $\xi = c_1\xi_1 + c_2\xi_2 + \xi_3$,其中 α_1 ,或通解 $\xi = c_1\xi_1 + c_2\xi_2 + \xi_3$,其中 α_1 。 【考点延伸】(考试室典)【知识点 16-18 重要應型】應型 2. 非齐次线性方程组的解

(12分) 『正解』由已知得,矩阵A特征值 $\lambda_1=\lambda_2=2$,设其另一个特征值为 λ_2 ,

蜂征方程($\lambda E - A$)x = 0, 将 $\lambda = 2$ 代入,得系数矩阵: $A_1 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$

因为 A 有三个线性无关的特征向量,那么对应于 $\lambda=2$, $(\lambda E-A)x=$ 0 基础解系由两个线性无关解向量构成,可知 r(A₁) ≈ 1 从而得到:

a = 2 = -b, a = 2, b = -2

对应于 $\lambda = 2$,由($\lambda E - A$)x = 0 易得两个线性无关基础解系: $\xi_1 = (1,0,1)^T$, $\xi_2 =$ $(-1,1,0)^T$ 对应于 $\lambda = 6$,由 $(\lambda E - A)x = 0$ 易得一基础解系: $\xi_3 = (1,-2,3)^T$

 $\Phi P = (\xi_1, \xi_2, \xi_3)$, 満足 $P^{-1}AP = \Lambda$, 其中 $\Lambda = 0$

【考点延伸】《考试宝典》【知识点 19-24 重要题型】求特征值与特征向量 Something to the office of the state of the

to (12分)

【正解】二次型对应矩阵 $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$,由特征行列式 $|\lambda E - A| = 0$ 得A特征值 Aller I that give a finite way the site of

 $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = 5$ 对应于 $\lambda = -1$, 由 $(\lambda E - A)x =$

■ 易得两个线性无关、正交的基础解系: $\xi_1 = (-1,1,0)^T$, $\xi_2 = (1,1,-2)^T$

财应于 $\lambda = 5$, 由($\lambda E - A$)x = 0 易得一基础解系: $\xi_3 = (1,1,1)^T$, 故存在C = (ξ_1,ξ_2,ξ_3). 使得在X = CY变换下,二次型化为标准型: $f(y_1,y_2,y_3) = -y_1^2 - y_2^2 + 5y_3^2$

【考点延伸】《考试宝典》【知识点 21】实对称矩阵的相似对角化

(10分)

又已知|A| = -|B|,则必有|A| = -|B| = 1或|A| = -|B| = -1,即|A||B| = -1

故 $|A||B||A + B|=|A||A + B||B| = |A^2 + AB||B| = |A^2B + AB^2| = |A + B|$

即-|A+B| = |A+B|, 则|A+B| = 0, 故A+B不可逆, 原命题得证

【考点延伸】《考试宝典》【知识点 5】矩阵的逆

2013-2014 学年第二学期期末考试 A 卷

一、 判断題 (16分, 每题 2分, 共 8 题)	1 -
1.设 A为n(n≥3)阶方阵,则任意数a,都有(aA)*=aA*.()	>472
2.若 n 阶行列式 D 中, 多于 n ² - n 个元素为 0, 则 D=0.()	10.00
3.若 A 可对角化,则对任意多项式 $f(\lambda)$, $f(A)$ 也可对角化.()	**************************************
4.若 $A^2 = A$ 则 $A = 0$ 或 $A = I$.()	e
5.若 A+B 与 A-B 均可逆、则 A,B 可逆.()	Mary 1
6.若 n 阶实对称阵 A 的对角线上有某个元素等于零,则 A 一定不是正定	拓阵 / 、
7.若向量 α_1 , α_2 , α_3 , α_4 线性无关,则必有 $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 \neq 0$.())
8.设 / 为 m×n 矩阵, 若 m <n,则线性方程组 td="" x="0" 必有无穷多组解.(<=""><td>) 18-22-1</td></n,则线性方程组>) 18-22-1
二、 填空應(20分, 每應 4分, 共 5 题)	and the second
二、 填空應(20分, 每應 4分, 共 5 题) 1.设 4 为三阶方阵, A = 1/2, 则 (3A)-1-2A' =	** (KT)
** 95 % = (1.40)21 1 96 = 14 / LIU + 0 = 13 U = / TE = 111 T = 111 T = 121	O O 148 M 18 4
- 11 2 37 1-3 - 2 2度が10で、 株計 0 = 2(A - 2())	1 = { 4-16 m
3 # 4= 0 7 3 Mar Material 10 84 W. S	です。 学社 4.8 を 1.8 で
3.设 A = 0 2 3 0 0 3 0 0 3 10 0	特尼尔(1) [中国共1]
4.设置中向量 β 在基 $\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}$ 下坐标为 $X=[1,2,3,7]^T$,则 β 在	- (-) (-) (-) (-) (-) (-) (-) (-
2	$ \mathbb{E}\left\{\alpha_{1},\alpha_{3},\alpha_{4},\alpha_{2}\right\} \vdash \square \perp $
7= = A = 14 A = 14 A =	ー= A ロニネ
FIANA FRINS = 1.4" + 481101 - 1.6 B + 40" - 1.7	alat + B
5.若 A. 8 为正定方阵, 则 A ⁻¹ , A', A+B, AB, KA(K>0) 中一定为正定矩阵	车的有
$[1+a, 1, \dots, 1]$	The state of the s
= (4分) 计算 n 阶行列 = 1 1+a ₂ 1	. *
三、(8分) 计算 n 阶行列式 $D_n = \begin{bmatrix} 1+a_1 & 1 & \dots & 1 \\ 1 & 1+a_2 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1+a_n \end{bmatrix}$ ($a_i \neq 0, i = 1$)	1,2,,n).
1 1 1 1+a,	Jan de
- 1 - at	-
· · · · · · · · · · · · · · · · · · ·	-
14 11 77 1 1 11 11 11 11	*
The state of the s	

*** 1 12 5 1 1 (AX) + X + X = 1, = 場 (株) (中 1) 大 图、(12分) λ 取何值时,线性方程组 $\{x_1 + \lambda x_2 + x_3 = \lambda, (1) 有唯一解; (2) 无解; (3) 有无$ $|x_1 + x_2 + \lambda x_3 = \lambda^2$: A .- " Itilly (1)

穷多解,并求其通解.

(2) 葡萄豆娃 (2) 葡萄豆娃 (2)

(3) 证明,相拟主对电路人, 并与用户信仰人, 自由自由,不同用户相对, 如风险, 在现象的主动性, 证据。 EFF .

EM!

就是 智慧主要度 出時, 烈力也可以有化

1大公文体》、平成作1 1 1 1 1 1 201 4 1 1 1 1 1 1 1 七、(10分) 设4= 1 0 1 二次型 ((4), 4)= X*((1*4)X的株为2 【正學】禁 $\begin{bmatrix} \frac{1}{\sqrt{2}} & a_1 & 0 \end{bmatrix}$ if $a_1 = 0$ **五、(12分))** 设 $A = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$ 0 1 (1) a_1, a_2, a_3 满足何关系时,A为可逆阵. (2) a_1, a_2, a_3 为何值时,

40.1

1为正交阵. (3) a,, a,, a, 为何值时, A为对称阵.

【大学院母】《李铭宗典》【如此点 5】 经时前是

1581 9

八、正列舞(10分)正明工造计中执体的范及条件条件在实际边界产品,这种产品,这个编点是

【考析编辑】《畅》《《文文卷》 (4) 规划的设计的文件的正式。

TENT N

[李京起海] (李林明集] [明中日 [14] [14] [14] [14] [14]

......

《线性代数》历年题

大、(12分) 设 ξ 为 n 维非零实列向量, $\xi = [a_1, a_2, ..., a_n]^T$, $|\xi| = 2$, $\nabla A = \xi \xi^T$,

- (1) 证明 A2 = 4A;
- (2) 证明 5 是 4 的一个特征向量:
- (3) 证明 Λ 相似于对角阵 Λ ,并写出对称阵 Λ .

七、(10分) 设
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & \lambda \\ 0 & \lambda & -1 \end{bmatrix}$$
,二次型 $f(x_1, x_2, x_3) = X^T(A^TA)X$ 的秩为 2.

(1) 求实数 λ 的值;

(2) 求正交变换X = Cy将f化为标准形.

八、证明题(10 分)证明 4 是正定矩阵的充要条件是存在实可逆阵 P,使 $A=P^TP$ 、

2013-2014 学年第二学期期末考试 A 卷参考答案 1 # 11

判断歷 (16分, 每歷2分, 共8歷)

、[正解]错

【考点延伸】《考试宝典》【知识点 4-9 重要题型】题型 4, 伴随矩阵的计算

2.【正解】对

【解析】若n阶行列式 D中, 多于n2-n个元素为 0, 那么必有一行的元素全为 0, 则 D-0 【考点延伸】《考试宝典》【知识点1】行列式的概念及其性质....

3、【正解】对

The second of th 【解析】若 Λ 可对角化,即 $P^{-1}AP = \Lambda$, $P^{-1}A^{n}P = P^{-1}AP \dots P^{-1}AP = \Lambda^{n}$ 则对任意多项式 $f(\lambda)$, f(A) 也可对角化.

2 全型 用水红面积(水平) 12 · 12

【考点延伸】《考试宝典》【知识点 20】矩阵相似对角化;

4.【正解】错

【解析】假设 $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$, A不是零矩阵,也不是单位矩阵

【考点延伸】(考试宝典) 【知识点 4-9 总览】幂等矩阵

5、【正解】错

【解析】 $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, A + B 和 A - B 可逆, 但 $A \setminus B$ 不可逆

【考点延伸】《考试宝典》【知识点 5】矩阵的逆: (1) (1)

6. [正解] 对

【解析】若口阶实对称阵力的对角线上有某个元素等于零,则力一定不是正定矩阵、正定矩阵对 角线上的元素均大于 0.

【考点延伸】《考试宝典》【知识点 24】正定二次型和正定矩阵

1、【正解】对

【解析】若向量 α_1 , α_2 , α_1 , α_4 线性无关,则必有 $\alpha_1+\alpha_2+\alpha_3+\alpha_4\neq 0$.

【考点延伸】《考试宝典》【知识点 11】向量组的线性相关和线性表示

1、【正解】对

【解析】线性方程组的行数小于未知元的个数,则方程组必有无穷解 【考点延伸】《考试宝典》【知识点 16-18 重要壓型】线性方程组的解

填空題(20分,每題 4分,共 5 题),

《线性代数》 历年题

1.颜水井、作二湖市、在61,2000

1、【正解】-16

【解析】 $|(3A)^{-1}-2A^*| = \left|-\frac{2}{3}A^{-1}\right| = -\frac{16}{27}$

【解析】 (考试宝典) 《知识点 4-9 重要题型】题型 1. 矩阵的运算与矩阵行列式的计算

2. 【正解】19

网络住房多项工厂工工、1111、西班牙等的 3. (IIII) $\lambda = 3, \lambda_2 = \frac{5}{2}, \lambda_3 = \frac{7}{3}$

『解析』21+A⁻¹ = $\begin{bmatrix} 3 & -1 & 0 \\ 0 & \frac{5}{2} & -\frac{1}{2} \\ 0 & 0 & \frac{7}{3} \end{bmatrix}$ 、求得特征值为 $\lambda_1 = 3, \lambda_2 = \frac{5}{2}, \lambda_3 = \frac{7}{3}$ 学【彩』 の $\lambda_1 = \frac{7}{3}$ 学【彩』 の $\lambda_2 = \frac{5}{2}$ の $\lambda_3 = \frac{7}{3}$ 学【彩』 の $\lambda_1 = \frac{7}{3}$ の $\lambda_2 = \frac{5}{2}$ の $\lambda_3 = \frac{7}{3}$ の $\lambda_4 = \frac{7}{3}$ の $\lambda_4 = \frac{7}{3}$ の $\lambda_4 = \frac{7}{3}$ の $\lambda_5 = \frac{7}{3}$

【考点延伸】《考试宝典》【知识点 19-24 重要题型】求特征值与特征向量 清楚》【中国之门 批問到

4. 【正解】 Y=[1,3,7,2]

$$Y = [13,7.2]$$

$$\beta = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} X^T$$

$$= \{\alpha_1, \alpha_2, \alpha_4, \alpha_4\} \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{cases}$$

$$X^T = \{\alpha_1, \alpha_3, \alpha_4, \alpha_4\} \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{cases}$$

$$X^T = \{\alpha_1, \alpha_3, \alpha_4, \alpha_4\} \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{cases}$$

《考点延伸》《考试宝典》【知识点 10-15 重要题型】题型 4:

5. 【正解】 A . A . A + B, KA(K > 0)

【解析】 4, 8 为正定方阵、则 A⁻¹, A', A+B, KA(K>0), 对于 AB, 若 AB 可交换,

但屬中未给该条件。故该矩阵不一定正定

(金金)

$$= \begin{vmatrix} 1 + \sum_{i=1}^{n} \frac{1}{a_i} & 1 & 1 & \cdots & 1 \\ 0 & a_1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix} = \left(1 + \sum_{i=1}^{n} \frac{1}{a_i}\right) \prod_{i=1}^{n} a_i$$

【考点延伸】《考试宝典》【知识点 3】几种特殊的行列式。2019年1111

【正解】首先用 Cramer 法则解

(2)
$$\stackrel{\text{dist}}{=} \lambda = -2 \text{ Hr}, \quad [A|b] = \begin{bmatrix} -2 & 1 & 1 & 1 & 1 \\ 1 & -2 & 1 & | & -2 \\ 1 & 1 & -2 & | & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & | & -2 \\ 0 & -3 & 3 & | & -3 \\ 0 & 0 & 0 & | & 3 \end{bmatrix},$$

$$F(A) \neq F[A|b], \quad F(A|b) \Rightarrow F($$

r(A)≠r[A|b],所以方程无解

$$r(A) = r([A|b]) = 1$$
,方程组有无穷多解,通解为 $X = k_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} k_1, k_2 \in \mathbb{R}$

【考点延伸】《考试宝典》【知识点 16-18 重要题型】线性方程组的求解

E. 【正解】(1) 4为可逆阵时有 $A \neq 0$, $a_1 a_2 - \frac{1}{\sqrt{2}} a_3 \neq 0$, 即 $\sqrt{2} a_1 a_2 \neq a_3$

(2) 由
$$A$$
 为正交阵得:
$$\begin{cases} \frac{1}{2} + a_2^2 = 1 \\ a_1^2 + a_3^2 = 1 \end{cases}$$
 解得:
$$\begin{cases} a_1 = \frac{1}{\sqrt{2}} \\ a_2 = \frac{1}{\sqrt{2}} \end{cases}$$
 或
$$\begin{cases} a_1 = -\frac{1}{\sqrt{2}} \\ a_2 = \frac{1}{\sqrt{2}} \end{cases}$$
 或
$$\begin{cases} a_1 = -\frac{1}{\sqrt{2}} \\ a_2 = \frac{1}{\sqrt{2}} \end{cases}$$
 或
$$\begin{cases} a_1 = -\frac{1}{\sqrt{2}} \\ a_2 = \frac{1}{\sqrt{2}} \end{cases}$$
 或
$$\begin{cases} a_1 = -\frac{1}{\sqrt{2}} \\ a_2 = \frac{1}{\sqrt{2}} \end{cases}$$
 of the proof o

(线性代数) 历年题
$$\begin{bmatrix}
a_1 = \frac{1}{\sqrt{2}} \\
a_2 = -\frac{1}{\sqrt{2}}
\end{bmatrix}$$

$$\begin{bmatrix}
a_1 = \frac{1}{\sqrt{2}} \\
a_2 = -\frac{1}{\sqrt{2}}
\end{bmatrix}$$
(3)
$$A^T = \begin{bmatrix}
\frac{1}{\sqrt{2}} & 0 & a_2 \\
a_1 & 0 & a_3 \\
0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
\frac{1}{\sqrt{2}} & a_1 & 0 \\
0 & 0 & 1 \\
a_2 & a_3 & 0
\end{bmatrix}$$

$$\therefore a_1 = 0, a_2 = 0, a_3 = 1$$

$$\vdots$$

$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(5) 矩阵的逆
$$\vdots$$
(5) 矩阵的逆
$$\vdots$$
(1)
$$\vdots$$
(2)
$$\vdots$$
(3)
$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(5)
$$\vdots$$
(5)
$$\vdots$$
(6)
$$\vdots$$
(7)
$$\vdots$$
(7)
$$\vdots$$
(8)
$$\vdots$$
(9)
$$\vdots$$
(9)
$$\vdots$$
(1)
$$\vdots$$
(1)
$$\vdots$$
(2)
$$\vdots$$
(3)
$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(4)
$$\vdots$$
(5)
$$\vdots$$
(5)
$$\vdots$$
(5)
$$\vdots$$
(7)
$$\vdots$$
(7)
$$\vdots$$
(8)
$$\vdots$$
(9)
$$\vdots$$
(9)
$$\vdots$$
(1)
$$\vdots$$
(1)
$$\vdots$$
(2)
$$\vdots$$
(3)
$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(4)
$$\vdots$$
(5)
$$\vdots$$
(5)
$$\vdots$$
(7)
$$\vdots$$
(7)
$$\vdots$$
(8)
$$\vdots$$
(9)
$$\vdots$$
(9)
$$\vdots$$
(1)
$$\vdots$$
(1)
$$\vdots$$
(1)
$$\vdots$$
(2)
$$\vdots$$
(3)
$$\vdots$$
(3)
$$\vdots$$
(4)
$$\vdots$$
(4)
$$\vdots$$
(5)
$$\vdots$$
(5)
$$\vdots$$
(7)
$$\vdots$$
(6)
$$\vdots$$
(7)
$$\vdots$$
(7)
$$\vdots$$
(8)
$$\vdots$$
(9)

【考点延伸】《考试宝典》【知识点 5】矩阵的逆;【知识点 19-24 重要题型】正交矩阵; 转_{更碳}

大 (12分)

【证明】(1) 已知 $\xi = 2$,即 $(\xi, \xi) = \xi^T \xi = 4$,所以 $A^2 = \xi \xi^T \xi \xi^T = 4\xi \xi^T = 4A$.

(2) 因为 $\xi \neq 0$, $A\xi = \xi \xi^T \xi = 4\xi$, 所以 ξ 是A的对应于 $\lambda = 4$ 的特征向量.

(3) 由 $A^2 = 4A$ 得 A 的特征值 A 满足 $A^2 = 4A$, 即 A = 4 或 A = 0 .

又 $A^2 = 4A \Rightarrow A(4I - A) = 0$, 得 $r(A) + r([4I - A]) \le n$

又A+(4I-A)=4I, 得 $r(A)+r([4I-A]) \ge n$,故r(A)+r([4I-A])=n

从而 A 共有 $n-r([0\cdot I-A])+n-r([4I-A])=n$ 个线性无关的特征向量,从而 A 可相似于 対角形 Λ .由于 $\Lambda = \xi \xi^T \neq 0$,得1 ≤ $r(\Lambda) \leq r(\xi) = 1$,即,

【考点延伸】(考试宝典)【知识点 19-24】矩阵相似对角化:

【知识点 19-24 重要题型】求特征值与特征向量

七、 (10分)

【正解】(1)
$$A^TA = \begin{bmatrix} 2 & 0 & 1-\lambda \\ 0 & \lambda^2+1 & 1-\lambda \\ 1-\lambda & 1-\lambda & \lambda^2+3 \end{bmatrix}$$
 ,因为 $r(A^TA) = 2$ 所以 $|A^TA| = (\lambda^2+3)(\lambda+1)^2 = 0$ A72年

所以 $|A^TA|=(\lambda^2+3)(\lambda+1)^2=0$,解得, $|\lambda=+1|$,中国的原理人。(1)【整刊】

(2)
$$A^{T}A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$
, 由 $|\mathcal{X} - A^{T}A| = 0$ 得 $\lambda(\lambda - 2)(\lambda - 6) = 0$
 $A^{T}A$ 的特征值为 $\lambda = 0$, $\lambda_{2} = 2$, $\lambda_{3} = 6$

取
$$C = \begin{bmatrix} -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \end{bmatrix}$$
,则由正交变换 $X = CV$,前得 f 化为标准形 1) 過剰的 $f = 2y_2^2 + 6y_3^2$

【考点延伸】《考试宝典》【知识点 9】矩阵的秩;

【知识点 19-24 重要题型】题型 6: 二次型的标准化

(10分)

 $X^TAX = X^TP^TPX = (PX)^TPX \ge 0, \qquad (\text{Note: } (S_{1,1}) \in [0] \quad \text{for } (S_{1,1}) \in [0]$

若 $X^TAX = 0$,由 $(PX)^TPX = 0$ 及PX为实向量知,PX = 0

经要性: 若
$$\Lambda$$
正定,则存在正交阵 C ,使 $C^TAC = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$, $\lambda_1 > 0(i = 1, 2, ..., n)$,

$$\begin{array}{c|c}
\lambda_{n} & \lambda_{n} \\
\lambda_{n} & \lambda_{n}
\end{array}$$

$$\begin{array}{c|c}
\lambda_{n} & \lambda_{n} \\
\lambda_{n} & \lambda_{n}
\end{array}$$

$$\begin{array}{c|c}
C^{T} = C \\
\lambda_{n} & \lambda_{n}
\end{array}$$

$$\begin{array}{c|c}
\sqrt{\lambda_{1}} & \lambda_{2} \\
\sqrt{\lambda_{2}} & \lambda_{n}
\end{array}$$

$$\begin{array}{c|c}
C^{T} & C^{T} & C^{T} & C^{T}
\end{array}$$

【考点延伸】(考试室典)【知识点 19-24 重要题型】题型 7: 正定矩阵的性质和证明

2012-2013 学年第二学期期末考试 A 卷

2012-2013 子十年
一、判断题 (16分, 每题 2分, 共8题) 1.若 n(n>2)阶行列式 D=0, 则 D有两行 (列)的对应元素成比例.()
2.若n阶行列式D恰有n个元素非零,则D≠0.()
3.若 A, B 均为不可逆方阵,则 A = B .()
4.设 $f(x)$ 为任意一个多项式, A 为一个 n 阶矩阵,则 $(f(A))^T = f(A^T)$. () 5. 若齐次线性方程组中方程个数大于未知数的个数,则方程组只有零解. ()
5.若齐次线性方程组中方程个数大于未知数的个数,则方程组只有零解.()
$6.$ 若 $\{\alpha_1,\alpha_2,\alpha_3\}$ 秩为 2 ,又 $\{\alpha_2,\alpha_3,\alpha_4\}$ 秩为 3 ,则 α_1 可唯一地表示为 $\{\alpha_2,\alpha_3\}$ 的线性组合 $(\alpha_1,\alpha_2,\alpha_3)$
7.看 A, B 为 n 阶 万 件,则 r(AB) = r(BA).()
8.设 A 为 3 阶方阵,若 $r(A)=2$,则 $AX=0$ 的解是 R^3 中彼此平行的向量.(. :: :): $r \in \mathbb{R}$
二、填空鹽(20分,每題 4分,共 5 题) [1 2 0] [1 2 0] [1 2 X = 0有唯一解,则必有 2
2.设 A = [3 1 0] 0 2 5 0 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
3.二次型 $f(x_1, x_2, x_3) = 3x^2 - 2xx$ 3.
3.二次型 $f(x_1,x_2,x_3)=3x_1^2-2x_1x_2-2x_1x_3+4x_2x_3$ 的秩为,正惯性指数为,负惯性版为,
4.设 n 阶方阵 A 的各行元素之和为零,且 $r(A) = n-1$,则齐次线性方程组 $AX = 0$ 的通解为
$x_1 + 2x_1x_2 $
三、(8分) 计算 n 阶行列式 $D_n = \begin{bmatrix} 1+a_1 & 1 & 1 \\ 2 & 2+a_2 & 2+a_3 \\ 2 & 2+a_4 \\ 2 & 2+a_4 \\ 2 & 2+a_4 \\ 2 & 2+a_4 \\ 3 $

图, (12分) 设有线性方程组
$$\begin{cases} x_1 + a_1 x_2 + a_1^2 x_3 = a_1^3 \\ x_1 + a_2 x_2 + a_2^2 x_3 = a_2^3 \\ x_1 + a_3 x_2 + a_3^2 x_3 = a_3^3 \\ x_1 + a_4 x_2 + a_4^2 x_3 = a_4^3 \end{cases}$$

- (2) 若 $a_1 = a_2 = k$, $a_2 = a_4 = -k(k \neq 0)$ 求其通解. (2)
- 五、(12分) 设 $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 满足 $AB+I = A^2 + B$,其中I是3阶单位矩阵,求矩阵B.

1 361

1

IN LIGHT

the state of the s

八、证明题(10分)证明:任一中所方阵息可以表为一个证证证法与一个解抗矩阵之称其中类之 4 = 4的矩阵称为幂等果阵。

大、(12 分) 设如果二次型 $f=2x_1^2+3x_2^2+3x_3^2+2ax_2x_3(a>0)$,可通过正交变换 X=CY 化为标准 $\mathbb{E} y_1^2+2y_2^2+5y_3^2$,求参数 a 及所作的正交变换 X=CY .

一个人,不是我们的人,我们就是一个人,他们也不是一个人,他们也不是一个人。 一个人,

Parameter & Carlotte Carlotte

一种主义是这个大学 公司人教 斯沙利特州大学工作

《蛾性代数》 历年题

$$=$$
. (11分) 设 $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 海龙 $AB + I = A^2 + B^2$ 其中 $I = I^2$

八、证明题 (10 分) 证明:任一 n 阶方阵总可以表为一个可逆矩阵与一个幂等矩阵之积.其中满足 A2=A的矩阵称为幂等矩阵.

学+212 +5以2、农多数"及原供信证会要换工工"

1 -6 . 2

2012-2013 学年第二学期期末考试 A 卷参考答案

判断题 (10分, 每题 2分, 共 5题)

[正解] 错

【解析】若n(n>2)阶行列式 D=0,则 D有两行(列)的对应元素不一定成比例.

【考点延伸】《考试宝典》知识点 1: 行列式的概念及性质

2、【正解】错

【解析】》个元素非零,可能有某一行或者列上不止一个元素非零,而某一行或者列的所有无意 · · 考集中型 计图片 與 讀書·哪門為中 書口以及手書

为年,则 D-0.

【考点延伸】《考试宝典》知识点 1: 行列式的概念及性质

3、【正解】对

【考点延伸】《考试宝典》【知识点 4-9 总览】逆矩阵的充要条件

4.【正解】对

【解析】设f(x)为任意一个多项式,A为一个n阶矩阵。

E A W LOS IMAL ! $\mathbf{W}(f(A))^{T} = \left(\sum_{i=1}^{\infty} a_{i} A^{i}\right)^{T} = \sum_{i=1}^{\infty} a_{i} (A^{T})^{T} = f(A^{T}) \quad \text{where } 1 \quad \text{if } T = (A)^{T} \text{ if } M \text{ if } T = (A)^{$ 旅遊縣內容[1....][* * */

【考点延伸】转冒矩阵与矩阵的多项式 【おお、か】とそれとれて「誠になる」には地を描してい

5.【正解】错

【解析】如若方程组中有方程与其他方程成比例,则方程组可能有唯一解,无穷解。零解

【考点延伸】《考试宝典》【知识点 16-18】重要题型非齐次线性方程组的解

6. 《正解》对

【解析】 $\{\alpha_1,\alpha_2,\alpha_3\}$ 秩为 2,又 $\{\alpha_2,\alpha_3,\alpha_4\}$ 秩为 3,则 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, α_2 。 α_3 线性无关,则

4可唯一地表示为{a2, a3}的线性组合。

【考点延伸】(考试宝典) 知识点 11: 向量组的线性相关和线性表示

【解析】 假设 $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$, 则有 $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$; $BA = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}$

【考点延伸】(考试宝典》知识点 9,矩阵的秩和矩阵等价

8、【正解】对

【解析】 4为3阶方阵,若r(A)=2,dim N(A)=n-r(A)=1,则AX=0的解是 R^3 中彼此平 行的向量.

(线性代数) 历年董 【考点延伸】《考试宝典》【知识点 16-18】齐次线性方程组的解 " 」(115 5 1 1) [(线性代数) 历年重 二、 填空題(18分, 每題3分, 共6題) 【解析】有唯一解,则0≠ |A| = λ, 即 2≠0 1、【正解】 2×0 【考点延伸】(考试宝典)【知识点 16-18】齐次线性方程组的解 【解析』A的特征值为3, 2, 4, A²的特征值为3²;2²,4² 2、【正解】9,4,16 【考点延伸】《考试宝典》【知识点 19-24 重要题型】 and the state of t 3、【正解】3 2 1 3 -1 -1 -1 0 2 化筒可得矩阵的秩为 3, 求解矩阵的特征值、得入=3, 2, -2故正惯性 -1 2 0 指数为2,负责性指数为1,符号差为1 【考点延伸】《考试宝典》【知识点23】矩阵的合同 【鲜蜂】女子(x)为住这一下三型式。 1.为一个市场景的。 4. [III] K[I,L...I] K∈R 【解析】r(A) = n-1,则线性无关解的个数为n-(n-1) = 1,而每行元素之和为零 **故通解为** K[1,1,...,1] K∈ R 【青睐起柳】转置超路。据郑四 【考点延伸】(考试宝典)【知识点 16-18】齐次线性方程组的解 指【驻亚】 5. 【正解】-1<1<0 【界好】如若方程建中有力程与其能力程或比例。则是一种 [正析] 对 $||A_1|| = 1 > 0; |A_2| = \begin{bmatrix} 1 & t \\ t & 2 \end{bmatrix} = 2 - t^2 > 0; ||A_2|| = \begin{bmatrix} 1 & t \\ t & 2 \end{bmatrix} = 2 - t^2 > 0; ||A_2|| = 1$ 可唯一地表示为{α,,α,{的性性型 17 【考点延伸】(考试宝典)【知识点 19-24 重要题型】题型 7: 正定矩阵的性质和证明 (默刊) 三、 (8分)

$$= (1 + a_1 + \frac{2a_1}{a_2} + \dots + \frac{na_1}{a_n})a_2 \dots a_n = (1 + \frac{1}{a_1} + \frac{2}{a_2} + \dots + \frac{n}{a_n})a_1 a_2 \dots a_n$$

【考点延伸】《考试宝典》【知识点 3: 几种特殊的行列式】

假设方程有解,由
$$\begin{cases} (a_2-a_1)x_2+({a_2}^2-{a_1}^2)x_3={a_2}^3-{a_1}^3\\ (a_3-a_1)x_2+({a_3}^2-{a_1}^2)x_3={a_3}^3-{a_1}^3\\ (a_4-a_1)x_2+({a_4}^2-{a_1}^2)x_3={a_4}^3-{a_1}^3 \end{cases}$$

得:
$$x_2 = (a_1^2 - a_1 a_2 + a_2^2) - (a_1 + a_2)x_3$$

$$= (a_1^2 - a_1 a_3 + a_3^2) - (a_1 + a_3)x_3$$

$$\therefore a_1 + x_3 = a_2 + a_3 = a_2 + a_4 = a_3 + a_4$$

$$=(a_1^2-a_1a_4+a_4^2)-(a_1+a_4)x_3$$

$$a_1 : a_2 = a_3 = a_4$$

即4,4,4,4,4,不能互不相同,:若4,4,4,4,互不相同,此线性方程组无解.

(2)
$$[A:b] = \begin{bmatrix} 1 & k & k^2 & \vdots & k^3 \\ 0 & -2k & 0 & \vdots & -2k^3 \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & -2k & 0 & \vdots & -2k^3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & k & k^2 & \vdots & k^3 \\ 0 & k & 0 & \vdots & k^3 \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \end{bmatrix}$$

$$\begin{cases} x_1 + kx_2 + k^2x_3 = k^3 \\ kx_2 = k^3 \end{cases} \text{ if } \begin{cases} x_1 = -k^2x_3 & 0 \\ x_2 = k^2 & 0 \\ x_3 = x_3 & 0 \end{cases} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

∴通解为
$$X = x_3 \begin{bmatrix} -k^2 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ k^2 \\ 0 \end{bmatrix}$$
,其中な为任意常数

【考点延伸】《考试宝典》【知识点 16-18】齐次线性方程组的解

ī, (12分)

(E#]
$$AB + I = A^2 + B^{1/2}AB - B = A^2 - I^{1/2}(A - I)B = A^2 - I^{1/2}$$

$$B = (A - I)^{-1}(A^2 - I) = (A - I)^{-1}(A - I)(A + I) = A + I, B = \begin{bmatrix} 3 & 0 & 2 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

【考点延伸】《考试宝典》【知识点 4-9 重要题型】题型 1: 矩阵的运算 (12分)

【正解】二次型
$$f$$
的矩阵为 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{bmatrix}$,因为 f 的标准形为 $y_1^2 + 2y_2^2 + 5y_3^2$,

所以的特征值为 1, 2, 5, 于是 $|A|=1\cdot 2\cdot 5=10$, 即 $2(9-a^2)=10$, 由 a>0 知 a=2

对
$$A_i=1$$
,解齐次线性方程组 $(I-A)X=0$,得基础解系 $\alpha_1=\begin{bmatrix}0\\1\\-1\end{bmatrix}$,

对
$$\lambda_2=2$$
,解齐次线性方程组 $(2I-A)X=0$,得基础解系 $\alpha_2=\begin{bmatrix}1\\0\\0\end{bmatrix}$

对
$$\lambda=5$$
,解齐次线性方程组 $(5I-A)X=0$,得基础解系 $\alpha_3=\begin{bmatrix}0\\1\\1\end{bmatrix}$

$$m{lpha_1, lpha_2, lpha_3}$$
两两正交,单位化得 $m{\epsilon_1} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, m{\epsilon_2} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, m{\epsilon_3} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

【考点延伸】(考试宝典)【知识点 19-24 重要题型】题型 6; 二次型的标准化

[正解] (1)
$$|\lambda I - A| = [(\lambda - a)^2 - b^2][(\lambda + a)^2 - b^2],$$

$$\lambda_1 = a + b, \lambda_2 = a - b, \lambda_3 = -a + b, \lambda_4 = -a - b,$$

$$a_1 = \frac{1}{2}(1,1,1,1)^T, a_2 = \frac{1}{2}(1,-1,1,-1)^T, a_3 = \frac{1}{2}(1,-1,-1,1)^T, a_4 = \frac{1}{2}(1,1,-1,-1)^T$$

$$a_1 = \frac{1}{2}(1,1,1,1)^T, a_2 = \frac{1}{2}(1,-1,1,-1)^T, a_3 = \frac{1}{2}(1,-1,-1,1)^T, a_4 = \frac{1}{2}(1,1,-1,-1)^T$$

$$a_1 = \frac{1}{2}(1,1,1,1)^T, a_2 = \frac{1}{2}(1,-1,1,-1)^T, a_3 = \frac{1}{2}(1,-1,-1,1)^T, a_4 = \frac{1}{2}(1,1,-1,-1)^T$$

$$2 + P = (a_1, a_2, a_3, a_4), \quad ||P| + AP = \begin{bmatrix} a+b \\ a-b \end{bmatrix} \quad ||AP| + AP = \begin{bmatrix} a+b \\ a-b \end{bmatrix} \quad ||AP| + AP = \begin{bmatrix} a+b \\ a-b \end{bmatrix} \quad ||AP| + AP| = \begin{bmatrix} a+b \\ a-b \end{bmatrix} \quad ||AP|$$

$$(p^{-1}AP)^n = \begin{bmatrix} (a+b)^n & (4444) & (444) & (444) & (444) & (444) & (444$$

$$(1,0,0,0)A^{n}(1,0,0,0)^{T} = \frac{1}{4}[(a+b)^{n} + (a-b)^{n} + (-a+b)^{n} + (-a-b)^{n}]$$

【考点延伸】《考试宝典》【知识点 19-24 重要题型】求特征值与特征向量

【证明】设A为任意 n 阶矩阵,r(A)=r,则存在 n 阶可逆阵 P,Q,使 $PAQ=\begin{bmatrix}I_r & 0\\ 0 & 0\end{bmatrix}$

于是
$$A = P^{-1}\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = P^{-1}Q^{-1}Q\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

$$= Q \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} \stackrel{?}{=} \stackrel{?}{$$

即 N 为幂等矩阵, :: A 可表示为一个可逆矩阵 M 与一个幂等矩阵 N 之积.

【考点延伸】矩阵的分解

司 2世中中4年,20年20日北京,到中的最初的数

()

2011-2012 学年第二学期期末考试 A 卷

一、判断題 (16分, 毎題2分, 共8題)

1.若 n 阶方阵 A 的行向量组与列向量组不等价,则 |A|=0.(2.相似的矩阵有相等的迹.()

3.设 A, B 为两个n 阶矩阵, 若 A² + B² = 0, 则 A = B = 0.()

4.设 f(x),g(x) 为任意两个多项式, A,B 为两个 n 阶方阵,若 AB=BA,则 f(A)g(B)=g(B)f(A)and the second second

5.设A为m×n矩阵, 若m<n,则线性方程组AX=0必有无穷多解.(

6.若向量 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关,则 $\alpha_1+\alpha_2+\alpha_3+\alpha_4\neq 0$.(

7.交换第 i 行与第 j 行这一初等变换,可以用另外两类行初等变换所取代.(______)

8.若 A.B 为 n 阶 正定矩阵,则 AB 也是正定矩阵.()

二、填空题(20分,每题4分,共5题)

思り方は管理は、これは老元的一个可能知道にいう ,对正整数n≥2,则 A"-2A"-1=_____ 野代的到25亿元。1

3.设 A, B 为 n 阶方阵, |A|=2,|B|=-3 则 |2A*B-1|=_

4.设A为 $m \times n$ 矩阵,若有矩阵 $B \neq 0$,使 AB = 0,则矩阵A的秩r(A)满足条件:r(A)

5.若二次型 $f(x,y,z) = 2x^2 + y^2 + 4z^2 + 2xy + 2tyz$ 正定,则 t 的取值范围是_

三、(8分) 计算 n 阶行列式
$$D_n = \begin{bmatrix} a - a_1^2 & -a_1a_2 & \cdots & -a_1a_n \\ -a_2a_1 & a - a_2^2 & \cdots & -a_2a_n \\ \cdots & \cdots & \cdots & \cdots \\ -a_na_1 & -a_na_2 & \cdots & a - a_n^2 \end{bmatrix}$$
 $(a \neq 0)$

```
(线性代数) 历年曆
                        カーキャース (1012 単年 で 101-1195 ) (101-1195)
 图、(12分) 设有线性方程组 \begin{cases} x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \end{cases} 第 4 . 6 . 8 . 4 . 11 . 11 . 12
                                                                  3x_1 + 2x_2 + x_3 + ax_4 = -1
                                                                                                                                                                                       1911
         a.b为何值时,方程组(1)有唯一解;(2)无解;(3)有无穷多解,并求其解,
                 · 1111
                                                                                                    引作标准并在在外门设施一个大路。 【谢解文章】
                                                                                                                                                                                     4 THE 1
                                                                                                                                 性以至一、武府村華多面「明練了
5、(12分) 已知 A<sub>3×3</sub> 的特征值为 1, 2, 3, 求 A 的特征值.
                                                                                                                                                                                     M [Man] J.
                                                                                                                                      11 0 a a my [ 14]
                                                                                                                             ★ (12分) 设A与B相似, A= 0 0 1 ,B= 0 y 0 ,求A和B,并求出P,使P'AP=B.
  \begin{bmatrix} 0 & 1 & x \\ 0 & 1 & x \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}
                                                                                            【主:三年】 三州三新 地解明空森的树丽
     () 植物【以广生 () 到到 地流流流
                                                                                                                                                                                   3. 多维 / 李 方
  经国际部心主动员,这个在科学的大块约里之,这个信息和中2000年2015年,
七 (自分) 用行列对称初等变换化下列二次型为标准形. f(x_1,x_2,x_3)=x_1x_2+4x_1x_3-6x_2x_3
            11195 A 1
            LIKE . . A.A. Latte
A. 任明题 (10分) 投是 A 正定矩阵, 证明 A 的伴随矩阵 A 也是正定矩阵.
            The same of the sa
```

《线性代数》历年题

2011-2012 学年第二学期期末考试 A 卷参考答案 Pairis Can.

一、 判斷題 (16分, 每題2分, 共8題)

【解析】若A的行列式不等于零,则A的秩为n,则A的行向量组与列向量组的秩都是n,所 1、【正解】对

以它们都与n维基本向量组等价,所以它们也等价,与已知矛盾,所以 |A|=0.

【考点延伸】《考试宝典》知识点9矩阵的秩的概念技巧

2、【正解】对

【解析】迹就是对角线上元素的和,这个和等于特征值的和

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 5 相似矩阵

3、【正解】错

【解析】反例: $A = B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

【考点延伸】幂零矩阵与矩阵的运算

4. 【正解】对

【解析】对任意一个相乘后的多项式而言 $a_iA^i \times b_jB^j = a_ib_jA^i \times B^j = a_ib_jB^j \times A^i = b_jB^j \times a_iA^i$ 在另一侧都能找到相对应的项,故f(A)g(B) = g(B)f(A)

: 0 0 4 10 11 11 15

【考点延伸】矩阵的运算,矩阵可交换的性质

5、【正解】对

【解析】m<n 则有线性方程组中的未知元的个数大于已知方程组的个数,则线性方程组一定有 无穷多个解、

【考点延伸】(考试宝典)【知识点 16-18 总览】题型 1 齐次线性方程组的解

6、【正解】错

【解析】若向量 a_1, a_2, a_3, a_4 ,线性相关,则存在一组不全为零的 k_1, k_2, k_3, k_4 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 + k_4\alpha_4 = 0$,所以 k_1, k_2, k_3, k_4 可能均为1

【考点延伸】(考试宝典)【知识点 11】1.线性相关性的定义

7. 【正解】对

【考点延伸】(考试宝典)【知识点8】1.初等变换

[解析] A, B为正定矩阵,即满足 $X^TAX>0, X^TBX>0$,但无法推出 $X^T(AB)X>0$,因为

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 7, 正定矩阵的性质和证明 ニ 填空懸(20分, 毎题 4分, 共5題)

に解
$$(x+3y)(x-y)^3$$

$$\begin{bmatrix} x & y & y & y \\ y & x & y & y \\ y & y & x & y \\ y & y & y & x \end{bmatrix} = \begin{vmatrix} x+3y & y & y & y \\ x+3y & x & y & y \\ x+3y & y & x & y \\ x+3y & y & y & x \end{vmatrix} = (x+3y) \begin{vmatrix} 1 & y & y & y \\ 1 & x & y & y \\ 1 & y & x & y \\ 1 & y & y & x \end{vmatrix}$$

$$= (x+3y) \begin{vmatrix} 1 & y & y & y \\ 0 & x-y & 0 & 0 \\ 0 & 0 & x-y & 0 \\ 0 & 0 & x-y & 0 \end{vmatrix} = (x+3y) (x-y)^{2}$$

【考点延伸】《考试宝典》【知识点 3: 几种特殊的行列式】 2.【正解】 0

【解析】
$$AA = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
归纳可得 $A^n = 2A^{n-1}$,故为 0

【考点延伸】(考试宝典》知识点 4: 矩阵的概念和基本运算

$$||A^*B^{-1}|| = 2^n |A^*| |B^{-1}| = -\frac{2^n}{3} ||A|A^{-1}| = -\frac{2^{2n-1}}{3}$$

《考点延伸》《考试宝典》《知识点 4-9 重要题型》题型 1;矩阵的运算和矩阵行列式的计算 ([E#] r(A)<#

[報析]
$$AB = 0$$
, 则 $r(A) + r(B) \le n$, 而 $B \ne 0$, 故 $r(B) > 0$, $r(A) < n$

(今点是伸](考试宝典)【知识点 18】题型 1,齐次线性方程组的解

(4新)正定则系数矩阵的各阶子式的行列式的值均为正

正定则系数矩阵的各阶子式的行列式的值均为正
$$|A_1|=2>0$$
; $|A_2|=1>0$; $|A_3|=2(2-t^2)>0$, $-\sqrt{2}$

[4 (考试室典) 【知识点 24】 3.正定矩阵的必要条件

(线性代数) 历年题
$$\begin{bmatrix} 1 & a_1 & a_2 & \dots & a_n \\ 0 & a-a_1^2 & -a_1a_2 & \dots & -a_1a_n \\ 0 & -a_2a_1 & a-a_2^2 & \dots & -a_2a_n \\ \dots & \dots & \dots & \dots \\ 0 & -a_na_1 & -a_na_2 & \dots & a-a_n^2 \end{bmatrix},$$
 将第 1 行的 a_i 倍加到第 $i+1$ 行 $(i=1,2,\dots,n)$, 1

$$0 - a_n a_1 - a_n a_2 \dots a_n a_n$$
 $a_1 a_2 \dots a_n$ $a_1 a_2 \dots a_n$ $a_1 a_2 \dots a_n$ $a_2 a_2 \dots a_n$ $a_1 a_2 \dots a_n$ $a_2 a_2 \dots a_n$ $a_1 a_2 \dots a_n$ $a_2 a_2 \dots a_n$ $a_1 a_2$

《考点延伸》《考试宝典》《知识点3】6. 爪型行列式

(1)方程有唯一解时,r(A)=r(A+b)=4,中华村以《與宝瓦士》【申封克】】

(3)方程组有无穷多解时,r(A) = r(A : b) < 4, a = 1 且 b = -1

此时
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \end{cases} \Rightarrow \begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$$

取 $x_1, x_4, y_1 = 0$

取 $x_3, x_4, y_2 = 0$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 - 2x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_3 + x_4 \\ x_2 = 1 - 2x_3 + x_4 \end{cases}$
 $\begin{cases} x_1 = -1 + x_$

··通解为 $X = k_1[1,-2,1,0]^T + k_2[1,-2,0,1]^T + [-1,1,0,0]^T$,其中 k_1,k_2 为任意常数.

【考点延伸】(考试宝典)【知识点 16-18】重要题型 2 非齐次线性方程组的解 、 1 【世界】 五. (12分)

【正解】因为
$$|A|=1\times2\times3=6$$
, $A'=|A|A^{-1}$,则 $A'X=|A|A^{-1}X=6A^{-1}X=\lambda X$,所以 $6X=\lambda \lambda X$ (1) 当 A_{33} 的特征值为 1 时, $6X=\lambda AX=\lambda X$,即 A' 的特征值为 6 (代 8)

Ent Q 1802493445 / 3091371067 古微 huakeda1037 严禁盗印盗卖 侵权必究

- (2) 当 43×3 的特征值为 2 时, A 的特征值为 3
- (3) 当 Ass 的特征值为 3 时, A 的特征值为 2.

【考点延伸】《考试宝典》知识点 19例 19-4

大、(12分)

【正解】
$$A$$
相似于 $B \Rightarrow \begin{cases} \sum_{i=1}^{3} a_{ii} = \sum_{i=1}^{3} b_{ii}, & \text{从而有} \\ |A| = |B|, \end{cases}$ 从而有 $\begin{cases} 2 + x = 2 + y - 1, & \text{得 } y = 1, x = 0, \\ -2 = -2y \end{cases}$

由此
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 的三个特征值为 B 的对角线上元素: 2, 1, -1.

$$\lambda_1 = 2, [2I - A] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, 得 \lambda_1 = 2 对应的线性无关的特征向量$$

$$X_1 = [1,0,0]^T$$
. $\lambda_2 = 1$, $[I-A] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$, $\{A_2 = 1\}$ 对应的线性无关的特征

向量
$$\mathbf{X}_2 = [0,1,1]^T$$
. $\lambda_3 = -1$ $\begin{bmatrix} -I - A \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, 得 $\lambda_3 = -1$ 对应的线性无

关的特征向量
$$X_3 = [0,1,-1]^T$$
.因此,可取 $P = [X_1, X_2, X_3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix}$,则 $P^{-1}AP = B$

【考点延伸】(考试宝典)【知识点 19-24 重要题型】题型 5 相似矩阵 · 七 (10分)

【正解】
$$f$$
 的矩阵为 $A = \begin{bmatrix} 0 & \frac{1}{2} & 2 \\ \frac{1}{2} & 0 & -3 \\ 2 & -3 & 0 \end{bmatrix}$

--- A-4 Q5

所年題
$$\begin{bmatrix} A \\ ... \\ I \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 2 \\ \frac{1}{2} & 0 & -3 \\ 2 & -3 & 0 \\ ... & ... & ... \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & -1 \\ \frac{1}{2} & 0 & -3 \\ -1 & -3 & 0 \\ ... & ... & ... \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & -\frac{5}{2} \\ 0 & -\frac{5}{2} & -1 \\ ... & ... & ... \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{4} & \frac{5}{2} \\ 0 & -\frac{5}{2} & -1 \\ ... & ... & ... \\ 1 & -\frac{1}{2} & 1 \\ 1 & \frac{1}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 24 \\ \dots & \dots & \dots \\ 1 & -\frac{1}{2} & 6 \\ 1 & \frac{1}{2} & -4 \\ 0 & 0 & 1 \end{bmatrix}, \Leftrightarrow P = \begin{bmatrix} 1 & -\frac{1}{2} & 6 \\ 1 & \frac{1}{2} & -4 \\ 0 & 0 & 1 \end{bmatrix}, \text{ 作非退化线性变换} X = PY,$$

$$y = \begin{bmatrix} 1 & -\frac{1}{2} & 6 \\ 1 & \frac{1}{2} & -4 \\ 0 & 0 & 1 \end{bmatrix}, \text{ 作非退化线性变换} X = PY,$$

$$y = \begin{bmatrix} 1 & -\frac{1}{2} & 6 \\ 1 & \frac{1}{2} & -4 \\ 0 & 0 & 1 \end{bmatrix}, \text{ (5.6.1)} = Y.$$

$$y = \begin{bmatrix} 1 & -\frac{1}{4} & 0 \\ 0 & 1 & 1 \end{bmatrix}, \text{ (6.6.1)} = Y.$$

$$y = \begin{bmatrix} 1 & -\frac{1}{4} & 0 \\ 0 & 1 & 1 \end{bmatrix}, \text{ (6.6.1)} = Y.$$

$$y = \begin{bmatrix} 1 & -\frac{1}{4} & 0 \\ 0 & 1 & 1 \end{bmatrix}, \text{ (6.6.1)} = Y.$$

M
$$f = y_1^2 - \frac{1}{4}y_2^2 + 24y_3^2$$

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 6: 二次型的标准化 玉、 (10分)

【证明】 $P^TAP = \Lambda . \Lambda = diag\{\lambda\}$

$$(P^TAP)^{-1} = \Lambda^{-1}, \ P^{-1}A^{-1}(P^{-1})^T = \Lambda^{-1}$$

$$(P^{T}AP)^{-1} = \Lambda^{-1}, \ P^{-1}A^{-1}(P^{-1})^{T} = \Lambda^{-1}$$
因为 $A^{-1} = \frac{A^{\bullet}}{|A|}$, 所以 $\frac{P^{-1}A^{\bullet}(P^{-1})^{T}}{|A|} = \Lambda^{-1}$, 因为 $|A| > 0$, 令 $B = \frac{(P^{-1})^{T}}{\sqrt{|A|}}$ (代 01)

所以 $B^TA^*B = \Lambda^{-1}$,所以 A^* 也是正定矩阵。

【考点延伸】《考试宝典》【知识点 19-24 重要题型】题型 7. 正定矩阵的性质和证明 [543]