In [33]: #1 program import pandas as pd import numpy as np from scipy.io import arff from sklearn.preprocessing import LabelEncoder data = arff.loadarff('speeddating.arff') train= pd.DataFrame(data[0]) train.head() catCols = [col for col in train.columns if train[col].dtype=="0"] catCols[:5] train[catCols]=train[catCols].apply(lambda x: x.str.decode('utf8')) train

Out[33]:

	has_null	wave	gender	age	age_o	d_age	d_d_age	race	race
0	0	1.0	female	21.0	27.0	6.0	[4-6]	Asian/Pacific Islander/Asian- American	European/Caucasi Ameri
1	0	1.0	female	21.0	22.0	1.0	[0-1]	Asian/Pacific Islander/Asian- American	European/Caucasi Ameri
2	1	1.0	female	21.0	22.0	1.0	[0-1]	Asian/Pacific Islander/Asian- American	Asian/Pad Islander/Asi Amerid
3	0	1.0	female	21.0	23.0	2.0	[2-3]	Asian/Pacific Islander/Asian- American	European/Caucasi Ameri
4	0	1.0	female	21.0	24.0	3.0	[2-3]	Asian/Pacific Islander/Asian- American	Latino/Hispa Ameri
8373	1	21.0	male	25.0	26.0	1.0	[0-1]	European/Caucasian- American	Latino/Hispa Ameri
8374	1	21.0	male	25.0	24.0	1.0	[0-1]	European/Caucasian- American	Ot
8375	1	21.0	male	25.0	29.0	4.0	[4-6]	European/Caucasian- American	Latino/Hispa Ameri
8376	1	21.0	male	25.0	22.0	3.0	[2-3]	European/Caucasian- American	Asian/Pad Islander/Asi Amerid
8377	1	21.0	male	25.0	22.0	3.0	[2-3]	European/Caucasian- American	Asian/Pad Islander/Asi Amerid

8378 rows × 123 columns

In [34]: #2nd program from sklearn.preprocessing import LabelEncoder l = LabelEncoder() label = 1.fit_transform(train['gender']) train.drop("gender", axis=1, inplace=False) train["gender"] = label train

Out[34]:

race_o	race	d_d_age	d_age	age_o	age	gender	wave	has_null	
European/Caucasian- American	Asian/Pacific Islander/Asian- American	[4-6]	6.0	27.0	21.0	0	1.0	0	0
European/Caucasian- American	Asian/Pacific Islander/Asian- American	[0-1]	1.0	22.0	21.0	0	1.0	0	1
Asian/Pacific Islander/Asian- American	Asian/Pacific Islander/Asian- American	[0-1]	1.0	22.0	21.0	0	1.0	1	2
European/Caucasian- American	Asian/Pacific Islander/Asian- American	[2-3]	2.0	23.0	21.0	0	1.0	0	3
Latino/Hispanic American	Asian/Pacific Islander/Asian- American	[2-3]	3.0	24.0	21.0	0	1.0	0	4
Latino/Hispanic American	European/Caucasian- American	[0-1]	1.0	26.0	25.0	1	21.0	1	373
Other	European/Caucasian- American	[0-1]	1.0	24.0	25.0	1	21.0	1	374
Latino/Hispanic American	European/Caucasian- American	[4-6]	4.0	29.0	25.0	1	21.0	1	375
Asian/Pacific Islander/Asian- American	European/Caucasian- American	[2-3]	3.0	22.0	25.0	1	21.0	1	376
Asian/Pacific Islander/Asian- American	European/Caucasian- American	[2-3]	3.0	22.0	25.0	1	21.0	1	377

78 rows × 123 columns

In [25]: train['age'].mean()

Out[25]: 26.358927924664975

In [24]: print(train.dtypes)

has_null object float64 wave int32 gender float64 age float64 age_o d_guess_prob_liked object float64 met decision object decision_o object match object Length: 123, dtype: object

In [21]: #3rd program

import matplotlib.pyplot as plt
train.plot(x="age",y="d_age")

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x2350bc84788>


```
In [38]: train.plot.hist(bins=12,alpha=0.5)
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x2ea8128ae08>

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x2ca86890848>

```
In [23]: import pandas as pd
import numpy as np
from scipy.io import arff
from sklearn.preprocessing import LabelEncoder
data = arff.loadarff('speeddating.arff')
train= pd.DataFrame(data[0])
train.plot.line()
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x23510a28688>


```
In [18]: import pandas as pd
    from scipy.io import arff
    from sklearn.preprocessing import LabelEncoder
    data = arff.loadarff('speeddating.arff')
    train= pd.DataFrame(data[0])
    train.head(20).plot.bar(x='wave',y='age')
```

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x2350bc71e48>


```
In [8]: train.head(60).plot.scatter(x='age',y='age_o')
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x23502b5ef48>

In [10]: train.head(40).plot.pie(x='age',y='wave')

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x23506834588>

In [11]:											
	0	b'0'	1.0	b'female'	21.0	27.0	0.162162	b'[4-6]'	b'Asian/Pacific Islander/Asian- American'	b'European/Caucas Americ	
	1	b'0'	1.0	b'female'	21.0	22.0	0.027027	b'[0-1]'	b'Asian/Pacific Islander/Asian- American'	b'European/Caucas Americ	
	2	b'1'	1.0	b'female'	21.0	22.0	0.027027	b'[0-1]'	b'Asian/Pacific Islander/Asian- American'	b'Asian/Pao Islander/As Amerio	
	3	b'0'	1.0	b'female'	21.0	23.0	0.054054	b'[2-3]'	b'Asian/Pacific Islander/Asian- American'	b'European/Caucas Americ	
	4	b'0'	1.0	b'female'	21.0	24.0	0.081081	b'[2-3]'	b'Asian/Pacific Islander/Asian- American'	b'Latino/Hispa Amerid	
	5 rows × 123 columns										_

•

4

```
In [16]: import numpy as np
    from scipy.io import arff
    from sklearn.preprocessing import LabelEncoder
    data = arff.loadarff('speeddating.arff')
    train= pd.DataFrame(data[0])
    catCols = [col for col in train.columns if train[col].dtype=="0"]
    catCols[:5]
    train[catCols]=train[catCols].apply(lambda x: x.str.decode('utf8'))
    train=train.replace('?',np.nan)
    train
```

Out[16]:

race	 d_expected_num_interested_in_me	d_expected_num_matches	like	guess_prob_liked	d_like
0	 [0-3]	[3-5]	7.0	6.0	[6-8]
0	 [0-3]	[3-5]	7.0	5.0	[6-8]
1	 [0-3]	[3-5]	7.0	NaN	[6-8]
0	 [0-3]	[3-5]	7.0	6.0	[6-8]
0	 [0-3]	[3-5]	6.0	6.0	[6-8]
0	 [0-3]	[3-5]	2.0	5.0	[0-5]
0	 [0-3]	[3-5]	4.0	4.0	[0-5]
0	 [0-3]	[3-5]	6.0	5.0	[6-8]
0	 [0-3]	[3-5]	5.0	5.0	[0-5]
0	 [0-3]	[3-5]	4.0	5.0	[0-5]

```
In [25]: #4th program
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    x=train.iloc[:,-1]
    y=train.iloc[:,-2]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=1/3,random_state=0)
In []:
```