

IN THE CLAIMS

A listing of the claims presented in this patent application appears below. This listing replaces all prior versions and listing of claims in this patent application.

1.(Currently amended) An optical cable, comprising:

a tension member;

a tube comprised of ~~plastic or metal~~ one of plastic and metal , stranded together around said tension member, and containing one or more coated optical fibers inside; and

an outer sheath covering an outer periphery of said tube,

wherein a ratio of A/B is 6.3 or more but 7.0 or less, where said each coated optical fiber has a mode field diameter A of $8.6 \pm 0.4 \mu\text{m}$ at a wavelength of $1.31 \mu\text{m}$, and a fiber cutoff wavelength of said each coated optical fiber is B μm .

2.(Currently amended) An optical cable, ~~comprising:~~ according to claim 1,

a tension member;

a tube comprised of ~~plastic or metal~~ one of plastic and metal , stranded together around said tension member, and containing one or more coated optical fibers inside; and

an outer sheath covering an outer periphery of said tube,

wherein a bending loss of said each coated optical fiber in the diameter of 20 mm at a wavelength of $1.55 \mu\text{m}$ is 3 dB/m or less.

3.(Currently amended) An optical cable according to claim 1 ~~or 2~~, wherein an extra length ratio of said each coated optical fiber to said tube is more than 0 % but 0.10 % or less.

4.(Currently amended) An optical cable according to claim 1 ~~or 2~~, wherein an extra length ratio of said each coated optical fibers to said tube is -0.03 % or more but less than 0 %.

5.(Currently amended) An optical cable according to claim 1 ~~or 2~~, wherein an occupied factor of said coated optical fibers within said tube is 20 % or more but 75 % or less.

6.-23. *(Cancelled)*

24.(Currently amended) An optical transmission system comprising an optical cable according to claim 1 or 2 for an optical transmission line for transmitting optical signals.

25.(Currently amended) A force-feeding method, comprising the steps of:
preparing an optical cable according to claim 1 or 2; and
force-feeding said prepared optical cable at a force-feeding rate of 20 m/min or more.

26.(New) An optical cable according to claim 1, wherein each of said coated optical fibers comprises a core region made of pure silica glass, and a cladding region made of F-doped silica glass.

27.(New) An optical cable according to claim 26, wherein a bending loss of said each coated optical fiber in the diameter of 20 mm at a wavelength of 1.55 μm is 3 dB/m or less.

28.(New) An optical cable according to claim 26, wherein said each coated optical fiber has a transmission loss of 0.31 dB/km or less at a wavelength of 1.31 μm , a transmission loss of 0.29 dB/km or less at a wavelength of 1.38 μm , and a transmission loss of 0.18 dB/km or less at a wavelength of 1.55 μm .

29.(New) An optical cable according to claim 26, wherein an increase of said each coated optical fiber is 0.05 dB/km or less at a wavelength of 1.38 μm after said each coated optical fiber is placed over four days in an atmosphere of a hydrogen concentration of 1 % and then hydrogen molecules are removed.

30.(New) An optical cable according to claim 26, wherein an increase of said each coated optical fiber is 2 dB/km or less at a wavelength of 1.55 μm after said each coated optical fiber is irradiated for an hour by γ rays of an absorbed dose of 1000 Gy/hr.

31.(New) An optical cable according to claim 26, wherein an extra length ratio of said each coated optical fiber to said tube is more than 0 % but 0.10 % or less.

32.(New) An optical cable according to claim 26, wherein an extra length ratio of said each coated optical fibers to said tube is -0.03 % or more but less than 0 %.

33.(New) An optical cable according to claim 26, wherein an occupied factor of said coated optical fibers within said tube is 20 % or more but 75 % or less.