

9.7 Curl and Divergence

A vector field assigns a vector to each point.

an: $\vec{F} = \langle x^2 y, x + \lambda y \rangle$

30: $\vec{F} = \langle x^2 y, x + \partial y, x \xi^3 \cos y \rangle$

To visualize a vector field, we draw an arrow indicating the direction

at each point.

The length of the arrow reflects the

magnitude.

2D: P=(N,P)

30: F = (N, P, R)

Applications

DF = force

physical, electromagnetic, gravitational

Ex How do we make the whirlpool uniform so that each vector has length one? $\vec{F} = \langle -\gamma, \times \rangle \quad \text{whirlpool}$

$$\|\vec{p}\| = \sqrt{(-y)^2 + (x^2)} = \sqrt{x^2 + y^2}$$

$$\vec{G} = \left(\frac{-\gamma}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}}\right)$$

Then every vector has length $||\vec{G}|| = 1$.

	(= 2.959 /= -1.426				Currently active field				-y/(x^2+y^2) x/(x^2+y^2)										
1		٠	٠	•	٠	•	÷		×		-	-	÷	×	٠	٠	×	×	×
1	1	•	٠	•	•	•	4	-	-	-	-	-	-	-	-	-	-	-	-
	1	1	4	1	•	٠	1	•	•	-	-	٠	4	٠	8	8	8	٠	٠
1	1	1	4	1	1	1	•	*	-	-	-	-	٨		*	٠		4	4
1	1	1	4	1	1	1	4	-	-	7	-	5	5	8	8	8	8	•	•
1	1	1	1	1	1	*	1	*	-	-	1	0	7	7	8	8	•	1	1
1	1	1	*	1	1	1	1	*	Ŧ	-	^	^	8	4	1	1	1	•	1
	1	1	1	1		1	1	Ť.	-	τ-	2	1	8	1	1	1	1	1	1
Ι'.	1		1	Ċ	1	1	- (4	-	-	1	1	1	1	1	1	1	1	
-	<u>.</u>	+	<u>.</u>		+	-	4	V	\leftarrow	\rightarrow	7	1 7	1	+	1	+	1		1
	Ċ	Ċ	Ċ	i	Ċ	Ċ	Ċ	V	7	_	7	,	Ċ	Ü	Ċ	Ċ		Ċ	ì
	Ċ	Ċ	ĺ	Š	Ċ	Ċ	Ċ	ď	_	_	Ĺ	į,	Ġ	,	Ü	÷	Ċ	Ċ	Ċ
	į.	į.	į,	į,	Ų.	Ų,	Ü	ů,	_	_	Ì	Ż	Ţ	j	į,	,	į,	į,	į,
		į,	ķ.	ķ.	ů,	ů,	Ü		_	_	J.	Ž,	ķ	,	į,		÷	i,	÷
	į,	ķ.	ķ.	ķ	ķ.	ů,	ů,	-	ú	4	ů,	ż	ż	7	į,		į,		
		,	,	,	,	v	-	-	-	-	4	4	į,	į,	į,		į,		
	·	×.	×	×		×		4		4	-	J.			×.		×		
	÷	÷	÷	÷	÷	-	÷	-	-	-	÷	J.		×.		÷	4		×
100	s.		٠	•		•	-	-	4	-	a.	2	4		a.		4		

Ex Laminar Flow

Model the velocity of a fluid flowing

through a cylindrical pipe of x2+z2=R2

radius R.

As fluid gets closer to the wall, it slows down.

$$\vec{F} = \langle O, R^2 - (x^2 + z^2) \rangle$$

Def
$$\vec{F} = \langle M, N, P \rangle$$

Divergence of \vec{F}
 $div \vec{F} = \nabla \cdot \vec{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

Curl of \vec{F}
 $curl \vec{F} = \nabla \times \vec{F} = \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}, \frac{\partial M}{\partial z} - \frac{\partial P}{\partial x}, \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)$

Application F = velocity field of a fluid Divergence tells us the net change of fluid

at a point.

V.F.O expansion V. Source

V.F.O compression in sink

V.P = 0 incompressible (divergence-free, solenoidal)

Carl tells us the rotation of the field,

 $\nabla \times \vec{F} = \alpha \times is \text{ of rotation}$ $||\nabla \times \vec{F}|| = speed \text{ of rotation}$

JxF=(0,0,0) = irrotational

Application Maxwell's Equations

Electric Field E(x, y, z, t)

Magnetic Field H(x, y, z, t)

Assume we are in a vacuum.

 $\nabla \cdot \vec{E} = 0$ $\nabla \cdot \vec{H} = 0$ incompressible

 $\nabla \times \vec{E} = -\frac{1}{C} \frac{\partial H}{\partial t}$ (c = speed of light)

Ex Compute divergence and curl of $\vec{F} = (-y, x, 0)$.

Divergence
$$div\vec{F} = \nabla \cdot \vec{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \cdot \left(\frac{\partial}{\partial z}\right) \cdot \left(\frac{\partial}{\partial$$

$$\frac{Curl}{curl} \vec{F} = \nabla \times \vec{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times \left(-y, x, 0\right)$$

$$= \left|\frac{1}{\partial x} \frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial y} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial y} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial y} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial y} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial y}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z} - \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| + \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right| - \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial x}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$

$$= \left|\frac{\partial}{\partial x} \frac{\partial}{\partial z}\right|$$