Simply-Typed λ -Calculus

Lecture 11 CS 565

Some terms represent booleans, some represent natural numbers.

```
t:: = true

false

if t then t else t

if t then t else t

o

succ t

pred t

iszero t
```

Bool and Nat values

Bool and Nat types

Evaluation preserves type

A Type System


```
type expressions: T ::= . . .
```

typing relation: t : T

typing rules giving an inductive definition of t:T

The typing relation t: T for arithmetic expressions is the smallest binary relation between terms and types satisfying the given rules.

A term t is typable (or well typed) if there is some T such that t:T.

Syntax: F₁

v

Syntax: F₁

- Types
 - → is a function type constructor and associates to the right Formal arguments to functions have typing annotations.

$$T,\ S,\ U ::=$$
 types:
$$| T \to T'$$
 type of functions
$$| (T)$$
 M
$$| \mathbf{Bool}$$
 type of booleans
$$| \mathbf{Int}$$
 type of integers

Static Semantics

- The typing judgment $\Gamma \vdash t : T$
 - We need to supply a context (Γ) giving types for free variables
- Typing rules

$$\frac{\mathbf{x}: T \in \Gamma}{\Gamma \vdash \mathbf{x}: T} \qquad \text{T-VAR}$$

$$\frac{\Gamma, \mathbf{x} : T_{1} \vdash t_{2} : T_{2}}{\Gamma \vdash \lambda \mathbf{x} : T_{1} \cdot t_{2} : T_{1} \to T_{2}} \quad \text{T_ABS}$$

$$\frac{\Gamma \vdash t_{1} : T_{11} \to T_{12}}{\Gamma \vdash t_{2} : T_{11}} \quad \text{T_APP}$$

$$\frac{\Gamma \vdash t_{1} t_{2} : T_{12}}{\Gamma \vdash t_{1} t_{2} : T_{12}}$$

Static Semantics (cont)

More typing rules

 $\overline{\Gamma \vdash \mathbf{true} : \mathbf{Bool}}$

 $T_{-}T_{RUE}$

 $\Gamma \vdash \mathbf{false} : \mathbf{Bool}$

 T_FALSE

 $\Gamma \vdash t_1 : \mathbf{Bool}$

 $\Gamma \vdash t_2 : T$

 $\Gamma \vdash t_3 : T$

T IF

 $\Gamma \vdash \mathbf{if} \ t_1 \mathbf{then} \ t_2 \mathbf{else} \ t_3 : T$

 $\overline{\Gamma \vdash nv : \mathbf{Int}}$

 $T_{-}VAL$

 $\Gamma \vdash t_1 : \mathbf{Int}$

 $\Gamma \vdash t_2 : \mathbf{Int}$

 $\Gamma \vdash t_1 + t_2 : \mathbf{Int}$

 T_ADD

Typing Derivations

A type derivation is a tree of instances of typing rules with the desired typing as the root.

The shape of the derivation tree exactly matches the shape of the term being typed.

Typing Derivations in F₁

Consider the term:

 $\lambda x:int. \lambda b:bool. if b then f x else x$

in a typing environment that maps f to int→int

```
\frac{\Gamma \vdash f : Int \to Int \quad \Gamma \vdash x : Int}{\Gamma \vdash b : Bool} \frac{\Gamma \vdash f \quad x : Int}{\Gamma \vdash x : Int} \frac{\Gamma \vdash x : Int}{f : Int \to Int, x : Int, b : Bool \vdash if \quad b \quad then \quad f \quad x \quad else \quad x \quad : int}{f : Int \to Int, x : Int \vdash \lambda b : Bool. \quad if \quad b \quad then \quad f \quad x \quad else \quad x \quad : Bool \to Int}{f : Int \to Int \vdash \lambda x : Int. \lambda b : Bool. \quad if \quad b \quad then \quad f \quad x \quad else \quad x : Int \to Bool \to Int}
\text{where } \Gamma = f : Int \to Int, x : Int, b : Bool}
```

Type Checking

- Syntax-directed
 - Derivations follow syntactic structure of the program
- Compositional
 - Understand types of terms as being built from types of subterms
- Annotated
 - All formal parameters are annotated with types
 - No need to infer types (although this wouldn't be so hard)
- Without annotations, expressions need not have a unique type

```
\lambda x. x : int \rightarrow int
```

 λ x. x : bool \rightarrow bool

Operational Semantics of F₁

Call-by-value evaluation relation

$$t \Downarrow t'$$

$$\frac{t_{1} \Downarrow \mathbf{true}}{\lambda \mathbf{x} : T \cdot t \Downarrow \lambda \mathbf{x} : T \cdot t} = \underbrace{t_{2} \Downarrow v}_{\mathbf{if} \ t_{1} \ \mathbf{then} \ t_{2} \ \mathbf{else} \ t_{3} \Downarrow v}_{\mathbf{if} \ t_{1} \ \mathbf{then} \ t_{2} \ \mathbf{else} \ t_{3} \Downarrow v} = \mathbf{E}_{\mathbf{IFT}}$$

$$\frac{t_{1} \Downarrow \lambda \mathbf{x} : T \cdot t'_{1}}{t_{2} \Downarrow v} = \underbrace{t_{3} \Downarrow v}_{\mathbf{if} \ t_{1} \ \mathbf{then} \ t_{2} \ \mathbf{else} \ t_{3} \Downarrow v}_{\mathbf{if} \ t_{1} \ \mathbf{then} \ t_{2} \ \mathbf{else} \ t_{3} \Downarrow v} = \mathbf{E}_{\mathbf{IFF}}$$

$$\frac{t_{1} \Downarrow \mathbf{false}}{t_{3} \Downarrow v} = \underbrace{t_{3} \Downarrow v}_{\mathbf{if} \ t_{1} \ \mathbf{then} \ t_{2} \ \mathbf{else} \ t_{3} \Downarrow v}$$

$$\frac{t_{1} \Downarrow nv_{1}}{t_{2} \Downarrow nv_{2}} = \underbrace{t_{1} \Downarrow nv_{1}}_{t_{2} \Downarrow nv_{2}}$$

$$\frac{nv_{1} + nv_{2} = nv_{3}}{t_{1} + t_{2} \Downarrow nv_{3}} = \mathbf{E}_{\mathbf{PLUS}}$$

$$\frac{v \Downarrow v}{v} = \mathbf{E}_{\mathbf{VAL}}$$

Type Soundness for F1

- Safety = Progress + Preservation
- Progress:
 - ▶ A well-typed term is not stuck -- either it is a value, or it can take a step according to the evaluation rules
- Preservation:
 - If a well-typed term makes a step of evaluation, the resulting term is also well-typed
- Theorem ("subject reduction")
 - If $\Gamma \vdash t : \tau$ and $t \lor v$ then $\Gamma \vdash v : \tau$
 - ▶ By induction on t \(\psi v \)

Need to address the issue of [v2→x]t1'

Could also use induction on typing derivations

Some Helper Lemmas

- Inversion (of typing relation), e.g.
 - If $\Gamma \vdash x : R$ then $x : R \in \Gamma$
 - ▶ If Γ⊢true:R then R=Bool
 - If $\Gamma \vdash \lambda$ x:T.t:R then $R=T \rightarrow R'$ for some R' with $\Gamma,x:T \vdash t:R$
- Uniqueness (of types): a term has at most one type
- Canonical forms, e.g.
 - \blacktriangleright If v is a value of type Bool, then v is either true or false
 - If v is a value of type $T \rightarrow R$ then $v = \lambda x : T \cdot t$
- Permutation: can permute order of free var defs in Γ
- Weakening: if $\Gamma \vdash t : T$ and $x \notin dom(\Gamma)$ then $\Gamma, x : S \vdash t : T$

Soundness

Consider the case:

By derivation of t₁ t₂: τ we know

- From IH on $t_1 \Downarrow ...$, we have $\Gamma, x : \tau_2 \vdash t_1' : \tau$
- From IH on $t_2 \Downarrow ...$ we have $\Gamma \vdash v_2 : \tau_2$
- Need to infer that Γ⊢[x→v₂]t₁':τ and use the IH
 Need a substitution lemma

Substitution Lemma

- If $\Gamma, x: \tau \vdash t: \tau'$ and $\Gamma \vdash s: \tau$, then $\Gamma \vdash [x \mapsto s] t: \tau'$
- Proof: by induction on the derivation of $\Gamma,x:T \vdash t:T'$
- (see page 106 and 107 of the text)

Significance of Type Soundness

- The theorem says that the result of an evaluation has the same type as the initial expression
- The theorem does not say that:
 - evaluation never gets stuck (it is not a progress theorem)
 - evaluation terminates

Contextual semantics

Define redexes and contexts

Contextual semantics

- Global reduction rule: $E[r] \rightarrow E[t]$ iff $r \rightarrow t$
- Local rules:

$$t \longrightarrow t'$$
 Evaluation

$$\frac{\left[\lambda \mathbf{x} : T . t\right] v \longrightarrow \left[\mathbf{x} \mapsto v\right] t}{\mathbf{if true then } t_1 \mathbf{else } t_2 \longrightarrow t_1} \qquad \text{E_IFT} \\
\frac{\mathbf{if false then } t_1 \mathbf{else } t_2 \longrightarrow t_2}{\mathbf{if false then } t_1 \mathbf{else } t_2 \longrightarrow t_2} \qquad \mathbf{E_IFF} \\
\frac{nv_1 + nv_2 = nv_3}{nv_1 + nv_2 \longrightarrow nv_3} \qquad \mathbf{E_PLUS}$$

Contextual Semantics

- Decomposition Lemma:
 - If $\Gamma \vdash t : \tau$ and t is not a value then there exists a unique E and r such that t = E[r]
 - Any well-typed term can be decomposed

 Any well-typed non-value can make progress
 - Furthermore, there exists τ' such that Γ⊢ r:τ'
 All redexes are well-typed
 - Furthermore, there exists t' such that r→t' and Γ ⊢ t':τ' Local reductions are type-preserving
 - Furthermore, for any t', Γ⊢t':τ' implies Γ⊢E[t']:τ An expression keeps its, type if we replace a redex by an expression of the same type

Contextual Semantics

- Type preservation theorem:
 - If $\Gamma\vdash$ t: τ and $t\to t$ ' then $\Gamma\vdash$ t': τ Follows from the decomposition lemma
- Progress theorem:
 - If Γ⊢ t: τ and t is not a value then there exists t' such that e can make progress: t → t'
 - ▶ The progress theorem says that execution can make progress on well-typed expressions.
 - ▶ Furthermore, because of type preservation, we know that the execution of a well-typed expression never gets stuck.

Typability

We may erase types from expressions systematically:

```
erase(x) = x

erase(t1 t2) = erase(t1) erase(t2)

erase(\lambda x:T.t) = \lambda x. erase(t)
```

- ► E.g. erase(λx :Bool. λy :Bool->Bool.y x)= $\lambda x \cdot \lambda y \cdot y x$
- Is an untyped expression typable (with respect to a given type environment)?
 - Given t, does there exist t' and τ such that erase(t')= t and $\Gamma\vdash$ t': τ
 - λx.x is typable in the empty environment
 There is an infinite collections of typings for this term

Erasure commutes with evaluation

Theorem (9.5.2)

- 1. if $t \to t'$ in λ , then erase(t) \to erase(t') in λ .
- 2. if erase(t) \rightarrow m in λ then there exists t' such that t \rightarrow t' in λ and erase(t') = m.

Static Semantics for Product Types: F1x

Extend the semantics with (binary) tuples:

$$\mathbf{T::=} \mid \quad \mathsf{T}_1 \times \mathsf{T}_2 \qquad \qquad product \ type$$

$$\begin{array}{c} \Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \\ \hline \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_2 \\ \hline \Gamma \vdash \{\mathsf{t}_1, \mathsf{t}_2\} : \mathsf{T}_1 \times \mathsf{T}_2 \end{array} \quad \begin{array}{c} \text{T_PAIR} \\ \hline \hline \Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 \times \mathsf{T}_2 \\ \hline \hline \Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1 : \mathsf{T}_1 \end{array} \quad \text{T_PROJ1} \end{array}$$

Static Semantics for Product Types: F1x

Extend the small-step semantics :

Records

Records are like tuples with labels

$$t ::= ... \mid \{ L_1 = t_1, ..., L_n = t_n \} \mid t.L$$

• New form of values:

$$v ::= \{ L_1 = V_1, \ldots, L_n = V_n \}$$

• New form of types:

$$T ::= \dots \mid \{ L_1 : T_1, \dots, L_n : T_n \}$$

Follows the same basic structure as Tuples

Sum Types (System F1+)

- Consider types of the form:
 - either an Int or a Bool
 - either a function or an Int
- These types are called disjoint union types
- Introduce new form of expressions and types:

- A value of type $\tau_1+\tau_2$ is either a τ_1 or a τ_2
- Similar to unions in C or Pascal, but safe Distinguishing between components is under compiler control
- case is a binding operator: x bound in t1 and y bound in t2

Examples

- Consider the type "Unit" with a single element called "*"
- The type optional integer defined as "Unit + int"
 - Similar to option types in ML
 - ▶ No argument: inl *
 - Argument is 5: inr 5
- To use the argument, must test its kind:

```
case arg of

inl * \Rightarrow 0

| inr y \Rightarrow y + 3
```

inl/inr are value-carrying tags and case does tag checking

Can think of bool as a unit type:

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_1}{\Gamma \vdash \mathsf{inl}\, \mathsf{t}_1 : \mathsf{T}_1 + \mathsf{T}_2} \quad \text{T_INL}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_2}{\Gamma \vdash \mathsf{inr}\,\mathsf{t}_1 : \mathsf{T}_1 + \mathsf{T}_2} \quad \mathsf{T_INR}$$

$$\Gamma \vdash \mathsf{t}_0 : \mathsf{T}_1 + \mathsf{T}_2$$

$$\Gamma$$
, x_1 : $\mathsf{T}_1 \vdash \mathsf{t}_1$: T

$$\Gamma$$
, x_2 : T_2 \vdash t_2 : T

$$\Gamma \vdash \mathsf{case}\,\mathsf{t}_0\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2\,:\,\mathsf{T}$$

T_CASESM

Dynamic Semantics

$$\begin{array}{c} \overline{\mathsf{case}\,(\mathsf{inl}\,\mathsf{v}_0)\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2 \,\longrightarrow\, [\mathsf{x}_1 \,\mapsto\, \mathsf{v}_0]\,\mathsf{t}_1} & \mathsf{E_CASEINL} \\ \hline \overline{\mathsf{case}\,(\mathsf{inr}\,\mathsf{v}_0)\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2 \,\longrightarrow\, [\mathsf{x}_2 \,\mapsto\, \mathsf{v}_0]\,\mathsf{t}_2} & \mathsf{E_CASEINR} \\ \hline \overline{\mathsf{case}\,\mathsf{t}_0\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2 \,\longrightarrow\, \mathsf{case}\,\mathsf{t}_0'\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2} & \mathsf{E_CASESM} \\ \hline \overline{\mathsf{case}\,\mathsf{t}_0\,\mathsf{of}\,\mathsf{inl}\,\mathsf{x}_1 \,\Rightarrow\, \mathsf{t}_1\,|\,\mathsf{inr}\,\mathsf{x}_2 \,\Rightarrow\, \mathsf{t}_2} & \mathsf{E_INL} \\ \hline \overline{\mathsf{inl}\,\mathsf{t}_1 \,\longrightarrow\, \mathsf{inl}\,\mathsf{t}_1'} & \mathsf{E_INL} \\ \hline \overline{\mathsf{t}_1 \,\longrightarrow\, \mathsf{t}_1'} & \mathsf{E_INR} \\ \hline \overline{\mathsf{inr}\,\mathsf{t}_1 \,\longrightarrow\, \mathsf{inr}\,\mathsf{t}_1'} & \mathsf{E_INR} \\ \hline \end{array}$$

Type Soundness for F1+

- Type soundness still holds
- There is no way to use a value of $\tau_1+\tau_2$ inappropriately
- The key is that the only way to use a value of $\tau_1+\tau_2$ is with case which ensures that one does not interchange a τ_1 for a τ_2
- In C or Pascal, proper tag checking is the responsibility of the programmer (unsafe)