COL 216

Holi Semester (Feb-May), 2020-21 Mondays and Thursdays 9:30-10:50 AM, Online

COMPUTER ARCHITECTURE THE PROCESSOR

Preeti Ranjan Panda

Dept. of Computer Science and Engineering, IIT Delhi

Acknowledgment

Minor adaptation of lecture slides provided by publishers of: *Computer Organization and Design: The Hardware/Software Interface*David A. Patterson and John L. Hennessy

Morgan Kaufmann Publisher

Introduction

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
- We will examine two MIPS implementations
 - A simplified version
 - A more realistic pipelined version
- Simple subset, shows most aspects
 - Memory reference: 1w, sw
 - Arithmetic/logical: add, sub, and, or, slt
 - Control transfer: beq, j

Instruction Execution

- Program Counter (PC) → instruction memory, fetch instruction
- Register numbers → register file, read registers
- Depending on instruction class
 - Use ALU to calculate
 - Arithmetic result
 - Memory address for load/store
 - Branch target address
 - Access data memory for load/store
 - PC ← target address or PC + 4

CPU Overview

Control

Sequential Elements

- Register: stores data in a circuit
 - Uses a clock signal to determine when to update the stored value
 - Edge-triggered: update when Clk changes from 0 to 1

Sequential Elements

- Register with write control
 - Only updates on clock edge when write control input is 1
 - Used when stored value is required later

Clocking Methodology

- Combinational logic transforms data during clock cycles
 - Between clock edges
 - Input from state elements, output to state element
 - Longest delay determines clock period

Building a Datapath

- Datapath
 - Elements that process data and addresses in the CPU
 - Registers, ALUs, mux's, memories, ...
- We will build a datapath incrementally
 - Refining the overview design

Instruction Fetch

ALU Instructions

- Read two register operands
- Perform arithmetic/logical operation
- Write register result

Load/Store Instructions

- Read register operands
- Calculate address using 16-bit offset
 - Use ALU, but sign-extend offset
- Load: Read memory and update register
- Store: Write register value to memory

a. Data memory unit

b. Sign extension unit

Branch Instructions

- Read register operands
- Compare operands
 - Use ALU, subtract and check Zero output
- Calculate target address
 - Sign-extend displacement
 - Shift left 2 places (word displacement)
 - Add to PC + 4
 - Already calculated by instruction fetch

Branch Instructions

Composing the Elements

- First-cut data path does an instruction in one clock cycle
 - Each datapath element can only do one function at a time
 - Hence, we need separate instruction and data memories
- Use multiplexers where alternate data sources are used for different instructions

ALU/Load/Store Datapath

Full Datapath

ALU Control

- ALU used for
 - Load/Store: F = add
 - Branch: F = subtract
 - R-type: F depends on funct field

ALU control	Function		
0000	AND		
0001	OR		
0010	add		
0110	subtract		
0111	set-on-less-than		
1100	NOR		

ALU Control

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
sw	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

The Main Control Unit

Control signals derived from instruction

Datapath With Control

R-Type Instruction

Load Instruction

Branch-on-Equal Instruction

Implementing Jumps

- Jump uses word address
- Update PC with concatenation of
 - Top 4 bits of old PC
 - 26-bit jump address
 - **00**
- How to implement this?
 - Need an extra control signal decoded from opcode

Unconditional Jump Example

Ignoring LSB "00" here

Datapath With Jumps Added

Performance Issues

- Longest delay determines clock period
 - Critical path: load instruction
 - Instruction memory → register file → ALU → data memory → register file
- Not feasible to vary period for different instructions
- Violates design principle
 - Making the common case fast
- We will improve performance by pipelining

Pipelining Analogy

- Car Assembly Line
 - Overlapped Processing

What's the relevance to processor?

Divide Datapath into Stages

CPU Pipeline.

- Five stages, one step per stage
 - 1. IF: Instruction fetch from memory
 - 2. ID: Instruction decode& register read
 - 3. EX: Execute operation or calculate address
 - MEM: Access memory operand
 - WB: Write result back to register

Pipeline Performance

- Assume time for stages is
 - 100ps for register read or write
 - 200ps for other stages
- Compare pipelined datapath with single-cycle datapath

Instr	Instr fetch	Register read	ALU op	Memory access	Register write	Total time
LDR	200ps	100 ps	200ps	200ps	100 ps	800ps
STR	200ps	100 ps	200ps	200ps		700ps
R-format	200ps	100 ps	200ps		100 ps	600ps
BEQ	200ps	100 ps	200ps			500ps

Pipeline Performance

Pipeline Speedup

- If all stages are balanced
 - i.e., all take the same time
 - Time between instructions pipelined
 - = Time between instructions_{nonpipelined}
 Number of stages
- If not balanced, speedup is less
- Speedup due to increased throughput (instructions executed per sec)
 - Latency (time for each instruction) does not decrease

Pipelining and ISA Design

- ISA designed for pipelining
 - All instructions are 32-bits
 - Easier to fetch and decode in one cycle
 - c.f. x86: 1- to 17-byte instructions
 - Few and regular instruction formats
 - Can decode and read registers in one step
 - Load/store addressing
 - Can calculate address in 3rd stage, access memory in 4th stage
 - Alignment of memory operands
 - Memory access takes only one cycle

Hazards

- Situations that prevent starting the next instruction in the next cycle
- Structural hazards
 - A required resource is busy
- Data hazard
 - Need to wait for previous instruction to complete its data read/write
- Control hazard
 - Deciding on control action depends on previous instruction

Structural Hazards

- Conflict for use of a resource
- Any possibility for this in our design?

Structural Hazards

- Conflict for use of a resource
- In pipeline with a single memory
 - Load/store requires data access
 - Instruction fetch would have to stall for that cycle
 - Would cause a pipeline "bubble"
- Hence, pipelined datapaths require separate instruction/data memories

Data Hazards

- An instruction depends on completion of data access by a previous instruction
 - add \$s0, \$t0, \$t1
 sub \$t2, \$s0, \$t3

Forwarding (also called Bypassing)

- Use result when it is computed
 - Don't wait for it to be stored in a register
 - Requires extra connections in the datapath

Load-Use Data Hazard

- Can't always avoid stalls by forwarding
 - If value not computed when needed
 - Can't forward backward in time!

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in the next instruction

Control Hazards

- Branch determines flow of control
 - Fetching next instruction depends on branch outcome
 - Pipeline can't always fetch correct instruction
 - Still working on ID stage of branch
- In pipeline
 - Need to compare registers and compute target early in the pipeline
 - Add hardware to do it in ID stage

Stall on Branch

 Wait until branch outcome determined before fetching next instruction

Branch Prediction

- Longer pipelines can't readily determine branch outcome early
 - Stall penalty becomes unacceptable
- Predict outcome of branch
 - Only stall if prediction is wrong
- In pipeline
 - Can predict branches not taken
 - Fetch instruction after branch, with no delay

Realistic Branch Prediction

- Static branch prediction
 - Based on typical branch behavior
 - Example: loop and if-statement branches
 - Predict backward branches taken
 - Predict forward branches not taken
- Dynamic branch prediction
 - Hardware measures actual branch behavior
 - e.g., record recent history of each branch
 - Assume future behavior will continue the trend
 - When wrong, stall while re-fetching, and update history

Pipeline Summary

The BIG Picture

- Pipelining improves performance by increasing instruction throughput
 - Executes multiple instructions in parallel
 - Each instruction has the same latency
- Subject to hazards
 - Structural, data, control
- Instruction set design affects complexity of pipeline implementation

Pipelined Datapath

Pipeline registers

- Need registers between stages
 - To hold information produced in previous cycle

Pipeline Operation

- Cycle-by-cycle flow of instructions through the pipelined datapath
 - "Single-clock-cycle" pipeline diagram
 - Shows pipeline usage in a single cycle
 - Highlight resources used
 - We'll look at "single-clock-cycle" diagrams for load & store

IF for Load, Store, ...

ID for Load, Store, ...

EX for Load

lw

MEM for Load

WB for Load

Corrected Datapath for Load

EX for Store

MEM for Store

WB for Store

Multi-Cycle Pipeline Diagram

Time (in clock cycles)

Form showing resource usage

Multi-Cycle Pipeline Diagram

Traditional form

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

Pipelined Control (Simplified)

Pipelined Control

- Control signals derived from instruction
 - As in single-cycle implementation

Pipelined Control

Data Hazards in ALU Instructions

Consider this sequence:

```
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)
```

- We can resolve hazards with forwarding
 - How do we detect when to forward?

Dependencies & Forwarding

Detecting the Need to Forward

- Pass register numbers along pipeline
 - e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline register
- ALU operand register numbers in EX stage are given by
 - ID/EX.RegisterRs, ID/EX.RegisterRt
- Data hazards when
 - 1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
 - 1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
 - 2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
 - 2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from MEM/WB pipeline reg

Detecting the Need to Forward

- But only if forwarding instruction will write to a register!
 - EX/MEM.RegWrite, MEM/WB.RegWrite
- And only if Rd for that instruction is not \$zero
 - EX/MEM.RegisterRd ≠ 0,
 MEM/WB.RegisterRd ≠ 0

Forwarding Paths

Forwarding Conditions

EX hazard

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

MEM hazard

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

• if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Double Data Hazard

Consider the sequence:

```
add $1,$1,$2
add $1,$1,$3
add $1,$1,$4
```

- Both hazards occur
 - Want to use the most recent
- Revise MEM hazard condition
 - Only fwd if EX hazard condition isn't true

Revised Forwarding Condition

- MEM hazard
 - if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

Datapath with Forwarding

Load-Use Data Hazard

Load-Use Hazard Detection

- Check when using instruction is decoded in ID stage
- ALU operand register numbers in ID stage are given by
 - IF/ID.RegisterRs, IF/ID.RegisterRt
- Load-use hazard when
 - ID/EX.MemRead and ((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt))
- If detected, stall and insert bubble

How to Stall the Pipeline

- Force control values in ID/EX register to 0
 - EX, MEM and WB do nop (no-operation)
- Prevent update of PC and IF/ID register
 - Using instruction is decoded again
 - Following instruction is fetched again
 - 1-cycle stall allows MEM to read data for \(\)\text{\text{Tw}}
 - Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Stall/Bubble in the Pipeline

Datapath with Hazard Detection

Stalls and Performance

The BIG Picture

- Stalls reduce performance
 - But are required to get correct results
- Compiler can arrange code to avoid hazards and stalls
 - Requires knowledge of the pipeline structure

Branch Hazards

If branch outcome determined in MEM

Reducing Branch Delay

- Move hardware to determine outcome to ID stage
 - Target address adder
 - Register comparator
- Example: branch taken

```
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
72: lw $4, 50($7)
```

Example: Branch Taken

Dynamic Branch Prediction

- In deeper and superscalar pipelines, branch penalty is more significant
- Use dynamic prediction
 - Branch prediction buffer (aka branch history table)
 - Indexed by recent branch instruction addresses
 - Stores outcome (taken/not taken)
 - To execute a branch
 - Check table, expect the same outcome
 - Start fetching from fall-through or target
 - If wrong, flush pipeline and flip prediction

Other Topics

- Exceptions and Interrupts
 - "Unexpected" events requiring change in flow of control
 - Performance loss
- Instruction Level Parallelism
 - Compiler (Very Large Instruction Word VLIW)
 - Hardware (Superscalar)

Concluding Remarks

- Pipelining improves instruction throughput using parallelism
 - Improved Throughput: more instructions completed per second
 - Latency for each instruction not reduced
- Hazards: structural, data, control