Foundations of Computer Science Comp109

University of Liverpool

Boris Konev konev@liverpool.ac.uk

Part 6. Combinatorics

Comp109 Foundations of Computer Science

Reading

- Discrete Mathematics with Applications, S. Epp, Chapter 9.
- Discrete Mathematics and Its Applications, K. H. Rosen, Sections 6.1, 6.3, 6.4

Contents

- Basics of counting
- Notation for sums and products. The factorial function.
- Counting permutations and combinations.
- Binomial coefficients.

Developing ideas (1)

All chairs in a room are labelled with a single digit followed by a lower-case letter. What is the largest number of differently numbered chairs?

Developing ideas (2)

How many different bit strings of length 8 are there?

■ How many different bytes are there?

 $0000\,0000,\ 0000\,0001,\ 0000\,0010,\ 0000\,0011,\dots$

Developing ideas (3)

How many ways there are to select 3 students for a prospectus photograph (order matters) from a group of 5?

The product rule

If there is a sequence of k events with n_1, \ldots, n_k possible outcomes, then the total number of outcomes for the sequence of k events is

$$n_1 \times n_2 \times \cdots \times n_k$$
.

Example

How many distinct car licence plates are there consisting of six characters, the first three of which are letters and the last three of which are digits?

Developing ideas (4)

How many ways there are to select a male and a female student for a prospectus photograph (order matters) from a group of 2 male and 3 female students?

Disjoint events

Two events are said to be disjoint (or "mutually exclusive") if they can't occur simultaneously.

Example: If you have 3 pairs of blue jeans and 2 pairs of black jeans, then there are 3+2=5 different pairs of jeans which are blue or black which you could wear.

The sum rule

If A and B are disjoint events and there are n_1 possible outcomes for event A and n_2 possible outcomes for event B then there are $n_1 + n_2$ possible outcomes for the event "either A or B".

Example

How many three-digit numbers begin with 3 or 4?

Example

I wish to take two pieces of fruit with me for lunch. I have three bananas, four apples and two pears. How many ways can I select two pieces of fruit of different type?

Set-theoretic interpretation

■ If A and B are disjoint sets (that is, $A \cap B = \emptyset$) then $|A \cup B| = |A| + |B|$.

■ Any sequence of k events can be regarded as an element of the Cartesian product $A_1 \times \cdots \times A_k$. This set has size $|A_1| \times \cdots \times |A_k|$.

Developing ideas (5)

A computer password is a string of 8 characters, where each character is an uppercase letter or a digit. Each password must contain at least one digit.

How many different passwords are there?

Answer

2,612,282,842,880

Note: lazy users

How many different 8-character passwords can be obtained by combining 3-letter word, a 4-letter word and a digit?

(According to http://www.scrabblefinder.com there are 1015 3-letter and 4030 4-letter English words.)

Answer

(about 0.009%)

Beware of passwords like HOT4FUZZ

Developing ideas (6)

How many bit strings of length 8 start with 1 or finish with 00?

The subtraction rule

If there are n_1 possible outcomes for event A, n_2 possible outcomes for event B and n_3 of these outcomes are shared between A and B then there are

$$n_1 + n_2 - n_3$$

possible outcomes for the event "A or B".

Developing ideas (7)

How many ways there are to select 2 representatives from a group of 5 students?

The division rule

Given n possible outcomes, if

- \blacksquare some of the *n* outcomes are the same
- \blacksquare every group of indistinguishable outcomes contains exactly d elements

there are n/d different outcomes.

Mini summary

Counting problems can be hard

Four decomposition rules:

- The product rule
- The sum rule
- The subtraction rule
- The division rule

To move further we need some mathematical notation