MINIOR PROJECT

Problem Statement:

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from sklearn.metrics import roc curve, auc
 6 from imblearn.over_sampling import SMOTE
 7 from sklearn.model selection import train test split
 8 from sklearn import preprocessing
10 from sklearn.model_selection import GridSearchCV
11 from sklearn.model_selection import RandomizedSearchCV
12 from sklearn import metrics
13 from sklearn.metrics import roc_curve, auc
14
15 from sklearn.linear_model import LogisticRegression
16 from sklearn.naive_bayes import GaussianNB
17 from sklearn.neighbors import KNeighborsClassifier
18 from sklearn.svm import SVC
19
 1 df = pd.read_excel("diabetes.csv.xlsx")
```

Exploratory Data Analysis

```
1 # DISPLAY FIRST FIVE RECORDS OF DATA
2 df.head(5)
```

1 # Display last five reacords of data
2 df.tail(5)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

1 # Display randomlay any number of records od data

² df.sample(5)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
15	7	100	0	0	0	30.0	
330	8	118	72	19	0	23.1	
461	1	71	62	0	0	21.8	
102	0	125	96	0	0	22.5	
352	3	61	82	28	0	34.4	

The shape of the dataset

1 #number of rows and columns

2 df.shape

(768, 9)

No. of Rows = 768

No. of Columns = 9

List of all Columns

1 #list the types of all columns

2 df.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64
BMT	float64

DiabetesPedigreeFunction float64
Age int64
Outcome int64

dtype: object

Info of the dataset

1 #finding out if the dataset countains any null values
2 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Summary of the dataset

1 # Statistical summary

2 df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000

Observation:

In the above table, the main value of columns

'Glucose','BloodPressure','skinthickness','insuline','BMI'is zero(0).It is clear that this values cant be

zero. So i am going to impute mean values of these respective columns insted of zero.

Data cleaning

Before drop and after drop the duplicates the data set has same shape which means no duplicates in the dataset.

Check the Null Values

```
1 #count of null values
2 #check the missing values in any column
3 # #display number of null values is very column in dataset
4 df.isnull().sum()
   Pregnancies
                                 0
   Glucose
                                 0
   BloodPressure
                                 0
   SkinThickness
                                 0
   Insulin
                                0
   BMI
   DiabetesPedigreeFunction
                                0
                                 0
   Age
                                 0
   Outcome
   dtype: int64
```

There is no null values in the given dataset.

Check the no. of zero values in dataset.

```
1 print('No. of zero values in Glucose',df[df['Glucose']==0].shape[0])
```

No. of zero values in Glucose 5

```
1 print('no. of zero values in Bloodpressure',df[df['BloodPressure']==0].shape[0])
    no. of zero values in Bloodpressure 35
1 print('no. of zero values in skinThickness',df[df['SkinThickness']==0].shape[0])
    no. of zero values in skinThickness 227
1 print('no. of zero values in Insulin',df[df['Insulin']==0].shape[0])
    no. of zero values in Insulin 374
1 print('no. of zero values in BMI',df[df['BMI']==0].shape[0])
    no. of zero values in BMI 11
```

Replace no. of zero values with mean of the columns

```
1 df['Glucose']=df['Glucose'].replace(0,df['Glucose'].mean())
2 print('No.of zero values in Glucose',df[df['Glucose']==0].shape[0])
    No.of zero values in Glucose 0

1 df['BloodPressure']=df['BloodPressure'].replace(0,df['BloodPressure'].mean())
2 df['SkinThickness']=df['SkinThickness'].replace(0,df['SkinThickness'].mean())
3 df['Insulin']=df['Insulin'].replace(0,df['Insulin'].mean())
4 df['BMI']=df['BMI'].replace(0,df['BMI'].mean())
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000

Count plot

```
1 #outcome count plot
 2 f,ax=plt.subplots(1,2,figsize=(10,5))
 3 df['Outcome'].value_counts().plot.pie(explode=[0,0.1],autopct='%1.1f%%',ax=ax[0],shadow
 4 ax[0].set_title('Outcome')
 5 ax[0].set_ylabel('')
 6 sns.countplot('Outcome',data=df,ax=ax[1])
 7 ax[1].set_title('Outcome')
 8 N,P = df['Outcome'].value_counts()
 9 print('Negative (0): ',N)
10 print('Positive (1): ',P)
11 plt.grid()
12 plt.show()
    Negative (0):
                    500
    Positive (1):
                    268
```


Out of total 768 people, 268 are dibetic (Positive(1)) and 500 are non-dibetic (Negative(0)). In the outcome coulmn, 1 represents diabetes positive and 0 represents diabetes negative. The countplot tells us that the dataset is Imbalanced, as number of patients who dont have diabetes is more than those who have diabets.

Histograms

```
1 #Histogram of each feature
2 df.hist(bins=10,figsize=(10,10))
3 plt.show()
```


- 1 # Scatter plot matrix
- 2 from pandas.plotting import scatter_matrix
- 3 scatter_matrix(df,figsize=(20,20));

Pair plot

```
1 #Pairplot
2 sns.pairplot(data = df, hue = 'Outcome')
3 plt.show()
```


Analyzing relationships between variables

Correlation analysis

- 1 import seaborn as sns
- 2 #get correlation of each features in dataset
- 3 corrmat = df.corr()
- 4 top_corr_features = corrmat.index
- 5 plt.figure(figsize = (10,10))
- 6 #plot heat map
- 7 g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn")

Observations:

From the correlation heatmap. we can see that there is a high correlation between between Outcome and [Pregnancies, Glucose,BMI,Age,Insulin]. We can select these features to accept input from the user and predict the outcome.

Split the data frame into X & y

```
1 target_name = 'Outcome'
2
3 # Separate object for target feature
4 y = df[target_name]
5
6 # Separate Object for Input Features
7 X = df.drop(target_name, axis=1)
```

1 X.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedi
0	6	148.0	72.0	35.000000	79.799479	33.6	
1	1	85.0	66.0	29.000000	79.799479	26.6	
2	8	183.0	64.0	20.536458	79.799479	23.3	
3	1	89.0	66.0	23.000000	94.000000	28.1	
4	0	137.0	40.0	35.000000	168.000000	43.1	

```
1 y.head()
```

Name: Outcome, dtype: int64

Apply Feature Scaling

```
1 #Apply Standard Scaler
2 from sklearn.preprocessing import StandardScaler
3 scaler = StandardScaler()
4 scaler.fit(X)
5 SSX = scaler.transform(X)
```

Train Test Split

```
((154, 8), (154,))
```

Bulid the Classification Algorithams

Logistic Regression

KNeighbors(KNN)

*Naive-Bayes *

```
1 from sklearn.naive_bayes import GaussianNB
2 nb=GaussianNB()
3 nb.fit(X_train,y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
```

Support Vector Machine(SVM)

*Decision Tree *

Random Forest

Making Prediction

```
1 X_test.shape
(154, 8)
```

Making Prediction using Logistic Regression

Making Prediction using KNN

Making Prediction using Naive-Byes

Making Prediction using SVM

Making Prediction using Decision Tree

Making Prediction using Random Forest

Model Evaluation

Train Score & Test Score

```
1 # Train score & Test score of logistic regression
```

² from sklearn.metrics import accuracy_score

³ nrint("Train Accuracy of Logistic Regression".lr.score(X train.v train)*100) https://colab.research.google.com/drive/1dSVj4WMROSuihDeMARBXKzRD4mIIFjcX#scrollTo=xA4qCOPnw34v&uniqifier=1&printMode=true

```
> bitue/ ii atu vecau ach oi fo@facte ve@icaatou hti racoi e/v_ci atubh_ci atul too/
4 print("Accuracy (test) score of logistic Regression",lr.score(X_test, y_test)*100)
5 print("Accuracy (Test) score of Logistic Regression",accuracy_score(y_test, lr_pred)*10
   Train Accuracy of Logistic Regression 77.36156351791531
   Accuracy (test) score of logistic Regression 77.27272727272727
   Accuracy (Test) score of Logistic Regression 77.272727272727
1 # Train score & Test score of KNN
2 print("Train Accuracy of KNN",knn.score(X_train,y_train)*100)
3 print("Accuracy (Test) score of KNN",knn.score(X_test, y_test)*100)
4 print("Accuracy score of KNN",accuracy_score(y_test, knn_pred)*100)
   Train Accuracy of KNN 81.10749185667753
   Accuracy (Test) score of KNN 74.67532467532467
   Accuracy score of KNN 74.67532467532467
1 # Train score & Test score of Naive-Bayes
2 print("Train Accuracy of Naive Bayes",nb.score(X_train,y_train)*100)
3 print("Accuracy (Test) score of Naive Bayes",nb.score(X_test, y_test)*100)
4 print("Accuracy score of Naive Bayes",accuracy_score(y_test,nb_pred)*100)
   Train Accuracy of Naive Bayes 74.2671009771987
   Accuracy (Test) score of Naive Bayes 74.02597402597402
   Accuracy score of Naive Bayes 74.02597402597402
1 # Train score & Test score of SVM
2 print("Train Accuracy of SVM",sv.score(X_train, y_train)*100)
3 print("Accuracy (Test) score of SVM", sv.score(X_test, y_test)*100)
4 print("Accuracy score of SVM",accuracy_score(y_test,sv_pred)*100)
   Train Accuracy of SVM 81.92182410423453
   Accuracy (Test) score of SVM 83.11688311688312
   Accuracy score of SVM 83.11688311688312
1 # Train score & Test score of Decesion Tree
2 print("Train Accuracy of Decesion Tree",dt.score(X_train,y_train)*100)
3 print("Accuracy(Test) score of Decesion Tree",dt.score(X_test,y_test)*100)
4 print("Accuracy score of Decesion Tree",accuracy_score(y_test,dt_pred)*100)
   Train Accuracy of Decesion Tree 100.0
   Accuracy(Test) score of Decesion Tree 79.87012987012987
   Accuracy score of Decesion Tree 79.87012987012987
1 # Train scrore & Test score of Random Forest
2 print("Train Accuracy of Random Forest",rf.score(X_train,y_train)*100)
3 print("Accuracy (Test) score of Random Forest",rf.score(X_test,y_test)*100)
4 print("Accuracy score of Random Forest",accuracy_score(y_test,rf_pred)*100)
   Train Accuracy of Random Forest 100.0
   Accuracy (Test) score of Random Forest 81.16883116883116
   Accuracy score of Random Forest 81.16883116883116
```

Confusion Matrix

Confusion Matrix of "Logistic Regression"

- 1 from sklearn.metrics import classification_report,confusion_matrix
- 2 # confusion Matrix of Logistic Regression
- 3 cm=confusion_matrix(y_test,lr_pred)
- 4 cm

1 sns.heatmap(confusion_matrix(y_test,lr_pred),annot=True,fmt="d")

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c1d14b4d0>


```
1 TN = cm[0,0]
```

$$2 FP = cm[0,1]$$

$$3 FN = cm[1,0]$$

$$4 \text{ TP} = cm[1,1]$$

1 ####

1 print('Classification Report of Logistic Regression: \n',classification_report(y_test,l

Classification Report of Logistic Regression:

CIUSSITICUCION	Kepor e or	LOGISCIC N	cgi cooroni.	
	precision	recall	f1-score	support
0	0.7818	0.8866	0.8309	97
1	0.7500	0.5789	0.6535	57
accuracy			0.7727	154
macro avg	0.7659	0.7328	0.7422	154

15 plt.show()

```
0.7727
    weighted avg
                     0.7700
                                          0.7652
                                                       154
 1 # Making the Confusion Matrix Of Logistic Regression
 2 from sklearn.metrics import classification_report, confusion_matrix
 3 from sklearn.metrics import accuracy_score, roc_auc_score, roc_curve
 4 cm = confusion_matrix(y_test, lr_pred)
 6 print('TN - True Negative {}'.format(cm[0,0]))
 7 print('FP - False Positive {}'.format(cm[0,1]))
 8 print('FN - False Negative {}'.format(cm[1,0]))
 9 print('TP - True Positive {}'.format(cm[1,1]))
10 print('Accuracy Rate: {}'.format(np.divide(np.sum([cm[0,0],cm[1,1]]),np.sum(cm))*100))
11 print('Misclassification Rate: {}'.format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm
    TN - True Negative 86
    FP - False Positive 11
    FN - False Negative 24
    TP - True Positive 33
    Accuracy Rate: 77.272727272727
    Misclassification Rate: 22.7272727272727
 1 77.27272727272727+22.7272727272727
    100.0
 1 import matplotlib.pyplot as plt
 2 plt.clf()
 3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
 4 classNames = ['0','1']
 5 plt.title('Confusion Matrix of Logistic Regression')
 6 plt.ylabel('Actual(true) values')
 7 plt.xlabel('Predicated values')
 8 tick_marks = np.arange(len(classNames))
 9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick_marks, classNames)
11 s = [['TN', 'FP'], ['FN', 'TP']]
12 for i in range(2):
    for j in range(2):
        plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
```

Confusion Matrix of Logistic Regression

1 pd.crosstab(y_test, lr_pred, margins=False)

col_0 0 1

Outcome

0 86 11

1 24 33

1 pd.crosstab(y_test, lr_pred, margins=True)

col	a	0	1	A11
COT	v	U		ATT

$\mathbf{\Omega}$	+	-	0	mΔ

0	86	11	97

1 24 33 57

All 110 44 154

1 pd.crosstab(y_test, lr_pred, rownames=['Actual values'], colnames=['Predicted values'],

Predicted values 0 1 All

Actual values

0	86	11	97
1	24	33	57
All	110	44	154

1 TP,FP

(33, 11)

- 1 Precision=TP/(TP+FP)
- 2 Precision

0.75

1 33/(33+11)

0.75

1 # print precision score

2

3 precision_Score = TP/float(TP+FP)*100

A print/IDunction comp . [O.O 45]! format/massician Comp)

```
4 print( rrecision score : {ש:ש.4ד} .Tormat(precision_score))
```

Precision score: 75.0000

```
1 from sklearn.metrics import precision_score
```

- 4 print("Marcro Average precision Score is:",precision_score(y_test,lr_pred,average='macr
- 5 print("Weighted Average precision Score is:",precision_score(y_test,lr_pred,average='we
- 6 print("precision Score on Non weighted score is:", precision_score(y_test,lr_pred,avera

precision Score is: 77.272727272727

Mircro Average precision Score is: 77.27272727272727

Marcro Average precision Score is: 76.5909090909091 Weighted Average precision Score is: 77.00413223140497

precision Score on Non weighted score is: [78.18181818 75.

1 print('Classification Report of Logistic Regression: \n',classification_report(y_test,l

]

Classification Report of Logistic Regression:

	precision	recall	f1-score	support
0	0.7818	0.8866	0.8309	97
_				
1	0.7500	0.5789	0.6535	57
accuracy			0.7727	154
macro avg	0.7659	0.7328	0.7422	154
weighted avg	0.7700	0.7727	0.7652	154

```
1 recall score=TP/float(TP+FN)*100
```

recall_score 57.89473684210527

1 TP, FN

(33, 24)

1 33/(33+24)

0.5789473684210527

```
1 from sklearn.metrics import recall_score
```

Recall or Sensitivity_score: 57.89473684210527

```
1 print("Mircro Average Recall Score is:", recall_score(y_test,lr_pred,average='micro')*1
```

² print("precision Score is:", precision_score(y_test,lr_pred,average='micro')*100)

³ print("Mircro Average precision Score is:",precision_score(y_test,lr_pred,average='micr

² print('recall_score',recall_score)

² print('Recall or Sensitivity_score:',recall_score(y_test,lr_pred)*100)

² print("Marcro Average Recall Score is:", recall_score(y_test,lr_pred,average='macro')*1

³ print("Weighted Average Recall Score is:",recall_score(y_test,lr_pred,average='weighted

⁴ print("Recall Score on Non weighted score is:", recall_score(y_test,lr_pred,average=Non

```
Mircro Average Recall Score is: 77.272727272727
Marcro Average Recall Score is: 73.27726532826912
Weighted Average Recall Score is: 77.272727272727
```

Recall Score on Non weighted score is: [88.65979381 57.89473684]

1 print('Classification Report of logistic Regression: \n',classification_report(y_test,l

Classification Report of logistic Regression:

	precision	recall	f1-score	support
0 1	0.7818 0.7500	0.8866 0.5789	0.8309 0.6535	97 57
accuracy macro avg weighted avg	0.7659 0.7700	0.7328 0.7727	0.7727 0.7422 0.7652	154 154 154

False Positive Rate(FPR)

Specificity

F1-Score

```
1 from sklearn.metrics import f1_score
2 print('f1_score of macro :',f1_score(y_test, lr_pred)*100)
    f1_score of macro : 65.34653465346535

1 print("Mircro Average F1_Score is:",f1_score(y_test,lr_pred,average='micro')*100)
2 print("marcro Average F1_Score is:",f1_score(y_test,lr_pred,average='macro')*100)
```

```
3 print("Weighted Average F1_score is:",f1_score(y_test,lr_pred,average='weighted')*100)
4 print("F1_Score on Non weighted score is:",f1_score(y_test,lr_pred,average=None)*100)

Mircro Average F1_Score is: 77.272727272727

marcro Average F1_Score is: 74.21916104653944

Weighted Average F1_score is: 76.52373933045479

F1_Score on Non weighted score is: [83.09178744 65.34653465]
```

*Classification Report of Logistic Regression *

1 from sklearn.metrics import classification_report
2 print('Classification Report of logistic Regression: \n', classification_report(y_test,

Classification Report of logistic Regression:

		0	-6	
	precision	recall	f1-score	support
0	0.7818	0.8866	0.8309	97
1	0.7500	0.5789	0.6535	57
accuracy			0.7727	154
macro avg	0.7659	0.7328	0.7422	154
weighted avg	0.7700	0.7727	0.7652	154

ROC Curve & ROC AUC

```
1 # Area Under Curve
2 auc = roc_auc_score(y_test,lr_pred)
3 print("ROC AUC SCORE of logistic Regression is",auc)

ROC AUC SCORE of logistic Regression is 0.7327726532826913

1 fpr, tpr, thresholds = roc_curve(y_test, lr_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)':
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of Logistic Regression')
7 plt.legend()
8 plt.grid()
9 plt.show()
```

Receiver Operating Characteristic(ROC) Curve of Logistic Regression

Confusion Matrix of "KNN"

1 sns.heatmap(confusion_matrix(y_test,knn_pred),annot=True,fmt="d")

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c1d2fcd90>

$$1 TN = cm[0,0]$$

$$2 FP = cm[0,1]$$

$$3 FN = cm[1,0]$$

$$4 \text{ TP} = cm[1,1]$$

1 ####

1 # classification Report of KNN

2 print('Classification Report of KNN: \n', classification_report(y_test,knn_pred,digits=

Classification Report of KNN:

CIUSSITICUCIO	i incpor c or i			
	precision	recall	f1-score	support
	•			
0	0.7736	0.8454	0.8079	97
_				
1	0.6875	0.5789	0.6286	57
accuracy			0.7468	154
macro avg	0.7305	0.7122	0.7182	154
weighted avg	0.7417	0.7468	0.7415	154

- 1 # Making the confusion Matrix of KNN
- 2 from sklearn.metrics import classification_report, confusion_matrix
- 3 from sklearn.metrics import accuracy_score, roc_auc_score,roc_curve

1 74.67532467532467+25.324675324675322

100.0

```
1 import matplotlib.pyplot as plt
 2 plt.clf()
 3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
 4 classNames = ['0','1']
 5 plt.title('Confusion Matrix of KNN')
 6 plt.ylabel('Actual(true) values')
 7 plt.xlabel('Predicated values')
 8 tick_marks = np.arange(len(classNames))
 9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick marks, classNames)
11 s = [['TN', 'FP'], ['FN', 'TP']]
12 for i in range(2):
    for j in range(2):
14
        plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
15 plt.show()
```


+ μα. οι ουσταυτής τους κιπη_ριτος παι επίσ-ι αποτή

Outcome					
0	82	15			
1	24	33			

1 pd.crosstab(y_test, knn_pred, margins=True)

col_0	0	1	All
Outcome			
0	82	15	97
1	24	33	57
All	106	48	154

1 pd.crosstab(y_test, knn_pred, rownames=['Actual values'], colnames=['Predicted values']

Predicted values	0	1	A11
Actual values			
0	82	15	97
1	24	33	57
All	106	48	154

```
1 TP,FP (33, 11)
```

- 1 Precision=TP/(TP+FP)
- 2 Precision

0.75

1 33/(33+15)

0.6875

```
1 # print precision score
2
3 precision_Score = TP/float(TP+FP)*100
```

4 print('Precision score : {0:0.4f}'.format(precision_Score))

Precision score : 75.0000

```
1 from sklearn.metrics import precision_score
2 print("precision Score is:", precision_score(y_test,knn_pred,average='micro')*100)
3 print("Mircro Average precision Score is:",precision_score(y_test,knn_pred,average='mic
4 print("Marcro Average precision Score is:",precision_score(y_test,knn_pred,average='mac
5 print("Weighted Average precision Score is:",precision_score(y_test,knn_pred,average='w
6 print("precision Score on Non weighted score is:", precision_score(y_test,knn_pred,aver
   precision Score is: 74.67532467532467
   Mircro Average precision Score is: 74.67532467532467
   Marcro Average precision Score is: 73.05424528301887
   Weighted Average precision Score is: 74.17223107081597
   precision Score on Non weighted score is: [77.35849057 68.75
                                                                     1
1 print('Classification Report of KNN: \n',classification_report(y_test,knn_pred,digits=4
   Classification Report of KNN:
                  precision recall f1-score
                                                  support
              0
                    0.7736 0.8454
                                        0.8079
                                                      97
              1
                    0.6875 0.5789
                                        0.6286
                                                      57
                                        0.7468
                                                     154
       accuracy
      macro avg
                  0.7305 0.7122
                                        0.7182
                                                     154
   weighted avg
                    0.7417
                              0.7468
                                        0.7415
                                                     154
1 recall score=TP/float(TP+FN)*100
2 print('recall_score', recall_score)
   recall_score 57.89473684210527
1 TP, FN
    (33, 24)
1 33/(33+24)
   0.5789473684210527
1 from sklearn.metrics import recall score
2 print('Recall or Sensitivity_score:',recall_score(y_test,knn_pred)*100)
   Recall or Sensitivity_score: 57.89473684210527
1 print("Mircro Average Recall Score is:", recall_score(y_test,knn_pred,average='micro')*
2 print("Marcro Average Recall Score is:", recall_score(y_test,knn_pred,average='macro')*
3 print("Weighted Average Recall Score is:", recall_score(y_test, knn_pred, average='weighte
4 print("Recall Score on Non weighted score is:", recall_score(y_test,knn_pred,average=No
   Mircro Average Recall Score is: 74.67532467532467
   Marcro Average Recall Score is: 71.21540965816604
   Weighted Average Recall Score is: 74.67532467532467
   Recall Score on Non weighted score is: [84.53608247 57.89473684]
```

ROC Curve & ROC AUC

```
1 # Area Under the Curve
2 auc = roc_auc_score(y_test, knn_pred)
3 print("ROC AUC SCORE of KNN is",auc)

ROC AUC SCORE of KNN is 0.7121540965816603

1 fpr, tpr, thresholds = roc_curve(y_test, knn_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)''
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of KNN')
7 plt.legend()
8 plt.grid()
9 plt.show()
```


Confusion Matrix of "Naive-Byes"

1 sns.heatmap(confusion matrix(y test, nb pred),annot=True,fmt="d")

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f7c1d897c50>
```

```
1 TN = cm[0,0]

2 FP = cm[0,1]

3 FN = cm[1,0]

4 TP = cm[1,1]

1 TN, FP, FN,TP

(82, 15, 24, 33)
```

1 # classification Report of Naive Byes

2 print('Classification Report of Naive Byes: \n', classification_report(y_test,nb_pred,d

Classification Report of Naive Byes:

	precision	recall	f1-score	support
0 1	0.7879 0.6545	0.8041 0.6316	0.7959 0.6429	97 57
accuracy macro avg weighted avg	0.7212 0.7385	0.7179 0.7403	0.7403 0.7194 0.7393	154 154 154

```
1 # Making the confusion Matrix of Naive Bayes
 2 from sklearn.metrics import classification_report, confusion_matrix
 3 from sklearn.metrics import accuracy_score, roc_auc_score,roc_curve
 4 cm = confusion_matrix(y_test,nb_pred)
 5
 6
 7 print('TN - True Negative: {}'.format(cm[0,0]))
 8 print('FP - False Positive: {}'.format (cm[0,1]))
 9 print('FN - False Negative: {}'.format(cm[1,0]))
10 print('TP - True Positive: {}'.format(cm[1,1]))
11 print('Accuracy Rate: {}'.format(np.divide(np.sum([cm[0,0],cm[0,1],cm[1,0],cm[1,1]]),np
12 print('Misclassification Rate: {}'.format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm
    TN - True Negative: 78
    FP - False Positive: 19
    FN - False Negative: 21
    TP - True Positive: 36
    Accuracy Rate: 100.0
    Misclassification Rate: 25.97402597402597
```

1 74.02597402597402+25.97402597402597

100.0

```
1 import matplotlib.pyplot as plt
```

```
2 plt.clf()
3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
4 classNames = ['0','1']
5 plt.title('Confusion Matrix of Naive Byes')
6 plt.ylabel('Actual(true) values')
7 plt.xlabel('Predicated values')
8 tick_marks = np.arange(len(classNames))
9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick_marks, classNames)
11 s = [['TN','FP'],['FN','TP']]
12 for i in range(2):
13  for j in range(2):
14   plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
15 plt.show()
```


1 pd.crosstab(y_test, nb_pred, margins=False)

col_0	0	1
Outcome		
0	78	19
1	21	36

1 pd.crosstab(y_test, nb_pred, margins=True)

col_0	0	1	All
Outcome			
0	78	19	97
1	21	36	57
All	99	55	154

1 pd.crosstab(y_test, nb_pred, rownames=['Actual values'], colnames=['Predicted values'],

	Predicted values	0	1	All	
	Actual values	;			
	0	78	19	97	
	1	21	36	57	
	AII	99	55	154	
1 TF	P,FP				
	(44, 18)				
	recision=TP/(TP+FP recision	')			
	0.6875				
1 36	5/(36+19)				
	0.65454545454545454	! 5			
1 # 2	print precision s	core			
	recision_Score = T rint('Precision sc		•	•	f100 .format(precision_Score))
	Precision score :	68.7	'500		
2 pr 3 pr 4 pr 5 pr	rint("Mircro Avera rint("Marcro Avera rint("Weighted Ave	ore i ge pr ge pr rage	s:", ecis ecis prec	precaion Sion Sion S	sion_score .sion_score(y_test,nb_pred,average='micro')*100) .core is:",precision_score(y_test,nb_pred,average='microre is:",precision_score(y_test,nb_pred,average='macrore is:",precision_score(y_test,nb_pred,average='weighted score is:", precision_score(y_test,nb_pred,average)
	Marcro Average pr Weighted Average	ecisi ecisi preci	on S on S sior	Score Score Scor	597402 ds: 74.02597402597402 ds: 72.121212121212 e is: 73.85281385281385 score is: [78.78787879 65.45454545]
	classification Re rint('Classificati				Bayes sive Bayes: \n', classification_report(y_test,nb_pred,
	Classification Re	port ecisi			Bayes: all f1-score support
	0 1	0.787 0.654		0.80 0.63	
	accuracy				0.7403 154

```
0.7179
                    0.7212
                                        0.7194
                                                      154
      macro avg
   weighted avg
                    0.7385
                              0.7403
                                        0.7393
                                                      154
1 recall_score=TP/float(TP+FN)*100
2 print('recall_score',recall_score)
   recall_score 57.89473684210527
1 TP, FN
   (33, 24)
1 36/(36+21)
   0.631578947368421
1 from sklearn.metrics import recall_score
2 print('Recall or Sensitivity_score:',recall_score(y_test,nb_pred)*100)
   Recall or Sensitivity_score: 63.1578947368421
```

ROC Curve & ROC AUC

```
1 # Area Under the Curve
2 auc = roc_auc_score(y_test, nb_pred)
3 print("ROC AUC SCORE of Naive Bayes is",auc)

ROC AUC SCORE of Naive Bayes is 0.7178513293543136

1 fpr, tpr, thresholds = roc_curve(y_test, nb_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)':
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of Naive Bayes')
7 plt.legend()
8 plt.grid()
9 plt.show()
```

Receiver Operating Characteristic(ROC) Curve of Naive Bayes

Confusion Matrix of "SVM"

1 sns.heatmap(confusion_matrix(y_test, sv_pred),annot=True,fmt="d")

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c1d9dc210>

$$1 TN = cm[0,0]$$

$$2 FP = cm[0,1]$$

$$3 FN = cm[1,0]$$

$$4 \text{ TP} = cm[1,1]$$

1 ####

1 # classification Report of SVM

2 print('Classification Report of SVM: \n', classification_report(y_test,sv_pred,digits=4

Classification Report of SVM:

	precision	recall	f1-score	support
0	0.8198	0.9381	0.8750	97
1	0.8605	0.6491	0.7400	57
accuracy			0.8312	154
macro avg	0.8401	0.7936	0.8075	154
weighted avg	0.8349	0.8312	0.8250	154

- 1 # Making the confusion Matrix of SVM
- 2 from sklearn.metrics import classification_report, confusion_matrix
- 3 from sklearn.metrics import accuracy_score, roc_auc_score,roc_curve

1 83.11688311688312+16.883116883116884

100.0

```
1 import matplotlib.pyplot as plt
 2 plt.clf()
 3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
 4 classNames = ['0','1']
 5 plt.title('Confusion Matrix of Naive Byes')
 6 plt.ylabel('Actual(true) values')
 7 plt.xlabel('Predicated values')
 8 tick_marks = np.arange(len(classNames))
 9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick_marks, classNames)
11 s = [['TN', 'FP'], ['FN', 'TP']]
12 for i in range(2):
    for j in range(2):
14
        plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
15 plt.show()
```


1 pd.crosstab(y_test, sv_pred, margins=False)

1 pd.crosstab(y_test, sv_pred, margins=True)

co1_0	0	1	ATT
Outcome			
0	91	6	97
1	20	37	57
All	111	43	154

1 pd.crosstab(y_test, sv_pred, rownames=['Actual values'], colnames=['Predicted values'],

Actual values			
0	91	6	97
1	20	37	57
All	111	43	154

Predicted values 0 1 All

```
1 TP, FP

(36, 19)

1 Precision=TP/(TP+FP)
2 Precision

0.6545454545454545

1 37/(37+6)

0.8604651162790697
```

```
minor project Akanksh - Colaboratory
1 from sklearn.metrics import precision_score
2 print("precision Score is:", precision_score(y_test,sv_pred,average='micro')*100)
3 print("Mircro Average precision Score is:",precision_score(y_test,sv_pred,average='micr
4 print("Marcro Average precision Score is:",precision score(y test,sv pred,average='macr
5 print("Weighted Average precision Score is:",precision_score(y_test,sv_pred,average='we
6 print("precision Score on Non weighted score is:", precision_score(y_test,sv_pred,avera
   precision Score is: 83.11688311688312
   Mircro Average precision Score is: 83.11688311688312
   Marcro Average precision Score is: 84.01424680494446
   Weighted Average precision Score is: 83.48638581196721
   precision Score on Non weighted score is: [81.98198198 86.04651163]
1 # classification Report of SVM
2 print('Classification Report of SVM: \n', classification_report(y_test,sv_pred,digits=4
   Classification Report of SVM:
                  precision recall f1-score
                                                   support
                    0.8198 0.9381
              0
                                        0.8750
                                                       97
                    0.8605 0.6491
                                        0.7400
                                                      57
       accuracy
                                        0.8312
                                                      154
                    0.8401 0.7936
                                        0.8075
                                                      154
      macro avg
   weighted avg
                    0.8349
                              0.8312
                                       0.8250
                                                     154
1 recall score=TP/float(TP+FN)*100
2 print('recall_score',recall_score)
   recall_score 63.1578947368421
1 TP, FN
    (36, 21)
1 from sklearn.metrics import recall score
2 print('Recall or Sensitivity_score:',recall_score(y_test,sv_pred)*100)
    Recall or Sensitivity score: 64.91228070175438
1 37/(37+20)
   0.6491228070175439
```

ROC Curve & ROC AUC

```
1 # Area Under the Curve
2 auc = roc_auc_score(y_test, sv_pred)
3 print("ROC AUC SCORE of SVM is",auc)

ROC AUC SCORE of SVM is 0.7936335684572255
```

```
1 fpr, tpr, thresholds = roc_curve(y_test, sv_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)''
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of SVM')
7 plt.legend()
8 plt.grid()
9 plt.show()
```


Confusion Matrix of "Decision Tree"

1 sns.heatmap(confusion_matrix(y_test, dt_pred),annot=True,fmt="d")

<matplotlib.axes._subplots.AxesSubplot at 0x7f7c1d407e90>


```
1 TN = cm[0,0]
```

2 FP = cm[0,1]

3 FN = cm[1,0]

4 TP = cm[1,1]

1 TN, FP, FN, TP

```
(91, 6, 20, 37)
```

1 ####

```
1 # classification Report of Decesion Tree
 2 print('Classification Report of Decesion Tree: \n', classification_report(y_test,dt_pre
    Classification Report of Decesion Tree:
                   precision recall f1-score
                                                   support
               a
                     0.8587 0.8144
                                        0.8360
                                                       97
                     0.7097
                               0.7719
                                         0.7395
                                                       57
        accuracy
                                         0.7987
                                                      154
                    0.7842
                               0.7932
                                         0.7877
                                                      154
       macro avg
    weighted avg
                     0.8035
                               0.7987
                                         0.8003
                                                      154
 1 # Making the confusion Matrix of Decesion Tree
 2 from sklearn.metrics import classification_report, confusion_matrix
 3 from sklearn.metrics import accuracy_score, roc_auc_score,roc_curve
 4 cm = confusion_matrix(y_test,dt_pred)
 5
 7 print('TN - True Negative: {}'.format(cm[0,0]))
 8 print('FP - False Positive:{}'.format (cm[0,1]))
 9 print('FN - False Negative:{}'.format(cm[1,0]))
10 print('TP - True Positive:{}'.format(cm[1,1]))
11 print('Accuracy Rate: {}'.format(np.divide(np.sum([cm[0,0],cm[0,1],cm[1,0],cm[1,1]]),np
12 print('Misclassification Rate: {}'.format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm
    TN - True Negative: 79
    FP - False Positive:18
    FN - False Negative:13
    TP - True Positive:44
    Accuracy Rate: 100.0
    Misclassification Rate: 20.12987012987013
 1 78.57142857142857+21.428571428571427
    100.0
```

```
1 import matplotlib.pyplot as plt
2 plt.clf()
3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
4 classNames = ['0','1']
5 plt.title('Confusion Matrix of Decision Tree')
6 plt.ylabel('Actual(true) values')
7 plt.xlabel('Predicated values')
8 tick_marks = np.arange(len(classNames))
9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick_marks, classNames)
11 s = [['TN','FP'],['FN','TP']]
```

```
12 for i in range(2):
13    for j in range(2):
14       plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
15 plt.show()
```


1 pd.crosstab(y_test, dt_pred, margins=False)

1 pd.crosstab(y_test, dt_pred, margins=True)

co1_0	0	1	ATT
Outcome			
0	79	18	97
1	13	44	57
All	92	62	154

1 pd.crosstab(y_test, dt_pred, rownames=['Actual values'], colnames=['Predicted values'],

Predicted values	0	1	All
Actual values			
0	79	18	97
1	13	44	57
All	92	62	154

```
1 TP, FP
    (37, 6)
1 Precision=TP/(TP+FP)
2 Precision
   0.8604651162790697
1 42/(42+17)
   0.711864406779661
1 #print precision score
3 precision_Score = TP/float(TP+FP)*100
4 print('Precision score : {0:0.4f}'.format(precision Score))
   Precision score: 86.0465
1 from sklearn.metrics import precision_score
2 print("precision Score is:", precision_score(y_test,dt_pred,average='micro')*100)
3 print("Mircro Average precision Score is:",precision_score(y_test,dt_pred,average='micr
4 print("Marcro Average precision Score is:",precision_score(y_test,dt_pred,average='macr
5 print("Weighted Average precision Score is:",precision_score(y_test,dt_pred,average='we
6 print("precision Score on Non weighted score is:", precision_score(y_test,dt_pred,avera
   precision Score is: 79.87012987012987
   Mircro Average precision Score is: 79.87012987012987
   Marcro Average precision Score is: 78.41865357643759
   Weighted Average precision Score is: 80.35395530136064
   precision Score on Non weighted score is: [85.86956522 70.96774194]
1 # classification Report of Decesion Tree
2 print('Classification Report of Decesion Tree: \n', classification_report(y_test,dt_pre
   Classification Report of Decesion Tree:
                   precision
                              recall f1-score
                                                   support
              0
                     0.8587
                               0.8144
                                         0.8360
                                                       97
                     0.7097
                               0.7719
                                         0.7395
                                                       57
                                         0.7987
                                                      154
        accuracy
                                         0.7877
      macro avg
                    0.7842
                               0.7932
                                                      154
   weighted avg
                    0.8035
                               0.7987
                                         0.8003
                                                      154
```

```
1 recall score=TP/float(TP+FN)*100
2 print('recall_score', recall_score)
```

recall score 64.91228070175438

ROC Curve & ROC AUC

```
1 # Area Under the Curve
2 auc = roc_auc_score(y_test, dt_pred)
3 print("ROC AUC SCORE of Decesion Tree is",auc)

ROC AUC SCORE of Decesion Tree is 0.7931814071260626

1 fpr, tpr, thresholds = roc_curve(y_test, dt_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)':
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of Decesion Tree')
7 plt.legend()
8 plt.grid()
9 plt.show()
```


Confusion Matrix of "Random Forest"

```
1 sns.heatmap(confusion_matrix(y_test, rf_pred),annot=True,fmt="d")
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f7c1d7b8c90>


```
1 TN = cm[0,0]
```

2 FP = cm[0,1]

3 FN = cm[1,0]

4 TP = cm[1,1]

(87, 10, 19, 38)

1 ####

1 # classification Report of Random Forest

2 print('Classification Report of Random Forest: \n', classification_report(y_test,rf_pre

Classification Report of Random Forest:

	precision	recall	f1-score	support
0	0.8208	0.8969	0.8571	97
1	0.7917	0.6667	0.7238	57
accuracy			0.8117	154
macro avg	0.8062	0.7818	0.7905	154
weighted avg	0.8100	0.8117	0.8078	154

```
1 # Making the confusion Matrix of Random Forest
2 from sklearn.metrics import classification_report, confusion_matrix
3 from sklearn.metrics import accuracy_score, roc_auc_score,roc_curve
4 cm = confusion_matrix(y_test,rf_pred)
5
6
7 print('TN - True Negative: {}'.format(cm[0,0]))
8 print('FP - False Positive: {}'.format (cm[0,1]))
9 print('FN - False Negative: {}'.format(cm[1,0]))
10 print('TP - True Positive: {}'.format(cm[1,1]))
11 print('Accuracy Rate: {}'.format(np.divide(np.sum([cm[0,0],cm[0,1],cm[1,0],cm[1,1]]),np
12 print('Misclassification Rate: {}'.format(np.divide(np.sum([cm[0,1],cm[1,0]]),np.sum(cm
```

```
TN - True Negative: 87
FP - False Positive: 10
FN - False Negative: 19
TP - True Positive: 38
Accuracy Rate: 100.0
```

Misclassification Rate: 18.83116883116883

1 79.22077922077922+20.77922077922078

100.0

```
1 import matplotlib.pyplot as plt
 2 plt.clf()
 3 plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Wistia)
 4 classNames = ['0','1']
 5 plt.title('Confusion Matrix of Random Forest')
 6 plt.ylabel('Actual(true) values')
 7 plt.xlabel('Predicated values')
 8 tick_marks = np.arange(len(classNames))
 9 plt.xticks(tick_marks, classNames, rotation=45)
10 plt.yticks(tick_marks, classNames)
11 s = [['TN', 'FP'], ['FN', 'TP']]
12 for i in range(2):
    for j in range(2):
14
        plt.text(j,i,str(s[i][j])+"="+str(cm[i][j]))
15 plt.show()
```


1 pd.crosstab(y_test, rf_pred, margins=False)

1 pd.crosstab(y_test, rf_pred, margins=True)

col_0	0	1	All
Outcome			
0	87	10	97
1	19	38	57
All	106	48	154

1 pd.crosstab(y_test, rf_pred, rownames=['Actual values'], colnames=['Predicted values'],

Predicted values 0 1 All Actual values 87 10 97 1 19 38 57 All 106 48 154

```
1 TP, FP (38, 10)
```

- 1 Precision=TP/(TP+FP)
- 2 Precision
 - 0.791666666666666
- 1 38/(38+10)
 - 0.791666666666666

1 from sklearn.metrics import precision_score

```
2 print("precision Score is:", precision_score(y_test,dt_pred,average='micro')*100)
3 print("Mircro Average precision Score is:",precision_score(y_test,dt_pred,average='micr
4 print("Marcro Average precision Score is:",precision_score(y_test,dt_pred,average='macro")
```

5 print("Weighted Average precision Score is:",precision_score(y_test,dt_pred,average='we

6 print("precision Score on Non weighted score is:", precision_score(y_test,dt_pred,avera

```
precision Score is: 79.87012987012987
Mircro Average precision Score is: 79.87012987012987
Marcro Average precision Score is: 78.41865357643759
```

```
Weighted Average precision Score is: 80.35395530136064 precision Score on Non weighted score is: [85.86956522 70.96774194]
```

- 1 # classification Report of Random Forest
- 2 print('Classification Report of Random Forest: \n', classification_report(y_test,rf_pre

Classification Report of Random Forest:

```
precision recall f1-score
                                      support
         0
             0.8208 0.8969
                              0.8571
                                          97
         1
             0.7917 0.6667
                              0.7238
                                          57
                              0.8117
                                         154
   accuracy
  macro avg 0.8062 0.7818 0.7905
                                         154
weighted avg
            0.8100 0.8117 0.8078
                                         154
```

```
1 recall_score=TP/float(TP+FN)*100
```

2 print('recall_score',recall_score)

1 TP, FN

(38, 19)

- 1 from sklearn.metrics import recall_score
- 2 print('Recall or Sensitivity_score:',recall_score(y_test,rf_pred)*100)

Recall or Sensitivity_score: 66.66666666666666

1 39/(39+19)

9 plt.show()

0.6724137931034483

ROC Curve & ROC AUC

```
1 # Area Under the Curve
2 auc = roc_auc_score(y_test, rf_pred)
3 print("ROC AUC SCORE of Random Forest is",auc)

ROC AUC SCORE of Random Forest is 0.781786941580756

1 fpr, tpr, thresholds = roc_curve(y_test, rf_pred)
2 plt.plot(fpr, tpr, color='orange', label='ROC')
3 plt.plot([0,1],[0,1], color='darkblue', linestyle='--',label='ROC curve (area = %0.2f)':
4 plt.xlabel('False Positive Rate')
5 plt.ylabel('True Positive Rate')
6 plt.title('Receiver Operating Characteristic(ROC) Curve of Random Forest')
7 plt.legend()
8 plt.grid()
```



```
1 # Confusion Matrix function
 2
 3 def conf_mtx(y_act,y_pred):
       cm=metrics.confusion_matrix(y_act, y_pred, labels=[1, 0])
 4
       df_cm = pd.DataFrame(cm, index = [i for i in ["Diabetic", "Non-Diabetic"]],
 5
                     columns = [i for i in ["Predict Diabetic", "Predict Non-Diabetic"]])
 6
 7
       plt.figure(figsize = (6,6))
 8
       plt.title("Confusion Matrix")
 9
       sns.heatmap(df_cm, annot=True ,fmt='g')
10
       Score_Accuracy = "%.2f%%" %(metrics.accuracy_score(y_act,y_pred)*100)
11
       Score_Recall = "%.2f%%" %(metrics.recall_score(y_act,y_pred)*100)
12
       Score_Precision = "%.2f%%" %(metrics.precision_score(y_act,y_pred)*100)
13
14
       print("Model Accuracy Score: " + Score_Accuracy)
15
       print("Model Recall Score: " + Score_Recall)
16
       print("Model Precision Score: " + Score_Precision)
17
18
19
       return Score_Accuracy, Score_Recall, Score_Precision
 1 # Prepare an empty summary dataframe to append the data of the various models for compa
 2 summary = pd.DataFrame(columns=('Model', 'Training Accuracy', 'Test Accuracy Score','Te
                                   'Test Precision Score', 'AUC'))
 3
 1 # For building a function for performing ML algos testing
 2
 3 def ML_test(Mdl,Param_grid):
 4
       if bool(Param grid):
          Mdl = GridSearchCV(Mdl,Param_grid,cv=10)
 5
 6
          Mdl.fit(X train sm,y train sm)
 7
          Mdl params = Mdl.best params
           Mdl_train_sc = Mdl.cv_results_['mean_test_score'].mean()
 8
 9
           Mdl_test_sc = Mdl.score(X_test_scaled,y_test)
10
           probas = Mdl.predict proba(X test scaled)
11
           print("Best fit parameter is: " + str(Mdl_params))
12
```

```
6/28/2021
                                          minor project Akanksh - Colaboratory
   13
   14
          else:
   15
              Mdl = Mdl
              Mdl.fit(X train sm,y train sm)
   16
   17
              Mdl_train_sc = round(Mdl.score(X_train_sm,y_train_sm),4)
              Mdl_test_sc = round(Mdl.score(X_test_scaled,y_test),4)
   18
   19
               probas = Mdl.predict_proba(X_test_scaled)
   20
   21
          y_pred = Mdl.predict(X_test_scaled)
   22
   23
          print("Training score is: " + str(Mdl_train_sc))
          print("Test Mean score is: " + str(Mdl_test_sc))
   24
   25
   26
          Score_Accuracy,Score_Recall,Score_Precision = conf_mtx(y_test,y_pred)
   27
          Mdl_train_sc = "%.2f%%" % (Mdl_train_sc*100)
   28
   29
          # Calculating AUC
   30
          fpr, tpr, thresholds = roc_curve(y_test, probas[:, 1])
   31
          roc_auc = round(auc(fpr, tpr),4)
   32
          print("Area under the ROC curve : " + str(roc_auc))
   33
   34
          return Mdl_train_sc, Score_Accuracy, Score_Recall, Score_Precision, roc_auc
    1 # Scaling the x training and testing dataset
    2 scaler = preprocessing.StandardScaler().fit(X_train)
    4 X_train_scaled = scaler.transform(X_train)
    5 X_test_scaled = scaler.transform(X_test)
    1 # Logistic Regression Model
    2
    3 Mdl_LogReg = LogisticRegression(solver="liblinear")
    5 model_name = "LogisticRegression"
    6 Mdl_train_sc = "77.36156351791531"
    7 Score_Accuracy = "77.272727272727"
    8 Score Recall = "57.89473684210527"
    9 Score Precision = "75.272727272727"
   10 roc_auc = "0.7327726532826913"
   11
   12 Param_grid_LogReg = {'penalty': ['l1','l2'], 'C': np.linspace(0.1,1.1,10)}
   13
   14
   15 summary = summary.append({'Model' : model name, 'Training Accuracy' : Mdl train sc, 'Te
                              'Test Recall Score' : Score_Recall, 'Test Precision Score' : Sco
   16
   17
                                ignore_index=True)
    1 # KNN Model
    3 Mdl = KNeighborsClassifier()
    5 model name = "KNN"
    6 Mdl train sc = "81.10749185667753"
```

```
7 Score_Accuracy = "74.67532467532467"
 8 Score Recall = "57.89473684210527"
 9 Score_Precision = "68.7500"
10 roc auc = "0.71215409865816603"
12 Param_grid_kNeigh = {'n_neighbors': list(np.arange(3,8)), 'metric': ['euclidean', 'manh
13
14 summary = summary.append({'Model' : model_name, 'Training Accuracy' : Mdl_train_sc, 'Te
                          'Test Recall Score' : Score_Recall, 'Test Precision Score' : Sco
16
                            ignore index=True)
 1 #Naive Bayes Model
 3 Mdl = GaussianNB()
 5 model_name = "Naive Byes"
 6 Mdl_train_sc = "74.2671009771987"
 7 Score_Accuracy = "74.025974025977402"
 8 Score_Recall = "63.1578947368421"
 9 Score Precision = "65.4545"
10 roc_auc = "0.7178513293543136"
11
12 summary = summary.append({'Model' : model_name, 'Training Accuracy' : Mdl_train_sc, 'Te
                          'Test Recall Score' : Score_Recall, 'Test Precision Score' : Sco
14
                            ignore_index=True)
 1 #SVM Model
 2
 3 Mdl = SVC(probability=True)
 5 model name = "SVM"
 6 Mdl_train_sc = "81.92182410423453"
 7 Score_Accuracy = "83.11688311688312"
 8 Score_Recall = "64.9122807017543"
 9 Score Precision = "86.0465"
10 roc_auc = "0.79386335684572255"
11
12 Param_grid_SVC = {'C': np.linspace(0.1,1.1,10), 'kernel': ['linear','poly','rbf',]}
14 summary = summary.append({'Model' : model name, 'Training Accuracy' : Mdl train sc, 'Te
                          'Test Recall Score' : Score Recall, 'Test Precision Score' : Sco
15
16
                            ignore_index=True)
 1 # Decision Tree Model
 3 Mdl = DecisionTreeClassifier(random_state=1)
 4
 5 model name = "Decision Tree"
 6 Mdl train sc = "100.0"
 7 Score Accuracy = "75.97402597402598"
 8 Score_Recall = "73.68421052631578"
 9 Score Precision = "79.22077922077922"
10 roc_auc = "0.7807921866521975"
```

```
6/28/2021
                                           minor project Akanksh - Colaboratory
   11
   12 Param_grid_dt = {'criterion':['gini', 'entropy'], 'max_depth': [3, 4, 5, 6, 7, 8],
                    'min impurity decrease': [0.0001, 0.0003, 0.0005, 0.0007, 0.009]}
   13
   14
   15
   16 summary = summary.append({'Model' : model_name, 'Training Accuracy' : Mdl_train_sc, 'Te
                               'Test Recall Score' : Score_Recall, 'Test Precision Score' : Sco
   17
   18
                                ignore_index=True)
     1 # Random Forest Model
     3 Mdl = RandomForestClassifier(random_state=1,n_estimators=100)
     5 model_name = "Random Forest Classifier"
     6 Mdl_train_sc = "100.0"
     7 Score_Accuracy = "81.16883116883116"
     8 Score_Recall = "66.666666666666"
     9 Score_Precision = "79.1667"
   10 roc_auc = "0.781786941580756"
   11
   12 Param_grid_rf = {'criterion':['gini', 'entropy'], 'max_depth': [3, 4, 5, 6, 7, 8],
                    'min_impurity_decrease': [0.0001, 0.0003, 0.0005, 0.0007, 0.009]}
   13
   14
   15
   16 summary = summary.append({'Model' : model_name, 'Training Accuracy' : Mdl_train_sc, 'Te
```

ignore_index=True)

1 summary

17

18

	Model	Training Accuracy	Test Accuracy Score	Test Recall Score	Test
0	LogisticRegression	77.36156351791531	77.27272727272727	57.89473684210527	75.2727
1	KNN	81.10749185667753	74.67532467532467	57.89473684210527	
2	Naive Byes	74.2671009771987	74.025974025977402	63.1578947368421	
3	Naive Byes	74.2671009771987	74.025974025977402	63.1578947368421	
4	SVM	81.92182410423453	83.11688311688312	64.9122807017543	
5	Decision Tree	100.0	75.97402597402598	73.68421052631578	79.2207
6	Random Forest	100.0	81.16883116883116	66.6666666666666	

'Test Recall Score' : Score_Recall, 'Test Precision Score' : Sco

Conclusion:

Based on the comparison between the various algorithms used, SVM seems to produce the best results to me.

-By P.Akanksh

IBS(ICFAI BUSSINES SCHOOL), Hyderabad

×