Reg. No.	
----------	--

B.Tech. DEGREE EXAMINATION, DECEMBER 2023

Fourth Semester

18MAB202T – NUMERICAL METHODS FOR ENGINEERS (For the candidates admitted from the academic year 2020, 2021 to 2021, 20

Note: (i) (ii)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet over to hall invigilator at the end of 40 th minute. Part - B & Part - C should be answered in answer booklet.		ld be	han	.ded
Time: 3	hours	Max. N	Marl	s: 1	00
	$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions	Marks	BL	со	PO
1.	By method of least squares, the error committed in fitting a straight line is (A) $E = \sum y - a \sum xy - b \sum y^2$ (B) $E = \sum y^2 - a \sum xy - b \sum y$ (C) $E = \sum y - a \sum xy^2 - b \sum y$ (D) $E = \sum y^2 - a \sum x^2y - b \sum y$	1	1	1	1
2.	The order of convergence in Newton Raphson method is (A) 1 (B) 2 (C) 3 (D) 0	1	2	1	1
3.	"As soon as a new value for a variable is found by iteration, it is used immediately in the following equation" this method is called (A) Gauss-Seidel method (B) Gauss-Jacobi method (C) Gauss-Jordan method (D) Gauss-Elimination method	1	1	1	1
4.	In Regula Falsi method, the first approximation is given by (A) $af(b)-bf(a)$ (B) $af(a)-bf(b)$ $f(b)-f(a)$ (C) $af(b)-bf(a)$ $f(a)-f(b)$ (D) $bf(a)-af(a)$ $f(a)-f(b)$	1	1	1	1
5	f(a)-f(b) $f(a)-f(b)Choose the correct answer: If f(x)=x^2+x+1, then the value of \Delta f(x); taking h=1, is (A) 2x+3 (B) 2x+2 (C) 2 (D) x^2+1$	1	2	2	1
6.	Pick out the correct answer: The n th order difference of a polynomial of n th degree is (A) Zero (B) Polynomial of (n-1) th degree (C) Constant (D) Polynomial in first degree	1	1	2	1
7,	Which of the following options correctly describes the applicability of Lagrange's interpolation formula?	1	1	2	1

(A) Only for equal intervals

(C) Both equal

intervals

(B) Only for unequal intervals

or unequal intervals

and unequal (D) Not applicable for either equal

8.	beginning of the table if the ar	lation (B) Newton backward interpolation	1	1	2	1
9.	If a set of numerical values o	f the integral $f(x)$, a single valued function, is	1	2	3	1
	applied to $\int_{a}^{b} f(x)dx$, then that	process is called				
	(A) A numerical integration(C) Interpolation	(B) Quadrature(D) Extrapolation				
10.	The error in Simpson's one-th (A) h^2	(B) h^4	1	1	3	1
	(C) h^5	(D) h^{6}				
11.	Simpson's three-eighth rule of (A) The number of ordinates (C) The number of intermultiple of 3	can be applied if s is odd (B) The number of ordinates is even rval is (D) The number of interval is even	1	2	3	1
12.	interval is replaced by its	e, the arc of the curve $y=f(x)$ over each sub	1	1	3	1
	(A) Chord(C) Diameter	(B) Tangent (D) Radius				
13.	. Which of the following form of second order?	ula is a particular case of Runge-Kutta formula	1	1	4	1
	(A) Taylor formula(C) Milne's predictor formula	(B) Euler's modified formula ula (D) Adam's predictor formula				
14	. Improved Euler method is ba	ased on the averages of	1	2	4	1
	(A) Points	(B) Slopes				
	(C) Curves	(D) Both points and slopes				
15	Which of the following meth	nod is a multi-step method?	1	1	4	1
	(A) Taylor series method(C) Euler method	(B) Runge-Kutta method(D) Milne's predictor – corrector method				
16	6. In Runge-Kutta method of fo	ourth order, Δy stands for	1	2	4	1
2	(A) $\frac{1}{6}[k_1 + k_2 + k_3 + k_4]$ (C) $\frac{1}{6}[k_1 + 2k_2 + 2k_3 + k_4]$					
	(C) $\frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right]$	(D) $\frac{1}{6} \left[2k_1 + k_2 + k_3 + 2k_4 \right]$				
17	7. Classify the PDE : $xf_{xx} + yf$	$f_{yy} = 0, x < 0, y > 0$	1	2	5	į
	(A) Elliptic (C) Hyperbolic	(B) Parabolic (D) Laplace equation				

18.	Bender-Schmidt recurrence equation is valid only if (A) $k = \frac{h^2}{2}$ (B) $k = \frac{ah^2}{2}$	1	1	5	1
	(A) $k = \frac{h^2}{2}$ (B) $k = \frac{ah^2}{2}$ (C) $k = \frac{2}{ah^2}$				
19.	The solution of hyperbolic equation $u_{tt} = a^2 u_{xx}$ is unstable if	1	1	5	1
	(A) $\lambda = a$ (B) $\lambda = 1/a$				
	(C) $\lambda < 1/a$ (D) $\lambda > 1/a$				
20.	To solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, we use	1	1	5.	1
	 (A) Crank-Nicholson scheme (B) Bender-Schmidt scheme (C) Liebmann's method (D) Poisson method 	ē			
	$PART - B (5 \times 4 = 20 Marks)$	Marks	ВL	со	PO
21.	Answer ANY FIVE Questions Explain how Newton's method can be used to find the iterative formula for \sqrt{N} where N is a positive integer.	4	2	1	2
22.	Expression $f(x) = x^3 - 3x^2 + 5x + 7$ in terms of factorial polynomial taking h=2 and find its differences.	4	2	2	2
22.23.	h=2 and find its differences.	4	3	2	2
23.	h=2 and find its differences. Construct the divided difference table for the data (0,1), (1,4), (3,40) and				
23.	h=2 and find its differences. Construct the divided difference table for the data $(0,1)$, $(1,4)$, $(3,40)$ and $(4,85)$. Compute $\frac{dy}{dx}$ at $x = 64$ from the following table. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4	3	2	2

26. Test the nature of PDE $(x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0$.

Evaluate $\int_{1/2}^{1} \frac{1}{x} dx$ by Trapezoidal rule, by dividing the range into 4 equal parts.

$PART - C (5 \times 12 = 60 Marks)$

Answer ALL Questions

Marks BL CO PO
12 3 1 2

3

28. a. Given the following data.

x	0	1	2	3	4
v	1	5	10	22	38

Find the straight line and the parabola fit and calculate the sum of squares of the residuals in both cases.

29. a.	From the data given below, calculate the number of students whose weight	12	3	2	2
	is between 60 to 70.				
	Weight in (lbs) 0-40 40-60 60-80 80-100 100-120				
	No. of students 250 120 100 70 50				
	`				
h	(OR) Deduce the polymomial f(v) by various I are very the second of the	10		2	
υ.	Deduce the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for the following values of x and y.	12	4	2	2
	$\begin{bmatrix} x & 0 & 1 & 2 & 5 \end{bmatrix}$				
	y 2 3 12 147				
	,	90			
30. a.	From the following table, compute $\frac{dy}{dx}$ at $x = 500$ and $x = 550$ using	12	3	3	2
	appropriate interpolation formula.				
	x 500 510 520 530 540 550				
5),	$y = \log_e x$ 6.2146 6.2344 6.2538 6.2729 6.2916 6.3099				
	(OR)				
b.	The following table gives the velocity v of a particle at time t.	12	3	3	2
	t (secs) 0 2 4 6 8 10 12				
	V (m/sec) 4 6 16 34 60 94 136				
	Calculate the distance moved by the particle in 12 secs and also the				
	acceleration at t=2 secs.				
31. a.	Consider $\frac{dy}{dx} = y - x^2 + 1$, $y(0) = 0.5$, taking $h = 0.2$.		2	4	2
	 (i) using the modified Euler method find y(0.2) (ii) using R-K method of fourth order find y(0.4) 	4			
	(OR)				
Ъ.	Given	12	3	4	2
	$5xy'+y^2=2, y(4)=1, y(4.1)=1.0049, y(4.1)=1.0097, y(4.3)=1.0143$				
	compute y(4.4) using Milne's method.				
20					
32. a.	Solve by Crank-Nicolson method, $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ for $0 < x < 1$, $t > 0$ given that	12	3	5	2
	$\frac{\partial}{\partial x^2} = \frac{\partial}{\partial t}$ for $0 < x < 1$, $t > 0$ given that				
	u(0,t)=0, $u(1,t)=0$ and $u(x,0)=100x(1-x)$ compute u for one time step with				
	h=1/4.				
	(OR)				
b.	Solve $16u_{xx} = u_{tt}, u(0,t) = 0, u(5,t) = 0, u(x,0) = x^2(5-x), u_t(x,0) = 0$	12	3	5	2
2					
	taking h=1 and upto one half of the period of vibration.				
	* * * *				
Page 4 of 4					
1 ago 4 01 4	05DA4-18MAB2	02T			

b.i. Compute the real root of $x \log_{10} x - 1.2 = 0$ correct to 4 decimal places using

equations

3

1 2

the

Regula false position method.

Solve by Gauss-Jordan method x+y+z=9,2x-3y+4z=13,3x+4y+5z=40.

ii. Solve