Nome:	Matrícula:	Turma:	
Aula 5	AMPLIFICADOR OPERACIONAL -		
/ /	simulação		

OBJETIVOS: Conhecer a pinagem e ligar um circuito integrado Amplificador Operacional; Analisar e entender o funcionamento dos Amp-Op's e suas características básicas mais importantes; Verificar a operação de um amplificador inversor e a existência do terra virtual; Analisar e entender o funcionamento dos Amp-Op's funcionando como diferenciador e integrador.

MATERIAL:

- 01 resistor de 1,2 k Ω
- 02 resistor de 1 k Ω

- 01 Amplificador operacional 741

- 02 resistores de $10 \text{ k}\Omega$
- 01 resistor de 100Ω
- 01 capacitor eletrolítico de 0,1 μF

- 01 capacitor eletrolítico de 0,01 μF

PARTE TEORICA

Teórico: 1- Consulte a folha de dados do amplificador operacional 741 e complete a tabela.

Características	Min.	Tip.	Max.	Unidade
VIO		•		
IIO				
IIB				
VICR				
VOM				
AVD				
ri				
ro				
Ci				
CMRR				
ICC				
PD				
Largura de banda de ganho unitário				
Tr tempo de subida				
SR				
Fonte de tensão VCC				
Dissipação interna de potência				
Tensão de entrada diferencial				
Tensão de entrada de entrada para				
qualquer entrada				

2- Explique cada item da tabela acima.

PARTE SIMULAÇÃO AMPLIFICADOR INVERSOR

As resistências Ra e Rb formam um circuito atenuador, o qual permite aplicar pequenos sinais a entrada do amplificador no nó B.

- 1) Monte o circuito mostrado na Figura 1. Calcule o ganho global dos circuitos abaixo.
- 2) Ajuste as fontes de alimentação par $\pm 10V$ utilize um voltímetro.

- 3) Medições:
- a) Nó A aberto: medir a tensão nos nós B, C, D;
- b) Nó A aterrado: medir a tensão nos nós B, C, D
- c) Nó A conectado a +10V: medir a tensão nos nós B,
- d) Nó A conectado a -10V: medir a tensão nos nós B, C, D.
- 4) Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 5) Conclua seus resultados e observações. Comente sobre as medições acima e conclua.

0,01 µF

 $1.2k\Omega$

entrada

 $10 \text{ k}\Omega$

-12V

10 kΩ

saida

AMPLIFICADOR DIFERENCIADOR INVERSOR

- 6)- Monte o circuito. Aplique a entrada sinais senoidal, quadrado e triangular, com f=1kHz e 1 VPP de amplitude. Desenhe o sinal de entrada e saída.
- a)Vin: Onda senoidal Vout:
- b)Vin: Onda quadrada -Vout:
- c) Vin: Onda triangular -Vout:
- 7) Coloque os resultados da simulação: (Esquema elétrico
- Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 8) Conclua seus resultados e observações. Comente sobre as medições acima e conclua.

- 9) Monte o circuito. Aplique a entrada sinais senoidal, quadrado e triangular, com f=1kHz e 2 VPP de amplitude. Desenhe o sinal de entrada e saída.
- a)Vin: Onda senoidal Vout:
- b)Vin: Onda quadrada -Vout:
- c) Vin: Onda triangular -Vout:
- 10) Coloque os resultados da simulação: (Esquema elétrico Diagramas nos principais pontos Explique detalhadamente os resultados da simulação e seus valores.)
- 11) Conclua seus resultados e observações. Comente sobre as medições acima e conclua.

(Ra = $1k\Omega$; Rf = $10k\Omega$; C = $0,1\mu$ F).