Macroeconometrics

PS/

Group Member: Jianqiu Bei, Xinru Huang, Jingyi Liu, Zhirui Wang

(b)
$$yt = \frac{-20}{1.4} + \frac{1}{1.4} \times yt+1$$

 $y_{t+u-1} = -\frac{20}{1.4} + \frac{1}{1.4} \times toro$
 $y_{t+n-2} = -\frac{20}{1.4} + \frac{1}{1.4} \left(-\frac{20}{1.4} + \frac{1}{1.4} \times toro \right)$
 $y_{t+n-3} = -\frac{20}{1.4} + \frac{1}{14} \left(-\frac{20}{1.4} + \frac{1}{1.4} \left(-\frac{20}{1.4} + \frac{1}{1.4} \times toro \right) \right)$
 $y_{t} = -\frac{20}{1.4} = \frac{20}{1.4} + \frac{1}{1.4} \left(-\frac{20}{1.4} + \frac{1}{1.4} \times toro \right)$

(c)
$$\Delta Jt = 20$$

 $Jt = 100 + 20 \times t$

(d)
$$\Delta y_t = \xi t$$

 $y_t = 100 + \sum_{i=1}^{t} \xi_i, t_i$

(e)
$$J_{\tau} = \alpha L J_{\tau} + \epsilon_{t}$$

$$(1-\lambda L)J_{t} = \epsilon_{t}$$

$$J_{t} = \frac{\epsilon_{t}}{J-\lambda L}, |\lambda| \langle |$$

$$J_{t} = \frac{\epsilon_{t}}{J-\lambda L}, |\lambda| \langle |$$

$$J_{t} = \frac{\epsilon_{t}}{J-\lambda L}, |\lambda| \langle |$$

(f)
$$y_{t} = y_{t-1} + \xi_{t}$$

 $4y_{t} = \xi_{t}$
 $y_{t} = y_{0} + \frac{1}{2} \xi_{1} + \frac{1}{2} \xi_{1}$

Problem Set 1

Jianqiu Bei, Xinru Huang, Jingyi Liu, Zhirui Wang June 14, 2016

Problem 2

```
(a)
assign assumed values
a <- 50
b <- 1
gama <- 1
beta <- 0.5
t <- c(1:100)
d <- rep(NA,100)
s <- rep(NA,100)
p <- rep(NA,100)
epsilon <- 1
start from the steady state
p[1] \leftarrow (a-b)/(beta+gama)
d[1] <- a-gama*p[1]
s[1] \leftarrow d[1]
give the system a shock
s[2] \leftarrow b+beta*p[1]+epsilon
d[2] <- s[2]
p[2] \leftarrow (a-d[2])/gama
for(i in 3:100){
  s[i] \leftarrow b+beta*p[i-1]
  d[i] \leftarrow s[i]
  p[i] <- (a-d[i])/gama
calculate IM and IRF
IM \leftarrow (p[2]-p[1])/epsilon
print(IM)
## [1] -1
IRF <- rep(NA, 100)
for(i in 1:100){
  IRF[i] \leftarrow (p[i+2]-p[1])/epsilon
```

print(round(IRF[1:30],5))

```
## [1] 0.50000 -0.25000 0.12500 -0.06250 0.03125 -0.01562 0.00781

## [8] -0.00391 0.00195 -0.00098 0.00049 -0.00024 0.00012 -0.00006

## [15] 0.00003 -0.00002 0.00001 0.00000 0.00000 0.00000 0.00000

## [22] 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

## [29] 0.00000 0.00000
```

plot IRF

plot(t,IRF,type = "1")

(b) change the assumed value of beta=0.9 IM and IRF are

[1] -1

[1] 0.90000 -0.81000 0.72900 -0.65610 0.59049 -0.53144 0.47830
[8] -0.43047 0.38742 -0.34868 0.31381 -0.28243 0.25419 -0.22877
[15] 0.20589 -0.18530 0.16677 -0.15009 0.13509 -0.12158 0.10942
[22] -0.09848 0.08863 -0.07977 0.07179 -0.06461 0.05815 -0.05233
[29] 0.04710 -0.04239 0.03815 -0.03434 0.03090 -0.02781 0.02503
[36] -0.02253 0.02028 -0.01825 0.01642 -0.01478 0.01330 -0.01197
[43] 0.01078 -0.00970 0.00873 -0.00786 0.00707 -0.00636 0.00573
[50] -0.00515 0.00464 -0.00417 0.00376 -0.00338 0.00304 -0.00274
[57] 0.00247 -0.00222 0.00200 -0.00180

We can see that the value of IM is remained unchanged, but IRF converges slower. This because IM is determined only by gama, but IRF is determined by both gama and beta. And with a larger beta, the system needs a longer time to reach the steady state again.

remain beta=0.5,but change the assumed value of gama=0.9

IM and IRF are

```
## [1] -0.6666667
```

```
##
    [1]
         0.22222 -0.07407
                            0.02469 -0.00823
                                                0.00274 -0.00091
                                                                   0.00030
    [8]
        -0.00010
                   0.00003 -0.00001
                                      0.00000
                                                0.00000
                                                         0.00000
                                                                   0.00000
                   0.00000
                            0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
                                                                   0.00000
##
   [15]
         0.00000
                   0.00000
                            0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
                                                                   0.00000
##
   [22]
         0.00000
                                                                   0.00000
         0.00000
                   0.00000
                            0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
##
   [29]
                                                                   0.00000
##
   [36]
         0.00000
                   0.00000
                            0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
                   0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
                                                                   0.00000
##
   [43]
         0.00000
                            0.00000
                                      0.00000
                                                0.00000
                                                         0.00000
                                                                   0.00000
         0.00000
                   0.00000
                            0.00000
##
   [50]
##
   [57]
         0.00000
                   0.00000
                            0.00000
                                      0,00000
```


With a larger gama, IM is smaller, IRF converges to zero in a shorter period, and the system reaches the steady state in a shorter period.

(c)

draw the cobweb plot

if (B)>1 then "explodes"

Cobweb Dynamics

It is called cobweb model because the dynamic process of "s>d>s>d>....." convergence is like a cobweb on the supply-demand graph. In addition, even when the system do not converge, the graph will still show a gradually bigger and bigger cobweb.

Problem 3

sometime <- read.csv("D:/Dropbox/16summer/Macroeconometrics/Problem Set1/sometimeseriesdata.csv")
suppressMessages(attach(sometime))
acf(rebekah,10)</pre>

Series rebekah

pacf(rebekah,10)

Series rebekah

Series daniel

pacf(daniel,10)

Series daniel

ARMA(1,1),a1>0

acf(zhuoxiansheng,10)

Series zhuoxiansheng

pacf(zhuoxiansheng,10)

Series zhuoxiansheng

acf(sylvia,10)

Series sylvia

pacf(sylvia,10)

Series sylvia

Series zhirui

pacf(zhirui,10)

Series zhirui

acf(hao,10)

Series hao

pacf(hao,10)

Series hao

Series joanne

pacf(joanne,10)

acf(sebastian,10)

Series sebastian

pacf(sebastian,10)

Series sebastian

Problem 4

This is the CBO longrun projection for medicare expenditure data made in June 2015. I am very interested in what time series model did CBO use to project medicare expenditure, so I choose this data.

```
suppressMessages(library(forecast))
library(tseries)
medicare <- read.csv("D:/Dropbox/16summer/Macroeconometrics/Problem Set1/medicare.csv")
test whether the data is stationary
adf.test(medicare$Net.Medicare)
##
##
    Augmented Dickey-Fuller Test
##
## data: medicare$Net.Medicare
## Dickey-Fuller = -1.5371, Lag order = 4, p-value = 0.7644
## alternative hypothesis: stationary
Cannot reject null hypothesis. It is nonstationary.
Take first difference and test again
medi.d <- diff(medicare[,2])</pre>
adf.test(medi.d)
## Warning in adf.test(medi.d): p-value smaller than printed p-value
##
##
   Augmented Dickey-Fuller Test
##
## data: medi.d
## Dickey-Fuller = -5.8565, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
It is now stationary.
plot
plot(2016:2090,medi.d,type = "l",xlab = "year",ylab = "d_medicare",
     main = "CBO's Projection of Net Medicare Spending(differenced)",col="blue")
```

yery was.

CBO's Projection of Net Medicare Spending(differenced)

acf(medi.d)

Series medi.d

pacf(medi.d)

Series medi.d

It's hard to tell by these graph what model it is. But it should be around 2nd-3rd lags. Use auto.arima() from forecast package. It will choose the best model based on AIC.

```
auto.arima(medi.d,ic="aic")
## Series: medi.d
## ARIMA(0,0,2) with non-zero mean
##
##
  Coefficients:
##
             ma1
                      ma2
                           intercept
##
                              0.0897
         -0.0401
                  -0.4166
                               0.0043
          0.1050
                   0.1038
##
## sigma^2 estimated as 0.004496: log likelihood=97.59
## AIC=-187.18
                 AICc=-186.61
                                BIC=-177.91
res.medi <- arima(medi.d, order = c(0,0,2))
Box.test(res.medi$residuals,type="Ljung-Box")
##
##
   Box-Ljung test
##
## data: res.medi$residuals
## X-squared = 0.00061549, df = 1, p-value = 0.9802
```

MA(2) is the best model.

Problem 5

```
library(forecast)
library(tseries)
library(car)
GDPDEF <- read.csv("D:/Dropbox/16summer/Macroeconometrics/Problem Set1/GDPDEF-2.csv")
UNRATE.2 <- read.csv("D:/Dropbox/16summer/Macroeconometrics/Problem Set1/UNRATE-2.csv")
Calculate the inflation and annualize it
inflation <- rep(NA,239)
for(i in 1:239){
  inflation[i] \leftarrow ((1+(GDPDEF[i+1,2]-GDPDEF[i,2])/GDPDEF[i,2])^4)-1
inflation.date <- cbind.data.frame(GDPDEF$DATE[-1],inflation)</pre>
colnames(inflation.date)[1] <- "DATE"</pre>
inflation.date$DATE<- as.Date(inflation.date$DATE,format="%m/%d/%Y")
(a)
adf.test(inflation)
##
##
    Augmented Dickey-Fuller Test
##
## data: inflation
## Dickey-Fuller = -3.1665, Lag order = 6, p-value = 0.09419
## alternative hypothesis: stationary
acf(inflation)
```

Series inflation

pacf(inflation)

Series inflation

ar(inflation,aic = TRUE)\$aic

0 1 2 3 4 5

```
2.315351
                                                    4.292468
                                                                6.287355
## 224.984615
                12.486778
                             1.968600
                                                9
                                                          10
##
                                    8
                                                                      11
            6
                                                                1.154876
                                        1.625248
                                                    1.706980
##
     6.916481
                 8.850678
                             0.000000
                                               15
                                                          16
                                                                      17
##
           12
                       13
                                   14
                                                                8.717856
##
     2.327071
                 3.849555
                             5.839550
                                        6.310409
                                                    6.786814
                                                                      23
                                               21
                                                          22
##
            18
                       19
                                   20
                                                              19.124016
                                                   17.126058
##
    10.669504
                11.484591
                           13.460376
                                       15.279818
ar(inflation,aic = TRUE)
##
## Call:
## ar(x = inflation, aic = TRUE)
##
##
   Coefficients:
##
         1
                   2
                             3
                                                                             8
##
    0.5829
              0.1603
                       0.0919
                               -0.0152
                                         -0.0627
                                                    0.0477
                                                            -0.1387
                                                                       0.2107
##
## Order selected 8 sigma^2 estimated as 0.000271
Box.test(ar(inflation) $resid, type="Ljung-Box")
##
##
    Box-Ljung test
##
## data: ar(inflation)$resid
## X-squared = 0.53964, df = 1, p-value = 0.4626
```

By acf and pacf we can see that the 1st, 2nd and 8th length of pacf is significant, and acf is a geometric decay. So it might be a AR(2) or AR(8). Using the ar() funtion and set aic=TRUE, it will select the best AR model based on AIC. And the result is AR(8) is the best. It is a very long lag length. Maybe it captures something in the longrun business cycles, or it might be experienceing an overfitting problem, the significance of the 8th lag may be caused by a random error. The best way to trade off between bias-variance is to use a cross validation set, maybe using bootstrap is a good idea. It remains further studies.

(b)

Plot the inflation data

plot(inflation.date\$DATE,inflation.date\$inflation,type="l")

We can see that the patterns before and after 1984 are kind of different. After 1984 the inflation is more "stable" and seems like having a lower mean. It might be related to the new monetary policy during the Age of Reagan. So the structure change test is needed.

Construct chow test

```
ar.inflation1 <- ar(inflation[1:143],aic = FALSE,order.max = 8)
ar.inflation2 <- ar(inflation[144:239],aic = FALSE,order.max = 8)
SSRp <- sum(ar(inflation)$resid[-(1:8)]^2)
SSR1 <- sum(ar.inflation1$resid[-(1:8)]^2)
SSR2 <- sum(ar.inflation2$resid[-(1:8)]^2)
chow <- ((SSRp-SSR1-SSR2)/(SSR1+SSR2))*((239-2*8)/8)
print(chow)

## [1] 0.7958668

qf(0.95,8,(239-8*2))
## [1] 1.980087</pre>
```

Unfortunately the test is not significant. There is no actual structure change here.

(c)

Regress the Phillips curve with lagged unemployment rate symmetrically. We think the model won't be bigger than 5th lag because otherwise the model will be too big. So we truncate the data for 5 periods so that every model will have the same obs number and then we can compare the AIC correctly.

```
unrate <- UNRATE.2[,2]
L.unrate <- c(unrate[-240])
L2.unrate <- c(NA,L.unrate[-239])
L3.unrate <- c(NA,L2.unrate[-239])
L4.unrate <- c(NA,L3.unrate[-239])
L5.unrate <- c(NA,L4.unrate[-239])
arima(inflation[-(1:4)], order = c(1,0,0), xreg = cbind(L.unrate)[-c(1:4),]) aic
## [1] -1251.171
arima(inflation[-(2:4)], order = c(2,0,0), xreg = cbind(L.unrate, L2.unrate)[-c(2:4),])$aic
## [1] -1266.001
arima(inflation[-(3:4)], order = c(3,0,0), xreg =cbind(L.unrate,L2.unrate,L3.unrate)[-c(3:4),])$aic
## [1] -1269.46
arima(inflation[-4], order = c(4,0,0), xreg =cbind(L.unrate,L2.unrate,L3.unrate,L4.unrate)[-4,])$aic
## [1] -1266.034
arima(inflation, order = c(5,0,0), xreg =cbind(L.unrate,L2.unrate,L3.unrate,L4.unrate,L5.unrate)) $ aic
## [1] -1268.086
The best model is AR(3) with 3 lags of unemployment rate.
arima(inflation, order = c(3,0,0), xreg =cbind(L.unrate, L2.unrate, L3.unrate))
##
## Call:
## arima(x = inflation, order = c(3, 0, 0), xreg = cbind(L.unrate, L2.unrate, L3.unrate))
##
## Coefficients:
                                  intercept L.unrate L2.unrate L3.unrate
##
            ar1
                     ar2
                             ar3
##
         0.5486 0.1768 0.1414
                                     0.0324
                                              -0.0010
                                                          -0.0062
                                                                      0.0071
## s.e. 0.0648 0.0745 0.0665
                                     0.0148
                                               0.0036
                                                           0.0052
                                                                      0.0036
## sigma^2 estimated as 0.0002466: log likelihood = 647.57, aic = -1279.14
Box.test(arima(inflation, order = c(3,0,0), xreg =cbind(L.unrate, L2.unrate, L3.unrate))$resid,
         type="Ljung-Box")
##
##
    Box-Ljung test
##
## data: arima(inflation, order = c(3, 0, 0), xreg = cbind(L.unrate, L2.unrate,
                                                                                       L3.unrate))$resid
## X-squared = 0.026935, df = 1, p-value = 0.8696
```

```
(d)
```

```
Test in each subsample whether the sum of the unemployment rate equals to zero
philps1 <- arima(inflation[c(1:167)], order = c(3,0,0),
                 xreg =cbind(L.unrate,L2.unrate,L3.unrate)[c(1:167),])
linear Hypothesis (philps 1, c(0,0,0,0,1,1,1))
## Linear hypothesis test
##
## Hypothesis:
## L.unrate + L2.unrate + L3.unrate = 0
##
## Model 1: restricted model
## Model 2: philps1
##
##
     Df Chisq Pr(>Chisq)
## 1
## 2 1 0.0174
                   0.8951
philps2 <- arima(inflation[c(168:239)], order = c(3,0,0),
                 xreg =cbind(L.unrate,L2.unrate,L3.unrate)[c(168:239),])
linearHypothesis(philps2,c(0,0,0,0,1,1,1))
## Linear hypothesis test
##
## Hypothesis:
## L.unrate + L2.unrate + L3.unrate = 0
##
## Model 1: restricted model
## Model 2: philps2
##
##
     Df Chisq Pr(>Chisq)
## 1
## 2
     1 0.3373
                   0.5614
```

Yes. Both equals to zero. This means that the long run propensity of unemployment rate equals to zero. In the long run, the inflation will not depend on the unemployment rate any more. In both sample, the slopes of the Phillips curve become zero.