q2-a2-l215625

March 11, 2024

```
[3]: import pandas as pd
      from sklearn.model_selection import train_test_split
      from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
      from sklearn.naive_bayes import MultinomialNB
      from sklearn.linear_model import LogisticRegression
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.svm import SVC
      from sklearn.linear_model import Perceptron
      from sklearn.metrics import accuracy_score, precision_score, recall_score, u

¬f1_score
      import pandas as pd
      from sklearn.feature_extraction.text import CountVectorizer
      from sklearn.naive_bayes import MultinomialNB
      from sklearn.linear_model import LogisticRegression
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.svm import SVC
      from sklearn.linear_model import Perceptron
[13]: data = pd.read_csv("Q2 Sentiment Analysis Dataset.csv", encoding='latin1')
      # dropping columns
      data=data.drop(['id','date','Unnamed: 4','Unnamed: 5'],axis=1)
      def preprocess_text(text):
          text = text.lower()
          # Remove punctuation
          text = re.sub(r'[^\w\s]', '', text)
          return text
      data['text'] = data['text'].apply(preprocess_text)
[15]: data
[15]:
            sentiment
                                                                     text
      0
                    0 wtf my battery was 31 one second ago and now i...
      1
                    O apple contact sync between yosemite and ios8 i...
                    O warning if you buy an iphone 5s unlocked from ...
      2
```

```
3
                    O apple for the love of gawd center the 1on the ...
      4
                    O i get the storage almost full notification lit...
                    3 aaplaccel partners leads 50m series c funding ...
      3881
      3882
                    3 counting down the minutes interest in full tim...
                                justinpulitzer any comment on aapl today
      3883
                    3 have been brave and taken out an aapl cfd as t...
      3884
                    3 tim cook met with jesse jackson for positive a...
      3885
      [3886 rows x 2 columns]
[14]: # labels encoding
      label encoder = LabelEncoder()
      data['sentiment'] = label_encoder.fit_transform(data['sentiment'])
 [6]: # Split the dataset into train and test sets
      X train, X test, y train, y test = train_test_split(data['text'],

data['sentiment'], test_size=0.2, random_state=42)
 [7]: # Feature extraction methods
      vectorizers = {
          "Bag of Words (Raw Counts)": CountVectorizer(),
          "Bag of Words (TfIDF)": TfidfVectorizer(),
          "Ngrams (Unigrams, Bigrams, Trigrams)": TfidfVectorizer(ngram_range=(1, 3))
      }
[10]: vectorizer_bow_raw = CountVectorizer()
      X_bow_raw = vectorizer_bow_raw.fit_transform(data['text'])
[11]: vectorizer_bow_tfidf = TfidfVectorizer()
      X_bow_tfidf = vectorizer_bow_tfidf.fit_transform(data['text'])
     N-grams
[12]: vectorizer_uni = CountVectorizer(ngram_range=(1, 1)) # Unigrams
      vectorizer_bi = CountVectorizer(ngram_range=(1, 2)) # Bigrams
      vectorizer_tri = CountVectorizer(ngram_range=(1, 3)) # Trigrams
      X_uni = vectorizer_uni.fit_transform(data['text'])
      X_bi = vectorizer_bi.fit_transform(data['text'])
      X_tri = vectorizer_tri.fit_transform(data['text'])
      print("UNIGRAM")
      print(" ")
      print(X_uni)
      print("_
       ")
```

UNIGRAM

```
(0, 8579)
              2
(0, 5920)
(0, 909)
              1
(0, 8364)
(0, 163)
(0, 6137)
(0, 7103)
              1
(0, 476)
              1
(0, 584)
              1
(0, 6071)
              1
(0, 5069)
(0, 154)
(0, 7896)
(0, 651)
(1, 584)
              1
(1, 5069)
              1
(1, 651)
              1
(1, 1606)
              1
(1, 7697)
(1, 990)
(1, 8645)
(1, 5016)
              1
(1, 7161)
              1
(1, 7086)
              1
(1, 8201)
: :
(3884, 302)
(3884, 763)
(3884, 6201) 1
(3884, 942)
(3884, 3044) 1
(3884, 2135) 1
(3884, 7127) 1
(3884, 7721) 1
```

```
(3884, 1339)
                 1
  (3884, 29)
                 1
  (3884, 1122)
                 1
  (3884, 6221)
                 1
  (3885, 584)
  (3885, 2647)
                 1
  (3885, 8509)
  (3885, 302)
                 1
  (3885, 7928)
                 1
  (3885, 1622)
                 1
  (3885, 6473)
                 1
  (3885, 2017)
  (3885, 5145)
                 1
  (3885, 5728)
  (3885, 5118)
                 1
  (3885, 6568)
                 1
  (3885, 4147)
BIGRAM
  (0, 33901)
  (0, 21183)
                 1
  (0, 5041)
                 1
  (0, 32561)
                 1
  (0, 486)
                 1
  (0, 22793)
                 1
  (0, 26429)
                 1
  (0, 1908)
  (0, 2514)
                 1
  (0, 22131)
                 1
  (0, 17506)
                 2
  (0, 465)
                 1
  (0, 30225)
                 1
  (0, 3075)
                 1
  (0, 33906)
  (0, 21214)
  (0, 5063)
  (0, 32562)
                 1
  (0, 488)
                 1
  (0, 22834)
                 1
  (0, 26430)
                 1
  (0, 1909)
                 1
  (0, 2661)
                 1
  (0, 22162)
                 1
  (0, 17515)
  (3885, 2514) 1
```

(3885, 11256) 1

```
(3885, 33429) 1
  (3885, 835)
  (3885, 30453) 1
  (3885, 7809)
  (3885, 30454) 1
  (3885, 24210) 1
  (3885, 9141)
  (3885, 18260) 1
  (3885, 20489) 1
  (3885, 18195) 1
  (3885, 24523) 1
  (3885, 15106) 1
  (3885, 7821)
  (3885, 20490) 1
  (3885, 33482) 1
  (3885, 18261) 1
  (3885, 18196) 1
  (3885, 11427) 1
  (3885, 24211) 1
  (3885, 2681)
  (3885, 24524) 1
  (3885, 9143) 1
  (3885, 15107) 1
TRIGRAM
  (0, 64091)
                2
  (0, 39015)
  (0, 10329)
                1
  (0, 61326)
                1
  (0, 802)
                1
  (0, 42628)
                1
  (0, 49186)
                1
```

(0, 3307)1 (0, 4471)(0, 41087)1 (0, 31963)2 (0, 769)1 (0, 56573)1 (0, 5646)1 (0, 64108)1 (0, 39088)1 (0, 10376)1 (0, 61327)1 (0, 805)1 (0, 42721)1

(0, 49187)

(0, 3308)

1

1

```
(0, 4823)
       (0, 41144)
                      1
       (0, 31980)
                      1
       (3885, 33583) 1
       (3885, 45841) 1
       (3885, 27801) 1
       (3885, 15330) 1
       (3885, 37789) 1
       (3885, 63242) 1
       (3885, 33701) 1
       (3885, 33584) 1
       (3885, 21741) 1
       (3885, 45292) 1
       (3885, 4871) 1
       (3885, 45842) 1
       (3885, 17589) 1
       (3885, 27802) 1
       (3885, 57072) 1
       (3885, 15331) 1
       (3885, 37790) 1
       (3885, 63243) 1
       (3885, 33702) 1
       (3885, 33585) 1
       (3885, 21742) 1
       (3885, 45293) 1
       (3885, 4872) 1
       (3885, 45843) 1
       (3885, 17590) 1
     Checking test train split
[16]: print(f"Number of training samples: {X_train.shape[0]}")
      print(f"Number of test samples: {X_test.shape[0]}")
     Number of training samples: 3108
     Number of test samples: 778
     Classifiers
 [8]: classifiers = {
          "Naïve Bayes": MultinomialNB(),
          "Logistic Regression": LogisticRegression(max_iter=1000),
          "Random Forest": RandomForestClassifier(),
          "SVM": SVC(),
          "Perceptron": Perceptron()
      }
```

Accuracy

```
[17]: # Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```

Accuracy: 0.7352185089974294

Fitting model and displaying results

```
[9]: # Results storage
     results = []
     # Train and evaluate classifiers
     for vectorizer_name, vectorizer in vectorizers.items():
         for classifier_name, classifier in classifiers.items():
             # Feature extraction
             X_train_features = vectorizer.fit_transform(X_train)
             X_test_features = vectorizer.transform(X_test)
             # Train classifier
             classifier.fit(X train features, y train)
             # Predictions
             y_pred = classifier.predict(X_test_features)
             accuracy = accuracy_score(y_test, y_pred)
             precision_macro = precision_score(y_test, y_pred, average='macro')
             recall_macro = recall_score(y_test, y_pred, average='macro')
             f1_macro = f1_score(y_test, y_pred, average='macro')
             precision_micro = precision_score(y_test, y_pred, average='micro')
             recall_micro = recall_score(y_test, y_pred, average='micro')
             f1_micro = f1_score(y_test, y_pred, average='micro')
             # results
             results.append({
                 "Vectorizer": vectorizer_name,
                 "Classifier": classifier_name,
                 "Accuracy": accuracy,
                 "Precision (Macro)": precision_macro,
                 "Recall (Macro)": recall_macro,
                 "F1-score (Macro)": f1_macro,
                 "Precision (Micro)": precision_micro,
                 "Recall (Micro)": recall_micro,
                 "F1-score (Micro)": f1_micro
             })
```

```
results_df = pd.DataFrame(results)
print(results_df)
```

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels
with no predicted samples. Use `zero_division` parameter to control this
behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels
with no predicted samples. Use `zero_division` parameter to control this

behavior.

_warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344:
UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

		Vectorizer	Classifier	Accuracy \
0	Bag of	Words (Raw Counts)	Naïve Bayes	0.715938
1	Bag of	Words (Raw Counts)	Logistic Regression	0.754499
2	Bag of	Words (Raw Counts)	Random Forest	0.737789
3	Bag of	Words (Raw Counts)	SVM	0.742931
4	Bag of	Words (Raw Counts)	Perceptron	0.733933
5	E	Bag of Words (TfIDF)	Naïve Bayes	0.746787
6	E	Bag of Words (TfIDF)	Logistic Regression	0.751928
7	E	Bag of Words (TfIDF)	Random Forest	0.749357
8	E	Bag of Words (TfIDF)	SVM	0.759640
9	E	Bag of Words (TfIDF)	Perceptron	0.674807
10	Ngrams (Unigrams,	Bigrams, Trigrams)	Naïve Bayes	0.704370
11	Ngrams (Unigrams,	Bigrams, Trigrams)	Logistic Regression	0.746787
12	Ngrams (Unigrams,	Bigrams, Trigrams)	Random Forest	0.727506
13	Ngrams (Unigrams,	Bigrams, Trigrams)	SVM	0.740360
14	Ngrams (Unigrams,	Bigrams, Trigrams)	Perceptron	0.735219
	D	D11 (M) E	1 (N) D	(M:) \
0	Precision (Macro)		1-score (Macro) Preci	
0	0.496166	0.428204	0.424428	0.715938
1	0.496166 0.517420	0.428204 0.457265	0.424428 0.469227	0.715938 0.754499
1 2	0.496166 0.517420 0.517782	0.428204 0.457265 0.431115	0.424428 0.469227 0.440345	0.715938 0.754499 0.737789
1 2 3	0.496166 0.517420 0.517782 0.600598	0.428204 0.457265 0.431115 0.425956	0.424428 0.469227 0.440345 0.435329	0.715938 0.754499 0.737789 0.742931
1 2 3 4	0.496166 0.517420 0.517782 0.600598 0.554083	0.428204 0.457265 0.431115 0.425956 0.473937	0.424428 0.469227 0.440345 0.435329 0.496917	0.715938 0.754499 0.737789 0.742931 0.733933
1 2 3 4 5	0.496166 0.517420 0.517782 0.600598 0.554083	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787
1 2 3 4 5	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928
1 2 3 4 5 6 7	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357
1 2 3 4 5 6 7 8	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.441470	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640
1 2 3 4 5 6 7 8 9	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084 0.610379 0.452619	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.441470 0.456378	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787 0.451830	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640 0.674807
1 2 3 4 5 6 7 8 9 10	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084 0.610379 0.452619	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.441470 0.456378 0.380379	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787 0.451830 0.384278	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640 0.674807 0.704370
1 2 3 4 5 6 7 8 9 10	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084 0.610379 0.452619 0.634571 0.572034	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.441470 0.456378 0.380379 0.432488	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787 0.451830 0.384278 0.435362	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640 0.674807 0.704370 0.746787
1 2 3 4 5 6 7 8 9 10 11 12	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084 0.610379 0.452619 0.634571 0.572034 0.562043	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.441470 0.456378 0.380379 0.432488 0.424991	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787 0.451830 0.384278 0.435362 0.436769	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640 0.674807 0.704370 0.746787 0.727506
1 2 3 4 5 6 7 8 9 10	0.496166 0.517420 0.517782 0.600598 0.554083 0.626929 0.526051 0.558084 0.610379 0.452619 0.634571 0.572034	0.428204 0.457265 0.431115 0.425956 0.473937 0.420338 0.441169 0.440001 0.4456378 0.380379 0.432488 0.424991 0.422010	0.424428 0.469227 0.440345 0.435329 0.496917 0.419004 0.449938 0.449280 0.451787 0.451830 0.384278 0.435362	0.715938 0.754499 0.737789 0.742931 0.733933 0.746787 0.751928 0.749357 0.759640 0.674807 0.704370 0.746787

Recall (Micro) F1-score (Micro)

0	0.715938	0.715938
1	0.754499	0.754499
2	0.737789	0.737789
3	0.742931	0.742931
4	0.733933	0.733933
5	0.746787	0.746787
6	0.751928	0.751928
7	0.749357	0.749357
8	0.759640	0.759640
9	0.674807	0.674807
10	0.704370	0.704370
11	0.746787	0.746787
12	0.727506	0.727506
13	0.740360	0.740360
14	0.735219	0.735219