SYDNEY TECHNICAL HIGH SCHOOL

YEAR 11 PRELIMINARY HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK 3

SEPTEMBER 2015

Mathematics Extension 1

General Instuctions

- Working time 90 minutes
- · Write using black or blue pen
- · Approved calculators may be used
- In questions 6 to 11, show relevant mathematical reasoning and/or calculations
- Start each question in section 2 on a new page
- Full marks may not be awarded for careless or badly arranged work

Total marks - 66

Section 1 - 5 marks

Attempt Questions 1-5. Allow about 8 minutes for this section.

Section 2 - 61 marks

Attempt Questions 6 - 11. Allow about 82 minutes for this section.

Name	*			
Teacher	:			

Section 1

5 marks

Attempt Questions 1-5

Allow about 8 minutes for this section

Use the multiple-choice answer sheet in your answer booklet for Questions 1-5. Do not remove the multiple-choice answer sheet from your answer booklet.

- 1. What is the remainder when $P(x) = 5x^3 17x^2 x + 11$ is divided by x 2?
 - A) -147
 - B) -95
 - C) -19
 - D) 11
- 2. How many asymptotes does the graph of $y = \frac{x^2}{3x(x+1)}$ have?
 - A) 3
 - B) 2
 - C) 1
 - D) 0
- 3. A function is represented by the parametric equations

$$x = 2t + 1$$
 and $y = t - 2$.

Which of the following is the Cartesian equation of this function?

- $A) \quad x 2y + 3 = 0$
- B) x 2y 3 = 0
- C) x + 2y + 5 = 0
- D) x 2y 5 = 0

- 4. What is the focus of the parabola $(x-3)^2 = -8y$?
 - A) (3,-2)
 - B) (3,2)
 - C) (0,-2)
 - D) (-2,3)
- 5. $\sin 2x$ equals
 - A) $\frac{1-\tan^2 x}{1+\tan^2 x}$
 - B) $\frac{2 \tan x}{1 + \tan^2 x}$
 - C) $\frac{2 \tan x}{1-\tan^2 x}$
 - D) $\frac{1+\tan^2x}{1-\tan^2x}$

SECTION 2 BEGINS ON THE NEXT PAGE

Section 2

61 marks

Attempt Questions 6 – 11

Allow about 82 minutes for this section

Answer each question in your answer booklet. Start each question on a new page.

In Questions 6-11, your response should include relevant mathematical reasoning and/or calculations.

Question 6 (11 marks)

a) Find the coordinates of the point that divides the interval from

2

- A(1,6) to B(-8,2) internally in the ratio 2:1.
- b) Draw a neat sketch of the polynomial $y = (2 x)^2 (6 x)$ clearly labelling all intercepts.

2

c) Express $\cos A \sin 2A + \cos 2A \sin A$ in terms of 3A

1

d) Differentiate $(1 + 2\sqrt{x})^5$

2

e) Evaluate $\lim_{x \to \infty} \frac{2x^3 - x^2 + x + 3}{x^3 - 1}$

1

f) Find the exact value or values of m if the acute angle between the lines y = 2x and y = mx + 5 is 60 degrees.

3

Question 7 (10 marks) Start a new page.

a) Factorise $x^3 + 125$

1

b) Find the vertex and focus of the parabola $y = x^2 + 4x + 3$.

2

- c) Given $P(x) = 2x^3 + 5x^2 11x + 4$
 - i) Evaluate P(1)

1

ii) Hence, or otherwise, fully factorise P(x).

- 2
- d) Solve $4\cos\theta=\sec\theta$ for $0\leq\theta\leq2\pi$, giving your answer in radians.
- 2

e) Find the possible values of $\sin \theta$ if $\cos 2\theta = \frac{3}{25}$.

2

Question 8 (10 marks) Start a new page.

- a) If α , β and γ are the roots of the equation $2x^3 6x^2 + 4x 1 = 0$
 - find the value of
- i) $\alpha + \beta + \gamma$

1

2

ii) $\alpha^2 + \beta^2 + \gamma^2$

2

b) Find the equation of an odd polynomial of degree 3 which passes through the points (2,0) and (3,30).

2

c) Simplify $\cot \theta - 2 \cot 2\theta$

d) For what values of x is the gradient of $y = x - \frac{4}{x}$ greater than 5?

3

Question 9 (10 marks) Start a new page.

- a) The point P(x, y) moves so that its distance from the point A(1,4) is always double its distance from the point B(1,1).
 - i) Show that the locus of P(x, y) is a circle.
 - ii) Find the centre and radius of this circle.

2

3

- b) $P(4p, 2p^2)$ and $Q(4q, 2q^2)$ are two points on the parabola $x^2 = 8y$.
 - i) Show that the equation of the chord PQ is given by

 $y - \frac{1}{2}(p+q)x + 2pq = 0.$

- ii) The chord PQ passes through the point (0,-2).

 Show that pq = 1
- iii) If S is the focus of the parabola, and SP and SQ are the distances from S to P and Q respectively, show that $\frac{1}{SP} + \frac{1}{SO} = \frac{1}{2}$

Question 10 (10 marks) Start a new page.

a) For what value, or values of x is the function
$$y = |x + 3|$$
 not differentiable?

b) Find the gradient of the curve
$$y = \frac{(2x-1)(x-3)}{x-5}$$
 at the point (6,33).

c) Solve
$$3 \sin 2x = 5 \sin x$$
 for $0^{\circ} \le x \le 360^{\circ}$. (nearest degree) 4

d) Solve the equation
$$5x^3 - 63x^2 + 136x - 60 = 0$$

given that the product of two of its roots is 6.

Question 11 (10 marks) Start a new page.

a) Use the
$$t$$
 results, where $t = \tan \frac{\theta}{2}$, to solve
$$8\cos \theta - \sin \theta = 4 \text{ for } 0^{\circ} \le \theta \le 360^{\circ} \text{ correct to the nearest degree.}$$

- b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are points on the parabola $x^2 = 4ay$.
 - i) Show that the equation of the tangent to the parabola at P 2 is given by $y = px ap^2$.
 - ii) Find the point of intersection of the tangent at P and the tangent at Q.
- iii) If O is the vertex of the parabola and OP is perpendicular to OQ,
 show that pq = -4.
- iv) If OPRQ is a rectangle then R has coordinates $(2a(p+q), a(p^2+q^2))$. 2

 Do not prove this.

 Find the locus of R.

End of Paper.

SOLUTIONS EXT 1 SEPT 2015		
1. C	$(2\sqrt{3}-1)m = -2-\sqrt{3}$	
<u> 2.</u> <u>B</u>	$m = 2 + \sqrt{3}$	
3. D	1-253	
ч. А	UT \(\sqrt{3} + 2\sqrt{3}m = -(m-2)	
s. B	$(2\sqrt{3}+1) m = 2-\sqrt{3}$	
4	m= 2-53	
$\frac{6 \alpha}{3} \left(\frac{1 \times 1 + 2 \times -8}{3}, \frac{1 \times 6 + 2 \times 2}{3} \right)$	253 +1	
(3 / 3 /	$1. M = \frac{2 + \sqrt{3}}{1 - 2\sqrt{3}} \text{av} \frac{2 - \sqrt{3}}{2\sqrt{2} + 1}$	
$=(-5,\frac{10}{3})$		
27	7 a) (2c+5) (2c2-52+25)	
b) 24		
6	b) y=2+42+3	
2	y+1= (x+2)	
	:. Vertex (-2,-1)	
c) Sin 3A	focus (-2, -3)	
d) \(\frac{5}{17} \left(1+2\int \tau \right)^4 \)	c) i) P(i) = 0	
	11) : x-1 is a feeter	
e) 2	:. P(x) = (x-1) (2x2 +7x-4)	
	=(20-1)(220-1)(20+4)	
$f) fon \Theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	a) $4\cos\Theta = \frac{1}{\cos\Theta}$	
$\therefore \sqrt{3} = \left \frac{m-2}{1+2m} \right $	(05° 0 = 4	
J3 1+2m = m-2	(os Θ = ½	
$1. \sqrt{3} + 2\sqrt{3}m = m - 2$	(os 0 = 上支 0 = 至, 等, 等, 等	

7	
$e) \text{Cos } 2\Theta = \frac{3}{25}$	$d) y = x - 4x^{-1}, x \neq 0$
$1-2\sin\theta = \frac{3}{25}$	y'= 1+4>c
Sm' 0 = 11	1+4x ⁻¹ >5
Sin 0 = ± 11/5	<u> </u>
	x 2 < 1
8 a) 1) d+B+ x = 3	-1< x<1, x ≠ 0
11) よ + は + と	·
= (1+13+2) (13+18+13)	9 a) 1) PA = 2 x PB
= 32 - 2(2)	1 (3c-1) + (y-4) = 2 1 (x-1) + (y-1) 2
= 5	$(x-1)^{2} + (y-4)^{2} = 4[(x-1)^{2} + (y-1)^{2}]$
	$3x^2-6x+3y^2-9=0$
b) P(x) = ase (se-2)(x+2)	$x^2 - 2x + y^2 - 3 = 0$
Sub (3,30)	(oc-1) + y = 4
30= 15a	which is a circle
a=2	
$\therefore p(x) = 2x(x-x)(x+x)$	11) centre (1,0)
	rodeus 2 units
c) Cot 6 - 2 Cot 26	λ. ν.
= 1 - 2 (1-Tanit) Tone 2 Tant	$\frac{2p^2-2q^2}{4p-4q}$
	= p+9
= 1 - (1-Tai 0) Ta 0	Using y-y = m (x-x1)
12.6	$y-2p^2=\frac{p+q}{2}\left(2c-4p\right)$
= Tano.	$y - 2p^2 = \frac{1}{2}(p+q) n - 2p^2 - 2pq$
	y - 2 (p+q)x + 2pq = 0

11) sub (0,-2)	(0 a) oc = -3
-2-2(p+q)0+2pq=0	b) $y' = (x-5)(4x-7) - (2x^2-7x+3)$
2pq=2	(2-5)
pg = 1	s - b = 6
177	m = (1)(17) - (33)
11) S(0,2) P(4p,2p)	
	= -16
	c) 35in2x = 55inx
SP = PD (by definition)	6 Sin > 65 > - 5 Sin > = 0
= 2p+2	Sin 2 (6 (052-5) =0
: SQ = 29 + 2	Sin 2 = 0, Cor 2 = }
: \frac{1}{5p} + \frac{1}{50}	x= 0, 180, 360, 34, 326°
202+2 292+2	
	d) let 2, B, 8 be roots when BY=6
$= \frac{1}{2} \left[\frac{q^{2}+1+p^{2}+1}{(p^{2}+1)(q^{2}+1)} \right]$: dBd = 60 hd Bd-6
	ニメニン
$= \frac{1}{2} \left[\frac{p+q+2}{p^2q^2+p^2+q^2+1} \right]$: >c-2 15 a feeter
	5 2e3 - 63 2e2 + 13 62 -60
but pq=1	$= (2x-2)(5x^2-53x+30)$
$=\frac{1}{2}\left[\frac{p^2+q^2+2}{p^2+q^2+2}\right]$	= (x-2)(52-3)(52-10)
	:. >c= 2, 10, 3/5
= \frac{1}{2}	afternatively may use the som of the
	roots 1 and 2 ort a time.

11 a) 8650-Sin0=4	Salve simultaneously
$8\left(\frac{1-t^2}{1+t^2}\right) - \frac{2t}{1+t^2} = 4$	poc-ap2 = 9x-aq2
8-812-21= 4+412	(p-q)x = a(p-q)(p+q)
12+2+2+-4=0	$x = \alpha(p+q)$
6+2+4-2=0	
(3+1)(2+-1)=0	:. y = pa(p+q) - ap2
t= - 2/3, t	= apq
	·
: fal= -3, 2	i. pt. of intersection (a(p+q), apq)
= 146 18 , 26 34	
0= 53°, 292°	(11) MOP + MOR =-1
, a	2 ap 2 ag =-1
b) 1) y = $\frac{2}{4a}$	109 = -1
$y'=\frac{2\zeta}{2a}$	4
	pq=-4
= P	10) locus: DC = 2a(p+9)
y-ap = p(21-2ap)	y = a (p+,92)
	$\therefore \frac{y}{a} = p^2 + q^2$
y = px - 2 p	$\frac{y}{a} = (p+q)^2 - 2pq$
J - Px P	y / 26 32
11) tangent et a: y=9:2c-ag	-· a = (za) +8 (pg=-4)
tayed of f: y = px - ap2	$y = \frac{1}{4a} x^2 + 8a$
9 - pr - ap	J Ta