计算方法作业 #13

陈文轩

KFRC

更新: May 22, 2025

1 题目

1. (6pts) 用图解法求解下列线性规划问题,并指出问题是否有唯一最优解、无穷多最优解、无 界解还是无可行解?

$$\max \quad z = 2x_1 + 3x_2$$
 s. t.
$$x_1 + 2x_2 \le 8$$

$$2x_1 + x_2 \ge 1$$

$$x_2 \le 3$$

$$x_1, x_2 \ge 0$$

2. (6pts) 将下列线性规划问题化为标准形式,并列出初始单纯形表.

min
$$z = -x_1 + 2x_2 - 3x_3 + 2x_4$$

s. t. $4x_1 - x_2 + 2x_3 - x_4 = -2$
 $x_1 + x_2 - x_3 + 2x_4 \le 14$
 $-2x_1 + 3x_2 + x_3 - x_4 \ge 2$
 $x_1, x_2, x_3 \ge 0, x_4$ 无约束

3. (6pts) 求下列线性规划问题中满足约束条件的所有基解,并指出哪些是基可行解,并代入目标函数,确定哪一个是最优解。

max
$$z = 2x_1 - x_2 + 3x_3 + 2x_4$$

s.t. $2x_1 + 3x_2 - x_3 - 4x_4 = 8$
 $x_1 - 2x_2 + 6x_3 - 7x_4 = -3$
 $x_1, x_2, x_3, x_4 \ge 0$

4. (6pts) 用单纯形方法求解以下线性规划问题:

$$\max \quad z = 3x_1 - 2x_2 + 5x_3$$

s. t.
$$3x_1 + 2x_3 \le 13$$
$$x_2 + 3x_3 \le 17$$
$$2x_1 + x_2 + x_3 \le 13$$
$$x_1, x_2, x_3 \ge 0$$

5. (6pts) 用大 M 法求解下列线性规划问题:

min
$$z = 3x_1 - x_2$$

s. t. $3x_1 + x_2 \ge 3$
 $2x_1 - 3x_2 \ge 1$
 $x_1, x_2 \ge 0$

- 6. (6pts) 分别用最速下降法与牛顿法求函数 $f(x) = x_1^2 x_1x_2 + x_2^2 + x_1x_3 + x_3^2 2x_1 + 4x_2 + 2x_3 2, x = (x_1, x_2, x_3)^{\top} \in \mathbb{R}^3$ 的极小点, 初始点 $x_0 = (0, 0, 0)^{\top}$,要求:
 - (a). 最速下降法进行 2 次迭代, 并验证相邻两步的搜索方向正交;
 - (b). 牛顿法进行1次迭代。

Deadline:2025.6.22