

Mathématiques 2

PC

On définit la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de [0,1] dans $\mathbb R$ par

$$\forall x \in [0,1], \quad f_0(x) = 1 \quad \text{et pour } n \in \mathbb{N}, \quad f_{n+1}(x) = 2\int\limits_0^x \sqrt{f_n(t)} \, \mathrm{d}t$$

- 1. Pour $x \in [0,1]$, calculer $f_1(x)$ et $f_2(x)$. Montrer que, pour tout $n \in \mathbb{N}^*$, $f_n(x)$ s'écrit sous la forme $\alpha_n x^{\beta_n}$. Déterminer des relations de récurrence pour α_n et β_n .
- 2. Calculer β_n pour $n\in \mathbb{N}^*.$ En déduire la limite de $(\beta_n)_{n\in \mathbb{N}^*}.$
- 3. Écrire une fonction alpha(n) qui renvoie α_n . Représenter graphiquement les termes de la suite $(\alpha_n)_{n\in \llbracket 1,20\rrbracket}$. Conjecturer la limite de $(\alpha_n)_{n\in \mathbb{N}^*}$.
- 4. Représenter graphiquement les fonctions $(f_n)_{n\in \llbracket 1,20\rrbracket}.$ Qu'observez vous ?
- 5. Montrer que

$$\forall n \in \mathbb{N}^*, \quad \ln(\alpha_n) = -\sum_{k=1}^n 2^{-k+1} \ln(1-2^{-n-1+k})$$

En déduire que la suite $(\alpha_n)_{n\in\mathbb{N}^*}$ converge. Calculer sa limite.

6. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1].