Lec 16: Square Linear Systems – Further Analysis

Vector and Matrix Norms

Vector Norms

The "length" of a vector v can be measured by its norm.

Definition 1 (p-Norm of a Vector)

Let $p \in [1, \infty)$. The p-norm of $\mathbf{v} \in \mathbb{R}^m$ is denoted by $\|\mathbf{v}\|_p$ and is defined by

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^m |v_i|^p\right)^{1/p}.$$

 $\|\mathbf{v}\|_p = \left(\sum_{i=1}^m |v_i|^p\right)^{1/p}$. When p=2, Pythagorean formula.

When $p=\infty$,

$$\|\mathbf{v}\|_{\infty} = \max_{1 \le i \le m} |v_i| .$$

The most commonly used p values are 1, 2, and ∞ :

$$\|\mathbf{v}\|_1 = \sum_{i=1}^m |v_i|, \quad \|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^m |v_i|^2}.$$

Vector Norms

In general, any function $\|\cdot\|:\mathbb{R}^m\to\mathbb{R}^+\cup\{0\}$ is called a **vector norm** if it satisfies the following three properties:

- $2 \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any constant α and any $\mathbf{x} \in \mathbb{R}^m$.
- 3 $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. This is called the *triangle inequality*.

Unit Vectors

- A vector \mathbf{u} is called a **unit vector** if $\|\mathbf{u}\| = 1$.
- · Depending on the norm used, unit vectors will be different.
- For instance:

Figure 1: 1-norm

$$\|\vec{u}\|_{1} = \|u_{1}\| + \|u_{2}\| = 1$$

Figure 2: 2-norm

$$\|\vec{u}\|_{2} = \sqrt{|u_{1}|^{2} + |u_{2}|^{2}} = 1$$

Matrix Norms

The "size" of a matrix $A \in \mathbb{R}^{m \times n}$ can be measured by its **norm** as well. As above, we say that a function $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}^+ \cup \{0\}$ is a **matrix norm** if it satisfies the following three properties:

- **1** ||A|| = 0 if and only if A = 0.
- 2 $\|\alpha A\| = |\alpha| \, \|A\|$ for any constant α and any $A \in \mathbb{R}^{m \times n}$.
- 3 $\|A+B\| \le \|A\| + \|B\|$ for any $A,B \in \mathbb{R}^{m \times n}$. This is called the *triangle inequality*.

Matrix Norms (Cont')

• If, in addition to satisfying the three conditions, it satisfies

$$||AB|| \le ||A|| \, ||B||$$
 for all $A \in \mathbb{R}^{m \times n}$ and all $B \in \mathbb{R}^{n \times p}$,

it is said to be **consistent**.

• If, in addition to satisfying the three conditions, it satisfies $\|A\mathbf{x}\| \leqslant \|A\| \ \|\mathbf{x}\| \quad \text{for all } A \in \mathbb{R}^{m \times n} \text{ and all } \mathbf{x} \in \mathbb{R}^n,$

then we say that it is **compatible** with a vector norm.

Induced Matrix Norms

Definition 2 (p-Norm of a Matrix)

Let $p \in [1, \infty]$. The *p*-norm of $A \in \mathbb{R}^{m \times n}$ is given by

p-norm of $A \in \mathbb{R}^{m \times n}$ is given by $\|A\|_p = \max_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} = \max_{\|\mathbf{x}\|_p = 1} \|A\mathbf{x}\|_p \ .$

- The definition of this particular matrix norm is **induced** from the vector p-norm.
- By construction, matrix p-norm is a compatible norm. $\|A\overrightarrow{x}\| \leq \|A\| \|\overrightarrow{x}\|$
- Induced norms describe how the matrix stretches unit vectors with respect to the vector norm.

 $\frac{EX \cdot IR^2}{p=2}$

Induced Matrix Norms

The commonly used p-norms (for $p=1,2,\infty$) can also be calculated by

$$\|A\|_1 = \max_{1 \leqslant j \leqslant n} \sum_{i=1}^m |a_{ij}|, \qquad \text{Singular value}$$

$$\|A\|_2 = \sqrt{\lambda_{\max}(A^{\mathrm{T}}A)} = \sigma_{\max}(A),$$

$$\|A\|_{\infty} = \max_{1 \leqslant i \leqslant m} \sum_{j=1}^n |a_{ij}|. \qquad (max. 100 Sum)$$

In words,

- The 1-norm of A is the maximum of the 1-norms of all column vectors.
- The 2-norm of A is the square root of the largest eigenvalue of $A^{T}A$.
- The ∞ -norm of A is the maximum of the 1-norms of all row vectors.

Non-Induced Matrix Norm - Frobenius Norm

Definition 3 (Frobenius Norm of a Matrix)

The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

This is not induced from a vector p-norm.

- INABILE NAUIBILE
- However, both p-norm and the Frobenius norm are <u>consistent</u> and compatible.
- For compatibility of the Frobenius norm, the vector norm must be the 2-norm, that is, $\|A\mathbf{x}\|_2 \leqslant \|A\|_F \|\mathbf{x}\|_2$.

Norms in MATLAB

$$\vec{V}^{\top}\vec{V} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} v_1^2 + v_2^2 + \cdots + v_n^2 = ||\vec{V}||_2^2 \\ \vec{V}^{\top}\vec{V} = ||\vec{V}||_2^2 \end{bmatrix}$$
y computed:

• Vector *p*-norms can be easily computed:

• The same function norm is used to calculate matrix *p*-norms:

To calculate the Frobenius norm:

```
norm(A, 'fro') % = sqrt(A(:)'*A(:))
% = norm(A(:), 2)
```

Conditioning

Conditioning of Solving Linear Systems: Overview

- Analyze how robust (or sensitive) the solutions of Ax = b are to perturbations of A and b.
- For simplicity, consider separately the cases where
 - **1** b changes to $b + \delta b$ while A remains unchanged, that is

• Email change
$${}^{b}Ax = b \longrightarrow A(x + \delta x) = b + \delta b$$
.
• Not $\delta \times b$.
• A changes to $A + \delta A$, while b remains unchanged, that is

$$A\mathbf{x} = \mathbf{b}$$
 \longrightarrow $(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$.

Sensitivity to Perturbation of RHS

Case 1.
$$A\mathbf{x} = \mathbf{b} \rightarrow A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$$

• Bound $\|\delta \mathbf{x}\|$ in terms of $\|\delta \mathbf{b}\|$:

$$A\mathbf{x} + A\delta\mathbf{x} = \mathbf{b} + \delta\mathbf{b}$$

$$A\delta\mathbf{x} = \delta\mathbf{b}$$

$$\delta\mathbf{x} = A^{-1}\delta\mathbf{b}$$

$$\delta\mathbf{x} = A^{-1}\delta\mathbf{b}$$

$$A\delta\mathbf{x} = A^{-1}\delta\mathbf{b}$$

Sensitivity in terms of relative errors:

$$\frac{\left| \begin{array}{c} \text{rel. err.} \\ \text{output} \end{array} \right|}{\left| \begin{array}{c} \text{rel. err.} \\ \text{input} \end{array} \right|} = \frac{\left\| \delta \mathbf{x} \right\|}{\left\| \delta \mathbf{b} \right\|} = \frac{\left\| \delta \mathbf{x} \right\| \left\| \mathbf{b} \right\|}{\left\| \delta \mathbf{b} \right\| \left\| \mathbf{x} \right\|} \leq \frac{\left\| A^{-1} \right\| \left\| \delta \mathbf{b} \right\| \cdot \left\| A \right\| \left\| \mathbf{x} \right\|}{\left\| \delta \mathbf{b} \right\| \left\| \mathbf{x} \right\|} = \left\| A^{-1} \right\| \left\| A \right\|.$$

Sensitivity to Perturbation of Matrix

Case 2.
$$A\mathbf{x} = \mathbf{b} \rightarrow (A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}$$

• Bound $\|\delta \mathbf{x}\|$ now in terms of $\|\delta A\|$:

$$A\mathbf{x} + A\delta\mathbf{x} + (\delta A)\mathbf{x} + (\delta A)\delta\mathbf{x} = \mathbf{b}$$

$$A\delta\mathbf{x} = -(\delta A)\mathbf{x} - (\delta A)\delta\mathbf{x} \qquad \Longrightarrow$$

$$\delta\mathbf{x} = -A^{-1}(\delta A)\mathbf{x} - A^{-1}(\delta A)\delta\mathbf{x}$$

"Approximate." in the limit as $\|\delta \mathbf{x}\| \lesssim \|A^{-1}\| \|\delta A\| \|\mathbf{x}\|.$ (first-order truncation)

Sensitivity in terms of relative errors:

$$\frac{\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x}\|}}{\frac{\|\delta A\|}{\|A\|}} = \frac{\|\delta\mathbf{x}\| \|A\|}{\|\delta A\| \|\mathbf{x}\|} \lesssim \frac{\|A^{-1}\| \|\delta A\| \|\mathbf{x}\| \cdot \|A\|}{\|\delta A\| \|\mathbf{x}\|} = \frac{\|A^{-1}\| \|A\|.}{\|A^{-1}\| \|A\|}$$

Matrix Condition Number

 Motivated by the previous estimations, we define the matrix condition number by

$$\kappa(A) = \|A^{-1}\| \|A\|, \qquad \qquad \text{``Compatible norms'}$$

where the norms can be any p-norm or the Frobenius norm.

• A subscript on κ such as 1, 2, ∞ , or F(robenius) is used if clarification is needed.

e.g.
$$\chi_{2}(A) = \|A^{-}\|_{2} \|A\|_{2}$$

Matrix Condition Number (Cont')

• We can write

If $K(A) = 6.5 \times 10^{7}$, 7 accurate digits will be lost

where the second inequality is true only in the limit of infinitesimal perturbations δA .

- The matrix condition number $\kappa(A)$ is equal to the condition number of solving a linear system of equation $A\mathbf{x} = \mathbf{b}$.
- The exponent of $\kappa(A)$ in scientific notation determines the approximate number of digits of accuracy that will be lost in calculation of \mathbf{x} .
- Since $1 = ||I|| = ||A^{-1}A|| \le ||A^{-1}|| ||A|| = \kappa(A)$, a condition number of 1 is the best we can hope for.
 - If $\kappa(A) > \lceil \mathsf{eps} \rceil^{-1}$, then for computational purposes the matrix is singular.

loss 16 accurate digits.

Condition Numbers in MATLAB

cond(A)

Use cond to calculate various condition numbers:

cond(A, Inf) % the infinity-norm cond(A, 'fro') % the Frobenius norm

```
nA unAu
% the 2-norm; or cond(A, 2)
```

A condition number estimator (in 1-norm)

cond(A, 1) % the 1-norm

```
condest (A)
              % faster than cond
```

 The fastest method to estimate the condition number is to use linsolve function as below:

```
[x, inv_condest] = linsolve(A, b);
fast condest = 1/inv condest;
```