Santa Cruz 23 – Exercícios – Hidrostática Nome 1ª série Física – βeth Data / / 2019

1. Observe a figura ao lado que mostra um pedaço de 10,0Kg de chumbo de densidade 11,3g/cm³ preso a um dinamômetro e imerso na água. Represente na figura as forças que atuam sobre o pedaço de chumbo. Calcule:

- o volume do pedaço de chumbo, em m³.
- o peso do pedaço de chumbo, em Newtons.
- o empuxo sobre o pedaço de chumbo, em Newtons.
- o "peso aparente" do chumbo, isto é, a marcação do dinamômetro, em Newtons.

2. Na figura ao lado podemos observar que uma bola cheia de ar está presa ao fundo de uma piscina com água, por intermédio de uma corda. A bola tem massa de 100g e volume de 5.10^{-3}m^3 .

Represente na figura as forças que atuam sobre a bola. Calcule:

- o peso da bola, em Newtons.
- o empuxo sobre a bola, em Newtons.
- o valor da força de tração na corda, em Newtons.

3 Vídeo. A figura ao lado mostra um pedaço de ferro de 4,0Kg apoiado no fundo de uma piscina. A densidade do ferro é, aproximadamente, 8,0g/cm³. Represente na figura as forças que atuam sobre o pedaço de ferro.

Calcule:

- o volume do pedaço de ferro, em m³.
- o peso do pedaço de ferro, em Newtons.
- o empuxo sobre o pedaço de ferro, em Newtons.
- a força que o bloco de ferro exerce no fundo da água (Normal), em Newtons.

4 Vídeo. Um grande reservatório contém dois líquidos A e B, que não se misturam, e cujas densidades são d_A =0,70g/cm³ e d_B =1,5 g/cm³, conforme a figura ao lado. A pressão atmosférica local é de 1,0 atm. Determine o valor da pressão nos pontos 1, 2 e 3 do reservatório, em pascais.

