Jan. 874/18

Midterm: Feb-14" /18 (25%)
Final (45%) - Assignments / Project (30%)

Two projects - midterm (10 or 5 40)

Final (the rest?)

ATAC-4019 (Lab with computers w/ matlab)
Wed. 10:30 - 12 (Office hours) - ATAC-5008

Model Function

Dependent Voriable = I (independent parameters, functions)

Model Function Example

F=
$$ma$$

F= $Fo + Fv$

Fo = ma drag coeff.

Fu = $-cv$
 $a - F/m$ $dv/dt = (mg - cv) m$
 $\frac{\partial v}{\partial t} = g - \frac{c}{m}v$ solution $v = sv$

Solution can be Found Via:

Analytical solution

Numerical solution

$$\frac{dV}{dt} = 9 - \frac{c}{m}V$$

$$V(t) = \frac{gm}{c}(1 - e^{-(c/m)t})$$

$$V = 0$$

Numerical Solution:

$$\frac{dV}{dk} \stackrel{\Sigma}{=} \frac{\Delta V}{\Delta t} = \frac{V(k_{i+1}) - V(k_i)}{t_{i+1} - k_i} \qquad (\text{the slope, basically})$$

$$\frac{dV}{dk} = \frac{\Delta V}{\Delta t} = \frac{Vz - VI}{t_z - k_i} = \frac{V(k_z) - V(k_i)}{t_z - k_i}$$

$$((\Delta t z \leq 1)) = \frac{V(k_{i+1}) - V(k_i)}{t_{i+1} - k_i}$$

$$\frac{dV}{dt} \stackrel{2}{\simeq} \frac{\Delta V}{\Delta t} \stackrel{\text{Fuler}}{\text{method}}$$

mathematical model

$$V(k_{i+1}) = V(k_i) + (3 + \frac{c}{m} V(k_i))(k_{i+1} - k_i)$$

 $V(0) = 0$

 $\Delta t = |sec|$

i	t :	V(kz)	V(12:+1)
0	Ø	0	9
١	1	9	g+(g- = g)(1)
2	2	g+(9-5mg)	\(\alpha + (g - \frac{\cappa}{m} \alpha)(1) \)

Example 1 "Newton's law of cooling says..."

$$\frac{dT}{dt} = -k(T-T_a) \int_{0}^{t} T = 70 ^{\circ}C$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

$$\int_{0}^{t} t = 0 \text{ to } 20 \text{ min}$$

Numerical Method

$$\frac{dT}{dk} = -k(T-Ta)$$

$$\frac{\Delta T}{\Delta k} = \frac{T(k_{i+1}) - T(k_i)}{k_{i+1} - k_i}$$

$$= \sum_{k_{i+1} - k_i} T(k_{i+1}) - T(k_i) = -k(T(k_i) - Ta)$$

$$\frac{dT}{dk} = -k(T(k_i) - Ta)$$

$$T(k_2) = 70 - (0.019)(70 - 20)(2)$$

 $T(k_3) = 68.1 - (0.019)(68.1 - 20)(2)$

Ĭ	1 tz	7
1	0	70
2	2	68.1
3	4	66.27
\`		`
11	30	53.94

JAN. 10/19

$$\frac{dV}{dt} = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{V(k_2) - V(k_3)}{k_2 - k_1}$$

$$\Delta k_{11}$$

$$\frac{dV}{dt} = \frac{V(k_{i+1}) - V(k_{i})}{k_{i+1} - k_{i}} = g - \frac{c}{m}V(k_{i})$$

$$V(k_{i+1}) = V(k_{i}) + (g - \frac{c}{m}V(k_{i}))(k_{i+1} - k_{i})$$

$$\frac{dV}{dt} = - H4\pi \left(\frac{3V}{4R}\right)^{2/3}$$

10

$$A = 4\pi \left(\frac{3V}{4\pi}\right)^{2/3}$$

$$\frac{dV}{dt} = -44\pi \left(\frac{3V}{4R}\right)^{2/3}$$

$$V = 65.44985 \text{ mm}^{3}$$

ton - ti

$$\frac{V(t_{i+1}) - V(t_i)}{t_{i+1} - t_i} = -\mu 4\pi \left(\frac{3V}{4R}\right)^{2/3}$$

$$V(t_{i+1}) = V(t_i) + \left[-44\pi \left(\frac{3V(t_i)}{4R}\right)^{2/3}\right](t_{i+1}-t_i)$$

i	E(min)	$\int (ww_3)$	av/dt =	0
1	Ø	65.44985		
2	0.25	63.879	-6.283	
3	0.5	62.333	-6.1822	
4	0.75	60. 812	- 6.08212	
_	1	1	i -	1

20,2069

10

Example 3: Change in volume = in flow - out flow

$$\frac{dV_{dt}}{dt} = 3Q\sin(t) - Q \qquad \frac{d(A_{b})}{dt} = 3Q\sin^{2}(t) - Q$$

$$V = A_{b}$$

$$\frac{du}{dt} = \frac{3Q}{A} \sin(t) - \frac{Q}{A}$$

t = 07 initial

$$\frac{y(t_{i+1}) - y(t_i)}{t_{i+1} - t_i} = \frac{3Q}{A} \sin^2(t_i) - \frac{Q}{A}$$

$$\mathcal{G}(k_{i+1}) = \mathcal{G}(k_i) + \left[\left(\frac{30}{A} \right) s_i n^2(k_i) - \frac{Q}{A} \right] \left(k_{i+1} - k_i \right)$$

	y =	Ø	5	Couq:+:o(15
1.42444		<i></i>			

i	£(day)	4 (metre)
1	Ø	Ø
2	0.5	-0.18
3	l i	- 0. 23508
4	1.5	- 0.03352
5	2	0.32278

0,59026 1,49449