

STTA806D/DI/G

TURBOSWITCH ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

I _{F(AV)}	8A
V _{RRM}	600V
t _{rr} (typ)	25ns
V _F (max)	1.5V

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERATIONS: FREEWHEEL OR BOOSTER DIODE
- ULTRA-FAST AND SOFT RECOVERY
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY OPERATIONS
- INSULATED PACKAGE : TO-220AC Electrical insulation : 2500V_{RMS}

Capacitance < 7 pF

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600V to 1200V.

TURBOSWITCH family, drastically cuts losses in both the diode and the associated switching IGBT or MOSFET in all "freewheel mode" operations and is particularly suitable and efficient in motor

control freewheel applications and in booster diode applications in power factor control circuitries.

Packaged either in TO-220AC, insulated TO-220AC or in D^2PAK , these 600V devices are particularly intended for use on 240V domestic mains.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage		600	V
V_{RSM}	Non repetitive peak reverse voltage	600	V	
I _{F(RMS)}	RMS forward current	30	Α	
		TO-220AC ins.	20	Α
I_{FRM}	Repetitive peak forward current	tp=5ms F=5kHz square	110	Α
I _{FSM}	Surge non repetitive forward current	90	А	
Tj	Maximum operating junction temperat	150	°C	
T _{stg}	Storage temperature range		-65 to 150	°C

TM: TURBOSWITCH is a trademark of STMicroelectronics

May 2002 - Ed: 4C 1/9

STTA806D/DI/G

THERMAL AND POWER DATA

Symbol	Paramete	Conditions	Value	Unit	
R _{th(j-c)}	Junction to case thermal resistance	TO-220AC / D ² PAK TO-220AC ins.		2.2 3.3	°C/W
P ₁	Conduction power dissipation $I_{F(AV)} = 8A \delta = 0.5$	TO-220AC / D ² PAK TO-220AC ins.	Tc= 118°C Tc= 102°C	14.5	W
P _{max}	Total power dissipation Pmax = P1 + P3 (P3 = 10% P1)	TO-220AC /D ² PAK TO-220AC ins.	Tc= 115°C Tc= 97°C	16	W

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
V _F *	Forward voltage drop	I _F =8A	Tj = 25°C Tj = 125°C		1.25	1.75 1.5	V V
I _R **	Reverse leakage current	V _R =0.8 x V _{RRM}	Tj = 25°C Tj = 125°C		1.5	100 4	μA mA
V _{to}	Threshold voltage	Ip < 3.I _{AV}	Tj = 125°C			1.15	V
rd	Dynamic resistance					43	mΩ

Test pulse : $* tp = 380 \mu s, \delta < 2\%$ $* tp = 5 ms, \delta < 2\%$

To evaluate the maximum conduction losses use the following equation : P = V_{to} x $I_{F(AV)}$ + rd x $I_{F^2(RMS)}$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{rr}	Reverse recovery time	$Tj = 25^{\circ}C$ $I_F = 0.5 \text{ A}$ $I_R = 1A$ $Irr = 0.25A$ $I_F = 1 \text{ A}$ $dI_F/dt = -50A/\mu s$ $V_R = 30V$		25	52	ns
I _{RM}	Maximum reverse recovery current	$Tj = 125^{\circ}C$ $VR = 400V$ $I_F = 8A$ $dI_F/dt = -64$ $A/\mu s$ $dI_F/dt = -500$ $A/\mu s$		14	5.5	А
S factor	Softness factor	$Tj = 125^{\circ}C \ V_R = 400V \ I_F = 8A$ $dI_F/dt = -500 \ A/\mu s$		0.47		-

TURN-ON SWITCHING

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{fr}	Forward recovery time	$Tj = 25^{\circ}C$ $I_F = 8$ A, $dI_F/dt = 64$ A/ μ s measured at, 1.1 × V_F max			500	ns
V _{Fp}	Peak forward voltage	$Tj = 25^{\circ}C$ I _F = 8A, dI _F /dt = 64 A/µs			10	V

Fig. 1: Conduction losses versus average current.

Fig. 3: Relative variation of thermal transient impedance junction to case versus pulse duration.

Fig. 5: Reverse recovery time versus dl_F/dt.

Fig. 2: Forward voltage drop versus forward current.

Fig. 4: Peak reverse recovery current versus dlF/dt.

Fig. 6: Softness factor (tb/ta) versus dlF/dt.

Fig. 7: Relative variation of dynamic parameters versus junction temperature (reference Tj=125°C).

Fig. 8: Transient peak forward voltage versus dl_F/dt.

Fig. 9: Forward recovery time versus dlf/dt.

APPLICATION DATA

The TURBOSWITCH is especially designed to provide the lowest overall power losses in any "FREEWHEEL Mode" application (Fig.A) considering both the diode and the companion

transistor, thus optimizing the overall performance in the end application.

The way of calculating the power losses is given below:

Fig. A: "FREEWHEEL" MODE.

57

APPLICATION DATA (Cont'd)

Fig. B: STATIC CHARACTERISTICS

Reverse losses :

$$P2 = V_R . I_R . (1 - \delta)$$

Conduction losses:

 $P1 = V_{t0} \cdot I_{F(AV)} + R_d \cdot I_{F^2(RMS)}$

Fig. C: TURN-OFF CHARACTERISTICS

Fig. D: TURN-ON CHARACTERISTICS

Turn-on losses: (in the transistor, due to the diode)

$$P5 = \frac{V_R \times I_{RM^2} \times (3 + 2 \times S) \times F}{6 \times dI_F / dt} + \frac{V_R \times I_{RM} \times I_L \times (S + 2) \times F}{2 \times dI_F / dt}$$

Turn-off losses (in the diode):

$$P3 = \frac{V_R \times I_{RM^2} \times S \times F}{6 \times dI_F / dt}$$

P3 and P5 are suitable for power MOSFET and IGBT

Turn-on losses:

$$P4 = 0.4 (V_{FP} - V_{F}) \cdot I_{Fmax} \cdot t_{fr} \cdot F$$

PACKAGE DATA D²PAK

	DIMENSIONS						
REF.	Millim	eters	Inches				
	Min.	Max.	Min.	Max.			
Α	4.40	4.60	0.173	0.181			
A1	2.49	2.69	0.098	0.106			
A2	0.03	0.23	0.001	0.009			
В	0.70	0.93	0.027	0.037			
B2	1.14	1.70	0.045	0.067			
С	0.45	0.60	0.017	0.024			
C2	1.23	1.36	0.048	0.054			
D	8.95	9.35	0.352	0.368			
Е	10.00	10.40	0.393	0.409			
G	4.88	5.28	0.192	0.208			
L	15.00	15.85	0.590	0.624			
L2	1.27	1.40	0.050	0.055			
L3	1.40	1.75	0.055	0.069			
М	2.40	3.20	0.094	0.126			
R	0.40	typ.	0.016	ີ typ.			
V2	0°	8°	0°	8°			

FOOTPRINT DIMENSIONS (in millimeters)

PACKAGE DATA

TO-220AC (JEDEC OUTLINE)

Cooling method : by conduction (C)
Recommanded torque value : 0.55m.N
Maximum torque value : 0.7m.N

PACKAGE DATA INSULATED TO-220AC

	DIMENSIONS						
REF.	Mi	llimete	ers		Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	15.20		15.90	0.598		0.625	
a1		3.75			0.147		
a2	13.00		14.00	0.511		0.551	
В	10.00		10.40	0.393		0.409	
b1	0.61		0.88	0.024		0.034	
b2	1.23		1.32	0.048		0.051	
С	4.40		4.60	0.173		0.181	
c1	0.49		0.70	0.019		0.027	
c2	2.40		2.72	0.094		0.107	
е	4.80		5.40	0.189		0.212	
F	6.20		6.60	0.244		0.259	
I	3.75		3.85	0.147		0.151	
14	15.80	16.40	16.80	0.622	0.646	0.661	
L	2.65		2.95	0.104		0.116	
12	1.14		1.70	0.044		0.066	
М		2.60			0.102		

Cooling method : by conduction (C)Recommanded torque value : 0.8m.N

Maximum torque value : 1m.N

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTA806D	STTA806D	TO-220AC	1.86g	50	Tube
STTA806DI	STTA806DI	TO-220AC Ins.	1.86g	250	Bulk
STTA806G	STTA806G	D ² PAK	1.48g	50	Tube
STTA806G-TR	STTA806G	D ² PAK	1.48g	500	Tape & reel

■ Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

