Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет по лабораторной работе №4 «Исследование характеристик тиристора и управляемых схем на тиристорах»

по дисциплине «Электроника и схемотехника» Вариант №3

Студенты:

Евстигнеев Дмитрий

Кулижников Евгений

Факультет: СУиР

Группа: R33423

Преподаватель: Николаев Н.А.

Санкт-Петербург

Цель работы:

Исследование работы управляемого выпрямителя. Исследование работы тиристорного регулятора мощности.

Ход работы:

Выбранный тиристор в соответствии варианту №3: EC103D2

1) Исследование работы управляемого выпрямителя:

Схема однополупериодного управляемого выпрямителя:

Осциллограмма входного сигнала:

Осциллограмма выходного сигнала:

Осциллограмма управляющего сигнала:

Рассчитаем среднее напряжение на нагрузке:

$$U_{\text{H.CP}} = \frac{1}{2\pi} \int_{\alpha}^{\pi} u_{\text{Bx}} d(\omega t) = \frac{U_m}{2\pi} (1 + \cos \alpha) = \frac{50}{2\pi} (1 + \cos 90) = 7.96 \text{ B} \approx 8 \text{ B}$$

Таблица средних значений напряжения на нагрузке при изменении угла включения в диапазоне от 0° до 180° с шагом в 20° :

	Uн.cp, В
α, °	
0	15,9
20	15,4
40	14
60	11,9
80	9,3
100	6,6
120	4
140	1,9
160	0,5
180	0

2) Исследование работы тиристорного регулятора мощности:

Схема тиристорного регулятора мощности:

Осциллограмма входного сигнала:

Осциллограмма выходного сигнала:

Осциллограмма управляющего сигнала:

Рассчитаем действующее значение напряжения на нагрузке:

$$U_{\text{H.Д}} = \sqrt{\frac{1}{2\pi} \int_{\alpha}^{2\pi} u_{\text{BX}}^2 d(\omega t)} = U_m \sqrt{\frac{1}{8\pi} (4\pi - 2\alpha + \sin 2\alpha)} = 50 \sqrt{\frac{1}{8\pi} (4\pi - \pi + \sin \pi)}$$
$$= 30.6 \text{ B}$$

Таблица действующих напряжений на нагрузке и подводимых к ней мощностей при изменении угла включения в диапазоне от 0° до 180° с шагом в 20° :

Мощность будем рассчитывать по формуле: $P = \frac{U_{\rm H, I\!\!/}^2}{R_{\rm H}} = \frac{U_m^2}{8\pi R_{\rm H}} (4\pi - 2\alpha + sin2\alpha)$

α, °	Uн.д., B	P, BT
0	35,4	62,66
20	35,3	62,30
40	34,8	60,55
60	33,6	56,45
80	31,7	50,24
100	29,4	43,22
120	27,4	37,54
140	25,8	33,28
160	25,1	31,50
180	25	31,25

Вывод:

В ходе проделанной работы нами было реализована работа однополупериодного управляемого выпрямителя и тиристорного регулятора мощности. Графики, полученные в

ходе симуляции схожи с оригинальными графиками, данными в методических материалах.