Ambient Backscatter

Vincent Liu

Aaron Parks, Vamsi Talla, Shyam Gollakota, David Wetherall, Joshua Smith

Our Goal

Interactive devices that compute and communicate without batteries

What We Are After

How to power computation, sensing, and communication?

Leverage Existing Wireless Signals

Available at almost any time and place, rain or shine

Recent Work Harvests 10s of µW ['09]

Enough for computation and sensing

 Orders of magnitude less power than needed for radio communication ['13]

Challenge: Communication Between Battery-Free Devices

Generating radio signals is expensive

- Could duty cycle
 - Limits interactive applications

Can we communicate without either device generating radio signals?

Ambient Backscatter

Use existing signals instead of generating our own

Works with only ~5% of the harvested power!

'0' bit – Absorb TV Signals
'1' bit – Reflect TV signals

Challenges

- Reader sends constant wave
- Receive chain: 100s of mW
- Reader centrally coordinates

Ambient Backscatter

RFID Reader Tag

- Reader sends constant wave ! Uses uncontrollable signals
- Receive chain: 100s of mW
- Reader centrally coordinates ! Need distributed MAC

Ambient Backscatter

- Receive chain: 0.5 μW

Challenges

 Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

Challenges

 Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

How Do We Extract The Backscattered Signals?

Alice's reflections change the average amplitude

Solution: Detect Changes in Average Amplitude

If we had digital samples, averaging would be easy

Need power-hungry analog-to-digital converters

Challenges

 Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

Use RC Circuits to Average

 Capacitor slowly charges/discharges when voltage is applied/removed

Provides a cheap, analog, exponential moving average

Use RC Circuits to Average

 Capacitor slowly charges/discharges when voltage is applied/removed

By picking the right RC values, we can selectively filter out the high TV frequencies

Now that we can decode bits...

Link Layer

Physical Layer

Distributed MAC?

Challenges

• Extracting backscattered signals from ambient signals we don't control

Decoding on a battery-free device

Designing distributed MAC for battery-free devices

We Use CSMA

CSMA uses carrier sense, i.e. energy detection

- Battery-free devices do not have energy levels
 - Requires power-hungry ADCs

Challenge: Energy detection without access to the energy levels

Solution: Leverage Hardware Properties for Energy Detection

- 1. RC circuit filters out the TV signals
 - > Removes high-amplitude variations

In the absence of backscattering, we see a constant output

Constant Output

Solution: Leverage Hardware Properties for Energy Detection

No backscatter

See all 0s or all 1s

Backscatter

See many transitions

Use bit transitions as proxy for energy detection

Evaluation

Prototype Using Off-the-Shelf Components

- Battery-free
- Harvests and backscatters TV signals at 539 MHz
- Microcontroller performs computation

Tested Locations

Seattle area with a 1MW TV tower at 539 MHz

Indoor and outdoor environments

- Distances up to 10.5 km from the TV tower
 - TV power ranged between -24dBm and -8dBm

What Bit Rates Can We Achieve?

Three bit rates:
 10kbps, 1kbps, 100bps

 BER versus distance between two devices

What Bit Rates Can We Achieve?

These results show the feasibility of Ambient Backscatter

Applications

Identifying Misplaced Items

In Grocery stores or Warehouses (e.g., Amazon)

- With ambient backscatter, devices can figure out they are misplaced on their own
- We built a preliminary system with cereal boxes

Identifying Misplaced Items

In Grocery stores or Warehouses (e.g., Amazon)

Works even if not all tags are in range of a reader

Conclusion

- We develop
 - The first primitive that enables communication without either device generating RF signals
 - A battery-free hardware prototype that computes and communicates using only TV signals

- We transform existing signals into both a power source and a communication medium
 - Opens up new research opportunities

abc.cs.washington.edu