21-268 Class Notes

NOAH KIM FEBRUARY 2ND, 2024

1 The Euclidean Space

Definition 1.1. \mathbb{R}^n is the space of all "n-tuples" (or vectors) (x_1, \dots, x_n) of real numbers. i.e. $x_i \in \mathbb{R}$ for each $1 \leq i \leq n$.

Definition 1.2.

$$\vec{x} + \vec{y} = (\vec{x}_1 + \vec{y}_1, \cdots, \vec{x}_n + \vec{y}_n)$$
$$t\vec{x} = (t\vec{x}_1, \cdots, t\vec{x}_n)$$

Example 1.3. $\vec{0} = (0, \dots, 0)$ with n zeros.

Theorem 1.4. Given $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$, the following properties hold:

- (i) (Positivity) $\vec{x} \cdot \vec{x} \ge 0$; also $\vec{x} \cdot \vec{x} = 0 \iff \vec{x} = \vec{0}$.
- (ii) (Symmetry) $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
- (iii) (Bilinearity) $(s\vec{x} + t\vec{y}) \cdot \vec{z} = s(\vec{x} \cdot \vec{z}) + t(\vec{y} \cdot \vec{z}).$

Proof. (i) First,

$$\vec{x} \cdot \vec{x} = x_1^2 + \dots + x_n^2 \ge 0$$

since each $x_i^2 \geq 0$ and the sum of non-negative numbers i non-negative. Second, suppose $\vec{x} \cdot \vec{x} = 0$. Since the only way for n non-negative numbers to sum to 0 is if they're each $0, x_i^2 = 0$ for each $1 \leq i \leq n$. Thus $x_i = 0$. Conversely, if $\vec{x} = \vec{0}$, then $\vec{x} \cdot \vec{x} = 0^2 + \cdots + 0^2 = 0$. \square

(ii) By the definition of the dot product followed by the commutativity of multiplication,

$$\vec{x} \cdot \vec{y} = \sum_{i=0}^{n} x_i y_i = \sum_{i=0}^{n} y_i x_i = \vec{y} \cdot \vec{x}$$

 $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$. \square

(iii) We do some computation.

$$(s\vec{x} + t\vec{y}) \cdot \vec{z} = (sx_1 + ty_1, \cdots, sx_n + ty_n) \cdot (z_1, \cdots, z_n) \tag{1}$$

$$= (sx_1 + ty_1)z_1 + \cdots (sx_n + ty_n)z_n \tag{2}$$

$$= sx_1z_1 + \dots + sx_nz_n + ty_1z_1 + \dots + ty_nz_n \tag{3}$$

$$= s(x_1 z_1 + \dots + x_n z_n) + t(y_1 z_1 + \dots + y_n z_n)$$
 (4)

$$= s(\vec{x} \cdot \vec{z}) + t(\vec{y} \cdot \vec{z}) \tag{5}$$

Definition 1.5. A function $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ that satisfies i) - iii) of the above theorem is called an *inner product* in \mathbb{R}^n .

Remark. Inner products can also be defined on general vector spaces.

Example 1.6. Let $x_1, \dots, x_n \in \mathbb{R}$. We have an inner product in the polynomial vector space by defining, for polynomials q and p with degree equal to or less than n,

$$f(p,q) = \sum_{i=1}^{n} p(x_i)q(x_i)$$

Example 1.7. For a continuous vector space $\mathbb{C}_{[a,b]}$, the following are inner products:

$$f(g,h) = \int_{a}^{b} g(x)h(x)dx$$

$$f(g,h) = \int_{a}^{b} g(x)h(x)w(x)dx$$

where w(x) is bounded, piecewise continuous, and w > 0 everywhere on [a, b].

Definition 1.8. The Euclidean norm of $\vec{x} \in \mathbb{R}^n$ is

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + \dots + x_n^2}$$

Theorem 1.9 (Cauchy-Schwarz). For every $\vec{x}, \vec{y} \in \mathbb{R}^n$,

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| \, ||\vec{y}||$$

Proof. We case on whether $\|\vec{y}\| = 0$ or $\|\vec{y}\| \neq 0$. Suppose $\|y\| = 0$. Computing $\vec{x} \cdot \vec{y}$ gives you zero. Computing $\|\vec{x}\| \|\vec{y}\|$ also gives you zero, as desired. Otherwise, suppose that $\|\vec{y}\| \neq 0$. We introduce an auxiliary scalar t and choose a suitable value for t later. By the definition of dot product,

$$0 \le (\vec{x} + t\vec{y}) \cdot (\vec{x} + t\vec{y}) \tag{6}$$

$$= \|\vec{x}\|^2 + 2t\vec{x} \cdot \vec{y} + t^2 \|\vec{y}\|^2 \tag{7}$$

Now, let

$$t = \frac{-\vec{x} \cdot \vec{y}}{\|\vec{y}\|^2}.$$

Note that this is well-defined since $\|\vec{y}\| \neq 0$. By substitution, we have

$$0 \le \|\vec{x}\|^2 \frac{-2(\vec{x} \cdot \vec{y})^2}{\|\vec{y}\|^2} + \frac{(\vec{x} \cdot \vec{y})^2}{\|\vec{y}\|^4} \|\vec{y}\|^2 \tag{8}$$

$$= ||x||^2 - \frac{(\vec{x} \cdot \vec{y})^2}{||\vec{y}||^2} \tag{9}$$

Rearranging this yields $(\vec{x} \cdot \vec{y})^2 \le ||\vec{x}||^2 ||\vec{y}||^2$, which implies

$$|\vec{x} \cdot \vec{y}| \le ||\vec{x}|| \, ||\vec{y}||$$

Theorem 1.10. If $\vec{x}, \vec{y} \in \mathbb{R}^n$ and $t \in \mathbb{R}$, then

- 1. $\|\vec{x}\| \ge 0$ and $\|\vec{x}\| = 0 \iff \vec{x} = \vec{0}$. 2. $\|t\vec{x}\| = |t| \|\vec{x}\|$ 3. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$

Proof. Left as an exercise for the reader.

Remark. A function satisfying the above three properties is known as a norm and can be defined on a general vector space

Example 1.11. Some other examples of norms in \mathbb{R}^n :

- $\|\vec{x}\|_{\ell_{\infty}} := \max\{|x_1|, \cdots, |x_n|\}$ $\|\vec{x}\|_{\ell^1} := |x_1| + \cdots + |x_n|$ $\|\vec{x}\|_{\ell^p} := (|x_1|^p + \cdots + |x_n|^p)^{\frac{1}{p}}$

Topological Properties of Euclidean Space

Definition 2.1. Given $\vec{x}_0 \in \mathbb{R}^n$ and r > 0, then the ball centered at x_0 of radius r is

$$B(\vec{x}_0, r) = \{ x \in \mathbb{R}^n : ||\vec{x} - \vec{x}_0|| < r \}.$$

Remark. Note that the ball doesn't include the "boundary" and it's sometimes called an "open" ball.

Definition 2.2. Given a set $E \subseteq \mathbb{R}^n$, a point $\vec{x} \in E$ is called an *interior point* of E if there exists r > 0 such that $B(\vec{x}, r) \subseteq E$.

Definition 2.3. The *interior* of E - denoted by E° - is the set of all interior points of E.

Definition 2.4. A subset $U \subseteq \mathbb{R}^n$ is open if every $\vec{x} \in U$ is an interior point of U. In other words, for every $\vec{x} \in U$ there exists r > 0 such that $B(\vec{x}, r) \subseteq U$.

Example 2.5. If $\vec{x}_0 \in \mathbb{R}^n$ and r > 0 then $B(\vec{x}_0, r)$ is open.

Proof. Fix $\vec{y} \in B(\vec{x}_0, r)$. We need to find s such that

$$B(\vec{y}, s) \subseteq B(\vec{x}_0, r).$$

Set $s = r - ||\vec{x}_0 - \vec{y}||$. Then, if $x \in B(\vec{y}, s)$, we have

$$\|\vec{x} - \vec{x}_0\| = \|\vec{x} - \vec{y} + \vec{y} - \vec{x}_0\| \tag{10}$$

$$\leq \|\vec{x} - \vec{y}\| + \|\vec{y} - \vec{x}_0\| \tag{11}$$

$$\langle s + r - s \tag{12}$$

$$= r. (13)$$

Thus, $\|\vec{x} - \vec{x}_0\| < r$ and so $x \in B(\vec{x}_0, r)$.

Remark. To see where $s = r - ||\vec{x}_0 - \vec{y}||$ comes from, draw a picture.

Example 2.6. Here are some examples concerning open sets:

1. (a, ∞) is open.

Proof. If
$$x \in (a, \infty)$$
, one can check that $B(x, x - a) \subseteq (a, \infty)$.

(a,b) is open.

Proof. Note that $(a,b) = B(\frac{a+b}{2}, \frac{b-a}{2})$. Using the fact that a ball is an open set, (a,b) is open.

Corollary 2.7.
$$[a, b]^{\circ} = (a, b)$$

3. (a, b] is not open.

Proof. B(b,r) is not a subset of (a,b] for any r>0 since it contains elements larger than b.

4. Any union of open sets is open. That is, if U_i are all open $i \in I$ then $U = \bigcup_{i \in I} U_i$ is open.

Proof. If $\vec{x} \in U$ then $x \in U_i$ for some i. So there exists $B(\vec{x}, r) \subseteq U_i$ for some r > 0. Since $U_i \subseteq U$ and $B(\vec{x}, r) \subseteq U_i$, then $B(\vec{x}, r) \subseteq U$. So \vec{x} is an interior point of U.

Definition 2.8. Given $E \subseteq \mathbb{R}^n$, a point $x \in \mathbb{R}^n$ is an accumulation point of E if for every r > 0, the ball $B(\vec{x}, r)$ contains at least one point of E different from \vec{x} . Note that \vec{x} may or may not be in E, so the membership of \vec{x} is irrelevant.

Example 2.9. 0 is an accumulation point of $\{\frac{1}{n}\}_{n\in\mathbb{N}}$.

Proof. It suffices to show that for every r > 0, the ball B(0,r) contains a point in E. This is equivalent to showing that for all r < 0, there exists some $n \in \mathbb{N}$ such that $\frac{1}{n} < r$. It should be clear that we can always find some n such that $n > \frac{1}{r}$, and

therefore 0 is an accumulation point.

Remark. An interior point of $E \subseteq \mathbb{R}^n$ is an accumulation point of E.

Example 2.10.

$$E^{\circ} \subseteq \operatorname{acc} E$$

If $\vec{x} \in E^{\circ}$, then for some $r_0 > 0$, $B(\vec{x}, r_0) \subseteq E$. Now given r > 0, set $\vec{y} = \vec{x} + \frac{\min\{r, r_0\}}{2}(1, 0, \dots, 0)$

Then $\vec{y} \neq \vec{x}$ and

$$\|\vec{y} - \vec{x}\| = \left\| \vec{x} + \frac{\min\{r, r_0\}}{2} (1, 0, \dots, 0) - \vec{x} \right\|$$

$$= \left\| \frac{\min\{r, r_0\}}{2} (1, 0, \dots, 0) \right\|$$

$$= \frac{\min\{r, r_0\}}{2}$$

So in particular, $\vec{y} \in B(\vec{x}, r) \cap B(\vec{x}, r_0)$. Therefore $\vec{y} \in E$.

Example 2.11.

$$E = \mathbb{R}/(\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\})$$

Show that E is open.

Recall that a union of open sets is open. Also, we showed that intevals $(a, b), (-\infty, a), (a, \infty)$ are all open. Now,

$$E = (\infty, 0) \cup (1, \infty) \cup \bigcup_{n \in \mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right).$$

So E is a union of open intervals and thus open sets, which implies that E is open. \square

Definition 2.12. If $E \subseteq \mathbb{R}^n$, $\vec{x} \in \mathbb{R}^n$ is called a *boundary point* of E, $\vec{x} \in \partial E$, if, for every r > 0, $B(\vec{x}, r)$ contains at least one point in E and at least one point not in E.

Example 2.13.

$$\partial B(\vec{x}, r) = \{ \vec{y} \in \mathbb{R}^n : ||\vec{y} - \vec{x}|| = r \}$$

Proposition 2.14. $\partial E \cup E^{\circ} = \emptyset$

Proof. It suffices to show that if $\vec{x} \in E^{\circ}$ then it cannot belong to the boundary. Now if $x \in E^{\circ}$, then there exists r > 0 such that $B(\vec{x}, r) \subseteq E$. Since the ball is fully countained by E, \vec{x} fails the definition of boundary for this radius because this ball can not contain any points in the complement of E.

Example 2.15.

$$E = (\infty, 0) \cup (1, \infty) \cup \bigcup_{n \in \mathbb{N}} (\frac{1}{n+1}, \frac{1}{n})$$

Find E° , acc E, ∂E .

Solution. $E^{\circ} = E$. By definition, $E^{\circ} \subseteq E$. Now take $\vec{x} \in E$. Then \vec{x} must belong to one of the open intervals. Note that open intervals are, well, open (lol) so there is some ball with $B(\vec{x}, r)$ and r > 0 contained in that interval. So $E \subseteq E^{\circ}$ and therefore $E^{\circ} = E$.

acc E=E. We must show that $\mathbb{R}\subseteq \mathrm{acc}\ E$. Split $\mathbb{R}=(\mathbb{R}/E)\cup E$ and show that $\mathbb{R}/E\subset \mathrm{acc}\ E$, $E\subseteq \mathrm{acc}\ E$. First,

$$\mathbb{R}/E = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$$

In the case that $\vec{x} = 0$, take $\vec{y} = \frac{-r}{2} \in (-\infty, 0)$. $\vec{y} \in E$ and $\vec{y} \neq 0$, so it satisfies the definition of accumulation point for this r.

If $\vec{x} = \frac{1}{n}$, then we have the ball $B(\frac{1}{n}, r)$. If $r \ge \frac{1}{2}(\frac{1}{n} - \frac{1}{n+1})$, take $\vec{y} = \frac{1}{n} - \frac{1}{2}(\frac{1}{n} - \frac{1}{n+1}) \in (\frac{1}{n+1}, \frac{1}{n})$. Otherwise, take $\vec{x} - r$ and we're done.

 $\partial E = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. Take $\vec{x} \in \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ and r > 0. Then by the definition of $E, \vec{x} \notin E$. But also, $\vec{x} \in \text{acc } E$ by the precious step, so I can find $\vec{y} \in B(\vec{x}, r)$ such that $\vec{y} \neq \vec{x}$ and $\vec{y} \in E$. So

$$\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \subseteq E.$$

To show the reverse inclusion, recall that $\partial E \cap E^{\circ} = \emptyset$, which implies that $\partial E \subseteq \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. Therefore by double containment $\partial E = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$.

Definition 2.16 (Closed Sets). $C \subseteq \mathbb{R}^n$ is *closed* if \mathbb{R}^n/C is open.

Proposition 2.17. E is closed if and only if acc $E \subseteq E$.

Proof. Suppose E is closed. Then \mathbb{R}^n/E is open and so given $\vec{x} \in \mathbb{R}^n/E$, there is r > 0 such that

$$B(\vec{x},r) \subseteq \mathbb{R}^n/E$$
.

So, $\vec{x} \notin \text{acc } E$ and thus

$$\mathbb{R}^n/E \subseteq \mathbb{R}^n/\mathrm{acc}\ E$$

therefore acc $E \subseteq E$.

Now for the other direction, assume acc $E \subseteq E$. So given any $\vec{x} \in \mathbb{R}^n/E$, $\vec{x} \notin$ acc E. Therefore, for some r > 0, $B(\vec{x}, r)/\{\vec{x}\}$ does not contain any points of E. i.e.

$$B(\vec{x},r)/\{\vec{x}\} \subseteq \mathbb{R}^n/E$$

since also $\vec{x} \in \mathbb{R}^N/E$. So therefore the whole ball doesn't belong to E meaning that it belongs to the complement.

$$B(\vec{x},r) \subseteq \mathbb{R}^n/E$$

So \mathbb{R}^n/E is open, which implies that E is closed.

3 Functions

 $f: E \to \mathbb{R}^m$, where $E \subseteq \mathbb{R}^n$. For every $x \in E$, $f(\vec{x}) \in \mathbb{R}^m$.

Definition 3.1 (Domain). The domain of f = E is the largest set on which f is well-defined. i.e. no logs of negatives, division by 0, etc.

Definition 3.2 (Bounded Sets). $A \subseteq \mathbb{R}^n$ is bounded if $A \subseteq B(\vec{x}, r)$ for some $x \in \mathbb{R}^n$, r > 0.

Definition 3.3 (Images). Given $F \subseteq E$, the image $f(F) = \{\vec{y} \in \mathbb{R}^m : \vec{y} = f(\vec{x}) \text{ for some } x \in F\}.$

Definition 3.4 (Bounded Functions). A function f is bounded if f(E) is a bounded subset of \mathbb{R}^m .

Definition 3.5 (Bounded Directions). If m = 1 - that is, if the dimension of the image is 1 - we can say that f is bounded from above if $f(E) \subseteq (-\infty, a)$ where $a \in \mathbb{R}$ and similarly, we can define when a function is bounded from below.

Definition 3.6 (Inverse Image). Given $G \subseteq \mathbb{R}^m$, $f^{-1}(G) = \{\vec{x} \in E : f(\vec{x}) \in G\}$. Note that this is not the inverse function, so be careful.

Definition 3.7 (Graphs). A graph of f is denoted as gr $f \subseteq \mathbb{R}^n \times \mathbb{R}^n = \{(\vec{x}, f(\vec{x})) : \vec{x} \in E\}.$

Definition 3.8 (-jectivity). When $f: E \to F, E \subseteq \mathbb{R}^n, R \subseteq \mathbb{R}^m$, f is said to be

- 1. Injective if $\vec{x} \neq \vec{z} \implies f(\vec{x}) \neq f(\vec{z})$.
- 2. Surjective if f(E) = F.
- 3. Bijective if it is both surjective and injective. If this is the case, then you can indeed define an inverse function $f^{-1}: F \to E$ which assigns to every $\vec{y} \in F$ the unique $\vec{x} \in E$ such that $f(\vec{x}) = \vec{y}$.

Definition 3.9 (-creasing). When $f: E \to \mathbb{R}$ and $E \subseteq \mathbb{R}$, f is

- 1. increasing if $f(x) \leq f(y)$ whenever x < y
- 2. decreasing if $f(x) \ge f(y)$ whenever x > y.
- 3. strictly increasing if f(x) < f(y) whenever x < y
- 4. strictly decreasing if f(x) > f(y) whenever x > y.
- 5. monotone if it is one of these 4.

4 Limits of Functions

Definition 4.1 (Limit of f(x)). Let $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}^m$, $\vec{x}_0 \in \text{acc } E$. We say $\vec{y} \in \mathbb{R}^m$ is the *limit* of f as \vec{x} approaches \vec{x}_0 if: given $\varepsilon > 0$, there exists $\delta > 0$ (depending on f and \vec{x}_0, ε) such that

$$||f(\vec{x}) - \vec{y}|| < \varepsilon$$

for all $\vec{x} \in E$ with $0 < ||\vec{x} - \vec{x}_0|| < \delta$.

We write $\lim_{\vec{x} \to \vec{x}_0} f(\vec{x}) = \vec{y}$ or $f(\vec{x}) \to \vec{y}$ as $\vec{x} \to \vec{x}_0$.

Remark. Limits also sometimes do not exist. The proof strategy here is basically the following: you tell me how close you want $f(\vec{x})$ to be to \vec{y} and I tell you how close \vec{x} has to be to \vec{x}_0 . Basically, formulate a δ such that whatever you're showing has to be true.

There are some criteria for the nonexistence of $\lim_{\vec{x}\to\vec{x}_0} f(\vec{x})$. If $F\subseteq E$, let $f\upharpoonright F$ be the restriction of f to F. If $F,G\subseteq E$ with $F\cap G=\emptyset$, $\vec{x}_0\in\mathrm{acc}\ E\cap\mathrm{acc}\ G$ and such that $\lim_{\vec{x}\to\vec{x}_0} f\upharpoonright F(\vec{x}) \neq \lim_{\vec{x}\to\vec{x}_0} f\upharpoonright G(\vec{x})$ then $\lim_{\vec{x}\to\vec{x}_0} f(\vec{x})$ does not exist.

Remark. The limit of a constant function is that constant. (Thanks Sherlock)

Example 4.2.

$$f(x,y) = \begin{cases} 1 & y = x^2 & & x \neq 0 \\ 0 & & \text{otherwise} \end{cases}$$

Take $F = \{(x, y) : y = x^2\}$ and $G = \{(x, 0) : x \in \mathbb{R}\}.$

$$\lim_{(x,y)\to(0,0)} f(x,y) \upharpoonright F = 1$$

$$\lim_{(x,y)\to(0,0)} f(x,y) \restriction G = 0$$

 $\therefore \lim_{(x,y)\to(0,0)} f(x,y) \text{ does not exist.}$

Example 4.3.

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

Solution. Fix arbitrary $\varepsilon > 0$. Let $\delta = \varepsilon$. If $0 < \|(x,y) - (0,0)\| < \delta = \varepsilon$, then

$$\left\| \frac{x^2y}{x^2 + y^2} - 0 \right\| = \frac{x^2|y|}{x^2 + y^2}$$

$$\leq \frac{(x^2 + y^2)\sqrt{x^2 + y^2}}{x^2 + y^2}$$

$$= \sqrt{x^2 + y^2}$$

$$\|(x, y)\|$$

$$< \delta = \varepsilon$$

At this point, you might be wondering how we made that choice of δ . The idea is that you deal with funny inequalities. Here, once you have your inequality in terms of $\|(x,y)\|$, you then choose your δ in terms of epsilon accordingly. More examples should illuminate these.

Example 4.4. Compute and prove:

$$\lim_{(x,y)\to(0,0)} \frac{x^m y}{x^2 + y^2}. \ (m \in \mathbb{N}, m \ge 2)$$

Solution. We immediately suspect that the limit is 0 because shoving in y=0 yields $\frac{0}{x^2}$ where $x \neq 0$. Fix $\varepsilon > 0$. Now we do some scratch work to figure out what a good choice for δ should be.

$$|\frac{x^{m}y}{x^{2} + y^{2}}| = \frac{|x^{m}|\sqrt{y^{2}}}{x^{2} + y^{2}}$$

$$= \frac{(x^{2})^{\frac{m}{2}}\sqrt{y^{2}}}{x^{2} + y^{2}}$$

$$\leq \frac{\sqrt{x^{2} + y^{2}}^{\frac{m}{2}}\sqrt{x^{2} + y^{2}}}{x^{2} + y^{2}}$$

$$= \sqrt{x^{2} + y^{2}}^{m-1}$$

$$< \|(x, y) - (0, 0)\|$$

$$\leq \delta^{m-1}$$

$$< \delta \quad (\delta < 1)$$

Now we realize that it's a good idea to let $\delta = \min\{1, \epsilon\}$. So we then have that

$$\delta < \epsilon$$

which finishes the proof since then

$$||(x,y) - (0,0)|| < \epsilon$$

as desired.

If given a limit, you have two options.

- Prove that the limit exists
- Prove it doesn't exist by finding F and G both subsets of the domain such that the limits along F and G disagree.

Example 4.5.

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2}$$

We should suspect by inspection that if the limit exists, it should be zero. But surely we should try y = kx. Then let

$$F = \{(x, y) : x = y\}$$

$$G = \{(x, y) : x = -y\}$$

Note that using these subsets yields constant functions. If $(x, y) \in F$, the limit is $\frac{1}{2}$. If $(x, y) \in G$, the limit is $\frac{-1}{2}$. Since the limits of constant functions are constants,

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2} = \frac{1}{2} \ \ ((x,y)\in F)$$

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}=-\frac{1}{2}\ \ ((x,y)\in G)$$

So then the limit doesn't exist because they don't agree.

Example 4.6.

$$\lim_{(x,y)\to(0,0)} \frac{x^{100}y}{x-y}$$

Note that the domain is all $(x, y) \in \mathbb{R}^2$ such that $x \neq y$. The idea here is that we try to use the fact that the denominator blows up to get the non-existence of the limit. Suppose

$$F = \{(x, y) : y = 0\}.$$

If the limit exists, it must be the case that it must be equal to 0. Now produce a set

G such that the limit with the domain restricted to G doesn't approach 0. Say

$$G = \{(x, y) : y = x + x^m\}.$$

We haven't chosen m yet, but we're free to do that later. Then if $(x,y) \in G/\{(0,0)\}$,

$$f(x,y) = \frac{x^{100}(x+x^m)}{-x^m}$$

Let m = 101

$$=\frac{x^{101}(1+x^{100})}{-x^{101}}$$

So $\lim_{(x,y)\to(0,0)}f\upharpoonright G=-1$. Then by our criteria for non-existence, the limit does not exist.

Theorem 4.7. Let $E \subseteq \mathbb{R}^n$ and $x_0 \in \text{acc } E$. Suppose $f: E \to \mathbb{R}^m$ and $g: E \to \mathbb{R}^m$ satisfy

$$\lim_{x \to x_0} f(\vec{x}) = \ell_1$$

$$\lim_{x \to x_0} g(\vec{x}) = \ell_2.$$

Then,

1.
$$\lim_{\vec{x} \to \vec{x}_0} (f+g)(\vec{x}) = \ell_1 + \ell_2$$

$$2. \lim_{\vec{x} \to \vec{x}_0} x f(\vec{x}) = c\ell_1$$

3.
$$\lim_{\vec{x} \to \vec{x}_0} (fg)(\vec{x}) = \ell_1 \ell_2$$

4. If m = 1 and $\ell_2 \neq 0$ and $g(\vec{x}) \neq 0$ for all $\vec{x} \in E$, then

$$\lim_{x \to x_0} \left(\frac{f}{g} \right) (\vec{x}) = \frac{\ell_1}{\ell_2}.$$

(4). Fix $\varepsilon > 0$,

$$\begin{split} & \left| \frac{f(x)}{g(x)} - \frac{\ell_1}{\ell_2} \right| = \left| \frac{f(x)\ell_2 - g(x)\ell_1}{g(x)\ell_2} \right| \\ & = \frac{|f(x)\ell_2 - \ell_1\ell_2 + \ell_1\ell_2 - g(x)\ell_1|}{|g(x)\ell_2|} \\ & \leq \frac{|\ell_2||f(x) - \ell_1|}{|g(x)\ell_2|} + \frac{|\ell_1||\ell_2 - g(x)|}{|g(x)\ell_2|} \\ & = \frac{|f(x) - \ell_1|}{|g(x)|} + \frac{|\ell_1||\ell_2 - g(x)|}{|g(x)\ell_2|} \end{split}$$

Let δ_1 be small enough so that for $0 < ||x - x_0|| < \delta_1$,

$$|g(x) - \ell_2| < \frac{|\ell_2|}{2}$$

$$\implies |g(x)| < \frac{|\ell_2|}{2}$$

$$\implies \frac{1}{|g(x)|} < \frac{2}{|\ell_2|}$$

Plugging this estimate into the above, we obtain

$$\left| \frac{f(x)}{g(x)} - \frac{\ell_1}{\ell_2} \right| \le \frac{|f(x) - \ell_1|^2}{|\ell_2|} + \frac{2|\ell_1|}{|\ell_2|^2} |\ell_2 - g(x)|$$

Then choose δ_2 such that if $0 < ||x - x_0|| < \delta_2$

$$|f(x) - \ell_1| < \frac{\varepsilon |\ell_2|}{4}$$

and δ_3 such that if $0 < ||x - x_0|| < \delta_3$

$$|\ell_2 - g(x)| < \frac{|\ell_2|^2}{4||\ell_1| + 1|} \varepsilon$$

Then if we choose $\delta = \min\{\delta_1, \delta_2, \delta_3\}$, plugging in the above inequalities gives us

$$\left| \frac{f(x)}{g(x)} - \frac{\ell_1}{\ell_2} \right| < \epsilon \frac{|\ell_2|}{4} \cdot \frac{2}{|\ell_2|} + \frac{2|\ell_1|}{|\ell_2|^2} \cdot \frac{|\ell_2|^2 \varepsilon}{4||\ell_1| + 1|}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Theorem 4.8 (Squeeze Theorem). Let $E \subseteq \mathbb{R}^n$ and $x_0 \in \text{acc } E$. Let f, g, h be functions from E to \mathbb{R} such that

$$\lim_{x \to x_0} g(x) = \ell = \lim_{x \to x_0} h(x)$$

and

$$g(x) \le f(x) \le h(x)$$

for all $x \in E$. Then

$$\lim_{x \to x_0} f(x) = \ell.$$

Proof. Fix $\varepsilon > 0$. Let δ_1 and δ_2 be small enough so that for all $|x_0 - x| < \delta_1$, or $|x_0 - x| < \delta_2$, $|g(x) - \ell| < \varepsilon$, or $|h(x) - \ell| < \varepsilon$ respectively. These inequalities imply that $g(x) > \ell - \varepsilon$ if $0 < |x - x_0| < \delta_1$ and $h(x) < \ell + \varepsilon$ if $0 < |x - x_0| < \delta_2$. Then,

$$\ell - \epsilon \le g(x) \le f(x) \le h(x) \le \ell + \varepsilon$$

if $0 < ||x - x_0|| < \min\{\delta_1, \delta_2\}$. Thus

$$|f(x) - \ell| < \varepsilon$$

if
$$0 < ||x - x_0|| < \delta$$
.

Theorem 4.9. Let $E \subseteq \mathbb{R}^n$, $F \subseteq \mathbb{R}^m$, $x \in \text{acc } E$, and $f: E \to F$, $g: F \to \mathbb{R}^p$ be functions such that

$$\lim_{x \to x_0} f(x) = \ell \in \mathbb{R}^m$$

$$\ell \in \text{acc } E$$

$$\lim_{y \to \ell} g(y) = L \in \mathbb{R}^p$$

Assume that either

- (i) $\exists \delta_1 > 0$ such that $f(x) \neq \ell$ for all $x \in E$ with $0 < ||x x_0|| < \delta_1$. or
- (ii) $\ell \in F$ and $g(\ell) = L$.

Then

$$\lim_{x \to x_0} g(f(x)) = L.$$

Proof left as an exercise for the reader (lol)

Remark. This is nice because we can use this to change variables and perform funny substitutions in limits.

Example 4.10. Compute:

$$\lim_{x \to 0} \frac{\log(1 + \sin x)}{x}.$$

Solution. Recall that $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$. We have that

$$\lim_{x \to 0} \frac{\log(1 + \sin x)}{x} = \lim_{x \to 0} \frac{\log(1 + \sin x)}{\sin x} \cdot \frac{\sin x}{x}$$

Let $f(x) = \sin x$ and $g(y) = \frac{\log(1+y)}{y}$. Let's check the assumptions from the above theorem.

- (i) $\lim_{x \to 0} f(x) = 0 = \ell$
- (ii) $0 \in acc(F) = acc((-1,0) \cup (0,1)).$
- (iii) $\lim_{y \to 0} g(y) = 1 = L$
- (iv) For $|x 0| < \frac{\pi}{2}, f(x) \neq 0$.

By the previous theorem, $\lim_{x\to 0} g(f(x)) = 1$. Then you can use the limit product rule to show that

$$\lim_{x \to 0} \frac{\log(1 + \sin x)}{\sin x} \cdot \frac{\sin x}{x} = 1 \cdot 1 = \boxed{1}$$

5 Continuity

Definition 5.1 (Isolated Points). Let $E \subseteq \mathbb{R}^n$. A point $x_0 \in E$ is called an isolated point of E if there exists $\delta > 0$ such that

$$B(x_0, \delta) \cap E = \{x_0\}.$$

In other words, a point is isolated if you can create a ball that has x_0 as the only element of E and elements in the complement of E.

Definition 5.2 (Continuous Functions). Let $E \subseteq \mathbb{R}^n$ and $x_0 \in \text{acc } E$. Given a function $f: E \to \mathbb{R}^m$, we say f is continuous at x_0 if for any $\varepsilon > 0$, there exists δ such that for all $x \in E$ with $||x_0 - x|| < \delta$,

$$||f(x) - f(x_0)|| < \varepsilon.$$

If f is continuous at every point $x \in E$, then we say f is continuous on E and $f \in C(E)$ (or $f \in C^{\circ}(E)$).

Theorem 5.3. Let $E \subseteq \mathbb{R}^n$, $x_0 \in E$, $f: E \to \mathbb{R}^m$.

- i.) If x_0 is an isolated point of E, then f is continuous at x_0 .
- ii.) If x_0 is an accumulation point, then f is continuous at x_0 iff $\lim_{x\to x_0} f(x) = f(x_0)$

Proof. i.) If $x_0 \in \text{iso } E$, then there exists $\delta > 0$ such that $B(x_0, \delta) \cap E = \{x_0\}$. In particular, if $||x - x_0|| < \delta \& x \in E$, then $x = x_0$. To check continuity at x_0 , fix $\varepsilon > 0$. Take our δ from above. Then

$$||x_0 - x|| < \delta \& x \in E$$

$$\implies x = x_0$$

$$\implies ||f(x) - f(x_0)|| = 0 < \varepsilon$$

Theorem 5.4. Let $E \subseteq \mathbb{R}^n$, $x_0 \in E$, $f: E \to \mathbb{R}^m$, and $g: E \to \mathbb{R}^m$ such that f and g are continuous at x_0 . Then,

- i.) f + g, cf, cg, $f \cdot g$ are continuous at x_0 .
- ii.) If m=1, then $\frac{f}{g}$ (restricted to the set where $g(x)\neq 0$) is also continuous at x_0 if $g(x_0)\neq 0$.

Proof. Trivial and left as an exercise for the reader.

Remark. If $f: E \to \mathbb{R}^m$ is given by

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix}$$

then f is continuous at $x_0 \in E \iff f_i$ is continuous at x_0 for each $1 \le i \le m$.

Theorem 5.5. Let $E \subseteq \mathbb{R}^n$, $F \subseteq \mathbb{R}^m$, $x_0 \in E$, $f : E \to F$, and $g : F \to \mathbb{R}^p$ be such that f is continuous at $f(x_0)$. Then $g \circ f : E \to \mathbb{R}^p$ is continuous at x_0 .

You have to be careful with continuity when taking inverses.

Example 5.6. This is continuous on the whole domain.

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ x - 1 & 2 < x \le 3 \end{cases}$$

This isn't:

$$f^{-1}(x) = \begin{cases} x & 0 \le x \le 1\\ x+1 & 2 < x \le 3 \end{cases}$$

So if a function is continuous, it's not necessarily the case that its inverse is also continuous. See Leoni's notes for example where continuity of f^{-1} is guaranteed.

6 Directional Derivatives and Differentiability

Definition 6.1 (Directional Derivative). Let $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}$, and $x_0 \in E$. Given a direction $v \in \mathbb{R}^n/\{0\}$, let L be the line through x_0 in direction v.

$$L = \{x_0 + tv : t \in \mathbb{R}\}$$

Assume x_0 is an accumulation point of $(L \cap E)$. Then the directional derivative of f at x_0 in direction v is

$$\frac{\partial f}{\partial v}(x_0) = \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t}$$

Definition 6.2 (Partial derivatives in the coordinate directions). With the same setup as the previous definition, $v = e_i$ (Google standard basis)

$$\frac{\partial f}{\partial e_i}(x_0) = \frac{\partial f}{\partial x_i}(x_0) = D_i f(x)$$

is the partial derivative of f with respect to x_i at x_0 .

Example 6.3. $E = \mathbb{R}, v = 1$

$$\frac{\partial f}{\partial 1}(x_0) = \lim_{t \to 0} \frac{f(x_0 + 1 \cdot t) - f(x_0)}{t} = f'(x_0)$$

Recall on that on \mathbb{R} , if f is differentiable at x_0 , then f is continuous at x_0 .

Example 6.4. The existence of directional derivatives does not imply continuity.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Take a vector $v \in \mathbb{R}^2$, with $v_1^2 + v_2^2 = 1$.

$$I_t := \frac{f(0+tv) - f(0)}{t} = \frac{f(t(v_1, v_2))}{t} = \frac{\frac{(tv_1)^2 t v_2}{(tv_1)^4 + (tv_2)^2}}{t}$$
$$I_t = \frac{1}{t} \left(\frac{v_1^2 v_2}{t^2 v_1^4 + v_2^2}\right)$$

If $v_2 \neq 0$,

$$\lim_{t \to 0} I_t = \frac{v_1^2 v_2}{v_2^2} = \frac{\partial f}{\partial v}(0)$$

If $v_2 = 0$, then $I_t = 0$, which also implies that the directional derivative should be 0. In sum:

$$\frac{\partial f}{\partial v}(0,0) \begin{cases} \frac{v_1^2}{v_2} & \text{if } v_2 = 0\\ 0 & \text{if } v_2 = 0 \end{cases}$$

All this tells us is that the directional derivative exists. So, is f continuous at (0,0)? Differentiability is stronger than continuity in functions from $\mathbb{R} \to \mathbb{R}$, but this isn't generally the case in higher-dimensional functions. Claim: f is not continuous at (0,0).

$$f(x, x^2) = \frac{1}{2}$$
$$f(x, 0) = 0$$

The limit at these paths are not equal, which implies discontinuity at (0,0).

Remark. If $f : \mathbb{R} \to \mathbb{R}$, then directional differentiability implies continuity. Given the example above, the same doesn't hold for higher-dimensional functions. (Note the distinction between directional derivatives and the stronger notion of differentiability below.)

Definition 6.5 (Differentiability). Let $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}$, and $x_0 \in E$ an accumulation point of E. Then f is differentiable at x_0 if there exists $\vec{b} \in \mathbb{R}^n$ depending

on x_0 such that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - \vec{b} \cdot (x - x_0)}{\|x - x_0\|} = 0$$

Remark. $T(x) = \vec{b} \cdot x$ is linear.

Definition 6.6 (Differentials). Say that f as before is continuous at $x_0 \in E$, we call $df(x_0) \cdot v = \vec{b} \cdot v$ the differential of f at x_0 .

Theorem 6.7. Let $E \subseteq \mathbb{R}^n$, $f: E \to \mathbb{R}$, and $x_0 \in E$ an accumulation point of E. If f is differentiable at x_0 , then f is continuous at x_0 .

Proof.

$$f(x) - f(x_0) = f(x) - f(x_0) - \vec{b} \cdot (x - x_0) + \vec{b} \cdot (x - x_0)$$

$$= \frac{f(x) - f(x_0) - \vec{b} \cdot (x - x_0)}{\|x - x_0\|} \|x - x_0\| + \vec{b} \cdot (x - x_0)$$

$$\leq \left\| \frac{f(x) - f(x_0) - \vec{b} \cdot (x - x_0)}{\|x - x_0\|} \right\| \|x - x_0\| + \|b\| \|x - x_0\|$$

$$\implies \lim_{x \to x_0} |f(x) - f(x_0)| \leq 0 = 0$$

Theorem 6.8. $E \subset \mathbb{R}^n$, $f: E \to \mathbb{R}$, $x_0 \in E^{\circ}$. If f is differentiable at x_0 , then

- i) There exists $\frac{\partial f}{\partial v}(x_0)$ for all $v \in \mathbb{R}^n$, ||v|| = 1 and $\frac{\partial f}{\partial v}(x_0) = df(x_0)v$.
- ii) For all $v \in \mathbb{R}^n$, ||v|| = 1,

$$\frac{\partial f}{\partial v}(x_0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_0)v_i$$

In other words,

$$\frac{\partial f}{\partial v}(x_0) = \nabla f(x_0) \cdot v.$$

Proof. $x_0 \in E^{\circ} \implies \exists r > 0, B(x_0, r) \subset E$. Take $v \in \mathbb{R}^n$, $||v|| = 1, x = x_0 + tv$. Then

$$||x - x_0|| = ||x_0 + tv - x_0|| = t ||v|| = t$$

If we choose t < r, then $x \in B(x_0, r) \subset E$. (To be continued...)