Name:.						
Roll No.	:			•••••		
Invigilat	or's Si	ignature :				
		CS/B.T	ech(N)/S	EM-1/M-101	/2012-13	
		2	2012			
		MATH	EMATIC	S-I		
Time Allotted : 3 Hours				Full Marks : 70		
	Th	e figures in the m	argin indi	cate full marks.		
Candia	lates (are required to giu as fa	ve their an r as practi		own words	
		GR	OUP – A			
		(Multiple Choi	се Туре 🤇	Questions)		
1. Che	oose t	he correct altern	atives for	•	following: $0 \times 1 = 10$	
i)	The	e sequence $\left\{ \left(-1\right) \right\}$) $n \frac{1}{n}$ is			
	a)	Convergent	b)	Oscillatory		
	c)	Divergent	d)	none of the	se.	
ii)	The	matrix $\begin{bmatrix} \cos \theta \\ -\sin \theta \end{bmatrix}$	$\begin{bmatrix} \sin \theta \\ \cos \theta \end{bmatrix}$ i	s		
	a)	Symmetric	b)	Skew-symm	netric	
	c)	Singular	d)	Orthogonal.		
1151 (N))				[Turn over	

iii) The value of t for which

 \overrightarrow{f} = (x + 3y) \overrightarrow{i} + (y - 2z) \overrightarrow{j} + (x + tz) \overrightarrow{k} is

solenoidal is

a) 2

b) - 2

c) C

d) 1

iv) The series $\sum \frac{1}{n^p}$ is convergent if

- a) $p \ge 1$
- b) $p \le 1$
- c) p > 1
- d) p < 1.

v) The two eigenvalues of the matrix

$$A = \begin{bmatrix} 2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 are 2 and - 2. The third

eigenvalue is

a) 1

b) 0

c) 3

d) 2.

vi) If Rolles theorem is applicable to $f(x) = x(x^2 - 1)$ in [0, 1], then c =

b) (

c) $-\frac{1}{\sqrt{3}}$

d) $\frac{1}{\sqrt{3}}$.

1151 (N)

2

vii) If $u = \frac{x^3 + y^3}{\sqrt{x^2 + y^2}}$, find the value of 'n' so that $xu_x + yu_y = nu$.

a) 0

b) 2

c) $\frac{1}{2}$

d) none of these.

viii) *n*-th derivative of $\sin(5x + 3)$ is

- a) $5^n \cos(5x + 3)$
- b) $5^n \sin\left(\frac{n\pi}{2} + 5x + 3\right)$
- c) $5^n \cos\left(\frac{n\pi}{2} + 5x + 3\right)$
- d) none of these.
- ix) The value of $\int\limits_C$ ($x\mathrm{d}x-\mathrm{d}y$) where C is a line joining

(0,1) to (1,0) is

a) 0

b) $\frac{3}{2}$

c) $\frac{1}{2}$

d) $\frac{2}{3}$.

x) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 \theta \, d\theta \text{ is }$

a) 0

b) $\frac{6.4.2}{7.5.3.1}$

c) $\frac{6!}{7!}$

d) none of these.

1151 (N)

3

[Turn over

- The characteristic equation of a matrix A is $X^3 + 3X^2 + 5X + 9 = 0$, then determinant of the matrix
 - 7 a)

b) 5

c)

- d)
- xii) Let A and B be two square matrices and A^{-1} , B^{-1} , exists. Then (AB) $^{-\,1}$ is
 - a) $A^{-1}B^{-1}$
- b) $B^{-1}A^{-}$

c) AB d) non of hese.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Verify Rolles theorem for the function

$$f(x) = |x|, -1 \le x \le 1.$$

- A and B are orthogonal matrix and |A| + |B| = 0. Prove 3. that A + B is singular.
- Find the n^{th} der vative of $\frac{x^2+1}{(x-1)(x-2)(x-3)}$. 4.
- 5. Let

$$f(x, y) = \frac{xy}{x + y^2}, (x, y) \neq (0, 0)$$

$$= 0, (x, y) = (0, 0)$$

Evaluate f_{xy} (0, 0) and f_{yx} (0, 0).

Find $\overrightarrow{div} \overrightarrow{F}$ and $\overrightarrow{curl} \overrightarrow{F}$ where 6.

$$\vec{F} = grad (x^3 + y^3 + z^3 - 3xyz).$$

1151 (N)

4

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) If $u = x^2 2y$, v = x + y + z, w = x 2y + 3z, find $\frac{\partial (u, v, w)}{\partial (x, y, z)}$.
 - b) Prove that $\begin{vmatrix} 1 & \alpha & \alpha^2 \beta \gamma \\ 1 & \beta & \beta^2 \gamma \alpha \\ 1 & \gamma & \gamma^2 \alpha \beta \end{vmatrix} = 0.$
 - c) If $v = f(x^2 + 2yz, y^2 + 2zx)$, prove that

$$\left(y^2 - zx\right)\frac{\partial v}{\partial x} + \left(x^2 - yz\right)\frac{\partial v}{\partial y} + \left(z^2 - xy\right)\frac{\partial v}{\partial z} = 0.$$

5 + 5 + 5

- 8. a) If $\theta = t^n e^{\frac{-r^2}{4t}}$, find what value of n will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$.
 - b) Using mean value theorem prove that

$$0 < \frac{1}{x} \log \left(\frac{e^x - 1}{x} \right) < x.$$

- c) If $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$ (n > 1), then show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$. 5 + 5 + 5
- 1151 (N) 5 [Turn over

- 9. a) State D'Alembert's ratio test for convergence of an infinite series. Examine the convergence or divergence of the series $\left(\frac{1}{3}\right)^2 + \left(\frac{1.2}{3.5}\right)^2 + \left(\frac{1.2.3}{3.5.7}\right)^2 + \dots$
 - b) If $y = e^{\tan^{-1}x}$, then show that $(1 + x^2) y_{n+2} + (2nx + 2x 1) y_{n+1} + n(n+1) y_n = 0$.
 - c) Find the extreme value of the function

$$f(x,y) = x^3 + y^3 - 3x - 12y + 20.$$
 5 + 5 + 5

10. a) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, hen verify that A satisfies its

own characteristic equation. Hence find A^{-1} and A^{9} .

- b) If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x y}\right)$, then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4\sin^2 u)\sin 2u.$
- c) Given the system of equation :

$$x_1 + 4x_2 + 2x_3 = 1$$
, $2x_1 + 7x_2 + 5x_3 = k$, $4x_1 + mx_2 + 10x_3 = 2k + 1$. Find for what values of k and m , the system has (i) an unique solution, (ii) no solution (iii) many solution.

1151 (N) 6

11. a) Show that $\overrightarrow{\nabla} r^n = nr^{n-2} \overrightarrow{r}$,

where
$$\vec{r} = \vec{i} x + \vec{j} y + \vec{k} z$$
.

- b) Evaluate $\int \int \sqrt{4x^2 y^2} \, dxdy$ over the triangle formed by the straight lines y = 0, x = 1 and y = x.
- c) Verify Stokes theorem for

 $\overrightarrow{F} = (2x - y) \hat{i} - yz^2 \hat{j} - y^2 z \hat{k}$, where *S* is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary. 5 + 5 + 5