Orbital Platform Revision 3

Reference Manual

Tim S., Electrical team, Flight Software team. Version 20241014.

Space and Satellite Systems at UC Davis

1 Overview

Orbital Platform Revision 3 (OPR3) is an integrated flight system module designed for the REALOP-1 cubesat mission. It features microcontrollers and many sensors, acting as the flight computer, avionics, and forming the core of the satellite electronics system. This document is a companion to OPR3 hardware that includes technical details as well as instructions for working with OPR3.

2 Features

2.1 Processors

The Primary microcontroller (MCU) is connected to both coprocessors (Radio MCU and MGT MCU) with asynchronous UART. All three microcontrollers can be programmed via the serial wire debug (SWD) protocol and the NRST signals made available on connectors. There is an additional bidirectional UART from Primary MCU available to the user for developing, debugging, and diagnosing the satellite system.

Each MCU includes an internal temperature sensing diode that has acceptable precision but needs a calibrated offset to achieve acceptable accuracy. The temperature information can be used to supplement the dedicated high quality temperature sensors.

2.1.1 Primary MCU [mcu0]

The Primary MCU [mcu0] is the most privileged microcontroller within the satellite. It is the first microcontroller to begin executing instructions after the hardware safety inhibit mechanisms are disengaged (REALOP-1 has three mechanical deployment switches and one apply/remove before flight (A/RBF) pin), and is responsible for conducting the mandated 30 minute software inhibit timer between satellite deployment and energizing of main power busses/rails.

The Primary MCU runs Flight Software (FSW) team's IntelliSat operating system/program, and has the ability to assert hardware reset to both of the two coprocessors and all sensors, and has control of all power rails besides [Vsys], which is always-on when there are no hardware inhibition and powers the main components of OPR3. Primary MCU is also connected to all diagnostic and instrumentation sensors on board the satellite, including temperature sensors and power monitor/diagnostic sensors.

The Primary MCU schedules experiments and manages all payloads and scientific equipment on board the satellite. It controls power distribution to all subsystems besides the always-on [Vsys] domain.

The Primary MCU is STM32L476ZGT \underline{x} where \underline{x} is "6" (standard industrial temperature range -40 °C to 85 °C) for development and engineering assembly versions, and "3" (extra extended industrial temperature range -40 °C to 125 °C) for flight candidate assembly versions. The higher temperature grade is merely a classification by ST indicating higher quality standards, but does not physically differ from any other temperature grade (identical silicon die and packaging process) and should make no difference for development purposes.

Pin name	Signal mnemonic	MCU Pin	Description
TX	mcu02-0tx	PD5	USART2 TX
RX	mcu02-0rx	PD6	USART2 RX

TX	mcu01-0tx	PG9	USART1 TX
RX	mcu01-0tx	PG10	USART1 RX
PWM	esc-pwm	PE9	
TX	esc-optx	PC4	USART3 TX AF7
RX	esc-oprx	PC5	USART3 RX AF7

2.1.2 Radio MCU [mcu1]

The Radio MCU [mcu1] controls two AX5043 single-chip radio transceiver chips, operating on VHF and UHF bands respectively. Radio MCU has the role of managing the radio transceivers in real time, providing and accepting data as needed, as directed by the Primary MCU. Like the Magnetorquer MCU [mcu2], it is STM32L431RCT6.

The Radio MCU also controls the power supply to each of the two transceiver systems. A logical enable signal must be asserted before the corresponding radio band can be configured and used. Cycling power to transceivers will cause the radio chips to go high impedance and lose register configurations. A full hardware and software reset followed by complete programming of all registers must be performed after a power cycle to the radio system. This ability to control power can be used to conserve power budget or issue an extreme-case physical hardware reset.

While any of the radio systems are powered down, the logic signals must be asserted to a low voltage or set to high impedance, to avoid risk of inadvertent and out-of-specification delivery of power to radio transceivers through protection diodes.

Pin name	Signal mnemonic	MCU Pin	Description
RX	mcu01-0rx	PA9	USART1 TX AF7
TX	mcu01-0tx	PA10	USART1 RX AF7

2.1.3 Magnetorquer MCU [mcu2]

The Magnetorquer (MGT) MCU controls a three-axis magnetorquer driver and coil subsystem that can be connected to OPR3 via cable harness. It is responsible for the real time control and monitoring of each MGT coil as directed by Primary MCU. Like the Radio MCU [mcu1], it is STM32L431RCT6.

Depending on the specific need and engineering considerations of the satellite system, the MGT MCU can be bypassed and not used, in the case that Primary MCU is directly connected to a driver MCU on another circuit board via the MGT UART port and cable harnesses. The ability to choose between controlling MGT using the on board coprocessor or an off board microcontroller provides flexibility to the mission design.

Pin name	Signal mnemonic	MCU Pin	Description
RX	mcu02-0rx	PB6	USART1 TX AF7
TX	mcu02-0tx	PB7	USART1 RX AF7

PWM1	mgt-drv0-pwm1	PA0	TIM2_CH1 AF1
PWM0	mgt-drv0-pwm0	PA1	TIM2_CH2 AF1
PWM1	mgt-drv1-pwm1	PB10	TIM2_CH3 AF1
PWM0	mgt-drv1-pwm0	PB11	TIM2_CH4 AF1
PWM0	mgt-drv2-pwm0	PA9	TIM1_CH2 AF1
PWM1	mgt-drv2-pwm1	PA8	TIM1_CH1 AF1
ISEN	mgt-drv0-isen	PC1	
ISEN	mgt-drv1-isen	PC2	
ISEN	mgt-drv2-isen	PC3	

2.2 Sensors

Each inertial sensor (Inertial measurement unit, IMU) and magnetometer (MAG) includes an internal temperature sensing diode that has acceptable precision but needs a calibrated offset to achieve acceptable accuracy. The temperature information can be used to supplement the dedicated high quality temperature sensors.

2.2.1 Inertial sensors [imu0] and [imu1]

There are two redundant ASM330 inertial sensors onboard OPR3 which each include a 3 axis gyroscope and 3 axis accelerometer within the package. The gyroscopes indicate the rate of rotation of the satellite and are used with Attitude Determination and Control Systems (ADCS) team's algorithms and on board actuators to locate and control the satellite. The gyroscopes also support science experiments like verification of the hard disk drive (HDD) reaction wheel payload.

2.2.1.1 imu0 (U5)

We will be using **SPI3 for imu0**

Pinning information for imu0 (reference designator U5)

Pin name	Signal mnemonic	MCU Pin	Description
SDO	imu0-miso	PB4	SPI3_MISO
SDI	imu0-mosi	PB5	SPI3_MISO
SCK	imo0-sck	PB3	SPI3_SCK
NCS	imu0-ncs	PB6	GPIO for chip select
INT1	imu0-int1	PG15	Interrupt for IMU events
INT2	imu0-int2	PB7	Interrupt for IMU events

2.2.1.2 imu1 (U3)

imu1 is connected to mcu0's SPI2

Pinning information for imu1:

Pin name	Signal mnemonic	MCU Pin	Description
MISO	imu1-miso	PB14	SPI2_MISO
MOSI	imu1-mosi	PB15	SPI2_MOSI
SCK	imu1-sck	PB13	SPI2_SCK
CS	imu1-ncs	PB12	SPI2_NSS (or GPIO chip select)

i	imu1-int1	PB10	
i	imu1-int2	PB11	

2.2.2 Magnetometers [mag0] and [mag1]

There are two redundant QMC5883L 3 axis magnetometers on board OPR3. They are basically digital compasses that enable measurement of the earth's magnetic field, when not disturbed by the activity of magnetorquers or other electronic systems. The magnetometers provide an important input to ADCS software and can supplement verification of experiments like the HDD reaction wheel payload.

2.2.2.1 mag0 (U8)

Pinning information for mag0:

Pin name	Signal mnemonic	MCU Pin	Description
SDA	mag0-sda	PB9	
SCL	mag0-scl	PB8	
DRDY	mag0-drdy	PE0	

2.2.2.2 mag1 (U4)

Pinning information for mag0:

Pin name	Signal mnemonic	MCU Pin	Description
SDA	mag0-sda	PF1	
SCL	mag0-scl	PF0	
DRDY	mag0-drdy	PE1	

2.2.3 Temperature sensors [tmp0] and [tmp1]

There are two redundant TMP275 high accuracy temperature sensors on board OPR3. They provide scientific data and instrumentation regarding the health of the satellite.

2.2.4 Power monitor [pmon]

There is an INA226 voltage, current, and derived power sensor IC on board OPR3. It monitors the power input to and consumed by OPR3 as instrumentation regarding the health of the satellite.

2.3 Memories

Although we provide suggestions on the usage of memory peripherals on board OPR3, their usage is completely optional. We expect the flight software team to use them as they see fit. It is important to note that there are three mandatory error-corrected NAND flash devices in the form of the three microcontrollers on board OPR3. They contain pseudo-ROM code that is only accessible by the vendor, STMicroelectronics, and runs upon startup and before execution of any user code. This reduces the reliability of our electronic system, but because there are many successful missions in low earth orbit using very similar STM32 microcontrollers with the same vendor ROM limitation, we expect it to not pose a significant issue to the integrity of our mission.

2.3.1 NAND flash [nand]

The NAND flash is W25Q128JVS and can retain a relatively large amount of data (128 Mbit or 16 MB) in non-volatile storage. Due to the physical nature of the internal construction of flash storage cells, we believe that NAND flash is likely susceptible to radiation events due to the elevated amount of ionizing radiation in low earth orbit. Radiation events could result in a range of symptoms from individual bit flips, page erasure, whole chip erasure, or permanent damage to chip function. We intend NAND flash to be used only for

non-flight-critical data so that the mission can still continue in case of disruption to NAND flash. Examples of flight-critical data include flight software program code, calibration variables, etc. Examples of non-flight-critical data include science collected in orbit, as long as the experiments can be repeated.

2.3.2 Ferroelectric random access memory [fram]

The FRAM chip is MB85RS256B and can retain a relatively small amount of data (256 kbit or 32 kB) in non-volatile storage. The operating principle of FRAM in comparison to flash memory yields expectation that FRAM is more tolerant of ionizing radiation. FRAM is provisioned to store smaller but more important or less replaceable data.

2.4 Radio transceivers

2.4.1 UHF transceiver

Chip U10

Pin mnemonic	MCU Pin	MCU Config	Description
DATA	mcu1, PC5		Data input/output
DCLK	mcu1, PC4		Clock output
SYSCLK	NC		
SEL	mcu1, PA3	gpio chip select	CS for UHF SPI1 bus
CLK	mcu1, PA5	SPI1_SCK	SCLK for UHF SPI1 bus
MOSI	mcu1, PA7	SPI1_MOSI	MOSI for UHF SPI1 bus
MISO	mcu1, PA6	SPI1_MISO	MISO for UHF SPI1 bus
IRQ	mcu1, PA2		TX/RX interrupt
PWRAMP	mcu1, PA1		UHF power amplifier control
ANTSEL	mcu1, PA0		UHF antenna select
GPADC1	mcu1, PC1		GPADC input
GPADC2	mcu1, PC0		GPADC input

2.4.2 VHF transceiver

Chip U15

Pin mnemonic	MCU Pin		Description
DATA	mcu1, PC8		Data input/output
DCLK	mcu1, PC7		Clock output
SYSCLK	NC		
SEL	mcu1, PC6		CS for VHF SPI bus
CLK	mcu1, PB13		SCLK for VHF SPI bus
MOSI	mcu1, PB15		MOSI for VHF SPI bus
MISO	mcu1, PB14		MISO for VHF SPI bus
IRQ	mcu1, PB11		TX/RX interrupt
PWRAMP	mcu1, PB10		VHF power amplifier control
ANTSEL	mcu1, PB2		VHF antenna select
GPADC1	mcu1, PB1		GPADC input
GPADC2	mcu1, PB0	_	GPADC input

2.5 Auxiliary features

2.5.1 User LEDs

There are six user addressable LEDs of different colors on OPR3 to aid in development and debugging.

LED	Connected MCU	Pin	Polarity	Color
D1	mcu0	PE2	Push/active high	Red
D2	mcu0	PD3	Push/active high	Green
D3	mcu0	PD1	Push/active high	Blue
D4	mcu0	PD14	Push/active high	White
D5	mcu0	PG11	Push/active high	Ice Blue
D6	mcu1	PC2	Push/active high	Yellow

2.5.2 User pushbutton [SW1]

Signal mnemonic	MCU Pin	Description
SW1	PG12	Push button

2.5.3 Debug GPIO expansion

2.5.4 Debug solder pads

3 Connectors

3.1 Connector types

3.2 Connector details

3.2.1 Connector J0 [mgttlm]

J0 [mgttlm] is the magnetorquer telemetry connector, intended to provide current feedback from the magnetorquer coils and an I2C bus for instrumentation to the MGT MCU [mcu2].

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	mgt-diag-ana-isen	Analog CMOS	Input	mcu2 PC0	Analog current signal for all magnetorquer H-bridge drivers
2	GND	Power supply			Circuit ground
3	mgt-diag-scl	Digital CMOS	Output	mcu2 PB8	SCL for MGT instrumentation I2C bus
4	mgt-diag-sda	Digital CMOS	Bidir.	mcu2 PB9	SDA for MGT instrumentation I2C bus
5	GND	Power supply			Circuit ground
6	mgt-uart-optx	Digital CMOS	Output	mcu2 PA3	UART TX from OPR3 to MGT
7	GND	Power supply			Circuit ground
8	mgt-uart-oprx	Digital CMOS	Input	mcu2 PA2	UART RX from MGT to OPR3

3.2.2 Connector J1 [mgt0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	mgt-drv0-isen	Analog CMOS	Input	mcu2, PC1	

2	mgt-drv0-pwm0	Digital CMOS	Output	mcu2, PA1	
3	GND	Power supply			Circuit ground
4	mgt-drv0-pwm1	Digital CMOS	Output	mcu2, PA0	

3.2.3 Connector J2 [mgt1]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	mgt-drv1-isen	Analog CMOS	Input	mcu2, PC2	
2	mgt-drv1-pwm0	Digital CMOS	Output	mcu2, PB11	
3	GND	Power supply			Circuit ground
4	mgt-drv1-pwm1	Digital CMOS	Output	mcu2, PB10	

3.2.4 Connector J3 [mgt2]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	mgt-drv2-isen	Analog CMOS	In put	mcu2, PC3	
2	mgt-drv2-pwm0	Digital CMOS	Output	mcu2, PA9	
3	GND	Power supply			Circuit ground
4	mgt-drv2-pwm1	Digital CMOS	Output	mcu2, PA8	

3.2.5 Connector J4 [mgtaux]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	mgtaux0	GPIO	Bidir.	mcu2, PA4	Auxiliary GPIO connected to mcu2
2	mgtaux1	GPIO	Bidir.	mcu2, PA5	Auxiliary GPIO connected to mcu2
3	GND	Power supply			Circuit ground
4	mgtaux3	GPIO	Bidir.	mcu2, PA7	Auxiliary GPIO connected to mcu2
5	mgtaux2	GPIO	Bidir.	mcu2, PC4	Auxiliary GPIO connected to mcu2
6	GND	Power supply			Circuit ground
7	mgtaux4	GPIO	Bidir.	mcu2, PB0	Auxiliary GPIO connected to mcu2
8	mgtaux5	GPIO	Bidir.	mcu2, PB1	Auxiliary GPIO connected to mcu2

3.2.6 Connector J5 [radaux0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	radaux0-gp0	GPIO	Bidir.	mcu1 PB3	Auxiliary GPIO connected to mcu1
2	GND	Power supply			Circuit ground

3	radaux0-gp1	GPIO	Bidir.	mcu1, PB4	Auxiliary GPIO connected to mcu1
4	radaux0-gp2	GPIO	Bidir.	mcu1, PB5	Auxiliary GPIO connected to mcu1

3.2.7 Connector J6 [pan0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	PV3V3	Power	Output		3.3 V (Vsys) output through 100 ohm resistor
2	GND	Power supply			
3	pan0-scl	Digital CMOS	Output	mcu0, PG14	
4	pan0-sda	Digital CMOS	Bidir.	mcu0, PG13	
5	GND	Power supply		GND	
6	pan0-pd0	Analog CMOS	Input	mcu0, PC3	
7	GND	Power supply			
8	pan0-pd1	Analog CMOS	Input	mcu0, PF4	

3.2.8 Connector J7 [radaux1]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	radaux1-gp0	GPIO	Bidir.	mcu1 PB6	Auxiliary GPIO connected to mcu1
2	GND	Power supply		GND	Circuit ground
3	radaux1-gp1	GPIO	Bidir.	mcu1 PB7	Auxiliary GPIO connected to mcu1
4	radaux1-gp2	GPIO	Bidir.	mcu1 PB8	Auxiliary GPIO connected to mcu1

3.2.9 Connector J8 [cam]

Sponsored by APRL

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	cam-oprx	Digital CMOS	Input	mcu0, PC11	UART RX from CAM to OPR3
2	cam-optx	Digital CMOS	Output	mcu0, PC10	UART TX from OPR3 to CAM
3	GND	Power supply			Circuit ground
4	cam-sck	Digital CMOS	Output	mcu0, PB13	SCK for CAM SPI bus

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	cam-oprx	Digital CMOS	Input	mcu0, PC11	UART RX from CAM to OPR3
5	cam-miso	Digital CMOS	Input	mcu0, PB14	MISO for CAM SPI bus
6	GND	Power supply			Circuit ground
7	cam-mosi	Digital CMOS	Output	mcu0, PB15	MOSI for CAM SPI bus
8	cam-ncs	Digital CMOS	Output	mcu0, PB12	nCS for CAM SPI bus

3.2.10 Connector J9 [uhf-rx]

Skip - only one pin for radios!

- 3.2.11 Connector J10 [uhf-tx]
- 3.2.12 Connector J11 [vhf-rx]
- 3.2.13 Connector J12 [vhf-tx]
- 3.2.14 Connector J13 [pyro0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	GND	Power supply			Circuit ground
2	pyro0-fire	Digital CMOS	Output	mcu0 PB2	
3	GND	Power supply			Circuit ground
4	pyro0-isen	Analog CMOS	Input	mcu0 PF8	

3.2.15 Connector J14 [pyro1]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	GND	Power supply			Circuit ground
2	pyro1-fire	Digital CMOS	Output	mcu0 PF12	
3	GND	Power supply			Circuit ground
4	pyro1-isen	Analog CMOS	Input	mcu0 PF5	

3.2.16 Connector J15 [pan1]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	PV3V3	Power	Output		3.3 V (Vsys) output through 100 ohm resistor
2	GND	Power supply			Circuit ground
3	pan1-scl	Digital CMOS	Output	Mcu0, PF11	
4	pan1-sda	Digital CMOS		Mcu0, PF2	
5	GND	Power supply			

6	pan1-pd0	Analog CMOS	Mcu0, PF9	
7	GND	Power supply		
8	pan1-pd1	Analog CMOS	Mcu0, PA0	

3.2.17 Connector J16 [pan4]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	PV3V3	Power supply	Output		3.3 V (Vsys) output through 100 ohm resistor
2	pan4-pd0	Analog CMOS	Input	MCU0, PC0	
3	GND	Power supply			
4	pan4-pd1	Analog CMOS	Input	MCU0, PC1	

3.2.18 Connector J17 [batmon]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	PVBAT	Analog Power	Input		Direct battery voltage sensing
2	batmon-sda	Digital CMOS	Bidir.	MCU0, PH0	
3	GND	Power supply			
4	batmon-scl	Digital CMOS	Bidir.	MCU0, PH1	

3.2.19 Connector J18 [pan5]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	Net-(J18-Pin_1)				
2	pan5-pd0	Analog CMOS	Input	Mcu0 PC2	
3	GND	Power supply			
4	pan5-pd1	Analog CMOS	Input	Mcu0 PC3	

3.2.20 Connector J19 [pan2]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	Net-(J19-Pin_1)				
2	GND	Power supply			
3	pan2-scl	Digital CMOS	Bidir.	mcu0	

				PG0	
4	pan2-sda	Digital CMOS	Bidir.	MCU0, PG1	
5	GND	Power supply			
6	pan2-pd0	Analog CMOS	Input	MCU0, PA1	
7	GND	Power supply			
8	pan2-pd1	Analog CMOS	Input	MCU0, PA2	

3.2.21 Connector J20 [aux0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	aux0-uart-optx	Digital CMOS	Output	MCU0, PC12	
2	GND	Power supply			
3	aux0-uart-oprx	Digital CMOS	Input	MCU0, PD2	
4	GND	Power supply			

3.2.22 Connector J21 [esc1]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	GND	Power supply			
2	esc-pwm	Digital CMOS	Output	MCU0, PE9	
3	GND	Power supply			Circuit ground
4	esc-gpio	GPIO	Bidir.	MCU0, PE7	

3.2.23 Connector J22 [esc0]

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	GND	Power supply			
2	esc–optx	Digital CMOS	Output	MCU0, PC4	
3	GND	Power supply			Circuit ground
4	esc-oprx	Digital CMOS	Input	MCU0, PC5	

3.2.24 Connector J23 [aux2] - mcu0

Pir	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	aux2-gp0	GPIO	Bidir.	PA3	
2	aux2-gp1	GPIO	Bidir.	PF13	

3	GND	Power supply			Circuit ground
4	aux2-gp2	GPIO	Bidir.	PF14	
5	aux2-gp3	GPIO	Bidir.	PF15	
6	GND	Power supply			Circuit ground
7	aux2-gp4	GPIO	Bidir.	PE8	
8	aux2-gp5	GPIO	Bidir.	PD14	White LED

3.2.24 Connector J24 [aux1] - mcu0

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	aux1-gp0	GPIO	Bidir.	PD8	
2	aux1-gp1	GPIO	Bidir.	PD9	
3	GND	Power supply			Circuit ground
4	aux1-gp2	GPIO	Bidir.	PD10	
5	aux1-gp3	GPIO	Bidir.	PD11	
6	GND	Power supply			Circuit ground
7	aux1-gp4	GPIO	Bidir.	PD12	
8	aux1-gp5	GPIO	Bidir.	PD13	

3.2.24 Connector J24 [aux1] - mcu0

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
1	aux1-gp0	GPIO	Bidir.	PD8	
2	aux1-gp1	GPIO	Bidir.	PD9	
3	GND	Power supply			Circuit ground
4	aux1-gp2	GPIO	Bidir.	PD10	
5	aux1-gp3	GPIO	Bidir.	PD11	
6	GND	Power supply			Circuit ground
7	aux1-gp4	GPIO	Bidir.	PD12	
8	aux1-gp5	GPIO	Bidir.	PD13	

3.2.24 Connector J28 [mcu0] - mcu0

Pin	Signal mnemonic	Туре	Direction	MCU Pin	Description
8	mcu0-dbgrx	GPIO	Bidir.	PG8	LPUART1_RX
7	mcu0-dbtx	GPIO	Bidir.	PG7	LPUART1_TX
6	GND	Power supply			Circuit ground
5	mcu0-nrst	GPIO	Bidir.	NRST	
4	mcu0-swdio	GPIO	Bidir.	PA13	
3	GND	Power supply			Circuit ground
2	mcu0-swclk	GPIO	Bidir.	PA14	
1	v3v3	Power supply			

4 Usage

4.1 Precautions

4.1.1 Electrical overstress

Absolute maximum conditions

Parameter mnemonic	Parameter description	Min.	Тур.	Max.	Unit	Notes
Vin	Main power input port voltage	-0.3	4.2	5.5	V	
Vsys	Main system voltage	-0.3	3.3	3.4	٧	
Ipin	Current through any connector pin besides main power input	-10		20	mA	

4.1.2 Mechanical damage

Avoid concentrated force or shock against individual components on the PCB, like decoupling capacitors or integrated circuits. Multilayer ceramic capacitors are highly susceptible to developing cracks and failing short. The edges and the back side of the PCB are significantly more resilient against impact.

If there are thin debug wires soldered to surface mount test pads, exercise extreme caution to avoid pulling them off, as they are very fragile.

- **4.2 Power supplies**
- 4.3 Development and diagnostic access
- 4.4 Initializing the system
- **4.5 Configuring components**
- 4.6 Interfacing with external modules and subsystems