Distributed Algorithms 2022/2023 (practical exercise)

Leader election

- **1** Find the expected value for the random variable $X \sim Geo(p)$.
- **2 –** Find the variance of the random variable $X \sim Geo(p)$.
- **3** Let $p \in [0,1]$ and $n \ge k \ge 1$, $n,k \in \mathbb{N}$. For what value of the argument a function f takes the maximum value?

a.
$$f(p) = np(1-p)^{n-1}$$
,

b.
$$f(n) = np(1-p)^{n-1}$$

C.
$$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- **4** Prove that $(1+x)^r \ge 1 + rx$ for $x \ge -1, r \ge 1$.
- **5 –** Prove that $(1+x)^r \le 1 + rx$ for $x \ge -1, r \in (0,1)$.
- **6** Prove that $1 + x \le e^x$ for $x \in \mathbb{R}$.
- **7** Prove that $\frac{x}{e^x} < \frac{1.5}{x^2}$ for x > 0.
- **8** Let $f_i(n)=n\frac{1}{2^i}\left(1-\frac{1}{2^i}\right)^{n-1}$. Prove that functions $f_i(2^{i-1})$, $f_{i+1}(2^{i-1})$ are decreasing and function $f_{i-1}(2^i)$ is increasing for $i\geq 2$.
- **9** Present the definition of the <u>Lambert W</u> functions family and draw its real branches.
- **10** Use Lambert W function to analytically determine real solutions to the equation

$$3^x = x^3$$

What is Lambert's W function called in Mathematica?

11 — Have a look at this paper and show that for $x \ge e$

$$\ln x - \ln \ln x < W_0(x) \le \ln x - \frac{1}{2} \ln \ln x$$
.

12 – Completion of the lecture proof. Check that if $K \geq 1, f > 1, u \geq 2$ and

$$3e(K+1)u^{\frac{-1}{2(K+1)}} \ge 1 - \frac{1}{f}$$
 then $K \ge \frac{\ln u}{2W_0(\frac{3e}{2}\frac{f}{f-1}\ln u)} - 1$.