

Mining Subgroups with Exceptional Transition Behavior

Florian Lemmerich¹, Martin Becker², Philipp Singer¹ Denis Helic³, Andreas Hotho^{2,4}, Markus Strohmaier¹

¹ GESIS – Leibniz Institute for the Social Sciences, Cologne & University of Koblenz-Landau

² University of Würzburg

³ TU Graz

⁴ L3S Research Center, Hannover

San Francisco - KDD - 17th of August 2016

Transition Behavior

Overall dataset

Data Preparation

(a) Sequence data with background knowledge

	A_M	_		A_D		_
Source State	Target State	Gender	Age	Hour	Weekday	# Visits of user
Α	В	f	34	14	Tue	2
В	A	m	17	20	Sat	4
Α	C	m	17	23	Sat	4
C	В	m	17	1	Sun	4
C	A	f	25	11	Wed	3 3
Α	В	f	25	12	Wed	3
C	A	m	32	13	Sat	4
A C C A C A C	B A C B A C B	m	32	15	Sat	4
C	В	m	32	17	Sat	4

(b) Transition dataset

Exceptional Model Mining

Fask

Find **DESCRIPTIONS** of subsets of the data that imply **EXCEPTIONAL** (=significantly different) **PARAMETERS** with respect to a certain **MODEL CLASS**.

Example

"In the overall data,
there is a strong correlation between
duration and distance_travelled
This is not the case for the subgroup
age > 60 A country = US"

Exceptional Model Mining: Approach

Studied model classes:

- Correlation coefficient
- Linear regression
- Decision rules (classifier)
- Bayesian networks
- **>** ..
- No models for sequential data We need another model class!

New model class requires new interestingness measure!

First-order Markov Chains

- Model for sequential data (sequences of states)
- Memoryless process:
 Probability of the next state depends only on the current state
- Well established and frequently used in many areas:
 Human mobility & navigation, economics, metereology, ...

Interestingness Measure: General

- Create "score" for each candidate subgroup
- Reflects how interesting/exceptional the transitions for a subgroup is
- Search algorithms: Return the *k* subgroups with the best scores
- Interestingness measure are subjective, but...
- ... should be able to distinguish influence factors from random noise (in artificial data)

Interestingness Measure: Distance Measure

- Compute transition count matrix for *dataset*, transition probability matrix
- Compute transition count matrix for *subgroup*, transition probability matrix
- Compare rowwise (Manhattan-distance, KL-divergence, Hellinger distance)
- Weight with #transition in this row (subgroup)

A_M		_		A_D		_
Source State	Target State	Gender	Age	Hour	Weekday	# Visits of user
Α	В	f	34	14	Tue	2 4
В	A C	m	17	20	Sat	4
Α	C	m	17	23	Sat	4
C	В	m	17	1	Sun	4
C	A	f f	25	11	Wed	3
Α	В	f	25	12	Wed	3 3
C	A C	m	32	13	Sat	4
A C C A C	C	m	32	15	Sat	4
C	В	m	32	17	Sat	4

Source State

Interestingness Measure: Distance M

- Compute transition count matrix for dataset atrix
- Compute transition count matrix for su atrix
- problem: Compare rowwise (Manhattan
- Weight with #transition

Sat

Sat

Sun Wed Wed Sat Sat Sat

17

17

Distance is heavily size influenced by subgroup size

transitions in that row

that row

Interestingness Measure: Random Samples

- Draw stratified random samples R₁, ... R_r (same size as subgroup)
- For each random sample compute the distance
- Build a distribution of false discoveries from the sample distances
- Compute z-score of the distance of the subgroup:
- z-score (g, D) = $\frac{\omega_{tv}(g,D) \mu(\omega_{tv}(R_1,D), \dots, \omega_{tv}(R_r,D))}{\sigma(\omega_{tv}(R_1,D), \dots, \omega_{tv}(R_r,D)) + \varepsilon}$

Interestingness Measure: Additional Issues

- How many random samples?
 - Speed Accuracy
 - Difficult to say in general
 - Can estimate precision of the result with bootstrapping procedure
- How to check significance of findings?
 - If distribution of false discoveries approx. normal: Use z-score directly
 - Otherwise: Draw more samples, compute empirical p-value
 - Always apply Bonferroni-adjustment for multiple comparisons

Interestingness Measure: Summary

"How different is the distance between the parameter matrix of the subgroup and the matrix of the dataset compared to the respective distances of stratified random samples?"

Subgroup Search

- Any search algorithm for EMM can be employed:
 - Depth-First-Search
 - Best-First-Search
 - Beam-Search

— ...

random # transitions in # states in the dataset the dataset

• Evaluation of one candidate subgroup: $O(r * (N + S^2))$

Investigate Hypotheses

- Recently, user-defined hypotheses on state-transitions have been studied Example for mobility data:
 - "People navigate to a state, which is nearby and contain a Point-of-Interest"
 - "People all move from A to B, from B to C, and from C to A"
- Hypothesis is formalized as a matrix of transition probabilities

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{tabular}{l} \mbox{\it "People always move from A to B,} \\ \mbox{\it from B to C,} \\ \mbox{\it and from C to A"} \\ \end{tabular}$$

- Can use same approach to find subgroups that match/contradict this hypothesis:
 - Replace dataset transition matrix with hypothesis
 - High score: Subgroup deviates from the hypothesis exceptionally strong
 - Low score: Subgroup matches the hypothesis exceptionally well

Evaluation: Synthetic Data, Random Walker example

- Network of colored nodes
- Generate transitions with Random Walkers
 - Source/target of the transition (model attributes)
 - Type of the Walker
 - Randomly assigned noise attributes
- Each random walker in the network with 2 types:
 - "Random": Transition to all neighbors with same probability
 - "Homophile": Transition with higher probability to the same color
- Goal:
 - Identify the walker type as the attribute that influences transitions
 - Which subgroups match/predict a "homophile" hypothesis

Results: Random Walker

Subgroups deviating from the dataset:

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
Type = Homophile	200,915	35.67 ± 0.78	51,929	125.96
Type = Random	799,085	34.34 ± 0.80	51,929	31.73
Noise9 = False	681,835	2.25 ± 0.06	51,358	36.27
Noise9 = True	318,165	2.23 ± 0.06	51,358	77.94
Noise2 = False	18,875	1.80 ± 0.05	14,844	394.51

Strongly significant even for weak signals!

Non-significant for noise

Subgroups that are most "homophile":

Description	# Inst.	q_{tv} (score)	ω_{tv}	Δ_{tv}
Type = Homophile	200,915	12.10 ± 0.27	389,841	981.04
Noise $4 = False$	480,870	2.69 ± 0.07	934,190	981.20
Noise19 = False	657,235	2.27 ± 0.06	1,276,868	981.20
Noise1 = False	530,710	1.99 ± 0.05	1,031,101	981.20
Noise0 = True	523,410	1.74 ± 0.05	1,016,899	981.21

Application Example: Flickr

- Sequences of user locations derived from uploaded pictures (in Manhattan)
- Locations mapped to tracts (areal units) for discrete state space
- Attributes:
 - # Photos
 - # Views of picture
 - Months, weekday, hour of the day
 - Tourist/non-tourist
 - Country of origin of the user
- Additional hypothesis: PROXIMATE POI
 "People navigate to a state, which is nearby and contain a Point-of-Interest

Results: Flickr

Subgroup matching the PROXIMATE-POI hypothesis:

Description	# Inst.	$-q_{tv}$ (score)	ω_{tv}	Δ_{tv}
# Photos > 714	76,859	58.59 ± 1.30	80,690	164.16
# PhotoViews < 12	76,573	21.56 ± 0.50	88,948	185.78
Hour = 12h-13h	25,022	14.04 ± 0.32	29,590	187.84
# Photos = 228–714	77,448	10.63 ± 0.23	91,877	193.57
Tourist = True	76,667	10.60 ± 0.24	91,214	197.79
Hour = 14h-15h	27,420	10.51 ± 0.25	33,028	194.40
Hour = 11h-12h	20,323	$\boldsymbol{9.18 \pm 0.21}$	24,613	196.99

(b) Transitions of tourists

Conclusion

- New approach for mining subgroup with exceptional transition behavior
- Apply Exceptional Model Mining with first-order Markov chain models
- Interestingness measure for this model class
- Can also investigate user-defined hypotheses
- Fvaluation:
 - Tested with synthetic data
 - Demonstrated usage in real-world scenarios

Mining Subgroups with Exceptional Transition Behavior

Florian Lemmerich¹, Martin Becker², Philipp Singer¹ Denis Helic³, Andreas Hotho^{2,4}, Markus Strohmaier¹

¹ GESIS – Leibniz Institute for the Social Sciences, Cologne & University of Koblenz-Landau

² University of Würzburg

³ TU Graz

⁴ L3S Research Center, Hannover

San Francisco - KDD - 17th of August 2016