Chapter1 神经元和数学方法

黄志权

2023年5月30日

目录

第一章	LIF 模型 (Leaky-Integrate-and-fire models)	1
1.1	膜电压 $u(t)$ 演变的线性微分方程推导 \dots	1
1.2	输入电流为周期性驱动及其傅里叶变换	6
1.3	LIF 模型的局限性	7
1.4	总结	8
1.5	练习题	9

第一章 LIF 模型

(Leaky-Integrate-and-fire models)

神经元的动力模型可以被简化为: 树突接收若干的脉冲信号,并积累到细胞膜上,致使细胞膜电压改变,从而产生动作电位。LF 模型则是将动作电位描述成事件的模型。

1.1 膜电压 u(t) 演变的线性微分方程推导

对于神经元细胞,我们可以将其想象为如下的 RC 电路。细胞膜就像是一个与电阻并联的电容器,而电阻连接着一个电压为 u_{rest} 电池。当没有外界输入时,膜电压 u(t) 为初始值 u_{rest} ; 当有外界脉冲输入时,相当于给电容提供电流为 I(t) 的充电,从而改变模电压 u(t)。//PS: 这个电阻也被称为漏电阻。由于在没有外界输入时,膜上电荷会逐渐穿过细胞膜泄露出去,让膜电压回归 u_{rest} ,因此引入一个漏电阻来模拟这种现象。

图 1.1: 细胞膜等效电路

考虑 I(t) 不为零的情况,即有外界输入时,来分析膜电压的变化。首先总电流由并联电路支电流和组成 $I(t) = I_r + I_C$ 。即:

$$I(t) = \frac{u(t) - u_{rest}}{R} + C\frac{du(t)}{dt}$$
(1.1)

模仿电路分析,定义膜时间常数 (membrane time constant) $\tau_m = RC$ 。 从而可以得到 u(t) 的线性微分方程:

$$\tau_m \frac{du(t)}{dt} = -[u(t) - u_{rest}] + RI(t) \tag{1.2}$$

上式在电路分析中称为 RC 电路响应方程,在神经科学领域称为无源膜方程 (equation of a passive membrane)。这个方程的解分为两个部分。即输入脉冲的充电过程(零状态响应),和没有输入脉冲,电压泄露到 u_{rest} 的过程(零状态响应)。首先是输入脉冲的充电过程(零状态响应),我们假设输入电流脉冲在 t_0 时刻是一个幅值为 I_{max} 的方波,则其方程如下:

$$u(t) = u_{rest} + I_{max}R(1 - e^{-\frac{t - t_0}{\tau_m}})$$
(1.3)

图 1.2: 脉冲充电图

然后是电压泄露到 u_{rest} 的过程(零状态响应),假设脉冲在 t_1 时刻结束:

$$u(t) = u_{rest} + \Delta u R e^{-\frac{t-t_1}{\tau_m}}$$

$$\Delta u = u(0) - u_{rest}$$
(1.4)

图 1.3: 脉冲放电图

从而,当没有外部脉冲输入的情况下,膜电压会以指数形式衰减到 u_{rest} 。 其衰减时间系数 τm 一般为 10 ms,与一般持续 1 ms 的尖峰脉冲相比长了很多。

我们可以绘制对于方波输入,膜电压的变化图。我一开始打算利用解析解来绘制,但是发现分段条件太难设置了。因此我选择使用微分方程 1.2来

模拟,这样子写成递归函数,会非常简便好看。代码和仿真图如下:

图 1.4: 方波输入响应图

接下来,考虑输入电流 I(t) 为一个持续时间为 Δ 的一个非常短的脉冲。 其膜电压轨迹由 1.3改写得: $u(\Delta) = u_{rest} + I_{max} R(1 - e^{-\frac{\Delta}{r}})$ 。对 e 指数函数 做泰勒展开,由于 Δ 已经很小了,因此只需考虑其一阶情况即可:

$$u(\Delta) = u_{rest} + I_{max}R\frac{\Delta}{\tau_m} \qquad for \Delta << \tau_m$$
 (1.5)

然后我们把 Δ 推至无穷小,并 I(t) 变形为一个 δ 函数。从而得到一个 总电量 $q=I_0\Delta$ 不变的脉冲。将 $q=I_0\Delta$ 以及 $\tau_m=RC$ 代入上式可得:

$$u(\Delta) = u_{rest} + \frac{q}{C} \tag{1.6}$$

然后,可以得到输入脉冲结束后电压泄露到 u_{rest} 的过程。将上式带入 1.4,可得:

$$u(t) = u_{rest} + \frac{q}{C}e^{-\frac{t-t_0}{\tau_m}}$$
 (1.7)

从而可以发现,非常窄电流脉冲输入等价于给细胞膜增加了一个 $\frac{q}{C}$ 的电压。当膜电压高于阈值时,会发射一个脉冲,然后膜电压被重置为 u_r ,一定要注意, $u_r!=u_{rest}$,而是比 u_{rest} 要低一些。记在 t^f 时刻发射了脉冲。那么发射脉冲序列可以用狄拉克求和表示:

$$S(t) = \sum \delta(t - t^f) \tag{1.8}$$

前面 1.3和 1.4零状态响应和零输入响应描述的都是 I(t) 为恒定状态的情况。下面考虑 I(t) 为连续的变化信号的情况。由于离散的电流 I 输入实质上是给细胞膜引入一个 $\Delta u = \frac{q}{C} = IR$ 的电压变化,因此连续变化的 I(t) 输入即公式 1.7与 I(t) 的卷积:

$$u(t) = u_{rest} + \frac{q}{C}e^{-\frac{t}{\tau_m}}$$

$$= u_{rest} + IRe^{-\frac{t}{\tau_m}}$$

$$= u_{rest} + RI(t) \bigotimes e^{-\frac{t}{\tau_m}}$$

$$= u_{rest} + R \int_0^{+\infty} I(t-s)e^{-\frac{s}{\tau_m}} d\frac{s}{\tau_m}$$

$$= u_{rest} + \frac{R}{\tau_m} \int_0^{+\infty} I(t-s)e^{-\frac{s}{\tau_m}} ds$$

$$(1.9)$$

上面的式子相当于把输入电流分成无数多小的脉冲,每一个脉冲都会产生 $\Delta ue^{-\frac{t}{4m}}$ 的膜电压变化,然后全部积分起来。那么,同理,我们也可以用同样的方式描述发射脉冲的过程。发射一个脉冲,等价于膜上减少了 $\vartheta-u_r$ 的电压,考虑到发射脉冲是离散的,因此我们可以表示为:

$$\sum_{f} -(\vartheta - u_r)e^{-\frac{t - t^f}{\tau_m}} \tag{1.10}$$

因此, 描述 LF 整个输入-输出的膜电压函数为:

$$u(t) = u_{rest} + \sum_{f} -(\vartheta - u_r)e^{-\frac{t - t^f}{\tau_m}} + \frac{R}{\tau_m} \int_0^{+\infty} I(t - s)e^{-\frac{s}{\tau_m}} ds$$
 (1.11)

1.2 输入电流为周期性驱动及其傅里叶变换

下面我们分析输入电流 I(t) 为周期性函数时,其膜电压响应的形式。我们定义 $\kappa(s) = \frac{1}{c}e^{\frac{s}{\tau_m}}$,则输入电流引起的膜电压的响应可以写作:

$$u(t) = \int_0^{+\infty} I(t-s)\kappa(s)ds \tag{1.12}$$

它具有很漂亮的滤波器的形式,可以看做是滤波器 $\kappa(s)$ 对输入电流 I(t) 卷积。利用傅里叶变换 (Fourier transform) 可以得到其频域响应:

$$u(\omega) = I(\omega)\kappa(\omega) \tag{1.13}$$

现在我们考虑 $I(t) = I_0 e^{i\omega t}$, 代入 1.12可得:

$$u(t) = \int_0^{+\infty} \kappa(s)e^{-i\omega s}dsI_0e^{i\omega t}$$

= $\kappa(\omega)I_0e^{i\omega t}$ (1.14)

考虑 $u(t) = u_0 e^{i(\phi\kappa(\omega) + \omega t)}$, 那么其实部增益就可以写作:

$$\frac{u_0}{I_0} = |\kappa(\omega)| = \int_0^{+\infty} \kappa(s)e^{-i\omega s}ds = \frac{1}{C} \left| \frac{\tau_m}{1 + i\omega \tau_m} \right|$$
 (1.15)

由于 $\omega \tau_m \gg 1$,因此增益约等于 $\frac{1}{C\omega}$ 。因此,其电压增益和输入频率成反比。下面我在 python 中试验一下嘿嘿。利用 Brian2 开源包构建 LIF 模型,频率从 50Hz-500Hz,我们观察其 spike 的次数。可以看到,spike 次数随频率增加有减少的趋势,一定程度上验证了上面的增益公式。

图 1.5: 增益和频率的关系图

1.3 LIF 模型的局限性

我们介绍几种生物学上常见的神经元并以此阐述 LIF 模型的局限性。如下图所示:

图 1.6: 四种神经元

图 (a) 所示就是 LIF 模型的神经元, 对于一个持续的电流输入, 由于神经元在每一次 spike 时都会重置为 u_r , 因此输出的 spike 序列是一个周期性

的序列,这一类神经元也被称为快速神经元 (fast-spike neurons)。图 (b) 所示的神经元叫做突发口吃神经元 (bursting and stuttering neurons),它的特点是对于一个持续的电流输入,在一段时间内表现出周期性的输出,又非周期的出现一段长时间的不应期。图 (c) 所示的神经元叫做适应性神经元 (adaptation neurons),与快速神经元不同,它具有适应性,它会积累输入的变化,在一段时间后变成稳定的脉冲输出。最后一种是抑制后反弹神经元 (post-inhibitory rebound neurons),它会在输入停止后出现一个尖峰脉冲。上述的神经元在后面的章节中会做进一步讨论。

1.4 总结

由此,我们得到了神经元膜电压的积分方程,以及脉冲发射的方程。

$$\tau_m \frac{du(t)}{dt} = -[u(t) - u_{rest}] + RI(t)$$
If $u(t) = \vartheta$ then $\lim_{\delta \to 0: \delta > 0} u(t + \delta) = u_r$ (1.16)

这个方程很简洁,也很好。但是在实际的神经元实验中,神经元会出现不应期 (refractory) 和适应性 (adaptation)。不应期好处理。适应性考虑如下办法:每输出一个脉冲,给阈值 ϑ 加一个小量,当输出脉冲为零 (即静止状态时),阈值 ϑ 衰减为初始值。仿照电路响应的微分方程,可以得到如下形式:公式中 τ_{adapt} 为适应的时间常数,根据神经科学的实验,一般为几百毫秒。

$$\tau_{\text{adapt}} \frac{\mathbf{d}}{\mathbf{d}t} \vartheta(t) = -[\vartheta(t) - \vartheta_0] + \theta \sum_f \delta(t - t^f)$$
 (1.17)

1.5 练习题

1、考虑突触输入电流为 $\frac{q}{\tau_s}e^{-\frac{t-t_f}{\tau_s}}(t>t_f)$, t_f 是电流到达突触的时间。 (a) 求膜电压响应

代入公式 1.9, 求解其卷积响应即可。我的信号与系统有点忘光了, 求了蛮久, 响应如下 (没化简):

$$u(t) = u_{reset} + \frac{qR}{\tau_m - \tau_s} e^{-\frac{t - t_f}{\tau_s}} \left[e^{\frac{\tau_m - \tau_s}{\tau_m \tau_s} t} - e^{\frac{\tau_m - \tau_s}{\tau_m \tau_s} t_f} \right]$$
(1.18)

在 mathematica 文件exercise.nb中验证了上式的正确性。并绘制了响应图

图 1.7: 1.apdf

(b) 在 (a) 的解中,取极限 $\tau_s \to \tau_m$,并证明响应与 $[t-t^f]\exp[-\frac{t-t^f}{\tau_{\rm s}}]$ 成正比。这种形式的函数有时候被称为 α 函数。

显然,我们先计算如下部分:

代入公式 1.18, 可得:

$$u(t) = u_{reset} + \frac{qR}{\tau_m \tau_s} e^{-\frac{t-t_f}{\tau_s}} [t - t_f]$$
(1.20)

从而可以证明,u(t) 确实是与 $[t-t^f]\exp[-\frac{t-t^f}{\tau_s}]$ 成正比的。