

Técnicas de Recuperação de Banco de Dados

André Luís Schwerz Rafael Liberato Roberto

Tópicos

- Conceitos de Recuperação
- Técnicas de recuperação
 - atualização adiada
 - atualização imediata

Revisão

Log do sistema

```
[start_transaction, T]
[write_item, T, X, valor_antigo, valor_novo]
[read_item, T, X]
[commit, T]
[abort, T]
```


Schedules recuperáveis

 Um schedule S é recuperável se nenhuma T_i em S for concluída até que todas as transações que gravaram dados lidos por T_i tenham sido concluídas.

Recuperável

T1	T2
read(A)	
A = A - 20	
write(A)	
	read(A)
	A = A + 10
	write(A)
commit()	
	commit()

Não Recuperável

T1	T2
read(A)	
A = A - 20	
write(A)	
	read(A)
	A = A + 10
	write(A)
	commit()
abort()	

Conceitos de Recuperação

- Certas técnicas de recuperação são melhor usadas com métodos específicos de controle de concorrência.
- Nossa discussão é independente da técnica de controle de concorrência usada.

Conceito de Recuperação

- A recuperação de falhas existe para garantir as propriedades de atomicidade e durabilidade de transações.
- A recuperação a falhas de transação em geral significa que o banco de dados é restaurado ao estado consistente mais recente
- O sistema precisa manter dados sobre as mudanças realizadas por várias transações
 - Utiliza informações mantidas no log do sistema
- As estratégias de recuperação podem ser resumidas de acordo com o tipo de falha:
 - Falha Catastrófica
 - Falha Não Catastrófica

Falha catastrófica

- Uma falha catastrófica é um dano extensivo a uma grande parte do banco de dados
 - Falhas no disco
 - Problemas físicos, roubos, incêndios, etc.
- O que fazer?
 - Restaurar uma cópia antiga do banco de dados
 - Reaplicar ou refazer as operações das transações confirmadas no log em backup até o momento da falha.

Falha não catastrófica

- Banco de dados não danificado fisicamente
 - Erro de transação ou do sistema
 - Erros locais ou condições de execução detectadas pela transação
 - Imposição de controle de concorrência
- Protocolo de recuperação não precisa de um backup completo do banco de dados
- O que fazer?
 - Entradas mantidas no log no disco são analisadas para determinar as ações apropriadas para recuperação.
- Exemplo:
 - Problema: suponha uma transação que atualizou alguns itens de dados no disco, mas não confirmou.
 - Suas alterações devem ser desfeitas ou revertidas.
 - Problema: suponha uma transação tiver sido confirmada, mas algumas operações de gravação ainda não tiveram sido gravadas em disco.
 - Suas operações devem ser refeitas para restaurar o estado consistente.

Técnicas para recuperação de falhas não catastróficas

- Atualização adiada:
 - Algoritmo NO-UNDO/REDO
- Atualização imediata:
 - Algoritmo UNDO/REDO

Atualização adiada

- Somente atualiza o banco de dados físico depois que a transação alcança o ponto de efetivação:
 - 1. Antes do commit os registros são atualizados nos buffers;
 - Durante commit os registros são gravados primeiro nos logs e depois no banco de dados.
 - 3. Não é necessário UNDO e o REDO é necessário em alguns casos:
 - NO-UNDO/REDO

Atualização imediata

- O banco de dados pode ser atualizado antes do ponto de confirmação:
 - Gravação no log antes do BD.
 - 2. Se uma transação falhar antes do ponto de efetivação a transação deverão ser revertidas (usando os registros do *log*).
 - 3. Atualização imediata UNDO e REDO necessários: UNDO/REDO

Idempotentes

- Operações de UNDO e REDO devem ser idempotentes, ou seja, executá-las várias vezes é equivalente a executá-las uma vez.
- O resultado da recuperação de uma falha do sistema durante a recuperação deve ser igual ao resultado da recuperação quando não há falha durante esse processo.

Caching de blocos de disco

Cache de SGBD

 buffer de páginas do disco do banco de dados na memória principal sob controle do SGBD

Catálogo da cache:

- controla quais itens de dados estão em qual buffer.
 - [Endereço página disco, Localização do Buffer, ...]
- Quando é requerido um item que não está na "cache", provoca a substituição de páginas.
 - Técnicas de substituição de páginas: MRU, FIFO, etc.

Bit sujo:

- indica se um item de dado na cache foi atualizado (1) ou não (0)
- Bit preso-solto:
 - indica se o dado pode ser gravado em disco (0) ou se ainda está preso a uma transação em execução (1).

Atualização de blocos de disco e o log

- Quando o buffer modificado deve ser atualizado no disco:
 - Atualização no local solução prática:
 - grava o buffer modificado no mesmo local da versão anterior
 - BFIM e AFIM são mantidos no log
 - Atualização por sombreamento solução teórica:
 - grava o buffer modificado em outro local e não será necessário uso de log.
- Versões do dado:
 - BFIM(before image) valor do dado antes da atualização
 - AFIM(after image) valor do dado após atualização.

Gerenciamento de Buffer

Logging write-ahead

- Quando as atualizações são "realizadas no local", é necessário preservar os valores anteriores dos dados caso seja necessário reverter (UNDO) as operações.
- O mecanismo de recuperação deve garantir que a BFIM do item de dado seja registrada em uma entrada de log e que essa entrada seja transferida para o disco antes que a BFIM seja sobrescrita pela AFIM.
- Esse processo é chamado de logging write-ahead.

Técnicas de Gerência de Buffer

NOT-STEAL

- Um bloco na cache utilizado por uma transação T não pode ser gravado antes do ponto de confirmação de T.
- Vantagem:
 - Recuperação mais simples UNDO desnecessário.
 - Evita dados de transações inacabadas sendo gravadas no BD

STEAL

- Um bloco na cache utilizado por uma transação Tpode ser gravado antes do ponto de confirmação de T.
 - Necessário se algum dado é requisitado do BD por outra transação e não há blocos disponíveis na cache
- O bloco "vítima" é escolhido através de alguma técnica de SO LRU, FIFO, ...
- Vantagem:
 - Evita a necessidade de um espaço grande em buffer para o armazenamento em memória principal de todas páginas atualizadas

Técnicas de Gerência de Buffer

FORCE

- Os blocos que mantêm dados atualizados por uma transação T são imediatamente gravados no BD quando T alcança o ponto de confirmação.
- Vantagem:
 - garante a durabilidade de To mais cedo possível

NO-FORCE

- Os blocos que mantêm dados atualizados por T não são imediatamente gravados no BD quando T alcança o ponto de confirmação.
- Vantagem:
 - blocos atualizados podem permanecer na *cache* e serem utilizados por outras transações, após o ponto de confirmação de *T* (reduz custo de acesso a disco)

Checkpoints

- Momento em que o SGBD grava no BD todas as atualizações feitas por transações
 - inclusão de um registro de checkpoint no log
- Periodicidade:
 - Em tempo
 - Em número de transações

Procedimento de execução de checkpoint

- 1. Suspensão de todas as transações;
- 2. Gravação (forçada) dos blocos atualizados da cache no BD;
- Inserção de um registro checkpoint no Log e sua gravação em disco;
- 4. Retomada da execução das transações.

- Vantagem da técnica de checkpoint
 - Transações confirmadas antes do checkpoint não precisam sofrer REDO em caso de falha
 - Elas já estão garantidas no BD

Rollback

- Rollback de Transações (UNDO):
 - É necessário se uma falha ocorrer depois do BD ter sido atualizado.
 - Qualquer item de dado atualizado pela transação deve voltar a seu valor anterior.
- Rollback em cascata:
 - Se uma transação T é desfeita e uma transação S leu algum dado atualizado por T, S também tem que ser desfeita e assim por diante.

Exemplo

Recuperação NO-UNDO/REDO

baseada em atualização adiada

Ambiente Monousuário

Protocolo:

- Uma transação não pode modificar o BD até seu ponto de confirmação
- Uma transação não pode chegar ao ponto de confirmação até que todas as operações de atualização sejam gravadas no log e o log no disco

Procedimento:

- Usar duas listas de transações: as transações acabadas desde o último checkpoint e as transações ativas
- Aplicar a operação REDO para todas as operações write das transações acabadas no log, na ordem na qual elas foram gravadas
- Recomeçar as transações ativas

 Postergar quaisquer atualizações para o disco (BD) até que a transação termine sua execução com sucesso e atinja o seu ponto de confirmação.

Protocolo:

- Depende do protocolo usado no controle de concorrência
- Assumir o 2PL Estrito onde bloqueios s\(\tilde{a}\) guardando-os at\(\tilde{e}\) o ponto de confirma\(\tilde{a}\).
- Uma transação não pode chegar ao ponto de confirmação até que todas as operações de atualização sejam gravadas no log e o log no disco

Procedimento:

- Usar duas listas de transações: as transações acabadas desde o ultimo checkpoint e as transações ativas
- Aplicar a operação REDO para todas as operações write das transações acabadas no log, na ordem na qual elas foram gravadas
- As transações ativas e não acabadas são canceladas e devem ser resubmetidas

Procedimento:

- Usar duas listas de transações: as transações acabadas desde o último checkpoint e as transações ativas
- Aplicar a operação REDO para todas as operações write das transações acabadas no log, na ordem na qual elas foram gravadas
- As transações ativas e não acabadas são canceladas e devem ser resubmetidas

Desvantagem:

- Limita a execução concorrente das transações porque itens ficam bloqueados até o ponto de confirmação das transações.
- Ocupa espaço do buffer.

Vantagens:

- Uma transação não grava as modificações no BD até o ponto de confirmação. Logo, uma transação nunca é desfeita por causa de falha
- Uma transação nunca vai ler o valor de um item gravado por outra não acabada, porque os itens estão bloqueados. Logo, não ocorrerá rollback em cascata

Recuperação UNDO/NO-REDO UNDO/REDO

baseada em atualização imediata

- Quando uma operação é executada, ela pode ser imediatamente atualizada no disco sem que a transação atinja o ponto de confirmação.
- Dois tipos de algoritmos:
 - UNDO/NO-REDO:
 - Se a técnica de recuperação garante que todas as atualizações são gravadas no BD (disco) antes do ponto de confirmação da transação, não é necessário REDO
 - Usa o método FORCE.
 - UNDO/REDO:
 - Se as modificações são gravada no BD (disco) depois do ponto de confirmação da transação
 - Usa o método NO-FORCE.
 - Caso mais geral e mais complexo

Protocolo:

 Assume-se que o log inclui checkpoints e o protocolo de concorrência como o de duas fases

Procedimento para (UNDO/REDO)

- Usar duas listas de transações: as transações acabadas desde o último checkpoint e as transações ativas
- Aplicar a operação UNDO para todas as operações write das transações ativas, na ordem inversa de suas gravações no log
- Aplicar a operação REDO para todas as operações write das transações acabadas, na ordem na qual elas foram gravadas no log

Ações:

T₁ – Nada

 $T_2 - REDO$

 $T_3 - REDO$

 $T_4 - UNDO$

 $T_5 - UNDO$

Paginação de Sombra

Paginação Shadow

- Pressupõe-se que o BD seja composto por "n" páginas de tamanho fixo.
- Solução factível para execuções seriais.
- Para as páginas atualizadas pela transação, duas versões são mantidas.
 A versão antiga é referenciada pelo diretório de sombra e a nova versão, pelo diretório atual.

Paginação Shadow

Vantagem

Não há necessidade de UNDO ou REDO de operações

Desvantagens

- Páginas atualizadas mudam de localização no disco, impedindo de manter juntas páginas relacionadas
- Se a tabela de páginas é grande, o tempo para gravar as tabelas de páginas imagem no ponto de confirmação é significativo
- Garbage Collection (liberação de páginas antigas) é necessário após o ponto de confirmação.

Dúvidas

