Прикладная математика для анализа данных: оптимизация, матрицы, тензоры.

В курсе изучаются основные математические концепции и алгоритмы, необходимые для понимания классических сюжетов в анализе данных и машинном обучении. Методы оптимизации лежат в основе решения многих задач компьютерных наук. Например, в машинном обучении задачу оптимизации необходимо решать каждый раз при настройке какой-то модели алгоритмов по данным, причём от эффективности решения соответствующей задачи оптимизации зависит практическая применимость самого метода машинного обучения. Данный курс посвящен изучению классических и современных методов решения задач оптимизации (в том числе невыпуклых), а также особенностям применения этих методов в задачах оптимизации, возникающих в машинном обучении. Основной акцент в изложении делается на практические аспекты реализации и использования методов. Целью курса является выработка у слушателей навыков по подбору подходящего метода для своей задачи, наиболее полно учитывающего её особенности.

В рамках курса мы будем работать с Jax, PyTorch, Keras, Optuna, CVXPY, Nevergrad, Scipy и другими инструментами для прикладной математики.

Курс состоит из 10 занятий по 3 часа. Каждое трехчасовое занятие делится на самодостаточные блоки по 1-1.5 часа, в рамках которых излагается теоретический материал, показываются примеры решения задач по теме, а так же предлагается самостоятельная работа по теме. Самостоятельная работа на занятии является существенной частью курса - на каждом занятии выделяется несколько временных блоков, в рамках которых слушатели курса решают задачи и задают преподавателю конкретные вопросы. Именно поэтому посещение онлайн занятий является важной частью курса (несмотря на то, что все материалы своевременно будут выложены на сайте курса).

Для кого эта программа:

Data scientists, Профильные специалисты, энтузиасты прикладной математики.

Чему вы научитесь:

- Владеть терминологией в области оптимизации.
- Распознавать выпуклость в формулировках задач, позволяющую использовать специальные методы оптимизации.
- Считать градиенты сложных функций.
- Использованию инструментов для прикладной оптимизации и машинного обучения: CVXPY, PyOMO, Jax, PyTorch.

Программа

- 1. Обзор приложений задач оптимизации, реальных постановок задач оптимизации и результатов. Знакомство с современными практическими инструментами для оптимизации и анализа данных. Сравнение библиотек и фреймворков для оптимизации машинного обучения. Введение в векторы, матрицы, тензоры. Матрично векторное дифференцирование.
- 2. Сингулярное разложение матрицы. Спектр матрицы. Skeleton разложение. Каноническое разложение тензора. Метод главных компонент. Автоматическое дифференцирование. Вычислительный граф.
- 3. Выпуклость. Выпуклые множества. Выпуклые функции. Примеры выпуклых задач оптимизации. Условия оптимальности задач оптимизации.
- 4. Задача наименьших квадратов. Недоопределенные и переопределенные линейные системы. Портфельная теория Марковица.
- 5. Подбор гиперпараметров модели машинного обучения с помощью методов байесовской оптимизации. Решение задачи коммивояжера с помощью методов нулевого порядка.
- 6. Градиентный спуск. Метод проекции (Суб)градиента. Метод Ньютона. Квазиньютоновские методы. Ridge и Lasso регрессии как задачи оптимизации. Support Vector Machine как задача оптимизации.
- 7. Задача линейного программирования. Планирование производства. Транспортная задача как задача ЛП. Mixed Integer Programming. Примеры и методы решения.
- 8. Метод стохастического градиентного спуска. Батчи, эпохи, расписания. Исследование сходимости SGD. Подбор гиперпараметров. Nesterov Momentum и Polyak Momentum. Ускоренный градиентный метод. Адаптивные стохастические методы. Adam, RMSProp, AdaDelta.
- 9. Обучение нейронных сетей как задача оптимизации. Дообучение нейронных сетей aka transfer learning. Neural style transfer. Ландшафт функции потерь нейронной сети.
- 10. Обзор недавних достижений в области машинного обучения и оптимизации: обучение больших моделей. Модели стабильной диффузии. Подведение итогов. Темы слушателей.

Приглашаем вас на обучение в Корпоративном университете Сбербанка на программу «Прикладная математика для анализа данных: оптимизация, матрицы, тензоры», которое будет проходить с 11.05 по 19.06.2023 на платформе Zoom.

11.05.2023 – ОРГАНИЗАЦИОННОЕ ЗАНЯТИЕ в 18:30

Программа включает 10 модулей по 3 астрономических часа, которые будут проходить по вторникам и четвергам вечером в течение пяти недель.

№ занятия	1	2	3	4	5	6	7	8	9	10
Дата	15.05	18.05	22.05	25.05	29.05	01.06	05.06	08.06	15.06	19.06
Время	18:30- 21:30									

Программа занятий:

15.05.2023 Обзор приложений задач оптимизации, реальных постановок задач оптимизации и результатов. Знакомство с современными практическими инструментами для оптимизации и анализа данных. Сравнение библиотек и фреймворков для оптимизации машинного обучения. Введение в векторы, матрицы, тензоры. Матрично - векторное дифференцирование.

18.05.2023 Сингулярное разложение матрицы. Спектр матрицы. Skeleton разложение. Каноническое разложение тензора. Метод главных компонент. Автоматическое дифференцирование. Вычислительный граф.

22.05.2023 Выпуклость. Выпуклые множества. Выпуклые функции. Примеры выпуклых задач оптимизации. Условия оптимальности задач оптимизации. 25.05.2023 Задача наименьших квадратов. Недоопределенные и переопределенные линейные системы. Портфельная теория Марковица.

29.05.2023 Подбор гиперпараметров модели машинного обучения с помощью методов байесовской оптимизации. Решение задачи коммивояжера с помощью методов нулевого порядка.

01.06.2023 Градиентный спуск. Метод проекции (Суб)градиента. Метод Ньютона. Квазиньютоновские методы. Ridge и Lasso регрессии как задачи оптимизации. Support Vector Machine как задача оптимизации.

05.06.2023 Задача линейного программирования. Планирование производства. Транспортная задача как задача $\Lambda\Pi$. Mixed Integer Programming. Примеры и методы решения.

08.06.2023 Метод стохастического градиентного спуска. Батчи, эпохи, расписания. Исследование сходимости SGD. Подбор гиперпараметров. Nesterov Momentum и Polyak Momentum. Ускоренный градиентный метод. Адаптивные стохастические методы. Adam, RMSProp, AdaDelta.

15.06.2023 Обучение нейронных сетей как задача оптимизации. Дообучение нейронных сетей aka transfer learning. Neural style transfer. Ландшафт функции потерь нейронной сети.

19.06.2023 Обзор недавних достижений в области машинного обучения и оптимизации: обучение больших моделей. Модели стабильной диффузии. Подведение итогов. Темы слушателей.