Lecture 6:

Abstract Syntax Notation One ASN.1

Prof. Shervin Shirmohammadi SITE, University of Ottawa

Prof. Shervin Shirmohammadi

CEG 4395

6-1

Abstract Syntax Notation One

- Both the information and communications models need to be specified syntactically and semantically.
- This requires a language that specifies the management protocol in the application layer.
- This is where Abstract Syntax Notation One (ASN.1) plays a role.
- ASN.1 is actually more than a syntax; it's a language.
- Addresses both syntax and semantics
- Two type of syntax
 - Abstract syntax: set of rules that specify data type and structure for information storage
 - Transfer syntax: set of rules for communicating information between systems
- Makes application layer protocols independent of lower layer protocols.
- Can generate machine-readable code: Basic Encoding Rules (BER) is used in management modules.
- It is based on the Backus-Nauer Form (BNF)

Prof. Shervin Shirmohammadi

CEG 4395

Backus-Nauer Form (BNF)

- BNF constructs are developed from primitives.
 - − <name> ::= <definition>
 - <name> is "entity"
 - ::= "defined as"
 - <definition> is "primitive"
- Example: Simple Arithmetic Expression entity (<SAE>) is constructed from the primitives <digit> and <op>
 - <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 - <number> ::= <digit> | <digit><number>
 - < op > ::= + | | x | /
 - <SAE> ::= <number>|<SAE>|<SAE><op><SAE>
- Example:
 - 9 is primitive 9
 - 19 is construct of 1 and 9
 - 619 is construct of 6 and 19

Simple Arithmetic Expression

<SAE> ::= <SAE><op><SAE>

Example: 13 x 2

Prof. Shervin Shirmohammadi

CEG 4395

6-3

Type and Value

- The format of each line is defined as an assignment
 - <BooleanType> ::= BOOLEAN
 - <BooleanValue> ::= TRUE | FALSE
- ASN.1 module is a group of assignments; for example:

```
person-namePerson-Name::=
{
    first "John",
    middle "I",
    last "Smith"
}
```

Prof. Shervin Shirmohammadi

CEG 4395

Data Type: Example 1

- Module name starts with capital letters
- Data types:
 - Primitives: NULL, GraphicString
 - Constructs
 - Alternatives : CHOICE
 - List maker: SET, SEQUENCE
 - Repetition: SET OF, SEQUENCE OF:
- PersonnelRecord ::= SET Name, title GraphicString, division CHOICE { [0] SEQUENCE marketing {Sector, Country), research [1] CHOICE [0] NULL, {product-based [1] NULL}, basic [2] SEQUENCE production

{Product-line, Country }

Figure 3.13 ASN.1 Data Type Definition Example 1

Prof. Shervin Shirmohammadi

CEG 4395

6-5

Data Type: Example 2

A list of invoices.

```
Trade-message ::= SEQUENCE
    {invoice-no
                    INTEGER
                    GraphicString,
    name
                SEQUENCE OF
    details
                    SEQUENCE
            {part-no
                        INTEGER
            quantity
                        INTEGER},
                 REAL,
    charge
    authenticator
                     Security-Type}
Security-Type ::= SET
       ...
```

Figure 3.14 ASN.1 Data Type Definition Example 2

Prof. Shervin Shirmohammadi

CEG 4395

ASN.1 Symbols

Symbol	Meaning
::=	Defined as
1	or, alternative, options of a list
-	Signed number
	Following the symbol are comments
{}	Start and end of a list
Ö	Start and end of a tag
()	Start and end of subtype
	Range
	-

Prof. Shervin Shirmohammadi CEG 4395 6-7

MIB Definition Example

The terms DEFINITIONS, BEGIN, and END, are keywords. This statement means that the RFC1213-MIB Module is being defined

```
RFC1213-MIB DEFINITIONS ::= BEGIN ... ... ... END
```

Prof. Shervin Shirmohammadi CEG 4395

ASN.1 Data Type Conventions

Data Types	Convention	Example
Object name	Initial lowercase letter	sysDescr, etherStatsPkts
Application data type	Initial uppercase letter	Counter, IpAddress
Module	Initial uppercase letter	PersonnelRecord
Macro, MIB module	All uppercase letters	RMON-MIB
Keywords	All uppercase letters	INTEGER, BEGIN

Prof. Shervin Shirmohammadi

CEG 4395

6-9

Data Type: Structure & Tag

- We will now use the ASN.1 notation to define the various data types and apply them to describe objects of SMI and MIB.
- Data types are defined based on Structure and Tags

Structure

- Simple (values are specified directly)
 - PageNumber ::= INTEGER
 - ChapterNumber ::= INTEGER
- Structure / Construct (Contains other types)
 - BookPageNumber ::= SEQUENCE
 {ChapterNumber, Separator, PageNumber}
 Example: {1-1}
 - BookPages ::= SEQUENCE OF {BookPageNumbers}
 Example: {1-1, 2-3, 6-25}
- Tagged (Used primarily for efficiency)
 - Derived from another type; given a new ID
- Other types: (Data type that is not pre-defined)
 - values chosen from CHOICE and ANY types

Prof. Shervin Shirmohammadi

CEG 4395

6-11

Other Types

• CHOICE (No Data Types)

```
research Research ::= CHOICE {product-based [0] NULL, basic [1] NULL}
```

• CHOICE (Data Types)

```
research Research ::= CHOICE
{product-based ProductType,
basic VisibleString}
ProductType ::= VisibleString
```

• ANY (From the previous definitions)

```
Research ::= CHOICE {product-based ANY, basic ANY}
```

Prof. Shervin Shirmohammadi

CEG 4395

Example of Sequence Structure

• Two ways to define all the pages of a book as a sequence of page numbers making certain that they are in order.

Prof. Shervin Shirmohammadi

CEG 4395

6-13

Tag

- Tag uniquely identifies a data type. It is required for encoding the data types for communication.
- Every data type except CHOICE and ANY have data tags associated with them.
- Comprised of a class and tag number.
- Four Class types:
 - Universal is the most common, like global variables in a software program.
 - Application only in the application used, override universal.
 - Context-specific specific context in application.
 - Private used extensively by commercial vendors .

Prof. Shervin Shirmohammadi

CEG 4395

Tag	Type Name	Set of Values	
Universal 1	BOOLEAN	TRUE or FALSE	
Universal 2	INTEGER	0, Positive and negative numbers	
Universal 3	BIT STRING	A string of binary digits or null set	
Universal 4	OCTET STRING	A string of octets or null set	
Universal 5	NULL	Null, single valued	
Universal 6	OBJECT IDENTIFIER	Set of values associated with the object	
Universal 7	Object description	Human readable text describing the object	
Universal 8	EXTERNAL	The type is external to the standard	
Universal 9	REAL	Real numbers, expressed in scientific notation Mantissa × base ^{exponent}	
Inversal 10	ENUMERATED	Specified list of integers	
Universal 11	ENCRYPTED	Encrypted information	
Universal 12-15	Reserved for future use		
Universal 16	SEQUENCE and SEQUENCE OF	Ordered list of types	
Iniversal 17	SET and SET OF	Unordered list of types	
Inversal 18	NumericString	Digits 0–9, space	
Inversal 19	PrintableString	Printable characters	
Universal 20	TeletexString	Character set specified by CCITT Recom-	
Prof. Shervin Shirmohammadi CEG 4395 6-15			

Context Specific Tag Example

```
PersonnelRecord ::= SET
               Name,
                   GraphicString,
        title
        division CHOICE
          marketing
                          [0] SEQUENCE
           {Sector,
            Country},
       research
                      [1] CHOICE
           {product-based [0] NULL,
           basic
                          [1] NULL},
       production
                      [2] SEQUENCE
           {Product-line,
           Country
                                 }
                      }
```

Figure 3.13 ASN.1 Data Type Definition Example 1

Prof. Shervin Shirmohammadi CEG 4395 6-16

ASN.1 Module SNMP MIB Example

Address translation table.

IpNetMediaEntry ::=SEQUENCE{

ipNetToMedialfIndexINTEGER,ipNetToMediaPhysAddressPhysAddress,ipNetToMediaNetAddressIpAddress,ipNetToMediaTypeINTEGER}

Prof. Shervin Shirmohammadi CEG 4395 6-17

Object Names and SMI Object Tree

• In a MIB there is an identifier for each occurrence of an object.

internet OBJECT IDENTIFIER ::=
 {ISO(1) ORG(3) DOD(6) INTERNET(1)}

Private type identifier for IBM

1.3.6.1.4.1.2

Prof. Shervin Shirmohammadi

CEG 4395

Walkthrough Example

Description of a Personal Record

Name: John P Smith Title: Director

Employee Number 51

Date of Hire: 17 September 1971 Name of Spouse; Mary T Smith

Number of Children 2

Child Information

Name Ralph T Smith
Date of Birth 11 November 1957

Child Information

Name Susan B Jones Date of Birth 17 July 1959

Prof. Shervin Shirmohammadi CEG 4395 6-19

Walkthrough Example (...)

ASN.1 description of the record structure

```
PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {
    Name,
    title [0] VisibleString,
    number EmployeeNumber,
    dateOfHire [1] Date,
    nameOfSpouse [2] Name,
    children [3] IMPLICIT SEQUENCE OF ChildInformation DEFAULT {}}
ChildInformation ::= SET {
    Name,
    dateOfBirth [0] Date }
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
        givenName VisibleString,
        initial VisibleString,
        familyName VisibleString }
```

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMMDD

Prof. Shervin Shirmohammadi CEG 4395 6-20

Walkthrough Example (...)

ASN.1 Description of a Record Value

```
{{ givenName "John", initial "T", familyName "Smith"}, title "Director" number 51 dateOfHire "19710917" nameOfSpouse { givenName "Mary", initial "T", familyName "Smith"}, children {{{ givenName "Ralph", initial "T", familyName "Smith"}, dateOfBirth "19571111"}, {{ givenName "Susan", initial "B", familyName "Jones"}, dateOfBirth "19590717"}}}
```

Prof. Shervin Shirmohammadi

CEG 4395

6-21

TLV Encoding

- In ASN.1 ASCII text data is encoded into a bit-oriented data representation called TLV (Type, Length, and Value).
- TLV type, length, and value are components of the structure.

ASN.1 Macro

- ASN.1 allows extensions to define new data types and values through a Macro definition.
- They also facilitate grouping of instances of an object.

```
<macroname> MACRO ::=
BEGIN
    TYPE NOTATION ::= <syntaxOfNewType>
    VALUE NOTATION ::= <syntaxOfNewValue>
    <auxiliaryAssignments>
END
```

Prof. Shervin Shirmohammadi

CEG 4395

6-23

Macro Example

```
From ITU-T X.219:
 ERROR MACRO ::=
    BEGIN
     TYPE NOTATION ::= Parameter
     VALUE NOTATION ::= value (VALUE CHOICE
                     { localValue INTEGER,
                      globalValue OBJECT IDENTIFIER
                     ``PARAMETER" NamedType | empty
     Parameter
     NamedType
                   ::= identifier type | type
    END
 Usage:
 BadQueueName ERROR
           PARAMETER QueueName
Prof. Shervin Shirmohammadi
                                 CEG 4395
                                                                      6-24
```