CMPS 101

Midterm 1 Review

Solutions to selected problems

Problem 2

State whether the following assertions are true or false. If any statements are false, give a related statement which is true.

- a. f(n) = O(g(n)) implies f(n) = o(g(n)). False f(n) = o(g(n)) implies f(n) = O(g(n))
- b. f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$. **True**
- c. $f(n) = \Theta(g(n))$ if and only if $\lim_{n \to \infty} (f(n)/g(n)) = L$, where $0 < L < \infty$. **False** $0 < L < \infty$ and $\lim_{n \to \infty} (f(n)/g(n)) = L$ implies $f(n) = \Theta(g(n))$

Problem 3

Prove that $\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$. In other words, if $h_1(n) = \Theta(f(n))$ and $h_2(n) = \Theta(g(n))$, then $h_1(n) \cdot h_2(n) = \Theta(f(n) \cdot g(n))$.

Proof:

By hypothesis there exist positive constants n_1 , n_2 , a_1 , b_1 , a_2 , and b_2 such that

$$\forall n \geq n_1: 0 \leq a_1 f(n) \leq h_1(n) \leq b_1 f(n)$$

and

$$\forall n \ge n_2: \quad 0 \le a_2 g(n) \le h_2(n) \le b_2 g(n)$$

If $n \ge n_0 = \max(n_1, n_2)$, then both inequalities hold. Let $c = a_1 a_2$, and $d = b_1 b_2$. Since everything in sight is non-negative, we can multiply these two inequalities to get

$$\forall n \geq n_0$$
: $0 \leq c f(n)g(n) \leq h_1(n)h_2(n) \leq d f(n)g(n)$,

///

and hence $h_1(n) \cdot h_2(n) = \Theta(f(n) \cdot g(n))$ as required.

Problem 4

Let f(n) and g(n) be asymptotically positive functions (i.e. f(n) > 0 and g(n) > 0 for all sufficiently large n), and suppose that $f(n) = \Theta(g(n))$. Does it necessarily follow that $\frac{1}{f(n)} = \Theta\left(\frac{1}{g(n)}\right)$? Either prove this statement, or give a counter-example.

Solution:

The statement is <u>true</u>, as we now prove. By hypothesis there exist positive numbers c_1 , c_2 , and n_0 such that for all $n \ge n_0$: $0 < c_1 g(n) \le f(n) \le c_2 g(n)$. (Note: the strict inequality < on the left follows from the fact that f(n) and g(n) are asymptotically positive.) Taking the reciprocals of all the positive terms in this inequality gives: $0 < \frac{1}{c_2} \cdot \frac{1}{g(n)} \le \frac{1}{f(n)} \le \frac{1}{c_1} \cdot \frac{1}{g(n)}$ for all $n \ge n_0$. Observe that both $\frac{1}{c_2} > 0$ and $\frac{1}{c_1} > 0$, whence $\frac{1}{f(n)} = \Theta\left(\frac{1}{g(n)}\right)$.

Problem 5

Give an example of functions f(n) and g(n) such that f(n) = o(g(n)) but $\log(f(n)) \neq o(\log(g(n)))$. (Hint: Consider n! and n^n and use the corollary to Stirling's formula in the handout on common functions.)

Solution:

Following the hint, we let f(n) = n! and $g(n) = n^n$. Part (1) of the Corollary to Stirling's formula on page 3 of the handout on common functions showed that f(n) = o(g(n)). Part (3) of that same Corollary showed that $\log(n!) = \Theta(\log(g(n)))$, and hence $\log(f(n)) = \Theta(\log(g(n))) = \Theta(\log(g(n))) = \Theta(\log(g(n)))$. Since $o(\log(g(n))) \cap \Theta(\log(g(n))) = \emptyset$ by problem 6 below, we have $\log(f(n)) \neq o(\log(g(n)))$.

Problem 6

Let g(n) be an asymptotically non-negative function. Prove that $o((g(n)) \cap \Omega(g(n)) = \emptyset$.

Proof:

Assume to get a contradiction that $f(n) \in o((g(n)) \cap \Omega(g(n)))$. Then since $f(n) = \Omega(g(n))$ we have

(1)
$$\exists c_1 > 0, \ \exists n_1 > 0, \ \forall n \ge n_1: \ 0 \le c_1 g(n) \le f(n)$$

Also, since f(n) = o(g(n)) we have

(2)
$$\forall c_2 > 0, \exists n_2 > 0, \forall n \ge n_2 : 0 \le f(n) < c_2 g(n)$$

Let $c_2 = c_1$. Then $c_2 > 0$, and by (2) there exists $n_2 > 0$ such that $0 \le f(n) < c_1 g(n)$ for all $n \ge n_2$. Pick any $m \ge \max(n_1, n_2)$. Then by (1) we have $0 \le c_1 g(m) \le f(m) < c_1 g(m)$, and hence $c_1 g(m) < c_1 g(m)$, a contradiction. Our assumption was therefore false, and no such function f(n) can exist. We conclude that $o((g(n)) \cap \Omega(g(n)) = \emptyset$.

Problem 7 (d)

Use limits to prove the following: $f(n) + o(f(n)) = \Theta(f(n))$

Proof:

In this equation, the term o(f(n)) stands for some function h(n) satisfying $\lim_{n\to\infty} \left(\frac{h(n)}{f(n)}\right) = 0$. Therefore

$$\lim_{n\to\infty} \left(\frac{f(n) + h(n)}{f(n)} \right) = \lim_{n\to\infty} \left(1 + \frac{h(n)}{f(n)} \right) = 1 + \lim_{n\to\infty} \left(\frac{h(n)}{f(n)} \right) = 1, \text{ showing that } f(n) + h(n) = \Theta(f(n)). \text{ Note that } f(n) + h(n) = 0$$

this result justifies the practice of dropping low order terms when finding the asymptotic growth rate of a function.

Problem 8

Let g(n) = n and $f(n) = n + \frac{1}{2}n^2(\sin(n) + 1)$. Show that

- a. $f(n) = \Omega(g(n))$
- b. $f(n) \neq O(g(n))$
- c. $\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right)$ does not exist, even in the sense of being infinite.

Note: this is the 'Example C' mentioned in the handout on asymptotic growth rates.

Proof of (a):

For any $n \ge 1$ we have $-1 \le \sin(n) \le 1$ and hence $\sin(n) + 1 \ge 0$. Thus

$$f(n) = n + \frac{1}{2}n^2(\sin(n) + 1) \ge n = g(n).$$

Thus $0 \le 1 \cdot g(n) \le f(n)$ for all $n \ge 1$, whence $f(n) = \Omega(g(n))$.

Proof of (b):

We must show that the sentence ' $\exists c > 0$, $\exists n_0 > 0$, $\forall n \ge n_0$: $0 \le f(n) \le c \cdot g(n)$ ' is false. We do this by showing that it's negation ' $\forall c > 0$, $\forall n_0 > 0$, $\exists n \ge n_0$: $c \cdot g(n) < f(n)$ ' is true. Pick c > 0 and $n_0 > 0$ arbitrarily. Define $n = \frac{\pi}{2} + 2\pi \cdot k$ where the integer k is chosen so large as to guarantee that $n \ge \max(c, n_0)$

. (This is possible since $\frac{\pi}{2} + 2\pi \cdot k \to \infty$ as $k \to \infty$.) Then $n \ge n_0$ and $n \ge c > c - 1$, whence n + 1 > c. Observe also that $\sin(n) = 1$, and therefore

$$f(n) = n + \frac{1}{2}n^2(\sin(n) + 1) = n + n^2 = n(1+n) > cn = c \cdot g(n)$$

as required.

Proof of (c):

Observe that

$$\frac{f(n)}{g(n)} = \frac{n + \frac{1}{2}n^2(\sin(n) + 1)}{n} = 1 + \frac{1}{2}n(\sin(n) + 1),$$

which oscillates with increasing amplitude between 1 and 1+n as $n \to \infty$, and therefore has no limit, even in the sense of being infinite.

Problem 10

Use Stirling's formula to prove that $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$.

Proof:

By Stirling's formula

$$\binom{2n}{n} = \frac{(2n)!}{n!(2n-n)!} = \frac{(2n)!}{(n!)^2} = \frac{\sqrt{2\pi \cdot 2n} \cdot \left(\frac{2n}{e}\right)^{2n} \cdot \left(1 + \Theta(1/2n)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta(1/n)\right)\right)^2}$$

$$= \frac{2^{2n}}{\sqrt{\pi n}} \cdot \frac{1 + \Theta(1/2n)}{\left(1 + \Theta(1/n)\right)^2} = \frac{1}{\sqrt{\pi}} \cdot \frac{4^n}{\sqrt{n}} \cdot \frac{1 + \Theta(1/2n)}{\left(1 + \Theta(1/n)\right)^2}$$

so that

$$\frac{\binom{2n}{n}}{\frac{4^n}{\sqrt{n}}} = \frac{1}{\sqrt{\pi}} \cdot \frac{1 + \Theta(1/2n)}{(1 + \Theta(1/n))^2} \to \frac{1}{\sqrt{\pi}} \quad \text{as} \quad n \to \infty$$

The result now follows since $0 < \frac{1}{\sqrt{\pi}} < \infty$.

Problem 11

Consider the following *sketch* of an algorithm called ProcessArray which performs some unspecified operation on a subarray $A[p\cdots r]$.

///

ProcessArray(A, p, r) (Preconditions: $1 \le p$ and $r \le \text{length}[A]$)

- 1. Perform 1 basic operation
- 2. if p < r

3.
$$q \leftarrow \left| \frac{p+r}{2} \right|$$

- 4. ProcessArray(A, p, q)
- 5. ProcessArray(A, q+1, r)

a. Write a recurrence formula for the number T(n) of basic operations performed by this algorithm when called on the full array $A[1 \cdots n]$, i.e. by ProcessArray(A, 1, n). (Hint: recall our analysis of MergeSort.)

Solution:

$$T(n) = \begin{cases} 1 & n = 1 \\ T(\mid n/2 \mid) + T(\lceil n/2 \rceil) + 1 & n \ge 2 \end{cases}$$

b. Show that the solution to this recurrence is T(n) = 2n - 1, whence $T(n) = \Theta(n)$.

Proof:

Observe that when n=1 we have $T(1)=2\cdot 1-1=1$. When $n\geq 2$ we have

RHS =
$$T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

= $(2\lfloor n/2 \rfloor - 1) + (2\lceil n/2 \rceil - 1) + 1$
= $2(\lfloor n/2 \rfloor + \lceil n/2 \rceil) - 1$
= $2n - 1$
= $T(n)$
= LHS

///

Problem 12

Consider the following algorithm which does nothing but waste time:

WasteTime(n) (pre: $n \ge 1$)

- 1. if n > 1
- 2. for $i \leftarrow 1$ to n^3
- 3. waste 2 units of time
- 4. for $i \leftarrow 1$ to 7
- 5. WasteTime $(\lceil n/2 \rceil)$
- 6. waste 3 units of time
- a. Write a recurrence formula for the amount of time T(n) wasted by this algorithm.

Solution:

$$T(n) = \begin{cases} 0 & n = 1\\ 7T(\lceil n/2 \rceil) + 2n^3 + 3 & n \ge 2 \end{cases}$$

b. Show that when n is an exact power of 2, the solution to this recurrence relation is given by $T(n) = 16n^3 - \frac{1}{2} - \frac{31}{2}n^{\lg 7}$, and hence $T(n) = \Theta(n^3)$.

Proof:

If n = 1 then $T(1) = 16 \cdot 1^3 - \frac{1}{2} - \frac{31}{2}1^{\lg 7} = 16 - \frac{32}{2} = 0$. When $n \ge 2$ is an exact power of 2 we have

RHS =
$$7T(n/2) + 2n^3 + 3$$

= $7\left(16\left(\frac{n}{2}\right)^3 - \frac{1}{2} - \frac{31}{2}\left(\frac{n}{2}\right)^{\lg 7}\right) + 2n^3 + 3$
= $7\left(\frac{16}{8}n^3 - \frac{1}{2} - \frac{31}{2}\left(\frac{n^{\lg 7}}{7}\right)\right) + 2n^3 + 3$
= $14n^3 - \frac{7}{2} - \frac{31}{2}n^{\lg 7} + 2n^3 + \frac{6}{2}$
= $16n^3 - \frac{1}{2} - \frac{31}{2}n^{\lg 7}$
= $T(n)$
= LHS

///

Problem 13

Define T(n) by the recurrence formula

$$T(n) = \begin{cases} 1 & 1 \le n < 3 \\ 2T(\lfloor n/3 \rfloor) + 4n & n \ge 3 \end{cases}$$

Use Induction to show that $\forall n \ge 1$: $T(n) \le 12n$, and hence T(n) = O(n).

Proof: (Multiple base cases, strong version)

I. Observe $T(1) = 1 \le 12 \cdot 1$ and $T(2) = 1 \le 12 \cdot 2$, so the base cases are satisfied.

IId. Let $n \ge 3$ and assume for all k in the range $1 \le k < n$ that $T(k) \le 12k$. In particular, since $1 \le \lfloor n/3 \rfloor < n$, we have $T(\lfloor n/3 \rfloor) \le 12 \lfloor n/3 \rfloor$. We must show that $T(n) \le 12n$. Observe

$$T(n) = 2T(\lfloor n/3 \rfloor) + 4n$$
 by the recurrence formula for $T(n)$
 $\leq 2 \cdot 12 \lfloor n/3 \rfloor + 4n$ by the induction hypothesis
 $\leq 2 \cdot 12(n/3) + 4n$ since $\lfloor x \rfloor \leq x$ for any real number x
 $= 8n + 4n$
 $= 12n$

The result now holds for all $n \ge 3$.

///

Problem 15

Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence:

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Use induction to prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg n)$.

Proof: Let P(n) be the inequality $S(n) \ge \lg(n)$.

I. The inequality $S(1) \ge \lg(1)$ reduces to $0 \ge 0$, which is obviously true, so P(1) holds.

IId. Let n > 1 and assume for all k in the range $1 \le k < n$ that $S(k) \ge \lg(k)$. Then

$$S(n) = S(\lceil n/2 \rceil) + 1$$
 by the definition of $S(n)$
 $\geq \lg \lceil n/2 \rceil + 1$ by the induction hypothesis with $k = \lceil n/2 \rceil$
 $\geq \lg(n/2) + 1$ since $\lceil x \rceil \geq x$ for any x
 $= \lg(n) - \lg(2) + 1$
 $= \lg(n)$

showing that P(n) holds. Therefore $S(n) \ge \lg(n)$ for all $n \ge 1$, as claimed.

Problem 16

Let f(n) be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Show that

$$\sum_{i=1}^{n} f(i) = \Theta(nf(n))$$

(Hint: Emulate the **Example** on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{k=1}^{n} i^k = \Theta(n^{k+1})$ for any positive integer k.)

///

Proof:

Since
$$f(n)$$
 is increasing we have $\sum_{i=1}^{n} f(i) \le \sum_{i=1}^{n} f(n) = nf(n) = O(nf(n))$. Note also that

$$\sum_{i=1}^{n} f(i) \ge \sum_{i=\lceil n/2 \rceil}^{n} f(i)$$
 by discarding some positive terms

$$\ge \sum_{i=\lceil n/2 \rceil}^{n} f(\lceil n/2 \rceil)$$
 since $f(n)$ is increasing

$$= (n - \lceil n/2 \rceil + 1) f(\lceil n/2 \rceil)$$
 by counting terms

$$= (\lfloor n/2 \rfloor + 1) f(\lceil n/2 \rceil)$$
 since $n = \lfloor n/2 \rfloor + \lceil n/2 \rceil$

$$> ((n/2) - 1 + 1) f(n/2)$$
 since $f(n)$ is increasing, $\lceil x \rceil \ge x$, and $\lfloor x \rfloor > x - 1$

$$= (n/2) f(n/2)$$

$$= \Omega(nf(n))$$
 since $f(n/2) = \Theta(f(n))$, whence $f(n/2) = \Omega(f(n))$

It follows from an exercise in the handout on Asymptotic Growth rates that $\sum_{i=1}^{n} f(i) = \Theta(nf(n))$, as claimed.

///

Problem 17

Use the result of the preceding problem to give an alternate proof of $\log(n!) = \Theta(n\log(n))$ that does not use Stirling's formula.

Proof:

Observe that $\log(n)$ is a positive increasing function, and that $\log(n/2) = \log(n) - \log(2) = \Theta(\log(n))$. We may therefore apply the result of problem 17 with $f(n) = \log(n)$, and properties of logarithms to get

$$\log(n!) = \sum_{i=1}^{n} \log(i) = \Theta(n\log(n))$$

as claimed.

Problem 18

Let T(n) be defined by the recurrence formula

$$T(n) = \begin{cases} 1 & n=1 \\ T(\lfloor n/2 \rfloor) + n^2 & n \ge 2 \end{cases}$$

Show that $\forall n \ge 1$: $T(n) \le \frac{4}{3}n^2$, and hence $T(n) = O(n^2)$.

Proof: Let P(n) be the statement $T(n) \le (4/3)n^2$. Then P(1) is true, since $T(1) = 1 \le 4/3 = (4/3) \cdot 1^2$, and the base case is satisfied. Let n > 1 be chosen arbitrarily, and suppose for all k in the range $1 \le k < n$ that $T(k) \le (4/3)k^2$. We must show as a consequence that $T(n) \le (4/3)n^2$. Observe

$$T(n) = T(\lfloor n/2 \rfloor) + n^2$$
 by the recurrence formula for $T(n)$
 $\leq (4/3)\lfloor n/2 \rfloor^2 + n^2$ by the induction hypothesis with $k = \lfloor n/2 \rfloor$
 $\leq (4/3)(n/2)^2 + n^2$ since $\lfloor x \rfloor \leq x$ for any x
 $= n^2/3 + n^2$
 $= (4/3)n^2$,

as required.