Workspace 'Workspace' in 'lec14' Page 1 (row 1, column 1)

Module 6: Model Selection and Regularization

Lecture 14 Feb 20th, 2023 Ch 6.1- 6.2

Feeling Sharing

You can leave when and if you need to

Nothing on the syllabus is as important as **your well-beings**.

It is important to ask for help in this class and beyond

We should prioritize flexibility, grace, and care for each other

Bootstrap V5 CV

The goal: quantify the uncertainty associated with a given estimator (model) or statistical learning method.

& or really associated with 4?

Linear Models

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon.$$

- The linear model has advantages in terms of its interpretability and often shows good predictive performance.
- How to improve linear model? Beyond Ordinary Least Square(OLS)

Why Consider Alternatives to

- Prediction Accuracy: especially when p > n. Need to control variance
 - Model Interpretability: Small number of features are easier to understand and design experiment.

Three Classes of Methods

- Subset Selection. We identify a subset of the *p* predictors then fit a model using least squares on the reduced set of variables.
- Shrinkage. We fit a model involving all *p* predictors, but the estimated coefficients are shrunken towards zero relative to the OLS estimates. This shrinkage (also known as regularization) has the effect of reducing variance and can also perform variable selection.
- Dimension Reduction.

Subset Selection

- Best subset selection
- Stepwise selection

Too many possible models

Best Subset Selection

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For k = 1, 2, ...p:

 (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
 - 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using best subset selection?
- What subset of variables is returned using best subset selection?

Group work:

	M	\L \L			2	. K	
Null model	Training MSE (x10^7) 8.76 8.63 7.42 8.16 8.33 4.33 5.82 3.17 4.07 3.31 3.06 3.08 3.555 2.97 2.98 2.16	k-fold CV Testing Error 10.08 9.98 8.01 8.3 9.06 7.47 5.22 4.23 3.78 4.01 4.16 5.49 4.02 4.23	 ∠M° ∠M1 ∞ ←M2√ ∠M3 ←M4 	 X₁ X₂ X₃ X₄ 	 X₁ X₂ X₁ X₃ X₁ X₄ X₂ X₃ X₂ X₄ X₃ X₄ 	 X₁ X₂ X₃ X₁ X₂ X₄ X₁ X₃ X₄ X₂ X₃ X₄ 	• X ₁ X ₂ X ₃ X ₄

Challenges for Best Subset selection

Forward Stepwise Selection

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For k = 0, ..., p 1: X_2
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p-k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

An Example for Forward Stepwise

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using forward selection?
- What subset of variables is returned using forward subset selection?

	Training MSE (x10^7)	k-fold CV Testing Error	Mo				
Null model	8.76	10.08					
X1	8.63	9.98	- 11				
X2	7.42	8.01 -	->M		$\bullet X_1 X_2$		
X3	8.16	8.3					
X4	8.33	9.06		• X ₁	• X ₁ X ₃	$\bullet X_1 X_2$	X_3
X1,X2	4.33	7.47		7.1			
X1,X3	5.82	5.22		$\sim \chi_2$	• X ₁ X ₄	\bullet X_1 X_2	X
X1,X4	3.17	4.23	• 0			7 11 7 12	$X_1 X_2 X_3$
X2,X3	4.07	3.78		• X ₃	• X ₂ X ₃	• X ₁ X ₃	X ₁
X2,X4	3.31	4.01	ラルル	_			
X3,X4	3.06	4.16		 X₄ 	$(X_2 X_4)$	\rightarrow X_2 X_3	XX
X1,X2,X3	3.08	5.49		7.14		12/4	
X1,X2,X4	3.55	4.02			 X₃ X₄ 		
X1,X3,X4	2.97	4.23	- 11 a		-5 - 4		
X2,X3,X4	2.98	3.17 💙	7/013			V	
X1,X2,X3,X4	2.16	4.39	-7 11 W				

Pros and Cons of Forward Selection

less models to be tested Computationally fensible. Cons stuck on lucal solution

Backward Stepwise Selection

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

An example for Backward Stepwise

Group work

We train a model using four variables, X_1, X_2, X_3, X_4 . We're interested in getting a subset of the variables to use. The following table shows the mean squared error and the R^2 value computed for the model learned using each possible subset of variables.

	Training MSE (x10^7)	k-fold CV Testing Error
Null model	8.76	10.08
X1	8.63	9.98
X2	7.42	8.01
X3	8.16	8.3
X4	8.33	9.06
X1,X2	4.33	7.47
X1,X3	5.82	5.22
X1,X4	3.17	4.23
X2,X3	4.07	3.78
X2,X4	3.31	4.01
X3,X4	3.06	4.16
X1,X2,X3	3.08	5.49
X1,X2,X4	3.55	4.02
X1,X3,X4	2.97	4.23
X2,X3,X4	2.98	3.17
X1,X2,X3,X4	2.16	4.39

- What subset of variables is found for each of the sets $\mathcal{M}_0, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{M}_4$ when using forward selection?
- What subset of variables is returned using forward subset selection?

Training K-fold CV MSE (x10^7) Testing Error Null model 8.76 10.08							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				- 41			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Null model	8.76	10.08	المامر هـ			
X3 8.16 8.3 X4 8.33 9.06 X1,X2 4.33 7.47 X1,X3 5.82 5.22 X1,X4 3.17 4.23 X2,X3 4.07 3.78 X2,X4 3.31 4.01 X3,X4 3.06 4.16 X1,X2,X3 3.08 5.49 X1,X2,X4 3.55 4.02 X1,X3,X4 2.97 4.23 X2,X3,X4 2.98 3.17	X1	8.63	9.98				
X3 8.16 8.3 X4 8.33 9.06 X1 X1 X2 X3 X1,X2 X3 X1,X3 5.82 5.22 X1,X4 3.17 4.23 X2,X4 3.31 4.01 X3,X4 3.06 4.16 X1,X2,X3 3.08 5.49 X1,X2,X4 3.55 4.02 X1,X3,X4 2.97 4.23 X1,X3,X4 2.98 3.17				- 11		\bullet X_1 X_2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Х3	8.16	8.3	-/Mi			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X4	8.33	9.06	•	 X₁ 	\bullet X_1 X_3	$\bullet X_1 X_2 X_3$
X1,X4	X1,X2	4.33	7.47		-		
X1,X4	X1,X3	5.82	5.22		$\bullet X_2$	\bullet X_1 X_4	$\bullet X_1 X_2 X_4$
X2,X3 4.07 3.78 X2,X4 3.31 4.01 X3,X4 3.06 4.16 X1,X2,X3 3.08 5.49 X1,X2,X4 3.55 4.02 X1,X3,X4 2.97 4.23 X2,X3,X4 2.98 3.17	X1,X4	3.17	4.23	• Ø	_		\sim
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X2,X3	4.07	3.78	· /	• X ₃	\bullet X_2 X_3	$\lambda_1 X_3 X_2$
X1,X2,X3 3.08 5.49 X1,X2,X4 3.55 4.02 X1,X3,X4 2.97 4.23 X2,X3,X4 2.98 3.17	X2,X4			> A4 - 1/			
X1,X2,X3 3.08 5.49 X1,X2,X4 3.55 4.02 X1,X3,X4 2.97 4.23 X2,X3,X4 2.98 3.17				→) /412 ∨	X₄	\bullet X_2 X_4	• X ₂ X ₃ X ₄
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X1,X2,X3	3.08	5.49		·		
X2,X3,X4 2.98 3.17		3.55	4.02	~ 61		X_3 X_4	
	X1,X3,X4	2.97	4.23	~>/UZ			
NA NO NO NA DECEMBER DE LOS DELOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DELOS DE LOS DELOS DE	X2,X3,X4	2.98	3.17	2 11			
X1,X2,X3,X4 2.16 4.39 ~ ML	X1,X2,X3,X4	2.16	4.39	~ MIL			

Pros and Cons of Backward Selection

Consultational feasible & local solution

Forward Us Backwark P20

X

P

Alternatives for Approximating Test Error

Estimating Test Error

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .
- CV is good but very time consuming.

• We can indirectly estimate test error by making an adjustment to the training error to account for the bias due overfitting

Estimating Test Error

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the null model, which contains no predictors. This $\overline{\text{Algorithm 6.3 Backward stepwise selection}}$ model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the best among these p-k models, and call it \mathcal{M}_{k+1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using crossvalidated prediction error, C_p (AIC), BIC, or adjusted R^2 .

- 1. Let \mathcal{M}_p denote the full model, which contains all p predict
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the \mathfrak{g} in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the best among these k models, and call it \mathcal{M} best is defined as having smallest RSS or highest R^2 .
- Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ usi validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Cp = AIC

• Mallow's C_p :

$$C_p = rac{1}{n} \left(ext{RSS} + 2d\hat{\sigma}^2
ight),$$
 some red Complexity

training

where d is the total # of parameters used and $\hat{\sigma}^2$ is an estimate of the variance of the error ϵ associated with each response measurement.

AIC

• The AIC criterion is defined for a large class of models fit by maximum likelihood:

$$AIC = \boxed{-2 \log L + 2 \cdot d}$$

where L is the maximized value of the likelihood function for the estimated model.

BIC

M₁
$$\rightarrow$$
 A1C

BIC = $\frac{1}{n}$ (RSS + $\log(n)d\hat{\sigma}^2$).

N = (3)

Like C_n , the BIC will tend to take on a small value for a

- Like C_p , the BIC will tend to take on a small value for a model with a low test error, and so generally we select the model that has the lowest BIC value.
- Notice that BIC replaces the $2d\hat{\sigma}^2$ used by C_p with a $\log(n)d\hat{\sigma}^2$ term, where n is the number of observations.
- Since $\log n > 2$ for any n > 7, the BIC statistic generally places a heavier penalty on models with many variables, and hence results in the selection of smaller models than

$$R^{2} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

Adjusted $R^{2} = 1 - \frac{\text{RSS}/(n-d-1)}{\text{TSS}/(n-1)}$.

where TSS is the total sum of squares.

• Unlike C_p , AIC, and BIC, for which a *small* value indicates a model with a low test error, a *large* value of adjusted R^2 indicates a model with a small test error.

Bonus Quiz 11

We have two training points (x1 = 1, x2 = 1, y = 1) and (x1 = 2, x2 = 3, y = 2). We want to fit a linear model to minimize the MSE

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

What is the minimun MSE? What is the corresponding model?