Dynamic Fully-Compressed Suffix Trees

<u>Luís M. S. Russo</u> Gonzalo Navarro Arlindo L. Oliveira

INESC-ID/IST {Isr,aml}@algos.inesc-id.pt

Dept. of Computer Science, University of Chile gnavarro@dcc.uchile.cl

19th Annual Symposium on Combinatorial Pattern Matching

Outline

- Motivation
 - The Problem We Studied
 - Previous Work and FCST's
 - Fully-Compressed Suffix Tree Basics
- 2 Dynamic FCST's
 - The problem
 - Dynamic CSA's
 - Updating the sampling
- 3 Conclusions
 - Summary

28 min

Suffix Trees are Important

Suffix trees are important for several string problems:

- pattern matching
- longest common substring
- super maximal repeats
- bioinformatics applications
- etc

26 min

Problem (Suffix Trees need too much space)

Pointer based representations require O(n log n) bits.

This is much larger than the indexed string. State of the art implementations require $[8, 10]n \log \sigma$ bits.

Sadakane proposed a way to represent compressed suffix trees, in $nH_k + 6n + o(n \log \sigma)$ bits.

Compressed Suffix Tree

A dynamic representation, by Chan *et al.*, requires $nH_k + \Theta(n) + o(n \log \sigma)$ bits and suffers an $O(\log n)$ slowdown.

Compressed Suffix Tree

- The Fully-Compressed suffix tree representation requires only $nH_k + o(n \log \sigma)$ bits.
- The representation uses the following scheme:

Fully-Compressed Suffix Tree

We present dynamic FCST's that require only $nH_k + o(n \log \sigma)$ bits with a $O(\log n)$ slowdown.

Fully-Compressed Suffix Tree

Node Representation

23 min

A node represented as an interval of leaves of a suffix tree.

22 min

Compressed indexes are compressed representations of the leaves of a suffix tree.

Their success relies on:

- Succinct structures, based on RANK and SELECT.
- Data compression, that represent T in $O(uH_k)$ bits.

Examples

FM-index, Compressed Suffix Arrays, LZ-index, etc.

Sadakane used compressed suffix arrays.

We need a compressed index that supports ψ and LF.

For example the Alphabet-Friendly FM-Index.

Suffix Tree self-similarity

21 min

Lemma

When LCA(v, v') \neq ROOT we have that:

$$SLINK(LCA(v, v')) = LCA(SLINK(v), SLINK(v'))$$

This self-similarity explains why we can store only some nodes.

FCST's use a sampling such that in any sequence

- V
- SLINK(v)
- SLINK(SLINK(v))
- SLINK(SLINK(SLINK(v)))
-

of size δ there is at least one sampled node.

Fundamental lemma

17 min

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

17 min

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

Proof.

SDep(LCA(v, v'))

$$= i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))$$

$$\geq i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v')))$$

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v'))?
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK^{i}(LCA(v, v')))
```

17 min

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v'))?
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK^{i}(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
```


Fundamental lemma

17 min

Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) >
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK'(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
    > i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v')))
```


Lemma

```
If SLink^r(LCA(v, v')) = Root, and let d = min(\delta, r + 1).
Then SDEP(LCA(v, v')) =
           \max_{0 \le i \le d} \{i + SDEP(LCSA(SLINK^i(v), SLINK^i(v')))\}
```

```
SDep(LCA(v, v'))
    = i + SDEP(SLINK'(LCA(v, v')))
    = i + SDEP(LCA(SLINK^{i}(v), SLINK^{i}(v')))
    > i + SDEP(LCSA(SLINK^{i}(v), SLINK^{i}(v')))
The last inequality is an equality for some i < d.
```

With the previous lemma FCST's compute the following operations:

- SDEP(v) = SDEP(LCA(v, v)) = $\max_{0 \le i \le d} \{i + \mathsf{SDEP}(\mathsf{LCSA}(\psi^i(v_l), \psi^i(v_r)))\}.$
- LCA(v, v') = LF(v[0..i-1],LCSA(ψ^i (min{ v_l, v_l' }), ψ^i (max{ v_r, v_r' }))), for the *i* in the lemma.
- SLINK(v) = LCA($\psi(v_l), \psi(v_r)$)

Problem (FCST's are static)

How to insert or remove a text T from a FCST that is indexing a collection \mathcal{C} of texts ?

- Use Weiner's algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling.

Problem (FCST's are static)

How to insert or remove a text T from a FCST that is indexing a collection C of texts ?

- Use Weiner's algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling

Problem (FCST's are static)

How to insert or remove a text T from a FCST that is indexing a collection $\mathcal C$ of texts ?

- Use Weiner's algorithm or delete suffixes from the largest to the biggest.
- Update the CSA and the sampling.

Theorem (Mäkinen, Navarro)

A dynamic CSA over a collection $\mathcal C$ can be stored in $nH_k(\mathcal C)+o(n\log\sigma)$ bits, with times $t=\Psi=O(((\log_\sigma\log n)^{-1}+1)\log n),\, \Phi=O((\log_\sigma\log n)\log^2 n),$ and inserting/deleting texts T in $O(|T|(t+\Psi))$.

Lets take a closer look at the sampling

Use a dynamic CSA's.

Theorem (Mäkinen, Navarro)

A dynamic CSA over a collection $\mathcal C$ can be stored in $nH_k(\mathcal C)+o(n\log\sigma)$ bits, with times $t=\Psi=O(((\log_\sigma\log n)^{-1}+1)\log n),\, \Phi=O((\log_\sigma\log n)\log^2 n),$ and inserting/deleting texts T in $O(|T|(t+\Psi))$.

Lets take a closer look at the sampling.

- How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?
- We use a purely conceptual reverse tree.

Definition

The **reverse tree** \mathcal{T}^R is the minimal labeled tree that, for every node v of a suffix tree, contains a node v^R denoting the reverse string of the path-label of v.

- How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?
- We use a purely conceptual reverse tree.

- How do we guarantee the sampling condition, with at most $O(n/\delta)$ nodes?
- We use a purely conceptual reverse tree.

Definition

The **reverse tree** \mathcal{T}^R is the minimal labeled tree that, for every node v of a suffix tree, contains a node v^R denoting the reverse string of the path-label of v.

Reverse tree

8 min

Reverse tree

Note that the SLINK's correspond to moving upwards on the reverse tree.

Reverse tree

Example (Suffix Tree for *abbbab* and its reverse tree)

We sample the nodes for which TDEP(v^R) $\equiv_{\delta/2} 0$ and HEIGHT(v^R) $\geq \delta/2$.

Reverse tree

What happens when nodes are inserted or deleted?

Reverse tree

Only the leaves of the reverse tree change.

Reverse tree

This sampling does not respect the HEIGHT(v^R) $\geq \delta/2$ condition.

Reverse tree

8 min

To insert a node we do an upwards scan and sample nodes if necessary.

Reverse tree

To insert a node we do an upwards scan and sample nodes if necessary.

Reverse tree

To insert a node we do an upwards scan and sample nodes if necessary.

Reverse tree

To delete a node we keep reference counters to guarantee that it is safe to unsample a node.

Reverse tree

8 min

To delete a node we keep reference counters to guarantee that it is safe to unsample a node.

- We study the problem of a changing [logn].
- We give a new way to compute LSA.
- We obtain a generalized branching, that determines v₁.v₂ for nodes v₁ and v₂ and can be computed directly over CSA's in the sample time as regular branching.

Other contributions

- We study the problem of a changing [logn].
- We give a new way to compute LSA.
- We obtain a generalized branching, that determines v₁.v₂ for nodes v₁ and v₂ and can be computed directly over CSA's in the sample time as regular branching.

- We study the problem of a changing [logn].
- We give a new way to compute LSA.
- We obtain a generalized branching, that determines v_1, v_2 for nodes v_1 and v_2 and can be computed directly over CSA's in the sample time as regular branching.

We presented dynamic fully-compressed suffix trees that:

- occupy $uH_k + o(u \log \sigma)$ bits.
- supports usual operations in a reasonable time.

Acknowledgments

- Veli M\u00e4kinen and Johannes Fisher for pointing out the generalized branching problem.
- FCT grant SFRH/BPD/34373/2006 and project ARN, PTDC/FIA/67722/2006
- Millennium Institute for Cell Dynamics and Biotechnology, Grant ICM P05-001-F, Mideplan, Chile.

0 min

Thanks for listening.