쌍회전자체계의 종속SAC설계의 한가지 방법

남광현, 조금석, 리준일

조종체계의 각이한 설계방법들가운데서 적응조종체계의 한가지 설계법인 단순적응조종(SAC)은 구조가 간단하면서도 모형의 불확정성이나 외란에 대하여 로바스트적이며 조종대상이 ASPR조건을 만족시킬것을 요구한다.[1,2]

현실에서 부닥치는 많은 체계들은 ASPR조건이 만족되지 않는다.

이 문제해결을 위해 병렬정결합보상기(PFC)를 도입하는 방법이 제안되여 조종대상에 PFC를 부가한 확장체계가 ASPR조건을 만족시킴으로써 단순적응조종체계의 구성이 가능하게 되였다.[1]

지금까지 적지 않은 PFC설계수법[1-3]들이 제안되고 비선형성을 포함한 체계에 대하여 적응PFC를 설계하는 수법[3]도 제안되였지만 비선형체계의 일반PFC만으로도 단순적응조종기설계가 가능한 경우도 있다.

론문에서는 비선형인 쌍회전자체계를 대상으로 하여 MIMO체계를 종속SAC체계로 구성하여 적응PFC를 설계하지 않고도 비선형체계의 SAC를 설계할수 있다는것을 론증하였다.

1. 종속SAC조종기의 설계

그림 1에 쌍회전자체계의 구조를 보여주었다.

그림 1. 쌍회전자체계의 구조

수직면과 수평면에 대하여 운동방정식은 각각 다음과 같이 표시된다.

$$J_{w}\ddot{\psi}(t) = -\eta_{w}\dot{\psi}(t) + g[(A - B)\cos\psi(t) - C\sin\psi(t)] + l_{m}F_{1}(t)$$
 (1)

$$\ddot{\phi}(t) = \frac{-\eta_{\phi}\dot{\phi}(t) + l_t F_2(t)\cos\psi(t)}{D\cos^2\psi(t) + E\sin^2\psi(t) + F}$$
(2)

여기서 ψ , ϕ 는 각각 종요각, 편요각이며 F_1 과 F_2 는 쌍회전자가 발생하는 양력이다.

조종하려는 대상은 $F_1(t)$, $F_2(t)$ 를 입력으로 하고 출력 ψ 와 ϕ 를 출력으로 하는 비 선형2입력2출력체계로 볼수 있다.

- 이 비선형체계에 대하여 대상파라메터의 불확실성과 가변부하속에서도 출력 $\psi(t)$, $\phi(t)$ 가 희망하는 목표값 $\psi^*(t)$, $\phi^*(t)$ 를 추적하는 적응조종기를 설계하는것을 조종목적으로 한다.
 - ① 종요각 $\psi(t)$ 에 대한 SAC설계

먼저 ₩에 대하여 SAC를 설계한다.

 $\psi(t)$ 가 n_{ψ} 차SISO체계의 기준모형

$$\dot{x}_{\eta m}(t) = A_{\eta m} x_{\eta m}(t) + b_{\eta m} \psi^*(t)$$

$$y_{\eta m}(t) = c_{\eta m}^{T} x_{\eta m}(t)$$
(3)

의 출력 $y_{\nu m}(t)$ 를 추적한다고 하자. 여기서 $\psi^*(t)$ 는 기준모형출력 $y_{\nu m}(t)$ 를 생성하는 기준모형입력이다.

식 (1)에서 상대차수는 2이므로 ASPR조건이 만족되지 않는다.

따라서 정결합보상기(PFC)

$$\dot{x}_{\psi h}(t) = A_{\psi h} x_{\psi h}(t) + b_{\psi h} u_1(t)$$

$$y_{\psi h}(t) = c_{\psi h}^{T} x_{\psi h}(t)$$
(4)

를 설계하고 조종입력을 다음과 같이 결정한다.

$$u_1(t) = k_{\psi}(t)^{\mathrm{T}} z_{\psi}(t)$$
 (5)

여기서

$$z_{\psi}(t) = [e_{\psi}(t)x_{\psi m}(t)\psi^{*}(t)]^{T}$$
(6)

$$k_{vv}(t) = [k_{vve}(t)k_{vvm}(t)k_{vv}^{*}(t)]^{\mathrm{T}}$$
(7)

$$e_{yy}(t) = y_{yam}(t) - \psi_a(t) \tag{8}$$

$$\psi_{\alpha}(t) = \psi(t) + y_{udn}(t) \tag{9}$$

이다.

이때 $k_{\psi}(t)$ 에 대한 PI형적응법칙은

$$\dot{k}_{w}(t) = \Gamma_{w} z_{w}(t) e_{w}(t) - \sigma_{w} k_{w}(t)$$

$$\tag{10}$$

와 같다.

② 편요각 $\phi(t)$ 에 대한 SAC설계 $\phi(t)$ 는 n_{ϕ} 차1입출력계의 기준모형

$$\dot{x}_{\phi m}(t) = A_{\phi m} x_{\phi m}(t) + b_{\phi m} \phi^*(t)$$

$$y_{\phi m}(t) = c_{\phi m}^{T} x_{\phi m}(t)$$
(11)

의 출력 $y_{\phi m}(t)$ 를 추적한다고 하자. 여기서 $\phi^*(t)$ 는 기준모형출력 $y_{\phi m}(t)$ 를 생성하는 기준모형입력이다.

편요각에 대한 운동방정식 (2)에서

$$D\cos^2 \psi(t) + E\sin^2 \psi(t) + F = J_{\phi}$$
 (12)

로 표시하면 조종입력 $F_2(t)$ 로부터 출력 $\phi(t)$ 까지의 전달함수는 다음과 같다.

$$\frac{\phi(t)}{F_2(t)} = \frac{l_t \cos \psi(t)}{J_{\phi} s^2 + \eta_{\phi} s} \tag{13}$$

여기서 J_{ϕ} 를 파라메터변화로 보고 SAC를 구성한다.

상대차수가 2이므로 ASPR조건을 만족시키지 않으며 SAC의 구성을 위해 PFC를 도입하다.

그러나 체계증폭도가 $\cos \psi(t)$ 에 의존하고 시변이므로 일반PFC로는 ASPR조건을 만족시키기 어렵다.

 $\psi(t)$ 는 편요각조종체계와 분리되여 독립적으로 조종되는 량이므로 기지로 볼수 있으며 $\cos \psi(t)$ 는 대상의 특성으로부터 항상 정이다.

따라서 가변PFC를 구성하는것이 가능하다.

정결합보상기(PFC)

$$\dot{x}_{\phi h}(t) = A_{\phi h} x_{\phi h}(t) + b_{\phi h} F_2(t)$$

$$y_{\phi h}(t) = c_{\phi h}^{T} x_{\phi h}(t) \cos \psi(t)$$
(14)

$$G_{\phi f} = \frac{D}{\tau s + 1} \cos \psi(t) = \overline{G}_{\phi f} \cos \psi(t)$$
 (15)

를 결합하고 $(\overline{G}_{\emptyset})$ 는 $\cos \psi(t)$ 를 1로 보았을 때 조종대상이 ASPR조건을 만족시키는 PFC의 전달함수) 조종입력을 다음과 같이 결정한다.

$$\theta^*(t) = k_{\phi}(t)^{\mathrm{T}} z_{\phi}(t) \tag{16}$$

여기서

$$z_{\phi}(t) = [e_{\phi}(t)x_{\phi m}(t)\phi^{*}(t)]^{\mathrm{T}}$$
(17)

$$k_{\phi}(t) = [k_{\phi e}(t)k_{\phi m}(t)k_{\phi^*}(t)]^{\mathrm{T}}$$
(18)

$$e_{\phi}(t) = y_{\phi m}(t) - \phi_{\alpha}(t) \tag{19}$$

$$\phi_a(t) = \phi(t) + y_{\phi h}(t) \tag{20}$$

이며 $k_{\phi}(t)$ 의 적응법칙은

$$\dot{k}_{\phi}(t) = \Gamma_{\phi} z_{\phi}(t) e_{\phi}(t) - \sigma_{\phi} k_{\phi}(t) \tag{21}$$

로 조정한다.

그림 2에 적응조종체계의 구성도를 보여주었다.

그림 2. 적응조종체계의 구성도

2. 실험결과와 분석

종요각조종체계에 대하여 설계파라메터를

$$\Gamma_{w} = diag[1.0 \times 10^4 \ 1.0 \times 10^2 \ 5.0 \times 10^2]$$

$$\sigma_{w} = diag[1.0 \times 10^{-2} \ 1.0 \times 10^{-1} \ 1.0 \times 10^{-1}]$$

으로 하고 PFC의 전달함수를 다음과 같이 구성하였다.

$$G_{\psi f} = \frac{1}{10s + 1000}$$

편요각조종체계에 대하여 PFC의 전달함수를

$$G_{\phi f} = \frac{1}{10s + 20} \cos \psi(t)$$

로 구성하고 파라메터를 다음과 같이 선택하였다.

$$\Gamma_{\phi} = diag[1.0 \times 10^5 \ 5.0 \times 10^{-1} \ 5.0 \times 10^{-1}]$$

$$\sigma_{\phi} = diag[1.0 \times 10^{-2} \ 1.0 \times 10^{-1} \ 1.0 \times 10^{-1}]$$

그림 3에 목표값을 $\psi^* = 20$, $\phi^* = 90$ 으로 주었을 때의 조종체계의 출력응답곡선을 보여주었다.

그림 3. 조종체계의 출력응답곡선 기) 종요각응답곡선, L) 편요각응답곡선

적응PFC를 리용하여 SAC를 설계한 선행방법[4]과 대비해볼 때 ψ 조종과 ϕ 조종을 동시에 원만히 수행할뿐아니라 병렬정결합보상기(PFC)의 적응과정이 없으므로 과도시간을 훨씬 단축하였다.

맺 는 말

론문에서 새롭게 해결한 과학기술적내용은 다음과 같다.

- ① 비선형인 쌍회전자체계를 대상으로 하여 종속구조의 SAC조종기설계의 한가지 방법을 제기하였다.
- ② 비선형MIMO체계에 대하여 적응PFC를 설계하지 않고도 SAC를 설계할수 있다는 것을 확인하였다.
- ③ 제작된 쌍회전자체계에 대한 모의 및 실시간조종실험을 통하여 제안된 설계법의 유효성을 확인하였다.

참 고 문 헌

- [1] 리준일: 적응조종, 고등교육도서출판사, 142~192, 주체107(2018).
- [2] 김일성종합대학학보(자연과학), 57, 12, 26, 주체100(2011).
- [3] H. Kaufman et al.; Direct Adaptive Control Algorithms, Springer, 230~272, 1997.
- [4] T. Takagi et al.; Transactions of the Institute of Systems, Control and Information Engineers, 30, 10, 379, 2017.

주체109(2020)년 5월 5일 원고접수

A Method of Cascaded Design Techniques of SAC for Twin-Rotor System

Nam Kwang Hyon, Jo Kum Sok and Ri Jun Il

In the paper is considered a method of cascaded design techniques of SAC for twin-rotor system. Through computer simulation and real-time control experiments the effectiveness of the proposed controllers is verified.

Keywords: SAC(simplified adaptive control), twin-rotor system, cascaded design