

Università degli Studi di Padova Statistica

Corso di Laurea in Ingegneria Fisica

Progetto d'esame

Analisi statistica degli esopianeti

Un'analisi statistica sui parametri determinanti l'abitabilità di pianeti extra solari

Gruppo di lavoro:

Rolleri Gabriele, gabriele.rolleri@mail.polimi.it Matricola 959859

Sergenti Filippo, filippo.sergenti@mail.polimi.it Matricola 954997

Zhang Giovanni, giovanni.zhang@mail.polimi.it Matricola 960718

Docente:

Prof. Alessandro Toigo

Anno Accademico 2020-2021

Indice

1	Introduzione		
	1.1 Contenuto del dataset	2	
2	Statistica descrittiva	2	
3	Test d'ipotesi	2	
4	Regressione	2	

1 Introduzione

Il database originale contiene 39 parametri, molti sono stati scartati per la scarsa utilità alla risoluzione del nostro problema.

1.1 Contenuto del dataset

Il dataset è composto da 16 parametri, categorici e numerici, che individuano le caratteristiche del pianeta e del sistema a cui esso appartiene.

Parametro	Unità di misura	Descrizione
sy_snum	N.A.	Numero di stelle facenti parte del siste-
		ma a cui appartiene il pianeta
sy_pnum	N.A.	Numero di pianeti facenti parte del si-
		stema a cui appartiene il pianeta
discoverymethod	Categorica	Metodo di scoperta del pianeta
pl_orbper	[Giorni]	Periodo orbitale del pianeta
pl_orbsmax	[Unità astrono-	Semiasse maggiore dell'orbita del piane-
	$\operatorname{miche}]$	ta
pl_rade	$[R_{\oplus}]$	Raggio del pianeta
pl_bmasse	$[M_{\oplus}]$	Miglior stima della massa del pianeta
		tra i vari metodi utilizzati
pl_orbeccen	[1]	Eccentricità dell'orbita del pianeta
pl_insol	[Flusso radian-	Flusso radiante che colpisce il pianeta
	te del Sole sulla	
	Terra]	
pl_eqt	[K]	Temperatura di equilibrio del pianeta
		nell'assunzione di corpo nero scaldato
		solo dalla stella
st_teff	[K]	Temperatura superficiale della stella
		modellata come corpo nero che emette
		la stessa quantità di radiazione
st_rad	$[R_{\odot}]$	Raggio della stella attorno a cui orbita
		il pianeta
st_mass	$[M_{\odot}]$	Massa della stella attorno a cui orbita il
		pianeta
ra	$[\deg]$	Ascensione retta del sistema planetario
dec	$[\deg]$	Declinazione del sistema planetario

2 Statistica descrittiva

Qui va la statistica descrittiva

3 Test d'ipotesi

Qua faremo un test d'ipotesi

4 Regressione

La regressione va qua