Solución Parcial

Listado : Espacios vectoriales

(b)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{R}$, $U = \{(x, y) \in V : x + \overline{y} = 0\}$,

Determine las coordenadas de los siguientes vectores de cada s.e.v. U con respecto a la base encontrada

(b)
$$u = \binom{i}{i}$$
,

Solución: $U=\{(x,y)^T\in \mathbb{C}^2: x+y=0\}$
-> (x,y) e (2 : x = - 9)
$= 1 (-\overline{9}, 9)^{T} \in \mathbb{C}^{2}: y \in \mathbb{C}^{1}$
= \((-(a-bi), a+bi) \(\epsilon \) \(\frac{1}{2} \cdot a_1 \text{b} \in \empty \)
= 1(-a+bi, a+bi) E (1 : a be 12)
= \a(-1,1)+b(i,i) e & a,bekh
= <\(\(\(\(\(\(\(\) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
El conjunto 3(-1,1), (i,i) 4 genera a V. Veamos si es D.i. Sean di߀R
Veamos si es l.i. Sean a, B∈R
$\langle \beta \rangle \left\{ -\alpha + \beta i = 0 \right\} (=) \alpha = (\beta = 0)$ $\left\{ \alpha + \beta i = 0 \right\}$
] A + Bi = 0
Por la tanta 5(-1/1), (i,i) tes. li

Como 4(-1,1), (i,i), es generador de V y es l.i, entonció es basadi. Las coordinadas de u respecto de la base encontrada, son los escalares &, BETR tales que

$$\begin{pmatrix} i \\ i \end{pmatrix} = d \begin{pmatrix} -1 \\ 1 \end{pmatrix} + B \begin{pmatrix} i \\ i \end{pmatrix}$$

Clarament, estas coordenados son x = 0 y $\beta = 1$.

9. Considere el espacio vectorial real \mathbb{C}^2 . Sean

$$\mathcal{B}_U = \{(-i, 2+2i)^{\mathrm{T}}, (-2+i, 0)^{\mathrm{T}}\}$$
 y $\mathcal{B}_W = \{(-1, 1+i)^{\mathrm{T}}, (i, -i)^{\mathrm{T}}\},$

bases de los subespacios vectoriales de \mathbb{C}^2 , U y W, respectivamente.

- (a) Encuentre una base para U+W.
- (b) Es $U + W = \mathbb{C}^2$? Justifique su respuesta.
- (c) Es U + W una suma directa? Justifique su respuesta.

Solution: Sabemos que Bu es conjunto generador de V, y que Bu es conjunto generador de W. Luego Bu UBN es conjunto generador de U+W.

$$U+W = \langle \{(-i,2+)i\}^{T},(-2+i,0)^{T},(-1,1+i)^{T},(i,-i)^{T}\}$$

Determinamos si el coujunto generador obtenido de UtW, es o no li

$$\frac{\int_{0}^{4}}{2^{4}} \left(\frac{\lambda_{1}}{\lambda_{2}} \right)^{2} + \frac{\lambda_{3}}{\lambda_{2}} \left(-2+i_{1}0 \right)^{2} + \lambda_{3} \left(-1,1+i \right)^{4} + \lambda_{4} \left(i,-i \right)^{7} = \left(0,0 \right)^{7}$$

12 dn + d3 - d4 = 0

$$(3) \begin{cases} x_3 = -2x_2 \\ 2x_1 - 2x_2 = 0 \end{cases} \qquad (3) \begin{cases} x_3 = -2x_2 \\ x_1 = x_2 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_3 = x_4 = x_4 = 0 \end{cases} \qquad (3) \begin{cases} x_1 = x_2 \\ x_2 = x_4 = x_$$

Por la tanta, el cogrubo {(-i,2+2i), (-2+i,0), (-1,1+i), (i -i), (i -i), (i y es bare de U+W.

9. Considere el espacio vectorial real \mathbb{C}^2 . Sean

$$\mathcal{B}_U = \{(-i, 2+2i)^{\mathrm{T}}, (-2+i, 0)^{\mathrm{T}}\}$$
 y $\mathcal{B}_W = \{(-1, 1+i)^{\mathrm{T}}, (i, -i)^{\mathrm{T}}\},$

bases de los subespacios vectoriales de \mathbb{C}^2 , U y W, respectivamente.

- (a) Encuentre una base para U + W.
- (b) ¿Es $U + W = \mathbb{C}^2$? Justifique su respuesta.
- (c) ¿Es U+W una suma directa? Justifique su respuesta.
- b) Considerando que UTW es suberpació de C² sobre R, y ya que ambos tienen misma dimensión, es de cir

autonous U+W=C

c) Como Bu es base de Ventonas dim (V) = 2, y como Bu es base de Wentonas dim (W) = 2.

Luego de Teorema de Grassman se tiene que dim (UNN) = 2+2-4=0 por lo que UNW=309.

De lo antenor, U+W os suma directa.

13. Sean V un \mathbb{K} -e.v. y $B = \{v_1, v_2, v_3\}$, un conjunto li de vectores de V. ¿Para qué valores de $\alpha \in \mathbb{K}$ se cumple que el conjunto $\{v_2 - v_1, \alpha v_3 - v_2, v_1 - v_3\}$ es li? Justifique su respuesta.

Solution: Sean B1, B2, B3 EKK. Suponemos que fr, re, rs 7 es l.i.

$$\beta_{\lambda}(N_{2}-N_{\Lambda}) + \beta_{2}(\alpha N_{3}-N_{2}) + \beta_{3}(N_{4}-N_{3}) = \Theta \iff (-\beta_{\Lambda}+\beta_{3}) N_{\Lambda} + (\beta_{\Lambda}-\beta_{2})N_{2} + (\alpha\beta_{Z}-\beta_{3})N_{3} = O$$

$$\iff -\beta_{\Lambda}+\beta_{3} = \beta_{\Lambda}-\beta_{Z} = \alpha\beta_{Z}-\beta_{3} = O \quad (\beta_{N}+\beta_{N}) = S(i)$$

$$\iff \beta_{\Lambda}=\beta_{3} \quad \beta_{\Lambda}=\beta_{2} = \beta_{3} \quad \beta_{\Lambda}=\beta_{2} = \alpha\beta_{2}$$

$$\iff \beta_{\Lambda}=\beta_{3}=\beta_{2}-\alpha\beta_{2}$$

$$\iff \beta_{\Lambda}=\beta_{3}=\beta_{2}-\alpha\beta_{2}$$

Si $\alpha=1$, el coujunto βv_2-v_1 , αv_3-v_2 , $v_1-v_3+e_5$ l.d., pres los escalares $\beta_1\beta_2$, β_3 no neusariamente son todos (evos para que la combinación lineal sea el vedor rulo. Por ejemplo, bastaña apre $\beta_1=\beta_2=\beta_3=2$. y se cumpliña que $2(v_2-v_1)+2(v_3-v_2)+2(v_1-v_3)=9$ Si $\alpha\neq 1$, entonces el conjunto es l.i., pres si $\beta_2=\alpha\beta_2$ entonces $\beta_2(1-\alpha)=0$ y por tanto $\beta_2=0$, y como $\beta_1=\beta_2=\beta_3$, entonces $\beta_3=\beta_3=0$.

El cognito 1/2-1/1, 21/3-1/34 es li para todo X e 1R-114.