Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 4

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Les exercices en gras comptent pour le bonus et les séries sont à rendre avant le vendredi de chaque semaine dans le casier de votre assistant (à la section de maths).

- 1. Déterminer toutes les racines complexes des équations suivantes : $\sin z = 0$, $\cos z = \pi$, $\exp(2z) 7 \exp z + 6 = 0$.
- 2. Montrer que

$$\frac{1}{z-1} = \sum_{n>0} (-1)^n (z-2)^n, \quad |z-2| < 1,$$

 \mathbf{et}

$$\frac{1}{(z+2)^2} = \frac{1}{4} \sum_{n \ge 0} \frac{(n+1)}{2^n} (z+4)^n, \quad |z+4| < 2.$$

3. Soit f une fonction analytique sur un ouvert $U \subset \mathbb{C}$. Montrer que si f n'est pas constante au voisinage de $z_0 \in U$, il existe un voisinage V de z_0 sur lequel on a

$$z \in V$$
 et $f(z) = f(z_0) \Rightarrow z = z_0$.

- 4. Soit $\log(z)=\sum_{n=1}^{\infty}(-1)^{n-1}(z-1)^n/n$ pour |z-1|<1. Montrer que $\exp\log(z)=z$. Indication. Utilisez ce que vous connaissez déjà pour z réel.
- 5. Montrer que l'équation cubique

$$z^3 - 3z - w = 0 \quad (1)$$

possède une solution unique proche de 0 si w et suffisamment petit. Plus précisement, il existe des voisinages U de $z_0 = 0$ et V de $w_0 = 0$ tels que pour tout $w \in V$ il existe un unique $z \in U$ satisfaisant (1). Devéloper cette racine en puissances de w (calculer les premiers 3 termes).

6. Pour $n \in \mathbb{N}$, on pose

$$\Sigma_n = \sum_{k=0}^n \sin(k)$$
 et $S_n = \sum_{k=1}^n \frac{\sin(k)}{k}$.

Montrer que $(\Sigma_n)_{n\geq 1}$ est bornée. En déduire que $(S_n)_{n\geq 1}$ converge.