Plenum
$$\frac{5}{11-2013}$$

6.31 Short $\frac{1}{x}$ som $\frac{1}{y+w}$ for $\frac{1}{y}$ espan $\left\{u_{1}, u_{1}, u_{3}\right\}$

1 Short $\frac{1}{x}$ som $\frac{1}{y+w}$ for $\frac{1}{y}$ espan $\left\{u_{1}, u_{1}, u_{3}\right\}$

1 Short $\frac{1}{x}$ som $\frac{1}{y+w}$ for $\frac{1}{y}$ espand shows

1 Short $\frac{1}{x}$ som $\frac{1}{y+w}$ for $\frac{1}{y+w}$ som $\frac{1}{y}$ so $\frac{1}{y+w}$ for $\frac{1}{y+w}$ so $\frac{$

6.3.7

$$\frac{1}{3} = \frac{1}{3}$$
 $\frac{1}{3} = \frac{1}{3}$
 $\frac{1}{3} = \frac{$

No set alle
$$\tilde{x} \in \mathbb{R}^n$$
 han shrino uniter soun

 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{p} \in \mathbb{R}$ ow \tilde{A}
 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{p} \in \mathbb{R}$ ow \tilde{A}
 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{p} \in \mathbb{R}$ ow \tilde{A}
 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{p} \in \mathbb{R}$ ow \tilde{A}
 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{p} \in \mathbb{R}$ ow \tilde{A}
 $\tilde{x} = \tilde{p} + \tilde{u}$ der $\tilde{u} = \tilde{p} = \tilde{p} = \tilde{u}$
 $\tilde{u} = \tilde{u} = \tilde{$

nov 5-14:44

1. Bruh Garr Schmitt på søylere for å få onocphalbasis.

2. Out how south pa sin length,

3. Long Q = [u, u, u, u] my den resulterente

oñonomale basisen.

y. R=QTA.

The minse known of lose. It
$$A\vec{r} = \vec{k}$$

{ been. If $A = \vec{k} = \vec{k}$

On sader as lin. nowhere \vec{k} is, so at

 $\vec{k} = (\vec{k} + \vec{k}) \cdot \vec{k} \cdot \vec{k} = \vec{k} \cdot \vec{k}$

The nowhere \vec{k} is say if $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} = \vec{k} \cdot \vec{k}$

Let $\vec{k} = (\vec{k} + \vec{k}) \cdot \vec{k} \cdot \vec{k} = \vec{k} \cdot \vec{k}$

The nowhere \vec{k} is $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k}$

Let $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k}$

The nowhere \vec{k} is $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k}$

Let $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k}$

The nowhere $\vec{k} = \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k} \cdot \vec{k}$

Let $\vec{k} = \vec{k} \cdot \vec{k}$

The nowhere $\vec{k} = \vec{k} \cdot \vec{$

nov 5-15:56