

STATISTICAL ORBIT DETERMINATION

ASEN 5070

Fall 2011

9/16/2011

LECTURE 10

Supplemental Reading – Ch 4

Computational Algorithm for the Batch Processor

$$\hat{\chi}_{k} = \left(H^{T}WH + W\overline{V}\right)_{n \times n}^{-1} \left(H^{T}Wy + W\overline{\chi}_{k}\right)_{n \times 1}$$

Look at H^TWH ,

$$\begin{bmatrix} H_1^T \ H_2^T \dots H_l^T \end{bmatrix} \begin{bmatrix} W_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & W_l \end{bmatrix} \begin{bmatrix} H_1 \\ \vdots \\ H_l \end{bmatrix} = H_1^T W_1 H_1 + H_2^T W_2 H_2 + \dots H_l^T W_l H_l$$

$$= \sum_{i=1}^l H_i^T W_i H_i$$

Likewise,

$$H^T W y = \sum_{i=1}^{l} H_i^T W_i y_i$$
 and
$$\hat{\chi}_k = \left(\sum_{i=1}^{l} H_i^T W_i H_i + \overline{W}\right)^{-1} \left(\sum_{i=1}^{l} H_i^T W_i y_i + \overline{W} \, \overline{\chi}_k\right)$$

Computational Algorithm for the Batch Processor

Hence, the computational algorithm involves forming the indicated summations, performing the Matrix inversion and solving for \hat{X}_k . We will see later that there are more computationally efficient ways to solve for \hat{X}_k without inverting the normal matrix.

 Estimating x_k begins with the following state propagation and observation-state relationships:

$$x(t) = \Phi(t, t_k) x(t_k)$$

$$y = Hx_k + \varepsilon$$

$$H(t) = \widetilde{H}(t) \Phi(t, t_0)$$
(12)

 The H matrix relates the state deviation vector at an epoch time to the observation deviation vector at another time.

The normal equations are formed

$$\left(\sum_{i=0}^{m} H_{i}^{T} R_{i}^{-1} H_{i} + \overline{P}_{0}^{-1}\right) \hat{x}_{0} = \sum_{i=0}^{m} H_{i}^{T} R_{i}^{-1} y_{i} + \overline{P}_{0}^{-1} \overline{x}_{0}$$

$$\Lambda \hat{x}_{0} = N$$
(13)

R is the observation error covariance matrix.

\$\overline{x}_0\$ and \$\overline{P}_0\$ are the a priori state estimate and state error covariance, respectively.

• Eqn. (13) may now be solved for \hat{x}_0 .

$$\left(\sum_{i=0}^{m} H_{i}^{T} R_{i}^{-1} H_{i} + \overline{P}_{0}^{-1}\right) \hat{x}_{0} = \sum_{i=0}^{m} H_{i}^{T} R_{i}^{-1} y_{i} + \overline{P}_{0}^{-1} \overline{x}_{0}$$

$$\Lambda \hat{x}_{0} = N$$
(13)

The RMS of the observation residuals is given by

$$RMS = \sqrt{\frac{\sum_{i=0}^{m} (y_i - H_i \hat{x}_0)^2}{m}}$$
 (15)

The University of Colorado

We want to maintain apriori Information; \bar{x}_0 , and \bar{P}_0 hence,

$$X_{n+1}^* + \overline{X}_{n+1} = X_n^* + \overline{X}_n$$
 (1)

$$BUT, X_{n+1}^* = X_n^* + \hat{x}_n$$
 (2)

Subst (2)
$$\rightarrow$$
 (1), $\bar{x}_{n+1} = \bar{x}_n - \hat{x}_n$

Repeat initialization using \hat{X}_0^* as the initial conditions for the reference trajectory.

Set $\overline{x}_0 = \overline{x}_0 - \hat{x}_0$ and use the original value of \overline{P}_0 .

Reprocess all observations.

• The batch (or least squares) processor processes all observation data at once and, then, determines the best estimate of the state deviation, thereby estimating \hat{X} .

 The best estimate of x is chosen such that it minimizes the sum of the squares of the calculated observation errors.

LEO Orbit Determination Example

 Instantaneous observation data is taken from three Earth fixed tracking stations over an approximate 5 hour time span (light time is ignored).

$$\begin{split} & \rho = \left(x^2 + y^2 + z^2 + x_{s_i}^2 + y_{s_i}^2 + z_{s_i}^2 - 2(xx_{s_i} + yy_{s_i})\cos\theta + 2(xy_{s_i} - yx_{s_i})\sin\theta - 2zz_{s_i} \right)^{\frac{1}{2}} \\ & \dot{\rho} = \frac{x\dot{x} + y\dot{y} + z\dot{z} - (\dot{x}x_{s_i} + \dot{y}y_{s_i})\cos\theta + \dot{\theta}(xx_{s_i} + yy_{s_i})\sin\theta + (\dot{x}y_{s_i} - \dot{y}x_{s_i})\sin\theta + \dot{\theta}(xy_{s_i} - yx_{s_i})\cos\theta - \dot{z}z_{s_i}}{\rho} \end{split}$$

where x, y, and z represent the spacecraft Earth
Centered Inertial (ECI) coordinates and x_s, y_s, and z_s are
the tracking station Earth Centered, Earth Fixed (ECEF)
coordinates.

LEO Orbit Determination Example

State Deviation (\hat{x}_0)				
Pass 1	Pass 2	Pass 3		
-0.036383127158274	0.326725527230386	2.16404427676782e-007		
-0.274523873228247	-0.1480641161433	-2.62437517889209e-007		
-0.18013801260102	-0.0809938800450721	1.64403340270235e-007		
0.0409346491303605	-0.000317153824609643	-4.38244130278385e-010		
0.0327489396676593	-3.92221769835543e-005	1.94288829502823e-010		
-0.0147524440475379	0.000338033953408322	2.49099138592487e-010		
-9463031.96726608	-33306147.3255543	-16.3113339128591		
-6.57367472046001e-007	2.98810508464489e-008	2.27735423982078e-015		
0.147516774454061	0.0411458796251399	-4.59840606133234e-007		
1.86265905206096e-006	-1.86970469476067e-006	8.73427771458123e-013		
1.37829598816653e-006	-1.38350949129108e-006	6.46310696714768e-013		
-2.54260084011498e-007	2.54404878085509e-007	2.24461403220845e-013		
-10.5635758182854	0.555182863038883	9.07302237892118e-008		
9.98322113724009	0.0201549881875307	-2.43030096543763e-007		
5.79485500114413	0.18208202802521	2.37370032711892e-007		
-5.78184708032509	0.773198712686432	2.35005539856875e-008		
2.34411863803746	-0.323056978825581	-8.52191767278272e-008		
1.51222736642103	1.46363482699289	5.24955707897414e-007		

Batch State Deviation for Passes 1, 2, and 3

LEO Orbit Determination Example

Batch (Least Squares) Residuals

RMS Values				
	Pass 1	Pass 2	Pass 3	
Range (m)	732.748350225264	0.319570766726265	0.00974562719122707	
Range Rate (m/s)	2.90016531897711	0.00119972978584721	0.000997930398398708	

Least Squares Example

Given the following system

$$y_1 = 2x_1 + x_2 + \varepsilon_1$$

 $y_2 = 4x_1 + 2x_2 + \varepsilon_2$

and
$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, $H = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$, $W = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, $Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$,

- a) Could we obtain a solution for \hat{X} using the least squares equation? Why or why not? Will minimum norm yield a solution?
- b) Assume we are given a priori information $\bar{X}=\begin{bmatrix}1\\1\end{bmatrix}$ and $\bar{W}=I$. Can we now solve for \hat{X} ?

Three possibilities for m and n

$$\hat{\mathbf{x}} = (H^T H)^{-1} H^T \mathbf{y}, \quad \text{if } m > n$$

$$\hat{\mathbf{x}} = H^{-1} \mathbf{y}, \quad \text{if } m = n$$

$$\hat{\mathbf{x}} = H^T (H H^T)^{-1} \mathbf{y}, \quad \text{if } m < n.$$

Given the observation-state relation

$$y(t) = \sum_{i=1}^{3} (t)^{i} x_{i}$$

and the observation sequence at t=1, y(1)=2, and at t=2, y(2)=1.

Find the "best" estimate of x_i , i = 1, 2, 3.

Find:
$$\hat{\chi}_{1}$$
, $\hat{\chi}_{2}$, $\hat{\chi}_{3}$, $X = \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{bmatrix}_{3}$

$$y(t_{1}) = \sum_{i=1}^{3} (1)^{i} \chi_{i} = \chi_{1} + \chi_{2} + \chi_{3}$$

$$y(t_{2}) = \sum_{i=1}^{3} (2)^{i} \chi_{i} = 2\chi_{1} + 4\chi_{2} + 8\chi_{3}$$

$$y = \begin{bmatrix} y(t_{1}) \\ y(t_{2}) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} \chi_{1} \\ \chi_{2} \\ \chi_{3} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

We have 2 observations and 3 unknowns; hence, we use the minimum norm solution given by Eq (4.3.13) **Note the rank of H is 2

We have 2 observations and 3 unknowns; hence, we use the minimum norm solution given by Eq (4.3.13). Note that the rank of H is 2

$$\hat{X} = H^T (HH^T)^{-1} y$$
 (4.3.13)

$$\hat{X} = H^T \left(H H^T \right)^{-1} y$$

 $\hat{X}=H^T\left(HH^T\right)^{-1}y$ Note that because $X\neq X(t)$, i.e., the state vector is not a function of time, $\Phi=I$

and H = H.

$$\hat{X} = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 1.5 & -.25 \\ -.25 & .05357 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$\hat{\varepsilon} = y - H\hat{X} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \hat{\chi}_1 \\ \hat{\chi}_2 \\ \hat{\chi}_3 \end{bmatrix} = \begin{bmatrix} 1.86 \\ 0.964 \\ -0.821 \end{bmatrix}$$
 Remember that we derived $\hat{\chi}$ with the constraint that $\hat{\varepsilon} = 0$

i.e.
$$y - H \chi = 0$$

What if we had apriori information, e.g.,

$$oldsymbol{ar{X}} = egin{bmatrix} 2 \ 1 \ 0 \end{bmatrix}, oldsymbol{ar{W}} = egin{bmatrix} 1\ 0\ 1\ 0 \end{bmatrix}$$

Can we now have a least squares solution?

 Note that the rank of A+B is less than or equal to the rank of A plus the rank of B. Hence, in this example the rank of W and H^TH need not be rank 3 but their sum must be rank 3.

Given

$$\ddot{x}_1 = ax_1 + b\dot{x}_2$$
$$\ddot{x}_2 = cx_1 + ex_2$$

with

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} \quad \text{and a, b, c, and e are constants.}$$

a) Write as a first order system and derive the A matrix

Given

$$\ddot{x}_1 = ax_1 + b\dot{x}_2$$
$$\ddot{x}_2 = cx_1 + ex_2$$

$$\ddot{x}_2 = cx_1 + ex_2$$

with

with
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ u \\ v \end{bmatrix} \text{ and a, b, c, and e are constants.}$$

$$A = \begin{bmatrix} x_1 \\ x_2 \\ v \\ v \end{bmatrix}$$

Write as a 1st order system

$$\dot{x} = u$$

$$x_2 = v$$

$$\dot{u} = ax_1 + bv$$

$$\dot{v} = cx_1 + ex_2$$

$$A = \frac{\partial F}{\partial X} = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ a & 0 & 0 & b \\ c & e & 0 & 0 \end{vmatrix}$$

a) If a = b = c = e = 0 what is $\Phi(t, t_0)$?

Assume initial conditions, $x_{10}, x_{20}, x_{10}, x_{20}$ are given at $t_0 = 0$.

If the H matrix is not of full rank, i.e. $(H^TH)^{-1}$ does not exist, can we make $(H^TWH)^{-1}$ exist by the proper choice of a weighting matrix, W?

- 1. T or F
- 2. Justify your answer

The rank of the product AB of two matrices is less than or equal to The rank of A **and** is less than or equal to the rank of B. Hence the answer to (1) is false.

Given range observations in the 2-D flat earth problem, i.e.

$$\rho_i^2 = \left(x_0 + \dot{x}_0 t_i - x_s\right)^2 + \left(y_0 + \dot{y}_0 t_i - \frac{1}{2}gt_i^2 - y_s\right)^2$$

- 1. Assume all parameters except x_0 and \dot{x}_0 are known. We can solve for both x_0 and \dot{x}_0 from range measurements taken simultaneously from two well separated tracking stations. T or F?
- 2. Justify your answer in terms of the rank of H.

Station 1

Station 2

Note: \mathcal{X}_0 may lie anywhere on this line and $\dot{\mathcal{X}}_0$ modified to accommodate it.

$$\hat{\rho}^{2} = (x_{0} + \dot{x}_{0}t_{i} - x_{s})^{2} + (y_{0} + \dot{y}_{0}t_{i} - \frac{1}{2}gt_{i}^{2} - y_{s})^{2}$$

$$\rho_i^2 = (x_0 + \dot{x}_0 t_i - x_s)^2 + (y_0 + \dot{y}_0 t_i - \frac{1}{2} g t_i^2 - y_s)^2$$

$$H = \begin{bmatrix} \frac{\partial \boldsymbol{\rho}_{s1}}{\partial \mathbf{x}_{0}} & \frac{\partial \boldsymbol{\rho}_{s1}}{\partial \dot{\mathbf{x}}_{0}} \\ \frac{\partial \boldsymbol{\rho}_{s2}}{\partial \mathbf{x}_{0}} & \frac{\partial \boldsymbol{\rho}_{s2}}{\partial \dot{\mathbf{x}}_{0}} \end{bmatrix} = \begin{bmatrix} \frac{\boldsymbol{x}_{0} + \dot{\boldsymbol{x}}_{0}\boldsymbol{t} - \boldsymbol{x}_{s1}}{\boldsymbol{\rho}_{s1}} & \frac{(\boldsymbol{x}_{0} + \dot{\boldsymbol{x}}_{0}\boldsymbol{t} - \boldsymbol{x}_{s1})\boldsymbol{t}}{\boldsymbol{\rho}_{s1}} \\ \frac{\boldsymbol{x}_{0} + \dot{\boldsymbol{x}}_{0}\boldsymbol{t} - \boldsymbol{x}_{s2}}{\boldsymbol{\rho}_{s2}} & \frac{(\boldsymbol{x}_{0} + \dot{\boldsymbol{x}}_{0}\boldsymbol{t} - \boldsymbol{x}_{s2})\boldsymbol{t}}{\boldsymbol{\rho}_{s2}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{C} & \boldsymbol{C}\boldsymbol{t} \\ \boldsymbol{K} & \boldsymbol{K}\boldsymbol{t} \end{bmatrix}$$

Assume we had both range and range rate; can we now solve for x_0 and \dot{x}_0 ?

$$\rho^{2} = \left(x_{0} + \dot{x}_{0}t_{i} - x_{s}\right)^{2} + \left(y_{0} + \dot{y}_{0}t_{i} - \frac{1}{2}gt_{i}^{2} - y_{s}\right)^{2}$$

$$\dot{\rho}^{2} = \frac{1}{\rho} [(x_{0} + \dot{x}_{0}t_{i} - x_{s})(\dot{x}_{0} - \dot{x}_{s}) + (y_{0} + \dot{y}_{0}t_{i} - \frac{1}{2}gt_{i}^{2} - y_{s}) * (\dot{y}_{0} - gt - \dot{y}_{s})]$$

The differential equation

$$\ddot{x} + a\dot{x} + bx\dot{x} = 0$$

is (choose all correct answers)

- 1. 2nd order and 2nd degree
- 2. 2nd order and 1st degree
- 3. linear
- 4. nonlinear

See footnote on page 512 of text