

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		A1	(11) International Publication Number: WO 98/23744
C12N 15/12, C07K 14/47, A61K 38/17, C12Q 1/68, G01N 33/50, C12N 15/11			(43) International Publication Date: 4 June 1998 (04.06.98)
(21) International Application Number: PCT/US97/21482		(81) Designated States: AT, AU, BR, CA, CH, CN, DE, DK, ES, FI, GB, IL, JP, KR, MX, NO, NZ, RU, SE, SG, US, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 12 November 1997 (12.11.97)			
(30) Priority Data: 08/756,749 26 November 1996 (26.11.96) US			
(71) Applicant (for all designated States except US): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).		Published <i>With international search report.</i> <i>Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors; and			
(75) Inventors/Applicants (for US only): BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). GOLI, Surya, K. [IN/US]; 620 Iris Avenue #338, Sunnyvale, CA 94086 (US).			
(74) Agent: BILLINGS, Lucy, J.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).			

(54) Title: NOVEL HUMAN RNA-BINDING PROTEIN

```

1  M S S E P P P P P Q P P T H O A S V G L L - - - - - D T P R S R E R S P S H R N A B P
1  M T S E S T S P P R V V P P L H S P K S P V W P T F P P H R E S S R I W E R G - G q1050754

33  P L R G N V V V P S P L P T R R T R T E S A T V R A S Q G P V Y K G V C K C F C R H R N A B P
40  G V S P R D L P S P L P T K R T R T Y S A T A R A S A G P V F K G V C X Q F S R q1050754

73  S K G H G F I T P A Y G G P X I X L H I S D V E G E Y V P V E G D E V N Y K M C H R N A B P
80  S Q G H G F I T P E N G S E D I F V H V S D I E G E Y V P V E G D E V T X K M C q1050754

113  S I P P K N E K I Q A V E V V I T H L A P G T X H E T W S G H V I S S H R N A B P
120  P I P P K N Q K F Q A V E V V L T Q L A P H T P H E T W S G Q V V G S q1050754

```

(57) Abstract

The present invention provides a human RNA bind-protein (HRNABP) and polynucleotides which identify and encode HRNABP. The invention also provides genetically engineered expression vectors and host cells comprising the nucleic acid sequences encoding HRNABP and a method for producing HRNABP. The invention also provides for antagonists or antibodies specifically binding HRNABP, and their use, in the prevention and treatment of diseases associated with expression of HRNABP. Additionally, the invention provides for the use of antisense molecules to polynucleotides encoding HRNABP for the treatment of diseases associated with the expression of HRNABP. The invention also provides diagnostic assays which utilize the polynucleotide, or fragments or the complement thereof, and antibodies specifically binding HRNABP.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FJ	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CII	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

NOVEL HUMAN RNA-BINDING PROTEIN

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of a novel human RNA-binding protein and to the use of these sequences in the diagnosis, prevention, and treatment of cancer and inflammatory diseases.

BACKGROUND ART

The regulation of gene expression and cellular function is controlled at many different levels in eukaryotic cells. Evidence has been accumulated over the past few years pointing to 10 the importance of mRNA stability, localization, and translation in these processes during development (Berleth, T. et al. (1988) EMBO J. 7:1749-1756; St. Johnston, D. et al. (1991) Cell 92:171-178); Ferrandon, D. et al. (1994) Cell 79:1221-1232), and maintenance of the differentiated phenotype (Wilhelm, J.E. et al. (1993) J. Cell Biol. 123:269-274; Klausner, R.D. et al. (1993) Cell 72:1-28; Hentze, M.W. (1995) Curr. Op. Biol. 7:393-398).

15 Central to the regulation of these processes are proteins which recognize and bind to specific primary sequences or secondary structures in nucleic acids. Increasing numbers of these proteins are being identified, and a variety of nucleic acid-binding motifs have been recognized (reviewed by Burd, G.C. and G. Dreyfuss (1994) Science 265:615-621). The Y-box family of proteins is perhaps the most evolutionarily conserved group of nucleic acid-binding proteins that is known. The binding domain of the 70-residue *E. coli* CS7.4 cold-shock protein is 43% identical to the binding domain of vertebrate Y-box family members. Diverse molecular functions are ascribed to eukaryotic members of the Y-box family which includes transcription factors and translation control proteins (for reviews, see: Wolffe, A.P. 20 (1994) Bioessays 16:245-251; Burd, C.G. and G. Dreyfuss, *supra*).

25 The rat brain RNA-binding protein, PIPPin, has been cloned from an embryonic brain cDNA library. PIPPin is a small hydrophilic protein with a predicted molecular weight of approximately 17 kDa. Amino acid sequence comparisons show that PIPPin has homology to double-stranded RNA-binding proteins from human, mouse, *Drosophila*, and *E. coli*, including the *E. coli* Y-box cold-shock protein (Castiglia, D. et al. (1996) Biochem. Biophys. 30 Res. Comm. 218:390-394).

Northern blot analysis detects only a single PIPPin RNA species in the rat brain at day 18 of embryogenesis. The intensity of this band increases until about day 5 postpartum, and then remains constant into adulthood. The northern blot analysis detects PIPPin RNA only in brain but not in adult liver, kidney, spleen or muscle. These observations indicate that PIPPin is required both during the development and maintenance of normal brain functions (Castiglia, D. et al., *supra*).

The discovery of polynucleotides encoding the novel human RNA-binding protein, and the molecules themselves, provide the means to investigate the regulation of cell growth and maintenance. Discovery of molecules related to rat brain RNA-binding protein, PIPPin, satisfies a need in the art by providing new diagnostic or therapeutic compositions useful for the detection, prevention, and treatment of cancer and inflammatory diseases.

DISCLOSURE OF THE INVENTION

The present invention features a novel human RNA-binding protein hereinafter designated HRNABP and characterized as having chemical homology to rat PIPPin. Accordingly, the invention features a substantially purified HRNABP having the amino acid sequence, SEQ ID NO:1.

One aspect of the invention features isolated and substantially purified polynucleotides that encode HRNABP. In a particular aspect, the polynucleotide is the nucleotide sequence of SEQ ID NO:2.

The invention also relates to a polynucleotide sequence comprising the complement of SEQ ID NO:2 or variants thereof. In addition, the invention features polynucleotide sequences which hybridize under stringent conditions to SEQ ID NO:2.

The invention additionally features nucleic acid sequences encoding polypeptides, oligonucleotides, peptide nucleic acids (PNA), fragments, portions or antisense molecules thereof, and expression vectors and host cells comprising polynucleotides that encode HRNABP. The present invention also features antibodies which bind specifically to HRNABP, and pharmaceutical compositions comprising substantially purified HRNABP. The invention also features the use of agonists and antagonists of HRNABP.

BRIEF DESCRIPTION OF DRAWINGS

Figures 1A, 1B, 2, 3, 4, 5A and 5B shows the amino acid sequence (SEQ ID NO:1)

and nucleic acid sequence (SEQ ID NO:2) of HRNABP. The alignment was produced using MacDNASIS PRO™ software (Hitachi Software Engineering Co., Ltd., San Bruno, CA).—

Figure 2 shows the amino acid sequence alignment between HRNABP (SEQ ID NO:1) and rat brain RNA-binding protein PIPPin (G1050754; SEQ ID NO:3). The alignment
5 was produced using the multisequence alignment program of DNASTAR™ software (DNASTAR Inc, Madison WI).

Figure 3 shows the hydrophobicity plot (MacDNASIS PRO software) for HRNABP, SEQ ID NO: 1; the positive X axis reflects amino acid position, and the negative Y axis, hydrophobicity.

10 Figure 4 shows the hydrophobicity plot for PIPPin, SEQ ID NO:4.

Figures 5A and 5B shows the northern analysis for SEQ ID NO:2. The northern analysis was produced electronically using the LIFESEQ™ database (Incyte Pharmaceuticals, Inc., Palo Alto, CA).

MODES FOR CARRYING OUT THE INVENTION

15 Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the
20 appended claims.

It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a host cell” includes a plurality of such host cells. reference to the “antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
25

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices,
30 and materials are now described. All publications mentioned herein are incorporated herein

by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

5 **DEFINITIONS**

“Nucleic acid sequence” as used herein refers to an oligonucleotide, nucleotide, or polynucleotide, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand. Similarly, “amino acid sequence” as used herein refers to an oligopeptide, peptide, 10 polypeptide, or protein sequence, and fragments or portions thereof, and to naturally occurring or synthetic molecules.

Where “amino acid sequence” is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms, such as “polypeptide” or “protein” are not meant to limit the amino acid sequence to the complete, 15 native amino acid sequence associated with the recited protein molecule.

“Peptide nucleic acid”, as used herein, refers to a molecule which comprises an oligomer to which an amino acid residue, such as lysine, and an amino group have been added. These small molecules, also designated anti-gene agents, stop transcript elongation by binding to their complementary strand of nucleic acid (Nielsen, P.E. et al. (1993) Anticancer 20 Drug Des. 8:53-63).

HRNABP, as used herein, refers to the amino acid sequences of substantially purified HRNABP obtained from any species, particularly mammalian, including bovine, ovine, porcine, murine, equine, and preferably human, from any source whether natural, synthetic, semi-synthetic, or recombinant.

25 “Consensus”, as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, or which has been extended using XL-PCR™ (Perkin Elmer, Norwalk, CT) in the 5' and/or the 3' direction and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte clone using the GELVIEW™ Fragment Assembly system (GCG, Madison, WI), or which has been both 30 extended and assembled.

A "variant" of HRNABP, as used herein, refers to an amino acid sequence that is altered by one or more amino acids. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have "nonconservative" changes, e.g., 5 replacement of a glycine with a tryptophan. Similar minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, DNASTAR software.

10 A "deletion", as used herein, refers to a change in either amino acid or nucleotide sequence in which one or more amino acid or nucleotide residues, respectively, are absent.

An "insertion" or "addition", as used herein, refers to a change in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid or nucleotide residues, respectively, as compared to the naturally occurring molecule.

15 A "substitution", as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

The term "biologically active", as used herein, refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" refers to the capability of the natural, recombinant, or synthetic 20 HRNABP, or any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "agonist", as used herein, refers to a molecule which, when bound to HRNABP, causes a change in HRNABP which modulates the activity of HRNABP. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which 25 bind to HRNABP.

The terms "antagonist" or "inhibitor", as used herein, refer to a molecule which, when bound to HRNABP, modulates or blocks the biological or immunological activity of HRNABP. Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to HRNABP.

30 The term "modulate", as used herein, refers to a change or an alteration in the

PCT-U100 PCT

biological activity of HRNABP. Modulation may be an increase or a decrease in protein activity, a change in binding characteristics, or any other change in the biological, functional or immunological properties of HRNABP.

The term "mimetic", as used herein, refers to a molecule, the structure of which is developed from knowledge of the structure of HRNABP or portions thereof and, as such, is able to effect some or all of the actions of PIPPin-like molecules.

The term "derivative", as used herein, refers to the chemical modification of a nucleic acid encoding HRNABP or the encoded HRNABP. Illustrative of such modifications would be replacement of hydrogen by an alkyl, acyl, or amino group. A nucleic acid derivative would encode a polypeptide which retains essential biological characteristics of the natural molecule.

The term "substantially purified", as used herein, refers to nucleic or amino acid sequences that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated.

"Amplification" as used herein refers to the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction (PCR) technologies well known in the art (Dieffenbach, C.W. and G.S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, NY).

The term "hybridization", as used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term "hybridization complex", as used herein, refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary G and C bases and between complementary A and T bases; these hydrogen bonds may be further stabilized by base stacking interactions. The two complementary nucleic acid sequences hydrogen bond in an antiparallel configuration. A hybridization complex may be formed in solution (e.g., C_{ot} or R_{ot} analysis) or between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., membranes, filters, chips, pins or glass slides to which cells have been fixed for in situ hybridization).

The terms "complementary" or "complementarity", as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, for the sequence "A-G-T" binds to the complementary sequence "T-C-A". Complementarity between two single-stranded molecules may be "partial", in which 5 only some of the nucleic acids bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands.

10 The term "homology", as used herein, refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A partially complementary sequence is one that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid; it is referred to using the functional term "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target 15 sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence or probe to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific 20 binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% identity); in the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence.

25 As known in the art, numerous equivalent conditions may be employed to comprise either low or high stringency conditions. Factors such as the length and nature (DNA, RNA, base composition) of the sequence, nature of the target (DNA, RNA, base composition, presence in solution or immobilization, etc.), and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate and/or polyethylene 30 glycol) are considered and the hybridization solution may be varied to generate conditions of

either low or high stringency different from, but equivalent to, the above listed conditions.

The term "stringent conditions", as used herein, is the "stringency" which occurs within a range from about Tm-5°C (5°C below the melting temperature (Tm) of the probe) to about 20°C to 25°C below Tm. As will be understood by those of skill in the art, the 5 stringency of hybridization may be altered in order to identify or detect identical or related polynucleotide sequences.

The term "antisense", as used herein, refers to nucleotide sequences which are complementary to a specific DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense 10 molecules may be produced by any method, including synthesis by ligating the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a complementary strand. Once introduced into a cell, this transcribed strand combines with natural sequences produced by the cell to form duplexes. These duplexes then block either the further transcription or translation. In this manner, mutant phenotypes may be generated. 15 The designation "negative" is sometimes used in reference to the antisense strand, and "positive" is sometimes used in reference to the sense strand.

The term "portion", as used herein, with regard to a protein (as in "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid. Thus, a protein 20 "comprising at least a portion of the amino acid sequence of SEQ ID NO:1" encompasses the full-length human HRNABP and fragments thereof.

"Transformation", as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for 25 the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the host cell being transformed and may include, but is not limited to, viral infection, electroporation, lipofection, and particle bombardment. Such "transformed" cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. 30 They also include cells which transiently express the inserted DNA or RNA for limited

periods of time.

The term "antigenic determinant", as used herein, refers to that portion of a molecule that makes contact with a particular antibody (i.e., an epitope). When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The terms "specific binding" or "specifically binding", as used herein, in reference to the interaction of an antibody and a protein or peptide, mean that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words, the antibody is recognizing and binding to a specific protein structure rather than to proteins in general. For example, if an antibody is specific for epitope "A", the presence of a protein containing epitope A (or free, unlabeled A) in a reaction containing labeled "A" and the antibody will reduce the amount of labeled A bound to the antibody.

The term "sample", as used herein, is used in its broadest sense. A biological sample suspected of containing nucleic acid encoding HRNABP or fragments thereof may comprise a cell, chromosomes isolated from a cell (e.g., a spread of metaphase chromosomes), genomic DNA (in solution or bound to a solid support such as for Southern analysis), RNA (in solution or bound to a solid support such as for northern analysis), cDNA (in solution or bound to a solid support), an extract from cells or a tissue, and the like.

The term "correlates with expression of a polynucleotide", as used herein, indicates that the detection of the presence of ribonucleic acid that is similar to SEQ ID NO:2 by northern analysis is indicative of the presence of mRNA encoding HRNABP in a sample and thereby correlates with expression of the transcript from the polynucleotide encoding the protein.

"Alterations" in the polynucleotide of SEQ ID NO: 2, as used herein, comprise any alteration in the sequence of polynucleotides encoding HRNABP including deletions, insertions, and point mutations that may be detected using hybridization assays. Included within this definition is the detection of alterations to the genomic DNA sequence which

encodes HRNABP (e.g., by alterations in the pattern of restriction fragment length polymorphisms capable of hybridizing to SEQ ID NO:2), the inability of a selected fragment of SEQ ID NO: 2 to hybridize to a sample of genomic DNA (e.g., using allele-specific oligonucleotide probes), and improper or unexpected hybridization, such as hybridization to a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HRNABP (e.g., using fluorescent *in situ* hybridization (FISH) to metaphase chromosomes spreads).

As used herein, the term "antibody" refers to intact molecules as well as fragments thereof, such as Fa, F(ab')₂, and Fv, which are capable of binding the epitopic determinant.

10 Antibodies that bind HRNABP polypeptides can be prepared using intact polypeptides or fragments containing small peptides of interest as the immunizing antigen. The polypeptide or peptide used to immunize an animal can be derived from the transition of RNA or synthesized chemically, and can be conjugated to a carrier protein, if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin and thyroglobulin. The coupled peptide is then used to immunize the animal (e.g., a mouse, a rat, or a rabbit).

15

The term "humanized antibody", as used herein, refers to antibody molecules in which amino acids have been replaced in the non-antigen binding regions in order to more closely resemble a human antibody, while still retaining the original binding ability.

20 THE INVENTION

The invention is based on the discovery of a novel human brain RNA-binding protein (HRNABP), the polynucleotides encoding HRNABP, and the use of these compositions for the diagnosis, prevention, and treatment of cancer and inflammatory diseases.

Nucleic acids encoding the human HRNABP of the present invention were first identified in Incyte Clone 1621025 from the brain cDNA library (BRAITUT13) through a computer-generated search for amino acid sequence alignments. A consensus sequence, SEQ ID NO:2, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 1621025 (BRAITUT13), 1612088 (COLNTUT06), 607939 (COLNNOT01), 400586, (TMLR3DT01), and 1596886 (BRAINOT14).

30 In one embodiment, the invention encompasses the novel human RNA-binding

protein, a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in Fig. 1. HRNABP is 147 amino acids in length and has two potential RNA binding domains, residues 74-90, and residues 114-145. HRNABP also has potential O-linked glycosylation sites on serine residues 2 and 3. HRNABP has chemical and structural homology with rat PIPPin (G1050754; SEQ ID NO:3). In particular, HRNABP and PIPPin share 56% overall identity, and 75% identity in the RNA binding domain, residues 114-145. As illustrated by Figures 3 and 4, HRNABP and PIPPin have similar hydrophobicity plots. Northern analysis (Figure 5) shows the expression of the HRNABP sequence in various libraries. Of particular note is the expression of HRNABP in rapidly dividing cells including tumors, tissues associated with active inflammatory diseases, fetal tissues, and cell lines.

The invention also encompasses HRNABP variants. A preferred HRNABP variant is one having at least 80%, and more preferably 90%, amino acid sequence similarity to the HRNABP amino acid sequence (SEQ ID NO:1). A most preferred HRNABP variant is one having at least 95% amino acid sequence similarity to SEQ ID NO:1.

The invention also encompasses polynucleotides which encode HRNABP. Accordingly, any nucleic acid sequence which encodes the amino acid sequence of HRNABP can be used to generate recombinant molecules which express HRNABP. In a particular embodiment, the invention encompasses the polynucleotide comprising the nucleic acid sequence of SEQ ID NO:2 as shown in Figures 1A and 1B.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding HRNABP, some bearing minimal homology to the nucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence of naturally occurring HRNABP, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode HRNABP and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HRNABP under appropriately selected conditions of stringency, it may be advantageous to

produce nucleotide sequences encoding HRNABP or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HRNABP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences, or portions thereof, which encode HRNABP and its derivatives, entirely by synthetic chemistry. After 10 production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art at the time of the filing of this application. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HRNABP or any portion thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed nucleotide sequences, and in particular, those shown in SEQ ID 15 NO:2, under various conditions of stringency. Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex or probe, as taught in Wahl, G.M. and S.L. Berger (1987; Methods Enzymol. 152:399-407) and Kimmel, A.R. (1987; Methods Enzymol. 152:507-511), and may be used at a defined stringency.

Altered nucleic acid sequences encoding HRNABP which are encompassed by the invention include deletions, insertions, or substitutions of different nucleotides resulting in a polynucleotide that encodes the same or a functionally equivalent HRNABP. The encoded protein may also contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HRNABP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, 20 hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the biological activity of HRNABP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; and amino acids with uncharged polar head groups having similar 25 30

hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.

Also included within the scope of the present invention are alleles of the genes encoding HRNABP. As used herein, an "allele" or "allelic sequence" is an alternative form 5 of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in 10 combination with the others, one or more times in a given sequence.

Methods for DNA sequencing which are well known and generally available in the art may be used to practice any embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, Sequenase® (US Biochemical Corp, Cleveland, OH), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, 15 Chicago, IL), or combinations of recombinant polymerases and proofreading exonucleases such as the ELONGASE Amplification System marketed by Gibco BRL (Gaithersburg, MD). Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, NV), Peltier Thermal Cycler (PTC200; M.J. Research, Watertown, MA) and the ABI 377 DNA sequencers (Perkin Elmer).

20 The nucleic acid sequences encoding HRNABP may be extended utilizing a partial nucleotide sequence and employing various methods known in the art to detect upstream sequences such as promoters and regulatory elements. For example, one method which may be employed, "restriction-site" PCR, uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). In 25 particular, genomic DNA is first amplified in the presence of primer to linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.

30 Inverse PCR may also be used to amplify or extend sequences using divergent primers

based on a known region (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). The primers may be designed using OLIGO 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, MN), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about 5 68°-72° C. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.

Another method which may be used is capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial 10 chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may also be used to place an engineered double-stranded sequence into an unknown portion of the DNA molecule before performing PCR.

Another method which may be used to retrieve unknown sequences is that of Parker, 15 J.D. et al. (1991; Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PromoterFinder™ libraries to walk in genomic DNA (Clontech, Palo Alto, CA). This process avoids the need to screen libraries and is useful in finding intron/exon junctions.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable, in that 20 they will contain more sequences which contain the 5' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into the 5' and 3' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to 25 analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled device camera. Output/light intensity may be converted to electrical signal using appropriate software (e.g. Genotyper™ 30 and Sequence Navigator™, Perkin Elmer) and the entire process from loading of samples to

computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HRNABP, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of HRNABP in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express HRNABP.

As will be understood by those of skill in the art, it may be advantageous to produce HRNABP-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HRNABP encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, or introduce mutations, and so forth.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HRNABP may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of HRNABP activity, it may be useful to encode a chimeric HRNABP protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the HRNABP encoding sequence and the heterologous protein sequence, so that HRNABP may be cleaved and purified away from the heterologous moiety.

In another embodiment, sequences encoding HRNABP may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M.H. et al. (1980) Nuc. Acids Res. Symp. Ser. 215-223, Horn, T. et al. (1980) Nuc. Acids Res. Symp. Ser. 225-232). Alternatively, the protein itself may be produced using chemical methods to 5 synthesize the amino acid sequence of HRNABP, or a portion thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J.Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer).

The newly synthesized peptide may be substantially purified by preparative high 10 performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra). Additionally, the amino acid sequence of 15 HRNABP, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

In order to express a biologically active HRNABP, the nucleotide sequences encoding 20 HRNABP or functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.

Methods which are well known to those skilled in the art may be used to construct 25 expression vectors containing sequences encoding HRNABP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, and Ausubel, F.M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY.

A variety of expression vector/host systems may be utilized to contain and express 30 sequences encoding HRNABP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression

vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

5 The "control elements" or "regulatory sequences" are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible 10 promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the Bluescript® phagemid (Stratagene, La Jolla, CA) or pSport™ plasmid (Gibco BRL) and the like may be used. The baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO; and storage protein genes) or from plant 15 viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding HRNABP, vectors based on SV40 or EBV may be used with an appropriate selectable marker.

20 In bacterial systems, a number of expression vectors may be selected depending upon the use intended for HRNABP. For example, when large quantities of HRNABP are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional *E. coli* cloning and expression vectors such as Bluescript® (Stratagene), in 25 which the sequence encoding HRNABP may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Promega, Madison, WI) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase 30 (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells

by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

5 In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544.

In cases where plant expression vectors are used, the expression of sequences encoding HRNABP may be driven by any of a number of promoters. For example, viral 10 promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock 15 promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L.E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, NY; pp. 191-196).

An insect system may also be used to express HRNABP. For example, in one such 20 system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding HRNABP may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful 25 insertion of HRNABP will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which HRNABP may be expressed (Engelhard, E.K. et al. (1994) Proc. Nat. Acad. Sci. 91:3224-3227).

In mammalian host cells, a number of viral-based expression systems may be utilized. 30 In cases where an adenovirus is used as an expression vector, sequences encoding HRNABP

may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing HRNABP in infected host cells (Logan, J. and T. Shenk. (1984) Proc. Natl. Acad. Sci. 81:3655-3659).
5 In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HRNABP. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding HRNABP, its initiation codon, and upstream 10 sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational 15 elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).

In addition, a host cell strain may be chosen for its ability to modulate the expression 20 of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding 25 and/or function. Different host cells such as CHO, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express HRNABP may be transformed using 30 expression vectors which may contain viral origins of replication and/or endogenous

expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-232) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk⁻ or aprt⁻ cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570); npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histidol in place of histidine (Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051). Recently, the use of visible markers has gained popularity with such markers as anthocyanins, β glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C.A. et al. (1995) Methods Mol. Biol. 55:121-131).

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding HRNABP is inserted within a marker gene sequence, recombinant cells containing sequences encoding HRNABP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HRNABP under the control of a single promoter. Expression of the marker gene in

response to induction or selection usually indicates expression of the tandem gene as well.

Alternatively, host cells which contain the nucleic acid sequence encoding HRNABP and express HRNABP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.

The presence of polynucleotide sequences encoding HRNABP can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or portions or 10 fragments of polynucleotides encoding HRNABP. Nucleic acid amplification based assays involve the use of oligonucleotides or oligomers based on the sequences encoding HRNABP to detect transformants containing DNA or RNA encoding HRNABP. As used herein "oligonucleotides" or "oligomers" refer to a nucleic acid sequence of at least about 10 nucleotides and as many as about 60 nucleotides, preferably about 15 to 30 nucleotides, and 15 more preferably about 20-25 nucleotides, which can be used as a probe or amplifier.

A variety of protocols for detecting and measuring the expression of HRNABP, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay 20 utilizing monoclonal antibodies reactive to two non-interfering epitopes on HRNABP is preferred, but a competitive binding assay may be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St. Paul, MN) and Maddox, D.E. et al. (1983; J. Exp. Med. 158:1211-1216).

25 A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HRNABP include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HRNABP, or 30 any portions thereof may be cloned into a vector for the production of an mRNA probe. Such

vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits (Pharmacia & Upjohn, (Kalamazoo, MI); Promega (Madison WI); and U.S. Biochemical Corp., Cleveland, OH). Suitable reporter molecules or labels, which may be used, include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HRNABP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HRNABP may be designed to contain signal sequences which direct secretion of HRNABP through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join sequences encoding HRNABP to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, WA). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen, San Diego, CA) between the purification domain and HRNABP may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing HRNABP and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography as described in Porath, J. et al. (1992; Prot. Exp. Purif. 3: 263-281) while the enterokinase cleavage site provides a means for purifying HRNABP from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D.J. et al. (1993; DNA Cell Biol. 12:441-453).

In addition to recombinant production, fragments of HRNABP may be produced by

direct peptide synthesis using solid-phase techniques Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Various fragments of HRNABP may be chemically synthesized separately and combined using chemical methods to produce the full length molecule

THERAPEUTICS

HRNABP or fragments thereof may be used for therapeutic purposes. Based on the 10 chemical and structural homology between HRNABP (SEQ ID NO:1) and PIPPin (SEQ ID NO:3), and northern analysis (Fig. 5) which shows that libraries containing HRNABP transcripts are associated with cancer and the inflammatory response, HRNABP is believed to regulate the expression of messenger RNAs and proteins associated with such diseases.

Expression of HRNABP is highly correlated with cancer and cell proliferation (Fig. 15 5). Therefore, in one embodiment vectors expressing antisense RNA to the nucleic acid sequences encoding HRNABP may be administered to a subject to prevent or treat cancer. Such cancers include, but are not limited to, those of the brain, gastrointestinal tract, lung, pancreas, thyroid, and genitalia. The vector may be administered directly into the tumor or cancerous cells using technologies well known in the art.

In another embodiment, vectors expressing antisense to the nucleic acid sequence 20 encoding HRNABP may be administered to a subject in combination with other chemotherapeutic agents. Such combinations of therapeutic agents having different mechanisms of action may have synergistic effects allowing the use of lower effective doses of each agent and thereby lessening adverse side effects.

In another embodiment, antagonists or inhibitors of HRNABP may be administered to 25 a subject to inhibit tumor growth.

In another embodiment antagonists or inhibitors of HRNABP may be administered to a subject to suppress excessive proliferation of cells of the immune system which cause tissue or organ damage in inflammatory diseases. Such inflammatory diseases include, but are not 30 limited to, Crohn's disease, inflammatory bowel disease, colitis, systemic lupus

erythematosus, multiple sclerosis, rheumatoid and osteoarthritis, diabetes, asthma, psoriasis, pancreatitis, and atherosclerosis. Such antagonists or inhibitors may be identified using methods that are generally known in the art. A particular method includes the use of purified HRNABP to screen libraries of pharmaceutical agents for those which specifically bind 5 HRNABP.

Purified HRNABP may also be used to generate antibodies by methods that are well known in the art. The specific antibodies may be used to target or deliver a particular pharmaceutical agent to cells or tissues which express HRNABP. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab fragments, 10 and fragments produced by a Fab expression library. Neutralizing antibodies, (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others, may be immunized by injection with HRNABP or any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, 15 various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the peptides, fragments, or oligopeptides used to induce antibodies 20 to HRNABP have an amino acid sequence consisting of at least five amino acids, and more preferably at least 10 amino acids. It is also preferable that they are identical to a portion of the amino acid sequence of the natural protein, and they may contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HRNABP amino acids 25 may be fused with those of another protein such as keyhole limpet hemocyanin and antibody produced against the chimeric molecule.

Monoclonal antibodies to HRNABP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma 30 technique, and the EBV-hybridoma technique (Kohler, G. et al. (1975) Nature 256:495-497;

Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. 80:2026-2030; Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120).

In addition, techniques developed for the production of "chimeric antibodies", the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454). Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce HRNABP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton D.R. (1991) Proc. Natl. Acad. Sci. 88:11120-3).

Antibodies may also be produced by inducing *in vivo* production in the lymphocyte population or by screening recombinant immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; Winter, G. et al. (1991) Nature 349:293-299).

Antibody fragments which contain specific binding sites for HRNABP may also be generated. For example, such fragments include, but are not limited to, the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 254:1275-1281).

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between HRNABP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HRNABP epitopes is preferred, but a competitive binding assay may also be employed (Maddox,

supra).

In another embodiment of the invention, the polynucleotides encoding HRNABP, or any fragment thereof, or antisense molecules, may be used for therapeutic purposes. In one aspect, antisense to the polynucleotide encoding HRNABP may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HRNABP. Thus, antisense molecules may be used to modulate HRNABP activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligomers or larger fragments, can be designed from various locations along the coding or control regions of sequences encoding HRNABP.

Expression vectors derived from retroviruses, adenovirus, herpes or vaccinia viruses, or from various bacterial plasmids may be used for delivery of nucleotide sequences to the targeted organ, tissue or cell population. Methods which are well known to those skilled in the art can be used to construct recombinant vectors which will express antisense molecules complementary to the polynucleotides of the gene encoding HRNABP. These techniques are described both in Sambrook et al. (supra) and in Ausubel et al. (supra).

Genes encoding HRNABP can be turned off by transforming a cell or tissue with expression vectors which express high levels of a polynucleotide or fragment thereof which encodes HRNABP. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating vector and even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by designing antisense molecules, DNA, RNA, or PNA, to the control regions of the gene encoding HRNABP, i.e., the promoters, enhancers, and introns. Oligonucleotides derived from the transcription initiation site, e.g., between positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using "triple helix" base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or

regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature (Gee, J.E. et al. (1994) In: Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NY). The antisense molecules may also be designed to block translation of mRNA by preventing the transcript from binding 5 to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. Examples which may be used include engineered hammerhead 10 motif ribozyme molecules that can specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HRNABP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites which include the 15 following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides corresponding to the region of the target gene containing the cleavage site may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

20 Antisense molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding HRNABP. Such DNA sequences may be 25 incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize antisense RNA constitutively or inducibly can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at 30 the 5' and/or 3' ends of the molecule or the use of phosphorothioate or 2' O-methyl rather than

phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybudosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use *in vivo*, *in vitro*, and *ex vivo*. For *ex vivo* therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection and by liposome injections may be achieved using methods which are well known in the art.

Any of the therapeutic methods described above may be applied to any suitable subject including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

An additional embodiment of the invention relates to the administration of a pharmaceutical composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HRNABP, antibodies to HRNABP, mimetics, agonists, antagonists, or inhibitors of HRNABP. The compositions may be administered alone or in combination with at least one other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be

found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral 5 administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and 10 processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums including arabic and tragacanth; and proteins such as gelatin 15 and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, 20 polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or 25 sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated 30 in aqueous solutions, preferably in physiologically compatible buffers such as Hanks'

solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1-50 mM histidine, 0.1%-2% sucrose, and 2-7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HRNABP, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs. The animal model may also be used to determine the appropriate concentration

range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HRNABP or fragments thereof, antibodies of HRNABP, agonists, antagonists or inhibitors of HRNABP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose therapeutically effective in 50% of the population) and LD50 (the dose lethal to 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD50/ED50.

10 Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and

15 the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject that requires treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, general health of the subject, age,

20 weight, and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or once every two weeks depending on half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HRNABP may be used for the diagnosis of conditions or diseases characterized by expression of HRNABP, or in assays to monitor patients being treated with HRNABP, agonists, antagonists or inhibitors. The 5 antibodies useful for diagnostic purposes may be prepared in the same manner as those described above for therapeutics. Diagnostic assays for HRNABP include methods which utilize the antibody and a label to detect HRNABP in human body fluids or extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by joining them, either covalently or non-covalently, with a reporter molecule. A wide variety 10 of reporter molecules which are known in the art may be used, several of which are described above.

A variety of protocols including ELISA, RIA, and FACS for measuring HRNABP are known in the art and provide a basis for diagnosing altered or abnormal levels of HRNABP expression. Normal or standard values for HRNABP expression are established by 15 combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HRNABP under conditions suitable for complex formation. The amount of standard complex formation may be quantified by various methods, but preferably by photometric means. Quantities of HRNABP expressed in subject, control and disease, samples from biopsied tissues are compared with the standard values. Deviation between 20 standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HRNABP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, antisense RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in 25 which expression of HRNABP may be correlated with disease. The diagnostic assay may be used to distinguish between absence, presence, and excess expression of HRNABP, and to monitor regulation of HRNABP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting 30 polynucleotide sequences, including genomic sequences, encoding HRNABP or closely related molecules, may be used to identify nucleic acid sequences which encode HRNABP.

The specificity of the probe, whether it is made from a highly specific region, e.g., 10 unique nucleotides in the 5' regulatory region, or a less specific region, e.g., especially in the 3' coding region, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low) will determine whether the probe identifies only naturally occurring sequences encoding HRNABP, alleles, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably contain at least 50% of the nucleotides from any of the HRNABP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and derived from the nucleotide sequence of SEQ ID NO:2 or from genomic sequence including promoter, enhancer elements, and introns of the naturally occurring HRNABP.

Means for producing specific hybridization probes for DNAs encoding HRNABP include the cloning of nucleic acid sequences encoding HRNABP or HRNABP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, radionuclides such as ^{32}P or ^{35}S , or enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HRNABP may be used for the diagnosis of conditions or diseases which are associated with expression of HRNABP. Examples of such conditions or diseases include cancers of the brain, gastrointestinal tract, lung, pancreas, thyroid, and genitalia, and inflammatory diseases such as Crohn's disease, inflammatory bowel disease, colitis, systemic lupus erythematosus, multiple sclerosis, rheumatoid and osteoarthritis, diabetes, asthma, psoriasis, pancreatitis, and atherosclerosis. The polynucleotide sequences encoding HRNABP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; or in dip stick, pin, ELISA or chip assays utilizing fluids or tissues from patient biopsies to detect altered HRNABP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding HRNABP may be useful in assays that detect activation or induction of various cancers, particularly those mentioned

above. The nucleotide sequences encoding HRNABP may be labeled by standard methods, and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantitated and compared with a standard value. If the amount of signal in the biopsied or extracted sample is significantly altered from that of a comparable control sample, the nucleotide sequences have hybridized with nucleotide sequences in the sample, and the presence of altered levels of nucleotide sequences encoding HRNABP in the sample indicates the presence of the associated disease. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or in monitoring the treatment of an individual patient.

In order to provide a basis for the diagnosis of disease associated with expression of HRNABP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, which encodes HRNABP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with those from an experiment where a known amount of a substantially purified polynucleotide is used. Standard values obtained from normal samples may be compared with values obtained from samples from patients who are symptomatic for disease. Deviation between standard and subject values is used to establish the presence of disease.

Once disease is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to evaluate whether the level of expression in the patient begins to approximate that which is observed in the normal patient. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the

PR-U100 PC1

development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HRNABP may involve the use of PCR. Such oligomers may be chemically synthesized, generated enzymatically, or produced from a recombinant source. Oligomers will preferably consist of two nucleotide sequences, one with sense orientation (5'-3') and another with antisense (3'-5'), employed under optimized conditions for identification of a specific gene or condition. The same two oligomers, nested sets of oligomers, or even a degenerate pool of oligomers may be employed under less stringent conditions for detection and/or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of HRNABP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and standard curves onto which the experimental results are interpolated (Melby, P.C. et al. (1993) J. Immunol. Methods, 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 229-236). The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In another embodiment of the invention, the nucleic acid sequences which encode HRNABP may also be used to generate hybridization probes which are useful for mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome or to a specific region of the chromosome using well known techniques. Such techniques include FISH, FACS, or artificial chromosome constructions, such as yeast artificial chromosomes, bacterial artificial chromosomes, bacterial P1 constructions or single chromosome cDNA libraries as reviewed in Price, C.M. (1993) Blood Rev. 7:127-134, and Trask, B.J. (1991) Trends Genet. 7:149-154.

FISH (as described in Verma et al. (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York, NY) may be correlated with other physical chromosome mapping techniques and genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of the gene encoding HRNABP on a physical chromosomal map and a specific disease, or predisposition to a specific disease, may help delimit the region of DNA associated with that

genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier, or affected individuals.

5 *In situ* hybridization of chromosomal preparations and physical mapping techniques such as linkage analysis using established chromosomal markers may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms, or parts thereof, by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic 10 linkage to a particular genomic region, for example, AT to 11q22-23 (Gatti, R.A. et al. (1988) Nature 336:577-580), any sequences mapping to that area may represent associated or regulatory genes for further investigation. The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, 15 inversion, etc. among normal, carrier, or affected individuals.

 In another embodiment of the invention, HRNABP, its catalytic or immunogenic fragments or oligopeptides thereof, can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. 20 The formation of binding complexes, between HRNABP and the agent being tested, may be measured.

 Another technique for drug screening which may be used provides for high throughput screening of compounds having suitable binding affinity to the protein of interest as described in published PCT application WO84/03564. In this method, as applied to 25 HRNABP large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with HRNABP, or fragments thereof, and washed. Bound HRNABP is then detected by methods well known in the art. Purified HRNABP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can 30 be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HRNABP specifically compete with a test compound for binding HRNABP. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with HRNABP.

5 In additional embodiments, the nucleotide sequences which encode HRNABP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

10 The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.

INDUSTRIAL APPLICABILITY

I BRAITUT13 cDNA Library Construction

The BRAITUT13 cDNA library was constructed from cancerous brain tissue obtained from a 68-year-old Caucasian male (specimen #0370, Mayo Clinic, Rochester, MN) during 15 cerebral meningeal excision following diagnosis of meningioma localized in the left frontal part of the brain. Prior to surgery the patient was diagnosed with depressive disorder, atrial fibrillation, and abnormality of gait. Patient history included a diagnosis of mitral stenosis with insufficiency. Prior to surgery the patient had undergone a replacement of aortic valve with tissue graft. Prior to surgery the patient was prescribed Coumadin® (crystalline warfarin sodium; DuPont Pharma, Wilmington, DE), Zantac® (ranitidine hydrochloride; Glaxo Wellcome, Inc., Research Triangle Park, NC), bethametasone, Lasix® (furosemide; Hoechst-Roussel Pharmaceuticals, Inc., Somerville, NJ), and amiodarone.

20 The frozen tissue was homogenized and lysed using a Brinkmann Homogenizer Polytron PT-3000 (Brinkmann Instruments, Westbury, NY) in guanidinium isothiocyanate solution. The lysate was centrifuged over a 5.7 M CsCl cushion using an Beckman SW28 rotor in a Beckman L8-70M Ultracentrifuge (Beckman Instruments, Fullerton, CA) for 18 hours at 25,000 rpm at ambient temperature. The RNA was extracted with acid phenol, pH 4.7, precipitated using 0.3 M sodium acetate and 2.5 volumes of ethanol, resuspended in RNase-free water, and DNase treated at 37°C. The RNA extraction was repeated with acid 25 phenol, pH 4.7, and precipitated with sodium acetate and ethanol as above. The mRNA was 30 phenol, pH 4.7, and precipitated with sodium acetate and ethanol as above. The mRNA was

then isolated using the Qiagen Oligotex kit (QIAGEN, Inc., Chatsworth, CA) and used to construct the cDNA library.

The mRNA was handled according to the recommended protocols in the SuperScript Plasmid System for cDNA Synthesis and Plasmid Cloning (Cat. #18248-013, Gibco BRL).
5 A new plasmid was constructed using the following procedures: The commercial plasmid pSPORT 1 (Gibco BRL) was digested with Eco RI restriction enzyme (New England Biolabs, Beverley, MA), the overhanging ends of the plasmid were filled in using Klenow enzyme (New England Biolabs) and 2'-deoxynucleotide-5'-triphosphates (dNTPs), and the intermediate plasmid was self-ligated and transformed into the bacterial host, *E. coli* strain
10 JM109.

Quantities of this intermediate plasmid were digested with Hind III restriction enzyme (New England Biolabs), the overhanging ends were filled with Klenow and dNTPs, and a 10-mer linker of sequence 5'...CGGAATTCCG...3' was phosphorylated and ligated onto the blunt ends. The product of the ligation reaction was digested with Eco RI and self-ligated.
15 Following transformation into JM109 host cells, plasmids designated pINCY were isolated and tested for the ability to incorporate cDNAs using Not I and Eco RI restriction enzymes.

BRAITUT13 cDNAs were fractionated on a Sepharose CL4B column (Cat. #275105-01, Pharmacia), and those cDNAs exceeding 400 bp were ligated into pINCY I. The plasmid pINCY I was subsequently transformed into DH5 α ™ competent cells (Cat. #18258-012, Gibco BRL).
20

II Isolation and Sequencing of cDNA Clones

Plasmid DNA was released from the cells and purified using the REAL Prep 96 Plasmid Kit (Cat. #26173; QIAGEN, Inc.). This kit enabled the simultaneous purification of 96 samples in a 96-well block using multi-channel reagent dispensers. The recommended protocol was employed except for the following changes: 1) the bacteria were cultured in 1 ml of sterile Terrific Broth (Cat. #22711, LIFE TECHNOLOGIES™, Gaithersburg, MD) with carbenicillin at 25 mg/l and glycerol at 0.4%; 2) after inoculation, the cultures were incubated for 19 hours and at the end of incubation, the cells were lysed with 0.3 ml of lysis buffer; and 3) following isopropanol precipitation, the plasmid DNA pellet was resuspended in 0.1 ml of distilled water. After the last step in the protocol, samples were transferred to a
25
30

96-well block for storage at 4°C.

The cDNAs were sequenced by the method of Sanger et al. (1975; J. Mol. Biol. 94:441f), using a Hamilton Micro Lab 2200 (Hamilton, Reno, NV) in combination with Peltier Thermal Cyclers (PTC200 from M.J. Research, Watertown, MA) and Applied Biosystems 377 DNA Sequencing Systems.

The sequences disclosed herein were sequenced according to standard ABI protocols, using ABI kits (Cat. Nos. 79345, 79339, 79340, 79357, 79355). The solution volumes were used at 0.25x -1.0x concentrations. Some of the sequences were obtained using different solutions and dyes which, unless otherwise noted, came from Amersham Life Science (Cleveland, OH).

First, stock solutions were prepared with HPLC water. The following solutions were each mixed by vortexing for 2 min: 1) Tris-EDTA (TE) Buffer was prepared by adding 49 ml water to 1 ml 50x Tris-EDTA concentrate, and 2) 10% Reaction Buffer was prepared by adding 45 ml water to 5 ml Concentrated Thermo Sequenase (TS) Reaction Buffer.

Second, 0.2 μ M energy transfer (ET) primers were prepared in the following manner. Each primer tube was centrifuged prior to opening to assure that all primer powder was on the bottom of the tube. After each solubilization step, the mixture was vortexed for 2 min and then centrifuged for about 10 sec in a table-top centrifuge. 1 ml of 1x TE was added to each primer powder; adenine and cytosine dissolved primers (5-carboxyrhodamine-6G (R6G) and 6-carboxyfluorescein (FAM), respectively), were diluted with 9 ml 1x TE. Guanine and thymine dyes (*N,N,N',N'*-tetramethyl-6-carboxyrhodamine (TAM) and 6-carboxy-X-rhodamine (ROX), respectively) were diluted with 19 ml 1x TE.

Next, the sequencing reaction ready mix was prepared as follows: 1) nucleotides A and C (8 ml of each) were added to 6 ml ET primer and 18 ml TS reaction buffer; and 2) nucleotides G and T (8 ml of each) were added to 6 ml ET primer and 18 ml TS reaction buffer.

After vortexing for 2 min and centrifuging for 20 sec, the resulting solution was divided into tubes in volumes of 8 ml per tube in order to make 1x (A,C) and 2x (G,T) solutions.

Prior to thermal cycling, each nucleotide was individually mixed with DNA template

in the following proportions:

Reagent	A (μ l)	C (μ l)	G (μ l)	T (μ l)
Reaction ready premix	2	2	4	4
DNA template	1	1	2	2
Total Volume	3	3	6	6

These solutions undergo the usual thermal cycling:

- 10 1. Rapid thermal ramp to 94°C (94°C for 20 sec)*
2. Rapid thermal ramp to 50°C (50°C for 40 sec)*
3. Rapid thermal ramp to 68°C (68°C for 60 sec)*
* Steps 1, 2, and 3 were repeated for 15 cycles
4. Rapid thermal ramp to 94°C (94°C for 20 sec)**
- 15 5. Rapid thermal ramp to 68°C (68°C for 60 sec)**
** Steps 4 and 5 were repeated for 15 cycles
6. Rapid thermal ramp to 4°C and hold until ready to combine.

After thermal cycling, the A, C, G, and T reactions with each DNA template were combined. Then, 50 μ l 100% ethanol was added and the solution was spun at 4° C for 30 min. The supernatant was decanted and the pellet was rinsed with 100 μ l 70% ethanol. After being spun for 15 min the supernatant was discarded and the pellet was dried for 15 min under vacuum. The DNA sample was dissolved in 3 μ l of formamide/50 mM EDTA. The resulting samples were loaded on wells in volumes of 2 μ l per well for sequencing in ABI sequencers.

III Homology Searching of cDNA Clones and Their Deduced Proteins

Each cDNA was compared to sequences in GenBank using a search algorithm developed by Applied Biosystems and incorporated into the INHERIT™ 670 sequence analysis system. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles, CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of homology to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homologous regions were examined using

dot matrix homology plots to distinguish regions of homology from chance matches.

Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT- 670 sequence analysis system using the methods similar to those used in DNA sequence 5 homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance matches.

BLAST, which stands for Basic Local Alignment Search Tool (Altschul, S.F. (1993) 10 J. Mol. Evol. 36:290-300; Altschul et al. (1990) J. Mol. Biol. 215:403-410), was used to search for local sequence alignments. BLAST produces alignments of both nucleotide and amino acid sequences to determine sequence similarity. Because of the local nature of the alignments, BLAST is especially useful in determining exact matches or in identifying 15 homologs. BLAST is useful for matches which do not contain gaps. The fundamental unit of BLAST algorithm output is the High-scoring Segment Pair (HSP).

An HSP consists of two sequence fragments of arbitrary but equal lengths whose alignment is locally maximal and for which the alignment score meets or exceeds a threshold or cutoff score set by the user. The BLAST approach is to look for HSPs between a query sequence and a database sequence, to evaluate the statistical significance of any matches 20 found, and to report only those matches which satisfy the user-selected threshold of significance. The parameter E establishes the statistically significant threshold for reporting database sequence matches. E is interpreted as the upper bound of the expected frequency of chance occurrence of an HSP (or set of HSPs) within the context of the entire database search. Any database sequence whose match satisfies E is reported in the program output.

25 IV Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook et al., supra).

Analogous computer techniques using BLAST (Altschul, S.F. 1993 and 1990, supra) 30 are used to search for identical or related molecules in nucleotide databases such as GenBank

or the LIFESEQ™ database (Incyte Pharmaceuticals). This analysis is much faster than multiple, membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or homologous.

5 The basis of the search is the product score which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

The product score takes into account both the degree of similarity between two sequences and 10 the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1-2% error; and at 70, the match will be exact. Homologous molecules are usually identified by selecting those which show product scores between 15 and 40, although lower scores may identify related molecules.

15 The results of northern analysis are reported as a list of libraries in which the transcript encoding HRNABP occurs. Abundance and percent abundance are also reported. Abundance directly reflects the number of times a particular transcript is represented in a cDNA library, and percent abundance is abundance divided by the total number of sequences examined in the cDNA library.

20 **V Extension of HRNABP-Encoding Polynucleotides to Full Length or to Recover
Regulatory Sequences**

Full length HRNABP-encoding nucleic acid sequence (SEQ ID NO:2) is used to design oligonucleotide primers for extending a partial nucleotide sequence to full length or for obtaining 5' or 3', intron or other control sequences from genomic libraries. One primer is synthesized to initiate extension in the antisense direction (XLR) and the other is synthesized 25 to extend sequence in the sense direction (XLF). Primers are used to facilitate the extension of the known sequence "outward" generating amplicons containing new, unknown nucleotide sequence for the region of interest. The initial primers are designed from the cDNA using OLIGO 4.06 (National Biosciences), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at 30 temperatures about 68°-72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations is avoided.

The original, selected cDNA libraries, or a human genomic library are used to extend the sequence; the latter is most useful to obtain 5' upstream regions. If more extension is necessary or desired, additional sets of primers are designed to further extend the known region.

5 By following the instructions for the XL-PCR kit (Perkin Elmer) and thoroughly mixing the enzyme and reaction mix, high fidelity amplification is obtained. Beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, PCR is performed using the Peltier Thermal Cycler (PTC200; M.J. Research, Watertown, MA) and the following parameters:

10	Step 1	94°C for 1 min (initial denaturation)
	Step 2	65°C for 1 min
	Step 3	68°C for 6 min
	Step 4	94°C for 15 sec
15	Step 5	65°C for 1 min
	Step 6	68°C for 7 min
	Step 7	Repeat step 4-6 for 15 additional cycles
	Step 8	94°C for 15 sec
	Step 9	65°C for 1 min
20	Step 10	68°C for 7:15 min
	Step 11	Repeat step 8-10 for 12 cycles
	Step 12	72°C for 8 min
	Step 13	4°C (and holding)

25 A 5-10 μ l aliquot of the reaction mixture is analyzed by electrophoresis on a low concentration (about 0.6-0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products are selected and removed from the gel. Further purification involves using a commercial gel extraction method such as QIAQuick™ (QIAGEN Inc., Chatsworth, CA). After recovery of the DNA, Klenow enzyme is used to trim single-stranded, nucleotide overhangs creating blunt ends which facilitate religation and cloning.

30 After ethanol precipitation, the products are redissolved in 13 μ l of ligation buffer, 1 μ l T4-DNA ligase (15 units) and 1 μ l T4 polynucleotide kinase are added, and the mixture is incubated at room temperature for 2-3 hours or overnight at 16°C. Competent *E. coli* cells (in 40 μ l of appropriate media) are transformed with 3 μ l of ligation mixture and cultured in

80 μ l of SOC medium (Sambrook et al., *supra*). After incubation for one hour at 37°C, the whole transformation mixture is plated on Luria Bertani (LB)-agar (Sambrook et al., *supra*) containing 2x Carb. The following day, several colonies are randomly picked from each plate and cultured in 150 μ l of liquid LB/2x Carb medium placed in an individual well of an appropriate, commercially-available, sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture is transferred into a non-sterile 96-well plate and after dilution 1:10 with water, 5 μ l of each sample is transferred into a PCR array.

For PCR amplification, 18 μ l of concentrated PCR reaction mix (3.3x) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction are added to each well. Amplification is performed using the following conditions:

Step 1	94°C for 60 sec
Step 2	94°C for 20 sec
Step 3	55°C for 30 sec
Step 4	72°C for 90 sec
Step 5	Repeat steps 2-4 for an additional 29 cycles
Step 6	72°C for 180 sec
Step 7	4°C (and holding)

Aliquots of the PCR reactions are run on agarose gels together with molecular weight markers. The sizes of the PCR products are compared to the original partial cDNAs, and appropriate clones are selected, ligated into plasmid, and sequenced.

VI Labeling and Use of Hybridization Probes

Hybridization probes derived from SEQ ID NO:2 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base-pairs, is specifically described, essentially the same procedure is used with larger cDNA fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 (National Biosciences), labeled by combining 50 pmol of each oligomer and 250 μ Ci of [γ -³²P] adenosine triphosphate (Amersham) and T4 polynucleotide kinase (DuPont NEN®, Boston, MA). The labeled oligonucleotides are substantially purified with Sephadex G-25 superfine resin column (Pharmacia & Upjohn). A portion containing 10⁷ counts per minute of each of the sense and antisense oligonucleotides is used in a typical

membrane based hybridization analysis of human genomic DNA digested with one of the following endonucleases (Ase I, Bgl II, Eco RI, Pst I, Xba 1, or Pvu II; DuPont NEN®).

The DNA from each digest is fractionated on a 0.7 percent agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham, NH).

5 Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1x saline sodium citrate and 0.5% sodium dodecyl sulfate. After X-OMAT AR™ film (Kodak, Rochester, NY) is exposed to the blots in a Phosphoimager cassette (Molecular Dynamics, Sunnyvale, CA) for several hours, hybridization patterns are compared visually.

10 **VII Antisense Molecules**

Antisense molecules to the HRNABP-encoding sequence, or any part thereof, is used to inhibit *in vivo* or *in vitro* expression of naturally occurring HRNABP. Although use of antisense oligonucleotides, comprising about 20 base-pairs, is specifically described, essentially the same procedure is used with larger cDNA fragments. An oligonucleotide 15 based on the coding sequences of HRNABP, as shown in Figures 1A and 1B, is used to inhibit expression of naturally occurring HRNABP. The complementary oligonucleotide is designed from the most unique 5' sequence as shown in Figures 1A and 1B and used either to inhibit transcription by preventing promoter binding to the upstream nontranslated sequence or translation of an HRNABP-encoding transcript by preventing the ribosome from binding. 20 Using an appropriate portion of the signal and 5' sequence of SEQ ID NO:2, an effective antisense oligonucleotide includes any 15-20 nucleotides spanning the region which translates into the signal or 5' coding sequence of the polypeptide as shown in Figures 1A and 1B.

VIII Expression of HRNABP

Expression of HRNABP is accomplished by subcloning the cDNAs into appropriate 25 vectors and transforming the vectors into host cells. In this case, the cloning vector, pSport, previously used for the generation of the cDNA library is used to express HRNABP in *E. coli*. Upstream of the cloning site, this vector contains a promoter for β-galactosidase, followed by sequence containing the amino-terminal Met, and the subsequent seven residues of β-galactosidase. Immediately following these eight residues is a bacteriophage promoter 30 useful for transcription and a linker containing a number of unique restriction sites.

Induction of an isolated, transformed bacterial strain with IPTG using standard methods produces a fusion protein which consists of the first eight residues of β -galactosidase, about 5 to 15 residues of linker, and the full length protein. The signal residues direct the secretion of HRNABP into the bacterial growth media which can be used directly in the following assay for activity.

IX Demonstration of HRNABP Activity

HRNABP can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with an eukaryotic expression vector encoding HRNABP. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of HRNABP.

Extracts containing solubilized proteins can be prepared from cells expressing HRNABP by methods well known in the art. These extracts are used to demonstrate the RNA-binding activity of HRNABP. Portions of the extract containing HRNABP are added to an amount of a [32 P]-labeled RNA. The radioactive transcript can be synthesized *in vitro* by techniques well known to those skilled in the art. The mixtures are incubated at 25°C in the presence of RNase inhibitors, under suitable conditions of ionic strength and pH, for 5-10 minutes. Appropriate control samples are prepared using extracts of untransformed cells and/or cells transformed with vector sequences alone.

After incubation, the samples are applied to the wells of a polyacrylamide gel and electrophoresed at constant current until a suitable tracking dye, such as xylene cyanol FF (Sigma) has migrated to the bottom of the gel. The gel is exposed against Kodak X-OMAT AR™ film (Kodak) for a suitable period of time.

A band will be visible on the film at a position that is indicative of a complex formed between HRNABP and the radioactive transcript. A band of similar mobility will not be present in samples prepared using control extracts prepared from untransformed cells or cells transformed with vector sequence alone. The presence of HRNABP in the complex may be confirmed using an antibody specific for HRNABP. When added to the samples, the specific anti-HRNABP antibody will bind to and decrease the electrophoretic mobility of the

HRNABP-RNA complex, thereby causing a new radioactive band to appear at a higher position in the gel. Pre-immune sera or unrelated antisera may be used as suitable controls for nonspecific binding to the complex.

5 **X Production of HRNABP Specific Antibodies**

HRNABP that is substantially purified using PAGE electrophoresis (Sambrook, supra), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols. The amino acid sequence deduced from SEQ ID NO:2 is analyzed using DNASTAR software (DNASTAR Inc) to determine regions of high immunogenicity 10 and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions, is described by Ausubel et al. (supra), and others.

Typically, the oligopeptides are 15 residues in length, synthesized using an Applied Biosystems Peptide Synthesizer Model 431A using fmoc-chemistry, and coupled to keyhole 15 limpet hemocyanin (KLH, Sigma, St. Louis, MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS; Ausubel et al., supra). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. The resulting antisera are tested for antipeptide activity, for example, by binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radioiodinated, goat anti-rabbit 20 IgG.

XI Purification of Naturally Occurring HRNABP Using Specific Antibodies

Naturally occurring or recombinant HRNABP is substantially purified by immunoaffinity chromatography using antibodies specific for HRNABP. An immunoaffinity column is constructed by covalently coupling HRNABP antibody to an activated 25 chromatographic resin, such as CnBr-activated Sepharose (Pharmacia & Upjohn). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HRNABP is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HRNABP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under 30 conditions that disrupt antibody/HRNABP binding (e.g., a buffer of pH 2-3 or a high

concentration of a chaotrope, such as urea or thiocyanate ion), and HRNABP is collected.

XII Identification of Molecules Which Interact with HRNABP

HRNABP or biologically active fragments thereof are labeled with ^{125}I Bolton-Hunter reagent (Bolton et al. (1973) Biochem. J. 133: 529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HRNABP, washed and any wells with labeled HRNABP complex are assayed. Data obtained using different concentrations of HRNABP are used to calculate values for the number, affinity, and association of HRNABP with the candidate molecules.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: INCYTE PHARMACEUTICALS, INC.

(ii) TITLE OF THE INVENTION: NOVEL HUMAN RNA-BINDING PROTEIN

(iii) NUMBER OF SEQUENCES: 3

(iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: INCYTE PHARMACEUTICALS, INC.
- (B) STREET: 3174 Porter Drive
- (C) CITY: Palo Alto
- (D) STATE: CA
- (E) COUNTRY: US
- (F) ZIP: 94304

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette
- (B) COMPUTER: IBM Compatible
- (C) OPERATING SYSTEM: DOS
- (D) SOFTWARE: FastSEQ Version 1.5

(vi) CURRENT APPLICATION DATA:

- (A) PCT APPLICATION NUMBER: To Be Assigned
- (B) FILING DATE: Filed Herewith

(vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: US 08/756,749
- (B) FILING DATE: 19-NOV-1996

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Billings, Lucy J.
- (B) REGISTRATION NUMBER: 36,749
- (C) REFERENCE/DOCKET NUMBER: PF-0166 PCT

(ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 650-855-0555
- (B) TELEFAX: 650-845-4166

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 147 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vii) IMMEDIATE SOURCE:

- (B) CLONE: 1621025

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met	Ser	Ser	Glu	Pro	Pro	Pro	Pro	Gln	Pro	Pro	Thr	His	Gln	Ala
1			5					10			15			
Ser	Val	Gly	Leu	Leu	Asp	Thr	Pro	Arg	Ser	Arg	Glu	Arg	Ser	Pro Ser
			20				25				30			
Pro	Leu	Arg	Gly	Asn	Val	Val	Pro	Ser	Pro	Leu	Pro	Thr	Arg	Arg Thr
	35						40				45			
Arg	Thr	Phe	Ser	Ala	Thr	Val	Arg	Ala	Ser	Gln	Gly	Pro	Val	Tyr Lys
	50					55				60				
Gly	Val	Cys	Lys	Cys	Phe	Cys	Arg	Ser	Lys	Gly	His	Gly	Phe	Ile Thr
	65					70				75			80	

Pro Ala Tyr Gly Gly Pro Xaa Ile Xaa Leu His Ile Ser Asp Val Glu
 85 90 95
 Gly Glu Tyr Val Pro Val Glu Gly Asp Glu Val Asn Tyr Lys Met Cys
 100 105 110
 Ser Ile Pro Pro Lys Asn Glu Lys Leu Gln Ala Val Glu Val Val Ile
 115 120 125
 Thr His Leu Ala Pro Gly Thr Lys His Glu Thr Trp Ser Gly His Val
 130 135 140
 Ile Ser Ser
 145

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 557 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vii) IMMEDIATE SOURCE:

- (B) CLONE: 1621025

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CGGCTCGAGG	GCTGGCGGAN	AGAACGGATT	GCAGGGTCAG	CCATGTCATC	TGAGCCTCCC	60
CCACCAACCAC	AGCCCCCCCAC	CCATCAAGCT	TCAGTCGGGC	TGCTGGACAC	CCCTCGGAGC	120
CGTGAGCGCT	CACCATCCCC	TCTGCGCGGC	AACGTGGTCC	CAAGCCCACT	GCCCCACTCGC	180
CGGACGAGGA	CCTTCTCGGC	GACGGTGCAGG	GCTTCACAGG	GCCCCGTCTA	CAAAGGAGTC	240
TGCAAATGCT	TCTGCCGGTC	CAAGGGCCAT	GGCTTCATAA	CCCCAGCTTA	TGGCGGCC	300
GNNATCTTNC	TGCACATCTC	TGATGTGGAA	GGGGAGTATG	TCCCAGTGGA	AGGCAGCAG	360
GTCAACTATA	AAATGTGCTC	CATCCCACCC	AAGAATGAGA	AGCTGCAGGC	CGTGGAGGTC	420
GTCATCACTC	ACCTGGCACC	AGGCACCAAG	CATGAGACCT	GGTCTGGACA	TGTCATCAGC	480
TCCTAGGAGA	TGGTGGAAAGC	ACCCCTTGTC	CTGTGTTGT	GGGAGACTTT	GCGGGGAGGA	540
GGCAGCAGAC	ACTGGAG					557

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 154 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(iii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(v) FRAGMENT TYPE: N-terminal

(vi) ORIGINAL SOURCE:

(vii) IMMEDIATE SOURCE:

- (A) LIBRARY: GenBank

- (B) CLONE: 1050754

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met	Thr	Ser	Glu	Ser	Thr	Ser	Pro	Pro	Val	Val	Pro	Pro	Leu	His	Ser
1			5						10				15		
Pro	Lys	Ser	Pro	Val	Trp	Pro	Thr	Phe	Pro	Phe	His	Arg	Glu	Ser	Ser
									20			25		30	
Arg	Ile	Trp	Glu	Arg	Gly	Gly	Val	Ser	Pro	Arg	Asp	Leu	Pro	Ser	
									35			40		45	
Pro	Leu	Pro	Thr	Lys	Arg	Thr	Arg	Thr	Tyr	Ser	Ala	Thr	Ala	Arg	Ala
									50			55		60	

Ser Ala Gly Pro Val Phe Lys Gly Val Cys Lys Gln Phe Ser Arg Ser
65 70 75 80
Gln Gly His Gly Phe Ile Thr Pro Glu Asn Gly Ser Glu Asp Ile Phe
85 90 95
Val His Val Ser Asp Ile Glu Gly Glu Tyr Val Pro Val Glu Gly Asp
100 105 110
Glu Val Thr Tyr Lys Met Cys Pro Ile Pro Pro Lys Asn Gln Lys Phe
115 120 125
Gln Ala Val Glu Val Val Leu Thr Gln Leu Ala Pro His Thr Pro His
130 135 140
Glu Thr Trp Ser Gly Gln Val Val Gly Ser
145 150

What is claimed is:

1. A substantially purified human RNA-binding protein, HRNABP, comprising the amino acid sequence of SEQ ID NO:1 or fragments thereof.
2. An isolated and purified polynucleotide sequence encoding the HRNABP of claim 1.
- 5 3. A polynucleotide sequence which hybridizes under stringent conditions to the polynucleotide sequence of claim 2.
4. A hybridization probe comprising the polynucleotide sequence of claim 2.
5. An isolated and purified polynucleotide sequence comprising SEQ ID NO:2 or variants thereof.
- 10 6. A polynucleotide sequence which is complementary to SEQ ID NO:2 or variants thereof.
7. A hybridization probe comprising the polynucleotide sequence of claim 6.
8. An expression vector containing the polynucleotide sequence of claim 2.
9. A host cell containing the vector of claim 8.
- 15 10. A method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1, the method comprising the steps of:
 - a) culturing the host cell of claim 9 under conditions suitable for the expression of the polypeptide; and
 - b) recovering the polypeptide from the host cell culture.
- 20 11. A purified antibody which binds specifically to the polypeptide of claim 1.
12. A purified antagonist which specifically binds to and modulates the activity of the polypeptide of claim 1.
13. A method for treating cancer comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 12.
- 25 14. A method for treating inflammatory disease comprising administering to a subject in need of such treatment an effective amount of the antagonist of claim 12.
15. A method for detection of polynucleotides encoding HRNABP of claim 1 in a biological sample comprising the steps of:
 - a) hybridizing a polynucleotide consisting of the complement SEQ ID NO:2 to nucleic acid material of a biological sample, thereby forming a hybridization complex; and

b) detecting said hybridization complex, wherein the presence of said complex correlates with the presence of a polynucleotide encoding HRNABP in said biological sample.

16. The method of claim 15 wherein before hybridization, the nucleic acid material of
5 the biological sample is amplified by the polymerase chain reaction.

1/7

FIGURE 1A

2/7

	387	396	405	414	423	432
TCC	ATC	CCA	CCC	AAG	AAT	GAG
S	I	P	P	K	N	E
				K	E	K
				L	Q	L
				A	V	Q
					E	G
					V	GTC
						ATC
						ACT
						CAC
						H

	441	450	459	468	477	486
CTG	GCA	CCA	GGC	ACC	AAG	CAT
L	A	P	G	T	K	H
						E
						T
						W
						S
						G
						H
						V
						I
						S
						*

	495	504	513	522	531	540
GAG	ATG	GTG	GAA	GCA	CCC	CTT
						GTC
						TGC
						TGG
						TGG
						GAG
						ACT
						TTG
						CGG
						GGA
						GGA

549
GGC AGC AGA CAC TGG AG 3'

FIGURE 1B

1 M S S E P P P P Q P P T H Q A S V G L L - - - - - D T P R S R E R S P S H R N A B P
1 M T S E S T S P P V V P P L H S P K S P V W P T F P F H R E S S R I W E R G - G g1050754

33 P L R G N V V P S P P L P T R R T F S A T V R A S O G P V Y K G V C K C F C R H R N A B P
40 G V S P R D L P S P L P T K R R T F S A T A R A S A G P V F K G V C K Q F S R g1050754

73 S K G H G F I T P A Y G G P X I X L H I S D V E G E Y V P V E G D E V N Y K M C H R N A B P
80 S Q G H G F I T P E N G S E D I F V H V S D T I E G E Y V P V E G D E V T Y K M C g1050754

113 S I P P K N E K L Q A V E V V I T H L A P G T K H E T W S G H V I S S H R N A B P
120 P I P P K N Q K F Q A V E V V L T Q L A P H T P H E T W S G Q V V G S g1050754

FIGURE 2

FIGURE 3

FIGURE 4

Library	Lib Description	Abun	Pct Abun
PLACNOM03	placenta, fetal, NORM, WM	2	0.0725
THP1NOT01	THP1 cells untreated	1	0.0571
THP1AZT01	THP-1 promonocyte cell line, treated AZ	1	0.0554
BRAITUT13	brain tumor, meningioma, 68 M	2	0.0524
TESTNOT01	testis, 37 M	1	0.0478
COLNCRT01	colon, Crohn's, 40 M, match to COLNNOT05	1	0.0468
HUVENOB01	HUVEC endothelial cell line, control	1	0.0420
LPARNOT02	parotid gland, 70 M	1	0.0324
BSTMNMON02	brain stem, 72 M, NORM	1	0.0319
BRAINOT14	brain, 40 F, match to BRAITUT12	1	0.0315
COLNTUT06	large intestine, cecal tumor, 45 F	1	0.0293
LUNGNOT09	lung, fetal M	1	0.0286
SININNOT01	small intestine, ileum, 4 F	1	0.0280
THYRTUT03	thyroid tumor, benign, 17 M	1	0.0277
SINTNOT13	small intestine, ileum, ulcerative colitis, 25 F	1	0.0275
OVARNOT07	ovary, 28 F	1	0.0269
PENITUT01	penis tumor, carcinoma, 64 M	1	0.0267
LUNGNOT10	lung, fetal M	1	0.0261
TESTNOT03	testis, 37 M	2	0.0258
SPLNNNOT04	spleen, 2 M	2	0.0256
BRSTNOT09	breast, 45 F, match to BRSTTUT08	1	0.0255
MENITUT03	brain tumor, benign meningioma, 35 F	1	0.0249
UCMCNOT02	mononuclear cells	1	0.0236
CARDFEM01	heart, fetal, NORM, WM	2	0.0165
PLACNOM02	placenta, neonatal F, NORM, WM	4	0.0222

FIGURE 5A

COLNNNOT01	colon, 75 M, match to COLNTUT02	1	0.0213
PANCTUT02	pancreatic tumor, carcinoma, 45 F	1	0.0202
CERVNNOT01	cervix, 35 F	1	0.0194
LUNGTUT02	lung tumor, metastasis, 79 M, match to LUNGNOT03	1	0.0189
KERANOT02	keratinocytes, primary cell line, 30 F	1	0.0114
BRAITUT03	brain tumor, astrocytoma, 17 F	1	0.0074
LUNGFEM01	lung, fetal, NORM, WM	1	0.0148
BRAITUT08	brain tumor, astrocytoma, 47 M	1	0.0147
SINTFET03	small intestine, fetal F	1	0.0130
ISLTNNOT01	pancreas, islet cells, M/F	2	0.0129
BRSTNOT02	breast, 55 F, match to BRSTTUT01	1	0.0111
LIVSFEM02	liver/spleen, fetal M, NORM, WM	3	0.0079

Electronic Northern Results returned a total of 86 row(s).
 Requested by: guest on Tue Oct 28 15:09:02 1997

FIGURE 5B

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/US 97/21482

A. CLASSIFICATION OF SUBJECT MATTER	IPC 6 C12N15/12	C07K14/47	A61K38/17	C12Q1/68	G01N33/50
		C12N15/11			

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	HILLIER, L. ET AL.: "The WashU-Merck EST project - zd71g04.s1 Soares fetal heart NbHH19W Homo sapiens cDNA clone 346134" EMBL DATABASE ENTRY HS753361 ; ACCESSION NUMBER W72753, 20 June 1996, XP002060417 see the reverse sequence ---	3,6,7
X	HILLIER, L. ET AL.: "The WashU-Merck EST project - yr26f07.r1 Homo sapiens cDNA clone 206437 5' " EMBL DATABASE ENTRY HS613214; ACCESSION NUMBER H63613, 12 October 1995, XP002060418 see abstract ---	3,6,7

Further documents are listed in the continuation of box C.

Patent family members are listed in annex

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search

27 March 1998

Date of mailing of the international search report

16.04.98

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Andres, S