Graph Neural Networks: The Convolutional Layer

Edoardo Grasso

A Comprehensive Survey on Graph Neural Networks

Zonghan Wu¹⁰, Shirui Pan¹⁰, *Member, IEEE*, Fengwen Chen, Guodong Long¹⁰, Chengqi Zhang¹⁰, *Senior Member, IEEE*, and Philip S. Yu, *Life Fellow, IEEE*

- Represent nodes as low dimensional vector;
- Preserve network topology structure as well as node content information;
- Use off-the-shelf ML algorithms.

- Develop ad hoc algorithm to address graph-related tasks.
- RecGNN, ConvGNN GAE, GGAN, ...

Convolutional Neural Networks

X -4

Kernel

Problem:

What about non-euclidean spaces?

- Spectral-based ConvGNN
- Spatial-based ConvGNN

FCNN: Fourier Convolutional Neural Networks

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng Convolution Theorem:

$$\mathcal{F}(\kappa * u) = \mathcal{F}(\kappa) \odot \mathcal{F}(u)$$

$$F(k,l) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(i,j) e^{-\iota 2\pi (\frac{ki}{N} + \frac{lj}{N})}$$

 Shift filter and multiply image by filter ~ N² times.

- Multiply image by filter one time;
- Calculate DFT for NxN image Cooley-Tukey → N*log(N);
- Very efficient pooling.

Same thing applied on Graphs

For a graph with n vertices:

$$\mathbf{L} = \mathbf{I_n} - \mathbf{D}^{-(1/2)} \mathbf{A} \mathbf{D}^{-(1/2)}$$
 Symmetrically normalized laplacian

$$\mathbf{L} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T \qquad \mathbf{U} = [\mathbf{u_0}, \mathbf{u_1}, \dots, \mathbf{u_{n-1}}] \in \mathbf{R}^{n \times n}$$
 Spectral decomposition

Let $\mathbf{x} \in \mathbf{R}^n$ be a graph signal, each entry x_i is the value of the signal for the i-th node.

Same thing applied on Graphs

The graph Fourier Transform of a signal is defined as: $\mathscr{F}(\mathbf{x}) = \mathbf{U}^T \mathbf{x}$

$$\mathscr{F}(\mathbf{x}) = \mathbf{U}^T \mathbf{x}$$

And the inverse Fourier Transform: $\mathscr{F}^{-1}(\hat{\mathbf{x}}) = \mathbf{U}\hat{\mathbf{x}}$

$$\mathscr{F}^{-1}(\hat{\mathbf{x}}) = \mathbf{U}\hat{\mathbf{x}}$$

The graph convolution of the input signal X with a filter $g \in \mathbb{R}^n$ is:

$$\mathbf{x} *_{G} \mathbf{g} = \mathscr{F}^{-1}(\mathscr{F}(\mathbf{x}) \odot \mathscr{F}(\mathbf{g}))$$
$$= \mathbf{U}(\mathbf{U}^{T} \mathbf{x} \odot \mathbf{U}^{T} \mathbf{g})$$

$$\left\{\mathbf{x_1} \odot \mathbf{x_2} = \mathsf{diag}(\mathbf{x_2}) \mathbf{x_1}\right\}$$

Let
$$\mathbf{g}_{\theta} = \operatorname{diag}(\mathbf{U}^T \mathbf{g})$$
 \longrightarrow $\mathbf{U}(\mathbf{U}^T \mathbf{x} \odot \mathbf{U}^T \mathbf{g}) = \mathbf{U} \mathbf{g}_{\theta} \mathbf{U}^T \mathbf{x}$

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf

Max Welling

$$g_{\theta} \star x = U g_{\theta} U^{\top} x$$

Where $g_{\theta} = \operatorname{diag}(\theta)$ is a filter parametrized by $\theta \in \mathbb{R}^N$ in the **Fourier domain**. g_{θ} is a function of the eigenvalues of the laplacian: $g_{\theta}(\Lambda)$.

PROBLEM

- Multiplication with the eigenvector matrix U is O(N²);
- Computing the eigendecomposition of L might be prohibitively expensive for large graphs.

SOLUTION

 $g_{\theta}(\Lambda) \rightarrow$ Expansion in terms of the Chebychev polynomials, truncated to the first order. [Hammond et. al (2011)]

The Convolutional Layer

$$g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}} A D^{-\frac{1}{2}} \right) x$$

Has eigenvalues ≤ 2 → Exploding Gradients

Renormalization:
$$I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}} \to \tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}$$

$$\tilde{A} = A + I_N$$
 and $\tilde{D}_{ii} = \sum_j \tilde{A}_{ij}$

Generalize for signal $X \in \mathbb{R}^{N \times C}$: $Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$

where $\Theta \in \mathbb{R}^{C \times F}$ is a matrix of filter parameters \rightarrow learnable weights and $Z \in \mathbb{R}^{N \times F}$ is the convolved signal matrix.

Complexity: $\mathcal{O}(|\mathcal{E}|FC)$

The Convolutional Layer

FINAL STEP: Apply non-linearity

$$H^{(l+1)} = \sigma \left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} H^{(l)} W^{(l)} \right)$$

EXAMPLE: If we consider a two-layer GCN for semi-supervised node classification task we will have

$$Z = f(X, A) = \operatorname{softmax}(\hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)}) W^{(1)})$$

with
$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$
.

Zachary's Karate Club?

$$Z = f(X, A) = \operatorname{softmax}(\hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)}) W^{(1)})$$

Questions?

Thanks for listening.