An Algebraic Introduction to Mathematical Logic Chapter 1 Universal Algebra Section 2 Free Algebras

David L. Meretzky

Exercises

February 4th, 2018

Problem 1 (2.6). T consists of one unary operation, and F is the free T-algebra on a one element set $X = \{x_0\}$. How many elements are there in F_n ? How many elements are there in F?

2.6 Solution. The set F is defined as the union of recursively defined F_n , for $n \in \mathbb{N}$. To begin, $F_0 = T_0 \cup X$. Since the type T has only one unary operation, $T_0 = \emptyset$ and $F_0 = \{x_0\}$. Suppose for all k < n we have defined F_k . Define $F_n = \{(t, a_1, ..., a_k) | t \in T, ar(t) = k, a_i \in F_{r_i}, \sum_{i=1}^k r_i = n-1\}.$

In the case where n=1, n-1=0, therefore all of the $r_i=0$ so $a_i \in F_0$. Since $F_0=x_0$ there is only one element each a_i can be. Therefore there is only one $a=x_0$. In this case k=1, and we have a single arity 1 function $t \in T$. Therefore there is one element in F_1 , namely, $F_1=(t,x_0)$.

Generally, each F_n contains only one element $(t, (t, (t, ..., (t, x_0)...)))$. The element obtained by n applications of the arity 1 operation written in prefix notation

F has a countable infinity of elements.

Problem 2 (2.7). If T is empty and X is any set, show that X is the free T-algebra on X.

Solution 2.7. Trivially, X satisfies the requirements for being a T-algebra. In fact, any set is a T-algebra when T is empty. Let A be any other set and f a set map from X to A. Then the inclusion $\sigma: X \to X$ which takes the set X to itself with empty T-algebra structure admits a unique homomorphism from the trivial algebra X to the trivial algebra A. Since there are no operators in T, the function f will do perfectly. It trivially is seen to preserve the absent operators on the algebra X. Therefore, $f \circ i = f$

Problem 3 (2.8). T consists of a single binary operation, and F is the free T-algebraon a one element set X. How many elements are there in F?

Solution 2.8. Again $F_0 = x_0$. When k = 2 then we may add elements to higher F_n . For n = 1, the sum of the r_i must be 0. Therefore, $F_1 = (t, x_0, x_0)$. The 2-tuples which sum to 1 are (0,1) and (1,0), Therefore we obtain, $F_2 = (t, x_0, (t, x_0, x_0)), (t, (t, x_0, x_0), x_0)$. Similarly we can compute F_n for any n. They with Bell's Numbers. Therefore there are countably infinitely many elements in F.

Problem 4 (2.9). If T consists of one 0-ary operation and one 2-ary operation, and if $X = \emptyset$, then the free T-algebra F on X is countable.

Solution 2.9. There is a recursive formula for the number of elements in any F_n Given by $|F_n| = |F_{n-1}| + \sum_{i=1}^{n-1} |F_i \times F_{n-1-i}|$. Since $|F_0| = 1$ the free T-algebra F on X is countable.

Problem 5 (2.10). T is finite or countable, and contains at least one 0-ary operation and at least one operation t with ar(t) > 0. X is finite or countable. Prove that F is countable.

Solution 2.10. The cardinality of F_n at each level is countable, and there are a countable infinity of levels, therefore, F, the union of all F_n is countable.