1. Determine the truth value of the following statements (T or F) and justify your answer. (hint: you can use counterexample to disprove the statement)

The universe for x is numbers: 8, 6, 4, 2 and 0.The universe for y is numbers: -7, -5, -3, and -1.

a) $\exists x \exists y \text{ such that } -30 < x \cdot y < -5$

c) $\forall x \exists y \ such \ that \ x + y = 1$

d)
$$\forall y \exists x \text{ such that } x + y = 1$$

e) $\exists x \forall y \text{ such that } x \cdot y > -10$

SELECT DISTINCT s.name
FROM student s
WHERE FORALL
(SELECT *
FROM requirement r
WHERE r.major='CS'
AND EXISTS
(SELECT *
FROM enrollment e
WHERE e.student_id=s.student_id
AND e.course_id=r.course_id));

2. Determine the truth value of the following statements (T or F) and justify your answer.

Sets A, B and C are defined as follows:

$$A = \{1, 2, 3\}$$
 $B = \{-1, -2, -3\}$ $C = \{-1, -2, -4, -9\}$.

a) $\forall x \in A, \forall y \in B$, then $x \cdot y \in C$

b) $\forall x \in A, \exists y \in B$, then $x \cdot y \in C$

c) $\exists y \in B, \forall x \in A$, then $x \cdot y \in C$

d) $\exists z \in C, \forall y \in B \text{ such that } z \cdot y \notin A$

e) $\exists u \in A, \exists v \in A \text{ such that } u \cdot v \in C$

3. Determine the truth value of the following statements (T or F) and justify your answer.

The universe for x is $\{-4, -2, -1\}$. The universe for y is $\{-4, -2, 4, 6\}$

(a) $\forall x, \forall y, \ 0 < |x - y| < 6$

(b) $\exists x, \exists y, \ 0 < |x - y| < 6$

(c) $\forall x, \exists y, \ 0 < |x - y| < 6$

(d) $\exists x, \forall y, \ 0 < |x - y| < 6$

1	Determine	tha	fo11	owing
4.	Determine	tne	IOII	owing

a)
$$X \cup Y \cup Z$$

b)
$$Y \cap Z$$

c)
$$Y - (X \cup Z)$$

d)
$$\overline{(X-Z)}\Delta Y$$

$$X = \{1, 2, 3, 4\}$$

$$Y = \{1, 3, 7\}$$

$$Z = \{4, 6\}$$
 and

universe
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

Determine the truth value of the following statements (T or F) and justify your answer.

e)
$$\exists p \in U, \forall q \in X\Delta Y$$
, then $1 \le |p-q| \le 3$

$$X = \{1, 2, 3, 4\}$$

$$Y = \{1, 3, 7\}$$

$$Z = \{4, 6\}$$
 and

universe
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

f)
$$\forall t \in \overline{X \cup Y}, \exists w \in X - Z, \text{ then } t - w \in \overline{X \cap Y} \Delta Z$$

g)
$$\exists a \in X - Z, \forall b \in \overline{X \cap Y} \Delta Z$$
, then $-a + b \notin \overline{X \cap Y} \Delta Z$