Bachelor of Science (B.Sc.) (Information Technology) (I.T.) Semester—VI Examination OPERATIONS RESEARCH

Paper—6

Time: Three Hours] [Maximum Marks: 50

- **N.B.**:— (1) All the questions are compulsory and carry equal marks.
 - (2) Assume suitable data wherever necessary.
 - (3) Draw neat and labelled diagram wherever necessary.

EITHER

1. (a) What do you mean by models in Operations Research and also explain various OR Techniques.

5

(b) Use two phase method to following LPP:

$$Max Z = 5x_1 + 3x_2$$

subject to constraints $2x_1 + x_2 \le 1$

$$x_1 + 4x_2 \ge 6$$

where $x_1, x_2 \ge 0$.

OR

(c) Solve the following LPP by Graphical method:

$$Min Z = -x_1 + 2x_2$$

subject to constraints $-x_1 + 3x_2 \le 10$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

where
$$x_1, x_2 \ge 0$$
.

5

(d) Solve the following LPP by Simplex method:

Max
$$Z = 3x_1 + 2x_2 + 5x_3$$

subject to constraints
$$x_1 + 2x_2 + x_3 \le 430$$

 $3x_1 + 2x_3 \le 460$
 $x_1 + x_2 \le 420$
where $x_1, x_2, x_3 \ge 0$.

5

EITHER

2. Solve the following Transportation problem by North West Corner Rule:

North West Corner Rule:

Destinations

(b) Explain the first feasible solution in Assignment problem and find the optimal solution by using Hungarian Method:

Machines

OR

(c) What is Transportation Problem? Explain. Also find the minimum cost solution for the following Transportation problem by VAM.

Destinations

		D_1	D_2	D_3	D_4	Supply
	S_1	6	1	9	3	70
Sources	S_2	11	5	2	8	55
	S_3	10	12	4	7	90
Der	nand	80	35	50	45	

(d) Solve the following Assignment problem to find the maximum total expected sale.

Area

EITHER

3. (a) Draw the network for the following project:

Activities: 1–2 2-66-71 - 33-4 3-5 5-6 5–7 4–6 8 7 4 5 Duration: 4 6 6 19 10

Determine: (i) Critical Path

- (ii) Maximum project length.
- (b) Explain the Branch and Bound algorithm. 5

OR

- (c) What do you mean by forward and backward recursion, in dynamic programming?
- (d) The time estimates (in weeks) for the activities of PERT Network are given below :—

Activities: 1-2 1-3 1-4 2-5 3-5 4-6 5-6
$$t_{o}$$
: 1 1 2 1 2 2 3 t_{m} : 1 4 2 1 5 5 6 t_{p} : 7 7 8 1 14 8 15

- (i) Construct the network.
- (ii) Determine the expected project length.

5

5

5

5

EITHER

4.	(a)	Explain the zero-one Programming Model for Assignment Problem.			
	(b)	Explain the different types of Assignment Problems.			
	OR				
	(c) Solve the following Assignment Problem:				
		Jobs			
		$oldsymbol{\mathrm{J}}_1 oldsymbol{\mathrm{J}}_2 oldsymbol{\mathrm{J}}_3 oldsymbol{\mathrm{J}}_4$			
		$W_1 = 10 = 15 = 24 = 30$			
		Workers W ₂ 16 20 28 10	_		
		W_3 12 18 30 16	5		
	(d) Explain the branch and bound technique for Assignment problem.				
5.	Atte	empt ALL :—			
	(a)	Explain the following terms :—			
		(i) Artificial variable			
		(ii) Surplus variable.	21/2		
	(b) Distinguish between Primal and dual problem in linear programming problem.				
	(c)	Explain Fulkerson's Rule for numbering the events in Network construction.	21/2		
	(d)	How to solve the non-square assignment problem ? Explain.	21/2		