标度、坐标轴和图例

简介(1/2)

- **标度**(scale) 控制着数据到图形属性的映射。标度将数据转化为视觉上可以感知的东西: 大小、颜色、位置、形状。
- 标度也提供了读图时所使用的工具:坐标 轴和图例,它们称为引导元素(用于允许 读者从图形属性空间到数据空间进行反向 映射)。
- 每一种标度都是从数据空间的某个区域 (标度的定义域)到图形属性的某个区域 (标度的值域)的一个函数。

简介 (2/2)

- 执行标度的过程分三步: 变换 (transform)、训练(training)、映射 (mapping)。
- 图形中的每一个图形属性都需要一个标度。
- 通常ggplot2将自动添加一个默认的标度。
- 标度分四类: 位置标度、颜色标度、手动离散型标度、同一型标度。

标度的工作原理(1/2)

- 标度的定义域,即数据空间的值域。输入 变量可能是离散型或连续型,则标度的定 义域是集合或实值区间。
- 标度的值域可以是离散型或连续型。对于离散性标度,其值域是与输入值对应的图形属性值组成的一个向量。对于连续型标度,它的值域是穿过某种个复杂空间的一条一维路径,例如从一种颜色到另一种颜色进行线性插值。

标度的工作原理(2/2)

- 将定义域映射到值域的过程包括以下阶段:
 - 变换:针对连续型的定义域,对数据进行变换 再展示往往是有益的,比如取对数或开根号。
 - 训练:通过学习(learning)得到标度的定义域。定义域必须确保覆盖多个图层上的数据集的变量的范围。
 - -映射: 执行映射函数,将数据映射到图形属性。

用法

按图形属性和变量类型排列的各种标度

图形属性	离散型	连续型
颜色 (colour) 和填充色 (fill)	brewer	gradient
	grey	gradient2
	hue	gradientn
	identity	
	manual	
位置 (position)(x, y)	discrete	continuous
		date
形状 (shape)	shape	
	identity	
	manual	
线条类型 (line type)	linetype	
	identity	
	manual	
大小 (size)	identity	size
	manual	

例

- p <- qplot(sleep_total, sleep_cycle, data = msleep, colour = vore)
- p #左上图
- p + scale_colour_hue() #右上 图,显式添加默认标度,跟左 上图一样
- p + scale_colour_hue("What does\nit eat?", breaks = c("herbi", "carni", "omni", NA), labels = c("plants", "meat", "both", "don't know")) #左下图: 修改了默认标度的参数: 改变了图例的外观。

p + scale_colour_brewer(palette= "Set1") #右下图:使用了不同的标度:改变了点的颜色

标度详解

标度详解

- 标度可分为四组:
 - -位置标度
 - 将变量映射到绘图区域,并构造对应的坐标轴。
 - 颜色标度
 - 将变量映射到颜色。
 - 手动离散型标度
 - 奖离散型变量映射到我们选择的符号大小、线条类型、形状、颜色,以及创建对应的图例。
 - 同一型标度
 - 用于直接将变量值绘制为图形,而不去映射它们。 这种情况时,变量值本身为图形属性的值。

通用参数 (1/2)

- name: 坐标轴或图例上出现的标签。可以 指定字符串(使用\n换行)或数学表达式。 可以使用三个辅助函数xlab(), ylab(), labs()简化编程。
- 例子见下图。

p <- qplot(cty, hwy, data = mpg, colour = displ)

p #左上

p + scale_x_continuous("City mpg") #中上

p + xlab("City mpg") #右上

p + ylab("Highway mpg") 左下

p + labs(x = "City mpg", y = "Highway", colour = "Displacement") #中下

p + xlab(expression(frac(miles, gallon))) #右下

通用参数 (2/2)

- limits: 固定标度的定义域。
- breaks和labels: breaks控制着显示在坐标轴或图例上的值。labels指定了应在断点处显示的标签。若设置了labels,则必须同时指定breaks。
- formatter:如果未指定任何标签,则将在每个断点处自动调用格式刷(formatter)来格式化生成标签。
- 部分例子见下页。

p + scale_colour_gradient(breaks = c(5.5, 6.5)) #中下: breaks控制坐标轴或图例上的值 p + scale_colour_gradient(limits = c(5.5, 6.5)) #右下: limit控制显示在图形上的元素

位置标度

- 每幅图一定有两个位置标度: x标度(水平位置) 和y标度(竖直位置)。
- ggplot2提供了连续型、离散型、日期型标度。
- 修改坐标轴范围是常见任务。可以用xlim()和ylim() 来实现。
 - xlim(10, 20): 从10到20的连续型标度
 - ylim(20, 10): 从20到10的反转后连续型标度
 - xlim("a", "b", "c"): 离散型标度
 - xlim(as.Date(c("2008-05-01", "2008-08-01"))): 从2008年5月1日到8月1日的日期型标度

位置标度:连续型

- 最常用的连续型位置标度是 scale_x_continuous和scale_y_continuous,它们将数据映射到x轴和y轴。
- 每个连续型标度均可接受一个trans参数, 用来指定若干种线性或非线性变换。每一 种变换都是由"变换器"(transformer)来实 现的。

内建的常用变换器

Name	Function $f(x)$	Inverse $f^{-1}(y)$
asn	$\tanh^{-1}(x)$	$\tanh(y)$
exp	e^x	$\log(y)$
identity	x	y
\log	$\log(x)$	e^y
log10	$\log_{10}(x)$	10^{y}
$\log 2$	$\log_2(x)$	2^y
logit	$\log(\frac{x}{1-x})$	$\frac{1}{1+e(y)}$
pow10	10^x	$\log_{10}(y)$
probit	$\Phi(x)$	$\Phi^{-1}(y)$
recip	x^{-1}	y^{-1}
reverse	-x	-y
sqrt	$x^{1/2}$	y^2

例

- qplot(log10(carat), log10(price), data = diamonds)
- qplot(carat, price, data = diamonds) + scale_x_log10() + scale_y_log10() #两图的图形主体是完全相同的,但坐标轴上的标签是不同的。

日期和时间(1/3)

- 日期和时间基本属于连续型。
- 目前标注坐标轴仅支持date类的日期值和 POSIXct类的时间值。其他格式需用 as.Date()或as.POSIXct()对其进行转换。
- 日期坐标轴,有两个个参数用于控制其外 观和刻度的位置。
 - date_breaks(): 指定断点位置,并允许以这些单位的倍数出现。如果未指定,日期标度可以自动选出合适的默认值。
 - date_format(): 指定了刻度标签的格式。

日期和时间(2/3)

library(scales)

```
plot <- qplot(date, psavert, data = economics, geom = "line") #使用默认设置
plot #左图
plot + scale_x_date(breaks=date_breaks("5 years"), labels =
date format("%Y")) #中图:设置断点为5年,并把日期格式设置为只显示年
plot + scale_x_date(
  limits = as.Date(c("2004-01-01", "2005-01-01")),
  labels = date_format("%Y-%m-%d") #右图: 设置显示区间和日期格式
                                                 15-
1970
                                  1990
                                    1995 2000 2005 2010
```

日期和时间(3/3)

表:日期格式(在"数据处理"一章中已涉及)

```
Code Meaning
%S
     second (00-59)
     minute (00-59)
%M
%1
     hour, in 12-hour clock (1-12)
%I
     hour, in 12-hour clock (01-12)
%H
     hour, in 24-hour clock (00-23)
     day of the week, abbreviated (Mon-Sun)
%a
%A
     day of the week, full (Monday-Sunday)
%e
     day of the month (1-31)
     day of the month (01-31)
%d
%m
     month, numeric (01-12)
     month, abbreviated (Jan-Dec)
%b
%B
     month, full (January-December)
     year, without century (00-99)
%y
     year, with century (0000-9999)
%Y
```

离散型

- 离散型位置标度将输入中的各水平映射为整数。
- 结果的顺序可以用参数breaks进行控制, 不想要的水平可以用limits(或使用xlim()或 ylim())进行丢弃。

颜色标度

颜色标度(1/3)

- 除了位置标度以外,最常用的就是颜色标度。
- 在物理层面,颜色是由不同波长的光混合的。但由于人类眼球只有三种颜色感受器,可以仅用三个数字来表示任意颜色。
- rgb编码的色彩空间的问题是在视觉感知上并不均匀,两种间隔一个单位的颜色可能 看上去非常相似,但又可能非常不同。

颜色标度 (2/3)

- hcl色彩空间(现代方案)有三部分构成:
 - 色相(hue): 0和360之间的值,"颜色"属性: 如蓝、红、橙等。
 - 明度(luminance):颜色的明暗程度。0为黑,1为白。
 - 彩度 (chroma): 色彩的纯度。彩度为0是灰色。彩度的最大值随明度的变化而不同。

颜色标度 (2/3)

- 约10%的人不具有健全的颜色感受器。因此要避免使用红、绿对比。
- 可以使用模拟色盲的系统来检查图形:
 - Visicheck: 在线
 - 使用dichromat包
 - 色盲模拟
 - 色盲配色方案
 - 黑白打印机配色方案

连续型 (1/2)

- 根据颜色梯度中的色彩数量划分,共有三类连续型颜色梯度(即渐变色):
 - scale_colour_gradient()和scale_fill_gradient()
 - 双色梯度。参数low和high控制此梯度两端的颜色。
 - scale_colour_gradient2()和 scale_fill_gradient2()
 - 三色梯度。除了low和high,可以使用参数midpoint 设置为任意值(默认是0)。这个参数对生成发散型 配色方案特别有用。
 - scale_colour_gradientn()和 scale_fill_gradientn()
 - 自定义的n色梯度。

连续型 (2/2)

- 颜色梯度常常被用来展示一个二维表面的高度。
- 例:使用faithful数据集(黄石公园的老忠实 泉的两次喷发间隔时间以及每次喷发的持 续时长)

- f2d <- with(faithful, MASS::kde2d(eruptions, waiting, h = c(1, 10), n = 50))
- df <- with(f2d, cbind(expand.grid(x, y), as.vector(z)))
- names(df) <- c("eruptions", "waiting", "density")
- erupt <- ggplot(df, aes(waiting, eruptions, fill = density)) + geom_tile() + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))
- erupt + scale_fill_gradient(limits = c(0, 0.04))
- erupt + scale_fill_gradient(limits = c(0, 0.04), low = "white", high = "black")
- erupt + scale_fill_gradient2(limits = c(-0.04, 0.04), midpoint = mean(df\$density))

离散型

- 离散型默认的配色方案,即 scale_colour_hue(),通过沿着hcl色轮选取 均匀分布的色相来生成颜色。这种方案对 至多约8种颜色时都能有较好效果。默认配 色进行黑白打印时,由于所有颜色拥有相 同的明度和彩度,会成为几乎相同的灰影。
- 另一种可选的方案是使用ColorBrewer配色。
 - 例子见下页。

```
point <- qplot(brainwt, bodywt, data = msleep, log = "xy", colour = vore) area <- qplot(log10(brainwt), data = msleep, fill = vore, binwidth = 1) point + scale_colour_brewer(palette = "Set1") #左上图 point + scale_colour_brewer(palette = "Set2") #中上图 point + scale_colour_brewer(palette = "Pastel1") #右上图 area + scale_fill_brewer(palette = "Set1") #左下图 area + scale_fill_brewer(palette = "Set2") #中下图 area + scale_fill_brewer(palette = "Pastel1") #右下图
```


图例和坐标轴

图例和坐标轴

- 图例和坐标轴被共同成为引导元素,它们都是标度的逆函数:它们允许你在图中读出观测并将其映射为原始值。
- 图例和坐标轴很相似: 图例标题(legend title)和坐标轴名(axis lebel)是等价的,皆由标度的名称参数(name)决定; 图例标示和刻度标签皆由断点参数(break)决定。

坐标轴和图例的组成部分

绘制图例 (1/2)

要绘制图例,图形必须收集每一种图形属性的使用信息:为何种数据以及为何种几何对象。标度的断点(breaks)被用来确定图例标示的值。对应图形属性的几何对象确定如何绘制标示。

图:由不同几何对象生成的图例

绘制图例 (2/2)

• ggplot2会生成最小数量的能够表达图中使用图形属性的图例。当一个变量对应多个图形属性时,可以通过合并图例的方法来精简。例:如果颜色(左图)和形状(中图)都被映射到相同的变量,那么用一个图例(右图)就够了。

cut		cut		cut	
•	Fair	•	Fair	•	Fair
•	Good	A	Good		Good
•	Very Good		Very Good	•	Very Good
•	Premium	+	Premium	+	Premium
•	Ideal		Ideal		Ideal