Step-1

Consider a transformation T that is a reflection across the $^{45^{\circ}}$ line in the plane. Objective is to determine corresponding matrix with respect to the basis $v_1 = (1, 0)$, $v_2 = (0, 1)$ and $V_1 = (1, 1)$, $V_2 = (1, -1)$.

For the sake of understanding of transformation T consider the following figure. At the reflection of 45° , T maps the standard basis vectors as:

$$Tv_1 = T(1, 0)$$

$$=(0,1)$$

$$Tv_2 = T(0,1)$$

$$=(1,0)$$

Step-2

Also (see figure) the vectors $V_1 = (1, 1), V_2 = (1, -1)$ will get map as:

$$TV_1 = T(1,1)$$

$$=(1,1)$$

$$TV_2 = T(1, -1)$$

$$=(-1,1)$$

Then their linear combinations will be:

$$Tv_1 = 0v_1 + 1v_2$$

$$Tv_2 = 1v_1 + 0v_2$$

$$TV_1 = 1V_1 + 0V_2$$

$$TV_2 = 0V_1 - 1V_2$$

Let A denote the matrix corresponding to T with respect to standard basis and B denote the matrix corresponding to T with respect to $V_1 = (1, 1)$, $V_2 = (1, -1)$. Then the matrix will be:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Step-3

Next find the change of basis from vector $V_1 = (1, 1)$, $V_2 = (1, -1)$ to standard vectors $v_1 = (1, 0)$, $v_2 = (0, 1)$. Let the corresponding matrix is P. Then

$$V_1 = (1, 1)$$

= (1, 0) + (0, 1)

$$= v_1 + v_2$$

$$V_2 = (1, -1)$$

= (1, 0)-(0, 1)

$$= v_1 - v_2$$

An thus,
$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Step-4

Two matrices A and B is said to be similar if there exists an invertible matrix P such that $P^{-1}AP = B$.

Inverse of matrix P is given as:

$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}.$$

Consider the left side and solve as:

$$P^{-1}AP = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$= -\frac{1}{2} \begin{bmatrix} -2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= B$$

Step-5

Hence, both the matrices A and B are similar.