

高柳海斗(リュカ)

畳み込みニューラルネットワーク (convolutional neural network: CNN)

画像認識や音声認識など、形を持ったデータに対して有効な手法。

今までのAffinレイヤに加え、Convolution レイヤ(畳み込み層)と Pooling レイヤ(プーリング層)を組み合わせてネットワークを構成す る。

全結合NNと畳み込みNN

全結合ニューラルネットワーク これまで実装してきたモデル

畳み込みニューラルネットワーク(CNN)ConvolutionレイヤとPoolingレイヤを持つモデル

全層結合層の問題点

- 入力データの形が無視されてしまう
 - MNISTデータは3次元の形状(チャンネル数=1, 縦=28, 横=28)を持つデータだが、学習時には1列に並べた784個の要素を持つデータにして学習した

CNNでは

- データは形状を維持して層の間を流れる
 - 形状を有したデータを正しく理解できる(可能性がある)

特徴マップ(feature map)

畳み込み層の入出力データのこと 入力データを入力特徴マップ、出力データを出力特徴マップという 教科書では「入出力データ」と「特徴マップ」を同じ意味の言葉とし て用いている

畳み込み演算

行列 A, B の畳み込み演算 $A \circledast B$ を以下で定義する

$$(A\circledast B)_{i,j} \ = \sum_{a,b} A_{i+a,j+b} B_{a,b}$$

(数学の畳み込みとちょっと違う...)

B をカーネル(あるいはフィルター)と呼ぶ

計算の具体例

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

	2	0	1		4.5	40
*	0	1	2		15	16
	1	0	2		6	15
	フ	'ィルタ		I		

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

	2	0	1
*	0	1	2
	1	0	2

 15	

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

	2	0	1
*	0	1	2
	1	0	2

 15	16

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

15	16
6	

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

15	16
 6	15

畳み込み層のバイアス

畳み込み層も Affin レイヤと同様にバイアス項をパラメータにもつ

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

by リュカ 12 / 18

パディング

入力データの周囲を固定のデータ(0など)で埋めることをパディングという。これにより出力サイズを調整できる。

1	2	3	0	
0	1	2	3	
3	0	1	2	
2	3	0	1	

入力データ(幅1のパディング)

 7
 12
 10
 2

 4
 15
 16
 10

 10
 6
 15
 6

 8
 10
 4
 3

出力データ

ストライド

フィルターを適用する位置の間隔をストライドという。

1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1
2	3	0	1	2	3	4
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1

	2	0	1
k	0	1	2
	1	0	2

	15	
-		

*

ストライド:2

2		<u></u>					
	1	2	3	0	1	2	3
	0	1	2	3	0	1	2
	3	0	1	2	3	0	1
	2	3	0	1	2	3	4
	1	2	3	0	1	2	3
	0	1	2	3	0	1	2
	3	0	1	2	3	0	1

2	0	1		15	17	
0	1	2	=			
1	0	2				

by リュカ 15 / 18

入力サイズと出力サイズの関係

入力サイズを (H, W), フィルターサイズを (FH, FW), パディングを P, ストライドを S とする。

このとき、出力サイズ (OH,OW) は以下の式で計算できる

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = rac{W + 2P - FW}{S} + 1$$

左辺が整数になるように各サイズを設定する必要がある

畳み込みと相互相関のちがい

一般的に畳み込みとは以下の演算のことをいう

$$f\circledast g(x)=\int f(t)g(x-t)dt$$

一方、次の形で定義された演算は相互相関と呼ばれる

$$f\odot g(x)=\int f(t)g(x+t)dt$$

今回畳み込み層で使ったのは相互相関(を適切に読み替えたもの)

ほぼ同じに思えるが、畳み込みのほうがよい性質を持つ

$$f \circledast g(x) = \int_{-\infty}^{\infty} f(x)g(x-t)dt$$
 $x - t = s$ と置換して
 $= \int_{-\infty}^{-\infty} f(x-s)g(s)(-ds)$
 $= \int_{-\infty}^{\infty} f(x-s)g(s)ds$
 $= g \circledast f(x)$

より $f \circledast g(x) = g \circledast f(x)$ を得るが、 相互相関については $f \odot g(x) = g \odot f(-x)$ となる