LOIS DE PROBABILITÉ DISCRÈTES

m: moyenne σ^2 : variance **F. C.:** fonction caractéristique $p_k = P[X = k]$ $p_{1,...,m} = P[X_1 = k_1,...,X_m = k_m]$

LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k=rac{1}{n} \ k \in \{1,,n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1] q = 1 - p$	p	pq	$pe^{it}+q$
Binomiale $\mathcal{B}\left(n,p ight)$	$egin{aligned} p_k &= rac{n!}{k!(n-k)!} p^k q^{n-k} \ p &\in [0,1] q = 1-p \ k &\in \{0,1,,n\} \end{aligned}$	np	npq	$\left(pe^{it}+q\right)^n$
Binomiale négative	$p_k = rac{(n+k-1)!}{(n-1)!k!} p^n q^k$ $p \in [0,1] q = 1-p$ $k \in \mathbb{N}$	$nrac{q}{p}$	$nrac{q}{p^2}$	$\left(rac{p}{1-qe^{it}} ight)^n$
Multinomiale	$egin{aligned} p_{1,,m} &= rac{n!}{k_1!k_m!} p_1^{k_1} \ \ p_m^{k_m} \ \ p_j &\in [0,1] q_j = 1 - p_j \ \ k_j &\in \{0,1,\ldots,n\} \ \ \sum_{j=1}^m k_j &= n \sum_{j=1}^m p_j = 1 \end{aligned}$	np_j	Variance: np_jq_j Covariance: $-np_jp_k$	$\left(\sum_{j=1}^m p_j e^{it} ight)^n$
Poisson $\mathcal{P}\left(\lambda ight)$	$egin{aligned} p_k &= e^{-\lambda} rac{\lambda^k}{k!} \ \lambda &> 0 k \in \mathbb{N} \end{aligned}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1 ight) ight]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1]$ $q = 1-p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$rac{q}{p^2}$	$\frac{pe^{it}}{1-qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES \mathbf{m} : moyenne σ^2 : variance \mathbf{F} . C. : fonction caractéristique

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it (b - a)}$
Gamma $\Gamma\left(heta, u ight)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu-1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1 - i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\operatorname{IG}(\theta, \nu)$	$f\left(x\right) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ avec $\Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1} \text{ si } \nu > 1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)}$ si $\nu>2$	(*)
Première loi de Laplace	$f\left(x\right) = \frac{1}{2}e^{- x }$	0	2	$\frac{1}{1+t^2}$
Normale $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Khi $_2$ $\chi^2_{ u}$ $\Gamma\left(\frac{1}{2},\frac{ u}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$ \nu \in \mathbb{N}^*, \ x \ge 0 $ $ f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)} $ $ \lambda > 0, \ \alpha \in \mathbb{R} $	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{\left(a+b\right)^{2}\left(a+b+1\right)}$	(*)