Supplementary Homework for Math 43

In our *proof* of the Cauchy-Goursat Theorem we needed to show that the intersection $\bigcap \Delta_n$ was a single point. Here's an outline of a proof.

If F is a closed and bounded subset of \mathbb{C} , then we define the diameter of F by

$$\operatorname{dia} F := \max\{ |z - w| : z, w \in F \}.$$

Recall that if $z_0 = x_0 + iy_0$ and a > 0, then

$$N_a(z_0) = \{ z \in \mathbf{C} : |z - z_0| < a \}$$

is the ball centered at z_0 . We also define

$$B_a(z_0) := \{ x + iy \in \mathbb{C} : |x - x_0| \le a \text{ and } |y - y_0| \le a \}$$

to be the closed box centered at z_0 .

Supplementary problem 1: Let $F_1 \supset F_2 \supset F_3 \supset ...$ be a nested sequence of nonempty closed and bounded subsets of \mathbb{C} with dia $F_n \leq d_n := 2^{-n}L$ for some constant L. Then there is a unique point common to all the F_n . (That is, the intersection $\bigcap F_n$ consists of a single point.)

I suggest you proceed as follows.

- 1. Let $z_n \in F_n$, and set $B_n := B_{2d_n}(z_n)$. Show that $F_n \subset B_n$ and that $B_{n+1} \subset B_n$.
- 2. Use problem 10 on page 122 of our text (see problem 11 too), to show that there is a unique point z = x + iy common to all the boxes B_n .
- 3. If $N_{\epsilon}(z)$ is a neighborhood of z and if $2^{-n}L < \epsilon$, then $F_n \subset B_n \subset N_{\epsilon}(z)$.
- 4. Conclude that z is an accumulation point of each F_n , and, since each F_n is closed, that $z \in F_n$.