

Exemples de mouvements caractéristiques des principales forces

Julien Cubizolles

Lycée Louis le Grand

Mercredi 12 janvier 2022

Exemples de mouvements caractéristiques des principales forces

Julien Cubizolles

Lycée Louis le Grand

Mercredi 12 janvier 2022

 caractéristiques des mouvements générés par des forces usuelles

- caractéristiques des mouvements générés par des forces usuelles
- techniques de calcul et résultats généraux à savoir adapter pour des forces similaires en identifiant les paramètres essentiels.

- caractéristiques des mouvements générés par des forces usuelles
- techniques de calcul et résultats généraux à savoir adapter pour des forces similaires en identifiant les paramètres essentiels.

- caractéristiques des mouvements générés par des forces usuelles
- techniques de calcul et résultats généraux à savoir adapter pour des forces similaires en identifiant les paramètres essentiels.

on se placera dans \mathcal{R}_T considéré galiléen.

- 1. Mouvements dans le champ de pesanteur
- Mouvement d'un pendule simple
- 3. Frottement solide (HP)

- 1. Mouvements dans le champ de pesanteur
- 1.1 Poids
- 1.2 Chute libre dans le vide
- 1.3 Influence de forces de frottement fluide
- Mouvement d'un pendule simple
- 3. Frottement solide (HP)

Poids
Chute libre dans le vide
Influence de forces de frottement fluid

Observations

► Un fil doit être tendu pour maintenir immobile un PM dans ℛ_T.

Observations

- ► Un fil doit être tendu pour maintenir immobile un PM dans \mathcal{R}_T .
- Le fil exerce la tension \overrightarrow{T} , le PM doit donc être soumis à une autre force, \overrightarrow{P} , que \overrightarrow{T} compense : $\overrightarrow{P} + \overrightarrow{T} = \overrightarrow{0}$.

Observations

- ► Un fil doit être tendu pour maintenir immobile un PM dans \mathcal{R}_T .
- Le fil exerce la tension \overrightarrow{T} , le PM doit donc être soumis à une autre force, \overrightarrow{P} , que \overrightarrow{T} compense : $\overrightarrow{P} + \overrightarrow{T} = \overrightarrow{0}$.
- On constate que \overrightarrow{P} est proportionnelle à m.

Définition (Poids dans \mathcal{R}_T)

On définit le poids, noté \overrightarrow{P} d'un point matériel comme l'opposé de la force qu'un opérateur doit lui appliquer pour le maintenir immobile dans le référentiel terrestre \mathcal{R}_{T} .

On définit le champ de pesanteur, d'accélération notée \vec{g} tel que, pour tout point matériel :

$$\overrightarrow{P} = m\overrightarrow{g}$$
.

La direction locale de \vec{g} définit la verticale descendante, un plan est dit horizontal s'il est orthogonal à \vec{g} .

L'accélération \overrightarrow{g} est localement uniforme avec $g = 9.8 \,\mathrm{m} \cdot \mathrm{s}^{-2}$.

Définition (Poids dans \mathcal{R}_T)

On définit le poids, noté \overrightarrow{P} d'un point matériel comme l'opposé de la force qu'un opérateur doit lui appliquer pour le maintenir immobile dans le référentiel terrestre \mathscr{R}_{T} .

On définit le champ de pesanteur, d'accélération notée \vec{g} tel que, pour tout point matériel :

$$\overrightarrow{P} = m\overrightarrow{g}$$
.

La direction locale de \vec{g} définit la verticale descendante, un plan est dit horizontal s'il est orthogonal à \vec{g} .

L'accélération \overrightarrow{g} est localement uniforme avec $g = 9.8 \,\mathrm{m} \cdot \mathrm{s}^{-2}$.

 \overrightarrow{P} principalement dû à l'attraction gravitationnelle, mais possède une composante non galiléenne

Définition (Poids dans \mathcal{R}_T)

On définit le poids, noté \overrightarrow{P} d'un point matériel comme l'opposé de la force qu'un opérateur doit lui appliquer pour le maintenir immobile dans le référentiel terrestre \mathcal{R}_{T} .

On définit le champ de pesanteur, d'accélération notée \vec{g} tel que, pour tout point matériel :

$$\overrightarrow{P} = m\overrightarrow{g}$$
.

La direction locale de \vec{g} définit la verticale descendante, un plan est dit horizontal s'il est orthogonal à \vec{g} .

L'accélération \overrightarrow{g} est localement uniforme avec $g = 9.8 \,\mathrm{m} \cdot \mathrm{s}^{-2}$.

- \overrightarrow{P} principalement dû à l'attraction gravitationnelle, mais possède une composante non galiléenne
- $|\overrightarrow{g}(M_2) \overrightarrow{g}(M_1)| \ll g \text{ pour } M_1 M_2 \ll R_T \simeq 6400 \text{ km}$

Définition (Poids dans \mathcal{R}_T)

On définit le poids, noté \overrightarrow{P} d'un point matériel comme l'opposé de la force qu'un opérateur doit lui appliquer pour le maintenir immobile dans le référentiel terrestre \mathcal{R}_{T} .

On définit le champ de pesanteur, d'accélération notée \vec{g} tel que, pour tout point matériel :

$$\overrightarrow{P} = m\overrightarrow{g}$$
.

La direction locale de \vec{g} définit la verticale descendante, un plan est dit horizontal s'il est orthogonal à \vec{g} .

L'accélération \vec{g} est localement uniforme avec $g = 9.8 \,\mathrm{m \cdot s^{-2}}$.

- \overrightarrow{P} principalement dû à l'attraction gravitationnelle, mais possède une composante non galiléenne
- $|\overrightarrow{g}(M_2) \overrightarrow{g}(M_1)| \ll g \text{ pour } M_1 M_2 \ll R_T \simeq 6400 \text{ km}$
- On parle de « champ de pesanteur » car $\overrightarrow{P}/m = \overrightarrow{g}$ défini en tout point, indépendamment de la masse du PM qui subit \overrightarrow{P} .

- 1. Mouvements dans le champ de pesanteur
- 1.1 Poids
- 1.2 Chute libre dans le vide
- 1.3 Influence de forces de frottement fluide
- Mouvement d'un pendule simple
- 3. Frottement solide (HP)

Chute libre dans le vide

Chute libre dans le vide

Le mouvement d'un point matériel dans le vide dans le champ de pesanteur d'accélération \vec{g} est plan et la trajectoire est une parabole dirigée par la verticale descendante.

Il est indépendant de la masse du point matériel.

Chute libre dans le vide

Chute libre dans le vide

Le mouvement d'un point matériel dans le vide dans le champ de pesanteur d'accélération \vec{g} est plan et la trajectoire est une parabole dirigée par la verticale descendante.

Il est indépendant de la masse du point matériel.

$$z - \underbrace{\frac{v_0^2 \sin^2 \alpha}{2g}}_{\equiv z_S} = \frac{-g}{2v_0^2 \cos^2 \alpha} \left(x - \underbrace{\frac{v_0^2 \sin \alpha \cos \alpha}{g}}_{\equiv x_S} \right)^2$$

Flèche et portée

- la flèche est l'altitude maximale atteinte selon z: $z_{\text{max}} = v_0^2 \sin(\alpha)^2/(2g)$, évidemment maximale pour $\alpha = \pi/2$
- la portée est la distance maximale réalisable selon x: $l \equiv x(z=0) = 2x_s = \frac{v_0^2 \sin(2\alpha)}{g}$:

Flèche et portée

- la flèche est l'altitude maximale atteinte selon z: $z_{\text{max}} = v_0^2 \sin(\alpha)^2/(2g)$, évidemment maximale pour $\alpha = \pi/2$
- la portée est la distance maximale réalisable selon x: $l \equiv x(z=0) = 2x_s = \frac{v_0^2 \sin(2\alpha)}{g}$:
- la portée est maximale en l_{max} pour $\alpha = \frac{\pi}{4}$

Flèche et portée

- la flèche est l'altitude maximale atteinte selon z: $z_{\text{max}} = v_0^2 \sin(\alpha)^2/(2g)$, évidemment maximale pour $\alpha = \pi/2$
- ► la portée est la distance maximale réalisable selon x : $l \equiv x(z=0) = 2x_s = \frac{v_0^2 \sin(2\alpha)}{g}$:
- la portée est maximale en l_{max} pour $\alpha = \frac{\pi}{4}$
- pour l < l_{max}, il existe deux valeurs de α qui réalisent l.

Influence de l'angle initial

- http://www.sciences.univ-nantes.fr/sites/ genevieve_tulloue/Meca/R.F.D/chute1.php
- http://ressources.univ-lemans.fr/AccesLibre/UM/ Pedago/physique/02/meca/parasecu.html

- 1. Mouvements dans le champ de pesanteur
- 1.1 Poids
- 1.2 Chute libre dans le vide
- 1.3 Influence de forces de frottement fluide
- Mouvement d'un pendule simple
- 3. Frottement solide (HP)

Définition (Force de frottement fluide)

Une force de frottement est dite fluide si son intensité varie avec le module $|\vec{v}|$ de la vitesse, noté v. On peut alors l'écrire sous la forme :

$$\overrightarrow{f} = -K(v)\frac{\overrightarrow{v}}{v},$$

avec K(v) une fonction positive de v, la plupart du temps croissante quand v est croissant, nulle pour v = 0.

nulle pour v = 0, *ie* PM au repos par rapport au milieu, il reste cependant la poussée d'Archimède

Définition (Force de frottement fluide)

Une force de frottement est dite fluide si son intensité varie avec le module $|\vec{v}|$ de la vitesse, noté v. On peut alors l'écrire sous la forme :

$$\overrightarrow{f} = -K(v)\frac{\overrightarrow{v}}{v},$$

- nulle pour v = 0, ie PM au repos par rapport au milieu, il reste cependant la poussée d'Archimède
- ► f a pour origine les interactions avec les molécules du fluide, caractérisée par la viscosité du fluide.

Définition (Force de frottement fluide)

Une force de frottement est dite fluide si son intensité varie avec le module $|\vec{v}|$ de la vitesse, noté v. On peut alors l'écrire sous la forme :

$$\overrightarrow{f} = -K(v)\frac{\overrightarrow{v}}{v},$$

- nulle pour v = 0, *ie* PM au repos par rapport au milieu, il reste cependant la poussée d'Archimède
- ► f a pour origine les interactions avec les molécules du fluide, caractérisée par la viscosité du fluide.
- à v fixée f croît avec :

Définition (Force de frottement fluide)

Une force de frottement est dite fluide si son intensité varie avec le module $|\vec{v}|$ de la vitesse, noté v. On peut alors l'écrire sous la forme :

$$\overrightarrow{f} = -K(v)\frac{\overrightarrow{v}}{v},$$

- nulle pour v = 0, *ie* PM au repos par rapport au milieu, il reste cependant la poussée d'Archimède
- ► f a pour origine les interactions avec les molécules du fluide, caractérisée par la viscosité du fluide.
- à v fixée f croît avec :
 - viscosité

Définition (Force de frottement fluide)

Une force de frottement est dite fluide si son intensité varie avec le module $|\vec{v}|$ de la vitesse, noté v. On peut alors l'écrire sous la forme :

$$\overrightarrow{f} = -K(v)\frac{\overrightarrow{v}}{v},$$

- nulle pour v = 0, *ie* PM au repos par rapport au milieu, il reste cependant la poussée d'Archimède
- ► f a pour origine les interactions avec les molécules du fluide, caractérisée par la viscosité du fluide.
- à v fixée f croît avec :
 - viscosité
 - section du cylindre engendré par le déplacement du PM

Poids
Chute libre dans le vide
Influence de forces de frottement fluide

 équation différentielle non linéaire : résolution analytique pas forcément possible

- équation différentielle non linéaire : résolution analytique pas forcément possible
- on peut cependant déterminer certaines caractéristiques du mouvement sans résoudre l'équadiff

- équation différentielle non linéaire : résolution analytique pas forcément possible
- on peut cependant déterminer certaines caractéristiques du mouvement sans résoudre l'équadiff

- équation différentielle non linéaire : résolution analytique pas forcément possible
- on peut cependant déterminer certaines caractéristiques du mouvement sans résoudre l'équadiff

Vitesse limite

Un point matériel placé dans un champ de forces \overrightarrow{P} uniforme et soumis à une force de frottement fluide acquiert asymptotiquement une vitesse dite limite de même direction et sens que \overrightarrow{P} .

on détermine également le temps caractéristique d'évolution du système.

Faible vitesse, petite taille, grande viscosité : petite bille dans un fluide très visqueux.

$$\overrightarrow{f} = -\alpha \overrightarrow{v}$$

Faible vitesse, petite taille, grande viscosité : petite bille dans un fluide très visqueux.

$$\vec{f} = -\alpha \vec{v}$$

Grande vitesse, grande taille, faible viscosité : objet macroscopique dans l'atmosphère.

$$\vec{f} = -\beta v^2 \frac{\vec{v}}{v}$$

Faible vitesse, petite taille, grande viscosité : petite bille dans un fluide très visqueux.

Grande vitesse, grande taille, faible viscosité : objet macroscopique dans l'atmosphère.

▶ ballon de basket dans l'air $(m = 6.0 \cdot 10^2 \,\mathrm{g}; v_0 = 9.0 \,\mathrm{m} \cdot \mathrm{s}^{-1}),$

- ▶ ballon de basket dans l'air $(m = 6.0 \cdot 10^2 \,\mathrm{g}; v_0 = 9.0 \,\mathrm{m}\cdot\mathrm{s}^{-1}),$
- soumis à son poids et à la force de frottement fluide de l'air; cas $\overrightarrow{f} = -\beta v^2 \frac{\overrightarrow{v}}{v}$

- ▶ ballon de basket dans l'air $(m = 6.0 \cdot 10^2 \, \text{g}; v_0 = 9.0 \, \text{m} \cdot \text{s}^{-1}),$
- soumis à son poids et à la force de frottement fluide de l'air; cas $\overrightarrow{f} = -\beta v^2 \frac{\overrightarrow{v}}{v}$
- Archimède négligeable

- ▶ ballon de basket dans l'air $(m = 6.0 \cdot 10^2 \, \text{g}; v_0 = 9.0 \, \text{m} \cdot \text{s}^{-1}),$
- soumis à son poids et à la force de frottement fluide de l'air; cas $\overrightarrow{f} = -\beta v^2 \frac{\overrightarrow{v}}{v}$
- Archimède négligeable

- ▶ ballon de basket dans l'air $(m = 6,0 \cdot 10^2 \,\mathrm{g}; v_0 = 9,0 \,\mathrm{m} \cdot \mathrm{s}^{-1}),$
- soumis à son poids et à la force de frottement fluide de l'air; cas $\overrightarrow{f} = -\beta v^2 \frac{\overrightarrow{v}}{v}$
- Archimède négligeable

- intégration numérique avec python; le cas avec f ∝ v se résout analytiquement mais n'est pas pertinent pour cette situation
- ► la flèche et la portée sont inférieures pour un même v₀ au cas sans frottement (pointillés)

Variation avec *m*

ballon de basket :

- $v_{\infty} \simeq 21 \,\mathrm{m} \cdot \mathrm{s}^{-1}$
- $\tau \simeq 2.2s$

Variation avec m

ballon de basket :

- $v_{\infty} \simeq 21 \,\mathrm{m} \cdot \mathrm{s}^{-1}$
- $\tau \simeq 2.2 s$

ballon de basket rempli d'eau : m multipliée par 10

$$v_{\infty} = \sqrt{mg/\alpha}$$
 → multipliée par $\sqrt{10}$

$$\tau = \sqrt{m/(g\alpha)} \text{ multipliée par } \sqrt{10}$$

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 3. Frottement solide (HP)

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 2.1 Équations du mouvement
- 2.2 Oscillations de faible amplitude
- 2.3 Amplitude quelconque
- 3. Frottement solide (HP)

Pendule simple

- objet de petite taille : PM M
- ightharpoonup poids \overrightarrow{P}
- ▶ force de liaison \overrightarrow{T} : fil ou tige rigide $\rat{2}$ s'assurer que le fil reste tendu (pour un fil, $\theta \le \pi/2$ est une condition suffisante)
- rottement de l'air négligé

Pendule simple

- objet de petite taille : PM M
- ightharpoonup poids \overrightarrow{P}
- ▶ force de liaison \overrightarrow{T} : fil ou tige rigide $\rat{2}$ s'assurer que le fil reste tendu (pour un fil, $\theta \le \pi/2$ est une condition suffisante)
- frottement de l'air négligé

on se limite au cas d'un mouvement plan vertical :

- $\overrightarrow{v}(M)(t=0) = \overrightarrow{0}$
- ou $\overrightarrow{v}(M)(t=0) \in (\overrightarrow{OM}(t=0), \overrightarrow{g})$
- ▶ circulaire → coordonnées polaires (un seul degré de liberté)

Équation différentielle d'un pendule simple

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \omega_0^2 \sin \theta = 0 \quad \text{avec} : \omega_0^2 = \frac{g}{l}.$$

Équation différentielle d'un pendule simple

L'angle θ par rapport à la verticale d'un pendule simple vérifie l'équation différentielle :

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \omega_0^2 \sin \theta = 0 \quad \text{avec} : \omega_0^2 = \frac{g}{l}.$$

 $\blacktriangleright \omega_0$ est une pulsation

Équation différentielle d'un pendule simple

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \omega_0^2 \sin \theta = 0 \quad \text{avec} : \omega_0^2 = \frac{g}{l}.$$

- \blacktriangleright ω_0 est une pulsation
- équadiff non linéaire : pas de résolution analytique générale

Équation différentielle d'un pendule simple

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \omega_0^2 \sin \theta = 0 \quad \text{avec} : \omega_0^2 = \frac{g}{l}.$$

- \blacktriangleright ω_0 est une pulsation
- équadiff non linéaire : pas de résolution analytique générale
- lacktriangle grâce aux polaires : seule l'équation sur $\overrightarrow{e_{ heta}}$ est nécessaire

Équation différentielle d'un pendule simple

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + \omega_0^2 \sin \theta = 0 \quad \text{avec} : \omega_0^2 = \frac{g}{l}.$$

- \blacktriangleright ω_0 est une pulsation
- équadiff non linéaire : pas de résolution analytique générale
- grâce aux polaires : seule l'équation sur $\overrightarrow{e_{\theta}}$ est nécessaire
- l'équation sur $\overrightarrow{e_r}$ donne le module de \overrightarrow{T} , pour vérifier qu'elle ne s'annule pas, ie que le fil reste tendu : en particulier le fil ne peut se détendre que pour $\theta > \pi/2$

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 2.1 Équations du mouvement
- 2.2 Oscillations de faible amplitude
- 2.3 Amplitude quelconque
- Frottement solide (HP)

si $\theta \ll 1$, $\sin \theta \simeq \theta$:

Oscillations de faible amplitude d'un pendule simple

 $\sin \theta \ll 1$, $\sin \theta \simeq \theta$:

Oscillations de faible amplitude d'un pendule simple

$$T_0 \simeq 2$$
s pour $l = 1$ m

si $\theta \ll 1$, $\sin \theta \simeq \theta$:

Oscillations de faible amplitude d'un pendule simple

- $T_0 \simeq 2$ s pour l = 1 m
- oscillation entre $-\theta_0$ et θ_0 si $\dot{\theta}_0 = 0$: $\theta \ll 1$ si $\theta_0 \ll 1$

si $\theta \ll 1$, $\sin \theta \simeq \theta$:

Oscillations de faible amplitude d'un pendule simple

- $T_0 \simeq 2$ s pour l = 1 m
- oscillation entre $-\theta_0$ et θ_0 si $\dot{\theta}_0 = 0$: $\theta \ll 1$ si $\theta_0 \ll 1$
- utilisation comme horloge

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 2.1 Équations du mouvement
- 2.2 Oscillations de faible amplitude
- 2.3 Amplitude quelconque
- 3. Frottement solide (HP)

lancé de $\theta = 0$ avec différentes $\dot{\theta}_0$

- lancé de $\theta = 0$ avec différentes $\dot{\theta}_0$
- oscillations périodiques si $\dot{\theta}_0$ est assez faible, mouvement révolutif non périodique sinon

- lancé de $\theta = 0$ avec différentes $\dot{\theta}_0$
- oscillations périodiques si $\dot{\theta}_0$ est assez faible, mouvement révolutif non périodique sinon
- la courbe marquée « frottement » correspond à un mouvement en présence de frottement (en v²), la durée totale d'intégration a été multipliée par 8

- oscillations périodiques si $\dot{\theta}_0$ est assez faible, mouvement révolutif non périodique sinon
- la courbe marquée « frottement » correspond à un mouvement en présence de frottement (en v²), la durée totale d'intégration a été multipliée par 8
- même durée d'intégration T_0 : période des mouvements oscillants augmente avec $\dot{\theta}_0$

- oscillations périodiques si $\dot{\theta}_0$ est assez faible, mouvement révolutif non périodique sinon
- la courbe marquée « frottement » correspond à un mouvement en présence de frottement (en v²), la durée totale d'intégration a été multipliée par 8
- même durée d'intégration T_0 : période des mouvements oscillants augmente avec $\dot{\theta}_0$

on peut tracer analytiquement ce portrait de phase (avec l'énergie) pour le cas sans frottement, mais il faut une intégration numérique pour prendre en compte des frottements

- 1. Mouvements dans le champ de pesanteur
- Mouvement d'un pendule simple
- 3. Frottement solide (HP)

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 3. Frottement solide (HP)
- 3.1 Lois d'Amontons et Coulomb
- 3.2 Exemple d'utilisation

Lois d'Amontons et de Coulomb

Les lois phénoménologiques d'Amontons¹ et de Coulomb² décrivent les forces de contact entre deux solides. Soit M un point matériel en contact avec un support solide et notons \overrightarrow{v}_g la vitesse de glissement de M par rapport au solide.

Il existe un coefficient de frottement μ , sans dimension tel que :

Frottement statique II ne peut y avoir équilibre relatif $(\vec{v}_g = \vec{0})$ que si la norme $R_{||}$ de la force de frottement nécessaire pour l'assurer vérifie :

$$\frac{R_{||}}{R_{||}} \leq \mu.$$

Frottement cinétique S'il y a glissement, l'intensité de la force de frottement est $R_{||} = \mu R_{\perp}$.

sous licence http://creativecommons.org/licenses/bv-nc-nd/2.0/fr/

¹G. Amontons, physicien français (1663–1705).

²C. de Coulomb, physicien français (1736–1806).

 μ indépendant des aires en contact, de la vitesse de glissement. Typiquement : $\mu = 0,2$ pour acier/acier, $\mu = 0,6$ pour caoutchouc/bitume.

- μ indépendant des aires en contact, de la vitesse de glissement. Typiquement : $\mu = 0,2$ pour acier/acier, $\mu = 0,6$ pour caoutchouc/bitume.
- ▶ R_{\perp} a pour origine l'impénétrabilité de la matière, $R_{||}$ la rugosité des irrégularités des surfaces en contact.

- μ indépendant des aires en contact, de la vitesse de glissement. Typiquement : $\mu = 0,2$ pour acier/acier, $\mu = 0,6$ pour caoutchouc/bitume.
- ▶ R_{\perp} a pour origine l'impénétrabilité de la matière, R_{\parallel} la rugosité des irrégularités des surfaces en contact.
- ▶ Il existe en fait 2 coefficients μ_s (statique) et μ_c (cinétique), avec $\mu_s \ge \mu_c$.

- μ indépendant des aires en contact, de la vitesse de glissement. Typiquement : $\mu = 0,2$ pour acier/acier, $\mu = 0,6$ pour caoutchouc/bitume.
- ▶ R_{\perp} a pour origine l'impénétrabilité de la matière, R_{\parallel} la rugosité des irrégularités des surfaces en contact.
- ▶ Il existe en fait 2 coefficients μ_s (statique) et μ_c (cinétique), avec $\mu_s \ge \mu_c$.
- http://ressources.univ-lemans.fr/AccesLibre/UM/ Pedago/physique/02/meca/frotte2.html

- 1. Mouvements dans le champ de pesanteur
- 2. Mouvement d'un pendule simple
- 3. Frottement solide (HP)
- 3.1 Lois d'Amontons et Coulomb
- 3.2 Exemple d'utilisation

Intégration des équations du mouvement I

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def eqdiff(w, t):
    x, z, vx, vz, t = w
    \# dx | z/dt = vx | vz
    \# dvx/dt = -alpha*vx*sgrt(vx^2+vz^2)/masse
    \# dvz/dt = -alpha*vz*sqrt(vx^2+vz^2)/masse-q
    return [vx, vz, -alpha*vx*np.sgrt (vx**2+vz**2) /masse,
             -alpha*vz*np.sqrt(vx**2+vz**2)/masse-q,1]
masse = 0.6 \# kg
ravon = 0.12 #m
rho = 1.19e0 \#kg/m^3
eta = 1.86e-5 #Po
nu = eta/rho#m^2/s (viscosite cinematique)
C = 0.47
a = 9.81
alpha = 0.5*rho*C*(np.pi*rayon**2)
# vitesse initiale: module
\nabla 0 = 9
```

Intégration des équations du mouvement II

```
# vitesse initiale: angle en degres
gamma = 45*np.pi/180.
# Conditions initiales (x, z en m)
x0, z0 = 0., 1.8
#Conditions initiales (vx|vz en m/s)
vx0 = v0 * np.cos(gamma)
vz0 = v0 * np.sin(gamma)
# Date de fin et nombre de pas d'integration
datefin, numpoints = 2, 250
t = np.linspace(0, datefin, numpoints)
# Conditions initiales
w0 = [x0, z0, vx0, vz0, 0]
# Resolution numerique de l'equation differentielle
wsol = odeint(egdiff, w0, t)
x = wsol[:, 0]; z = wsol[:, 1]; vx = wsol[:, 2]; vz = wsol[:, 3]
# Trajectoire
plt.plot(x, z, 'b-')
plt.legend()
plt.ylabel('z')
plt.xlabel('x')
plt.show()
```

Trajectoire dans l'espace des phases I

```
import numpy as np
import matplotlib.pyplot as plt
def f(Z, t):
    theta,v = Z
    return [v, -np.sin(theta)]
thetamin, thetamax = -1.5*np.pi, 3.5*np.pi
NpointsTheta = 20
thetaNoeuds = np.linspace(thetamin, thetamax, NpointsTheta)
vmin, vmax = -1.5*np.pi, 1.5*np.pi
NpointsV = 20
vNoeuds = np.linspace(vmin, vmax, NpointsV)
thetaGrille, vGrille = np.meshgrid(thetaNoeuds, vNoeuds)
t = 0
#initialisation
xFleche, yFleche = np.zeros(thetaGrille.shape), np.zeros(vGrille.shape)
Ntheta, Nv = thetaGrille.shape
for i in range (Ntheta):
    for j in range (Nv):
```

Trajectoire dans l'espace des phases II

```
theta = thetaGrille[i, j]
        v = vGrille[i, j]
        Deriv = f([theta, v], t)
        xFleche[i, j] = Deriv[0]
        vFleche[i,i] = Deriv[1]
Q = plt.quiver(thetaGrille, vGrille, xFleche, yFleche, color='r')
plt.xlabel('$\theta$')
plt.ylabel('$\dot{\theta}/\omega_0$')
plt.xlim([thetamin, thetamax])
plt.ylim([vmin, vmax])
# Trace des trajectoires
from scipy.integrate import odeint
t.min = 0
tmax = 2*np.pi
t.Points = 200
hmin = 0
for v0 in [-3,-2.01, .5, 1, 1.5, 2.01, 3]:
    tIntervalle = np.linspace(tmin, tmax, tPoints)
    Origine = [hmin, v0]
```

Trajectoire dans l'espace des phases III

```
Solution = odeint(f, Origine, tIntervalle)
plt.plot(Solution[:,0], Solution[:,1], 'b-') # courbe
plt.plot([Solution[0,0]], [Solution[0,1]], 'o') # debut
plt.plot([Solution[-1,0]], [Solution[-1,1]], 's') # fin
plt.xlim([thetamin, thetamax])
plt.show()
```

Indispensable

Tout

