

# INFERENTIAL STATISTICS

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer







........





## TOPIC OUTLINE

**Inferential Statistics** 

**Normal Distribution** 

Histogram

**Normality Test** 



## INFERENTIAL STATISTICS



### INFERENTIAL STATISTICS

Inferential statistics is a branch of statistics that analyzes and interprets data to make conclusions beyond the observed dataset. It focuses on drawing meaningful inferences about a population based on a sample using techniques such as <a href="https://www.hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hypothesis.com/hy

#### **Normal Distribution:**





## NORMAL DISTRIBUTION

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian distribution</u> or bell curve because of its shape.



Johann Carl Friedrich Gauss



## NORMAL DISTRIBUTION

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

#### Formula:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

#### **Bell Curve:**



## **HISTOGRAM**

Histograms are used to visualize the shape, spread, and central tendency of data, making them a useful tool for assessing whether a dataset follows a normal distribution or deviates from it.

#### Histogram:



## **NORMALITY TEST**

| Test               | Recommendation                    |
|--------------------|-----------------------------------|
| Shapiro-Wilk       | Small sample sizes (< 50)         |
| Anderson-Darling   | Moderate sample sizes (50 – 5000) |
| Kolmogorov-Smirnov | Large sample sizes (> 5000)       |

<u>Interpreting the p-value in a Normality Test</u>

High p-value (p > 0.05):

The data may be normally distributed.

Low p-value ( $p \le 0.05$ ):

The data is likely **not** normally distributed.



## **EXERCISE**

The dataset consists of 30 samples of current measurements (in mA). Generate a **normal distribution plot** and assess the normality of the data using the **Shapiro-Wilk** test in a Jupyter Notebook.

Dataset:

L14-current-data.csv

#### Current Response

| Sample | Current |
|--------|---------|
| 1      | 12.0    |
| 2      | 15.0    |
| 3      | 8.3     |
| 4      | 9.7     |
| 5      | 12.0    |
| 6      | 13.9    |
| 7      | 14.1    |
| 8      | 9.2     |
| 9      | 12.4    |
| 10     | 13.7    |
| 11     | 10.6    |
| 12     | 21.5    |
| 13     | 12.0    |



## **LABORATORY**

