T.C. İSTANBUL MEDENİYET ÜNİVERSİTESİ

MÜHENDİSLİK VE DOĞABİLİMLERİ ENSTİTÜSÜ

PİCARD METODU

VE

UYGULANMASI

ESEF BERFU ŞENTÜRK 161201009

KAMİL ÇALIŞKAN 161201018

MUSTAFA KIYILIK 161201059

ALPER TUNCA 161201046

YUNUS CEMİL EŞME 161201036

DİFERANSİYEL DEBKLEMLER DERSİ GÜZ DÖNEMİ PROJESİ İSTANBUL, 2017

PROJENÍN AMACI:

Picard metodu çözülemeyen diferansiyel denklemlerin iterasyon(Picard) metodu yardımıyla yaklaşım yapılarak yaklaşık bir çözüm değerinin oluşturulmasıdır.

Projenin amacı Picard metodunu diferansiyel denklemler dersine uygun olarak incelenmesi ve uygulanmasının gösterimidir.

PROJENIN İÇERİĞİ:

- *Picard metodunun genel uygulanışı.
- *Yöntemi açıklayıcı örnekler.
- *Diferansiyel denklemleri Picard metodu ile çözen program ve bu programın incelenmesi

İÇİNDEKİLER

PİCARD METODU3		
1.	y'(x) = y(x), y(0) = 1 Dif. Denkleminin Picard metodu ile çözümü4	
	1.1. Ardışık Dört yaklaşımının bulunması	
	1.2. Yaklaşımların e ^x 'in Maclaurin serisinin kısmi toplamları ile karşılaştırılması7	
2.	$y'(x) = 3x - [y(x)]^2$, $y(0) = 0$ Dif. Denkleminin Picard M. İle çözümü8	
	2.1. Ardışık ü. Yaklaşımının elde edilmesi8	
	2.2. Elde edilen yaklaşımnların Grafikleri10	
_	$\frac{2}{100}$	
3.	$y'(x) = 3[y(x)]^{\frac{3}{3}}$, $y(2) = 0$ Dif. Denkleminin Picard metodu ile çözümü12	
	3.1. $\phi_0(x) = x - 2$ başlangıç tahmini ile ardışık dört yaklaşımın bulunması12	
	3.2. $c_n \cdot (x-2)^{r_n}$ formunun elde edilmesi	
	3.3. c_n ve r_n dizilerinin genel teriminin elde edilmesi	
	3.4. $n \to \infty$ için c_n ve r_n dizilerinin limitinin bulunması	
	3.5. $n \to \infty$ için y'nin (x-2)' ye yakınsadığının gösterilmesi20	
M	atlab ile yazılan 'Picard Metodu' programın tanııtmı21	
Κa	ynakça	

PİCARD METODU

(1)
$$y'(x) = f(x, y), \quad y(x_0) = y_0$$

Şeklinde başlandıç değer problemi bir integral denklem olarak yeniden yazılabilir. Bu (1)'in her iki yanının $x = x_0$ 'dan $x = x_1$ 'e kadar integre edilmesiyle

(2)
$$\int_{x_0}^{x_1} y'(x) \, dx = y(x_1) - y(x_0) = \int_{x_0}^{x_1} f(x, y) \, dx$$

şeklinde elde edilir.

 $y(x_0) = y_0$ yazılır ve $y(x_1)$ çözülürse

(3)
$$y(x_1) = y_0 + \int_{x_0}^{x_1} f(x, y(x)) dx$$

Bulunur.

İntegrasyon değişkeni olarak x=t alırsak ve integrasyonun üst sınırıda $x_1 = x$ olarak alırsak (3) denklemi,

(4)
$$y(x) = y_0 + \int_{x_0}^{x} f(t, y(t)) dt$$

şekline gelir.

(4) denklemi, (1)'in çözümünün ardışık yaklaşımlarını oluşturabilmek için kullanılabilir. $\phi_0(x)$ fonksiyonu (1) in çözümünün başlangıç tahmini veya yaklaşımı olsun. Bu durumda y(t) yi $\phi_0(t)$ yaklaşımı ile değiştirerek, yeni bir yaklaşım

$$\phi_1(x) = y_0 + \int_{x_0}^x f(t, \phi_0(t)) dt$$

şeklinde olur.Benzer bir mantıkla, yeni bir $\phi_2(x)$ yaklaşımını oluşturmak için $\phi_1(x)$ 'i kullanıp böyle devam edebiliriz. Genel olarak da

(5)
$$\phi_{n+1}(x) = y(x_0) + \int_{x_0}^x f(t, \phi_n(t)) dt$$

bağıntısından (n+1)' inci yaklaşımı elde ederiz.

Bu işlem Picard metodu olarak bilinir. f ve $\phi_n(x)$ üzerindeki belirli koşullar altında $\{\phi_n(x)\}$ dizisinin (1)' in çözümüne yakınsadığı bilinir.

1. $\phi_0(x) \equiv 1$ alinip Picard metodu kullanılarak

(6)
$$y'(x) = y(x), y(0) = 1$$

1.1. Cözümün sonraki dört ardışık yaklaşımını elde ediniz.

(n+1)' inci yaklaşımı elde etmek için Picard metodunun bir sonucu olan denklem (5)'teki bağıntıyı kullanacağız.

Öncelikle elimizdeki (6) denklemine adım adım Picard Metodunu uygulayalım. Denklem (6)' nın her iki yanının $x = x_0$ 'dan $x = x_1$ 'e kadar integre edersek

(7)
$$\int_{x_0}^{x_1} y'(x) \, dx = y(x_1) - y(x_0) = \int_{x_0}^{x_1} y(x) \, dx$$

şeklinde olur. (7) denklemini $x_0 = 0$, $y(x_0) = y(0) = 1$ yazılırsa ve $y(x_1)$ için çözülürse

(8)
$$y(x_1) = 1 + \int_0^{x_1} y(x) dx$$

elde edilir. (8) denkleminde $x_1 = x ve x = t$ olarak alınırsa denklem

(9)
$$y(x) = 1 + \int_0^x y(t) dt$$

olur. (9) denkleminde $\phi_0(x)$ fonksiyonu (6)'nın çözümünün başlangıç tahmini olsun. Bu durumda y(t)' yi $\phi_0(t)$ yaklaşımı ile değiştirerek yeni yaklaşım

(10)
$$\phi_1(x) = 1 + \int_0^x \phi_0(t) dt$$

şeklinde olur. Genel olarak (6) denklemimize (n+1)' inci yaklaşımımız

(11)
$$\phi_{n+1}(x) = 1 + \int_0^x \phi_n(t) dt$$

şeklinde olur ve son olarak bize verilen başlangıç tahminimizi x=t için çözersek

(12)
$$x = t \rightarrow \phi_0(t) = 1$$

4

elde ederiz.

Şimdi ardışık dört yaklaşımımızı sırasıyla elde edelim.

1.1.1. $\phi_1(x)$ yaklaşımının elde edilmesi

n = 0 için genel ifademiz olan (11) denklemini çözelim

$$\phi_1(x) = 1 + \int_0^x \phi_0(t) \, dt$$

Bu denklemde $\phi_0(t)=1$ olduğunu denklem (12)' de gösterdik. Bu eşitliği yerine yazarsak

$$\phi_1(x) = 1 + \int_0^x 1. \, dt$$

şeklinde olur ve denklemdeki belirli integrali çözersek

(13)
$$\phi_1(x) = 1 + x$$

olarak $\phi_1(x)'i$ elde ederiz. Benzer şekilde $\phi_2(x), \phi_3(x), \phi_4(x)$ yaklaşımlarınıda elde edeceğiz.

1.1.2. $\phi_2(x)$ yaklaşımının elde edilmesi

n = 1' i denklem (11)' de yerine yazıp, denklemi çözelim.

$$\phi_2(x) = 1 + \int_0^x \phi_1(t) \, dt$$

denklem (13)'ü x = t için çözüp eşitliğimizde ki belirli integralde yerine yazarsak

$$\phi_2(x) = 1 + \int_0^x (1+t). dt$$

eşitliğini elde ederiz. Bu denklemde belirli integrali çözerek $\phi_2(x)$ 'i

(14)
$$\phi_2(x) = 1 + x + \frac{x^2}{2}$$

şeklinde elde ederiz.

1.1.3. $\phi_3(x)$ yaklaşımının elde edilmesi

n = 2' i denklem (11)' de yerine yazıp, denklemi çözelim.

$$\phi_3(x) = 1 + \int_0^x \phi_2(t) \, dt$$

denklem (14)'ü x = t için çözüp eşitliğimizde ki belirli integralde yerine yazarsak

$$\phi_3(x) = 1 + \int_0^x (1 + t + \frac{t^2}{2}) dt$$

eşitliğini elde ederiz. Bu denklemde belirli integrali çözerek $\phi_3(x)$ 'i

(15)
$$\phi_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

şeklinde elde ederiz.

1.1.4. $\phi_4(x)$ yaklaşımının elde edilmesi

n = 3' i denklem (11)' de yerine yazıp, denklemi çözelim.

$$\phi_4(x) = 1 + \int_0^x \phi_3(t) \, dt$$

denklem (15)'i x = t için çözüp eşitliğimizde ki belirli integralde yerine yazarsak

$$\phi_4(x) = 1 + \int_0^x (1 + t + \frac{t^2}{2} + \frac{t^3}{6}) dt$$

eşitliğini elde ederiz. Bu denklemde belirli integrali çözerek $\phi_3(x)$ 'i

(15)
$$\phi_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

şeklinde elde ederiz.

Sonuç olarak ardışık ilk dört yaklaşımımızı,

$$\phi_1(x) = 1 + x$$

$$\phi_2(x) = 1 + x + \frac{x^2}{2}$$

$$\phi_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

$$\phi_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$

şekilde elde etmiş oluruz.

Şimdi ilk dört yaklaşımımızı dikkatlice incelersek bize (n)'inci yaklaşımı veren

(16)
$$n \ge 0 \to \phi_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$$

şeklinde yeni bir eşitlik bulmuş oluruz. Şimdi bu eşitliği Maclaurin serisi ile karşılaştıralım.

1.2. Bu yaklaşımların gerçek olan e^x 'in Maclaurin serisinin kısmi toplamları olduğunu gösteriniz.

Bilindiği üzere e^x fonksiyonu $x_0 = 0$ noktası civarında Maclaurin serisinin kısmi toplamları ile

$$(16) e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

şeklinde modellenir.

Picard metodu ile (1) denklemine yaptığımız $\phi_n(x)$ yaklaşımın formunun $n \to \infty$ için

$$\phi_{\infty}(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

şeklinde olduğunu ve bu durumda $n \to \infty$ için (15) ve (16) denklemlerinin eşit olduğunu görebiliriz.

Sonuç olarak $\phi_n(x)$ yaklaşımın formunun $n \to \infty$ için Maclaurin serisinin kısmi toplamlarına eşit olduğunu görürüz.

2. $\phi_0(x) \equiv 0$ alip Picard metodunu kullanarak

(17)
$$y'(x) = 3x - [y(x)]^2$$
, $y(0) = 0$

lineer olmayan problemin çözümünün sonraki üç ardışık yaklaşımını elde ediniz. $0 \le x \le 1$ için bu yaklaşımların grafiğini çiziniz.

Denklem (17)'deki eşitliği denklem (4)'te yerine yazarsak

(18)
$$y(x) = y(0) + \int_0^x (3t - [y(t)]^2) dt$$

denklem (18)'i elde ederiz.

Şimdi (18) denkleminde $\phi_0(x)$ fonksiyonu (17)'nın çözümünün başlangıç tahmini olsun. Bu durumda y(t)' yi $\phi_0(t)$ yaklaşımı ile değiştirerek yeni yaklaşımız şeklinde olur.

(19)
$$\phi_1(x) = y(0) + \int_0^x (3t - [\phi_0(t)]^2) dt$$

Buradan genel ifademiz

(20)
$$\phi_{n+1}(x) = y(0) + \int_0^x (3t - [\phi_n(t)]^2) dt$$

şeklinde olur. Bu şekilde Picard metodunu sorumuza uygulamış olduk.

2.1 (17) denkleminin ardışık üç yaklaşımının bulunması

2.1.1. $\phi_1(x)$ yaklaşımının elde edilmesi

Denklem (20)'yi n = 0 için çözelim

(20)
$$\phi_1(x) = y(0) + \int_0^x (3t - [\phi_0(t)]^2) dt$$

(20) denkleminde y(0) = 0, $\phi_0(t) = 0$ yazarız ve belirli integrali çözerek $\phi_1(x)$ yaklaşımını buluruz.

$$\phi_1(x) = 0 + \int_0^x (3t - [0]^2) dt$$

(21)
$$\phi_1(x) = \frac{3x^2}{2}$$

2.1.2. $\phi_2(x)$ yaklaşımının elde edilmesi

Denklem (20)'yi n = 1 için çözelim

(21)
$$\phi_2(x) = y(0) + \int_0^x (3t - [\phi_1(t)]^2) dt$$

(21) denkleminde y(0) = 0, $\phi_1(t) = \frac{3t^2}{2}$ yazarız ve belirli integrali çözerek $\phi_2(x)$ yaklaşımını buluruz.

$$\phi_2(x) = 0 + \int_0^x \left(3t - \left[\frac{3t^2}{2}\right]^2\right) dt$$

(22)
$$\phi_2(x) = \frac{3x^2}{2} - \frac{9x^5}{20}$$

2.1.3. $\phi_3(x)$ yaklaşımının elde edilmesi

Denklem (20)'yi n = 2 için çözelim

(23)
$$\phi_3(x) = y(0) + \int_0^x (3t - [\phi_2(t)]^2) dt$$

(21) denkleminde y(0) = 0, $\phi_2(t) = \frac{3t^2}{2} - \frac{9t^5}{20}$ yazarız ve belirli integrali çözerek $\phi_3(x)$ yaklaşımını buluruz.

$$\phi_3(x) = 0 + \int_0^x \left(3t - \left[\frac{3t^2}{2} - \frac{9t^5}{20}\right]^2\right) dt$$

(22)
$$\phi_3(x) = \frac{3x^2}{2} - \frac{9x^5}{20} + \frac{27x^8}{160} - \frac{81x^{11}}{4400}$$

2.2. $\phi_0(x)$, $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$ yaklaşımlarının grafikleri

Şekil 1. $\phi_1(x)$ yaklaşımının grafiği

Şekil 2. $\phi_2(x)$ yaklaşımının grafiği

Şekil 3. $\phi_3(x)$ yaklaşımının grafiği

3. (23)
$$y'(x) = 3[y(x)]^{\frac{2}{3}}, \quad y(2) = 0$$

Başlangıç değer probleminin tek bir çözüme sahip olduğunu göstermiştik. $\phi_0(x) \equiv 0$ ile başladığında Picard metodu $y(x) \equiv 0$ çözümüne yakınsarken $\phi_0(x) \equiv x-2$ ile başladığında Picard metodu $y(x) = (x-2)^3$ şeklinde ikinci bir çözüme yakınsar. $\phi_0(x) = x-2$ tahmini için $\phi_n(x)$ formunun, $n \to \infty$ için $c_n \to 1$ ve $r_n \to 3$ olmak üzere, $c_n(x-2)^{r_n}$ formunda olduğunu gösteriniz.

Öncelikle Picard metodumuzu uygulayalım ve genel ifademizi elde edelim.

(23)'teki eşitlikleri kullanarak denklem (4)'ü düzenlersek

(24)
$$y(x) = y(2) + \int_{2}^{x} (3[y(t)]^{\frac{2}{3}}) dt$$

denklemini elde ederiz. Şimdi (24) denkleminde $\phi_0(x)$ fonksiyonu (23)'ün çözümünün başlangıç tahmini olsun. Bu durumda y(t)' yi $\phi_0(t)$ yaklaşımı ile değiştirerek yeni yaklaşımız şeklinde olur.

(25)
$$\phi_1(x) = y(2) + \int_2^x \left(3[\phi_0(t)]^{\frac{2}{3}}\right) dt$$

Benzer şekilde $\phi_{n+1}(x)$ yaklaşımını elde etmek için $\phi_n(x)$ kullanırsak,

(26)
$$\phi_{n+1}(x) = y(2) + \int_{2}^{x} (3[\phi_{n}(t)]^{\frac{2}{3}}) dt$$

denklemini elde ederiz.

3.1. $\phi_0(x) = x - 2$ başlangıç tahminini kullanarak ardışık ilk dört yaklaşımın bulunması Ardışık ilk dört yaklaşımı bulmak için (26) denklemini kullanacağız.

3.1.1. $\phi_1(x)$ yaklaşımının bulunması

(26) denklemini n=0 için çözelim. Buradan (26) denklemi

$$\phi_1(x) = y(2) + \int_2^x (3[\phi_0(t)]^{\frac{2}{3}}) dt$$

şeklinde olur. Burada $\phi_0(t) = t - 2$ ve y(2) = 0 yazarsak

$$\phi_1(x) = 0 + \int_2^x (3[t-2]^{\frac{2}{3}}).dt$$

denklemini elde ederiz. Buradan, $\phi_1(x)$ 'i

(27)
$$\phi_1(x) = \frac{9}{5}.(x-2)^{\frac{5}{3}}$$

olarak elde ederiz.

3.1.2. $\phi_2(x)$ yaklaşımının bulunması

(26) denklemini n=1 için çözelim. Buradan (26) denklemi

$$\phi_2(x) = y(2) + \int_2^x (3[\phi_1(t)]^{\frac{2}{3}}) dt$$

şeklinde olur. Burada $\phi_1(t) = \frac{9}{5}$. $(t-2)^{\frac{5}{3}}$ ve y(2) = 0 yazarsak

$$\phi_2(x) = 0 + \int_2^x (3\left[\frac{9}{5}.(t-2)^{\frac{5}{3}}\right]^{\frac{2}{3}}).dt$$

denklemini elde ederiz. Buradan, $\phi_2(x)$ 'i

(28)
$$\phi_2(x) = \frac{27}{19} \cdot \left(\frac{9}{5}\right)^{\frac{2}{3}} (x-2)^{\frac{19}{9}}$$
olarak elde ederiz

3.1.3. $\phi_3(x)$ yaklaşımının bulunması

(26) denklemini n=2 için çözelim. Buradan (26) denklemi

$$\phi_3(x) = y(2) + \int_2^x (3[\phi_2(t)]^{\frac{2}{3}}) dt$$

şeklinde olur. Burada $\phi_2(t) = \frac{27}{19} \cdot \left(\frac{9}{5}\right)^{\frac{2}{3}} (t-2)^{\frac{19}{9}}$ ve y(2) = 0 yazarsak

$$\phi_3(x) = 0 + \int_2^x \left(3\left[\frac{27}{19}.\left(\frac{9}{5}\right)^{2/3}(t-2)^{19/9}\right]^{2/3}\right).dt$$

denklemini elde ederiz. Buradan, $\phi_3(x)$ 'ü

(29)
$$\phi_3(x) = \frac{81}{65} \cdot \left(\frac{27}{19}\right)^{2/3} \cdot \left(\frac{9}{5}\right)^{4/9} \cdot (x-2)^{65/27}$$

olarak elde ederiz

3.1.4. $\phi_4(x)$ yaklaşımının bulunması

(26) denklemini n=3 için çözelim. Buradan (26) denklemi

$$\phi_4(x) = y(2) + \int_2^x (3[\phi_3(t)]^{\frac{2}{3}}) dt$$

şeklinde olur. Burada $\phi_3(t) = \frac{81}{65} \cdot \left(\frac{27}{19}\right)^{2/3} \cdot \left(\frac{9}{5}\right)^{4/9} \cdot (t-2)^{65/27}$ ve y(2) = 0 yazarsak

$$\phi_4(x) = 0 + \int_2^x \left(3\left[\frac{81}{65}\cdot\left(\frac{27}{19}\right)^{2/3}\cdot\left(\frac{9}{5}\right)^{4/9}\cdot(t-2)^{65/27}\right]^{\frac{2}{3}}\right) \cdot dt$$

denklemini elde ederiz. Buradan, $\phi_4(x)$ 'i

(30)
$$\phi_4(x) = \frac{243}{211} \cdot \left(\frac{81}{65}\right)^{2/3} \cdot \left(\frac{27}{19}\right)^{4/9} \cdot \left(\frac{9}{5}\right)^{8/27} \cdot (x-2)^{130/81}$$

olarak elde ederiz.

3.2. $\phi_n(x)'in \ c_n(x-2)^{r_n}$ formundaki şeklinin bulunması

 c_n ve r_n dizilerini oluşturmak ve genel terimlerini bulmak için $\{\phi_n(x)\}$ dizisinin yaklaşımlarını kullanacağız.

(31)
$$\phi_0(x) = c_0 \cdot (x-2)^{r_0} = (x-2) \rightarrow c_0 = 1 \text{ ve } r_0 = 1$$

Şimdi elimizde n = 0 için c_0 , r_0 mevcut.

Öncelikle denklem (26)'yı n=0 ve y(2)=0 için şu formda tekrar çözelim.

$$\phi_1(x) = \int_2^x (3[\phi_0(t)]^{\frac{2}{3}}).dt$$

burada $\phi_0(t) = c_0 \cdot (t-2)^{r_0}$ yazalım. Buradan denklemimiz

$$\phi_1(x) = \int_2^x (3[c_0.(t-2)^{r_0}]^{\frac{2}{3}}). dt$$

şeklinde olur. Bu belirli integrali çözersek $\phi_1(x)$ 'i

(36)
$$\phi_1(x) = 3. (c_0)^{2/3} \cdot \frac{1}{[(2/3), r_0] + 1} \cdot (x - 2)^{[(2/3), r_0] + 1}$$

olarak elde ederiz. $\phi_1(x)'$ in c_1 . $(x-2)^{r_1}$ olduğunu biliyoruz. Bu durumda denklem (36)'dan c_1 ve r_1

(37)
$$c_1 = 3. (c_0)^{2/3}. \frac{1}{[(2/3).r_0] + 1} \text{ ve } r_1 = [(2/3).r_0] + 1$$

olarak bulunur. Şimdi $\phi_2(x)'$ bu yolla elde edelim. Denklem (26)'yı n=1 ve y(0)=0 için şu formda yazalım.

$$\phi_2(x) = \int_2^x (3[\phi_1(t)]^{\frac{2}{3}}).dt$$

Bu denklemde $\phi_1(t) = c_1 \cdot (t-2)^{r_1}$ yazalım. Buradan denklemimiz

$$\phi_2(x) = \int_2^x (3[c_1.(t-2)^{r_1}]^{\frac{2}{3}}).dt$$

şeklinde olur. Bu belirli integrali çözersek $\phi_2(x)$ 'i

(38)
$$\phi_2(x) = 3.(c_1)^{2/3} \cdot \frac{1}{[(2/3).r_1] + 1} \cdot (x - 2)^{[(2/3).r_1] + 1}$$

olarak elde ederiz. $\phi_2(x)'$ in c_2 . $(x-2)^{r_2}$ olduğunu biliyoruz. Bu durumda denklem (38)'den c_2 ve r_2

(37)
$$c_2 = 3.(c_1)^{2/3}.\frac{1}{[(2/3).r_1]+1} \text{ ve } r_2 = [(2/3).r_1]+1$$

olarak bulunur. $\phi_3(x)$ ve $\phi_4(x)$ yaklaşımlarınıda aynı formda çözersek

(38)
$$c_3 = 3.(c_2)^{2/3}.\frac{1}{[(2/3).r_2]+1}$$
 ve $r_3 = [(2/3).r_2]+1$

(39)
$$c_4 = 3.(c_3)^{2/3}.\frac{1}{[(2/3).r_3]+1} \text{ ve } r_4 = [(2/3).r_3]+1$$

eşitiklerini elde ederiz.

(36), (37), (38), (39) eşitliklerini kullanarak c_n ve r_n dizilerini

$$c_{n+1} = 3. (c_n)^{2/3} \cdot \frac{1}{[(2/3).r_n] + 1} \text{ ve } r_{n+1} = [(2/3).r_n] + 1$$

şeklinde buluruz. Eşitlikleri düzenleyerek tekrar yazarsak c_n ve r_n dizilerinin genel ifadesini

(40)
$$n > 0$$
; $c_0 = 1$; $c_n = (c_{n-1})^{\frac{2}{3}} \cdot \frac{9}{2r_{n-1} + 3}$

(41)
$$n > 0$$
; $r_0 = 1$; $r_n = \frac{2r_{n-1}}{3} + 1$

şeklinde elde ederiz.

Artık $\phi_n(x)'i$ $c_n(x-2)^{r_n}$ formunda yazabiliriz. Bu ifadede c_n ve r_n dizilerinin genel terimlerini yerine yazarsak $\phi_n(x)'i$

(42)
$$\phi_n(x) = (c_{n-1})^{\frac{2}{3}} \cdot \frac{9}{2r_{n-1} + 3} \cdot (x - 2)^{\left(\frac{2r_{n-1}}{3} + 1\right)}$$

şeklinde elde ederiz.

3.3. c_n ve r_n dizilerinin genel terimlerinin farklı bir formunun elde edilmesi

3.3.1. r_n dizisinin genel teriminin farklı bir formunun elde edilmesi

Bilindiği üzere r_n dizisinin genel terimin

$$n > 0$$
; $r_0 = 1$; $r_n = \frac{2r_{n-1}}{3} + 1$

şeklinde bulduk.

n = 1için r_1 ,

$$r_1 = \frac{2r_0}{3} + 1 = \frac{2}{3} + 1$$

olarak bulunur. Aynı şekilde n=2 için r_2 ,

$$r_2 = \frac{2r_1}{3} + 1 = \frac{2}{3}(\frac{2r_0}{3} + 1) + 1 = (\frac{2}{3})^2 + \frac{2}{3} + 1$$

olarak bulunur. Aynı şekilde n = 3 için r_3 ,

$$r_3 = \frac{2r_2}{3} + 1 = \frac{2}{3}\left(\left(\frac{2}{3}\right)^2 + \frac{2}{3} + 1\right) + 1 = \left(\frac{2}{3}\right)^3 + \left(\frac{2}{3}\right)^2 + \frac{2}{3} + 1$$

Şimdi elde ettiğimiz bu ifadelerden yola çıkarak $r_n'i$

$$r_n = \left(\frac{2}{3}\right)^n + \left(\frac{2}{3}\right)^{n-1} + \left(\frac{2}{3}\right)^{n-2} + \dots + \left(\frac{2}{3}\right)^1 + \left(\frac{2}{3}\right)^0$$

şeklinde genelleyebiliriz.

Buradan r_n dizisinin genel ifadesini

(43)
$$r_n = \sum_{k=1}^n \left(\frac{2}{3}\right)^{k-1}$$

şeklinde yazabiliriz.

3.3.2. c_n dizisinin genel teriminin farklı bir formunun elde edilmesi

3.3.1 kısmında r_n dizisinin farklı bir formunu bulma yöntemimize benzer bir yöntemi c_n dizisi için uygulayacağız.

 c_n dizisinin genel terimi

$$n > 0$$
; $c_0 = 1$; $c_n = (c_{n-1})^{\frac{2}{3}} \cdot \frac{9}{2r_{n-1} + 3}$

olarak bulduk. Şimdi c_n dizisinin 1.terimini bulalım. n=1 için c_1 'i,

$$c_1 = (c_0)^{\frac{2}{3}} \cdot \frac{9}{2r_0 + 3}$$

olarak buluruz. Şimdi n=2 için c_2 'yi

$$c_2 = (c_1)^{\frac{2}{3}} \cdot \frac{9}{2r_1 + 3}$$

şeklinde buluruz. Burada c_1 yerine $(c_0)^{\frac{2}{3}} \cdot \frac{9}{2r_0+3}$ yazarsak c_2 'yi

$$c_2 = (c_0)^{(2/3)^2} \cdot \left(\frac{9}{2r_0+3}\right)^{2/3} \cdot \left(\frac{9}{2r_1+3}\right)$$

şeklinde elde ederiz. Aynı şekilde $\,c_3\,$ dizisinide $\,c_0\,$ cinsinden çözersek $\,c_3{}'$ ü

$$c_3 = (c_0)^{(2/3)^3} \cdot \left(\frac{9}{2r_0 + 3}\right)^{(2/3)^2} \cdot \left(\frac{9}{2r_1 + 3}\right)^{2/3} \cdot \left(\frac{9}{2r_2 + 3}\right)^{2/3}$$

Şimdi elde ettiğimiz bu ifadelerden yola çıkarak c_n 'i

$$c_n = (c_0)^{(2/3)^n} \cdot \left(\frac{9}{2r_0+3}\right)^{(2/3)^{n-1}} \cdot \left(\frac{9}{2r_1+3}\right)^{(2/3)^{n-2}} \dots \left(\frac{9}{2r_{n-2}+3}\right)^{(2/3)^1} \cdot \left(\frac{9}{2r_{n-1}+3}\right)^{(2/3)^0}$$

şeklinde genelleriz. Buradan c_n dizisinin genel ifadesini

$$c_n = (c_0)^{(2/3)^n} \cdot \prod_{k=0}^{n-1} \left(\frac{9}{2 \cdot r_{n-1-k} + 3}\right)^{(2/3)^k}$$

ne eşit olur. Son olarak $c_0 = 1$ yazarsak c_n dizisinin genel ifadesini

(44)
$$c_n = \prod_{k=0}^{n-1} \left(\frac{9}{2 \cdot r_{n-1-k} + 3} \right)^{(2/3)^k}$$

olarak elde ederiz.

3.4. $n \rightarrow \infty c_n ve r_n$ dizilerinin limitinin hesaplanması

3.4.1. $n o \infty r_n$ dizisinin limitinin hesaplanması

 $n \to \infty$, r_n dizisinin limiti var mı yok mu ve var ise hangi değere yakınsadığını bulmaya çalışacağız.

(43) te verilen r_n dizisi için $n \to \infty$ limitini bulalım.

 r_n dizisi aynı zamanda geometrik bir dizidir. r_n dizisinin genel ifadesini biraz daha düzenlersek

$$\sum_{k=1}^{n} 1 \cdot \left(\frac{2}{3}\right)^{k-1} = 1 \cdot \left(\frac{2}{3}\right)^{0} + 1 \cdot \left(\frac{2}{3}\right)^{1} + 1 \cdot \left(\frac{2}{3}\right)^{2} + 1 \cdot \left(\frac{2}{3}\right)^{3} + \dots + 1 \cdot \left(\frac{2}{3}\right)^{n}$$

şeklinde ifade edebiliriz. 'q' oran sabiti olmak üzere bu ifadede görüldüğü gibi r_n dizisinin terimleri arasındaki oran sabit olup $q=\frac{2}{3}$ oranındadır. r_n dizisini geometrik bir dizi olduğundan

$$r_n = \sum_{k=1}^{n} 1 \cdot \left(\frac{2}{3}\right)^{k-1} = r_1 \cdot \frac{1 - q^k}{1 - q}$$

Şeklinde bir eşitlik yazarız. Şimdi $n \to \infty$ için dizinin limitini alırsak

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{2}{3}\right)^{k-1} = \lim_{k \to \infty} r_1 \cdot \frac{1 - q^k}{1 - q}$$

Burada $r_1 = 1$ ve $q = \frac{2}{3}$ yazıp limitini alırsak

$$\lim_{k \to \infty} 1 \cdot \frac{1 - \left(\frac{2}{3}\right)^k}{1 - \left(\frac{2}{3}\right)} = 3$$

olarak bulunur. Yani $n \to \infty r_n$ dizisi

$$\lim_{n\to\infty} r_n = 3$$

Değerine yakınsar.

3.4.2. $n \rightarrow \infty c_n$ dizisinin limitinin hesaplanması

 $n \to \infty$, c_n dizisinin limitini bulalım.

(44)'ün $n \to \infty$ limit ifadesini yazalım.

(45)
$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \prod_{k=0}^{n-1} \left(\frac{9}{2 \cdot r_{n-1-k} + 3} \right)^{(2/3)^k}$$

(45) ifadesinde limitin içiyle ilgilenelim.

 $k \in \mathbb{Z}^+$ olduğundan (n-1-k) ifadesi

$$\lim_{n\to\infty} r_{n-1-k} = \lim_{n\to\infty} r_n$$

İfadesine eşittir. Bu durumda (45) teki ifadeyi tekrar düzenlersek $\lim_{n\to\infty} c_n$ ifadesinin

(46)
$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \prod_{k=0}^{n-1} \left(\frac{9}{2 \cdot r_n + 3} \right)^{(2/3)^k}$$

Eşit olduğunu görürüz. 3.4.1 kısmında r_n dizisinin limitini

$$\lim_{n\to\infty}r_n=3$$

Olarak bulmuştuk. Bu durumda (46)'da $r_n = 3$ yazarsak

(47)
$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \prod_{k=0}^{n-1} \left(\frac{9}{2.3+3} \right)^{(2/3)^k} = \lim_{n \to \infty} \prod_{k=0}^{n-1} (1)^{(2/3)^k}$$

Şeklinde bir ifade elde ederiz. Şimdi (47)'de ki 3.ifadedeki limit ile ilgilenelim. Buradaki Çarpım sembolü altındaki ifadeyi açarak yazarsak

$$\lim_{n\to\infty} \prod_{k=0}^{n-1} (1)^{(2/3)^k} = \lim_{n\to\infty} [(1)^{(2/3)^0} \cdot (1)^{(2/3)^1} \cdot (1)^{(2/3)^2} \cdot \dots \cdot (1)^{(2/3)^{n-1}}]$$

Şeklinde bir ifade elde ederiz. Şimdi bu ifadeyi düzenlersek ifademiz

$$\lim_{n \to \infty} (1)^{[(2/3)^0 + (2/3)^1 + (2/3)^2 + \dots + (2/3)^{n-1}]} = \lim_{n \to \infty} (1)^{(\sum_{k=1}^{n-1} (2/3)^{k-1})}$$

Haline geldi ve bu ifade de

$$\lim_{n\to\infty} (1)^{(\sum_{k=1}^{n-1} (2/3)^{k-1})} = \lim_{n\to\infty} (1)^{r_n} = (1)^{\lim_{n\to\infty} r_n}$$
 ifadesine eşit olur. Burada $\lim_{n\to\infty} r_n = 3$ olduğundan c_n dizisinin limiti

$$\lim_{n \to \infty} c_n = (1)^{\lim_{n \to \infty} r_n} = 1^3 = 1$$

olarak bulunur

3.5. $\phi_0(x)=x-2$ ile Picard metodunun $n\to\infty$ için $y(x)=(x-2)^3$ yakınsadığının gösterilmesi

3.2 kısmında $\phi_n(x)$ 'i

$$\phi_n(x) = c_n(x-2)^{r_n}$$

Formunda yazmıştık.

Bu ifadenin $n \to \infty$ için limitini alırsak

(48)
$$\lim_{n \to \infty} \phi_n(x) = \lim_{n \to \infty} c_n(x-2)^{r_n}$$

İfadesini elde ederiz. Bu ifadedeki c_n ve r_n dizilerinin limitleri sırasıyla 3.4 kısmında

$$\lim_{n\to\infty}c_n=1$$

$$\lim_{n\to\infty} r_n = 3$$

Olarak bulmuştuk.(48) de bu eşitlikleri yerine yazarsak

$$\lim_{n \to \infty} \phi_n(x) = \lim_{n \to \infty} c_n(x - 2)^{r_n} = \lim_{n \to \infty} 1(x - 2)^3$$

(49)
$$n \to \infty$$
: $\phi_n(x) = y(x) = (x-2)^3$

Elde ederiz. Bu durumda $\phi_0(x) = x - 2$ başlangıç tahmini ile Picard metodunun $n \to \infty$ için

İfadesine yakınsadığını göstermiş olduk.

- (1) : Projede çözümleri anlatılan 3 denklem tanımlı olarak gelmektedir. Bu 3 dif. Denklemden biriniveya 'Özel Denklem' seçeneğini seçerek istediğiniz bir dif. Denklemin picard metodu ile yaklaşımını bulabilirisniz.
- (2) : Tanımlı olarak gelen 3 denklemi gösterir.
- (3) : x₀ = t başlangıç noktasını buraya girersiniz
- (4) : y(x₀) = y₀ değerini buraya girersiniz
- (5) : φ₀(x) başlangıç yaklaşımını buraya girersiniz

- (6) : y'(x) = f(x,y) eşitliğini burayagirersiniz
- (7) : İstediğiniz n. Yaklaşım için 'n' değerini buraya girersiniz
- (8) : a <= x <= b aralığını belirler. Grafik bu aralıkta çizilir.
- (9) : İstenilen yaklaşımı hesaplar ve grafiği çizdirir.
- (10): a <= x <= b aralığında x'in bazı değerleri için x = t için x₀(t) değerlerini gösterir.
- (11): n. Yaklaşım için bulunan $\phi n(x)$ fonksiyonunu gösterir.
- (12): Bu alan istenilen x=t için φn(t) değerini hesaplar ve a <= t <= b ise istenildiği takdırde grafik üzerine noktayı gösterir.

KAYNAKÇA

Gülnur Çelik K. Başlangıç değer problemlerinin numerik integrasyonunda adım genişliği tespiti, Yüksek lisans tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü Konya (2004)

R. Kent Nagle, Edward B. Saff Fundamentals of Differention Equations and Boundry Value Problems, Sixth Edition (2012)