TOSHIBA AMERICA INC.

MOS MEMORY PRODUCTS

DATA BOOK '83-4

MOS MEMORY PRODUCTS

DATA BOOK

TABLE OF CONTENTS

Memory Product Guide 1 Byte-Wide Memory Pin Out Table 12 Cross Reference 13
Dynamic Random Access Memories TMM416P 17 TMM4164P 29 TMM4164AP 37 *TMM41256C 45
Static Random Access Memories TMM314AP/APL 55 TMM2114AP 61 TMM315D 67 TMM2016P/D 71 TMM2016AP 71 TMM2015AP 83 TMM2018D 89 CMOS Static Random Access Memories
4K Bit CMOS RAM TC5514/TC5513 Comparison Table 97 16K Bit CMOS RAM TC5516/TC5517/TC5518
Comparison Table 98 CMOS RAM Data Retention Characteristics 99 TC5501P 101 TC55047AP 109 TC5504AP/AD 117 TC5513AP/AD 123 TC5514AP/AD 131 TC5516AP/AD/AF 139 TC5516AP/AD/AF 145 TC5517AP/AD/AF 157 TC5517BP/BD/BF 165 TC5518BP/BD/BF 173 *TC5564P 181 TC5565P 189
Erasable/Programmable Read Only Memories TMM2764D 199 TMM2764DI 207 TMM27128D 215
Mask Programmable Read Only Memories 225 TMM334P 229 TMM233P 229 TMM2364P 233 TMM2365P 237 TMM2366P 245 TMM2368P 249 *TMM23128P 253 TMM23256P 255 CMOS Mask Programmable Read Only Memories
32K Bit CMOS Mask ROM Comparison Table 263 TC5332P 265 TC5333P 273 TC5334P 279 TC5335P 285 *TC5364P 291 *TC5366P 295 *TC5325P 303

^{*:} PRELIMINARY

MEMORY PRODUCT GUIDE

1. Dynamic RAM

Capacity	Device Number	Organization	Process		ime Max.	Cycle	Power Supplies		issipation (mW)	Pins	Alternate
Capacity	Device realiber	Organization	1100000	tRAC	tCAC	Min. (ns)	(V)	Active	Standby		Source
	TMM416P-2			150	100	320	+5				MK4116-2
16K Bit	TMM416P-3	16,384 x 1	NMOS	200	135	375	-5	462	20	16	MK4116-3
	TMM416P-4			250	165	410	+12				MK4116-4
	TMM4164P-2			120	80	260					
	TMM4164P-3			150	100	260	+5	275	27.5	16	_
0414 811	TMM4164P-4	65,536 x 1	NMOS	200	135	330					
64K Bit	TMM4164AP-12	05,530 X I	NIVIOS	120	60	220					
	TMM4164AP-15			150	75	260	+5	275	22	16	_
	TMM4164AP-20			200	100	330					
******	TMM41256C-12	262,144 x 1	111100	120	60	220		330	07.5		
256K Bit *	TMM41256C-15	262,144 X I	NMOS -	150	75	260	+5	275	27.5	16	_

Note: TMM41256C : Page Mode Parts

2. Static RAM

Capacity	Device Number	Organization	Process	Access	Cycle	Power Supplies		Dissipation . (mW)	Pins	Alternate
Oupdoity	Dorioo itamboi	o i gamaation		Max. (ns)	Min. (ns)	(V)	Active	Standby	1	Source
	TMM314AP-1			200	200					i2114-2
	TMM314AP-3			300	300		550	_		i2114-3
	TMM314AP	1.024 × 4	NMOS	450	450	+5			18	i2114
	TMM314APL-1	1,024 x 4	INIVIOS	200	200	+5			18	i2114L-2
AV DIA	TMM314APL-3			300	300		385	_		i2114L-3
4K Bit	TMM314APL			450	450					i2114L
	TMM2114AP-12	1.024 x 4	NMOS	120	120	+5	330		18	i2114A
	TMM2114AP-15	1,024 X 4	INIVIUS	150	150	75	330		18	12114A
	TMM315D-1	4.096 x 1	NMOS	55	55	+5	990	165	18	i2147-3
	TMM315D	4,090 X 1	INIVIUS	70	70	75	880	110	18	12147-3
	TMM2016P/D-1			100	100		660	83		
	TMM2016P/D	2,048 x 8	NMOS	150	150	+5	550	83	24	(HM6116)
	TMM2016P/D-2			200	200		770	165		
	TMM2016AP-90			90	90		440			
	TMM2016AP-10	0.040 0	NMOS	100	100	+5	358	00.5	0.4	4.11.101.101
	TMM2016AP-12	2,048 × 8	NMOS	120	120	+5	358	38.5	24	(HM6116)
16K Bit	TMM2016AP-15			150	150		358			
*	TMM2015AP-90			90	90		440			
*	TMM2015AP-10	0.040 0	NIN 400	100	100		358	00.5		
*	TMM2015AP-12	2,048 × 8	NMOS	120	120	+5	358	38.5	24	_
	TMM2015AP-15			150	150		358			
	TMM2018D-45	0.040 0	NUMBER	45	45		700	405	0.4	
	TMM2018D-55	2,048 x 8	NMOS	55	55	+5	788	105	24	

TMM2016AP 0.6 inch width DIP Note; Package

TMM2015AP: 0.3 inch width DIP TMM2018D: 0.3 inch width DIP

Note; Package Material P: Plastic C: Ceramic D: Cerdip F; Plastic Flat
*Preliminary: These are target specifications and are subject to change without notice.

3. CMOS Static RAM

Capacity	Device Number	Organization	Process	Access	Cycle	Power Supplies		Dissipation . (mW)	Pins	Alternate
Capacity	Dovice realises	O I gome at ion	. 10003	Max. (ns)	Min. (ns)	(V)	Active	Standby		Source
1 K Bit	TC5501P	256 x 4	CMOS	450	450	+5	83	0.055	22	15101L-1
I K Dit	TC5501 P-1	250 X 4	CIVIOS	650	650	+5	83	0.055	22	i5101L
	TC5047AP-1	1.024 x 4	CMOS	550	650	+5	110	0.11	20	μPD445
	TC5047AP-2	1,024 x 4	CIVIOS	800	1000	+5	110	0,11	20	μг Б445
	TC5504AP/AD-2			200	300		07.0			
	TC5504AP/AD-3		01100	300	420		27.5	0.11	40	(11110501)
	TC5504APL/ADL-2	4,096 x 1	CMOS	200	300	+5	07.5	0.005	18	(HM6504)
	TC5504APL/ADL-3			300	420		27.5	0.005		
	TC5514AP/AD-2			200	200		07.5	0.44		
4K Bit	TC5514AP/AD-3		01100	300	300		27.5	0.11	40	
	TC5514APL/ADL-2	1.024 x 4	CMOS	200	200	+5	07.5	0.005	18	
	TC5514APL/ADL-3			300	300		27.5	0.005		
	TC5513AP/AD-20	1001	01100	200	200		07.5	0.11	40	(HM6514
	TC5513APL/ADL-20	1,024 x 4	CMOS	200	200	+5	27.5	0.005	18	
	TC5514P		01100	450	450		138	0.44		
	TC5514P-1	1.024 x 4	CMOS	650	650	+5	110	0.11	18	
	TC5516AP/AD/AF-2			200	200			0.165		
	TC5516AP/AD/AF	2.048 x 8	CMOS	250	250	15	385	0.165	- 24	
	TC5516APL/ADL/AFL-2	2,048 x 8	CMOS	200	200	+5	385	0.005	24	-
	TC5516APL/ADL/AFL			250	250		385	0.005		
	TC5517AP/AD/AF-2			200	200		385	0,165		(TMM20
16K Bit	TC5517AP/AD/AF	2.048 x 8	CMOS	250	250	+5	300	0.165	- 24	(HM6116
ION DIT	TC5517APL/ADL/AFL-2	2,040 X D	CIVIUS	200	200	75	385	0.005	24	
	TC5517APL/ADL/AFL			250	250		365	0,005		
	TC5517BP/BD/BF-20	2.048 x 8	CMOS	200	200	+5	55	0.165	- 24	(TMM201
	TC5517BPL/BDL/BFL-20	2,040 X O	CIVIUS	200	200	73	33	0.005	24	(HM6116
	TC5518BP/BD/BF -20	2,048 × 8	CMOS	200	200	+5	55	0.165	- 24	
	TC5518BPL/BDL/BFL-20	2,040 x 0	CIVICO	200	200	7.5	33	0.005	2.4	
*	TC5564P-10			100	100			0.11		
*	TC5564P-15	8.192 x 8	CMOS	150	150	+5	55	U.II	- 28	
*	TC5564PL-10	U,132 x 0	CIVIUS	100	100	75	55	0.005	20	
64K Bit	TC5564PL-15			150	150			0.003		
DUN BIT	TC5565P-12			120	120			5.5		
	TC5565P-15	8.192 x 8	CMOS/	150	150	+5	55	5.5	- 28	
	TC5565PL-12	U,192 X 0	NMOS	120	120	75	55	0.55	20	
	TC5565PL-15			150	150			0.55		

Note Package Material P: Plastic C: Ceramic D: Cerdip F: Plastic Flat
*Preliminary: These are target specifications and are subject to change without notice.

4. Erasable Programmable ROM

Capacity	Device Number	Organization	Process	Access	Cycle	Power Supplies		issipation (mW)	Pins	Alternate
Capacity	Device (valide)	Organization	1100033	Max. (ns)	Min. (ns)	(V)	Active	Standby	1 1113	Source
	TMM2764D-2			200	200		630	184		i2764
CALL D'	TMM2764D	8.192 x 8	NMOS	250	250				00	
64K Bit	TMM2764D1-2	8,192 x 8	MMOS	200	200	+5	200	010	28	
	TMM2764DI			250	250		683	210		
40014.01	TMM27128D-20			200	200			101		
128K Bit	TMM27128D-25	16,384 x 8	NMOS	250	250	+5	630	184	28	i27128

Note; TMM2764DI/DI-2: (Operating temperature range: -40° C $\sim 85^{\circ}$ C)

5 Mask Programmable ROM

Capacity	Device Nnumber	Organization	Process	Access	Cycle	Power Supplies		issipation (mW)	Pins	Alternate
Gupacity	Dovice (vitalinge)	O I game at lon		Max. (ns)	Min. (ns)	(V)	Active	Standby		Source
16K Bit	ТММЗЗ4Р	2,048 x 8	NMOS	450	450	+5	440	-	24	12316E
	ТММЗЗЗР	1.000 0	10100	450	450	+5	525		24	TMS4732
32K Bit	TMM2332P	4,096 x 8	NMOS	350	350	+5	550	83	24	12332
	TMM2364P			250	350		220	83	28	12364
64K Bit	TMM2365P	8,192 x 8	NMOS	200	200	+5	550	138	28	(i2364)
	TMM2366P			200	200		550	138	24	MK36000
128K Bit *	TMM23128P	16,384 x 8	NMOS	200	200	+5	440	110	28	
256K Bit	TMM23256P	32,768 x 8	NMOS	150	230	+5	220	55	28	

6. CMOS Mask Programmable ROM

Capacity	Device Number	Organization	Process	Access	Cycle	Power Supplies		Dissipation (mW)	Pins	Alternate
Capacity	Device reamber	Organization	. 100000	Max. (ns)	Min. (ns)	(V)	Active	Standby		Source
	TC5332P			450	450					TMM2332
32K Bit	TC5333P			450	540	+5	39	0.11	24	(TMM2332)
OLIV DIV	TC5334P	4,096 × 8	CMOS	450	450	+5	39	0.11	24	TMM333
	TC5335P			450	540					(TMM333)
*	TC5364P			250	350				28	TMM2364
64K Bit *	TC5365P	8,192 x 8	CMOS	250	250	+5	39	0.11	28	TMM2365
	TC5366P			250	250				24	TMM2366
256K Bit *	TC53256P	32,768 x 8	CMOS	350	450	+5	83	0.11	28	(TMM23256

Note Package Material P: Plastic C: Ceramic D: Cerdip F: Plastic Flat

^{*}Preliminary: These are tartet specifications and are subject to change without notice.

TOSHIBA DYNAMIC RAM

*: PRELIMINARY

TOSHIBA STATIC RAM (NMOS STATIC RAM, CMOS STATIC RAM)

*: PRELIMINARY

TOSHIBA EPROM

TOSHIBA MASK ROM (NMOS MASK ROM, CMOS MASK ROM)

ACCESS TIME (ns)

0

TMM315D-1

Ū
I
-
11
D

1K Bit 4K Bit 16K Bit 32K Bit 64K Bit 128K Bit 256K Bit

TMM2016AP-90 TMM2018D-55

TMM2018D-45

MEMORY SELECTION GUIDE (2)

					Memory Capaci	ty		
Memory	Туре	1K Bit	4K Bit	16K Bit	32K Bit	64K Bit	128K Bit	256K Bit
	Dynamic RAM			TMM416P		TMM4164P TMM4164AP		*TMM41256
RAM	Nch Static RAM		TMM314AP TMM2114AP TMM315D	TMM2016P TMM2016AP *TMM2015AP TMM2018D				
	CMOS Static RAM	TC5501P	TC5047AP TC5514P TC5514AP TC5513AP	TC5517AP/AF TC5516AP/AF *TC5517BP/BF *TC5518BP/BF		*TC5564P TC5565P		
	EPROM					TMM2764D TMM2764DI	-TMM27128D	
ROM	Nch MASK ROM			TMM334P	TMM333P TMM2332P	TMM2364P TMM2365P TMM2366P	*TMM23128P	TMM23256P
	CMOS MASK ROM				TC5332P TC5333P TC5334P TC5335P	*TC5364P *TC5365P *TC5366P		*TC53256P

^{*}PRELIMINARY

	Bit 1	4	8
Word			
256		TC5501P	
1,024		TMM314AP TMM2114AP TC5047AP TC5514P TC5514AP TC5513AP	
2,048			TMM2016P TMM2016AP *TMM2015AP TMM2018D TC5516AP/AF TC5517AP/A *TC55178P/BF *TC5518BP/6 TMM334P
4,096	TMM315D TC5504AP		TMM2332P TMM333P TC5332P TC5333P TC5334P TC5335P
8,192			*TC5564P TC5565P *TC5364P TMM2364P *TC5365P TMM2365P *TC5365P TMM2366P TMM2764D
16,384	TMM416P		TMM27128D *TMM23128P
32,768			TMM23256P *TC53256P
65,536	TMM4164P TMM4164AP	ph made as a	
262,144	*TMM41256C		

^{*}PRELIMINARY

256 K Bit	MROM (TMM23250)	VCC	A ₁₄	A ₁₃	A	A ₉	A11	OE	A10	CE	D7	De	Ds	D4	D ₃
8 Sit	EPROM (TMM27128)	VCC	PGM	A ₁₃	1	1	A11	OE	•	CE	1	1	•	1	A
128 K Bit	MROM (TMM23128)	20/	CE1/	A 13			A11	OE		CE ₂ /					
	CRAM (TC5564/65)	VDD	B/W	CE ₂			A ₁₁	OE		CE ₁					
Bit	MROM (TMM2365)	1	CE1/	CE ₂ /			A	OE		CE ₃					
64 K	MROM (TMM2364)		CS ₁	CS ₂			AII	OE		CE					
	EPROM (TMM2764)	VCC	PGM	S.			A11	OE		CE					
+	CMOS MROM (TC5333)			, OC.			A 11	OE		CE					
K Bit	CMOS MROM (TC5332)			1		T	A 11	OE	T	CE/	T				T
32	MROM (TMM2332)						A 11	OE		CS					
	CRAM (TC5517)						B/W	OE		CE					
Bit	CRAM (TC5516/18)						B/W	CE 1		CE ₂					
16 K	SRAM (TMM2016/15)						WE	OE		CS					
	MROM (TMM334)			Vcc	A	A ₉	CS3	CS ₁	A10	CS ₂	D7	D.6	Ds	D ₄	D3
)	2	3 (1) (24)26	4 (2) (23)	5 (3) (22)24	6 (4) (21)23	7 (5) (20)	8 (6) (19)21	9 (7) (18)	10 (8) (17)	11 (9) (16)	12 (10) (15)17	13 (11) (14)16	14 (12) (13)
								_							
	MROM (TMM334)			77	20	20	4	V	7	T	10	0	0	0	SND
Sit	MROM (TMM334) SRAM (TMM2016/15)			A-7	A ₆	As	A ₄	A ₃	A2	A	A	D ₀	Dı	D ₂	GND
6 K Bit				A-	A6	As	A ₄	A	A ₂	A	Ao	Do	D1	D ₂	GND
	SRAM (TMM2016/15)			Α,	A ₆	As	A4	A ₃	A2	A ₁	A ₀	Do	D1	D ₂	GND
16 K	SRAM (TMM2016/15) CRAM (TC5516/18)			A,	A ₆	As	A4	A ₃	A ₂	Aı	Ao	Do	Dı	D ₂	GND
K Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517)			. A ₇	A ₆	As	A4	A ₃	A2	A	Ao	Do	D1	D ₂	GND
Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332)			A ₇	A ₆	As	A4	A ₃	A2	A	A ₀	Do	I Q	D ₂	GND
K Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332)	Λрр	A12	A ₇	A ₆	As	- A ₄	A ₃	A2	A	A ₀	Do	I D	D ₂	GND
Bit 32 K Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332) CMOS MROM (TC5333)	N.C. Vpp	A12	A ₇	A ₆	As	A4	A ₃	A2	A,	A ₀	Do	O D	D ₂	GND
32 K Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332) CMOS MROM (TC5333) EPROM (TMM2764)	C. N.C.	A12	A ₇	A	As	A4	A	A ₂	A	Ao	Do	O.	. D ₂	GND
KBit 32KBit 16K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332) CMOS MROM (TC5333) EPROM (TMM2764) MROM (TMM2364)	S. S.	A12	Α,	Ae	As	A4	A	A2	A ₁	Ao	Do	G.	D ₂	GND
64 K Bit 32 K Bit 16 K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332) CMOS MROM (TC5333) EPROM (TMM2764) MROM (TMM2364) MROM (TMM2365)	N.C. N.C.	A12	Α,	A6	As	A4	A3	A2	Aı	Ao	Do	I Q	D ₂	GND 14
KBit 32KBit 16K	SRAM (TMM2016/15) CRAM (TC5516/18) CRAM (TC5517) MROM (TMM2332) CMOS MROM (TC5332) CMOS MROM (TC5333) EPROM (TMM2764) MROM (TMM2364) MROM (TMM2365) CRAM (TC5564/65)	N.C. N.C.	Aız	Α,	A ₆	As	A4	Ag	A2	Aı	Ao	Do	I Q	D2	GND

CROSS REFERENCE

1. 16 K Bit Dynamic RAM

Access Tim	150 ns	200 ns	250 ns
Toshiba	TMM416P-2	TMM416P-3	TMM416P-4
Fairchild	F16K-2	F16K-3	F16K4
Fujitsu	MB8116H	MB8116E	MB8116N
Hitachi	HM4716A-2	HM4716A-3	HM4716A-4
Intel	2117-2	2117-3	2117-4
Intersil		IM7116-3	IM7116-4
Mitsubishi	M5K4116-2	M5K4116-3	M5K4116-4
Mostek	MK4116-2	MK4116-3	MK4116-4
Motorola	MCM4116C-2	MCM4116C-3	MCM4116C-4
National Semi.	NM5290-2	MM5290-3	
NEC	μPD416C/D-3	μPD416C/D-2	μPD416C/D-1
TI	TMS4116-15	TMS4116-20	TMS4116-25

2. 64K Bit Dynamic RAM.

	120 ns	150 ns	200 ns
Toshiba	TMM4164P-2	TMM4164P-3	TMM4164P-4
Fujitsu		MB8264-15	MB8264-20
Hitachi		HM4864-2	HM4864-3
Intel		2164-15	2164-20
Mitsubishi		M5K4164N-15	M5K4164N-20
Motorola		MCM6665-15	MCM6665-20
NEC		μPD4164-3	μPD4164-2
OKI	MSM3764-12	MSM3764-15	MSM3764-20
TI		TMS4164-15	TMS4164-20

3. 4K Bit Static RAM

		1,024 x 4	4,096 x 1			
Access Time	200 ns	300 ns	450 ns	55 ns	70 ns TMM315D	
Toshiba	TMM314AP-1/APL-1	TMM314AP-3/APL-3	TMM314AP/APL	TMM315D-1		
AND	Am9114EPC	Am9114CPC	Am9114BPC			
AMI	S2114-2	S2114-3			S2147	
Fujitsu	MB8114EL	MB8114NL		MB8147H	MB8147E	
Hitachi	HM472114AP-2	HM472114AP-3	HM472114AP-4	HM6147-3	HM6147	
Intel	2114-2/L2	2114-3/L3	2114/L	2147-3	2147	
Intersil	IM7114-2/L2		IM7114L			
Mitsubishi	M5L2114LP, S-2	M5L2114LP, S-3	M5L2114LP, S			
Motorola	MCM2114-20	MCM2114-30	MCM2114-45	MCM2147-55	MCM2147-70	
National	MM2114-2/-2L	MM2114-3/-3L	MM2114/-L	MM2147-3	MM2147	
NEC	μPD2114LC/D-3	μPD2114LC/D-1	μPD2114LC/D	μPD2147D-3	μPD2147D-2	
SYNERTEK					SY2147	
TI	TMS4045-20		TMS4045-45	TMS2147-5	TMS2147-7	

4. 1K/4K Bit CMOS RAM

	1 K Bit	1 K Bit 4 K			
	256 x 4	1,024 x 4	1,024 x 4	4,096 x 1	
Toshiba	TC5501P	TC5047AP	TC5514P TC5514AP/TC5513AP	TC5504P TC5504AF	
Fujitsu			MB8414	MB8404	
Harris	HM6501		HM6514	HM6504	
Hitachi	HM435101		HM4334	HM4315	
Intel	i5101L				
Intersil			IM6514	IM6504	
Mitsubishi	M5L5101P-1		M58981S-45		
NEC	μPD5101	μPD445	μPD444		
Oki			MSM5114	MSM5104	
RCA			MWS5114		

5. 16 K Bit NMOS/CMOS Static RAM

	16 K Bit							
	NMOS		CMOS					
Toshiba	TMM2016P TMM2016AP	TC5516AP	TC5517AP/BP	TC5518BP				
Fujitsu	MB8128	MB8417	TM8416	MB8418				
Hitachi	(HM6116)		(HM6116)	(HM6117)				
Mitsubishi	M58725							
NEC	μPD4016	μPD447	μPD446	μPD449				
OKI	MSM2128	MSM5127	MSM5128	MSM5129				

6. ROM (EPROM & MROM)

	EPROM		MROM						
	64 K Bit	32	32 K Bit		K Bit				
Toshiba	TMM2764D	TMM333P TC5334P TC5335P	TMM2332P TC5332P TC5333P	TMM2364P TMM2365P	TMM2366P				
Fujitsu	MB2764	MB8332	MB8333		MB8364				
Hitachi	HN482764	HM46332P			HN48364				
Intel	12764		12332	i2364					
Mitsubishi		M58333	M58735		M58334				
Mostak		MK32000		MK37000	MK36000				
Motorola									
NEC		μPD2332			μPD2364				
Oki	MSM2764AS								
TI		TMS4732			TM54764				

Dynamic Random Access Memories

TOSHIBA MOS MEMORY PRODUCTS

16384 WORD x 1 BIT DYNAMIC RAM

N CHANNEL SILICON GATE MOS

TMM416P-2, TMM416P-3, TMM416P-4

DESCRIPTION

The TMM416P is a 16,384 words by 1 bit MOS random access memory circuit fabricated with TOSHIBA's double poly N-channel silicon gate process for high performance and high functional density.

The TMM416P uses a single transistor dynamic storage cell and dynamic control circuitry to achieve

high speed and low power dissipation. Multiplexed address inputs permit the TMM416P to be packaged in a standard 16 pin plastic DIP. This package size provides high system bit densities and is compatible with widely available automatic testing and insertion equipment.

FEATURES

- 16.384 words by 1 bit organization
- · Fast access time and cycle time

DEVICE	trac	tac	
TMM416P-2	150 ns	320 ns	
TMM416P-3	200 ns	375 ns	
TMM416P-4	250 ns	410 ns	

- Industry standard 16 pin plastic DIP
- Standard ± 10% power supply (+12V, ± 5V)
- Lower power: 462mW operating (max.) 20mW standby (max.)

- Output unlatched at cycle end allows two-dimensional chip select
- Common I/O capability using "Early Write" operation
- Read-Modify-Write, RAS-only refresh, and Page-Mode capability
- All inputs and output TTL compatible
- 128 refresh cycles / 2 msec
- · Compatible with MK4116

PIN CONNECTIONS

PIN NAMES

A ₀ -A ₆	Address Inputs
CAS	Column Address Strobe
DIN	Data In
DOUT	Data Out
RAS	Row Address Strobe
WRITE	Read/Write Input
V _{BB}	Power (-5V)
Vcc	Power (+5V)
V _{DD}	Power (+12V)
VSS	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE	UNITS	NOTES
Voltage on any pin relative to V _{BB}	-0.5 ~ +20	V	1
Voltage on V _{DD} , V _{CC} supplies relative to V _{SS}	-1.0 ~ +15	V	1
V _{BB} -V _{SS} (V _{DD} -V _{SS} > OV)	0	V	1
Operating temperature	0 ~ 70	°C	1
Storage temperature	− 55 ~ 150	°C	1
Soldering temperature · Time	260 - 10	°C · sec	1
Power dissipation	600	mW	1
Short circuit output current	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS (Ta = $0 \sim 70^{\circ}$ C) (Note 2)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
V _D D		10.8	12.0	13.2	V	3
Vcc	Supply Voltage	4.5	5.0	5.5	V	3,4
Vss		0	0	0	V	3
V _{BB}		-4.5	-5.0	-5.5	V	3
VIHC	Input High Voltage, RAS, CAS, WRITE	2.7		7.0	V	3
VIH	Input High Voltage, except RAS, CAS, WRITE	2.4		7.0	V	3
VIL	Input Low Voltage, all inputs	-1.0		0.8	V	3

DC ELECTRICAL CHARACTERISTICS

 $(V_{DD} = 12.0 V \pm 10\%, V_{CC} = 5.0 V \pm 10\%, V_{SS} = 0 V, V_{BB} = -5.0 V \pm 10\%, Ta = 0 ^{\circ} C \sim 70 ^{\circ} C) \text{ (Note 2)}$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS	NOTES
IDD1	OPERATING CURRENT		35	mA	5
Icc1	Average power supply operating current				6
I _{BB1}	(RAS, CAS cycling: t _{RC} = minimum value)		200	μΑ	
IDD2	STANDBY CURRENT		1,5	mA	
I _{CC2}	Power supply standby current	-10	10	μΑ	
I _{BB2}	(RAS = VIHC, DOUT = High Impedance)		100	μΑ	
IDD3	REFRESH CURRENT		27	mA	5
Іссз	Average power supply current, refresh mode.	-10	10	μΑ	
Іввз	(RAS cycling, CAS = VIHC : tRC = minimum value)		200	μΑ	
I _{DD4}	PAGE MODE CURRENT		27	mA	5
Icc4	Average power supply current, page mode operation				6
I _{BB4}	(RAS = V _{IL} , CAS cycling: t _{PC} = minimum value)		200	μΑ	
I _{1 (L)}	INPUT LEAKAGE CURRENT Input leakage current, any input $(\hat{V}_{BB} = -5V)$ OV $\leq V_{IN} \leq +7.0V$, all other pins not under test = OV)	-10	10	μΑ	
lo(L)	OUTPUT LEAKAGE CURRENT (D_{OUT} is disabled, $OV \le V_{OUT} \le +5.5V$)	-10	10	μΑ	
V _{OH}	OUTPUT LEVELS Output "H" level voltage (I _{OUT} = -5mA)	2.4		V	4
Vol	OUTPUT LEVELS Output "L" level voltage (IOUT = 4.2mA)		0.4	V	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{DD} = 12.0V \pm 10\%; V_{CC} = 5.0V \pm 10\%, V_{SS} = OV, V_{BB} = -5.0V \pm 10\%, T_{a} = 0^{\circ}C \sim 70^{\circ}C)$

(NOTES 2, 7, 8, 10)

SYMBOL	PARAMETER	TMN	Л416P-2	TMM416P-3		TMM416P-4		UNUTO	NOTES
STIVIBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS	NOTE
tRC	Random read or write cycle time	320		375		410		ns	9
tRWC	Read-write cycle time	320		375		425		ns	9
t _{RMW}	Read-modify-write cycle time	320		405		500		ns	9
tPC	Page mode cycle time	170		225		275		ns	
tRAC	Access time from RAS		150		200		250	ns	11, 13
tcac	Access time from CAS		100		135		165	ns	12, 13
toff	Output buffer turn-off delay	0	40	0	50	0	60	ns	14
tT	Transition time (rise and fall)	3	35	3	50	3	50	ns	10
trp	RAS precharge time	100		120		150		ns	
tRAS	RAS pulse width	150	32,000	200	32,000	250	32,000	ns	
tRSH	RAS hold time	100		135		165		ns	
tcsH	CAS hold time	150		200		250		ns	
tcas	CAS pulse width	100	10,000	135	10,000	165	10,000	ns	
tRCD	RAS to CAS delay time	20	50	25	65	35	85	ns	15
tCRP	CAS to RAS precharge time	-20		-20		-20		ns	
tasa	Row Address set-up time	0		0		0		ns	
trah	Row Address hold time	20		25		35		ns	
tasc	Column Address set-up time	-10		-10		-10		ns	
tcah	Column Address hold time	45		55		75		ns	
t _{AR}	Column Address hold time referenced to RAS	95		120		160		ns	
trcs	Read command set-up time	0		0		0		ns	
tRCH	Read command hold time	0		0		0		ns	
twch	Write command hold time	45		55		75		ns	
twcr	Write command hold time referenced to RAS	95		120		160		ns	
twp	Write command pulse width	45		55		75		ns	
tRWL	Write command to RAS lead time	50		70		85		ns	
tcwL	Write command to CAS lead time	50		70		85		ns	
tps	Data-in set-up time	0		0		0		ns	16
tDH	Data-in hold time	45		55		75		ns	16
tohr	Data-in hold time referenced to RAS	95		120		160		ns	
t _{CP}	CAS precharge time (for page- mode cycle only)	60		80		100		ns	
tref	Resesh period		2		2		2	ms	
twcs	WRITE command set-up time	-20		-20		-20		ns	17
tcwD	CAS to WRITE delay	60		80		90		ns	17
trwp	RAS to WRITE delay	110		145		175		ns	17

TIMING WAVEFORMS

READ-WRITE/READ-MODIFY-WRITE CYCLE

• "RAS-ONLY" REFRESH CYCLE

Note: CAS = VIHC, WRITE = Don't Care

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

CAPACITANCE

 $(V_{DD} = 12.0 V \pm 10\%, V_{CC} = 5.0 V \pm 10\%, V_{SS} = 0 V, V_{BB} = -5.0 V \pm 10\%, f = 1 MHz, Ta = 0 ^{\circ} C \sim 70 ^{\circ} C)$

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
Ci ₁	Input Capacitance (A ₀ -A ₆), D _{IN}	4	5	pF
Ci ₂	Input Capacitance RAS, CAS, WRITE	8	10	pF
Co	Output Capacitance (DOUT)	5	7	pF

POWER DERATING CHARACTERISTICS

NOTES

- Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. T_a is specified here for operation at frequencies to $t_{RC} \geqslant t_{RC}$ (min.). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met. See Fig. 1 for derating curve.
- 3. All voltages are referenced to VSS-
- 4. Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH} (min.) specification is not guaranteed in this mode.
- I_{DD1}, I_{DD3} and I_{DD4} depend on cycle rate. See figures 2, 3 and 4 for I_{DD} limits at other cycle rates.
- I_{CC1} and I_{CC4} depend upon output loading. During readout of high level data V_{CC} is connected through a low impedance to data out. At all other times I_{CC} consists of leakage currents only.
- After the application of supply voltages or after extended periods of bias (greater than tREF: 2ms) without clocks, the device must perform about eight initialization cycles prior to normal operation.
- AC measurements assume t_T = 5ns.
- The specifications for t_{RC} (min.), t_{RMW} (min.) and t_{RWC} (min.)
 are used only to indicate cycle time at which proper operation
 over the full temperature range (0 C ≤ T_a ≤ 70 C) is assured.
- 10. VIHC (min.) or VIH (min.) and VIL (max.) are reference levels for

- measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL} .
- Assumes that t_{RCD} ≤t_{RCD} (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 12. Assumes that t_{RCD} ≥t_{RCD} (max.)
- 13. Measured with a load equivalent to 2 TTL loads and 100pF.
- t_{OFF} (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 15. Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only: if t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}.
 16. These parameters are referenced to CAS leading edge in early write
- These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.
- twcs, t_{CWD} and t_{RWD} are not restrictive operating parameters.
 They are included in the data sheet as electrical characteristics only.
 - If $t_{WCS} \ge t_{WCS}$ (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle:
 - If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-write cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

APPLICATION INFORMATION

ADDRESSING

The 14 address bits required to decode 1 of the 16,384 cell locations within the TMM416P are multiplexed onto the 7 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (RAS), latches the 7 row address bits into the chip. The second clock, the Column Address Strobe (CAS), subsequently latches the 7 column address bits into the chip. Each of these signals, RAS and CAS, triggers a sequence of events which are controlled by different delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the $\overline{\text{CAS}}$ clock sequence are inhibited until the occurence of a delayed signal derived from the $\overline{\text{RAS}}$ clock chain. This "gated $\overline{\text{CAS}}$ " feature allows the $\overline{\text{CAS}}$ clock to be externally activated as soon as the Row Address Hold Time specification (trach) has been satisfied and the address inputs have been changed from Row address to Column address information.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of WRITE and CAS while RAS is active. The later of the signals (WRITE or CAS) to make its negative transition is the strobe for the Data In (DIN) register. This permits several options in the write cycle timing. In a write cycle, if the WRITE input is brought low (active) prior to CAS, the DIN is strobed by CAS and the setup and hold times are referenced to CAS. If the input data is not available at CAS time or if it is desired that the cycle be a read-write cycle the WRITE signal will be delayed until after CAS has made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of WRITE rather than CAS. (To illustrate this feature, DIN is referenced to WRITE in the timing diagrams depicting the readwrite and page-mode write cycles while the "early write" cycle diagram shows DIN referenced to CAS). Data is retrieved from the memory in a read cycle by maintaining \overline{WRITE} in the inactive or high state throughout the portion of the memory cycle in which \overline{CAS} is active (low). Data read from the selected cell will be available at the output within the specified access time.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the TMM416P is the high impedance (open-circuit) state. That is to say, anytime CAS is at a high level, the D_{OUT} pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read cycle. D_{OUT} will remain valid from access time until CAS is taken back to the inactive (high level) condition.

If the memory cycle in progress is a read, read-modify write, or a delayed write cycle, then the data output will go from the high impedance state to the active condition, and at access time will contain the data read from the selected cell. This output data is the same polarity (not inverted) as the input data. Once having gone active, the output will remain valid until \overline{CAS} is taken to the precharge (logic 1) state, whether or not \overline{RAS} goes into precharge.

If the cycle in progress is an "early-write" cycle $\overline{(WRITE}$ active before \overline{CAS} goes active), then the output pin will maintain the high impedance state throughout the entire cycle. Note that with this type of output configuration, the user is given full control of the $\overline{D_{OUT}}$ pin simply by controlling the placement of \overline{WRITE} command during a write cycle, and the pulse width of the Column Address Strobe during read operations. Note also that even though data is not latched at the output, data can remain valid from access time until the beginning of a subsequent cycle without paying any penalty in overall memory cycle time (stretching the cycle).

PAGE MODE OPERATION

The "Page-Mode" feature of the TMM416P allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by

strobing the row address into the chip and maintaining the \overline{RAS} signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "page-mode" of operation will not dissipate the power associated with the negative going edge of \overline{RAS} . Also, the time required for strobing in a new row address is eliminated, thereby decreasing the access and cycle times.

REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 128 row addresses within each 2 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with "RAS-only" cycles, RAS only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the IDD3 specification.

POWER CONSIDERATIONS

Most of the circuitry used in the TMM416P is dynamic and most of the power drawn is the result of an address strobe edge. (refer to the TMM416P cur-

rent waveforms in Fig. 5) In system applications requiring lower power dissipation, the operating frequency (cycle rate) of the TMM416P can be reduced and the (guaranteed maximum) average power dissipation of the device will be lowered in accordance with the I_{DD1} (max.) spec limit curve illustrated in Fig. 2.

It is possible to operate certain versions of the TMM416P family (-2 and 3 speed selections for example) at frequencies higher than specified, provided all AC operating parameters are met. Operation at shorter cycle times (< t_{RC} min.) results in higher power dissipation and, therefore, a reduction in ambient temperature is required. Refer to Fig. 1 for derating curve.

POWER UP

The TMM416P requires no particular power supply sequencing so long as the Absolute Maximum Rating Conditions are observed. However, in order to insure compliance with the Absolute Maximum Ratings, TOSHIBA recommends sequencing of power supplies such that V_{BB} is applied first and removed last. V_{BB} should never be more positive than V_{SS} when power is applied to V_{DD} .

TYPICAL CURRENT WAVEFORMS

TYPICAL CHARACTERISTICS

OUTLINE DRAWING

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their longitudinal position with respect to No. 1 and No. 16 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Mar., 1980 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

65,536 WORD X 1 BIT DYNAMIC RAM

N-CHANNEL SILICON GATE MOS

TMM4164P-2, TMM4164P-3 TMM4164P-4

DESCRIPTION

The TMM4164P is the new generation dynamic RAM organized 65,536 words by 1 bit, it is successor to the industry standard TMM416P.

The TMM4164P utilizes TOSHIBA's double poly N-channel Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user.

Multiplexed address inputs permit the TMM4164P to be packaged in a standard 16 pin plastic DIP. This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment.

System oriented features include single power supply of 5V ±10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

- 65,536 words by 1 bit organization
- Fast access time and cycle time

DEVICE	tRAC	t _{RC}
TMM4164P-2	120 ns	260 ns
TMM4164P-3	150 ns	260 ns
TMM4164P-4	200 ns	330 ns

- Single power supply of 5V ± 10% with a built-in V_{BB} generator
- Low power; 275mW operating (MAX.)
 27.5mW standby (MAX.)

PIN CONNECTION (TOP VIEW)

PIN NAMES

$A_0 \sim A_7$	Address Inputs
CAS	Column Address Strobe
DIN	Data In
NC	No - Connection
Dout	Data Out
RAS	Row Address Strobe
WRITE	Read/Write Input
Vcc	Power (+5V)
V _{SS}	Ground

- · Industry standard 16 pin plastic DIP
- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, RAS-only refresh and Page Mode capability
- · All inputs and output TTL compatible
- 128 refresh cycles/2ms

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES	
Input and Output Voltage	VIN, VOUT	-1 ~ 7	V	1	
Power Supply Voltage	Vcc	-1 ~ 7	V	1	
Operating Temperature	T _{OPR}	0 ~ 70	°C	1	
Storage Temperature	T _{STG}	-55 ~ 150	°C	1	
Soldering Temperature · Time	T _{SOLDER}	260 · 10	°C · sec	1	
Power Dissipation	PD	600	mW	1	
Short Circuit Output Current	IOUT	50	mA	1	

RECOMMENDED DC OPERATING CONDITIONS (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5,5	V	2
VIH	Input High Voltage	2.4		6.5	V	2
VIL	Input Low Voltage	-1.0		0.8	V	2

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
I _{CC 1}	OPERATING CURRENT Average Power Supply Operating Current (RAS, CAS Cycling: t _{RC} = t _{RC} MIN.)			50	mA	3,4
I _{CC2}	STANDBY CURRENT Power Supply Standby Current (RAS = V _{IH} , D _{OUT} = High Impedance)			5	mA	
I _{CC3}	REFRESH CURRENT Average Power Supply Current, Refresh Mode (RAS Cycling, CAS = V _{IH:} t _{RC} = t _{RC} MIN.)			40	mA	3
I _{CC4}	PAGE MODE CURRENT Average Power Supply Current, Page Mode (RAS = V _{IL} , CAS Cycling: t _{PC} = t _{PC} MIN.)			40	mA	3, 4
I _{1 (L)}	$\label{eq:local_equation} \begin{split} &\text{INPUT LEAKAGE CURRENT} \\ &\text{Input Leakage Current, any Input (OV} \leqq \text{V}_{\text{IN}} \leqq 6.5 \text{V} \\ &\text{All Other Pins Not Under Test} = 0 \text{V}) \end{split}$	-10		10	μΑ	
lo (L)	OUTPUT LEAKAGE CURRENT (D_{OUT} is disabled, $OV \le V_{OUT} \le +5.5V$)	-10		10	μА	
V _{OH}	OUTPUT LEVEL Output "H" Level Voltage (I _{OUT} = -5mA)	2.4			V	
VoL	OUTPUT LEVEL Output "L" Level Voltage (I _{OUT} = 4.2mA)			0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

SYMBOL	PARAMETER	TMM4164P-2		TMM4164P-3		TMM4164P-4		UNITS	NOTES
SYMBOL		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS	NOTES
t _{RC}	Random read or write cycle time	260		260		330		ns	
t _{RWC}	Read-write cycle time	260		270		335		ns	
t _{RMW}	Read-modify-write cycle time	265		310		390		ns	
tPC	Page mode cycle time	140		170		225		ns	
tRAC	Access time from RAS		120		150		200	ns	8, 10
tcac	Access time from CAS		80		100		135	ns	9,10
toff	Output buffer turn-off delay	0	35	0	40	0	50	ns	11
t _T	Transition time (rise and fall)	3	35	3	35	3	50	ns	6
t _{RP}	RAS precharge time	90		100		120		ns	
tras	RAS pulse width	120	10,000	150	10,000	200	10,000	ns	
t _{RSH}	RAS hold time	80		100		135		ns	
t _{CSH}	CAS hold time	120		150		200		ns	
tcas	CAS pulse width	80	10,000	100	10,000	135	10,000	ns	
tRCD	RAS to CAS delay time	25	40	25	50	30	65	ns	12
tCRP	CAS to RAS precharge time	0		0		0		ns	
tASR	Row Address set-up time	0		0		0		ns	
trah	Row Address hold time	15		15		20		ns	
tASC	Column Address set-up time	0		0		0		ns	
tcah	Column Address hold time	40		45		55		ns	
t _{AR}	Column Address hold time referenced to RAS	80	4.	95		120		ns	
tacs	Read command set-up time	0		0		0		ns	
tRCH	Read command hold time	0		0		0		ns	
twch	Write command hold time	40		45		55		ns	
twcr	Write command hold time referenced to RAS	80		95		120		ns	
twp	Write command pulse width	40		45		55		ns	
t _{RWL}	Write command to RAS lead time	40		45		55		ns	
tcwL	Write command to CAS lead time	40		45		55		ns	
t _{DS}	Data-in set-up time	0		0		0		ns	13
t _{DH}	Data-in hold time	40		45		55		ns	13
tDHR	Data-in hold time referenced to RAS	80		95		120		ns	
t _{CP}	CAS precharge time (for page- mode cycle only)	50		60		80		ns	
t _{REF}	Refresh period		2		2		2	ms	
twcs	Write command set-up time	-10		-10		-10		ns	14
tcwp	CAS to WRITE delay	50		60		80		ns	14
tRWD	RAS to WRITE delay	90		110		145		ns	14

TIMING WAVEFORMS

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

Note: $\overline{CAS} = V_{1H_1} \overline{WRITE} = Don't Care, A_7 = Don't Care$

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE TRAS TAR RAS VIH -VIL -^tRSH TRP tcsHtPC TRCD tCAS tCP * tCAS tCAS TCRP CAS VIH -VIL _ TRAH tCAH tCAH tCAH TASR TASC TASC tASC VIH -ADDRESSES ROW COL COL COL ADD ADD A ADD tWCH tWCH tWCH CWL tCWL tCWL VIH -WRITE VIL twp twp tWP tWCR TRWL tDS tDH tDH tps tDH tos DIN VIH -VALID VALID VALID VIL _ DATA DATA TDHR Don't Care

CAPACITANCE

 $(V_{CC} = 5V \pm 10\%, f = 1MHz, Ta = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
Cli	Input Capacitance (A ₀ ~ A ₇ , D _{IN})		4	5	pF
C ₁₂	Input Capacitance (RAS, CAS, WRITE)		8	10	pF
Co	C ₀ Output Capacitance (D _{OUT}) 5		5	7	pF

NOTES:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltages are referenced to VSS.
- 3. ICC1, ICC3, ICC4 depend on cycle rate.
- 4. ICC1, ICC4 depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200 \(\mu \) is required after power-up followed by any 8 \(\overline{RAS} \) cycles before proper device operation is achieved.
- 6. AC measurements assume t_T = 5ns.
- V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL}.
- Assumes that t_{RCD} ≤ t_{RCD} (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- Assumes that t_{RCD} ≥ t_{RCD} (max.).
- 10. Measured with a load equivalent to 2 TTL loads and 100pF.
- 11. t_{OFF} (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified a reference point only:
 If t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}
- These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write or read-modify-write cycles.
- 14. t_{WCS}, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS} (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle:

If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is read-write cycle or read-modify-cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

APPLICATION INFORMATION

ADDRESSING

The 16 address bits required to decode 1 of the 65,536 cell locations within the TMM4164P are multiplexed onto the 8 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (RAS), latches the 8 row address bits into the chip. The second clock, the Column Address Strobe (CAS), subsequently latches the 8 column address bits into the chip. Each of these signals, RAS, and CAS, triggers a sequence of events which are controlled by different

delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the $\overline{\text{CAS}}$ clock sequence are inhibited until the occurence of a delayed signal derived from the $\overline{\text{RAS}}$ clock chain. This "gated $\overline{\text{CAS}}$ " feature allows the $\overline{\text{CAS}}$ clock to be externally activated as soon as the Row Address Hold Time specification (t_{RAH}) has been satisfied and the address inputs have been changed from Row address to Column address information.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of WRITE and CAS while RAS is active. The later of the signals (WRITE or CAS) to make its negative transition is the strobe for the Data In (DIN) register. This permits several options in the write cycle timing. In a write cycle, if the WRITE input is brought low (active) prior to CAS, the DN is strobed by CAS and the setup and hold times are referenced to CAS. If the input data is not available at CAS time or if it is desired that the cycle be a read-write cycle, the WRITE signal will be delayed until after CAS has made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of WRITE rather than CAS. (To illustrate this feature, DIN is referenced to WRITE in the timing diagrams depicting the read-write and page mode write cycles while the "early write" cycle diagram shows DIN referenced to CAS)

Data is retrieved from the memory in a read cycle by maintaining WRITE in the inactive or high state throughout the portion of the memory cycle in which CAS is active (low). Data read from the selected cell will be available at the output within the specified access time.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the TMM4164P is the high impedance(open cir-

cuit) state. That is to say, anytime $\overline{\text{CAS}}$ is at a high level, the D_{OUT} pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read cycle. D_{OUT} will remain valid from access time until $\overline{\text{CAS}}$ is taken back to the inactive (high level) condition.

PAGE MODE

The "Page-Mode" feature of the TMM4164P allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by strobing the row address into the chip and maintaining the RAS signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "Page-Mode" of operation will not dissipate the power associated with the negative going edge of RAS. Also, the time required for strobing in a new row address is eliminated, thereby decreasing the access and cycle times.

REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 128 row address ($A_0 \sim A_6$) within each 2 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with "RAS-only" cycles, RAS only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the $I_{CG,3}$ specification.

Unit in mm

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 16 leads. All dimensions are in millimeters.

16 15 14

13 12

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1982 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

65,536 WORD X 1 BIT DYNAMIC RAM

N-CHANNEL SILICON GATE MOS

DESCRIPTION

TMM4164AP-12 TMM4164AP-15 TMM4164AP-20

* This is advance information and specifications are subject to change without notice.

The TMM4164AP is the high speed, low power dynamic RAM organized 65,536 words by 1 bit, it is successor to the industry standard TMM4164P.

The TMM4164AP utilizes TOSHIBA's double poly N-channel Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user.

FEATURES

- 65,536 words by 1 bit organization
- Fast access time and cycle time

DEVICE	trac	tcac	tRC
TMM4164AP-12	120 ns	60 ns	220 ns
TMM4164AP-15	150 ns	75 ns	260 ns
TMM4164AP-20	200 ns	100 ns	330 ns

- Single power supply of 5V ± 10% with a built-in V_{BB} generator
- Low power; 275mW operating (MAX.)
 22mW standby (MAX.)

PIN CONNECTION (TOP VIEW)

PIN NAMES

$A_0 \sim A_7$	Address Inputs	
CAS	Column Address Strobe	
DIN	Data In	
NC	No - Connection	
Dout	Data Out	
RAS	Row Address Strobe	
WRITE	Read/Write Input	
Vcc	Power (+5V)	
V _{SS}	Ground	

Multiplexed address inputs permit the TMM4164AP to be packaged in a standard 16 pin plastic DIP. This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment.

System oriented features include single power supply of 5V $\pm 10\%$ tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

- Industry standard 16 pin plastic DIP
- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, RAS-only refresh and Page Mode capability
- All inputs and output TTL compatible
- 128 refresh cycles/2ms

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input and Output Voltage	VIN, VOUT	-1 ~ 7	V	1
Power Supply Voltage	Vcc	−1 ~ 7	V	1
Operating Temperature	TOPR	0 ~ 70	°C	1
Storage Temperature	T _{STG}	-55 ~ 150	°C	1
Soldering Temperature · Time	TSOLDER	260 - 10	°C · sec	1
Power Dissipation	PD	600	mW	1
Short Circuit Output Current	lout	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	2
VIH	Input High Voltage	2.4		6.5	V	2
VIL	Input Low Voltage	-1.0		0.8	V	2

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	NOTES
I _{CC1}	OPERATING CURRENT Average Power Supply Operating Current (RAS, CAS Cycling: t _{RC} = t _{RC} MIN.)			50	mA	3,4
I _{CC2}	STANDBY CURRENT Power Supply Standby Current (RAS = V _{IH} , D _{OUT} = High Impedance)			4	mA	
I _{CC3}	REFRESH CURRENT Average Power Supply Current, Refresh Mode (RAS Cycling, CAS = V _{IH} : t _{RC} = t _{RC} MIN.)			40	mA	3
I _{CC4}	PAGE MODE CURRENT Average Power Supply Current, Page Mode (RAS = V _{IL} , CAS Cycling: t _{PC} = t _{PC} MIN.)			40	mA	3, 4
I _{1 (L)}	INPUT LEAKAGE CURRENT Input Leakage Current, any Input (0V \leq V _{IN} \leq 6.5V, All Other Pins Not Under Test = 0V)	-10		10	μΑ	
lo (L)	OUTPUT LEAKAGE CURRENT (D_{OUT} is disabled, $0V \le V_{OUT} \le +5.5V$)	-10		10	μА .	
V _{OH}	OUTPUT LEVEL Output "H" Level Voltage (I _{OUT} = -5mA)	2.4			V	
VoL	OUTPUT LEVEL Output "L" Level Voltage (I _{OUT} = 4.2mA)			0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

CV/MDO:	DADAMETER	TMM4	164AP-12	TMM4164AP-15		TMM4	164AP-20	LINUTO	NOTES
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS	NOTES
tRC	Random Read or Write Cycle Time	220		260		330		ns	
tRWC	Read-Write Cycle Time	240		285		350		ns	
t _{RMW}	Read-Modify-Write Cycle Time	260		310		390		ns	
tPC	Page Mode Cycle Time	120		145		190		ns	
tRAC	Access Time from RAS		120		150		200	ns	8,10
tcac	Access Time from CAS		60		75		100	ns	9,10
toff	Output Buffer Turn-Off Delay	0	35	0	40	0	50	ns	11
t _T	Transition Time (Rise and Fall)	3	35	3	35	3	50	ns	6
t _{RP}	RAS Precharge Time	90		100		120		ns	
tras	RAS Pulse Width	120	10,000	150	10,000	200	10.000	ns	
trsh	RAS Hold Time	60	-	75		100		ns	
tcsh	CAS Hold Time	120		150		200		ns	
tcas	CAS Pulse Width	60	10,000	75	10,000	100	10,000	ns	
tRCD	RAS to CAS Delay Time	25	60	25	75	30	100	ns	12
tCRP	CAS to RAS Precharge Time	0		0		0		ns	
tASR	Row Address Set-Up Time	0		0		0		ns	
t _{RAH}	Row Address Hold Time	15		15		20		ns	
tASC	Column Address Set-Up Time	0		0		0		ns	
tCAH	Column Address Hold Time	35		45		55		ns	
t _{AR}	Column Address Hold Time Referenced to RAS	95		120		155		ns	
tRCS	Read Command Set-Up Time	0		0		0		ns	
t _{RCH}	Read Command Hold Time	0		0		0		ns	
twch	Write Command Hold Time	35		45		55		ns	
twcR	Write Command Hold Time Referenced to RAS	95		120		155		ns	
t _{WP}	Write Command Pulse Width	35		45		55		ns	
t _{RWL}	Write Command to RAS Lead Time	35		45		55		ns	
tcwL	Write Command to CAS Lead Time	35		45		55		ns	
t _{DS}	Data-In Set-Up Time	0		0		0		ns	13
t _{DH}	Data-In Hold Time	35		45		55		ns	13
tDHR	Data-In Hold Time Referenced to RAS	95		120		155		ns	
t _{CP}	CAS Precharge Time (for Page Mode Cycle Only)	50		60		80		ns	
tREF	Refresh Period		2		2		2	ms	
twcs	Write Command Set-Up Time	-10		-10		-10		ns	14
tcwp	CAS to WRITE Delay	40		50		60		ns	14
tawp	RAS to WRITE Delay	100		125		160		ns	14

TIMING WAVEFORMS

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

"RAS-ONLY" REFRESH CYCLE

POUT VOL ____OPEN____

Note: $\overline{\text{CAS}} = V_{\text{IH}}$, $\overline{\text{WRITE}} = \text{Don't Care}$, $A_7 = \text{Don't Care}$

Don't Care

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

CAPACITANCE

$(V_{CC} = 5V \pm 10\%, f = 1MHz, Ta = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
Cli	Input Capacitance (A ₀ ~ A ₇ , D _{IN})		4	5	pF
C ₁₂	C ₁₂ Input Capacitance (RAS, CAS, WRITE)		8	10	pF
Co	C ₀ Output Capacitance (D _{OUT})		5	7	pF

NOTES:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2. All voltages are referenced to Vss.
- 3. Icc1, Icc3, Icc4 depend on cycle rate.
- 4. ICC1, ICC4 depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 6. AC measurements assume t= 5ns.
- 7. V_{IH} (min.) and V_{IL} (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- Assumes that t_{RCD} ≤ t_{RCD} (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- Assumes that t_{RCD} ≥ t_{RCD} (max.).
- 10. Measured with a load equivalent to 2 TTL loads and 100pF.
- 11. t_{OFF} (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only:
 If t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}
- These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write or read-modify-write cycles.
- 14. t_{WCS}, t_{CWD} and t_{RWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If t_{WCS} ≥ t_{WCS} (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle:

If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-write cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

APPLICATION INFORMATION

ADDRESSING

The 16 address bits required to decode 1 of the 65,536 cell locations within the TMM4164AP are multiplexed onto the 8 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (RAS), latches the 8 row address bits into the chip. The second clock, the Column Address Strobe (CAS), subsequently latches the 8 column address bits into the chip. Each of these signals, RAS and CAS, triggers a sequence of events which are controlled by different

delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the $\overline{\text{CAS}}$ clock sequence are inhibited until the occurence of a delayed signal derived from the $\overline{\text{RAS}}$ clock chain. This "gated $\overline{\text{CAS}}$ " feature allows the $\overline{\text{CAS}}$ clock to be externally activated as soon as the Row Address Hold Time specification (t_{RAH}) has been satisfied and the address inputs have been changed from Row address to Column address information.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of WRITE and CAS while RAS is active. The later of the signals (WRITE or CAS) to make its negative transition is the strobe for the Data In (DN) register. This permits several options in the write cycle timing. In a write cycle, if the WRITE input is brought low (active) prior to CAS, the DN is strobed by CAS and the setup and hold times are referenced to CAS. If the input data is not available at CAS time or if it is desired that the cycle be a read-write cycle the WRITE signal will be delayed until after CAS has made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of WRITE rather than CAS. (To illustrate this feature, DIN is referenced to WRITE in the timing diagrams depicting the read-write and page mode write cycles while the "early write" cycle diagram shows DIN referenced to CAS).

Data is retrieved from the memory in a read cycle by maintaining WRITE in the inactive or high state throughout the portion of the memory cycle in which CAS is active (low). Data read from the selected cell will be available at the output within the specified access time.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the TMM4164AP is the high impedance (open cir-

cuit) state. That is to say, anytime \overline{CAS} is at a high level, the D_{OUT} pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read \underline{cycle} . D_{OUT} will remain valid from access time until \overline{CAS} is taken back to the inactive (high level) condition.

PAGE MODE

The "Page-Mode" feature of the TMM4164AP allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by strobing the row address into the chip and maintaining the RAS signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "Page-Mode" of operation will not dissipate the power associated with the negative going edge of RAS. Also, the time required for strobing in a new row address is eliminated, thereby decreasing the access and cycle times.

REFRESH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 128 row address ($A_0 \sim A_6$) within each 2 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this function is most easily accomplished with "RAS-only" cycles, RAS only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the I_{CCA} specification.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 16 leads.
All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1983 Toshiba Corporation

Apr., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

262,144 WORD X 1 BIT DYNAMIC RAM

N-CHANNEL SILICON GATE MOS

TMM4 | 256C- | 2 TMM4 | 256C- | 5

* This is advance information and specifications are subject to change without notice.

DESCRIPTION

The TMM41256C is the new generation dynamic RAM organized 262,144 words by 1 bit, it is successor to the industry standard TMM4164P.

The TMM41256C utilizes TOSHIBA's N-channel Silicon gate process technology as well as advanced circuit techniques to provide wide operating margins, both internally and to the system user.

Multiplexed address inputs permit the TMM-

41256C to be packaged in a standard 16 pin ceramic DIP. This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment.

System oriented features include single power supply of 5V ±10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

FEATURES

- 262,144 words by 1 bit organization
- Fast access time and cycle time

DEVICE	TRAC	tcac	tRC
TMM41256C-12	120 ns	60 ns	220 ns
TMM41256C-15	150 ns	75 ns	260 ns

- Single power supply of 5V ±10% with a built-in V_{BB} generator
- Low Power:

330mW Operating (MAX.) (TMM41256C-12) 275mW Operating (MAX.) (TMM41256C-15) 27.5mW Standby (Max.)

- Industry standard 16 pin ceramic DIP
- Output unlatched at cycle end allows two-dimensional chip selection
- Common I/O capability using "EARLY WRITE" operation
- Read-Modify-Write, RAS-only refresh, Hidden refresh, and Page Mode capability.
- All inputs and output TTL compatible
- 256 refresh cycles/4ms

PIN CONNECTION (TOP VIEW)

PIN NAMES

$A_0 \sim A_8$	Address Inputs
CAS	Column Address Strobe
DIN	Data In
Dout	Data Out
RAS	Row Address Strobe
WRITE	Read/Write Input
Vcc	Power (+5V)
Vss	Ground

ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	RATING	UNITS	NOTES
Input and Output Voltage	VIN, VOUT	−1 ~ 7	V	1
Power Supply Voltage	Vcc	−1 ~ 7	V	1
Operating Temperature	Topr	0~70	°C	1
Storage Temperature	T _{STG}	-55 ~ 150	°C	1
Soldering Temperature · Time	T _{SOLDER}	260 - 10	°C · sec	1
Power Dissipation	PD	1	W	1
Short Circuit Output Current	lout	50	mA	1

RECOMMENDED DC OPERATING CONDITIONS (Ta = $0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	TYP,	MAX.	UNITS	NOTES
Vcc	Supply Voltage	4.5	5.0	5.5	V	2
VIH	Input High Voltage	2.4		6.5	V	2
VIL	Input Low Voltage	-1.0		0.8	V	2

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, Ta = $0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER		MIN.	MAX.	UNITS	NOTES
	OPERATING CURRENT Average Power Supply Operating Current	TMM41256C-12		60		2.4
I _{CC1}	(RAS, CAS Cycling: t _{RC} = t _{RC} MIN.)	TMM41256C-15		50	mA.	3, 4
I _{CC2}	STANDBY CURRENT Power Supply Standby Current (RAS = CAS = V _{IH})			5	mA	
1	REFRESH CURRENT Average Power Supply Current, Refresh Mode	TMM41256C-12		45		3
lcc3	(RAS Cycling, CAS = VIH : tRC = tRC MIN.)	TMM41256C-15		40	mA	3
Lauren	PAGE MODE CURRENT Average Power Supply Current, Page Mode (RAS = V _{II} , CAS Cycling : t _{PC} = t _{PC} MIN.)	TMM41256C-12		45		0.4
ICC4		TMM41256C-15		40	mA.	3,4
I _{I(L)}	INPUT LEAKAGE CURRENT Input Leakage Current, any input (OV \leq V _{IN} \leq 6.5V, All Other Pins Not Under Test = OV)		-10	10	μА	
lo(L)	OUTPUT LEAKAGE CURRENT (D_{OUT} is disabled, $OV \le V_{OUT} \le +5.5V$)			10	μΑ	
V _{OH}	OUTPUT LEVEL Output "H" Level Voltage (I _{OUT} = -5mA)		2.4		V	
VoL	OUTPUT LEVEL Output "L" Level Voltage (I _{OUT} = 4.2mA)			0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(V_{CC} = 5V \pm 10\%, Ta = 0 \sim 70^{\circ}C)$ (Notes 5, 6, 7)

SYMBOL	PARAMETER	TMM41	1256C-12	TMM41256C-15		UNITS	NOTES
STIMBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNITS	NOTES
t _{RC}	Random Read or Write Cycle Time	220	-	260	-	ns	
t _{RWC}	Read-Write Cycle Time	240	-	285	-	ns	
t _{RMW}	Read-Modify-Write Cycle Time	260	-	310	_	ns	
tPC	Page Mode Cycle Time	120	-	145	_	ns	
tRAC	Access Time from RAS	-	120	-	150	ns	8, 10
tCAC	Access Time from CAS	_	60	_	75	ns	9, 10
toff	Output Buffer Turn-Off Delay	0	35	0	40	ns	11
tT	Transition Time (Rise and Fall)	3	50	3	50	ns	6
t _{RP}	RAS Precharge Time	90	_	100	_	ns	
tras	RAS Pulse Width	120	10,000	150	10,000	ns	
trsh	RAS Hold Time	60	_	75	_	ns	
tcsh	CAS Hold Time	120	_	150	_	ns	
tcas	CAS Pulse Width	60	10,000	75	10,000	ns	
tRCD	RAS to CAS Delay Time	25	60	25	75	ns	13
tCRP	CAS to RAS Precharge Time	0	-	0	_	ns	
tCPN	CAS Precharge Time	25	-	25	-	ns	
t _{CP}	CAS Precharge Time (for Page Mode Cycle Only)	50	_	60	_	ns	
tasr	Row Address Set-Up Time	0	-	0	_	ns	
trah	Row Address Hold Time	15	_	15	-	ns	
tasc	Column Address Set-Up Time	0	-	0	-	ns	
tcah	Column Address Hold Time	35	-	45	-	ns	
t _{AR}	Column Address Hold Time Referenced to RAS	95	-	120	-	ns	
tRCS	Read Command Set-Up Time	0	-	0	-	ns	
^t RCH	Read Command Hold Time Referenced to CAS	0	-	0	-	ns	12
t _{RRH}	Read Command Hold Time Referenced to RAS	15	_	20	-	ns	12
twch	Write Command Hold Time	35	-	45	-	ns	
twcr	Write Command Hold Time Referenced to RAS	95	-	120	-	ns	
twp	Write Command Pulse Width	35	-	45	-	ns	
t _{RWL}	Write Command to RAS Lead Time	35	-	45	-	ns	
tcwL	Write Command to CAS Lead Time	35	-	45	-	ns	
t _{DS}	Data-In Set-Up Time	0	-	0	-	ns	14
t _{DH}	Data-In Hold Time	35	-	45	_	ns	14
t _{DHR}	Data-In Hold Time Referenced to RAS	95	-	120	-	ns	
tREF	Refresh Period	-	4	-	4	ms	
twcs	Write Command Set-Up Time	-10	-	-10	-	ns	15
tcwD	CAS to WRITE Delay	40	-	50	_	ns	15
tRWD	RAS to WRITE Delay	100	_	125	_	ns	15

CAPACITANCE

$(V_{CC} = 5V \pm 10\%, f = 1MHz, Ta = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
Cl1	Input Capacitance ($A_0 \sim A_8$, D_{IN})		6	pF
C ₁₂	Input Capacitance (RAS, CAS, WRITE)		7	pF
Co	Output Capacitance (DOUT)		7	pF

NOTES:

- 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device,
- 2. All voltages are referenced to Vec.
- 3. Icc1, Icc3, Icc4 depend on cycle rate.
- 4. Icc1, Icc4 depend on output loading. Specified values are obtained with the output open.
- 5. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved.
- 6. AC measurements assume t_T = 5 ns.
- 7. VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VII.
- 8. Assumes that t_{RCD} ≤ t_{RCD} (max.). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that tRCD exceeds the value shown.
- Assumes that t_{RCD} ≥ t_{RCD} (max.)
- 10. Measured with a load equivalent to 2 TTL loads and 100pF.
- 11. topp (max.) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels
- Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 13. Operation within the t_{RCD} (max.) limit insures that t_{RAC} (max.) can be met. t_{RCD} (max.) is specified as a reference point only: If t_{RCD} is greater than the specified t_{RCD} (max.) limit, then access time is controlled exclusively by t_{CAC}.
- These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in read-write or readmodify-write cycles.
- 15. twcs, tcwp and tawp are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-write cycle or read-modifywrite cycle and the data out will contain data read from the selected cell: If neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.

TIMING WAVEFORMS

•READ-WRITE/READ-MODIFY-WRITE CYCLE

OOUT VOH — OPEN — OPEN — Note: CAS = VIH. WRITE = Don't care, Ag = Don't care

HIDDEN REFRESH CYCLE

PAGE MODE READ CYCLE

PAGE MODE WRITE CYCLE

APPLICATION INFORMATION

ADDRESSING

The 18 address bits required to decode 1 of the 262,144 cell locations within the TMM41256C are multiplexed onto the 9 address inputs and latched into the on-chip address latches by externally applying two negative going TTL-level clocks.

The first clock, the Row Address Strobe (RAS), latches the 9 row address bits into the chip. The second clock, the Column Address Strobe (CAS), subsequently latches the 9 column address bits into the chip. Each of these signals, RAS and CAS, triggers a sequence of events which are controlled by different delayed internal clocks.

The two clock chains are linked together logically in such a way that the address multiplexing operation is done outside of the critical path timing sequence for read data access. The later events in the \overline{CAS} clock sequence are inhibited until the occurrence of a delayed signal derived from the \overline{RAS} clock chain. This "gated \overline{CAS} " feature allows the \overline{CAS} clock to be externally activated as soon as the Row Address Hold Time specification (tRAH) has been satisfied and the address inputs have been changed from Row address to Column address information.

DATA INPUT/OUTPUT

Data to be written into a selected cell is latched into an on-chip register by a combination of \overline{WRITE} and \overline{CAS} while \overline{RAS} is active. The later of the signals $(\overline{WRITE}$ or $\overline{CAS})$ to make its negative transition is the strobe for the Data In (D_{IN}) register. This permits several options in the write cycle timing. In a write cycle, if the \overline{WRITE} input is brought low (active) prior to \overline{CAS} , the D_{IN} is strobed by \overline{CAS} and the set-up and hold times are referenced to \overline{CAS} . If the input data is not available at \overline{CAS} time or if it is desired that the cycle be a read-write cycle, the \overline{WRITE} signal will be delayed until after \overline{CAS} has

made its negative transition. In this "delayed write cycle" the data input set-up and hold times are referenced to the negative edge of $\overline{\text{WRITE}}$ rather than $\overline{\text{CAS}}$. (To illustrate this feature, D_{IN} is referenced to $\overline{\text{WRITE}}$ in the timing diagrams depicting the read-write and page mode write cycles while the "early write" cycle diagram shows D_{IN} referenced to $\overline{\text{CAS}}$).

Data is retrieved $\frac{\text{from}}{\text{WRITE}}$ the memory in a read cycle by maintaining $\frac{\text{WRITE}}{\text{WRITE}}$ in the inactive or high state throughout the portion of the memory cycle in which $\overline{\text{CAS}}$ is active (low). Data read from the selected cell will be available at the output within the specified access time.

DATA OUTPUT CONTROL

The normal condition of the Data Output (D_{OUT}) of the TMM41256C is the high impedance (open circuit) state. This is to say, anytime \overline{CAS} is at a high level, the D_{OUT} pin will be floating. The only time the output will turn on and contain either a logic 0 or logic 1 is at access time during a read cycle. D_{OUT} will remain valid from access time until \overline{CAS} is taken back to the inactive (high level) condition.

PAGE MODE

The "Page-Mode" feature of the TMM41256C allows for successive memory operations at multiple column locations of the same row address with increased speed without an increase in power. This is done by strobing the row address into the chip and maintaining the $\overline{\text{RAS}}$ signal at a logic 0 throughout all successive memory cycles in which the row address is common. This "Page Mode" of operation will not dissipate the power associated with the negative going edge of $\overline{\text{RAS}}$. Also, the time required for strobing in a new row address is eliminated, thereby decreasing the access and cycle times.

REFERSH

Refresh of the dynamic cell matrix is accomplished by performing a memory cycle at each of the 256 row address (Ao \sim A7) within each 4 millisecond time interval. Although any normal memory cycle will perform the refresh operation, this funciton is most easily accomplished with "RAS - only" cycles, RAS only refresh results in a substantial reduction in operating power. This reduction in power is reflected in the $I_{\rm CC3}$ specification.

HIDDEN REFRESH

An optional feature of the TMM41256C is that refresh cycles may be performed while maintaining valid data at the output pin. This is referred to as Hidden Refresh. Hidden Refresh is performed by holding $\overline{\text{CAS}}$ at V_{IL} and taking $\overline{\text{RAS}}$ high and after a specified precharge period (t_{RP}) , executing a " $\overline{\text{RAS}}$ - only" refresh cycle, but with $\overline{\text{CAS}}$ held low (see Figure below).

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 16 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1983 Toshiba Corporation

Static Random Access Memories

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD x 4 BIT STATIC RAM

N CHANNEL SILICON GATE DEPLETION LOAD

TMM314AP TMM314APL-1 TMM314AP-1 TMM314APL-1 TMM314AP-3 TMM314APL-3

DESCRIPTION

TMM314AP family is 1024 word x 4 bit high speed read write memories operated with 5 V single power supply. The memories with 6 Tr. cells are static in operation and require no clocks or refresh period and suitable for use in microprocessor application systems where high performance, low cost, simple interfacing are important design objectives

TMM314AP family is able to be connected to

TTL directly and to drive 1 STTL or 5 LSTTLS.

TMM314AP family is fabricated with N channel silicon gate depletion load type MOS technology by ion implantation for fast speed, stable performance and reliability.

The chip is moulded in the standard 18 pin plastic package of 0.3 inch width for low cost and high density assembly.

FEATURES

- Fully decoded 1024 word x 4 bit organization
- Static operation No clocks or refresh period
 Single 5V supply voltage Vcc = 5V ± 10%
- Easy memory expansion CS input
- Easy memory expansion CS input
- Three state output Wired OR tie capability
- Inputs and outputs directly TTL compatible
- Data input/output terminal is common
- Input protected All inputs have protection against static charge
- 2114 Type Pin compatible

 Low Power dissipation and Access time Power and Access time (maximum value)

	Access time	Power
TMM314AP-1	200 ns	550 mW
TMM314AP-3	300 ns	550 mW
TMM314AP	450 ns	550 mW
TMM314APL-1	200 ns	385 mW
TMM314APL-3	300 ns	385 mW
TMM314APL	450 ns	385 mW

PIN CONNECTION (TOP VIEW)

	5	
A6 [1	18 VCC
A5 [2	17 A7
A4 [3	16 A ₈
A3 [4	15 A9
A ₀ [5	14 1/01
A1 [6	13 1/02
A2 [12 I/O3
cs [11 1/04
GND	9	10 WE

PIN NAMES

$A_0 \sim A_3$	Column Address Inputs
$A_4 \sim A_9$	Row Address Inputs
$I/O_1 \sim I/O_4$	Data Input/Output
CS	Chip Select Input
WE	Write Enable Input
Vcc	Supply Voltage
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Supply Voltage	-0.5 ~ 7.0	V
V1/0	Input/Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0~70	°C
TSTG	Storage Temperature	−55 ~ 150	°C
TSOLDER	Soldering Temperature · Time	260 - 10	°C . sec
PD	Power dissipation (Ta = 70°C)	850	mW

DC RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	-	2.0	-	VCC	V
VIL	Input Low Voltage	-	-0.5	-	0.8	V
Vcc	Supply Voltage	-	4.5	5	5.5	V

DC CHARACTERISTICS (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.*	MAX.	UNIT	
IН	Input High Current	V _{IN} = 5.50 V		-	-	10	μΑ
IIL	Input Low Current	V _{IN} = 0 V		-	-	-10	μΑ
VOH	Output High Voltage	ISOURCE = -1.0 mA		2.4	2.8	-	V
VOL	Output Low Voltage	ISINK = 2.1 mA		-	0.15	0.4	V
ЮН	Output High Current	V _{OUT} = 2.4 V		-1.0	-5.5	-	mA
IOL	Output Low Current	V _{OUT} = 0.4 V		2.1	6.5	-	mA
ILO	Output Leakage Current	$\overline{CE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{OUT} = 0.4 \text{ V} \sim V_{CC}$	-	-	± 10	μΑ	
lee.	Supply Correct	TMM314A PL/PL-1/PL-3	25°C		50	64	mA
ICC1	Supply Current	IOUT = 0 mA	0°C	-	-	70	mA
ICC2 Supply	Supply Current	TMM314A P/P-1/P-3	25°C	-	70	90	mA
	Supply Current	IOUT = 0 mA	0°C	-	-	100	mA

^{*} Ta = 25°C, V_{CC} = 5V

AC CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 10%, C_L = 100pF, t_{f} , t_{f} \leq 10 ns)

READ CYCLE

CVMPOL	PARAMETER	TMM314AP-1/APL-1		TMM314AP-3/APL-3		TMM314AP/APL		UNIT
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNII
tRC	Read Cycle Time	200	-	300	-	450	_	ns
tACC	Access Time	-	200	-	300	-	450	ns
tco	Chip Select Time	_	70	-	100	_	100	ns
tcx	Output Active from CS	20	-	20	_	20	_	ns
top	Chip Deselect Time	0	40	0	80	0	100	ns
toh	Output Hold from Address Change	20	-	20	_	20	-	ns

WRITE CYCLE

SYMBOL	PARAMETER	TMM3144	TMM314AP-1/APL-1		TMM314AP-3/APL-3		TMM314AP/APL	
	PARAIVIE I ER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	- UNIT
twc	Write Cycle Time	200	-	300	-	450	-	ns
twp	Write Pulse Width	120	_	150	-	200	-	ns
twR	Write Recovery Time	0	_	0	-	0	_	ns
topw	Output High Z from WE	0	40	0	80	0	100	ns
t _{DS}	Data Setup Time	120	-	150	-	200	-	ns
tDH	Data Hold Tome	0	-	0	-	0	_	ns
t _{AW}	Address to Write Setup Time	30	_	30	- 1	30	-	ns

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = AC Ground	-	_	5	pF
COUT	Output Capacitance	Vout = AC Ground	-	-	5	pF

Note: This parameter is periodically sampled and not 100% tested.

TIMING WAVEFORMS

READ CYCLE

WRITE CYCLE

Note 1 : WE is high for a READ CYCLE.

2 : t_{WP} is measured from the latter of \overline{CS} or \overline{WE} going low to the earlier of \overline{CS} or \overline{WE} going high.

TYPICAL CHARACTERISTICS

OUTLINE DRAWINGS

Notes: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 18 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

©Mar., 1980 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD x 4 BIT STATIC RAM

TMM2114AP-12 TMM2114AP-15

DESCRIPTION

The TMM2114AP is a 4,096 bits static random access memory organized as 1024 words by 4 bits and operates from a single 5V power supply. Toshiba's high performance device technology provides both high speed and low power features with maximum operating current of 60mA and maximum access time of 120ns/150ns. The memories with 6Tr. cells are fully static in operation and require no clocks or refresh periods. Therefore the TMM2114AP is most

suitable for use in microcomputer peripheral memory where high performance, lower cost, simple interfacing are required.

The TMM2114AP is fabricated with N channel silicon gate depletion load type MOS technology by ion implantation for high speed, high performance and high reliability.

The chip is moulded in the standard 18 pin plastic package with 0.3 inch width.

FEATURES

- 1024 Word x 4 Bit organization
- · Fully static operation
- Single 5V supply voltage
- All inputs and outputs: Directly TTL compatible
- Three state output: Wired OR capability
- · Common data inputs and outputs

- 2114A type pin compatible
- Fast Access time and Low Operating Current (Max.)

	TMM2114AP-12	TMM2114AP-15
t _{ACC(ns)}	120	150
CC(mA)	60	60

 Input protected: All inputs have protection against static charge.

PIN CONNECTION (TOP VIEW)

		_	1
A ₆	1	18	b v _{cc}
A ₅	2	17	1 A7
A4 [3	16	D A8
A3 [4	15	A9
A ₀	5	14	1/01
Aı	6	13	1/02
A ₂ C	7	12	1/03
CS	8	11	1/04
GND	9	10	WE

PIN NAMES

$A_0 \sim A_3$	Column Address Inputs
$A_4 \sim A_9$	Row Address Inputs
1/01 ~ 1/04	Data Input/Output
CS	Chip Select Input
WE	Write Enable Input
Vcc	Supply Voltage
GND	Ground

BLOCK DIAGRAM

TRUTH TABLE

CS	WE	DIN	Dout	MODE
Н	*	*	High Impedance	Non-decode
L	Н	*	Data Output	Read
L	L	H/L	Data Input	Write

^{*} Lor H

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Supply Voltage	-0.5 ~ 7.0	V
V _{I/O}	Input/Output Voltage	−0.5 ~ 7.0	V
TOPR	Operating Temperature	0 ~ 70	°C
T _{STG}	Storage Temperature	−55 ~ 150	°C
TSOLDER	Soldering Temperature • Time	260 • 10	°C • sec
PD	Power Dissipation (Ta = 70°C)	850	mW

DC RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	-	V _{CC} +1.0	V
VIL	Input Low Voltage	-0.5	-	0.8	V
V _{CC}	Supply Voltage	4.5	5	5.5	V

DC CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.*	MAX.	UNIT
IIL	Input Leakage Current	V _{IN} = 0∨ ~ 5.5∨	-10	-	10	μΑ
VoH	Output High Voltage	ISOURCE = -1.0mA	2.4		-	V
VoL	Output Low Voltage	I _{SINK} = 2.1mA		_	0.4	V
I _{LO}	Output Leakage Current	$\overline{\text{CS}} = \text{V}_{\text{IH}} \text{ or } \overline{\text{WE}} = \text{V}_{\text{IL}}$ $\text{V}_{\text{OUT}} = 0.0 \text{V} \sim 5.5 \text{V}$	-10	-	10	μА
Icc	Supply Current	I _{OUT} = 0mA	-	-	60	mA

^{*} Ta = 25°C, V_{CC} = 5V

AC CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 10%, 1-TTL Gate & C_L = 100pF, t_r , $t_f \leq$ 10 ns)

READ CYCLE

CVMPOL	PARAMETER	TN	лМ2114AP	-12	TN	MM2114AP	-15	LINUT
SYMBOL	PARAMETER	MIN.	TYP.*	MAX.	MIN.	TYP.*	MAX.	UNIT
tRC	Read Cycle Time	120	-		150	_	_	ns
tACC	Access Time	-	-	120	_	-	150	ns
tco	Chip Select Time	-	-	70	-	-	70	ns
t _{CX}	Output Active from CS	10	-	-	10	-	-	ns
top	Deselect Time	0	-	35	0	-	40	ns
toh	Output Hold From Address Change	20	_	-	20	_	-	ns

^{*} Ta = 25°C, $V_{CC} = 5V$

WRITE CYCLE

SYMBOL	PARAMETER	TN	1M2114AP	-12	TN	M2114AP	-15	LINUT
STIVIBUL	PARAMETER	MIN.	TYP.*	MAX.	MIN.	TYP.*	MAX.	ns ns ns ns ns
twc	Write Cycle Time	120	_	_	150	-	-	ns
twp	Write Pulse Width	70	-	-	90	-	-	ns
twn	Write Recovery Time	0	-	-	0	_	-	ns
topw	Output High Z From WE	0	_	35	0	-	40	ns
tos	Data Setup Time	70	-	-	90	_	_	ns
t _{DH}	Data Hold Time	0	1-	-	0	-	_	ns
t _{AW}	Address to Write Setup Time	0	_	-	0	-	-	ns

^{*} Ta = 25°C, V_{CC} = 5V

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = AC Ground	_		5	pF
COUT	Output Capacitance	Vout = AC Ground	-	-	10	pF

Note: This parameter is periodically sampled and not 100% tested.

TIMING WAVEFORMS

READ CYCLE

WRITE CYCLE [1] *(1)

WRITE CYCLE [2] *(1)

Note *(1): A write occurs during the overlap of a low \overline{CS} and low \overline{WE} .

And two is specified as the logical 'AND' of \overline{CS} and \overline{WE} .

*(2): If the \overline{CS} low transition occurs simultaneously with or latter from \overline{WE} low transition, the output buffers remain in a high impedance state in this period.

OUTLINE DRAWINGS

Note: All dimensions are in millimeters. Each lead pitch is 2.54mm,

All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 18 leads.

Note: Toshiba does not assume any responsibility for use of any circuity described; no circuit patent licenses are implied and Toshiba reserve the right, at any time without notice, to change said circuitry,

© Feb., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

4096 WORD x 1 BIT STATIC RAM N CHANNEL SILICON GATE DEPLETION LOAD

TMM315D TMM315D-1

DESCRIPTION

TMM315D/TMM315D-1 are 4096 word x 1 bit read write memories operated with 5V single power supply. The memories are static in operation and require no clocks or refresh period. This device has two types in data access - address access and chip select access which are equal and very high speed. When $\overline{\text{CS}}$ goes high, this device is deselected and changes into the low power standby mode automatically, and keep its state during the period that $\overline{\text{CS}}$ is high. Accordingly, this device is suitable for use in

larger memory system which the majority of devices are deselected, and is suitable for use in cache memory required very high speed. TMM315D/TMM315D-1 are directly TTL compatible and its output can drive the TTL up to 5. TMM315D/TMM315D-1 are fabricated with N-channel silicon gate depletion load type technology for stable and high performance. The chip is mounted in the standard 18 pin package of 0.3 inch width for low cost purpose.

FEATURES

- Fully decoded 4096 word x 1 bit organization
- Static operation No clocks
- 5V single power supply
- Easy memory expansion CS input
- Standby feature − CS = VIH
- I/O separate
- Three state output
- · Directly TTL compatible

· Current and Access time (Maximum value)

PARAMETER	TMM315D-1	TMM315D
Active Current (Max.)	180 mA	160 mA
Standby Current (Max.)	30 mA	20 mA
Address Access time	55 ns	70 ns
Chip select Access time	55 ns	70 ns

- Pin to pin compatible i2147/i2147-3
- Inputs protected All inputs have protection against static charge.

PIN CONNECTION (TOP VIEW)

PIN NAMES

$A_0 \sim A_5$	Row Address inputs
$A_6 \sim A_{11}$	Column Address inputs
DIN	Data input
Роит	Data output
CS	Chip select input
WE	Write enable input
Vcc/GND	Power supply

BLOCK DIAGRAM

OPERATION MODE

CS	WE	Output	Power	Mode
Н	*	High-Impedance	edance Standby	
L	Н	Data out	Active	Read
L	L	High-Impedance Active		Write

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power supply voltage	−1.5 ~ 7.0	V
VIN, OUT	Input and output voltage	-1.5 ~ 7.0	V
Topr	Operating temperature	0 ~ 70	°C
Tstrg	Storage temperature	−55 ~ 150	°C
Tsolder	Soldering temperature · time	260 - 10	°C · sec
PD	Power dissipation (Ta = 70°C)	1.0	W
lout	DC output current	20	mA

DC OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input high voltage	_	2.0	-	6.0	V
VIL	Input low voltage		-1.0	_	0.8	V
Vcc	Power supply voltage		4.5	5.0	5.5	V

DC and OPERATING CHARACTERISTICS

Ta = $0 \sim 70$ °C, Vcc = $5.0V\pm 10\%$,unless otherwise noted

SYMBOL	PARAMETER	CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
Vон	Output high voltage	Isource =	4.0 mA	2.4	_	-	V
VOL	Output low voltage	Isink = 8 m	Д	-	-	0.4	V
Іон	Output high current	V _{OH} = 2.4V		-4.0	-	-	mA
loL	Output low current	Vol = 0.4V		8.0	_	-	mA
ILI	Input leakage current	VIN = 0 ~	Vcc	- Season	±0.01	± 10	μА
ILO	Output leakage current	$V_{OUT} = 0$ $\overline{CS} = V_{IH} \text{ or } \overline{V}$		_	±0.1	± 50	μА
i.e.	Icc Operating current CS = V1L output open	CS = VIL	TMM315D	-	-	160	mA
ICC		TMM315D-1	_	_	180	mA	
lan	Standby current	CS = VIH	TMM315D	:	_	20	mΑ
ISB	Standby current	output open	TMM315D-1	-	-	30	mA
	Deel	CS = VIH	TMM315D	_	_	50	mA
ISBP	Peak power on current	during power on	TMM315D-1	_	-	70	mA

^{*} Typical values are at Vcc = 5.0V, Ta = 25°C.

A.C. CHARACTERISTICS

Ta = $0 \sim 70$ °C, V_{CC} = 5V± 10%, unless otherwise noted.

READ CYCLE

SYMBOL	PARAMETER	TMM315D-1		TMM315D		LINUT
		MIN.	MAX.	MIN.	MAX.	UNIT
tRC	Read cycle time	55	-	70	_	ns
tACC	Address access time	_	55	-	70	ns
tco ₁	Chip select access time 1	_	55	-	70	ns
t _{CO2}	Chip select access time 2	_	65	-	80	ns
toH	Output hold from address change	5	-	5	-	ns
tLZ	Chip selection to output in low Z	10		10	-	ns
tHZ	Chip deselection to output in high Z	0	40	0	40	ns
tPU	Chip selection to power up time	0	-	0	-	ns
tPD	Chip deselection to power down time	-	30	_	30	ns

WRITE CYCLE

SYMBOL	PARAMETER	TMM315D-1		TMM315D		LINUT
STIVIBUL		MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write cycle time	55	_	70	-	ns
tcw	Chip selection to end of write	45	_	55	_	ns
taw	Address valid to end of write	45	-	55	-	ns
tas	Address set up time	0	-	0	-	ns
twp	Write pulse width	35	-	40	-	ns
twn	Write recovery time	10	_	15	-	ns
tDS	Data set up time	25	_	30	-	ns
tDH	Data hold time	10	-	10	_	ns
topw	Write enable to output in high Z	0	30	0	35	ns
two	Output active from end of write	0	_	0	_	ns

AC TEST CONDITIONS

Input pulse levels	0 ~ 3.5V
Input rise and fall times	10 ns
Input and output timing reference levels	1.5V
Output load	See Fig. 1

CAPACITANCE (Ta = 25°C, f = 1.0 MHz)

SYMBOL	PARAMETER	MAX.	UNIT
CIN	Input capacitance	5	pF
Cour	Output capacitance	7	pF

This parameter is periodically sampled and is not 100% tested.

Fig. 1 Output load

TIMING WAVEFORMS

- Note: (1) Addresses are to valid prior to or coincident with CS transition low.
 - (2) t_{CO1}: Chip is deselected for a time that is greater than 55 ns prior to selection. t_{CO2}: Chip is deselected for a time that is less than 55 ns prior to selection.

OUTLINE DRAWINGS

- Note. 1. Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 18 leads.
 - 2. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Aug., 1980 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2048 WORD X 8 BIT STATIC RAM

N CHANNEL SILICON GATE DEPLETION LOAD

TMM2016P/D TMM2016P-1/D-1 TMM2016P-2/D-2

DESCRIPTION

The TMM2016P/D is a 16384-bit static random access memory organized as 2048-words by 8-bits and operates from a single 5V power supply. Common 8-bit input/output, output enable (\$\overline{OE}\$) and pin-compatibility with 2716 type EPROM (TMM323D) allow a wide application in microprocessor peripheral memory.

In memory expansion, low power application is possible by using the chip select input (\overline{CS}). When \overline{CS}

is in V_{IH} level, the device is in low power standby mode.

TMM2016P/D is fabricated with ion implanted N-channel silicon gate technology. This technology provides high performance and high reliability. The TMM2016P/D is offered in both standard 24 pin plastic and cerdip packages, o.6 inch in width.

FEATURES

- Pin compatible with 2716 type EPROM
- Single 5V supply $-V_{CC} = 5V \pm 10\%$
- · Access time and current

	TMM2016P/D	TMM2016P-1/D-1	TMM2016P-2/D-2
Access time (MAX.)	150 ns	100 ns	200 ns
Operating current (MAX.)	100mA	120mA	140mA
Standby current (MAX.)	15mA	15mA	30mA

Power down feature — CS

- Output buffer control − OE
- Easy memory expansion CS
- Static operation No clock or timing strobe required
- Directly TTL compatible All inputs and outputs
- · Common data input and output
- Three state outputs Wired OR capability
- Inputs protected All inputs have protection against static charge.

PIN CONNECTION

PIN NAMES

SYMBOL	NAME		
A ₀ ~ A ₃	Column Address Inputs		
A ₄ ~ A ₁₀	Row Address Inputs		
CS	Chip Select Input		
WE	Write Enable Input		
1/01~1/08	Data Input/Output		
ŌE	Output Enable Input		
Vcc	Power (5V)		
GND	Ground		

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT	
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V	
VIN, OUT	Input and Output Voltage	-0.5 ~ 7.0	V	
TOPR.	Operating Temperature	0 ~ 70	°C	
T _{STG} .	Storage Temperature	−55 ~ 150	°C	
TSOLDER	Soldering Temperature · Time	260 - 10	°C · sec	
PD	Power Dissipation (Ta = 70°C)	1.0	W	

D.C. RECOMMENDED OPERATING CONDITIONS (Ta = $0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	_	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.5	_	0.8	V
Vcc	Supply Voltage	4.5	5.0	5.5	V

D.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	COND	ITIONS	MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$V_{IN} = 0 \sim 5.5V$		-	-	±10	μΑ
Гон	Output High Current	V _{OUT} = 2.4V		-1.0	-	-	mA
loL	Output Low Current	V _{OUT} = 0.4V		2.1	-	-	mA
V _{OH}	Output High Voltage	$I_{OUT} = -1.0 \text{mA}$		2.4	-	-	V
VOL	Output Low Voltage	I _{OUT} = 2.1mA		-	-	0.4	V
I _{LO}	Output Leakage Current	$\overline{CS} = V_{IH} \text{ or } \overline{WE} = V_{OUT} = 0 \sim V_{CC}$	V _{IL} or \overline{OE} = V _{IH}	-	-	±10	μΑ
*1	Peak Power-on Current	CS = V _{CC}	TMM2016P/P-1/D/D-1	_	_	30	mA
*I _{SBP}	reak rower-on current	I _{OUT} = 0mA during power on	TMM2016P-2/D-2	_	-	45	mA
V	0 1 0	CS = VIH	TMM2016P/P-1/D/D-1	-	_	15	mA
SB	Standby Current	I _{OUT} = 0mA	TMM2016P-2/D-2	-	-	30	mA
		70	TMM2016P/D	_	-	100	mA
Icc	Operating Current	CS = V _{IL}	TMM2016P-1/D-1	_	_	120	mA
		I _{OUT} = 0mA	TMM2016P-2/D-2	_	_	140	mA

^{*}Note: ICC exceeds ISB maximum during power on. A pull-up resistor to VCC on the CS input is required to keep the device deselected; otherwise, power-on current approaches ICC active.

* CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. Ground	5	pF
Cout	Output Capacitance	V _{OUT} = A.C. Ground	10	pF

^{*} Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$) READ CYCLE

SYMBOL	PARAMETER	TMM2	2016P/D	TMM20	16P-1/D-1	TMM20	16P-2/D-2	LIMIT
2 I MBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
t _{RC}	Read Cycle Time	150	-	100	-	200	-	ns
tACC	Address Access Time	1-	150	-	100	-	200	ns
tco	Chip Select Access Time	-	150	-	100	-	200	ns
toE	Output Enable Time	_	55	-	35	-	55	ns
toH	Output Hold Time from Address Change	10	-	10	-	10	-	ns
tCLZ	Output in Low-Z from CS	10	-	10	-	10	-	ns
tcHZ	Output in High-Z from CS		55	-	40		55	ns
toLZ	Output in Low-Z from OE	5	-	5	-	5	-	ns
toHZ	Output in High-Z from OE	-	50	-	35	-	50	ns
tpu	Chip Selection to Power up Time	0	-	0	-	0	-	ns
tpD	Chip Deselection to Power down Time	-	60	-	50	-	60	ns

WRITE CYCLE

SYMBOL	PARAMETER	TMM2	016P/D	TMM20	16P-1/D1	TMM20	16P-2/D-2	LINUT
STIMBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write Cycle Time	150	-	100	-	200	-	ns
tcw	Chip Selection to End of Write	120	_	90	-	150	-	ns
tas	Address Set up Time	20	-	20	-	20	-	ns
twp	Write Pulse Width	100	-	70	-	120	-	ns
t _{WR}	Write Recovery Time	10	-	10	-	10	-	ns
t _{DS}	Data Set up Time	60	-	40	_	60	_	ns
t _{DH}	Data Hold Time	15	-	10	-	15	-	ns
twLZ	Output in Low-Z from WE	5	-	5	-	5		ns
twnz	Output in High-Z from WE	_	50	-	35	-	50	ns

A.C. TEST CONDITIONS

Input Pulse Levels	0~3.5 V
Input Rise and Fall Times	10ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Note

Note: Output Load - 1TTL Gate and C_L = 100pF (Including scope and jig)

TIMING WAVEFORMS

* Note: READ CYCLE (1) - $\overline{\text{WE}}$ is high for Read Cycle. Device is continuously selected, $\overline{CS} = V_{1L}$.

READ CYCLE (2) All addresses are valid prior to or coincident with \overline{CS} transition low.

WE is high for Read Cycle. $\overline{OE} = V_{1L}$.

WRITE CYCLE (2) $\overline{OE} = V_{1L}$.

OUTLINE DRAWINGS

Plastic package

Cerdip package

Note: Each lead pitch is 2,54 mm. All leads are located within 0,25 mm of their true longitudinal position with respect to No, 1 and No, 24 leads.

All dimensions are in millimeters

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are impiled, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Oct., 1981 Toshiba Corporation

PRELIMINARY

Characteristics are subject to change without notice.

TOSHIBA MOS MEMORY PRODUCTS

2,048 WORD x 8 BIT STATIC RAM

TMM2016AP-90 TMM2016AP-12 TMM2016AP-10 TMM2016AP-15

DESCRIPTION

The TMM2016AP is a 16,384 bits high speed and low power static random access memory organized as 2,048 words by 8 bits and operates from a single 5V supply. Toshiba's high performance device technology provides both high speed and low power features with a maximum access time of 90ns/100ns/120ns/150ns and maximum operating current of 80mA/65mA/65mA/65mA. When CS is a logical

high, the device is placed in a low power standby mode in which maximum standby current is 7mA. Thus the TMM2016AP is most suitable for use in microcomputer peripheral memory where the low power applications are required. The TMM2016AP is fabricated with ion implanted N channel silicon gate MOS technology for high performance and high reliability.

FEATURES

· Access Time and Current

Parameter Part Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)
TMM2016AP-90	90ns	80mA	7mA
TMM2016AP-10	100ns	65mA	7mA
TMM2016AP-12	120ns	65mA	7mA
TMM2016AP-15	150ns	65mA	7mA

- Single 5V Power Supply
- Fully Static Operation
- Power Down Feature: CS
- Output Buffer Control: OE
- Three Stage Outputs
- All Inputs and Outputs: Directly TTL Compatible
- Inputs protected: All inputs have protection against static charge.

PIN CONNECTION

	_	7 /		1
A7 [1	0	24	□ V _{CC}
A ₆ □	2		23	□ A ₈
A ₅	3		22	□ A ₉
A ₄	4		21	□ WE
A ₃	5	5	20	D OE
A ₂	6	Ē	19	DA10
AIC	7	>	18	CS
A ₀	8	(TOP VIEW)	1.7	1/08
1/01	9	_	16	1/07
1/02	10		15	1/06
1/03 [11		14	1/05
GNDC	12		13	1/04

PIN NAMES

SYMBOL	NAME	
$A_0 \sim A_3$	Column Address Inputs	
$A_4 \sim A_{10}$	Row Address Inputs	
CS	Chip Select Input	
WE	Write Enable Input	
1/01 ~ 1/08	Data Input/Output	
ŌĒ	Output Enable Input	
Vcc	Power (5V)	
GND	Ground	

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
VIN, VOUT	Input/Output Voltage	-0.5 ~ 7.0	V
Topr.	Operating Temperature	0~70	°C
T _{stg.}	Storage Temperature	-55 ~ 150	°C
Tsolder	Soldering Temperature • Time	260 • 10	°C • sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	_	V _{CC} +1.0	V
VIL	Input Low Voltage	-0.5	_	0.8	V
Vcc	Supply Voltage	4.5	5.0	5.5	V

D.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5.0$ V $\pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
111	Input Leakage Current	V _{IN} = 0V ~ 5.5V	-10	_	10	μΑ
VoH	Output High Voltage	I _{OUT} = -1.0mA	2.4	_	-	V
VoL	Output Low Voltage	I _{OUT} = 2.1mA	-	_	0.4	V
ILO	Output Leakage Current	$\overline{CS} = V_{IH}$ or $\overline{WE} = V_{IL}$ or $\overline{OE} = V_{IH}$, $V_{OUT} = 0V \sim 5.5V$	-10	-	10	μΑ
I _{SBP}	Peak Power-on Current	CS = V _{CC} , I _{OUT} = 0mA	-	-	30	mA
I _{SB}	Standby Current	CS = V _{IH} , I _{OUT} = 0mA	-	_	7	mA
I _{CC1}	Operating Current TMM2016AP-10/-12/-15	CS = V _{IL} , I _{OUT} = 0mA	-	-	65	mA
I _{CC2}	Operating Current TMM2016AP-90	CS = V _{IL} , I _{OUT} = 0mA	-	-	80	mA

CAPACITANCE* (Ta = 25°C, f = 1.0 MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. Ground	5	pF
Cour	Output Capacitance	V _{IN} = A.C. Ground	10	pF

^{*} Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = 0 \sim 70 $^{\circ}$ C, V_{CC} = 5V \pm 10%)

READ CYCLE

SYMBOL	DADAMETER	TMM20	16AP-90	TMM20	16AP-10	TMM20	16AP-12	TMM20	16AP-15	UNIT
STIVIBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
tRC	Read Cycle Time	90	-	100	-	120	-	150	_	ns
tACC	Address Access Time	-	90	2-3	100	-	120	_	150	ns
tco	Chip Select Access Time		90	-	100	-	120	->	150	ns
toE	Output Enable Time	-	35	-	35	_	50	_	55	ns
t _{OH}	Output Data Hold Time from Address Change	10	-	10	_	10	-	10	-	ns
tCLZ	Output in Low-Z from CS	10	-	10	-	10	-	10	_	ns
tCHZ	Output in High-Z from CS	-	40	_	40	_	40	:-	55	ns
tolz	Output in Low-Z from OE	5	-	5	-	5	-	5	-	ns
toHZ	Output in High-Z from OE	-	35		35	-	35	-	50	ns
tpu	Chip Selection to Power Up Time	0	-	0	-	0	-	0	-	ns
t _{PD}	Chip Deselection to Power Down Time	-	50	-	50	-	60	-	60	ns

WRITE CYCLE

SYMBOL	PARAMETER	TMM20	16AP-90	TMM20	16AP-10	TMM20	16AP-12	TMM20	16AP-15	
SYMBOL	FARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write Cycle Time	90	-	100	-	120	-	150	-	ns
tcw	Chip Selection to End of Write	70	-	80	-	100	-	120	-	ns
t _{AS}	Address Set up Time	20	-	20	-	20	-	20	-	ns
t _{WP}	Write Pulse Width	60	-	70	-	85	-	100	-	ns
t _{WR}	Write Recovery Time	0	-	0	-	0	-	0	-	ns
t _{DS}	Data Set up Time	35	-	40	-	50	-	60	-	ns
tDH	Data Hold Time	0	-	0	-	0	_	0		ns
twLZ	Output in Low-Z from WE	5	-	5	-	5	-	5	-	ns
twHZ	Output in High-Z from WE	-	25	-	30	-	35	-	50	ns

A.C. TEST CONDITIONS

Input Pulse Levels	0 ~ 3.5V
Input Rise and Fall Time	10 ns
Input and Output Reference Levels	1.5V
Output Load	1 TTL Gate & C _L = 100pF

TIMING WAVEFORMS

(B) READ CYCLE [2] (1)(2)

(C) WRITE CYCLE [1] (3)

Note: (1) The WE is high for read cycle.

Device is continuously selected, $\overline{CS} = V_{IL}$ in read cycle [1].

- (2) All address are valid perior to or simultaneously with $\overline{\text{CS}}$ transistions.
- (3) A write occurs during the overlap of low CS and low WE.

The t_{CW} is specified as the time from the chip selection to end of write in write cycle, and the t_{WP} is specified as the overlap time of low \overline{CS} and low \overline{WE} .

OE is allowed to be low or high level in write cycle,

If the OE is high, the output buffers remain in a high impedance state in this period.

- (4) If the $\overline{\text{CS}}$ low transistion occurs simultaneously with or latter to the $\overline{\text{WE}}$ low transition, the output buffers remain in a high impedance state in this period.
- (5) If the $\overline{\text{CS}}$ high transition occurs simultaneously with $\overline{\text{WE}}$ high transition, the output buffers remain in a high impedance state in this period.

These parameters are specified as follows and measured by using the load shown in Fig. 1.

(A) t_{CLZ}, t_{OLZ}, t_{WLZ} Output Enable Time CS. OF WE (A) (B) 0.15V HIGH IMPEDANCE HIGH IMPEDANCE 0.15V DOUT 0.15V 0.15V 5V < 1.8KΩ DOUT O-1.0KΩ C_L=30pF

OUTLINE DRAWINGS

Unit: mm

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Feb., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2,048 WORD x 8 BIT STATIC RAM

TMM2015AP-90 TMM2015AP-12 TMM2015AP-10 TMM2015AP-15

DESCRIPTION

The TMM2015AP is a 16,384 bits high speed and low power static random access memory organized as 2,048 words by 8 bits and operates from a single 5V supply. Toshiba's high performance device technology provides both high speed and low power features with a maximum access time of 90ns/100ns/120ns/150ns and maximum operating current of 80mA/65mA/65mA/65mA. When CS is a logical

high, the device is placed in a low power standby mode in which maximum standby current is 7mA. Thus the TMM2015AP is most suitable for use in microcomputer peripheral memory where the low power applications are required. The TMM2015AP is fabricated with ion implanted N channel silicon gate MOS technology for high performance and high reliability.

FEATURES

Access Time and Current

Parameter Part Number	Access Time (Max.)	Operating Current (Max.)	Standby Current (Max.)
TMM2015AP-90	90ns	80mA	7mA
TMM2015AP-10	100ns	65mA	7mA
TMM2015AP-12	120ns	65mA	7mA
TMM2015AP-15	150ns	65mA	7mA

- High Density Assembly Capability: 0.3 inch package (24 pins plastic DIP)
- Single 5V Power Supply
- Fully Static Operation
- Power Down Feature: CS
- Output Buffer Control: OE
- Three State Outputs
- All Inputs and Outputs: Directly TTL Compatible
- Inputs protected: All inputs have protection against static charge.

PIN CONNECTION

1		\neg		1
A7 [1	0	24	□ V _{CC}
A ₆	2		23	□ A ₈
A ₅			22	□ A ₉
A ₄	4		21	□ WE
A3 [5	9	20	OE
A ₂	6	VIEW)	19	D A10
AI	7	>	18	CS
A ₀	8	(TOP	1.7	1/O8
1/01	9		16	1/07
1/02 [10		15	1/06
1/03	11		14	1/05
GND	12		13	1/04
-	1			

PIN NAMES

SYMBOL	NAME			
$A_0 \sim A_3$	Column Address Inputs			
$A_4 \sim A_{10}$	Row Address Inputs			
CS	Chip Select Input			
WE	Write Enable Input			
1/01 ~ 1/08	Data Input/Output			
ŌĒ	Output Enable Input			
Vcc	Power (5V)			
GND	Ground			

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
VIN. VOUT	Input/Output Voltage	-0.5 ~ 7.0	V
Topr.	Operating Temperature	0~70	°C
Tstq. Storage Temperature		-55 ~ 150	°C
Tsolder	Soldering Temperature • Time	260 • 10	°C • sec
PD	Power Dissipation (Ta = 70°C)	0.7	W

D.C. RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	-	V _{CC} +1.0	V
V _{IL}	Input Low Voltage	-0.5	-	0.8	V
Vcc	Supply Voltage	4,5	5.0	5.5	V

D.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5.0$ V ± 10%)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	V _{IN} = 0V ~ 5.5V	-10	-	10	μΑ
VoH	Output High Voltage	I _{OUT} = -1.0mA	2.4	_	-	V
VoL	Output Low Voltage	I _{OUT} = 2.1mA	_	-	0.4	V
LO	Output Leakage Current	$\overline{CS} = V_{IH}$ or $\overline{WE} = V_{IL}$ or $\overline{OE} = V_{IH}$, $V_{OUT} = 0V \sim 5.5V$	-10	-	10	μА
I _{SBP}	Peak Power-on Current	CS = V _{CC} , I _{OUT} = 0mA	-	_	30	mA
ISB	Standby Current	CS = VIH, IOUT = OmA	-	-	7	mA
I _{CC1}	Operating Current TMM2015AP-10/-12/-15	CS = V _{IL} , I _{OUT} = 0mA	-	-	65	mA
I _{CC2}	Operating Current TMM2015AP-90	CS = V _{IL} , I _{OUT} = 0mA	-	-	80	mA

CAPACITANCE* (Ta = 25°C, f = 1.0 MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. Ground	5	pF
Cout	Output Capacitance	V _{IN} = A.C. Ground	10	pF

^{*} Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 10\%$)

READ CYCLE

CVAADOL	DADAMETER	TMM20	15AP-90	TMM20	15AP-10	TMM20	15AP-12	TMM20	15AP-15	1.15.117
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
tRC	Read Cycle Time	90	-	100	_	120	-	150	-	ns
tACC	Address Access Time	-	90	_	100	-	120	-	150	ns
tco	Chip Select Access Time		90	-	100	-	120	-	150	ns
toE	Output Enable Time	-	35	-	35		50	_	55	ns
toH	Output Data Hold Time from Address Change	10	=	10		10	-	10	-	ns
t _{CLZ}	Output in Low-Z from CS	10	-	10	_	10	-	10	_	ns
tCHZ	Output in High-Z from CS	-	40	_	40	-	40	-	55	ns
tolz	Output in Low-Z from OE	5	_	5	_	5	-	5	-	ns
toHZ	Output in High-Z from OE	-	35	-	35	-	35	-	50	ns
tpU	Chip Selection to Power Up Time	0	-	0	-	0	-	0	-	ns
t _{PD}	Chip Deselection to Power Down Time	-	50	-	50		60	_	60	ns

WRITE CYCLE

CVMDOI	DADAMETED	TMM2015AP-90		TMM2015AP-10		TMM2015AP-12		TMM2015AP-15		LINIT
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
twc	Write Cycle Time	90	_	100		120	_	150	_	ns
tcw	Chip Selection to End of Write	70	-	80	-	100	-	120	-	ns
t _{AS}	Address Set up Time	20	-	20	-	20	-	20	-	ns
t _{WP}	Write Pulse Width	60		70	_	85	-	100	=	ns
twR	Write Recovery Time	0	_	0		0	-	0	_	ns
t _{DS}	Data Set up Time	35	-	40		50	-	60	-	ns
t _{DH}	Data Hold Time	0	-	0	-	0	-	0	-	ns
twLZ	Output in Low-Z from WE	5	-	5	-	5	-	5	-	ns
twHZ	Output in High-Z from WE	-	25	_	30	-	35	-	50	ns

A.C. TEST CONDITIONS

Input Pulse Levels	0~3.5V
Input Rise and Fall Time	10 ns
Input and Output Reference Levels	1.5V
Output Load	1 TTL Gate & C _L = 100pF

TIMING WAVEFORMS

(B) READ CYCLE [2] (1)(2)

(C) WRITE CYCLE [1] (3)

- Note: (1) The WE is high for read cycle.
 - Device is continuously selected, $\overline{CS} = V_{II}$ in read cycle [1].
 - (2) All addresses are valid prior to or simultaneously with CS transitions.
 - (3) A write occurs during the overlap of low CS and low WE.

The tow is specified as the time from the chip selection to end of write in write cycle, and the twp is specified as the overlap time of low CS and low WE.

OE is allowed to be low or high level in write cycle,

If the OE is high, the output buffers remain in a high impedance state in this period,

- (4) If the CS low transition occurs simultaneously with or latter to the WE low transition, the output buffers remain in a high impedance state in this period.
- (5) If the CS high transition occurs simultaneously with WE high transition, the output buffers remain in a high impedance state in this period.

These parameters are specified as follows and measured by using the load shown in Fig. 1.

Fig. 1 Output load condition for enable and disable time measurement.

OUTLINE DRAWINGS

Note: Each lead pitch is 2,54mm. All leads are located within 0,25mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Feb., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2,048 WORD x 8 BIT STATIC RAM

N-CHANNEL SILICON GATE MOS PROCESS

TMM2018D-45 TMM2018D-55

DESCRIPTION

The TMM2018D is a 16,384 bits high speed and low power static random access memory organized as 2,048 words by 8 bits and operates from a single 5V supply. Toshiba's high performance device technology provides both high speed and low power features with a maximum access time of 45ns/55ns and maximum operating current of 150mA. When $\overline{\text{CS}}$ goes high, the device is deselected and placed in a low power standby current is 20mA.

Thus the TMM2018D is most suitable for use in cache memory and high speed storage. The TMM-2018D is offered in 24 pin standard cerdip package with 0.3 inch width for high density assembly.

The TMM2018D is fabricated with ion implanted N channel silicon gate MOS technology for high performance and high reliability.

FEATURES

Fast access time

 $t_{ACC} = 45 \text{ ns}$: TMM2018D-45 $t_{ACC} = 55 \text{ ns}$: TMM2018D-55

Low power dissipation

 $I_{CC} = 150 \text{mA}$ $I_{SB} = 20 \text{mA}$

Single 5V power supply

· Fully static operation

All inputs and outputs

Directly TTL compatible

Power down feature: CS = V_{IH}

Output buffer control: OE

Three state outputs

Inputs protected: All inputs have protection against static charge.

 Package: 24 pin standard cerdip package, 0.3 inch width

PIN CONNECTION

		~		
A7	1		24	J Vcc
A ₆	2		23	JA8
A ₅	3		22	☐ A9
A4 C	4		21	J WE
A3 [5	3	20	OE
A ₂	6	VIEW)	19	□ A10
A ₁	7		18	□ cs
A ₀	8	(TOP	17	1/08
1/01	9		16	1/07
1/02	10		15	1/06
1/03	11		14	1/05
GND	12		13	1/04

BLOCK DIAGRAM

PIN NAMES

$A_0 \sim A_{10}$	Address Inputs
1/01 ~ 1/08	Data Input/Output
CS	Chip Select Input
WE	Write Enable Input
ŌE	Output Enalbe Input
Vcc	Power (+5V)
GND	Ground

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	−3.5 ~ 7.0	V
VIN	Input Voltage	−3.5 ~ 7.0	V
V _{I/O}	Input/Output Voltage	- 3.5 ∼ 7.0	V
Topr	Operating Temperature	0~70	°C
T _{strq}	Storage Temperature	−55 ~ 150	°C
T _{solder}	Soldering Temperature - Time	260 - 10	°C - sec
PD	Power Dissipation	0.9	W
lout	D.C. Output Current	20	mA

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	_	V _{CC} + 1.0	V
VIL	Input Low Voltage	-3.0	-	0.8	V
Vcc	Power Supply Voltage	4.75	5.0	5.25	V

D.C. CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 5%)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
IL	Input Current	$V_{IN} = 0 \sim V_{CC}$	_	±10	μΑ
V _{OH}	Output High Voltage	I _{OH} = -4.0mA	2.4	-	V
VOL	Output Low Voltage	I _{OL} = 8.0 mA	-	0.4	V
I _{LO}	Output Leakage Current	$\frac{V_{OUT} = 0}{CS} = V_{IH}$	-	±50	μΑ
lcc	Operating Current	CS = VIL	-	150	mA
I _{SB}	Standby Current	CS = VIH	-	20	mA
ISBP	Peak Power-on Current	$\overline{\text{CS}} = V_{\text{CC}}, V_{\text{CC}} = 0 \sim 5.5 \text{V}$	-	40	mA

CAPACITANCE* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	Input Capacitance V _{IN} = OV		
Cour	Output Capacitance	V _{OUT} = OV	10	pF

^{*}Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 5%)

Read Cycle

SYMBOL	PARAMETER	TMM20)18D-45	TMM20	018D-55	LINIE
SYMBOL	PARAMETER	Min.	Max.	Min.	2018D-55 Max. 55 55 25 20	UNI.
tRC	Read Cycle Time	45		55		
tACC	Address Access Time		45		55	
tco	Chip Select Access Time		45		55	
toe	Output Enable to Output Valid		20		25	
t _{CLZ}	Chip Selection to Output in Low-Z	5		5		
tCHZ	Chip Deselection to Output in High-Z	0	20	0	20	ns
toLZ	Output Enable to Output in Low-Z	0		0		
tohz	Output Disable to Output in High-Z	0	15	0	20	
^t OH	Output Data Hold Time	5		5		
tpu	Chip selection to Power Up Time	0		0		
tpD	Chip Deselection to Power Down Time		30		30	

Write Cycle

CVMDOI	DADAMETER	TMM20)18D-45	TMM20	18D-55	UNIT
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	UNI
twc	Write Cycle Time	45		55		
tcw	Chip Selection to End of Write	40		50		
tas	Address Set up Time	0		0		
twp	Write Pulse Width	35		40		
twn	Write Recovery Time	0		0		ns
twLZ	WE to Output in Low-Z	0		0		
twHZ	WE to Output in High-Z	0	15	0	20	
t _{DS}	Data Set up Time	20		20		
tDH	Data Hold Time	0		0		

A.C. TEST CONDITIONS

Input Pulse Levels	0 ~ 3.5V
Input Rise and Fall Times	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Fig. 1

Fig. 1 Output Load

TIMING WAVEFORMS

Read Cycle 1. $(\overline{WE} = V_{IH}, \overline{CS} = V_{IL})$

Read Cycle 2. (WE = VIH, OE = VIL)

Write Cycle 1.

Write Cycle 2.

Note:

- 1. In read cycle 2, all addresses are valid prior to or coincident with $\overline{\text{CS}}$ transition low.
- 2. The Operating temperature (Ta) is guaranteed with transverse air flow exceeding 400 linear feet per minute.
- 3. During the period of selected state ($\overline{\text{CS}} = V_{1L}$), all address inputs must not be in a high impedance state.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their longitudinal position with respect to No. 1 and No. 24 leads.

CMOS Static Random Access Memories

CMOS Static Random Access Memories

4 KBit CMOS STATIC RAM COMPARISON TABLE

1K x 4 CMOS STATIC RAM

	Device Number			TC5514A	AP.				TC5513	AP	
	Pin Name Mode	CE	R/W	Addresses	1/01~4	Power	CE	R/W	Addresses	1/01~4	Power
OPERATION MODE	WRITE	L	L	Valid	DIN	IDDO	L	L	Valid	DIN	IDDO
	READ	L	Н	Valid	Dout	IDDO	L	Н	Valid	Dout	IDDO
	STANDBY	Н	*	Fixed 'H' or 'L'	High-Z	IDDS	Н		*	High-Z	IDDS
	H • Transition High-Z I _{DDO}										
Difference in o	control function			Address Buffers nsition occur, ti	he device is ac	ctivated			Address Buffers ess transition oc L, the device	cour under the	9
	control function		Age address tra	Buffers nsition occur, the		ctivated 200 ns		A ₉ when addrition of CE	Address Buffers	ccur under the is activated.	e 200 ns

16KBit CMOS STATIC RAM COMPARISON TABLE

PIN CONFIGURATION

OPERATION MODE

98

TC5517AP TC5518BP Device Number TC5516AP TC5517BP 1~8, 22 1~8, 22 1~8, 22 9~11 9~11 9~11 18 20 23, 19 | 13~17 23, 19 23, 19 | 13~17 Power Power Power CE 2 Mode CE₂ R/W OE R/W A0~A10 1/01~8 CE, R/W A0~A10 1/01~8 A0~A10 1/01~8 L Valid DIN L L L L Valid DIN IDDO Valid DIN READ L H Valid DOUT IDDO Ĺ Н Valid DOUT Ippo L L H Valid DOUT IDDO High-Z STANDBY 1 H * H High-Z * * High-Z H High-Z H IDDS H High-Z IDDS * × IDDS OUTPUT L H * High-Z DDO DESELECT

DATA RETENTION CHARACTERISTICS (Ta = -30 ~ 85°)

SYMBOL	PARAMETER	CONDITIONS	Min.	Max.	UNIT
V_{DR}	Data Retention Voltage	0V ≤ CE ≤ 0.2V	2.0	5.5	V
I _{DDS}	Data Retention Current	or $V_{DD}-0.2V \le CE \le V_{DD}*(3)$		Note (1)	μА
tCDR	Chip Deselection to Data Retention Time		0		μS
t _R	Recovery Time		t _{RC} Note(2)	_	μS

Note (1): Refer to IDDS specification in individual data sheet.

(2): Read cycle time.

TIMING CHART

Note (3) : For 16K Bit CMOS RAM, V_{DD} =0.5V $\stackrel{<}{=}$ \overline{CE} $\stackrel{<}{=}$ V_{DD} Details are specified in TC5516/17/18 data sheets.

AND THE EXPRESSION WAS ARRESTED AND AND ADDRESS.

TOSHIBA MOS MEMORY PRODUCTS

256 WORD x 4 BIT CMOS RAM

TC550 | P/- | TC550 | D/- |

DESCRIPTION

The TC5501P/D is a fully static read write memory organized as 256 words by 4 bits using CMOS technology. Because of ultra low power dissipation, the TC5501P/D can be used as battery operated portable memory system and also as a nonvolatile memory with battery back up. The TC5501P/D operates from a single 5V power supply with a static operation, so that the no refresh periods are required. This simplifies the power supply circuit design.

The three state outputs simplify the memory expansion making the TC5501P/D suitable for use in a microprocessor peripheral memory. Since the minimum data retention voltage is 2V, the battery back up system needs only simple circuit. By using Toshiba's original C²MOS technology, the device circuitry is not only simplified but wide operating margin and noise margin are also realized.

The TC5501P/D is offered in standard 22 pin plastic and cerdip packages, 0.4 inch in width.

FEATURES

- Low Power Dissipation
 - 55µW (MAX.) STANDBY
 83mW (MAX.) OPERATING
- Single 5V Power Supply
- Data Retention Voltage 2V to 5.5V
- Package
 - Plastic DIP: TC5501P
 Cerdip DIP: TC5501D

PIN CONNECTION

PIN NAMES

$A_0 \sim A_7$	Address Inputs
R/W	Read Write Input
CE ₁ , CE ₂	Chip Enable Inputs
DIN1~4	Data Inputs
DOUT1 ~4	Data Outputs
OD	Output Disable Input
V _{DD} /GND	Power Supply Terminals

Fully static operation

Three State Output

Input/output, TTL Compatible

Access Time

TC5501P/D ; $t_{ACC} \le 450ns$ (MAX.) TC5501P-1/D-1; $t_{ACC} \le 650ns$ (MAX.)

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNITS
V _{DD}	Power Supply Voltage	-0.3 ~ 7.0	V
VIN	Input Voltage	$-0.3 \sim V_{DD} + 0.3$	V
Vout	Output Voltage	0 ~ V _{DD}	V
PD	Power Dissipation (Ta = 85°C)	800	mW
T _{SOLDER}	Soldering Temperature · Time	260 · 10	°C · sec
T _{STG}	Storage Temperature	-55 ~ 150	°C
TOPR	Operating Temperature	-30 ~ 85	°C

DC RECOMMENDED OPERATING CONDITION

SYMBOL	PARAMETER	MIN	TYP.	MAX.	UNITS
V _{DD}	Power Supply Voltage	4.5	_	5.5	V
V _{IH}	Input High Level Voltage	2.2	-	V _{DD} + 0.3	V
VIL	Input Low Level Voltage	-0.3	-	0.65	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

DC CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP(1)	MAX.	UNITS
I _{IN}	Input Current	$0 \le V_{IN} \le V_{DD}$	-	± 0.05	± 1.0	μΑ
DDS	Standby Current	$V_{DD} = 2.0 \text{V to } 5.5 \text{V}$ $CE_2 = 0.2 \text{V}$, Output open	-	0.2	10	μΑ
IDDO	Operating Current	$V_{DD} = 5.5V, t_{CYC} = 1 \mu s$	-	6.2	15	mA
LO	Output Leakage Current	0 ≦ V _{OUT} ≦ V _{DD}	-	± 0.05	± 1.0	μΑ
Гон	Output High Current	V _{DD} = 4.5V, V _{OH} = 2.4V	-1.0	-2.0	-	mA
loL	Output Low Current	$V_{DD} = 4.5V, V_{OL} = 0.4V$	2.0	3.0	-	mA

Note (1) $Ta = 25^{\circ}C$ $V_{DD} = 5V$

CAPACITANCE (2) (Ta = 25°C)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX.	UNIT
CIN	Input Capacitance	$V_{IN} = 0V$, $f = 1MHz$	-	5	10	pF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$, $f = 1MHz$	-	7	15	pF

Note (2) This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS

READ CYCLE

SYMBOL	PARAMETER	TC55	01P/D	TC550	UNIT	
STIVIBUL	FARAMETER	MIN.	MAX.	MIN.	MAX.	UNII
t _{RC}	Read Cycle Time	450	_	650	_	ns
tACC	Address Access Time	_	450	-	650	ns
t _{ACC1}	CE ₁ Access Time	_	400	_	600	ns
t _{ACC2}	CE ₂ Access Time	_	500	-	700	ns
topo	OD Access Time	_	250		350	ns
tcoe	Output Enable Time	0	-	0		ns
tDIS	Output Disable Time	0	130	G	150	ns
toH	Output Data Hold Time	0	-	0	=	ns

WRITE CYCLE

SYMBOL	DARAMETER	TC5501P/D		TC5501	IP-1/D-1	UNIT
STIMBUL	PARAMETER	MIN.	MAX.	MIN.	MAX.	UNII
twc	Write Cycle Time	450	_	650	-	ns
t _{AW}	Address Setup Time	130	_	150	-	ns
tcw	CE ₂ Setup Time	130	_	150	-	ns
t _{WP}	Write Pulse Width	250	-	400	=	ns
t _{DS}	Data Setup Time	250	_	400	-	ns
t _{DH}	Data Hold Time	50	-	100	_	ns
twn	Write Recovery Time	50	_	50	_	ns

A.C. TEST CONDITIONS

• Output Load : 100 pF + 1 TTL Gate

Input Pulse Levels : 0.45V, 2.4V
Timing Measurement Reference Levels

Input : 0.65V, 2.2V Output : 0.65V, 2.2V

• Input Pulse Rise and Fall Times : 10ns

Read Cycle

Write Cycle 1

Write Cycle 2

TYPICAL CHARACTERISTICS

OUTLINE DRAWINGS

PLASTIC PACKAGE

CERDIP PACKAGE

Notes: Each lead pitch is 2,54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 22 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

©Mar., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD X 4BIT CMOS RAM

SILICON GATE CMOS

TC5047AP-1 TC5047AP-2

DESCRIPTION

The TC5047AP is a static read write memory organized as 1024 words by 4 bits using CMOS technology. Because of ultra low power dissipation, the TC5047AP can be used as battery operated portable memory system and also as a nonvolatile memory with battery back up. The TC5047AP operates from a single 5V power supply with a static operation, so that the no refresh periods are required. This simplifies the power supply circuit design.

FEATURES

- Low Power Dissipation
 110 μW (MAX.) STANDBY
 110mW (MAX.) OPERATING
- Single 5V Power Supply
- Data Retention Voltage; 2.0~5.5V
- 20 PIN Plastic Package

PIN CONNECTION

PIN NAMES

A,~A,	Address Inputs
R/W	Read Write Input
CE, CE,	Chip Enable inputs
Data I/O1~4	Data Input/Output
OD	Output Disable Input
V _{DD} /GND	Power Supply Terminals

The three state outputs simplify the memory expansion making the TC5047AP suitable for use in a microprocessor peripheral memory. Since the minimum data retention voltage is 2V, the battery back up system needs only simple circuit. By using Toshiba's original C²MOS technology, the device circuitry is not only simplified but wide operating margin and noise margin are also realized.

The TC5047AP family is moulded in a dual-in-line 20 pin plastic package, 0.4 inch in width.

- Static Operation
- Three State Outputs
- Input/Output; TTL Compatible
- Access Time

TC5047AP-1; $t_{ACC} \le 550 \text{ns}$ (MAX.) TC5047AP-2; $t_{ACC} \le 800 \text{ns}$ (MAX.)

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
VDD	Power Supply Voltage	-0.3 ~ 7.0	V
VIN	Input Voltage	$-0.3 \sim V_{DD} + 0.3$	V
Vout	Output Voltage	0 ~ V _{DD}	V
PD	Power Dissipation (Ta = 85°C)	700	mW
TSOLDER	Soldering Temperature • Time	260 · 10	°C · sec
T _{STG}	Storage Temperature	−55 ~ 150	°C
TOPR	Operating Temperature	-30 ~ 85	°C

DC RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Level Voltage	V _{DD} -1.5	-	V _{DD} +0.3	V
VIL	Input Low Level Voltage	-0.3	-	0.6	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

DC CHARACTERISTICS (Ta = -30~85°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP, (1)	MAX.	UNIT
I _{IN}	Input Current	$0V \le V_{IN} \le V_{DD}$	0	±0.05	±1.0	μΑ
I _{DDS}	Standby Current	$V_{DD} = 2 \sim 5.5V$ $CE_2 = 0.2V$, Output Open	0	0.2	20	μΑ
1 _{DDO}	Operating Current	V _{DD} =5.5V, t _{CYC} =1μs	0	10	20	mA
ILO	Output Leakage Current	OV ≦ V _{OUT} ≦ V _{DD}	0	±0.1	±5.0	μΑ
ОН	Output High Current	V _{DD} =4.5V, V _{OH} = 2.4V	-1.0	-2.0	_	mA
loL	Output Low Current	V _{DD} = 4.5V, V _{OL} = 0.4V	1.6	2.0	-	mA
C _i (2)	Input Capacitance	f = 1MHz	-	5	10	pF
C _O (2)	Output Capacitance	f = 1MHz	-	7	15	pF

Note (1) Ta = 25° C, V_{DD} = 5V

Note (2) This parameter is periodically sampled and is not 100% tested.

A.C. RECOMMENDED OPERATING CONDITIONS

TC5047AP-1

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
T _{RC}	Read Cycle Time		650	-	ns
twc	Write Cycle Time		650	-	ns
t CES	CE Setup Time		20(3)		ns
t CEH	CE Hold Time	V _{DD} = 4.5 ~ 5.5∨	20(3)	_	ns
t PC	Precharge Time	C _L = 100 pF	100	_	ns
t CE	CE Pulse Width	$V_{IH} = V_{DD} - 1.5V$	550	_	ns
t _{WP}	Write Pulse Width	~ V _{DD} + 0.3V	300	-	ns
tos	Data Setup Time	$V_{1L} = -0.3 \sim 0.6 V$	300	-	ns
t _{DH}	Data Hold Time	Ta = −30 ~ 85°C	0	-	ns
t _{CW}	Write Setup Time		350	-	ns
t _{RS}	Read Setup Time		0	-	ns
t _{RH}	Read Hold Time		0	-	ns

Note (3) $t_{CES} + t_{CEH} \ge 100 \text{ ns}$

TC5047AP-2

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
t _{RC}	Read Cycle Time		1000	-	ns
twc	Write Cycle Time		1000	_	ns
tces	CE Setup Time		20(4)	_	ns
tceH	CE Hold Time	V _{DD} = 4.5 ~ 5.5∨	20(4)	-	ns
tPC	Precharge Time	C _L = 100 pF	200	-	ns
t CE	CE Pulse Width	$V_{IH} = V_{DD} - 1.5V$	800	-	ns
t _{WP}	Write Pulse Width	~ V _{DD} + 0.3V	500	-	ns
t _{DS}	Data Setup Time	V _{1L} = −0.3 ~ 0.6∨	500	_	ns
t _{DH}	Data Hold Time	Ta = −30 ~ 85°C	0	_	ns
t _{CW}	Write Setup Time		550	_	ns
tas	Read Setup Time		0	-	ns
tRH	Read Hold Time		0	-	ns

Note (4) $t_{CES} + t_{CEH} \ge 200 \text{ ns.}$

A.C. CHARACTERISTICS (Ta = $-30 \sim 85^{\circ}$ C)

TC5047AP-1

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tACC	Access Time	$V_{DD} = 4.5 \sim 5.5 V$	-	-	550	ns
tois	Output Disable Time	C _L = 100 pF	_	_	100	ns
tcoe	Output Enable Time	V _{OH} = 2.4V, V _{OL} = 0.6V	-	100	-	ns

• TC5047AP-2

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tACC	Access Time	V _{DD} = 4.5 ~ 5.5V		-	800	ns
tois	Output Disable Time	C _L = 100 pF	-	-	200	ns
tCOE	Output Enable Time	$V_{OH} = 2.4V, V_{OL} = 0.6V$	-	200	-	ns

TIMING WAVEFORMS

Read Cycle

Write Cycle

TYPICAL CHARACTERISTICS

1.0

4.0

5.0

VDD (V)

6.0

7.0

OUTLINE DRAWINGS

Unit in mm

Note: Each lead pitch is 2,54mm. All leads are located within 0,25 mm of their true longitudinal position with research to No. 1 and No. 20 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are impiled, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Mar., 1980 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

4096 WORD x 1 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5504AP-2/-3 TC5504APL-2/-3 TC5504AD-2/-3, TC5504ADL-2/-3

DESCRIPTION

The TC5504AP/AD is a 4.096 bit high speed and low power static random access memory organized as 4.096 words by 1 bit using CMOS technology, and operates from a single 5-volt supply.

On chip latches are provided for addresses, data input and output, and read write control allowing efficient interfacing with microprocessor systems.

The TC5504AP/AD is a fully CMOS RAM, therefore it is suited for use in low power applications where battery operation and battery back up for nonvolatility are required. Furthermore the TC5504APL/ ADL guaranteed a standby current equal to or less than 1µA at 60°C ambient temperature.

The TC5504AP/AD is guaranteed for data retention at a power supply as low as 2 volts. The TC5504 AP/AD is directly TTL compatible in all inputs and

The TC5504AP/AD is offered in both standard 18 pin plastic and cerdip packages, 0.3 inch in width.

FEATURES

- Standby Current 0.2µA (Max.) at Ta = 25°C TC5504APL/ADL 1.0µA (Max.) at Ta = 60°C
- 20µA (Max.) • Low Power Dissipation : 15mW (Typ.) operating

TC5504AP/AD

- Single 5V Power Supply : 5V ± 10%
- Data Retention Supply Voltage : 2 ~ 5.5V
- All Inputs and Output: Directly TTL Compatible
- Access Time
- 200ns (Max): TC5504AP/APL/AD/ADL-2 300ns (Max.) : TC5504AP/APL/AD/ADL-3
- Static Operation
- · On Chip Address Register
 - Three State Output
 - Package

Plastic DIP: TC5504AP/APL Cerdip DIP: TC5504AD/ADL

PIN CONNECTION

PIN NAMES

$A_0 \sim A_{11}$	Address Inputs
R/W	Read Write Control Input
CE	Chip Enable Input
DIN	Data Input
Dout	Data Output
V _{DD}	Power
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM		RATING	UNIT
V _{DD}	Power Supply Voltage		-0.3 ~ 7.0	V
VIN	Input Voltage		-0.3 ~ 7.0	V
Vout	Output Voltage		0 ~ V _{DD}	V
	Power Dissipation	TC5504AP/APL	550	mW
PD	(Ta = 85°C)	TC5504AD/ADL	800	mW
TSOLDER	Soldering Temperature - Tim	е	260 - 10	°C - sec
T _{STG}	Storage Temperature		−55 ~ 150	°C
TOPR	Operating Temperature		−30 ~ 85	°C

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V
V _{DH}	Data Retention Voltage	2.0	-	5.5	V

D.C. CHARACTERISTICS ($V_{DD} = 5V \pm 10\%$, Ta = -30°C to 85°C, unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS			MIN.	TYP.(1)	MAX.	UNIT
IIL	Input Leakage Current	$0V \le V_{IN} \le V_{DD}$			_	-	± 1.0	μА
ILO	Output Leakage Current	$\overline{CE} = V_{DD} - 0.2V, 0V \leq V_{OUT} \leq V_{DD}$			-	2-	±5.0	μА
Гон	Output High Level Current	V _{OH} = 2.4V			-1.0	-	-	mA
loL	Output Low Level Current	V _{OL} = 0.4V			2.0	-	-	mA
	V _{DD} = 2V ~ 5.5V	TC5504APL	Ta = 25°C	_	-	0.2	^	
Townson .	Ctop allow Courses	$\overline{CE} = V_{DD} - 0.2V$	TC5504ADL	Ta = 60°C	-	-	1.0	μΑ
IDDS Standby Current	other inputs = 0.2V or V _{DD} - 0.2V	TC5504AP TC5504AD		-	0.05	20	μΑ	
I _{DDO1}	Operating Current	t _{cycle} = 1 µS, I _{OUT} = 0mA		-	-	10.0	mA	
I _{DDO2}	Operating Current	t _{CVCle} = 1µS, V _{IH} = V _{DD} , V _{IL} = 0V, I _{OUT} = 0mA			-	3.0	5.0	mA

Note (1) V_{DD} = 5V, Ta = 25°C

CAPACITANCE(2) (Ta = 25°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0V f = 1MHz	-	4	8	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V f = 1MHz ·	-	5	10	pF

Note (2): This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (V_{DD} = 5V ± 10%, Ta = -30°C to 85°C, unless otherwise noted)

SYMBOL	PARAMETER		P-2/APL-2 D-2/ADL-2	TC5504AP-3/APL-3 TC5504AD-3/ADL-3		UNIT
	TANAMETEN	MIN.	MAX.	MIN.	MAX.	Civit
tRC	Read Cycle Time	300	_	420	-	ns
twc	Write Cycle Time	300	-	420	-	ns
t _{RMWC}	Read Modify Write Cycle Time	390	_	580	-	ns
tAS	Address Setup Time	5	-	5	_	ns
t _{AH}	Address Hold Time	60	-	80	-	ns
tpc	Precharge Time	80	-	100	-	ns
tceh	Chip Enable Hold Time	200	_	300	-	ns
tACC	Access Time	_	200	_	300	ns
top	Output Disable Time	_	70	-	100	ns
tcoe	Output Enable Time	0	-	0	_	ns
t _{RS}	Read Setup Time	0	9-1	0	_	ns
t _{RH}	Read Hold Time	0	-	0	-	ns
tws	Write Setup Time	0	-	0	_	ns
twH	Write Hold Time	60	_	80	-	ns
t _{DS}	Data Setup Time	5	-	5	_	ns
t _{DH}	Data Hold Time	60	-	80	-	ns
twch	Write Enable to CE Hold Time	80	_	150	_	ns
t _{MD}	Modify Time	0	_	0	_	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : $0.6 \sim 2.4 \text{V}$ Timing Measurement Reference Levels

Input : 0.8V and 2.2V

Output : 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

READ CYCLE

WRITE CYCLE

READ MODIFY WRITE CYCLE

TYPICAL CHARACTERISTICS

OUTLINE DRAWINGS

PLASTIC PACKAGE

CERDIP PACKAGE

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25mm of their longitudinal position with respect to No. 1 and No. 18 leads.
All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Feb., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD x 4 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5513AP-20/TC5513APL-20 TC5513AD-20/TC5513ADL-20

DESCRIPTION

The TC5513AP/AD is a 4,096-bit high speed static random access memory organized as 1,024 words by 4 bits and operates form a single 5-volt supply.

The TC5513AP/AD is a fully CMOS RAM and is therefore suited for use in low power applications where battery operation and/or battery back up for nonvolatility are required. The TC5513AP/AD is

guaranteed for data retention at power supply voltages as low as 2.0 volt. All inputs and outputs are TTL compatible.

The TC5513AP/AD is packaged in a standard 18-pin dual-in-line plastic and cerdip package, 0.3 inch width.

FEATURES

Low Power Dissipation
 27.5m W/MHz (MAX.): Operating

Standby Current

0.2 μ A (MAX.) at Ta = 25°C 1.0 μ A (MAX.) at Ta = 60°C 20 μ A (MAX.) TC5513AP/AD-20

Fast Access Time

t_{ACC}: 200ns (MAX.) Single 5V Power Supply Data Retention Supply Voltage 2V to 5.5V

Fully Static Operation

On-chip Address Transition Detector

Three State Outputs

• Inputs and outputs Directly TTL compatible

Package

 Plastic DIP: TC5513AP-20/APL-20 Cerdip DIP: TC5513AD-20/ADL-20

PIN CONNECTION (TOP VIEW)

A 6	1	18 VDD
As [2	17 A7
A4 [3	16 A ₈
A3 [4	15 A,
A, [5	14 Data I/O,
A, [6	13 Data I/O ₂
A ₂	7	12 Data I/O ₃
CE	8	11 Data I/O4
GND	9	10 R/W

PIN NAMES

$A_0 \sim A_9$	Address Inputs
R/W	Read Write Input
CE	Chip Enable Input
Data I/O _{1~4}	Data Input/Output
V _{DD} /GND	Power Supply Terminals

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM		RATING	UNIT
VDD	Power Supply Voltage		-0.3 ~ 7.0	V
VIN	Input Voltage		-0.3 ~ 7.0	V
V _{1/O}	I/O Voltage		-0.3 ~ V _{DD} +0.5	V
	Power Dissipation (Ta = 85°C)	TC5513AP/APL	550	mW
PD	Fower Dissipation (Ta = 85 C)	TC5513AD/ADL	800	mW
T _{SOLDER}	Soldering Temperature • Time		260 · 10	°C · sec
T _{STG}	Storage Temperature		−55 ~ 150	°C
T _{OPR}	Operating Temperature		-30 ~ 85	°C

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Level Voltage	2.2	-	V _{DD} + 0.3	V
VIL	Input Low Level Voltage	-0.3	-	0.8	V
V _{DH}	Data Retention Voltage	2.0	_	5,5	V

D.C. CHARACTERISTICS (Ta = -30° C $\sim 85^{\circ}$ C, V_{DD} = $5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS			MIN.	TYP.1	MAX.	UNIT
IIL	Input Leakage Current	$0V \leq V_{IN} \leq V_{DD}$		-	-	±1.0	μΑ	
ILO	Output Leakage Current	$\overline{CE} = V_{IH}, 0V \leq V_{I/O} \leq V_{DD}$			-	-	±1.0	μΑ
1 он	Output High Current	V _{OH} = 2.4V			-1.0	-	_	mA
IOL	Output Low Current	V _{OL} = 0.4V			2.0	-	-	mΑ
		$V_{DD} = 2V \sim 5.5V$ $\overline{CE} \ge V_{DD} - 0.2V$	TC5513APL-20 Ta	a=25°C	-	-	0.2	μΑ
IDDS	Standby Current		TC5513ADL-20 7	Га=60°С	-	-	1.0	μΑ
			TC5513AP 20, TC55	13AD-20	_	0.05	20	μΑ
I _{DD01}		$t_{\text{cycle}} = 1\mu s$, $t_{\text{OUT}} = 0 \text{mA}$ $t_{\text{cycle}} = 1\mu s$, $V_{\text{IH}} = V_{\text{DD}}$, $V_{\text{IL}} = 0 \text{V}$, $t_{\text{OUT}} = 0 \text{mA}$		=	5.0	9.0	mA	
1 _{DD02}	Operating Current			-	3.0	5.0	mA	

Note (1): $V_{DD} = 5V$, $Ta = 25^{\circ}C$

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0V	-	4	8	pF
C _{1/O}	Input/Output Capacitance	V _{I/O} = 0V	-	5	10	pF

Note (2): This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS ($V_{DD} = 5V \pm 10\%$, $T_a = -30 \sim 85^{\circ}C$)

READ CYCLE

SYMBOL	PARAMETER	TC5513AF TC5513AI	UNIT	
		MIN.	MAX.	
^t RC	Read Cycle Time	200	_	ns
†ACC	Access Time		200	ns
tco	CE Access Time	-	200	ns
toH	Output Data Hold Time	15	-	ns
t _{DIS}	Output Disable Time	-	60	ns
t _{COE}	Output Enable Time	5	_	ns

· WRITE CYCLE

SYMBOL	PARAMETER	TC5513AF TC5513AE	UNIT	
		MIN.	MAX.	
^t wc	Write Cycle Time	200	-	ns
t _{AW}	Address Setup Time	0	-	ns
t _{WP}	Write Pulse Width	120	_	ns
t _{DS}	Data Setup Time	120	_	ns
t _{DH}	Data Hold Time	0	_	ns
twR	Write Recovery Time	0	_	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1 TTL Gate

• Input Pulse Levels: 0.6V, 2.4V

• Timing Measurement Reference Levels

Input : 0.8V, 2.2V Output : 0.8V, 2.2V

• Input Pulse Rise and Fall Times: 10ns

TIMING WAVEFORMS

• Read Cycle (1)

Notes: (1) R/W is high for a Read Cycle.

⁽²⁾ If the CE low transition occurs simultaneously with the R/W low transition, the output buffers remain in high impedance state.

TYPICAL CURRENT WAVEFORM

OUTLINE DRAWINGS

PLASTIC PACKAGE

CERDIP PACKAGE

Notes: (1) Each lead pitch is 2.54mm. All leads are located within 0.25mm of their longitudinal position with respect to No. 1 and No. 18 leads.
All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

Apri., 1982 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD X 4 BIT CMOS STATIC RAM SILICON GATE CMOS TC5514AP-2/-3, TC5514APL-2/-3 TC5514AD-2/-3, TC5514ADL-2/-3

DESCRIPTION

The TC5514AP/AD is a 4,096 bit high speed and low power static random access memory organized as 1,024 words by 4 bits using CMOS technology, and operates from a single 5-volt supply.

The TC5514AP/AD is compatible with the industry produced NMOS 2114 type 4KRAM, yet offers a more than 90% reduction in power of their NMOS

equivalents

The TC5514AP/AD is a fully CMOS RAM, therefore it is suited for use in low power applications where battery operation and battery back up for

nonvolatility are required. Furthermore the TC5514 APL/ADL guaranteed a standby current equal to or less than $1\mu A$ at $60^{\circ} C$ ambient temperature is available

The TC5514AP/AD is guaranteed for data retention at a power supply as low as 2 volts. The TC5514 AP/AD is directly TTL compatible in all inputs and outputs.

The TC5514AP/AD is offered in both standard 18 pin plastic and cerdip packages, 0.3 inchs in width.

FEATURES

Standby Current

 $0.2\mu A \text{ (Max.) at Ta=25°C} \ 1.0\mu A \text{ (Max.) at Ta=60°C} \ : TC5514APL/ADL \ 20\mu A \text{ (Max.)} \ : TC5514AP/AD$

Low Power Dissipation: 15mW (Typ.) operating

Single 5-volt Supply : 5V ± 10%

Data Retention Supply Voltage: 2 ~ 5.5V

Three State Outputs

All Inputs and Outputs: Directly TTL Compatible

Access Time

200ns (Max.): TC5514AP/APL/AD/ADL-2 300ns (Max.): TC5514AP/APL/AD/ADL-3

• Fully Static Operation

· On-chip Address Transition Detector

 Fully Compatible with TMM314AP Family (Nch 2114 type 4KRAM)

Package

Plastic DIP: TC5514AP/APL Cerdip DIP: TC5514AD/ADL

PIN CONNECTION

(TOP VIEW) 18 VDD A₆ 17 A7 A5 1 2 16 A8 A4 3 15 A9 A3[АоП 14 Data 1/01 13 Data 1/02 A1 6 A2 7 12 Data 1/03 11 Data 1/04 CE 8 10 R/W GND 9

PIN NAMES

Address Inputs
Read Write Control Input
Chip Enable Input
Data Input/Output
Power Supply Terminals

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM		RATING	UNIT
V _{DD}	Power Supply Voltage		− 0.3 ~ 7.0	V
VIN	Input Voltage		− 0.3 ~ 7.0	V
V _{I/O}	I/O Voltage		0 ~ V _{DD}	V
	Power Dissipation	TC5514AP/APL	550	mW
PD	$(Ta = 85^{\circ}C)$	TC5514AD/ADL	800	mW
T _{SOLDER}	Soldering Temperature	Time	260 - 10	°C · sec
T _{STG}	Storage Temperature		−55 ~ 150	°C
TOPR	Operating Temperature		−30 ~ 85	°C

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Level Voltage	2.2	-	V _{DD} + 0.3	V
VIL	Input Low Level Voltage	-0.3	-	0.8	V
V _{DH}	Data Retention Voltage	2.0	-	5.5	V

D.C. CHARACTERISTICS (V_{DD} = 5V ± 10%, Ta = -30 ~ 85°C unless otherwise noted.)

SYMBOL	PARAMETER	CONI	DITIONS		MIN.	TYP. (1)	MAX.	UNIT
IIL	Input Leakage Current	$0V \leq V_{IN} \leq V_{DD}$		-	_	±1.0	μΑ	
ILO	Output Leakage Current	$\overline{CE} = V_{IH}, OV \leq V_{I/O} \leq V_{DD}$			_	_	± 1.0	μΑ
ГОН	Output High Current	V _{OH} = 2.4V			-1.0		-	mA
loL	Output Low Current	V _{OL} = 0.4V			2.0	-	-	mA
	0	V _{DD} = 2V ~ 5.5V	TC5514APL	$Ta = 25^{\circ}C$	-	-	0.2	μΑ
Ĭ			TC5514ADL	Ta = 60°C	-	_	1.0	μΑ
IDDS Standby Current	All Inputs = 0.2V or V _{DD} - 0.2V	TC5514AP TC5514AD		-	0.05	20	μА	
DDO1	Operating Current	$t_{cycle} = 1\mu s, l_{OUT} = 0$	mA		-	5.0	9.0	mA
I _{DD02}	Operating Current	$t_{CVCle} = 1\mu s$, $V_{IH} = V_{DD}$, $V_{IL} = 0V$, $I_{OUT} = 0mA$			-	3.0	5.0	mA

Note (1): $V_{DD} = 5V$, $T_a = 25$ °C

CAPACITANCE(2) (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0V	-	4	8	pF
C _{1/O}	Input/Output Capacitance	V _{1/O} = 0V	_	5	10	pF

Note (2): This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS $(V_{DD} = 5V \pm 10\%, Ta = -30 \sim 85^{\circ}C)$

READ CYCLE

SYMBOL	PARAMETER	TC5514AP-2/APL-2 TC5514AD-2/ADL-2		TC5514AP-3/APL-3 TC5514AD-3/ADL-3		UNIT	
		MIN.	MAX.	MIN.	MAX.		
tRC	Read Cycle Time	200	_	300	_	ns	
tACC	Access Time		200	-	300	ns	
tco	CE Access Time	-	70	-	100	ns	
toH	Output Data Hold Time	15	_	20	_	ns	
tDIS	Output Disable Time	-	60	_	80	ns	
tCOE	Output Enable Time	5	_	5	_	ns	

WRITE CYCLE

SYMBOL	PARAMETER	A MANAGEMENT OF THE PARTY OF TH	TC5514AP-2/APL-2 TC5514AD-2/ADL-2		TC5514AP-3/APL-3 TC5514AD-3/ADL-3	
		MIN.	MAX.	MIN.	MAX.	
twc	Write Cycle Time	200	_	300	_	ns
t _{AW}	Address Setup Time	0	-	0	-	ns
twp	Write Pulse Width	120	-	150	_	ns
t _{DS}	Data Setup Time	120	-	150	-	ns
t _{DH}	Data Hold Time	0	-	0	-	ns
twR	Write Recovery Time	0	-	0	-	ns

A.C. TEST CONDITIONS

Output Load : 100 pF + 1 TTL Gate

• Input Pulse Levels : 0.6V, 2.4V • Timing Measurement Reference Levels

Input : 0.8V, 2.2V Output : 0.8V, 2.2V

• Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

Notes: (1) R/W is high for a Read Cycle.

DOUT

(2) If the ŒE low transition occurs simultaneously with the R/W low transition, the output buffers remain in a high impedance state.

PLASTIC PACKAGE

CERDIP PACKAGE

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25mm of their longitudinal position with respect to No. 1 and No. 18 leads.
All dimensions are in millimeters.

Notes: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Oct., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

1024 WORD X 4 BIT CMOS RAM SILICON GATE CMOS TC55 | 4P TC55 | 4P - I

DESCRIPTION

The TC5514P is a full static read write memory organized as 1024 words by 4 bits using CMOS technology. Because of ultra low power dissipation, the TC5514P can be used as battery operated portable memory system and also as a nonvolatile memory with battery back up. The TC5514P operates from a single 5V power supply with a static operation, so that the no refresh periods are required. This simplifies the power supply circuit design.

FEATURES

- Low Power Dissipation
 110 μW (MAX.) STAND BY
 110mW (MAX.) OPERATING; TC5514P-1
 138mW (MAX.) OPERATING; TC5514P
- Data Retention Voltage 2V to 5.5V
- Single 5V Power Supply
- 18 PIN Plastic Package

PIN CONNECTION

(TOP VIEW)

PIN NAMES

$A_0 \sim A_9$	Address Inputs
R/W	Read Write Input
CE	Chip Enable Input
Data I/O ₁ ~ 4	Data Input/Output
V _{DD} /GND	Power Supply Terminal

The three state outputs simplify the memory expansion making the TC5514P suitable for use in a microprocessor peripheral memory. Since the minimum data retention voltage is 2V, the battery back up system needs only simple circuit. By using Toshiba's original C²MOS technology, the device circuitry is not only simplified but wide operating margin and noise margin are also realized.

The TC5514P family is moulded in a dual-in-line 18-pin plastic package, 0.3 inch in width.

- Full Static Operation
- Three State Outputs
- Input/Output TTL Compatible
- Access Time

TC5514P ; $t_{ACC} = 450ns (MAX.)$ TC5514P-1; $t_{ACC} = 650ns (MAX.)$

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	-0.3~7.0	V
VIN	Input Voltage	-0.3~V _{DD} + 0.3	V
Vout	Output Voltage	0~V _{DD}	V
PD	Power Dissipation (Ta = 85°C)	550	mW
TSOLDER	Soldering Temperature · Time	260 · 10	°C · sec
T _{STG}	Storage Temperature	−55~150	°C
TOPR	Operating Temperature	-30~85	°C

D.C. RECOMMENDED OPERATING CONDITION

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Level Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Level Voltage	-0.3	-	0.65	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

D.C. CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER	CONDITIO	NS	MIN.	TYP. (1)	MAX.	UNIT
I _{IN}	Input Current	$0 \le V_{IN} \le V_{DD}$			±0.05	± 1.0	μΑ
IDDS	Standby Current	V_{DD} = 2V to 5.5V $\overline{\text{CE}}$ = V_{DD} -0.2V; Output Open Other Inputs = 0.2V or V_{DD} -0.2V		_	0.2	20	μΑ
	I _{DDO} Operating Current	$V_{DD} = 5.5V, t_{CYC} = 1 \mu S$	TC5514P	_	13	25	mA
DDO		Output Open	TC5514P-1	-	10	20	mA
ILO	Output Leakage Current	0≦V _{OUT} ≦V _{DD}		_	± 0.05	± 1.0	μΑ
Гон	Output High Current	$V_{DD} = 4.5V, V_{OH} = 2.4V$		-1.0	-2.0	_	mA
IOL	Output Low Current	$V_{DD} = 4.5V, V_{OL} = 0.4V$		2.0	3.0	-	mA
C _i (2)	Input Capacitance	f = 1MHz		-	5	10	pF
C _o (2)	Output Capacitance	f = 1MHz		-	7	15	pF

Note (1) Ta = 25°C V_{DD} = 5V

(2) This parameter is periodically sampled and is not 100% tested.

A.C. RECOMMENDED OPERATING CONDITION

TC5514P

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
tRC	Read Cycle Time	$V_{DD} = 4.5 \sim 5.5V$ $C_{L} = 100pF + 1 TTL Gate$	450	_	ns
twc	Write Cycle Time		450	_	ns
t _{WP}	Write Pulse Width		350	-	ns
t _{DS}	Data Setup Time		200	-	ns
t _{DH}	Data Hold Time	$V_{IH} = 2.2 \sim V_{DD} + 0.3V$ $V_{II} = -0.3 \sim 0.65V$	0		ns
twR	Write Recovery Time	$V_{1L} = -0.3 \sim 0.65 \text{ V}$ $T_{10} = -30 \sim 85^{\circ}\text{C}$	0	_	ns
t _{AW}	Address Setup Time	Ta = −30 ~ 85 °C	30	-	ns
toh	Output Data Hold Time		30	_	ns

TC5514P-1

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
tRC	Read Cycle Time	$V_{DD} = 4.5 \sim 5.5V$ $C_{L} = 100pF + 1 TTL Gate$	650	-	ns
twc	Write Cycle Time		650	_	ns
twp	Write Pulse Width		350	_	ns
tos	Data Setup Time		200	-	ns
tDH	Data Hold Time	$V_{IH} = 2.2 \sim V_{DD} + 0.3V$	0	-	ns
twR	Write Recovery Time	$V_{IL} = -0.3 \sim 0.65V$ $T_{a} = -30 \sim 85^{\circ}C$	0	_	ns
t _{AW}	Address Setup Time	Ta = −30 ~ 85°C	50	_	ns
toH	Output Data Hold Time		30	-	ns

A.C. CHARACTERISTICS (Ta = -30 ~ 85°C)

TC5514P

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tACC	Access Time	V _{DD} = 4.5 ~ 5.5V C _L = 100 pF V _{OH} = 2.2V, V _{OL} = 0.65V	_	-	450	ns
tco	CE Access Time		_	-	450	ns
t _{DIS}	Output Disable Time		_	-	150	ns
t _{COE}	Output Enable Time		20	150	_	ns

TC5514P-1

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tACC	Access Time	$V_{DD} = 4.5 \sim 5.5V$ $C_{L} = 100 \text{ pF}$ $V_{OH} = 2.2V, V_{OL} = 0.65V$	_	=	650	ns
tco	CE Access Time		_	-	650	ns
tDIS	Output Disable Time		_		150	ns
tCOE	Output Enable Time		20 .	150	-	ns

TIMING WAVEFORMS

Notes: (1) R/W is high for a Read Cycle.

DOUT

(2) If the CE low transition occurs simultaneously with the R/W low transition, the output buffers remain in a high impedance state.

tois

TCOE

OUTLINE DRAWINGS

Note: All dimensions are in millimeters. Each lead pitch is 2.54mm,
All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 18 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

TOSHIBA MOS MEMORY PRODUCTS

2048 WORD x 8 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC55|6AP/-2, TC55|6APL/-2 TC55|6AD/-2, TC55|6ADL/-2 TC55|6AF/-2, TC55|6AFL/-2

guaranteed a standby current equal to or less than

patibility with 2716 type EPROM. This means

that the TC5516AP/AD and EPROM can be in

terchanged in the same socket, and the flexibility

in the definition of the quantity of RAM versus

EPROM obtained as a result allows the wide applica-

The TC5516AP/AD is also featured by pin com

1µA at 60°C ambient temperature is avialable

DESCRIPTION

The TC5516AP/AD/AF is a 16384-bit static random access memory organized as 2048 words by 8 bit using CMOS technology, and operates from a single 5 volt supply.

The TC5516AP/AD/ \overline{AF} is featured by two chip enable inputs, that is, $\overline{CE1}$ for fast memory access and $\overline{CE2}$ for a minimum standby current mode, and is suited for low power application where battery operation or battery back up for nonvolatility are required. Furthermore the TC5516APL/ADL/AFL

FEATURES

Standby Current

 $0.2\mu A \text{ (Max.)}$ at $Ta = 25^{\circ}\text{C} \ \text{TC5516APL/}$ $1.0\mu A \text{ (Max.)}$ at $Ta = 60^{\circ}\text{C} \ \text{ADL/AFL}$ $1.0\mu A \text{ (Max.)}$ at $Ta = 25^{\circ}\text{C} \ \text{TC5516AP/}$ $5.0\mu A \text{ (Max.)}$ at $Ta = 60^{\circ}\text{C} \ \text{AD/AF}$

Low Power Dissipation : 200mW (Typ.)
 Operating

• Single 5V Power Supply : 5V ± 10%

Data Retention Supply Voltage: 2.0 ~ 5.5V

Fully Static Operation

Access Time

tion in microcomputer system.

250ns (Max.): TC5516AP/APL/AD/ADL/AF/AFL 200ns (Max.): TC5516AP-2/APL-2/AD-2/ADL-2 AF-2/AFL-2

 Two Chip Enable (CE1, CE2) for Simple Memory Expansion and Battery Back Up.

All Inputs and Outputs Directly TTL Compatible

Three State Outputs

Package

Plastic DIP: TC5516AP/APL Cerdip DIP: TC5516AD/ADL Plastic FP: TC5516AF/AFL

PIN CONNECTION (TOP VIEW)

PIN NAMES

$A_0 \sim A_{10}$	Address Inputs
R/W	Read/Write Control Input
CE ₁ , CE ₂	Chip Enable Inputs
1/01 ~ 1/08	Data Input/Output
V _{DD}	Power (+5V)
GND	Ground

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	$-0.3V \sim V_{DD} + 0.3$
V _{I/O}	Input/Output Voltage	$-0.3V \sim V_{DD} + 0.3$
PD	Power Dissipation (Ta = 85°C)	0.8W (0.45W)*
T _{STG}	Storage Temperature	-55°C ~ 150°C
TOPR	Operating Temperature	-30°C ~ 85°C
TSOLDER	Soldering Temperature · Time	260°C · 10 sec

^{*}Plastic FP

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -30°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	_	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

D.C. CHARACTERISTICS (Ta = -30° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS			MIN.	TYP.	MAX.	UNIT
I _I L	Input Leakage Current	$0 \le V_{IN} \le V_{DD}$			-	-	±1.0	μА
ILO	I/O Leakage Current	CE ₂ = V _{IH} , OV ≦ V	/o ≦ V _{DD}		-	_	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V			-1.0	-2.0	_	mA
loL	Output Low Current	V _{OL} = 0.4V			2.0	3.0	-	mA
I _{DDS1}		CE ₂ = 2.2V				1.0	3.0	mA
		$\overline{CE}_2 = V_{DD} - 0.5V$	TC5516APL/ ADL/AFL	Ta = 25°C	-		0.2	
				Ta = 60°C	_	-	1.0	μΑ
DDS2	Standby Current	RESIDENCE PROFIT	TC5516AP/	Ta = 25°C	-	0.05	1.0	
		$V_{DD} = 2 \sim 5.5 V$		Ta = 60°C	-	-	5.0	
		AD/AF Ta = 85°C		_	-	30		
IDDO1	Operating Current	$\overline{CE}_2 = OV, V_{IN} = V_{IH}/V_{IL}, I_{OUT} = 0mA$ $\overline{CE}_2 = OV, V_{IN} = V_{DD}/GND, I_{OUT} = 0mA$				40	70	
I _{DDO2}	Operating Current					30	55	mA

Note: Typical values are at Ta = 25°C, V_{DD} = 5V.

CAPACITANCE

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	_	5	10	pF
C _{I/O}	Input/Output Capacitance	-	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-30 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

Read Cycle

SYMBOL	PARAMETER	TC5516AP-2/APL-2 TC5516AD-2/ADL-2 TC5516AF-2/AFL-2		TC5516AP/APL TC5516AD/ADL TC5516AF/AFL		UNIT	
		MIN.	MAX.	MIN.	MAX.		
t _{RC}	Read Cycle Time	200	_	250	-	ns	
tACC	Access Time	_	200	=	250	ns	
tco1	CE ₁ to Output Valid		100	_	100	ns	
t _{CO2}	CE ₂ to Output Valid	_	200	_	250	ns	
tCOE	CE ₁ or CE ₂ to Output Active	10	_	10	-	ns	
top	Output High-Z form Deselection	-	80	-	80	ns	
toH	Output Hold from Address Change	10	-	10	_	ns	

Write Cycle

SYMBOL	PARAMETER	TC5516A	TC5516AP-2/APL-2 TC5516AD-2/ADL-2 TC5516AF-2/AFL-2		TC5516AP/APL TC5516AD/ADL TC5516AF/AFL	
		MIN.	MAX.	MIN.	MAX.	
twc	Write Cycle Time	200	-	250	-	ns
twp	Write Pulse Width	160	-	200	-	ns
t _{AW}	Addresss Set Up Time	0	_	0	_	ns
twR	Write Recovery Time	10	_	10	_	ns
topw	Output High-Z from R/W	_	80	_	80	ns
toew	Output Active from R/W	10	_	10	-	ns
t _{DS}	Data Set Up Time	80	=	120	_	ns
t _{DH}	Data Hold Time	0	_	0	_	ns

A.C. TEST CONDITIONS

Output Load : 100 pF + ITTL Gate

Input Pulse Levels : 0.6V, 2.4V

Timing Measurement Reference Levels

Input: 0.8V and 2.2V

Output: 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10ns

NOTE: (1) R/W is high for a Read Cycle.

- (2) two is specified as the logical "AND" of \overline{CE}_1 , \overline{CE}_2 and R/W.

 two is measured from the latter of \overline{CE}_1 , \overline{CE}_2 or R/W going low to the earlier of \overline{CE}_1 , \overline{CE}_2 or R/W going high.
- (3) t_{DH} , t_{DS} are measured from the earlier of \overline{CE}_1 , \overline{CE}_2 or R/W going high.
- (4) If the \overline{CE}_1 , or \overline{CE}_2 low transition occurs simultaneously with or latter from the R/W low transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (5) If the $\overline{\text{CE}}_1$ or $\overline{\text{CE}}_2$ high transition occurs prior to or simultaneously with the R/W high transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (6) If the R/W is low or the R/W low transition occurs prior to or simultaneously with the \overline{CE}_1 or \overline{CE}_2 low transition, the output buffers remain in a high impedance state in this period.
- (7) A write occurs during the overlap of a low $\overline{\text{CE}}_1$, low $\overline{\text{CE}}_2$ and low R/W. In write cycle 2, write is controlled by either $\overline{\text{CE}}_1$ or $\overline{\text{CE}}_2$.

DATA RETENTION CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	P.	PARAMETER Oata Retention Power Supply Voltage		MIN.	TYP.	MAX.	UNIT
V _{DR}	Data Retention Power Sup			2.0	-	5.5	V
I _{DDS}	TC5516APL/ ADL/AFL Standby Current TC5516AP/ AD/AF	Ta = 25°C	_	-	0.2		
		ADL/AFL	Ta = 60°C	-	-	1.0	μΑ
		TOFFACADI	Ta = 25°C	_	0.05	1.0	
			Ta = 60°C	_	_	5.0	
		Ta = 85°C	-	_	30		
tCDR	From Chip Deselection to Data Retention Mode			0	-	-	μs
t _R	Recover Time		t _{RC} (1)	_	_	μs	

Note (1) tRC : Read Cycle Time.

Note: (2) If the V_{IH} level of $\overline{\text{CE}}_2$ is 2.2V, during the period that the V_{DD} voltage is going down from 4.5V to 2.7V, I_{SSD1} current flows. (Refer to D.C. CHARACTERISTICS or TYPICAL CHARACTERISTIC FIGURES.)

TYPICAL CHARACTERISTICS

OUTLINE DRAWINGS

Plastic DIP

Cerdip DIP

Note:

Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Plastic FP

Note: Each lead pitch is 1.27mm.
All leads are located within 0.1mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

PACKAGE INFORMATION FOR FLAT PACKAGE

This new flat package is a very small and thin compared with conventional standard dual-in-line package. Differences are as follows.

1. Difference in dimension between flat and standard package.

Unit: mm

	Flat package	Standard package
Length	16.5	32.4
Width	9.0	14.2
Lead Pitch	1.27	2.54
Thickness	1.6	5

2. Comparison in occupied space.

- 3. Advantage of this package
 - Small dimensions
 - · Capability of High Density Assembly
 - Capability of thin Assembly Capability of Assembly on both side of PC board.
- 4. PC pattern layout example

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1982 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2048 WORD x 8 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5517AP/-2,TC5517APL/-2 TC5517AD/-2, TC5517ADL/-2 TC5517AF/-2.TC5517AFL/-2

DESCRIPTION

The TC5517AP/AD/AF is a 16384-bit static random access memory organized as 2048 words by 8 bits using CMOS technology, and operates from a single 5 volt supply

The TC5517AP/AD/AF is featured by output enable and chip enable inputs, that is, OE for fast memory access and CE for a minimum standby current mode, and is suited for low power application where battery operation or battery back up for non-

FEATURES

Standby Current

TC5517APL/ $0.2\mu A \text{ (Max.) at Ta} = 25^{\circ} C \text{)}$ 1.0µA (Max.) at Ta = 60°C ADI/AFL $1.0\mu A (Max.)$ at $Ta = 25^{\circ}C$ TC5517AP/ 5.0µA (Max.) at Ta = 60°C AD/AF

 Low Power Dissipation : 200mW (Typ.) operating

 Single 5V Power Supply: 5V ± 10% Data Retention Supply Voltage: 2.0 ~ 5.5V

Fully Static Operation

PIN CONNECTION (TOP VIEW)

A, [1	24	PADD
A, [2	23	DA ₈
A _s	3	22	DA,
A. [4	21	R/W
A3 [5	20	OE
A2 [6	19	DA10
A, [7	18	CE
A ₀	8	17	1/0,
1/0,	9	16	1/0,
1/02	10	15	1/0,
1/0,	11	14	1/0,
GND	12	13	1/04

PIN NAMES

Address Inputs
Read/Write Control Input
Output Enable Input
Chip Enable Input
Data Input/Output
Power (+5V)
Ground

volatility are required. Furthermore the TC5517APL/ ADL/AFL guaranteed a standby current equal to or less than 1µA at 60°C ambient temperature is avail-

The TC5517AP/AD is also featured by pin compatibility with 2716 type EPROM. This means that the TC5517AP/AD and EPROM can be interchanged in the same socket, and the flexibility in the definition of the quantity of RAM versus EPROM obtained as a result allows the wide application in microcomputer system.

Access Time

250ns (Max.): TC5517AP/APL/AD/ADL/AF/

AFL

200ns (Max.): TC5517AP-2/APL-2/AD-2/

ADL-2/AF-2/AFL-2

Two Control Input (CE, OE)

Pin Compatible with Nch Static RAM TMM2016P

All Inputs and Outputs Directly TTL Compatible

Three State Outputs

Package

Plastic DIP : TC5517AP/APL Cerdip DIP : TC5517AD/ADL Plastic FP : TC5517AF/AFL

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	-0.3V ~ V _{DD} +0.3V
V _{1/O}	Input/Output Voltage	-0.3V ~ V _{DD} +0.3V
PD	Power Dissipation (Ta = 85°C)	0.8W (0.45W)*
T _{STG}	Storage Temperature	-55°C ~ 150°C
TOPR	Operating Temperature	-30°C ~ 85°C
TSOLDER	Soldering Temperature • Time	260°C • 10 sec.

^{*}Plastic FP

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -30°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
V _{IH}	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	_	0.8	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

D.C. CHARACTERISTICS (Ta = -30° C $\sim 85^{\circ}$ C, V_{DD} = $5V \pm 10\%$)

SYMBOL	PARAMETER	CO	NDITIONS		MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$0 \le V_{IN} \le V_{DD}$		-	-	±1.0	μΑ	
ILO	I/O Leakage Current	CE = V _{IH} , 0V ≤ V _I	o ≤ V _{DD}		-	_	±5.0	μΑ
loh	Output High Current	V _{OH} = 2.4V		-1.0	-2.0	-	mA	
loL	Output Low Current	V _{OL} = 0.4V			2.0	3.0	_	mA
I _{DDS1}		CE = 2.2V			-1.0 -2.0 2.0 3.0 - 1.0 5°C 5°C 0.0 6°C	1.0	3.0	mA
	DS1		TC5517APL/	Ta = 25°C	-	-	0.2	
		CE V OFV	ADL/AFL	Ta = 60°C	-	11-	1.0	
I _{DDS2}	Standby Current			Ta = 25°C	-	0.05	1.0	μA mA mA
		VDD - 2 - 5.5V		Ta = 60°C	-	-	5,0	
			AD/AF	Ta = 85°C	-	-	30	
I _{DDO1}	Operating Current	CE = OV, VIN = VIH/VIL, IOUT = OMA				40	70	m 1
I _{DDO2}	Operating Current	CE = OV, VIN = VD	D/GND, Iout =	0mA	_	30	55	MA

Note: Typical values are at Ta = 25°C, VDD = 5V.

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	-	5	10	pF
C _{I/O}	Input/Output Capacitance	_	5	10	pF

Note: This parameter'is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = -30 \sim 85°C, V_{DD} = 5V \pm 10%)

Read Cycle

PARAMETER	PARAMETER TC5517AD-2/		2/ADL-2 TC5517AD/ADL		UNIT	
	MIN.	MAX.	MIN.	MAX.		
Read Cycle Time	200	_	250	-	ns	
Access Time	_	200	-	250	ns	
OE to Output Valid	_	100	-	100	ns	
CE to Output Valid	_	200		250	ns	
OE or CE to Output Active	10		10	-	ns	
Output High-Z from Deselection	_	80	-	80	ns	
Output Hold from Address Change	10	_	10	-	ns	
	Read Cycle Time Access Time OE to Output Valid CE to Output Valid OE or CE to Output Active Output High-Z from Deselection	PARAMETER TC5517A TC5517A MIN. 200 Access Time — OE to Output Valid — CE to Output Valid — OE or CE to Output Active 10 Output High-Z from Deselection —	TC5517AF-2/AFL-2 MIN. MAX.	PARAMETER TC5517AD-2/ADL-2 TC5517 TC5517AF-2/AFL-2 TC5517 MIN. MAX. MIN. Max. MIN. MIN. Access Time — 200 — OE to Output Valid — 100 — CE to Output Valid — 200 — OE or CE to Output Active 10 — 10 Output High-Z from Deselection — 80 —	PARAMETER TC5517AD-2/ADL-2 TC5517AD/ADL TC5517AD/ADL TC5517AF/ADL TC5517AD/ADL TC551	

Write Cycle

SYMBOL	PARAMETER	TC5517A	P-2/APL-2 D-2/ADL-2 F-2/AFL-2	TC5517AP/APL TC5517AD/ADL TC5517AF/AFL		UNIT
		MIN.	MAX.	MIN.	MAX.	
twc	Write Cycle Time	200	-	250	-	ns
twp	Write Pulse Width	160	_	200	-	ns
t _{AW}	Address Set Up Time	0	(- C	0	_	ns
twR	Write Recovery Time	10	-	10	-	ns
topw	Output High-Z from R/W	_	80	-	80	ns
toew	Output Active from R/W	10	-	10	-	ns
t _{DS}	Data Set Up Time	80	2-	120	-	ns
tDH	Data Hold Time	0	-	0	-	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : 0.6V, 2.4V

Timing Measurement Reference Levels

Input : 0.8V and 2.2V

Output : 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10ns

TIMING WAVE FORMS • Read Cycle (1)

• Write Cycle 1 (1)

• Write Cycle 2 (2)

NOTE: (1) R/W is high for a Read Cycle.

- (2) $\overline{\text{OE}} = \text{V}_{\text{IH}}$ or V_{IL} . If $\overline{\text{OE}} = \text{V}_{\text{IH}}$ during write cycle, the output buffers remain in a high impedance state.
- (3) t_{WP} is specified as the logical "AND" of CE and R/W. t_{WP} is measured from the latter of CE of R/W going low to the earlier of CE or R/W going high.
- (4) tou, to are measured from the earlier of CE of R/W going high.
- (5) If the CE low transition occurs simultaneously with or latter from the R/W low transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (6) If the CE high transition occurs prior to or simultaneously with the R/W high transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (7) If the R/W is low or the R/W low transition occurs prior to or simultaneously with the $\overline{\text{CE}}$ low transition, the output buffers remain in high impedance state in this period.

DATA RETENTION CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER			MIN.	TYP.	MAX.	UNIT
VDR	Data Retention Power S	Supply Voltage		2.0	-	5.5	V
I _{DDS2} Standby Current		TC5517APL/ ADL/AFL	Ta = 25°C	_	_	0.2	μΑ
			Ta = 60°C	_	_	1.0	
	Standby Current	TC5517AP/	Ta = 25°	-	0.05	1.0	
			Ta = 60°C	- 1-	-	5.0	
	AD/AF	Ta = 85°C	-	-	30		
tCDR	From Chip Deselection to Data Retention Mode			0	-	-	μs
t _R	Recovery Time			t _{RC} (1)	-	_	μs

Note (1) t_{BC} : Read Cycle Time

Note (2) If the V_{IH} level of CE is 2.2V, during the period that the V_{DD} voltage is going down from 4.5V to 2.7V, I_{DDS1} current flows.

OUTLINE DRAWINGS

Plastic DIP

Cerdip DIP

Note: Each lead pitch is 2,54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Plastic FP

Note: Each lead pitch is 1.27 mm.

All leads are located within 0.1 mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

PACKAGE INFORMATION FOR FLAT PACKAGE

This new flat package is a very small and thin compared with conventional standard dual-in-line package. Differences are as follows:

 Difference in dimension between flat and standard package.

		Unit: m
	Flat package	Standard package
Length	16.5	32.4
Width	9.0	14.2
Lead Pitch	1.27	2.54
Thickness	1.6	5

2. Comparison in occupied space

- 3. Advantage of this package
 - Small dimensions
 - Capability of High Density Assembly
 - Capability of thin Assembly Capability of Assembly on both side of PC board.
- 4. PC pattern layout example

Note: Toshiba dies not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Nov., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2048 WORD x 8 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5517BP-20, TC5517BPL-20 TC5517BD-20, TC5517BDL-20 TC5517BF-20, TC5517BFL-20

DESCRIPTION

The TC5517BP/BD/BF is a 16384-bit high speed and low power fully static random access memory organized as 2048 words by 8 bits using CMOS technology, and operates from a single 5 volt supply.

The TC5517BP/BD/BF has a output enable input (\overline{OE}) for fast memory access and output control and chip enable input (\overline{CE}) which is used for device selection and can be used in order to achieve the minimum standby current mode easily for battery back up.

Also the high speed and low power characteristics which maximum access time is 200ns and maximum operating current is 5mA/MHz are achieved.

FEATURES

- Low Power Dissipation
 27.5mW/MHz (Max.) Operating
- Standby Current

 $0.2\mu A$ (Max.) at Ta = $25^{\circ}C$ TC5517BPL/ $1.0\mu A$ (Max.) at Ta = $60^{\circ}C$ BDL/BFL-20 $1.0\mu A$ (Max.) at Ta = $25^{\circ}C$ TC5517BP/BD/ $5.0\mu A$ (Max.) at Ta = $60^{\circ}C$ BF-20

- Single 5V Power Supply: 5V±10%
- Data Retention Supply Voltage 2.0 ~ 5.5V
- Fully Static Operation

PIN CONNECTION	(TO	P VIEW)
	A7 🗆 1	24 D V DD
	A6 🗆 2	23 A8
	A5 🗆 3	22 A9
	A4 🗆 4	21 🗆 R/W
	A3 5	20 OE
	A2 [6	19 A10
	A1 7	18 □ CE
	A ₀ B	17 1/08
	1/01 2 9	16 1/07
	1/02 10	15 1/06
	1/03 11	14 1/05
NINI NI ANATO	GND 12	13 1/04

PIN NAMES

$A_0 \sim A_{10}$	Address Inputs			
R/W	Read/Write Control Input			
ŌĒ	Output Enable Input			
CE	Chip Enable Input			
1/01 ~ 1/08	Data Input/Output			
V _{DD}	Power (+5V)			
GND	Ground			

Thus the TC5517BP/BD/BF is most suitable for use in low power applications where battery operation or battery back up for nonvolatility are required. Furthermore the TC5517BPL/BDL/BFL guaranteed a standby current equal to or less than $1\mu A$ at $60^{\circ}C$ ambient temperature available.

And the TC5517BP/BD/BF is pin compatible with 2716 type EPROM. This means that the TC5517BP/BD/BF and EPROM can be interchanged in the same socket, and the flexibility in the definition of the quantity of RAM versus EPROM allows the wide application in microcomputer system.

Fast Access Time

t_{ACC} = 200ns (Max.)

 $t_{OE} = 70 \text{ns (Max.)}$

- Output Buffer Control : OE
- On-chip Address Transition Detector
- All inputs and outputs Directly TTL Compatible
- Three State Outputs
- Package

Plastic DIP: TC5517BP/BPL Cerdip DIP: TC5517BD/BDL Plastic FP: TC5517BF/BFL

BLOCK DIAGRAM

OPERATION MODE

MODE	CE	ŌĒ	R/W	$A_0 \sim A_{10}$	1/01 ~ 8	POWER
Read	L	L	Н	Stable	Data Out	IDDO
Write	L	*	L	Stable	Data In	Ippo
Output Deselect	*	Н	*	*	High Impedance	IDDO
**Standby	Н	*	*	*	High Impedance	Inns

Note: *: H or L **: Data Retention Mode

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	$-0.3V \sim V_{DD} + 0.3V$
V _{I/O}	Input/Output Voltage	$-0.3V \sim V_{DD} + 0.3V$
PD	Power Dissipation (Ta = 85°C)	0.8W (0.45W) *
T _{STG}	Storage Temperature	−55°C ~ 150°C
TOPR	Operating Temperature	-30°C ~ 85°C
TSOLDER	Soldering Temperature · Time	260 °C · 10 sec.

* Plastic FP = 0.45W

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -30°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V
V _{DH}	Data Retention Voltage	2.0	-	5.5	V

D.C. CHARACTERISTICS (Ta = -30° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDI	TIONS		MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$0 \le V_{IN} \le V_{DD}$				-	±1.0	μΑ
ILO	I/O Leakage Current	$\overline{CE} = V_{IH}, OV \leq V_{I/O} \leq V_{I}$	DD		-	-	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V			-1.0	-2.0	_	mA
loL	Output Low Current	V _{OL} = 0.4V			2.0	3.0	-	mA
I _{DDS1}		CE = 2.2V			-	1.0	3.0	mA
		CE >V OFV	TC5517BPL	Ta=25°C	_	-	0.2	
		$\overline{CE} \ge V_{DD} - 0.5V$	/BDL/BFL-20	Ta=60°C	_	-	1.0	
I _{DDS2}	Standby Current		TC5517BP/	Ta=25°C	-	0.05	1.0	μΑ
		$V_{DD} = 2 \sim 5.5V$	BD/BF-20	Ta=60°C	-	-	5.0	
			DD/BF-20	Ta=85°C	-	-	30	
IDDO1		t _{cycle} = 200ns	$V_{IN} = V_{IH}/V_{I}$	L	-	-	30	
DDO2	Operating Current	CE = OV, IOUT = OmA	$V_{IN} = V_{DD}/G$	ND	-	-	25	m A
DD03	Operating Current	$t_{cycle} = 1\mu s$	$V_{IN} = V_{IH}/V_{I}$	L	-	-	10	mA
IDDO4		CE = OV, IOUT = OmA	$V_{IN} = V_{DD}/G$	ND	_	_	5	

Note: Typical Values are at Ta = 25°C, VDD = 5V.

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMTER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	_	5	10	pF
C _{I/O}	Input/Output Capacitance	-	5	10	pF

Note: This paramter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-30 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

Read Cycle

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tRC	Read Cycle Time	200		ns
tACC	Access Time	-	200	ns
toE	OE to Output Valid	-	70	ns
tco	CE to Output Valid	-	200	ns
tcoe	OE or CE to Output Active	10	_	ns
t _{OD}	Output High-Z from Deselection	_	60	ns
toH	Output Hold from Address Change	10	-	ns

Write Cycle

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
twc	Write Cycle Time	200	_	ns
t _{WP}	Write Pulse Width	150	_	ns
t _{AW}	Address Set up Time	0	_	ns
twR	Write Recovery Time	0	_	ns
topw	Output High-Z from R/W	_	60	ns
toew	Output Active from R/W	10	_	ns
t _{DS}	Data Set up time	-90	_	ns
t _{DH}	Data Hold Time	0	_	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : 0.6V, 2.4V

Timing Measurement Reference Levels

Input: 0.8V and 2.2V

Output: 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10ns

TIMING WAVEFORMS

• Read Cycle (1)

Write Cycle 1 (2)

• Write Cycle 2 (2)

Note: (1) R/W is high for a Read Cycle.

- (2) $\overline{OE} = V_{IH}$ or V_{IL} . If, $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high impedance state.
- (3) two is specified as the logical "AND" of CE and R/W.
 two is measured from the latter of CE or R/W going low to the earlier of CE or R/W going high.
- (4) tDH, tDS are measured from the earlier of $\overline{\text{CE}}$ or R/W going high.
- (5) If the CE low transition occurs simultaneously with or latter from the R/W low transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (6) If the CE high transition occurs prior to or simultaneously with the R/W high transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (7) If the R/W is low or the R/W low transition occurs prior to or simultaneously with the CE low transition, the output buffers remain in high impedance state in this period.

DATA RETENTION CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER			MIN.	TYP.	MAX.	UNIT
VDR	Data Retention Power Sup	ply Voltage		2.0	_	5.5	V
		TC5517BPL/	Ta=25°C	_	_	0.2	
		BDL/BFL-20	Ta=60°C	_	_	1.0	
I _{DDS2}	Standby Current	T0551700/	Ta=25°C	_	0.05	1.0	μΑ
		TC5517BP/	Ta=60°C	_	-	5.0	
		BD/BF-20	Ta=85°C	_	-	30	
t _{CDR}	From Chip Deselection to	Data Retention Mode		0	-	-	μs
t _R	Recovery Time			t _{RC} (1)	_	-	μs

Note (1) tRC: Read Cycle Time

Note (2) If the VIH level of CE is 2.2V, during the period that the VDD voltage is going down from 4.5V to 2.7V, IDDS1 current flows.

OUTLINE DRAWINGS

Plastic DIP

Cerdip DIP

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Plastic FP

Note: Each lead pitch is 1.27mm.
All leads are located within 0.1mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

PACKAGE INFORMATION FOR FLAT PACKAGE

This new flat package is a very small and thin compared with conventional standard dual-in-line package. Differences are as follows.

1. Difference in dimension between flat and standard package.

Unit :mm

	Flat package	Standard package
Length	16.5	32.4
Width	9.0	14.2
Lead Pitch	1.27	2.54
Thickness	1.6	5

2. Comparison in occupied space

3. Advantage of this package

Small dimensions

Capability of High Density Assembly

Capability of thin Assembly —— Capability of Assembly on both side of PC board.

4. PC pattern layout example

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Mar., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

2048 WORD x 8 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5518BP-20, TC5518BPL-20 TC5518BD-20, TC5518BDL-20 TC5518BF-20, TC5518BFL-20

DESCRIPTION

The TC5518BP/BD/BF is a 16384-bit high speed and low power fully static random access memory organized as 2048 words by 8 bits using CMOS technology, and operates from a single 5 volt supply.

The TC5518BP/BD/BF has two chip enable inputs, CE1 and CE2, which are used for device selection and can be used in order to achieve the minimum standby current mode easily for battery back up. Also the high speed and low power characteristics which maximum access time is 200ns and maximum operating current is 5mA/MHz are achieved.

Thus the TC5518BP/BD/BF is most suitable for

FEATURES

- Low Power Dissipation 27.5mW/MHz (Max.) Operating
- Standby Current

 $0.2\mu A$ (Max.) at Ta = $25^{\circ} C$ TC5518BPL/ $1.0\mu A$ (Max.) at Ta = $60^{\circ} C$ BDL/BFL-20 $1.0\mu A$ (Max.) at Ta = $25^{\circ} C$ TC5518BP/BD/ $5.0\mu A$ (Max.) at Ta = $60^{\circ} C$ BF-20

- Single 5V Power Supply: 5V±10%
- Data Retention Supply Voltage 2.0 ~ 5.5V
- Fully Static Operation

PIN CONNECTION

	(Top \	/IEW)	
A7 [1	24	JVDD
A6 [2	23	□A ₈
A5 [3	22	□ A9
A4 [4	21	□ R/W
A3 [5	20	CE 1
A ₂	6	19	□A10
A ₁	7	18	CE 2
A ₀	8	17	1/08
1/01	9	16	1/07
1/02	10	15	1/06
1/03	11	14	1/05
GND [12	13	1/04

PIN NAMES

A0 ~ A10	Address Inputs
R/W	Read/Write Control Input
CE ₁ , CE ₂	Chip Enable Inputs
1/01 ~ 1/08	Data Input/Output
V _{DD}	Power (+5V)
GND	'Ground

use in low power applications where battery operation or battery back up for nonvolatility are required. Furthermore the TC5518BPL/ BDL/BFL guaranteed a standby current equal to or less than $1\mu A$ at $60^{\circ} C$ ambient temperature available.

And the TC5518BP/BD/BF is pin compatible with 2716 type EPROM. This means that the TC5518BP/BD/BF and EPROM can be interchanged in the same socket, and the flexibility in the definition of the quantity of RAM versus EPROM allows the wide application in microcomputer system.

- Fast Access Time
 tacc = 200ns (Max.)
- Two Chip Enables (CE1, CE2) for Simple Memory Expansion and Battery Back Up
- On-chip Address Transition Detector
- All Inputs and Outputs Directly TTL Compatible
- Three State Outputs
- Package

Plastic DIP: TC5518BP/BPL Cerdip DIP: TC5518BD/BDL Platic FP: TC5518BF/BFL

BLOCK DIAGRAM

OPERATION MODE

MODE	CE ₂	CE ₁	R/W	$A_0 \sim A_{10}$	1/01 ~ 8	POWER
Read	L	L	Н	Stable	Data Out	IDDO
Write	L	L	L	Stable	Data In	IDDO
** Standby 1	*	Н	*	*	High Impedance	IDDS
** Standby 2	Н	*	*	*	High Impedance	IDDS

Note; *: H or L **: Data Retention Mode

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V_{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	$-0.3V \sim V_{DD} + 0.3V$
V _{I/O}	Input/Output Voltage	$-0.3V \sim V_{DD} + 0.3V$
PD	Power Dissipation (Ta = 85°C)	0.8W (0.45W)*
T _{STG}	Storage Temperature	-55°C ~ 150°C
TOPR	Operating Temperature	-30°C ~ 85°C
TSOLDER	Soldering Temperature - Time	260°C · 10 sec

*: Plastic FP = 0.45W

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -30°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	_	0.8	V
V _{DH}	Data Retention Voltage	2.0	_	5.5	V

D.C. CHARACTERISTICS (Ta = -30° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS			MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$0 \le V_{IN} \le V_{DD}$			-		±1.0	μΑ
ILO	I/O Leakage Current	$\overline{CE}_2 = V_{IH}$, $OV \leq V_{I/O} \leq V_{DD}$			1-	-	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V			-1.0	-2.0	-	mA
loL	Output Low Current	V _{OL} = 0.4V			2.0	3.0	-	mA
I _{DDS1}	1	$\overline{CE}_2 = 2.2V \text{ or } \overline{CE}_1 = 2.2$	2		_	1.0	3.0	mΑ
		$\frac{CE_2}{CE_1} \le V_{DD} - 0.5V \text{ or}$ $\frac{CE_1}{CE_1} \le V_{DD} - 0.5V$	TC5518BPL	Ta=25°C	-	-	0.2	mA
	Standby Current		/BDL/BFL-20	Ta=60°C	_	-	1.0	
			TC5518BP/ BD/BF-20	Ta=25°C	_	0.05	1.0	μΑ
				Ta=60°C	-	-	5.0	μΑ
				Ta=85°C	-	-	30	
DDO 1		t _{cy cle} = 200ns, CE 1 =	$V_{IN} = V_{IH}/V_{IL}$		-	_	30	mA
I _{DD02}	0	CE ₂ = OV, I _{OUT} = 0mA	$V_{IN} = V_{DD}/GND$		_	-	25	
Прроз	Operating Current	$t_{cycle} = 1 \mu s, \overline{CE}_1 =$	VIN = VIH/VIL		-	-	10	IIIA
I _{DD04}		CE2 = OV, IOUT = OmA	$V_{IN} = V_{DD}/GND$		_	-	5	

Note: Typical Values are at Ta = 25°C, VDD = 5V

CAPACITANCE

		- 1	TVD	11111	LIMIT
SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	-	5	10	pF
C _{1/O}	Input/Output Capacitance	_	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-30 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

Read Cycle

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tRC	Read Cycle Time	200	-	-	ns
tACC	Access Time	_	_	200	ns
t _{CO1}	CE ₁ to Output Valid	-	-	200	ns
t _{CO2}	CE ₂ to Output Valid	_	-	200	ns
^t COE	CE ₁ or CE ₂ to Output Active	10	_	-	ns
top	Output High-Z from Deselection	_	_	60	ns
toh	Output Hold from Address Change	20	_	_	ns

Write Cycle

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
twc	Write Cycle Time	200	_	_	ns
twp	Write Pulse Width	150	-	-	ns
t _{AW}	Address Set up Time	0	_	_	ns
twn	Write Recover Time	0	-	_	ns
topw	Output High-Z from R/W	_	_	60	ns
[†] OEW	Output Active from R/W	10	_	=	ns
t _{DS}	Data Set up Time	90	-	_	ns
t _{DH}	Data Hold Time	0	_	_	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : 0.6V, 2.4V

Timing Mesurement Reference Levels

Input: 0.8V and 2.2V Output: 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

Read Cycle (1)

Write Cycle 1.

Note: (1) R/W is high for a Read Cycle.

- (2) two is specified as the logical "AND" or CE1, CE2 and R/W. two is measured from the latter of CE1, CE2 or R/W going low to the earlier of CE1, CE2 or R/W going high.
- (3) t_{DH}, t_{DS} are measured from the earlier of $\overline{\text{CE}}$ 1, $\overline{\text{CE}}$ 2 or R/W going high.
- (4) If the CE 1, or CE2 low transition occurs simultaneously with or latter from the R/W low transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (5) If the CE 1 or CE2 high transition occurs prior to or simultaneously with the R/W high transition in a Write Cycle 1, the output buffers remain in a high impedance state in this period.
- (6) If the R/W is low or the R/W low transition occurs prior to or simultaneously with the $\overline{\text{CE}}$ 1 or $\overline{\text{CE}}$ 2 low transition, the output buffers remain in a high impedance state in this period.
- (7) A write occurs during the overlap of a low \(\overline{CE}\)1, low \(\overline{CE}\)2 and low R/W. In write cycle 2, write is controlled by either \(\overline{CE}\)1 or \(\overline{CE}\)2.

DATA RETENSION CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER			MIN.	TYP.	MAX.	UNIT
V _{DR}	Data Retention Power Supply Voltage		2.0	-	5.5	V	
I _{DDS2}	Standby Current	TC5518BPL/ BDL/BFL-20	Ta = 25°C	_	_	0.2	
			Ta = 60°C		_	1.0	
		TC5518BP/	Ta = 25°C	_	0.05	1.0	μΑ
			Ta = 60°C	-	-	5.0	
	BD/BF-20	Ta = 85°C	-	-	30		
tCDR	From Chip Deselection to Data Retention Mode			0	_	-	μs
t _R	Recover Time			t _{RC} (1)	_	_	μs

Note (1) tRC: Read Cycle Time

Note (2) if the V_{1H} level of $\overline{\text{CE}}_2$ ($\overline{\text{CE}}_1$) is 2.2V, during the period that the V_{DD} voltage is going down from 4.5V to 2.7V, I_{DDS1} current flows.

OUTLINE DRAWINGS

Plastic DIP

Cerdip DIP

Note: Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudianl position with respect to No. 1 and No.24 leads. All dimensions are in millimeters.

Plastic FP

Note: Each lead pitch is 1.27mm.

All leads are located within 0.1mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

PACKAGE INFORMATION FOR FLAT PACKAGE

This new flat package is a very small and thin compared with conventional standard dual-in-line package. Differences are as follows.

1. Difference in dimension between flat and standard package.

Unit: mm

	Flat package	Standard package
Length	16.5	32.4
Width	9.0	14.2
Lead Pitch	1.27	2.54
Thickness	1.6	5

2. Comparison in occupied space

DIP

FP

3. Advantage of this package

Small dimensions Capability of High Density Assembly

Capability of thin Assembly — Capability of Assembly on both side of PC board.

4. PC pattern layout example

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Mar., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

8192 WORD x 8 BIT CMOS RAM

SILICON GATE CMOS

TC5564P-10/P-15 TC5564PL-10/PL-15

DESCRIPTION

The TC5564P is a 65,536-bit high speed static random access memory organized as 8,192 words by 8 bits using CMOS technology, and operates from a single 5-volt supply.

The TC5564P features output enable and chip enable inputs, that is, $\overline{\text{OE}}$ for fast memory access and $\overline{\text{CE}}_1$, CE2 for a minimum standby current mode. So it is suited for a high speed, and low power applications where battery operation and/or battery back up for nonvolatility are required. The TC5564P is guaranteed for voltage as low as 2.0 volt. Furthermore the TC5564PL is guranteed a standby current equal

FEATURES

Low Standby Current

 0.2μ A (Max.) at Ta = 25° C TC5564PL-10 1.0μ A (Max.) at Ta = 60° C TC5564PL-15 $20~\mu$ A (Max.) at Ta = 85° C TC5564P-10 TC5564P-15

- Low Power Dissipation 27.5mW/MHz (Max.) Operating
- 5V Single Power Supply
- 8,192 Word x 8 Bit
- Fully Static Operation
- Data Retention Supply Voltage: 2.0 ~ 5.5V

PIN CONNECTION (TOP VIEW)

	TC5564F TC5564F			EPROM 12764D
N.C.	1	28 7 V DD	Vpp [1	28 VCC
A12 [2	27 R/W	A12 0 2	27 PGM
A7 [3	26 CE2	A7 [3	26 DN.C
A6 [4	25 As	A6 C 4	25 D A8
As C	5	24 A Au	As [5	24 A9
A4 [5	23 A11	A4 0 6	23 A11
A3 [7	22 D OE	A3 [7	22 DOE
A2 [8	21 A10	A2 [B	21 A10
AIC	9	20 CE1	A1 [9	20 CE
An C	10	19 1/08	Ao 010	19 07
1/01	11	18 1/07	00 011	18 06
1/02	12	1701/06	01 112	17 05
1/01	13	16 1/05	02 13	16 04
GND	14	15 1/04	GND 14	15 03

PIN NAMES

$A_0 \sim A_{12}$	Address Inputs
R/W	Read/Write Control Input
ŌĒ	Output Enable Input
CE1, CE2	Chip Enable Inputs
1/01 ~ 1/08	Data Input/Output
VDD	Power (+5V)
GND	Ground
N.C.	No Connection

to or less than $1 \mu A$ at Ta = $60^{\circ} C$ ambient temperature available.

The TC5564P also features pincompatibility with the 64K bit EPROM (TMM2764D). This means that the TC5564P and EPROM can be interchanged in the same socket, and flexibility in the definition of the quantity of RAM versus EPROM obtained as a result allows the wide application in microcomputer system.

The TC5564P is moulded in a dual-in-line 28 pin standard plastic package, 0.6 inch width.

Access Time

	TC5564P-10 TC5564PL-10	TC5564P-15 TC5564PL-15
Address Access Time (Max.)	100 ns	150 ns
CE ₁ Access Time (Max.)	100 ns	150 ns
CE ₂ Access Time (Max.)	100 ns	150 ns
Output Enable Time (Max.)	50 ns	70 ns

- Directly TTL Compatible:
 All Inputs and Outpus
- Stndard 28 Pin DIP
- Pin Compatible with 2764 type EPROM

BLOCK DIAGRAM

OPERATION MODE

Operation Mode	CE ₁	CE ₂	ŌĒ	R/W	1/01 ~ 1/08	Power
Read	L	Н	L	Н	Dout	IDDO
Write	L	Н	*	L	DIN	IDDO
Output Deselect	L	Н	Н	*	High-Z	IDDO
Standby	Н	*	*	*	High-Z	IDDS
Standby	*	L	*	*	High-Z	IDDS

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	−0.3 ~ 7.0	V
VIN	Input Voltage	−2.0 ~ 7.0	V
V _{I/O} Input and Output Voltage		-0.5 ~ V _{DD} +0.5	V
PD	Power Dissipation	1.0	W
T _{solder}	Soldering Temperature	260 · 10	°C · sec
T _{strg}	Storage Temperature	-55 ~ 150	°C
Topr.	Operating Temperature	-30 ~ 85	°C

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.5	-	0.8	V
V _{DH}	Data Retention Supply Voltage	2.0	_	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = -30 ~ 85°C, V_{DD} = 5V ±10% Unless otherwise noted)

SYMBOL		PARAMETER		MIN.	TYP.	MAX.	UNIT	
IIL	Input Leakage Current	$V_{IN} = 0 \sim V_{DD}$			_	_	±1.0	μΑ
Іон	Output High Current	V _{OH} = 2.4V			-1.0	-	-	mA
loL	Output Low Current	$V_{OL} = 0.4V$			4.0	-	-	mA
I _{LO}	Output Leakage Current	$\overline{\text{CE}}_1 = \text{V}_{\text{IH}} \text{ or } \text{CE}_2 = \text{V}_{\text{IL}} \text{ or}$ $\text{R/W} = \text{V}_{\text{IL}} \text{ or } \overline{\text{OE}} = \text{V}_{\text{IH}}$ $\text{V}_{\text{OUT}} = 0 \sim \text{V}_{\text{DD}}$			-	_	±1.0	μΑ
Inches 1	Operating Current	$\overline{CE}_1 = V_{IL}$ and $\overline{CE}_2 = V_{II}$		s	-	-	10	mA
I _{DDO1}	Other Input		V _{IL} t _{cycle} = 100ns			-	45	mA
lance		$\overline{CE}_1 = 0.2V$ and $CE_2 = V_{DD} - 0.2V$	t _{cycle} = 1 μ s	$t_{cycle} = 1\mu s$		-	5	mA
I _{DDO2} Operating Current	Other Input = V _{DD} -0.2V/0.2V		t _{cycle} = 100ns		-	40	III.A	
I _{DDS1}	Standby Current	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$			_	-	2	mA
		$\overline{CE}_1 = V_{DD} -0.2V$ or	TC5564PL-10	Ta = 25°C	-	-	0.2	
I _{DDS2}	Standby Current	$CE_2 = 0.2V$	TC5564PL-15	Ta = 60°C	-	_	1.0	μΑ
		$V_{DD} = 2.0 \sim 5.5 V$	TC5564P-10/T	C5564P-15	-	-	20	

Note: In standby mode with $\overline{CE}_1 \geqq V_{DD}$ -0.2V, these specification limits are guaranteed under the condition of $CE_2 \geqq V_{DD}$ -0.2V or $CE_2 \leqq 0.2V$.

CAPACITANCE (Ta = 25°C)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = GND	10	pF
COUT	Output Capacitance	V _{OUT} = GND	10	pF

Note: This prameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-30 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

Read Cycle

SYMBOL	PARAMETER	CONDITIONS	TC5564P-10/PL-10		TC5564P-15/PL-15		LINIT
STIMBUL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
tRC	Read Cycle Time	$V_{IN} = 2.4 V/0.6 V$	100	-	150	-	ns
tACC	Address AccessTime	V _{IH} = 2.2V		100	-	150	ns
tco1	CE ₁ Access Time	V _{IL} = 0.8V	_	100	-	150	ns
tco2	CE ₂ Access Time	t_r , $t_f \leq 5ns$		100	_	150	ns
^t OE	Output Enable to Output in Valid	V _{OH} = 2.2V V _{OL} = 0.8V Output Load:	-	50	-	70	ns
t _{COE}	Chip Enable (\overline{CE}_1 , CE_2) to Output in Low-Z		10		10	-	ns
toee	Output Enable to Output in Low-Z	C _L (100pF) and 1-TTL	5	-	5	-	ns
t _{OD}	Chip Enable (\overline{CE}_1 , CE_2) to Output in High-Z	Gate	-	50	-	70	ns
t _{ODO}	Output Enable to Output in High-Z		-	40	-	60	ns
tон	Output Data Hold Time		30	_	30	-	ns

Write Cycle

SYMBOL	PARAMETER	CONDITIONS	TC55	64P/PL	TC5564	P-1/PL-1	LINIT
STIMBUL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	TINU
twc	Write Cycle Time	$V_{IN} = 2.4V/0.6V$	100	-	150	-	ns
twp	Write Pulse Width	$V_{IH} = 2.2V$ $V_{IL} = 0.8V$ $t_r, t_f \le 5ns$	70	-	100	-	ns
t _{CW}	Chip Selection to End of Write		90	-	120		ns
t _{AW}	Address Set up Time		0	-	0	-	ns
twR	Write Recovery Time		0	-	0	-	ns
topw	R/W to Output High-Z		-	50	-	70	ns
toew	R/W to Output Low-Z		10	-	10	_	ns
tDS	Data Set up Time		40	_	60	-	ns
t _{DH}	Data Hold Time		0	-	0	-	ns

TIMING WAVEFORMS

READ CYCLE (1)

WRITE CYCLE 1 (R/W Controlled Write)

WRITE CYCLE 2 (4) (CE1 Controlled Write)

WRITE CYCLE 3 (4) (CE₂ Controlled Write)

NOTE:

- (1) R/W is High for Read Cycle.
- (2) Assuming that $\overline{\text{CE}}_1$ Low transition or CE2 High transition occurs coincident with or after R/W Low transition, Outputs remain in a high impedance state.
- (3) Assuming that $\overline{\text{CE}}_1$ High transition or CE₂ Low transition occurs coincident with or prior to R/W High transition, outputs remain in a high impedance state.
- (4) Assuming that \overline{OE} is High for Write cycle, Outputs are in high impedance state during this period.

DATA RETENTION CHARACTERISTICS (Ta = -30 ~ 85°C)

SYMBOL	PARAMETER		MIN.	TYP.	MAX.	UNIT	
V _{DH}	Data Retention Su	pply Voltage		2.0	_	5.5	V
	TC5564PL-10, Standby Current PL-15	Ta = 25°C	_	-	0.2	μΑ	
I _{DDS2}			Ta = 60°C	-	-	1.0	μΑ
		TC5564P-10, F		_	_	20	μΑ
tcdr	Chip Deselection t	Chip Deselection to Data Retention Mode		0	S=-	_	μS
t _R	Recovery Time		tRC	2	-	μS	

Note (1) t_{BC}: Read cycle time CE₁ Controlled Data Retention Mode (2)

CE, Controlled Data Retention Mode (2)

CE2 Controlled Data Retention Mode (4)

NOTE:

- (2) In \overline{CE}_1 controlled data retention mode, minimum standby current mode is achieved under the condition of CE₂ \leq 0.2V or CE₂ \geq V_{DD} -0.2V.
- (3) If the V_{IH} of \overline{CE}_1 is 2.2V in operation, during the period that the V_{DD} Voltage is going down from 4.5V to 2.4V. Inns1 current flows.
- (4) In CE2 controlled data retention mode, minimum standby current mode is achieved under the condition of $CE_2 \leq 0.2V$.

DEVICE INFORMATION

The TC5564P is an asynchronous RAM using address activated circuit technology, thus the internal operation is synchronous. Then once row address change occur, the precharge operation is executed by internal pulse generated from row address transient. Therefore the peak current flows after only row address change, as is shown in the following figure.

This peak current may induce the noise on VDD/GND line. Thus the use of about 0.1µF decoupling capacitor every device is recommended to eliminate such noise.

Fig. TYPICAL CURRENT WAVE FORMS

OUTLINE DRAWINGS

Unit: mm 27 26 25 24 23 22 21 20 19 18 17 16 15 R1.5 MAX. 9 10 11 12 13 37.4 MAX 15.24 TYP 5° 0.5 MIN. MAX. 0.25 +0.1 0.5 ± 0.15 3.2 MIN. 2.54 ± 0.25 1.4 ± 0.15 17.4 MAX.

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

TOSHIBA MOS MEMORY PRODUCTS

8.192 WORD X 8 BIT CMOS STATIC RAM

SILICON GATE CMOS

TC5565P-12/P-15 TC5565PL-12/PL-15

DESCRIPTION

The TC5565P is 65,536 bit static random access memory organized as 8,192 words by 8 bits using CMOS technology, and operates from a single 5V supply. Advanced circuit techniques provides both high speed and low power features with a maximum operating current of 5mA/MHz and maximum access time of 120ns/150ns.

When CE2 is a logical low or $\overline{\text{CE}}_1$ is a logical high, the device is placed in low power standby mode in which standby current is $2\mu\text{A}$ typically. The TC5565P has three control inputs. Two chip enables ($\overline{\text{CE}}_1$, CE2) allow for device selection and data retention control and an output enable input ($\overline{\text{OE}}$) provides

FEATURES

- Low Power Dissipation 27.5mW/MHz (Max.) Operating
- Standby Current

100μ A (Max.) : TC5565PL-12, PL-15 1mA(Max.) : TC5565P-12, P-15

- 5V Single Power Supply
- Power Down Features: CE2, CE1
- Fully Static Operation
- Data Retention Supply Voltage: 2.0 ~ 5.5V

PIN CONNECTION (TOP View)

TCS	565P	64k bit TMM2	
N.C. 0 1	28 VDD	Vpp 1	28 VCC
A12 0 2	27 8/W	A12 2	27 PGM
A7 [3	26 CE,	A7 🗆 3	26 N.C.
A6 C 4	25 A ₈	A6 C 4	25 Ag
As [5	24 Ay	As C 5	24 A A9
A4 0 6	23 A11	A, C 6	23 A A 1 1
A3 4 7	22 DE	A3 🗖 7	22 DE
A2 [8	21 A10	A2 [B	21 A10
A1 [9	20 CE 1	A1 [9	20 D CE
A0 010	19 1/04	A ₀ □ 10	19 07
1/01 11	18 1/07	00 -11	18 06
1/02 1 12	17 01/06	01 12	17 05
1/03 13	16 1/05	02 🗆 13	16 04
GNDC 14	15 1/04	GNDE 14	15 003

PIN NAMES

$A_0 \sim A_{12}$	Address Inputs
R/W	Read/Write Control Input
ŌĒ	Output Enable Input
CE ₁ , CE ₂	Chip Enable Inputs
1/01 ~ 1/08	Data Input/Output
V _{DD}	Power (+5V)
GND	Ground
N.C.	No Connection

fast memory access. Thus the TC5565P is suitable for use in various microprocessor application systems where high speed, low power and battery back up are required.

The TC5565P also features pin compatibility with the 64K bit EPROM (TMM2764D). RAM and EPROM are then interchangeable in the same socket, resulting in flexibility in the definition of the quantity of RAM versus EPROM in microprocessor application systems.

The TC5565P is offered in a dual-in-line 28 pin standard plastic package.

Access Time

		TC5565P-15 TC5565PL-15
Address Access Time (MAX.)	120 ns	150 ns
CE ₁ Access Time (MAX.)	120 ns	150 ns
CE ₂ Access Time (MAX.)	120 ns	150 ns
Output Enable Time (MAX.)	60 ns	70 ns

- Directly TTL Compatible: All Inputs and Outputs
- Standard 28 Pin DIP
- Pin Compatible with 2764 type EPROM

BLOCK DIAGRAM

OPERATION MODE

Operation Mode	CE ₁	CE ₂	ŌĒ	R/W	1/01 ~ 1/08	Power
Read	L	Н	L	Н	Dout	IDDO
Write	L	Н	*	L	D _{IN}	IDDO
Output Deselect	L	Н	Н	*	High-Z	IDDO
Standby	Н	*	*	*	High-Z	IDDS
Standby	*	L	*	*	High-Z	I _{DDS}

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	−0.3 ~ 7.0	V
VIN	Input Voltage	-2.0 ~ 7.0	V
V _{I/O}	Input and Output Voltage	-0.5 ∼ V _{DD} +0.5	V
PD	Power Dissipation	1.0	W
T _{solder}	Soldering Temperature	260-10	°C · sec
T _{strg}	Storage Temperature	−55 ~ 150	°C
T _{opr.}	Operating Temperature	0 ~ 70	°C

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	_	0.8	V
V _{DH}	Data Retention Supply Voltage	2.0	-	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{DD} = $5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIO	NS		MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$V_{IN} = 0 \sim V_{DD}$			_	-	±1.0	μА
ЮН	Output High Current	V _{OH} = 2.4V			-1.0	-	-	mA
loL	Output Low Current	V _{OL} = 0.4V			4.0		-	mA
I _{LO}	Output Leakage Current	$\overline{CE}_1 = V_{IH} \text{ or } \overline{CE}_2 = V_{IL} \text{ or } \overline{OE} = V_{IH}$ $V_{OUT} = 0 \sim V_{DD}$	or		-	-	±1.0	μΑ
I _{DDO1}	Operating Current	$V_{DD} = 5.5V, \overline{CE}_1 = V_{IL}$ $CE_2 = V_{IH}$	t _{cycle}	= 1μs	-	-	10	mA
		Other Input = VIH/VIL	t _{cycle}	= 100ns	_	_	45	mA
l	Operating Current	$V_{DD} = 5.5V$ $\overline{CE}_1 = 0.2V,$	t _{cycle}	= 1µs	-	_	5	mA
I _{DDO2}	Operating Current	$CE_2 = V_{DD} - 0.2V$ Other Input = V_{IH}/V_{IL}	t _{cycle}	=100ns	-	-	40	mA
I _{DDS1}	Standby Current	$\overline{CE}_1 = V_{IH} \text{ or } CE_2 = V_{IL}$			-	-	3	mΑ
1	Standby Current	$\overline{CE}_1 = V_{DD} - 0.2V$ or CE_2	= 0.2V	TC5565PL	-	2	100	μΑ
DDS2	Standby Current	$V_{DD} = 2.0 \sim 5.5 V$		TC5565P		_	1.0	mA

Note: In standby mode with $\overline{\text{CE}}_1 \geqq \text{V}_{\text{DD}}$ -0.2V, these specification limits are guaranteed under the condition of $\text{CE}_2 \geqq \text{V}_{\text{DD}}$ -0.2V or $\text{CE}_2 \leqq 0.2\text{V}$.

CAPACITANCE (Ta = 25°C)

SYMBOL	PĄRAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = GND	10	pF
Cour	Output Capacitance	V _{OUT} = GND	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = 0 \sim 70°C, V_{DD} = 5V \pm 10%)

Read Cycle

SYMBOL	PARAMETER	CONDITIONS	TC5565F	-12/PL-12	TC5565F	P-15/PL-15	UNIT
STIVIBUL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	
tRC	Read Cycle Time	$V_{IN} = 2.4V/0.6V$	120	_	150	_	ns
tACC	Address Access Time	V _{IH} = 2.2V	-	120	-	150	ns
t _{CO1}	CE ₁ Access Time	V _{IL} = 0.8V	-	120		150	ns
t _{CO2}	CE ₂ Access Time	$t_r, t_f \leq 5ns$	_	120	-	150	ns
toe	Output Enable to Output in Valid	$V_{OH} = 2.2V$ $V_{OL} = 0.8V$	-	60	_	70	ns
tcoe	Chip Enable (CE ₁ , CE ₂) to Output in Low-Z	Output Load:	10	-	10	_	ns
toee	Output Enable to Output Low-Z	C _L (100pF) and 1-TTL	5	_	5	-	ns
t _{OD}	Chip Enable (CE ₁ , CE ₂) to Output in High-Z	Gate	-	60	-	70	ns
t _{ODO}	Output Enable to Output in High-Z		-	50	-	60	ns
tон	Output Data Hold Time		20		20	_	ns

Write Cycle

0)//4001	DARAMETER	COMPLETIONS	TC5565P	-12/PL-12	TC5565P	-15/PL-15	UNIT
SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNII
twc	Write Cycle Time	$V_{IN} = 2.4V/0.6V$	120	_	150	-	ns
twp	Write Pulse Width	$V_{IH} = 2.2V$	80	-	100	-	ns
t _{CW}	Chip Selection to End of Write	$V_{IL} = 0.8V$ t_r , $t_f \le 5$ ns	100	-	120	-	ns
t _{AS}	Address Set up Time	1 =	0	-	0	_	ns
twn	Write Recovery Time		0	-	0	-	ns
twni	Write Recovery Time (CE ₁ , CE ₂)		10	-	10	-	ns
topw	R/W to Output High-Z		-	50	_	70	ns
toew	R/W to Output Low-Z		10	-	10	-	ns
t _{DS}	Data Set up Time		50	-	60	-	ns
t _{DH}	Data Hold Time		0	-	0	-	ns
t _{DHI}	Data Hold Time (CE ₁ , CE ₂)		10	_	10	_	ns

Note:

Input pulse levels = V_{IN} Timing Measurement Reference levels = V_{IH} , V_{IL}

TIMING WAVEFORMS

READ CYCLE (1)

WRITE CYCLE 1 (4) (R/W Controlled Write)

WRITE CYCLE 2 (4) (CE 1 Controlled Write)

WRITE CYCLE 3 (4) (CE2 Controlled Write)

NOTE:

- (1) R/W is High for Read Cycle.
- (2) Assuming that \overline{CE}_1 Low transition of CE₂ High transition occurs coincident with or after R/W Low transition, Outputs remain in a high impedance state.
- (3) Assuming that $\overline{\text{CE}}_1$ High transition or CE2 Low transition occurs coincident with or prior to R/W High transition, Outputs remain in a high impedance state.
- (4) Assuming that \overline{OE} is High for Write Cycle, Outputs are in high impedance state during this period.

DATA RETENTION CHARACTERISTICS (Ta = 0 ~ 70°C)

SYMBOL	PAR	AMETER	MIN.	TYP.	MAX.	UNIT
V_{DH}	Data Retention Sup	ply Voltage	2.0	_	5.5	V
L	Stand by	TC5565PL-12, PL-15	_	_	100	μΑ
DDS2	Supply Current	TC5565P-12, P-15	-	-	1.0	mA
tCDR	Chip Deselection to	Data Retention Mode	0		-	μs
tR	Recovery Time		t _{RC} (1)	-	-	μς

Note (1): Read cycle time

• CE 1 Controlled Data Retention Mode (2)

CE₂ Controlled Data Retention Mode (4)

NOTE:

- (2) In CE1 controlled data retention mode, minimum standby current mode is achieved under the condition of CE2 ≤ 0.2V or CE2 ≥ VDD −0.2V.
- (3) If the V_{IH} of CE₁ is 2.2V in operation, during the period that the V_{DD} voltage is going down from 4.5V to 2.4V, I_{DDS1} current flows.
- (4) In CE2 controlled data retention mode, minimum standby current mode is achieved under the condition of CE2 ≤ 0.2V.

DEVICE INFORMATION

The TC5565P is an asynchronous RAM using address activated circuit technology, thus the internal operation is synchronous. Then once row address change occur, the precharge operation is executed by internal pulse generated from row address transient. Therefore the peak current flows after only row address change, as is shown in the following figure.

This peak current may induce the noise on V_{DD}/GND lines. Thus the use of about $0.1\mu F$ decoupling capacitor every device is recommended to eliminate such noise.

OUTLINE DRAWINGS

8 27 26 25 24 23 22 21 20 19 18 17 16 15 R1.5 R1.5 R1.5

Unit: mm

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1982 Toshiba Corporation

Erasable/Programmable Read Only Memory - 197 -

TOSHIBA MOS MEMORY PRODUCTS

8.192 WORD x 8 BIT UV ERASABLE AND ELECTRICALLY PROGRAMMARI E READ ONLY MEMORY

N-CHANNEL SILICON STACKED GATE MOS

TMM2764D TMM2764D-2

DESCRIPTION

The TMM2764D is a 8192 word x 8 bit ultraviolet light erasable and electrically programmable read only memory. For read operation, the TMM2764D's access time is 200 ns, and the TMM2764D operates from a single 5-volt power supply and has low power standby mode which reduces the power dissipation without increasing access time. The standby mode is achieved by applying a TTL-high level signal to the CF input. The maximum active current is 120mA

FEATURES

Single 5-volt power supply

 Fast access time: TMM2764D 250 ns TMM2764D-2 200 ns

Power dissipation :

PIN CONNECTION

120 mA (active current) 35 mA (standby current) Max.

Low power standby mode : CE

15 0 0 2

For program operation, the programming is achieved by applying a 50ms active TTL low program pulse to the PGM input, and it is possible to program sequentially individually, or at random,

and the maximum standby current is 35mA.

The TMM2764D is fabricated with the N-channel silicon double layer gate MOS technology and is packaged in a standard 28 pin dual in line cerdip package.

OF · Output buffer control

Fully static operation

- Programs with one 50 ms pulse
- Single location programming
- Three state outputs
- Inputs and outputs TTL compatible
- Pin compatible with i2764 and ROM TMM2364P

(TOP VIEW) bit EPROM TMM2732D TMM2732D VPP□1 28 VCC (TOP VIEW) A12 2 27 PGM A7 3 26 N.C. A7 1 24 VCC A6 4 25 Ag A6 2 23 Ag A₅ | 5 24 A A5 3 22 A A 23 A11 A4 6 AA 4 21 A A A A A 22 0E A3 7 20 DE/VPP A3 4 5 A2 8 21 A10 A2 6 19 A A 10 A1 d9 20 CE A1 0 7 18 CE Aod 10 19 07 Aod 8 17 07 Ood 11 18 06 0009 16 06 01 12 17 05 01 10 15 0 05 02 13 16 04 02011 14 004 GNDD 14 13 03

GND 12

PIN NAMES

$A_0 \sim A_{12}$	Address Inputs			
00 ~ 07	Outputs (Inputs)			
CE	Chip Enable Input			
ŌĒ	Output Enable Input			
PGM	Program Control Input			
N.C.	No Connection			
V _{PP}	Program Supply Voltage			
Vcc	V _{CC} Supply Voltage (+5V)			
GND	Ground			

MODE SELECTION

Pin Mode	PGM (27)	(20)	OE (22)	V _{PP} (1)	V _{CC} (28)	$O_0 \sim O_7$ (11~13,15~19)	Power
Read	Н	L	L		5V	Data Out	
Output Deselect			Н		5V	High Impedance	Active
Standby		Н		5V	5V	High Impedance	Standby
Program	L	L			5V	Data in	
Program		Н		21)/	5V	High Impedance	A - 1/
Inhibit	Н	L	Н	21V	5V	High Impedance	Active
Program Verify	Н	L	L.		5V	Data Out	

Note: *: H or L

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	V _{CC} Power Supply Voltage	−0.6 ~ 7.0	V
V _{PP}	Program Supply Voltage	−0.6 ~ 22.0	V
VIN	Input Voltage	−0.6 ~ 7.0	V
Vout	Output Voltage	−0.6 ~ 7.0	V
PD	Power Dissipation	1.5	W
TSOLDER	Soldering Temperature · Time	260 - 10	°C · sec
TSTRG.	Storage Temperature	-65 ~ 125	°C
T _{OPR} .	Operating Temperature	0 ~ 70	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	_	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	_	0.8	V
Vcc	V _{CC} Power Supply Voltage	4.75	-	5.25	V
Vpp	V _{PP} Power Supply Voltage	2.0	Vcc	V _{CC} + 0.6	V

D.C. and OPERATING CHARACTERISTICS

(Ta = 0 \sim 70°C, V_{CC} = 5V ± 5% Unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$V_{IN} = 0 \sim V_{CC}$	-	-	± 10	μΑ
I _{CC1}	Supply Current (Standby)	CE = VIH	-	_	35	mA
I _{CC2}	Supply Current (Active)	CE = VIL	-	-	120	mA
VOH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
VOL	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$	-	-	0.4	V
I _{PP1}	V _{PP} Current	$V_{PP} = 0 \sim V_{CC} + 0.6$	-	-	± 10	μΑ
ILO	Output Leakage Current	$V_{OUT} = 0.4 \sim V_{CC}$	_	-	± 10	μΑ

A.C. CHARACTERISTICS

(Ta = 0 \sim 70°C, V_{CC} = 5V ± 5%, V_{PP} = 2.0V \sim V_{CC} + 0.6V, Unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS	TMM2764D-2		TMM2764D		LINUT
STINDOL	TANAMETEN	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
tACC	Address Access Time	CE = OE = VIL, PGM = VIH	-	200	-	250	ns
t _{CE}	CE to Output Valid	OE = VIL, PGM = VIH	_	200	_	250	ns
toE	OE to Output Valid	CE = VIL, PGM = VIH	_	70	_	100	ns
t _{PGM}	PGM to Output Valid	OE = CE = VIL	-	70	-	100	ns
t _{DF1}	CE to Output in High-Z	OE = VIL, PGM = VIH	0	60	0	90	ns
t _{DF2}	OE to Output in High-Z	CE = V _{IL} , PGM = V _{IH}	0	60	0	90	ns
t _{DF3}	PGM to Output in High-Z	OE = CE = VIL	0	60	0	90	ns
toh	Output Data Hold Time	CE = OE = VIL, PGM = VIH	0	-	-	-	ns

A.C. Test Conditions

Output Load
 1 TTL Gate and C_L = 100pF

Input Pulse Rise and Fall Times : 10ns Max.
 Input Pulse Levels : 0.8V to 2.2V

• Timing Measurement Reference Level : Inputs 1V and 2V, Outputs 0.8V and 2.0V

CAPACITANCE

* $(Ta = 25^{\circ}C, f = 1MHz)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0 V	_	4	6	pF
Cout	Output Capacitance	V _{OUT} = 0V	_	8	12	pF

^{*} This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	-	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	_	0.8	V
Vcc	V _{CC} Power Supply Voltage	4.75	5.0	5.25	V
Vpp	V _{PP} Power Supply Voltage	20.5	21.0	21.5	V

D.C. and OPERATING CHARACTERISTICS

 $(Ta = 25 \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{PP} = 21V \pm 0.5V)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$V_{IN} = 0 \sim V_{CC}$	-		± 10	μΑ
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
VOL	Output Low Voltage	I _{OL} = 2.1mA	-	-	0.4	V
lcc	V _{CC} Supply Current	-	-	-	120	mA
IPP2	V _{PP} Supply Current	V _{PP} = 21.5V	-	_	30	mA

A.C. PROGRAMMING CHARACTERISTICS (Ta = $25\pm5^{\circ}$ C, V_{CC} = $5V\pm5\%$, V_{PP} = $21V\pm0.5V$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	Typ.	MAX.	UNIT
tAS	Address Setup Time	-	2	-	-	μs
t _{AH}	Address Hold Time	-	2	-	-	μs
tCES	CE Setup Time	19 -	2	-	=	μs
[†] CEH	CE Hold Time	-	2	-	-	μs
t _{DS}	Data Setup Time	-	2	-	-	μs
t _{DH}	Data Hold Time	-	2	-	-	μs
tps	PGM Setup Time	-	2	-	-	μs
t _{PH}	PGM Hold Time	-	2	-	-	μs
toes	OE Setup Time	-	2	-	-	μs
tvs	V _{PP} Setup Time	_	2	-	-	μs
tpw	Program Pulse Width	$\overline{PGM} = \overline{CE} = V_{1L}$	45	50	55	ms
t _{CP}	Program Recovery Time		- 0	-	8	μs
tPRT	Program Pulse Rise Time	-	5	-	-	ns
tpfT	Program Pulse Fall Time	-	5	-	-	ns
tcE	CE to Output Valid	-	-	-	250	ns
toE	OE to Output Valid	-	-	_	100	ns
tDF1	CE to Output in High Z	OE = V _{IL}	-	-	90	ns
t _{DF2}	OE to Output in High Z	CE = VIL	-	_	90	ns

A.C. Test Conditions

 Output Load : 1TTL Gate and CL (100 pF)

 Input Pulse Rise and Fall Times : 10ns Max. : 0.8 ~ 2.2V Input Pulse Levels

Timing Measurement Reference Level : Input 1V and 2V ; Output 0.8V and 2.0V

TIMING WAVEFORMS (PROGRAM)

PROGRAM OPERATION 1. (VPP = 21V ± 0.5V)

PROGRAM OPERATION 2. $(V_{PP} = 21V \pm 0.5V)$

Note: 1. VCC must be applied simultaneously or before Vpp and cut off simultaneously or after Vpp.

2. Removing the device from socket and setting the device in socket with Vpp = 21V may cause permanent damage to the device.

The Vpp supply voltage is permitted up to 22V for program operation, so the voltage over 22V should not be applied to the Vpp terminal.

When the switching pulse voltage is applied to the Vpp terminal, the over-shoot voltage of its pulse should not be exceeded 22V.

ERASURE CHARACTERISTICS

The TMM2764D's erasure is achieved by applying shortwave ultraviolet light which has a wavelength of 2537Å (Angstroms) to the chip through the transparent window. Then integrated dose (Ultraviolet light intensity [w/cm²] x exposure time [sec.]) for erasure should be a minimum of 15 [W. sec/cm²].

When the Toshiba sterilizing lamp GL-15 is used and the device is exposed at a distance of 1 cm from the lamp surface, the erasure will be achieved within 60 minutes. And using commercial lamps whose ultraviolet light intensity is a 12000 $[\mu w/cm^2]$ will

reduce the exposure time to about 20 minutes. (In this case, the integrated does is 12000 [μ w/cm²] x (20 x 60) [sec] \cong 15 [w, sec/cm²].)

The TMM2764D's erasure begins to occur when exposed to light with wavelength shorter than 4000 Å. The sunlight and the fluorescent lamps will include $3000 \sim 4000$ Å wavelength components. Therefore when used under such lighting for extended periods of time, the opaque seals - Toshiba EPROM Protect Seal AC901 - are available.

OPERATION INFORMATION

The TMM2764D's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs. In the read

operation mode, a single 5V power supply is required and the levels required for all inputs are TTL.

		PGM (27)	CE (20)	ŌE (22)	V _{PP} (1)	V _{CC} (28)	$O_0 \sim O_7$ (11 ~ 13, 15 ~ 19)	Power
READ OPERATION (Ta = 0 ~ 70°C)	Read	Н	L	L			Data Out	Active
	Output Deselect	*	*	Н	5V	5V	High Impedance	Active
	Standby		Н	*			High Impedance	Standby
	Program	L	L	*			Data In	Active
PROGRAM	Program		Н	*	011/	EV	High Impedance	Active
OPERATION -	Inhibît	Н	L	Н	- 21V	5V	High Impedance	Active
$(Ta = 25 \pm 5^{\circ}C)$	Program Verify	Н	L	L			Data Out	Active

Note: H; VIH, L; VIL, *; VIH or VIL

READ MODE

The TMM2764D has three control functions. The chip enable $(\overline{\text{CE}})$ controls the operation power and should be used for device selection.

The output enable (\overline{OE}) and the program control (\overline{PGM}) control the output buffers, independent of device selection.

Assuming that $\overline{CE} = \overline{OE} = V_{IL}$ and $\overline{PGM} = V_{IH}$, the output data is valid at the outputs after address access time from stabilizing of all addresses.

The \overline{CE} to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{IL}$, $\overline{PGM} = V_{IH}$ and all addresses are valid, the output data is valid at the outputs after top from the falling edge of \overline{OE} .

And assuming that $\overline{CE} = \overline{OE} = V_{IL}$ and all addresses are valid, the output data is valid at the outputs after tpgM from the rising edge of \overline{PGM} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$, the outputs will be in a high impedance state. So two or more TMM2764D can be connected together on a common

bus line. When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TMM2764D has a low power standby mode controlled by the $\overline{\text{CE}}$ signal. By applying a TTL high level to the $\overline{\text{CE}}$ input, the TMM2764D is placed in the standby mode which reduce the operating current

from 120mA to 35mA, and then the outputs are in a high impedance state, independent of the \overline{OE} and the \overline{PGM} inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TMM2764D are in the "1" state which is erased state.

Therefore the program operation is to introduce "0s" data into the desired bit locations by electrically programming.

The TMM2764D is set up in the program operation mode when applied the program voltage (+21V) to the Vpp terminal under $\overline{CE} = \overline{PGM} = \overline{OE} = V_{IH}$.

The program operation occurs during the overlap of the \overline{CE} low and the \overline{PGM} low. Then the programming is achieved by applying a 50ms (tpw) active low

program pulse to the $\overline{\text{CE}}$ or the $\overline{\text{PGM}}$ input after the addresses and data are stable.

This program pulse should be a single pulse with 50ms pulse width per address word, and its maximum value is 55ms.

The levels required for all inputs are TTL.

The TMM2764D can be programmed any location at anytime — either individually, sequentially, or at random.

The TMM2764D should not be programmed with D.C. signal applied to both \overline{CE} and \overline{PGM} inputs.

PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits.

The verify is accomplished with \overline{OE} and \overline{CE} at V_{IL} and \overline{PGM} at V_{IH} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage ($\pm 21V$) is applied to Vpp terminal, a high level $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ input inhibits the TMM2764D from being programmed. Programming of two or more TMM2764Ds in parallel with different data is easily accomplished.

That is, all inputs except for $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ may be commonly connected, and a TTL low level program pulse is applied to the $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ of the desired device only and TTL high level signal is applied to the other devices.

OUTLINE DRAWINGS

Note: 1. Each lead pitch is 2,54mm. All leads are located within 0.25mm of their true longitudinal position with respect No. 1 and No. 28 leads.

- 2. This value is measured at the end of leads.
- 3. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Nov., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

8.192 WORD x 8 BIT UV ERASABLE AND ELECTRICALLY PROGRAMMABLE READ ONLY MEMORY

N-CHANNEL SILICON STACKED GATE MOS

TMM2764DI TMM2764DI-2

DESCRIPTION

The TMM2764DL is a 8192 word x 8 bit ultraviolet light erasable and electrically programmable read only memory. For read operation, the TMM2764DI's access time is 200 ns, and the TMM2764DI operates from a single 5-volt power supply and has low power standby mode 'which reduces the power dissipation without increasing access time. The standby mode is achieved by applying a TTL-high level signal to the

FEATURES

- Wide operating temperature Range —40~85°C
- Single 5-volt power supply
- Fast access time : TMM2764DI 250 ns

TMM2764DI-2 200 ns

Power dissipation :

PIN CONNECTION

130 mA (active current) Max. 40 mA (standby current) Max.

· Low power standby mode :

CE input. The maximum active current is 130 mA and the maximum standby current is 40mA.

For program operation, the programming is achieved by applying a 50ms active TTL low program pulse to the PGM input, and it is possible to program sequentially individually, or at random,

The TMM2764DI is fabricated with the N-channel silicon double layer gate MOS technology and is packaged in a standard 28 pin dual in line cerdip package.

- Output buffer control
- Fully static operation
- Programs with one 50 ms pulse
- Single location programming
- · Three state outputs
- Inputs and outputs TTL compatible
- Pin compatible with i2764 and ROM TMM2364P

28 VCC VPP□1 (TOP VIEW) A12 2 27 PGM A7 3 26 N.C. A₇□ 1 24 VCC A6 4 25 A8 A6 2 23 Ag A5 5 A5 3 24 A A 22 A. A4 6 23 A11 A4 4 21 A A 11 A3 7 22 D OE A3 5 20 DE/VPP A2 8 21 A10 A2 6 19 A A 10 A1 0 20 CE A1 7 18 CE Ao 10 19 07 A0 | 8 17 07

TMM2732D 00日11 18 06 00 49 16 0 06 01 12 17 05 01 4 10 15 0 05 02 13 16 04 02 411 14 04 GNDC 14 15 03 GND 12 13 03

PIN NAMES

$A_0 \sim A_{12}$	Address Inputs			
00 ~ 07	Outputs (Inputs)			
CE	Chip Enable Input			
ŌE	Output Enable Input			
PGM	Program Control Input			
N.C.	No Connection			
V _{PP}	Program Supply Voltage			
Vcc	V _{CC} Supply Voltage (+5V)			
GND	Ground			

MODE SELECTION

Pin Mode	PGM (27)	(20)	OE (22)	V _{PP} (1)	V _{CC} (28)	$O_0 \sim O_7$ (11~13,15~19)	Power	
Read	Н	L	L		5V	Data Out		
Output Deselect			Н		5V	High Impedance	Active	
Standby	*	Н		5V	5V	High Impedance	Standby	
Program	L	L			5V	Data in		
Program	*	Н		0414	5V	High Impedance		
Inhibit	Н	L	Н	21V	5V	High Impedance	Active	
Program Verify	Н	L	L		5V	Data Out		

Note: *: H or L

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	V _{CC} Power Supply Voltage	-0.6 ~ 7.0	V
Vpp	Program Supply Voltage	-0.6 ~ 22.0	V
V _{IN} Input Voltage		−0.6 ~ 7.0	V
V _{OUT} Output Voltage		−0.6 ~ 7.0	V
P _D Power Dissipation		1.5	W
TSOLDER	Soldering Temperature - Time	260 - 10	°C · sec
TSTRG. Storage Temperature		−65 ~ 125	°C
TOPR.	Operating Temperature	-40 ~ 85	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	_	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	-	0.8	V
Vcc	V _{CC} Power Supply Voltage	4.75	-	5.25	V
V _{PP}	V _{PP} Power Supply Voltage	2.2	Vcc	V _{CC} + 0.6	V

D.C. and OPERATING CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{CC} = 5V \pm 5\%$ Unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$V_{IN} = 0 \sim V_{CC}$	_	-	± 10	μΑ
I _{CC1}	Supply Current (Standby)	CE = V _{IH}	_	_	40	mΑ
I _{CC2}	Supply Current (Active)	CE = VIL	-	-	130	mA
VOH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
VOL	Output Low Voltage	I _{OL} = 2.1mA	-	-	0.4	V
I _{PP1}	V _{PP} Current	$V_{PP} = 0 \sim V_{CC} + 0.6$	-	-	± 10	μΑ
ILO	Output Leakage Current	V _{OUT} = 0.4 ~ V _{CC}	-	_	± 10	μΑ

A.C. CHARACTERISTICS

(Ta = $-40 \sim 85$ °C, V_{CC} = 5V±5%, V_{PP} = 2.2V \sim V_{CC} + 0.6V, Unless otherwise noted)

SYMBOL	PARAMETER	CONDITIONS	TMM2764DI-2		TMM2764DI		
STIVIDUL	FARAMETER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
tACC	Address Access Time	CE = OE = VIL, PGM = VIH	-	200	_	250	ns
t _{CE}	CE to Output Valid	OE = VIL, PGM = VIH	-	200		250	ns
toE	OE to Output Valid	CE = VIL, PGM = VIH	-	70	_	100	ns
t _{PGM}	PGM to Output Valid	OE = CE = VIL	_	70	-	100	ns
t _{DF1}	CE to Output in High-Z	OE = V _{IL} , PGM = V _{IH}	0	60	0	90	ns
t _{DF2}	OE to Output in High-Z	CE = V _{IL} , PGM = V _{IH}	0	60	0	90	ns
t _{DF3}	PGM to Output in High-Z	OE = CE = VIL	0	60	0	90	ns
toh	Output Data Hold Time	CE = OE = VIL, PGM = VIH	0	-	0	_	ns

A.C. Test Conditions

• Output Load : 1 TTL Gate and C_L = 100pF

Input Pulse Rise and Fall Times
 Input Pulse Levels
 10ns Max.
 0.6V to 2.4V

• Timing Measurement Reference Level : Inputs 1V and 2V, Outputs 0.8V and 2.0V

CAPACITANCE

* $(Ta = 25^{\circ}C, f = 1MHz)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	$V_{IN} = 0V$	_	4	6	pF
Cout	Output Capacitance	V _{OUT} = 0V	_	8	12	pF

^{*} This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.2	-	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	-	0.8	V
V _{CC}	V _{CC} Power Supply Voltage	4.75	5.0	5.25	V
Vpp	V _{PP} Power Supply Voltage	20,5	21.0	21.5	V

D.C. and OPERATING CHARACTERISTICS

 $(Ta = 25 \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{PP} = 21V \pm 0.5V)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	$V_{IN} = 0 \sim V_{CC}$	-	-	± 10	μΑ
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
Vol	Output Low Voltage	I _{OL} = 2.1mA	_	-	0.4	V
lcc	V _{CC} Supply Current	_	-	-	130	mA
I _{PP2}	V _{PP} Supply Current	V _{PP} = 21.5V	-	-	30	mA

A.C. PROGRAMMING CHARACTERISTICS

 $(Ta = 25 \pm 5^{\circ}C, V_{CC} = 5V \pm 5\%, V_{PP} = 21V \pm 0.5V)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	Тур.	MAX.	UNIT
tas	Address Setup Time		2	-	-	μs
t _{AH}	Address Hold Time	_	2	_	-	μs
tces	CE Setup Time	1 - 1	2	-	_	μs
t _{CEH}	CE Hold Time	-	2	-	-	μs
t _{DS}	Data Setup Time	1_	2	_	-	μs
tDH	Data Hold Time	-	2	-	-	μs
tps	PGM Setup Time	_	2	-	-	μs
t _{PH}	PGM Hold Time	-	2	-	-	μs
tvs	V _{PP} Setup Time	-	2	-	-	μs
tpW	Program Pulse Width	$\overline{PGM} = \overline{CE} = V_{IL}$	45	50	55	ms
tcp	Program Recovery Time	-	0	-:		μs
tPRT	Program Pulse Rise Time	-	5	-	-	ns
tpfT	Program Pulse Fall Time	-	5		-	ns
tce	CE to Output Valid		_	-	250	ns
toe	OE to Output Valid	-	-	-	100	ns
tDF1	CE to Output in High Z	OE = VIL	-	-	90	ns
t _{DF2}	OE to Output in High Z	CE = VIL	-	-	90	ns

A.C. Test Conditions

• Output Load : 1TTL Gate and CL (100 pF)

Input Pulse Rise and Fall Times
 Input Pulse Levels
 10ns Max.
 0.6 ~ 2.4V

• Timing Measurement Reference Level : Input 1V and 2V ; Output 0.8V and 2.0V

TIMING WAVEFORMS (PROGRAM)

PROGRAM OPERATION 1. (Vpp = 21V ± 0.5V)

PROGRAM OPERATION 2. $(V_{PP} = 21V \pm 0.5V)$

Note: 1. VCC must be applied simultaneously or before Vpp and cut off simultaneously or after Vpp.

2. Removing the device from socket and setting the device in socket with Vpp = 21V may cause permanent damage to the device.

 The Vpp supply voltage is permitted up to 22V for program operation, so the voltage over 22V should not be applied to the Vpp terminal.

ERASURE CHARACTERISTICS

The TMM2764DI's erasure is achieved by applying shortwave ultraviolet light which has a wavelength of 2537Å (Angstroms) to the chip through the transparent window. Then integrated dose (Ultraviolet light intensity [w/cm²] x exposure time [sec.]) for erasure should be a minimum of 15 [W. sec/cm²].

When the Toshiba sterilizing lamp GL-15 is used and the device is exposed at a distance of 1 cm from the lamp surface, the erasure will be achieved within 60 minutes. And using commercial lamps whose ultraviolet light intensity is a 12000 [μ w/cm²] will

reduce the exposure time to about 20 minutes. (In this case, the integrated dose is 12000 [μ w/cm²] x (20 x 60) [sec] \cong 15 [w, sec/cm²].)

The TMM2764DI's erasure begins to occur when exposed to light with wavelength shorter than 4000 Å. The sunlight and the fluorescent lamps will include $3000 \sim 4000$ Å wavelength components. Therefore when used under such lighting for extended periods of time, the opaque seals - Toshiba EPROM Protect Seal AC901 - are available.

OPERATION INFORMATION

The TMM2764DI's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs. In the read

operation mode, a single 5V power supply is required and the levels required for all inputs are TTL.

		PGM (27)	CE (20)	ŌE (22)	V _{PP} (1)	V _{CC} (28)	$O_0 \sim O_7$ (11 ~ 13, 15 ~ 19)	Power
READ OPERATION (Ta = -40~85°C)	Read	Н	L	L	5V		Data Out	Active
	Output Deselect	*	*	Н		5V	High Impedance	Active
	Standby	*	Н	*			High Impednace	Standby
	Program	L	L	*	21V		Data In	Active
PROGRAM	D 1.171.1	*	Н	*		5V	High Impednace	Active
OPERATION (Ta = 25 ±5°C)	Program Inhibit	Н	L	Н		210	bV	High Impedance
	Program Verify	Н	L	L			Data Out	Active

Note: H; VIH, L; VIL, *; VIH or VIL

READ MODE

The TMM2764DI has three control functions. The chip enable $(\overline{\text{CE}})$ controls the operation power and should be used for device selection.

The output enable $(\overline{\text{OE}})$ and the program control (PGM) control the output buffers, independent of device selection.

Assuming that $\overline{CE} = \overline{OE} = V_{IL}$ and $\overline{PGM} = V_{IH}$, the output data is valid at the outputs after address access time from stabilizing of all addresses.

The $\overline{\text{CE}}$ to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{IL}$, $\overline{PGM} = V_{IH}$ and all addresses are valid, the output data is valid at the outputs after the from the falling edge of \overline{OE} .

And assuming that $\overline{CE} = \overline{OE} = V_{1L}$ and all addresses are valid, the output data is valid at the outputs after tp_{GM} from the rising edge of \overline{PGM} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$, the outputs will be in a high impedance state. So two or more TMM2764DI can be connected together on a common

bus line. When \overline{CE} is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TMM2764DI has a low power standby mode controlled by the $\overline{\text{CE}}$ signal. By applying a TTL high level to the $\overline{\text{CE}}$ input; the TMM2764DI is placed in the standby mode which reduce the operating current

from 130mA to 40mA, and then the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ and the $\overline{\text{PGM}}$ inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TMM2764DI are in the "1" state which is erased state.

Therefore the program operation is to introduce "0s" data into the desired bit locations by electrically programming.

The TMM2764DI is set up in the program operation mode when applied the program voltage (+21V) to the Vpp terminal under $\overline{CE} = \overline{PGM} = \overline{OE} = V_{IH}$.

The program operation occurs during the overlap of the $\overline{\text{CE}}$ low and the $\overline{\text{PGM}}$ low. Then the programming is achieved by applying a 50ms (tpw) active low

program pulse to the $\overline{\text{CE}}$ or the $\overline{\text{PGM}}$ input after the addresses and data are stable.

This program pulse should be a single pulse with 50ms pulse width per address word, and its maximum value is 55ms.

The levels required for all inputs are TTL.

The TMM2764DI can be programmed any location at anytime — either individually, sequentially, or at random.

The TMM2764DI should not be programmed with D.C. signal applied to both \overline{CE} and \overline{PGM} inputs.

PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits.

The verify is accomplished with \overline{OE} and \overline{CE} at V_{IL} and \overline{PGM} at V_{IH} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+21V) is applied to Vpp terminal, a high level $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ input inhibits the TMM2764DI from being programmed. Programming of two or more TMM2764DIs in parallel with different data is easily accomplished.

That is, all inputs except for $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ may be commonly connected, and a TTL low level program pulse is applied to the $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ of the desired device only and TTL high level signal is applied to the other devices.

OUTLINE DRAWINGS

Note: 1. Each lead pitch is 2,54mm, All leads are located within 0.25mm of their true longitudinal position with respect No. 1 and No. 28 leads.

- 2. This value is measured at the end of leads.
- 3. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Nov., 1982 Toshiba Corporation

16384 WORD x 8 BIT UV ERASABLE AND ELECTRICALLY PROGRAMMABLE READ ONLY MEMORY

TMM27 | 28D-20 TMM27 | 28D-25

DESCRIPTION

The TMM27128D is a 16384 word x 8 bit ultraviolet light erasable and electrically programmable read only memory. For read operation, the TMM 27128D's access time is 200 ns, and the TMM27128D operates from a single 5-volt power supply and has a low power standby mode which reduces the power dissipation without increasing access time. The standby mode is achieved by applying a TTL-high level signal to the CE input. The maximum active current is 120 mA and the maximum standby current is

35mA

For program operation, the programming is achieved by applying a 50 ms active TTL low program pulse to the PGM input, and it is possible to program sequentially, individually, or at random.

The TMM27128D is fabricated with the N-channel silicon double layer gate MOS technology and is packaged in a standard 28 pin dual in line cerdip package.

FEATURES

Single 5-volt power supply

Fast access time: TMM27128D-25 250 ns TMM27128D-20 200 ns

Power dissipation:

120 mA (active current) Max. 35 mA (standby current) Max.

Low power standby mode: CE

Output buffer control:
 OE

· Fully static operation

• Programs with one 50 ms pulse

Single location programming

Three state outputs

Inputs and outputs TTL compatible

Pin compatible with i27128

PIN CONNECTION

CITON			
(TOP VI	EW)
VPP [1	28	b vcc
A12 [2	27	PGM
A7 [3	26	□ A ₁₃
A6 [4	25	A ₈
A5 [5	24	□ A9
A4 [6	23	A11
A3 [7	22	OE
A2 [8	21	A10
A ₁	9	20	CE
A ₀	10	19	07
00 [11	18	06
01	12	17	05
02	13	16	04
GND	14	15	1 03

BLOCK DIAGRAM

PIN NAMES

$A_0 \sim A_{13}$	Address Inputs
00 ~ 07	Outputs (Inputs)
CE	Chip Enable Input
ŌĒ	Output Enable Input
PGM	Program Control Input
Vpp	Program Supply Voltage
Vcc	V _{CC} Supply Voltage (+5V)
GND	Ground

MODE SELECTION

Pin	PGM	CE	ŌĒ	Vpp	Vcc	00 ~ 07	Power	
Mode	(27)	(20)	(22)	(1)	(28)	(11~13, 15~19)	1 OVVCI	
Read	Н	L	L		5V	Data Out	Active	
Output Deselect	*	*	Н	5V	5V	High Impedance	Active	
Standby	by * H * 5V High Ir		High Impedance	Standby				
Program	L	L	*		5V	Data In		
Program Inhibit	*	Н	*	21V	5V	High Impedance	Active	
Program innibit	Н	L	Н	ZIV	5V	High Impedance	Active	
Program Verify	Н	L	L		5V	Data Out		

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	V _{CC} Power Supply Voltage	−0.6 ~ 7.0	V
V _{PP}	Program Supply Voltage	-0.6 ~ 22.0	V
VIN	Input Voltage	-0.6 ~ 7.0	V
V _{OUT}	Output Voltage	−0.6 ~ 7.0	V
PD	Power Dissipation	1.5	W
TSOLDER	Soldering Temperature · Time	260 · 10	°C · sec
T _{STRG} .	Storage Temperature	−65 ~ 125	°C
T _{OPR} .	Operating Temperature	0 ~ 70	°C

READ OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
\vee_{IH}	Input High Voltage	2.0	-	V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	_	0.8	V
Vcc	V _{CC} Power Supply Voltage	4.75	-	5.25	V
V _{PP}	V _{PP} Power Supply Voltage	2.0	Vcc	V _{CC} + 0.6	V

D.C. and OPERATING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, V_{CC} = $5V \pm 5\%$ Unless otherwise noted)

SYMBOL	PARAMTER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ILI	Input Current	V _{IN} = 0 ~ V _{CC}	-	-	±10	μΑ
lcc1	Supply Current (Standby)	CE = VIH	-	-	35	mA
lcc2	Supply Current (Active)	CE = VIL	-	-	120	mA
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA	-	-	0.4	V
I _{PP1}	V _{PP} Current	$V_{PP} = 0 \sim V_{CC} + 0.6$	-	-	±10	μΑ
ILO	Output Leakage Current	V _{OUT} = 0.4 ~ V _{CC}	_	-	±10	μА

A.C. CHARACTERISTICS (Ta = 0 \sim 70°C, V_{CC} = 5V \pm 5%, V_{PP} = 2.0V \sim V_{CC} + 0.6V, Unless otherwise noted)

01/11/01	DADAMTED	CONDITIONS	TMM27	128D-20	TM271	28D-25	LINUT
SYMBOL	PARAMTER	CONDITIONS	MIN.	MAX.	MIN.	MAX.	UNIT
tACC		Address Access Time $\overline{CE} = \overline{OE} = V_{IL}, \overline{PGM} = V_{IH}$	-	- 200 - 200	_	250	ns ns
[†] CE		OE = VIL, PGM = VIH				250	
toE	OE to Output Valid	CE = V _{IL} , PGM = V _{IH}	-	70	_	100	ns
^t PGM	PGM to Output Valid	OE = CE = VIL	-	70	-	100	ns
t _{DF1}	CE to Output in High-Z	OE = V _{IL} , PGM = V _{IH}	0	60	0	90	ns
t _{DF2}	OE to Output in High-Z	CE = V _{IL} , PGM = V _{IH}	0	60	0	90	ns
t _{DF3}	PGM to Output in High-Z	OE = CE = VIL	0	60	0	90	ns
tон	Output Data Hold Time	CE = OE = VIL	0	-	0	_	ns

AC Test Conditions

Output Load:
 1 TTL Gate and C₁ = 100pF

Input Pulse Rise and Fall Times:
 Input Pulse Levels:
 10 ns Max.
 0.8V to 2.2V

• Timing Measurement Reference Level: Inputs 1V and 2V, Outputs 0.8V and 2.0V

CAPACITIANCE * (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	VIN = OV	_	4	6	pF
C _{OUT}	Output Capacitance	V _{OUT} = OV	-	8	12	pF

^{*} This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS (READ)

PROGRAM OPERATION

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{IH}	Input High Voltage	2.0		V _{CC} + 1.0	V
VIL	Input Low Voltage	-0.3	-	0.8	V
Vcc	V _{CC} Power Supply Voltage	4.75	5.0	5.25	V
V _{PP}	V _{PP} Power Supply Voltage	20.5	21.0	21.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = 25 \pm 5°C, V_{CC} = 5V \pm 5%, V_{PP} = 21V \pm 0.5V)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LLI	Input Current	V _{IN} = 0 ~ V _{CC}	_	-	±10	μΑ
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	-	V
Vol	Output Low Voltage	I _{OL} = 2.1 mA	-	-	0.4	V
lcc	V _{CC} Supply Current	-		-	120	mA
I _{PP2}	V _{PP} Supply Current	V _{PP} = 21.5V		2-	30	mA

A.C. PROGRAMMING CHARACTERISTICS (Ta = $25 \pm 5^{\circ}$ C, $V_{CC} = 5V \pm 5\%$, $V_{PP} = 21V \pm 0.5V$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tas	Address Setup Time	-	2	-	-	μs
t _{AH}	Address Hold Time	_	2	-	-	μs
tces	CE Setup Time	-	2	_	-	μs
t _{CEH}	CE Hold Time	-	2	-	_	μs
t _{DS}	Data Setup Time	-	2	-	-	μs
t _{DH}	Data Hold Time	_	2	_	1-1	μs
tps	PGM Setup Time	-	2	-	_	μs
t _{PH}	PGM Hold Time	_	2	-	_	μs
tvs	V _{PP} Setup Time	_	2	_	1-1	μs
tpW	Program Pulse Width	PGM = CE = VIL	45	50	55	ms
t _{CP}	Program Recovery Time	_	0	-	1-7	μs
tprt	Program Pulse Rise Time	-	5	-	_	ns
tpfT	Program Pulse Fall Time	-	5			ns
tCE	CE to Output Valid	-	-	-	250	ns
toe	OE to Output Valid	-		-	100	ns
t _{DF1}	CE to Output in High Z	OE = VIL	-	-	90	ns
t _{DF2}	OE to Output in High Z	CE = VIL	_	-	90	ns

· A.C. Test Conditions

• Output Load: 1TTL Gate and C_L (100 pF)

Input Pulse Rise and Fall Times: 10 ns Max.
 Input Pulse Levels: 0.8 ~ 2.2V

• Timing Measurement Reference Level: Input 1V and 2V; Output 0.8V and 2.0V

TIMING WAVEFORMS (PROGRAM)

PROGRAM OPERATION 1. (Vpp = 21V ± 0.5V)

PROGRAM OPERATION 2. $(V_{PP} = 21V \pm 0.5V)$

Note: 1. V_{CC} must be applied simultaneously or before Vpp and cut off simultaneously or after Vpp.
2. Removing the device from socket and setting the device in socket with Vpp = 21V may cause permanent damage to the device.

3. The Vpp supply voltage is permitted up to 22V for program operation, so the voltage over 22V should not be applied to the Vpp terminal. When the switching pulse voltage is applied to the Vpp terminal, the over-shoot voltage of its pulse should not be exceeded 22V.

ERASURE CHARACTERISTICS

The TMM27128D's erasure is achieved by applying shortwave ultraviolet light which has a wavelength of 2537 Å (Angstroms) to the chip through the transparent window. Then integrated dose (Ultraviolet light intensity [w/cm²] x exposure time [sec.]) for erasure should be a minimum of 15 [W. sec/cm²].

When the Toshiba sterilizing lamp GL-15 is used and the device is exposed at a distance of 1 cm from the lamp surface, the erasure will be achieved within 60 minutes. And using commercial lamps

whose ultraviolet light intensity is a 12000 [μ w/cm²] will reduce the exposure time to about 20 minutes. (In this case, the integrated dose is 12000 [μ w/cm²] x (20 x 60) [sec] \cong 15 [w.sec/cm²].)

The TMM27128D's erasure begins to occur when exposed to light with wavelength shorter than 4000Å . The sunlight and the flourescent lamps will include $3000 \sim 4000$ Å wavelength components. Therefore when used under such lighting for extended periods of time, the opaque seals — Toshiba EPROM Protect Seal AC901 — are available.

OPERATION INFORMATION

The TMM27128D's six operation modes are listed in the following table. Mode selection can be achieved by applying TTL level signal to all inputs. In the

read operation mode, a single 5V power supply is required and the levels required for all inputs are TTL.

		PGM (27)	CE (20)	ŌE (22)	V _{PP} (1)	V _{CC} (28)	$O_0 \sim O_7$ (11 ~ 13, 15 ~ 19)	Power
READ	Read	Н	L	L			Data Out	Active
OPERATION $(Ta = 0 \sim 70^{\circ}C)$	Output Deselect	*	*	Н	5V	5V	High Impedance	Active
	Standby	*	Н	*			High Impedance	Standby
	Program	L	L	*			Data In	Active
PROGRAM OPERATION	Program Inhibit	*	Н	*	21V	5V	High Impedance	Active
(Ta = 25 ± 5°C)	Program Inhibit	Н	L	Н			High Impedance	Active
	Program Verify	Н	L	L	1		Data Out	Active

Note: H; VIH, L; VIL, *VIH or VIL

READ MODE

The TMM27128D has three control functions. The chip enable $(\overline{\text{CE}})$ controls the operation power and should be used for device selection.

The Output enable $(\overline{\text{OE}})$ and the program control $(\overline{\text{PGM}})$ control the output buffers, independent of device selection.

Assuming that $\overline{\text{CE}} = \overline{\text{OE}} = \text{V}_{\text{IL}}$ and $\overline{\text{PGM}} = \text{V}_{\text{IH}}$, the output data is valid at the output after address access time from stabilizing of all addresses.

The $\overline{\text{CE}}$ to output valid (t_{CE}) is equal to the address access time (t_{ACC}).

Assuming that $\overline{CE} = V_{IL}$, $\overline{PGM} = V_{IH}$ and all addresses are valid, the output data is valid at the outputs after t_{OE} from the falling edge of \overline{OE} .

And assuming that CE = OE = V_{IL} and all addresses are valid, the output data is valid at the outputs after tpGM from the rising edge of \overline{PGM} .

OUTPUT DESELECT MODE

Assuming that $\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$, the outputs will be in a high impedance state. So two or more TMM27128D can be connected together on a

common bus line. When $\overline{\text{CE}}$ is decoded for device selection, all deselected devices are in low power standby mode.

STANDBY MODE

The TMM27128D has a low power standby mode controlled by the $\overline{\text{CE}}$ signal. By applying a TTL high level to the $\overline{\text{CE}}$ input, the TMM27128D is placed in the standby mode which reduce the operating current

from 120mA to 35mA, and then the outputs are in a high impedance state, independent of the $\overline{\text{OE}}$ and $\overline{\text{PGM}}$ inputs.

PROGRAM MODE

Initially, when received by customers, all bits of the TMM27128D are in the "1" state which is erased state.

Therefore the program operation is to introduce "Os" data into the desired bit locations by electrically programming.

The TMM27128D is set up in the program operation mode when applied the program voltage (+21V) to the Vpp terminal under $\overline{CE} = \overline{PGM} = \overline{OE} = V_{IH}$.

The program operation occurs during the overlap of the \overline{CE} low and the \overline{PGM} low. Then the programming is achieved by applying a 50ms (tpw)

active low program pulse to the $\overline{\text{CE}}$ or the $\overline{\text{PGM}}$ input after the addresses and data are stable.

This program pulse should be a single pulse with 50ms pulse width per address word, and its maximum value is 55ms.

The levels required for all input are TTL. The TMM27128D can be programmed any location at anytime — either individually, sequentially, or at random.

The TMM27128D should not be programmed with D.C. signal applied to both $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ inputs.

PROGRAM VERIFY MODE

The verify mode is to check that the desired data is correctly programmed on the programmed bits.

The verify is accomplished with $\overline{\text{OE}}$ and $\overline{\text{CE}}$ at V_{IL} and $\overline{\text{PGM}}$ at V_{IH} .

PROGRAM INHIBIT MODE

Under the condition that the program voltage (+21V) is applied to Vpp terminal, a high level $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ input inhibits the TMM27128D from being programmed. Programming of two or more TMM27128Ds in parallel with different data is

easily accomplished. That is, all inputs except for $\overline{\text{CE}}$ or $\overline{\text{PGM}}$ may be commonly connected, and a TTL $\underline{\text{low}}$ level program pulse is applied to the $\overline{\text{CE}}$ and $\overline{\text{PGM}}$ of the desired device only and TTL high level signal is applied to the other devices.

OUTLINE DRAWINGS

Note: 1. Each lead pitch is 2.54mm. All leads are located within 0.25mm of their true longitudinal position with respect No. 1 and No. 28 leads.

- This value is measured at the end of leads.
 All dimensions are in millimeters.

Mask Programmable Read Only Memories

2048 WORD x 8 BIT MASK ROM

N CHANNEL SILICON GATE DEPLETION LOAD

TMM334P

DESCRIPTION

TMM334P is a 16,384 bits read only memory organized as 2048 words by 8 bits and is compatible with i2716 type (16K EPROM). It is suitable for use in programming of production apparatus used micro processor because of its low cost per bit.

TMM334P's mask making is carried out by computer using punched paper tape data of customer and then sample manufacturing will start. Then for customer, 16384 bits memory data and three chip select input active logic are programmable.

Therefore TMM334P manufacturing procedure goes through three steps before mass production. First step is a acceptance of customer's punched

paper tape data. Second step is a presentation of programmed sample (Engineering Sample) for customers. Third step is a verification of Engineering Sample by customers. Sample verification is most important and Toshiba will enter into mass production after above three steps are concluded. Then Toshiba will adopt a established on-line system and so can respond to a customer's needs quickly and can maintain a stable delivery.

TMM334P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production of high performance. TMM334P is moulded in a 24 pin standard plastic package.

FEATURES

- Single 5V supply voltage; V_{CC} = 5V ± 10%
- Access time; t_{ACC} = 450 ns. (Max.)
- Directly TTL compatible; All inputs and outputs
- Programmable chip select inputs; CS1, CS2, CS3 Easy memory expansion
- Three state output; OR tie capability
- Static operation; No clocks are required.
- Input protected; All inputs have protection against static charge
- Pin to pin compatible; TMM323C, i2316E, i2716

PIN CONNECTION

(TOP VIEW)

PIN NAMES

$A_0 \sim A_6$	Row address inputs
$A_7 \sim A_{10}$	Column address inputs
$D_0 \sim D_7$	Data outputs
$CS_1/\overline{CS_1} \sim CS_3/\overline{CS_3}$	Chip select inputs
VCC	VCC Power Supply Voltage
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power supply voltage	−0.5 ~ 7.0	V
VIN, VOUT	Input and output voltage	− 0.5 ~ 7.0	V
Topr	Operating temperature	0~70	°C
T _{stg}	Storage temperature	−55 ~ 150	°C
TSOLDER	Soldering temperature - time	260 - 10	°C · sec
PD Power Dissipation (Ta = 70°C)		1.0	W

D.C. OPERATING CONDITION

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input high voltage	-	2.0	-	Vcc + 1	V
VIL	Input low voltage	_	-0.5	-	8.0	V
Vcc	Power supply voltage	-	4.5	_	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = 0°C ~ 70°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
ITH	Input high current	VIN = VCC	1-	0.01	10	μΑ
IIL	Input low current	VIN = GND	-	-0.01	-10	μΑ
Vон	Output high voltage	ISOURCE = -0.4mA	2.4	3.0	-	V
VOL	Output low voltage	ISINK = 2.1mA	-	0.2	0.4	V
Іон	Output high current	Vout = 2.4V	-0.4	-3.0	-	mA
loL	Output low current	Vout = 0.4V	2.1	5.0	-	mA
ILO	Output leakage current	$\overline{CS} = 0.8V, \overline{CS} = 2.0V$ VOUT = 0.4V to VCC	-	±0.01	± 10	μА
Icc	Supply current	IOUT = OmA	-	40	80	mA

^{*} Ta = 25°C, Vcc = 5V

A.C. CHARACTERISTICS (Ta = 0° C $\sim 70^{\circ}$ C, V_{CC} = 5V $\pm 10\%$, C_L = 100pF, t_r , t_f = 20ns)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.*	MAX.	UNIT
tACC	Access time	tAC ≦ 100ns	_	270	450	ns
tco	Output delay time from chip select	tAC ≧ tACC	_	80	120	ns
top	Output deselect time	$R_L = 100 \Omega$	0	70	100	ns
trc	Read cycle time	_	450	_	-	ns

^{*} Ta = 25°C, Vcc = 5V

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input capacitance	VIN = A. C. GND	-	4	10	pF
Cour	Output capacitance	Vout = A. C. GND	-	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

PAPER TAPE FORMAT

Punched paper tape data must be a positive logic and use a 7 to 8 bit ASCII code. Format 1 (including Data and Check sum every word).

NULL	Take NULL more than fifty characters.
▼ TMM334P - XXXX ▼	Contents in single quotation mark $(\P,, \P)$ indicates a comment and XXXX is a user's number.
CR LF	CR and LF indicate carriage return and line feed respectively.
▼MSB = D ₇ ▼	Specify MSB pin. (D ₇ or D ₀)
CR LF	
N8;	N8 indicates a 8-bit mask pattern. Semicolon (;) indicates a punctuation of data.
CR LF	
Ruuu0; X07P3; ; XF1P5;	R indicates an absolute address. Enter the address by decimal code every eight words.
CR LF	
	X indicates hexadecimal code. So enter the data represented by hexadecimal code every word after X.
CR LF	P indicates a check sum of its word. So enter a sum of one's number in a word by decimal code after P.
	delina soco arter ;
R2040; X01P1; ; X3AP4;	Data modification: Enter the modified address before the End mark and then enter the data following above procedure independently or serialy. Modification can be
CR LF	allowed from 0 address to 2047 address.
(CS ₁ = 0)	
CR LF	Customers can program the active logic of three chip select inputs independently. Specify the active logic of chip select input in the brackets.
(CS ₂ = 1)	The example is shown in Figure. In this example, chip is active under the condition that $CS1 = '0'$ and $CS2 = '1'$ and $CS3 = '0'$.
CR LF	
(CS ₃ = 0)	
CR LF	
\$	\$ Indicates an End mark .
CR LF	
NULL	Take NULL more then fifty characters.

Format 2 (including Data only every word)

 $\ensuremath{\mathsf{R}}$ indicates an absolute address. Enter the address by decimal code every sixteen words.

 ${\sf X}$ indicates a hexadecimal code and so enter the data of sixteen words continuously after ${\sf X}$.

Data modification: This procedure is following to Format 1. Otherwise specified in Format 1.

Format 1 and Format 2 are Toshiba preferred Format. The other acceptable Format is Intel BNPF Format.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

©Mar., 1980 Toshiba Corporation

4096 WORD x 8 BIT MASK ROM

N CHANNEL SILICON GATE DEPLETION LOAD

TMM333P

DESCRIPTION

The TMM333P is a 32,768 bits read only memory organized as 4,096 words by 8 bits. It is suitable for use in programming of production apparatus used micro processor because of its low cost per bit.

The TMM333P's mask making is carried out by computer using punched paper tape data of customer and then sample manufacturing will start. Then for customer, 32,768 bits memory data and two chip select input active logic are programmable.

Therefore the TMM333P manufacturing procedure goes through three steps before mass production. First step is a acceptance of customer's punched paper tape data. Second step is a presentation of

programmed sample (Engineering Sample) for customers. Third step is a verification of Engineering Sample by customers. Sample verification is most important and Toshiba will enter into mass production after above three steps are concluded. Then Toshiba will adopt a established on-line system and so can respond to a customer's needs quickly and can maintain a stable delivery.

The TMM333P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production of high performance. The TMM 333P is moulded in a 24 pin standard plastic package.

FEATURES

- Single 5V supply voltage; V_{CC} = 5V ± 5%
- Access time; t_{ACC} = 450 ns. (Max.)
- Directly TTL compatible; All inputs and outputs
- Programmable chip select inputs; CS1, CS2, Easy memory expansion
- Three state outputs; OR tie capability
- Static operation; No clocks are required.
- Input protected; All inputs have protection against static charge
- Pin to pin compatible; TMS4732

PIN CONNECTION

(TOP VIEW)

PIN NAMES

$A_0 \sim A_6$	Row address inputs
$A_7 \sim A_{11}$	Column address inputs
$D_0 \sim D_7$	Data outputs
CS ₁ /CS ₁ ; CS ₂ /CS ₂	Chip select inputs
VCC	Power supply terminal
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power supply voltage	− 0.5 ~ 7.0	V
VIN, VOUT	Input and output voltage	− 0.5 ~ 7.0	V
Topr	Operating temperature	0 ~ 70	°C
T _{stq}	Storage temperature	−55 ~ 150	°C
TSOLDER	Soldering temperature · time	260 - 10	°C - sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input high voltage	-	2.0	-	Vcc + 1	V
VIL	Input low voltage	_	-0.5	-	0.8	V
Vcc	Power supply voltage	_	4.75	5.0	5.25	V

D.C. and OPERATING CHARACTERISTICS (Ta = 0°C ~ 70°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Ітн	Input high current	VIN = VCC	_	0.01	10	μΑ
IIL	Input low current	VIN = GND	-	-0.01	-10	μΑ
Vон	Output high voltage	ISOURCE = -0.4mA	2.4	3.0	-	V
VoL	Output low voltage	ISINK = 2.1mA	_	0.2	0.4	V
Іон	Output high current	Vout = 2.4V	-0.4	-3.0	-	mA
loL	Output low current	Vout = 0.4V	2.1	5.0	-	mA
ILO	Output leakage current	$CS = 0.8V$, $\overline{CS} = 2.0V$ VOUT = 0.4V to VCC	-	±0.01	± 10	μА
lcc	Supply current	IOUT = OmA	_	60	100	mA

^{*} Ta = 25°C, Vcc = 5V

A.C. CHARACTERISTICS (Ta = 0°C \sim 70°C, V_{CC} = 5V \pm 5%, C_L = 100pF, t_r , t_f = 20ns)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.*	MAX.	UNIT
tACC	Access time	tAC ≦ 100ns	_	300	450	ns
tco	Output delay time from chip select	tAC ≥ tACC	_	120	200	ns
top	Output deselect time	-	0	100	150	ns
tRC	Read cycle time	_	450	-		ns

^{*} Ta = 25°C, Vcc = 5V

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input capacitance	VIN = A. C. GND	-	4	10	pF
Cour	Output capacitance	Vout = A. C. GND	-	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

PAPER TAPE FORMAT

Punched paper tape data must be a positive logic and use a 7 to 8 bit ASCII code. Format 1 (including Data and Check sum every word).

NULL ▼ TMM333P - XXXX ▼ CRLF

▼ MSB = D7 ▼

CR LF N8;

CR LF

Ruuu0; X07P3; . . . ; XF1P5;

CR LF

CR LF

R4088; X01P1; ...; X3AP4;

CR LF

 $(CS_1 = 0)$ CR LF

 $(CS_2 = 1)$

CR LF \$

CR LF NULL

Take NULL more than fifty characters.

Contents in single quotation mark (▼...▼) indicates a comment and XXXX is a user's

CR and LF indicate carriage return and line feed respectively.

Specify MSB pin. (D7 or D0)

N8 indicates a 8-bit mask pattern.

Semicolon (;) indicates a punctuation of data.

R indicates an absolute address. Enter the address by decimal code every eight words.

X indicates hexadecimal code. So enter the data represented by hexadecimal code every word after X.

P indicates a check sum of its word. So enter a sum of one's number in a word by decimal code after P.

Data modification: Enter the modified address before the End mark and then enter the data following above procedure independently or serialy. Modification can be allowed from 0 address to 4095 address.

Customers can program the active logic of two chip select inputs independently. Specify the active logic of chip select input in the brackets.

The example is shown in Figure. In this example, chip is active under the condition that CS1 = '0' and CS2 = '1'.

\$ Indicates an End mark.

Take NULL more then fifty characters.

Format 2 (including Data only every word)

R indicates an absolute address. Enter the address by decimal code every sixteen words.

 ${\sf X}$ indicates a hexadecimal code and so enter the data of sixteen words continuously after ${\sf X}.$

Data modification: This procedure is following to Format 1. Otherwise specified in Format 1.

Format 1 and Format 2 are Toshiba preferred Format. The other acceptable Format is Intel BNPF Format.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads.

All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Sept.,1980 Toshiba Corporation

4.096 WORD X 8 BIT MASK ROM

N-CHANNEL SILICON GATE

TMM2332P

DESCRIPTION

The TMM2332P is a 32768-bit read only memory organized as 4096 words by 8 bits with a low bit cost, thus being most suitable for use in programming of production apparatus using microprocessor.

The TMM2332P features an automatic power down mode. When deselected by Chip Select (CS/CS) the device is in low power (ISR=15mA MAX.) standby mode. This device feature results in system power saving in larger systems, where the majority of devices are deselected.

The TMM2332P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production of high performance.

The TMM2332P is moulded in a 24-pin standard plastic package.

FEATURES

- Single 5V-Power Supply
- Fast Access Time: 350ns (MAX.)
- Low Power Dissipation Operating Current = 100mA (MAX.) Standby Current = 15mA (MAX.)
- Power Down Feature: CS / CS
- Programmable Chip Select: CS / CS
- Output Buffer Control : OE
- Easy memory Expansion : CS / CS

- Static Operation
- Pin Compatible with 2732 Type EPROM and
- All Inputs and Outputs: Directly TTL Compatible
- Three State Outputs: Wired OR Capability.
- Inputs Protected: All inputs have protection against static charge.

PIN CONNECTION

PIN NAMES

A ₀ ~A ₁₁	Address Inputs
D ₀ ~D ₇	Data Outputs
CS/CS	Chip Select Input
ŌE	Output Enable Input
Vcc	Power (+5V)
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Supply Voltage	-0.5 ~ 7.0	V
VIN	Input Voltage	-0.5 ~ 7.0	V
Vout	Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0~70	°C
TSTRG	Storage Temperature	-55 ~ 150	°C
TSOLDER	Soldering Temperature Time	260 · 10	°C•Sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	2.0	-	V _{CC} +1.0	V
VIL	Input Low Voltage	-0.5		0.8	V
Vcc	Power Supply Voltage	4.5	5.0	5.5	V

D.C. CHARACTERISTICS $(V_{CC} = 5V \pm 10\%, T_a = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	V _{IN} = 0 ~ V _{CC}		±0.02	±10	μΑ
IOH	Output High Current	V _{OH} = 2.4V	-0.4	-2.0	-	mΑ
loL	Output Low Current	V _{OL} = 0.4V	2.0	4.0	-	mA
ILO	Output Leakage Current	$\overline{OE} = V_{IH} \text{ or } \overline{CS} = V_{IH}$ $V_{OUT} = 0.4V \sim V_{CC}$	_	±0.05	±10	μΑ
Icc	Operating Current	$\overline{CS} = V_{IL}$ or $CS = V_{IH}$	-	-	100	mA
I _{SB}	Standby Current	CS = V _{IH} or CS = V _{IL}	_	-	15	mA

CAPACITANCE $(T_a = 0 \sim 70^{\circ}C, f = 1MHz)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = 0V	-	5	10	pF
Cout	Output Capacitance	V _{OUT} = 0V	_	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $T_a = 0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tRC	Read Cycle Time	350	-		ns
tACC	Access Time	_	_	350	ns
tco	Chip Selection to Output Valid	_	_	350	ns
t00	OE to Output Valid	_	12-1	120	ns
topc	Chip Deselection to Output in High-Z	_	_	100	ns
topo	OE to Output in High-Z	_	-	100	ns
tpU	Chip Selection to Power Up Time	0	-	-	ns
tpD	Chip Deselection to Power Down Time	_	_	100	ns

A.C. TEST CONDITIONS

Input Rise and Fall Times

; 20ns

Timing Measurement Reference Levels

; Input : 0.8V and 2.0V

Output: 0.8V and 2.0V

Output Load; 1-TTL Gate and CL = 100pF

A.C. TIMING WAVEFORMS

Note: (1) CS and CS waveforms are shown by dotted line and straight line respectively.

ACCEPTABLE FORMAT

Toshiba can accept programming and masking information for TMM2332P in the form of punched paper tape with Intel BNPF format or master devices (EPROM).

OUTLINE DRAWINGS

Note: Each lead pitch is 2,54 mm. All leads are located within 0.25 mm longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

64K BIT (8K WORD X 8 BIT) MASK ROM

N CHANNEL SILICON GATE

TMM2364P

DESCRIPTION

The TMM2364P is a 65536 bit read only memory organized as 8192 words by 8 bits with a low bit cost, thus being most suitable for use in programming of production apparatus using micro-processor.

Consisting of static memory cells and clocked peripheral circuitry, the TMM2364P provides a high speed and low power dissipation (access time 250ns, operating current 40mA).

The TMM2364P also features an automatic standby power mode. When deselected by Chip Enable (CE), the operating current is reduced from 40mA to

FEATURES

• Single 5V ± 10% power Supply

· Access Time: 250ns max.

Low Power Dissipation

Average Current: 40mA max. Standby Current: 15mA max.

• Input and Output: TTL Compatible

• Three State Outputs: Wired OR Capability

PIN CONNECTION

1	0	28	V _{CC} CS ₁ /CS ₁
2		27	CS1/CS1
3		26	CS2/CS2
4		25	D A ₈
	_	24	DA ₉
6	3	23	A11
7	=		OE
8	۵	21	D A ₁₀
9	2		CE
10	_	19	D D7
11		18	D D6
12		17	D D5
13		16	D D4
14		15	D D ₃
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	2 3 4 5 6 7 8 9 10 11 12 13	3 26 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 13 16

PIN NAMES

$A_0 \sim A_{12}$	Address inputs
D ₀ ~ D ₇	Data outputs
CS/CS	Chip select inputs
ŌĒ	Output enable inpu
CE	Chip enable input
N.C.	No connection
Vcc	Power supply terminal
GND	Ground

15mA. Output Enable $(\overline{\text{OE}})$ is effective in preventing data confliction on a common bus line.

The TMM2364P uses the address latch system that the falling edge of \overline{CE} latches all inputs except for \overline{OE} , thus can be easily connected to a system where address and data buses are commonly used.

The TMM2364P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production of high performance.

The TMM2364P is moulded in a 28 pin standard plastic package, 0.6 inch in width.

- Edge Enabled Operation: CE
- Output Buffer Control: OE
- Programmable Chip Select: CS₁, CS₂
 Easy Memory Expansion
- Pin Compatible with i2364
- Inputs protected: All inputs have protection

against static charge.

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
VIN. VOUT	Input and Output Voltage	− 0.5 ~ 7.0	V
TOPR	Operating Temperature	0~70	°C
TSTRG	Storage Temperature	−55 ~ 150	°C
T _{SD}	Soldering Temperature - Time	260 - 10	°C - sec
Pn	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage		2.2	-	V _{CC} + 1	V
VIL	Input Low Voltage	_	-0.5	-	0.8	V
Vcc	Power Supply Voltage	-	4.5	5.0	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
LIH	Input High Current	V _{IN} = 5.5V		-	0.05	10	μΑ
IIL	Input Low Current	V _{IN} = GND		-	-0.05	-10	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$		2.4	3.3	-	V
VOL	Output Low Voltage	I _{OL} = 3.2mA		-	0.3	0.4	V
LOH	Output Leakage Current	V _{OUT} = 5.5V	CE = 2.2V or	_	0.05	10	μΑ
ILOL	Output Leakage Current	V _{OUT} = 0.4V	OE = 2.2V	;:	-0.1	-20	μΑ
I _{CC1}	Standby Current	CE = 2.2V		-	8	15	mA
I _{CC2}	Average Current	tcyc = 350ns, IouT = 0mA		-	20	40	mA

^{*} Typical values are at Ta = 25° C and $V_{CC} = 5V$.

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tCE	CE pulse width	_	250	-	_	ns
tas	Address Setup Time	_	0	-	-	ns
t _{AH}	Address Hold Time	-	50	-	_	ns
tACC	Access Time	_	_	150	250	ns
t00	Output Delay Time from OE	_	-	50	120	ns
top	Output Turn off Delay	_	_	40	70	ns
tcc	CE off Time	<u> </u>	90	_	_	ns
tcyc	Cycle Time	$t_{AS} = 0$ ns, t_r , $t_f = 5$ ns	350	-	_	ns

^{*} Typical values are at Ta = 25° C and $V_{CC} = 5V$.

A.C. TEST CONDITIONS

• Output Load: ITTL Gate + 100pF

• Input Rise and Fall Times (10% ~ 90%): 5ns

• Input Pulse Levels: 0.8 ~ 2.4V

• Timing Measurement Reference Levels: Input; 1V and 2.2V

Output; 0.8V and 2.0V

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. GND	_	5	10	pF
Cour	Output Capacitance	V _{OUT} = A.C. GND	_	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

Note (1) top is specified from OE or CE, whichever occurs first.

OPERATION MODE

CE	CS ₁ , CS ₂ , Address	ŌĒ	OUTPUT	MODE
Н	(1)	(1)	High Z	Standby
	Valid	(1)	High Z	Latch
L	(2)	L	Data out	Read

Note (1) Don't care

(2) CS1, CS2, Address may change after tAH.

APPLICATION INFORMATION

1. POWER SUPPLY DECOUPLING

The operating current I_{CC} waveforms for TMM2364P are shown in Fig. 1, 2.

The TMM2364P is a clocked device, so the transient current peaks are produced on the $\overline{\text{CE}}$ transition and $\overline{\text{CE}}$ active level.

The I_{CC} current transients require adequate decoupling of V_{CC} power supply.

2. POWER ON

The TMM2364P requires initialization prior to normal operation. Two initialization methods are as follows:

- (1) A minimum $100\,\mu s$ time delay is required after the application of V_{CC} (+5V) before proper device operation is achieved. And during this period, \overline{CE} must be at V_{IH} level.
- (2) A minimum $100\,\mu s$ time delay is required after the application of V_{CC} (5V), and then a minimum of one initialization cycle must be performed before proper device operation is acheived.

Fgi. 1 I_{CC} vs time (CS: Select)

Time (ns)
Fig. 2 ICC vs time (CS: Deselect)

Initialization cycle: An initialization cycle is one Chip Enable clock cycle from the first down edge of the \overline{\text{CE}} till the next down edge.

TOSHIBA PAPER TAPE FORMAT

Use 7 or 8-bit (even parity) ASCII code paper Tape for ROM data input. Two acceptable formats which are described in section A and B are available.

A. Format 1 (when a check sum per word is used)

Preceding the first data field and following the last data field there must be a leader/trailer length of at least 50 null characters.

Contents in a single quotation mark (, ,) signify a comment and \Box \Box \Box indicates a four-digit user pattern number.

Specify the most significant bit (MSB) of the device outputs (D₇ or D₀)

N8 indicates that the mask pattern is an 8-bit pattern.

Semicolon (;) signifies a punctuation of data.

R signifies an address. Enter the address with the four decimal digits every 8-words after the character R.

X signifies a hexadecimal digit.

Enter the data with the two hexadecimal digits every word after the character X.

P signifies the check sum per word.

Enter the sum of 1 in a one word decimal after the character P.

* Data Modification

Modifying single and continuous word data can be carried out by specifying the modifying addresses and inputting the data following the above procedure before the end symbol.

Modification can be allowed from 0 to 8191 addresses.

Specify the active logic of chip selects (CS $_1$ and CS $_2$) in the parentheses respectively.

Enter "1" and "0" when active at high and low levels, respectively.

An example is shown in the left figure.

In this example, the device is selected under the condition that CS_1 and CS_2 are at high and low levels, respectively.

\$ signifies the End symbol.

B. Format 2 (When a check sum per word is not used)

R signifies an address.

Enter the address with the four decimal digits every sixteen words after the character R.

X signifies a hexadecimal digit.

Enter the data of sixteen words continuously after the character X.

Otherwise specified in Format 1.

In addition, Toshiba can also accept programming and masking information for TMM2364P in the form of punched paper tape with Intel BNPF format or master devices (EPROMs).

OUTLINE DRAWINGS

0.2 MAX.

3.2

17.4 MAX.

Note: Each lead pitch is 2.54 mm.

2.54 ± 0.25

All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

1.4 ± 0.15

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Aug., 1980 Toshiba Corporation

64K BIT (8K WORD x 8BIT) MASK ROM
N-CHANNEL SILICON GATE

TMM2365P

DESCRIPTION

The TMM2365P is a 65536 bit fully static read only memory organized as 8192 words by 8 bits with a low bit cost, thus being most suitable for use in programming of production apparatus using microprocessor.

The TMM2365P is fully compatible with a 64 K bits EPROM TMM2764D, so completely replace EPROM socket.

The TMM2365P also features an automatic standby power mode. When deselected by Chip Enable $(CE_1 \sim _3/\overline{CE_1} \sim _3)$, the operating current is reduced from 100mA (MAX) to 25mA(MAX). Output Enable (\overline{OE}) is effective in preventing data confliction of a common bus line.

The TMM2365P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production of high performance.

The TMM2365P is moulded in a 28 pin standard plastic package, 0.6 inch in width.

FEATURES

- Single 5V power Supply
- · Access Time: 200ns max.
- Power Dissipation

Average Current: 100mA max. Standby Current: 25mA max.

Input and Output: TTL Compatible

- Three State Outputs: Wired OR Capability
- Output Buffer Control: OE
- Programmable Chip Enable: CE₁/CE₁, CE₂/CE₂
 CE₃/CE₃

Easy Memory Expansion

• Compatible with 64K EPROM TMM2764D

PIN CONNECTION

N. C. C	1		28 Vcc
A12	2		27 CE1/CE1/NO
A7 [3		26 DCE2/CE2/NC
A ₆	4		25 🗆 A ₈
A ₅	5		24 🗆 A9
A ₄	6	8	23 A11
A ₃	7	(TOP VIEW)	22 DE
A ₂	8	d	21 A10
A ₁	9	5	20 CE3/CE3
A ₀	10	_	19 D7
D ₀	11		18 D D ₆
D ₁	12		17 D D5
D ₂	13		16 D D4
GND	14		15 D ₃

PIN NAMES

$A_0 \sim A_{12}$	Address inputs
$D_0 \sim D_7$	Data outputs
OE	Output enable input
CE ₁ /CE ₁ ,CE ₂ / CE ₂ ,CE ₃ /CE ₃	Chip enable inputs
N. C.	No connection
Vcc	Power supply terminal
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN} , V _{OUT}	Input and Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0~70	°C
T _{STG}	Storage Temperature	−55 ~ 150	°C
T _{SD}	Soldering Temperature • Time	260 · 10	°C · sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{IH}	Input High Voltage	_	2.0	_	V _{CC} +1	V
VIL	Input Low Voltage	_	-0.5	_	0.8	V
Vcc	Power Supply Voltage	_	4.5	5.0	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = 0 ~ 70°C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{IH}	Input High Current	V _{IN} = 5.5V	-	10	μΑ
l _{IL}	Input Low Current	V _{IN} = GND	-	-10	μΑ
VoH	Output High Voltage	$I_{OH} = -400 \mu A$	2.4	-	V
VoL	Output Low Voltage	I _{OL} = 3.2mA	-	0.4	V
LO	Output Leakage Current	OV ≤ V _{OUT} ≤ Vcc	-10	10	μΑ
I _{CC1}	Standby Current	CE = 2.0V, CE = 0.8V	_	25	mA
I _{CC2}	Average Current	t _{CYC} =200nS, I _{OUT} =0mA	_	100	mA

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tACC	Access Time	-	200	ns
t _{CE}	Output Delay Time from CE/CE	_	200	ns
toE	Output Delay Time from OE	_	70	ns
top	Output Turn off Delay	_	60	ns
tcyc	Cycle Time	200	_	ns

A.C. TEST CONDITIONS

Output Load : 1TTL Gate + 100pF

Input Rise and Fall Times (10% ~ 90%): 5 ns
 Input Pulse Levels : 0.8 ~ 2.2V

• Timing Measurement Reference Levels :

Input; 1V and 2.0V Output; 0.8V and 2.0V

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. GND	-	8	pF
Cout	Output Capacitance	V _{OUT} = A.C. GND	-	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

Note: t_{OD} is specified from \overline{OE} or $\overline{CE/CE}$, whichever occurs first.

POWER ON

The TMM2365 has self substrate-bias generator internally. So a minimum $100\mu s$ time delay is

required after the application of V_{CC} (4.5 ~ 5.5V) before proper device operation is achieved.

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54mm.

All leads are located within 0.25mm of their true longitudinal position with respect No. 1 and No. 28 leads

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reservesthe right, at any time without notice, to change said circuitry. © Feb., 1983 Toshiba Corporation

64K BIT (8K WORD x 8 BIT) MASK ROM

N-CHANNEL SILICON GATE MOS

TMM2366P

DESCRIPTION

The TMM2366P is a 65536 bit fully static read only memory organized as 8192 words by 8 bits with a low bit cost, thus being most suitable for use in programming of production apparatus using microprocessor.

The TMM2366P also features an automatic standby power mode. When deselected by Chip Enable (CE/CE), the operating current is reduced from 100mA (MAX) to 25mA (MAX).

The TMM2366P is fabricated with ion implanted N-channel silicon gate technology.

This technology allows a production of high performance.

The TMM2366P is moulded in a 24 pin standard plastic package, 0.6 inch in width.

FEATURES

Single 5V power Supply
Access Time: 200ns max

Power Dissipation

Average Current: 100mA max. Standby Current: 25mA max.

• Input and Output: TTL Compatible

Three State Outputs: Wired OR Capability

• Programmable Chip Enable: CE/CE

Compatible with TMS4764

PIN CONNECTION

A7	1	\sim	24	□Vcc
A ₆	2		23	□ A ₈
A ₅	3		22	□ A ₉
A4 🗆	4		21	□ A ₁₂
A3 🗆	5	VIEW)	20	CE/CE
A ₂	6	3	19	□A ₁₀
Aı	7	۵	18	□A ₁₁
A ₀	8	TOP	17	$\square D_7$
D ₀	9	_	16	□D ₆
D ₁	10		15	D ₅
$D_2 \square$	11		14	DD ₄
GND□	12		13	$\Box D_3$
	1			

PIN NAMES

$A_0 \sim A_{12}$	Address inputs
$D_0 \sim D_7$	Data outputs
CE/CE	Chip enable input
Vcc	Power supply terminal
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN} , V _{OUT}	Input and Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0 ~ 70	°C
T _{STRG}	Storage Temperature	−55 ~ 150	°C
T _{SD}	Soldering Temperature Time	260 · 10	°C • sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	-	2.0	-	V _{CC} +1	V
VIL	Input Low Voltage		-0.5	_	0.8	V
Vcc	Power Supply Voltage	-	4.5	5.0	5.5	V

D.C. and OPERATING CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{IH}	Input High Current	V _{IN} = 5.5V	-	10	μΑ
IIL	Input Low Current	V _{IN} = GND	-	-10	μΑ
VoH	Output High Voltage	$I_{OH} = -400\mu A$	2.4	-	V
Vol	Output Low Voltage	I _{OL} = 3.2mA	-	0.4	V
ILO	Output Leakage Current	OV ≤ V _{OUT} ≤ V _{CC}	-10	10	μΑ
I _{CC1}	Standby Current	CE = 2.0V, CE = 0.8V	-	25	mΑ
I _{CC2}	Average Current	t _{CYC} = 200ns, I _{OUT} = 0mA	-	100	mA

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
t _{ACC}	Access Time		200	ns
t _{CE}	Output Delay Time from CE/CE	_	200	ns
top	Output Turn off Delay	_	60	ns
tcyc	Cycle Time	200	-	ns

A.C. TEST CONDITIONS

Output Load : 1TTL Gate + 100pF

• Input Rise and Fall Times (10% \sim 90%) : 5 ns

Input Pulse Levels : 0.8 ~ 2.2V

• Timing Measurement Reference Levels : Input; 1V and 2.0V

Output; 0.8V and 2.0V

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
CIN	Input Capacitnace	V _{IN} = A.C. GND	_	8	pF
Cout	Output Capacitance	V _{OUT} = A.C. GND	_	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

TIMING WAVEFORMS

POWER ON

The TMM2366 has a self substrate-bias generator internaly. So a minimum 100 μs time delay is

required after the application of V_{CC} (4.5 ~ 5.5V) before proper device operation is achieved.

OUTLINE DRAWING

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm longituidnal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Feb., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

16,384 Word x 8 Bit Mask ROM

N-CHANNEL SILICON GATE MOS

TMM23128P

PRELIMINARY

FEATURES

- Fully Static Operation
- 16,384 word x 8 bit Structure
- Single 5V Power Supply
- tACC = 200 ns max.
- Topr = 0 ~ 70°C
- Icc ope = 80 mA max.
- Icc sby = 20 mA max.

- Input and Output: TTL Compatible
- Three State Outputs
- Programmable Chip Select
- Pin compatible with EPROM TMM27128
- 28 pin 600 mil. Width DIP Plastic Package

PIN CONNECTION

BLOCK DIAGRAM

PIN NAMES

$A_0 \sim A_{13}$	Address Inputs
$D_0 \sim D_7$	Data Outputs
$CS_1 \sim 2/\overline{CS}_1 \sim 2$	Chip Select Inputs
ŌĒ	Output Enable Input
N.C.	No Connection
Vcc	5 V Power Supply
GND	Ground

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Nov., 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

TMM23256P 256K BIT (32K WORD x 8 BIT) MASK ROM

TMM23256P

DESCRIPTION

The TMM23256P is a 262,144 bit read only memory organized as 32,768 words by 8 bits with a low bit cost, thus being most suitable for use in character generator.

Consisting of static memory cells and clocked peripheral circuitry, the TMM23256P provides a high speed and low power dissipation (access time 150ns, operating current 40mA).

The TMM23256P also features an automatic standby power mode. When deselected by Chip Enable (CE), the operating current is reduced from 40mA to

FEATURES

- Single 5V Power Supply
- Fast Access Time: 150ns (Max.)
- · Low Power Dissipation

Average Current: 40mA (Max.) Standby Current: 10mA (Max.)

 Inputs protected : All Inputs have Protection Against Static Charge

PIN CONNECTION

		_	T
N.C.	1	28	DVcc
A12	2	27	A14
A7	3	26	□A13
A6[4	25	DAS
A ₅	5	24	DA9
A4 [6	23	A11
A3 [7	22	DOE
A ₂	8	21	A 10
AIC	9	20	CE
A ₀	10	19	DD7
Do	11	18	DD6
DIC	12	17	DD5
D ₂	13	16	DD4
GND	14	15	DD3

PIN NAMES

$A_0 \sim A_{14}$	Address Inputs
$D_0 \sim D_7$	Data Outputs
ŌĒ	Output Enable Input
CE	Chip Enable Input
N.C.	No Connection
Vcc	Power Supply Terminal
GND	Ground

10mA. Output Enable ($\overline{\text{OE}}$) is effective in preventing data confliction on a common bys line.

The TMM23256P uses the address latch system that the falling edge of $\overline{\text{CE}}$ latches all inputs except for $\overline{\text{OE}}$, thus can be easily connected to a system where address and data buses are commonly used.

The TMM23256P is fabricated with ion implanted N-channel silicon gate technology. This technology allows a production on high performance.

The TMM23256P is moulded in a 28 pin standard plastic package, 0.6 inch in width.

- Edge Enabled Operation : CE
- Output Buffer Control : OE
 Input and Output : TTL Compatible
- Three State Output : Wired OB Combillion
- Three State Outputs: Wired OR Capability
- 28 pin Standard Plastic DIP

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
Vcc	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN} , V _{OUT}	Input and Output Voltage	-0.5 ~ 7.0	V
TOPR	Operating Temperature	0~70	°C
T _{STRG}	Storage Temperature	-55 ~ 150	°C
TSOLDER	Soldering Temperature - Time	260 - 10	°C · sec
PD	Power Dissipation (Ta = 70°C)	1.0	W

D.C. OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
VIH	Input High Voltage	-	2.2	_	V _{CC} + 1	V
VIL	Input Low Voltage	-	-0.5	_	0.8	V
Vcc	Power Supply Voltage	-	4.5	5.0	5.5	V

D.C. and OPERATING CHARACTERISTICS $(Ta = 0 \sim 70^{\circ}C)$

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP.	MAX.	UNIT
I _{IH}	Input High Current	V _{IN} = 5.5V		-	0.05	10	μΑ
IIL	Input Low Current	V _{IN} = GND		-	-0.05	-10	μΑ
V _{OH}	Output High Voltage	$I_{OH} = -400 \mu A$		2.4	3.3	-	V
Vol	Output Low Voltage	I _{OL} = 3.2mA		-	0.3	0.4	V
LOH	Output Leakage Current	V _{OUT} = 5.5V	CE = 2.2V or		0.05	10	μΑ
LOL	Output Leakage Current	V _{OUT} = 0.4 V	OE = 2.2V	-	-0.1	-20	μΑ
I _{CC1}	Standby Current	CE = 2.2V		-	_	10	mA
CC2	Average Current	tcyc = 230ns,	I _{OUT} = 0mA	-	-	40	mA

[•] Typical values are at Ta = 25°C and V_{CC} = 5V.

CAPACITANCE (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = A.C. GND	-	5	10	pF
Cour	Output Capacitance	V _{OUT} = A.C. GND	-	8	15	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $0 \sim 70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
tCE	CE pulse width		150	-	-	ns
tas	Address Setup Time	-	0	-	-	ns
t _{AH}	Address Hold Time	-	30	-	-	ns
tACC	Access Time	_	-	-	150	ns
t ₀₀	Output Delay Time form OE	-	-	-	70	ns
top	Output Turn off Delay	-	-	-	70	ns
tcc	CE off Time	-	70	-	-	ns
tcyc	Cycle Time	$t_{AS} = 0$ ns, t_r , $t_f = 5$ ns	230	-	_	ns

Typical values are at Ta = 25°C and V_{CC} = 5V.

A.C. TEST CONDITIONS

• Output Load : 1TTL Gate + 100pF

• Input Rise and Fall Times (10% ~ 90%): 5ns

Input Pulse Levels : 0.8 ~ 2.4V

• Timing Measurement Reference Levels: Input; 1V and 2.2V

Output; 0.8V and 2.0V

TIMING WAVEFORMS

Note (1) top is specified from OE or CE, whichever occurs first.

OPERATION INFORMATION

The TMM23256P has two control functions.

The chip enable (\overline{CE}) controls the operation power and should be used for device selection. The falling edge of the \overline{CE} will activate the device and latch the addresses. The output enable (\overline{OE}) control the out-

put buffers, independent of device selection. Assuming that $\overline{OE} = V_{IL}$, the output data is valid at the outputs after t_{ACC} (150ns) from the falling edge of the \overline{CE} .

The operation modes of the TMM23256P are listed in the following table.

MODE	CE	ADDRESS	OE	OUTPUT	POWER
Standby	Н	*	*	High Impedance	Standby
Latch	-t_	Valid		High Impedance	-
Read	L	**	L	Data Out	Active
Output Deselect	L	*	Н	High Impedance	Active

Note * Don't care

** : Address may change after tall.

APPLICATION INFORMATION

1. POWER SUPPLY DECOUPLING

The operating current I_{CC} waveforms for TMM 23256P are shown in Fig. 1, 2.

The TMM23256P is a clocked device, so the transient current peaks are produced on the $\overline{\text{CE}}$ transition and $\overline{\text{CE}}$ active level.

The I_{CC} current transients require adequate decoupling of V_{CC} power supply.

2. POWER ON

The TMM23256P requires initialization prior to normal operation. Two initialization methods are as follows:

- A minimum 100 µs time delay is required after the application of V_{CC} (+5V) before proper device operation is achieved. And during this period, CE must be at V_{IH} level.
- (2) A minimum 100 µs time delay is required after the application of V_{CC} (5V), and then a minimum of one initialization cycle must be performed before proper device operation is acheived.

Initialization cycle: An initialization cycle is one Chip Enable clock cycle from the first down edge of the $\overline{\text{CE}}$ till the next down edge.

Fig. 1 ICC vs. Time (1)

Fig. 2 I_{CC} vs. Time (2)

OUTLINE DRAWINGS

Unit: mm

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25 mm of their true lingitudinal position with respect to No. 1 and No. 28 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

Nov., 1981 Toshiba Corporation

CMOS Mask Programble Read Only Memory - 261 -

CASOB Mask Programble Read Only Memory

32 K Bit CMOS MASK ROM COMPARISON TABLE

PIN CONFIGURATION

Operation Mode Table

Pin Name Number	TC5332P					TC5333P				
	CE/CE (18)	ŌE (20)	Addresses	Outputs	Power	CE (18)	OE (20)	Addresses	Outputs	Power
Address Latch						7_	*	Valid	High-Z	_
Read	H/L	L	Valid	Dout	Active	L	L	*	Dout	Active
Standby	L/H	*	*	High-Z	Standby	Н	*	*	High-Z	Standby
Output Deselect	H/L	Н	*	High-Z	Active	L	Н	*	High-Z	Active
Operation Mode	Fully	Fully Static Operation (Asynchronous Type)			Addre	ss Latch	ed Operation	(Synchorne	ous Type)	

			TC5334P					TC5335	P	
Pin Name Number	CE ₁ /CE ₁ (20)	CE ₂ /CE ₂ (21)	Addresses	Outputs	Power	CE (20)	ŌE (21)	Addresses	Outputs	Power
Addresses Latch						1	*	Valid	High-Z	-
Read	H/L	H/L	Valid	Dout	Active	L	L	*	Dout	Active
Standby 1	L/H	*	*	High-Z	Standby	Н	*	*	High-Z	Standby
Standby 2	*	L/H	*	High-Z	Standby					
Output Deselect						L	Н	*	High-Z	Active
Operation Mode	Fully	Static Ope	ration (Asyr	nchronous T	ype)	Addre	ss Latch	ed Operation	(Synchron	ous Type)

TOSHIBA MOS MEMORY PRODUCTS

4K WORD x 8 BIT CMOS MASK ROM

SILICON GATE CMOS

TC5332P

DESCRIPTION

The TC5332P is a 32,768 bit low power read only memory organized as 4,096 words by 8 bits using CMOS technology, and operates from a single 5V supply.

The TC5332P has a programmable chip enable input (CE/CE) for device selection and a output enable input (OE) for fast access and output control. The maximum access times from address and chip enable are both 450 ns.

FEATURES

- Access Time: 450ns
- Low Power Dissipation
 - $I_{DDO} = 7mA \text{ (Max.)}$: Operating $I_{DDS} = 20\mu A \text{ (Max.)}$: Standby
- All Inputs and Outputs: TTL Compatible
- Three state outputs

PIN CONNECTION (TOP VIEW)

A7	1	24 VDD
A ₆	2	23 A8
A ₅	3	22 A9
A4 [4	21 A A A A
A3 [5	20 OE
A ₂	6	19 A 10
AI	7	18 CE/CE
AO	8	17 D7
Do	9	16 🗆 D ₆
DI	10	15 D ₅
D ₂	11	14 D4
GND	12	13 D ₃

PIN NAMES

$A_0 \sim A_{11}$	ADDRESS INPUTS
$D_0 \sim D_7$	DATA OUTPUTS
CE/CE	CHIP ENABLE INPUT
ŌĒ	OUTPUT ENABLE INPUT
V _{DD}	POWER (+5V)
GND	GROUND

The TC5332P is pin compatible with the industry produced NMOS ROM TMM2332P, yet offers a more than 90% reduction in power of their NMOS equivalent. The TC5332P's maximum operating and standby current is 7mA and $20\mu\text{A}$, respectively. Thus the TC5332P is most suitable for use in low power applications such as battery operated system.

The TC5332P is molded in a 24 pin standard plastic package.

- Fully Static Operation
 Two Control Functions: CE/CE, OE
- Programmable Chip Enable: CE/CE
- Output Control: OE
- Pin Compatible with TMM2332P and TMM2732D
- Standard 24 pin Plastic Package

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	-0.3V ~ 7.0V
V _{OUT}	Input/Output Voltage	OV ~ V _{DD}
PD	Power Dissipation (Ta = 85°C)	0.8W
T _{STG}	Storage Temperature	-55°C ~ 150°C
TOPR	Operating Temperature	-40°C ~ 85°C
TSOLDER	Soldering Temperature • Time	260°C ~ 10 sec

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -40°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	_	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V

D.C. CHARACTERISTICS (Ta = -40° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IIL	Input Load Current	$0 \le V_{IN} \le V_{DD}$	_	-	±1.0	μА
ILO	Output Leakage Current	$CE = V_{IL}$ ($\overline{CE} = V_{IH}$), $0V \le V_{out} \le V_{DD}$	_	_	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V	-1.0	-4.0		mA
loL	Output Low Current	V _{OL} = 0.4V	2.0	4.0	_	mΑ
I _{DDS1}	Canada Cuada Cuesta	CE = 0.8V (CE = 2.2V)	_	0.5	2.0	mA
I _{DDS2}	- Standby Supply Current	$CE = 0.2V \ (\overline{CE} = V_{DD} - 0.2V)$	-	0.05	20	μА
I _{DDO1}	Operating Supply	$CE = V_{IH}$ $(\overline{CE} = V_{IL}), t_{CYC} = 1\mu s,$ $V_{IN} = V_{IH}/V_{IL}, l_{out} = 0 mA$	-	6.0	10.0	mΑ
I _{DDO2}	Current	$CE = V_{DD}$ ($\overline{CE} = 0V$), $t_{cyc} = 1\mu s$, $V_{IN} = V_{DD}/GND$, $l_{out} = 0mA$	-	4.0	7.0	mA

Note: Typical values are at Ta = 25°C, V_{DD} = 5V.

CAPACITANCE

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	-	5	10	pF
Cout	Output Capacitance	, - ,	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tACC	Address Access Time	_	_	450	ns
t _{CE}	Chip Enable Access Time	_	-	450	ns
toe	Output Enable Access Time	_	_	150	ns
top	Output Desable Time	_	-	100	ns
tcyc	Cycle Time	450	-	_	ns

A.C. TEST CONDITIONS

• Output Load : 100pF + 1TTL Gate

• Input Pulse Levels : 0.6V, 2.4V

Timing Measurement Reference Levels
 Input : 0.8V and 2.2V

Output : 0.8V and 2.2V

• Input Pulse Rise and Fall Times: 10ns

TIMING WAVEFORMS

OPERATION MODE

MODE	CE/CE	ŌĒ	ADDRESS	OUTPUTS
Read	H(L)	L	Valid	Data out
Standby	L (H)	*	*	High Z

^{* :} Don't care

TYPICAL CHARACTERISTICS

TOSHIBA PAPER TAPE FORMAT

Use 7 or 8-bit (even parity) ASCII code paper tape for ROM data input. Two acceptable formats which are described in section A and B are available.

A. Format 1 (when a check sum per word is used)

NULL TC5332P-0000 / 'MSB = D7' N8; / R□□□0; X7FP7; ; X07P3; R□□□8; X38P3; . . . ; XE5P5: • R □□16; X10P1; . . . ; X6BP5; R4080; X4DP4;; X8BP5; 4 R4088; X2CP3;; XA4P3; (CS = 1) 1

\$ 2

NULL

Preceding the first data field and following the last data field there must be a leader/trailer length of a least 50 null characters.

Contents in a single quotation mark (, ,) signify a comment and $\square \ \square \ \square$ indicates a four-digit user pattern number.

/ indicates carriage return and line feed.

Specify the most significant bit (MSB) of the device outputs (D_7 or D_0) N8 indicates that the mask pattern is an 8-bit pattern.

Semicolon (;) signifies a punctuation of data.

R signifies an address. Enter the address with the four decimal digits every 8-words after the character R.

X signifies a hexadecimal digit.

Enter the data with the two hexadecimal digits every word after the character X.

P signifies the check sum per word.

Enter the sum of 1 in a one word decimal after the character P.

* Data Modification

Modifying single and continuous word data can be carried out by specifying the modifying addresses and inputting the data following the above procedure before the end symbol.

Modification can be allowed from 0 to 4095 addresses.

Specify the active logic of chip enable \overline{CE}/CE (18PIN) in the parentheses. Enter CS = 1 and CS = 0 when active logic of chip enable is at high and low levels, respectively.

An example is shown in the left figure.

In this example the device is selected under the condition that $\overline{\text{CE}}/\text{CE}$ is at high level.

\$ signifies the End symbol.

B. Format 2 (When a check sum per word is not used)

R signifies an address.

Enter the address with the four decimal digits every sixteen words after the character B

X signifies a hexadecimal digit.

Enter the data of sixteen words continuously after the character X.

Otherwise specified in Format 1.

In addition, Toshiba can also accept programming and masking information for TC5332P in the form of punched paper tape with Intel BNPF format or master devices (EPROMs).

OUTLINE DRAWINGS

Note: Each lead pitch is 2,54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuity described; no circuit patent licenses are implied and Toshiba reserve the right, at any time without notice, to change said circuitry.

Spt. 1981 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

4 096 WORD X 8 BIT CMOS MASK ROM

SILICON GATE CMOS

TC5333P

DESCRIPTION

The TC5333P is a 32,768 bit low power read only memory organized as 4,096 words by 8 bits using CMOS technology, and operates from a single 5V supply.

The TC5333P has a chip enable input (CE) for device selection and a output enable input (OE) for fast memory access and output control. And the TC5333Puses the address latch system that the falling edge of CE latches all inputs except for OE, thus can be connected to a system where address and data buses are commonly used. The maximum access time from chip enable is 450 ns

The TC5333P is pin compatible with the industry produced NMOS ROM TMM2332P, yet offers a more than 90% reduction in power of their NMOS equi-The TC5333P's maximum operating and standby current is 7 mA and 20 µA, respectively. Thus the TC5333P is most suitable for use in low power applications such as battery operated system.

The TC5333P is moulded in a 24 pin standard plastic package.

FEATURES

 Access Time: 450 ns Low Power Dissipation

IDDO = 7mA (Max.): Operating $I_{DDS} = 20\mu A$ (Max.) : Standby

All Inputs and Outputs: TTL Compatible

Three State Outputs

• Output Control: OE

Address Latches: CE

Pin Compatible with TMM2332P and TMM2732D

Standard 24 pin Plastic Package

• Two Control Functions: CE, OE

PIN CONNECTION (TOP VIEW)

1			1
A7 [1	24	VDD
A6 [2	23	A ₈
A5 [3	22	□ A9
A4 [4	21	A11
A3 [5	20	DOE
A2 [6	19	A10
A ₁	7	18	CE
A0 [8	17	D7
D ₀	9	16	DD6
D ₁	10	15	D ₅
D ₂	11	14	D ₄
GND	12	13	D ₃

PIN NAMES

$A_0 - A_{11}$	Address Inputs
$D_0 - D_7$	Data Outputs
CE	Chip Enable Input
ŌE	Output Enable Input
V _{DD}	Power (+5V)
GND	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	-0.3V ~ 7.0V
Vout	Output Voltage	OV ~ V _{DD}
PD	Power Dissipation (Ta = 85°C)	0.8W
T _{STG}	Storage Temperature	−55°C ~ 150°C
TOPR	Operating Temperature	-40°C ~ 85°C
TSOLDER	Soldering Temperature - Time	260°C · 10 sec

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -40°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	_	0.8	V

D.C. CHARACTERISTICS (Ta = -40° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _I L	Input Load Current	$0 \le V_{IN} \le V_{DD}$	-	-	±1.0	μΑ
LO	Output Leakage Current	$\overline{CE} = V_{IH}$, $OV \leq V_{out} \leq V_{DD}$	-	-	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V	-1.0	-4.0	-	mA
OL	Output Low Current	V _{OL} = 0.4V	2.0	4.0	-	mΑ
DDS1	Standby Supply Current	$\overline{CE} = 2.2V$ other inputs = V_{IH} or V_{IL}	-	2.0	5.0	mA
DDS2		$\overline{CE} = V_{DD} - 0.2V$ other inputs = 0.2V or $V_{DD} - 0.2V$	-	0.05	20	μΑ
l _{DDO1}	Operating Supply	$\overline{CE} = V_{IL}$, $t_{cyc} = 1 \mu s$, $V_{IN} = V_{IH}/V_{IL}$, $t_{out} = 0 \text{mA}$	-	6.0	10.0	mΑ
DDO2	Current	$\overline{CE} = OV$, $t_{cyc} = 1\mu s$, $V_{IN} = V_{DD}/GND$, $I_{out} = 0mA$	-	4.0	7.0	mΑ

Note: Typical values are at $Ta = 25^{\circ}C$, $V_{DD} = 5V$.

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	_	5	10	pF
Cour	Output Capacitance	_	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
tACC	Chip Enable Access Time	_	_	450	ns
toe	Output Enable Access Time	-	-	150	ns
tas	Address Setup Time	30	-	-	ns
t _{AH}	Address Hold Time	30	-	-	ns
tcc	CE OFF time	70	-	-	ns
[†] CEH	Chip Enable Hold Time	450	-	-	ns
top	Output Desable Time	_	-	100	ns
tcyc	Cycle Time	540	-	-	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

- Input Pulse Levels : 0.6V, 2.4V

· Timing Measurement Reference Levels

Input : 0.8V and 2.2V Output : 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

OPERATION MODE

MODE	CE	ŌE	ADDRESS	OUTPUTS
Read	L	L		Data out
Standby	Н	*	*	High Z
Address Latch		*	Valid	High Z

^{* :} Don't care.

TOSHIBA PAPER TAPE FORMAT

Use 7 or 8-bit (even parity) ASCII code paper tape for ROM data input. Two acceptable formats which are described in section A and B are available.

A. Format 1 (when a check sum per word is used)

Preceding the first data field and following the last data field there must be a leader/trailer length of at least 50 null characters.

Contents in a single quotation mark ('....') signify a comment and DDDD indicates a four-digit user pattern number.

/ indicates carriage return and line feed.

Specify the most significant bit (MSB) of the device outputs (D $_7$ or D $_0$) N8 indicates that the mask pattern is an 8-bit pattern.

Semicolon (;) signifies a punctuation of data.

 ${\sf R}$ signifies an address. Enter the address with the four decimal digits every 8-words after the character ${\sf R}$.

X signifies a hexadecimal digit.

Enter the data with the two hexadecimal digits every word after the character \boldsymbol{X} .

P. signifies the check sum per word.

Enter the sum of 1 in a one word decimal after the character P.

* Data Modification

Modifying single and continuous word data can be carried out by specifying the modifying addresses and inputting data following the above procedure before the end symbol.

Modification can be allowed from 0 to 4095 addresses.

\$ signifies the End symbol.

B. Format 2 (when a check sum per word fis not used)

R signifies an address.

Enter the address with the four decimal digits every sixteen words after the character R.

X signifies a hexadecimal digit.

Enter the data of sixteen words continuously after the character $\mathsf{X}.$ Otherwise specified in Format 1.

In addition, Toshiba can also accept programming and masking information for TC5333P in the form of punched paper tape with Intel BNPF format or master devices (EPROMs).

OUTLINE DRAWINGS

Note: Each lead pitch is 2,54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Toshiba reserve the right, at any time without notice, to change said circuitry.

Mar., 1982 Toshiba corporation

TOSHIBA MOS MEMORY PRODUCTS

4,096 WORD x 8 BIT CMOS MASK ROM

SILICON GATE CMOS

TC5334P

DESCRIPTION

The TC5334P is a 32,768 bit low power read only memory organized as 4,096 words by 8 bits using CMOS technology, and operates from a single 5V supply.

The TC5334P has \underline{two} programmable chip enable inputs (\overline{CE}_1/CE_1 and \overline{CE}_2/CE_2) for device selection. The maximum access times from address and chip enable are both 450 ns.

The TC5334P is pin compatible with the industry

produced NMOS ROM TMM333P, yet offers a more than 90% reduction in power of their NMOS equivalent. The TC5334P's maximum operating and standby current is 7mA and 20μ A, respectively. Thus the TC5334P is most suitable for use in low power applications such as battery operated system.

The TC5334P is molded in a 24 pin standard plastic package.

FEATURES

- Access Time: 450 ns
- Low Power Dissipation
 I_{DDO} = 7 mA (Max.): Operating
 I_{DDS} = 20μA (Max.): Standby
- All Inputs and Outputs: TTL Compatible
- Three State Outputs

- Fully Static Operation
- Two Programmable Chip Enables: CE₁/CE₁, CE₂/CE₂
- Pin Compatible with TMM333P
- Standard 24 pin Plastic Package

PIN CONNECTION (TOP VIEW)

A7 [1	24 VDD
A6 [2	23 A8
A ₅ 🗆 3	22 A9
A4 4	21 CE 2/CE
A ₃ 🗆 5	20 CE 1/CE
A ₂	19 A10
A1 7	18 🗖 A ₁₁
A ₀ 🗆 8	17 D7
Do 2 9	16 D D6
D1 10	15 D ₅
D ₂ 11	14 D4
GND 12	13 D ₃

PIN NAMES

$A_0 - A_{11}$	Address Inputs
$D_0 - D_7$	Data Outputs
CE ₁ /CE ₁ CE ₂ /CE ₂	Chip Enable Inputs
V _{DD}	Power (+5V)
GND	Ground

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	-0.3V ~ 7.0V
Vout	Output Voltage	OV ~ V _{DD}
Po	Power Dissipation (Ta = 85°C)	0.8W
T _{STG}	Storage Temperature	−55°C ~ 150°C
TOPR	Operating Temperature	-40°C ~ 85°C
TSOLDER	Soldering Temperature · Time	260°C · 10 sec

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -40°C ~ 85°C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
V _{IH}	Input High Voltage	2.2	-	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V

D.C. CHARACTERISTICS (Ta = -40°C ~ 85°C, VDD = 5V ± 10%)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IIL	Input Load Current	$0 \le V_{IN} \le V_{DD}$	-	_	±1.0	μΑ
ILO	Output Leakage Current	$CE = V_{IL} (\overline{CE} = V_{IH}), 0 V \leq V_{out} \leq V_{DD}$	-		±5.0	μА
Юн	Output High Current	V _{OH} = 2.4V	-1.0	-4.0	1-	mA
loL	Output Low Current	V _{OL} = 0.4V	2.0	4.0	-	mA
I _{DDS1}		$CE_1 = 0.8V \text{ or } CE_2 = 0.8V$ $(\overline{CE}_1 = 2.2V \text{ or } \overline{CE}_2 = 2.2V)$	-	0.5	5.0	mA
I _{DDS2}	Standby Supply Current -	$CE_1 = 0.2V \text{ or } CE_2 = 0.2V$ $(\overline{CE}_1 = V_{DD} - 0.2V \text{ or } \overline{CE}_2 = V_{DD} - 0.2V)$	-	0.05	20	μΑ
I _{DDO1}	Operating Supply	$CE_1 = CE_2 = V_{ H}$ $(\overline{CE}_1 = \overline{CE}_2 = V_{ L})$ $t_{CYC} = 1\mu s$ $V_{ N} = V_{ H}/V_{ L}$ $t_{out} = 0 mA$	-	6.0	10.0	mA
I _{DDO2}	Current	$CE_1 = CE_2 = V_{DD}$ $(\overline{CE}_1 = \overline{CE}_2 = 0V) t_{CYC} = 1\mu_S$ $V_{IN} = V_{DD}/GND l_{out} = 0mA$	-	4.0	7.0	mA

Note: Typical values are at Ta = 25°C, VDD = 5V.

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	-	5	10	pF
COUT	Output Capacitance	_	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMTER	MIN.	TYP.	MAX	UNIT
tACC	Address Access Time	_	_	450	ns
tce	Chip Enable Access Time	_	-	450	ns
top	Out put Desable Time	-	-	100	ns
tcyc	Cycle Time	450	-	-	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : 0.6V, 2.4V

· Timing Measurement Reference Levels

Input: 0.8V and 2.2V Output: 0.8V and 2.2V

Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

OPERATION MODE

MODE	CE ₁ (CE ₁)	CE ₂ (CE ₂)	ADDRESS	OUTPUTS
Read	H(L)	H(L)	Valid	Data out
Ctondby	L(H)	*(*)	*	High Z
Standby	*(*)	L(H)	*	High Z

^{* :} Don't care

TOSHIBA PAPER TAPE FORMAT

Use 7 or 8-bit (even parity) ASCII code paper tape for ROM data input. Two acceptable formats which are described in section A and B are available.

A. Format 1 (when a check sum per word is used)

Preceding the first data field and following the last data field there must be a leader/trailer length of at least 50 null characters.

Contents in a single quotation mark (' ') signify a comment and DDDD indicates a four-digit user pattern number

indicates carriage return and line feed.

Specify the most significant bit (MSB) of the device outputs (D_7 or D_0) N8 indicates that the mask pattern is an 8-bit pattern.

Semicolon(;) signifies a punctuation of data.

R signifies an address. Enter the address with the four decimal digits every 8-words after the character R.

X signifies a hexadecimal digit.

Enter the data with the two hexadecimal digits every word after the character ${\sf X}$.

P signifies the check sum per word.

Enter the sum of 1 in a one word decimal after the character P.

* Data Modification

Modifying single and continuous word data can be carried out by specifying the modifying addresses and inputting data following the above procedure before the end symbol.

Modification can be allowed from 0 to 4095 addresses.

Specify the active logic of chip enables \overline{CE}_1/CE_1 (20 PIN) and \overline{CE}_2/CE_2 (21 PIN) in the parentheses respectively.

Enter CS1 = 1 or CS1 = 0 when active logic of \overline{CE}_1/CE_1 is at high or low levels, respectively.

Enter CS2 = 1 or CS2 = 0 when active logic of \overline{CE}_2/CE_2 is at high or low levels, respectively.

An example is shown in the left figure.

In this example, the device is selected under the condition that $\overline{\text{CE}}_1/\text{CE}_1$ and $\overline{\text{CE}}_2/\text{CE}_2$ are at high and low levels, respectively.

\$ signifies the End symbol.

B. Format 2 (when a check sum per word is not used)

R signifies an address.

Enter the address with the four decimal digits every sixteen words after the character R.

X signifies a hexadecimal digit.

Enter the data of sixteen words continuously after the character X. Otherwise specified in Format 1

In addition, Toshiba can also accept programming and masking information for TC5334P in the form of punched paper tape with Intel BNPF format or master devices (EPROMs).

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuity described; no circuit patent licenses are implied and Toshiba reserve the right, at any time without notice, to change said circuitry.

© Mar., 1982 Toshiba corporation

TOSHIBA MOS MEMORY PRODUCTS

4,096 WORD x 8 BIT CMOS MASK ROM

SILICON GATE CMOS

TC5335P

DESCRIPTION

The TC5335P is a 32,768 bit low power read only memory organized as 4,096 words by 8 bits using CMOS technology, and operates from a single 5V supply.

The TC5335P has a chip enable input (\overline{CE}) for device selection and a output enable input (\overline{OE}) for fast memory access and output control. And the TC5335P uses the address latch system that the falling edge of \overline{CE} latches all inputs except for \overline{OE} , thus can be connected to a system where address and data buses are commonly used. The maximum

access time from chip enable is 450 ns. The TC 5335P is pin compatible with the industry produced NMOS ROM TMM333P, yet offers a more than 90% reduction in power of their NMOS equivalent. The TMM5335P's maximum operating and standby current is 7 mA and 20 μ A, respectively. Thus the TC5335P is most suitable for use in low power applications such as battery operated system.

The TC5335P is moulded in a 24 pin standard plastic package.

FEATURES

Access Time: 450 ns

Low Power Dissipation

 $I_{DDO} = 7$ mA (Max.) : Operating $I_{DDS} = 20\mu$ A (Max.) : Standby

All Inputs and Outputs: TTL Compatible

· Three state outputs

Two Control Functions: CE, OE

Address Latches: CE

Output Control: OE

• Pin Compatible with TMM333P

Standard 24 pin Plastic Package

PIN CONNECTION (TOP VIEW)

1			
A7 [1	24	U VDD
A6 [2	23	_ A8
A5 [3	22	☐ A9
A4 [4	21	OE
A3 [5	20	CE
A2 [6	19	A10
A 1 [7	18	A11
A ₀	8	17	D7
D ₀	9	16	D ₆
DI	10	15	D ₅
D2 [11	14	D ₄
GND	12	13	D3

PIN NAMES

$A_0 - A_{11}$	Address Inputs	
$D_0 - D_7$	Data Outputs	
CE	Chip Enable Input	
ŌĒ	Output Enable Input	
V _{DD}	Power (+5V)	
GND	Ground	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEM	RATING
V _{DD}	Power Supply Voltage	-0.3V ~ 7.0V
VIN	Input Voltage	-0.3V ~ 7.0V
Vout	Output Voltage	OV ~ V _{DD}
PD	Power Dissipation (Ta = 85°C)	0.8W
T _{STG}	Storage Temperature	-55°C ~ 150°C
TOPR	Operating Temperature	-40°C ~ 85°C
TSOLDER	Soldering Temperature - Time	260°C · 10 sec

RECOMMENDED D.C. OPERATING CONDITIONS (Ta = -40° C ~ 85° C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
VIH	Input High Voltage	2.2	_	V _{DD} +0.3	V
VIL	Input Low Voltage	-0.3	-	0.8	V

D.C. CHARACTERISTICS (Ta = -40° C $\sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IL	Input Load Current	$0 \le V_{IN} \le V_{DD}$	-	-	±1.0	μΑ
ILO	Output Leakage Current	$\overline{CE} = V_{IH}$, $OV \leq V_{out} \leq V_{DD}$	-	-	±5.0	μΑ
Юн	Output High Current	V _{OH} = 2.4V	-1.0	-4.0	-	mA
OL	Output Low Current	V _{OL} = 0.4V	2.0	4.0	-	mA
DDS1	- Standby Supply Current	CE = 2.2V other inputs = V _{IH} or V _{IL}	-	2.0	5.0	mA
DDS2		$\overline{CE} = V_{DD} - 0.2V$ other inputs = 0.2V or $V_{DD} - 0.2V$		0.05	20	μΑ
I _{DDO1}	Operating Supply	$\overline{CE} = V_{IL}$, $t_{CYC} = 1\mu s$, $V_{IN} = V_{IH}/V_{IL}$, lout = 0mA		6.0	10.0	mA
DDO2	Current	$\overline{CE} = OV$, $t_{cyc} = 1 \mu s$, $V_{IN} = V_{DD}/GND$, $l_{out} = 0 mA$	-	4.0	7.0	mΑ

Note: Typical values are at Ta = 25°C, V_{DD} = 5V

CAPACITANCE (Ta = 25°C, f = 1 MHz)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
CIN	Input Capacitance	_	5	10	pF
Cour	Output Capacitance	_	5	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
†ACC	Chip Enable Access Time		-	450	ns
toe	Output Enable Access Time		-	150	ns
t _{AS}	Address Setup Time	30	-		ns
t _{AH}	Address Hold Time	30	-	-	ns
tcc	CE OFF time	70	-	-	ns
tceh	Chip Enable Hold Time	450	-	-	ns
top	Output Desable Time		_	100	ns
tcyc	Cycle Time	540	-	-	ns

A.C. TEST CONDITIONS

Output Load : 100pF + 1TTL Gate

Input Pulse Levels : 0.6V, 2.4V
 Timing Measurement Reference Levels

Input: 0.8V and 2.2V

Output: 0,8V and 2.2V

Input Pulse Rise and Fall Times : 10 ns

TIMING WAVEFORMS

OPERATION MODE

MODE	CE	ŌE	ADDRESS	OUTPUTS
Read	L	L	*	Data out
Standby	Н	*		High Z
Address Latch	7	*	Valid	High Z

^{* :} Don't care.

TOSHIBA PAPER TAPE FORMAT

Use 7 or 8-bit (even parity) ASCII code paper tape for ROM data input. Two acceptable formats which are described in section A and B are available.

A. Format 1 (when a check sum per word is used)

Preceding the first data field and following the last data field there must be a leader /trailer length of at least 50 null characters.

Contents in a single quotation mark $(', \ldots, ')$ signify a comment and $\square\square\square\square$ indicates a four-digit user pattern number.

indicates carriage return and line feed.

Specify the most significant bit (MSB) of the device outputs (D_7 or D_2)

N8 indicates that the mask pattern is an 8-bit pattern.

Semicolon (:) signifies a punctuation of data.

R signifies an address. Enter the address with the four decimal digits every 8-words after the character R.

X signifies a hexadecimal digit.

Enter the data with the two hexadecimal digits every word after the character \boldsymbol{X} .

P signifies the check sum per word.

Enter the sum of 1 in a one word decimal after the character P.

* Data Modification

Modifying single and continuous word data can be carried out by specifying the modifying addresses and inputting the data following the above procedure before the end symbol.

Modification can be allowed from 0 to 4095 addresses.

\$ signifies the End symbol.

B. Format 2 (when a check sum per word is not used)

R signifies an address.

Enter the address with the four decimal digits every sixteen words after the character R.

X signifies a hexadecimal digit.

Enter the data of sixteen words continuously after the character X. Otherwise specified in Format 1.

In addition, Toshiba can also accept programming and masking information for TC5335P in the form of punched paper tape with Intel BNPF format or master devices (EPROMs).

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25 mm of their true longitudinal position with respect to No. 1 and No. 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Toshiba reserve the right, at any time without notice, to change said circuitry.

Mar., 1982 Toshiba corporation

TOSHIBA MOS MEMORY PRODUCTS

TC5364P 64K BIT (8K WORD x 8 BIT) CMOS MASK ROM

TC5364P

SILICON GATE CMOS

DESCRIPTION

The TC5364P is a 65,536 bit read only memory organized as 8,192 words by 8 bits with a low bit cost, thus being suitable for use in program memory of microprocessor and character generator. The TC5364P using CMOS technology is most suitable for low power applications such as battery operated system.

The TC5364P is asynchronous type ROM which is consisting of address latch circuit, static memory

FEATURES

Single Power Supply: 5V

Access Time: 250 nsLow Power Dissipation

Operating Current: 7mA (Max.) Standby Current: 20 μ A (Max.)

- Wide Operating Temperature Range: $-40 \sim 85^{\circ}$ C
- Pin Compatible with 64K EPROM TMM2764 and NMOS ROM TMM2364/2365

PIN CONNECTION

PIN NAMES

$A_0 \sim A_{12}$	Address inputs
$D_0 \sim D_7$	Data outputs
CE ₁ ~ CE ₃	Chip enable inputs
PD	Power down input
ŌĒ	Output enable input
NC	No connection
V _{DD}	Power Supply
GND	Ground

PRELIMINARY

cells and clocked peripheral circuitry. The falling edge of \overline{CE}_3 (or rising edge of CE3) latches all inputs except for \overline{OE} and PD/ \overline{PD} .

The TC5364P has a PD/ \overline{PD} (optional) input for device power saving, and also has three programma ble chip enable inputs (CE1 \sim 3/ \overline{CE} 1 \sim 3) and one output enable input (\overline{OE}) for fast memory access and output control.

The TC5364P is moulded in a 28 pin standard plastic package.

- Edge Enable Operation: CE3/CE3
- · Address Latch Type
- Programmable Power Saving Input PD/PD/NC
- Programmable Chip Select: CE1, CE2, CE3, Easy Memory Expansion
- All Inputs and Outputs: TTL Compatible
- · Three State Outputs

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	−0.5 ~ 7.0	V
VIN	Input Voltage	−0.5 ~ 7.0	V
Vout	Output Voltage	0 ~ V _{DD}	V
PD	Power Dissipation	1.0	W
Topr	Operating Temperature	−40 ~ 85	°C
T _{stg}	Storage Temperature	-55 ~ 150	°C
TSOLDR	Soldering Temperature - Time	260 - 10	°C · sec

D.C. OPERATING CONDITIONS (Ta = -40 ~ 85°C)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_{DD}	Power Supply Voltage	4.5	5.5	V
V_{IH}	Input High Voltage	2.2	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	8.0	V

D.C. and OPERATING CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITION	MIN.	MAX.	UNIT
IIN	Input Leakage Current	$OV \leq V_{IN} \leq V_{DD}$	-	±1.0	μΑ
ILO	Output Leakage Current	$OV \leq V_{OUT} \leq V_{DD}$	-	±5.0	μΑ
Гон	Output High Current	V _{OH} = 2.4V	-1.0	-	mA
loL	Output Low Current	V _{OL} = 0.4V	2.0	_	mA
I _{DDO1}	O	$(CE, V_{IH}) = 2.2V$ $(\overline{CE}, V_{IL}) = 0.8V$ $t_{CYC} = 1\mu s$	_	10	mA
I _{DDO2}	Operating Current	$(CE, V_{IH}) = V_{DD} - 0.2V$ $(\overline{CE}, V_{IL}) = 0.2V$ $t_{CYC} = 1\mu s$	_	7	mA
I _{DDS1}		$(\overline{CE}, V_{IH}) = 2.2V$ $CE = 0.8V$ $(CE, V_{IL}) = 0.8V$ $\overline{CE} = 2.2V$ Output = OPEN	-	5	mΑ
I _{DDS2}	- Standby Current	(CE) = 0.2V, (CE) = V _{DD} -0.2V V _{IN} = 0.2V or V _{DD} -0.2V Output = OPEN	_	20	μΑ

CAPACITANCE* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	VIN = OV	8	pF
COUT	Output Capacitance	V _{OUT} = OV	10	pF

^{*}This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tACC	Chip Enable Access Time	_	250	ns
toe	Output Enable Access Time	_	100	ns
tas	Address Set up Time	0		ns
t _{AH}	Address Hold Time	50	_	ns
tcc	Chip Enable Off Time	90	-	ns
tces	Chip Enable Setup Time from PD	90	-	ns
toed	Output Disable Time from OE	_	90	ns
tced	Output Disable Time from CE	_	90	ns
tpOH	Output Hold Time from PD	-	90	ns
tcyc	Cycle Time	350	_	ns

Note 1: Assumes than $\overline{\text{OE}}$ delay time to $\text{CE}_3/\overline{\text{CE}}_3 \geqq t_{\text{ACC}} - t_{\text{OE}}$

A.C. TEST CONDITIONS

Output Load: 100pF + 1 TTL Gate
 Input Levels: V_{IL} = 0.6V, V_{IH} = 2.4V

Timing Measurement Reference Levels
 Input: 0.8V, 2.2V
 Output: 0.8V, 2.2V
 Input Rise and Fall Time: 5 ns

TIMING WAVE FORMS

OPERATION MODE

MODE	PD (PD)	CE ₁ (CE ₁)	CE ₂ (CE ₂)	CE ₃ (CE ₃)	OE	Outputs
Read	L(H)	H(L)	H(L)	HT(LT)	L	Valid
Output Deselect	H(L)	*	*	*	*	
	*	L(H)	*	*	*	High-Z
	*	*	L(H)	*	*	
	*	*	*	L(H)	*	
	*	*	*	*	Н	

Note: H: VIH, L: VIL, *: VIH or VIL

OUTLINE DRAWING

Unit: mm

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

Note Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

TC5365P 64K BIT (8K WORD X 8 BIT) CMOS MASK ROM

Tooder on an inches we are a series and a se

SILICON GATE CMOS

TC5365P

DESCRIPTION

The TC5365P is a 65,536 bit read only memory organized as 8,192 words by 8 bits with a low bit cost, thus being suitable for use in program memory for microprocessor and character generator.

The TC5365P using CMOS technology is most suitable for low power applications such as battery operated system.

The TC5365P is an asynchronous type ROM which has three programmable chip enable inputs (CE1 \sim CE3/CE1 \sim CE3), and one output enable input (OE) for fast memory access and output control.

The TC5365P is moulded in a 28 pin standard plastic package.

FEATURES

Single Power Supply: 5V

Low Power Dissipation
 Operating Current: 7mA (Max.)

 Standby Current: 20µA (Max.)

 Compatible with 64K EPROM TMM2764 and 64K NMOS ROM TMM2365P · Fully Static Operation

Programmable chip select: CE1, CE2, CE3
 Easy Memory Expansion

All Inputs and Outputs: TTL-Compatible

• Three State Outputs

PIN CONNECTION

	5		
1		28	VDD
2		27	NC/CE1/CE
3		26	NC/CE2/CE
4		25] A ₈
5		24] A9
6		23] A ₁₁
7	3	22	JOE
8	/IE	21] A ₁₀
9	d.	20	CE3/CE3
10	E	19] D7
11		18] D ₆
12		17] D ₅
13		16] D ₄
14		15	D ₃
	2 3 4 5 6 7 8 9 10 11 12	2 3 4 5 6 7 8 9 10 11 11 12	2 27 3 26 4 25 5 24 6 23 7 8 21 9 4 20 10 P 19 11 18 12 17 13 16

PIN NAMES

III III	
$A_0 \sim A_{12}$	Address inputs
$D_0 \sim D_7$	Data outputs
CE ₁ ~ CE ₃	Chip enable inputs
ŌĒ	Output enable inputs
NC	No connection
V _{DD}	Power Supply
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	-0.5 ~ 7.0	V
VIN	Input Voltage	-0.5 ~ 7.0	V
Vout	Output Voltage	0 ~ V _{DD}	V
P_{D}	Power Dissipation	1.0	W
Topr	Operating Temperature	-40 ∼ 85	°C
T _{stg}	Storage Temperature	−55 ~ 150	°C
TSOLDER	Soldering Temperature · Time	260 - 10	°C - sec

D.C. OPERATING CONDITIONS

William .				1000		
/Ta	_	-40	100	OF	0	١

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.5	V
V_{IH}	Input High Voltage	2.2	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	0.8	V

D.C. and OPERATING CHARACTERISTICS $(Ta = -40 \sim 85^{\circ}C, V_{DD} = 5V \pm 10\%)$

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{IN}	Input Leakage Current	$OV \leq V_{IN} \leq V_{DD}$	-	±1.0	μА
ILO	Output Leakage Current	$OV \leq V_{OUT} \leq V_{DD}$	-	±0.5	μΑ
I _{OH}	Output High Current	V _{OH} = 2.4V	-1.0	-	mA
loL	Output Low Current	V _{OL} = 0.4V	2.0	-	mA
I _{DDO1}	Operating Current	$(CE, V_{IH}) = 2.2V$ $(\overline{CE}, V_{IL}) = 0.8V$ $t_{CYC} = 1 \mu_S$	-	10	mA
I _{DDO2}		(CE, V_{IH}) = V_{DD} -0.2V (CE, V_{IL}) = 0.2V t_{CYC} = 1 μ s	-	7	mA
I _{DDS1}	Charalles Conson	(CE, V _{IH}) = 2.2V (CE, V _{IL}) = 0.8V Output = OPEN	-	2	mA
DDS2	- Standby Current	(CE) = 0.2V, (CE) = V _{DD} -0.2V V _{IN} = 0V ~ V _{DD} Output = OPEN	-	20	μΑ

CAPACITANCE*

Ta:	= 25°	 -	MI	コフ)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = OV	8	pF
C _{OUT}	Output Capacitanc	V _{OUT} = OV	10	pF

^{*}This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tACC	Access Time	_	250	ns
t _{CE}	Chip Enable Access Time	_	250	ns
toE	Output Enable Access Time	-	100	ns
t _{CED}	Output Disable Time from CE/CE	0	90	ns
toed	Output Disable Time from OE	0	90	ns
tон	Output Hold Time	0	_	ns
tcyc	Cycle Time	250	-	ns

Note 1: Assumes that \overline{OE} delay time to $CE_1 \sim CE_3/\overline{CE}_1 \sim \overline{CE}_3 \ge t_{ACC} - t_{OE}$

A.C. TEST CONDITIONS

Output Load: 100 pF + 1TTL

• Input Levels: VIL = 0.6V, V_{IH} = 2.4V

 Timing Measurement Reference Levels Input: 0.8V, 2.2V
 Output: 0.8V, 2.2V

• Input Rise and Fall time: 5 ns

TIMING WAVE FORMS

OPERATION MODE

MODE	CE ₁ (CE ₁)	$CE_2(\overline{CE}_2)$	CE ₃ (CE ₃)	ŌE	Outputs
Read	H(L)	H(L)	H(L)	L	Valid
Output Deselect	L(H)	*	*	*	
	*	L(H)	*	*	High-Z
	*	*	L(H)	*	
	*	*	*	Н	

Note: H: VIL, L: VIL, *: VIH or VIL

OUTLINE DRAWING

Unit: mm

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described; no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

C Apr., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

TC5366P 64K BIT (8K WORD x 8 BIT) CMOS MASK ROM

TC5366P

SILICON GATE CMOS

PRELIMINARY

DESCRIPTION

The TC5366P is a 65,536 bit read only memory organized as 8,192 words by 8 bits with a low bit cost, thus being suitable for use in program memory of microprocessor and character generator.

The TC5366P using CMOS technology is most suitable for low power applications such as battery

operated system.

The TC5366P is an asynchronous type ROM and has a programmable chip enable input for device selection and device power saving.

The TC5366P is moulded in a 24 pin standard plastic package.

FEATURES

Single Power Supply: 5V
Access Time: 250 ns

Low Power Dissipation

Operating Current: 7mA (Max.) Standby Current: 20µ A (Max.) • Fully Static Operation

Programmable Chip Enable: CE/CE
All Inputs and Outputs: TTL Compatible

Three State Outputs

PIN CONNECTION

	A7 1	0	24	VDD
	A6 2		23	As
	A5 3		22	1 A9
	A4 4		21	A 12
	A3 5	(TOP VIEW)	20	CE/CE
	A2 6	>	19	A 10
	A1 7	OP	18	J A 11
	A ₀ 🗆 8		17	D7
	D ₀ 9		16	□ D ₆
	D1 10		15	□ D ₅
	D ₂ 11		14	D4
G	ND 12		13	□ D ₃

PIN NAMES

$A_0 \sim A_{12}$	Address inputs
$D_0 \sim D_7$	Data outputs
CE/CE	Chip enable inputs
V _{DD}	Power supply
GND	Ground

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	$-0.5 \sim 7.0$	V
VIN	Input Voltage	$-0.5 \sim 7.0$	V
Vout	Output Voltage	0 ~ V _{DD}	V
PD	Power Dissipation	1.0	W
Topr	Operating Temperature	-40 ∼ 85	°C
T _{stg}	Storage Temperature	−55 ~ 150	°C
TSOLDER	Soldering Temperature - Time	260 - 10	°C - sec

D.C. OPERATING CONDITIONS $(Ta = -40 \sim 85^{\circ}C)$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.5	V
VIH	Input High Voltage	2.2	V _{DD} + 0.3	V
VIL	Input Low Voltage	-0.3	0.8	V

D.C. and OPERATING CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{IN}	Input Leakage Current	$OV \le V_{IN} \le V_{DD}$	_	±1.0	μΑ
ILO	Output Leakage Current	$OV \leq V_{OUT} \leq V_{DD}$	-	±0.5	μΑ
ЮН	Output High Current	V _{OH} = 2.4V	-1.0	-	mA
IOL	Output Low Current	V _{OL} = 0.4V	2.0	-	mA
I _{DDO1}	Operating Current	$(CE, V_{IH}) = 2.2V$ $(\overline{CE}, V_{IL}) = 0.8V$ $t_{CYC} = 1\mu s$		10	mΑ
I _{DDO2}		$(CE, V_{IH}) = V_{DD} - 0.2V$ $(\overline{CE}, V_{IL}) = 0.2V$ $t_{CYC} = 1\mu s$	-	7	mA
I _{DDS1}	Standby Current	(CE, V _{IH}) = 2.2V (CE, V _{IL}) = 0.8V Output = OPEN	-	2	mA
DDS2		(CE) = 0.2V, (\overline{CE}) = V _{DD} -0.2V V _{IN} = OV ~ V _{DD} Output = OPEN	_	20	μΑ

CAPACITANCE* (Ta = 25°C, f = 1MHz)

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
CIN	Input Capacitance	V _{IN} = OV	8	pF
COUT	Output Capacitance	V _{OUT} = OV	10	pF

^{*}This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tACC	Access Time		250	ns
tce	Chip Enable Access Time	_	250	ns
tCED	Output Disable Time from CE	0	90	ns
toh	Output Hold Time	0	_	ns
tcyc	Cycle Time	250	_	ns

A.C. TEST CONDITIONS

Output Load: 100pF + 1 TTL

• Input Levels: VIL = 0.6V, VIH = 2.4V

 Timing Measurement Reference Levels Input: 0.8V, 2.2V
 Output: 0.8V, 2.2V

• Input Rise and Fall Time: 5ns

TIMING WAVE FORMS

OPERATION MODE

MODE	CE (CE)	Output
Read	H(L)	Valid
Output Deselect	L(H)	High-Z

Note: H: VIH, L: VIL

OUTLINE DRAWINGS

Note: Each lead pitch is 2.54 mm. All leads are located within 0.25mm longitudinal position with respect to No. 1 and 24 leads. All dimensions are in millimeters.

Note: Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1983 Toshiba Corporation

TOSHIBA MOS MEMORY PRODUCTS

TC53256P 256K BIT (32K WORD x 8 BIT) CMOS MASK ROM

TC53256P

SILICON GATE CMOS

PRELIMINARY

DESCRIPTION

The TC53256P is a 262,144 bit read only memory organized as 32,768 words by 8 bits with a low bit cost, thus being suitable for use in program memory of microprocessor and character generator. The TC53256P using CMOS technology is most suitable for low power applications such as battery operated system.

The TC53256P is a synchronous type ROM which is consisting of address latch circuit, static memory cells and clocked peripheral circuitry.

FEATURES

Single 5V Power Supply: 5V
Access Time: 350 ns (Max.)

Power Dissipation

Operating Current: 15mA (Max.) Standby Current: 20µA (Max.)

 Pin Compatible with 256K NMOS ROM TMM23256P

PIN CONNECTION

PIN NAMES

$A_0 \sim A_{14}$	Address inputs
$D_0 \sim D_7$	Data outputs
CS/CS	Chip select input
NC	No conection
CE	Chip enable input
ŌĒ	Output enable input
V _{DD}	Power supply
GND	Ground

The $\overline{\text{CE}}$ falling edge latches all inputs except for CS/CS and $\overline{\text{OE}}$.

The TC53256P has a programmable chip select input (CS/ \overline{CS} , optional) for device power saving, one chip enable input (\overline{CE}) for device selection, and one output enable input (\overline{OE}) for fast memory access and output control.

The TC53256P is moulded in a 28 pin standard plastic package.

- Edge Enable Operation: CE
- Address Latch Type
- Programmable Chip Select Input: CS/CS/NC
- All Inputs and Outputs: TTL Compatible
- Three State Outputs: Wired OR capability

BLOCK DIAGRAM

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	-0.5 ~ 7.0	V
VIN	Input Voltage	$-0.5 \sim V_{DD} + 0.5$	V
Vout	Output Voltage	0 ~ V _{DD}	V
PD	Power Dissipation	0.8	W
T _{stg}	Storage Temperature	−55 ~ 150	°C
Topr	Operating Temperature	−40 ~ 85	°C
T _{sld}	Soldering Temperature · Time	260 - 10	°C - sec

D.C. OPERATING CONDITIONS (Ta = $-40 \sim 85^{\circ}$ C)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	V
V_{IH}	Input High Voltage	2.2	_	V _{DD} + 0.3	V
VII	Input Low Voltage	-0.3	-	0.8	V

D.C. and OPERATING CHARACTERISTICS (Ta = $-40 \sim 85^{\circ}$ C, $V_{DD} = 5V \pm 10\%$)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
IIL	Input Leakage Current	V _{IN} = 0 ~ V _{DD}	-	±1.0	μΑ
ILO	Output Leakage Current	$CS = V_{IL} (\overline{CS} = V_{IH}) \text{ or } \overline{CE} = V_{IH} \text{ or } \overline{DE} = V_{IH} $ $V_{OUT} = OV \sim V_{DD}$	-	±1.0	μΑ
Іон	Output High Current	V _{OH} = 2.4V	-1.0	-	mA
loL	Output Low Current	V _{OL} = 0.4V	-	2.0	mA
IDDS	Standby Current	$CS = OV (\overline{CS} = V_{DD}) \text{ or } $ $\overline{CE} = V_{DD} \text{ and } V_{IN} = OV (V_{DD})$	-	20	μΑ
IDDO1	One of the Course	$V_{IN} = V_{IH}/V_{IL}$, $t_{CYCle} = 1\mu s$	_	25	mA
IDDO2	Operating Current	V _{IN} = V _{DD} /OV, t _{cycle} = 1μs	_	15	mΑ

CAPACITANCE* (f = 1MHz, Ta = 25°C)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
CIN	Input Capacitance	-	10	pF
Cour	Output Capacitance	-	10	pF

^{*}This parameter is periodically sampled and is not 100% tested.

A.C. CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tcyc	Cycle Time	450	-	ns
tacc	Chip Enable Access Time	_	350	ns
toE	Output Enable Access Time	_	120	ns
top	Output Disable Time	0	100	ns
t _{CP}	Precharge Time	90	-	ns
tas	Address Set-up Time	50	_	ns
t _{AH}	Address Hold Time	50	-	ns
tcss	Chip Select Set-up Time	50	_	ns

Note 1: Assumes that $\overline{\text{OE}}$ delay time to $\overline{\text{CE}} \geq \text{t}_{\text{ACC}} - \text{t}_{\text{OE}}$ Note 2: T_{OD} is specified from $\overline{\text{CE}}$, $\overline{\text{OE}}$ or CS/CS trailing edge, whichever occurs first.

AC TEST CONDITIONS

Output Load: 100pF + 1TTL
 Input Levels: 0.6V, 2.4V
 Timing Measurement Reference Levels

 Input: 0.8V, 2.2V
 Output: 0.8V, 2.2V

• Input Rise and Fall Time: 5 ns

TIMING WAVEFORMS

OPERATION MODE

MODE	CS (CS)	CE	ŌĒ	$A_0 \sim 14$	Outputs
Read	H(L)	L(¬)	L	Valid	Data out
Output Deselect	L(H)	*	*	*	High Z
	*	Н	*	*	
	*	*	Н	*	

Note: H: VIH, L: VIL, *: VIH or VIL

OUTLINE DRAWING

Unit: mm

Note: Each lead pitch is 2.54 mm.

All leads are located within 0.25mm of their true longitudinal position with respect to No. 1 and No. 28 leads.

Note: Toshiba does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied, and Toshiba reserves the right, at any time without notice, to change said circuitry.

© Apr., 1983 Toshiba Corporation

MEMO

······································

MEMO

MEMO

$M \to M O$

TOSHIBA AMERICA INC.

U.S. OFFICES

CORPORATE OFFICE 2441 Michelle Drive Tustin, CA 92680 (714) 730-5000 TI X:183812

NORTHWEST AREA 1220 Midas Way Suite B Sunnyvale, CA 94086 (408) 720-8570 TLX: 34-6378

SOUTHWEST AREA 1400 Quail St. - Suite 100 Newport Beach, CA 92660 (714) 752-0373 TWX: 910-596-1886

CENTRAL AREA 7300 Metro Blvd. Edina, MN 55435 (612) 831-2566 TWX: 910-576-1321

EASTERN AREA 60 State Street Suite 405 Boston, MA 02109 (617) 742-2040 TWX: 710-321-6730

The information in this guide has been carefully checked and is believed to be reliable. however, no responsibility can be assumed for inaccuracies that may not have been caught. All information in this guide is subject to change without prior notice. Furthermore, Toshiba cannot assume responsibility for the use of any license under the patent rights of Toshiba or any third parties.