

Kourosh Davoudi kourosh@uoit.ca

Classification: Nearest Neighbor Classifier

CSCI 4150U: Data Mining

Learning Outcome

- What is the Nearest Neighbor Classifier?
 - Learn the ideas
 - Know the issues
- What is the Naïve Bayes classifier
 - Learn the main ideas
 - Explain are the issues and considerations
- What is Bayesian Belief Network?
- What are the Support Vector Machines?
 - Understand the main ideas
- What are ensemble approaches?
 - Learn the ideas and different approaches

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

Requires three things:

- 1. The set of labeled records
- 2. Distance metric to compute distance between records
- 3. The value of k, the number of nearest neighbors to retrieve

Nearest-Neighbor Classifiers

To classify an unknown record:

- Compute distance to other training records
- Identify *k* nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Nearest Neighbor Classification

- Compute proximity between two points:
 - Example: Euclidean distance

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

- Determine the class from nearest neighbor list
 - Take the <u>majority vote</u> of class labels among the k-nearest neighbors
 - Weight the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

- Choosing the value of *k*:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Choice of proximity measure matters
 - For documents, cosine is better than Euclidean

Euclidean distance = 1.4142 for both pairs

In k-NN classifier, most of the time we need normalization as a preprocessing step.

A. True

B. False

Nearest Neighbor Classification...

- Data preprocessing is often required
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M
 - Time series are often standardized to have 0 means a standard deviation of 1

Nearest-neighbor classifiers

- Nearest neighbor classifiers are local classifiers
- They can produce decision boundaries of arbitrary shapes.

1-nn decision boundary is a Voronoi Diagram

Nearest Neighbor Classification Highlights

- How to handle missing values in training and test sets?
 - Proximity computations normally require the presence of all attributes
 - Some approaches use the subset of attributes present in two instances
 - This may not produce good results since it effectively uses different proximity measures for each pair of instances
 - Thus, proximities are not comparable

Nearest Neighbor Classification Highlights

- Handling irrelevant and redundant attributes
 - Irrelevant attributes add noise to the proximity measure
 - Redundant attributes bias the proximity measure towards certain attributes
 - Can use variable selection or dimensionality reduction to address irrelevant and redundant attributes

What are the major challenges in k-NN classifier?

- A. Setting k
- B. Inference time
- C. Finding the right distance/similarity measure
- D. B and C
- E. A and B and C

How to Improve KNN Efficiency

- Avoid having to compute distance to all objects in the training set
 - Multi-dimensional access methods (k-d trees)
 - Fast approximate similarity search
 - Locality Sensitive Hashing (LSH)
- Condensing
 - Determine a smaller set of objects that give the same performance

