

Analyse hochdimensionaler Daten

Vorhersage und Feature Assessment - Teil 1

Wattwil im Toggenburg

Nicolas Städler, Hobbies: Sport und Reisen

Studium ETH Zürich

Doktorat in Mathematik/Statistik
Hochdimensionale
Mischungsmodelle und Missing
Data Probleme

Post-Doc Amsterdam

Molecular disease heterogeneity Netzwerke & Clustering in hochdimensionalen Daten

Biostatistiker in Roche Basel

Health Technology Assessment

Predictive Modelling and Data Analytics

Bioinformatik & Biomarker

Klinische Biomarker und personalisierte Medizin

Erhebung klinischer Biomarker anhand "Omics" Technologien

Analyse hochdimensionaler Biomarker Daten, zB prädiktive Modellierung

Hochdimensionale Statistik Unversity of California, Berkely

High-dimensional statistics focuses on data sets in which the number of features is of comparable size, or larger than the number of observations. Data sets of this type present a variety of new challenges, since classical theory and methodology can break down in surprising and unexpected ways

Vorhersage und Feature Selektion

Ausgangslage

- Zielgrösse Y
- Features X₁,...,X_p
- Hochdimensionale Daten

p gross, n klein

Vorhersage und Feature Selektion

Fragestellungen

- Können wir die Zielgrösse (Y) mittels Features (X₁,...,X_p) vorhersagen? (Vorhersage)
- Welche "Features" erklären die Zielgrösse am besten? (Feature Selektion)

Molekularbiologie und genomische Daten

- Die DNA ist der Bauplan des Lebens aller Organismen
- Die DNA besteht aus vielen Segmenten, sog. Genen (Mensch hat ~22'500 Gene)
- Aus Genen werden mRNA Moleküle hergestellt (Transkription)
- Aus mRNA Molekülen werden Proteine gebaut (Translation)

Genexpression

- RNA Sequencing Technologie ermöglicht Expressions-Messung tausender Genen simultan (p~10'000).
- Die Stichprobengrösse (z.B. Patienten) ist relative klein (n~10-100).
- Können wir den Response anhand der Genexpressionsmuster vorhersagen?

Finanzreihen

- Modellierung von Aktienkursen
- VAR(d) Modell f
 ür p Aktien

$$egin{aligned} X_1^t &= lpha_1 + eta_{11} X_1^{t-1} + \ldots + eta_{1d} X_1^{t-d} + \epsilon_{t1} \ ‐ X_p^t &= lpha_p + eta_{p1} X_1^{t-1} + \ldots + eta_{pd} X_p^{t-d} + \epsilon_{pt} \end{aligned}$$

- ullet Grosse Anzahl Modellparameter $\,d imes p^2$
- Vorhersage der Aktienkurse?
- Was sagen uns die geschätzten Modellparameter?

Spracherkennung (Speech recognition)

- Erkennung von Sprachmustern anhand digitaler Aufnahmen
- Phoneme "aa (balm)" and "ao (bought)" (n=30=15+15) gemessen an p=256 verschieden Frequenzen
- Können wir Phoneme zuverlässig vorhersagen/klassifizieren?
- Welche Frequenzen sind wichtig?

In diesem Kurs geht es um...

- Hochdimensionale Daten
- Werkzeuge zur Vorhersage und zur Feature Selektion
- Viele praktische Übungen mit R
- Kurs Homepage: https://staedlern.github.io/highdim_stats/
- Online Skript: https://bookdown.org/staedler_n/highdimstats/
- Daten und R Code: github

- Lineare Regression und Methode der Kleinsten Quadrate
- Überanpassung, Generalisierungsfehler und Bias-Varianz Dilemma
- Subset Regression und Modellselektion
- Ridge -, Lasso und Elasticnet Regression
- Klassifikation, Logistische Regression & Elasticnet
- Maschinelles Lernen: Entscheidungsbäume, Random Forest und AdaBoost
- Vorhersage und Feature Selektion für Ereigniszeitanalyse
- Multiples Testen, Bonferroni und FDR Korrektur, Schrumpfung der Varianz

Multiple Linear Regression

Diabetes Beispiel

- n=442 Patienten mit Diabetes
- Y: Fortschreiten der Krankheit 1 Jahr nach Studienbeginn
- X: Alter, Geschlecht, BMI, Blutdruck, Blutserum Werte
- Aufgabe für den Statistiker:
 - Finde ein Modell, das den Krankheitsfortschritt (Y) vorhersagt.
 - Welche Variablen sind wichtige Faktoren?

Lineare Regression

- Response Y ist kontinuierlich
- Anpassung einer Geraden

Vorhersage neuer
 Datenpunkte

Multiple Lineare Regression

Gegeben: Zielgrösse und Kovariablen

$$Y = \beta_0 + X_1\beta_1 + \dots + X_p\beta_p$$

• β_i : Einfluss auf Y bei Änderung in X_i und Fixierung aller anderen Variablen

Multiple Lineare Regression

 Anpassung einer p-dimensional Hyperebene an die Datenpunkte:

$$(y_i, x_{1i}, \ldots, x_{pi}) \ i = 1, \ldots, n$$

Multiple Lineare Regression

Methode Kleinster Quadrate

Residual Sum of Squares (RSS)

$$egin{aligned} & \mathbf{RSS}(eta) = \sum_{i=1}^n (y_i - \mathbf{x}_i^T eta)^2 \ &= (\mathbf{y} - \mathbf{X}eta)^T (\mathbf{y} - \mathbf{X}eta) \ &= \|\mathbf{y} - \mathbf{X}eta\|_2^2. \end{aligned}$$

Methode Kleinster Quadrate

 Schätzung der Regressions Koeffizienten mittels der "Methode Kleinster Quadrate" (Ordinary Least Squares, OLS)

$$\hat{\beta} = \arg\min_{\beta} \ \mathrm{RSS}(\beta)$$

Optimierungsproblem:

"Finde das Argument des

Minimums"

Wie finden wir das Minimum einer Funktion?

$$\frac{\partial}{\partial \beta} \mathrm{RSS}(\beta) = 0$$

$$\Leftrightarrow \mathbf{X}^{\mathbf{T}}\mathbf{y} = \mathbf{X}^{\mathbf{T}}\mathbf{X}\boldsymbol{\beta}$$

$$\hat{eta} = (\mathbf{X^TX})^{-1}\mathbf{X^Ty}$$

"Geschlossene" Lösung

Notiz: viele statistischen Verfahren haben keine geschlossene Lösung und müssen "numerisch" approximiert werden

Multiple Lineare Regression in R - Diabetes Beispiel

```
fit <- lm(y~age+sex+bmi+map,data=data train)
summary(fit)
## Call:
## lm(formula = y ~ age + sex + bmi + map, data = data train)
## Residuals:
       Min
                      Median
                                           Max
## -147.636 -42.617 -5.229 42.301 154.569
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                153.20
                             3.97 38.589 < 2e-16 ***
                -18.01
                            91.02 -0.198
                                           0.843
## age
                 58.44
## sex
                                   0.684
                                            0.495
## bmi
                748.95
                                   8.816 4.01e-16 ***
                            95.47 4.427 1.52e-05 ***
                422.63
## map
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 58.86 on 216 degrees of freedom
## Multiple R-squared: 0.4072, Adjusted R-squared: 0.3962
## F-statistic: 37.1 on 4 and 216 DF, p-value: < 2.2e-16
```

- Geschätzten Koeffizienten (mittels "kleinster Quadrate")
- Weitere statistische Kenngrößen, z.B. p-Werte
- R-squared: wie gut passt das Modell zu den Daten?

Überanpassung, Generalisierungsfehler und Bias-Varianz Dilemma

- Die Anzahl der Kovariablen ist gross im Vergleich zur Beobachtungen (p>>n)
- Regression mit allen p Kovariablen, d.h. $Y = \beta_0 + X_1 \beta_1 + ... + X_p \beta_p$?
- Wieso ist dies keine gute Idee?

Probleme:

- Singularität der Designmatrix
- Überanpassung an die Daten (sogn "Overfitting")
- Grosser Generalisierungsfehler

ANALYSIS OF HIGH-DIMENSIONAL DATA

Problem 1: Singularität der Designmatrix

$$\frac{\partial}{\partial \beta} \mathrm{RSS}(\beta) = 0$$

$$\Leftrightarrow \mathbf{X^T}\mathbf{y} = \mathbf{X^T}\mathbf{X}\beta$$

$$\hat{eta} = (\mathbf{X^TX})^{-1}\mathbf{X^Ty}$$

- p Gleichungen mit p Unbekannten
- Lösbar wenn X^TX invertierbar
- Wichtig: p>n impliziert X^TX singulär
 (d.h. nicht invertierbar)

Problem 2: Überanpassung an die Daten

- Zu viele erklärende Variablen führen zu einer Überanpassung an die Daten,
 s.g. "Overfitting"
- Überanpassung bedeutet: das Modell beschreibt nicht nur das echte Signal, sondern auch den zufälligen Fehler
- Illustrieren dies mit Hilfe künstlich generierten Daten

Simuliere künstliche Daten

- n=10: $(Y_i, X_{i1}, \ldots, X_{ip})$ i=1..n
- p=15: X_{i1}, \ldots, X_{ip} i.i.d N(0,1)
- Zielgrösse hängt nur von der ersten Kovariaten ab:

$$egin{aligned} Y_i &= eta_1 X_{i1} + \epsilon_i, \ eta_1 &= 2, \; \epsilon_i \sim N(0, 0.5^2). \end{aligned}$$

```
set.seed(1)
n <- 10
p <- 15
beta <- c(2, rep(0, p-1))
# simulate covariates
xtrain <- matrix(rnorm(n*p),n,p)
ytrain <- xtrain%*%beta+rnorm(n,sd=0.5)
dtrain <- data.frame(xtrain)</pre>
dtrain$y <- ytrain
```


Univariates Modell "Orakel"

- Das Modell passt gut: R²=0.88
- Regressionskoeffizient ist nahe beim wahren Wert
- Was passiert wenn wir "noise" Kovariablen hinzufügen, d.h. p=4, 8, 15?

```
fit1 <- lm(y~X1,data=dtrain)
summary(fit1)
## Call:
## lm(formula = y ~ X1, data = dtrain)
## Residuals:
                  10 Median
   -0.59574 -0.41567 -0.06222 0.18490 0.97592
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.1002
                1.8070
                           0.2373 7.614 6.22e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5558 on 8 degrees of freedom
  Multiple R-squared: 0.8787, Adjusted R-squared: 0.8636
## F-statistic: 57.97 on 1 and 8 DF, p-value: 6.223e-05
```


Überanpassung an die Daten

model	R2	
p=1	0.88	
p=4	0.90	
p=8	0.98	
p=15	1.00	

- Gefittete Werte (rotes Kreuz)
 bewegen sich weg vom
 wahren Signal (blaue Linie)
- Gefittete Werte n\u00e4hern sich den Datenpunkten an
- Modellierung von "Noise"
- Model "overfits" die Daten

Überschätzung der Koeffizienten

- p gross: Überschätzung der Koeffizienten
- Modelle bewegen sich weg von der Wahrheit (trotz gutem "Fit")

Modell mit p=15

```
summary(fit15)
##
## Call:
## lm(formula = y ~ ., data = dtrain)
## Residuals:
## ALL 10 residuals are 0: no residual degrees of freedom!
## Coefficients: (6 not defined because of singularities)
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01592
                               NaN
                                       NaN
## X1
               -0.50138
## X2
               0.81492
                               NaN
                                      NaN
                                                NaN
## X3
               -0.56052
                                                NaN
                                      NaN
## X4
               0.72667
                               NaN
                                      NaN
## X5
               1.84831
                               NaN
                                      NaN
                                                NaN
## X6
               0.05759
                                                NaN
                               NaN
                                      NaN
               -1.21460
## X7
## X8
               -1.30908
                               NaN
                                      NaN
                                                NaN
## X9
               -1.39005
                                                NaN
## X10
## X11
                     NA
## X12
                     NA
## X13
## X14
## X15
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:
                           1, Adjusted R-squared:
## F-statistic: NaN on 9 and 0 DF, p-value: NA
```

- Perfekter Fit: "no residual degrees of freedom"
- Koeffizienten nicht definiert wegen "singularities"
- p>N impliziert X^TX singulär

```
x <- model.matrix(fit15)
det(t(x)%*%x)</pre>
```

```
## [1] -2.8449e-81
```


Was ist ein <u>gutes</u> Modell? Der Generalisierungsfehler

- Ziel ist ein Modell mit guter Vorhersage
- ullet Neuer Input $old x_{
 m new}$; Vorhersage $\ \hat{y} = x_{
 m new}^T \hat{eta}$
- ullet Generalisierungsfehler: $y_{
 m new} \hat{y}_{
 m l}$

- In der Praxis: Training- & Testdaten
- Root-mean-squared-error misst die zu erwartende Abweichung der Vorhersage

$$ext{RMSE} = \sqrt{rac{\sum_{i=1}^{n_{ ext{test}}}(y_{ ext{test,i}} - \hat{y}_i)^2}{n_{ ext{test}}}}$$

Generalisierungsfehler

$$= \sigma_{\varepsilon}^{2} + Varianz + Bias^{2}$$

$$= \text{wie "variable"}$$

$$(\text{zerstreut) ist die Vorhersage?}$$

$$= \text{systematische Verzerrung (zum wahren Wert)?}$$

$$\text{inhärente Fehler}$$

$$\text{"Noise"}$$

$$\text{reduzierbarer Fehler}$$

- Ein <u>qutes</u> Modell versucht den Reduzierbaren Fehler zu minimieren
- Unter gewissen Annahmen: Varianz $= \sigma_{\epsilon}^2 \frac{p}{N}$
- Bias-Varianz Dilemma: komplexe Modelle (viele Kovariablen) haben einen kleinen Bias, aber eine grosse Varianz

In der Praxis...

- Training und Test Daten
- Simulieren "Dummy" Testdaten
- Wie gut sind die Modelle p=1, 4, 8 und 15?
- Beachte: der inhärente Fehler ist σ=0.5
- Für p=8 und 15: RMSE 6-8 mal grösser!

```
ANALYSIS OF HIGH-DIMENSIONAL DATA
```

```
# simulate test data
xtest <- matrix(rnorm(n*p),n,p)
ytest <- xtest%*%beta+rnorm(n,sd=0.5)
dtest <- data.frame(xtest)
dtest$v <- ytest
# prediction
pred1 <- predict(fit1,newdata = dtest)</pre>
pred4 <- predict(fit4, newdata = dtest)</pre>
pred8 <- predict(fit8, newdata = dtest)</pre>
pred15 <- predict(fit15, newdata = dtest)</pre>
# rmse
rmse <- data.frame(
   RMSE(pred1, ytest), RMSE(pred4, ytest),
   RMSE(pred8, ytest), RMSE(pred15, ytest)
```

	p=1	p=4	p=8	p=15
RMSE	0.57	0.72	3.21	3.9

Take Home Punkte

Schwierigkeiten

- Kleinste-Quadrate-Schätzer ist Singulär für p>n
- Überanpassung an die Daten "Overfitting"; R² ist keine nützliche Größe
- Überschätzung der Regressionskoeffizienten

Konzepte

- → 10:1 Faustregel: zur Vermeidung von Overfitting sollte p < n/10</p>
- → Generalisierungsfehler: Training, Testdaten, RMSE
- → Gutes Modell = kleiner Generalisierungsfehler!
- → Bias-Varianz Dilemma

Jetzt: Methoden die gut funktionieren mit hochdimensionalen Daten!

Subset Regression und Modellselektion

Regularisierte Lineare Regression Kleinste Quadrate unter Nebenbedingungen

Kleinste Quadrate Verfahren als Optimierungsproblem

$$\hat{\beta} = \arg\min_{\beta} \ \mathrm{RSS}(\beta)$$

- Overfitting führt zu Überschätzung der Koeffizienten
- Methoden mit gewisse Nebenbedingungen (NB) an β

$$\hat{\beta} = \underset{ ext{NB für } \beta}{\operatorname{arg \, min}} \ \underset{eta}{ ext{RSS}}(eta)$$

Subset-Regression

Minimiere Kleinste-Quadrate unter NB: nur Koeffizienten in S sind relevant

$$\hat{eta}_S = \operatorname*{argmin}_{eta_j = 0} \operatorname*{RSS}(eta)$$

OLS Schätzer basierend auf Subgruppe "S" von Kovariablen

$$\hat{\boldsymbol{eta}}_S = (\mathbf{X}_S^T \mathbf{X}_S)^{-1} \mathbf{X}_S^T \mathbf{y}$$

Betrachte Sequenz S₁, S₂,..., S_M

Best Subset- und Schrittweise Regression

- Es gibt verschieden Verfahren zur Generierung von Subgruppen
 - Schrittweise Vorwärtsselektion: starte mit "leerem Modell", füge wichtige Variablen schrittweise hinzu (F-Statistik)
 - Schrittweise Rückwärtsselektion: starte mit "vollem Modell", eliminiere schrittweise weniger wichtige Variablen (F-statistik)
 - Alle Subset-Selektion
- Sequenz von Subgruppen S₁, S₂,..., S_M
- Wähle die "beste" Subgruppe (bestes Modell)

Modellselektion: Wähle das "Beste" Modell?

- Schätzung der Koeffizienten für verschiedene S₁,...,S_M
- Modellselektion: wähle das beste Modell S_{opt}
- Berechne den Generalisierungsfehler von S_{opt}

Trainieren des Modells

Testen des Modells

Modellselektion

- Bestes Modell, kleinster Generalisierungsfehler
- Modellselektion ist Teil des "Trainings"
- LÖSUNG: Approximiere den Generalisierungsfehler mittels Trainingsdaten
 - Kreuzvalidierung
 - Informationskriterium, z.B. AIC, BIC, Cp-Wert

Kreuzvalidierung

- Teile die Trainingsdaten in K Stücke
- Wiederhole "Train/Test" K-mal
- Kreuzvalidierungsfehler (CV) = Mittelwert aller Err₁,...,Err_K

Informationskriterium

≈ Goodness-of-Fit + Modell Komplexität

Beispiele:

$$\mathrm{Cp} = rac{1}{\mathrm{n}} \mathrm{RSS}(\hat{eta}) + 2 rac{\mathrm{p}}{\mathrm{n}} \hat{\sigma}_{\epsilon}$$

$$AIC = -2 \text{ LogLik} + 2p$$

Beispiel Dummy Daten

Kreuzvalidierung

Informationskriterium

Beispiel Dummy Daten

- Modellselektion in R: regsubsets (leaps) und stepAIC (MASS)
- Beispiel Vorwärtsselektion mittels AIC

kable(as.data.frame	(fit.fw%and	ova) digits	=3)

Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
	NA	NA	9	22.468	10.095
+ X1	1	20.017	8	2.450	-10.064
+ X4	1	0.883	7	1.567	-12.535
+ X9	1	0.376	6	1.191	-13.277

kable(broom::tidy(fit.fw),digits=3)

estimate	std.error	statistic	p.value
0.210	0.157	1.334	0.231
1.611	0.243	6.624	0.001
-0.508	0.205	-2.475	0.048
-0.322	0.234	-1.376	0.218
	0.210 1.611 -0.508	0.210 0.157 1.611 0.243 -0.508 0.205	0.210 0.157 1.334 1.611 0.243 6.624 -0.508 0.205 -2.475

Kursinhalt

- Lineare Regression und Methode der Kleinsten Quadrate
- Überanpassung, Generalisierungsfehler und Bias-Varianz Dilemma
- Subset Regression und Modellselektion
- Modellselektion, Regularisierung und Ridge Regression
- Schrumpfung und Hauptachsen, Effektive Freiheitsgrade, Bayessche Inferenz, Smoothing Splines
- Lasso, Elasticnet und hochdimensionale P-Werte
- Klassifikation, Logistische Regression & Elasticnet
- Maschinelles Lernen: Entscheidungsbäume, Random Forest und AdaBoost
- Vorhersage und Feature Selektion für Ereigniszeitanalyse
- Multiples Testen, Bonferroni und FDR Korrektur, Schrumpfung der Varianz

Regularisierte Lineare Regression Kleinste Quadrate unter Nebenbedingungen

Kleinste Quadrate Verfahren als Optimierungsproblem

$$\hat{\beta} = \arg\min_{\beta} \ \mathrm{RSS}(\beta)$$

- Overfitting führt zu Überschätzung der Koeffizienten
- Methoden mit gewisse Nebenbedingungen (NB) an β

$$\hat{\beta} = \underset{ ext{NB für } \beta}{\operatorname{arg \, min}} \ \underset{eta}{ ext{RSS}}(eta)$$

Modellselektion: Wähle das "Beste" Modell?

- Schätzung der Koeffizienten für verschiedene S₁,...,S_M
- Modellselektion: wähle das beste Modell S_{opt}
- Berechne den Generalisierungsfehler von S_{opt}

Trainieren/Validie ren des Modells

Testen des Modells

Kreuzvalidierung

- Teile die Trainingsdaten in K Stücke
- Wiederhole "Train/Test" K-mal.
- Kreuzvalidierungsfehler (CV) = Mittelwert aller Err₁,...,Err_K

Wichtig:

Kreuzvalidierungsfehler entspricht <u>nicht</u> dem Generalisierungsfehler

Nested Cross-Validation

Ridge Regression

Nebenbedingung: beschränke die Grösse der Koeffizienten

$$\|eta\|_2^2 = \sum_{j=1}^p eta_j^2 \leq c$$
 "L2-Norm"

Optimierungsproblem:

$${\hat{eta}}_c^{ ext{Ridge}} = rg\min_{\|eta\|_2^2 \leq c} ext{RSS}(eta)$$

Ridge Regression

Geometrische Anschauung:

$${\hat{eta}}_c^{ ext{Ridge}} = rg\min_{\|eta\|_2^2 \leq c} ext{RSS}(eta)$$

- RSS(β) wird minimiert unter der
 Nebenbedingung dass β im
 "blauen" Kreis zu liegen kommt
- Der OLS Schätzer wird Richtung
 Nullpunkt geschrumpft

Ridge Regression - L2 Penalization

- Nebenbedingung als Penalty ("Lagrange Multiplikator")
- Alternative (äquivalente) Formulierung

$$\hat{eta}_{\lambda}^{ ext{Ridge}} = rg \min_{eta} ext{RSS}(eta) + \lambda \|eta\|_2^2$$

Goodness-of-Fit

Modellkomplexität

Regularisierungs-, Strafterm Lambda: Tuning-Parameter

Ridge Regression - Analytischen Lösung

$$\hat{eta}_{\lambda}^{ ext{Ridge}} = (\mathbf{X^TX} + \lambda \mathbf{I})^{-1} \mathbf{X^Ty}.$$

- Invertierbar auch für p>n
- Lambda=0: Ridge=OLS estimate

Closed form solution for Ridge regression

$$\beta_{\epsilon}^{\text{Ridge}} = \underset{\|M_{\epsilon}^{N} \leq \epsilon}{\operatorname{argmin}} \quad \|y - X\beta\|_{2}^{2}$$
Legange multiplier

$$= \frac{2 \epsilon(\beta)}{3 \rho} \stackrel{!}{=} 0$$

$$\|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

$$= \ell(\beta)$$

$$\Rightarrow \frac{2 \epsilon(\beta)}{3 \rho} \stackrel{!}{=} 0$$

$$\|y - X\beta\|_{2}^{2} = (y - X\beta)^{T}(y - X\beta) = y^{T} - y^{T} K\beta - \beta^{T} K^{T} y + \beta^{T} K^{T} \beta + \beta^{T}$$

Wahl des Tuning-Parameters (Modellselektion)

 Berechne den Ridge-Schätzer für eine Sequenz von Lambda's ("äquivalent zu der Sequenz von Subgruppen")

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_M < \infty$$

- Kreuzvalidierung zur Ermittlung eines optimalen Lambda (oder Informationskriteriums)
- Glmnet package f
 ür Ridge Regression in R
 - Funktion glmnet: berechnet Ridge-Schätzer für eine Sequenz von Lambdas
 - Funktion cv.glmnet: Optimales lambda mittels Kreuzvalidierung

Simuliere künstliche Daten

- n=10: $(Y_i, X_{i1}, \ldots, X_{ip})$ i=1..n
- p=15: X_{i1}, \ldots, X_{ip} i.i.d N(0,1)
- Zielgrösse hängt nur von der ersten Kovariaten ab:

$$egin{aligned} Y_i &= eta_1 X_{i1} + \epsilon_i, \ eta_1 &= 2, \; \epsilon_i \sim N(0, 0.5^2). \end{aligned}$$

```
set.seed(1)
n <- 10
p <- 15
beta <- c(2, rep(0, p-1))
# simulate covariates
xtrain <- matrix(rnorm(n*p),n,p)
ytrain <- xtrain%*%beta+rnorm(n,sd=0.5)
dtrain <- data.frame(xtrain)</pre>
dtrain$y <- ytrain
```


Ridge Regression - Dummy Daten

```
fit.ridge.glmnet <-glmnet(x=xtrain,y=ytrain,alpha=0)
plot(fit.ridge.glmnet,xvar="lambda",label=TRUE)</pre>
```


- Wichtig: wähle alpha = 0 für Ridge Regression
- Sogenannter "Trace plot"
- Für steigendes Lambda werden die Koeffizienten zum Nullpunkt geschrumpft
- Erster Koeffizient ist der wichtigste (wie erwartet!)

Ridge Regression - Dummy Daten

```
cv.ridge.glmnet <-cv.glmnet(x=xtrain,y=ytrain,alpha=0)
plot(cv.ridge.glmnet)</pre>
```


- Kreuzvalidierungs Plot
- Lambda.min: kleinster CV Fehler
- Lambda.1se: grösstes lambda innerhalb 1 SE des kleinsten CVs

Diabetes Beispiel

- n=442 Patienten mit Diabetes
- Y: Fortschreiten der Krankheit 1 Jahr nach Studienbeginn
- X: Alter, Geschlecht, BMI, Blutdruck, Blutserum Werte und quadratische Term (p=64)
- Aufgabe für den Statistiker:
 - Finde ein Modell, das den Krankheitsfortschritt (Y) vorhersagt.
 - Welche Variablen sind wichtige Faktoren?

Diabetes Beispiel

Training und Test Daten

```
library(lars) # lars package contains the diabetes data
data("diabetes")
data <- as.data.frame(cbind(y=diabetes$y,diabetes$x2))</pre>
colnames(data) <- gsub(":",".",colnames(data))</pre>
train ind <- sample(seq(nrow(data)), size=nrow(data)/2)
data train <- data[train ind,]
xtrain <- as.matrix(data train[,-1])
ytrain <- data train[,1]
data test <- data[-train ind,]
xtest <- as.matrix(data test[,-1])</pre>
ytest <- data test[,1]
```

Vorwärts Regression mittels AIC

Vorwärtsselektion mittels AIC

Step	Df	Deviance	Resid. Df	Resid. Dev	AIC
	NA	NA	220	1262297.5	1913.7
+ bmi	1	434735.33	219	827562.1	1822.40
+ Itg	1	155835.95	218	671726.2	1778.30
+ age.sex	1	47106.62	217	624619.6	1764.23
+ map	1	29740.28	216	594879.3	1755.45
+ bmi.glu	1	22952.37	215	571926.9	1748.7
+ hdl	1	19077.03	214	552849.9	1743.25
+ sex	1	15702.72	213	537147.2	1738.89
+ hdl.tch	1	9543.83	212	527603.3	1736.92
+ sex.ldl	1	5735.62	211	521867.7	1736.5
+ tch.ltg	1	6279.00	210	515588.7	1735.83
+ age.map	1	5342.10	209	510246.6	1735.5

Selektiertes Modell

term	estimate	std.error	statistic	p.value	
(Intercept)	155.72	3.36	46.29	0.00	
bmi	466.07	81.82	5.70	0.00	
Itg	497.33	94.05	5.29	0.00	
age.sex	274.22	76.35	3.59	0.00	
map	315.78	80.98	3.90	0.00	
bmi.glu	206.59	74.57	2.77	0.01	
hdl	-392.14	94.40	-4.15	0.00	
sex	-201.94	80.87	-2.50	0.01	
hdl.tch	-210.17	87.81	-2.39	0.02	
sex.ldl	118.77	74.81	1.59	0.11	
tch.ltg	-146.12	89.83	-1.63	0.1	
age.map	119.49	80.78	1.48	0.14	

Test Daten: RMSE=59.9 (Modell mit allen p=64 Variablen: RMSE=84.5)

Ridge Regression - Trace Plot

Diabetes Beispiel

```
# Ridge
set.seed(1515)
fit.ridge <- glmnet(xtrain,ytrain,alpha=0)
fit.ridge.cv <- cv.glmnet(xtrain,ytrain,alpha=0)
plot(fit.ridge,xvar="lambda")</pre>
```


Kreuzvalidierung

Test Daten: RMSE=62.63 (Modell Vorwärtsregression: RMSE=59.89)

The Caret Package

- Caret package: Classification And REgression Training
- Funktionen zur Generierung prädiktiver Modelle:
 - Daten Splitting (Train, Test)
 - Datenvorverarbeitung ("pre-processing")
 - Feature Selektion
 - Modell Tuning mittels Kreuzvalidierung
 - Schätzung der "Variable Importance"
- Für mehr information https://topepo.github.io/caret/
- Übungsaufgabe zum Caret package

Eigenschaften von Ridge Regression

Weitere Eigenschaften von Ridge Regression

- Analytische Lösung des Optimierungsproblems
- Schrumpfung in Richtung der Hauptkomponenten
- Die Effektiven Freiheitsgrade
- Schrumpfung und Bayesianischen Statistik

Ridge Regression - Analytischen Lösung (sh Übung)

$$\hat{eta}_{\lambda}^{ ext{Ridge}} = (\mathbf{X^TX} + \lambda \mathbf{I})^{-1} \mathbf{X^Ty}.$$

- Invertierbar auch f
 ür p>n
- Lambda=0: Ridge=OLS estimate

- Korrelation zwischen X₁ und X₂
- Instabilität bei der Anpassung einer Hyperebene

- Kollinearität der Kovariablen:
 Instabilität bei der Anpassung einer
 Hyperebene
- Hyperebene stabil in Richtung v₁
 grosse Varianz, viel Information
- Hyperebene instabil in Richtung v₂
 kleine Varianz, wenig Information

Hauptachsentransformation

- ullet Singulärwertzerlegung ${f X}={f U}{f D}{f V}^{f T}$
- Spalten von V: Hauptachsenrichtungen
- Spalten von U: Spaltenraum von X
- Spalten von UD: Hauptachsen von X
- ullet Singulärwerte $d_1 \geq \ldots \geq d_p \geq 0$

$$\hat{\mathbf{y}}^{ ext{OLS}} = \sum_{j=1}^p \mathbf{u}_j \mathbf{u}_j^T \mathbf{y}$$

Koordinate bzgl orthogonaler Basis u_i

PC₁

Hauptachsentransformation in R

```
# simulated correlated bivariate data
set.seed(1315)
n <- 50
x \leftarrow mvrnorm(n=50, mu=c(0,0), Sigma=cbind(c(1,0.8), c(0.8,1)))
colnames(x) <- c("X1", "X2")
# run a principle component analysis
pc <- prcomp(x)
pc$sdev # standard dev
# same analysis using svd
cx <- sweep(x, 2, colMeans(x), "-")
sv <- svd(cx)
sqrt(sv$d^2/(nrow(x)-1))
pc$sdev
head(pc$x)
head(sv$u%*%diag(sv$d))
```


Schrumpfung in Richtung der Hauptachsen

Ridge Regression

$$\mathbf{\hat{y}}^{ ext{Ridge}} = \sum_{j=1}^p \mathbf{u}_j \overline{d_j^2 + \lambda} \mathbf{u}_j^T \mathbf{y}.$$

→ Stärkste Schrumpfung in Richtung letzter Hauptachse (kleinste Varianz, geringste Information)

ANALYSIS OF HIGH-DIMENSIONAL DATA

Die Effektiven Freiheitsgrade

- Multiple Lineare Regression: p Freiheitsgrade (DF)
- Was sind die Freiheitsgrade für Ridge Regression? DF_{Ridge}=p ???
- Aufgrund der Nebenbedingungen sollten die "effektiven" Freiheitsgrade von Ridge kleiner als p sein
- Allgemeine Definition der <u>effektiven Freiheitsgrade</u>
 - \circ für sog "Lineare Fitting Methoden", dh $\, \hat{\mathbf{y}} = \mathbf{S} \mathbf{y} \,$
 - $_{\circ}$ Effektive Freiheitsgrade: $u_{\mathbf{S}} = trace(\mathbf{S})$
 - o Beispiele: Lineare Regression und Ridge Regression

Die Effektiven Freiheitsgrade

Für Ridge Regression kann zeigen:

$$u_{\lambda}^{ ext{ridge}} = \sum_{j=1}^{p} rac{d_{j}^{2}}{d_{j}^{2} + \lambda}$$

Dummy Daten:

```
# get singular values
fit.svd <- svd(xtrain) #fit.svd$d

# ridge degree of freedom for lambdaopt
df_lambdaopt <- sum(fit.svd$d^2/(fit.svd$d^2+cv.ridge.glmnet$lambda.1se))
df_lambdaopt</pre>
```

[1] 4.390408

Dummy Daten: DF≈4

- Bisher: Schätzung der Koeffizienten mittels RSS(β) Kriterium
- Likelihood-Theorie
 - o gegeben die Daten und eine Likelihood Funktion $p(D|\beta)$
 - o schätze die Koeffizienten durch Maximierung der Likelihood Funktion
- Lineare Regression

$$egin{aligned} Y_i|X_i,eta \sim N(X_i^Teta,\sigma^2), \ i=1,\ldots,n \ p(Y_i|X_i;eta) = rac{1}{2\pi\sigma^2} \mathrm{exp}igg(rac{-(Y_i-X_i^Teta)^2}{2\sigma^2}igg) \end{aligned}$$

Likelihood Funktion - Lineare Regression

Likelihood Funktion

$$p(D|eta) = p(Y_1|X_1;eta) imes \ldots imes p(Y_n|X_n;eta)$$

$$\log p(D|eta) = -rac{n}{2}\mathrm{log}(2\pi) - rac{n}{2}\mathrm{log}(\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n(Y_i - X_i^Teta)^2$$

$$\max_{eta} \ \log p(D|eta) \ \ \ \ \ \ \ \ \ \min_{eta} \ \mathrm{RSS}(eta)$$

Maximum Likelihood und Kleinste Quadrate Methode identisch

Bayessche Statistik und Regularisierung

In Bayesianischer Statistik sind die Daten (D) UND die Parameter (β) Zufallsvariablen

- Likelihood: $p(D|\beta)$
- ullet A-priori-Verteilung: p(eta)
- ullet Inferenz basiert auf A-posteriori-Verteilung $\;p(eta|D)=rac{p(D|eta)p(eta)}{P(D)}\;$

$$\log p(\beta|D) \propto \log p(D|\beta) + \log p(\beta)$$

A-Priori-Verteilung führt zur Schrumpfung der Koeffizienten

Nebenbedingungen als A-Priori-Verteilung

$$egin{aligned} Y_i|X_i,eta \sim N(X_i^Teta,\sigma^2), \ i=1,\ldots,n \ eta_j \sim N(0, au^2), \ j=1,\ldots,p \end{aligned}$$

$$rg \max_{eta} \ \log p(eta|D)$$
 \ll $rg \min_{eta} \ ext{RSS}(eta) + rac{\sigma^2}{ au^2} \|eta\|_2^2$

A-Priori-Verteilung führt zur Schrumpfung der Koeffizienten

Bayessche Inferenz und MCMC-Verfahren

Bayessche Inferenz: simulieren von der a-posteriori Verteilung

$$eta^{(1)}, \dots, eta^{(B)} \sim p(eta|D)$$
 $ar{eta} = E(eta|D) pprox rac{1}{B} \sum_{b=1}^{B} eta^{(b)}$

- A-posteriori Verteilung hat oft keine analytische Lösung → Approximation der Simulation mittels dem MCMC-Verfahren (Markov Chain Monte Carlo)
- MCMC-Verfahren mittels der Software BUGS oder JAGS

Bayessche Ridge Regression

- ullet Data $Y_i|X_i,eta\sim N(X_i^Teta,\sigma^2),\;i=1,\ldots,n$
- $egin{aligned} ullet & ext{Prior} \;\; eta_j \sim N(0, au^2), \; j=1,\ldots,p \ & \sigma \sim Uni(0,100) \end{aligned}$
- ullet Hyperprior $au \sim Uni(0,100)$

Bayessche Ridge Regression

JAG Modell # setup jags model jags.m <- jags.model(textConnection(bayesian_ridge),</pre> data=dat.jags, inits=inits, n.chains=3. quiet=TRUE) bayesian ridge <- "model{ for (i in 1:n){ y[i] ~ dnorm (mu[i], 1/sig^2) mu[i] <- inprod(b,x[i,])</pre> for (j in 1:p){ b[j] ~ dnorm (0, 1/tau^2) sig~dunif(0,100) tau~dunif(0,100)

```
A-posteriori Samples

# burn-in

update(jags.m, n.iter=500)

# mcmc samples for inference

posterior.samples <- coda.samples( jags.m,

variable.names = c("b","sig","tau"),

n.iter=10000,thin=10) # thinning=10
```

```
Traceplot

library(ggmcmc)
ggs.mcmc <- ggs(posterior.samples)
ggs_traceplot(ggs.mcmc,family="tau")

ggs_traceplot(ggs.mcmc,family="tau")
```


Bayessche Ridge Regression

Dummy Daten

- Ridge Regression (glmnet, lambda mit CV) und <u>Bayessche</u>
 <u>Ridge Regression</u> fast identisch
- Schrumpfung der Koeffizienten

Smoothing Splines und Ridge Regression

Approximation nichtlinearer Zusammenhänge

Probleme betreffend "p gross, n klein" und deren Lösungsansätze spielen eine wichtige
 Rolle in vielen Disziplinen der Statistik (nicht immer offensichtlich)

- Beispiel
 - Response Y und Kovariable X
 - Nichtlinearer Zusammenhang (sinusoidal)

Was ist ein Spline?

- Spline: stückweise Polynome; "Glattheit" an den Knoten
- Ein Spline kann mittels sogenannter B-Spline Basisfunktionen beschrieben werden
- p=K+d+1 (K: Anz Knoten, d: Grad des Polynoms); typisch Wahl d=3 "kubisch"

$$f(X) = \sum_{m=1}^{p} \beta_m B_m(X)$$

Spline Basis und OLS Regression

- $Y pprox \sum_{m=1}^p eta_m B_m(X)$
- p=K+d+1 (K: Anz Knoten, d: Grad des

Polynoms); d=3 "kubisch"

Koeffizienten werden mittels OLS geschätzt

• Im Beispiel, N=100. Wähle p=10 (1:10 Regel)

Smoothing Splines und Ridge Regression

- Nehme p=n (d.h. Maximale Anz Knotenpunkte)
- ullet Schätze mittels Ridge Regression $\ \hat{eta}_{\lambda} = \mathrm{argmin} \ \|\mathbf{y} \mathbf{B}eta\|^2 + \lambda eta^{\mathbf{T}} \mathbf{\Omega}eta$
- Lambda: Kreuzvalidierung oder Effektive Freiheitsgrade

```
fit.smsp.df10 <- smooth.spline(x, y, df = 10)
fit.smsp.df30 <- smooth.spline(x, y, df = 30)
fit.smsp.cv <- smooth.spline(x, y) # smoothing >
fit.smsp.cv$df ## [1] 6.458247
```

