

Modul: Issues in Decision Tree Learning (DTL)

Alternative Measures for Selecting Attribute

Pembelajaran Mesin (Machine Learning)

Nur ULFA Maulidevi

KK IF - Teknik Informatika- STEI ITB

Issues in DTL

Overfitting training data

Continuous -valued attribute

Handling attributes with differing costs

Handling missing attribute value

Alternative measures for selecting attributes

Attribute with many values (C4.5)

Gain will always select it \rightarrow example $Date=2021_Jan_31$

Date will perfectly classify training examples, but very poor predictor for unseen data

GAIN RATIO

$$GainRatio(S,A) \equiv \frac{Gain(S,A)}{SplitInformation(S,A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

Illustration

Date	Atr2	Atr3	Class
2021_Jan_01	V1		No
2021_Jan_02	V1		No
2021_Jan_03	V2		Yes
2021_Jan_04	V2		Yes
2021_Jan_05	V1		Yes
2021_Jan_06	V1		No

SplitInformation(S,Date) =
$$-\sum_{i=1}^{6} \frac{|S_i|}{|S|} log_2 \frac{|S_i|}{|S|}$$

= $-(\frac{1}{6}log_2 \frac{1}{6} + \frac{1}{6}log_2 \frac{1}{6})$

SplitInformation(S,Atr2) =
$$-\sum_{i=1}^{2} \frac{|S_i|}{|S|} log_2 \frac{|S_i|}{|S|}$$

= $-(\frac{4}{6} log_2 \frac{4}{6} + \frac{2}{6} log_2 \frac{2}{6})$

What if SplitInformation is very small or zero (|Si|≈ |S|)

→ GainRatio undefined or very large

Heuristic: Apply GainRatio test only for Attribute with above average Gain

THANK YOU

