Given a vector feld F, we can integrate
over a line C.
Sometimes C is a closed and simple curve Cristart point and end pt are the same Crimic doesn't cross itself
not closed closed simple simple simple
When C is closed and has an orientation, we denote the vector line integral as $\int f \cdot d\vec{r}$. We say circulation of \vec{r} are C.
by fundamental theorem of conservative vector fields, $\oint_C F \cdot dr^2 = 0$
if C is a closed simple curve and F is conservative.
Ex 1. Compute & F.dr where F= (xy², x) and C is

\$ F.d? = & xy2dx+xdy. Note that F is not conservative.

$$F(t) = \langle \cos(t), \sin(t) \rangle \quad o \neq t \neq 2\pi,$$

$$f'(t) = \langle -\sin(t), \cos(t) \rangle$$

$$F(r(t)) = \langle \cos(t) \sin^{2}(t), \cos(t) \rangle$$

$$\int_{C} F \cdot \partial r^{2} \int_{C} \cos^{2}(t) - \cos(t) \sin^{3}(t) \partial t = b | ch - ... = \pi$$

Note $f_1=xy^2$ and $f_2=x$. Then consider $\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y} = 1-2xy$. and instead of C, consider interior D bounded by $C_1 \times 2y^2 \le 1$. ($\partial D = C$) Jo 1-2×y dA => Switch to polar coords.

$$= \frac{1}{2}0 + \frac{\cos(2\theta)}{8} | \theta = 2\pi - (0 + \frac{1}{8}) = \pi.$$

So we have for D: x2+y241

$$\oint_{\partial O} xy^2 dx + x dy = \iint_{O} -2xy + 1 dA = \Im^{-1}.$$

Green's Theorem Let 0 be a domain whose boundary 20 is a simple closed curve oriented CGW. If F, and Fz are differentiable in an open region containing D, then $\oint F_1 dx + F_2 dy = \iint \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA.$

Given a D, SS(1dA=area(D). Can we choose F, and F2 and apply Green's Thm? Sure.

$$F = \langle 0, x \rangle \Rightarrow \text{area}(D) = \int_{\partial D} x \, dy$$

$$F = \langle -y, 0 \rangle \Rightarrow \text{area}(D) = \int_{\partial D} -y \, dx$$

$$F = \langle -\frac{1}{2}, \frac{x}{3} \rangle \Rightarrow \text{area}(D) = \int_{\partial D} -\frac{1}{2} \, dx + \frac{x}{3} \, dx$$

 $E \times 2$. Compute area of an ellipse given by $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 1$ using a line integral.

Get a weird polar egn if we use X=rcost, y=rsint. Using a change of variables u= x and v= x suggests using a 2nd change of variable. Just use green's theorem.

Coundary is given by F(+)= (acos(+), bsin(+)) for 04+427.

area(D) =
$$\int_{C}^{2\pi} x dy = \int_{0}^{2\pi} F(\vec{r}(t)) \cdot \vec{r}(t) dt$$

= $\int_{0}^{2\pi} \{o, acos(t)\} \cdot \{asin(t), bcos(t)\} dt$

 $\frac{E \times 3}{A}$. Use Green's Theorem to compute $\oint_C F \cdot \partial_r^2$ where $F = \langle x^2, x^2 \rangle$ and C consists of the arcs $Y = X^2$ and Y = X for $O \leq X \leq 1$.

$$\frac{\partial F_2}{\partial y} - \frac{\partial F_1}{\partial y} = 2 \times -0 = 2 \times.$$

$$\int_{C} \overline{x} \cdot d\vec{r} = \int_{X^{2}}^{1} \int_{X^{2}}^{X} dx dy dx$$

$$= \int_{0}^{1} dx y \Big|_{X^{2}}^{X} dx = \int_{0}^{1} dx^{2} - dx^{3} dx = \frac{2}{3}x^{3} - \frac{x^{4}}{3}\Big|_{0}^{1}$$

$$= \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

Observe that a vector field $F = \langle F_1, F_2 \rangle$ may be expressed as $F = \langle F_1, F_2, O \rangle$. Then

$$\operatorname{curl}(F) = \left\langle 0, 0, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right\rangle$$

where the z-component is the term that shows up in Green's theorem.

Denote the z-component by curlz(F). We may reformulate Green's theorem to

$$\oint_{C} F \cdot \partial \vec{r} = \iint_{C} \operatorname{curl}_{2}(F) dA \approx \operatorname{curl}_{2}(F) \iint_{C} dA$$

in words, What is carl 2(F)? circulation!

$$\Rightarrow$$
 curl₂(F) $\approx \frac{1}{\alpha_{\text{ren}(D)}} \oint_{D} F \cdot d\vec{r}$

curl is circulation (work) of around a small circle divided by arou of circle

In other words.

where Cr is a circle of radius r centered at P.

curl(F)(P) is a vector that tells us how much work is needed to go around a loop at P.

- direction of curl (F)(P) is axis of notation at that point.

- length is magnitude of rotation.

Revisit the vector field
$$\tilde{T}=\left\langle \frac{-\gamma}{\chi^2+\gamma^2}, \frac{\chi}{\chi^2+\gamma^2} \right\rangle$$

Observe that
$$\frac{\partial F_z}{\partial x} = \frac{\partial F_1}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
. Is \overline{F} conservative?

on r'(+)= (cos(+), sin(+)) for 04+421, so C is closed and

Simple.

$$\oint_{C} \overline{+} \cdot \partial \vec{r} = \int_{0}^{2\pi} F(\vec{r}(t)) \cdot r'(t) dt = \int_{0}^{2\pi} 1 dt = \boxed{2\pi}$$

But "by Green's Theorem",

$$\iint_{int(C)} \frac{\partial F_z}{\partial x} - \frac{\partial F_i}{\partial y} dA = 0.$$

So whats going on?

- (1) (is a simple closed curve. It's interior contains the origin but F, and Fz are not defined there.
- 2) in the limit, curl (F) (origin) DNE.

How to deal with & F.d??

If F is conservative,

- 1) and C is closed simple loop, then of F.d? = 0
- 2) and C is a curve w/ distinct startpt and endpt, then use FTOCVF.

If F is not conservative,

- 3) and Cis closed simple loop with no holes, then use Green's Thm.
- 4) and C is mosty, compute & F.d? directly