Exploratory Data Analysis – Flight Landing Data

Submitted by: Akash Jain(jain2ar)

1. Analysis Summary:

The analysis is being done on the landing dataset to study what factors and how they impact the landing distance of the commercial flight. The analysis is a quintessential case of regression where distance will be the response variable.

In all there were 850 observations and 8 columns. Some of the columns like speed_air and duration were rejected from the analysis because their correlation with the distance was either too much or there was no correlation as all.

Upon the analysis of the remaining variables, it was found that all the variables are normally distributed except for the distance which happens to follow a lognormal distribution. There are also some outliers in the final dataset which needs to be addressed but we need additional information about those observations for their analysis. The final number of observations in the dataset after cleaning the data is 836.

2. Background about data

The analysis is being done on the datasets which contains the landing information of the flights. The whole data was divided into two files containing information related to the landing of the flights for Boeing and Airbus. The dataset contains the following variables:

- a. Aircraft
- b. Duration(in minutes)
- c. No pasg
- d. Speed ground(in miles per hour)
- e. Speed_air(in miles per hour)
- f. Height(in meters)
- g. Pitch(in degrees)
- h. Distance(in feet)

3. Data exploration and preparation

We start by importing the datasets into SAS by using the following code:

proc import datafile = "/home/jain2ar0/Midterm and Project/FAA1.xls" out=dataset1 dbms=xls replace;

proc import datafile="/home/jain2ar0/Midterm and Project/FAA2.xls" out=dataset2 dbms=xls; run;

3.1 Structure of the datasets

After importing the datasets into sas and copying them into local datasets. We go on to check whether the structure of the datasets is correct or not.

SAS Code:

proc contents data=dataset1 varnum;

```
run;
proc contents data=dataset2 varnum;
run;
proc print data=dataset1(obs=20);
run;
proc print data= dataset2(obs=20);
run;
```

Output:

Dataset1:

The CONTENTS Procedure					
Data Set Name	WORK.DATASET1	Observations	800		
Member Type	DATA	Variables	8		
Engine	V9	Indexes	0		
Created	01/23/2017 21:53:31	Observation Length	72		
Last Modified	01/23/2017 21:53:31	Deleted Observations	0		
Protection		Compressed	NO		
Data Set Type		Sorted	NO		
Label					
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64				
Encoding	utf-8 Unicode (UTF-8)				

	Variables in Creation Order						
#	Variable	Туре	Len	Format	Informat	Label	
1	aircraft	Char	12	\$12.	\$12.	aircraft	
2	duration	Num	8	BEST12.		duration	
3	no_pasg	Num	8	BEST12.		no_pasg	
4	speed_ground	Num	8	BEST12.		speed_ground	
5	speed_air	Num	8	BEST12.		speed_air	
6	height	Num	8	BEST12.		height	
7	pitch	Num	8	BEST12.		pitch	
8	distance	Num	8	BEST12.		distance	

Dataset2:

The CONTENTS Procedure						
Data Set Name	WORK.DATASET2	Observations	200			
Member Type	DATA	Variables	7			
Engine	V9	Indexes	0			
Created	01/23/2017 21:53:31	Observation Length	64			
Last Modified	01/23/2017 21:53:31	Deleted Observations	0			
Protection		Compressed	NO			
Data Set Type		Sorted	NO			
Label						
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64					
Encoding	utf-8 Unicode (UTF-8)					

	Variables in Creation Order							
#	Variable	Туре	Len	Format	Informat	Label		
1	aircraft	Char	12	\$12.	\$12.	aircraft		
2	no_pasg	Num	8	BEST12.		no_pasg		
3	speed_ground	Num	8	BEST12.		speed_ground		
4	speed_air	Num	8	BEST12.		speed_air		
5	height	Num	8	BEST12.		height		
6	pitch	Num	8	BEST12.		pitch		
7	distance	Num	8	BEST12.		distance		

- a. dataset1: The variables are as expected. There are 800 records and all have correct data types.
- b. dataset2: There are only 7 variables instead of 8. Duration is missing. In all there are 200 observations
- c. There is no unique variable or primary key in the datasets all the variables have relevant data except for missing values
- d. Also in dataset2 there are 50 blank rows and hence we must delete them

3.2 Exploration

In section 3.1, we found out that there are 50 blank rows in dataset2, hence we deleted those missing rows using the following code:

SAS code:

```
options missing=";
data dataset2_v2;
set dataset2;
if missing(cats(of _all_)) then delete;
run;
```

To start exploring the data, we will start with merging the datasets together into a new dataset called dataset3. We will use match merge to remove duplicate observations.

SAS code:

```
proc sort data=dataset1;
```

```
by aircraft no_pasg speed_ground speed_air height pitch distance; run; proc sort data=dataset2_v2; by aircraft no_pasg speed_ground speed_air height pitch distance; run; data dataset3; merge dataset1 dataset2_v2; by aircraft no_pasg speed_ground speed_air height pitch distance; run; proc contents data= dataset3 varnum; run;
```

SAS Output:

	The CONTENTS Procedure					
Data Set Name	WORK.DATASET3	Observations	850			
Member Type	DATA	Variables	8			
Engine	V9	Indexes	0			
Created	01/31/2017 02:25:32	Observation Length	72			
Last Modified	01/31/2017 02:25:32	Deleted Observations	0			
Protection		Compressed	NO			
Data Set Type		Sorted	NO			
Label						
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64					
Encoding	utf-8 Unicode (UTF-8)					

Conclusion:

a. There are 850 observations as expected and there are 8 columns in the dataset.

3.2.1 Check for missing values

To check for missing values in the dataset, we use the following SAS code:

SAS code:

```
proc means data=dataset3 nmiss;
run;
/*checking for missing values for aircraft*/
proc format;
value $missing_aircraft ' '='Missing Value' other='Correct Value';
run;
proc freq data=dataset3;
format _CHAR_ $missing_aircraft.;
tables _CHAR_ / missing missprint nocum nopercent;
```

SAS Output:

The MEANS Procedure

Variable	Label	N Miss
duration	duration	50
no_pasg	no_pasg	0
speed_ground	speed_ground	0
speed_air	speed_air	642
height	height	0
pitch	pitch	0
distance	distance	0

The FREQ Procedure

aircraft			
aircraft	Frequency		
Correct Value	850		

Conclusion:

- a. There are missing values in speed_air and distance. Rest all the variables have complete data.
- b. There are 5.8% of values are missing for speed_air and 75.53% values are missing for distance.

3.2.2 Check for correlation

To check for correlation in the dataset, we use the following SAS code:

SAS Code:

proc corr data=dataset3;run;

	Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations								
	duration	no_pasg	speed_ground	speed_air	height	pitch	distance		
duration duration	1.00000 800	-0.03391 0.3382 800	-0.06063 0.0866 800	0.04911 0.4898 200	-0.00678 0.8481 800	-0.03896 0.2710 800	-0.06209 0.0792 800		
no_pasg no_pasg	-0.03391 0.3382 800	1.00000 850	-0.00517 0.8803 850	-0.00589 0.9327 208	0.01098 0.7492 850	-0.01490 0.6643 850	-0.03033 0.3771 850		
speed_ground speed_ground	-0.06063 0.0866 800	-0.00517 0.8803 850	1.00000 850	0.98929 <.0001 208	-0.01607 0.6399 850	-0.03062 0.3727 850	0.86196 <.0001 850		
speed_air speed_air	0.04911 0.4898 200	-0.00589 0.9327 208	0.98929 <.0001 208	1.00000	-0.06588 0.3444 208	0.00639 0.9270 208	0.94728 <.0001 208		
height height	-0.00678 0.8481 800	0.01098 0.7492 850	-0.01607 0.6399 850	-0.06588 0.3444 208	1.00000 850	0.01284 0.7085 850	0.13624 <.0001 850		
pitch pitch	-0.03896 0.2710 800	-0.01490 0.6643 850	-0.03062 0.3727 850	0.00639 0.9270 208	0.01284 0.7085 850	1.00000 850	0.10269 0.0027 850		
distance distance	-0.06209 0.0792 800	-0.03033 0.3771 850	0.86196 <.0001 850	0.94728 <.0001 208	0.13624 <.0001 850	0.10269 0.0027 850	1.00000 850		

- a. Speed_air and speed_ground is highly correlated. The correlation is positive and is also quite significant as suggested by the p-value.
- b. Speed_air and speed_ground is highly correlated with distance. The correlation is positive and is also quite significant as suggested by the p-value.
- c. The correlation between height and distance is significant but it is negligible.
- d. Rest all the variable are not significantly correlated with each other.
- e. Since speed_air and speed_ground is highly correlated, we can delete one of the fields from the dataset. Since 76% of the values from speed _air is missing, we will remove that column. This will also help in resolving multicollinearity.
- f. Duration is not significantly correlated with either distance or any other variable Also, logically speaking, duration of the flight should not affect the landing distance. Hence, we will also remove it from the dataset.

3.2.3 Analysis of variables

We will analyse each variable present in the dataset to look for their distribution, identify outliers and unusual observations using basic statistics measure and plots.

3.2.3.1 Analysis of Pitch

We use the following code to perform analysis on pitch:

SAS Code:

proc univariate data=dataset3 plot;

var pitch; run;

SAS Output:

				IATE Procedure pitch (pitch)			
			Мо	ments			
N		-	850	Sum Weights			850
Mear	n	4.0093	577	Sum Observation	ns	3407.	95404
Std Deviation		0.52882	984	Variance		0.2	79661
Skev	vness	0.00615	409	Kurtosis		-0.106234	
Unco	orrected SS	13901.	139	Corrected SS		237.432186	
Coef	f Variation	13.1898	892	Std Error Mean		0.01813871	
		Basic S	tatis	tical Measures			
	Loc	ation	Variability				
	Mean 4.009358		Sto	Std Deviation		52883	
	Median 4.008288		Vai	Variance		27966	
	Mode		Ra	nge	3.	64230	
			Interquartile Range		0.	73712	

Conclusions:

a. Pitch seems to be almost normally distributed as the mean and median are almost equal. This also suggest that there are some potential outliers

- b. The distribution is slightly positively skewed but the measure is negligible
- c. From the box plot, it is clear that we have some outliers in pitch and the distribution is normal as seen from the histogram and normal quantile plot.

3.2.3.2 Analysis of Height

We use the following code to perform analysis on height:

SAS Code:

proc univariate data=dataset3 plot; var height;

run;

•			IATE Procedure				Quantiles (De	efinition 5)
							Level	Quantile
		Mo	ments				100% Max	59.94596
N		850	Sum Weights			850	100 /0 IVIAX	33.34330
Mean	30.1442	2223	Sum Observation	ons	25622	.589	99%	53.43862
Std Deviation	10.287	7268	Variance	1	05.83	7324	95%	47.38932
Skewness	-0.0956	6784	Kurtosis	0	.1026	2214	90%	43.91020
Uncorrected S	862228	.907	Corrected SS	8	9855.	8878	75% Q3	36.99458
Coeff Variation	34.1283	3538	Std Error Mean	0	.3528	6612	7370 003	30.99430
							50% Median	30.09313
	Basic	Statis	tical Measures				25% Q1	23.30227
Loc	ation		Variability	,			10%	17.21471
Mean	30.14422	Std	Deviation	10.2	8773		5%	13.80759
Median	30.09313	Vari	ance	105.8	3732			
Mode	9.68831	Ran	ge	63.4	9222		1%	3.78892
		Inte	rquartile Range	13.6	9231		0% Min	-3.54625

- a. Height seems to be almost normally distributed as the mean and median are almost equal
- b. The distribution is slightly negatively skewed and slightly peaked but the measure is negligible
- c. There are also 1% potential outliers in height which can be seen from the quantiles as the minimum height for safe landing should be 6 meters.

3.2.3.3 Analysis of Distance

We use the following code to perform analysis on distance:

SAS Code:

proc univariate data=dataset3 plot;

var distance;

run;

The UNIVARIATE Procedure Variable: distance (distance)						
Moments						
N	850	Sum Weights	850			
Mean	1526.02309	Sum Observations	1297119.63			
Std Deviation	928.560082	Variance	862223.825			
Skewness	1.63493883	Kurtosis	3.5837272			
Uncorrected SS	2711462540	Corrected SS	732028027			
Coeff Variation	60.8483636	Std Error Mean	31.849348			

	Basic	Statistical Measures			
Location Variability					
Mean	1526.023	Std Deviation	928.56008		
Median	1258.092	Variance	862224		
Mode		Range	6499		
		Interquartile Range	1054		

- a. There is quite a difference between mean and median and this suggests that there are outliers that too towards the upper limit of the data
- b. The distribution is also positively skewed and highly peaked. The observation for outliers conforms with the box plot
- c. Distance is not normally distributed and to apply regression to this dataset, log transformation must be applied on distance as it follows a lognormal distribution.

3.2.3.4 Analysis of Speed_ground

We use the following code to perform analysis on Speed_ground:

SAS Code:

proc univariate data=dataset3 plot;

var speed_ground;

run;

SAS Output:

The UNIVARIATE Procedure Variable: speed_ground (speed_ground)

Moments					
N	850	Sum Weights	850		
Mean	79.4523229	Sum Observations	67534.4744		
Std Deviation	19.0594903	Variance	363.264171		
Skewness	0.11782542	Kurtosis	-0.1030934		
Uncorrected SS	5674182.15	Corrected SS	308411.281		
Coeff Variation	23.9885879	Std Error Mean	0.65373512		

Basic Statistical Measures					
Loc	ation	Variability			
Mean 79.45232		Std Deviation	19.05949		
Median	79.64280	Variance	363.26417		
Mode		Range	113.48292		
		Interquartile Range	26.21296		

- a. There is slight difference between mean and median and this suggests that there are outliers that too towards the upper limit of the data
- b. The distribution is also slightly positively skewed and peaked and almost follows the normal distribution
- c. The observation for outliers conforms with the box plot. And the normal quantile plot confirms the normal distribution.

47668.8894

0.25701248

3.2.3.5 Analysis of No_pasg

We use the following code to perform analysis on No_pasg:

SAS Code:

proc univariate data=dataset3 plot;

var no_pasg;

run;

SAS Output:

Std Deviation Skewness

Uncorrected SS

Coeff Variation

variable: no_pasg (no_pasg)						
Moments						
850	Sum Weights	850				
60.1035294	Sum Observations	51088				
7.49313698	Variance	56.1471018				
-0.0215023	Kurtosis	0.27570748				

Basic Statistical Measures					
Loc	ation	Variability			
Mean	60.10353	Std Deviation	7.49314		
Median	60.00000	Variance	56.14710		
Mode	61.00000	Range	58.00000		

The UNIVARIATE Procedure

- a. There is slight difference between mean and median and this suggests that there are outliers in the data
- b. The distribution is also slightly negatively skewed and peaked and almost follows the normal distribution

Quantiles (Definition 5)

c. The observation for outliers conform with the box plot. The normal quantile plot confirms the normal distribution with somewhat step like distribution.

3.2.3.6 Analysis of Duration

We use the following code to perform analysis on Duration:

SAS Code:

proc univariate data=dataset3 plot;

The UNIVARIATE Procedure Variable: duration (duration)

var duration;

run;

									Level	Quantile
					ments			000	100% Max	305.6217
N Mean		-	154.006	800	Sum Weights Sum Observation	one	800 123205.231		99%	275.6969
Std Dev	/iation		49.2592		Variance	0113	2426.4		95%	234.1229
Skewne	ess		0.1214	7943	Kurtosis		-0.055	1851	90%	214.4738
Uncorre	ected S	S	209131	62.3	Corrected SS		193875	51.22	75% Q3	188.9179
Coeff V	ariation	1	31.985	1574	Std Error Mean		1.7415	7691		
									50% Median	153.9481
	Loc	otic		Statis	tical Measures				25% Q1	119.4746
М	ean		54.0065	Std	Variability Deviation		9.25923		10%	92.0313
	edian		53.9481		ance		2426		5%	74.4080
М	ode			Ran	ge	290	0.85750		1%	45.5691
				Inte	rquartile Range	69	9.44330		0% Min	14.7642
			D	istril	oution and Prol	babil	lity Plot	for d	luration	
240 220 200 180 180 140 120 100 80 60 40			25		50	75		100	125	*
					Count	t				
2000 1000	_		مره	o consti						
0	-4	_			-2		0		2	4
	7					orma	l Quantile	es	-	7

- a) There is slight difference between mean and median and this suggests that there are outliers in the data
- b) The distribution is also slightly positively skewed and peaked and almost follows the normal distribution
- c) Per the condition given in the dataset, the duration should be atleast 40 mins and hence after looking at quantiles, we can say that atleast 1% of the observations are outliers
- d) The normal quantile plot confirms the normal distribution.

3.2.3.7 Analysis of Speed_air

We use the following code to perform analysis on Speed_air:

SAS Code:

proc univariate data=dataset3 plot; var speed_air;

run;

The UNIVARIATE Procedure Variable: speed_air (speed_air)					
Moments					
N	208	Sum Weights	208		
Mean	103.797724	Sum Observations	21589.9265		
Std Deviation	10.259037	Variance	105.24784		
Skewness	1.0564046	Kurtosis	0.90174387		
Uncorrected SS	2262771.53	Corrected SS	21786.3028		
Coeff Variation	9.88368204	Std Error Mean	0.71133623		

Basic Statistical Measures					
Location Variability					
Mean 103.7977		Std Deviation 10.259			
Median	101.1473	Variance	105.24784		
Mode		Range	51.72208		
		Interquartile Range	13.19078		

- a) There is substantial difference between mean and median and this suggests that there are extreme outliers in the data
- b) The distribution is highly skewed which can be confirmed by the value of skewness and the histogram.

3.3 Data Cleaning

As per the conclusion from section 3.2.2, we remove the columns, speed_air and duration from the dataset. To remove these columns, we use the following code:

SAS Code:

```
data dataset3_v2;
set dataset3;
drop speed_air duration;
run;
```

SAS Output: dataset3_v2 created.

The remaining columns in the dataset are, Aircraft, No_pasg, Speed_ground, Height, Pitch and distance. According to the dataset description, there are certain constraint for these variables like:

- a. Speed_ground less than 30MPH or greater than 140MPH, then the landing would be considered as abnormal
- b. The landing aircraft is required to be at least 6 meters high at the threshold of the runway
- c. The length of the airport runway is typically less than 6000 feet.

We must make sure that out dataset conforms to these conditions and hence we will use the following code to clean the garbage values in the data.

SAS Code:

```
data dataset3_v3;
set dataset3_v2;
if speed_ground<30 or speed_ground>140 then delete;
if height < 6 then delete;
if distance > 6000 then delete;
run;
```

SAS Output: dataset3_v3 created.

Checking the variables again using the following SAS code:

```
proc univariate data=dataset3_v3 plot;run;
```

Box Plots to analyse outliers:

Conclusion:

- a. No of passengers has some outliers.
- b. Speed ground has 1 outliers
- c. Height has 3 outliers
- d. Pitch has some outliers
- e. Distance has some outliers.

Questions:

- There are certain observations in Distance where the values are 41 feet or less than 200 feet. Are these some special cases like accident? Additional information is needed for these cases
- 2) There are certain observations in no_of passengers where the values are 30-38 and some values between 82-86. These observations can't be considered as outliers as there is nothing to be bothered about. Are these any special cases?