Logica

7: Conseguenza ed equivalenza logica in logica classica proposizionale

Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

15/11/2019

Outline

Conseguenza ed equivalenza logica in logica classica proposizionale

Conseguenza logica per la logica proposizionale

Wikipedia: "Logical consequence is the relation that holds between a set of sentences (or propositions) and a sentence (proposition) when the former "entails" the latter.

Lezione precedente:

F è conseguenza logica di Γ ($\Gamma \Vdash F$) quando, al variare dell'interpretazione delle formule nei vari mondi possibili, è sempre vero che: se tutte le formule in Γ sono vere (nel mondo sotto esame), anche F è necessariamente vera.

Definizione: $\Gamma \Vdash F$ (conseguenza logica) quando per ogni mondo ν si ha che, se $\llbracket G \rrbracket^{\nu} = 1$ per ogni $G \in \Gamma$, allora $\llbracket F \rrbracket^{\nu} = 1$

Definizione: $F \equiv G$ (equivalenza logica) quando $F \Vdash G \in G \Vdash F$ Caratterizzazione alternativa: $F \equiv G$ quando per ogni mondo V, $\llbracket F \rrbracket^{V} = \llbracket G \rrbracket^{V}$.

Tautologie

Definizione: F è tautologica (o è una tautologia) quando $\vdash F$ (F è conseguenza logica dell'insieme vuoto di formule)

Teorema (o definizione alternativa):

 $\Vdash F$ sse in ogni mondo v si ha $\llbracket F \rrbracket^v = 1$.

F è una tautologia quando rappresenta una verità assoluta (indipendente dal mondo in esame)

F è una tautologia se la sua tabella di verità presenta solo degli 1. Esempio: $A \Rightarrow A$

<i>v</i> (<i>A</i>)	$\llbracket A \Rightarrow A \rrbracket^{V}$
0	1
1	1

Soddisfacibilità e insoddisfacibilità

Nota: affinchè $\not\vdash F$ (F non è una tautologia) è sufficiente un solo mondo v tale per cui v(F) = 0.

Definizione:

F è soddisfatta in un mondo v ($v \Vdash F$) sse v(F) = 1

Definizione:

F è soddisfacibile quando esiste un mondo v tale che $v \Vdash F$.

Teorema:

F è tautologica quando per ogni mondo v si ha $v \Vdash F$.

Definizione:

F è insoddisfacibile quando in nessun mondo v si ha $v \Vdash F$.

Soddisfacibilità e insoddisfacibilità

Nota: F è insoddisfacibile quando rappresenta una falsità assoluta (indipendente dal mondo in esame)

A livello di tabelle di verità per F:

- \bigcap F è tautologica se la tabella ha soli uno (es. $A \Rightarrow A$
- \triangleright F è insoddisfacibile se la tabella ha soli zero (es. $A \land \neg A$)
- \bigcirc F è soddisfacibile se la tabella ha almeno un uno (es. $\neg A$)
- \P è non tautologica se la tabella ha almeno uno zero (es. $\neg A$)

Una formula F può essere classificata come segue:

- una tautologia (e in tal caso è anche soddisfacibile) (soli uno nella tabella)
- 2 soddisfacibile ma non tautologica (sia uno che zero)
- insoddisfacibile (soli zero nella tabella)

Equivalenza logica e tabelle di verità

 $F \in G$ sono logicamente equivalenti $F \equiv G$ quando le loro tabelle di verità sono identiche

Esempio: $A \Rightarrow B \equiv \neg A \lor B$

<i>v</i> (<i>A</i>)	<i>v</i> (<i>B</i>)	$\llbracket A\Rightarrow B rbracket^v$	$\llbracket \neg A \lor B \rrbracket^v$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

Conseguenza logica e tabelle di verità

Anche $\Gamma \Vdash F$ è rappresentabile con tabelle di verità, ma solo se Γ è un insieme finito (e quindi anche $Var(\Gamma)$ lo è):

- Sia n = |Var(F) ∪ ∪_{G∈Γ} Var(G)|.
 Si costruisce una tabella di verità con 2ⁿ righe (mondi possibili).
- Γ ⊩ F quando F vale 1 in tutte le righe nelle quali tutte le formule in Γ valgono 1
- In altre parole:
 - si considerano solamente le righe in cui tutte le formule di Γ valgono 1
 - ② $\Gamma \Vdash F$ se F è una tautologia ristretta a tali righe

Nota: quando Γ è vuoto ci si riduce a considerare tutte le righe

Conseguenza logica e tabelle di verità

Esempio: $A, A \Rightarrow B \Vdash A \lor B$

<i>v</i> (<i>A</i>)	<i>v</i> (<i>B</i>)	[A] ^V	$\llbracket A\Rightarrow B rbracket^v$	$[\![A \lor B]\!]^{V}$
0	0	0		
0	1	0		
1	0	1	0	
1	1	1	1	1

 $F \equiv G$ quando in ogni mondo F e G hanno sempre la stessa denotazione

ovvero $F \equiv G$ quando sono due connotazioni diverse per la stessa denotazione

Siamo quasi pronti per enunciare formalmente il teorema di invarianza per sostituzione. Dalle lezioni precedenti:

Siano x e y due connotazioni per la stessa denotazione. Il principio di invarianza per sostituzione vale se per ogni contesto $P[\cdot]$ le due connotazioni P[x] e P[y] denotano la stessa cosa.

Ci resta da definire la nozione di sostituzione di una formula in un contesto.

Sostituzione

Un contesto è una formula che contiene uno o più buchi.

In logica proposizionale possiamo pensare a un buco come a una variabile proposizionale (diciamo la A).

Riempire un buco significa rimpiazzare la variabile con una formula.

Definizione (per ricorsione strutturale su F) di sostituzione una formula G al posto di A in F (scritto F[G/A]):

$$\begin{array}{lll} \bot[G/A] = \bot & (\neg F)[G/A] & = \neg F[G/A] \\ \top[G/A] = \top & (F_1 \land F_2)[G/A] & = F_1[G/A] \land F_2[G/A] \\ A[G/A] = G & (F_1 \lor F_2)[G/A] & = F_1[G/A] \lor F_2[G/A] \\ B[G/A] = B & (F_1 \Rightarrow F_2)[G/A] = F_1[G/A] \Rightarrow F_2[G/A] \end{array}$$

Teorema di invarianza per sostituzione: per tutte le formule F, G_1, G_2 e per ogni A, se $G_1 \equiv G_2$ allora $F[G_1/A] \equiv F[G_2/A]$

Dimostrazione: per induzione strutturale su *F*.

Caso
$$\perp$$
: $\perp [G_1/A] = \perp \equiv \perp = \perp [G_2/A]$

Caso
$$\top$$
: $\top [G_1/A] = \top \equiv \top = \top [G_2/A]$

Caso A:
$$A[G_1/A] = G_1 \equiv G_2 = A[G_2/A]$$

Caso *B*:
$$B[G_1/A] = B \equiv B = B[G_2/A]$$

Caso $F_1 \wedge F_2$:

Per ipotesi induttiva sappiamo

$$F_1[G_1/A] \equiv F_1[G_2/A]$$
 e $F_2[G_1/A] \equiv F_2[G_2/A]$

ovvero che per ogni mondo v si ha

$$\llbracket F_1[G_1/A] \rrbracket^v = \llbracket F_1[G_2/A] \rrbracket^v \quad \text{e} \quad \llbracket F_2[G_1/A] \rrbracket^v = \llbracket F_2[G_2/A] \rrbracket^v$$

Dobbiamo dimostrare

$$(F_1 \wedge F_2)[G_1/A] \equiv (F_1 \wedge F_2)[G_2/A]$$

o, equivalentemente, che per ogni v si ha

$$[[(F_1 \wedge F_2)[G_1/A]]]^{v} = [[(F_1 \wedge F_2)[G_2/A]]]^{v}$$

Sia *v* un mondo generico ma fissato. Le ipotesi induttive specializzate a *v* dicono

$$\llbracket F_1[G_1/A] \rrbracket^v = \llbracket F_1[G_2/A] \rrbracket^v \quad \text{e} \quad \llbracket F_2[G_1/A] \rrbracket^v = \llbracket F_2[G_2/A] \rrbracket^v$$

Si ha

Qed (caso ∧)

I casi \lor e \Rightarrow sono analoghi.

Conclusioni

Per la logica proposizionale abbiamo:

- dato formalmente una sintassi
- 2 data formalmente la semantica classica
- definite formalmente le nozioni di conseguenza logica, equivalenza logica, soddisfacibilità, tautologicità
- dimostrato il principio di invarianza per sostituzione

Nelle prossime lezioni studieremo in dettaglio la semantica dei nostri connettivi e le proprietà della conseguenza logica.