

Introdução a Computação - EC

Apresentação do Projeto

Tutor: João Gabriel Machado da Silva

Email: jgms@cin.ufpe.br

Lattes: http://lattes.cnpq.br/0636493916249721

Facebook: facebook.com/BrielMachado

Site monitoria:

https://sites.google.com/a/cin.ufpe.br/if668-ec/

- Zelar pelo laboratório;
 - Não riscar bancadas;
 - Não cortar bancadas ou cadeiras;
- Zelar pelos equipamentos;
 - Observar tensão suportada pelo equipamento;
 - Observar corrente máxima suportada;
 - Não quebrar contatos;
 - Utilizar os equipamentos com cuidado e paciência;
- Zelar pelo Kit Arduino;
 - Observar a quantidade e tipo dos componentes em cada espaço da caixa;
 - Armazenar e usar os componentes com cuidado e paciência.

- Projeto de IC
 - O que será!
 - Componentes Utilizados
 - Pontuação

- Corrida de carrinho pelo melhor tempo
 - Trilha
 - Obstáculos
 - Circuito montado
- Competição
 - Terminar todo o Circuito
 - Desviar do Obstáculo
 - Tempo

Projeto de IC – O que será?

- Chassi e Motores DC
- Sinal Digital e Analógico
- PWM
- Ponte-H Driver

Centro de Informática

Projeto de IC – Componentes Utilizados

- Sinal Digital e Analógico
- PWM
- Ponte-H Driver

Centro de Informática

Projeto de IC – Componentes Utilizados

- PWM
- Ponte-H Driver

Projeto de IC – Componentes Utilizados

Ponte-H - Driver Alimentação externa 12 v Motor A Manter Jumper (intel) Galileo Motor B

Projeto de IC – Componentes Utilizados

Como programar a velocidade dos Motores?

Nome da Função	Exemplo	Descrição	Pinos
digitalWrite	digitalWrite(pino,High)	Função para escrita de valores alto e baixo (HIGH e LOW)	Todos os pinos digitais
analogWrite	analogWrite(pin, valor)	Função para escrita de valores de 0 a 255.	Somente os pinos PWM

- Sensor ultrassônico
- Utilizando o Sensor Ultrassônico
 - Baixar biblioteca sensor ultrassônico;
 - Deszipar a pasta baixada;
 - Colocar os arquivos (Ultrasonic.cpp e Ultrasonic.h) na mesma pasta do seu projeto;
 - Adicionar seguinte include no projeto
 - #include "Ultrasonic.h"

Projeto de IC – Componentes Utilizados

- O projeto pode ser dividido em pequenos experimentos:
 - Fazer o carrinho andar em linha reta;
 - Fazer o carrinho parar antes de obstáculos utilizando o sensor ultrassônico;
 - Fazer o carrinho desviar de obstáculos;
 - Fazer o carrinho seguir uma trilha preta com o auxílio do sensor óptico;
- Reunir os experimentos anteriores para chegar ao objetivo final!

Projeto de IC

- Projeto diferente?!
- Com componentes adicionais
 - Adicionar o LCD
 - LED como faróis
 - Buzzer
 - Fazer carcaça do carrinho de papelão
- Pode liberar a criatividade!!

Projeto de IC

- Pinos:
 - Ponte-H Driver
 - Pino 6 Motor E1
 - Pino 7 Motor E2
 - Pino 9 Motor EV
 - Pino 3 Motor DV
 - Pino 4 Motor D2
 - Pino 5 Moto D1
 - Sensor Ultrasonico
 - Pino 10 Dist Echo
 - Pino 8 Dist Trig
 - Sensor Óptico
 - Pino 2 Out Óptico

Projeto de IC

- Experimentos 30% = 3 pontos
- Presença e Participação 30% = 3 pontos
- Projeto 40% = 4 pontos
- Experimentos
 - O Desafios $(\frac{2}{3})$ = 2 pontos
 - 4 Desafios (¼) = 0,5 pontos
 - Experimento $(\frac{1}{3})$ = 1 ponto
 - 6 Experimentos (%) = 0,166 pontos
- Presença e Participação
 - Presença $(\frac{2}{3})$ = 2 pontos
 - Participação (⅓) = 1 ponto

Projeto de IC – Pontuação

- Projeto (40%) = 4 pontos => 10 * 0,4
 - Programação da Galileo (80%) = 8 pontos
 - Colocação na Competição (20%) = 2 pontos
 - Adicionais
 - Pontuação extra!
- 1^a = 100% * 2 pontos
- $2^{\underline{a}} = 87,5\% * 2 \text{ pontos}$
- 3^a = 75% * 2 pontos
- 4ª = 62,5% * 2 pontos
- $5^{2} = 50\%$ * 2 pontos
- 6^a = 37,5% * 2 pontos
- 7^a = 25% * 2 pontos
- 8^a = 12,5% * 2 pontos

