PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2001-229545

(43) Date of publication of application: 24.08.2001

(51) Int. CI.

G06K 7/00

7/004 G11B

G11B 7/007 G11B 19/04

G11B 19/12

G11B 20/10

G11B 20/12

(21) Application number: 2001-006112 (71) Applicant: VICTOR CO OF JAPAN LTD

(22) Date of filing:

20. 12. 1996 (72) Inventor: UEKI YASUHIRO

(54) OPTICAL DISK REPRODUCING DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an optical disk reproducing device for reproducing the optical disk having the additive function such as the protection of copyright or the permission of selective reproduction of the recorded information by using the so-called

SOLUTION: The control information at the time of reproducing the main information is preliminarily recorded as the bar code on the BCA 9 for the auxiliary information recording part provided on the innermost peripheral part 1S of the optical disk, and the main information is reproduced based on this reproduced information. On plural tracks 8A-8E arranged on the BCA, the address recording areas 76 for the amount of at least one sector are remained, then the exact tracking servo control is performed by reproducing the address at the time of reproduction.

LEGAL STATUS

[Date of request for examination]

15. 01. 2001

[Date of sending the examiner's

decision of rejection]

[Kind of final disposal of application withdrawal

other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for

24.07.2003

application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-229545 (P2001-229545A)

(43)公開日 平成13年8月24日(2001.8.24)

(21)出願番号	•	特膜2001-6112(P200)		(71)	出蹟人			#: ₹△≱	
			審査請求	有	下槽	項の数2	OL	(全 12 頁)	最終質に続く
•	19/04	501			`.	19/04		501H	
	7/007					7/007			
G11B	7/004			G 1	1 B	7/004		С	•
G06K	7/00			G 0	6 K	7/00		· U	
G11B	7/005			G 1	1 B	7/005		. Z	•
(51) Int.Cl.7		識別記号		FΙ				デ ー	-73}*(参考)

(62)分割の表示

特願平8-355307の分割

(22)出願日

平成8年12月20日(1996.12.20)

神奈川県横浜市神奈川区守屋町3丁目12番

(72) 発明者 植木 泰弘

神奈川県横浜市神奈川区守屋町3丁目12番

地 日本ピクター株式会社内

(54) 【発明の名称】 光ディスク再生装置

(57)【要約】

【課題】 いわゆるBCAを用いて著作権の保護や、記 録情報の選択的再生許可などの付加的機能を有する光デ ィスクを再生する光ディスク再生装置を提供する。

【解決手段】 光ディスクの最内周部15に設けられた 補助情報記録部分としてのBCA9に主情報を再生する 際の制御情報をバーコードとしてあらかじめ記録してお き、その再生情報に基づいて主情報を再生する。BCA の設けられる複数のトラック8A~8Eには、少なくと も1セクタ分のアドレス記録領域76が残され、再生時 にアドレスを再生して、正確なトラッキングサーボ制御 を実行する。

【特許請求の範囲】

【請求項1】 主情報が同心円又はスパイラル状のトラ ックに沿って光記録され、かつ補助情報が前記トラック の最内周付近の複数のトラックの複数のセクタに分割さ れた光記録部分に重ねてバーコードとして記録され、か つ前記パーコードが光ディスクの回転中心から見て36 0度にわたる環状部分内に配列され、かつ前記環状部分 内の前記複数のセクタのうち少なくとも1つのセクタを 除いた部分に配列されている前記光ディスクに、光ビー ムを照射して、その反射光又は透過光を検出する光ディ 10 スク再生装置であって、

フォーカス方向に光ビームを移動する手段と、

前記移動中に光ビームにより得られた信号から前記光デ ィスクの種類を判別する手段と、

前記判別結果から前記光ディスクの種類に応じたパラメ ータを設定する手段と、

前記バーコードの有無を判定する手段と、

前記バーコードが有る場合には、光ビームを前記バーコ ードの記録領域に移動する手段と、

前記バーコードを読み出す手段と、

前記バーコードとして記録されている前記補助情報に応 じて、前記主情報の再生を実行する手段とを有する特徴 とする光ディスク再生装置。

【請求項2】 主情報が同心円又はスパイラル状のトラ ックに沿って光記録され、かつ補助情報が前記トラック の最内周付近の複数のトラックの複数のセクタに分割さ れた光記録部分に重ねてバーコードとして記録され、か つ前記パーコードが光ディスクの回転中心から見て36 0度にわたる環状部分内に配列され、かつ前記環状部分 内の前記複数のセクタのうち少なくとも1つのセクタを 30 除いた部分に配列されている前記光ディスクに、光ビー ムを照射して、その反射光又は透過光を検出する光ディ スク再生装置であって、

前記セクタからアドレスを読み出す手段と、

前記アドレスを用いて前記補助情報を読み出す手段と、 前記補助情報に応じて、前記主情報のうち再生許可され る情報を選択的に再生する手段とを有することを特徴と する光ディスク再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特に主情報の他に 補助情報がバーコードとして記録されている光ディスク を再生する光ディスク再生装置に関する。

[0002]

【従来の技術】従来のCD、CD-ROMなどでは特に 記録データの読み出しや再記録について、法律上の制限 は別として、物理的制限が設けられてないものが多く、 一旦光記録媒体を入手した後は、全データを繰り返し再 生したり他の記録媒体に再記録したりすることが可能で 最内周部に特殊なウォッブリングビットを形成し、特殊 コードを専用の再生機でのみ再生できるようにして、著 作権保護を図っている。

[0003]

【発明が解決しようとする課題】ところで、光記録媒体 の記録密度が高くなり、またデータ圧縮技術が進歩する ことにより、極めて大量のデータが記録できるようにな り、例えばDVD(デジタルビデオディスク:デジタル バーサタイルディスク) などでは、4.7 G B程度のデ ータを1枚のディスクに記録することが可能である。ま た、いわゆるマルチメディア化により、音声、静止画、 動画、ゲームプログラム、コンピュータプログラムな ど、さまざまな情報が光記録媒体に記録されて提供され るようになっている。

【0004】しかしながら、光記録媒体の記録データの 著作権保護や、記録データの再生や再記録の選択的許容 を可能とするための方策がこれまで十分にとられていな かった。ゲーム用ディスクのように専用プレーヤでの再 生に限定するという手法では、光記録媒体の利用の面か 20 ら不便であり、DVDやDVD-ROMなどには適する とはいえない。したがって、光記録媒体の記録データが 無制限に再生、再記録されてしまうことから、保護価値 のある情報やデータの光記録媒体への記録が躊躇される とともある。

【0005】したがって、本発明は光ディスクに光情報 として記録された主情報の他に、光ディスクの内周部分 に補助情報を記録するために設けたバーコードによる記 録部分として知られている、いわゆるBCA(バースト カッティングエリア)を用いて著作権の保護や、記録情 報の選択的再生許可などの付加的機能を有する光ディス クを再生する光ディスク再生装置を提供することを目的 とする。

[0006]

【課題を解決するための手段】上記目的を達成するた め、本発明は下記(1), (2)の構成を有する光ディ スク再生装置を提供する。

(1) 主情報が同心円又はスパイラル状のトラックに 沿って光記録され、かつ補助情報が前記トラックの最内 周付近の複数のトラックの複数のセクタに分割された光 記録部分に重ねてバーコードとして記録され、かつ前記 バーコードが光ディスクの回転中心から見て360度に わたる環状部分内に配列され、かつ前記環状部分内の前 記複数のセクタのうち少なくとも1つのセクタを除いた 部分に配列されている前記光ディスクに、光ビームを照 射して、その反射光又は透過光を検出する光ディスク再 生装置であって、フォーカス方向に光ビームを移動する 手段と、前記移動中に光ビームにより得られた信号から 前記光ディスクの種類を判別する手段と、前記判別結果 から前記光ディスクの種類に応じたパラメータを設定す ある。また、ゲーム用の光ディスクでは、光記録部分の 50 る手段と、前記バーコードの有無を判定する手段と、前 記パーコードが有る場合には、光ビームを前記パーコードの記録領域に移動する手段と、前記パーコードを読み出す手段と、前記パーコードとして記録されている前記補助情報に応じて、前記主情報の再生を実行する手段とを有する特徴とする光ディスク再生装置。

(2) 主情報が同心円又はスパイラル状のトラックに沿って光記録され、かつ補助情報が前記トラックの最内周付近の複数のトラックの複数のセクタに分割された光記録部分に重ねてパーコードとして記録され、かつ前記パーコードが光ディスクの回転中心から見て360度にわたる環状部分内に配列され、かつ前記環状部分内の前記複数のセクタのうち少なくとも1つのセクタを除いた部分に配列されている前記光ディスクに、光ビームを照射して、その反射光又は透過光を検出する光ディスク再生装置であって、前記セクタからアドレスを読み出す手段と、前記補助情報に応じて、前記主情報のうち再生許可される情報を選択的に再生する手段とを有するととを特徴とする光ディスク再生装置。

[0007]

【発明の実施の形態】以下、図面を参照して本発明の実 施の形態について好ましい実施例とともに説明する。図 1は光記録媒体の模式的平面図である。また、図2は光 記録媒体に設けられたBCA9の先頭部分と末尾部分を 示す図である。BCA9は光記録媒体としての光ディス ク1の光記録部分1Rの最内周部1Sに設けられてい る。図中8A、8B、8C、8D、8Eは光ディスク1 の最内周部 1 Sに設けられたスパイラル状あるいは同心 円状の5本のトラックを示している。 との5本のトラッ クに垂直に、すなわち光ディスク1の半径方向に、かつ これらの5本のトラックにクロスするようにBCA9の 各バーが設けられている。実際には5本以上、例えば数 十本のトラックにわたってBCA9を設けることができ る。なお、BCA9とは、光ディスク1が製造される 際、スタンパにて光記録部分1Rのトラックが形成され た後に、トラックの最内周部18の複数のトラックにま たがって、YAGレーザなどの髙出力レーザによりディ スクの反射膜を選択的に焼切って除去し、光ディスクの 円周方向にバーコードを形成したものであり、バースト カッティングエリア又はPCA(ポストカッティングエ リア)ともいわれる。BCA9は大量にスタンピングに より製造したディスクの1枚1枚について、それぞれ固 有の情報を記録することができる点で通常の光記録のト ラックとは異なる。データ量としては、1周で約180 バイトである。

【0008】図2において、黒く示してある部分72-1、72-2、72-3・・は光ディスクの反射膜が除去された部分であり、これらの間の部分74-1、74-2、74-3・・は反射膜が除去されていない部分である。この反射膜が除去された部分72-1、72

-2、72-3・・・を黒バー部分といい、反射膜が除去されていない部分74-1、74-2、74-3・・・を白バーという。トラックの円周方向(図2中、矢印で示す左右方向)に沿って隣り合う黒バー同士のピッチは1T又は2Tあるいは3Tである。1Tは1セクタの円周方向長さであり、光ディスク1の光記録部分1Rの最内周部1S付近の1周についてみると、黒バーが設けられていない部分75が1セクタ以上の長さにわたって存在する。これは、バーコードの設けられる複数のトラックの各々において、少なくとも1つのセクタ76が完全な形で残され、そこからアドレスや同期信号が再生できるようにするためである。なお、黒バーの設けられていない領域は最小限1セクタであるが、アドレスの正確なデコードのためには、1ECCブロックを構成する16セクタ分存在することが望ましい。

[0009] 図3はBCAが2つの領域にそれぞれ設けられている光記録媒体の1つの態様を示している。このうち1つのBCAは光ディスク1の製造時にパーコードが設けられ、他の1つはユーザが光ディスク1を購入後パーコードを記録するためのものである。すなわち、第1のパーコード77が光ディスク1の回転中心から見て360度にわたる第1環状部分78内に配列され、かつ第1環状部分78内の複数のセクタのうち、少なくとも1つのセクタ76Aを除いた部分に配列され、さらに第1環状部分78の半径方向の内側又は外側に、新たに第2のパーコード79を追記するための少なくとも1つのセクタ76Bを有する第2環状部分80がある。

【0010】との第1環状部分78内のBCAは光ディスク1の製造時に設けられ、プリマスタード(プリフォーマット)エリアである。一方、第2環状部分80のパーコードが記録されるエリアは追記エリアである。図3では第2環状部分80の追記エリアに既にパーコード79が記録された状態が示されているが、製造時にはパーコード79は記録されていないので、第2環状部分80の黒バーはこの時点ではない。図3に矢印で示す光ディスクの信号再生方向に見たとき、バーコード77が第1環状部分78の少なくとも1つのセクタ76Aの直後から配列されていることは好ましい態様である。

【0011】図4はブリマスタードエリアと追記エリア 40 としての2つのBCAが2つの領域にそれぞれ設けられている光記録媒体の他の態様を示している。すなわち、第1のパーコード81が光ディスクの回転中心から見て360度にわたる環状部分の限られた部分82に配列され、かつこの第1のパーコード81が環状部分内の複数のセクタのうち、少なくとも2つのセクタ76C、76Dを除いた部分に配列され、かつ円周方向に見たとき2つのセクタ76C、76Dの間に配列されていて、さらに環状部分中、第1のパーコード81と少なくとも2つのセクタ76C、76Dを除いた部分に新たに第2のパーコード83を追記するための追記部分84を有してい

る。なお、図4に矢印で示す光ディスクの信号再生方向 に見たとき、パーコード81が2つのセクタ760、7 6 Dのうちの1つの直後から配列されていることは好ま しい態様である。

【0012】図2に示すBCAあるいは図3又は図4に 示す2つのBCAには、種々の情報を記録することがで きる。すなわち、バーコードとして、ユーザ指定情報、 レンタル情報、地域指定情報、言語指定情報、用途指定 情報、使用可能期間指定情報、使用可能回数指定情報、 使用可能プレーヤ指定情報、分解能指定情報、レイヤー 10 指定情報のうち1つ以上を記録することができる。 さら に、これらのBCAにはバーコードとして、著作権者情 報、著作権番号情報、製造日情報、製造者情報、販売日 情報、販売店情報、販売者情報、製品使用者情報、使用 番号情報、使用セット番号情報のうち1つ以上を記録す るととができる。

【0013】図2のように記録済のBCA、すなわちプ リマスタードエリアのみが設けられ、追記エリアがない 場合は製造時に記録された上記情報によって、光ディス ードエリアに加えて追記エリアのある光記録媒体の場合 は、次のように用いることができる。いま、光ディスク がDVDであるとして、コンピュータ用ゲームソフトが 100個あらかじめ記録されているものとする。このう ち、10個のソフトだけは、このDVDを購入した者が 無条件で使用できるものとし、残りの90個のソフトは 所定の料金を支払った後にのみ使用できるものとする。 この料金の支払を条件に使用を許可するためには、DV D購入者はDV Dを購入後、所定のバーコード書き込み 装置のある、例えばコンピニエンスストアなどの店頭に 30 出向き、使用したいソフトに対して料金を支払い、その 後追記エリアに所定のバーコードを記録してもらう。

【0014】この追記エリアへの所定のバーコードの記 録により、料金を支払ったソフトに対する使用権が与え られ、ユーザがそのDVDを自分のDVDプレーヤにて 再生するとき、料金支払い前は楽しむことができなかっ たソフトを楽しむことができるようになる。すなわち、 料金を支払った取り扱い店で追記エリアに記録したバー コードを光ディスク再生装置が読み取り、再生の許可を 与えるのである。上記説明は、単に料金の支払いにより ソフトの使用が許可される場合を説明したが、使用期 限、使用回数、言語指定など前述の記録情報の内容に応 じて、再生時の態様に種々の制限を加えたり、選択を実 行することができる。

【0015】次に、前記した光記録媒体を再生する本発 明の光ディスク再生装置について説明する。 図5は本発 明の光ディスク再生装置の1実施例を示すブロック図で ある。この光ディスク再生装置は再生専用型のCDとD VDから情報を再生するものであり、DVDとしては再 生専用の2層型のもの、ライトワンス型のもの、記録再 50 サ部分Fの出力信号を減算するものである。加算器14

生型のものが含まれる。図6は図5中の光ピックアップ (PU) とその出力信号に応答する演算装置(図5のプ リアンプの一部)を示す回路図であり、ディスクの種類 の判別結果に応じて2種類のトラッキングエラー信号の 一方を選択する回路例を示している。

【0016】図5において、ディスク1がスピンドル (SP) モータ3により通常再生時にはCLV (線速度 一定)で回転されるようモータドライバ/トラッキング ・フォーカス制御回路4により制御が行われる。光ピッ クアップ (光ヘッド) 2によりディスク1より読み出さ れた信号はブリアンプ5に供給され、その出力信号はデ ジタルサーボ制御回路6に与えられる。システムコント ローラ7はブリアンプ部5及びデジタルサーボ制御回路 6と信号の授受を行い、光ディスク再生装置全体を制御 する。デジタルサーボ制御回路(DSV)6の出力信号 はモータドライバ/トラッキング・フォーカス制御回路 4に供給され、スピンドルモータ3の回転制御と光ピッ クアップのトラッキングサーボ制御及びフォーカスサー ボ制御を行う。なお、DSV6はサーボ制御回路の他に ク再生装置における制御が行われる。一方、プリマスタ 20 可変速コントローラ/メモリコントローラ/EFM復調 回路/エラー訂正回路などを含み、図示省略のメモリを 利用して、再生信号を送出する機能をも有する。光ピッ クアップ2は図示省略のトラバースモータにてディスク 1の半径方向に移動可能であり、また図示省略のフォー カスサーボ制御機構及びトラッキングサーボ制御機構に より対物レンズがフォーカス方向、すなわち光路に沿っ た方向及びディスクの半径方向に移動可能である。

> 【0017】光ピックアップ2はまた、レーザビームを ディスク1 に照射するレーザダイオードを有し、その反 射光に基づいてディスク1に記録された光学的情報を再 生した信号を出力したり、図6に示すように非点収差法 によるフォーカスエラー信号FE検出用であり、かつ位 相差法によるトラッキングエラー信号検出用でもある信 号A~Dと3ビーム法の2種類のトラッキングエラー信 号検出用信号E、Fを出力する。これらの信号はプリア ンプ5に供給されて必要な演算が行われる。

> 【0018】図6は4分割光センサ部分A、B、C、D と3ビーム法に用いる光センサ部分E、Fとを有する光 ピックアップ1を模式的に示し、かつそれらの光センサ 部分からの出力信号に応答する演算装置を示している。 なお、符号A~Fはこれらの光センサ部分とその出力信 号の双方を示している。加算器10は対角線上にある光 センサ部分A、Cの出力信号を互いに加算して出力し、 加算器12は他の対角線上にある光センサ部分B、Dの 出力信号を互いに加算して出力するものである。加算器 14は加算器10、12の出力信号同士を加算するもの であり、減算器16、20は共に加算器10の出力信号 から加算器12の出力信号を減算するものである。ま た、減算器18は光センサ部分Eの出力信号から光セン

の出力信号に応答する立下がりパルス発生回路32と立 上がりパルス発生回路34が設けられ、これらの出力信 号によりそれぞれ制御されるゲート回路36、40が減 算器16の出力信号をゲートして、それぞれホールド回 路38、42に与えられている。ホールド回路38、4 2の出力信号はそれぞれ減算器44の+と-入力端子に 与えられ、減算器44の出力信号はスイッチ30の1側 端子に与えられている。また、加算器14の出力信号は LPF28とイコライザ (EQ) 46をそれぞれ介して それぞれ和信号 (SA)、EFM信号又はEFMプラス 10 信号として出力される。減算器18の出力信号はスイッ チ30の0側端子に与えられる。スイッチ30の出力端 子からは選択されたトラッキングエラー信号TEが出力 される。

【0019】スイッチ30に与えられる制御信号CON Tはスイッチ30を制御して、その2つの入力信号の一 方を選択するもので、後述するようにシステムコントロ ーラ7のマイコンで生成される。減算器20の出力信号 はフォーカスエラー信号FEとして用いられるべく、周 知のフォーカスサーボ制御系に与えられる。LPF28 20 の出力信号である和信号SAはディスクの記録情報を読 み出すための主信号であるとともに、後述のディスク種 類判別のための測定対象信号となる。なお、LPF28 は和信号SAに含まれる可能性のある髙周波成分を除去 するために用いられている。フォーカスエラー信号FE は周知のフォーカスサーボ制御に用いられる。

【0020】システムコントローラ7は、図示省略のマ イクロコンピュータ(マイコン)の後述する動作により ディスク種類の判別を行う。なお、本発明によるディス ク種類判別の結果により2種類のトラッキングエラー信 30 号を切り換えて、記録密度の低いCDと記録密度の高い ディスクとで、3ビーム法と位相差法を使い分けること ができるが、システムコントローラ7内のマイコンはデ ィスクlの種類に応じて制御信号CONTを生成する。 すなわち、記録密度の低いCDであると判断されると、 3ピーム法のトラッキングエラー信号を選択すべく、図 6のスイッチ30を0側に接続して減算器18の出力信 号を出力する。一方、記録密度が髙いディスクであると 判断されると、位相差法のトラッキングエラー信号を選 択すべく、スイッチ30を1側に接続してLPF28の 40 出力信号を出力する。

【0021】次に、光ピックアップ2として2焦点型の もの、すなわち特開平7-65407号公報や、特開平 7-98431号公報に示されるような、対物レンズに 収束点を2つ設けて厚みの異なるディスクに対応可能と したものを用いて、ディスクの種類を判別する手法につ いて説明する。光ピックアップ2はNA=0.38mm . とNA=0. 6mmのスポットにて、2種類のディス ク、すなわち板厚t1=1.2mmのCDとt2=0. 6mmのDVDから情報を読み出すものとする。2焦点 50 イザ46を構成するトランスパーサルフィルタの単位遅

間の距離は0.3mmとする。ディスク表面と信号面と で同時に結像すると、ディスク表面の影響として低周波 での変調やオフセットの影響を受けるので、2焦点間の 間隔はディスクの厚みと同様に設定することはできな

【0022】図7は、かかる2焦点型光ピックアップで のディスク1へのレーザビームの集光状態を示す図であ る。1-a はt 1 = 1 . 2 m mのディスク、1-b はt 2 = 10.6mmのディスク、1-c は1層が0.6mmの2層 型ディスク (層間距離 t 3 = 4 0 μm) への集光状態を 示し、先行上側のビームが1.2mm用で、後行下側の ビームが0.6mm用である。 $図7中、<math>\alpha$ 、 β 、 γ 、 δ は光ピックアップ2の対物レンズがフォーカス方向に移 動した各々の状態を示している。図8は図7に対応して 光ピックアップ2にてフォーカスサーチを行ったときの 出力信号から得られる様々な信号波形を示している。す なわち図4の縦軸は電圧であり、横軸が時間であり、p はピークを示している。2焦点型光ピックアップはホロ グラムレンズにて構成されるため、特開平7-9843 1号公報のように2焦点の2つのスポット以外にも信号 が検出されるが、ことでは2焦点検出信号以外の信号は 省略している。

【0023】図8の 8-a ~ 8-d は図7の 1-a のディ スクに、8-e ~ 8-h は図7の 1-bのディスクに、8-i ~ 8-1 は図7の 1-c のディスクにそれぞれ対応してい る。また、図6の和信号SAが図8の 8-a, 8-e, 8-i であり、フォーカスエラー信号FEが図8の 8-b, 8-f, 8j であり、さらに和信号SAを点線で示すスレショル ドと比較した結果得られた信号が図8の 8-c, 8-g, 8-k であり、さらにフォーカスエラー信号FEを点線で示 すスレショルドと比較した結果得られた信号が図4の8 -d, 8-h, 8-1 である。

【0024】フォーカスサーチは光ピックアップ2のフ ォーカスコイルに印加する電圧を増加あるいは減少させ ることにより、光ピックアップ2の光学系の一部である 対物レンズを光路に沿って移動せしめることにより行わ れる。図8の波形 8-a において、図中左側のピークが 図7の 1-a のディスクのαの状態にて得られ、右側の ピークが同じくβの状態にて得られる。このように、図 4におけるピークは図7のlpha、etaに対応し、また波形8 \cdot -i ~ 8-1 における4つのピークは図7の 1-cのディス otag
o集している部分は髙周波成分HFを示している。

【0025】なお、後述するように判別されたディスク の種類に応じて、光ヘッドのレーザパワー、ブリアンプ 5におけるフォーカスエラー信号及びトラッキングエラ ー信号を生成する回路のゲイン、オフセット、パランス などのパラメータや、プリアンプ5又はDSV6におけ るイコライザ46の特性の切り換え、すなわち、イコラ

延累子の遅延量、タップゲイン設定などの項目中、必要なパラメータを設定する。

【0026】イコライザ46を構成するトランスパーサ ルフィルタは図10に示すような構造のものである。ト ランスバーサルフィルタを構成する単位遅延素子の遅延 時間T及びタップゲインGO~G4はディスクの種類に 応じて図示省略のコントローラのプログラムROMに予 め記憶しておいたデータを用いて制御可能である。Tの 例としては、1.2mmのCDの場合T=440ns、 0.6mmのDVDの場合T=80nsの2つを切り換 10 えることができる。G0~G4の例としては、1.2m mのCDの場合G2=1、G1=G3=0.12、G0 =G4=0とし、0.6mmのDVDの場合G0=0. 02, G1=0.2, G2=1, G3=0.2, G4= 0.02とし、さらにフォーカスサーチ時は周波数特性 を除去するためにG2=1とし、他を0としておく。 【0027】図9は2層ディスクにおけるフォーカスサ ーチを示す波形図であり、0.6mmのディスクの2層 目でサーボ制御をオンとする場合を示している。 図9 において、9-a はフォーカスコイル印加電圧であり、 9 20 -b は和信号SA、 9-c はフォーカスエラー信号、 9-d は和信号SAをスレショルドと比較して得られた信 号、 9-e はフォーカスエラー信号 9-C を所定スレショ ルドと比較して得られた信号、 9-f はEFM信号を比 較器50で基準値Refと比較して得られる信号、9-g. は図11のHFDET (D-FF56の出力信号)で ある。波形 9-e におけるタイミングSCはフォーカス サーボ制御をオンとする時点を示している。

【0028】図11は図6の回路の出力信号中、和信号 SAとEFM信号を用いて高周波成分HFを検出する回路の一例を示すブロック図である。EFM信号は比較器 50 に与えられ、基準信号Refと比較される。和信号 SAはD-FF(フリップフロップ)52のD入力に与えられ、そのQ出力は次段のD-FF54のD入力に与えられ、そのQ出力はさらに次段のD-FF56のD入力に与えられ、そのQ出力は検出信号HFDETとして出力される。比較器50の出力信号は500の出力に与えられる。Resetは500のアFF520のフェックとして与えられる。Resetは500のアFF520のフェット信号である。

【0029】図11の回路中の比較器50の出力信号、すなわちEFM信号の比較後の信号は図909-fとして示されている。 $D-FF52\sim56$ は和信号SAを波形整形して作られた信号 9-dがH(N4)レベル)のときのみ、比較器50の出力信号のパルスをカウントし、この例では3カウントするとD-FF56の出力信号HFDET9-qがHになる。この区間内に3カウントできない場合は、 $D-FF52\sim56$ からなるカウンタは和信号SAなどによってリセットされる。なお、この例では3カウントとしているが、このカウント数は適宜所定の回数にすることができる。

【0030】図6と図11を組み合わせた構成の動作について説明する。再生装置の電源投入などの後、スピンドル(SP)モータ3を起動し、フォーカスサーチを開始する。すなわち、フォーカスコイルへの印加電圧を図9の9~aに示すように少しずつ増加させ、和信号SA

をA/D変換してマイコンに取り込み、和信号SA(図9の9-b)を読み込み、同時に図11の出力信号HF

DET (図9の 9-g) を監視する。

【0031】和信号SAが所定値を超え、かつ信号HFDETがHになり、フォーカスエラー信号(図9の9-c)と所定値との比較で得られた信号9-eを監視し、これがHからL(ローレベル)になった時点t(フォーカスサーチにおける所謂Sカーブのほぼゼロクロス点に相当)でフォーカスサーボ制御をオンとする。また、各ディスクの反射率の違いによる再生装置の諸パラメータ、例えば光ヘッドのレーザパワー、フォーカスエラー信号、トラッキングエラー信号を生成する回路のゲイン、オフセット、バランス、単位遅延素子の遅延時間、タッブゲインなどを設定し、再生処理を実行する。

【0032】上記光ディスク再生装置の実施例について その動作を図13及び図14で構成されるフローチャー トとともに説明する。再生装置の電源が投入されたり、 ディスクが交換されたり、複数層型ディスクで他の層の データ再生が求められたときにこのフローがスタートす るものとし、まずマイコンに接続されている図示省略の メモリやバッファの所定内容をクリアするなどのイニシ ャライズをステップS1で行い、次いでステップS2で スピンドルモータモータを起動し、光ピックアップ(P U)をディスクの最内周へ移動する。その後、光ピック アップを外周側へ少し(所定量)移動する。次のステッ ブS3でレーザダイオード(LD)をオンとし、フォー カスサーチを開始し、アクチュエータコイルの電圧を増 加させる。次いでステップS4で和信号SAの電圧をA /D変換して得られるデジタル値を順次読み取り、所定 のA/D変換レジスタに順次格納する。

【0033】ステップS5で和信号SAの電圧を所定値 Qと比較し、和信号SAが所定値Qより大きいか否かを 判断する。YESならステップS6で和信号SAのエッジが検出されたか否かを判断する。ステップS6でNO なら、ステップS4へ戻る。ステップS7でカウンタのカウントCを1つインクリメントしてステップS4へ戻る。一方、ステップS6で和信号SAのエッジが検出されないときは、ステップS8で図11の回路のHF DETがHであるか否かを判断する。NOのときはステップS4へ戻り、YESならステップS9でフォーカスエラー信号FEのエッジが検出されたか否かを判断する。Cのエッジはフォーカスエラー信号FEがHからしてなる図9の波形 9-e に示したSCの時点である。

) 【0034】フォーカスエラー信号FEのエッジが検出

されると、ステップS10でカウントCが1か否かを判 断し、1であれば装填されているディスクはCDである と判断し、CDに適したパラメータをステップS11で 設定し、次いでステップS16でフォーカスサーボ制御 をオンとする。C=1でないときは、ステップS12で C=2か否かを判断し、2であればDVDの1層のディ スクであると判断し、それに適したパラメータをステッ ブS13で設定し、次いでステップS16でフォーカス サーボ制御をオンとする。C=2でないときは、ステッ プS14でC=3か否かを判断し、3であればDVDの 10 2層のディスクの1層目であると判断し、それに適した バラメータをステップS15で設定し、次いでステップ S16でフォーカスサーボ制御をオンとする。フォーカ スサーボ制御をオンとするタイミングは図9の波形 9-e に示したSCの時点となる。カウントCの数によって ディスクの種類を判断できるのは、図8に示したように フォーカスサーチ中に得られる和信号SAのピークの数 と、EFM信号中の髙周波成分の検出されるタイミング の関係がディスクの種類によって一定の関係にあること による。

【0035】上記各構成で、和信号SAを2値化する比較器のスレショルドを複数用意しておくことにより、反射率の差異により和信号SAのレベルの異なるライトワンス型や、記録・再生型のディスクの検出も可能となる。上記動作説明は、再生専用のCDと1層型のDVDに適用した場合のものである。

【0036】ステップS16の次にステップS17でトラッキングサーボ制御をオンとし、次いでステップS18でトラッキングバランスを調整する。次いでステップS19でセクタアドレスを読み取り、ステップS20で30リードインエリアへ光ピックアップの光スポットを移動させる。ステップS21では、リードインデータ及びBCAデータが再生されたか否かを判断する。これらデータがないときは、ステップS25へ行き、再生動作を開始する。

【0037】一方、ステップS21がYESなら、ステップS22でアドレスを読みながら、光スポットをBCAに移動させる。このとき、図2で説明したように、BCAのパーコードは複数のトラックにまたがって設けられているが、ディスクの半径方向に伸長している各黒パーの半径方向内側又は外側よりの端部に沿って円周方向にパーコードを読み取ろうとすると、ディスクの偏心などにより、正確にパーコードのデータを読み出すことができないことがある。そこで、複数のトラックの半径方向の中央付近のトラックに沿ってパーコードを読み出す。ステップS22では光スポットがパーコードの記録された複数のトラックの中央付近のトラックに沿ってパーコードを読むよう、図2に示される少なくとも1周に1つは存在するセクタ76のある部分75からアドレスを読み出して中央付近のトラックにジャンプ(キック)50

12

して移動し、その後トラッキングサーボ制御を行う。 【0038】次いで、ステップS23でアドレスを読ん で、所定エリアにて先頭からBCAのバーコード(BC Aコード又はBCA信号という)を読み取り、少なくと もディスクのトラックの1周にわたって読み取る。とと では、追記されたバーコードがある場合には、製造当初 からあるバーコードと共に追記されたバーコードも読み 取る。これは、当初からあるパーコードと追記されたパ ーコードの双方の内容を全て読み取ることにより、その ディスクの最新の現状を正確に判断できるからである。 【0039】次のステップS24でBCAコードから再 生された再生データを判別する。すなわち、BCAに記 録された、ユーザ指定情報、レンタル情報、地域指定情 報、言語指定情報、用途指定情報、使用可能期間指定情。 報、使用可能回数指定情報、使用可能プレーヤ指定情 報、分解能指定情報、レイヤー指定情報、著作権者情 報、著作権番号情報、製造日情報、製造者情報、販売日 情報、販売店情報、販売者情報、製品使用者情報、使用 番号情報、使用セット番号情報などがあれば、それらを 20 解読して、システムコントローラ7のマイコンに送る。 マイコンはとれらのBCAから読み出された情報に基づ いて、例えば複数のプログラム中の選択的再生の許可な どの再生の態様を決定し、ステップS25にて許容範囲 内でユーザからの指示に基づいて再生動作を実行すべく 再生動作を開始する。なお、BCAコードの読み出し は、プリマスタードエリアと追記エリアの双方について 行い、両者の情報に相反する事項があるときは、時間的 に後に記録された追記エリアの情報を優先する。

【0040】上記実施例では、和信号SAが所定値Qより大きいか否かを判断してから図11の回路のHFDE TがHであるか否かを判断し、次いでフォーカスエラー信号FEのエッジが検出されたか否かを判断してフォーカスサーボ制御をオンとしているが、和信号SAが所定値Qより大きいか否かを判断しないで、フォーカスサーチを開始した時点、すなわちフォーカコイルの印加電圧が増加し始めてから、図11の回路のHFDETをモニターし、HFDETがHになり、次いでフォーカスエラー信号FEのエッジが検出された図9の波形 9-e に示したSCの時点でフォーカスサーボ制御をオンとするよう構成してもよい。

【0041】図12は図6の回路の出力信号中、EFM信号を用いて高周波成分HFを検出する回路の他の例を示すブロック図である。EFM信号はHPF58を介して比較器60に与えられ、基準信号Refと比較される。比較器60の出力はD-FF62のクロックとして与えられ、そのQ出力は検出信号HFDETとして出力される。D-FF62のD入力には所定値が常時与えられている。ResetはD-FF62のリセット信号である。図12の回路はEFM信号の高周波成分HFを抽50出し、これを基準信号Refと比較して得られた信号を

ラッチするものである。なお、図11、図12の回路以 外にも髙周波成分を検出するものであれば、他の構成を 用いることが可能で、例えば、図11のカウンタ部分の 入力部にHPFを設けるようにすることもできる。

【0042】図11の回路の代りに図12の回路を用 い、図6と組み合わせた場合の動作について説明する。 フォニカスサーチを開始した時点、すなわちフォーカコ イルの印加電圧が増加し始めてから、和信号SAがを所 定値と比較して得られた図9の2値信号 9-d をモニタ ーし、この信号がHになり、かつ図12の回路のHFD 10 ローチャートの前半である。 ETをモニターし、HFDETがHになり、次いでフォ ーカスエラー信号FEのエッジが検出された図9の波形 9-e に示したSCの時点でフォーカスサーボ制御をオ ンとする。

[0043]

【発明の効果】以上説明したように本発明によれば、光 ディスクに光情報として記録された主情報の他に、その 内周部分に補助情報を記録するために設けたバーコード による記録部分として知られている、いわゆるBCA (バーストカッティングエリア)を用いて著作権の保護 20 4 モータドライバ/トラッキング・フォーカス制御回 や、記録情報の選択的再生許可などの付加的機能を有す る光ディスクを再生する光ディスク再生装置が提供さ れ、著作権の保護などが有効に図られ、よって、コンピ ュータソフトや価値の高い映画ソフトなどの光記録媒体 への記録を促進することができる。

【図面の簡単な説明】

- 【図1】光記録媒体の模式的平面図である。
- 【図2】光記録媒体のBCAの構成を示す模式図であ
- 【図3】光記録媒体のBCAの他の構成を示す模式図で 30 26 乗算器
- 【図4】光記録媒体のBCAの更に他の構成を示す模式 図である。
- 【図5】2層ディスクにおけるフォーカスサーチを示す 波形図である。
- 【図6】本発明の光ディスク再生装置の1実施例を示す ブロック図である。
- 【図7】2焦点型光ピックアップでの各種ディスクへの レーザビームの集光状態を示す図である。
- [図8] 図7の各種ディスクに対するフォーカスサーチ 40 72-1、72-2、72-3 黒バー を行ったときに得られる光ビックアップの出力信号とそ こから得られる各種信号を示す波形図である。
- [図9] フォーカスサーチによりディスクの種類を判断 し、さらにその判断結果を用いてフォーカスサーボ制御 をオンとするタイミングを示す波形図である。
- 【図10】図5のプリアンプ又はDSVに含まれるトラ ンスパーサルフィルタの構成を示すブロック図であり、 かつ図6のイコライザの回路例としてのトランスパーサ

ルフィルタの構成を示すブロック図でもある。

【図11】図6の回路の出力信号中、和信号SAとEF M信号を用いて髙周波成分HFを検出する回路の1例を 示すブロック図である。

【図12】図6の回路の出力信号中、EFM信号を用い て髙周波成分HFを検出する回路の1例を示すブロック 図である。

【図13】図5中のシステムコントローラに用いられて いるマイクロコンピュータ(マイコン)の動作を示すフ

【図14】図5中のシステムコントローラに用いられて・ いるマイクロコンピュータ(マイコン)の動作を示すフ ローチャートの後半である。

【符号の説明】

- 1 光ディスク
- 1R 光記録部分
- 1S 最内周部
- 2 光ピックアップ
- 3 スピンドルモータ
- - 5 プリアンプ
 - 6 デジタルサーボ (DSV) 制御回路
 - 7 システムコントローラ
 - 8A、8B、8C、8D、8E 最内周部のトラック
 - 9 BCA
 - 10、12、14、22 加算器
 - 16、18、20、44 減算器
 - 24 遅延回路
- - 28 LPF (ローパスフィルタ)
 - 30 スイッチ
 - 32、34 パルス発生回路
 - 36、40 ゲート回路
 - 38.42 ホールド回路
 - 46 イコライザ
 - 50、60 比較器
 - 52, 54, 56, 62 D-FF
 - 58 HPF (ハイパスフィルタ)
- - 74-1、74-2、74-3 白バー
 - 75 追記部分
 - 76、76A、76B セクタ
 - 78 第1環状部分
 - 80 第2環状部分
 - A、B、C、D 位相差法に用いる4分割光センサ部分
 - E、F 3ビーム法に用いる2つのセンサ部分

【図6】

【図11】

【図13】

i

【図14】

フロントページの続き

(51)Int.C7.		識別記号	FΙ		テーマコート (参考)
G11B	19/12	501	G11B	19/12	501K
	20/10			20/10	Н
	20/12			20/12	