DLP Lab4 Diabetic Retinopathy Detection

1. Introduction

利用有 pretrained 和無 pretrained 的 ResNet18 與 ResNet50 架構,訓練並分析由糖尿病所引發 視網膜病變的分類問題,總分類數有 5 種,分別為 $0 \sim 4$,代表視網膜病變的嚴重程度。本次 Lab 所用的 dataset 有 35124 張照片,我們將 28099 張當作 training dataset,7025 張當作 testing dataset,照片的解析度為 512×512 。

2. Experiment setups

• The details of your model (ResNet) 直接從 torchvision 引入 ResNet18 和 ResNet50,當需要 pretrain 的時候就將 pretrained 的參數設為 True,並先做 feature extraction,只訓練最後一層幾個 epoch,然後再做

的參數設為 True, 並先做 feature extraction, 只訓練最後一層幾個 epoch, 然後再做 fine tune, 訓練整個 model (所有 layer) 剩餘的數個 epoch。

```
class ResNet18(nn.Module):
    def __init__(self, num_class, pretrained=False):
        super(ResNet18, self).__init__()
        self.model = models.resnet18(pretrained=pretrained)
        if pretrained:
            for param in self.model.parameters():
                param.requires_grad = False
            num_neurons = self.model.fc.in_features
            self.model.fc = nn.Linear(num_neurons, num_class)

def forward(self, x):
        out = self.model(x)
        return out
```

• The details of your Dataloader

因為 pytorch 的 convolution layer 需要(N, C, H, W),所以透過 torchvision 中的 transforms function 對每張圖片做 transform,使 dataset 能餵進 Dataloader。為了提高 accuracy 和避免 overfitting,所以對 data 做 augmentation 和 normalization。

```
def __init__(self, root, mode):
                        mode : Indicate procedure status(training or testing)
                      self.img_name (string_list): String_list_that store all image_names.
self.label (int or float list): Numerical list that store all ground truth label values.
            self.img_name, self.label = getData(mode)
            self.mode = mode
            self. transformations = transforms. Compose([transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), transforms. ToTensor(), transforms. 
                                                                                                                                                   transforms.Normalize((0.375, 0.265, 0.186),(0.253, 0.178, 0.129))))
            print(">> Found {} images...".format(len(self.img name)))
            return len(self.img name)
def __getitem__(self, index):
    """something you should implement here"""
                     step3. Transform the .jpeg rgb images during the training phase, such as resizing, random flipping, rotation, cropping, normalization etc. But at the beginning, I suggest you follow the hints.
                                           In the testing phase, if you have a normalization process during the training phase, you only need
                                            to normalize the data.
                                          hints : Convert the pixel value to [0, 1]

| Transpose the image shape from [H, W, C] to [C, H, W]
            img_name = os.path.join(self.root, self.img_name[index] + '.jpeg')
             img = Image.open(img name)
             img = self.transformations(img)
             label = self.label[index]
```

• Describing your evaluation through the confusion matrix 先建立一個 5x5 的 confusion matrix, 並在 evaluating 的時候更新且統計數量,最後再 依每一列做 normalization。

3. Experimental results

The highest testing accuracy
 最高的 testing accuracy 出現在有 pretrained 的 ResNet50 中, 大約為 82.52%

	epoch	acc_train	acc_test
Θ	1	$73.\overline{5}11513$	73.722420
1	2	73.693014	74.249110
2	3	74.123634	74.733096
3	4	74.219723	74.832740
4	5	74.152105	74.106762
5	1	77.191359	79.416370
6	2	80.195025	80.341637
7	3	81.145236	77.693950
8	4	82.202214	81.252669
9	5	83.031425	80.199288
10	6	83.358838	81.665480
11	7	83.942489	82.519573
12	8	84.244991	81.323843
13	9	84.860671	81.594306
14	10	85.519058	82.192171
15	11	85.782412	80.882562
16	12	86.049326	81.551601
17	13	86.668565	79.516014
18	14	87.202392	81.879004
19	15	87.636571	80.911032

• Anything you want to present

可以發現,無論是在 ResNet18 或 ResNet50 中,有 pretrained 的 training accuracy 與 testing accuracy 都比無 pretrained 還來得高,無 pretrained 的兩者 accuracy 差不多,但 有 pretrained 的則是 ResNet50 的 accuracy 較高。

• Comparison figures

o ResNet18

Discussion

• Anything you want to share

因為這次的 training dataset 很多,總共有 20899 張,所以在 training 時如果 batchsize 不小心調太大,會導致 GPU 記憶體不足無法計算,然後 ResNet50 又比 ResNet18 的參數量來得多,因此 ResNet50 所需的 batchsize 要比 ResNet18 更少,當然計算速度上又相對更久。