MATH3332 Quiz 3

1. Let V be a Hilbert space. Let S_1 and S_2 be two hyperplanes in V defined by (here we assume a_1, a_2 are linear independent)

$$S_1 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_1, \boldsymbol{x} \rangle = b_1 \}, \quad S_2 = \{ \boldsymbol{x} \in V \mid \langle \boldsymbol{a}_2, \boldsymbol{x} \rangle = b_2 \}$$

Let $y \in V$ be given. We consider the projection of y onto $S_1 \cap S_2$, i.e., the solution of

$$\min_{oldsymbol{x} \in S_1 \cap S_2} \|oldsymbol{x} - oldsymbol{y}\|$$

- (a) (10 pts)Prove that $S_1 \cap S_2$ is a plane, i.e., if $\boldsymbol{x}, \boldsymbol{z} \in S_1 \cap S_2$, then $(1+t)\boldsymbol{z} t\boldsymbol{x} \in S_1 \cap S_2$ for any $t \in \mathbb{R}$
- (b) (10 pts)Prove that z is a solution of (1) if and only if $z \in S_1 \cap S_2$ and

$$\langle \boldsymbol{z} - \boldsymbol{y}, \boldsymbol{z} - \boldsymbol{x} \rangle = 0, \quad \forall \boldsymbol{x} \in S_1 \cap S_2$$

- (c) (15 pts)Find an explicit solution of (1).
- (d) (15 pts)Prove the solution found in part (c) is unique.
- 2. (20 pts)Let $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$ be given with $\boldsymbol{x}_i \in \mathbb{R}^n$ and $y_i \in \mathbb{R}$. Assume N < n and \boldsymbol{x}_i are linearly independent. Give the closed form solution to the ridge regression

$$\min_{\boldsymbol{a} \in \mathbb{R}^n} \sum_{i=1}^N \left(\langle \boldsymbol{a}, \boldsymbol{x}_i \rangle - y_i \right)^2 + \lambda \|\boldsymbol{a}\|_2^2$$

In other words, suppose we write $\boldsymbol{X} = [\boldsymbol{x}_1, \dots, \boldsymbol{x}_N]^T$ and $\boldsymbol{y} = [y_1, \dots, y_N]^T$, represent \boldsymbol{a} using the matrix \boldsymbol{X} and vector \boldsymbol{y} and $\lambda \boldsymbol{I}$.

- 3. (This question might be challenging, write out your ideas and partial scores will be given.)
 - (a) (15 pts) Show that there exist a Hilbert space H and a transformation $\Phi: \mathbb{R}^n \to H$ such that

$$\langle \Phi(u), \Phi(v) \rangle = 2\langle u, v \rangle^2 + 5\langle u, v \rangle^3$$
 for all $u, v \in \mathbb{R}^n$

(Hint: Consider $H = \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n \times n}$)

(b) (15 pts) More generally, consider a polynomial $f: \mathbb{R} \to \mathbb{R}$ with non-negative coefficients, and construct H and Φ such that

1

$$\langle \Phi(u), \Phi(v) \rangle = f(\langle u, v \rangle) \quad \text{ for all } u, v \in \mathbb{R}^n$$