3.5, Q1:

Monotonicity of Sample Complexity: Let \mathcal{H} be a hypothesis class for a binary classification task. Suppose that \mathcal{H} is PAC learnable and its sample complexity is given by $m_{\mathcal{H}}(\cdot, \cdot)$. Show that $m_{\mathcal{H}}$ is monotonically increasing in both parameters. That is, show that:

- 1. for $\delta \in (0,1)$ for $0 \le \epsilon_1 \le \epsilon_2 \le 1$, show that $m_{\mathcal{H}}(\epsilon_1,\delta) \ge m_{\mathcal{H}}(\epsilon_2,\delta)$.
- 2. for $\epsilon \in (0,1)$ for $0 \le \delta_1 \le \delta_2 \le 1$, show that $m_{\mathcal{H}}(\epsilon, \delta_1) \ge m_{\mathcal{H}}(\epsilon, \delta_2)$.

Solution, fixed δ

First recall what it means to be PAC-learnable:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realisability assumption holds with respect to $(\mathcal{H}, \mathcal{D}, f)$, then for all constants $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, on running the learning algorithm on a random i.i.d sample $S \in X^m \sim \mathcal{D}^m$, the algorithm produces a hypothesis h_S , such that with probability $(1 - \delta)$, the learning error $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

 ϵ_1 and ϵ_2 are the error rates that we wish to achieve. Intuitively, the smaller the error we want, the more samples we need. Hence $\epsilon_1 \leq \epsilon_2 \implies m_{\mathcal{H}}(\epsilon_1, \delta) \geq m_{\mathcal{H}}(\epsilon_2, \delta)$.

Formally, we shall provide a **proof by contradiction**. Let us assume that:

$$\epsilon_1 \leq \epsilon_2 \implies m_{\mathcal{H}}(\epsilon_1, \delta) \leq m_{\mathcal{H}}(\epsilon_2, \delta)$$
 (assumption for contradiction)

Unwrapping the definition, this means that:

- 1 Giving the learning algorithm $m_1 = m_{\mathcal{H}}(\epsilon_1, \delta)$ samples, the best error rate we are able to achieve is ϵ_1 , (1δ) of the time.
- 2 Similarly, on giving the learning algorithm learning algorithm $m_2 = m_{\mathcal{H}}(\epsilon_1, \delta)$ samples, the best error rate we are able to achieve is ϵ_2 , (1δ) of the time.

Since the fraction $(1 - \delta)$ is the same in both cases, we can focus purely on the error rate. Recall that $\epsilon_1 < \epsilon_2$ and $(m_2 > m_1)$ from our assumption of contradiction.

Hence, in the m_2 case, we can simply **discard samples** and provide the learning algorithm with m_1 samples, thereby reducing our error rate to ϵ_1 . However, we had assumed that for m_2 , ϵ_2 was **the best error rate we could have achieved**.

this contradiction arose from our contradictory assumption. Hence, it must be the case that as ϵ decreases, the quantity $m_{\mathcal{H}}(\epsilon, \cdot)$ increses. \square .

Solution, fixed ϵ

Once again, recall what it means to be PAC-learnable:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realisability assumption holds with respect to $(\mathcal{H}, \mathcal{D}, f)$, then for all constants $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, on running the learning algorithm on a random i.i.d sample $S \in X^m \sim \mathcal{D}^m$, the algorithm produces a hypothesis h_S , such that with probability $(1 - \delta)$, the learning error $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

 δ_1 and δ_2 are the rejection rates that we wish to achieve. Intuitively, the smaller the number of samples we wish to reject, the more general a solution we would need to construct, thus more samples need to be seen. Hence $\delta_1 \leq \delta_2 \implies m_{\mathcal{H}}(\epsilon, \delta_1) \geq m_{\mathcal{H}}(\epsilon, \delta_2)$.

Formally, we once again proceed with contradiction. We assume:

$$\delta_1 \leq \delta_2 \implies m_{\mathcal{H}}(\epsilon, \delta_1) \leq m_{\mathcal{H}}(\epsilon, \delta_2)$$
 (assumption for contradiction)

Unwrapping the definition, this means that:

- 1 Giving the learning algorithm $m_1 = m_{\mathcal{H}}(\epsilon, \delta_1)$ samples, (1δ) of the time, the learning error will be less than ϵ .
- 2 Similarly, on giving the learning algorithm learning algorithm $m_2 = m_{\mathcal{H}}(\epsilon_1, \delta)$ samples, $(1 \delta_2)$ of the time, the learning error will be less that ϵ .

3.5, Q2:

Let \mathcal{X} be a discrete domain, and let $\mathcal{H}_{singleton} \equiv \{[z] : z \in \mathcal{X}\} \cup \{h\}$, where

$$[z]: \mathcal{X} \to \{0, 1\}; \quad [z](x) \equiv \begin{cases} 1 & x = z \\ 0 & \text{otherwise} \end{cases}$$

 $h: \mathcal{X} \to \{0, 1\}; \quad h^-(\underline{\ }) \equiv 0$

The realizability assumption here implies that the true hypothesis f labels negatively all examples in the domain, perhaps except one.

- 1. Describe an algorithm that implements the ERM rule for learning $\mathcal{H}_{singleton}$ in the realizable setup.
- 2. Show that $\mathcal{H}_{singleton}$ is PAC learnable. Prove an upper bound on the sample complexity.

Solution, part (a)

Let \mathcal{X} be the domain, let $f: \mathcal{X} \to \{0,1\}$ be the underlying target function f that we are trying to approximate using \mathcal{H} .

We define the sample loss $L_S(h)$ as the number of elements in S that are mis-classified by h. More formally, $L_S(h) \equiv |\{(x,y) \in \S : h(x) \neq y\}|$.

The ERM algorithm must, given a particular sample set $S \in \mathcal{X}^n \sim \mathcal{D}^n$, provides a function $h_0 \in \mathcal{H} = ERM(S)$ which has minimum sample loss $L_S(h_0)$ across all functions in \mathcal{H} .

We can check over the classification of all the samples $s \in S$.

- If all samples $s \in S$ are classified as 0: we return h^- this will always return 0.
- If some sample $s_1 \in S$ is classified as 1: notice that our hypothesis space \mathcal{H} can only allow us to set at most one sample to 1. So, we can pick any sample s_1 to create our hypothesis function $h = [s_1]$, since that is the best we can do.

```
def hminus(_): return 0 # h-: sends all samples to 0
def indicator(z): return lambda x: 1 if x == z else 0 #indicator of z
def erm_sample(S):
    # all samples which have label 1
    one_samples = [y for (x, y) in S if y == 1]
    if len(one_samples) == 0: return hminus # send all samples to 0!
    else: # we will have at least on element in one_samples
        return indicator(ones_samples[0])
```

Solution, part (b)

The definition of a hypothesis class \mathcal{H} to be PAC-learnable is that there exists a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that:

For every $\epsilon, \delta \in (0,1)$, for every distribution \mathcal{D} over \mathcal{X} , for every labelling function $f: \mathcal{X} \to \{0,1\}$, if the realisability assumption holds with respect to $(\mathcal{H}, \mathcal{D}, f)$, then for all constants $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, on running the learning algorithm on a random i.i.d sample $S \in X^m \sim \mathcal{D}^m$, the algorithm produces a hypothesis h_S , such that with probability $(1 - \delta)$, the learning error $L_{(\mathcal{D}, f)}(h) \leq \epsilon$.

TODO

4.5, Q1:

Prove that the following two statements are equivalent for any learning algorithm A, any probability distribution \mathcal{D} , and any loss function whose loss is in the range [0,1]:

$$(1): \quad \forall \epsilon, \delta > 0, \exists M \equiv m(\epsilon, \delta), \forall m \ge M: \underset{S \sim D^m}{\mathbb{P}} [L_{\mathcal{D}}(A(S)) > \epsilon] < \delta.$$

$$(2): \quad \lim_{m \to \infty} \underset{S \sim \mathcal{D}^m}{\mathbb{E}} [L_{\mathcal{D}}(A(S)) > \epsilon] = 0.$$

Solution: $(2) \implies (1)$

We start with (2):

(2):
$$\lim_{m \to \infty} \mathbb{E}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(A(S)) > \epsilon] = 0.$$

We then look at the definition of the limit abstractly, for a function $f : \mathbb{N} \to \mathbb{R}$ (In our case, the function takes $m \in \mathbb{N}$ as input and produces $\mathbb{E}[\dots]$ as output):

$$\lim_{m \to \infty} f(m) = y^* \equiv$$

$$\forall p > 0, \ \exists M \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge M \implies |f(m) - y^*| < p$$

Plugging in to our case, we recieve:

$$\forall p > 0, \ \exists M \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge M \implies \left| \underset{S \sim \mathcal{D}^m}{\mathbb{E}} [L_{\mathcal{D}}(A(S)) > \epsilon] - 0 \right| < p$$

Recall that our loss function $L_{\mathcal{D}}$ is non-negative, hence we can remove the $|\cdot|$ and -0 completely, giving:

$$\forall p > 0, \ \exists M \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge M \implies \underset{S \sim \mathcal{D}^m}{\mathbb{E}} [L_{\mathcal{D}}(A(S)) > \epsilon] < p$$

However, note that $L_{\mathcal{D}}(A(S)) > \epsilon$ is a binary random variable, and hence:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{E}}[L_{\mathcal{D}}(A(S)) > \epsilon] = 1 \cdot \underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{\mathcal{D}}(A(S)) > \epsilon] + 0 \cdot \underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{\mathcal{D}}(A(S)) \not> \epsilon] = \underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{\mathcal{D}}(A(S)) > \epsilon]$$

Plugging this in, we get:

$$\forall p > 0, \ \exists M \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge M \implies \underset{S \sim \mathcal{D}^m}{\mathbb{P}} [L_{\mathcal{D}}(A(S)) > \epsilon] < p$$

If we replace p with δ in the above, we recover (1).

Hence, we show that $(2) \implies (1)$. \square

Solution: $(1) \implies (2)$

Since to show that (2) \implies (1) we only ever argued with equalities, we can simply run the proof backwards. \square

6.8, Q1:

For two hypothesis classes $\mathcal{H}, \mathcal{H}'$, if $\mathcal{H}' \subseteq \mathcal{H}$ then $VCdim(H') \leq VCdim(H)$.

Solution

Recall that the VC dimension of a given set family \mathcal{H} is the size of the largest set C such that H shatters C. That is, the intersection of C with every element is H is equal to the powerset of C:

$$\operatorname{VCdim}(\mathcal{H}) \equiv \max_{C} \{h \cap C : h \in \mathcal{H}\} = 2^{C}$$
 We denote powerset of C by 2^{C}

Now, if a set family \mathcal{H}' is a subset of another set family \mathcal{H} , and if \mathcal{H}' shatters C, then:

$$\mathcal{H}' \text{ shatters } \mathbf{C} \equiv \{h \cap C : h \in \mathcal{H}'\} = 2^C \qquad \text{Given, (1)}$$
$$\{h \cap C : h \in \mathcal{H}'\} \subseteq \{h \cap C : h \in \mathcal{H}\} \qquad \text{Since } H' \subseteq H$$
$$2^C \subseteq \{h \cap C : h \in \mathcal{H}\} \qquad \text{From (1)}$$

Hence, any set that can be shattered by H' can be shattered by H if $H' \subseteq H \implies \operatorname{VCdim}(H') \leq \operatorname{VCdim}(H)$.

On the other hand, clearly if H is larger than H', then H can shatter more. For example, let $H' = \emptyset \subsetneq H$. Then H' can only shatter the empty set, while H can in general shatter sets larger than the empty set. Hence, we have have strict inequality: $\operatorname{VCdim}(\emptyset) < \operatorname{VCdim}(H)$ for example.