▼ 2.0 - Spazio euclideo

Lo spazio \mathbb{R}^n o **spazio euclideo** è definito nel seguente modo:

$$\mathbb{R}^n\coloneqq \{x=(x_1,\ldots,x_n)\ |\ x_1,\ldots,x_n\in\mathbb{R}\}$$

Esempi di spazi euclidei:

ullet \mathbb{R}^2 = piano cartesiano. $(x,y)\in\mathbb{R}^2=(x_1,x_2)\in\mathbb{R}^2.$

Visualizzazione grafica di un vettore nello spazio \mathbb{R}^2 .

• \mathbb{R}^3 = spazio ordinario. $(x,y,z)\in\mathbb{R}^3=(x_1,x_2,x_3)\in\mathbb{R}^3.$

Visualizzazione grafica di un vettore nello spazio $\mathbb{R}^{3}.$

▼ 2.1 - Operazioni nello spazio euclideo

Somma tra vettori

Dati due vettori $x=(x_1,\ldots,x_n)$ e $y=(y_1,\ldots,y_n)$, definiamo la **somma** tra di essi come:

$$x+y=(x_1+y_1,\ldots,x_n+y_n)$$

La somma tra vettori nello spazio \mathbb{R}^2 può essere visualizzata in maniera grafica tramite la regola del parallelogramma:

Regola del parallelogramma.

Prodotto con scalare

Dato un vettore $x=(x_1,\ldots,x_n)$ e uno scalare $\lambda\in\mathbb{R}$, definiamo il prodotto con scalare come:

$$\lambda x = (\lambda x_1, \dots, \lambda x_n)$$

Il prodotto con scalare nello spazio \mathbb{R}^2 può essere visualizzato in maniera grafica tramite un cambiamento della lunghezza e/o direzione del vettore di partenza.

Inoltre, se il vettore di partenza è un vettore non nullo, ovvero $x \neq (0, \dots, 0)$, allora l'insieme $\{\lambda x \mid \lambda \in \mathbb{R}\}$ rappresenta la retta generata dal vettore x.

Retta generata da un vettore tramite prodotto con scalare.

Se partiamo da due vettori non nulli invece l'insieme $\{x+ty\mid t\in\mathbb{R}\}$ rappresenta la retta passante per x avente direzione e verso del vettore y.

Retta generata dalla somma di un vettore e un prodotto con scalare.

Prodotto scalare euclideo

Dati due vettori $x,y\in\mathbb{R}^n$, definiamo il prodotto scalare euclideo come:

$$\langle x,y
angle\coloneqq\sum_{k=1}^nx_ky_k$$

Possiamo visualizzare in maniera grafica il prodotto scalare in \mathbb{R}^2 come il prodotto della lunghezza di uno dei due vettori per la lunghezza della componente x dell'altro vettore rispetto al vettore iniziale:

Visualizzazione grafica del prodotto scalare nel piano cartesiano.

Proprietà

1.
$$\langle x,y
angle = \langle y,x
angle \quad orall \; x,y \in \mathbb{R}^n$$

2.
$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$$
 e $\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle$ $\forall \ x, y \in \mathbb{R}^n \land \lambda, \mu \in \mathbb{R}$

3.
$$\langle x,x
angle \geq 0 \quad orall \ x \in \mathbb{R}^n$$

•
$$\langle x,x\rangle=0\iff x=(0,\ldots,0)$$

▼ 2.2 - Vettori

Vettori standard

In uno spazio vettoriale di dimensione n, ci sono n vettori standard i quali hanno tutte le componenti uguali a zero tranne una, che è uguale a 1:

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

Visualizzazione grafica dei vettori standard dello spazio \mathbb{R}^3 .

Ortogonalità/Perpendicolarità tra vettori

Due vettori $x,y\in\mathbb{R}^n$ si dicono **ortogonali/perpendicolari** se $\langle x,y \rangle=0.$

L'ortogonalità/perpendicolarità può anche essere visualizzata per due vettori $\in \mathbb{R}^2$. Prendiamo infatti ad esempio due vettori $x=(\cos\theta,\sin\theta)$ e $y=(\cos(\theta+\frac{\pi}{2}),\sin(\theta+\frac{\pi}{2}))=(-\sin\theta,\cos\theta)$. Possiamo verificare che tali vettori sono ortogonali calcolando il loro prodotto euclideo $\langle x,y\rangle=-\cos\theta\sin\theta+\sin\theta\cos\theta=0$. Concludiamo dunque che tutti i vettori che differiscono di un angolo $\frac{\pi}{2}$ sono perpendicolari tra loro.

Visualizzazione grafica di 2 vettori ortoonali tra loro nel piano cartesiano.

Proposizioni

- Il **vettore nullo** è perpendicolare a tutti i vettori, infatti $\sum_{k=1}^n 0y_k = 0.$
- In \mathbb{R}^n i vettori standard e_1, \ldots, e_n sono ortogonali tra loro.

Esercizi:

lacksquare Dato il vettore $v=(1,2,3)\in\mathbb{R}^3$, trovare un vettore $x=(x,y,z)\perp v$ diverso dal vettore nullo.

Occorre impostare l'equazione $\langle x,v\rangle=0$, ovvero $x+2y+3z=0 \implies x=-2y-3z$. Abbiamo dunque trovato che l'insieme $\{(-2y-2z,y,z)\mid (y,z)\in\mathbb{R}^2\}$ è un insieme di vettori perpendicolari al vettore v.

Osserviamo che l'insieme trovato rappresenta un piano, infatti ogni vettore $v \in \mathbb{R}^3$ tranne il vettore nullo identifica un piano di vettori perpendicolari ad esso.

Visualizzazione grafica di un piano perpendicolare ad un vettore.

lacktriangledown Trovare il rapporto dei parametri m e p affinchè le due rette y=mx e y=px siano ortogonali.

Costruiamo i vettori corrispondenti alle due rette: (1,m) e (1,p).

Impostiamo l'equazione $\langle (1,m),(1,p) \rangle = 1 + mp = 0$, ovvero $p = -\frac{1}{m}$.

Norma euclidea

Dato un vettore $x \in \mathbb{R}^n$, definiamo la **norma euclidea** nel seguente modo:

$$||x|| \coloneqq \sqrt{\langle x, x \rangle} \in [0, +\infty[$$

Nota: le notazioni ||x|| e |x| sono equivalenti.

Proposizioni

• Teorema di pitagora generalizzato in \mathbb{R}^n : se $x\perp y$ in \mathbb{R}^n , allora $|x+y|^2=|x|^2+|y|^2$, che è equivalente, in \mathbb{R}^2 , al quadrato della lunghezza della diagonale del rettangolo che ha come lati i vettori x e y.

Dimostrazione

Per ipotesi abbiamo che $\langle x,y \rangle = 0$.

Dimostriamo la formula del quadrato di un binomio generalizzata sui vettori ($|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$). Sappiamo che $|x+y|^2=\langle x+y,x+y\rangle$, utilizziamo la proprietà della linearità del primo argomento per ricavarci $\langle x,x+y\rangle+\langle y,x+y\rangle$ e la linearità del secondo argomento per ottenere $\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle$, dalla quale, visto che $\langle x,y\rangle=\langle y,x\rangle$, otteniamo infine che $|x+y|^2=|x|^2+|y|^2+2\langle x,y\rangle$.

Utilizziamo dunque la formula del quadrato di un binomio generalizzata appena dimostrata e per ottenere che $|x+y|^2=|x|^2+|y|^2+2|\langle x,y\rangle|=|x|^2+|y|^2+0$, qed.

Esempio:

$$ullet$$
 In \mathbb{R}^2 , $||(a,b)||=\sqrt{a^2+b^2}$. In \mathbb{R}^3 , $||(a,b,c)||=\sqrt{a^2+b^2+c^2}$.

Notiamo che la norma di un vettore indica la "lunghezza" di tale vettore.

Proprietà

1.
$$|\lambda x| = |\lambda||x| \quad orall \ \lambda \in \mathbb{R}, x \in \mathbb{R}^n$$

2.
$$|x| \geq 0 \quad orall \; x \in \mathbb{R}^n$$

a.
$$|x|=0 \iff x=\langle 0,\ldots,0
angle$$

3.
$$|x + y| \le |x| + |y|$$

La possiamo anche leggere come $len(x+y) \geq len(x) + len(y)$, ovvero la **disuguaglianza** triangolare.

Normalizzato di un vettore

Il normalizzato di un vettore consiste in quell'unico vettore positivo multiplo del vettore di partenza che ha come norma 1.

Dobbiamo dunque trovare uno scalare r>0 tale che |rx|=1. Scomponiamo la norma in questo modo |r||x|=r|x|=1 e otteniamo che $r=\frac{1}{|x|}$. Il vettore normalizzato |rx| vale dunque $\frac{x}{|x|}$.

Dato il vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, il **normalizzato** di x è l'unico vettore positivo multiplo di x che ha norma 1, e vale:

$$\frac{x}{|x|}$$

Visualizzazione grafica del normalizzato di un vettore.

Esercizi:

lacktriangle Trovare il normalizzato di x=(2,3)

Per trovare il normalizzato di x occorre calcolare il prodotto scalare $\frac{x}{|x|}$.

Calcoliamo dunque |x|, il quale è uguale a $|(2,3)|=\sqrt{4+9}=\sqrt{13}$.

Infine calcoliamo il normalizzato come $\frac{(2,3)}{\sqrt{13}}=(\frac{2}{\sqrt{13}},\frac{3}{\sqrt{13}}).$

lacktriangle Trovare il normalizzato di x=(14,21,-28)

Per semplificarci i calcoli osserviamo che $\frac{x}{|x|}=\frac{\lambda x}{|\lambda x|}$, dunque possiamo calcolare il normalizzato nel seguente modo: $\frac{(14,21,-28)}{|(14,21,-28)|}=\frac{(2,3,-4)}{|(2,3,-4)|}=\left(\frac{2}{\sqrt{29}},\frac{3}{\sqrt{29}},\frac{-4}{\sqrt{29}}\right)$.

Coordinate polari di un vettore

Osserviamo che dato un qualunque vettore $x \in \mathbb{R}^n$ diverso dal vettore nullo, $x = |x| rac{x}{|x|}$

Visto che $\frac{x}{|x|}$ è il normalizzato del vettore e ha lunghezza 1, esso, se il vettore x appartiene a \mathbb{R}^2 , può anche essere scritto in questo modo: $(\cos\theta,\sin\theta)$.

Utilizziamo inoltre la notazione $r \coloneqq |x|$ e scriviamo il vettore x come $r(\cos \theta, \sin \theta)$.

Concludiamo dunque che è possibile descrivere un qualunque vettore $x\in\mathbb{R}^2$ tramite l'utilizzo di due parametri, detti **coordinate polari**: (r,θ) .

Esercizi:

lacktriangle Trovare le coordinate polari del vettore (0,3)

Per trovare le coordinate polari dobbiamo calcolare il valore dei due parametri r e θ .

Sappiamo che r=|(0,3)|=3, dunque x=3y, dove y è un vettore che moltiplicato a 3 restituisce x. Troviamo dunque facilmente che y=(0,1) e, avendo che $\cos\theta=0$ e $\sin\theta=1$, otteniamo $\theta=\frac{\pi}{2}$.

Concludiamo dunque che il vettore (0,3) può essere scritto in coordinate polari come $(3,\frac{\pi}{2})$.

Prodotto scalare in coordinate polari

Presi due vettori $x = r(\cos \theta, \sin \theta)$ e $y = p(\cos \phi, \sin \phi)$, risulta:

$$\langle x, y \rangle = rp \cos(\theta - \phi) = |x||y|\cos(\theta - \phi)$$

Dove $\theta - \phi$ è l'angolo compreso tra i due vettori.

Disuguaglianza Cauchy-Schwarz

Per ogni vettore $x,y\in\mathbb{R}^n$ vale la seguente **disuguaglianza**:

$$|\langle x, y \rangle| \le |x| \cdot |y|$$

Notiamo che l'uguaglianza vale solo nel caso in cui i due vettori sono dipendenti tra loro, dunque in $\mathbb R$ giacciono sulla stessa retta.

Distanza tra due vettori in \mathbb{R}^n

La **distanza tra due vettori/punti** in \mathbb{R}^n può essere calcolata tramite la formula:

$$|x-y|$$

Esempio grafico di distanza tra due vettori.

Intorni sferici/palle

Dato un vettore $x\in\mathbb{R}^n$ e uno scalare r>0, possiamo costruire l'insieme intorno sferico/palla con centro x e raggio r in questo modo:

$$B(x,r) = \{y \in \mathbb{R}^n \mid |y-x| < r\}$$

▼ 2.3 - Successioni e funzioni nello spazio euclideo

Successioni in \mathbb{R}^n

Una **successione** $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n è una collezione di n successioni in \mathbb{R} :

$$x_k = (x_k^1, \dots, x_k^n)$$

Esempio:

• $(\frac{1}{k},k)_{k\in\mathbb{N}}$ è una successione in \mathbb{R}^2 .

È possibile visualizzare alcuni dei punti che fanno parte di questa successione nella seguente figura:

Successione convergente

Data una successione $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n e un vettore $a=(a_1,\ldots,a_n)$ si dice che:

$$x_k \mathop{\longrightarrow}\limits_{ ext{converge}} a ext{ per } k o \infty \iff egin{cases} \lim_{k o \infty} x_k^1 = a_1 \ \dots \ \lim_{k o \infty} x_k^n = a_n \end{cases}$$

Esempi:

- $(\frac{1}{k},\frac{k+2}{k+1}) \to (0,1)$, dunque la successione è convergente.
- $((-1)^k, \frac{1}{k})$ non è una successione convergente in quanto $\lim_{k \to \infty} (-1)^k$ è indefinito.

Funzioni

Dati 2 insiemi $A\subseteq\mathbb{R}^n, B\subseteq\mathbb{R}^q$ e data una funzione $f:A\to B$, il **grafico** di f può essere definito come l'insieme:

$$Graf(f) = \{(x, f(x)) \mid x \in A\} \subseteq A \times B$$

Funzioni radiali

Le **funzioni radiali** sono funzioni $f:\mathbb{R}^2 o \mathbb{R}$ che si scrivono nella forma:

$$f(x,y)=g(|(x,y)|)\quad g:[0,+\infty[
ightarrow\mathbb{R}$$

Esempi:

• $f(x,y) = x^2 + y^2 = |(x,y)|^2$

Innanzitutto creiamo l'insieme grafico di tale funzione: $Graf(f)=\{(x,y,x^2+y^2)\ |\ (x,y)\in\mathbb{R}^2\}.$

Per disegnare tale grafico è utile scrivere (x,y) come $(r\cos\theta,r\sin\theta)$. In questo modo abbiamo che $x^2+y^2=r^2\cos^2\theta+r^2\sin^2\theta=r^2(\cos^2\theta+\sin^2\theta)=r^2$.

Riscriviamo dunque l'insieme grafico utilizzando le coordinate polari: $Graf(f)=\{(r\cos\theta,r\sin\theta,r^2)\mid r\geq 0\}.$

Notiamo dunque che l'insieme appena ottenuto descrive il grafico di una parabola nello spazio \mathbb{R}^3 :

•
$$f(x,y) = 1 - \sqrt{x^2 + y^2} = 1 - |(x,y)|$$

Il grafico di tale funzione è il seguente:

Funzioni affini

Le funzioni affini sono funzioni $f:\mathbb{R}^2 o \mathbb{R}$ che si scrivono nella forma:

$$f(x,y) = ax + by + c$$
 $a,b,c \in \mathbb{R}$

Notiamo che tali funzioni individuano insiemi grafici del tipo $Graf(f)=\{(x,y,ax+by+c)\mid (x,y)\in\mathbb{R}^2\}$, i quali descrivono dei piani in \mathbb{R}^3 .

Esempi:

•
$$f(x,y) = -y$$

Per disegnare il grafico di questa funzione è possibile effettuarne l'intersezione con due piani. Intersechiamo con il piano x=0 e otteniamo $Graf(f)\cap x=0:\{(0,y,-y)\mid y\in\mathbb{R}\}$, ossia la seguente retta:

Intersechiamo ora con un altro piano, ad esempio x=1, e otteniamo $Graf(f)\cap x=1$: $\{(1,y,-y)\mid y\in\mathbb{R}\}$, ossia la seguente retta:

Tramite tali intersezioni possiamo dunque prevedere il grafico della funzione data, il quale è il seguente piano:

Funzioni continue

Sia
$$f:A o B\quad (A\subseteq \mathbb{R}^n, B\subseteq \mathbb{R}^q)$$
, f si dice **continua** in \overline{x} se:
$$\forall \ (x_k)_{k\in \mathbb{N}}, (x_k) \text{ successione in } A, x_k \xrightarrow[k o +\infty]{} \overline{x} \implies f(x_k) \xrightarrow[k o +\infty]{} f(\overline{x})$$

È possibile dimostrare che tale definizione di funzione continua è equivalente alla seguente:

$$orall \ \epsilon > 0, \ \exists \ \delta \ ext{ t.c. } |f(x) - f(\overline{x})| < \epsilon \quad orall \ x \in A \cup B(\overline{x}, \delta)$$

Proposizioni

• Tutte le funzioni elementari sono continue nei loro domini.