Proving something is a domain

July 14, 2016

Given a set X, an element $\bot \in X$ and a relation $\sqsubseteq \subseteq X \times X$ we must prove

- $\forall x \in X$. $\bot \sqsubseteq X$
- That *⊆* is a partial order. For this we must prove that it is reflexive, antisymmetric and transitive, which are the following properties:
 - $\forall x \in X. \ x \sqsubseteq x$
 - $\forall x, y \in X. \ x \sqsubseteq y \land y \sqsubseteq x \Rightarrow x = y$
 - $\forall x, y, z \in X. \ x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- For all chains $\stackrel{\rightharpoonup}{x}$, $\stackrel{\rightharpoonup}{x}$ has a limit. To prove this two properties we must prove that $\exists z \in X$ such that:
 - $\forall i.x_i \sqsubseteq z$ (upper bound)
 - $\forall y.(\forall i.x_i \sqsubseteq y) \Rightarrow z \sqsubseteq y \qquad (least upper bound)$