Flerdimensjonal analyse (MA1103)

Øving 8

Oppgave 1 (3.9: 8)

Finn en parametrisering av den delen av kuleflaten $x^2 + y^2 + z^2 = 4$ som ligger over xy-planet og inni kjeglen $z^2 = 3(x^2 + y^2)$.

Oppgave 2 (5.7: 1)

Vis at funksjonen $\mathbf{F}(x,y) = (x^2 + y + 1, x - y - 2)$ har en omvendt funksjon \mathbf{G} definert i en omegn rundt (1,-2) slik at $\mathbf{G}(1,-2) = (0,0)$. Finn den deriverte til \mathbf{G} i punktet (1,-2). Vis at \mathbf{F} også har en omvendt funksjon \mathbf{H} definert i en omegn om (1,-2) slik at $\mathbf{H}(1,-2) = (-1,-1)$. Finn $\mathbf{H}'(1,-2)$.

Oppgave 3 (5.7: 3)

Vis at gjennom ethvert punkt (x_0, y_0) på kurven med ligning $x^3 + y^3 + y = 1$ går det en funksjon y = f(x) som tilfredsstiller ligningen. Finn $f'(x_0)$.

Oppgave 4 (5.7: 4)

La $f: \mathbb{R}^3 \to \mathbb{R}$ være funksjonen $f(x,y,z) = xy^2e^z + z$. Vis at det finnes en funksjon g(x,y) definert i en omegn om (-1,2) slik at g(-1,2) = 0 og f(x,y,g(x,y)) = -4. Finn $\frac{\partial g}{\partial x}(-1,2)$ og $\frac{\partial g}{\partial y}(-1,2)$.

Oppgave 5 (5.9: 1)

Finn de stasjonære punktene til funksjonen:

a)
$$f(x,y) = x^2 + 2y^2 - 4x + 4y$$

b)
$$f(x,y) = x^2 + y^2 - xy$$

Oppgave 6 (5.9: 3)

Finn det stasjonære punktet til funksjonen

$$f(x,y) = 3x^2 + 2xy + 2y^2 - 2x + 6y$$

og avgjør om det er et lokalt maksimumspunkt, minimumspunkt eller sadelpunkt.

Oppgave 7 (5.9: 4)

Finn de stasjonære punktene til funksjonen

$$f(x,y) = x^3 + 5x^2 + 3y^2 - 6xy$$

og avjør om de er lokale maksimumspunkter, minimumspunkter eller sadelpunkter.

Oppgave 8 (5.9:7)

Finn de stasjonære punktene til funksjonen

$$f(x, y, z) = xyz - x^2 - y^2 - z^2$$

og avgjør om de er lokale maksimumspunkter, minimumspunkter eller sadelpunkter.

Oppgave 9 (5.9: 14)

Oslo kommune planlegger å bygge et akvarium med volum 5000 m³. Kostnadene er gitt ved:

Fronten - en glassplate: 1000 kr. per m².

Sidekantene - 3 stk. i stål: 300 kr. per m².

Bunnen - i sement: 500 kr. per m².

Anta at glassplaten har lengde l og høyde h. Forklar hvorfor materialene koster

$$f(l,h) = 100 \left(13lh + \frac{30000}{l} + \frac{25000}{h} \right).$$

Finn l og h som minimaliserer materialkostnadene.

Oppgave 10 (*A* 5.8: 3)

La A være en lukket og begrenset delmengde av \mathbb{R}^m og anta at $\mathbf{F}: A \to A$ er en kontinuerlig funksjon.

- a) Vis at funksjonen $f: A \to \mathbb{R}$ gitt ved $f(\mathbf{x}) = ||\mathbf{x} \mathbf{F}(\mathbf{x})||$ er kontinuerlig. Forklar at f har et minimumspunkt.
- b) Anta at $\|\mathbf{F}(\mathbf{x}) \mathbf{F}(\mathbf{y})\| < \|\mathbf{x} \mathbf{y}\|$ for alle $\mathbf{x}, \mathbf{y} \in A$, $\mathbf{x} \neq \mathbf{y}$. Vis at \mathbf{F} har et entydig fikspunkt. (*Hint:* Bruk minimumspunktet fra a).)
- c) Vis ved et eksemplet at dersom vi dropper betingelsen om at A er lukket og begrenset, så behøver ikke \mathbf{F} ha et fikspunkt.

A: Denne oppgave er en ekstra oppgave (frivillig), som er litt mer teoretisk eller omfangsrik.

Oppgavene finnes i boka Flervariabel analyse med lineær algebra av T.Lindstrøm og K.Hveberg. Se henvisningen i parentes.