Devoir surveillé n°5 Version n°2

Durée: 3 heures, calculatrices et documents interdits

I. Développement en série de Engel.

Soit \mathcal{T} l'ensemble des suites *croissantes* de nombres *entiers supérieurs ou égaux* à 2. A chaque suite $(q_n)_{n\in\mathbb{N}^*}$ élément de \mathcal{T} on associe la suite $(s_n)_{n\in\mathbb{N}^*}$ définie par :

$$s_1 = \frac{1}{q_1}, \quad s_2 = \frac{1}{q_1} + \frac{1}{q_1 q_2}, \quad \cdots, \quad s_n = \frac{1}{q_1} + \frac{1}{q_1 q_2} + \cdots + \frac{1}{q_1 q_2 \cdots q_n}$$

- 1) Soit λ un nombre réel strictement supérieur à 1. Démontrer que $\left(\sum_{k=1}^{n} \frac{1}{\lambda^{k}}\right)_{n \in \mathbb{N}^{*}}$ est convergente et que sa limite est un élément de $\left[\frac{1}{\lambda}, \frac{1}{\lambda 1}\right]$.
- 2) a) Démontrer que, pour toute suite $(q_n)_{n\in\mathbb{N}^*}$ élément de \mathcal{T} la suite $(s_n)_{n\in\mathbb{N}^*}$ converge et que sa limite x est un élément de [0,1].
 - **b)** Montrer que $q_1 = 1 + \left\lfloor \frac{1}{x} \right\rfloor$ et que, pour tout entier k non nul,

$$q_{k+1} - 1 = \left| \frac{1}{q_1 q_2 \cdots q_k (x - s_k)} \right|.$$

- 3) Si $(q_n)_{n\in\mathbb{N}^*}$ est une suite stationnaire de \mathcal{T} , montrer que la limite x de la suite $(s_n)_{n\in\mathbb{N}^*}$ est un nombre rationnel.
- 4) a) Soit $(q_n)_{n\in\mathbb{N}^*}$ et $(q'_n)_{n\in\mathbb{N}^*}$ deux suites dans \mathcal{T} . Les suites qui leurs sont respectivement associées sont notées $(s_n)_{n\in\mathbb{N}^*}$ et $(s'_n)_{n\in\mathbb{N}^*}$. La limite de $(s_n)_{n\in\mathbb{N}^*}$ est x, celle de $(s'_n)_{n\in\mathbb{N}^*}$ est x'.

On suppose qu'il existe un entier p tel que $q_p < q_p'$ et que

$$\forall n \in \{1, \dots, p-1\}, q_n = q'_n$$

Montrer que x' < x.

- **b)** Montrer que l'application φ de \mathcal{T} dans]0,1] qui, à chaque suite $(q_n)_{n\in\mathbb{N}^*}$, associe la limite de $(s_n)_{n\in\mathbb{N}^*}$ est injective.
- 5) On veut maintenant montrer que φ est surjective. Soit $x \in]0,1]$. Nous définissons par récurrence les suites suivantes :
 - $\bullet x_1 = x$:
 - Pour tout $n \in \mathbb{N}^*$, $q_n = \left\lfloor \frac{1}{x_n} \right\rfloor + 1$ et $x_{n+1} = q_n x_n 1$.

- a) Montrer que pour tout $n \in \mathbb{N}^*$, $x_n > 0$.
- b) Montrer que la suite (x_n) est décroissante, et que pour tout $n \in \mathbb{N}^*$, $q_n \ge 2$.
- c) Pour tout $n \in \mathbb{N}^*$, on pose $s_n = \frac{1}{q_1} + \frac{1}{q_1 q_2} + \cdots + \frac{1}{q_1 q_2 \cdots q_n}$. Exprimer s_n en fonction de x_n et des q_1, \ldots, q_n , et en déduire que la suite (s_n) tend vers x.
- d) Conclure.

La suite (s_n) ainsi construite s'appelle le développement de x en série de Engel.

6) En reprenant les notations de la question 5), déterminer la suite des entiers $(q_n)_{n\in\mathbb{N}^*}$ du développement de Engel de :

$$x = \frac{1}{2} \tag{1}$$

$$x = \frac{3}{4} \tag{2}$$

$$x = \frac{3}{4} \tag{2}$$

- 7) En reprenant les notations de la question 5), montrer que x est rationnel si et seulement si les entiers q_n de son développement de Engel forment une suite stationnaire.
- 8) On rappelle que $e = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{1}{k!}$. Montrer que e est irrationnel.

Théorèmes de Lagrange et de Cauchy.

Soit (G, \times) un groupe fini. On adoptera des notations multiplicatives. Notamment, on notera 1 le neutre de G.

L'objectif de ce problème est d'établir deux résultats élémentaires sur G – les théorèmes de Lagrange et de Cauchy – puis d'en déduire deux applications.

Un ensemble X est dit fini s'il possède un nombre fini d'éléments. Ce nombre d'éléments est appelé cardinal de X et est noté |X|.

On acceptera les trois résultats élémentaires de dénombrement suivants :

- s'il existe une bijection entre deux ensembles finis, ces deux ensembles on le même cardinal;
- dans un ensemble à n éléments, si l'on prend n+1 éléments, deux aux moins de ces éléments sont égaux (principe des tiroirs);
- si A et B sont deux ensembles finis de même cardinal vérifiant $A \subset B$, alors A = B.

I – Le théorème de Lagrange

Soit H un sous-groupe de G. On définit sur G la relation de congruence modulo H par

$$a \equiv b \ [H] \text{ si } ab^{-1} \in H.$$

On remarquera que

$$a \equiv b \ [H] \Leftrightarrow \exists h \in H, \ a = hb.$$

- 1) Montrer que la relation de congruence modulo H est une relation d'équivalence sur G.
- 2) Montrer que H est une classe d'équivalence pour cette relation.

- 3) Montrer que deux classes d'équivalence (quelconques) pour cette relation peuvent être mises en bijection l'une avec l'autre.
 - Indication : on pourra étudier l'effet des translations (i.e. des transformations de la forme $x \mapsto xa$, où $a \in G$) sur les classes d'équivalence de cette relation.
- 4) En déduire le théorème de Lagrange : |H| divise |G|.

II - Ordre d'un élément

Pour un élément x de G, on définit l'orbite de x par

$$\langle x \rangle = \left\{ \left. x^k \mid k \in \mathbb{Z} \right. \right\}$$

et l'ordre de x par

$$o(x) = \min \left\{ k \in \mathbb{N}^* \mid x^k = 1 \right\}.$$

- 5) Montrer que $\langle x \rangle$ est un sous-groupe de G.
- **6)** Montrer que o(x) est bien défini.
- 7) Montrer que $\langle x \rangle$ est de cardinal o(x).

III – Le théorème de Cauchy

Soit p un nombre premier divisant |G|. On considère l'ensemble E des p-uplets d'éléments de G dont le produit vaut 1:

$$E = \{ (x_1, \dots, x_p) \in G^p \mid x_1 \dots x_p = 1 \}.$$

Une permutation circulaire d'un p-uplet (x_1, \ldots, x_p) est un des p-uplets suivants :

$$(x_k,\ldots,x_p,x_1,\ldots,x_{k-1}),$$

où k parcourt l'ensemble [1, p].

On définit sur E la relation \sim par :

$$(x_1,\ldots,x_p)\sim (y_1,\ldots,y_p)$$
 si (y_1,\ldots,y_p) est une permutation circulaire de (x_1,\ldots,x_p) .

On observe aisément que \sim définit une relation d'équivalence sur E (on ne demande pas de démontrer cela).

8) Soit $x_1, \ldots, x_{p-1} \in G$. Combien existe-t-il d'éléments x de G pour lesquels

$$(x_1,\ldots,x_{p-1},x) \in E$$
?

- 9) En déduire le nombre d'éléments de E.
- **10)** Soit $(x_1, \ldots, x_p) \in E$. Montrer que toute permutation circulaire de (x_1, \ldots, x_p) est aussi un élément de E.

- 11) Soit $(x_1, \ldots, x_p) \in G$. Montrer que s'il existe $k \in [2, p]$ tel que la permutation circulaire $(x_k, \ldots, x_p, x_1, \ldots, x_{k-1})$ soit égale à (x_1, \ldots, x_p) , alors $x_1 = \cdots = x_p$. Indication: on n'hésitera pas à étendre le p-uplet (x_1, \ldots, x_p) à une famille $(x_i)_{i \in \mathbb{Z}}$ par p-périodicité.
- 12) Que peut-on donc dire du nombre d'éléments d'une classe d'équivalence pour \sim , au vu des deux questions précédentes?
- 13) En déduire que le nombre d'éléments x de G vérifiant $x^p = 1$ est un multiple de p.
- 14) En déduire le théorème de Cauchy : il existe $x \in G$ tel que o(x) = p.

IV – Deux applications

On dit que G est cyclique s'il existe $x \in G$ tel que $\langle x \rangle = G$.

- 15) On suppose qu'il existe un nombre premier p tel que |G| = p. Montrer que G est cyclique.
- 16) On suppose que G est commutatif et qu'il existe deux nombres premiers distincts p et q tels que |G| = pq. Montrer que G est cyclique.

