Name: Abhinav Swaminathan Class: D15C Roll No: 01

Experiment 1

Aim: Introduction to Data science and Data preparation using Pandas steps.

Theory:

Data science is the study of data that helps us derive useful insight for business decision making. Data Science is all about using tools, techniques, and creativity to uncover insights hidden within data. It combines math, computer science, and domain expertise to tackle real-world challenges in a variety of fields.

Data science involves these key steps:

- **Data Collection:** Gathering raw data from various sources, such as databases, sensors, or user interactions.
- Data Cleaning: Ensuring the data is accurate, complete, and ready for analysis.
- Data Analysis: Applying statistical and computational methods to identify patterns, trends, or relationships.
- **Data Visualization:** Creating charts, graphs, and dashboards to present findings clearly.
- **Decision-Making:** Using insights to inform strategies, create solutions, or predict outcomes.

Dataset Overview:

The dataset consists of air pollution readings across various cities in India over the last five years. Below are the key attributes:

- City: The city where pollution data was recorded.
- **Date:** The timestamp of the measurement.
- PM2.5 & PM10: Particulate matter concentration. (The numeric figure represents the diameter in micro-meter)
- NO, NO2, NOx, NH3: nitrogen-based pollutants.
- CO, SO2, O3: Harmful environmental pollutants.
- **Benzene, Toluene, Xylene:** Hazardous air pollutants, usually generated by industries and power plants.
- AQI: Air Quality Index representing overall pollution level.

Name: Abhinav Swaminathan Class: D15C Roll No: 01

• AQI_Bucket: Categorized pollution levels (Good, Moderate, Poor, etc.).

Problem Statement:

The objective is to analyze air pollution trends across Indian cities and identify key pollutants affecting air quality. Since the dataset provides information over cities of the past 5 years, we can use this information to predict air quality of a particular region in the future.

- Understanding variations in AQI across cities and time periods.
- Identifying major pollutants contributing to poor air quality.
- Visualizing trends, drawing meaningful conclusions and attempting future analysis from the dataset.

Code:

Loading the Dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats

# Load dataset
df = pd.read_csv('Data.csv')
```

Basic Dataset Information

df.shape(): This returns a tuple indicating the number of rows and columns in the DataFrame.

df.info(): This prints "dataset info" and displays the DataFrame's structure including data types and non-null counts.

df.describe(): This prints "dataset description" and shows summary statistics like mean, standard deviation, and percentiles for numerical columns

Class: D15C

```
print("Dataset Shape:", df.shape)
print("\nDataset Info:")
df.info()
print("\nDataset Description:")
print(df.describe())
Dataset Shape: (29531, 16)
```

Dataset Description:										
	PM2.5	PM10	NO	NO2	NOx	\				
count	24933.000000	18391.000000	25949.000000	25946.000000	25346.000000					
mean	67.450578	118.127103	17.574730	28.560659	32.309123					
std	64.661449	90.605110	22.785846	24.474746	31.646011					
min	0.040000	0.010000	0.020000	0.010000	0.000000					
25%	28.820000	56.255000	5.630000	11.750000	12.820000					
50%	48.570000	95.680000	9.890000	21.690000	23.520000					
75%	80.590000	149.745000	19.950000	37.620000	40.127500					
max	949.990000	1000.000000	390.680000	362.210000	467.630000					
	NH3	CO	502	03	Benzene	\				
count	19203.000000	27472.000000	25677.000000	25509.000000	23908.000000					
mean	23.483476	2.248598	14.531977	34.491430	3.280840					
std	25.684275	6.962884	18.133775	21.694928	15.811136					
min	0.010000	0.000000	0.010000	0.010000	0.000000					
25%	8.580000	0.510000	5.670000	18.860000	0.120000					
50%	15.850000	0.890000	9.160000	30.840000	1.070000					
75%	30.020000	1.450000	15.220000	45.570000	3.080000					
max	352.890000	175.810000	193.860000	257.730000	455.030000					
	Toluene	Xylene	AQI							
count	21490.000000	11422.000000	24850.000000							
mean	8.700972	3.070128	166.463581							
std	19.969164	6.323247	140.696585							
min	0.000000	0.000000	13.000000							
25%	0.600000	0.140000	81.000000							
50%	2.970000	0.980000	118.000000							
75%	9.150000	3.350000	208.000000							
max	454.850000	170.370000	2049.000000							

Removing Duplicate Entries

Creating Dummy Variables (One-Hot Encoding) for AQI Bucket:

This creates dummy data out of "AQI Bucket" for the various severity levels of pollution. This helps to convert categorical data to numerical data and helps in analysis in the algorithm

We use df.head() to verify this.

```
[11] df = pd.get_dummies(df, columns=['AQI_Bucket'], drop_first=True)

os print(df.head(10))
```

∓		City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	1
_	2123	Amaravati	25-11-2017		124.50	1.44	20.50	12.08	10.72	0.12	
	2124	Amaravati	26-11-2017		129.06	1.26	26.00	14.85	10.28	0.14	
	2125	Amaravati	27-11-2017		135.32	6.60	30.85	21.77	12.91	0.11	
	2126	Amaravati	28-11-2017		104.09	2.56	28.07	17.01	11.42	0.09	
	2127	Amaravati	29-11-2017		114.84	5.23	23.20	16.59	12.25	0.16	
	2128	Amaravati	30-11-2017		114.86	4.69	20.17	14.54	10.95	0.12	
	2129	Amaravati	01-12-2017		113.56	4.58	19.29	13.97	10.95	0.10	
	2130		02-12-2017		140.20	7.71	26.19	19.87	13.12	0.10	
	2131		03-12-2017		130.52	0.97	21.31	12.12	14.36	0.15	
	2132		04-12-2017		125.00	4.02	26.98	17.58	14.41		
		502	03 Benzene	Toluen	e Xyle	ne	AOI AO	I_Bucke	t Moder	ate \	
	2123		.09 0.20		0.0000 0.000000000000000000000000000000		4.0			rue	5.00
	2124		.44 0.22				7.0		Т	rue	
	2125		.81 0.29				8.0			rue	
	2126		3.18 0.17				8.0			rue	
	2127		.74 0.21				3.0		Т	rue	
	2128		3.09 0.16				5.0			rue	
	2129		3.80 0.17				1.0			rue	
	2130	19.37 128	3.73 0.25	2.7	9 0.	07 19	1.0		Т	rue	
	2131	11.41 114	.80 0.23	3.8	2 0.	04 22	7.0		Fa	lse	
	2132	9.84 112	2.41 0.31	3.5	3 0.	09 16	8.0		Т	rue	
		AQI Bucket	Poor AQI_B	ucket Sa	tisfact	ory A	QI Buck	et Seve	re \		
	2123		False	-		lse		Fal			
	2124		False		Fa	lse		Fal	se		
	2125		False		Fa	lse		Fal	se		
	2126		False		Fa	lse		Fal	se		
	2127		False		Fa	lse		Fal	se		
	2128		False		Fa	lse		Fal	se		
	2129		False		Fa	lse		Fal	se		
	2130		False		Fa	lse		Fal	se		
	2131		True		Fa	lse		Fal	se		
	2132		False		Fa	lse		Fal	se		
		AQI_Bucket	_Very Poor								
	2123		False								
	2124		False								
	2125		False								
	2126		False								
	2127		False								

Identifying Outliers manually using the Standardization Approach (Z-Score Method)

To identify outliers manually we use the standardization approach (z score method). We find mean and standard deviation of the vehicle weight and calculate its z score; if it's less than -3 or greater than 3 means it's an outlier.

```
#By Z-score method
    mean_aqi = df['AQI'].mean()
    std_aqi = df['AQI'].std()
    print (f"Mean of AQI: {mean_aqi}")
    print (f"Standard Deviation of AQI: {std_aqi}")
    df['Z_Score'] = (df['AQI'] - mean_aqi) / std_aqi
    print(df[['AQI', 'Z_Score']])
    # Identify outliers based on the Z-score
    outliers =df[df['Z_Score'].abs() > 3]
    print (outliers)
→ Mean of AQI: 138.48802144412798
    Standard Deviation of AQI: 91.64490404411067
    AQI Z_Score
2123 184.0 0.496612
    2124 197.0 0.638464
    2125 198.0 0.649376
2126 188.0 0.540259
    2127 173.0 0.376584
    29523 86.0 -0.572733
    29524 77.0 -0.670938
29525 47.0 -0.998288
29526 41.0 -1.063758
    29527 70.0 -0.747319
    [5969 rows x 2 columns]
```

_		AQI_Bucket_Moderate	AQI_Bucket_Poor A	QI_Bucket_Satisfactory	1
₹	3308	False	False	False	
	4265	False	False	False	
	10229	False	False	False	
	10230	False	False	False	
	10521	False	False	False	
	14880	False	False	False	
	14881	False	False	False	
	14994	False	False	False	
	14995	False	False	False	
	25531	False	False	False	
		AQI Bucket Severe A	QI Bucket Very Poor	Z Score	
	3308	True	False	3.540971	
	4265	True	False	3.704647	
	10229	True	False	3.639176	
	TOZZS	11 uc	Larse	3.033170	
	10230	True	False		
				3.442766	
	10230	True	False	3.442766 3.159062	
	10230 10521	True True	False False	3.442766 3.159062	
	10230 10521	True True 	False False	3.442766 3.159062 3.802852	
	10230 10521 14880	True True True	False False False	3.442766 3.159062 3.802852 3.966527	
	10230 10521 14880 14881	True True True True	False False False False	3.442766 3.159062 3.802852 3.966527 3.311826	

Normalizing AQI using Min-Max Scaling

We normalize the data across the AQI on a scale of 0 to 1.

```
[25] min_aqi = df['AQI'].min()
     max aqi = df['AQI'].max()
     df['AQI_normalized'] = (df['AQI'] - min_aqi) / (max_aqi - min_aqi)
     print(df [['AQI', 'AQI_normalized']])
             AQI AQI normalized
     2123 184.0
                    0.246177
     2124 197.0
                       0.266055
     2125
           198.0
                       0.267584
     2126 188.0
                     0.252294
     2127 173.0
                       0.229358
            ---
     29523 86.0
                       0.096330
     29524 77.0
                     0.082569
     29525 47.0
                     0.036697
     29526 41.0
                       0.027523
     29527 70.0
                       0.071865
     [5969 rows x 2 columns]
```

Conclusion

This experiment focused on preparing and analyzing air pollution data in India by addressing common data quality issues. Missing values were managed through replacement and removal techniques, while duplicate entries were eliminated to ensure data integrity. Outliers in AQI values were identified using the Z-score method, and Min-Max scaling was applied to normalize the data for better comparison. These preprocessing steps helped create a more structured and reliable dataset, which will allow for meaningful analysis of pollution trends.