FIRST SEMESTER 2022-2023 Course Handout Part II

Date: 29-08-2022

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : AN F311 (3 0 3)

Course Title : Principles of Aerodynamics

Instructor-in-charge : Dr. Pardha Saradhi Instructors : Dr. Pardha Saradhi

Scope and objective of the course:

This course covers the first hand fundamentals about aerodynamics, i.e. the study of the flow of air about a body more specifically of an airplane, but much of the aerodynamics in this course is relevant to a wide variety of applications from sail boats to automobiles to birds. This course extends fluid mechanic concepts to the aerodynamic performance of wings and bodies in sub/supersonic regimes.

The students will be able to formulate and apply appropriate aerodynamic models to predict the forces on and performance of realistic three-dimensional configurations; assess the applicability of aerodynamic models to predict the forces on and performance of realistic three-dimensional configurations and estimate the errors resulting from their application; and be able to Perform a computational and experimental aerodynamic analysis and design.

Course Pre/Co- requisite (if any)& Catalogue / Bulletin Description: ME F212 (Fluid Mechanics)

Text Books:

TB 1: Anderson, J. D., Jr., Fundamentals of Aerodynamics, Tata McGraw Hill 2001.

Reference books:

RB 1: Bertin, J. J., Aerodynamics for Engineers, Pearson Education, 2002.

Course plan*:

SI. No.	Learning objectives	Topics to be covered Chapter in the Text Book		No. of lecture(s)
1	Introduction	Airfoils, wings and their nomenclature; lift, drag and pitching moment coefficients; centre of pressure and aerodynamic center, flow similarity, types of flows Ch. 1		1-5
2	Fundamental Principles	Scalar and vector fields, velocity potential, line, surface and volume integrals, mass, Ch momentum and energy equation		6-11
3	Inviscid Incompressible Flow	Bernoulli's equation, Laplace Equation, Uniform flows, Source and Sink, Flow over different bodies, , circulation and lift generation, Kutta-Joukovskii theorem	Ch. 3	12-16
4	Incompressible Flow over Airfoils and Finite Wings	Airfoil nomenclature and characteristics, Airfoil Theory, Kutta Condition, Classical Thin Airfoil Theory, Finite Wing characteristics, Biot-Savart Law, Helmholtz Theorem, Prandtl's Theory	Ch. 4-5	17-24
5	Compressible flow	Method of superposition, thin airfoil theory, source and vortex methods. Subsonic compressible flow past airfoils; Critical Mach number, drag divergence Mach number, supercritical airfoils, effect of sweep, area rule.	Ch.7	25-30
6	Subsonic	Full and perturbation velocity potential	31-33	

	Compressible	formulations; Supercritical Airfoils, Prandtl and Glauert compressibility corrections.			
	Flow				
7	Transonic and Supersonic Flow	Transonic flow past airfoils, transonic similarity rules; Supersonic flow past airfoils, linearised supersonic flow, shock expansion method.	Ch. 12	34-36	
8	Hypersonic Flow	Hypersonic flows, real gas effects, Newtonian theory, lift and drag in hypersonic flows.	Ch. 14	37-38	
9	Viscous Flow	Qualitative aspects, NS Equation, Viscous		39-42	

Evaluation Scheme:

Component	Duration (min.)	Weightage (%)	Date & Time	Nature of Component
Mid-Sem	90 Min.	30%	02/11 9.00 - 10.30AM	Close book
Compre	180 Min.	40%	22/12 FN	Close book
Assignments		15%	Will be announced in class	Open book
Project		15%	Will be announced in class	Open Book

Chamber Consultation Hour: To be announced in the class room.

Notices: All notices concerning this course shall be communicated only through **CMS** (the institute's web based course management system) students are advised to visit CMS regularly for latest updates.

Make-up Policy: Make-up shall be given only to the genuine cases with prior confirmation. **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE