MATH 101 Study Notes Integral Calculus with Applications

Yecheng Liang

Contents

1.	Gene	eral Principles	. 3	
	1.1.	Special Cases	. 3	
	1.2.	Sigma Notation	. 3	
2.	Definite Integral			
	2.1.	Estimation	. 4	
	2.2.	Signed Area	. 5	
	2.3.	Precise Calculation	. 5	
3.	Fund	amental Theorem of Calculus	. 7	
	3.1.	Part 1	. 7	
	3.2.	Integral Properties	. 7	
	3.3.	Anti-derivative	. 7	
	3.4.	Part 2	. 8	
	3.5.	Even and Odd Functions	. 8	
	3.6.	Integration by Substitution	. 8	
		3.6.1. Substitution with Definite Integrals	. 9	
		3.6.2. Special Integrals	10	
	3.7.	Area Between Curves	10	
	3.8.	Trigonometric Substitution	10	
	3.9.	Integration by Parts	11	
	3.10.	Simpson's rule	12	
4.	Impr	oper Integrals	13	
	4.1.	Redefining Unbounded Improper Integral	13	
	4.2.	Redefining Improper Integral with Infinite Interval	13	
		4.2.1. When Both Bounds Are Infinity	14	
	4.3.	Determining Convergence	14	
		4.3.1. Value Comparison Test	14	
		4.3.2. Limit Comparison Test	14	
5.	Rand	om Variables and Probability Density Functions	15	
	5.1.	Expected Value	15	
	5.2.	Variance and Standard Deviation	15	
		5.2.1. Law of the Unconscious Statistician	15	
6.	Sequ	ence and Series	16	
	6.1.	Divergence Test	16	
	6.2.	Integral Test	16	
	6.3.	Geometric Series	16	
	6.4.	Ratio Test	17	
	6.5.	Power Series	17	
		6.5.1. Differentiation and Integration	18	
		6.5.2. Other Operations	18	
	6.6.	Comparing Series Elements		
De	efiniti	ons	19	

1. General Principles

1.1. Special Cases

In this course,

• $\log is \ln$.

1.2. Sigma Notation

$$\sum_{i=1}^{n} i \tag{1}$$

means 'the sum of i from 1 to n, where i is an integer'.

2. Definite Integral

$$\int_{a}^{b} f(x) \, \mathrm{d}x \tag{2}$$

means 'the integral of f(x) from a to b'.

Take f(x) = |x|, its integral from -1 to 1 is:

$$\int_{-1}^{1} |x| \, \mathrm{d}x \tag{3}$$

looks like:

2.1. Estimation

Right Riemann Sum (RRS) is an estimation of the area under the curve using rectangles with the right endpoint as the height.

For example,

$$\int_0^8 \sqrt{x} \, \mathrm{d}x \,. \tag{4}$$

Using RRS with 4 rectangles, we have:

- 1. each rectangle has width $\frac{8-0}{4} = 2$,
- 2. the right endpoints are 2, 4, 6, 8,
- 3. the heights are $\sqrt{2}$, $\sqrt{4}$, $\sqrt{6}$, $\sqrt{8}$.

That gives us the estimation:

$$\sum_{i=1}^{4} 2\sqrt{2i} = 2\sqrt{2} + 2\sqrt{4} + 2\sqrt{6} + 2\sqrt{8}$$
 (5.1)

$$\approx 2.83 + 4 + 5.29 + 5.66 \tag{5.2}$$

$$= 17.78.$$
 (5.3)

Similarly, Left Riemann Sum (LRS), Midpoint Riemann Sum (MRS), and Trapezoidal Riemann Sum (TRS) exist.

The generalized formula with n rectangles/trapeziums from a to b are:

$$RRS(a, b, n) = \sum_{i=1}^{n} f(x_i) \Delta x$$
 (6.1)

$$LRS(a,b,n) = \sum_{i=1}^{n} f(x_{i-1}) \Delta x \tag{6.2}$$

$$MRS(a,b,n) = \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x$$
 (6.3)

$$TRS(a, b, n) = \sum_{i=1}^{n} (f(x_{i-1}) + f(x_i)) \frac{\Delta x}{2},$$
(6.4)

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i\Delta x$.

For an increasing function (f'(x) > 0), RRS is an overestimation, and LRS is an underestimation. For a function concave up (f''(x) > 0), TRS is an overestimation.

2.2. Signed Area

If the 'area under the curve' is below the x-axis, it can be called 'negative'. Hence, the integral of a function can be interpreted as the signed area of a curve, which can be positive or negative.

Say, if we have an odd function (π rotation symmetry about the origin), then its signed area/integral over a symmetric interval is 0.

2.3. Precise Calculation

Using Riemann Sums, we can see that the more rectangles we use, the closer the estimation is to the actual value.

So, let's bust up n to infinity:

$$\lim_{n \to \infty} \text{RRS}(a, b, n) = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \tag{7.1}$$

$$=$$
 the actual signed area (7.2)

= wait isn't this the definition of the integral?
$$(7.3)$$

$$= \int_{a}^{b} f(x) \, \mathrm{d}x \,. \tag{7.4}$$

3. Fundamental Theorem of Calculus

3.1. Part 1

The Fundamental Theorem of Calculus (FTC) states that the derivative of the integral of a function is the function itself.

$$\left(\int_{a}^{x} f(t) \, \mathrm{d}t\right)' = f(x). \tag{8}$$

3.2. Integral Properties

Integral with range a to b is a linear operator:

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \tag{9.1}$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$
 (9.2)

Scaling and summing are also allowed:

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$
(10.1)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$
 (10.2)

However, the integral of a product is not the product of integrals:

$$\int_{a}^{b} f(x)g(x) dx \neq \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx,$$
(11)

nor can an integral 'scale' like a scalar:

$$\int_{a}^{b} f(x)g(x) dx \neq g(x) \int_{a}^{b} f(x) dx.$$
 (12)

3.3. Anti-derivative

The anti-derivative of a function f(x) is a function F(x) such that F'(x) = f(x).

For example, the anti-derivative of x^n is $\left(\frac{1}{n+1}\right)x^{n+1}+c$, where c is a constant. c can be any number, since the derivative of a constant is 0.

Unfortunately, there is no systematic way to find the anti-derivative of a function, but there are some common rules to follow.

Function	Anti-derivative
$\frac{1}{x}$	$\ln(x) + c$
e^x	$e^x + c$
$\ln(x)$	$x\ln(x) - x + c$
$\tan(x)$	$-\ln(\cos(x)) + c$
$\sin(x)$	$-\cos(x) + c$
$\cos(x)$	$\sin(x) + c$
$\sec^2(x)$	$\tan(x) + c$
$\csc^2(x)$	$-\cot(x) + c$
$\sec(x)\tan(x)$	$\sec(x) + c$
$\csc(x)\cot(x)$	$-\csc(x) + c$

Also, there are functions we can't find the anti-derivative for, like e^{-x^2} .

3.4. Part 2

The second part of the Fundamental Theorem of Calculus states that the integral of a function can be calculated by finding an anti-derivative of the function. For a definite integral, such operation will cancel out the constant c:

$$\int_{a}^{b} f(x) dx = F(b) - c - F(a) - (-c)$$
(13.1)

$$= F(b) - F(a).$$
 (13.2)

To put it in other words, once c is fixed, the integral has bounds, and is definite.

3.5. Even and Odd Functions

Even function f(x) = f(-x), symmetrical about the *y*-axis. **Odd function** f(x) = -f(-x), symmetrical about the origin.

For an even function, the integral over a symmetric interval is twice the integral over half the interval:

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$
 (14)

For an odd function, the integral over a symmetric interval is 0:

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0. \tag{15}$$

3.6. Integration by Substitution

In essence, integration by substitution is the chain rule in reverse.

$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x)) \cdot g'(x) \tag{16.1}$$

$$\int f'(g(x)) \cdot g'(x) \, \mathrm{d}x = f(g(x)) + c. \tag{16.2}$$

When we have f'(g(x)) and g'(x), we can substitute u(x) = g(x) and u'(x) = g'(x) dx:

$$\int f'(g(x)) \cdot g'(x) \, \mathrm{d}x = \int f'(u(x))u'(x) \, \mathrm{d}x \tag{17.1}$$

$$= \int g(u) \, \mathrm{d}u \bigg|_{u=u(x)} \tag{17.2}$$

$$= f(u) + c. (17.3)$$

u would typically be something that is easy to differentiate.

For example, consider $\int 9 \sin^8(x) \cos(x) dx$. Let $u = \sin(x)$,

$$du = u'(x) dx (18.1)$$

$$= \cos(x) \, \mathrm{d}x \,. \tag{18.2}$$

$$\int 9\sin^8(x)\cos(x) dx = 9 \int \sin^8(x) \cos(x) dx$$
(19.1)

$$=9\int \sin^8(x)\,\underline{\mathrm{d}u}\tag{19.2}$$

$$=9\int u^8 \, \mathrm{d}u \tag{19.3}$$

$$=9 \times \left(\frac{1}{9}\right)u^9 + c \tag{19.4}$$

$$=\sin^9(x) + c. \tag{19.5}$$

The expression to become du would not always be so obvious, so it is a good idea to first factor the integrand. Also, you will want u to be some function with arguments more than just x, like \sqrt{x} or $(x^2 + 1)$.

3.6.1. Substitution with Definite Integrals

When substituting in a definite integral, the bounds must be changed accordingly:

$$\int_{a}^{b} f'(g(x)) \cdot g'(x) \, \mathrm{d}x = \int_{u(a)}^{u(b)} f'(u) \, \mathrm{d}u.$$
 (20)

Alternatively, we can first find the indefinite integral, then take in the bounds.

The general steps are:

- 1. Determine u.
- 2. Do not forget to substitute bounds.
- 3. Substitute to du.
- 4. Substitute the integrand with u.

3.6.2. Special Integrals

	Function	Anti-derivative	Note
	$\frac{1}{1+x^2}$	$\arctan(x) + c$	For denominator $a^2 + x^2$, use $\frac{1}{a} \arctan(\frac{x}{a})$. (Time a^2 to inside and substitute $u = \frac{x}{a}$.)
	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + c$	For denominator $\sqrt{a-(x-b)^2}$, use $\arcsin\left(\frac{x-b}{\sqrt{a}}\right)$. (Time \sqrt{a} to inside and substitute $u=\frac{x-b}{\sqrt{a}}$.)

Table 2: Integrals to Memorize

3.7. Area Between Curves

Turns out, we were integrating some others functions against function y=0 all this time! So to find area between curves, we can just subtract the two functions and integrate the result.

Note that when asked to find the area, *not signed area*, we should make sure to subtract the function with smaller value in bounds from the one with larger value. Usually it is done by finding intersections of the two functions and comparing the values around those points, or the derivatives at those points.

Sometimes, we will even break up the integral into multiple parts, where the functions are integrable. When it is hard to integrate in terms of x, try taking an inverse approach and integrate in terms of y.

3.8. Trigonometric Substitution

When dealing with integrals with square roots, we can use trigonometric substitution to simplify the integrand.

For example, consider $\int \sqrt{1-x^2} \, dx$. If the bounds like 0 to 1, we know it is a nice part area of circle, but what if not?

Forms of

$$\sqrt{a^2 - x^2}, \sqrt{a^2 + x^2}, \sqrt{x^2 - a^2}$$
 (25)

can be simplified by using trigonometric substitution: Known that

$$\sin^2(\theta) + \cos^2(\theta) = 1 \tag{26.1}$$

$$\tan^2(\theta) + 1 = \sec^2(\theta),\tag{26.2}$$

then let $x = a\sin(\theta)$ where a > 0,

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2(\theta)} \tag{27.1}$$

$$=\sqrt{a^2\cos^2(\theta)}\tag{27.2}$$

$$=a|\cos(\theta)|\tag{27.3}$$

$$= a\cos(\theta) \text{ when } -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}. \tag{27.4}$$

We can thus apply it, for example,

$$\int \sqrt{1 - x^2} \, \mathrm{d}x = \int \sqrt{1 - a^2 \sin^2(\theta)} \, a \cos(\theta) \, \mathrm{d}\theta \tag{28.1}$$

$$= \int a^2 \cos^2(\theta) \, \mathrm{d}\theta \tag{28.2}$$

$$= a^2 \int \cos^2(\theta) \, \mathrm{d}\theta \tag{28.3}$$

$$= a^2 \int \frac{1 + \cos(2\theta)}{2} \, \mathrm{d}\theta \tag{28.4}$$

$$=\frac{a^2}{2}\left(\theta + \frac{\sin(2\theta)}{2}\right) + c\tag{28.5}$$

$$= \frac{a^2}{2}(\theta + \sin(\theta)\cos(\theta)) + c, \qquad (28.6)$$

$$\frac{x}{a} = \sin(\theta) \tag{28.7}$$

$$\theta = \arcsin\left(\frac{x}{a}\right),\tag{28.8}$$

$$\cos(\theta) = \sqrt{1 - \sin^2(\theta)} \tag{28.9}$$

$$=\sqrt{1-\frac{x^2}{a^2}},$$
 (28.10)

$$\int \sqrt{1-x^2} \, \mathrm{d}x = \frac{a^2}{2} \left(\arcsin\left(\frac{x}{a}\right) + x\sqrt{1-\frac{x^2}{a^2}} \right) + c. \tag{28.11}$$

Memorize trigonometric identities!

3.9. Integration by Parts

Integration by parts is the reverse of the product rule.

$$(uv)' = u'v + uv'. (29)$$

When we have u and v', we can integrate by parts:

$$\int uv \, dx = u \int v \, dx - \int u' \left(\int v \, dx \right) dx \tag{30.1}$$

$$\int u'v \, \mathrm{d}x = uv - \int uv' \, \mathrm{d}x. \tag{30.2}$$

3.10. Simpson's rule

We already know that integrals can be estimated by Riemann sums, but all those sums can be rather inaccurate. What if, instead of using 2 points to form trapezoids or rectangles, we use 3 points to form parabolas?

Simpson's rule

$$\begin{split} \int_a^b f(x) \, \mathrm{d}x &\approx \frac{\Delta x}{3} [f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + \dots \\ &+ 2 f(x_{n-2}) + 4 f(x_{n-1}) + f(x_n)] \end{split} \tag{31}$$

where n is an *even* number.

4. Improper Integrals

Improper integral An integral either with an unbounded integrand, or taken over an infinite interval.

For example, $\int_{-1}^{1} \frac{1}{x^2}$ and $\int_{0}^{\infty} e^{-x}$ are improper.

4.1. Redefining Unbounded Improper Integral

If the integrand is discontinuous at some point or in some region, we can redefine it as one or more integrals with bounds approaching the discontinuities.

For example, given that f(x) has discontinuity at $c \in (a, b)$,

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx$$
 (32.1)

$$= \lim_{s \to a^{-}} \int_{a}^{s} f(x) \, \mathrm{d}x + \lim_{t \to c^{+}} \int_{t}^{b} f(x) \, \mathrm{d}x.$$
 (32.2)

Notably, the LHS converges when both expressions in the RHS converge.

For example, given

$$I = \int_0^5 \frac{-\cos\left(\frac{1}{x}\right)}{x^2} \, \mathrm{d}x,\tag{33}$$

notice that I discontinues at x = 0.

$$I = \lim_{t \to 0^+} \int_t^5 \frac{-\cos(\frac{1}{x})}{x^2} \, \mathrm{d}x \tag{34.1}$$

$$= \lim_{t \to 0^+} \int_{\frac{1}{t}}^{\frac{1}{5}} -\cos(u) \, \mathrm{d}u \tag{34.2}$$

$$= \lim_{t \to 0^+} \left(\sin\left(\frac{1}{5}\right) - \sin\left(\frac{1}{t}\right) \right). \tag{34.3}$$

The integral does not exist.

4.2. Redefining Improper Integral with Infinite Interval

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx$$
 (35.1)

$$\int_{-\infty}^{b} f(x) dx = \lim_{T \to -\infty} \int_{T}^{b} f(x) dx.$$
 (35.2)

The LHS converges when the RHS converge.

For example,

$$\int_{0}^{\infty} e^{-x} \, \mathrm{d}x = \lim_{R \to \infty} \int_{0}^{R} e^{-x} \, \mathrm{d}x \tag{36.1}$$

$$= \lim_{R \to \infty} \left[-e^{-x} \right]_0^R \tag{36.2}$$

$$= \lim_{R \to \infty} (-e^{-R} + e^0) \tag{36.3}$$

$$=1. (36.4)$$

4.2.1. When Both Bounds Are Infinity

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x \neq \lim_{R \to \infty} \int_{-R}^{R} f(x) \, \mathrm{d}x. \tag{37}$$

To realize this, think of $\int_{-\infty}^{\infty} (\sin(x) - \cos(x)) \, \mathrm{d}x$ geometrically.

Instead,

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{T \to -\infty} \int_{T}^{c} f(x) dx + \lim_{R \to \infty} \int_{c}^{R} f(x) dx$$
 (38)

where $c \in \mathbb{R}$.

For example,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, \mathrm{d}x = \lim_{T \to -\infty} \int_{T}^{0} \frac{1}{1+x^2} \, \mathrm{d}x + \lim_{R \to \infty} \int_{0}^{R} \frac{1}{1+x^2} \, \mathrm{d}x \tag{39.1}$$

$$= \lim_{T \to -\infty} \left[\arctan(x)\right]_T^0 + \lim_{R \to \infty} \left[\arctan(x)\right]_0^R \tag{39.2}$$

$$= \left(0 - \left(-\frac{\pi}{2}\right)\right) + \left(\frac{\pi}{2} - 0\right) \tag{39.3}$$

$$=\pi. \tag{39.4}$$

4.3. Determining Convergence

4.3.1. Value Comparison Test

Let function f, g be integrable on any interval contained in (a, b), then:

- If $|f(x)| \leq g(x)$ for $x \in (a,b)$ and $\int_a^b g(x) \, \mathrm{d}x$ converges, then $\int_a^b f(x) \, \mathrm{d}x$ converges. If $f(x) \geq g(x) \geq 0$ for $x \in (a,b)$ and $\int_a^b g(x) \, \mathrm{d}x$ diverges, then $\int_a^b f(x) \, \mathrm{d}x$ diverges.

4.3.2. Limit Comparison Test

Let $-\infty < a < \infty$. Let f, g be functions that are defined and continuous for all $x \ge a$ and assume that $g(x) \ge 0$ for $x \ge a$.

- If $\int_a^\infty g(x)\,\mathrm{d}x$ converges and $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ exists, then $\int_a^\infty f(x)\,\mathrm{d}x$ converges. If $\int_a^\infty g(x)\,\mathrm{d}x$ diverges and $\lim_{x\to\infty}\frac{f(x)}{g(x)}$ exists and is nonzero, then $\int_a^\infty f(x)\,\mathrm{d}x$ diverges.

5. Random Variables and Probability Density Functions

Probability Density Function (PDF) A function describing distribution of probabilities.

Some important properties of PDFs:

- The integral of a PDF is always 1.
- Any point of a PDF *cannot* be negative.
- But any point of a PDF can be greater than 1.

5.1. Expected Value

Expected value Also called expectation, is the sum of all possible values with their possibility.

$$\mathbb{E}(X) = \sum x \cdot \Pr(X = x). \tag{40}$$

Given a *continuous* random variable X,

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, \mathrm{d}x \tag{41}$$

where f(x) is the PDF.

A quick sanity check for such expectation is to see the area of PDF as an uniform object, and try finding a point where the object can balance on.

5.2. Variance and Standard Deviation

Variance The expected value of the squared deviation from the mean of X

$$Var(X) = E[(X - E(X))^2]$$
 (42.1)

$$= E(X^2) - E(X)^2, (42.2)$$

usually represented by σ^2 .

Standard deviation The square root of variance, usually represented by σ .

How do we do $E(X^2)$?

5.2.1. Law of the Unconscious Statistician

$$E[g(X)] \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x \tag{43}$$

where f_X is the PDF of X.

6. Sequence and Series

Sequence An enumerated collection of objects in which repetitions are allowed and order matters. It looks like $\{a_0, a_1, a_2, ...\}$.

Series An addition of infinitely many terms, one after the other. Or defined as a limit of partial sums, $\lim_{N\to\infty}\sum_{n=0}^N S_N$.

A sequence can take in values of a function, $\{f(x_i)\}_a^b = \{f(x_a), f(x_{a+1}), ... f(x_b)\}$. And just like functions, a sequence can diverge or converge. However, a sequence of a function converges does not imply that the function also converges.

The order of summation in series is important!

We may add or subtract series with each other by adding or subtracting their results, but cannot do so with multiplication or division.

6.1. Divergence Test

Given the sequence $\{a_n\}_1^{\infty}$, if $\lim_{n\to\infty}a_n\neq 0$, then $\sum_{n=1}^{\infty}a_n$ diverges. If it does apply, then the other way around is also true.

The divergence test does not tell us anything about convergence. In other words, if $\lim_{n\to\infty}a_n=0$, it is useless.

6.2. Integral Test

For a series $s = \lim_{N \to \infty} \sum_{n=1}^N f(n)$, if $\lim_{N \to \infty} \int_1^{N+1} f(x) \, \mathrm{d}x < s$ and diverges, s also diverges. Take note of the N+1 integral upper bound, that means our series is actually a Left Riemann Sum of the function!

Similarly, if we instead use N for the upper bound, we get a Right Riemann Sum.

Use them on $\frac{1}{n}$ and $\frac{1}{n^2}$ from 1 to see for yourself!

Well, N+1 or N, when $N\to\infty$ they are all infinity. Hence, if $\int_{N_0}^\infty f(x)\,\mathrm{d}x$ diverges/converges, $\sum\{f(x)\mid x\in\mathbb{Z}\wedge x\geq N_0\}$ also diverges/converges.

6.3. Geometric Series

Instead of having a constant interval, a geometric series has a constant *ratio* to the next element.

Geometric series A series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant.

$$a + ar + ar^{2} + \dots + ar^{k} = \sum_{k=0}^{n} ar^{k}.$$
 (44)

We usually deal with $n \to \infty$ here:

- If |r| < 1, the series converges with a partial sum of $S_n = \frac{a}{1-r}$.
- If |r| > 1, the series diverges.

- If r = 1, the partial sum still goes to infinity.
- If r = -1, the partial sum oscillates.

The general formula for partial sum is

$$S_n = \begin{cases} a(n+1) & r = 1\\ a\left(1 - \frac{r^{n+1}}{1-r}\right) & \text{otherwise.} \end{cases}$$
 (45)

6.4. Ratio Test

To test if a series eventually looks geometric, we use the ratio test.

Given $\sum_{n=c}^{\infty} a_n$,

$$r = \lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|. \tag{46}$$

If r < 0, the series converges. If r > 0 or $r = +\infty$, the series diverges. If r = 1 or r DNE, this test is useless.

The ratio test is useful when terms in the series involves n as an exponent, and/or factorials, like

$$\sum_{n=1}^{\infty} \frac{e^n}{n!},\tag{47}$$

and is useless when

$$\sum_{n=1}^{\infty} \frac{P(n)}{Q(n)} \tag{48}$$

where P(n) and Q(n) are polynomials, as r = 1.

6.5. Power Series

The power series is like a geometric series, with varying bases.

$$f(x) = \sum_{n=1}^{\infty} (x - c)^n \tag{49}$$

There exists a number R, where if |x - c| < R, the power series converges. We call it the radius of convergence.

Radius of convergence For a power series, the radius of convergence is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or ∞ . The differentials of the series has the same radius of convergence.

The ratio test is still the most promising test for power series.

Like the ratio test, we do not know what happens when |x - c| = R. But within the radius of convergence, we rock.

6.5.1. Differentiation and Integration

Given $S(x) = \sum_{n=1}^{\infty} A_n (x-c)^n$, for x such that |x-c| < R,

$$S'(x) = \sum_{n=1} nA_n(x-c)^{n-1}$$
 (50.1)

$$\int S(x) dx = \sum_{n=0}^{\infty} A_n \frac{(x-c)^{n+1}}{n+1} + C.$$
 (50.2)

Note that the differentiation index starts at 1, since $(A_0)' = 0$.

Again, R does not change with differentiation or integration.

6.5.2. Other Operations

Additionally, we can:

- · Add series to each other.
- Multiply a series by a constant.
- Multiply a series by a power of x.
 This operation is especially useful when solving for integrals of a complicated integrand which is a product of x^c and something else.

6.6. Comparing Series Elements

At times, we need to compare elements between series, like solving for some differential of a function that has a Taylor series.

Do not compare terms which has the same n, but do with terms of the same power of x.

For example,

$$f(x) = \arctan(x^2) \tag{51.1}$$

$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \quad \text{for } |x^2 \le 1|$$
 (51.2)

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1},$$
(51.3)

$$=\sum_{n=0}^{\infty} \frac{f^n(x)}{n!} x^n. \tag{51.4}$$

Let x = 0,

$$\begin{cases} f^{10}(0) = \frac{x^{4n+2}}{2n+1} \frac{n!}{x^n} & \leftarrow n = 2\\ f^{11}(0) = 0 & \leftarrow n \text{ DNE} \end{cases}$$
 (52)

Here, we have to make sure the power in the specific Taylor series matches with the one we want, hence 4n + 2 = 10 or 11.

Definitions

Even function° f(x) = f(-x), symmetrical about the *y*-axis.

Odd function° f(x) = -f(-x), symmetrical about the origin.

Simpson's rule°

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$
(53)

where n is an *even* number.

Improper integral° An integral either with an unbounded integrand, or taken over an infinite interval.

Probability Density Function (PDF) A function describing distribution of probabilities.

Expected value° Also called expectation, is the sum of all possible values with their possibility.

$$\mathbb{E}(X) = \sum x \cdot \Pr(X = x). \tag{54}$$

Variance $^{\circ}$ The expected value of the squared deviation from the mean of X

$$Var(X) = E[(X - E(X))^{2}]$$
 (55.1)

$$= E(X^2) - E(X)^2, (55.2)$$

usually represented by σ^2 .

Standard deviation° The square root of variance, usually represented by σ .

Sequence° An enumerated collection of objects in which repetitions are allowed and order matters. It looks like $\{a_0, a_1, a_2, ...\}$.

Series° An addition of infinitely many terms, one after the other. Or defined as a limit of partial sums, $\lim_{N\to\infty}\sum_{n=0}^N S_N$.

Geometric series° A series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant.

$$a + ar + ar^2 + \dots + ar^k = \sum_{k=0}^{n} ar^k.$$
 (56)

Radius of convergence° For a power series, the radius of convergence is the radius of the largest disk at the center of the series in which the series converges. It is either a non-negative real number or ∞ . The differentials of the series has the same radius of convergence.