ONGRUENCIES

Donat m = 1

 $a = b \mod(m) \iff m \mid a - b$

D b= m K+ a per cent K €H

De a i b tenen mateix residu al dindir entre m

Quan a = 6 mod (m) e din : "a é conquent amb 6 midul mi

Properetat 1

Hm "Conjut dels enters. Modul m." Reflerine a Ra Sini

La congruencia de m é me relevo d'equivolèmia.

Deno: Fern serur le 3º corontertrans. (mateix vende

Classes Modulars

Le classe de a per 6 velorio de congruen Conjut quoient en denuta amb Zm

Exemple: Mi = 5.

[0 =] x = 7 [x = 0 (mod 5) { = 35x [x = 7.8]

1= {x = # (x = 1 (mod 5) } = } sk+1/k+# {

2=3x62 | x = 2(mod 5) { = 35x+2 | x62 {

3=3x621 x=3 (mod 5) 9 = 35x+3 | Ke# 8

4=3xEX1x=4(mod4) {=35x+41KEZ{

ā = 3, x & 7 / x = a (mod m) { = 3, m k + a | k & 7

a = 6 00 a = 6 (mod in)

III. Hm = 30, 1, ..., m-1 8

Propietat 2

a = a' (mod m) a+b = a + b (mod m) a · b = a · b (mod m) b = b (mod m)

Deno: Ma-a (m ((a'-a) + (b'-b)) => m ((a'+b) - (a+b) = a+b = a'+b' (mod m) of. m [[b'(a'-a) + a(b'-b)] => m [a'b'-ab] => ab = a'b' (mod m)

```
En particular: [a = a' (mod m) => a" = a'' (mod m)
                                    = ka = ka (mod m)
Exemple: Residu de div. 58 * 79 mod 11
            5.8 = 3 (mod 11)
                             = 58+79 = 3 +2. (mid 11)
           79 = 2 (mod 11)
Exemple: Calculum 2 a mà amb (mod 100)
                 2 = 2.29 = 2.12 (mod 100) = 24 (mod 100)
2 = 2 (mod 100).
2 = 4 (mud 100)
                 2 = 2 2 = 24,24 (mod 100) = 76 (mod 100)
2 = 28 (mod 100)
                 22 = 2 · 20 = 4 · 76 (mod 100) = 4 (mod 100)
28 = 56 (mod 100)
                 2 = 2 · 20 · 20 = 4 · 76 · 76 (mod 100) = 4 (mod 100).
29 = 12 (mod 100)
                 V 2 = 2 · 2 · = 2 · 2 · 2 · 2 · Es. im patro + 4 2 · 2 · = 4 (mod loo)
Ave volen Sahn aquet 'k' i haven de fer 999998 = 20 Donat que es 2
                  999998 = 49999 · 20+18 Això & g. que 1000.000 = 2+18+ 49999 · 20,
                         = 2^{\circ}.2 = 2^{\circ}.2 = 2 = 7.6 \pmod{100} = 2
Altro Propietats de la congrue mies
 I. Si a \equiv b \pmod{m} and a \equiv b \pmod{d}
II. Si K > 0 => a = 6 (mod m) AD Ka = Kb (mod Km)
III. Si mcd (k, m) = 1 = ka = kb (mod m) = a = b (mod m)
IV. a = b (mod m,),..., a = b (mod m,) = p a = b (mod mcm (m, so, mm))
 Demo: a = b (mod m) , d/m = a = b (mod d)
```

```
a \equiv b \pmod{m} def \pmod{(a-b)} def \pmod{d} def = b \pmod{d} def = b \pmod{d}
```

Deme: $S: K>0 \implies a = b \pmod{m} \implies Ka = Kb \pmod{km}$ $a = b \pmod{m} \implies m |(a-b) \implies km |(a-b) k \implies km | ak-bk \implies ak = bk \pmod{m}$

```
Demo: Si mcd (K,m)=1 => Ka = kb (mod m) => a = b (mod m)
Ka = Kb (mud m) → m ((ka-kb) → m (a-b). K
Donat que per hipo ton tenim que mid (u, m) = 1. podem aplia Lemo banss
```

m/(a-b)·K. A. mcd.(m, k) = 1 = m/(a-b) = a = b (mod m) or.

Si m/(a-b) claremit m/(a-b) · K (Proprietat de 6 trans) is.

Denne: a = b (mod m), ..., a = b (mod m,) = a = b (mod mem (m, ..., m,)) Si M, (a-b), ..., Mm ((a-b) st. mcm (m, , ..., mm) (a-b) or.

Exemple: 8x = 28 (mod 6)

Exemple: $8x = 28 \pmod{6}$. $8x = 28 \pmod{6} = 4x = 14 \pmod{3} = 2x = 7 \pmod{3}$. Pew again to no padem. $8x = 28 \pmod{6} = 4x = 14 \pmod{3} = 2x = 7 \pmod{3}$. Pew again to no padem.

Lx = 7. (mod 3) and 3 (2x-7) and 3x ex: 2x-7 = 3x = 0,2x-3x = 7, 4 Dioph. eq.

Antmetica Modular

Podem def ma anitmetica (op de sure i predute) al Conjut Zm de le segi est man

$$\overline{a} + \overline{b} = \overline{a+b}$$
 of Equal Això in valid per le prop II.
 $\overline{a} \cdot \overline{b} = \overline{ab}$ $\overline{b} = \overline{ab}$ $\overline{a} \cdot \overline{b} = \overline{ab}$

Per exemple en Zzoo 2990 # 2995 = 10 # 5 15 . 5.0 # Millor Primer. Simplifiquers

Propietats

$$A. \bar{a}+5=b+\bar{a}$$

$$C. \bar{a} + \bar{0} = \bar{a}$$

D.
$$\overline{a} + \overline{-a} = \overline{0}$$

II. Del produte:

B.
$$(\bar{a}\cdot\bar{b})\cdot\bar{c}=\bar{a}\cdot(\bar{b}\cdot\bar{c})$$

C.
$$\vec{a} \cdot \vec{l} = \vec{a}$$

$$D. \overline{a}^m = \overline{a^m}. per m \ge 1$$

V: NO és pot simplificar. Per exemple \$\mathcal{Z}_6, \bar{2} \div \bar{2} = \bar{2} \div \bar{5}. \text{ però } \bar{2} \div \bar{5}. Això es degut a que a 5=0 toti que a +0 i b +0 . Per exque un to, 2.3=0. Obs: Ouan terian dues operators que sitisfam tota projetais de "+" i "*", i din que terim un anell. Obs: Ouen tots els elements no much d'un conjut tenen invers à din gue temm un anell. 7 2 3 4 5 Podem vene que et imics que tenen invers son I i.3. Pq. 2* = -4. 7. 2516. # Com que mo son tots Complement a 2 Mateixa teonia que en I.C. En agust cos en poet for servir per sinjulções calab Representant 0 1 2 3 4 5 6 7 \$ \$ = 30,1,2,3,4,5,6,7 } Son el matex 000 001 010 011 100 101 110 111 Ca2 [0, 1, 2, 3, -4, -3, -2, -1, 2, 3, -4, -3, -2, -4]Inversos Modulars Buscar un invers (respecte multi) de a en # in trobar X. t.g. a. x = I Trub. is pot vene + g. ax = 1 (mod m) = mx = ax-1 = 1 = ax-mn = [K=-y] = ax+my = 1 + Eq diofametica Lleven padem dir que: a té invers en tem = 1 mcd (a, m) = 1. mcd (a, m) + 1 Exemple: Tenen invers modulor 5 i 6 en #29? 5: mcd (5,9)=1 & si que te 1 6: mcd (6,9)=3 ≠ 1 × No te. Exemple: Té invers modular 227 en # 2:292? Calcule. 227x + 2292 y = 1 # Vei em que med (2292, 227) = 1 = 227 té invers en # 227 | Invers: 227 = 1979

Exemple: 6x = 6 (mod 9)

Primuanit veien que med (6,9) = 3. \$1. llaver 6 mo. té invers El que si que paden fer in simplificar-lux pertreballes milles : 2 x = 2 (mod 3)

Are med (2,3) = 1 ain que si que hi he invers, i trub. porlum gelican prop II &

X=1 (mod 3) i aixi fa que X= 1, 4, 7, 10,.

Hem de vecorden que estavem en Ha així que mont ens interens. I, F, Z

Aixi que podern des que 6x = 6 (mod 9) - x = 1, 4, 7

Un cos es un avell on tot clement levet del 0 te invers. It m cos an m primer

Demo: 72 m cos 40 m primer

#m cos at V K + 0 to comes en #m at V 1 & K & m-1 coprimes at m primer or. #Records que med (m, K) = 1. pq. tingui invers i si m. es. piner & mai. pot. ser = m Significa que agent med segue surà 1.

Sistemes de Conquiencies

Signi MI, MZ, -4, Mx 7 position i coprimer, Vi a, 1021-101 exister solure x del sistere

 $X \equiv \alpha_1 \pmod{m_1}$ Si teum sol particular + q x = xo mod M # M = m, · mz · ... · mk

 $x \equiv a_x \pmod{m_x}$ totales actus as poolin escrime tog. x = No +. Mx. on KEZ.

x = a ~ (mod mx) # X = x0+M, X = 70+2M, X = X0+3M, ...

. Es reduix tot a ven si te sol, i depres. trubarle (en 6 prèstica).

Mitode: X = a1 (mod m2), X = a2 (mod m2)

Tourn que x = a + m y = a + m Z on y = E = 1 a2 - a1 = m, y - m2 &

Donet que M, mz., mx eren copiners aquito eq. def. te soluio.

Això fa que y, Z tingiam x que é Solivi al cistere xines.

Obs: Sistema tindre soluci si med (m, m2) az-a, # No signific que az-a, signi 1 5 mo que aixà serre en combre 14. al ser m, 1 mz copius. el med = 1 i 1/que servel enter. ax = b (mud m) té solat mid (a, m) lb

```
Exemple: X = 1 (mod 3), X = 2 (mod 4), X = 3 (mod 5). # Veien que mid (3,4,5) = 1.
    M=3.4.5=60, H, =4.5=20, M2=3.5=15, M3=3.4=12
    Are volem consequences a resolde: 201^{\frac{5}{2}}

We saw \times 1 = 1 \pmod{3}

\times 1 = 1 \pmod{3}
    H2 x2 = 2 (mod m2) = 15 x2 = 2 (mod 4) = 3 x2 = 2 (mod 4.) = 2.4=8
    M_3. x_2 = 3 \pmod{m_3} \Rightarrow (2x_3 = 3 \pmod{5}) \Rightarrow 2x_2 = 3 \pmod{5} \Rightarrow x_3 = 4 \pmod{5}
     Are je podem doman le soluir esperífice:
    \chi = M_1 \times_1 b_1 + M_2 \times_2 b_2 + M_3 \times_3 b_3 = 20.2.1 + 15.3.2 + 12.4.3 = 40 + 90 + 144 = 224
     270-60*4=34 - X = 34 (mod 60) x = 34 + 60 t tet
    Teorene petit de Fermet
     Sippumu i mid(p,a)=1 on a EH => (mod p)
    Demo: 9 = 1 (mod p) on p piner i pta.
    Considerum els multiples de a t.g.: M1 = a, m2 = 2a, ..., mp. = (p-1)-a.

Podem vene que pt m: (Pq pta i extern non dest fins p-1) p pto-1 and is
impossible.
    Per la divisió endediare temm que Mi = a*i = p. gi+ri amb 0 < ri < P-1.
     # Perè donet que pt mi = v; +0 (79 si fos. 0' sig que el divoleix).
- Ave hem de veue que el veridu de cade Mic dividit per p és une extra édeixe 
Term dos 2 diferents i, j en 1 si, j \ p-1 i term ri=tj rendu & div.
           Si això en aixi, sig: m_i = P \cdot q_i + v_i \begin{cases} = p \cdot m_i - m_j = P \cdot q_i - P \cdot q_i + (v_i - v_i) \end{cases}
m_j = P \cdot q_j + v_i \end{cases} \begin{cases} = p \cdot m_i - m_j = P \cdot q_i - P \cdot q_i + (v_i - v_i) \end{cases}
m_i = a^{-1} \cdot a^{-1} \cdot a^{-1} \cdot a^{-1} = P \cdot q_i - q_j + 0
a^{-1} \cdot a^{-1} \cdot a^{-1} \cdot a^{-1} = P \cdot q_i - q_j \cdot a^{-1} \cdot a^{-1}
          Però donnet que pta = p/(i-j:) i aixi és IMPOSSIBLE 1 & i, j & P-1
            Això seg que cade revidu de mi es une i com que son mes pit to quep
            Sign xen le forme. 31,2,000, P-1 {= 3 12, 12,000, 5p-1. {. .
    Synosom Seure perde genealitat. Vi = i . > Mi = P. qi + Vi = P. qi + i.
     Aixà signific que Mc = ( (mod p) = a 2a+. + (p-1) a = 1+2*... + (p-1) (mod p)
      = 2 a (1)*(2)*...*(p-1) = 1*2*...*(p-1) (med p) = 2 a = 1 (med p). ... #Noture mes exci aix que a quede an n i)
```

```
Petit Teorene de Fermet (V.2.)
 M \equiv m \pmod{p-1} \implies a^{M} \equiv a^{M} \pmod{p}
Deno: m = m \pmod{p-1} \implies a^m = a^m \pmod{p}
Syressem: M = m (mod p-1) Volem Deno: a = a m (mod p).
Si partim de m = m (mord p-1) =0 m = (p-1)·K+m. per un Kenter.
Això en pot expensor t-q: a = a m + (P-1) x = a m - a P-1) k
Per le primere vevo del PTF saber que a = 1 = 1 (mod p.) llavor simplice que
(p-1)k \equiv 1^{k} \pmod{p} \implies a^{(p-1)k} \equiv 1 \pmod{p}.
Per tout podem der que an = am. ap. 1 = :am. 1 (mod p)
                                         ci = am (mod p) - DE! que buscaven D.
Exemple PTF(V.1): 43 modul 13. Calc Residu:
Primer hem de vene que med (43, 13) = 1 i que 43 = 4(3 = 4 (mod 13)
El. PTF. ens. din que 4 . = 1 (mod 13) = 4 = 1 (mod 13)
El que bisquem are es agripar 3221 en "grups" de [2 pq. Sabun que = 1 (mod 13).

3221 [ 12 ] Llavars term 4^{322L} = (4^{12})^{268} \cdot 4^5 = 4^5 = 4^5 = 1024 = 10 \pmod{13}
              #45=42424=16/6.4=1024 | Llavar Doden der que:
102413
91 78 = 10 (mod 13)
Exemple PTF (V.2): 4 modul 137. Calc residu. # Sabern que 137 is promer.
Primer calculum 3141 med 136 (137-1=136) = 3141 = 13 (mod 136)
```

Llovors podem dir que $4^{3.41} = 4^{13}$ (mod p.)

Calculem (amb calculedore) $4^{13} = 67108864$ i are direction entre 137. $67108864 = 137 *489845 - 99 \Rightarrow 4^{3141} = 4^{13} = 99$ (mod 137)

Fabricació de Claus.

1. Triem Sprimer mett grans de magnitud semblant, por langeted de feret. Sitemen une magnitud similar, le "Factoritació de Formet" podrie ser eficas. Aguerta factor trais à eficas si la diferens (1p-q.1) en petite. Aqueste faction travo. burce a, b t.q : a2-m=b2. S. p.g proxims in facil trobar

2. Calculum m = p. g. Agust seri el mostre model (siri public).

3. Es la servir func \((m) "Lambde de Carmicheel" , \((m) = MCM (p-1, q-1) \) Aquest purt às important. $\lambda(m)$ és el mombre mis potit tiq a (mod p) i. a = 1 (mod q) on a en coprimer omb p, q. Quanting minus aprimers ont a the

4. Escullim im e coprimer and \((m), 1 < e < \(\chi(m)\). Aquit is exponent pur the

No he de ser gaine gram per tenner de valocitat, també en vecomone pos 1's en Linari. #Normalmet a fa Seniv 2+1 = 65537, = 0001 0000 0000 0000 0001

El motion que tingui pos 1's en pg així en calcula tot mies vaprel donnet que Momen fa que displesar d' nombre à no fe fallo suron (quan a multiplica).

5. Calculem in d'que serà l'invers multiplication de e mod \(n). Serà el valer + q. ed = 1 (mod , 1 (m)). Aquet d permit que (me) = m (mod m). Aquet d és privat i parmitre desciper en missatges encriptats amb (e, m).

D, q primers diferents i ed = 1 (mod λ(n)) → (me) = m (mod m)

Clan Pública: (M. e) Totam le pot coneixer i serveix per energeter.

Clau Prinade: (n, d) Nomin emissor de les clair le pret consiner, serveix descurptor. d, p, q, \(\lambda(m)\) han de ser serret.

Lambde de Charmichael X(m) Proprietats: anoustive, 7 mentre, Jinvers. Gup: Estrutue algebraica. Conjunt elents + Operais que formen terres elent. Conjut de coprimer and in Jormen gryp multiplication mod in.

X(n) reterne el nombre & mis petit to q V elent del grup complete elent = 1 (mod in). e ho de ser oprimer omb \(n) pg. existexi l'invers d.

Xipat El missatge en codifice numericoment (amb UTF-8 per exemple). Si el tamay remetant é mui petit que le langetuel de m, s'afageix "padding!" per a fer-he mis. Segur. Si et mes gran, et trenquer amb blocs de len (n). Quan ja tenim m = C = m (mod m) on e era export public (m=p-q. Els Tangys de M. poden vaiar: 1024 bits, 204860 fin 40966. # 20486 \$ \$ 617 x /205. El padding me modifice el missetge i esta sen delimitat per a treve-lo. PKCS#1 v1.5 Estandard comi fet serie per afegir probling in RSA. m abons de xe pres Rondon Non-Zero Bytes 0x00 A dota 2023 NO a fe serir P.K.CS. #1 v1.5 gint OAEP. # Puis era més défail. Are tenin el missatge C que he entat encretat omb e. m= c (moel ad resser Descripat. Reviolen que e. d = 1 (mod N(n)) # d és l'invers i exposurt privat. Per definició significa que e d = 1 + \(\lambda(m)\) K on K \(\frac{7}{2}\).

Llavores tenim: \(C^d = (M^e)^d = M^{ed} = M^{1+\(\lambda(m)\)K} \) \(\frac{1}{2} = M^0 \) M\(\lambda(m)\)K Precorden també que a = 1 (mod n) blavers padem rescrice com: C = M. M. X(m) K = M.(1) = M. (mod. m). Com podem veux ja tenim el que buscavem, a partir d'un C (missg. x fut). hem pogut recuperar el M original gricier a que e, d hen sigut generats per le mateixe perone. # Em el sentit que no podu su e, d. queberd. En aquit cos s'eleve a d'el hash de M + q: H(M) = S(mod n). Havers S'envie M, H(M), S. i. el vecepitor le S=H(M) (mod M).

M que ho rebut

dispré H(M) So H(M) = H(M) Sig que Mo a estat alteral.

Hach quest pet veceptor (Si M modifient, et hosti neo coincide x.

Hack quest pel very for (

```
#) 3 | x # 3 | sume-dig-x
 Aboms de comerçan hen de def que sorè "x". X:= Co.10+C, 10+...+ Cm.10".
= DI Synossem: 31x Volem Deno: 31 sm. dig-x.
l'en simplifican divem que S= suma-dig-x i S= Co+C,+...+Cm.
Partim de que 3/ x 20 x = 0 (mwd 3) at (C. 10 + C, 10 + ... + cm 10 ) = 0 (mod 3)
Abones de contimon hem de recorda que 10° = 1 (mod 3) i dont que med (10,3)=1 = D Ci. 10° = Ci (mod 3).
  Donat que le congrèsse te 6 prop. II, podem reesvine 7-9:
 (Co-10°) = Bo (mod 3), (c, 10') = C, (mod 3), -, (Con 10") = Cm (mod 3) i le sume
   d'avirce quele t-q. (co-10°+4, 10'+...+ cm-10") = (co+c++...+Cm) (mod 3).
 Com que sypossavem que X = B (Morel 3) = D (Co+C1+1-+Cm) = O (mod 3) D.
$ Supssem: 315 Volum Deno: 31 x.
 Torever a vewela que C: 10 = C: (mod 3) = C: 1 = C: 10°
 Partim que (G+C, +. +cm) = 0 (mod 3).
                                                     (mul B) = Cm-1 = Cm-102
 Això sis que le some t-q:(6.10°+4.10°+ + Cm:10°) = (Co+c,+ ... + cm) (mod 3) ]
 Mouras pel que syppessen poelen dir que (Co. 10°+C, 10°+...+cn. 10 m) = 0 (mod 3)
  i pr le def de x = 0 x = 0 (mod 3) is.
  ande demo que 3/x AD 3/ Suma-digts_x .
3. Signi P primer . Dero:
a) Si a^2 \equiv b^2 \pmod{p} \implies a \equiv b \pmod{p}
 a2 = b2 (mod p) AD p (a2-b2) = p (a-b) (a+b) = p (a-b) D a = b (mod p) of
b) Deduin que le sol. de x^2 \equiv 4 \pmod{p} son x \equiv \pm 4 \pmod{p} x \equiv \pm 4 \pmod{p}.

x^2 \equiv 4 \pmod{p} x \equiv 4 \pmod{p}
 x = 1 \pmod{p} \implies x^2 = 1^2 \pmod{p} \implies x = \pm 1 \pmod{p} \implies x
c) Es cent b) sip no en primer?
                                       32 = 12 (mod 8)
 No 79 X=3 i m=8 no complex
                                       3 $ 1 (mud 8).
                                                                          FM-6-E-1
```

```
(3). 6) Deux que n és multiple de 9 00 suna digita de n miltiple de 9.
  M = a_0 a_1 \dots a_{k-1} \# om a_i is reference all digit. M := a_0 \cdot 10^i + a_1 \cdot 10^i + \dots + a_{k-1} \cdot 10^{k-1}
  Hem de demo que: a. 10 + a. 10 + + a. 10 = 0 (mod 9) ( a. + a. + .. + a. = 0 (mod 9)
 Per a fere-ho, estudiem com son les potèmin de 10 mod 9.
 10'=1 (mod 9); 102=10:10=11=1 (mod 9), 103=102.10=12.1=1 (mod 9), ... 10 =1 (mod 9)
  Llavors 10 = 1 (mod 9) => a: -10 = a: (mod 9).
   Es per això que a, +a2+... + ax-1 = 0 (mod 9) de ao 10°+a, 10°+... + ax-10° = 0 (mod 9).
(13). Demo que mo hi he cap enter n t.q. 6 m + 5 siqui un quadret.
 Faren demo per R.A: Syrassem que 3 mo t.g. 6 mo + 5 = k2 (KEZ) - D & &
 Si Gmo + 5 = K2 = 6 Gmo + 5 = K2 (mod 6) = K2 = 5 (mod 6).
 Llar an poolen vene que 02 $ 5, 12 $ 5, 22 $ 5, 3 $ 5, 4 $ $ 5, 5 $ 5 llavon à contradiction.
 Donat que faien R.A. Denestre cert que mo li h cap M. ".
  O T = I (mod m) at m 10 donot que dien que ere al meteix.
   Esallin (mod 6) per 6 mo (med 6) is 0 i llavors en simple framuelt.
 (19. Deno que Vm ≥0 2. (6 m+1) 2 + 12. (2 m+4) si multiple de 168.
 Hern de veux que: 2(6^{n+1})^2 + 12 \cdot (2^{n+1})^3 \equiv 0 \pmod{168}

Hern de veux que: (6^{n+1})^2 + 6 \cdot (2^{n+1})^3 \equiv 0 \pmod{84} \xrightarrow{1/2} \# 84 = 2^2 \cdot 3 \cdot 7
  Vavem: I. (6 )2+6. (2 )3 = 0 (mod 4)
           I. (6 nt) 2+6-(2 nt) = 0 (mod 3) => 6 (mod 3) =0
           III. (6"+1)2+6-(2"+1)30 (mod 7)
 2) Vien que je en cent donet que le = 0 (mil 3) llavor això tim).
 1)(6^{m+1})^{2}+6\cdot(2^{m+1})^{3} \equiv (2^{m+1})^{2}+2\cdot(2^{m+1})^{3} \equiv 2^{2m+2}+2\cdot(2^{3m+3}) \equiv 2^{m+2}+2^{3m+4} \equiv 2^{m+2}+2^{m+2}
                        = 2 2 2m + 2 2 = 2 2m 2 2 5m = 0 02 + 0.0.2 = 0 (mod 4)
```

```
3) (6^{m+1})^2 + 6 \cdot (2^{m+1})^3 = (-4)^{m+1} + (-4)(2^{m+1})^3 = (-4)^{2m+2} - (4)(2^{3,m+3}) = (-4)^{2m+2}
[2m+2 en pan i (-1) = 1] = (1) - 2 3m 2 = 1-(2) 2 = 1-(8) 8 = 1-1 1 = 0 (mod 7)
```

Q. Dewo. ax = b (mod m) té sol. ≠0 mcd (a, m) b.

ax = b (mod m) = b m | ax - b = ax - b = mk perket = b ax - mk = b i això é el mateix que une eq. deoph. i aquetes només e, paolin recolore si man (a,m) 16.

D. Deno: ∀m ≥ 0 2.7 mil (6.9°) 2 miltiple de 148 fat vi de induno i congruencies.

Cas Base; m=0: 2.7+1+(6.9) = 2.7+(6) = 16.7+36 = 148. Sermilliple

Ser I volem veux que combix per m > 0 + 9: 2 -7 + (6.9 m) = 0 (mod 46) Partim vaient que 2.7 + (69m-1) = 0 (mod 148) = 2.7 = -(6.9m-1) (mod 148) Consideren: $2^4 + 7^{m+1} + (6 - 9^m)^2 = 7(2^4 + 2^m) + (6 - 9^m)^2 = 7(-6 - 9^{m-1})^{\frac{1}{2}} + (6 - 9^m)^{\frac{1}{2}} = 7(-6 - 9^{m-1})^{\frac{1}{2}} + (6 - 9^m)^{\frac{1}{2}} = 7(-6 - 9^{m-1}) + (6 - 9^m)^{\frac{1}{2}} = 7(-6 - 9^$

= 92 (-2 6 9m-1) + (6 92m) =

7m = O(Mod 7) 1. No hibre eg m E Z: 7m +2 signi cub. # 7m +2 diff de m3. 2 = 2 (mod 7) m \$2 (mod 7). Donat que buquen 7m+2 7 m3 4m, m e Z. 7m+2 = 2 (mind 7) 03=0 =0 (mod 7) : 0 = 2 m3 = 2 (mud 7) 1 = 1 = 1 (mud 7): 1 + 2 2 = 8 = 1 (mod 7) : 1 + 2 3 = (3-3) · 3 = 9.3 [9=2 : 3=3] -> 3 = 12.3=6 (mod 7) : 6 72 43 = (4.4).4 = 16.4 [16 = 2 : 4 = 4] -D 43 = 2.4 = 8 = 3 (mod 7) : 1 = 2 5=(5.5)5=25.5[25=4+ 5=5]+ 5= 4.5=20=6 (mod 7):672 63=(66)-6=36-6=[I-6] +63=6 (mod 7): 672 73 = 10 = 0 (mod 2) , 0 -

32. 3x + 5y = 4 4x - 2y = 2 $y = \frac{|4| 5}{|2| - 2|} = (-2 \cdot 4) - (2 - 5)$ $y = \frac{|3| 5}{|4| - 2|} = (-2 \cdot 4) - (4 \cdot 5) = -18$ $y = \frac{|3| 4|}{|4| 2|} = \frac{(-2 \cdot 4) - (2 \cdot 5)}{(3 \cdot (-2)) - (4 \cdot 5)} = \frac{-18}{-26} = \frac{1}{4} = 4 \cdot \frac{1}{7} = 3 \cdot 7 = 24 \cdot \frac{10}{10} = x$ $y = \frac{|3| 4|}{|4| 2|} = \frac{6 - 16}{-4} = \frac{-10}{-4} = 4 \cdot \frac{10}{10} = \frac{3}{3} \cdot 10 = \frac{3}{3} \cdot \frac{10}{10} = \frac{3}{3} \cdot \frac{10}{1$

Per a taber. les clessen 30, I, ..., 10 9.

(34). Resol aquertes congruemenes. a) $22x \equiv 9 \pmod{15}$ $\Rightarrow \overline{12} \overline{x} = \overline{9} \pmod{15}$ # Primes ein/4 figuen el 22.pg aten en #15. 7x = 9 (mod 15) # Aqui volem multiplia per l'inver de 7 per tinole x # Sabern que 7 té invers pg mcd (7,15) = 1. qui a signe viste no veren I. Pene 2.7=14=-1 = 7-2.7=1 = 7-2=7 # Pene -2 "an feco" airer que -2 = 13 fent que 7 = 13. Llanon commercem: 13.7x=13.9 (mod 15) = 94=117 (mod 15) = 1.x=12 (mod 15) = 12 (mod 15) b) 21 x = 9 (mod 15) Comengem simplificant: 21 x = 9 (mod 15) = 6x = 9 (mod 15) i mod (6,15) /9 Llaran si que hi he solelina. Ai ai que simplifiquem je que parles fer ha. 6x = 9(mod 15) ≠ ignol a 3.2 x = 3.3 (mod 3.5) = 2 x = 3 (mod 5) Ava mid (2,5)=1 llowers 2 si que té invess en #5. A ull poden vene que 2-32 = 5 Land 15 2 = 3 in #5; perio envet parle de 7/2,5 no 7/25 3. ex= 3.3 (med 5) = 6x= 9 (med 5) = x = 4 (med 5) X = 14 (mud 5) Llewar dien que 6 x = 9 (mod 15) = | x = 4, 9, 14 (mod 15) c) 21 x = 10 (mod 9) 21 x = 10 (mod 9) = 3x = 1 (med 9) aquela conquere no te un crico seel. do net que med (3,9)=3+1. Penè en agent con med (3,9)+1. / L'eg mo té sul.)

FM-6-E-3

```
(95). |x = 1 (mod 4)
             (x = 5 (mod 6) Resol.
             1x=7 (mud 10)
      # Primer agofor les dus primers i despir je fem ant le terles.
                                                                      x = 1+4x { = 5+6 l
    \chi = 4 \pmod{4}  (\Rightarrow) \chi = 5 \pmod{6}
                                                                                                                       4K-6l=4 [eq. diof]
                                                                                                                        2K-3l = 2 E signe figure ]
      2K-3l=1 = 02(-1)-3(-1)=1 22 Llavor terim la sol particular
                                                 2.(-2)-3(-2)=2

Ke le Aqui pots fican +b,-a o -b,+a.
    Are brigue le sal. general : K=-2+36 on let aixet no et quele -12 depen
    Llevan are verolin el sistème d'eq. x = 4+4x = 4+4(-2-3+)=4+(-8)-12+
                                                                                                                x=-7+12+ => [x=-7 (mod 12)]
  Agust \chi = -7 \pmod{12} = equivalent a \chi = 4 \pmod{4}
 Aro fem el sistère and l'ey. que en quale 1.9. X=7 (mod 10) (
# Llevers fem el motex precedent que l'anterior.
  X = 77 (mod 60) = 17 (mod 60) # 60 = 14 (mod 60)
(53). b) Calculus 34773 4969 mod 151.
 # Primer que un hen de fixer à 151 é primer. Miran a x 151 on x 6 V 1517 2/2!
7=32,3,5,7,119; 2no, 3no, 5 no, 1121 no, 11 no blaner (5) is grimer.
 Primer reduin 34773 = 34773 [15] = 34773 = 43 (mod 151).
   El teorene petit de Fernet din que 43'51-1 = 1 (mod 152) = 43 = 1 (mod 151).
                                         4969 = 150.33 + 19. Lloran 43 = (43 ) . 43 = 1 . 43 = 43 (mol151)
    43^{19} = 43 \cdot (43 \cdot 43)^9 = 43 \cdot (1849)^9 = 43 \cdot 37^9 = 43 \cdot 37 \cdot 37)^9 = 43 \cdot 37 \cdot (1369)^9 = 43 \cdot 
              = 43.37.104 = 43.37.10000 = 1591.10000 = 80.10000 = 80.34 = 2720 = 2 (med (51)
    34773 = 2 (mod 151)
```

```
(mod 13)
  44/13 1 44 444 = 5 (mod 13); Ara volum applican PTF per a poder treballar
           1 Miller. He poelen fer per 13 i primer i 5 $0 (med 13).
a = 1 (mod p) 5444 = (512) = (1) = 1 (mod 13). 444 = 1 (mod 13)
                                                                     a = 6 (mod mem (m, ..., m,))
(52). Columber feut Fernet i preop IV de congruèraies. a = 6 (mod m,), ..., a = 6 (mod m,)
 a) 11 (mod 14) $ 14 no és primes així que no postrien fer Fernet. #14=2+
  11 (mud 2) ( Veien que podem simplificar així que fem:
 11^{1234} \pmod{7} \left( 11^{1234} \equiv 1 \right) \equiv 1 \pmod{2} \Rightarrow \underbrace{x \equiv 1 \pmod{2}}_{1} 
                      11^{1234} = 4^{1234} = (4^6)^2 \cdot 4^4 = 1^{205} \cdot 4^2 \cdot 4^2 = 2 \cdot 2 = 4 \text{ (Must 7)}
  x = 1 (mod 2) ( x = 2 k+1 ( 2 k+1 = 7 m +4
  x=4 (mod 7) ( X=7m+4 1,7m-2k=-3, A-Dioph. Eq.
 # A ult podem vene que 7 (1) -2 (3) = 1 ) # From anchors by suspection "
No injula com, peio han

7 (3) -2 (-9) = -3 - Que això és el que bunièven veroldre.
     de ser contracis.
  m_0 = -3! m = -3? (-2) t \in \mathbb{R} m = -3 + 2 t ( Pew aixès mo en el que burquem, m = -3 + 2 t ( Pew aixès mo en el que burquem, m = -3 + 2 t ( Pew aixès mo en el que burquem, m = -3 + 2 t ( Pew aixès mo en el que agospa mox.
x = 2k+1 = 2(-9+7+)+1 = -17+14+. Per comodital, vall que x signi pontin.
S. t = 2 = x = 11. Llavers podem dir que 111234 = 11 (mod 14)
                   Sigone manua de visalde el sisteme ximo.
                                                                            Hixi =1 (mud my)
 X = 1 \pmod{2} \begin{cases} a_1 = 1 \\ A_2 = 1 \end{cases} M_1 = (2^2 + 2) \div 2 = 7  M_1 = 2 X = \sum_{i=1}^{\infty} a_i \cdot H_i \cdot x_i
 x = 4 ( mod 7) 1
                         7x_1 \equiv 1 \pmod{2} \Rightarrow x_1 \equiv 1 \pmod{2} \Rightarrow x_1 \equiv 1
  · [az = 4; Mz = (2+7) +7 = 2; mz = 7
 2 2 = 1 (med 7) = 12 = 4,
  \pi = \alpha_1 \cdot M_1 \cdot x_1 + \alpha_2 M_2 x_2 = 1 \cdot 7 \cdot 1 + 4 \cdot 2 \cdot 4 = 7 + 32 = 39
  X = 23 = 11 (mod 14) Llovars 11 = 11 (mod 14)
```

```
b) 7 (mucol 165) 165 = 3 = 5 -11
 X = 7^{1234} \pmod{3} / X = 7^{1234} = 1^{1234} = 1 \pmod{3} \implies X = 1 \pmod{3}
                                                                                                                                                                                                         X= 4( muel 5)
 X = 7 1234 ( meed 5)
                                                     \lambda = 7^{1234} = 2^{1234} = \begin{bmatrix} \frac{1234}{308} & \frac{124}{308} \\ \frac{1234}{308} & \frac{1234}{308} \end{bmatrix} = (2^4)^{308} \cdot 2^2 = 1^{308} \cdot 2^2 = 4 \text{ (mud 5)}
  x= 7 ( mud 11)
                                                       X = 7^{1234} = \begin{bmatrix} 1234 & 10 \\ 2 & 122 \end{bmatrix} = (7^{10})^{123} \cdot 7^{4} = 1^{123} \cdot 7^{2} \cdot 7^{2} = 7^{2} \cdot 7^{2} = \begin{bmatrix} 49211 \\ 2 & 4 \end{bmatrix} = 5 \cdot 5 = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 10^{1234} = 
             I Som equiv.
                                                                      = 25 = [ 25 (11 ) = 8 (mud 11) = x = 3 ( mud 11)
                                                                                                                                · a = 4; M2 = 33; m2 = 5
 x = 1 (muel 3) }
                                                 · [a,=1; M,=55; M,=3
                                                 55 x1 = 1 ( muel 3) 35 13
                                                                                                                                 33x2 = 1 ( mod 5)
 X = 4( mued 5)
                                                1 x = 1 (mod 3) 3
                                                                                                                                 3x2 =1 (mud 5)
 X=3(mod 11)
                                                                                                                                    12=2,
                                                 [x,=1,
                                                                             X = a 1 H 1 X 1 + a 2 M 2 X 2 + a 3 M 3 X 3 7 = 124 ( mud 165)
   · a = 3; W = 15; m = 11
             15x3 = 1 (mod 11)
                                                                            X= 1.55.1 + 4.33.2 + 3.15.3
             4 x3 = 1 ( mod (1)
                                                                            x=55 + 264 + 135
                                                                            x = 454 \Rightarrow \begin{bmatrix} 454 & 165 \\ \frac{330}{124} & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} x = 124 \end{bmatrix}
           123=3,
(2). Demo Va, \alpha = \alpha on Z, (Use Fernat i prop IV)
   a = a (mod 15) i el mateix que dir a = 5 (mued 15).
  Això es pot single ficar une mica i poden div que:
    a = a ( mod 15) = a = a ( mod 3), a = a ( mod 5).
   Cas 1; a=0; & això à així, jo hoterim tot. 0 =0 (mod 15) .
   Cas 2: a = 0;
   Aphigum PTF+q a= (a) -a = (1) -a = a (med 3) = a = a (med 3)
   Aphquem PTF Tq a5 = (a4) 4. a = (4) 4. a = a (mod 5) = a = a (mod 5)
   Per le prop IT de conquierie podem dir que:
    a<sup>5</sup> = a (mod 3), a<sup>5</sup> = a (mod 5) => a<sup>5</sup> = a (mod 15) # 15 = mcm(3,5)
    Això i el que bucavem ain que quele demo cert l'enwert. :
```