

Japanese Kokai Patent Application No. Sho 64[1989]-15928

Translated from Japanese by the Ralph McElroy Translation Company
910 West Avenue, Austin, Texas 78701 USA

Code: 598-77473
Ref.: APPLIED DKT 306 D08

JAPANESE PATENT OFFICE
PATENT JOURNAL (A)
KOKAI PATENT APPLICATION NO. SHO 64[1989]-15928

Int. Cl.⁴: H 01 L 21/302
Sequence Nos. for Office Use: A-8223-5F
F-8223-5F
Filing No.: Sho 62[1987]-170963
Filing Date: July 10, 1987
Publication Date: January 19, 1989
No. of Inventions: 2 (Total of 4 pages)
Examination Request: Not filed

DRY ETCHING METHOD

Inventors: Yoshitsugi Fukuyama
Mechanical Research Lab., Hitachi,
Ltd.
502 Kandatsu-cho, Tsuchiura-shi

Norio Nakasato
Mechanical Research Lab., Hitachi,
Ltd.
502 Kandatsu-cho, Tsuchiura-shi

Makoto Nawada
Mechanical Research Lab., Hitachi,
Ltd.
502 Kandatsu-cho, Tsuchiura-shi

Yutaka Kakei
Mechanical Research Lab., Hitachi,
Ltd.
502 Kandatsu-cho, Tsuchiura-shi

Takeshi Harada
Mechanical Research Lab., Hitachi,
Ltd.
502 Kandatsu-cho, Tsuchiura-shi

Katsuyoshi Koto
Kasato Works, Hitachi, Ltd.
794 Higashitoyoi, Oaza,
Shimomatsu-shi, Yamaguchi-ken

Applicant:

Hitachi, Ltd.
4-6 Kandasurugadai, Chiyoda-ku,
Tokyo

Agents:

Katsuo Ogawa,
patent attorney, and 1 other

[There are no amendments to this patent.]

Claims

1. Dry etching method characterized by the fact that, in the method for dry etching a film formed on a substrate material, the etching gas is a gas mixture containing a first gas containing an etchant of said film and a second gas containing the gas of the same component as that of the product of the reaction between said substrate material and the etchant.

2. Dry etching method described in Claim 1 characterized by the following facts: said substrate material is any of single-crystal silicon, polysilicon, and amorphous silicon; said film is any of silicon oxide and silicon nitride; said etchant is any of carbon fluoride, chlorofluorocarbons, chloride, carbon trifluoride, nitrogen trifluoride, and sulfur hexafluoride; and the gas of the same component as said reaction product is silicon tetrafluoride.

3. Dry etching method characterized by the fact that a fluorocarbon-based gas and silicon tetrafluoride gas are used for etching the silicon oxide film on a silicon substrate.

4. Dry etching method described in Claim 3 characterized by the fact that a gas mixture of a fluorocarbon-based gas and silicon tetrafluoride gas is used for said etching.

5. Dry etching method described in Claim 3 characterized by the fact that said etching is first carried out with a fluorocarbon-based gas alone, and it is then carried out from the midway point with a gas mixture resulting from the addition of silicon tetrafluoride gas.

Detailed explanation of the invention

Industrial application field

This invention pertains to a dry etching method.

Prior art

With the progress in developing smaller semiconductor devices in regard to the processing of semiconductor devices, there has been a high demand for high precision dry etching, as well as a high selectivity with respect to the substrate material. In particular, to etch a device on the submicron scale, that is, using a pattern size smaller than 1 μm , it is necessary to have a high selectivity with respect to the substrate material.

Japanese Kokoku Patent No. Sho 59[1984]-46094 disclosed a method for etching with increased selectivity. In this method, during etching of a silicon oxide film on a substrate material made of silicon, the processing chamber contains silicon, molybdenum, tungsten, or the like that can absorb the fluorine radicals used to etch the silicon, the substrate material. Due to the action of this material, the amount of fluorine radicals in the plasma is reduced and the silicon etching rate decreases, so that the selectivity is increased.

Problems to be solved by the invention

However, in the aforementioned prior art, no consideration is given to the etching rate of silicon oxide as the film to be etched. The fluorine radicals used to etch silicon can also etch silicon oxide. Consequently, as the amount of the fluorine radicals decreases, the etching rate of silicon oxide also decreases. This is a problem.

The purpose of this invention is to provide a dry etching method in which etching can be performed with a high selectivity and at a high rate.

Means to solve the problems

The aforementioned purpose is realized by using as the etching gas a gas mixture of a first gas containing the etchant for the film formed on the substrate material and a second gas containing the gas of the same component as that of the product of the reaction between the substrate material and the etchant.

Operation

The film formed on the substrate material can be etched at a high rate by the first gas containing the etchant. As the etching progresses and the substrate material becomes visible, a reaction between the etchant and the substrate material forms a reaction product. At the same time, the second gas containing a gas of the same component as that of the reaction product and fed at the same time is also fed to the substrate material surface, and the concentration of the reaction product component on the substrate material surface increases. Consequently, the rate at which the substrate material is etched decreases, and a high selectivity can be realized.

Application examples

In the following, an application example of this invention will be explained.

As the etching device, in this case, a cathode-coupling type cassette dry etching device making use of an RF discharge at a frequency of 13.56 MHz is used, and a single-crystal silicon substrate is used as the substrate material. The silicon oxide film patterned with a photoresist on the substrate is etched.

As the etching gas, a gas mixture of C_2F_6 as the first gas containing the etchant of the film, and SiF_4 as the second gas containing the component of the product of the reaction between the substrate material and the etchant was used. The total flow rate was $100 \text{ cm}^3/\text{sec}$. In this case, the first gas itself is the etchant, while the second gas is the component of the reaction product. The other conditions include a pressure of 0.1 Torr and an RF power density of $2.5 \text{ W/cm}^{[\text{illegible}]}$.

Under these conditions, with different mixing ratios of C_2F_6 as the etchant gas and SiF_4 , the etching rates for silicon oxide as the film to be etched and silicon as the substrate material, as well as the selectivity of silicon and silicon oxide (etching rate of silicon oxide/etching rate of silicon) were measured; the results are listed in Table 1.

Table 1

ケース ①	ガス量 (cm ³ /sec)		エッティング速度 (nm/min)		⑥ 選択性比
	C_2F_6	SiF_4	酸化シリコン	シリコン	
1	1.00	0	④ 620	⑤ 83	7.5
2	80	20	570	47	1.2
3	60	40	490	18	2.7

- Key: 1 Case No.
 2 Gas flow rate
 3 Etching rate

- 4 Silicon oxide
- 5 Silicon
- 6 Selectivity

As the reaction product component gas, that is, SiF₄, is increased, compared with case 1 in which SiF₄ is not added, in case 2 the etching rate of silicon oxide decreases by only 8%, while the selectivity increases by more than 60%. In case 3, while the etching rate for silicon oxide decreases by 32%, the selectivity rises by 260%. That is, it is possible to increase the selectivity significantly without a significant decrease in the high etching rate of silicon oxide.

The reason is believed to be as follows. Plasma F* of C₂F₆ as a silicon oxide etchant also etches the silicon in the substrate material. In the reaction with silicon and F*, SiF₄ is formed as a volatile reaction product. Conventionally, however, when the system is evacuated, SiF₄ is gradually exhausted, so that further reaction between silicon and F* takes place, and silicon is etched off gradually. Consequently, a high selectivity cannot be realized. Now, in this invention, SiF₄, as the reaction product between silicon and F* is fed instead of exhausted. Consequently, the concentration of SiF₄ at the reaction interface between silicon and F* increases, and the reaction does not progress significantly. As a result, the selectivity is increased.

Also, the significant decrease in the etching rate of silicon when the flow rate of SiF₄ is increased indicates that the etching rate of silicon depends on the reaction, and an increase in the concentration of SiF₄ at the reaction interface inhibits the reaction. On the other hand, when the flow rate of SiF₄ is increased, there is a certain decrease in the etching rate of silicon oxide. This indicates that although the etching rate of silicon oxide is affected by the concentration of SiF₄ at the reaction interface, the reaction rate depends on the energy for cleaving the inter-atomic bonds. Consequently, the influence of the concentration of SiF₄ is not as significant as that for silicon.

In another etching experiment, a gas mixture of CHF₃ and C₂F₆ was used as the first gas, and SiF₄ was used as the second gas. The total flow rate was 100 cm³/sec. While the flow rate of CHF₃ was fixed at 20 cm³/sec, the flow rates of C₂F₆ and SiF₄ were changed under the same conditions mentioned above. The results of the etching operation are listed in Table 2.

Table 2

ケース No.	(2)		(3)		選択性 (6)
	ガス量 (ml/sec)	SiF ₄	エッティング速度 (nm/min)	酸化シリコン (4)	シリコン (5)
4	20 80	0	480	43	11
5	20 60	20	430	24	18
6	20 40	40	390	11	35

- Key:
- 1 Case No.
 - 2 Gas flow rate
 - 3 Etching rate
 - 4 Silicon oxide
 - 5 Silicon
 - 6 Selectivity

It can be seen that, compared with case 4 when SiF₄ is not added, when SiF₄ is increased, it is possible to increase the selectivity significantly while maintaining a high etching rate for silicon oxide. For example, in case 5, the etching rate of silicon oxide decreases by only 10.4%, while the selectivity rises by 64%. In case 6, while the etching rate of silicon oxide decreases by 19%, the selectivity rises by 218%.

As can be seen from the application example described above, by adding a gas of the same component as that of the product of the reaction between silicon as the substrate material and the etchant into the etchant gas containing the etchant for silicon oxide, it is possible to effectively inhibit the reaction with silicon alone. Consequently, it is possible to perform etching at a high selectivity.

Also, the following cases are included in the range of this invention, although the specific functions and effects are different from each other.

(1) The case when silicon nitride film is the material to be etched (the major etchants for silicon nitride include fluorine radicals and chlorine radicals), and the case when a laminated film of silicon oxide and silicon nitride is to be etched.

(2) The case when the substrate material also includes polysilicon or amorphous silicon, in addition to single-crystal silicon.

(3) The case when the etchant of the film is not limited to C₂F₆, and also includes carbon fluoride, sulfur hexafluoride, and nitrogen trifluoride (all of which generate fluorine radicals).

(4) The case when chlorofluorocarbons in which the fluorine is substituted with chlorine (the principal etchants for silicon oxide and silicon nitride include fluorine radicals and chlorine radicals; the products of the reaction between the etchants and silicon include silicon

tetrafluoride, silicon tetrachloride, and silicon fluorochloride), or carbon trifluoride in which the is partisly substituted with hydrogen is used.

(5) The case when the plasma generating means include AC discharge (including RF discharge), DC discharge, microwave discharge, or a combination of these forms of discharge.

Also, feeding of the gas of the same component as that of the product of the reaction between the etchant and the substrate material may be performed by feeding together with the etchant gas at the beginning, or by feeding the etchant gas alone at first and then together with the gas of the same component as that of the reaction product after the etching processing has progressed to a certain degree. In the latter case, it is possible to alleviate the decrease in the etching rate of the film to be etched.

Also, when the substrate material is Si while the etching material is SiO_2 , by adding SiF_4 as the gas having the same component as that of the reaction product to CHF_3 , an etchant favoring increase in the selectivity, it is possible to further increase the selectivity.

In addition, when the substrate material is Al and the etching film is SiO_2 , by adding AlCl_3 as the gas of the same component as that of the reaction product to C_2F_6 as the etchant, it is also possible to increase the selectivity of SiO_2 with respect to Al just as in the application example described above.

Effect of the invention

This invention has the effect of allowing etching with a high selectivity and at a high rate.

⑱ 公開特許公報 (A) 昭64-15928

⑲ Int.Cl.
H 01 L 21/302識別記号 廷内整理番号
A-8223-5F
F-8223-5F

⑳ 公開 昭和64年(1989)1月19日

審査請求 未請求 発明の数 2 (全4頁)

㉑ 発明の名称 ドライエッティング方法

㉒ 特願 昭62-170963

㉓ 出願 昭62(1987)7月10日

㉔ 発明者 福山 良次 茨城県土浦市神立町502番地 株式会社日立製作所機械研究所内

㉕ 発明者 仲里 則男 茨城県土浦市神立町502番地 株式会社日立製作所機械研究所内

㉖ 発明者 繩田 誠 茨城県土浦市神立町502番地 株式会社日立製作所機械研究所内

㉗ 発明者 掛樋 豊 茨城県土浦市神立町502番地 株式会社日立製作所機械研究所内

㉘ 出願人 株式会社日立製作所 東京都千代田区神田駿河台4丁目6番地

㉙ 代理人 弁理士 小川 勝男 外1名

最終頁に続く

明細書

1. 発明の名称

ドライエッティング方法

2. 特許請求の範囲

1. 下地材料上に形成した膜をドライエッティングする方法において、前記膜のエッチャントを含む第1のガス種と、前記下地材料と該エッチャントとの反応生成物と同成分のガスを含む第2のガス種との混合ガスをエッティングガスとして用いることを特徴とするドライエッティング方法。

2. 前記下地材料が単結晶シリコン、多結晶シリコン、アモルファスシリコンのいずれかであり、前記膜が酸化シリコン、窒化シリコンのいずれかであって、前記エッチャントがフッ化炭素、塩素化フッ化炭素、水素化フッ化炭素、三フッ化窒素、六フッ化イオウのいずれかであり、前記反応生成物と同成分のガスが四フッ化シリコンである特許請求の範囲第1項記載のドライエッティング方法。

3. シリコン基板上の酸化シリコン膜のエッテン

グにフッ化炭素系ガスと四フッ化シリコンガスとを用いることを特徴とするドライエッティング方法。

4. 前記エッティングにフッ化炭素系ガスと四フッ化シリコンガスとの混合ガスを用いる特許請求の範囲第3項記載のドライエッティング方法。

5. 前記エッティングに最初はフッ化炭素系ガスのみで行ない、途中から四フッ化シリコンガスを加える特許請求の範囲第3項記載のドライエッティング方法。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明はドライエッティング方法に関するものである。

〔従来の技術〕

半導体デバイスの微細化に伴って、その加工を行なうドライエッティングは精密度とともに下地材料に対する高選択性が強く望まれており、特にパターンサイズが1μmを下まわるサブミクロンのデバイスのエッティングにおいては、下地材料に対

する高い選択比が必要である。

従来、選択比を上げてエッティングする方法としては、例えば、特公昭59-46094号に記載のように下地材料であるシリコン基板上の酸化シリコン膜をエッティングする際に、下地材料であるシリコンのエッチャントであるフッ素ラジカル種を吸収するシリコン、モリブデン、タンクステン等の材料を処理室に構築し、該材料の作用によってプラズマ中のフッ素ラジカルの量を減少させて、シリコンのエッティング速度を抑えることによって選択比を向上させるようにしていた。

〔発明が解決しようとする問題点〕

上記従来技術はエッティングすべき膜である酸化シリコンのエッティング速度の点について配慮がされておらず、シリコンのエッチャントであるフッ素ラジカルは酸化シリコンのエッチャントでもあり、フッ素ラジカル量を減少させることにより酸化シリコンのエッティング速度も抑制されてしまうという問題があった。

本発明の目的は高選択比、かつ高速度でエッテ

ンチング装置としては、この場合、周波数13.56MHzの高周波放電を用いたカソード結合方式の枚葉式ドライエッティング装置を使用し、下地材料として単結晶シリコンの基板を用い、基板上にホトレジストでバターンニングされた酸化シリコン膜をエッティングした。

エッティングガスとしては、第1のガス種、すなわち、膜のエッチャントを含むガスをC₂F₆として、第2のガス種、すなわち、下地材料とエッチャントとの反応生成物の成分を含むガスをSiF₄として、合計の流量を100cm³/secとした。この場合、第1のガス種はそのままエッチャントであり、第2のガス種はそのまま反応生成物の成分である。他の条件として、圧力は0.1Torr、高周波電力密度は2.5W/cm²とした。

この条件において、エッティングガスのC₂F₆とSiF₄との混合割合を変え、それについてエッティング膜である酸化シリコンと下地材料であるシリコンとのエッティング速度、およびシリコンと酸化シリコンとの選択比(酸化シリコンのエッテ

ンチングすることのできるドライエッティング方法を提供することにある。

〔問題点を解決するための手段〕

上記目的は、下地材料上に形成した膜のエッチャントを含む第1のガス種と、下地材料とエッチャントとの反応生成物と同成分のガスを含む第2のガス種との混合ガスをエッティングガスとして用いることにより、達成される。

〔作用〕

下地材料上に形成した膜はエッチャントを含んだ第1のガス種によって高速度でエッティングされ、エッティングが進行して下地材料が見えはじめると、エッチャントを下地材料との反応により反応生成物が生成されるが、同時に供給される反応生成物と同成分のガスを含んぜ第2のガス種が下地材料面にも供給され、下地材料面での反応生成物成分の濃度が増加するので、下地材料のエッティング速度が低下し、高選択比が得られる。

〔実施例〕

本発明の一実施例を以下に説明する。

シング速度/シリコンのエッティング速度)を測定し、結果を表1に示す。

表 1

ケース	ガス量(cm ³ /sec)		エッティング速度(nm/min)		選択比
	C ₂ F ₆	SiF ₄	酸化シリコン	シリコン	
1	100	0	620	83	7.5
2	80	20	570	47	12
3	60	40	490	18	27

このように、反応生成物の成分ガス、すなわち、SiF₄を多くしていくば、SiF₄を添加しないケース1の場合に比べて、ケース2の場合は酸化シリコンのエッティング速度が8%しか減らず、選択比は60%増と向上しており、ケース3の場合に至っては酸化シリコンのエッティング速度が32%減に対し、選択比は260%増となり、酸化シリコンのエッティング速度は高速度のままあまり低下せずに、選択比が極めて向上していることが分かる。

これは、酸化シリコンのエッチャントである

C_2F_6 のプラズマ F^* が、下地材料であるシリコンの優勢なエッチャントでもあり、このシリコン F^* との反応によって揮発性の反応生成物である SiF_4 が生じ、通常であれば真空排気をすることによりこの SiF_4 がどんどん排気されるので、新たにシリコンと F^* の反応が進んでシリコンがエッティングされ、高い選択比を得ることができないが、この場合は、シリコンと F^* との反応生成物である SiF_4 を逆に供給しているので、シリコン F^* との反応面の SiF_4 の濃度が高くなり反応があまり進行しなくなるので、選択比が向上するものと思われる。

また、 SiF_4 の流量増加に対するシリコンのエッティング速度の著しい低下は、シリコンのエッティングが反応律速であり、反応界面での SiF_4 濃度増加により反応が抑制されていることを物語っている。一方、 SiF_4 の流量増加に対する酸化シリコンのエッティング速度の若干の低下は酸化シリコンのエッティング速度が反応界面での SiF_4 濃度の影響も受けるが、むしろ原子間結合を切断するエネルギー律速であるためシリコンほど SiF_4 濃

度に至っては酸化シリコンのエッティング速度が19%減に対し、選択比は21.8%増となり、酸化シリコンのエッティング速度は高速度のままあまり低下せずに、選択比が極めて向上していることが分かる。

以上本実施例によれば、膜である酸化シリコンのエッチャントを含むエッティングガスに、下地材料であるシリコンとエッチャントとの反応生成物と同成分のガスを混合して用いることにより、シリコンの反応だけを主に抑制することができる。高選択比で高速度のエッティングを行なうことができるという効果がある。

なお、本発明は次のものについても作用、効果を具にすることではなく、本発明に含まれるものである。

(1) エッティングすべき材料が塗化シリコン膜である場合（塗化シリコンの主なエッチャントはフッ素ラジカルと塩素ラジカルである）、および酸化シリコンと塗化シリコンの積層膜である場

度の影響を受ないと物語っている。

また、エッティングガスとして第1のガス組を CHF_3 と C_2F_6 の混合ガスとし、第2のガス組を SiF_4 として、合計の流量を100cm³/secにし、 CHF_3 は20cm³/secに固定して、前記と同条件で C_2F_6 と SiF_4 の流量を変えてエッティングした場合の結果を表2に示す。

表 2

ケース No.	ガス量(cm ³ /sec)		エッティング速度(nm/min)		選択比
	CHF_3	SiF_4	酸化シリコン	シリコン	
4	20 80	0	480	43	11
5	20 60	20	430	24	18
6	20 40	40	390	11	35

このように、反応生成物の成分ガス。すなわち、 SiF_4 を多くしていくば、 SiF_4 を添加しないケース4の場合に比べて、ケース5の場合は酸化シリコンのエッティング速度が10.4%しか減らず、選択比は6.4%増と向上しており、ケース6の場合

合。

- (2) 下地材料のシリコンは単結晶シリコンのほか、多結晶シリコン、アモルファスシリコンである場合。
 - (3) 膜のエッチャントが C_2F_6 に限らず、フッ化炭素、六フッ化イオウ、三フッ化窒素（何れもフッ素ラジカルを発生する）を含む場合。
 - (4) フッ化炭素のフッ素の一部が塩素で置換された塩素化フッ化炭素（酸化シリコン、塗化シリコンの主なエッチャントはフッ素ラジカルおよび塩素ラジカルであり、このエッチャントでのシリコンとの反応生成物の四フッ化シリコン、四塩化シリコン、塩素化フッ化シリコンの何れかであるため）または、フッ素の一部が水素で置換された水素化フッ化炭素である場合。
 - (5) プラズマ発生手段は高周波を含む交流放電、直流放電、マイクロ波放電、あるいはこれらの併用による場合。
- また、エッチャントと下地材料との反応による反応生成物と同成分のガスの供給は、エッティング

ガスと一緒に最初から供給しても良いし、最初はエッティングガスだけを供給して、ある程度エッティング膜のエッティング処理が進んでから反応生成物と同成分のガスと一緒に供給しても良い。後者にすれば、多少であるがエッティング膜のエッティング速度の低下をなくすことができる。

また、下地材料が Si でエッティング材料が SiO₂の場合、エッチャントとして選択比の向上に有利な CHF₃に反応生成物と同成分のガス SiF₄を添加することにより、さらに選択比の向上が期待できる。

さらに、下地材料に Al、エッティング膜に SiO₂の組み合せの場合には、例えばエッチャントとして C₂F₆に反応生成物と同成分のガス AlCl₃を添加することにより、前記一実施例と同様に Alに対する SiO₂の選択比の向上が期待できる。

〔発明の効果〕

本発明によれば、高選択比で高速度のエッティングを行なうことができるという効果がある。

代理人 弁理士 小川勝男

第1頁の続き

発明者 原田 武 茨城県土浦市神立町502番地 株式会社日立製作所機械研究所内

発明者 工藤 勝義 山口県下松市大字東豊井794番地 株式会社日立製作所笠戸工場内