

GERMAN FOOTBALL LEAGUE CHALLENGE

Pepperl+Fuchs

THE PROBLEM

 Decreasing number of teams in youth and amateur sports leagues

Long travel distances

 Unbalanced and small leagues

Urbanization

WHAT DID WE DO?

We used HERE Map API to get the real driving distance

Use k-means clustering to divide the teams into initial cluster groups

PERFORMANCE EVALUATION

With current number of divisions we improved the

travel distance by 5%

With one more division

26%

LIVE DEMO

http://hackdays-interactive.herokuapp.com

MADE WITH FOR PEPPERL+FUCHS

- 1. Nick Dinges algorithm
- 2. Nikolas Engelhard algorithm
- 3. Liangquan Li business model
- 4. Iryna Pauliak business model
- 5. Sudhanva Rao algorithm
- 6. Sarah Sester algorithm
- 7. Jakub L. Szypulka interactive visualisation

CURRENT SITUATION

The mean distance in different district associations.

Travel distance varies by more than 50% between districts.

CURRENT SITUATION

Cost per car in season 2018.

WHAT DID WE DO?

We used HERE Map API to get the real driving distance

We implemented multiple algorithms to create leagues

We implemented a tool to compare the different algorithms

We provided the opportunity for the users to change the team cluster manual

 K-means output without constraint of team size.

THE GRAPHICAL K-MEANS REPRESENTATION OF THE INITIAL DATA DISTRICT DIVISION