Robot design challenge 6: Hexacopter for picking fruits from trees

Kinematisk og matematisk modell

$$T = b\omega_i^2$$
, $i = 1, 2, 3, 4, 5, 6$

$$\tau_x = db(\varpi_2^2 - \varpi_5^2 + \frac{1}{2}(\varpi_1^2 + \varpi_3^2 - \varpi_4^2 - \varpi_6^2))$$

$$\tau_{y} = db \frac{\sqrt{3}}{2} (\varpi_{1}^{2} + \varpi_{6}^{2} - \varpi_{3}^{2} - \varpi_{4}^{2})$$

$$\tau_z = k(\varpi_1^2 + \varpi_3^2 + \varpi_5^2 - \varpi_2^2 - \varpi_4^2 - \varpi_6^2)$$

b: oppdrift konstant

ω: rotorhastighet

i: antall rotorer

d: lengde fra senter til rotor

τ: dreiemoment

k: lufttetthet

$$\frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi}$$

Navigering

- Svingradius på 10 cm
- Frukthage størrelse 70 m²
- Navigere mellom trær
- For ikke-holonomiske kjøretøy

Forward kinematics og DH-parameter

- RRRR arm
- 4 akser
- 4DOF

noname:: 4 axis, RRRR, stdDH, slowRNE

j	theta	d	a	alpha	offset
++ 1	q1	 -200	 0	1.5708	+ 0
2	q2	ø	250	øj	0
3	q3	0	450	øj	0
4	q4	0	100	0	0

Transformation Mapping

- W \rightarrow Verden (GPS)
- R → Robotbase
- C → 3D kamera
- RA → Robotarm
- E → End effector
- $F \rightarrow Frukt$
- $r(n) \rightarrow Rotorer$

Veien videre

- Fullføre kontroller og navigasjon
- Gazebo/matlab simulering