数分一期中

1(10) 给出下列命题的 $\varepsilon - N(\varepsilon - \delta)$ 语言描述:

(1) 数列 $\{a_n\}$ 不收敛; (2) $\lim_{x \to x_n^+} f(x) = \infty$.

2(30) 计算下列极限:

- (1) $\lim_{n \to \infty} \sqrt[n]{1 + 2^n \sin^n x}$, $\sharp r \in \mathbb{R}$; (2) $\lim_{n \to \infty} \left(\frac{a^{\frac{1}{n}} + b^{\frac{1}{n}}}{2} \right)^n$, $\sharp r \in \mathbb{R}$ $a \ge 0, b \ge 0$.
- (3) $\lim_{x\to a} \left(\frac{\sin x}{\sin a}\right)^{\frac{1}{x-a}}$, 其中 $\sin a \neq 0$;
- (4) $\lim_{x \to -\infty} (a_1^x + \dots + a_m^x)^{\frac{1}{x}}$, $\sharp \oplus a_i > 0$, $(i = 1, \dots, m)$, $m \in \mathbb{N}_+$ 给定.
- (5) 判断数列 $\{\cos n\}$ 的敛散性; (6) $\lim_{n\to\infty} \frac{1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}}{n^{\alpha}}$, 其中 $\alpha\in\mathbb{R}$.
- 3(10) 设 $p_k > 0$, $(k \in \mathbb{N}_+)$ 且 $\lim_{n \to \infty} \frac{p_n}{p_1 + p_2 + \dots + p_n} = 0$, $\lim_{n \to \infty} a_n = a$, 证明

$$\lim_{n \to \infty} \frac{p_1 a_n + p_2 a_{n-1} + \dots + p_n a_1}{p_1 + p_2 + \dots + p_n} = a.$$

- 4(20) 回答下列问题 (证明或举反例):
- (1) 若数列 $\{a_n\}$ 的任一子列 $\{a_{n_k}\}$ 都存在收敛子列 $\{a_{n_{k_i}}\}$, 则 $\{a_n\}$ 是否一定收敛?
- (2) 如果对每个素数 p, 数列 $\{a_n\}$ 的子列 $\{a_{np}\}$ 都收敛于 0. 则 $\{a_n\}$ 是否一定收敛于 0?
- $(3) ~ \ddot{\Xi} ~ \forall k \in \mathbb{N}_+, ~ \exists N_k \in \mathbb{N}, ~ \dot{\mathbb{Q}} ~ \forall n \geq N_k : |a_n a| < \frac{1}{k}, ~ \textbf{是否有} ~ \lim_{n \to \infty} a_n = a?$
- (4)(i) 若 $\forall p \in \mathbb{N}_+$, $\lim_{n \to +\infty} (a_{n+p} a_n) = 0$, 则 $\{a_n\}$ 是否一定收敛?
- (ii) 若 $\forall p, n \in N_+, |a_{n+p} a_n| \le \frac{p}{n^2}$, 问 $\{a_n\}$ 是否一定收敛?
- (5) 设数列 $\{a_n\}$ 满足 $a_n > 0$ 且 $\lim_{n \to \infty} a_n = a$,问数列 $\left\{\frac{a_{n+1}}{a_n}\right\}$ 是否收敛?
- (6)(i) 设函数 f 在区间 [a,b] 中只有第一类间断点, 问函数 f 是否在 [a,b] 上有界?
- (ii) 是否存在 (0,1) 上的单调函数 f, 使得 f 在任意有理点不连续, 而在任意无理点连续?
- 5(10) 设 A > 0 且 $a_1 > \sqrt{A}$. 令 $a_{n+1} = \frac{1}{2} \left(a_n + \frac{A}{a_n} \right)$, 则:
- (1) 证明 $\lim_{n\to\infty} a_n = \sqrt{A}$; (2) 是否存在常数 a > 1, b > 1 及 C > 0, 使得 $a_n \sqrt{A} \le \frac{C}{a^{b^n}}$?

试题整理 (回忆版) Nicolas-Keng

6(10) 设 [0,1] 上的函数

$$f(x) = \begin{cases} 0, & x = 0\\ x^{\alpha} \sin \frac{1}{\beta}, & x \in (0, 1] \end{cases}$$

其中 $\alpha, \beta \in \mathbb{R}$. 判断 f(x) 在 x = 0 的连续性.

- 7(10) 设数集 S 是非空有下界的集合,则:
- (1) 记 $\alpha = \inf S$, 判断在数集 S 中是否可取出单减的数列 $\{x_n\}$, 使得 $\lim_{n \to \infty} x_n = \alpha$?
- (2) 设 α 是 S 的一个下界; 且数列 $\{a_n\}\subset A$ 满足 $\lim_{n\to\infty}a_n=\alpha$. 证明: $\alpha=\inf A$.