Introduction to ## FHIR®

Viet Nguyen, MD
Clinical Informaticist
Stratametrics, LLC

FHIR | Agenda

- The basics: resources and references
- Structured Data
- Profiling
- Paradigms of Exchange
- Ecosystem

Material for this presentation was developed by David Hay, MD and © HL7® International. Licensed under Creative Commons. HL7 & Health Level Seven are registered trademarks of Health Level Seven International. Reg. U.S. TM Office

Why Interoperability

- Health information sharing is becoming increasingly important
 - Individuals involved in delivering care to consumers now expect the information they require to be available at the point of care
- Data collected in multiple places
 - Realistically need to move information around
- Interfaces are expensive
 - Especially if not standards based

Why FHIR?

- HL7 defines Interoperability Standards
- In 2011, the Board of HL7 noted:
 - Interoperability requirements are increasing
 - Need for real time access (API) Mobile
 - Vast increase in the amount, type and source of data
 - e.g. Devices, Genomics
 - Analytics, population health
 - Implementer expectations
- Existing standards were lacking, a fresh look was needed...

Benefits of FHIR

Benefits to Implementers and Vendors

- Familiar tooling and technologies
 - XML/JSON, HTTP, REST, SSL, OAuth
- Predefined resources and APIs
 - With built in extensibility
 - Allows implementer to focus on the core application functionality
- Extensive documentation, samples and reference server implementations
- Validation services
- Active and supportive community
- Open Source code libraries
 - HAPI (Java) and Furore (.Net)
- Mobile friendly
- Increases commercial viability of app development as FHIR compliant apps will work with different FHIR Servers (EMRs, HIEs)

Benefits to Clinicians

- Clinicians can get involved in system design
- Tooling available
- Improved access to more complete, higher quality patient information incl. genomics
- Greater choice and variety of applications and devices to support clinical workflow
- Increased IT development speed solving business problems faster in innovative ways
- Improving Decision Support
 - E.g. Immunization protocol
- Saving time

Benefits to Consumers

- Prospect of improved patient engagement apps, enabled through FHIR APIs to clinical systems
 - Can engage more deeply
- Clinician has access to a more complete patient record and improved decision making tools, leading to:
 - Better decision making
 - More efficient diagnosis and treatment
 - Higher quality care
- Overall improved patient experience reducing wasted time

Benefits to Health Care Organisations

- Most vendors are committed to FHIR
- Should lead to:
 - faster deployments
 - lower cost interoperability
 - reduced vendor lock in as FHIR is adopted by source systems
- Standards based APIs to support internal application development
- Capture data for
 - Analytics and Decision Support
 - Population Management

Basics of FHIR

The goals of FHIR (FHIR manifesto)

- Implementer Focus
- Target the 80% (common stuff)
- Use today's web technologies
 - Spec & artifacts
- Support human readability
- Paradigm & architecturally agnostic
- Open Source

Overview of FHIR

- Fast Healthcare Interoperability Resources (FHIR)
- Consistent, simple to use content model (resources)
 - Controlled extensibility
- Supports all paradigms of exchange
 - Real-time APIs
 - Documents, Messages & Operations
- Designed with implementers in mind
- Freely available
- Detailed on-line, hyperlinked specification
- Freely available tooling, servers, libraries
- Strong endorsement and support from vendors, providers and regulatory community (e.g. NHS, INTEROpen, Project Argonaut)
- Massive supporting community

Related to other Healthcare Standards

- HL7
 - Version 2
 - Version 3
 - CDA
- openEHR
- CIMI
- IHE
- DICOM
- Terminologies
 - SNOMED
 - ICD

Timeline: Where does FHIR fit?

Why is FHIR different

- Implementer focus
- Community involvement
- Tested at Connectathons
- Based on other standards
- Test servers available
- Open Source Libraries
- Free tooling
 - clinFHIR
 - forge

Where can you use FHIR

The Specification

Resources: What are they?

- The Content model
- The Thing that is exchanged
 - Via REST (FHIR Restful API), Messages, Documents
- Informed by much past work inside & outside of HL7
 - HL7: version 2, version 3 (RIM), CDA
 - Other SDO: openEHR, CIMI, ISO 13606, IHE, DICOM

Resources

AllergyIntolerance

Condition (Problem)

Procedure

ClinicalImpression

FamilyMemberHistory

RiskAssessment

DetectedIssue

Care Provision:

CarePlan

CareTeam

Goal

ReferralRequest

ProcedureRequest

NutritionOrder

Vision Prescription

Medication & Immunization:

Medication

MedicationOrder

MedicationAdministration

MedicationDispense

MedicationStatement

Immunization

ImmunizationRecommendation

Diagnostics:

Observation

DiagnosticReport

DiagnosticOrder

Specimen

BodySite

ImagingStudy

ImagingObjectSelection

Maturity Model

FHIR the basics | Resource example

XML and JSON

FHIR the basics | References between resources

FHIR the basics | Recording a consultation

12-year-old-boy

First consultation

Complaining of pain in the right ear for 3 days with an elevated temperature. On examination, temperature 38°C and an inflamed right eardrum with no perforation. Diagnosis Otitis Media, and prescribed Amoxicillin 250mg 3 times per day for 7 days.

Follow up consultation

2 days later returned with an itchy skin rash. No breathing difficulties. On examination, urticarial rash on both arms. No evidence meningitis. Diagnosis of penicillin allergy. Antibiotics changes to Erythromycin 250mg 4 times per day for 10 days.

As linked resources...

STRUCTURED AND CODED DATA

Why have structured / coded data

- Structured vs Coded
- Coded:
 - Improves UI possibilities
 - Improves exchange
 - 'Secondary' uses
 - Allows Decision Support
 - Population health

FHIR the basics | Resource example

XML and JSON

Resource structure

Name	Flags	Card.	Туре	Description & Constraints
Patient			DomainResource	Information about an individual or animal receiving health care services Elements defined in Ancestors: id, meta, implicitRules, language, text, con
(identifier)	Σ	0*	Identifier	An identifier for this patient
active	?! Σ	01	boolean	Whether this patient's record is in active use
🏐 name	Σ	0*	HumanName	A name associated with the patient
🏐 telecom	Σ	0*	ContactPoint	A contact detail for the individual
gender	Σ	01	code	male female other unknown AdministrativeGender (Required)
birthDate	Σ	01	date	The date of birth for the individual
-@ deceased[x]	?! Σ	01		Indicates if the individual is deceased or not
deceasedBoolean			boolean	
deceasedDateTime			dateTime	
🏐 address	Σ	0*	Address	Addresses for the individual
() maritalStatus		01	CodeableConcept	Marital (civil) status of a patient Marital Status Codes (Extensible)
@ multipleBirth[x]		01		Whether patient is part of a multiple birth
multipleBirthBoolean			boolean	
multipleBirthInteger			integer	
() photo		0*	Attachment	Image of the patient
🛅 contact	I	0*	BackboneElement	A contact party (e.g. guardian, partner, friend) for the patient + SHALL at least contain a contact's details or a reference to an organizati
- 向 relationship		0*	CodeableConcept	The kind of relationship v2 Contact Role (Extensible)

Data types: Primitive

- Based on w3c schema and ISO data types
- Stick to the "80% rule" only expose what most will use

Data types: Complex

Datatypes

- Review datatypes in spec
 - Start from resource
- Datatypes in resource definition
 - Backbone element
 - 'choice' data types
- Identifiers
- Review coded data
 - ValueSet binding

Coded datatypes

```
Code: "status": "confirmed"

Coding: {
    "system": "http://www.nlm.nih.gov/research/umls/rxnorm",
    "code": "C3214954",
    "display": "cashew nut allergenic extract Injectable"
}

CodeableConcept: {
    "coding": [{
        "system": "http://snomed.info/sct",
        "code": "39579001",
        "display": "Anaphylactic reaction"
}],
    "text": "Anaphylaxis"
}
```

- SNOMED CT / LOINC / RXNORM
- ICPC, MIMS + 100s more
- ICD-X+
- A drug formulary
- Custom

Code System:
Defines a set of
concepts with a
coherent meaning

Code Display Definition

Adapting FHIR to your needs: Profiling

- Many different contexts in healthcare, but want a single set of Resources
- Need to be able to describe 'usage of FHIR' based on context
- Allow for these usage statements to:
 - Authored in a structured manner
 - Published in a registry & Discoverable
 - Used as the basis for validation, code, report and UI generation.
- 3 main aspects:
 - Constraining a resource remove element, change multiplicity fix values
 - Change coded element binding
 - Adding a new element (an extension)
- Profiling adapts FHIR for specific scenarios

For example...

Note: Limited mandatory elements in the core spec

The 'profile'

- Defined by StructureDefinition resource
 - Same as used for core resources
- Defines each element
 - Path, name, dataType, binding, multiplicity. mapping & much more
 - Including allowable extension points
- Can use Forge tooling to build
 - clinFHIR (and others) for learning/viewing
- US Core (was DAF)
 - http://hl7.org/fhir/us/core/index.html

Extension Definitions

- Also a StructureDefinition
 - Defines the content of a single extension
- Simple or Complex
- Definition:
 - Available on the web
 - Canonical Url
 - Resolvable or Registry
- In resource instance:
 - Reference to Url
 - Extension or ModifierExtension

Exchange Paradigms

Bundles

- Container resource
- Types of Bundle
 - Searchset
 - Transaction
 - Document
 - Message
 - ...

REST (API)

- "Representational State Transfer" an architecture for how to connect systems in real time
- Uses HTTP/S
- Simple to use
- Very commonly used outside of healthcare especially mobile
- For simple interactions
 - Create
 - Read (& Query)
 - Update
 - Delete
- A lot of tooling / experience available

Document paradigm

- Summary at a point in time
- Part of record
- Very common
- CDA
 - CDA on FHIR

Documents – are bundles


```
<Bundle>
  <entry>
     <Composition />
 </entry>
 <entry>
     <Observation />
 </entry>
 <entry>
     <Device />
 </entry>
 <entry>
     <List/>
 </entry>
 <entry>
     <Condition/>
 </entry>
</Bundle>
```

Messaging paradigm

- Notification or instruction
- Not part of record
- HL7 v2
 - Good match with FHIR
 - Though implementations less common
- Work in progress

Messages – are bundles

Documents and Messages

Services / Operations

- For more complex server side logic
- Can be Real-time
- Key part of ecosystem
- E.g.
 - Prescribing with Decision Support
 - Terminology
 - Immunization protocols

FHIR Operations

- When more complex server logic required than simple CRUD
 - Midway between REST & SOAP
- Some defined in spec. e.g.:
 - Get all data for a patient
 - Expand/filter terminology
 - CDS services
- Can define custom services
 - Still using FHIR resources
 - Resources to define / inputs

Regardless of paradigm, the content is the same

An ecosystem

 A digital ecosystem is a distributed, adaptive, open socio-technical system with properties of self-organisation, scalability and sustainability inspired from natural ecosystems.

Wikipedia

Components

Security

- FHIR is not a security standard
 - Leverages existing standards for example
 - TLS
 - OAuth2
- Support in the specification
 - Security tags (metadata)
 - Specialized resources
 - Provenance
 - AuditEvent
- More detail
 - http://hl7.org/fhir/security.html

More information

- From HL7
 - http://hl7.org/fhir/index.html
 - wiki.hl7.org/index.php?title=FHIR
 - http://www.fhir.org/
- Community
 - https://chat.fhir.org/
 - List server (fhir@lists.hl7.org)
 - Stack Overflow (tag FHIR)
- Blogs
 - www.healthintersections.com.au/
 - https://fhirblog.com/
 - https://thefhirplace.com/
 - https://brianpos.com

- Libraries
 - Java (http://hapifhir.io/)
 - C# (NuGet HL7.FHIR)
- Tooling
 - Forge (http://fhir.furore.com/Forge)
 - http://clinfhir.com/
- Test servers
 - http://wiki.hl7.org/index.php?title=P ublicly Available FHIR Servers for t esting
 - https://fhirblog.com/2016/10/19/set ting-up-your-own-fhir-server-forprofiling/

Questions?