第六节

第二章

函数图形的描绘

- 一、曲线的渐近线
- 二、函数图形的描绘

一、曲线的渐近线

定义. 若曲线 C上的点M 沿着曲线无限地远离原点时,点 M 与某一直线 L 的距离趋于 0,则称直线 L 为

曲线C的渐近线.

或为"纵坐标差"

例如,双曲线
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

有渐近线
$$\frac{x}{a} \pm \frac{y}{b} = 0$$

但抛物线 $y = x^2$ 无渐近线.

1. 水平与铅直渐近线

若 $\lim_{x\to +\infty} f(x) = b$,则曲线 y = f(x) 有水平渐近线 y = b.
(或 $x\to -\infty$)

若
$$\lim_{x \to x_0^+} f(x) = \infty$$
, 则曲线 $y = f(x)$ 有垂直渐近线 $x = x_0$.

$$(或x \rightarrow x_0^-)$$

例1. 求曲线
$$y = \frac{1}{x-1} + 2$$
 的渐近线.

$$\lim_{x \to \infty} \left(\frac{1}{x-1} + 2 \right) = 2$$

$$\therefore \lim_{x \to 1} (\frac{1}{x-1} + 2) = \infty, \therefore x = 1$$
 为垂直渐近线.

2. 斜渐近线

$$\lim_{x \to +\infty} x \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$\lim_{x \to +\infty} \left[\frac{f(x)}{x} - k - \frac{b}{x} \right] = 0$$

$$k = \lim_{\substack{x \to +\infty \\ (\vec{x}x \to -\infty)}} \frac{f(x)}{x}$$

$$b = \lim_{\substack{x \to +\infty \\ (\vec{x}x \to -\infty)}} [f(x) - kx]$$

例2. 求曲线
$$y = \frac{x^3}{x^2 + 2x - 3}$$
的渐近线.

第:
$$y = \frac{x^3}{(x+3)(x-1)}, \lim_{x \to -3} y = \infty,$$
(或 x \right)

所以有铅直渐近线x = -3 及 x = 1

又因
$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 + 2x - 3} = 1$$

$$b = \lim_{x \to \infty} [f(x) - x] = \lim_{x \to \infty} \frac{-2x^2 + 3x}{x^2 + 2x - 3} = -2$$

$$\therefore$$
 $y=x-2$ 为曲线的斜渐近线

二、函数图形的描绘

步骤:

- 1. 确定函数 y = f(x) 的定义域,并考察其对称性及周期性;
- 2. $\mathbf{x}f'(x)$, f''(x), 并求出f'(x) 及f''(x) 为 0 和不存在的点;
- 3. 列表判别增减及凹凸区间, 求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点,描绘函数图形.

例3. 描绘 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形.

解: 1) 定义域为 $(-\infty, +\infty)$, 无对称性及周期性.

|(0,1)|

(拐点

 $\mathbf{0}$

2)
$$y' = x^2 - 2x$$
, $y'' = 2x - 2$,
 $\Leftrightarrow y' = 0$, $\Leftrightarrow x = 0$, 2
 $\Leftrightarrow y'' = 0$, $\Leftrightarrow x = 1$

4)	\mathcal{X}	-1	3
4)	y	<u>2</u> 3	2

 $x \mid (-\infty, 0)$

例4. 描绘方程 $(x-3)^2 + 4y - 4xy = 0$ 的图形.

解: 1)
$$y = \frac{(x-3)^2}{4(x-1)}$$
,定义域为($-\infty$,1),(1,+ ∞)

2) 求关键点

$$\therefore$$
 2(x-3) + 4y'-4y-4xy' = 0

$$\therefore y' = \frac{x-3-2y}{2(x-1)} = \frac{(x-3)(x+1)}{4(x-1)^2}$$

$$2 + 4y'' - 8y' - 4xy'' = 0$$

$$\therefore y'' = \frac{1 - 4y'}{2(x - 1)} = \frac{2}{(x - 1)^3}$$

 $\Rightarrow v' = 0$ 得 x = -1.3:

3) 判别曲线形态

X	$\left (-\infty, -1) \right $	-1	(-1,1)	1	(1,3)	3	$(3,+\infty)$
<i>y</i> '	+	0	_	无	_	0	+
<i>y</i> "	_		_	徒	+		+
y		-2		X		0	
(极大)			(极小)				

4) 求渐近线

$$\lim_{x\to 1} y = \infty$$
, $\therefore x = 1$ 为铅直渐近线

$$y = \frac{(x-3)^2}{4(x-1)}, \quad y' = \frac{(x-3)(x+1)}{4(x-1)^2}, \quad y'' = \frac{2}{(x-1)^3}$$

又因
$$\lim_{x \to \infty} \frac{y}{x} = \frac{1}{4}$$
, 即 $k = \frac{1}{4}$

$$b = \lim_{x \to \infty} (y - \frac{1}{4}x) = \lim_{x \to \infty} \left[\frac{(x-3)^2}{4(x-1)} - \frac{1}{4}x \right]$$

$$= \lim_{x \to \infty} \frac{-5x + 9}{4(x - 1)} = -\frac{5}{4}$$

$$\therefore y = \frac{1}{4}x - \frac{5}{4}$$
 为斜渐近线

5) 求特殊点
$$x = 0$$
 2 $y = -\frac{9}{4}$ $\frac{1}{4}$

$$y = \frac{(x-3)^2}{4(x-1)}$$
$$y' = \frac{(x-3)(x+1)}{4(x-1)^2}$$
$$y'' = \frac{2}{(x-1)^3}$$

6) 绘图

\boldsymbol{x}	$(-\infty,-1)$	-1	(-1,1)	1	(1,3)	3	$(3,+\infty)$
y		-2		无完		0	
	(极大)	×	文	(极小)	

铅直渐近线 x=1

斜渐近线
$$y = \frac{1}{4}x - \frac{5}{4}$$

特殊点 $\begin{array}{c|ccc} x & 0 & 2 \\ \hline y & -\frac{9}{4} & \frac{1}{4} \end{array}$

例5. 描绘函数 $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ 的图形.

解: 1) 定义域为 $(-\infty, +\infty)$, 图形对称于 y 轴.

2) 求关键点

$$y' = -\frac{1}{\sqrt{2\pi}} x e^{-\frac{x^2}{2}}, \qquad y'' = -\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} (1 - x^2)$$

3) 判别曲线形态

\mathcal{X}	0	(0,1)	1	$(1, +\infty)$
y'	0	_		_
y"		_	0	+
y	$\frac{1}{\sqrt{2\pi}}$		$\frac{1}{\sqrt{2\pi e}}$	

(极大)

\mathcal{X}	0	(0,1)	1	$(1, +\infty)$
y'	0	_		_
<i>y</i> "		_	0	+
y	$\frac{1}{\sqrt{2\pi}}$		$\frac{1}{\sqrt{2\pi e}}$	
	/477_L_			

(极大)

(拐点)

4) 求渐近线

$$\lim_{x\to\infty}y=0$$

 $\therefore y = 0$ 为水平渐近线

5) 作图

内容小结

1. 曲线渐近线的求法

水平渐近线; 垂直渐近线;

斜渐近线

2. 函数图形的描绘 ——— 按作图步骤进行

思考与练习

1. 曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
 (*D*)

- (A) 没有渐近线; (B) 仅有水平渐近线;
- (C) 仅有铅直渐近线;
- (D) 既有水平渐近线又有铅直渐近线.

:
$$\lim_{x \to \infty} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = 1;$$
 $\lim_{x \to 0} \frac{1 + e^{-x^2}}{1 - e^{-x^2}} = \infty$

2. 曲线 $y = 1 - e^{-x^2}$ 的凹区间是 $\frac{(-1)(-1)}{\sqrt{2}}$,

凸区间是
$$(-\infty, \frac{-1}{\sqrt{2}})$$
 及 $(\frac{1}{\sqrt{2}}, +\infty)$

拐点为
$$\frac{(\pm \frac{1}{\sqrt{2}}, 1 - e^{\frac{-1}{2}})}{1 + \frac{1}{\sqrt{2}}}$$
 , 渐近线 $y = 1$.

提示:

$$y'' = 2e^{-x^2}(1-2x^2)$$

作业

P166 2, 3

备用题 求笛卡儿叶形线 $x^3 + y^3 = 3axy$ 的渐近线.

$$x = \frac{3at}{1+t^3}, \quad y = \frac{3at^2}{1+t^3} \quad t \neq -1$$

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{t \to -1} \frac{3at^2}{1+t^3} / \frac{3at}{1+t^3} = -1$$

$$\lim_{x \to \infty} [y - (-x)] = \lim_{t \to -1} \left[\frac{3at^2}{1+t^3} + \frac{3at}{1+t^3} \right] = \lim_{t \to -1} \frac{3at(1+t)}{(1+t)(1-t+t^2)}$$

所以笛卡儿叶形线有斜渐近线 y = -x - a

笛卡儿叶形线

$$\begin{cases} x = \frac{3at}{1+t^3} \\ y = \frac{3at^2}{1+t^3} \end{cases}$$

参数的几何意义:

$$t = \tan \theta$$

$$t \in [0, +\infty) \rightarrow \theta \in [0, \frac{\pi}{2})$$

图形在第一象限

