seu informativo de segurança

I-h-o SEG

o que era velho está se tornando

Atendendo a pedidos e valorizando o passado e a tradição de 11 anos de publicação, o INFOSEG relançará as suas primeiras edições, adequando os conteúdos ao nosso novo formato.

O resultado você confere a patir de janeiro com o INFOSEG nº33, releitura da 1ª edição lançada em 1999: 'Tubos Colorimétricos - A utilização de tubos detectores de gases de um fabricante e bombas de outro'.

G 31 anos

Grupo Racco Brasil • 1980 - 2011

TUBOS COLORIMÉTRICOS

A utilização de tubos detectores de gases de um fabricante e bombas de outro

- •Os tubos e sua origem, utilização, funcionamento e muito mais
- Bombas tipo fole
- Intercambiabilidade entre diferentes fabricantes

A Intercambiabilidade entre os tubos detectores e bombas vem, há muito, sendo debatida entre osfabricantes de sistemas de tubos detectores colorimétricos.

A MSA/AUER testou modelos de tubos e bombas dos dois fabricantes mais importantes em nível mundial, para determinar se a precisão do tubo detector é, de fato, afetada quando este é utilizado com uma bomba de outro fabricante. Esses testes estão aqui descritos.

Como iniciou-se a utilização de tubos colorimétricos?

Há anos os tubos detectores colorimétricos têm sido a metodologia escolhida para a detecção de substâncias tóxicas no ar. Os tubos detectores foram utilizados pela primeira vez na universidade de Harvard em 1917, onde foram desenvolvidos para a detecção de monóxido de carbono. Em 1935 Yant (da MSA), Littlefield e Berger publicaram um relatório para o Bureau Americano de Minas entitulado "Um detector para Estimativa Quantitativa de Baixa Concentração de Gás Sulfídrico". A partir daí, tubos colorimétricos têm sido desenvolvidos para várias substâncias. Atualmente a MSA/AUER oferece uma gama de modelos de tubos para a detecção de centenas de "riscos atmosféricos".

Por que os tubos colorimétricos ainda hoje são largamente utilizados?

Rápidos, de baixo custo e confiáveis, os tubos detectores verificam a exposição em praticamente qualquer local onde um risco potencial possa existir. O cloro, por exemplo, é um oxidante forte utilizado em detergentes e desinfetantes. Consequentemente, qualquer local onde esses produtos são utilizados constitui uma área potencial a ser monitorada com um tubo detector de cloro, enquanto um tubo detector de fosfina é ideal para a detecção de fosfina em silos de grãos. Os tubos detectores MSA/AUER são utilizados para a detecção de substâncias tóxicas em indústrias como as de plásticos, mineradoras, químicas, farmacêuticas, agrícolas, lavagem a seco, pintura, detergentes, petroquímicas, borracha, refrigeração, aviação dentre outros.

Por que os tubos colorimétricos ainda hoje são largamente utilizados?

Os tubos detectores são tubos de vidro preenchidos com componentes químicos específicos. Esses componentes são substâncias reativas colorimétricas depositadas ou em fitas de papel ou em material sólido, como grãos de sílica gel, areia e sílica ou ainda alumina ativada. O tubo detector é hermeticamente selado e o componente interno reage quantitativamente quando exposto a um determinado gás ou vapor. Se o risco está presente o reagente muda de cor, de forma que o tamanho da mancha ou intensidade

da cor indica a concentração da substância tóxica no volume de ar amostrado. Todos os tubos MSA/AUER são calibrados de forma que a mancha é relacionada a uma escala impressa no corpo do tubo, que corresponde à concentração de gás em ppm, % volume ou mg/m3.

Qual o volume de ar captado por uma bomba tipo fole ?

Para amostragem instantânea, o usuário simplesmente rompe as extremidades do tubo e conecta-o à bomba. A bomba mais comumente utilizada é a bomba manual de volume constante tipo fole que capta uma amostra de 100 ml de ar por bombeada, por sucção, através da compressão de uma câmara elástica (ex.: fole).

Qual o número de bombeadas recomendado?

As bulas de instruções que acompanham cada tubo detector definem o número correto de bombeadas e tempo da amostragem para a captação do volume necessário de amostra. Esses parâmetros não são constantes uma vez que cada reagente necessita de um período de tempo específico para a completa reação, ao mesmo tempo que a resistência de cada tubo detector ao fluxo depende do tamanho e compactação das partículas.

Como se opera corretamente a bomba tipo fole ?

A operação das bombas tipo fole é simples. Para a utilização da bomba modelo Kwik-Draw MSA, (Pronuncia-se "cuíque drau") o usuário pressiona um êmbolo que comprime o fole com mola interna. Quando o êmbolo é liberado a mola faz com que o fole recupere seu formato original, succionando o ar através do tubo detector. Um contador de fácil visualização mostra o número exato de bombeadas efetuadas, funcionando ainda como "fim de curso" para o êmbolo quando este é totalmente comprimido. A bomba Kwik-Draw MSA Deluxe possui um exclusivo indicador de

fim da bombeada, confirmando que uma quantidade especificada de ar foi captada para a obtenção de uma leitura precisa. Tubo detector, mais a bomba, entende-se como Sistema de Tubo Detector.

A intercambiabilidade entre fabricantes está relacionada a que função, para garantir a precisão das medições ?

Depende basicamente de duas funções críticas da bomba: **fluxo**: e **volume** amostrado. As normas do NIOSH para tubos detectores não incorporam exigências específicas para o fluxo das bombas, o aspecto mais complexo da performance da bomba. Cada bombada apresenta um padrão particular de fluxo e a conclusão que prevalece é a de que o padrão de fluxo varia conforme o modelo da bomba. Recentemente a MSA/AUER conduziu um estudo para determinar o impacto da não homogeneidade nas bombadas na precisão dos sistemas de tubos detectores, reexaminando assim o assunto da intercambiabilidade entre tubos detectores e bombas. Utilizando procedimentos específicos de teste bem como protocolos baseados no teste NIOSH e norma Din. 33882 (veja fig. 01), a MSA/AUER avaliou primeiramente o padrão de fluxo da bomba MSA modelo Kwik-Draw

Figura 01. Diagrama para a medição do volume amostrado e características de fluxo.

Entrada: +15Vcc 150mA max Saída: 0-5 Vce em >10kOhm

Resposta: 500 ms Temperatura: 15-40oC

Precisão: +0.5% do sinal final

(incl. linearidade)

Resolução: 0.1% do sinal final.

A figura 02 mostra esse padrão, gerado pela utilização de um anemômetro de filamento quente e um resistor, baseado na norma européia prEN 1235 para simular a resistência de um tubo detector.

Figura 02. Fluxo de ar característico da bomba MSA Kwik-Draw. (ao lado)

Sob as mesmas condições utilizadas no teste da bomba Kwik-Draw a MSA/AUER testou outros três modelos de bomba disponíveis no mercado: AUER Gas-Tester II H, Dräger tipo fole mod. 31 e Dräger Accuro. A figura 03 ilustra o comparativo do padrão de fluxo dessas quatro bombas. A área delimitada por cada curva representa o volume amostrado em cada ciclo completo da bomba.

Figura 03. Fluxo de ar característico de quatro bombas disponíveis no mercado.

Os padrões de fluxo demonstraram uma variaçãoinsignificante de 2%, (2 ml) como diferença total entre segmentos individuais da curva.

Consequentemente há uma grande coerência entre os padrões de fluxo das quatro bombas testadas. Testes repetidos resultaram em um erro de reprodutibilidade de 3%.

Quais as normas aplicadas nos testes das bombas ?

Na ausência de normalização americana ou européia para a precisão no fluxo das bombas, a MSA/AUER aplicou a norma alemã DIN 33882 para um teste com as quatro bombas. Essa norma exige que a variação nos padrões de fluxo não ultrapasse +20%. A figura 04 mostra os padrões de fluxo de três modelos com dois conjuntos de dados para a bomba Dräger Mod. 31 com uma banda de flutuação de 20%.

Figura 04. Curvas de fluxo de três bombas disponíveis no mercado com desvio calculado de 20% conforme a norma DIN 33882.

É evidente que todas as quatro bombas atendem à norma DIN 33882 no que diz respeito à precisão no fluxo. Em complemento, novos testes mostraram que o padrão de fluxo de bombas de cada modelo variaram +5% de lote para lote e com o uso.

Consequentemente, a flutuação nas bombas tipo fole do mesmo modelo(fabricante) é normalmente maior que a flutuação entre bombas tipo fole de diferentes fabricantes. Essa investigação concluiu que as bombas manuais tipo fole disponíveis no mercado atualmente possuem performances idênticas.

Considerando as variações insignificantes no comportamento das quatro bombas testadas e o fato de que todas atendem às normas para precisão, não há argumento técnico contra a intercambiabilidade entre bombas tipo fole desde que certos critérios técnicos sejam atendidos.

Quais os critérios adotados para garantir a intercambialidade?

Como resultado desse estudo a MSA/AUER adota uma política de intercambiabilidade controlada entre tubos e bombas MSA/AUER com tubos e bombas de outros fabricantes. Essa política adota que uma vez que as bombas manuais tipo fole atendam aos critérios listados a seguir, elas podem ser utilizadas com qualquer tipo de tubo detector desenvolvido para esse tipo de bomba.

- 1. As características da bomba volume, tempo de amostragem e fluxo sejam da mesma ordem de grandeza
- 2. O tubo detector deve possuir um diâmetro externo de 7 mm e ser aferido em fábrica com uma bomba que atenda ao critério n.º 1
- **3.**O fabricante dos tubos e bombas devem operar sob um sistema certificado de qualidade assegurada.

Qualquer bomba que atenda aos critérios acima permite a intercambiabilidade.

Dentre os modelos testados quais bombas são intercambiáveis?

Baseado nesse critério, as bombas a seguir são intercambiáveis:

- . MSA Kwik-Draw
- . AUER Gas-tester II H
- . Dräger -fole -modelo 31
- . Dräger Accuro

Baseada em testes e dados teóricos, a MSA/AUER não recomenda a intercambiabilidade entre bombas além das citadas acima.

E quanto à intercambialidade dos tubos detectores?

Uma vez que essas bombas são intercambiáveis, os tubos desenvolvidos para uso com um dos modelos pode ser utilizado com qualquer um dos outros, independentemente das características do tubo.

Portanto os tubos fabricados apenas pela MSA/AUER podem ser utilizados nas bombas Dräger Accuro e Mod. 31 tipo fole, da mesma forma que os tubos fabricados apenas pela Dräger podem ser utilizados em bombas MSA Kwik-Draw e AUER Gas-Tester II H.

CONCLUSÃO

Através de testes aplicados em quatro modelos de bombas disponíveis no mercado a MSA/AUER demonstrou que embora os argumentos "históricos" ofereçam algumas restrições sobre a utilização de tubos de um determinado fabricante com bombas de outro, estes deixam de ser verdadeiros para as combinações descritas neste relatório. A MSA/AUER antecipando-se no estudo deste tema, estabelece que a intercambiabilidade entre tubos e bombas de diferentes fabricantes, desde que obedecidos os critérios técnicos acima citados, são não apenas aceitáveis, como desejáveis.

Referências bibliográficas:

- 1. Direct-Reading Colorimetric Indicator Tubes Manual. First Edition. 1976. American Industrial Hygiene Association (AIHA). Akron, OH. 1976.
- **2.** Littlefield, J.B., Yant, W.P., and Berger, L.B. "A Detector for Quantitative Estimation of Low Concentration of Hydrogen Sulfide". Department of the Interior. U.S. Bureau of Mines Report. RI 3276. Washington, D.C. 1935.
- **3.** Cohen, F.H. "A Study of the Interchangeability of Gas Detector Tubes and Pumps". National Institute for Occupacional Safety and Health (NIOSHI). U.S. Department of Health, Education, and Welfare. Report No. TR- 71. PB221 168. p. 16. Morgantown, WV. June 15, 1973.
- **4.** Gas Detector Tube Units Short-Term Type for Toxic Gases and Vapors and Working Environments. American National Standards Institute (ANSI/ISEA). 102-1990. American National Standards Institute. New York. 1990.
- **5.** European Standard on Detector Tubes prEN 1231 (1994). Workplace Atmospheres Short Term Detector Tube Measurement Systems: Requirements and Test Methods.
- 6. DIN 33882. Measurement by Means of Detector Tubes Measuring System with Length of Stain Detector Tubes for Short-Term Measurement. Part 1 (1990) Requirement, Marking Part 2 (1992) Tests.
- 7. Revisão: Antônio S. Mello Supervisor divisão instrumentos MSA do Brasil

TABELA DE TUBOS

SUBSTÂNCIA	TUBO	ESCALA
1,1 Dimetilhidracina	Hidracina-0,1	0,5 ppm 10 ppm - 5 Bombadas 0,2 ppm 5 ppm - 10 Bombadas
1,1,1 - Tricloroetano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
1,3 Butadieno	QL	Qualitativo
Acetaldeído	Formaldehido-0.1	1 ppm 10 ppm - 10 Bombadas 0,1 ppm 1 ppm - 20 Bombadas
Acetileno	CO-0.1%	0,1 vol%1 vol% - 1 Bombada
Acetileno	QL	Qualitativo
Acetona	Acetona-100	100 ppm 10000 ppm - 6 Bombadas
Acetona	MEK-50	50 ppm 4000 ppm - 3 Bombadas
Acetona	QL	Qualitativo
Ácido acético	Acido acético -1	5 ppm 80 ppm - 1 Bombada 1 ppm 12 ppm - 5 Bombadas
Ácido Clorídrico	HCI-1	2 ppm 30 ppm - 5 Bombadas 1 ppm 10 ppm - 10 Bombadas
Ácido Clorídrico	HCI-50	500 ppm 5000 ppm - 1 Bombada 50 ppm 500 ppm - 8 Bombadas
Ácido Clorídrico	HCN-2	5 ppm 50 ppm - 2 Bombadas 2 ppm 12 ppm - 10 Bombadas
Ácido Clorídrico	QL	Qualitativo
Ácido Etílico	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Ácido Etílico	QL	Qualitativo
Ácido Fluoridico	HF-1	5 ppm 50 ppm - 2 Bombadas 1 ppm 12 ppm - 8 Bombadas
Ácido fórmico	Acido acético-1	5 ppm 80 ppm - 1 Bombada 1 ppm 12 ppm - 5 Bombadas
Ácido fórmico	QL	Qualitativo
Acrilonitrilo	Acrilonitrilo-0.5	5 ppm 30 ppm - 3 Bombadas 1 ppm 10 ppm - 10 Bombadas
Alcool Furfurilico	Fenol-1	1 ppm 15 ppm - 20 Bombadas 5 ppm 25 ppm - 10 Bombadas
Alcool Metilico	Etanol-100	100 ppm 3000 ppm - 10 Bombadas

Alcool n-Propilico	QL	Qualitativo
Amonia	NH 3 -0.1%	0,5 % vol 10 % vol - 2 Bombadas
7 111011110		0,1 % vol 1,6 % vol - 10 Bombadas
Amonia	NH 3 -100	100 ppm 2000 ppm - 1 Bombada
Amonia	NH 3 -2	10 ppm 600 ppm - 2 Bombadas 2 ppm 80 ppm - 10 Bombadas
Amonia	NH 3 -20	20 ppm1400 ppm - 1 Bombada
Benzeno	C 6 H 6 -0.25	0,25 5 ppm - 15 Bombadas 0,5 10 ppm - 10 Bombadas
Benzeno	C 6 H 6 -1	1 ppm 25 ppm - 15 Bombadas 5 ppm100 ppm - 4 Bombadas
Benzeno	C 6 H 6 -5	5 ppm 100 ppm - 10 Bombadas
Benzeno	H Aromáticos	5 ppm 300 ppm - 10 Bombadas
Benzeno	QL	Qualitativo
Benzina	Gasolina-30	300 ppm 6000 ppm - 1 Bombada 30 ppm 600 ppm - 10 Bombadas
Benzina	QL	Qualitativo
Brometo de Metilo	Bromuro de Metilo-2	10 ppm 100 ppm -1 Bombada 2 ppm 10 ppm - 4 Bombadas
Brometo de Metilo	Bromuro de Metilo-200	200 ppm 8000 ppm - 3 Bombadas
Bromo	CI 2 -0.2	0,2 ppm 3 ppm - 10 Bombadas
Bromobenzeno	H Aromáticos	5 ppm 300 ppm - 10 Bombadas
Bromoetano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Bromometano	Bromuro de Metilo-2	10 ppm 100 ppm - 1 Bombada 2 ppm 10 ppm - 4 Bombadas
Bromometano	Bromuro de Metilo-200	200 ppm 8000 ppm - 3 Bombadas
Bromometano	Tricloroetano-5	5 ppm 350 ppm -10 Bombadas
Butadieno,1.3-	Etileno-50	50 ppm 1000 ppm - 5 Bombadas
Butano	QL	Qualitativo
Butano,n-	Propano-200	200 ppm 4000 ppm - 5 Bombadas
Butanol 1	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Butanol,2-	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Butanol,n-	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Butanol,sec-	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Butanona	QL	Qualitativo
Butanona,2-	MEK-50	50 ppm 4000 ppm - 3 Bombadas

Butanotiol,1-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada
Butilamina sec.	Triethylamina-5	5 ppm 30 ppm - 1 Bombada
Butilamina terc.	Triethylamina-5	5 ppm 30 ppm - 1 Bombada
Butilamina,n-	Triethylamina-5	5 ppm 30 ppm - 1 Bombada
Butileno	QL	Qualitativo
Butileno,1-	Etileno-50	50 ppm 1000 ppm - 5 Bombadas
Butileno,2-	Etileno-50	50 ppm 1000 ppm - 5 Bombadas
Butilmercaptan,1-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada 0,5 ppm 5 ppm - 15 Bombadas
Butilmercaptan,t-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada
Cicloheptano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Ciclohexano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Ciclohexano	QL	Qualitativo
Ciclohexilamina	Triethylamina-5	5 ppm 30 ppm - 1 Bombada
Ciclooctano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Ciclopentano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Cloreto de Hidrogenio	HCI-1	1 ppm 30 ppm - 5 Bombadas 1 ppm 10 ppm - 10 Bombadas
Cloreto de Hidrogenio	HCI-50	500 ppm 5000 ppm - 1 Bombada 50 ppm 500 ppm - 8 Bombadas
Cloreto de Hidrogenio	QL	Qualitativo
Cloreto de Metila	Diclorometano-50	100 ppm 1000 ppm - 10 Bombadas 25 ppm 400 ppm - 20 Bombadas
Cloreto de Metila	VC-1	4 ppm 70 ppm - 2 Bombadas 1 ppm 15 ppm -10 Bombadas
Cloreto de vinila	QL	Qualitativo
Cloreto de vinila	VC-1	5 ppm 70 ppm - 2 Bombadas 1 ppm 15 ppm - 10 Bombadas
Cloro	Cl 2 -0.2	0,2 ppm 3 ppm - 10 Bombadas
Cloro	CI 2 -50	50 ppm 500 ppm - 1 Bombada
Cloro	CIO 2 -0.05	0,25 ppm 15 ppm - 1 Bombada 0,05 ppm 1,5 ppm - 5 Bombadas
Clorobenzeno	H. Aromáticos	5 ppm 300 ppm - 10 Bombadas
Clorobromometano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Clorobutano,1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Cloroetano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas

Cloroformio	QL	Qualitativo
Cloropentano,1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Cloropentano,1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Cloropropano,2-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Decano n-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Diaminoetano 1.2-	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Dibromoetano1,1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dibromometano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dicloreto de Etileno	Diclorometano-50	100 ppm 1000 ppm - 10 Bombadas 25 ppm 400 ppm - 20 Bombadas
Dicloroetano	Diclorometano-50	100 ppm 1000 ppm - 10 Bombadas 25 ppm 400 ppm - 20 Bombadas
Dicloroetano	Diclorometano-50	100 ppm 1000 ppm - 10 Bombadas 25 ppm 400 ppm - 20 Bombadas
Dicloroetano,1.1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dicloroetano,1.1-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dicloroetileno,1.2,cis,trans.	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dicloropropano,1.2-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dicloropropano,1.3-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Dietilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Dimetilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Dimetilbutano 2,2-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Dióxido de Carbono	CO 2 -0.1%	0,5 %vol 7 %vol - 1 Bombada 0,1 %vol 1,2 %vol - 5 Bombadas
Dióxido de Carbono	CO 2 -0.5	0,5 % vol 10 % vol - 1 Bombada
Dióxido de Carbono	CO 2 -1%	1 %vol 20 %vol - 1 Bombada
Dióxido de Carbono	CO 2 -100	100 ppm 3000 ppm - 10 Bombadas
Dióxido de Carbono	SO 2 -1	1 ppm 25 ppm - 3 Bombadas 0,5 ppm 8 ppm - 10 Bombadas
Dióxido de Carbono	SO 2 -100	500 ppm 4000 ppm - 1 Bombada 100 ppm 500 ppm - 5 Bombadas
Dióxido de Carbono	SO 2 -5	40 ppm 200 ppm - 1 Bombada 5 ppm 50 ppm - 3 Bombadas
Dióxido de Cloro	CIO 2 -0.05	0,25 ppm 15 ppm - 1 Bombada 0,05 ppm 1,5 ppm - 5 Bombadas
Dióxido de Nitrogênio	Nitr0.5	0,5 ppm 50 ppm - 5 Bombadas

Dióxido de Nitrogênio	Nitr2	5 ppm 140 ppm - 5 Bombadas 2 ppm 70 ppm - 10 Bombadas
Dióxido de Nitrogênio	Nitr50	50 ppm 3000 ppm - 1 Bombada
Dióxido de Nitrogênio	Nitr-10	10 ppm 300 ppm - 2 Bombadas
Dióxido de Nitrogênio	NO 2 -0.5	0,5 ppm 50 ppm - 5 Bombadas
Dióxido de Nitrogênio	NO 2 -2	5 ppm 30 ppm - 5 Bombadas 2 ppm 70 ppm - 10 Bombadas
Disulfeto de Carbono	CS 2 -2	10 ppm 300 ppm - 1 Bombada 2 ppm 50 ppm - 5 Bombadas
Disulfeto de Carbono	QL	Qualitativo
Estireno	Estireno-10	10 ppm 300 ppm -10 Bombadas
Estireno	QL	Qualitativo
Etanol	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Etanol	QL	Qualitativo
Etanotiol	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada
Etil Benzeno	Tol-5	5 ppm 1000 ppm - 5 Bombadas
Etilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Etileno	Etileno-50	50 ppm 1000 ppm - 5 Bombadas
Etileno	QL	Qualitativo
Etilmercaptan	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada 0,5 ppm 5 ppm - 15 Bombadas
Fenol	Fenol-1	1 ppm 15 ppm - 20 Bombadas 5 ppm 25 ppm - 10 Bombadas
Fenol	QL	Qualitativo
Fluoreto de Hidrogenio	HF-1	5 ppm 50 ppm - 2 Bombadas 1 ppm 12 ppm - 8 Bombadas
Formaldeído	Formaldehido-0.1	1 ppm 10 ppm - 10 Bombadas 0,1 ppm 1 ppm - 20 Bombadas
Fosfina	PH 3 -0.05	0,1 ppm 3 ppm - 10 Bombadas 0,05 ppm 1,5 ppm - 20 Bombadas
Fosfina	PH 3 -0.1	0,1 ppm 10 ppm - 10 Bombadas
Fosfina	PH 3 -50	50 ppm 2000 ppm - 1 Bombada
Fosgênio	Fosgeno-0.1	1 ppm 20 ppm - 5 Bombadas 0,1 ppm 5 ppm - 20 Bombadas
Gas Natural	Gas natural	Concentraciones por encima de 0,5 % vol de metano para n=5 5 Bombadas
Gases Liquefeitos	QL	Qualitativo

9 "	0 " 00	
Gasolina	Gasolina-30	300 ppm 6000 ppm - 1 Bombada 30 ppm 600 ppm - 10 Bombadas
HCI	HCI-1	2 ppm 30 ppm - 5 Bombadas 1 ppm 10 ppm - 10 Bombadas
HCI	HCI-50	500 ppm 5000 ppm - 1 Bombada 50 ppm 500 ppm - 8 Bombadas
Heptana,n-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Hexana,n-	BNZ (Gasolina)	anular a +/- 100 ppm - 2 Bombadas anular b +/- 2000 ppm - 2 Bombadas
Hexana,n-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
HF	HF-1	5 ppm 50 ppm - 2 Bombadas 1 ppm 12 ppm - 8 Bombadas
Hidrazina	Hidracina-0,1	0,5 ppm 10 ppm - 5 Bombadas 0,2 ppm 5 ppm - 10 Bombadas
Isobutanol	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Isobutilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Isobutilmetilcetona	MEK-50	50 ppm 4000 ppm - 3 Bombadas
Isopropanol	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Isopropilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Mercúrio	Hg-0,01	0,012 ppm 0,096 ppm - 20 Bombadas
Mercúrio	Hg-0,01	0,012 ppm 0,096 ppm - 20 Bombadas
Metano	Gas natural	Qualitativo Mancha 3 - 5 mm > 0,5% - 5 Bombadas
Metanol	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Metanotiol	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada
Metilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Metilbutano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Metilciclohexano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Metilciclopentano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Metilcloroformo	QL	Qualitativo
Metiletilcetona	MEK-50	50 ppm 4000 ppm - 3 Bombadas
Metiletilcetona	QL	Qualitativo
Metilhidracina	Hidracina-0,1	0,5 ppm 10 ppm - 5 Bombadas 0,2 ppm 5 ppm - 10 Bombadas
Metilmercaptana	Ethylmercaptan-0.5	10 ppm 100 ppm - 1 Bombada
Metilpentano,2-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas

Metilpentano,3-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Metilpropano	Propano-200	200 ppm 4000 ppm - 5 Bombadas
Metilpropileno	Etileno-50	51 ppm 1000 ppm - 5 Bombadas
Monóxido de Carbono	CO-0.1%	0,1 vol%1 vol% - 1 Bombada
Monóxido de Carbono	CO-0.5%	0,3 vol% 7 vol% - 1 Bombada
Monóxido de Carbono	CO-10 (ppm)	100 ppm 3000 ppm - 1 Bombada 10 ppm 300 ppm - 10 Bombadas
Monóxido de Carbono	CO-10 (Vol%)	0,01 % vol 0,3 % vol - 1 Bombada 0,001 % vol 0,03 % vol - 10 Bombadas
Monóxido de Carbono	CO-3000	3000 ppm 70000 ppm - 1 Bombada
Monóxido de Carbono	CO-5	50 ppm 1000 ppm - 1 Bombada 5 ppm 100 ppm - 10 Bombadas
Monóxido de Carbono	QL	Qualitativo
M-Xileno	H. Aromáticos	5 ppm 300 ppm - 10 Bombadas
M-Xileno	Tol-5	5 ppm 1000 ppm - 5 Bombadas
n-Nonano	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Octana,n-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Óxido Nítrico	Nitr0.5	0,5 ppm 50 ppm - 5 Bombadas
Óxido Nítrico	Nitr2	5 ppm 140 ppm - 5 Bombadas 2 ppm 70 ppm - 10 Bombada
Óxido Nítrico	Nitr50	50 ppm 3000 ppm - 1 Bombada
Óxido Nítrico	Nitr-10	10 ppm 300 ppm - 2 Bombadas
Ozônio	Ozono-0.05	0,5 ppm 5 ppm - 2 Bombada 0,05 ppm 1 ppm - 10 Bombadas
Pentacloroetano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Pentano	QL	Qualitativo
Pentano,n-	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Percloroetileno	Per-10	10 ppm 500 ppm - 5 Bombadas
Percloroetileno	Per-5	5 ppm 200 ppm - 10 Bombadas
Percloroetileno	QL	Qualitativo
Propano	Propano-200	200 ppm 4000 ppm - 5 Bombadas
Propano	QL	Qualitativo
Propanol	QL	Qualitativo
Propanol,n-	Etanol-100	100 ppm 3000 ppm - 10 Bombadas
Propanotiol,1-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada

Propanotiol,2-	l Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada 0,5 ppm 5 ppm - 15 Bombadas
Propeno	QL	Qualitativo
Propilamina,n-	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Propilene	Etileno-50	50 ppm 1000 ppm - 5 Bombadas
Propilene	QL	Qualitativo
Propilmercaptan,1-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada 0,5 ppm 5 ppm - 15 Bombadas
Propilmercaptan,2-	Etilmercaptano-0.5	10 ppm 100 ppm - 1 Bombada
Querozene	QL	Qualitativo
Sulfeto de Hidrogenio	H 2 S-0.4 %	0,1 % vol 4 % vol 1 Bombada
Sulfeto de Hidrogenio	H 2 S-1	10 ppm 200 ppm - 1 Bombada 1 ppm 20 ppm - 10 Bombadas
Sulfeto de Hidrogenio	H 2 S-100	100 ppm 4000 ppm - 1 Bombada
Sulfeto de Hidrogenio	QL	Qualitativo
Sulfeto de Hidrogenio	QL	Qualitativo
Tetrabromoetano,1.1.2.2-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Tetrabromoetano,1.1.2.2-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Tetracloroetileno	Per-10	10 ppm 500 ppm - 5 Bombadas
Tetracloroetileno	Per-5	5 ppm 200 ppm - 10 Bombadas
Tetracloroetileno	QL	Qualitativo
Tetrahidrotiofene	THT-1, 5 ST	1 ppm 10 ppm - 20 Bombadas 5 mg/m 3 35 mg/m - 20 Bombadas
Tolueno	H Aromáticos	5 ppm 300 ppm - 10 Bombadas
Tolueno	QL	Qualitativo
Tolueno	Tol-5	5 ppm 1000 ppm - 5 Bombadas
Tribromometano	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Tricloroetano,1.1.1-	QL	Qualitativo
Tricloroetano,1.1.2-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas
Tricloroetileno	QL	Qualitativo
Tricloroetileno	Tri-5	20 ppm 250 ppm - 1 Bombada 5 ppm 60 ppm - 3 Bombadas
Triclorometano (cloroforme)	QL	Qualitativo
Triclorometano (cloroforme)	Tricloroetano-5	5 ppm 350 ppm -10 Bombadas
Tricloropropano,1.2.3-	Tricloroetano-5	5 ppm 350 ppm - 10 Bombadas

Trietilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Trimetilamina	Trietilamina-5	5 ppm 30 ppm - 1 Bombada
Trimetilpentano 2,2,4	Hexano-20	20 ppm 1000 ppm - 5 Bombadas
Vapor de Água	H 2 O (h.r.)	10 100 % humedad - 7 Bombadas
Xileno	QL	Qualitativo
Xileno-o	H. Aromáticos	5 ppm 300 ppm - 10 Bombadas
Xileno-o	Tol-5	5 ppm 1000 ppm tolueno para n=5 5 Bombadas
Xileno-p	H. Aromáticos	5 ppm 300 ppm - 10 Bombadas
Xileno-p	Tol-5	5 ppm 1000 ppm - 5 Bombadas

Hoja de información

Tubo detector SO 2 -1n

1. Aplicación

Medición de la concentación de dióxido de azufre (SO 2) en el aire o en gases técnicos.

2. Bomba de Muestreo para Tubos Detectores

MSA/AUER: Gas-Tester ® II H, Kwik-Draw TM Pump, Gas-Tester ® I/ Thumb Pump TM Sampler, Toximeter ® II y

otras bombas de muestreo apropiadas. Véanse las correspondientes instrucciones de funcionamiento.

3. Campo de Medida

1 ppm ... 25 ppm dióxido de azufre para n=3 (3 emboladas).

0,5 ppm ... 8 ppm dióxido de azufre para n=10 (10 emboladas).

4. Reacción Quimica y Cambio de Color

Reacción de dióxido de azufre con yodo. Se reduce el yodo a yoduro.

Cambio de color: violeta → blanco.

5. Condiciones Ambientales Durante el Muestreo

Los tubos detectores pueden utilirarse con exactitud a temperaturas entre 10 °C y 30 °C (50 °F y 86 °F) y entre 10% hr (equivalente a 0,9 g/m³ a 10 °C [50 °F]) y 90% hr (equivalente a 27 g/m³ a 30 °C [86 °F]).

6. Interferencias de Otras Sustancias

- a) No interferencia debida a:
- hidrógeno, metano, etano, propano, los butanes, monóxido de carbono, dióxido de carbono incluso en concentraciones por encima de 50 % vol.
- hidrocarburos saturados superiores (p. e. hexanos, octanos), hidrocarburos aromáticos (p. e. benceno)

hasta el minimo de 1000 ppm.

- ácido sulfhídrico hasta el mínimo de 100 ppm (n=3) o 40 ppm (n=10). Ácido sulfhídrico está filtrado por la capa de protección y decolora la misma (azul claro → marrón). No utilizar esto tubo si la capa de protección ha completamente cambiada color.
- ácido clorhídrico hasta el minimo de 25 ppm (n=3) o 10 ppm (n=10).
- b) Cloro, amoníaco, dióxido de nitrógeno, los hidrocarburos olefínicos (p. e. etileno) no producen indicación,

ma posiblemente afectan reduciendo la indicación de dióxido de azufre, también cuando sus concentraciones

correspondent al campo de medida del tubo detector.

Obs: Alem do espanhol, cada bula também está traduzida para o inglês, alemão e italiano.

Av. Barbacena, 58, Barro Preto, Belo Horizonte / MG - 30190-130 tel: 31 3029.1477 | e-mail: infoseg@racconet.com.br

Infoseg é uma publicação periódica dirigida do Grupo Racco Brasil. Não é permitida sua reprodução total ou parcial sem autorização prévia.