

Discrete Structures II

Konstantinos P. Michmizos

Computational Brain Lab

Computer Science | Rutgers University | NJ, USA

Lecture 13 | Pirates Problem (Combinations with Repetitions) | Wednesday October 25th 2022

General Hint – Revisited

For each problem

(1) Fully understand what the question is

(2) Fully understand what you know

(3) Based on the previous two, identify a method

(4) Make sure that the assumptions hold

(5) Turn the wording of the problem into the input to your method. Typically, there I KNOW WHAT is a "key" thought that will unlock this part of the solution for you.

IT MEANS!

So Far

- Proofs/Induction
- Sum Rule
- Partition Method
- Difference Method
- Bijection Method
- Product Rule
- Generalized product rule
- Permutation/Combinations
- Inclusion-Exclusion / Pigeonhole Principle
- Combinatorial Proofs and Binomial Coefficients

Flowchart: Permutations/Combinations

So far...

Four Ways of Permuting/Choosing

- Choose 2 letters from $\{L,U,C,K,Y\}$ 1st way:
 - No repetitions
 - Order matters $5 \times 4 = 5.4 = 5P_2$

Four Ways of Permuting/Choosing

- Choose 2 letters from {L,U,C,K,Y} 2nd way:
 - No repetitions
 - Order does not matter

Four Ways of Permuting/Choosing

- Choose 2 letters from {L,U,C,K,Y} 3rd way:
 - Repetitions allowed
 - Order matters

 $\frac{5}{5}$ answer = 5^2

Four Ways of Permuting/Choosing

- Choose 2 letters from $\{L,U,C,K,Y\}$ 4^{th} way:
 - Repetitions allowed
 - Order does not matter

Flowchart: Permutations/Combinations

• Want to pick 10 chocolates out of 4 different types. Can pick many of one type. How many ways?

• Want to pick 10 chocolates out of 4 different types. Can pick many of one type. How many ways?

• Want to pick 10 chocolates out of 4 different types. Can pick many of one type. How many ways?

• 5 distinct pirates want to divide up 20 identical, indivisible

bars of gold. How many ways to divide the loot?

(ount all sequences of
$$(9,6,6,d,e)$$
 such that $a+b+c+d+e=20$
 $a=\#$ pinck $1=gus$
 $b=\#$ $2=guts$
 $c=\#$ $3=guts$
 $d=\#$
 $e=\#$
 $e=\#$

How many integer solutions to the following equation?

•
$$x_1 + x_2 + \cdots + x_5 = 20$$

•
$$x_1, x_2, ..., x_5 \ge 0$$

 $(x_1, x_2, x_3, x_4, x_5)$ Such that $\sum x_1 = 20$
 $=$ all amagements of 20 dots and 4 likes
$$= \frac{(24)!}{(5!)!(4!)!}$$

How many integer solutions to the following equation?

$$\bullet \ x_1 + x_2 + \dots + x_k = n$$

•
$$x_1, x_2, ..., x_k \ge 0$$

• 5 distinct pirates want to divide up 20 identical, indivisible

bars of gold. How many ways to divide the loot?

(ount all sequences of
$$(9,6,6,d,e)$$
 such that $a+b+c+d+e=20$
 $a=\#$ pinck $1=gus$
 $b=\#$ $2=guts$
 $c=\#$ $3=guts$
 $d=\#$
 $e=\#$
 $e=\#$

Combinations - Adv'ced (with constraints)

• 5 distinct pirates want to divide up 20 identical, indivisible bars of gold. How many ways to divide the loot when each must get at least 1 bar?

Combinations

• 5 distinct pirates want to divide up 20 identical, indivisible bars of gold. How many ways to divide the loot when each must get at least 2 bars?

Combinations

 k distinct pirates want to divide up n identical, indivisible bars of gold. How many ways to divide the loot when each must get at least r bars?

Flowchart: Permutations/Combinations

Flowchart: Permutations/Combinations

• 5 pirates want to divide 20 identical bars of gold among them. How many ways to divide if each pirate wants at least 2 bars and no pirate can get more than 8 bars.

First give 2 bars to each pirate. We are left with 10 bars. No pirate can get more than 6 of them. **Difference method**. Count all possible ways to divide 10 bars among 5 pirates and subtract the number of ways in which some pirate gets more than 6 bars.

There are $\binom{14}{4}$ ways to divide 10 bars among 5 pirates.

Now, let's count the ways in which some pirate gets more than 6 bars.

Notice that only one pirate can get more than 6 bars. There are five cases:

- – All ways to distribute gold such that pirate 1 gets more than 6 bars.
- – All ways to distribute gold such that pirate 2 gets more than 6 bars.
- – All ways to distribute gold such that pirate 3 gets more than 6 bars.
- – All ways to distribute gold such that pirate 4 gets more than 6 bars.
- – All ways to distribute gold such that pirate 5 gets more than 6 bars.

For each case, the answer is $\binom{7}{4}$. In total there are $5 \cdot \binom{7}{4}$ ways to distribute such that some pirate gets more than 6. By the **difference method**, the final answer is $\binom{14}{4} - 5 \cdot \binom{7}{4}$.

• How many bit strings of length 8 either start with a 1 or end with a 00?

Solution: Use the **partition method**.

Let A_1 = number of bit strings that start with 1 and end with 00.

Let A2 = number of strings that start with 1 and do not end with 00.

Let A_3 = number of strings that start with o and end in oo.

We have $|A1| = 2^5$, $|A2| = 2^5 \cdot 3$, $|A3| = 2^5$.

Hence the total number of strings = $2^5 + 2^5 \cdot 3 + 2^5$.

Explanation for |A2|. In A2 we are counting all string that start with 1 and do not end with 00. Again using the **partition method**, we can divide the outcomes into 3 possible subsets: start with 1 and end with 01, start with 1 and end with 10, start with 1 and end with 11. In each cases, there are 2⁵ choices for the remaining 5 elements.

Combinations – adv'ed

- If we roll 7 dice how many different outcomes if
 Order matters

 - Order does not matter ______ dice are all white

Combinations – adv'ed

• If we roll 7 dice how many different outcomes if

• Order matters

ansum > 6

Combinations – Adv'ced

- If we roll 7 dice how many different outcomes if
 - Order does not matter

(ountry all sequences of
$$(a,b,c,dsesf)$$

Such that at $b+c+d+c+f=7$
 $a = \#$ times 1 appears
 $b = \#$ times 2 appears

 $a = \#$ times 2 appears

 $a = \#$ times 6 appears