GUIDE Keel

P425/2 APPLIED MATHEMATICS PAPER 2 Jul/Aug 2018 3 hours

MUKONO KAYUNGA JOINT MOCK EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

APPLIED MATHEMATICS

Paper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and five questions from section B.

Any additional question(s) answered will **not** be marked.

All working must be shown clearly.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A

- 1. Events A and B are such that $P(A/B) = \frac{3}{8}$, $P(A \cap B) = \frac{1}{4}$ and $P(A) + P(B) = \frac{23}{24}$. Find;
 - (i) $P(A \cap B)$
 - (ii) P(B/A')

(05 marks)

2. The table below shows the values of x and their corresponding values of f(x).

x	1.8	2.3	3.1	3.9	
f(x)	3.352	5.587	14.571	32.899	

Use linear interpolation or extrapolation to obtain the value of;

- (i) f(2.9)
- (ii) f(35.154)

(05 marks)

- 3. A particle is acted upon by two forces $F_1 = (-3i + 4j)N$ and $F_2 = 75N$ in the direction 24i 7j. Find the magnitude and direction of the resultant force. (05 marks)
- 4. A continuous random variable X is uniformly distributed in the interval (30, 45). Calculate the;
 - (i) Mean of X
 - (ii) P(X > 39)

(05 marks)

- 5. A body of weight W is held in limiting equilibrium on a rough slope inclined at 60° to the horizontal by a force P at angle of 30° to the slope. The coefficient of friction being $\frac{1}{2}$, show that P = W. (05 marks)
- 6. Show graphically that the root of the equation $2x^3 4x 5 = 0$ exist in the interval (1, 2).

 (05 marks)
- 7. A particle moving with simple harmonic motion has a speed of 2ms^{-1} when it is $\sqrt{2}$ m from its mean position. Given that the amplitude of its motion is 1.5m, calculate its;
 - (i) velocity as it goes through the mean position.
 - (ii) Time taken when it is $\frac{1}{4}$ of its amplitude from the maximum displacement.

(05 marks)

8. The marks of 6 students in French and Biology were as follows:

French	90	60	80	54	86	70
Biology	48	72	60	7,8	50	65

Calculate the rank correlation coefficient for the scores in the two tests. Comment on your results. (05 marks)

14. The probability density function of a continuous random variable x is represented by the

$$f(x) \begin{cases} \frac{2}{13}(x+1) & \text{; } 0 \le x \le a \\ \frac{2}{13}(5-x) & \text{; } a \le x \le 3 \\ 0 & \text{; elsewhere} \end{cases}$$

Calculate the;

a) the value of a.

b) P(x < 2.5)

(07 marks)

15. A biased coin is thrice as likely to show heads as tails. If it is tossed 48 times, find the

- a) between 30 and 40 heads.
- b) at least 28 but less than 42 heads.

(12 marks)

- 16. A car of mass 800kg tows a trailer of mass 200kg. The constant resistance acting on the car and the trailer are 450N and R respectively. If the car has maximum speed of 54kmh on the level road, with the engine at steady rate of 9.75kW, find the; (i)
 - Tension in the tow bar
 - (ii) The value of R
 - Acceleration of the car at a speed of 72kmh⁻¹. (iii)

(12 marks)

END

5a-9-(coa-92)

SECTION B

9. The lengths (h) in inches of 40 nails were as follows.

Lengths (h)	Frequency		
$3.0 \le h < 3.5$	8		
$3.5 \le h < 4.0$	5		
$4.0 \le h < 5.5$	12		
$5.5 \le h < 6.0$	9		
$6.0 \le h < 6.5$	6		

- a) Calculate;
 - (i) The mean
 - (ii) The standard deviation.
- b) Display the data on a histogram and use it to estimate the mode.

(12 marks)

- 10. a) Use the trapezium rule with 6 ordinates to estimate, to 3 decimal places the value of the integral $\int_{1}^{3} \frac{x}{1+x^2} dx$.
 - b) Obtain the exact value of the integral in a) above. Hence calculate the percentage error in your estimation.

(12 marks)

- 11. A ball is projected from the top of a vertical cliff 36m high with a speed of 40ms⁻¹ at an angle of elevation θ. The ball passing the highest point, P which is 12m above the point of projection after 2 seconds.
 - a) Find the value of θ .
 - b) The horizontal from the foot of the cliff where the ball lands.
 - c) Find the speed and direction of the ball as it hits the ground.

(12 marks)

12.a) The mass M and velocity V of a car were estimated with error ΔM and ΔV respectively. Show that the maximum relative error in the kinetic energy

is
$$\left| \frac{\Delta M}{M} \right| + 2 \left| \frac{\Delta V}{V} \right|$$
.

(07 marks)

b) Find the range with in which the exact value of $\frac{4.25}{3.152-2.4}$ lies.

(05 marks)

- 13. A square ABCD of side 4m has forces of magnitude 8N, 3N, $4N_{\text{p}}^{\text{2r}}$ acting along AB, CB, DA, CD and BD respectively. Taking AB and AD as x and y axes respectively,
 - a) Find the distance from A where the line of action of the resultant crosses AB.

(07 marks)

b) When a force P is introduced, the system reduces to a couple. Find the magnitude of P. (05 marks)

1.
$$P(A|B) = \frac{3}{8}$$
 $P(A'B') = \frac{1}{4}$
 $P(A)+P(B) = \frac{23}{34}$
 $P(A)B' = 1 - \frac{1}{4} = \frac{3}{4}$
 $P(AUB) = 1 - \frac{1}{4} = \frac{3}{4}$
 $P(AUB) = P(A)+P(B) - P(AMB)$
 $P(AUB) = P(A)+P(B) - P(AMB)$
 $P(AUB) = \frac{3}{4} = \frac{3}{4}$
 $P(AB) = \frac{3}{4} = \frac{3}{4}$
 $P(AB) = \frac{3}{4} = \frac{3}{4}$
 $P(AB) = \frac{3}{4} = \frac{3}{4}$
 $P(A'B) = \frac{3}{4} = \frac{3}{4}$

$$\frac{y_0 - 5.187}{2.9 - 2.3} = \frac{14.571 - y_0}{3.1 - 2.9}$$

$$\frac{y_0 - 5.187}{0.6} = \frac{14.571 - y_0}{0.2}$$

$$\frac{y_0 - 5.187}{0.6} = \frac{14.571 - y_0}{0.2}$$

$$\frac{32.899 - 14.571}{3.9 - 3.1} = \frac{31.134 - 32.899}{70 - 3.9}$$

$$\frac{18.328}{0.8} = \frac{2.215}{x_0-3.9}$$

$$F_2 = \frac{75(24i-7i)}{i} = \frac{75(24i-7i)}{25(24i-7i)} = 3(24i-7i)$$

$$T = F_1 + F_2 = (-3i + 4i) + (72i - 2ii) = 69i - 17i$$

$$f(x) = \int \frac{1}{15} = \frac{1}{30} \times 2 \times 2 \times 15 = \frac{1}{30} \times \frac{2}{30} = \frac{1125}{30} \times \frac{2}{30} \times \frac{2}{30} = \frac{1125}{30} \times \frac{2}{30} \times \frac{2}{30} \times \frac{2}{30} = \frac{1125}{30} \times \frac{2}{30} \times \frac{2}{30} \times \frac{2}{30} = \frac{1125}{30} \times \frac{2}{30} \times \frac{2}{30} \times \frac{2}{30} \times \frac{2}{30} = \frac{1125}{30} \times \frac{2}{30} \times$$

- P COS 30 + MR = W SINGO BY

R = W COS 60 + PSINSO BY

$$P(\omega_{537}) + \frac{1}{2}(\omega_{50}) + \frac{1}{2}P) = I_{3} + M$$

$$\frac{1}{2}(W+P) = I_{3}(W-P)$$

$$2W+2P = 4J_{3}W - 4J_{3}P$$

$$(2+4J_{3})P = (4J_{3}-2)W$$

$$P = (4J_{3}-2)W = (4J_{3}-2)^{2}W = (2J_{3}-1)^{2}W$$

6.
$$f(0) = 200^3 - 400^5$$

 $f(1) = 2 - 4 - 5 = -7$ graph (3)
 $f(2) = 16 - 8 - 5 = 3$
 $f(1) \cdot f(2) = -21 \times 0$

$$V = 2mis$$

 $S = \sqrt{2}m$.
 $A = 1.5m$.
At mean Position; $V = max$.

$$V_{max} = WA = \frac{2\pi}{T}A = \left(\frac{2\pi}{T}\right)^{1.5} B$$

bul-

$$\Lambda_{J} = m_{S}(M_{J} - \kappa_{J})$$

US

	7			_1
7	P,	- 22	d=e,-1	22 d2
	1	6	-5	25
	5	2	3	9
	3	4	-1	
	6	1	5	32
	2	5	-3	9
	4 3	3	1	1
		1		Ed =
		-		TOB)

$$P = 1 - 68d^{2}$$

$$n(m_{1})$$

$$= 1 - 68d^{2}$$

$$68d^{2}$$

Singrificant correlation at boil 5% amoils

· h	+	e :	4-7	*	fr	fxz
100	8	0.5	16	3.25	26	84.5
3.0- 23.5	<u></u> نا	0.5	10	3.70	18.75	70.3125
3,5-64		1.5	8	4.75	57	270 75
40- 65		0.5	18	5.75	51.75	297.52
5.5 - L6	9	Na .		1 0	2-	- 10
60-46	6 20	0.5	12	6:25	37.5	234375
					CO	
					Efr	Etes
					=	=
				1	191	75+57
		1	1			

05 on ahistog

12

Histogram on the graph.

$$\int_{1}^{3} \frac{x}{1+x^2} dx$$

$$h = \frac{3-1}{6-1} = \frac{2}{5} = 0.4 \text{ B}$$

$$1 \quad \text{an} \quad \text{dn} = \frac{2n}{2n^{2}+1}$$

$$0 \quad 1 \quad 0.5000$$

$$0.4730$$

$$1 \quad 1.4 \quad 0.4245$$

$$3 \quad 2.2 \quad 0.3767$$

$$4 \quad 2.6 \quad 0.3351$$

$$5 \quad 3.0 \quad 0.3000 \quad \text{B}$$

$$0.8000 \quad 1.6093$$

$$\int_{1+\infty}^{3} dx = \frac{1}{2}(0.4)(0.8000 + 2(1.6093)]$$

$$= 0.8030A$$

Actual =
$$\int_{1+\infty}^{3} \frac{x}{1+\infty} dx = \frac{1}{2} \ln (1+x^{2})^{3} = \frac{1}{2} (\ln 10 - \ln 2)$$

 $= 0.8047$
 $= 0.805(38P)$

11:

$$H. = \frac{U^2 \sin^2 \theta}{29}$$
 $12 = \frac{40 \sin^2 \theta}{29}$

$$-36 = (Usino) + \frac{1}{2}g + \frac{1}$$

$$12 = (405m0)(2) - 1/249844$$

 $5m0 = 0.395$
 $0 = 23.30$

12

(c)
$$V_{x} = 40\cos 22.5 \times 4.69 = 173.3 \text{ m. Byt}$$

(c) $V_{x} = 40\cos 22.5 = 36.9 \text{ s. m. ls.}$
 $V_{y} = 40\cos 22.5 = 36.9 \text{ s. m. ls.}$
 $V_{y} = -30.665 \text{ m. ls.}$
 $V = \sqrt{36.913^{2} + (-30.611)^{2}}$
 $V = 148.0 \text{ l. m. ls.}$
 $V = 29.7 \text{ B. b. close int. ho. h. 2 mtal.}$
 $V = \frac{1}{2} \text{ m. ls.}$
 $V = \frac{1}{2} \text{ m. ls.}$

$$A = \frac{4 \cdot 25}{3.152 - 2'4}$$

$$\overline{T} = \begin{pmatrix} 8 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -3 \end{pmatrix} + \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -4 \end{pmatrix} + \begin{pmatrix} -2\sqrt{2}8\sigma ver \\ 2\sqrt{2}Smus \end{pmatrix}$$

$$\begin{array}{ll}
T &= (4) \\
(-5) \\
A > + 5x &= -(2525muf)4 + 3(4) - 2(4)
\end{array}$$

$$P + E = 0$$

$$P = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$

(14)
$$f(\pi) = \begin{cases} \frac{2}{3}(s+1), & 0 \text{ Lx La} \\ \frac{2}{13}(s-\pi); & 9 \text{ Lx L} \end{cases}$$

$$0; & \text{Else where}.$$

$$\int_{0}^{2} \frac{3}{3} (xh) dx + \int_{0}^{2} \frac{3}{3} (5-x) dx = 1 Bm$$

$$\frac{2}{13} \left[\frac{x^2_1 + x}{2} \right]_0^0 + 5x - \frac{x^2_2}{2} \right]_0^3 = 1$$

$$\frac{T}{2} = {8 \choose 0} + {0 \choose -3} + {-2 \choose 0} + {0 \choose -4} + {-2528046}$$

$$\begin{array}{c} T = \\ -5 \end{array}$$

$$49 + 5x = -(25asmuf)4 + 3(4) - 2(4)$$

 $49 + 5x = -8 + 12 - 8$

A

13.

$$\begin{array}{lll}
\frac{1}{13} \left[\begin{array}{c} \alpha_{2}^{2} + q + \left(15 - q_{2} \right) - \left(45a - a_{2}^{2} \right) \right] = 1 \\
\alpha^{2} - 14a + 21 & = 13 \\
\alpha^{2} - 14a + 2 & = -8 \\
\alpha^{2} - 14a + 4 & = 0 \\
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 21 & = 13 \\
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0
\end{array}$$

$$\begin{array}{lll}
\alpha^{2} - 14a + 4 & = 0$$

$$\begin{array}{lll}
\alpha^{$$

15.
$$P(H) = \frac{3}{4}$$

 $P(T) = \frac{3}{4}$
 $P = \frac{3}{4}$
 $9 = \frac{3}{4}$

$$P(30 \le \times 640) = P(30.5 \le \times 639.5) =$$

$$P(30.5-36) = P(30.5-36) =$$

$$P(-1.833 \le 2 \le 1.167) = (0.4664) + (0.3772)$$

$$= 0.8453$$

(b)
$$P(28 \le \times \angle 42) = P(20.5 \angle \times \angle 41.5)$$

 $= P(20.5-36 \angle 2 \angle 41.5-36) =$
 $= P(-2.833 \angle 2 \angle 41.833) = 0.4666 + 0.4977$
 $= 0.9643.47$

-2.883

16:

$$F = R = \frac{9.75 \times 10^{3}}{\left(\frac{54 \times 1000}{60 \times 60}\right)^{3}}$$

$$F - (470 + 1) = 800a$$
,
$$\frac{72x1000}{3600}$$

$$(50 = 800a)$$