EXP NO: 01

VERIFICATION OF LOGIC GATES

AIM:

To develop the source code for logic gates by using VERILOG and obtain the simulation.

ALGORITM:

Step1: Define the specifications and initialize the design.

Step2: Write the source code in VERILOG.

Step3: Check the syntax and debug the errors if found, obtain the synthesis report.

Step4: Verify the output by simulating the source code.

Step5: Write all possible combinations of input using the test bench.

Step6: Obtain the place and route report.

LOGIC DIAGRAM:

AND GATE:

LOGIC DIAGRAM:

TRUTH TABLE:

OR GATE:

LOGICDIAGRAM

TRUTH TABLE:

A	В	Y=AB
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

NOT GATE:

LOGIC DIAGRAM:

TRUTH TABLE:

NAND GATE: LOGICDIAGRAM

TRUTH TABLE

A	Y=A'
0	1
1	0

A	В	Y=(AB)'
0	0	1
0	1	1
1	0	1
1	1	0

NOR GATE:

LOGIC DIAGRAM:

TRUTH TABLE:

XOR GATE:

LOGICDIAGRAM

TRUTH TABLE

A	В	Y=(A+B)'
0	0	1
0	1	0
1	0	0
1	1	0

A	В	Y=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

XNOR GATE:

LOGIC DIAGRAM:

TRUTH TABLE:

A	В	Y=A⊙B
0	0	1
0	1	0
1	0	0
1	1	1

VERILOG SOURCE CODE:

```
module logicgates 1(a, b, c);

input a;

input b;

OUTPUT: [6:0] c;

assign c[0]= a & b;

assign c[1]= a | b;

assign c[2]= \sim(a & b);

assign c[3]= \sim(a | b);

assign c[4]= a ^ b;

assign c[5]= \sim(a ^ b);

assign c[6]= \sim a;

end module
```

Simulation output:

RESULT:

Thus, the outputs of Basic Logic Gates are verified by simulating and synthesizing the VERILOG code.