Hammerhead-6U-cPCI

Eight ADSP-21160 64-bit, 66 MHz 6U cPCl Board User's Guide

BittWare, Inc. 33 N Main St. Concord, NH 03301 USA 603.226.0404

If you have comments or suggestions about this manual or find any errors in it, please contact us via e-mail at techpubs@bittware.com.

For technical support, contact us using any of the following methods:

Phone: 603.226.0404 FAX: 603.226.6667

E-mail: support@bittware.com

BittWare also maintains the following Internet sites:

http://www.bittware.com Contains product information, technical notes, support files

available for download, and answers to frequently asked

questions (FAQ).

ftp://ftp.bittware.com Contains technical notes and support files. Login as

"anonymous" and use your e-mail address for the password.

Hammerhead-6U-cPCI User's Guide

Hardware Revision 0

© 2001, BittWare, Inc. All Rights Reserved

The information in this manual has been carefully checked and is believed to be accurate and reliable. However, BittWare assumes no responsibility for any inaccuracies, errors, or omissions that may be contained in this manual. In no event will BittWare be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or omission in this manual. BittWare reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of BittWare to notify any person or persons of such revision or changes.

SHARC is a registered trademark of Analog Devices, Inc. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation. All other products are the trademarks or registered trademarks of their respective holders.

Printed in the USA

July 16, 2001 Edition UG-HH6U00-01

Contents

Chapter 1 Introduction

	1.1.1 Hammerh	Hammerhead-6U-cPCI Systemead-6U-cPCI Features	2
		ead-6U-cPCI System Architectureead-6U-cPCI Software Architecture	
		Guidef this Document	
	1.2.2 Conventio	ons Used in This Document Overviews	6
	1.3.1 Document	ocuments and Toolss for Further Reference	8
	1.3.2 Software I	Development Tools	8
Chapter 2	Preparing the Boar	d for Operation	
	2.1 Unpacking the H	ammerhead-6U-cPCI	12
	0 0	Hammerhead-6U-cPCI	
	_	e Configuration Jumpers	
		ng the TDM Serial Ports External Devices to the Board	
	2.3 Installing the Boa	ard and its Software	27
		the Code Development Tools	
	•	the Host-to-DSP Interface Tools	
	2.3.3 Installing t	the Hammerhead-6U-cPCI in a CompactPCI chassi	s29
	2.4 Testing the Install	latione Installation with the Hammerhead-6U-cPCI Exam	31
	2.4.1 Testing the	e installation with the Hammerhead-oo-cr Cr Exam	pie i lies
	2.4.2 Testing the	e Installation With DSP21k-SF Diagnostic Utilities	31
	•	ard	
		the Board with the Watchdog Timer	
	•	the Board via the External Reset Connector	
	•	the Board via the PCI Interface	
	7 5 4 RESENTING	ANY ANACHAN PIVIC + CARDS	₹ 8

Contents

Chapter 3 Overview of the Hardware Components

	3.1 Layout and Function of the Major Components	40
	3.1.1 PCI-to-PCI Bridges	42
	3.1.2 SharcFIN ASICs	42
	3.1.3 Analog Devices ADSP-21160 DSPs	43
	3.1.4 Memory	43
	3.1.5 On-Board Oscillators	43
	3.1.6 Dual UARTs	44
	3.1.7 Watchdog Timers	44
	3.1.8 LEDs	
	3.2 Layout and Function of the External Connectors	
	3.2.1 CompactPCI Connector	47
	3.2.2 Rear Panel I/O	49
	3.2.3 JTAG header	51
	3.2.4 RS-232 Connectors	52
	3.2.5 External Reset Connectors	54
	3.2.6 BittWare Mezzanine Interface	55
	3.2.7 Buffered Inverted Flag Outputs	55
	3.2.8 SODIMM Connectors	56
	3.2.9 External Power Connector	57
	3.2.10 PMC+ Sites	58
	3.3 Layout and Function of the Configuration Jumpers and Switches	63
Chapter 4	Hammerhead-6U-cPCI Board Architecture	
	4.1 Overview of the Board Architecture	68
	4.2 ADSP-21160 Architecture	70
	4.2.1 Resources Available to the ADSP-21160s	70
	4.2.2 ADSP-21160 Memory Structure	74
	4.2.3 Serial Port Connections	
	4.2.4 Link Port Connections	77
	4.2.5 Flag and Interrupt Connections	
	4.2.6 ADSP-21160 Cluster Buses	
	4.3 PCI Interface Architecture	
	4.3.1 Overview of the SharcFIN Architecture	85
	4.3.2 PCI Bus Interface	86
	4.3.3 Peripheral Bus	89
	4.4 PMC Interface Architecture	90

	4.4.1 PINIC-TO-PICI Interface 4.4.2 PMC+ Extensions	
Chapter 5	ADSP-21160 Programming Details	
	5.1 Accessing the DSPs' Memory	
	5.1.1 Accessing Internal Memory	
	5.1.2 Accessing the DSPs' Multiprocessor Memory	
	5.1.3 Accessing External Memory Banks	
	5.2 Booting the DSPs	96
	5.2.1 Booting the Board via Link Port	96
	5.2.2 Booting the Board From the Host	96
	5.2.3 Booting the Board via the Flash	97
Chapter 6	SharcFIN Programming Details	
	6.1 Overview of the SharcFIN	100
	6.1.1 The Two Sections of the SharcFIN	
	6.1.2 How the SharcFIN Maps to the PCI and ADSP-21160 Buses	
	6.2 Function of the SharcFIN PCI Interface	101
	6.2.1 Performing PCI Side DMAs	101
	6.2.2 Performing a PCI Side Single Access	102
	6.2.3 Performing PCI Side Interrupts	102
	6.3 Function of the SharcFIN SHARC Interface	103
	6.3.1 ADSP-21160 Bus Interface	
	6.3.2 SDRAM Interface and Control	
	6.3.3 Peripheral Bus Interface (Flash and Dual UART)	
	6.3.4 I ² C Interface	
	6.3.5 Interrupt Multiplexer	
	6.4 Overview of the SharcFIN Memory Map	
	6.4.1 Accessing System Settings and Configuration Registers	
	6.4.2 Accessing the Flash, UART, and Peripheral Bus	
	6.4.3 Accessing Multiprocessor Memory Space	
	6.5 Setting the SharcFIN User-Configurable Registers	
	6.5.1 Setting the Address Override Register	
	6.5.2 Reading the Status Register	
	6.5.3 Setting the Peripheral Bus Configuration Register	

Contents

	6.5.4 Setting the Watchdog Configuration Register	117
	6.5.5 Setting the PMCA Configuration Register	
	6.5.6 Setting the Onboard I ² C Control Register	120
	6.5.7 Setting the PMC I ² C Control Register	
	6.5.8 Configuring the SDRAM	
	6.5.9 Configuring the UART	
	6.5.10 Configuring the ADSP-21160, PCI, and PMC+ Interrupts	
	6.5.11 Reading the Status of All Flags and Interrupts	125
Appendix A	Debugging Your DSP Programs	
	A.1 Debugging with a Hardware (In-Circuit) Emulator	127
	A.1.1 Overview of the ICE Emulator	
	A.1.2 Connecting the ICE to the Hammerhead-6U-cPCI	128
	A.1.3 Installing the ICE and Hammerhead-6U-cPCI in a PC	
	A.1.4 Operating the ICE	129
	A.2 Debugging with a Software Emulator	129
	A.2.1 About the VisualDSP Target	
	A.2.2 Installing the VisualDSP Target	
Appendix B	Setting Up for Standalone Operation	
	B.1 Developing and Loading a Boot Program	132
	B.1.1 Developing the Boot Program	
	B.1.2 Loading a Boot Program into the Flash Memory	
	B.1.3 Loading a Link Boot Program	
	B.2 Setting the Boot Mode Jumpers	132
	B.3 Setting the Standalone Mode Jumpers	132
	B.4 Booting the Board via Link Port	133
	B.5 Supplying Power to the Hammerhead-6U-cPCI	133
	B.6 Initializing the PCI Interface	133
Appendix C	Troubleshooting Tips	
	C.1 Before You Call Technical Support	135
	C.2 Contacting Technical Support	136

User's Guide Hammerhead-6U-cPCI

Appendix D Glossary of Terms

Contents

Tables

Table 2-1	Selecting the Rotating Priority Bus Mode for the ADSP-21160s	15
Table 2-2	Settings for the Boot Mode Selection Jumpers	16
Table 2-3	Settings for the Secondary PCI Bus Jumpers	17
Table 2-4	Settings for the Secondary PCI Signal Level Jumpers	17
Table 2-5	Settings for the SharcFIN Interrupt Jumpers	18
Table 2-6	Settings for the Standalone Mode Jumpers	19
Table 2-7	TDM Serial Port Switch Connections and Usage	20
Table 2-8	TDM Serial Port Switch Pinout (S1, S2)	20
Table 2-9	TDM Serial Port Switch Settings (S1, S2)	20
Table 2-10	External Link Port Cables Available From BittWare	22
Table 2-11	Serial Port Cable Available from BittWare	22
Table 3-1	Overview of the External Connectors	46
Table 3-2	CompactPCI Interface Pinout (P1: A-F)	47
Table 3-3	CompactPCI Interface Pinout (P2: A-F)	48
Table 3-4	Rear Panel I/O Pinout (P3: A-F)	49
Table 3-5	Rear Panel I/O Pinout (P5: A-F)	50
Table 3-6	JTAG Header Pinout (J1)	51
Table 3-7	RS-232 Connector Pinout (J2, J3)	52
Table 3-8	External Reset Connector Pinout (J4, J5)	54
Table 3-9	Buffered Inverted Flag Output Pinouts (J8, J9)	56
Table 3-10	External Power Connector Pinout (J14)	57
Table 3-11	PMC+ Site A Connector Pinout	
Table 3-12	PMC+ Site B Connector Pinout	
Table 3-13	Overview of the Configuration Jumpers	
Table 3-14	Overview of the Serial Port Configuration Switches	
Table 4-1	Resources for 21160-A1	
Table 4-2	Resources for 21160-A2	
Table 4-3	Resources for 21160-A3	
Table 4-4	Resources for 21160-A4	
Table 4-5	Resources for 21160-B1	
Table 4-6	Resources for 21160-B2	
Table 4-7	Resources for 21160-B3	
Table 4-8	Resources for 21160-B4	
Table 4-9	Flag and Interrupt Connections for DSP Cluster A	
Table 4-10	Flag and Interrupt Connections for DSP Cluster B	
Table 4-11	ADSP-21160 Link and Serial Port Connections to PMC Interfaces	
Table 5-1	Multiprocessor Memory Allocation for DSPs	
Table 5-2	External Memory Bank Allocation	
Table 5-3	Recommended MSIZE Settings for the Hammerhead-6U-cPCI	94

vi User's Guide Hammerhead-6U-cPCI

Table 6-1	Overview of How the SharcFIN Maps to the PCI and ADSP-21160 Buses	106
Table 6-2	Accessing BARO-BAR4 From the PCI Side	107
Table 6-3	PCI and ADSP-21160 Addresses for System Settings and Configuration Reters	
Table 6-4	PCI and ADSP-21160 Addresses for Flash, UART, and Peripheral Bus	108
Table 6-5	PCI and ADSP-21160 Addresses for Multiprocessor Memory Space	109
Table 6-6	PCI and ADSP-21160 Addresses for SDRAM	110
Table 6-7	Memory Map for the SharcFIN User-Configurable Registers	112
Table 6-8	Contents of the Address Override Register	113
Table 6-9	Contents of the Status Register	114
Table 6-10	Settings for the Processor Bits	115
Table 6-11	Contents of the Peripheral Bus Configuration Register	116
Table 6-12	Default Setting for Selecting the Number of Wait Cycles	116
Table 6-13	Contents of the Watchdog Configuration Register	117
Table 6-14	Settings for the Watchdog Enable Bits	118
Table 6-15	Settings for the Processor Selection Bits	118
Table 6-16	Contents of the PMCA Configuration Register	119
Table 6-17	Default Setting for the Processor Selection Bits	
Table 6-18	Contents of Onboard I ² C Control Register	
Table 6-19	Effects of Values Written to the Clock and Data Bits	120
Table 6-20	Contents of the SDRAM Size Configuration Register	121
Table 6-21	Contents of the SDRAM Window Register	122
Table 6-22	ADSP-21160 Interrupt Configuration Registers	123
Table 6-23	Settings for the Interrupt Configuration Registers	124
Table 6-24	Reading the Status of the Flags	125
Table 6-25	Reading the Status of the Interrupts	126

Tables vii

Figures

Figure 1–1	Block Diagram of the Hammerhead-6U-cPCI System	3
Figure 1–2	Block Diagram of the Hammerhead-6U-cPCI and its Software	5
Figure 2–1	Location of the Hammerhead-6U-cPCI Configuration Jumpers and Switche	es 14
Figure 2–2	Location of the TDM Serial Port Configuration Switches	21
Figure 2–3	Cable Details for the Hammerhead-6U-cPCI's External Reset Connectors .	23
Figure 3–1	Location of the Hammerhead-6U-cPCI's Major Components (Top)	40
Figure 3–2	Location of the Hammerhead-6U-cPCI's Major Components (Bottom)	41
Figure 3–3	Layout of the External Connectors	45
Figure 3–4	Location of the JTAG Header Pins	51
Figure 3–5	Location of the RS-232 Connector Pins	52
Figure 3–6	DB9-to-RS-232 Cable Connections	
Figure 3–7	Location of the External Reset Connector Pins	54
Figure 3–8	Location of the Buffered Inverted Flag Output Pins	55
Figure 3–9	Location of the External Power Connector Pins	57
Figure 3–10	Layout of the Configuration Jumpers and Switches	63
Figure 4–1	Architecture of the Hammerhead-6U-cPCI System	
Figure 4–2	Block Diagram of Serial Port Connections: Cluster A	
Figure 4–3	Block Diagram of Serial Port Connections: Cluster B	76
Figure 4–4	Block Diagram of Link Port Connections: Cluster A	77
Figure 4–5	Block Diagram of Link Port Connections: Cluster B	78
Figure 4–6	Block Diagram of Flag and Interrupt Connections: Cluster A	79
Figure 4–7	Block Diagram of Flag and Interrupt Connections: Cluster B	80
Figure 4–8	Block Diagram of the PCI Interface Architecture	84
Figure 4–9	Simplified Block Diagram of the SharcFIN Architecture	85
Figure 4–10	Block Diagram of the PCI-to-PCI Interface	
Figure 4–11	Block Diagram of the PCI-to-DSP Interface	88
Figure A-1	JTAG Connector	. 128

Figures viii

Chapter 1 Introduction

BittWare's Hammerhead-6U-cPCI board packs the processing power of eight ADSP-21160 SHARC® DSPs and the speed of a 64-bit, 66 MHz PCI interface onto a 6U CompactPCI board. The board supports up to three banks of 64–512 MB of SDRAM, two 2 MB banks of Flash memory, and two PMC+ mezzanine sites. The board also features two BittWare Sharc®FINTM ASICs, which flexibly interface the ADSP-21160s to the 64-bit, 66 MHz cPCI interface, the SDRAM, the Flash memory, and a general-purpose expansion bus.

This chapter covers the following topics:

- The basic architecture of the Hammerhead-6U-cPCI system
- An overview of each chapter in this user's guide
- Additional documents that provide more information about the Hammerhead-6U-cPCI's components and software

This section gives a brief overview of the architecture of the board and describes its software.

1.1.1 Hammerhead-6U-cPCI Features

The following is a list of the Hammerhead-6U-cPCI's features:

- Eight 100 MHz ADSP-21160 SHARC processors (4800 MFLOPS)
- 64-bit, 66 MHz PCI interface
- Up to three 64–512 MB banks of SDRAM (standard 144-pin SODIMM)
- Two PMC sites with PMC+ extensions for BittWare's PMC+ I/O modules
- Eight link ports and two serial TDM buses for integrating PMC+ I/O with on-board SHARCs
- Eight 100 MB/s external link ports
- Two 50 Mb/s external serial TDM buses
- Two BittWare SharcFIN ASICs
- Two RS-232 UARTs
- Two 2 MB banks of Flash RAM
- 6U CompactPCI form factor
- Standalone operation

Note

The ADSP-21160 DSPs are available in both 80 MHz and 100 MHz. If your board is populated with the 80 MHz chip, the ADSP-21160 cluster bus is 40 MHz, the serial ports are 40 Mbits/s, and the link ports are 80 MBytes/s. For continuity, this user manual will assume the 100 MHz processor option.

1.1.2 Hammerhead-6U-cPCI System Architecture

This section gives a basic overview of the Hammerhead-6U-cPCI system. Figure 1–1 is a detailed block diagram of the Hammerhead-6U-cPCI board and its features.

Figure 1–1 Block Diagram of the Hammerhead-6U-cPCI System

BittWare's Hammerhead-6U-cPCI board features eight ADSP-21160 SHARC DSPs and a 64-bit, 66 MHz PCI interface. It also features two BittWare SharcFIN ASICs, up to three banks of SDRAM, two 2 MB banks of Flash RAM, and two PMC+ sites.

SharcFIN ASIC

The Hammerhead-6U-cPCI incorporates a BittWare SharcFIN ASIC for each cluster. The SharcFIN flexibly interfaces the ADSP-21160 DSPs to the 64-bit, 66 MHz PCI bus, the SDRAM, and a peripheral bus, which interfaces to the board's two UARTs and 2 MB banks of Flash RAM. The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with minimum processor overhead.

ADSP-21160 DSPs

The Hammerhead-6U-cPCI is configured with eight 100 MHz ADSP-21160 DSPs, arranged in two clusters of four processors. Each cluster shares a common 50 MHz, 64-bit cluster bus, which gives it access to a bank of up to 512 MB SDRAM, the PCI bus interface, and the other three ADSP-21160 processors in the cluster. For additional I/O, each processor also has four flags, three interrupts, six link ports, and two serial ports.

PMC+ Mezzanine Sites

The Hammerhead-6U-cPCI features two PMC+ (PCI Mezzanine Card) sites. The PMC+ sites have front-panel access and allow you to attach standard PMC modules to the board, adding I/O or additional processors and memory. The PMC+ sites also function as proprietary interfaces that allow you to attach BittWare's PMC+ I/O modules for low-latency, highperformance I/O via four 100 MB/s link ports and a serial TDM bus from each mezzanine site.

I/O Options

In addition to the PMC+ interfaces, the Hammerhead-6U-cPCI has several other options for I/O: external link ports, external serial ports, and RS-232 ports. Eight 100 MB/s link ports, one from each DSP, extend from the ADSP-21160s to rear panel I/O; and a 50 Mb/s TDM serial bus extends from each cluster to the ADSP-21160s and to rear panel I/O. Two RS-232 ports allow the DSPs to communicate with external serial devices, facilitating remote debugging, command, and control.

1.1.3 Hammerhead-6U-cPCI Software Architecture

You will need three types of software development tools for the Hammerhead-6U-cPCI: code development tools, debugging tools, and host interface tools. Figure 1–2 is a general block diagram of the software development tools.

To begin developing code for the Hammerhead-6U-cPCI, use Analog Devices' VisualDSP® Integrated Development Environment (IDE). VisualDSP is an easy-to-use project management environment comprised of an integrated development environment (IDE) and software debugger.

Once you have developed your code, you can debug it using BittWare's VisualDSP Target™, which is a software plug-in for VisualDSP that allows the VisualDSP debugger to communicate directly with your BittWare board. You can also use a hardware in-circuit emulator, such as the ICE emulators from Analog Devices to debug your code.

BittWare's DSP21k-SF Toolkit provides your host interface tools. The DSP21k-SF Toolkit is a complete software development kit that allows you to easily develop application code and integrate the Hammerhead-6U-cPCI into your system. The software tools include a comprehensive host interface library (HIL), a standard I/O library, and diagnostic utilities.

Figure 1-2 Block Diagram of the Hammerhead-6U-cPCI and its Software

This section provides an overview of each chapter's content and describes certain variations in text and naming conventions we have used throughout the manual.

1.2.1 Purpose of this Document

This user's guide covers hardware revision 0 of the Hammerhead-6U-cPCI board, which supports eight ADSP-21160 SHARC processors operating at 100 MHz. The purpose of this document is to provide details about the Hammerhead-6U-cPCI's major hardware components, to describe how to install and properly operate the Hammerhead-6U-cPCI, and to discuss important issues that relate to programming the board.

We assume you are already familiar with the ADSP-21160 architecture, operation, and programming as described in the *ADSP-21160 User's Manual* from Analog Devices, Inc.

1.2.2 Conventions Used in This Document

We have used the following conventions throughout this user's guide.

- Since the Hammerhead-6U-cPCI has eight DSPs arranged in two clusters of four DSPs, we refer to them as 21160-A1, 21160-B1, etc., where the letter "A" or "B" designates the cluster and the numeral (1–4) designates the DSP number within the cluster.
- All signal names appear in small capitals (RESET).
- Active low signals appear in small capitals with an overline (RESET).
- A "0x" prefix designates a number as a hexadecimal number (0x01).
- Commands that the user enters (for programs such as Diag21k or DspBad in the DSP21k-SF Toolkit) appear in the Courier bold font.
- Filenames and directories appear in the Courier font.

1.2.3 Chapter Overviews

Chapter 2: Preparing the Hammerhead-6U-cPCI for Operation

This chapter describes the tasks that you must perform to prepare your board for installation, install the software for the board, install the board, and test the installation.

Chapter 3: Overview of the Hardware Components

This chapter shows the location of the Hammerhead-6U-cPCI's major components and connectors and briefly discusses their function.

Chapter 4: Hammerhead-6U-cPCI Board Architecture

This chapter discusses the board's architecture, including the serial ports, link ports, flags and interrupts, and bus interfaces. It also discusses the architecture of the SharcFIN ASIC.

Chapter 5: Programming Details for the ADSP-21160 DSPs

This chapter provides programming details for the ADSP-21160 DSPs, describing how to access memory and boot the DSPs.

Chapter 6: Programming Details for the SharcFIN ASIC

This chapter provides programming details for the SharcFIN ASIC, including the SharcFIN PCI interface and the SharcFIN user-configurable registers.

Appendix A: Debugging Your DSP Programs

This appendix gives information on debugging DSP programs with a hardware or software emulator.

Appendix B: Setting up for Standalone Operation

This appendix describes how to set the board up to operate in standalone mode.

Appendix C: Troubleshooting Tips

This appendix gives tips for solving common operating problems and discusses how to contact technical support at BittWare.

Appendix D: Glossary of Terms

This appendix defines terms used throughout this manual.

This section gives sources for additional information that applies to the Hammerhead-6U-cPCI. It also lists several third party software development tools you may find useful.

1.3.1 Documents for Further Reference

The documents in the list below provide additional information about the Hammerhead-6U-cPCI components and software.

- ADSP-21160 SHARC User's Guide Analog Devices, Inc.
- Intel 21154 Chip Data Sheet Intel Corporation
- SharcFIN ASIC User's Guide BittWare, Inc.¹
- QL5064 User's Guide Quick Logic Corporation
- DSP21k-SF Toolkit User's Guide (Version 6.0 and up) BittWare, Inc.

1.3.2 Software DevelopmentTools

VisualDSP® and BittWare VisualDSP Target

The Hammerhead-6U-cPCI is compatible with the VisualDSP development tools from Analog Devices. VisualDSP is an easy-to-use project management environment comprised of an integrated development environment (IDE) and software debugger. The IDE provides access to Analog Devices' 4.0 SHARC C compiler, C runtime library, assembler, linker, loader, simulator, and splitter. The debugger has an easy-to-use interface and many features that reduce debugging time by enabling you to set breakpoints, single step through code, and perform many other debugging operations.

BittWare offers the VisualDSP Target, a plug-in to the VisualDSP IDE that allows the VisualDSP debugger to communicate directly with BittWare's DSP boards. The VisualDSP Target lets you debug your DSP application without a hardware emulator, allowing you to set breakpoints, single-step through your code, view memory, and run code on multiple processors.

1. Available soon.

White Mountain In-Circuit Emulators

The ICE in-circuit emulators from Analog Devices provide real-time hardware emulation and debugging. Analog Devices offers emulators that are compatible with VisualDSP in ISA bus, PCI bus, USB, and Ethernet formats. With ICE emulators, you can load programs, start and stop program execution, observe and alter registers and memory, and perform other debugging operations. If you plan to use an in-circuit emulator with the Hammerhead-6U-cPCI, refer to the documentation that comes with the emulator and to the information in Appendix A of this manual.

BittWare Host Interface Support

BittWare supplies host interface support for the Hammerhead-6U-cPCI with the DSP21k-SF Toolkit. Using the Toolkit's C-callable library of routines for DOS and Windows programs, you can download and start programs, read from and write to the Hammerhead-6U-cPCI memory, and control other board functions. Another library gives your DSP programs standard I/O routines such as screen display, keyboard input, and disk file access. The DSP21k-SF Toolkit User's Guide (Version 6.0 and up) from BittWare, Inc. contains complete information about the DSP21k-SF Toolkit.

SpeedDSP Optimized Libraries for SHARC DSPs

SpeedDSP is a collection of highly optimized routines for the ADSP-21xxx family of SHARC DSP chips that includes SIMD operations for the ADSP-2116x family of DSPs. The functions are written in ADSP-21xxx assembly language and are callable from high-level languages such as C. SpeedDSP includes functions for manipulating large arrays of floating-point numbers and for performing Fast Fourier Transforms (FFTs), windowing, statistics, sorting, histogramming, trigonometry, and timing. Since the functions in the library are coded in ADSP-21xxx assembly language and take full advantage of the ADSP-21xxx architecture, they are much faster than high-level language implementations, delivering optimum speed and performance. SpeedDSP integrates easily with the Analog Devices C compiler and is completely compatible with the program/data memory specifiers and the complex data type.

BittWare's SharcLAB MATLAB Interface

SharcLAB, developed exclusively for BittWare by SDL, works with The MathWorks MATLAB, Simulink, Stateflow, and Real-Time Workshop to allow you to prototype and test DSP applications on your BittWare SHARC DSP boards. SharcLAB integrates seamlessly with the standard MATLAB environment, allowing a nearly automatic transition from MATLAB-based algorithm development to executable DSP code.

You can develop your applications in the Simulink graphical flow-chart-based simulation environment and use SharcLAB to automatically compile, download, and run the algorithms on your BittWare SHARC DSP hardware in real-time. SharcLAB allows you to change application parameters interactively and view data streams in real time in the native Simulink environment for debugging and verification without interrupting the DSP application.

Chapter 2

Preparing the Board for Operation

This chapter describes the tasks necessary to prepare your Hammerhead-6U-cPCI board for installation, install the software for the board, install the board, and test the installation. This chapter does not provide comprehensive instructions for each task; instead, it provides a sequence of steps for you to follow. In addition to the information in this chapter, you will also need to refer to the documentation for the Analog Devices software, the BittWare DSP21k-SF Toolkit, and your CompactPCI chassis.

To prepare the Hammerhead-6U-cPCI for operation, complete the following steps:

- 1. Unpack the Hammerhead-6U-cPCI (section 2.1).
- 2. Set the board's configuration jumpers (section 2.2.1).
- 3. Configure the board's serial ports (section 2.2.2).
- 4. Connect any desired external devices to the board (section 2.2.3).
- 5. Install the VisualDSP software tools (section 2.3.1).
- 6. Install BittWare's DSP21k-SF Toolkit (section 2.3.2).
- 7. Insert the board in a 6U slot in a CompactPCI chassis (section 2.3.3).
- 8. Run the example software included with the board (section 2.4.1).
- 9. Run diagnostic tests on the board to ensure that it is operating properly (section 2.4.2).

Warning!

The Hammerhead-6U-cPCI contains electro-static discharge (ESD) sensitive devices. Be sure to follow the standard handling procedures for ESD sensitive devices, taking proper precautions to ground yourself and the work area before removing the board from its antistatic bag. If you fail to follow proper handling procedures, you could damage the board.

To unpack the Hammerhead-6U-cPCI board,

- 1. Carefully remove the board from the shipping box. Save the box and packing materials in case you need to reship the board.
- Remove the board from the plastic bag. Observe all precautions described in the warning above to prevent damage from electro-static discharge (ESD).
- 3. Carefully examine the board, checking for damage. If the board is damaged, *do not* install it. Call BittWare technical support.

2.2 Configuring the Hammerhead-6U-cPCI

This section explains how to set up the physical features of the board to get it ready for installation. It discusses setting configuration jumpers, configuring the external serial ports, and connecting external devices to the board.

2.2.1 Setting the Configuration Jumpers

The Hammerhead-6U-cPCI has nineteen configuration jumpers that allow you to control and enable certain features on the board. Before installing the Hammerhead-6U-cPCI in the CompactPCI chassis, make sure you have properly set all of the configuration jumpers. Figure 2–1 shows where each of the jumpers is located.

Chapter 2 13

Figure 2–1 Location of the Hammerhead-6U-cPCI Configuration Jumpers and Switches

Selecting the ADSP-21160 Cluster Bus Priority

The Hammerhead-6U-cPCI has two jumpers for configuring the rotating priority bus arbitration (RPBA) mode for the 64-bit ADSP-21160 cluster buses. JP1 configures the RPBA mode for ADSP-21160 cluster bus A, and JP12 configures the RPBA mode for ADSP-21160 cluster bus B.

The ADSP-21160 cluster buses have two RPBA modes: fixed priority scheme and rotating priority scheme. The *ADSP-21160 User's Guide* (Analog Devices) explains the RPBA modes in more detail. The fixed priority scheme for bus arbitration gives priority to the ADSP-21160 processor with the lowest multiprocessor ID. With the fixed priority scheme, 21160-1 (A1 or B1, depending on the cluster) would always have priority. The rotating priority scheme for bus arbitration gives priority to the ADSP-21160 processors on a rotating schedule. For example, 21160-1 (A1 or B1) would have priority, then 21160-2 (A2 or B2) would have priority, and so on.

Table 2–1 Selecting the Rotating Priority Bus Mode for the ADSP-21160s

Jumper	Jumper Position	Setting	Default
JP1 (Cluster A)	IN	Fixed priority scheme	
	OUT	Rotating priority scheme	•
JP12 (Cluster B)	IN	Fixed priority scheme	
	OUT	Rotating priority scheme	•

Selecting the Boot Mode

Four jumpers configure the boot mode for the ADSP-21160 DSPs. The processors can boot in three boot modes:

- · link booting
- · host booting
- Flash booting

JP3 and JP4 configure the boot mode for the ADSP-21160 cluster A processors, and JP10 and JP11 configure the boot mode for the ADSP-21160 cluster B processors. Table 2–2 below shows their settings.

Table 2-2 Settings for the Boot Mode Selection Jumpers

Jumper	Jumper Position	Setting	Default
JP3	No Jumper Pins 1–2 Pins 2–3	21160-A1 will boot from host computer 21160-A1 will boot from on-board Flash 21160-A1 will boot via link port	V
JP4	No Jumper Pins 1–2 Pins 2–3	21160-A2-A4 will boot from host computer 21160-A2-A4 will boot from on-board Flash 21160-A2-A4 will boot via link port	•
JP10	No Jumper Pins 1–2 Pins 2–3	21160-B2-B4 will boot from host computer 21160-B2-B4 will boot from on-board Flash 21160-B2-B4 will boot via link port	•
JP11	No Jumper Pins 1–2 Pins 2–3	21160-B1 will boot from host computer 21160-B1 will boot from on-board Flash 21160-B1 will boot via link port	•

Configuring the Speed of the Secondary PCI Buses

The Hammerhead-6U-cPCI has two jumpers that allow you to configure the secondary PCI buses for each cluster to run at either 33 MHz or 66 MHz. JP2 configures the speed of the secondary PCI bus for cluster A, and JP5 configures the speed of the secondary PCI bus for cluster B. Table 2–3 shows the settings for the jumpers.

 Table 2-3
 Settings for the Secondary PCI Bus Jumpers

Jumper	Jumper Position	Setting	Default
JP2 (Secondary PCI Bus A)	IN	33 MHz	
	OUT	66 MHz	✓
JP5 (Secondary PCI Bus B)	IN	33 MHz	
	OUT	66 MHz	✓

Configuring the Signal Level of the Secondary PCI Buses

The Hammerhead-6U-cPCI has two 3-pin jumpers that configure the signal level of the secondary PCI bus for each cluster to either 3.3 volts or 5 volts. JP13 configures the signal level of the secondary PCI bus for cluster A, and JP14 configures the signal level of the secondary PCI bus for cluster B. Table 2–4 below gives the jumper's settings.

Warning!

Be sure to set these jumpers correctly. If you set these jumpers incorrectly, some power supplies could short together and damage the board.

 Table 2-4
 Settings for the Secondary PCI Signal Level Jumpers

Jumper Position	Setting	Default
No Jumper	Board non-functional*	
Pins 1–2	3.3 Volts	
Pins 2–3	5 Volts	•

^{*} A jumper must be installed on JP13 and JP14 or the board will not function properly.

Setting the SharcFIN Interrupt Jumpers

A set of three jumpers for each SharcFIN configure three of the SharcFIN's interrupt connections. The jumpers configure whether an ADSP-21160 flag or a flag from the UART or peripheral bus connects to the SharcFIN ASIC interrupt multiplexer. JP6–JP8 configure interrupts for SharcFIN A, and JP15–JP17 configure interrupts for SharcFIN B. Table 2–5 below shows the settings for the jumpers. Sections 4.2.5 and 6.5.10 explain the flag connections to the SharcFIN in more detail.

Table 2–5 Settings for the SharcFIN Interrupt Jumpers

Jumper	Jumper Position	Setting	Default
JP6	No jumper Pins 1–2 Pins 2–3	No interrupt connection 21160-A2 FLAG1 connects to SharcFIN A UART A IRQO connects to SharcFIN A	<i>'</i>
JP7	No jumper Pins 1–2 Pins 2–3	No interrupt connection 21160-A3 FLAG1 connects to SharcFIN A UART A IRQ1 connects to SharcFIN A	•
JP8	No jumper Pins 1-2 Pins 2-3	No interrupt connection 21160-A4 FLAG1 connects to SharcFIN A Peripheral bus A connects to SharcFIN A	V
JP15	No jumper Pins 1–2 Pins 2–3	No interrupt connection 21160-B2 FLAG1 connects to SharcFIN B UART B IRQO connects to SharcFIN B	~
JP16	No jumper Pins 1–2 Pins 2–3	No interrupt connection 21160-B3 FLAG1 connects to SharcFIN B UART B IRQ1 connects to SharcFIN B	•
JP17	No jumper Pins 1–2 Pins 2–3	No interrupt connection 21160-B4 FLAG1 connects to SharcFIN B Peripheral bus B connects to SharcFIN B	~

18 User's Guide Hammerhead-6U-cPCI

Setting the Standalone Mode Jumpers

The Hammerhead-6U-cPCI has three jumpers for configuring the board to operate in standalone mode:

JP9 Standalone mode clockJP18 Standalone mode resetJP19 Standalone primary PCI voltage

All three jumpers must be ON for the board to operate properly in standalone mode.

 Table 2-6
 Settings for the Standalone Mode Jumpers

Jumper	Jumper Position	Setting	Default
JP9 (Clock)	IN	Standalone	
	OUT	Normal operation	•
JP18 (Reset)	IN	Standalone	
	OUT	Normal operation	•
JP19 (PCI voltage)	IN	Standalone	
	OUT	Normal operation	✓

2.2.2 Configuring the TDM Serial Ports

Two TDM serial buses from each cluster provide a communication route between the ADSP-21160s and synchronous serial devices. One serial bus per cluster connects to rear panel I/O (P3 and P5), and one connects to the PMC+ interface. The Hammerhead-6U-cPCI has two sets of switches, one for each cluster, that allow you to configure the signals of the external TDM serial ports. The switch labeled S2 configures the serial ports for cluster A, and S1 configures the serial ports for cluster B.

Table 2–7 TDM Serial Port Switch Connections and Usage

Serial Port	Switch	Connections
TDM SPORT AO	S2	SPORTO from 21160-A1–A4 have TDM serial connection to PMC+ interface A
TDM SPORT A1	S2	SPORT1 from 21160-A1–A4 have TDM serial connection to rear panel I/O (P3)
TDM SPORT BO	S1	SPORTO from 21160-B1–B4 have TDM serial connection to PMC+ interface B
TDM SPORT B1	S1	SPORT1 from 21160-B1-B4 have TDM serial connection to rear panel I/O (P5)

Setting the TDM Serial Port Configuration Switches

Table 2–8 gives the pinout of the switches, and Table 2–9 shows their settings.

Table 2–8 TDM Serial Port Switch Pinout (S1, S2)

RD0 O O TD0 NC O NC RD1 O O TD1 TFS1 O O TFS1

Table 2-9 TDM Serial Port Switch Settings (S1, S2)

Jumper	Settings
TD/RD	ON: TDM 1-wire OFF: TDM 2-wire, standard mode
TFS	ON: Standard with null-modem cable OFF: Otherwise

Figure 2–2 shows where the TDM serial port configuration switches are located on the Hammerhead-6U-cPCI board.

TDM Configuration
Switch for Cluster A

TDM Configuration
Switch for Cluster B

Figure 2–2 Location of the TDM Serial Port Configuration Switches

2.2.3 Attaching External Devices to the Board

This section explains how to attach external devices to the Hammerhead-6UcPCI's external interfaces.

Connecting Link Port Cables to the Rear Panel

Four link ports per DSP cluster on the Hammerhead-6U-cPCI are available externally via the rear panel connectors (P3 and P5), allowing the DSPs to communicate directly with DSPs on other boards. Link ports from cluster A are available via P3, and link ports from cluster B are available via P5. Section 3.2.2 shows the location and pinout of the rear panel connectors.

BittWare offers link port cables for the rear panel connectors. Table 2–10 gives the part numbers of the link port cables that are compatible with the Hammerhead-6U-cPCI's rear panel connectors.

Table 2-10 External Link Port Cables Available From BittWare

Location	Туре	Manufacturer	Part Number
Hammerhead-6U-cPCI (P3, P5)	Coax Ribbon, 12" or 36"	BittWare	HH-LP-12 (12") HH-LP-36 (36")

Connecting Serial Port Cables to the Rear Panel

One TDM serial port per DSP cluster on the Hammerhead-6U-cPCI is available externally via the rear panel connectors (P3 and P5), providing a communication route between the ADSP-21160 DSPs and other synchronous serial devices. The TDM serial port from cluster A is available via P3, and the TDM serial port from cluster B is available via P5. Section 3.2.2 shows the location and pinout of the rear panel connectors.

BittWare offers serial port cables for the rear panel connectors. Table 2–11 below gives the part numbers of the serial port cables that are compatible with the Hammerhead-6U-cPCI's rear panel connectors.

Table 2-11 Serial Port Cable Available from BittWare

Location	Туре	Manufacturer	Part Number
Hammerhead-6U-cPCI (P3, P5)	Coax Ribbon, TDM	BittWare	HH-SP-TDM-04

Connecting an External Reset Signal to the Reset Connectors

The external reset connectors (J4 and J5) allow the Hammerhead-6U-cPCI board to reset or be reset by other system boards. Connector J4 is the reset connector for DSP cluster A, and J5 is the reset connector for DSP cluster B. Each connector supports an input reset line to allow the Hammerhead-6U-cPCI to receive reset signals from other boards; each also supports an output reset line to allow the Hammerhead-6U-cPCI to reset other boards.

To reset the Hammerhead-6U-cPCI with an external reset connector.

- 1. Connect a cable (see Figure 2–3) from one of the external reset connectors (J4 or J5) on the Hammerhead-6U-cPCI board to another system board.
- 2. Any reset that occurs on the Hammerhead-6U-cPCI reset source causes a reset on all Hammerhead-6U-cPCI reset targets.

Figure 2-3 Cable Details for the Hammerhead-6U-cPCI's External Reset Connectors

Connecting an External Power Supply to the Power Connector The Hammerhead-6U-cPCI requires a +3.3 and +5V power supply for normal operation. When operating with a PMC module, it requires +12V and -12V. The external power connector (J14) supplies +3.3V, +5V, -12V,

and +12V to the Hammerhead-6U-cPCI. Section 3.2.9 gives the pinout of the connector and shows where it is located.

To connect an external power source to the Hammerhead-6U-cPCI,

- 1. Plug a power adapter cable into the Hammerhead-6U-cPCI's external power connector (J14). Be sure to align pin 1 (+12V) on J14 with the +12V pin on the cable.
- 2. Connect the remaining end of the cable to an external power source, such as a switching standalone power supply or the PC's power supply.
- 3. Apply power to the system.
- 4. Reset the Hammerhead-6U-cPCI. Section 2.5 explains in more detail how to reset the board.

Connecting an ICE Emulator to the JTAG Header

The Hammerhead-6U-cPCI is compatible with Analog Devices' ICE emulators, which are separate ISA bus, PCI bus, ethernet, or USB cards that connect to the Hammerhead-6U-cPCI's JTAG connector. The emulator provides a controlled environment for observing, debugging, and testing real-time activities in a target hardware environment by connecting directly to the target processor through its JTAG interface. Below is an overview of the steps required to connect an ICE emulator to the Hammerhead-6U-cPCI. For detailed instructions, refer to Appendix A and the user's guide for the emulator.

- 1. Connect the probe on the ICE card to the Hammerhead-6U-cPCI's JTAG connector.
- 2. Depending on the form-factor of your ICE card, either connect it to or install it in your PC.
- 3. Install the Hammerhead-6U-cPCI in a 6U slot in your CompactPCI chassis (see section 2.3.3) or set it up to operate in standalone mode (see Appendix B).
- 4. Apply power to the Hammerhead-6U-cPCI.
- 5. Start the emulator software on the PC.

Connecting the Hammerhead-6U-cPCI to an RS-232 Source The Hammerhead-6U-cPCI's RS-232 ports allow you to connect the Hammerhead-6U-cPCI to an RS-232 source. The board has two RS-232 ports, one per DSP cluster. Connector J2 is the RS-232 port for DSP cluster A, and J3 is the RS-232 port for DSP cluster B.

To connect the Hammerhead-6U-cPCI to your PC via the RS-232 interface, use a ribbon cable connected to a mass-terminated DB-9 connector. The cable provides a straight-through connection from the Hammerhead-6U-cPCI's dual UART to the PC. Since the connector's pinout (see Table 3–7) is data communication equipment (DCE), you can connect it directly to equipment configured as data terminal equipment (DTE), such as a PC without a null-modem cable.

BittWare offers a host serial interface cable that connects the RS-232 connectors directly to a standard PC's DB-9 RS-232 COM port. To connect the Hammerhead-6U-cPCI to a PC with a host serial interface cable, follow the steps below.

- 1. Plug a serial port adapter into a 9-pin host serial interface cable, such as the cable described above.
- 2. Connect the other end of the serial port adapter to the RS-232 port (J2 or J3). One side of the adapter is marked with a red line. Be sure to line up the marked side with pin 1 on the RS-232 connector (Figure 3–5 shows where pin 1 is located).
- 3. Making sure that the PC's power is off, connect the serial interface cable to the PC.

Attaching a PMC or PMC+ Module

The Hammerhead-6U-cPCI board features two PMC+ interfaces, which allow you to attach standard PMC modules or BittWare's PMC+ I/O modules to the Hammerhead-6U-cPCI. The PMC+ interfaces feature three standard PMC connectors, which provide the 64-bit, 66 MHz PCI interface, and an additional connector that provides a TDM serial connection, four link ports, and flags and interrupts directly to the DSPs on the host board.

Chapter 2 25

Warning!

BittWare uses Pn4/Jn4* of the PMC connectors (see section 3.2.10) for our PMC+ extensions. If you are mounting a PMC card that uses the Pn4/Jn4 connector and is not from BittWare, the PMC card may have incompatibilities with the PMC+ (Pn4/Jn4) connector on the Hammerhead-6U-cPCI. Call BittWare technical support for assistance.

* Pn4/Jn4 is the connector number assigned to the fourth (user-definable) PMC connector in the *IEEE P1386.1 Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC* (PMC Specification).

To attach a PMC or PMC+ module to the Hammerhead-6U-cPCI,

- Plug the PMC(+) module onto either of the Hammerhead-6U-cPCI's PMC+ interfaces.
- 2. Secure the PMC(+) module to the mounting holes on the Hammerhead-6U-cPCI.
- 3. Check the required PCI signalling and width.
- 4. Set the secondary PCI interface speed jumpers (JP2 and JP5) and the secondary PCI bus signal level jumpers (JP13 and JP14) appropriately (see section 2.2.1).

This section explains how to install the Hammerhead-6U-cPCI board and its software. It explains where to find installation information for the Analog Devices code development tools and the BittWare DSP21k-SFToolkit. It also explains how to install the Hammerhead-6U-cPCI board in a CompactPCI chassis.

2.3.1 Installing the Code Development Tools

Installing Analog Devices' VisualDSP

The Hammerhead-6U-cPCI is compatible with the VisualDSP® software development toolset from Analog Devices. VisualDSP is an easy-to-use project management environment comprised of an integrated development environment (IDE) and debugger. The VisualDSP IDE includes access to Analog Devices' SHARC C compiler, C runtime library, assembler, linker, loader, simulator, and splitter.

To install the Analog Devices development tools, refer to the *VisualDSP IDE User's Manual* (Analog Devices, Inc.).

Installing BittWare's VisualDSP Target

BittWare's VisualDSP Target is a plug-in for VisualDSP that allows you to use the VisualDSP debugger with your BittWare board. The Target works with the VisualDSP debugger to allow direct communication with the DSPs on the Hammerhead-6U-cPCI. This section describes where to find installation instructions for the VisualDSP IDE and the BittWare VisualDSP Target.

If you will be using the VisualDSP Target debugger with the Hammerhead-6U-cPCI, you will need to install BittWare's VisualDSP Target after installing the VisualDSP IDE. The *VisualDSP Target User's Guide* gives detailed installation instructions.

Chapter 2 27

This section gives a basic overview of installing the BittWare DSP21k-SF Toolkit. For detailed installation instructions, refer to the *DSP21k-SF Toolkit User's Guide*.

Overview of the DSP21k-SF Toolkit

BittWare's DSP21k-SF Toolkit is a set of libraries and utilities that enable you to develop DSP applications for the Hammerhead-6U-cPCI more quickly and easily. It contains a host interface library of C-callable functions for PC-based programs, diagnostic utilities, demo programs, and a DSP library that provides standard I/O extensions to DSP programs.

Libraries. The primary component of the DSP21k-SF Toolkit is the *Host Interface Library* (HIL). The HIL is a library of C-callable functions for DSP programs that allows you to download and start programs on the DSP, read from and write to the DSP's memory, and control other board functions.

The DSP21k-SF Toolkit also contains the *DspHost Library*, which gives your DSP programs standard I/O routines such as screen display, keyboard input, and disk file access. It consists of a library of standard I/O routines that you link into your DSP program and a program that runs on the PC to act as an I/O server. DspHost is an excellent tool for porting existing C applications to the DSP.

Diagnostic Utilities. Diag21k is a character-based diagnostic utility that lets you interactively download DSP programs, start and stop their operation, and access DSP memory.

The *DSP Board Automated Diagnostic* (DspBad) is a command-line operated utility that verifies the ability to communicate with the DSP from the host, tests the memory of the board, and confirms the DSPs' ability to load and run a program.

Installing the DSP21k-SF Toolkit Libraries and Utilities

Run the DSP21k-SF Toolkit setup program to install the DSP21k-SF Toolkit libraries and utilities. The *DSP21k-SF Toolkit User's Guide* explains the procedure in more detail.

28 User's Guide

Verifying Board Configuration

After installing the DSP21k-SF Toolkit libraries and utilities, run the BittWare Configuration Manager to ensure that the board is properly configured. The BittWare Configuration Manager is a utility included with the DSP21k-SF Toolkit that allows you to install, uninstall, or get and set properties for the Hammerhead-6U-cPCI board. The DSP21k-SF Toolkit User's Guide explains how to run the BittWare Configuration Manager.

Note

Because the Hammerhead-6U-cPCI has two SharcFIN devices, when you are installing the Hammerhead-6U-cPCI, the DSP21k-SF Toolkit will recognize it as two independent PCI boards.

2.3.3 Installing the Hammerhead-6U-cPCI in a CompactPCI chassis

After installing the DSP21k-SF Toolkit and running the BittWare Configuration Manager, you can install your Hammerhead-6U-cPCI board in a cPCI chassis. The Hammerhead-6U-cPCI plugs into a 6U slot in a CompactPCI chassis. To install the Hammerhead-6U-cPCI in a CompactPCI chassis, follow the instructions below.

Note

Before installing the Hammerhead-6U-cPCI in a CompactPCI chassis, you must run the BittWare Configuration Manager (see "Verifying Board Configuration" above).

Warning!

When installing the Hammerhead-6U-cPCI in a cPCI chassis, make sure that the Hammerhead-6U-cPCI's backplane connectors (P2, P3, and P5) are properly connected to the backplane. P2 provides the 64-bit cPCI extensions and must be connected to a 64-bit backplane to function properly. P3 and P5 provide BittWare rear panel I/O and must be properly connected to P3 and P5 on the backplane to function properly.

- 1. Remove the Hammerhead-6U-cPCI from its anti-static packaging.
- 2. Power down the CompactPCI chassis.
- Find a double-wide 6U bus-mastering peripheral slot in your CompactPCI chassis.

- 4. Line up the top and bottom edges of your Hammerhead-6U-cPCI board with the slot guides in the chassis.
- 5. Making sure that the ejectors are in the unlocked position (the top ejector should be "up," and the bottom ejector should be "down"), slide the board into the slot.
- 6. Push the board into the chassis until it stops.
- 7. Lock the board in place by pushing the top ejector "down" and the bottom ejector "up".
- 8. Power up the system.

30 User's Guide

This section explains several options for testing the board to make sure it is working properly after installing it. It discusses two DSP21k-SF Toolkit utilities, Diag21k and DspBad, that allow you to test communication between the DSPs and the host. It also discusses the example files included with the board, which allow you to test various components of the board.

2.4.1 Testing the Installation with the Hammerhead-6U-cPCI Example Files

The example software provided with the Hammerhead-6U-cPCI contains examples that demonstrate how to use the various features of your board and software. The examples are located in the examples directory of the Hammerhead-6U-cPCI CD-ROM.

2.4.2 Testing the Installation With DSP21k-SF Diagnostic Utilities

The DSP21k-SF Toolkit contains two utilities for testing a DSP board to make sure it is operating properly: the DSP Board Automated Diagnostic (DspBad) and Diag21k.

- DspBad is a command-line-operated utility that verifies the ability to communicate with the DSP board from the PC, tests the memory of the board, and confirms the DSP's ability to load and run a program.
- Diag21k is a character-based diagnostic utility that you start from the MS-DOS command prompt. Diag21k lets you interactively download DSP programs, start and stop their operation, and access DSP memory.

Testing the Board with DspBad

To test a processor with DspBad, enter the following command at a command prompt:

```
C:>dspbad -b<N> <enter>
or
C:>dspbad -d<N> -i<N> <enter>
```

The <N> in -b<N> represents the processor number. The <N> in -d<N> represents the device number. The <N> in -i<N> represents the processor ID number of the processor you want to open on the specified device. The

Chapter 2 31

DSP21k-SF Toolkit Installation Guide explains DspBad commands in more detail.

Testing the Board with Diag21k

The example below shows you basic Diag21k commands you can use to test the Hammerhead-6U-cPCI's memory and load and run a DSP program. Be sure to follow the example steps below in the order in which they appear. The DSP21k-SF Toolkit User's Manual describes the Diag21k commands in more detail.

Step 1: Start Diag21k

a. The Diag21k program is located in the dsp21ksf\bin directory. Start the program from the DOS prompt. The -b switch tells Diag21k which processor you will access. If you do not specify a processor number with -b (or both -d and -i), Diag21k will use all processors that are installed in your PC.

```
C:\DSP21KSF\BIN>diag21k -b1
```

```
C:\DSP21KSF\BIN>diag21k -d0 -i1
```

Both of the command line options above tell Diag21k to open the first processor on device 0.

b. Diag21k will start and display a copyright banner. The command prompt shows the active board number in square brackets.

```
DSP21K Interactive Diagnostic Utility
32-bit version for SharcFIN boards under Windows 95/98 and
Windows NT/2000. Release 6.12 [ DSP21K-SF, December 2000
15:54:36 ], Version 3.93 Copyright (c) 1992-2000 BittWare,
Inc. All rights reserved.

Type "?" for a list of commands.

Available DSP numbers: 1 2 3 4

Opened 4 DSPs.

Current DSP: #1, processor 1 on Hammerhead (device 0)
```

Step 2: Display Board Information

a. Use the board information command to display information about the Hammerhead-6U-cPCI's DSPs.

32 User's Guide Hammerhead-6U-cPCI

^{1.} The processor number is the *device number* * 10 + id number. See the *DSP21k-SF User's Manual* for further explanation.

diag21k[1]>bi

```
Board/Processor Information for DSP #1 (Not Started)
  Board Type: (38) Hammerhead
                                          DSP Type: (7) ADSP-21160
 Multi-proc ID: 1
                                  Interrupt Number: 11
  BAR0: 0x0c800000 Size: 0x00000200
                                       BAR3: 0x0c800200 Size: 0x00000100
  BAR1: 0x0c400000 Size: 0x00400000 BAR4: 0x0a000000 Size: 0x01000000
  BAR2: 0x80000000 Size: 0x02000000
                                      BAR5:
                                                        Size: 0x0
Int. Mem: 4 Mbit IMDW0: 32-bit data
                                         IMDW1: 32-bit data
 MMS WS: 0 Ext Bank Size: 32768 KW (MSIZE = 12) DRAM PgSz: 256 W
Bank 0: Start = 0 \times 00800000 Width = 32 bits Depth = 32768 KW WS/WM = 1/2
Bank 1: Start = 0x02800000 Width = 8 bits Depth = 2048 KW WS/WM = 7/0
Bank 2: Start = 0x04800000 WS/WM = 1/2
Bank 3: Start = 0x06800000 WS/WM = 7/0
Unbnkd: Start = 0x08800000 WS/WM = 7/0
  Program loaded: (none)
 Labels: *not defined*
```

b. Notice the memory size information for the external memory banks 0 and 1. The memory test command (mt) uses these values when it performs various tests on different regions of the ADSP-21160's memory.

Step 3: Test the Hammerhead-6U-cPCI's Memory

Now that you have found the memory bank settings, you can test all of the Hammerhead-6U-cPCI's memory with the following commands.

a. To ensure that neither of the processors is executing programs that might change memory while you are testing it, use the following command to reset the board:

diag21k[1]>br

Board reset

 Next, use the following command to configure the processor you selected to access external memory (MSIZE and WAIT settings from the environment variable):

diag21k[1]>pc

processor configured

c. Now use the following command to test all memory banks:

diag21k[1]>mt aa

```
Program Memory Test at 0x040000, Size: 0xa000 48-bit Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
Data Memory Test at 0x050000, Size: 0x10000 32-bit Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
External Bank 0 Test at 0x800000, Size: 0x2000000 32-bit
Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
```

Step 4: Load and Execute a Program

Now that you have tested the memory, you know that Diag21k can successfully communicate with the Hammerhead-6U-cPCI board. Next, load a program and execute it.

a. The dsp21ksf\etc directory contains an example program that calculates the first twenty prime numbers. The source code is in the examples\21160\prime160 directory. Load the pre-compiled executable file with the file load (£1) command.

b. Now that Diag21k has downloaded the executable file into the ADSP-21160's memory and holds the processor in reset, start the processor with the processor start command.

```
diag21k[1]>ps
```

processor running

34 User's Guide Hammerhead-6U-cPCI

c. To see the results of the primes program, examine the variable that contains the calculated prime numbers. The C program primes.c defines a global array called primes, which is stored in data memory. The memory read command can use global labels to locate variables and functions. Notice that the C compiler adds an underscore to global labels.

diag21k[0]>mr li _primes 20

```
DATA_SRAM [00050040] =
                             2
DATA_SRAM [00050041] =
                             3
DATA SRAM [00050042] =
                             7
DATA_SRAM [00050043] =
DATA SRAM [00050044] =
                            11
DATA SRAM [00050045] =
                            13
DATA_SRAM [00050046] =
                            17
DATA_SRAM [00050047] =
                            19
DATA_SRAM [00050048] =
                            23
                            29
DATA_SRAM [00050049] =
DATA SRAM [0005004A] =
                            31
DATA SRAM [0005004B] =
                            37
DATA_SRAM [0005004C] =
                            41
DATA SRAM [0005004D] =
DATA_SRAM [0005004E] =
                            47
DATA SRAM [0005004F] =
                            53
DATA_SRAM [00050050] =
                            59
DATA_SRAM [00050051] =
                            61
DATA_SRAM [00050052] =
DATA_SRAM [00050053] =
                            71
```

Step 5: Test the Remaining Processors

a. To test the remaining ADSP-21160 processors, select one of them with the board select command.

b. With another processor selected, you can use the same commands as before to load a program and start the processor.

```
diag21k[2]>fl ..\etc\prm21160

"..\etc\prm21160.dxe" loaded

diag21k[2]>ps

processor running
```

Chapter 2 35

diag21k[2]>mr li _primes 20

```
DATA_SRAM [00050040] =
DATA_SRAM [00050041] =
                            5
DATA_SRAM [00050042] =
DATA_SRAM [00050043] =
                            7
DATA_SRAM [00050044] =
                           11
DATA_SRAM [00050045] =
                           13
DATA_SRAM [00050046] =
                           17
DATA_SRAM [00050047] =
                           19
DATA_SRAM [00050048] =
                           23
DATA_SRAM [00050049] =
                           29
DATA_SRAM [0005004A] =
                           31
DATA_SRAM [0005004B] =
                           37
DATA SRAM [0005004C] =
                           41
DATA_SRAM [0005004D] =
                           43
DATA_SRAM [0005004E] =
                           47
                           53
DATA_SRAM [0005004F] =
DATA_SRAM [00050050] =
                           59
DATA SRAM [00050051] =
                           61
DATA_SRAM [00050052] =
                           67
DATA_SRAM [00050053] =
                           71
```

Step 6: Exit Diag21k

To exit Diag21k and reset the processor you have selected, use the quit command.

diag21k[0]>q

```
exiting...resetting processor(s)
C:\DSP21KSF\BIN>
```

36 User's Guide Hammerhead-6U-cPCI This section explains three methods of resetting the Hammerhead-6U-cPCI, including:

- · with the watchdog timer
- · with an external reset switch
- · via the PCI interface

2.5.1 Resetting the Board with the Watchdog Timer

The Hammerhead-6U-cPCI features two watchdog timers, one for each DSP cluster. The watchdog timers help to ensure that the Hammerhead-6U-cPCI is operating properly. They are also useful for standalone applications that need to restart when certain errors occur or a program crashes.

The Watchdog Configuration Register, which is located in the SharcFIN ASIC, enables and disables the watchdog timer (see section 6.5.4). The register is located at offset 0x0000 0043 from the base of the ADSP-21160s' memory select line MS2.

How the Watchdog Timer Functions When Disabled

The watchdog is disabled after a reset occurs. When the watchdog is disabled, the SharcFIN chip constantly strobes the timer to keep it from elapsing. Since it is constantly being strobed, the watchdog timer will not time-out regardless of whether the program fails.

How the Watchdog Timer Functions When Enabled

When enabled, the watchdog timer must be reset before it expires to prevent a board reset from occurring. The watchdog timer is reset every time FLAG0 from a configured processor toggles from 0 to 1 or from 1 to 0. The FLAG0 signals are flags that are under program control and can strobe the watchdog timer to prevent it from elapsing.

Six bits in the Watchdog Configuration Register control the watchdog timer. The first two bits enable it and select its time-out time, and the next four bits determine which flag the watchdog will respond to (see section 6.5.4). The Watchdog Configuration Register is a write-once register; therefore, once the watchdog is enabled it cannot be disabled except by a board reset.

If the watchdog timer is enabled, the DSP program must toggle FLAG0 within the given time frame. The Watchdog Configuration Register allows you to

select the watchdog's time-out time (see "Enabling the Watchdog and Setting its Time-out" on page 118). If the watchdog timer elapses, it will generate a system reset and the normal boot process will begin.

2.5.2 Resetting the Board via the External Reset Connector

The external reset connectors (J4 and J5) allow the Hammerhead-6U-cPCI board to reset or be reset by other system boards. Connector J4 is the reset connector for DSP cluster A, and J5 is the reset connector for DSP cluster B. The connectors support an input reset line to allow the Hammerhead-6U-cPCI to receive reset signals from other boards. They also support an output reset line to allow the Hammerhead-6U-cPCI to reset other boards.

To reset the Hammerhead-6U-cPCI with the external reset connector, follow the instructions in "Connecting an External Reset Signal to the Reset Connectors" on page 23.

2.5.3 Resetting the Board via the PCI Interface

A register bit in the SharcFIN ASIC allows the board to be reset from the host PC. This bit is B0 of the register located at Byte offset 0x58 from the base of Base Address Register 0 (BAR0). When the register is written, all components on the board will be reset. Complete this reset procedure regardless of other reset methods to ensure hardware and software initialization.

2.5.4 Resetting Any Attached PMC+ Cards

The PMC+ interfaces on the Hammerhead-6U-cPCI feature a reset line that allows the Hamerhead-6U-cPCI to reset a PMC+ board that is attached to it.

38 User's Guide Hammerhead-6U-cPCI

Chapter 3

Overview of the Hardware Components

This chapter shows where the Hammerhead-6U-cPCI's major components and connectors are located and briefly describes their function. Section 3.1 describes the layout and function of the major components, section 3.2 describes the external connectors, and section 3.3 describes the configuration jumpers. This chapter covers the following components and connectors:

- · PCI-to-PCI bridges
- SharcFIN ASICs
- ADSP-21160 DSPs
- Flash RAM
- SDRAM
- · On-board oscillators
- Dual RS-232 UARTs
- Watchdog timers
- LEDs
- CompactPCI interface
- · Rear panel I/O
- JTAG header
- External power connector
- External reset connectors
- Buffered inverted flag outputs
- PMC+ interfaces
- Configuration jumpers

This section briefly describes the function of each major component on the board and shows where each is located. Figure 3–1 shows the components on the top side of the board.

Figure 3–1 Location of the Hammerhead-6U-cPCI's Major Components (Top)

Figure 3–2 Location of the Hammerhead-6U-cPCI's Major Components (Bottom)

3.1.1 PCI-to-PCI Bridges

The Hammerhead-6U-cPCI has three PCI-to-PCI bridge chips (Intel 21154-BC from Intel Corporation), which provide the bridges between the primary PCI bus and the three secondary PCI buses. One provides the bridge for cluster A, one provides the bridge for cluster B, and the third provides the bridge between the two clusters and the host interface. Section 4.3.2 explains the function of each bridge in more detail.

3.1.2 SharcFIN ASICs

The Hammerhead-6U-cPCI features two SharcFIN ASICs, one per DSP cluster. The SharcFIN ASIC flexibly interfaces the ADSP-21160 DSPs to a wide range of the Hammerhead-6U-cPCI's interfaces, including 64/66 MHz PCI bus (rev. 2.2 compliant), SDRAM, UART, I^2C^{TM} serial ports, Flash, and a general-purpose expansion bus (the 8-bit peripheral bus). The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead. The following is a list of the SharcFIN's features:

- 64-bit, 66 MHz PCI rev. 2.2 compliant interface (528 MB/s burst)
- Connected to 64-bit, 50 MHz ADSP-21160 cluster bus
- Connected to the Hammerhead-6U-cPCI's peripheral bus
 - 8 bits wide @ 25 MHz
 - Accessible from the ADSP-21160 cluster bus and the PCI bus
 - Flash interface for SHARC boot and non-volatile data storage
- Six independent FIFOs (2.4 KB total)
 - Four DMA buffers, 64×64 each (two transmit, two receive)
 - Two target buffers, 32×64 write, 16×64 read
- Direct, single PCI access from the ADSP-21160 cluster bus
- 16-byte configurable PCI mailbox registers
- I₂O[™] V1.5 compliant
- Programmable interrupt multiplexer: 10 inputs, 7 outputs (one of each dedicated to PCI)
- SDRAM controller on SHARC bus; supports up to 512 MB
- Standard UART and I²C interface

42 User's Guide

3.1.3 Analog Devices ADSP-21160 DSPs

The Hammerhead-6U-cPCI features eight ADSP-21160 SHARC processors from Analog Devices, arranged in two clusters of four processors. The Hammerhead-6U-cPCI's processors have a total of 4800 MFLOPs of processing power and operate at 100 MHz. Each processor supports two I²S serial ports, 14 DMA channels, four flags, three interrupts, and six link ports. Each processor also features 4 Mbits of dual-ported on-chip SRAM.

3.1.4 Memory

Flash RAM

Two 2 MB banks of Flash memory, one for each DSP cluster, store boot programs that the processor can load, enabling the Hammerhead-6U-cPCI to boot without a host computer (see section 5.2). The ADSP-21160s can also read, write, and erase the Flash, which allows them to use it as non-volatile storage space.

SDRAM

The Hammerhead-6U-cPCI has up to 512 MB of SDRAM for banked exteral memory. For each DSP cluster, it features a standard 144-pin SODIMM that supports 64, 128, 256, or 512 MB SDRAM modules. The SDRAM is available to the ADSP-21160 DSPs at 50 MHz via the ADSP-21160 cluster buses.

3.1.5 On-Board Oscillators

The Hammerhead-6U-cPCI has three on-board oscillators: one for each DSP cluster, and one for the RS-232 UARTs.

SHARC Oscillators

A 50 MHz system oscillator chip (Y1 and Y3) for each DSP cluster provides the $1 \times$ clock for the four ADSP-21160 DSPs in the cluster. Figure 3–1 shows where the oscillators are located.

UART Oscillator

An 18.432 MHz oscillator chip (Y2) provides the clock for the RS-232 UARTs. Figure 3–1 shows where it is located.

3.1.6 Dual UARTs

The Hammerhead-6U-cPCI features a dual RS-232 UART for each DSP cluster. The UARTs interface serial data from the RS-232 ports to the ADSP-21160 DSPs. Figure 3–1 shows where the UARTs are located, and section 3.2.4 describes the RS-232 ports.

3.1.7 Watchdog Timers

The Hammerhead-6U-cPCI has a watchdog timer for each DSP cluster. The watchdog timers help to ensure that the Hammerhead-6U-cPCI is operating properly. They are also useful for standalone applications that need to restart when certain errors occur or a program crashes.

3.1.8 LEDs

The Hammerhead-6U-cPCI has sixteen user LEDs, which you can use to indicate certain conditions in the software or to provide feedback. Two LEDs are connected to each ADSP-21160, each LED corresponding to a different ADSP-21160 flags. Section 4.2.5 shows the LEDs' connections to the ADSP-21160 flags.

44 User's Guide Hammerhead-6U-cPCI

This section briefly describes the function of each external connector on the board and shows where they are located (see Figure 3–3 below). It also provides the pinouts for the connectors.

Figure 3–3 Layout of the External Connectors

Table 3–1 below gives an overview of the connectors and their functions.

Table 3–1 Overview of the External Connectors

Connector	Ref Des	Туре	Description
CompactPCI	P1, P2	cPCI	64-bit, 66 MHz CompactPCI interface
Rear Panel I/O A	Р3	cPCI	Rear panel I/O with external link and serial ports for DSP cluster A
Rear Panel I/O B	P5	cPCI	Rear panel I/O with external link and serial ports for DSP cluster B
JTAG Header	J1	14-pin	Connection for ICE in-circuit emulator
RS-232 Port A	J2	10-pin	External RS-232 serial interface to DSP cluster A via UART A
RS-232 Port B	J3	10-pin	External RS-232 serial interface to DSP cluster B via UART B
External Reset A	J4	6-pin	Connection for external reset signals for DSP cluster A
External Reset B	J5	6-pin	Connection for external reset signals for DSP cluster B
BittWare Mezzanine	J6, J7, J12, J13	64-pin	BittWare mezzanine interface for additional SDRAM or I/O modules
Buffered Inverted Flag Outputs A	J8	16-pin	Access to FLAG2 and FLAG3 on each processor in DSP cluster A
Buffered Inverted Flag Outputs B	J9	16-pin	Access to FLAG2 and FLAG3 on each processor in DSP cluster B
SODIMM A	J10	144-pin	Connection for standard 144-pin SODIMM SDRAM modules for DSP cluster A
SODIMM B	J11	144-pin	Connection for standard 144-pin SODIMM SDRAM modules for DSP cluster B
External Power	J14	8-pin	Connection for $+3.3V$, $+5V$, and $\pm 12V$ external power supply
JTAG Boundary Scan	J15	10-pin	Manufacturer use only
PMC+ Interface A	J16, J17, J20, J22	64-pin	Connection for BittWare PMC+ I/O module or for standard PMC module
PMC+ Interface B	J18, J19, J21, J23	64-pin	Connection for BittWare PMC+ I/O module or for standard PMC module

3.2.1 CompactPCI Connector

Rear panel connectors P1 and P2 provide the 64-bit, 66 MHz CompactPCI interface. Each connector consists of six rows of 22 pins. Table 3-2 and Table 3-3 give the connector pinouts.

 Table 3-2
 CompactPCI Interface Pinout (P1: A-F)

		P1:A	P1:B	P1:C	P1:D	P1:E	P1:F
22	GND	VDD	REQ64#	BRSV	P33V	VDD	GND
21	GND	AD1	VDD	V(I/O)	AD0	ACK64#	GND
20	GND	P33V	AD4	AD3	VDD	AD2	GND
19	GND	AD7	GND	P33V	AD6	AD5	GND
18	GND	P33V	AD9	AD8	M66EN#	C/BEO#	GND
17	GND	AD12	GND	V(I/O)	AD11	AD10	GND
16	GND	P33V	AD15	AD14	GND	AD13	GND
15	GND	SERR#	GND	P33V	PAR	C/BE1#	GND
14	GND	P33V	SDONE	SBO#	GND	PERR#	GND
13	GND	DEVSEL#	GND	V(I/O)	STOP#	LOCK#	GND
12	GND	P33V	FRAME#	IRDY#	GND	TRDY#	GND
11	GND	AD18	AD17	AD16	GND	C/BE2#	GND
10	GND	AD21	GND	P33V	AD20	AD19	GND
9	GND	C/BE3#	IDSEL	AD23	GND	AD22	GND
8	GND	AD26	GND	V(I/O)	AD25	AD24	GND
7	GND	AD30	AD29	AD28	GND	AD27	GND
6	GND	REQ#	GND	P33V	CLK	AD31	GND
5	GND	BRSV	BRSV	RST#	GND	GNT#	GND
4	GND	BRSV	GND	V(I/O)	INTP	INTS	GND
3	GND	INTA#	INTB#	INTC#	VDD	INTD#	GND
2	GND	TCK	VDD	TMS	TDO	TD1	GND
1	GND	VDD	N12V	TRST#	P12V	VDD	GND
Row	Z	A	В	С	D	E	F

Overview of the Hardware Components

 Table 3-3
 CompactPCI Interface Pinout (P2: A-F)

		P1:A	P1:B	P1:C	P1:D	P1:E	P1:F
22	GND	USR	USR	USR	USR	USR	GND
21	GND	USR	USR	USR	USR	USR	GND
20	GND	USR	USR	USR	USR	USR	GND
19	GND	USR	USR	USR	USR	USR	GND
18	GND	USR	USR	USR	USR	USR	GND
17	GND	BRSV	GND	PRST#	REQ6#	GNT6#	GND
16	GND	BRSV	BRSV	DEG#	GND	BRSV	GND
15	GND	BRSV	GND	FAL#	REQ5#	GNT5#	GND
14	GND	AD35	AD34	AD33	GND	AD32	GND
13	GND	AD38	GND	V(I/O)	AD37	AD36	GND
12	GND	AD42	AD41	AD40	GND	AD39	GND
11	GND	AD45	GND	V(I/O)	AD44	AD43	GND
10	GND	AD49	AD48	AD47	GND	AD46	GND
9	GND	AD52	GND	V(I/O)	AD51	AD50	GND
8	GND	AD56	AD55	AD54	GND	AD53	GND
7	GND	AD59	GND	V(I/O)	AD58	AD57	GND
6	GND	AD63	AD62	AD61	GND	AD60	GND
5	GND	C/BE5#	GND	V(I/O)	C/BE4#	PAR64	GND
4	GND	V(I/O)	BRSV	C/BE7#	GND	C/BE6#	GND
3	GND	CLK4	GND	GNT3#	REQ4#	GNT4#	GND
2	GND	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	GND
1	GND	CLK1	GND	REQ1#	GNT1#	REQ2#	GND
Row	Z	А	В	С	D	E	F

3.2.2 Rear Panel I/O

Connectors P3 and P5 on the rear panel provide rear panel I/O for the DSP clusters. P3 provides rear panel I/O for DSP cluster A, and P5 provides rear panel I/O for cluster B. Each connector consists of six rows of 22 pins and provides four link ports, a TDM serial port, flags, and interrupts. Table 3–4 and Table 3-5 give the connector pinouts.

Table 3-4 Rear Panel I/O Pinout (P3: A-F)

		P1:A	P1:B	P1:C	P1:D	P1:E	P1:F	
19	GND	HA1_F2	HA2_F2	GND	HA3_F2	HA4_F2	GND	General
18	GND	P33V	VDD	GND	HA_EXTGRPRSTOUT	HA_EXTGRPRSTIN	GND	purpose [^]
17	GND	HA1_I2 HA2_F3	HA2_I2 HA1_F3	GND	HA3_I2 HA4_F3	HA4_I2 HA3_F3	GND	
16	GND	HA_EXTTXD1	HA_EXTCTS1	GND	HA_EXTRTS1	HA_EXTRXD1	GND	
15	GND	HA_TDMRD1	HA_TDMTRC1	GND	NC	HA_TDMTD1	GND	External
14	GND	NC	HA_TDMRFS1	GND	XHA_TDMTFS1	NC	GND	TDM serial port
13	GND	NC	NC	GND	NC	NC	GND	serial port
12	GND	EA_L4ACK	EA_L4CLK	GND	NC	NC	GND	External
11	GND	EA_L4DAT4	EA_L4DAT5	GND	EA_L4DAT6	EA_L4DAT7	GND	link port 4
10	GND	EA_L4DAT0	EA_L4DAT1	GND	EA_L4DAT2	EA_L4DAT3	GND	
9	GND	EA_L3ACK	EA_L3CLK	GND	NC	NC	GND	External
8	GND	EA_L3DAT4	EA_L3DAT5	GND	EA_L3DAT6	EA_L3DAT7	GND	link port 3
7	GND	EA_L3DAT0	EA_L3DAT1	GND	EA_L3DAT2	EA_L3DAT3	GND	
6	GND	EA_L2ACK	EA_L2CLK	GND	NC	NC	GND	External
5	GND	EA_L2DAT4	EA_L2DAT5	GND	EA_L2DAT6	EA_L2DAT7	GND	link port 2
4	GND	EA_L2DAT0	EA_L2DAT1	GND	EA_L2DAT2	EA_L2DAT3	GND	
3	GND	EA_L1ACK	EA_L1CLK	GND	NC	NC	GND	External
2	GND	EA_L1DAT4	EA_L1DAT5	GND	EA_L1DAT6	EA_L1DAT7	GND	link port 1
1	GND	EA_L1DAT0	EA_L1DAT1	GND	EA_L1DAT2	EA_L1DAT3	GND	
Row	Z	А	В	С	D	E	F	

Power, flags, interrupts, reset, RS-232

Chapter 3 Overview of the Hardware Components

Table 3-5Rear Panel I/O Pinout (P5: A-F)

		P1:A	P1:B	P1:C	P1:D	P1:E	P1:F	
22	GND	P12V	N12V	GND	N12V	P12V	GND	General
21	GND	VDD	VDD	GND	VDD	VDD	GND	purpose ^
20	GND	P33V	P33V	GND	P33V	P33V	GND	
19	GND	HB1_F2	HB2_F2	GND	HB3_F2	HB4_F2	GND	
18	GND	P33V	VDD	GND	HB_EXTGRPRSTOUT	HB_EXTGRPRSTIN	GND	
17	GND	HB1_I2 HB2_F3	HB2_I2 HB1_F3	GND	HB3_I2 HB4_F3	HB4_I2 HB3_F3	GND	
16	GND	HB_EXTTXD1	HB_EXTCTS1	GND	HB_EXTRTS1	HB_EXTRXD1	GND	
15	GND	HB_TDMRD1	HB_TDMTRC1	GND	NC	HB_TDMTD1	GND	External
14	GND	NC	HB_TDMRFS1	GND	XHB_TDMTFS1	NC	GND	TDM serial port
13	GND	NC	NC	GND	NC	NC	GND	3criai port
12	GND	EB_L4ACK	EB_L4CLK	GND	NC	NC	GND	External
11	GND	EB_L4DAT4	EB_L4DAT5	GND	EB_L4DAT6	EB_L4DAT7	GND	link port 4
10	GND	EB_L4DAT0	EB_L4DAT1	GND	EB_L4DAT2	EB_L4DAT3	GND	
9	GND	EB_L3ACK	EB_L3CLK	GND	NC	NC	GND	External
8	GND	EB_L3DAT4	EB_L3DAT5	GND	EB_L3DAT6	EB_L3DAT7	GND	link port 3
7	GND	EB_L3DAT0	EB_L3DAT1	GND	EB_L3DAT2	EB_L3DAT3	GND	
6	GND	EB_L2ACK	EB_L2CLK	GND	NC	NC	GND	External
5	GND	EB_L2DAT4	EB_L2DAT5	GND	EB_L2DAT6	EB_L2DAT7	GND	link port 2
4	GND	EB_L2DAT0	EB_L2DAT1	GND	EB_L2DAT2	EB_L2DAT3	GND	
3	GND	EB_L1ACK	EB_L1CLK	GND	NC	NC	GND	External
2	GND	EB_L1DAT4	EB_L1DAT5	GND	EB_L1DAT6	EB_L1DAT7	GND	link port 1
1	GND	EB_L1DAT0	EB_L1DAT1	GND	EB_L1DAT2	EB_L1DAT3	GND	
Row	Z	А	В	С	D	E	F	

^{*} Power, flags, interrupts, reset, RS-232

3.2.3 JTAG header

The JTAG header (J1) allows in-circuit emulation with an optional ICE emulator (available from Analog Devices). All eight ADSP-21160 DSPs are connected to the JTAG connector. Figure 3–4 shows where pin 1 is located on the JTAG header, and Table 3–6 gives the connector pinout. Appendix A explains how to connect an emulator to the Hammerhead-6U-cPCI.

Figure 3-4 Location of the JTAG Header Pins

Table 3-6JTAG Header Pinout (J1)

Pin	Signal	Pin	Signal
1	GND	2	EMU
3	KEY	4	CLK
5	BTMS	6	TMS
7	BTCK	8	TCK
9	BTRST	10	TRST
11	BTDI	12	TDI
13	GND	14	TDO

The Hammerhead-6U-cPCI is configured with two 10-pin RS-232 connectors (J2, J3). J2 is the RS-232 connector for DSP cluster A, and J3 is the RS-232 connector for DSP cluster B. The connectors transport serial data between the host and the dual UARTs, which interface the data between the RS-232 connectors and the ADSP-21160 processors. The SharcFIN ASIC provides a memory-mapped register set that allows each DSP cluster to interface to a PC via its RS-232 port. Figure 3-5 shows where the connector pins are located, and Table 3–7 gives the connector pinout.

Figure 3-5 Location of the RS-232 Connector Pins

Table 3-7 RS-232 Connector Pinout (J2, J3)

Pin [*]	Signal	Pin	Signal
1		2	
3	TXD	4	CTS
5	RXD	6	RTS
7		8	NC
9	GND	10	NC

Pins 1, 2, and 7 (Carrier Detect, Data Set Ready, and Data Terminal Ready) are jumpered.

User's Guide 52

Figure 3–6 shows the connections between the DB9 cable and the RS-232 connectors (J2, J3). For instructions on connecting a DB9 cable to the RS-232 connectors, refer to the section entitled "Connecting the Hammerhead-6U-cPCI to an RS-232 Source" on page 25.

Figure 3-6 DB9-to-RS-232 Cable Connections

The Hammerhead-6U-cPCI has two 6-pin external reset connectors (J4, J5) to allow one Hammerhead-6U-cPCI board to reset other Hammerhead-6U-cPCI boards in the same system. J4 is the external reset connector for DSP cluster A, and J5 is the connector for cluster B.

Each connector supports an output reset line, which allows the board to reset other boards. Each also supports an input reset line, which allows it to accept a reset signal from another board. If the input signal is driven low, the board will perform a hardware reset on all four SHARCs in the cluster. The input signal is pulled up with a 10K resistor.

If the output signal is driven low, the board will output a reset signal to other boards. When the output is connected to group reset, it can drive a reset signal to up to 250 boards. If the output signal is tied to the board's hardware reset line, it is driven low by either a host board reset or by a watchdog reset.

The section entitled "Connecting an External Reset Signal to the Reset Connectors" on page 23 explains how to use the external reset signals, and section 2.5 explains the board's reset events. Figure 3–7 shows where pin 1 is located, and Table 3–8 gives the connector pinout.

Figure 3–7 Location of the External Reset Connector Pins

Table 3–8 External Reset Connector Pinout (J4, J5)

J4				15			
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	NC	2	ha_extgrprstin	1	NC	2	HB_EXTGRPRSTIN
3	NC	4	GND	3	NC	4	GND
5	GND	6	HA_EXTGRPRSTOUT	5	GND	6	HB_EXTGRPRSTOUT

54 User's Guide Hammerhead-6U-cPCI

3.2.6 BittWare Mezzanine Interface

The BittWare mezzanine interface allows you to attach additional mezzanines containing shared memory to the Hammerhead-6U-cPCI. For further information on this interface, contact BittWare.

3.2.7 Buffered Inverted Flag Outputs

The 16-pin buffered inverted flag output connectors (J8, J9) allow access to the FLAG2 and FLAG3 signals on each ADSP-21160 DSP. The ADSP-21160s' flag signals are routed through an inverting buffer and are outputs only. Connector J8 is the flag outputs for cluster A, and J9 is the flag outputs for cluster B. Figure 3–8 shows where the pins are located on the connectors, and Table 3–9 gives the connector pinout.

Figure 3–8 Location of the Buffered Inverted Flag Output Pins

Chapter 3 55

 Table 3-9
 Buffered Inverted Flag Output Pinouts (J8, J9)

J8

Pin	Signal	Description	Pin	Signal
1	HA1_F2	21160-A1 FLAG2	2	GND
3	HA1_F3	21160-A1 FLAG3	4	GND
5	HA2_F2	21160-A2 FLAG2	6	GND
7	HA2_F3	21160-A2 FLAG3	8	GND
9	HA3_F2	21160-A3 FLAG2	10	GND
11	HA3_F3	21160-A3 FLAG3	12	GND
13	HA4_F2	21160-A4 FLAG2	14	GND
15	HA4_F3	21160-A4 FLAG3	16	GND

J9

Pin	Signal	Description	Pin	Signal
1	HB1_F2	21160-B1 FLAG2	2	GND
3	HB1_F3	21160-B1 FLAG3	4	GND
5	HB2_F2	21160-B2 FLAG2	6	GND
7	HB2_F3	21160-B2 FLAG3	8	GND
9	HB3_F2	21160-B3 FLAG2	10	GND
11	HB3_F3	21160-B3 FLAG3	12	GND
13	HB4_F2	21160-B4 FLAG2	14	GND
15	HB4_F3	21160-B4 FLAG3	16	GND

3.2.8 SODIMM Connectors

For each DSP cluster, the Hammerhead-6U-cPCI has an industry-standard 144-pin connection for a standard SODIMM module. J10 is the SODIMM connector for cluster A, and J11 is the SODIMM connector for cluster B. The SODIMMs are available in 64, 128, 256, and 512 MB SDRAM modules.

The Hammerhead-6U-cPCI has an external power connector (J14) to provide power to the board when it is operating in standalone mode. The external power connector is an 8-pin connector that supplies +3.3V, +5V, +12V, and -12V to the Hammerhead-6U-cPCI. Figure 3–9 shows the location of the pins on the external power connector (J14), and Table 3–10 gives the connector pinout. Section 2.2.3 explains how to connect an external power supply to the connector.

Figure 3-9 Location of the External Power Connector Pins

Table 3–10 External Power Connector Pinout (J14)

Pin	Signal
1	GND
2	+12V
3	GND
4	VDD
5	GND
6	+3.3V
7	GND
8	-12V

The Hammerhead-6U-cPCI features a PMC+ site for each DSP cluster. You can attach either standard PMC modules or BittWare PMC+ I/O modules to the PMC+ sites.

Each PMC+ site consists of four 64-pin connectors. Three connectors are standard 64-pin PMC connectors (J17, J20, J22 for cluster A; J18, J19, J21 for cluster B) that provide the 64-bit, 66 MHz PCI interface. The fourth connector (J16 for cluster A, J23 for cluster B) is a 64-pin PMC+ connector that connects BittWare's PMC+ I/O modules directly to the ADSP-21160 processors via four link ports, a serial TDM bus, two PMC-to-host interrupts, two host-to-PMC interrupts, and a reset line. Table 3–11 gives the connector pinout for PMC+ site A, and Table 3–12 gives the connector pinout for PMC+ site B.

Warning!

BittWare uses Jn4 of the PMC connectors (see Table 3–11 and Table 3–12) for our PMC+ extensions. If you are mounting a PMC card that uses the Jn4 connector and is not from BittWare, the PMC card may have incompatibilities with the PMC+ (Jn4) connector on the Hammerhead-6U-cPCI. Call BittWare technical support for assistance.

58 User's Guide Hammerhead-6U-cPCI

 Table 3-11
 PMC+ Site A Connector Pinout

J17 (PMC-A Jn1)

J20 (PMC-A Jn2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TCK	2	N12V	1	P12V	2	TRST
3	GND	4	INTA	3	TMS	4	TDO
5	INTB	6	INTC	5	TDI	6	GND
7	BUSMODE1	8	VDD	7	GND	8	PCI-RSVD
9	INTD	10	PCI-RSVD	9	PCI-RSVD	10	PCI-RSVD
11	GND	12	PCI-RSVD	11	BUSMODE2	12	P33V
13	CLK	14	GND	13	RST	14	BUSMODE3
15	GND	16	GNT	15	P33V	16	BUSMODE4
17	REQ	18	VDD	17	PCI-RSVD	18	GND
19	V(I/O)	20	AD[31]	19	AD[30]	20	AD[29]
21	AD[28]	22	AD[27]	21	GND	22	AD[26]
23	AD[25]	24	GND	23	AD[24]	24	P33V
25	GND	26	C/BE[03]	25	IDSEL	26	AD[23]
27	AD[22]	28	AD[21]	27	P33V	28	AD[20]
29	AD[19]	30	VDD	29	AD[18]	30	GND
31	V(I/O)	32	AD[17]	31	AD[16]	32	C/BE[2]
33	FRAME	34	GND	33	GND	34	PMC-RSVD
35	GND	36	ĪRDY	35	TRDY	36	P33V
37	DEVSEL	38	VDD	37	GND	38	STOP
39	GND	40	LOCK	39	PERR	40	GND
41	SDONE	42	SBO	41	P33V	42	SERR
43	PAR	44	GND	43	C/BE[1]	44	GND
45	V(I/O)	46	AD[15]	45	AD[14]	46	AD[13]
47	AD[12]	48	AD[11]	47	GND	48	AD[10]
49	AD[09]	50	VDD	49	AD[08]	50	P33V
51	GND	52	C/BE[0]	51	AD[07]	52	PMC-RSVD
53	AD[06]	54	AD[05]	53	P33V	54	PMC-RSVD
55	AD[04]	56	GND	55	PMC-RSVD	56	GND
57	V(I/O)	58	AD[03]	57	PMC-RSVD	58	PMC-RSVD
59	AD[02]	60	AD[01]	59	GND	60	PMC-RSVD
61	AD[00]	62	VDD	61	ACK64	62	P33V
63	GND	64	REQ64	63	GND	64	PMC-RSVD

J22 (PMC-A Jn3)

J16 (PMC-A Jn4)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	PCI-RSVD	2	GND	1	TDMTD	2	TDMRFS
3	GND	4	C/BE[7]	3	TDMRD	4	TDMTRC
5	C/BE[6]	6	C/BE[5]	5	GND	6	GND
7	C/BE[4]	8	GND	7	L1CLK/L1TXCLK	8	L1ACK/L1RXCLK
9	V(I/O)	10	PAR64	9	GND	10	GND/L1FSYNC
11	AD[63]	12	AD[62]	11	L1DAT0	12	L1DAT1
13	AD[61]	14	GND	13	L1DAT2	14	L1DAT3
15	GND	16	AD[60]	15	L1DAT4	16	L1DAT5
17	AD[59]	18	AD[58]	17	L1DAT6	18	L1DAT7
19	AD[57]	20	GND	19	GND	20	GND
21	V(I/O)	22	AD[56]	21	L2CLK/L2TXCLK	22	L2ACK/L2RXCLK
23	AD[55]	24	AD[54]	23	GND	24	GND/L2FSYNC
25	AD[53]	26	GND	25	L2DAT0	26	L2DAT1
27	GND	28	AD[52]	27	L2DAT2	28	L2DAT3
29	AD[51]	30	AD[50]	29	L2DAT4	30	L2DAT5
31	AD[49]	32	GND	31	L2DAT6	32	L2DAT7
33	GND	34	AD[48]	33	GND	34	GND
35	AD[47]	36	AD[46]	35	L3CLK/L3TXCLK	36	L3ACK/L3RXCLK
37	AD[45]	38	GND	37	GND	38	GND/L3FSYNC
39	V(I/O)	40	AD[44]	39	L3DAT0	40	L3DAT1
41	AD[43]	42	AD[42]	41	L3DAT2	42	L3DAT3
43	AD[41]	44	GND	43	L3DAT4	44	L3DAT5
45	GND	46	AD[40]	45	L3DAT6	46	L3DAT7
47	AD[39]	48	AD[38]	47	GND	48	GND
49	AD[37]	50	GND	49	L4CLK/L4TXCLK	50	L4ACK/L4RXCLK
51	GND	52	AD[36]	51	GND	52	GND/L4FSYNC
53	AD[35]	54	AD[34]	53	L4DAT0	54	L4DAT1
55	AD[33]	56	GND	55	L4DAT2	56	L4DAT3
57	V(I/O)	58	AD[32]	57	L4DAT4	58	L4DAT5
59	PCI-RSVD	60	PCI-RSVD	59	L4DAT6	60	L4DAT7
61	PCI-RSVD	62	GND	61	GND	62	RST
63	GND	64	PCI-RSVD	63	SCL	64	SDA

 Table 3-12
 PMC+ Site B Connector Pinout

J18 (PMC-B Jn1)

J21 (PMC-B Jn2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TCK	2	N12V	1	P12V	2	TRST
3	GND	4	INTA	3	TMS	4	TDO
5	INTB	6	INTC	5	TDI	6	GND
7	BUSMODE1	8	VDD	7	GND	8	PCI-RSVD
9	INTD	10	PCI-RSVD	9	PCI-RSVD	10	PCI-RSVD
11	GND	12	PCI-RSVD	11	BUSMODE2	12	P33V
13	CLK	14	GND	13	RST	14	BUSMODE3
15	GND	16	GNT	15	P33V	16	BUSMODE4
17	REQ	18	VDD	17	PCI-RSVD	18	GND
19	V(I/O)	20	AD[31]	19	AD[30]	20	AD[29]
21	AD[28]	22	AD[27]	21	GND	22	AD[26]
23	AD[25]	24	GND	23	AD[24]	24	P33V
25	GND	26	C/BE[03]	25	IDSEL	26	AD[23]
27	AD[22]	28	AD[21]	27	P33V	28	AD[20]
29	AD[19]	30	VDD	29	AD[18]	30	GND
31	V(I/O)	32	AD[17]	31	AD[16]	32	C/BE[2]
33	FRAME	34	GND	33	GND	34	PMC-RSVD
35	GND	36	ĪRDY	35	TRDY	36	P33V
37	DEVSEL	38	VDD	37	GND	38	STOP
39	GND	40	LOCK	39	PERR	40	GND
41	SDONE	42	SBO	41	P33V	42	SERR
43	PAR	44	GND	43	C/BE[1]	44	GND
45	V(I/O)	46	AD[15]	45	AD[14]	46	AD[13]
47	AD[12]	48	AD[11]	47	GND	48	AD[10]
49	AD[09]	50	VDD	49	AD[08]	50	P33V
51	GND	52	C/BE[0]	51	AD[07]	52	PMC-RSVD
53	AD[06]	54	AD[05]	53	P33V	54	PMC-RSVD
55	AD[04]	56	GND	55	PMC-RSVD	56	GND
57	V(I/O)	58	AD[03]	57	PMC-RSVD	58	PMC-RSVD
59	AD[02]	60	AD[01]	59	GND	60	PMC-RSVD
61	AD[00]	62	VDD	61	ACK64	62	P33V
63	GND	64	REQ64	63	GND	64	PMC-RSVD

J19 (PMC-B Jn3)

J23 (PMC-B Jn4)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	PCI-RSVD	2	GND	1	TDMTD	2	TDMRFS
3	GND	4	C/BE[7]	3	TDMRD	4	TDMTRC
5	C/BE[6]	6	C/BE[5]	5	GND	6	GND
7	C/BE[4]	8	GND	7	L1CLK/L1TXCLK	8	L1ACK/L1RXCLK
9	V(I/O)	10	PAR64	9	GND	10	GND/L1FSYNC
11	AD[63]	12	AD[62]	11	L1DAT0	12	L1DAT1
13	AD[61]	14	GND	13	L1DAT2	14	L1DAT3
15	GND	16	AD[60]	15	L1DAT4	16	L1DAT5
17	AD[59]	18	AD[58]	17	L1DAT6	18	L1DAT7
19	AD[57]	20	GND	19	GND	20	GND
21	V(I/O)	22	AD[56]	21	L2CLK/L2TXCLK	22	L2ACK/L2RXCLK
23	AD[55]	24	AD[54]	23	GND	24	GND/L2FSYNC
25	AD[53]	26	GND	25	L2DAT0	26	L2DAT1
27	GND	28	AD[52]	27	L2DAT2	28	L2DAT3
29	AD[51]	30	AD[50]	29	L2DAT4	30	L2DAT5
31	AD[49]	32	GND	31	L2DAT6	32	L2DAT7
33	GND	34	AD[48]	33	GND	34	GND
35	AD[47]	36	AD[46]	35	L3CLK/L3TXCLK	36	L3ACK/L3RXCLK
37	AD[45]	38	GND	37	GND	38	GND/L3FSYNC
39	V(I/O)	40	AD[44]	39	L3DAT0	40	L3DAT1
41	AD[43]	42	AD[42]	41	L3DAT2	42	L3DAT3
43	AD[41]	44	GND	43	L3DAT4	44	L3DAT5
45	GND	46	AD[40]	45	L3DAT6	46	L3DAT7
47	AD[39]	48	AD[38]	47	GND	48	GND
49	AD[37]	50	GND	49	L4CLK/L4TXCLK	50	L4ACK/L4RXCLK
51	GND	52	AD[36]	51	GND	52	GND/L4FSYNC
53	AD[35]	54	AD[34]	53	L4DAT0	54	L4DAT1
55	AD[33]	56	GND	55	L4DAT2	56	L4DAT3
57	V(I/O)	58	AD[32]	57	L4DAT4	58	L4DAT5
59	PCI-RSVD	60	PCI-RSVD	59	L4DAT6	60	L4DAT7
61	PCI-RSVD	62	GND	61	GND	62	RST
63	GND	64	PCI-RSVD	63	SCL	64	SDA

This section shows where each of the Hammerhead-6U-cPCI's configuration jumpers and switches is located (see Figure 3–10 below) and gives a short description of each (see Table 3–13 and Table 3–14).

Figure 3–10 Layout of the Configuration Jumpers and Switches

The Hammerhead-6U-cPCI has nineteen configuration jumpers, which allow you to configure and control certain features of the board. Table 3-13 gives an overview of the jumpers, and section 2.2.1 describes their settings in detail.

 Table 3-13
 Overview of the Configuration Jumpers

Jumper	Name	Description
JP1, JP12	21160 Bus Priority	JP1 selects "fixed" or "rotating" bus priority scheme for ADSP-21160 cluster A DSPs
		JP12 selects "fixed" or "rotating" bus priority scheme for ADSP-21160 cluster B DSPs
JP2, JP5	Secondary PCI Bus Speed	JP2 sets the speed of secondary PCI bus A to either 33 MHz or 66 MHz
		JP5 sets the speed of secondary PCI bus B to either 33 MHz or 66 MHz
JP3	21160-A1 Boot Mode	Sets 21160-A1 to boot from host computer, on- board Flash, or remote processor via link port
JP4	21160-A2-A4 Boot Mode	Sets 21160-A2-A4 to boot from host computer, on-board Flash, or remote processor via link port
JP6-JP8	SharcFIN A IRQ	Configure interrupt connections for SharcFIN A
JP9	Standalone Mode Clock	Jumper must be on to operate board in standalone mode
JP10	21160-B2-B4 Boot Mode	Sets 21160-B2-B4 to boot from host computer, on-board Flash, or remote processor via link port
JP11	21160-B1 Boot Mode	Sets 21160-B1 to boot from host computer, on- board Flash, or remote processor via link port
JP13, JP14	Secondary PCI Bus Signal Level	JP13 sets the signal level of secondary PCI bus A to 3.3 or 5 Volts
		JP14 sets the signal level of secondary PCI bus B to 3.3 or 5 Volts
JP15-JP17	SharcFIN B Flag and IRQ	Configure interrupt connections for SharcFIN B
JP18	Standalone Mode Reset	Jumper must be on to operate board in standalone mode
JP19	Standalone Primary PCI Voltage	Jumper must be on to operate board in standalone mode

In addition to its configuration jumpers, the Hammerhead-6U-cPCI also has two dip switches, which allow you to configure the connections of the external TDM serial ports. Table 3-14 below gives an overview of the switches; section 2.2.2 explains how to use them to configure the TDM serial connections.

 Table 3-14
 Overview of the Serial Port Configuration Switches

Switch	Name	Description
S1	TDM SPORT B	Configures the external TDM serial connections for cluster B TDM SPORT0 and TDM SPORT1
S2	TDM SPORT A	Configures the external TDM serial connections for cluster A TDM SPORT0 and TDM SPORT1

Chapter 4

Hammerhead-6U-cPCI Board Architecture

This chapter discusses the architecture of the board, describing how the ADSP-21160 DSPs communicate with other DSPs, with the host, and with other I/O peripherals on and off the board. This chapter covers the following topics:

- How the DSPs access internal and external memory
- The connections of the DSPs' serial ports
- The connections of the DSPs' link ports
- The connections of the DSPs' flags and interrupts
- The connections to the DSPs' 64-bit cluster buses
- The structure of the PCI interface (including the SharcFIN ASIC, primary and secondary PCI buses, and peripheral buses)
- The connections available via the PMC+ interfaces

This section briefly describes how data flows through the Hammerhead-6U-cPCI board. The sections that follow discuss the board's architecture in more detail. Figure 4–1 is a block diagram of the system.

Figure 4-1 Architecture of the Hammerhead-6U-cPCI System

The Hammerhead-6U-cPCI features eight ADSP-21160 DSPs arranged in two clusters of four DSPs. The clusters operate independently of each other, and each cluster features a 64-bit 66 MHz PCI bus, a 64-bit 50 MHz ADSP-21160 cluster bus, a bank of up to 512 MB of SDRAM, a 2 MB bank of Flash RAM, a dual UART, a PMC+ interface, a SharcFIN ASIC, and a PCI-to-PCI bridge.

The 64-bit, 50 MHz cluster bus interconnects the four DSPs in the cluster and provides access to the bank of SDRAM. The ADSP-21160 cluster bus connects to that cluster's SharcFIN ASIC, which provides a bridge between the DSPs and the 64-bit, 66 MHz PCI bus. A peripheral bus also extends off of each SharcFIN, providing access to the UART and the Flash RAM for each cluster.

The Hammerhead-6U-cPCI features three PCI buses: one bus for each cluster, and one common bus to interface the other two to the CompactPCI interface. The SharcFINs interface the PCI bus for each cluster to PCI-to-PCI bridges, which interface them to a common PCI-to-PCI bridge. The common PCI-to-PCI bridge interfaces the two clusters to the CompactPCI interface.

For I/O options, the board features two rear panel I/O connectors, two RS-232 ports, and two PMC+ interfaces. The two rear panel I/O connectors provide external link and serial ports. The RS-232 ports connect to the UARTs to allow serial communication with the ADSP-21160 DSPs. A PMC+ interface extends off of the PCI bus for each cluster, providing access to standard PMC cards or to BittWare's PMC+ I/O cards. When a BittWare PMC+ card is attached, the PMC+ interfaces provide two link ports, a TDM serial bus, an $\rm I^2C$ interface, interrupts, and a reset line directly to the DSPs.

This section gives a short description of the architecture of the ADSP-21160 DSPs. For additional information, refer to the ADSP-21160 User's Manual (Analog Devices, Inc.).

4.2.1 Resources Available to the ADSP-21160s

This section discusses the resources available to each processor; resources include memory banks, flags and interrupts, serial ports, and link ports. The following tables summarize how the DSPs' resources are used on the Hammerhead-6U-cPCI. The rows labeled "MS" refer to the DSPs' external memory select lines (MS0-MS3).

Table 4-1 Resources for 21160-A1

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC A)	SharcFIN A*	SharcFIN A	PMC A L1
1	Flash	TDM (P3)		SharcFIN A	21160-A4 L2
2	SharcFIN		21160-A2 F2 21160-A2 F3 Rear panel P3	21160-A2 I2 LED D1 Flag output J8 Rear panel P3	21160-A2 L4
3	UART			21160-A2 I2 LED D2 Flag output J8 Rear panel P3	21160-A2 L5
4					RP I/O [†] L1
5					21160-A4 L3

IRQO, FLAGO, and FLAG1 on each processor in cluster A connect to the SharcFIN ASIC A interrupt multiplexer. From the SharcFIN, you can route them to different locations on the

[†] RP I/O = rear panel I/O connector P3

Table 4–2Resources for 21160-A2

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC A)	SharcFIN A	SharcFIN A	PMC A L2
1	Flash	TDM (P3)		JP6 [*]	RP I/O [†] L2
2	SharcFIN		21160-A1 F2 21160-A1 F3 Rear panel P3	21160-A1 I2 LED D3 Flag output J8 Rear panel P3	21160-A3 L4
3	UART			21160-A1 I2 LED D4 Flag output J8 Rear panel P3	21160-A3 L5
4					21160-A1 L2
5					21160-A1 L3

^{*} JP6 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

Table 4–3 Resources for 21160-A3

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC A)	SharcFIN A	SharcFIN A	PMC A L3
1	Flash	TDM (P3)		JP7 [*]	RP I/O [†] L3
2	SharcFIN		21160-A4 F2 21160-A4 F3 Rear panel P3	21160-A4 I2 LED D5 Flag output J8 Rear panel P3	21160-A4 L4
3	UART			21160-A4 I2 LED D6 Flag output J8 Rear panel P3	21160-A4 L5
4					21160-A2 L2
5					21160-A2 L3

 $^{^{\}star}$ $\,$ JP7 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

[†] RP I/O = rear panel I/O connector P3

[†] RP I/O = rear panel I/O connector P3

Table 4–4 Resources for 21160-A4

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC A)	SharcFIN A	SharcFIN A	PMC A L4
1	Flash	TDM (P3)		JP8 [*]	RP I/O [†] L4
2	SharcFIN		21160-A3 F2 21160-A3 F3 Rear panel P3	21160-3 I2 LED D7 Flag output J8 Rear panel P3	21160-A1 L1
3	UART			21160-3 I2 LED D8 Flag output J8 Rear panel P3	21160-A1 L5
4					21160-A3 L2
5					21160-A3 L3

^{*} JP8 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

Table 4–5 Resources for 21160-B1

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC B)	SharcFIN B*	SharcFIN B	PMC B L1
1	Flash	TDM (P5)		SharcFIN B	21160-B4 L2
2	SharcFIN		21160-B2 F2 21160-B2 F3 Rear panel P5	21160-B2 I2 LED D9 Flag output J9 Rear panel P5	21160-B2 L4
3	UART			21160-B2 I2 LED D10 Flag output J9 Rear panel P5	21160-B2 L5
4					RP I/O [†] L1
5					21160-B4 L3

^{*} IRQO, IRQ1, FLAGO, and FLAG1 on each processor in cluster B connect to the SharcFIN ASIC B interrupt multiplexer. From the SharcFIN, you can route them to different locations on the board.

[†] RP I/O = rear panel I/O connector P3

[†] RP I/O = rear panel I/O connector P5

Table 4–6 Resources for 21160-B2

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC B)	SharcFIN B	SharcFIN B	PMC B L2
1	Flash	TDM (P5)		JP15*	RP I/O [†] L2
2	SharcFIN		21160-B1 F2 21160-B1 F3 Rear panel P5	21160-B1 I2 LED D11 Flag output J9 Rear panel P5	21160-B3 L4
3	UART			21160-B1 I2 LED D12 Flag output J9 Rear panel P5	21160-B3 L5
4					21160-B1 L2
5					21160-B1 L3

^{*} JP15 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

Table 4–7 Resources for 21160-B3

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC B)	SharcFIN B	SharcFIN B	PMC B L3
1	Flash	TDM (P5)		JP16 [*]	RP I/O [†] L3
2	SharcFIN		21160-B4 F2 21160-B4 F3 Rear panel P5	21160-B4 I2 LED D13 Flag output J9 Rear panel P5	21160-B4 L4
3	UART			21160-B4 I2 LED D14 Flag output J9 Rear panel P5	21160-B4 L5
4					21160-B2 L2
5					21160-B2 L3

 $^{^{\}star}$ $\,$ JP16 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

[†] RP I/O = rear panel I/O connector P5

[†] RP I/O = rear panel I/O connector P5

Table 4–8 Resources for 21160-B4

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM (PMC B)	SharcFIN B	SharcFIN B	PMC B L4
1	Flash	TDM (P5)		JP17*	RP I/O [†] L4
2	SharcFIN		21160-B3 F2 21160-B3 F3 Rear Panel P5	21160-B3 I2 LED D15 Flag output J9 Rear panel P5	21160-B1 L4
3	UART			21160-B3 I2 LED D16 Flag output J9 Rear panel P5	21160-B1 L5
4					21160-B3 L2
5					21160-B3 L3

^{*} JP17 configures the flag to connect to the SharcFIN ASIC interrupt multiplexer.

4.2.2 ADSP-21160 Memory Structure

This section describes the memory structure of the ADSP-21160 DSPs. The processors can access their own internal memory, the internal memory of other processors in the same cluster, and external memory devices.

Internal Memory

Internal memory addresses an ADSP-21160 DSP's on-chip, dual-ported SRAM and its memory-mapped registers. Each ADSP-21160 DSP has 4 Mbits of on-chip SRAM. The *ADSP-21160 SHARC User's Manual* gives details about the on-chip SRAM's limitations and how to configure it.

Multiprocessor Memory

Multiprocessor memory space (MMS) is the on-chip SRAM of other ADSP-21160 DSPs in the same cluster. A cluster is up to six ADSP-21160 DSPs that share a common processor bus, and any DSP that is connected to the processor bus shares the MMS. The Hammerhead-6U-cPCI has two clusters of four DSPs. All four DSPs in the cluster share a common bus (the ADSP-21160 cluster buses), and each can view the on-chip SRAM of the other three DSPs in its cluster.

74 User's Guide Hammerhead-6U-cPCI

[†] RP I/O = rear panel I/O connector P5

External Memory

External memory space consists of other devices that share the ADSP-21160's 64-bit cluster bus. The external memory space is divided into four banked sections of memory and an unbanked section of memory. The four banked sections contain the SDRAM, Flash, UART, and SharcFIN ASIC configuration registers. The unbanked memory allows access to the peripheral bus. Section 5.1 discusses the external memory in more detail.

4.2.3 Serial Port Connections

Each ADSP-21160 DSP has two independent, synchronous serial ports, SPORT0 and SPORT1, that provide an I/O interface to a wide variety of peripheral devices. Each serial port has its own set of control registers and data buffers. With a range of clock and frame synchronization options, the SPORTs allow a variety of serial communications protocols and provide a glueless hardware interface to many industry-standard peripherals.

The serial ports can operate at 1/2 the full clock rate of the processor. Depending on whether the Hammerhead-6U-cPCI board is populated with 80 or 100 MHz ADSP-21160s, the serial ports will operate at either 40 or 50 MHz. The serial ports support independent transmit and receive functions and can automatically transfer serial port data to and from on-chip memory using DMA block transfers. All serial ports on the Hammerhead-6U-cPCI operate in TDM (time division multiplexed) multichannel mode.

SPORT0 and SPORT1 from each DSP connect to external TDM buses; each cluster supports two TDM buses. TDM bus 0 for each cluster interconnects SPORT0 from each DSP in the cluster with the PMC interface and the SharcFIN ASIC for that cluster. TDM bus 1 for each cluster interconnects SPORT1 from each DSP in the cluster with the rear panel I/O connector and the SharcFIN ASIC for that cluster. Figure 4–2 illustrates the serial port connections for DSP cluster A, and Figure 4–3 illustrates the serial port connections for DSP cluster B.

Figure 4–2 Block Diagram of Serial Port Connections: Cluster A

Figure 4–3 Block Diagram of Serial Port Connections: Cluster B

Each ADSP-21160 DSP has six 8-bit, 100 Mbyte/s link ports, which can connect to link ports from other DSPs or peripherals. The link ports are also available for link booting. The link ports are bidirectional and can operate at frequencies up to the same speed as the DSP's internal clock, letting each prot transfer up to 8 bits of data per internal clock cycle. One link per DSP connects to rear panel I/O, one connects to the PMC+ interface, and four are connected to other DSPs for interprocessor communication. Figure 4–4 shows the link port connections for DSP cluster A, and Figure 4–5 shows the link port connections for DSP cluster B.

Figure 4-4 Block Diagram of Link Port Connections: Cluster A

Figure 4-5 Block Diagram of Link Port Connections: Cluster B

4.2.5 Flag and Interrupt Connections

Each ADSP-21160 DSP has four flags and three interrupts, which you can use to send and receive control signals to and from other devices in the system. Interrupts can come from devices that require the DSP to perform some task on demand or they can alert the DSP that data is available. The flags allow single-bit signalling between the DSP and other devices. The flags are bidirectional, and each flag can be programmed to be either an input or output. Many DSP instructions can be conditioned on a flags's input value, enabling efficient communication and synchronization between multiple processors or other interfaces.

One flag and one interrupt from each DSP connects to the SharcFIN ASIC; using registers in the SharcFIN, you can configure the routing of those flags and interrupts. The remaining flags from each DSP connect to the other DSPs in the cluster, to LEDs, to rear panel I/O, and to a buffered inverted flag output connector. The remaining interrupts connect to the other DSPs in the cluster. Figure 4–6 illustrates the flag and interrupt connections for DSP cluster A, and Figure 4–7 illustrates the flag and interrupt connections for DSP cluster B.

Figure 4–6 Block Diagram of Flag and Interrupt Connections: Cluster A

Figure 4–7 Block Diagram of Flag and Interrupt Connections: Cluster B

 Table 4-9
 Flag and Interrupt Connections for DSP Cluster A

	21160-A1	21160-A2	21160-A3	21160-A4
Flag0	SharcFIN A	SharcFIN A	SharcFIN A	SharcFIN A
Flag1		JP6	JP7	JP8
Flag2	21160-A2 I2 LED D1 Flag output J8 Rear panel P3	21160-A1 I2 LED D3 Flag output J8 Rear panel P3	21160-A4 I2 LED D5 Flag output J8 Rear panel P3	21160-A3 I2 LED D7 Flag output J8 Rear panel P3
Flag3	21160-A2 I2 LED D2 Flag output J8 Rear panel P3	21160-A1 I2 LED D4 Flag output J8 Rear panel P3	21160-A4 I2 LED D6 Flag output J8 Rear panel P3	21160-A3 I2 LED D8 Flag output J8 Rear panel P3
IRQO	SharcFIN A	SharcFIN A	SharcFIN A	SharcFIN A
IRQ1				
IRQ2	21160-A2 F2 21160-A2 F3 Rear panel P3	21160-A1 F2 21160-A1 F3 Rear panel P3	21160-A4 F2 21160-A4 F3 Rear panel P3	21160-A3 F2 21160-A3 F3 Rear panel P3

 Table 4–10
 Flag and Interrupt Connections for DSP Cluster B

	21160-B1	21160-B2	21160-B3	21160-B4
Flag0	SharcFIN B	SharcFIN B	SharcFIN B	SharcFIN B
Flag1		JP15	JP16	JP17
Flag2	21160-B2 I2 LED D9 Flag output J9 Rear panel P5	21160-B1 I2 LED D11 Flag output J9 Rear panel P5	21160-B4 I2 LED D13 Flag output J9 Rear panel P5	21160-B3 I2 LED D15 Flag output J9 Rear panel P5
Flag3	21160-B2 I2 LED D10 Flag output J9 Rear panel P5	21160-B1 I2 LED D12 Flag output J9 Rear panel P5	21160-B4 I2 LED D14 Flag output J9 Rear panel P5	21160-B3 I2 LED D16 Flag output J9 Rear panel P5
IRQO	SharcFIN B	SharcFIN B	SharcFIN B	SharcFIN B
IRQ1				
IRQ2	21160-B2 F2 21160-B2 F3 Rear panel P5	21160-B1 F2 21160-B1 F3 Rear panel P5	21160-B4 F2 21160-B4 F3 Rear panel P5	21160-B3 F2 21160-B3 F3 Rear panel P5

SharcFIN Flags and Interrupts

One flag and one interrupt from each DSP connect to the SharcFIN ASIC. Using registers in the SharcFIN's configuration space, you can configure the routing of those flags and interrupts. FLAG0 and IRQ0 from all eight DSPs connect directly to the SharcFIN interrupt multiplexer. FLAG1 from 21160-A2-A4 and 21160-B2-B4 connect to jumpers, which configure their connection to the SharcFIN (see "Setting the SharcFIN Interrupt Jumpers" on page 18). Table 4–9 and Table 4–10 list the flag and interrupt connections for each DSP.

Using the SharcFIN interrupt multiplexer, you can configure the DSPs to receive interrupts from the following sources:

- · peripheral bus
- PCI bus
- UART
- other DSPs in the same cluster
- PMC interface

Interprocessor Flags and Interrupts

Each DSP can generate and receive interrupts to and from the other three DSPs in its cluster. One interrupt (IRQ2) on each processor receives interrupts from FLAG2 and FLAG3 on another processor. IRQ2 and FLAG2-3 on 21160-1 and 21160-2 are interconnected, and IRQ2 and FLAG2-3 on 21160-3 and 21160-4 are interconnected. Table 4–9 and Table 4–10 show the flag and interrupt connections for each DSP (see also Figure 4–6 and Figure 4–7).

Flag Connections to LEDs and Test Points

Two flags from each DSP (FLAG2 and FLAG3) connect to LEDs and a buffered inverted flag output connector. These flags are useful for testing. DSPs in cluster A connect to buffered inverted flag output connector J8 and to LEDs D1–D8; DSPs in cluster B connect to buffered inverted flag output connector J9 and to LEDs D9–D16.

Flag and Interrupt Connections to the Rear Panel

Two flags (FLAG2 and FLAG3) and one interrupt (IRQ2) from each DSP connect to rear panel I/O. Flags and interrupts from cluster A connect to rear panel I/O connector P3, and flags and interrupts from cluster B connect to rear panel I/O connector P5. The flags are outputs only, and the interrupts are bi-directional.

Jumpered Flag Connections

A set of three jumpers for each cluster configures 21160s 2-4 FLAG1 to connect to the SharcFIN ASIC interupt multiplexer. JP6-JP8 configure 21160-A2-A4 FLAG1, and JP15-JP17 configure 21160-B2-B4 FLAG1. The jumpers configure whether the ADSP-21160 flags or flags from the UARTs and peripheral buses will connect to the SharcFIN ASIC interrupt multiplexer. The section entitled "Setting the SharcFIN Interrupt Jumpers" on page 18 explains the jumper settings in more detail.

4.2.6 ADSP-21160 Cluster Buses

The Hammerhead-6U-cPCI has two ADSP-21160 cluster buses – one for each cluster. The ADSP-21160 cluster buses are 50 MHz, 64-bit buses that connect the four ADSP-21160 processors in the cluster and a bank of up to 512 MB SDRAM. They are connected to the PCI interface through the SharcFIN ASICs. The ADSP-21160 cluster bus is a 64-bit data, 32-bit address bus and uses 3.3 volt signaling. It allows transactions between the ADSP-21160s, the SDRAM, and the PCI-to-DSP bridge.

The ADSP-21160 cluster bus has access to the secondary PCI bus via a single PCI access channel capable of reading or writing single words from the PCI bus. The reads or writes may be memory mapped, I/O mapped, or configuration operations.

The ADSP-21160 cluster bus has access to the peripheral bus via the following:

- BMS¹
- MS1
- MS3
- Unbanked memory

Chapter 4 Hammerhead-6U-cPCI Board Architecture 83

^{1.} BMS is the ADSP-21160s' Boot Memory Select pin. This pin allows access to a separate external memory space for booting.

The Hammerhead-6U-cPCI PCI interface consists of three 64-bit, 66 MHz PCI buses, which are interconnected by a series of three PCI-to-PCI bridge chips. Two SharcFIN ASICs interface the PCI buses to the ADSP-21160 DSPs. Figure 4–8 below is a block diagram of the PCI interface.

Figure 4–8 Block Diagram of the PCI Interface Architecture

4.3.1 Overview of the SharcFIN Architecture

The Hammerhead-6U-cPCI features two of BittWare's SharcFIN ASICs. The SharcFINs interface the ADSP-21160 DSPs to the PCI bus, SDRAM, and devices on the peripheral bus. They also provide an interrupt multiplexer to allow you to configure the interrupt connections on the board. This section provides an overview of the SharcFIN architecture. Figure 4–9 below is a simplified block diagram of the SharcFIN architecture as it is implemented on the Hammerhead-6U-cPCI board.

SharcFIN™ FIFOs & **UART** PCI Bus I/F I²C/Serial **DMA** Controller Peripheral Bus **Engines** F Memory Interrupt Controller MUX Flash SHARC Bus I/F **SDRAM SHARC®** Bulk DSP(s) Memory

Figure 4–9 Simplified Block Diagram of the SharcFIN Architecture

Interface to ADSP-21160 Cluster Bus

The first function of the SharcFIN is to interface to the ADSP-21160 cluster bus. The SharcFIN provides a 64-bit interface to the ADSP-21160 cluster bus. It also integrates a full-featured SDRAM controller, which allows the ADSP-21160s to access SDRAM using burst mode access at sustained data rates of 400MB/sec.

Interface to PCI

The second function of the SharcFIN is to interface to PCI. The SharcFIN implements a full 64-bit/66MHz master PCI interface. The PCI interface is PCI rev 2.2 compliant and provides 16 Bytes of configurable PCI mailbox registers.

Interface to Peripheral Bus

A third bus interface is provided by the SharcFIN's peripheral bus. The peripheral bus is a general-purpose utility bus that allows easy interface to standard microprocessor peripherals such as UARTs and Flash memory. It provides a simple, glueless way to add additional functionality to the Hammerhead-6U-cPCI. The SharcFIN's I²C/Serial controller integrates some of the most common peripheral requirements right into the SharcFIN. Uses include UART control, data communications, SharcFIN interconnection, as well as hardware configuration and identification.

Interrupt Multiplexer

The SharcFIN integrates an extensive interrupt and flag multiplexer to facilitate system-level control and coordination of multiprocessors. This programmable resource allows each ADSP-21160 to select the sources of its hardware interrupts; sources include other processors, PCI, peripherals, and the internal DMA engines.

4.3.2 PCI Bus Interface

The Hammerhead-6U-cPCI's 64-bit, 66 MHz PCI bus interface consists of a primary PCI bus, three PCI-to-PCI bridges (A–C), and three secondary PCI buses (A–C). The SharcFIN ASICs provide a bridge between PCI interface and the ADSP-21160 DSPs.

PCI-to-PCI Interface

The PCI-to-PCI interface consists of the primary PCI bus, secondary PCI bus C, and the three PCI-to-PCI bridge chips (Intel 21154). The first PCI-to-PCI bridge chip (PCI-to-PCI bridge C) interfaces the primary PCI bus to secondary PCI bus C. Secondary PCI bus C branches off to two additional PCI-to-PCI bridge chips – one for each DSP cluster. Secondary PCI bus A extends off PCI-to-PCI bridge A and secondary PCI bus B extends off PCI-to-PCI bridge B (see "PCI-to-DSP Interface" on page 87). Figure 4–10 illustrates the connections of the PCI-to-PCI interface.

Figure 4–10 Block Diagram of the PCI-to-PCI Interface

The primary PCI bus is a 66 MHz, 64-bit bus but will operate as a 32-bit bus when it is communicating with 32-bit peripherals. It can run from 0 to 75 MHz, and its maximum data rate is 600 MB/s at 75 MHz and 528 MB/s at 66 MHz.

PCI-to-DSP Interface

The PCI-to-DSP interface allows the ADSP-21160 processors to communicate with the PCI bus, and vice-versa. It consists of the SharcFIN ASICs (PCI-to-DSP bridges) and two buses: secondary PCI bus A and secondary PCI bus B. Figure 4–11 below illustrates the PCI-to-DSP interface.

Figure 4-11 Block Diagram of the PCI-to-DSP Interface

Secondary PCI bus A connects PCI-to-PCI bridge A to SharcFIN A, and secondary PCI bus B connects PCI-to-PCI bridge B to SharcFIN B. The SharcFIN ASICs connect the secondary PCI buses to the ADSP-21160 cluster buses. The 66 MHz, 64-bit secondary PCI buses operate at 5 volts but are jumper-configurable to run at 3.3 volts. By default, these buses operate at the same speed as the primary PCI bus, but a jumper setting will allow you to use the buses at half the speed of the primary PCI bus. However, these buses cannot run at 66 MHz when the primary bus is running at 33 MHz.

Note

The secondary PCI buses will operate as 64-bit buses even when the primary bus is connected to a 32-bit bus. Refer to the Intel 21154 (Intel Corporation) manual for more details.

4.3.3 Peripheral Bus

A 25 MHz, 8-bit peripheral bus extends off of each SharcFIN ASIC. The peripheral buses connect to low-speed peripherals, which include the Flash RAM, the dual UARTs, and the expansion connectors. The purpose of the peripheral bus is to allow additional components to communicate with the ADSP-21160s without affecting the signal quality of the ADSP-21160 cluster bus. It interfaces to the SharcFIN (see section 4.3.1), which connects it to the ADSP-21160 DSPs and the PCI interface. The peripheral bus operates at either 3.3 volts or 5 volts.

The Hammerhead-6U-cPCI features two PMC interfaces, one for each DSP cluster. This section explains the connections available via the PMC interface, which include a 64-bit 66 MHz PCI interface, link ports, a TDM serial bus, a reset line, and an I²C interface.

Each PMC interface features four connectors. The first three connectors (J1-J3, according to the PMC standard) provide the 64-bit, 66 MHz PCI interface. The fourth connector (J4) provides BittWare's PMC+ extensions.

4.4.1 PMC-to-PCI Interface

The first three connectors from each PMC interface provide the 64-bit, 66 MHz PCI interface. PMC interface A connects to secondary PCI bus A, and PMC interface B connects to secondary PCI bus B.

4.4.2 PMC+ Extensions

The fourth connector from each PMC interface provides the PMC+ extensions, which include link ports, a TDM serial bus, a reset line, and an I²C interface. Please note that the PMC+ extensions are only available when a BittWare PMC+ module is attached to the Hammerhead-6U-cPCI.

Table 4-11 ADSP-21160 Link and Serial Port Connections to PMC Interfaces

Cluster A

	21160-A1	21160-A2	21160-A3	21160-A4
Link 0	PMC A Link 1	PMC A Link 2	PMC A Link 3	PMC A Link 4
Sport 0	PMC A TDM	PMC A TDM	PMC A TDM	PMC A TDM

Cluster B

	21160-B1	21160-B2	21160-B3	21160-B4
Link 0	PMC B Link 1	PMC B Link 2	PMC A Link 3	PMC A Link 4
Sport 0	PMC B TDM	PMC B TDM	PMC B TDM	PMC B TDM

Chapter 5

ADSP-21160 Programming Details

This chapter provides programming details for the ADSP-21160 DSPs, discussing how to access the DSPs' memory and how to boot the DSPs. In addition to the information in this chapter, you will also need to refer to the *ADSP-21160 User's Manual* (Analog Devices, Inc).

5.1.1 Accessing Internal Memory

The DSPs' internal memory space ranges from address 0x0000 0000 through 0x0007 FFFF. Internal memory space refers to the DSPs' on-chip SRAM and memory-mapped registers.

5.1.2 Accessing the DSPs' Multiprocessor Memory

Multiprocessor memory space (MMS) is the on-chip SRAM of other ADSP-21160 DSPs in the same cluster. A cluster is up to six ADSP-21160 DSPs that share a common processor bus, and any DSP that is connected to the processor bus shares the MMS. The Hammerhead-6U-cPCI has four DSPs on board that share a common bus (the ADSP-21160 cluster bus); each processor can view the other three DSPs' on-chip SRAM. Table 5–1 below provides the address region and processor ID variable for each DSP.

Table 5–1 Multiprocessor Memory Allocation for DSPs

DSP [*]	Address Region	Processor ID	
21160-1	0x0010 0000 – 0x0017 FFFF	001	
21160-2	0x0020 0000 – 0x0027 FFFF	010	
21160-3	0x0030 0000 – 0x0037 FFFF	011	
21160-4	0x0040 0000 – 0x0047 FFFF	100	

^{*} Addresses in this table apply to DSPs in both clusters.

5.1.3 Accessing External Memory Banks

External memory space refers to the off-chip memory or memory-mapped peripherals that are attached to the ADSP-21160 cluster buses. On the Hammerhead-6U-cPCI, these devices include the SDRAM, the Flash, the SharcFIN ASICs, and the UARTs.

The external memory space for each ADSP-21160 DSP has five regions: four banks (bank 0-3) and an unbanked region. The four external memory banks

are of equal, programmable size. The remaining area of memory that is not assigned to a bank is the unbanked memory. Mapping peripherals into different banks lets systems accommodate I/O devices with different timing requirements because the banked and unbanked regions have associated waitstate and access mode settings.

The address range for the external memory spans from 0x0080 0000 through 0xFFFF FFFF. The DSP controls access to the four banked regions both with memory select lines (MS0–MS3) and with the memory address; it controls access to the unbanked region with only the memory address. Whenever the DSP generates an address that is located within one of the four banks, the DSP asserts the coresponding memory select line (MS0–MS3).

Table 5–2 External Memory Bank Allocation

External Memory Bank	Memory Select Line	Description	Wait State	Wait Mode
0	MS0	SDRAM		
1	MS1	Flash		
2	MS2	SharcFIN configuration registers		
3	MS3	Dual RS-232 UART		

Setting the Size of the External Memory Banks

The MSIZE (Memory Bank Size) bits of the ADSP-21160's SYSCON (System Configuration) register define the size of the four external memory banks (bank 0–3). Bank 0 starts at 0x0080 0000, and banks 1, 2, 3 and unbanked follow. The size of bank 0 determines the starting address of each of the other banks. (Refer to the *ADSP-21160 SHARC User's Manual* for more details.)

You can use the BittWare Configuration Manager (see section 2.3.2) to set the MSIZE bits. The default setting for the MSIZE should be equal to the size of the largest external memory device, which is the SDRAM. Table 5–3 lists the recommended settings for MSIZE and shows how MSIZE affects the bank addresses. Note that programming the MSIZE bits may affect where other resources available to the ADSP-21160 processor are located.

Table 5–3 Recommended MSIZE Settings for the Hammerhead-6U-cPCI

MSIZE	Size	SDRAM Size
0	8 KWords	
1	16 KWords	
2	32 KWords	
3	64 KWords	
4	128 KWords	
5	256 KWords	
6	512 KWords	
7	1024 KWords	4 MBytes
8	2048 KWords	8 MBytes
9	4096 KWords	16 MBytes
Α	8 MWords	32 MBytes
В	16 MWords	64 MBytes
С	32 MWords	128 MBytes
D	64 MWords	256 MBytes
E	128 MWords	512 MBytes
F	256 MWords	

Accessing the SDRAM

The Hammerhead-6U-cPCI supports a bank of up to 512 MB of SDRAM for each DSP cluster. SDRAM bank A is located on ADSP-21160 cluster bus A, and SDRAM bank B is located on ADSP-21160 cluster bus B. The DSPs can access the SDRAM via MS0.

Accessing the Flash

The Hammerhead-6U-cPCI supports two 2 MB banks of Flash memory – one for each DSP cluster. The Flash for cluster A is located on peripheral bus A, and the Flash for cluster B is located on peripheral bus B. The DSPs can access the Flash memory via MS1.

94 User's Guide Hammerhead-6U-cPCI

Accessing the SharcFIN ASICs

The DSPs access the SharcFIN ASICs via MS2. The SharcFIN's PCI system settings and configuration registers begin at offset 0x00 from the base address of MS2 (see also section 6.4.1). The SharcFIN's user-configurable registers begin at offset 0x40 from the base address of MS2 (see also section 6.4.1).

Accessing the UARTs

The Hammerhead-6U-cPCI features a dual UART for each cluster. UART A is located on peripheral bus A, and UART B is located on peripheral bus B. The DSPs access the UART via MS3.

5.1.4 Accessing Unbanked Memory Space

The region of memory above banks 0–3 is called unbanked external memory space. The unbanked memory space begins after external memory bank 3 and covers the remainder of the external memory space up to 0xFFFF FFFF. No MSx memory select line is asserted for accesses in this address space. On the Hammerhead-6U-cPCI board, the unbanked memory space allows access to the peripheral bus. For more information on accessing the peripheral bus via the unbanked memory space, refer to section 6.4.

This section explains the three booting options for the Hammerhead-6UcPCI: link port, Flash, and PCI.

5.2.1 Booting the Board via Link Port

In link port booting, the DSP gets boot data from another DSP's link port or from a four- or 8-bit wide external device after system powerup. Both 21160-A1 and 21160-B1 are connected to external link ports from which they can boot. P3 L1 is the external link port for 21160-A1, and P5 L1 is the link port for 21160-B1 (refer to section 3.2.2 for more information on the external connectors). After booting via link port, 21160-A1 and 21160-B1 will boot the remaining DSPs in their clusters.

To boot the Hammerhead-6U-cPCI via link port,

- Develop a boot program using Analog Devices VisualDSP.
- 2. Using the external link ports, load the boot program onto the DSPs. Analog Devices supplies loading routines (loader kernels) that load an entire program through the selected port. These routines come with the Analog Devices development tools. For more information on loader kernels, refer to the development tools documentation.
- 3. Link port booting uses DMA channel 8 of the I/O processor to transfer the instructions to internal memory. In this boot mode, the DSP receives 8-bit wide data.
- 4. After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the DSP begins executing instructions. Because most DSP programs require more than 256 words of instructions and initialization data, the 256 words typically serve as a loading routine for the application.

5.2.2 Booting the Board From the Host

For host booting, the DSP accepts data from a host processor via the PCI interface. If you are using the DSP21k-SF Toolkit with the Hammerhead-6U-

^{1.} The external device must provide a clock signal to the link port. The clock can be any frequency, up to a maximum of the DSP clock frequency. The clock's falling edges strobe the data into the link port. The most significant 4bit nibble of the 48-bit instruction must be downloaded first.

cPCI, the Host Interface Library (HIL) and Diag21k contain functions that will perform the boot process.

To boot the Hammerhead-6U-cPCI from the host using HIL functions or Diag21k commands,

- 1. Develop a DSP executable program using Analog Devices VisualDSP.
- 2. Use HIL functions or Diag21k commands to reset the board and load the program onto the DSPs.
- 3. Use the HIL's *dsp21k_start* function or Diag21k's Processor Start (ps) command to start executing the program.

To boot the DSPs from the host without using functions from the HIL,

- 1. Develop the boot program using Analog Devices VisualDSP.
- 2. Load the boot program onto the DSPs via the DSPs' external port. Analog Devices supplies loading routines (loader kernels) that load an entire program through the selected port. These routines come with the Analog Devices development tools. For more information on loader kernels, refer to the development tools documentation.
- The host boot mode uses DMA channel 10 of the DSPs' I/O processor to transfer the instructions to internal memory. In this boot mode, the DSP receives the boot data in 48-bit instructions.
- 4. After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the DSP begins executing instructions. Because most DSP programs require more than 256 words of instructions and initialization data, the 256 words typically serve as a loading routine for the application.

5.2.3 Booting the Board via the Flash

The Flash RAM allows you to boot the Hammerhead-6U-cPCI in standalone mode, without a host PC.

Developing the Boot Program

Use the Analog Devices software development tools and BittWare's host interface tools (DSP21k-SF Toolkit) to develop a boot program for the ADSP-21160 processors. The example software included with the Hammerhead-6U-cPCI includes example programs that demonstrate how to create a DSP program in the proper form and then load it into Flash memory

so that it automatically boots and begins executing after the board is powered on or the DSPs are reset.

Loading a Boot Program into the Flash Memory

Use programs provided with the Hammerhead-6U-cPCI to load the Flash memory with a boot program.

Chapter 6

SharcFIN Programming Details

This chapter provides programming details for the SharcFIN PCI interface and the SharcFIN user-configurable registers. In addition to the information in this chapter, you will also need to refer to documentation for the QL5064 (Quick Logic Corporation) and the SharcFIN ASIC (BittWare).

Note

The Hammerhead-6U-cPCI has two SharcFIN ASICs, each of which contains exactly the same logic and user-configurable registers. Therefore, this chapter provides programming details for only one SharcFIN and assumes that you will apply the information to both.

The SharcFIN is the glue that holds the Hammerhead-6U-cPCI board together. It flexibly interfaces the ADSP-21160 cluster to the PCI bus. SDRAM, Flash, dual UART, and I²C; provides interrupt multiplexers for the ADSP-21160s and PCI; controls the SDRAM; and provides DMA engines for moving data between interfaces.

6.1.1 The Two Sections of the SharcFIN

The SharcFIN consists of two main sections: the PCI side and the SHARC side

The first section is the PCI interface, which consists of a full 64-bit, 66 MHz bus mastering PCI interface. The PCI interface includes two DMA transmit channels, two DMA receive channels, and a single PCI read/write channel. Also included in the PCI interface is full I²0 support with the associated mailboxes.

The second section of the SharcFIN provides the SHARC specific functionality, which includes the SDRAM interface and control, the Flash and dual UART, the interrupt multiplexers, and the I ²C interface.

6.1.2 How the SharcFIN Maps to the PCI and ADSP-21160 Buses

The SharcFIN uses PCI Base Address Registers (BARs) to map its various parts onto the PCI bus. BAR0 maps the SharcFIN's control registers, BAR1 maps to the peripheral bus (Flash and dual UART), BAR2 maps to the ADSP-21160's MMS space, BAR3 is unused, and BAR4 maps to the SDRAM.

The SharcFIN maps into the ADSP-21160 cluster bus space using the MS (memory select) lines of the ADSP-21160s. MS0 maps to the SDRAM, MS1 maps to Flash, MS2 maps to the SharcFIN control registers, and MS3 maps to the dual UART.

The PCI side of the SharcFIN provides the complete PCI interface. It interfaces the PCI bus and the SHARC side of the SharcFIN and moves data between them. The SHARC side of the SharcFIN completes the interface, whether it be to SDRAM or to the ADSP-21160s.

The PCI side provides four DMA channels for performing PCI bus mastering DMAs: two are receive (for reads), and two are transmit (for writes). These channels can be run independently and will self-arbitrate for bus access. Along with the DMA channels, the PCI side provides a single PCI access channel for doing single PCI reads and writes and supports interrupts both to and from the PCI bus.

All control registers for the PCI interface are in Base Address Register 0 (BAR0) and occupy byte addresses from 0x00 to 0x100 off of BAR0. For complete details on these registers, refer to the *QL5064 User's Manual* from QuickLogic Corporation. From the ADSP-21160, these control registers are at MS2 and are 32-bit addressable, so that they occupy word addresses 0x00 to 0x40 off of MS2. Section 6.4.1 gives an overview of how to access these registers.

6.2.1 Performing PCI Side DMAs

To perform a PCI bus mastering DMA, program a DMA channel in the PCI side of the SharcFIN. Next, program a DMA on the SHARC side to work in conjunction with the PCI side DMA. The PCI side DMA will move the data between the PCI bus and an internal FIFO, and the SHARC side DMA will move data between the internal FIFO and the actual source or destination on the board. If the source or destination is the ADSP-21160's internal memory, the SHARC side DMA used is actually an ADSP-21160 IOP DMA. If the source or destination is the SDRAM, use the internal SharcFIN DMA engine to move the data to/from the SDRAM.

Note

The internal SharcFIN DMA engine is not yet implemented. Therefore, the SharcFIN does not currently support DMAs directly between SDRAM and PCI.

The PCI side DMAs are designed for 64-bit based transfers and expect 64-bit aligned data, regardless of the actual width of the PCI bus. The PCI address used in the transfer is a standard PCI byte based address.

6.2.2 Performing a PCI Side Single Access

The SharcFIN supports a single PCI access channel for performing single PCI reads and writes. To perform PCI reads and writes, tell the SharcFIN which address to read or write, provide the data (for a write), and then request the transfer. On a read completion, the data is available in a buffer to be read. As with the DMAs, the SharcFIN is designed for 64-bit transfers and alignment. You can make it perform any number of byte width transfers by specifying which of the 8 bytes of the 64-bit access are to be enabled. However, you will need to align the data in the 64-bit word and use the 64-bit aligned address.

6.2.3 Performing PCI Side Interrupts

The SharcFIN provides full I2O support with the associated mailboxes. To generate PCI side interrupts, either write to PCI outgoing mailboxes or use the SHARC side PCI interrupt multiplexer, which generates the PCI side user interrupt bit.

The PCI side can interrupt the ADSP-21160s by writing into mailboxes. Writing into mailboxes will cause the PCI interrupt bit to be set in the SHARC side interrupt multiplexers, which will generate an ADSP-21160 interrupt if the mask is open.

Note

When reading the PCI side documentation of these registers, take careful note of whether you are looking at them from a PCI side or the "user" side. Phrases such as "PCI outgoing" have different meaning depending on your viewpoint, and several mailboxes and registers are duplicated - one for each direction.

The SHARC side of the SharcFIN consists of the ADSP-21160 bus interface, the SDRAM controller, the peripheral bus (with Flash and dualUART), the I²C interface, and the interrupt multiplexers. The SharcFIN control registers for the SHARC side are mapped into PCI in BARO, starting at byte offset 0x100. On the ADSP-21160 side, they are mapped into MS2, starting at word offset 0x40.

6.3.1 ADSP-21160 Bus Interface

The SharcFIN interfaces to the ADSP-21160 cluster bus as a synchronous host. It sits on the ADSP-21160 bus and will request the bus to complete a PCI side initiated transfer. It also monitors the bus for any accesses to memory spaces it controls, including SDRAM, Flash, dual UART, and the SharcFIN registers.

6.3.2 SDRAM Interface and Control

The SharcFIN's SDRAM controller supports up to 512 Mbytes of SDRAM. It refreshes the SDRAM and controls all of the interfacing from the ADSP-21160s to the SDRAM. In the ADSP-21160 space, the SDRAM is mapped into MS0, and the ADSP-21160s have full access to all of the SDRAM.

Accessing SDRAM from the PCI Side

From the PCI side, the SDRAM is mapped into BAR4 with a 16 Mbyte window viewable at a time. Because the SDRAM is so large, this window exists to keep the entire SDRAM from being mapped into PCI memory. A SharcFIN control register, which provides the upper address bits for a PCI initiated SDRAM access, sets the window location.

The SDRAM window has the following two limitations:

- 1. Window boundaries must be crossed carefully.
- 2. The window register is a shared resource.

The Host Interface Library (in BittWare's DSP21k-SF Toolkit) takes care of the first limitation. The second limitation is a system issue that you must consider. Because the SharcFIN uses the window register for every PCI access to SDRAM, be careful to coordinate SDRAM accesses from PCI if you have

Chapter 6 103

multiple threads on the host or multiple PCI bus masters accessing the SDRAM.

SDRAM Timing from the ADSP-21160

SDRAM timing from the ADSP-21160 is synchronous, 1 wait state. A single write access takes two bus cycles. Since each additional write is single cycle, using the ADSP-21160's burst mode, you can achieve a four word burst write in five bus cycles. Reads require additional setup in the SDRAM, resulting in four bus cycles for the first access and a four word burst read in seven cycles. Because the SDRAM is page based, you will encounter additional latencies when page boundaries are crossed.

Acheiving Optimal System Performance

To achieve optimal system performance, use of the power of the ADSP-21160's IOP DMA engines and its dual ported internal RAM. Using these features, you can perform DMA-based SDRAM accesses at the same time that the ADSP-21160 core is performing processing on its internal data space, which is full core speed, 0 wait state memory.

6.3.3 Peripheral Bus Interface (Flash and Dual UART)

The peripheral bus is an 8-bit wide bus containing the Flash and dual UART. On the Hammerhead-6U-cPCI board, optional headers for custom applications are also located on the peripheral bus. The peripheral bus is mapped into the ADSP-21160 space as MS1 and MS3 and into PCI space as BAR1. From the ADSP-21160, the Flash is at MS1, and the UART is at MS3. From PCI, the Flash occupies the first 2 Mbytes of BAR1, and the UART sits at a 2 Mbyte offset from BAR1.

6.3.4 I²C Interface

The SDRAM and configuration EEPROM sit on an I²C bus that is connected to the SharcFIN. The SDRAM is interrogated over the I²C to determine its size and type so that the SDRAM configuration registers can be written. The Host Interface Library (included with BittWare's DSP21k-SF Toolkit) sets up the SDRAM on a board reset command.

The EEPROM contains factory programmed board information, including a serial number and factory build date. You can use the BittWare Configuration Manger (bwcfg) to view this information. Space for the user is

also reserved in the EEPROM. The I^2C interface in the SharcFIN is the low level clock and data lines for the I^2C available in a control register. Perform all bit manipulation through software. Along with the on-board I^2C , the SharcFIN supports a second I^2C bus called the PMC I^2C , which is pinned out to the PMC+ connector.

6.3.5 Interrupt Multiplexer

The SharcFIN contains a flexible interrupt multiplexer that you can use to create complex interrupt schemes on the Hammerhead-6U-cPCI board. The interrupt multiplexer contains an interrupt multiplexer for each ADSP-21160, the PCI, and the PMC. Inputs to the multiplexer are flags from each ADSP-21160, a PCI side flag, PMC interrupts, and dual UART interrupts. Outputs from the multiplexer are an interrupt line to each ADSP-21160, the PCI side, and the PMC site.

How the Interrupt Multiplexer Functions

The interrupt multiplexer for each output is completely independent and can handle multiple sources. Each interrupt multiplexer consists of a configuration register that allows you to mask the desired sources (see section 6.5.10). The interrupt multiplexer ANDs the mask with the sources; it then ORs the result together to create the output.

Note

The interrupt multiplexer is level sensitive and does not latch interrupt sources. Therefore, the interrupt is active as long as the source is driven.

Creating PCI Side Interrupts

To create PCI side interrupts, configure the multiplexer, which will generate the "user side" flag into the PCI side interrupt mechanism. The PCI side must then "open" the interrupt.

PCI side interrupts into the SharcFIN via the I^2O mailbox registers show up as PCI flags into the SHARC side interrupt multiplexer. Therefore, you can program the ADSP-21160s to respond to PCI interrupts as desired.

Chapter 6 105

The SharcFIN maps into PCI and the ADSP-21160 cluster bus. The following section provides an overview of the PCI and ADSP-21160 memory mapping of the SharcFIN. All addresses are shown as offsets from the appropriate BAR or MS. Table 6–1 gives an overview of how the SharcFIN maps to the PCI and ADSP-21160 cluster buses.

Note

The QL5064 User's Guide (from Quick Logic Corporation) contains descriptions of the registers listed in this section. Refer to it for specifics. If you cannot find sufficient information, contact BittWare for more detail.

Table 6–1 Overview of How the SharcFIN Maps to the PCI and ADSP-21160 Buses

PCI Base Address Register	Description	21160 Memory Select	Description
BARO	SharcFIN control registers	MS0	SDRAM
BAR1	Peripheral bus (Flash, UART)	MS1	Flash
BAR2	ADSP-21160 MMS	MS2	SharcFIN control registers
BAR3	Unused	MS3	Dual UART
BAR4	SDRAM	Unbanked	Peripheral bus

Even though the following sections list both 32-bit (word) and byte addresses, some BARs should be accessed in specific ways from the PCI side. Table 6–2 shows how to access those BARs.

 Table 6-2
 Accessing BAR0-BAR4 From the PCI Side

BAR	Access
BARO	Byte or 32-bit word accesses for all registers
BAR1	Byte accesses for all registers*
BAR2	Read Byte or word accesses Write Word accesses only [†]
BAR3	Reserved. Do not use.
BAR4	Read Byte or word accesses Write Word accesses only [†]

^{*} Word accesses will produce erroneous data.

6.4.1 Accessing System Settings and Configuration Registers

BAR0 = MS2 = system settings and configuration registers

BAR0 from the PCI interface and MS2 from the ADSP-21160 cluster bus map to system settings and configuration registers in the SharcFIN. Table 6-3 gives the PCI and ADSP-21160 offset addresses for accessing system settings and configuration registers.

Table 6–3 PCI and ADSP-21160 Addresses for System Settings and Configuration Registers

PCI 32-bit offset	PCI byte offset	21160 offset	Description
0x00 – 0x3F	OxOOO – OxOFF	0x00 – 0x3F	PCI configuration settings
0x40 – 0x5F	Ox100 – Ox17F	0x40 – 0x5F	SharcFIN configuration registers

[†] Byte writes will corrupt the rest of the word.

6.4.2 Accessing the Flash, UART, and Peripheral Bus

BAR1 = MS1/MS3/Unbanked = Flash/UART/Peripheral bus

BAR1 from the PCI interface maps to the Flash, dual UART, and peripheral bus. MS1 from the ADSP-21160 cluster bus maps to the Flash, MS3 maps to the dual UART, and unbanked memory maps to the peripheral bus. Table 6-4 gives the PCI and ADSP-21160 offset addresses for accessing the Flash, UART, and peripheral bus.

Warning

BAR1 must be accessed a byte at a time from the PCI side. Word accesses will produce erroneous data.

Table 6-4 PCI and ADSP-21160 Addresses for Flash, UART, and Peripheral Bus

PCI 32-bit Offset	PCI byte Offset	21160 Offset	Description
0x00000 – 0x07FFFF	Ox000000 – Ox1FFFFF	MS1:0x000000 – 0x1FFFFF	Flash
0x80000 - 0x800001	0x200000 - 0x20000F	MS3:0x0 – 0xF	UART
Ox80002 – OxBFFFFF	0x200010 – 0x2FFFFF	N/A	Reserved
0xC0000 – 0xFFFFFF	0x300000 – 0x3FFFFF	Unbanked:0x0 – 0x1FFFFF	Unbanked Memory/ Peripheral Bus

6.4.3 Accessing Multiprocessor Memory Space

BAR 2 = MMS = flat map of Multiprocessor Memory Space

BAR2 from the PCI and MMS from the ADSP-21160 cluster bus allow access to the ADSP-21160 multiprocessor memory space. Table 6–5 gives the PCI and ADSP-21160 offset addresses for accessing the MMS.

 Table 6-5
 PCI and ADSP-21160 Addresses for Multiprocessor Memory Space

PCI 32-bit	PCI byte	21160	Description
Offset	Offset	Offset	
0x00000 –	0x0000000 –	Ox000000 –	Reserved
0x0FFFFF	0x03FFFFF	Ox0FFFFF	
Ox10000 –	0x0400000 –	Ox100000 -	21160-1 MMS space
Ox1FFFFF	0x07FFFFF	Ox1FFFFF	(SHARC ID 1 start)
0x20000 –	0x0800000 –	0x200000 –	21160-2 MMS space
0x2FFFFF	0x0BFFFFF	0x2FFFFF	(SHARC ID 2 start)
0x30000 –	0x0C00000 –	0x300000 –	21160-3 MMS space
0x3FFFFF	0x0FFFFFF	0x3FFFFF	(SHARC ID 3 start)
Ox40000 –	0x1000000 –	0x400000 –	21160-4 MMS space
Ox4FFFF	0x13FFFFF	0x4FFFFF	(SHARC ID 4 start)
0x50000 –	Ox1000000 –	0x500000 –	Reserved
0x7FFFFF	Ox1FFFFFF	0x7FFFFF	

 $BAR 4 = MS0 = SDRAM^{1}$

You can see a window of 16 MBYTES of SDRAM from the PCI bus. A register allows you to select which 16 MB window is currently visible. The register is located at word/ADSP-21160 offset 0x4A in BAR0/MS2. Table 6–6 gives the PCI and ADSP-21160 offset addresses for accessing SDRAM

Note

The addresses listed in Table 6–6 only apply to the given 64 MB SDRAM case. Different memory sizes change the mapping. Remember, the 21160 offset column is an offset from the base of MSO.

Table 6-6 PCI and ADSP-21160 Addresses for SDRAM

PCI 32-bit Offset	PCI byte Offset	21160 Offset	Window Value	Description
0x00000 – 0x3FFFFF	Ox000000 – OxFFFFFF	Ox800000 – OxBFFFFF	0x00	(default)
0x00000 – 0x3FFFFF	Ox000000 – OxFFFFFF	OxCOOOOO – OxFFFFFF	0x01	(default)
0x00000 – 0x3FFFFF	Ox000000 – OxFFFFFF	OxOOOOOO – OxOFFFFF	0x02	(default)
Ox00000 – Ox3FFFFF	Ox000000 – OxFFFFFF	Ox400000 – Ox7FFFFF	0x03	(default)

110

^{1.} Some caveats apply.

6.5 Setting the SharcFIN User-Configurable Registers

This section describes the memory locations and settings for the SharcFIN's user-configurable registers. All addresses described in this section are offsets from the base address of MS2 and are accessible from the ADSP-21160 DSPs and from the PCI interface. Table 6–7 gives the memory mapping for the user-configurable registers in the SharcFIN.

Note

Most of the user-configurable registers are already set and do not require you to program them. You will only need to set them if you are writing your own host interface programs.

Chapter 6 111

 Table 6-7
 Memory Map for the SharcFIN User-Configurable Registers

	Write	Description
0x40 Address Override Register*	W	Allows addressing of IOP registers when ADSP-21160 is using a host packing mode
0x41 Status Register	R	Indicates the number of processors, ADSP- 21160 cluster bus status, and last reset source
0x42 Peripheral Bus Configuration Register	n R/W	Configures and shows status of wait cycles of the 8-bit peripheral bus
Ox43 Watchdog Config Register	$WORM^\dagger$	Enables and disables the watchdog timer
Ox44 PMCA Configuration Register	er R/W	Configures the PMC+ interface
Ox45 PMCB Status Register [‡]		Reserved
Ox46 Onboard I ² C Control Registe	er R/W	Controls the I ² C interface
0x47 PMC I ² C Control Register	R/W	Controls the I ² C interface to the PMC+ interface
0x48 SD Size Config Register*	W	Resets and reinitializes the SDRAM controller
Ox49 SD Config Word Register*	W	Configures the SDRAM
0x4A SD Window Register*	W	Selects which 16 MB of SDRAM the PCI interface will view
Ox4B UART Interface Register	R/W	Allows communication with on-board UART
0x4C-4F, Unused 0x59		
0x50,52, H1I0, H2I0, H3I0, H4I0 54,56	R/W	Configure ADSP-21160 DSPs' interrupts; show status of interrupts
0x51,53, Unused 55,57		
Ox58 PCInt	R/W	Configures PCI interrupts
Ox5A PMCIO	R/W	Configures PMC interrupt
0x5B-5D Unused		
0x5E Flags	R	Shows state of all flags
0x5F IRQ	R	Shows state of all interrupts

^{*} Use with caution

[†] Write Once Read Many

[‡] This register is currently unimplemented

6.5.1 Setting the Address Override Register

The Address Override Register configures how the ADSP-21160 DSPs access the least significant 32 bits on the ADSP-21160 cluster bus. It allows access to the DSPs' IOP space before the SYSCON register has been configured.

Note

Only use this register if you are writing your own host interface programs.

Table 6–8 Contents of the Address Override Register

Bit	Name	Description	Settings
ВО	A0 Override En	Address override enable for booting across the PCI bus	
B1	Overridden A0	Overridden address	
B2	Bus Lock Request	Requests that SharcFIN acquire the ADSP-21160 cluster bus and not give it up	0 = Disabled 1 = Requests that the SharcFIN acquire the ADSP-21160 cluster bus and not give it up
В3	Destructive FIFO Read Enable	Determines whether a read to the DMA FIFOs will cause the FIFOs to advance	 0 = A read to the DMA FIFOs does not cause the FIFOs to advance 1 = A read to the DMA FIFOs causes the FIFOs to advance

Setting the Address Override Bits

Do not use the Address Override bits (B0 and B1) under normal setup conditions. If you are running the Hammerhead-6U-cPCI in standalone mode and are booting across the PCI bus, you can change these bits. However, exercise extreme caution since data loss or corruption will occur if you set the bits improperly.

Chapter 6
SharcFIN Programming Details

^{1.} The SYSCON register is a register in the ADSP-21160 DSPs that contains the MSIZE bits and is used to select the packing mode for synchronous and asynchronous transfers performed by the host.

Setting the Bus Lock Request Bit

The Bus Lock Request bit (B2) allows the SharcFIN to acquire the ADSP-21160 cluster bus and locks access to the bus so that only the SharcFIN can access it. Table 6–8 shows the settings for bit 2, the Bus Lock Request bit.

6.5.2 Reading the Status Register

The Status Register is a 16-bit read only register that gives information about various features on the board.

Table 6–9 Contents of the Status Register

Bit	Name	Description	Settings
ВО	HHPres0	Combined settings of BO and B1	See Table 6-10 below.
B1	HHPres1	indicate how many processors are installed on the board	
B2	Bus Locked	Indicates whether the SharcFIN has locked and acquired the ADSP-21160 cluster bus	0 = Cluster bus is not locked1 = Cluster bus is locked
В3	Last Reset Source	Indicates whether the PCI interface or the watchdog was the source of the last board reset	0 10110001
B4	SPCI Done*		
B5	RCVO_FIFO_EF	Receive FIFO 0 Empty Flag*	
B6	RCV1_FIFO_EF	Receive FIFO 1 Empty Flag*	

^{*} Refer to QL5064 documentation from Quick Logic for details.

Determining How Many Processors are Installed on the Board B0 and B1 of the Status Register show how many processors are in the DSP cluster. Table 6–10 shows their combined settings.

Table 6–10 Settings for the Processor Bits

во	В1	Description
0	0	1 processor
1	0	2 processors
1	1	4 processors
0	1	Reserved

Determining Whether the ADSP-21160 Bus is Locked

B2, the Bus Locked bit, shows whether the processors on the board have granted ownership of the ADSP-21160 cluster bus to the SharcFIN. Table 6–9 shows the settings for the Bus Locked bit.

Determining the Last Reset Source

B3, the Last Reset Source bit, shows whether the PCI interface or the watchdog timer was the source of the last board reset. Table 6–9 shows the settings for the Last Reset Source bit.

6.5.3 Setting the Peripheral Bus Configuration Register

The Peripheral Bus Configuration Register allows you to configure the wait cycles of the Hammerhead-6U-cPCI's 8-bit peripheral bus.

 Table 6–11
 Contents of the Peripheral Bus Configuration Register

Bit	Name	Description	Settings
BO-B3	PCI to Pbus Wait	Select the number of wait cycles the SharcFIN will wait before completing a transaction on the peripheral bus	See Table 6–12 below.
B4	Pbus Ack Enable	Selects whether the SharcFIN will monitor the peripheral bus Ack line after the peripheral bus wait time has expired	 O = SharcFIN will wait the selected number of wait cycles and consider the transaction complete 1 = SharcFIN will wait the selected number of wait cycles and then monitor the Ack line
B5	Pbus Reset	Resets the peripheral bus reset line, the Flash, and the UART	0 = No reset1 = Resets Flash, UART, and all devices on the peripheral bus

Selecting the Number of Wait Cycles

B0-B3 (PCI to Pbus Wait) set the number of wait cycles the SharcFIN must wait before completing a transaction on the peripheral bus. The actual value of wait cycles is one greater than the value in the register (for example, if the register value = 0, the number of wait cycles = 1). Table 6–12 shows the default setting for the bits.

Table 6–12 Default Setting for Selecting the Number of Wait Cycles

ВО	В1	B2	В3	Description
1	0	1	0	6 wait cycles

Enabling the Peripheral Bus Ack Line

The setting of the Pbus Ack Enable bit (B4) determines whether the SharcFIN will wait five wait cycles and then monitor the peripheral bus Ack line or whether it will wait five wait cycles and then consider the transaction complete. Table 6–11 gives the settings for the Pbus Ack Enable bit.

Note

Five wait cycles is the minimum amount of wait cycles required to talk to the Flash memory.

Setting the Peripheral Bus Reset Bit

When set to 1, B5, the Peripheral Bus Reset bit, resets the Flash, the UART, and all devices on the peripheral bus. The reset stays active until cleared by another write to the register. You can also reset the Flash, the UART, and all devices on the peripheral bus via a board reset. Table 6–11 gives the settings for the Peripheral Bus Reset bit.

6.5.4 Setting the Watchdog Configuration Register

The Watchdog Configuration Register is a WORM (Write Once Read Many) register that allows you to enable or disable the watchdog timer, set its time-out time, and select which processor will reset its timer. Once the watchdog is enabled, it cannot be disabled except by a board reset, which can be from the PCI interface, the watchdog, or an external source.

Table 6–13 Contents of the Watchdog Configuration Register

Bit	Name	Description	Settings
BO-B1	WatchdogEn0, WatchdogEn1	Enable the watchdog timer and select its time-out time	See Table 6–14.
B2-B3	Unused		
B4-B7	H1F0 En, H2F0 En, H3F0 En, H4F0 En	Selects which processor will strobe the watchdog timer	See Table 6–15.

Enabling the Watchdog and Setting its Time-out

Bit 0 and bit 1 enable and disable the watchdog and set its time-out time. Table 6–14 shows their settings.

Table 6-14 Settings for the Watchdog Enable Bits

ВО	В1	Description
0	0	Disabled
0	1	Enabled; short time-out (200 ms)
1	0	Enabled; medium time-out (600 ms)
1	1	Enabled; long time-out (1.2 s)

Selecting the Processor to Run the Watchdog

Bits 4–7 select the processor that will run the watchdog. You can select more than one processor, but it is not recommended. Table 6-15 shows the settings for bits 4-7.

Table 6-15 Settings for the Processor Selection Bits

В4	В5	В6	В7	Description
1	0	0	0	21160-1 FLAGO will strobe the watchdog timer
0	1	0	0	21160-2 FLAGO will strobe the watchdog timer
0	0	1	0	21160-3 FLAGO will strobe the watchdog timer
0	0	0	1	21160-4 FLAGO will strobe the watchdog timer

6.5.5 Setting the PMCA Configuration Register

The PMCA Configuration Register is a read/write register that configures the bus mode lines of the PMC+ interface and allows you to read their status. Table 6–16 below shows the contents of the PMCA Configuration Register.

Table 6–16 Contents of the PMCA Configuration Register

Bit	Name	Description	Settings
ВО	PMC Flg/Int En	Configures the PMC+ interface's bus mode lines to be used as flag interrupts	 O = The PMC+ interface's bus mode lines will be used as flag interrupts 1 = The PMC+ interface's bus mode lines will be used as bus mode lines
B1-4	BusMode1, BusMode2, BusMode3, BusMode4	BusMode lines are used according to the PMC specification if the flag interrupts are disabled	Table 6–17 below provides the default settings.

Using the Bus Mode Lines as Flag Interrupts

The PMC Flg/Int En bit (B0) allows you to configure the PMC+ interface's bus mode lines as flag interrupts. The option of using the bus mode lines as flag interrupts is a feature of the PMC+ form factor; to work properly, it must be enabled on both the PMC+ card and the host board. Table 6–16 shows the settings for the bit.

Using the Bus Mode Lines According to the PMC Specification

When the flag interrupts are disabled, the BusMode lines work according to the PMC specification. Bits 1–3 are Bus Mode lines 2–4. Bit 4 is Bus Mode line 1 and is an input; it is used to show the presence of a PMC card on the board. Refer to the *IEEE P138.1 Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC* (PMC Specification) for details on the operation of these lines. Table 6–17 describes the bits.

Table 6–17 Default Setting for the Processor Selection Bits

Bit	Setting	Description
B1*	1	Bus Mode line 2
B2	0	Bus Mode line 3
В3	0	Bus Mode line 4
B4	Input	Bus Mode line 1 (PMC presence detect line); indicates whether a PMC board is present

^{*} Bits1-3 are outputs. Bit 4 is an input.

6.5.6 Setting the Onboard I²C Control Register

The Onboard I²C Control Register controls the I²C interface. The I²C interface is a two-wire bus; one wire is a clock signal, and the other is a data signal. Both the clock and the data lines are pulled up. Table 6-18 shows the contents of the register.

As per standard I²C, both the clock and data lines are pulled high. Devices on the I²C bus either do not drive the bus, or they drive it low. Any device on the I²C bus can drive either the clock or data line low when required. You can also read the actual status of the lines.

Contents of Onboard I²C Control Register Table 6-18

Bit	Name	Description
ВО	Clock	Read/Write; on write, drives the clock line. On read, shows the state of the clock line
B1	Data	Read/Write; on write, drives the data line. On read, shows the state of the data line

When you write a 1 to either the clock or data line in this register, the SharcFIN does not drive the corresponding line. When you write a 0 to either the clock or the data line, the SharcFIN drives the corresponding line to 0. When you read either line, you read the actual state of the line rather than what you have written to it. If you are not driving the line, it will be 0 if another device is driving it and 1 if nothing is driving it. Table 6–19 shows the effect of the values written to the Clock and Data bits.

Table 6-19 Effects of Values Written to the Clock and Data Bits

Value Written	Description
0	Drives the line low; when read back, shows 0
1	When read back, shows the actual state of the I ² C line

6.5.7 Setting the PMC I²C Control Register

The PMC I^2C Control Register controls the I^2C interface to the PMC+ interface. The settings for this register are the same as the settings for the Onboard I^2C register, except that all settings apply to the PMC+ interface I^2C instead of the on-board I^2C .

6.5.8 Configuring the SDRAM

The SharcFIN contains three registers that configure the SDRAM:

- SDRAM Size Configuration Register
- SDRAM Configuration Word Register
- SDRAM Window Register

Setting the SDRAM Size Configuration Register

The SDRAM Size Configuration Register sets the size of the SDRAM. The settings for this register depend on the type of SODIMM modules used on the board. Table 6–20 below shows the contents of the register.

Table 6–20 Contents of the SDRAM Size Configuration Register

Bit	Name	Description
ВО	SD Bank Size 0	Sets the size of SDRAM bank 0
B1	SD Bank Size 1	Sets the size of SDRAM bank 1
B2	SD RF Size	
В3	SD Reset*	Resets the SDRAM controller and reinitializes the SDRAM

^{*} Do not change this bit.

Setting the SDRAM Configuration Word Register

The SDRAM Configuration Word Register configures the SDRAM. This register is already set with appropriate settings. User modification is not required.

Warning!

Do not change the value of this register. Modifying this register will cause the SDRAM not to function properly.

Setting the SDRAM Window Register

The SDRAM Window Register lets you select which 16 MB section of memory in the SDRAM to view from the host over the PCI interface. However, you will not need to configure this register since the Diag21k utility, which is included with the DSP21k-SF Toolkit, will take care of set these bits. Table 6–21 lists the bits included in this register.

Table 6–21 Contents of the SDRAM Window Register

Bit	Name	Description
ВО	Window A0	Selects window A0 of the SDRAM
B1	Window A1	Selects window A1 of the SDRAM
B2	Window A2	Selects window A2 of the SDRAM
В3	Window A3	Selects window A3 of the SDRAM
B4	Window A4	Selects window A4 of the SDRAM

6.5.9 Configuring the UART

TBD

The registers from offset 0x50 to 0x5B (see Table 6–7) configure the direction of the ADSP-21160, PCI, and PMC interrupts and show their status. Each register is identical except that each one corresponds to a different interrupt on the PCI interface, PMC+ interface, or ADSP-21160 processors. Table 6–22 shows which register corresponds to which interrupt.

 Table 6–22
 ADSP-21160 Interrupt Configuration Registers

Address	Register	Description
0x50	H1I0	Configures the direction of 21160-1 IRQ0
0x51	Unused	
0x52	H2I0	Configures the direction of 21160-2 IRQ0
0x53	Unused	
0x54	H3I0	Configures the direction of 21160-3 IRQ0
0x55	Unused	
0x56	H4I0	Configures the direction of 21160-4 IRQ0
0x57	Unused	
0x58	PCInt	Configures the direction of the PCI interrupt
0x59	Unused	
0x5A	PMCI0	Configures the direction of PMC+ IRQ0
Ox5B	PMCI1	Configures the direction of PMC+ IRQ1

The registers are 32-bit registers. The first 16 bits (0-15) are read/write and select the source that will generate an interrupt to the processor. The second 16 bits (16-31) are read only and show which of the enabled interrupts are generating an interrupt. Bits 16-31 are masked interrupt lines and are masked by 21160-1 IRQ0's interrupt mask. Table 6-23 shows the bits included in each register.

 Table 6–23
 Settings for the Interrupt Configuration Registers

Bit	Name	Description*
ВО	H1F0	The interrupt will respond to 21160-1 FLAGO
B1, B3, B5, B7	Unused	
B2	H2F0	The interrupt will respond to 21160-2 FLAGO
B4	H3F0	The interrupt will respond to 21160-3 FLAGO
В6	H4F0	The interrupt will respond to 21160-4 FLAGO
B8	PCFlg	The interrupt will respond to a flag from the PCI interface
В9	PMCFlg0	The interrupt will respond to FLAGO from the PMC interface
B10	Unused	
B11	PRFIg [†]	The interrupt will respond to a flag from the peripheral bus or 21160-4 FLAG1
B12	UARTO [†]	The interrupt will respond to UARTO or 21160-2 FLAG1
B13	UART1 [†]	The interrupt will respond to UART1 or 21160-3 FLAG1
B14-15	Unused	
B16	H1F0	21160-1 FLAG0
B17, B19	Unused	
B18	H2F0	21160-2 FLAGO
B20	H3F0	21160-3 FLAGO
B21, B23	Unused	
B22	H4F0	21160-4 FLAGO
B24	PCFIg	PCI flag
B25	PMCFlg0	PMC+ FLAGO
B26	Unused	
B27	PRFIg	Peripheral bus flag
B28	UARTO	UARTO flag
B29	UART1	UART1 flag
B30-31	Unused	

^{*} All descriptions in this column apply when bits are set to 1.

[†] These interrupt connections are configurable with jumpers. For jumper settings, refer to the section entitled "Setting the SharcFIN Interrupt Jumpers" on page 18.

6.5.11 Reading the Status of All Flags and Interrupts

The registers at offsets 0x5E and 0x5F are 16-bit unmasked registers that show the status of all flags and interrupts. The register at 0x5E shows the status of the flags, and 0x5F shows the status of the interrupts. Table 6-24 and Table 6-25 describe the bits in the registers.

 Table 6–24
 Reading the Status of the Flags

Bit	Name	Description*
ВО	H1F0	Status of 21160-1 FLAGO
B1	Unused	
B2	H2F0	Status of 21160-2 FLAGO
В3	Unused	
B4	H3F0	Status of 21160-3 FLAGO
B5	Unused	
B6	H4F0	Status of 21160-4 FLAGO
В7	Unused	
B8	PCFlg	Status of PCI flag
В9	PMCFlg0	Status of PMC+ FLAGO
B10	Unused	
B11	PRFIg	Status of peripheral bus flag
B12	UARTO	Status of UARTO flag
B13	UART1	Status of UART1 flag
B14-15	Unused	

^{*} All descriptions in this column apply when bits are set to 1.

 Table 6–25
 Reading the Status of the Interrupts

Bit	Name	Description*
ВО	H1I0	Status of 21160-1 IRQ0
B1	Unused	
B2	H2I0	Status of 21160-2 IRQ0
В3	Unused	
B4	H3I0	Status of 21160-3 IRQ0
B5	Unused	
В6	H4I0	Status of 21160-4 IRQ0
В7	Unused	
B8	PCInt	Status of PCI interrupt
В9	PMCIO	Status of PMC+ IRQ0
B10-15	Unused	

^{*} All descriptions in this column apply when bits are set to 1.

Appendix A

Debugging Your DSP Programs

This appendix provides information on debugging DSP programs with either a hardware or a software emulator.

A.1 Debugging with a Hardware (In-Circuit) Emulator

This section discusses attaching an in-circuit emulator (ICE) from Analog Devices to the Hammerhead-6U-cPCI board. To attach an ICE to the Hammerhead-6U-cPCI, follow the steps below:

- 1. Connect the probe on the ICE card to the Hammerhead-6U-cPCI's JTAG connector.
- 2. Depending on the type of ICE card you are using, either install it in or connect it to your PC.
- 3. Install the Hammerhead-6U-cPCI in a 6U slot in your CompactPCI chassis.
- 4. Apply power to the Hammerhead-6U-cPCI.
- 5. Start the emulator software on the PC.

A.1.1 Overview of the ICE Emulator

The Hammerhead-6U-cPCI is compatible with White Mountain DSP's ICE emulators, which are ISA bus, PCI bus, ethernet, or USB cards that connect to the Hammerhead-6U-cPCI's JTAG connector and either install in or connect to your PC. The emulator provides a controlled environment for observing, debugging, and testing real-time activities in a target hardware environment by connecting directly to the target processor through its JTAG interface.

When the ICE is connected to the Hammerhead-6U-cPCI, the Hammerhead-6U-cPCI becomes the target system for the emulator, allowing you to operate it completely from the emulator's user interface. A powerful tool for debugging

programs running on the ADSP-21160 processors, the emulator monitors system behavior while running at full speed, and you can use it to download programs, start and stop program execution, set breakpoints, and observe and change the contents of the registers and memory.

A.1.2 Connecting the ICE to the Hammerhead-6U-cPCI

To connect the ICE to the Hammerhead-6U-cPCI, follow the instructions below.

- 1. Locate the JTAG connector (J1) on the Hammerhead-6U-cPCI (see Figure 3–3).
- 2. A cable extends from the ICE card to a probe that connects to the JTAG connector on the Hammerhead-6U-cPCI. Connect the ICE probe to the JTAG connector. Figure A–1 shows the location of the pins on the connector.

Figure A-1 JTAG Connector

Pin 3 on the JTAG connector is missing (see Figure A-1) to prevent you from installing the emulator incorrectly. One of the sockets in the ICE probe has a plug inserted in place of the pin. Table 3-6 in Chapter 3 shows the connector pinout.

A.1.3 Installing the ICE and Hammerhead-6U-cPCI in a PC

Once you have connected the ICE to the Hammerhead-6U-cPCI, install the Hammerhead-6U-cPCI and install or connect the ICE to the PC. The Hammerhead-6U-cPCI requires a 6U slot in a CompactPCI chassis (see section 2.3.3). How you install the ICE card depends on which form factor ICE card you have chosen. The *ICE Hardware User's Guide* (from Analog Devices) explains how to install the ICE.

A.1.4 Operating the ICE

To start operating the ICE with the Hammerhead-6U-cPCI,

1. Apply power to the Hammerhead-6U-cPCI.

Note

As long as the emulator software is not running, you can safely attach and remove the ICE probe while the Hammerhead-6U-cPCI is running.

Start the emulator software on your PC. To download and run programs, follow the instructions in the ICE documentation.

A.2 Debugging with a Software Emulator

BittWare's VisualDSP Target is a fully functional software emulator, which allows you to debug your DSP projects right on your BittWare board without installing a hardware (in-circuit) emulator.

A.2.1 About the VisualDSPTarget

If you have installed Analog Devices' VisualDSP integrated development environment (IDE), you can use BittWare's VisualDSP Target to debug your DSP programs instead of using a hardware emulator. BittWare's VisualDSP Target is a plug-in to Analog Devices' VisualDSP that allows the VisualDSP debugger to communicate directly with your BittWare DSP board.

Since the BittWare VisualDSP Target is integrated right into the VisualDSP debugger, you can compile and link your code in the VisualDSP integrated development environment and immediately debug your code directly on the BittWare board. A full-featured software debugger, the VisualDSP Target

allows you to set breakpoints, single-step through your code, view memory, and run code on multiple processors.

A.2.2 Installing the VisualDSP Target

To install the VisualDSP Target, insert the VisualDSP Target CD-ROM into your computer's CD-ROM drive, and follow the installation instructions on the screen. Once you have installed the Target, follow the instructions in the VisualDSP Target User's Guide to prepare your DSP program for debugging.

Note

The Hammerhead-6U-cPCI is compatible with versions 2.0 and greater of the BittWare VisualDSP Target.

Appendix B

Setting Up for Standalone Operation

The Hammerhead-6U-cPCI can boot via link ports or from a boot program stored in its Flash memory (see section 5.2), allowing it to operate in standalone mode, free from a host computer. This section lists the steps necessary to prepare your Hammerhead-6U-cPCI to operate in standalone mode.

Note

If you are not planning to operate the Hammerhead-6U-cPCI in standalone mode, follow the instructions in Chapter 2.

- 1. While in development mode, develop a boot loader and a standalone operating program for the DSPs (see B.1.1).
- 2. Program the boot Flash (or other external peripheral for link booting) with the boot loader (see B.1.2).
- 3. Power down and set the boot mode jumpers to "Flash Boot" or "Link Boot" (see "Selecting the Boot Mode" on page 16).
- 4. Set the Standalone Mode jumpers (see "Setting the Standalone Mode Jumpers" on page 19).
- 5. Apply power to the Hammerhead-6U-cPCI (see B.5).
- 6. Initialize the PCI interface (see B.6).

B.1 Developing and Loading a Boot Program

B.1.1 Developing the Boot Program

Use the Analog Devices software development tools and BittWare's host interface tools (DSP21k-SF Toolkit) to develop a boot program for the ADSP-21160 processors. The example software included with the Hammerhead-6U-cPCI includes programs that demonstrate how to create a DSP program in the proper form and then load it into Flash memory so that it automatically boots and begins executing after the board is powered on or the DSPs are reset.

B.1.2 Loading a Boot Program into the Flash Memory

Use programs provided with the Hammerhead-6U-cPCI to load the Flash memory with a boot program. The flash directory contains utilities that provide easy access to the Flash memory on the Hammerhead-6U-cPCI board. The flash directory also contains a test program that uses the utilities.

B.1.3 Loading a Link Boot Program

TBD

B.2 Setting the Boot Mode Jumpers

The Hammerhead-6U-cPCI has four configuration jumpers (JP3 and JP4 for cluster A, and JP10 and JP11 for cluster B) that configure its boot mode. See "Selecting the Boot Mode" on page 16 for instructions on setting the jumpers.

B.3 Setting the Standalone Mode Jumpers

The Hammerhead-6U-cPCI has three jumpers for configuring the board to operate in standalone mode:

JP9 Standalone mode clock

JP18 Standalone reset

JP19 Standalone primary PCI voltage

Hammerhead-6U-cPCI

All three jumpers must be "ON" for the board to operate properly in standalone mode. Refer to section 2.2.1 for more detail.

B.4 Booting the Board via Link Port

Connect a cable to link 4 on either of the rear panel I/O connectors (see Table 3–4 and Table 3–5 for pinouts). P3 link 4 provides a link port connection for booting cluster A, and P5 link 4 provides a link port connection for booting cluster B. When booting via link port, DSP 1 will boot and then boot the other three DSPs in its cluster.

B.5 Supplying Power to the Hammerhead-6U-cPCI

The Hammerhead-6U-cPCI requires a +3.3 and +5V power supply for normal operation. When operating with a PMC module, it requires +12V and -12V. The external power connector (J14) supplies +3.3V, +5V, -12V, and +12V to the Hammerhead-6U-cPCI. Section 3.2.9 gives the pinout of the connector and shows where it is located.

To connect an external power source to the Hammerhead-6U-cPCI,

- 1. Plug a power adapter cable into the Hammerhead-6U-cPCI's external power connector (J14). Be sure to align pin 1 (+12V) on J14 with the +12V pin on the cable.
- 2. Connect the remaining end of the cable to an external power source, such as a switching standalone power supply or the PC's power supply.
- 3. Apply power to the system.
- 4. Reset the Hammerhead-6U-cPCI. Section 2.5 explains in more detail how to reset the board.

B.6 Initializing the PCI Interface

TBD

Appendix C

Troubleshooting Tips

This section lists the information you should have ready before calling technical support at BittWare. It also provides the phone numbers and e-mail address for technical support.

C.1 Before You Call Technical Support

To allow us to serve you better, please perform the following checks and record any significant results before contacting BittWare for assistance.

- Run DspBad on the board and note the results.
- Run Diag21k on the board; enter br at the first prompt, pc at the next, and then initiate memory tests by entering mt aa.
- Try re-installing the tools and checking your path if you are getting "file not found" or similar errors.
- Try changing the hardware to see if the problem tracks with the board or the PC:
 - If you have access to a different board, please try it.
 - Try the board in a different PC.
 - Try a different operating system.
- Finally, when contacting BittWare please have the results of the tests listed above and the following information ready:
 - Information identifying the hardware and software you purchased (see the BittWare packing list)
 - Which operating system you are using: DOS, Windows 3.1, Windows 95, Windows 95B (OSR2), Windows 98, Windows NT Version 3.51, or Windows NT Version 4.0
 - The release number of your DSP21k-SF Toolkit (enter diag21k -v at a DOS prompt)
- If you could be at the PC that is experiencing problems when making the call, we will be better able to start diagnosing the problem.

C.2 Contacting Technical Support

To reach technical support at BittWare, Inc., use one of the following methods:

• Phone (8:30 a.m. - 5:30 p.m. ET): (603) 226-0404

• FAX: (603) 226-6667

• E-mail: support@bittware.com

Bittware also maintains the following internet sites:

http://www.bittware.com Contains product information, technical

notes, support files available for download, and answers to frequently asked questions

(FAQ).

ftp://ftp.bittware.com Contains technical notes and support files.

Login as "anonymous," and use your email

address for the password.

Appendix D

Glossary of Terms

(ICE)

(MMS)

buses ADSP-21160 processors in each cluster and a 64-512 MB bank of SDRAM. They

are connected to the PCI interface through the SharcFIN ASICs.

DSP21k-SF Toolkit BittWare's DSP21k-SF Toolkit is a set of libraries and utilities that enable you to

develop DSP applications for the Hammerhead-6U-cPCI more quickly and easily. It contains a host interface library of C-callable functions for PC-based programs, diagnostic utilities, demo programs, and a DSP library that provides standard I/O

extensions to DSP programs.

in-circuit emulator The Hammerhead-6U-cPCI is compatible with Analog Devices' in-circuit

emulators (ICE), which are ISA bus, PCI bus, ethernet, or USB cards that connect to the Hammerhead-6U-cPCI's JTAG connector. The ICE emulators provide a controlled environment for observing, debugging, and testing real-time activities in a target hardware environment by connecting directly to the target processor

through its JTAG interface.

IOP registers The IOP registers are control, status, or data buffer registers of the ADSP-21160's

on-chip I/O processor.

when written to. The processor that was interrupted can read the registers to find $% \left(1\right) =\left(1\right) \left(1\right$

out about the interrupt.

multiprocessor Multiprocessor memory space is the memory of other ADSP-21160 processors in memory space the same cluster. A cluster is up to six ADSP-21160 processors that share a

common processor bus. Any ADSP-21160 processor that is connected to the bus

shares the MMS.

MS0	MS0 (memory select 0) allows the DSPs to access the Hammerhead-6U-cPCI's SDRAM, which is located on the 64-bit ADSP-21160 cluster bus.
MS1	MS1 (memory select 1) allows the DSPs to access the Hammerhead-6U-cPCI's 1 MB bank of Flash memory, which is located on the 8-bit peripheral bus.
MS2	MS2 (memory select 2) allows the DSPs to access the SharcFIN ASIC.
MS3	MS3 (memory select 3) allows the DSPs to access the dual UART, which is located on the 8-bit peripheral bus.
MSIZE	The MSIZE bits of the ADSP-21160's SYSCON register define the size of the Hammerhead-6U-cPCI's four banked sections of memory, which are accessible to the DSPs via their memory select lines (MS0–MS3).
PCI-to-DSP bridges	BittWare's SharcFIN ASICs function as bridges (PCI-to-DSP) between the PCI interface and the ADSP-21160 DSPs, interfacing the secondary PCI buses, the ADSP-21160 cluster buses, and the peripheral buses to the primary PCI bus.
PCI-to-DSP interface	The PCI-to-DSP interface allows the ADSP-21160 processors to communicate with the PCI bus, and vice-versa. It consists of the SharcFIN ASICs and secondary PCI buses A and B.
PCI-to-PCI bridge	The PCI-to-PCI bridges are chips manufactured by Intel Corporation (21154) that provide bridges between the primary PCI bus and the secondary PCI buses.
PCI-to-PCI interface	The PCI-to-PCI interface consists of the primary PCI bus and PCI-to-PCI bridge chips A–C. Bridge A interfaces secondary PCI bus A to bus C. Bridge B interfaces secondary PCI bus B to bus C. Bridge C interfaces secondary PCI bus C to the primary PCI bus.
peripheral buses	The 25 MHz, 8-bit peripheral buses connect to low-speed peripherals such as the Flash RAM, the dual UARTs, and an expansion connector. The purpose of the peripheral buses is to allow additional components to communicate with the ADSP-21160s without affecting the signal quality of the ADSP-21160 cluster bus. A peripheral bus extends from each SharcFIN ASIC.
primary PCI bus	The primary PCI bus is a 66 MHz, 64-bit bus between the host and PCI-to-PCI bridge ${\sf C}.$

secondary PCI buses

The Hammerhead-6U-cPCI has three 64-bit, 66 MHz secondary PCI buses. Secondary PCI bus A connects PCI-to-PCI bridge A to SharcFIN A. Secondary PCI bus B connects PCI-to-PCI bridge B to SharcFIN B. Secondary PCI bus C interconnects PCI-to-PCI bridges A and B with PCI-to-PCI bridge C.

SharcFIN ASIC

BittWare's SharcFIN ASIC flexibly interfaces Analog Devices' SHARC DSPs to a wide range of the Hammerhead-6U-cPCI's interfaces, including: 64/66 MHz PCI bus (rev. 2.2 compliant), SDRAM, UART, I²C interface, Flash, and a general-purpose expansion bus (the 8-bit peripheral bus). The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead. The Hammerhead-6U-cPCI features a SharcFIN for each DSP cluster.

SPORT SHARC synchronous serial port

SYSCON register The SYSCON register is a register in the ADSP-21160 DSPs that contains

the MSIZE bits and is used to select the packing mode for synchronous

and asynchronous transfers performed by the host.

VisualDSP Analog Devices' VisualDSP is an easy-to-use project management

environment comprised of an integrated development environment

(IDE) and debugger.

VisualDSP Target BittWare's VisualDSP Target is a plug-in for VisualDSP that works with

the VisualDSP debugger to allow direct communication with the DSPs

on the Hammerhead-6U-cPCI.

WORM Write Once Read Many

Numerics	В
21160. See ADSP-21160	Base Address Registers
	BAR0 ??-101, 106-107
А	BAR1 106-108
Ack line 116–117	BAR2 106, 109
	BAR3 106-107
Address Override Register 112–114 ADSP-21160	BAR4 106, 110
addresses for 92	bits
architecture of 70–83	A0 Override En 113
	Address Override bits 113-114
booting. See <i>booting</i> cluster A. See <i>cluster A, ADSP-21160</i>	Bus Lock Request 113-114
cluster B. See <i>cluster B, ADSP-21160</i>	Bus Locked 114–115
cluster b. see cluster b, ADSF-21100 cluster buses	BusMode1:4 119
connections of 83	Clock 120
	Data 120
interface to SharcFIN 86, 103	Destructive FIFO Read Enable 113
locking access to 113–115	H1F0 En 117-118
memory mapping to SharcFIN 106–110	H2F0 En 117-118
selecting RPBA mode for 15	H3F0 En 117-118
flag connections	H4F0 En 117-118
see also flags	HHPres0:1 114-115
configuring via jumpers 18	Last Reset Source 114–115
configuring with SharcFIN interrupt multiplexer 123– 126	Overridden A0 113
lists of 70–74, 81	Pbus Ack Enable 116-117
function of 43	Pbus Reset 116–117
	PCI to Pbus Wait 116
internal memory of 74 interrupt connections	PMC Flg/Int En 119
see also <i>interrupts</i>	RCV0_FIFO_EF 114
*	RCV1_FIFO_EF 114
configuring with SharcFIN interrupt multiplexer 105, 123–126	SD Bank Size 0:1 121
lists of 70–74, 81	SD Reset 121
link port connections 70–74, 77–78	SD RF Size 121
location of 41	SPCI Done 114
memory select lines	WatchdogEn0:1 117-118
see also memory select lines, ADSP-21160	Window A0:4 122
accessing external memory via 93–95, 106–110	BittWare Configuration Manager 29, 93, 104
connections of 70–74, 106–110	BittWare mezzanine interface 45, 55
memory structure of 74	block diagrams
multiprocessor memory 74, 106, 109	of board 3, 68
programming details for 91–95	of PCI interface 84, 87, 88
SDRAM timing from 104	of SharcFIN ASIC 85
serial port connections 70–76	of software tools 5
architecture	boot mode, selecting the 16
of ADSP-21160s 70–83	boot program 132
of board	booting
block diagram of 3, 68	via Flash RAM 16, 97, 132-133
description of 2–4, 67–90	via host 16, 96
of PCI interface 84–89	via link ports 16, 96, 132–133
of PMC interfaces 90	bridges. See PCI-to-PCI bridges and SharcFIN ASIC
of SharcFIN ASIC 85–86	buffered inverted flag outputs
of software 5	description of 55–56

flag connections to 70–74, 79–82	board, verifying 29
location of 45	jumpers. See jumpers, configuration
pinout of 56	registers, SharcFIN
bus arbitration 15	see also SharcFIN ASIC and registers
bus mastering DMA, PCI 101	accessing 107
bus mode lines, PMC 118–119	setting the 111–126
buses	configuring
see also PCI bus and peripheral bus	flag connections. See <i>flags</i>
I2C bus 120–121	Hammerhead-6U-cPCI 13–26
peripheral bus 89	interrupt connections. See interrupts
primary PCI 86-88	connectors, external
secondary PCI 86–88	function of 46-62
	location of 45
С	pinouts for 47–62
cables	controller, SDRAM 103–104
external power 24	
external reset 23	D
link port 22	debugger. See ICE emulator and VisualDSP Target
RS-232 25	debugging
serial port 22	with ICE emulator 127–129
clocks	with VisualDSP Target 129–130
21160 oscillators	Diag21k 28, 31–36
function of 43	displaying board information 32–33
location of 40	exiting 36
standalone mode clock jumper 19	loading and executing program 34–35
UART oscillator	starting 32
function of 43	testing multiple processors 35–36
location of 40	testing the board's memory 33–34
cluster A, ADSP-21160	diagnostic utilities 28, 31–36
buffered inverted flag outputs, connections to 55–56	see also <i>Diag21k</i> and <i>DspBad</i>
external reset connections 54	diagrams, block. See <i>block diagrams</i>
flag connections of 70–72, 79, 81	DMA
interrupt connections of 70–72, 79, 81	access, SDRAM 104
link port connections of 70–72, 77	channels, SharcFIN 42, 101
PMC interface 59–60	FIFOs 113
rear panel I/O, connections to 49	PCI side 101
RS-232 connections 52–53	SHARC side 101
serial port connections of 70–72, 76	DSP21k-SF Toolkit
cluster B, ADSP-21160	BittWare Configuration Manager 29, 93, 104
buffered inverted flag outputs, connections to 55–56	diagnostic utilities 28, 31–36
external reset connections 54	installing 28–29
flag connections of 72-74, 80, 81	libraries
interrupt connections of 72–74, 80, 81	DspHost 28
link port connections of 72–74, 78	Host Interface Library 28
PMC interface 61–62	overview of 5, 9, 28
rear panel I/O, connections to 50	DspBad 28, 31
RS-232 connections 52–53	DSPs. See <i>ADSP-21160</i>
serial port connections of 72–74, 76	
cluster bus, ADSP-21160. See ADSP-21160	E
code development tools, installing 27	EEPROM 104–105
CompactPCI	
chassis 29–30	emulator. See <i>ICE emulator</i>
interface	example software 31
location of 45	expansion connectors 45, 55 external
pinout of 47–48	external connectors. See <i>connectors, external</i>
configuration	devices, connecting to board 22–26
	uevices, connecting to board 22-20

2 Index

link ports 49–50	on-board 105, 120
see also <i>link ports</i>	PMC 105, 121
power connector 57	I2O support 42, 102
see also <i>power</i>	ICE emulator
reset connector 54	connecting to Hammerhead-6U-cPCI 24, 128
see also reset connector, external	description of 5, 9, 127–128
serial ports 49–50	using with Hammerhead-6U-cPCI 127-129
see also <i>serial ports</i>	installing
see also sarai pora	code development tools 27
-	DSP21k-SF Toolkit 28–29
F	Hammerhead-6U-cPCI 29–30
features	testing the installation 31–36
of Hammerhead-6U-cPCI 2	internal memory, ADSP-21160 74
of SharcFIN ASIC 42	
flag and interrupt status registers 112, 125–126	interprocessor
flag outputs, buffered inverted 55, 70-74, 79-82	flags 70–74, 79–82
flags	interrupts 70–74, 79–82
ADSP-21160 connections	link ports 70–74, 77–78
configuring the 18, 124–125	serial ports 70–74
diagrams of 79–80	interrupt configuration jumpers, SharcFIN 18, 71–74, 79–83
list of 70–74, 81	interrupt multiplexer, SharcFIN
to rear panel I/O 49–50, 70–74, 81–82	function of 86, 105
to SharcFIN 79–83, 124–125	generating PCI interrupts via 105
PCI bus 124–125	interrupt connections 70–74, 79–83, 123–126
peripheral bus 124–125	see also SharcFIN ASIC
• •	interrupts
PMC interface 124–125	ADSP-21160 connections
SharcFIN 18, 79–83, 123–125	configuring the 123–126
UART 18, 79–83, 124–125	diagrams of 79–80
Flash 43	lists of 70–74, 81
accessing	to rear panel I/O 49–50, 81–82
from ADSP-21160s 70–74, 94, 106–108	to SharcFIN 123–126
from PCI interface 106–108	PCI 102, 105, 123–126
booting 16, 97, 132–133	PMC 123–126
location of 41	SharcFIN connections
memory mapping of 106–108	
	configuring the 18, 123–126
Н	to ADSP-21160s 70-74, 79-83, 123-126
Hammerhead-6U-cPCI	
	J
see also architecture and features	JTAG connector
configuring the 13–26	connecting ICE to 24, 128
connecting external devices to 22–26	location of 45
installing the 29–30	pinout of 51
operation, preparing for 11–38	jumpers, configuration 13–??, 63–65
power requirements for 57	boot mode jumpers 16
resetting the 37–38	location of 14, 63
unpacking the 12	
hardware components, overview of 39–65	RPBA mode select jumpers 15 secondary PCI bus signal level jumpers 17
host booting 16, 96	
Host Interface Library 28	secondary PCI bus speed jumpers 17
see also DSP21k-SF Toolkit	setting the 13-??
host interface tools. See DSP21k-SF Toolkit	SharcFIN interrupt jumpers 18, 71–74, 79–83
	standalone mode jumpers 19
1	
I IOC :	L
I2C interface 104–105	LEDs
controlling the 120–121	description of 44
	accompanion of the

User's Guide Hammerhead-6U-cPCI

mag connections to 70-74, 79-82	speed of 87-88
location of 41	standalone primary PCI voltage jumper 19
link booting 16, 96, 132-133	secondary
link ports	configuring signal level of 17
see also rear panel I/O	configuring speed of 17
ADSP-21160 connections 70–74, 77–78	connections of 86–88
cables, connecting to board 22	speed of 87–88
external 49–50, 77–78	PCI interface
External 43-30, 11-10	architecture of 84–89
M	base address registers 106–110
mailbox registers, PCI 102	initializing the 133
MATLAB interface 10	PCI-to-DSP interface 87–88
memory	PCI-to-PCI interface 87
external	programming details for 101–110
see also <i>Flash</i> and <i>SDRAM</i>	resetting board via 38
accessing via MS0-MS3 93–95	SharcFIN PCI interface
changing MSIZE of banks 93	mailbox registers 102
internal 74	PCI side DMA 101
	PCI side interrupts 102, 123-126
multiprocessor. See multiprocessor memory	PCI side single access 102
structure, ADSP-21160 74	see also SharcFIN ASIC
unbanked 95	PCI-to-PCI bridges
memory map, SharcFIN	connections of 86–88
overview of 106–110	function of 42
to ADSP-21160 cluster buses 106–110	location of 40
to control registers 103, 107	
to Flash 108	peripheral bus
to PCI bus 106-110	accessing
to peripheral bus 104, 108	via ADSP-21160s 92–95, 104, 106, 108
to SDRAM 103, 110	via PCI bus 104, 106, 108
to UART 108	Ack line 116–117
memory select lines, ADSP-21160	configuring wait cycles of 116
accessing memory banks via 93-95	flag connections of 124–125
connections of 70–74, 106–110	interface to SharcFIN 86, 104
MS0 70–74, 106, 110	memory mapping of 104, 108
MS1 70–74, 106, 108	overview of 89
	speed of 89
MS2 70-74, ??-101, 106-107	Peripheral Bus Configuration Register 112, 116–117
MS3 70–74, 106, 108	pinouts
MMS. See multiprocessor memory	buffered inverted flag outputs 56
MS (memory select). See <i>memory select lines, ADSP-21160</i>	CompactPCI interface 47–48
MSIZE 93	JTAG header 51
multiprocessor memory	PMC+ sites 59-62
accessing 92, 106, 109	power connector, external 57
definition of 74	•
	rear panel I/O 49–50
0	reset connector, external 54
Onboard I2C Control Register 112, 120	RS-232 ports 52
operation, standalone. See <i>standalone mode</i>	TDM serial port switches 20
	PMC
oscillators, on-board. See <i>clocks</i>	I2C interface 105, 121
	interfaces
Р	architecture of 90
PCI bus mastering DMA 101	bus mode lines 119
PCI buses	description of 58
memory mapping to SharcFIN 106–110	incompatibilities with 26
primary	location of 45
connections of 86–88	pinouts of 59–62
COHHECTIONS OF OO-OO	r

4 Index

module, connecting to board 25–26	pinout of 54
PMC I2C Control Register 112, 121	resetting board via 38, 54
PMC+ extensions 58, 90	reset jumper, standalone mode 19
see also PMC	reset line, PMC+ 90
I2C interface 90	reset source, determining last 114–115
link port connections 70–74, 77–78, 90	resetting
reset line 90	board
serial port connections 70–76, 90	via external reset connector 23, 38, 54
•	via PCI interface 38
PMCA Configuration Register 112, 118–119	
PMCB Status Register 112	via PMC+ interfaces 90
power	via watchdog timer 37–38
connector, external	peripheral bus, devices on 116–117
connecting cable to 24	RPBA mode, selecting the 15
location of 45	RS-232
pinout of 57	cable
requirements 57	connecting to board 25
supply, connecting a 24, 133	pinout of 53
primary PCI bus. See <i>PCI buses</i>	connector
processors. See ADSP-21160	location of 45
programming details	pinout of 52
ADSP-21160 91–95	UART. See <i>UARTs, RS-232</i>
SharcFIN 99-126	0.1101.500 0.1101.5, 1.5 202
Sharet in 55-120	•
	S
Q	SDRAM 43, 56
QL5064	see also SODIMM
documentation for 8	accessing
	from ADSP-21160s 92-94, 110
R	from PCI interface 103-104, 110
	ADSP-21160 memory select location of 70–74, 92–94, 110
rear panel I/O	control registers
flag connections 70–74, 79–82	SDRAM Configuration Word Register 121–122
interrupt connections 70–74, 79–82	SDRAM Size Configuration Register 121
link port connections 49–50, 70–74, 77–78	
location of connectors 45	SDRAM Window Register 121–122
pinout of 49–50	controller, SharcFIN 103–104
TDM serial connections 20-21, 49-50, 70-76	DMA-based access of 101, 104
registers	memory mapping of 110
SharcFIN	size of, configuring the 121
accessing the 106–107	timing of from ADSP-21160s 104
Address Override Register 113–114	secondary PCI buses. See <i>PCI buses</i>
addresses of 112	serial ports
flag and interrupt status registers 125–126	ADSP-21160
	diagrams of 76
interrupt configuration registers 123–124	list of 70-74
Onboard I2C Control Register 120	cables, connecting to board 22
Peripheral Bus Configuration Register 116–117	TDM
PMC I2C Control Register 121	see also rear panel I/O
PMCA Configuration Register 118–119	configuring the 20–21
SDRAM Configuration Word Register 121–122	connections to DSPs 70–76
SDRAM Size Configuration Register 121	external 49–50
SDRAM Window Register 121–122	
Status Register 114–115	SharcFIN ASIC
Watchdog Configuration Register 37, 117–118	ADSP-21160 bus interface 86, 103
SYSCON 93, 113	ADSP-21160 memory select location 70–74, 92–95
reset connector, external	architecture of 85–86
connecting cable to 23	DMA access, SDRAM 101, 104
location of 45	DMA channels 42, 101
iocuatili di 10	

User's Guide Hammerhead-6U-cPCI

features of 42	with DspBad 31
I2C interface 104-105, 120-121	with example software 31
I2O support 42, 102	timer, watchdog. See watchdog timer
interrupt connections	troubleshooting 135–136
configuring via jumpers 18	o .
configuring via registers 123–124	U
to ADSP-21160s 70–74, 79–83, 123–126	_
interrupt multiplexer 70–74, 82, 105, 123–126	UART Interface Register 112
see also interrupt multiplexer, SharcFIN	UARTs, RS-232
location of 41	accessing
PCI interface 101–110	from ADSP-21160s 92–95, 108
peripheral bus interface 86, 104	from PCI bus 108
programming details for 99–126	ADSP-21160 memory select location 70–74, 92–95
registers, PCI	description of 44
accessing from ADSP-21160s 92–95	flag connections, configuring 18, 124–125
· ·	location of 40
accessing from PCI interface 107	memory mapping of 108
address range of 101	unbanked memory space 95, 108
mailbox registers 102	unpacking Hammerhead-6U-cPCI 12
registers, user-configurable	
accessing from ADSP-21160s 92-95, 103-126	V
accessing from PCI interface 103, 107	
setting the 111–126	VisualDSP
SDRAM controller 103–104	installing 27
TDM serial connections 76	overview of 5, 8
theory of operation 100–105	VisualDSP Target
SharcLAB 10	debugging with 129–130
Simulink 10	installing 27, 130
SODIMM 45, 56	overview of 5, 8
software tools	
DSP21k-SF Toolkit 5, 9, 28–36	W
example software 31	wait cycles, peripheral bus 116-117
in-circuit emulators. See ICE emulators	Watchdog Configuration Register 37, 112, 117–118
SharcLAB 10	watchdog timer
SpeedDSP 9	enabling 117–118
VisualDSP 5, 8, 27	location of 41
VisualDSP Target 5, 8, 27, 129-130	overview of 44
SpeedDSP 9	resetting board via 37–38
standalone mode	timeout of, setting the 117–118
clock 19	timoodt of, setting the 117-110
jumpers, setting the 19	
operating board in 131–133	
primary PCI voltage 19	
reset 19	
Status Register 112, 114–115	
switches, TDM serial port 65	
configuring the 20–21	
location of 14, 63	
pinout of 20	
SYSCON register 93, 113	
system settings, accessing 107	
ojotem settingo, uccessing 101	
T	
TDM serial ports. See serial ports	
test points. See buffered inverted flag outputs and LEDs	
testing the installation	
with Diag21k 32–36	
O .	

6 Index