ctheorems

sahasatvik

https://github.com/sahasatvik/typst-theorems

Contents

1. Introduction	1
2. Feature demonstration	1
2.1. Proofs	1
2.2. Suppressing numbering	2
2.3. Limiting depth	
2.4. Custom formatting	
2.5. Labels and references	
2.6. Overriding base	3

1. Introduction

This document only includes the examples given in the manual; each one of these has been explained in full detail there.

2. Feature demonstration

Theorem 2.1 (Euclid): There are infinitely many primes.

Lemma 2.2: If *n* divides both *x* and *y*, it also divides x - y.

Corollary 2.2.1: If n divides two consecutive natural numbers, then n = 1.

2.1. Proofs

Proof of <u>Theorem 2.1</u>: Suppose to the contrary that $p_1, p_2, ..., p_n$ is a finite enumeration of all primes. Set $P = p_1 p_2 ... p_n$. Since P+1 is not in our list, it cannot be prime. Thus, some prime factor p_j divides P+1. Since p_j also divides P, it must divide the difference (P+1)-P=1, a contradiction.

Theorem 2.1.1: There are arbitrarily long stretches of composite numbers.

Proof: For any n > 2, consider

$$n! + 2$$
, $n! + 3$, ..., $n! + n$

2.2. Suppressing numbering

Example: The numbers 2, 3, and 17 are prime.

Lemma: The square of any even number is divisible by 4.

Lemma 2.2.1: The square of any odd number is one more than a multiple of 4.

Lemma 42: The square of any natural number cannot be two more than a multiple of 4.

2.3. Limiting depth

Definition 2.1 (Prime numbers): A natural number is called a *prime number* if it is greater than 1 and cannot be written as the product of two smaller natural numbers.

Definition 2.2 (Composite numbers): A natural number is called a *composite number* if it is greater than 1 and not prime.

Example 2.3.0.0.1: The numbers 4, 6, and 42 are composite.

2.4. Custom formatting

Lemma 2.4.1: All even natural numbers greater than 2 are composite.

PROOF: Every even natural number n can be written as the product of the natural numbers 2 and n/2. When n > 2, both of these are smaller than 2 itself.

Notation (I): The variable p is reserved for prime numbers.

Notation (II) for Reals: The variable x is reserved for real numbers.

Lem. 2.4.2: All multiples of 3 greater than 3 are composite.

2.5. Labels and references

Recall that there are infinitely many prime numbers via **Theorem 2.1**.

You can reference future environments too, like Cor. 2.5.1.1.

Lemma 2.5.1: All primes apart from 2 and 3 are of the form $6k \pm 1$.

You can modify the supplement and numbering to be used in references, like Lem. (2.5.1).

2.6. Overriding base

Remark 2.6.1: There are infinitely many composite numbers.

Corollary 2.5.1.1: All primes greater than 2 are odd.

Remark 2.5.1.1.1: Two is a lone prime.