

Statistical methods(UKSta)

Introduction

Dr. Hans-G. Ludwig
Summer term 2018
(Based on original lecture by Prof. Dr. N. Christlieb)

Code: UKSta	Modulname: Statistical Methods
Art des Moduls	Wahlpflichtmodul
Modulbetreuer	
Sprache	Englisch
Leistungspunkte*	3
Lerninhalte des Moduls*	Concept of probability, probability distributions, Bayesian reasoning errors, error propagiation, estimation, uncertainty orthodox hypothesis testing (e.g. t-test) and Bayesian model comparison linear models and regression binomial and poisson processes likelihood-based modelling: prior, likelihood, posterior; maximum likelihood, least squares, chi-squared Bayesian modelling using numerical (Monte Carlo) methods: sampling, integration nonlinear and nonparametric methods: density estimation, kernel methods, regularization statistics with the R pgrogramming language
Lernziele	learning the principles and methods of probability and statistics needed for analysing, modelling and interpreting data
Lehr- und Lernformen*	Laboratory course, homework Literatur: Notes provided by lecture, plus book/internet recommendations Besonderheiten: course given in English; block course of 10 half days over two weeks (mornings)
Voraussetzungen für die Teilnahme, ggf. vorgeschriebenes oder empfohlenes Studiensemester*	Notwendige/nützliche Vorkenntnisse: basic (high school) statistics and first semester maths (for physicists). Recommended from the third semester
Verwendbarkeit des Moduls*	(siehe Präambel).
Voraussetzung für die Vergabe von Leistungspunkten, Arbeitsaufwand und Noten*	Prüfungsmodalitäten: Doing the exercises in class, submitting the homework, presenting the homework at least once
Häufigkeit des Angebots von Modulen*	Sommersemester
Dauer*	2 Wochen

What is statistics?

- Description of data
 - Mean; median; variance; quartiles of a distribution
 - Diagrams; tables
 - Principal component analysis
- Inference from data; decisions
 - Determination of the parameters of a model
 - Do the measurements agree with the model?
 - Do two sets of measurements/properties of two samples agree with each other?
- Understanding structure in data
 - Are two parameters correlated with each other?
 - Multivariate analysis; cluster analysis; outlier detection.

UKSta, SS 18 3/29

The role of statistics

- "The logic behind science"
- Not only important for describing/analysing given datasets, but also for planning/executing experiments as well as designing surveys and compiling samples.

UKSta, SS 18 4/29

Statistical diversity

- Genetics, central role in bioinformatics
- Kinetic theory of gases
- Design of computer operating system (e.g., theory of queues)
- Noise in electrical devices
- Model atmospheric turbulence
- Insurance and finance
- Theory of complex systems

... and much more

UKSta, SS 18 5/29

How to deal with the diversity?

- Here: emphasis on Monte Carlo approach
- Importance constantly increasing due to economic computing resources
- Books often deal with methods specific to a particular subject
- Overview is difficult to obtain

UKSta, SS 18 6/29

Course aims

Main aims:

- Learn basic concepts of statistics
- Learn how to use computational tools for (describing)/(analysing)/(inferences from) data
- Practical approach emphasized, only some theory
- Not a full fledged R-programming course
 (online https://www.coursera.org/course/rprog)

Side aims:

Learn how to work under Linux, and with the editor Emacs.

UKSta, SS 18 7/29

Course topics: probability

$$p := \frac{\text{number of favourable events}}{\text{total number of events}}$$

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$

$$p(A|B) = \frac{p(A \text{ and } B)}{p(B)}$$

- (1) For a random event A, $0 \le p(A) \le 1$.
- (2) For the sure event A, p(A) = 1.
- (3) If A and B are exclusive events, then

$$p(A \text{ or } B) = p(A) + p(B).$$

UKSta, SS 18 8/29

Course topics: probability distributions

UKSta, SS 18

Course topics: covariance and correlation

Consider measurements x_i and y_i of the variables x and y. The covariance σ_{xy} is related to to the correlation coefficient $\rho(x,y)$,

$$\rho(x,y) = \frac{\sigma_{xy}}{\sigma_x \sigma_y}.$$

It can be estimated by

$$\hat{\rho}(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}.$$

UKSta, SS 18 10/29

Course topics: Monte Carlo methods

- Method of choice when statistical problems can not (easily) be solved analytically.
- Simulation of data sets;
 e.g. simulated
 measurements with
 uncertainties following a
 Gaussian distribution.
- Monte-Carlo integration.

UKSta, SS 18 11/29

Course topics: Parameter estimation

Let x_1, x_2, \ldots, x_n be measurements which follow the probability distribution f(x|a), where a is one or more free parameter(s). The likelihood function L(a) is defined as

$$L(a) = f(x_1|a) \cdot f(x_2|a) \cdot \cdot \cdot f(x_n|a) = \prod_{i=1}^{n} f(x_i|a).$$

L(a) is the probability for measuring the set of values x_1, x_2, \ldots, x_n , given the parameter(s) a and the probability distribution function f(x|a).

According to the maximum likelihood principle, the best estimate \hat{a} of a is the one which maximizes the likelihood function; i.e.,

$$L(a) \stackrel{!}{=} \text{maximum}.$$

UKSta, SS 18 12/29

Course topics: Error propagation

We consider a transformation

$$y_i(x_1, x_2, \dots, x_n), \quad i = 1 \dots m.$$

The law of error propagation is

$$\mathbf{C}[\mathbf{y}] = \mathbf{B}\mathbf{C}[\mathbf{x}]\mathbf{B}^T,$$

where C[y] and C[x] are the covariance matrices for y and x, respectively, and

$$\mathbf{B} = \begin{pmatrix} \partial y_1/\partial x_1 & \partial y_1/\partial x_2 & \cdots & \partial y_1/\partial x_n \\ \partial y_2/\partial x_1 & \partial y_2/\partial x_2 & \cdots & \partial y_2/\partial x_n \\ \vdots & \vdots & \ddots & \vdots \\ \partial y_m/\partial x_1 & \partial y_m/\partial x_2 & \cdots & \partial y_m/\partial x_n \end{pmatrix}.$$

UKSta, SS 18 13/29

Course topics: Linear regression

$$L(a,b) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[y_i - (ax_i + b)]^2}{2\sigma_i^2}\right\}$$

$$l(a,b) = \text{const.} - \frac{1}{2\sigma^2} \sum_{i=1}^{n} [y_i - (ax_i + b)]^2.$$

$$a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{1}{n} (\sum y_i - a \sum x_i)$$

UKSta, SS 18 14/29

Course topics: hypothesis testing

Test	H_0	Assumptions	Parameters	Test Statistic
Student's t test	$\mu_{x} = \mu_{y}$	Data is Gaussian	μ_x , μ_y , σ_x , σ_y	t
F test	$\sigma_{x} = \sigma_{y}$	Data is Gaussian	σ_x , σ_y	F
χ² test	Same parent distribution	(<i>O_i - E_i</i>)² is Gaussian	_	χ^2
KS test	Same parent distribution		_	D
U test	Same parent distribution	_	_	U_A , U_B
Spearman	Data is uncorrelated	_	_	$r_{\rm s}$
Runs test	Data is random	_	_	r

UKSta, SS 18 15/29

Course topics: hypothesis testing

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_x^2}{n} + \frac{s_y^2}{m}}} = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)} + \frac{\sum (y_i - \bar{y})^2}{m(m-1)}}},$$

$$F = \frac{s_x^2}{s_y^2} = \frac{m-1}{n-1} \cdot \frac{\sum (x_i - \bar{x})^2}{\sum (y_i - \bar{y})^2}.$$

Bayesian methods

- Basic idea behind Bayesian approach
- The role of a prior
- Bayesian parameter estimation
- Bayesian model selection

J. Bayes.

UKSta, SS 18 17/29

R

- Programming language and environment for statistics and data analysis
- Platforms: Linux, MacOS X, Windows
- Published under GNU General Public License (GPL); i.e., freely available (see www.r-project.org)
- Command-line; interpreter
- Object oriented (will not play a big role)
- Own programs can easily be integrated
- Extensive statistics library but here a lot DIY

Very powerful graphics package

UKSta, SS 18 18/99

Graphics produced in R

UKSta, SS 18 20/29

Preliminary course plan

Day		Topic(s)
Mon	6 Aug	Org.; Linux, Emacs, R tutorial
Tue	7 Aug	Probability; Probability distributions, more R
Wed	8 Aug	Random numbers; Monte Carlo methods 1
Thu	9 Aug	Monte Carlo methods 2
Fri	10 Aug	Bootstrap, Maximum Entropy
Mon	13 Aug	Maximum Likelihood Estimation
Tue	14 Aug	Bayesian parameter estimation
Wed	15 Aug	Hypothesis testing 1
Thu	16 Aug	Hypothesis testing 2
Fri	17 Aug	Classification, EM procedure

UKSta, SS 18 21/29

Course is under development!

- Time management? Overlap between days?
- Feedback appreciated

Course format

- Time: Mo-Fr 9:00-13:00 with break 11:00-11:15
- Presence is mandatory; exceptions have to be discussed with me in advance.
- 14:00-17:00 Work on assignments: CIP Pool or home
- The results of homework assignments have to be submitted in writing by 9:00 the next day as single PDF (in addition R-notebook) via Moodle
- To pass the course and earn the 3 ECTS credit points, 60% of the homework assignments have to be solved in a satisfactory manner.
- In cases, work-over of unsatisfactory solutions

UKSta, SS 18 23/29

Resources

- Lecture slides on Moodle Note: lecture slides ≠ script!
- Other handouts
- Online help pages and tutorials
- Course page in Moodle:

elearning2.uni-heidelberg.de/course/view.php?id=18716

Enrollment key: HD140283

Books

UKSta, SS 18 24/29

Coryn Bailer-Jones

Practical Bayesian Inference:

A Primer for Physical Scientists

1st edition, 2017

29 €

Very useful for the course.
Some examples taken from the Book. Available online at UB Heidelberg.

R-scripts of the book can be found at web site of Coryn Bailer-Jones: http://www2.mpia-hd.mpg.de/homes/calj/

UKSta, SS 18 25/29

Erwin Kreyszig,
Statistische Methoden und ihre
Anwendungen
7th edition, 1979 (!)
40 €

(unfortunately in German only)

UKSta, SS 18 26/29

John A. Rice,
Mathematical Statistics and Data
Analysis
3th edition, 2007
26 €

UKSta, SS 18 27/29

Wall/Jenkins, *Practical Statistics* for Astronomers, Cambridge University Press, 2003; paperback, 41 €

UKSta, SS 18 28/29

Sivia & Skilling
Data Analysis: A Bayesian Tutorial
1st edition, 2006
30 €

UKSta, SS 18 29/29

R books

UKSta, SS 18 30/29

Press/Teukolsky/Vetterling/Flannery
Numerical Recipes
Cambridge Univ. Press 2007
70 €

UKSta, SS 18 31/29

Further resources

- Coryn Bailer-Jones' lecture notes on Computational Statistics, outdated! (on course Moodle page)
- Article by David Hogg et al. (2010): Data Analysis Recipes (on course Moodle page)
- Reference Cards for R and Emacs (on course Moodle page)
- R project online: www.r-project.org
- R project related quick reference: www.statmethods.net
- Wikipedia, in particular English pages!

UKSta, SS 18 32/29