Devoir à la maison n° 11

À rendre le 13 janvier

I. Étude d'une suite implicite

- 1) Montrer que l'équation $e^x = x^n$ admet deux racines positives $u_n < v_n$, pour n assez grand.
- 2) Montrer que $v_n \xrightarrow[n \to +\infty]{} +\infty$.
- 3) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 4) Trouver sa limite ℓ , montrer que $n(u_n \ell)$ tend vers 1.

II. Étude d'une suite récurrente

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = \frac{1}{4}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 - \sqrt{u_n}$.

On note f la fonction $x \mapsto 1 - \sqrt{x}$, définie sur \mathbb{R}_+ .

- 1) Justifier la bonne définition de $(u_n)_{n\in\mathbb{N}}$. Qu'en déduit-on au passage?
- 2) a) Montrer que f possède un et un seul point fixe α sur [0,1], dont on précisera la valeur exacte.
 - **b)** Montrer proprement que $u_0 \leqslant \alpha \leqslant u_1$.
 - c) Montrer que pour tout $n \in \mathbb{N}$: $u_{2n} \leqslant \alpha \leqslant u_{2n+1}$.
- 3) Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont convergentes. On notera leurs limites respectives ℓ et ℓ' .
- 4) a) Déterminer les points fixes de $f \circ f$ sur [0,1].

 Indication: On pourra montrer que les points fixes de $f \circ f$ sont racines d'un polynôme de degré 4 et chercher deux racines évidentes de ce polynôme.
 - **b)** En déduire que $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.

— FIN —