SEQUENCE LISTING

DECOMINE DISTING	
<110> Kapeller-Libermann, Rosana Carroll, Joseph M.	
<120> 23565, A NOVEL HUMAN ZINC CARBOXYPEPTIDASE FAMILY MEMBER AND USES THEREOF	
<130> 10448-142001	
<150> 60/269,440 <151> 2001-02-16	
<160> 6	
<170> FastSEQ for Windows Version 4.0	
<210> 1 <211> 1687 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (160)(1467)	
<221> misc_feature <222> 10, 1685 <223> n = A,T,C or G	
<400> 1	
cccacgcgtn cgggcatgtg ggagccacat gctgggtgcc ccagacagcc taatgctcat 60 tctcaggccg ggctttccag cctctaggtg ctgtgctgtc ctgaggcctg ggccatggtg 120 cccaaggaaa gcccctgaag ctcaccagga ggaagaagc atg cag ggc act cct 174 Met Gln Gly Thr Pro 1 5	
gga ggc ggg acg cgc cct ggg cca tcc ccc gtg gac agg cgg acg ctc 222 Gly Gly Gly Thr Arg Pro Gly Pro Ser Pro Val Asp Arg Arg Thr Leu 10 15 20	
ctg gtc ttc agc ttt atc ctg gca gct ttg ggc caa atg aat ttc 270 Leu Val Phe Ser Phe Ile Leu Ala Ala Leu Gly Gln Met Asn Phe 25 30 35	
aca ggg gac cag gtt ctt cga gtc ctg gcc aaa gat gag aag cag ctt 318 Thr Gly Asp Gln Val Leu Arg Val Leu Ala Lys Asp Glu Lys Gln Leu 40 45 50	
tca ctt ctc ggg gat ctg gag ggc ctg aaa ccc cag aag gtg gac ttc 366 Ser Leu Leu Gly Asp Leu Glu Gly Leu Lys Pro Gln Lys Val Asp Phe 55 60 65	
tgg cgt ggc cca gcc agg ccc agc ctc cct gtg gat atg aga gtt cct 414 Trp Arg Gly Pro Ala Arg Pro Ser Leu Pro Val Asp Met Arg Val Pro	

70					75					80					85	
ttc Phe	tcc Ser	gaa Glu	ctg Leu	aaa Lys 90	Asp	atc Ile	aaa Lys	gct Ala	tat Tyr 95	ctg Leu	gag Glu	tct Ser	cat His	gga Gly 100	ctt Leu	462
gct Ala	tac Tyr	agc Ser	atc Ile 105	atg Met	ata Ile	aag Lys	gac Asp	atc Ile 110	cag Gln	gtg Val	ctg Leu	ctg Leu	gat Asp 115	gag Glu	gaa Glu	510
aga Arg	cag Gln	gcc Ala 120	atg Met	gcg Ala	aaa Lys	tcc Ser	cgc Arg 125	cgg Arg	ctg Leu	gag Glu	cgc Arg	agc Ser 130	acc Thr	aac Asn	agc Ser	558
ttc Phe	agt Ser 135	tac Tyr	tca Ser	tca Ser	tac Tyr	cac His 140	acc Thr	ctg Leu	gag Glu	gag Glu	ata Ile 145	tat Tyr	agc Ser	tgg Trp	att Ile	606
gac Asp 150	aac Asn	ttt Phe	gta Val	atg Met	gag Glu 155	cat His	tcc Ser	gat Asp	att Ile	gtc Val 160	tca Ser	aaa Lys	att Ile	cag Gln	att Ile 165	654
ggc Gly	aac Asn	agc Ser	ttt Phe	gaa Glu 170	aac Asn	cag Gln	tcc Ser	att Ile	ctt Leu 175	gtc Val	ctg Leu	aag Lys	ttc Phe	agc Ser 180	act Thr	702
gga Gly	ggt Gly	tct Ser	cgg Arg 185	cac His	cca Pro	gcc Ala	atc Ile	tgg Trp 190	atc Ile	gac Asp	act Thr	gga Gly	att Ile 195	cac His	tcc Ser	750
cgg Arg	gag Glu	tgg Trp 200	atc Ile	acc Thr	cat His	gcc Ala	acc Thr 205	ggc Gly	atc Ile	tgg Trp	act Thr	gcc Ala 210	aat Asn	aag Lys	att Ile	798
gtc Val	agt Ser 215	gat Asp	tat Tyr	ggc Gly	aaa Lys	gac Asp 220	cgt Arg	gtc Val	ctg Leu	aca Thr	gac Asp 225	ata Ile	ctg Leu	aat Asn	gcc Ala	846
atg Met 230	gac Asp	atc Ile	ttc Phe	ata Ile	gag Glu 235	ctc Leu	gtc Val	aca Thr	aac Asn	cct Pro 240	gat Asp	ggg Gly	ttt Phe	gct Ala	ttt Phe 245	894
acc Thr	cac His	agc Ser	atg Met	aac Asn 250	cgc Arg	tta Leu	tgg Trp	cgg Arg	aag Lys 255	aac Asn	aag Lys	tcc Ser	atc Ile	aga Arg 260	cct Pro	942
gga Gly	atc Ile	ttc Phe	tgc Cys 265	atc Ile	ggc Gly	gtg Val	gat Asp	ctc Leu 270	aac Asn	agg Arg	aac Asn	tgg Trp	aag Lys 275	tcg Ser	ggt Gly	990
ttt Phe	Gly	gga Gly 280	aat Asn	ggt Gly	tct Ser	Asn	agc Ser 285	aac Asn	ccc Pro	tgc Cys	tca Ser	gaa Glu 290	act Thr	tat Tyr	cac His	1038
ggg Gly	ccc Pro 295	tcc Ser	cct Pro	cag Gln	tcg Ser	gag Glu 300	tcg Ser	gag Glu	gtg Val	gct Ala	gcc Ala 305	ata Ile	gtg Val	aac Asn	ttc Phe	1086

atc aca gcc cat ggc aac ttc aag gct ctg atc tcc atc cac agc tac Ile Thr Ala His Gly Asn Phe Lys Ala Leu Ile Ser Ile His Ser Tyr 310 315 320 325	1134										
tct cag atg ctt atg tac cct tac ggc cga ttg ctg gag ccc gtt tca Ser Gln Met Leu Met Tyr Pro Tyr Gly Arg Leu Leu Glu Pro Val Ser 330 335 340	1182										
aat cag agg gag ttg tac gat ctt gcc aag gat gcg gtg gag gcc ttg Asn Gln Arg Glu Leu Tyr Asp Leu Ala Lys Asp Ala Val Glu Ala Leu 345 350 355	1230										
tat aag gtc cat ggg atc gag tac att ttt ggc agc atc agc acc acc Tyr Lys Val His Gly Ile Glu Tyr Ile Phe Gly Ser Ile Ser Thr Thr 360 365 370	1278										
ctc tat gtg gcc agt ggg atc acc gtc gac tgg gcc tat gac agt ggc Leu Tyr Val Ala Ser Gly Ile Thr Val Asp Trp Ala Tyr Asp Ser Gly 375 380 385	1326										
atc aag tac gcc ttc agc ttt gag ctc cgg gac act ggg cag tat ggc Ile Lys Tyr Ala Phe Ser Phe Glu Leu Arg Asp Thr Gly Gln Tyr Gly 390 395 400 405	1374										
ttc ctg ctg ccg gcc aca cag atc atc ccc acg gcc cag gag acg tgg Phe Leu Leu Pro Ala Thr Gln Ile Ile Pro Thr Ala Gln Glu Thr Trp 410 415 420	1422										
atg gcg ctt cgg acc atc atg gag cac acc ctg aat cac ccc tac Met Ala Leu Arg Thr Ile Met Glu His Thr Leu Asn His Pro Tyr 425 430 435	1467										
tagcagcacg actgagggca ggaggctcca tecttetece caaggtetgt ggeteeteee gaaacecaag ttatgcatee ecateeceat geeeteatee egacetetta gaaaataaat acaagtttga acaggcaaaa aaaaaaaaaa											
<pre>ctttaagtga gggttaattt tagcttggca ctggccgncg <210> 2 <211> 436 <212> PRT <213> Homo sapiens</pre> 1687											
<400> 2											
Met Gln Gly Thr Pro Gly Gly Gly Thr Arg Pro Gly Pro Ser Pro Val 1 5 10 15											
Asp Arg Arg Thr Leu Leu Val Phe Ser Phe Ile Leu Ala Ala Leu 20 25 30											
Gly Gln Met Asn Phe Thr Gly Asp Gln Val Leu Arg Val Leu Ala Lys 35 40 45											
Asp Glu Lys Gln Leu Ser Leu Leu Gly Asp Leu Glu Gly Leu Lys Pro 50 55 60											
Gln Lys Val Asp Phe Trp Arg Gly Pro Ala Arg Pro Ser Leu Pro Val 65 70 75 80											
Asp Met Arg Val Pro Phe Ser Glu Leu Lys Asp Ile Lys Ala Tyr Leu 85 90 95											
Glu Ser His Gly Leu Ala Tyr Ser Ile Met Ile Lys Asp Ile Gln Val											

			100					105							
Leu	Leu	Asp		Glu	Ara	Gln	Ala	105 Met		Lvs	Ser	Ara	110 Arg	T.011	Glu
		115					120					125			
	130	Thr				135					140				
Ile 145	Tyr	Ser	Trp	Ile	Asp 150	Asn	Phe	Val	Met	Glu 155	His	Ser	Asp	Ile	Val 160
Ser	Lys	Ile	Gln	Ile 165	Gly	Asn	Ser	Phe	Glu 170		Gln	Ser	Ile	Leu 175	Val
Leu	Lys	Phe	Ser 180	Thr	Gly	Gly	Ser	Arg 185		Pro	Ala	Ile	Trp 190	Ile	Asp
Thr	Gly	Ile 195	His	Ser	Arg	Glu	Trp 200	Ile	Thr	His	Ala	Thr 205	Gly	Ile	Trp
Thr	Ala 210	Asn	Lys	Ile	Val	Ser 215	Asp	Tyr	Gly	Lys	Asp 220	Arg	Val	Leu	Thr
Asp 225	Ile	Leu	Asn	Ala	Met 230	Asp	Ile	Phe	Ile	Glu 235		Val	Thr	Asn	Pro 240
Asp	Gly	Phe	Ala	Phe 245	Thr	His	Ser	Met	Asn 250		Leu	Trp	Arg	Lys 255	Asn
Lys	Ser	Ile	Arg 260	Pro	Gly	Ile	Phe	Cys 265		Gly	Val	Asp	Leu 270	Asn	Arg
Asn	Trp	Lys 275	Ser	Gly	Phe	Gly	Gly 280	Asn	Gly	Ser	Asn	Ser 285	Asn	Pro	Cys
Ser	Glu 290	Thr	Tyr	His	Gly	Pro 295		Pro	Gln	Ser	Glu 300	Ser	Glu	Val	Ala
Ala 305	Ile	Val	Asn	Phe	Ile 310	Thr	Ala	His	Gly	Asn 315	Phe	Lys	Ala	Leu	Ile 320
		His		325					330	Tyr				335	Leu
		Pro	340					345					350	Lys	_
Ala	Val	Glu 355	Ala	Leu	Tyr	Lys	Val 360	His	Gly	Ile	Glu	Tyr 365	Ile	Phe	Gly
Ser	Ile 370	Ser	Thr	Thr	Leu	Tyr 375	Val	Ala	Ser	Gly	Ile 380	Thr	Val	Asp	Trp
Ala 385	Tyr	Asp	Ser	Gly	Ile 390	Lys	Tyr	Ala	Phe	Ser 395	Phe	Glu	Leu	Arg	Asp 400
		Gln		405					410					415	
Ala	Gln	Glu	Thr 420	Trp	Met	Ala	Leu	Arg 425	Thr	Ile	Met	Glu	His 430	Thr	Leu
Asn	His	Pro 435	Tyr												
<210	> 3														
<211> 1311															
<212> DNA <213> Homo sapiens															
·															
	<400> 3 atgcagggca ctcctggagg cgggacgcgc cctgggccat ccccgtgga caggcggacg														
atgc	aggg	ca c	tcct	ggag	ià cà	ggac	gcgc	cct	gggc	cat	cccc	cgtg	ga c	aggo	ggacq

atgcaggca ctcctggagg cgggacgcg cctgggccat ccccgtgga caggcggacg 60 ctcctggtct tcagctttat cctggcagca gctttgggc aaatgaattt cacaggggac 120 caggttcttc gagtcctgac caaagatgag aagcagcttt cacttctcgg ggatctggag 180 ggcctgaaac cccagaaggt ggacttctgg cgtggcccag ccaggcccag cctccctgtg 240 cttgcttaca gcatcatgat aaaggacatc caggtgctgc tggatgagga aagacaggcc 360 atggcgaaat cccgccggct ggagcgcagc accaacagct tcagttactc atcataccac 420

480

540

600

660

720

780

840

900

960

1020

1080

1140

1200

1260

1311

```
accetggagg agatatatag etggattgae aactttgtaa tggageatte egatattgte
 tcaaaaattc agattggcaa cagctttgaa aaccagtcca ttcttgtcct gaagttcagc
actggaggtt ctcggcaccc agccatctgg atcgacactg gaattcactc ccgggagtgg
atcacccatg ccaccggcat ctggactgcc aataagattg tcagtgatta tggcaaagac
cgtgtcctga cagacatact gaatgccatg gacatcttca tagagctcgt cacaaaccct
gatgggtttg cttttaccca cagcatgaac cgcttatggc ggaagaacaa gtccatcaga
cctggaatct tctgcatcgg cgtggatctc aacaggaact ggaagtcggg ttttggagga
aatggttcta acagcaaccc ctgctcagaa acttatcacg ggccctcccc tcagtcggag
tcggaggtgg ctgccatagt gaacttcatc acagcccatg gcaacttcaa ggctctgatc
tecatecaea getaetetea gatgettatg taccettaeg geegattget ggagecegtt
tcaaatcaga gggagttgta cgatcttgcc aaggatgcgg tggaggcctt gtataaggtc
catgggatcg agtacatttt tggcagcatc agcaccaccc tctatgtggc cagtgggatc
accgtcgact gggcctatga cagtggcatc aagtacgcct tcagctttga gctccgggac
actgggcagt atggcttcct gctgccggcc acacagatca tccccacggc ccaggagacg
tggatggcgc ttcggaccat catggagcac accetgaatc accectacta g
<210> 4
<211> 304
<212> PRT
<213> Artificial Sequence
<223> Consensus sequence
<400> 4
Tyr His Asn Leu Glu Glu Ile Tyr Ala Trp Leu Asp Leu Leu Val Ser
Asn Phe Pro Asp Leu Val Ser Lys Val Ser Ile Gly Lys Ser Tyr Glu
            20
Gly Arg Asp Leu Lys Val Leu Lys Ile Ser Asp Asn Pro Ala Thr Gly
                            40
Glu Asn Glu Pro Glu Val Phe Ala Val Ala Gly Trp Ile His Ala Arg
                        55
Glu Trp Val Thr Ser Ala Thr Leu Leu Trp Leu Leu Lys Glu Leu Val
                    70
                                         75
Ala Asn Tyr Gly Ser Asp Lys Thr Ile Thr Lys Leu Leu Asp Gly Leu
                85
                                    90
Asp Leu Phe Tyr Ile Leu Pro Val Phe Asn Pro Asp Gly Tyr Ala Tyr
                                105
Ser Ile Thr Thr Asp Ser Tyr Arg Met Trp Arg Lys Thr Arg Ser Pro
        115
                            120
Asn Ala Gly Ser Phe Cys Val Gly Thr Asp Pro Asn Arg Asn Trp Tyr
Ala Gln Trp Gly Gly Met Gly Ala Ser Ser Tyr Ser Pro Cys Ser Glu
                    150
                                        155
Thr Tyr Glu Gly Thr Ala Pro Phe Ser Glu Pro Glu Thr Lys Ala Val
                                    170
Glu Asp Phe Ile Arg Ser Trp Leu Gly Gly Gly Lys Gln Asn Ile Lys
            180
                                185
Ala Tyr Ile Thr Phe His Ser Tyr Ser Gln Leu Leu Leu Tyr Pro Tyr
                            200
Gly Tyr Asp Tyr Asn Leu Asn Pro Asp Ala Asn Asp Leu Asp Glu Leu
                        215
                                            220
Ser Asp Leu Lys Ile Ala Ala Asp Ala Leu Ser Ala Arg His Gly Thr
                    230
                                        235
Tyr Tyr Thr Leu Gly Leu Pro Gly Ser Ser Thr Ile Tyr Pro Ala Ser
                245
                                    250
```

```
Ala Gly Gly Ser Asp Asp Trp Ala Tyr Asp Val Gly Ile Ile Lys Tyr
                                     265
     Ala Phe Thr Phe Glu Leu Arg Pro Asp Thr Gly Ser Tyr Gly Asn Pro
                                  280
     Cys Phe Leu Leu Pro Glu Glu Gln Ile Ile Pro Thr Gly Ser Glu Glu
     <210> 5
     <211> 324
     <212> PRT
     <213> Artificial Sequence
     <220>
     <223> Consensus sequence
     <400> 5
     Tyr His Ser Tyr Glu Glu Ile Asn Ala Trp Leu Asp Asp Leu Ala Arg
    Asn Tyr Pro Asp Leu Thr Ser Val Ser Leu Ile Ser Ile Gly Lys Ser
    Tyr Glu Gly Arg Pro Ile Lys Val Leu Lys Ile Lys Pro Ala Val Phe
                                 40
    Ile Asp Ala Gly Ile His Ala Arg Glu Trp Ile Ala Pro Ala Thr Ala
ļ.
    Leu Tyr Leu Ile Asn Gln Leu Leu Thr Asn Glu Thr Glu Tyr Ser Lys
    Asp Pro Asp Asp Glu Gly Ser Val Thr Lys Leu Leu Asp Lys Leu Asp
                    85
                                         90
    Trp Tyr Ile Val Pro Val Met Asn Pro Asp Gly Tyr Glu Tyr Thr His
                100
                                    105
    Thr Ser Thr Asp Arg Leu Trp Arg Lys Asn Arg Ser Pro Asn Gly Ala
            115
                                120
    Ser Gly Ser Gln Gly Thr Trp Tyr Asn Cys Tyr Gly Val Asp Leu Asn
                            135
    Arg Asn Phe Asp Phe His Asn Trp Gly Glu Ile Gly Gly Ser Ser Ser
                        150
                                            155
    Leu Pro Cys Ser Glu Thr Tyr Ala Gly Ser Ser Pro Phe Ser Glu Trp
                    165
                                        170
   Glu Pro Glu Thr Lys Ala Leu Leu Asp Phe Ile Leu Ser Asn Glu Ile
                                    185
   Gly Lys Gly Arg Ile Lys Ala Tyr Ile Ser Leu His Ser Tyr Ser Gln
                                200
   Leu Leu Leu Tyr Pro Tyr Gly Tyr Thr Asn Ala Thr Val Pro Pro Asn
                            215
                                                220
   Gly Glu Asp Leu His Lys Glu Val Ala Lys Ala Ala Lys Ala Ile
                       230
                                            235
   Gly Asp Tyr Tyr Phe Gly Gly Thr Leu Tyr Thr Pro Gly Ser Ser Ser
                   245
   Ala Asp Pro Asp Leu Asp Ile Thr Leu Tyr Pro Ala Ser Gly Gly Ser
   Asp Asp Trp Ala Tyr Gly Thr Leu Lys Gly Val Lys Tyr Ser Tyr Thr
                               280
   Ile Glu Leu Arg Asp Thr Gly Asp Asp Ala Gly Arg Tyr Gly Phe Leu
                           295
                                               300
   Leu Pro Pro Ser Cys Val Lys Pro Val Arg Met Glu Gln Ile Ile Pro
                       310
   Thr Gly Glu Glu
```

٠... m LM Ш M fU ļф In O

the control of the co

IJ