Problem Set 6 (Total Points: 127), Due July 25th

Review Question

Problem (1). (25 points) I'm currently looking for an apartment. This problem takes the perspective of an apartment manager. Suppose you manage an apartment complex with 20 units. If you set the rent at \$900/month all the apartment are rented. As you increase the rent fewer apartments are rented. Specifically if you set the rent to p/month you rent out 20 - (p - 900)/50 apartments. Find the rent that maximizes your profit.

Algebra Questions

Find all values of x which solve the following equations. (4 points each).

(2)
$$\frac{x+1}{2} + \frac{2x-1}{3} = 2$$

(3)
$$x^4 - x^2 = 0$$

$$(4) \ \frac{x/4}{2} = \frac{4}{x/2}$$

(5) (Bonus)
$$\sqrt[4]{x} = \frac{12}{7 - \sqrt[4]{x}}$$

Simplify and expand the follow expressions (4 points each).

(6)
$$(2-x)^2$$

(7)
$$(x^2 - 3\tan(x) - 1)(4 - \sin(x))$$

(8)
$$\ln(e^{2x} \cdot e^{3\cos(x)})$$

(9)
$$\frac{\sin(x) + (x+1)^2}{\sin(x) + (x+2)^2 - 4x - 4}$$

(10) (Bonus)
$$\frac{\sin(x)/\cos(x)}{\tan(x)/(\sin(x)+1)}$$

Sigma Notation

Problem (11). (5 points) Find
$$\sum_{k=1}^{3} 1 + k^2$$

Problem Set 6, Due: July 25th

Problem (12). (5 points) Find $\sum_{j=3}^{7} jx$. (Your answer will have an x in it).

Problem (13). (10 points) Which of the following expanded sums corre-

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

(a)
$$1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \cdots$$

(a)
$$1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + \cdots$$

(b) $1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \cdots$
(c) $1 + \frac{x}{2} + \frac{x^2}{24} + \frac{x^3}{720} + \cdots$
(d) $1 - \frac{x}{2} + \frac{x^2}{24} - \frac{x^3}{720} + \cdots$

(c)
$$1 + \frac{x}{2} + \frac{x^2}{24} + \frac{x^3}{720} + \cdots$$

(d)
$$1 - \frac{x}{2} + \frac{x^2}{24} - \frac{x^3}{720} + \cdots$$

Taylor Series

All of these problems require work to receive full credit.

Problem (14). (15 points) Find the first 3 terms of the Maclaurin Series

Problem (15). (25 points) Find the Maclaurin Series for cos(x). Express your answer with sigma notation.

Problem (16). (15 points) Find the first 3 terms of the Taylor series for x^3 centered at x = 1.

Problem (17). (Bonus, 25 points) Find the Taylor series for $\ln(x^2)$ cen-