

- SIMO / MISO combining schemes
 - 1 SISO
 - SIMO
 - ② Selection combining (SC)
 - ③ Equal gain combining (EGC)
 - 4 Maximum ratio combining (MRC)
 - MISO without CSIT
 - ⑤ Equal power allocation (EPA)
 - 6 Alamouti
 - MISO with CSIT
 - ⑦ Maximum ratio transmission (MRT)

· ① SISO

- Assume $x \sim CN(0,1)$ and $z \sim CN(0,\sigma_z^2)$.
- (1) Write an expression of the recovered signal \tilde{x} in terms of w, h, p, x, z
- (2) Show that the average transmit energy is $E_s = |p|^2$.
- (3) For the weight $w = \frac{1}{hp}$, show that the estimated symbol is $\tilde{x} = x + \frac{z}{h\sqrt{E_S}}$.

- Let $x \sim CN(0,1)$ and z_i , $\forall i = 1, ..., N_r$ follow zero-mean complex Gaussian distributions.
- Define $\mathbf{R}_{\mathbf{z}} \triangleq \mathrm{E}[\mathbf{z}\mathbf{z}^H], E_s \triangleq \mathrm{E}[|s|^2].$
- (1) Specify the dimension of H, W.
- (2) Write an expression of the post-processed signal \tilde{x} in terms of **W**, **H**, p, x, **z**.
- (3) Show that $E[|s|^2] = |p|^2 = E_s$.

• ② SIMO – SC

- (4) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that the SNR of the *i*-th receive antenna is $\gamma_i = \frac{\mathbb{E}\left[\left|\mathbf{H}_{(i,1)}px\right|^2\right]}{\mathbb{E}\left[\left|z_i\right|^2\right]} = \frac{\left|\mathbf{H}_{(i,1)}\right|^2 E_S}{\sigma_z^2}$
- In SC, antenna $k \triangleq \arg \max_{i} \gamma_i$ is selected for decoding.
- Although simple, SC does not make full use of the receive antennas.
- (5) For $\mathbf{W} = \frac{1}{\mathbf{H}_{(k,1)}p} \mathbf{e}_k^T$ where \mathbf{e}_k is a standard basis vector in which the k-th element is 1 and the other elements are 0, show that the estimated symbol is $\tilde{x} = x + \frac{z_k}{\mathbf{H}_{(k,1)}\sqrt{E_s}}$.

- In EGC, the output of the *i*-th receive antenna is phase-compensated, and all the outputs are combined for decoding.
- Although making full use of the receive antennas, EGC is not optimal.

• (1) For
$$\mathbf{W} = \frac{1}{\sum_{i=1}^{N_r} |\mathbf{H}_{(i,1)}|} \left[\frac{1}{\angle \mathbf{H}_{(1,1)}p} \quad \cdots \quad \frac{1}{\angle \mathbf{H}_{(N_r,1)}p} \right]$$
 where $\angle \mathbf{H}_{(i,1)} = \arctan\left(\frac{\operatorname{Im}\{\mathbf{H}_{(i,1)}\}}{\operatorname{Re}\{\mathbf{H}_{(i,1)}\}}\right)$ is the phase of $\mathbf{H}_{(i,1)}$, show that the estimated symbol is $\tilde{x} = x + \frac{1}{\sum_{i=1}^{N_r} |\mathbf{H}_{(i,1)}|} \sum_{i=1}^{N_r} \left(\frac{z_i}{\angle \mathbf{H}_{(i,1)}\sqrt{E_s}}\right)$.

- In MRC, the output of the *i*-th receive antenna is phase-compensated and weighted proportional to the channel gain.
- That is, branches with strong signal are further amplified, while weak signals are attenuated.
- (1) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that the combined SNR $\gamma_{\Sigma} \triangleq \frac{\mathrm{E}[|\mathbf{W}\mathbf{H}px|^2]}{\mathrm{E}[|\mathbf{W}\mathbf{z}|^2]} = \frac{E_S}{\sigma_z^2} \frac{|\mathbf{H}^H \mathbf{W}^H|^2}{|\mathbf{W}^H|^2}$
- (2) Using the Cauchy-Schwartz inequality, find the optimal **W** that maximizes γ_{Σ} and show that the maximum SNR is $\gamma_{\Sigma} = \frac{E_{S}}{\sigma_{Z}^{2}} |\mathbf{H}|^{2}$.

• **4 SIMO – MRC** $x \longrightarrow Precoder p$ p p $RX_1 \longrightarrow Z_1 \longrightarrow W$ $\vdots \longrightarrow W$ $RX_{N_1} \longrightarrow Z_{N_r} \bigvee W$ $RX_{N_1} \longrightarrow Z_{N_r} \bigvee W$ $RX_{N_2} \longrightarrow W$

- Although optimal, MRC additionally needs amplifiers and attenuators besides phase-shifters, yielding a higher implementation cost over EGC
- (3) For $\mathbf{W} = \frac{1}{|\mathbf{H}^H|^2 p} \mathbf{H}^H$, show that the estimated symbol is $\tilde{x} = x + \frac{1}{|\mathbf{H}^H|^2 \sqrt{E_S}} \mathbf{H}^H \mathbf{z}$.

- Let $x \sim CN(0,1)$ and $z \sim CN(0,\sigma_z^2)$.
- (1) Specify the dimension of P, H.
- (2) Write an expression of the post-processed signal \tilde{x} in terms of w, H, P, x, z.
- (3) Show that the average transmit energy is $E_s = |\mathbf{P}|^2$.

• (§) MISO without CSIT – EPA $x \longrightarrow Precoder P$ Precoder $x \longrightarrow Precoder P$ $x \longrightarrow TX_{N_{i}}$ $x \longrightarrow TX_{N_{i}}$ Weight w

- We design **s** such that the average transmit energy E_s is equally distributed to the antennas, i.e., $\mathbf{P} = \sqrt{\frac{E_s}{N_t}} \mathbf{1}_{N_t}$. ("Equal power allocation")
- (4) For $w = \frac{1}{\text{HP}}$, show that the estimated symbol is $\tilde{x} = x + \frac{1}{\sqrt{\frac{E_S}{N_t} \sum_{i=1}^{N_t} \mathbf{H}_{(1,i)}}} z$.

• 6 MISO without CSIT – Alamouti TX_1

• (Refer to the paper)

• ① MISO with CSIT – MRT TX_1 $x \longrightarrow Precoder$ $P \longrightarrow TX_N$ TX_N Weight W

- Similar to MRC, the the *i*-th transmit antenna is phase-compensated and weighted proportional to the channel gain.
- That is, branches with strong signal are further amplified, while weak signals are attenuated.
- (1) For AWGN, i.e., $\mathbf{R_z} = \sigma_z^2 \mathbf{I}_{N_r}$, show that the receive SNR $\gamma = \frac{\mathrm{E}[|w\mathbf{HP}x|^2]}{\mathrm{E}[|wz|^2]} = \frac{|\mathbf{HP}|^2}{\sigma_z^2}$.
- (2) Using the Cauchy-Schwartz inequality, find the optimal **P** that maximizes γ with $E_s = |\mathbf{P}|^2$ and show that the maximum SNR is $\gamma = \frac{|\mathbf{H}^H|^2 E_s}{\sigma_z^2}$.

• ⑦ MISO with CSIT – MRT

• (3) For $w = \frac{1}{\text{HP}}$, show that the estimated symbol is $\tilde{x} = x + \frac{1}{\sqrt{\frac{E_S}{N_t} \sum_{i=1}^{N_t} \mathbf{H}_{(1,i)}}} z$.

® Numerical results

- Setups
 - Unit average transmit energy, i.e., $E_s = 1$
 - AWGN, i.e., $\mathbf{R}_{\mathbf{z}} = \sigma_z^2 \mathbf{I}_{N_r}$
 - Rayleigh fading channel matrix, i.e., $h_{ij} \sim CN(0,1)$
- Curve 1: SISO $(N_t = 1, N_r = 1)$
- Curve 2: SIMO $(N_t = 1, N_r = 2)$
 - Curve 2-1: SIMO SC
 - Curve 2-1: SIMO EGC
 - Curve 2-1: SIMO MRC
- Curve 3: MISO $(N_t = 2, N_r = 1)$
 - Curve 3-1: MISO EPA
 - Curve 3-2: MISO Alamouti
 - Curve 3-1: MISO MRT

® Numerical results

- Setups
 - Unit average transmit energy, i.e., $E_s = 1$
 - AWGN, i.e., $\mathbf{R}_{\mathbf{z}} = \sigma_z^2 \mathbf{I}_{N_r}$
 - Rayleigh fading channel matrix, i.e., $h_{ij} \sim CN(0,1)$
- Curve 4: SIMO $(N_t = 1, N_r = 4)$
 - Curve 4-1: SIMO SC
 - Curve 4-1: SIMO EGC
 - Curve 4-1: SIMO MRC
- Curve 5: MISO $(N_t = 4, N_r = 1)$
 - Curve 5-1: MISO EPA
 - Curve 5-2: MISO Alamouti $(N_t = 2, N_r = 2)$
 - Curve 5-1: MISO MRT

- ® Numerical results
 - BPSK with 2 antennas (Fig. 7, 8, 9, 16 of "Critical and Important ... MIMO Technology")
 - 10⁶ samples

- ® Numerical results
 - QPSK with 2 antennas
 - 10⁶ samples

- ® Numerical results
 - BPSK with 4 antennas (Fig. 7, 8, 9, 16 of "Critical and Important ... MIMO Technology")
 - 10⁶ samples

- ® Numerical results
 - QPSK with 4 antennas
 - 10⁶ samples

