На правах рукописи

Примеры и упражнения

Unifloc 7 VBA

Unifloc 7.22 VBA

Оглавление

Глава 1	_	жнения по работе с пользовательскими функциями	
	Unifl	oc 7.22 VBA	3
1.1	Трюки	и лайфхаки при работе в excel с функциями Unifloc 7.22 VBA	3
1.2	Работа	с таблично заданными кривыми	4
	1.2.1	Интерполяция линейная и сплайнами	6
1.3	Расчет	базовых PVT свойств флюидов	,
1.4		свойств потока флюидов	
1.5	Расчет	производительности скважины	10
1.6	Расчет	штуцера	12
1.7	Расчет	распределения давления в трубе	13
	1.7.1	Расчет прямолинейного участка трубы. Простой вариант	13
	1.7.2	Расчет участка трубопровода со сложным рельефом	14
1.8	Расчет	коэффициентов сепарации	13
1.9	Анализ	з работы ЭЦН	17
Слован	L TENMU	IHAR	23

Глава 1. Упражнения по работе с пользовательскими функциями Unifloc 7.22 VBA

Освоить работу с расчетными функциями Unifloc 7.22 VBA можно выполняя упражнения описанные в данном разделе и изучая устройство тестовых расчетных модулей. Упражнения демонстрируют некоторые типовые приемы работы с пользовательскими функциями Unifloc 7.22 VBA. На основе этих приемов можно создать свои расчетные модули решающие специфические задачи пользователя. Примеры не являются исчерпывающими. Варианты работы с расчетными модулями Unifloc 7.22 VBA не ограничиваются описанными приемами. Цель данного описания - помочь сделать первые шаги в проведении расчетов. Упражнения помогут:

- освоить принципы работы с пользовательскими функциями Unifloc 7.22
 VBA
- изучить основы проведения инженерных расчетов в области добычи нефти

1.1 Трюки и лайфхаки при работе в excel с функциями Unifloc 7.22 VBA

Знание некоторых трюков может сильно упростить работу с пользовательскими функциями Unifloc 7.22 VBA.

1. Для работы с примером должна быть запущена надстройка Unifloc 7.22 VBA. Убедиться, что надстройка запущена можно найдя вкладку Unifloc в панели меню Excel, рис. 1.1.

Рис. 1.1 — Открытая панель Unifloc

2. При необходимости вывести массив значений как результат расчета функций crv_solve или crv_intersection используйте комбина-

- цию клавиш Cntrl+Shift+Enter или динамические массивы 1 (для новых версий Excel). Если для динамических массивов требуется подавить вывод массива используйте знак @ в строке вызова, например как =@crv solve(...).
- 3. Все названия функций Unifloc 7.22 VBA начинаются с префикса. Это позволяет быстро искать необходимые функции. При запущенной надстройке достаточно начать вводить в ячейку формулу, например ввести = PVT как Excel откроет выпадающий список с подсказкой, показывающий возможные варианты названий функций (смотри рис. 1.2).

Рис. 1.2 — Выпадающий список с подсказками названий функции

4. Из выпадающего списка выберите функцию = PVT_Rs_m3m3 (после чего нажмите кнопку f_x "вставить функцию" слева от строки формул. Это вызовет окно задания параметров функции, в котором будут указаны все параметры, которые необходимо ввести (смотри рис. 1.3). В этом окно можно задать необходимые значения параметров или указать ссылки на соответствующие ячейки. Для "хороших" функций в окне задания параметров функции будут подсказки. Также в окне задания параметров можно сразу видеть результат расчета если задан достаточный набор параметров.

¹ подробнее про динамические массивы (dynamic arrays) можно посмотреть в интернете, например - https://www.planetaexcel.ru/techniques/2/9112/

Рис. 1.3 — Окно ввода аргументов функции

5. После ввода всех параметров и нажатия кнопки ОК в ячейке должен отобразиться результат расчета. Воспользовавшись инструментом "Влияющие ячейки" на вкладке "Формулы" можно отследить на какие ячейки ссылается введенная формула (смотри рис. 1.4)

1.2 Работа с таблично заданными кривыми

Инженерный анализ требует умения ловко работать с графическими данными - кривыми, картами, кросс плотами и графиками. Кроме отображения графических данных, что легко делается стандартными программами - часто требует проводить по ним расчеты. Набор функций Unifloc 7.22 VBA для работы с таблично заданными кривыми может оказать полезными для этих целей.

Функции Unifloc 7.22 VBA для работы с таблично заданными кривыми начинаются с префикса crv , от слова curve. Доступна функциональность

- интерполяции различными методами (работает и экстраполяция)
- поиска решения уравнения вида f(x) = где функция f(x) задана таблицей (ищется решение для линейной аппроксимации)

Рис. 1.4 — Результат вызова пользовательской функции с отображение влияющих ячеек

поиска пересечений двух кривых заданных таблицами (ищется решение для линейно аппроксимации)

В коде можно обнаружить еще ряд функций, но они не будут описываться в данном руководстве, хотя по ним можно найти примеры в папке examples репозитория.

1.2.1 Интерполяция линейная и сплайнами

Файл примера ex001.Interpolation.xlsx можно найти в папке examples репозитория Unifloc 7.22 VBA.

- 1. Для работы с примером должна быть запущена надстройка Unifloc 7.22 VBA. Убедиться, что надстройка запущена можно найдя вкладку Unifloc в панели меню Excel, рис. 1.1.
- 2. Откройте файл с упражнением ex001.Interpolation.xlsx (смотри рис. 1.5).

Puc. 1.5 — Упражнение ex001.Interpolation.xlsx со всеми заполненными полями

Пример разделен на три части: Часть 1. Интерполяция; Часть 2. Поиска решения f(x) = c; Часть 3.Поиск пересечения двух кривых.

- 3. Выполните задания указанные в стрелках (последовательность выполнения по номерам стрелок). При этом должны автоматически построиться графики как на рисунке 1.5).
- 4. Постарайтесь ответить на вопросы в блоке "Вопросы для изучения"

1.3 Расчет базовых PVT свойств флюидов

Расчет физико химических свойств пластовых флюидов (PVT параметров) лежит в основе всех расчетов систем нефтедобычи. При решении прикладных задач редко возникает необходимость расчета PVT свойств непосредственно, однако понимание принципа их расчета, а особенно зависимости результатов расчета от исходных данных важно.

Для выполнения упражнения используйте файл "ex010.PVT.xlsx"

1. Откройте файл с упражнением 10. PVT.xlsm (смотри рис. 1.6).

Рис. 1.6 — Упражнение ex010. PVT. xlsm со всеми заполненными полями.

- 2. Выполните задания указанные в описании. Задания просты требуется рассчитать таблицу значений для построения графиков и провести анализ построенных графиков. Названия необходимых функций указаны в описании 1.6). Вопросы по упражнению помогут вам провести анализ. Текст заданий не приводится в описании, так как файлы упражнений первичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.
- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.

1.4 Расчет свойств потока флюидов

PVT функции описывают свойства флюидов. Можно представить себе, что они описывают свойства флюидов находящихся в PVT бомбе - устройстве для отбора проб. В этом случае флюиды неподвижны и находятся в равновес-

ном состоянии. На практике приходится иметь дело с флюидами двигающимися в скважине или трубопроводе - с потоком флюидов. В потоке флюидов добавляются дополнительные параметры — расход флюидов или дебит Q_{liq}, Q_g и обводненность f_w — показатель показывающий объемную долю воды в потоке. Функции работающие с потоками в Unifloc 7.22 VBA имеют префикс МF_. Префикс должен намекать на многофазность потока и на самом деле плох с лингвистической точки зрения (multiphase - has no F letter), но удобен с программистской точки зрения и уже поздно его менять.

Файл примера ex011.Gas_fraction.xlsx можно найти в папке examples репозитория Unifloc 7.22 VBA.

1. Откройте файл с упражнением 10. PVT.xlsm (смотри рис. 1.7).

Puc. 1.7 — Упражнение ex011.Gas_fraction.xlsm со всеми заполненными полями

2. Выполните задания указанные в описании. Задания просты — требуется рассчитать три таблицы значений для построения графиков и провести анализ построенных графиков. Названия необходимых функций указаны в описании 1.7). Вопросы по упражнению помогут вам провести анализ. Текст заданий не приводится в описании, так как файлы упражнений пер-

- вичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.
- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.
- 4. Выполните дополнительное задание, если чувствуете силы. В дополнительном задании говорится о сепарации газа на приеме насоса. Имеется в виду следующее если у нас есть пластовые флюиды, свойства которых мы знаем и можем задать, то после сепарации части свободного газа, что часто происходит на скважинном насосе, свойства флюида изменятся. Изменится его эффективное давление насыщения (потому что мы убрали часть газа) и газосодержание при давлении насыщения. И соответственно поплывут и остальные свойства. Это можно учесть задав в PVT_Encode () три параметра коэффициент сепарации газа K_{sep} , давление при которой произошла сепарации P_{sep} и температуру при которой произошла сепарация T_{sep} . Подробнее про это можно найти в соответствующих разделах (поэтому тут это задание дополнительное).

1.5 Расчет производительности скважины

Стационарная модель притока к скважине (закон Дарси с поправкой Вогеля) - одна из самых простых и распространенных моделей, широко применяемая в индустрии. Unifloc 7.22 VBA содержит функции позволяющие упростить расчет индикаторной кривой. Такие функции имеют префикс IPR_ от Inflow Performance Relationship.

 Φ айл примера ex020.IPR.xlsx можно найти в папке examples penoзитория Unifloc 7.22 VBA.

- 1. Откройте файл с упражнением ex020.IPR.xlsm (смотри рис. 1.8).
- 2. Выполните задания указанные в описании. Задания просты требуется рассчитать три таблицы значений для построения графиков и провести анализ построенных графиков. Названия необходимых функций указаны в описании 1.7). Вопросы по упражнению помогут вам провести анализ. Текст заданий не приводится в описании, так как файлы упражнений первичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.

Рис. 1.8 — Упражнение ex020. IPR.xlsm со всеми заполненными полями

- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.
- 4. Выполните дополнительное задание, если чувствуете силы.

Коэффициент продуктивности PI скважины рассчитывается в ячейке C25 по замеренным данным с помощью функции

```
=IPR PI sm3dayatm(qltest ;Pwftest ;Pres ;fw ;Pb )
```

А максимальный дебит Q_{max} при максимальной депрессии с забойным давлением равным нулю

```
=IPR Qliq sm3Day(PI ;Pres ;0;fw ;Pb )
```

1.6 Расчет штуцера

Для контроля дебита и/или давления на добывающих скважинах вблизи устья может устанавливаться штуцер. Для штуцера, как для любого гидравлического элемента, возможно 4 варианта расчета - расчет давления по потоку, расчет давления против потока, расчет потока по давлениям и настройка модели штуцера по известным давлениям и потоку. В упражнении демонстрируются все варианты расчета.

 Φ айл примера ex040.MF_choke.xlsm можно найти в папке examples репозитория Unifloc 7.22 VBA.

1. Откройте файл с упражнением ex040.MF_choke.xlsm (смотри puc.1.9).

Puc. 1.9 — Упражнение ex040 .MF_choke .xlsm со всеми заполненными полями

- 2. Выполните задания указанные в описании. Названия необходимых функций указаны в описании 1.7). При построении графиков может потребоваться изменить значения дебитов по которым проводится расчет для корректного отображения графиков. Текст заданий не приводится в описании, так как файлы упражнений первичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.
- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.
- 4. Выполните дополнительное задание, если чувствуете силы.

1.7 Расчет распределения давления в трубе

Расчет многофазных потоков в трубе - ключевой для анализа работы скважин и скважинного оборудования. Под расчетов трубы подразумевается в первую очередь расчет распределения давления. Иногда требуется рассчитать и распределение температуры. На распределение давления в трубе среди прочих параметров влияют режим потока газожидкостной смеси и явление проскальзывание газа. Недоучет данных параметров может привести к значительным ошибкам. Методы для расчета распределения давления можно разделить на две категории: корреляции, полученные экспериментальным путем и механистические модели, в основе которых заложены физические модели.

В Unifloc 7.22 VBA есть два набора функций для работы с трубой - простые по работе с прямым участком трубы MF_p_pipe и более сложные по работе с участком трубопровода с учетом рельефа или инклинометрии MF_p_pipeline

1.7.1 Расчет прямолинейного участка трубы. Простой вариант

Файл примера ex050.MF_pipe.xlsm можно найти в папке examples peпозитория Unifloc 7.22 VBA.

1. Откройте файл с упражнением $ex050.MF_pipe.xlsm$ (смотри puc.1.10).

Рис. 1.10 — Упражнение ex050.MF_pipe.xlsm со всеми заполненными полями

- 2. Выполните задания указанные в описании. Названия необходимых функций указаны в описании 1.10). Текст заданий не приводится в описании, так как файлы упражнений первичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.
- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.
- 4. Выполните дополнительное задание, если чувствуете силы.

1.7.2 Расчет участка трубопровода со сложным рельефом.

 Φ айл примера ex051.MF_pipeline.xlsm можно найти в папке examples репозитория Unifloc 7.22 VBA.

1. Откройте файл с упражнением ex050.MF_pipe.xlsm (смотри puc.1.11).

Рис. 1.11 — Упражнение ex051.MF_pipeline.xlsm со всеми заполненными полями

- 2. Выполните задания указанные в описании. Названия необходимых функций указаны в описании 1.10). Текст заданий не приводится в описании, так как файлы упражнений первичны. Любые изменения скорее будут вноситься в файлы с заданиями, нежели в описание.
- 3. Ответьте на вопросы по упражнению приведенные в рабочей книге.
- 4. Выполните дополнительное задание, если чувствуете силы.

1.8 Расчет коэффициентов сепарации

Процессы сепарации на приеме погружного оборудования значительно влияют на процесс добычи. Как при естественной, так и при искусственной се-

парации (при применении газосепараторов) меняются свойства многофазного потока, уменьшается газлифтный эффект, изменяется режим работы центробежного насоса.

В данном упражнении помимо стандартного определения PVT свойств требуется задать термобарические условия на приеме погружного оборудования (в месте, где происходит сепарация) и конструктивные параметры

1		ния по работ			VBA	версия	7.7				
2	Расчет ко	эффициенто	в сепараці	ии							
3											
4											
5											
6	Физико -	химические		люида			3	Дополнительные вопросы по упражению (направления исслед	дований)		
7		V _o	0.875			875	Kr/m ³				
8		Yw	1			1000	KI/W3	1. От каких параметров будет зависеть коэффициент сепараци	и?		
9		Y _R	0.9			1.098	Kr/m ³				
10		R _{sb}	80	m3/m3	m³/m³	91	м ³ /т				
11		R _p	80	m3/m3	м ³ /м ³	91	м ³ /т				
12		Pbcal	120	атм	атма	122	МПа				
13		T _{res}	120	С	С	248	Φ				
14		B _{ob cal}	1.2	M3/M3							
15		μ _{ob cal}	1	cP							
16		f _w	1	%							
17											
18	Данные г	то скважине									
19		d _{cas}	125	MM							
20		d _{intake}	100	MM							
21		P _{intake}	30	атм							
22		T _{intake}	80	С							
23					_						
24 25 26											
		D) (T	I			ma_wat:1_000:rab	m2m2:00 000:co	00;pb_atma:120,000;tres_C:120,000;bob_m3m3:1,200;muob_cP:1,000;PVTcorr:0;	keen fr:0.000:nkeen atr	ma: 1.000:tkaan	0.4

Рис. 1.12 — Исходные данные для сепарации

где

 d_{cas} - диаметр обсадной колонны, мм

 d_{intake} - диаметр приема погружного оборудования, мм

 P_{intake} - давление на приеме, атм

 T_{intake} - температура на приеме, С

Для вычисления коэффициента естественной сепарации в зависимости от дебита вставьте в ячейку E32 следующую формулу

```
=MF_ksep_natural_d(C32; wc_; Pintake_; Tintake_; Dintake_;
Dcas_; PVT_str_)
```

Для проведения экспериментов по влиянию изменения диаметра обсадной колонны воспользуйтесь в ячейке F32 формулой

```
=MF_ksep_natural_d(C32; wc_; Pintake_; Tintake_; Dintake_;
Dcas_*cf_dcas_; PVT_str_)
```

При этом в ячейке F30 с помощью коэффициента Вы можете варьировать диаметр обсадной колонны

Для расчета доли газа в газосепараторе применяется функция

```
=MF_gas_fraction_d(Pintake_;Tintake_;0;PVT_str_)*(1-F32)
```

Коэффициент сепарации газосепаратора

=MF_ksep_gasseparator_d(gassep_type;G32;C32)

При этом можно менять тип газосепаратора в ячейке Н30

Общий коэффициент сепарации

=MF_ksep_total_d(E32;H32)

Рис. 1.13 — Результаты расчета естественной и искусственной сепарации

Вопросы к упражнению

- 1. От каких параметров будет зависеть коэффициент сепарации?
- 2. Как взаимосвязана естественная и искусственная сепарация?

1.9 Анализ работы ЭЦН

Сегодня доминирующая доля нефти в РФ добывается при помощи ЭЦН. Требуется детальное понимание основных особенностях эксплуатации данного оборудования, режимах работы, возможных осложнениях по причине высокой вязкости продукции, газосодержания, механических примесей и т.д.

Наиболее ценную информацию о работе насоса может дать его характеристика: зависимость параметров работы ЭЦН - напора, потребляемой мощности, перепада давления, КПД, от подачи (дебита скважины)

Для анализа работы скважины, оснащенной УЭЦН, требуются следующие исходные данные

- 1. Физико химические свойства флюида
- 2. Данные по скважине

- 3. Данные по ЭЦН
- 4. Параметры пласта

PVT свойства задаются аналогично предыдущим упражнениям, а для параметров, характеризующих скважину, приняты следующие обозначения

 H_{mes} - глубина скважины измеренная (вдоль ствола скважины), м

 $H_{mes}-H_{vert}$ - удлинение ствола скважины, м

 H_{pump} - глубина спуска насоса, м

 ID_{cas} - внутренний диаметр обсадной колонны, мм

 OD_{tub} - внешний диаметр НКТ, мм

 ID_{tub} - внутренний диаметр НКТ, мм

 D_{intake} - диаметр приемной сетки ЭЦН, мм

 P_{buf} - буферное давление, атм

 P_{intake} - давление на приеме ЭЦН, атм

 T_{intake} - температура на приеме ЭЦН, С

 P_{dis} - давление на выкиде ЭЦН, атм

 P_{wf} - давление на забое, атм

 Q_{liq} - дебит жидкости в поверхностных условиях, м3/сут

 f_w - обводненность в поверхностных условиях, %

		ния по работе с	: макросами	Unifloc VBA		версия	7.7						
	Анализ раб	боты ЭЦН											
3								Лополнитель	ные вопросы	по упраженин	о (направлен	на исслел	ований
4								дополнитель	maic bompocar	по упражения	o (manpaunci	ии исслед	Obdilini
5	физико у	кимические св	ойства флю	ипо				1. Какие пара	метры влияю	т на перепад ,	давления в н	acoce?	
7	- FISHING - Z	V ₀	0.87	лда	870	KT/M ³		·	·				
8		Yw	1		1000	кг/м³							
9		Yg	0.8		0.976	Kr/m³							
10		R _{sb}	80	м ³ /м ³	92	м³/т							
11		R _p	80	M³/M³	92	м³/т							
12		P _{b cal}	120	атма	122	МПа							
13		T _{res}	100	С	212	Φ							
14		B _{ob cal}	1.2	M3/M3									
15		μ _{ob cal}	20	сП									
16													_
17 18	данные п	о скважине	2000	.,									+
		H _{mes}		M									+
19		H _{mes} -H _{vert}	0	M									-
20 21		H _{pump} ID _{cas}	1500 125	M MM									-
22		OD _{tub}	73	MM									-
23		ID _{tub}	62	MM									T
24		D _{intake}	100	мм									
25		P _{buf}	20	атм									
26		P _{intake}	34	атм									
27		T _{intake}	80	С									
28		P _{dis}	150	атм									
29		P _{wf}	70	атм									
30		Q_{liq}	50	м3/сут									
31		f _w	0	%									

Рис. 1.14 — Исходные данные для свойств флюида и параметров скважины

Параметры, описывающие ЭЦН:

ЭЦН Q_{nom} - номинальная подача ЭЦН, м3/сут

ЭЦН H_{nom} - номинальная напом ЭЦН, м

F - частота питающего тока двигателя, Γ ц

ЭЦН ID - идентификационный номер насоса (по формуле, см. ниже), находящийся в базе Unifloc 7.22 VBA

ЭЦН имя - обозначение насоса: название, габарит и номинальная подача (по формуле, см. ниже)

ЭЦН Q_{max} - максимальная производительность насоса (по формуле, см. ниже), м3/сут

Ступени - количество ступеней, исходя из общего напора ЭЦН и напора одной ступени (по формуле, см. ниже), шт

 K_{sep} - коэффициент сепарации газосепаратора, %

 P_{sep} - давление сепарации, атм

 T_{sep} - температура сепарации, С

Данные о пласте:

 P_{res} - пластовое давление, атм

PI - коэффициент продуктивности скважины (по формуле, см. выше в упражнении IPR), м3/сут/атм

 $rac{dT}{dL}$ - геотермический градиент, град / $100~\mathrm{M}$

-	33 3	ЭЦН			
	34		ЭЦН Q _{пот}	110	м3/сут
	35		ЭЦН Н _{пот}	2000	М
	36		F	50	Гц
	37		ЭЦН ID	737	
	38		ЭЦН имя	BHH5-125	
	39		ЭЦН Q _{max}	230	
	40		Ступени	324	шт
	41		K _{sep re}	90%	
	42		P _{sep}	80.00	атм
	43		T _{sep}	80.00	С
	44				
	45 F	Пласт			
	46		Pres	250	атм
	47		PI	0.29	м3/сут/атм
	48		dT/dL	3	град/100 м
	49		N	20	

Рис. 1.15 — Исходные данные для ЭЦН и пласта

Для получения идентификационного номера насоса в базе Unifloc 7.22 VBA была использована формула

=ESP_id_by_rate(Q_ESP_)

Для определения обозначения ЭЦН

```
=ESP name(C37)
```

Расчет максимально возможного дебита

```
=esp_max_rate_m3day(Freq_;PumpID_)*1
```

Количество ступеней

```
=ЦЕЛОЕ(Head_ESP_/ESP_head_m(Q_ESP_;1;;PumpID ))
```

Также для удобства использования параметры насоса: ID, напор и рабочая частота, зашифровываются в строку с помощью функции

```
=ESP Encode string(PumpID ; Head ESP ; Freq )
```

Свободный газ негативно влияет на работу ЭЦН. В ячейке D51 вычисляется объемная доля газа на приеме газосепаратора с помощью формулы

```
=MF_gas_fraction_d(Pintake_;Tintake_;fw_;PVTstr)
```

В соседней ячейке D50 для удобного расположения задается вязкость в с Π у-аз

Построение напорной характеристики данного насоса выполняется с учетом вязкости перекачиваемой продукции. Реализованный метод пересчета характеристики с воды на вязкую жидкость Института Гидравлики позволяет учитывать изменение рабочих параметров из-за данного негативного влияния.

Для вычисления напора в метрах водного столба в ячейке D54 воспользуйтесь формулой

```
=ESP_head_m(C54;NumStage_;Freq_;PumpID_;mu)
КПД ЭЦН в долях единиц

=ESP_eff_fr(C54;NumStage_;Freq_;PumpID_;mu)
Потребляемую ЭЦН мощность в Вт

=ESP Power W(C54;NumStage ;Freq ;PumpID ;mu)
```

Расчет перепада давления, развиваемого насосом, может происходить методом "сверху-вниз" и "снизу-вверх", при этом расчет перепада температур только методом "снизу-вверх". Функция расчета перепада давления и температуры возвращает массив значений, т.е. одновременно перепад давления и температуры. Кроме того, входным параметром для данной функции является направление расчета. Для вычисления выделите диапазон G54:H54, наберите формулу

```
=ESP_dP_atm(C54; fw_; Pintake_; NumStage_; Freq_; PumpID_;
PVTstr; Tintake_; 0)
```

и после нажмите сочетание клавиш Ctrl+Shift+Enter. Далее протяните результат до полного заполнения двух столбцов.

Рис. 1.16 — Напорные характеристики ЭЦН с поправкой на вязкость

Зная давление на приеме и перепад давления в ЭЦН, давление на выходе ЭЦН можно легко посчитать по формуле

```
=G54+Pintake
```

Предварительно задав давление на выходе ЭЦН в ячейке L51 возможно посчитать перепад давления методом "сверху-вниз" аналогичным образом по формуле

```
=ESP_dP_atm(C54; fw_; Pdis_; NumStage_; Freq_; PumpID_; PVTstr; Tintake_; Tintake_; 0)
```

И давление на входе, зная давление на выходе и перепад давления =Pdis-J54

Вопросы для упражнения:

- 1. Какие параметры влияют на перепад давления в насосе?
- 2. Насколько сильно влияет вязкость на напорные характерситики ЭЦН?
- 3. Как влияет на работу ЭЦН изменение частоты?

Рис. 1.17 — Расчет перепада давления и температур в ЭЦН в зависимости от дебита

Словарь терминов

Словарь описывает термины и сокращения широко используемые в описании и в системе Unifloc 7.22 VBA.

- **VBA** Visual Basic for Application язык программрования встроенный в Excel и использованный для написания макросов Unifloc 7.22 VBA.
 - **VBE** Среда разработки для языка VBA. Встроена в Excel.
 - BHP, Pwf Bottom hole pressure. Well flowing pressure. Забойное давление
 - ВНТ, ТВН Bottom hole temperature. Забойная температура
- **WHP, PWH** Well head pressure. Устьевое давление. Как правило, соответствует буферному давлению.
- **WHT, TWH** Well head temperature. Устьевая температура. Температура флюида на устье скважины. Температура в точке замера буферного давления.
- **IPR** Inflow performance relationship. Индикаторная кривая. Зависимость забойного давления от дебита для пласта. Широко используется в узловом анализе.
- **VLP, VFP**—Vertical lift performance, vertical flow performance, outflow curve. Кривая лифта, кривая оттока. Зависимость забойного давления от дебита для скважины. Широко используется в узловом анализе.
 - **ESP** Electrical submersible pump. Электрический центробежный насос.
 - **GL** Gas Lift. Газлифтный способ эксплуатации добывающих скважин.
- **РНХ** ЭЦН Расходно напорная характеристика электрического центробежного насоса. Ключевая характеристика ЭЦН. Дается производителем в каталоге ЭЦН для новых насосов или определяется на стенде для ремонтных ЭЦН.
- **PVT**—Pressure Volume Temperature. Общепринятое обозначение для физико-химических свойств пластовых флюидов нефти, газа и воды.
- **MF** MultiPhase. Много Фазный поток. Префикс для функций имеющих дело с расчетом многофазного потока в трубах и скважине.
- **НКТ** Насосно компрессорная труба. Часть конструкции скважины. по колонне НКТ добывается скважинная продукция или закачивается вода. Может быть заменена в процессе эксплуатации при ремонте скважины.
- \mathbf{K} Эксплуатационная колонна. Часть конструкции скважины. Не может быть заменена в процессе эксплуатации при ремонте скважины.

ГЖС — Газо жидкостная смесь. Часто используется для обозначения совместно двигающихся флюидов в многофазном потоке - нефти, газа, воды.

Барботаж, ZNLF — Движение газа через неподвижный столб жидкости. ZNLF - zero net liquid flow. Встречается в скважинах с насосами - в межтрубном пространстве газ движется через неподвижный столб жидкости. Влияет на динамический уровень в скважине.

ЭЦН — Электрический центробежный насос.

УЭЦН — Установка электрического центробежного насоса. Включает весь комплекс погружного и поверхностного оборудования необходимого для работы насоса - насос (ЭЦН), погружной электрический двигатель (ПЭД), гидрозащита (ГЗ), входной модуль (ВМ) и газосепаратор (ГС), электрический кабель, станция управления (СУ) и другие элементы

ЧРП — Частотно регулируемый привод. Элемент УЭЦН обеспечивающий возможность вращения вала УЭЦН с различными частотами.