OV7670 Software Application Note

Table of Contents

OV7670 Software Application Note	1
1. Select Output format	3
1.1 Backend with full ISP	3
1.2 Backend with YCbCr ISP	4
1.3 Backend without ISP	4
1.4 Equations to Convert from One Format to Another	
2. Select Output Resolution?	5
2.1 Backend with ISP	5
2.2 Backend without ISP	5
3. Adjust frame rate	5
3.1 Frame Rate Adjustment for 24Mhz input clock	5
30 fps, PCLK = 24Mhz	5
15 fps, PCLK = 12Mhz	5
25fps, PCLK = 24Mhz	5
14.3 fps, PCLK = 12Mhz	6
3.2 Frame Rate Adjustment for 26 Mhz input clock	6
30 fps, PCLK = 26Mhz	6
15 fps, PCLK = 13Mhz	6
25fps, PCLK = 26Mhz	6
14.3fps, PCLK = 13Mhz	
3.3 Frame rate adjustment for 13 Mhz input clock	
30 fps, PCLK = 26Mhz	7
15 fps, PCLK = 13Mhz	
25 fps, PCLK = 26 Mhz.	7
14.3fps, PCLK = 13Mhz	
4. Night Mode	
4.1 Night Mode with Fixed Frame Rate.	
For 24Mhz/26Mhz Clock Input.	
For 13Mhz Clock Input.	
4.2 Night Mode with Auto Frame Rate.	
For 24Mhz/26Mhz Clock Input.	
For 13Mhz Clock Input.	
5. Remove Light Band	10
5.1 Light Band	
5.2 Remove Light band.	
5.3 Select Banding Filter by Region Information	
Banding Filter Setting for 24Mhz Input Clock	
Banding Filter Setting for 13Mhz/26Mhz Input Clock	
5.4 Select Banding Filter by Automatic Light Frequency Detection	
Banding Filter Setting for 24Mhz Input Clock	
Banding Filter Setting for 13Mhz/26Mhz Input Clock	
5.5 When Light Band can not be Removed	
6. White Balance	
6.1 Simple White Balance	
6.2 Advanced White Balance	14

6.3 How to select?	15
7. Defect Pixel Correction	
8. BLC	15
9. Video Mode	15
10. Digital zoom	15
11. OV7670 Functions	16
11.1 Light Mode	16
11.2 Color Saturation.	16
11.3 Brightness	17
11.4 Contrast	18
11.5 Special effects	18
12. Deal with Lens.	19
12.1 Light fall off	19
12.2 Dark corner	19
12.3 Resolution	20
12.4 Optical contrast	20
12.5 Lens Cover	20
12.6 Lens Correction	20
13. Reference Settings	20
13.1 YCbCr	20
13.2 RGB raw	24

1. Select Output format

OV7670 support 4 output formats: YCbCr, RGB565/RGB555, Bayer raw RGB and Processed raw RGB. How to choose the right output format for camera phone design or other applications? Let's look at the backend chip first.

The general diagram of backend chip is as below:

The data format at LCD driver are always RGB. For example, RGB444, RGB565, RGB555, RGB888 etc. The data format and memory interface are always JPEG. The JPEG data is compressed from YCbCr data. So Both RGB and YCbCr data are needed inside the backend chip. The "X" block is different for different backend chips.

1.1 Backend with full ISP

This kind of backend has full ISP. It takes raw RGB input, doing interpolation to generate RGB24 and doing translation to generate YCbCr. This kind of backend could take either Bayer raw RGB or processed raw RGB.

The advantage of processed raw RGB over Bayer raw RGB is the output data are processed. Sensor functions such as defect pixel correction, lens correction, gamma, color matrix, de-noise, sharpness, BLC etc. could be applied. Since the life time of backend chip is longer than image sensor, sometimes backend chips could not fix defects of new sensors if taken Bayer raw RGB. But the defects of new sensors could be fixed in processed raw RGB output.

If backend take Bayer raw RGB format from sensor, all the image process operations such as defect pixel correction, lens correction, gamma, color matrix, de-noise, sharpness, BCL etc should be done by backend. If backend take processed raw RGB format from sensor, the image process operations such as defect pixel correction, lens correction, gamma, color matrix, de-noise, sharpness, BCL etc could be done either inside sensor or by backend chips. In other words, user could select the image process operation be done by which side.

1.2 Backend with YCbCr ISP

This kind of backend has ISP, but could take only YCbCr format. The ISP could convert YCbCr to RGB format for LCD display and compress YCbCr to JPEG for storage.

1.3 Backend without ISP

This kind of backend doesn't have ISP built-in. It can not convert from one format to another by hardware. Actually the format conversion is done by software. There are 3 possible solution for this kind of backend chips.

- a. Sensor output YCbCr. Backend convert YCbCr to RGB for display by software.
- b. Sensor output RGB565. Backend convert RGB565 to YCbCR for JPEG compression.
- c. Sensor output RGB565 for preview, output YCbCr for capture (JPEG compression).

Solution a. provide the best picture quality. Since the input data is 24-bit RGB equivalent. It could converted to RGB888 for LCD display. Solution b. provide the worst picture quality. Since the input data is only 16-bit RGB565, even it is converted to YCbCr, the color depth is still 16-bit. The solution c. provide similar picture quality as solution a. But since preview is RGB565, capture is YCbCr, preview picture may looks a little different than capture picture.

1.4 Equations to Convert from One Format to Another

YCbCr to RGB24

$$Y = 0.299R + 0.587G + 0.114B$$

$$Cb = 0.568(B-Y) + 128 = -0.172R - 0.339G + 0.511B + 128$$

$$Cr = 0.713(R-Y) + 128 = 0.511R - 0.428G - 0.083B + 128$$

$$Y = ((77 * R + 150 * G + 29 * B) >> 8);$$

$$Cb = ((-43 * R - 85 * G + 128 * B) >> 8) + 128;$$

$$Cr = ((128 * R - 107 * G - 21 * B) >> 8) + 128;$$

$$RGB24 \text{ to } YCbCr$$

$$R = Y + 1.371(Cr - 128)$$

$$G = Y - 0.698(Cr - 128) - 0.336(Cb - 128)$$

$$B = Y + 1.732(Cb - 128)$$

$$R = Y + (351*(Cr - 128)) >> 8$$

$$G = Y - (179*(Cr - 128) + 86*(Cb - 128)) >> 8$$

$$G = Y - (443*(Cb - 128)) >> 8$$

2. Select Output Resolution?

2.1 Backend with ISP

If Backend chip has built-in ISP (Full ISP or YCbCr ISP), the ISP could do image scale. So OV7670 outputs only VGA format. ISP scaled VGA image to other resolution that mobile device needed

2.2 Backend without ISP

If backend chip doesn't have image scale capability, then the LCD scaler of OV7670 must be used to scale output resolution exactly the LCD size. For example, if the LCD size is 176x220, then the LCD scaler will scale the output size to 176x220.

3. Adjust frame rate

The recommended frame rates are 30fps and 15fps for 60Hz light environment, 25fps and 14.3fps for 50Hz light environment. The frame rate for night mode is lower, we'll discuss night mode later.

Reference settings for above frame rates are listed below.

3.1 Frame Rate Adjustment for 24Mhz input clock

30 fps, PCLK = 24Mhz

```
I2c_salve_Address = 0x42;
write_i2c(0x11, 0x80);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x00);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

15 fps, PCLK = 12Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x00);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

25fps, PCLK = 24Mhz

```
i2c salve Address = 0x42;
```

```
write_i2c(0x11, 0x80);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x66);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

14.3fps, PCLK = 12Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x1a);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

3.2 Frame Rate Adjustment for 26 Mhz input clock

30 fps, PCLK = 26Mhz

```
I2c_salve_Address = 0x42;
write_i2c(0x11, 0x80);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x2b);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

15 fps, PCLK = 13Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x2b);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

25fps, PCLK = 26Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x80);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x99);
write_i2c(0x93, 0x00);
```

```
write i2c(0x3b, 0x0a);
```

14.3fps, PCLK = 13Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x0a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x46);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

3.3 Frame rate adjustment for 13 Mhz input clock

30 fps, PCLK = 26 Mhz

```
I2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x4a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x2b);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

15 fps, PCLK = 13Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x01);
write_i2c(0x6b, 0x4a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x2b);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

25fps, PCLK = 26Mhz

```
i2c_salve_Address = 0x42;
write_i2c(0x11, 0x00);
write_i2c(0x6b, 0x4a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x99);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

14.3fps, PCLK = 13Mhz

```
i2c salve Address = 0x42;
```

```
write_i2c(0x11, 0x01);
write_i2c(0x6b, 0x4a);
write_i2c(0x2a, 0x00);
write_i2c(0x2b, 0x00);
write_i2c(0x92, 0x46);
write_i2c(0x93, 0x00);
write_i2c(0x3b, 0x0a);
```

4. Night Mode

There are 2 types of settings for night mode. One type is set to fixed low frame rate, for example 3.75fps. The other type is set to auto frame rate, for example from 30fps to 3.75fps. When environment is bright, the frame rate is increased to 30fps. When environment is dark, the frame rate is decreased to 3.65fps.

4.1 Night Mode with Fixed Frame Rate

For 24Mhz/26Mhz Clock Input

```
3.75fps night mode for 60Hz light environment i2c_salve_Address = 0x42; write_i2c(0x11, 0x03); write_i2c(0x3b, 0x0a);

3.125fps night mode for 50Hz light environment i2c_salve_Address = 0x42; write_i2c(0x11, 0x03); write_i2c(0x3b, 0x0a);
```

For 13Mhz Clock Input

```
3.75fps night mode for 60Hz light environment i2c_salve_Address = 0x42; write_i2c(0x11, 0x07); write_i2c(0x3b, 0x0a);

3.125fps night mode for 50Hz light environment i2c_salve_Address = 0x42; write_i2c(0x11, 0x07); write_i2c(0x3b, 0x0a);
```

4.2 Night Mode with Auto Frame Rate

For 24Mhz/26Mhz Clock Input

```
30fps ~ 3.75fps night mode for 60Hz light environment i2c_salve_Address = 0x42; write_i2c(0x11, 0x80); write_i2c(0x3b, 0xea);
```

15fps ~ 3.75fps night mode for 60Hz light environment

```
i2c\_salve\_Address = 0x42; write\_i2c(0x3b, 0xca); write_i2c(0x11, 0x00); 25fps \sim 3.125fps \text{ night mode for 50Hz light environment} i2c\_salve\_Address = 0x42; write_i2c(0x3b, 0xea); write_i2c(0x11, 0x80); 14.3fps \sim 3.6fps \text{ night mode for 50Hz light environment} i2c\_salve\_Address = 0x42; write_i2c(0x3b, 0xca); write_i2c(0x11, 0x00);
```

For 13Mhz Clock Input

```
30fps ~ 3.75fps night mode for 60Hz light environment
i2c salve Address = 0x42;
write i2c(0x11, 0x00);
write i2c(0x3b, 0xea);
15fps ~ 3.75fps night mode for 60Hz light environment
i2c salve Address = 0x42;
write i2c(0x3b, 0xca);
write i2c(0x11, 0x01);
25fps ~ 3.125fps night mode for 50Hz light environment
i2c salve Address = 0x42;
write i2c(0x3b, 0xea);
write i2c(0x11, 0x00);
14.3 fps ~ 3.6 fps night mode for 50Hz light environment
i2c salve Address = 0x42;
write i2c(0x3b, 0xca);
write i2c(0x11, 0x01);
```

Note:

When OV7670 is set to low frame rate, there may be many white pixels shown on LCD of mobile phone or on PC diaplay.

5. Remove Light Band

5.1 Light Band

The strength of office light is not even. It changes with AC frequency. For example, if the AC frequency is 50Hz, the light changes strength at 100hz.

5.2 Remove Light band

Light band is removed by set exposure to n/100 (n/120 for 60Hz)seconds. The banding filter value tell OV7670 how many lines is 1/100 (1/120 for 60Hz) seconds.

5.3 Select Banding Filter by Region Information

The region information of mobile phone could be used to select banding filter values. A light frequency table is built to indicate which region uses 50Hz light and which region uses 60Hz light. When region information is got, the light frequency information could be get from the table.

Different frame rate could be used for different light frequency. So the frame rate is optimized for both 50hz light condition and 60hz light condition.

Banding Filter Setting for 24Mhz Input Clock

```
30fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x98); //50Hz banding filter
write i2c(0x9e, 0x7f); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x02); //Select 60Hz banding filter
15fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x4c); //50Hz banding filter
write i2c(0x9e, 0x3f); //60Hz banding filter
write i2c(0xa5, 0x05); //6 step for 50hz
write i2c(0xab, 0x07); //8 step for 60hz
write i2c(0x3b, 0x02); //Select 60Hz banding filter
25fps for 50Hz light frequency
i2c salve Address = 0x42:
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x98); //50Hz banding filter
write i2c(0x9e, 0x7f); //60Hz banding filter
write i2c(0xa5, 0x03); //4 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x0a); //Select 50Hz banding filter
14.3fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x4c); //50Hz banding filter
write i2c(0x9e, 0x3f); //60Hz banding filter
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xa5, 0x07); //8 step for 60hz
write i2c(0x3b, 0x0a); //Select 50Hz banding filter
Banding Filter Setting for 13Mhz/26Mhz Input Clock
30fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0xa5); //50Hz banding filter
write i2c(0x9e, 0x89); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x02); //Select 60Hz banding filter
15fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x52); //50Hz banding filter
write i2c(0x9e, 0x44); //60Hz banding filter
```

```
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xab, 0x07); //8 step for 60hz
write i2c(0x3b, 0x02); //Select 60Hz banding filter
25fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0xa5); //50Hz banding filter
write i2c(0x9e, 0x89); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x0a); //Select 50Hz banding filter
14.3fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x52); //50Hz banding filter
write i2c(0x9e, 0x44); //60Hz banding filter
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xa5, 0x07); //8 step for 60hz
write i2c(0x3b, 0x0a); //Select 50Hz banding filter
```

5.4 Select Banding Filter by Automatic Light Frequency Detection

Set same frame rate for 50Hz and 60Hz light environment, set 50Hz and 60Hz banding filter value. OV7670 could automatic select 50Hz or 60Hz banding filter based on light frequency detection.

Banding Filter Setting for 24Mhz Input Clock

```
30fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write_i2c(0x9d, 0x98); //50Hz banding filter
write i2c(0x9e, 0x7f); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x12); //Automatic Detect banding filter
15fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x4c); //50Hz banding filter
write i2c(0x9e, 0x3f); //60Hz banding filter
write i2c(0xa5, 0x05); //6 step for 50hz
write i2c(0xab, 0x07); //8 step for 60hz
write i2c(0x3b, 0x12); //Automatic Detect banding filter
25fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
```

```
write i2c(0x9d, 0x98); //50Hz banding filter
write i2c(0x9e, 0x7f); //60Hz banding filter
write i2c(0xa5, 0x03); //4 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x1a); //Automatic detect banding filter
14.3fps for 50Hz light frequency
i2c salve Address = 0x42:
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x4c); //50Hz banding filter
write i2c(0x9e, 0x3f); //60Hz banding filter
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xa5, 0x07); //8 step for 60hz
write i2c(0x3b, 0x1a); //Automatic detect banding filter
Banding Filter Setting for 13Mhz/26Mhz Input Clock
30fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0xa5); //50Hz banding filter
write i2c(0x9e, 0x89); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x12); //Automatic detect banding filter
15fps for 60Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x52); //50Hz banding filter
write i2c(0x9e, 0x44); //60Hz banding filter
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xab, 0x07); //8 step for 60hz
write i2c(0x3b, 0x12); //Automatic detect banding filter
25fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0xa5); //50Hz banding filter
write i2c(0x9e, 0x89); //60Hz banding filter
write i2c(0xa5, 0x02); //3 step for 50hz
write i2c(0xab, 0x03); //4 step for 60hz
write i2c(0x3b, 0x1a); //automatic detect banding filter
14.3fps for 50Hz light frequency
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //banding filter enable
write i2c(0x9d, 0x52); //50Hz banding filter
write i2c(0x9e, 0x44); //60Hz banding filter
write i2c(0xa5, 0x06); //7 step for 50hz
write i2c(0xa5, 0x07); //8 step for 60hz
write i2c(0x3b, 0x1a); //automatic detect banding filter
```

5.5 When Light Band can not be Removed

Normally the light band is removed by banding filter.

But there is some special conditions such as mix light of sun light and office light, take picture of florescent light, the light band can not removed. The reason is the exposure time is less than 1/100 second for 50hz light environment and less than 1/120 second for 60hz light environment, so the light band can not be removed.

The light band is this conditions could not be removed for all CMOS sensors, not only OV7670. So there is no way to remove light band in this condition.

6. White Balance

OV7670 support simple white balance and advanced balance.

6.1 Simple White Balance

Simple white balance assume "gray world". Which means the average color of world is gray. It is true for most environment.

Advantage of simple AWB

Simple white balance is not depend on lens. A general setting for simple white balance could applied for all modules with different lens.

Disadvantage of simple AWB

The color is not accurate in conditions where "gray world" not true. For example the background has a huge red, blue or green etc. the color of the foreground is not accurate. If the camera target single color such as red, blue, green, the simple white balance will make the single color gray.

Settings

i2c_salve_Address = 0x42; write_i2c(0x13, 0xe7); //AWB on write_i2c(0x6f, 0x9f); // Simple AWB

6.2 Advanced White Balance

Advanced white balance uses color temperature information to detect white area and do the white balance

Advantage of Advanced AWB

Color is more accurate than simple white balance. Even the background is single color, the camera will not make the single color gray.

Disadvantage of Advanced AWB

Advanced white balance setting is depend on lens. The setting must be adjusted for every module with new lens. The adjustment must be done by OmniVision FAE in optical lab with some optical equipment such as light box, color checker etc.

Settings

Contact with OmniVision local FAE.

6.3 How to select?

Generally, for low resolution camera module such as CIF, VGA and 1.3M, simple AWB is selected. For high resolution camera module such as 2M, 3M, advanced AWB is selected.

7. Defect Pixel Correction

Defect pixel include dead pixel and wounded pixel.

Dead pixel include white dead pixel and black dead pixel. White dead pixel is always white no matter the actual picture is bright or dark. Black dead pixel is always black no matter the actual picture is bright or dark.

Wounded pixel may change with light, but not as much as normal pixel. White wounded pixels are much brighter then normal pixels, but not complete white. Black wounded pixels are much darker than normal pixels, but not complete black.

OV7670 has built-in defect pixel correction function. If OV7670 output YCbCr, RGB565, Processed raw RGB, the defect pixel correction function could be enabled to fix defect pixels. But if Bayer raw RGB is used, the defect pixel correction function of sensor could not be used. The defect pixel correction of backend chip should be used instead.

Please pay attention to the defect pixel correction function of backend chip. Some backend chip may not be able to correct all defect pixels of OV7670.

8. BLC

The function of Black Level Calibration (BLC) is to product accurate color in the dark area of picture. There is automatic BLC function built-in OV7670. It should always be turned on.

9. Video Mode

Video mode need high frame rate, usually fixed 15fps. There is no night mode for video mode.

10. Digital zoom

If OV7670 output image smaller than QVGA, it may support digital zoom. For example

VGA not digital zoom supported

QVGA 1x, 2x QQVGA 1x, 2x, 4x QCIF 1x, 1.8x QQCIF 1x, 2x, 3.6x

If backend chip support scale up, then more zoom level could be supported.

11. OV7670 Functions

11.1 Light Mode

```
Auto
i2c salve Address = 0x42;
write i2c(0x13, 0xe7); //AWB on
Sunny
i2c salve Address = 0x42;
write i2c(0x13, 0xe5); //AWB off
write i2c(0x01, 0x5a);
write i2c(0x02, 0x5c);
Cloudy
i2c salve Address = 0x42;
write i2c(0x13, 0xe5); //AWB off
write i2c(0x01, 0x58);
write i2c(0x02, 0x60);
Office
i2c salve Address = 0x42;
write i2c(0x13, 0xe5); //AWB off
write i2c(0x01, 0x84);
write i2c(0x02, 0x4c);
Home
i2c salve Address = 0x42;
write i2c(0x13, 0xe5); //AWB off
write i2c(0x01, 0x96);
write i2c(0x02, 0x40);
```

11.2 Color Saturation

The color saturation of OV7670 could be adjusted. High color saturation would make the picture looks more vivid, but the side effect is the bigger noise and not accurate skin color.

```
Saturation + 2
i2c_salve_Address = 0x42;
write_i2c(0x4f, 0xc0);
write_i2c(0x50, 0xc0);
write_i2c(0x51, 0x00);
write_i2c(0x52, 0x33);
write_i2c(0x53, 0x8d);
write_i2c(0x54, 0xc0);
write_i2c(0x58, 0x9e);

Saturation + 1
i2c_salve_Address = 0x42;
write_i2c(0x4f, 0x99);
write_i2c(0x50, 0x99);
```

```
write i2c(0x51, 0x00);
write i2c(0x52, 0x28);
write i2c(0x53, 0x71);
write i2c(0x54, 0x99);
write i2c(0x58, 0x9e);
Saturation 0
i2c salve Address = 0x42;
write i2c(0x4f, 0x80);
write i2c(0x50, 0x80);
write i2c(0x51, 0x00);
write i2c(0x52, 0x22);
write i2c(0x53, 0x5e);
write i2c(0x54, 0x80);
write i2c(0x58, 0x9e);
Saturation -1
i2c salve Address = 0x42;
write i2c(0x4f, 0x66);
write i2c(0x50, 0x66);
write i2c(0x51, 0x00);
write_i2c(0x52, 0x1b);
write i2c(0x53, 0x4b);
write i2c(0x54, 0x66);
write i2c(0x58, 0x9e);
Saturation - 2
i2c salve Address = 0x42;
write i2c(0x4f, 0x40);
write i2c(0x50, 0x40);
write i2c(0x51, 0x00);
write i2c(0x52, 0x11);
write i2c(0x53, 0x2f);
write i2c(0x54, 0x40);
write i2c(0x58, 0x9e);
```

11.3 Brightness

The brightness of OV7670 could be adjusted. Higher brightness will make the picture more bright. The side effect of higher brightness is the picture looks frogy.

```
Brightness +2

i2c_salve_Address = 0x42;

write_i2c(0x55, 0x30);

Brightness +1

i2c_salve_Address = 0x42;

write_i2c(0x55, 0x18);

Brightness 0

i2c_salve_Address = 0x42;

write i2c(0x55, 0x00);
```

```
Brightness -1

i2c_salve_Address = 0x42;

write_i2c(0x55, 0x98);

Brightness -2

i2c_salve_Address = 0x42;

write_i2c(0x55, 0xb0);
```

11.4 Contrast

The contrast of OV7670 could be adjusted. Higher contrast will make the picture sharp. But the side effect is loosing dynamic range.

```
Contrast +2
i2c_salve_Address = 0x42;
write_i2c(0x56, 0x60);

Contrast +1
i2c_salve_Address = 0x42;
write_i2c(0x56, 0x50);

Contrast 0
i2c_salve_Address = 0x42;
write_i2c(0x56, 0x40);

Contrast -1
i2c_salve_Address = 0x42;
write_i2c(0x56, 0x38);

Contrast -2
i2c_salve_Address = 0x42;
write_i2c(0x56, 0x30);
```

11.5 Special effects

OV7670 support some special effects such as B/W, negative, sepia, bluish, redish, greenish etc. If users need other special effects, it should be supported by backend chips.

```
Antique

i2c_salve_Address = 0x42;

write_i2c(0x3a, 0x14);

write_i2c(0x67, 0xa0);

write_i2c(0x68, 0x40);

Bluish

i2c_salve_Address = 0x42;

write_i2c(0x3a, 0x14);

write_i2c(0x67, 0x80);

write_i2c(0x68, 0xc0);
```

```
Greenish
i2c salve Address = 0x42;
write i2c(0x3a, 0x14);
write i2c(0x67, 0x40);
write i2c(0x68, 0x40);
Redish
i2c salve Address = 0x42;
write i2c(0x3a, 0x14);
write i2c(0x67, 0xc0);
write i2c(0x68, 0x80);
B&W
i2c salve Address = 0x42;
write i2c(0x3a, 0x14);
write i2c(0x67, 0xc80);
write i2c(0x68, 0x80);
Negative
i2c salve Address = 0x42;
write i2c(0x3a, 0x24);
write i2c(0x67, 0x80);
write i2c(0x68, 0x80);
B&W negative
i2c salve Address = 0x42;
write i2c(0x3a, 0x34);
write i2c(0x67, 0x80);
write i2c(0x68, 0x80);
Normal
i2c salve Address = 0x42;
write i2c(0x3a, 0x04);
write i2c(0x67, 0xc0);
write i2c(0x68, 0x80);
```

12. Deal with Lens

12.1 Light fall off

Light fall off means the corner of image is darker than center of image. It is caused by the lens. The lens shading correction function of OV7670 could be turned on to compensate the corner brightness and make the whole picture looks same bright.

12.2 Dark corner

Some lens may have dark corner. Dark corner means the color of picture looks almost black. It is not possible to correct dark corner with lens correction. So the module with dark corner is NG, it can not be used.

12.3 Resolution

The resolution of camera module depends on lens design, focus adjustment and sensor resolution as well. The focus adjustment is very important for camera module assembly.

For OV7670 the focus distance is about $40\sim50$ cm. The depth of field is about from $20\sim25$ cm to infinite. If checking resolution of camera module, the resolution chart should be placed $40\sim50$ cm away.

12.4 Optical contrast

The optical contrast of lens is very important to picture quality. If the optical contrast of lens is not good, the picture would looks forgy. Though it could be improved by increase the sensor contrast to make the picture sharper, the higher sensor contrast would make the detail lost of dark area of the picture.

12.5 Lens Cover

The lens cover is the cheapest part in optical path. But it could affect picture quality very much. The lens cover should be made with optical glass with AR coating at both side. Otherwise, the lens cover may cause sensitivity loss and/or stronger lens flare.

12.6 Lens Correction

Lens Correction setting should be tunned with every module. Please contact with OmniVision local FAE foe lens correction tuning.

13. Reference Settings

13.1 YCbCr

```
;Input clock 24Mhz, 25fps
42 12 80
42 11 80
42 3a 04
42 12 00
42 17 13
42 18 01
42 32 b6
42 19 02
42 1a 7a
42 03 0a
42 0c 00
42 3e 00
42 70 3a
42 71 35
42 72 11
42 73 f0
42 a2 02
42 7a 20
42 7b 10
```

```
42 7c 1e
42 7d 35
42 7e 5a
42 7f 69
42 80 76
42 81 80
42 82 88
42 83 8f
42 84 96
42 85 a3
42 86 af
42 87 c4
42 88 d7
42 89 e8
42 13 e0
42 01 50
42 02 68
42 00 00
42 10 00
42 0d 40
42 14 18
42 a5 07
42 ab 08
42 24 95
42 25 33
42 26 e3
42 9f 78
42 a0 68
42 a1 03
42 a6 d8
42 a7 d8
42 a8 f0
42 a9 90
42 aa 94
42 13 e5
42 0e 61
42 0f 4b
42 16 02
42 1e 07
42 21 02
42 22 91
42 29 07
42 33 0b
42 35 0b
42 37 1d
42 38 71
42 39 2a
42 3c 78
42 4d 40
```

42 4e 20

```
42 69 00
42 6b 0a
42 74 10
42 8d 4f
42 8e 00
42 8f 00
42 90 00
42 91 00
42 92 66
42 96 00
42 9a 80
42 b0 84
42 b1 0c
42 b2 0e
42 b3 82
42 b8 0a
42 43 14
42 44 f0
42 45 34
42 46 58
42 47 28
42 48 3a
42 59 88
42 5a 88
42 5b 44
42 5c 67
42 5d 49
42 5e 0e
42 64 04
42 65 20
42 66 05
42 94 04
42 95 08
42 6c 0a
42 6d 55
42 6e 11
42 6f 9f;9e for advance AWB
42 6a 40
42 01 40
42 02 40
42 13 e7
42 4f 80
42 50 80
42 51 00
42 52 22
42 53 5e
42 54 80
42 58 9e
42 41 08
```

```
42 3f 00
42 75 03
42 76 e1
42 4c 00
42 77 00
42 3d c2
42 4b 09
42 c9 60
42 41 38
42 56 40
42 34 11
42 3b 0a
42 a4 88
42 96 00
42 97 30
42 98 20
42 99 30
42 9a 84
42 9b 29
42 9c 03
42 9d 98
42 9e 3f
42 78 04
42 79 01
42 c8 f0
42 79 0f
42 c8 00
42 79 10
42 c8 7e
42 79 0a
42 c8 80
42 79 0b
42 c8 01
42 79 0c
42 c8 0f
42 79 0d
42 c8 20
42 79 09
42 c8 80
42 79 02
42 c8 c0
42 79 03
42 c8 40
42 79 05
42 c8 30
42 79 26
42 2d 00
42 2e 00
```

13.2 RGB raw

```
; OV7670 setting, June 6, 2005
; Bayer Raw, VGA
; 25fps @ 24MHz input clock
42 12 80
42 11 01
42 3a 04
42 12 01
42 17 12
42 18 00
42 32 b6
42 19 02
42 1a 7a
42 03 00
42 0c 00
42 3e 00
42 70 3a
42 71 35
42 72 11
42 73 f0
42 a2 02
42 13 e0
42 00 00
42 10 00
42 0d 40
42 14 38
42 a5 07
42 ab 08
42 24 95
42 25 33
42 26 e3
42 9f 78
42 a0 68
42 a1 0b
42 a6 d8
42 a7 d8
42 a8 f0
42 a9 90
42 aa 94
42 13 e5
42 0e 61
42 0f 4b
42 16 02
42 21 02
42 22 91
42 29 07
42 33 03
```

```
42 35 0b
42 37 1c
42 38 71
42 3c 78
42 3d 08
42 41 3a
42 4d 40
42 4e 20
42 69 55
42 6b 4a
42 74 19
42 76 61
42 8d 4f
42 8e 00
42 8f 00
42 90 00
42 91 00
42 96 00
42 9a 80
42 b0 8c
42 b1 0c
42 b2 0e
42 b3 82
42 b8 0a
42 43 14
42 44 f0
42 45 34
42 46 58
42 47 28
42 48 3a
42 59 88
42 5a 88
42 5b 44
42 5c 67
42 5d 49
42 5e 0e
42 6c 0a
42 6d 55
42 6e 11
42 6f 9f
42 6a 40
42 01 40
42 02 40
42 13 e7
42 34 11
42 92 66
42 3b 0a
42 a4 88
42 96 00
42 97 30
```

RGB565

contact OmniVision local FAE