Lecture 2: Recap of Probability Theory

Isabel Valera

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

21.04.2021

Outline

- Bibliograhy

Bibliograhy

0

Main references

- Statistics Lab notes by Prof. Wolf
- Bishop Chapter 1.2

Outline

- Bibliograhy
- 2 Introduction
- Oiscrete Random Variables
- 4 Continuous Random Variables
- Moments
- 6 Bayes' Theorem

Why probability theory in ML course

- A key concept in ML is uncertainty.
- Source of uncertainty are diverse and include the noise in the measurements (i.e., in the observed data) and the finite sample size from the underlying data distribution.
- Probability theory gives a theoretical framework to reason under uncertainty, i.e., to quantify and manipulate uncertainty.
- Frequentist interpretation: Probability as the frequency or propensity of some event, i.e.,

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n},$$

where n_A is the number of times A happens in n trials (usually it is assumed that $n \to \infty$).

• Bayesian interpretation:

Probabilities as quantification of a belief or the uncertainty on unobserved quantities.

Outline

- Bibliograhy
- 2 Introduction
- Oiscrete Random Variables
- 4 Continuous Random Variables
- Moments
- 6 Bayes' Theorem

- A random variable is used to represent the outcome of an experiment. When the number of possible outcomes is countable. then we encounter a discrete random variable.
- The set of all possible outcomes is called the **sample space**: $\Omega = \{\omega_1, \dots, \omega_n\}$ (e.g., in tossing a coin experiment, $\Omega = \{H, T\}$).
- **Elementary event** is a singleton $\{\omega_r\}$ of Ω , i.e., is an event which cannot be further divided into other events.
- The set of all possible events is the power set 2^{Ω} (for the coin: $\{\emptyset, \{H\}, \{T\}, \{H, T\}\}\)$).
- The **probability function** P maps events $A \in 2^{\Omega}$ into the probability of such an event, i.e., $P: 2^{\Omega} \to [0,1]$, such that
 - $P(\emptyset) = 0$ and $P(\Omega) = 1$,
 - $\sum_{\omega \in \Omega} P(\{\omega_i\}) = 1$,
 - $A \in 2^{\Omega} \implies P(A) = \sum_{\omega \in A} P(\{\omega_i\}).$
- Additive rule of probabilities:

Let $A,B\in 2^\Omega$, then $P(A\cup B)=P(A)+P(B)-P(A\cap B)$.

Example: Binomial distribution I

- An experiment with two possible outcomes $Y \in \{0,1\}$ is called **Bernoulli trial** (or binomial trial) and is defined by the "success" probability p = P(Y = 1).
- The **binomial distribution** models n repeated Bernoulli trials where the outcomes are independent (e.g., in a coin toss experiment) and the random variable X accounts for the number of times we observe "success" Y=1 (the order does not matter), i.e.,

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k},$$

with the binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

• The sample space is thus $\Omega = \{0, 1, \dots, n\}$ and

$$P(\Omega) = \sum_{k=0}^{n} P(X = k) = \sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = (1-p+p)^{n} = 1.$$

Example: Binomial distribution II

• Coin toss: $\Omega = \{H, T\}$, P(H) = p. Define $Y : \{H, T\} \rightarrow \{0, 1\}$ by

$$Y = \left\{ \begin{array}{l} 1 \text{ if } H, \\ 0 \text{ if } T. \end{array} \right.$$

Y is a random variable with Bernoulli-distribution:

$$P_Y(Y=1) = P(H) = p$$
, and similarly $P_Y(Y=0) = 1 - p$.

• Repeat the coin toss independently n times and denote by X the number of times we observe head. Let Ω be the set of all sequences of *n* variables with the alphabet $\{H, T\}$, then $|\Omega| = 2^n$. X is a random variable $X:\Omega\to\mathbb{Z}$ with distribution

$$P_X(X=k) = P(X^{-1}(k)) = \binom{n}{k} p^k (1-p)^{n-k}.$$

If n = 3, then $X^{-1}(2) = \{HHT, HTH, THH\}$.

The Rules of Probability

There are two fundamental rules of probability theory:

Sum rule:
$$P(X) = \sum_{Y} P(X, Y)$$
 (1)

Product rule:
$$P(X, Y) = P(Y \mid X)P(X)(= P(X \cap Y))$$
 (2)

 Let X, Y be discrete random variables. X and Y are independent if,

$$P_{X\times Y}(X=i,Y=j) = P_X(i) P_Y(j), \quad \forall i,j\in\mathbb{Z}.$$

• The **conditional probability** P(X = i | Y = j) of X given Y = j is,

$$P(X=i|Y=j) = \frac{P_{X\times Y}(X=i,Y=j)}{P(Y=j)}, \quad \forall j \text{ with } P(Y=j) > 0.$$

Example: Oranges v.s Apples from Bishop

Figure: Figure 1.9 from Bishop

$$P(B = r) = 4/10$$

 $P(B = b) = 6/10$
 $P(F = a|B = r) = 1/4$
 $P(F = o|B = r) = 3/4$
 $P(F = a|B = b) = 3/4$
 $P(F = o|B = b) = 1/4$

$$P(F = a) = P(F = a|B = r)P(B = r) + P(F = a|B = b)P(B = b)$$

$$= \frac{1}{4} \times \frac{4}{10} + \frac{3}{4} \times \frac{6}{10} = \frac{11}{20}$$

$$P(B = r|F = o) = \frac{P(F = o|B = r)P(B = r)}{P(F = o)} = \frac{3/4 \times 4/10}{9/20} = \frac{2}{3}$$

Outline

- Bibliograhy
- 2 Introduction
- Oiscrete Random Variables
- 4 Continuous Random Variables
- Moments
- 6 Bayes' Theorem

σ -algebra

- So far, random variables taking discrete values $X \in \{1, 2, 3, ...\}$, thus Ω is a countable set.
- What if we consider continuous variables, e.g., $X \in \mathbb{R}$, and thus $\Omega = \mathbb{R}$ is uncountable? How do we assign probabilities to all 2^{Ω} events?
- If all numbers are equally likely to occur, how do we ensure that $\sum_{\omega_i \in \Omega} P(\omega_i) = 1$?

Definition (σ -algebra)

A set $A \subset 2^{\Omega}$ is called a σ -algebra:

- ② If $A \in \mathcal{A}$, then also the complement A^c is contained in \mathcal{A} ,
- **③** If \mathcal{A} is closed under **countable** unions, that is if A_1, A_2, \ldots is a sequence of events in \mathcal{A} , then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

Probability measure

Definition (Probability measure)

A **probability measure** defined on a σ -algebra \mathcal{A} of Ω is a function $P: \mathcal{A} \to [0,1]$ that satisfies:

- ② For every countable sequence $(A_n)_{n\geq 1}$ of elements of \mathcal{A} , pairwise disjoint (that is $A_m\cap A_n=\emptyset$ whenever $m\neq n$), one has

$$P\Big(\bigcup_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}P(A_n).$$

• Any discrete **probability space** $(\Omega, 2^{\Omega}, P)$ is a probability measure, since 2^{Ω} is a σ -algebra and P is a probability measure.

Borel σ -Algebra

Let $C \subset 2^{\Omega}$. The σ -algebra generated by C is the smallest σ -algebra containing C.

Definition (Borel σ -algebra)

The **Borel** σ -algebra \mathcal{B} in \mathbb{R}^d is the σ -algebra generated by the open sets in \mathbb{R}^d .

Lebesgue Measure on \mathbb{R}^d

• The Lebesgue measure $\mu: \mathcal{B} \to \mathbb{R}_+$ is now just the usual measure of volume. For the one-dimensional case, we have

$$\mu(]a,b[)=b-a,$$

 A set A ∈ B has measure zero if μ(A) = 0. Any countable set of points has Lebesgue measure zero.

Warning: The Lebesgue measure works on its own (larger) σ -algebra but the difference is for our purposes negligible.

Probability on continuous spaces

In the case $\Omega = \mathbb{R}^d$ we will work with measures which have a density with respect to the **Lebesgue measure**.

Let $\mathcal B$ be the Borel σ -algebra in $\mathbb R^d$. A probability measure P on $(\mathbb R^d,\mathcal B)$ has a **density** p if p is a non-negative (Borel measurable) function on $\mathbb R^d$ satisfying for all $A\in\mathcal B$ that:

$$P(A) = \int_A p(x)dx = \int_A p(x_1, \ldots, x_d) dx_1 \ldots dx_d,$$

where $dx = dx_1 \dots dx_d$.

- This implies: $P(\mathbb{R}^d) = \int_{\mathbb{R}^d} p(x) dx = 1$.
- ullet Observation: Not all probability measures on \mathbb{R}^d have a density.

Example of a probability measure with density

The **Gaussian distribution** or normal distribution on \mathbb{R} has two parameters μ (mean) and σ^2 (variance). The associated density function is denoted by $\mathcal{N}(\mu, \sigma^2)$ and defined as:

$$p(X = x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x \, dx = \mu$$

$$\mathbb{E}\left[x^{2}\right] = \int_{-\infty}^{\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x^{2} \, dx = \mu^{2} + \sigma^{2}$$

$$\operatorname{var}[x] = \mathbb{E}\left[x^{2}\right] - \mathbb{E}[x]^{2} = \sigma^{2}$$

Figure: Figure 1.13 from Bishop

- **Multivariate Gaussian** $\mathcal{N}(\mu, \Sigma)$ is uniquely determined by the mean $\mu \in \mathbb{R}^d$ and the covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ (positive-definite) as

$$p(x) = \frac{1}{(2\pi)^{\frac{d}{2}} |\det \Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

- Laplace distribution Laplace(μ , b) is given by

$$p(x) = \frac{1}{2b} e^{-\frac{1}{b}|x-\mu|}$$

- **Gamma distribution** $\Gamma(\alpha, \beta)$ given by:

$$p(x) = \frac{x^{\alpha - 1} \beta^{\alpha} e^{-\beta x}}{\Gamma(\alpha)}, \text{ where } \Gamma(\cdot) \text{ is the Gamma function.}$$

Cumulative distribution function

• The (cumulative) distribution function of a probability measure P on $(\mathbb{R}, \mathcal{B})$ is the function

$$F(x) = P(X \in (-\infty, x]) = P(X \le x) = \int_{-\infty}^{x} p(t)dt.$$

If the distribution function F is sufficiently differentiable, then

$$p(x) = \frac{\partial F}{\partial x}\Big|_{x}.$$

ullet The distribution function of P on $(\mathbb{R}^d,\mathcal{B})$ is the function

$$F(x_1,\ldots,x_d)=P(X_1\leq x_1,\ldots,X_d\leq x_d).$$

If the distribution function F is sufficiently differentiable, then

$$p(x_1,\ldots,x_d)=\frac{\partial^d F}{\partial x_1\ldots\partial x_d}\Big|_{x_1,\ldots,x_d}.$$

Quantile

Quantiles: Quantiles are only defined for distributions on $\mathbb Z$ and $\mathbb R$.

Definition

The lpha-quantile of a probability measure on $\mathbb Z$ or $\mathbb R$ is the real number q_lpha such that

$$F(q_{\alpha}) = P(]-\infty, q_{\alpha}]) = \alpha.$$

The **median** is the $\frac{1}{2}$ -quantile.

- Median and mean agree if the distributions are symmetric (and unimodal).
- The median is more robust to changes of the probability measure.

Cumulative distribution and Quantiles

Figure 2.3 (a) Plot of the cdf for the standard normal, $\mathcal{N}(0,1)$. (b) Corresponding pdf. The shaded regions each contain $\alpha/2$ of the probability mass. Therefore the nonshaded region contains $1-\alpha$ of the probability mass. If the distribution is Gaussian $\mathcal{N}(0,1)$, then the leftmost cutoff point is $\Phi^{-1}(\alpha/2)$, where Φ is the cdf of the Gaussian. By symmetry, the rightost cutoff point is $\Phi^{-1}(1-\alpha/2)=-\Phi^{-1}(\alpha/2)$. If $\alpha=0.05$, the central interval is 95%, and the left cutoff is -1.96 and the right is 1.96. Figure generated by quantileDemo.

Figure: Figure from Murphy's book

Joint density and marginals

Let $X=(X_1,X_2)$ be a \mathbb{R}^2 -valued random variable with density p_X on \mathbb{R}^2 . Then the densities p_{X_1} of X_1 and p_{X_2} of X_2 are given as

$$p_{X_1}(x_1) = \int_{\mathbb{R}} p_X(x_1, x_2) dx_2, \qquad p_{X_2}(x_2) = \int_{\mathbb{R}} p_X(x_1, x_2) dx_1.$$

- $p_X(x_1, x_2)$ denotes the **joint density**.
- p_{X_1} and p_{X_2} are called **marginal densities** of X and are associated to the probability measures of X_1 respectively X_2 .

Observation: The joint measure can in general not be reconstructed from the knowledge of the marginal densities (only if X_1 and X_2 are independent).

Let X, Y be \mathbb{R} -valued random variables with joint-density $p_{X \times Y}$ and marginal densities p_X and p_Y , then X and Y are **independent** if

$$p_{X\times Y}(x,y)=p_X(x)\;p_Y(y),\quad \forall x,y\in\mathbb{R}.$$

The **conditional density** p(x|Y = y) of X given Y = y is defined as,

$$p(x|y) = \frac{p(x,y)}{p(y)}, \quad \forall y \text{ with } p(y) > 0.$$

Example: Joint, marginals and conditionals

Figure 2.9 from Bishop

Transformation of Random Variables

Theorem

Let $X=(X_1,\ldots,X_d)$ have joint density p_X . Let $g:\mathbb{R}^d\to\mathbb{R}^d$ be continuously differentiable and injective, with non-vanishing Jacobian. Then Y=g(X) has density

$$p_Y(y) = p_X(g^{-1}(y)) |\det J_{g^{-1}}(y)|$$

• The Jacobian $J_g(x)$ of a function $g:\mathbb{R}^d \to \mathbb{R}^d$ at value x is the $d \times d$ - matrix

$$J_{\mathbf{g}}(x)_{ij} = \frac{\partial g_i}{\partial x_i}\Big|_{x}, \quad i,j = 1,\ldots,d$$

• This result allows us to generate samples from complicated densities from simple ones.

Example: Sampling from an exponential distribution

$$p_{\lambda}(y) = \lambda \exp(-\lambda y), \text{ for } y \ge 0.$$

- 1. We can first sample from a uniform distribution on [0,1].
- 2. Apply a function $g:[0,1] \to \mathbb{R}_+$ (resp. g^{-1}) such that

$$p_{\lambda}(y) = \lambda \exp(-\lambda y) = p_{X}(g^{-1}(y)) \left| \frac{\partial g^{-1}}{\partial y} \right| = \left| \frac{\partial g^{-1}}{\partial y} \right|.$$

General case: complicated differential equation.

This case:
$$g^{-1}(y) = \exp(-\lambda y) \Longrightarrow g(x) = -\frac{\log(x)}{\lambda}$$

- X_i samples from the uniform distribution on [0,1],
- $Y_i = g(X_i) = -\frac{\log(X_i)}{\lambda}$ are samples from the exponential distribution.

Outline

- Bibliograhy
- 2 Introduction
- Oiscrete Random Variables
- 4 Continuous Random Variables
- Moments
- 6 Bayes' Theorem

Bayes' Theorem

The **expected value** or **expectation** of a \mathbb{R}^d -valued random variable Xis defined as

$$(\mathbb{E}[X])_i = \int_{\mathbb{R}^d} x_i \ p(x) \ dx = \int_{\mathbb{R}^d} x_i \ p(x_1, \dots, x_d) \ dx_1 \dots dx_d,$$

and for a discrete random variable X taking values in \mathbb{Z} it is defined as,

$$\mathbb{E}[X] = \sum_{n = -\infty} n \, P(X = n).$$

Expectation of functions of random variables

We can also define the expectation of functions of random variables.

$$\mathbb{E}[f(X)] = \int_{\mathbb{R}^d} f(x) p(x) dx = \int_{\mathbb{R}^d} f(x_1, \dots, x_d) p(x_1, \dots, x_d) dx_1 \dots, dx_d.$$

Variance, Covariance and Correlation

The **variance** $\operatorname{Var}[X]$ (also $\sigma^2(X)$) of an \mathbb{Z} - or \mathbb{R} -valued random variable X is defined as

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}X)^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

The standard deviation of X is $\sigma(X) = \sqrt{\operatorname{Var}[X]}$.

The covariance matrix Σ of an \mathbb{R}^d -valued random variable X is given as $\Sigma_{ij} = \operatorname{Cov}(X_i, X_j)$ or in matrix form

$$\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T].$$

The **covariance** Cov(X, Y) of two \mathbb{R} -valued random variables X and Y is defined as,

$$\operatorname{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] = \mathbb{E}[X Y] - \mathbb{E}[X] \mathbb{E}[Y].$$

The **correlation** Corr(X, Y) of two \mathbb{R} -valued random variables X and Y is then defined as,

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Cov}(X,X)\operatorname{Cov}(Y,Y)}} = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)}.$$

• The expectation and variance have the following properties $\forall a, b \in \mathbb{R}$.

$$\begin{split} \mathbb{E}[aX+b] &= a\,\mathbb{E}[X]+b, \qquad \mathbb{E}[X+Y] = \mathbb{E}[X]+\mathbb{E}[Y], \\ \operatorname{Var}[aX+b] &= a^2\,\operatorname{Var}[X], \\ \operatorname{Var}[X+Y] &= \operatorname{Var}[X]+\operatorname{Var}[Y]+2\,\operatorname{Cov}(X,Y). \end{split}$$

 Correlation is a measure of linear dependence, and satisfies $-1 \leq \operatorname{Corr}(X, Y) \leq 1$. If X and Y are linearly dependent, that is Y = aX + b with $a, b \in \mathbb{R}$, then

$$Corr(X, Y) = Corr(X, aX + b) = \frac{a}{|a|} = \begin{cases} 1, & \text{if } a > 0, \\ 0, & \text{if } a = 0, \\ -1, & \text{if } a < 0. \end{cases}$$

In words, linearly dependent random variables achieve maximal correlation.

Conditional expectation

Let X, Y be two \mathbb{R} -valued random variables. The **conditional expectation** $\mathbb{E}[X|Y=y]$ of X given Y=y is defined for y with p(y)>0 as the quantity

$$\mathbb{E}[X|Y=y]=\int_{\mathbb{R}}x\,p(x|y)\,dx.$$

The **conditional expectation** $\mathbb{E}[X|Y]$ of X given Y is a random variable h(Y) with values

$$h(y) = \mathbb{E}[X|Y = y].$$

Important properties of the conditional expectation are:

- $\mathbb{E}[X|Y] = \mathbb{E}[X]$, if X and Y are **independent**,
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$,
- $\mathbb{E}[f(Y)|Y] = f(Y)$ and $\mathbb{E}[f(Y)g(X)|Y] = f(Y)\mathbb{E}[g(X)|Y]$.

Outline

- Bibliograhy
- 2 Introduction
- Oiscrete Random Variables
- 4 Continuous Random Variables
- Moments
- 6 Bayes' Theorem

Law of total probability

Assume that we have a finite or countably infinite number of events $\mathcal{A} = \{A_1, A_2, A_3, \ldots\}$ and $\Omega = A_1 \cup A_2 \cup A_3 \cup \ldots$

Definition

A collection of events $(A_n)_{n\geq 1}$ is called a **partition** of Ω if $A_n\in \mathcal{A}$ for each n, they are pairwise disjoint, $A_n\cap A_m=\emptyset$ for $m\neq n$, $\mathrm{P}(A_n)>0$ for each n, and $\cup_n A_n=\Omega$.

Theorem (Law of total probability)

Let $(A_n)_{n\geq 1}$ be a finite or countable partition of Ω . Then if $B\in \mathcal{A}$,

$$P(B) = \sum_{n} P(B|A_n)P(A_n).$$

Bayes' theorem

Theorem (Bayes' theorem)

Let A, B be two events and P(B) > 0, then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},$$

- The above definition follows from the definition of conditional probability.
- Implication: Let $(A_n)_{n\geq 1}$ be a finite or countable partition of Ω , and suppose P(B) > 0. Then

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_n P(B|A_n)P(A_n)}.$$

