Задача.

В классической схеме Юнга щелевой источник смещен по вертикали на расстояние ξ . Расстояние от источника до промежуточного экрана a. Определить интенсивность I(x) на основном экране.

Решение.

Общее выражение для интенсивности двух электромагнитных волн

$$I(x) = 2I_0(1 + \cos \Delta \phi),$$

где $\Delta \phi$ определяется оптической разностью хода лучей:

$$\Delta \Phi = k(r_2' + r_2 - r_1' - r_1).$$

Разность r_2-r_1 в параксиальном приближении равна $\frac{d\cdot x}{L}$. Из геометрической аналогии между правой и левой частями оптической схемы разность $r_2'-r_1'$ получается заменой $d\to d,\ x\to \xi,\ L\to a$:

$$r_2' - r_1' = \frac{d \cdot \xi}{a}.$$

Эта разность хода лучей вызывает разность фаз волн в щелях, равную $k\frac{d\cdot\xi}{a}$.

Таким образом, искомая интенсивность описывается выражением

$$I(x) = 2I_0 \left[1 + \cos \left(k \frac{d \cdot \xi}{a} + k \frac{d \cdot x}{L} \right) \right].$$

Из полученного выражения видно, что смещение источника вверх приводит к перемещению интерференционной картины как целого вниз на расстояние $\frac{L}{a}\xi$.