Tutorial - 2 MA202 : Calculus II

- 1. Find the critical points for the following functions and determine their nature.
 - (a) $f(x,y) = x^3 y^3 2xy + 6$,
 - (b) $f(x,y) = 9x^3 + \frac{y^3}{3} 4xy$,
 - (c) $f(x,y) = e^{2x} \cos y$.
- 2. Find the absolute maxima and minima of the functions on the given domains. (Note that the functions are continuous and defined in a closed bounded domain).
 - (a) $f(x,y) = 2x^2 4x + y^2 4y + 1$ defined on the closed triangular plate bounded by the lines x = 0, y = 2, y = 2x in the first quadrant.
 - (b) $f(x,y) = x^2 + xy + y^2 6x$ on the rectangular plate $0 \le x \le 5, -3 \le y \le 3$.
 - (c) $f(x,y) = (4x x^2)\cos y$ on the rectangular plate $1 \le x \le 3$ and $-\pi/4 \le y \le \pi/4$.
- 3. Find the points on the curve $x^2 + xy + y^2 = 1$ in the xy-plane that are nearest to and furthest from the origin.
- 4. Find the length and width of the rectangle of greatest area that can be inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with the sides parallel to the coordinate axes.
- 5. Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- 6. Find three real numbers whose sum is 9 and sum of squares is as small as possible.
- 7. Find the extreme values of $f(x, y, z) = xy + z^2$ on the circle o which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$.
- 8. Maximize the function $f(x, y, z) = x^2 + 2y z^2$ subject to the constraints 2x y = 0 and y + z = 0.