# Análise de algoritmos

#### Pontos da aula

- Operações e propriedades da notação O.
- Análise para um pior caso.
- Exemplos de análise de algoritmos.

# Análise de algoritmos

Operações e Propriedades da Notação O.

- f(n) = O(f(n))
- $c \cdot O(f(n)) = O(f(n))$ , onde c é uma constante
- O(f(n)) + O(f(n)) = O(f(n))
- O(O(f(n))) = O(f(n))
- $O(f(n)) + O(g(n)) = O(\max(f(n), g(n)))$
- $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$
- $f(n) \cdot O(g(n)) = O(f(n) \cdot g(n))$

• Multiplicação por uma função não constante:

Se 
$$f(n) = O(n^2)$$
 e  $g(n) = n$ , então  $f(n) \cdot g(n) = O(n^2 \cdot n) = O(n^3)$ .

Divisão por uma função:

Se 
$$f(n) = O(n^3)$$
 e  $g(n) = O(n^2)$ , então  $\frac{O(f(n))}{O(g(n))} = O\left(\frac{n^3}{n^2}\right) = O(n)$ .

Potência de uma função:

Se 
$$f(n) = O(n)$$
, então  $f(n)^k = O(n^k)$ , onde  $k$  é uma constante.

• Exponenciação com uma constante na base: Se  $f(n) = O(n^2)$ , então  $2^{O(f(n))} = 2^{O(n^2)} = O(2^{n^2})$ .

• Logaritmos de uma função:

Se 
$$f(n) = O(n^k)$$
, então  $\log O(f(n)) = O(\log n^k) = O(k \log n) = O(\log n)$ .

• Soma infinita de funções:

Se 
$$f(n) = O(1) + O(n) + O(n^2)$$
, então a complexidade total é a do termo dominante:  $O(n^2)$ .

- Propriedades da Notação O.
  - Reflexividade:

$$f(n) = O(f(n)).$$

Transitividade:

Se 
$$f(n) = O(g(n))$$
 e  $g(n) = O(h(n))$ , então  $f(n) = O(h(n))$ .

Monotonicidade:

Se 
$$f(n) = O(g(n))$$
 e  $g(n) \ge h(n)$  para  $n$  suficientemente grande, então  $f(n) = O(h(n))$ .

Assintoticamente maior:

Se 
$$f(n) = O(n^2)$$
 e  $g(n) = O(n)$ , então  $O(n^2) \ge O(n)$ .

# Análise de algoritmos



$$T(n) = 6n^2 + 100n + 300$$
  
 $\rightarrow n^2 \rightarrow O(n^2)$ 





| Ordem              | Nome        | Descrição                                                                                      |
|--------------------|-------------|------------------------------------------------------------------------------------------------|
| O(1)               | constante   | mais rápido, impossível                                                                        |
| O(log n)           | logarítmico | muito bom                                                                                      |
| O(n)               | linear      | é o melhor que se pode esperar se algo não pode ser<br>determinado sem examinar toda a entrada |
| O(n logn)          |             | limite de muitos problemas práticos. Ex: ordenação                                             |
| O(n²)              | quadrático  | muitos algoritmos simples de ordenação                                                         |
| O(n <sup>k</sup> ) | polinomial  | ok se n for pequeno                                                                            |
| O(kn)              | exponencial | evite!                                                                                         |

Ordem de crescimento





#### **O(1)**

- De ordem constante.
- Independentemente do tamanho dos dados de entrada, a quantidade de instruções executadas é sempre a mesma.

#### O(log n)

- De ordem logarítmica.
- Soluções que dividem o problema em problemas menores, processando a cada iteração, em geral, a metade dos dados da vez anterior.

#### **O(n)**

- De ordem linear.
- O mesmo número de instruções é executado para cada um dos elementos de entrada.

#### O(nlog(n))

- De log linear.
- Soluções de algoritmos que transformam o problema a ser resolvido em problemas menores, que por sua vez possuem soluções independentes.

#### $O(n^2)$

- De ordem quadrática.
- Algoritmos que possuem alinhamentos de laços para trabalhar com os dados de entrada em pares.

#### $O(n^3)$

- De ordem cúbica.
- Algoritmos que possuem alinhamentos de três laços para trabalhar com os dados de entrada.

#### O(2<sup>n</sup>)

- De ordem exponencial.
- Algoritmo de força bruta.

#### O(n!)

- De ordem fatorial.
- Algoritmo de força bruta, com desempenho pior que o de ordem exponencial.

# Análise de algoritmos

#### // Exemplo 1:

```
int x = 0;

x = x + 1;

printf("%d", resultado);
```

int 
$$x = 0$$
;  
 $x = x + 1$ ;  
printf("%d", resultado);

$$T(n) = 1 + 1 + 1 \rightarrow 3 \rightarrow O(1)$$

#### // Exemplo 2:

```
int encontrar valor(int v | | |, int n, int c){
 int p = -1;
 int i = 0;
 while(i < n && p == -1){
  if(v[i] == c)
    p = i;
  j++;
 return p;
```

```
int encontrar valor(int v | ], int n, int c){
 int p = -1;
 int i = 0;
 while(i < n && p == -1){ ——
                                                             → n + 1
  if(v[i] == c)
    p = i;
 return p;
                                              T(n) = 3n + 4 \rightarrow n \rightarrow O(n)
```

#### // Exemplo 3:

```
float calcula ma(int n, float v[]){
 float soma = 0.0;
 media = 0.0;
 for(int i=0; i < n; i++){
  soma = soma + v[i];
 media = soma / n;
 return media;
```

```
float calcula ma(int n, float v[]){
 float soma = 0.0;
 media = 0.0:
 for(int i=0; i < n; i++){———

→ 1 + (n + 1) + n

  soma = soma + v[i];
 media = soma / n;
 return media;
T(n) = 1 + 1 + 1 + n + 1 + n + n + 1 + 1 = 3n + 6 \rightarrow O(n)
```

```
// Exemplo 4:
 int encontra maior(int n, int v[]){
 int maior = 0;
 for(int i=1; i < n; i++)
  if(v[i] > v[maior])
    maior = i;
 return maior;
```

```
int encontra maior(int n, int v[]){
 int maior = 0;
                                           → 1 + (n – 1 + 1) + n - 1
 for(int i=1; i < n; i++) —
                                            → n - 1
  if(v[i] > v[maior])
                                            → n - 1
    maior = i;
 return maior;
T(n) = 1 + 1 + n + n - 1 + n - 1 + n - 1 + 1 = 4n \rightarrow O(n)
```

### Fim da aula