# Умножение в дополнительном коде с ручной коррекцией (без коррекции множителем)

A. C. Коржавина as\_korzhavina@vyatsu.ru

Лекция по дисциплине «информатика» (2 марта 2018 г.)

#### Содержание

- 📵 Обоснование корректности
  - Точка зрения на дополнительный код
  - Нужна коррекция
- 2 Коррекция вовремя
  - Технические ограничения
  - Примеры
- Задания на практику
  - Проходное
- Ф Самообучение

#### Точка зрения на дополнительный код

С помощью дополнительного кода в n-разрядной сетке можно представить целые числа из отрезка

$$X \in [-2^{n-1}, +(2^{n-1}-1)].$$

В этом случае:

ДК
$$(X) = egin{cases} |X|, & ext{если } X \geq 0, \\ 2^n - |X|, & ext{если } X < 0. \end{cases}$$

#### Масштабированный дополнительный код

Если выполнить масштабирование с масштабом  $M = 2^n$ :

$$X = x \cdot 2^n$$
.

Тогда:

ДК
$$(X)=egin{cases} |x|\cdot 2^n, & ext{если } X\geq 0, \ (1-|x|)\cdot 2^n, & ext{если } X<0. \end{cases}$$

Для дробных представлений x справедливо:

ДК
$$(x) = \begin{cases} |x|, & \text{если } x \ge 0, \\ 1 - |x|, & \text{если } x < 0. \end{cases}$$
 (1)

#### Дополнительный код

Согласно формуле (1) дополнительный код после масштабирования можно рассматривать как

положительное дробное число.

Так как 
$$X\in[-2^{n-1},+(2^{n-1}-1)]$$
, то  $x\in[-2^{-1},\leq+(2^{-1}-2^{-n})]$ , следовательно

$$(1-|x|)>0.$$

Пусть

$$A = a \cdot 2^n,$$
  
$$B = b \cdot 2^n,$$

далее выполняются операции с дробными а, b.

# Коррекция псевдопроизведения $ДK(a) \cdot ДK(b)$

- Оба сомножителя положительны. Поправок не требуется.
- Один из сомножителей отрицателен. Пусть a<0,  $b\geq0$ , тогда правильный код результата:  $\mathsf{ДK}(ab)=(1-|ab|)$ . Псевдопроизведение:

ДК
$$(a) \cdot$$
 ДК $(b) = (1 - |a|) \cdot |b| = |b| - |a| \cdot |b|$ .

Нужна поправка: (1 - |b|) = ДK(-b).

• Оба сомножителя отрицательны. Правильный код результата:  $\mathsf{ДK}(ab) = |ab|$ . Псевдопроизведение:

$$ДK(a) \cdot ДK(b) = (1 - |a|)(1 - |b|) = 1 - |a| - |b| + |ab|$$

Прибавив поправку (|a|+|b|), получим (1+|ab|), который, вследствие переноса единицы в целую часть, эквивалентен правильному |ab|.



Коррекция множителем представляет проблему, так как для этого требуются дополнительные аппаратные затраты $^a$ .

 $^{a}$ Коррекция множимым проблемы не представляет, так как множимое в любом случае прибавляется к СЧП

Пусть a — множитель, а b — множимое.

#### Дополнительный код множимого

В представлении дополнительного кода множимого b

ДК
$$(b)=egin{cases} |b|, & ext{если } b\geq 0, \ 1-|b|, & ext{если } b<0. \end{cases}$$

можно заменить (1-|b|) на выражение  $(2^n-|b|)$ , где n>0:

ДК
$$(b)=egin{cases} |b|,& ext{если }b\geq 0,\ 2^n-|b|,& ext{если }b<0. \end{cases}$$

Действительно, по смыслу, для дробно-масштабированного b:

$$1 \equiv 2^n \equiv$$
 «любое целое»  $\equiv 0$ .

•  $a \ge 0, b \ge 0$ : поправок не нужно.

Д
$$K(a) \cdot ДK(b) = |a| \cdot |b| = ДK(ab).$$

•  $a \ge 0, b < 0$ : поправок не нужно.

$$ДK(a) \cdot ДK(b) = |a| \cdot (2^n - |b|) = \underbrace{|a| \cdot 2^n}_{\text{целое} \equiv 1} - |ab| = ДK(ab).$$

•  $a < 0, b \ge 0$ : поправка множимым  $+(2^n - |b|)$ .

ullet a < 0, b < 0: поправка множимым +|b|

#### Резюме: ДK(ab) = ...a -множитель, b -множимое

- $a \ge 0, b \ge 0$ :  $\mathsf{ДK}(ab) = \mathsf{ДK}(a) \cdot \mathsf{ДK}(b)$ .
- $a \ge 0, b < 0$ :  $\Delta K(ab) = \Delta K(a) \cdot \Delta K(b)$ .
- $a < 0, b \ge 0$ :  $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-b)$ .
- a < 0, b < 0:  $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-b)$ .

#### Упрощенное правило ручной коррекции

Если множитель отрицателен, то из псевдопроизведения *вычитается* множимое.

- 1: if a < 0 then
- 2:  $CY\Pi := CY\Pi b;$
- 3: end if

#### Основные способы умножения



# Коррекции подлежит *старшая* половина 2n разрядного псевдопроизведения<sup>a</sup>.

#### І-й способ: технические ограничения



#### Особенности І-го способа

- СЧП сдвигается вправо;
- Множимое прибавляется к старшей половине СЧП;
- Множимое не сдвигается.
- Коррекция выполняется только в конце цикла умножения. В противном случае все поправки «уедут» в младшие разряды СЧП.

Так как в цикле умножения к СЧП прибавляется *половина* множимого, а при коррекции нужно вычесть *целое* множимое, то нужно СЧП расширить одним разрядом справа (младшим) и, выполнив цикл, сделать последний сдвиг. Коррекцию выполнить половиной множимого и в качестве результата выдать младшие  $2^n$  разрядов (без старшего бита). Учесть, что нужно выполнять «знаковые сдвиги» СЧП.

#### II-й способ: технические ограничения



#### Особенности II-го способа

- СЧП не сдвигается;
- Множимое заносится в младшую часть 2*n*-разрадного регистра.
- Множимое сдвигается влево;
- Поправка множимым без дополнительных затрат выполняется в конце цикла, когда после серии сдвигов множимое выходит в старшую часть 2*n*-разрядного регистра.

#### III-й способ: технические ограничения



#### Особенности III-го способа

- СЧП сдвигается влево;
- Множимое прибавляется к младшей половине 2n-разрядной СЧП.
- Множимое сдвигается влево;
- Поправка множимым без дополнительных затрат выполняется в начале цикла умножения. В конце цикла, после серии сдвигов СЧП, она станет правильной.

#### IV-й способ: технические ограничения



#### Особенности IV-го способа

- СЧП не сдвигается;
- Множимое заносится в старшую часть 2n-разрадного регистра.
- Множимое сдвигается вправо;
- Поправка множимим без дополнительных затрат выполняется до цикла умножения. После поправки выполняется сдвиг регистра множимого и цикл выполняется как обычно.

#### Операнды для примеров

В качестве примера будем перемножать числа 9 и 11 с различными комбинациями знаков.

Выбрав масштаб  $M=2^5$ , получим следующие представления:

$$ДK(9) = ,01001,$$
 $ДK(-9) = ,10111,$ 
 $ДK(11) = ,01011,$ 
 $ДK(-11) = ,10101.$ 

# I-способ: $-9 \cdot 11$ . ДK(-99) = ,11100 11101

| мн-ль $ ightarrow$ | СЧП →                 | прим.                                  |  |
|--------------------|-----------------------|----------------------------------------|--|
| ,1011 <u>1</u>     | ,00000 000000         | 1 2/2. 2                               |  |
|                    | ,.0101 1              | +мн-е/2; сдвиг                         |  |
|                    | ,00101 100000         |                                        |  |
| 1011               | ,.0010 110000         | Law o/2: crous                         |  |
| ,.101 <u>1</u>     | ,.0101 1              | +мн-е/2; сдвиг                         |  |
|                    | ,01000 010000         |                                        |  |
| ,10 <u>1</u>       | ,.0100 001000         | Law 0/2: CEDIA                         |  |
|                    | ,.0101 1              | +мн-е/2; сдвиг                         |  |
|                    | ,01001 101000         |                                        |  |
| ,1 <u>0</u>        | ,.0100 110100         | сдвиг                                  |  |
|                    | + ,010 011010         | 1                                      |  |
| , <u>1</u>         | <sup>+</sup> ,.0101 1 | +мн-е/2                                |  |
|                    | ,00111 111010         |                                        |  |
|                    | ,.0011 111101         | сдвиг; Рез-т?                          |  |
|                    | ,.0011 111101         |                                        |  |
|                    | <sup>+</sup> ,.1010 1 | корр: +ДК(-11)/2=ДК(-мн-е/2); Рез-т/2! |  |
|                    | ,.1110 011101         |                                        |  |
|                    | ,11100 11101          | Рез-т!                                 |  |

# І-способ (b < 0): $-9 \cdot -11$ . ДК(99) = ,00011 00011

| мн-ль $ ightarrow$ | СЧП →         | прим.                               |  |
|--------------------|---------------|-------------------------------------|--|
| ,1011 <u>1</u>     | ,00000 000000 | +мн-е/2; сдвиг                      |  |
|                    | ,11010 1      |                                     |  |
|                    | ,11010 100000 |                                     |  |
| 1011               | ,11101 010000 |                                     |  |
| ,.101 <u>1</u>     | ,11010 1      | +мн-е/2; сдвиг                      |  |
|                    | ,10111 110000 |                                     |  |
| 101                | ,11011 111000 | 1 /2                                |  |
| ,10 <u>1</u>       | ,11010 1      | +мн-е/2; сдвиг                      |  |
|                    | ,10110 011000 |                                     |  |
| ,1 <u>0</u>        | ,11011 001100 | сдвиг                               |  |
|                    | ,11101 100110 | Law 6/2: CREST:                     |  |
| , <u>1</u>         | ,11010 1      | +мн-е/2; сдвиг;                     |  |
|                    | ,11000 000110 |                                     |  |
|                    | ,11100 000011 | Рез-т?                              |  |
|                    | ,11100 000011 |                                     |  |
|                    | ,.0101 1      | корр: +ДК(11)=ДК(-мн-е/2); Рез-т/2! |  |
|                    | ,10001 100011 |                                     |  |
|                    | ,00011 00011  | Рез-т!                              |  |

# II-способ: $-9 \cdot -11$ . ДК(99) = ,00011 00011

| $\longrightarrow$ | мн-е ←                     | СЧП          | прим.                 |
|-------------------|----------------------------|--------------|-----------------------|
| - VIII-710 /      | WIII-C \                   | _            | прим.                 |
| ,1011 <u>1</u>    | ,11111 10101               | ,00000 00000 | +мн-е; сдвиг          |
| ,1011≟            |                            | ,11111 10101 | типте, едвиг          |
|                   |                            | ,11111 10101 |                       |
| 1011              | 01 <u>1</u> ,11111 0101.   | ,11111 10101 | Law or capus          |
| ,.101 <u>1</u>    |                            | ,11111 0101. | +мн-е; сдвиг          |
|                   |                            | ,11110 11111 |                       |
| 101               | 11110 101                  | ,11110 11111 | Law or onnur          |
| ,10 <u>1</u>      | 101 ,11110 101             | ,11110 101   | +мн-е; сдвиг          |
|                   |                            | ,11101 10011 |                       |
| ,1 <u>0</u>       | ,11101 01                  |              | сдвиг                 |
| 1                 | , <u>1</u> ,11010 1 + ,111 | ,11101 10011 | Lawrence:             |
| , ±               |                            | ,11010 1     | <b>+</b> мн-е;        |
|                   |                            | ,11000 00011 |                       |
|                   | ,10101                     | ,11000 00011 | U/(11), Dec =         |
|                   |                            | ,01011       | корр: +ДК(11); Рез-т! |
|                   |                            | ,00011 00011 |                       |

# III-способ: $-11 \cdot -9$ . ДК(99) = ,00011 00011

| мн-ль ←         | СЧП ←        | прим.                     |
|-----------------|--------------|---------------------------|
|                 | ,00000 00000 | корр: +ДК(9)=ДК(-мн-е)    |
|                 | , 01001      | корр. +діх(э)=діх(-мін-е) |
|                 | ,00000 01001 |                           |
|                 | ,00000 1001. | сдвиг                     |
| 10101           | ,00000 1001. | Law or order              |
| , <u>1</u> 0101 | ,11111 10111 | +мн-е; сдвиг              |
|                 | ,00000 01001 |                           |
| , <u>0</u> 101. | ,00000 1001. | сдвиг                     |
| 101             | ,00001 001   | +мн-е; сдвиг              |
| , <u>1</u> 01   | ,11111 10111 |                           |
|                 | ,00000 11011 |                           |
| , <u>0</u> 1    | ,00001 1011. | сдвиг                     |
| , <u>1</u>      | ,00011 011   | Рез-т!                    |
|                 | ,11111 10111 |                           |
|                 | ,00011 00011 |                           |

# IV-способ:: $-11 \cdot -9$ . ДК(99) = ,00011 00011

| мн-ль ←         | мн-е $ ightarrow$        | СЧП                           | прим.                         |
|-----------------|--------------------------|-------------------------------|-------------------------------|
| ,10111          | ,00000 00000             | корр: +ДК(9)=ДК(-мн-е); сдвиг |                               |
|                 | ,10111                   | ,01001                        | корр. +дг((9)-дг(-мн-е), сдви |
|                 |                          | ,01001 00000                  |                               |
| 10101           | , <u>1</u> 0101 ,11011 1 | ,01001 00000                  | LAMILO: CERME:                |
| , 10101         |                          | ,11011 1                      | +мн-е; сдвиг;                 |
|                 |                          | ,00100 10000                  |                               |
| , <u>0</u> 101. | ,11101 11                |                               | сдвиг                         |
| 101             | 101 ,11110 111           | ,00100 10000                  | Law or onoug                  |
| , <u>1</u> 01   | ,11110 111               | ,11110 111                    | +мн-е; сдвиг                  |
|                 |                          | ,00011 01100                  |                               |
| , <u>0</u> 1    | ,11111 0111.             |                               | сдвиг                         |
| 1 11111 10111   | ,00011 01100             | +мн-е; Рез-т!                 |                               |
| , <u>1</u>      | ,11111 10111 +           | ,11111 10111                  | тмн-е, гез-т:                 |
|                 |                          | ,00011 00011                  |                               |

1)

Какая разрядность результата должна получиться, если дополнительные коды операндов занимают n бит?

#### Перемножить числа:

- 26 и −13 І-м способом;
- 2 −26 и 13 II-м способом;
- **3** -26 и -13 III-м способом;
- $\bullet$  -13 и -26 IV-м способом.

Обосновать выбор масштаба.

Прорешать одним из методов «краевые» случаи в n-разрядной сетке:

- $-2^n \cdot -2^n$ ;
- $-2^n \cdot x$ , где x > 0;
- $(2^n-1)\cdot(2^n-1)$ .

Модифицируйте схему умножения первым способом с учетом работы в ДК (можно использовать условный блок «получение ДК» и мультиплексор):



#### Советы самоучке

Рекомендуется почитать разделы посвященные работе с битами в [1].

# Библиография І



Г.Уоррен-мл. Алгоритмические трюки для программистов / Г.Уоррен-мл. —

2 изд. —

М.: Издательский дом «Вильямс», 2014.