#### 실험계획법 실습 - 4주차

## **Chapter2 Basic Statistical Methods**



황금비율의 소맥잔! 어떠신가요? 주목받고 있는 소맥잔



Model(2.23) is called a means model.

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij} \begin{cases} i = 1, 2 \\ j = 1, 2, \dots, n_i \end{cases}$$
$$y_{ij} = \mu_i + \varepsilon_{ij} \begin{cases} i = 1, 2 \\ j = 1, 2, \dots, n_i \end{cases} \qquad \mu_i = \mu + \tau_i$$

- $y_{ij}$ : Response of j-th observation on the i-th treatment.
- $\mu$ : A common effect for the whole experiment.
- $\tau_i$ : The i-th treatment effect.
- $\varepsilon_{ij}$ : Random error in the j-th observation on the i-th treatment, following  $NID(o, \sigma^2)$  with common variance  $\sigma^2$ .

**NID** = Normally and Identically Distributed

#### • EX1) Dataset: Table2.1

■ TABLE 2.1

Tension Bond Strength Data for the Portland
Cement Formulation Experiment

| 2        | Modified<br>Mortar | Unmodified<br>Mortar |  |  |
|----------|--------------------|----------------------|--|--|
| <u>j</u> | $y_{1j}$           | $y_{2j}$             |  |  |
| 1        | 16.85              | 16.62                |  |  |
| 2        | 16.40              | 16.75                |  |  |
| 3        | 17.21              | 17.37                |  |  |
| 4        | 16.35              | 17.12                |  |  |
| 5        | 16.52              | 16.98                |  |  |
| 6        | 17.04              | 16.87                |  |  |
| 7        | 16.96              | 17.34                |  |  |
| 8        | 17.15              | 17.02                |  |  |
| 9        | 16.59              | 17.08                |  |  |
| 10       | 16.57              | 17.27                |  |  |

Table 2.1
© John Wiley & Sons, Inc. All rights reserved.

 $y_{ij}$ : Tension의 Strength(강도)

Mortar: 시멘트와 모래를 물로 반죽

이 실험에서 원하는 건?

여기서의 Model?

1) 
$$y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
,  $\varepsilon_{ij} \sim NID(o, \sigma^2)$ 

2) 
$$y_{ij} = \mu_i + \varepsilon_{ij}$$
,  $\varepsilon_{ij} \sim NID(o, \sigma^2)$ 

Model에 대한 식 및 가정이 없을 시 **감점**처리!

#### Box Plots



■ FIGURE 2.3 Box plots for the Portland cement tension bond strength experiment



#### Result





● Histogram(Treatment 효과 제외한 히스토그램 그려보기)





#### Result





**Modified** 

**Unmodified** 

#### T-Test



- Sampling form a normal distribution.
- How hypotheses ( $\mu$ 에 대해서)

 $H_0$ : (직접 적어보세요.)

 $H_1$ : (직접 적어보세요.)

● EX2) Table2.1 treatment에 따라 Normal distribution을 만족?



- Shapiro-Wilk 통계량 확인!!(http://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk test)
- 그 외 Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling이 존재.

#### Result

| 분포분석: y              |     |          |      |               |                 |      |         |         |
|----------------------|-----|----------|------|---------------|-----------------|------|---------|---------|
| UNIVARIATE 프로시저      |     |          |      |               |                 |      |         |         |
| 변수: y                |     |          |      |               |                 |      |         |         |
| treatment=Modified   |     |          |      |               |                 |      |         |         |
| 기본 통계 측도             |     |          |      |               |                 |      |         |         |
|                      | 위치  | 변이측도     |      |               |                 |      |         |         |
|                      | 평균  |          |      |               | 편차              | 0.   | 31645   |         |
|                      |     | 16.72000 |      |               | 로산              |      | 10014   |         |
|                      | 최빈값 |          |      | 범위            | 범위<br>사분위 범위    |      | 86000   |         |
|                      |     |          |      | 사분            |                 |      | 52000   |         |
| 정규성 검정               |     |          |      |               |                 |      |         |         |
| 검정                   |     |          | 통계량  |               |                 | p값   |         |         |
| Shapiro-Wilk         |     |          | W    | N 0.918633 Pr |                 | Pr < | W       | 0.3457  |
| Kolmogorov-Smirnov [ |     |          | D    | 0.2           | 0.208791 Pr > D |      | >0.1500 |         |
| Cramer-von Mises W   |     |          | W-S  | 0.0           | 59315           | Pr>  | W-Sq    | >0.2500 |
| Anderson-Darling     |     |          | A-Sq | 0.3           | 352804          | Pr>  | A-Sq    | >0.2500 |

| 분포분석: y                  |     |          |       |        |        |      |         |        |  |
|--------------------------|-----|----------|-------|--------|--------|------|---------|--------|--|
| UNIVARIATE 프로시저<br>변수: v |     |          |       |        |        |      |         |        |  |
| treatment=Unmodified     |     |          |       |        |        |      |         |        |  |
| 기본 통계 측도                 |     |          |       |        |        |      |         |        |  |
|                          | -   | 위치측도     |       |        | 변이     |      |         |        |  |
|                          | 평균  |          |       |        |        | 0.   | 24792   |        |  |
|                          |     | 17.05000 |       |        |        | 0.   | 06146   |        |  |
|                          | 최빈값 |          |       | 범위     |        |      | 75000   |        |  |
|                          |     |          |       | 사분     | 위 범위   | 레 0. | 40000   |        |  |
| 정규성 검정                   |     |          |       |        |        |      |         |        |  |
| 검정                       |     |          | 통계량   |        |        |      | p 값     |        |  |
| Shapiro-Wilk             |     |          | W     | 0.9    | 962619 | Pr < | W       | 0.8153 |  |
| Kolmogorov-Smirnov       |     | D        | 0.    | 121127 | Pr>    | D    | >0.1500 |        |  |
| Cramer-von Mises         |     | W-S      | q 0.0 | 021149 | Pr>    | W-Sq | >0.2500 |        |  |
| Anderson-Darling         |     | A-So     | 0.    | 169975 | Pr>    | A-Sq | >0.2500 |        |  |

- 정규성을 만족?(유의수준 0.05 기준)
- 히스토그램 도표로 확인이 힘들 경우 Q-Q 도표로도 확인 가능!

● 그렇다면? Treatment에 대한 효과가 있을까?



- 여기서 어떤 검정 유형을 선택해야 하는지?(양측, 유의수준 0.05)

#### Result



- 그렇다면 **결론**은?

## QUIZ

● 앞선 예제에 대해서 실험계획법을 다른 방법으로 풀 수 있지 않을까?

## 이미 배웠습니다!!



### **REVIEW**

A와 B 다이어트 약의 효능을 비교하고자 한다.
 과 체중인 남성 10명을 Random하게 선택하고,
 2 집단에 5명씩 Random 하게 배정하였다.
 실험 전에 신체검사를 하여,
 집단 별로 과 체중의 평균을 비교한 결과
 유의한 차이는 없었다. 일정 기간 약을 복용한 후,

| 다이어트 약 |     |     |  |  |  |  |  |
|--------|-----|-----|--|--|--|--|--|
| OBS    | Α   | В   |  |  |  |  |  |
| 1      | 4.3 | 6.4 |  |  |  |  |  |
| 2      | 5.8 | 6.6 |  |  |  |  |  |
| 3      | 5.1 | 5.9 |  |  |  |  |  |
| 4      | 5.5 | 6.0 |  |  |  |  |  |
| 5      | 4.5 | 6.1 |  |  |  |  |  |

Q. 어떤 다이어트 약이 체중감량에 더 효과가 있는가? Model 및 가설의 형태를 세우고, 유의수준(0.05) 기준

체중 감소량(kg)을 측정하여 다음의 데이터를 얻었다.