2nd International Conference on Radioanalytical & Nuclear Chemistry Budapest, May 2019 (I. Radioanal, Nucl. Chem.)

Preparation and calibration of a Pa-231 reference material

Richard M. Essex^{1*}, Ross W. Williams², Kerri C. Treinen², Ronald Collé¹, Ryan Fitzgerald¹, Raphael Galea³, John Keightley⁴, Jerome LaRosa¹, Lizbeth Laureano-Perez¹, Svetlana Nour¹, and Leticia Pibida¹

¹ National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8462, Gaithersburg, MD 20899, USA

² Lawrence Livermore National Laboratory, P.O. Box 808, L-231, Livermore, CA 94551-0808, USA

³ Ionizing Radiation Standards, National Research Council, 1200 Montreal Road, Ottawa, ON K1A0R6, Canada

⁴ National Physics Laboratory, Hampton Rd, Teddington, Middlesex, UK TW11 0LW

*E-mail: Richard.Essex@NIST.gov

Keywords: Isotope dilution mass spectrometry, Nuclear forensics, ²³¹Pa, ²³³Pa, Radiochronometry, Reference material

A ²³¹Pa reference material has been prepared and characterized for the amount of ²³¹Pa (Fig. 1). This reference material is primarily intended for calibration of ²³³Pa tracers produced for ²³¹Pa - ²³⁵U model age measurements associated with nuclear forensic and nuclear safeguards. Primary measurements for characterization were made by isotope dilution mass spectrometry of a ²³¹Pa stock solution using a ²³³Pa spike. The spike was calibrated by allowing multiple aliquots of the ²³³Pa spike solution to decay to ²³³U and then measuring the ingrown ²³³U by isotope dilution mass spectrometry using a certified U assay and isotopic standard as a spike (CRM 112-A). The molality of the ²³³Pa spike and the ²³¹Pa master solution were independently verified by massic activity measurements performed at multiple National Metrology Institutes. A total of 112 units of the reference material were prepared with each unit being comprised of a 30 mL FEP Teflon bottle containing a known amount of ²³¹Pa (~1.46 10⁻¹⁰ mol) in an acid solution of 2 mol L⁻¹ HNO₃ and 0.1 mol L⁻¹ HF. This new reference material will simplify calibration of the ²³³Pa isotope dilution spikes, provide metrological traceability, and potentially reduce the overall measurement uncertainty of ²³¹Pa - ²³⁵U model ages determined for uranium bearing materials.

Fig. 1
Schematic of the ²³¹Pa reference material production and characterization process. The heavier arrows indicate material transfer and analyses performed for the primary calibration of the ²³¹Pa material. Lighter arrows indicate material transfer and analyses for verification measurements.

