Estratégia de Divisão e Conquista

Algoritmo de Ordenação: Quick-Sort

Divisão e Conquista

- Motivação
 - Pegar um problema de entrada grande.
 - Quebrar a entrada em pedaços menores (DIVISÃO).
 - Resolver cada pedaço separadamente. (CONQUISTA)
 - Como resolver os pedaços?
 - Combinar os resultados

Estratégia

- Divisão
 - Divida o problema em duas ou mais partes, criando subproblemas menores.

Conquista

- Os subproblemas são resolvidos recursivamente usando divisão e conquista.
- Caso os subproblemas sejam suficientemente pequenos resolva-os de forma direta.

Combina

 Tome cada uma das partes e junte-as todas de forma a resolver o problema original.

Dividir e Conquistar

- O algoritmo QUICKSORT segue o paradigma de divisão-e-conquista:
 - Dividir: divida o vetor em dois subvetores A[p ... q-1] e
 A[q+1 ... r] tais que:

- Conquistar: ordene os dois subvetores recursivamente usando o QUICKSORT;
- Combinar: nada a fazer, o vetor está ordenado.

- Partition: "dado um vetor A[p..r], rearranjar A[p..r]
 de modo que todos os elementos pequenos fiquem
 na parte esquerda do vetor e todos os elementos
 grandes fiquem na parte direita."
- Mas o que é ser pequeno? O que é ser grande?
- O ponto de partida, então, é a escolha de um "pivô", digamos x: os elementos do vetor que forem maiores que x serão considerados grandes e os demais (ou seja, os que forem menores que x ou iguais a x) serão considerados pequenos.

 Problema: Rearranjar um dado vetor A[p ... r] e devolver um índice q, p ≤ q ≤ r, tais que:

$$A[p ... q-1] \le A[q] < A[q+1 ... r]$$

Entra:

Sai:

 i
 j

 x

 A
 99
 33
 55
 77
 11
 22
 88
 66
 33
 44

i	j									\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
i		j								x

•		

i	j									\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
i		j								x
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	33	99	55	77	11	22	88	66	33	44

i	j									x
A	99	33	55	77	11	22	88	66	33	44
i		j								x
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	<i>i</i> 33	99	<i>j</i> 55	77	11	22	88	66	33	<i>x</i> 44
A	i 33 i	99	<i>j</i> 55	77 <i>j</i>	11	22	88	66	33	

i	j									\boldsymbol{x}
A	99	33	55	77	11	22	88	66	33	44
i		j								x
A	99	33	55	77	11	22	88	66	33	44
	i		j							x
A	33	99	55	77	11	22	88	66	33	44
	i			j						x
Λ	0.0			I	11		0	0.0	0.0	
A	33	99	55	77	11	22	88	66	33	44
A	33 i	99	55	77	$\frac{11}{j}$	22	88	66	33	$\begin{bmatrix} 44 \\ x \end{bmatrix}$
A A		99	55 55	77		22	88	66	33	
	i				j					x

		i			j					\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44

		\imath			\mathcal{I}					x
A	33	11	55	77	99	22	88	66	33	44
			i				j			x

		i				j				x
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
			i					j		x
A	33	11	22	77	99	55	88	66	33	44

		i				j				\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
			i					j		x
A	33	11	22	77	99	55	88	66	33	44
			i						j	x
A	33	11	22	77	99	55	88	66	33	44

		i				j				x
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
			i					j		x
A	33	11	22	77	99	55	88	66	33	44
			i						j	x
A	33	11	22	77	99	55	88	66	33	44
				i						j
A	33	11	22	33	99	55	88	66	77	44

		i				j				\boldsymbol{x}
A	33	11	55	77	99	22	88	66	33	44
			i				j			x
A	33	11	22	77	99	55	88	66	33	44
			i					j		x
A	33	11	22	77	99	55	88	66	33	44
			i						j	x
A	33	11	22	77	99	55	88	66	33	44
				i						j
A	33	11	22	33	99	55	88	66	77	44
	p				q					r
A	33	11	22	33	44	55	88	66	77	99


```
PARTITION(A, p, r)
        x = A[r]; /* O pivô é o último elemento do vetor */
        i = p-1;
3
        for(j = p; j \le r-1; j++)
           if A[j] \le x
5
                i = i + 1;
6
                 aux = A[i];
                 A[i] = A[i];
8
                 A[i] = aux;
9
         i = i + 1;
10
         aux = A[r];
        A[r] = A[i];
11
12
        A[i] = aux;
13
        return i;
```


- Para entender como ele funciona, vamos ilustrar a operação PARTITION(A, 1, 9), sobre o vetor A = [13, 4, 9, 5, 12, 7, 19, 6, 7] (observe que o vetor está numerado a partir de 1).
- O pivô é 7. Vamos marcar de vermelho os elementos do vetor que forem maiores do que 7 e de azul os que forem menores ou iguais a 7.


```
p = 1
r = 9
x = A[r] = 7
i = p-1 = 1 - 1 = 0
for(j = p = 1; j <= r-1 = 8; j++)
   j = 1: A[1] = 13 <= 7 (falso) [13, 4, 9, 5, 12, 7, 19, 6, 7]
   i = 2:
               A[2] = 4 <= 7 \text{ (Verdadeiro)}
                i = i + 1 = 1
                aux = A[1] = 13
                A[1] = A[2] = 4
                A[2] = aux = 13
                                         [4, 13, 9, 5, 12, 7, 19, 6, 7]
```


$$j = 3: \qquad A[3] = 9 <= 7 \text{ (falso)} \qquad [4, 13, 9, 5, 12, 7, 19, 6, 7]$$

$$j = 4: \qquad A[4] = 5 <= 7 \text{ (Verdadeiro)}$$

$$i = i + 1 = 2$$

$$aux = A[2] = 13$$

$$A[2] = A[4] = 5$$

$$A[4] = aux = 13 \qquad [4, 5, 9, 13, 12, 7, 19, 6, 7]$$

$$j = 5 \qquad A[5] = 12 <= 7 \text{ (Falso)} \quad [4, 5, 9, 13, 12, 7, 19, 6, 7]$$

```
A[6] = 7 \ll 7 (Verdadeiro)
i = 6
            i = i + 1 = 3
             aux = A[3] = 9
            A[3] = A[6] = 7
            A[6] = aux = 9
                           [4, 5, 7, 13, 12, 9, 19, 6, 7]
            A[7] = 19 \le 7 (Falso) [4, 5, 7, 13, 12, 9, 19, 6, 7]
j = 7
i = 8
          A[8] = 6 \le 7 (Verdadeiro)
            i = i + 1 = 4
             aux = A[4] = 13
             A[4] = A[8] = 6
             A[8] = aux = 13
                                    [4, 5, 7, 6, 12, 9, 19, 13, 7]
```

$$aux = A[9] = 7$$

 $A[9] = A[5] = 12$
 $A[5] = aux = 7$
return i+1 = 5

[4, 5, 7, 6, **7**, 9, 19, 13, 12]

Partition - Atenção

 O PARTITION não ordena o vetor. O único elemento que, ao final, estará na posição definitiva é o pivô.

QuickSort: Algoritmo

 O algoritmo Quicksort recebe um vetor A[p..r] e rearranja o vetor em ordem crescente.

QUICKSORT(A, p, r)

```
if p < r

q = PARTITION(A, p, r);

QUICKSORT(A, p, q-1);

QUICKSORT(A, q+1, r)}</pre>
```

QuickSort: Exemplo

- Exemplo: Vamos aplicar ao vetor A = [18, 4, 10, 15, 5, 16, 3, 7].
- A possui n = 8 elementos. Supondo que estejam indexados de 0 a 7.
- A chamada será QUICKSORT(A, 0, 7).
 Notem que os parâmetros passados são índices, e não valores.

QuickSort: Árvore de Recursão para o Exemplo

