

Program	B. Tech. (SoCS)	Semester	IV
Course	Linear Algebra	Course Code	MATH 2059
Session	Jan-May 2025	Topic	Linear mapping, Inner product space, Orthogonalization and SVD

- 1. Determine whether the following mappings are linear or not; clearly mentioning the properties of a linear mapping that hold or DO NOT hold.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x,y) = (ax + by, cx + dy) for some real numbers a,b,c and d.
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as T(x, y, z) = (x + y + 1, x y).
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as T(x, y) = (x + y, x y, xy).
 - (d) $T: \mathcal{M}(2, \mathbb{R}) \to \mathbb{R}$ defined as T(A) = trace(A).
 - (e) $T: \mathcal{M}(2, \mathbb{R}) \to \mathbb{R}$ defined as $T(A) = \det A$.
 - (f) $T: \mathcal{P}_n(\mathbb{R}) \to \mathbb{R}$ defined as T(p(x)) = p(1).
- **2.** Find the matrix representation of the following linear mappings with respect to the given basis.
 - (a) $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ defined as

$$T(x, y, z) = (2x + 3y - z, x + y - 2z, 3x + 4y - 3z)$$

with respect to the standard basis $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ of \mathbb{R}^3 .

(b) $T: \mathcal{M}(2, \mathbb{R}) \longrightarrow \mathcal{M}(2, \mathbb{R})$ defined as

$$T\left(\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\right)=\left[\begin{array}{cc}-a&2b\\d&-2c\end{array}\right]$$

with respect to an ordered basis $\mathcal{B} = \left\{ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ of $\mathcal{M}(2, \mathbb{R})$.

(c) $T: \mathcal{P}_3(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$ defined as

$$T(p(x)) = p'(x) + p(0)$$

with respect to the standard basis $\mathcal{B} = \{1, x, x^2, x^3\}$ of $\mathcal{P}_3(\mathbb{R})$.

(d) $T: \mathcal{P}_2(\mathbb{R}) \longrightarrow \mathcal{P}_3(\mathbb{R})$ defined as

$$T(p(x)) = p'(x) + \int_0^x p(t) dt$$

with respect to the standard bases $\mathcal{B} = \{1, x, x^2\}$ and $\mathcal{B}' = \{1, x, x^2, x^3\}$ of $\mathcal{P}_2(\mathbb{R})$ and $\mathcal{P}_3(\mathbb{R})$ respectively.

- 3. Find the dimensions of rangespace (T) and nullspace (T) where T is a linear map $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ defined as T(p(x)) = p(x+1) p(x-1). Hence, verify Rank-Nullity theorem. Is T bijective on $\mathcal{P}_2(\mathbb{R})$?
- **4.** Suppose α , β and γ are in arithmetic progression such that $\alpha < \beta < \gamma$. Find the dimension of vector space $V = \{v \in \mathbb{R}^4 | Tv = 0\}$ where the matrix representation of linear map $T: \mathbb{R}^4 \to \mathbb{R}^3$ is

$$\begin{bmatrix} \alpha & 1 & 0 & -1 \\ \beta & 0 & 1 & 1 \\ \gamma & -1 & 2 & 3 \end{bmatrix}$$

Is $T(\mathbb{R}^4) = \mathbb{R}^3$? Justify.

5. Which of the following define an inner product on the given vector space?

(a)
$$\langle u, v \rangle = x_1 x_2 - x_1 y_2 - x_2 y_1 + 3y_1 y_2$$
 on $V = \mathbb{R}^2$ where $u = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $v = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$.

(b)
$$< u, v > = x_1 y_2 x_3 + x_2 y_1 y_3$$
 on $V = \mathbb{R}^3$ where $u = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ and $v = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$.

6. For what values of a and b, the function

$$f\left(\binom{x_1}{y_1}, \binom{x_2}{y_2}\right) = a^2 x_1 x_2 + ab x_1 y_2 + ab x_2 y_1 + b^2 y_1 y_2$$

represents an inner product on \mathbb{R}^2 ? Justify.

7. Find the matrix associated with the inner product function on vector space $\mathcal{P}_2(\mathbb{R})$ defined as

$$< p(t), q(t) > = \int_{-1}^{1} p(t)q(t)dt$$

with respect to the standard basis $\{1, t, t^2\}$ of $\mathcal{P}_2(\mathbb{R})$.

8. Use Gram-Schmidt process to obtain an orthonormal basis from the given basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$ for a two-dimensional subspace of $V = \mathcal{M}(2, \mathbb{R})$ equipped with the inner product defined by

$$\langle A, B \rangle = trace(B^T A)$$

where B^T is the transposed matrix B.

- 9. Let $\mathcal{P}_2(\mathbb{R})$ be the vector space of polynomials with real coefficients of degree $n \leq 2$ having standard basis $\mathcal{B} = \{1, t, t^2\}$. Normalize this basis using Gram-Schmidt orthonormalizing process.
- **10.** Find the Singular value decomposition $A = U \sum V^T$ for the matrix

$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$$

where matrices U and V both are orthogonal and matrix Σ is a diagonal.
