Adapting OCR with Limited Supervision

Bc. Pavel Raur, Bc. Marián Zimmermann, Bc. Jiří Žilka

Autoři článku: doc. Ing. Deepayan Das and C V Jawahar, Ph.D.

- OCR optical character recognition optické rozpoznání znaků v obraze
- Přepis dokumentů z naskenovaného dokumentu do textové podoby.
- Self-supervised učení učení na neanotovaných datech.
- Semi-supervised učení učení na kombinaci anotovaných a neanotovaných dat.

Training pipeline

Semi-supervised učení

- Selekce dat k trénování
- Augmentace dat úprava dat pro lepší generalizaci
- Úprava sítě pro lepší generalizaci

Semi-supervised učení - selekce dat

- Řeší problém s nedostatkem trénovacích dat
- Selekce dat pro trénování
- Strojové generování labelů

Semi-supervised učení – trénování

- Trénování na části datasetu s labely.
- Málo trénovacích dat s labely.

Semi-supervised učení – nové labely

Pseudo-labely

Semi-supervised učení – trénování 2

Zahrnutí nových dat do trénovací sady

Semi-supervised učení – Confirmation bias

- Confirmation bias přeučení sítě na svých vlastních chybách
- Nemusí souviset s generalizací síť skvěle rozpozná znaky na vstupu, jen se je naučila špatně přepisovat

Semi-supervised učení – selekce labelů

- Kvalitní přepisy základ
- Výběr labelů u OCR např. použití slovníku pro rozpoznání slov, které alespoň existují
- Nemusí existovat doménová znalost, pak výběr dle confidence přepisu

Confidence

"necewo the grain of this season at the prices ordered by him

 GT : "receive the grain of this season at the prices ordered by him " vs .

P: "because the grain of this weaver at the previous ordered by hisin" confidence = 0.9982

how this posassion as every body knows and as the somant

 GT : Now this possession as everybody knows and as the servant vs .

P: how this rejection as every body knows and as the servant confidence = 0.4727

Formule pro výpočet score:

$$score = -\alpha \sum_{i=1}^{t} \frac{\log(p_i)}{\log(1-\alpha)} + (1-\alpha) \frac{1}{m} \log(1-\alpha) \frac{1}{m} \log(1-\alpha)$$

Váhovaný součet predikcí jazykového modelu a OCR.

• 20% vzorků s největším score přidáno do datasetu.

Data Augmentation

datapoints(x1, y1), (x2, y2)
$$\lambda \epsilon [0, 1]$$

$$\hat{x} = \lambda x_i + (1 - \lambda) x_j$$

$$\hat{y} = \lambda y_i + (1 - \lambda) y_i$$

Struktura sítě - CRNN

- konvoluční vrstvy (VGG, ResNet18)
- rekurentní vrstvy Bi-LSTM
- metody: Full, Last, Chain Thaw, Unfreeze
- Optimalizátor Adam
- Slanted Triangular Learning Rate (STLR)
- early stopping criterion proti overfitting
- Dropout, Drop-connect

Dropout

- Network regularization against confirmation bias
- Weight Dropped LSTMs does not affect long-term dependency as much
- 50% probability on FC layers after Bi-LSTM

Heuristics	English		Hindi	
	CRR	WRR	CRR	WRR
$\overline{\mathrm{ST}}$	94.22	85.12	92.13	85.41
+ STLR	94.72	86.88	92.17	85.45
+ noise	95.61	91.87	92.26	85.57
+ dropout		92.57		
+ mixup	96.48	93.57	92.57	86.23

• Self-training < Fine-tuning < ST + FT