Logica matematică și computațională – conf. dr. Claudia Mureșan Teme colective nr. 1-3 – grupa 1 Informatică ID (2023-2024)

I. De demonstrat semantic (în Prolog)

Am prezentat și în acest document rezolvările în Prolog, dar o variantă mai succintă a acestora e încărcată și separat, într-un document .pl.

Pentru orice mulțimi A, B, C, D, T a.î. $A \subseteq T$ și $B \subseteq T$, au loc următoarele proprietăți, unde am notat cu $\overline{M} := T \setminus M$ pentru orice $M \in \mathcal{P}(T)$:

1) $A \subseteq B \Leftrightarrow (A \subseteq B \ sau \ A = B)$ ex1 :- not((pereche(A,B), not(echiv(implica(A,B),(inclstr(A,B);echiv(A,B)))))).

2) $(A \subseteq B \subsetneq C \Rightarrow A \subsetneq C)$ şi $(A \subsetneq B \subsetneq C \Rightarrow A \subsetneq C)$

ex2 :- not((triplet(A,B,C), not((implica((implica(A,B), inclstr(B,C)), inclstr(A,C)), implica((inclstr(A,B),inclstr(B,C)), inclstr(A,C)))))).

% varianta cu cele doua predicate separate

 $ex21:-not((triplet(A,B,C),\,not(implica((implica(A,B),\,inclstr(B,C)),\,inclstr(A,C))))).\\$

ex22:-not((triplet(A,B,C), not(implica((inclstr(A,B),inclstr(B,C)), inclstr(A,C))))).

3) $A \subseteq B \Rightarrow (A \cup C \subseteq B \cup C \neq A \cap C \subseteq B \cap C \neq A \setminus C \subseteq B \setminus C)$

ex3 :- not((triplet(A,B,C), not(implica(implica(A,B), (implica(A;C,B;C), implica((A,C),(B,C)), implica((A,not(C)), (B,not(C)))))))).

4) $(A \subseteq B \text{ si } C \subseteq D) \Rightarrow (A \cup C \subseteq B \cup D \text{ si } A \cap C \subseteq B \cap D \text{ si } A \setminus D \subseteq B \setminus C)$

```
ex4 :- not((cvadruplet(A,B,C,D), not(implica((implica(A,B),implica(C,D)), (implica((A;C),(B;D)), implica((A,C),(B,D)), implica((A,not(D)),(B,not(C)))))))).
```

5) $(A \subseteq B \ \text{si} \ A \subseteq C) \Leftrightarrow A \subseteq B \cap C$

ex5 :- not((triplet(A,B,C), not(echiv((implica(A,B), implica(A,C)), implica(A,(B,C)))))).

6) $A \cap (B \setminus A) = \emptyset$

ex6 :- not((pereche(A,B), not(echiv((A,B,not(A)),false)))).

7) $A \setminus B = A \setminus (A \cap B)$ și $A \triangle B = (A \cup B) \setminus (A \cap B)$

ex7 :- not((pereche(A,B), not((echiv((A,not(B)),(A,not((A,B))))), echiv(A xor B,((A;B),not((A,B))))))).

% varianta cu cele doua predicate separate:

ex71 := not((pereche(A,B), not(echiv((A,not(B)),(A,not((A,B))))))).

ex72 :- not((pereche(A,B), not(echiv(A xor B,((A;B),not((A,B))))))).

8) $A \cap B = \emptyset \Leftrightarrow B \setminus A = B$ ex8:- not((pereche(A,B), not(echiv(echiv((A,B),false), echiv((B,not(A)),B))))).

Proprietățile cu complementare față de T să fie demonstrate semantic în câte două moduri:

- a) considerând un element arbitrar x și apartenența sa la mulțimile A, B și T (ca proprietăți cu valori booleene arbitrare);
- b) considerând un element arbitrar $x \in T$ și apartenența sa la mulțimile A și B (i.e. cu proprietatea $x \in T$ presupusă adevărată și numai proprietățile $x \in A$ și $x \in B$ ca având valori booleene arbitrare).
 - 9) a doua lege a lui De Morgan: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

% cu t avand o valoare booleana arbitrara:

ex9arbitrar :- not((triplet(A,B,T), implica(A,T), implica(B,T), not(echiv((T,not((A,B))), ((T,not(A)); (T,not(B))))))). % cu t presupusa adevarata:

ex9adev :- not((pereche(A,B), not(echiv(not((A,B)),(not(A);not(B)))))).

10) $A \subseteq B \Leftrightarrow \bar{B} \subseteq \bar{A}$

% cu t avand o valoare booleana arbitrara:

ex10arbitrar :- not((triplet(A,B,T), implica(A,T), implica(B,T), not(echiv(inclstr(A,B), inclstr((T,not(B)),(T,not(A))))))).

% cu t presupusa adevarata:

ex10adev :- not((pereche(A,B), not(echiv(inclstr(A,B),inclstr(not(B),not(A)))))).

11) $A \cap B = \emptyset \Leftrightarrow B \subseteq \overline{A}$

% cu t avand o valoare booleana arbitrara:

% cu t presupusa adevarata:

ex11adev :- not((pereche(A,B), not(echiv(echiv((A,B),false),implica(B,not(A)))))).

12) $A \cup B = T \Leftrightarrow \bar{B} \subseteq A \Leftrightarrow \bar{A} \subseteq B$

% cu t avand o valoare booleana arbitrara:

ex12arbitrar1 : - not((triplet(A,B,T), implica(A,T), implica(B,T), not(echiv(echiv(A;B),T), implica((T,not(B)),A))))).

ex12arbitrar2 :- not((triplet(A,B,T), implica(A,T), implica(B,T), not(echiv(implica((T,not(B)),A), implica((T,not(A)),B))))).

% cu t presupusa adevarata:

```
ex12adev1:-not((pereche(A,B), not(echiv(echiv(echiv(A,B),true),implica(not(B),A))))).
ex12adev2: - not((pereche(A,B), not(echiv(implica(not(B),A),implica(not(A),B))))).
13) (A \cup B = T \text{ si } A \cap B = \emptyset) \Leftrightarrow A = \bar{B} \Leftrightarrow B = \bar{A}
% cu t avand o valoare booleana arbitrara:
ex13arbitrar1: - not((triplet(A,B,T), implica(A,T), implica(B,T), not(echiv(((echiv(A;B,T)),(echiv((A,B),false))),
echiv(A,(T,not(B))))))
ex13arbitrar2
                 :-
                        not((triplet(A,B,T),
                                                 implica(A,T),
                                                                    implica(B,T),
                                                                                      not(echiv(echiv(A,(T,not(B))),
echiv(B,(T,not(A)))))).
% cu t presupusa adevarata:
ex13adev1:-not((pereche(A,B), not(echiv((echiv(A;B,true),echiv((A,B),false)),echiv(A,not(B)))))).
ex13adev2:-not((pereche(A,B), not(echiv(echiv(A,not(B)),echiv(B,not(A)))))).
```

II. De demonstrat matematic

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

① Din faptul că Ø este mulțimea vidă fără elemente, să se deducă faptul că, pentru orice mulțime A, $A \times \emptyset = \emptyset \times A = \emptyset$.

Demonstrație: Presupunem prin absurd că mulțimea $A \times \emptyset \neq \emptyset$, ceea ce înseamnă că există perechea ordonată $(x,y) \in A \times \emptyset$. Din definiția produsului cartezian rezultă că $x \in A$ și $y \in \emptyset$. Cum mulțimea vidă este, din definiție, mulțimea fără elemente, $y \in \emptyset$ este falsă. \nwarrow Deci ipoteza de la care am pornit este falsă, iar $A \times \emptyset = \emptyset$. Se demonstrează analog pentru $\emptyset \times A = \emptyset$. Rezultă astfel că $\emptyset \times A = \{(a,b) | a \in \emptyset \text{ și } b \in A\}$, ceea ce implică faptul că \emptyset este mulțime nevidă. \nwarrow Rezultă deci că și $\emptyset \times A = \emptyset$.

①
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 şi $(B \cup C) \times A = (B \times A) \cup (C \times A)$ ——
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
 ——
$$A \times (B \cup C) := \{(x, y) | x \in A \text{ si } y \in (B \cup C)\} := \{(x, y) | x \in A \text{ si } (y \in B \vee y \in C)\} =$$

$$= \{(x, y) | x \in A \text{ si } y \in B\} \vee \{(x, y) | x \in A \text{ si } y \in C\} = (A \times B) \cup (A \times C)$$

$$A \times (B \cup C) \times A = (B \times A) \cup (C \times A)$$

$$A \times (B \cup C) \times A := \{(x, y) | x \in (B \cup C) \text{ si } y \in A\} := \{(x, y) | (x \in B \vee x \in C) \text{ si } y \in A\} =$$

$$= \{(x, y) | x \in B \text{ si } y \in A\} \vee \{(x, y) | x \in C \text{ si } y \in A\} = (B \times A) \cup (C \times A)$$

$$A \times (B \cap C) \times A = (B \times A) \cup (C \times A).$$
② $A \times (B \cap C) = (A \times B) \cap (A \times C) \text{ si } (B \cap C) \times A = (B \times A) \cap (C \times A)$ ——

$$A \times (B \cap C) := \{(x,y) | x \in A \text{ $\it y$ is $\it y$ in $\it y$ in $\it C$}\} := \{(x,y) | x \in A \text{ $\it y$ is $\it y$ in $\it$$

$$(B \cap C) \times A = (B \times A) \cap (C \times A) \longrightarrow$$

$$(B \cap C) \times A := \{(x,y) | x \in (B \cap C) \text{ $\it i $\it $y \in A$}\} := \{(x,y) | (x \in B \ \land \ x \in C) \text{ $\it i $\it $y \in A$}\} =$$

$$= \{(x,y) | x \in B \text{ $\it i $\it $y \in A$}\} \land \{(x,y) | x \in C \text{ $\it i $\it $y \in A$}\} = (B \times A) \cap (C \times A)$$

$$A\text{sadar, } (B \cap C) \times A = (B \times A) \cap (C \times A).$$

③
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$
 şi $(B \setminus C) \times A = (B \times A) \setminus (C \times A)$ ——
3.1. $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$ ——

Putem demonstra egalitatea prin dubla incluziune.

Explicitare membru drept:
$$(x,y) \in A \times (B \setminus C) \ ddac\check{a} \begin{cases} x \in A \\ \$i \\ y \in B \ \$i \ y \notin C \end{cases}$$

Explicitare membru drept:
$$(x,y) \in A \times (B \setminus C) \ ddac$$
ă $\begin{cases} x \in A \\ \$i \\ y \in B \ \$i \ y \notin C \end{cases}$
Explicitare membru stâng: $(x,y) \in (A \times B) \setminus (A \times C) \ ddac$ ă $\begin{cases} (x,y) \in A \times B \\ \$i \\ (x,y) \notin A \times C \end{cases}$ $\begin{cases} x \in A \ \$i \ y \in B \\ \$i \\ x \in A \ \$i \ y \notin C \end{cases}$

Pentru membrul stång justificam cum am ajuns la opțiunea $x \in A$ și $y \notin C$. Întrucât $(x, y) \notin A \times C$, apar 3 situatii:

- a) $x \notin A$ și $y \in C$;
- b) $x \in A$ si $y \notin C$;
- c) $x \notin A$ si $y \notin C$.

Stim că $(x,y) \in A \times B$ din prima parte a membrului stâng, prin urmare $x \in A$. Asadar, optiunile a) si c) sunt în contradicție cu această afirmație. Deci, opțiunea b) este singura posibilitate corectă.

$$A \times (B \setminus C) \subseteq (A \times B) \setminus (A \times C)$$
 —

Dacă $(x, y) \in A \times (B \setminus C)$, avem două cazuri:

- (i) $x \in A$, prin urmare $[x \in A \neq i y \in B]$, precum $\neq i [x \in A \neq i y \notin C]$, aşadar $(x, y) \in A \times B \neq i (x, y) \notin A \times C$, aşadar $(x, y) \in (A \times B) \setminus (A \times C)$ (conform definiției diferenței între mulțimi).
- (ii) $y \in B$ si $y \notin C$; în acest caz, $y \in B$, prin urmare $[x \in A$ si $y \in B]$, precum și $y \notin C$, prin urmare $[x \in A \text{ si } y \notin C]$, asadar $(x, y) \in (A \times B) \setminus (A \times C)$.

$$(x,y) \in A \times (B \setminus C) \Rightarrow (x,y) \in (A \times B) \setminus (A \times C)$$
, deci $A \times (B \setminus C) \subseteq (A \times B) \setminus (A \times C)$. (M)

$$(A \times B) \setminus (A \times C) \subseteq A \times (B \setminus C)$$
 ——

Dacă $(x, y) \in (A \times B) \setminus (A \times C)$, avem două cazuri:

- (i) $x \in A$ ş $i \ y \in B$, prin urmare $[x \in A \ si \ (y \in B \ si \ y \notin C)]$, aşadar $x \in A \ si \ y \in (B \setminus C)$, aşadar $(x,y) \in A \times (B \setminus C)$;
- (ii) $x \in A$ $ext{ i } y \notin C$, prin urmare $[x \in A \ ext{ i } (y \in B \ ext{ i } y \notin C)]$, aşadar $x \in A$ $ext{ i } y \in (B \setminus C)$, aşadar $(x,y) \in A \times (B \setminus C)$.

$$(x,y) \in (A \times B) \setminus (A \times C) \Rightarrow (x,y) \in A \times (B \setminus C)$$
, deci $(A \times B) \setminus (A \times C) \subseteq A \times (B \setminus C)$. (N) Din (M) şi (N) rezultă că $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

3.2.
$$(B \setminus C) \times A = (B \times A) \setminus (C \times A)$$
—

$$(B \setminus C) \times A := \{(x,y) | x \in (B \setminus C) \text{ i $y \in A$} = \{(x,y) | (x \in B \text{ i $x \notin C)$ i $y \in A$} = \\ = \{(x,y) | (x \in B \text{ i $y \in A$}) \land (x \notin C \text{ i $y \in A$}) \} = \{(x,y) | [(x,y) \in (B \times A)] \land [(x,y) \notin (C \times A)] \} = \\ = (B \times A) \setminus (C \times A)$$

(4)
$$A \times (B \triangle C) = (A \times B) \triangle (A \times C)$$
 şi $(B \triangle C) \times A = (B \times A) \triangle (C \times A)$ ——

Pentru a demonstra distributivitatea produsului cartezian față de diferența simetrică, ne vom ajuta de o altă proprietate și anume că diferența simetrică a două mulțimi este egală cu reuniunea diferențelor celor două mulțimi una față de alta. Prezentăm mai întâi această demonstrație.

 $x \in P\Delta Q$, ddacă $[x \in P \ xor \ x \in Q]$ ddacă $[(x \in P \ \$i \ x \notin Q) \ sau \ (x \notin P \ \$i \ x \in Q)]$ ddacă $x \in (P \setminus Q) \cup (Q \setminus P)$. Aşadar, $P\Delta Q = (P \setminus Q) \cup (Q \setminus P)$.

4.1.
$$A \times (B \triangle C) = (A \times B) \triangle (A \times C)$$
—

Continuăm cu demonstrația relației 4.1, pornind de la definiția produsului cartezian și a relației . Mai utilizăm și distributivitatea produsului cartezian față de reuniunea și diferența între mulțimi, demonstrate anterior.

$$(x,y) \in A \times (B \Delta C) \operatorname{ddacă} \left[(x,y) \in A \times \left((B \setminus C) \cup (C \setminus B) \right) \right] (\operatorname{cf.} \, \mathfrak{G}) \operatorname{ddacă} \left[(x,y) \in \left((A \times (B \setminus C)) \cup (A \times C) \setminus (A \times B) \right) \right] (\operatorname{cf.} \, \mathfrak{G}) \operatorname{ddacă} \left[(x,y) \in \left((A \times B) \setminus (A \times C) \cup (A \times B) \right) \right] (\operatorname{cf.} \, \mathfrak{G}) \operatorname{ddacă} (x,y) \in (A \times B) \Delta (A \times C) (\operatorname{cf. relației inverse} \, \mathfrak{G}). \operatorname{Deci} A \times (B \Delta C) = (A \times B) \Delta (A \times C).$$

4.2.
$$(B \triangle C) \times A = (B \times A) \triangle (C \times A)$$
—

(5) $B \subseteq C \Rightarrow [A \times B \subseteq A \times C \text{ } \text{i } B \times A \subseteq C \times A] \longrightarrow$

Conform definitiei incluziunii, dacă $B \subseteq C$, atunci $x \in B$ implică $x \in C$.

Fie o pereche ordonată $(a, x) \in A \times B$, adică $a \in A$ și $x \in B$, atunci $a \in A$ și $x \in C$, adică $(a, x) \in A \times C$. Așadar $B \subseteq C \Rightarrow A \times B \subseteq A \times C$.

Fie o pereche ordonată $(x, a) \in B \times A$, adică $x \in B$ și $a \in A$, atunci $x \in C$ și $a \in A$, adică $(x, a) \in C \times A$. Asadar $B \subseteq C \Rightarrow B \times A \subseteq C \times A$.

Deci $B \subseteq C \Rightarrow [A \times B \subseteq A \times C \text{ si } B \times A \subseteq C \times A].$

(6) dacă $A \neq \emptyset$, atunci: $B \subseteq C \Leftrightarrow A \times B \subseteq A \times C \Leftrightarrow B \times A \subseteq C \times A$ ——

Vom demonstra echivalența relației cu ajutorul dublei incluziuni.

(i) Relația $\mathbf{B} \subseteq \mathbf{C} \Rightarrow \mathbf{A} \times \mathbf{B} \subseteq \mathbf{A} \times \mathbf{C}$ a fost demonstrată la punctul (5).

(ii)
$$B \subseteq C \Leftarrow A \times B \subseteq A \times C$$
——

Fie $x \in B$.

Deoarece $A \neq \emptyset$, există un element $a \in A$.

 $A \times B \subseteq A \times C$

Fie $(a, x) \in A \times B$, adică $a \in A$ ş $i \ x \in B$, ceea ce implică $(a, x) \in A \times C$, adică $a \in A$ ş $i \ x \in C$. Aşadar, $x \in B$ implică $x \in C$, adică $B \subseteq C$.

Deci, $A \times B \subseteq A \times C \Rightarrow B \subseteq C$.

(iii) Relația $B \subseteq C \Rightarrow B \times A \subseteq C \times A$ a fost demonstrată la punctul (5).

(iv)
$$B \subseteq C \Leftarrow B \times A \subseteq C \times A$$
 ——

Fie $x \in B$.

Deoarece $A \neq \emptyset$, există un element $a \in A$.

 $B \times A \subseteq C \times A$

Fie $(x,a) \in B \times A$, adică $x \in B$ ş $i \ a \in A$, ceea ce implică $(x,a) \in C \times A$, adică $x \in C$ ş $i \ a \in A$. Aşadar, $x \in B$ implică $x \in C$, adică $B \subseteq C$.

Deci, $B \times A \subseteq C \times A \Rightarrow B \subseteq C$.

Din relațiile (i) și (ii) rezultă că $B \subseteq C \Leftrightarrow A \times B \subseteq A \times C$, unde $A \neq \emptyset$.

Din relațiile (iii) și (iv) rezultă că $B \subseteq C \Leftrightarrow B \times A \subseteq C \times A$, unde $A \neq \emptyset$.

Rezultă că dacă $A \neq \emptyset$, atunci: $B \subseteq C \Leftrightarrow A \times B \subseteq A \times C \Leftrightarrow B \times A \subseteq C \times A$.

(7) dacă $A \neq \emptyset$, atunci: $B \subsetneq C \Leftrightarrow A \times B \subsetneq A \times C \Leftrightarrow B \times A \subsetneq C \times A$ —

Conform definiției incluziunii stricte, $P \subsetneq Q$ ddacă $[P \subseteq Q \text{ $\it si } P \neq Q]$ ddacă $[P \subseteq Q \text{ $\it si } Q \setminus P \neq \emptyset]$, adică există un element $x \in Q \setminus P$, așadar $x \in Q \text{ $\it si } x \notin P$.

De la punctul (6) se cunoaște că dacă $A \neq \emptyset$, atunci: $B \subseteq C \Leftrightarrow A \times B \subseteq A \times C \Leftrightarrow B \times A \subseteq C \times A$.

Mai rămâne de demonstrat partea de inegalități dintre mulțimi.

Deoarece $A \neq \emptyset$, există un element $a \in A$.

7.1.
$$C \setminus B \neq \emptyset \Leftrightarrow (A \times C) \setminus (A \times B) \neq \emptyset$$
 —

(a)
$$C \setminus B \neq \emptyset \Rightarrow (A \times C) \setminus (A \times B) \neq \emptyset$$
—

Din $C \setminus B \neq \emptyset$ și $A \neq \emptyset$ rezultă că $A \times (C \setminus B) \neq \emptyset$ ddacă $(A \times C) \setminus (A \times B) \neq \emptyset$. Am folosit și proprietatea de distributivitate a produsului cartezian față de diferența dintre mulțimi.

(b)
$$C \setminus B \neq \emptyset \leftarrow (A \times C) \setminus (A \times B) \neq \emptyset$$
—

 $A \times B \subsetneq A \times C$ ddacă $[A \times B \subseteq A \times C \text{ $\it si} \ A \times B \neq A \times C]$ ddacă $[A \times B \subseteq A \times C \text{ $\it si} \ (A \times C) \setminus (A \times B) \neq \emptyset]$, adică există o pereche $(a,c) \in (A \times C) \setminus (A \times B)$, așadar (i) $(a,c) \in (A \times C)$ și (ii) $(a,c) \notin (A \times B)$.

(i)
$$(a,c) \in (A \times C)$$
 ddacă $a \in A$ și $c \in C$

(ii)
$$(a,c) \notin (A \times B) ddac \check{a} \begin{cases} a \in A \text{ $\it si $c \notin B$} \\ sau \\ a \notin A \text{ $\it si $c \in B$} \\ sau \\ a \notin A \text{ $\it si $c \notin B$} \end{cases}$$

În cazul (ii) știm că $a \in A$, deci $a \notin A$ este fals. Singurul caz posibil rămâne $(a, c) \notin (A \times B)$ ddacă $a \in A$ și $c \notin B$.

Din (i) și (ii) rezultă că $a \in A$ și $c \in C$ și $c \notin B$, adică $c \in C \setminus B$, adică $B \subsetneq C$.

Din (a) si (b) rezultă dubla implicație.

7.2.
$$C \setminus B \neq \emptyset \Leftrightarrow (C \times A) \setminus (B \times A) \neq \emptyset$$
 —

(c)
$$C \setminus B \neq \emptyset \Rightarrow (C \times A) \setminus (B \times A) \neq \emptyset$$
——

Din $C \setminus B \neq \emptyset$ și $A \neq \emptyset$ rezultă că $(C \setminus B) \times A \neq \emptyset$ ddacă $(C \times A) \setminus (B \times A) \neq \emptyset$. Am folosit și proprietatea de distributivitate a produsului cartezian fată de diferenta dintre multimi.

(d)
$$C \setminus B \neq \emptyset \leftarrow (C \times A) \setminus (B \times A) \neq \emptyset$$
—

 $(C \times A) \setminus (B \times A) \neq \emptyset$, ddacă există o pereche $(c, a) \in (C \times A) \setminus (B \times A)$, așadar (i) $(c, a) \in (C \times A)$ și (ii) $(c, a) \notin (B \times A)$.

(i)
$$(c, a) \in (C \times A)$$
 ddacă $c \in C$ și $a \in A$

În cazul (ii) știm că $a \in A$, deci $a \notin A$ este fals. Singurul caz posibil rămâne $(c, a) \notin (B \times A)$ ddacă $c \notin B$ și $a \in A$.

Din (i) și (ii) rezultă că $a \in A$ și $c \in C$ și $c \notin B$, adică $c \in C \setminus B$, adică $B \subsetneq C$.

Din (c) și (d) rezultă dubla implicație.

Din **7.1** si **7.2** rezultă că dacă $A \neq \emptyset$, atunci: $B \subsetneq C \Leftrightarrow A \times B \subsetneq A \times C \Leftrightarrow B \times A \subsetneq C \times A$.

III. De demonstrat matematic

Demonstrați că operațiile cu numere cardinale și relațiile între numere cardinale sunt bine definite, i.e. nu depind de reprezentanții claselor de cardinal echivalență, adică: pentru orice mulțimi A, A', B și B' a.î. |A| = |A'| și |B| = |B'| (adică $A \cong A'$ și $B \cong B'$) au loc operațiile și relațiile respective.

1 Adunarea:
$$|A \coprod B| = |A' \coprod B'| \Leftrightarrow A \coprod B \cong A' \coprod B'$$

Trebuie să demonstrăm că există o bijecție de forma $f:A \coprod B \to A' \coprod B'$, adică faptul că funcția f este injectivă și surjectivă.

Din enunț se cunoaște că: $|A| = |A'| \Leftrightarrow A \cong A'$ și respectiv, $|B| = |B'| \Leftrightarrow B \cong B'$, adică există bijecțiile $\varphi: A \to A'$ și $\psi: B \to B'$.

Conform definiției reuniunii disjuncte (∐), două mulțimi sunt disjuncte dacă intersecția lor e Ø. Deci putem scrie reuniunea disjunctă a reprezentanților claselor de cardinal echivalență sub forma:

$$A \coprod B = (A \times \{1\}) \cup (B \times \{2\}) = \{(a,1)|a \in A\} \cup \{(b,2)|b \in B\}$$
 și $A' \coprod B' = (A' \times \{1\}) \cup (B' \times \{2\}) = \{(a',1)|a' \in A'\} \cup \{(b',2)|b' \in B'\}.$

Definim funcția $f: A \coprod B \to A' \coprod B'$ sub forma:

$$f(x) = \begin{cases} \varphi(x), & dacă \ x \in A \\ \psi(x), & dacă \ x \in B \end{cases}, \text{adică} \begin{cases} (\forall a \in A) \big(f(a,1) := (\varphi(a),1) \big) \\ (\forall b \in B) \big(f(b,2) := (\psi(b),2) \big) \end{cases}$$
(1)

(i) Demonstrăm că funcția f este surjectivă.

Se cunoaște că o funcție este bijectivă ddacă este inversabilă. Vom folosi faptul că bijecțiile ϕ și ψ sunt inversabile în demonstratia că f este surjectie.

$$\varphi - \text{inversabilă ddacă } \exists \varphi^{-1} : A' \to A \text{ a.î. } \forall a \in A, (\varphi^{-1} \circ \varphi)(a) = \varphi^{-1} \big(\varphi(a) \big) = id_A(a) = a, \text{ unde}$$

$$id_A : A \to A \text{ i} \forall a' \in A', (\varphi \circ \varphi^{-1})(a') = \varphi \big(\varphi^{-1}(a') \big) = id_{A'}(a') = a', \text{ unde } id_{A'} : A' \to A'$$
 (2)

$$\psi - \text{inversabilă ddacă } \exists \psi^{-1} : B' \to B \text{ a.î. } \forall b \in B, (\psi^{-1} \circ \psi)(b) = \psi^{-1} \big(\psi(b) \big) = id_B(b) = b, \text{ unde}$$

$$id_B : B \to B \text{ si } \forall b' \in B', (\psi \circ \psi^{-1})(b') = \psi \big(\psi^{-1}(b') \big) = id_{B'}(b') = b', \text{ unde } id_{B'} : B' \to B'$$
(3)

Cf. definiției surjectivității, rel. (1). (2) si (3), rezultă:

$$(\forall a' \in A')(\exists a \in A) \text{ a.i. } f(a,1) = f(\varphi^{-1}(a'),1) = (\varphi(\varphi^{-1}(a')),1) = (a',1)$$

$$(\forall b' \in B')(\exists b \in B) \text{ a.i. } f(b,2) = f(\psi^{-1}(b'),2) = (\psi(\psi^{-1}(b')),2) = (b',2)$$

Reiese că f este surjectivă.

(ii) Demonstrăm că funcția f este injecție.

Fie
$$(x, i), (y, j) \in A \coprod B$$
, a.î. $f(x, i) = f(y, j)$.

$$f(x,i) = \begin{cases} (\varphi(x),1), dacă i = 1\\ (\psi(x),2), dacă i = 2 \end{cases}$$

$$f(y,j) = \begin{cases} (\varphi(y),1), dacă j = 1\\ (\psi(y),2), dacă j = 2 \end{cases}$$

Cum f(x, i) = f(y, j) rezultă că i = j.

$$\rightarrow$$
 $i = j = 1$

În acest caz, $x, y \in A$.

$$f(x,i) = f(y,i) \Leftrightarrow (\varphi(x),1) = (\varphi(y),1) \Leftrightarrow \varphi(x) = \varphi(y) \stackrel{\varphi \text{ injectiva}}{\longleftrightarrow} x = y$$

$$i = j = 2$$

În acest caz, $x, y \in B$.

$$f(x,j) = f(y,j) \Leftrightarrow (\psi(x),2) = (\psi(y),2) \Leftrightarrow \psi(x) = \psi(y) \Leftrightarrow x = y$$

Am demonstrat că $f(x,j) = f(y,j) \Leftrightarrow (x,i) = (y,j)$. Reiese că f este **injectivă**.

Din (i) și (ii) rezultă că funcția f este **bijectivă**. $\Leftrightarrow A \mid B \cong A' \mid B' \Leftrightarrow A \mid B = A' \mid B' \mid$

(2) Înmulțirea: $|A \times B| = |A' \times B'| \Leftrightarrow A \times B \cong A' \times B'$

Trebuie să demonstrăm că există o bijecție de forma $g: A \times B \to A' \times B'$, adică faptul că funcția g este injectivă și surjectivă.

Din enunţ se cunoaşte că: $|A| = |A'| \Leftrightarrow A \cong A'$ şi respectiv, $|B| = |B'| \Leftrightarrow B \cong B'$, adică există bijecţiile $\varphi: A \to A'$ şi $\psi: B \to B'$.

Definim funcția g de forma:

$$g: A \times B \to A' \times B', (\forall a \in A)(\forall b \in B)(g(a,b) := (\varphi(a), \psi(b)))$$
 (4)

(i) Demonstrăm că funcția *g* este surjectivă.

Vom folosi faptul că bijecțiile φ și ψ sunt inversabile în demonstrația că g este surjectivă. Cf. definiției surjectivitătii, rel. (2), (3) si (4), rezultă:

$$\forall (a',b') \in A' \times B', g\left(\varphi^{-1}(a'),\psi^{-1}(b')\right) = \left(\varphi\left(\varphi^{-1}(a')\right),\psi\left(\psi^{-1}(b')\right)\right) = (a',b') \Rightarrow g \text{ surjecție.}$$

(ii) Demonstrăm că funcția g este injectivă.

Fie (u, v), $(x, y) \in A \times B$, a.î. g(u, v) = g(x, y).

$$g(u, v) = g(x, y) \Leftrightarrow (\varphi(u), \psi(v)) = (\varphi(x), \psi(y)) \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \varphi(u) = \varphi(x) & \stackrel{\varphi, \psi}{\longleftrightarrow} \\ \psi(v) = \psi(y) & \stackrel{injectii}{\longleftrightarrow} \end{cases} \begin{cases} u = x \\ v = y \\ \end{cases} \Rightarrow (u, v) = (x, y) \Rightarrow g \text{ injecție.}$$

Din (i) și (ii) rezultă că funcția g este bijecție. $\Leftrightarrow A \times B \cong A' \times B' \Leftrightarrow |A \times B| = |A' \times B'|$

 \bigcirc Ridicarea la putere: $|B^A| = |{B'}^{A'}| \Leftrightarrow B^A \cong {B'}^{A'}$

Trebuie să demonstrăm că există o bijecție de forma $h: B^A \to B'^{A'}$, adică faptul că funcția h este inversabilă.

Fie functiie $\rho: A \to B$ si $\rho': A' \to B'$. Considerând rel. (2) si (3), avem următoarele reprezentări:

$$B^A = \{ \rho | \rho : A \rightarrow B \}$$

$$B'^{A'} = \{ \rho' | \rho' : A' \rightarrow B' \}$$

Definim funcția h sub forma:

$$h: B^A \to B'^{A'}, (\forall \rho \in B^A)(h(\rho) := \psi \circ \rho \circ \varphi^{-1}).$$

Definim funcția k sub forma:

$$k: B'^{A'} \to B^A, (\forall \rho' \in B'^{A'})(k(\rho') := \psi^{-1} \circ \rho' \circ \varphi).$$

Demonstrăm că funcțiile h și k sunt inverse una alteia:

$$(\forall \rho \in B^A) (k(h(\rho)) = \psi^{-1} \circ h(\rho) \circ \varphi = \psi^{-1} \circ \psi \circ \rho \circ \varphi^{-1} \circ \varphi = \rho)$$
 (5)

$$\left(\forall \rho' \in B'^{A'}\right) (h(k(\rho')) = \psi \circ k(\rho') \circ \varphi^{-1} = \psi \circ \psi^{-1} \circ \rho' \circ \varphi \circ \varphi^{-1} = \rho') \tag{6}$$

 $\text{Din (5) } \text{$,$} \text{$i$ (6)} \Rightarrow k = h^{-1}, \text{ deci } h \text{ este inversabil\check{a}, deci h este bijectiv\check{a}} \Rightarrow B^A \cong B^{A'} \Leftrightarrow \left|B^A\right| = \left|B^{A'}\right|.$

$$(4)$$
 $|A| \le |B| \Leftrightarrow |A'| \le |B'|$

Din enunţ se cunoaşte că: $|A| = |A'| \Leftrightarrow A \cong A'$ şi respectiv, $|B| = |B'| \Leftrightarrow B \cong B'$, adică există bijecţiile $\varphi: A \to A'$ şi $\psi: B \to B'$.

Știm că pentru orice mulțimi A și B, faptul că $|A| \leq |B|$ înseamnă că există o injecție $\iota: A \to B$.

Trebuie să demonstrăm că există o injectie $\gamma: A' \to B'$.

Construim funcția $\gamma: A' \to B'$ din compunerea mai multor funcții, inclusiv bijecțiile φ și ψ definite la punctul $\widehat{\mbox{1}}$:

$$A \xrightarrow{\varphi} A' \xrightarrow{\gamma} B' \xrightarrow{\psi^{-1}} B$$

$$| \longrightarrow \uparrow$$

Reamintim că bijecțiile φ , ψ , φ^{-1} și ψ^{-1} sunt inversabile și în particular, injective.

Funcția γ poate avea următoarea formă:

$$\gamma: A' \to B', (\forall \alpha' \in A')(\gamma(\alpha') = \psi \circ \iota \circ \varphi^{-1}(\alpha'))$$

unde funcția ι are forma: ι : $A \to B$, $(\forall a \in A)(\iota(a) = \psi^{-1} \circ \gamma \circ \varphi(a))$.

În relația precedentă avem o compunere de bijecții (ψ și φ^{-1}) cu o injecție (ι), care rezultă într-o injecție, i.e. γ este injecție, adică $|A'| \leq |B'|$.

Am demonstrat că $|A| \leq |B| \Leftrightarrow |A'| \leq |B'|$.

$$(5)$$
 $|A| < |B| \Leftrightarrow |A'| < |B'|$

$$|A| < |B| \Leftrightarrow (|A| \le |B| \land |A| \ne |B|)$$

$$|A'| < |B'| \Leftrightarrow (|A'| \le |B'| \land |A'| \ne |B'|)$$

La punctul 4 am arătat că $|A| \leq |B| \Leftrightarrow |A'| \leq |B'|$.

Rămâne să demonstrăm că:

$$|A| \neq |B| \Leftrightarrow |A'| \neq |B'|$$
.

"⇒"

Presupunem că $|A| \neq |B|$.

 $A' \in A \Leftrightarrow A \cong A' \Leftrightarrow |A| = |A'|$ și respectiv, $B' \in B \Leftrightarrow B \cong B' \Leftrightarrow |B| = |B'|$. Deci $|A'| = |A| \neq |B| = |B'| \Leftrightarrow |A'| \neq |B'|$.

"⇐"

Presupunem că $|A'| \neq |B'|$.

 $A' \in A \Leftrightarrow A \cong A' \Leftrightarrow |A| = |A'|$ și respectiv, $B' \in B \Leftrightarrow B \cong B' \Leftrightarrow |B| = |B'|$. Deci $|A| = |A'| \neq |B'| = |B| \Leftrightarrow |A| \neq |B|$.

Am demonstrat că $|A| \neq |B| \Leftrightarrow |A'| \neq |B'|$ și cf. 4 reiese că $|A| < |B| \Leftrightarrow |A'| < |B'|$.