

Machine-learning interatomic potentials for materials science

Y. Mishin

Potentials

■ **Electronic structure method**: based on the direct quantum-mechanical treatment of the electrons (accurate, 100 atoms, 100 picoseconds).

■ Classical interatomic potentials: parameterize the system's configuration space and express its potential energy *E* as a function of the atomic position (accuracy compromise,

rotation

translation

permutation

exclude any treatment of electric, magnetic or optical properties).

lacksquare Atomic positions: lacksquare lacksquare

In the vicinity of the atom: ${f R}_i \equiv ({f r}_{i1},{f r}_{i2},...,{f r}_{in_i})$

■ The functional form of the potential: $E_i = \Phi(\mathbf{R}_i, \mathbf{p}_i)$

■ Total energy: $E = \sum_i E_i$.

■ Force: $\mathbf{F}_i = -\partial E/\partial \mathbf{r}_i$

■ **PES(potential energy surface):** the functional form can be represented by a 3N-dimensional hypersurface.

The physical basis of traditional potentials

- Traditional potential: the potential function is based on a physical understanding of interatomic bonding in the material.
- EAM, MEAM, and ADP for metallic systems
- Tersoff and Stillinger-Weber potentials for strongly covalent materials such as silicon and carbon
- COMB, REBO and ReaxFF for chemical reactions

Diverse and incompatible with each other

Training of traditional potentials

- Parameter: $E_i = \Phi(\mathbf{R}_i, \mathbf{p}_i)$ $\mathbf{p} = (p_1, ..., p_m)$ (usually 10 to 20, same for all atoms)
- Training:
 - Database: experimental data (physical properties) and a relatively small number of DFT energies of forces. (some physical properties require lengthy simulations)
 - 2. **Fitting**: directly fit the properties, not the PES.
 - 3. Loss function: the mean squared deviation of properties (with weight).
 - 4. **Human decision**: the hyperparameter. (not be automatized)
- Multicomponent potentials: preserve the underlying elemental potentials and only fit the parameters of the cross-interaction function (inheritance).

Accuracy and transferability

	Potential type		
	Traditional	ML	Physically-informed ML
Physical foundation	Strong	None	Strong
Number of fitting parameters	~ 10	$\gtrsim 10^3$	$\gtrsim 10^3$
Computational speed	Very high	$Slower^a$	$Slower^a$
Reference database	Small	Large	Large
Accuracy (interpolation)	Limited	$\sim 1~{ m meV/atom}$	$\sim 1~{ m meV/atom}$
Transferability (extrapolation)	Reasonable	Poor	Reasonable
Reliance on human expertise	Strong	Weaker ^b	Weaker ^b
Extension to chemistries	Challenge	Challenge	Challenge
Specific to class of materials?	Yes	No	No
Systematically improvable?	No	Yes	Yes
Can be made artificial?	Yes	$Maybe^c$	$Maybe^{c}$

specific surface reconstructions complex dislocation core structures struggle with complex elements Si(exhibit both covalent and metallic types of bonding) and C(bonding complexity and the existence of multiple metastable 3D, Yan Yujin

Classification

- General-purpose potentials
- Special-purpose potentials
- Artificial(synthetic) potentials

Machine-Learning potentials

	Traditional potentials	ML potentials	
Targets	A particular physical property or properties	PES	
Database	Experimental data (a small number DFT)	DFT (without any experiment)	
Method	Physics-based module	Purely numerical interpolation	

- > PES uniquely defines all properties of the system.
 - Local minima: stable or metastable structures
 - II. Saddle points: energy barriers of thermally activated kinetic processes
 - III. Curvature: elastic constants and phonon dispersion relations
- **Local structural parameters**: $G_i = (G_{i1}, G_{i2}, ..., G_{iK})$ (smooth functions of R_i invariant under translations and rotations of the coordinate axes and permutations (relabeling) of atoms).
- ightharpoonup Regression model: $\mathbf{G}_i \stackrel{\mathcal{R}}{\to} E_i$

$$\mathbf{R}_i \to \mathbf{G}_i \stackrel{\mathcal{R}}{\to} E_i$$

The local structural descriptors

- Dual effects:
 - Ensure the mentioned invariance and smoothness of the PES.
 - 2. Replace the variable size position vectors \mathbf{R}_i .
- Local structural parameters: $G_i = (G_{i1}, G_{i2}, ..., G_{iK})$ encode in a fixed number of invariant parameters, often referred to as local fingerprints.
- The common descriptors:
 - 1. Gaussian descriptors
 - 2. Zernike descriptors
 - 3. Moment tensor descriptors
 - 4. Smooth overlap of atomic positions(SOAP)
 - 5. Spectral neighbor analysis potential(SNAP)
 - 6. Atomic cluster expansion(ACE)

	More Structural				Мо	re Direct P	roperty
	Atomic Neighboring Density		Topology		Property (Physical, Chemical,)		
	Mapping Basis/ Filtering Functions	Histog	grams	Conne (Gra	ectivity phs)	Histo- grams	Direct
Chronological	Bispectrum, ACSF, SOAP, AGNI, Chebyshev expansion (AENET), MBTRb, SchNETc, Moment Tensor, Atomic Cluster Expansion (ACE), A-SOAP, Polynomials (PIPs)	MBTR♭	k-bags, Bag-of- Bonds, Bag-of- Angles	QSAR ^a , n-gram, Coulomb Matrix, CGCNN, SchNET ^c	Atom2√ec	DOS, Band Structure	QSARª,

The local structural descriptors

The regression models

- Several high-dimensional regression models are available for mapping the local environments of atoms onto the PES:
 - 1. Gaussian process regression
 - 2. Kernel ridge regression
 - 3. SNAP module
 - 4. MTP potentials

linear

Artificial neural network (NN) regression

flexible, not affected by any constraints specific to the material system, and being universal approximators.

Training

Loss function:

$$\mathcal{E} = \frac{1}{N} \sum_{s=1}^{N} \left(\frac{E^{s} - E_{\text{DFT}}^{s}}{N_{s}} \right)^{2} + \tau_{1} \frac{1}{N} \sum_{s=1}^{N} \sum_{\alpha=1}^{3} \left[F_{\alpha}^{s} - (F_{\alpha}^{s})_{\text{DFT}} \right]^{2} + \tau_{2} \frac{1}{N} \sum_{s=1}^{N} \sum_{\alpha,\beta=1}^{3} \left[T_{\alpha\beta}^{s} - (T_{\alpha\beta}^{s})_{\text{DFT}} \right]^{2} + \tau_{3} \frac{1}{L} \sum_{\kappa=1}^{L} |p_{\kappa}|^{2}.$$

- Optimization algorithms:
 - backpropagation(steepest descent method)
 - 2. Levenberg-Marquardt
 - Davidon-Fletcher-Powell(DFP)
 - 4. Broyden-Fletcher-Goldfarb-Shanno (BFGS)
- Training:
 - 1. Avoiding local minima: from different initial guesses
 - Batch processing

Validation

Validation: root-mean-square error(RMSE) or mean absolute error(MAE)

	Potential type		
	Traditional	ML	Physically-informed ML
Physical foundation	Strong	None	Strong
Number of fitting parameters	~ 10	$\gtrsim 10^3$	$\gtrsim 10^3$
Computational speed	Very high	Slower ^a	Slower ^a
Reference database	Small	Large	Large
Accuracy (interpolation)	Limited	$\sim 1~{ m meV/atom}$	$\sim 1~{ m meV/atom}$
Transferability (extrapolation)	Reasonable	Poor	Reasonable
Reliance on human expertise	Strong	Weaker ^{b}	Weaker ^{b}
Extension to chemistries	Challenge	Challenge	Challenge
Specific to class of materials?	Yes	No	No
Systematically improvable?	No	Yes	Yes
Can be made artificial?	Yes	$Maybe^c$	$Maybe^c$

Mathematical ML

Software

- Software: some are stand-alone packages, others are interfaced with LAMMPS, VASP, or other popular software.
- ASE(Atomictic Simulation Environment)
- Amp(Atomistic Machine-learning Package)
- 3. N2P2(Nerual Network Potential Package)
- Aenet(Atomic Energy Network)
- 5. MLIP(Machine Learning Interatomic Potentials)
- 6. KLIFF(KIM-based Learning-Integrated Fitting Framework)
- 7. MAISE(Module for ab initio structure evolution)

Discussion of ML potentials

	Potential type		
	Traditional	ML	Physically-informed ML
Physical foundation	Strong	None	Strong
Number of fitting parameters	~ 10	$\gtrsim 10^3$	$\gtrsim 10^3$
Computational speed	Very high	Slower ^a	$Slower^a$
Reference database	Small	Large	Large
Accuracy (interpolation)	Limited	$\sim 1~{ m meV/atom}$	$\sim 1~{ m meV/atom}$
Transferability (extrapolation)	Reasonable	Poor	Reasonable
Reliance on human expertise	Strong	Weaker b	$Weaker^b$
Extension to chemistries	Challenge	Challenge	Challenge
Specific to class of materials?	Yes	No	No
Systematically improvable?	No	Yes	Yes
Can be made artificial?	Yes	$Maybe^c$	$Maybe^c$

Physically-informed machine-learning potentials

■ Instead of directly predicting the atomic energy E_i , the regression \mathcal{R} outputs a set of potential parameters \boldsymbol{p}_i most appropriate for the environment of the particular atom i.

$$\Phi(\mathbf{R}_i, \mathbf{p}_i)$$
.

Total energy

$$\mathbf{R}_i \to \mathbf{G}_i \stackrel{\mathcal{R}}{\to} \mathbf{p}_i \stackrel{\Phi}{\to} E_i$$

PINN

Physically-informed machine-learning potentials

Figure 6: Examples of properties calculated with the PINN potentials for (a-d) Al [92] and (e-h) Ta [93]. (a) Phonon dispersion relations computed with the PINN potential (curves) compared with experimental data (points). (b) Linear thermal expansion relative to room temperature predicted by the PINN potential (points) compared with experiment (curve). (c) Simulation block used for computing the solid-liquid interface tension by the capillary fluctuation method. (d) MD simulation of crack nucleation and growth on a grain boundary. (e,f) γ -surfaces in body-centered cubic Ta on (110) and (112) planes, respectively. (g) Nye tensor plot of the core structure of the $\frac{1}{2}\langle 111\rangle$ screw dislocation in Ta predicted by the PINN potential. (h) Peierls barrier of the $\frac{1}{2}\langle 111\rangle$ screw dislocation predicted by the PINN potential (lines) in comparison with DFT calculations (points).

Summary and outlook

- Research direction: demonstration of the new capabilities, the search for more effective descriptors and regression models, design of new algorithms to optimize and automatize the DFT database construction, and computational benchmarking.
- Future: discovering new and/or explaining known materials phenomena or predicting properties that cannot be computed otherwise.