Fast / Slow Reactions

$$-Mg + H2O$$

• add phenolphthalein

rate of reaction - how quickly reactants disappear to form products

Chemical reactions indicate the overall change that is observed. Most reactions take place through a series of steps which are usually too quick to observe.

Factors Affecting Reaction Rates

- 1. Chemical nature of reactants
- 2. Surface area
- 3. Reactant concentration
- 4. Temperature
- 5. Presence of a catalyst

1. Chemical Nature

Precious metals were the first to be discovered because they were not very reactive.

Alkali metals are only found in nature in a compound.

What part of Gr. 11 chemistry does this relate to?

2. Surface Area

 \uparrow surface area = \uparrow reaction rate

The more available the reactants are to meet each other, the greater than chance for a reaction to occur.

2. Surface Area

A. Heterogeneous Reaction

- reactants are in different phases or states
- reaction will occur at the interface between phases or states
- So the area of contact between the phases (i.e. surface area) determines the rate of reaction

B. Homogeneous Reaction

 reactants are all in the same phase

3. Concentration

 \uparrow concentration = \uparrow reaction rate

More chemicals results in more particles which can participate in a reaction.

CONCENTRATED

DILUTE

4. Temperature

 \uparrow temperature = \uparrow reaction rate

Increased temperature is due to increased particle motion. The greater the motion of a particle, the greater the chance it will encounter another reactant.

5. Catalysts

catalyst - a compound that increases the rate of a chemical reaction without being consumed in the reaction

The presence of a catalyst allows a reaction to occur faster.

RATE EQUATION:

The most common method of changing a reaction rate is through changing the of reactants.

Mathematically:

Units?

$$mol/s$$

 $mol/L \cdot s = M/s$

RATE EQUATION:

$$A+3B\rightarrow 2D$$

rate=
$$-\Delta[A] = -\Delta[B] = \Delta[D]$$
 $\Delta t \quad 3\Delta t \quad 2\Delta t$

Stoichiometrically, reactant B is consumed 3 times as fast as reactant A

Product D is formed 2 times as fast as reactant A is consumed

Example:

$$4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$$

If the rate of formation of N₂ was 0.27 mol L⁻¹ s⁻¹,

- a) At what rate was water being formed?
- b) At what rate was ammonia being consumed?

a)
$$\Delta[H_2O] = 6/2 \Delta[N_2]$$

 $\Delta[H_2O] = 3 \Delta[N_2]$
 $\Delta[H_2O] = 3 (0.27 \text{ mol L}^{-1} \text{ s}^{-1})$
 $\Delta[H_2O] = 0.81 \text{ mol L}^{-1} \text{ s}^{-1}$

Since 4 moles of NH₃ are consumed for every 2 moles of N₂ formed: = $2 \times (0.27 \text{ mol L}^{-1} \text{ s}^{-1})$ = $0.54 \text{ mol L}^{-1} \text{ s}^{-1}$

RATE LAW EQUATION:

rate = <u>Δconcentration</u> Δtime

For a reaction:

$$A + B \rightarrow C + D$$

rate
$$\alpha$$
 [A]^m[B]ⁿ

rate =
$$k[A]^m[B]^n$$

RATE LAW EQUATION:

rate =
$$k[A]^x[B]^y$$

x & y - values determined by experiment

- k the rate constant
 - -determined by the reaction and the conditions the experiment was conducted in

RATE LAW EQUATION:

EXAMPLE 1

Write out the rate law equation for:

$$H_2SeO_3 + 6 I^- + 4 H^+ \rightarrow Se + 2 I_3^- + 3 H_2O$$

rate =
$$k[H_2SeO_3]^x[I^-]^y[H^+]^z$$

RATE LAW EQUATION:

EXAMPLE 1 rate =
$$k[H_2SeO_3]^x[I^-]^y[H^+]^z$$

At 0°C,
$$k = 5.0 \times 10^5$$

 $x = 1, y = 3, z = 2$

Rewrite the rate law.

What is the unit for rate?

What are the units for k in this case?

RATE LAW EQUATION:

EXAMPLE 1

rate =
$$5.0 \times 10^5 L^5 mol^{-5} s^{-1} [H_2 SeO_3]^1 [I^-]^3 [H^+]^2$$

Determine the rate of reaction at 0°C given: $[H_2SeO_3] = 2.0x10^{-2} \text{ M}$ $[I^-] = 2.0x10^{-3} \text{ M}$ $[H^+] = 1.0x10^{-3} \text{ M}$

RATE LAW EQUATION:

EXAMPLE 1

```
rate = 5.0 \times 10^{5} L^{5} mol^{-5} s^{-1} [2.0 \times 10^{-2} M]^{1} [2.0 \times 10^{-3} M]^{3} [1.0 \times 10^{-3} M]^{2}

= 5.0 \times 10^{5} L^{5} mol^{-5} s^{-1} [2.0 \times 10^{-2} mol L^{-1}] \times [8.0 \times 10^{-9} mol^{3} L^{-3}]

\times [1.0 \times 10^{-6} mol^{2} L^{-2}]

= 8.0 \times 10^{-11} mol L^{-1} S^{-1}

= 8.0 \times 10^{-11} mol/L \cdot s
```

Therefore the rate of the reaction at 0°C is 8.0x10⁻¹¹ mol/L·s

RATE LAW EQUATION:

EXAMPLE 2

The rate law for the decomposition of HI is: rate = $k[HI]^2 = 2.5 \times 10^{-4}$ mol L⁻¹s⁻¹

When [HI] is 0.0558 M, what is the value of the rate constant?

RATE LAW EQUATION:

EXAMPLE 2

rate = $k[HI]^2 = 2.5x10^{-4} \text{ mol } L^{-1}s^{-1}$

```
rate = k[HI]^2

(2.5 \times 10^{-4} \text{ mol } L^{-1} s^{-1}) = k

(0.0558 \text{ mol } L^{-1})^2

8.0 \times 10^{-2} \text{ mol}^{-1} \text{ L s}^{-1} = k

8.0 \times 10^{-2} \text{ L mol}^{-1} \text{ s}^{-1} = k
```

Therefore the value of the rate constant is 8.0x 10⁻² L mol⁻¹ s⁻¹

RATE LAW EXPONENTS:

rate = $k[A]^x[B]^y$

Exponents of the rate law are NOT related to the coefficients of the balanced chemical reaction. They may be by coincidence, but do not make this assumption.

RATE LAW EXPONENTS:

The exponents are related to the order of the reaction.

order of a reaction - experimentally determined by changing one [reactant] at a time and looking at how the reaction rate changes.

RATE LAW EXPONENTS:

Given [X]¹:

- first order reaction
- when [X] is doubled, the reaction rate is doubled (multiplying by 2¹)
- when [X] is tripled, the reaction rate is tripled (multiplying by 3¹)
- when [X] is halved, the reaction rate is halved (multiplying by ½¹)

RATE LAW EXPONENTS:

Given [Y]²:

- second order reaction
- when [Y] is doubled, the rate increases by four (2²)
- when [Y] is tripled, the rate increases by 9 (3²)
- when [Y] is halved, the rate decreased by 4 (½²)

RATE LAW EXPONENTS:

Given [Z]⁰:

- zeroth order reaction
- increasing or decreasing [Z] will result in no change of reaction rate (multiplying by x⁰ = 1)

REACTION ORDER:

The order of a reaction is the <u>sum of the</u> rate law exponents.

What is the order of the reaction which has the rate law of rate = $k[X]^2[Y]^2$ and reaction of $X + Y + Z \rightarrow A + B$?

What are the units of k for this reaction?

L³ mol⁻³ s⁻¹

REACTION ORDER:

Identify the order of the reaction and units of k:

a) rate =
$$k[N]$$
 1st order, s⁻¹

b) rate = $k[D]^{1/2}[E]^2$ 2.5 order, $L^{1.5}$ mol^{-1.5} s⁻¹

c) rate = $k[J]^{-3}[L]^2$ -1 order, mol² L⁻² s⁻¹