

Management of Precursors to Catastrophe: Identifying & Measuring Precursors

Massoud Amin, D.Sc.

Area Manager, Infrastructure Security Lead, Mathematics & Information Sciences

Roundtable on Management of Precursors to Catastrophe

National Academy of Engineering

February 21, 2002, Washington, D.C.

Vulnerabilities: Power Grid Examples

- November 1965 blackout in the Northeast U.S., which cascaded system collapse in ten states.
- 1967 Pennsylvania-New Jersey-Maryland.
- July 13, 1977 blackout in New York City.
- December 19, 1978 blackout due to voltage collapse in France.
- July and August 1996 outages in the western U.S.
- December 1998, Bay Area black-out. NY July 7, 1999 blackout.
- December 1998 ice storms in Hydro Quebec
- December 1999 winter storms in France
- Industry-wide Y2K readiness program identified telecommunications failure as the biggest risk of the lights going out on rollover to 2000.
- Past summers' price spikes
- Aftermath of tragic events of 11th September.

EPRI/DOD Complex Interactive Network/Systems Initiative

The Reason for this Initiative: "Those who do not remember the past are condemned to repeat it." *George Santayana*

- Two faults in Oregon (500 kV & 230 kV) led to...
 - tripping of generators at McNary dam
 - ...500 MW oscillations
 - ...separation of the Pacific Intertie at the California-Oregon border
 - ...blackouts in 13 states/provinces
- Some studies show with proper "intelligent controls," all would have been prevented by shedding 0.4% of load for 30 minutes!
- ... everyone wants to operate the power system closer to the edge. It's a good idea. But to do that we should know
 - where is the edge, and
 - how close are we to it.

August 10, 1996

Modeling and Simulation:

An Example- US Power Outages

Wide-Area Measurement System (WAMS) Integrated measurements facilitate system management

"Better information supports better - and faster - decisions."

Real-Time System Data

Collected from various monitors throughout the grid

Example: BPA's Phasor Data Concentrator

EPRI/DoD Complex Interactive Networks Use DRDs to Enhance Real Time System Operation

Use recorded data to

- identify the type and location of disturbances
- determine whether multiple events have occurred
- assess the impact of disturbances on system
- monitor whether the system is adequately damped
- evaluate the needs for immediate control actions or retuning control algorithms

Last Episode of the TV series "Survivor"

Disturbance Identification using Dynamic Recorded Data

- 47 disturbance (out of several hundreds) events recorded at Northfield Substation in New England Power System were analyzed
- Feature extraction frequency deviation, frequency derivative, and power flows
- Clustering algorithm based on frequency deviation and frequency derivative features

Disturbance

- Loss of close by generation
- Estimate how much generation is lost from tracking system frequency

Disturbance Feature Extraction

Disturbance	Frequency change	Frequency derivative	Line flow change
Loss of nearby generation	Negative	Steep	Large
Loss of remote generation	Negative	Moderate	Negligible
Loss of load	Positive	Moderate	Detectable
Line trip close to DRD	Negligible	Steep	Large
Oscillations	Negligible	Small	oscillations

Clustering Algorithm – separate disturbance classes by hyperplanes

- C₁ loss of nearby generation
- C₂ loss of remote generation
- C₃ loss of load
- C₄ line trip
- C₅ oscillations

^{*} Markers show recorded data

Decision Tree for Disturbance Identification

Disturbance Event Analyzer

Modeling: Power law distributions

Power system $\beta = 1$

Power laws and other disasters

Hurricane and Earthquake Losses 1900-1989 Flood Losses 1986-1992

Complex Interactive Networks

Failure Propagation on Grid

Percolation

Designed System

Complex Interactive Networks

Failure Propagation on Grid – Topology & Probability

At this level, dynamic models include the *swing equations*

$$m_i \ddot{\delta}_i + D_i \dot{\delta}_i = P_i + \sum_j b_{ij} \sin(\delta_i - \delta_j)$$

Fast Simulation

Cascading failures

P. A. Parrilo, S. Lall, F. Paganini, G. C. Verghese, B. C. Lesieutre, J. E. Marsden, 1998

Complex Interactive Networks

Integrated Protection and Control

Vulnerability Indices

Integrated Infrastructure Protection and Control via Multi-Agent Systems

DELIBERATIVE LAYER

COORDINATION LAYER

REACTIVE LAYER

Intelligent Adaptive Islanding

Technology Challenge for Powering the Digital Society

How do we make the leap to the next generation?

