

planetmath.org

Math for the people, by the people.

Haar integral

Canonical name HaarIntegral

Date of creation 2013-03-22 13:39:56 Last modified on 2013-03-22 13:39:56

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 9

Author rspuzio (6075) Entry type Definition Classification msc 28C05

Defines normalized Haar integral

Let Γ be a locally compact topological group and \mathcal{C} be the algebra of all continuous real-valued functions on Γ with compact support. In addition we define \mathcal{C}^+ to be the set of non-negative functions that belong to \mathcal{C} . The *Haar integral* is a real linear map I of \mathcal{C} into the field of the real number for Γ if it satisfies:

- I is not the zero map
- I only takes non-negative values on C^+
- I has the following property $I(\gamma \cdot f) = I(f)$ for all elements f of \mathcal{C} and all element γ of Γ .

The *Haar integral* may be denoted in the following way (there are also other ways):

$$\int_{\gamma \in \Gamma} f(\gamma)$$
 or $\int_{\Gamma} f$ or $\int_{\Gamma} f d\gamma$ or $I(f)$

The following are necessary and sufficient conditions for the existence of a unique Haar integral: There is a real-valued function I^+

- 1. $(Linearity).I^+(\lambda f + \mu g) = \lambda I^+(f) + \mu I^+(g)$ where $f, g \in \mathcal{C}^+$ and $\lambda, \mu \in \mathbb{R}_+$.
- 2. (Positivity). If $f(\gamma) \ge 0$ for all $\gamma \in \Gamma$ then $I^+(f(\gamma)) \ge 0$.
- 3. (Translation-Invariance). $I(f(\delta\gamma)) = I(f(\gamma))$ for any fixed $\delta \in \Gamma$ and every f in C^+ .

An additional property is if Γ is a compact group then the Haar integral has right translation-invariance: $\int_{\gamma \in \Gamma} f(\gamma \delta) = \int_{\gamma \in \Gamma} f(\gamma)$ for any fixed $\delta \in \Gamma$. In addition we can define *normalized Haar integral* to be $\int_{\Gamma} 1 = 1$ since Γ is compact, it implies that $\int_{\Gamma} 1$ is finite.

(The proof for existence and uniqueness of the Haar integral is presented in [?] on page 9.)

(the information of this entry is in part quoted and paraphrased from [?])

References

- [GSS] Golubsitsky, Martin. Stewart, Ian. Schaeffer, G. David.: Singularities and Groups in Bifurcation Theory (Volume II). Springer-Verlag, New York, 1988.
- $[\mathrm{HG}]$ Gochschild, G.: The Structure of Lie Groups. Holden-Day, San Francisco, 1965.