HDclassif : un package R pour la classification non-supervisée de données en grande dimension

Laurent Bergé

MAP5 (UMR 8145), Université Paris-Descartes & Sorbonne Paris Cité

GREThA (UMR 5113), University of Bordeaux

10 Juin 2016, Journée R, Muséum National D'Histoire Naturelle, Paris

Qu'est-ce que la classification non-supervisée ?

Qu'est-ce que la classification non-supervisée ?

But de la classification non-supervisée

- Catégoriser des observations dans des groupes cohérents
- (optionnel) Avoir le "bon" nombre de groupes

Pourquoi faire de la classification non-supervisée ?

- Synthétiser des données complexes et volumineuses
- Partitionner les individus en des classes homogènes et interprétables

Schématisation du problème

Classification non-supervisée

- input: n observations $x_i \in \mathbb{R}^p$
- output: la partition $\{z_1, \dots z_n\}$ (et le nombre de classes K)

Plan

Modèle de Mélange Gaussien

2 Modèles HDDC

Package HDclassif

Modèle génératif:

Chaque observation i est générée de façon indépendante de la façon suivante :

- ② Sachant $z_i = k$:

$$x_i \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Paramètres du modèle

Pour chaque classe $k \in \{1, \dots, K\}$:

- π_k proportion
- \bullet μ_k vecteur moyenne
- Σ_k matrice de variance-covariance

Modèle génératif:

Chaque observation i est générée de façon indépendante de la façon suivante :

- ② Sachant $z_i = k$:

$$x_i \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Paramètres du modèle

Pour chaque classe $k \in \{1, \dots, K\}$:

- π_k proportion
- \bullet μ_k vecteur moyenne
- Σ_k matrice de variance-covariance

Modèle génératif:

Chaque observation i est générée de façon indépendante de la façon suivante :

- ② Sachant $z_i = k$:

$$x_i \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Paramètres du modèle

Pour chaque classe $k \in \{1, \dots, K\}$:

- π_k proportion
- ullet μ_k vecteur moyenne
- Σ_k matrice de variance-covariance

Modèle génératif:

Chaque observation i est générée de façon indépendante de la façon suivante :

- ② Sachant $z_i = k$:

$$x_i \sim \mathcal{N}(\mu_k, \Sigma_k)$$

Paramètres du modèle

Pour chaque classe $k \in \{1, ..., K\}$:

- π_k proportion
- ullet μ_k vecteur moyenne
- Σ_k matrice de variance-covariance

Estimateurs

Probabilité d'observer x_i sachant $z_i = k$:

$$P(x_i|z_i = k, \mu_k, \Sigma_k)$$

$$= f(x_i|\mu_k, \Sigma_k)$$

$$= \exp\left((x_i - \mu_k)^t \Sigma_k^{-1} (x_i - \mu_k) + \log(\det \Sigma_k) + C^{te}\right)$$

Estimateurs

Les estimateurs $\hat{\mu}_k$ et $\hat{\Sigma}_k$ sont les paramètres qui maximisent la vraisemblance.

Règle de Bayes

Si on ne connait pas z_i :

$$P(z_i = k | x_i, \mu, \Sigma) = \frac{\pi_k f(x_i | \mu_k, \Sigma_k)}{\sum_{k'} \pi_{k'} f(x_i | \mu_{k'}, \Sigma_{k'})}$$

$$\equiv t_{ik}$$

Par définition: $\sum_k t_{ik} = 1$.

- Initialisation des z_i
- ② Calcul des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant z_i
- Boucler jusqu'à convergence:
 - Calcul des t_{ik}
 - Estimation des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant t_{ik}

- Initialisation des z_i
- ② Calcul des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant z_i
- Boucler jusqu'à convergence:
 - Calcul des t_{ik}
 - ullet Estimation des paramètres $(\pi_k,\,\mu_k$ et Σ_k) sachant t_{ik}

- Initialisation des z_i
- ② Calcul des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant z_i
- Boucler jusqu'à convergence:
 - lacktriangle Calcul des t_{ik}
 - 2 Estimation des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant t_{ik}

- Initialisation des z_i
- ② Calcul des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant z_i
- Boucler jusqu'à convergence:
 - Calcul des t_{ik}
 - ② Estimation des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant t_{ik}

- Initialisation des z_i
- ② Calcul des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant z_i
- Boucler jusqu'à convergence:
 - Calcul des t_{ik}
 - 2 Estimation des paramètres $(\pi_k, \mu_k \text{ et } \Sigma_k)$ sachant t_{ik}

Illustration Modèle de Mélange Gaussien

Classification non-supervisée :

Difficultés du monde réel

- Les données réelles sont souvent en grande dimension (p est très grand)
- Le nombre d'observation est souvent faible $(n \ll p)$

Problèmes

- ullet Quand p est grand \Rightarrow nombre de paramètres explose, complexité p^2
- Quand $n modèle pas estimable (dû à l'estimation de <math>\Sigma_k$)

Difficultés du monde réel

- Les données réelles sont souvent en grande dimension (p est très grand)
- Le nombre d'observation est souvent faible $(n \ll p)$

Problèmes

- ullet Quand p est grand \Rightarrow nombre de paramètres explose, complexité p^2
- Quand $n modèle pas estimable (dû à l'estimation de <math>\Sigma_k$)

Plan

Modèle de Mélange Gaussien

2 Modèles HDDC

Package HDclassif

Décomposition spectrale

• Décomposition spectrale de Σ_k :

$$\Sigma_k = Q_k \Delta_k Q_k^t,$$

avec

- Q_k la matrice des vecteurs propres de Σ_k et $Q_k^{-1} = Q_k^t$
- Δ_k la matrice diagonale des valeurs propres de Σ_k :

$$\Delta_k = \left(\begin{array}{ccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_p \end{array}\right),$$

 $\lambda_1 > \lambda_2 > \dots > \lambda_p$.

Décomposition spectrale

• Décomposition spectrale de Σ_k :

$$\Sigma_k = Q_k \Delta_k Q_k^t,$$

avec:

- Q_k la matrice des vecteurs propres de Σ_k et $Q_k^{-1} = Q_k^t$
- Δ_k la matrice diagonale des valeurs propres de Σ_k :

$$\Delta_k = \left(\begin{array}{ccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_p \end{array}\right),\,$$

 $\lambda_1 > \lambda_2 > \dots > \lambda_p$.

Décomposition spectrale

• Décomposition spectrale de Σ_k :

$$\Sigma_k = Q_k \Delta_k Q_k^t,$$

avec:

- Q_k la matrice des vecteurs propres de Σ_k et $Q_k^{-1} = Q_k^t$
- Δ_k la matrice diagonale des valeurs propres de Σ_k :

$$\Delta_k = \left(\begin{array}{ccc} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_p \end{array}\right),$$

$$\lambda_1 > \lambda_2 > \dots > \lambda_p$$
.

Re-paramétrisation du modèle de mélange

Hypothèse sur Δ_k :

$$\Delta_k = \begin{pmatrix} a_{k1} & 0 & & & & 0 \\ 0 & \ddots & 0 & & & \\ & 0 & a_{kd_k} & & & \\ & & & b_k & 0 & \\ & & & 0 & \ddots & 0 \\ 0 & & & & 0 & b_k \end{pmatrix}$$

Paramètres du modèle

Pour chaque classe k:

- π_k , proportion
- ullet μ_k , vecteur moyenne
- ullet d_k , nombre de dimensions intrinsèques de la classe k
- a_{kj} , $j^{\grave{e}me}$ valeur propre de Σ_k $(j \in \{1, \ldots d_k\})$
- b_k , «bruit» de la classe
- \tilde{Q}_k : seulement d_k premiers vecteurs propres

Le modèle $\left[a_{kj}b_kQ_kd_k\right]$ et ses sous-modèles

Le modèle général peut être régularisé:

- Au sein de la classe:
 - $a_{k1} = \dots = a_{kd_k} = a_k$
- Entre les classes:
 - $d_1 = \cdots = d_K = d$
 - $Q_1 = \cdots = Q_K = Q$
 - $b_1 = \cdots = b_K = b$
 - $a_{11} = \cdots = a_{K1} = a_1$

⇒ 14 modèles

Estimation de d_k

• d_k peut être sélectionné par le BIC

Estimation du nombre de groupes K

C'est un problème difficile. Néanmoins différents critères existent:

- BIC (Bayesian Information Criterion)
- ICL (Information Classification Likelihood)
- Heuristique de pente

Plan

Modèle de Mélange Gaussien

2 Modèles HDDC

Package HDclassif

Package HDclassif: inputs

La fonction hhdc prends en entrée:

- model: Le nom d'un des 14 modèles. Par défaut "AkjBkQkDk". Peut être un vecteur.
- K: Le nombre de classes. Peut être un vecteur.
- threshold: Le seuil pour le scree-test de Cattell. Peut être un vecteur.
- criterion: Le critère de sélection (BIC, ICL ou slope).
- algo: L'algorithme à utiliser (EM, SEM ou CEM).
- init: Le type d'initialisation (random, kmeans, ...).
- mc.cores: Nombre de coeurs à utiliser pour le calcul en paralèlle.

Package HDclassif: autres fonctions

- La fonction predict calcule la probabilité d'appartenance d'une observation à chacune des classes en fonction de paramètres estimés par hddc.
- La fonction plot montre la sélection des dimensions intrinsèques.

Package HDclassif: output

La fonction hddc donne en sortie:

- ullet prms: L'ensemble des paramètres estimés $(\pi_k,\,\mu_k,\,d_k,a_{kj},\,b_k$ et $\tilde{Q}_k)$.
- Loglik, BIC, ICL, slope: La valeur de ces critères pour le modèle.
- all_results: Tous les modèles qui ont été estimés.
- class: La classe associée à chaque observation.
- posterior: La matrice $n \times K$ des t_{ik} .

Exemple en direct

Avec tous les risques inhérents !

Conclusion

HDclassif:

- Permet la classification non-supervisée (et supervisée) de façon efficace en grande dimension
- Est particulièrement efficace quand $n \ll p$
- Est flexible (variété de modèles régularisés)
- Permet une sélection de modèle parallèlisable
- Tout commentaire est bienvenu ©

Merci!

Merci de votre attention!

