1 Naloga

Za dan predpis

$$d(x,y) = \begin{cases} |x-y|, & (x,y \in \mathbb{Q}) \text{ ali } (x,y \in \mathbb{R} \setminus \mathbb{Q}) \\ |x-y|+1, & (x \in \mathbb{Q} \text{ in } y \in \mathbb{R} \setminus \mathbb{Q}) \text{ ali } (x \in \mathbb{R} \setminus \mathbb{Q} \text{ in } y \in \mathbb{Q}) \end{cases}$$
(1)

dokažite, da določa metriko na \mathbb{R} .

Preveriti moramo, da d(x,y) zadošča vsem 4 aksiomom metrike.

1.1 Aksiom 1

Preveriti moramo, da je $d(x,y) \geq 0$ za vsak $x,y \in \mathbb{R}$. Če je $x,y \in \mathbb{Q}$ ali pa $x,y \in \mathbb{R} \backslash \mathbb{Q}$, potem velja $d(x,y) = |x-y| \geq 0$. Če je $x \in \mathbb{Q}$ in $y \in \mathbb{R} \backslash \mathbb{Q}$ ali obratno potem velja d(x,y) = |x-y| + 1 > 0.

Za vsak $x, y \in \mathbb{R}$ torej velja $d(x, y) \geq 0$ (saj je poljuben element iz \mathbb{R} lahko iz \mathbb{Q} ali $\mathbb{R} \setminus \mathbb{Q}$ in smo vse možne primere obravnavali)

1.2 Aksiom 2

Preveriti moramo, da za vsak $x,y\in\mathbb{R}$ velja d(x,y)=d(y,x). Če je $x,y\in\mathbb{Q}$ ali pa $x,y\in\mathbb{R}\setminus\mathbb{Q}$, potem velja d(x,y)=|x-y|=d(y,x). Če je $x\in\mathbb{Q}$ in $y\in\mathbb{R}\setminus\mathbb{Q}$ ali obratno potem velja d(x,y)=|x-y|+1=d(y,x).

Za vsak $x, y \in \mathbb{R}$ torej velja d(x, y) = d(y, x).

1.3 Aksiom 3, prvi del

Preveriti moramo, da če za neka $x, y \in \mathbb{R}$ velja d(x, y) = 0, potem sledi x = y.

Recimo, da za neka $x, y \in \mathbb{R}$ velja d(x, y) = 0. Najprej opazimo, da ne more veljati $x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$ ali obratno, saj bi v tem primeru imeli $d(x, y) = |x - y| + 1 \ge 1$, v protislovju z našo predpostavko d(x, y) = 0.

Ostane možnost, da velja $x, y \in \mathbb{Q}$ ali $x, y \in \mathbb{R} \setminus \mathbb{Q}$. V tem primeru velja d(x, y) = |x - y|, kar je res enako nič le če x = y.

1.4 Aksiom 3. drugi del

Recimo, da velja x=y, pokazati moramo, da sledi d(x,y)=0. Ekvivalentno, pokazati moramo, da za vsak $x\in\mathbb{R}$ velja d(x,x)=0.

Če je $x \in \mathbb{Q}$ ali $x \in \mathbb{R} \setminus \mathbb{Q}$, potem velja d(x, x) = |x - x| = 0.

Za vsak $x\in\mathbb{R}$ torej velja d(x,x)=0 (saj je poljuben element iz \mathbb{R} lahko ali iz \mathbb{Q} ali iz $\mathbb{R}\backslash\mathbb{Q}$)

1.5 Aksiom 4

Pokazati moramo, da za vsak $x,y,z\in\mathbb{R}$ velja $d(x,y)\leq d(x,z)+d(z,y)$. Recimo, da velja $x,y\in\mathbb{Q}$ ali $x,y\in\mathbb{R}\setminus\mathbb{Q}$. V tem primeru velja $d(x,y)=|x-y|\leq |x-z|+|y-z|\leq d(x,z)+d(y,z)$ V zadnji neenakosti smo upoštevali dejstvo da je $|x-z|\leq d(x,z)$, kar velja ker je d(x,z) enak |x-z| ali |x-z|+1 (odvisno od z-ja).

Recimo, da velja $x \in \mathbb{Q}, y \in \mathbb{R} \setminus \mathbb{Q}$ ali obratno. Potem velja $d(x,y) = |x-y| + 1 \le |x-z| + |y-z| + 1 = d(x,y) + d(y,z)$.

Zadnja enakost sledi iz dejstva, da je z lahko iz \mathbb{Q} ali $\mathbb{R}\setminus\mathbb{Q}$ in je torej d(x,z)=|x-z|, d(y,z)=|y-z|+1 ali pa d(x,z)=|x-z|+1, d(y,z)=|y-z|.

S tem smo obravnavali vse možne primere za $x,y,z\in\mathbb{R}$ in je aksiomu 4 zadoščeno.

Ker zadošča vsem aksiomom je d(x,y) metrika na \mathbb{R} .