

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

	-			47.4
D .	0.0	1	and	Llumanities
Department	01 8	sciences	anu	Humanities

Course Name:	Elements of Electrical and Electronics Engineering Laboratory	Semester:	1/11
Date of Performance:	/ /20	Batch No:	C-5(3)
Student Name:	Sai Shivani maddala	Roll No:	60
Faculty Sign & Date:		Grade/Marks:	/ 20

Experiment No: 7

Title: Measurement of Power using Two Wattmeter Method

Aim and Objective of the Experiment:

To measure the power of three phase power using Two Wattmeter Method

COs to be achieved:

CO2: Demonstrate and analyze steady state response of single phase and three phase circuits

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Stepwise-Procedure:

- 1. Connect the circuit as shown in circuit diagram
- 2. Increase the load and note down the reading VL,IL,W1 and W2
- 3. Practically you will obtain total power W=W1+W2
- Theoretically power is measured by using formula P=√3V_LI_Lcosφ, using cosφ=1(unity) for resistive load.

Observation Table:

Sr.no	V_L	Iı	IL		\mathbf{W}_1		W ₂			P =	Lamp
51.110	(Volts)	(Amp)		(KW)		(KW)		W= (W ₁ +W ₂) (KW)		√3V _L I _L COSφ (KW)	load given from
											lamp
											bank
											(KW)
		ТН	PR	TH	PR	ТН	PR	TH	PR		
1	400		0.9	0-27	0.3	0.27	c·3	0.54	0.6	0.54	0.6
2	1			0.55	0.6	0.55	0.6	1.1	1.2	1.08	1.2
3	1	2.4	2.6	0.83	0.9	0.83	0.9	1.66		1.56	1.8
4	-100	2.6	2.5	1.24	1.24	1.24	1.24	2.48	2.48	2.1	2.3

Theoretical Calculations:

Power= $\sqrt{3} \times V_L \times I_L \times \cos \varphi$

Power = Wattage rating of lamp load x No of lamps (One lamp is of 100W rating)

$$W1 = V_L \times I_L \times \cos(30 + \varphi)$$

 $\Phi = 0$

$$W2 = V_L \times I_L \times \cos(30-\varphi)$$

Total Power=P=W1+W2

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Sciences and Humanities

Conclusion:

be an effective and accurate termique for measuring power in a 3 phase power system. The enperiment successfully demonstrated the ability of the was watemeter method to provide accurate readings of both active and reachive power in a balanced 3 phase system.

Signature of faculty in-charge with Date: