Příklady pro cvičení 3. z IFJ: Pumping lemma, uzávěrové vlastnosti

Slabé pumping lemma:

Nechť L je regulární jazyk. Potom existuje nějaká konstanta $k \ge 1$, že pro každý řetězce $z \in L$, kde $|z| \ge k$ platí, že jej můžeme rozdělit na podřetězce u, v, w, tedy z = uvw, které splňují následující podmínky: 1) $v \ne \varepsilon$ 2) $|v| \le k$ 3) $uv^m w \in L$ pro všechna $m \ge 0$.

Silné pumping lemma: (učí se na přednáškách IFJ od roku 2005; silnější 2) podmínka) Nechť L je regulární jazyk. Potom existuje nějaká konstanta $k \ge 1$, že pro každý řetězce $z \in L$, kde $|z| \ge k$ platí, že jej můžeme rozdělit na podřetězce u, v, w, tedy z = uvw, které splňují následující podmínky: 1) $v \ne \varepsilon$ 2) $|uv| \le k$ 3) $uv^m w \in L$ pro všechna $m \ge 0$.

Příklad 1.

Pomocí pumping lemma dokažte, že jazyk $L_1 = \{a^n bba^n : n \ge 0\}$ není regulární.

Řešení (pomocí slabého PL):

- 1. Předpokládejme, že L_1 je regulární. Potom pro jazyk L_1 platí pumping lemma.
- **2.** Nechť k je konstanta z pumping lemmy. Nyní vyberme "vhodný" řetězec z, který splňuje podmínky: **a)** $z \in L_1$ **b)** $|z| \ge k$.

Položme tedy například $z = a^k bba^k$. Zřejmě $a^k bba^k \in L_1$ a $|a^k bba^k| = k + 1 + 1 + k = 2k + 2 > k$. Obě podmínky **a)** i **b)** tedy jsou splněny.

3. Podle pumping lemma můžeme tedy řetězec $z = a^k bba^k$ "nějak" rozložit na tři podřetězce u, v, w, tak, aby platilo z = uvw. Nyní musíme projít **všechny možnosti** rozložení řetězce z a u každé z nich najít **aspoň jeden** případ, který vede ke sporu.

I. možnost:

Formálně: $v = a^i$, $i \ge 1$; **bb** is substring of w

- Například pro řetězec $uv^0w = uw = aaabbaaa ... aaa$
- Podle pumping lemma $uv^0w \in L_1$
- Podle definice jazyka L_1 ale $uv^0w \notin L_1$, protože nesouhlasí počet "a" (počet "a" před podřetězcem bb je menší než počet "a" za podřetězcem bb.
- SPOR

II. možnost:

Formálně: $v = a^i b$, $i \ge 0$;

- Například pro řetězec $uv^2w = uvvw =$ $u \quad v \quad v \quad w$
- Podle pumping lemma $uv^2w \in L_1$
- Podle definice jazyka L_1 ale $uv^2w \notin L_1$, protože tento řetězec obsahuje tři symboly "b".
- SPOR

III. možnost:

Formálně: $v = a^i bb a^j$, $i, j \ge 0$;

- Například pro řetězec $uv^0w = uw =$
- Podle pumping lemma $uv^0w \in L_1$
- Podle definice jazyka L_1 ale $uv^0w \notin L_1$, protože tento řetězec neobsahuje podřetězec bb.
- SPOR

IV. možnost:

Formálně: $v = ba^i$, $i \ge 0$;

- Například pro řetězec $uv^2w = uvvw =$ uvvw = uv
- Podle pumping lemma $uv^2w \in L_1$
- Podle definice jazyka L_1 ale $uv^2w \notin L_1$, protože tento řetězec obsahuje tři symboly "b".
- SPOR

V. možnost:

Formálně: $v = a^i$, $i \ge 1$; **bb** is substring of u

- Například pro řetězec $uv^0w = uw = \underbrace{aaa...aaabbaaaa}_{u}$
- Podle pumping lemma $uv^0w \in L_1$
- Podle definice jazyka L_1 ale $uv^0w \notin L_1$, protože nesouhlasí počet "a" (počet "a" před podřetězcem bb je větší než počet "a" za podřetězcem bb.
- SPOR

Dokázali jsme sporem, že neexistuje žádné rozložení řetězce z na podřetětězce u, v, w, kde z = uvw tak, aby pro všechna m ≥ 0 platilo uv^mw ∈ L₁. Předpoklad, že L₁ je regulární, je nesprávný. (Jinak by toto rozložení podle pumping lemma muselo existovat)
 Proto tedy L₁ není regulární jazyk.

Poznámka: Použitím silného pumping lemma je možné provést pouze první možnost dekompozice, protože ostatní ihned porušují 2. podmínku: $|uv| \le k$.

Příklad 2.

Pomocí výsledku z příkladu 1) a pomocí uzávěrových vlastností dokažte, že jazyk $L_2 = \{xy: x, y \in \{a, b\}^* \land y = \text{reversal}(x)\}$ není regulární. Neformálně, jazyk L_2 obsahuje všechny řetězce obsahující pouze symboly a, b, pro které platí, že přečtená druhá polovina řetězce od konce tvoří první polovinu řetězce.

Řešení:

Důkaz sporem:

- Předpokládejme, že jazyk L₂ je regulární
- Regulární výraz $r = a^*bba^*$ zřejmě popisuje jistý regulární jazyk L(r)
- Regulární jazyky jsou uzavřeny vůči průniku, což znamená: Pro **libovolné** dva regulární jazyky L_a a L_b platí: $L_a \cap L_b$ je opět **jazyk regulární**.
- Konkrétně: L₂ je regulární (předpoklad), L(r) je regulární (je popsán regulárním výrazem), jazyk L₂ ∩ L(r) = {aⁿbbaⁿ: n ≥ 0} je tedy regulární.
 Ale v příkladu 1. jsme dokázali, že {aⁿbbaⁿ: n ≥ 0} není regulární ⇒ SPOR.
- Předpoklad, že jazyk *L*₂ je regulární, je nesprávný.
- Proto tedy L_2 není regulární jazyk.

Poznámka: Nejsložitější částí příkladu je "vhodné" zvolení regulárního výrazu r, tak aby po průniku s jazykem v zadání vznikl "jednodušší" jazyk, u kterého lze efektivně pomocí pumping lemma dokázat, že není regulární.

Příklad 3.

Pomocí pumping lemma dokažte, že jazyk $L_3 = \{a^{2^n} : n \ge 0\}$ není regulární.

Řešení (Objevitelkou tohoto hezkého řešení je Jana Brychová, studentka 3BIT):

- 1. Předpokládejme, že L_3 je regulární. Potom pro jazyk L_3 platí pumping lemma.
- **2.** Nechť k je konstanta z pumping lemmy. Nyní vyberme "vhodný" řetězec z, který splňuje podmínky: **a)** $z \in L_3$ **b)** $|z| \ge k$.

Položme tedy například $z = a^{2^k}$. Zřejmě $a^{2^k} \in L_3$ a $|a^{2^k}| = 2^k \ge k$. Obě podmínky **a)** i **b)** tedy jsou splněny.

3. Podle pumping lemma můžeme tedy řetězec $z = a^{2^k}$, "nějak" rozložit na tři podřetězce u, v, w, tak, aby platilo z = uvw. Nyní musíme projít **všechny možnosti** rozložení řetězce z a u každé z nich najít **aspoň jeden** případ, který vede ke sporu.

I. možnost (jediná):

Formálně: $v = a^i$, $i \ge 1$;

Zřejmě $|uw| \ge 1$, neboť |uw| = 0 by implikovalo, že $|v| = 2^k$, což ihned dává spor s podmínkou $|v| \le k$ u slabého pumping lemma nebo s podmínkou $|uv| \le k$ u silného pumping lemma.

- $|z| = |uvw| = |uw| + |v| = 2^k$. Vynásobením této rovnice číslem 2 obdržíme: $2|uw| + 2|v| = 2 \cdot 2^k$, tedy: $2|uw| + 2|v| = 2^{k+1} \dots [1]$
- Podle pumping lemma $uv^2w \in L_3$, tedy $|uv^2w| = |uw| + 2|v| = 2^n \dots [2]$ kde $\underline{n > k}$, neboť $|uv^2w| > |uvw|$.
- Odečtením [1] [2] dostáváme: $2|uw| + 2|v| (|uw| + 2|v|) = 2^{k+1} 2^n, \text{ tedy: } |uw| = 2^{k+1} 2^n$ Spor! (neexistuje přirozené říslo n mezi čísly k a k+1)
- Dokázali jsme sporem, že neexistuje žádné rozložení řetězce z na podřetětězce u, v, w, kde z = uvw tak, aby pro všechna m ≥ 0 platilo uv^mw ∈ L₃. Předpoklad, že L₃ je regulární, je nesprávný (Jinak by toto rozložení podle pumping lemma muselo existovat).
 Proto tedy L₃ není regulární jazyk.
- Dále jsme dokázali, že máme na fakultě chytré holky ;-)

Příklad 4.

Pomocí výsledku z příkladu 3) a pomocí uzávěrových vlastností dokažte, že jazyk $L_4 = \{x: x \in \{a, b, c\}^* \land |x| = 2^n, n \ge 0\}$ není regulární. Neformálně, jazyk L_4 obsahuje všechny řetězce obsahující pouze symboly a, b, c, pro které platí, že jejich délka je ve tvaru $2^n, n \ge 0$.

Řešení:

Důkaz sporem:

- Předpokládejme, že jazyk L_4 je regulární
- Regulární výraz $r = a^*$ zřejmě popisuje jistý regulární jazyk L(r)
- Regulární jazyky jsou uzavřeny vůči průniku, což znamená: Pro **libovolné** dva regulární jazyky L_a a L_b platí: $L_a \cap L_b$ je opět **jazyk regulární**.
- Konkrétně: L₄ je regulární (předpoklad), L(r) je regulární (je popsán regulárním výrazem), jazyk L₄ ∩ L(r) = { a^{2ⁿ} : n ≥ 0} je tedy regulární.
 Ale v příkladu 3. jsme dokázali, že { a^{2ⁿ} : n ≥ 0} není regulární ⇒ SPOR.
- Předpoklad, že jazyk *L*₄ je regulární, je nesprávný.
- Proto tedy L_4 není regulární jazyk.

Příklad 5.

Pomocí pumping lemma dokažte, že jazyk $L_5 = \{a^n : n \text{ je prvočíslo}\}$ není regulární.

Řešení:

- 1. Předpokládejme, že L_5 je regulární. Potom pro jazyk L_5 platí pumping lemma.
- **2.** Nechť k je konstanta z pumping lemmy. Nyní vyberme "vhodný" řetězec z, který splňuje podmínky: **a)** $z \in L_5$ **b)** $|z| \ge k$.

Položme tedy například $z=a^p$, kde p je první prvočíslo splňující podmínku p>k.

Zřejmě $a^p \in L_5$ a $|a^p| = p \ge k$. Obě podmínky **a)** i **b)** tedy jsou splněny.

3. Podle pumping lemma můžeme tedy řetězec $z = a^p$, kde p je prvočíslo, "nějak" rozložit na tři podřetězce u, v, w, tak, aby platilo z = uvw. Nyní musíme projít **všechny možnosti** rozložení řetězce z a u každé z nich najít **aspoň jeden** případ, který vede ke sporu.

Mohli bychom postupovat zcela obecně a vzít pouze jedinou možnost (jako v příkladu 3.):

Takto důkaz sice je možné provést, ale je příliš komplikovaný, proto tento případ rozdělme na následující tři možnosti:

I. možnost:

Formálně: $v = a^i, i \ge 1;$ $u, w = \varepsilon, \text{ tedy: } |uw| = 0$

$$u, w = \varepsilon, \text{ tedy: } |uw| = 0$$

- Například pro řetězec $uv^0w = uw = \prod_{v \in V} = \varepsilon$:
- Podle pumping lemma $uv^0w \in L_5$
- $uv^0w = \varepsilon$, $|uv^0w| = 0$. Podle definice jazyk L_5 obsahuje pouze řetězce, které mají délku prvočísla. 0 ale není prvočíslo, tedy $uv^0w \notin L_5$.
- SPOR

II. možnost:

nebo

Formálně: $v = a^i, i \ge 1$;

u = a, $w = \varepsilon$ nebo $u = \varepsilon$, w = a, tedy: |uw| = 1

- Například pro řetězec $uv^0w = uw = \boxed{a}$ nebo $\boxed{a} = a$:
- Podle pumping lemma $uv^0w \in L_5$
- $uv^0w = a$, $|uv^0w| = 1$. Podle definice jazyk L_5 obsahuje pouze řetězce, které mají délku prvočísla. 1 ale není prvočíslo, tedy $uv^0w \notin L_5$.
- **SPOR**

III. možnost (všechny ostatní případy):

Položme m = |uw|.

- Podle pumping lemma $uv^m w \in L_5$. (Platí pro libovolné $m \ge 0$, tedy i pro m = |uw|).
- \geq 2, nebot' $|v| \geq 1$

Je tedy vidět, že $|uv^mw|$ můžeme rozložit na součin dvou přirozených čísel, z nichž obě jsou větší nebo rovny číslu 2. Zřejmě tedy $|uv^mw|$ není prvočíslo, neboť prvočísla mají dělitele pouze 1 a sama sebe. Podle definice jazyk L_5 obsahuje pouze řetězce, které mají délku prvočísla. $|uv^mw|$ ale není prvočíslo, tedy $uv^mw \notin L_5$.

SPOR

Dokázali jsme sporem, že neexistuje žádné rozložení řetězce z na podřetětězce u, v, w, kde z = uvw tak, aby pro všechna m ≥ 0 platilo uv^mw ∈ L₅. Předpoklad, že L₅ je regulární, je nesprávný (Jinak by toto rozložení podle pumping lemma muselo existovat).
 Proto tedy L₅ není regulární jazyk.

Příklad 6.

Přednášky ukázaly pomocí pumping lemma, že jazyk $\{a^nb^n: n \ge 0\}$ není regulární. S využitím tohoto poznatku a uzávěrových vlastností dokažte, že ani jazyk $L_6 = \{x: x \in \{a, b\}^*, \#_a x = \#_b x\}$ není regulární.

Poznámka: $\#_a x$ obecně znamená počet výskytů symbolů a v řetězci x, tedy podmínka $\#_a x = \#_b x$ popisuje skutečnost, že počty výskytů symbolů a i b jsou v řetězci x stejné.

Řešení:

Důkaz sporem:

- Předpokládejme, že jazyk L₆ je regulární
- Regulární výraz $r = a^*b^*$ zřejmě popisuje jistý regulární jazyk L(r)
- Regulární jazyky jsou uzavřeny vůči průniku, což znamená: Pro **libovolné** dva regulární jazyky L_a a L_b platí: $L_a \cap L_b$ je opět **jazyk regulární**.
- Konkrétně: L_6 je regulární (předpoklad), L(r) je regulární (je popsán regulárním výrazem). Jazyk $L_6 \cap L(r) = \{a^n b^n : n \ge 0\}$ je tedy regulární. Ale v přednášky ukázali, že $\{a^n b^n : n \ge 0\}$ není regulární \Rightarrow **SPOR**.
- Předpoklad, že jazyk *L*₆ je regulární, je nesprávný.
- Proto tedy L_6 není regulární jazyk.

Příklad 7.

Nechť L_7 je jazyk nad abecedou $\Sigma = \{ , (``, ,)`` \}$ obsahující všechny řetězce, které vzniknou z aritmetických výrazů vypuštěním všech symbolů kromě závorek. Například $()(()()) \in L_7$, neboť tento řetězec vznikl například z aritmetického výrazu (a + b).((a + b) - (c + d)).

- a) Dokažte, že tento jazyk není regulární
- b) Ukažte, že tento jazyk splňuje podmínky slabého pumping lemma pro regulární jazyky
- c) Jaká značná nepříjemnost vyplývá z podmínek a) a b)?

Řešení:

- a) Důkaz sporem:
 - Předpokládejme, že jazyk L_7 je regulární
 - Regulární výraz $r = {,,,,''}^*$ zřejmě popisuje jistý regulární jazyk L(r)
 - Regulární jazyky jsou uzavřeny vůči průniku, což znamená: Pro **libovolné** dva regulární jazyky L_a a L_b platí: $L_a \cap L_b$ je opět **jazyk regulární**.
 - Konkrétně: L_7 je regulární (předpoklad), L(r) je regulární (je popsán regulárním výrazem). Jazyk $L_7 \cap L(r) = \{ , ("^n,)"^n : n \ge 0 \}$ je tedy regulární.

- Přednášky ale ukázaly, že $\{a^nb^n: n \ge 0\}$ není regulární, tedy ani $\{,,(",n)" \in n \ge 0\}$ není regulární \Rightarrow **SPOR**.
- Předpoklad, že jazyk L₇ je regulární, je nesprávný.
- Proto tedy L_7 není regulární jazyk.
- b) Dokažme, že pro jazyk L_7 platí slabší pumping lemma: Zvolme konstantu k = 2. Zřejmě musí každý "závorkový" řetězec patřící do jazyka L_7 délky větší nebo rovny číslu 2 obsahovat podřetězec "()" jakožto nějaký pár závorek, které již v sobě jiné závorky neobsahují. Proveďme následující dekompozici daného řetězce na podřetězce u, v, w tak, aby řetězec v ="()":

jsou obsaženy v jazyce L_7 , tedy platí:

- 1) $v \neq \varepsilon$ 2) $|v| \le k$ nebot |v| = 2, k = 2
- 3) $uv^m w \in L_7$ pro všechna $m \ge 0$.
- Pro daný jazyk L_7 tedy platí pumping lemma pro regulární jazyky.
- c) Zřejmě pro každý regulární jazyk platí pumping lemma pro regulární jazyky (viz. přednášky). Jazyk L_7 není regulární (viz. část a) a přesto pro něj pumping lemma pro regulární jazyky platí (viz. část b).
- Existují tedy jazyky, které nejsou regulární, a přesto pro ně platí pumping lemma pro regulární jazyky. Celou situaci můžeme znázornit obrázkem:

Nepříjemný důsledek: Pumping lemma pro regulární jazyky tedy pouze říká:

• **POKUD** *L* je regulární jazyk, **POTOM** pro něj platí podmínky PL

A NE:

• POKUD pro daný jazyk L platí podmínky PL POTOM L je regulární jazyk

Například jazyk L_7 splňuje podmínky pumping lemma pro regulární jazyky a přesto tento jazyk není regulární !!!

Závěr:

Pomocí pumping lemma nemůžeme nikdy dokázat, že daný jazyk je regulární!!!