MASINDE MULIRO UNIVERSTY OF SCIENCE AND TECHNOLOGY SCHOOL OF COMPUTING AND INFORMATICS DEPARTMENT OF COMPUTER SCIENCE BSC. COMPUTER SCIENCE

COURSE CODE: BCS 227	COURSE TITLE: LOGIC PROGRAMMING
Time & Day:	Venue:
Lecturer Name: Dr. D. K. Muyobo	
Phone Number: +254723606988	
Email Address: muyobod@gmail.com	ı, dmuyobo@kibu.ac.ke

Course Name	INTRODUCTION TO LOGIC PROGRAMMING		
Credit Units	3		
Pre-requisite	Discrete Structures II Introduction to Artificial Intelligence		
Purpose	The purpose of this course is to introduce learners to logic-based inference		
	strategies so as to enable them implement logical reasoning systems.		
Expected Learning	On completion of this course the learners will be able to:		
Outcomes	1. Explain the concepts in propositional and predicate calculus.		
	2. Apply logic-based inference strategies.		
	3. Use a logic programming language to implement logical reasoning		
	systems.		
	4. Formulate logical reasoning strategies and models		
Week/Lesson	Topic /sub-topic		
1	Introduction to Logic Programming		
	What is logic programming		
	Imperative and declarative languages		
	Level of language		
	Aspect of Logic programming		
	Why Logic programming		
	Why LP NOT popular as Java, C++ and Python		
	Why LP is Difficult		
	History of Logic Programming		
2	Understanding Logic and Logic Programming Languages		

What is Logic (syntax, semantic and Inference rule)
History of Logic
 Symbolic Logic : Theory of Syllogism, Modus Ponens and Modus Tollens)
Testing for Argument Validity
Common Fallacies
Computation vs Deduction Computation between Computation and deduction
Connection between Computation and deduction L. L. Connection between Computation and deduction Output Description:
Judgment, proof and proof search
Strategies used by inference Engine:
Backward chaining
Forward Chaining
Calculus: Propositional Logic
Definition
• Examples of Propositions
Sentences that are not propositionas
• Alphabets
• well-formed formula (wff)
Semantic and Truth Tables
Satisfiable
Contradiction and Tautology
Why Predicate over Propositions
Calculus: Predicate Calculus
Definition
• Alphabets
• Terms
Atomic formula
• well-formed formula (wff)
• number

6	CAT 1
7	Introduction to Prolog
	What is prolog
	Background of prolog
	Application of prolog
	Characteristics of Prolog
	Data types in prolog
8	Logic Systems :
	- propositional Logic
	- predicate Logic
	- Logic and Horn Clause
	• Resolution
	Unification
	• Instantiation
	Resolution Principle
	Resolution Algorithm
	Steps for Resolution
	[LAB 1: Creating Programming Environment]
	[Sharing Prolog LAB. Manual with Students]
9	Program Elements
	Relation
	• Atom
	• Structure
	• Facts
	• Rules
	• Queries
	Unification, Evaluation and Backtracking
	Conjunction and Disjunction of Goals
	• Operators: is, cut (!), nl, (;), (,)

	Recursion in prolog			
	• List			
	Tracing execution			
	[LAB 2: Database of facts, Ge	eneral programs, consulting and Tracing		
	execution]			
10	Working with GNU prolog			
	Prolog Programs			
	Example logic programs for Art	tificial Intelligence		
	 logical agents 			
	 Goal-based agent. 			
	[LAB 3: (Project) Decision based Systems	em using Prolog]		
11	Knowledge representation and reaso	ning		
	 Introduction 			
	Expressivity and practicality in KR			
	KR and semantic Web			
	Reasoning under certainty			
	Type of reasoning Systems			
12	• CAT 2			
	Project Assessment and Revis	sion		
Mode of Delivery	Lectures, directed reading, Group/class	s discussions and practical exercises		
Instructional Material	Whiteboard, computer simulation softv	ware, Prolog GNU		
and/or Equipment				
Course Assessment	Туре	Weighting (%)		
	Examination 70	70		
	Continuous Assessment 30			
	Total	100		
Core Reading Material	1. Frank P. (2007), Logic Program	nming, Carnegie Mellon University		
	2. Andrews, H., J. (2007). Logic Programming: Operational Semantics			
	and Proof Theory. Cambridge U	University Press		
1	1			

Recommended Reading	1. Nilsson, U., and Matuszynski, J. (2000). Logic, Programming and				
Material	 Prolog. 2ndEdition. John Wiley & Sons Ltd. 2. Spivey, M. (2004). An Introduction to Logic Programming through 				
	Prolog. Pr	entice Hall			
Prepared By:					
Dr. D. K. Muyobo Lecturer Name		Signature	<u>02/01/2024</u> Date		
Approved By:					
CoD Name		Signature	Date		