Red Blood Cell Disorders II:

Increased RBC destruction/hemolytic anemias

Elizabeth Rinker, M.D.

rinkere@musc.edu

July 2025

Features of hemolytic anemias

- Destruction of RBCs
- Shortened RBC survival (<120 days)
- Increased erythropoietin
- Increased bone marrow RBC production
 - Marrow may be unable to compensate for increased destruction
- Accumulation of breakdown products from RBCs
 - Jaundice
 - Pigment gallstones

Increased RBC destruction

- Hemolytic anemias
 - Intravascular
 - Extravascular

Laboratory evidence of hemolysis

INTRAVASCULAR

+/- Schistocytes (if microangiopathic)

- $\downarrow \downarrow \downarrow \downarrow$ haptoglobin
- 个 free hemoglobin
- 个 urine hemoglobin, hemosiderin

No splenomegaly

EXTRAVASCULAR

Microspherocytes

个 LDH

↓ haptoglobin

个 indirect bilirubin

1 urine & fecal urobilinogen Splenomegaly

Hemolytic anemias

- Normal hemoglobin produced in normal quantities
 - Intravascular/Non-Autoimmune Hemolytic Anemias
 - Mechanical Damage
 - Microangiopathic Hemolytic Anemias
 - Disseminated Intravascular Coagulation
 - Thrombotic Thrombocytopenic Purpura
 - Hemolytic Uremic Syndrome
 - Paroxysmal Nocturnal Hemoglobinuria
 - Glucose-6-Phosphatase (G6PD) Deficiency
 - Malaria
 - Autoimmune Hemolytic Anemia
 - Warm autoimmune hemolytic anemia
 - · Cold autoimmune hemolytic anemia
 - RBC membrane defects
 - Hereditary spherocytosis and elliptocytosis
- Abnormal hemoglobins
 - Hemoglobinopathies
 - Hemoglobin S
 - Hemoglobin C
 - Hemoglobin SC
- Normal hemoglobin produced in insufficient quantities
 - Thalassemias

Mechanical trauma to RBCs

- Implanted devices
 - Artificial heart valves
 - Extracorporeal membrane oxygenation (ECMO)

- Microangiopathic hemolytic anemias
 - Disseminated intravascular coagulation (DIC)
 - Thrombotic thrombocytopenic purpura (TTP)
 - Hemolytic uremic syndrome (HUS)

Microangiopathic hemolytic anemia

- RBCs destroyed while circulating → release hemoglobin, lactate dehydrogenase (LDH)
- Free hemoglobin bound by haptoglobin
 - Haptoglobin-hemoglobin complex metabolized by the reticuloendothelial system
 - Decreased haptoglobin level
- Schistocytes in peripheral blood

Microangiopathic hemolytic anemia

Schistocytes / Helmet Cells

Robbins Pathologic Basis Of Disease: 6th Edition, 1999, Fig. 14-17 p. 621.

Disseminated intravascular coagulation (DIC)

- Pathologic activation of coagulation cascade leading to formation of microthrombi throughout circulation
 - Thrombotic: microthrombi formation within microcirculation
 - Hemorrhagic: consumption of coagulation factors required for hemostasis
- Two major mechanisms of coagulation cascade activation:
 - Release of thromboplastic substances into circulation
 - Widespread endothelial injury
- Causes: pregnancy, malignancy, sepsis/bacterial infections, major trauma

Disseminated intravascular coagulation (DIC)

- Laboratory findings:
 - Peripheral smear:
 - Schistocytes
 - Decreased platelets
 - Anemia
 - Prolonged PT, PTT
 - Hypofibrinogenemia
 - ↑ D-dimer: reflects fibrin formation
- Treatment: Treat underlying cause

Peripheral smear: schistocytes due to shearing by microthrombi, low platelets due to consumption, polychromasia due to compensatory efforts

Thrombotic thrombocytopenic purpura (TTP)

- Formation and deposition of "hyaline thrombi" within microcirculation
 - Platelet consumption
 - Intravascular thrombi damage RBCs, leading to anemia
- Pathophysiology
 - Deficiency in ADAMTS13
 - Genetic: inherited mutations
 - Acquired: antibodies to ADAMTS13

Thrombotic thrombocytopenic purpura (TTP)

- Clinical findings
 - Fever
 - Microangiopathic hemolytic anemia
 - Thrombocytopenia
 - Renal failure
 - Neurologic deficits
 - Petechial rash
- Peripheral smear findings:
 - Low platelets
 - Fragmented RBCs
- Test for ADAMTS13 activity
- Treatment
 - Plasma exchange
 - Medication (steroids, rituximab/antibodybased)

Hemolytic uremic syndrome (HUS)

- Pathogenesis distinct from TTP: normal levels of ADAMTS 13
- Most cases due to E. coli O157:H7 strain → gastroenteritis mediated by Shiga-like toxin
 - Toxin binds to and damages glomerular endothelium, making them thrombogenic
- Other causes include: drugs, radiation therapy, complement abnormalities
- Peripheral smear findings: similar to DIC and TTP
- Diagnosis is based on clinical findings
 - Can serotype looking for E. coli
- Clinical findings
 - · Bloody diarrhea
 - Acute renal failure
 - · Microangiopathic hemolytic anemia

http://library.med.utah.edu/WebPath/RENAHTML/RENAL176.html

Paroxysmal nocturnal hemoglobinuria (PNH)

- Acquired membrane defect secondary to an acquired mutation that affects hematopoietic stem cells
- PIGA phosphatidylinositol glycan anchor
 - Normal RBCs have PIGA, protecting from complement mediated lysis
 - RBCs lacking PIGA are more prone to destruction by complement
- Signs and symptoms
 - Episodic discolored urine
 - Thrombosis (can be deadly)

Paroxysmal nocturnal hemoglobinuria (PNH)

- Peripheral blood:
 - Microspherocytes (not schistocytes)
- Diagnosis:
 - Flow cytometry to identify WBCs and RBCs that lack GPI
 - CD59, CD55, FLAER
 - Older tests: sucrose (screen), acidified serum test
- Treatment is bone marrow transplant
 - Eculizumab-monoclonal antibody (>\$400,000/yr)
- Can develop into aplastic anemia and/or subsequent leukemia

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

- X-linked recessive enzyme deficiency
 - African (mild)
 - Mediterranean (moderate/severe)
- G6PD is important in glutathione metabolism
 - In normal RBCs, reduced glutathione (GSH) protects RBCs from oxidative injury
 - G6PD deficiency:
 - RBCs more prone to oxidative injury
 - Hemolysis (intravascular and extravascular)

Glucose-6-phosphate dehydrogenase (G6PD) deficiency

- Episodic hemolytic anemia associated with drugs, toxins, foods (fava beans), and infections
 - Hemoglobinuria
 - Back pain
- Oxidative stress causes crosslinking of globin chains, which become denatured and form membrane-bound precipitates
 - Heinz bodies
 - Damage RBC membrane
- Macrophages in reticuloendothelial system remove Heinz bodies
 - Bite cells

Malaria

- Major cause of hemolytic anemia worldwide
- Four types in humans
 - Plasmodium falciparum
 - Plasmodium malariae
 - Plasmodium ovale
 - Plasmodium vivax
- Clinical symptoms
 - Headache
 - Cyclic fevers
 - Joint pain
 - Hemolytic anemia
- Treatment
 - Quinines (primaquine)

Malaria: Peripheral blood smear

- Intracellular trophozoites
- Extracellular gametocytes

Hemolytic anemias

- Normal hemoglobin produced in normal quantities
 - Intravascular/Non-Autoimmune Hemolytic Anemias
 - Mechanical Damage
 - Microangiopathic Hemolytic Anemias
 - Disseminated Intravascular Coagulation
 - Thrombotic Thrombocytopenic Purpura
 - Hemolytic Uremic Syndrome
 - Paroxysmal Nocturnal Hemoglobinuria
 - Glucose-6-Phosphatase (G6PD) Deficiency
 - Malaria
 - Autoimmune Hemolytic Anemia
 - Warm autoimmune hemolytic anemia
 - · Cold autoimmune hemolytic anemia
 - RBC membrane defects
 - Hereditary spherocytosis and elliptocytosis
- Abnormal hemoglobins
 - Hemoglobinopathies
 - Hemoglobin S
 - Hemoglobin C
 - Hemoglobin SC
- Normal hemoglobin produced in insufficient quantities
 - Thalassemias

Autoimmune hemolytic anemia

- Phagocytosis of erythrocytes by macrophages within the reticuloendothelial system (spleen, liver, lymph nodes) and bone marrow
- Spleen breaks down heme into indirect/unconjugated bilirubin → gets to liver and is conjugated → excreted in urine and feces (dark)
- Peripheral blood: microspherocytes
- Direct antiglobulin test (DAT)/Coombs Test: positive

Autoimmune hemolytic anemia: microspherocytes

Warm autoimmune hemolytic anemia

- Anti-bodies (typically IgG) reacting to RBCs at room temperature
- Cells opsonized by autoantibodies and cleared by reticuloendothelial cells in the spleen (extravascular hemolysis)

Warm autoimmune hemolytic anemia

- Causes
 - Idiopathic most common
 - SLE
 - B-cell lymphomas (CLL)
 - Drug induced
 - Altered epitopes alpha methyldopa
 - Drug acting as hapten penicillin
 - Absorbed immune complexes quinidine
- Peripheral Blood: Microspherocytes
- Clinical findings: Splenomegaly
- Positive DAT/Coombs

Cold autoimmune hemolytic anemia

- Also called "cold agglutinin disease"
- Low affinity IgM antibodies bind to RBCs at temperatures < 30°C (ears, hands, and toes)
 - IgM fixes complement
 - RBCs destroyed by further activation of complement (intravascular hemolysis) or C3b & C4b opsonization (extravascular hemolysis)
- Causes:
 - Primary: Idiopathic
 - Secondary: B-cell lymphomas, infection (Mycoplasma, infectious mononucleosis)
- Clinical findings: May have Reynaud phenomenon due to agglutination of RBCs
- Laboratory diagnosis: Positive DAT/Coombs

Hemolytic anemias

- Normal hemoglobin produced in normal quantities
 - Intravascular/Non-Autoimmune Hemolytic Anemias
 - Mechanical Damage
 - Microangiopathic Hemolytic Anemias
 - Disseminated Intravascular Coagulation
 - Thrombotic Thrombocytopenic Purpura
 - Hemolytic Uremic Syndrome
 - Paroxysmal Nocturnal Hemoglobinuria
 - Glucose-6-Phosphatase (G6PD) Deficiency
 - Malaria
 - Autoimmune Hemolytic Anemia
 - Warm autoimmune hemolytic anemia
 - Cold autoimmune hemolytic anemia
 - RBC membrane defects
 - Hereditary spherocytosis and elliptocytosis
- Abnormal hemoglobins
 - Hemoglobinopathies
 - Hemoglobin S
 - Hemoglobin C
 - Hemoglobin SC
- Normal hemoglobin produced in insufficient quantities
 - Thalassemias

Hereditary spherocytosis

- Autosomal dominant
- Defects in RBC cytoskeletal proteins
 - Ankyrin
 - Spectrin
- Clinical signs and symptoms
 - Anemia, splenomegaly, jaundice, cholelithiasis
- Stable course punctuated by:
 - Hemolytic crises (infection)
 - Aplastic crises (parvovirus B19)

Hereditary spherocytosis

- Peripheral smear
 - Spherocytes
 - No central pallor
 - ↑ MCHC
- Laboratory diagnosis: osmotic fragility test
 - Spherocytes are more prone to rupture in hypotonic solutions

Hereditary spherocytosis

- Treatment: splenectomy
 - Howell-Jolly bodies
 - Prone to infections with encapsulated bacteria
 - Anti-pneumococcal vaccine

Hereditary elliptocytosis

- Defects in spectrin
 - Weakening of membrane skeleton
 - Defective association of proteins holding skeletons together
- Autosomal dominant inheritance
 - 3-5/10,000 individuals
- Hemolytic anemia of variable severity

Hereditary pyropoikilocytosis

Spectrin defect + deficiency

- Peripheral blood smear:
 - Marked poikilocytosis
 - Unusual thermal sensitivity

Questions?