

Universidade Estadual do Oeste do Paraná – UNIOESTE Campus de Cascavel Colegiado de Ciência da Computação

Otimização Combinatória

Trabalho 2 Busca Tabu, Simulated Anealling e Colônia de Formigas

Conforme combinado, cada grupo ficará responsável pelo desenvolvimento de uma abordagem de otimização aplicada a um cenário específico.

Sobre a implementação

- 1. Não podem ser usadas soluções prontas. Cada equipe deve implementar sua própria resolução para a técnica.
- 2. Deve-se exibir na interface da implementação as soluções parciais do método em execução. Através da visualização deve ser possível acompanhar a evolução da técnica.
- 3. Para implementar a interface pode-se empregar métodos e modelos prontos.
- 4. Linguagens que podem ser usadas: C, C++, Java e Pyhton
- 5. Deve-se enviar o projeto construído contento todos os códigos fonte construídos.
- 6. A entrega do trabalho deve ser feita via Teams.
- 7. Cada equipe deverá submeter um arquivo zipado chamado "Grupo n" contendo todos os arquivos especificados anteriormente.

DATA DE ENTREGA: XX/XX/2024 até as 23:59

Atentem-se pois não serão aceitos trabalhos entregues após o prazo!

Membros	Grupo	Técnica	Problema			
Gabriel Alves Mazucco						
Gabriel Jared de Barros Amorim	4	Busca	Problema do Caixeiro Viajante			
Gabriel Pereira		Tabu				
Eduardo Cozer						
Geandro Ribeiro da Silva	1	Simulated	Problema da Mochila Binária			
Vinicius Messaggi de Lima Ribeiro		Anealling				
Guilherme Vier	_	Busca				
Jackson Renato Faquineti Rampazzo	7	Tabu	Problema da Designação Generalizada			
Eduardo Dias Machado			Problema do Empacotamento			
Matheus Henrique Gallert	6	Simulated	Unidimensional começando com pior			
Lucas Ivanov Costa		Anealling	solução			
João Gabriel Fazio Pauli						
Fernando Seiji Onoda Inomata	13	Busca	Problema da Mochila Binária			
Lucas Batista Deinzer Duarte		Tabu				
Michel Caesar Koval de Oliveira		Simulated				
Matheus Centenaro	14	Anealling	Problema do Caixeiro Viajante			
Weberson Morelli Leite Junior		_	Problema do Empacotamento			
Kawan de Oliveira	2	Busca Tabu	Unidimensional começando com pior solução			
Gabriel Cezimbra						
Renan Valduga Kafer						
Erik Felipe Olinek de Castilho	8	Simulated	Problema da Designação Generalizada			
Victor Negri Bergamo Lopes da Silva		Anealling				
Eric Klaus Brenner Melo e Santos			Problema do Empacotamento			
Ruan Rubino de Carvalho	5	Simulated Anealling	Unidimensional começando com solução gulosa			
Matheus Rogério Pesarini						
Carlos Eduardo Pagani Grosso		- 10				
Rafael Pascoali Czerniej	12	Colônia de	Problema do Caixeiro Viajante			
Vitor Mayorca Camargo		Formigas				
Matheus Henrique Gaspar		Busca	Problema do Empacotamento			
Gabriel Yudi Leite Higuchi	10	Tabu	Unidimensional começando com			
D			solução gulosa			
Bruno Henrique de David Glixinski		Simulated				
Monique Barros	3	Anealling	Problema do Caixeiro Viajante			
Ryan Hideki Inoue Matsunaga Pereira						
André Henrique dos Santos da Silva		Colônia de				
Nathan Luiz Silva Oliboni	11	Formigas	Problema de Roteamento			
Vinicius Eduardo Moraes de Oliveira						
Guilherme Augusto Deitos Alves		Simulated				
Vinicius Vieira Viana	9	Anealling	Problema da Designação Generalizada			
Felipe Kravec Zanatta						

Mochila Binária (Grupos 1 e 13)

Entrada: Arquivos em formato txt contendo a capacidade da mochila e uma lista de itens contendo o custo e o benefício de cada um. O formato do arquivo é apresentado na Figura 1.

10)5									Capacidade da Mochila
3	42	5	48	42	13	3	20	12	37	Benefícios dos Itens
2	35	13	29	9	25	2	14	4	17	Custos dos Itens

Figura 1. Configuração do arquivo de entrada para o problema da mochila binária

No próprio nome do arquivo é apresentada a quantidade de itens presentes. Por exemplo, o arquivo "Mochila10.txt" apresenta a capacidade da mochila e as informações de custo e valor de dez itens.

Arquivos de entrada disponíveis em:

 $\frac{https://drive.google.com/file/d/1hHgX7rv2EivKS2SHHFuZhJFufEidWQmK/view?us}{p=sharing}$

Problema do Caixeiro Viajante e de Roteamento (Grupos 4, 14, 12, 3 e 11)

Entrada: Arquivos em formato txt contendo o número de vértices que compõe o grafo e a sua devida lista de adjacências, contendo o peso das arestas entre cada par de vértices.

- Valores iguais a zero indicam a ausência de conexão entre os vértices;
- Os grafos disponíveis no link são ponderados;
- Os grafos disponíveis no link são não direcionados.

O formato de cada arquivo é apresentado na Figura 2. Na ilustração cada linha representa o custo de cada aresta a partir do vértice de origem até o destino. Por exemplo, na primeira linha temos o valor 6. Ele indica que o custo para ir do vértice 1 até o quinto vértice é igual a seis.

Figura 2. Estrutura dos arquivos de entrada para os problemas TSP e de Roteamento

A matriz indicada na Figura 2 refere-se ao grafo apresentado a seguir.

Figura 3. Grafo construído a partir do arquivo de entrada apresentado na Figura 1

A entrada dos dados para a construção dos grafos deve ser feita com base nos arquivos texto disponíveis em: https://drive.google.com/file/d/1EMjUKBrOclz3MUTcU-ifyVP5Vuu-ogZE/view?usp=sharing

Problema de Designação Generalizada (Grupos 7, 8 e 9)

Entrada: Arquivos em formato txt contendo na primeira linha o número (NP) de programadores disponíveis para o trabalho. Na linha seguinte é apresentada a quantidade de módulos (NM) que precisam ser desenvolvidos. Nas NP linhas seguintes são apresentados os custos de cada programador para cada módulo. Cada coluno refere-se a um dos NM módulos. Em seguida são apresentadas NP linhas com as cargas horárias gastas por cada programador para desenvolver cada um dos NM módulos. Na última linha do arquivo temos NP colunas que se referem à cada horária que cada programador tem disponível para a tarefa.

4	Número de programadores										
8	8 Número de módulos a serem desenvolvidos										
7	7	10	8	16	16	0	17				
10	5	9	9	14	4	16	11	Custo de Execução por cada			
11	8	7	5	1	11	20	12	programador por módulo			
5	7	6	8	16	7	15	17				
10	14	16	12	8	20	10	16				
10	14	16	12	8	20	10	16	CH gasta por cada programador			
10	14	16	12	8	20	10	16	Para cada módulo			
10	14	16	12	8	20	10	16				
30	25	20	40	CH dispon	ível por pı	rogramado	or				

Figura 4. Formato do arquivo de entrara para o Problema de Designação Generalizada

Na Tabela 1 estão representados os custos para execução de cada módulo por cada desenvolvedor. O objetivo será escolher quem deve desenvolver cada módulo de forma que seja gasto o menor valor possível.

		Módulos a serem desenvolvidos									
		1	2	3	4	5	6	7	8		
.es	1	7	7	10	8	16	16	0	17		
Programadores	2	10	5	9	9	14	4	16	11		
ogran	3	11	8	7	5	1	11	20	12		
Pr	4	5	7	6	8	16	7	15	17		

Tabela 1. Custos dos módulos ao serem desenvolvidos por cada programador

Na Tabela 2 são apresentados quantas horas cada programador gasta para trabalhar em cada um dos oito módulos a serem desenvolvidos.

Módulos a serem desenvolvidos

	,	1	2	3	4	5	6	7	8
es	1	10	14	16	12	8	20	10	16
nador	2	10	14	16	12	8	20	10	16
Programadores	3	10	14	16	12	8	20	10	16
P	4	10	14	16	12	8	20	10	16

Tabela 2. Carga horária necessária para desenvolver cada módulo

Na Tabela 3 são apresentadas as quantidades de carga horária que cada programador dispõe para desenvolver os módulos requisitados. A solução final não deve permitir que nenhum dos quatro programadores trabalhe além da carga horária apresentada na tabela.

Programadores								
1	2	3	4					
30	25	20	40					

Tabela 3. Número de horas que cada programador tem disponível

Os arquivos de entrada para testes da implementação podem ser acessados no link: https://drive.google.com/file/d/1inILq2pWgxelLXZ6nJLdjFlbgR3WrTwB/view?usp=s haring

Problema do Empacotamento Unidimensional (Grupos 6, 2, 5 e 10)

Entrada: Arquivos em formato txt (conforme apresentado na Figura 6) contendo na primeira linha a capacidade que cada recipiente é capaz de armazenar. Na segunda linha é identificado o número de itens que devem ser alocados na menor quantidade possível de recipientes. Na terceira linha são apresentados os tamanhos dos itens que devem ser alocados.

```
10 → Capacidade dos recipientes
8 → Número de itens a serem alocados
1 3 2 4 8 5 7 6 → Tamanho de cada um dos itens presentes
```

Figura 6. Estrutura do arquivo de entrada para o problema do empacotamento.

A tarefa consiste em, dada a capacidade de cada recipiente e as características dos itens, identificar qual o menor número de recipientes necessário para guardar todos os itens presentes.

No cenário em que o método começa com a **pior solução** possível cada item é acomodado em um recipiente. Dessa forma, a solução inicial demanda a maior quantidade de recipientes possível.

No cenário em que o método começa com uma **solução gulosa** para se obter a primeira solução válida deve-se rodar o um algoritmo guloso com o seguinte comportamento (Figura 7):

Figura 7. Pseudocódigo do algoritmo guloso para encontrar uma primeira solução válida para o problema do empacotamento.

Os arquivos de entrada para os testes podem ser acessados no endereço: https://drive.google.com/file/d/1B76Lx2bhhFckTIpUnz069ljCmf3kxQN_/view?usp=sharing