IMO 2009; B1 EX15

Problem: Let n be a positive integer and let a_1, \ldots, a_k $(k \ge 2)$ be distinct integers in the set $\{1, \ldots, n\}$ such that

$$n \mid a_i(a_{i+1} - 1)$$
 for $i = 1, \dots, k - 1$.

Prove that

$$n \nmid a_k(a_1-1)$$
.

设 n 是一个正整数,n > 1, a_0, \ldots, a_k ($k \ge 1$) 是集合 $\{1, \ldots, n\}$ 中的互不相同的整数,满足 $n \mid a_i(a_{i+1}-1)$,其中 $i = 0, \ldots, k-1$ 。证明: $n \nmid a_k(a_0-1)$ 。

Lean New Proof

Lean New Proof:

避免 i, i+1 范围混乱令 t=i+1, i=0,...,k-1; t=1,...,k,

- 1. 根据条件 $n \mid a_i(a_t-1)$, $i=0,\ldots,k-1,t=i+1$ 我们有: $n \mid a_0(a_1-1)$ 因此令 $(n,a_0)=p,q=\frac{n}{p}$ 亦为整数, 则有 n=pq, 并且 $p \mid a_0,q \mid a_1-1$. 故 $(q,a_1)=1$.
- 2. 由 $q \mid a_1 1$, 可得 $q \mid a_2 1$, 通过归纳法, 我们可以证明对于所有 t = 1, ..., k, 都有 $q \mid a_i 1$ 。 因此对于任意的 i = 1, ..., k,都有 $q \mid a_i - 1$ 。特别的, 因为 $q \mid a_0$,所以 $n = pq \mid a_0(a_k - 1)$ 。
- 3. 反之, 若结论不成立, 则 $n \mid a_k(a_0-1)$, 与 $n = pq \mid a_0(a_k-1)$ 相减可得 $n \mid (a_k-a_0)$. 矛盾总上述, $n \nmid a_k(a_0-1)$.

Lean New Proof

Lean New Proof: 1. 根据条件 $n \mid a_i(a_{i+1}-1), i=0,\ldots,k-1$ 我们有: $n \mid a_0(a_1-1)$ 因此令 $(n,a_0)=p,q=\frac{n}{p}$ 亦为整数, 则有 n=pq,并且 $p \mid a_0,q \mid a_1-1$. 故 $(q,a_1)=1$.

- 2. 由 $q \mid a_1 1$, 可得 $q \mid a_2 1$, 通过归纳法, 我们可以证明对于所有 $i = 1, \ldots, k$, 都有 $q \mid a_i 1$ 。 因此对于任意的 $i = 1, \ldots, k$,都有 $q \mid a_i - 1$ 。特别的, 因为 $q \mid a_0$,所以 $n = pq \mid a_0(a_k - 1)$ 。
- 3. 反之, 若结论不成立, 则 $n \mid a_k(a_0-1)$, 与 $n=pq \mid a_0(a_k-1)$ 相减可得 $n \mid (a_k-a_0)$. 矛盾总上述, $n \nmid a_k(a_0-1)$.

Lean New Proof

Lean New Proof:

- 1. 根据条件 $n \mid a_i(a_{i+1}-1)$,我们有: $n \mid a_1(a_2-1)$ 因此令 $(n,a_1)=p,q=\frac{n}{p}$ 亦为整数,则有 n=pq,并且 $p \mid a_1,q \mid a_2-1$. 故 $(q,a_2)=1$.
- 2. 由 $q \mid a_2 1$,可得 $q \mid a_3 1$,通过归纳法,我们可以证明对于所有 i = 2, ..., k,都有 $q \mid a_i 1$ 。 因此对于任意的 i = 2, ..., k,都有 $q \mid a_i - 1$ 。特别的,因为 $q \mid a_1$,所以 $n = pq \mid a_1(a_k - 1)$ 。
- 3. 反之, 若结论不成立, 则 $n \mid a_k(a_1-1)$, 与 $n = pq \mid a_1(a_k-1)$ 相减可得 $n \mid (a_k-a_1)$. 矛盾总上述, $n \nmid a_k(a_1-1)$.

Proof

Proof:

反证法: 假设 $n \mid a_k(a_1 - 1)$ 。令 n = pq,其中 p 和 q 是互质正整数。

步骤 1: 分析整除条件。根据条件 $n \mid a_i(a_{i+1}-1)$,我们有: $p \mid a_i \perp q \mid a_{i+1}-1$,其中 $i=1,\ldots,k-1$ 。由于 $q \mid a_2-1$,可得 $\gcd(q,a_2)=1$,因此 $q \mid a_3-1$ 。通过归纳法,我们有: $q \mid a_i-1$,对于所有 $i=2,\ldots,k$ 。

步骤 2: 对 a_1 的推论。由 $p \mid a_1$ 和 $q \mid a_1 - 1$,可得 $\gcd(p,q) = 1$ 。因此: $p \mid a_k$ 且 $q \mid a_k - 1$ 。 步骤 3: 矛盾。整数 a_1, a_2, \ldots, a_k 是互不相同的,并且位于集合 $\{1, 2, \ldots, n\}$ 中。然而,条件 $p \mid a_i$ 和 $q \mid a_i - 1$ 表明,在该范围内至多只有一个整数 a_i 同时满足这两个条件。这与假设 $k \geq 2$ 矛盾。

因此, 我们的假设 $n \mid a_k(a_1 - 1)$ 是错误的。由此可得: $n \nmid a_k(a_1 - 1)$ 。

Lean Proof lemma

Lean Proof:

下面是使用 Lean 证明的代码片段:

- 1. 根据条件 $n \mid a_i(a_{i+1}-1)$,我们有: $p \mid a_i \perp q \mid a_{i+1}-1$,其中 $i=1,\ldots,k-1$ 。
- 2. 通过归纳法, 我们可以证明对于所有 $i=2,\ldots,k$, 都有 $q\mid a_i-1$ 。
- 3. 由 $p \mid a_1$ 和 $q \mid a_1 1$,可得 gcd(p,q) = 1
- 4. $p \mid a_k \perp q \mid a_k 1$
- 5. 条件 $p \mid a_i$ 和 $q \mid a_i 1$ 表明,在该范围内至多只有一个整数 a_i 同时满足这两个条件. 即 $p \mid a_1, q \mid a_1 1$ 或 $p \mid a_k, q \mid a_k 1$