INTRODUCTION AUX MATRICES [SPÉ]

1. DÉFINITIONS

DÉFINITION

Une **matrice** de dimension (ou d'*ordre* or de *taille*) $n \times p$ est un tableau de nombres réels (appelés coefficients ou termes) comportant n lignes et p colonnes.

Si on désigne par a_{ij} le coefficient situé à la i-ième ligne et la j-ième colonne la matrice s'écrira :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}.$$

EXEMPLE

La matrice $A = \begin{pmatrix} 1 & amp; 2 & 3 \\ 4 & 5 & amp; 6 \end{pmatrix}$ est une matrice de dimension 2×3 .

NOTATIONS

On notera, en abrégé, $A = (a_{ij})$ la matrice dont le coefficient situé à la i-ème ligne et la j-ième colonne est a_{ij} .

DÉFINITIONS

- Une matrice carrée est une matrice dont le nombre de lignes est égal au nombre de colonnes.
- Une matrice **ligne** est une matrice dont le nombre de lignes est égal à 1.
- Une matrice **colonne** est une matrice dont le nombre de colonnes est égal à 1.

EXEMPLES

- La matrice $A = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ est une matrice carrée (de dimension 2×2 ou on peut dire, plus simplement, de dimension 2).
- La matrice $B = \begin{pmatrix} 1 & 2 & 0.5 \end{pmatrix}$ est une matrice ligne (de dimension 1×3).
- La matrice $C = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 4 \end{pmatrix}$ est une matrice colonne (de dimension 4×1).

REMARQUE

Pour une matrice carrée, on appelle **diagonale principale**, la diagonale qui relie le coin situé en haut à gauche au coin situé en bas à droite. Sur l'exemple ci-dessous, les coefficients de la diagonale principale sont marqués en rouge :

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix}.$$

DÉFINITIONS

- La matrice nulle de dimension n × p est la matrice de dimension n × p dont tous les coefficients sont nuls.
- Une matrice **diagonale** est une matrice carrée dont tout les coefficients situés en dehors de la diagonale principale sont nuls.
- La matrice **unité** de dimension *n* est la matrice carrée de dimension *n* qui contient des 1 sur la diagonale principale et des 0 ailleurs :

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

EXEMPLES

- La matrice $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ est une matrice diagonale d'ordre 4.
- La matrice unité d'ordre 2 est $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

2. OPÉRATIONS SUR LES MATRICES

DÉFINITION (SOMME DE MATRICES)

Soient A et B deux matrices de même dimension.

La somme A + B des matrices A et B s'obtient en ajoutant les coefficients de A aux coefficients de B situés à la même position.

EXEMPLE

Soient
$$A = \begin{pmatrix} 2 & -2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 0 \end{pmatrix}$.

Alors:

$$A+B=\begin{pmatrix} 2-1 & -2+1 & 1+1 \\ -1-2 & 1+2 & 0+0 \end{pmatrix}=\begin{pmatrix} 1 & -1 & 2 \\ -3 & 3 & 0 \end{pmatrix}.$$

REMARQUES

- On ne peut additionner deux matrices que si elles ont les même dimensions, c'est à dire le même nombre de lignes et le même nombre de colonnes.
- On définit de manière analogue la différence de deux matrices.

DÉFINITION (PRODUIT D'UNE MATRICE PAR UN NOMBRE RÉEL)

Soient *A* une matrice et *k* un nombre réel..

Le produit kA est la matrice obtenue en multipliant chacun des coefficients de A par k.

EXEMPLE

Si
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$
 alors:
• $2A = \begin{pmatrix} 2 \times 1 & 2 \times 1 & 2 \times 0 \\ 2 \times 2 & 2 \times 0 & 2 \times 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 0 \\ 4 & 0 & 0 \end{pmatrix}$.

$$-A = -1 \times A = \begin{pmatrix} -1 & -1 & 0 \\ -2 & 0 & 0 \end{pmatrix}.$$

PROPRIÉTÉS

Soient A, B et C trois matrices de mêmes dimensions et k et k' deux réels.

- A + B = B + A (commutativité de l'addition);
- (A+B)+C=A+(B+C) (associativité de l'addition);
- k(A+B) = kA + kB;
- (k+k')A = kA + k'A;
- k(k'A) = (kk')A.

DÉFINITION (PRODUIT D'UNE MATRICE LIGNE PAR UNE MATRICE COLONNE)

Soient $A=(a_1a_2\cdots a_n)$ une matrice ligne $1\times n$ et $B=\begin{pmatrix}b_1\\b_2\\\dots\\b_n\end{pmatrix}$ une matrice colonne $n\times 1$. Le

produit de A par B est le nombre réel :

$$A \times B = (a_1 a_2 \cdots a_n) \times \begin{pmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n.$$

REMARQUE

- Les deux matrices *A* et *B* doivent avoir le même nombre *n* de coefficients.
- Pour cette formule, la matrice ligne doit être impérativement en premier!

EXEMPLE

Si
$$A = (1234)$$
 et $B = \begin{pmatrix} 5 \\ 6 \\ 7 \\ 8 \end{pmatrix}$:

$$A \times B = 1 \times 5 + 2 \times 6 + 3 \times 7 + 4 \times 8 = 5 + 12 + 21 + 32 = 70.$$

DÉFINITION (PRODUIT DE DEUX MATRICES)

Soient $A = (a_{ij})$ une matrice $n \times p$ et $B = (b_{ij})$ une matrice $p \times q$. Le produit de A par B est la matrice $C = (c_{ij})$ à n lignes et q colonnes dont le coefficient situé à la i-ième ligne et la j-ième colonne est obtenu en multipliant la i-ième ligne de A par la j-ième colonne de B.

C'est à dire que pour tout $1 \le i \le n$ et tout $1 \le j \le q$:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ip}b_{pj}$$
.

REMARQUE

Faites bien attention aux dimensions des matrices : Le nombre de colonnes de la première matrice doit être égal au nombre de lignes de la seconde pour que le calcul soit possible.

Par exemple, le produit d'une matrice 2×3 par une matrice 3×4 est possible et donnera une matrice 2×4 .

Par contre, le produit d'une matrice 2×3 par une matrice 2×3 n'est pas possible.

EXEMPLE

Calculons le produit $C = A \times B$ avec :

$$A = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \text{ et } B = \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix}.$$

Ce calcul est possible car le nombre de colonnes de A est égal au nombre de lignes de B. Le résultat C sera une matrice 2×3 (2×2 par $2 \times 3 \rightarrow 2 \times 3$).

Notons
$$C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{pmatrix}$$
.

Pour calculer c_{11} on multiplie la première ligne de A et la première colonne de B:

$$C = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix};$$

on a donc $c_{11} = 2 \times (-1) + 4 \times (-2) = -2 - 8 = -10$.

$$C = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -10 & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}.$$

Pour calculer c_{12} on multiplie la première ligne de A et la seconde colonne de B:

$$C = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix};$$

on a donc $c_{12} = 2 \times 0 + 4 \times 1 = 0 + 4 = 4$.

$$C = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -10 & 4 & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}.$$

Et ainsi de suite...

Au final on trouve:

$$C = \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} -1 & 0 & 2 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} -10 & 4 & 4 \\ -1 & 0 & 2 \end{pmatrix}.$$

Dans ce qui suit, on s'intéressera principalement à des matrices carrées.

PROPRIÉTÉ

Soit A, B et C, trois matrices carrées de même dimension.

- $A \times (B + C) = A \times B + A \times C$ (distributivité à gauche)
- $(A + B) \times C = A \times C + B \times C$ (distributivité à droite)
- $A \times (B \times C) = (A \times B) \times C$ (associativité de la multiplication)

Par contre en général : $A \times B \neq B \times A$: la multiplication n'est **pas** commutative.

EXEMPLE

Soit
$$A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$

$$A \times B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

tandis que:

$$B \times A = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$$

Par conséquent $A \times B \neq B \times A$.

DÉFINITION (PUISSANCE D'UNE MATRICE)

Soit *A* une matrice carrée et *n* un entier naturel.

On note A^n la matrice :

$$A^n = A \times A \times \cdots \times A$$
 (*n* facteurs).

REMARQUE

Par convention, on considèrera que A^0 est la matrice unité de même taille que A.

DÉFINITION (MATRICE INVERSIBLE)

Une matrice carrée A de dimension n est **inversible** si et seulement si il existe une matrice B telle que

$$A \times B = B \times A = I_n$$

où I_n est la matrice unité de dimension n.

La matrice B est appelée **matrice inverse** de A et notée A^{-1} .

3. RÉSOLUTION DE SYSTÈMES D'ÉQUATIONS

Soit le système :

$$(S) \begin{cases} ax + by = s \\ cx + dy = t \end{cases}$$

d'inconnues x et y.

Si l'on pose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $B = \begin{pmatrix} s \\ t \end{pmatrix}$, le système (S) peut s'écrire :

 $A \times X = B$. Le théorème ci-dessous permet alors de résoudre ce système.

THÉORÈME

Soit A une matrice carrée.

Si A est inversible, le système $A \times X = B$ admet une solution unique donnée par :

$$X = A^{-1} \times B$$
.

EXEMPLE

On cherche à résoudre le système :

(S)
$$\begin{cases} 3x + 4y = 1 \\ 5x + 7y = 2 \end{cases}$$

Pour cela on pose : $A = \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ et $B = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

L'écriture matricielle est alors $A \times X = B$.

A la calculatrice, on trouve que A est inversible d'inverse $A^{-1} = \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix}$.

La solution du système est donné par :

$$X = A^{-1} \times B = \begin{pmatrix} 7 & -4 \\ -5 & 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

C'est à dire x = -1 et y = 1.