0.1 应用题

1. 矩阵对角化和表象变换

(a) 对角化矩阵 L 就是去找到幺正变换 V,使得 $L=V\Lambda V^\dagger$,其中 Λ 是一个对角矩阵,它的对角元是本征值. V 是一个幺正矩阵,它的列矢量是本征矢,和 Λ 中的本征值一一对应. 找到一个能对角化 **Pauli** 矩阵 $\sigma^x=\begin{pmatrix}0&1\\1&0\end{pmatrix}$ 的幺正矩阵 V,并找到 σ^x 的本征值.

通过求解其特征方程以得到 $\sigma_{(z)}^x$ 的本征值:

$$\det(\sigma^x_{(z)} - \lambda I) = \det\begin{pmatrix} -\lambda & 1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0,$$

解得 $\lambda = \pm 1$. 对于 $\lambda_+ = 1$ 有:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = v_2.$$

所以对应于 λ_+ 的本征矢是 $|+\rangle_{(z)}^x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$. 对于 $\lambda_- = -1$ 有

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = -1 \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \Rightarrow v_1 = -v_2.$$

所以对应于 λ_- 的本征矢是 $|-\rangle_{(z)}^x = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. 在求解过程中已经对这些本征矢进行了归一化,所以可以得到幺正矩阵 $V = [|+\rangle_{(z)}^x, |-\rangle_{(z)}^x] = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. 对角矩阵 Λ 对角线上依次是本征值,即

$$\Lambda = \operatorname{diag}\{\lambda_+, \lambda_-\} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \sigma^z_{(z)}$$

于是我们可以通过幺正矩阵 V 来对 $\sigma_{(z)}^x$ 进行对角化:

$$\sigma^x_{(z)} = V^\dagger \Lambda V = V^\dagger \sigma^z_{(z)} V$$

我们注意到, 对角矩阵 Λ 和 $\sigma_{(z)}^z$ 形式完全一致, 这意味着不同表象 i 下, $\sigma_{(i)}^i$ 的形式都是 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, 这就是我们通过 V 来改变表象的依据:

$$\sigma_{(z)}^x = V^\dagger \sigma_{(z)}^z V = V^\dagger \sigma_{(x)}^x V \Rightarrow \sigma_{(x)}^x = \left(V^\dagger\right)^{-1} \sigma_{(z)}^x (V)^{-1}$$

我们标记 $\sigma^x_{(z)}$ 为 σ^x 在 σ^z 表象下的矩阵. 注意 $V=V^\dagger=V^{-1}$, 所以

$$\sigma_{(x)}^x = V \sigma_{(z)}^x V$$

(b) 自旋 1/2 的自旋角动量算符 \vec{S} 的三个分量为 S^x , S^y , S^z . 如果采用 S^z 表象,它们的矩阵表示为 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, 其中 $\vec{\sigma}$ 的三个分量为 **Pauli** 矩阵 σ^x , σ^y , σ^z . 现在考采用 S^x 表象,请列出 S^x 表象中你约定的基矢顺序,并求出在该表象下算符 \vec{S} 的三个分量的矩阵表示.

在 Sz 表象下有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma_{(z)}^x = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

从前文中可知, $\sigma_{(z)}^x$ 的本征矢为:

$$|+\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$

用以将 S^z 表象转换为 S^x 表象的幺正矩阵为

$$V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

在 Sz 表象中有

$$S_{(z)}^x = \frac{\hbar}{2}\sigma^x = \frac{\hbar}{2}\begin{pmatrix}0&1\\1&0\end{pmatrix}, \quad S_{(z)}^y = \frac{\hbar}{2}\sigma^y = \frac{\hbar}{2}\begin{pmatrix}0&-i\\i&0\end{pmatrix}, \quad S_{(z)}^z = \frac{\hbar}{2}\sigma^z = \frac{\hbar}{2}\begin{pmatrix}1&0\\0&-1\end{pmatrix}.$$

因此

$$\begin{split} S^x_{(x)} &= V S^x_{(z)} V = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \\ S^y_{(x)} &= V S^y_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\ S^z_{(x)} &= V S^z_{(z)} V = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \end{split}$$

在 Sx 表象中的基矢为

$$|+\rangle_{(x)}^x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |-\rangle_{(x)}^x = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

2. 谐振子问题

一维谐振子的哈密顿量为

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

坐标算符 x 和动量算符 p 满足对易式 $[x,p]=i\hbar$. 对动量算符和坐标算符进行重新标度

$$p = P\sqrt{\hbar m\omega}, \quad x = Q\sqrt{\frac{\hbar}{m\omega}}$$

注意新的坐标算符 Q 和动量算符 P 是无量纲的, 哈密顿量重新写为

$$H = \frac{1}{2}\hbar\omega(P^2 + Q^2)$$

引入玻色子产生和湮灭算符, a^{\dagger} 和 a.

$$a = \frac{1}{\sqrt{2}} (Q + iP), \quad a^{\dagger} = \frac{1}{\sqrt{2}} (Q - iP)$$

(a) 计算 [Q, P], $[a, a^{\dagger}]$, $[a, a^{\dagger}a]$, $[a^{\dagger}, a^{\dagger}a]$;

$$\begin{split} [Q,P] &= [\sqrt{\frac{m\omega}{\hbar}}x,\sqrt{\frac{1}{\hbar m\omega}}p] = \frac{1}{\hbar}[x,p] = \frac{1}{\hbar}i\hbar = \boxed{i}, \\ [a,a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q+iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]+i[P,Q]+[P,P]\right) \\ &= \frac{1}{2}[0-i\cdot i+i\cdot (-i)+0] = \boxed{1}, \\ [a,a] &= \left[\frac{1}{\sqrt{2}}(Q+iP),\frac{1}{\sqrt{2}}(Q+iP)\right] \\ &= \frac{1}{2}[Q+iP,Q+iP] = \frac{1}{2}\left([Q,Q]+i[Q,P]+i[P,Q]-[P,P]\right) \\ &= \frac{1}{2}[0+i\cdot i+i\cdot (-i)-0] = 0, \\ [a^{\dagger},a^{\dagger}] &= \left[\frac{1}{\sqrt{2}}(Q-iP),\frac{1}{\sqrt{2}}(Q-iP)\right] \\ &= \frac{1}{2}[Q-iP,Q-iP] = \frac{1}{2}\left([Q,Q]-i[Q,P]-i[P,Q]-[P,P]\right) \\ &= \frac{1}{2}(0-i\cdot i-i\cdot (-i)-0) = 0, \\ [a,a^{\dagger}a] &= a^{\dagger}[a,a]+[a,a^{\dagger}]a = a^{\dagger}\cdot 0+1\cdot a = \boxed{a}, \\ [a^{\dagger},a^{\dagger}a] &= a^{\dagger}[a^{\dagger},a]+[a^{\dagger},a^{\dagger}]a = a^{\dagger}\cdot (-1)+0\cdot a = \boxed{-a^{\dagger}}. \end{split}$$

(b) 将哈密顿量 H 用 a 和 a^{\dagger} 表示. 并求出全部能级;

$$\begin{split} a &= \frac{1}{\sqrt{2}} \left(Q + i P \right), \quad a^\dagger = \frac{1}{\sqrt{2}} \left(Q - i P \right) \\ \Rightarrow Q &= \frac{1}{\sqrt{2}} (a + a^\dagger), \quad P = \frac{1}{\sqrt{2}i} (a - a^\dagger) \\ \Rightarrow H &= \frac{1}{2} \hbar \omega (P^2 + Q^2) = \frac{1}{2} \hbar \omega \left\{ \left[\frac{1}{\sqrt{2}i} (a - a^\dagger) \right]^2 + \left[\frac{1}{\sqrt{2}} (a + a^\dagger) \right]^2 \right\} \\ &= \frac{1}{2} \hbar \omega \left\{ -\frac{1}{2} \left(aa - aa^\dagger - a^\dagger a + a^\dagger a^\dagger \right) + \frac{1}{2} \left(aa + aa^\dagger + a^\dagger a + a^\dagger a^\dagger \right) \right\} \\ &= \frac{1}{2} \hbar \omega \left(a^\dagger a + aa^\dagger \right) \end{split}$$

当然, 也可以利用 $[a, a^{\dagger}] = 1 \iff aa^{\dagger} = a^{\dagger}a + 1$ 将 H 变换为熟知的粒子数表象形式:

$$H = \hbar\omega \left(a^{\dagger}a + \frac{1}{2} \right)$$

所以
$$E_n = \hbar\omega \left(n + \frac{1}{2}\right), \quad n = 0, 1, 2, \cdots$$

(c) 在能量表象中, 计算 a 和 a^{\dagger} 的矩阵元.

能量表象的本征矢满足 $H|n\rangle = E_n|n\rangle$, 则矩阵元为

$$a|n\rangle = \sqrt{n}|n-1\rangle, \quad a^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

 $\Rightarrow \langle m|a|n\rangle = \boxed{\sqrt{n}\delta_{m,n-1}}, \quad \langle m|a^{\dagger}|n\rangle = \boxed{\sqrt{n+1}\delta_{m,n+1}}$

3. 角动量耦合

两个大小相等,属于不同自由度的角动量 $\vec{J_1}$ 和 $\vec{J_2}$ 耦合成总角动量 $\vec{J}=\vec{J_1}+\vec{J_2}$,设 $\vec{J_1}^2=\vec{J_2}^2=j(j+1)\hbar^2$, $J^2=J(J+1)\hbar^2$, $J=2j,2j-1,\cdots,1,0$. 在总角动量量子数 J=0 的状态下,求 $J_{1,z}$ 和 $J_{2,z}$ 的可能取值及相应概率.

根据 J=0,而 $-|J| \le M \le |J|$,夹逼定理得到 M=0. 而磁量子数守恒, 所以 $J_{1,z}+J_{2,z}=J_z=0$. 已知 C-G 系数可以用于将 $|J,M;j_1,j_2\rangle$ 以基矢 $|j_1,m_1;j_2,m_2\rangle$ 展开, 代入上述讨论结果有

$$|0,0;j,j\rangle = \sum_{m,-m}^{-j \leq m \leq j} C_{j,j,m,-m}^{0,0} |j,m;j,-m\rangle$$

概率即为 $P(m_1 = m, m_2 = -m) = |C_{j,j,m,-m}^{0,0}|^2$. 那么问题就来到如何计算这个特殊的 C-G 系数. 根据 C-G 系数的递推 定义, 可以得到其解析表达式

$$\begin{split} &\langle j_1, m_1; j_2, m_2 | J, M; j_1, j_2 \rangle \\ &= \sqrt{\frac{(2J+1)(J+j_1-j_2)!(J-j_1+j_2)!(j_1+j_2-J)!}{(j_1+j_2+J+1)!}} \\ &\times \sqrt{(J+M)!(J-M)!(j_1+m_1)!(j_1-m_1)!(j_2+m_2)!(j_2-m_2)!} \\ &\times \sum_{k_{\min}}^{k_{\max}} \frac{(-1)^k}{k!(j_1+j_2-J-k)!(j_1-m_1-k)!(j_2+m_2-k)!(J-M-k)!} \\ &\times \frac{1}{(J-j_2+m_1+k)!(J-j_1-m_2+k)!} \\ &k_{\min} = \max\{0, j_2-m_1-J, j_1+m_2-J\}, \quad k_{\max} = \min\{j_1+j_2-J, j_1-m_1, j_2+m_2\} \end{split}$$

所以代入 $j_1=j_2=j, m_1=-m_2=m$,即有 $C^{0,0}_{j,m,j,-m}=\frac{(-1)^{j-m}}{\sqrt{2j+1}}$,显然因为平方消去了可能存在的负号,使得 $|j,m;j,-m\rangle$, $\forall m\in\{-j,-j+1,\cdots,j-1,j\}$ 等概率,所以得到

$$P(m_1 = m, m_2 = -m) = \frac{1}{2j+1}$$

4. 自旋-1 模型

考虑自旋-1 体系, 自旋算符为 \vec{S} , 考虑 (\vec{S}^2, S^z) 表象, 基矢顺序为 $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, 简记为 $|+1\rangle$, $|0\rangle$, $|-1\rangle$. 设 $\hbar=1$.

(a) 写出 S^x 和 S^z 的矩阵表示.

由于是在 (\vec{S}^2, S^z) 表象, 所以 S^z 的矩阵一定是对角矩阵. 选定基矢为 $\{|s,m\rangle\}$, 即 $|1,1\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $|1,0\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $|1,-1\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. 根据本征方程 $S^z|s,m\rangle = m|s,m\rangle$, 得到

$$S^z = \boxed{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} }$$

而对于 S^x (包括题解不要求的 S^y), 我们实际上是使用的升降算符 S^\pm 来定义的.

$$\begin{split} S^{+}|s,m\rangle &= \sqrt{s(s+1)-m(m+1)}|s,m+1\rangle, \\ S^{-}|s,m\rangle &= \sqrt{s(s+1)-m(m-1)}|s,m-1\rangle. \\ \Rightarrow S^{+}|1,1\rangle &= 0, \quad S^{+}|1,0\rangle = \sqrt{2}|1,1\rangle, \quad S^{+}|1,-1\rangle = \sqrt{2}|1,0\rangle, \\ S^{-}|1,1\rangle &= \sqrt{2}|1,0\rangle, \quad S^{-}|1,0\rangle = \sqrt{2}|1,-1\rangle, \quad S^{-}|1,-1\rangle = 0. \\ \Rightarrow S^{+} &= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}, \quad S^{-} &= \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}. \\ \Rightarrow S^{x} &= \frac{1}{2} \left(S^{+} + S^{-} \right) = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{bmatrix} \end{split}$$

(b) 考虑哈密顿量 $H(\lambda) = H_0 + \lambda V$, 其中 $H_0 = (S^z)^2$, $V = S^x + S^z$. 考虑为 λV 微扰, 利用微扰论计算微扰后的各能级和各能态, 其中能级微扰准确到二阶, 能态微扰准确到一阶.

首先计算 H₀ 的本征矢和本征值:

$$\begin{array}{ccc} n & \text{states} & E_n \\ 1 & |\stackrel{n}{1}, \stackrel{\alpha}{+1}\rangle = |\psi_1\rangle, & |\stackrel{n}{1}, \stackrel{\alpha}{-1}\rangle = |\psi_3\rangle & E_1 = 1 \\ 0 & |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle = |\psi_2\rangle & E_0 = 0 \\ \end{array}$$

可见在 n=1 存在简并子空间. 根据简并微扰论中的有效哈密顿量和波函数公式:

$$E_{\alpha\beta}^{(n)}(\lambda) = E_n \delta_{\alpha\beta} + V_{n\alpha,n\beta} \lambda + \sum_{m \neq n} \sum_{\gamma} \frac{V_{n\alpha,m\gamma} V_{m\gamma,n\beta}}{E_n - E_m} \lambda^2 + \cdots$$
$$|n\alpha(\lambda)\rangle = |n\alpha\rangle + \sum_{m \neq n} \sum_{\beta} |m\beta\rangle \frac{V_{m\beta,n\alpha}}{E_n - E_m} \lambda + \cdots$$

计算波函数的修正:

$$\begin{split} |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle' &= |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle + |\stackrel{m}{0}, \stackrel{\beta}{0}\rangle \frac{V_{00,0\pm 1}^{m}}{E^{(\frac{n}{1})} - E^{(\frac{m}{0})}} \lambda + \cdots \\ &= |\stackrel{n}{1}, \stackrel{\alpha}{\pm} 1\rangle + |\stackrel{m}{0}, \stackrel{\beta}{0}\rangle \frac{1}{\sqrt{2}} \lambda + \cdots \\ |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle' &= |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle + |\stackrel{m}{1}, \stackrel{\beta}{1}\rangle \frac{V_{m} \beta_{n} \alpha_{n}}{\frac{1+1,00}{n}} \lambda + |\stackrel{m}{1}, -1\rangle \frac{V_{m} \beta_{n} \alpha_{n}}{E^{(0)} - E^{(1)}} \lambda + \cdots \\ &= |\stackrel{n}{0}, \stackrel{\alpha}{0}\rangle - (|\stackrel{m}{1}, +1\rangle + |\stackrel{m}{1}, -1\rangle) \frac{1}{\sqrt{2}} \lambda + \cdots \end{split}$$

选定 $|\stackrel{n}{1},\stackrel{\alpha}{+1}\rangle'$ 和 $|\stackrel{n}{1},\stackrel{\alpha}{-1}\rangle'$ 作为基矢, 代入计算有效哈密顿量的矩阵元为

$$\begin{split} E_{+1,+1}^{(n)} &= E^{(n)} + V_{n \alpha \atop 1+1,1+1}^{n \beta} \lambda + \frac{V_{n \alpha \atop 1+1,00}^{n \gamma \atop 00,1+1}}{E^{(n)} - E^{(n)}} \lambda^2 = 1 + \lambda + \frac{\lambda^2}{2} \\ E_{-1,-1}^{(n)} &= E^{(n)} + V_{n \alpha \atop 1-1,1-1}^{n \beta} \lambda + \frac{V_{n \alpha \atop 1+1,00}^{n \gamma \atop 00,1-1}}{E^{(n)} - E^{(n)}} \lambda^2 = 1 - \lambda + \frac{\lambda^2}{2} \\ E_{-1,-1}^{(n)} &= E^{(n)} + V_{n \alpha \atop 1-1,1-1}^{n \beta} \lambda + \frac{V_{n \alpha \atop 1-1,00}^{n \gamma \prime} V_{m \gamma \atop 00,1-1}}{E^{(n)} - E^{(n)}} \lambda^2 = 1 - \lambda + \frac{\lambda^2}{2} \\ E_{+1,-1}^{(n)} &= V_{n \alpha \atop 1+1,1-1}^{n \beta} \lambda + \frac{V_{n \alpha \atop 1+1,00}^{n \gamma \prime} V_{m \gamma \atop 00,1-1}}{E^{(n)} - E^{(n)}} \lambda^2 = \frac{\lambda^2}{2} \\ E_{-1,+1}^{(n)} &= V_{n \alpha \atop 1-1,1+1}^{n \beta} \lambda + \frac{V_{n \alpha \atop 1-1,000}^{n \gamma \prime} V_{m \gamma \atop 00,1+1}}{E^{(n)} - E^{(n)}} \lambda^2 = \frac{\lambda^2}{2} \end{split}$$

有效哈密顿量为 $H_1^{\text{eff}} = \begin{pmatrix} 1 + \lambda + \frac{\lambda^2}{2} & \frac{\lambda^2}{2} \\ \frac{\lambda^2}{2} & 1 - \lambda + \frac{\lambda^2}{2} \end{pmatrix}$,此时对角元已经不等,说明简并已经解除. 那么在这个更小的子空间中,进一步使用微扰,即一阶修正后的能量和波函数视为原始哈密顿量和波函数:

$$H_{1}^{\text{eff}} = \begin{pmatrix} 1 + \lambda + \frac{\lambda^{2}}{2} & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 1 - \lambda + \frac{\lambda^{2}}{2} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 + \lambda + \frac{\lambda^{2}}{2} & 0 \\ 0 & 1 - \lambda + \frac{\lambda^{2}}{2} \end{pmatrix}}_{H_{0}'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda^{2}}{2} \\ \frac{\lambda^{2}}{2} & 0 \end{pmatrix}}_{V'} + \underbrace{\begin{pmatrix} 0 & \frac{\lambda$$

代入 $|\stackrel{n}{1},\stackrel{\alpha}{\pm 1}\rangle'$ 即可得到进一步考虑了简并微扰的波函数, 注意要忽略 λ^2 阶:

$$\mid \stackrel{n}{1}, \stackrel{\alpha}{+1} \rangle'' = \boxed{\mid \stackrel{n}{1}, \stackrel{\alpha}{+1} \rangle + \mid \stackrel{n}{1}, \stackrel{\beta}{0} \rangle \frac{\lambda}{\sqrt{2}} + \mid \stackrel{n}{1}, -1 \rangle \frac{\lambda}{4}}$$
$$\mid \stackrel{n}{1}, \stackrel{\alpha}{-1} \rangle'' = \boxed{\mid \stackrel{n}{1}, \stackrel{\alpha}{-1} \rangle + \mid \stackrel{n}{1}, \stackrel{\beta}{0} \rangle \frac{\lambda}{\sqrt{2}} - \mid \stackrel{n}{1}, +1 \rangle \frac{\lambda}{4}}$$

能量修正:

$$\begin{split} E_{1,+1}^{\prime\prime} &= E_{1,+1}^{\prime} + V_{1,+1+1}^{\prime} + \frac{V_{1,+1-1}^{\prime} V_{1,-1+1}^{\prime}}{E_{1,+1}^{\prime} - E_{1,-1}^{\prime}} = \boxed{1 + \lambda + \frac{\lambda^{2}}{2}} + \mathcal{O}(\lambda^{3}) \\ E_{1,-1}^{\prime\prime} &= E_{1,-1}^{\prime} + V_{1,-1-1}^{\prime} + \frac{V_{1,-1}^{\prime} E_{1,-1}^{\prime} - E_{1,-1}^{\prime}}{E_{1,-1}^{\prime} - E_{1,+1}^{\prime}} = \boxed{1 - \lambda + \frac{\lambda^{2}}{2}} + \mathcal{O}(\lambda^{3}) \end{split}$$

5. 均匀电子气

考虑三维相互作用均匀电子气, 哈密顿量为 $H=H_0+H_I$. 考虑系统体积为 $V=L^3$, 每个方向的系统尺寸为 L. 采用箱 归一化, 所以 \vec{k} 是离散的, $\vec{k}=\frac{2\pi}{L}(n_x,n_y,n_z)$, n_x , n_y , n_z 为整数. 采用二次量子化的语言, 可给出哈密顿量在动量空间的形式. H_0 为单体部分:

$$H_0 = \sum_{\vec{k}\sigma} \varepsilon_{\vec{k}} c_{\vec{k}\sigma}^{\dagger} c_{\vec{k}\sigma}$$

其中 $\varepsilon_{\vec{k}}=\frac{\hbar^2\vec{k}^2}{2m}$ 是自由电子的色散关系. 用 ε_F 表示费米能, k_F 表示费米波矢的大小. H_I 为两体相互作用部分,

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{\sigma}} \sum_{\vec{\sigma}, \sigma \sigma'} v(q) c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2} \sigma'} c_{\vec{k}_{1} \sigma}$$

v(q) 是相互作用 v(x) 的傅里叶变换形式, $q=|\vec{q}|, x=|\vec{x}|,$

$$v(q) = \frac{1}{V} \int v(x) e^{-i\vec{q}\cdot\vec{x}} d^3\vec{x}$$

这里我们考虑短程势, 也就是说 v(q=0) 不发散.

自由电子气零温下处于电子填充到费米能 ε_F 的费米海态(Fermi sea state), 简记为 FS, 利用费米子产生算符作用到真空态上可以表示 FS 态为

$$|\mathbf{FS}\rangle = \prod_{k < k_F, \sigma} c_{\vec{k}\sigma}^{\dagger} |0\rangle$$

(a) 考虑零温下的自由电子气, 计算总粒子数 N 和粒子数密度 n, 计算总能量 $E^{(0)}$ 并把总能量密度 $E^{(0)}/V$ 表示成粒子数密度 n 的函数.

分离变量法求解薛定谔方程 $\frac{\hbar^2 \hat{k}^2}{2m} \psi = E \psi$. 于是能量本征值为 $\frac{\hbar^2 k^2}{2m} = \sum_i \frac{\hbar^2 k_i^2}{2m}$, 其中 $k_i = \frac{\sqrt{2mE_i}}{\hbar}$. 由于使用了箱 归一化, 即有边界条件 $k_i l_i = n_i \pi (n_i \in \mathbb{N}^*)$, 代入即得

$$E = \frac{\hbar^2}{2m} \left[\sum_i^3 \left(\frac{\pi}{l_i} \right)^2 n_i^2 \right] = \frac{\hbar^2 \pi^2}{2m} \left(\sum_i^3 \frac{n_i^2}{l_i^2} \right)$$

每个波矢 $\vec{k} = \left(\frac{\pi}{l_x}n_x, \frac{\pi}{l_y}n_y, \frac{\pi}{l_z}n_z\right)$ 都是在 \vec{k} 空间中的一个格点, 这种格点所占据的 \vec{k} 空间体积为

 $\prod_{i}^{3} \frac{\pi}{l_{i}} = \frac{\pi^{3}}{l_{x}l_{y}l_{z}} = \frac{\pi^{3}}{V},$ 其中 V 代表了物质在 \vec{x} 空间的体积(实体积). 电子是全同费米子, 每个格点上(每个状态)能且只能容纳两个电子. 而费米-狄拉克分布为 $f(\epsilon) = \frac{1}{1+e^{\beta(\epsilon-\mu)}}$. 绝对零度($\beta \to \infty$)下, 电子可占据的最高能级即为费米能级 $\lim_{\beta \to \infty} \mu = \varepsilon_{F}$, 对应波矢 $|k| \le k_{F}$. 由于前面讨论 $k_{i} \in \mathbb{N}^{*}$,因此 $k \le k_{F}$ 在 \vec{k} 空间中会形成 $\frac{1}{8}$ 球体. 由于题解要求,我们略去讨论各原子贡献的自由电子数目,而是直接使用总粒子(电子)数 N:

$$\frac{1}{8} \left(\frac{4}{3} \pi k_F^3 \right) = \frac{N}{2} \left(\frac{\pi^3}{V} \right)$$

其中 N 除以 2 是因为泡利不相容原理. 具体到题目中, 有 $l_i = L, \forall i$, 于是进一步化简得到

$$\boxed{N = \frac{k_F^3 V}{3\pi^2}, \quad \frac{N}{V} = \boxed{n = \frac{k_F^3}{3\pi^2}}}$$

接下来计算总能量. 假设 N 充分大, 使得电子可存在的状态遍布整个半径为 k_F 的 $\frac{1}{8}$ 费米球, 于是求和化为积分形式, 即有 $E_{\text{tot}} = \sum_{i}^{k \leq k_F} \frac{\hbar^2 k^2}{2m} \Rightarrow \int_0^{k_F} \frac{\hbar^2 k^2}{2m} f(k) dk$, 其中 f(k) 是态密度, 表示在同一能量 $\frac{\hbar^2 k^2}{2m}$ 上的电子数目, 所以这就要求我们对电子态密度进行计算. 对于半径为 k, 厚度为 dk 的 $\frac{1}{8}$ 球壳, 在这个球壳上电子的能量都是相同的. 而这个球壳的体积为 $\frac{1}{8}(4\pi k^2 dk)$, 又已知每个格点体积为 $\frac{\pi^3}{V}$, 因此球壳中电子数目为

格点数
$$\times$$
 2 = $\frac{\frac{1}{8}(4\pi k^2 dk)}{\frac{\pi^3}{V}}$ \times 2 = $\frac{k^2V}{\pi^2}dk = f(k)dk$

因此总能量为

$$E^{(0)} = \int_0^{k_F} \frac{\hbar^2 k^2}{2m} \frac{k^2 V}{\pi^2} dk = \frac{\hbar^2 V}{2m\pi^2} \int_0^{k_F} k^4 dk = \frac{\hbar^2 V}{2m\pi^2} \frac{k_F^5}{5} = \boxed{\frac{\hbar^2 V k_F^5}{10m\pi^2}}$$

反解粒子数密度表达式得到 $k_F(n)$, 代入 $E^{(0)}$ 计算总能量密度:

$$k_F = (3\pi^2 n)^{\frac{1}{3}}$$

$$\frac{E^{(0)}}{V} = \frac{\hbar^2 k_F^5}{10m\pi^2} = \frac{\hbar^2}{10m\pi^2} \cdot (3\pi^2 n)^{\frac{5}{3}} = \boxed{\frac{(3n)^{\frac{5}{3}} \hbar^2 \pi^{\frac{4}{3}}}{10m}}$$

(b) 计算能量的一阶修正 $E^{(1)} = \langle \mathbf{FS} | H_I | \mathbf{FS} \rangle$.

题目中定义的傅里叶变换是非幺正的,代入结论的时候需要注意系数,

$$v(\vec{q}) = \frac{1}{V} \int \frac{1}{|\vec{x}|} e^{i\vec{q}\cdot\vec{x}} \mathrm{d}\vec{x} = \frac{1}{V} \frac{4\pi}{q^2}$$

代 $v(\vec{q})$ 入两体相互作用部分,有

$$H_{I} = \frac{1}{2V} \sum_{\vec{k}_{1}, \vec{k}_{2}, \vec{q}} \sum_{\sigma, \sigma'} \frac{1}{V} \frac{4\pi}{q^{2}} c_{\vec{k}_{1} + \vec{q}, \sigma}^{\dagger} c_{\vec{k}_{2} - \vec{q}, \sigma'}^{\dagger} c_{\vec{k}_{2}, \sigma'} c_{\vec{k}_{1}, \sigma}$$

(c) 利用 Hatree Fock 平均场近似,并假设平均场参数是自旋对角的,并且保持了自旋对称性,以及平移对称性,因此我们期待 $\left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}'\sigma'}\right\rangle = \left\langle c_{\vec{k}\sigma}^{\dagger}c_{\vec{k}\sigma}\right\rangle \delta_{\vec{k},\vec{k}'}\delta_{\sigma,\sigma'}$,以及 $\left\langle c_{\vec{k}\uparrow}^{\dagger}c_{\vec{k}\uparrow}\right\rangle = \left\langle c_{\vec{k}\downarrow}^{\dagger}c_{\vec{k}\downarrow}\right\rangle$. 计算系统总能量,并与 $E^{(0)}+E^{(1)}$ 比较大小.

$$\mathcal{H} | \mathrm{HF} \rangle = \prod_{k \leq k_F, \sigma} c_{\vec{k}, \sigma}^{\dagger} | 0 \rangle$$
 入能量一阶修正, 有

$$\langle \mathrm{HF}|H_0|\mathrm{HF}\rangle = \sum_{\vec{k},\sigma} \langle \mathrm{HF}|\frac{k^2}{2} c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma}|\mathrm{HF}\rangle$$

$$\begin{split} \langle \mathrm{HF}|H_{I}|\mathrm{HF}\rangle &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} \langle \mathrm{HF}| \underbrace{c_{\vec{k}_{1}+\vec{q},\sigma}^{\dagger} c_{\vec{k}_{2}-\vec{q},\sigma'}^{\dagger} c_{\vec{k}_{2},\sigma'}^{\dagger} c_{\vec{k}_{1},\sigma}^{\dagger}}_{c_{\vec{k}_{2}}c_{\rho}c_{\nu}} |\mathrm{HF}\rangle \\ &= \frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1},\vec{k}_{2},\vec{q}} \sum_{\sigma,\sigma'} \frac{1}{q^{2}} (\underbrace{\delta_{\vec{k}_{1}+\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\sigma,\sigma'}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma}^{\dagger} \delta_{\sigma',\sigma}^{\dagger}), \quad v(\vec{q}=0) \vec{\Lambda} \not\boxtimes_{\vec{k}}^{\pm} \\ &= -\frac{1}{2V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \sum_{\sigma} \sum_{\sigma} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \delta_{\sigma',\sigma}^{\dagger} \delta_{\sigma,\sigma'}^{\dagger} \\ &= -\frac{1}{V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{q}} \sum_{\vec{q}} \frac{1}{q^{2}} \delta_{\vec{k}_{1}+\vec{q},\vec{k}_{2}}^{\dagger} \delta_{\vec{k}_{2}-\vec{q},\vec{k}_{1}}^{\dagger} \\ &= -\frac{1}{V} \frac{4\pi}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{k}_{2}} \int d\vec{q} \frac{V}{(2\pi)^{3}} \frac{1}{q^{2}} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}}^{\dagger} \delta_{\vec{q},\vec{k}_{2}-\vec{k}_{1}}^{\dagger} \\ &= -\frac{1}{V} \sum_{\vec{k}_{1}} \sum_{\vec{k}_{2}} \sum_{\vec{k}_{1}} \frac{4\pi}{|\vec{k}_{1}-\vec{k}_{2}|^{2}} \end{split}$$

在第二行消去了一项, 这是因为它会引起 $\vec{q} = 0$. 有关于最后一行的求和, 这是一个固定结论, 没有必要在考场现场计算求和, 在这里直接给出答案:

$$\langle \text{HF}|H_I|\text{HF}\rangle = -\frac{k_F^3 V}{4\pi^3} = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

$$\Rightarrow E = \frac{(3n)^{\frac{5}{3}} \pi^{\frac{4}{3}} V}{10} - \frac{3}{4} \left(\frac{3}{\pi}\right)^{\frac{1}{3}} n^{\frac{4}{3}} V$$

6. 量子转子模型

量子转子的角度坐标 $\theta \in [0, 2\pi)$, 注意 $\theta \pm 2\pi$ 和 θ 是等价的. 用 $|\theta\rangle$ 表现 $\hat{\theta}$ 算符的本征态, $|\theta \pm 2\pi\rangle$ 和 $|\theta\rangle$ 是相同的态. 定义量子转子的转动算符为 $\hat{R}(\alpha)$,

$$\hat{R}(\alpha) = \int_0^{2\pi} d\theta |\theta - \alpha\rangle\langle\theta|$$

所以 $\hat{R}(\alpha)|\theta\rangle = |\theta - \alpha\rangle$, 并且 $\hat{R}(2\pi)$ 是单位算符.

转动算符 $\hat{R}(\alpha)$ 是一个幺正算符,它的产生子为厄米算符 \hat{N} ,与量子转子的角动量算符 \hat{L} 的关系为 $\hat{L}=\hbar\hat{N}$,所以 $\hat{R}(\alpha)=e^{i\hat{N}\alpha}$,在 $\hat{\theta}$ 表象下可求得 $\hat{N}=-i\frac{\partial}{\partial\theta}$.

考虑一个特定的量子转子模型,它的哈密顿量为

$$H = \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 - g \cos \left(2\hat{\theta} \right)$$

其中 $g\cos\left(2\hat{\theta}\right)$ 是一个小的外势,可以当成微扰处理。假设 $|N\rangle$ 是算符 \hat{N} 的本征态,本征值为 N,即 $\hat{N}|N\rangle=N|N\rangle$. 可计算出 $|N\rangle$ 用 $|\theta\rangle$ 展开为

$$|N\rangle = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{iN\theta} |\theta\rangle$$

(a) 利用 $\hat{R}(2\pi)$ 是单位算符证明 N 必须是整数.

因为 $\hat{R}(2\pi) = \mathbb{I}$, 所以有 $|\theta - 2\pi\rangle = |\theta\rangle$. 对于算符 \hat{N} 的本征态 $|N\rangle$ 有

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta-2\pi)} |\theta-2\pi\rangle &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \\ \iff \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta-2\pi)} |\theta\rangle &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN(\theta-2\pi)} |\theta\rangle \\ \iff e^{iN\theta} &= e^{iN(\theta-2\pi)} = e^{iN\theta} e^{-i2\pi N} \end{split}$$

因此为了保持 θ 转动 2π 后的不变性,N应当是整数.

(b) 考虑无微扰时的哈密顿量 $H_0=\frac{1}{2}\left(\hat{N}-\frac{1}{2}\right)^2$, 证明 $|N\rangle$ 也是 H_0 的本征态,并求出本征能量,证明每个能级都是两重简并的.

$$\begin{split} \hat{H}_0|N\rangle &= \frac{1}{2} \left(\hat{N} - \frac{1}{2} \right)^2 |N\rangle = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 |N\rangle \Rightarrow E_N^{(0)} = \frac{1}{2} \left(N - \frac{1}{2} \right)^2 \\ \Rightarrow N_\pm - \frac{1}{2} = \pm \sqrt{2 E_N^{(0)}} \Rightarrow N_\pm = \frac{1}{2} \pm \sqrt{2 E_N^{(0)}} \end{split}$$

这意味着对于任意整数 N,都对应存在着 N'=1-N 使得能级简并.

(c) 采用 $\{|N\rangle\}$ 作为基组,写出微扰项 $V=-g\cos\left(2\hat{\theta}\right)$ 的表示矩阵,并证明微扰不会连接简并的能级(即如果 $|N\rangle$ 和 $|N'\rangle$ 简并,那么 $\langle N|V|N'\rangle$). 因此尽管 H_0 的能级是简并的,我们仍然可以使用非简并微扰论.

$$\begin{split} \cos 2\hat{\theta} &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) \\ e^{i2\hat{\theta}} |N\rangle &= e^{i2\hat{\theta}} \left(\frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} |\theta\rangle \right) = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{iN\theta} e^{i2\hat{\theta}} |\theta\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} \mathrm{d}\theta e^{i(N+2)\theta} |\theta\rangle = |N+2\rangle \\ \Rightarrow \cos 2\hat{\theta} |N\rangle &= \frac{1}{2} \left(e^{i2\hat{\theta}} + e^{-i2\hat{\theta}} \right) |N\rangle = \frac{1}{2} \left(|N+2\rangle + |N-2\rangle \right) \\ \Rightarrow \langle N|\hat{V}|N'\rangle &= -g\langle N|\cos 2\hat{\theta}|N'\rangle = -\frac{g}{2} \left(\langle N|N'+2\rangle + \langle N|N'-2\rangle \right) \\ &= -\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \end{split}$$

和前文一致, 如果 $|N\rangle$ 和 $|N'\rangle$ 简并, 那么 N+N'=1 使得只要 $N\in\mathbb{Z}$, 那么 $\delta\neq0$. 所以仍然可以使用非简并微扰论.

(d) 计算每个能级 E_N 的微扰修正到 g 的二阶,并证明此时所有的能级简并仍然没有被解除.

$$\begin{split} E_N^{(1)} &= \langle N | \hat{V} | N \rangle = -\frac{g}{2} \left(\langle N | N+2 \rangle + \langle N | N-2 \rangle \right) = 0 \\ E_N^{(2)} &= \sum_{N' \neq N} \frac{|\langle N | \hat{V} | N' \rangle|^2}{E_N^{(0)} - E_{N'}^{(0)}} = \sum_{N' \neq N} \frac{\left(-\frac{g}{2} (\delta_{N,N'+2} + \delta_{N,N'-2}) \right)^2}{\frac{1}{2} \left(N - \frac{1}{2} \right)^2 - \frac{1}{2} \left(N' - \frac{1}{2} \right)^2} \\ &= \boxed{\frac{g^2}{(2N-3)(2N+1)}} \end{split}$$

微扰修正后的能级为

$$E_N \approx \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N-3)(2N+1)}$$

代入 N' = 1 - N 以检查能级简并性:

$$E_{N'} = \frac{1}{2} \left(1 - N - \frac{1}{2} \right)^2 + \frac{g^2}{[2(1-N)-3][2(1-N)+1]}$$
$$= \frac{1}{2} \left(N - \frac{1}{2} \right)^2 + \frac{g^2}{(2N+1)(2N-3)} = E_N$$

所以简并度未变化.