Pieņemsim, ka $\phi \in C^2([a,b])$ tāds, lai $\phi'(x) \neq 0$ visiem $x \in [a,b]$. Ar šādu ϕ tad spēkā ir sekojošais -

 $e^{i\phi} = \frac{1}{i\phi'} \left(e^{i\phi} \right)'.$

Izmantojot parciālo integrešānu, varam novērtē sekojošo integrāli:

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| = \left| \int_{a}^{b} \frac{1}{i\phi'(x)} \left(e^{i\phi(x)} \right)' dx \right|$$

$$= \left| \frac{1}{i\phi'(x)} e^{i\phi(x)} \right|_{a}^{b} - \int_{a}^{b} \left(\frac{1}{i\phi'(x)} \right)' e^{i\phi(x)} dx \right|$$

$$\leq \left| \frac{1}{|\phi'(x)|} \right|_{a}^{b} + \int_{a}^{b} \left| \left(\frac{1}{\phi'(x)} \right)' \right| dx \qquad (\star)$$

$$\leq \frac{1}{|\phi'(b)|} + \frac{1}{|\phi'(a)|} + \int_{a}^{b} \left| \left(\frac{1}{\phi'(x)} \right)' \right| dx. \qquad (1)$$

Lai iegūtu (*), izmanto to, ka |i| = 1 un $|e^{i\phi(x)}| = 1$.

Papildus pieprasot, ka $\phi'(x)$ ir stingri monotona intervālā [a,b], un izmantojot to, ka $\phi'(x) \neq 0$ visiem $x \in [a,b]$, varam turpināt novērtēt (1) -

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \leq \frac{1}{|\phi'(b)|} + \frac{1}{|\phi'(a)|} + \int_{a}^{b} \left| \left(\frac{1}{\phi'(x)} \right)' \right| dx$$

$$\leq \frac{2}{\inf_{x \in [a,b]} |\phi'(x)|} + \left| \int_{a}^{b} \left(\frac{1}{\phi'(x)} \right)' dx \right| \qquad (\dagger)$$

$$\leq \frac{2}{\inf_{x \in [a,b]} |\phi'(x)|} + \left| \frac{1}{\phi'(b)} - \frac{1}{\phi'(a)} \right|$$

$$\leq \frac{4}{\inf_{x \in [a,b]} |\phi'(x)|}. \qquad (2)$$

Tā kā ϕ' ir stingri monotona funckija, tad $\left(\frac{1}{\phi'(x)}\right)'$ nemaina savu zīmi visā intverālā. Pie tam ϕ' ir nepārtraukta funkcija slēgtā intervālā un tā nekur nepieņem 0 vērtību, tāpēc $\inf_{x\in[a,b]}|\phi'(x)|\neq 0$, jo ϕ' sasniedz savu minimumu šajā intervālā. Ar šo esam pamtojuši (†) un arī (2).

Atkal ņemam $\phi \in C^2([a,b])$, lai $\phi''(x) \neq 0$ visiem $x \in [a,b]$. Fiksē $\alpha > 0$ patvaļīgi un izveido sekojošu kopu:

$$J_{\alpha} = \{x \in [a, b] : |\phi'(x)| \le \alpha\}.$$

Pamatosim, ka tas ir slēgts intervāls (potenciāli tukšs). Pieņemsim, ka tas nav tukšs. Ja J_{α} satur tikai vienu elementu, tad nav ko pierādīt, tāpēc pieņemsim, ka pastāv vismaz divi elementi $\eta, \xi \in J_{\alpha}$. Nezaudējot vispārīgumu, pieņemsim, ka $\eta > \xi$. Tagad brīvi izvēlas $\psi \in]\xi, \eta[$. Tā kā $\phi''(x) \neq 0$ un $\phi''(x)$ ir nepārtraukta, tad vai nu $\phi'' > 0$ vai arī $\phi'' < 0$ visā intervālā. Tad attiecīgi $\phi'(x)$ ir stingri augoša vai arī dilstoša. Pieņemsim, ka $\phi'' > 0$, tad $\phi'(\xi) > \phi'(\psi) > \phi'(\eta)$. Ja $\phi'(\psi) = 0$, tad acīmredzami $\psi \in J_{\alpha}$. Pretējā gadījumā $\operatorname{sgn} \phi'(\psi) = \pm 1$. Ja $\phi'(\psi) > 0$, tad $|\phi'(\eta)| < |\phi'(\psi)| \leq \alpha$. Otrā gadījumā $|\phi'(\psi)| < |\phi'(\xi)| \leq \alpha$. Tātad var secināt, ka $\psi \in J_{\alpha}$. Analogi rīkojas, ja $\phi'' < 0$.

Tā kā $\psi \in]\xi, \eta[$ bija patvaļīgs, tad J_{α} ir sakarīga kopa jeb intervāls. Tagad atliek pārbaudīt slēgtību. Šī kopa būs slēgta, ja tā saturēs savu infīmu un suprēmu. Veic sekojošu azpīmējumu $\zeta := \sup J_{\alpha}$. Tā kā $J_{\alpha} \subseteq [a,b]$, tad $\zeta \in [a,b]$. Jāpārliecinās, ka $\phi'(\zeta) \le \alpha$. Tā kā ζ ir suprēms, pastāv virkne $(x_n)_{n \in \mathbb{N}} \subseteq J_{\alpha}$, lai $x_n \to \zeta$. Tā kā katram $n \in \mathbb{N}$ $\phi'(x_n) \le \alpha$, tad $\lim_{n \to \infty} \phi'(x_n) \le \alpha$. Pēc nepārtrauktības varam secināt, ka $\phi'(\zeta) \le \alpha$. Tātad $\zeta \in J_{\alpha}$. Analogi rīkojas ar infīmu. Ar šo esam pamatojuši, ka J_{α} ir slēgts intervāls, ko apzīmēsim ar $[a_{\alpha}, b_{\alpha}]$. Tātad J_{α} vienmēr ir slēgts intervāls.

Pieņemsim, ka $J_{\alpha} \neq \emptyset$. Tad varam sadalīt sekojošo intervālu trīs daļās.

$$\int_{a}^{b} e^{i\phi(x)} dx = \int_{a}^{a_{\alpha}} e^{i\phi(x)} dx + \int_{a_{\alpha}}^{b_{\alpha}} e^{i\phi(x)} dx + \int_{b\alpha}^{b} e^{i\phi(x)} dx. \tag{3}$$

Tagad saskatām, ka $\phi'(x) = 0$ iespējams tikai tad, ja $x \in [a_{\alpha}, b_{\alpha}]$, jo $\alpha > 0$. Pie tam $\phi'(a_{\alpha}) = 0 \iff \phi'(a) = 0$. Tieši tāpat ar b_{α} un b. Šis pamatojams ar to, ka ϕ' ir stingri monotona. Tātad potenciāli (3) pirmais un trešais integrālis pazūd, bet tos tāpat var novērtēt, izmantojot (2), jo, ja $a_{\alpha} \neq a$, tad $\phi'(x) \neq 0$ $x \in [a, a_{\alpha}]$. Tātad izpildās nosacījumi, lai pirmo un trešo integrāli no (3) varētu novērtēt ar (2). Iegūstam sekojošo:

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \leq \frac{4}{\inf_{x \in [a,a_{\alpha}]} |\phi'(x)|} + \left| \int_{a_{\alpha}}^{b_{\alpha}} e^{i\phi(x)} dx \right| + \frac{4}{\inf_{x \in [b_{\alpha},b]} |\phi'(x)|}.$$

$$\leq \frac{8}{\alpha} + \int_{\phi'(a_{\alpha})}^{\phi'(b_{\alpha})} \left| \frac{1}{\phi''(x)} e^{i\phi(x)} \right| d(\phi'(x))$$

$$\leq \frac{8}{\alpha} + \frac{1}{\inf_{x \in [a,b]} \phi''(x)} \int_{\phi'(a_{\alpha})}^{\phi'(b_{\alpha})} d(\phi'(x))$$

$$\leq \frac{8}{\alpha} + \frac{2\alpha}{\inf_{x \in [a,b]} \phi''(x)}.$$

Tā kā $\forall x \notin J_{\alpha} \phi'(x) > \alpha$, tad $\frac{1}{\phi'(x)} < \frac{1}{\alpha}$, tāpēc varam novērtēt katru ārējo integrāli ar $8/\alpha$. Bet α izvēlēts patvaļīgi. Ņemot $\alpha = \sqrt{\inf_{x \in [a,b]} \phi''(x)}$, iegūstam -

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \le \frac{8}{\sqrt{\inf_{x \in [a,b]} \phi''(x)}} + \frac{2}{\sqrt{\inf_{x \in [a,b]} \phi''(x)}} \le \frac{4^{2}}{\left(\inf_{x \in [a,b]} \phi''(x)\right)^{1/2}}.$$
 (4)

Ņem $k \geq 3$. Pieņemsim, ka visiem $m \in \mathbb{N}$ $(2 \leq m \leq k-1)$. Kam izpildās nosacījumi, ka $\phi \in C^m([a,b])$ un $\phi^{(m)} \neq 0$, $x \in [a,b]$, ir spēkā sekojošais:

$$\left| \int_a^b e^{i\phi(x)} dx \right| \le \frac{4^m}{\left(\inf_{x \in [a,b]} \phi^{(m)}(x)\right)^{1/m}}.$$

Pieminēsim, ka bāzes gadījums (m=2) pamatots caur (4).

Pieņemsim, ka $\phi \in C^k([a,b])$ un $\phi^k \neq 0$ visiem $x \in [a,b]$. Fiksē $\alpha > 0$ un izveido $J_{\alpha} = \{x \in [a,b] : |\phi^{(k-1)}(x)| \leq \alpha\}$. Iepriekš jau tika parādīts, ka J_{α} būs intervāls un varam sadalīt integrāli sekojoši:

$$\int_a^b e^{i\phi(x)} dx = \int_a^{a_\alpha} e^{i\phi(x)} dx + \int_{a_\alpha}^{b_\alpha} e^{i\phi(x)} dx + \int_{b\alpha}^b e^{i\phi(x)} dx.$$

Tad atkal nulli saturēs potenciāli vidējais integrālis, tāpēc abiem sānu integrāļiem izpildās indukcijas nosacījums un varam turpināt novērtēt izteiksmi-

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \leq \frac{4^{k-1}}{\left(\inf_{x \in [a, a_{\alpha}]} \phi^{(k-1)}(x)\right)^{1/k-1}} + \int_{\phi^{k-1}(a_{\alpha})}^{\phi^{k-1}(b_{\alpha})} \left| \frac{1}{\phi^{(k)}(x)} \right| d(\phi^{(k-1)}(x)) + \frac{4^{k-1}}{\left(\inf_{x \in [b_{\alpha}, b]} \phi^{(k-1)}(x)\right)^{1/k-1}}$$

$$\leq \frac{2 \cdot 4^{k-1}}{\alpha} + \frac{2\alpha}{\left(\inf_{x \in [a, b]} \phi^{(k)}(x)\right)}.$$

Identisku apsvērumu dēļ spējam novērtēt šādi. Tā kā α atkal bija patvaļīgs, varam izvēlēties $\alpha = \left(\inf_{x \in [a,b]} \phi^{(k)}(x)\right)^{(k-1/k)}$. Tad varam saskatīt, ka

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \le \frac{2 \cdot 4^{k-1} + 2}{\left(\inf_{x \in [a,b]} \phi^{(k)}(x)\right)^{(1/k)}} \le \frac{4^{k}}{\left(\inf_{x \in [a,b]} \phi^{(k)}(x)\right)^{(1/k)}}.$$

Šis ir pateicoties tam, ka $2 \cdot 4^{k-1} - 2 = 2(4^{k-1} - 1) \ge 0$, jo $k \ge 2$. Tātad esam pamatojuši, ka visiem $k \ge 2$, ja $\phi \in C^k([a,b])$ un $\phi^{(k)} \ne 0$ visiem $x \in [a,b]$, tad ir spēkā

$$\left| \int_{a}^{b} e^{i\phi(x)} dx \right| \le \frac{4^{k}}{\left(\inf_{x \in [a,b]} \phi^{(k)}(x)\right)^{1/k}}.$$