

San Francisco Bay University

EE461 Digital Design and HDL Week#8 UART Design

1. Lab Outlines

- Introduction to UART
- Transmitter Design
- Receiver Design

2. Lab Procedures

I. Introduction:

UART: Universal asynchronous receiver/transmitter. UARTs are commonly used in conjunction with communication standards such as EIA_RS-232, RS-422 or RS-485. Bit0-bit7 are ASCII code and "Parity" is for error check. UART will add "start" and "stop" bits to for communication with outside device.

Stop	Parity	Data	Start						
Bit	Bit	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Bit

II. UART Architecture:

III. UART Transmitter Design

- UART Transmitter Signals:
- Input signals:
 - 1) Byte ready from host computer is to indicate that the data in the bus is valid
 - 2) Load_XMT_datareg from host computer is to tell UART to load data in the bus
 - 3) T byte from host computer is to ask UART to send data out.
 - 4) Data in the Bus
 - 5) Reset in UART
 - 6) Clock in UART
- Output signals:
 - 1) SeriesOut
- FSM's Algorithm diagram in Transmitter

- Transmitter Verilog Code:

IV. UART Receiver Design

Data received by UART doesn't include clock signal. UART will use a higher frequency clock to sample each bit for input data. Usually, sampling frequency in receiver is 8 times frequency of input data.

- Input signals
 - 1) notReady from host computer is to indicate that host is not ready to receive.
 - 2) serialIn from outside device
 - 3) sampleClk is 8 times frequency of transmitter clk
 - 4) rst
- Output signals
 - 1) dataOut is to send to host computer
 - 2) askReady is to ask if host computer is ready to receive or not
 - 3) err1 is to indicate the host is not ready to receive
 - 4) err2 is to send to outside device to indicate the missing stop bit
- FSM's algorithm diagram

- Receiver Verilog Code

V. Clock Generator

In UART architecture diagram, there is clock generator block to output two clock signals sampleClk and Clk with the different frequencies, namely that sampleClk is 8 times of Clk. Assuming systemClk is 8MHz, design this block based on baud rate in the following table.

selBaud	sampleClk	Clk		
000	307,696	38462		
001	153,838	19231		
010	76,920	9615		
011	38,464	4808		
100	18,232	2404		
101	9,616	1202		
110	4,808	601		
111	2,404	300.5		

```
);
       input sysClk;
       input rst i;
       output sysClkDiv13 o;
       reg[3:0] cnt r;
       assign sysClkDiv13 o = cnt r[3];
       // wire Clk1 = (cnt_r = = 12);
// wire Clk2 = (cnt_r > 6);
       always@(posedge sysClk)begin
              if(rst_i)begin
                      cnt r <=4'b0000;
              end
              else if(cnt_r= =4'd12)begin
                     cnt_r <=4'd0;
              end
              else begin
                    cnt_r \leftarrow cnt_r + 1;
              end
       end
endmodule
```

VI. Exercises

Complete UART receiver and transmitter RTL design modules and verify them in the testbenches.