How Much Attention Do You Need? A Granular Analysis of Neural Machine Translation Architectures

Steven Walton University of Oregon

21 Feb 2019

Overview

Questions:

- ▶ If attention is all you need, then how much?
- ► Where is the attention important?
- ► What type of attention do we need? Self? LSTM? Transformers?

Overview

Questions:

- ▶ If attention is all you need, then how much?
- ► Where is the attention important?
- ► What type of attention do we need? Self? LSTM? Transformers?

Answers:

- Source attention on lower encoder layers brings no additional benefits.
- ► Multiple source attention and residual feed-forward layers are key.
- Self-attention is more important for the source than for the target side.

- ► Flexible Neural Machine Translation Architecture Combination
 - ► Neural Machine Translation (NMT)
 - ► Architecture Definition Language (ADL)
 - Layer Definitions
 - Standard Architectures
- ► Related Work
- Experiments
- Conclusion

Neural Machine Translation (NMT)

► NMT is a sequence to sequence prediction task

$$X \mapsto Y$$

$$p(y_t|Y_{1:t-1}, X; \theta) = \operatorname{softmax}(\boldsymbol{W}_o \boldsymbol{z}^L + \boldsymbol{b}_o)$$

- $ightharpoonup W_o$ projects a model dependent hidden vector z^L of the Lth decoder layer to the dimension of the target vocabulary V_{trg}
- ► Training minimizes cross-entropy loss

Architecture Definition Language

(ADL)

► ADL is a language used to describe

network structures.

- ► This language lets us discuss a NMT in an easy to understand manner.
- ▶ E.G. $pos \rightarrow repeat(n, res(cnn(glu) \rightarrow dropout))$
 - Positional encoding → residual CNN with gated linear units → dropout

Architecture Definition Language (ADL)

pos
norm, bnorm
repeal(n, l)
res(l)
birnn, rnn
cnn
ff, linear, ffl
[mh].dot.src.att(h)
[mh].dot.self_att(h)
res.nd(l)
res.d(l)
act, dropout
parallel, highway

Laver

Decoder

Description
Positional embeddings.
Layer and batch normalization.
Layer repetition.
Residual connection.
Recurrent neural network.
Convolutional neural network.
Feed-forward and linear layer.
[Multi-head] dot source attention.
IMulti-head] dot self-attention.

 $res(l \rightarrow dropout)$

Other lavers.

 $res(norm \rightarrow l \rightarrow dropout)$

Architecture Definition Language (ADL)

Fixed Positional Embeddings

$$pos(\mathbf{h}_t) = dropout(\sqrt{d}\mathbf{h}_t + \mathbf{p}_t)$$

Gated Linear Unit (GLU)

$$glu([\mathbf{h}_A;\mathbf{h}_B]) = \mathbf{h}_A \otimes \sigma(\mathbf{h}_B)$$

Dot Product Attention

$$dot_att(\mathbf{Q}, \mathbf{K}, \mathbf{V}, s) = softmax(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{s}})\mathbf{V}$$
 $res(\mathbf{h}_t, l) = \mathbf{h}_t + l(\mathbf{h}_t)$

Layer Normalization

$$\textit{nrom}(\mathbf{h}_t) = rac{\mathbf{g}}{\sigma_t} \otimes (\mathbf{h}_t - \mu_t) + \mathbf{b}$$

$$\mu_t = \frac{1}{d}\mathbf{h}_{t,j}$$
 $\sigma_t = \sqrt{\frac{1}{d}(\mathbf{h}_{t,j} - \mu_j)^2}$

Residual Layer

Architecture Definition Language (ADL)

Transformer

Encoder

 $t_{enc} = res_nd(mh_dot_self_attn)
ightarrow res_nd(ffl)$

Decoder

 $t_{dec} =$

 $res_nd(mh_dot_self_attn) o res_nd(mh_dot_src_att) o res_nd(ffl)$

RNN

$$rnn(\mathbf{h}_t) = f_{rnn_to}(\mathbf{h}_t, \mathbf{s}_{t-1})$$
$$\mathbf{s}_t = f_{rnn_to}(\mathbf{h}_t, \mathbf{s}_{t-1})$$

Convolution

$$cnn(\mathbf{H}, v, k) = v(\mathbf{W}[\mathbf{h}_{i-|k/2|}; \dots \mathbf{h}_{i+|k/2|}] + \mathbf{b})$$

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- Conclusion

Related Work

- ▶ Britz et al. (2017) explored hyperparams of RNN NMT models with different attention mechanisms.
- ► Schrimpf et al (2018) defined language for exploring architectures for RNNs
- ➤ Zoph and Le (2016), Negrinho and Gordan (2017), and Liu et al. (2017) explored architectures for image classification.

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- ► Conclusion

Experiments: Setup

- ► Used adapted version of SOCKEYE (Heiber et al. 2017)
- Used WMT and IWSLT datasets for different sets of text, which are on the order of 5 million training sentences.
- ► English \rightarrow German and Latvian \rightarrow English translation problems.
- ► Ran each experiment 3 times with different random seeds. values reported are the mean result and standard deviation of the BLEU and METEOR scores.

NMT Architectures defined by ADL

```
e.g. Transformer [Vaswani et al. 2017] t_{\rm enc} = res\_nd(mh.dot.self\_att) \rightarrow res\_nd(ff) t_{\rm dec} = res\_nd(mh.dot.self\_att) \rightarrow res\_nd(mh.dot.sec.att) \rightarrow res\_nd(mh.dot.se
```

$$\mathbf{U}^{L_s} = pos \rightarrow repeat(n, t_{enc}) \rightarrow norm$$

$$\mathbf{Z}^L = pos \rightarrow repeat(n, t_{dec}) \rightarrow norm$$

Usage in Sockeye, our NMT toolkit:

- > sockeye-train -s train.de -t train.en
- --custom-seg-encoder repeat(6.birnn)
- --custom-seq-decoder pos->res(norm->mh_dot_self_att)->res(mh_dot_src_att)

https://github.com/awslabs/sockeye/tree/acl18

Experiments: What to Attend To?

- Best attention on the upper encoder block.
- No gains observed by attention on different encoder layers in source attention mechanism.

Encoder/Decoder Combinations

- Baseline: 6 laver Transformer. 512 hidden units
- Data sets: IWSLT'16, WMT'17
- Metrics: BLEU (and METEOR in the paper)
- · 3 runs, reporting mean and standard deviation

$t_{\rm enc} = res_nd($ $) \rightarrow res_nd(ffl)$						
$t_{\rm dec} = res_{-}nd($		$) \! \to \! res_nd(mh_dot_src_att) \! \to \! res_nd(ffl)$				
, ,	1	IWSLT	WMT'17	WMT'17		
Encoder	Decoder	$EN\rightarrow DE$	$EN\rightarrow DE$	LV→EN		
self-att	self-att	25.4 ± 0.2	27.6 ± 0.0	18.3 ± 0.0		
self-att	RNN	25.1 ± 0.1	27.4 ± 0.1	18.4 ± 0.2		
self-att	CNN	25.4 ± 0.4	27.6 ± 0.2	18.0 ± 0.3		
RNN	self-att	25.8 ± 0.1	27.2 ± 0.1	17.8 ± 0.1		
CNN	self-att	25.7 ± 0.1	26.6 ± 0.3	16.8 ± 0.4		
RNN	RNN	25.1 ± 0.1	26.7 ± 0.1	17.8 ± 0.1		
CNN	CNN	25.3 ± 0.3	26.9 ± 0.1	16.4 ± 0.2		
self-att	combined	25.1 ± 0.2	27.6 ± 0.2	18.3 ± 0.1		
self-att	none	23.7 ± 0.2	25.3 ± 0.2	15.9 ± 0.1		
Encoder block		IWSLT V		VMT'17		

self-att none	$23.7 \pm 0.2 \mid 25.3 \pm$	$0.2 \mid 15.9 \pm 0.1 \mid$	
Encoder block	IWSLT	WMT'17	
upper	25.4 ± 0.2	27.6 ± 0.0	
increasing	25.4 ± 0.1	27.3 ± 0.1	
decreasing	25.3 ± 0.2	27.1 ± 0.1	

BLEU Scores

Experiments: Network Structure

 $RNN \mapsto Transformer$

- ► RNN includes multiple source attention layers, multi-headed attention, layer normalization, residual upscaling FF layers, and single headed MLP attention.
- ➤ Start with RNN, add multi-headed attention (mh), positional embedding (pos), layer normalization (norm), single headed attention, attention to residual blocks (multi-att), and residual feed-forward layers after attention blocks (ff).
- Gains from multi-headed attention and feed-forward residual layers.

RNN to Transformer

 $U^{L_s} = dropout \rightarrow res_d(birnn) \rightarrow repeat(5, res_d(rnn))$

 $\mathbf{Z}^{L} = dropout \rightarrow repeat(6, res_d(rnn)) \rightarrow res_d(dot_src_att) \rightarrow res_d(ffl)$

<i>(</i>	IWSLT	WMT'17	WMT'17
Model	$EN\rightarrow DE$	$EN\rightarrow DE$	LV→EN
Transformer	25.4 ± 0.1	27.6 ± 0.0	18.5 ± 0.0
RNMT	23.2 ± 0.2	25.5 ± 0.2	-
- input feeding	23.1 ± 0.2	24.6 ± 0.1	-
RNN	22.8 ± 0.2	23.8 ± 0.1	15.2 ± 0.1
+ mh	23.7 ± 0.4	24.4 ± 0.1	16.0 ± 0.1
+ pos	23.9 ± 0.2	24.1 ± 0.1	15.6 ± 0.1
+ norm	23.7 ± 0.1	24.0 ± 0.2	15.2 ± 0.1
+ multi-att-1h	24.5 ± 0.0	25.2 ± 0.1	16.6 ± 0.2
/ multi-att	24.4 ± 0.3	25.5 ± 0.0	17.0 ± 0.2
+ ff	25.1 ± 0.1	26.7 ± 0.1	17.8 ± 0.1
77/		17.000	

 $\mathbf{U}^{L_s} = pos \rightarrow res_nd(birnn) \rightarrow res_nd(ffl)$ $\rightarrow repeat(5, res_nd(rnn) \rightarrow res_nd(ffl) \rightarrow norm$

 $\mathbf{Z}^{L} = pos \rightarrow repeat(6, res_nd(rnn) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(fft)) \rightarrow norm$

Can see that as RNN → Transformer the BLEU scores increase.

Experiments: Network Structure

CNN → Transformer

- ► Neither Transformer nor CNN have dependency between decoder timesteps during traning, use multiple source attention mechanisms, and use different residual structures.
- ► Largest gains from adding residual feed-forward layers.

Can see that as CNN →
Transformer the BLEU scores increase.

 $U^{L_s} = pos \rightarrow repeat(6, res_nd(cnn) \rightarrow res_nd(ffl)) \rightarrow norm$

 $\mathbf{Z}^{L} = pos \rightarrow repeat(6, res_nd(cnn) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(ffl)) \rightarrow norm$

Experiments: Self-Attention Variations

- ➤ Self-attention has advantage because two positions directly connected and no dependencies between consecutive timesteps.
- ► Self-attention has disadvantage because positional information isn't directly represented and need multiple heads.
- Experiments show attention is more important to decoder side.
- ▶ Attention on encoder shows little to no improvement.

Experiments: Self-Attention Variations

		IWSLT EN→DE	WMT'17 EN→DE		WMT'17 LV→EN	
Encoder	Decoder	BLEU	BLEU	METEOR	BLEU	METEOR
self-att	self-att	25.4 ± 0.2	27.6 ± 0.0	47.2 ± 0.1	18.3 ± 0.0	51.1 ± 0.1
self-att	RNN	25.1 ± 0.1	27.4 ± 0.1	47.0 ± 0.1	18.4 ± 0.2	51.1 ± 0.1
self-att	CNN	25.4 ± 0.4	27.6 ± 0.2	46.7 ± 0.1	18.0 ± 0.3	50.3 ± 0.3
RNN	self-att	25.8 ± 0.1	27.2 ± 0.1	46.7 ± 0.1	17.8 ± 0.1	50.6 ± 0.1
CNN	self-att	25.7 ± 0.1	26.6 ± 0.3	46.3 ± 0.1	16.8 ± 0.4	49.4 ± 0.4
RNN	RNN	25.1 ± 0.1	26.7 ± 0.1	46.4 ± 0.2	17.8 ± 0.1	50.5 ± 0.1
CNN	CNN	25.3 ± 0.3	26.9 ± 0.1	46.1 ± 0.0	16.4 ± 0.2	47.9 ± 0.2
self-att	combined	25.1 ± 0.2	27.6 ± 0.2	47.2 ± 0.2	18.3 ± 0.1	51.1 ± 0.1
self-att	none	23.7 ± 0.2	25.3 ± 0.2	43.1 ± 0.1	15.9 ± 0.1	45.1 ± 0.2

Table 5: Different variations of the encoder and decoder self-attention layer.

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- ► Conclusion

Conclusion

- ► Defined ADL for specifying NMT architectures on composable building blocks.
- ► Found RNN models benefit from multiple source attention mechanisms and residual feed-forward blocks.
- Found CNN benefits from layer normalization and feed-forward blocks.
- ► These features explain the effectiveness of transformers, as they make the respective models more transformer "like".
- ► RNN and CNN models with self-attention on the encoder side are competitive with transformers.

