

AUTHOR INDEX

A

AANNESTAD, P. A., 309-62; 317, 348, 353, 354
Aarseth, S. J., 136
Abell, G. O., 158, 278, 284
Abernhe, F., 271, 272
Ables, H. D., 102
Abramenko, A. N., 104
Adams, A., 127
Adelburger, A. E., 127
Agnese, A., 83
A'Hearn, M. F., 331
Aksnes, K., 148
Albers, H., 43
Alexander, D. R., 121
Alexander, E. C., Jr., 76
Alexander, J. B., 132
Alfvén, H., 181, 363, 408
Allen, B. J., 73, 84
Aller, L. H., 212
Alpers, L., 26
Alpher, R. A., 155, 156, 165, 167, 168, 179, 180
Alschuler, W. R., 37, 212
Alsop, L. E., 68
Altenhoff, W. J., 235
Amelio, G. F., 111
Anders, E., 86, 88
Anderson, C. M., 245, 314
Anderson, E. C., 271, 272, 275
Angel, J. R. P., 336
Anolik, M. V., 142
Antonova, T. D., 11
Aoki, S., 148
Appenzeller, I., 223, 332
Arakelian, M. A., 101
Armstrong, J. W., 11
ARNETT, W. D., 73-94; 73-75, 77-83, 85, 87, 88, 90
Arnold, J. R., 271, 272, 275
Arnould, M., 83
Arny, T., 226
Arons, J., 273
Artsimovich, L. A., 364
Ash, M. E., 142
ATHAY, R. G., 187-202; 187, 191-93, 196, 199, 202-7, 212
Audouze, J., 91, 168
Auer, L. H., 191, 196, 200, 208-13
Augason, G. C., 347
Auman, J. R., 104, 120
Austin, S. M., 75, 80
Avery, L. W., 215

B

Avrett, E. H., 191, 193, 196, 202, 206
Axenow, E. P., 148
Axford, W. I., 1

Babcock, H. W., 261
Bacik, H., 102
Bahcall, J. N., 156, 164, 399
Bahcall, N., 283
Bahcall, N. A., 75
Bahnson, A., 167
Baille, A. E., 139
Bakai, A. S., 376
Baker, J. C., 280
Baker, N. K., 108
Ball, W. F., 260
Bame, S. J., 26
Bangs, L., 321
Barkat, Z., 85
Barlow, M. J., 356
Barnes, A., 10, 26
Barnes, C. A., 73, 75, 127
Barton, D., 140
Basart, J. P., 55
Bass, S. D., 105
Batchelor, G. K., 176
Baumert, J. H., 132
Baxter, A. J., 271, 275, 291
Beardsley, W. R., 44, 98
Beaver, E. A., 112
Beavers, W., 264
Beavers, W. I., 264
Bec, A., 147
Becker, W., 318
Becklin, E. E., 231, 323, 355
Beebe, H. A., 209
Behr, A., 332, 334
Beketi, D., 366
Belcher, J. W., 9, 10, 26
Belinsky, B. A., 388, 392, 394, 395, 397
Bell, R. A., 318, 319
Bell, R. L., 109
Bendat, J. S., 6
Bennett, K., 299
Benson, G. S., 136, 141
Beresin, A. B., 366
Berkhuijsen, E. M., 302
Berlovich, E. E., 86
Bertola, F., 98
Bertram, W. J., 111
Bethe, H. A., 167
Bettis, D. G., 136
Beyer, R. R., 98

Bberman, L. M., 96
Bidelman, W. P., 34, 36, 43, 115
Biermann, L., 176
Bjorkholm, P., 279
Black, D. C., 168
Blackman, G. L., 237
Blair, A. G., 305
Blake, J. B., 85
Blanco, V. M., 43
Bleach, R. D., 298-300, 350
Bleeker, J. A. M., 271, 272, 275, 299, 300
Bless, R. C., 310, 311, 320
Blumenthal, G. R., 176
Boclet, D., 271, 275
Bodansky, D., 78, 79
Bodenheimer, P., 223, 226
Boesgaard, A. M., 129
Böhm, K.-H., 121, 196
Bohme, S., 142
Böhm-Vitense, E., 196
Bok, B. J., 230
Boksenberg, A., 112
Boldt, E. A., 271, 275, 298-300
Bondi, H., 155
Bonner, T. I., 75
Born, M., 262
Bortolot, V. J., Jr., 305
Bourgois, G., 11
Bowen, I. S., 97, 213, 241, 248
Bowyer, C. S., 271, 287, 291, 295, 349
Boyarchuk, A. A., 351
Boynton, P. E., 53
Bracker, S. B., 118
Bradt, H., 270
Brady, J. L., 146
Braginsky, V. B., 399
Brans, C., 168
Bratolyubova-Tsulukidze, L. J., 272
Braude, S. J., 384
Brault, J. W., 106, 253, 255
Braunsfurth, E., 317
Brecher, K., 176, 273, 274, 281, 292, 299, 304
Bredenkamp, J., 180, 273
Bregman, J., 232
Breizman, B. N., 407
Bretz, M. C., 131
Brihaye, C., 83
Bromage, G. E., 330
Bronnikov, K. A., 406
Brooke, A. L., 232
Brosche, P., 136

Broucke, R., 136-38
 Brouwer, D., 138, 139, 147, 149
 Brown, L., 112
 Brown, R. H., 116
 Brown, R. L., 282, 288
 Brown, W. K., 167
 Browne, J. C., 213
 Browning, R., 298, 299
 Brucato, R. J., 212, 213
 Brück, M. T., 330
 Brueckner, G. E., 107, 108
 Brueenn, S. F., 81
 Brumberg, V. A., 138, 139, 148, 149
 Bücher, A., 101
 Budnikova, N. A., 139
 Buhl, D., 235
 Bunner, A. M., 271, 288, 290, 291, 294, 295, 297, 299, 300
 Burbidge, E. M., 73
 Burbidge, G. R., 73, 155, 178, 276, 281, 287, 292, 299, 304
 Burgin, G. A., 278, 296
 Burlaga, L. F., 9, 10
 Burnett, D. S., 76
 Burovic, B. Ts., 407
 BURRUS, C. A., 51-72; 61, 64, 67
 Byram, E. T., 271, 275, 291

C

Cahn, J. H., 313
 Cameron, A. G. W., 73, 75-79, 84, 85, 88, 120, 128, 130, 232, 352
 Canfield, R. C., 205-7
 Cannon, C. J., 215
 Carbon, D. F., 121, 123
 Carlton, N. P., 246, 267
 Carpenter, E., 146
 Carpenter, L., 137-39
 Carrasco, L., 233
 Carruthers, G. R., 96, 102, 103, 310, 320, 348
 Carswell, R. F., 168
 Cathey, L. R., 271, 275
 Caughlan, G. R., 75, 126, 131
 Cavallo, G., 297
 Cayrel, G., 123
 Cayrel, R., 112, 123, 199, 345
 Chandrasekhar, S., 21
 Chang, C.-h., 136
 Chang, T. Y., 66
 Chapront, J., 139, 140
 Charnow, M. L., 147
 Chechetkin, V. M., 86
 Cherniack, J. R., 137
 Chernikov, N. A., 406
 Chernin, A. D., 175, 389
 Chernykh, N. S., 144
 Chibisov, G. V., 175, 394, 409
 Chickhachev, A. S., 377, 381-83
 Chiu, H. Y., 180, 182
 Christensen, C. J., 167
 Chromey, F. R., 43
 Chubb, T., 271, 291
 Chupka, W. A., 399
 Clark, B. G., 55
 Clark, G. W., 299, 300
 Clarke, M., 2, 11
 Clauser, J. F., 305
 Clayton, D. D., 73-75, 78-80, 82-84, 88, 91, 126-28, 273
 Clemence, G. M., 142
 Climenhaga, J. L., 122, 123, 125
 CODE, A. D., 239-68; 248, 251, 267, 310
 Codina, S., 351
 Cogdell, J. R., 56
 Cohen, C. J., 136, 141, 142
 Cohen, M. H., 2, 11
 Cohn, M., 70
 Coleman, P. J., Jr., 2, 8, 10
 Coleman, P. L., 271, 288, 290, 291, 294, 295, 297, 299, 300
 Coles, W. A., 11, 24
 Colgate, S. A., 84, 91, 368
 Collings, P. R., 98
 Collins, C. B., 394
 Combes, M., 112
 Conti, P. S., 37, 125, 209, 210, 212, 213
 Contopoulos, G., 136
 Cooke, B. A., 299, 300
 Cordwell, C. S., 230
 Couch, R. H., 127
 Cowan, G. A., 85
 Cowsik, R., 90, 273-76, 305
 Cox, D. P., 304
 Cox, J. P., 126
 Coyne, G. V., 335
 Craddock, W. L., 91
 Crawford, F. W., 376
 Crézé, M., 318
 Cromwell, R. H., 97, 230
 Cronyn, W. H., 21-23
 Crook, G. M., 3
 Crowell, M. H., 106
 Craddock, R., 272, 273
 Cuccia, C. L., 67
 Cudaback, D. D., 312, 313, 338
 Cugon, P., 342, 345
 Cunningham, C., 271, 275
 Cunningham, L. E., 148
 Cuny, Y., 204, 206
 Currott, D., 169
 Currie, D. G., 264

Curtis, N. A. T., 111
 Cutrona, L. J., 260

D

Dalgarno, A., 213, 352
 Damle, S. V., 90
 Danby, J. M. A., 137
 Daniel, R. R., 271, 272
 Danielson, R. E., 312
 Danielsson, L., 136
 Danziger, I. J., 43, 123
 Dautcourt, G., 156
 Davids, C. N., 75, 80
 Davidsen, A., 271, 290-92, 299, 300
 Davis, J., 265, 266
 Davis, L., Jr., 9, 10, 26, 334, 341
 Davis, M. S., 137, 139
 Davis, R. J., 105, 310
 Davis, S. P., 125
 Day, K. L., 347
 Deeming, T. J., 38
 Defouw, R. J., 181
 de Graaf, T., 156, 158, 164
 de Jager, C., 205
 de Jong, T., 236, 326, 330, 348
 Delano, M. D., 77, 85
 Dennison, E. W., 97, 112
 Dennison, P. A., 11, 24
 Denny, W. M., 127
 de Polavieja, M. G., 147
 Deprit, A., 137, 140, 141, 148
 Derfler, H., 376
 Derrenberg, A. J., 271, 272, 275, 299, 300
 de Ruiter, H., 43
 Desai, U. D., 271, 275
 Despain, K., 128, 130, 131
 Desplau, R., 101
 Dessler, A. J., 1
 Deutschman, W. A., 105
 de Vaucouleurs, G., 284, 315
 DeVeny, J. B., 99
 de Witt, B. S., 407
 DeYoung, D. S., 279
 Dibay, E. A., 101
 Dicke, R. H., 155, 156, 168
 Disney, M. J., 223
 Divan, L., 320
 Divari, N. B., 355
 Doggett, L. E., 144
 Dolizy, P., 109
 Domenico, B. A., 191
 Donn, B., 312, 321-23, 328, 350, 351
 Dorman, J. R., 233
 Doroshkevich, A. G., 166, 390, 394-97, 404
 Dorschner, J., 323, 331, 352

Drummond, W. E., 378
 Ducros, G., 271, 275
 Ducros, R., 271, 275
 DUNCOMBE, R. L., 135-54;
 142-44, 146
 Dunham, D., 147
 Dunne, J. A., 105
 Durouchoux, P., 271, 275
 Dzyuba, B. M., 136

E

Eckert, D. A., 140
 Eckert, W. J., 140
 Eddington, A. S., 155
 Edelman, C., 147
 Edwards, A. C., 84
 Eggen, O. J., 116
 Ekers, R. D., 11, 20, 24
 Elder, H. E., 60
 Eliasson, B., 231
 Elliot, J. L., 264
 Ellis, G. F. R., 156, 393
 Elvius, A., 181
 Emery, R. J., 355
 Engvold, O., 99
 Eremenko, Ju. G., 377
 Esipov, V. F., 101
 Evans, T. L., 132
 Evdokimova, L. S., 149

F

Faber, S. M., 43
 Fabian, A. C., 286, 287
 Falgarone, E., 303
 Falthammar, C.-G., 363
 Faulkner, 403
 Fazio, G. C., 180
 Feast, M. W., 44
 Feautrier, P., 196, 199,
 200
 Fehsenfeld, F. C., 213
 Feix, M. R., 136
 Felenbon, P., 112
 Felsentreger, T. L., 148,
 149
 Feltz, K. A., Jr., 315
 Ferguson, E. E., 213
 Fermi, E., 167
 Fernie, J. D., 318
 Feynman, R. F., 164
 Fiala, A. D., 136, 144
 Fichtel, C. E., 299
 Field, G. B., 156, 158, 171,
 173, 175, 220-22, 271, 276,
 279, 287, 291, 295, 321,
 337, 352, 355
 Findlay, J. W., 55-57
 Finn, G. D., 191
 Fiset, E. O., 86
 Fisher, D., 149
 Fishman, G. J., 91
 Fisk, L., 8, 26
 FitzGerald, M. P., 313, 315,
 318, 319
 Fix, J. D., 121, 350, 351

Follin, J. W., 155, 156, 165,
 167, 168, 179, 180
 Ford, V. L., 332, 333
 Ford, W. K., Jr., 96, 112
 Forman, W., 280
 Forrest, W. J., 313, 314,
 321, 338
 Forslund, D. W., 26
 Fort, B., 112
 Fowler, W. A., 73, 75, 79,
 80, 82, 84, 86, 91, 126-28,
 130, 131, 168, 179
 Francis, M. P., 143, 144
 Frank, I. M., 371
 Frank-Kamenetskii, D. A.,
 83
 Frautschi, S., 156, 399
 Frederick, C. L., 355
 Friedemann, C., 324, 358
 Frieden, H. J., 105
 Friedman, H., 271, 275,
 291
 Friedmann, A., 155
 Frisch, H., 199
 Fritz, G., 271, 275, 291
 Frye, G. M., 271
 Frye, R. L., 34, 36
 Fujimoto, M., 177
 Fujita, Y., 115, 124, 125
 Fukui, M., 177

G

Gahm, G. F., 44, 47
 Gallitis, A., 381
 Gammon, R. H., 323
 Gamow, G., 155, 167,
 171
 Garcia, H. A., 147
 Garfinkel, B., 148, 149
 Garmire, G., 290, 291, 299,
 300
 Garrison, R. F., 34, 36,
 318
 Garthwaite, K., 137, 143
 Garzoli, S. L., 317
 Gault, B. L., 147
 Gaustad, J. E., 312, 313,
 322, 323, 338
 Gawin, J., 306
 Gebbie, K. B., 199, 203
 Gebel, W., 220, 221
 Gebel, W. L., 318
 Gedeon, G. S., 149
 Gehrels, T., 335
 Gehrz, R. D., 312
 Gell-Mann, M., 164
 Gezari, D. Y., 54, 261
 Giacaglia, G. E. O., 148,
 149
 Giacconi, R., 270, 278,
 280, 287
 Gibbons, J. H., 73, 75, 84
 Gicas, H. L., 146
 Gilbert, A., 76-79
 Gilbert, G., 112
 Gill, J. R., 147

Gillett, F. C., 116, 118,
 312-14, 321, 338
 Gilman, R. C., 324, 351
 Gilra, D. P., 117, 313,
 322-24
 Gingerich, O., 204
 Ginzburg, V. L., 368, 370,
 373, 376, 379, 381, 407
 Giordemanie, J. A., 68
 Giovannelli, R. G., 192
 Gisler, G. R., 169
 Giuli, R. T., 126
 Gliner, E. B., 400
 Glinski, V. J., 60
 Goetze, G. W., 98
 Gold, T., 155, 275, 345
 Goldberg, L., 210
 Goldhaber, M., 179
 Goldsmith, D. W., 220, 221,
 297, 352
 Goldstein, B. E., 9, 10, 22
 Golenetskii, S. V., 271, 272
 Goles, G. G., 88
 Gontovskaya, V. T., 139
 Goodrich, E. F., 138
 Goosman, D. R., 80
 Gordon, C. P., 117-19, 128,
 129
 Gorenstein, P., 271, 275,
 279, 291, 292, 295, 304
 Goreva, T. A., 379
 Goss, W. M., 237
 Gott, J. R., 277, 281
 Gould, R. J., 276, 288, 297
 Gower, A. C., 104
 Goy, G., 319
 Grader, R. J., 278
 Graham, W. R. M., 324
 Grasdalen, G., 233
 Green, I. M., 3
 Greenberg, J. M., 309, 312,
 321, 323, 331, 336, 337,
 345, 353
 Greene, T. F., 120, 123,
 128
 Greenstein, G., 168
 Greenstein, J. L., 120, 121,
 128, 212, 214, 334, 341
 Grib, A. A., 406
 Griboval, D., 101
 Griboval, P., 101
 Griem, H. H., 366
 Griffel, D. H., 26
 Griffin, R. F., 48
 Griffith, R. E., 299, 300
 Grischuk, L. P., 393, 395
 Grosse, A., 101
 Gruber, D., 270, 272, 299,
 300
 Gundermann, E. J., 11
 Gunn, J. E., 277, 281
 Gursky, H., 271, 275, 279,
 280, 287, 291
 Gwinn, W. D., 237

H

Habing, H. J., 352, 353

Hackwell, J. A., 116, 312
 Hagedorn, R., 156, 398
 Hagen, J. P., 68
 Hainebach, K., 81
 Hall, J. A., 110
 Hall, J. S., 332
 Hall, N. M., 137
 Hamberger, S. M., 364, 365, 376, 377
 Hamid, S. E., 139
 Hanbury Brown, R., 265, 266
 Hanner, M. S., 327
 Hansen, C. J., 74, 76, 77, 81
 Hansen, J. R., 98
 Hantel, E. G., 85
 Hardebeck, E. G., 11
 Hardebeck, H. E., 11
 Haring, D. J., 98
 Harkins, J. D., 155
 Härn, R., 127, 131
 Hardnen, F. R., 279
 Harper, D. A., 355
 Harrington, J. V., 11, 20
 Harris, B., 279
 Harris, D., 147
 Harris, D. E., 11, 21, 22
 Harris, J. L., 255
 Harris, J. W., 312, 318, 319
 Harris, T. W., 256
 HARRISON, E. R., 155-86; 156, 169, 170, 175-77, 179, 180
 Hartle, R. E., 26
 Hartman, F. L., 376
 Hartman, R. C., 299
 Harwit, M., 346
 Hattori, T., 221
 Hawking, S. W., 156, 168, 391, 392, 394, 407
 Hayakawa, S., 271, 275, 290-92, 294, 326, 349
 Hayaski, C., 168, 221, 223, 227, 230
 Hayes, D. S., 312
 Hayli, A., 136
 Hearn, A. G., 210
 Hecht, H., 168
 Hegyi, D., 169
 Heiles, C., 220, 222, 230, 235, 316, 317
 Helfer, H. L., 48
 Henrard, J., 140
 Henry, R. C., 271, 275, 276, 291, 320
 Herbig, G. H., 312, 328, 352
 Herget, P., 137, 146
 Herman, R. C., 155, 156, 165, 167, 168, 179, 180
 Herrero, V., 266
 Hertz, H. G., 144
 Herzberg, G., 328
 Hewish, A., 2, 11, 20-26
 Hewitt, A. V., 103

Heymann, D., 86
 Hill, G. W., 143
 Hill, R. W., 296
 Hiltner, W. A., 34, 36, 332
 Hinder, R. A., 55
 Hirai, M., 124, 125
 Hoag, A. A., 260
 Hodge, P. W., 98
 Hoffleit, D., 352
 Hoffmann, W. F., 355
 Hohenberg, C. M., 76
 Hohl, F., 136
 Holdridge, D. B., 143
 Hollenbach, D., 317, 347, 348
 Hollweg, J. V., 11, 20, 22, 23, 26
 Holt, S. S., 271, 275, 298-300
 Holweger, H., 204
 Holzer, T., 1, 9
 Honeycutt, R. K., 312
 Hori, G.-I., 148, 149
 Houck, T. E., 310
 House, L. L., 215
 Howard, W. M., 75, 80, 82, 83
 Hoyle, F., 73, 76, 84, 91, 155, 168, 178, 179, 181, 275, 313, 324, 337, 339, 351
 Hsli, W.-J., 136
 Hubbard, E. C., 141
 Hubbard, W. B., 355
 Hubble, E., 155
 Hube, J. O., 318
 Hudson, H. S., 271, 272, 274, 275, 298, 300
 Hudson, J. P., 350, 351
 Huffman, D. R., 323, 324, 331
 Hultquist, L., 47
 Hummer, D. G., 187, 193, 201, 202, 213
 Humphreys, R. M., 44, 47
 Hundhausen, A. J., 1
 Huneke, J. C., 76
 Hunt, R., 281, 292
 Hunter, C. E., 312
 Hunter, J. H., 223
 Hutchings, J. B., 104, 312, 330
 Hyland, A. R., 231
 Hynek, J. A., 104

I

Illing, R., 336
 Illovaiksky, S. A., 292, 304
 Ingham, M. G., 326
 Intriligator, D. S., 9, 23
 Ip, W.-H., 136
 Ispavich, F. M., 169
 Ireland, J. G., 318, 332, 355
 Irwin, J. C., 60, 61, 66

Isobe, S., 318, 356
 Istomin, L. F., 104
 Izak, I., 148
 Ito, K., 83

J

Jackson, E. S., 143
 Jackson, W. M., 321
 Janes, K. A., 43
 Janiczek, P. M., 133, 144
 Janssens, T. J., 103
 Jaschek, C., 44
 Jaschek, M., 44
 Jaszcza, R. J., 75
 Jefferies, J. T., 187, 190-92, 205
 Jefferts, K. B., 53, 90
 Jefferys, W. H., 137
 Jolley, J. V., 376
 Jenkins, E. B., 315, 316, 352
 Jensen, E., 205
 Jensen, O. G., 104
 Johansson, S. A. E., 349
 Johnson, F. M., 332
 Johnson, H. L., 29, 43, 116-19, 121, 248, 267, 311, 318
 Johnson, H. R., 210, 214
 Johnson, M. W., 353
 JOKIPPI, J. R., 1-28; 2, 6, 7, 11, 13, 14, 19-22, 26, 334, 345
 Jones, B., 180
 Jones, B. J. T., 175
 Jones, D. E., 10
 Jones, H. P., 215
 Jones, J., 180
 Jones, R. V., 341
 Jordan, S. D., 199
 Joseph, G., 271, 272
 Joukoff, A. A., 83
 Joyce, R. R., 54
 Jupp, A. H., 149

K

Kadomtsev, B. B., 364, 365, 369, 376, 377
 Kalafut, J. S., 98
 Kalkofen, W., 191, 200-2, 204, 208, 209, 213
 Kamata, K., 299, 306
 Kamijo, F., 350
 Kamp, L. W., 211
 Kaner, L. A., 384
 Kaplan, S. A., 309, 363, 366, 368, 369, 379, 383, 384,
 Karachentsev, I. D., 284
 Kashy, E., 75
 Kasner, E., 394
 Kato, T., 292, 294
 Kavanagh, R. W., 75
 Kawabata, K., 177
 KEENAN, P. C., 29-50; 29, 43, 44, 48, 115, 128
 Kellerman, K. I., 52

Kellman, E., 29
 Kellman, S. A., 328
 Kellogg, E. M., 271, 275, 280, 287, 291
 Kemp, J. C., 336, 337
 Kennel, C. F., 26, 379
 Kerr, A. R., 66
 Kerr, F. J., 317
 Khalatnikov, I. M., 388, 392, 394-97, 410
 Kiang, T., 146
 Kidd, J. M., 86
 Kihara, T., 176
 Kinch, M. A., 68
 King, I. R., 280, 282
 Kinman, D., 136
 Kinter, E. C., 280, 282
 Kinzer, R. L., 271-73, 299, 300
 Kirzhnits, D. A., 407
 Kish, J., 90
 Kissell, K. E., 109
 Klare, G., 332
 Kleiman, E. B., 368
 Klein, O., 181
 Kleinmann, D. E., 231
 KLEPCZYNSKI, W. J., 135-54; 136, 142, 144, 146
 Klimontovich, J. L., 377
 Klock, B. L., 142
 Knacke, R. F., 312, 313, 338
 Knapp, G. R., 317
 Kobetich, E. J., 274-76
 Kochina, N. G., 149
 Kodaira, K., 212
 Koomen, M., 107
 Koren, M., 293, 304
 Kovac, M. G., 111
 Kovalevsky, J., 137, 139
 Kozai, Y., 149
 Kozlovsky, B. Z., 74, 75
 Kraft, R. P., 44
 Krasinsky, G. A., 142
 Kraushaar, W. L., 271-73, 288, 290, 291, 294, 295, 297-300, 305
 Krishna Swamy, K. S., 321-23, 328, 335, 356
 Kroffen, D. A., 299
 Kron, G. E., 102
 Krook, M., 196
 Kuchowicz, B., 163
 Kulikov, D. K., 139
 Kundt, W., 156
 Kunkel, W. E., 118, 271, 275
 Kunze, H. J., 366
 Kuprevich, N. G., 103
 Kutner, M. L., 53, 90
 Kuzmin, V. A., 408

L
 Labeyrie, A., 261
 Labeyrie, J., 271
 Labuda, E. F., 106
 La Camera, M., 83

Lallemand, A., 112
 Lampton, M., 349
 Landau, L. D., 158
 Landau, R., 322
 Landecker, T. L., 301
 Laod, R. K., 299
 Laques, P., 101
 LARSON, R. B., 219-38; 221-27, 230-34
 Lasker, B. M., 118
 Laubscher, R. E., 142
 Lavakare, P. J., 271, 272
 Layzer, D., 155, 226
 Lea, S., 303
 Lecar, M., 136, 191
 Leckrone, D. S., 210
 Lee, L. C., 11, 14, 19, 20
 Lee, T. A., 44, 318, 319, 320
 Lee, T. J., 347
 Lee, T. P., 61, 67
 Lefèvre, J., 321
 Legoux, R., 109
 Lehmann, M., 310
 Leighton, R. B., 103, 132
 Letievre, G., 101
 Lemaitre, G., 155
 Lequeux, J., 393
 Lerche, I., 334, 345, 379
 Le Schack, A. R., 137
 Lesh, J. R., 34
 Levy, D. L., 297
 Lewis, R. S., 76
 Lieske, J. H., 136, 143, 144
 Lifshitz, E. M., 158, 388, 392, 394-97, 409, 410
 Lifshitz, I. M., 395, 396
 Lifshitz, M. A., 379
 Lillie, A. E., 316
 Lillie, C. F., 328, 327
 Lin, C. C., 225
 Linsky, J. L., 202, 206
 Liszt, H. S., 53, 90
 Lites, B. W., 204-7
 Little, L. T., 11, 20, 24
 Little, R., 98
 Litvak, M. M., 236
 LIVINGSTON, W. C., 95-114; 99, 103
 Lockhart, P., 295
 Lockwood, G. W., 212
 Lodén, L. O., 332
 Lohmann, A. W., 253
 Longacre, A., 67
 Longair, M. S., 156
 Lovelace, R. V. E., 11, 21, 22
 Low, F. J., 51, 66, 231, 355
 Lowrance, J. L., 107
 Lozinskaya, T. A., 101
 Lucy, L., 196
 Lukash, V. N., 394, 396, 404
 Lundquist, C. A., 105, 148

Lüdt, R., 1
 Lutz, T. E., 48
 Lyddane, R. H., 148
 Lynd, A. C., 321, 323
 Lynden-Bell, D., 136
 Lynda, B. T., 309, 328
 Lynda, C. R., 98
 Lyubushin, A. A., 407

M

Maagoe, S., 11, 24
 MacCallum, M. A. H., 393
 MacConnell, D. J., 34, 36
 Mack, J. E., 271, 287, 291, 346, 349
 Mackin, R., 2
 Macklin, R. L., 73, 75, 84
 Maeder, A., 208
 Maehara, H., 115, 124, 125
 Mahoney, M. J., 317
 Maker, P. D., 112
 Makhan'kov, V. G., 377
 Malik, G. M., 315
 Malkiel, G., 83
 Mamayev, S. G., 406
 Manchanda, R. K., 271, 274, 302
 Manchester, R. N., 345
 Mangeney, L., 140
 Mangeney-Ghertzman, L., 140
 Mann, F. M., 75
 Manning, P. G., 323, 331
 Marenin, I., 121
 Margon, B., 280
 Marin, M., 101
 Marinaccio, L. P., 65
 Marinov, A., 86
 Marsden, B. G., 144, 146
 Martin, C. F., 143
 Martin, I., 271, 272
 Martin, P. G., 312, 318, 319, 336, 339, 346, 349
 Martin, T. Z., 54
 Martynenko, B. K., 148
 Martynov, V. K., 399
 Matheson, D. N., 11
 Mathews, W. G., 280, 355, 356
 Mathewson, D. S., 332-34
 Mathis, J. S., 355
 Matlinsky, T., 287
 Matjagin, V. S., 326
 Matsuda, T., 156, 175, 176
 Matteson, J. L., 270, 272, 299, 300
 Mattila, K., 326
 Matzner, R. A., 395, 404
 Maury, J. L., 147
 Mavko, G. E., 312
 Mayer, C. H., 68
 Mayer, M. G., 167
 Mayer-Hasselwander, H. A., 271-73
 Mazarakis, M., 74

Maze, R., 306
 McCannion, D., 271, 288, 290, 291, 294, 295, 297, 299, 300
 McCaslin, S. J., 75
 McCord, T. B., 106
 McCray, N., 379
 McCray, R., 223, 273
 McCray, R. A., 352
 McGee, J. D., 102
 McIlwain, C. E., 112
 McKellar, A., 125
 McLeod, M. G., 9
 McMullan, D., 102, 111
 McNall, J., 108
 McNally, D., 223
 Mebold, U., 303
 Meekins, J. F., 271, 275, 291
 Meinel, A. B., 241, 246, 247
 Melrose, D. B., 379
 Mende, S. B., 112
 Mendoza, V. E. E., 116, 118
 Menzel, D. H., 205
 Merchant, A. E., 129, 130
 Merrill, K. M., 116, 118
 Mertz, L., 241
 Mestel, L., 225
 Mészáros, P., 317, 353, 354
 Metzger, A. E., 271, 272, 275
 Meyer, P., 90
 Miachine, V., 136
 Michaud, G., 74, 76, 80, 82
 Michel, M. C., 76
 Michelson, A. A., 263
 Michie, R. W., 173
 Migulin, V. V., 399
 MIHALÁS, D., 187-218; 187, 191, 195, 196, 200, 208-14
 Miley, G. K., 55, 279
 Milione, V., 220, 221
 Milkey, R. W., 214
 Miller, R., 136
 Miller, R. H., 136, 256, 264, 265
 Milton, A. F., 110
 Misawa, T., 65
 Misner, C. W., 165, 181, 389, 394, 395, 397, 404
 Miyachi, N., 143
 Miyoshi, K., 176
 Molnar, M. R., 84
 Montgomery, M. D., 26
 Morando, B., 139, 148
 Morgan, D. L., 180, 273
 Morgan, J. F., 75
 MORGAN, W. W., 29-50; 29, 38, 115
 Morrison, P., 273, 274
 Morrow, H., 248
 Morton, D. C., 107, 112
 Moses, R. T., 86
 Moyer, T. D., 142
 Muehlner, D., 305
 Mulholland, J. D., 143
 Minch, G., 355
 Murdin, P., 330
 Murphy, J. P., 148, 149
 Murray, J. D., 295
 Musen, P., 137, 139, 140, 147-49
 Myerscough, V. P., 123
 N
 Nacozy, P. E., 138
 Nagancka, B. N., 74
 Nakano, T., 221
 Nandy, K., 309, 318, 323, 324, 331, 332
 Nandy, K. N., 330
 Naranan, S., 349
 Narial, H., 175, 407
 Narita, S., 223, 227, 230
 Nassau, J. J., 43
 Navach, D., 310
 Neckel, H., 315
 Neckel, T., 313, 332
 Ness, N. F., 1, 6, 9
 Neugebauer, G., 132, 231, 323, 355
 Neugebauer, M., 2, 9, 22
 Neven, L., 205
 Newall, E., 169
 Ney, E. P., 337
 Nicholls, D. C., 334
 Nielson, A., 167
 Nikitin, A. A., 213
 Nikolaei, A. N., 383
 Nilsson, S. G., 86
 Nishida, M., 168
 Nix, J. R., 86
 Nolt, I. G., 54
 Noonan, T. W., 158, 315
 Norman, C. A., 384
 Norris, J., 210
 Nosek, R. D., 313
 Novick, R., 271, 291, 292, 295
 NOVIKOV, I. D., 387-412; 156, 166, 389, 390, 393-99, 402-4, 410
 Novikov, Yu. N., 86
 Noyes, R. W., 204
 Nozawa, Y., 105
 Nudelman, S., 96
 Null, G. W., 143
 Nussbaumer, H., 213
 O
 O'Dell, C. R., 253, 321, 352, 355, 356
 Oesterwinter, C., 136, 142, 149
 O'Handley, D. A., 144
 Ohnishi, T., 86
 Oke, J. B., 107, 213, 267
 Okoye, S. E., 2, 11
 Oliver, M., 102
 Ollongren, A., 136
 Omnes, R., 181, 182, 398, 399
 Oort, J. H., 175, 220
 Orlov, A. A., 148
 Orrall, F. Q., 205
 Osawa, K., 37
 Osmer, P. S., 44, 214
 Ostriker, J., 226, 232, 233
 Ostriker, J. P., 280, 281, 292, 304
 Overbeck, J. W., 349
 Ozernoi, L. M., 175, 389
 P
 Packard, R. F., 70
 Page, T., 103
 Page, T. L., 280, 282
 Pagel, B. E. J., 89, 214
 Pal, Y., 270
 Palmieri, T. M., 271, 278, 291, 296, 299
 Parker, E. N., 1, 26, 220
 Parker, L., 156, 180, 406
 Partridge, R. B., 321
 Pascu, D., 146
 Patterson, J. R., 74, 81
 Pattey, R. R., 96
 Paul, J. W., 364
 Paul, W. T., 172
 Pauliny-Toth, I. I. K., 52
 Pease, F. G., 263
 Pecker, J. C., 187, 355
 Peebles, P. J. E., 155, 156, 158, 168, 169, 172, 173, 175, 177, 389
 Peery, B., 129
 Peteris, R. E., 167
 Peimbert, M., 355
 Penengo, P., 299
 Penrose, R., 156, 391, 39
 406
 Penston, M. V., 223, 224
 PENZIAS, A. A., 51-72; 53, 57, 59, 90, 155, 168, 305
 Perola, G. C., 281
 Perry, J., 120, 128
 Persson, S. E., 355
 Peters, C. F., 136
 Peters, G., 212
 Peters, J. G., 80, 128
 Peterson, D. M., 209-11
 Peterson, L. E., 270-72, 274, 275, 299, 300
 Petrosian, V., 276, 355
 Petschek, H. E., 379
 Peytremann, E., 310
 Pfefferman, E., 271-73
 Phelan, H. T., 139
 Philip, A. G. D., 315
 Phillips, J. G., 125
 Phillips, T. G., 68
 Picat, J. P., 112

Piersol, A. G., 6
 Pike, W. S., 111
 Pikel'ner, S. B., 309, 363,
 368, 379
 Pilkington, J. D., 11
 Pine, M. R., 232
 Pines, D., 364, 378
 Pinkau, K., 271-73
 Pitaevsky, L. P., 407
 Plus, L. J., 142
 Podosek, F. A., 76
 Poland, A. I., 210
 Polozava, N. G., 139
 Pottasch, S. R., 351, 352
 Pounds, K. A., 299, 300
 Powell, J. R., 98, 111
 Prendergast, K., 136
 Preston, G. W., 44
 Price, P. B., 86, 90
 Price, S. D., 121
 Prokofieva, V. V., 104
 Prunster, S., 350
 Ptuskin, V. P., 379
 Puget, J. L., 175, 180,
 182
 Pühlohofer, F., 75
 PURCELL, E. M., 309-62;
 265, 325, 337, 342, 345,
 346

Q

Quenby, J. J., 6
 Querci, F., 121, 123
 Querci, M., 121, 123
 Quirk, W. J., 136
 Quiroga, R. J., 317

R

Rabe, E., 143, 144
 Radhakrishnan, V., 295
 Raimond, E., 231
 Ramaty, R., 276, 350
 Ramsden, D., 298, 299
 Rancourt, J. D., 248
 Rank, D. M., 53, 235
 Razin, V. A., 373
 Readhead, A., 11
 Reddish, V. C., 354
 Redman, R. U., 48
 Rees, M. J., 169, 175-77,
 181, 292, 304
 Reeves, H., 76, 83, 91, 168,
 272, 273, 389
 Reinhardt, M., 177, 281
 Renard, L., 112
 Rex, K. H., 312
 Reynolds, J. H., 76
 Reznova, L. V., 355
 Rhodes, W. T., 265
 Richards, P. L., 67
 Richards, W. L., 248, 267
 Rindfleisch, T. C., 105
 Ritchey, G. W., 240
 Robbins, R. R., 355
 Roberts, W. S., 220, 221

Robertson, J. W., 335
 Robertson, R. G. H., 80
 Robinson, L. B., 108
 Robinson, L. J., 98
 Rocchia, R., 271, 275
 Rochester, G. K., 299
 Rodick, R. R., 312
 Rogstad, D. H., 265
 Rohlfs, K., 317
 Roll, P. G., 155, 156,
 168
 Rolling, B. V., 68
 Rom, A., 140, 148
 Rom, A. R. M., 137, 140
 Roman, N. G., 47
 Rome, J. M., 265, 266
 Rood, H. J., 280, 282
 Rössiger, S., 318
 Rothenflug, R., 271, 275
 Rothermel, H., 271-73
 Roy, A. E., 148, 149
 Rozkovskij, D. A., 326
 Rudakov, L. I., 364, 365,
 374
 Ruiz, R. M., 105
 Rukhadze, A. A., 370
 Runciman, W. A., 331
 Rushforth, C. K., 256
 Russell, C. T., 6
 Rustad, B. M., 167
 Ruzmaikin, A. A., 407
 Ruzmaikina, T. B., 407
 Rybicki, G. B., 187, 191,
 193, 201, 202
 Ryter, C., 349
 Rytov, C. M., 14

S

Sackmann, I.-J., 128, 130,
 131
 Sagdeev, R. Z., 378
 Sagorodnikov, S. P., 366
 Sakharov, A. D., 400, 407,
 408
 Salpeter, E. E., 11, 13, 21,
 22, 76, 317, 337, 346-48,
 353
 Sancisi, R., 317
 Sandage, A., 158
 Sanders, R. H., 127, 131
 Sanderson, T. R., 299
 Sanford, P. W., 287
 Sanford, R. F., 125
 Sargent, A. I., 212
 Sargent, W. L. W., 212
 Sari, J., 6, 8, 26
 Saslaw, W. C., 220, 322
 Sato, H., 156, 173, 175,
 176
 Savage, B. D., 310, 311,
 315, 316, 319, 320, 352
 Savage, C. M., 112
 Scalio, J. M., 128, 130,
 131
 Scarf, F. L., 26
 Schade, O. H., Sr., 111

Schadee, A., 121-23, 126
 Schanzle, A. F., 136
 Schatzman, E., 345
 Scherb, F., 264
 Schiffer, J. P., 399
 Schlüter, A., 176
 Schmetekopf, A. L., 213
 Schmidt, K. -H., 317, 350,
 352
 Schmidt, M., 97, 107
 Schmidt, T., 334
 Schmitt, J. L., 48
 Schnur, G., 332
 Scholl, H., 136, 144
 Scholz, M., 210-12
 Schommer, R. A., 334
 Schottky, W., 59
 Schramm, D. N., 76, 85,
 86, 91, 168
 Schroeder, D. J., 245
 Schubart, J., 136, 143,
 144
 Schuching, E. L., 174
 Schuster, A., 179
 Schwartz, D. A., 271, 272,
 274, 275, 298-300
 Schwartzmann, V. F., 403
 Schwarz, J. H., 223
 Schwarzschild, M., 127,
 131
 Sciamia, D. W., 281, 293,
 349
 Sconzo, P., 137
 Scott, D. K., 142
 Scott, E. H., 57
 Scott, P. F., 11
 Scudder, J. K., 296
 Sear, J. F., 6
 Searle, L., 123, 128
 Seddon, H., 331, 332
 Seeger, P. A., 127
 Seeman, N., 271-73, 299,
 300
 SEIDELMANN, P. K., 135-
 54; 138, 142, 144, 146
 Serkowski, K., 335
 Serlemitsos, P. J., 271,
 275, 298-300
 Servan, B., 112
 Seward, F. D., 271, 275,
 278, 296
 Shack, R. V., 248
 Shah, G. A., 321, 323, 345,
 349
 Shallcross, F. V., 111
 Shane, C. D., 115, 315
 Shapiro, M. H., 127
 Shapiro, I. I., 142
 Shapiro, I. S., 403
 Shapiro, L. S., 169
 Shapiro, L. S., 158, 169
 Shapiro, M. M., 90
 Shapiro, S., 67
 Sharaf, Sh. G., 138, 139,
 142
 Share, G. H., 271-73, 299,
 300
 Sharp, I. F., 376

Sharp, L. E., 11, 21, 22
 Sharpless, S. 47
 Sharpless, W. M., 61
 Shatzman, E., 156, 182
 Shaw, P. B., 75
 Shcheglov, P. V., 101
 Shchinov, B. G., 377
 Shepley, L. C., 395
 Sher, D., 227
 Sherman, N. W., 136
 Shimabukuro, F. I., 62
 Shipman, H. S., 210
 Shu, F. H., 220, 221, 225
 Shukla, P. A., 291
 Silberberg, R., 90
 SILK, J., 269-308; 91, 169,
 173, 175, 269, 272, 273,
 286, 292, 297-99, 303, 304,
 355, 394, 409
 Simon, M., 54
 Simpson, R. W., 205
 Sinclair, A. T., 146
 Singwi, K. S., 167
 Sinton, W. M., 54
 Siscoe, G. L., 9, 10
 Sjørgen, W. L., 143
 Skumanich, A., 191-93, 196,
 199, 202, 205, 210
 Slysh, V. L., 349
 Smirnov, Yu. N., 168
 Smith, E. J., 9, 10, 26
 Smith, E. van P., 332
 Smith, H. F., 140
 Smith, M., 208
 Smith, R. L., 128, 130,
 131
 Smith, W. B., 142
 Smithson, R. C., 108
 Snijders, M. A. J., 210
 Snow, T. P., 120, 128
 Snyder, L. E., 235
 Sobel, H., 321
 Sofue, Y., 177
 Soklov, B. P., 407
 Solinger, A. B., 281, 282
 Solomon, P. M., 53, 59,
 90, 235
 Somme, M., 299
 Sommer, M., 271-73
 Sparrow, J. G., 337
 Spanke, E., 59
 Spicer, W. E., 109
 Spiegel, E. A., 174
 Spindler, R. J., 123
 Spinka, H., 74, 82, 127
 Spinrad, H., 48, 90
 Spitzer, L., 169-71
 Spitzer, L., Jr., 222, 223,
 225, 308, 341-43, 346, 350,
 354
 Stachnik, R. V., 261
 Standish, E. M., 136, 226
 Stapp, J. L., 323, 324
 Starobinsky, A. A., 406
 Starrfield, S., 234
 Stecker, F. W., 175, 180,
 182, 273, 297
 Stecker, T. P., 212, 310,
 328, 350, 351
 Stefanovich, D., 110
 Steigman, G., 156, 180,
 181, 399
 Stein, R. F., 223
 Stein, W. A., 116, 118,
 249, 312
 Stephens, W., 74
 Stephens, W. E., 73
 Stephenson, G. J., Jr., 75
 Sterling, S. A., 67
 Stevens, C. M., 399
 Stewart, J. C., 193
 Stewart, J. M., 166, 173,
 174
 Stewart, P., 83
 Stix, T., 370
 Stoekly, R., 331
 Stokes, R. A., 53
 Stone, M. E., 208
 Strittmatter, P. A., 180,
 292, 299, 304
 Stroke, G., 265
 Strom, K. M., 132, 232,
 233
 Strom, S. E., 132, 208-10,
 213, 214, 232, 233
 Stromberg, W. D., 105
 Stumpff, P., 136
 Sturrock, P. A., 26
 Sudbury, G. C., 326
 Sudbury, P. V., 147
 Suess, H. E., 73
 Suga, K., 306
 Sunyaev, R. A., 177, 178,
 389, 404
 Suvorov, E. V., 379
 Suzuki, S., 155
 Swanson, P. N., 68
 Sweet, P. A., 367
 Sweigart, A., 223
 Swift, W. D., 264
 Swindell, W., 255
 Swings, P., 213
 Symonds, M. D., 11, 21
 Symons, G. D., 74
 Syrovatskii, S. I., 368, 373,
 376, 381
 Szebehely, V., 136

T

Tademaru, E., 223
 Tagirov, E. A., 406
 Takeda, H., 156, 175, 176
 Talon, R., 271, 272
 Tamm, I. E., 371
 Tananbaum, H., 280, 287
 Tarrius, A., 271, 275
 Tatarski, V. L., 14-16
 Tayler, R. J., 167, 168
 Taylor, B. J., 48
 Teller, E., 167
 ter Haar, D., 384
 Thackeray, A. D., 43, 44
 Thaddeus, P., 53, 90, 156,
 178, 305
 Thomas, H. -C., 131
 Thomas, L. H., 173
 Thomas, R. N., 187, 192,
 200, 215
 Thompson, R. I., 124
 Thorne, K. S., 168
 Tiffet, L. E., 315
 Tolman, R. C., 155, 402
 Tomboulian, D. H., 376
 Tombrello, T. A., 127
 Tomita, K., 175, 407
 Tomley, L. J., 130
 Tompsett, M. F., 111
 Toombes, R. I., 132
 Toor, A., 271, 275
 Torres-Peimbert, S., 125,
 129, 130
 Torrey, H. C., 66
 Tousey, R., 107
 Townes, C. H., 53, 68,
 235
 Trakhtengert, V. J., 379
 Treder, H. J., 407
 Treffers, R. R., 323
 Trentelman, G. F., 75
 Trimble, V., 214
 Trombka, J. I., 270-72
 Trumbo, D. E., 260
 Truran, J. W., 75-85, 87,
 88, 126
 Tsuji, H., 83
 Tsuruta, S., 85
 TSYTOVICH, V. N., 363-86;
 363-66, 368, 369, 373-75,
 377, 379, 381-85
 Tucker, B. J., 107
 Tucker, W. H., 271, 282,
 291-93, 295, 297, 304
 Turkevich, A., 167
 Turner, B. E., 237
 Turon, P. J., 110

U

Ulam, S., 136
 Ulrich, B., 67
 Ulrich, R. K., 128, 130,
 131
 Underhill, A. B., 210
 Unsöld, A. O. J., 89
 Unti, T. W. J., 9, 22
 Urey, H. C., 73
 Usilber, S. I., 104
 Uto, H., 350
 Utsumi, K., 124, 129

V

van de Hulst, H. C., 326,
 330, 335
 van den Bergh, S., 227
 Vanden Bout, P. A., 90
 Vanden Bout, R., 271, 291,
 292, 295
 Van der Kruit, P. C., 279
 Van der Laan, H., 279

Vandervoort, P. O., 235
 Vanderwal, N. C., 60, 66
 Van Dilla, M. A., 271, 272, 275
 Van Flandern, T. C., 143
 Van Horn, H. M., 76
 van Paradijs, J., 43
 Vanýsek, V., 328
 Vardya, M. S., 121, 321
 Varsavsky, C. M., 317
 Vdovynik, G. P., 322
 Vedenov, A. A., 378
 Vedrenne, G., 271, 272
 Velikhov, E. P., 378
 Vernazza, J., 204
 Veron, P., 101
 Verschuur, G. L., 223, 345
 Vette, J. I., 270, 272, 299, 300
 Vlnti, J. P., 148
 Viola, V. E., Jr., 86
 Virobek, P. F., 3
 Visvanathan, N., 332
 Vitkovich, V. V., 11
 Vladimirov, Yu. S., 402
 Vlasov, N. A., 180
 Vlasov, W. I., 11
 Vogt, E. W., 74
 Völk, H., 26
 Volkov, I. V., 101
 von Hoerner, S., 56, 57

W
 Waggoner, R., 389
 Waggoner, R. V., 76, 77, 87, 91, 167, 168, 179
 Walborn, N. R., 37, 212, 213, 352
 Walker, G. A. H., 104, 311, 312, 330
 Walker, M. F., 102, 104, 232
 Walker, M. J., 140
 WALLERSTEIN, G., 115-34; 89, 120-22, 125, 126, 129, 130
 Wallis, G., 156
 Wampler, E. J., 108, 328, 331
 Wang, C. L., 350
 Wang, C. P., 271
 Wang, R. T., 321
 Warner, B., 49, 123
 Warren, J. B., 395
 Warren, P. R., 43
 Wasserburg, G. J., 76
 Wataghin, A., 83
 Watson, W. D., 338, 348, 353
 Wdowczyk, J., 306
 Weaver, T. A., 127
 Webber, W. R., 90

Weber, S. V., 320
 Webster, W. J., 235
 Weimer, P. K., 111
 Weinberg, S., 156, 173, 174, 179, 181
 Weinberg, S. L., 297-99
 Weinreb, S., 63, 67
 Weiss, R., 305
 Weisser, D. C., 75
 Welch, W. J., 235
 Wentworth, F. L., 70
 Wentzel, D., 379
 Werner, M. W., 317, 337, 348
 Wernzt, C., 75
 Wesselius, P. R., 317
 Westerlund, B. E., 120
 Westgate, C. R., 68
 Westphal, J. A., 106
 Weymann, R., 171, 178
 Weymann, R. J., 246, 267
 Whalen, J. J., 68
 Wheeler, J. A., 397
 White, O. R., 106, 235, 255
 White, R. E., 352, 353
 White, R. H., 84
 Whitford, A. E., 312
 Whitmer, C. A., 66
 Whittle, R. P. J., 295
 Wickramasinghe, N. C., 309, 322-24, 331, 332, 335, 337, 346, 350, 351, 356
 Wielebinski, R., 301
 Wielen, R., 136
 Wilkins, G. A., 146
 Wilkinson, D. T., 53, 155, 156, 168
 Williams, C., 149
 Williams, D. A., 328, 347, 356
 Williams, J. G., 136, 141
 Williams, P. M., 43, 48, 49
 Wilson, A. M., 89
 Wilson, B. G., 271, 275, 291
 Wilson, P. R., 215
 Wilson, R. W., 53, 90, 155, 168, 305
 Wiltse, J. L., 70
 Wing, R. F., 90, 132
 Winkler, H., 74, 81, 82
 Wirtanen, C. A., 315
 Wisniewski, W., 335
 Witt, A. N., 323, 326, 327, 353
 Wlérick, G., 101
 Wolf, E., 262
 Wolfe, A. M., 287
 Wolfe, J., 1
 Wolfe, J. H., 9, 23
 Wolff, S. C., 44

Wolstencroft, R. D., 332, 336
 Woltjer, L., 297
 Wood, A., 43
 Wood, C. W., 54
 Woolf, N. H., 249
 Woolf, N. J., 59, 312, 313, 350, 351
 Woolfson, M. M., 233
 Woosley, S. E., 74, 75, 80, 82, 83
 Worrall, G., 89
 Wright, A. E., 223
 Wright, P. J., 298, 299
 Wrixon, G. T., 54
 Wroe, D., 167
 Wu, C.-C., 330
 Wyller, A. A., 125
 Wynn-Williams, C. G., 355

Y
 Yagiom, A. M., 4, 6
 Yahil, A., 280, 281
 Yakubov, V. B., 136
 Yakubovskii, O. A., 213
 Yamashita, K., 326
 Yamashita, Y., 116, 121, 125
 Yasuda, H., 143
 Yentis, D. J., 271, 291, 292, 295
 Yesipov, V. F., 101
 York, D. G., 328, 329
 Yoshioka, S., 326
 Yoss, K. M., 48
 Yost, J., 232, 233
 Young, A. T., 11, 14, 22, 24, 25
 Young, D. T., 61
 Younger, P. F., 312, 330
 Yu, J. T., 173
 Yuan, L. C. L., 350

Z
 Zaidins, C. S., 74, 80, 81
 Zavoisky, E. K., 364, 365, 377
 Zawadski, A., 306
 Zech, G., 143, 144
 ZEL'DOVICH, YA. B., 387-412; 156, 166, 177, 178, 180-82, 389, 390, 393, 397-99, 402-4, 406, 407, 410
 Zheleznyakov, V. V., 379
 Ziegenbach, J. W., 144
 Zimmerman, B. A., 75, 126
 Zinn, R. J., 209
 Zucchini, P. M., 107
 Zuk, W. M., 74

SUBJECT INDEX

A

Alfven waves
plasma discontinuities and,
4, 9-11, 26
Aluminum
stellar nucleosynthesis and,
80, 87
Antennas
radio-astronomy use of, 55-
58
Antimatter
abundance of, 180
origin of matter and, 179-
81
Arizona-Smithsonian joint
program
multimirror telescope and,
246-47
Astronomy
machine-readable data of,
149-50
Astronomy, dynamical
solar system and, 135-50
Astronomy, millimeter-wave
explosive nucleosynthesis
and, 91

B

Barium
"barium stars," 49
Baryons
baryon-antibaryon relations
and, 408
baryon numbers, 178, 179
cold fluid state of, 409
inhomogeneity of, 180,
181
interactions of, 398, 399,
402, 403
nonconservation of
cosmic singularities and,
408, 409
specific entropy of universe
and, 409
Bianchi classification, 393-
96, 398

C

Calcium
stellar nucleosynthesis and,
79, 82
Carbon
abundance in carbon stars,
122-25
"carbon burning," 81, 82,
88, 87
interstellar clouds and, 352

interstellar dust particles
and, 322
nuclear processing in carbon
stars, 126
reactions of
stellar nucleosynthesis
and, 74, 75, 78, 87, 90
Carbon monoxide
abundance of
interstellar grain surfaces
and, 348
interstellar space mapping
of, 53-54
Carbon stars
see Stars, carbon
Carnegie image-tube project,
97, 98
Carruthers Apollo 16 camera,
102, 103
Cayrel mechanism
solar temperature and, 199,
203
stellar atmospheres to, 199
Celescope, 104, 105
Cerro Tololo Observatory
star spectral classification
at, 37, 46
Chebyshev trigonometric
polynomials
planetary motions and,
138
Chromium
stellar nucleosynthesis and,
80, 87-88
Clouds, dense
see Interstellar clouds,
collapsing
Cobalt
stellar nucleosynthesis and,
80
Comets
interstellar dust and, 352
orbits of
deviations in, 144-46
Compton flux, inverse
X-ray fluxes and, 274, 275,
279, 281
Computers
dynamical astronomy uses
of, 135-36, 149, 150
languages used in, 137
Contact intensifier tubes, 100,
101
Correlation functions
definition of, 4, 5
Cosmic rays
diffuse galactic γ rays and,
304, 305
electron fluxes of
muon-poor air showers
and, 306
electron spectrum of
steepening above 300 GeV,
305
element abundance and, 90
 γ radiation and, 270
isotropization of, 379,
380
magnetic fluctuations and,
26
modulations of
solar wind and, 1, 2
origin of
optically transparent regions
and, 381
turbulent cosmic plasma
and, 368
X-ray background radiation
in, 376
passage through interstellar
grains
 X rays generated by, 349
scattering of, 379
 X and γ radiation origin and,
273, 300-2
Cosmic rays, galactic
galactic γ radiation and,
279
Cosmochronology
stellar nucleosynthesis and,
86, 89
Cross correlations
definition of, 5
Cross spectra
definition of, 5-6
C system
carbon star classification of,
116

D

Deuterium
abundance in interstellar
medium, 168
Diamonds
interstellar dust particles
and, 322
Digicon, 112
"Digital image tube," 112
Diode arrays
self-scanning, 111, 113
Diodes mixer
radio-astronomy receivers
and, 60, 61
Doppler width gradients
stellar spectra and, 201,
202

E

Earth

auroral emissions of, 103
E Earth-Moon reciprocal masses, 144
 geocorona of, 103
 Eidophor angular resolution of telescopes and, 261
 Electromagnetic waves propagation of model of, 14
 Electrography, 101-3, 111, 112
 Elements abundances of, 88
 Ephemerides Ephemeris Working Group and participating groups in, 149, 150
 Evolution, cosmic collapsing phases in, 408 contraction-expansion bounce in, 401, 402 expansion and anisotropy and, 404 time directions in, 408 galaxy formation and, 89, 90, 136, 175, 177 particle creation in, 405-7 stellar nucleosynthesis and, 87, 89 theories of course of, 389, 390
 see also Interstellar clouds, collapsing; Lepton era; Nucleosynthesis, stellar; Protostars, evolution of; Radiation era; Singularities, cosmic; Stars, formation of; Stars, carbon, evolution of; Universe, early
 Extragalactic entities X-radiation from, 277-79

F

Fiber-optic tubes, 98-100
FORMAC dynamical astronomy and, 137
 Friedmann singularities, 389-94, 397, 398, 400-2, 410
 Friedmann universe perturbation of, 409, 410
 Fringe visibility functions telescope resolving power and, 262-65

G

Galaxies clusters of, 277, 278 accretion models of, 281 diffuse X radiation from, 279-84
 emission models of, 281, 282 intraccluster matter and, 279-81, 294, 295 inverse Compton model of, 281 isotropic X-ray background from, 284, 293 occurrence of, 409, 410 radio emission from, 279, 281 spectra of, 279 temperature in, 280 thermal gas in, 279-95 velocities of, 280-85 X-ray luminosities in, 282-84
 diffuse galactic light origin of, 326, 337 diffuse γ radiation and, 297-300 distances to X-ray sources, 302 formation of magnetic fields and, 177 numerical methods for, 136 reviews on, 175 halo gas X-ray emission and, 295 intergalactic medium thermal emissions from, 275-77, 293 isotropic X radiation from, 277, 278 magnetic fields of, 334 matter-antimatter segregation in, 399 nonthermal radio emission by map of, 301, 302 nuclear history of, 89, 90 nuclei of infrared emission of, 384 primeval-turbulence theory and, 389
 Galaxies, radio confinement of, 280 spectra of mean electron injection spectrum of, 274
 Gamma radiation cosmic flux of, 270 diffuse, 269-306 diffuse galactic, 279-98 the galactic ridge, 298-300 isotropic background of, 272 stellar nucleosynthesis and, 91
 Gases degenerate fermion theory of, 398
 Gas, intergalactic temperature of, 276 thermal emission from, 275-77
 Gas, interplanetary fluctuations in radio waves and, 11 turbulence in, 25
 Gas, interstellar chemical composition of, 53 diffuse galactic γ rays in, 297 dust vs gas, 315-17
 Geodesics cosmological singularities and, 388, 391, 392 "incomplete," 392
 Germanium nucleosynthesis and, 80
 Grains, interstellar see Interstellar grains Graphite grains of interstellar dust and, 321-25, 330, 331, 344-47, 350, 357
 Gravitons creation of, 407

H

Hale-Princeton system, 112, 113
 Halley's comet motions of complexities of, 146
 Helium abundance of carbon stars and, 122, 123 primordial variations in, 169 "helium burning," 83, 87, 89
 interstellar grain growth and, 354 nuclear processing in carbon stars, 126 O and B star spectra and, 210 reactions of stellar nucleosynthesis and, 74, 75, 84, 89, 91 synthesis of early universe and, 158 radiation era and, 166, 167 variations in, 169
 HII regions interstellar dust and, 354-56 molecular processes in, 236 protostar evolution and, 234, 235 radiation extinction in, 317,

319, 320
radiation pressure in, 355

Hill-Brown Lunar Theory, 140, 141

Holography
telescope image construction and, 265

Holweger model
solar spectrum and, 204

Hydrocarbons, polycyclic
interstellar particles and, 322, 323, 328, 337, 338, 351

Hydrogen
abundance in carbon stars, 122, 123, 125-29
appearance in early universe, 157
atomic nuclei formed from, 73
interstellar
ionization of, 26
interstellar grain destruction by, 350
interstellar grains and, 316-18, 323, 324
molecular processes involving collapsing clouds and, 236
nuclear processing in carbon stars and, 126
O and B star spectra and, 209, 210
reactions involving
interstellar grain surfaces and, 347, 348, 352
stellar nucleosynthesis and, 84
spectrum-formation of, 195
star contents of, 103
star spectra and, 47

Hydrogen ion
solar photosphere opacity and, 203

Hydrogen, molecular
dissociation of
protostellar evolution and, 228

Hydroxyl
molecular processes involving collapsing clouds and, 236, 237

I

Ice
interstellar grains of, 312, 313, 321, 323, 331, 353, 357

Image orthicon systems, 103, 104

Image tube systems, 95-113
experimental systems, 109-13
Hale-Princeton system, 112, 113

infrared devices, 109, 110
MIT system, 112

nomenclature for, 96, 97

operating systems, 97-109
Carnegie image-tube project, 97, 98
Carruthers Apollo 16 camera, 102, 103
contact intensifier tubes, 100, 101
electronography and, 101-3
fiber-optic tubes, 98-100
hybrid systems, 108, 109
image orthicon systems, 103, 104
Kron camera, 102
Lallemand camera, 101, 102
Lynds system, 98
phosphor-screen output devices, 97-101
signal-generating devices, 103
spectracon, 102
vidicons, 104-8

Interferometry, speckle telescope resolving power and, 261, 262

Interstellar clouds, collapsing
early stage of the collapse dynamics of, 223-25
isothermal collapse in, 224
nonhomologous behavior in, 224
nonspherical collapse, 224, 225
filamentary structure of, 225

formation of dense clouds, 220, 221

fragmentation in
stellar mass spectrum and, 226, 227

HII regions, 234, 235

magnetic fields in, 222, 223

massive star formation, 233-35

molecular processes in, 235-37
reviews on, 235

observations of, 230-32
infrared techniques for, 231

onset of gravitational collapse, 220, 221

planetary systems formation and, 232, 233

processes in, 219-37
protostellar evolution and, 227-30
luminosity of, 228-34
radiation from, 228, 231

rotation effects in, 225, 226
star formation in, 219-22
theoretical models for, 219-22

thermal properties of, 221, 222, 227

Interstellar grains, 309-27
albedo of, 326, 327
conclusions concerning, 356, 357
diffuse interstellar absorption lines, 328-32
"emission wings" and, 330
resonant absorbers and, 331
dust clouds
temperature of, 317
dust in HII regions, 354-56
dust vs gas and, 315-17
electrical potential and charge of, 338, 339
magnetic fields and, 338, 339
grain alignment, 339-47
ferromagnetism and, 342
grain shapes and, 342-57
magnetic alignment, 341-46
polarization and, 342-46
radiation pressure and, 345, 346
rotation and, 340, 341, 346, 347
grain temperature, 337-38
radiation transfer and, 337
halos around
X rays and, 349

interstellar extinction and, 310-13
infrared region and, 312, 313
ultraviolet region and, 310, 312
visual region and, 311, 312

interstellar ice, 312, 313, 321, 331, 354-57

interstellar polarization and, 332-37
elliptical polarization and, 336
galactic magnetic field and, 334
linear dichroism and, 336
maps of, 333
wavelength dependence of, 334-36

origin, growth, and destruction of, 350-54
particle size distribution and, 320-22, 327, 330, 331, 336
processes on grain surfaces,

347-49
molecules formed by, 347
reviews on, 309
spatial distribution of dust, 313-20
extinction ratio and, 318, 319
hydrogen column density, 316-18
interstellar extinction and, 319, 320
maps of, 313, 315
star reddening by, 312, 313
theoretical extinction curves and, 320-26
core-mantle grains and, 323, 324
graphite grains and, 321-25
ice grains and, 321
light scattering by grains, 326-28
mixtures of grains and, 324, 325
particle size and shape and, 320, 321
polycyclic hydrocarbons and, 322, 323, 328
silicate grains and, 323
total amount of dust, 325, 326
X rays and, 349, 350
Interstellar HI clouds
heating and ionization of, 303, 304
Interstellar media
heating and ionization of, 303, 304
particle concentrations in, 366
Interstellar space
see Gas, interplanetary;
Plasma, interplanetary
Iron
abundance in carbon stars, 122, 126-28
diffuse spectral lines of
interstellar dust and, 331
interstellar grains, rotation
ferromagnetism and, 342
nuclear processing in carbon
stars, 126
reactions of
solar nucleosynthesis and, 79, 80, 87, 88
solar abundance of, 89
solar-system abundance of, 79, 80

J
Jeans criterion
interstellar collapsing clouds and, 220-30

Josephson junctions
radio-astronomy use of, 67, 68

Jupiter
mass of
determination of, 143, 144, 147
satellites of, 145-47

K
Kitt Peak National Observatory
radio astronomy at, 58
star spectral classification
at, 37

Kron camera, 102

L
Lallemand camera, 101, 102, 112

Large Magellanic Cloud
carbon stars in, 120

Large Space Telescope program, 253, 262

Lead
reactions of
stellar nucleosynthesis and, 85

Lepton
lepton numbers, 178, 179

Lepton era
early universe history and, 156, 157, 163-66
neutrino decoupling in, 164

Lilley's Law, 316

Lithium
abundance in carbon stars, 125, 128-31

Lowell Observatory
star spectrographic classification in, 38

LTE
departures from
solar spectra and, 207
stellar spectra and, 187-215
Sun photosphere and, 202-4
requirements for, 188
solar atmosphere and, 202
spectrum formation and, 198

Lyman continuum
solar atmosphere and, 203
star temperatures and, 200

M
Magellanic clouds
X-ray luminosities of
sources of, 302

Magnesium
abundance in O stars, 211

Magnesium tetrabenzporphyrin
interstellar absorption lines and, 332

Mariner 6 and 7
vidicon pictures from, 105

Mars
general theory of, 142, 146
satellites of, 145, 146

Maser effects, cosmic
pulsar radio emission, 379

Masers
radio-astronomy use of, 68-70

Mercury
mass of, 144

Metals
star spectra and, 47-49

Meteorites
chemical composition of, 76

Meteors
element abundance in, 88

Microwaves
background intensity and, 304

Milky Way
dense dark clouds in, 220, 230

Mixer diodes
radio-astronomy receivers and, 59-63

Mixers
bulk indium antimonide, 68, 69
cooled, 66
room-temperature, 70

MK system
characteristics of, 30
establishment of additional dimensions
practical problems in, 34, 37

limitations, 37, 38
present state of, 29, 30
quantitative methods for, 30

recent catalogues for, 34
revised fundamental standards for
"dagger types" and, 32, 33
O4-G2 spectral range and, 32-38

spectral types in, 29

star chemical composition and, 38

summary of, 32

validity of, 30-32

Moon
artificial satellites of, 149
Earth-Moon distance
laser measurement of, 140

Earth-Moon reciprocal masses, 144

lunar theory, 143
 mass of, 145
 motions of
 computer techniques for, 136, 140
 development of theory of, 140-41
 orbit of
 Ephemeris for, 142-43
 radar observations of, 141
 secular acceleration of, 143

N

National Radio Astronomy Observatory
 radio astronomy at, 55
 Nebulae
 interstellar dust and, 352
 spiral arms of
 star formation in, 220
 theories of, 220
 surface brightness of, 327
 Nebulae, planetary
 temperature of, 199
 Nebula, Orion
 dense dark clouds in, 231
 Neon
 stellar nucleosynthesis and, 80, 87
 Neptune
 motions of
 Pluto and, 141
 satellites of, 145, 147
 Newton-Raphson approach
 spectrum formation computation and, 191
 Nickel
 production of
 stellar nucleosynthesis and, 79-80
 Nitrogen
 abundance in carbon stars, 122-24, 128
 nuclear processing in carbon stars, 126
 stellar nucleogenesis and, 83, 87, 90
 Nuclei, atomic
 explosive synthesis of in stars, 73-91
 unstable, 75
 Nuclei, superheavy
 stellar nucleosynthesis and, 88
 Nucleosynthesis
 cosmic singularities and, 403
 Nucleosynthesis, stellar
 carbon stars and, 125-28
 chemical reactions in, 74-84
 cosmochronology and, 86, 89
 early universe history and

radiation era and, 167
 explosive processes in, 78-88
 energetics of, 74, 75, 77, 84
 helium zone of, 83
 nuclear statistical equilibrium and, 78-81
 p-process and, 83, 84, 91
 r-process and, 84-86, 91
 s-process and, 84, 91
 explosive synthesis and, 73-91
 mathematical techniques for, 77, 78
 observed abundances and, 88-91
 isotopes and, 88, 90
 new sources of, 90, 91
 solar system and, 88
 stellar spectroscopy and, 88, 90
 "optical model" technique for, 78
 photodissociation and, 74, 77, 79
 superheavy nuclei and, 88
 theories of, 126

O

Orbiting observations
 LST program, 253
 Oxygen
 abundance in carbon stars, 122-24
 nuclear processing in carbon stars, 128
 "oxygen burning," 80-83, 86, 87
 reactions of
 stellar nucleosynthesis and, 74, 75, 78, 83, 90

P

Penrose-Geroch-Hawking theorems, 388, 401
 Penrose-Hawking theorem, 391, 392
 Phosphor-screen output devices, 97-101
 Phosphorus
 stellar nucleosynthesis and, 87
 III-V Photocathode, 109
 Photocathodes
 remotely processed, 109
 Planetary systems
 formation of, 232
 model of, 232, 233
 Planets
 masses of, 145
 motions of

computer techniques for, 136-42
 perturbations in, 138-42
 radar observations of, 141
 Planets, minor
 Ephemerides of, 143
 masses of, 144, 145
 Plasma, cosmic
 baryon repulsion in, 398, 399
 Plasma, cosmic magnetoactive, 363-85
 constituents of, 365, 369
 cosmic-ray isotropization and, 379, 380
 degree of ionization of fast particles and, 368
 fast particles in cosmic role of, 368, 369
 creation of, 369, 370
 definition of, 369
 magnetoactive plasma waves and, 369
 oscillations and waves and, 370-77
 plasma waves interaction with, 377, 378
 radiative balance and, 369
 wave instabilities from, 378, 379
 waves and, 363-85
 laboratory studies of, 363, 368
 magnetic folds in, 371, 372, 374
 magnetized particles in, 373
 oscillations and waves in, 364, 365
 plasmons and, 364, 365, 370, 375
 types of oscillations, 370
 particles in
 fast vs core particles, 369
 number per unit volume, 366
 scattering of waves by, 374-80
 particle velocity in resonant emission and, 371, 372
 relativistic particles in electromagnetic radiation and, 380, 381
 energy spectrum of, 380-85
 inhomogeneous distribution of, 383
 spectral lines of
 turbulent broadening of, 366-68
 synchrotron radiation in, 372-74, 379-82

turbulence in, 364-69, 374-85
 turbulent bremsstrahlung emission and, 375-79, 384
 unstationary processes in types of, 363, 364
Plasma, interplanetary broadband fluctuations in, 3-11
 spectral studies of, 4-6
 density of
 power spectrum of, 9
 heat conduction in, 26
 hydrogen in, 26
 parameters of
 cross spectra of, 10
 spectra of, 23
 stream-strain interaction in, 10
 turbulence of, 25
 turbulence and scintillation in, 1-28
 see also Solar wind
Plasma physics
 early universe and radiation era and, 169-74
Plasmons
 cosmic plasma and, 364, 370, 375
Pluto
 ephemeris of, 141
 motions of
 Neptune and, 141, 142
Poisson series
 dynamical astronomy use of, 137
Power spectra
 definition of, 4, 5
p-Process
 stellar nucleosynthesis and, 83, 84, 91
Protostars
 evolution of, 227, 230
 see also Interstellar clouds, collapsing
Pulsars
 emitting regions of
 particle concentration in, 366
 ionized gas distribution and, 303

Q

Quarks
 cosmic singularities and, 399
Quasars
 infrared emission of, 384
 outer regions of
 particle concentration in, 366
 X radiation from, 278

R

Radiation

3° K microwave background induction, 168
 see also Cosmic rays;
 Gamma radiation; Radio waves; X-radiation
Radiation, diffuse X and γ , 269-306
Radiation era
 early universe history and, 157, 158, 166-78
 end of, 177, 178
 helium synthesis in, 166-69
plasma physics in, 169-74
 characteristic quantities and, 169
 dissipative effects in, 173, 174
 oscillations in, 171, 172
 temperature differences and, 170, 171
 viscosity effects in, 174
 turbulence and magnetic fields, 174-77
Radiation, ultraviolet interstellar extinction of, 310-13
Radiation, X and γ
 diffuse galactic γ radiation, 279, 298
 diffuse galactic rays above 1 keV, 297-302
 diffuse X rays below 1 keV general trends and models for, 287-95
 sky maps of sources, 287-95
 soft X-ray extended sources, 295-97
 halo X rays and, 300-2
 isotropic component of, 270-73
 1-keV to 100-keV region of, 273-87
 extragalactic X-ray sources of, 277-79
 galaxy cluster X-ray sources, 279-84
 nonthermal mechanisms in, 273-75
 thermal emission and, 275-77
 0.1-MeV to 100-MeV region of, 270-73
 theoretical interpretations of, 273
 potential contributions to astronomy, 302-5
 theories of origin of, 269
Radio astronomy
 millimeter-wavelength technique in, 51-71
 antennas for, 55-58
 atmospheric absorption and, 55, 62
 atmospheric restrictions of, 54, 55
 bulk indium antimonide mixers and, 68, 69
 compact radio sources and, 51, 52
 cooled mixers, 66
 future receiver techniques for, 65-71
 interstellar molecules and, 53
Josephson junctions, 67, 68
local oscillator sources, 65, 66
 masers and, 68-70
 microwave background radiation, 53
 parametric amplifiers and, 66, 67
 present equipment for, 55-65
 primary areas of, 51-53
 receivers, 58-63
 room-temperature mixers, 70
 system calibration techniques for, 63-65
Radio waves
 fluctuations in solar wind studies and, 11-25
 propagation of
 electron density fluctuations and, 11
Rays, cosmic
 see Cosmic rays
Receivers
 radio-astronomy use of, 58-63
Return beam vidicon (RBV), 110, 111
Ritchey's Super-Telescope plans for, 240, 241
R-N system
 carbon star classification and, 115
r-Process
 stellar nucleosynthesis and, 84-86, 91

S

Satellites
 artificial, 148, 149
 atmospheric drag on, 149
 luni-solar perturbations of, 148, 149
 motions of, 139
 theory of, 148
 natural, 146, 147
Saturn
 mass of
 determination of, 144, 147
 satellites of, 145, 147
Scintillations, interplanetary calculation of, 18, 22

Scintillations, interplanetary
calculation of, 18, 22
solar wind structure and,
21-25
solar wind velocity and,
23-25
see also Plasma, interplanetary; Solar wind

Sec vidicon, 106, 107

Silicon
abundance in O and B stars,
211
interstellar space and,
53
reactions of
stellar nucleosynthesis and,
78, 82
"silicon burning," 78-80

Silicon and silicates
interstellar dust and, 313,
323, 324, 330, 331, 351,
357

Silicon vidicon, 106

Singularities, cosmological
conditions for existence of,
391, 392

Friedmann singularities,
389-93

general definition of,
391

gravitational fields near,
390

Penrose-Hawking theorem
and, 391

perturbed models of
isotropic and quasi isotropic,
409, 410

perturbed uniform model
and, 409, 410

entropy build-up in, 409

physical processes near,
387-410

bounce in Friedmann model,
400-2

Einstein equation corrections and, 405-7

equations of state for,
398-400

gravitational contributions to,
399, 400

homogeneous anisotropic
models and, 403, 404

inverse contraction and
expansion and, 401

long gravitational waves
and, 403

nonconservation of baryons
and, 408, 409

particle creation and,
405, 407

thermodynamic equilibrium
and, 402, 403

ultra-high densities and
temperatures, 398-400

weakly interacting particles
and, 404

present state of universe
and, 389
structure of, 390-98
general solution and, 397,
398
geometrical proofs for,
391
initial singularity inevitability and, 390-92
mixmaster model of universe, 394-97
nonuniform models of,
394
uniform models of, 392-94
turbulent behavior in, 389

Sky maps
diffuse X rays below 1 keV,
287-95

Small Magellanic Cloud
X radiation from, 288

Sodium
stellar nucleosynthesis and,
80, 87

Solar system
dynamical astronomy of,
135-50
computer use in, 135-41
discussion of observations,
141-46
planetary and lunar theories and, 136-41
planet motions and, 136-41
satellites, natural and
artificial, 146-49
simultaneous numerical
integration, 136
simulated systems of,
136
element abundances in,
88
nucleosynthesis in, 89

Solar wind
fluctuations in, 1, 11-25
broadband turbulence and,
6-8, 10, 11, 20
density and 21-23
electron density and, 2
magnetic, 3, 7, 9
scintillations and, 2, 21-23
spectral analyses of, 2
magnetic spectrum of, 9
magnetosphere and, 363
origin of, 25, 26
parameter values of, 2
particle concentration in,
366
radio wave studies of, 11-25
angular broadening and,
11-25
interplanetary scintillations
and, 11-25
three-dimensional model
of, 14-21
thin-screen model for,
12-15, 20, 22, 24
refractive index of, 12, 13
reviews on, 1
schematic sketch of, 3
spectral analysis of, 2, 6,
7, 9
waveform analysis of, 9
structure of
interplanetary scintillations
21-25
turbulence of, 25, 26
velocity of, 8, 12, 13, 19, 20
heliocentric latitude and,
24
power spectrum of, 8
scintillations and, 23-25
wavelengths of, 13

Space studies, astronomical
Carruthers Apollo 16 camera
and, 102, 103
Mariner 6 and 7 vidicon
pictures, 105, 106

Sparrow resolution
telescope systems and,
256

Spectracon, 102

Spectral classification, 29-49
chemical composition and,
47-49
MK system of
see MK system
Morgan-Keenan system of,
44
practical limits of, 37, 38
role of, 31, 32
stellar atmospheres and,
31
third dimension problem in,
34-37

Spectra, mass
stellar
photostar fragmentation
and, 226, 277

Spectra, stellar
computation methods for,
187

departures from LTE, 187-215
future research directions,
214, 215

model atmospheres and
reviews on, 187

spectrum formation
see Spectrum formation

Spectroscopy, astronomical
image-tube systems for
see Image-tube systems

Spectrum formation
basic physics of, 187-202
degradation lengths and,
194

Doppler width gradients
and, 201

effectively thin layers and,
193, 194, 197

effects of adding a single

line, 196-98
 energy balance and, 195-201
 escape probability and, 192-202
 geometric diffusion lengths in atmosphere, 195
 line blanketing effects and, 198, 199
 photospheric backwarming and, 197, 198
 thermalization lengths and, 192, 193
 velocity fields and, 201, 202
 early-type stars and, 200, 201
 equations of statistical equilibrium
 complete linearization and, 191
 coupling to transfer problem, 187-92
 equivalent two-level atom source function, 191
 probability of photon destruction and, 190
 theory compared with observation, 202-14
 solar, 202-7
 stars, 207-14

s-Process
 stellar nucleosynthesis and, 84, 91

Star clusters
 motions of stars in, 136

Stars
 chemical composition of
 spectral classification and, 38
 classification of
 spectral systems of, 29-49
 see also MK system
 diameters of
 speckle interferometry and, 261
 environment of
 electron clouds in, 76
 explosive nucleosynthesis in, 73-91
 background theory and experiment, 73-78
 reviews on, 73
 see also Nucleosynthesis, stellar
 extinction curves for, 330
 formation of
 collapsing interstellar clouds and, 219-37
 massive stars and, 233-35
 nebular spiral arms and, 220
 interstellar extinction and, 319
 interstellar polarization and, 334, 335
 massive star formation, 233-35
 mass spectrum of photostar fragmentation and, 226, 227
 maximum possible mass of, 234
 normal, 38, 39, 43-47
 observation of Michelson interferometry and, 262-65
 overluminous, 320
 polarization and, 332
 reddening of
 interstellar dust and, 312-313
 red giants
 nucleosynthesis in, 83
 spectral classification of catalogue of, 44
 spectra of
 chemical composition and, 47-49
 element abundance and, 88-90
 interstellar dust and, 313
 solar line profile theories, 205
 total mass of, 351

Stars, carbon
 bolometric corrections for, 118, 119
 chemical composition of, 116, 121-27
 cool stars and, 123, 124
 circumstellar envelopes of, 116, 117
 classification of, 115, 116
 C system, 116
 R-N system, 115
 colors of, 116, 117
 cool stars
 evolution of, 130
 effective temperatures of, 116-20, 123
 evolution of, 128-31
 chemical processes in, 126-31
 extended atmosphere theory and, 121
 luminosities of, 117-19
 masses of, 119, 120
 model atmospheres of, 120-121
 molecular-brand opacities of, 121
 nucleosynthesis in, 125-28
 element abundance and, 126, 127
 physical properties of, 115-32
 broadband photometry and, 116
 radii of, 119
 special carbon stars, 131, 132
 surface gravity of, 120
 visual magnitudes of, 117-19

Stars, early-type
 radiative equilibrium in, 200, 201
 spectral lines of
 cooling by, 200
 temperature structure of, 200

Stars, F, G, and I
 spectra of, 213, 214

Stars, O and B
 spectra of
 continua in, 208, 209
 departures from LTE, 208-13
 helium lines in, 210, 211
 hydrogen lines in, 209, 210
 light-ion spectra, 211, 212
 temperature estimations of, 208, 209

Stars, Of
 emission process in, 213
 fluorescence mechanism in, 213
 spectra of
 lines in, 212, 213

Stars, T Tauri
 ejection of material by, 232

Sulfur
 interstellar space and, 53
 reactions of
 stellar nucleosynthesis and, 78, 87, 90

Sun
 Alfvén waves from, 26
 atmosphere of
 continuum formation in, 203, 204
 LTE theory use, 202, 203
 chromosphere of
 particle streaming from, 367
 corona of
 particle concentration in, 366
 spectrogram of, 99
 Doppler width gradients in, 202
 solar spectrum
 lines in, 204-7
 solar continuum and, 203, 204
 solar wind
 see Solar wind
 spectral line blanketing in, 199
 temperature and, 205-7
 theory vs observations, 202-7
 temperature structure of, 205-7

Cayrel effect and, 199
transitions of atoms in, 204
turbulent waves from, 26

Supergiants
spectra of
classification of, 44, 45, 47

Supernovae
explosion of
cosmic rays and, 380
explosive nucleosynthesis in, 73, 78
"neutrino-transport" model of, 84
remnants of
X-ray emission and, 296
X-ray bursts from, 303

Swings mechanism
O and B star processes and, 213

T

Technetium
abundance of
stellar evolution and, 129

Telescope systems, optical, 239-68
angular resolution of
aperture synthesis and, 254-67
atmosphere limitation of, 258, 259, 262
Eidophor assistance to, 261
fringe visibility functions and, 262-65
holographic techniques for, 265
image formation and, 256-60
interferometry and, 262-67
limits to, 256
photographic emulsion role in, 260
signal-noise relations and, 255, 256, 266
Sparrow resolution and, 256
speckle interferometry and, 261, 262
choice of configurations of, 267
double-star observation, 261
economics of, 267, 268
large space telescopes, 253, 254
orbiting observatories and, 253

large telescopes, 240-45
efficiency of, 241-45, 250
hybrid class telescopes, 241

Ritchey's Super-Telescope, 213

240, 241
multimirror telescopes, 245-48
University of Arizona-Smithsonian, 246, 247
new generation of, 239-68
optical telescope arrays, 248-53
computer use and, 252
linear summation of signals from, 248
signal-noise relations, 251, 252

Thermonuclear reactions
rates of, 75

U

Universe
present density of, 158, 161
Universe, early
expansion time of, 162, 163, 167
origin of matter in, 178-82
Alfvén-Klein cosmology, 181
baryon inhomogeneity and, 180, 181
chaotic cosmologies, 181
cosmic riddle of, 179, 180
lepton and baryon numbers, 178, 179
matter and antimatter, 179-82
Ornés' cosmogony, 182
standard model of, 155-83
history of, 155, 156
lepton era of, 156, 157, 163-66
physical properties of, 157
radiation era of, 157, 158, 166-78
reviews of, 156
sequence of chemical entities in, 156, 157
thermal history outline, 156, 158
thermal equilibrium equations for, 158

Uranus
satellites of, 145, 147

Uron, 104, 105

V

Vatican Observatory
spectral classification of stars and, 115

Vidicon magnetographs, 107, 108

Vidicons, 104-8

W

Wampler scanner, 108, 109

Water
interstellar grain growth and, 354
molecular processes involving collapsing clouds and, 236, 237

X

Xenon
reactions of
stellar nucleosynthesis and, 76, 86

X-radiation
atmospheric attenuation of 274
background level of fluctuations in, 284, 286, 287
diffuse, 269-306
diffuse X rays below 1 keV galactic latitude and, 283-93
sky maps of, 287-95
theoretical source models for, 291-93
energy flux (2-200 keV) observed vs calculated, 275
galactic emissivity of galactic disk, 298
galactic sources of distances to, 302
halo X rays, 300-2
interstellar grains and, 349, 350
interstellar heating by, 303
isotropic background of, 271, 274
discrete extragalactic sources of, 277-79
galaxy cluster source of, 279-84
thermal origin of, 275-77, 279
soft X-ray emission extended sources of, 295-97
thermal sources of, 295
supernova bursts of, 303

Y

Yerkes Observatory
carbon monoxide mapping by, 54
MK types and, 29, 37

Z

Zirconium
abundance of stellar evolution and, 129

