Основни појмови теорије графова

Дефиниција 1. $\Gamma pa\phi G$ је уређен пар (V(G), E(G)), где је V(G) непразан скуп чворова, E(G) је скуп грана и важи $V(G) \cap E(G) = \emptyset$. Посматраћемо само коначне скупове V и E.

Дефиниција 2. Граф је уређена тројка $G = (V(G), E(G), \psi_G)$, где је са ψ_G означена функција инциденције графа G која свакој грани придружује неуређен пар чворова.

Радићемо само са простим графовима (не садрже петље и паралелне гране).

Cкуп cуcеda чвора v у графу G је скуп $N_G(v) = \{u \in V(G) | uv \in E(G)\}.$

Cтепен чвора v је $d_G(v) = |N_G(v)|$.

Mинималан cmeneh $\delta(G) = \min_{v \in V} d_G(v).$

 $Maксималан \ cmeneh \ \Delta(G) = \max_{v \in V} d_G(v).$

Граф је регуларан ако сви његови чворови имају исти степен.

Граф G је k-регуларан ако важи $d(v) = k, \forall v \in V(G)$.

Кубни = 3-регуларан граф

Теорема (Основна теорема теорије графова).

Збир степена чворова сваког графа је паран број и једнак је двоструком броју грана.

$$\sum_{v \in V(G)} d_G(v) = 2|E(G)|$$

Последица. Број чворова непарног степена сваког графа је паран.

Последица. Ако граф садржи непаран број чворова, тада је бар један чвор парног степена.

Комплемент графа G, у ознаци \overline{G} , је граф за који важи

$$V(\overline{G})=V(G) \text{ и } E(\overline{G})=\{uv|u,v\in V(G),uv\notin E(G)\}.$$

Граф G је бипартитан ако постоје непразни дисјунктни скупови X и Y за које важи $V = X \cup Y$ и $E \subseteq \{xy | x \in X, y \in Y\}$. Бипартитан граф ћемо означавати са G(X,Y).

Граф је комплетан бипартитан ако је $E = \{xy | x \in X, y \in Y\}$. Комплетан бипартитан граф код ког је |X| = m и |Y| = n ћемо означавати са $K_{m,n}$.

$$G_1=G_2\iff V(G_1)=V(G_2)\wedge E(G_1)=E(G_2)$$
 $G_1\cong G_2\iff\exists$ изоморфизам f за који важи $1^\circ\ f:V(G_1)\to V(G_2)$ бијекција $2^\circ\ uv\in E(G_1)\iff f(u)f(v)\in E(G_2)$

Граф H је nodepa графа $G,\ H\subset G,$ ако је $V(H)\subseteq V(G)\wedge E(H)\subset E(G).$

Граф H је покривајући подграф графа G акко је $V(H) = V(G) \wedge E(H) \subset E(G)$.

$$G' = G[V'] \qquad \qquad G'' = G[E'']$$
 Индукован подграф
$$1^{\circ} \ V(G') = V' \qquad \qquad 1^{\circ} \ V(G'') = \{v | \exists \ uv \in E''\}$$

$$2^{\circ} \ E(G') = \{uv | u, v \in V' \land uv \in E\} \qquad 2^{\circ} \ E(G'') = E''$$