Lista 8 – matlab

1. W chwili t=0 wystrzelono z wysokości y=0 pionowo w górę rakietę domowej produkcji. Paliwo wypala się całkowicie w chwili $t=t_0$. Wysokość rakiety określa równanie:

$$y = \frac{1}{2}(a_0 - g)t^2 - \frac{a_0}{30} \frac{t^6}{t_0^4}; \quad 0 < t < t_0$$

 a_0 oraz g są dodatnie. Znajdź analitycznie składową y prędkości i przyspieszenia rakiety w funkcji czasu.

- (a) Narysuj y(t), $a_y(t)$ i $v_y(t)$ dla $0 < t < t_0$ przyjmując $a_0 = 12$. Porównaj wykresy dla 3 różnych wartości czasu działania silnika $t_0 = 10, 20, 40$.
- (b) Dla $t_0=(10,100)$ oblicz maksylaną wysokość rakiety y_{max} (funkcja max ()) i na osobnym rysunku narysuj zależność $y_max(t_0)$.