CSE 102

Homework Assignment 2

Solutions

1. Let f(n) be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Prove that $\sum_{i=1}^{n} f(i) = \Theta(nf(n))$. Hint: emulate the example on page 4 of the handout on asymptotic growth rates in which it is shown that $\sum_{i=1}^{n} i^k = \Theta(n^{k+1})$.

Proof:

Since f(n) is increasing, we have $\sum_{i=1}^{n} f(i) \leq \sum_{i=1}^{n} f(n) = nf(n) = O(nf(n))$. Note also that

$$\sum_{i=1}^{n} f(i) \ge \sum_{i=\lceil n/2 \rceil}^{n} f(i) \qquad \text{by discarding some positive terms}$$

$$\ge \sum_{i=\lceil n/2 \rceil}^{n} f(\lceil n/2 \rceil) \qquad \text{since } f(n) \text{ is increasing}$$

$$= (n - \lceil n/2 \rceil + 1) f(\lceil n/2 \rceil)$$

$$= (\lceil n/2 \rceil + 1) f(\lceil n/2 \rceil) \qquad \text{since } \lceil x \rceil > x - 1, \lceil x \rceil \ge x \text{ and } f(n) \text{ is increasing}$$

$$= (1/2) n \Omega(f(n)) \qquad \text{since } f(n/2) = \Theta(f(n)) \subseteq \Omega(f(n))$$

$$= \Omega(nf(n))$$

Thus $\sum_{i=1}^n f(i)$ is bounded above and below by functions in the classes O(nf(n)) and $\Omega(nf(n))$, respectively. By an exercise in the handout on asymptotic growth rates, we have $\sum_{i=1}^n f(i) = \Theta(nf(n))$ as required.

2. Use the result of the preceding problem to prove that $log(n!) = \Theta(n log(n))$, without using Stirling's formula.

Proof:

Observe that the function $\log n$ is positive (for n > 1), increasing and $\log(n/2) = \log n - \log 2 = \Theta(\log n)$. Therefore we may take $f(n) = \log(n)$ in the preceding problem, giving

$$\log(n!) = \log(1 \cdot 2 \cdot 3 \cdots n)$$

= $\sum_{i=1}^{n} \log(i)$
= $\Theta(n \log n)$.

3. Use Stirling's formula to determine a constant a > 0 such that $\binom{3n}{n} = \Theta\left(\frac{a^n}{\sqrt{n}}\right)$.

Proof:

By Stirling's formula we have

$$\binom{3n}{n} = \frac{(3n)!}{n! \cdot (2n)!}$$

1

$$= \frac{\sqrt{2\pi \cdot 3n} \cdot \left(\frac{3n}{e}\right)^{3n} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^{n} \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)\right) \cdot \left(\sqrt{2\pi \cdot 2n} \cdot \left(\frac{2n}{e}\right)^{2n} \cdot \left(1 + \Theta\left(\frac{1}{2n}\right)\right)\right)}$$

$$= \frac{\sqrt{2\pi} \cdot \sqrt{3n} \cdot \frac{3^{3n}n^{3n}}{e^{3n}} \cdot \left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\sqrt{2\pi} \cdot \sqrt{n} \cdot \frac{n^{n}}{e^{n}} \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right) \cdot \sqrt{2\pi} \cdot \sqrt{2n} \cdot \frac{2^{2n}n^{2n}}{e^{2n}} \cdot \left(1 + \Theta\left(\frac{1}{2n}\right)\right)}$$

$$= \frac{\sqrt{3}}{2\sqrt{\pi}} \cdot \frac{27^{n}/4^{n}}{\sqrt{n}} \cdot \frac{\left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(1 + \Theta\left(\frac{1}{n}\right)\right) \cdot \left(1 + \Theta\left(\frac{1}{2n}\right)\right)}.$$

Therefore

$$\lim_{n \to \infty} \frac{\binom{3n}{n}}{\frac{(27/4)^n}{\sqrt{n}}} = \frac{\sqrt{3}}{2\sqrt{\pi}} \cdot \lim_{n \to \infty} \frac{\left(1 + \Theta\left(\frac{1}{3n}\right)\right)}{\left(1 + \Theta\left(\frac{1}{n}\right)\right) \cdot \left(1 + \Theta\left(\frac{1}{2n}\right)\right)} = \frac{\sqrt{3}}{2\sqrt{\pi}}$$

and since $0 < \frac{\sqrt{3}}{2\sqrt{\pi}} < \infty$, it follows that $\binom{3n}{n} = \Theta\left(\frac{(27/4)^n}{\sqrt{n}}\right)$. Hence a = 27/4.

4. Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg(n))$.

Proof:

- I. When n = 1 we have $S(1) \ge \lg(1)$, which reduces to $0 \ge 0$, which is true.
- II. Let n > 1 and assume for all k in the range $1 \le k < n$ that $S(k) \ge \lg(k)$. We must show that $S(n) \ge \lg(n)$. We have

$$S(n) = S(\lceil n/2 \rceil) + 1$$

 $\geq \lg(\lceil n/2 \rceil) + 1$ by the induction hypothesis with $k = \lceil n/2 \rceil$
 $\geq \lg(n/2) + 1$ since $\lceil x \rceil \geq x$ for any x
 $= \lg(n) - \lg(2) + 1$
 $= \lg(n)$.

By the Second Principle of Mathematical Induction, $S(n) \ge \lg(n)$ for all $n \ge 1$.

5. Let T(n) be defined by the recurrence

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(\lfloor n/2 \rfloor) + n^2 & \text{if } n \ge 2 \end{cases}$$

Show that $\forall n \geq 1$: $T(n) \leq (4/3)n^2$, and hence $T(n) = O(n^2)$.

Proof:

- I. For n = 1 we have $T(1) = 1 \le 4/3 = (4/3) \cdot 1^2$, so the base case is satisfied.
- II. Let n > 1 and assume for all k in the range $1 \le k < n$ that $T(k) \le (4/3)k^2$. In particular we have $T(\lfloor n/2 \rfloor) \le (4/3)\lfloor n/2 \rfloor^2$. We must show that $T(n) \le (4/3)n^2$. We have

$$T(n) = T(\lfloor n/2 \rfloor) + n^2$$

 $\leq (4/3)\lfloor n/2 \rfloor^2 + n^2$ by the induction hypothesis
 $\leq (4/3)(n/2)^2 + n^2$ since $\lfloor x \rfloor \leq x$ for any x
 $= (1/3)n^2 + n^2$
 $= (4/3)n^2$.

By the Second Principle of Mathematical Induction, $T(n) \le (4/3)n^2$ for all $n \ge 1$.

6. Prove that the First Principle of Mathematical Induction implies the Second Principle of Mathematical Induction. (This is Exercise 4 at the end of the handout on Induction Proofs.)

Proof:

The 1st PMI asserts that for any propositional function P(n), the following sentence holds.

$$P(1) \land [\forall n > 1: P(n-1) \rightarrow P(n)] \rightarrow \forall n \ge 1: P(n)$$

The 2^{nd} PMI says the following sentence is true for any propositional function Q(n).

$$Q(1) \wedge [\forall n > 1 : (Q(1) \wedge Q(2) \wedge \cdots \wedge Q(n-1)) \rightarrow Q(n)] \longrightarrow \forall n \geq 1 : Q(n)$$

We assume the 1st PMI, and show the 2nd PMI as a consequence. To that end, let Q(n) be any propositional function, and define P(n) by

$$P(n) = Q(1) \wedge Q(2) \wedge \cdots \wedge Q(n).$$

In particular, we have

$$P(1)=Q(1),$$

$$P(n-1) = \, Q(1) \wedge Q(2) \wedge \cdots \wedge Q(n-1),$$

and

$$P(n) = P(n-1) \wedge Q(n).$$

To prove the 2nd PMI, we assume both Q(1) and $\forall n > 1$: $(Q(1) \land Q(2) \land \cdots \land Q(n-1)) \rightarrow Q(n)$ are true. We must show that $\forall n \geq 1$: Q(n) holds.

These assumptions give us that both P(1) and $\forall n > 1$: $P(n-1) \to Q(n)$ are true. It is an elementary fact that $\forall n > 1$: $P(n-1) \to P(n-1)$, and therefore $\forall n > 1$: $P(n-1) \to P(n-1) \land Q(n)$ holds, which is equivalent to $\forall n > 1$: $P(n-1) \to P(n)$. We have shown that under our assumptions both P(1) and $\forall n > 1$: $P(n-1) \to P(n)$ are true. The 1st PMI now yields $\forall n \ge 1$: P(n). Obviously $P(n) \to Q(n)$, so $\forall n \ge 1$: Q(n) is also true.

We have shown that if Q(1) and $\forall n > 1$: $(Q(1) \land Q(2) \land \dots \land Q(n-1)) \rightarrow Q(n)$ are both true, then $\forall n \geq 1$: Q(n) must also be true, establishing the 2^{nd} PMI.