XCMS PART I: UNTARGETED & FORMULATARGETED PEAK IDENTIFICATION AND VOLCANO ANALYSIS

EMMA SPADY
RHEE LAB
GROUP MEETING – MAY 23, 2023

R TERMINOLOGY

- Variable / object: a name assigned to a value using = or <-
- Class: The type of information in a variable. Could be a string (characters with " around them), numeric, a vector, a matrix, a dataframe...
- Function: function(variablename) performs an operation on the variable
- Directory: The folder or area you're working in, determined by setwd()
- Comment: Text following the # character isn't read into R

For more info, refer to the tutorial from Fernanda's course

- Introduction to R "Introduction", "First Steps in R", "Reading and Writing Data"
- Introduction to Programming "Possible R Workflows Working with Directories"

Or search Google, StackOverflow, or the xcms package documentation for the relevant function name

XCMS PROCESS

- Read in data from .mzML files and your custom .csv files
- Prepare settings
- Find peaks in each sample with findChromPeaks()
- Merge overlapping peaks in each sample with refineChromPeaks()
- Adjust retention time of all samples with adjustRtime()
- Define features sets of peaks with similar m/z and RT between samples with groupChromPeaks()
- Fill peaks integrate across the median m/z and RT for each feature in samples where no peak was found using fillChromPeaks()

Returns a table with features, each with a m/z, a RT and a value for each sample, along with some other info.

ANALYSIS PROCESS – AS OF MAY 2023

- Save the output table
- Perform volcano analysis on all features in dataset
 - Calculate log2(foldchange)s and t-test p-values
 - Make a volcano plot for each comparison
 - Print chromatograms for 50 highest foldchange significant features
- Filter features for those with m/z that could correspond to the [M+H]+ or [M-H]- of your metabolite set.
- Perform volcano analysis on filtered features
 - Same as above. Fewer features make MHC less strict

FYI, presentation is not in the same order as the code. The code groups parts that you need to change together – see manual for operation.

RUNNING THE SCRIPT

- Leaving this for the instruction manual
- Requires some customization
 - Set own working directory
 - Settings must match instrument, method, and whether you have QC alignment samples
- You'll need to run it in chunks, rather than trying to push the 'run' button at the top

- Copy the entire template folder, then paste into the XCMS folder and rename for your project.
- Convert .d files to .mzML format using MSConvertGUI. Put them inside the rawdata folder.
- Edit the .csv files to refer to your experiments
 - conditionkey.csv assigns each sample group a short label, a color, and a group for plotting chromatograms.
 - pdtable.csv assigns each data file a label that matches a sample group. It also puts them in the order they were run.
 - comparekey.csv specifies which sample groups should be compared to each other for volcano plots

	Α	В	С	D	Е	
	A	В	C	U	Е	
1	label	color	plotgroup	рН	RIFdose	
2	Α	#8ba4b1	neu	pH 6.6	0	
3	В	#7BCCC4	neu	pH 6.6	1.25	
4	С	#4EB3D3	neu	pH 6.6	5	
5	D	#2B8CBE	neu	pH 6.6	20	
6	E	#08589E	neu	pH 6.6	80	
7	F	#b1988b	acd	pH 5.5	0	
8	G	#FD8D3C	acd	pH 5.5	1.25	
9	Н	#FC4E2A	acd	pH 5.5	5	
10	I	#E31A1C	acd	pH 5.5	20	
11	J	#B10026	acd	pH 5.5	80	
12	K	#A8DDB5	neu	pH 6.6	0.3125	
13	L	#FEB24C	acd	cd pH 5.5		
14						
	4 →	condit	ionkey	+		

- Copy the entire template folder, then paste into the XCMS folder and rename for your project.
- Convert .d files to .mzML format using MSConvertGUI. Put them inside the rawdata folder.
- Edit the .csv files to refer to your experiments
 - conditionkey.csv assigns each sample group a short label, a color, and a group for plotting chromatograms.
 - pdtable.csv assigns each data file a label that matches a sample group. It also puts them in the order they were run.
 - comparekey.csv specifies which sample groups should be compared to each other for volcano plots

1	Α	В	С				
1	sample_name	sample_group	file				
2	A1	0drugpH6.6	2022-08-04_A1_POS.mzML				
3	B1	1.3RIFpH6.6	2022-08-04_B1_POS.mzML				
4	C1	5RIFpH6.6	2022-08-04_C1_POS.mzML				
5	D1	20RIFpH6.6	2022-08-04_D1_POS.mzML				
6	E1	80RIFpH6.6	2022-08-04_E1_POS.mzML				
7	F1	0drugpH5.5	2022-08-04_F1_POS.mzML				
8	G1	1.3RIFpH5.5	2022-08-04_G1_POS.mzML				
9	H1	5RIFpH5.5	2022-08-04_H1_POS.mzML				
10	l1	20RIFpH5.5	2022-08-04_I1_POS.mzML				
11	J1	80RIFpH5.5	2022-08-04_J1_POS.mzML				
12	K1	.31RIFpH6.6	2022-08-04_K1_POS.mzML				
13	L1	.31RIFpH5.5	2022-08-04_L1_POS.mzML				
14	A2	0drugpH6.6	2022-08-04_A2_POS.mzML				
15	B2	1.3RIFpH6.6	2022-08-04_B2_POS.mzML				
16	്ര	SDIENUS S	2022 09 04 C2 DOS mzMI				
	< → p	dtable (+)				

- Copy the entire template folder, then paste into the XCMS folder and rename for your project.
- Convert .d files to .mzML format using MSConvertGUI. Put them inside the rawdata folder.
- Edit the .csv files to refer to your experiments
 - conditionkey.csv assigns each sample group a short label, a color, and a group for plotting chromatograms.
 - pdtable.csv assigns each data file a label that matches a sample group. It also puts them in the order they were run.
 - comparekey.csv specifies which sample groups should be compared to each other for volcano plots

4	Α	В	С	D					
1	expcond	nullcond	compareID	category					
2	K	Α	RIF.31vsNoDrug_neu	RIFneu					
3	В	Α	RIF1.3vsNoDrug_neu	RIFneu					
4	С	Α	RIF5vsNoDrug_neu	RIFneu					
5	D	Α	RIF20vsNoDrug_neu	RIFneu					
6	E	Α	RIF80vsNoDrug_neu	RIFneu					
7	L	F	RIF.31vsNoDrug_acd	RIFacd					
8	G	F	RIF1.3vsNoDrug_acd	RIFacd					
9	Н	F	RIF5vsNoDrug_acd	RIFacd					
10	I	F	RIF20vsNoDrug_acd	RIFacd					
11	J	F	RIF80vsNoDrug_acd	RIFacd					
12	F	Α	NoDrug_acdvsneu	pHcompare1					
13	L	K	RIF.31_acdvsneu	pHcompare2					
14	G	В	RIF1.3_acdvsneu	pHcompare3					
15	Н	С	RIF5_acdvsneu	pHcompare4					
16	I	D	RIF20_acdvsneu	pHcompare5					
17	J	E	RIF80_acdvsneu	pHcompare6					
	← →	compa	rekey +	1					

- Some other files:
- QCmols_ANP-NEG.csv and QCmols_ANP-POS.csv are a small set of molecules with known retention times that can be used to check your peak finding parameters. Feel free to change or add your own molecules
- PwaySet_ESpady01.txt has a set of 1,043 unique formulae from KEGG pathways in Mycobacterium tuberculosis. It will be used for targeted-unbiased feature filtering.
- customElCinfo.csv is a template to help you load in ranges of m/z and retention times for custom chromatograms
- [Scripts.R] contains my custom functions. It gets loaded into the main script automatically.

PEAK FINDING

- Dataset is intensities over m/z and time
- m/z spikes are tight and easy to find, so xcms starts by choosing m/z ranges
- Then uses algorithm to find where to start and end the time for each peak
- Settings defined with CentWaveParam()
 - Differs for TOFs versus QTOFs

Run with findChromPeaks()

PEAK MERGING

- XCMS is a little overexcited about peaks, and is likely to break jagged peaks into separate but overlapping parts
- It merges the peaks after finding them to compensate
- Settings defined with MergeNeighboringPeaksParam()

Run with refineChromPeaks()

PEAK FINDING AND MERGING QC

- You can run the peak finding and merging functions on an extracted ion chromatogram to check your settings
- QC set has some molecules that should be in your samples at varying intensities/ pattern complexities
- Select a few sample groups from a big experiment to check, using their label
- chromatogram() makes an EIC dataset that can be printed out, but it is VERY SLOW.
- ChromsByConds() is my custom function for plotting the EIC with the attempt at peak finding

READING QC EICS

- .png files made by ChromsByConds()
- Replicates are different colors, panel shows each condition
- Box represents a found peak
- Confirm peaks are in boxes, not split oddly down the middle, not lumping too many peaks together
- OK if some small peaks are not in boxes they'll be fixed in peak fill
- Note that Y axis scale is NOT matched between conditions

RETENTION TIME ALIGNMENT

- Uses the identified peaks to align all the samples
- Facilitates peak grouping
- Can use QC samples to align very precisely between sample runs
 - Still best if you run samples within 3 weeks
- Settings defined with ObiwarpParam()
- Run with adjustRtime()

Unadjusted Alanine and Isomers

It works better than this for recent data because of improved LC maintenance

9

RETENTION TIME ALIGNMENT CHECK

plotAdjustedRtime(xdata_mrg, col = pdextra[,"sample_color"])

From Summer 2022 I think

RETENTION TIME ALIGNMENT CHECK

plotAdjustedRtime(xdata_mrg, col = pdextra[,"sample_color"])

RETENTION TIME ALIGNMENT CHECK

You can color by batch set if you can code a little

FEATURE GROUPING

- Groups peaks with similar m/z and RT across samples into a single 'feature'
- Output is measured by feature, each with unique ID
- Settings defined with PeakDensityParam()

Run with groupChromPeaks()

PEAK FILL

- If a feature group lacks a peak in a sample, xcms can integrate any intensity between the median minimum RT and median maximum RT at the relevant mass
- Filled peaks do not get a box around them when you look at feature chromatograms, but they are there
- Settings defined with ChromPeakParam()
 - I use the defaults
- Run with fillChromPeaks()

DATA OUTPUT

- Processed data is originally in xdata_ftg
- Extract information using functions
 - featureDefinitions(xdata_ftg) shows m/z and RT info for each feature
 - featureValues(xdata_ftg) shows the peaks areas for each sample. Can show peak heights using further arguments
- This info will be saved into the file *_AllFeatures.txt
 - * is your experiment abbreviation, which is assigned to exptkey in the settings
 - Prefix helps with analyzing multiple experiments

	Α	В	С	D	Е	F	G	Н	I	J	K	L	М
1	RZ01_NEG_FeatureID	mzmed	mzmin	mzmax	rtmed	rtmin	rtmax	npeaks	RZ01_NEG_qc_1	RZ01_NEG_O_1	RZ01_NEG_A_1	RZ01_NEG_B_1	RZ01_NE
2	FT0001	51.02404	51.0239	51.02415	139.515	137.8854	141.5154	119	60686.16046	59237.66094	71606.62112	71375.5437	66027.64
3	FT0002	53.46454	53.46343	53.46563	195.4555	192.0347	197.534	93	29637.58979	32922.98815	23440.82541	36148.25479	27844.34
4	FT0003	53.51446	53.51349	53.51529	195.4427	192.6921	198.5328	116	49541.35126	56135.54692	48868.46409	57550.06393	59898.67
5	FT0004	53.56429	53.56336	53.56889	195.5327	191.8728	200.5321	124	66499.67243	61285.28234	66021.884	72221.19505	75242.88
6	FT0005	53.61405	53.61328	53.61825	195.533	192.6921	198.5283	119	73232.54783	87215.76812	75616.66862	87353.13085	91049.27
7	FT0006	53.66372	53.66277	53.66825	195.5316	190.6727	198.5335	120	77769.4123	89394.72448	75638.02843	87886.95716	91779.51

FORMULA-TARGETED FEATURE IDENTIFICATION

- By focusing only on features with m/z that could correspond to a known formula, we make our feature list smaller
 - Makes multiple hypothesis correction less strict
- Assign a table of unique formulae to mymols
 - Currently uses PwaySet_ESpady01.txt, which is 1,043 unique formulae from about 40 central Mtb KEGG pathways
- Match features against predicted [M+H]⁺ or [M-H]⁻ mass using FeatMatching()

- Result is a set of features that are within seterr (default 50 ppm) of at least one formula.
 - <5% of the features will be in the featfilter set</p>

VOLCANO ANALYSIS

- Run using MultiVolcano(), which references your comparekey.csv
 - Takes p-values and log2 foldchanges for each feature and each comparison
 - Makes an interactive volcano plot for each feature and each comparison

- Code titled #Save the feature information... saves all features that were significant to a table *_SigPwaySet.txt
- Code titled #Print chromatograms... makes chromatograms for the top 50 significant, ranked by foldchange features within each 'category'.
 - If you want to see top 50 for all comparisons, make each 'category' unique

VOLCANO PLOTS

■ See .html files

PRINTING CHROMATOGRAMS

- First, make chromatogram object from dataset
 - For chromatograms of features, use featureChromatograms()
 - For an EIC, use chromatogram(). But I can't print this yet.
- This function is slow because it references the .mzML files, so it's best to batch features or (m/z,RT) ranges together at this step
- Each feature prints into its own .png file

PRINTING CHROMATOGRAMS

- Here, green is lower doses of RIF, blue is higher doses, at neutral pH. Orange is lower doses of RIF, red is higher doses. Gray is the no-drug control at each pH
- You'll have to remember your color key, because sadly I don't have it print automatically on these chromatograms. It could accidentally overlap important content.

PRINTING CHROMATOGRAMS

From RIF-PZA checkerboard, spring 2023

Always comes out as a long strip, but the image is larger so you have the same resolution

From RIF-PZA checkerboard, spring 2023

Titled: FT0479 C06007 R-2-3-Dihydroxy-3-methylpentanoate

