Aula 06

Recursividade

Introdução ao Conceito

Programação II, 2018-2019

v1.9, 25-03-2018

DETI, Universidade de Aveiro

06.1

06.2

Objectivos:

- Funções recursivas.

Conteúdo

1	Introdução	1	
2	Definição	2	
3	Complexidade	2	
1	Relação de Recorrência	3	
5	Exemplo 1: A Função Factorial	3	
6	Relação de Recorrência: Síntese	3	
7	Exemplo 2: Cálculo das Combinações	4	
3	Relação de Recorrência: Classificação	6	
)	Exemplo 3: Torres de Hanói	6	
10	Definição Recursiva: Condições de Sanidade	8	
	10.1 Casos Atípicos	9	
	10.2 Casos com Interesse	9	

1 Introdução

- Se tivesse de descrever a alguém o que é uma boneca *matryoshka*, como o faria?
- Uma possibilidade seria dizer que é uma boneca oca que contém outra boneca oca, que contém outra e assim sucessivamente.
- Podemos fazer uso de uma definição alternativa que talvez nos facilite a resposta:
 - Uma boneca *matryoshka* é uma boneca oca que contém outra boneca *matryoshka*.
- Este é um exemplo de uma definição recursiva.

2 Definição

Definição Recursiva: Uma definição de um conceito diz-se recursiva se envolver uma ou mais instâncias do próprio conceito.

Recursividade: Se ainda não entendeu, ver recursividade.

Podemos encontrar recursividade um pouco por todo o lado:

- Na descrição das árvores genealógicas.
- Nas imagens de espelhos paralelos.
- Na sintaxe das linguagens de programação.
- . . .

(circa 1904)

3 Complexidade

- Como veremos, as definições recursivas podem também aparecer nos dois aspectos essenciais da programação:
 - nas estruturas de dados;
 - nos algoritmos.
- Tal como nos exemplos apresentados, a justificação para a sua utilização é a *simplicidade* que ela por vezes nos dá na descrição de problemas complexos.
- Desde Programação 1 temos vindo a apresentar e aplicar tecnologias e métodos para controlar a complexidade inerente à resolução de problemas.
- Uma característica comum à maioria delas é o facto de *reduzirem a redundância* do código necessário para a solução.
- A estratégia tem sido tirar proveito das semelhanças formais entre as várias partes do código.

Gestão da Complexidade

Vejamos alguns casos:

- Variáveis: as variáveis permitem que o mesmo código seja parametrizável para diferentes valores.
- **Instrução iterativa**: sempre que existe uma repetição de comandos estruturalmente semelhantes, os mesmos podem ser expressos como a repetição de um único comando (recorrendo muitas vezes ao uso de variáveis auxiliares).
- Funções: a semelhança formal algorítmica de certas operações pode ser abstraída e modularizada numa função. Há uma separação clara entre a *utilização* da função e a respectiva *implementação*. Quem a utiliza, delega a responsabilidade da resolução na função. Quem a implementa, pode livremente escolher o melhor algoritmo.

06.4

06.3

06.6

06.5

4 Relação de Recorrência

- O caso das funções é particularmente interessante. Se quem as *implementa* é livre para escolher o melhor algoritmo, porque não escolher um que *utiliza* a própria função?
- Se o problema se presta a ser descrito recursivamente, então porque não implementá-lo da mesma forma?
- Para se poder fazer isso mesmo torna-se necessário ter uma descrição recursiva formal do problema: esse é o papel das *Relações de Recorrência*.
- Uma relação de recorrência é uma formulação recursiva formal de um problema.
- As relações de recorrência podem ser sempre implementadas de uma forma *iterativa* ou de uma forma *recursiva*.
- A implementação recursiva é estruturalmente muito próxima da própria relação de recorrência (donde resulta a sua simplicidade).

06.7

5 Exemplo 1: A Função Factorial

• Fórmula iterativa:

$$n! = \begin{cases} \prod_{k=1}^{n} k, & n \in \mathbb{N} \\ 1, & n = 0 \end{cases}$$

• Fórmula recursiva (relação de recorrência):

$$n! = \left\{ egin{array}{ll} n imes (n-1)! & , n \in \mathbb{N} \\ 1 & , n = 0 \end{array} \right.$$

06.8

Exemplo: a função factorial

```
Implementação Iterativa
                                                    Implementação Recursiva
                                          static int factorial(int n)
static int factorial(int n)
                                              assert n >= 0;
    assert n >= 0;
                                                                          chamada recursiva
                                              int result = 1;
    int result = 1;
    for (int i=2; i <= n; i++)</pre>
                                              if (n > 1)
                                                 result = n * (factorial(n - 1);)
        result = result * i;
                                              return result;
    return result;
                                               n! = n \times ((n-1) \times \cdots \times (2 \times (1)) \cdots)
     n! = 1 \times 2 \times \cdots \times (n-1) \times n
O índice pode variar do caso limite 0
                                          O argumento varia na direcção do caso limite (de
até ao valor n. ou vice-versa.
                                          n até 0).
```

06.9

6 Relação de Recorrência: Síntese

- *Método Iterativo* (Repetitivo)
 - O algoritmo assenta num ciclo em que o índice pode variar desde o valor correspondente às situações limite até ao valor pretendido.
- Método Recursivo

- Para que se atinja uma solução, cada invocação recursiva deve estar mais próxima de uma situação limite.
- Método poderoso e compacto de resolução de problemas mas potencialmente menos eficiente em termos de recursos pois tem de guardar o estado das várias invocações da função.

06.10

7 Exemplo 2: Cálculo das Combinações

• Fórmula:

$$C_k^n = \frac{A_k^n}{A_k^k} = \frac{n \times (n-1) \times \dots \times (n-k+1)}{k!}$$
$$= \frac{n!}{(n-k)! \times k!}, \operatorname{com} n, k \in \mathbb{N}_0 \wedge n \ge k$$

- A aplicação destas fórmulas pode levantar problemas de cálculo numérico devido ao facto de os registos internos de armazenamento de um valor terem uma capacidade limitada.
- Exemplo:

$$C_{23}^{25} = \frac{15511210043330985984000000}{51704033477769953280000} = 300$$

- Para representar estes números necessitaríamos de pelo menos 84 bits (mesmo o tipo long tem apenas 64).
- Solução?

06.11

Exemplo 2: Combinações - Relação de Recorrência

• Demonstração:

$$C_k^n = \frac{n!}{(n-k)! \times k!} = \frac{(n-1)! \times (k+n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)! \times k}{(n-k)! \times k!} + \frac{(n-1)! \times (n-k)}{(n-k)! \times k!}$$

$$= \frac{(n-1)!}{(n-k)! \times (k-1)!} + \frac{(n-1)!}{(n-k-1)! \times k!}$$

$$= C_{k-1}^{n-1} + C_k^{n-1}$$

• Relação de recorrência:

$$C_k^n=C_{k-1}^{n-1}+C_k^{n-1}$$
 , $\cos n,k\in\mathbb{N}\wedge n>k$
 $C_0^n=1$, $\cos n\in\mathbb{N}_0$ (caso limite)
 $C_n^n=1$, $\cos n\in\mathbb{N}_0$ (caso limite)

06.12

Exemplo Combinações: Implementação Recursiva

```
static int combNKK(int n, int k)
{
   assert 0 <= k && k <= n;
   int result = 1;
   if (k > 0 && k < n)
       result = (combNKK(n-1, k-1)) + (combNKK(n-1, k);
   return result;
}</pre>
```

- Método Recursivo:
 - Simples;
 - Compacto;
 - Legível;
 - Fácil detectar erros.
- E se tentarmos implementar uma solução com o método iterativo?

06.13

Exemplo Combinações: Implementação Iterativa

• Triângulo de Pascal:

$$C_2^5 = C_1^4 + C_2^4 \begin{cases} C_1^4 = C_0^3 + C_1^3 \{ \cdots \} \\ C_2^4 = C_1^3 + C_2^3 \{ \cdots \} \end{cases}$$

06.14

Exemplo Combinações: Implementação Iterativa

- Necessitamos de um array de k+1 elementos para guardar os valores de uma linha (inicializado a zeros).
- O processo iterativo pode seguir as regras seguintes:
 - 1. existem n + 1 iterações (uma por linha);
 - 2. a primeira linha (n = 0) tem apenas o valor 1 (no posição k = 0 do array), esse valor manterse-á fixo para todas as linhas;
 - 3. para as restantes n linhas, os valores do array desde o índice 1 até ao índice k são calculados como sendo a soma dos dois valores referidos pela relação de recorrência (se o índice do array for i, então será a soma dos valores com índice i-1 e i).
- O resultado é o elemento de índice *k* da linha *n*.
- Este algoritmo pode ser optimizado considerando as seguintes factos:
 - Não é necessário calcular um triângulo completo (para C_2^5 bastam os valores assinalados a vermelho na figura).
 - O triângulo de Pascal é simétrico, por isso basta calcular metade.
- O programa mostrado a seguir faz todas essa optimizações.

06.15

Exemplo Combinações: Implementação Iterativa

```
static int combIterTP(int n,int k)
   assert 0 <= k && k <= n;
   int result = 1;
   if (k > 0 && k < n) {
      int kMin = k < n-k ? k : n-k; // minimo(k, n-k)
      int[] linha = new int[k + 1];
      int c = 0;
      int cIni = 1;
      linha[0] = 1;
      for (int 1 = 1;1 <= n;1++) {</pre>
         if (1 > n-kMin+1)
            cIni++;
         for(c = kMin;c >= cIni;c--)
            linha[c] = linha[c]+linha[c-1];
      result = linha[kMin];
   return result;
```

06.16

8 Relação de Recorrência: Classificação

Em termos de complexidade do mecanismo de descrição:

- Simples: quando há apenas uma chamada recursiva.
 - Exemplo: factorial.
- Composta: quando há múltiplas chamadas recursivas.
 - Exemplo: combinações, torres de Hanói.

06.17

9 Exemplo 3: Torres de Hanói

- Este jogo, criado pelo matemático francês Édouard Lucas no Século XIX, é um dos exemplos clássicos que mostram as potencialidades dos algoritmos recursivos.
- Existem três postes onde se podem enfiar discos de diâmetros decrescente.
- O objectivo do jogo é mover todos os discos de um poste para outro, de acordo com as seguintes regras:
 - 1. Só pode mover um disco de cada vez;
 - 2. Não pode colocar um disco em cima de outro de menor dimensão.

06.18

Torres de Hanói

Relação de recorrência:

• moverDiscos(n, tOrigem, tDestino, tAuxiliar)

```
1. moverDiscos(n-1, tOrigem, tAuxiliar, tDestino)
```

- moverUmDisco(tOrigem , tDestino)
- 3. moverDiscos(n-1, tAuxiliar, tDestino, tOrigem)

Caso limite:

- moverDiscos(1, tOrigem, tDestino, tAuxiliar)
 - moverUmDisco(tOrigem, tDestino)

ou, alternativamente:

- moverDiscos(0, tOrigem, tDestino, tAuxiliar)
 - 1. (não é preciso fazer nada)

06.19

Torres de Hanói: Implementação Recursiva

```
static void moverDiscos(int n, String origem, String destino, String auxiliar)
{
    assert n >= 0;
    if (n > 0)
    {
        moverDiscos(n-1, origem, auxiliar, destino);
        out.println("Move disco "+n+" da torre "+origem+" para a torre "+destino);
        moverDiscos(n-1, auxiliar, destino, origem);
    }
}
```

- E se tentarmos implementar uma solução com o método iterativo?
- Existe solução para esse problema (como para qualquer outro algoritmo recursivo) mas a implementação é bastante complexa!

06.20

Torres de Hanói: Implementação Iterativa

```
static void moverDiscosIter(int n, String torreOrigem, String torreDestino, String torreAuxiliar)
 assert n >= 1;
 long s = 1; // Stack of bits
 long call;
 int d = n; // disk size
 String src = torreOrigem;
 String dst = torreDestino;
 String aux = torreAuxiliar;
 String tmp;
 boolean finish = false;
 while(!finish)
   while (d > 0)
     tmp = dst; dst = aux; aux = tmp; // swap(dst,aux)
     s = (s << 1) + 1; // push(1)
   call = 0;
    while(s != 1 && call != 1)
     call = s % 2;
     s = s \gg 1; // pop
     d++:
     if (call == 1)
       tmp = dst; dst = aux; aux = tmp; // swap(dst,aux)
     else
       tmp = src; src = aux; aux = tmp; // swap(src,aux)
   finish = (s == 1) \&\& (call == 0);
   if (!finish)
     out.println("Move disco "+d+" da torre "+src+" para a torre "+dst);
     tmp = src; src = aux; aux = tmp; // swap(src,aux)
     s = s << 1; // push(0)
     d--:
```

10 Definição Recursiva: Condições de Sanidade

- Uma definição recursiva útil requer que:
 - 1. Exista pelo menos uma alternativa não recursiva (CASO(S) LIMITE);
 - 2. Todas as alternativas recursivas ocorram num contexto diferente do original (VARIABILIDADE);
 - 3. Em cada alternativa recursiva, o contexto (2) varie de forma a aproximar-se de um caso limite (1) (**CONVERGÊNCIA**).
- As condições (1) e (2) são necessárias. As três juntas são suficientes para garantir a terminação da recursão.

Análise dos Exemplos Apresentados

Todos os exemplos de recursividade apresentados até agora verificam estas três condições:

- Factorial:
 - 1. f(0) é um caso limite.
 - 2. f(n) expresso em função de f(n-1) e $n \neq n-1, \forall n$.
 - 3. A sucessão $n, n-1, \ldots$ converge para 0.

- Combinações:
 - 1. C(n,0) e C(n,n) são casos limite.
 - 2. C(n,k) expresso em função de C(n-1,k) e C(n-1,k-1).
 - 3. *n* converge para *k* ou *k* converge para 0.
- Torres de Hanói:
 - 1. Mover 1 disco (ou 0 discos) é trivial.
 - 2. moveTorre(n,...) expresso em função de moveTorre(n-1,...).
 - 3. *n* converge para 1 (ou 0).

06.22

10.1 Casos Atípicos

Por vezes a evolução dos parâmetros de uma função recursiva pode ser bastante errática e a convergência em direção aos casos limite (condição 3) pode ser menos óbvia, ou mesmo difícil de demonstrar. Vejamos dois casos famosos.

Exemplo de casos atípicos

• Função McCarthy 91:

```
static int mc_carthy91(int n) {
   assert n > 0;
   int result;
   if (n > 100)
      result = n - 10;
   else
      result = mc_carthy91(mc_carthy91(n + 11));
   return result;
}
```

- Sabe-se que termina, mas o tipo complexo de recursão dificulta a demonstração.
- Conjectura de *Collatz* (3n+1):¹

```
static long collatz(long n) {
   assert n > 0;
   long result = n;
   if (n == 1)
      result = 1;
   else if (n % 2 == 0)
      result = collatz(n / 2);
   else
      result = collatz(3 * n + 1);
   return result;
}
```

- Acredita-se que termina sempre, mas ninguém o demonstrou!

06.23

10.2 Casos com Interesse

 Na área da programação, os problemas recursivos considerados são sempre problemas em que as três condições de sanidade estão bem identificadas e podem ser implementadas.

06.24

¹Ver http://www.ieeta.pt/~tos/3x+1.html.