Feuille d'exercice Équations Différentielles

Exercice 1

Résoudre l'équation différentielle (E) : $y' + 2y = 4e^{2t}$, avec la condition de Cauchy y(0) = 0.

Exercice 2

Résoudre l'équation différentielle xy' = y + x sur \mathbb{R}_+^* .

Exercice 3

Résoudre l'équation $xy' + y - \ln(x) = 0$ sur \mathbb{R}_+^* .

Exercice 4

Résoudre l'équation y' - (y+1)(x+1) = 0.

Exercice 5

Résoudre l'équation (E):

$$y' = \frac{y}{2t} + \frac{1}{2yt}.$$

Indication : On pourra poser $z = y^2$. Commentez.

Exercice 6

Résoudre l'équation (E):

$$2xy'e^y + e^y - x^2 = 0.$$

Indication : On pourra de nouveau poser une fonction intermédiaire bien choisie.

Exercice 7 (plus calculatoire)

Résoudre l'équation (E):

$$y' = \frac{x+1}{x^2}y - 2\frac{y}{x}\ln(\frac{y}{x}).$$

Indication : On pourra poser $z = \ln(y)$.

Exercice 8*

Trouvez toutes les applications f telles que, pour tout $x \in \mathbb{R}$,

$$f'(x) = f(x) + \int_0^1 f(t)dt$$