Math 362: Mathematical Statistics II

Le Chen le.chen@emory.edu

Emory University Atlanta, GA

Last updated on April 24, 2021

2021 Spring

Chapter 14. Nonparametric Statistics

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- $\$ 14.6 Testing for Randomness

Chapter 14. Nonparametric Statistics

- § 14.1 Introduction
- § 14.2 The Sign Test
- § 14.3 Wilcoxon Tests
- § 14.4 The Kruskal-Wallis Test
- § 14.5 The Friedman Test
- § 14.6 Testing for Randomness

Frank Wilcoxon

Born 2 September 1892

Died 18 November 1965

(aged 73)

Tallahassee, Florida, US*F*

Nationality Irish American

Alma mater Cornell University

Scientific career

Fields Chemistr

Statistics

Institutions American Cyanamid

Company

Testing
$$H_0: \mu = \mu_0$$

Setup Let Y_1, \dots, Y_n be a set of independent variables with pdfs $f_{Y_1}(y), \dots, f_{Y_n}(y)$, respectively.

Assume that $f_{Y_i}(y)$ are continuous and symmetric.

Assume that all mean/median of f_{Y_i} are equal, denoted by μ .

Test $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0.$

Wilcoxon signed rank static

$$W = \sum_{k=1}^{n} R_k \, \mathbb{I}_{\{Y_k > \mu_0\}}$$

where R_i denotes the rank (increasing and starting from 1) of

$$\{|Y_1 - \mu_0|, |Y_2 - \mu_0|, \cdots, |Y_n - \mu_0|\}$$

n	1	2	3
Уn	4.2	6.1	2.0
$y_n - 3.0$	1.2	3.1	-1.0
$ y_n - 3.0 $	1.2	3.1	1.0
r_n	2	3	1
$1_{\{y_n>3.0\}}$	1		0
$r_n \mathbb{I}_{\{y_n>3.0\}}$	$u_2 = 2$	$u_3 = 3$	$u_1 = 0$

$$w = 2 \times 1 + 3 \times 1 + 1 \times 0 = 5.$$

Let $\{y_1, \dots, y_n\}$ be For a sample of size n.

Some observations:

- $ightharpoonup r_i$ takes values in $\{1, 2, \dots, n\}$.
- w_i takes values in $\{0, 1, 2, \dots, \frac{n(n+1)}{2}\}$ with $1 + 2 + \dots + n = \frac{n(n+1)}{2}$.
- \triangleright W is a discrete random variable:

W	0	1	 $\frac{n(n+1)}{2}$
$\mathbb{P}(W=w)$			

Theorem Under the above setup and under H_0 ,

$$\rho_W(w) = \mathbb{P}(W = w) = \frac{c(w)}{2^n},$$

where c(w) is the coefficient of e^{wt} in the expansion of

$$\prod_{k=1}^n \left(1 + \boldsymbol{e}^{kt}\right).$$

Proof Under H_0 , $W = \sum_{k=1}^n U_k$ with follow the following distribution

$$U_{k} = \begin{cases} 0 & \text{with probability } 1/2\\ k & \text{with probability } 1/2. \end{cases}$$

Then

$$M_W(t) = \prod_{k=1}^n M_{U_k}(t) = \prod_{k=1}^n \mathbb{E}\left(e^{U_k t}\right) = \prod_{k=1}^n \left(\frac{1}{2} + \frac{1}{2}e^{kt}\right).$$

23

Hence, we have

$$M_W(t) = rac{1}{2^n} \prod^n \left(1 + oldsymbol{e}^{kt}
ight).$$

On the other hand,

$$M_W(t) = \mathbb{E}\left(e^{Wt}\right) = \sum_{w=0}^{\frac{n(n+1)}{2}} e^{wt} \rho_W(w)$$

Equating the above two expressions, namely,

$$\frac{1}{2^n} \prod_{k=1}^n \left(1 + e^{kt} \right) = \sum_{w=0}^{\frac{n(n+1)}{2}} e^{wt} p_W(w),$$

proves the theorem.

24

E.g. Find the pdf of W when n = 2 and 4.

Sol. When n=2,

$$M_W(t) = \frac{1}{2^2} (1 + e^t) (1 + e^{2t})$$

= $\frac{1}{2^2} (1 + e^t + e^{2t} + e^{3t}).$

Hence,

W	0	1	2	3
$p_W(w)$	1/4	1/4	1/4	1/4

When n=4,

$$M_W(t) = \frac{1}{2^4} \left(1 + \mathbf{e}^t \right) \left(1 + \mathbf{e}^{2t} \right) \left(1 + \mathbf{e}^{3t} \right) \left(1 + \mathbf{e}^{4t} \right)$$

$$= \frac{1}{16} \left(\mathbf{e}^{10t} + \mathbf{e}^{9t} + \mathbf{e}^{8t} + 2\mathbf{e}^{7t} + 2\mathbf{e}^{6t} + 2\mathbf{e}^{5t} + 2\mathbf{e}^{4t} + 2\mathbf{e}^{3t} + \mathbf{e}^{2t} + \mathbf{e}^{t} + 1 \right)$$

Hence,

W	0	1	2	3	4	5	6	7	8	9	10
$p_W(w)$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{2}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$

^{2 (}k, t)

³ sage: product $(1+e^{(k*t)},k,1,4)$

 $e^{(10*t)} + e^{(9*t)} + e^{(8*t)} + 2*e^{(7*t)} + 2*e^{(6*t)} + 2*e^{(5*t)} + 2*e^{(4*t)} + 2*e^{(3*t)} + e^{(2*t)} + e^{t} + 1$

E.g. Shark studies:

	surements Made on Ten Sharks Car a Catalina	ught Near
Total Length (mm)	Height of First Dorsal Fin (mm)	TL/HDI
906	68	13.32
875	67	13.06
771	55	14.02
700	59	11.86
869	64	13.58
895	65	13.77
662	49	13.51
750	52	14.42
794	55	14.44
787	51	15.43

Past data show that the true average TL/HDI ratio should be 14.60.

Let $Y_i = TL/HDI$.

Does the data support the above claim, namely, test

$$H_0: \mu = 14.60$$
 vs. $H_1: \mu \neq 14.60$.

Set $\alpha = 0.05$.

Sol. Computing the Wilcoxon signed rank statistics:

Table 14.3.3	Computation	ıs for Wilcoxo	n Signe	ed R	ank Test
$TL/HDI (= y_i)$	$y_i - 14.60$	$ y_i-14.60 $	r_i	z_i	$r_i z_i$
13.32	-1.28	1.28	8		0
13.06	-1.54	1.54			0
14.02	-0.58	0.58			0
11.86	-2.74	2.74	10		0
13.58	-1.02	1.02	6		0
13.77	-0.83	0.83	4.5		0
13.51	-1.09	1.09			0
14.42	-0.18	0.18	2		0
14.44	-0.16	0.16			0
15.43	+0.83	0.83	4.5		4.5

Hence, $\mathbf{w} = 4.5$.

Now check the table to find the critical region:

$$C = \{ w : w \le 8 \text{ or } w \ge 47 \}.$$

Conclusion: Rejection!

```
\begin{array}{l} 1 \\ > x < - c(13.32,\,13.06,\,14.02,\,11.86,\,13.58,\,13.77,\,13.51,\,14.42,\,14.44,\,15.43) \\ > \mbox{wilcox.test}(x,\,mu=14.60,\,alternative="two.sided") \\ \\ \hline & Wilcoxon signed rank exact test \\ \\ \hline & data: x \\ V=15,\,p-value=0.123 \\ \\ & alternative \ hypothesis: true location is not equal to 14.6 \\ \end{array}
```

Large-sample Wilcoxon Signed Rank Test

Theorem Under the same setup and H_0 , we have

$$\mathbb{E}(W) = \frac{n(n+1)}{4}$$
 and $Var(W) = \frac{n(n+1)(2n+1)}{24}$.

Proof.

$$\mathbb{E}(W) = \mathbb{E}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \left(0 \cdot \frac{1}{2} + k \cdot \frac{1}{2}\right)$$
$$= \sum_{k=1}^{n} \frac{k}{2} = \frac{n(n+1)}{4}.$$

$$\operatorname{Var}(W) = \operatorname{Var}\left(\sum_{k=1}^{n} U_{k}\right) = \sum_{k=1}^{n} \operatorname{Var}(U_{k}) = \sum_{k=1}^{n} \left[\mathbb{E}(U_{k}^{2}) - \mathbb{E}(U_{k})^{2}\right]$$
$$= \sum_{k=1}^{n} \left[\frac{k^{2}}{2} - \left(\frac{k}{2}\right)^{2}\right] = \sum_{k=1}^{n} \frac{k^{2}}{4} = \frac{1}{4} \frac{n(n+1)(2n+1)}{6}$$

Hence when n is large (usually $n \ge 12$),

$$\frac{W - \mathbb{E}(W)}{\sqrt{\operatorname{Var}(W)}} = \frac{W - [n(n+1)]/4}{\sqrt{[n(n+1)(2n+1)]/24}} \stackrel{\text{approx}}{\sim} N(0,1).$$

1

Let w be the signed rank statistic based on n independent observations, each drawn from a continuous and symmetric pdf, where n > 12. Let

$$z = \frac{w - [n(n+1)]/4}{\sqrt{[n(n+1)(2n+1)]/24}}$$

- **a.** To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu > \mu_0$ at the α level of significance, reject H_0 if $z \ge z_{\alpha}$.
- **b.** To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu < \mu_0$ at the α level of significance, reject H_0 if $z \le -z_{\alpha}$.
- **c.** To test H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ at the α level of significance, reject H_0 if z is either $(1) \leq -z_{\alpha/2}$ or $(2) \geq z_{\alpha/2}$.

The Wilcoxon Rank Sum Test

- Nonparametric counterpart of the pooled two-sample t-test

Setup Let x_1, \dots, x_n and y_{n+1}, \dots, y_{n+m} be two independent random samples from $f_X(x)$ and $f_Y(y)$, respectively.

Assume that $f_X(x)$ and $f_Y(y)$ are the same except for a possible shift in location.

Test $H_0: \mu_{\mathsf{X}} = \mu_{\mathsf{Y}} \text{ vs. } \dots$

Test statistic

$$W = \sum_{k=1}^{n+m} R_i Z_i$$

where R_i is the rank (starting from the lowest with rank 1) and

$$Z_i = \begin{cases} 1 & \text{the ith entry comes from } f_X(x) \\ 0 & \text{the ith entry comes from } f_Y(y). \end{cases}$$

Theorem Under the above setup and under H_0 ,

$$\mathbb{E}[\textbf{\textit{W}}] = \frac{\textit{n}(\textit{n} + \textit{m} + 1)}{2} \quad \text{and} \quad \text{Var}(\textbf{\textit{W}}) = \frac{\textit{n}\textit{m}(\textit{n} + \textit{m} + 1)}{12}.$$

Hence when sample sizes are large, namely, n, m > 10,

$$\frac{\textit{W} - \mathbb{E}(\textit{W})}{\sqrt{\mathrm{Var}(\textit{W})}} = \frac{\textit{W} - [\textit{n}(\textit{n} + \textit{m} + 1)]/2}{\sqrt{[\textit{nm}(\textit{n} + \textit{m} + 1)]/12}} \overset{\textit{approx}}{\sim} \textit{N}(0, 1).$$

E.g. Baseball ...

Test if $H_0: \mu_X = \mu_Y$ vs. $H_0: \mu_X \neq \mu_Y$

Obs. #	Team	Time (min)	r_i	z_i	$r_i z_i$
	Baltimore	177	21		21
2	Boston	177	21		21
3	California	165	7.5	1	7.5
4	Chicago (AL)	172	14.5		14.5
	Cleveland	172	14.5		14.5
	Detroit	179	24.5		24.5
	Kansas City	163			
8	Milwaukee	175	18		18
9	Minnesota	166	9.5		9.5
10	New York (AL)	182	26		26
11	Oakland	177	21		21
12	Seattle	168	12.5		12.5
13	Texas	179	24.5		24.5
14	Toronto	177	21		21
15	Atlanta	166	9.5	0	0
16	Chicago (NL)	154			
17	Cincinnati	159	2		
18	Houston	168	12.5		
19	Los Angeles	174	16.5		
20	Montreal	174	16.5		
21	New York (NL)	177	21		
22	Philadelphia	167	11		
23	Pittsburgh	165	7.5		
24	San Diego	161	3.5		
25	San Francisco	164	6		
26	St. Louis	161	3.5		
					w' = 240.5

C----- \

Group Y

In this case, n = 14, m = 12, w = 240.5.

$$\mathbb{E}(\mathbf{W}) = \frac{14(14+12+1)}{2} = 189,$$

$$\text{ar}(\mathbf{W}) = \frac{14 \times 12 \times (14+12+1)}{12} = 378$$

Hence, the approximate z-score is

$$z = \frac{W - \mathbb{E}(W)}{\sqrt{\text{Var}(W)}} = \frac{240.5 - 189}{\sqrt{378}} = 2.65.$$