Linear Kinematics

$$v_f = v_i + at$$

$$\Delta x = \frac{1}{2}(v_i + v_f)t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

$$\Delta x = v_i t + \frac{1}{2}at^2$$

Rotational Kinematics

$$\omega = \omega_i + \alpha t \qquad \qquad \theta = \frac{1}{2}(\omega_f - \omega_i)t$$

$$\omega^2 = \omega_i^2 + 2\alpha\theta \qquad \qquad \theta = \omega_i t + \frac{1}{2}\alpha t^2$$

Projectile Motion

$$v_x = v \cos \theta$$
 max height $h = \frac{v_y^2}{2g}$
 $v_y = v \sin \theta$ max range $r = \frac{v_x^2 \sin(2\theta)}{g}$
 $\theta = \tan^{-1} \frac{v_y}{v_x}$ distance $d = \frac{1}{2}a_x t^2$
 $t = \frac{2v_y}{g}$

Force

Newton's Second Law	F = ma
Hooke's Law	$F_{spring} = -kx$
$F_{normal} = mgcos\theta$	$F_{friction} = \mu_k F_N$
$F_{centripetal} = \frac{mv^2}{r} = m\omega^2$	

Momentum

$$p_i = p_f$$
 $L_i = L_f$
 $p = mv$ $L = I\omega$
 $L = r \times p = mv \sin \theta$

Torque

$$\tau = \Delta L$$

$$\tau = rFsin\phi$$

$$\tau = I\alpha$$

Parallel Axis Theorem

$$I_p = I_c + md^2$$

Potential Energy

$$U_{gravity} = mgh$$
 $U_{spring} = \frac{1}{2}kx^2$

Kinetic Energy

$$K = \frac{1}{2}mv^2$$
 $K_{rotational} = \frac{1}{2}I\omega^2$ $K_{rolling} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$

Circular Motion

$$f = \frac{rev}{sec}$$

$$1 \frac{rev}{sec} = 2\pi \frac{rad}{sec}$$

$$F = m \frac{v^2}{r}$$

$$F = m \omega^2 r$$

$$\omega = 2\pi f$$

$$\alpha = \frac{v^2}{r}$$

$$\omega = \frac{v}{r}$$

$$\alpha = \frac{a}{r}$$

Work and Power

$$E_i = PE_i + KE_i$$
 $E_f = PE_f + KE_f$
 $W = \Delta E = E_f - E_i$ $P = \frac{W}{t}$
 $W_{linear} = FDcos\theta$ $W_{rotational} = \tau\theta$
 $P_{linear} = Fv$ $P_{rotational} = \tau\omega$

Impulse

$$\Delta p \qquad \qquad \Delta L$$

$$F\Delta t = m\Delta v \qquad \qquad \tau \Delta t = m\Delta \omega$$

Moments of Inertia

point mass	$I = MR^2$
solid disk	$I = \frac{1}{2}MR^2$
solid sphere	$I = \frac{2}{5}MR^2$
hollow sphere	$I = \frac{2}{3}MR^2$
rod (center)	$I = \frac{1}{3}MR^2$
rod (end)	$I = \frac{1}{12}MR^2$