Edge cutoff

Solution:

$$B_z^{cutoff} = B_z - \min(B_z)$$

Scaling

$$\begin{split} \frac{1}{f} &= \frac{e^2}{4p_z^2} \cdot F_2^N, \\ k_N &= \frac{B_N}{B} \propto \sqrt{\frac{F_2^N}{F_2}}, = \frac{2p_z(E_N)}{e\sqrt{f_N F_2}} \end{split}$$

Δf expansion

Fit:
$$f(r) = f_0 - \Delta f(r)$$

 $\Delta f = c_2 \cdot r^2 + c_4 \cdot r^4 + ...;$
 $c_s := c_2 \cdot f^2$ Approximation for small r

Off-axis focusing

