TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver

21. november 2010

1 Kontinuerlige signaler og systemer

1.1 Signaler i tidsdomenet

Ek	ksamen	Oppgave	Deloppgave	Kommentar
2	2009M	3	b	gitt $x(t)$, sum av DC og to sinussignaler, bestem periodisitet

1.2 Signaler i frekvensdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	2	a	periodisk
2005K	2	a	egenskaper til signalet (ikke-periodisk, reelt) gitt spektrum
2004V	3	c,e	gitt $X_a(F)$: $x_a(t)$ periodisk?, bevis egenskaper til $X(\omega)$
2001V	2	a,b,c	FT til et sinussignal og tidsbegrenset sinussignal
2009M	3	a	gitt $x(t)$, sum av DC og to sinussignaler, finn ampl- og fasespektrum
2007M	2	1	gitt $x(t)$ (firkantpuls), finn FT
2005M1	3	a	gitt $X(\Omega)$, finn $x(t)$

1.3 Signalenergi og -effekt

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	2	b,e	periodisk signal, før og etter antialiasing filter
2004K	3	d	gitt grafen til $X_a(F)$ for et ikke-periodisk signal
2005M1	3	b	gitt $X(\Omega)$, finn signalenergi

1.4 Systemer i tidsdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010V	2	a,c	finn diff.ligning og $h(n)$ gitt krets og $H(\Omega)$
2005K	1	a,c	finn diff.ligning og $h(n)$ gitt krets og $H(\Omega)$
2004V	2	a	finn diff.ligning gitt enkel RC-krets
2003V	1	С	finn diff.ligning gitt krets
2008M	2	1	gitt $h(t)$ grafisk
2005TØ	2	a	finn diff.ligning gitt LR-krets

1.5 Systemer i frekvensdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010V	2	b	finn $H(\Omega)$ gitt krets
2006V	1	a	finn frekvensrespons gitt $h(t)$
2005K	1	b	finn amplitude- og faserespons gitt krets
2004V	2	b,c	finn frekvensrespons, ampl.respons og filtertype gitt RC-krets
2003V	1	d,e	finn frekvensrespons gitt krets
2010M	8		finn filtertype, gitt krets
2009M	4	a	gitt ampl- og faserespons, bestem filtertype
2008M	2	2,3	gitt $h(t)$ grafisk, finn frekvensrespons, tidsforskjøvet system
2005TØ	2	b	$ \operatorname{finn} H(\Omega) $ gitt LR-krets (diff.ligning)
2005TØ	3	a	gitt PP-filter og rekkeutvikling til $x(t)$, finn komponentene til $y(t)$

1.6 Signaler gjennom systemer

Eksamen	Oppgave	Deloppgave	Kommentar
2010V	2	d	sinussignal+DC
2005K	1	d	sum av to sinussignaler, $u(t)$
2009M	4	b	DC + sum av to sinussignaler, gitt ampl- og faserespons til filteret
2007M	2	2	finn $y(t)$ når $x(t)$ og $h(t)$ er firkantpulser
2005TØ	2	$_{\mathrm{c,d}}$	gitt $ H(\Omega) $ og rekkeutvikling for $x(t)$, finn ampl til 3 komp av $y(t)$

${\bf 2}\quad {\bf Tids diskrete\ signaler\ og\ systemer}$

2.1 Signaler i tidsdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	1	a, b	periodisitet (cos), tidsskift
2010M	1		gitt $x(n)$, tegn $x(3-n)$
2009M	1		gitt $x(n)$ (graf), tegn $x(-n)$ og $x(3-n)$
2007M	1	1,2	definer periodisitet, bestem periodisitet
2006M	1	a	periodisitet til $\cos(\omega n)$
2005M2	2	a	utrykk $x(n)$ vha. $\delta(n)$
2005M1	2	a,b	gitt cossignal, finn ω . amplitude og fase, periodisitet

2.2 Signaler i frekvensdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	1	$_{\mathrm{c,d}}$	ikke-periodisk, tidsskift
2010V	1		spektrum til $x(n)$ og dens periodiske utvidelse
2009V	1	d	ikke-periodisk, endelig lengde
2007K	2	a-d	hovedsaklig DFT, også sammenheng mellom DTFT of DFT
2006K	2	hele	finn DTFT for ikke-periodisk signal, sammenheng med DFT
2010M	4,5		gitt $x(n)$, sum av to sinussignaler, finn ampl- og fasespekteret
2009M	5	a	gitt $x(n)$ (lik, endelig lengde), finn $X(\omega)$
2005M2	2	c	gitt $x(n)$ finn spekteret

2.3 Signalenergi og -effekt

Eksamen	Oppgave	Deloppgave	Kommentar
2007V	1	a,b	$x(n) = a^n u(n) \text{ og } \hat{x}(n) = a^n [u(n) - u(n-N)]$
2008M	1	6	
2007M	1	7	
2006M	1	b	uendelig og endelig eksp. sekvens a^n
2005M2	2	f	energi til opprinnelig og filtrert signal, beregn og samenlign

2.4 Systemer i tidsdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	1	e	kausalitet og stabilitet gitt h(n)
2009K	1	a,b,c	def. LTI og stabilitet, finn diff.lign og $h(n)$ gitt FIR-filterstruktur
2009V	1	a,b	gitt diff.ligning til IIR-filter, finn DF1, DF2 og $h(n)$
2008V	1	a,b,c	gitt filterstrukturer (FIR, IIR), finn diff.ligning, $h(n)$ (IIR)
2007K	1	a,c	konvolusjon, gitt et sammensatt system (IIR), finn $h(n)$
2007V	1	c	kausalitet og stabilitet gitt $h(n)$
2006K	1	hele	DF1, DF2, $h(n)$, stabilitet gitt differensligning (IIR)
2006V	2	a	gitt differensligning (IIR) finn $h(n)$
2005V	1	b,c	gitt $H(\omega)$ (FIR): $h(n)$, diff.ligning, filterstrukt; sammensatt syst
2004K	1	a	gitt diff.ligning (IIR), finn DF1-struktur
2004V	1	a,b,c	kausalitet og stabilitet gitt $h(n)$, hvordan finne $h(n)$ i praksis
2003K	1	1,2,3,5	gitt diff.ligning: filterstruktur, $h(n)$, stabilitet
2003V	1	a,b	deffiner $h(n)$ og stabilitet, $h(n)$ for ustabilt system
2002K	1	a,b	gitt diff.ligning finn DF1, DF2 og $h(n)$
2002V	1	a-d,f	definere og sjekke LTI, kausalitet, stabilitet; kaskadekobling
2001K	1	hele	linearitet, $h(n)$ gitt filterstruktur (IIR), kaskade- og parallellkobling
2001V	1	a	finn diff.ligning gitt filterstruktur (IIR)
2001Test	1	a,b,c,e	gitt diff.lign, finn $h(n)$, skiftinvariant?
2010M	2		gitt diff.ligning, bestem linearitet, tidsinvarians, kausalitet, stabilitet
2010M	3		gitt filterstruktur, finn diff.ligning
2009M	2		gitt diff.ligning (FIR), bestem linearitet, tidsinvarians, kausalitet
2009M	6	a	gitt filterstruktur (IIR) finn diff.ligning
2009M	7	hele	gitt diff.ligning (FIR), bestem $h(n)$, kausalitet, stabilitet
2008TØ		a,b,c,d	gitt filterbankstruktur, finn diff.ligning og $h(n)$
2008M	1	1,2,3	gitt filterstruktur (IIR), finn diff.ligning, $h(n)$, stabilitet
2007M	1	3,4	IIR og FIR fra $h(n)$, forskjellen
2006M	1	c	gitt 3 diff.lign, sjekk LTI og stabilitet
2006M	1	d	gitt filterstruktur, finn $h(n)$, IIR eller FIR
2006M	2	a	gitt generell diff.lign (IIR), hvordan finne $h(n)$?
2005M2	1	a,b,c,d	gitt IIR dif. ligning, finn DF1&2, $h(n)$, FIR/IIR, stabilitet
2005M1	1	a,b,c	gitt diff. ligning (FIR) sjekk LTI, finn $h(n)$, FIR/IIR, kausalt, stabilt

2.5 Systemer i frekvensdomenet

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	1	f	finn amplitude- og faserespons
2009K	2	С	amplituderespons til ideelt BP-filter
2009V	2	c	amplituderespons, filtertype
2008V	1	d	gitt diff.ligning (IIR), finn $H(\omega)$ og $ H(\omega) $
2007K	1	b,d,e	$H(\omega) = \mathcal{F}(h(n))$. $H(\omega)$ og stabilitet for sammensatt system
2007V	1	d	gitt $h(n)$, finn $H(\omega)$
2006V	1	$_{ m b,c,d}$	finn frekvensrespons gitt $h(n) = h(t) _{t=nT}$ samt FIR-tilnærmelse
2006V	2	b	finn frekvensrespons gitt differensligning (evt. $h(n)$)
2005V	1	a,c	gitt $H(\omega)$: type, $\tau(\omega)$, forsterkning, faseforsink; sammensatt syst
2004K	1	b,c	gitt diff.ligning (IIR), finn ampl- og faserespons, filtertype
2004V	1	d,e	finn amplitude- og faserespons gitt $h(n)$
2003K	1	4	gitt diff.ligning, finn frekvensrespons
2002K	1	$_{\mathrm{c,d,e}}$	gitt diff.ligning finn $H(\omega)$; gitt filterstruktur finn $H(\omega)$
2002V	1	e	finn frekvensrespons gitt $h(n)$; kaskadekobling
2001K	1	$_{ m b,c,d}$	frekvensrespons gitt filterstruktur (IIR), kaskade- og parallellkobling
2001V	1	b	finn frekvensrespons gitt filterstruktur (IIR)
2001Test	1	d	gitt $h(n)$ finn frekvensrespons
2010M	6		gitt diff.ligning finn filtertype
2009M	6	b	gitt filterstruktur (IIR) finn frekvensrespons
2008TØ		e,f,g	gitt filterbankstruktur, finn frekvensrespons, lin. fase, ampl.respons
2008M	1	4	gitt filterstruktur (IIR), finn frekvensrespons
2007M	1	5	gitt $h(n)$ for et IIR- og FIR-filter, finn frekvensrespons, sammenheng?
2007M	1	8	gitt. diff. ligning, finn frekvensrespons
2006M	1	e	gitt filterstruktur $(h(n))$, finn ampl.respons, filtertype
2006M	2	d	gitt diff.ligning (IIR) finn amplituderespons
2005M2	1	e,f	gitt IIR dif. ligning $(h(n))$, finn amplituderespons og filtertype
2005M1	1	d,e	gitt diff.ligning (FIR) finn ampl og faserespons, filtertype

2.6 Signaler gjennom systemer

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	1	g,h	ikke-periodisk og sinussignal
2009K	2	С	sum av to sinussignaler gjennom et ideelt BP
2009V	1	е	ikke-periodisk signal, gitt $X(\omega)$
2007V	1	e,f,g	ikke-periodisk signal $x(n)$ og $h(n)$ er gitt
2004K	1	d	sum av to sinussignaler
2004V	1	f	DC + sinussignal
2001Test	1	e	gitt IIR-filter $(h(n))$, finn responsen på $x(n) = \beta^n u(n)$
2010M	7		sum av to siussignaler gjennom et FIR-filter gitt ved diff.ligning
2009M	5	b,c	x(n) (lik, endelig lengde) og $x(n-3)$ gjennom ideelt HP
2008M	1	5	gitt $x(n)$, endelig lengde og et IIR-system
2007M	1	6	gitt $x(n)$ endelig lengde og $h(n)$ (IIR)
2007M	1	9	gitt $x(n)$ endelig lengde og frekvensrespons (IIR), finn $Y(\omega)$
2006M	1	f	gitt $x(n)$ endelig lengde, finn utg.sig. i tid og frekvens
2005M2	2	e	gitt $X(\omega)$ og $ H(\omega) $, finn $ Y(\omega) $
2005M1	2	С	cossig gjennom filter med kjent $H(\omega)$. Finne utgangssignal

3 Egenskaper til spektra

Eksamen	Oppgave	Deloppgave	Kommentar
2010M	10		periodiske, reelle, like, tidsdiskrete
2005M2	2	d	vis at spekteret til reell og lik $x(n)$ er relt og likt
2005M1	3	С	bevis at reelt og like $x(t)$ fører til reelt og like $X(\Omega)$

4 Signaldekomposisjon i generelle basisfunksjoner (ikke pensum)

Eksamen	Oppgave	Deloppgave	Kommentar
2004K	2	hele	kontinuerlig signal, endelig lengde, $\phi_k(t) = \cos(k\pi t)$
2003K	2	hele	$x(t) = e^{rt}$, lagendrepolynomer, sammenlign med Taylor
2003V	3	a,b,c,e	ortogonalitet i rekonstruksjon etter sampling og i signaloverføring
2002K	2	hele	lin.uavhengig, ortogonal, ortonormal, konvergens i middel
2001K	2	hele	x(t), endelig lengde, kompl. eksp. bassfunksjoner, sampling, DFT
2008M	3	hele	generelle periodiske basisfunksjoner
2007M	2	4,5,6	forskjell på period og ikke-period basisfunk, fordel med ortonormale
2006M	3		generell oppgave
2005TØ	1		gitt firkantpulstog $x(t)$ og $\phi_k(t) = \sin(\Omega_0 kt)$

5 Samping og rekonstruksjon

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	2	c-f	periodisk signal, antialiasingfilter, sampling
2010V	3	hele	sum av to sinussignaler, med og uten antialiasingfilter
2009K	2	a,b	sum av to sinussignaler, samplingsteorem oppfylt
2005K	2	b,c	gitt spektrum til ikke-periodisk signal
2005V	2	hele	sum av 3 sinuser, sampling og rekonstruksjon med pulstog
2004V	3	a,b	gitt spektrum til ikke-periodisk signal
2002V	2	hele	samplingsteorem, ideell og praktisk rekonstruksjon
2001V	2	d,e	tidsbegrenset sinussignal, teoretisk og praktisk rekonstruksjon
2001Test	2	a,b	ideell samplingsteorem og rekostruksjon som rekkeutvikling
2010M	9		sampling av signal med trekantformet spektrum
2009M	8	hele	gitt trapesformet spektrum og F_s
2005TØ	3	b	kombinert sampling og filtrering, finn F_s og f_c

6 Stokastiske signaler

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	3	hele	effekt, $R_{XX}(l)$ og $S_{XX}(\omega)$ til hvit støy og filtrert hvit støy
2009K	3	a	finn effekt gitt pdf (trekantformet)
2009V	2	a	finn effekt gitt pdf (stykkevis konstant, 4 deler)
2008V	2	a	finn effekt gitt pdf (stykkevis konstant, 3 deler)
2007K	3	b	finn effekt til kvantisert signal gitt pdf (stykkevis konstant, 5 deler)
2007V	2	a	gitt σ_X^2 og pdf med ukjente parametre, finn dem
2006V	3	a	gitt σ_X^2 og pdf-formel med ukjente parametre, finn dem
2005K	3	a,b	$finn R_{XX}(l)$ og $S_{XX}(\omega)$ til hvit støy og filtrert hvit støy, AR(1)
2003K	3	1	gitt pdf (stykkevis konstant, 3 deler) med ukjent parameter, finn den
2002V	2	a	gitt σ_X^2 og pdf med ukjente parametre, finn dem
2001V	1	$_{\mathrm{c,d}}$	$R_{XX}(l)$ og $S_{XX}(\omega)$ til hvit støy filtrert gjennom IIR-filter, AR(2)
2001Test	2	С	$R_{XX}(l)$ og $S_{XX}(\omega)$ og sammenheng med korrelasjon

7 Filtrering av stokastiske signaler (ikke pensum)

Eksamen	Oppgave	Deloppgave	Kommentar
2008V	1	e,f	gitt $S_{XX}(\omega)$ og $H(\omega)$, finn $S_{YY}(\omega)$ og σ_Y^2
2008TØ		h,i	gitt en filterbank med to filtre som splitter et signal i to frekvensbånd

8 Kvantisering

Eksamen	Oppgave	Deloppgave	Kommentar
2010V	4	a,b	8 nivå, gitt pdf, stykkevis konstant, 4 deler
2009K	3	b,c	8 nivå, gitt pdf, trekantformet
2009V	2	b,c	4 nivå, gitt pdf, stykkevis konstant, 4 deler
2008V	2	b	b nivå, gitt pdf, stykkevis konstant, 3 deler
2007K	3	a	gitt Δ og pdf, stykkevis konstant, 5 deler
2007V	2	b,c	gitt L og konstant pdf
2006V	3	b	gitt pdf med en formel
2005K	3	c	gitt $R_{XX}(l)$, 32 nivå og intervall som skal dekkes $[-3\sigma, 3\sigma]$
2005V	3	a,b,c	6 nivå, gitt pdf, stykkevis konstant, 5 deler; ikke-uniform Q
2004K	3	a	4 nivå, gitt pdf, stykkevis konstant, 4 deler
2003K	3	2	4 nivå, gitt pdf, stykkevis konstant, 3 deler
2003V	2	d	gitt antall bit og dynamisk område
2002V	2	b,c	4 og 8 nivå, gitt pdf, stykkevis konstant, 3 deler
2001K	3	a	3 bit, gitt trekantformet pdf
2001Test	3	a	2 bit, gitt pdf (omvendt trekant)

9 DPCM og delbåndskoding (ikke pensum)

Eksamen	Oppgave	Deloppgave	Kommentar
2007V	2	j	konsept av DPCM eller delbåndskoding for fjerning korrelasjon
2005K	3	d,e	DPCM og sammenligning med direkte kvantisering
2004K	4	hele	delbåndskoding: blokkskjema, prinsipp og bruk på hvit støy
2003V	2	a,b,c,e	DPCM prinsipp, optimal prediktor for en AR(1)-prosess
2001V	1	е	DPCM-prinsipp
2001Test	2	d,e	hvordan korrelasjon utnyttes i DPCM og delbåndskoding
2008TØ		j	kodingsgevinst i delbåndskoding gitt filterbank

10 Informasjonsteori og koding

Eksamen	Oppgave	Deloppgave	Kommentar
2010K	4	hele	diskret kilde (terning): entropi og koding
2010V	4	$_{\mathrm{c,d,e}}$	kvantisert signal, gitt pdf (stykkevis konstant)
2009K	3	d-g	kvantisert signal, gitt pdf (trekantformet)
2009V	2	d,e,f	kvantisert signal, gitt pdf (stykkevis konstant)
2008V	2	c-f	kvantisert signal, gitt pdf (stykkevis konstant), pdf-opt kvant
2007V	2	d	kvantisert signal, gitt konstant pdf
2006V	3	c	kvantisert signal, gitt pdf ved en formel
2005K	4	hele	diskret kile, 4 symboler med gitte sannsynligheter
2005V	3	d,e,f	kvantisert signal, gitt pdf (stykkevis konstant)
2004K	3	b	kvantisert signal, gitt pdf (stykkevis konstant), gitt kode
2004V	4	hele	kvantisert signal, gitt uniform pdf, gitt kode
2003K	3	3	kvantisert signal, gitt pdf (stykkevis konstant)
2001K	3	b	kvantisert signal, gitt trekantformet pdf
2001Test	3	b	kvantisert signal, gitt pdf (omvendt trekant)

11 Informasjonsoverføring

Eksamen	Oppgave	Deloppgave	Kommentar
2010V	4	f	Shannons formel, finn CSNR
2009K	4	hele	Nyquisi frekvensdomenet, pdf til mottatt signal, P(feil)
2009V	3	hele	Nyquist i tidsdomenet, motatt signal, P(feil), Shannon (CSNR)
2007K	3	d,e	Shannon, finn CSNR, flernivå - minste P
2007V	2	f,g,h,i	alt mulig: samplingsrate, båndbredde, flernivå, Shannon, CSNR
2006V	3	d	gitt R bit/ppr, og signalbåndbredde, bruk Shannon, finn CSNR (fin)
2005V	4	hele	Nyquist i tidsdomenet, Shannons formel, kanalkoding (prinsipp)
2003K	3	4,5	Shannons formel, finn CSNR, 2-nivå- og flernivåsignalering
2002K	3	hele	Nyquist i tids- og frekvensdomenet, Shannon - flernivåsignalering
2002V	3	$_{ m d,e,f}$	Shannon, flernivå, kanalstøyeffekt
2001K	3	$_{\mathrm{c,d,e}}$	Shannon, gitt F_s og $N_0/2$, finn minste signaleffekt, flernivå
2001V	3	a,b	Nyquist i tid og frekvens (resten med "matched filter")
2001Test	3	$_{\mathrm{c,d}}$	Shannon, CSNR, 2-nivå og 4-nivåsignalering

12 Informasjonsoverføring med signaltilpasset filter (ikke pensum)

Eksamen	Oppgave	Deloppgave	Kommentar
2008V	3	hele	b,d,e og f kan modifiseres til en oppgave uten "matched filter"
2003V	3	$_{\mathrm{c,d,e}}$	ortogonalitet i signaloverføring, signaltilpasset filter
2001V	3	$_{\mathrm{c,d,e}}$	beregn SNR og P(feil) i opt. deteksjonstidspunkt
2001Test	3	e	funksjon til signaltilpasset filter