"Call" option

Right to by a Stock at a strike price K

If stock has price S, value (per share) of contract is:

Two missing pieces:

() contract has a price (per share)

(2) contract expires.

Should reflect chance of

changes in Shefore expiration.

If you bought the option at

), "casting out" or exercising gain p is profit $\phi > 0$ \$ < 0 1036 generally: 4 = max(0, 5-12) - } "rositaloss graph"
"PAL" "P/L"

When S=K+L, \$=0. "Break exen"

Will telk about another optics with similar properties. To

distinguish, souloseript of C.

Ke: strike poice of call

Le: cost pur share of call

"Put" option

The right to sell a stock at strike price Kp.

If you bought contract at price per share λ_p ,

cashing out asher stock is at price S gives gain $\phi_p = \max(0, K_p - S) - \lambda_p$

Strangle

You buy a call and a pet So, total price per share l=lethp

Ke = strike price of call

Le = cost per share of call

Kep = strike price of put

Le = cost per share of put

Example: Kp = K_ = K "straddle"

There are two brank even prices

SLBE = K - & lower brank even

SUBE = K + & upper brank even

Max long profit: ∞ as $5 \rightarrow \infty$ Max loss: $\lambda = \lambda_c + \lambda_r$ at 5 = KMay short profit: $K - \lambda$ at 5 = 0

Example: Kp < Ke

There are true brank even prices

SLBE = Kp - L lower brank even

Subs = Kc + L upper brank even

Max loss: $\lambda = \lambda_c + \lambda_f$ for $K_p < 5 < K_c$ Max short profit: $K_p - \lambda$ at 5 = 0

[Edge walker iden]

Take last example, lost mobse Kpank
or Ke seals that Kp > Ke until

SLBG 3 SABE

$$\begin{cases}
\phi_{\text{Min}} = \left(\begin{array}{c} \text{cosh out} \\ \text{post} \end{array}\right) + \left(\begin{array}{c} \text{cosh out} \\ \text{cosh} \end{array}\right) \\
= \left(\left(\begin{array}{c} K_p - 5\right) - \lambda_p + \left(5 - K_c\right) - \lambda_c \\
= \left(\begin{array}{c} K_p - 5 - K_c - \lambda_c \end{array}\right)
\end{cases}$$

$$\Delta < (K_p - K_c) = \lambda$$

The last two cases are similar

to an erbitrage in that there

can be no loss, \$900 for all 5.

Could such a strangle be found?

Not without adding other risk.

Suppose you buy a call of put for the same stack simultaneously.
The content costs are:

λ_c = max (0, 5 - K_c) = 5 - K_c

λ_p = max (0, K_p - 5) = K_p - 5

This means

λ = lc + λρ ≥ Kp - Kc

So unless a contract has been bookly mispriced, Amin & a

However, If you by the options at different times, so different underlying prices $S_c \neq S_p$

1 > 5c - 1/c + Kr - 5p

 $\Rightarrow K_{p} - K_{c} - \lambda \leq 5_{p} - 5_{c}$ $\phi_{min} \leq 5_{p} - 5_{c}$

So if you wait (risk) until Sp >> Se, perharps you can... In other words, it your bong a pert or could, then if your position becames strong enough, you may find that a perfect (loss less) in surance comes to exist in the born of a companion call or put. Note:

A this value the likely gain of a strong pasition