Regular Grammars

Formal Languages and Abstract Machines

Week 05

Baris E. Suzek, PhD

Outline

Last week

- Grammars
- Regular Grammars
- Context-free Grammars
 - Definitions

NFA vs. DFA

- Transition functions range is Q vs. 2^Q (powersets of Q)
- $m{\cdot}\,\lambda$ can be an argument of transition function; transition without consuming a symbol
- $\cdot \delta(q_k,a)$ can be empty (not a total function)

δ	а	Ь
90	q_1	
$\overline{q_1}$		92

Regular Languages

ullet A language L is regular if there is a DFA M such that L=L(M)

All regular languages form a language family

Regular Expressions and Automata

$$L(r_1)$$
 $L(r_2)$

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

Describing Regular Languages

- DFA or NFA (covered)
- Regular expressions (covered)
- Regular grammars

Outline

- Last week
- Grammars

- Regular Grammars
- Context-free Grammars
 - Definitions

Grammars

Grammars express languages

• Example: the English language

$$\langle sentence \rangle \rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\langle noun_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle$$

$$\langle article \rangle \rightarrow a$$

 $\langle article \rangle \rightarrow the$

$$\langle noun \rangle \rightarrow cat$$

 $\langle noun \rangle \rightarrow dog$

$$\langle verb \rangle \rightarrow runs$$

 $\langle verb \rangle \rightarrow walks$

A derivation of "the dog walks":

$$\langle sentence \rangle \Rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow the \langle dog \langle verb \rangle$$

$$\Rightarrow the \langle dog \langle walks \rangle$$

A derivation of "a cat runs":

$$\langle sentence \rangle \Rightarrow \langle noun_phrase \rangle \langle verb \rangle$$

$$\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a \langle noun \rangle \langle verb \rangle$$

$$\Rightarrow a cat \langle verb \rangle$$

$$\Rightarrow a cat runs$$

Language of the Grammar

```
\langle article \rangle \rightarrow a
                                                                                                                            L = { "a cat runs",
\langle article \rangle \rightarrow the
                                                                                                                                     "a cat walks",
                                                                                                                                     "the cat runs",
                                  \langle sentence \rangle \rightarrow \langle noun\_phrase \rangle \langle verb \rangle
                                                                                                                                     "the cat walks",
\langle noun \rangle \rightarrow cat +
                                                                                                                                     "a dog runs",
\langle noun \rangle \rightarrow dog
                                  \langle noun\_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle
                                                                                                                                     "a dog walks",
                                                                                                                                     "the dog runs",
\langle verb \rangle \rightarrow runs
                                                                                                                                     "the dog walks" }
\langle verb \rangle \rightarrow walks
```

Notation

Another Example

• Grammar:

$$S \rightarrow aSb$$

$$S \to \lambda$$

• Derivation of sentence : ab

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Another Example

• Grammar:

$$S \rightarrow aSb$$

$$S \to \lambda$$

Derivation of sentence

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow aSb \qquad S \rightarrow \lambda$$

Another Example

Language of the grammar

$$S \to aSb$$
$$S \to \lambda$$

$$L = \{a^n b^n : n \ge 0\}$$

- This is not a "regular language"
 - No DFA can accept this
 - We will learn one more method to test regular-ness: "Pumping Lemma"

• Grammar:

$$G = (V, T, S, P)$$

V: Set of variables

T: Set of terminal symbols

S: Start variable

P: Set of production rules

Example

$$G$$
 $S o aSb$ $S o \lambda$ $S o \lambda$

$$S \to aSb$$

$$S \to \lambda$$

$$S \to \lambda$$

$$\langle article \rangle \rightarrow a$$
 $\langle article \rangle \rightarrow a \mid the$ $\langle article \rangle \rightarrow the$

 <u>Sentential Form:</u> A sentence that contains both variables and terminals

• Example:

• In general we write (similar to extended transition function):

$$w_1 \overset{*}{\Rightarrow} w_n$$
 • If:
$$w_1 \overset{*}{\Rightarrow} w_2 \overset{*}{\Rightarrow} w_3 \overset{*}{\Rightarrow} \cdots \overset{*}{\Rightarrow} w_n$$
 • Note:
$$w \overset{*}{\Rightarrow} w$$

Example

• We write:

$$S \Rightarrow aaabbb$$

• Instead of:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Example

Grammar

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Derivations

*

$$S \Longrightarrow \lambda$$

*

$$S \Rightarrow ab$$

*

$$S \Rightarrow aabb$$

*

$$S \Rightarrow aaabbb$$

Another Grammar Example

• Grammar
$$G: S \to Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

• Derivations:

$$S \Rightarrow Ab \Rightarrow b$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow abb$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbb \Rightarrow aabbb$$

More Derivations

$$S \to Ab$$

$$A \to aAb$$

$$A \to \lambda$$

$$S \Rightarrow Ab \Rightarrow aAbb \Rightarrow aaAbbbb \Rightarrow aaaAbbbbb$$

 $\Rightarrow aaaaAbbbbbb \Rightarrow aaaabbbbbb$
*
 $S \Rightarrow aaaabbbbbb$

 $S \Rightarrow aaaaaabbbbbbbb$

$$S \Rightarrow a^n b^n b$$

- Parse trees: Another representation for derivations where:
 - Each interior node is a variable
 - Each leaf is a variable or terminal or λ
 - If λ then no more child

Example

$$S \rightarrow aSb$$

$$S \to \lambda$$

$$S \Rightarrow aabb$$

Language of a Grammar

ullet For a grammar $\,G\,$ with start variable $\,S\,$:

$$L(G) = \{w: S \Longrightarrow w\}$$
String of terminals

Example

ullet For grammar G:

$$S \rightarrow Ab$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

$$L(G) = \{a^n b^n b: n \ge 0\}$$

Since:
$$S \Rightarrow a^n b^n b$$

Outline

- Last week
- Grammars
- Regular Grammars

- Context-free Grammars
 - Definitions

Linear Grammars

 Grammars with <u>at most one variable</u> at the right side of a production rules

$$S \rightarrow aSb$$

$$S \rightarrow Ab$$

$$S \to \lambda$$

$$A \rightarrow aAb$$

$$A \rightarrow \lambda$$

A Non-Linear Grammar

Grammar $G: S \to SS$ $S \to \lambda$ $S \rightarrow aSb$ $S \rightarrow bSa$ $L(G) = \{w: n_a(w) = n_b(w)\}$

Number of ${\mathcal Q}$ in string ${\mathcal W}$

Another Linear Grammar

 $egin{array}{ll} ullet & \operatorname{Grammar} \: G: & S &
ightarrow A \ & A &
ightarrow aB \mid \lambda \ & B &
ightarrow Ab \end{array}$

$$L(G) = \{a^n b^n : n \ge 0\}$$

Right-Linear Grammars

• All productions have form:

$$A \rightarrow xB$$
 or $A \rightarrow x$ string of terminals

• Example:

$$S \rightarrow abS$$

$$S \rightarrow a$$

Left-Linear Grammars

• All production rules have form:

• Example:

$$S \to Aab$$

$$A \to Aab \mid B$$

$$B \to a$$

Regular Grammars

• A regular grammar is any right-linear or left-linear grammar

• Examples:

$$G_1$$
 G_2 $S \rightarrow abS$ $S \rightarrow Aab$ $A \rightarrow Aab \mid B$ $B \rightarrow a$

Observation

• Regular grammars generate regular languages

• Examples:
$$G_1$$
 G_2 $S o Aab$ $S o abS$ $A o Aab \mid B$ $S o a$ $B o a$ $L(G_1) = (ab) * a$ $L(G_2) = aab(ab) *$

Regular

 $S \rightarrow aA \mid B$

 $A \rightarrow aa B$

 $B \rightarrow bB \mid a$

Grammars

Grammars in Use Examples

- Java
 - http://cui.unige.ch/isi/bnf/JAVA/AJAVA.html
- SQL
 - https://ronsavage.github.io/SQL/sql-92.bnf.html#query%20specification

Grammars in Use

Lex/flex

Yacc/bison

```
%%
run: res run | res /* forces bison to process many
stmts */
res: exp STOP { cout << $1 << endl; }
exp: exp OPA term \{ \$\$ = (\$2 == '+' ? \$1 + \$3 : \$1 -
$3); }
\{ \$ = \$1; \}
term: term OPM factor { $$ = ($2 == '*' ? $1 * $3 : $1
/$3);}
 sfactor \{ \$\$ = \$1; \}
sfactor: OPA factor { $$ = ($1 == '+' ? $2 : -$2); }
I factor
              { $$ = $1; }
factor: NUM \{ \$\$ = \$1; \}
| LP exp RP \{ \$\$ = \$2; \}
%%
```

Outline

- Last week
- Grammars
- Regular Grammars
- Context-free Grammars
 - Definitions

Context-Free and Regular Languages

Context-Free Languages

Example

A context-free grammar $\,G_{\,:}\,$

$$S \rightarrow aSb$$

$$S \to \lambda$$

Example derivations:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

Describes parentheses in format: (((())))

Another Example

• A context-free grammar
$$:G \longrightarrow S \to aSa$$
 $S \to bSb$ $S \to \lambda$

A derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abba$$

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaba$

Note:
$$L(G) = \{ww^R : w \in \{a,b\}^*\}$$

Another Example

A context-free grammar
$$G: S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$
 Example derivations:
$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow ab$$

$$S \Rightarrow SS \Rightarrow aSbS \Rightarrow abS \Rightarrow abaSb \Rightarrow abab$$
 Note: $L(G) = \{w: n_a(w) = n_b(w)\}$ Describes open/close paranthesis if following format:
$$()((()))((()))$$

$$S \to aSb$$

$$S \to SS$$

$$S \to \lambda$$

$$L(G) = \{w : n_a(w) = n_b(w),$$
and $n_a(v) \ge n_b(v)$
in any prefix $v\}$

Describes matched parentheses:

Definition: Context-Free Grammars

Variable String of variables and terminals

Note: There is no constraint on linear-ness

$$G = (V, T, S, P)$$

$$L(G) = \{ w \colon S \Longrightarrow w, \quad w \in T^* \}$$

Definition: Context-Free Languages

 $\, \cdot \, {\sf A\, language}\, L \, \, {\sf is\, context-free} \, {\sf if\, and\, only\, if\, there \, is\, a\, {\sf context-free}} \,$

grammar
$$G$$
 with $L = L(G)$

Derivation Order

• 1.
$$S \rightarrow AB$$

2.
$$A \rightarrow aaA$$
 4. $B \rightarrow Bb$

4.
$$B \rightarrow Bb$$

$$3. A \rightarrow ...$$

3.
$$A \rightarrow \lambda$$
 5. $B \rightarrow \lambda$

Leftmost derivation:

Rightmost derivation:

$$S \to aAB$$

$$A \to bBb$$

$$B \to A \mid \lambda$$

Leftmost derivation:

$$S \Rightarrow aAB \Rightarrow abBbB \Rightarrow abAbB \Rightarrow abbBbbB$$

 $\Rightarrow abbbbB \Rightarrow abbbb$

Rightmost derivation:

$$S \Rightarrow aAB \Rightarrow aA \Rightarrow abBb \Rightarrow abAb$$

 $\Rightarrow abbBbb \Rightarrow abbbb$

Outline

- Last week
- Grammars
- Regular Grammars
- Context-free Grammars
 - Definitions

Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb$$

$$S \rightarrow AB$$

$$S \rightarrow AB$$
 $A \rightarrow aaA \mid \lambda$ $B \rightarrow Bb \mid \lambda$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$$

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$B \to Bb \mid \lambda$$

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aab$$

Partial Derivation Trees

$$S \rightarrow AB$$

$$A \rightarrow aaA \mid \lambda$$

$$A \rightarrow aaA \mid \lambda \qquad B \rightarrow Bb \mid \lambda$$

$$S \Rightarrow AB$$

Partial derivation tree

$S \Rightarrow AB \Rightarrow aaAB$

$$S \Longrightarrow AB \Longrightarrow aaAB$$
 sentential form

Sometimes, derivation order doesn't matter

Leftmost:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aab$$

Rightmost:

$$S \Rightarrow AB \Rightarrow ABb \Rightarrow Ab \Rightarrow aaAb \Rightarrow aab$$

Same derivation tree

Ambiguity

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

$$a + a * a$$

The grammar
$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

is ambiguous:

string a + a * a has two derivation trees

The grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

is ambiguous:

string a + a * a has two leftmost derivations

$$E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E$$

 $\Rightarrow a + a * E \Rightarrow a + a * a$

$$E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E$$
$$\Rightarrow a + a * E \Rightarrow a + a * a$$

Definition:

• A context-free grammar G is **ambiguous** if some string $w \in L(G)$ has two or more derivation trees (OR derivations)

Why do we care about ambiguity?

2 + 2 * 2

$$2 + 2 * 2 = 6$$

$$2 + 2 * 2 = 8$$

Correct result:

$$2 + 2 * 2 = 6$$

- Ambiguity is bad for programming languages
 - •What if you have a program to do calculations for orbiting satellites?

Right derivation....

Wrong derivation....

We want to remove ambiguity

We fix the ambiguous grammar:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

New non-ambiguous grammar:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \to F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

$$E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow a + T \Rightarrow a + T * F$$
$$\Rightarrow a + F * F \Rightarrow a + a * F \Rightarrow a + a * a$$

Unique derivation tree

The grammar
$$G$$
:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \to T * F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow a$$

is non-ambiguous:

Every string $w \in L(G)$ has a unique derivation tree

Another Ambiguous Grammar

If expr1 then if expr2 then stmt1 else stmt2

Compilers/Parsers

Program

v = 5; if (v>5) x = 12 + v; while (x !=3) { x = x - 3; v = 10; }

Compiler

Machine Code

```
Add v,5
cmp v,5
jmplt ELSE
THEN:
add x, 12,v
ELSE:
WHILE:
cmp x,3
jmpne WHILE
Add x,-3
```

Compiler

Parser

A parser knows the grammar of the programming language

The parser finds the derivation of a particular input

Derivation tree

Derivation

Derivation tree

Machine code

Parser

Exhaustive Search

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

Find derivation of aabb

Phase 1:

$$S \Rightarrow SS$$

$$S \Rightarrow SS$$

$$S \Rightarrow aSb$$

$$S \Rightarrow aSb$$

$$S \Rightarrow bSa$$

$$S \Longrightarrow bSa$$

$$S \Rightarrow \lambda$$

$$S \Rightarrow \lambda$$

All possible derivations of length 1

Phase 2
$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$S \Rightarrow SS \Rightarrow SSS$$

aabb

$$S \Rightarrow SS \Rightarrow aSbS$$

Phase 1

$$S \Rightarrow SS \Rightarrow bSaS$$

$$S \Longrightarrow SS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb$$

$$S \Rightarrow aSb \Rightarrow abSab$$

$$S \Rightarrow aSb \Rightarrow ab$$

Phase 2

$$S \Rightarrow SS \Rightarrow SSS$$

$$S \Rightarrow SS \Rightarrow aSbS$$

$$S \Rightarrow SS \Rightarrow S$$

$$S \Rightarrow aSb \Rightarrow aSSb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \longrightarrow S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$

$$aabb$$

Phase 3

Final result of exhaustive search (top-down parsing)

Time complexity of exhaustive search

Suppose there are no productions of the form

$$A \rightarrow \lambda$$

$$A \rightarrow B$$

Number of phases for string $\mathcal{W}: |\mathcal{W}|$

For grammar with k rules

```
Time for phase 1: k possible derivations
```

Time for phase 2: k^2 possible derivations

Time for phase $|w|:k^{|w|}$ possible derivations

Total time needed for string W:

Pretty bad!!!

There exist faster algorithms for specialized grammars

Pair (A,a) appears once

S-grammar example:

$$S \to aS$$

$$S \to bSS$$

$$S \to c$$

Each string has a unique derivation

$$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Time for a phase: 1

Total time for parsing string w : |w|

For general context-free grammars:

There exists a parsing algorithm that parses a string |w| in time $|w|^3$

(we will show it in the next class)