Прикладной статистический анализ данных 12. Причинно-следственные связи

Бахтеев Олег psad-2020@phystech.edu

2020

Исследование уровня холестерина

Физическая активность

2020

2/21

Исследование уровня холестерина

Физическая активность

Парадокс Симпсона

Пример 1:

Σ	лекарство	плацебо
выздоровели	273	289
не выздоровели	77	61
	78%	83%

плацебо на 5% эффективнее

мужчины	лекарство	плацебо
выздоровели	81	234
не выздоровели	6	36
	93%	87%

лекарство на 5% эффективнее

женщины	лекарство	плацебо
выздоровели	192	55
не выздоровели	71	25
	73%	69%

лекарство на 4% эффективнее

Парадокс Симпсона

Какой из двух выводов верен?

Предположение: верны выводы по отдельным подгруппам, потому что они основаны на более детальной информации.

Это предположение неверно — всё зависит от того, как признак, по которому происходит разбиение на подгруппы, связан с остальными анализируемыми признаками.

Парадокс Симпсона

Пример 2:

Лекарство снижает давление, но имеет множество побочных эффектов.

Tickaperbo chimaci	давление, п	o mineer min
Σ	лекарство	плацебо
выздоровели	273	289
не выздоровели	77	61
	78%	83%

плацебо на 5% эффективнее

низкое давление в конце лечения	лекарство	плацебо
выздоровели	81	234
не выздоровели	6	36
	93%	87%

лекарство на 5% эффективнее

высокое давление	TOK 2 DCT DO	плацебо
в конце лечения	лекарство	плацеоо
выздоровели	192	55
не выздоровели	71	25
	73%	69%

лекарство на 4% эффективнее

Причинные графы

Отношения причинности могут быть представлены в виде направленного графа, вершины которого соответствуют признакам, а наличие пути говорит о существовании причинно-следственной связи.

Путь — последовательность вершин, где каждая вершина соединена со следующей ребром.

. Направленный путь — путь, в котором все ребра имеют одинаковое направление.

Элементы причинного графа

$$X o Y o Z$$
 — цепочка

Пример:

- X бюджет школы
- Y средний балл учеников
- ullet Z доля поступающих в ВУЗы

Свойства:

1 X и Y, Y и Z — зависимы:

$$\exists x, y : \mathbf{P}(Y = y | X = x) \neq \mathbf{P}(Y = y)$$

 $\exists y, z : \mathbf{P}(Z = z | Y = y) \neq \mathbf{P}(Z = z)$

- ② Z и X скорее всего, зависимы
- $3 Z \perp X | Y$ условно независимы: $\forall x, y, z$

$$\mathbf{P}(Z=z\,|X=x,Y=y\,)=\mathbf{P}(Z=z\,|Y=y\,)$$

(если Y фиксировано, то X и Z независимы)

Элементы причинного графа

$$X \leftarrow Y
ightarrow Z$$
 — вилка

Пример:

- X продажи мороженого
- Y средняя дневная температура воздуха
- \bullet Z число преступлений

Свойства:

- lacksquare X и Y, X и Z зависимы
- $oldsymbol{2}$ X и Z скорее всего, зависимы
- $3 X \perp Z | Y$ условно независимы

Элементы причинного графа

$$Y o X \leftarrow Z$$
 — коллайдер

Пример (заболевание вирусом):

- X осложнения
- Y возраст
- ullet Z хронические болезни

Свойства:

- lacksquare У и X, Z и X зависимы
- $oldsymbol{2}$ Y и Z независимы
- 3 $Y \not\perp Z|X$ условно зависимы

Путь P блокируется переменной Z, если:

- \P Содержит $A \to B \to C$, $A \leftarrow B \to C$, $B \in Z$
- ② P содержит $A \to B \leftarrow C$, $B \notin Z$ и все потомки $B \notin Z$

Если Z блокирует все пути из X в Y, то X и Y **d-разделимы**:

$$X \perp Y|Z$$
.

Пример:

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X

(условие 1: цепочка)

Пример:

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X
(Z_1,Y)	${Z_3, X, Z_2}, {Z_3, W, Z_2}$

 $(X,W,Z_3$: цепочка) $(Z_2$: вилка)

Пример:

Упорядоченная пара вершин	d-разделяющее множество
(Z_1,W)	X
(Z_1,Y)	$\{Z_3, X, Z_2\}, \{Z_3, W, Z_2\}$
(X,Y)	$\{W,Z_3,Z_1\}$

 $(W\colon$ цепочка) $(Z_1,Z_3\colon$ вилка)

Алгоритм индуктивной причинности

Вход: множество вершин V

- \P $\forall A, B \in V$ ищем множество $S_{AB} \colon A \perp B | S_{AB}, \ A, B \notin S_{AB}$. Если такого S_{AB} не существует, соединяем A и B ребром.
- ② $\forall A,B,$ не связанных ребром и имеющих общего соседа C, проверяем: $C\in S_{AB}$? Если нет, то заменяем пару рёбер A-C,C-B на пару ориентированных рёбер $A\to C,C\leftarrow B$
- 3 Рекурсивно применяем следующие два правила:
 - lacktriangle если из A в B есть ориентированный путь $A \to \cdots \to B$, то A-B заменяем на $A \to B$:
 - lacktriangle если A и B не соединены, $A \to C$, C-B, то C-B заменяем на $C \to B$.

Выход: ориентированный (возможно, частично) граф ${\it G}$.

Алгоритм индуктивной причинности

Правила (1) и (2) применять в чистом виде невозможно — число перебираемых множеств экспоненциально растёт с числом вершин графа. Поэтому используются сокращающие перебор эвристики.

Признаки	дискретные	непрерывные
Распределение	мультиномиальное	нормальное
Критерий условной независимости	хи-квадрат для трёхмерных таблиц сопряжённости	Стьюдента для частной корреляции
Критерий качества графа	Е	ĬC

Причинность по Грейнджеру

Между рядами x_1,\dots,x_T и y_1,\dots,y_T существует причинная связь Грейнджера $x_t\to y_t$, если дисперсия ошибки оптимального прогноза \hat{y}_{t+1} по $y_1,\dots,y_t,x_1,\dots,x_t$ меньше, чем только по y_1,\dots,y_t .

Причинность по Грейнджеру

- может следовать из причинно-следственной связи;
- не является достаточным условием причинно-следственной связи.

 x_1,\dots,x_T и y_1,\dots,y_T взаимосвязаны, если $x_t o y_t$ и $y_t o x_t.$

Критерий Грейнджера

$$y_t = \alpha + \sum_{i=1}^{k_1} \phi_{1i} y_{t-i} + \sum_{i=1}^{k_2} \phi_{2i} x_{t-i} + \varepsilon_t.$$

 k_1 и k_2 выбирается по информационному критерию.

$$x_t \to y_t \Rightarrow \exists \phi_{2i} \neq 0.$$

нулевая гипотеза: $H_0: \phi_{21} = \cdots = \phi_{2k_2} = 0;$

альтернатива: H_1 : H_0 неверна;

статистика: $F = \frac{(RSS_r - RSS_{ur})/k_2}{RSS_{ur}/(T - k_1 - k_2 - 1)};$

 $F \sim F(k_1, T - k_1 - k_2 - 1)$ при H_0 .

Многомерный критерий Грейнджера

Зависимость между признаками x и y может оцениваться с учётом возможной зависимости от всех остальных признаков:

$$y_t = \alpha + \sum_{i=1}^{k_1} \phi_{1i} y_{t-i} + \sum_{i=1}^{k_2} \phi_{2i} x_{t-i} + \sum_{j=1}^m \sum_{i=1}^{k_{j+2}} \phi_{(j+2)i} z_{t-i}^j + \varepsilon_t.$$

Для задач с большим количеством признаков могут использоваться регуляризаторы (лассо, ридж).

Граф причинности по Грейнджеру

К критерию Грейнджера применима поправка на множественную проверку гипотез

11 / 21

Причинно-следственная связь и обусловленность

$$X \leftarrow Y \rightarrow Z$$
.

- X продажи мороженого
- Y средняя дневная температура воздуха
- \bullet Z число преступлений

X и Z кореллируют. Как понять, зависит ли число преступлений от продажи мороженного?

Интервенция

X коррелировано с $Y \Rightarrow X$ влияет на Y.

Влияние обычно оценивают в эксперименте, когда объектам искусственно назначают разные уровни X, но эксперимент можно провести не всегда:

- ullet погода o лесные пожары не можем управлять X
- ullet теленасилие o жестокость тяжело фиксировать уровень X и создать условия для измерения Y
- ullet потребление алкоголя o успеваемость школьников неэтично

В таких случаях мы вынуждены использовать обзервационные данные, по которым мы хотим оценить эффект **интервенции**: что будет с Y, если мы установим значение X равным x?

Обозначение: do(X = x).

Интервенция

Оценку эффективности лекарства можно сформулировать в терминах интервенций:

$$ACE=\mathbf{P}(Y=$$
 выздоровление $|do\left(X=$ лекарство $ight)) -\mathbf{P}(Y=$ выздоровление $|do\left(X=$ плацебо $ight))$.

(average conditional effect).

Хирургия графа

Хирургия графа — удаление всех ребер, входящих в X.

Пример 1, исходный граф G:

Оперированный граф G_m :

$$P(Y = y | do(X = x)) = P_m(Y = y | X = x)$$

Хирургия графа

В оперированном графе:

$$\begin{split} \mathbf{P}_m(Z=z) &= \mathbf{P}(Z=z) \,, \\ \mathbf{P}_m(Y=y | X=x, Z=z) &= \mathbf{P}(Y=y | X=x, Z=z) \,, \end{split}$$

так как рёбра, входящие в Z и Y, не изменились \Rightarrow

$$\mathbf{P}(Y = y | do(X = x)) = \mathbf{P}_m(Y = y | X = x) =$$

$$= \sum_{z} \mathbf{P}_m(Y = y | X = x, Z = z) \mathbf{P}_m(Z = z) =$$

$$= \sum_{z} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z).$$

Хирургия графа

В примере 1 по полученной формуле:

$${f P}(Y={
m выздоровление}\,|do\,(X={
m лекарство})\,)=0.832,$$

$$\mathbf{P}(Y=$$
 выздоровление $|do\left(X=$ плацебо $)\right)=0.7818$ $\Rightarrow ACE=0.05.$

B примере 2 $G = G_m$:

Значит.

$$\mathbf{P}(Y=y\,|do\,(X=x)\,)=\mathbf{P}_m(\,Y=y\,|\,X=x)=\mathbf{P}(Y=y\,|X=x\,)$$
 $\mathbf{P}(Y=$ выздоровление $|do\,(X=$ лекарство $))=0.78,$

$$\mathbf{P}(Y=$$
 выздоровление $|do\left(X=$ плацебо $)\right)=0.83$

$$\Rightarrow ACE = -0.05.$$

2020

Поправочная формула

Поправочная формула позволяет вычислить эффект интервенции обуславливанием по вершинам Z:

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{x} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z).$$

Что это за вершины?

Формула причинного эффекта:

$$\mathbf{P}(Y=y | do(X=x)) = \sum_{z} \mathbf{P}(Y=y | X=x, PA=z) \mathbf{P}(PA=z),$$

где PA — родители вершины X.

Неизвестные родители

Социоэкономический статус — ненаблюдаемая величина; как оценить эффект интервенции по X?

Критерий задней двери (КЗД)

Для упорядоченной пары вершин (X,Y) в ациклическом графе G множество вершин Z удовлетворяет **критерию задней двери**, если:

- ullet Z не содержит потомков X
- ullet Z блокирует все пути между X и Y, содержащие $X \leftarrow$.

Если Z удовлетворяет КЗД для (X,Y), то

$$\mathbf{P}(Y = y | do(X = x)) = \sum_{z} \mathbf{P}(Y = y | X = x, Z = z) \mathbf{P}(Z = z)$$

(формула задней двери).

Критерий задней двери (КЗД)

Чтобы вычислять меньше условных вероятностей, ФЗД можно упростить:

$$\begin{split} \mathbf{P}(Y=y \,| do\left(X=x\right)) &= \sum_{z} \mathbf{P}(Y=y \,| X=x,Z=z) \, \mathbf{P}(Z=z) = \\ &= \sum_{z} \frac{\mathbf{P}(X=x,Y=y,Z=z)}{\mathbf{P}(X=x \,| Z=z)} \end{split}$$

В таком виде

- метод называется обратное вероятностное взвешивание
- ullet знаменатель $\mathbf{P}(X=x\,|Z=z\,)$ propensity score.

Неизвестные родители

Вызывает ли курение рак?

Σ	курильщики	некурящие
нет рака	341	59
есть рак	39	361
	15%	90.25%

курильщики болеют на 75.25% реже

Курение

смола	курильщики	некурящие
нет рака	323	1
есть рак	57	19
	15%	95%

курильщики болеют на 80% реже

нет смолы	курильщики	некурящие
нет рака	18	38
есть рак	2	342
	10%	90%

курильщики болеют на 80% реже

Курить полезно?

Курение

У курильщиков смола в 95% случаев вместо 5%; у курильщиков смола увеличивает риск рака с 10% до 15%; у некурящих — с 90% до 95%. Курить вредно?

Поможет граф!

2020

19 / 21

Курение

Поправочная формула (КЗД для пустого множества и для X):

$$\mathbf{P}(Z=z | do(X=x)) = \mathbf{P}(Z=z | X=x),$$

$$\mathbf{P}(Y=y | do(Z=z)) = \sum_{x'} \mathbf{P}(Y=y | Z=z, X=x') \mathbf{P}(X=x')$$

$$\begin{split} \mathbf{P}(Y = y | do(X = x)) &= \\ &= \sum_{z} \mathbf{P}(Y = y | do(Z = z)) \mathbf{P}(Z = z | do(X = x)) = \\ &= \sum_{z} \sum_{z'} \mathbf{P}(Y = y | Z = z, X = x') \mathbf{P}(Z = z | X = x) \mathbf{P}(X = x'). \end{split}$$

Критерий передней двери (КПД)

Для упорядоченной пары вершин (X,Y) в ациклическом графе G множество вершин Z удовлетворяет **критерию передней двери**, если:

- ullet Z перекрывает все направленные пути из X в Y
- ullet нет незакрытых путей через заднюю дверь из X в Z
- ullet все пути через заднюю дверь из Z в Y блокируются X

Если Z удовлетворяет КПД для (X,Y), то

$$\mathbf{P}(Y = y | do(X = x)) =$$

$$= \sum_{z} \mathbf{P}(Z = z | X = x) \sum_{x'} \mathbf{P}(Y = y | X = x', Z = z) \mathbf{P}(X = x')$$

(формула передней двери).

Литература

- причинные графы и выводы по ним Pearl
- восстановление графов по статическим данным Nagarajan, глава 2
- причинность по Грейнджеру Kirchgassner, глава 3

Kirchgassner G., Wolters J., Hassler U. Introduction to modern time series analysis, 2013.

Nagarajan R., Scutari M., Lebre S. Bayesian Networks in R with Applications in Systems Biology, 2013.

Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer, 2016.