On the Selection of Image Compression Algorithms

Intro

- What is compression?
- Types of image compression
- JPEG compression
- Wavelet compression
- VQ compression
- Fractal compression
- Experimental results
- Conclusion

What is compression?

Different types of compression

Good Compression

Bad Compression

Different types of image compression

Lossy compression methods

- Better Portable Graphics, also known as BPG (lossless or lossy compression)
- Cartesian Perceptual Compression, also known as CPC
- DjVu
- Fractal compression
- ICER, used by the Mars Rovers, related to JPEG 2000 in its use of wavelets
- JBIG2 (lossless or lossy compression)
- JPEG
- JPEG 2000, JPEG's successor format that uses wavelets (lossless or lossy compression)
- JPEG XR, another successor of JPEG with support for high dynamic range, wide gamut pixel formats (lossless or lossy compression)
- Vector quantization (VQ compression)
- PGF, Progressive Graphics File (lossless or lossy compression)
- S3TC texture compression for 3D computer graphics hardware
- Wavelet compression

Lossless compression methods

- PNG Portable Network Graphics
- TIFF Tagged Image File Format
- WebP (high-density lossless or lossy compression of RGB and RGBA images)
- BPG Better Portable Graphics (lossless/lossy compression based on HEVC)
- FLIF Free Lossless Image Format
- JPEG-LS (lossless/near-lossless compression standard)
- TGA Truevision TGA
- PCX PiCture eXchange
- JPEG 2000 (includes lossless compression method, as proven by Sunil Kumar, Prof San Diego State University[citation needed])
- JPEG XR formerly WMPhoto and HD Photo, includes a lossless compression method
- ILBM (lossless RLE compression of Amiga IFF images)
- JBIG2 (lossless or lossy compression of B&W images)
- PGF Progressive Graphics File (lossless or lossy compression)

JPEG Compression

Appeared in 1974.

Compression ration <= 50

Pro:

Current standard

Cons:

- Coefficient quantization
- Bit allocation

JPEG Compression - Step 1(Color space conversion)

JPEG Compression - Step 2(Preparing for DCT)

One block of the image

JPEG Compression - Step 3(Applying DCT)

-27.500	-213.468	-149.608	-95.281	-103.750	-46.946	-58.717	27.226	
168.229	51.611	-21.544	-239.520	-8.238	-24.495	-52.657	-96.621	
-27.198	-31.236	-32.278	173.389	-51.141	-56.942	4.002	49.143	
30.184	-43.070	-50.473	67.134	-14.115	11.139	71.010	18.039	
19.500	8.460	33.589	-53.113	-36.750	2.918	-5.795	-18.387	
-70.593	66.878	47.441	-32.614	-8.195	18.132	-22.994	6.631	
12.078	-19.127	6.252	-55.157	85.586	-0.603	8.028	11.212	
71.152	-38.373	-75.924	29.294	-16.451	-23.436	-4.213	15.624	

Cosine Wave

DCT values

JPEG Compression - Step 4(Coefficient quantization)

```
17,18,24,47,99,99,99,99,

18,21,26,66,99,99,99,99,

24,26,56,99,99,99,99,99,

47,66,99,99,99,99,99,99,

99,99,99,99,99,99,99,99,

99,99,99,99,99,99,99,99,
```

Chrominance quantization table

Luminance Quantization Table

16,	11,	10,	16,	24,	40,	51,	61,
12,	12,	14,	19,	26,	58,	60,	55,
14,	13,	16,	24,	40,	57,	69,	56,
14,	17,	22,	29,	51,	87,	80,	62,
18,	22,	37,	56,	68,	109,	103,	77,
24,	35,	55,	64,	81,	104,	113,	92,
49,	64,	78,	87,	103,	121,	120,	101,
72,	92,	95,	98,	112,	100,	103,	99

Matrix after quantization

JPEG Compression - Step 5(Encoding)

Huffman tree

Wavelet Compression

Appeared in 1992.

Compression ration > 32

Pro:

High compression ratio

Cons

- Coefficient quantization
- Bit allocation

Wavelet Compression

Morlet wavelet

Mayers wavelet

Encoding and decoding

Examples

Figure 3.3: Original Lena image

Figure 3.4: Lena image after wavelet decomposition

VQ (Vector Quantization) Compression

Appeared in 1980.

Compression ratio < 32

Pro:

- Simple decoder
- No coefficient quantization
- Blindingly fast decompression
- Good quality at excellent compression ratios

Cons:

- Slow codebook generation
- Small bpp
- Nonstandard, not widely supported in hardware.

VQ Compression - Explanation

2D Image (Lena)

Distributia de perechi de pixeli

VQ Compression - Explanation

Scalar quantization to 2 bits/pixel

Vector quantization to 4 bits per 2D-vector

Fractal Compression

Appeared in 1992.

Compression ratio >= 16

Pro:

- Good mathematical encoding frame
- Resolution-free decoding

Cons:

Slow encoding

Fractal compression example

Fractal Compression

Lena with Fractal compression

Fig. 6: (a) Original 'Lena' image; (b) decoded image of 'Lena' with no signature; (c) decoded image

Experimental Comparison

Algorithm	PSNR values (in dB)				
	Jet	Lenna	Mandrill	Peppers	
Wavelet	32.48	34.66	26.54	34.99	
JPEG	30.39	31.73	25.15	31.95	
VQ	26.76	29.28	24.45	29.12	
Fractal	26.70	29.04	24.29	29.13	

200	CPU time		
ACCES CONTRACT	Encoding	Decoding	
Wavelet	0.35 sec	$0.27~{ m sec}$	
JPEG	0.12 sec	$0.12 \mathrm{\ sec}$	
VQ	2.45 sec	0.18 sec	
Fractal	5.65 hrs	1.35 sec	

Table 2: Performance of coding algorithms on various $256{\times}256$ images.

Conclusion

Algorithm	0.50 ь pp				
	PSNR values	Encoding	Decoding		
Wavelet	36.71	0.8 sec	0.7 sec		
JPEG	34.27	0.2 sec	0.2 sec		
VQ	28.26	6.0 sec	0.7 sec		
Fractal	27.21	6.3 hrs	3.5 sec		
Algorithm		0.25 bpp	b pp		
	PSNR value	Encoding	Decoding		
Wavelet	32.47	0.7 sec	0.5 sec		
JPEG	29.64	0.2 sec	$0.2~{ m sec}$		
VQ	N/A	N/A	N/A		
Fract al	N/A	N/A	N/A		

Table 3: Performance of coding algorithms on a 400×400 fingerprint image.

Figure 3: Decoded fingerprints by (a) Wavelet, (b) JPEG, (c) VQ, (d) Fractal algorithms.

Questions?

Sources

https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

http://www.ti.com/lit/an/bpra065/bpra065.pdf

https://en.wikipedia.org/wiki/Lossy_compression

https://en.wikipedia.org/wiki/Lossless_compression

https://www.youtube.com/watch?v=dSi9mLaa-WE&t=161s

https://pdfs.semanticscholar.org/a2e8/3afe88ad1eae88f11585260c4e7b9aff2ec9.pdf

https://medium.com/@danojadias/jpeq-compression-algorithm-969af03773da

https://en.wikipedia.org/wiki/YCbCr

https://en.wikipedia.org/wiki/Variable-length_code

https://www.gamasutra.com/view/feature/131499/image_compression_with_vector_.php