### **UGM 2007**

# Complete Technology and RFID



Overview
Operating Principles
Inductive Coupling
Microwave Coupling
Coupling to Circuit
Simmulation
Summary

T. Wittig



### Overview

### Radio Frequency IDentification

Fundamental tool for Automatic Identification: authentication, ticketing, access control, supply management, parking, payment, vending, surveillance

### Advantages:

- Contains more information than e.g. Barcodes
- Can be read/write
- Contactless ID (in contrast to phone or bank cards)
- May become cheap mass product (e.g. in supermarkets)



### **General Principle**



### Typical characteristics of RFID:

- Tag is a passive device, energy is transmitted from reader
- Distance mm to 10m (typically ~20 cm)
- Contains silicon chip, can be read only or read/write
- · Responds with modulated signal
- Mostly printed (planar) structures



## **Frequencies**

| 125/134 kHz   | Animal identification, industrial applications, very robust, low data transmisstion (64 bit) |
|---------------|----------------------------------------------------------------------------------------------|
| 7.4 - 8.8 MHz | Electronic Article Surveillance (EAS)                                                        |
| 13.56 MHz     | "Smart Labels" widely used for product/article ID                                            |
| 868 - 928 MHz | Logistics,                                                                                   |
| 2.4 GHz       | Vehicle identification, electronic toll collection                                           |
| 5.8 GHz       | electronic toll collection in Europe                                                         |



### **Operating Principles**

- Inductive Coupling (125 kHz 15 MHz)
  - Very small dimensions compared to l
  - Coupling only through magnetic field
  - Tag typically a planar coil



### Microwave Coupling (868 MHz - 5.8 GHz)

- typically a regular antenna (e.g. planar folded dipole)
- Matching network important to keep antenna small





### **Inductive Coupling**

RFID tags are mostly planar coils with small dimensions compared to  $\lambda$  Hexahedral or tetrahedral F-Solver are typically most suited.



### Reader &Tag

Inductive Coupling: 13.56 MHz



### **Zoom into Reader**





## **Zoom into Tag**



### Circuit in CST DESIGN STUDIO





### Microwave Coupling: Typical TAG

#### **SMALL FORM FACTOR TAGS**

#### **GEN 2 1X1**

- Optimized for operation from 902 to 928 MHz
- Small form factor tag optimized for plastic packaging such as pharmaceutical pill bottles
- Near-field and far-field communication modes
- 25.4mm x 25.4mm





# S-Parameter | S<sub>11</sub> | in dB, unmatched





### Matching Network in CST DS



www.cst.com | Oct-0

# Surface-Current and Farfield f=900 MHz

Current Distribution before matching



Current Distribution after matching







## Parameter Study of a warped Tag



### Parameter Study of a Warped Tag





### **Reader: Geometry**

Simple, vertically polarized patch-type reader



## **Reader: Optimization**



# Reader: Directivity



Tags on medical pill-boxes



### **Advanced Meshing**

PBA + Subgrid



# S-Parameter |S| in dB



Simulation time: 2.2h on 32bit machine, 400MB



### E-Field > e-field (f=900) MHz



#### Animated top view







### Simulation of tags and reader

New transient task in CST DS



### **Summary**

- RFID is a general concept using different technical principals
- CST complete technology approach offers best solution for each case
  - CST MWS Frequency Domain / CST EMS for inductive type
  - CST MWS Transient for microwave type
- Coupling between CST DS and CST MWS allows easy combination of circuit and 3D EM anlysis, e.g. for
  - Tag matching networks
  - Reader circuits (new transient solver in CST DS)

