Linear Intrinsic Spherical Spline

Eungchae Kim

Department of Statistics

Korea University

Joint work with Jae-Kyung Shin, Kwan-Young Bak, and Ja-Yong Koo

Agenda

- 1 Introduction
- 2 Methodology
- 3 Implementation
- 4 Real data analysis
- 5 Conclusion

Introduction

Tropical cyclones' path on a globe

Motivation

- Methods of mapping between the manifold and tangent space
- Fit a path curve by solving an intrinsic optimization problem
 - \blacksquare earth \approx sphere
 - Riemannian geometry
- Application in animation, radiology, navigation

Linear Intrinsic Spherical Spline (LISS)

 \blacksquare Geodesic segment between v and w:

$$\alpha(t; v, w)$$
 for $t \in [0, 1]$

■ Define J-1 subintervals for knots points $\tau_1 < \cdots < \tau_J$ as

$$\mathcal{I}_j = [\tau_j, \tau_{j+1})$$
 for $j = 1, ..., J - 1$

■ Define LISS curve as below:

$$\gamma(t; \xi_1, \dots, \xi_J) = \alpha\left(\frac{t - \tau_j}{\tau_{j+1} - \tau_j}; \xi_j, \xi_{j+1}\right) \quad \text{for} \quad t \in \mathcal{I}_j$$

LISS curve

Methodology

Penalty and loss function

- Data: $\{(t_i, y_i)\}_{i=1}^N$ for $t_i \in [0, 1], y_i \in \mathbb{S}$
- Loss function:

$$\ell(\xi) = \sum_{i=1}^{N} d^{2}(y_{i}, \gamma(t_{i}; \xi)) \text{ for } \xi = (\xi_{1}, \dots, \xi_{J}),$$

 $d(\cdot, \cdot)$: spherical distance

■ Penalty function:

$$p(\xi) = \sum_{j=2}^{J-1} |\alpha'(0; \xi_j, \xi_{j+1}) - \alpha'(1; \xi_{j-1}, \xi_j)|$$

Penalized LISS path

■ Fitted curve : $\gamma_J(\cdot;\hat{\xi}_{\lambda})$ where

$$\hat{\xi}_{\lambda} = \operatorname*{argmin}_{\xi} \left\{ \ell(\xi) + \lambda \mathsf{p}(\xi) \right\},$$

 $\lambda > 0$: tuning parameter of penalty function

Elimination process

Implementation

Implementation

- Objective function: penalized squared distance function
- Block coordinate-wise gradient descent algorithm
- Model selection by

$$\mathsf{BIC}_k = N \log \left(\sum_{i=1}^N \mathsf{d}(y_i, \gamma(t_i; \hat{\xi}_{\lambda_k}))^2 \right) + 3J_k \log N,$$

 J_k : the number of control points for λ_k

Optimize control points

Real data analysis

Tropical Cyclone data in 2015

- Cyclone Goni
 - $t_i: 08-13 \sim 08-26$
 - N = 69
- Cyclone Atsani
 - $t_i: 08-14 \sim 08-29$
 - N = 61
- Factors: central pressure, wind speed, the longest and the shortest radius

Goni's fitted path curve

Goni's wind speed and the longest radius

Atsani's fitted path curve

Atsani's speed and the longest radius

Fitted curves of cyclones

Conclusion

Conclusion

- Investigate intrinsic smoothing method on the sphere based on data-adaptive way
- Fit cyclone's path curve by linear spherical spline and interpret with other factors
- Detect data trends using regularized spherical spline curve

Appendix

Spherical distance

lacksquare Define spherical distance between two points u,v as

$$\mathsf{d}(u,v) = \arccos(u^\top v)$$

Observe

$$\mathsf{d}(u,v) = \arccos(|u||v|\cos(\theta)) = \arccos(\cos(\theta)) = \theta$$

Geodesic curve

■ Denote the 2-sphere as \mathbb{S} . A geodesic segment $\alpha : \mathcal{I} = [0,1] \to \mathbb{S}$ between given two points u and v on \mathbb{S} is defined as

$$\alpha(t;u,v) = \frac{\sin((1-t)\theta)}{\sin(\theta)}u + \frac{\sin(t\theta)}{\sin(\theta)}v, \quad t \in \mathcal{I}$$
 where $\theta = \mathsf{d}(u,v)$