Eigenvalues + Eigenvectors of a symmetric Matrix: Chap 3.5

We previously discussed in Class how solving problems like Ax = b can be made simpler by Choosing a "good" basis We mentioned that orthogonality of a basis was a very discreasive trait.

We will see that when a linear operator hat a property called "Symmetry" this leads naturally to a set of orthogonal vectors, called eigenvectors, that can make solving problems like Ax=b (or Ax=f) much easier.

First, we discuss eigenveines and eigenvectors of a Symmetric matrix in order to set the stage for more gueral linear operators.

Detn: Let A be a matrix tren a number Λ is called an eigenvalue of A if there exists $X \neq 0$ such that $Ax = \lambda x$

(Note: I can be a compress number even if the matrix A is real.

Suppose $X \neq 0$ and Ax = 1x. Then (A - 1)x = 0 and $X \neq 0$ means that $X \notin N(A - 1)$. This means that free matrix A - 1 has a non-trivial null space and is therefore not invertible. Recall that a matrix B is not invertible iff det(B) = 0.

Hence this means that det (A-XI)=0.

Do you remember how to compute a determinant?

Review: What is the determinant of a 2x2 matrix

A 3x3 matrix and 4x4 matrix? Familiarize yourself

with the method of cofactor opension for finding

the determinant (of a square matrix)

Now: ONE can snow that "det $(A-\lambda T)$ " is a polynomial in kind of λ . If A is an nxn matrix then $p_A(\lambda) = det(A-\lambda T)$ in a polynomial of degree n.

Therefore "det $(A-\lambda I)=0$ " is " $P_A(\lambda)=0$ " That is, we are looking for the (n) roots of the polynomial $P_A(\lambda)$.

Example: Let $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$. Then $A - \lambda \pm is \begin{bmatrix} 1 & 2 - \lambda \end{bmatrix}$ So det $(A - \lambda \pm 1)$ is $P_{A}(\lambda) = (1 - \lambda)(2 - \lambda) - 1 = 2 - 3\lambda + \lambda^{2} - 1$ $= \lambda^{2} - 3\lambda + 1$ So det $(A - \lambda \pm 1) = P_{A}(\lambda) = 0$ means that $\lambda = \lambda^{2} - 3\lambda + 1 = 0$ 30 that $\lambda = 3 \pm \sqrt{5}$ are the eigenvalues.

$$\begin{cases} \mathcal{E}_{x} \colon A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{A - \lambda T} = \begin{bmatrix} 1 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{bmatrix}$$

So that $cler(A-\lambda I) = P_A(\lambda) = (1-\lambda)^3$ So $P_A(\lambda) = 0$ has only one eigenvalue, $\lambda = 1$. There is only one eigenvalue, $\lambda = 1$.

A verter $x \neq 0$ solving $Ax = \lambda x$ where λ is an eigenvalue of λ is called an eigenvector. Eigenvectors are associated with freir Ciganualues.

A =
$$\begin{bmatrix} 1 & 1 \end{bmatrix}$$
 her eigenvalues $1 = \frac{3 \pm \sqrt{5}}{2}$

$$\lambda_1 = \frac{3+\sqrt{5}}{2}$$
 has eigenveror $\infty_1 = \frac{1}{2}(-1+\sqrt{5})$

$$\lambda_2 = \frac{3-\sqrt{5}}{2}$$
 has eigenvector $\chi_2 = \left[\frac{1}{2}(-1-\sqrt{5})\right]$

Ex: The matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ has only one eigenvalue $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and only one linearly independs to $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ eigenveern given by: $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$