Capacity and Facilities Design

Lecture Outline

- Capacity Planning
- Basic Layouts
- Designing Process Layouts
- Designing Service Layouts
- Designing Product Layouts
- Hybrid Layouts

Learning Objectives

- Evaluate different strategies for capacity expansion
- Explain the concepts of economies of scale, best operating level, and cycle time
- Describe the advantages and disadvantages of different types of layouts in both manufacturing and service settings
- Visualize work flow and utilize algorithmic problem solving to lay out a facility
- Create and evaluate hybrid layouts and hybrid solutions to problems

Process Selection and System Design

Capacity Planning

- Capacity
 - maximum capability to produce
- Capacity planning
 - establishes overall level of productive resources for a firm
- Capacity expansion strategy in relation to steady growth in demand
 - lead
 - lag
 - average

Capacity Expansion Strategies

Capacity Expansion

- Capacity increase depends on
 - · volume and certainty of anticipated demand
 - strategic objectives
 - costs of expansion and operation
- Best operating level
 - % of capacity utilization that minimizes unit costs
- Capacity cushion
 - % of capacity held in reserve for unexpected occurrences

Economies of Scale

- Unit cost decreases as output volume increases
- Fixed costs can be spread over a larger number of units
- Production or operating costs do not increase linearly with output levels
- Quantity discounts are available for material purchases
- Operating efficiency increases as workers gain experience

Operating Level

- Best operating level
 - percent of capacity utilization that minimizes unit cost
- Capacity cushion
 - percent of capacity held in reserve for unexpected occurrences
- Diseconomies of scale
 - higher levels of output cost more per unit to produce

Best Operating Level for a Hotel

Facilities Layout

Layout

- the configuration of departments, work centers, and equipment, with particular emphasis on movement of work (customers or materials) through the system
- Facilities layout decisions arise when:
 - Designing new facilities
 - Re-designing existing facilities

Objectives of Facility Layout

- Minimize material-handling costs
- Utilize space efficiently
- Utilize labor efficiently
- Eliminate bottlenecks
- Facilitate communication and interaction
- Reduce manufacturing cycle time
- Reduce customer service time
- Eliminate wasted or redundant movement

Objectives of Facility Layout

- Facilitate entry, exit, and placement of material, products, and people
- Incorporate safety and security measures
- Promote product and service quality
- Encourage proper maintenance activities
- Provide a visual control of activities
- Provide flexibility to adapt to changing conditions
- Increase capacity

Basic Layouts

- Process layouts
 - group similar activities together according to process or function they perform
- Product layouts
 - arrange activities in line according to sequence of operations for a particular product or service
- Fixed-position layouts
 - are used for projects in which product cannot be moved

Manufacturing Process Layout

A Product Layout

Comparison of Product and Process Layouts

	Product	Process
 Description 	◆ Sequential	Functional
	arrangement of	grouping of
	activities	activities
 Type of process 	Continuous, mass	Intermittent, job
i ype oi piocess	production, mainly	shop, batch
	assembly	production, mainly
		fabrication
 Product 	 Standardized, 	 Varied, made to
	made to stock	order
 Demand 	◆ Stable	Fluctuating
• Volume	◆ High	◆ Low
Equipment	Special purpose	General purpose

Comparison of Product and Process Layouts

	Product	Process
 Workers Inventory Storage space Material handling Aisles Scheduling Layout decision Goal Advantage 	 Limited skills Low in-process, high finished goods Small Fixed path (conveyor) Narrow Part of balancing Line balancing Equalize work at each station Efficiency 	 Varied skills High in-process, low finished goods Large Variable path (forklift) Wide Dynamic Machine location Minimize material handling cost Flexibility

Fixed-Position Layouts

- Typical of projects
- Fragile, bulky, heavy items
- Equipment, workers & materials brought to site
- Low equipment utilization
- Highly skilled labor
- Typically low fixed cost
- Often high variable costs

Designing Process Layouts

- Goal: minimize material handling costs
- Block Diagramming
 - minimize nonadjacent loads
 - use when quantitative data is available
- Relationship Diagramming
 - based on location preference between areas
 - use when quantitative data is not available

Block Diagramming

- Unit load
 - quantity in which material is normally moved
- Nonadjacent load
 - distance farther than the next block

- Steps
 - create load summary chart
 - calculate composite (two way) movements
 - develop trial layouts minimizing number of nonadjacent loads


```
Load Summary Chart

FROM/TO DEPARTMENT

Department 1 2 3 4 5

1 — 100 50
2 — 200 50
3 60 — 40 50
4 100 — 60
5 50 —
```


Nonadjacent Loads 110+40=150

2 → 3 2 → 4 1 → 3 1 → 2 4 → 5 3 → 5 2 → 5 3 → 4	200 loads 150 loads 110 loads 100 loads 60 loads 50 loads 50 loads 40 loads
2 → 5	50 loads
1 → 4	0 loads
1 ▶ 5	0 loads

Nonadjacent Loads: 0

- Block Diagram
 - type of schematic layout diagram; includes space requirements
- (a) Initial block diagram

(b) Final block diagram

Block Diagramming With Excel

- Schematic diagram that uses weighted lines to denote location preference
- Muther's grid
 format for displaying manager
 preferences for department
 locations

(a) Relationship diagram of original layout

(b) Relationship diagram of revised layout

Computerized Layout Solutions

- CRAFT
 - Computerized Relative Allocation of Facilities Technique
- CORELAP
 - Computerized Relationship Layout Planning
- PROMODEL and EXTEND
 - visual feedback
 - allow user to quickly test a variety of scenarios
- Three-D modeling and CAD
 - integrated layout analysis
 - available in VisFactory and similar software

Designing Service Layouts

- Must be both attractive and functional
- Free flow layouts
 - encourage browsing, increase impulse purchasing, are flexible and visually appealing
- Grid layouts
 - encourage customer familiarity, are low cost, easy to clean and secure, and good for repeat customers
- Loop and Spine layouts
 - both increase customer sightlines and exposure to products, while encouraging customer to circulate through the entire store

Types of Store Layouts

Designing Product Layouts

- Objective
 - Balance the assembly line
- Line balancing
 - tries to equalize the amount of work at each workstation
- Precedence requirements
 - physical restrictions on the order in which operations are performed
- Cycle time
 - maximum amount of time a product is allowed to spend at each workstation

Cycle Time Example

Produce 120 units in an 8-hour day

$$C_d = \frac{\text{production time available}}{\text{desired units of output}}$$

$$C_d =$$

$$C_d =$$

Cycle Time Example

Produce 120 units in an 8-hour day

$$C_d = \frac{\text{production time available}}{\text{desired units of output}}$$

$$C_d = \frac{\text{(8 hours x 60 minutes / hour)}}{\text{(120 units)}}$$

$$C_d = \frac{480}{120} = 4 \text{ minutes}$$

Flow Time vs Cycle Time

- Cycle time = max time spent at any station
- Flow time = time to complete all stations

Efficiency of Line and Balance Delay

Efficie ncy

Min# of workstations

$$E = \frac{\sum_{i=1}^{n} t_i}{nC_a}$$

$$N = \frac{\sum_{i=1}^{n} t_i}{C_d}$$

where

 t_i = completion time for

element i

j = number of work elements

n = actual number of

workstations

 C_a = actual cycle time

 C_d^u = desired cycle time

Line Balancing Procedure

- 1. Draw and label a precedence diagram
- 2. Calculate desired cycle time required for line
- 3. Calculate theoretical minimum number of workstations
- Group elements into workstations, recognizing cycle time and precedence constraints
- 5. Calculate efficiency of line
- 6. Determine if theoretical minimum number of workstations or an acceptable efficiency level has been reached. If not, go back to step 4.

Work Element Precedence Time (Min)

- A Press out sheet of fruit 0.1
- B Cut into strips A 0.2
- C Outline fun shapes A 0.4
- D Roll up and package B, C 0.3

Work Element Precedence Time (Min)

- A Press out sheet of fruit 0.1
- B Cut into strips A 0.2
- C Outline fun shapes A 0.4
- D Roll up and package B, C 0.3

$$C_d =$$

Work Element Precedence Time (Min)

- A Press out sheet of fruit 0.1
- B Cut into strips A 0.2
- C Outline fun shapes A 0.4
- D Roll up and package B, C 0.3

$$C_d = \frac{40 \text{ hours x 60 minutes / hour}}{6,000 \text{ units}} = \frac{2400}{6000} = 0.4 \text{ minute}$$

$$N = \frac{0.1 + 0.2 + 0.3 + 0.4}{0.4} = \frac{1.0}{0.4} = 2.5 \square 3 \text{ workstations}$$

Remaining Remaining
Workstation Element Time Elements

1
2
3

Remaining Remaining
Workstation Element Time Elements

1 A 0.3 B, C
B 0.1 C, D
2 C 0.0 D
3 D 0.1 none

$$C_d = 0.4$$

 $N = 2.5$

$$C_d = 0.4$$

 $N = 2.5$

$$C_d = 0.4$$

 $N = 2.5$

$$E = \frac{0.1 + 0.2 + 0.3 + 0.4}{3(0.4)} = \frac{1.0}{1.2} = 0.833 =$$

Computerized Line Balancing

- Use heuristics to assign tasks to workstations
 - Longest operation time
 - Shortest operation time
 - Most number of following tasks
 - Least number of following tasks
 - Ranked positional weight

Hybrid Layouts

- Cellular layouts
 - group dissimilar machines into work centers (called cells) that process families of parts with similar shapes or processing requirements
- Production flow analysis (PFA)
 - reorders part routing matrices to identify families of parts with similar processing requirements
- Flexible manufacturing system
 - automated machining and material handling systems which can produce an enormous variety of items
- Mixed-model assembly line
 - processes more than one product model in one line

Cellular Layouts

- 1. Identify families of parts with similar flow paths
- Group machines into cells based on part families
- Arrange cells so material movement is minimized
- 4. Locate large shared machines at point of use

Parts Families

A family of similar parts

A family of related grocery items

Original Process Layout

Part Routing Matrix

	Machines											
Parts	1	2	3	4	5	6	7	8	9	10	11	12
Α	×	×		×				×		×		
В					×		×				×	×
B C			×			×			×			
D	×	×		×				×		×		
Е					×	×						×
E F G	×			×				×				
G			×			×			×			×
Н							×				×	×

Revised Cellular Layout

Reordered Routing Matrix

	Machines											
Parts	1	2	4	8	10	3	6	9	5	7	11	12
Α	×	×	×	×	×							
D	×	×	×	×	×							
F	×		×	×								
C G						×	×	×				
G						×	×	×				×
В					8.			T.	×	×	×	×
Н										×	×	×
E							×		×			×

Cellular Layouts

Advantages

- Reduced material handling and transit time
- Reduced setup time
- Reduced work-inprocess inventory
- Better use of human resources
- Easier to control
- Easier to automate

Disadvantages

- Inadequate part families
- Poorly balanced cells
- Expanded training and scheduling of workers
- Increased capital investment

Automated Manufacturing Cell

Flexible Manufacturing Systems (FMS)

- · Consists of
 - programmable machine tools
 - automated tool changing
 - automated material handling system
 - controlled by computer network
- Combines flexibility with efficiency
- Layouts differ based on
 - variety of parts the system can process
 - size of parts processed
 - average processing time required for part completion

Fully-Implemented FMS

Mixed Model Assembly Lines

- Produce multiple models in any order on one assembly line
- Factors in mixed model lines
 - Line balancing
 - U-shaped lines
 - Flexible workforce
 - Model sequencing

Balancing U-Shaped Lines

(a) Balanced for a straight line

Efficiency =
$$\frac{24}{3(12)} = \frac{24}{36} = 0.6666 = 66.7\%$$

(b) Balanced for a U-shaped line

Efficiency =
$$\frac{24}{2(12)} = \frac{24}{24} = 100\%$$