Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Měření spin-mřížkové relaxační doby T_1 signálu NMR ¹H v roztocích s proměnnou koncentrací CuSO₄ metodou $(\pi, \pi/2)$ pulsu ("inversion recovery").
- 2. Měření spin-spinové relaxační doby T_2 signálu NMR $^1{\rm H}$ v roztocích s proměnnou koncentrací CuSO₄ metodou spinového echa.

Teoretická část

Při metodě "inversion recovery" (IR) použijeme π -pulz ke změně znaménka podélné složky magnetizace. Tu pak necháme relaxovat a po čase t_w použijeme $\pi/2$ pulz k otočení magnetizace do příčného směru. Poté budeme pozorovat FID signál, jehož amplituda bude [1]

$$A_{FID}(t_w) = A_0 |1 - 2\exp(-t_w/T_1)|, \qquad (1)$$

kde A_0 je konstanta a T_1 je spin-mřížková relaxační doba.

Spin-spinovou relaxační dobu T_2 změříme podle závislosti amplitudy signálu spinového echa (SE) na odstupu pulzů t_w , která má podle [1] tvar

$$A_{SE}(t_w) = A_1 \exp(-2t_w/T_1) \exp(-kt_w^3), \qquad (2)$$

kde A_1 a k jsou konstanty.

U málo viskózních kapalin platí přibližně [1]

$$T_1 \cong T_2$$
. (3)

Paramagnetické příměsy v diamagnetických kapalinách výrazně zkracují obě relaxační doby T_1 i T_2 [1]. Podle [1] platí, že relaxační rychlost je přímo úměrná molární objemové koncentraci iontů Cu^{2+}

$$\frac{1}{T_1} \propto c_{\text{Cu}^{2+}} \,. \tag{4}$$

Výsledky měření

Teplota v laboratoři byla přibližně 20 °C.

Měřili jsme 5 vzorků s různou koncentrací CuSO₄. Naměřené závislosti jsme nafitovali závislostmi (1) a (2) (viz graf 1). Z těchto závislostí jsme určili relaxační doby T_1 a T_2 (viz tabulka 1 a graf 3). Relaxační rychlosti (převrácené hodnoty relaxačních dob) jsme zanesli do grafu 2 a nafitovali lineární a afinní funkcí pro spin-mřížkovou respektive spin-spinovou relaxační rychlost (viz Diskuze)ⁱ

$$T_1 \approx \frac{974 \text{ ms}}{c_{\text{CuSO}_4}(\text{mM})}$$
$$T_2 \approx \frac{756 \text{ ms}}{c_{\text{CuSO}_4}(\text{mM}) - 5,08}$$

Diskuze

Z tabulky 1 je vidět, že skutečně platí $T_1 \cong T_2$.

Všechny měřené závislosti amplitudy signálu (graf 1) velmi dobře odpovídají tvarům (1) a (2).

Závislost (4) platí velmi přesně. Závislost spin-spinové relaxační rychlosti na koncentraci již neodpovídala přesně přímé úměře (viz graf 2), proto jsme pro účely interpolace přidali absolutní člen. Tento člen nemá fyzikální smysl a platnost vztahu nepředpokládáme mimo měřenou oblast.

Závěr

Měřili jsme relaxační doby T_1 a T_2 signálu NMR $^1\mathrm{H}$ v roztocích s proměnnou koncentrací CuSO₄ metodou inversion recovery respektive spinového echa (viz tabulka 1). Obě relaxační doby se pro každý vzorek přibližně rovnaly a byly nepřímo úměrné koncentraci CuSO₄ (viz graf 3).

 $^{{}^{\}rm i}$ zápis $c_{\rm CuSO_4}({\rm mM})$ znamená molární objemovou koncentraci vyjádřenou v jednotkách m M

Graf 1: Závislost amplitudy signálu na odstupu pulzů t_w (osa x (ms)).

číslo vzorku	$c_{\text{CuSO}_4} \text{ (mM)}$	$T_1 \text{ (ms)}$	$T_2 \text{ (ms)}$
1	16	63,5(3)	61,6(20)
2	32	31,8(4)	29,4(8)
3	48	20,5(2)	17,3(4)
4	64	15,6(3)	13,6(3)
5	80	11,8(2)	9,8(3)

Tabulka 1: Relaxační doby signálu NMR $^1{\rm H}$ v roztocích s proměnnou koncentrací ${\rm CuSO_4}$

Graf 2: Převrácené relaxační doby signálu NMR $^1{\rm H}$ v roztocích s proměnnou koncentrací ${\rm CuSO_4}$

Graf 3: Relaxační doby signálu NMR $^1{\rm H}$ v roztocích s proměnnou koncentrací ${\rm CuSO_4}$

Seznam použité literatury

1. $Studium\ relaxaci\ NMR\ v\ roztocich$ — $Z\'{a}kladn\'{i}\ fyzik\'{a}ln\'{i}\ praktikum\ [online].\ [cit.\ 2017-11-18].\ Dostupn\'{y}\ z\ WWW:\ \langle http://physics.mff.cuni.cz/vyuka/zfp/zadani/410b\rangle.$