

Algorithmen und Datenstrukturen Sommersemester 2024 Korrekturanweisung Übungsblatt 4

Abgabe: Dienstag, 14. Mai, 2024, 10:00 Uhr

Aufgabe 1: Hashing mit offener Adressierung

(5 Punkte)

Sei \mathcal{H} eine Hashtabelle der Größe m=13 und seinen $h_1,h_2,h_3:\mathbb{N}_0\mapsto\{0,...,m-1\}$ Hashfunktionen definiert wie folgt¹:

- $h_1(k) := \overline{k} \mod m$
- $h_2(k) := 3 \cdot x \mod m$
- $h_3(k) := x + 1 \mod m$

Fügen Sie die Schlüssel 23, 12, 75, 945, 30, 99, 345 (in dieser Reihenfolge) in die initial leere Hashtabelle \mathcal{H} ein. Lösen Sie Konflikte wie folgt:

a) Lineares Sondieren unter der Benutzung von h_1 .

(2 Punkte)

b) Doppel-Hashing unter Benutzung von h_2 und h_3 .

(3 Punkte)

Geben Sie den Zustand der Hashtabelle in jedem Schritt an!

Aufgabe 2: Hashing mit Chaining

(5 Punkte)

Gegeben sei eine Hash-Table der Größe m und eine beliebige Hashfunktion $h: S \mapsto \{0, ..., m-1\}$. Die Menge S habe mindestens $y \cdot m$ Elemente, also $|S| \geq y \cdot m$.

- a) Zeigen Sie, dass S mindestens eine Teilmenge Y, bestehend aus mindestens y Elementen (also $|Y| \ge y$), besitzt, so dass $h(x_1) = h(x_2)$ für alle $x_1, x_2 \in Y$. (4 Punkte)
- b) Was sagt uns das Resultat in a) über die Worst-Case Laufzeit von "find" in einer Hashtabelle mit Chaining aus (wenn unsere Hashtabelle genau die Elemente aus S speichert bevor "find" aufgerufen wird)?

 (1 Punkt)

Aufgabe 3: Anwendung von Hashtabellen

(10 Punkte)

Gegeben ist folgender Algorithmus:

Algorithm 1 algorithm

 \triangleright Input: Array A of length n with integer entries

```
1: for i = 1 to n - 1 do
2: for j = 0 to i - 1 do
3: for k = 0 to n - 1 do
4: if |A[i] - A[j]| = A[k] then
5: return true
6: return false
```

¹Wir definieren \overline{k} als die Quersumme von k.

²Es soll also $(h_2(k) + i \cdot h_3(k)) \mod m$ als Hashfunktion verwendet werden.

- (a) Beschreiben Sie, was algorithm berechnet und analysieren Sie die asymptotische Laufzeit. (3 Punkte) Hinweis: Die Differenz |A[i] A[j]| kann beliebig große Werte annehmen.
- (b) Beschreiben Sie einen auf hashing basierenden alternativen Algorithmus \mathcal{B} für dieses Problem (d.h. $\mathcal{B}(A) = \mathtt{algorithm}(A)$ für jede Eingabe A) mit einer Laufzeit von $\mathcal{O}(n^2)$ (mit Begründung). (3 Punkte)

 Hinweis: Sie dürfen annehmen, dass das Einfügen und Finden von Schlüsseln in einer Hashtabelle $\mathcal{O}(1)$ Zeitschritte benötigt, wenn $\alpha = \mathcal{O}(1)$ (α ist der Load der Hashtabelle).
- (c) Beschreiben Sie einen weiteren Algorithmus für dieses Problem ohne Verwendung von Hashing mit einer Laufzeit von $\mathcal{O}(n^2 \log n)$ (mit Begründung). (4 Punkte)