Riesz Representation Theorem

Lemma

Let H be a Hilbert space and let $f \in H'$ such that $f \not\equiv 0$:

$$\dim \mathcal{N}(f)^{\perp} = 1$$

Proof

Since $f \not\equiv 0$, $\mathcal{N}(f)$ is a proper subset of H and thus $\mathcal{N}(f)^{\perp}$ is not trivial, so fix a $\vec{x} \in \mathcal{N}(f)^{\perp}$ such that $\vec{x} \neq \vec{0}$.

Assume $\vec{y} \in \mathcal{N}(f)^{\perp}$ such that $\vec{y} \neq \vec{0}$.

Thus $f(\vec{x}), f(\vec{y}) \neq 0$; otherwise $\vec{x}, \vec{y} \in \mathcal{N}(f)$.

So $\exists \alpha \in \mathbb{C}$ such that $f(\vec{y}) = \alpha f(\vec{x})$.

$$f(\vec{y}) - \alpha f(\vec{x}) = 0$$

$$f(\vec{y} - \alpha \vec{x}) = 0$$

Thus $\vec{y} - \alpha \vec{x} \in \mathcal{N}(f)$.

But $\mathcal{N}(f)^{\perp}$ is subspace of H, and so $\vec{y} - \alpha \vec{x} \in \mathcal{N}(f)^{\perp}$ also.

Therefore $\vec{y} - \alpha \vec{x} = 0$ and thus $\vec{y} = \alpha \vec{x}$.

Theorem: Riesz

Let H be a Hilbert space and let $f \in H'$. There exists a unique element $\vec{y} \in H$ such that $\forall \vec{x} \in H$:

$$f(\vec{x}) = \langle \vec{x}, \vec{y} \rangle$$

Moreover, $||f|| = ||\vec{y}||$.

Proof

Let $\vec{e} \in \mathcal{N}(f)$ such that $\|\vec{e}\| = 1$.

Assume $\vec{x} \in H$.

Let $\vec{x}_0 = \operatorname{proj}_{N(f)^{\perp}} \vec{x}$.

By lemma, $\dim N(f)^{\perp} = 1$.

And so \vec{e} is an orthonormal basis for dim $N(f)^{\perp}$.

Thus $\vec{x}_0 = \langle \vec{x}, \vec{e} \rangle \vec{e}$.

But
$$\vec{x} - \vec{x}_0 \in \mathcal{N}f$$
 and so $f(\vec{x} - \vec{x}_0) = 0$.

$$f(\vec{x}) - f(\vec{x}_0) = 0$$

$$f(\vec{x}) = f(\vec{x}_0) = f(\langle \vec{x}, \vec{e} \rangle \vec{e}) = \langle \vec{x}, \vec{e} \rangle f(\vec{e}) = \langle \vec{x}, \overline{f(\vec{e})} \vec{e} \rangle$$

Therefore
$$f(x) = \langle \vec{x}, \vec{y} \rangle$$
 where $\vec{y} = \overline{f(\vec{e})} \vec{e}$.

The fact that $\|f\| = \|y\|$ was previously proven.