МІНІСТЕРСТВО ТРАНСПОРТУ ТА ЗВ'ЯЗКУ УКРАЇНИ

Дніпропетровський національний університет залізничного транспорту імені академіка В. Лазаряна

Кафедра «Вища математика»

До друку БОДНАР Б.Є. перший проректор _______2010

ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

Методичні вказівки і варіанти до виконання модульної роботи

Укладачі: Є. П. Кришко

€. А. Макаренков

Н. Г. Наріус Г. А. Папанов

В. І. Самарський

Для студентів І-го та ІІ-го курсу денної форми навчання усіх спеціальностей

Укладачі:

Є. П. Кришко, Є. А. Макаренков, Н. Г. Наріус, Г. А. Папанов, В. І. Самарський

Рецензенти:

канд. фіз.-мат. наук, доц. А. В. Сясєв (ДНУ) канд. фіз.-мат. наук, доц. З. М. Гасаноа (ДПТ)

Функції багатьох змінних [Текст]: методичні вказівки і варіанти до виконання модульної роботи / уклад.: Є. П. Кришко, Є. А. Макаренков, Н. Г. Наріус, Г. А. Папанов, В. І. Самарський; Дніпропетр. нац. ун-т залізн. трансп. ім. акад. В. Лазаряна. - Д.: Вид-во Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна, 2010. - 5; с.

Містять основний теоретичний матеріал із розділу вищої математики «Функції багатьох змінних», велику кількість розв'язаних прикладів, 30 варіантів індивідуальних завдань.

Призначені для студентів І-го та ІІ-го курсів денної форми навчання усіх спеціальностей.

Іл. 3.

- © Кришко €. П. та ін., укладання, 2010
- © Вид-во Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна, редагування, оригінал-макет, 2010

ВСТУП

При застосуванні модульної системи навчання запропоновані методичні рекомендації є модулем, який входить до системи модулів, в яких закладені основні розділи з дисципліни «Вища математика». Ці розділи (модулі) об'єднані за змістом із урахуванням відведених кредитів на вивчення усього курсу з вищої математики.

З метою контролю вивчення та опанування основ вищої математики кожен модуль є заліковим з обов'язковим оцінюванням якості засвоєння матеріалу студентами згідно прийнятої в університеті бальної системи.

Засобами діагностики успішності навчання ϵ комплекти індивідуальних тестових завдань для складання контрольних заходів (залік, модульний контроль, екзамен).

І. ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ. ОЗНАЧЕННЯ

Нехай задано множину D упорядкованих пар чисел (x,y). Якщо кожній парі чисел $(x,y) \in D$ за певним законом відповідає число z, то кажуть, що на множині D визначено функцію z від двох змінних x та y, і записують її z = f(x,y).

Змінну z називають залежною змінною (функцією), а змінні x та y - незалежними змінними (аргументами).

Наведемо такі приклади:

- а) площу S прямокутника із сторонами a та b знаходять за формулою S = ab. Кожній парі значень a і b відповідає єдине значення площі, тобто S функція двох змінних: S = f(a,b);
- б) за законом Ома електрорушійна сила E, сила струму I та опір R замкнутого електричного кола пов'язані співвідношенням E = IR. Тут $E \in \varphi$ ункцією змінних I та R: E = f(I,R).

Змінна величина u називається функцією n незалежних змінних x_1 , x_2 , ..., x_n , якщо кожній сукупності значень $(x_1, x_2, ..., x_n)$ цих змінних з даної області їх зміни відповідає єдине значення величини $u - u = f(x_1, x_2, ..., x_n)$.

ІІ. ОБЛАСТЬ ВИЗНАЧЕННЯ

Множину пар (x, y) значень x та y, для яких функція z = f(x, y) визначена, називають областю визначення цієї функції і позначають D(f) або D.

Множину значень z позначають E(f) або E.

Областю визначення функції z = f(x, y) є деяка множина точок (x, y) площини OXY. Графіком функції двох змінних є поверхня.

Лінію, що обмежує область D, називають межею області визначення.

Точки області, які не лежать на її межі, називаються внутрішніми.

Область, яка містить тільки внутрішні точки, називають відкритою.

Якщо ж до області визначення належать і всі точки межі, то така область називається **замкненою**.

Для функцій трьох змінних u = F(x, y, z) область визначення належить тривимірному простору і геометрично є деякою сукупністю точок простору.

Ми розглянули поняття області визначення функції двох змінних. Узагальнимо його на випадок більшої кількості незалежних змінних.

Нехай задано множину $D \in R_n$, де $R_n - n$ -вимірний простір. Якщо кожній точці $x \in D$ за певним законом відповідає одне і тільки одне дійсне число y, то кажуть, що на множині D визначено функцію від n змінних і записують

$$y = f(x_1, x_2, ..., x_n)$$
 або $y = f(x)$, де $x \in R_n$.

Множину D при цьому називають областю визначення або областю існування функції.

Приклад 1. Знайти область визначення та побудувати її, якщо

$$z = \sqrt{y^2 - 4x}.$$

Розв'язання. Областю визначення ϵ сукупність точок (x,y) площини OXY (рис. 1), включаючи і точки самої кривої:

Приклад 2. Знайти область визначення функції та побудувати її, якщо $z = \arcsin(x + y)$.

Розв'язання. Область визначення ϵ сукупність точок $(x,y) \in R_2$, що задовольняють нерівностям $-1 \le x + y \le 1$. На площині XOY ця область пре

дставляє смугу, яка обмежена паралельними прямими x+y+1=0, x+y-1=0 (рис. 2), включаючи точки самих прямих.

Приклад 3. Знайти область визначення функції u(x,y,z) та побудувати її, якщо $u = \ln(-x^2 - y^2 + 2z)$.

Розв'язання. Заданий аналітичний вираз існує в усіх точках $(x,y,z) \in R_3$, в яких $-x^2-y^2+2z>0$, або $x^2+y^2<2z$. Цю нерівність задовольняють точки (x,y,z), що містяться в середині параболоїда обертання $x^2+y^2=2z$ (рис. 3), не включаючи його поверхню.

Питання на самоперевірку

- 1. Дати означення функції двох змінних.
- 2. Дати означення області визначення функції двох змінних.
- 3. Що являє собою графік функції z = f(x, y)?
 - 4. Дати означення межі області визначення.
 - 5. Дати означення функції n змінних.

ІІІ. ГРАНИЦЯ. НЕПЕРЕВНІСТЬ ФУНКЦІЇ

Означення. Число A називається **границею** функції двох змінних z = f(x,y) при прямуванні точки M(x,y) до точки $M_0(x_0,y_0)$, якщо для будь-якого як завгодно малого числа ε_0 знайдеться такий δ -окіл точки M_0 , що для будь-якої точки M(x,y) із цього околу (за винятком, можливо, самої точки M_0) виконується нерівність $|f(x,y)-A|<\varepsilon$.

Границю функції z=f(x,y) записують у вигляді

$$A = \lim_{M \to M_0} f(M) \quad \text{afo} \quad A = \lim_{x \to x_0} f(x, y).$$

Якщо границя функції існує, то вона не залежить від способу прямування $M \to M_0$.

Приклад. Знайти границю $\lim_{\substack{x\to 0\\y\to 5}} \frac{\sin(xy)}{x}$.

Розв'язання. Функція має невизначеність $\left\{\frac{0}{0}\right\}$ при $x \to 0$, $y \to 5$, тому використовуємо першу чудову границю $\lim_{a \to 0} \frac{\sin(a)}{a} = 1$.

$$\lim_{\substack{x \to 0 \\ y \to 5}} \frac{\sin(xy)}{x} = \lim_{\substack{x \to 0 \\ y \to 5}} y \frac{\sin(xy)}{xy} = 5 \cdot 1 = 5.$$

Означення. Нехай точка M_0 та деякий її окіл належать області визначення функції f(M). Тоді функція f(M) називається неперервною в точці M_0 , якщо має місце рівність $\lim_{M \to M_0} f(M) = f(M_0)$, при цьому точка M наближається

до точки M_0 довільним чином, залишаючись в області визначення функції.

Означення. Функція f(M), неперервна в кожній точці деякої області, називається неперервною в цій області.

IV. ЧАСТИННІ ПОХІДНІ

Розглянемо функцію двох змінних z=f(x,y), визначену в деякому околі точки (x,y). Зафіксуємо змінну y. Дістанемо функцію z=f(x,y) однієї змінної x. Якщо ця функція має похідну (по змінній x), то останню називають частинною похідною функції f(x,y) по змінній x і позначають $\frac{\partial f}{\partial x}(x,y)$ або $f'_x(x,y)$.

Таким чином, якщо скористатися означенням похідної однієї змінної, то дістанемо

$$\frac{\partial f}{\partial x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta_x f(x,y)}{\Delta x}.$$
 (1)

Величину $\Delta_x f(x,y) = f(x + \Delta x, y) - f(x,y)$ називають **частинним приро**-

стом функції f(x, y) по змінній x в точці (x, y).

Аналогічно вводять поняття частинної похідної по змінній y в точці (x,y), яку позначають $\frac{\partial f}{\partial y}(x,y)$ або $f_y'(x,y)$

$$\frac{\partial f}{\partial y}(x,y) = \lim_{\Delta y \to 0} \frac{f(x,y + \Delta y) - f(x,y)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta_y f(x,y)}{\Delta y}.$$
 (2)

Величину $\Delta_y f(x,y) = f(x,y+\Delta y) - f(x,y)$ називають **частинним приро- стом** функції f(x,y) по змінній y в точці (x,y).

Для довільної точки (x,y) частинні похідні позначатимемо $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$, або

 z_{x}',z_{y}' . Необхідно мати на увазі, що $\left|\frac{\partial z}{\partial x}\right|$ та $\left|\frac{\partial z}{\partial y}\right|$ визначають величину швидкості, з якою відбувається зміна функції z=f(x,y) при зміні тільки x або y, а знак z_{x}' та z_{y}' вказує на характер цієї зміни (зростання чи спадання).

Частинні похідні обчислюються за відомими правилами диференціювання функції однієї змінної.

Приклад 4. Знайти частинні похідні:

a)
$$z = x^4 + 2xy - y^3 + 5$$
.

Розв'язання. Вважаючи z функцією тільки однієї змінної x (y = const) знаходимо $\frac{\partial z}{\partial x} = 4x^3 + 2y$. Аналогічно вважаючи z функцією тільки однієї змінної y (x = const), знаходимо $\frac{\partial z}{\partial y} = 2x - 3y^2$.

6)
$$z = 2x^3y^2 + 2x$$
.

Розв'язання. Вважаючи z функцією тільки однієї змінної x (y = const) отримаємо $\frac{\partial z}{\partial x} = 6x^2y^2 + 2$. Аналогічно вважаючи z функцією тільки однієї змінної y (x = const) знаходимо $\frac{\partial z}{\partial y} = 4x^3y$.

B)
$$z = 5^{\sqrt{x}-2y}$$

Розв'язання. Застосуємо табличну похідну від показникової функції і вважаючи z функцією тільки змінної x (y = const), потім тільки однієї змінної y (x = const), отримаємо. $\frac{\partial z}{\partial x} = 5^{\sqrt{x}-2y} \cdot \ln 5 \cdot \frac{1}{2\sqrt{x}}$, $\frac{\partial z}{\partial y} = 5^{\sqrt{x}-2y} \cdot \ln 5 \cdot (-2)$.

$$\Gamma) \ u = x^2 z + \operatorname{arctg} xy \ .$$

Розв'язання. В даному випадку маємо функцію трьох змінних u = f(x, y, z). Вважаючи u спочатку функцією тільки змінної x (y, z = const), потім функцією тільки змінної y (x, z = const), і наприкінці тільки z (x, y = const), отримаємо

$$\frac{\partial u}{\partial x} = 2xz + \frac{1}{1 + (xy)^2}y$$
, $\frac{\partial u}{\partial y} = \frac{1}{1 + (xy)^2} \cdot x$, $\frac{\partial u}{\partial z} = x^2$.

$$\mathbf{L}) z = \sin 2y + \sqrt{y} \cdot e^x.$$

Розв'язання. Вважаючи z функцією тільки змінної x (y = const), потім тільки однієї змінної y (x = const), отримаємо $\frac{\partial z}{\partial x} = \sqrt{y} \cdot e^x$, $\frac{\partial z}{\partial y} = 2 \cos 2y \frac{e^x}{2\sqrt{y}}$.

e)
$$z = \sin \frac{x}{v} \cdot \cos \frac{y}{x}$$
.

Розв'язання. Використовуючи правило диференціювання добутку функцій однієї змінної і вважаючи z функцією тільки змінної x (y = const), знаходимо $\frac{\partial z}{\partial x} = \frac{1}{y} \cos \frac{x}{y} \cos \frac{y}{x} + \frac{y}{x^2} \sin \frac{x}{y} \sin \frac{y}{x}$. Потім, вважаючи z функцією тільки однієї змінної y (x = const), отримаємо $\frac{\partial z}{\partial y} = -\frac{x}{y^2} \cos \frac{x}{y} \cos \frac{y}{x} - \frac{1}{x} \sin \frac{x}{y} \sin \frac{y}{x}$.

Приклад 5. Знайти вказану частинну похідну від функції z = f(x,y) в точці $M_0(x_0,y_0)$

а)
$$z = 2x^4y^3 - \frac{y}{2}$$
. Знайти $\frac{\partial z(M)}{\partial y}$, $M(1;1)$.

Розв'язання. Вважаючи z функцією тільки однієї змінної y (x = const) знаходимо $\frac{\partial z}{\partial y} = 6x^4y^2 - \frac{1}{2}$. Підставляємо в знайдену похідну координати точки M:

$$\frac{\partial z(M)}{\partial y} = \left(6x^4y^2 - \frac{1}{2}\right)_M = 5,5.$$
 б) $z = \ln(x + 2y^2)$. Знайти $\frac{\partial z(M)}{\partial x}$, $M(0;1)$.

Розв'язання. Вважаючи z функцією тільки змінної x (y = const), знаходимо $\frac{\partial z}{\partial x} = \frac{1}{x + 2v^2}$. Підставляємо в знайдену похідну координати точки M:

$$\frac{\partial z(M)}{\partial x} = \left(\frac{1}{x+2y^2}\right)_M = \frac{1}{2}.$$
в) $z = 2xy^5 + x^2 - y$. Знайти $\frac{\partial z(M)}{\partial y}$, $M(0;1)$.

Розв'язання. Вважаючи z функцією тільки змінної y (x = const), знаходимо $\frac{\partial z}{\partial y} = 10xy^4 - 1$. Підставляємо в знайдену похідну координати точки M:

$$\frac{\partial z(M)}{\partial y} = (10xy^4 - 1)_M = -1.$$
 Г) $z = e^{2x} \cdot \sin 3y$. Знайти $\frac{\partial z(M)}{\partial x}$, $M\left(0; \frac{\pi}{6}\right)$.

Розв'язання. Вважаючи z функцією тільки змінної x (y = const), знаходимо $\frac{\partial z}{\partial x} = 2e^{2x} \cdot \sin 3y$ Підставляємо в знайдену похідну координати точки M.

$$\frac{\partial z(M)}{\partial y} = (2e^{2x} \cdot \sin 3y)_M = 2.$$

Питання на самоперевірку

- 1. Чому дорівнює частинний приріст функції z = f(x, y) за змінною x?
- 2. Чому дорівнює частинний приріст функції z = f(x, y) за змінною y?
- 3. Дати означення частинної похідної першого порядку функції z = f(x, y) по змінній x.
- 4. 3. Дати означення частинної похідної першого порядку функції z = f(x, y) по змінній y.
 - 5. Як обчислюють частинні похідні функції z = f(x, y)?

V. ПОВНИЙ ДИФЕРЕНЦІАЛ ФУНКЦІЇ

Повним приростом функції z = f(x, y), диференційованої в точці (x, y), будемо називати різницю

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y).$$

Повним диференціалом функції z = f(x, y) називається частина повного приросту Δz , лінійна відносно приростів аргументів Δx , Δy , що обчислюється у вигляді $dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y$.

Диференціали незалежних змінних $\Delta x, \Delta y$ співпадають з їх приростом, тобто $dx = \Delta x, \qquad dv = \Delta v$.

тому

$$dz = z_X' dx + z_V' dy.$$

Аналогічно обчислюється диференціал для функції трьох змінних u=u(x,y,z). Отже, $du=u'_x dx + u'_y dy + u'_z dz$.

Повний диференціал застосовують у наближених обчисленнях у вигляді $\Delta z \approx dz \text{ або } f(x+\Delta x,y+\Delta y) \approx f(x,y) + \frac{\partial f}{\partial x}(x,y) \Delta x + \frac{\partial f}{\partial y}(x,y) \Delta y \,.$

Рівність буде тим точніша ,чим менше будуть $|\Delta x|, |\Delta y|$.

Приклад 6. Знайти повні диференціали функцій:

a)
$$z = x^3 y^2$$
.

Розв'язання. Частинні похідні $\frac{\partial z}{\partial x} = 3x^2y^2$, $\frac{\partial z}{\partial y} = 2x^3y$ підставляємо до формули повного диференціалу функції двох змінних

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = 3x^2y^2dx + 2x^3ydy.$$

$$\mathbf{6)} \ \ z = \operatorname{tg} \frac{y}{x} \, .$$

Розв'язання. Аналогічно прикладу а).

$$\frac{\partial z}{\partial x} = -\frac{1}{\cos^2 \frac{y}{x}} \cdot \frac{y}{x^2} = -\frac{y}{x^2 \cos \frac{y}{x}};$$

$$\frac{\partial z}{\partial y} = \frac{1}{x \cos^2 \frac{y}{x}};$$

$$dz = \frac{-y}{x^2 \cos^2 \frac{y}{x}} dx + \frac{1}{x \cos^2 \frac{y}{x}} dy.$$

$$\mathbf{B)} \ z = yx^y.$$

Розв'язання. $\frac{\partial z}{\partial x} = y^2 x^{y-1}$; $\frac{\partial z}{\partial y} = y x^y \ln x$; $dz = y^2 x^{y-1} dx + y x^y \ln x dy$.

Питання на самоперевірку

- 1. Що називають повним приростом функції z = f(x, y)?
- 2. Дати означення повного диференціалу функції двох змінних і вказати формулу для його знаходження.
 - 3. За допомогою якої формули обчислюється наближене значення функції?

VI. ДИФЕРЕНЦІЮВАННЯ СКЛАДЕНИХ ФУНКЦІЙ

1. Нехай функція z = f(x,y) — диференційована функція аргументів x та y, які у свою чергу є диференційованими функціями незалежної змінної t. Тоді складена функція $z = f\big[x(t),y(t)\big]$ також диференційована і визначається за формулою

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

Приклад 7. Знайти $\frac{dz}{dt}$, якщо $z = \cos^2 x - \sin y$, $x = t^2 + t - 1$, $y = t^3 - 2t$.

Розв'язання. Оскільки проміжні змінні x і y є диференційованими Схема до функціями аргументу t, то функція z фактично є функцією однієї змінної розв'язання z = f[x(t), y(t)]. Тоді знайдемо частинні похідні по проміжним змінним:

$$\frac{dz}{dx} = -2\cos x \sin x = -\sin 2x, \quad \frac{dz}{dy} = -\cos y,$$

а також звичайні похідні від проміжних змінних по аргументу t:

$$\frac{dx}{dt} = 2t + 1, \quad \frac{dy}{dt} = 3t^2 - 2.$$

Тоді
$$\frac{dz}{dt} = -(2t+1)\sin 2x - (3t^2 - 2)\cos y = -(2t+1)\sin 2(t^2 + t - 1) - (3t^2 - 2)\cos(t^3 - 2t).$$

2. Розглянемо складніший випадок. Нехай z=f(u,v), де u=u(x,y) і v=v(x,y). Тоді $z_x'=z_u'\cdot u_x'+z_v'\cdot v_x', z_y'=z_u'\cdot u_y'+z_v'\cdot v_y'$.

Ці формули неважко узагальнити для функції більшої кількості змінних.

Приклад 8. $z = u^2 v + uv^2$, $u = x \cos y$, $v = y \sin x$.

Розв'язання.

$$z'_{u} = 2uv + v^{2} = 2(x\cos y) \cdot (y\sin x) + y^{2}\sin^{2} x = (2x\cos y + y\sin x)y\sin x;$$

$$z'_{v} = u^{2} + 2uv = (x\cos y)^{2} + x\cos y \cdot y\sin x = x\cos y(x\cos y + 2y\sin x);$$

$$u'_{x} = \cos y; \quad u'_{y} = -x\sin y;$$

$$v'_{x} = y\cos x; \quad v'_{y} = \sin x;$$

 $z'_{x} = z'_{u}u'_{x} + z'_{v}v'_{x} = (2x\cos y + y\sin x)y\sin x\cos y + x\cos y(x\cos y + 2y\sin x)y\cos x;$ $z'_{y} = z'_{u}u'_{y} + z'_{v}v'_{y} = -(2x\cos y + y\sin x)y\sin x \cdot x\sin y + x\cos y(x\cos y + 2y\sin x)\sin x.$

Питання на самоперевірку

Схема до розв'язання

- 1. За якою формулою обчислюється $\frac{dz}{dt}$?
- 2. Написати формулу знаходження похідних $\frac{\partial z}{\partial x}$ і $\frac{\partial z}{\partial y}$, якщо z = f(u, v), u = (x, y), v = v(x, y).

VII. ДИФЕРЕНЦІЮВАННЯ НЕЯВНО ЗАДАНИХ ФУНКЦІЙ

Похідна неявної функції, заданої рівнянням F(x,y)=0, де F(x,y) - диференційована функція змінних x і y й $F_y'(x,y)\neq 0$ дорівнює

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y)}{F_z'(x, y)}. (3)$$

Частинні похідні неявної функції двох змінних z=f(x,y), заданої рівнянням F(x,y,z)=0, де F(x,y,z) — диференційована функція змінних x, y і z й $F_z'(x,y)\neq 0$, обчислюються за формулами:

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x,y)}{F_z'(x,y)}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'(x,y)}{F_z'(x,y)}.$$
 (4)

Приклад 9. Задана функція $y^2 - 2xy = 3$. Знайти $\frac{dy}{dx}$.

Розв'язання. Запишемо задану функцію у вигляді $y^2 - 2xy - 3 = 0$ і скористаємося формулою (3):

$$F'_x = -2y$$
, $F'_y = 2y - 2x$,
 $\frac{dy}{dx} = -\frac{-2y}{2y - 2x} = \frac{y}{y - x}$.

Приклад 10. Задана функція $x^3y^2 + xy^5 + 15xy + y = 0$. Знайти $\frac{dy}{dx}$.

Розв'язання. Позначимо ліву частину рівняння через F(x, y) і скористаємося формулою (3):

$$F'_x = 3x^2y^2 + y^5 + 15y$$
, $F'_y = 2x^3y + 5xy^4 + 15y + 1$,

$$\frac{\partial y}{\partial x} = -\frac{3x^2y^2 + y^5 + 15y}{2x^3y + 5xy^4 + 15x + 1}.$$

Приклад 11. Задана функція $4\sin(x-y-z^4)+y+\ln z-x=0$. Знайти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

Розв'язання. Позначимо ліву частину рівняння через F(x, y, z) і скористаємося формулою (4):

$$f'_{x} = 4\cos(x - y - z^{4}) - 1, \quad f'_{y} = -4\cos(x - y - z^{4}) + 1,$$

$$f'_{z} = -16z^{3}\cos(x - y - z^{4}) + \frac{1}{z}.$$

$$\frac{\partial z}{\partial x} = -\frac{4\cos(x - y - z^{4}) - 1}{\frac{1}{z} - 16z^{3}\cos(x - y - z^{4})}, \quad \frac{\partial z}{\partial y} = -\frac{1 - 4\cos(x - y - z^{4})}{\frac{1}{z} - 16z^{3}\cos(x - y - z^{4})}.$$

Питання на самоперевірку

- 1. За якою формулою можна знайти похідну функції однієї змінної, заданої в неявному виді (тобто у виді F(x, y) = 0)?
- 2. Якщо функція двох змінних задана в неявному виді, тобто F(x,y,z)=0, то за якою формулою знаходять частинні похідні $\frac{\partial z}{\partial x}$ і $\frac{\partial z}{\partial y}$?

VIII. ЧАСТИННІ ПОХІДНІ ВИЩИХ ПОРЯДКІВ

Нехай функція декількох змінних u = f(x, y, ..., t) має частинні похідні. В загальному випадку вони ϵ знову функціями декількох змінних. Тому від них можна знову знайти частинні похідні.

Частинними похідними другого порядку від функції z = f(x, y) називають частинні похідні від її похідних першого порядку $\frac{CZ}{\partial r}$, $\frac{CZ}{\partial r}$.

Для функції двох змінних частинних похідних буде чотири. Вони позначаються таким чином:

$$-\frac{\partial^2 z}{\partial x^2} = f''_{xx}(x,y) - функція послідовно диференціюється двічі по x;$$

$$-\frac{\partial^2 z}{\partial x \partial y} = f''_{xy}(x,y) - функція спочатку диференціюється по x, а потім по y;$$

$$-\frac{\partial^2 z}{\partial y \partial x} = f_{yx}''(x,y) - функція диференціюється спочатку по y, а потім по x;
$$-\frac{\partial^2 z}{\partial y^2} = f_{yy}''(x,y) - функція диференціюється послідовно двічі по y.$$$$

$$-\frac{\partial^2 z}{\partial y^2} = f''_{yy}(x,y) - функція диференціюється послідовно двічі по y .$$

Похідні другого порядку можна знову диференціювати.

Похідні $\frac{\partial^2 z}{\partial x \partial y}$ і $\frac{\partial^2 z}{\partial y \partial x}$, що вирізняються послідовністю диференціювання називаються мішаними. Мішані похідні, якщо вони неперервні, рівні між собою: $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

Аналогічно визначаються частинні похідні вищих порядків, наприклад:

$$\frac{\partial^3 z}{\partial x^2 \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial^2 z}{\partial x^2} \right), \quad \frac{\partial^4 z}{\partial^3 x \partial y} = \frac{\partial z}{\partial y} \left(\frac{\partial^3 z}{\partial x^3} \right).$$

При цьому результат багаторазового диференціювання функції по різним змінним не залежить від послідовності диференціювання за цими змінними. Істотним є лише те, щоб обчислювані частинні похідні були неперервними.

Приклад 12. Знайти похідні другого порядку від функцій:

a)
$$z = x^3 - x^2y + y^2$$
.

Розв'язання. Маємо:
$$\frac{\partial z}{\partial x} = 3x^2 - 2xy$$
, $\frac{\partial z}{\partial x^2} = 6x - 2y$,
$$\frac{\partial z}{\partial y} = -x^2 + 2y$$
, $\frac{\partial^2 z}{\partial y^2} = 2$, $\frac{\partial^2 z}{\partial y \partial x} = (-x^2 + 2y)'_x = -2x$, $\frac{\partial^2 z}{\partial x \partial y} = (3x^2 - 2xy)'_y = -2x$,
$$\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y} = -2x$$
.

6)
$$z = e^{2xy^2}$$
.

Розв'язання. Маємо:
$$\frac{\partial z}{\partial x} = e^{2xy^2} \cdot 2y^2$$
, $\frac{\partial z}{\partial x^2} = e^{2xy^2} \cdot 4y^4$, $\frac{\partial z}{\partial y} = e^{2xy^2} \cdot 4xy$, $\frac{\partial^2 z}{\partial y^2} = e^{2xy^2} \cdot 16x^2y^2 + e^{2xy^2} \cdot 4x = e^{2xy^2} \cdot (4xy^2 + 1) \cdot 4x$, $\frac{\partial^2 z}{\partial y \partial x} = \left(e^{2xy^2} \cdot 4xy\right)'_x = e^{2xy^2} \cdot 8xy^3 + e^{2xy^2} \cdot 4y = e^{2xy^2} \cdot 4y(2xy^2 + 1)$, $\frac{\partial^2 z}{\partial x \partial y} = \left(e^{2xy^2} \cdot 2xy^3\right)'_y = e^{2xy^2} \cdot 8xy^3 + e^{2xy^2} \cdot 4y = e^{2xy^2} \cdot 4y(2xy^2 + 1)$, $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$.

B) $z = \cos(xy)$.

Розв'язання. Маємо:
$$\frac{\partial z}{\partial x} = -y \sin(xy)$$
, $\frac{\partial^2 z}{\partial x^2} = -y^2 \cos(xy)$, $\frac{\partial^2 z}{\partial y} = -x \sin(xy)$, $\frac{\partial^2 z}{\partial y^2} = -x^2 \cos(xy)$, $\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial^2 z}{\partial x \partial y} = -xy \cos(xy) - \sin(xy)$.

Приклад 13. Обчислити частинну похідну $\frac{\partial^3 z}{\partial x \partial y^2}$ від функції $z = 5x^4y^3 + 6e^{-3x} \cdot y + \sin 2x$.

Розв'язання. Послідовно знаходимо:

$$\frac{\partial z}{\partial x} = 20x^3y^3 - 18e^{-3x} \cdot y + 2\cos 2x, \quad \frac{\partial^2 z}{\partial x \partial y} = 60x^3y^2 - 18e^{-3x}, \quad \frac{\partial^3 z}{\partial x \partial y^2} = 120x^3y.$$

Приклад 14. Перевірити, чи виконується рівність $z''_{xy} = z''_{yx}$ для функції $z = \ln(4x + e^{-y})$.

Розв'язання. Обчислимо спочатку $z'_{x} = \frac{4}{4x + e^{-y}}$, потім знайдемо $z''_{xy} = \frac{4e^{-y}}{(4x + e^{-y})^{2}}$.

Диференціюємо в іншому порядку:

$$z'_{y} = \frac{-e^{-y}}{x + e^{-y}}, \quad z''_{yx} = \frac{4e^{-y}}{(x + e^{-y})^{2}}.$$

Отже $z''_{xy} = z''_{yx}$.

Приклад 15. Перевірити, чи задовольняє функція $z = \frac{y^2}{3x} + \arcsin(xy)$ диференціальному рівнянню: $x^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} + y^2 = 0$.

Розв'язання. Знайдемо частинні похідні, які містяться в рівнянні:

$$\frac{\partial z}{\partial x} = -\frac{y^2}{3x^2} + \frac{y}{\sqrt{1 - x^2 y^2}}, \qquad \frac{\partial z}{\partial y} = \frac{2y}{3x} + \frac{x}{\sqrt{1 - x^2 y^2}}.$$

Підставляючи їх у рівняння здобудемо тотожність:

$$x^{2} \cdot \left(-\frac{y^{2}}{3x^{2}} + \frac{y}{\sqrt{1 - x^{2}y^{2}}} \right) - xy \left(\frac{2y}{3x} + \frac{x}{\sqrt{1 - x^{2}y^{2}}} \right) + y^{2} = 0.$$

Питання на самоперевірку

- 1. Що називається частинними похідними другого порядку від функції z = f(x, y)?
 - 2. Як знаходити частинні похідні вищих порядків?
- 3. Скільки буде частинних похідних другого порядку від функції двох змінних?
 - 4. Сформулювати правило для мішаних похідних від функції z = f(x, y).

ІХ. ЕЛЕМЕНТИ ТЕОРІЇ ПОЛЯ ПОХІДНА ЗА НАПРЯМОМ. ГРАДІЄНТ

Область простору, кожній точці M якої поставлено у відповідність значення деякої скалярної величини u(M) називають скалярним полем.

Прикладами скалярних полів ϵ поле температури даного тіла, поле густини даного неоднорідного середовища, поле атмосферного тиску, поле потенціалів заданого електростатичного поля тощо.

Якщо функція u(M) не залежить від часу, то скалярне поле називають **стаціонарним**, а скалярне поле, яке змінюється з часом — **нестаціонарним**.

Якщо скалярна функція u(M) залежить тільки від двох змінних, то відпові-

дне скалярне поле u(x, y) називають **плоским**. Якщо ж функція u(M) залежить від трьох змінних, то скалярне поле u(x, y, z) називають **просторовим**.

Для плоского скалярного поля розглядають **лінії рівня**, на яких функція u(x,y) має стале значення. Рівняння лінії рівня – u(x,y)=C, C=const.

Поверхнею рівня скалярного поля, заданого функцією u(x,y,z) називають поверхню, на якій функція має стале значення. Рівняння поверхні рівня — u(x,y,z)=C, C=const.

Геометрично плоскі скалярні поля зображують за допомогою **ліній рівня**, а просторові — за допомогою **поверхонь рівня**.

Для характеристики швидкості зміни поля в заданому напрямі введемо поняття **похідної за напрямом**.

Розглянемо на множині D диференційовану функцію U=f(x,y,z) і точку M(x,y,z). Проведемо з точки M вектор $\overline{S}\{S_x,S_y,S_z\}$, напрямні косинуси яко-

го
$$\cos\alpha = \frac{S_x}{\left|\overline{S}\right|}$$
, $\cos\beta = \frac{S_y}{\left|\overline{S}\right|}$, $\cos\gamma = \frac{S_z}{\left|\overline{S}\right|}$, тоді похідна від функції $U = f(x,y,z)$ в

точці M(x, y, z) за напрямом вектора \overline{S} буде обчислюватись за формулою:

$$\frac{\partial U}{\partial S} = \frac{\partial U}{\partial x} \cos \alpha + \frac{\partial U}{\partial y} \cos \beta + \frac{\partial U}{\partial z} \cos \gamma.$$

Зазначимо, що будь-яка частинна похідна є окремим випадком похідної за напрямом. Наприклад, якщо $\alpha = 0$, $\beta = \gamma = \frac{\pi}{2}$, $\text{To} \frac{\partial U}{\partial S} = \frac{\partial U}{\partial x}$ ($\cos \alpha = \cos 0 = 1$, $\cos \beta = \cos \gamma = \cos \frac{\pi}{2} = 0$). $\frac{\partial U}{\partial S}$

Вектор, у якого проекціями на осі координат є значення частинних похідних функції U = f(x, y, z) в точці M(x, y, z), зветься градієнтом функції U.

$$\overline{\operatorname{grad}} \quad U = \frac{\partial U}{\partial x} \cdot \overline{i} + \frac{\partial U}{\partial y} \cdot \overline{j} + \frac{\partial U}{\partial z} \cdot \overline{k} \,.$$
Якщо кут між векторами $\overline{\operatorname{grad}}U$ і \overline{S}
позначити через φ , то φ

$$\frac{\partial U}{\partial S} = \left| \overline{\operatorname{grad}}U \right| \cdot \cos \varphi \,. \text{Тобто похідна} \quad \frac{\partial U}{\partial S}$$
дорівнює проекції $\overline{\operatorname{grad}}U$ на вектор \overline{S} .

Якщо $\varphi = 0$, то $\frac{\partial U}{\partial \overline{S}} = \left| \overline{\text{grad}} U \right|$ — найбільше значення похідної в точці M (у цьому випадку напрям вектора \overline{S} збігається з напрямом градієнта).

Якщо $\varphi = \frac{\pi}{2} \left(\cos \frac{\pi}{2} = 0 \right)$, то похідна у напрямі вектора, перпендикулярного вектору $\overline{\text{grad}}U$ завжди дорівнює нулю.

Приклад 16. Від заданої функції $U = x^2 - xy + y^3z^2$ знайти:

- 1) похідну в точці M(1,-2,-1) у напрямку вектора $\overline{S}\{3,-1,2\}$;
- 2) градієнт функції U в точці M .

Розв'язання. Знайдемо частинні похідні функції U і їх значення в точці M:

$$\frac{\partial U}{\partial x} = 2x - y; \qquad \frac{\partial U(M)}{\partial x} = \frac{\partial U(1, -2, -1)}{\partial x} = 4;$$

$$\frac{\partial U}{\partial y} = -x + 3y^2 z^2; \qquad \frac{\partial U(1, -2, -1)}{\partial y} = 11;$$

$$\frac{\partial U}{\partial z} = 2y^3 z; \qquad \frac{\partial U(1, -2, -1)}{\partial z} = 16.$$

Знайдемо напрямні косинуси вектора \overline{S}

$$\cos \alpha = \frac{S_x}{|\overline{S}|} = \frac{3}{\sqrt{9+1+4}} = \frac{3}{\sqrt{14}}; \qquad \cos \beta = \frac{S_y}{|\overline{S}|} = -\frac{1}{\sqrt{14}}; \qquad \cos \gamma = \frac{S_z}{|\overline{S}|} = \frac{2}{\sqrt{14}}.$$

Тоді похідна функції U у напрямку \overline{S} в точці M буде дорівнювати числу:

$$\frac{\partial U}{\partial \overline{S}} = 4 \cdot \frac{3}{\sqrt{14}} + 11 \cdot \frac{(-1)}{\sqrt{14}} + 16 \cdot \frac{2}{\sqrt{14}} = \frac{33}{\sqrt{14}}.$$

За формулою градієнта маємо: $\overline{\text{grad}}U = 4\overline{i} + 11\overline{j} + 16\overline{k}$.

Питання на самоперевірку

- 1. Що називається скалярним полем?
- 2. Навести приклади скалярного поля.
- 3. Яке поле називають стаціонарним і нестаціонарним?
- 4. Записати формулу для похідної за напрямом від функції u = f(x, y, z).
- 5. У чому полягає фізичний зміст похідної за напрямом?
- 6. Дати означення градієнта скалярного поля.
- 7. Як визначається зв'язок між $\overline{\text{grad}}U$ і $\frac{\partial U}{\partial S}$?

X. РІВНЯННЯ ДОТИЧНОЇ ПЛОЩИНИ ДО ПОВЕРХНІ. РІВНЯННЯ НОРМАЛІ

Нехай деяка поверхня S задана рівнянням F(x,y,z)=0. Якщо в точці $P(x,y,z)\in S$ всі три похідні $\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z}$ неперервні і хоча б одна з них не

дорівнює нулю, то точка P називається **звичайною**. Якщо всі три похідні дорівнюють нулю, або хоча б одна з них не існує, то точка P називається **особливою** (вершина конічної поверхні). Якщо всі точки поверхні S є звичайними, то поверхня називається **гладкою** (простою).

Дотичною прямою до поверхні у звичайній точці називається дотична до деякої кривої, яка розміщена на цій поверхні і проходить через дану точку.

Теорема. Усі дотичні прямі до гладкої поверхні у звичайній точці лежать в одній площині.

Площина, яка містить усі дотичні до кривих, що розміщені на поверхні і проходять через дану точку, називається дотичною площиною.

Таким чином, якщо поверхню задано рівнянням у неявному виді F(x,y,z)=0, то рівняння дотичної площини до поверхні в точці $P(x_0,y_0,z_0)=P_0$ має вигляд:

$$\frac{\partial F(P_0)}{\partial x}(x-x_0) + \frac{\partial F(P_0)}{\partial y}(y-y_0) + \frac{\partial F(P_0)}{\partial z}(z-z_0) = 0.$$
 (7)

Якщо рівняння поверхні задано в явній формі z = f(x, y), то рівняння дотичної площини записується у вигляді:

$$z - z_0 = \frac{\partial f(P_0)}{\partial x} (x - x_0) + \frac{\partial f(P_0)}{\partial y} (y - y_0).$$

Пряма, яка проходить через точку $P(x_0, y_0, z_0) = P_0$ перпендикулярно до дотичної площини, називається **нормаллю до поверхні**.

Якщо поверхня задана в неявній формі F(x, y, z) = 0, то рівняння нормалі має такий вигляд:

$$\frac{x - x_0}{\frac{\partial F(P_0)}{\partial x}} = \frac{y - y_0}{\frac{\partial F(P_0)}{\partial y}} = \frac{z - z_0}{\frac{\partial F(P_0)}{\partial z}}.$$
(8)

Якщо поверхня задана рівнянням z = f(x, y), то рівняння нормалі запишеться у вигляді:

$$\frac{x - x_0}{-\frac{\partial f(P_0)}{\partial x}} = \frac{y - y_0}{-\frac{\partial f(P_0)}{\partial y}} = \frac{z - z_0}{1}.$$

Приклад 17. Знайти рівняння дотичної площини та нормалі до поверхні $x^2 - 4y^2 + 2z^2 = 6$ в точці $P(2,1,-3) = P_0$.

Розв'язання. Запишемо рівняння площини у вигляді $x^2 - 4y^2 + 2z^2 - 6 = 0$. Позначимо ліву частину рівняння через F(x,y,z), знайдемо частинні похідні та їх значення в точці P_0 :

$$F(x, y, z) = x^{2} - 4y^{2} + 2z^{2} - 6;$$

$$\frac{\partial F}{\partial x} = 2x;$$

$$\frac{\partial F(P_{0})}{\partial x} = 4;$$

$$\frac{\partial F}{\partial y} = -8y;$$

$$\frac{\partial F(P_{0})}{\partial y} = -8;$$

$$\frac{\partial F(P_{0})}{\partial z} = -12.$$

За формулою (7) маємо: 4(x-2)-8(y-1)-12(z+3)=0 або 4x-8y-12z-36=0, або x-2y-3z-9=0 – рівняння дотичної площини. Рівняння нормалі одержимо за формулою (8):

$$\frac{x-2}{4} = \frac{y-1}{-8} = \frac{z+3}{-12}$$
 afo $\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+3}{-3}$.

Питання на самоперевірку

- 1. Що називається дотичною площиною до поверхні F(x, y, z) = 0?
- 2. Що називається нормаллю до поверхні F(x, y, z) = 0?

- 3. Записати рівняння дотичної площини до поверхні F(x, y, z) = 0.
- 4. Записати рівняння нормалі до поверхні F(x, y, z) = 0.

ХІ. ЕКСТРЕМУМ ФУНКЦІЇ ДВОХ ЗМІННИХ

Нехай точка $P_0(x_0,y_0)$ називається точкою максимуму (мінімуму) функції z=f(x,y), якщо існує окіл точки $P_0(x_0,y_0)$ такий, що для будь-якої точки (x,y) із цього околу виконується нерівність $f(x_0,y_0) \ge f(x,y)$ ($f(x_0,y_0) \le f(x,y)$).

Оскільки екстремум функції z = f(x, y) визначається лише в малому околі точки $P_0(x_0, y_0)$, то його називають **локальним**.

Для функції двох змінних z = f(x, y) необхідні і достатні умови мають наступний вигляд.

Теорема (необхідні умови): якщо функція z = f(x, y) має екстремум у точці $P_0(x_0, y_0)$, то в цій точці частинні похідні першого порядку дорівнюють нулю, або не існують.

Тобто,
$$\frac{\partial z}{\partial x} = 0$$
 (або не існує), $\frac{\partial z}{\partial y} = 0$ (або не існує).

Точки, в яких частинні похідні першого порядку дорівнюють нулю, або не існують, називаються стаціонарними точками функції z = f(x, y).

Теорема (достатні умови): нехай в деякому околі точки $P_0(x_0, y_0)$ функція f(x, y) має неперервні частинні похідні до третього порядку включно і нехай, крім того, точка $P_0(x_0, y_0)$ є стаціонарною точкою функції f(x, y) і

$$A = \frac{\partial^2 z(P_0)}{\partial x^2}$$
; $B = \frac{\partial^2 z(P_0)}{\partial x \partial y}$; $C = \frac{\partial^2 z(P_0)}{\partial y^2}$. Тоді в точці $P_0(x_0, y_0)$:

- 1) f(x, y) має максимум, якщо $AC B^2 > 0$ (A < 0 або C < 0);
- 2) f(x, y) має мінімум, якщо $AC B^2 > 0$ (A > 0 або C > 0);
- 3) екстремум відсутній, якщо $AC B^2 < 0$;
- 4) екстремум може бути, а може і не бути, якщо $AC B^2 = 0$ (в цьому випадку потрібні подальші дослідження).

Приклад 18. Дослідити на екстремум функцію $z = x^3 + 3xy^2 - 15x - 12y$.

Розв'язання. Область визначення функції – всі дійсні значення змінних x та y,

тобто
$$\begin{cases} -\infty < x < \infty \\ -\infty < y < \infty \end{cases}.$$

Знайдемо частинні похідні першого порядку і складемо систему рівнянь:

$$y = \frac{2}{x}$$
, $\frac{\partial z}{\partial x} = 3x^2 + 3y^2 - 15$, $\frac{\partial z}{\partial y} = 6xy - 12$,
$$\begin{cases} x^2 + y^2 - 5 = 0 \\ xy - 2 = 0 \end{cases}$$
,
$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases}$$
.

Розв'яжемо систему і знайдемо стаціонарні точки:

$$x^{2} + \frac{4}{x^{2}} - 5 = 0$$
, $x^{4} - 5x^{2} + 4 = 0$, $x_{1}^{2} = 4$, $x_{2}^{2} = 1$.

Знайдемо частинні похідні другого порядку

$$\frac{\partial^2 z}{\partial x^2} = 6x, \qquad \frac{\partial^2 z}{\partial x \partial y} = 6y, \qquad \frac{\partial^2 z}{\partial y^2} = 6x.$$

$$M_1(2,1), \quad M_2(-2,-1), \quad M_3(1,2), \quad M_4(-1,-2)\,.$$

Знайдемо $AC - B^2 = 36x^2 - 36y^2$.

Тепер для кожної стаціонарної точки будемо знаходити знак $AC - B^2$:

- для точки $M_1(2,1)$: $AC-B^2=36\cdot 2^2-36\cdot 1>0$. В цій точці екстремум ϵ . Розглянемо знак A (або C). $A=6x=6\cdot 2=12>0$, тому в точці M_1 маємо мінімум, який дорівню $\epsilon_{\min}(2,1)=-28$;
- для точки $M_2(-2,-1)$: $AC-B^2>0$ (A<0). Отже, в т. M_2 маємо максимум, який дорівнює $z_{\rm max}(2,1)=+28$;
 - для точки $M_3(1,2)$: $AC B^2 < 0$ екстремуму немає;
 - для точки $M_4(-1,-2)$: $AC-B^2<0$ екстремуму немає.

Питання на самоперевірку

- 1. 1. Сформулювати необхідні умови існування екстремуму функції z = f(x, y).
- 2. Сформулювати достатні умови існування екстремуму функції z = f(x, y) .
 - 3. Що називають стаціонарними точками функції z = f(x, y)?
 - 4. Коли функція z=f(x,y) має екстремум?

ХІІ. НАЙБІЛЬШЕ ТА НАЙМЕНШЕ ЗНАЧЕННЯ ФУНКЦІЇ ДВОХ ЗМІННИХ

Означення. Функція z = f(x, y), неперервна в обмеженій замкненій області D, обов'язково має в цій області найбільше і найменше значення.

Цих значень функція досягає або в стаціонарних точках (які знаходяться в середині D), або в точках, які належать межі області D.

Тому, щоб знайти найбільше і найменше значення функції в області D, потрібно:

- 1) знайти стаціонарні точки, які розташовані всередині області і обчислити значення функції в цих точках;
- 2) знайти найбільше і найменше значення функції на лініях, які утворюють межу області (на цих лініях функція двох змінних перетворюється у фун-

кцію однієї змінної);

3) із усіх знайдених значень функції вибрати найбільше і найменше. Зауваження. Найбільше (найменше) значення можуть бути не єдиними.

Приклад. Знайти найбільше і найменше значення функції $z = x^2 + y^2 - xy - x - 2y$ у замкненій області, яка обмежена лініями: $x + 2y - 6 \le 0$, $x \ge 0$, $y \ge 0$.

Розв'язання.

$$\begin{cases} \frac{\partial z}{\partial x} = 2x - y - 1 \\ \frac{\partial z}{\partial y} = 2y - x - 2 \end{cases}; \begin{cases} 2x - y - 1 = 0 \\ 2y - x - 2 = 0 \end{cases}; \quad x = \frac{4}{3}; \quad y = \frac{5}{3}. \quad B$$

Знайдемо стаціонарні точки (див. рис.). Таким чином, єдина стаціонарна точка $M_1\left(\frac{4}{3},\frac{5}{3}\right)$ належить області D і значення функції в цій то<mark>чц</mark>і

 $z(M_1) = z\left(\frac{4}{3}, \frac{5}{3}\right) = -\frac{7}{3}$. Проведемо дослідження функції на межах області. Розглянемо межу AB. Її рівняння x + 2y - 6 = 0 зв'язує між собою змінні x і y. Визначимо з цього рівняння одну змінну через другу, наприклад x = 6 - 2y, і підставимо у вираз функції z:

$$z = (6-2y)^2 + y^2 - (6-2y)y - (6-2y) - 2y = 7y^2 - 30y + 30$$
.

Таким чином, ми одержали функцію однієї змінної $z(y) = 7y^2 - 30y + 30$, де \mathcal{Y} змінюється на відрізку [0,3]. Далі шукаємо найбільше і найменше значення функції z(y) на [0,3], які і будуть найбільшим і найменшим значенням функції z = f(x,y) на межі AB. Знаходимо стаціонарні точки функції z(y):

$$z(y) = 14y - 30$$
, $14y - 30 = 0$, $y = \frac{15}{7}$.

Ця точка розташована всередині відрізку [0,3], тому знайдемо значення функції z(y) в цій точці і на кінцях цього відрізка, якщо:

a)
$$y = 0$$
, To $x = 6$, $z(M_2) = z(6,0) = 30$;

6)
$$y = 3$$
, To $x = 0$, $z(M_3) = z(0,3) = -4$;

B)
$$y = \frac{15}{7}$$
, To $x = \frac{12}{7}$, $z(M_4) = z(\frac{12}{7}, \frac{15}{7}) = -\frac{15}{7}$.

Всі ці обчислення проводились за умови x = 6 - 2y, тому на цій межі маємо:

$$z\left(\frac{15}{7}\right) = 7 \cdot \left(\frac{15}{7}\right)^2 - 30 \cdot \frac{15}{7} + 30 = -\frac{15}{7};$$
 $z(0) = 30;$ $z(3) = -4.$

Розглянемо межу OA; її рівняння y = 0. В цьому випадку функція z = f(x, y) буде мати вигляд $z = x^2 - x$, $0 \le x \le 6$ (ми знов одержали функцію однієї змінної).

Знайдемо найбільше і найменше значення цієї функції на відрізку [0,6], z'(x) = 2x - 1; 2x - 1 = 0; $x = \frac{1}{2}$.

Ця стаціонарна точка належить відрізку [0,6], тому знаходимо:

$$z\left(\frac{1}{2}\right), \quad z(0) \quad i \quad z(6),$$

$$z\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = -\frac{1}{4}; \quad z(0) = 0, \quad z(6) = 30.$$

Всі ці обчислення проводились за умови y = 0, тому як і в попередньому випадку, якщо:

-
$$x = 0$$
, To $z(M_5) = z(0,0) = 0$;
- $x = \frac{1}{2}$, To $z(M_6) = z(\frac{1}{2},0) = \frac{1}{4}$.

Значення z(6,0) = 30 не враховуємо, тому що на межі AB точка з такими координатами вже була (точка M_2).

Нарешті розглянемо межу OB: x = 0, $z(y) = y^2 - 2y$, $0 \le y \le 3$, z'(y) = 2y - 2, 2y - 2 = 0, y = 1 (стаціонарна точка належить відрізку [0,3]).

Перш ніж находити значення функції на кінцях відрізка і в стаціонарній точці, відзначимо, що значення z(0) і z(3) можна не враховувати, тому що z(0) за умови x=0, це $z(0,0)=z(M_5)$, а z(3) за умови x=0 це $z(0,3)=z(M_3)$. Тому знайдемо тільки z(1)=-1 або $z(M_7)=z(0,1)=-1$.

Із знайдених значень функції вибираємо найбільше і найменше значення:

$$\begin{split} z(M_1) &= z\left(\frac{4}{3}, \frac{5}{3}\right) = -\frac{7}{3}; & z(M_2) = z(A) = z(6, 0) = 30; \\ z(M_3) &= z(B) = z(0, 3) = -4; & z(M_4) = z\left(\frac{12}{7}, \frac{15}{7}\right) = -\frac{15}{7}; \\ z(M_5) &= z(0, 0) = 0; & z(M_6) = z\left(\frac{1}{2}, 0\right) = \frac{1}{4}; & z(M_7) = z(0, 1) = -1. \end{split}$$

Найбільше значення буде в точці M_2 (тобто в точці A): z(6,0) = 30.

Найменше – в точці M_1 : $z\left(\frac{4}{3}, \frac{5}{3}\right) = -\frac{7}{3}$.

ХІІІ. ІНДИВІДУАЛЬНІ ДОМАШНІ ЗАВДАННЯ

- 1. Знайти області визначення функцій та схематично зобразити їх.
- 2. Знайти частинні похідні від функцій.
- 3. Знайти повні диференціали функцій.
- 4. Знайти похідні складених функцій.
- 5. Знайти похідні від неявно заданих функцій.
- 6. Довести, що задані функції задовольняють рівнянням.
- 7. Побудувати лінії рівня функції z = f(x, y).
- 8. Знайти похідну функції z = f(x, y) в точці A у напрямку вектора \overline{S} .
- 9. Знайти градієнт функції z = f(x, y) в точці A.
- 10. Знайти рівняння дотичної площини та нормалі до поверхні в указаній точці.
 - 11. Дослідити на екстремум функцію двох змінних.

1.
$$z = \sqrt{x^2 + y^2 - 4}$$
.

2. a)
$$z = \ln\left(\frac{1}{xy}\right)$$
;

6)
$$z = \cos^2\left(\frac{x}{y}\right)$$
; B) $z = \frac{x^2 - \sqrt{y}}{x^2 + \sqrt{y}}$.

$$B) z = \frac{x^2 - \sqrt{y}}{x^2 + \sqrt{y}}$$

3.
$$z = \operatorname{arctg}(xy)$$
.

4. a)
$$z = \sin(x^2 - y)$$
,

$$x = e^{2t}$$

$$y=2^t$$

$$6) z = \ln(\sqrt{x} - y^2), \qquad x = uv,$$

$$x = uv$$

$$y = u^2 - v^2.$$

5. a)
$$z^3 + 3x^2z = 2xy$$
:

5. a)
$$z^3 + 3x^2z = 2xy$$
; 6) $x^3y^2 - xy^5 + 5x + y = 0$.

6.
$$z = e^{xy}$$
,

$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = x^2 + 2y$$
.

8.
$$z = x^2 + xy + y^2$$
,

$$A(1;1)$$
,

$$\overline{a}(2;1)$$
.

9.
$$z = x^2 + 2y$$
,

$$A(2;2)$$
.

10.
$$z = x^2 + y^2$$
,

$$P(1;2;5)$$
.

11.
$$z = 3x^2y + y^3 - 18x - 30y$$
.

1.
$$z = \ln(x^2 + y)$$
.

2. a)
$$z = \sin^2\left(\frac{x}{y}\right)$$
;

B)
$$z = (y^4 + 2)^{x^2}$$
.

3.
$$z = \ln\left(\operatorname{tg}\frac{x}{y}\right)$$
.

4. a)
$$z = \sin(4y - 3xy)$$
, $x = 4^{5+2t}$,

$$x = 4^{5+2t}$$

$$y = 1 - t^2$$
;

$$5) z = 15^{\arcsin(xy)}, x = \frac{u^2}{x^2},$$

$$x = \frac{u^2}{v}$$
,

$$y = \frac{1}{uv}$$
.

5. a)
$$z^2 + 3x^3z = 2xy$$
;

$$6) x^2y^3 - x^5y + 5y + x = 0.$$

$$6. z = \sin^2(x - y),$$

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}.$$

7.
$$z = x^2 - y^2$$
.

8.
$$z = x^3 - xy^2 - y^3$$
,

$$A(2;1)$$
,

$$\overline{a}(-3;1)$$
.

9.
$$z = x^3 - xy^2 - y^3$$
,

$$A(1;2)$$
.

10.
$$x^2 + y^2 + z^2 = 169$$
, $P(3;4;12)$.

11.
$$z = x^2 + xy + y^2 - 6x - 9y$$
.

1.
$$z = \ln xy$$
.

2. a)
$$z = \sqrt{\frac{x}{y}}$$
;

$$6) \ z = \arcsin x \sqrt{y} \ ;$$

6)
$$z = \arcsin x \sqrt{y}$$
; B) $z = \left(y - 16^{\frac{x}{2}}\right)$.

3.
$$z = \sqrt{x^2 + y^2}$$
.

4. a)
$$z = \frac{y}{x^2 + y^2}$$
,

$$y = \sin \sqrt{x} \; ;$$

6)
$$z = (u + \sqrt{uv})^3$$
, $u = \frac{y}{v^2 + v^2}$, $v = \frac{\sqrt{x} + \sqrt{y}}{v^2 + v^2}$.

$$u = \frac{y}{x^2 + v^2},$$

$$v = \frac{\sqrt{x} + \sqrt{y}}{v^2 + x^2}$$

5. a)
$$x + y + z = e^{-(x+y+z)}$$
; 6) $xe^{2y} - y \ln x - 8 = 0$.

6)
$$xe^{2y} - y \ln x - 8 = 0$$

6.
$$u = e^{-\cos(x+y)}$$
, $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$.

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}.$$

7.
$$z = x^2 + 4y^2$$
.

8.
$$z = \ln(5x^2 + 3y^2)$$
, $A(1;1)$,

$$A(1;1)$$
,

$$\overline{a}(3;2)$$
.

9.
$$z = \ln(5x^3 + 3y^2)$$
, $A(2;1)$.

$$A(2;1)$$
.

10.
$$z = \operatorname{arctg}\left(\frac{y}{x}\right), \qquad P\left(1; 1; \frac{\pi}{4}\right).$$

$$P\left(1;1;\frac{\pi}{4}\right).$$

11.
$$z = x^3 + xy^2 + 6xy$$
.

1.
$$z = \frac{1}{x-1} + \frac{1}{y}$$
.

2. a)
$$z = \operatorname{tg}\left(\frac{1}{xy^2}\right)$$
;

6)
$$z = 5^{\sqrt{y} - 2x}$$
;

6)
$$z = 5\sqrt{y^2 - 2x}$$
; B) $z = \sqrt{y^3 + 6x^2}$.

3.
$$z = \sin^2 x + \cos^2 v$$
.

4. a)
$$z = \cos \frac{xy}{x+y}$$
,

$$x = 9^{x^2 - 15}$$
;

6)
$$z = \arccos(uv)$$
, $u = \frac{1}{vv + 15}$, $v = \frac{x}{v + x}$.

$$u = \frac{1}{xy + 15}$$

$$v = \frac{x}{v + x}$$

5. a)
$$z \ln(x+z) - \frac{xy}{2} = 0$$

5. a)
$$z \ln(x+z) - \frac{xy}{2} = 0$$
; 6) $x^3y^2 - xy^5 + 5x + y = 0$.

$$6. \ u = y\sqrt{\frac{y}{x}} \ ,$$

$$x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0.$$

7.
$$z = \frac{4x}{x^2 + y^2}$$
.

8.
$$z = 5x^2 + 6xy$$
,

$$A(2;1)$$
,

 $\overline{a}(1;2)$.

9.
$$z = 4x^2 + 5xy$$
,

$$A(1;2)$$
.

$$10. \ z = y^2 + \ln\left(\frac{x}{y}\right),$$

$$P(1;1;1)$$
.

11.
$$z = x\sqrt{y} + x^2 - y + 6x + 3$$
.

Варіант 5

1.
$$z = x + \arccos y$$
.

$$6) \ z = \ln \frac{x}{\sqrt{y}};$$

B)
$$z = \frac{1}{\sqrt{x} + y^2}$$
.

3.
$$z = yx^y$$
.

4. a)
$$z = \frac{x^2 + 3}{y^2 + 2x}$$
,

$$x = \arcsin(1+t)$$
, $y = \arccos(2t^2)$;

$$y = \arccos(2t^2)$$

$$(5) z = \frac{u}{v^2 + 5u}, \qquad u = \arccos \frac{y}{x},$$

$$u = \arccos \frac{y}{r}$$
,

$$v = \arcsin \frac{x}{v}$$
.

5. a)
$$5(x^3 + y^2 + z^2) - 2(xy + yz + zx) = 72$$
; 6) $x^3e^{2y} - y^2\ln x + 8 = 0$.

$$6) x^3 e^{2y} - y^2 \ln x + 8 = 0.$$

6.
$$u = \ln \sqrt{x^2 + y^2}$$
, $\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0.$$

7.
$$z = \frac{2y}{x^2 + y^2}$$
.

8.
$$z = 5x^2 + 6xy$$
,

$$A(2;1)$$
,

 $\overline{a}(1;2)$.

9.
$$z = 4x^2 + 5xy$$
,

$$A(1;3)$$
.

10.
$$x^3 + 2y^2 - z^4 = 9$$
, $P(1; -2; 2)$.

$$P(1;-2;2)$$
.

11.
$$z = (x^2 + y)\sqrt{e^y}$$
.

1.
$$z = \sqrt{1 - x^2} + \sqrt{1 - y^2}$$
.

2. a)
$$z = 2x^3 \sqrt{y}$$
; 6) $z = \text{tg}^3 \left(\frac{y}{x}\right)$;

$$6) z = tg^3 \left(\frac{y}{x}\right);$$

B)
$$z = \frac{y^2 - \sqrt{x}}{x^2 + \sqrt{y}}$$
.

3.
$$z = (\arcsin x)^{\cos^2 y}$$
.

4. a)
$$z = (\sqrt{x+y})^5$$
, $x = e^{\arccos 2t}$,

$$x = e^{\arccos 2t}$$

$$x = e^{\arcsin 4t}$$
;

$$(5) z = \frac{\sqrt{v}}{v^2}, \qquad u = \operatorname{ctg}(xy),$$

$$v = \cos \frac{x}{y}$$
.

5. a)
$$\frac{x}{z} = \ln \frac{x}{y}$$
;

$$6) x3^{2y} - x \ln y + 7 = 0.$$

6.
$$z = \operatorname{arctg} \frac{x}{v}$$
,

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = 2xy$$
.

8.
$$z = \operatorname{arctg}(xy^2)$$
,

$$A(2;3)$$
,

$$\overline{a}(4;-3)$$
.

9.
$$z = arctg(xy)$$
,

$$A(3;2)$$
.

10.
$$\frac{1}{2}x^4 + y^2 - xz = 0$$
, $P(3, -4, 5)$.

$$P(3;-4;5)$$

11.
$$z = (x-1)^2 + 2y^2$$
.

1.
$$z = \arcsin\left(\frac{x}{y}\right)$$
.

2. a)
$$z = 2^{y^3 - 2x^3}$$

B)
$$z = \frac{x^2 - y^2}{x^3 - y^3}$$
.

$$3. z = e^{\sin^{\frac{y}{x}}}.$$

4. a)
$$z = \cos(4x + 5yx)$$
, $x = 5^{1-2t}$

$$y = t^2 + 3$$
;

$$(5) z = \frac{v}{4u + v^2}, \qquad u = \sin\frac{y}{x},$$

$$u = \sin \frac{y}{x}$$
,

$$v = \cos \frac{x}{v}$$
.

5. a)
$$xe^{xy} - y \ln x - xyz = 0$$
;

5. a)
$$xe^{xy} - y \ln x - xyz = 0$$
; 6) $1 + xy - \ln(xy + xy^2) = 0$.

6.
$$z = \ln(x^2 + y^2 + 2x + 1)$$
, $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = x^2 - 3y$$
.

8.
$$z = \arcsin\left(\frac{x^2}{y}\right)$$
,

$$A(1;2)$$
,

$$\overline{a}(5;-12)$$
.

9.
$$z = \arcsin\left(\frac{x^2}{y}\right)$$
,

$$A(1;2)$$
.

10.
$$\frac{x^2}{24} + \frac{y^2}{12} + \frac{z^2}{3} = 1$$
, $P(3;-2;-1)$.

$$P(3;-2;-1)$$

11.
$$z = (x-1)^2 - 2y^2$$

1.
$$z = \sqrt{x^2 - 4} + \sqrt{4 - y^2}$$
.

2. a)
$$z = \ln^3 \left(\frac{y}{x}\right)$$
;

6)
$$z = \arccos(y\sqrt{x});$$
 B) $z = x - 8^{\frac{y}{4}}.$

B)
$$z = x - 8^{\frac{y}{4}}$$
.

3.
$$z = \operatorname{arctg} \sqrt{\frac{y}{x}}$$
.

4. a)
$$z = \cos\left(\frac{xy}{x+y}\right)$$
,

$$x = 9^{x^2 - 15}$$
;

$$6) \ z = \arccos(uv),$$

$$u = \frac{1}{xv + 15}, \qquad v = \frac{x^2}{v + x}.$$

$$v = \frac{x^2}{y+x}.$$

5. a)
$$x \cos y + y \cos z - 1 = 0$$
;

5. a)
$$x\cos y + y\cos z - 1 = 0$$
; 6) $1 + -\ln\sqrt{x^2 + y^2} = \ln\frac{y}{x}$.

6.
$$z = \ln(x + e^{-y})$$
,

$$\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2} = 0.$$

7.
$$z = v^2 + x^2$$
.

8.
$$z = \ln(3x^2 + 4y^2)$$
,

$$A(1;3)$$
,

$$\overline{a}(2;-1)$$
.

9.
$$z = \ln(4x^2 + 3y^2)$$
,

$$A(3;1)$$
.

10.
$$\frac{x^2}{8} + \frac{y^2}{4} - z^2 - 1 = 0$$
, $P(-3;2;1)$.

$$P(-3;2;1)$$

11.
$$z = x^2 + xy + y^2 - 2x - y$$
.

1.
$$z = \sqrt{y \sin x}$$
.

$$5) z = e^{3x^2} (1 - 3y) - x^3;$$

$$B) z = xy^{x}.$$

3.
$$z = \ln \sqrt{x^2 - y^2}$$
.

4. a)
$$z = x - 3y$$

4. a)
$$z = x - 3y$$
, $y = \frac{1}{x^2 - 4}$;

$$(5) z = \ln \frac{u}{v^2}, \qquad u = \frac{x}{\sqrt{v}},$$

$$u = \frac{x}{\sqrt{y}}$$

$$v = \frac{y}{x^2}$$
.

5. a)
$$x + y - z = \cos(x + y - z)$$
;

6)
$$1 - xy + \ln(x\sqrt{y} + xy) = 0$$
.

$$6. \ z = \frac{x}{v},$$

6.
$$z = \frac{x}{y}$$
, $x \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} = 0$.

7.
$$z = 3y^2 - 4x$$
.

8.
$$z = 3x^4 + 2x^2y^3$$
, $A(1;2)$,

9.
$$z = 3x^5 - 2x^2y$$
, $A(2;-1)$.

10.
$$\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{3} = -1$$
, $P(4; -3; 3)$.

11.
$$z = x^3y^2(6-x-y)$$
.

 $\overline{a}(4;-3)$.

1.
$$z = \ln(x^2 - y^2)$$
.

2. a)
$$z = \sin(5xy^4) + \frac{y}{\sqrt{x}}$$
; 6) $z = \frac{2y^2 - 3}{\sqrt[3]{x}}$; B) $z = \text{ctg}\left(3x^2 + \frac{2}{y}\right)$.

$$3. \ z = \sin\left(\frac{x+2}{\sqrt{y}}\right).$$

4. a)
$$z = \arccos \frac{x}{v}$$
, $y = 3^{\sqrt{x}}$;

6)
$$z = \frac{u^2}{v}$$
, $u = \operatorname{arcctg}(xy)$, $v = \arccos \frac{x}{y}$.

5. a)
$$4\sin(x+y+z) = x+y+z$$
; 6) $xe^{4y} - y\ln x = 16$.

6.
$$z = x^y$$
, $y \frac{\partial^2 z}{\partial x \partial y} - (1 + \ln x \cdot y) \frac{\partial z}{\partial x} = 0$.

7.
$$z = x^2 + v^2$$
.

8.
$$z = 3x^2y^2 + 5xy^2$$
, $A(1;1)$, $\overline{a}(2;1)$.

9.
$$z = 3x^2y^2 + 5xy^2$$
, $A(2;1)$.

10.
$$z^2 - xy = 0$$
, $P(1;1;-1)$.

11.
$$z = 1 - \sqrt[3]{(x^2 + y^2)^2}$$
.

1.
$$z = \frac{1}{\sqrt{4x^2 - y}}$$
.

3.
$$z = \frac{x}{\sqrt{x^2 + y^2}}$$
.

4. a)
$$z = (x^3 + y^4)^2$$
, $x = 2^{t^2 - 4t}$, $y = 3^{t^3 - 5t}$;

6)
$$z = \frac{u^3}{v - u}$$
,

$$u = \cos\frac{x}{v}$$
,

$$v = \sin \frac{x}{v}$$
.

5. a)
$$ye^{3x} - x \ln y - xyz = 0$$
; 6) $4 - \ln \frac{y}{x} = \sqrt{x^2 + y^2}$.

6)
$$4 - \ln \frac{y}{x} = \sqrt{x^2 + y^2}$$
.

$$6. \ z = xe^{y/x},$$

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial y^{2}} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = 0.$$

7.
$$z = x^2 - 9$$
.

8.
$$z = xy + y + 1$$
,

$$A(1;-3)$$
,

$$\overline{a}(4;3)$$
.

9.
$$z = x^2y - y$$
,

$$A(-3;1)$$
.

10.
$$\frac{x^2}{9} + \frac{y^2}{4} = 2z$$
,

$$P(3;-2;-1)$$
.

11.
$$z = (1 - x - y)xy$$
.

1.
$$z = \sqrt{\sin(x^2 + y^2)}$$

2. a)
$$z = \ln^2 \left(\frac{y^2}{x} \right)$$
;

$$\delta) \ z = \arccos(xy);$$

6)
$$z = \arccos(xy)$$
; B) $z = 14^{xy^2} - \sqrt{y}$.

3.
$$z = \arccos(\sqrt{xy})$$
.

4. a)
$$z = \frac{x}{\sqrt[3]{y} - 2}$$
,

$$x = (1 - 2^t)^2$$
,

$$y = 3^{2t}$$
;

$$6) \ z = \cos(uv),$$

$$u = \frac{1}{xy}$$
, $v = \frac{x}{y}$.

$$v = \frac{x}{v}$$

$$6) x^3y^2 + xy^5 + 15xy = -y$$

$$6. \ z = \sin(x + y),$$

$$\frac{\partial^2 z}{\partial y^2} - \frac{\partial^2 z}{\partial x^2} = 0.$$

7.
$$z = \ln(3x^2 + 4y^2)$$
.

8.
$$z = x^2 + 6xy + y^2$$
,

$$A(4;-12)$$
,

$$\overline{a}(3;-5)$$
.

9.
$$z = x^2 + xy + y^3$$
,

$$A(-5;3)$$
.

10.
$$\frac{x^2}{16} + \frac{y^2}{9} = 2z$$
,

$$P(4;0;-3)$$
.

11.
$$z = x^2 + xy + y^2 - x - y$$
.

1.
$$z = \frac{1}{x+3} + \frac{1}{y}$$
.

2. a)
$$z = x^3 - \sqrt{xy} + y^3$$

B)
$$z = \frac{x + y^2}{x - y^2}$$
.

3.
$$z = \frac{x}{\sqrt{x^3 + y^3}}$$
.

4. a)
$$z = \ln \frac{x}{\sqrt{y}}$$
,

$$y = \arccos \sqrt{x}$$
;

$$6) \ z = 5^{\sin(uv)},$$

$$u=\frac{x}{v}$$
,

$$v = \frac{1}{\sqrt{xy}}.$$

5. a)
$$(x-2)^2 + 2y^2 = z - 3$$
;

б)
$$y \arccos x + \arcsin y = 0$$
.

$$6. \ z = \cos y + (y - x)\sin y$$

6.
$$z = \cos y + (y - x)\sin y$$
, $(x - y)\frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial x} = 0$.

7.
$$z = 5x^2 + 6y^2$$
.

8.
$$z = x^3 + 3x^2 + 6xy + y^2$$
,

$$A(4;-12)$$
,

$$\overline{a}(3;-5)$$
.

9.
$$z = x^2 + 6xy + y$$
,

$$A(4;-11)$$
.

10.
$$3x^3y^2 - zy^2 = 0$$
,

$$P(1;-1;-1)$$
.

11.
$$z = x^3 + 3x + 4yx$$
.

1.
$$z = \ln(x^2 - 4y)$$
.

2. a)
$$z = \frac{x - \sqrt[3]{y}}{x + \sqrt[3]{v}}$$
;

6)
$$z = 2^{x^2 - xy}$$
;

$$B) z = \frac{x + \sqrt{y}}{x^2 - y^2}.$$

3.
$$z = \arccos \sqrt{xy}$$
.

4. a)
$$z = (\sqrt{x-y} - 1)^3$$
, $x = e^{\cos 2t}$,

$$x = e^{\cos 2t}$$

$$y = e^{\sin 2t}$$
;

6)
$$z = (u - \sqrt{v})^3$$
, $u = \frac{x^2}{v}$,

$$u = \frac{x^2}{y},$$

$$v = \frac{y^2}{\sqrt{x}}$$
.

5. a)
$$xyz^2 - e^{xy-z} = 2$$
; 6) $xe^{4y} - x \ln y = 16$.

6)
$$xe^{4y} - x \ln y = 16$$

6.
$$z = \operatorname{arctg} \frac{y}{x}$$
,

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = x^2 - y$$
.

8.
$$z = \operatorname{arctg} \frac{y}{x}$$
,

$$A(4;3)$$
,

$$\overline{a}(2;5)$$
.

9.
$$z = \operatorname{arctg} \frac{y}{x}$$
,

$$A(3;4)$$
.

10.
$$x^2 + y^2 - 2e^z = 0$$
, $P(1;-1;0)$.

$$P(1:-1:0)$$

11.
$$z = x^2 - xy + y^2 + 3x$$
.

1.
$$z = \frac{1}{x^2 - y^2} + \frac{1}{x}$$
.

2. a)
$$z = \text{ctg}^3 \frac{x}{\sqrt{y}}$$
;

6)
$$z = \operatorname{ctg}^3(xy^2)$$
; B) $z = \operatorname{arctg}\sqrt{xy}$.

$$B) \ z = \arctan\sqrt{xy} \ .$$

3.
$$z = \frac{1}{xy^2}$$
.

4. a)
$$z = \frac{x}{y^2 - 4}$$
,

$$x = \arctan \sqrt{x}$$
;

$$6) z = \operatorname{arctg} \frac{u}{v},$$

$$u=x-3y,$$

$$v = x^2 - \frac{1}{y}.$$

5. a)
$$3\sin(x-y-z^2) + y + z^2 - x = 0$$
;

6)
$$4 - \frac{y}{x} = \sqrt{x^2 + y^2}$$
.

6.
$$z = \ln(x^2 + y^2)$$
,

$$\frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = y - 3x^2$$
.

8.
$$z = xy^2$$
,

$$A(1:-2)$$
.

$$\overline{a}(3;-2)$$
.

9.
$$z = x^2 y^3$$
,

$$A(1;-2)$$
.

10.
$$\frac{x^2}{25} + \frac{y^2}{16} - \frac{z^2}{9} = 1$$
,

$$P(5;-4;3)$$
.

11.
$$z = 3x - x^2 - y^2$$
.

1.
$$z = \frac{1}{\sqrt{x} + \sqrt{y-1}}$$
.

2. a)
$$z = (x-3)^{y^2}$$
;

B)
$$z = \frac{x + y^2}{x - v^2}$$
.

$$3. \ z = \ln \frac{\sin x}{\cos y}.$$

4. a)
$$z = \arccos \frac{x}{v}$$
,

$$y = 3^{x^2 - 4x + 2}$$
;

$$\delta) z = \frac{u+v}{\sqrt{v}},$$

$$u = \sqrt{1 + \frac{x}{v}} ,$$

$$u = \sqrt{1 + \frac{x}{y}}$$
, $v = \frac{x}{\sqrt{x} + \sqrt{y}}$.

5. a)
$$x^4 - xyz^2 + \ln \frac{x}{z} - 1 = 0$$
; 6) $ye^{4x} + x \ln y = 5$.

$$6) ye^{4x} + x \ln y = 5$$

6.
$$z = e^{x/y}$$
,

$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + \frac{\partial^2 z}{\partial x \partial y} = 0.$$

7.
$$z = 5x^2 + 6y^2$$

8.
$$z = x^2 + xy + y^3$$
,

$$A(1;3), \overline{a}(-1;1).$$

9.
$$z = x^2 + xy^2 + x^3$$
,

$$A(1;3)$$
.

10.
$$3x^3y^2 - z^2y = 0$$
,

$$P(1;-1;1)$$
.

11.
$$z = (x-2)^2 - 2y^2$$
.

1.
$$z = \frac{1}{\sqrt{x^2 - 9}} + \frac{1}{y}$$
.

2. a)
$$z = (x^3 - \sqrt{xy} + y^3)^2$$

3.
$$z = (x^3 + y^2)^{\sin x}$$
.

4. a)
$$z = \frac{1}{\sqrt{x} - \sqrt{y}}$$
, $x = \ln \frac{1}{\sqrt{t}}$, $y = 2^{4-t}$;

$$\text{6) } z = \arcsin \sqrt{\frac{u}{v}} ,$$

$$u = x - 3y, \qquad \qquad v = x^2 - \frac{1}{y}.$$

5. a)
$$x \ln(y-z) - \frac{2x}{y} = 0$$
;

6)
$$\ln(e^{xy} + e^{-xy}) = 0$$
.

$$6. \ z = \frac{xy^2}{x - y},$$

$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \frac{2}{x - y}.$$

7.
$$z = x^2 - y$$
.

8.
$$z = x^2 y + y - 1$$
,

$$A(1;2), \overline{a}(3;4).$$

9.
$$z = y^2x + x - 1$$
,

$$A(1;3)$$
.

10.
$$x^2 + y^2 - 2e^z = 0$$
,

$$P(1;-1;0)$$
.

11.
$$z = x^4 + 4xy - 2y^2$$
.

1.
$$z = \ln(x^2 - 2y)$$
.

6)
$$z = 2^{x^2 - xy}$$
; B) $z = \text{ctg}^5 \frac{x}{\sqrt{y}}$.

$$3. \ z = (\sin x)^{\sqrt{y}}.$$

4. a)
$$z = \ln \frac{x}{v^2 - 1}$$
,

$$y = \cos^2(1 - 4x);$$

6)
$$z = tg(v - u^3)$$
, $u = \frac{y^2}{\sqrt{x}}$, $v = \frac{x}{v}$.

$$u = \frac{y^2}{\sqrt{x}}$$

$$v = \frac{x}{y}$$
.

5. a)
$$x^2y^2 - xy^3 + xz - yz = 0$$
;

$$6) x^3y - 2y^2 - 3xy = 0.$$

$$6. \ z = e^{x/y},$$

$$y\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y} - \frac{\partial z}{\partial x}.$$

7.
$$z = y - 3x^2$$
.

8.
$$z = \ln(5x^2 + 4y^2)$$
,

$$A(1;1)$$
,

$$\overline{a}(2;-1)$$
.

9.
$$z = 5x^2 + 4y^3$$
,

$$A(1;1)$$
.

10.
$$\frac{x^2}{25} + \frac{y^2}{16} - \frac{z^2}{9} = 1$$
,

$$P(5;-4;3)$$
.

11.
$$z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$
.

$$1. \ z = \sqrt{3x} - \frac{5}{\sqrt{y}}.$$

2. a)
$$z = x^5 + \sqrt{xy} + y^2$$
;

6)
$$z = \frac{1}{\sin(x^3 y)}$$
; B) $z = \frac{y^2 - x}{x^2 - y}$.

B)
$$z = \frac{y^2 - x}{x^2 - y}$$
.

3.
$$z = \frac{y}{x^3 + y^3}$$
.

4. a)
$$z = \frac{x}{x^2 + y^2}$$
,

$$y = \sin \sqrt[3]{x} \; ;$$

$$6) z = (v + \sqrt{uv})^2,$$

$$u = \frac{x}{x^2 + y^2},$$

$$u = \frac{x}{x^2 + y^2}, \qquad v = \frac{\sqrt{x} + \sqrt{y}}{x + y}.$$

5. a)
$$x^2 + y^2 + z^2 = e^{-(x^2 + z^2)}$$
;

6)
$$x^2y - xy^5 + 4x + y = 0$$
.

6.
$$z = x^2y - xy^3 + 2x$$
,

$$-3x\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = \frac{2y}{x+2}$$
.

8.
$$z = x^2 - v^2 + xv$$
.

$$A(2;2)$$
,

$$\overline{a}(-2;1)$$
.

9.
$$z = x^3 - y + yx^2$$
,

$$A(2;2)$$
.

$$10. \ z = \sin x \cdot \cos y \,,$$

$$P\left(\frac{\pi}{4};\frac{\pi}{4};\frac{1}{2}\right).$$

11.
$$z = x^2 - 4x - 2y^2 + 4$$
.

1.
$$z = \sqrt{5 - x^2 + y^2}$$
.

2. a)
$$z = \frac{y - \sqrt[3]{x}}{y + \sqrt[3]{x}}$$
;

3.
$$z = \arcsin(xy^3)$$
.

4. a)
$$z = \sin \frac{xy}{x+y}$$
,

$$\delta) \ z = \arcsin(uv),$$

5. a)
$$\frac{z}{y} = \ln \frac{z}{x}$$
;

6.
$$z = e^{xy}$$
,

7.
$$z = \frac{2y}{x^2 - 1}$$
.

8.
$$z = 2xy + 3y - 7$$
,

9.
$$z = xy^3 + 3xy + 2$$
,

$$10. \ z = e^{x \cos y},$$

11.
$$z = 3x + 6y - x^2 - xy - y^2$$
.

1.
$$z = \sqrt{4 - x^2 + y^2}$$

2. a) $z = \text{ctg}^2 \frac{x}{y}$;

3.
$$z = \frac{1}{v_0 \sqrt{r}}$$
.

4. a)
$$z = \frac{x+3}{x^2+2y}$$
,

6)
$$z = \frac{v}{u^2 + 5v}$$
,

5. a)
$$x^2y^2 - 5xyz + 4x^3y = 0$$
; 6) $ye^{2x} - x \ln y + 7 = 0$.

$$6. \ z = \sin(x + 4y),$$

7.
$$z = \frac{3y^2 - 1}{x^2}$$
.

6)
$$z = 2^{x^2 - 2xy}$$
; B) $z = \frac{y + \sqrt{x}}{v^2 - x^2}$.

$$y = 8^{x^3 - 5}$$
;

$$u = \frac{1}{xv + 3}, \qquad v = \frac{y}{v + x}.$$

$$5) x^5 v^2 + xv^2 - 5x = 0.$$

$$x^2 \frac{\partial^2 z}{\partial y^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0.$$

$$A(1;1)$$
,

$$P\left(1;\pi;\frac{1}{e}\right).$$

Варіант 21

$$\delta) z = \ln \frac{y}{x^2};$$

$$\delta) \ z = \ln \frac{y}{x^2};$$

$$x = \arccos(1+t),$$
 $y = \arcsin(t^2);$

 $\overline{a}(2:-1)$.

B) $z = \operatorname{arcctg} \sqrt{xy}$.

$$u = \frac{y^2}{}$$
,

$$u = \frac{y^2}{x}$$
, $v = \operatorname{tg} \frac{x}{v}$.

6)
$$ye^{2x} - x \ln y + 7 = 0$$
.

$$\frac{\partial^2 z}{\partial v^2} - 16 \frac{\partial^2 z}{\partial x^2} = 0.$$

8.
$$z = x^2 + 2y - xy + 1$$
,

$$A(-2;2)$$
,

 $\overline{a}(3;1)$.

9.
$$z = 2x + y^2 - xy + 2$$
, $A(2;-2)$.

$$A(2;-2)$$
.

10.
$$x(y+z)(xy-z)+8=0$$
, $P(2;1;3)$.

$$P(2;1;3)$$
.

11.
$$z = x^3 + xy^2 + 6xy$$
.

Варіант 22

$$1. \ z = \frac{1}{\sqrt{xy}}.$$

$$6) z = tg \frac{x^2}{y}$$

6)
$$z = \lg \frac{x^2}{y}$$
; B) $z = \ln \frac{y}{x^2 - 1}$.

3.
$$z = (\sin x)^{\cos 2y}$$
.

2. a) $z = (\sin x)^{y^2 - 1}$;

4. a)
$$z = \arccos \frac{y}{x}$$
,

$$x = 5^{\sqrt{x}};$$

$$\mathsf{G}) \ z = \frac{v^4}{u^2},$$

$$u = \operatorname{arctg}(xy), \quad v = \operatorname{arccos} \frac{y}{x}.$$

5. a)
$$x^2y^2 - 5xyz + 4xy^3 = 1$$
; 6) $x3^{2y} - x \ln y = 7$.

6)
$$x3^{2y} - x \ln y = 7$$

6.
$$z = \cos 3x - \cos 3y + 2$$
,

6.
$$z = \cos 3x - \cos 3y + 2$$
, $\cos 3y \frac{\partial^2 z}{\partial x^2} + \cos 3y \frac{\partial^2 z}{\partial y^2} = 0$.

7.
$$z = x^2 + 5y$$
.

8.
$$z = 1 - xy - x + y^2$$

$$A(2;2), \ \overline{a}(0;-4).$$

9.
$$z = 4xy^2 + 5xy^2$$
,

$$A(1;1)$$
.

$$10. \ 4x^2 + 9y^2 + 6z^2 = 36,$$

$$P\left(2;1;\frac{\sqrt{11}}{6}\right).$$

11.
$$z = x^3y^2(6-x-y)$$
.

$$1. \ z = \frac{x^2 y}{2x + \sqrt{y}}.$$

2. a)
$$z = (\cos y)^{2x+4}$$
;

6)
$$z = \cos \frac{x}{v}$$
; B) $z = \ln(x + \sqrt{x^2 + y^2})$.

3.
$$z = 5^{\arctan \sqrt{xy}}$$
.

4. a)
$$z = (x^2 + y^3)^2$$
,

$$x = 3^{t^3 - 3t}$$
, $y = 4^{t^2 - 5t}$;

$$v = 4^{t^2 - 5t}$$
:

$$6) z = \frac{v^3}{v - u},$$

$$u = \sin \frac{y}{x}$$
, $v = \cos \frac{x}{y}$.

$$v = \cos \frac{x}{v}$$

5. a)
$$\ln \frac{x}{y} - 2\ln(x-z) + xyz - 1 = 0$$
;

6)
$$5 + \ln \frac{y}{x} = \sqrt{x^2 + y^2}$$
.

$$6. \ z = \cos(y - 3x),$$

$$\frac{\partial^2 z}{\partial x^2} + 9 \frac{\partial^2 z}{\partial y^2} = 0.$$

7.
$$z = -x^2 + 5y$$
.

8.
$$z = x^2y - 2 + x^2 + y$$
,

$$A(1;0)$$
,

$$\overline{a}(2;-1)$$
.

9.
$$z = x^3 + 2x^2 + 5xy + y^2$$
,

$$A(4;-12)$$
.

10.
$$z = 2x^2 + 4y^2$$
,

$$P(2;1;12)$$
.

11.
$$z = xy(1-x-y)$$
.

1.
$$z = \frac{1}{\sqrt{x-3}} + \frac{1}{\sqrt{y+4}}$$
.

2. a)
$$z = \frac{x^3 - y^2}{x^3 + y^2}$$
;

6)
$$z = 3^{2x - \sqrt{y}}$$
; B) $z = \sin \frac{x^3}{\sqrt{y}}$.

$$B) z = \sin \frac{x^3}{\sqrt{y}}$$

3.
$$z = e^{\operatorname{ctg}^{(x/y)}}$$

4. a)
$$z = \frac{y}{\sqrt{x} - 3}$$
,

$$x = (1 - 2t)^2,$$

$$y = 4^{5t}$$
;

$$6) z = \sin(uv),$$

$$u = \frac{1}{xy}$$
,

$$v = \frac{x}{y}$$
.

5. a)
$$y\cos x + x\sin y + z\cos x - 1 = 0$$
;

$$6) x^2 y^5 + xy^3 + 4xy = 2.$$

$$6. \ z = xy + y^2 - x,$$

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 2.$$

7.
$$z = 4y^2 - x$$
.

8.
$$z = \ln(3x^2 + y^2)$$
,

$$A(1:1)$$
.

$$\overline{a}(2;-1)$$
.

9.
$$z = x^2 + 2xy + y^2$$
,

$$A(1;1)$$
.

10.
$$x^3 - 4y^3 + 2z^3 = 6$$
, $P(2;2;3)$.

11.
$$z = x^3 + y^3 - 9xy + 27$$
.

1.
$$z = \sqrt{1 - x^2 - 4y^2}$$

2. a)
$$z = \sin(5xy^2) + \frac{x}{\sqrt{y}}$$
; 6) $z = \frac{2x^2 - 3}{\sqrt[3]{y}}$; b) $z = \text{ctg}\left(3y^2 + \frac{2}{x}\right)$.

6)
$$z = \frac{2x^2 - 3}{\sqrt[3]{y}}$$
;

$$B) z = \operatorname{ctg}\left(3y^2 + \frac{2}{x}\right).$$

$$3. \ z = e^{x^2 + \sqrt{y}x}$$

4. a)
$$z = x^2 y - xy - \frac{x}{y}$$
, $x = \sin(1 - 3t)$, $y = 3t$;

6)
$$z = \sqrt{\frac{x}{v^2 - 1}}$$
, $x = \sin(uv)$, $y = \cos(u - v)$.

6.
$$z = x^y$$
, $y \frac{\partial^2 z}{\partial x \partial y} - (1 + \ln xy) \frac{\partial z}{\partial x} = 0$.

7.
$$z = \frac{x^2 - 1}{2x^2 + y^2}$$
.

8.
$$z = x - x^2 y + xy$$
, $A(1;-2)$, $\overline{a}(2;4)$.

9.
$$z = x + x^2y - xy$$
, $A(2;-1)$.

10.
$$x^2 + y^2 - 17z^2 = 0$$
, $P(1;2;-1)$.

11.
$$z = x^4 + y^4 + 2x^2 + y^2 - 8x - 8y$$
.

1.
$$z = \sqrt{1 - \frac{x^2}{9} + \frac{y^2}{4}}$$
.

3.
$$z = e^{\sin(\sqrt{x} + y^2)}$$

4. a)
$$z = x - \sqrt{y} + \cos(xy)$$
, $x = e^{1-t}$, $y = 2t$;

6)
$$z = 7^{x^2 - \sqrt{y}}, y = \sin(uv), x = \cos(uv).$$

5. a)
$$x^2y^2 - xy^3 + xz - yz = 2$$
; 6) $3 + xy + \ln(xy + x^2y) = 0$.

6.
$$z = \sin^2 2(x - y)$$
, $\frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial y^2}$.

7.
$$z = -4xy$$
.

8.
$$z = x^3 + xy^2 + y^2$$
, $A(2;1)$, $\overline{a}(2;2)$.

9.
$$z = x^2 + xy^2 + y^3$$
, $A(1;1)$.

10.
$$(x-5)^2 + 2y^2 - z^4 = 11$$
, $P(3;1;1)$.

11.
$$z = 2x^2 + 6xy + 5y^2 - x + 4y - 8$$
.

$$1..z = \frac{1}{\ln(x+y)}$$

6)
$$z = \ln \frac{y^2 - x}{y^2 + x}$$

B)
$$z = \operatorname{arctg} \frac{x}{\sqrt{y}}$$
.

3.
$$z = \operatorname{ctg}^5\left(\frac{1}{xy}\right)$$
.

4. a)
$$z = \sin(1 - xy)$$
,

$$y = 4^{x^2 - x};$$

$$6) z = u^3 - \cos^2 v,$$

$$u = \frac{x}{\sqrt{y}}$$

$$v = \ln(xy).$$

5. a)
$$xyz + \sqrt{xy} - e^{xyz} + 3 = 0$$
; 6) $1 + \ln \sqrt{x^2 + y^2} = \ln \frac{x}{y}$.

6)
$$1 + \ln \sqrt{x^2 + y^2} = \ln \frac{x}{y}$$

$$6. \ z = e^{x/y},$$

$$\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} + y \frac{\partial^2 z}{\partial x \partial y} = 0.$$

7.
$$z = x^2 - 2x + y^2$$
.

8.
$$z = 2x^2y - xy + 3y$$
,

$$A(1;2)$$
,

$$\overline{a}(1;0)$$
.

9.
$$z = xy^2 - xy + 3x$$
,

$$A(2;1)$$
.

10.
$$3x^2 - 2y^2z^4 + 2z$$
,

$$P(1;1;2)$$
.

11.
$$z = x^3 + y^2 - 3xy$$
.

1.
$$z = \ln(x^2 + 3y)$$
.

2. a)
$$z = (\cos y)^{3x}$$

B)
$$z = e^{\sin(x^2 + y^2)}$$
.

$$3. \ z = \cos\left(\frac{2-x}{\sqrt{y}}\right).$$

4. a)
$$z = \frac{x^2 + 1}{y^2 - 2}$$
, $x = \arcsin t^2$,

$$x = \arcsin t^2$$

$$y = \arccos t^2$$
;

6)
$$z = \sqrt{\sin(uv)}$$
, $u = e^{x - \sqrt{y}}$,

$$u = e^{x - \sqrt{y}},$$

$$v=2^{x/y}$$
.

5. a)
$$3\sin(x+y+z) = x+y+z$$
;

6)
$$5 + \ln \frac{x}{y} = \sqrt{x^2 + y^2}$$
.

6.
$$z = yx + x^2 - y$$
, $\frac{\partial^2 z}{\partial y^2} = 2 - \frac{\partial^2 z}{\partial r^2}$.

$$\frac{\partial^2 z}{\partial y^2} = 2 - \frac{\partial^2 z}{\partial x^2}.$$

7.
$$z = 3x^2 - y$$
.

8.
$$z = x + 2xy + y$$
,

$$A(1;1)$$
,

$$\overline{a}(1;2)$$
.

9.
$$z = x^2 + 2y$$
,

$$A(3;1)$$
.

10.
$$x^2y^2 + 2x + z^2 = 41$$
, $P(2;3;1)$.

11.
$$z = (x-1)^2 + 4y^2$$
.

1.
$$z = \sqrt{x + y} + \frac{1}{\sqrt{x}}$$
.

$$6) z = \frac{2x^2 - 4y}{x^2 + 4y};$$

B)
$$z = 5^{xy-y^2}$$
.

3.
$$z = \frac{y}{\sqrt{x^2 + y^2}}$$
.

4. a)
$$z = (1 - xy)^2$$
,

6) $z = u^2 - \frac{1}{x}$,

$$y = \frac{1}{x+2};$$

$$u = \frac{x^2}{v^3},$$

$$v = \ln \frac{1}{xy}.$$

5. a)
$$xe^{3y} - y \ln x + xyz = 0$$
; 6) $xy^2 - x^5y + x + 4y = 0$.

$$6) xy^2 - x^5y + x + 4y = 0$$

6.
$$z = \ln(x^2 + y^2)$$
,

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

$$7. \ z = \frac{x}{y+1}.$$

8.
$$z = x^3 - xy - y^3$$
,

$$A(2;1)$$
,

$$\overline{a}(1;-3)$$
.

9.
$$z = x^3 - xv^2 - v^3$$
,

$$A(1;2)$$
.

10.
$$xy = z^2$$
,

$$P(-2;1;4)$$
.

11.
$$z = x^2 + 2y^2 - 4x + 12y$$
.

1.
$$z = \frac{1}{\sqrt{x^2 - 4y}} + \frac{1}{\sqrt{x - 4}}$$
.

2. a)
$$z = e^{\frac{x}{y} - 3xy}$$
;

6)
$$z = \arcsin \frac{1}{xy}$$
; B) $z = \operatorname{tg}^3 \frac{x}{v^3}$.

$$B) z = tg^3 \frac{x}{v^3}.$$

3.
$$z = \arctan \sqrt{xy}$$
.

4. a)
$$z = 6^{\sqrt{y} - x^3}$$
,

$$y = x^3 + 5x - 1;$$

6)
$$z = \sqrt{u^2 - 1} + \cos \frac{u}{v}$$
, $u = \frac{y}{\sqrt{x}}$,

$$u = \frac{y}{\sqrt{x}}$$

$$v = \ln(xy)$$
.

5. a)
$$\frac{y}{z} = \ln \frac{x}{z}$$
;

$$6) xy + 5xyz + 4xy^3 = 0.$$

6.
$$z = \ln(x^2 + y^2 + 2x + 1)$$
, $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
7. $z = x^2 + y^2 - 2y$.

8.
$$z = \ln(x^2 + 2y^2)$$
, $A(2;2)$, $\overline{a}(3;2)$.

9.
$$z = 4x^2 + 5xy$$
, $A(2;2)$.

10.
$$xyz = 2^3$$
, $P(3;1;4)$.

11.
$$z = x^2 + (y^2 - 1)$$
.

ТЕОРЕТИЧНІ ЗАПИТАННЯ ДО ТЕМИ «ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ»

- 1. Що таке функція двох змінних? Що таке функція багатьох змінних?
- 2. Що таке область визначення функції двох змінних?
- 3. Що таке лінії рівня? (поверхні рівня?)
- 4. Що таке границя функції двох змінних?
- 5. Яка функція двох змінних називається неперервною в точці M_0 ?
- 6. Чому дорівнює частинний приріст функції z=f(x,y) за змінною x? Чому дорівнює частинний приріст функції z=f(x,y) за змінною y?
- 7. Що таке частинна похідна першого порядку функції двох змінних z=f(x,y) по змінною x? Що таке частинна похідна першого порядку функції двох змінних z=f(x,y) по змінною y?
- 8. За якою формулою обчислюється повний диференціал функції двох змінних?
- 9. За якою формулою можна знайти похідну функції однієї змінної, заданої в неявному виді (тобто в виді F(x,y)=0)?
- 10. Якщо функція двох змінних задана в неявному виді, тобто F(x,y,z)=0, то за якою формулою знаходять частинні похідні $\frac{dz}{dx}$ і $\frac{dz}{dv}$?
- 11. Як знаходити частинні похідні вищих порядків? (Які похідні другого порядку рівні між собою?)
- 12. Які точки називають критичними (стаціонарними) точками функції z = f(x, y)?
- 13. Сформулюйте теорему (необхідні умови існування екстремуму функції z = f(x, y).
- 14. Сформулюйте теорему (достатні умови існування екстремуму функції z = f(x, y).
- 15. Якщо поверхня задана рівнянням F(x,y,z)=0, то який вид мають рівняння дотичної площини і нормалі до поверхні в точці M_0 ?
- 16. За якою формулою знаходять похідну функції u = f(x, y, z) за напрямом вектора \overline{l} ?

- 17. За якою формулою знаходять градієнт функції u = f(x, y, z)?
- 18. Якою формулою зв'язані похідна за напрямом і градієнт?
- 19. За яким напрямом похідна функції дорівнює нулю? За яким напрямом функції має максимальне значення?
- 20. Як знаходять найбільше і найменше значення функції двох змінних z = f(x, y) в області D?

БІБЛІОГРАФІЧНИЙ СПИСОК

- 1. Герасимчук, В. С. Вища математика [Текст]: повний курс у прикладах і задачах / В. С. Герасимчук, Г. С. Васильченко, В. І. Кравцов. К.: Книги України ЛТД, 2009.-578 с.
- 2. Запорожец, Г. И. Руководство к решению задач по математическому аналізу [Текст] / Г. И. Запорожец. М.: Высш. шк., 1966. 440 с.
- 3. Овчинников, П. П. Вища математика. Ч. 1 [Текст]: підручник / П. П. Овчинников, Ф. П. Яремчук, В. М. Михайленко. К.: Техніка, 2000. 500 с.
- 4. Пискунов, Н. С. Дифференциальное и интегральное исчисления т. 1 [Текст]: учеб. пособие для втузов / Н. С. Пискунов. М.: Наука. 1980. 560 с.
- 5. Смирнов, В. М. Курс высшей математики. Т. 1 [Текст] / В. М. Смирнов. М.: Просвещение, 1974.
- 6. Данко, П. Е. Высшая математика в упражнениях и задачах. Ч. 1 [Текст] / П. Е. Данко, А. Г Попов, Т. Я. Кожевникова. М.: Высш. шк., 1980.

3MICT

ВСТУП	3
І. ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ. ОЗНАЧЕННЯ	
II. ОБЛАСТЬ ВИЗНАЧЕННЯ	3
ІІІ. ГРАНИЦЯ. НЕПЕРЕВНІСТЬ ФУНКЦІЇ	5
IV. ЧАСТИННІ ПОХІДНІ	5
V. ПОВНИЙ ДИФЕРЕНЦІАЛ ФУНКЦІЇ	8
VI. ДИФЕРЕНЦІЮВАННЯ СКЛАДЕНИХ ФУНКЦІЙ	9
VII. ДИФЕРЕНЦІЮВАННЯ НЕЯВНО ЗАДАНИХ ФУНКЦІЙ	10
VIII. ЧАСТИННІ ПОХІДНІ ВИЩИХ ПОРЯДКІВ	11
ІХ. ЕЛЕМЕНТИ ТЕОРІЇ ПОЛЯ ПОХІДНА ЗА НАПРЯМОМ. ГРАДІЄНТ	13
Х. РІВНЯННЯ ДОТИЧНОЇ ПЛОЩИНИ ДО ПОВЕРХНІ. РІВНЯННЯ НОРМАЛІ	15
ХІ. ЕКСТРЕМУМ ФУНКЦІЇ ДВОХ ЗМІННИХ	17
ХІІ. НАЙБІЛЬШЕ ТА НАЙМЕНШЕ ЗНАЧЕННЯ ФУНКЦІЇ ДВОХ ЗМІННИХ	18
ХІІІ. ІНДИВІДУАЛЬНІ ДОМАШНІ ЗАВДАННЯ	20
ТЕОРЕТИЧНІ ЗАПИТАННЯ ДО ТЕМИ «ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ»	38
БІБЛІОГРАФІЧНИЙ СПИСОК	39

Навчальне видання

С. П. Кришко, С. А. Макаренков, Н. Г. Наріус, Г. А. Папанов, В. І. Самарський

ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ

Методичні вказівки і варіанти до виконання модульної роботи

Редактор Т. В. Мацкевич

Комп'ютерна верстка Т. В. Шевченко

Формат 60х84 1/16. Ум. друк. арк. 2,31. Обл.-вид. арк. 2,5. Тираж 100 пр. Зам. № 1935.

Видавництво Дніпропетровського національного університету залізничного транспорту імені академіка В. Лазаряна

Свідоцтво суб'єкта видавничої діяльності ДК № 1315 від 31.03.2003

Адреса видавництва та дільниці оперативної поліграфії: 49010, Дніпропетровськ, вул. Лазаряна, 2; www.diitrvv.dp.ua