Exercises 3

1

- 1. Let R be a ring and for any ideal J, we denote V(J) for the set of prime ideals containing J. Now for any subset S of Spec R, we define $I(S) = \bigcap_{\mathfrak{p} \in S} \mathfrak{p}$. Let A (resp. B) be the category of ideals of R (resp. subsets of Spec R), whose morphisms are given by inclusion(i.e. $\operatorname{Hom}(X,Y) = \{*\}$ if $X \subset Y$, and be \emptyset otherwise).
 - (a) Show that $V: A^{op} \to B$ and $I: B^{op} \to A$ are well-defined functors. And furthermore, Show that $\operatorname{Hom}_A(J, I(S)) \cong \operatorname{Hom}_B(S, V(J))$
 - (b) Let \mathfrak{n} be the ideal of nilpotent elements, show that for any prime ideal \mathfrak{p} , $\mathfrak{n} \subset \mathfrak{p}$ and $\mathfrak{n} \subset I(\operatorname{Spec} R)$.
 - (c) For any non-nilpotent elements $f \in R$, let R_f be the localization of R with $\{f^i\}$. Show that

$$\operatorname{Spec} R_f \cong \{\mathfrak{p} \ prime | f \notin \mathfrak{p} \}$$

is nonempty. Then conclude that $\mathfrak{n} = I(\operatorname{Spec} R)$

- (d) Define the radical of an ideal J to be $\sqrt{J} := \{x \in R | \exists n \in \mathbb{N}, x^n \in J\}$. Show that $V(I(S)) = \bar{S}$, the closure in Spec R, and $I(V(J)) = \sqrt{J}$.
- (e) An ideal J is a radical ideal if $J = \sqrt{J}$. Show that there is a bijection between the closed subsets of Spec R and the radical ideals of R.
- (f) * Show that S is closed irreducible, iff $S = V(\mathfrak{p})$ for \mathfrak{p} prime, thus there is a bijection between the irreducible closed subsets of Spec R and the points of Spec R.
- (g) Show that there is a bijection between the irreducible components of $\operatorname{Spec} R$ and the minimal(with respect to inclusion) prime ideals R.
- 2. (a) Show that for Noetherian space X, any open subset is quasi-compact.
 - (b) * Show that for Noetherian ring R, there are only finitely many minimal prime ideals. Then show that the elements of minimal prime ideals are zero divisors.

¹find also these exercises on https://github.com/iamcxds/AG-exercise, you can skip the question with * if it is difficult.

- 3. We will show that every sheaf is actually a sheaf of "functions". Let X be a topological space, an etale space (E,p) over X is a topological space E with a local homeomorphism $p:E\to X$ (i.e. $\forall x\in E,\exists$ neighborhood $U\ni x$, such that $p|_U$ is a homeomorphism).
 - (a) For any open subset $U \subset X$, we define the sections:

$$\Gamma_E(U) = \{ f : U \to p^{-1}(U) \subset E | p \circ f = \mathrm{id}_U \}$$

Check that Γ_E is a well-defined sheaf on X

(b) Let \mathcal{P} be a presheaf on X, we define an etale space $(Et(\mathcal{P}), p)$ as follow:

$$Et(\mathcal{P}) = \coprod_{x \in X} \mathcal{P}_x, p : (x, f \in \mathcal{P}_x) \mapsto x \in X$$

where \mathcal{P}_x is the stalk. And the topology of $Et(\mathcal{P})$ is given by the basis $\{V_f\}_{f\in\mathcal{P}(U)}$, where

$$V_f = \{ (x \in U, f_x \in \mathcal{P}_x) \in Et(\mathcal{P}) \}$$

Check that $Et(\mathcal{P})$ is a well-defined etale space.

(c) * Show that there is a canonical morphism $i: \mathcal{P} \to \Gamma_{Et(\mathcal{P})}$ and it is an isomorphism if \mathcal{P} is a sheaf. Furthermore, $\Gamma_{Et(\mathcal{P})}$ is the sheafication of \mathcal{P} , i.e. for any sheaf \mathcal{F} , we have $\operatorname{Hom}_{PSh}(\mathcal{P}, \mathcal{F}) \cong \operatorname{Hom}_{Sh}(\Gamma_{Et(\mathcal{P})}, \mathcal{F})$.