Γ лава 1.

Следовательно, формула \mathcal{F}_g , которая реализует Φ АЛ $g, g(0, \dots, 0) = \sigma$, с глубиной, удовлетворяющей (7.6), получается в результате подстановки t удовлетворяющих (7.9) формул для $\overline{\sigma}$ -степеней характеристических Φ АЛ отрезков I_1, \dots, I_{2t-1} вместо t БП бесповторной формулы, дерево которой представляет собой квазиполное двоичное дерево глубины $\lceil \log t \rceil$ из Φ Э &, если $\sigma = 1$, и Φ Э \vee , если $\sigma = 0$. Действительно,

$$D(\mathcal{F}_g) \leqslant 2 \lceil \log n \rceil + 1 + \lceil \log t \rceil =$$

$$= 2 \lceil \log n \rceil + \lceil \log(2 | (q+1)/2 |) \rceil \leqslant 2 \lceil \log n \rceil + \lceil \log(q+1) \rceil.$$

Лемма доказана.

§8 Задача синтеза схем для функций из специальных классов, примеры её решения и мощностные нижние оценки. Инвариантные классы С. В. Яблонского, теорема о числе инвариантных классов

Для множества ФАЛ $Q, Q \subseteq P_2$, и натуральногого n через Q(n) будем обозначать множество $Q \cap P_2(n)$. При этом, как само множество Q, так и связанную с ним последовательность $Q(1), Q(2), \ldots$ будем называть *классом* ФАЛ. Аналогичным образом последовательность $Q(1), \ldots, Q(n), \ldots$, где $Q(n) \subseteq P_2^m(n)$ и $m = m_Q(n)$, а также их объединение называется *классом операторов*. Будем предполагать, что ни одно из множеств $Q(n), n = 1, 2, \ldots$, рассматриваемого класса ФАЛ или операторов Q не является пустым и, как правило, $|Q(n)| \geqslant 3$.

Пусть заданы класс $\Phi A \Pi$ или операторов Q, класс схем $\mathcal U$ и функционал сложности $\mathcal L$. Тогда функцией Шеннона для класса $\Phi A \Pi$ или операторов Q при их реализации в классе схем $\mathcal U$ относительно функционала сложности $\mathcal L$ называется функция натурального аргумента

$$\mathcal{L}(Q(n)) = \max_{f \in Q(n)} \mathcal{L}(f),$$

где $\mathcal{L}(f)$ — минимальная \mathcal{L} —сложность схем из \mathcal{U} , реализующих (систему) ФАЛ f. Для класса ФАЛ или операторов Q' и класса ФАЛ Q'' введём такие функции

$$\mathcal{J}\big(Q'(n)\big) = \frac{\log |Q'(n)|}{\log \log |Q'(n)|} \quad \text{if} \quad \sigma_Q(n) = \frac{\log |Q''(n)|}{2^n},$$

где $n=1,2,\ldots$ При этом из определения следует, что $0\leqslant\sigma_Q(n)\leqslant 1$ для всех n, $n=1,2,\ldots$

Класс Φ АЛ (операторов) Q называется:

1) невырожденным, если $n + m_Q(n) = o(\mathcal{J}(Q(n)));$

- 2) строго невырожденным классом ФАЛ, если $\log n = o(\log |Q(n)|)$;
- 3) ненулевым классом $\Phi A \mathcal{I}$, если $\underline{\lim}_{n \to \infty} \sigma_Q(n) > 0$.

На основе стандартного мощностного метода получения нижних оценок можно установить справедливость следующего утверждения.

Лемма 8.1. Если Q — невырожденный класс $\Phi A \mathcal{I}$ (операторов), то

$$\mathcal{L}_{\mathrm{B}}^{\mathrm{C}}(Q(n)) \gtrsim \rho_{\mathrm{B}} \cdot \mathcal{J}(Q(n)), \qquad L^{\mathrm{MKC}}(Q(n)) \gtrsim \frac{1}{2} \cdot \mathcal{J}(Q(n)),$$

а если Q — строго невырожденный класс $\Phi A \Pi$, то

$$L^{K}(Q(n)) \gtrsim \mathcal{J}(Q(n)).$$

Следствие. Для всякого ненулевого класса $\Phi A \Pi Q$ выполнены асимптотические неравенства

$$\begin{split} \mathcal{L}_{\mathrm{B}}^{\mathrm{C}}\big(Q(n)\big) &\gtrsim \rho_{\mathrm{B}} \cdot \sigma_{Q}(n) \frac{2^{n}}{n}, \\ L^{\mathrm{MKC}}\big(Q(n)\big) &\gtrsim \frac{1}{2} \cdot \sigma_{Q}(n) \frac{\log |Q(n)|}{n}, \\ L^{\mathrm{K}}\big(Q(n)\big) &\gtrsim \sigma_{Q}(n) \frac{2^{n}}{n}. \end{split}$$

Класс ФАЛ (операторов) Q называется cmandapmным omnocumeльно функционала $cложности \mathcal{L}$ класса $cxem \mathcal{U}_{\mathsf{B}}^{\mathsf{C}}$, если выполнено асимптотическое неравенство

$$\mathcal{L}_{\mathrm{B}}^{\mathrm{C}}(Q(n)) \lesssim \rho_{\mathrm{B}} \cdot \mathcal{J}(Q(n)) + O(n + m(n)).$$

Аналогично вводится определения стандартного класса операторов относительно других классов схем и функционалов их сложности, если соответствующая функция Шеннона имеет порядок роста $2^n/n$. Отметим, что при этом для невырожденного стандартного класса Φ АЛ Q имеет место асимптотическое равенство

$$\mathcal{L}_{\mathrm{B}}^{\mathrm{C}}(Q(n)) \sim \rho_{\mathrm{B}} \cdot \mathcal{J}(Q(n)).$$

Для $n=1,2,\ldots$ и $r=r(n)\geqslant 1$ рассмотрим множество ФАЛ $P_2(n,t)$, которое включает в себя все ФАЛ из $P_2(n)$, обращающиеся в 0 на наборах с номерами $t,t+1,\ldots,2^n-1$, и мощность которого равна, очевидно, 2^t . Для любой функции $r=r(n)\geqslant 1$ рассмотрим класс ФАЛ Q, определённый равенствами $Q(n)=P_2(n,r(n)),$ $n=1,2,\ldots$

Лемма 8.2. Для любой функции $r = r(n) \geqslant 1$ соответствующий класс $Q(n) = P_2(n,r(n))$ является стандартным относительно функционала сложности \mathcal{L} схем класса $\mathcal{U}_{\mathsf{B}}^{\mathsf{C}}$, то есть

$$\mathcal{L}_{\mathrm{B}}^{\mathrm{C}}(Q(n)) \lesssim \rho_{\mathrm{B}} \frac{r}{\log r} + O(n).$$

 Γ лава 1.

Доказательство. Будем считать, для удобства, что при лексикографической ν нумерации наборов куба B^n от БП $X(n), n=1,2,\ldots$, БП x_i «старше» БП x_j , если i>j. Полученные при этом предположении оценки сложности будут справедливы, очевидно, и для «обычного» порядка «старшинства» БП.

Рассмотрим сначала случай, когда $r>2^{n-1}$. Выберем из множества $P_2(n,r)$ произвольую $\Phi A \Pi f$ и построим для неё С $\Phi \ni \Sigma_f$ с помощью асимптотически наилучшего метода синтеза (см. §5). Напомним, что при этом $\Phi A \Pi f$ (см. доказательство теоремы 5.1) разлагается по $B\Pi x'' = (x_{q+1}, \ldots, x_n)$ следующим образом:

$$f(x', x'') = \bigvee_{\sigma'' \in B^{n-q}} K_{\sigma''}(x'') f_{\sigma''}(x'),$$

где $x'=(x_1,\ldots,x_q)$, и что для реализации каждой ФАЛ $f_{\sigma''}(x')$ в СФЭ Σ_f используется одна формула \mathcal{F}_t . Из принадлежности ФАЛ f классу $P_2(n,r)$ следует, что при $\nu(\sigma'')>\lceil r/2^q \rceil$ функция $f_{\sigma''}(x')$ тождественно равна нулю, и, таким образом, из схемы Σ_f можно удалить подсхемы, реализующие все указанные подфункции. Для сложности полученной при этом СФЭ $\widetilde{\Sigma}_f$ в силу (5.9) будет выполняться неравенство

$$\mathcal{L}\left(\widetilde{\Sigma}_{f}\right) \leqslant \mathcal{L}_{j}\left\lceil \frac{r}{2^{q}}\right\rceil t + O\left(2^{n-m} + p \cdot 2^{s} + p \cdot 2^{\frac{s}{2} + m}\right),$$

из которого при значениях параметров (5.10) следует, что

$$\mathcal{L}(\widetilde{\Sigma}_f) \lesssim \rho_{\rm B} \frac{r}{\log r}.\tag{8.1}$$

Пусть теперь $r \leq 2^{n-1}$. В этом случае найдём число k такое, что

$$k < n, \qquad 2^{k-1} < r \leqslant 2^k$$

и, следовательно,

$$f(x_1, \dots, x_n) = \overline{x}_{k+1} \cdot \dots \cdot \overline{x}_n \cdot f'(x_1, \dots, x_k). \tag{8.2}$$

Заметим, что функция f' принадлежит классу $P_2(k,r)$, где $r>2^{k-1}$, и для неё по предыдущему случаю можно построить СФЭ $\widetilde{\Sigma}_{f'}$, удовлетворяющую (8.1). Искомая СФЭ $\widetilde{\Sigma}_f$ строится на основе (8.2) так, что

$$\mathcal{L}(\widetilde{\Sigma}_f) \leqslant \mathcal{L}(\widetilde{\Sigma}_{f'}) + O(n) \lesssim \rho_{\mathrm{B}} \frac{r}{\log r} + O(n).$$

Лемма доказана.

Следствие. Если $n = o(\frac{r}{\log r})$, то $Q(n) = P_2(n, r(n)) - c$ тандартный невырожденный класс $\Phi A \mathcal{J}$, для которого выполнено асимптотическое равенство

$$\mathcal{L}_{\mathrm{B}}^{\mathrm{C}}(Q(n)) \sim \rho_{\mathrm{B}} \frac{r}{\log r}.$$