Note 5. MIMO Systems - Capacity, Diversity-Multiplexing Tradeoff

Channel Capacity (1/3)

Entropy H(X)

- The measure of the uncertainty of a random variable
- Amount of information gained when X is measured
- The randomness of X
- □ Let X be a discrete random variable taking values in a set $A_x = \{x_1, ..., x_m\}$ with probability $p(X = X_i) = p_i$

$$H(X) = E\left[-\log_2 p(X)\right] = -\sum_{x \in A_x} p(X = x) \log_2 p(X = x) \text{ (bits)}$$

- □ A certain event that occurs with probability 1 provides no information
- ☐ An unlikely event provides a very large amount of information
- □ Coin toss example
 - Head with probability ½, Tail with probability ½ → Entropy?
 - Head with probability 1, Tail with probability $0 \rightarrow$ Entropy?

Channel Capacity(2/3)

■ Mutual information I(X;Y)

- ☐ A measure of the amount of information that one random variable contains about another random variable
- \square It quantifies how much information Y tells about X
- □ Definition

: The mutual information of X and Y is the relative entropy between the joint distribution p(x,y) and the product of the marginals p(x)p(y)

$$I(X;Y) = \sum_{x \in A_x} \sum_{y \in A_y} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)}$$

$$\Rightarrow$$
 Lemma 1: $I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$

⇒ Lemma 2 : If X and Y are independent, $P(X,Y) = P(X)P(Y) \rightarrow I(X,Y) = 0$ → Y tells no information at all about X

I(X;Y)

H(X,Y)

H(Y|X)

Channel Capacity (3/3)

- **Channel capacity** C of a channel with input X and output Y
 - **Definition**

The maximum mutual information between X and Y, where the maximum is taken over all possible input distributions

$$C = \max_{p(x)} I(X;Y) = \max_{p(x)} \sum_{x,y} P(x,y) \log \left(\frac{P(x,y)}{P(x)P(y)} \right)$$
 "The maximum data rate that can be attained over a given channel"

 \square Example of entropy : $X \sim N(0, \sigma^2)$

$$H(X) = -E \left[\log_2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{X^2}{2\sigma^2}} \right] = -E \left[\log_2 \frac{1}{\sqrt{2\pi}\sigma} + \left(-\frac{1}{2\sigma^2} \right) (X^2) \log_2(e) \right]$$

$$= \left(\frac{1}{2\sigma^2} \right) E(X^2) \log_2(e) + \frac{1}{2} \log_2 2\pi\sigma^2 = \frac{1}{2} \log_2(e) + \frac{1}{2} \log_2 2\pi\sigma^2 = \frac{1}{2} \log_2 2\pi\sigma^2 = \frac{1}{2} \log_2 2\pi\sigma^2$$

Example of channel capacity: $X \sim N(0, \sigma_x^2)$, $Z \sim N(0, \sigma_z^2)$, X & Z are independent

$$Y = X + Z C = I(X;Y) = H(Y) - H(Y|X) = H(Y) - H(X+Z|X) = H(Y) - H(Z|X)$$

$$\to Y \sim N(0, \sigma_x^2 + \sigma_z^2) = H(Y) - H(Z) = \frac{1}{2}\log_2 2\pi e \sigma_y^2 - \frac{1}{2}\log_2 2\pi e \sigma_z^2 = \frac{1}{2}\log_2 \left(\frac{\sigma_x^2}{\sigma_z^2}\right)$$

Capacity of SISO Channel

SISO channel

$$y(t) = h\sqrt{P}x(t) + n(t)$$

- x(t): Channel input at time t (with normalized power)
- y(t): Corresponding channel output
- n(t): white Gaussian noise random process
- SISO channel capacity

$$C = \log_2 \left(1 + \frac{P}{\sigma^2} |h|^2 \right) \quad \text{[bits/s/Hz]}$$

P: transmit power

 σ^2 : noise variance

■ SISO-AWGN channel capacity $(|h|^2 = 1)$

$$C = \log_2\left(1 + \frac{P}{\sigma^2}\right)$$
 [bits/s/Hz]

Capacity of SIMO Channel

SIMO channel capacity

$$\mathbf{h} = \begin{bmatrix} h_1 & h_2 & \dots & h_M \end{bmatrix}^T$$

$$\|\mathbf{h}\|_F^2 = h_1^2 + h_2^2 + \dots + h_M^2$$

☐ Capacity of the SIMO channel with no CSIT at the TX

$$C_{SIMO} = \log_2 \left(1 + \frac{P}{\sigma^2} \left\| \mathbf{h} \right\|_F^2 \right)$$

- Each element of **h** is i.i.d. Gaussian random variable with zero mean and unit variance.
 - \square As M increases $\rightarrow \|\mathbf{h}\|_{E}^{2} = h_{1}^{2} + h_{2}^{2} + \dots + h_{M}^{2} \approx M$

$$C_{SIMO} = \log_2 \left(1 + \frac{P}{\sigma^2} \left\| \mathbf{h} \right\|_F^2 \right) \cong \log_2 \left(1 + \frac{P}{\sigma^2} M \right)$$

- Capacity $\uparrow \rightarrow M$ (# of Rx antennas) increases
- Knowledge of channel at the $Tx \rightarrow No$ gain in terms of capacity

Capacity of MISO Channel without CSIT

MISO channel capacity

$$\mathbf{h} = [h_1 \quad h_2 \quad \dots \quad h_N]$$
$$\|\mathbf{h}\|_F^2 = h_1^2 + h_2^2 + \dots + h_N^2$$

- ☐ Capacity of the MISO channel with no CSIT
 - CSIT Channel State Information at Transmitter

$$C_{MISO} = \log_2 \left(1 + \frac{P}{N\sigma^2} \left\| \mathbf{h} \right\|_F^2 \right)$$

- Each element of **h** is i.i.d. Gaussian random variable with zero mean and unit variance
 - □ As N increases \rightarrow $\|\mathbf{h}\|_F^2 = h_1^2 + h_2^2 + \dots + h_N^2 \approx N$

$$C_{MISO} = \log_2 \left(1 + \frac{P}{\sigma^2} \right)$$

• Capacity of MISO channel without CSIT is the same as that of a SISO channel

Capacity of MISO Channel with CSIT

MISO channel capacity

$$\mathbf{h} = [h_1 \quad h_2 \quad \dots \quad h_N]$$
$$\|\mathbf{h}\|_F^2 = h_1^2 + h_2^2 + \dots + h_N^2$$

- ☐ Capacity of the MISO channel with CSIT
 - When CSI is available at the transmitter (CSIT)
 - ☐ Maximal-Ratio Transmission becomes possible.
 - \square That is, $(\mathbf{h}^H / ||\mathbf{h}||) \mathbf{x}$ can be transmitted instead of \mathbf{x} .

$$\mathbf{y} = \sqrt{P}\mathbf{h}\mathbf{x} + \mathbf{n} \rightarrow \mathbf{y} = \sqrt{P}\mathbf{h}\frac{\mathbf{h}^{H}}{\|\mathbf{h}\|}\mathbf{x} + \mathbf{n} = \sqrt{P}\|\mathbf{h}\|\mathbf{x} + \mathbf{n}$$
No CSIT

$$C_{MISO} = \log_2 \left(1 + \frac{P}{\sigma^2} \left\| \mathbf{h} \right\|_F^2 \right) = C_{SIMO}$$

• Capacity of MISO channel with CSIT is the same as that of a SIMO channel

Deterministic MIMO Channel Capacity

MIMO signal model

$$\mathbf{y} = \sqrt{\frac{P}{N}}\mathbf{H}\mathbf{x} + \mathbf{n}$$
, where $\mathbf{R}_{xx} = E\{\mathbf{x}\mathbf{x}^H\}$ and $Tr(\mathbf{R}_{xx}) = N$

- □ n is ZMCSCG(Zero-mean circular symmetric complex Gaussian)
- Capacity of the MIMO channel
 - \square Capacity: $C = \max_{f(\mathbf{x})} I(\mathbf{x}; \mathbf{y})$
 - □ Mutual information : $I(\mathbf{x}; \mathbf{y}) = H(\mathbf{y}) H(\mathbf{y} \mid \mathbf{x}) = H(\mathbf{y}) H\left(\sqrt{\frac{P}{N}}\mathbf{H}\mathbf{x} + \mathbf{n} \mid \mathbf{x}\right)$

$$= H(\mathbf{y}) - H\left(\sqrt{\frac{P}{N}}\mathbf{H}\mathbf{x} \mid \mathbf{x}\right) - H(\mathbf{n} \mid \mathbf{x}) = H(\mathbf{y}) - H(\mathbf{n})$$
(: **x** and **n** are independent)

$$C = \max_{f(\mathbf{x})} I(\mathbf{x}; \mathbf{y}) = \max_{\mathbf{R}_{xx}} \log_2 \left(\det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^H \right) \right) \text{ bps/Hz}$$

Channel Unknown to TX

- No Channel Knowledge at Transmitter (Known to RX)
 - ☐ Choose the signals to be independent and equal-powered at the Tx

$$\rightarrow$$
 $\mathbf{R}_{xx} = \mathbf{I}_{N}$ or $\mathbf{R}_{xx}[i] = \gamma_{i}\mathbf{I}_{N}$

Capacity

$$C = \log_2 \left(\det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^H \right) \right) = \log_2 \det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{H} \mathbf{H}^H \right)$$

Using the eigen decomposition, $\mathbf{H}\mathbf{H}^H = \mathbf{Q}\Lambda\mathbf{Q}^H$ Q: Unitary Matrix Λ : Diagonal Matrix with Eigenvaules of $\mathbf{H}\mathbf{H}^H$

$$C = \log_2 \det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H \right)$$

$$= \log_2 \det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{\Lambda} \right)$$

$$= \log_2 \left(\prod_{i=1}^r \left(1 + \frac{P}{N\sigma^2} \lambda_i \right) \right) = \sum_{i=1}^r \log_2 \left(1 + \frac{P}{N\sigma^2} \lambda_i \right)$$

$$r = rank \left(\mathbf{H} \mathbf{H}^H \right)$$

□ Sum of the capacities of r SISO channels: channel gain $\sqrt{\lambda_i}$, TX power $\frac{P}{N}$

Singular Value Decomposition

- SVD(Singular Value Decomposition)
 - □ SVD of $M \times N$ complex matrix **H** with $rank(\mathbf{H}) = r$

$$\mathbf{H} = \mathbf{U} \sum \mathbf{V}^H$$

• $\mathbf{U}: M \times M$, $\mathbf{V}: N \times N$ unitary matrix, $\Sigma: M \times N$ matrix

$$\mathbf{U}^H \mathbf{U} = \mathbf{I}_M, \mathbf{V}^H \mathbf{V} = \mathbf{I}_N, \ \sum_{1,1} = \sigma_1, ..., \sum_{r,r} = \sigma_r, \ \sigma_i \ge \sigma_{i+1}, \text{ other } \sum_{i,n} = 0$$

• Singular value σ_i : square root of eigenvalue λ_i of $\mathbf{H}\mathbf{H}^H$

$$\mathbf{HH}^{H} = \mathbf{Q}\Lambda\mathbf{Q}^{H},$$
Eigen-decomposition

$$\Lambda_{1,1} = \lambda_1, ..., \Lambda_{r,r} = \lambda_r, \ \lambda_i \ge \lambda_{i+1}, \text{ other } \Lambda_{i,n} = 0$$

$$\lambda_{i} = \begin{cases} \sigma_{i}^{2} & i = 1, 2, ..., r \\ 0 & i = r + 1, ..., \min(M, N) \end{cases}$$

Channel Known to TX

- Channel known to the transmitter (and RX)
 - If the channel gain matrix **H** known to both TX & RX
 - → Parallel decomposition of the MIMO channel is available by singular value decomposition(SVD)

Basic MIMO Transmission Model

Transmit precoding & receiver shaping using SVD

$$\mathbf{y} = \sqrt{\frac{P}{N}} \mathbf{H} \mathbf{x} + \mathbf{n} = \sqrt{\frac{P}{N}} \mathbf{H} (\mathbf{V} \tilde{\mathbf{x}}) + \mathbf{n} = \sqrt{\frac{P}{N}} \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H} \mathbf{V} \tilde{\mathbf{x}} + \mathbf{n} = \sqrt{\frac{P}{N}} \mathbf{U} \mathbf{\Sigma} \tilde{\mathbf{x}} + \mathbf{n}$$

$$\tilde{\mathbf{y}} = \mathbf{U}^{H} (\sqrt{\frac{P}{N}} \mathbf{U} \mathbf{\Sigma} \tilde{\mathbf{x}} + \mathbf{n}) = \sqrt{\frac{P}{N}} \mathbf{\Sigma} \tilde{\mathbf{x}} + \mathbf{U}^{H} \mathbf{n} = \sqrt{\frac{P}{N}} \mathbf{\Sigma} \tilde{\mathbf{x}} + \tilde{\mathbf{n}}$$

12/29

SVD Precoding for MIMO (1/3)

Transmit precoding & receiver shaping using SVD

- Parallel Decomposition of the MIMO Channel
 - □ Obtained by a transformation : **Transmit precoding & receiver shaping**
 - ☐ Transmit precoding
 - Linear transformation on the channel input vector $\tilde{\mathbf{x}}$ as $\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$
 - □ Receiver shaping
 - Multiplying the channel output y with \mathbf{U}^H
 - ☐ Transmit precoding and receiver shaping
 - Transform the MIMO channel into r parallel single-input single-output (SISO) channels with input $\tilde{\mathbf{x}}$ and output $\tilde{\mathbf{y}}$

SVD Precoding for MIMO (2/3)

Transmit precoding & receiver shaping using SVD

- Parallel Decomposition of the MIMO Channel
 - Multiplication by a unitary matrix does not change the distribution of the noise \rightarrow **n** and $\tilde{\mathbf{n}} = \mathbf{U}^H \mathbf{n}$ are identically distributed.
 - □ The transmit precoding and receiver shaping transform the MIMO channel into $r = rank(\mathbf{H})$ parallel independent channels

SVD Precoding for MIMO (3/3)

- Parallel Decomposition of the MIMO Channel(cont'd) example
 - ☐ Find the equivalent parallel channel model for a MIMO channel with channel gain matrix

$$\mathbf{H} = \begin{bmatrix} 0.1 & 0.3 & 0.7 \\ 0.5 & 0.4 & 0.1 \\ 0.2 & 0.6 & 0.8 \end{bmatrix}$$

- □ Solution:
 - The SVD of H is given by

$$\mathbf{H} = \begin{bmatrix} -0.555 & 0.3764 & -0.7418 \\ -0.3338 & -0.9176 & -0.2158 \\ -0.7619 & -0.1278 & 0.6349 \end{bmatrix} \begin{bmatrix} 1.333 & 0 & 0 \\ 0 & 0.5129 & 0 \\ 0 & 0 & 0.0965 \end{bmatrix} \begin{bmatrix} -0.2811 & -0.7713 & -0.5710 \\ -0.5679 & -0.3459 & 0.7469 \\ -0.7736 & 0.5342 & -0.3408 \end{bmatrix}$$

- There are 3 nonzero singular values, r = 3
- Leading to three parallel channels, with channel gains $\sigma_1 = 1.3333$, $\sigma_2 = 0.5129$, and $\sigma_3 = 0.0965$
- The channels have diminishing gain, with a very small gain on the 3rd channel
- This last channel will either have a high error probability or a low capacity

Capacity with SVD Precoding

Channel known to the transmitter

$$\tilde{\mathbf{y}} = \sqrt{\frac{P}{N}} \mathbf{\Sigma} \tilde{\mathbf{x}} + \tilde{\mathbf{n}} \implies \tilde{y}_{i} = \sqrt{\frac{P}{N}} \sqrt{\lambda_{i}} \tilde{x}_{i} + \tilde{n}_{i}, \quad i = 1, 2,, r$$

$$\tilde{x}_{1} \longrightarrow \sqrt{\lambda_{1}} \longrightarrow \tilde{y}_{1}$$

$$\tilde{x}_{2} \longrightarrow \sqrt{\lambda_{2}} \longrightarrow \tilde{y}_{2}$$

$$\vdots \qquad \tilde{n}_{r}$$

$$\tilde{x}_{r} \longrightarrow \sqrt{\lambda_{r}} \longrightarrow \tilde{y}_{r}$$

Capacity of MIMO channel with CSIT

$$C = \max_{\mathbf{R}_{xx}} \log_2 \left(\det \left(\mathbf{I}_M + \frac{P}{N\sigma^2} \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^H \right) \right)$$

$$\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$$

$$\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$$

$$\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$$

$$\mathbf{x} = \mathbf{V} \tilde{\mathbf{x}}$$
Capacity of MIMO channel sum of the individual parallel SISO channel capacities

 $\mathbf{v}_i = E\left\{\left|x_i\right|^2\right\}$: the transmit energy in the i^{th} sub-channel and $\sum_{i=1}^r \gamma_i = N$

$$\Box \rightarrow C = \max_{\sum_{i=1}^{r} \gamma_i = N} \sum_{i=1}^{r} \log_2 \left(1 + \frac{P}{N\sigma^2} \gamma_i \lambda_i \right)$$
 Optimal energy allocation

: Water-pouring (water-filling) algorithm

Water-Pouring algorithm (1/2)

- Waterpouring algorithm
 - Optimal power allocation method

Optimal waterpouring power allocation strategy
: power allocated to each spatial sub-channel is non-negative

Water-Pouring algorithm (2/2)

- Water-pouring power allocation
 - \square 1) Calculate μ with p=1

$$\mu = \frac{N}{r - p + 1} \left[1 + \frac{\sigma^2}{P} \sum_{i=1}^{r - p + 1} \frac{1}{\lambda_i} \right]$$

□ 2) Calculate the power for the i-th channel

$$\gamma_i^{opt} = \left(\mu - \frac{N\sigma^2}{P\lambda_i}\right)_+, i = 1, ..., r - p + 1, (x)_+ = \begin{cases} x & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

• If $\gamma_i^{opt} = 0$, set p = p + 1 and go back to step 1)

Capacity with SVD / Water-Pouring

■ MIMO capacity with CSIT and CSIR (*r* parallel channels)

$$C = \max_{\sum_{i=1}^{r} \gamma_i = N} \sum_{i=1}^{r} \log_2 \left(1 + \frac{P}{N\sigma^2} \gamma_i \lambda_i \right) \xrightarrow{\frac{P}{\sigma^2} \lambda_i = c_i} C = \max_{\sum_{i=1}^{r} \gamma_i = P} \sum_{i=1}^{r} B \log_2 \left(1 + \frac{\gamma_i}{N} c_i \right)$$

$$\gamma_{i}^{opt} = \left(\mu - \frac{N\sigma^{2}}{P\lambda_{i}}\right)_{+} = \left(\mu - \frac{N}{c_{i}}\right)_{+} = \left(\frac{N}{c_{0}} - \frac{N}{c_{i}}\right)_{+} \Leftrightarrow \frac{\gamma_{i}^{opt}}{N} = \left(\frac{1}{c_{0}} - \frac{1}{c_{i}}\right)_{+}$$

$$\mu = \frac{N}{c_{0}}$$

$$\frac{\gamma_{i}^{opt}}{N} = \begin{cases} \frac{1}{c_{0}} - \frac{1}{c_{i}}, & \text{if } c_{i} \geq c_{0} \\ 0, & \text{otherwise} \end{cases}$$

□ Resulting MIMO capacity

$$C = \max_{\sum_{i=1}^{r} \gamma_i = P} \sum_{i=1}^{r} \log_2 \left(1 + \frac{\gamma_i^{opt}}{N} c_i \right) = \sum_{i=1}^{r} \log_2 \left(1 + \left(\frac{1}{c_0} - \frac{1}{c_i} \right) c_i \right) = \sum_{i=1}^{r} \log_2 \left(\frac{c_i}{c_o} \right)$$

Capacity of Random MIMO Channels

- Wireless channel
 - □ Not deterministic, but time-varying random channel
 - ☐ Two commonly used statistics : Ergodic capacity, Outage capacity
 - □ Ergodic capacity → Fast Fading Channel
 - Since **H** is random, capacity is also random
 - Ensemble average over channel realizations

$$\overline{C} = \mathbf{E}\{C\}$$

- □ Outage capacity → Slow Fading Channel
 - Information rate guaranteed for (100 q)% of the channel realizations

$$P(C \le C_{out,q}) = q \%$$

Ergodic Capcity / Outage Capacity

Ergodic/Outage capacity

Simulation environment: No CSIT

$$SNR = 10dB$$

 $N = M = 2 \text{ or } 4$

: Ergodic Capacity

: 10% Outage Capacity

- Two types of gains in MIMO systems
 - Spatial Multiplexing Gain
 - Increase *data rates* through *multiplexing*
 - ⇒ Independent signaling paths that can be used to send independent data
 - → Determined by the numbers of antennas

- Diversity Gain
- Improve *performance* through *diversity*
- → Determined by the number of independent paths

DMT (D/M Tradeoff) (1/3)

- Fundamental tradeoff between diversity and multiplexing [1]
 - □ Diversity gain
 - For $N \times M$ MIMO systems ($M \times N$ MIMO channel matrix), the *maximum* achievable diversity gain is MN at high SNR.
 - If a diversity order is d, then the error probability is given by $P_e \propto \text{SNR}^{-d}$.
 - ☐ It shows how fast the error probability can be decreased with the SNR for *a fixed rate*.
 - ☐ Multiplexing gain
 - Capacity of the system increases as $C \propto r \log(SNR)$, where $r=\min(M,N)$ denote the number of spatial degrees of freedom, in other words, *multiplexing gain*.
 - ☐ It shows how fast the data rate can be increased with the SNR for *a fixed error probability*.

×

DMT (D/M Tradeoff) (2/3)

- Fundamental tradeoff between diversity and multiplexing
 - □ To achieve the maximum diversity gain, one needs to communicate at a fixed rate R, which becomes vanishingly small compared to the fast fading capacity at high SNR (min(N,M)·logSNR).
 - Spatial multiplexing benefit is sacrificed to maximize the reliability.
- Formulation

A diversity gain $d^*(r)$ is achieved at multiplexing gain r if

$$R = r \log SNR$$

and

$$p_{out}(R) \approx \text{SNR}^{-d^*(r)},$$

or more precisely,

$$\lim_{SNR\to\infty} \frac{\log p_{out}(r\log SNR)}{\log SNR} = -d^*(r)$$

The curve $d^*(r)$ is the diversity-multiplexing tradeoff of the slow fading channel

DMT (D/M Tradeoff) (3/3)

- Fundamental tradeoff between diversity and multiplexing
 - ☐ A diversity-multiplexing tradeoff for any space-time coding scheme can be formulated with outage probability replaced by error probability.
 - [1, *Lemma* 5] Outage probability provides a lower bound on the error probability for channel

A space-time coding scheme is a family of codes, indexed by the signal-to-noise ratio SNR. It attains a mulplexing gain r and a diversity gain d if the data rate scales as

$$R = r \log SNR$$

and the error probability scales as

$$p_e \approx \text{SNR}^{-d}$$
,

or more precisely,

$$\lim_{\text{SNR} \to \infty} \frac{\log p_e}{\log \text{SNR}} = -d$$

DMT of General MIMO Channel

- For a $M \times N$ MIMO channel matrix \mathbf{H} with the following assumption
 - □ All elements of **H** are i.i.d. random complex Gaussian variable with zero mean & unit variance.
 - \square Therefore, **H** is a full rank matrix, i.e., rank(**H**) = min(M, N)
- [1, *Theorem* 2] Optimal trade off curve of $M \times N$ MIMO channel

$$d^*(r) = (M - r)(N - r), \quad r = 0, ..., \min(M, N)$$

- \square Example) 2x2 Channel with full rank: three DMT points (0,4), (1,1), (2,0)
 - 1) If the system(scheme) utilizes the channel with the multiplexing gain r = 0, then the achievable diversity gain is $d^*(0) = (M 0)(N 0) = 4$.
 - □ As SNR increases → Error prob. is $P_{\rho} \propto \text{SNR}^{-4}$ (rapid decreasing)
 - □ As SNR increases \rightarrow Increased Data rate is $R = 0 \cdot \log SNR$ (not increasing)
 - 2) If the system(scheme) utilizes the channel with the multiplexing gain r = 1, then the achievable diversity gain is $d^*(1) = (M-1)(N-1) = 1$.
 - □ As SNR increases → Error prob. is $P_e \propto \text{SNR}^{-1}$ (decreasing)
 - □ As SNR increases \rightarrow Increased Data rate is $R = 1 \cdot \log SNR$ (increasing)
 - 3) If the system(scheme) utilizes the channel with the multiplexing gain r = 2, then the achievable diversity gain is $d^*(2) = (M-2)(N-2) = 0$.
 - □ As SNR increases → Error prob. is $P_e \propto \text{SNR}^0$ (no decreasing)
 - As SNR increases \rightarrow Increased Data rate is $R = 2 \cdot \log SNR$ (rapid increasing)

DMT Examples for MIMO Systems (1/2)

- 2x2 MIMO Rayleigh channel
 - ☐ Diversity-Multiplexing tradeoff of various schemes
 - Diversity schemes: Repetition, Alamouti
 - Multiplexing schemes: V-BLAST(ML), V-BLAST(nulling)
 - Optimal DMT of 2x2 MIMO channel
 - □ Maximum diversity gain of 4 and 2 degrees of freedom
 - □ Piecewise linear curve consisting of two linear segments

	Classical Diversity gain	Degrees of Freedom utilized	DMT
Repetition	4	1/2	$4-8r$, $r \in [0,1/2]$
Alamouti	4	1	$4-4r, r \in [0,1]$
V-BLAST (ML)	2	2	$2-r, r \in [0,2]$
V-BLAST (nulling)	1	2	$1-r/2, r \in [0,2]$
Channel itself	4	2	$4-3r, r \in [0,1]$ $2-r, r \in [1,2]$

Repetition

Alamauti

DMT Examples for MIMO Systems (2/2)

■ DMT of the 2x1 MISO and 2x2 MIMO channel

2 X 1 Channel

Spatial Multiplexing Gain: r = R/logSNR

2 X 2 Channel

Spatial Multiplexing Gain: r = R/logSNR

Thank You!

