Phase-2

Student Name: Jayapratha A Register Number: 422723104047

Ins tu on: V.R.S.College of Engineering and Technology

Department: Computer Science Engineering **Date of Submission:**

10.05.2025 Github Repository Link: h ps://github.com/Juiena-

oss/Juiena.git

1. Problem Statement

Credit card fraud is a major financial issue for banks, retailers, and consumers. The goal is to build a model that

detects fraudulent transactions based on historical transaction data.

- Problem Type: Binary Classification (Fraudulent vs. Non-Fraudulent)
- Why it Matters: Preventing fraud reduces financial losses and improves trust in financial systems. Real-time fraud

detection systems are essential for securing digital transactions.

2. Project Objectives

Technical Objective: Build and evaluate models to detect fraudulent transactions with high precision and recall.

- Model Goals:
- Minimize false negatives (missing fraud)
- Maintain interpretability (especially in high-risk domains)
- Handle class imbalance effectively
- The objective evolved post-EDA to focus more on handling data imbalance and model interpretability.

3. Flowchart of the Project Workflow

Data Collection \rightarrow Data Preprocessing \rightarrow EDA \rightarrow Feature Engineering \rightarrow Model Building \rightarrow Evaluation \rightarrow Results Interpretation

4. Data Description

Dataset Name: Credit Card Fraud Detection

- Source: Kaggle (https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud)

- Type: Structured, time-series

- Records: ~284,807 transactions

- Features: 30 (28 anonymized features + Time, Amount)

- Target: Class (0 = Non-Fraud, 1 = Fraud)

- Nature: Static dataset, highly imbalanced

5. Data Preprocessing

Missing Values: None detected

- Duplicates: Removed ~100 duplicate entries

- Outliers: Identified and treated using IQR on Amount

- Data Types: All numeric

- Encoding: Not required (already numeric)

- Scaling: StandardScaler applied to Amount and Time

- Imbalance: Will be handled during model training with SMOTE or class weights

6. Exploratory Data Analysis (EDA)

Univariate: Fraud cases are <0.2% of data. Amount distribution is skewed.

- Bivariate: Fraudulent transactions tend to have higher values in certain principal components (e.g., V14, V17)
- Multivariate: Correlation matrix shows strong patterns in a few components
- Insights:
- V14 and V17 show distinct distributions for fraud vs. non-fraud
- Feature selection or dimensionality reduction may be valuable

7. Feature Engineering

- Binned Amount into categories for analysis - PCA not applied as data already anonymized - SMOTE used to balance classes before training

8. Model Building

Models Used: Models: Logis c Regression, Random Forest, XGBoost - Split: 70/30 Train-Test split with stra fica on - Metrics:

- Accuracy
- Precision
- Recall
- F1-score
- AUC-ROC
- Why these models:

Logis c Regression for baseline & interpretability

- Random Forest/XGBoost for robustness and handling imbalance

9. Visualization of Results & Model Insights

Confusion Matrix: Shows effectiveness in capturing fraud - ROC Curve: AUC > 0.90 for best model - Feature Importance: V14, V17, V10 most important in fraud detection - Conclusion: XGBoost provided best performance with minimal overfitting

10. Tools and Technologies Used

Language: Python - IDE: Jupyter Notebook - Libraries: pandas, numpy, seaborn, matplotlib, scikit-learn, imbalanced-learn, XGBoost

- Visualization: seaborn, matplotlib, Plotly

11. Team Members and Contributions

Jayapratha.A: Data Cleaning, EDA -Kamali.V: Feature Engineering, SMOTE, Model Training Jayabharathi.N: Documentation, Visualizations

-Jesima.J: Model Evaluation, Reporting