1 Series

Given an infinite series:

$$\sum_{k=1}^{\infty} a_k$$

- the numbers a_k are the terms of that series
- the sequence of partial sums is the sequence:

$$(S_n) = \left(\sum_{k=1}^n a_k\right)_{n=1}^{\infty} = a_1 + a_2 + a_3 + \dots + a_n$$

The series converges to $L \in \mathbb{R}$, written $\sum_{k=1}^{\infty} a_k = L$, if $(S_n) \to L$, and diverges

(to ∞ , $-\infty$ or does not exist) if (S_n) does. Likewise, we say the series is bounded or monotone if S_n is.

2 Geometric Series

A geometric series can be written in the form:

$$\sum_{n=1}^{\infty} a \cdot r^n = a + ar + ar^2 + \dots$$

Its partial sum, S_n can be written as:

$$S_n = \frac{a(1-r^n)}{1-r} \implies \lim_{n \to \infty} S_n = \frac{a}{1-r}$$

A geometric series will always converge if |r| < 1.

3 Harmonic Series

A harmonic series can be written in the form:

$$\sum_{k=1}^{\infty} \frac{1}{K} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

This series diverges.

4 P-Series

If p is a real constant, a p-series can be written in the form:

$$\sum_{p=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots$$

A p-series converges if p > 1 and diverges if $p \le 1$.

5 The N-th Term Test

If
$$\lim_{n\to\infty} a_n \neq 0$$
 then $\sum_{n=1}^{\infty} a_n$ diverges. As such, if $\sum_{n=1}^{\infty} a_n$ converges, $\lim_{n\to\infty} a_n = 0$

This test only guarantees that a series diverges if the terms do not go to 0 in the limit. It cannot prove convergence.

6 Comparison Test For Convergence

Given
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$. Then if a_n , $b_n \ge 0$, $a_n \le b_n \ \forall \ n$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. Similarly, if $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

7 Limit Comparison Test

Given
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$, then, if a_n , $b_n > 0 \,\forall n > 0$ and $\lim_{n \to \infty} \frac{a_n}{b_n}$ is positive and finite, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are either both convergent or divergent.

8 The Ratio Test

Given
$$\sum_{n=1}^{\infty} a_n$$
. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$, then the series:

i. converges if L < 1

ii. diverges if L > 1

iii. may or may not converge if L=1