PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Temporada Académica de Verano 2022

$MAT1620 \star Cálculo 2$

Solución Interrogación 1

1. Determine si las siguientes integrales impropias son convergentes o divergentes:

a)
$$\int_0^1 \frac{\ln(x)}{\sqrt{x}} \, dx$$

b)
$$\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} \, dx$$

Solución 1:

a) Por definición, tenemos que:

$$\int_{0}^{1} \frac{\ln(x)}{\sqrt{x}} dx = \lim_{t \to 0^{+}} \int_{t}^{1} \frac{\ln(x)}{\sqrt{x}} dx \qquad u = \ln(x) \qquad du = \frac{1}{x} dx$$

$$dv = \frac{1}{\sqrt{x}} dx \qquad v = 2\sqrt{x}$$

$$= \lim_{t \to 0^{+}} \left(2\ln(x)\sqrt{x} \Big|_{t}^{1} - \int_{t}^{1} \frac{2}{\sqrt{x}} dx \right) = \lim_{t \to 0^{+}} \left(-2\ln(t)\sqrt{t} - 4 + 4\sqrt{t} \right)$$

$$= -4 - 2\lim_{t \to 0^{+}} \frac{\ln(t)}{\frac{1}{\sqrt{t}}} \stackrel{\text{L'H}}{=} -4 - 2\lim_{t \to 0^{+}} \frac{\frac{1}{t}}{-\frac{1}{2\sqrt{t}}} = -4 + 4\lim_{t \to 0^{+}} \sqrt{t} = -4$$

Por lo tanto, $\int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$ es convergente.

b) Notemos que para $x \geq 1$:

$$0 < \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} < \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4} \le \frac{\sqrt{x^5 + 3x^5 + 5x^5}}{x^4} = \frac{3\sqrt{x^5}}{x^4} = 3\frac{1}{\sqrt{x^3}}$$

Luego, dado que $\int_{1}^{\infty} \frac{1}{\sqrt{x^3}} dx$ es convergente, concluimos por el criterio de comparación que $\int_{1}^{\infty} \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ también converge.

Por otra parte, notamos que $\int_0^1 \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ no es impropia y, por lo tanto, converge (por ser la integral definida de una función continua).

Finalmente, concluimos que $\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ es convergente.

Solución 2:

a) Consideremos $f(x) = -\frac{\ln(x)}{\sqrt{x}}$ y $g(x) = \frac{1}{\sqrt[4]{x^3}}$. Tanto f(x) como g(x) son continuas y positivas para $x \in (0,1)$. Además, tenemos que:

$$\begin{split} & \lim_{x \to 0^+} \frac{f(x)}{g(x)} &= \lim_{x \to 0^+} -\frac{\ln(x)}{\sqrt{x}} \cdot \frac{\sqrt[4]{x^3}}{1} = -\lim_{x \to 0^+} \ln(x) \sqrt[4]{x} \\ &= -\lim_{x \to 0^+} \frac{\ln(x)}{\frac{1}{x^{\frac{1}{4}}}} \stackrel{\text{L'H}}{=} -\lim_{x \to 0^+} \frac{\frac{1}{x}}{\frac{1}{x^{\frac{1}{2}}}} = \lim_{x \to 0^+} 4x^{\frac{1}{4}} = 0 \end{split}$$

Luego, como $\int_0^1 \frac{1}{\sqrt[4]{x^3}} dx$ converge, concluimos por el criterio de comparación en el límite que $\int_0^1 \frac{-\ln(x)}{\sqrt{x}} dx$ es convergente y, por lo tanto, también lo es $\int_0^1 \frac{\ln(x)}{\sqrt{x}} dx$.

b) Consideremos $f(x) = \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + 2x^2 + 1}$ y $g(x) = \frac{1}{\sqrt{x^3}}$. Claramente, f(x) y g(x) son continuas y positivas para $x \ge 1$. Además, tenemos que:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + 2x^2 + 1} \cdot \frac{\sqrt{x^3}}{1} = \lim_{x \to \infty} \frac{\sqrt{x^8 + 3x^6 + 5x^4}}{x^4 + 3x^2 + 1}$$

$$= \lim_{x \to \infty} \frac{\sqrt{1 + \frac{3}{x^2} + \frac{5}{x^4}}}{1 + \frac{3}{x^2} + \frac{1}{x^4}} = 1$$

Luego, dado que $\int_1^\infty \frac{1}{\sqrt{x^3}} dx$ es convergente, concluimos por el criterio de comparación en el límite que $\int_1^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ también converge.

Por otra parte, notamos que $\int_0^1 \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ no es impropia y, por lo tanto, converge (por ser la integral definida de una función continua).

Finalmente, concluimos que $\int_0^\infty \frac{\sqrt{x^5 + 3x^3 + 5x}}{x^4 + x^2 + 1} dx$ es convergente.

2. Demuestre que $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ converge si m, n > 0 y diverge en caso contrario.

Solución: Es claro que si $m, n \ge 1$ entonces la integral no es impropia y, por lo tanto, es convergente. Por otra parte, consideremos las integrales $I_1 = \int_0^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$ e $I_2 = \int_1^1 x^{m-1} (1-x)^{n-1} dx$. Sean $f(x) = x^{m-1} (1-x)^{n-1}$, $g_1(x) = x^{m-1}$ y $g_2(x) = (1-x)^{n-1}$.

Notenemos que:

$$\lim_{x \to 0^+} \frac{f(x)}{g_1(x)} = \lim_{x \to 0^+} \frac{x^{m-1}(1-x)^{n-1}}{x^{m-1}} = \lim_{x \to 0^+} (1-x)^{n-1} = 1$$

Además, $\int_0^{\frac{1}{2}} x^{m-1} dx = \int_0^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$ converge para 1-m < 1 y diverge para $1-m \le 1$. Luego, por el criterio de comparación en el límite, se cumple que I_1 es convergente para m > 0 y divergente para $m \le 0$. Análogamente, tenemos que:

$$\lim_{x \to 1^{-}} \frac{f(x)}{g_2(x)} = \lim_{x \to 1^{-}} \frac{x^{m-1}(1-x)^{n-1}}{(1-x)^{n-1}} = \lim_{x \to 1^{-}} x^{m-1} = 1$$

Además, $\int_{\frac{1}{2}}^{1} (1-x)^{n-1} dx = \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{1-n}} dx = \int_{0}^{\frac{1}{2}} \frac{1}{y^{1-n}} dy$ es convergente para 1-n < 1 y divergente para $1-n \le 1$. Luego, por el criterio de comparación en el límite, se cumple que I_2 converge para n > 0 y diverge para $n \le 0$.

Finalmente, para que $\int_0^1 x^{m-1} (1-x)^{n-1} dx$ sea convergente, se debe cumplir que tanto I_1 como I_2 sean (ambas) convergentes. En resumen, tenemos que si m, n > 0 la integral dada converge y en cualquier otro caso diverge.

3. Estudie la convergencia de las siguientes series:

a)
$$\sum_{n=1}^{\infty} n^4 e^{-n^2}$$
 b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^2}$

Solución:

a) Notemos que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^4}{e^{(n+1)^2}} \cdot \frac{e^{n^2}}{n^4} \right| = \lim_{n \to \infty} \frac{(n+1)^4}{n^4} \cdot \frac{e^{n^2}}{e^{n^2 + 2n + 1}}$$

$$= \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^4 \cdot \frac{1}{e^{2n+1}} = 0$$

Luego, por el criterio de la razón, la serie es absolutamente convergente.

b) Sea $b_n = \frac{2^n}{n^2}$ y $f(x) = \frac{2^x}{r^2}$, notemos que:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2^x}{x^2} \stackrel{\text{L'H}}{=} \frac{2^x \ln(2)}{2x} \stackrel{\text{L'H}}{=} \frac{2^x \ln^2(2)}{2} = \infty$$

Luego, como $f(n)=b_n$ para todo n natural, se cumple que $\lim_{n\to\infty}\frac{2^n}{n^2}=\infty$ y entonces $\lim_{n\to\infty}a_n=\lim_{n\to\infty}(-1)^{n-1}\frac{2^n}{n^2}$ no existe. Por lo tanto, concluimos que la serie es divergente por el criterio de la divergencia.

Solución 2:

a) Notemos que:

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{n^4}{e^{n^2}}\right|} = \lim_{n \to \infty} \left(\frac{n^4}{e^{n^2}}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^{\frac{4}{n}}}{e^n} = 0$$

Luego, por el criterio de la raíz, la serie es absolutamente convergente.

Solución 3:

a) Consideremos $a_n = \frac{n^4}{e^{n^2}}$ y $b_n = \frac{1}{n^2}$. Notemos que:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n^4}{e^{n^2}}\cdot\frac{n^2}{1}=\lim_{n\to\infty}\frac{n^6}{e^{n^2}}=0$$

Luego, dado que $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente, concluimos por el criterio de comparación en el

límite que $\sum_{n=1}^{\infty} n^4 e^{-n^2}$ también converge.

- 4. En algunos casos, cuando el criterio de la razón no entrega información sobre la convergencia o divergencia de una serie, es posible usar como alternativa el criterio de Raabe, el cual establece que si $\sum a_n$ es una serie de términos no nulos y $\rho = \lim_{n \to \infty} n \left(1 \left|\frac{a_{n+1}}{a_n}\right|\right)$, entonces se cumple que:
 - Si $\rho > 1$, la serie converge absolutamente.
 - Si $\rho < 1$, la serie diverge o es condicionalmente convergente.
 - Si $\rho = 1$, el criterio no es concluyente.
 - a) [4 puntos] Pruebe que el criterio de la razón falla al analizar la convergencia de la serie:

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1\cdot 4}{3\cdot 6}\right)^2 + \left(\frac{1\cdot 4\cdot 7}{3\cdot 6\cdot 9}\right)^2 + \dots + \left(\frac{1\cdot 4\cdot 7\cdot \dots (3n-2)}{3\cdot 6\cdot 9\cdot \dots (3n)}\right)^2 + \dots$$

b) [2 puntos] Usando el criterio de Raabe, analice la convergencia de la serie anterior.

Solución:

a) Notemos que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \left(\frac{1 \cdot 4 \cdot 7 \cdot \dots \cdot (3n-2)(3n+1)}{3 \cdot 6 \cdot 9 \cdot \dots \cdot (3n)(3n+3)} \right)^2 \cdot \left(\frac{3 \cdot 6 \cdot 9 \cdot \dots \cdot (3n)}{1 \cdot 4 \cdot 7 \cdot \dots \cdot (3n-2)} \right)^2 \right|$$

$$= \lim_{n \to \infty} \left(\frac{3n+1}{3n+3} \right)^2 = \left(\lim_{n \to \infty} \frac{1 + \frac{1}{n}}{1 + \frac{3}{n}} \right)^2 = 1$$

Por lo tanto, el criterio de la razón no nos entrega información sobre la convergencia o divergencia de la serie.

4

b) En este caso, tenemos que:

$$\begin{split} \lim_{n \to \infty} n \left(1 - \left| \frac{a_{n+1}}{a_n} \right| \right) &= \lim_{n \to \infty} n \left(1 - \left(\frac{3n+1}{3n+3} \right)^2 \right) = \lim_{n \to \infty} n \left(\frac{(3n+3)^2 - (3n+1)^2}{(3n+3)^2} \right) \\ &= \lim_{n \to \infty} n \left(\frac{12n+8}{9n^2+18n+9} \right) = \lim_{n \to \infty} \left(\frac{12 + \frac{8}{n}}{9 + \frac{18}{n} + \frac{9}{n^2}} \right) = \frac{12}{9} = \frac{4}{3} > 1 \end{split}$$

Luego, por el criterio de Raabe, la serie es absolutamente convergente.

- 5. a) Calcule el radio de convergencia de la serie de potencias $\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n(3n-1)}.$
 - b) Encuentre el intervalo de convergencia de la serie de potencias dada en a).
 - c) Sea $f(x) = (x+1)^{\frac{3}{2}}$. Suponga que f tiene una representación en serie de potencias en torno a cero con radio de convergencia R = 1. Calcule los 4 primeros términos de la serie de Taylor de f en torno a x = 0.

Solución:

a) Notemos que:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)(x-1)^{n+1}}{2^{n+1}(3n+2)} \cdot \frac{2^n (3n-1)}{n(x-1)^n} \right|$$

$$= |x-1| \lim_{n \to \infty} \frac{(n+1)(3n-1)}{2n(3n+2)}$$

$$= \frac{|x-1|}{2}$$

Luego, por el criterio de la razón, concluimos que la serie es absolutamente convergente si |x-1| < 2 y divergente si |x-1| > 2. De lo anterior, es claro que el radio de convergencia es R = 2.

b) Para determinar el intervalo de convergencia de la serie, debemos analizar los casos x = -1 y x = 3.

o Si
$$x = -1$$
, entonces
$$\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n(3n-1)} = \sum_{n=1}^{\infty} \frac{n(-2)^n}{2^n(3n-1)} = \sum_{n=1}^{\infty} (-1)^n \frac{n}{3n-1}$$
. Luego, como $\lim_{n \to \infty} (-1)^n \frac{n}{3n-1}$ no existe, concluimos que la serie es divergente.

o Si
$$x=3$$
, entonces
$$\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n(3n-1)} = \sum_{n=1}^{\infty} \frac{n(2)^n}{2^n(3n-1)} = \sum_{n=1}^{\infty} \frac{n}{3n-1}$$
. En este caso,
$$\lim_{n\to\infty} \frac{n}{3n-1} = \frac{1}{3} \neq 0$$
 y, por el criterio de la divergencia, la serie diverge.

Por lo tanto, el intervalo de convergencia de la serie es (-1,3).

c) Dado que f tiene una representación en serie de potencias en torno a cero con radio de convergencia R=1, podemos escribir $f(x)=(1+x)^{\frac{3}{2}}=\sum_{n=0}^{\infty}a_nx^n$, con $a_n=\frac{f^{(n)}(0)}{n!}$. Veamos que:

$$f(x) = (1+x)^{\frac{3}{2}}$$

$$a_0 = f(0) = 1$$

$$f'(x) = \frac{3(1+x)^{\frac{1}{2}}}{2}$$

$$a_1 = f'(0) = \frac{3}{2}$$

$$f''(x) = \frac{3}{4}(1+x)^{-\frac{1}{2}}$$

$$a_2 = \frac{f''(0)}{2} = \frac{3}{8}$$

$$f'''(x) = -\frac{3}{8}(1+x)^{-\frac{3}{2}}$$

$$a_3 = \frac{f'''(0)}{3!} = -\frac{1}{16}$$

Luego,
$$f(x) = (1+x)^{\frac{3}{2}} = 1 + \frac{3x}{2} + \frac{3x^2}{8} - \frac{x^3}{16} + \dots$$