Schematic diagram of the REM

Random-effects model

- ➤ The random-effects model acknowledges two sources of variation:
 - 1. within-study sampling error (σ_i^2) and
 - 2. between-studies variability (τ^2) (e.g., due to varying study characteristics).

The random-effects model can be represented as

$$T_i = \overbrace{\mu + u_i}^{\theta_i} + e_i, \tag{1}$$

- where
 - e_i is the differences between the true mean θ_i for study i and the observed mean effect size T_i for study i ($e_i = T_i \theta_i$) and
 - u_i is the difference between the grand mean μ and the true mean for ith study θ_i ($u_i = \theta_i \mu$).
- $ightharpoonup e_i \sim N(0, \sigma_i^2)$
- ▶ $u_i \sim N(0, \tau^2)$

Random-effects model

- Under random-effects model we have two goals:
 - ► To estimate the mean population effect size from which the observed studies are sample from.
 - ▶ To estimate the between-studies variability (τ^2) .
- Although in practice we compute σ_i^2 , we treat the within-study error variance as known.
- ▶ Thus, under random-effects model the variance of T_i is equal to $\sigma_i^2 + \tau^2$.

```
library(metafor)
## Loading required package: Matrix
## Loading 'metafor' package (version 2.0-0). For an
overview
## and introduction to the package please type:
help(metafor).
##
## Attaching package: 'metafor'
## The following objects are masked from
'package:meta':
##
##
      baujat, forest, funnel, funnel.default, labbe,
radial,
## trimfill
```

Example

