Formális nyelvek és a fordítóprogramok alapjai

3. előadás

Előadó: Nagy Sára, mesteroktató Algoritmusok és Alkalmazásaik Tanszék

Definíció: Grammatikának a következő négyest nevezzük:

$$G=(N,T,P,S)$$

- N a nemterminális ábácé,
- T a terminálisok ábécéje,
- · P az átírási szabályok véges halmaza,
- S a kezdőszimbólum.

Nyelvtan által generált nyelv:

$$L(G) := \{ u \in T^* \mid S \underset{G}{\Rightarrow}^* u \}$$

Ekvivalens nyelvtanok:

 $A G_1$ es G_2 nyelvtanok ekvivalensek, ha $L(G_1) = L(G_2)$.

Reguláris műveletek:

- unió
- konkatenáció
- (iteratív) lezárás

Nyelvosztályok zártsága a reguláris műveletekre

Tétel:

Az \mathcal{L}_i , i = 0, 1, 2, 3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Nyelvosztály zártsága nyelvi műveletre

Legyen ϕ n-változós nyelvi művelet, azaz ha $L_1,...,L_n$ nyelvek, akkor $\phi(L_1,...,L_n)$ is nyelv.

Az \mathcal{L} nyelvcsalád zárt a ϕ műveletre nézve, ha $L_1,..., L_n \in \mathcal{L}$ estén $\phi(L_1,..., L_n) \in \mathcal{L}$.

Unió

G=(N,T,P,S) legyen az L nyelvhez tartozó grammatika és G'=(N',T,P',S') legyen az L' nyelvhez tartozó grammatika és $N\cap N'=\emptyset$ és a korábbi normál formában adottak. i=0,2,3 esetén, legyen S_0 új szimbólum, azaz $S_0 \not\in (N\cup N')$. $G_U=(N\cup N'\cup \{S_0\},T,P\cup P'\cup \{S_0\to S,S_0\to S'\},S_0)$. Látható, hogy G_U típusa megegyezik G,G' típusával, és $L(G)\cup L(G')=L(G_U)$

Unió

i=1 estén, ha $\epsilon \in (L \ U \ L')$, akkor az előbbi módon elkészített grammatikában nem teljesül a KES.

Ezért tekintsük az $L_1 = L \setminus \{\epsilon\}$ és $L_2 = L' \setminus \{\epsilon\}$ nyelveket, amelyeket G_1 és G_2 1-es típusú grammatikák generálnak. Készítsük el G_U -t az előbbi módon, majd vezessünk be egy S_1 új kezdőszimbólumot és adjuk a szabályhalmazhoz az $S_1 \rightarrow \epsilon$ és $S_1 \rightarrow S_0$ szabályokat.

G=(N,T,P,S) grammatika 3-as típusú, ha szabályai

 $A \rightarrow uB$ alakúak, ahol $A,B \in N$, $u \in T^*$ vagy

 $A \rightarrow u$ alakúak, ahol $A \in \mathbb{N}$, $u \in \mathbb{T}^*$

Konkatenáció

(Megjegyzés: Most csak a 3-as típusra bizonyítjuk.)

Legyen i = 3.

A P szabályhalmazból megkonstruálunk egy P₁ szabályhalmazt úgy, hogy minden

 $A \rightarrow u$ alakú szabályt felcserélünk egy $A \rightarrow uS'$ alakú szabályra, a többi szabályt változatlanul hagyjuk.

A $G_c = (N \cup N', T, P_1 \cup P', S)$ grammatika 3-as típusú és generálja az L(G)L(G') nyelvet.

Lezárás

(Megjegyzés: Most csak a 3-as típusra bizonyítjuk.)

Legyen i = 3.

Definiáljuk a P₁ szabályhalmazt úgy, hogy minden

 $A \rightarrow u$ alakú szabályt felcserélünk egy $A \rightarrow uS$ alakú szabályra és ezek legyenek a P_1 elemei.

Legyen S_0 új szimbólum, azaz $S_0 \notin N$.

 $G_* = (N \cup \{S_0\}, T, P_1 \cup P \cup \{S_0 \rightarrow \epsilon, S_0 \rightarrow S\}, S_0)$

grammatika generálja az L* nyelvet.

3-típusú grammatikák normál formája

Tétel:

Minden 3-as típusú, nyelv generálható egy olyan grammatikával, amelynek szabályai

 $A \rightarrow aB$, ahol A, B \in N és a \in T vagy

 $A \rightarrow \varepsilon$ alakúak, ahol $A \in N$.

Megjegyzés: A 3-as normál forma alakítható majd át könnyen automatává.

3-as típusú grammatikák normálformára hozása

Legyen G=(N,T,P,S) 3-as típusú grammatika.

Megkonstruálunk egy G'=(N',T,P',S) 3-as normál formájú grammatika, melyre L(G)=L(G').

Lépesei:

- 1. hosszredukció
- 2. befejező szabályok átalakítása
- 3. láncmentesítés

Hosszredukció

Elhagyjuk az $A \rightarrow a_1 ... a_k B$ alakú szabályokat, ahol $k \ge 2$ és $\forall i \in [1,k]$: $a_i \in T$ és $A \in N$, $B \in N$ vagy $B = \varepsilon$.

Helyettesítjük a következő szabályokkal:

 $A \rightarrow a_1 Z_1$, ahol $Z_1 \notin N$, azaz új nemterminális,

 $Z_1 \rightarrow a_2 Z_2$, ahol $Z_2 \notin (NUZ_1)$

•••

 $Z_{k-1} \rightarrow a_k B$

Megjegyzés: Minden szabályra új nemterminálisokat vezetünk be.

Befejező szabályok átalakítása

Elhagyjuk az $A \rightarrow a$ alakú szabályokat, ahol a \in T és $A \in$ N.

Legyen E egy új nemterminális. (Ez lehet közös minden befejező szabály esetén.)

Vegyük fel P'-be az

 $A \rightarrow aE$ és a $E \rightarrow \epsilon$ szabályokat az előbbiek helyett.

Megjegyzés: A 3-as normál forma alakítható majd át könnyen automatává.

Láncmentesités

Elhagyjuk az $A \rightarrow B$ alakú szabályokat P-ből, ahol A, B \in N.

Első lépésben meghatározzuk minden A ∈ N esetén a

 $H(A):=\{B \in N \mid A \Rightarrow_G^* B\}$ halmazokat.

Ehhez definiáljuk a H₁ (i≥1) halmazokat:

 $H_1(A) = \{ A \}$

 $H_{i+1}(A)=H_i(A)\cup \{B\in N\mid \exists C\in H_i(A) \text{ \'es }C\longrightarrow B\in P\}$

 $H_1(A) \subseteq H_2(A) \subseteq ... \subseteq H_k(A) = H_{k+1}(A) \exists k \text{ \'es legyen } H(A) := H_k(A)$

Ezután P'-be felvesszük az A→ X szabályokat,

ha $\exists B \in H(A)$ és $B \rightarrow X \in P$, ahol $X \in (T \cup N)^*$ és X nem csak egyetlen nemterminális.

Példa

P: $S \rightarrow abS$

 $S \rightarrow B$

 $B \rightarrow bB$

 $\mathsf{B}\to\mathsf{V}$

 $V \rightarrow aa$

hosszredukció után:

P': $S \rightarrow aZ$

 $Z \rightarrow bS$

 $S \rightarrow B$

 $B \rightarrow bB$

 $\mathsf{B}\to\mathsf{V}$

 $V \rightarrow aY$

 $Y \rightarrow aE$

 $E \rightarrow \epsilon$

Példa

P':
$$S \rightarrow aZ$$
 $Z \rightarrow bS$
 $S \rightarrow B$
 $B \rightarrow bB$
 $B \rightarrow V$
 $V \rightarrow aY$
 $Y \rightarrow aE$
 $E \rightarrow \varepsilon$
 $H(S)=\{S,B,V\}$
 $H(B)=\{B,V\}$

láncmentesités után:

P':
$$S \rightarrow aZ$$
 $Z \rightarrow bS$
 $S \rightarrow bB \mid aY$
 $B \rightarrow bB$
 $B \rightarrow aY$
 $V \rightarrow aY$
 $Y \rightarrow aE$
 $E \rightarrow \epsilon$

Reguláris műveletek:

- \triangleright unió, $(L_1 \cup L_2)$
- \triangleright konkatenáció, (L_1L_2)
- ► (iteratív) lezárás. (L*=L⁰ ∪ L¹ ∪ L² ∪ ...)

3-as nyelvcsalád leírásai

A 3-as nyelvcsalád nyelveit leírhatjuk

- 3-as típusú grammatikával,
- reguláris kifejezéssel,
- véges determinisztikus automatával,
- véges nemdeterminisztikus automatával.

Bizonyítható, hogy

$$\mathcal{L}_3 = \mathcal{L}_{reg} = \mathcal{L}_{VDA} = \mathcal{L}_{VNDA}$$
.

Megjegyzés: A programozási nyelvek lexikális egységei a 3-as nyelvcsaládba tartoznak.

Reguláris nyelvek (rekurzív definíció)

- az elemi nyelvek: Ø, {ε}, {a}, ahol a ∈ U,
 azaz egy tetszőleges betű
- azon nyelvek, melyek az elemi nyelvekből az unió, a konkatenació és a lezárás műveletek véges számú alkalmazásával állnak elő;
- nincs más reguláris nyelv

```
Példa: \{\{a\} \cup \{b\}\}^*\{b\} = \{ub \mid u \in \{a,b\}^*\}
```

Reguláris nyelvek

Tétel: Minden L reguláris nyelvhez megadható egy G 3-as típusú grammatika, amelyre L=L(G). ($\mathcal{L}_{reg} \subseteq \mathcal{L}_3$)

Bizonyítás:

Elemi nyelvekhez adható 3-as típusú grammatika.

G=(
$$\{S\},\{a\},\{S\rightarrow aS\},S$$
) L(G)=Ø
G=($\{S\},\{a\},\{S\rightarrow \epsilon\},S$) L(G)= $\{\epsilon\}$
G=($\{S\},\{a\},\{S\rightarrow a\},S$) L(G)= $\{a\}$

Bizonyítás folytatása

Korábban láttuk, hogy az \mathcal{L}_3 nyelvcsalád zárt a reguláris műveletekre nézve.

Az elemi nyelvek grammatikáiból kiindulva megkonstruálható a reguláris műveletekhez tartozó grammatika konstrukciókkal a megfelelő 3-as típusú grammatika bármely összetett reguláris nyelvhez.

Reguláris kifejezések:

Definició:

- az elemi regularis kifejezesek: \emptyset , ϵ , a , ahol a \in U
- ha R₁ es R₂ és R regularis kifejezesek akkor

```
(R_1 \mid R_2);

(R_1R_2);

(R)^* is reguláris kifejezések.
```

 a reguláris kifejezések halmaza a legszűkebb halmaz, melyre a fenti két pont teljesül.

Reguláris kifejezések:

Jelölje L_R az R reguláris kifejezéshez tartozó nyelvet.

$$L_{\emptyset} = \emptyset$$
, $L_{\epsilon} = \{\epsilon\}$, $L_{a} = \{a\}$

Ha Q és R reguláris kifejezések, akkor

$$L_{(Q|R)} = L_Q U L_R$$

unió

$$L_{(QR)} = L_Q L_R$$

konkatenáció

$$L_{(R)^*} = (L_R)^*$$

lezárás

Reguláris kifejezések:

A műveletek prioritási sorrendje növekvően: unió, konkatenáció, lezárás.

A zárójelek elhagyhatók a reguláris kifejezésekből a prioritásoknak megfelelően.

Példák reguláris kifejezésekre

```
• (a|b)*b, ahol

L_{(a|b)*b} = \{\{a\} \cup \{b\}\}\}*\{b\} = \{ub \mid u \in \{a,b\}^*\}
```

L_{aa*b*} = {a,aa,ab,aaa,aab,abb,...}
 aba ∉ L_{aa*b*}

Példák reguláris kifejezésekre

$$0|1(0|1)*0$$
 T={0,1}

A fenti reguláris kifejezésnek a páros bináris számoknak felelnek meg, vezető nullák nélkül.

Érdekes helyek, ahol gyakorolhatók a reguláris kifejezések.

https://regexone.com/

https://regexcrossword.com/

Megjegyzés: A megadott kifejezések a Flex programgenerátor kifejezéseinek részét képezik.

Véges determinisztikus automata (VDA)

Definíció:

 $A = (Q, T, \delta, q_0, F)$ rendezett ötöst véges determinisztikus automatának nevezzük, ahol

- Q az állapotok nem üres véges halmaza,
- T az input szimbólumok ábécéje,
- δ : Q x T \rightarrow Q leképezés az állapot-átmeneti függvény,
- q₀ ∈ Q a kezdőállapot,
- F ⊆ Q elfogadóállapotok halmaza.

Véges determinisztikus automata (VDA)

Véges determinisztikus automata estén a

 δ : Q x T \rightarrow Q állapot-átmeneti függvény

∀ (q,a) párra értelmezett, ahol

 $(q,a) \in Q \times T$ és egyetlen olyan $p \in Q$ állapot

van, amelyre $\delta(q,a) = p$.

Példa

Legyen A = (Q, T, δ, q_0, F) a következő, ahol

Q = {q₀, q₁, q₂, q₃}, T = {a, b}, F = {q₀} és

$$\delta(q_0, a) = q_2, \delta(q_0, b) = q_1,$$

 $\delta(q_1, a) = q_3, \delta(q_1, b) = q_0,$
 $\delta(q_2, a) = q_0, \delta(q_2, b) = q_3,$
 $\delta(q_3, a) = q_1, \delta(q_3, b) = q_2.$

L(A)={u ∈ T* | u-ban páros sok ,a' betű és páros sok ,b' betű van}

Példa - automata megadása táblázattal

δ	a	b
→ q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

Példa - automata megadása gráffal

δ	a	b
⊋ q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

aktuális állapot: q0

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

δ	a	b
q0	q2	q1
q1	q3	q0
q2	q0	q3
q3	q1	q2

δ	a	b
→ q0	q2	q1
q1	q3	q <mark>0</mark>
q2	q0	q3
q3	q1	q2

aktuális állapot: q0

> q0 elfogadó állapot, tehát a szó jó

Alternatív jelölés az állapot-átmenetre

 $\delta(q, a) = p$ állapot átmenetet jelölhetjük egy $qa \rightarrow p$ szabállyal.

Ha minden egyes (q, a) párra <u>egyetlen</u> qa → p szabály van, akkor a véges automata determinisztikus, egyébként nemdeterminisztikus.

Közvetlen redukció

Legyen A = (Q, T, δ, q_0, F) egy véges determinisztikus automata és legyenek $\mathbf{u}, \mathbf{v} \in \mathbf{QT}^*$. (Konfiguráció: aktuális állapot, input hátralévő része.)

Azt mondjuk, hogy az A automata az u konfigurációt a v konfigurációra redukálja közvetlenül (jelölés: $u \Rightarrow_A v$), ha van olyan

 $qa \rightarrow p$ szabály (azaz $\delta(q, a) = p$) és van olyan $w \in T^*$ szó, amelyre

u = qaw és v = pw teljesül.

Redukció

Definíció:

```
Az A = (Q, T, \delta, q_0, F) véges automata az u \in QT^* konfigurációt a v \in QT^* konfigurációra redukálja (jelölés: u \underset{A}{\Rightarrow} v), ha vagy u = v, vagy van olyan z \in QT^*, amelyre u \underset{A}{\Rightarrow} z és z \underset{A}{\Rightarrow} v teljesül.
```

Automata által elfogadott nyelv

Definíció:

Az A = (Q, T, δ, q_0, F) véges automata által elfogadott nyelv alatt az

L(A) := $\{u \in T^* | \exists q_0 u \underset{A}{\Rightarrow}^* p \text{ és } p \in F\}$ szavak halmazát értjük.

Megjegyzés: Ez azt jelenti, hogy van olyan működése az automatának, hogy a kezdőállapotból indulva végig olvasva az inputot elfogadóállapotba jut.

Köszönöm a figyelmet!