Mathematical Basics I

Neuroprosthetics SS 2018

Jörg Encke, Andrej Voss

Prof. Werner Hemmert
Technical University of Munich
Bio-inspired Information Processing

Tun Uhranturm

$$\frac{dV}{dt} = f(V, t)$$

$$\frac{dV}{dt} = t^2 - V \rightarrow \text{analytically solvable}$$

$$\frac{dV}{dt} = t - V^2 \rightarrow \underline{\text{not}}$$
 (trivially) analytically solvable

Geometric view on Differential Equations

Analytical

$$\frac{dV}{dt} = f(V, t)$$
 \Rightarrow slope field

(V, t) f (V, t) f (V, t)

solution V(t), with t_0 , $V_0 \Rightarrow$ integral curve

Recipe for the slope field (Computer)

- Select equally distributed points in space.
- 2 Calculate f(V, t) for the points (V_n, t_n) .
- 3 Draw the slope of the function at these points.

Recipe for the slope field (Human)

- 1 Select an interesting slope C.
- 2 Solve C = f(V, t) for a selected number of interesting points t_n .
- 3 Draw the so-called isoclines.

Geometric view on Differential Equations

Isoclines provide information about certain properties of the solution even if the general solution is not determinable, e.g.:

- Identification of areas where the solution has a steep slope.
- Identification of areas where the solutions stray.

Example: slope field

$$\frac{dV}{dt} = 1 + t - V$$

Table transcript

Geometric view on Differential Equations

In general: Two integral curves don't intersect

Two integral curves don't touch.

For each point (t_n, V_n) there is only one solution!

Fishpond

This approach especially helps to understand dynamic systems.

Fish population in a fishpond. **Table transcript**

A simple equivalent circuit of a cell:

Questions?