Inference 2, 2023, lecture 10

Rolf Larsson

November 29, 2023

1/18

Today

Chap. 5. Testing hypotheses

- Test problems
- P value
- Decision rules
- The Neyman-Pearson test and lemma

Test problems

- Sample $\mathbf{X} = (X_1, ..., X_n)$, statistical model $\mathcal{P} = \{P_\theta : \theta \in \Theta\}$.
- Let $\Theta = \Theta_0 \cup \Theta_1$ with $\Theta_0 \cap \Theta_1 = \emptyset$.
- Test H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1$.
- Two-sided test: H_0 : $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$.
- One-sided tests for $\Theta \subseteq \mathcal{R}$:
 - Test H_0 : $\theta \ge \theta_0$ vs H_1 : $\theta < \theta_0$
 - Test H_0 : $\theta \leq \theta_0$ vs H_1 : $\theta > \theta_0$
- Alternatively:
 - For $\Theta = (-\infty, \theta_0]$, test H_0 : $\theta = \theta_0$ vs H_1 : $\theta < \theta_0$.
 - For $\Theta = [\theta_0, \infty)$, test H_0 : $\theta = \theta_0$ vs H_1 : $\theta > \theta_0$.

3 / 18

- Base the hypothesis test on a suitable **test statistic** T(X).
- Suppose that H_0 is true.
- If the observed value $T(\mathbf{x}) = t_{\rm obs}$ is "improbable" ("extreme"), then we have evidence against H_0 .

Definition (5.1)

The **p value** corresponding to an observed $T(\mathbf{x}) = t_{\rm obs}$ is the probability of $T(\mathbf{X})$ lying at or beyond $t_{\rm obs}$ in the "direction of the more extreme values" of the alternative, computed from the null distribution.

Example 1:

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent uniform on $[0, \theta]$.
- We have n = 4 and observations $\mathbf{x} = (0.74, 1.99, 0.42, 1.08)$.
- Let $\Theta = [2, \infty)$.
- Test H_0 : $\theta = 2$ vs H_1 : $\theta > 2$.
- Take $T(\mathbf{X}) = \max_i X_i$.
- Compute the p value.

- For one-sided tests, i.e.
 - test H_0 : $\theta \ge \theta_0$ vs H_1 : $\theta < \theta_0$,
 - or test H_0 : $\theta \leq \theta_0$ vs H_1 : $\theta > \theta_0$,

the P value is given by either $P_0^T (T \le t_{obs})$ or $P_0^T (T \ge t_{obs})$, depending on the direction of the alternative and the test statistic T.

• For the two-sided test: H_0 : $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$, the p value is (most often) given by

$$2 \min\{P_0^T (T \le t_{obs}), P_0^T (T \ge t_{obs})\}.$$

- ullet Suppose that the test statistic T has a continuous distribution.
- Suppose the p value is given by $P_0(T \le t_{obs})$, where P_0 is the probability calculated under H_0 .
- The p value may be regarded as a random variable which is uniformly distributed on [0,1]. (Why?)

We now shift focus from the parameter space Θ to the sample space \mathcal{X} .

Definition (5.2)

A (nonrandomized) **test** is a statistic $\varphi:\mathcal{X} \to \{0,1\}$ such that

$$\varphi(\mathbf{x}) = \begin{cases} 1 & \text{if} \quad \mathbf{x} \in C_1 \quad \text{(reject } H_0\text{)} \\ 0 & \text{if} \quad \mathbf{x} \in C_0 \quad \text{(do not reject } H_0\text{)} \end{cases}$$

where $\mathcal{X} = C_1 \cup C_0$, with $C_1 \cap C_0 = \emptyset$.

 C_1 is called the **critical region**.

Consider example 1. If we want to reject with probability 0.05 under H_0 , which is the critical region?

Example 2:

- Let $\mathbf{X} = (X_1, ..., X_n)$ where the X_i are independent discrete uniform on $[1, 2, ..., \theta]$.
- We have n = 4 and observations $\mathbf{x} = (52, 99, 35, 12)$.
- Let $\Theta = [100, \infty)$.
- Consider the test H_0 : $\theta = 100$ vs H_1 : $\theta > 100$.
- Calculate the p value.
- ② If we want to reject with probability at most 0.05 under H_0 , which is the critical region?

Definition (5.3)

A **randomized test** φ is a step function on C_1 , $C_=$ and C_0 to [0,1], where $\mathcal{X} = C_1 \cup C_= \cup C_0$ and C_1 , $C_=$ and C_0 are mutually disjunct:

$$\varphi(\mathbf{x}) = \begin{cases} 1 & \text{if} \quad \mathbf{x} \in C_1 \quad \text{(reject } H_0\text{)} \\ \gamma & \text{if} \quad \mathbf{x} \in C_= \quad \text{(reject } H_0 \text{ with probablility } \gamma\text{)} \\ 0 & \text{if} \quad \mathbf{x} \in C_0 \quad \text{(do not reject } H_0\text{)} \end{cases}$$

Observe: Randomized tests are only of theoretical interest! They are never performed in practice. What would be the main problem if they were?

Example 2':

What should $C_{=}$ and γ be in example 2 if we want to reject with probability 0.05 under H_0 ?

Definition (5.4)

For the (randomized) test problem H_0 : $\theta \in \Theta_0$ vs H_1 : $\theta \in \Theta_1$ we define

- **1** The **error of type I**: reject H_0 , but $\theta \in \Theta_0$.
- ② The error of type II: do not reject H_0 , but $\theta \in \Theta_1$.
- \odot The function defined on Θ by

$$\pi(\theta) = \mathrm{E}_{\theta}\{\varphi(\mathbf{X})\} = \mathrm{P}_{\theta}(C_1) + \gamma \mathrm{P}_{\theta}(C_{=})$$

is called the **power function** of the test φ .

Note:

- The power function gives the probability of rejecting H_0 when the parameter equals θ .
- If $\theta \in \Theta_1$, this is one minus the probability of a type II error for this particular θ .

Calculate the power for

- \bullet $\theta = 3$ in example 1.
- 2 $\theta = 150$ in example 2.

- Consider testing a simple H_0 : $\theta = \theta_0$ vs a simple H_1 : $\theta = \theta_1$.
- In other words, we test H_0 : P_0 vs H_1 : P_1 .

Definition (5.5)

For testing a simple H_0 vs a simple H_1 , the **size** of the type I error is $\alpha = P_0(reject\ H_0)$. The size of the type II error is $\beta = P_1(do\ not\ reject\ H_0)$.

In example 1 with H_0 : $\theta=2$, H_1 : $\theta=3$, calculate α and β when the critical regions are

- **1** $C_1 = \{t_{\text{obs}} > 1.975\}$
- **2** $C_1 = \{t_{\text{obs}} > 1.9\}$

The set of all possible $\{\alpha(\varphi), \beta(\varphi)\}$, where φ is a test, is called the set of $\alpha\beta$ -representations.

Theorem (5.1)

The set of $\alpha\beta$ -representations

- 1 is convex,
- is included in the closed unit square,
- \bullet includes the points (0,1) and (1,0).

We want to find a test φ which is optimal in the sense that, given a pre-assigned **significance level** $\alpha = E_0(\varphi)$, the power $1 - \beta = E_1(\varphi)$ is as large as possible.

Definition (5.6)

A test φ^* is called **most powerful** (MP) of size α if.f. $E_0\{\varphi^*(\mathbf{X})\} = \alpha$ and $E_1\{\varphi^*(\mathbf{X})\} \geq E_1\{\varphi(\mathbf{X})\}$ for all tests φ with $E_0\{\varphi(\mathbf{X})\} \leq \alpha$.

Definition (5.7)

For real numbers $k \geq 0$ and $\gamma \in [0,1]$, tests of the form

$$\varphi(\mathbf{x}) = \begin{cases} 1 & \text{if} \quad p_0(\mathbf{x}) < kp_1(\mathbf{x}), \\ \gamma & \text{if} \quad p_0(\mathbf{x}) = kp_1(\mathbf{x}), \\ 0 & \text{if} \quad p_0(\mathbf{x}) > kp_1(\mathbf{x}) \end{cases}$$

are called Neyman-Pearson (NP) tests.

Note: For non randomized tests, this corresponds to rejecting if.f.

the likelihood ratio

$$\Lambda^*(\mathbf{x}) = \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})} < k.$$

The NP test is also called the likelihood ratio (LR) test.

The Neyman-Pearson lemma tells us that NP tests, given the significance level (size), are optimal in terms of power.

Theorem (5.2)

The Neyman-Pearson lemma.

For all $\alpha \in [0,1]$ there exist $\gamma = \gamma(\alpha)$ and $k = k(\alpha)$ such that the NP test with $\gamma(\alpha)$, $k(\alpha)$ has size α and is most powerful of size α . Especially, for $\alpha > 0$,

- If there exists a $k = k(\alpha)$ such that $P_0\{p_0(\mathbf{X}) < kp_1(\mathbf{X})\} = \alpha$, then $\gamma = \gamma(\alpha) = 0$. (The non randomized case.)
- **2** Otherwise take $k = k(\alpha)$ with $P_0\{p_0(\mathbf{X}) < kp_1(\mathbf{X})\} < \alpha < P_0\{p_0(\mathbf{X}) \leq kp_1(\mathbf{X})\}$ and

$$\gamma = \gamma(\alpha) = \frac{\alpha - P_0\{p_0(\mathbf{X}) < kp_1(\mathbf{X})\}}{P_0\{p_0(\mathbf{X})\} = kp_1(\mathbf{X})\}}.$$

17 / 18

News of today

- Tests, one-sided and two-sided
- P value
- In the continuous case, the P value can be seen as a uniformly distributed random variable.
- Test (function)
 - non randomized (continuous case)
 - randomized (discrete case)
- Critical region
- Errors of type I and II
- Power function
- Testing a one point H_0 vs a one point H_1 :
 - The set of $\alpha\beta$ representations.
 - Most powerful test
 - Neyman-Pearson (likelihood ratio) tests
 - ...are optimal in terms of power (Neyman-Pearson lemma)