CS270-B Advanced Digital Image Processing

Lecture 2 Image Denoising

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building-3 420

Outline

- Non local mean
- BM3D
- Supervised Deep Learning Denoising

Resource: https://github.com/wenbihan/reproducible-image-denoising-state-of-the-art

Reference:

[1] A. Buades, B. Coll, J.M. Morel "A non local algorithm for image denoising" IEEE Computer Vision and Pattern Recognition 2005, Vol 2, pp: 60-65, 2005.

No need to stop at neighborhood. Instead search everywhere in the image.

Figure 1. Scheme of NL-means strategy. Similar pixel neighborhoods give a large weight, w(p,q1) and w(p,q2), while much different neighborhoods give a small weight w(p,q3).

• Given a discrete noisy image $v = \{v(i) | i \in I\}$, the estimated value NL[v](i), for a pixel i, is computed as a weighted average of all the pixels in the image,

$$NL[v](i) = \sum_{j \in I} \omega(i,j)v(j)$$

where $\omega(i,j)$ denotes the weight of image that contributed to the denoised patch, which depends on the similarity between the pixels i and j, and satisfy the usual conditions $0 \le \omega(i,j) \le 1$ and $\sum_{j \in I} \omega(i,j) = 1$

$$\omega(i,j) = \frac{1}{Z(i)} e^{-\frac{\|v(\mathcal{N}_i) - v(\mathcal{N}_j)\|_{2,a}^2}{h^2}}; Z(i) = \sum_j e^{-\frac{\|v(\mathcal{N}_i) - v(\mathcal{N}_j)\|_{2,a}^2}{h^2}}$$

Non-local Means vs Bilateral Filtering

Non-local means Filtering

 $NL[v](i) = \sum_{j \in I} \omega(i,j)v(j)$

Intensity range weighting: favor similar pixels (patches in case of non-local means)

Bilateral Filtering

$$NL[v](i) = \sum_{i \in I} g(i,j)\omega(i,j)v(j)$$

Spatial weighting: favor nearby pixels

Everything put together

Gaussian filtering

Smooths everything nearby (even edges) Only depends on spatial distance Bilateral Filtering.

Bilateral filtering

Smooths 'close' pixels in space and intensity Depends on spatial and intensity distance.

Non-local means Filtering

Smooths similar patches no matter how far away Only depends on intensity distance.

Figure 2. Display of the NL-means weight distribution used to estimate the central pixel of every image. The weights go from 1(white) to zero(black).

Non-local Means: Result

Figure 4. Method noise experience on a natural image. Displaying of the image difference. From left to right and from top to bottom: original image, Gauss filtering, anisotropic filtering, Total variation minimization, Neighborhood filtering and NL-means algorithm. The visual experiments corroborate the formulas of section 2.

上海科技大学

Block-matching and 3D Filtering (BM3D)

reference:

[1] Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on image processing, 2007, 16(8): 2080-2095.

BM3D: Overview

BM3D: Block matching

Grouping and Collaborative Hard thresholding

$$d\left(Z_{x_R}, Z_x\right) = \frac{\left\|\Upsilon'\left(\mathcal{T}_{2D}^{ht}\left(Z_{x_R}\right)\right) - \Upsilon'\left(\mathcal{T}_{2D}^{ht}(Z_x)\right)\right\|_2^2}{\left(N_1^{ht}\right)^2} \tag{4}$$

Fig. 1. Illustration of grouping blocks from noisy natural images corrupted by white Gaussian noise with standard deviation 15 and zero mean. Each fragment shows a reference block marked with "R" and a few of the blocks matched to it.

BM3D: Block matching

$$\widehat{\mathbf{Y}}_{S_{x_R}^{\mathrm{ht}}}^{\mathrm{ht}} = \mathcal{T}_{\mathrm{3D}}^{\mathrm{ht}^{-1}} \left(\Upsilon \left(\mathcal{T}_{\mathrm{3D}}^{\mathrm{ht}} \left(\mathbf{Z}_{S_{x_R}^{\mathrm{ht}}} \right) \right) \right) \tag{6}$$

Fig. 2. Simple example of grouping in an artificial image, where for each reference block (with thick borders) there exist perfectly similar ones.

BM3D: Grouping and Collaborative Wiener

Wiener Filtering

Expected value of mean square error

$$e^2 = E\left\{ \left(f - \hat{f} \right)^2 \right\}$$

 \triangleright The estimate of f in frequency domain

$$\widehat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{H^*(u,v)}{|H(u,v)|^2 + K} \right] G(u,v)$$

K-SVD [8]

Pointwise SA-DCT [9]

Total Variation Denoising

[1] L. Rudin and S. Osher, "Total variation based image restoration with free local constraints," in Proc. 1st IEEE Int. Conf. Image Processing, vol. 1, 1994, pp. 31–35

[2] L. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Phys. D, vol. 60, pp. 259–268, 1992.

Total Variation

- The intuitive idea of *Total Variation* is based on the premise that signals exhibiting excessive and potentially spurious details possess high total variation (the integral of the image gradient magnitude).
- For a digital signal x_n , we can, for example, define the total variation as

$$V(x) = \sum_{n} |x_{n+1} - x_n|$$

• To recover the clean signal x_n from y_n is defined by total-variation denoising problem amounts to minimizing the following discrete functional over the signal:

$$E(x,y) + \lambda V(x) = \frac{1}{n} \sum_{n} (x_n - y_n)^2 + \lambda * \sum_{n} |x_{n+1} - x_n|$$

• In the original approach, this function is derived using **Euler–Lagrange equation**. Since it is a convex function, techniques from **convex optimization** can be used to minimize it and find the solution.

Total Variation

• We now consider 2D signals x, such as images. The total-variation norm proposed by the 1992 article is

$$V(x) = \sum_{i,j} \sqrt{|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2}$$

• It is isotropic and not differentiable. A variation that is sometimes used, since it may sometimes be easier to minimize, is an anisotropic version

$$V_{aniso}(x) = \sum_{i,j} |x_{i+1,j} - x_{i,j}| + |x_{i,j+1} - x_{i,j}|$$

The standard total-variation denoising problem is still of the form

$$\min_{x}[E(x,y) + \lambda V(x)]$$

• where E(x,y) is the 2D L2 norm. In contrast to the 1D case, solving this denoising is non-trivial. The authors in [1] solved this by s the primal dual method [2].

Marcov Random Fields

[1] Boykov, Y. and Kolmogorov, V. (2004) An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans PAMI 26(9):1124-1137. [2] Boykov, Y., Veksler, O., and Zabih, R. (2001) Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI, 23(11):1222-1239.

Dictionary-learning Denoising

reference:

- [1] C. Taswell, "The what, how, and why of wavelet shrinkage denoising," in Computing in Science & Engineering, vol. 2, no. 3, pp. 12-19, May-June 2000, doi: 10.1109/5992.841791.
- [2] Meyer Scetbon; Michael Elad; Peyman Milanfar, et al. Deep K-SVD Denoising. IEEE Transactions on image processing, 2021, 16(8): 5944-5955.
- [3] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. on Signal Procession 54(11):4311, 2006

Overview

- The basic idea behind wavelet denoising, or any linear transform thresholding, is that the transform leads to a sparse representation for many real-world signals and images.
- What this means is that the wavelet transform concentrates signal and image features in a few large-magnitude wavelet coefficients.
- Wavelet coefficients which are small in value are typically noise and you can "shrink" those coefficients or remove them without affecting the signal or image quality.
- After you threshold the coefficients, you reconstruct the data using the inverse transform

Dictionary Selection

- What D to use?
- A fixed overcomplete set of basis:
 - Steerable wavelet
 - Contourlet
 - DCT Basis
- Data Adaptive Dictionary learn from data

Denoising Framework

• A cost function for: Z = Y + n

$$arg\ min_Y \|Y - Z\|_2^2 + \lambda \|\cdot\|_p$$

Solve for

$$\widehat{X}, \widehat{Y} = arg\ min_{X,Y} \|Y - Z\|_2^2 + \lambda \|DX - Y\|_F^2 + \sum_i \mu_i \|x_i\|_0$$
Dictionary Learning Sparse Representation

Take home massage

- Image denoising is to recover signals hidden in a noisy background. Since noise is a statistical fluctuation governed by quantum mechanics, denoising is generally achieved by an mean/averaging operation.
- The key idea behind early denoising methods is to avoid smoothing on image edges.
- https://piazza.com/shanghaitech.edu.cn/spring2025/cs270b

