Titanic Data Analysis -- Salman AlMaskati

```
#imports
from tabulate import tabulate
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Data dictionary

```
['Pclass','Ticket Class', '1 = 1st, 2 = 2nd, 3 = 3rd'],
       ['sibSp','# of siblings / spouses aboard the Titanic'],
       ['Parch','# of parents / children aboard the Titanic '],
       ['Fare','Passenger fare'],
       ['Cabin','Cabin number'],
       ['Embarked','Port of Embarkation', 'C = Cherbourg, Q = Queenstown, S = Southampton']
```

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

₽

Variable	Definition	Кеу
Survival	Survived or not	Ø= NO 1=YES
Pclass	Ticket Class	1 = 1st, 2 = 2nd, 3 = 3rd
sibSp	# of siblings / spouses aboard the Titanic	
Parch	# of parents / children aboard the Titanic	
Fare	Passenger fare	
Cabin	Cabin number	
Embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

▼ Exploratory Data Analysis

11 Embarked

memory usage: 83.7+ KB

889 non-null

dtypes: float64(2), int64(5), object(5)

```
#read datasets
df= pd.read_csv(url)
df.info()
    <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 891 entries, 0 to 890
   Data columns (total 12 columns):
    # Column
                  Non-Null Count Dtype
       PassengerId 891 non-null int64
       Survived
                  891 non-null
                              int64
                  891 non-null
        Pclass
                               int64
                  891 non-null
                               object
       Name
       Sex
                  891 non-null
                               object
                  714 non-null
       Age
       SibSp
                  891 non-null
                               int64
       Parch
                  891 non-null
                               int64
       Ticket
                  891 non-null
                               object
                  891 non-null
                               float64
       Fare
    10 Cabin
                  204 non-null
                               obiect
```

object

df

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
4									+

#basic stats

```
countF = (df['Sex'] == 'female').sum()
countM = (df['Sex'] == 'male').sum()
countSurv = (df['Survived'] == 1).sum()
countClass1= (df['Pclass'] == 1).sum()
countClass2= (df['Pclass'] == 2).sum()
countClass3= (df['Pclass'] == 3).sum()
print(f'Number of women on board {countF}')
print(f'Number of men on board {countM}\n')
print(f'Number of people Survived {countSurv}')
print(f'Number of people died {len(df)-countSurv}\n')
print(f'Number of people in 1st class {countClass1}')
print(f'Number of people in 2nd class {countClass2}')
print(f'Number of people in 3rd class {countClass3}')
    Number of women on board 314
    Number of men on board 577
    Number of people Survived 342
    Number of people died 549
    Number of people in 1st class 216
    Number of people in 2nd class 184
    Number of people in 3rd class 491
#Visualizing NA's
countSurv = (df['Survived'] == 1).sum()
sns.heatmap(df.isnull(),yticklabels=False,cbar=False)
plt.title("Visualizing NA's")
```

```
Text(0.5, 1.0, "Visualizing NA's")
numrows=len(df)
cabinNAs=df['Cabin'].isna().sum()
ageNAs= df['Age'].isna().sum()
print(f"The number of NA's in the Cabin coloumn is {cabinNAs} out of {numrows}")
print(f"The number of NA's in the Age coloumn is {ageNAs} out of {numrows}")
The number of NA's in the Cabin coloumn is 687 out of 891
The number of NA's in the Age coloumn is 177 out of 891
```

Since most of the cabin information is missing we can go ahead and remove it from the df. Additionally, we can also drop the name and ticket column since it adds no value to the df

```
ਾਂ ਰੋ ਦੇ ਦ
df1=df.drop(['Ticket','Cabin' ,'Name'],axis=1)
df1
```

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	S
1	2	1	1	female	38.0	1	0	71.2833	С
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	S
4	5	0	3	male	35.0	0	0	8.0500	S
886	887	0	2	male	27.0	0	0	13.0000	S
887	888	1	1	female	19.0	0	0	30.0000	S
888	889	0	3	female	NaN	1	2	23.4500	S
889	890	1	1	male	26.0	0	0	30.0000	С
890	891	0	3	male	32.0	0	0	7.7500	Q

891 rows × 9 columns

sns.factorplot(x="Pclass", col="Survived", kind='count',data=df1)

sns.countplot(x='Survived',hue='Pclass',data=df1)

	PassengerId	Survived	Pclass	Age	SibSp	Parch	F
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000
4							>

sns.heatmap(df1.corr(), annot=True, cmap='coolwarm')

#get dummies
dummy_sex= pd.get_dummies(df1['Sex'])
dummy_embarked= pd.get_dummies(df1['Embarked'])
df1.drop(['Sex', 'Embarked'],axis=1,inplace=True)
df1= pd.concat([df1,dummy_sex,dummy_embarked],axis=1)

df1

		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	female	male	С	ζ
	0	1	0	3	22.0	1	0	7.2500	0	1	0	(
One h	ot er	ncoded the nor	numeric c	olumns	(Emab	rked, S	ex) using	g pandas	function	pd.ge	t_dı	ımn
	•	2	4	0	00.0	0	0	7.0050	4	0	0	,

...

To fill in the age coloumn, i have taken the mean age of every class and replaced it with the NA's in the Age column

...

...

```
age_pclass1=df.loc[df['Pclass'] == 1, 'Age'].mean().astype('int')
age_pclass2=df.loc[df['Pclass'] == 2, 'Age'].mean().astype('int')
age_pclass3=df.loc[df['Pclass'] == 3, 'Age'].mean().astype('int')

print(f'Mean age for 1st class is {age_pclass1}')
print(f'Mean age for 2st class is {age_pclass2}')
print(f'Mean age for 3st class is {age_pclass3}')

Mean age for 1st class is 38
    Mean age for 2st class is 29
    Mean age for 3st class is 25

df2 = df1.copy()
df2.loc[(df2['Pclass'] == 1) & (df2['Age'].isna()), 'Age'] = age_pclass1
df2.loc[(df2['Pclass'] == 2) & (df2['Age'].isna()), 'Age'] = age_pclass2
df2.loc[(df2['Pclass'] == 3) & (df2['Age'].isna()), 'Age'] = age_pclass3
df2.loc[(df2['Pclass'] == 3) & (df2['Age'].isna()), 'Age'] = age_pclass3
df2.loc[(df2['Pclass'] == 3) & (df2['Age'].isna()), 'Age'] = age_pclass3
```

		1 10	100 of 18	3 enti	ries (tilte	rea trom	891 total	entries)	Filter	╙		0
index	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	female	male	С	Q	s
1	2	1	1	38.0	1	0	71.2833	1	0	1	0	0
2	3	1	3	26.0	0	0	7.925	1	0	0	0	1
3	4	1	1	35.0	1	0	53.1	1	0	0	0	1
4	5	0	3	35.0	0	0	8.05	0	1	0	0	1
5	6	0	3	25.0	0	0	8.4583	0	1	0	1	0
6	7	0	1	54.0	0	0	51.8625	0	1	0	0	1
7	8	0	3	2.0	3	1	21.075	0	1	0	0	1
8	9	1	3	27.0	0	2	11.1333	1	0	0	0	1
9	10	1	2	14.0	1	0	30.0708	1	0	1	0	0
10	11	1	3	4.0	1	1	16.7	1	0	0	0	1
11	12	1	1	58.0	0	0	26.55	1	0	0	0	1
12	13	0	3	20.0	0	0	8.05	0	1	0	0	1
13	14	0	3	39.0	1	5	31.275	0	1	0	0	1
14	15	0	3	14.0	0	0	7.8542	1	0	0	0	1
15	16	1	2	55.0	0	0	16.0	1	0	0	0	1
16	17	0	3	2.0	4	1	29.125	0	1	0	1	0
17	18	1	2	29.0	0	0	13.0	0	1	0	0	1
18	19	0	3	31.0	1	0	18.0	1	0	0	0	1
19	20	1	3	25.0	0	0	7.225	1	0	1	0	0
20	21	0	2	35.0	0	0	26.0	0	1	0	0	1
21	22	1	2	34.0	0	0	13.0	0	1	0	0	1
22	23	1	3	15.0	0	0	8.0292	1	0	0	1	0
23	24	1	1	28.0	0	0	35.5	0	1	0	0	1
24	25	0	3	8.0	3	1	21.075	1	0	0	0	1
25	26	1	3	38.0	1	5	31.3875	1	0	0	0	1
26	27	0	3	25.0	0	0	7.225	0	1	1	0	0
27	28	0	1	19.0	3	2	263.0	0	1	0	0	1
28	29	1	3	25.0	0	0	7.8792	1	0	0	1	0
29	30	0	3	25.0	0	0	7.8958	0	1	0	0	1
30	31	0	1	40.0	0	0	27.7208	0	1	1	0	0
31	32	1	1	38.0	1	0	146.5208	1	0	1	0	0
32	33	1	3	25.0	0	0	7.75	1	0	0	1	0
33	34	0	2	66.0	0	0	10.5	0	1	0	0	1
34	35	0	1	28.0	1	0	82.1708	0	1	1	0	0
35	36	0	1	42.0	1	0	52.0	0	1	0	0	1
36	37	1	3	25.0	0	0	7.2292	0	1	1	0	0
37	38	0	3	21.0	0	0	8.05	0	1	0	0	1
38	39	0	3	18.0	2	0	18.0	1	0	0	0	1
39	40	1	3	14.0	1	0	11.2417	1	0	1	0	0
40	41	0	3	40.0	1	0	9.475	1	0	0	0	1
41	42	0	2	27.0	1	0	21.0	1	0	0	0	1
42	43	0	3	25.0	0	0	7.8958	0	1	1	0	0
43	44	1	2	3.0	1	2	41.5792	1	0	1	0	0
44	45	1	3	19.0	0	0	7.8792	1	0	0	1	0
45	46	0	3	25.0	0	0	8.05	0	1	0	0	1
46	47	0	3	25.0	1	0	15.5	0	1	0	1	0
47	48	1	3	25.0	0	0	7.75	1	0	0	1	0
48	49	0	3	25.0	2	0	21.6792	0	1	1	0	0
49	50	0	3	18.0	1	0	17.8	1	0	0	0	1
50	51	0	3	7.0	4	1	39.6875	0	1	0	0	1
51	52	0	3	21.0	0	0	7.8	0	1	0	0	1
52	53	1	1	49.0	1	0	76.7292	1	0	1	0	0
53	54	1	2	29.0	1	0	26.0	1	0	0	0	1
54	55	0	1	65.0	0	1	61.9792	0	1	1	0	0
55	56	1	1	38.0	0	0	35.5	0	1	0	0	1
56	57	1	2	21.0	0	0	10.5	1	0	0	0	1
57	58	0	3	28.5	0	0	7.2292	0	1	1	0	0
58	59	1	2	5.0	1	2	27.75	1	0	0	0	1
59	60	0	3	11.0	5	2	46.9	0	1	0	0	1
60	61	0	3	22.0	0	0	7.2292	0	1	1	0	0
00		1	1	38.0	0	0	80.0	1	0	0	0	0
61	62											

sns.heatmap(df.isnull(),yticklabels=False,cbar=False)
plt.title("NA's before cleaning")

plt.show()

```
sns.heatmap(df2.isnull(),yticklabels=False,cbar=False)
plt.title("NA's after cleaning")
plt.show()
```


Double-click (or enter) to edit

▼ Predicitve Analytics

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
feat=['PassengerId','Pclass','Age','Parch','Fare','female','male','C','Q','S']
X=df2[feat]
y=df2['Survived']
y.head()
     1
          1
     2
          1
     3
          1
     Name: Survived, dtype: int64
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,random_state=10)
y_test.to_frame()
```

```
1
          Survived
     590
                 0
     131
                 0
     628
     195
     230
      ...
     456
                 0
     191
                 0
     603
                 0
      94
                 n
from sklearn.svm import SVC
svm = SVC()
svm.fit(X_train, y_train)
svm_acc_train=svm.score(X_train, y_train).round(2)
print(f'Accuracy of SVM classifier on training set: {svm_acc_train}')
svm acc test=svm.score(X test, y test).round(2)
print(f'Accuracy of SVM classifier on test set: {svm_acc_test}')
    Accuracy of SVM classifier on training set: 0.63
    Accuracy of SVM classifier on test set: 0.69
#K-Nearest Neighbors
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
knn_acc_train= knn.score(X_train, y_train).round(2)
knn_acc_test= knn.score(X_test, y_test).round(2)
print(f'Accuracy of K-NN classifier k=5 on train set: {knn acc train}')
print(f'Accuracy of K-NN classifier k=5 on test set: {knn_acc_test}')
    Accuracy of K-NN classifier k=5 on train set: 0.73
    Accuracy of K-NN classifier k=5 on test set: 0.71
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot_tree
from sklearn.tree import export_text
clf = DecisionTreeClassifier().fit(X_train,y_train)
dt_acc_train= clf.score(X_train,y_train).round(2)
print(f'Accuracy of Decision Tree classifier on training set: {dt_acc_train}')
dt_acc_test= clf.score(X_test,y_test).round(2)
print(f'Accuracy of Decision Tree classifier on test set: {dt_acc_test}')
r = export_text(clf, feature_names=list(X_train.columns))
#print(r)
    Accuracy of Decision Tree classifier on training set: 1.0
    Accuracy of Decision Tree classifier on test set: 0.83
table = [['Model', 'Training Score','Test Score'],
         ['KNN', knn_acc_train ,knn_acc_test],
         ['Decison Tree',dt_acc_train, dt_acc_test],
         ['SVM',svm_acc_train,svm_acc_test],
       ]
```

print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

Model	Training Score	Test Score
KNN	0.73	0.71
Decison Tree	1	0.83
SVM	0.63	0.69

	PassengerId	Survived Predictions
590	591	0
131	132	0
628	629	0
195	196	1
230	231	1
456	457	0
191	192	1
603	604	0
94	95	0
766	767	0

179 rows × 2 columns

×