Derivation of the Optimal LPQ Estimator in the Intercept-Only Model

1. Model Setup

Consider the intercept-only model

$$y_i = \mu + j_i, \quad i = 1, \dots, n,$$

with i.i.d. errors j_i satisfying

$$E[j_i] = 0$$
, $Var(j_i) = \sigma^2$, $E[j_i^3] = m_3$, $E[j_i^4] = m_4$.

The usual unbiased estimator is $\bar{y} = \frac{1}{n} \sum_{i} y_i$ with $Var(\bar{y}) = \sigma^2/n$. We seek an improved equivariant unbiased estimator of the form

$$\tilde{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i + B, \quad B = -\frac{1}{\sigma} (y^{\mathsf{T}} H y) + \sigma \operatorname{tr}(H),$$

where H is an $n \times n$ symmetric matrix to be chosen.

Equivariance/unbiasedness constraints: - Unbiasedness: $E[\tilde{\mu}] = \mu$. Since $E[y_i] = \mu$, the linear part $\frac{1}{n} \sum y_i$ is unbiased. For B,

$$E[B] = -\frac{1}{\sigma} E[y^{\mathsf{T}} H y] + \sigma \operatorname{tr}(H).$$

Write $y = \mu \mathbf{1} + j$. Then

$$y^{\mathsf{T}} H y = (\mu \mathbf{1} + j)^{\mathsf{T}} H (\mu \mathbf{1} + j) = \mu^2 \mathbf{1}^{\mathsf{T}} H \mathbf{1} + 2\mu \mathbf{1}^{\mathsf{T}} H j + j^{\mathsf{T}} H j.$$

To ensure E[B] does not depend on μ (so unbiased for all μ), require

$$\boldsymbol{H}\,\boldsymbol{1} = \boldsymbol{0} \quad \Longrightarrow \quad \boldsymbol{1}^{\top}\boldsymbol{H}\boldsymbol{1} = \boldsymbol{0}, \ \boldsymbol{1}^{\top}\boldsymbol{H}\boldsymbol{j} = \boldsymbol{0},$$

so $y^{\top}Hy = j^{\top}Hj$. Then

$$E[y^{\top}Hy] = E[j^{\top}Hj] = \sum_{i} H_{ii}E[j_{i}^{2}] + \sum_{i \neq j} H_{ij}E[j_{i}j_{j}] = \sigma^{2}\operatorname{tr}(H).$$

Hence $E[B] = -\frac{1}{\sigma}(\sigma^2 \operatorname{tr}(H)) + \sigma \operatorname{tr}(H) = 0$. Thus unbiasedness holds whenever $H\mathbf{1} = 0$. By symmetry of the i.i.d. setting, take H with

$$H_{ii} = a \quad (\forall i), \ H_{ij} = b \quad (\forall i \neq j), \ a + (n-1)b = 0 \implies b = -\frac{a}{n-1}.$$

2. Variance decomposition

Write

$$\tilde{\mu} = \mu + A + B, \quad A = \frac{1}{n} \sum_{i=1}^{n} j_i, \quad B = -\frac{1}{\sigma} (j^{\top} H j) + \sigma \operatorname{tr}(H).$$

Since E[A] = 0, E[B] = 0,

$$\operatorname{Var}(\tilde{\mu}) = \operatorname{Var}(A) + \operatorname{Var}(B) + 2\operatorname{Cov}(A, B).$$

2.1. Var(A)

$$\operatorname{Var}(A) = \operatorname{Var}\left(\frac{1}{n}\sum_{i}j_{i}\right) = \frac{\sigma^{2}}{n}.$$

2.2. Cov(A, B)

$$\operatorname{Cov}\left(A, -\frac{1}{\sigma}j^{\mathsf{T}}Hj\right) = -\frac{1}{n\sigma}\operatorname{Cov}\left(\sum_{i=1}^{n}j_{i}, \sum_{k,\ell}H_{k\ell}j_{k}j_{\ell}\right).$$

Only diagonal terms $k = \ell$ contribute under independence and zero mean:

$$\operatorname{Cov}\left(\sum_{i} j_{i}, \ j^{\top} H j\right) = \sum_{k=1}^{n} H_{kk} E[j_{k}^{3}] = (na) \, m_{3}.$$

Thus

$$Cov(A, B) = -\frac{1}{n\sigma}(nam_3) = -\frac{a m_3}{\sigma}, \quad 2Cov(A, B) = -\frac{2a m_3}{\sigma}.$$

2.3. Var(B)

We need $\operatorname{Var}(j^{\top}Hj)$. As before,

$$j^{\top}Hj = a\sum_{i=1}^{n} j_i^2 + b\sum_{i\neq j} j_i j_j, \quad b = -\frac{a}{n-1}.$$

- $\operatorname{Var}\left(a\sum_{i}j_{i}^{2}\right)=a^{2}\sum_{i}\operatorname{Var}(j_{i}^{2})=a^{2}n\left(m_{4}-\sigma^{4}\right)$. - $\operatorname{Var}\left(b\sum_{i\neq j}j_{i}j_{j}\right)=b^{2}n(n-1)\sigma^{4}$. No covariance between the two sums. Hence

$$\operatorname{Var}(j^{\top} H j) = a^2 n (m_4 - \sigma^4) + b^2 n (n - 1) \sigma^4.$$

Thus

$$\operatorname{Var}(B) = \operatorname{Var}\left(-\frac{1}{\sigma}j^{\top}Hj\right) = \frac{1}{\sigma^2}\operatorname{Var}(j^{\top}Hj) = \frac{a^2n(m_4 - \sigma^4) + b^2n(n-1)\sigma^4}{\sigma^2}.$$

Substitute b = -a/(n-1):

$$b^2n(n-1)\sigma^4 = \frac{na^2\sigma^4}{n-1},$$

so

$$Var(B) = \frac{a^2}{\sigma^2} \left[n(m_4 - \sigma^4) + \frac{n\sigma^4}{n-1} \right].$$

2.4. Total variance and minimization

Combine:

$$\operatorname{Var}(\tilde{\mu}) = \frac{\sigma^2}{n} + \frac{a^2}{\sigma^2} \left[n(m_4 - \sigma^4) + \frac{n\sigma^4}{n-1} \right] - \frac{2a \, m_3}{\sigma}.$$

Let

$$C = n(m_4 - \sigma^4) + \frac{n\sigma^4}{n-1}.$$

Then

$$\operatorname{Var}(\tilde{\mu}) = \frac{\sigma^2}{n} + \frac{a^2}{\sigma^2}C - \frac{2a\,m_3}{\sigma}.$$

Differentiate w.r.t. a:

$$\frac{d}{da}\left(\frac{a^2}{\sigma^2}C - \frac{2a\,m_3}{\sigma}\right) = 2\frac{a}{\sigma^2}C - 2\frac{m_3}{\sigma} = 0 \implies a = \frac{m_3\,\sigma}{C}.$$

Thus the optimal H has

$$H_{ii} = a = \frac{m_3 \sigma}{C}, \quad H_{ij} = -\frac{a}{n-1} = -\frac{m_3 \sigma}{(n-1) C}, \ i \neq j.$$

Plugging back:

$$\frac{a^2}{\sigma^2}C = \frac{m_3^2\sigma^2}{C^2} \cdot \frac{C}{\sigma^2} = \frac{m_3^2}{C}, \quad -\frac{2am_3}{\sigma} = -\frac{2m_3^2}{C}.$$

Hence

$$\operatorname{Var}(\tilde{\mu}_{\mathrm{opt}}) = \frac{\sigma^2}{n} + \frac{m_3^2}{C} - \frac{2m_3^2}{C} = \frac{\sigma^2}{n} - \frac{m_3^2}{C}.$$

Recalling $C = n(m_4 - \sigma^4) + \frac{n\sigma^4}{n-1}$, the final general formula is

$$Var(\tilde{\mu}_{opt}) = \frac{\sigma^2}{n} - \frac{m_3^2}{n(m_4 - \sigma^4) + \frac{n\sigma^4}{n-1}}.$$

3. Remarks

- If $m_3=0$ (symmetric errors), then a=0, so H=0 and $\tilde{\mu}=\bar{y}$. - When $m_3\neq 0$, one obtains variance reduction below σ^2/n , the amount governed by m_3^2 and m_4 . - The matrix H remains exchangeable $(H_{ii}=a,\,H_{ij}=-a/(n-1))$ ensuring $H\mathbf{1}=0$.