Week 05 IVLE Quiz

1. Let \boldsymbol{A} and \boldsymbol{B} be two square matrices of order 3 such that

$$E_2E_1A=E_4E_3B,$$

where

$$\boldsymbol{E_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \boldsymbol{E_2} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \boldsymbol{E_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \boldsymbol{E_4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

You may assume that $\det(\mathbf{A}) \neq 0$. How of the following statements is/are definitely correct?

- (I) Ax = 0 and Bx = 0 have the same solution set.
- (II) $2\det(\boldsymbol{A}) = 3\det(\boldsymbol{B})$.
- (III) $-3\det(\mathbf{A}) = 2\det(\mathbf{B}).$
- (IV) $E_4^{-1}E_3^{-1}E_2E_1A = B$.
- (A) None
- (B) One
- (C) Two
- (D) Three or more.

Answer: (C)

- 2. Which of the following statements regarding determinants is/are definitely correct?
 - (I) If $det(\mathbf{A}) = 0$, then \mathbf{A} is not a square matrix.
 - (II) If \mathbf{A} is a square matrix, then $\det(\mathbf{A}) = -\det(\mathbf{A})$.
 - (III) If \mathbf{A} is singular, then $\det(\mathbf{A})$ is strictly less than zero.
 - (IV) If \mathbf{A} is invertible, then $\det(\mathbf{A}^2)$ is always positive.
 - (A) (I) and (IV) only
 - (B) (I), (II) and (IV) only
 - (C) (II) and (III) only
 - (D) None of the given combinations is correct.

Answer: (D)

- 3. How many statements below is/are correct?
 - (I) For any positive interger n, \mathbb{R}^n is a set with inifinitely many elements.
 - (II) \mathbb{R}^2 is a subset of \mathbb{R}^4 .
 - (III) $\{(1,1),(0,2),(1,-1)\}\$ is a subset of \mathbb{R}^2 .
 - (IV) If $S = \{(x, y, z) \mid x = y = 2z \text{ and } x, y, z \text{ are } integers\}$, then S is a subset of \mathbb{R}^3 .
 - (A) Exactly one.
 - (B) Exactly two.
 - (C) Exactly three.
 - (D) All four.

Answer: (C)

- 4. Suppose S is an orthogonal subset of \mathbb{R}^4 that **does not** contain the zero vector. Which of the following statements is/are definitely correct?
 - (I) S is an orthonormal set of non zero vectors.
 - (II) For any two distinct vectors \boldsymbol{u} and \boldsymbol{v} in S, the distance between \boldsymbol{u} and \boldsymbol{v} is 1.
 - (III) If \boldsymbol{u} is a vector in S, then the length of $-2\boldsymbol{u}$ is twice the length of \boldsymbol{u} .
 - (IV) If \boldsymbol{x} and \boldsymbol{y} belong to S, then the dot product between $2\boldsymbol{x}$ and $3\boldsymbol{y}$ is zero.
 - (A) (II) and (IV) only.
 - (B) (III) only.
 - (C) (I), (II) and (III) only.
 - (D) (III) and (IV) only.

Answer: (D) or (B)

- 5. Let \mathbf{A} be a 4×4 matrix such that $\det(\mathbf{A}) = \frac{1}{2}$. How many of the equations below is/are correct?
 - (I) $\det(2\mathbf{A}) = \det(\mathbf{A}^{-3})$
 - (II) $\det((2\boldsymbol{A})^{-1}) = \det(3\boldsymbol{A})$
 - (III) $\det(2\boldsymbol{A}^{-1}) = 2^3 \det(\boldsymbol{A}^{-2})$
 - (A) None of the equations is correct.
 - (B) Exactly one of the equations is correct.
 - (C) Exactly two of the equations are correct.
 - (D) All of the equations are correct.

Answer: (C)