CS2040S Data Structures and Algorithms

Augmented Trees!

This Week

On the importance of being balanced

- Height-balanced binary search trees
- AVL trees
- Rotations

Tries

– How to handle text?

Data structure design

– How to build new structures on existing ideas?

Recap: Dictionary Interface

A collection of (key, value) pairs:

interface	IDictionary	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
Key	successor(Key k)	find next key > k
Key	predecessor(Key k)	find next key < k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Recap: Binary Search Trees

- Two children: v.left, v.right
- Key: v.key
- BST Property: all in left sub-tree < key < all in right sub-right

The Importance of Being Balanced

How to get a balanced tree:

- Define a good property of a tree.
- Show that if the good property holds, then the tree is balanced.
- After every insert/delete, make sure the good property still holds. If not, fix it.

AVL Trees [Adelson-Velskii & Landis 1962]

AVL Trees [Adelson-Velskii & Landis 1962]

Step 1: Define Invariant

Key definition

– A node v is <u>height-balanced</u> if:

 $|v.left.height - v.right.height| \le 1$

Height-Balanced Trees

Theorem:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

→ A height-balanced tree is balanced.

AVL Trees [Adelson-Velskii & Landis 1962]

Step 2: Show how to maintain height-balance

Insert in AVL Tree

Summary:

- Insert key in BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance and return.

Key observation:

- Only need to fix *lowest* out-of-balance node.
- Only need at most two rotations to fix.

Delete in AVL Tree

Summary:

- Delete key from BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance.
 - Continue to root.

Key observation:

 It is *not* sufficient to only fix lowest out-of-balance node in tree.

Dynamic Data Structures

1. Maintain a set of items

2. Modify the set of items

3. Answer queries.

Big picture idea:

Trees are a good way to store, summarize, and search dynamic data.

Augmenting data structures

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Modify data structure to *maintain* additional info when the structure changes.

(subject to insert/delete/etc.)

4. Develop new operations.

Plan

Two (or three?) examples of augmenting balanced BSTs

1. Order Statistics

2. Interval Queries

3. Orthogonal Range Searching

Order Statistics

Input

A set of integers.

Output: select(k)

The kth item in the set.

Implement a data structure that supports:

- insert(int key)
- delete(int key)

and also:

select(int k)

Idea: store *size* of sub-tree in every node

Example: select(9)

select(9)

select(9)

select(k)

```
rank = m left.weight + 1;
if (k == rank) then
    return v;
else if (k < rank) then
    return m left.select(k);
else if (k > rank) then
    return m right.select(k-rank);
```

select(k): finds the node with rank k

Example: find the 10th tallest student in the class.

select(k): finds the node with rank k

Example: find the 10th tallest student in the class.

rank(v): computes the rank of a node v

Example: determine the percentile of Johnny's height. Is Johnny in the 10th percentile or the 90th percentile?

Example: rank(27)

Example: rank(27)

Example: rank(27)

Example: rank(27)

$$rank = 1 + 2$$

Example: rank(27)

$$rank = 1 + 2 = 3$$

Rank(v): computes the rank of a node v

```
rank(node)
     rank = node.left.weight + 1;
     while (node != null) do
           if node is left child then
                 do nothing
           else if node is right child then
                 rank += node.parent.left.weight + 1;
           node = node.parent;
     return rank;
```

rank(75)

rank(75)

$$rank = 2 + 2$$

rank(75)

$$rank = 2 + 2 + 5 = 9$$

Rank(v): computes the rank of a node v

```
rank(node)
     rank = node.left.weight + 1;
     while (node != null) do
           if node is left child then
                 do nothing
           else if node is right child then
                 rank += node.parent.left.weight + 1;
           node = node.parent;
     return rank;
```

Augmenting data structures

Basic methodology:

1. Choose underlying data structure:

AVL tree

2. Determine additional info needed: Weight of each node

3. Maintained info as data structure is modified.

Update weights as needed

4. Develop new operations using the new info.

Select and Rank

Augmenting data structures

Basic methodology:

1. Choose underlying data structure:

AVL tree

- 2. Determine additional info needed: Weight of each node
- 3. Maintained info as data structure is modified.

 Update weights as needed
- 4. Develop new operations using the new info.

 Select and Rank

Augmented Trees

Maintain weight during insertions:

How to update weights on rotation?

How long does it take to update the weights during a rotation?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. What is a rotation?

Augmenting data structures

Basic methodology:

- 1. Choose underlying data structure (tree, hash table, linked list, stack, etc.)
- 2. Determine additional info needed.
- 3. Verify that the additional info can be maintained as the data structure is modified.

(subject to insert/delete/etc.)

4. Develop new operations using the new info.

Next few lectures...

Three examples of augmenting balanced BSTs

1. Order Statistics

2. Interval Queries

3. Orthogonal Range Searching

Find a tower that covers my location.

Find a tower that covers my location.

Dynamic data structure: supports new towers.

insert(begin, end) delete(begin, end)

Find a tower that covers my location.

19

insert(begin, end) delete(begin, end)

query(x): find an interval that overlaps x.

Find a tower that covers my location.

Idea 1: Keep intervals in a list.

Sort by minimum value in interval.

Query: scan entire list.

Does sorting help? Can we binary search?

Find a tower that covers my location.

example: query(11)

Idea 1: Keep intervals in a list.

Sort by minimum value in interval.

Query: scan entire list.

Find a tower that covers my location.

Idea 2: O(1) queries??

Find a tower that covers my location.

			A	A	A	A	A	В	В	C				D	D	D	D	Ε	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Find a tower that covers my location.

Idea 2: O(1) queries

			A	A	A	A	A	В	В	C				D	D	D	D	Ε	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Space usage, requires discrete integers, potentially expensive to update.

Find a tower that covers my location.

Not ideal solution:

- Space depends on the values stored.
- Time depends on the values stored.

Find a tower that covers my location.

Goal:

- Solutions where space is linear (or near linear) in the number of things stored (i.e., intervals).
- Operations are logarithmic in # of things stored.

Idea 3: Interval Trees

Each node is an interval

Sorted by left endpoint

Important: always specify what your tree is sorted by!

search-interval(25) = ?

Augment: ??

Augment: maximum endpoint in subtree

- 1. 5
- 2. 8
- 3. 11
- 4. 18
- **✓**5. 25
 - 6. 19

Augment: maximum endpoint in subtree

Insertion: example – insert(7, 25)

Insertion: *example* – **insert(7, 25)**

Insertion: example – insert(7, 25)

Insertion: out-of-balance

Insertion: right-rotate (17, 19)

Insertion: right-rotate (17, 19)

Is the tree now balanced?

Insertion: right-rotate (17, 19), OOPS!

Insertion: out-of-balance

Insertion: left-rotate, right-rotate

Maintain MAX during rotations:

Maintain MAX during rotations:

Maintain MAX during rotations:

Searching: interval-search(22)

It is possible that 22 is covered in the left subtree.

Do we know *for sure* that going left will work?

```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c!= null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```



```
interval-search(x): find interval containing x
interval-search(x)
    c = root;
    while (c!= null and x is not in c.interval) do
          if (c.left == null) then
                 c = c.right;
          else if (x > c.left.max) then
                c = c.right;
          else c = c.left;
    return c.interval;
```

Will any search find (21, 23)?

Why does it work?

Claim: If search goes right, then no overlap in left subtree.

Max in "left sub-tree" is 18:

Safe to go right: 22 is not in the left sub-tree.

Claim: If search goes left and there is no overlap in the left subtree...

Claim: If search goes left, then safe to go left.

Max in "left sub-tree" is 18:

Right

subtree

Assume we go to left subtree. Assume search fails!

Max in "left sub-tree" is 18:

Right subtree

Go left: search(13) < 18

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Right subtree

Max in "left sub-tree" is 18:

Right

subtree

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

Max in "left sub-tree" is 18:

Go left: search(13) < 15 < 18

Tree sorted by left endpoint.

- 13 < every interval in right subtree
- → Search also would fail in right subtree

Max in "left sub-tree" is 18:

If search in left subtree fails,

Then search also would fail in right subtree!

Claim: If search goes left and fails, then key < every interval in right sub-tree.

If search goes right: then no interval in left subtree.

→ Either search finds key in right subtree or it is not in the tree.

If search goes left: if there is no interval in left subtree, then there is no interval in right subtree either.

→ Either search finds key in left subtree or it is not in the tree.

Conclusion: search finds an overlapping interval, if it exists.

The running time of interval-search is:

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. Can't say.

Extension: List all intervals that overlap with point?

E.g.: search(22) returns:

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm:

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- -Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

The running time of All-Overlaps, if there are k overlapping intervals?

- 1. O(1)
- 2. O(k)
- 3. O(k log n)
- 4. O(k + log n)
- 5. O(kn)
- 6. O(kn log n)

Extension: List all intervals that overlap with point?

All-Overlaps Algorithm: O(k log n)

Repeat until no more intervals:

- -Search for interval.
- -Add to list.
- Delete interval.

Repeat for all intervals on list:

Add interval back to tree.

Best known solution: O(k + log n)

Today

Two examples of augmenting BSTs

1. Order Statistics

2. Intervals