Edge Intelligence: the Confluence of Edge Computing and Artificial Intelligence

Hailiang Zhao

hliangzhao@zju.edu.cn

College of Computer Science and Technology, Zhejiang University

November 17, 2019

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and AI
 - Birth of Edge Intelligence

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and AI
 - Birth of Edge Intelligence
- Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and AI
 - Birth of Edge Intelligence
- Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and AI
 - Birth of Edge Intelligence
- Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges
- 4 Al on Edge
 - State of the Art
 - Grand Challenges

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and AI
 - Birth of Edge Intelligence
- 2 Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges
- 4 Al on Edge
 - State of the Art
 - Grand Challenges

5G is coming!

What 5G brings to us

- enhanced Mobile BroadBand (eMBB)
- Ultra-Reliable Low Latency Communications (URLLC)
- massive Machine Type Communications (mMTC)

4 / 20

Processing data nearby¹

Why **edge**?

- explosion of data generated by mobile and IoT devices
- oppressive network congestion in backbone
- **3** ...

Multi-access Edge Computing (MEC)

- communication/computation/caching/control at the edge directly
- provide services
- perform computations
- manage resources

MEC avoids unnecessary communication latency and enabling faster responses for end users.

¹Z. Zhou et al. "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing". In: Proceedings of the IEEE 107.8 (2019), pp. 1738–1762.

A typical pre-5G HetNet

What about Artificial Intelligence?

- powerfull in big data processing & insights extracting
- DNNs: powerfull **knowledge representation**
- Typical structures of DNNs
 - Multilayer Perceptrons (MLP)
 - Convolutional Neural Network (CNN) (AlexNet ightarrow VGG-16 ightarrow $GoogleNet \rightarrow ResNet)$
 - **3** Recurrent Neural Network (RNN) (RNN \rightarrow LSTM)
- Popular DNN models
 - Generative Adversarial Network (GAN)
 - Deep Reinforcement Learning (DRL)

(a) Multilayer Perceptrons

(b) Convolution Neural Network

(c) Recurrent Neural Network

Can they integrate with each other?

- Al provides Edge Computing with methods and technologies
 - Complicated resource allocation problems need to solve
 - 4 Huge volumes of data need to analysis
 - 4 Al can help in model formulation & optimization
- Edge Computing provides AI with scenarios and platforms
 - More and more data is created by widespread and geographically distributed mobile and IoT devices
 - Many more application scenarios (intelligent networked vehicles, autonomous driving, smart hone, smart city, ...)
 - 3 Hardware acceleration on resource-limited IoT devices

Their integration leads to the birth of

Edge Intelligence (a.k.a. Edge AI)

Edge Intelligence: our definition

Edge Intelligence

We divide it into Al for edge and Al on edge.

- Al for edge
 - provide a better solution to the constrained optimization problems
 - Al is used for energizing edge with more intelligence and optimality
 - Intelligence-enabled Edge Computing (IEC)
- Al on edge
 - carry out the entire process of AI models on edge
 - or run model training and inference with device-edge-cloud synergy
 - 3 Artificial Intelligence on Edge (AIE)

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and Al
 - Birth of Edge Intelligence
- Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges
- 4 Al on Edge
 - State of the Art
 - Grand Challenges

Roadmap Overview

QoE: indicators

- performance
 - Al for edge: problem-dependent
 - Al on edge: training loss, inference loss
- cost
 - computation cost (CPU time, CPU frequency)
 - communication cost (transmit power, frequency band, access time)
 - energy consumption (battery capacity)
- privacy (security)
 - leads to the birth of Federated Learning
- efficiency
 - excellent performance with low overhead
- reliability
 - robustness
 - a handle with failure

Al for edge: a recapitulation

- Service
 - optimize computation offloading via DQN²³
- 2 Content
 - service placement via MAB⁴
 - service deployment via DRL⁵
- Topology
 - optimize UAVs via Multi-agent Learning⁶
 - 2 learning-driven communication⁷

²X. Chen et al. "Optimized Computation Offloading Performance in Virtual Edge Computing Systems Via Deep Reinforcement Learning". In: *IEEE Internet of Things Journal* 6.3 (2019), pp. 4005–4018.

³M. Min et al. "Learning-Based Computation Offloading for IoT Devices With Energy Harvesting". In: *IEEE Transactions on Vehicular Technology* 68.2 (2019), pp. 1930–1941.

⁴L. Chen et al. "Spatio-Temporal Edge Service Placement: A Bandit Learning Approach". In: *IEEE Transactions on Wireless Communications* 17.12 (2018), pp. 8388–8401.

⁵Y. Chen et al. "Data-Intensive Application Deployment at Edge: A Deep Reinforcement Learning Approach". In: 2019 IEEE International Conference on Web Services (ICWS). 2019, pp. 355–359.

⁶ J. Xu, Y. Zeng, and R. Zhang. "UAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization". In: *IEEE Transactions on Wireless Communications* 17.8 (2018), pp. 5092–5106.

⁷M. Chen et al. "Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial". In: *IEEE Communications Surveys Tutorials* (2019), pp. 1–33.

Al on edge: a recapitulation

- model adaptation (too many of them)
 - model compression, conditional computation, algorithm asynchronization, thoroughly decentralization, ...
- framework design
 - model training: Federated Learning on edge⁸, knowledge distillation-based methods⁹
 - 2 model inference: model splitting/partitioning (Edgent)¹⁰
- processor acceleration¹¹
 - design special instruction sets
 - design high parallel computing paradigms
 - move computation closer to memory

⁸Kai Yang et al. "Federated Learning via Over-the-Air Computation". In: CoRR abs/1812.11750 (2018). arXiv: 1812.11750.

⁹ Jin-Hyun Ahn, Osvaldo Simeone, and Joonhyuk Kang. "Wireless Federated Distillation for Distributed Edge Learning with Heterogeneous Data". In: *ArXiv* abs/1907.02745 (2019).

¹⁰En Li, Zhi Zhou, and Xu Chen. "Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy". In: Proceedings of the 2018 Workshop on Mobile Edge Communications, MECOMM@SIGCOMM 2018, Budapest, Hungary, August 20, 2018. 2018, pp. 31–36.

¹¹V. Sze et al. "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329.

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and Al
 - Birth of Edge Intelligence
- Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges
- 4 Al on Edge
 - State of the Art
 - Grand Challenges

Utilize DQN for performance optimization

Grand challenges

- model establishment
 - unrestrained searching space
 - state/action set cannot be infinite
- algorithm deployment
 - cannot obtain analytic (approximate) optimal solution
 - $oldsymbol{2}$ too many iterations ightarrow hard to deploy in an online manner
 - who undertake the responsibility?
- balance between optimality and efficiency

- Introduction
 - 5G, edge, and Al
 - Relations between Edge Computing and Al
 - Birth of Edge Intelligence
- 2 Research Roadmap of Edge Intelligence
 - Roadmap overview
 - Quality of Experience
 - Intelligence-enabled Edge Computing
 - Artificial Intelligence on Edge
- Al for Edge
 - State of the Art
 - Grand Challenges
- 4 Al on Edge
 - State of the Art
 - Grand Challenges

Model Adaptation: a classification

Grand challeneges

data availability

- where to find usable data?
- incentive mechnisms
- obvious bias from distributed end users (non i.i.d.)

2 model selection

- select befitting threshold of learning accuracy & scale of models
- 2 select probe training frameworks and accelerator architectures

coordination mechanism

- same method achieves different results
- compatibility and coordination (cloud-edge-device synergy)
- stablish a unified API interface?