Санкт-Петербургский Политехнический университет Петра Великого

Отчет по лабораторной работе "Решение задачи Коши"

Студент: Кац Софья Витальевна

Преподаватель: Козлов Константин Николаевич

Группа: 5030102/10401

1 Формулировка задания

Требуется запрограммировать метод решения задачи Коши для ОДУ модифицированным методом Эйлера. Программа должна работать для произвольной размерности системыуравнений.

Функция правой части системы и начальное условие подаются на вход программе. Вычисления должны производиться с пошаговым контролем точности по правилу Рунге. Если на текущем шаге точность не достигается, то шаг уменьшается в 2 раза, если достигнутая погрешность меньше заданной в 64 раза, то шаг увеличивается в 2 раза.

По сохраненным результатам построить графики, используя matplotlib:

- изменение шага по отрезку для разных значений заданной точности
- зависимость минимального шага от заданной точности
- зависимость числа шагов от заданной точности
- решение для разных значений заданной точности

2 Алгоритм

На вход алгоритму подаются:

- начало промежутка t_0
- конец промежутка Т
- начальный шаг h_0
- максимальное число вызовов функции правой части N_x
- желаемая точность ерѕ
- число уравнений
- следующие n+3 строк определяют функцию правой части на Python
- последняя строка содержит п чисел начальное условие

Нахождение y_{k+1} в модифицированном методе Эйлера:

$$y_{k+1} = y_k + hf(x_k + \frac{h}{2}, y_k + \frac{h}{2}f(x_k, y_k)$$

Для нахождения второй переменной в функции мы делаем шаг $\frac{h}{2}$ по методу Эйлера, а затем строим касательную в полученной точке и сдвигаем её так, чтобы она проходила через (x_k, y_k) .

3 Как запустить

Чтобы решить систему, необходимо запустить файл main.py

Команда для консольного ввода: python main.py

Вывод результатов будет произведен в консоль. Данные выводятся в виде столбцов, одна строчкасоответствует одному шагу интегрирования:

- значение t
- значение шага h
- оценка Рунге R
- истраченное число вычислений правой части N
- значения функций решений

4 Пример выполнения программы

```
D:\EDU\биоинформатика\laba8\venv\Scripts\python.exe D:\EDU\биоинформатика\laba8\main.py
0.0001
#
 A = np.array([[-0.4, 0.02, 0], [0, 0.8, -0.1], [0.003, 0, 1]])
 kounter[0] += 1
     1.500000
                  0.100000
                                0.00000e+00
                                                        0
                                                              1.000000
                                                                            1.000000
                                                                                         2.000000
                                3.62209e-05
                                                                                         2.210309
     1.600000
                  0.100000
                                                              0.962820
                                                                            1.061398
     1.700000
                  0.100000
                                4.00173e-05
                                                       12
                                                              0.927221
                                                                            1.125613
                                                                                         2.442690
     1.800000
                  0.100000
                                4.42173e-05
                                                       18
                                                              0.893145
                                                                            1.192637
                                                                                         2.699459
     1.900000
                  0.100000
                                4.88636e-05
                                                       24
                                                              0.860540
                                                                            1.262439
                                                                                         2.983178
                                5.40037e-05
     2.000000
                  0.100000
                                                       30
                                                              0.829352
                                                                            1.334956
                                                                                         3.296678
     2.100000
                  0.100000
                                5.96903e-05
                                                       36
                                                              0.799532
                                                                            1.410090
                                                                                         3.643086
     2.200000
                  0.100000
                                6.59813e-05
                                                       42
                                                              0.771031
                                                                            1.487698
                                                                                         4.025858
     2.300000
                  0.100000
                                7.29411e-05
                                                       48
                                                              0.743801
                                                                            1.567592
                                                                                         4.448812
     2.400000
                  0.100000
                                8.06409e-05
                                                       54
                                                              0.717797
                                                                            1.649522
                                                                                         4.916167
     2.500000
                  0.100000
                                8.91596e-05
                                                       60
                                                              0.692976
                                                                            1.733175
                                                                                         5.432587
```

5 Графики

Для исследования влияния задаваемой точности на результат были рассмотрены точности: 0.001, 0.0001, 0.00001, 0.000001, 0.000001, 0.0000001

Рисунок 1: График зависимости числа шагов от задаваемой точности

Рисунок 2: График зависимости минимального шага от задаваемой точности

Рисунок 3: Графики изменения шага по отрезку для разных значений задаваемой точности

Рисунок 4: Графики зависимости решения от задаваемой точности

Далее будут приведены результаты выполнения программы для разных точностей.

eps = 0.0	901					
1.500	0.10000	0.00000e+00	0	1.000000	1.000000	2.000000
1.600	0.10000	3.62209e-05	6	0.962820	1.061398	2.210309
1.700	0.100000	4.00173e-05	12	0.927221	1.125613	2.442690
1.800	0.10000	4.42173e-05	18	0.893145	1.192637	2.699459
1.900	0.10000	4.88636e-05	24	0.860540	1.262439	2.983178
2.000	0.10000	5.40037e-05	30	0.829352	1.334956	3.296678
2.100	0.100000	5.96903e-05	36	0.799532	1.410090	3.643086
2.200	0.10000	6.59813e-05	42	0.771031	1.487698	4.025858
2.300	0.10000	7.29411e-05	48	0.743801	1.567592	4.448812
2.400	0.100000	8.06409e-05	54	0.717797	1.649522	4.916167
2.500	0.100000	8.91596e-05	60	0.692976	1.733175	5.432587

eps = 1e-05						
1.500000	0.100000	0.00000e+00	0	1.000000	1.000000	2.000000
1.550000	0.050000	4.49973e-06	12	0.981205	1.030350	2.102652
1.600000	0.050000	4.72984e-06	18	0.962813	1.061401	2.210563
1.650000	0.050000	4.97189e-06	24	0.944815	1.093156	2.324001
1.700000	0.050000	5.22649e-06	30	0.927206	1.125613	2.443250
1.750000	0.050000	5.49429e-06	36	0.909978	1.158772	2.568607
1.800000	0.050000	5.77599e-06	42	0.893125	1.192629	2.700387
1.850000	0.050000	6.07229e-06	48	0.876639	1.227178	2.838918
1.900000	0.050000	6.38396e-06	54	0.860514	1.262413	2.984546
1.950000	0.050000	6.71180e-06	60	0.844743	1.298325	3.137635
2.000000	0.050000	7.05664e-06	66	0.829321	1.334902	3.298568
2.050000	0.050000	7.41936e-06	72	0.814240	1.372131	3.467746
2.100000	0.050000	7.80090e-06	78	0.799495	1.409995	3.645592
2.150000	0.050000	8.20224e-06	84	0.785080	1.448474	3.832550
2.200000	0.050000	8.62439e-06	90	0.770989	1.487546	4.029088
2.250000	0.050000	9.06844e-06	96	0.757216	1.527186	4.235696
2.300000	0.050000	9.53554e-06	102	0.743755	1.567363	4.452891
2.325000	0.025000	1.24944e-06	114	0.737139	1.587641	4.565661
2.350000	0.025000	1.28125e-06	120	0.730600	1.608040	4.681285
2.375000	0.025000	1.31386e-06	126	0.724135	1.628556	4.799836
2.400000	0.025000	1.34732e-06	132	0.717745	1.649183	4.921386
2.425000	0.025000	1.38163e-06	138	0.711430	1.669917	5.046013
2.450000	0.025000	1.41682e-06	144	0.705187	1.690750	5.173794
2.475000	0.025000	1.45291e-06	150	0.699017	1.711678	5.304809
2.500000	0.025000	1.48993e-06	156	0.692918	1.732693	5.439140

eps = 1e-06						
1.500000	0.100000	0.00000e+00	0	1.000000	1.000000	2.000000
1.525000	0.025000	5.60724e-07	18	0.990551	1.015087	2.050701
1.550000	0.025000	5.74884e-07	24	0.981204	1.030350	2.102684
1.575000	0.025000	5.89406e-07	30	0.971958	1.045788	2.155982
1.600000	0.025000	6.04301e-07	36	0.962811	1.061402	2.210629
1.625000	0.025000	6.19577e-07	42	0.953763	1.077191	2.266658
1.650000	0.025000	6.35244e-07	48	0.944813	1.093156	2.324105
1.675000	0.025000	6.51312e-07	54	0.935960	1.109297	2.383005
1.700000	0.025000	6.67793e-07	60	0.927203	1.125613	2.443396
1.725000	0.025000	6.84695e-07	66	0.918541	1.142104	2.505315
1.750000	0.025000	7.02030e-07	72	0.909974	1.158770	2.568800
1.775000	0.025000	7.19809e-07	78	0.901500	1.175611	2.633891
1.800000	0.025000	7.38043e-07	84	0.893120	1.192625	2.700630
1.825000	0.025000	7.56745e-07	90	0.884831	1.209813	2.769057
1.850000	0.025000	7.75925e-07	96	0.876633	1.227172	2.839216
1.875000	0.025000	7.95597e-07	102	0.868525	1.244703	2.911150
1.900000	0.025000	8.15772e-07	108	0.860507	1.262405	2.984904
1.925000	0.025000	8.36464e-07	114	0.852577	1.280275	3.060524
1.950000	0.025000	8.57687e-07	120	0.844736	1.298313	3.138058
1.975000	0.025000	8.79452e-07	126	0.836981	1.316517	3.217554
2.000000	0.025000	9.01776e-07	132	0.829313	1.334886	3.299062
2.025000	0.025000	9.24671e-07	138	0.821730	1.353417	3.382632
2.050000	0.025000	9.48152e-07	144	0.814231	1.372109	3.468317
2.075000	0.025000	9.72235e-07	150	0.806817	1.390960	3.556170
2.100000	0.025000	9.96936e-07	156	0.799486	1.409967	3.646247
2.112500	0.012500	1.27584e-07	168	0.795851	1.419528	3.692140
2.125000	0.012500	1.29195e-07	174	0.792237	1.429127	3.738610
2.137500	0.012500	1.30827e-07	180	0.788644	1.438764	3.785664
2.150000 2.162500	0.012500 0.012500	1.32479e-07 1.34153e-07	186 192	0.785070 0.781517	1.448438 1.458150	3.833311 3.881556
2.175000	0.012500	1.35847e-07	198	0.777984	1.467897	3.930408
2.187500	0.012500	1.37564e-07	204	0.774471	1.477681	3.979875
2.200000	0.012500	1.39302e-07	210	0.770978	1.487501	4.029963
2.212500	0.012500	1.41062e-07	216	0.767505	1.497357	4.080682
2.225000	0.012500	1.42845e-07	222	0.764052	1.507247	4.132038
2.237500	0.012500	1.44650e-07	228	0.760618	1.517171	4.184040
2.250000	0.012500	1.46479e-07	234	0.757204	1.527130	4.236696
2.262500	0.012500	1.48331e-07	240	0.753810	1.537122	4.290014
2.275000	0.012500	1.50206e-07	246	0.750435	1.547148	4.344003
2.287500	0.012500	1.52105e-07	252	0.747079	1.557205	4.398670
2.300000	0.012500	1.54028e-07	258	0.743743	1.567295	4.454026
2.312500	0.012500	1.55976e-07	264	0.740425	1.577416	4.510077
2.325000	0.012500	1.57949e-07	270	0.737127	1.587568	4.566833
2.337500	0.012500	1.59947e-07	276	0.733848	1.597750	4.624303
2.350000	0.012500	1.61970e-07	282	0.730587	1.607962	4.682496
2.362500	0.012500	1.64019e-07	288	0.727346	1.618203	4.741420
2.375000	0.012500	1.66094e-07	294	0.724123	1.628473	4.801086
2.387500	0.012500	1.68195e-07	300 306	0.720919	1.638770	4.861502
2.400000 2.412500	0.012500 0.012500	1.70323e-07 1.72479e-07	306 312	0.717733 0.714566	1.649094 1.659445	4.922677 4.984622
2.425000	0.012500	1.74662e-07	318	0.714388	1.669822	5.047347
2.437500	0.012500	1.748872e-07	324	0.711417	1.680223	5.110860
2.450000	0.012500	1.79111e-07	330	0.705175	1.690649	5.175171
2.462500	0.012500	1.81378e-07	336	0.702080	1.701098	5.240292
2.475000	0.012500	1.83674e-07	342	0.699004	1.711570	5.306231
2.487500	0.012500	1.85999e-07	348	0.695946	1.722064	5.373000
2.500000	0.012500	1.88354e-07	354	0.692906	1.732579	5.440608