IMPROVING SAMPLE-EFFICIENCY OF MODEL-FREE REINFORCEMENT LEARNING ALGORITHMS ON IMAGE INPUTS WITH REPRESENTATION LEARNING

MARKO GUBERINA BETELHEM DEJENE DESTA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

GOTHENBURG, SWEDEN 2022

PRESENTATION STRUCTURE

- 1 Project overview
- 2 Hypothesis
- 3 Reinforcement learning
- 4 Representation learning
- 5 Representation learning for control
- 6 Related work
- 7 Methods
- 8 Results
- 9 Section 2

PROJECT OVERVIEW

HYPOTHESIS

RL ON PIXELS PROBLEM DECOMPOSITION

- state (feature) extraction
- dynamics modelling
- reward dynamics modelling

HYPOTHESES

Joint training hypothesis

Joint training is better than pretraining.

HYPOTHESES

Joint training hypothesis

Joint training is better than pretraining.

Better features hypothesis.

The more features are aligned with the underlying Markov chain, the better they work as state representations.

HYPOTHESES

Joint training hypothesis

Joint training is better than pretraining.

Better features hypothesis.

The more features are aligned with the underlying Markov chain, the better they work as state representations.

Regularization hypothesis.

Proper regularization helps when learning different objectives.

WHAT IS REINFORCEMENT LEARNING?

- formalized "trial-and-error" learning
- needs a reward function
- trade-off between exploration and exploitation

MARKOV CHAIN

Figure: Schematic of a Markov chain.

MARKOV DECISION PROCESS

Figure: Schematic of a Markov decision process.

PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Figure: Schematic of a partially observable Markov decision process.

MARKOV DECISION PROCESS WITH A POLICY

Figure: Schematic of a Markov decision process with a policy π .

MARKOV DECISION PROCESS IN EQUATION FORM

$$\underbrace{p_{\theta}(\textbf{s}_{1}, \textbf{a}_{1}, \dots, \textbf{s}_{T}, \textbf{a}_{T})}_{p_{\theta}(\tau)} = p(\textbf{s}_{1}) \prod_{t=1} \underbrace{\pi_{\theta}(\textbf{a}_{t}|\textbf{s}_{t}) p(\textbf{s}_{t+1}|\textbf{s}_{t}, \textbf{a}_{t})}_{\text{Markov chain on } (\textbf{s}, \textbf{a})}$$

THE GOAL OF REINFORCEMENT LEARNING

Find policy parameters θ^* such that:

$$\begin{aligned} \theta^{\star} &= \arg\!\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \\ &= \arg\!\max_{\theta} \sum_{t}^{T} \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})} \left[r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \end{aligned}$$

VALUE FUNCTIONS

Q-function:

$$Q^{\pi}(\boldsymbol{s}_{t}, \boldsymbol{a}_{t}) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}} \left[r(\boldsymbol{s}_{t'}, \boldsymbol{a}_{t'}) | \boldsymbol{s}_{t}, \boldsymbol{a}_{t} \right]$$

State value function:

$$V^{\pi}(\mathbf{s}_t) = \sum_{t'=t}^{T} \mathbb{E}_{\pi_{\theta}} \left[r(\mathbf{s}_{t'}, \mathbf{a}_{t'} | \mathbf{s}_{t}) \right]$$

Their connection:

$$V^{\pi}(oldsymbol{s}_t) = \mathbb{E}_{oldsymbol{a}_t \sim \pi(oldsymbol{s}_t, oldsymbol{a}_t)} \left[Q^{\pi}(oldsymbol{s}_t, oldsymbol{a}_t)
ight]$$

CLASSES OF REINFORCEMENT LEARNING ALGORITHMS

Based on objective:

- policy gradient algorithms
- actor-critic algorithms
- value iteration algorithms

Based on sampling strategy:

- on-policy
- off-policy

POLICY GRADIENT ALGORITHMS

REINFORCE algorithm:

- 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\boldsymbol{a}_t|\boldsymbol{s}_t)$ by running the policy
- 2. use the samples to estimate the gradient of the objective:

$$abla_{ heta} J(heta) pprox \sum_{i} \left(\sum_{t}^{\mathsf{T}}
abla_{ heta} \log \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right) \left(\sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

3. update the policy function by performing a step of gradient ascent:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

ACTOR CRITIC ALGORITHMS

Actor-critic algorithm template

- 1. take action $\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$, observe transition $(\mathbf{s}, \mathbf{a}, \mathbf{s'}, r)$ and store it in the replay buffer \mathcal{R}
- 2. sample a batch $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ from buffer \mathcal{R}
- 3. update the Q-value estimator \hat{Q}^{π}_{θ} by using the target: $y_i = r_i + \gamma \hat{Q}^{\pi}_{\theta}(\mathbf{s}'_i, \mathbf{a}'_i) \forall \mathbf{s}_i, \mathbf{a}_i$
- 4. compute the policy gradient estimate with: $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i}^{\pi} | \mathbf{s}_{i}) \hat{Q}^{\pi}(\mathbf{s}_{i}, \mathbf{a}_{i}^{\pi})$, where $\mathbf{a}_{i}^{\pi} \sim \pi_{\theta}(\mathbf{a} | \mathbf{s}_{i})$
- 5. update the policy function by performing a gradient step:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

EPSILON-GREEDY POLICY

$$\pi_{\mathsf{greedy}}(\mathbf{s}_t|\mathbf{a}_t) = \begin{cases} 1 & \mathsf{if } \mathbf{a}_t = \mathsf{argmax}_{\mathbf{a}_t} A^{\pi}(\mathbf{s}_t, \mathbf{a}_t) \\ 0 & \mathsf{otherwise} \end{cases}$$
 (1)

VALUE ITERATION

Bootstrap update for the value function:

$$V^{\pi}(\mathbf{s}) \leftarrow E_{\mathbf{a} \sim \pi(\mathbf{a}|\mathbf{s})} \left[r(\mathbf{s}, \mathbf{a}) + \gamma E_{\mathbf{s}' \sim p(\mathbf{s}'|\mathbf{a}, \mathbf{s})} [V^{\pi}(\mathbf{s}')] \right]$$
(2)

Value iteration

- 1. set $Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \gamma E[V(\mathbf{s}')]$
- 2. set $V(\mathbf{s}) \leftarrow \max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a})$

DQN

"Classic" DQN

- 1. take some action $\boldsymbol{a_i}$, observe $(\boldsymbol{s_i}, \boldsymbol{a_i}, \boldsymbol{s_i'}, r_i)$ and add it to \mathcal{B}
- 2. sample a mini-batch $\left(\mathbf{s}_{j}, \mathbf{a}_{j}, \mathbf{s}'_{j}, r_{j}\right)$ from \mathcal{B} uniformly
- 3. compute $y_j = r_j + \gamma \max_{a'_j} Q_{\phi'}(s'_j, a'_j)$ using the *target* network $Q_{\phi'}$
- 4. $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) \left(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) y_{j}\right)$
- 5. update ϕ' : copy ϕ every N steps

RAINBOW

DQN with the following improvements:

- double Q-networks
- multi-step returns
- prioritized replay buffer
- dueling network
- noisy networks

REPRESENTATION LEARNING

GENERAL REMARKS

- goal is to learn a parametric mapping from raw input data to a feature vector in order to capture and extract useful abstract information
- works with unsupervised learning
- generative and discriminative models

GENERATIVE MODELS

- deterministic:
 - ▶ autoencoders (AEs)
- probabilistic:
 - variational autoencoders (VAEs)
 - generative adversarial networks (GANs)

DISCRIMINATIVE MODELS

- have only encoders
- trained with:
 - ► contrastive learning
 - bootstrapping

REGULARIZATION FOR AUTOENCODERS

Known from [BCV13], [Gho+19] and others:

- on input:
 - denoising autoencoders
- on bottleneck:
 - noise injection
 - ► Tikhonov regularization (L2 regularization)
- other:
 - gradient penalty (weight decay)
 - ► spectral normalization

REPRESENTATION LEARNING FOR CON-

TROL

DESIRABLE PROPERTIES

On top of general desirable properties for representations:

- having the Markov property
- represent states well enough for policy improvement
- generalize in the stateful sense

TYPES OF MODELS

- autoencoders
- forward models
- inverse models
- hybrid models

AUTOENCODERS

Figure: Auto-encoder: learned by reconstructing the observation (one-to-one). The observation is the input and the computed state is the vector at the auto-encoder's bottleneck layer.

FORWARD MODELS

Figure: Forward model: predicting the future state from the state-action pair.

INVERSE MODELS

Figure: Inverse model: predicting the action between two consecutive states.

RELATED WORK

REINFORCEMENT LEARNING ON ATARI GAMES

- started with DQN [Mni+13]
- many improvements:
 - ▶ algorithm fundamentals, combination in [Hes+18]
 - exploration schemes: [Pat+17], [Eco+21]
 - ▶ better sampling: [And+17], [Kap+18]
- model based algorithms: [Sch+20a]
- all solved on human level in [Bad+20]

REINFORCEMENT LEARNING ON ATARI GAMES

- started with DQN [Mni+13]
- many improvements:
 - ► algorithm fundamentals, combination in [Hes+18]
 - exploration schemes: [Pat+17], [Eco+21]
 - ▶ better sampling: [And+17], [Kap+18]
- model based algorithms: [Sch+20a]
- all solved on human level in [Bad+20]

Next challenge

Making reinforcement learning more sample-efficient.

USING DATA AUGMENTATION FOR REGULARIZATION

- simply adding data augmentation to RL: [Las+20]
- using it to regularize RL: [KYF20], [Yar+21]

- early efforts for state representation learning did not work well
- initially used to help exploration: [She+16], [Jad+16] or [Pat+17]
- recent efforts use both deterministic and stochastic generative models (mostly stochastic)
- most recent works focus on using discriminative models
- ideally obtained solely via pretrainining; recent efforts include [Seo+22]

DETERMINISTIC GENERATIVE MODELS

Idea introduced in [LR10]. Most importantly used in [Yar+19]. Authors identify the following for success:

- only value function gradients update the encoder
- same update rate for autoencoder and RL updates
- using L2 regularization

Possible improvements:

- prediction architecture from [Oh+15]
- optical or latent flow: [Sha+21]

STOCHASTIC GENERATIVE MODELS

Theoretically more interesting because:

- can be integrated into the underlying Markov chain: [Lee+20]
- can be used as models in model-based RL

Despite large interest they are hard to get to work due to their stochasticity (elaborated and tested in [Yar+19]).

DISCRIMINATIVE MODELS

More practical as there is no decoder (which is unnecessary for the purpose). Trained using different objectives:

- contrastive loss: [LSA20]
- mutual information: [Rak+21], [Ana+19], [Maz+20]
- bisimulation metrics: [Zha+20]
- bootstrapped self-predictions (introduced in [Gri+20]): [Sch+20b], and in [Mer+22]

METHODS

OUR HYPOTHESES

We want to test the following claims:

- joint representation and reinforcement training performs better than pretraining
- representation better incentivised to learn stateful information will yield better features
- 3. regularization is important for joint training stabilization and final effectiveness

IMPLICIT FEATURE SPACES HYPOTHESIS

Figure: Schematic of the latent representation space.

TESTING HYPOTHESIS 1

We can only indirectly test the hypothesis by observing the obtained returns on different games. We run the following experiments and observe the results:

- 1. only RL
- 2. only RL, but on encoders from a finished RL run
- only RL, but on encoders pretrained with pixel reconstruction loss
- 4. joint training from scratch

TESTING HYPOTHESIS 2

- joint training where unsupervised learning task is only compression
- 2. joint training where unsupervised learning task is compression and one-step forward prediction in pixel space

TESTING HYPOTHESIS 3

- 1. joint training with no regularization
- 2. joint training with L2 regularization
- 3. joint training with L2 regularization and data augmentation

MODULE IMPLEMENTATION

We really implement our add-on module as an add-on module in the reinforcement learning library Tianshou.

This is possible because Tianshou abstract different parts of reinforcement learning.

We implement our module as a policy wrapper.

TIANSHOU ABSTRACTIONS

Figure: Tianshou abstractions.

NETWORK ARCHITECTURES AND HYPERPARAMETERS

- all reinforcement learning parameters are kept equal and correspond to those in [Hes+18]
- two sized encoders, 2-D convolutional layers specified as (number of input channels, number of output channels, kernel size, stride, padding):
 - smaller, same as in [Mni+15]: (number of stacked frames, 32, 8, 4, 0), (32, 64, 4, 2, 0), (64, 64, 3, 1, 0)
 - bigger, same as in [Yar+19]: (number of stacked frames, 32, 3, 2, 0), (32, 32, 3, 2, 0), (32, 32, 3, 2, 0) followed by a linear layer of shape (32 × 35 × 35, features dimension)

RESULTS

GAMES

- 1. Breakout
- 2. Enduro
- 3. Ms Pacman
- 4. Pong
- 5. Qbert
- 6. Seaquest
- 7. Space Invaders

This slide has an empty title and is aligned to top.

This slide is not numbered and is citing reference [knuth74].

Typesetting and Math

The packages inputenc and FiraSans^{1,2} are used to properly set the main fonts.

This theme provides styling commands to typeset *emphasized*, alerted, bold, example text, ...

FiraSans also provides support for mathematical symbols:

$$e^{i\pi} + 1 = 0.$$

https://fonts.google.com/specimen/Fira+Sans

²http://mozilla.github.io/Fira/

SECTION 2

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

BLOCKS

These blocks are part of 1 slide, to be displayed consecutively.

Block

Text.

Alert block

Alert text.

Example block

Example text.

COLUMNS

This text appears in the left column and wraps neatly with a margin between columns.

Placeholder

Image

LISTS

Items:

- Item 1
 - ► Subitem 1.1
 - ► Subitem 1.2
- Item 2
- Item 3

Enumerations:

- 1. First
- 2. Second
 - 2.1 Sub-first
 - 2.2 Sub-second
- 3. Third

Descriptions:

First Yes.

Second No.

TABLE

Average for All Disciplines	\$58,114
Communications	\$51,448
Agriculture and Natural Resources	\$53 , 565
Humanities & Social Sciences	\$56,669
Business	\$56,720
Mathematics and Sciences	\$61,867
Computer Sciences	\$60,005
Engineering	\$66,521
Discipline	Avg. Salary

Table: Table caption

THANK YOU FOR YOUR ATTENTION!