INTRODUCTION TO MACHINE LEARNING

K-NEAREST NEIGHBOR ALGORITHM

Mingon Kang, PhD
Department of Computer Science @ UNLV

KNN

- K-Nearest Neighbors (KNN)
- Simple, but a very powerful classification algorithm
- Classifies based on a similarity measure
- Non-parametric
- Lazy learning
 - Does not "learn" until the test example is given
 - Whenever we have a new data to classify, we find its K-nearest neighbors from the training data

KNN: Classification Approach

 Classified by "MAJORITY VOTES" for its neighbor classes

 Assigned to the most common class amongst its Knearest neighbors (by measuring "distant" between

data)

KNN: Example

KNN: Pseudocode

- Step 1: Determine parameter K = number of nearest neighbors
- Step 2: Calculate the distance between the query-instance and all the training examples.
- Step 3: Sort the distance and determine nearest neighbors based on the k-th minimum distance.
- Step 4:Gather the category Y of the nearest neighbors.
- Step 5: Use simple majority of the category of nearest neighbors as the prediction value of the query instance.

KNN: Example

KNN: Euclidean distance matrix

Table 1. Euclidean distance matrix D listing all possible pairwise Euclidean distances between 10 samples.

distances between 19 samples.																		
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	x ₈	x 9	\mathbf{x}_{10}	\mathbf{x}_{11}	\mathbf{x}_{12}	\mathbf{x}_{13}	\mathbf{x}_{14}	\mathbf{x}_{15}	\mathbf{x}_{16}	\mathbf{x}_{17}	x ₁₈
\mathbf{x}_2	1.5																	
\mathbf{x}_3	1.4	1.6																
\mathbf{x}_4	1.6	1.4	1.3															
\mathbf{x}_5	1.7	1.4	1.5	1.5														
\mathbf{x}_6	1.3	1.4	1.4	1.5	1.4													
\mathbf{x}_7	1.6	1.3	1.4	1.4	1.5	1.8												
x ₈	1.5	1.4	1.6	1.3	1.7	1.6	1.4											
x 9	1.4	1.3	1.4	1.5	1.2	1.4	1.3	1.5										
x ₁₀	2.3	2.4	2.5	2.3	2.6	2.7	2.8	2.7	3.1									
\mathbf{x}_{11}	2.9	2.8	2.9	3.0	2.9	3.1	2.9	3.1	3.0	1.5								
\mathbf{x}_{12}	3.2	3.3	3.2	3.1	3.3	3.4	3.3	3.4	3.5	3.3	1.6							
\mathbf{x}_{13}	3.3	3.4	3.2	3.2	3.3	3.4	3.2	3.3	3.5	3.6	1.4	1.7						
\mathbf{x}_{14}	3.4	3.2	3.5	3.4	3.7	3.5	3.6	3.3	3.5	3.6	1.5	1.8	0.5					
\mathbf{x}_{15}	4.2	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.7	1.6	0.3	0.5				
\mathbf{x}_{16}	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.6	1.5	0.4	0.5	0.4			
\mathbf{x}_{17}	5.9	6.2	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	2.3	2.3	2.5	2.3	2.4	2.5		
\mathbf{x}_{18}	6.1	6.3	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.1	2.7	2.6	2.3	2.5	2.6	3.0	
\mathbf{x}_{19}	6.0	6.1	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.0	2.9	2.7	2.4	2.5	2.8	3.1	0.4

Decision Boundaries

- Voronoi diagram
 - Describes the areas that are nearest to any given point, given a set of data.
 - Each line segment is equidistant between two points of opposite class

Decision Boundaries

 With large number of examples and possible noise in the labels, the decision boundary can become

nasty!

"Overfitting" problem

Effect of K

- Larger k produces smoother boundary effect
- When K==N, always predict the majority class

K=15

Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

Discussion

- □ Which model is better between K=1 and K=15?
- □ Why?

How to choose k?

Empirically optimal k?

Ref: https://www.slideshare.net/tilanigunawardena/k-nearest-neighbors

Pros and Cons

- □ Pros
 - Learning and implementation is extremely simple and Intuitive
 - Flexible decision boundaries
- Cons
 - Irrelevant or correlated features have high impact and must be eliminated
 - Typically difficult to handle high dimensionality
 - Computational costs: memory and classification time computation

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Is higher when objects are more alike.
 - Often falls in the range [0,1]
- Dissimilarity
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Euclidean Distance

Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{p} (a_k - b_k)^2}$$

Where p is the number of dimensions (attributes) and a_k and b_k are, respectively, the k-th attributes (components) or data objects a and b.

Standardization is necessary, if scales differ.

Euclidean Distance

point	x	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski Distance

Minkowski Distance is a generalization of Euclidean
 Distance

$$dist = \sum_{k=1}^{p} |a_k - b_k|^r$$

Where r is a parameter, p is the number of dimensions (attributes) and a_k and b_k are, respectively, the k-th attributes (components) or data objects a and b

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- - This is the maximum difference between any component of the vectors
- Do not confuse r with p, i.e., all these distances are defined for all numbers of dimensions.

Cosine Similarity

□ If d_1 and d_2 are two document vectors $\cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||,$

Where \cdot indicates vector dot product and ||d|| is the length of vector d.

Example:

$$d_1$$
= 3 2 0 5 0 0 0 2 0 0 d_2 = 1 0 0 0 0 0 0 1 0 2

$$\begin{aligned} &d_1 \cdot d_2 = 3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5 \\ &||d_1|| = (3*3 + 2*2 + 0*0 + 5*5 + 0*0 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0) \mathbf{0.5} = (42)^{\mathbf{0.5}} = 6.481 \\ &||d_1|| = (1*1 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 0*0 + 2*2) \mathbf{0.5} = (6)^{\mathbf{0.5}} = 2.245 \\ &\cos(d_1, d_2) = .3150 \end{aligned}$$

Cosine Similarity

```
 \begin{tabular}{l} $\square$ $\cos(d_1,\,d_2) = $ & 1$: exactly the same \\ $0$: orthogonal \\ $-1$: exactly opposite \\ \end{tabular}
```

Feature scaling

- Standardize the range of independent variables (features of data)
- A.k.a Normalization or Standardization

Standardization

- Standardization or Z-score normalization
 - Rescale the data so that the mean is zero and the standard deviation from the mean (standard scores) is one

$$x_{norm} = \frac{x - \mu}{\sigma}$$

 μ is mean, σ is a standard deviation from the mean (standard score)

Min-Max scaling

Scale the data to a fixed range – between 0 and 1

$$x_{morm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

Efficient implementation

- Consider data as a matrix or a vector
- Matrix/Vector computational is much more efficient than computing with loop

Discussion

□ Can we use KNN for regression problems?