תכנון וניתוח אלגוריתמים תרגיל 1 – תשע"ו

ד"ר ראובן חוטובלי ד"ר אנדרי דולגין

.1 🔷

- \triangle Maximize $Z = X_1 + X_2$
- Subject to:
- $(1) \quad X_1 X_2 \ge 1$
- \diamond 2) $X_1 + X_2 \le 3$
- > 3 $-X_1 + X_2 \le 1$
- $4) X_1 X_2 \le 1$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- ב. פתור את הבעיה הנתונה בשיטת הסימפלכס והעזר בשיטת
 ה- M הגדול. בכל שלב הראה באיזו נקודה בציור של חלק א'
 את/ה נמצא/ת.
 - ג. נסח את הבעיה הדואלית. ♦

- ד. פתור את הבעיה הדואלית בשיטת הסימפלכס והעזר פתור את הבעיה הדואלית בשיטת הM בשיטת הM בשיטת הM בשיטת הM במק!
- כהמשך לסעיף א' בלבד , השתמש בפתרון הבעיה הפרימלית שקיבלת בסעיף א', וביחסים בין שתי הבעיות-פרימלית ודואלית, על מנת למצוא את פתרון של הבעיה הדואלית.

.2 🔷

- \blacksquare Minimize $Z = X_1 + X_2$
- Subject to:
- \bullet 1) $X_1 X_2 \ge 1$
- \diamond 2) $X_1 + X_2 \le 3$
- > 3 $-X_1 + X_2 \le 1$
- $4) X_1 X_2 \le 1$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- M -ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- M הגדול. בכל שלב הראה באיזו נקודה בציור של חלק א' את/ה נמצא/ת.

.3 🔷

- \triangle Maximize $Z = X_1 + X_2$
- Subject to:

$$(1) \quad X_1 - X_2 \ge 1$$

$$> 3$$
 $-X_1 + X_2 \le 1$

$$4) X_1 - X_2 \le 1$$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- M -ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- M הגדול. בכל שלב הראה באיזו נקודה בציור של חלק א' את/ה נמצא/ת.

.4 🔷

- \blacksquare Minimize $Z = X_1 + X_2$
- Subject to:
- $(1) \quad X_1 X_2 \ge 1$
- \diamond 2) $X_1 + X_2 \le 3$
- $4) X_1 X_2 \le 1$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- M -ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- М הגדול. בכל שלב הראה באיזו נקודה בציור של חלק א' את/ה נמצא/ת.
 - ג. פתור את הבעיה הדואלית של הבעיה הפרימלית הנתונהבאמצעות שיטת סימלכס.
 - ◆ ד. הסבר את התוצאות שקיבלת בסעיפים הקודמים.

- \triangle Maximize $Z = X_1 + X_2$
- Subject to:
- \diamond 2) $X_1 + X_2 \le 3$
- > 3 $-X_1 + X_2 \ge 1$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- M -ב. פתור את הבעיה בשיטת הסימפלכס והעזר בשיטת ה- ₪ הגדול. בכל שלב הראה באיזו נקודה בציור של חלק א' את/ה נמצא/ת.
 - ג. פתור את הבעיה הדואלית של הבעיה הפרימלית הנתונהבאמצעות שיטת סימלכס.

:תונה הבעיה הזאת.

- riangle Maximize $Z = 5X_1 X_2$
- Subject to:
- \bullet 1) $X_2 \leq X_1$
- \diamond 2) $2X_1 + X_2 \ge 2$
- $> 3) X_1 \ge 0$

- ♦ א. צייר במישור את תחום הפתרונות האפשריים ומצא את הפתרון האופטימלי.
- ב. מהי הבעיה הדואלית של הבעיה הפרימלית הנתונה? נסחאת הבעיה.
 - . פתור את הבעיה הדואלית בשיטת הסימפלקס. ♦
 - ?ד. מהי מסקנתך ◊

:תונה בעיית תכנון לינארי הבאה:

$$\max\{z = 12X_1 + 18X_2 + 20X_3 + 15X_4\}$$

$$X_1 + 2X_2 + 5X_3 + 4X_4 \le 20$$

$$2X_1 + X_2 + 3X_3 + X_4 \le 18$$

$$2X_1 + 2X_2 + 4X_3 + 2X_4 \le 22$$

$$X_1, X_2, X_3, X_4 \ge 0$$

- המטרה היא למצוא פתרון אופטימלי של הבעיה הנתונה בשיטת הסימפלקס.
- שבלה א' שלפניך מתקבלת עבור הבעיה הנתונה לאחר מספר צעדים (איטרציות) בשיטת הסימפלקס.

טבלה א'

משתני						1 1			
בסיס	Z	X_{1}	X_2	X_3	X_4	X_5	X_6	X_7	b
Z	1	0	0	22	15	6	0	3	e
X_2	0	0	1	3	3	1	0	-0.5	9
X_6	0	0	a	2	2	1	C	-1.5	f
X_1	0	1	b	-1	-2	-1	d	1	2

- בטבלה א' חסרים שישה ערכים המסומנים באותיות עליך לחשב ערכים אלה. a
 - עד f עד a עד הבחינה רשום את האותיות a עד f עד פמחברת הבחינה רשום את הערך שצריך להופיע בטבלה במקום האות.

ב. נתונה בעיית תכנון לינארי הבאה:

$$\max\{z = 12X_1 + 18X_2 + 20X_3 + 15X_4\}$$

$$X_1 + 3X_2 - 6X_3 + 4X_4 \le 20$$

$$-2X_1 + X_2 - 3X_3 + X_4 \le 18$$

$$2X_1 - 2X_2 + 4X_3 - 2X_4 \le 22$$

$$X_1, X_2, X_3, X_4 \ge 0$$

◆ המטרה היא למצוא פתרון אופטימלי של הבעיה הנתונהבשיטת הסימפלקס.

שבלה ב' שלפניך מתקבלת עבור הבעיה הנתונה לאחר צעד אחד בשיטת הסימפלקס.

משתני									
בסיס	Z	X_1	X_2	X_3	X_4	X_5	X_6	X_7	b_i
Z	1	0	-28	0	-25	0	0	5	110
X_5	0	4	0	0	1 1	1	0	1.5	53
X_6	0	-0.5	-0.5	0	-0.5	0	1	0.75	34.5
X_3	0	0.5	-0.5	1	-0.5	0	0	0.25	5.5

- לפניך 4 היגדים:
- ולבעיה יש פתרון אופטימלי יחיד .1 ♦
- 2 לבעיה יש אינסוף פתרונות אופטימליים
 - לבעיה אין פתרון אופטימלי .3♦
 - סום בעיה יש פתרון לא חסום 🕹
- ◆במחברת הבחינה רשום את סעיף ב' ולצידו את
 המספר המייצג את ההיגד הנכון.

.8 🔷

- **Maximize** $Z = -2X_1 X_2 + 3X_3 2X_4$
- Subject to:

1)
$$X_1 + 3X_2 - X_3 + 2X_4 \le 7$$

$$\diamond$$
 2) $-X_1 - 2X_2 + 4X_3 \le 12$

$$> 3) -X_1 - 4X_2 + 3X_3 + 8X_4 \le 10$$

$$4) \quad X_1 \ge 0 \quad 5) \quad X_2 \ge 0$$

בהוספת משתני חוסר x_5, x_6, x_7 , באיטרציה האחרונה של x_5, x_6, x_7 החקבל:

$$z + \frac{7}{5}x_{1} + \frac{12}{5}x_{4} + \frac{1}{5}x_{5} + \frac{4}{5}x_{6} = 11$$

$$\frac{3}{10}x_{1} + 1x_{2} + \frac{4}{5}x_{4} + \frac{2}{5}x_{5} + \frac{1}{10}x_{6} = 4$$

$$-\frac{1}{10}x_{1} + 1x_{3} + \frac{2}{5}x_{4} + \frac{1}{5}x_{5} + \frac{3}{10}x_{6} = 5$$

$$\frac{1}{2}x_{1} + 10x_{4} + 1x_{5} - \frac{1}{2}x_{6} + 1x_{7} = 11$$

- א. מהו ערכי Xj האופטימליים וערך פונקציית המטרה אופטימלי?
 - ?ב. האם הפתרון בסעיף א' הוא פתרון יחיד
- ג. מהי הבעיה הדואלית ומה פתרונה? בסס את תשובתך על הטבלה הנתונה בלבד.