6. Fonctions usuelles

Exercice 1. (m) Déterminer le plus grand intervalle contenant 2 sur lequel $f: x \mapsto x^2 + \frac{1}{x^2}$ est inversible. Calculer alors sa réciproque et tracer son graphe.

Exercice 2. (m) Avec le théorème de la bijection continue.

- 1) Montrer que l'équation $x \ln(x) = 1$ possède une unique solution dans \mathbb{R}_{+}^{*} .
- 2) Montrer que la fonction $f: x \mapsto \frac{1}{\operatorname{ch}(x)}$ possède un unique point fixe sur \mathbb{R} .
- 3) Montrer que $e^{-x^2} = e^x 1$ possède une unique solution dans \mathbb{R} .

Exercice 3. $\boxed{\mathbf{m}}$ Montrer que sin est bijective de $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ dans un intervalle que l'on précisera. Tracer le graphe de sa réciproque. Quel est le lien avec arcsin?

Exercice 4. (m) Montrer que $f: x \mapsto \operatorname{sh}(x) - \sin(x)$ est une bijection de \mathbb{R} dans \mathbb{R} . Quelles propriétés f^{-1} vérifient-elles (monotonie, régularité, symétrie)?

Exercice 5. © Calculer $\arccos\left(\cos\left(\frac{16\pi}{11}\right)\right)$, $\arcsin\left(\sin\left(\frac{13\pi}{7}\right)\right)$ et $\arctan\left(\tan\left(\frac{11\pi}{5}\right)\right)$.

Exercice 6. (c) Étudier $f: x \mapsto \arctan(x) + \arctan\left(\frac{1}{x}\right)$ et $g: x \mapsto \arcsin(x) + \arccos(x)$.

Exercice 7. (i) Montrer que $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right) = \frac{\pi}{4}$.

Exercice 8. (i) Résoudre l'équation $\arcsin(x) + \arcsin(2x) = \frac{2\pi}{3}$. Même question avec $= \frac{\pi}{3}$.

Exercice 9. (m) Étudier et tracer les fonctions $f: x \mapsto \arccos(\cos(x))$ et $g: x \mapsto \arctan(\tan(x))$.

Exercice 10. (m) Simplifier les expressions $f: x \mapsto \tan(2\arctan(x))$ et $g: x \mapsto \cos(\arctan(x))$.

Exercice 11. $\boxed{\mathbf{m}}$ On pose $f: x \mapsto \arctan\left(\frac{1}{2x^2}\right) - \arctan\left(\frac{x}{x+1}\right) + \arctan\left(\frac{x-1}{x}\right)$. Déterminer son domaine de définition, son domaine de dérivabilité et calculer sa dérivée. En déduire une expression simplifiée de f.

Exercice 12. (m) Pour $x \in \mathbb{R}$, montrer que $\arctan(x+1) - \arctan(x) = \arctan\left(\frac{1}{x^2 + x + 1}\right)$. Pour $n \in \mathbb{N}^*$, simplifier alors $S_n = \sum_{k=0}^n \arctan\left(\frac{1}{k^2 + k + 1}\right)$ et déterminer $\lim_{n \to +\infty} S_n$.

1

Exercice 13. (m) Montrer que $\forall x > 0$, $\arctan\left(\frac{1}{\sqrt{x}}\right) = \arcsin\left(\frac{1}{\sqrt{x+1}}\right)$.

Exercice 14. (m) Montrer que $\forall x \in]0,1[, x^x(1-x)^{1-x} \ge \frac{1}{2}.$

Exercice 15. (m) On pose $f: x \mapsto \arccos(2x^2 - 1)$.

- 1) Déterminer le domaine de définition de f et étudier sa parité.
- 2) Simplifier l'expression de f et tracer son graphe. On posera $x = \cos(u)$ avec $u \in \left[0, \frac{\pi}{2}\right]$ après avoir justifié que ce changement de variable est possible.
- 3) On pose $g: x \mapsto \arcsin(2x\sqrt{1-x^2})$. Déterminer de même un changement de variable permettant de simplifier l'expression de g et tracer son graphe.

Exercice 16. (m) Résoudre les équations suivantes :

$$1) \quad x^{\sqrt{x}} = \sqrt{x}^x.$$

2)
$$2^{x^3} = 3^{x^2}$$

1)
$$x^{\sqrt{x}} = \sqrt{x}^x$$
.
2) $2^{x^3} = 3^{x^2}$.
3) $x^y = y^x$ où $x, y \in \mathbb{N}^*$.
4) $x^{\sqrt{x}} = \frac{1}{2}$.

$$4) \quad x^{\sqrt{x}} = \frac{1}{2}.$$

Exercice 17. (m) Le but de l'exercice est de montrer que $\forall x \in \mathbb{R}, \ 3 \le 2^{|\sin(x)|} + 2^{|\cos(x)|} \le 2^{1+\frac{1}{\sqrt{2}}}$.

- 1) Étudier la fonction $f: x \mapsto x2^{-x}$. On vérifiera en particulier que f est croissante sur [0,1].
- 2) On pose $g: \left\{ \begin{array}{ll} \left[0,\frac{\pi}{4}\right] & \to & \mathbb{R} \\ x & \mapsto & 2^{\cos(x)}+2^{\sin(x)} \end{array} \right.$. Justifier que g est croissante. On pourra mettre g'(x) sous la forme $g'(x) = h(x) \times (f(\cos(x)) - f(\sin(x)))$ où h est à préciser.
- 3) Déduire de la question précédente l'inégalité recherchée sur $\left[0,\frac{\pi}{4}\right]$ puis la démontrer sur $\mathbb R$ tout entier à l'aide d'arguments de périodicité/symétrie.

Exercice 18. (m) Donner le domaine de définition et simplifier les fonctions suivantes :

$$f_1: x \mapsto x^{\frac{\ln(\ln(x))}{\ln(x)}}$$
 et $f_2: x \mapsto \frac{\operatorname{ch}(\ln(x)) + \operatorname{sh}(\ln(x))}{x}$.

Exercice 19. (m) On pose $f: \left\{ \begin{array}{ccc} [1,+\infty[& \to & \mathbb{R}_+ \\ x & \mapsto & \ln(x+\sqrt{x^2-1}) \end{array} \right. \right.$

- 1) Vérifier que f est bien définie (c'est à dire que les ensembles de départ et d'arrivée sont corrects).
- 2) Simplifier pour $x \in [1, +\infty[$, $\operatorname{ch}(f(x))$ et pour $t \in \mathbb{R}_+$, $f(\operatorname{ch}(t))$. Que peut-on en conclure?

Exercice 20. (m) Montrer que pour tout $x \in [0, +\infty[$, $\arctan(\operatorname{sh}(x)) = \arccos\left(\frac{1}{\operatorname{ch}(x)}\right)$.

Exercice 21. (c) Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} \frac{x - \sqrt{x}}{\ln(x) + x}$$
 2) $\lim_{x \to 0^+} x^x$ 3) $\lim_{x \to 1^+} (\ln(x)) \cdot \ln(\ln(x))$
4) $\lim_{x \to +\infty} (1 + x)^{1/x}$ 5) $\lim_{x \to +\infty} \frac{e^{2x}(\ln(x))^3}{x^4}$ 6) $\lim_{x \to +\infty} (\ln(x))^{\sin(x)/x}$.

2)
$$\lim_{x \to 0^+} x^x$$

3)
$$\lim_{x \to 1^+} (\ln(x)) \cdot \ln(\ln(x))$$

4)
$$\lim_{x \to +\infty} (1+x)^{1/x}$$

5)
$$\lim_{x \to +\infty} \frac{e^{2x}(\ln(x))^3}{x^4}$$

6)
$$\lim_{x \to +\infty} (\ln(x))^{\sin(x)/x}$$

Exercice 22. (i) Déterminer $\lim_{x\to +\infty} (x - \ln(\cosh(x)))$.

Exercice 23. $\overline{\mathbf{m}}$ Démontrer que $f: x \mapsto x + e^x$ est bijective de \mathbb{R} dans \mathbb{R} . En déduire les solutions dans \mathbb{R}^2 du système $\begin{cases} x + e^x = y + e^y \\ x^2 + xy + y^2 = 12 \end{cases}$

2