Gaussian Naive Bayes

The past is the only key to the future.

과거는 미래를 여는 열쇠다.

관측된 자료를 바탕으로 이산형 히스토그램을 통해 연속형 확률분포를 다음과 같이 그렸다. 만약 새로운 데이터 '-2.5'인 경우에는 어느 그룹(A,B,C, D)에 속할 확률이 가장 높은가?

생각할 점(1/2)

■ 매일 아침 출근시간에 지하철을 타는 남자가 금융 및 보험업에 종사할 확률은?

산업별(2)	2018
^ ~ -	A V -
사업체수 (개)	14,648
	5,733
종사자수 (명)	66,759
사업체수 (개)	50
종사자수 (명)	573
사업체수 (개)	185
종사자수 (명)	3,369
사업체수 (개)	592
	사업체수 (개) 종사자수 (명) 사업체수 (개) 종사자수 (명) 사업체수 (개) 종사자수 (명)

사전확률(Prior probability)

= 3369 / 66759 = 0.050 (5.0%)

https://kosis.kr/statHtml/statHtml.do?orgId=622&tblId=DT_62201_D000003

생각할 점(2/2)

■ 금융보험업에 종사하는 사람의 넥타이 착용률이 90%이고 기타 다른 업종 종사자의 넥타이 착용률은 15%라는 새로운 사실을 알게 되었을 경우에는 달라지나?

■ 새로운 정보: 업종별 넥타이 착용률

- 넥타이 착용률
 - 금융/보험업: 90%
 - 기타업종 평균: 15%
- 예상 넥타이 착용자수
 - 금융/보험업: 3032 (=3369 x 90%)
 - 기타업종 평균: 10014 (=66759 x 15%)
- # 사후확률 (Posterior probability)
- = 3032 / (3032 + 10014) = 0.232 (23.2%)

Frequentist vs. Bayseian

Are you Bayesian or Frequentist?

137K views • 1 year ago

Cassie Kozyrkov

What if I told you I can show you the difference bet SUMMARY ...

CC

https://www.youtube.com/watch?v=GEFxFVESQXc&t=60s

5

Gaussian Naïve Bayes Sun Rising Problem

■ 누군가 당신에게 '내일 해가 뜰 확률을 묻는다면?

The **sunrise problem** can be expressed as follows: "What is the probability that the sun will rise tomorrow?" The sunrise problem illustrates the difficulty of using <u>probability theory</u> when evaluating the plausibility of statements or beliefs.

https://en.wikipedia.org/wiki/Sunrise problem

Usually inferred from repeated observations: "The sun always rises in the east".

Missing from data-survivorship bias

https://en.wikipedia.org/wiki/Survivorship	bias#In	the	<u>military</u>
· · · · · · · · · · · · · · · · · · ·			

비행기	손상부위	결과
1)혤캣아끄네스	동체	귀환
2) 브룽크스파머	?	격추
3) 피스톨패킹파 파	엔진	귀환
375) 홈시크엔젤	?	격추
376) 컬래미티제 인	없음 -	귀환

손상부위	귀환(총 316기)	격추 (총 60기)
엔진	29	?
조종석	36	?
동체	50	?
앞날개	55	?
없음	146	0

P(동체손상/귀환) = 50/316 = 15.8%

P(귀환/동체손상) = 50/(50+?) = <mark>?%</mark>

Missing from data-survivorship bias

• 원래 데이터를 가공, 조합, 정제 등의 처리 작업뿐만 아니라 존재하지 않는 자료를 만들 경우 예측 성능을 혁신적으로 높일 수 있음 (derivative features)

손상부위	귀환(총 316기)	격추 (총 60기)
엔진	29	31
조종석	36	21
동체	50	4
앞날개	55	4
없음	146	0

B-17이 적과 조우하는 전형적인 양상을 공군조종사와 엔지니어가 재현하여 가상 의 데이터 생성

Gaussian Naïve Bayes 사후확률은 신념(Credibility)

■ 미지의 세계에 대한 구체적인 사실 확인, 관측치 발견, 경험을 통해 나의 신념은 변한다.

Posterior Distribution (Credibility)

 $p(h|\mathcal{D}) = \frac{p(\mathcal{D}|h)p(h)}{\sum_{h'\in\mathcal{H}}p(\mathcal{D},h')}$

- This distribution is comprised of the prior distribution (previous data) and likelihood function (probabilities inferred through Bayesian statistics).
- COVID-19 has demonstrated the need to account for uncertainty when making forecasts.

Theta

아래 사이트로 이동하여 'F12'키를 누르고 등 를 클릭한 후 왼쪽 사이트 화면의 테이블을 가리키면 ''이 나타나는 것을 확인하고 'Copy element'를 하고

chat GPT에게 해당되는 테이블을 웹스크롤링하여 dataframe으로 받는 코드를 요청하면

```
Copy code
                                 python
                                 import requests
                                 from bs4 import BeautifulSoup
import pandas as pd
# 웹 페이지 URL
Person
                                 url = '여기에 웹 페이지 URL 입력'
height (feet)
                                 # 웹 페이지 내용을 가져옵니다.
weight (lbs)
                                 response = requests.get(url)
foot size(inches)
                                 html = response.text
# BeautifulSoup을 사용하여 HTML 파싱
                                 soup = BeautifulSoup(html, 'html.parser')
male
6
                                 # 원하는 테이블을 선택합니다.
180
                                 # 예를 들어, 첫 번째 테이블을 선택하려면 다음과 같이 합니다.
>12
                                 table = soup.find('table', class_='wikitable')
# 테이블을 데이터프레임으로 변환
df = pd.read_html(str(table))[0]
male
5.92 (5'11")
                                 # 데이터프레임 출력
                                 print(df)
```


chat GPT에게 해당되는 테이블을 웹스크롤링하여 dataframe으로 받는 코드를 요청한 후

import requests

from bs4 import BeautifulSoup

#웹페이지 URL

url = 'https://en.wikipedia.org/wiki/Naive_Bayes_classifier'

#웹 페이지 내용을 가져옵니다.

response = requests.get(url)

html = response.text

#BeautifulSoup을 사용하여 HTML 파싱

soup = BeautifulSoup(html, 'html.parser')

원하는 테이블을 선택합니다.

#예를 들어, 첫 번째 테이블을 선택

table = soup.find('table', class_='wikitable')

import pandas as pd

테이블을 데이터프레임으로 변환

df = pd.read_html(str(table))[0]

#데이터프레임 출력

df

	Person	height (feet)	weight (lbs)	foot size(inches)
0	male	6	180	12
1	male	5.92 (5'11")	190	11
2	male	5.58 (5'7")	170	12
3	male	5.92 (5'11")	165	10
4	female	5	100	6
5	female	5.5 (5'6")	150	8
6	female	5.42 (5'5")	130	7
7	female	5.75 (5'9")	150	9

chat GPT에게 해당되는 테이블을 웹스크롤링하여 dataframe으로 받는 코드를 요청하면

데이터 전처리 df['height (feet)'] = df['height (feet)'].apply(lambda x : float(x.split('(')[0])) #시각화

import matplotlib.pyplot as plt

sns.kdeplot(data=df[df['Person'] == 'male']['height (feet)'], label='Male', color='blue', shade=True)

sns.kdeplot(data=df[df['Person'] == 'female']['height (feet)'], label='Female', color='red', shade=True)

plt.title('Height KDE Plot by Gender')
plt.xlabel('Height (feet)'); plt.ylabel('Density')
plt.legend(); plt.show()

아래 사이트로 이동하여 'F12'키를 누르고 를 클릭한 후 왼쪽 사이트 화면의 테이블을 가리키면 ''이 나타나는 것들 확인한다.

Gaussian Naïve Bayes 구글 예제

$$egin{aligned} p(C_k,x_1,\ldots,x_n) &= p(x_1,\ldots,x_n,C_k) \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2,\ldots,x_n,C_k) \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2\mid x_3,\ldots,x_n,C_k) \ p(x_3,\ldots,x_n,C_k) \ &= \cdots \ &= p(x_1\mid x_2,\ldots,x_n,C_k) \ p(x_2\mid x_3,\ldots,x_n,C_k) \cdots p(x_{n-1}\mid x_n,C_k) \ p(x_n\mid C_k) \ p(C_k) \end{aligned}$$

https://en.wikipedia.org/wiki/Naive Bayes classifier

	성별	신장	무게	발의크기	(신장, mean)	(신장, var)	(무게, mean)	(무게, var)	(발의크기, mean)	(발의크기, var)
0	남성	6.00	180.0	12.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
1	남성	5.92	190.0	11.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
2	남성	5.58	170.0	12.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
3	남성	5.92	165.0	10.0	5.8550	0.035033	176.25	122.916667	11.25	0.916667
4	여성	5.00	100.0	6.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
5	여성	5.50	150.0	8.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
6	여성	5.42	130.0	7.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
7	여성	5.75	150.0	9.0	5.4175	0.097225	132.50	558.333333	7.50	1.666667
8	NaN	6.00	130.0	8.0	NaN	NaN	NaN	NaN	NaN	NaN

키가 6피트인 사람이 남성일 가능성(Likelihood)

Gaussian Naïve Bayes Discriminant or Generative?

	Discriminative model	Generative model		
Goal	Directly estimate $P(y x)$	Estimate $P(x y)$ to then deduce $P(y x)$		
What's learned	Decision boundary	Probability distributions of the data		
Illustration				
Examples	Regressions, SVMs	GDA, Naive Bayes		

- 데이터로부터 직접 조건부 확률을 계산
- 확률모형에는 관심이 없고 X와 y의 패턴을 파악하여 건부확률인 사후 확률 생성 직접 분류를 하기에 y가 반드시 필요
- 선형회귀분석, SVM, 의사결정나무와 같이 확률적 모 습에도 적용 가능 후확률을 직접 예측
- 두 개의 확률 모형 사전 확률과 우도를 정의하여 조
 - 가우시안 믹스처 모델, 토픽 모델과 같은 비지도학
 - 델을 가정하지 않고 간단하게 직선, 커브 등으로 사 특성 변수간 독립이라는 확률적 모형을 가정하기 때 문에 예측 성능이 차별모형보다 낮지만, 데이터의 크기가 충분히 크면 성능은 비슷
 - 가우시안 믹스처, 나이브 베이지안, GAN, 딥러닝

Gaussian Naïve Bayes Discriminant or Generative?

- 단어 시퀀스에 조건부 확률을 할당하여 가장 자연스러운 단어 시퀀스를 찾는 RNN, CBOW
- 기계번역, 오타교정, 음성인식, 세익스피어 문체 글쓰기, 바하 스타일의 작곡

Generative Model

기계번역:

P(탔다/버스를) > P(태웠다/버스를)이 되도록 조건부 확률이 할당되어 학습하면, 'I took a bus' 는 '나는 버스를 태웠다'가 아니라 나는 버스를 탔다'로 번역된다.

Discriminative Model

