Analiza sygnału na wyjściu optycznego połaczenia

W projekcie należy wyznaczyć widmo sygnału optycznego na wyjściu odbiornika będącego ostatnim elementem optycznego połączenia oraz transformatę odwrotną Fouriera tego widma dla wskazanych parametrów układu. Uzyskane wyniki należy przedstawić w formie raportu.

Budowa układu.

Rys. 1 Struktura układu optycznego połączenia złożonego z trzech głównych elementów: nadajnika, światłowodu i odbiornika. Każdy z nich opisany jest bezwymiarową znormalizowaną funkcją transmisji zależną od częstości $H_{0,1,2}(\omega)$ oraz parametrem czasu $T_{0,1,2}$.

Schemat z rys. 1 przedstawia badany układ. W nadajniku produkowany jest optyczny impuls o amplitudzie A_0 . Natomiast $H_0(\omega)$ jest funkcją widmową optycznego impulsu. Nadajnikiem najczęściej jest laser półprzewodnikowy modulowany poprzez zmianę prądu zasilającego lub poprzez zastosowanie zewnętrznego modulatora. Nadajnik produkuje impuls opisany w dziedzinie czasu funkcją $P_0(t)$, której widmo Fourierowskie to $S_0(\omega)$. Optyczny impuls na wyjściu z włókna jest iloczynem funkcji widmowej impulsu oraz widma tego światłowodu. Propagację światła przez włókno opisuje się dwiema funkcjami. Pierwsza to D_1 , która opisuje straty i druga będąca funkcją transferu start $H_1(\omega)$. Odbiornikiem jest najczęściej fotodioda lawinowa, której współczynnik zwielokrotnienia zapisuje się jako M, a jej wzmocnienie jako G.

Sygnał na wyjściu optycznego połączenia w funkcji częstości ω . Sygnał wyjściowy układu $S_2(\omega)$ jest wynikiem transmisji impulsu optycznego przez cały układ. Zależy on od poszczególnych elementów układu. Od nadajnika, czyli lasera który emituje promieniowanie koherentne zwykle o długości fali $\lambda = 1.3 \ \mu m$ z maksymalną mocą wynoszącą $P_{0max} = 0.5 \ mW$. Od włókna, którego straty zwykle wynoszą $\alpha = 3 \ dB/km$. Sygnał ten zależy również od odbiornika, czyli fotodiody charakteryzującej się pewną opornością, wzmocnieniem i współczynnikiem zwielokrotnienia.

W niniejszej analizie, sygnał wyjściowy układu dla uproszczenia został zapisany jako:

$$S_2(\omega) = H_0(\omega) \cdot H_1(\omega) \cdot H_2(\omega)$$
.

Zakłada się, że nadajnik wytwarza sygnał prostokątny, dlatego funkcję widmową optycznego impulsu można zapisać jako:

$$H_0(\omega) = \frac{\sin(\omega T_0)}{\omega T_0}.$$

 T_{θ} jest znormalizowaną szerokością impulsu. Czas trwania impulsu T związany jest z szybkością transmisji bitów nadajnika R_{θ} :

$$T = \frac{1}{R_0}.$$

Funkcja $H_l(\omega)$ jest znormalizowaną funkcją filtru, w przybliżeniu wyrażona filtrem Gaussowskim dolnoprzepustowym:

$$H_1(\omega) = e^{\frac{-1}{\pi}(\omega T_1)^2},$$

gdzie T_1 jest to parametr włókna związany z pasmem B_1 oraz szybkością transmisji bitów nadajnika R_0 :

$$T_1 = \frac{R_0}{2B_1}.$$

Szerokość pasma włókna B_1 jest zależna od długości L_1 i L_c :

$$B_1 = B_L \left(\frac{1}{L_1} + \frac{1}{3L_c} \right),$$

gdzie L_c jest to długość drogi sprzężenia modów, a B_L jest to długość szerokości pasma. Zależność na B_I jest prawdziwa, gdy długość włókna L_I zawiera się w przedziale: $0 < L_I < 3L_c$.

Optyczny odbiornik opisany jest funkcją transferu filtru dolno-przepustowego $H_2(\omega)$:

$$H_2(\omega) = \frac{1}{2} [1 + \cos(\omega T_2)], \quad \text{gdy} \quad |\omega| \le \frac{2\pi}{T_2},$$

gdzie T_2 jest to parametr odbiornika.

Transformata odwrotna Fouriera sygnału wyjściowego w funkcji czasu. Aby zobaczyć kształt sygnału wyjściowego w funkcji czasu należy policzyć jego transformatę odwrotną Fouriera. Dla uproszczenia podano wzór całkowy:

$$s_2(t) = \int_0^{\frac{2\pi}{T_2}} |S_2(\omega)| \cdot \cos(\omega t) d\omega.$$

Parametry układu. Na sygnał wyjściowy mają wpływ parametry poszczególnych elementów tworzących optyczne połączenie.

Nadajnik		
Parametr	Symbol	Wartość
szybkość transmisji bitów	R_0	10, 50, 100, 150 M bit / s
znormalizowana szerokość impulsu	T_{0}	0,6
Włókno		
Parametr	Symbol	Wartość
długość włókna	L_1	5, 10, 15, 20 km
długość drogi sprzężenia modów	L_c	7 km
długość szerokości pasma	B_L	100, 200, 500 M Hz km
Odbiornik		
Parametr	Symbol	Wartość
parametr odbiornika	T_2	0,8

Charakterystyki. W projekcie należy zastosować do obliczeń znormalizowane wartości częstości ω i przyjać wartości z zakresu:

$$\omega \to \left\langle 0, \frac{2\pi}{T_2} \right\rangle.$$

W przypadku wykreślania zależności na transformatę Fouriera, należy przyjąć znormalizowane wartości czasu t z przedziału $t \rightarrow \langle 0,5 \rangle$.

Otrzymane w trakcie obliczeń widmo sygnału optycznego na wyjściu odbiornika w funkcji częstości oraz transformatę odwrotną Fouriera w funkcji czasu należy zobrazować na wykresach dla odpowiednich parametrów badanego układu.

Wykres 1 – porównanie sygnału wejściowego $H_0(\omega)$ z sygnałem wyjściowym $S_2(\omega)$ przy L_1 =15 km; R_0 =50 Mbit/s; B_L =500 MHzkm.

Wykres 2 – sygnał wyjściowy $S_2(\omega)$ dla różnych szybkości transmisji bitów R_0 =10, 50, 100, 200 Mbit/s; przy L_1 =15 km; B_L =500 MHzkm.

Wykres 3 – transformata odwrotna Fouriera $s_2(t)$ dla różnych szybkości transmisji bitów R_0 =10, 50, 100, 200 Mbit/s; przy L_1 =15 km; B_L =500 MHzkm.

Wykres 4 – sygnał wyjściowy $S_2(\omega)$ dla różnych długości włókna L_I =10, 15, 20, 25 km przy R_0 =50 Mbit/s; B_L =500 MHzkm.

Wykres 5 – transformata odwrotna Fouriera $s_2(t)$ dla różnych długości włókna L_1 =10, 15, 20, 25 km przy R_0 =50 Mbit/s; B_L =500 MHzkm.

Wykres 6 – sygnał wyjściowy $S_2(\omega)$ dla różnych długości szerokości pasma B_L =100, 500, 1000 MHzkm przy L_I =15 km; R_0 =50 Mbit/s.

Wykres 7 – transformata odwrotna Fouriera $s_2(t)$ dla różnych długości szerokości pasma B_L =100, 500, 1000 MHzkm przy L_I =15 km; R_0 =50 Mbit/s.

Raport. W raporcie należy przedstawić problem projektowy (co było celem, dla jakiego układu), odpowiednio oznaczone i podpisane uzyskane charakterystyki. Raport zapisany jako plik PDF wraz ze spakowanym kodem źródłowym swojego programu należy przesłać pocztą elektroniczną.

Raport. W raporcie należy przedstawić:

-problem projektowy (cel projektu, dla jakiego układu wykonano obliczenia),

-odpowiednio oznaczone i podpisane uzyskane charakterystyki (tytuł wykresu, zmienne na osiach, wykaz parametrów dla jakich wykonano wykres, oznaczenie wykreślonych krzywych ze wskazaniem jakim parametrem się różnią),

-krótkie wnioski do każdego wykresu sformułowane na podstawie otrzymanych charakterystyk.

Ocenie projektu podlegają wyżej wymienione punkty, przejrzystość rysunków, poprawność obliczeń oraz poprawność językowa.