BOOSTING

Outline

- Boosting General idea
- AdaBoost
 - Visual demo
 - Detailed example
 - From a loss perspective

Boosting – General idea

- Create a strong classifier by combining multiple weak classifiers
- A weak classifier guarantees a slightly better-than-random error rate

Initialize a uniform distribution $D^{(1)}$ over trainset S

Learn (weak) model $h_t = \mathcal{A}(S, D^{(t)})$

Compute error

Update the distribution $D^{(t+1)}$

Return final hypothesis

AdaBoost – Visualization

Dataset

- 2 features x₁, x₂
- 2 classes (red/blue)

Weak learner choice

Decision stumps,

i.e., decision trees with depth 1

30

35

AdaBoost – Visualization

ż

1

-1

-1

0

 x_1

AdaBoost – Visualization

Weak learner at t=1

 \odot

Strong learner at t=1

 \odot

Based on a simulation by Geoff Ruddock

Train error

0.35

0.30

AdaBoost – Visualization

Weak learner at t=3

2

Strong learner at t=3

Based on a simulation by Geoff Ruddock

Train error

0.35

Train error

0.35

AdaBoost – Visualization

Weak learner at t=9

Strong learner at t=9

AdaBoost – Visualization

Where do you think we'll get better generalization?

Based on a simulation by Geoff Ruddock

Detailed Example

Some students want to avoid "hard" courses.

They want to classify courses as "easy" or "hard".

First, they collect (very little) data.

Course ID	Hard?	Final exam?	Theoretical?	Advanced?	HW Number
1	1	-1	1	1	1
2	1	-1	1	-1	3
3	1	-1	1	-1	5
4	1	1	-1	-1	5
5	1	1	-1	1	5
6	-1	-1	1	-1	1
7	-1	-1	-1	-1	3

Model choice

Some students want to avoid "hard" courses.

They want to classify courses as "easy" or "hard".

First, they collect (very little) data.

Course ID	Hard?	Final exam?	Theoretical?	Advanced?	HW Number
:	:	:	:	:	:

Then, they train a model using AdaBoost with decision stumps.

Building weak classifiers

Course ID	Hard?	Final exam?	Theoretical?	Advanced?	HW Number
1	1	-1	1 🗸	1	1
2	1	-1	1 /	-1	3
3	1	-1	1 /	-1	5
4	1	1	-1	-1	5
5	1	1	-1	1	5
6	-1	-1	1	-1	- 1
7	-1	-1	-1	-1	3 6

After some preprocessing, we propose the following weak decision stumps classifiers.

Exercise: Which samples do they misclassify?

Classifier	Attribute	Value	Misclassified
Α	Constant "Hard"		
В	Theoretical	1	
С	Advanced	1	
D	# HW	> 2	
Е	# HW	> 4	

Proposed weak classifiers

Classifier	Attribute	Value	Misclassified
Α	Constant "Hard"		6, 7
В	Theoretical	1	4, 5, 6
С	Advanced	1	2, 3, 4
D	# HW	> 2	1, 7
Е	# HW	> 4	1, 2

AdaBoost

We are ready to run AdaBoost.

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:

Learn (weak) model

 $h_t = \mathcal{A}(S, D^{(t)})$

Compute error on current distribution

 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$

Update weights and distribution

 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{\sum_j D_j^{(t)} \exp(-\alpha_t y_j h_t(x_j))}$

Return final hypothesis

 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)$

Fill in the classifiers, errors, weights, and distributions of the first 3 rounds.

	t=1	
$D_1^{(t)}$	1/7	
$D_2^{(t)}$	1/7	
$D_3^{(t)}$	1/7	
$D_4^{(t)}$	1/7	
$D_5^{(t)}$	1/7	
$D_6^{(t)}$	1/7	
$D_7^{(t)}$	1/7	
h_t	pick the cla	assifier with the lowest weight
ϵ_t	1\7 + 1\7	←
α_t	1\2 * In(5\2)	←

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:

Learn (weak) model

 $h_t = \mathcal{A}(S, D^{(t)})$

Compute error on current distribution

 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$

Update weights and distribution

 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Possible classifiers (ERM)

#	Attribute	Value	Misclassified	ϵ
Α	Constant "Hard"		6, 7	
В	Theoretical	1	4, 5, 6	
С	Advanced	1	2, 3, 4	
D	# HW	> 2	1, 7	
Е	# HW	> 4	1, 2	

$$t=1 \mid t=$$

	t = 1	t=2	
$D_1^{(t)}$	1/7	1/10	1
$D_2^{(t)}$	1/7	¹ / ₁₀	1
$D_3^{(t)}$	1/7	1/10	1
$D_4^{(t)}$	1/7	1/10	1
$D_5^{(t)}$	1/7	1/10	1
$D_6^{(t)}$	1/7	2.5/10	1
$D_7^{(t)}$	1/7	2.5/10	1
h_t	Α		
ϵ_t	2/7		

 $0.5 \ln \frac{5}{2}$

 α_t

Updating the distribution

We used the following weak classifier:

#	Attribute	Value	Misclassified	
Α	Constant "Hard"		$6, 7 \Rightarrow \text{we wan't to up}$	their weigh

We wish to compute the new distribution

$$D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

First, let us compute the unnormalized distribution

$$\frac{1}{Z_{+}} \rho^{(2)} \circ \rho^{(7)} \circ \rho$$

Now, fill in the normalized distribution

	t=1	t=2	
$D_1^{(t)}$	1/7	1/10	
$D_2^{(t)}$	1/7	¹ / ₁₀	
$D_3^{(t)}$	1/7	¹ / ₁₀	
$D_4^{(t)}$	1/7	¹ / ₁₀	
$D_5^{(t)}$	1/7	1/10	
$D_6^{(t)}$	1/7	^{2.5} / ₁₀	
$D_7^{(t)}$	1/7	2.5/10	
h_t	Α		←
ϵ_t	² / ₇		←
α_t	$0.5 \ln \frac{5}{2}$		—

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:
Learn (weak) model
 $h_t = \mathcal{A}(S, D^{(t)})$
Compute error on current distribution
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
Update weights and distribution
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$

Possible classifiers (ERM)

#	Attribute	Value	Misclassified	ϵ
А	Constant "Hard"		6, 7	1/2
В	Theoretical	1	4, 5, 6	4.5/10
С	Advanced	1	2, 3, 4	3/10
D	# HW	> 2	1, 7	3.5/16
E	# HW	> 4	1, 2	2/10

 $D_1^{(t)}$

 $D_2^{(t)}$

 $D_3^{(t)}$

 $D_4^{(t)}$

 $D_5^{(t)}$

 $D_6^{(t)}$

 $D_7^{(t)}$

 h_t

 ϵ_t

 α_t

$$^{1}/_{7}$$
 $^{1}/_{10}$

 $0.5 \ln \frac{5}{2}$

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:

$$h_t = \mathcal{A}(S, D^{(t)})$$

Compute error on current distribution

$$\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$$

Update weights and distribution

$$\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1 \right)$$

$$D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\mathcal{E}_{1} = \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

$$D_{2}^{(3)} = D_{1}^{(3)} \propto D_{1}^{(2)} e^{(n(2))} = \frac{2}{10} \propto 4$$

Sum = 4.2+3.1+2.2.5=16

$$O_{s}^{(s)}$$

	t=1	t=2	t=3	
$D_1^{(t)}$	1/7	1/10	⁸ / ₃₂ –	1
$D_2^{(t)}$	1/7	1/10	8/32	1
$D_3^{(t)}$	1/7	1/10	² / ₃₂	1
$D_4^{(t)}$	1/7	1/10	$\frac{1}{2} \frac{2}{32}$	₽
$D_5^{(t)}$	1/7	1/10	2/32	1
$D_6^{(t)}$	1/7	2.5/10	5/32	₽
$D_7^{(t)}$	1/7	2.5/10	5/32	<u></u>
h_t	Α	E	В	
ϵ_t	2/7	¹ / ₅	9/32	
α_t	$0.5 \ln \frac{5}{2}$	ln 2	$0.5 \ln \frac{23}{9}$	

Updating the distribution

We used the following weak classifier:

#	Attribute	Value	Misclassified
E	# HW	> 4	1, 2

 We attach results for a 3rd iteration of AdaBoost without relevant computations.

• Extra: manually run this iteration by yourselves and prove the presented results.

Final hypothesis

Computed weights

	t = 1	t = 2	t = 3
h_t	Α	E	В
α_t	$0.5 \ln \frac{5}{2}$	ln 2	$0.5 \ln \frac{23}{9}$

Chosen classifiers

#	Attribute	Value	Misclassified
Α	Constant "Hard"		6, 7
Е	# HW	> 4	1, 2
В	Theoretical	1	4, 5, 6

Final hypothesis:

$$h_S(x) = sign\left(0.5 \ln \frac{5}{2} A(x) + \ln 2 E(x) + 0.5 \ln \frac{23}{9} B(x)\right)$$

$$\approx sign(0.46 + 0.69 E(x) + 0.47 B(x))$$

where: A, B, E return +1 or -1

- How many of the data points are classified correctly?
 - Notice: each two weights $\alpha's$ are larger than the third
 - We get a simple majority vote
- Only one wrong prediction (example 6)

AdaBoost: Guarantees

- AdaBoost constructs a strong hypothesis $h_s(x) = \text{sign}(\sum_{k=1}^t \alpha_k h_k(x))$.
- Guarantee: AdaBoost's training error after T iterations is bounded by $L_S(h_S) \triangleq \frac{1}{m} \sum_i \mathbf{1}_{h_t(x_i) \neq y_i} \leq \exp\{-\gamma^2 T\}$ for some $\gamma \in (0, 1/2)$. (under mild conditions; without proof)
- Corollary: AdaBoost reaches zero training error eventually. (under the same conditions)

- AdaBoost constructs a strong hypothesis $h_s(x) = \text{sign}(\sum_{k=1}^t \alpha_k h_k(x))$.
- Focus on the "unthresholded" hypothesis

- · Why does it work?
- We will show that AdaBoost greedily optimizes the exponential loss.
- Recall the exponential loss: $\mathcal{L}_{\exp}(h_{s}) = \frac{1}{m} \sum_{i=1}^{m} \ell_{\exp}(x_{i}, y_{i}) = \frac{1}{m} \sum_{i=1}^{m} \mathrm{e}^{-y_{i}} \sum_{k=1}^{t} \alpha_{k} h_{k}(x_{i})$
- The exponential loss is a proxy to the zero-one loss:

$$\mathcal{L}_{\exp}(h_s) \ge \mathcal{L}_{0/1}(h_s)$$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{\exp}(h_s)$?
- Lemma: $\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \, \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$ (will be proven next)
- Answer: Use "two steps" greedy optimization:
 - Choose h_t minimizing the weighted error ϵ_t , e.g., with ERM w.r.t. $D^{(t)}$.
 - Choose α_t minimizing $\mathcal{L}_{exp}^{(t)}$ given $h_1, \alpha_1, \dots, h_{t-1}, \alpha_{t-1}$ and h_t .
 - 1. Derive $\frac{\partial}{\partial \alpha_t} \mathcal{L}_{exp}^{(t)}$ and use it to prove that the choice $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} 1 \right)$ is optimal.

Initialize
$$D^{(1)} = \left(\frac{1}{m}, ..., \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x_t)\right)$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{\exp}(h_s)$?

• Lemma:
$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$$

- Proof:
 - 2. Extra: Show that $D_i^{(t)} = c \cdot \exp(-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i))$, for c > 0

$$D_{i}^{(t)} = \frac{1}{Z_{t-1}} D_{i}^{(t-1)} \exp\left(-\alpha_{t-1} y_{i} h_{t-1}(x_{i})\right)$$

$$= \frac{1}{Z_{t-1} Z_{t-2}} D_{i}^{(t-2)} \exp\left(-\alpha_{t-2} y_{i} h_{t-2}(x_{i})\right) \exp\left(-\alpha_{t-1} y_{i} h_{t-1}(x_{i})\right)$$

$$= \frac{1}{Z_{t-1} Z_{t-2}} D_{i}^{(t-2)} \exp\left(-y_{i} \left(\alpha_{t-2} h_{t-2}(x_{i}) - \alpha_{t-1} h_{t-1}(x_{i})\right)\right)$$

$$= \cdots = \frac{1}{\prod_{k=1}^{t-1} Z_{k}} \underbrace{D_{i}^{(0)}}_{=1/m} \exp\left(-y_{i} \sum_{k=1}^{t-1} \alpha_{k} h_{k}(x_{i})\right) \quad \blacksquare$$

Initialize
$$D^{(1)} = \left(\frac{1}{m}, ..., \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x_t)\right)$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{\text{exp}}(h_s)$?

• Lemma:
$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$$

- Proof:
 - 2. Extra: Show that $D_i^{(t)} = c \cdot \exp(-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i))$, for c > 0
 - 3. Show that $\mathcal{L}_{exp}^{(t)} \propto \sum_i D_i^{(t)} \exp\{-y_i \alpha_t h_t(x_i)\}$

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

$$\begin{split} \mathcal{L}_{exp}^{(t)} &= \sum_{i} \exp\left\{-y_i \sum_{k=1}^{t} \alpha_k h_k(x_i)\right\} = \sum_{i} \exp\left\{\left(-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i)\right) - y_i \alpha_t h_t(x_i)\right\} \\ &= \sum_{i} \underbrace{\exp\left\{-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i)\right\}}_{=\frac{1}{t} \cdot D_t^{(t)}} \exp\left\{-y_i \alpha_t h_t(x_i)\right\} \propto \sum_{i} \underbrace{D_i^{(t)}}_{i} \exp\left\{-y_i \alpha_t h_t(x_i)\right\} \end{split}$$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{exp}(h_s)$?

• Lemma:
$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$$

- Proof:
 - 2. Extra: Show that $D_i^{(t)} = c \cdot \exp\left(-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i)\right)$, for c > 0
 - 3. Show that $\mathcal{L}_{exp}^{(t)} \propto \sum_i D_i^{(t)} \exp\{-y_i \alpha_t h_t(x_i)\}$
 - 4. Extra: Prove the following form of the exp. loss after *t* rounds is

$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} \sum_{i} D_i^{(t)} + (e^{\alpha_t} - e^{-\alpha_t}) \sum_{i} D_i^{(t)} \, \mathbf{1}_{h_t(x_i) \neq y_i}$$

Do so by filling in the blanks:

$$\begin{split} \mathcal{L}_{exp}^{(t)} \propto & \sum_{i} D_{i}^{(t)} \exp\{-y_{i} \alpha_{t} h_{t}(x_{i})\} = \cdots = e^{-\alpha_{t}} \sum_{i: y_{i} = h_{t}(x_{i})} D_{i}^{(t)} + e^{\alpha_{t}} \sum_{i: y_{i} \neq h_{t}(x_{i})} D_{i}^{(t)} \\ & = \cdots = e^{-\alpha_{t}} \sum_{i} D_{i}^{(t)} + (e^{\alpha_{t}} - e^{-\alpha_{t}}) \sum_{i} D_{i}^{(t)} \, \mathbf{1}_{h_{t}(x_{i}) \neq y_{i}} \end{split}$$

Initialize
$$D^{(1)} = \left(\frac{1}{m}, \dots, \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x_t)\right)$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{exp}(h_s)$?

• Lemma:
$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$$

- Proof:
 - 2. Extra: Show that $D_i^{(t)} = c \cdot \exp(-y_i \sum_{k=1}^{t-1} \alpha_k h_k(x_i))$, for c > 0
 - 3. Show that $\mathcal{L}_{exp}^{(t)} \propto \sum_i D_i^{(t)} \exp\{-y_i \alpha_t h_t(x_i)\}$
 - 4. Extra: Prove the following form of the exp. loss after t rounds is

$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} \underbrace{\sum_{i} D_i^{(t)}}_{i} + (e^{\alpha_t} - e^{-\alpha_t}) \sum_{i} D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}$$

Initialize
$$D^{(1)} = \left(\frac{1}{m}, ..., \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

- Goal: Show AdaBoost optimizes $\mathcal{L}_{\exp}(h_s) = \frac{1}{m} \sum_{i=1}^m \exp{\{-y_i \sum_{k=1}^t \alpha_k h_k(x_i)\}}$.
- Assume: $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ were already chosen.
- Question: How to choose h_t , α_t to minimize $\mathcal{L}_{\text{exp}}(h_s)$?

• Lemma:
$$\mathcal{L}_{exp}^{(t)} \propto e^{-\alpha_t} + (e^{\alpha_t} - e^{-\alpha_t}) \underbrace{\sum_i D_i^{(t)} \mathbf{1}_{h_t(x_i) \neq y_i}}_{\triangleq \epsilon_t}$$
 (proven)

- Answer: Use "two steps" greedy optimization:
 - Choose h_t minimizing the weighted error ϵ_t , e.g., with ERM w.r.t. $D^{(t)}$.
 - Choose α_t minimizing $\mathcal{L}_{exp}^{(t)}$ given $h_1, \alpha_1, ..., h_{t-1}, \alpha_{t-1}$ and h_t .

Initialize
$$D^{(1)} = \left(\frac{1}{m}, ..., \frac{1}{m}\right)$$

For t=1, ..., T:
 $h_t = \mathcal{A}(S, D^{(t)})$
 $\epsilon_t = \sum_i D_i^{(t)} \cdot \mathbf{1}_{h_t(x_i) \neq y_i}$
 $\alpha_t = \frac{1}{2} \log \left(\frac{1}{\epsilon_t} - 1\right)$
 $D_i^{(t+1)} = \frac{D_i^{(t)} \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$
 $h_s(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

- The simulation from earlier can also visualize the decaying exponential loss.
- After 0 classification training loss, the exponential loss keeps decreasing

Summary

- In boosting we create a strong classifier by combining multiple weak classifiers
- Each weak classifier is trained on an updated distribution where misclassified data points get larger probability mass

AdaBoost is a boosting algorithm that greedily optimizes the exponential loss