

Date: 13/01/2016

In addition to Part–I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No : ME F343

Course Title: Mechanical VibrationInstructor-in-charge: Arun Kumar Jalan

1. Course Description:

Small oscillations of linear dynamical systems, free and forced vibrations of single and multi degree-of-freedom systems, normal modes and orthogonality relations, generalized co-ordinates and Lagrange's equations, matrix formulation, eigen-value problem and numerical solutions, transient response of one-dimensional systems, approximate energy methods, continuous system, vibration of string, rods, bars and beams. Introduction to control systems.

2. Course Material

Text Book:

T1: "Theory of Vibration with Application", Thomson W. T., Dahleh M. D., Pearson Education, 5th Ed.

Reference Books:

R1: "Mechanical Vibration", S S Rao, Pearson Education, 4th Ed

R2: "Mechanical Vibrations - Theory and Application", Tse F.S., Morse I.E., Hinkle R.T., Allyn and Bacon Inc. London, 1983.

3. Course Plan:

Lect. No.	Objectives	Topics to be covered	Chapter
1	Introduction to Oscillatory Motion	Basic Terminology	Т1-СН1
		Vibration Models, Natural Frequency,	T1-CH2
2-4	Free Vibrations	Damped Free Vibrations, Logarithmic	
		Decrement, Coulomb Damping	
		Harmonic Excitations, Rotating	T1-CH3
5-10	Forced Vibration	Unbalance, Support motion,	
		Whirling, vibration isolation	
11-12	Transient Vibration of SDOF	Impulse and arbitrary excitation	T1-CH4
13-15	Energy based Approaches	Energy method, Lagrange's equation	Т1-СН6
16-20	System with Multi degree of freedom	Modal analysis, Coupling co- ordinates, Vibration absorber	T1-CH5

21-24		Flexibility influence Co-	T2-CH 11
	Properties of vibrating systems	efficient, Reciprocity Theorem,	
		stiffness influence co-efficient,	
		Orthogonality of eigenvectors	
25-29	Vibration of continuous system	String, Rods, Beams	T1- CH7
30-34	Continuous systems Amprovimete and	Rayleigh's method, Rayleigh-	
	Continuous system: Approximate and exact solution	Ritz method, Dunkerley's	T1- CH10
	exact solution	equation, Holzer's method,	
35-36	Introduction to Control system	Basic Introduction	Class notes

4. Evaluation Scheme:

Evaluation Components	Duration (min.)	Weightage (%)	Marks	Date and time	Remarks
Mid-sem	90	25	50	15/3 9:00 - 10:30 AM	CB+OB
Quiz	-	10	20		
Assignment		10	20		
Tutorial	50	15	30		CB+OB
Compre. Exam	180	40	80	5/5 FN	CB+OB
TOTAL			200		

- **5. Tutorial :** Out of four evaluative tutorials best three will be considered for final evaluation.
- **6. Chamber Consultation Hour:** Tuesday 3.30 pm to 4.30 pm Chamber no: **2152-C**
- **7. Notices:** Notice, if any, concerning the course will be displayed on the Notice Board of ME Department

Instructor-In-Charge ME F343

