4 - M - MD - Besprechung am:

Übungsserie - Komplexe Zahlen 1

- 1. Berechne mit reellen Zahlenpaaren und komplexen Operationen.

 - a) $(2;1) \cdot (5;6) + (0;1) \cdot (3;2)$ b) $(-1;1) \cdot (4;3) (5;-1) \cdot (-2;-2)$
- c) $(3;4)^{-1}$

- d) $(1; -\sqrt{3})^{-1}$ e) $(0; -1)^{-1}$ f) $(-1; 3)^{-1}$ g) $\frac{(1; 2)}{(-3; 4)}$ h) $\frac{(6; 2)}{(2; 0)}$
- i) $\frac{(5;0)\cdot(10;-5)}{(4:-3)\cdot(0;1)}$ j) $(1;1)^2$ k) $(1;-1)^3$ l) $(0;-2)^{-2}$

- 2. Berechne in algebraischer Form.
 - a) (2+3i)(1-2i) b) $\frac{1+i}{3+i}$ c) $\frac{2+\sqrt{3}i}{2-\sqrt{3}i}$

- d) $\frac{(1-\sqrt{3}i)^2}{i} + \frac{32-8i}{\sqrt{2}+i}$ e) $(1-2i)^3$ f) $(2+3i)^4$ g) $(1-i)^{-5}$

- 3. Schreibe in Polarform um und stelle graphisch dar
 - a) 1 + i
- b) $-1 \sqrt{i}$ c) 2i 2 d) $3 \sqrt{3}i$
- e) -2i
- f) 5

- (g) -4
- h) 3 + 4i
- i) *i*
- i) 2 5i
- 4. Berechne in Polarform und stelle graphisch dar.

 - a) (1-i)(2i-2) b) $(\sqrt{3}+3i)(\sqrt{3}-i)$ c) $\frac{1+i}{2i}$ d) $\frac{(i-1)^2}{2i}$

- e) $(\sqrt{3}+i)^3$ f) $\frac{(2\sqrt{3}+2i)(-2+2i)(i+\sqrt{3})}{(1+i)^4}$ g) $\frac{(1+i)(1-i)}{(3+\sqrt{3}i)^3}$
- 5. Berechne in Polarform, stelle graphisch dar. Gib dann die Lösungen auch in algebraischer Form.
 - a) $\sqrt{1+\sqrt{3}i}$ b) $\sqrt[3]{8i}$ c) $\sqrt[3]{2i-2}$

- e) $\sqrt[6]{1}$

- f) $\sqrt[3]{-27}$ g) $\sqrt[4]{\frac{i+1}{i-1}}$ h) $\sqrt[3]{i(\sqrt{3}+i)^2}$
- 6. Berechne in algebraischer Form.

- a) $\sqrt{3+4i}$ b) $\sqrt{-1}$ c) $\sqrt{2i}$ d) $\sqrt{-4-3i}$

4 - M - MD - Besprechung am:

Übungsserie - Komplexe Zahlen 1

- 1. Berechne mit reellen Zahlenpaaren und komplexen Operationen.

 - a) $(2;1) \cdot (5;6) + (0;1) \cdot (3;2)$ b) $(-1;1) \cdot (4;3) (5;-1) \cdot (-2;-2)$
- c) $(3;4)^{-1}$
- d) $(1; -\sqrt{3})^{-1}$ e) $(0; -1)^{-1}$ f) $(-1; 3)^{-1}$ g) $\frac{(1; 2)}{(-3; 4)}$ h) $\frac{(6; 2)}{(2; 0)}$

- i) $\frac{(5;0)\cdot(10;-5)}{(4,-3)\cdot(0,1)}$ j) $(1;1)^2$ k) $(1;-1)^3$ l) $(0;-2)^{-2}$

- 2. Berechne in algebraischer Form.
 - a) (2+3i)(1-2i) b) $\frac{1+i}{3+i}$ c) $\frac{2+\sqrt{3}i}{2-\sqrt{3}i}$

- d) $\frac{(1-\sqrt{3}i)^2}{i} + \frac{32-8i}{\sqrt{3}+i}$ e) $(1-2i)^3$ f) $(2+3i)^4$ g) $(1-i)^{-5}$

- 3. Schreibe in Polarform um und stelle graphisch dar

 - a) 1+i b) $-1-\sqrt{i}$ c) 2i-2
- d) $3 \sqrt{3}i$
- e) -2i
 - f) 5

- g) -4 h) 3+4i
 - i) *i*
- i) 2 5i
- 4. Berechne in Polarform und stelle graphisch dar.

 - a) (1-i)(2i-2) b) $(\sqrt{3}+3i)(\sqrt{3}-i)$
- c) $\frac{1+i}{2i}$ d) $\frac{(i-1)^2}{2i}$

- e) $(\sqrt{3}+i)^3$ f) $\frac{(2\sqrt{3}+2i)(-2+2i)(i+\sqrt{3})}{(1+i)^4}$ g) $\frac{(1+i)(1-i)}{(2+\sqrt{2}i)^3}$
- 5. Berechne in Polarform, stelle graphisch dar. Gib dann die Lösungen auch in algebraischer Form.
- a) $\sqrt{1+\sqrt{3}i}$
- b) $\sqrt[3]{8i}$ c) $\sqrt[3]{2i-2}$ d) $\sqrt[4]{-4}$

- e) $\sqrt[6]{1}$

- f) $\sqrt[3]{-27}$ g) $\sqrt[4]{\frac{i+1}{i-1}}$ h) $\sqrt[3]{i(\sqrt{3}+i)^2}$
- 6. Berechne in algebraischer Form.

- a) $\sqrt{3+4i}$ b) $\sqrt{-1}$ c) $\sqrt{2i}$ d) $\sqrt{-4-3i}$