Introdução aos filtros analógicos: análise de circuitos, resposta em frequência e síntese

Osmar Tormena Júnior, Prof. Dr.

2025

Lista de Figuras

1.1	Circuito RC.	6
1.2	Divisor "resistivo" de tensão	8
1.3	Resposta ao degrau do circuito RC	12
1.4	Topologia de Cauer, ordem 3	15
2.1	Resposta em magnitude do circuito RC	25
2.2	Resposta em fase do circuito RC	25
3.1	Filtro RC passa-baixas	26
3.2	Filtro RC passa-altas	27
3.3	Filtro RC passa-faixa	27
3.4	Filtro RC rejeita-faixa	27
3.5	Diagrama de Bode do filtro $H_{\mathrm{PB}}(\omega)$	30
3.6	Diagrama de Bode do filtro $H_{\mathrm{PA}}(\omega)$	30
3.7	Diagrama de Bode do filtro $H_{\mathrm{PF}}(\omega)$	31
3.8	Diagrama de Bode do filtro $H_{\rm RF}(\omega)$	31
3.9	Representação do atraso de fase	32
3.10	Representação do atraso de grupo	33
3.11	Ilustrando a distorção de fase	34
3.12	Diagrama de Bode (modificado) de um polo real	36
3.13	Diagrama de Bode (magnitude) de um sistema subamortecido.	39
3.14	Diagrama de Bode (atraso de grupo) de um sistema subamortecido	40
	vooldo.	10
4.1	Atenuação do filtro de Butterworth	42
4.2	Polos de $H(s)H(-s)$, para a aproximação de Butterworth, no	
	plano s	46
4.3	Atenuação do filtro de Chebyshev — R_p exagerado para visua-	
	lização da oscilação em banda de passagem	49
4.4	Atraso de grupo do protótipo passa-baixas normalizado de Bessel.	50
5.1	Especificação passa-baixas	52

5.2	Especificação passa-altas.											55
5.3	Especificação passa-faixa.											56
5.4	Especificação rejeita-faixa.											56

Lista de abreviaturas e siglas

EDO Equações Diferenciais Ordinárias Lineares e com Coeficien-

tes Constantes

 $\begin{array}{ll} {\rm p.v.i.} & {\rm problema~de~valor~inicial} \\ {\rm TF} & {\rm transformada~de~Fourier} \end{array}$

TIF transformada inversa de Fourier TIL transformada inversa de Laplace

TL transformada de Laplace

Sumário

1	Tra	nsformada de Laplace	6
	1.1	Definição da transformada de Laplace	8
	1.2	Transformada inversa de Laplace	10
	1.3	Análise de redes através da transformada de Laplace	13
	1.4	Alguns detalles importantes	16
2	Tra	nsformada de Fourier	18
	2.1	A transformada generalizada de Fourier	19
	2.2	A transformada inversa de Fourier	20
	2.3	A tranformada unitária de Fourier	20
	2.4	Cálculo simbólico da transformada de Fourier e sua inversa	22
	2.5	A resposta em frequência de circuitos	22
3	Res	sposta em frequência	26
	3.1	O diagrama de Bode	28
	3.2	Atraso de fase	32
	3.3	Atraso de grupo	32
	3.4	Polos da função de transferência	34
4	Apı	roximações reais	41
	4.1	Aproximação de Butterworth	41
	4.2	Aproximação de Chebyshev	48
	4.3	Aproximação de Bessel	
5	Esp	ecificação	51
	5.1	Filtro passa-baixas	51
	5.2	Filtro passa-altas	
	5.3	Filtro passa-faixa	54
	5.4	Filtro rejeita-faixa	
6	Tra	nsformações de banda	57

6.1	Desnormalização do protótip	О	р	as	s_{ϵ}	ı-l	oa	ix	as	5					57
6.2	Conversão para passa-altas														58
6.3	Conversão para passa-faixa														58
6.4	Conversão para rejeita-faixa														59
6.5	Síntese de filtros analógicos														59

Capítulo 1

Transformada de Laplace

Em unidades curriculares anteriores, foi abordado (dentre outras coisas) a análise de circuitos como o da Figura 1.1.

Figura 1.1: Circuito RC.

Pela Lei das Tensões de Kirchoff, a análise do circuito resulta no seguinte sistema de Equações Diferenciais Ordinárias Lineares e com Coeficientes Constantes (EDO)

$$\begin{cases}
\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \frac{1}{RC}i(t) = \frac{1}{R}\frac{\mathrm{d}v_i(t)}{\mathrm{d}t} \\
\frac{\mathrm{d}v_o(t)}{\mathrm{d}t} = \frac{1}{C}i(t)
\end{cases} ,$$
(1.1)

cuja solução (para $t \ge 0$) deve satisfazer a condição inicial $v_o(0)$ — a tensão inicial do capacitor.

A grande maioria dos alunos não tem uma experiência agradável modelando e resolvendo circuitos dessa maneira. Sistemas de EDO são trabalhosos. Há a necessidade de uma apurada intuição para transformar a tensão inicial do capacitor numa condição adequada à solução da corrente de malha i(t) e, posteriormente, para a obtenção analítica de $v_o(t)$.

A transformada de Laplace (TL), é uma ferramenta útil que se aplica muito bem à solução de EDO (ou sistemas de EDO), como a Eq. (1.1). A TL de uma função real x(t) é definida por

$$X(s) = \int_0^\infty x(t)e^{-st} dt, \qquad (1.2)$$

sendo s uma variável complexa e X(s) uma função complexa — correspondendo à representação de x(t) no domínio de Laplace. Dizemos que x(t) e X(s) formam um par transformado de Laplace $x(t) \longleftrightarrow X(s)$.

O domínio de Laplace não possui uma interpretação física simples. A variável s costuma ser apresentada por sua decomposição cartesiana: parte real (σ) e parte imaginária (ω) , na forma

$$s = \sigma + j\omega$$
,

com unidades de rad/s.

O poder e a utilidade da TL está na simplificação da trabalho matemático necessário para resolver sistemas como da Eq. (1.1). Por exemplo, pela propriedade de diferenciação da TL

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \longleftrightarrow sX(s) - x(0). \tag{1.3}$$

Assim, aplicando a TL sobre as equações de tensão e corrente sobre um resitor

$$v(t) = Ri(t) \longleftrightarrow V(s) = RI(s)$$

e um capacitor

$$i(t) = C \frac{\mathrm{d}v(t)}{\mathrm{d}t} \longleftrightarrow I(s) = C(V(s) - v(0)).$$

Tomando condições iniciais nulas — v(0) = 0, para o capacitor — podemos definir as impedâncias (Z(s) = V(s)/I(s)) desses elementos como: Z(s) = R para o resistor; e Z(s) = 1/sC para o capacitor. Assim, o circuito da Figura 1.1 pode ser redesenhado como na Figura 1.2.

A representação dos componentes de circuito através de suas impedâncias facilita a análise, pois as regras básicas de análise para redes puramente resistivas valem. Assim, aplicando o resultado do divisor resistivo de tensão, podemos escrever

$$V_o(s) = \frac{\frac{1}{sc}}{R + \frac{1}{sC}} V_i(s). \tag{1.4}$$

 $^{^{1}}$ A prova da Eq. (1.3) envolve uma elaborada integração por partes além de uma análise de limites dependendo da continuidade de x(t) na origem (t=0).

Figura 1.2: Divisor "resistivo" de tensão.

Por definição, a razão entre a TL de uma variável de saída e a TL de uma variável de entrada é chamada de função de transferência. Para nossos circuitos, as funções de transferência serão denotadas por H(s). Reescrevendo a Eq. (1.4)

$$\frac{V_o(s)}{V_i(s)} = H(s) = \frac{\frac{1}{sC}}{R + \frac{1}{sC}}$$

e simplificando

$$H(s) = \frac{1}{RCs + 1} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}.$$
 (1.5)

O circuito da Figura 1.1 é um dos circuitos não-triviais mais simples que podemos esperar analisar. Um entendimento mais robusto da TL e suas aplicações em análise de circuitos são necessários para casos típicos mais intricados. Para fundamentar essa habilidade, uma mínima revisão teórica (ainda que limitada a aspectos práticos de utilidade imediata) é necessária.

1.1 Definição da transformada de Laplace

Retomando da definição da TL na Eq. (1.2), reescrita abaixo

$$X(s) = \int_0^\infty x(t)e^{-st} dt,$$

podemos motivar sua necessidade através de um exemplo simples.

A função degrau unitário, também conhecida como função de Heaviside, representada comumente por u(t) é definida por

$$u(t) = \begin{cases} 0 & t < 0; \\ 1 & t \ge 0; \end{cases}, \tag{1.6}$$

é largamente utilizada para representar acionamentos em circuitos. Sua TL pode ser obtida por

$$U(s) = \int_0^\infty u(t)e^{-st} dt = \int_0^\infty e^{-st} dt$$
$$= \frac{e^{-st}}{-s} \Big|_0^\infty = \frac{e^{-s\infty} - e^{-s0}}{-s}.$$

Caso $\Re(s) > 0$, temos que $e^{-s\infty} \to 0$, então

$$U(s) = \frac{1}{s} \quad \Re(s) > 0.$$

A notação $\Re(s)>0$ representa a região de convergência da TL. Ou seja, os valores de s para os quais a relação

$$u(t) \longleftrightarrow \frac{1}{s} \tag{1.7}$$

vale. Em nossos estudos, não haverá a necessidade de considerarmos a região de convergência. Ademais, em várias aplicações, fica pressuposto que a análise se restringe exclusivamente para $t \ge 0$, ou mesmo t > 0. Em ambos os casos, o degrau unitário se reduz à unidade (u(t) = 1), conforme a Eq. (1.6). Assim, pode-se encontrar a Eq. (1.7) na notação alternativa

$$1 \longleftrightarrow \frac{1}{s}.\tag{1.8}$$

A obtenção de pares transformados de Laplace, como a Eq. (1.7) é um simples exercício em Cálculo Diferencial e Integral sobre funções reais. Há uma ampla disponibilidade de tabelas de pares transformados na literatura. Não está no escopo desta unidade curricular a derivação exaustiva desses pares transformados.

Cálculo simbólico da transformada de Laplace

Na eventualidade de um par transformado desconhecido ser necessário, eles podem ser calculados através do Symbolic Math Toolbox do Matlab[®]. Sua documentação pode ser encontrada em https://www.mathworks.com/help/symbolic/.

Como exemplo, vamos repetir a TL do degrau unitário:

- >> syms s
- >> syms t real

```
>> u = heaviside(t);
>> U = laplace(u, t, s)
U =
1/s
```

Maiores detalhes sobre o Symbolic Math Toolbox e suas funções serão abordadas em um material dedicado.

1.2 Transformada inversa de Laplace

Vamos tomar agora a função de transferência do circuito da Figura 1.1 e assumir que a tensão de entrada $v_i(t)$ é um degrau unitário. Assim, como $V_o(s) = H(s)V_i(s)$, podemos escrever

$$V_o(s) = \left(\frac{\frac{1}{RC}}{s + \frac{1}{RC}}\right) \left(\frac{1}{s}\right).$$

Embora seja possível expandir a multiplicação indicada, isso não avança nossa causa. Desejamos obter a tensão de saída $v_o(t)$ (para $t \ge 0$), porém o que temos é sua representação no domínio de Laplace. Precisamos da transformada inversa!

A transformada inversa de Laplace (TIL) é definida por

$$x(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st} \, \mathrm{d}s, \qquad (1.9)$$

que é mais complicada que a Eq. (1.2) que define a TL. Mais importante, a integral é sobre uma variável complexa s e isso a torna (muito) diferente da integração real! Além disso, o parâmetro real σ nos limites de integração pode ser qualquer valor dentro da região de convergência, o que é contraintuitivo².

A solução da Eq. (1.9) foge muito ao ferramental matemático de graduação para Engenharias. Tanto que soluções algebricamente trabalhosas são propostas para sua abordagem — expansão em frações parciais, seguida de busca em tabelas de pares transformados e propriedades. Aqui optarei por um caminho mais simples, do ponto de vista do trabalho algébrico envolvido.

O teorema dos resíduos de Cauchy estabelece a seguinte igualdade:

$$\frac{1}{j2\pi} \int_{\sigma-j\infty}^{\sigma+j\infty} X(s)e^{st} ds = \sum_{p_k} \text{Res}\left(X(s)e^{st}; p_k\right), \tag{1.10}$$

²Afinal, aprendemos que o resultado da integral muda, se mudarmos os limites. Mas esse não é o caso para integrais sobre variáveis complexas.

onde p_k é cada um dos polos de X(s). Polos são as raízes do denominador. A notação $\operatorname{Res}(\cdot)$ representa um $\operatorname{residuo}$, dado por

$$\operatorname{Res}\left(X(s)e^{st}; p_k\right) = \lim_{s \to p_k} \left((s - p_k)X(s)e^{st}\right). \tag{1.11}$$

Em nosso exemplo, os polos de $V_o(s)$ são dois: $p_1 = -\frac{1}{RC}$; e $p_2 = 0$. Assim, temos

$$\operatorname{Res}\left(V_{o}(s)e^{st}; \frac{-1}{RC}\right) = \lim_{s \to \frac{-1}{RC}} \left(s + \frac{1}{RC}\right) \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \frac{1}{s} e^{st}$$

$$= \lim_{s \to \frac{-1}{RC}} \frac{\frac{1}{RC}}{s} e^{st}$$

$$= \frac{\frac{1}{RC}}{-\frac{1}{RC}} = -e^{-t/RC}$$

е

$$\operatorname{Res}\left(V_{o}(s)e^{st};0\right) = \lim_{s \to 0} s \frac{\frac{1}{RC}}{s + \frac{1}{RC}} \frac{1}{s} e^{st}$$
$$= \lim_{s \to 0} \frac{\frac{1}{RC}}{s + \frac{1}{RC}} e^{st}$$
$$= 1$$

Assim, pelo teorema dos resíduos de Cauchy, $v_o(t)$ para $t \geq 0$ fica dado por

$$v_o(t) = 1 - e^{-t/RC},$$
 (1.12)

que possui o aspecto típico da equação de carga de um capacitor. Plotando a Eq. (1.12), produzimos a Figura 1.3.

A análise da Figura 1.3 confirma a ideia da curva de carga de um capacitor. A resposta a um degrau unitário é uma análise temporal de grande relevância, pois o acionamento em degrau modela a mais simples das manobras em um circuito: ligar/desligar um interruptor.

A Eq. (1.12), conforme visualizada na Figura 1.3, também evidencia um aspecto particular da parametrização de circuitos de primeira ordem³: a grandeza RC possui dimensão de tempo, em s. É comum denominar a constante de tempo $\tau = RC$. Uma aproximação amplamente aceita na literatura especializada é que a resposta de um circuito de ordem unitária é dividida em duas partes: período transitório ou transiente; e regime

³Circuitos que possuem apenas um componente reativo, irredutível por associações.

Figura 1.3: Resposta ao degrau do circuito RC.

permanente ou, simplesmente, regime. O limite entre essas duas regiões é arbitrário, porém amplamente aceito, com o valor de $t=5\tau$.

Há diferentes formas de chegarmos à essa (ou qualquer outra) solução:

- através do sistema de EDO da Eq. (1.1) explorando a resposta natural (solução homogênea) e a resposta forçada (solução particular), sendo capaz de resolver um problema de valor inicial (p.v.i.);
- através da aplicação da TL sobre o sistema de EDO, porém sem anular as condições iniciais — ganha-se a solução do p.v.i. e perde-se a função de transferência;
- como foi feito (anulando as condições iniciais), obtendo uma função de tranferência, porém perdendo a solução do p.v.i.;
- através da integral de convolução, pela resposta impulsiva h(t).

Essa última opção oferece insights únicos, mas é bastante "esotérica". A TIL pode ser aplicada em H(s) para obter a resposta impulsiva h(t). Problemas de valor inicial necessitam de uma significativa sofisticação matemática e entendimento da função impulso unitário (também chamada de delta de Dirac), denotada por $\delta(t)$.

A função impulso unitário não é uma função no sentido estrito, mas sim uma distribuição. Foi desenvolvida originalmente para tratar cargas

pontuais (como elétrons) na Física Quântica. Seu uso ganhou corrência na teoria de sinais e sistemas lineares e seus fundamentos. Junto da integral de convolução, dada por

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau, \qquad (1.13)$$

fornecem um resultado poderoso e fundamental.

A questão é: a TL é aplicada justamente para evitarmos as dificuldades com o impulso unitário $\delta(t)$, a resposta ao impulso h(t) e a necessidade de resolver a integral de convolução da Eq. (1.13). Por essa razão, focaremos na função de transferência H(s) e deixaremos as representações temporais em segundo plano.

Cálculo simbólico da transformada inversa de Laplace

Assim como na TL, a TIL também pode ser obtida por meios computacionais. Isso é últil em situações com muitos resíduos (alta ordem no denominador). Além disso, a Eq. (1.11) é, na verdade, apenas o caso mais simples na definição dos resíduos. Sua forma é mais intricada caso algum dos polos se repita.

Repetindo o cálculo já realizado através do Symbolic Math Toolbox, obtemos

```
>> syms s
>> syms t real
>> syms R C real positive
>> Vo = ((1/R/C)/(s+1/R/C))*(1/s);
>> vo = ilaplace(Vo, s, t)
vo =
1 - exp(-t/(C*R))
```

confirmando o resultado obtido manualmente.

1.3 Análise de redes através da transformada de Laplace

Até o presente momento, nossa análise ficou limitada ao simples circuito da Figura 1.1. A análise simplificada através das impedâncias em s oferece um caminho algebricamente mais curto, ainda que trabalhe com um nível de abstração mais alto.

Caso a tensão de saída não seja tomada sobre o capacitor C, mas sobre o resitor R, toda a análise muda. Porém a obtenção da nova função de transferência é relativamente simples:

$$H(s) = \frac{R}{R + \frac{1}{sC}} = \frac{RCs}{RCs + 1} = \frac{s}{s + \frac{1}{RC}}.$$

Comparando as duas funções de transferência, vemos que ambas possuem um polo em s=-1/RC. Porém, enquanto a primeira possui um numerador constante (ordem zero), a segunda possui um zero — uma raiz do numerador da função de transferência — na origem.

Apesar de estarmos operando sobre o mesmo circuito, a escolha entre as variáveis de entrada ou de saída produzem funções de transferência distintas. Como veremos: o funcionamento e interpretação desses circuitos é completamente diferente.

Apenas para satisfazer uma eventual curiosidade, vamos obter a resposta ao degrau deste circuito:

```
>> syms s
>> syms t real
>> syms R C real positive
>> Vo = (s/(s+1/R/C))*(1/s);
>> vo = ilaplace(Vo, s, t)
vo = exp(-t/(C*R))
Ou seja v_o(t) = e^{-t/RC},
```

o que, após breve consideração, é o resultado óbvio⁴.

Porém, se tivermos uma rede com muitas malhas, ou muitos nós, de maneira que mesmo a análise por impedâncias ainda nos deixa com um significativo problema de Álgebra Linear nas mãos: um grande sistema de equações lineares. A experiência mostra que, mesmo um erro de sinal dos mais inocentes, jogam por terra horas de esforço e são a causa de muita frustração!

Uma ideia interessante é automatizar, computacionalmente, o levantamento da função de transferência a partir de um circuito. Para tal, será utilizada uma análise de nós modificada, através do Symbolic Math Toolbox do Matlab[®].

⁴Afinal, a soma das duas soluções deve resultar na unidade, que é o sinal de entrada.

Figura 1.4: Topologia de Cauer, ordem 3.

A netlist

Vamos tomar por exemplo um circuito mais complexo, cuja análise de nós ou de malhas seria mais custosa (e propensa a erros) para fazer à mão. O circuito da Figura 1.4 representa uma topologia padrão para filtros passivos. A obtenção da sua função de transferência é um excelente exercício de avaliação para disciplinas de análise de circuitos elétricos. Porém, nós já estamos um pouco além disso.

Analisando a Figura 1.4, vemos que a rede possui todos os seus nós numerados. Começando pelo terra, com número 0. A sequência dos números é imaterial, desde que sejam valores distintos. Essa enumeração ajuda a descrever o circuito através de uma *netlist*. Até o início da década de 1990, quando computadores com recursos gráficos ainda não eram ubíquos, a descrição de circuitos em simuladores, como o SPICE, era feita dessa forma.

A netlist do circuito da Figura 1.4 pode ser escrita como

V1 1 0

R1 1 2

C1 2 0

L2 2 3

C3 3 0

R2 3 0

e armazenada em um arquivo de texto. Vamos chamá-lo de teste.cir⁵ por hora. O formato é simples, a primeira letra codifica o elemento de circuito, seguido por um número de identificação deste elemento. Os dois números subsequentes representam os nós para ligação do polo positivo e negativo, nesta ordem.

 $^{^5\}mathrm{A}$ extensão .cir é histórica. Ela não muda nada, no entanto. Poderia ser .txt ou qualquer outra coisa.

No Matlab®, vamos executar os seguintes comandos:

```
>> fname = "teste.cir";
>> scam
```

O arquivo teste.cir deve estar no caminho ou na pasta corrente. Idem para o *script* scam.m, que pode ser obtido em https://github.com/echeever/scam. Esse *script* processa a *netlist* e retorna, dentre outras coisas, variáveis simbólicas com a tensão de cada nó.

A função de transferência H(s) pode ser obtida pela razão entre a tensão do nó 3 e do nó 1:

Assim, chegamos (sem grande sofrimento) à função de transferência da Eq. (1.3). Percebemos que H(s) é intricada em relação aos valores dos componentes de circuito. A escolha desses valores, a partir de uma característica de funcionamento desejada, não parece óbvia.

$$H(s) = \frac{R_2}{C_1 C_3 L_2 R_1 R_2 s^3 + (C_1 L_2 R_1 + C_3 L_2 R_2) s^2 + (L_2 + C_1 R_1 R_2 + C_3 R_1 R_2) s + R_1 + R_2}$$

$$H(s) = \frac{\frac{1}{R_1 C_1 L_2 C_3}}{s^3 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_3}\right) s^2 + \left(\frac{1}{R_1 C_1 R_2 C_3} + \frac{C_1 + C_3}{C_1 L_2 C_3}\right) s + \frac{R_1 + R_2}{R_1 C_1 L_2 R_2 C_3}}.$$

$$(1.14)$$

1.4 Alguns detalles importantes

A TL definida na Eq. (1.2) é propriamente chamada de transformada unilateral de Laplace. Isso porque seu limite inferior de integração é a origem (t=0). Essa transformada é útil para análise de funções de transferência em sistemas causais e também para a solução de p.v.i.

Existe a transformada bilateral de Laplace. Nela, o limite inferior de integração é $-\infty$. Ela é mais geral e pode analisar as funções de transferência de sistemas não-causais. Porém ela não é capaz de resolver p.v.i.

Quando buscamos uma propriedade ou par transformado de Laplace em alguma referência, é de suma importância averiguarmos qual versão da TL está sendo utilizada. Isso porque há algumas diferenças significativas. Nosso trabalho será feito sempre com a versão unilateral.

Quando expressamos sinais de entrada ou de saída no domínio do tempo, muitas vezes está implícito se o domínio é $-\infty < t < \infty$, ou se é $t \geq 0$. Isso está estreitamente relacionado com o uso do degrau unitário u(t) para segmentar adequadamente a resposta — além disso, também está relacionado com as versões unilateral ou bilateral da TL. Em nossos trabalhos sempre vamos assumir que $t \geq 0$.

Causalidade

Há alguns parágrafos você deve ter lido o termo "causalidade" e se perguntado sobre o significado disso. Um sistema causal é um sistema onde o sinal de saída só responde a uma mudança do sinal de entrada ao mesmo tempo, ou depois, que ela ocorre. Assim, a saída não antecipa a entrada.

Embora a causalidade pareça uma imposição das leis naturais da Física, ela tem implicações significativas na modelagem matemática dos circuitos. Ela define que a região de convergência da TL está sempre à direita do polo mais à direita (no plano s). Assim, a resposta impulsiva do sistema é sempre lateral direita — h(t)=0, para t<0. Por essa razão, podemos usar apenas a versão unilateral da TL e ignorar a versão bilateral.

Estabilidade

Como veremos mais adiante, também desejamos sistemas que sejam estáveis. A estabilidade significa que, enquanto a entrada for um sinal de amplitude finita, a saída também será um sinal de amplitude finita. Mais uma vez, parece óbvio, porém há sistemas comuns que não são estáveis.

Estabilidade é uma condição necessária para a convergência da tranformada de Fourier e, por consequência, para que um circuito possua resposta em frequência definida. No projeto de filtros, sempre buscamos sistemas estáveis.

A combinação de causalidade e estabilidade implica que as funções de transferência desejáveis possua todos os polos com parte real estritamente negativa. Isso produz polinômios em s que são definidos positivos e são uma condição para a realizabilidade do circuito, já que resistências, capacitâncias e indutâncias são sempre positivas.

Capítulo 2

Transformada de Fourier

No Capítulo anterior foi apresentada uma breve introdução teórica e prática sobre a TL. Como dito, a TL traz várias vantagens na tratativa matemática de um circuito: evita a solução direta das EDO; contorna a necessidade de analisar a integral de convolução, a resposta impulsiva e a singularidade do impulso unitário; além de introduzir o útil conceito de *impedância*, generalizando a resistência para componentes reativos. Tudo isso tem um custo: a interpretação física da TL não é óbvia; e o fato da *Análise Complexa* fazer parte dos seus fundamentos torna a transformada inversa um tanto "esotérica".

A TL é uma transformação bastante generalista. Quase todas as funções reais x(t) (interessantes num contexto de Engenharia) possuem uma TL X(s) para alguma região de convergência no plano s. A transformada de Fourier (TF), por sua vez, converge apenas para um tipo mais restrito de função. No entanto, a TF descarta a necessidade de Análise Complexa, sendo necessários apenas os fundamentos de Análise Real comuns nos cursos de Cálculo Diferencial e Integral para Engenharias. Além disso, a interpretação física da TF é simples e muito útil, com veremos a seguir.

A forma mais comumente utilizada da TF é definida por

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt, \qquad (2.1)$$

onde $X(\omega)$ é uma função complexa sobre a variável real ω . A variável ω possui dimensão de rad/s e pode ser interpretada como frequência. Ou seja, a TF pode ser vista como uma transformação que relaciona uma representação no tempo x(t) com uma representação na frequência $X(\omega)$, através de um par transformado $x(t)\longleftrightarrow X(\omega)$.

São evidentes os paralelos entre a TL, definida na Eq. (1.2) e a TF, definida na Eq. (2.1). A TF parece ser a TL bilateral tomando $s = j\omega$ (ou seja, anulando a parte real σ . Essa análise possui as seguintes implicações:

- 1. Para um sinal de tensão v(t) ou de corrente i(t), a TF^1 $(V(\omega)$ ou $I(\omega))$ pode ser interpretada como o conteúdo de frequência (ou espectro deste sinal;
- 2. Para um circuito com resposta impulsiva h(t), caso a Eq. (2.1) seja convergente, sua TF $H(\omega)$ pode ser interpretado como a sua resposta em frequência.

Assim, de forma simples, caso a função de transferência H(s) represente um sistema causal e estável, $\sigma=0$ pertence à região de convergência da TL, de maneira que a substituição

$$s = j\omega, \tag{2.2}$$

é válida. Assim, para esses sistemas, a TF não traz nada de novo: ela é um caso particular da TL. A mesma coisa ocorre para a ampla maioria dos sinais de interesse. Porém, há excessões importantes.

2.1 A transformada generalizada de Fourier

Existem três situações onde a integral de Riemann da Eq. (2.1) não é convergente, porém onde a importância do resultado (até pela obviedade na interpretação) exige ferramentas matemáticas mais sofisticadas: integração de Lebesgue e teoria das distribuições.

No escopo desta unidade curricular, não há justificativa para abordar essas provas em detalhe, de maneira que vamos apenas considerar os seguintes pares como válidos:

$$\delta(t) \longleftrightarrow 1$$
 (2.3)

$$1 \longleftrightarrow 2\pi\delta(\omega) \tag{2.4}$$

$$u(t) \longleftrightarrow \frac{1}{j\omega} + \pi\delta(\omega)$$
 (2.5)

$$e^{j\omega_0 t} \longleftrightarrow 2\pi\delta(\omega - \omega_0)$$
 (2.6)

¹Para sinais fisicamente realizáveis, a Eq. (2.1) é sempre convergente.

2.2 A transformada inversa de Fourier

A transformada inversa de Fourier (TIF) fica definida pela substituição de $s=j\omega$ na Eq. (1.9), resultando em

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega.$$
 (2.7)

Como ω é uma variável real, não há nada de especial nesta integração, como ocorre com a TIL da Eq. (1.9).

Analisando as Eqs. (2.1) e (2.7), percebemos que, exceto pelo fator $\frac{1}{2\pi}$, há uma similaridade em sua estrutura: essa similaridade nos leva ao conceito de dualidade. Esse conceito é útil para a obtenção de alguns pares transformados de Fourier, bem como na obtenção e interpretação de algumas das propriedades da TF. Existe uma versão unitária da TF que, além de deixar a dualidade mais clara, também nos permite visualizar a frequência em uma unidade muito mais conveniente: Hz.

2.3 A tranformada unitária de Fourier

Vocês devem estar familiares com a equação $\omega=2\pi f$, onde ω representa uma frequência radial, dada em rad/s, e f representa a frequência em Hz. Estamos habituados a trabalhar em hertz e a interpretação dos resultados fica muito mais direta, ademais, temos uma dualidade mais limpa.

A TF unitária pode ser definida por

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt, \qquad (2.8)$$

enquanto a TIF unitária fica da forma

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df.$$
 (2.9)

Nesta notação, os pares transformados da versão generalizada de Fourier podem ser reescritos como:

$$\delta(t) \longleftrightarrow 1$$
 (2.10)

$$1 \longleftrightarrow \delta(f) \tag{2.11}$$

$$u(t) \longleftrightarrow \frac{1}{i2\pi f} + \frac{\delta(f)}{2}$$
 (2.12)

$$e^{j2\pi f_0 t} \longleftrightarrow \delta(f - f_0)$$
 (2.13)

Assim, podemos estabelecer a seguinte estratégia:

- 1. Usaremos a TL com a notação em s para todas as manipulações algébricas envolvendo sinais e funções de transferência;
- 2. Quando possível e conveniente, tomaremos $s\mapsto j\omega$ para buscar uma interpretação espectral em nossas análises;
- 3. Sempre que necessário, para refinar e/ou trazer inteligibilidade à nossa notação, vamos tomar $\omega \mapsto 2\pi f$, especialmente nos passos finais da análise.

Confusão entre as notações

Ao buscar uma referência sobre TF e suas aplicações, pares transformados e suas propriedades, é muito importante prestar atenção na definição usada na TF e TIF. Assim como no caso das versões unilateral e bilateral da TL, a notação pode ser diferente, ambígua e exatamente o oposto do definido aqui.

É comum representar a frequência radial (em rad/s) tanto usando ω , quanto por outra letra grega ν (nu). Por outro lado, a frequência comum (em Hz) é comumente dada por f, porém em alguns contextos, por ν . Não se prenda às variáveis. Averigue sempre a forma das equações das transformadas direta e inversa.

Frequências negativas?

O estudante atento pode ter notado uma curiosidade: a TF prevê a existência de frequências negativas. Elas existem de fato?

Sinais fisicamente realizáveis (assim como sistemas fisicamente realizáveis) são reais, pois o Universo é real. No entanto, os número complexos nos permitem algumas vantagens algébricas e nós nos valemos deles, porém com alguma perda interpretativa por abstração matemática.

Historicamente, a análise de Fourier foi desenvolvida utilizando senos e cossenos. Nesses casos, percebemos que a interpretação de frequências negativas é uma questão sem sentido, pois:

$$cos(-\omega t) = cos(\omega t);$$

$$sen(-\omega t) = -sen(\omega t).$$

Para um cosseno, a paridade da função torna qualquer frequência negativa indistinguível da frequência positiva correspondente. Já no caso na função seno, uma frequência negativa é indistinguível de uma inversão de fase de 180°. Ou seja, em ambos os casos, não há *observabilidade* de uma frequência negativa.

Os senos e cossenos possuem expressões complicadas quando são multiplicados entre si. Isso torna a análise de uma transformada *trigonométrica* de Fourier de difícil tratamento analítico. Funções exponenciais, por outro lado, possuem simples propriedades quando são multiplicadas entre si e estão estreitamente relacionadas às funções trigonométricas, pois

$$e^{\pm j\theta} = \cos\theta \pm j \sin\theta, \tag{2.14}$$

de maneira que a transformada exponencial de Fourier ganhou destaque em sua utilização.

Finalmente: sinais reais não possuem frequências negativas e sua representação é um *artefato* da TF. Por outro lado, sinais complexos têm sim frequências positivas e negativas distintas. Porém sinais complexos não existem na prática — apesar de serem um bom modelo matemático em diversas aplicações, especialmente em Telecomunicações.

2.4 Cálculo simbólico da transformada de Fourier e sua inversa

Novamente, assim como na TL e TIL, o Symbolic Math Toolbox do Matlab[®] nos fornece as funções fourier() e ifourier() para o cômputo da TF e TIF, respectivamente.

Por padrão, o Matlab $^{\oplus}$ utiliza as definições das Eqs. (2.1) e (2.7). Caso o usuário deseje mudar isso para as definições das Eqs. (2.8) e (2.9), ele deve executar:

```
>> sympref('FourierParameters', ...
sym([1 -2*pi]));
```

alternativamente, caso queria voltar ao default, basta executar:

```
>> sympref('FourierParameters', ...
sym([1 -1]));
```

Maiores detalhes sobre o uso dessas funções serão abordados em um material à parte.

2.5 A resposta em frequência de circuitos

Retomando a análise do circuito da Figura 1.1, cuja função de transferência da Eq. (1.5) é repetida abaixo para simples referência (lembrando que

 $\tau = RC$):

$$H(s) = \frac{1}{RCs+1} = \frac{1}{\tau s+1}.$$

Como se trata de uma função de transferência causal e estável — o polo $s=-1/\tau<0$ — vale a substituição $s\mapsto j\omega,$ de maneira que podemos obter a TF na forma radial

$$H(\omega) = \frac{1}{j\tau\omega + 1}. (2.15)$$

A mistura de uma parametrização temporal τ com uma variável espectral ω não promove a maior clareza. Vamos definir uma frequência $\omega_c=1/\tau$, dada em rad/s e reescrever a TF

$$H(\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}}. (2.16)$$

Como veremos mais adiante, o parâmetro ω_c é chamado de frequência de corte. Porém, sua relação com ω e o valor de $H(\omega)$ não é muito clara, pois $H(\omega)$ é uma função complexa sobre a variável real ω .

Fazendo a decomposição cartesiana² de $H(\omega)$,

$$\begin{split} H(\omega) &= \frac{1}{1 + j\frac{\omega}{\omega_c}} \cdot \frac{1 - j\frac{\omega}{\omega_c}}{1 - j\frac{\omega}{\omega_c}}; \\ &= \frac{1 + j\frac{-\omega}{\omega_c}}{1 + \left(\frac{\omega}{\omega_c}\right)^2}, \end{split}$$

obtemos sua parte real

$$\Re(H(\omega)) = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^2} \tag{2.17}$$

e sua parte imaginária

$$\Im(H(\omega)) = \frac{-\frac{\omega}{\omega_c}}{1 + \left(\frac{\omega}{\omega_c}\right)^2}.$$
 (2.18)

 $^{^{2}}H(\omega) = \Re(H(\omega)) + j\Im(H(\omega))$

A decomposição cartesiana de $H(\omega)$ não possui interpretação física óbvia, porém costuma ser um passo necessário para chegar à decomposição polar³, dadas por

$$|H(\omega)| = \sqrt{\Re(H(\omega))^2 + \Im(H(\omega))^2}; \tag{2.19}$$

$$\angle H(\omega) = \tan^{-1}\left(\frac{\Im(H(\omega))}{\Re(H(\omega))}\right). \tag{2.20}$$

Veremos que, na prática, é preferível trabalhar com $|H(\omega)|^2$, pois ele representa o ganho de energia/potência do sistema, trazendo assim uma interpretação física clara. A fase $\angle H(\omega)$ (em rad), embora clara o bastante em seu significado, possui dificuldades interpretativas no impacto de seu resultado.

Para nosso circuito da Figura 1.3, temos então

$$|H(\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^2};\tag{2.21}$$

$$\angle H(\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_c}\right),$$
 (2.22)

que podem ser visualizadas nas Figs 2.1 e 2.2, respectivamente.

A análise das Figs 2.1 e 2.2 evidenciam o comportamento "passa-baixas" da resposta em magnitude do circuito da Figura 1.3. A interpretação da resposta em fase, no entanto, permanece elusiva.

 $^{^{3}}H(\omega) = |H(\omega)| \angle H(\omega)$

Figura 2.1: Resposta em magnitude do circuito RC.

Figura 2.2: Resposta em fase do circuito RC.

Capítulo 3

Resposta em frequência

No último Capítulo, finalizamos a introdução à TF através da sua aplicação na visualização da resposta em frequência do circuito da Figura 1.1. Neste Capítulo seremos um pouco mais amplos e gerais, porém ainda baseados em circuitos RC bastante simples.

As Figuras 3.1, 3.2, 3.3 e 3.4 representam topologias simples de filtos passa-baixas, passa-altas, passa-faixa e rejeita-faixa, respectivamente. Por simplicidade, todos os valores de resistência R e capacitância C são idênticos.

Figura 3.1: Filtro RC passa-baixas.

Lembrando que $\tau = RC$, as funções de transferência dos filtros passabaixa $H_{PB}(s)$, passa-alta $H_{PA}(s)$, passa-faixa $H_{PF}(s)$ e rejeita-faixa $H_{RF}(s)$ são dadas por

$$H_{\rm PB}(s) = \frac{1}{\tau s + 1};$$
 (3.1)

$$H_{\rm PA}(s) = \frac{\tau s}{\tau s + 1};\tag{3.2}$$

Figura 3.2: Filtro RC passa-altas.

Figura 3.3: Filtro RC passa-faixa.

Figura 3.4: Filtro RC rejeita-faixa.

$$H_{PF}(s) = \frac{\tau s}{\tau^2 s^2 + 3\tau s + 1}; \tag{3.3}$$

$$H_{PF}(s) = \frac{\tau s}{\tau^2 s^2 + 3\tau s + 1};$$

$$H_{RF}(s) = \frac{(\tau s + 1)^2}{\tau^2 s^2 + 3\tau s + 1}.$$
(3.3)

Como visto anteriormente, $\omega_c=1/\tau$. Assim, para a análise de Fourier,

as respostas em frequência dos filtros são:

$$H_{\rm PB}(\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}};\tag{3.5}$$

$$H_{\rm PA}(\omega) = \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}};\tag{3.6}$$

$$H_{\rm PF}(\omega) = \frac{j\frac{\omega}{\omega_c}}{1 - \frac{\omega^2}{\omega_c^2} + j3\frac{\omega}{\omega_c}};$$
(3.7)

$$H_{\rm RF}(\omega) = \frac{1 - \frac{\omega^2}{\omega_c^2} + j2\frac{\omega}{\omega_c}}{1 - \frac{\omega^2}{\omega_c^2} + j3\frac{\omega}{\omega_c}}.$$
 (3.8)

3.1 O diagrama de Bode

O diagrama de Bode representa a resposta em magnitude e em fase de uma função de transferência estável. Considerando que os sistemas sejam reais, as regras de simetria conjugada de aplicam à TF, assim:

- a magnitude da TF é par;
- a fase da TF é impar.

De maneira que podemos remover as frequências negativas da representação. Ademais, mostra-se útil utilizar um gráfico em escala logarítmica no eixo das frequências. Finalmente, o valor da resposta em magnitude é expresso em decibéis (dB).

As respostas em magnitude, dadas por

$$|H_{\rm PB}(\omega)|^2 = \frac{1}{1 + \frac{\omega^2}{\omega_c^2}};$$
 (3.9)

$$|H_{PB}(\omega)|^{2} = \frac{1}{1 + \frac{\omega^{2}}{\omega_{c}^{2}}};$$

$$|H_{PA}(\omega)|^{2} = \frac{\frac{\omega^{2}}{\omega_{c}^{2}}}{1 + \frac{\omega^{2}}{\omega_{c}^{2}}};$$
(3.10)

$$|H_{\rm PF}(\omega)|^2 = \frac{\frac{\omega^2}{\omega_c^2}}{1 + 7\frac{\omega^2}{\omega_c^2} + \frac{\omega^4}{\omega_c^4}};$$
 (3.11)

$$|H_{\rm RF}(\omega)|^2 = \frac{1 + 2\frac{\omega^2}{\omega_c^2} + \frac{\omega^4}{\omega_c^4}}{1 + 7\frac{\omega^2}{\omega_c^2} + \frac{\omega^4}{\omega_c^4}},$$
(3.12)

possuem apenas potências pares de ω em sua representação. O que é esperado, dada a paridade simétrica da magnitude. Por outro lado, as respostas em fase

$$\angle H_{\rm PB}(\omega) = -\tan^{-1}\left(\frac{\omega}{\omega_c}\right);$$
 (3.13)

$$\angle H_{\rm PA}(\omega) = \operatorname{atan2}(\omega_c \omega, \omega^2);;$$
 (3.14)

$$\angle H_{\rm PF}(\omega) = \operatorname{atan2}\left(\frac{\omega_c^2 \omega - \omega^3}{3}, \omega_c \omega^2\right);$$
 (3.15)

$$\angle H_{\rm RF}(\omega) = \operatorname{atan2}\left(\frac{\omega_c \omega(\omega^2 - \omega_c^2)}{\omega^4 + 7\omega_c^2 \omega^2 + \omega_c^4}, \frac{\omega^4 + 4\omega_c^2 \omega^2 + \omega_c^4}{\omega^4 + 7\omega_c^2 \omega^2 + \omega_c^4}\right),$$
(3.16)

apresentam apenas potências ímpares 1 de $\omega,$ dada a anti-simetria de sua paridade.

As respostas em magnitude e em fase podem ser visualizadas nos diagramas de Bode das Figuras 3.5–3.8.

A interpretação física da resposta em magnitude é "óbvia". Ela representa o ganho (ou atenuação) do filtro para uma determinada frequência. Infelizmente, o mesmo não pode ser dito da resposta em fase. Sua interpretação não é tão imediata e o fato de ser dada em radianos não ajuda.

Ainda assim, a fase é um aspecto importantíssimo da resposta do filtro. Para tentar trazer um melhor entendimento, vamos apresentar duas representações alternativas: o atraso de fase; e o atraso de grupo.

 $^{^{1}\}mathrm{O}$ uso da função atan
2 (\cdot) mascara essa relação.

Figura 3.5: Diagrama de Bode do filtro $H_{\rm PB}(\omega)$.

Figura 3.6: Diagrama de Bode do filtro $H_{\rm PA}(\omega)$.

Figura 3.7: Diagrama de Bode do filtro $H_{\mathrm{PF}}(\omega)$.

Figura 3.8: Diagrama de Bode do filtro $H_{\rm RF}(\omega)$.

3.2 Atraso de fase

O atraso de fase é definido por

$$\tau_p(\omega) = -\frac{\angle H(\omega)}{\omega},\tag{3.17}$$

sendo uma grandeza dada em segundos. Embora o atraso de fase seja relevante em algumas aplicações de telecomunicações, seus efeitos não são importantes para a análise de filtros seletivos em frequência. Esse tópico não será expandido.

A Figura 3.9 ilustra o efeito do atraso de fase. Nele um pulso senoidal com envelope gaussiano sofre atraso de fase. Entre as curvas preta e cinza, é possível visualizar o deslocamento, porém este efeito não altera o envelope da função (curvas pontilhadas).

Figura 3.9: Representação do atraso de fase.

3.3 Atraso de grupo

O atraso de fase é definido por

$$\tau_g(\omega) = -\frac{\mathrm{d} \angle H(\omega)}{\mathrm{d} \omega},\tag{3.18}$$

sendo uma grandeza dada em segundos. Sua interpretação é de grande valia na análise de filtros seletivos em frequência pois, a variação do atraso de grupo indica uma distorção de fase do sinal.

Considerando as respostas dos filtros analisados neste Capítulo, os atrasos de grupo podem ser dados por:

$$H_{\rm PB}(\omega) : \tau_g(\omega) = \frac{\tau}{1 + \tau^2 \omega^2};$$
 (3.19)

$$H_{\rm PA}(\omega) : \tau_g(\omega) = \frac{\tau}{1 + \tau^2 \omega^2};$$
 (3.20)

$$H_{\rm PF}(\omega) : \tau_g(\omega) = \frac{3\tau(1+\tau^2\omega^2)}{1+7\tau^2\omega^2+\tau^4\omega^4};$$
 (3.21)

$$H_{\rm RF}(\omega) : \tau_g(\omega) = \frac{\tau - 8\tau^3\omega^2 + \tau^5\omega^4}{(1 + 7\tau^2\omega^2 + \tau^4\omega^4)(1 + \tau^2\omega^2)}.$$
 (3.22)

A Figura 3.10 ilustra o efeito do atraso de grupo. Aqui percebemos o deslocamento do envelope (linhas pontilhada e tracejadas) entre os sinais representados em preto e cinza.

Figura 3.10: Representação do atraso de grupo.

A Figura 3.11 ilustra graficamente os efeitos da distorção de fase pela variação do atraso de grupo. Nela, um sinal bitonal com envelope gaussiano teve a fase de um dos tons alterada. Um ponto notável distinto está no pulso central ($t \approx 2.5$). No sinal original, à esquerda, temos um pico isolado e bem definido. Já no sinal distorcido, à direita, o pico parece ter se

subdividido em dois picos menores (*peak splitting*). Esse fenômeno é típico do mau processamento dos sinais de eletrocardiograma, especialmente no complexo QRS.

Figura 3.11: Ilustrando a distorção de fase.

3.4 Polos da função de transferência

Uma função de tranferência realizável H(s) é formada por: um constante multiplicativa, zeros² e polos³. Respeitando as condições de realizabilidade, o filtro precisa ser causal e estável: de maneira que seus polos devem possuir parte real estritamente negativa.

Há duas situações possíveis então: polos reais e pares de polos complexos conjugados.

Polos reais

Quando a raiz do denominador é real, o termo pode ser parametrizado por

$$H(s) = \frac{1}{\tau s + 1},\tag{3.23}$$

²Raízes do polinômio no numerador.

³Raízes do polinômio no denominador.

sendo τ a constante de tempo $(\tau > 0)$ e o polo $s = -1/\tau$ é estritamente negativo. Sistemas dessa natureza possuem resposta temporal no formato

$$h(t) = Ae^{-t/\tau} \quad t \ge 0,$$
 (3.24)

onde A é uma constante a determinar — em conjunto com os outros polos do filtro e eventuais condições iniciais em um p.v.i.

Reparametrizando a constante de tempo como uma frequência de corte $\omega_c=1/\tau$. Escrevemos a resposta em frequência em termos da resposta em magnitude

$$|H(\omega)|^2 = \frac{1}{1 + \frac{\omega^2}{\omega^2}}$$
(3.25)

e do atraso de grupo

$$\tau_g(\omega) = \frac{\tau}{1 + \frac{\omega^2}{\omega_c^2}}.$$
(3.26)

Considerando que a relação entre a frequência radial e a frequência ordinária (em Hz) é dada por $\omega=2\pi f$, vamos, mais uma vez, reparamterizar a resposta em magnitude e o atraso de grupo:

$$|H(f)|^2 = \frac{1}{1 + \frac{f^2}{f_c^2}};$$
(3.27)

$$\tau_g(f) = \frac{\tau}{1 + \frac{f^2}{f_c^2}}.$$
 (3.28)

Finalmente, vamos expressar a resposta em magnitude em decibéis, pois $|H(f)|_{\rm dB}^2=10\log|H(f)|^2$, de forma que

$$|H(f)|_{\mathrm{dB}}^2 = -10\log\left(1 + \frac{f^2}{f_c^2}\right).$$
 (3.29)

E, normalizando o atraso de grupo pela constante de tempo, podemos escrever

$$\frac{\tau_g(f)}{\tau} = \frac{1}{1 + \frac{f^2}{f_c^2}}. (3.30)$$

Com isso, podemos plotar o diagrama de Bode modificado da Figura 3.12. Onde a relação entre os parâmetros τ e f_c é dada por

$$f_c = \frac{1}{2\pi\tau}. (3.31)$$

Figura 3.12: Diagrama de Bode (modificado) de um polo real.

A análise da Figura 3.12 evidencia o comportamento assintóticos da resposta em frequência, bem como o critério para a frequência de corte f_c (ou ω_c).

$$f \ll f_c :: \frac{f^2}{f_c^2} \to 0 \implies |H(f)|_{\mathrm{dB}}^2 \approx -10\log(1) = 0\,\mathrm{dB};$$

$$f \ll f_c :: \frac{f^2}{f_c^2} \to 0 \implies \tau_g(f) \approx \tau;$$

$$f = f_c :: \frac{f^2}{f_c^2} = 1 \implies |H(f)|_{\mathrm{dB}}^2 = -10\log(\frac{1}{2}) \approx -3\,\mathrm{dB};$$

$$f = f_c :: \frac{f^2}{f_c^2} = 1 \implies \tau_g(f) = \frac{\tau}{2};$$

$$f \gg f_c :: \left(1 + \frac{f^2}{f_c^2}\right) \to \frac{f^2}{f_c^2} \implies |H(f)|_{\mathrm{dB}}^2 \approx -20\log\left(\frac{f}{f_c}\right);$$

$$f \gg f_c :: \frac{f^2}{f_c^2} \to \infty \implies \tau_g(f) \approx 0.$$

Essa análise pode ser compreendida da seguinte forma:

• Para frequências muito menores que a frequência de corte, a resposta em magnitude é plana (0 dB) e o atraso de grupo é constante (τ s);

- Na frequência de corte, o ganho de potência é exatamente 0,5, o que equivale à $-3,01\,\mathrm{dB}$, aproximadamente. O ganho correspondente em amplitude é de $1/\sqrt{2}=\sqrt{2}/2$, aproximadamente 0,707. Na vizinhança da frequência de corte $(\frac{f_c}{10} < f < 10f_c)$ também observamos quase a totalidade da variação do atraso de grupo distorção do filtro;
- Para frequências muito maiores que a frequência de corte, a resposta em magnitude é uma reta com inclinação de -20 dB/dec (decibéis por década). O atraso de grupo se aproxima, assintoticamente, de zero.

Par de polos complexos conjugados

Quando a raiz do denominador é quadrática e irredutível em reais, é comum parametrizá-la por

$$H(s) = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2},$$
 (3.32)

sendo ω_0 a frequência natural não-amortecida ($\omega_0 > 0$ em rad/s) e Q é o fator de qualidade (Q > 0 adimensional). A presença de ω_0^2 no numerado apenas normaliza a assíntota da resposta em frequência, como será visto a seguir.

Com um denominador quadrático, há três tipos possíveis de resposta, de acordo com o discriminante Δ da solução quadrática^4

$$\Delta = \frac{\omega_0^2}{Q^2} - 4\omega_0^2, \tag{3.33}$$

de maneira que:

- $\Delta > 0 \implies Q < \frac{1}{2}$ duas raízes reais e distintas;
- $\Delta = 0 \implies Q = \frac{1}{2}$ duas raízes reais e iguais;
- $\Delta < 0 \implies Q > \frac{1}{2}$ um par de raízes complexas conjugadas.

Ambas as soluções com raízes reais não são relevantes ao problema de filtragem analógica — exceto pelo já exposto na Subseção anterior — e não serão consideradas aqui. A solução com um par de raízes complexas conjugadas, por outro lado, é de grande relevância no projeto de filtros analógicos (e digitais). Tais sistemas são chamados subamortecidos.

⁴Conhecida no Brasil, incorretamente, como fórmula de Bhaskara.

A resposta temporal de um sistema subamortecido é dada, de uma forma geral, por

$$h(t) = Ae^{-\alpha t}\cos(\beta t + \phi) \quad t \ge 0, \tag{3.34}$$

com Ae ϕ constantes a determinar pelo p.v.i., enquanto os parâmetros α e β são dados por:

$$\alpha = \frac{\omega_0}{2Q},\tag{3.35}$$

$$\beta = \frac{\sqrt{4Q^2 - 1}}{2Q}\omega_0. \tag{3.36}$$

Aqui nota-se uma confusão muito comum: a frequência de oscilação β depende de ω_0 mas é diferente dela. A frequência β é chamada de frequência natural amortecida. É simples averiguar que se $Q \to \infty$ então $\beta \to \omega_0$. Porém o fator de qualidade é limitado por aspectos tecnológicos da construção de circuitos e de componentes realizáveis.

A magnitude quadrática do sistema subamortecido é dada por

$$|H(\omega)|^2 = \frac{\omega_0^4}{\omega^4 + \frac{\omega_0^2 - 2Q^2\omega_0^2}{Q^2}\omega^2 + \omega_0^4},$$
(3.37)

e o atraso de grupo por

$$\tau_g(\omega) = \frac{\frac{\omega_0}{Q}(\omega^2 + \omega_0^2)}{\omega^4 + \frac{\omega_0^2 - 2Q^2\omega_0^2}{Q^2}\omega^2 + \omega_0^4}.$$
 (3.38)

Aqui, a substituição $\omega=2\pi f$ não beneficia a análise, de maneira que vamos continuar com ω . A análise dos pontos estacionários (derivada nula) de $|H(\omega)|^2$ revela um novo ponto notável: a frequência de ressonância ω_r .

A frequência

$$\omega_r = \frac{\omega_0 \sqrt{4Q^2 - 2}}{2Q},\tag{3.39}$$

indica um máximo da resposta em magnitude, desde que a condição

$$Q \ge \frac{\sqrt{2}}{2},\tag{3.40}$$

seja satisfeita — lembrando que já assumimos que $Q > \frac{1}{2}$.

Assim, ressalto aqui a potencial confusão de "frequências" quando lidamos com sistemas subamortecidos: temos a frequência natural não-amortecida ω_0 ; a frequência natural amortecida β — observada na resposta temporal; e a frequência de ressonância ω_r que é um ponto notável no diagrama de Bode. Tanto beta quanto ω_r convergem para ω_0 se $Q \to \infty$.

O gráfico da Figura 3.13 traz uma pequena coleção de curvas no diagrama de Bode para a resposta em magnitude de um sistema subamortecido com $Q=\{1,2,10\}$. Nele observamos o pico de ressonância na resposta em magnitude, cada vez mais pronunciado, conforme Q aumenta. O comportamento assintótico para $\omega \to 0$ é de assentar em 0 dB, enquanto para $\omega \to \infty$ temos uma reta de $-40\,\mathrm{dB/dec}$

Figura 3.13: Diagrama de Bode (magnitude) de um sistema subamortecido.

Já na Figura 3.14 representa uma coleção de atrasos de grupo para o sistema subamortecido, também para $Q = \{1, 2, 10\}$. Aqui vemos que a variação do atraso de grupo possui comportamento similar ao pico de ressonância. Lembramos que a variação de atraso de grupo se traduz como distorção do sinal pelo filtro.

Figura 3.14: Diagrama de Bode (atraso de grupo) de um sistema subamortecido.

Capítulo 4

Aproximações reais

No Capítulo anterior, foi analisado em detalhe a resposta em frequência de circuitos com polos reais ou pares de polos complexos conjugados. A literatura especializada oferece grande abundância de circuitos que implementam funções de transferência dessa natureza, porém, isso nem sempre é suficiente para atender às especificações de um problema de filtragem.

Neste Capítulo, discutiremos a questão da especificação de uma resposta em frequência, bem como a ideia das aproximações reais do problema de filtragem analógica seletiva em frequência.

Para simplicidade do desenvolvimento matemático, as aproximações serão vistas tomando um protótipo passa-baixas normalizado, ou seja, um filtro passa-baixas cuja frequência de corte é de $1 \,\mathrm{rad/s}$ ($\approx 0.16 \,\mathrm{Hz}$).

Adicionalmente, por simplicidade da notação, vamos definir uma grandeza chamada de atenuação, denotada por $A(\omega)$. Sua relação com a magnitude quadrática é dada por

$$A(\omega) = \frac{1}{|H(\omega)|^2}. (4.1)$$

A seguir serão discutidas e apresentadas as particularidades das aproximações de Butterworth, Chebyshev e Bessel. Essas aproximações possuem equacionamento mais simples, pois seus filtros passa-baixa possuem apenas polos (*all-poles*).

4.1 Aproximação de Butterworth

Em 1930 o físico inglês Stephen Butterworth publicou um arigo intulado "On the Theory of Filter Amplifiers". Neste trabalho, Butterworth defendeu a ideia que bons filtros não apresentam oscilação na resposta em

magnitude, ou seja, possuem resposta monotônica. Um filtro passa-baixas de Butterworth possui resposta em magnitude estritamente decrescente em função da frequência.

A solução apresentada por Butterworth para um protótipo passa-baixas normalizado possui a seguinte resposta em magnitude:

$$|H(\omega)|^2 = \frac{1}{1 + \omega^{2N}},$$
 (4.2)

onde $N \in \mathbb{N}^*$ é a ordem¹ do filtro.

A atenuação do filtro é dada então por $A(\omega)=1+\omega^{2N}$. A inspeção da Figura 4.1 indica que não há oscilações na resposta em magnitude — a atenuação é uma função crescente de ω . Independente da ordem N, a atenuação sempre vale $3\,\mathrm{dB}$ para $\omega=1\,\mathrm{rad/s}$.

Figura 4.1: Atenuação do filtro de Butterworth.

O filtro de Butterworth é conhecido por ter banda de passagem maximamente plana. Isso significa que para frequências abaixo da frequência de corte, o ganho é tão próximo da unidade (0 dB) quanto possível. A análise

¹Equivalente ao número de componentes reativos irredutíveis por associação.

das derivadas de $A(\omega)$ na origem indicam isso:

$$\frac{\mathrm{d}^0 A(\omega)}{\mathrm{d}\omega^0} = 1 + \omega^{2N} \implies \frac{\mathrm{d}^0 A(\omega)}{\mathrm{d}\omega^0} \bigg|_{\omega=0} = 1;$$

$$\frac{\mathrm{d}^1 A(\omega)}{\mathrm{d}\omega^1} = 2N\omega^{2N-1} \implies \frac{\mathrm{d}^1 A(\omega)}{\mathrm{d}\omega^1} \bigg|_{\omega=0} = 0;$$

$$\frac{\mathrm{d}^2 A(\omega)}{\mathrm{d}\omega^2} = 2N(2N-1)\omega^{2N-2} \implies \frac{\mathrm{d}^2 A(\omega)}{\mathrm{d}\omega^2} \bigg|_{\omega=0} = 0;$$

$$\dots$$

$$\frac{\mathrm{d}^{2N} A(\omega)}{\mathrm{d}\omega^{2N}} = (2N)! \implies \frac{\mathrm{d}^{2N} A(\omega)}{\mathrm{d}\omega^{2N}} \bigg|_{\omega=0} = (2N)!.$$

Na origem, $A(\omega)$ é unitária, porém todas as suas derivadas são nulas, exceto a de mais alta ordem (2N). Isso indica uma forte tendência em manter o ganho unitário.

Os polos do filtro de Butterworth

A aproximação de Butterworth parece estar embasada em boas ideias. Resta a questão: "qual a função de transferência que possui uma resposta desse tipo?" Vamos discutir aqui, em detalhe, como são calculados os polos de Butterworth.

Conforme visto anteriormente, a resposta em frequência $H(\omega)$ é uma função complexa sobre a variável real ω . Assim, sua magnitude quadrática pode ser escrita como $|H(\omega)|^2 = H(\omega)\overline{H(\omega)}$, onde $\overline{(\cdot)}$ denota a conjugação complexa.

Em razão das propriedades de simetria conjugada da TF, chegamos à equivalência $\overline{H(\omega)}=H(-\omega)$. Com isso, chegamos à relação

$$|H(\omega)|^2 = H(\omega)\overline{H(\omega)};$$

$$= H(\omega)H(-\omega);$$

$$= H(s)H(-s)\Big|_{s=i\omega}.$$

Assim, da mesma maneira que fazemos o mapeamento $s=j\omega$, podemos

fazer o mapeamento inverso $\omega = -js$. Reescrevendo Eq. (4.2):

$$H(s)H(-s) = \frac{1}{1 + (-js)^{2N}};$$

$$= \frac{1}{1 + (-1)^{2N}j^{2N}s^{2N}};$$

$$= \frac{1}{1 + (-1)^{N}s^{2N}}.$$
(4.3)

Os polos de H(s)H(-s) são as raízes de $1+(-1)^Ns^{2N},$ que podem ser escritos por:

$$1 + (-1)^{N} s^{2N} = 0;$$

$$(-1)^{N} s^{2N} = -1;$$

$$(-1)^{2N} s^{2N} = -1(-1)^{N};$$

$$s^{2N} = (-1)^{N+1}.$$
(4.4)

Assim, caso N seja ímpar, buscamos as raízes de $s^{2N}=1$. Caso N seja par, buscamos as raízes de $s^{2N}=-1$. Tomando as raízes de s como p (já que são polos do sistema) e aplicando o teorema de De Moivre, vamos analisar esses polos para $N=\{1,2,3,4\}$ e averiguar se há algum insight possível.

Tomando N=1,

$$p^{2} = (-1)^{2};$$

 $p^{2} = 1;$
 $p_{n}^{2} = \exp(j2\pi n);$ (4.5)
 $p_{n} = \exp(j\pi n).$ (4.6)

Tomando agora N=2,

$$p^{4} = (-1)^{3};$$

$$p^{4} = -1;$$

$$p^{4} = \exp(j(\pi + 2\pi n));$$

$$p_{n} = \exp(j\frac{\pi}{4} + j\frac{\pi}{2}n).$$
(4.7)

Tomando então N=3,

$$p^{6} = (-1)^{4};$$

$$p^{6} = 1;$$

$$p^{6} = \exp(j2\pi n);$$

$$p_{n} = \exp\left(j\frac{\pi}{3}n\right).$$
(4.8)

Tomando finalmente N=4,

$$p^{8} = (-1)^{5};$$

$$p^{8} = -1;$$

$$p^{8} = \exp(j(\pi + 2\pi n));$$

$$p_{n} = \exp(j\frac{\pi}{8} + j\frac{\pi}{4}n).$$
(4.9)

A Figura 4.2 ilustra as posições dos polos de H(s)H(-s) para $N = \{1, 2, 3, 4\}$. Nela, percebemos polos simétricos em relação à origem do plano s. Sem perda de generalidade, vamos considerar que H(s) contém os polos causais e estáveis à esquerda do eixo $j\omega$, enquanto H(-s) contém os polos não-causais e estáveis (ou causais e instáveis) à direita do eixo $j\omega$.

Percebemos que os polos causais estão no semiplano esquerdo, com uma fase inicial de $\frac{pi}{2} + \frac{\pi}{2N}$, separados entre si por $\frac{\pi}{N}$. Com isso, podemos chegar às seguintes relações para o filtro de Butterworth de ordem N:

$$p_n = \exp\left(j\frac{\pi}{2} - j\frac{\pi}{2N} + j\frac{\pi}{N}n\right) \text{ para } n = 1,\dots,N,$$
(4.10)

com a função de transferência dada por

$$H(s) = \frac{1}{\prod_{n=1}^{N} (s - p_n)}.$$
(4.11)

No Matlab®, o Signal Processing Toolbox implementa a Eq. (4.10) através da função ${\tt buttap()}.$

Os fatores de qualidade de Butterworth

A análise das Eqs. (4.10) e (4.11), auxiliada pela Figura 4.2, nos permite concluir o seguinte:

Figura 4.2: Polos de H(s)H(-s), para a aproximação de Butterworth, no plano s.

- o fator (s+1), correspondente ao polo real, figura apenas para N impar;
- os polos complexos figuram sempre em pares conjugados $(s p_n)(s \overline{p_n}) = (s^2 2\Re(p_n)s + |p_n|^2)$.

O termo $-2\Re(p_n)$ pode ser escrito da forma

$$-2\Re(p_n) = -2\Re\left(\exp\left(j\frac{\pi}{2} - j\frac{\pi}{2N} + j\frac{\pi}{N}n\right)\right)$$
$$= 2\Re\left(\exp\left(-j\frac{\pi}{2} - j\frac{\pi}{2N} + j\frac{\pi}{N}n\right)\right)$$

$$= 2\cos\left(-\frac{\pi}{2} - \frac{\pi}{2N} + \frac{\pi}{N}n\right)$$

$$= 2\cos\left(\frac{2\pi - 1}{2N}\pi - \frac{\pi}{2}\right)$$

$$= 2\sin\left(\frac{2\pi - 1}{2N}\pi\right). \tag{4.12}$$

Isso nos permite reescrever as Eq. (4.11) como:

$$H(s) = \frac{1}{(s+1) \prod_{n=1}^{\frac{N-1}{2}} \left(s^2 + 2 \operatorname{sen}\left(\frac{2n-1}{2N}\pi\right)s + 1\right)}$$
 para N impar; (4.13)

$$H(s) = \frac{1}{\prod_{n=1}^{\frac{N}{2}} \left(s^2 + 2\operatorname{sen}\left(\frac{2n-1}{2N}\pi\right)s + 1\right)}$$
 para N par. (4.14)

Lembrando a parametrização para pares de polos complexos conjugados: $s^2 + \frac{\omega_0}{Q} s + \omega_0^2$. Podemos averiguar que para um protótipo passa-baixas de Butterworth normalizado, $\omega_0 = 1$ rad/s.

Assim, exemplificando para $N = \{1, 2, 3, 4\}$, temos, com N = 1

$$H(s) = \frac{1}{s+1},\tag{4.15}$$

para N=2

$$H(s) = \frac{1}{s^2 + 2\operatorname{sen}\left(\frac{\pi}{4}\right)s + 1} = \frac{1}{s^2 + \sqrt{2}s + 1},\tag{4.16}$$

já para ${\cal N}=3$

$$H(s) = \frac{1}{(s+1)\left(s^2 + 2\sin\left(\frac{\pi}{6}\right)s + 1\right)} = \frac{1}{(s+1)(s^2 + s + 1)},$$
 (4.17)

e, finalmente, para N=4

$$H(s) = \frac{1}{\left(s^2 + 2\operatorname{sen}\left(\frac{\pi}{8}\right)s + 1\right)\left(s^2 + 2\operatorname{sen}\left(\frac{3}{8}\pi\right)s + 1\right)}$$
$$= \frac{1}{\left(s^2 + \sqrt{2 - \sqrt{2}}s + 1\right)\left(s^2 + \sqrt{2 + \sqrt{2}}s + 1\right)}.$$
 (4.18)

Notamos que, para N=4, o máximo valor de Q para um filtro de Butterworth passa-baixas é de, aproximadamente, 1,31.

4.2 Aproximação de Chebyshev

A aproximação de Chebyshev é nomeada em homenagem a matemático russo do século XIX, Pafnuty Lvovich Chebyshev². Registros históricos incompletos remetem sua proposição original ao matemático alemão Wilhelm Cauer (1900–1945). Seu livro *Siebschaltungen*, publicado em 1931, faz a primeira menção do uso dos polinômios de Chebyshev na síntese de filtros seletivos em frequência. A maior parte dos trabalhos de Cauer foi perdida durante a guerra.

A magnitude quadrática de um protótipo passa-baixas normalizado de Chebyshev é dada por

$$|H(\omega)|^2 = \frac{1}{1 + \varepsilon^2 T_N^2(\omega)},\tag{4.19}$$

onde ε é um parâmetro de tolerância na banda de passagem e $T_N(\omega)$ é o polinômio de Chebyshev de primeira espécie, definido por

$$T_N(\omega) = \begin{cases} \cos\left(N\cos^{-1}(\omega)\right) & \text{se } |\omega| \le 1; \\ \cosh\left(N\cosh^{-1}(\omega)\right) & \text{se } |\omega| > 1. \end{cases}$$
(4.20)

Os polinômios de Chebyshev de primeira espécie obedecem à seguinte lei de recursão

$$T_N(\omega) = 2\omega T_{N-1}(\omega) - T_{N-2}(\omega), \tag{4.21}$$

com $T_0(\omega) = 1$ e $T_1(\omega) = \omega$.

A Eq. (4.20) evidencia que $T_N(\omega)$ varia entre 1 e -1 para $\omega < 1$ (ou seja, na banda de passagem). Assim, $T_N^2(\omega)$ varia entre 0 e 1 na banda de passagem. Considerando a atenuação do filtro de Chebyshev

$$A(\omega) = 1 + \varepsilon^2 T_N^2(\omega), \tag{4.22}$$

a Figura 4.3 representa sua atenuação para $N = \{1, 2, 3, 4\}$, com ripple de banda de passagem R_p (em dB), dado por

$$R_p = 10\log(1+\varepsilon^2). \tag{4.23}$$

A apresentação da obtenção dos polos do filtro de Chebyshev é razoavelmente mais envolvida que a de Butterworth. Por essa razão, ela não será apresentada em detalhe. Para nossos propósitos, o Signal Processing Toolbox oferece a função cheb1ap() que faz o cálculo dos polos.

²Não há consenso geral sobre a transliteração do nome em cirílico. Historicamente, as seguintes versões foram circuladas: Tchebichef, Tchebychev, Tchebycheff, Tschebyschev, Tschebyschef, Tschebyscheff, Čebyčev, Čebyšev, Čebyšev, Čebysheff, Chebychov e Chebyshov. Essa última, considerada mais apropriada por nativos da língua russa. A transliteração aqui usada é a adotada pela American Mathematical Society (AMS).

Figura 4.3: Atenuação do filtro de Chebyshev — R_p exagerado para visualização da oscilação em banda de passagem.

4.3 Aproximação de Bessel

Nomeado em honra ao matemático alemão Friedrich Wilhelm Bessel (1784–1846). Dentre seus pioneiros, destacam-se Z. Kiyasu e W.E. Thomson que, em 1943 e 1949, respectivamente, aplicaram as funções de Bessel ao projeto de filtros seletivos em frequência.

Diferentemente das aproximações de Butterworth e Chebyshev, que são definidas em termos da resposta em magntiude, as resposta de um filtro de Bessel é descrita por sua característica de fase. Particularmente, a aproximação de Bessel provê um atraso de grupo maximamente plano na banda de passagem.

Ou seja, o desenvolvimento do filtro de Bessel segue linhas similares às do de Butterworth, porém, substituindo as características da magnitude quadrática pelos do atraso de grupo. Os pioneiros Kiyasu e Thomson foram os primeiros a perceber que os polinômios de Bessel reuniam essas características.

A função de transferência do filtro de Bessel é dada por

$$H(s) = \frac{B_N(0)}{B_N(s)} = \frac{b_0}{\sum_{s=0}^{N} b_n s^n},$$
(4.24)

sendo

$$b_n = \frac{(2N-n)!}{2^{N-n}n!(N-n)!}$$
(4.25)

e $B_N(s)$ é o polinômio de Bessel de ordem N. Os polinomios de Bessel obedecem à recursão

$$B_N(s) = (2N - 1)B_{N-1} + s^2 B_{N-2}(s), (4.26)$$

com $B_0(s) = 1$ e $B_1(s) = s + 1$.

No Signal Processing Toolbox, a função besselap()³ calcula os polos do filtro de Bessel. A Figura 4.4 ilustra os atrasos de grupo para $N = \{1, 2, 3, 4\}$ para um protótipo passa-baixas normalizado de Bessel.

Figura 4.4: Atraso de grupo do protótipo passa-baixas normalizado de Bessel.

A análise da Figura 4.4 nos informa que, para um filtro de Bessel, a "planaridade" do atraso de grupo melhora com o aumento da ordem. Essa é uma característica distinta deste filtro. Como veremos mais adiante, as aproximações de Butterworth e Chebyshev possuem características de fase mais pobres com o aumento da ordem.

³Os polos produzidos por besselap() são escalados para que o comportamento assintótico do filtro de Bessel se sobreponha ao de Butterworth.

Capítulo 5

Especificação da resposta em frequência

Aos leitores (ainda) interessados, o Capítulo anterior nos oferece um vislumbre sobre a aplicabilidade de toda a teoria desenvolvida até o momento. Infelizmente, protótipos passa-baixas normalizados não possuem um amplo leque de aplicação. Precisamos desnormalizar os filtros passa-baixas e/ou fazer uma transformação de banda para obter filtros passa-altas, passa-faixa ou rejeita-faixa.

Porém, antes de discutir a desnormalização e a tranformação de banda, precisamos dar definição à especificação do filtro. Neste capítulo iremos apresentar os parâmetros para especificação da resposta em magnitude dos filtros de Butterworth e Chebyshev. Filtros de Bessel são, comumente, projetados de forma interativa e recursiva.

5.1 Filtro passa-baixas

Um filtro passa-baixas pode ser especificado por sua atenuação (inverso da magnitude quadrática, conforme definido no Capítulo anterior). A Figura 5.1 ilustra a especificação da resposta em magnitude de um filtro passa-baixas. Um filtro com resposta aceitável não deve se sobrepor às áreas hachuradas.

Os parâmetros f_p e f_s (em Hz) marcam os limites das bandas de passagem (passband) e rejeição (stopband), respectivamente. Já os parâmetros R_p e R_s (em dB) representam as tolerâncias (ripple) da banda de passagem e de rejeição, respectivamente. O parâmetro R_s também é comumente chamado de atenuação mínima.

Figura 5.1: Especificação passa-baixas.

O quarteto $\{f_p, f_s, R_p, R_s\}$ determinam a resposta em magnitude de um filtro passa-baixas. Caso necessário, valores correspondentes de ω_p e ω_s (em rad/s) podem ser obtidos prontamente de f_p e f_s , respectivamente. A partir deles, a ordem N de um filtro e sua frequência de corte podem ser definidas.

Exemplo com filtro de Butterworth

Tomando como exemplo o filtro de Butterworth passa-baixas com frequência de corte ω_c (em rad/s), cuja atenuação é dada por

$$A(\omega) = 1 + \left(\frac{\omega}{\omega_c}\right)^{2N}. (5.1)$$

Analisando a Figura 5.1, é possível definir duas inequações:

$$A(\omega_p) = 1 + \left(\frac{\omega_p}{\omega_c}\right)^{2N} \le 10^{R_p/10};$$
 (5.2)

$$A(\omega_s) = 1 + \left(\frac{\omega_s}{\omega_c}\right)^{2N} \ge 10^{R_s/10}.$$
 (5.3)

Vamos assumir, por hora, que essas inequações possam ser reduzidas

para equações. Isolando o termo comum:

$$1 + \left(\frac{\omega_p}{\omega_c}\right)^{2N} = 10^{R_p/10};$$

$$\left(\frac{\omega_p}{\omega_c}\right)^{2N} = 10^{R_p/10} - 1;$$

$$\log\left(\frac{\omega_p}{\omega_c}\right)^{2N} = \log\left(10^{R_p/10} - 1\right);$$

$$2N\log\left(\frac{\omega_p}{\omega_c}\right) = \log\left(10^{R_p/10} - 1\right);$$

$$2N\log(\omega_p) - 2N\log(\omega_c) = \log\left(10^{R_p/10} - 1\right);$$

$$2N\log(\omega_c) = 2N\log(\omega_p) - \log\left(10^{R_p/10} - 1\right);$$

$$2N\log(\omega_c) = 2N\log(\omega_p) - \log\left(10^{R_p/10} - 1\right);$$

e, por outro lado

$$1 + \left(\frac{\omega_s}{\omega_c}\right)^{2N} = 10^{R_s/10};$$

$$\left(\frac{\omega_s}{\omega_c}\right)^{2N} = 10^{R_s/10} - 1;$$

$$\log\left(\frac{\omega_s}{\omega_c}\right)^{2N} = \log\left(10^{R_s/10} - 1\right);$$

$$2N\log\left(\frac{\omega_s}{\omega_c}\right) = \log\left(10^{R_s/10} - 1\right);$$

$$2N\log(\omega_s) - 2N\log(\omega_c) = \log\left(10^{R_s/10} - 1\right);$$

$$2N\log(\omega_c) = 2N\log(\omega_s) - \log\left(10^{R_s/10} - 1\right).$$

Igualando ambas as expressões para 2N:

$$2N\log(\omega_p) - \log\left(10^{R_p/10} - 1\right) = 2N\log(\omega_s) - \log\left(10^{R_s/10} - 1\right);$$

$$2N\log(\omega_p) - 2N\log(\omega_s) = \log\left(10^{R_p/10} - 1\right) - \log\left(10^{R_s/10} - 1\right);$$

$$2N\log\left(\omega_p/\omega_s\right) = \log\left((10^{R_p/10} - 1)/(10^{R_s/10} - 1)\right);$$

$$N = \frac{\log\left(\frac{10^{R_p/10} - 1}{10^{R_s/10} - 1}\right)}{2\log\left(\frac{\omega_p}{\omega_s}\right)}.$$

Como $N \in \mathbb{N}^*,$ faz-se necessário arredondar esse cálcula para cima:

$$N = \left\lceil \frac{\log\left(\frac{10^{R_p/10} - 1}{10^{R_s/10} - 1}\right)}{2\log\left(\frac{\omega_p}{\omega_s}\right)} \right\rceil.$$
 (5.4)

Com a margem de projeto obtida pelo arredondamento para cima de N, por razões de ordem prática, ω_c é calculado para atender exatamente o critério de rejeição, deixando uma "folga" para o critério de passagem.

$$\begin{split} 2N\log\left(\frac{\omega_s}{\omega_c}\right) &= \log\left(10^{R_s/10}-1\right);\\ \log\left(\frac{\omega_s}{\omega_c}\right) &= \frac{\log\left(10^{R_s/10}-1\right)}{2N};\\ \frac{\omega_s}{\omega_c} &= \sqrt[2N]{10^{R_s/10}-1};\\ \omega_c &= \frac{\omega_s}{\sqrt[2N]{10^{R_s/10}-1}}; \end{split}$$

Assim, a frequência de corte f_c (em Hz), pode ser dada por

$$f_c = \frac{f_s}{\sqrt[2N]{10^{R_s/10} - 1}}.$$
 (5.5)

A função buttord() do Signal Processing Toolbox realiza essas operações para o filtro de Butterworth. Já a função cheblord() faz o mesmo para o filtro de Chebyshev.

5.2 Filtro passa-altas

A Figura 5.2 representa a especificação de um filtros passa-altas. Mais uma vez, a especificação é determinada pelo quarteto de parâmetros f_p , f_s , R_p e R_s . O equacionamento para este caso não será desenvolvido.

5.3 Filtro passa-faixa

O filtro passa-faixa possui duas bandas de transição: a primeira entre $f_{s,1}$ e $f_{p,1}$ e a segunda entre $f_{s,2}$ e $f_{p,2}$. O equacionamento é similar aos casos de uma única banda, pois a ordem é definida pelo atendimento do pior caso. A Figura 5.3 ilustra a relação entre os parâmetros. Mais uma vez, o equacionamento completo não será exposto.

5.4 Filtro rejeita-faixa

Finalmente, a Figura 5.4 ilustra a especificação de um filtro rejeita-faixa. Assim como no passa-faixa, há duas bandas de transição. Novamente, o equacionamento não será desenvolvido.

Figura 5.2: Especificação passa-altas.

Um live script especializado do Matlab®, fazendo uso das funções do Signal Processing Toolbox, será disponibilizado. Esse script contemplará a tomada dos parâmetros de especificação e o retorno da ordem e frequência de corte (quando aplicável) para nossos filtros.

Figura 5.3: Especificação passa-faixa.

Figura 5.4: Especificação rejeita-faixa.

Capítulo 6

Transformações de banda

Em nossa motivação, baseada em circuitos RC simples, foi possível averiguar a resposta em frequência de filtros passa-baixas, passa-altas, passa-faixa e rejeita-faixa. Por simplicidade, ao abordar as aproximações de Butterworth, Chebyshev e Bessel, trabalhamos com protótipos passa-baixas normalizados. No último Capítulo, fomos apresentados aos equacionamentos de ordem (e frequência de corte, se aplicável) a partir das especificações do filtro.

Neste Capítulo, daremos o último passo da síntese dos filtros: a desnormalização e transformação de banda. Nem sempre desejamos um filtro passa-baixas e quase nunca temos utilidade para um normalizado.

6.1 Desnormalização do protótipo passa-baixas

A desnormalização de um protótipo passa-baixas consiste de um simples remapeamento em s na função de transferência H(s). Tomando o mapeamento

$$s \mapsto \frac{s}{\omega_n},$$
 (6.1)

ele pode ser aplicado a um protótipo, como o Butterworth de ordem unitária:

$$H(s) = \frac{1}{s+1} \bigg|_{s=\frac{s}{\omega_n}} = \frac{1}{\frac{s}{\omega_n} + 1};$$

$$H(s) = \frac{\omega_n}{s + \omega_n},$$

onde ω_n (em rad/s) será a nova frequência de corte do filtro passa-baixas.

A função 1p21p() do Singal Processing Toolbox realiza a desnormalização de um protótipo passa-baixas.

6.2 Conversão para passa-altas

O remapeamento em s da função de transferência H(s) para conversão entre um protótipo passa-baixas normalizado para um filtro passa-altas é dado por

$$s \mapsto \frac{\omega_n}{s}.$$
 (6.2)

Novamente, para ilustrar, vamos transformar um protótipo Butterworth de ordem unitária:

$$H(s) = \frac{1}{s+1} \bigg|_{s=\frac{\omega_n}{s}} = \frac{1}{\frac{\omega_n}{s}+1};$$

$$H(s) = \frac{s}{s+\omega_n},$$

cuja forma é idêntica à função de transferência do circuito da Figura 3.2.

A função lp2hp() do Singal Processing Toolbox realiza a transformação de banda para um filtro passa-altas.

6.3 Conversão para passa-faixa

O remapeamento em s da função de transferência H(s) para conversão entre um protótipo passa-baixas normalizado para um filtro passa-faixa é dado por

$$s \mapsto \frac{\omega_n}{BW} \frac{s^2 + 1}{s},\tag{6.3}$$

onde ω_n , neste contexto, é a frequência central da banda, dada pela média geométrica dos limites da banda de passagem $\omega_{p,1}$ e $\omega_{p,2}$

$$\omega_n = \sqrt{\omega_{p,1}\omega_{p,2}},\tag{6.4}$$

enquanto BW é a largura de banda, dada pela diferença entre $\omega_{p,2}$ e $\omega_{p,1}$

$$BW = \omega_{p,2} - \omega_{p,1}. \tag{6.5}$$

Mais uma vez, para ilustrar, vamos transformar um protótipo Butterworth de ordem unitária:

$$H(s) = \frac{1}{s+1} \bigg|_{s = \frac{\omega_n}{BW} \frac{s^2 + 1}{s}} = \frac{1}{\frac{\omega_n}{BW}} \frac{s^2 + 1}{s} + 1;$$

$$H(s) = \frac{BWs}{\omega_n s^2 + BWs + \omega_n} = \frac{\frac{BW}{\omega_n} s}{s^2 + \frac{BW}{\omega_n} s + 1},$$

cuja forma é idêntica à função de transferência do circuito da Figura 3.3. Ressalto aqui que a grandeza $\omega_n/BW \approx Q$ para Q suficientemente alto.

A função lp2bp() do Singal Processing Toolbox realiza a transformação de banda para um filtro passa-faixa.

6.4 Conversão para rejeita-faixa

O remapeamento em s da função de transferência H(s) para conversão entre um protótipo passa-baixas normalizado para um filtro rejeita-faixa é dado por

$$s \mapsto \frac{BW}{\omega_n} \frac{s}{s^2 + 1},\tag{6.6}$$

onde ω_n , neste contexto, é a frequência central da banda, dada pela média geométrica dos limites da banda de rejeição $\omega_{s,1}$ e $\omega_{s,2}$

$$\omega_n = \sqrt{\omega_{s,1}\omega_{s,2}},\tag{6.7}$$

enquanto BW é a largura de banda, dada pela diferença entre $\omega_{s,2}$ e $\omega_{s,1}$

$$BW = \omega_{s,2} - \omega_{s,1}. \tag{6.8}$$

Uma última vez, para ilustrar, vamos transformar um protótipo Butterworth de ordem unitária:

$$H(s) = \frac{1}{s+1} \bigg|_{s = \frac{BW}{\omega_n} \frac{s}{s^2 + 1}} = \frac{1}{\frac{BW}{\omega_n} \frac{s}{s^2 + 1} + 1};$$

$$H(s) = \frac{\omega_n(s^2 + 1)}{\omega_n s^2 + BWs + \omega_n} = \frac{s^2 + 1}{s^2 + \frac{BW}{\omega_n} s + 1},$$

cuja forma é idêntica à função de transferência do circuito da Figura 3.4.

A função lp2bs() do Singal Processing Toolbox realiza a transformação de banda para um filtro passa-faixa.

6.5 Síntese de filtros analógicos

Um *script* especializado no Matlab[®] será disponibilizado para a síntese de filtros de Butterworth, Chebyshev e Bessel. Ele fará uso das funções butter(), cheby1() e besself() do Signal Processing Toolbox.