Programmieren mit Python

Eine Einführung

Dr. Aaron Kunert aaron.kunert@salemkolleg.de

28. April 2021

Zu Beginn ...

Kurze Vorstellungsrunde

Schaffst Du es *in 60 Sekunden* folgende Fragen möglichst knackig und aussagekräftig zu beantworten?

- Wer bist Du?
- Windows, Mac oder Linux?
- Welche Vorkenntnisse hast Du beim Programmieren?
- Warum hast Du Dich zum Python-Kurs angemeldet?
- Wann wäre der Kurs für Dich perfekt gelaufen? (Best Case Szenario)
- Wann würdest Du den Kurs nicht weiter besuchen? (Worst Case Szenario)

Ablauf des Kurses

- Mischung aus Vortrag, Live-Coding und Präsenzübungen
- Im Idealfall: Mehr Praxis statt Erklärungen
- Jede Woche gibt's ein Aufgabenblatt → Besprechung in der nächsten Woche
- Kommunikation über Slack: https://bit.ly/3a5W9fE (freiwillig)

Warum Python?

- Einfaches Setup
- Einstiegsfreundliche Syntax
- Python ist eine Hochsprache
- Python muss nicht kompiliert, sondern nur interpretiert werden
- ullet Große Community o großes *Ecosystem*
- Python ist extrem vielseitig
- Python ist plattformunabhängig

Typische Einsatzbereiche

- Automatisierung
- Webscraping
- Datenanalyse
- Webentwicklung

1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte

- 1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte
- 2. Syntax: Fokus auf der korrekten Anwendung der Syntax

- 1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte
- 2. Syntax: Fokus auf der korrekten Anwendung der Syntax
- 3. Funktionalität: Fokus liegt darauf, Problemstellungen pragmatisch zu lösen

- 1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte
- 2. Syntax: Fokus auf der korrekten Anwendung der Syntax
- 3. Funktionalität: Fokus liegt darauf, Problemstellungen pragmatisch zu lösen
- 4. Design: Fokus auf les-und wartbaren Code

- 1. Annäherung: Fokus auf dem Begreifen der Grundkonzepte
- 2. Syntax: Fokus auf der korrekten Anwendung der Syntax
- 3. Funktionalität: Fokus liegt darauf, Problemstellungen pragmatisch zu lösen
- 4. Design: Fokus auf les-und wartbaren Code
- 5. Architektur: Fokus auf Strategie, Projekte nachhaltig und erweiterbar umzusetzen

Was wird benötigt?		

Was wird benötigt?

Am Anfang

- Compiler/Interpreter
- Texteditor (z.B. Mac: Xcode, Windows: Edit)

Was wird benötigt?

Am Anfang

- Compiler/Interpreter
- Texteditor (z.B. Mac: Xcode, Windows: Edit)

Später

- Google
- Integrierte Entwicklungsumgebung (IDE)
- Versionskontrolle (VCS)
- Virtueller Maschinen
- Datenbanken
- Grafikbearbeitung

Wo findet man Hilfe/Infos?

- Google
- stackoverflow.com
- Youtube (z.B. Tutorials)
- Austausch über Slack
- docs.python.org/3
- Bücher (z.B. Python Crashkurs v. Eric Matthes)
- ullet mailto: aaron.kunert@salemkolleg.de

Installation von Python

Ist Python schon installiert?

- Öffne ein Terminal/die Eingabeaufforderung
- Gib ein python --version
- oder alternativ python3 --version
- Erhältst Du die Antwort Python und eine Zahl ≥ 3.6, dann ist alles fein
- Falls nicht: Installiere Python!

Installation

- 1. Gehe auf https://www.python.org/downloads/
- 2. Klicke den Button "Download Python 3.9.3."
- 3. Führe die Installationsdatei aus
- 4. Falls Du gefragt wirst, bestätige, dass Python zum PATH hinzugefügt wird
- 5. Eventuell muss der Rechner neu gestartet werden

Achtung bei Windows

Python muss zum PATH hinzugefügt werden.

Cross-Check

Gib python (Win) oder python3 (Mac) im Terminal ein. Du solltest etwa folgendes sehen:

Python 3.9.2 (tags/v3.9.2:1a79785, Feb 19 2021, 13:44:55) [MSC v.1928 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information.

>>>

Jetzt bist Du im *interactive mode* (REPL) von Python. Hier kannst Du einzelne Codezeilen eingeben und mittels Enter ausführen. Um den interactive mode zu verlassen, gib exit() ein und bestätige mit der Enter-Taste.

Erste Schritte im REPL

(Read-Evaluate-Print-Loop)

Probier mal folgende Kommandos aus

- \bullet 3 + 4
- 2 7
- "Hello" + "Python"

Übung

Was machen die folgenden Operatoren?

- -
- -
- *
- /
- **

Übung

Was machen die folgenden Operatoren?

- -
- -
- *
- /
- **

Und diese?

- %
- //
- ==
- <=
- <

Übung

Wie rechnet Python?

- Wird Punkt-vor-Strich berücksichtigt?
- Kann man mit Klammern die Reihenfolge beeinflussen?
- Was ist der Unterschied zwischen 10/5 und 10//5 ?
- Was bedeutet das Kommando _?
- Wie kann man Zwischenergebnisse in Variablen speichern?

Variablen

my_variable = 3

my_variable = 3

Die Zuweisung darf auch das Ergebnis einer Berechnung sein:

 $my_new_variable = 3 + 5$

my_variable = 3

Die Zuweisung darf auch das Ergebnis einer Berechnung sein:

 $my_new_variable = 3 + 5$

Die Zuweisung darf auch weitere Variablen enthalten:

my_brand_new_variable = my_variable + my_new_variable

Die Zuweisung darf auch das Ergebnis einer Berechnung sein:

$$my_new_variable = 3 + 5$$

Die Zuweisung darf auch weitere Variablen enthalten:

Man darf auch Kettenzuweisungen machen:

$$a = b = c = 100$$

• Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten
- Beliebige Länge

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten
- Beliebige Länge
- Wer's schon kennt als regulärer Ausdruck: [_a-zA-Z] [_0-9a-zA-Z]*

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten
- Beliebige Länge
- Wer's schon kennt als regulärer Ausdruck: [_a-zA-Z] [_0-9a-zA-Z]*
- Schlüsselwörter sind nicht erlaubt

Gültige Variablennamen

- Erlaubt sind Buchstaben (nur ASCII), Ziffern und Unterstriche
- Der Name darf nicht mit einer Ziffer starten
- Beliebige Länge
- Wer's schon kennt als regulärer Ausdruck: [_a-zA-Z] [_0-9a-zA-Z]*
- Schlüsselwörter sind nicht erlaubt

Liste der Schlüsselwörter

False	None	True	and	as
await	break	class	continue	def
else	except	finally	for	from
import	in	is	lambda	nonlocal
pass	raise	return	try	while
assert	global	with	elif	or
del	not	async	if	yield

Style-Guide Variablennamen

- Englische Wörter
- Nur Kleinbuchstaben
- Möglichst aussdrucksstarke Namen verwenden
- Keine Angst vor langen Namen
- Namen, die aus mehreren Worten bestehen, mit Unterstrich trennen (snake-case)

Style-Guide Variablennamen

- Englische Wörter
- Nur Kleinbuchstaben
- Möglichst aussdrucksstarke Namen verwenden
- Keine Angst vor langen Namen
- Namen, die aus mehreren Worten bestehen, mit Unterstrich trennen (snake-case)

z.B. students_in_this_room, number_of_unpaid_bills

Übung

Probier's aus!

- Welchen Wert hat eine Variable, wenn man sie nicht vorher definiert hat?
- Was passiert, wenn man eine Variable definiert, die schonmal verwendet wurde?
- Wie kann man eine Variable mit Wert 3 um 1 vergrößern?

Datentypen

Jeder Wert in Python hat einen *Datentyp*. Unter anderem gibt es folgende *primitive* Typen in Python.

- int Integer (ganze Zahlen)
- float Float (Dezimalzahlen)
- bool Boolean (Wahrheitswerte)
- str String (Zeichenketten)
- NoneType (Typ des leeren Werts None)

Integer

Ganze Zahlen wie z.B. 1, -1, 0. Nicht aber 2.0 oder 0.0.

Integer

Ganze Zahlen wie z.B. 1, -1, 0. Nicht aber 2.0 oder 0.0.

Float

Fließkommazahlen, z.B. 3.1415925. Achtung: Bei Float-Berechnungen können schnell "Überraschungen" auftreten: Was ergibt z.B. 1.2 – 1.0?

Integer

Ganze Zahlen wie z.B. 1, -1, 0. Nicht aber 2.0 oder 0.0.

Float

Fließkommazahlen, z.B. 3.1415925. Achtung: Bei Float-Berechnungen können schnell "Überraschungen" auftreten: Was ergibt z.B. 1.2 – 1.0 ?

Boolean

Booleans sind eine Sonderform von int und können nur die Werte True (entspricht 1) und False (entspricht 0) annehmen. Sie entstehen in der Regel, wenn man Fragen im Programm stellt (z.B. 3 < 4 oder 1 == 2).

String

Strings sind beliebige Zeichenketten und müssen in (ein-, zwei- oder dreifache) Anführungszeichen eingeschlossen werden. Die Ausdrücke 'hello', "Hello" und """Hello"" sind (fast) äquivalent.

String

Strings sind beliebige Zeichenketten und müssen in (ein-, zwei- oder dreifache) Anführungszeichen eingeschlossen werden. Die Ausdrücke 'hello', "Hello" und """Hello"" sind (fast) äquivalent.

Mehrzeilige Strings

Ein *Stringliteral* kann nur innerhalb einer Zeile definiert werden. Soll ein String mehrere Zeilen umfassen, müssen dreifache Anführungszeichen verwendet werden.

Steuerzeichen

Gewisse Kombinationen mit Backslash sind reservierte Steuerzeichen. So bezeichnet beispielsweise \n einen Zeilenumbruch und \t ein Tabulatorzeichen.

Beispiel: "This text\nfills two lines"

Steuerzeichen

Gewisse Kombinationen mit Backslash sind reservierte Steuerzeichen. So bezeichnet beispielsweise \n einen Zeilenumbruch und \t ein Tabulatorzeichen.

Beispiel: "This text\nfills two lines"

Escaping

Möchte man ein Steuerzeichen nicht ausführen, sondern buchstäblich nehmen. Muss man sie mit einem Backslash *escapen* bzw. maskieren.

Beispiel: "This text fits in\\n one line"

Steuerzeichen

Gewisse Kombinationen mit Backslash sind reservierte Steuerzeichen. So bezeichnet beispielsweise \n einen Zeilenumbruch und \t ein Tabulatorzeichen.

Beispiel: "This text\nfills two lines"

Escaping

Möchte man ein Steuerzeichen nicht ausführen, sondern buchstäblich nehmen. Muss man sie mit einem Backslash *escapen* bzw. maskieren.

Beispiel: "This text fits in\\n one line"

Raw-Strings

Möchte man alle Steuerzeichen eines Strings ignorieren, kann man ihn als *Raw-String* definieren.

Beispiel: r"This \n String \t has no control characters"

Mit der Funktion type() lässt sich der Typ bestimmen, z.B. type(3.2).

Mit der Funktion type() lässt sich der Typ bestimmen, z.B. type(3.2).

Typumwandlung (Typecasting)

Mit der Funktion type() lässt sich der Typ bestimmen, z.B. type(3.2).

Typumwandlung (Typecasting)

Implizit

Bei manchen Operationen nimmt Python automatisch eine Typumwandlung vor.

Beispiel: 1 + 2.0 ergibt 3.0

Mit der Funktion type() lässt sich der Typ bestimmen, z.B. type(3.2).

Typumwandlung (*Typecasting*)

Implizit

Bei manchen Operationen nimmt Python automatisch eine Typumwandlung vor.

Beispiel: 1 + 2.0 ergibt 3.0

Explizit

Die Funktionen int(), float(), str() und bool() führen jeweils eine Typumwandlung durch (sofern möglich). Beispiele:

- int(2.0) ergibt 2
- float(2) ergibt 2.0
- int("3") ergibt 3

Übung

Versuche die Fragen erst ohne Python zu beantworten, überprüfe Deine Vermutung

- Welchen Datentyp hat das Ergebnis von 3 1.0 ?
- Was ist das Ergebnis von "2" + 1?
- Was ist das Ergebnis von "2" + "2"?
- Sind die beiden Werte 0 und "0" gleich?
- Sind die beiden Werte 2 und True gleich?
- Sind die beiden Werte bool(2) und True gleich?
- Sind die beiden Werte 1 und True gleich?

Übung

Erkläre mit Deinen eigenen Worten

- Nach welcher Regel wandelt int() eine Fließkommazahl in eine ganze Zahl um?
- Nach welchen Regeln wandelt bool() Zahlen und Strings in einen Wahrheitswert um?

Operatoren

Die wichtigsten Operatoren

- + (Addition oder Zusammenkleben von Strings)
- (Subtraktion)
- * (Multiplikation)
- / (Division, ergibt immer ein Wert vom Typ float)
- ** (Potenzierung)
- % (modulo-Operator: Rest bei ganzzahliger Division)
- // (Division und Abrunden, ergibt immer ein Wert vom Typ int)
- == (Vergleichsoperator, ergibt immer ein Wert vom Typ bool)
- != (Ungleichheitsoperator, ergibt das Gegenteil von ==)

1. Klammern

- 1. Klammern
- 2. **

- 1. Klammern
- 2. **
- 3. *, /, //, %

- 1. Klammern
- 2. **
- 3. *, /, //, %
- 4. +,-

- 1. Klammern
- 2. **
- 3. *, /, //, %
- 4. +,-

Operatoren gleichen Rangs werden innerhalb eines Ausdrucks von links nach rechts abgearbeitet.

- 1. Klammern
- 2. **
- 3. *, /, //, %
- 4. +,-

Operatoren gleichen Rangs werden innerhalb eines Ausdrucks von links nach rechts abgearbeitet.

Ausnahmen:

Potenzierung (**) und Zuweisung (=) werden von rechts nach links verarbeitet.

Kombinierte Zuweisung

Oft möchte man eine gegebene Variable neu zuweisen:

```
counter = 1
counter = counter + 1 # counter = 2
```

Kombinierte Zuweisung

Oft möchte man eine gegebene Variable neu zuweisen:

```
counter = 1
counter = counter + 1 # counter = 2
```

Dies lässt sich auch kurz schreiben als

```
counter = 1
counter += 1  # counter = 2
```

Kombinierte Zuweisung

Oft möchte man eine gegebene Variable neu zuweisen:

```
counter = 1
counter = counter + 1 # counter = 2
```

Dies lässt sich auch kurz schreiben als

```
counter = 1
counter += 1  # counter = 2
```

Analog sind die Operatoren -=, *=, /=, etc. definiert.

Script Mode

Script Mode

Sobald man mehrere zusammenhängende Zeilen hat, wird die REPL sehr unübersichtlich. Daher gibt es auch die Möglichkeit, alle Programmzeilen zunächst aufzuschreiben und diese dann gebündelt von Python ausführen zu lassen. Im Gegensatz zum REPL bzw. interactive Mode von Python wird dies *Script Mode* genannt.

Beispiel

```
name = "Max"
age = 20
print(f"Hello, I'm {name} and I'm {age} years old")
```

Beispiel

```
name = "Max"
age = 20
print(f"Hello, I'm {name} and I'm {age} years old")
```

Problem:

Wie kann man Python erklären, diese 3 Zeilen auf einmal auszuführen?

Old-School-Lösung

- Erstelle eine neue Datei (z.B. my_script.py)
- Öffne die Datei mit einem Texteditor und speichere den Beispiel-Code darin ab.
- Öffne den Ordner mit der Datei my_script.by mit dem Terminal bzw. der Eingabeaufforderung
- Führe das Kommando python my_script.py aus.

Optimallösung: Verwende eine IDE

Eine IDE (integrierte Entwicklungsumgebung) hilft Dir beim Programmieren und unterstüzt Dich wo immer möglich. Dadurch lassen sich auch große Projekte schnell umsetzen.

Optimallösung: Verwende eine IDE

Eine IDE (integrierte Entwicklungsumgebung) hilft Dir beim Programmieren und unterstüzt Dich wo immer möglich. Dadurch lassen sich auch große Projekte schnell umsetzen.

Nachteile

Die anfängliche Einrichtung kann schnell kompliziert werden. Aufgrund der vielen Features fühlt man sich schnell mal überfordert.

Optimallösung: Verwende eine IDE

Eine IDE (integrierte Entwicklungsumgebung) hilft Dir beim Programmieren und unterstüzt Dich wo immer möglich. Dadurch lassen sich auch große Projekte schnell umsetzen.

Nachteile

Die anfängliche Einrichtung kann schnell kompliziert werden. Aufgrund der vielen Features fühlt man sich schnell mal überfordert.

ightarrow Das machen wir etwas später.

Kompromiss für den Anfang: Browserbasierte Editoren

Um schnell einzusteigen, kann zu Beginn auch ein browsergestützter Editor/Interpreter verwendet werden. Zum Beispiel:

Kompromiss für den Anfang: Browserbasierte Editoren

Um schnell einzusteigen, kann zu Beginn auch ein browsergestützter Editor/Interpreter verwendet werden. Zum Beispiel:

- Programiz (https://www.programiz.com/python-programming/online-compiler)
 - einfacher Einstieg
 - schnell und unkompliziert
 - geringer Funktionsumfang

Kompromiss für den Anfang: Browserbasierte Editoren

Um schnell einzusteigen, kann zu Beginn auch ein browsergestützter Editor/Interpreter verwendet werden. Zum Beispiel:

- Programiz (https://www.programiz.com/python-programming/online-compiler)
 - einfacher Einstieg
 - · schnell und unkompliziert
 - geringer Funktionsumfang
- Repl.it (https://replit.com/languages/python3)
 - Auch für viele andere Sprachen geeignet
 - Manchmal etwas langsam
 - Man kann mehrere Dateien und Projekte verwalten (braucht Account)
 - Hat fast alle IDE-Features (braucht Account)

Input/Output

Kommunikation über die Konsole

Die Konsole

Da wir zu Beginn noch über keine grafische Benutzeroberfläche verfügen, verwenden wir für die Kommunikation mit unserem Programm die Konsole. Dabei handelt es sich um ein einfaches Textfenster, auf dem Dein Programm Informationen ausgeben kann (*Output*) und Text einlesen kann (*Input*).

Output

Um einen String auf der Konsole auszugeben, verwende die Funktion print().

Zum Beispiel: print("Hello there").

Output

Um einen String auf der Konsole auszugeben, verwende die Funktion print().

Zum Beispiel: print("Hello there").

Es können auch Variablen eingesetzt werden:

```
message = "Hello there"
```

print(message) # Hello there

String Interpolation

Um Variablenwerte innerhalb eines Strings auszugeben, verwenden wir die String-Interpolation-Syntax:

```
my_value = 5
print(f"The variable my_value has the value {my_value}")
# The variable my_value has the value 5
```

String Interpolation

Um Variablenwerte innerhalb eines Strings auszugeben, verwenden wir die String-Interpolation-Syntax:

```
my_value = 5
print(f"The variable my_value has the value {my_value}")
# The variable my_value has the value 5
```

Das geht auch als inline expression:

```
print(f"The sum of 1 and 2 is {1+2}")

# The sum of 1 and 2 is 3
```

Input

Um einen String vom User einzulesen, verwende die Funktion input():

```
age = input("How old are you?")
print(f"I am {age} years old")
```

Input

Um einen String vom User einzulesen, verwende die Funktion input():

```
age = input("How old are you?")
print(f"I am {age} years old")
```

Achtung

Das Ergebnis von input hat stets den Datentyp string auch wenn Zahlen eingelesen werden. Gegebenenfalls muss das Ergebnis mittels int() oder float() in den gewünschten Typ umgewandelt werden.

Beispiel: Input und Output kombiniert

```
name = input("What is your name?")
age = input("What is your age?")
print(f"Hello {name}, you are {age} years old")
```

Übung

Adressabfrage

Schreibe ein kurzes Skript, dass Dich nach Deinem Namen, Alter und Adresse fragt. Wenn es alles eingelesen hat, soll es diese Infos in folgender Form auf der Konsole ausgeben:

Hallo Max, schön dass Du da bist. Du bist 21 Jahre alt und wohnst in der Bismarckstraße 12 in Glücksstadt.

Übung

Blick in die Zukunft

Schreibe ein kurzes Skript, dass Dich nach Deinem Alter fragt. Daraufhin soll es auf der Konsole ausgeben, wie alt Du in 15 Jahren sein wirst.

Kommentare

Kommentare

Alle Zeichen einer Zeile, die hinter einem # (Hashtag) kommen, werden von Python ignoriert. So lassen sich Kommentare im Quellcode platzieren.

Kommentare

Alle Zeichen einer Zeile, die hinter einem # (Hashtag) kommen, werden von Python ignoriert. So lassen sich Kommentare im Quellcode platzieren.

Beispiel

print("This line will be printed")
print("This line won't")

Conditionals

Ein Programm verzweigen

Problemstellung

Lies eine Zahl x ein. In Abhängigkeit von x soll Folgendes ausgegeben werden:

Die Zahl x ist größer als 0

bzw.

Die Zahl x ist kleiner 0

Wie macht man das?

Lösung (fast)

```
1     x = input("Gib eine Zahl x an")
2     x = int(x)
3
4     if x < 0:
5         print("x ist größer 0")
6     else:
7     print("x ist kleiner 0")</pre>
```


Struktur if-else Statement if

Struktur if-else Statement if Bedingung

Struktur if-else Statement if Bedingung:

Struktur if-else Statement if Bedingung: $\sqcup \sqcup$

Struktur if-else Statement

 $\verb| if Bedingung: \\$

⊔ ⊔ Codezeile A1

Struktur if-else Statement

 $\verb| if Bedingung: \\$

Struktur if-else Statement if Bedingung: ⊔ ⊔ Codezeile A1 ЦЦ else:

Struktur if-else Statement if Bedingung: ⊔ ⊔ Codezeile A1 шш : else: ⊔ ⊔ Codezeile B1 ⊔ ⊔ Codezeile B2 ⊔⊔

Struktur if-else Statement if Bedingung: ⊔ ⊔ Codezeile A1 шш : else: цц Codezeile B1 ⊔ ⊔ Codezeile B2 ШШ Codezeile C1

Wie funktioniert's?

Ist die if-Bedingung True, so wird der if-*Block* ausgeführt. Ist sie False wird der else-*Block* ausgeführt.

Wie funktioniert's?

Ist die if-Bedingung True, so wird der if-*Block* ausgeführt. Ist sie False wird der else-*Block* ausgeführt.

Definition: Block

Aufeinanderfolgende Codezeilen, die alle die gleiche Einrückung besitzen, nennt man *Block*. D.h. Leerzeichen am Zeilenanfang haben in Python eine syntaktische Bedeutung.

Wie funktioniert's?

Ist die if-Bedingung True, so wird der if-*Block* ausgeführt. Ist sie False wird der else-*Block* ausgeführt.

Definition: Block

Aufeinanderfolgende Codezeilen, die alle die gleiche Einrückung besitzen, nennt man *Block*. D.h. Leerzeichen am Zeilenanfang haben in Python eine syntaktische Bedeutung.

Good to know

- Der else-Block ist optional.
- Falls die Bedingung nicht vom Typ bool ist, so wird sie implizit umgewandelt.

Übungen

Volljährigkeit prüfen/Zutrittskontrolle

Schreibe ein Skript, dass nach dem Alter eines Users fragt und überprüft, ob der User schon volljährig ist. Dementsprechend soll auf der Konsole entweder

Willkommen

oder

Du darfst hier nicht rein erscheinen.

Übungen

Volljährigkeit prüfen/Zutrittskontrolle

Schreibe ein Skript, dass nach dem Alter eines Users fragt und überprüft, ob der User schon volljährig ist. Dementsprechend soll auf der Konsole entweder

Willkommen

oder

Du darfst hier nicht rein erscheinen

Teilbarkeit bestimmen

Schreibe ein Skript, dass eine ganze Zahl einliest. Daraufhin soll auf der Konsole ausgegeben werden, ob die Zahl durch 7 teilbar ist. Beispiel: Ist die Eingabe 12, so ist die Ausgabe:

Die Zahl 12 ist nicht durch 7 teilbar.

Logische Operatoren

Booleans können mittels folgender Operatoren miteinander verknüpft werden:

Logische Operatoren

Booleans können mittels folgender Operatoren miteinander verknüpft werden:

and 1st genau dann True, wenn beide Operanden True sind.

or Ist genau dann True, wenn mindestens ein Operand True ist.

not Kehrt den nachfolgenden Wahrheitswert um.

Logische Operatoren

Booleans können mittels folgender Operatoren miteinander verknüpft werden:

and Ist genau dann True, wenn beide Operanden True sind.

or Ist genau dann True, wenn mindestens ein Operand True ist.

not Kehrt den nachfolgenden Wahrheitswert um.

Beispiel

- 2 > 0 and 3 > 4 ist False
- 1 > 0 or 6 > 1 ist True
- not 2 < 1 ist True

Übung

Was ergeben die folgenden Ausdrücke?

- \bullet not 2 < 3 and 4 < 7
- 4 not == 8
- 3 != 4 and not 4 == 8
- $7 \le 7.0$ and not 7 != 7.0
- 7 > 5 or 4 < 5 and not 9 > 6
- not 3 < 6 > 8
- not 3

Übung

Was ergeben die folgenden Ausdrücke?

- \bullet not 2 < 3 and 4 < 7
- 4 not == 8
- 3 != 4 and not 4 == 8
- $7 \le 7.0$ and not 7 != 7.0
- 7 > 5 or 4 < 5 and not 9 > 6
- not 3 < 6 > 8
- not 3

Präzedenz beachten!

- 1. ==, !=, <=, <, >, >=
- 2. not
- 3. and
- 4. or

Das elif-Statement

Mit der reinen if-else-Syntax können nur *binäre* Verzweigungen dargestellt werden. Um mehrer, gleichrangige Verzweigungsäste zu realisieren kann man das elif-Conditional verwenden.

Das elif-Statement

Mit der reinen if-else-Syntax können nur *binäre* Verzweigungen dargestellt werden. Um mehrer, gleichrangige Verzweigungsäste zu realisieren kann man das elif-Conditional verwenden.

Beispiel

```
if x < 0:
    print("x is < 0")
    elif x == 0:
    print("x is 0")
    elif x == 1:
    print("x is 1")
    else:
        print("x is not negative but neither 0 nor 1")</pre>
```

Das elif-Statement

Mit der reinen if-else-Syntax können nur *binäre* Verzweigungen dargestellt werden. Um mehrer, gleichrangige Verzweigungsäste zu realisieren kann man das elif-Conditional verwenden.

Beispiel

```
1  if x < 0:
2    print("x is < 0")
3  elif x == 0:
4    print("x is 0")
5  elif x == 1:
6    print("x is 1")
7  else:
8    print("x is not negative but neither 0 nor 1")</pre>
```

Die Anzahl der elif-Blöcke ist beliebig. Der else-Block ist wie immer optional.

Worin unterscheiden sich die beiden Abschnitte?

Abschnitt 1:

```
1  if x % 2 == 0:
2    # some Code here
3  if x % 3 == 0:
4    # some Code here
5  else:
6    # some Code here
```

Abschnitt 2:

```
if x % 2 == 0:
    # some Code here
    elif x % 3 == 0:
        # some Code here
    else:
        # some Code here
```

Übung

Baue einen Bestätigungsdialog

Schreibe ein Skript was einen typischen Bestätigungsdialog simuliert. Zum Beispiel:

Are you sure to continue? (y)es/(n)o.

Mögliche Antworten sind yes, no bzw. y, n. Daraufhin soll auf der Konsole confirmed oder aborted erscheinen.

Komplexere Übung

Lies eine Zahl zwischen 1 und 9 ein und gib auf der Konsole deinen nächsten Urlaubsort aus.

Der Ternary Operator

Oftmals möchte man eine Variable in Abhängigkeit eines Wahrheitswertes definieren. Für diesen einfachen Fall, ist das if-else-Konstrukt sehr umständlich. Stattdessen kann man für die Kürze den *ternary operator* verwenden.

Der Ternary Operator

Oftmals möchte man eine Variable in Abhängigkeit eines Wahrheitswertes definieren. Für diesen einfachen Fall, ist das if-else-Konstrukt sehr umständlich. Stattdessen kann man für die Kürze den *ternary operator* verwenden.

Beispiel

```
if x < 0:
    sign = "negative"
    else:
    sign = "positive"</pre>
```

Der Ternary Operator

Oftmals möchte man eine Variable in Abhängigkeit eines Wahrheitswertes definieren. Für diesen einfachen Fall, ist das if-else-Konstrukt sehr umständlich. Stattdessen kann man für die Kürze den *ternary operator* verwenden.

Beispiel

```
if x < 0:
    sign = "negative"
    else:
    sign = "positive"</pre>
```

Stattdessen mit Ternary Operator

```
sign = "negative" if x < 0 else "positive"</pre>
```

Übung

Lies eine ganze Zahl ein und gib ihren Betrag auf der Konsole aus. Schaffst Du es, das Ganze mit weniger als 5 Zeilen Code zu programmieren?

Die For-Schleife

Einen Programmabschnitt x-mal ausführen

Problemstellung

Lies eine ganze Zahl ${\bf x}$ ein. Gib dann folgende Zeilen auf der Konsole aus

Τ

2

3

Δ

:

X

Wie macht man das?

Lösung

```
1  x = input("Enter a number")
2
3  for k in range(1, x + 1):
4   print(k)
```

for

for Variable

for Variable in

for Variable in range(min, max)

for Variable in range(min, max):

for Variable in range(min, max):

⊔ ⊔ Codezeile 1

for Variable in range(min, max):

⊔ ⊔ Codezeile 1

⊔ ⊔ Codezeile 2

Struktur der for...in Schleife for Variable in range(min, max): UU Codezeile 1 UU Codezeile 2 UU :

```
Struktur der for...in Schleife

for Variable in range(min, max):

UU Codezeile 1

UU Codezeile 2

UU :

Code, der nicht mehr Teil der Schleife ist
```

Struktur der for...in Schleife for Variable in range(min, max): UU Codezeile 1 UU Codezeile 2 UU : Code, der nicht mehr Teil der Schleife ist

Wie funktioniert's?

Die Schleifenvariable wird zunächst gleich dem unteren Wert in range gesetzt. Dann wird der for-Block wiederholt ausgeführt. Bei jedem Durchgang wird die Schleifenvariable um 1 vergrößert und zwar so lange, wie der Wert der Schleifenvariable kleiner als der obere Wert in range ist.

• Achtung: Die Schleifenvariable erreicht nie das obere Ende der range-Funktion, sondern bleibt immer 1 drunter.

- Achtung: Die Schleifenvariable erreicht nie das obere Ende der range-Funktion, sondern bleibt immer 1 drunter.
- Die range-Funktion ist nicht auf 1er-Schrittweite beschränkt. Mit folgendem Ausdruck werden die Zahlen von 0 bis 9 z.B. in 3er-Schritten durchlaufen: range(0, 10, 3).

- Achtung: Die Schleifenvariable erreicht nie das obere Ende der range-Funktion, sondern bleibt immer 1 drunter.
- Die range-Funktion ist nicht auf 1er-Schrittweite beschränkt. Mit folgendem Ausdruck werden die Zahlen von 0 bis 9 z.B. in 3er-Schritten durchlaufen: range(0, 10, 3).
- For-Schleifen sind flexibel und können alles mögliche durchlaufen, z.B. auch die einzelnen Buchstaben eines Strings (dazu später mehr).

Einmaleins: Die 7er-Reihe

Schreibe ein kleines Skript, was die 7er-Reihe (bis 70) wie folgt auf der Konsole ausgibt:

```
1 mal 7 ist 7
2 mal 7 ist 14
:
```

Einmaleins: Die 7er-Reihe

Schreibe ein kleines Skript, was die 7er-Reihe (bis 70) wie folgt auf der Konsole ausgibt:

```
1 mal 7 ist 7
2 mal 7 ist 14
:
```

7er-Reihe mit beliebigem oberen Ende

Lies eine positive ganze Zahl x ein und gib die 7er-Reihe von 7 bis mindestens x wie oben auf der Konsole aus.

Einmaleins: Die 7er-Reihe

Schreibe ein kleines Skript, was die 7er-Reihe (bis 70) wie folgt auf der Konsole ausgibt:

```
1 mal 7 ist 7
2 mal 7 ist 14
:
```

7er-Reihe mit beliebigem oberen Ende

Lies eine positive ganze Zahl x ein und gib die 7er-Reihe von 7 bis mindestens x wie oben auf der Konsole aus.

Schleife über einen String

Lies Deinen Namen (oder irgendein Wort) auf der Konsole ein und überprüfe, ob er den Buchstaben a (groß/klein) enthält.

Schwierigere Übungen

Das Gauss-Problem

Berechne die Summe der Zahlen 1 bis 100.

Schwierigere Übungen

Das Gauss-Problem

Berechne die Summe der Zahlen 1 bis 100.

Fibonacci-Zahlen

Die Zahlenfolge 1, 1, 2, 3, 5, 8, 13... nennt man Fibonacci-Folge. Dabei ensteht ein Element der Folge, durch die Addition des vorherigen und vorvorherigen Elements.

Berechne die 30. Fibonacci-Zahl.

Harte Übungen

Quersumme

Lies eine ganze Zahl x ein und bestimme ihre Quersumme.

Tipp 1: Die Anzahl der Stellen einer Zahl bekommt man mittels len(str(x)) heraus.

Tipp 2: Man benötigt Tipp 1 gar nicht.

Harte Übungen

Quersumme

Lies eine ganze Zahl x ein und bestimme ihre Quersumme.

Tipp 1: Die Anzahl der Stellen einer Zahl bekommt man mittels len(str(x)) heraus.

Tipp 2: Man benötigt Tipp 1 gar nicht.

Zahlenmuster

Gib folgendes Muster auf der Konsole aus:

1 2

1 2 3

1 2 3 4

:

1 2 · · · 20

Die While-Schleife

Wie die For-Schleife nur abstrakter und open-end

Problemstellung

Lies immer wieder eine Zahl von der Konsole ein. Höre auf, wenn diese Zahl 7 ist.

Wie macht man das?

Lösung

```
1  x = 0
2
3  while x != 7:
4   x = input("Enter a number")
5   x = int(x)
6
7  print("Yeah, you picked the right number.")
```


while

while Bedingung

while Bedingung:

while Bedingung:

⊔ ⊔ Codezeile 1

while Bedingung:

⊔ ⊔ Codezeile 1

⊔ ⊔ Codezeile 2

```
while Bedingung:

Lu Codezeile 1

Lu Codezeile 2

Lu :
```

Struktur der while-Schleife while Bedingung: u Codezeile 1 u Codezeile 2 u Ecode, der nicht mehr Teil der Schleife ist

Struktur der while-Schleife while Bedingung: uu Codezeile 1 uu Codezeile 2 uu : Code, der nicht mehr Teil der Schleife ist

Wie funktioniert's?

Die Schleife wird solange ausgeführt, solange die *Bedingung* True ergibt. Nach jedem Durchgang wird der Ausdruck der *Bedingung* neu ausgewertet. Ist die Bedingung False wird der Code unterhalb des Schleifenblocks ausgeführt.

Achtung Endlosschleife

Man sollte immer darauf achten, dass die Bedingung in der while-Schleife auch wirklich irgendwannmal False wird. Ansonsten bleibt das Programm in einer *Endlosschleife* gefangen.

Ersetze eine for-Schleife durch eine while-Schleife

Schreib ein Programm, dass alle 7er-Zahlen von 7 bis 700 auf der Konsole ausgibt.

Notenrechner

Schreib ein Programm, dass wiederholt nach einer Note von Dir fragt und Dir dann jeweils die aktuelle Durchschnittsnote auf der Konsole ausgibt. Das Programm soll durch die Eingabe vom Buchstaben ${\bf q}$ beendet werden können.

Beispielausgabe:

```
Bitte gib eine Note oder q zum Beenden ein: 1
Deine Durchschnittsnote ist 1.0
Bitte gib eine Note oder q zum Beenden ein: 2
Deine Durschnittsnote ist 1.5

:
```

Ratespiel

Definiere eine positive ganze Zahl number_to_guess. Der User kann nun wiederholt eine Zahl eingeben. Das Spiel endet, wenn die eingegebene Zahl mit number_to_guess übereinstimmt. Andernfalls wird auf der Konsole beispielsweise ausgegeben:

Sorry, Deine eingegebene Zahl war zu klein, versuche es nochmal:

Ratespiel

Definiere eine positive ganze Zahl number_to_guess. Der User kann nun wiederholt eine Zahl eingeben. Das Spiel endet, wenn die eingegebene Zahl mit number_to_guess übereinstimmt. Andernfalls wird auf der Konsole beispielsweise ausgegeben:

Sorry, Deine eingegebene Zahl war zu klein, versuche es nochmal:

Zusatz 1:

Am Ende soll die Anzahl der Versuche angegeben werden.

Ratespiel

Definiere eine positive ganze Zahl number_to_guess. Der User kann nun wiederholt eine Zahl eingeben. Das Spiel endet, wenn die eingegebene Zahl mit number_to_guess übereinstimmt. Andernfalls wird auf der Konsole beispielsweise ausgegeben:

Sorry, Deine eingegebene Zahl war zu klein, versuche es nochmal:

Zusatz 1:

Am Ende soll die Anzahl der Versuche angegeben werden.

Zusatz 2:

Das Spiel soll mit der Eingabe von q abgebrochen werden können.

Ratespiel

Definiere eine positive ganze Zahl number_to_guess. Der User kann nun wiederholt eine Zahl eingeben. Das Spiel endet, wenn die eingegebene Zahl mit number_to_guess übereinstimmt. Andernfalls wird auf der Konsole beispielsweise ausgegeben:

Sorry, Deine eingegebene Zahl war zu klein, versuche es nochmal:

Zusatz 1:

Am Ende soll die Anzahl der Versuche angegeben werden.

Zusatz 2:

Das Spiel soll mit der Eingabe von q abgebrochen werden können.

Zusatz 3:

Google, wie Python die Zahl number_to_guess zufällig erzeugen kann (das verbessert das Gameplay).

break und continue

OHOTHUC

Den Fluss kontrollieren

Das break-Statement

Taucht innerhalb einer Schleife das Schlüsselwort break auf, so wird die weitere Abarbeitung der Schleife abgebrochen. Die Ausführung wird mit dem Code *nach* dem Schleifenblock ausgeführt.

Das break-Statement

Taucht innerhalb einer Schleife das Schlüsselwort break auf, so wird die weitere Abarbeitung der Schleife abgebrochen. Die Ausführung wird mit dem Code *nach* dem Schleifenblock ausgeführt.

Beispiel

```
for k in range(1,100):
    print(k)
    if k > 3:
    break
```

Das break-Statement

Taucht innerhalb einer Schleife das Schlüsselwort break auf, so wird die weitere Abarbeitung der Schleife abgebrochen. Die Ausführung wird mit dem Code *nach* dem Schleifenblock ausgeführt.

Beispiel

```
for k in range(1,100):
    print(k)
    if k > 3:
    break
    # prints 1 2 3 4
```

Das continue-Statement

Taucht innerhalb einer Schleife das Schlüsselwort continue auf, so wird der aktuelle Schleifendurchgang abgebrochen. Die Ausführung wird mit der nächsten Schleifeniteration fortgesetzt.

Das continue-Statement

Taucht innerhalb einer Schleife das Schlüsselwort continue auf, so wird der aktuelle Schleifendurchgang abgebrochen. Die Ausführung wird mit der nächsten Schleifeniteration fortgesetzt.

Beispiel

```
for k in range(1,11):
    if k % 2 == 0:
    continue
    print(k)
```

Das continue-Statement

Taucht innerhalb einer Schleife das Schlüsselwort continue auf, so wird der aktuelle Schleifendurchgang abgebrochen. Die Ausführung wird mit der nächsten Schleifeniteration fortgesetzt.

Beispiel

```
for k in range(1,11):
    if k % 2 == 0:
    continue
    print(k)
    # prints 1 3 5 7 9
```

Der else-Block einer Schleife

Analog zum if-Statement, kann auch eine Schleife einen else-Block haben. Dieser wird ausgeführt, wenn die Schleife *regulär* (also nicht durch die Verwendung von break) beendet wird.

Der else-Block einer Schleife

Analog zum if-Statement, kann auch eine Schleife einen else-Block haben. Dieser wird ausgeführt, wenn die Schleife *regulär* (also nicht durch die Verwendung von break) beendet wird.

Beispiel

```
name = input("Your name: ")

for letter in name:

if letter == "a":

print("Your name contains an a")

break

else:

print("Your name contains no a")
```

Die nächste 31er-Zahl

Lies eine ganze Zahl x ein. Prüfe, ob unter den ersten 20 auf x folgenden Zahlen eine durch 31 teilbar ist. Gib sie in diesem Fall auf der Konsole aus, ansonsten gib aus, dass keine 31er-Zahl gefunden wurde.

Schwierigere Übung

Primzahltest

Lies eine ganze Zahl x ein und überprüfe, ob diese Zahl eine Primzahl ist. Die Ausgabe des Programms soll etwa wie folgt aussehen:

Die Zahl 28061983 ist eine Primzahl.

Harte Übung

Finde die nächste Primzahl

Lies eine ganze Zahl x ein und finde die nächste Zahl größer x, die gleichzeitig eine Primzahl ist.

Listen

Viele Variablen gleichzeitig speichern

_...

Problemstellung

Gib wie im Notenrechner nacheinander Schulnoten von Dir ein. Alle Noten sollen gespeichert werden. Danach sollst Du die Wahl haben, die soundsovielte Note anzeigen lassen zu können.

Wie macht man das?

Lösung (fast)

```
1 ...
2 # Um das Eingeben der Noten kümmern wir uns noch
3 grades = [12, 10, 7, 14, 13, 13, 6, 4, 15, 14] # Noten in Notenpunkten
4
5 index = input("Die wievielte Note möchtest Du nochmal anschauen?")
6 index = int(index)
7
8 print(f"Deine { index }. Note ist { grades[index] } Punkte")
```

my_list =

 $my_list = [$

my_list = [Element0

my_list = [Element0,

my_list = [Element0, Element1,

my_list = [Element0, Element1, Element2,

my_list = [Element0, Element1, Element2, ..., ElementN

my_list = [Element0, Element1, Element2, ..., ElementN]

my_list = [Element0, Element1, Element2, ..., ElementN]

Die Variable my_list trägt nicht nur einen Wert, sondern N+1 viele Werte. Ansonsten verhält sich my_list wie eine ganz "normale" Variable. Als Einträge einer Liste sind beliebige Werte mit beliebigen Datentypen zugelassen.

my_list = [Element0, Element1, Element2, ..., ElementN]

Die Variable my_list trägt nicht nur einen Wert, sondern N+1 viele Werte. Ansonsten verhält sich my_list wie eine ganz "normale" Variable. Als Einträge einer Liste sind beliebige Werte mit beliebigen Datentypen zugelassen.

Frage: Welchen Datentyp hat die Liste [2, 2.3, "Hello"] ?

Auf Listenelemente zugreifen

Auf das n-te Element der Liste my_list kann man mittels my_list[n] zugreifen.

Auf Listenelemente zugreifen

Auf das n-te Element der Liste my_list kann man mittels my_list[n] zugreifen.

Mit $my_list[-1]$, $my_list[-2]$, etc. kann man auf das letzte, vorletzte, etc. Element von my_list zugreifen.

Auf Listenelemente zugreifen

Auf das n-te Element der Liste my_list kann man mittels my_list[n] zugreifen.

Mit $my_list[-1]$, $my_list[-2]$, etc. kann man auf das letzte, vorletzte, etc. Element von my_list zugreifen.

Achtung

Python fängt bei 0 an zu zählen. D.h. das erste Element in der Liste hat den Index 0. Beispiel: my_list[1] liefert das zweite Element der Liste.

Schreibzugriff auf Listenelemente

Nach dem gleichen Prinzip lassen sich einzelne Listeneinträge verändern.

Beispiel: $my_list[3] = -23$.

Schreibzugriff auf Listenelemente

Nach dem gleichen Prinzip lassen sich einzelne Listeneinträge verändern.

Beispiel: $my_list[3] = -23$.

Achtung

Man kann nur schon existierende Listeneinträge verändern.

Schreibzugriff auf Listenelemente

Nach dem gleichen Prinzip lassen sich einzelne Listeneinträge verändern.

Beispiel: $my_list[3] = -23$.

Achtung

Man kann nur schon existierende Listeneinträge verändern.

Neues Konzept

Listen sind der erste Datentyp, den wir kennenlernen, der *mutable* (veränderbar) ist. Die bisherigen Datentypen waren *immutable*, d.h. man konnte sie zwar überschreiben, aber nicht verändern.

Listeneinträge hinzufügen

Mit der Methode .append() kann ein Eintrag zur Liste hinzugefügt werden.

Bsp: my_list.append(12) fügt einen weiteren Eintrag mit Wert 12 hinzu.

Listeneinträge hinzufügen

Mit der Methode .append() kann ein Eintrag zur Liste hinzugefügt werden.

Bsp: my_list.append(12) fügt einen weiteren Eintrag mit Wert 12 hinzu.

Listeneinträge entfernen

Mit dem Keyword del kann man Einträge an einer bestimmten Position löschen. Dabei verschieben sich die darauffolgenden Einträge um 1 nach vorne.

Beispiel: del my_list[2] löscht das dritte Element.

Listeneinträge hinzufügen

Mit der Methode .append() kann ein Eintrag zur Liste hinzugefügt werden.

Bsp: my_list.append(12) fügt einen weiteren Eintrag mit Wert 12 hinzu.

Listeneinträge entfernen

Mit dem Keyword del kann man Einträge an einer bestimmten Position löschen. Dabei verschieben sich die darauffolgenden Einträge um 1 nach vorne.

Beispiel: del my_list[2] löscht das dritte Element.

Mit der Methode .remove() kann man Einträge mit einem bestimmten Wert löschen.

Beispiel: my_list.remove(-23) entfernt alle Einträge mit dem Wert 23. Ist der Wert nicht vorhanden gibt es eine Fehlermeldung.

Übung

Das Eingangsproblem

Schreibe ein kleines Programm, dass solange Deine Noten einliest, bist Du q drückst. Danach sollst Du die Möglichkeit haben, eine Zahl k einzugeben, so dass Dir die k-te Note angezeigt wird.