



تمييد: هو الجبر المنطقي الذي طرحه العالم الرباضي و الفيلسوف الإنجليزي جورج بول سنة 1847 وهو مجموعة من المتغيرات الممثلة بحالتين هما: 0.1 وهاتين الحالتين ليس لهما قيمة حسابية و إنما يمثلان حالة وراية فقط. متغيرات الدخول:

متغيرات الخروج:







### القواعد الأساسية لجبر يول



ملاحظة: العلاقات الأساسية المستعملة في جبر بول هي: نعم الأد و اله المستعملة في جبر بول هي: نعم الأد و اله الله المستعملة في المستعملة

نرمز للعلاقة و ب (.) وللعلاقة أو ب (+) ولا تعنيان الضرب و الجمع الرياضي.

القوانين الأساسية:

| a+b=b+a                | الجمع المنطقي عملية تبديلية               | قانون التبديل   |
|------------------------|-------------------------------------------|-----------------|
| a.b= b.a               | الضرب المنطقي عملية تبديلية               | عاول التبديل    |
| (a+b)+c= a+(b+c)       | الجمع المنطقي عملية تجميعية               |                 |
| (a.b).c=a.(b.c)        | الضرب المنطقي عملية<br>تجميعية            | قانون التجميع   |
| a+ (b.c)=(a+b).(a+c)   | الجمع المنطقي توزيعي على<br>الضرب         | فنتون التوزيع   |
| a.(b+c)=a.b+a.c        | الضرب المنطقي توزيعي على<br>الجمع المنطقي | ه وی اسروی      |
| a.b= a+ b<br>a+a.b=a+b | a+b= a.b<br>a+ab=a+b                      | نظرية دي مورقان |



المالة أو إستبعادي OR

$$s = a \oplus b$$
$$s = \overline{b} + \overline{a}b$$

| а | b | S |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

| s =               | a  | $\oplus b$        |
|-------------------|----|-------------------|
| $s = \frac{1}{3}$ | ab | $+\bar{a}\bar{b}$ |

| 1  | 0   | 0    |    |
|----|-----|------|----|
| R  | 40  | com. | 00 |
| او | Z   | الله | וע |
|    | D.I | VOI  | n. |
| 1  | M   | VOI  | ďς |

| 1   |
|-----|
| a   |
| a b |
| #   |
|     |

| ١ |
|---|
| 1 |
|   |

| The state of the s | a —))—s | a — =1 – s<br>b — =1 – s |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a       | a =1 o-s                 |

أورويي



### خركيب الدوال المنطقية:

هو استخراج المعادلة المنطقية انطلاقا من جدول الحقيقة من أهم الطرق: طريقة جسع العداء من أهم الطرق: طريقة جسع العداء وهي جمع جداء حالات متغيرات الدخول التي تجعل الدالة معرفة بالقيمة (1)، نأخذ المتعبر منفي إذا كان (1=) وعبر منفي إذا كان (1=) تحويل الدوال المنطقية :

هو استخراج جدول الحقيقة انطلاقا من المعادلة المنطقية بحيث تكتب المعادلة على شكل جمع جداءات المتغيرات والحالات التي تظهر في المعادلة تعرف الدالة من أجلها بالقيمة" والبقية بالقيمة (0).







#### الطريقة الجبرية:

# لتبسيط دالة منطقية بالطريقة الجبرية نستعمل القواعد القوانين المعروفة في جبر جورج بول + نظرية دي مورقان

| a+a=a, a+a=1, a+1=1, a+0=a                                           | الجمع المنطقي                              |
|----------------------------------------------------------------------|--------------------------------------------|
| a.a=a, a.a=0, a.1=a, a.0=0                                           | الجداء المنطقي                             |
| S=a+ab =(a+a)(a+b)=a+b                                               | الجمع المنطقي توزيعي على الجداء<br>المنطقي |
| S= ab+abc =a(b+bc) =<br>a ((b+b).(b+c))= a (b+c)                     | العامل المشترك                             |
| S=(a+b).(a+b+c)<br>=a.a+a.b+a.c+ab+b.b+bc<br>=a(1+b+b+c)+bc<br>=a+bc | التوزيع                                    |

عدد الخانات المخول : S=f(a,b,c,d) عدد الخانات 16=2<sup>4</sup> عدد حالات الخروج = 16

| co | 00  | S UN |     | 10  |
|----|-----|------|-----|-----|
| ab | SO  | S1   | \$3 | 52  |
| 01 | 54  | S5   | 57  | S6  |
| 11 | 512 | 513  | S15 | S14 |
| 10 | 58  | 59   | S11 | S10 |

## التبسيط بواسطة جدول كارنو:

لتبسيط دالة منطقية بطريقة كارتو فنيع الخطوات التالية : - نتقل جدول الحقيقة إلى جدول كارتو .

- نكون فيجمعات من الخانات المتجاورة التي تحتوي على نفس الحالة المنطقية (1) يشرط أن يكون عدد الخانات في التجمع من فوى العدد 2

باستعمال جدول كارنو:

هو عبارة عن جدول مربع أو مستطيل حسب عدد متغيرات الدخول حيث تجمع فيه جميع حالات المخرج ويتكون من 2 خانة (n عدد متغيرات الدخول)

| 1 | 0         |    |
|---|-----------|----|
|   | SO        | 51 |
|   | <b>S2</b> | S3 |

S=f(a,b) عدد الخانات S=f(a,b)

### مالة وهمتغيرات للدخول:

| - 1  |    | 8=2 | عدد الخاتات | ,S=f(a,b,c) |
|------|----|-----|-------------|-------------|
| a bc | 00 | 0 t |             | 10          |
| 0    | 50 | 51  | S3          | S2          |
| 1    | 54 | 55  | 57          | 56          |

باستعمال جدول كارنو:

هو عبارة عن جدول مربع أو مستطيل حسب عدد متغيرات الدخول حيث تجمع فيه جميع حالات المخرج ويتكون من 2 خانة (n عدد متغيرات الدخول)

| S2  | S3        |
|-----|-----------|
| SO  | <b>S1</b> |
| b 0 |           |

S=f(a,b) عدد الخانات S=f(a,b)

مالة 3 متغيرات للدخول :

|      |    | 8=2 | عدد الخانات | ,S=f(a,b,c) |
|------|----|-----|-------------|-------------|
| a bc | 00 | 01  | 11          | 10          |
| 0    | 50 | 51  | S3          | S2          |
| 1    | 54 | 55  | <b>S7</b>   | S6          |





| cd<br>ab | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 0  | 0  | 1  | 1  |
| 01       | 0  | 0  | 1  | 1  |
| 11       | 0  | 0  | 1  | 1  |
| 10       | 1  | 1  | 1  | 1  |

| Cd<br>ab | 00 | 01 | 11 | 10 |
|----------|----|----|----|----|
| 00       | 1  | 0  | 0  | 1  |
| 01       | 0  | 1  | 1  | 0  |
| 11       | 70 | 1  | 1  | 0  |
| 10       | 1  | 0  | 0  | 1  |

