- 1. For a cascade of binary communication channels, let $P(X_0 = 1) = \alpha$ and $P(X_0 = 0) = 1 \alpha$, $\alpha \ge 0$, and assume that a = b. Compute the probability that a one was transmitted, given that a one was received after n th stage, i.e., compute $P(X_0 = 1 | X_n = 1)$.
- 2. Let the state of the system are running system, system is under repair or system is idle. We observe the system only when it changes state. Define X_n as the state of the system after the n th state change, so that:

$$X_n = \begin{cases} 0 & , & \text{if system is running} \\ 1 & , & \text{if system is under repair} \\ 2 & , & \text{if system is idle} \end{cases}$$

Assume that the matrix P is

$$P = \left[\begin{array}{ccc} 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

Draw the state diagram and compute the matrix P^n .

3. Define the vector z-transform (generating function):

$$G_{\mathbf{p}}(z) = \sum_{n=0}^{\infty} \mathbf{p}^{(n)} z^n.$$

Show that:

- (a) $G_{\mathbf{p}}(z) = \mathbf{p}^{(0)}[I zP]^{-1}$, where I is the identity matrix. Thus P^n is the coefficient of z^n in the matrix power series expansion of $(I zP)^{-1}$.
- (b) Using the above result, give an alternate proof for finding P^n in the two state Markov chain problem discussed in class.
- 4. Using Chapman-Kolomogorov equation and the principle of mathematical induction, show that $\sum_{j} p_{ij}^{(n)} = 1, \ \forall i.$