CHAPTER 5. INVERSE FUNCTIONS Section 5.3. The Natural Exponential Function.

Recall that $y = \ln x$ is an increasing function with domain $(0, \infty)$, and range $(-\infty, \infty)$. Therefore, $y = \ln x$ is a <u>one-to-one</u> function and has an function denoted $y = e^x$ that is such that

$$y = e^x$$
, if and only if $x = \ln y$.

- Properties of $y = e^x$.
 - The domain of $y = e^x$ is $(\rightarrow \infty)$.

 - $e^{\ln x} =$ if x is in $(0, \infty)$.
 $\ln(e^x) =$ if x is in $(-\infty, \infty)$

• Graph of $y = e^x$.

Since we know that the graphs of a function and its inverse are symmetric with respect to y = x, we can obtain the graph of $y = \ln x$ from the graph of $y = e^x$.

• Limits.

$$\lim_{x \to \infty} e^x = \underline{\qquad}, \quad \lim_{x \to -\infty} e^x = \underline{\qquad}$$

• Derivative of $y = e^x$.

To find an expression for the derivative of $y=e^x$, implicit differentiation is useful. Let us show that

$$\frac{d}{dx}e^{x} = e^{x}. \quad \text{why} ?$$

$$\frac{d}{dx}y = \frac{d}{dx}e^{x}$$

$$\frac{d}{dx} = \frac{d}{dx}e^{x}. \quad \text{why} ?$$

$$\frac{d}{dx} = \frac{d}{dx}e^{x}. \quad \frac$$

The Chain rule follows:

$$\frac{d}{dx}e^{u(x)} = e^{u(x)}\frac{du}{dx}.$$

Exercises:

1. Find the absolute minimum of the function $g(x) = \frac{e^x}{x}$.

Critical values

g'(x) =
$$\frac{\times e^{\times} - e^{\times}}{x^{2}} = e^{\times} \frac{(x-1)}{x^{2}}$$
 g'(x)=0 when x=1
If $\times 71$ g'(x)>0, if $\times <1$, g'(x)<0, there is a minimum at x=1

Absolute minimum g(1) = et. $\lim_{x \to \left(\frac{\pi}{2}\right)^+} e^{\tan x}$.

2. Evaluate the limit. $\lim_{x \to \left(\frac{\pi}{2}\right)^+} e^{\tan x}$.

Al $x \to (\frac{\pi}{2})$ tank $\to -\infty$, $e^{\tan x} = 0$ $(x)^{\pi/2}$ $\lim_{x \to (\frac{\pi}{2})^+} e^{\tan x} = 0$ $\lim_{x \to (\frac{\pi}{2})^+} e^{\tan x} = 0$ Integral. $\int e^x dx = e^x + C, \text{ where } C \text{ is a constant.}$ Example: Evaluate C

Example: Evaluate the integral. $\int \frac{e^{1/x}}{x^2} dx = -dx$

$$u = \frac{1}{x^2}$$
 $du = -\frac{1}{x^2} dx$

Answer: $\int \frac{e^{ix}}{x^2} dx = -e^{i/x} + C$

• Laws of Exponents.

Let x and y be real numbers, and let r be a rational number. Then,

$$e^{x+y} = e^x e^y$$
, $e^{x-y} = \frac{e^x}{e^y}$, $(e^x)^r = e^{rx}$

• Additional Exercises:

1. Solve the equation for x:

Solve the equation for
$$x$$
.

(a) $e^{-x} = 5$

$$|||| = ||| = || -x|| = || -$$

2. Evaluate the integral $\int e^{x}\sqrt{1+e^{x}} dx = du$ $\int \sqrt{u} du = \frac{2}{3}u^{3/2} + C$ $\int e^{x}\sqrt{1+e^{x}} dx = \frac{2}{3}(1+e^{x})^{3/2} + C$