

Ministero dell' Istruzione, dell' Università e della Ricerca ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE

Indirizzo: ITCN – TRASPORTI E LOGISTICA ARTICOLAZIONE CONDUZIONE DEL MEZZO OPZIONE CONDUZIONE DEL MEZZO NAVALE

Tema di: SCIENZE DELLA NAVIGAZIONE, STRUTTURA E COSTRUZIONE DEL MEZZO NAVALE

Il candidato svolga la prima parte della prova e due tra i quesiti proposti nella seconda parte.

PRIMA PARTE

Pianificazione e controllo della traversata tra *Fujairah* (*United Arab Emirates*) e *Singapore*, con gestione dei pesi a bordo. Seguono alcuni dati nave.

Name: M/V Jaz Amira

Type: Oil tanker Call sign: AUXK MMSI: 419766000

 L_{PP} =228 m B=32,24 m DW=74859 t

Cargo handling

Nelle prime ore del 20/06/2019 la *Jaz Amira* si trova con alcune cisterne del carico già al 98% di riempimento e tre cisterne centrali, tutte di dimensioni *length*=28 m e *width*=12 m, in fase di riempimento. Contemporaneamente viene sbarcata della zavorra da due casse basse aventi dimensioni *length*=10 m e *width*=8 m.

Le condizioni attuali vedono la nave galleggiare con T_A =10.56 m T_F =8.24 m e KG=11.26 m. La situazione delle cisterne è riassunta nella seguente tabella:

TANK	Volume [m³]	Longitudinal position from AP [m]	position on	Required filling level [%]	Attained filling level [%]	Content density [t/m³]
CARGO	6048	164.5	7.8	98	20	0.890
CARGO	6048	96.5	7.8	98	15	0.890
CARGO	6048	48.5	7.8	98	35	0.890
BALLAST	126	165.0	0.8	0	74	1.025
BALLAST	126	84.0	0.8	0	66	1.025

Ministero dell'Istruzione, dell' Università e della Ricerca

Il candidato calcoli le immersioni estreme e l'altezza metacentrica a fine caricazione. Si verifichi anche la riduzione di altezza metacentrica nelle condizioni iniziali di caricazione tenendo in considerazione la presenza di specchi liquidi liberi.

NB: la quota delle casse si riferisce al loro centro geometrico.

Sono disponibili i seguenti dati estratti dalla tavola delle carene dritte:

T	DISP	DW	LCB	VCB	LCF	KMT	MCT	TPC	CB
m	t	t	m	m	m	m	tm/cm	t/cm	
8.00	39251	28206			95.83		664.4		0.807
8.10	39789	28745	99.56	4.21	95.65		668.5	53.9	0.808
8.20	40328	29284	99.51	4.26	95.48		672.7		0.809
8.30	40869	29824			95.30		676.8		
8.40	41410	30366			95.13		680.9		
8.50	41953	30909		4.42	94.95		685.0		0.812
8.60	42496	31452		4.47	94.77		689.2	54.4	0.813
8.70	43041	31997	99.23	4.52	94.65		691.6		0.814
8.80	43587	32543	99.17	4.58	94.14		704.8		0.815
8.90	44136	33092	99.10	4.63	93.96		708.9	54.9	0.816
9.00	44685	33641	99.04	4.68	93.78		712.9	55.0	0.817
9.10 9.20	45236	34192			93.60		716.8	55.1	0.818
9.30	45788 46340	34743 35296		4.79 4.84	93.42 93.25	14.31 14.27	720.5 724.2	55.2 55.3	0.819 0.820
9.40	46894	35849		4.90	93.25		724.2	55.4	0.820
9.50	47448	36404	98.71	4.95	92.91		731.0	55.5	0.822
9.60	48003	36959	98.64	5.00	92.74	14.15	734.4	55.6	0.823
9.70	48559	37515	98.57	5.06	92.58	14.12	737.6	55.7	0.824
9.80	49116	38072	98.50	5.11	92.41		740.6	55.7	0.825
9.90	49674	38630	98.43	5.16	92.25	14.05	743.6		0.826
10.00	50232	39188	98.36	5.22	92.09		746.5		0.827
10.10	50792	39748	98.29		91.94		749.3		0.828
10.20	51352	40308	98.22	5.32	91.78		751.9		0.829
10.30	51913	40868	98.15	5.37	91.63		754.4	56.1	0.830
10.40	52474	41430	98.08	5.43	91.47	13.91	756.8	56.2	0.830
10.50	53036	41992	98.01	5.48	91.31	13.89	758.9	56.2	0.831
10.60	53599	42554	97.94	5.53	91.16	13.87	761.0	56.3	0.832
10.70	54162	43118	97.87	5.59	91.01	13.85	763.0	56.3	0.833
10.80	54725	43681	97.80	5.64	90.85	13.83	764.8	56.4	0.834
10.90	55289	44245	97.72	5.69	90.70	13.81	766.4	56.4	0.835
11.00	55854	44810	97.65	5.75	90.54	13.79	767.9	56.5	0.836
11.10	56419	45375	97.58	5.80	90.38	13.77	769.1	56.5	0.837
11.20	56984	45940	97.51	5.85	90.21		770.1	56.5	0.838
11.30	57550	46506	97.44	5.91	90.04		770.7		0.838
11.40	58116	47072	97.36	5.96	89.89	13.74	771.9	56.6	0.839
11.50	58682		97.29	6.01	89.80				
11.60	59249	48205			89.70		776.8		0.841
11.70	59817	48773		6.12	89.61		779.2		0.842
11.80	60385	49341		6.17	89.52		781.5		0.842
11.90	60954	49910		6.22	89.44		783.7		0.843
12.00	61524	50480		6.28	89.35	13.69	785.9	57.0	0.844
12.10	62094	51050	96.86	6.33	89.27		788.1	57.0	0.845
12.20	62665	51620	96.79	6.38	89.19	13.69	790.2	57.1	0.846

Ministero dell'Istruzione, dell' Università e della Ricerca

Passage planning - appraisal/planning

L'ETD da *Fujairah* è previsto per le ore t_f =1300 del 20/06/2019 e si stima un ETA t_f =1615 del 02/07/2019 al *Pulau Bukom Oil Terminal* di *Singapore*.

Per la pianificazione ci si avvale della *Pilot Chart* pertinente, di cui è riportato un estratto. Il Candidato descriva le condizioni stimate di mare, vento e corrente risultanti dalla carta citata, applicando le proprie conoscenze per contestualizzare i dati climatologici ottenuti in una più ampia trattazione che includa la descrizione dei sistemi di circolazione atmosferica della zona considerata.

In fase di pianificazione della traversata l'Ufficiale annoterà anche le posizioni rilevanti ai fini delle aree speciali MARPOL (entrata/uscita) e le zone con distanza dalla costa tale per cui è consentita la discarica di residui oleosi provenienti dalla zona del carico. Il Candidato descriva i riferimenti della normativa internazionale vigente in materia.

Ministero dell'Istruzione, dell'Università e della Ricerca

Passage planning - execution/monitoring

Durante il pomeriggio del 02/07/2019 si sta attraversando la *precautionary area* che precede l'accesso occidentale a Singapore (*Main Strait TSS*) con HDG=130° e STW=12 kts. Si riporta estratto dello *Ships' Routeing* della zona coinvolta per migliore contestualizzazione.

A partire dalle t_f=1430 si eseguono le seguenti osservazioni radar:

Target	AIS info	UT	Relative bearing	Range [NM]
4	Passenger ship	14:30	+175°	5.0
A	underway	14:36	+174°	4.0
В	RO-RO Pax	14:30	+60.0°	9.0
	underway	14:36	+60.0°	6.9

Subito dopo la seconda battuta, la nave di poppa comunica via VHF che intende manovrare in modo da assumere una prora di 140° alle 14:39. L'effettiva esecuzione di quanto comunicato viene verificata sempre con il radar con una battuta alle ore 14:42 da cui si ottiene rilevamento polare $+168^{\circ}$ e distanza circa 3.0 mg.

Il Candidato esamini la situazione cinematica proposta in una breve relazione tecnica completa di tutti i dati rilevanti (moti relativi e veri dei bersagli, CPA, TCPA), commentando le situazioni di criticità e i possibili scenari risolutivi in base alla Convenzione COLREGs, non mancando di analizzare l'adeguatezza dell'avvenuta comunicazione via VHF da parte della nave A. Vengano presentate quindi le azioni da intraprendere considerando le presumibili condizioni di manovrabilità delle navi coinvolte.

All'arrivo a *Singapore* si apprende di dover fare rada per circa 24h, per poi procedere alla banchina OS7, che è previsto si liberi a partire dalle t_f =0800 del 03/07.

Le condizioni di traffico in banchina e la presenza di alcuni lavori sottomarini in zona costringerà comando e pilota ad eseguire una manovra che condurrà la nave su un bassofondo di 11 m. La propria immersione

Ministero dell'Istruzione, dell'Università e della Ricerca

massima risulta T=11.30 m, mentre è noto il minimo UKC da SMS, pari a 2.5 m. La pressione atmosferica prevista è 993 hPa.

Il Candidato determini se all'ora stimata di disimpegno della banchina sia possibile transitare in sicurezza. Nel caso non siano rispettati i requisiti di Compagnia determinare la prima finestra temporale (*tidal window*) favorevole. Venga infine determinato l'UKC previsto in banchina considerando la bassa marea successiva a pressione atmosferica standard per maggior tutela.

Si riportano di seguito estratti delle *Tide Tables* e delle *Sailing Directions*:

3 0626 0.4 1248 2.5 1804 1.1 2344 3.1 4 0705 0.3 1333 2.5 1846 1.0

Pulau Bukom—Shell Refinery Berth Limitations				
Berth	Maximum LOA	Depth Alongside		
OS1E	110m	11.2m		
OS1W	105m	11.2m		
OS2	170m	9.2m		
OS3	170m	11.3m		
OS4	190m	11.6m		
OS5	190m	12.9m		
OS6	275m	16.5m		
OS7	245m	13.5m		
OS8	275m	16.6m		
OS9	190m	13.0m		
OS10	265m	15.8m		
OS10A	Ferries/tugs	3.0m		
OS10B	60m	5.6m		
OS10C	90m	6.1m		
OS11	120m	5.5m		
OS12	120m	13.0m		
OS13	155m	10.9m		
OSBM	345m	24.0m		

SECONDA PARTE

1) Il giorno 28/06/2019 si è in navigazione con HDG= 090° e STW=12 kts. Dalla posizione ϕ = $05^{\circ}46,4$ 'N e λ = $089^{\circ}17,3$ 'E, quando il cronometro segna T_{C} = $11^{h}42^{m}50^{s}$, si rileva l'azimut del Sole al sorgere del suo lembo superiore con le bussole, ottenendo su entrambe a_{g} = a_{b} = 066.5° . Verificare il buon funzionamento di gyro e magnetica, date declinazione magnetica d= $2^{\circ}W$ e deviazione bussola δ = $2^{\circ}E$. È noto lo stato assoluto del cronometro K= $+2^{m}10^{s}$.

Durante la risoluzione del problema il Candidato chiarisca perché non è rilevante l'informazione sulla presenza o il buon funzionamento dell'auto-correttore della gyro.

2) Durante la navigazione nello Stretto di Malacca, con HDG=130° e STW=12 kts, si rileva l'isolotto Iyu Kecil ottenendo:

Target	UT	Relative bearing	Range [NM]
Pulau Iyu	13:52	+38°	5.4
Kecil	13:58	+50°	4.5

Ministero dell'Istruzione, dell'Università e della Ricerca

Il candidato confronti i dati di corrente che è possibile ottenere dal *plotting* descritto con quanto riportato sulle *Sailing Directions* e presentato nel seguito, commentandone l'adeguatezza e la verosimiglianza considerando il regime di flusso di marea per l'istante di transito.

"The current is most constant during the period January to April and is least constant from May to August. A number of observations, report rates of less than 1 knot. Some have been reported more than 1 knot and no currents have been reported in excess of 2 knots.

The flood tidal current sets E on the N coast of Sumatera; the ebb tidal current sets W. At springs the current rarely exceeds 2 knots; at neaps they are sometimes imperceptible, except at the points or over banks and narrow channels.

The currents are also affected by the constant current out of the Strait of Malacca, which takes a W direction along the N coast, through Malacca Passage, and out through Bengal Passage, so that for the greater part of the year the ebb current is longer and stronger than the flood current.

As a result of the prevailing wind, when the water is rising or falling during the NW monsoon, there may be no E set for a day or more; conversely, the flood or E current runs longer and stronger during the Southwest Monsoon."

- 3) Durante la traversata descritta nella prima parte si sviluppa un principio di incendio in *Engine Room*, immediatamente controllato ed estinto. Descrivere quali tipologie di impianti antincendio esistono per le navi come la *Jaz Amira*, differenziando tra rivelazione, contenimento ed estinzione per le varie zone della nave, specificando inoltre il regime di *drills* antincendio previsto dalla SOLAS.
- 4) During the navigation in the Strait of Malacca, when in position LAT=03°06.5'N and LONG=100°31.5'E, some floating containers have been spotted by the OOW. Identify the correct radio communication priority level for this kind of events and write down the transcription of the possible radio message that could have been sent by the *M/V Jaz Amira* in order to warn the Authorities and the other ships of the presence of dangerous floating objects.