Семинар №11

Прогнозирование по оценённой эконометрической модели и проверка её адекватности

План

- 1. Точечный прогноз по модели и характеристика точности прогноза (стандартная ошибка прогноза);
- 2. Интервальное прогнозирование и проверка адекватности модели;
- 3. ДЗ

Пусть в результате 3-его этапа построения модели получена оценённая модель множественной регрессии:

$$\begin{cases} y_t = \widetilde{a}_0 + \widetilde{a}_1 \cdot x_{1,t} + \widetilde{a}_2 \cdot x_{2,t} + u_t; \\ (S\widetilde{a}_0) \quad (S\widetilde{a}_1) \quad (S\widetilde{a}_2) \quad (\widetilde{\sigma}_u) \end{cases}$$

$$R^2 = \dots, GQ = \dots, DW = \dots;$$

$$(1)$$

В скобках под оценками коэффициентов размешаются их стандартные ошибки. Эконометрические модели создаются в частности для прогноза неизвестных значений эндогенных переменнных в примере (1) для прогноза неизвестных значений величины y. Обозначим y_0 значение переменной y_t , которое неизвестно и его нужно спрогнозировать по известным значениям объясняющих переменных. Оптимальный прогноз величины y_0 рассчитывается по правилу:

$$\widetilde{y}_{0} = \widetilde{a}_{0} + \widetilde{a}_{1} \cdot x_{1,0} + \ldots + \widetilde{a}_{k} \cdot x_{k,0} = \overrightarrow{x}_{0}^{T} \cdot \overrightarrow{a};$$

$$\overrightarrow{x}_{0}^{T} = (1 \quad x_{1,0} \quad \ldots \quad x_{k,0}), \widetilde{a} = \begin{pmatrix} \widetilde{a}_{0} \\ \widetilde{a}_{1} \\ \vdots \\ \widetilde{a}_{k} \end{pmatrix}$$
(2)

Точность прогноза рассчитывается по правилу (3):

$$\begin{cases} S\widetilde{y}_0 = \widetilde{\sigma}_u \cdot \sqrt{1 + q_0} \\ q_0 = \overrightarrow{x}_0^T \cdot Q \cdot \overrightarrow{x}_0 \\ Q = (X^T \cdot X)^{-1} \end{cases}$$
 (3)

Задача №1. Доказать, справедливость правила (3) оценки точности прогноза (2). **Решение:** Обозначим символом $\triangle \widetilde{y}_0 = \widetilde{y}_0 - y_0$. Величина $\triangle \widetilde{y}_0 -$ это *истииная ошибка прогноза*.

$$\triangle \widetilde{y}_{0} = \widetilde{y}_{0} - y_{0} = \overrightarrow{x}_{0}^{T} \cdot \widetilde{a} - (a_{0} + a_{1} \cdot x_{1,0} + \dots + a_{k} \cdot x_{k,0} + u_{0}) = \overrightarrow{x}_{0}^{T} \cdot \left(\widetilde{a} - \overrightarrow{a} \right) - u_{0}$$
 (4)

$$Cov\left(\stackrel{\sim}{a},\stackrel{\sim}{a}\right) = \widetilde{Cov}\left(\stackrel{\sim}{\triangle}\stackrel{\sim}{a},\stackrel{\sim}{\triangle}\stackrel{\sim}{a}\right) = \stackrel{\sim}{\sigma}_{u}^{2} \cdot Q \tag{5}$$

Утверждение D теоремы Гаусса-Маркова, а сейчас возращаемся к правилу (4) и отыщем основные количественные характеристики истинной ошибки прогноза:

$$E\left(\triangle \widetilde{y}_{0}\right) = E\left(\overrightarrow{x}_{0}^{T} \cdot \triangle \overrightarrow{a}\right) - E(u_{0}) = E\left(\overrightarrow{x}_{0}^{T} \cdot \left(\overrightarrow{a} - \overrightarrow{a}\right)\right)$$

$$E\left(\widetilde{a}\right) = \overrightarrow{a}$$
(6)

$$E\left(\triangle\widetilde{y}_{0}\right)=0\tag{7}$$

$$Var\left(\triangle \widetilde{y}_{0}\right) = E\left(\triangle \widetilde{y}_{0}^{2}\right) = \sigma_{u}^{2} \cdot \overrightarrow{x}_{0}^{T} \cdot Q \cdot \overrightarrow{x}_{0} + \sigma_{u}^{2} = \sigma_{u}^{2}(1 + q_{0})$$
(8)

ДЗ Вывести формулу (7) и (8).

(8) доказывает формулу (3). Добавим, что правило (2) называется *точечным проенозом*.

Задача. Сделать прогноз расхода домохозяйств России на 2018 год и оценить точность.

Приступаем к расчёту точечного прогноза расхода домохозяйств на 2018 год. Нам потребуются значения объясняющих переменных.

		Y ₂₀₁₇	Cr2017	San2017	
$\mathbf{x_0}^{T} =$	1	43533.75	0	1	L
C ^p ₂₀₁₈ =	22438.88				
C ₂₀₁₈ =	23010				

Шаг 1. Как мы видим наш прогноз отличается от реального значения, поэтому вычислим стандартную ошибку прогноза. Формируем матрицу X у которой 15 строк и 4 столбца

X=	1	27312.3	0	0
	1	29304.9	0	0
	1	31407.8	0	0
	1	33410.5	0	0
	1	36134.6	0	0
	1	39218.7	0	0
	1	41276.8	1	0
	1	38048.6	0	0
	1	39762.2	0	0
	1	41457.8	0	0
	1	42973.5	0	0
	1	43740.704	0	0
	1	44063.797	0	1
	1	42945.281	0	1
	1	42871.144	0	1

И транспанированную к ней X^T .

Шаг 2. Вычислим матрицу $X^T \cdot X$.

$X^T X =$	15	573928.6269	1	3
	573928.6	22386339280	41276.8	129880.2
	1	41276.8	1	0
	3	129880.2227	0	3

Шаг 3. Рассчитаем матицу Q.

Q=	4.389636	-0.0001174	0.456322804	0.693075587
	-0.00012	3.20632E-09	-1.49453E-05	-2.14112E-05
	0.456323	-1.4945E-05	1.160572215	0.190711062
	0.693076	-2.1411E-05	0.190711062	0.567222424

Шаг 4. Рассчитаем $q_0 = \overrightarrow{x}_0^T \cdot Q \cdot \overrightarrow{x}_0$

x ₀ =	1	x ₀ ^T *Q=	-0.02822	7.70616E-07	-0.00359	0.328187309
	43533.74999					
	0	q ₀ =	0.333519			
	1					

Шаг 5. Рассчитаем значение стандартной ошибки.

Замечание. Интервальный прогноз мы осуществим на следующем занятии.

ДЗ Вычислить прогнозы гос. расходов и инвестиций по моделе Самуэльсона-Хикса по контролирующей выборке.