PRÉ RELATÓRIO DE ELETRÔNICA 1

Laboratório 1

Eduardo Kalleb Franciellen Thurler Freire Allemão Sergio Pedro Rodrigues Oliveira Victor Hugo Queiroz

18 setembro 2023

SUMÁRIO

1	OB.	JETIV	0	1	
2	PR	PREPARATÓRIO			
	2.1	Questâ	ão 2.a	2	
	2.2	Questâ	ão 2.b	3	
	2.3	Questâ	ão 2.c	4	
		2.3.1	Questão 2.c1 - Circuito aberto	4	
		2.3.2	Questão 2.c2 - Curto-circuito	5	
		2.3.3	Questão 2.c3 - Resistor	6	
		2.3.4	Questão 2.c4 - Diodo no sentido direto	7	
		2.3.5	Questão 2.c5 - Diodo zener no sentido direto	8	
		2.3.6	Questão 2.c6 - Diodo zener no sentido direto em serie com resistor	9	
		2.3.7	Questão 2.c7 - Diodo zener no sentido reverso em serie com resistor	10	
		2.3.8	Questão 2.c8 - Diodo no sentido direto em serie com diodo zener no sentido direto	11	
		2.3.9	Questão 2.c9 - Diodo no sentido direto em serie com diodo zener no sentido reverso	12	
		2.3.10	Questão 2.c10 - Diodo no sentido direto em paralelo com diodo zener no sentido direto	13	
		2.3.11	Questão 2.c11 - Diodo no sentido direto em paralelo com diodo zener no sentido reverso	14	
ΒI	\mathbf{BLI}	OGRA	FIA	15	

LISTA DE FIGURAS

1	Circuito aberto	4
2	Curva $V \times I$ do circuito aberto	4
3	Curto-circuito.	5
4	Curva $V \times I$ do curto-circuito	5
5	Circuito com resistores da série E12	6
6	Curva $V \times I$ do circuito com resistores da série E12	6
7	Circuito com diodo no sentido direto	7
8	Curva $V \times I$ do circuito com diodo no sentido direto	7
9	Circuito com diodo zener no sentido direto.	8
10	Curva $V \times I$ do circuito com diodo zener no sentido direto	8
11	Circuito com diodo zener no sentido direto em serie com resistor	9
12	Curva $V \times I$ do circuito com diodo zener no sentido direto em serie com resistor	9
13	Circuito com diodo zener no sentido reverso em serie com resistor	10
14	Curva $V \times I$ do circuito com diodo zener no sentido reverso em serie com resistor	10
15	Circuito com diodo no sentido direto em serie com diodo zener no sentido direto	11
16	Curva $V \times I$ do circuito com diodo no sentido direto em serie com diodo zener no sentido direto.	
17	energie com diede ne generae anece em generae com diede zener ne generae reverge.	12
18	Curva $V \times I$ do circuito com diodo no sentido direto em serie com diodo zener no sentido reverso.	
19	1 · · · · · · · · · · · · · · · · · · ·	13
20	Curva $V \times I$ do circuito com diodo no sentido direto em paralelo com diodo zener no sentido	
	direto	13
21	Circuito com diodo no sentido direto em paralelo com diodo zener no sentido reverso	14
22	Curva $V \times I$ do circuito com diodo no sentido direto em paralelo com diodo zener no sentido	
	reverso	14

1 OBJETIVO

- Implementar um traçador de curvas $V \times I$ para dispositivos de 2 terminais.
- Obter as curvas caraterísticas de vários tipos de componentes, com especial ênfase em diodos.

2 PREPARATÓRIO

Como preparatório para o experimento foi necessário responder as questões 2.a, 2.b e 2.c.

2.1 Questão 2.a

- O traçador de curvas $V \times I$ é um circuito que permite medir e plotar a relação entre a tensão e a corrente de um dispositivo de teste. O circuito é composto pelos seguintes elementos:
 - Transformador:

O transformador é responsável por gerar um sinal de tensão de amplitude constante, independente da carga conectada ao dispositivo de teste.

- Resistência:
 - A resistência é utilizada para limitar a corrente que flui pelo dispositivo de teste.
- Dispositivo de teste:
 - O dispositivo de teste é o componente que se deseja medir a relação entre a tensão e a corrente.
- CH1 e CH2:
 - Os canais CH1 e CH2 são responsáveis por medir as tensões nos terminais do dispositivo de teste.
- O funcionamento do traçador de curvas $V \times I$ é o seguinte:
 - O sinal de tensão do transformador é aplicado ao dispositivo de teste.
 - A corrente que flui pelo dispositivo de teste é medida pela resistência.
 - As tensões CH1 e CH2 são medidas nos terminais do dispositivo de teste.
 - As tensões CH1 e CH2 são plotadas em um gráfico, com a tensão CH1 no eixo X e a tensão CH2 no eixo Y.
- Se fosse possível plotar as tensões CH1 e CH2 em um gráfico, a relação entre a tensão "V" e a corrente "I" seria a seguinte:
 - Tensão CH1: A tensão CH1 é proporcional à tensão "V" aplicada ao dispositivo de teste.
 - Tensão CH2: A tensão CH2 é proporcional à corrente "I" que flui pelo dispositivo de teste.
 - Portanto, o gráfico seria uma reta que passa pela origem, com uma inclinação igual à relação entre a tensão "V" e a corrente "I".

2.2 Questão 2.b

Sabendo que a máxima potência que pode dissipar a resistência R_T é 0.25W, projete R_T para não ser danificado quando o dispositivo de teste é um curto-circuito.

Dado que a tensão foi dada em V_{RMS} , podemos passar ela para a amplitude:

$$V_{RMS} = \frac{V_{Amplitude}}{\sqrt{2}}$$

logo,

$$V_{Amplitude} = 15 \times \sqrt{2}$$

$$V_{Amplitude} = 21.21V$$

Com o valor de $V_{Amplitude}$ e a potência dissipada, podemos descobrir a resistência. (Johnson, Hilburn e Johnson, 2015)

$$P = \frac{V^2}{R}$$

$$R_T = \frac{(21.21)^2}{0.25}$$

Assim descobrimos que o valor de $R_T = 1.8k\Omega$, porém para proteger os dispositivos do circuito é necessario escolher o valor próximo acima do projetado teoricamente na série de resistores E12, este sendo $2.2k\Omega$.

2.3 Questão 2.c

Para cada dispositivo de teste da seguinte lista, esboce a curva $V \times I$ esperada.

2.3.1 Questão 2.c1 - Circuito aberto

Figure 1: Circuito aberto.

Figure 2: Curva $V \times I$ do circuito aberto.

2.3.2 Questão 2.c2 - Curto-circuito

Figure 3: Curto-circuito.

Figure 4: Curva $V \times I$ do curto-circuito.

2.3.3 Questão 2.c3 - Resistor

Figure 5: Circuito com resistores da série E12.

Figure 6: Curva $V \times I$ do circuito com resistores da série E12.

2.3.4 Questão 2.c4 - Diodo no sentido direto

Figure 7: Circuito com diodo no sentido direto.

Figure 8: Curva $V \times I$ do circuito com diodo no sentido direto.

2.3.5 Questão 2.c5 - Diodo zener no sentido direto

Figure 9: Circuito com diodo zener no sentido direto.

Figure 10: Curva $V \times I$ do circuito com diodo zener no sentido direto.

2.3.6 Questão 2.c6 - Diodo zener no sentido direto em serie com resistor

Figure 11: Circuito com diodo zener no sentido direto em serie com resistor.

Figure 12: Curva $V \times I$ do circuito com diodo zener no sentido direto em serie com resistor.

2.3.7 Questão 2.c7 - Diodo zener no sentido reverso em serie com resistor

Figure 13: Circuito com diodo zener no sentido reverso em serie com resistor.

Figure 14: Curva $V \times I$ do circuito com diodo zener no sentido reverso em serie com resistor.

2.3.8 Questão 2.c8 - Diodo no sentido direto em serie com diodo zener no sentido direto

Figure 15: Circuito com diodo no sentido direto em serie com diodo zener no sentido direto.

Figure 16: Curva $V \times I$ do circuito com diodo no sentido direto em serie com diodo zener no sentido direto.

2.3.9 Questão 2.c9 - Diodo no sentido direto em serie com diodo zener no sentido reverso

Figure 17: Circuito com diodo no sentido direto em serie com diodo zener no sentido reverso.

Figure 18: Curva $V \times I$ do circuito com diodo no sentido direto em serie com diodo zener no sentido reverso.

2.3.10 Questão 2.c10 - Diodo no sentido direto em paralelo com diodo zener no sentido direto

Figure 19: Circuito com diodo no sentido direto em paralelo com diodo zener no sentido direto.

Figure 20: Curva $V \times I$ do circuito com diodo no sentido direto em paralelo com diodo zener no sentido direto.

2.3.11 Questão 2.c11 - Diodo no sentido direto em paralelo com diodo zener no sentido reverso

Figure 21: Circuito com diodo no sentido direto em paralelo com diodo zener no sentido reverso.

Figure 22: Curva $V \times I$ do circuito com diodo no sentido direto em paralelo com diodo zener no sentido reverso.

BIBLIOGRAFIA

 $\label{eq:condition} \mbox{JOHNSON, D. E.; HILBURN, J. L.; JOHNSON, J. R. \mbox{\bf Fundamentos de Análise de Circuitos Elétricos - 4ed. [s.l.]} \mbox{ Editora LTC, 2015.}$