Matemáticas

ESTRUCTURAS ALGEBRAICAS

Hoja 1: Grupos I.

- 1. Decide de manera razonada si los siguientes conjuntos son grupos con las operaciones indicadas:
 - a) $(\mathbb{R}, +)$.
 - b) Fijado $n \in \mathbb{Z}_{n>0}$, el conjunto de los enteros módulo n con la suma, i.e., $(\mathbb{Z}_n, +)$.
 - c) (\mathbb{C}^*,\cdot) .
 - d) $(U(n), \cdot)$, donde U(n) denota los restos módulo n de enteros coprimos con n.
- e) Dado un conjunto no vacío X, el conjunto G de las biyecciones de X con la composición, (G, \circ) . Calcula el cardinal de G si X es un conjunto finito.
- 2. Decide de manera razonada si los siguientes conjuntos son grupos con las operaciones indicadas:
 - a) $(\mathbb{Z}, *)$ donde para $n, m \in \mathbb{Z}, n * m = \min(n, m)$.
 - **b)** $(\mathbb{N}, *)$ donde para $n, m \in \mathbb{N}, n * m = n$.
 - c) $(A = \{M \in M_2(\mathbb{Z}) : \det M = -1\}, \cdot).$
 - **d)** $(B = \{M \in \mathbb{M}_2(\mathbb{Z}) : \det M = 1\}, \cdot).$
 - e) $(C = \{M \in \mathbb{M}_2(\mathbb{Z}) : \det M = +1, -1\}, \cdot).$
 - f) $(D = \{M \in \mathbb{M}_2(\mathbb{Q}) : M \text{ es trigular superior}\}, \cdot).$
 - **g)** $(G = \{1, -1, i, -i\}, \cdot).$
- **3.** Demuestra que el conjunto $E = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\} \subset \mathbb{Z}/40\mathbb{Z}$ es un grupo con el producto módulo 40. Identifica el elemento neutro, y el opuesto de cada elemento.
- **4.** Considera el conjunto $F = \{\overline{1}, \overline{9}, \overline{16}, \overline{22}, \overline{53}, \overline{74}, \overline{79}, \overline{81}, \lambda\} \subset \mathbb{Z}/91\mathbb{Z}$. Se sabe que F es un grupo con el producto módulo 91. ¿Cuál es el valor de λ ?
- **5.** Sea $(G = \{a, b, c\}, *)$ un grupo, donde a es el elemento neutro. Escribe su tabla. Deduce que el grupo es abeliano. Más aún, observa que todo grupo de orden 3 es cíclico.
- 6. La siguiente tabla corresponde un grupo. Completa los espacios en blanco.

7. Considera el grupo D_3 de isometrías de un triángulo equilátero. Sea A la rotación de $2\pi/3$ alrededor del centro del triángulo, y sea B la simetría respecto a una de las rectas que pasa por un vértice y el centro del

triángulo.

- a) Demuestra que $I = A^0$, A, A^2 , B, AB y A^2B son todos elementos distintos en D_3 Sugerencia: Utiliza las propiedades de grupo y que conoces los órdenes de A y B.
 - **b)** Escribe BA como A^iB para algún $i \in \{0, 1, 2\}$.
- c) Utilizando los apartados anteriores, escribe la tabla de multiplicación para D_3 . En este ejemplo hemos descrito un grupo dando una presentación. Más precisamente diremos que D_3 está dado por la presentación: $A^3 = I$, $B^2 = I$, $BA = A^2B$.
- 8. Considera el grupo D_4 de isometrías de un cuadrado. Sea A la rotación de $2\pi/4$ alrededor del centro del cuadrado, y sea B la simetría respecto a una de las rectas que pasa por un vértice y el centro del cuadrado.
- a) Demuestra que $I = A^0$, A, A^2 , A^2 , B, AB, A^2B y A^3B son todos elementos distintos en D_4 Sugerencia: Utiliza las propiedades de grupo y que conoces los órdenes de A y B.
 - **b)** Escribe BA como A^iB para algún $i \in \{0, 1, 2, 3\}$.
- c) Utilizando los apartados anteriores, escribe la tabla de multiplicación para D_4 . En este ejemplo hemos descrito un grupo dando una presentación. Más precisamente diremos que D_4 está dado por la presentación: $A^4 = I$, $B^2 = I$, $BA = A^3B$.
- 9. Describe el grupo de isometrías de un rectángulo que no es un cuadrado.
- 10. Subgrupo generado por un conjunto. Sean G un grupo, y sea $S \subset G$ un subconjunto no vacío. El subgrupo generado por S es, por definición, el subgrupo menor de G que contiene a S. Se denota por $\langle S \rangle$. ¿Existe siempre un tal subgrupo? ¿Podemos describirlo en términos de los elementos de S? Para responder a estas preguntas, resuelve los siguientes apartados:
- a) Sea $H_i, i \in I$ una familia de subgrupos de G. Demuestra que $\bigcap_{i \in I} H_i$ es también un subgrupo de G.
 - b) Demuestra que

$$\langle S \rangle = \cap {}_{H \ S \ C \ H} H.$$

c) Demuestra que

$$\langle S \rangle = \{ s_1^{\pm 1} \cdots s_k^{\pm 1} : k \in \mathbb{Z}_{\geq 0}, s_i \in S \}.$$

- **11.** Halla el retículo de los subgrupos de C_4 , C_6 , D_3 , y D_4 .
- 12. Demuestra que S_3 no está generado por 1 elemento. Sean

$$\sigma = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right), \quad \rho = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right).$$

- a) Demuestra $S_3 = \langle \sigma, \rho \rangle$.
- b) Halla una presentación de S_3 en términos de σ y ρ (en la línea de los problemas 7 y 8).
- 13. Calcula los órdenes de los elementos de S_3 y D_4 .
- **14.** Sea G un grupo finito y $x \in G$. Demuestra que existe $n \in \mathbb{N}$ tal que $x^n = e$.

15. Sea Gun grupo y sean $X,Y\subseteq G.$ Demuestra que¹:

- a) $(XY)^{-1} = Y^{-1}X^{-1}$.
- b) Si $g \in G$, Xg = Yg si y sólo si X = Y si y sólo si gX = gY.
- c) $X = Y \text{ si y sólo si } X^{-1} = Y^{-1}.$

Recuerda que si $X, Y, Z \in G$ la propiedad asociativa nos dice que (XY)Z = X(YZ).