計算機結構程式專題(一) 報告

A1055547 王公志

一、使用程式語言、環境

甲、程式語言: Python

乙、開發環境: Google Colab

丙、測試資料: trace.txt (5003 筆測資)

二、LRU 實作方式:

甲、將 cache 中每個 block 賦予一個 counter(初始值為 0), counter 的值越大,表示越久沒有使用;反之,值越小表示該 block 離最近一次使用越近。

乙、每當有新資料讀入時,將 cache 中所有 invalid block 的 counter 加一。

丙、若是 cache hit 則將該 block 的 counter 設為 1,表示該 block 為最新使用的。

丁、當 set full,且 tag 與 set 中的所有 block tag 相異時,取代 set 中 counter 最大的 block,並將該 block 設為 1。

三、心得與討論:

- 甲、每當 associativity 提高時, miss rate 理應隨之下降,但是觀察模擬結果,當 associativity 由 4 提高到 8 時, miss rate 並不會下降,推測是因為測資數量太少,且散落於各個 set 中,造成 conflict misses 沒有隨之減少。
- 乙、當 Cache Size 和 associativity 固定,並逐步提高 Block Size 後,可以發現每次 miss rate 伴隨顯著的下降。該情形說明測資的 address 其位置相近,因此當提高 Block Size 後,由於 Spatial Locality 造成 Compulsory missess 的減少。
- 丙、當 Block Size 和 associativity 固定,並逐步提高 Cache Size 後, miss rate 雖有下降,但是幅度不大, miss rate 仍在 0.53 左右。該情形可以解釋為 Capacity miss 沒有太大影響,可能的原因在於測資數量不多,且 address 散布在各個 set 中,且各個 address 之間的距離不會太遠,使得 set 不會被佔滿;又由於當 Cache Size 在較小時就沒被佔滿,因此當 Cache Size 變大後只有 set 數跟著變多,故各個 set 的 block 只會變少,使得 Capacity miss 影響更小。

四、模擬結果:

Cache Size (Byte)	Block Size (Byte)	n-way	Miss Rate(紅色表示下降、 藍色表示不變)
128K	16	1	0.538477
		2	0.534879
		4	0.533680
		8	0.533280
256K	16	1	0.535679
		2	0.534479
		4	0.533280
		8	0.533280
512K	16	1	0.534479
		2	0.533480
		4	0.533280
		8	0.533280
1024K	16	1	0.533880
		2	0.533280
		4	0.533280
		8	0.533280
512K	8	1	0.857885
		2	0.856286
		4	0.856086
		8	0.856086
512K	16	1	0.534479
		2	0.533480
		4	0.533280
		8	0.533280
512K	32	1	0.374775
		2	0.373976
		4	0.373776
		8	0.373776
512K	64	1	0.299220
		2	0.297821
		4	0.297621
		8	0.297621
1024K	8	1	0.857086
		2	0.856086

		4	0.856086
		8	0.856086
1024K	16	1	0.533880
		2	0.533280
		4	0.533280
		8	0.533280
1024K	32	1	0.374175
		2	0.373776
		4	0.373776
		8	0.373776
1024K	64	1	0.298021
		2	0.297621
		4	0.297621
		8	0.297621

固定 Block Size、Set Degress

128K	32	1	0.380372
		2	0.375775
		4	0.375375
		8	0.373976
256K	32	1	0.376974
		2	0.375175
		4	0.373776
		8	0.373776
512K	32	1	0.374775
		2	0.373976
		4	0.373776
		8	0.373776
1024K	32	1	0.374175
		2	0.373776
		4	0.373776
		8	0.373776

128K 64	64	1	0.306616
		2	0.302419
		4	0.301819
		8	0.299420

256K 64	64	1	0.302219
		2	0.299620
		4	0.297621
		8	0.297621
512K 64	64	1	0.299220
		2	0.297821
		4	0.297621
		8	0.297621
1024K 6	64	1	0.298021
		2	0.297621
		4	0.297621
		8	0.297621