Universidade Estadual do Oeste do Paraná (UNIOESTE) Centro de Engenharias e ciências exatas (CECE) Ciência da Computação

TRABALHO – SISTEMAS DIGITAIS

Gabriel José Biudes Lino Leonardo Huang

Professor Jorge Habib Hanna El Khouri

Foz do Iguaçu, PR Maio de 2022

INTRODUÇÃO

Este documento foi produzido com o intuito de documentar e descrever todo o processo de desenvolvimento do trabalho proposto em sala de aula. Sendo assim, ao decorrer do documento, será mostrado um resumo da arquitetura do sistema digital produzido para desenvolver o papel de uma unidade lógica e aritmética, assim como os circuitos completos desenvolvidos no Falstad e no Tinkercad.

DETALHAMENTO DO PROBLEMA

Primeiramente, é importante definir qual é o objetivo do projeto. É necessário que seja desenvolvida uma Unidade Lógica e Aritmética de 4 bits que é capaz de realizar 16 operações diferentes, necessitando assim de 4 bits como entrada de dados para o código da operação. Além disso, é necessário também que a ULA entregue 4 flags específicos, sendo estes o conjunto de flags {C, Z, P, S}.

Tabela de operações:

D3	D2	D1	D0	OPERAÇÃO
0	0	0	0	X = A + B
0	0	0	1	X = A - B
0	0	1	0	X = A + 1
0	0	1	1	X = A - 1
0	1	0	0	X = -A
0	1	0	1	X = A
0	1	1	0	X = -1
0	1	1	1	X = A + A
1	0	0	0	$X = A \wedge B$
1	0	0	1	X = A v B
1	0	1	0	$X = A \oplus B$
1	0	1	1	X = !A
1	1	0	0	$X = A ^ !B$
1	1	0	1	X = !A ^ B
1	1	1	0	$X = !(A \land B)$
1	1	1	1	$X = !(A \lor B)$

ARQUITETURA DA SOLUÇÃO

Analisando de forma mais superficial, a "caixinha preta" responsável pela resolução do problema se mostra conforme definido no enunciado do projeto:

Para isso, será montada uma tabela verdade com as entradas de dados possíveis e seus respectivos resultados. A partir desta tabela, será apresentado o Mapa de Karnaugh para os valores de X e do Carry, que nos dará as expressões lógicas. Com estas em mãos, é possível montar os circuitos no circuit.js, produzindo uma ULA de 1 bit. A partir da ULA de 1 bit, será montada uma ULA de 4 bits, onde também será possível mostrar os quatro flags restantes.

CIRCUIT.JS

Primeiramente, foi criada uma tabela verdade contendo todas as possibilidades para as entradas de {s3, s2, s1, s0, cin, A, B} e suas respectivas saídas em Cout e X:

S3	S2	S1	S0	CIN	Α	В	COUT	X
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	1
0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	1	1	0
0	0	0	0	1	0	0	0	1
0	0	0	0	1	0	1	1	0
0	0	0	0	1	1	0	1	0
0	0	0	0	1	1	1	1	1
0	0	0	1	0	0	0	0	0
0	0	0	1	0	0	1	1	1
0	0	0	1	0	1	0	0	1

0	0	0	1	0	1	1	0	0
0	0	0	1	1	0	0	1	1
0	0	0	1	1	0	1	1	0
0	0	0	1	1	1	0	0	0
0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0
0	0	1	0	0	1	0	0	1
0	0	1	0	0	1	1	0	1
0	0	1	0	1	0	0	0	1
0	0	1	0	1	0	1	0	1
0	0	1	0	1	1	0	1	1
0	0	1	0	1	1	1	1	1
0	0	1	1	0	0	0	0	0
0	0	1	1	0	0	1	0	0
0	0	1	1	0	1	0	0	1
0	0	1	1	0	1	1	0	1
0	0	1	1	1	0	0	1	1
0	0	1	1	1	0	1	1	1
0	0	1	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	1	0	0	0	0	0	1	0
0	1	0	0	0	0	1	1	0
0	1	0	0	0	1	0	0	1
0	1	0	0	0	1	1	0	1
0	1	0	0	1	0	0	1	0
0	1	0	0	1	0	1	1	0
0	1	0	0	1	1	0	0	1
0	1	0	0	1	1	1	0	1
0	1	0	1	0	0	0	0	0
0	1	0	1	0	0	1	0	0
0	1	0	1	0	1	0	0	1
0	1	0	1	0	1	1	0	1
0	1	0	1	1	0	0	0	0
0	1	0	1	1	0	1	0	0
0	1	0	1	1	1	0	0	1
0	1	0	1	1	1	1	0	1
0	1	1	0	0	0	0	0	1
0	1	1	0	0	0	1	0	1
0	1	1	0	0	1	0	0	1
0	1	1	0	0	1	1	0	1

0	1	1	0	1	0	0	0	1
0	1	1	0	1	0	1	0	1
0	1	1	0	1	1	0	0	1
0	1	1	0	1	1	1	0	1
0	1	1	1	0	0	0	0	0
0	1	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1	0
0	1	1	1	0	1	1	1	0
0	1	1	1	1	0	0	0	1
0	1	1	1	1	0	1	0	1
0	1	1	1	1	1	0	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0	0
1	0	0	0	0	1	0	0	0
1	0	0	0	0	1	1	0	1
1	0	0	0	1	0	0	0	0
1	0	0	0	1	0	1	0	0
1	0	0	0	1	1	0	0	0
1	0	0	0	1	1	1	0	1
1	0	0	1	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	0	1	0	1	0	0	1
1	0	0	1	0	1	1	0	1
1	0	0	1	1	0	0	0	0
1	0	0	1	1	0	1	0	1
1	0	0	1	1	1	0	0	1
1	0	0	1	1	1	1	0	1
1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	1
1	0	1	0	0	1	0	0	1
1	0	1	0	0	1	1	0	0
1	0	1	0	1	0	0	0	0
1	0	1	0	1	0	1	0	1
1	0	1	0	1	1	0	0	1
1	0	1	0	1	1	1	0	0
1	0	1	1	0	0	0	0	1
1	0	1	1	0	0	1	0	1
1	0	1	1	0	1	0	0	0
1	0	1	1	0	1	1	0	0
1	0	1	1	1	0	0	0	1

1	0	1	1	1	0	1	0	1
1	0	1	1	1	1	0	0	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	1	0	0
1	1	0	0	0	1	0	0	1
1	1	0	0	0	1	1	0	0
1	1	0	0	1	0	0	0	0
1	1	0	0	1	0	1	0	0
1	1	0	0	1	1	0	0	1
1	1	0	0	1	1	1	0	0
1	1	0	1	0	0	0	0	0
1	1	0	1	0	0	1	0	1
1	1	0	1	0	1	0	0	0
1	1	0	1	0	1	1	0	0
1	1	0	1	1	0	0	0	0
1	1	0	1	1	0	1	0	1
1	1	0	1	1	1	0	0	0
1	1	0	1	1	1	1	0	0
1	1	1	0	0	0	0	0	1
1	1	1	0	0	0	1	0	1
1	1	1	0	0	1	0	0	1
1	1	1	0	0	1	1	0	0
1	1	1	0	1	0	0	0	1
1	1	1	0	1	0	1	0	1
1	1	1	0	1	1	0	0	1
1	1	1	0	1	1	1	0	0
1	1	1	1	0	0	0	0	1
1	1	1	1	0	0	1	0	0
1	1	1	1	0	1	0	0	0
1	1	1	1	0	1	1	0	0
1	1	1	1	1	0	0	0	1
1	1	1	1	1	0	1	0	0
1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0

Em seguida, foi montado o Mapa de Karnaugh para X utilizando uma ferramenta presente no site da Universidade de Marburg:

 $X = \{1, 2, 4, 7, 9, 10, 12, 15, 18, 19, 20, 21, 26, 27, 28, 29, 34, 35, 38, 39, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 60, 61, 62, 63, 67, 71, 73, 74, 75, 77, 78, 79, 81, 82, 85, 86, 88, 89, 92, 93, 98, 102, 105, 109, 112, 113, 114, 116, 117, 118, 120, 124\}$

 $y = (\bar{x}_6 \bar{x}_5 \bar{x}_4 \bar{x}_2 \bar{x}_1 x_0) \lor (\bar{x}_6 \bar{x}_5 x_2 \bar{x}_1 \bar{x}_0) \lor (\bar{x}_6 \bar{x}_5 x_4 \bar{x}_2 x_1) \lor (\bar{x}_6 \bar{x}_5 \bar{x}_4 x_1 x_0) \lor (x_6 \bar{x}_5 \bar{x}_4 x_3 x_1) \lor (x_6 x_5 \bar{x}_4 x_1 x_0) \lor (x_6 \bar{x}_5 \bar{x}_4 x_3 x_1 \bar{x}_0) \lor (x_6 x_5 \bar{x}_4 x_3 \bar{x}_1 x_0) \lor (\bar{x}_6 \bar{x}_5 \bar{x}_2 x_1 \bar{x}_0) \lor (\bar{x}_6 \bar{x}_5 x_2 x_1 \bar{x}_0) \lor (\bar{x}_6 \bar{x}_5 x_4 x_3 \bar{x}_1) \lor (\bar{x}_6 \bar{x}_5 x_4 x_3 \bar{x}_1 x_0) \lor (\bar{x}_6 x_5 x_4 \bar{x}_3 \bar{x}_1 x_0) \lor (\bar{x}_6 \bar{x}_5 x_4 x_3 \bar{x}_1) \lor (\bar{x}_6 \bar{x}_5 x_4 \bar{x}_3 \bar{x}_1) \lor (\bar{x}_6 \bar{x}_5 \bar{x}_4 \bar{x}_3 \bar{x}_1) \lor (\bar{x}_6 \bar{x}_5 \bar{x}$

Onde (x6, x5, x4, x3, x2, x1, x0) = (s3, s2, s1, s0, cin, a, b)

Com a expressão lógica em mãos, foi possível montar o circuito do resultado no circuit.js:

https://tinyurl.com/y3lm8toj

Além disso, também foi montado o Mapa de Karnaugh para o carry:

 $X = \{3, 5, 6, 7, 9, 12, 13, 15, 22, 23, 28, 29, 32, 33, 36, 37, 58, 59, 62, 63\}$

	1							•				•			- x ₂	- <i>x</i> ₀
							-			_	<u>. </u>	<u>. </u>	- x ₄		•	
	0	1 0	1	4 0	20	0	17	16	0	81	85	84	0	69	65	64
	2 0	1	1	1	1	1	0	18	0	83	87	86	70	71	67	0
	10	0	1	14	30	31	27	26	90	91	95	94	78	79	75	74
	8 0	1	1	12	1	1	25	24	0	89	93	92	76	77	73	72
	0	41	0	44	0	0	57	0	0	0	0	0	0	0	0	0
	0	0	47	46	(1	1	1	1	0	0	0	0	110	111	0	0
x_3	0	35	39	38	54	55	51	50	114	115	0	118	0	103	99	98
	$\boxed{1}$	1	1	1	0 52	53	49	48	0	0	117	116	0	0	97	96
x_5																

 $y = (\bar{x}_6\bar{x}_5\bar{x}_4\bar{x}_3x_1x_0) \vee (\bar{x}_6\bar{x}_5\bar{x}_3x_2x_1) \vee (\bar{x}_6\bar{x}_5\bar{x}_4x_3\bar{x}_1x_0) \vee (\bar{x}_6\bar{x}_5x_3x_2\bar{x}_1) \vee (\bar{x}_6\bar{x}_5\bar{x}_4x_2x_0) \vee (\bar{x}_6x_5\bar{x}_4\bar{x}_3\bar{x}_1) \vee (\bar{x}_6x_5x_4x_3x_1) \vee (\bar{x}_6x_5x_4x_1) \vee (\bar{x}_6x_5x_4x_1) \vee (\bar{x}_6x_5x_4x_1) \vee (\bar{x}_6x_5x_1) \vee (\bar{x}_6x_5x_1) \vee (\bar{x}_6x_1) \vee (\bar{x}_6x$

Com a expressão lógica em mãos, foi possível montar o circuito do carry out no circuit.js:

https://tinyurl.com/yy4ty8tm

Assim, com ambos os circuitos em mãos, é possível fazer uma ULA de 1 bit:

https://tinyurl.com/y5yr9wkx

Após isso, foi montada a tabela verdade para o flag P:

ХЗ	X2	X1	X0	Р
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Mapa de Karnaugh de P:

 $P = (!x3 \; !x2 \; !x1 \; !x0) \; \forall \; (!x3 \; !x2 \; x1 \; x0) \; \forall \; (!x3 \; x2 \; !x1 \; x0) \; \forall \; (!x3 \; x2 \; x1 \; !x0) \; \forall \; (x3 \; !x2 \; !x1 \; x0) \; \forall \; (x3 \; !x2 \; x1 \; !x0) \; \forall \; (x3 \; x2 \; x1 \; !x0) \; \forall \; (x3 \; x2 \; x1 \; x0) \; \forall$

Circuito:

https://tinyurl.com/yyk55zhs

Para o flag Z, foi utilizada apenas a expressão !(A + B + C + D).

Como o flag S é simplesmente o dígito mais significativo do resultado, podemos juntar todos os componentes e finalizar a ULA de 4 bits:

https://tinyurl.com/yx8vxa76

Assim, juntando tudo em uma caixinha preta, temos o circuito seguinte:

https://tinyurl.com/y6nwf2lr

Que conclui, assim, a ULA de 4 bits no circuit.js.

REFERÊNCIAS

https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/karnaughmap/