Meccanica Quantistica

Marco Militello

Indice

	ron	nuie
	1.1	Equazione Schrodinger per una particella libera 1D
	1.2	Equazione Schrodinger per un potenziale arbitrario $V(x)$
		1.2.1 1D
		1.2.2 3D
	1.3	Operatori
		1.3.1 Rappresentazione coordinate
		1.3.2 Rappresentazione momenti
		1.3.3 Applicazione operatori su stati
	1.4	Commutatore
	1.5	Stati stazionari
	1.6	Continuità della funzione d'onda e della derivata
	1.7	Soluzione equazione stati stazionari
	1.8	Particella in una scatola con potenziale infinito
		1.8.1 Energia
		1.8.2 Autofunzioni
	1.9	Evoluzione temporale
	1.10	Oscillatore armonico
		1.10.1 Hamiltoniana
		1.10.2 Energia
	ъ	
2		esame
	2.1	Traformata di Fourier
	2.2	Rappresentazione coordinate
	2.3	Rappresentazione coordinate
	2.4	Operatore hamiltoniana
	2.5	Valor medio
	2.6	Buche di potenziale
	2.7	Equazione Schrodinger
	2.8	Oscillatore armonico
	$^{\circ}$	Formula trigger amatricha

Capitolo 1

Formule

1.1 Equazione Schrodinger per una particella libera 1D

$$i\hbar\frac{\delta\psi}{\delta t} = -\frac{\hbar^2}{2m}\frac{\delta^2\psi}{\delta x^2}$$

1.2 Equazione Schrodinger per un potenziale arbitrario V(x)

1.2.1 1D

$$i\hbar\frac{\delta\psi}{\delta t} = \left[-\frac{\hbar^2}{2m}\frac{\delta^2}{\delta x^2} + V(x)\right]\psi$$

1.2.2 3D

$$i\hbar\frac{\delta}{\delta t}\psi(t,\vec{x}) = -\frac{\hbar^2}{2m}\nabla^2\psi(t,\vec{x}) + V(t,\vec{x})\psi(t,\vec{x})$$

1.3 Operatori

•
$$\hat{H} = \frac{\hat{p}}{2m} + V(\hat{x})$$
 hamiltoniana

•
$$\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} + i \frac{1}{\sqrt{m\hbar\omega}} \hat{p} \right)$$

•
$$\hat{a}^+ = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} - i \frac{1}{\sqrt{m\hbar\omega}} \hat{p} \right)$$
 creatore

•
$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}^+ + \hat{a})$$
 distruttore

•
$$\hat{p} = i\sqrt{\frac{m\hbar\omega}{2}}(\hat{a}^+ - \hat{a})$$

•
$$\hat{N} = (\hat{a}^{\dagger}\hat{a})$$
 operatore numero

1.3.1 Rappresentazione coordinate

•
$$\hat{p}_x = -i\hbar \frac{\delta}{\delta x}$$

•
$$\hat{x} = x$$

•
$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 + V(\vec{x})$$

1.3.2 Rappresentazione momenti

- $\hat{p}_x = p$
- $\hat{x} = i\hbar \frac{\delta}{\delta p}$

1.3.3 Applicazione operatori su stati

- $a^+|n>=\sqrt{n+1}|n+1>$
- $a|n>=\sqrt{n}|n-1>$
- $\hat{x}|n>=\sqrt{\frac{\hbar}{2m\omega}}(\sqrt{n+1}|n+1>+\sqrt{n}|n-1>)$
- $\hat{p}|n>=\sqrt{\frac{m\hbar\omega}{2}}(\sqrt{n+1}|n+1>-\sqrt{n}|n-1>)$

1.4 Commutatore

- $[\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A}$
- $[\hat{x}, \hat{p}_x] = i\hbar$
- $[\hat{a}, \hat{a}^+] = 1$

1.5 Stati stazionari

$$\hat{H}\varphi = E\varphi$$

1.6 Continuità della funzione d'onda e della derivata

- $V \to \infty \Rightarrow \varphi = 0$
- Salto in $x = x_0 \Rightarrow \dot{\varphi} \in C^1$ (la funzione non ha salti)
- V(x) ha delta in $x = x_0 \Rightarrow V = V_0 \delta(x x_0)$

$$\dot{\varphi}(x_0 + \varepsilon) - \dot{\varphi}(x_0 - \varepsilon) = \frac{2m}{\hbar} V_0 \varphi(x_0)$$

1.7 Soluzione equazione stati stazionari

1. Soluzione del tipo oscillatorio

$$\frac{d^2\psi}{dx^2} + \alpha^2\psi = 0$$

Le soluzioni sono del tipo

$$c_1 \sin(\alpha x) + c_2 \cos(\alpha x)$$

2. Soluzioni del tipo esponenziali

$$\frac{d^2\psi}{dx^2} - \alpha^2\psi = 0$$

Le soluzioni sono del tipo

$$c_1 e^{\alpha x} + c_2 e^{-\alpha x}$$

- 1.8 Particella in una scatola con potenziale infinito
- 1.8.1 Energia

$$E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2$$

1.8.2 Autofunzioni

$$\varphi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$

1.9 Evoluzione temporale

$$\psi(t,\vec{x}) = \sum c_n \varphi_n e^{-\frac{iE_n t}{\hbar}} + \int dk \, c(k) \varphi_k e^{-\frac{iE_k t}{\hbar}}$$

- 1.10 Oscillatore armonico
- 1.10.1 Hamiltoniana

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

1.10.2 Energia

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right)$$

Capitolo 2

Per esame

2.1 Traformata di Fourier

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int dx \, e^{-ikx} f(x)$$
 $k = \frac{p}{\hbar}$

2.2 Rappresentazione coordinate

$$\hat{p}_x = -i\hbar \frac{\delta}{\delta x}$$

$$\hat{x} = x$$

2.3 Rappresentazione coordinate

$$\hat{p} = p$$

$$\hat{x} = i\hbar \frac{\delta}{\delta p}$$

2.4 Operatore hamiltoniana

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

2.5 Valor medio

$$< A >= \int dx \, \psi^*(x) A \psi(x)$$

 $< A >= \int dx \, \tilde{\psi}^*(x) A \tilde{\psi}(x)$

2.6 Buche di potenziale

• Particella in una scatola con potenziale infinito

Energia

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2a^2 m}$$

Autofunzioni

$$\varphi_n = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right)$$

2.7 Equazione Schrodinger

$$\ddot{\psi} + \frac{2m}{\hbar^2} [E - V(x)] \psi(x) = 0$$

2.8 Oscillatore armonico

$$\hat{x}|n> = \sqrt{\frac{\hbar}{2m\omega}}(\sqrt{n+1}|n+1>\sqrt{n}|n-1>)$$

2.9 Formule trigonometriche

$$\sin(2x) = 2\sin x \cos x$$