Corso di Laurea in Informatica - Fisica A ${\rm AA}\ 2018/19$

Esercitazione 4

Esercizi svolti in aula

1. Trovare la resistenza equivalente del circuito di Fig. 1, sapendo che $R_1=112\,\Omega$, $R_2=42\,\Omega$, $R_3=61.6\,\Omega$, $R_4=75\,\Omega$, $\epsilon=6.22\,V$. Trovare la corrente in ciascuna resistenza.

Figure 1: problema 1

[130.7 Ω ; 47.6 mA in R₁; 21.2 mA in R₂; 14.4 mA in R₃; 11.9 mA in R₄]

Figure 2: problema 2

2. Nel tratto di circuito in Fig. 2 tutte le resistenze valgono $100~\Omega$ e possono sostenere una potenza massima di 25 W ciascuna. Qual è la tensione massima che si può applicare tra i punti A e B senza rompere nessuna resistenza? Quanto vale la potenza totale dissipata nel tratto di circuito se la tensione è quella massima?

Altri esercizi

3. Nel circuito di Fig. 3 si ha $R_1=R_2=10~\Omega,~R_3=R_4=5~\Omega,~R_5=20~\Omega,~V=25~V.$ Calcolare differenza di potenziale V_B - V_A e la corrente nella resistenza R_5 .

Figure 3: problema 3

[5.68 V; 227 mA]