Шаблон отчёта по лабораторной работе

Простейший вариант

Турсунов Баходурхон Азимджонович

Содержание

Выполнение 4 лабораторной работы	5
Метод Гаусса	5
Левое деление	7
LUP-разложение	8
LU-разложение	9
Вывод	10

Список иллюстраций

Список таблиц

Выполнение 4 лабораторной работы

Метод Гаусса

1. Для системы линейных уравнений Ax = b построил расширенную матрицу вида B = [A|b]

2. Ее можно просматривать поэлементарно:

Это скаляр, хранящийся в строке 2, столбце 3.

3. Мы также можем извлечь целый вектор строки или вектор столбца, используя оператор сечения :. Сечение можно использовать для указания ограниченного диапазона. Если не указано нчальное или конечное значение, то результатом оператора является полный диапазон. Например:

Получили первый ряд.

4. Теперь Реализовал явный метод Гаусса. Сначала добавил к третьей строке первую строку, умноженную на -1:

5. Далее добавил к третьей строке вторую строку, умноженную на -1.5:

6. Octave распологает встроенной командой для непосредственного поиска треугольной формы матрицы:

Левое деление

1. Встроенная операция для решения линейных систем вида Ax = b В Осtave называется левым делением и записывается как A b. Это концептуально эквивалентно выражению A^-1b . ВЫделил из расширенной матрицы В матрицу A:

После найдем вектор х:

LUP-разложение

- LUP-разложение вычисляется в OCtave с помощью команды [L U P] = lu (A)
- 1. Пусть задана матрица A, c помощью команды [L U P] = lu (A) мы нашли эти разложения

Permutation Matrix

(Рис 10)

LU-разложение

1. Пусть также дана матрица A, и с помощью Octave расписал ее LU-разложение

(Рис 11)

Вывод

Научился решать систему линейных уравнений с помощью Octave