

Self-consistent atomic orbital computation and visualization

30-Sep-2013 | Qian Zhang Prof. Dr. Erik Koch |

Jülich Supercomputing Center German Research School for Simulation Sciences

Outline

- 1 Introduction
- Objectives
- One-electron system
- Many-electron system
- 5 Atomic orbital visualization
- 6 Conclusion

Introduction

Introduction

Question:

How do the electrons distribute around the nucleus?

Introduction

Question:

How do the electrons distribute around the nucleus?

Answer:

Solve the Schrödinger equation:

$${\it H}\psi={\it E}\psi$$

where

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r_i} \right] + \sum_{i < j} \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\vec{r}_i - \vec{r}_j|}$$

Objectives

- Solve the simplest case: one-electron system
- 2 Approximate the general case: many-electron system
- 3 Monte-Carlo sampling to visualize obtained atomic orbitals

One-electron system

For
$$N=1$$

$$\left[-\frac{\hbar^2}{2m_e}\nabla^2 - \frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r}\right]\psi = E\psi$$

Separation of variables:

$$\psi(\mathbf{r},\theta,\phi) = R(\mathbf{r})Y(\theta,\phi)$$

Angular part $Y(\theta, \phi)$ Easy, spherical harmonics Radial part R(r) Difficult, our task

One-electron system

Define $u(r) \equiv rR(r)$, radial equation

Employ atomic units

$$\hbar = 1$$
 $m_e = 1$ $e = 1$ $4\pi\epsilon_0 = 1$

We have

$$-\frac{1}{2}\frac{d^{2}u}{dr^{2}} + \left[-\frac{Z}{r} + \frac{1}{2}\frac{I(I+1)}{r^{2}}\right]u = Eu$$

Numerical method

Construct a logarithmic grid $0 < r_0 < \cdots < r_{N-1} < \infty$, where

$$r_i = \frac{1}{Z}e^{x_i}$$

 r_0 r_{N-1}

where x is a uniformly distributed grid

$$x_i = x_0 + i\Delta x$$

Numerical method

Transform non-uniform grid r to uniform grid x Introducing $\tilde{u} \equiv u/\sqrt{r}$

$$-\frac{1}{2}\frac{d^2\tilde{u}}{dx^2} + \left[-rZ + \frac{1}{2}\left(I + \frac{1}{2}\right)^2\right]\tilde{u} = r^2E\tilde{u}$$

Finite-difference $\frac{d^2\tilde{u}}{dx^2} pprox \frac{\tilde{u}_{i+1} - 2\tilde{u}_i + \tilde{u}_{i-1}}{\Delta x^2}$, we obtain

$$\tilde{u}_{i+1} = \left\{ 2 + 2\Delta x^2 \left[-r_i Z + \frac{1}{2} \left(I + \frac{1}{2} \right)^2 - r_i^2 E \right] \right\} \tilde{u}_i - \tilde{u}_{i-1}$$

This is a simple recursion!

Numerical results

Figure: Numerical results of the first few radial wave functions, $R_{nl}(r)$

Many-electron system

Many-electron Schrödinger equation

$$\left\{ \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r_i} \right] + \sum_{i < j} \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\vec{r}_i - \vec{r}_j|} \right\} \psi = E\psi$$

- This equation cannot be solved exactly
- We use self-consistent field (SCF) approximation

Many-electron system

The exact Hamiltonian

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r_i} \right] + \underbrace{\sum_{i < j} \frac{1}{4\pi\epsilon_0} \frac{e^2}{|\vec{r}_i - \vec{r}_j|}}_{\text{trouble maker}}$$

is approximated by

$$H_0 = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m_e} \nabla_i^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r_i} \right] + V_H(r)$$

where $V_H(r)$ is called the Hartree potential

Many-electron system

The many-electron problem breaks down to multiple one-electron problems

$$\left\{ \left[-\frac{\hbar^2}{2m_e} \nabla^2 - \frac{1}{4\pi\epsilon_0} \frac{Ze^2}{r} \right] + V_H(r) \right\} \psi_i = E_i \psi_i$$

The radial equation

$$-\frac{\hbar^2}{2m_e}\frac{d^2u_i}{dr^2} + \left[-\frac{1}{4\pi\epsilon_0}\frac{Ze^2}{r} + \frac{\hbar^2}{2m_e}\frac{I(I+1)}{r^2} + V_H(r)\right]u_i = E_iu_i$$

But, what is $V_H(r)$?

Self-consistent approximation

- V_H(r) is the mean-field potential created by all electrons
- If we roughly know where the electrons are, we know V_H(r)
- This implies an iteration scheme

Carbon: 6 electrons (Iteration = 1)

Carbon: 6 electrons (Iteration = 2)

Carbon: 6 electrons (Iteration = 5)

Carbon: 6 electrons (Iteration = 10)

Carbon: 6 electrons (Iteration = 15)

Carbon: 6 electrons (Iteration = 20)

Atomic orbital visualization

- $\psi(r, \theta, \phi)$ is a 4D object lives in 3D space, difficult to visualize!
- We perform Monte-Carlo sampling to visualize $\psi(r,\theta,\phi)$ in a probabilistic approach

Atomic orbital visualization

Conclusion

- Starting from the simplest case, we computed the atomic orbitals for the one-electron system
- By self-consistent field approximation, we obtained the atomic orbitals for the many-electron system
- Using weighted Monte-Carlo sampling, we successfully visualized the atomic orbitals

Thank You!

I am heartily thankful to:

- My supervisor, Prof. Dr. Erik Koch
- Jülich Supercomputing Center
- German Research School for Simulation Sciences