Implementazione di algoritmi per il calcolo efficiente del ranking dato dalla centralità di Katz in grafi molto densi

Gabriel Antonio Videtta (654839)

5 maggio 2025

Sommario

In questa relazione presentiamo la teoria e gli algoritmi proposti da [3] per calcolare efficientemente il ranking dovuto all'indice di centralità di Katz in grafi, eventualmente con pesi non negativi, le cui matrici di adiacenza hanno almeno $\mathcal{O}(n)$ elementi non nulli, sfruttando la nozione di "grafo complementare" e dando significato al calcolo di indici di centralità di Katz con parametri negativi.

1 Prerequisiti teorici

Ricordiamo brevemente che un grafo (eventualmente con lacci) è una coppia di insiemi G = (V, E) con $E \subseteq V \times V$ e $V = \{1, ..., n\}$ per qualche $n \in \mathbb{N}_{>0}$. Gli elementi dell'insieme V sono detti nodi, mentre quelli dell'insieme E sono detti archi.

Quando si parla di grafi senza lacci (o di grafo semplice), si esclude a priori l'esistenza di archi della forma (i, i) con $i \in V$.

Nel corso della relazione useremo n per riferirci al numero di nodi del grafo preso in considerazione, e useremo m per riferirci al numero di archi dello stesso.

L'insieme E induce una relazione \sim su V tale per cui $i\sim j$ se e solo se $(i,j)\in E$. Il grafo G si dice non orientato se \sim è simmetrica, e orientato altrimenti.

Un sottografo di G è un grafo G' = (V', E') con $V' \subseteq V$ e $E' \subseteq (V' \times V') \cap E$. Un grafo è rappresentato operativamente tramite la propria matrice di adiacenza $A \in \mathbb{R}^{n \times n}$, definita componente per componente come

$$A_{ij} = \begin{cases} 1 & \text{se } i \sim j, \\ 0 & \text{altrimenti.} \end{cases}$$

Si osserva immediatamente che A è simmetrica se e solo se G è non orientato. Un grafo è detto sparso se A ha $\mathcal{O}(n)$ entrate non nulle, mentre è detto denso se tutte le entrate di A eccetto per un numero $\mathcal{O}(n)$ di queste sono non nulle. Equivalentemente, un grafo sparso è tale per cui $m = \mathcal{O}(n)$.

Un cammino orientato (directed walk in inglese) di lunghezza r dal nodo i al nodo j è una sequenza ordinata di r+1 nodi $i_0=i,\,i_1,\,...,\,i_r=j$ dove $i_k\sim i_{k+1}$ per ogni $k=0,\,1,\,...,\,r-1$.

Un cammino non orientato (undirected walk in inglese) ignora le direzioni, ovverosia permette di passare da i a j anche se $j \sim i$.

Nel caso di un grafo non orientato, si identificano cammini orientati e non orientati, chiamandoli entrambi semplicemente *cammini*.

Un cammino (orientato o non orientato) è detto *elementare* (path in inglese) se ogni nodo è toccato al più una volta.

Un grafo è detto connesso se dati due nodi esiste sempre un cammino non orientato che li collega, mentre è detto fortemente connesso se dati due nodi esiste sempre un cammino orientato che li collega. Un grafo non orientato è connesso se e solo se è fortemente connesso, dal momento che cammini orientati e non orientati sono identificati. Un grafo è fortemente connesso se e solo se la sua matrice di adiacenza è irriducibile per permutazioni (vd. [1, Theorem 3.2.1]).

Si dice componente connessa del nodo i il più grande sottografo connesso di G contenente i. Analogamente si definisce una componente fortemente connessa.

Nel corso di questa relazione, scriveremo $\mathbf{1} \in \mathbb{R}^n$ per riferirci al vettore composto da soli uno, $\mathbf{0} \in \mathbb{R}^n$ per riferirci al vettore nullo, $I \in \mathbb{R}^{n \times n}$ per riferirci alla matrice identità e $\mathbf{e}_k \in \mathbb{R}^n$ per riferirci alla k-esima colonna di I. Scriveremo \mathbf{a}_k per riferirci alla k-esima colonna di una matrice A e a_k per riferirci al k-esimo elemento di un vettore \mathbf{a} .

1.1 Il vettore di Katz e buona definizione

Ricordiamo un altro classico risultato della teoria dei grafi, facilmente dimostrabile per induzione.

Lemma 1. Sia A la matrice di adiacenza di un grafo G e sia $r \in \mathbb{N}$. Allora l'entrata (i, j)-esima di A^r rappresenta il numero di cammini di lunghezza r da i a j.

Osservazione 1. Dal Lemma 1 segue facilmente che l'i-esima coordinata del vettore $A^r\mathbf{1}$ rappresenta il numero di cammini di lunghezza r che partono da i e che terminano in un qualsiasi nodo.

Definizione 1. Se $\alpha \in (-1/\rho(A), 1/\rho(A))^1$, il vettore di Katz in α di A è definito come il vettore

$$\mathbf{x} := (I + \alpha A + \alpha^2 A^2 + \cdots) \mathbf{1} = (I - \alpha A)^{-1} \mathbf{1}.$$

Equivalentemente, \mathbf{x} è l'unica soluzione del sistema lineare $(I - \alpha A)\mathbf{x} = \mathbf{1}$.

Osservazione 2. Se $\alpha > 0$, il vettore di Katz induce un naturale ranking dei nodi di G, dove l'importanza di un nodo i è determinata dai cammini che hanno sorgente i: a un cammino di lunghezza r è associato un valore α^r , e sommando tutti questi valori si ottiene la coordinata di i nel vettore di Katz.

Nella teoria si vorrebbe che α^r decresca all'aumentare di r, ovverosia che i cammini più lunghi abbiano sempre meno importanza. Questo non è immediatamente ovvio, dal momento che $^1/_{\rho(A)}$ potrebbe essere maggiore di 1. La Proposizione 1 mostra che $\rho(A) > 1$ nella maggior parte dei casi considerati, garantendoci di star dando la giusta interpretazione alla costruzione del vettore di Katz.

 $^{^1}$ Il limite superiore $^1\!/\rho(A)$ è necessario affinché la serie converga a $(I-\alpha A)^{-1}.$

Definizione 2. Se G è un grafo non orientato, si definisce grado deg(i) del nodo i il numero di archi insistenti su i. Equivalentemente $deg(i) = \mathbf{1}^T A \mathbf{e}_i$.

Lemma 2 (Handshaking lemma). Se G è un grafo semplice non orientato, allora

$$\sum_{i \in V} \deg(i) = 2m.$$

Dimostrazione. Si tratta di una semplice verifica combinatoriale:

$$\sum_{i \in V} \deg(i) = \sum_{i \in V} \mathbf{1}^T A \mathbf{e}_i$$
$$= \mathbf{1}^T A \mathbf{1}$$
$$= 2m,$$

dove si è usato che non esistono lacci in G e che gli elementi non nulli di A sono tanti quanto il doppio degli archi in G.

Definizione 3. Se G è un grafo non orientato, si definisce il grado medio d_G di G come la media dei gradi dei nodi, ovverosia

$$d_G = \frac{\sum_{i \in G} \deg(i)}{n}.$$

Proposizione 1. Se un grafo semplice non orientato G ha almeno un nodo con grado almeno 2 e $A \in \mathbb{R}^{n \times n}$ è la sua matrice di adiacenza, allora $\rho(A) > 1$.

Dimostrazione. Sia C una componente connessa di G a cui appartiene almeno un nodo di grado almeno 2, e indichiamo con V(C) l'insieme dei nodi di C, con n_C il numero di nodi |V(C)| e con m_C il numero di archi di C. Sia \mathbf{e}_C il vettore indicatore dei membri di C, ovvero tale che

$$(e_C)_i = \begin{cases} 1 & \text{se } i \in V(C), \\ 0 & \text{altrimenti.} \end{cases}$$

Allora $\mathbf{e}_C^T \mathbf{e} = n_C$, il numero di nodi nella componente C, mentre vale che

$$\mathbf{e}_C^T A \mathbf{e}_C = \sum_{i \in C} \deg(C) = 2 \cdot m_C$$

dove m_C è il numero degli archi in C e l'ultima uguaglianza è data dal Lemma 2. Dal momento che C è connesso, allora C deve contenere almeno n_C-1 archi, ovverosia $m_C \geq n_C-1$. Se d_C è il grado medio di C, allora:

$$d_C = \frac{\mathbf{e}_C^T A \mathbf{e}_C}{\mathbf{e}_C^T \mathbf{e}_C} \ge \frac{2(n_C - 1)}{n_C} \ge \frac{4}{3},$$

dove nell'ultima disuguaglianza si è sfruttato che $n_C \geq 3$, dal momento che esiste almeno un nodo in C di grado 2.

Poiché A è una matrice simmetrica reale, $\rho(A)$ maggiora sicuramente d_C , che è il quoziente di Rayleigh per la matrice A e il vettore e_C (vd. [2, Theorem 4.4.2]), e pertanto $\rho(A) \geq \frac{4}{3} > 1$.

2 Grafo complementare e vettore di Katz

In questa sezione della relazione, presentiamo il concetto di grafo complementare, eventualmente senza lacci, e tramite i Teoremi 1 e 2, preceduti dai preziosi Lemmi 3 e 4, troviamo una corrispondenza che ci permette di calcolare il vettore di Katz sul grafo complementare, ottenendo lo stesso ranking che avremmo ottenuto calcolandolo sul grafo originale.

Definizione 4. Su un grafo (con eventualmente lacci) G = (V, E) si definisce il **grafo complementare** $G^c = (V, E^c)$ come il grafo tale per cui E^c è il complementare di E in $V \times V$.

Su un grafo senza lacci G = (V, E) si definisce il **grafo complementare** senza lacci come il grafo complementare di G a cui si tolgono i lacci.

Osservazione 3. La matrice di adiacenza di un grafo complementare si ottiene come una modifica di rango 1 della matrice di adiacenza di partenza (cambiata di segno), ovverosia, se A^C è la matrice di adiacenza del complementare e A è la matrice di adiacenza originale vale

$$A^C = \mathbf{e}\mathbf{e}^T - A.$$

La matrice di adiacenza di un grafo complementare senza lacci si ottiene invece come una modifica di rango 1 su A + I (cambiata di segno):

$$A^C = \mathbf{e}\mathbf{e}^T - A - I$$

Lemma 3. Sia $A \in \mathbb{C}^{n \times n}$ una matrice invertibile e siano \mathbf{u} e \mathbf{v} vettori in \mathbb{C}^n . Allora $\det(A + \mathbf{u}\mathbf{v}^T) = \det(A)(1 + \mathbf{v}^T A^{-1}\mathbf{u})$.

Dimostrazione. Dimostriamo innanzitutto il lemma nel caso in cui A = I.

Poiché $\mathbf{u}\mathbf{v}^T$ è una matrice di rango 1, $\mathbf{u}\mathbf{v}^T$ ha come autovalore 0 con almeno molteplicità n-1. L'unico altro autovalore, che è eventualmente 0, è allora $\mathrm{tr}(\mathbf{u}\mathbf{v}^T)$, ovverosia $\mathbf{v}^T\mathbf{u}$. Pertanto il polinomio caratteristico di $\mathbf{u}\mathbf{v}^T$ risulta essere

$$p_{\mathbf{u}\mathbf{v}^T}(t) = \det(\mathbf{u}\mathbf{v}^T - tI) = (-1)^n t^{n-1} (t - \mathbf{v}^T \mathbf{u}).$$

Dunque, $\det(I + \mathbf{u}\mathbf{v}^T) = \det(\mathbf{u}\mathbf{v}^T - (-1)\cdot I) = 1 + \mathbf{v}^T\mathbf{u}$, dimostrando il caso in cui A = I.

Nel caso generale, considerato che $A + \mathbf{u}\mathbf{v}^T = A(I + A^{-1}\mathbf{u}\mathbf{v}^T)$, applicando l'identità di Binet si ottiene

$$\det(A + \mathbf{u}\mathbf{v}^T) = \det(A)\det(I + A^{-1}\mathbf{u}\mathbf{v}^T) = \det(A)(1 + \mathbf{v}^T A^{-1}\mathbf{u}),$$

completando la dimostrazione.

Lemma 4 (Sherman-Morrison). Se $A \in \mathbb{C}^{n \times n}$ è invertibile e \mathbf{u} e \mathbf{v} sono vettori in \mathbb{C}^n , allora $A + \mathbf{u}\mathbf{v}^T$ è invertibile se e solo se $1 + \mathbf{v}^T A^{-1}\mathbf{u}$ è diverso da 0, e in tal caso vale che

$$(A + \mathbf{u}\mathbf{v}^T)^{-1} = A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{v}^TA^{-1}}{1 + \mathbf{v}^TA^{-1}\mathbf{u}}.$$

Dimostrazione. La prima parte del lemma è un corollario del Lemma 3. La seconda parte è una semplice verifica diretta:

$$\begin{split} (A + \mathbf{u}\mathbf{v}^T) \left(A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{v}^T A^{-1}}{1 + \mathbf{v}^T A^{-1}\mathbf{u}} \right) &= I + \mathbf{u}\mathbf{v}^T A^{-1} - \frac{\mathbf{u}\mathbf{v}^T A^{-1} + \mathbf{u}\mathbf{v}^T A^{-1}\mathbf{u}\mathbf{v}^T A^{-1}}{1 + \mathbf{v}^T A^{-1}\mathbf{u}} \\ &= I + \mathbf{u}\mathbf{v}^T A^{-1} - \frac{(1 + \mathbf{v}^T A^{-1}\mathbf{u})\mathbf{u}\mathbf{v}^T A^{-1}}{1 + \mathbf{v}^T A^{-1}\mathbf{u}} \\ &= I + \mathbf{u}\mathbf{v}^T A^{-1} - \mathbf{u}\mathbf{v}^T A^{-1} \\ &= I. \end{split}$$

Teorema 1. Sia G un grafo. Se $\alpha \in (0, 1/\rho(A))$, allora il vettore di Katz di parametro $-\alpha$ calcolato sul complementare (con lacci) G^C induce lo stesso ranking del vettore di Katz di parametro α calcolato su G.

Dimostrazione. Innanzitutto, osserviamo che

$$I + \alpha A^C = (I - \alpha A) + \alpha \mathbf{e} \mathbf{e}^T.$$

Pertanto, per il Lemma 3, $I + \alpha A^C$ è invertibile se e solo se

$$1 + \alpha \mathbf{e}^T (I - \alpha A)^{-1} \mathbf{e} \neq 0.$$

Dal momento che $\alpha>0$, il termine $\alpha {\bf e}^T(I-\alpha A)^{-1}{\bf e}$ è certamente positivo, e dunque $I+\alpha A^C$ è invertibile.

Sia A la matrice di adiacenza di G. Allora la matrice di adiacenza A^C di G^C è tale per cui $A^C = \mathbf{e}\mathbf{e}^T - A$. Si osserva che, per il Lemma 4, vale che

$$(I - \alpha A)^{-1} = (I - \alpha (\mathbf{e}\mathbf{e}^{T} - A^{C}))^{-1}$$

$$= (I + \alpha A^{C} - \alpha \mathbf{e}\mathbf{e}^{T})^{-1}$$

$$= (I + \alpha A^{C})^{-1} - \frac{(I + \alpha A^{C})^{-1}(-\alpha \mathbf{e}\mathbf{e}^{T})(I + \alpha A^{C})^{-1}}{1 + \mathbf{e}^{T}(I + \alpha A^{C})^{-1}(-\alpha \mathbf{e})}$$

$$= (I + \alpha A^{C})^{-1} + \alpha \frac{(I + \alpha A^{C})^{-1}\mathbf{e}\mathbf{e}^{T}(I + \alpha A^{C})^{-1}\mathbf{e}}{1 - \alpha \mathbf{e}^{T}(I + \alpha A^{C})^{-1}\mathbf{e}}.$$
(1)

Sia γ definito come

$$\gamma = \mathbf{e}^T (I + \alpha A^C)^{-1} \mathbf{e}.$$

Allora, grazie all'eq. (1), il vettore di Katz di A si riscrive come

$$(I - \alpha A)^{-1} \mathbf{e} = \frac{1}{1 - \alpha \gamma} (I + \alpha A^C)^{-1} \mathbf{e}.$$
 (2)

Dall'eq. (2) si ricava inoltre che

$$(I + \alpha A^C)(I - \alpha A)^{-1}\mathbf{e} = \frac{1}{1 - \alpha \gamma} \mathbf{e}.$$
 (3)

Poiché il termine $(I + \alpha A^C)(I - \alpha A)^{-1}$ e dell'eq. (3) è non negativo, allora anche il termine a destra è non negativo, da cui $1 - \alpha \gamma > 0$, e dunque $\alpha \gamma < 1$.

Pertanto $(I + \alpha A^C)^{-1}$ **e**, che è proporzionale a $(I - \alpha A)^{-1}$ **e** per un fattore positivo per l'eq. (2), è un vettore non negativo ed induce correttamente un ranking dei nodi equivalente a quello generato dal vettore di Katz di A.

Teorema 2. Sia G un grafo. Se $\alpha \in (0, 1/\rho(A))$, allora il vettore di Katz di parametro $-\frac{\alpha}{1+\alpha}$ calcolato sul complementare senza lacci G^C induce lo stesso ranking del vettore di Katz di parametro α calcolato su G.

Dimostrazione. La dimostrazione segue pressoché gli stessi passaggi della dimostrazione del Teorema 1 definendo $A^C = \mathbf{e}\mathbf{e}^T - (A+I)$ al posto di $A^C = \mathbf{e}\mathbf{e}^T - A$.

3 Sperimentazione numerica

Prima di implementare operativamente il calcolo del vettore di Katz mediante il grafo complementare, si è innanzitutto generato due grafi densi con il seguente codice:

```
n = 4000;
density = 0.8;

% si assicura la densita' di A e B
A = double(rand(n) < density);
B = double(rand(n) < density);

% forza la simmetria ed elimina i loop su A
A = triu(A, 1);
A = A + A';

% forza la simmetria, ma non elimina i loop su B
D = diag(diag(B));
B = triu(B, 1);
B = B + B' + D;</pre>
```

Riferimenti bibliografici

- [1] Richard A Brualdi, Herbert John Ryser et al. Combinatorial matrix theory. Vol. 39. Springer, 1991.
- [2] Shmuel Friedland. Matrices: algebra, analysis and applications. World Scientific, 2015.
- [3] Vanni Noferini e Ryan Wood. «Efficient computation of Katz centrality for very dense networks via negative parameter Katz». In: Journal of Complex Networks 12.5 (set. 2024), cnae036. ISSN: 2051-1329. DOI: 10.1093/comnet/cnae036. eprint: https://academic.oup.com/comnet/article-pdf/12/5/cnae036/59073581/cnae036.pdf. URL: https://doi.org/10.1093/comnet/cnae036.