第四次作业

- 1. 请描述使用高斯混合模型进行数据聚类的过程。
- 2. 对于数据: $x_1 = (4,5)^T$, $x_2 = (1,4)^T$, $x_3 = (0,1)^T$, $x_4 = (5,0)^T$, $x_5 = (4,1)^T$, $x_6 = (0,6)^T$ 现有以下三种聚类划分:
- (1) $\{x_1, x_2, x_6\}, \{x_3, x_4, x_5\}$
- (2) $\{x_1, x_4, x_5\}, \{x_2, x_3, x_6\}$
- (3) { x_1, x_2, x_3, x_6 }, { x_4, x_5 }

假定我们聚类的准则是最小平方和误差,请判断上述三个划分中哪个更好?给出计算过程。

- 3. 请阐述 K 均值聚类和模糊 K 均值聚类的异同。
- 4. 证明:在 K 均值聚类中,在某次迭代的时候,将属于第 i 类的样本点移到第 j 类之后,属于第 i 类的样本点对应的误差平方和将变为:

$$\boldsymbol{J}_{i}^{*} = \boldsymbol{J}_{i} - \frac{n_{i} \left\| \hat{\mathbf{x}} - \mathbf{m}_{i} \right\|^{2}}{n_{i} - 1}$$

其中 J_i 为移动前属于第 i 类样本的误差平方和

5. 已知正样本点 x_1 =(1,1) T , x_2 =(1,0) T , x_3 =(2.5,3.3) T , 负样本点 x_4 =(3,3) T , x_5 =(3,4) T , x_6 =(3.5,3) T , 它们的分布如下图所示

- (1) 请写出线性支持向量机需要求解的原问题和对偶问题
- (2) 当 C 取值很大(比如 C->+∞)时,定性画出会得到的决策面,并解释原因
- (3) 当 C 取值很小(比如 C->0)时,定性画出会得到的决策面,并解释原因
- 6. 结合图例,阐述线性可分支持向量机中的支持向量的概念。
- 7. 结合图例,阐述线性可分支持向量机中的分类间隔的涵义。
- 8. 请描述使用交叉验证对线性支持向量机的参数 C 进行设置的过程。
- 9. 将支持向量机对应的优化问题进行对偶化之后,有什么优势?

编程题:

- 1、对如下的 30 个数据进行 K-均值聚类,聚类个数设置为 K=4。
- (1)指出所使用的初始聚类中心,并报告在此条件下得到的最终聚类结果以及需要的迭代次数,对应的误差平方和。
- (2) 重新选择3组不同的初始聚类中心,给出对应的聚类结果和误差平方和。

编号	密度	含糖率	编号	密度	含糖率	编号	密度	含糖率
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346
3	0.634	0.264	13	0.639	0.161	23	0.483	0.312
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445
10	0.243	0.267	20	0.282	0.257	30	0.446	0.459

^{2、}对上述数据集进行模糊 K-均值聚类,聚类个数设置为 K=4。指出使用的初始聚类中心、初始隶属度,报告在此初始化条件下的聚类结果(即:样本属于不同聚类的隶属度)以及需要的迭代次数。