Rock Lichen data from Sunset Crater

M.K. Lau

July 9, 2021

Data Summary

- This is an analysis of the effect of Pinyon Pine tree traits on the saxicole (lichen and moss) community on rocks under the canopy of the trees.
- Trees were sampled in a pairwise design in which pairs were comprised of one tree that is susceptible to the herbivory of a stem boring moth (*Diorictria abietella*) and an adjacent tree that is resistant to the moth.
- As tree resistance to the moth is genetically based, pairwise sampling was conducted in order to isolate this genetic effect.
- Some trees that were sampled were dead, these trees were removed from the analysis.
- Plant data were observed by R. Michalet
 - Vegetation.xlsx
 - Light penetration.xls
 - light_&_litter(1).xls

Main Results

- Rock epiphyte communities were adequately sampled, based on species accumulation curves, with moth resistant trees accumulating slightly more lichen species.
- Several tree variables, including light availability, leaf litter abundance and rock abundance, were impacted by moth susceptibility, creating strong differences in sub-canopy conditions.
- Saxicole community abundance, richness, diversity, composition were significantly, generally negatively, affected by moth herbivory.
- Correlation analysis supported an indirect link between genetically based moth susceptibility and
 impacts on lichen communities via decreasing rock (i.e. habitat) availability through increased leaf
 abscission and accumulation on rocks under trees.

Analysis and Results

Analyses were conducted in the \mathbf{R} statistical programming language. The following section loads dependencies and custom functions used in the analysis.

Dependencies

Load Data

The following are variable descriptions (Variable, Type, Range, Definition):

- Moth,categorical,0 or 1, Was the tree susceptible (0) or resistant (1) to moth attack
- Live/Dead,categorical,0 or 1, Was the tree dead (0) or alive (1)
- Litter %,continuous,0 to 100,Percent cover inside quadrat
- Rocks > 3cm %, continuous, 0 to 100, Percent cover of rocks > 3cm? inside quadrat
- Rocks < 3 cm %,continuous,0 to 100,Percent cover of rocks < 3 cm? inside quadrat
- Shrubs %,continuous,0 to 100,Percent cover of shrubs inside quadrat
- Grass %,continuous,0 to 100,Percent cover of grass inside quadrat
- Branches %,continuous,0 to 100,Percent cover of branches on ground inside quadrat
- Distance, continuous, 0 to 100, "Distance from main trunk, converted to percent of crown radius at that azimuth"
- Azimuth, continuous, 0 to 360, Compass direction from main trunk
- Slope,continuous,0 to 90,Topographical steepness
- Aspect, continuous, 0 to 360, Compass direction of slope
- Light, continuous, Amount of light available to epiliths

```
## Data are in ../data/scrl
1.dat <- read.csv("./data/spp_env_combined.csv")

## Fix species names
colnames(1.dat)[colnames(1.dat) == "Acasup"] <- "Acaame"

## Summary of data
summary(1.dat)

## remove dead trees
1.dat <- 1.dat[1.dat[, "Live.Dead"] != 0, ]

## Lichen species list
spp.1 <- c("Acacon", "Acaame", "Acaobp", "Sterile.sp", "Brown.cr",
"Lobalp", "Canros", "Calare", "Phydub", "Rhichr", "Xanlin", "Xanpli",
"Xanele", "GrBr.cr", "Gray.cr")
spp.moss <- c("Synrur", "Cerpur.Bryarg")

## Create a community matrix
com <- 1.dat[, colnames(1.dat) %in% c(spp.1, spp.moss)]</pre>
```

Saxicole communities were sufficiently sampled

```
spa.all <- specaccum(com, method = "exact")
spa.res <- specaccum(com[l.dat[, "Moth"] == 1, ], method = "exact")
spa.sus <- specaccum(com[l.dat[, "Moth"] == 0, ], method = "exact")

plot(spa.all,
    ylim = c(0, 20),
    xlab = "Cumulative Trees Sampled",
    ylab = "Species Observed",
    col = "grey", ci.col = 'lightgrey', ci.type = "poly", ci.lty = 0)

plot(spa.res, ci.col = "black", ci.type = "bar", lty = 1, add = TRUE, ci.lty = 1)
plot(spa.sus, ci.col = "black", ci.type = "bar", lty = 3, add = TRUE, ci.lty = 3)
legend("bottomright",
    legend = c("All", "Resistant", "Susceptible"),
    lty = c(1, 1, 3), lwd = c(5, 2, 2), col = c("lightgrey", "black", "black"))</pre>
```



```
pdf("./results/scrl_spp-accum.pdf", width = 5, height = 5)
plot(spa.all,
    ylim = c(0, 20),
    xlab = "Cumulative Trees Sampled",
    ylab = "Species Observed",
    col = "grey", ci.col = 'lightgrey', ci.type = "poly", ci.lty = 0)
plot(spa.res, ci.col = "black", ci.type = "bar", lty = 1, add = TRUE, ci.lty = 1)
plot(spa.sus, ci.col = "black", ci.type = "bar", lty = 3, add = TRUE, ci.lty = 3)
legend("bottomright",
    legend = c("All", "Resistant", "Susceptible"),
    lty = c(1, 1, 3), lwd = c(5, 2, 2), col = c("lightgrey", "black", "black"))
dev.off()

## pdf
## pdf
## 2
```

Moth trees have different microenvironments

```
env.test.1 <- apply(env.dif, 2, t.test)
env.test.1 <- lapply(env.test.1, unlist)
env.test.tab <- do.call(rbind, env.test.1)
env.test.tab <- env.test.tab[, c(1, 2, 3, 6, 4, 5)]
env.test.tab <- apply(env.test.tab, 2, as.numeric)
rownames(env.test.tab) <- names(env.test.1)
colnames(env.test.tab) <- c("t", "df", "p-value", "Mean Difference", "Lower CI 95%", "Upper CI 95%")
kable(env.test.tab, digits = 4)</pre>
```

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Litter	2.8665	29	0.0077	15.0700	4.3178	25.8222
Big.rocks	-2.4617	29	0.0200	-9.6837	-17.7289	-1.6384
Small.rocks	-2.0792	29	0.0466	-4.9750	-9.8688	-0.0812
Shrubs	-1.7605	29	0.0889	-0.5147	-1.1126	0.0832
Grass	-1.0000	29	0.3256	-0.0493	-0.1502	0.0516
Branches	1.0000	29	0.3256	0.1420	-0.1484	0.4324
LightN	-8.0191	29	0.0000	-15.9767	-20.0514	-11.9019
LightS	-7.5187	29	0.0000	-14.2900	-18.1772	-10.4028
Lightaverage	-9.2728	29	0.0000	-15.1333	-18.4712	-11.7955
total.rocks	-2.8178	29	0.0086	-14.6587	-25.2983	-4.0190

Moth trees have different lichen communities

	Susceptible Mean	Susceptible SE	Resistant Mean	Resistant SE
Abundance	1.210	0.351	2.754	0.567
Richness	3.500	0.542	6.033	0.662
Diversity (Shannon)	0.707	0.119	1.144	0.125

kable(tt.arh, digits = 3)

statistic.t	parameter.df	p.value	conf.int1	conf.int2	estimate.mean of x
-2.249	29	0.032	-2.948	-0.140	-1.544
-2.955 -2.447	29 29	$0.006 \\ 0.021$	-4.287 -0.802	-0.780 -0.072	-2.533 -0.437

Composition is different (PERMANOVA, in text and supplement)

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	0.8329281	0.0389768	2.352343	0.023
Residual	58	20.5368939	0.9610232	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

kable(ptab.moth.rel)

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	0.8791695	0.0405034	2.448363	0.021
Residual	58	20.8269063	0.9594966	NA	NA
Total	59	21.7060758	1.0000000	NA	NA

three main species were reduced by moths (FDR paired t-tests, in text + supplement)

```
ind.spp <- apply(com, 2, function(x, p) t.test(tapply(x, p, diff)), p = 1.dat[, "Tree.pairs"])
isp <- apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric)

## Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
## introduced by coercion

## Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
## introduced by coercion

## Warning in apply(do.call(rbind, lapply(ind.spp, unlist)), 2, as.numeric): NAs
## introduced by coercion

rownames(isp) <- names(ind.spp)
isp[, "p.value"] <- p.adjust(isp[, "p.value"], method = "fdr")
isp.all <- isp[, !(apply(isp, 2, function(x) all(is.na(x))))]
isp <- isp[order(isp[, "p.value"]), ]</pre>
```

isp.all <- isp.all[, c(1, 2, 3, 6, 4, 5)]					
<pre>colnames(isp.all) <- c("t", "df", "p-value",</pre>	"Mean Difference",	"Lower CI	95%",	"Upper C	CI 95%")
<pre>kable(isp.all, digits = 4)</pre>					

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Acacon	-3.3776	29	0.0159	-0.0447	-0.0717	-0.0176
Acaame	-3.2421	29	0.0159	-0.1607	-0.2620	-0.0593
Acaobp	-1.0747	29	0.4341	-0.2860	-0.8303	0.2583
Sterile.sp	-1.0000	29	0.4341	-0.0020	-0.0061	0.0021
Brown.cr	NaN	29	NaN	0.0000	NaN	NaN
Lobalp	-2.0414	29	0.2016	-0.0047	-0.0093	0.0000
Canros	-3.5819	29	0.0159	-0.3837	-0.6027	-0.1646
Calare	-1.6076	29	0.2563	-0.0307	-0.0697	0.0083
Phydub	-1.9226	29	0.2061	-0.1053	-0.2174	0.0067
Rhichr	-1.5803	29	0.2563	-0.2310	-0.5300	0.0680
Xanlin	-0.6170	29	0.6672	-0.2267	-0.9781	0.5247
Xanpli	-0.2598	29	0.8500	-0.0277	-0.2455	0.1901
Xanele	-1.5662	29	0.2563	-0.0473	-0.1091	0.0145
GrBr.cr	1.0000	29	0.4341	0.0013	-0.0014	0.0041
Gray.cr	0.1093	29	0.9137	0.0003	-0.0059	0.0066
Synrur	0.3628	29	0.8221	0.0220	-0.1020	0.1460
Cerpur.Bryarg	-1.2357	29	0.4027	-0.0173	-0.0460	0.0114

```
write.csv(round(isp.all, 5), file = "results/scrl_isp_table.csv")
```

Calculate the average abundances of the indicators

```
isp.names <- as.character(na.omit(rownames(isp[isp[, "p.value"] < 0.05, ])))</pre>
isp.com <- com[,colnames(com) %in% isp.names]</pre>
isp.dif <- apply(isp.com, 2, function(x,y) tapply(x, y, diff), y = 1.dat[, "Tree.pairs"])
Create a multi-bar plot figure for the community.
isp.dat <- melt(isp.dif)</pre>
colnames(isp.dat) <- c("Tree.pairs", "Species", "diff")</pre>
isp.mu <- tapply(isp.dat[, "diff"], isp.dat[, "Species"], mean)</pre>
isp.se <- tapply(isp.dat[, "diff"], isp.dat[, "Species"], se)</pre>
ard.dif <- cbind(tapply(abun, l.dat[, "Tree.pairs"], diff),</pre>
                  tapply(rich, l.dat[, "Tree.pairs"], diff),
                  tapply(shan, 1.dat[, "Tree.pairs"], diff))
colnames(ard.dif) <- c("Abundance", "Richness", "Diversity")</pre>
ard.dif <- apply(ard.dif, 2, function(x) x / max(abs(x)))</pre>
ard.dat <- melt(ard.dif)</pre>
colnames(ard.dat) <- c("Tree.pairs", "Stat", "diff")</pre>
ard.mu <- tapply(ard.dat[, "diff"], ard.dat[, "Stat"], mean)</pre>
ard.se <- tapply(ard.dat[, "diff"], ard.dat[, "Stat"], se)</pre>
pdf(file = "./results/plot_isp_ard_lichen.pdf", width = 9, height = 5)
par(mfrow = c(1,2))
bp.out \leftarrow barplot(ard.mu, col = "darkgrey", ylim = c(-1.0, 0),
                   ylab = "Relativized Difference (S - R)", border = "NA")
segments(bp.out[, 1], ard.mu + ard.se,
         bp.out[, 1], ard.mu - ard.se,
         lwd = 1.5)
bp.out \leftarrow barplot(isp.mu, col = "darkgrey", ylim = c(-0.5, 0),
                   ylab = "Difference (S - R)", border = "NA",
            axisnames = TRUE,
            names.arg = sapply(names(isp.mu),
                 function(x)
                                      paste(c(substr(x, 1, 1),
                                               substr(x, 4, 4)), collapse = "")))
segments(bp.out[, 1], isp.mu + isp.se,
         bp.out[, 1], isp.mu - isp.se,
         lwd = 1.5)
dev.off()
## pdf
##
Create a plot of the two most indicative species
pdf(file = "./results/scrl_complot.pdf", width = 7, height = 7)
plot(com[, c("Acaame", "Canros")], pch = 1.dat[, "Moth"] + 1, cex = 3, col = 1.dat[, "Moth"] + 1)
legend("topleft", title = "Tree Type", legend = c("Resistant", "Susceptible"), pch = c(2, 1), col = c(2
dev.off()
## pdf
Create plot with indicator taxa
pdf(file = "./results/scrl_pdif.pdf", width = 7, height = 7)
plot(melt(isp.dif)[-1], xlab = "Species", ylab = "Abundance Reduction")
```

dev.off()

```
## pdf
## 2
```

Litter covering rocks was the main driver

Although light did significantly explain variation in the lichen community, this was not significant once the variation in litter was controlled for.

There was high correlation among environmental variables.

heatmap(abs(round(cor(env.dif), 3)))

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Litter	1	1.0035484	0.0469610	2.972456	0.007
Lightaverage	1	0.4114619	0.0192543	1.218728	0.243
Residual	57	19.2441042	0.9005271	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Lightaverage	1	0.4114619	0.0192543	1.218728	0.243
Litter	1	1.0035484	0.0469610	2.972456	0.007
Residual	57	19.2441042	0.9005271	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Litter:Lightaverage Residual Total	1 56 59	18.6419916	0.0.0	1.808729 NA NA	0.077 NA NA

	Df	SumOfSqs	R2	F	Pr(>F)
total.rocks	1	1.664876	0.0779078	4.900435	0.002
Residual	58	19.704946	0.9220922	NA	NA
Total	59	21.369822	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Big.rocks	1	2.428473	0.1136403	7.436188	0.001
Residual	58	18.941349	0.8863597	NA	NA
Total	59	21.369822	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Small.rocks	1	0.2204425	0.0103156	0.604541	0.782
Residual	58	21.1493794	0.9896844	NA	NA
Total	59	21.3698219	1.0000000	NA	NA

	Df	SumOfSqs	R2	F	Pr(>F)
Litter	1	1.714256	0.0802185	5.058457	0.002
Residual	58	19.655566	0.9197815	NA	NA
Total	59	21.369822	1.0000000	NA	NA

pdf ## 2

```
xtable(summary(lm(Litter.. ~ Light...average, data = data.frame(env.dif))))
```

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Fri Jul 9 17:27:31 2021

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	6.7149	10.4959	0.64	0.5275
Lightaverage	-0.5521	0.5998	-0.92	0.3652

```
xtable((lm(total.rocks ~ Light...average, data = data.frame(env.dif))))
```

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Fri Jul 9 17:27:31 2021

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-5.1978	10.3373	-0.50	0.6190
Lightaverage	0.6252	0.5907	1.06	0.2989

```
par(mfrow = c(1,3))
plot(density(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
    main = "", xlab = "Litter Difference (S - R)")
abline(v = mean(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff)),
    lwd = 0.5)
plot(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."],
     xlab = "Litter Difference (S - R)", ylab = "Rock Cover (size >3 cm) Difference (S - R)",
     pch = 19, cex = 1.5
abline(lm(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."]))
plot(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff),
    tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff),
    xlab = "Litter Difference (S - R)", ylab = "Light Difference (S - R)",
    pch = 19, cex = 1.5)
  0.012
                                     20
  0.010
                                  Rock Cover (size >3 cm) Difference (S - R)
  0.008
                                     0
                                                                    Light Difference (S -
                                                                       -10
                                     -20
  0.004
                                                                       -20
  0.002
                                     4
                                                                       90
  0.000
       -50
                     50
                           100
                                         -20
                                                   20
                                                           60
                                                                           -20
                                                                                     20
            Litter Difference (S - R)
                                              Litter Difference (S - R)
                                                                                Litter Difference (S - R)
pdf("./results/scrl_litter_effects.pdf", width = 10, height = 5)
par(mfrow = c(1,3))
plot(density(tapply(l.dat[, "Litter.."], l.dat[, "Tree.pairs"], diff)),
    main = "", xlab = "Litter Difference (S - R)")
abline(v = mean(tapply(l.dat[, "Litter.."], l.dat[, "Tree.pairs"], diff)),
    1wd = 0.5
plot(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."],
     xlab = "Litter Difference (S - R)", ylab = "Rock Cover (size >3 cm) Difference (S - R)",
     pch = 19, cex = 1.5
abline(lm(env.dif[, "Big.rocks.."] ~ env.dif[, "Litter.."]))
plot(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff),
    tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff),
    xlab = "Litter Difference (S - R)", ylab = "Light Difference (S - R)",
    pch = 19, cex = 1.5
dev.off()
## pdf
nmds.out <- nmds(vegdist(com.ds), 2, 2)
ord <- nmds.min(nmds.out, dims = 2)</pre>
```

Minimum stress for given dimensionality: 0.2169355

```
## r^2 for minimum stress configuration: 0.6416469

ord.pch <- c("R", "S")[(l.dat[, "Moth"] + 1)]
plot(X2~ X1, data = ord, pch = ord.pch)</pre>
```


Litter not light was correlated with large rocks (dist cor, in text). Thus, higher amounts of litter under trees was not related to the penetration of light under the tree canopy.

##

##

cor

sample estimates:

```
##
## Pearson's product-moment correlation
##
## data: tapply(l.dat[, "Big.rocks.."], l.dat[, "Tree.pairs"], diff) and tapply(l.dat[, "Litter.."], l
## t = -11.106, df = 28, p-value = 9.054e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9530598 -0.8039735
## sample estimates:
```

```
## Pearson's product-moment correlation
##

## data: tapply(l.dat[, "Big.rocks.."], l.dat[, "Tree.pairs"], diff) and tapply(l.dat[, "Light...avera,
## t = 0.71624, df = 28, p-value = 0.4798
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2376184  0.4716125
```

```
##
         cor
## 0.1341335
cor.test(tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff),
         tapply(l.dat[, "Light...average"], l.dat[, "Tree.pairs"], diff))
##
##
   Pearson's product-moment correlation
##
## data: tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff) and tapply(1.dat[, "Light...average"
## t = -0.92053, df = 28, p-value = 0.3652
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
  -0.5007401 0.2013096
## sample estimates:
##
          cor
## -0.1713898
cor.test(tapply(1.dat[, "Small.rocks.."], 1.dat[, "Tree.pairs"], diff),
         tapply(1.dat[, "Litter.."], 1.dat[, "Tree.pairs"], diff))
##
##
   Pearson's product-moment correlation
##
## data: tapply(1.dat[, "Small.rocks.."], 1.dat[, "Tree.pairs"], diff) and tapply(1.dat[, "Litter.."],
## t = -4.994, df = 28, p-value = 2.819e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
   -0.8391386 -0.4332285
## sample estimates:
          cor
## -0.6863699
```

Vegetation Analysis

Results Summary

- Both vegetation and light from the plant dataset respond to moth susceptibility (see t-tests below)
- Plant cover, richness and Shannon's diversity respond to moth susceptibility (see t-tests below)
- Plant community composition using Bray-Curtis dissimiliarity and a PERMANOVA model that accounts for tree pairs is significantly affected by moth susceptibility (Tables 11-12)
- Using the light, littler and rock cover from the saxicole dataset, plant community composition is significantly correlated with light and litter but not rock cover. Light has a strong effect but the effect of litter is weak and is non-significant after controlling for the effect of light, suggesting that the effect of litter is due to the covariance between light and litter (Tables 13-16)
- Two main species of plant were indicators of moth susceptibility: Apache plume and Asteraceae ovales. Both showed reduced cover under moth susceptible trees (Table 17)
- Saxicole and plant communities were not multivariately correlated based on Mantel Tests on both un-relativized and species max relativized cover (see Mantel Test below)

From Richard Michalet

First sheet is the vegetation matrix with all relevés.

Second sheet are values of vegetation cover, rock cover and species richness in all replicates of all treatments + mean values of treatments and corresponding graphs.

From what I remember the methods were simple, quadrats of 1square meter in four treatments with a full factorial design, exposure (north and south of the tree), mortality (alive vs dead shrubs), tree susceptibility (resistant vs susceptible) and tree presence (below the canopy or outside the canopy in open conditions at the close vicinity of the trees).

You can see that without stats results are obvious: strong effect of tree susceptibility only below the tree and in both exposure for both alive and dead trees.

```
veg <- readxl::read_xlsx("data/Vegetation.xlsx")
veg <- as.data.frame(veg)
l.raw <- read.csv("data/rawdata Sunset Crater for Matt.csv")
l.raw <- l.raw[!(grepl("cover", l.raw[,1])),]
le.raw <- read.csv("data/rawdata Sunset Crater for Matt_env.csv")
le.raw <- le.raw[!(grepl("cover", le.raw[,1])),]
le.raw <- na.omit(le.raw)</pre>
```

Observation checks

Do the saxicole community and environment data match?

```
## [1] TRUE
```

Are all of the trees in the saxicole dataset represented in the veg dataset?

[1] TRUE

Coalesce datasets

```
1.d <- data.frame(le.raw[, -2:-3], l.raw[, -1:-3])</pre>
1.d <- split(1.d, 1.d[, "Tree.ID"])</pre>
1.d <- 1.d[names(1.d) %in% le.raw[, "Tree.ID"]]</pre>
1.d \leftarrow lapply(1.d, function(x) x[, -1])
1.d <- lapply(1.d, apply, 2, mean)</pre>
1.df <- do.call(rbind, 1.d)</pre>
trt <- strsplit(rownames(1.df), "")</pre>
moth.alive <- lapply(trt, function(x) x[x %in% c(letters, LETTERS)][1:2])
moth.alive <- do.call(rbind, moth.alive)</pre>
tree <- lapply(trt, function(x) x[x %in% 0:9])</pre>
tree <- as.numeric(unlist(lapply(tree, paste, collapse = "")))</pre>
1.df <- data.frame(Tree.pairs = tree,</pre>
                     Moth = moth.alive[, 1],
                     Live.Dead = moth.alive[, 2],
                     1.df)
1.df <- 1.df[1.df[, "Live.Dead"] == "A", ]</pre>
1.df[, "Moth"] <- as.character(1.df[, "Moth"])</pre>
1.df[1.df[, "Moth"] == "R", "Moth"] <- 1</pre>
1.df[1.df[, "Moth"] == "S", "Moth"] <- 0</pre>
moth.tree <- paste(l.df[, "Moth"], l.df[, "Tree.pairs"], sep = "_")</pre>
1.df <- 1.df[match(rownames(1.dat), moth.tree), ]</pre>
```

Check that 1.dat and 1.df are correctly coalesced:

Check that the values of the variables match, excluding light:

The following vector should work to match-up the saxicoles with the veg data:

Checking the vegetation and rock cover correlations. We find that vegetation cover is is significantly, but not strongly correlated with rock cover. Large rock cover measurements in the saxicole dataset is strongly correlated with total rock cover in the plant dataset.

Both vegetation and rock cover are strongly affected by moth susceptibility.

```
cor.test(v.dat[, "Vegetation.cover"], v.dat[, "Rock.cover"], alt = "greater")
##
   Pearson's product-moment correlation
##
##
## data: v.dat[, "Vegetation.cover"] and v.dat[, "Rock.cover"]
## t = 1.8835, df = 58, p-value = 0.03233
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.0269872 1.0000000
## sample estimates:
##
         cor
## 0.2400809
cor.test(1.dat[, "Big.rocks.."], v.dat[, "Rock.cover"], alt = "greater")
##
##
   Pearson's product-moment correlation
## data: l.dat[, "Big.rocks.."] and v.dat[, "Rock.cover"]
## t = 9.5342, df = 58, p-value = 8.816e-14
## alternative hypothesis: true correlation is greater than 0
## 95 percent confidence interval:
## 0.6809688 1.0000000
## sample estimates:
##
         cor
## 0.7813334
t.test(tapply(v.dat[, "Rock.cover"], v.dat[, "Tree.Pair"], diff))
##
##
   One Sample t-test
## data: tapply(v.dat[, "Rock.cover"], v.dat[, "Tree.Pair"], diff)
## t = -3.3582, df = 29, p-value = 0.002208
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -27.621617 -6.711716
## sample estimates:
## mean of x
## -17.16667
t.test(tapply(v.dat[, "Vegetation.cover"], v.dat[, "Tree.Pair"], diff))
##
##
   One Sample t-test
##
## data: tapply(v.dat[, "Vegetation.cover"], v.dat[, "Tree.Pair"], diff)
```

```
## t = -7.2026, df = 29, p-value = 6.269e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -28.67505 -15.99162
## sample estimates:
## mean of x
## -22.33333
Both plant richness and Shannon's Diversity index were significantly affected by moth susceptibility.
v.abun <- v.dat[, "Vegetation.cover"]</pre>
v.rich <- apply(v.com, 1, function(x) sum(sign(x)))</pre>
v.shan <- apply(v.com, 1, diversity)</pre>
t.test(tapply(v.rich, l.dat[, "Tree.pairs"], diff))
##
## One Sample t-test
##
## data: tapply(v.rich, l.dat[, "Tree.pairs"], diff)
## t = -7.477, df = 29, p-value = 3.062e-08
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -1.6555988 -0.9444012
## sample estimates:
## mean of x
        -1.3
t.test(tapply(v.shan, l.dat[, "Tree.pairs"], diff))
##
## One Sample t-test
## data: tapply(v.shan, l.dat[, "Tree.pairs"], diff)
## t = -4.2192, df = 29, p-value = 0.00022
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.4386895 -0.1522394
## sample estimates:
## mean of x
## -0.2954645
v.ard <- rbind(tapply(v.dat[, "Vegetation.cover"], l.dat[, "Moth"], mean),</pre>
                tapply(rich, l.dat[, "Moth"], mean),
                tapply(shan, 1.dat[, "Moth"], mean))
v.ard <- rbind(tapply(v.dat[, "Vegetation.cover"], l.dat[, "Moth"], se),</pre>
                tapply(rich, l.dat[, "Moth"], se),
                tapply(shan, l.dat[, "Moth"], se))
v.ard.tab <- cbind(v.ard[, "0"], v.ard[, "0"],</pre>
                    v.ard[, "1"], v.ard[, "1"])
colnames(v.ard.tab) <- c("Susceptible Mean", "Susceptible SE",</pre>
                          "Resistant Mean", "Resistant SE")
rownames(v.ard.tab) <- c("Abundance", "Richness", "Diversity (Shannon)")
kable(v.ard.tab, digits = 3)
```

	Susceptible Mean	Susceptible SE	Resistant Mean	Resistant SE
Abundance	1.511	1.511	2.758	2.758
Richness	0.542	0.542	0.662	0.662
Diversity (Shannon)	0.119	0.119	0.125	0.125

This is a multivariate analysis of the plant community response to moth susceptibility (PERMANOVA). This analysis uses a modified Bray-Curtis Dissimilarity metric, which permits the inclusion of quadrats that had no plants in them. The analysis also accounts for the paired structure of the data (i.e. pairs of moth susceptible and resistant trees).

Here are the results of the multivariate plant community response.

```
kable(ptab.v.moth, caption = "PERMANOVA of plant community response to moth.")
```

Table 15: PERMANOVA of plant community response to moth.

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	5.174376	0.3081168	25.82917	0.001
Residual	58	11.619181	0.6918832	NA	NA
Total	59	16.793557	1.0000000	NA	NA

Here are the results of the multivariate plant community response after relativizing by species max.

Table 16: PERMANOVA of relativized plant community response to moth.

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	5.989174	0.288048	23.46617	0.001
Residual	58	14.803100	0.711952	NA	NA
Total	59	20.792275	1.000000	NA	NA

Do light, litter or rock cover influence plant communities?

```
by = "margin", nperm = 100000)
set.seed(123)
ptab.v.env.rel <- adonis2(v.com.ds.rel ~ Light...average + Litter.. + total.rocks,</pre>
                           data = 1.dat,
                           strata = 1.dat[, "Tree.pairs"],
                           by = "margin", nperm = 100000)
set.seed(123)
ptab.v.env.int <- adonis2(v.com.ds ~ Light...average + Litter.. + total.rocks +</pre>
                               Light...average * Litter.. +
                               Light...average * total.rocks +
                               Litter.. * total.rocks,
                           data = 1.dat,
                           strata = 1.dat[, "Tree.pairs"],
                           by = "margin", nperm = 100000)
set.seed(123)
ptab.v.env.rel.int <- adonis2(v.com.ds.rel ~ Light...average + Litter.. + total.rocks +
                               Light...average * Litter.. +
                               Light...average * total.rocks +
                               Litter.. * total.rocks,
                           data = 1.dat,
                           strata = 1.dat[, "Tree.pairs"],
                           by = "margin", nperm = 100000)
```

Light has a strong effect on the plant community. Litter also has an effect but it is small and marginally significant, either un-relativized or relativized, respectively.

Table 17: PERMANOVA of plant community response to several environmental variables.

	Df	SumOfSqs	R2	F	Pr(>F)
Lightaverage	1	2.8692870	0.1708564	12.696810	0.001
Litter	1	0.6890028	0.0410278	3.048889	0.049
Big.rocks	1	0.3621592	0.0215654	1.602582	0.189
Residual	56	12.6551530	0.7535719	NA	NA
Total	59	16.7935571	1.0000000	NA	NA

Table 18: PERMANOVA of relativized plant community response to several environmental variables.

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Lightaverage	1	3.4724258	0.1670056	12.245941	0.001
Litter	1	0.3437323	0.0165317	1.212215	0.291
total.rocks	1	0.3501066	0.0168383	1.234694	0.282
Residual	56	15.8792084	0.7637071	NA	NA
Total	59	20.7922745	1.0000000	NA	NA

After controlling for the effect of light, the effect of litter is no longer significant, un-relativized or relativized, respectively.

Table 19: Sequential PERMANOVA of plant community response to several environmental variables. Variance is explained sequentially by factors entered into the model from top to bottom.

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Lightaverage	1	3.2765116	0.1951053	14.567808	0.001
Litter	1	0.4997333	0.0297574	2.221881	0.098
total.rocks	1	0.4220991	0.0251346	1.876709	0.128
Residual	56	12.5952131	0.7500027	NA	NA
Total	59	16.7935571	1.0000000	NA	NA

Table 20: Sequential PERMANOVA of relativized plant community response to several environmental variables. Variance is explained sequentially by factors entered into the model from top to bottom.

	Df	${\rm SumOfSqs}$	R2	F	Pr(>F)
Lightaverage	1	3.8762571	0.1864278	13.670102	0.001
Litter	1	0.6867025	0.0330268	2.421742	0.060
total.rocks	1	0.3501066	0.0168383	1.234694	0.282
Residual	56	15.8792084	0.7637071	NA	NA
Total	59	20.7922745	1.0000000	NA	NA

• Indicator species

```
## Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

```
## Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

```
## Warning in apply(do.call(rbind, lapply(ind.spp.v, unlist)), 2, as.numeric): NAs
## introduced by coercion
```

There are two species that are responding to moth susceptibility, Apache plume and Asteraceae ovales.

Table 21: Indicator Species Analysis using False Discovery Rate (FDR) adjusted p-values from t-tests of paired differences between resistant and susceptible trees (Resistant - Susceptible).

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Apache.plume	-4.6010	29	0.0007	-10.2667	-14.8304	-5.7029
Asteraceae.ovales	-3.9581	29	0.0020	-8.1333	-12.3360	-3.9307
Rhus.trilobata	-1.8410	29	0.1869	-3.1667	-6.6847	0.3514

	t	df	p-value	Mean Difference	Lower CI 95%	Upper CI 95%
Rabbit.brush	-1.0000	29	0.3256	-0.6667	-2.0302	0.6968
Avena	-1.7951	29	0.1869	-0.2000	-0.4279	0.0279
Juniperus.monosperma	-1.0000	29	0.3256	-0.1667	-0.5075	0.1742
Plante.grise.allongée	-1.0000	29	0.3256	-0.1000	-0.3045	0.1045
Scarlet.glia	-1.0000	29	0.3256	-0.0667	-0.2030	0.0697
Bouteloua.gracilis	NaN	29	NaN	0.0000	NaN	NaN
Pinus.edulis.S	NaN	29	NaN	0.0000	NaN	NaN
Stipa.A	NaN	29	NaN	0.0000	NaN	NaN
Stipa.B	NaN	29	NaN	0.0000	NaN	NaN
Stipa.très.grand	NaN	29	NaN	0.0000	NaN	NaN
Ephedra	NaN	29	NaN	0.0000	NaN	NaN
Grande.grass.corymbe	NaN	29	NaN	0.0000	NaN	NaN
Boraginacée.rosette.grise	NaN	29	NaN	0.0000	NaN	NaN
Grass.à.nœud	NaN	29	NaN	0.0000	NaN	NaN
Brachypode	NaN	29	NaN	0.0000	NaN	NaN
Carex	NaN	29	NaN	0.0000	NaN	NaN
Cactus	NaN	29	NaN	0.0000	NaN	NaN
Hordeum	NaN	29	NaN	0.0000	NaN	NaN
Chenopodiaceae	NaN	29	NaN	0.0000	NaN	NaN
Ribes	NaN	29	NaN	0.0000	NaN	NaN
Aster.grise	NaN	29	NaN	0.0000	NaN	NaN
Rosette.frisée	NaN	29	NaN	0.0000	NaN	NaN
Chamaephyte.gris	NaN	29	NaN	0.0000	NaN	NaN
Castilleja	NaN	29	NaN	0.0000	NaN	NaN
Opuntia	NaN	29	NaN	0.0000	NaN	NaN
Rubiaceae	NaN	29	NaN	0.0000	NaN	NaN
Andropogon	NaN	29	NaN	0.0000	NaN	NaN
Pinus.edulis.R	1.0000	29	0.3256	0.3333	-0.3484	1.0151

```
v.isp.dat <- melt(d.v.isp)</pre>
colnames(v.isp.dat) <- c("Tree.pairs", "Species", "diff")</pre>
v.isp.mu <- tapply(v.isp.dat[, "diff"], v.isp.dat[, "Species"], mean)</pre>
v.isp.se <- tapply(v.isp.dat[, "diff"], v.isp.dat[, "Species"], se)</pre>
v.ard <- t(apply(v.com, 1, function(x) c(A = sum(x),</pre>
                                       R = sum(sign(x)),
                                       D = diversity(x))))
v.ard.dif <- apply(v.ard, 2,</pre>
                    function(x, p) tapply(x, p, diff),
                    p = 1.dat[, "Tree.pairs"])
colnames(v.ard.dif) <- c("Abundance", "Richness", "Diversity")</pre>
v.ard.dif <- apply(v.ard.dif, 2, function(x) x / max(abs(x)))</pre>
v.ard.dat <- melt(v.ard.dif)</pre>
colnames(v.ard.dat) <- c("Tree.pairs", "Stat", "diff")</pre>
v.ard.mu <- tapply(v.ard.dat[, "diff"], v.ard.dat[, "Stat"], mean)</pre>
v.ard.se <- tapply(v.ard.dat[, "diff"], v.ard.dat[, "Stat"], se)</pre>
pdf(file = "./results/plot_isp_ard_plant.pdf", width = 9, height = 5)
par(mfrow = c(1,2))
bp.out <- barplot(v.ard.mu, col = "darkgrey", ylim = c(-1.0, 0),
                   ylab = "Relativized Difference (S - R)", border = "NA")
```

```
segments(bp.out[, 1], v.ard.mu + v.ard.se,
         bp.out[, 1], v.ard.mu - v.ard.se,
         lwd = 1.5
bp.out <- barplot(v.isp.mu, col = "darkgrey", ylim = c(-13, 0),
                  ylab = "Difference (S - R)", border = "NA",
            axisnames = TRUE,
            names.arg = sapply(names(v.isp.mu),
                function(x)
                                    paste(c(substr(x, 1, 1),
                                             substr(x, 4, 4)), collapse = "")))
segments(bp.out[, 1], v.isp.mu + v.isp.se,
         bp.out[, 1], v.isp.mu - v.isp.se,
         lwd = 1.5)
dev.off()
## pdf
##
```

Multivariate Correlation of Plants and Saxicoles

There is no significant multivariate correlation between the veg and saxicole communities, regardless of whether the community data are relativized. This is likely a result of the two communities responded to different variables with low correlation (i.e. rocks = saxicoles and light = plants). This was true either without or with relativization by species max.

```
v.d <- vegdist(v.com.ds)</pre>
1.d <- vegdist(com.ds)</pre>
mantel(v.d ~ 1.d)
##
        mantelr
                                                    pval3
                                                              llim.2.5%
                                                                          ulim.97.5%
                        pval1
                                      pval2
## -0.002762319 0.513000000
                               0.488000000 0.914000000 -0.034504235 0.032707393
v.d <- vegdist(v.com.ds.rel)</pre>
1.d <- vegdist(com.ds.rel)</pre>
mantel(v.d ~ 1.d)
##
       mantelr
                                   pval2
                                                pval3
                                                        llim.2.5% ulim.97.5%
                      pval1
## 0.02328021 0.21200000 0.78900000 0.44300000 -0.01176642 0.05838093
```

Structural Equation Modeling

```
com.prepared <- cbind(id = 1.dat[, "Moth"], tree = 1.dat[, "Tree.pairs"], com)
v.com.prepared <- cbind(id = 1.dat[, "Moth"], tree = 1.dat[, "Tree.pairs"], v.com)

1.dist.euc <- distancePairedSamples(
    sequences = com.prepared,
    grouping.column = "id",
    time.column = "tree",
    exclude.columns = NULL,
    method = "euclidean",
    sum.distances = FALSE,
    parallel.execution = FALSE</pre>
```

```
1.dist.man <- distancePairedSamples(</pre>
    sequences = com.prepared,
    grouping.column = "id",
    time.column = "tree",
    exclude.columns = NULL,
    method = "manhattan",
    sum.distances = FALSE,
    parallel.execution = FALSE
)
v.dist.euc <- distancePairedSamples(</pre>
    sequences = v.com.prepared,
    grouping.column = "id",
    time.column = "tree",
    exclude.columns = NULL,
    method = "euclidean",
    sum.distances = FALSE,
    parallel.execution = FALSE
v.dist.man <- distancePairedSamples(</pre>
    sequences = v.com.prepared,
    grouping.column = "id",
    time.column = "tree",
    exclude.columns = NULL,
    method = "manhattan",
    sum.distances = FALSE,
    parallel.execution = FALSE
cor(1.dist.man[[1]], 1.dist.euc[[1]])
## [1] 0.9422796
cor(v.dist.man[[1]], v.dist.euc[[1]])
## [1] 0.9612754
d.litter <- tapply(l.dat[, "Litter.."], l.dat[, "Tree.pairs"], diff)</pre>
d.rocks <- tapply((1.dat[, "Big.rocks.."] + 1.dat[, "Small.rocks.."]),</pre>
                   1.dat[, "Tree.pairs"], diff)
d.light <- tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff)</pre>
d.com <- l.dist.man[[1]]</pre>
d.abun <- tapply(abun, l.dat[, "Tree.pairs"], diff)</pre>
d.rich <- tapply(rich, l.dat[, "Tree.pairs"], diff)</pre>
d.shan <- tapply(shan, l.dat[, "Tree.pairs"], diff)</pre>
d.isp <- apply(isp.com, 2, function(x, f) tapply(x, f, diff), f = l.dat[, "Tree.pairs"])</pre>
colnames(d.isp) <- paste("d", colnames(isp.com), sep = ".")</pre>
round(cor(cbind(d.litter, d.rocks, d.light, d.abun, d.rich, d.shan, d.com)), 3)
            d.litter d.rocks d.light d.abun d.rich d.shan d.com
## d.litter
               1.000 -0.998 -0.171 -0.530 -0.695 -0.651 0.154
```

```
## d.rocks
              -0.998
                       1.000
                                0.196  0.513  0.694  0.656  -0.140
                                                    0.290 - 0.133
## d.light
              -0.171
                       0.196
                                1.000 0.108 0.268
## d.abun
              -0.530
                       0.513
                                0.108 1.000 0.649
                                                     0.353 - 0.448
              -0.695
## d.rich
                                0.268 0.649
                       0.694
                                              1.000
                                                    0.888 - 0.143
## d.shan
              -0.651
                       0.656
                                0.290 0.353 0.888 1.000 -0.071
## d.com
               0.154 -0.140 -0.133 -0.448 -0.143 -0.071 1.000
sem.dat <- data.frame(d.litter, d.rocks, d.light, d.abun, d.rich, d.shan, d.com, d.isp)
sem.path \leftarrow matrix(c(0, 1, 1, 0,
                     1, 0, 0, 1,
                     0, 0, 0, 1,
                     0, 0, 0, 0), 4, 4, byrow = TRUE
rownames(sem.path) <- colnames(sem.path) <- c("d.litter", "d.light", "d.rocks", "d.com")
model.com <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.com ~ d.light + d.rocks, sem.dat))
model.com1 <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.com ~ d.litter + d.light + d.rocks, sem.dat))
model.abun <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.abun ~ d.light + d.rocks, sem.dat))
model.rich <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.rich ~ d.light + d.rocks, sem.dat))</pre>
model.shan <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.shan ~ d.light + d.rocks, sem.dat))
model.Acacon <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.Acacon ~ d.light + d.rocks, sem.dat))
model.Acaame <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.Acaame ~ d.light + d.rocks, sem.dat))
model.Canros <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.Canros ~ d.light + d.rocks, sem.dat))</pre>
model.Canros1 <- psem(lm(d.rocks ~ d.litter, sem.dat), lm(d.Canros ~ d.light + d.rocks, sem.dat))
d.litter <- tapply(l.dat[, "Litter.."], l.dat[, "Tree.pairs"], diff)</pre>
d.rocks <- tapply((1.dat[, "Big.rocks.."] + 1.dat[, "Small.rocks.."]),</pre>
                  1.dat[, "Tree.pairs"], diff)
d.light <- tapply(1.dat[, "Light...average"], 1.dat[, "Tree.pairs"], diff)</pre>
d.v.com <- v.dist.man[[1]]
d.v.abun <- tapply(v.abun, l.dat[, "Tree.pairs"], diff)</pre>
d.v.rich <- tapply(v.rich, l.dat[, "Tree.pairs"], diff)</pre>
d.v.shan <- tapply(v.shan, l.dat[, "Tree.pairs"], diff)</pre>
d.v.isp <- apply(v.isp.com, 2, function(x, f) tapply(x, f, diff), f = l.dat[, "Tree.pairs"])</pre>
colnames(d.v.isp) <- paste("d", colnames(v.isp.com), sep = ".")</pre>
v.sem.dat <- data.frame(d.litter, d.rocks, d.light, d.v.abun, d.v.rich, d.v.shan, d.v.com, d.v.isp)
model.v.com <- psem(lm(d.rocks ~ d.litter, v.sem.dat), lm(d.v.com ~ d.light + d.rocks, v.sem.dat))
model.v.com1 <- psem(lm(d.rocks ~ d.litter, v.sem.dat), lm(d.v.com ~ d.litter + d.light + d.rocks, v.s
model.v.abun <- psem(lm(d.rocks ~ d.litter, v.sem.dat), lm(d.v.abun ~ d.light + d.rocks, v.sem.dat))
model.v.rich <- psem(lm(d.rocks ~ d.litter, v.sem.dat), lm(d.v.rich ~ d.light + d.rocks, v.sem.dat))
model.v.shan <- psem(lm(d.rocks ~ d.litter, v.sem.dat), lm(d.v.shan ~ d.light + d.rocks, v.sem.dat))
model.v.Apache.plume <- psem(lm(d.rocks ~ d.litter, v.sem.dat),</pre>
                             lm(d.Apache.plume ~ d.light + d.rocks, v.sem.dat))
model.v.Asteraceae.ovales <- psem(lm(d.rocks ~ d.litter, v.sem.dat),</pre>
                                   lm(d.Asteraceae.ovales ~ d.light + d.rocks, v.sem.dat))
```

Independent Test Method

Using indeendent tests for different effects along the hypothesized causal model that moth susceptibility affects tree traits (litter production), which affect the local environment (light, rocks), which in turn affect lichen, bryophyte and plant communities (abundance, richness, diversity, indicator species, composition).

moth-susceptibility -> tree traits -> local environment -> community

We can do this by parsing independent tests for each effect OR by using a structural equation model (SEM).

```
Testing for the effect of moth susceptibility:
```

```
t.test(d.litter)
##
##
   One Sample t-test
## data: d.litter
## t = 2.8665, df = 29, p-value = 0.00765
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
     4.317792 25.822208
##
## sample estimates:
## mean of x
##
       15.07
t.test(d.light)
##
##
   One Sample t-test
##
## data: d.light
## t = -9.2728, df = 29, p-value = 3.557e-10
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -18.47119 -11.79547
## sample estimates:
## mean of x
## -15.13333
t.test(d.rocks)
##
##
   One Sample t-test
##
## data: d.rocks
## t = -2.8178, df = 29, p-value = 0.008617
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -25.298305 -4.019028
## sample estimates:
## mean of x
## -14.65867
Effects of tree traits on local environment and environment correlations:
cor.test(d.light, d.litter)
##
   Pearson's product-moment correlation
##
## data: d.light and d.litter
## t = -0.92053, df = 28, p-value = 0.3652
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.5007401 0.2013096
```

```
## sample estimates:
##
         cor
## -0.1713898
cor.test(d.rocks, d.light)
##
## Pearson's product-moment correlation
##
## data: d.rocks and d.light
## t = 1.0584, df = 28, p-value = 0.2989
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.1766215 0.5196770
## sample estimates:
##
        cor
## 0.1961275
summary(lm(d.rocks ~ d.litter))
##
## Call:
## lm(formula = d.rocks ~ d.litter)
##
## Residuals:
              1Q Median
      Min
                               3Q
                                      Max
## -2.4466 -0.7468 -0.3273 0.2442 6.9590
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.22870 0.34616 0.661
                          0.01079 -91.529
## d.litter
             -0.98788
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.674 on 28 degrees of freedom
## Multiple R-squared: 0.9967, Adjusted R-squared: 0.9965
## F-statistic: 8378 on 1 and 28 DF, p-value: < 2.2e-16
Effects of local environment on lichen, and possible direct effects of tree traits:
summary(lm(d.abun ~ d.rocks))
##
## Call:
## lm(formula = d.abun ~ d.rocks)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -7.8587 -1.3596 0.5429 1.6415 5.8098
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.55053
                        0.67673 -0.814 0.42279
             0.06777
                          0.02140 3.166 0.00371 **
## d.rocks
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 3.284 on 28 degrees of freedom
## Multiple R-squared: 0.2637, Adjusted R-squared: 0.2374
## F-statistic: 10.03 on 1 and 28 DF, p-value: 0.003706
summary(lm(d.rich ~ d.rocks))
##
## Call:
## lm(formula = d.rich ~ d.rocks)
## Residuals:
               1Q Median
                               3Q
                                      Max
## -5.7375 -2.3674 -0.1611 1.6950 7.5293
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.70878 -1.208
## (Intercept) -0.85626
                                             0.237
                          0.02242
                                    5.104 2.09e-05 ***
## d.rocks
               0.11441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.44 on 28 degrees of freedom
## Multiple R-squared: 0.4819, Adjusted R-squared: 0.4634
## F-statistic: 26.05 on 1 and 28 DF, p-value: 2.089e-05
summary(lm(d.shan ~ d.rocks))
##
## Call:
## lm(formula = d.shan ~ d.rocks)
## Residuals:
##
                 1Q Median
                                   3Q
       Min
                                           Max
## -1.46785 -0.60402 0.04559 0.63369 1.38124
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.106623
                          0.154747 -0.689
                                              0.496
                                    4.605 8.17e-05 ***
## d.rocks
               0.022537
                          0.004894
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.751 on 28 degrees of freedom
## Multiple R-squared: 0.4309, Adjusted R-squared: 0.4106
## F-statistic: 21.2 on 1 and 28 DF, p-value: 8.167e-05
summary(lm(d.Acacon ~ d.rocks, sem.dat))
##
## Call:
## lm(formula = d.Acacon ~ d.rocks, data = sem.dat)
## Residuals:
                     Median
       Min
                 1Q
                                   3Q
                                           Max
## -0.17556 -0.01439 0.01337 0.03252 0.09108
```

```
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.0238762 0.0126055 -1.894 0.06858 .
## d.rocks
               0.0014183 0.0003987
                                      3.557 0.00136 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06117 on 28 degrees of freedom
## Multiple R-squared: 0.3113, Adjusted R-squared: 0.2867
## F-statistic: 12.66 on 1 and 28 DF, p-value: 0.001357
summary(lm(d.Acaame ~ d.rocks, sem.dat))
##
## Call:
## lm(formula = d.Acaame ~ d.rocks, data = sem.dat)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.64206 -0.09675 0.03298 0.07873 0.56715
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.068167
                          0.042641 -1.599
                          0.001349
## d.rocks
               0.006310
                                    4.679 6.67e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2069 on 28 degrees of freedom
## Multiple R-squared: 0.4388, Adjusted R-squared: 0.4188
## F-statistic: 21.89 on 1 and 28 DF, p-value: 6.669e-05
summary(lm(d.Canros ~ d.rocks, sem.dat))
##
## Call:
## lm(formula = d.Canros ~ d.rocks, data = sem.dat)
## Residuals:
##
                 1Q
                     Median
                                   3Q
       Min
                                           Max
## -1.04560 -0.22148 0.06461 0.28602 0.81105
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.196087
                          0.096385 -2.034 0.051479 .
               0.012797
                          0.003048
                                   4.198 0.000247 ***
## d.rocks
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4678 on 28 degrees of freedom
## Multiple R-squared: 0.3863, Adjusted R-squared: 0.3643
## F-statistic: 17.62 on 1 and 28 DF, p-value: 0.0002467
summary(lm(d.abun ~ d.light))
```

```
##
## Call:
## lm(formula = d.abun ~ d.light)
## Residuals:
##
               1Q Median
                               3Q
      Min
                                      Max
## -8.3371 -2.7395 0.6687 1.5171 8.1163
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.85872
                          1.38331 -0.621
                                             0.540
                          0.07905
               0.04528
                                    0.573
                                             0.571
## d.light
## Residual standard error: 3.805 on 28 degrees of freedom
## Multiple R-squared: 0.01159,
                                   Adjusted R-squared: -0.02372
## F-statistic: 0.3282 on 1 and 28 DF, p-value: 0.5713
summary(lm(d.rich ~ d.light))
##
## Call:
## lm(formula = d.rich ~ d.light)
## Residuals:
    Min
             1Q Median
                           3Q
## -6.758 -3.199 -0.836 3.003 12.001
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.40551
                          1.67397 -0.242
                                             0.810
## d.light
               0.14061
                          0.09565
                                    1.470
                                             0.153
## Residual standard error: 4.605 on 28 degrees of freedom
## Multiple R-squared: 0.07164,
                                   Adjusted R-squared: 0.03848
## F-statistic: 2.161 on 1 and 28 DF, p-value: 0.1527
summary(lm(d.shan ~ d.light))
##
## Call:
## lm(formula = d.shan ~ d.light)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -1.5927 -0.7784 0.1074 0.5385 2.1225
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.04306
                          0.34638 0.124
                                             0.902
## d.light
               0.03172
                          0.01979
                                    1.603
##
## Residual standard error: 0.9528 on 28 degrees of freedom
## Multiple R-squared: 0.08402,
                                   Adjusted R-squared: 0.05131
## F-statistic: 2.568 on 1 and 28 DF, p-value: 0.1202
```

```
summary(lm(d.Acacon ~ d.light, sem.dat))
##
## Call:
## lm(formula = d.Acacon ~ d.light, data = sem.dat)
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.21083 -0.02561 0.02198 0.04135 0.09381
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.007098
                         0.024294
                                    0.292
                                            0.7723
## d.light
              0.003421
                         0.001388
                                    2.464
                                            0.0201 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.06682 on 28 degrees of freedom
## Multiple R-squared: 0.1782, Adjusted R-squared: 0.1489
## F-statistic: 6.072 on 1 and 28 DF, p-value: 0.02014
summary(lm(d.Acaame ~ d.light, sem.dat))
##
## Call:
## lm(formula = d.Acaame ~ d.light, data = sem.dat)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.85875 -0.06371 0.06088 0.15869 0.27225
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03200
                          0.09117
                                    0.351
                                            0.7283
                                    2.444
                                            0.0211 *
## d.light
               0.01273
                          0.00521
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2508 on 28 degrees of freedom
## Multiple R-squared: 0.1758, Adjusted R-squared: 0.1463
## F-statistic: 5.972 on 1 and 28 DF, p-value: 0.0211
summary(lm(d.Canros ~ d.light, sem.dat))
##
## Call:
## lm(formula = d.Canros ~ d.light, data = sem.dat)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -0.9699 -0.3253 0.1547 0.3191 1.2307
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.03300
                          0.19704
                                   0.168
```

```
## d.light
               0.02753
                          0.01126 2.445 0.021 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.542 on 28 degrees of freedom
## Multiple R-squared: 0.176, Adjusted R-squared: 0.1466
## F-statistic: 5.98 on 1 and 28 DF, p-value: 0.02101
summary(lm(d.abun ~ d.litter))
##
## Call:
## lm(formula = d.abun ~ d.litter)
## Residuals:
##
     Min
             1Q Median
                           3Q
                                 Max
## -7.380 -1.218 0.494 1.607 5.733
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                         0.67144 -0.747 0.46132
## (Intercept) -0.50153
            -0.06917
                          0.02094 -3.304 0.00261 **
## d.litter
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.246 on 28 degrees of freedom
## Multiple R-squared: 0.2805, Adjusted R-squared: 0.2548
## F-statistic: 10.92 on 1 and 28 DF, p-value: 0.002612
summary(lm(d.rich ~ d.litter))
##
## Call:
## lm(formula = d.rich ~ d.litter)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -5.7618 -2.0890 -0.0954 1.7166 7.5545
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.82616
                          0.71101 -1.162
                                            0.255
             -0.11328
                          0.02217 -5.110 2.05e-05 ***
## d.litter
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.438 on 28 degrees of freedom
## Multiple R-squared: 0.4826, Adjusted R-squared: 0.4641
## F-statistic: 26.11 on 1 and 28 DF, p-value: 2.053e-05
summary(lm(d.shan ~ d.litter))
##
## Call:
## lm(formula = d.shan ~ d.litter)
```

##

```
## Residuals:
       Min
##
                 1Q
                     Median
                                   30
                                          Max
## -1.47085 -0.59769 0.03512 0.59650 1.39944
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                          0.156232 -0.663
## (Intercept) -0.103513
## d.litter
             -0.022128
                          0.004871 -4.543 9.68e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7554 on 28 degrees of freedom
## Multiple R-squared: 0.4243, Adjusted R-squared: 0.4037
## F-statistic: 20.64 on 1 and 28 DF, p-value: 9.675e-05
summary(lm(d.Acacon ~ d.litter, sem.dat))
##
## Call:
## lm(formula = d.Acacon ~ d.litter, data = sem.dat)
## Residuals:
       Min
                 10
                     Median
                                   30
## -0.17743 -0.01528 0.01435 0.03220 0.09098
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0240028 0.0127820 -1.878 0.07085 .
            -0.0013712  0.0003985  -3.441  0.00184 **
## d.litter
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.0618 on 28 degrees of freedom
## Multiple R-squared: 0.2971, Adjusted R-squared: 0.272
## F-statistic: 11.84 on 1 and 28 DF, p-value: 0.001839
summary(lm(d.Acaame ~ d.litter, sem.dat))
##
## lm(formula = d.Acaame ~ d.litter, data = sem.dat)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
## -0.64969 -0.10426 0.03407 0.08146 0.56925
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.067611
                          0.043169 -1.566
                          0.001346 -4.588 8.56e-05 ***
## d.litter
              -0.006175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2087 on 28 degrees of freedom
## Multiple R-squared: 0.4291, Adjusted R-squared: 0.4087
```

```
## F-statistic: 21.05 on 1 and 28 DF, p-value: 8.558e-05
summary(lm(d.Canros ~ d.litter, sem.dat))
##
## Call:
## lm(formula = d.Canros ~ d.litter, data = sem.dat)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                     3Q
                                             Max
## -1.06651 -0.21741 0.05103 0.27634 0.81235
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.193646
                           0.097001 -1.996 0.055705 .
               -0.012609
                           0.003024 -4.169 0.000267 ***
## d.litter
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.469 on 28 degrees of freedom
## Multiple R-squared: 0.383, Adjusted R-squared: 0.361
## F-statistic: 17.38 on 1 and 28 DF, p-value: 0.0002666
SEM testing for this pathway, note that here community distance is the sum of squared differences for each
tree pair (susceptible - resistant) for all species:
summary(model.abun, .progressBar = FALSE)
##
## Structural Equation Model of model.abun
##
## Call:
##
     d.rocks ~ d.litter
##
     d.abun ~ d.light + d.rocks
##
##
       AIC
                BIC
##
   28.447
             38.255
##
## ---
## Tests of directed separation:
##
              Independ.Claim Test.Type DF Crit.Value P.Value
##
##
     d.abun ~ d.litter + ...
                                  coef 26
                                              -2.1260 0.0432 *
     d.rocks ~ d.light + ...
                                   coef 27
                                               2.5465 0.0169 *
##
##
## Global goodness-of-fit:
##
##
     Fisher's C = 14.447 with P-value = 0.006 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
      d.rocks d.litter -0.9879
                                    0.0108 28
                                                 -91.5294 0.0000
                                                                       -0.9983 ***
##
       d.abun
                d.light
                          0.0030
                                    0.0709 27
                                                   0.0428 0.9662
                                                                         0.0072
##
       d.abun
                d.rocks
                          0.0676
                                    0.0222 27
                                                   3.0408 0.0052
                                                                         0.5121 **
```

```
##
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
                none
##
      d.rocks
                          1.00
       d.abun
               none
                          0.26
summary(model.rich, .progressBar = FALSE)
## Structural Equation Model of model.rich
##
## Call:
##
     d.rocks ~ d.litter
##
     d.rich ~ d.light + d.rocks
##
                BIC
##
       AIC
   23.564
##
             33.372
##
## ---
## Tests of directed separation:
##
              Independ.Claim Test.Type DF Crit.Value P.Value
##
##
     d.rich ~ d.litter + ...
                                 coef 26
                                              -0.6906 0.4960
                                               2.5465 0.0169 *
##
     d.rocks ~ d.light + ...
                                  coef 27
##
## Global goodness-of-fit:
##
     Fisher's C = 9.564 with P-value = 0.048 and on 4 degrees of freedom
##
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
      d.rocks d.litter -0.9879
                                    0.0108 28
                                                 -91.5294 0.0000
                                                                        -0.9983 ***
##
##
       d.rich
                d.light
                          0.0718
                                    0.0729 27
                                                   0.9854 0.3332
                                                                         0.1368
##
       d.rich
                d.rocks
                          0.1100
                                    0.0229 27
                                                   4.8086 0.0001
                                                                         0.6674 ***
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
##
      d.rocks
                           1.0
                none
                           0.5
##
       d.rich
                none
summary(model.shan, .progressBar = FALSE)
##
## Structural Equation Model of model.shan
##
```

```
## Call:
##
     d.rocks ~ d.litter
##
     d.shan ~ d.light + d.rocks
##
##
       AIC
                BIC
##
    22.182
             31.99
##
## ---
## Tests of directed separation:
##
##
              Independ.Claim Test.Type DF Crit.Value P.Value
     d.shan ~ d.litter + ...
##
                                   coef 26
                                              -0.0130 0.9897
     d.rocks ~ d.light + ...
                                   coef 27
                                               2.5465 0.0169 *
##
##
## Global goodness-of-fit:
##
##
     Fisher's C = 8.182 with P-value = 0.085 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
      d.rocks d.litter -0.9879
                                     0.0108 28
                                                 -91.5294 0.0000
                                                                        -0.9983 ***
##
       d.shan
                d.light
                           0.0183
                                     0.0158 27
                                                   1.1596 0.2563
                                                                         0.1676
       d.shan
                d.rocks
                                                                         0.6236 ***
##
                          0.0214
                                     0.0050 27
                                                   4.3156 0.0002
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
##
## Individual R-squared:
##
##
     Response method R.squared
                           1.00
##
      d.rocks
                none
##
       d.shan
                           0.46
                none
summary(model.com, .progressBar = FALSE)
##
## Structural Equation Model of model.com
## Call:
     d.rocks ~ d.litter
##
     d.com ~ d.light + d.rocks
##
##
##
       AIC
                BIC
##
    27.066
             36.874
##
##
## Tests of directed separation:
##
##
              Independ.Claim Test.Type DF Crit.Value P.Value
      d.com ~ d.litter + ...
##
                                   coef 26
                                               1.7840 0.0861
##
     d.rocks ~ d.light + ...
                                               2.5465 0.0169 *
                                   coef 27
##
## Global goodness-of-fit:
```

```
##
##
    Fisher's C = 13.066 with P-value = 0.011 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
    Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                       -0.9983 ***
##
        d.com d.light -0.0350
                                    0.0617 27
                                                 -0.5673 0.5752
                                                                       -0.1096
##
        d.com
              d.rocks -0.0119
                                    0.0193 27
                                                 -0.6129 0.5450
                                                                       -0.1184
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
##
      d.rocks
                none
                          1.00
##
        d.com
                          0.03
               none
summary(model.Acacon, .progressBar = FALSE)
## Structural Equation Model of model.Acacon
##
## Call:
##
    d.rocks ~ d.litter
##
    d.Acacon ~ d.light + d.rocks
##
##
      AIC
                BIC
##
   23.133
            32.941
##
## ---
## Tests of directed separation:
##
##
                Independ.Claim Test.Type DF Crit.Value P.Value
##
     d.Acacon ~ d.litter + ...
                                    coef 26
                                                0.5085 0.6154
      d.rocks ~ d.light + ...
                                    coef 27
##
                                                2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 9.133 with P-value = 0.058 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
    Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                       -0.9983 ***
##
     d.Acacon
              d.light
                          0.0026
                                    0.0012 27
                                                  2.1628 0.0396
                                                                        0.3252
##
    d.Acacon
              d.rocks
                          0.0013
                                    0.0004 27
                                                  3.2863 0.0028
                                                                        0.4941 **
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
```

```
##
##
     Response method R.squared
                          1.00
##
      d.rocks
               none
     d.Acacon
                          0.41
##
                none
summary(model.Acaame, .progressBar = FALSE)
##
## Structural Equation Model of model.Acaame
##
## Call:
##
     d.rocks ~ d.litter
##
     d.Acaame ~ d.light + d.rocks
##
##
       AIC
                BIC
##
   22.423
             32.231
##
## ---
## Tests of directed separation:
##
                Independ.Claim Test.Type DF Crit.Value P.Value
##
##
     d.Acaame ~ d.litter + ...
                                    coef 26
                                               -0.1558 0.8774
##
       d.rocks ~ d.light + ...
                                    coef 27
                                                 2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 8.423 with P-value = 0.077 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                       -0.9983 ***
##
     d.Acaame
                d.light
                          0.0091
                                    0.0041 27
                                                   2.2267 0.0345
                                                                        0.3009
##
     d.Acaame
                d.rocks
                          0.0057
                                    0.0013 27
                                                   4.4650 0.0001
                                                                        0.6034 ***
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
    Response method R.squared
                          1.00
##
      d.rocks
              none
     d.Acaame
               none
                          0.53
summary(model.Canros, .progressBar = FALSE)
## Structural Equation Model of model.Canros
##
## Call:
##
     d.rocks ~ d.litter
##
     d.Canros ~ d.light + d.rocks
##
##
       AIC
                BIC
```

```
23.898
            33.706
##
## ---
## Tests of directed separation:
##
##
               Independ.Claim Test.Type DF Crit.Value P.Value
    d.Canros ~ d.litter + ...
                                   coef 26
                                              -0.8201 0.4196
      d.rocks ~ d.light + ...
                                   coef 27
                                               2.5465 0.0169 *
##
##
## Global goodness-of-fit:
##
    Fisher's C = 9.898 with P-value = 0.042 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
     d.rocks d.litter -0.9879
                                   0.0108 28
                                               -91.5294 0.0000
                                                                     -0.9983 ***
##
     d.Canros
                         0.0203
                                   0.0093 27
                                                  2.1836 0.0379
                                                                      0.3095
               d.light
##
    d.Canros
               d.rocks
                         0.0115
                                   0.0029 27
                                                  3.9562 0.0005
                                                                      0.5608 ***
##
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
     d.rocks
                          1.00
##
               none
     d.Canros
##
                          0.48
               none
summary(lm(d.v.abun ~ d.rocks))
##
## lm(formula = d.v.abun ~ d.rocks)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -46.548 -9.167 -0.371 11.836 29.860
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           3.52322 -6.702 2.83e-07 ***
## (Intercept) -23.61098
## d.rocks
               -0.08716
                           0.11143 -0.782
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17.1 on 28 degrees of freedom
## Multiple R-squared: 0.02138,
                                   Adjusted R-squared:
## F-statistic: 0.6118 on 1 and 28 DF, p-value: 0.4407
summary(lm(d.v.rich ~ d.rocks))
## Call:
```

```
## lm(formula = d.v.rich ~ d.rocks)
##
## Residuals:
##
              1Q Median
                             3Q
     Min
                                   Max
## -1.6195 -0.7375 0.2342 0.3760 2.3148
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.259773   0.199030   -6.330   7.57e-07 ***
## d.rocks
          0.002744 0.006295 0.436
                                           0.666
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9659 on 28 degrees of freedom
## Multiple R-squared: 0.006742,
                                Adjusted R-squared: -0.02873
## F-statistic: 0.1901 on 1 and 28 DF, p-value: 0.6662
summary(lm(d.v.shan ~ d.rocks))
##
## Call:
## lm(formula = d.v.shan ~ d.rocks)
## Residuals:
       Min
               1Q Median
                                 30
## -0.63077 -0.28155 0.02544 0.29568 0.97384
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## d.rocks -0.002745 0.002491 -1.102 0.279691
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3821 on 28 degrees of freedom
## Multiple R-squared: 0.04159, Adjusted R-squared: 0.007366
## F-statistic: 1.215 on 1 and 28 DF, p-value: 0.2797
summary(lm(d.Apache.plume ~ d.rocks, v.sem.dat))
##
## Call:
## lm(formula = d.Apache.plume ~ d.rocks, data = v.sem.dat)
##
## Residuals:
      Min
              1Q Median
                             3Q
## -28.028 -4.455 4.278 6.677 14.799
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.13756 2.44690 -4.960 3.09e-05 ***
## d.rocks
           -0.12763
                         0.07739 -1.649
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Residual standard error: 11.87 on 28 degrees of freedom
## Multiple R-squared: 0.08854, Adjusted R-squared: 0.05598
## F-statistic: 2.72 on 1 and 28 DF, p-value: 0.1103
summary(lm(d.Asteraceae.ovales ~ d.rocks, v.sem.dat))
##
## Call:
## lm(formula = d.Asteraceae.ovales ~ d.rocks, data = v.sem.dat)
## Residuals:
##
      Min
               1Q Median
                               3Q
## -31.976 -7.315 5.782 7.526 19.463
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.44665
                         2.34354 -3.178 0.0036 **
## d.rocks
               0.04684
                          0.07412
                                  0.632
                                           0.5325
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.37 on 28 degrees of freedom
## Multiple R-squared: 0.01406,
                                  Adjusted R-squared: -0.02115
## F-statistic: 0.3994 on 1 and 28 DF, p-value: 0.5325
summary(lm(d.v.abun ~ d.litter))
##
## Call:
## lm(formula = d.v.abun ~ d.litter)
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -46.743 -8.907 0.019 11.943 30.269
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23.44568
                           3.54674 -6.610 3.6e-07 ***
## d.litter
                0.07381
                           0.11059
                                   0.667
                                              0.51
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17.15 on 28 degrees of freedom
## Multiple R-squared: 0.01566, Adjusted R-squared: -0.01949
## F-statistic: 0.4455 on 1 and 28 DF, p-value: 0.5099
summary(lm(d.v.rich ~ d.litter))
## Call:
## lm(formula = d.v.rich ~ d.litter)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
## -1.6111 -0.7427 0.2214 0.3838 2.3153
##
```

```
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.253709
                        0.199585 -6.282 8.61e-07 ***
                          0.006223 -0.494
## d.litter
             -0.003072
                                             0.625
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.965 on 28 degrees of freedom
## Multiple R-squared: 0.008626, Adjusted R-squared: -0.02678
## F-statistic: 0.2436 on 1 and 28 DF, p-value: 0.6254
summary(lm(d.v.shan ~ d.litter))
##
## Call:
## lm(formula = d.v.shan ~ d.litter)
## Residuals:
                    Median
       Min
                 1Q
                                   3Q
## -0.62023 -0.28853 0.04059 0.29668 0.97632
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.332721   0.079334   -4.194   0.000249 ***
## d.litter
              0.002472 0.002474 0.999 0.326145
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3836 on 28 degrees of freedom
## Multiple R-squared: 0.03444,
                                  Adjusted R-squared: -3.912e-05
## F-statistic: 0.9989 on 1 and 28 DF, p-value: 0.3261
summary(lm(d.Apache.plume ~ d.litter, v.sem.dat))
##
## Call:
## lm(formula = d.Apache.plume ~ d.litter, data = v.sem.dat)
##
## Residuals:
      Min
               1Q Median
                               3Q
## -28.098 -4.465
                   4.364
                            6.975 14.577
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.05623
                           2.46985 -4.881 3.84e-05 ***
## d.litter
              0.11875
                           0.07701
                                   1.542
                                             0.134
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.94 on 28 degrees of freedom
## Multiple R-squared: 0.07828, Adjusted R-squared: 0.04536
## F-statistic: 2.378 on 1 and 28 DF, p-value: 0.1343
summary(lm(d.Asteraceae.ovales ~ d.litter, v.sem.dat))
```

##

```
## Call:
## lm(formula = d.Asteraceae.ovales ~ d.litter, data = v.sem.dat)
## Residuals:
              1Q Median
                             3Q
                                    Max
## -32.006 -7.296 5.653 7.482 19.553
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -7.36833 2.34896 -3.137 0.00399 **
## d.litter
            -0.05076
                        0.07324 -0.693 0.49395
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 11.36 on 28 degrees of freedom
## Multiple R-squared: 0.01687, Adjusted R-squared: -0.01824
## F-statistic: 0.4804 on 1 and 28 DF, p-value: 0.494
summary(lm(d.v.abun ~ d.light))
##
## Call:
## lm(formula = d.v.abun ~ d.light)
##
## Residuals:
             1Q Median
                             3Q
##
     Min
## -47.204 -7.755 1.085 11.993 31.908
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23.8611 6.2747 -3.803 0.000711 ***
## d.light
             -0.1010
                         0.3585 -0.282 0.780349
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17.26 on 28 degrees of freedom
## Multiple R-squared: 0.002823, Adjusted R-squared: -0.03279
## F-statistic: 0.07928 on 1 and 28 DF, p-value: 0.7803
summary(lm(d.v.rich ~ d.light))
##
## Call:
## lm(formula = d.v.rich ~ d.light)
##
## Residuals:
              1Q Median
      \mathtt{Min}
                             ЗQ
                                    Max
## -1.7203 -0.7086 0.2372 0.4718 2.3085
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## d.light
                        0.01999 0.640 0.52727
          0.01280
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.9622 on 28 degrees of freedom
## Multiple R-squared: 0.01443,
                                  Adjusted R-squared:
## F-statistic: 0.4098 on 1 and 28 DF, p-value: 0.5273
summary(lm(d.v.shan ~ d.light))
##
## Call:
## lm(formula = d.v.shan ~ d.light)
## Residuals:
               1Q Median
                               3Q
                                      Max
## -0.5917 -0.3570 0.1214 0.2817 0.9857
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          0.141162 -2.565
## (Intercept) -0.362101
                                              0.016 *
              -0.004403
                          0.008066 -0.546
                                              0.589
## d.light
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3883 on 28 degrees of freedom
## Multiple R-squared: 0.01053,
                                  Adjusted R-squared: -0.02481
## F-statistic: 0.298 on 1 and 28 DF, p-value: 0.5895
summary(lm(d.Apache.plume ~ d.light, v.sem.dat))
##
## Call:
## lm(formula = d.Apache.plume ~ d.light, data = v.sem.dat)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -33.062 -4.319 4.807
                            9.297 16.737
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.6411
                          4.4197 -3.313 0.00256 **
## d.light
               -0.2891
                           0.2525 -1.145 0.26208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 12.16 on 28 degrees of freedom
## Multiple R-squared: 0.0447, Adjusted R-squared: 0.01058
## F-statistic: 1.31 on 1 and 28 DF, p-value: 0.2621
summary(lm(d.Asteraceae.ovales ~ d.light, v.sem.dat))
##
## Call:
## lm(formula = d.Asteraceae.ovales ~ d.light, data = v.sem.dat)
## Residuals:
##
               1Q Median
                               3Q
      Min
                                      Max
## -31.874 -6.867 6.133 8.134 18.131
```

```
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -8.1407349 4.1640687 -1.955
                                               0.0606 .
## d.light
              -0.0004891 0.2379432 -0.002
                                               0.9984
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.45 on 28 degrees of freedom
## Multiple R-squared: 1.509e-07, Adjusted R-squared: -0.03571
## F-statistic: 4.225e-06 on 1 and 28 DF, p-value: 0.9984
summary(model.v.com, .progressBar = FALSE)
##
## Structural Equation Model of model.v.com
##
## Call:
    d.rocks ~ d.litter
##
##
     d.v.com ~ d.light + d.rocks
##
##
       AIC
                BIC
##
   28.300
            38.108
##
## ---
## Tests of directed separation:
##
##
               Independ.Claim Test.Type DF Crit.Value P.Value
    d.v.com ~ d.litter + ...
                                   coef 26
                                               2.0909 0.0465 *
##
##
     d.rocks ~ d.light + ...
                                   coef 27
                                               2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 14.3 with P-value = 0.006 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                      -0.9983 ***
##
     d.v.com
                d.light
                          0.0177
                                    0.3475 27
                                                  0.0508 0.9598
                                                                       0.0099
##
     d.v.com
               d.rocks
                          0.0595
                                    0.1090 27
                                                  0.5453 0.5900
                                                                       0.1064
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
##
      d.rocks
                none
                          1.00
      d.v.com
               none
                          0.01
summary(model.v.abun, .progressBar = FALSE)
```

##

```
## Structural Equation Model of model.v.abun
##
## Call:
     d.rocks ~ d.litter
##
##
     d.v.abun ~ d.light + d.rocks
##
##
                BIC
       AIC
   28.663
##
             38.471
##
## ---
## Tests of directed separation:
##
##
                Independ.Claim Test.Type DF Crit.Value P.Value
                                                -2.1770 0.0387 *
##
     d.v.abun ~ d.litter + ...
                                    coef 26
##
       d.rocks ~ d.light + ...
                                    coef 27
                                                 2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 14.663 with P-value = 0.005 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
     Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                 -91.5294 0.0000
                                                                       -0.9983 ***
                d.light -0.0483
##
     d.v.abun
                                    0.3688 27
                                                  -0.1310 0.8967
                                                                        -0.0254
##
     d.v.abun
                d.rocks -0.0842
                                    0.1157 27
                                                  -0.7277 0.4731
                                                                       -0.1412
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
     Response method R.squared
##
      d.rocks
                none
                          1.00
     d.v.abun
                none
                          0.02
summary(model.v.rich, .progressBar = FALSE)
##
## Structural Equation Model of model.v.rich
##
## Call:
##
     d.rocks ~ d.litter
##
     d.v.rich ~ d.light + d.rocks
##
##
       AIC
                BIC
##
   25.623
             35.431
##
## ---
## Tests of directed separation:
##
##
                Independ.Claim Test.Type DF Crit.Value P.Value
##
     d.v.rich ~ d.litter + ...
                                    coef 26
                                                -1.3873 0.1771
##
       d.rocks ~ d.light + ...
                                    coef 27
                                                 2.5465 0.0169 *
```

```
##
## Global goodness-of-fit:
##
##
    Fisher's C = 11.623 with P-value = 0.02 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
    Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                      -0.9983 ***
##
    d.v.rich
              d.light
                          0.0115
                                    0.0207 27
                                                  0.5561 0.5827
                                                                       0.1082
              d.rocks
                          0.0020
                                    0.0065 27
                                                                       0.0609
##
    d.v.rich
                                                  0.3131 0.7566
##
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
## ---
## Individual R-squared:
##
##
    Response method R.squared
##
     d.rocks
                none
                          1.00
##
    d.v.rich
               none
                          0.02
summary(model.v.shan, .progressBar = FALSE)
## Structural Equation Model of model.v.shan
##
## Call:
##
    d.rocks ~ d.litter
##
    d.v.shan ~ d.light + d.rocks
##
##
      AIC
                BIC
   26.895
            36.703
##
##
## ---
## Tests of directed separation:
##
##
                Independ.Claim Test.Type DF Crit.Value P.Value
##
     d.v.shan ~ d.litter + ...
                                    coef 26
                                               -1.7395 0.0938
      d.rocks ~ d.light + ...
                                    coef 27
                                                2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 12.895 with P-value = 0.012 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
    Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
     d.rocks d.litter -0.9879
                                    0.0108 28
                                                -91.5294 0.0000
                                                                      -0.9983 ***
##
    d.v.shan
              d.light -0.0028
                                    0.0082 27
                                                 -0.3397 0.7367
                                                                      -0.0651
                                                 -0.9971 0.3276
##
     d.v.shan
              d.rocks -0.0026
                                    0.0026 27
                                                                      -0.1912
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
```

```
## ---
## Individual R-squared:
##
##
     Response method R.squared
##
      d.rocks
                none
                          1.00
##
     d.v.shan
               none
                          0.05
summary(model.v.Apache.plume, .progressBar = FALSE)
##
## Structural Equation Model of model.v.Apache.plume
##
## Call:
     d.rocks ~ d.litter
##
##
     d.Apache.plume ~ d.light + d.rocks
##
##
       AIC
                BIC
##
   25.830
             35.638
##
## ---
## Tests of directed separation:
##
##
                      Independ.Claim Test.Type DF Crit.Value P.Value
##
     d.Apache.plume ~ d.litter + ...
                                                      -1.4474 0.1597
                                           coef 26
             d.rocks ~ d.light + ...
##
                                           coef 27
                                                       2.5465 0.0169 *
##
## Global goodness-of-fit:
##
##
    Fisher's C = 11.83 with P-value = 0.019 and on 4 degrees of freedom
##
## ---
## Coefficients:
##
##
           Response Predictor Estimate Std.Error DF Crit.Value P.Value Std.Estimate
##
            d.rocks d.litter -0.9879
                                          0.0108 28
                                                       -91.5294 0.0000
                                                                              -0.9983
##
     d.Apache.plume
                      d.light -0.2176
                                           0.2527 27
                                                        -0.8611 0.3968
                                                                              -0.1592
     d.Apache.plume
                                           0.0793 27
                                                        -1.4408 0.1611
                                                                              -0.2663
##
                      d.rocks -0.1142
##
##
     ***
##
##
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
## ---
## Individual R-squared:
##
##
           Response method R.squared
##
            d.rocks
                      none
                                1.00
     d.Apache.plume
                      none
                                0.11
summary(model.v.Asteraceae.ovales, .progressBar = FALSE)
```

Structural Equation Model of model.v.Asteraceae.ovales

```
##
## Call:
##
     d.rocks ~ d.litter
##
     d.Asteraceae.ovales ~ d.light + d.rocks
##
       AIC
##
                BIC
##
    24.690
             34.498
##
##
##
  Tests of directed separation:
##
##
                            Independ.Claim Test.Type DF Crit.Value P.Value
##
     d.Asteraceae.ovales ~ d.litter + ...
                                                coef 26
                                                            -1.0976 0.2824
                  d.rocks ~ d.light + ...
                                                             2.5465 0.0169 *
##
                                                coef 27
##
## Global goodness-of-fit:
##
##
     Fisher's C = 10.69 with P-value = 0.03 and on 4 degrees of freedom
##
##
## Coefficients:
##
##
                Response Predictor Estimate Std.Error DF Crit.Value P.Value
##
                 d.rocks d.litter
                                     -0.9879
                                                0.0108 28
                                                             -91.5294 0.0000
##
     d.Asteraceae.ovales
                           d.light
                                    -0.0310
                                                0.2453 27
                                                              -0.1262 0.9005
##
     d.Asteraceae.ovales
                           d.rocks
                                      0.0488
                                                0.0770 27
                                                               0.6335 0.5317
##
     Std.Estimate
          -0.9983 ***
##
##
          -0.0246
##
           0.1234
##
##
     Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
##
##
##
  Individual R-squared:
##
##
                Response method R.squared
##
                 d.rocks
                           none
                                      1.00
##
     d.Asteraceae.ovales
                            none
                                      0.01
```

Analyses for Revisions

```
Tree -> Moth -> Trait -> Loc env -> Community (A, R, D, Comp)
Pair S/R Crown Litter Lichen Rocks Plants Light
```

Lichen and plant community responses are not correlated

```
mantel(l.com.dif.d ~ v.com.dif.d)
## mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
## -0.11773949 0.79100000 0.21000000 0.43800000 -0.23133491 -0.03334609
```

```
mantel(1.com.dif.d ~ env.dif.d)
     mantelr
                pval1
                          pval2
                                    pval3 llim.2.5% ulim.97.5%
   mantel(1.com.dif.d ~ tra.dif.d)
##
                                 pval3 llim.2.5% ulim.97.5%
    mantelr
               pval1
                        pval2
   0.2323704 \quad 0.0390000 \quad 0.9620000 \quad 0.0420000 \quad 0.1419806 \quad 0.3350468
mantel(v.com.dif.d ~ env.dif.d)
     mantelr
                                    pval3
                                         llim.2.5% ulim.97.5%
                pval1
                          pval2
## -0.11698559 0.88400000 0.11700000 0.25100000 -0.15953527 -0.05108963
mantel(v.com.dif.d ~ tra.dif.d)
     mantelr
                pval1
                          pval2
                                    pval3
                                          llim.2.5% ulim.97.5%
```

Both lichen and vegetation respond to moth susceptibility

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Mon May 3 18:38:04 2021

	Df	SumOfSqs	R2	F	Pr(>F)
crown.radius	1	4.68	0.02	0.74	0.4920
rock.sm	1	30.45	0.13	4.78	0.0290
rock.lg	1	29.53	0.13	4.64	0.0270
light	1	2.01	0.01	0.32	0.7820
litter	1	29.47	0.13	4.63	0.0260
Residual	24	152.87	0.67		
Total	29	226.87	1.00		

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Mon May 3 18:38:04 2021

	Df	SumOfSqs	R2	F	Pr(>F)
litter	1	11.61	0.03	0.94	0.4480
rock.sm	1	12.98	0.04	1.05	0.3730
$\operatorname{rock.lg}$	1	11.43	0.03	0.92	0.4540
light	1	7.27	0.02	0.59	0.8290
crown.radius	1	11.07	0.03	0.89	0.5230
Residual	24	297.41	0.83		
Total	29	358.29	1.00		

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Mon May 3 18:38:05 2021

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	0.83	0.04	2.35	0.0305
Residual	58	20.54	0.96		
Total	59	21.37	1.00		

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Mon May 3 18:38:09 2021

	Df	SumOfSqs	R2	F	Pr(>F)
Moth	1	5.17	0.31	25.83	0.0001
Residual	58	11.62	0.69		
Total	59	16.79	1.00		

```
set.seed(12345)
moth.perm.l <- adonis2(com.ds ~ Moth,</pre>
                        strata = 1.dat[, "Tree.pairs"],
                        data = 1.dat,
                        perm = 100000)
set.seed(12345)
moth.perm.v <- adonis2(v.com.ds ~ Moth,
                       strata = 1.dat[, "Tree.pairs"],
                       data = 1.dat,
                       perm = 100000)
tab.perm.l <- data.frame(moth.perm.l)</pre>
tab.perm.v <- data.frame(moth.perm.v)</pre>
tab.fact <- rownames(tab.perm.l)</pre>
tab.perm.l <- apply(tab.perm.l, 2, as.numeric)</pre>
tab.perm.v <- apply(tab.perm.v, 2, as.numeric)</pre>
colnames(tab.perm.l) <- c("df", "SS", "R2", "pseudo-F", "p-value")</pre>
colnames(tab.perm.v) <- c("df", "SS", "R2", "pseudo-F", "p-value")</pre>
tab.perm.l[1, "p-value"] <- round(tab.perm.l[1, "p-value"], 4)</pre>
tab.perm.v[1, "p-value"] <- round(tab.perm.v[1, "p-value"], 4)</pre>
```

```
tab.perm.l[1, "pseudo-F"] <- round(tab.perm.l[1, "pseudo-F"], 2)
tab.perm.v[1, "pseudo-F"] <- round(tab.perm.v[1, "pseudo-F"], 2)</pre>
tab.perm.1[, "SS"] <- round(tab.perm.1[, "SS"], 2)
tab.perm.v[, "SS"] <- round(tab.perm.v[, "SS"], 2)</pre>
tab.perm.1[, "R2"] <- round(tab.perm.1[, "R2"], 2)
tab.perm.v[, "R2"] <- round(tab.perm.v[, "R2"], 2)
tab.perm.l[is.na(tab.perm.l)] <- ""
tab.perm.v[is.na(tab.perm.v)] <- ""
rownames(tab.perm.l) <- tab.fact</pre>
rownames(tab.perm.v) <- tab.fact</pre>
write.csv(file = "results/table_perm_moth_lichen.csv", tab.perm.l)
write.csv(file = "results/table_perm_moth_plant.csv", tab.perm.v)
tab.ttest.ard <- do.call(rbind,
                         lapply(
                             apply(data.frame(l.ard.dif, v.ard.dif), 2,
                                    t.test),
                             unlist))[, c(1, 2, 6, 3)]
tab.lab <- rownames(tab.ttest.ard)</pre>
tab.ttest.ard <- apply(tab.ttest.ard, 2, as.numeric)</pre>
rownames(tab.ttest.ard) <- tab.lab</pre>
xtable::xtable(tab.ttest.ard, digits = 5)
```

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Fri Jul 9 17:27:34 2021

	statistic.t	parameter.df	estimate.mean of x	p.value
l.A	-2.24873	29.00000	-1.54400	0.03230
1.R	-2.95490	29.00000	-2.53333	0.00615
l.D	-2.44677	29.00000	-0.43698	0.02071
p.A	-7.13460	29.00000	-22.43333	0.00000
p.R	-7.47696	29.00000	-1.30000	0.00000
p.D	-4.21918	29.00000	-0.29546	0.00022

Moth impacts tree traits and the local environment

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:34 2021

	statistic.t	parameter.df	estimate.mean of x	p.value
trunk.radius	-3.59977	29.00000	-3.13667	0.00117
crown.radius	-4.61833	29.00000	-58.48667	0.00007
litter	2.86654	29.00000	15.07000	0.00765
rocks	-2.81780	29.00000	-14.65867	0.00862
$\operatorname{rock.lg}$	-2.46174	29.00000	-9.68367	0.02001
$\operatorname{rock.sm}$	-2.07917	29.00000	-4.97500	0.04655
light	-9.27275	29.00000	-15.13333	0.00000

Tree environment correlate with community

```
set.seed(12345)
xtable::xtable(adonis2(com.ds ~ Big.rocks.. + Small.rocks.. + Light...average,
                       strata = 1.dat[, "Tree.pairs"],
                       by = "margin",
                       data = data.frame(env, traits),
                       perm = 9999, rank = TRUE)
## \% latex table generated in R 4.0.4 by xtable 1.8-4 package
## % Wed Apr 21 12:26:26 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
     \hline
##
   & Df & SumOfSqs & R2 & F & Pr($>$F) \\
     \hline
##
## Big.rocks.. & 1 & 1.79 & 0.08 & 5.47 & 0.0004 \\
##
     Small.rocks.. & 1 & 0.27 & 0.01 & 0.81 & 0.5720 \\
##
    Light...average & 1 & 0.39 & 0.02 & 1.20 & 0.2649 \\
     Residual & 56 & 18.31 & 0.86 & & \\
##
     Total & 59 & 21.37 & 1.00 & & \\
##
      \hline
##
## \end{tabular}
## \end{table}
set.seed(12345)
xtable::xtable(adonis2(v.com.ds ~ Light...average + Big.rocks.. + Small.rocks..,
                       strata = 1.dat[, "Tree.pairs"],
                       by = "margin",
                       data = data.frame(env, traits),
                       perm = 9999)
               )
## \% latex table generated in R 4.0.4 by xtable 1.8-4 package
## % Wed Apr 21 12:26:30 2021
## \begin{table}[ht]
## \centering
## \begin{tabular}{lrrrrr}
## & Df & SumOfSqs & R2 & F & Pr($>$F) \\
## Light...average & 1 & 2.93 & 0.17 & 13.00 & 0.0001 \\
    Big.rocks.. & 1 & 0.10 & 0.01 & 0.44 & 0.7243 \\
```

```
##
    Small.rocks.. & 1 & 0.73 & 0.04 & 3.26 & 0.0290 \\
##
    Residual & 56 & 12.61 & 0.75 & & \\
    Total & 59 & 16.79 & 1.00 & & \\
##
     \hline
##
## \end{tabular}
## \end{table}
summary(lm(1.A ~ rock.lg * rock.sm * light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.A ~ rock.lg * rock.sm * light, data = data.frame(l.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -7.5443 -0.9009 0.3873 1.2621 4.7576
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        1.2906171 1.9919281 0.648 0.5237
                                              2.335
## rock.lg
                         0.2672626 0.1144530
                                                       0.0291 *
## rock.sm
                        -0.2489435 0.2305602 -1.080
                                                       0.2920
## light
                         0.0964938 0.1233636
                                              0.782
                                                       0.4424
                        -0.0098077 0.0131545 -0.746
## rock.lg:rock.sm
                                                       0.4638
## rock.lg:light
                         0.0108967 0.0067177
                                               1.622
                                                       0.1190
## rock.sm:light
                        -0.0130569 0.0118033 -1.106
                                                       0.2806
## rock.lg:rock.sm:light -0.0002544 0.0005513 -0.461 0.6490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.337 on 22 degrees of freedom
## Multiple R-squared: 0.4027, Adjusted R-squared: 0.2127
## F-statistic: 2.119 on 7 and 22 DF, p-value: 0.08438
summary(lm(1.R ~ rock.lg * rock.sm * light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.R ~ rock.lg * rock.sm * light, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -5.4034 -1.7571 0.5585 2.0862 3.9423
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                             1.572 0.1302
                        2.8682448 1.8246866
## rock.lg
                        0.3576352 0.1048436
                                               3.411
                                                      0.0025 **
## rock.sm
                        0.0782553
                                   0.2112024
                                               0.371
                                                      0.7145
## light
                                               2.298
                                                      0.0315 *
                        0.2596367
                                   0.1130061
## rock.lg:rock.sm
                        0.0060809 0.0120501
                                               0.505
                                                      0.6188
```

```
## rock.lg:light
                        0.0114837 0.0061537
                                               1.866
                                                       0.0754 .
## rock.sm:light
                                                       0.6432
                        0.0050780 0.0108123
                                               0.470
## rock.lg:rock.sm:light 0.0003271 0.0005050
                                               0.648
                                                       0.5238
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.057 on 22 degrees of freedom
## Multiple R-squared: 0.6785, Adjusted R-squared: 0.5762
## F-statistic: 6.634 on 7 and 22 DF, p-value: 0.0002762
summary(lm(1.D ~ rock.lg * rock.sm * light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.D ~ rock.lg * rock.sm * light, data = data.frame(l.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -1.3539 -0.1798 0.1183 0.3590 0.9120
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        7.064e-01 3.914e-01
                                               1.805 0.0848 .
## rock.lg
                        5.437e-02 2.249e-02
                                               2.418
                                                     0.0243 *
## rock.sm
                        5.766e-02 4.530e-02
                                              1.273
                                                      0.2163
## light
                                                      0.0199 *
                        6.085e-02 2.424e-02 2.511
## rock.lg:rock.sm
                        2.179e-03 2.585e-03 0.843
                                                      0.4082
## rock.lg:light
                        1.247e-03 1.320e-03
                                               0.945
                                                      0.3552
## rock.sm:light
                        3.242e-03 2.319e-03
                                               1.398
                                                       0.1761
## rock.lg:rock.sm:light 8.461e-05 1.083e-04
                                               0.781
                                                       0.4431
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6557 on 22 degrees of freedom
## Multiple R-squared: 0.6592, Adjusted R-squared: 0.5508
## F-statistic: 6.079 on 7 and 22 DF, p-value: 0.0004929
summary(lm(1.A ~ light *rock.lg * rock.sm,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.A ~ light * rock.lg * rock.sm, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
               1Q Median
                               3Q
                                      Max
## -7.5443 -0.9009 0.3873 1.2621 4.7576
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         1.2906171 1.9919281
                                                0.648
                                                        0.5237
## light
                         0.0964938 0.1233636
                                                0.782
                                                        0.4424
```

```
## rock.lg
                         0.2672626 0.1144530 2.335
                                                       0.0291 *
## rock.sm
                        -0.2489435 0.2305602 -1.080
                                                       0.2920
                                                       0.1190
## light:rock.lg
                        0.0108967 0.0067177
                                               1.622
## light:rock.sm
                        -0.0130569 0.0118033
                                             -1.106
                                                       0.2806
## rock.lg:rock.sm
                        -0.0098077 0.0131545
                                              -0.746
                                                       0.4638
## light:rock.lg:rock.sm -0.0002544 0.0005513 -0.461
                                                       0.6490
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.337 on 22 degrees of freedom
## Multiple R-squared: 0.4027, Adjusted R-squared: 0.2127
## F-statistic: 2.119 on 7 and 22 DF, p-value: 0.08438
summary(lm(1.R ~ light *rock.lg * rock.sm,
    data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.R ~ light * rock.lg * rock.sm, data = data.frame(1.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               30
## -5.4034 -1.7571 0.5585 2.0862 3.9423
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        2.8682448 1.8246866 1.572 0.1302
## light
                        0.2596367 0.1130061 2.298
                                                     0.0315 *
## rock.lg
                        0.3576352 0.1048436
                                              3.411
                                                      0.0025 **
## rock.sm
                        0.0782553 0.2112024 0.371
                                                      0.7145
## light:rock.lg
                                  0.0061537
                                              1.866
                                                      0.0754 .
                        0.0114837
## light:rock.sm
                        0.0050780
                                  0.0108123
                                             0.470
                                                      0.6432
## rock.lg:rock.sm
                        0.0060809
                                  0.0120501
                                              0.505
                                                      0.6188
## light:rock.lg:rock.sm 0.0003271 0.0005050
                                             0.648
                                                     0.5238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.057 on 22 degrees of freedom
## Multiple R-squared: 0.6785, Adjusted R-squared: 0.5762
## F-statistic: 6.634 on 7 and 22 DF, p-value: 0.0002762
summary(lm(1.D ~ light *rock.lg * rock.sm,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## lm(formula = 1.D ~ light * rock.lg * rock.sm, data = data.frame(1.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
               1Q Median
      Min
                               3Q
                                     Max
## -1.3539 -0.1798 0.1183 0.3590 0.9120
##
## Coefficients:
```

```
##
                        Estimate Std. Error t value Pr(>|t|)
                        7.064e-01 3.914e-01
                                                       0.0848 .
## (Intercept)
                                               1.805
                        6.085e-02 2.424e-02
## light
                                               2.511
                                                       0.0199 *
## rock.lg
                        5.437e-02 2.249e-02
                                               2.418
                                                      0.0243 *
## rock.sm
                        5.766e-02 4.530e-02
                                               1.273
                                                      0.2163
## light:rock.lg
                        1.247e-03 1.320e-03
                                              0.945
                                                      0.3552
## light:rock.sm
                        3.242e-03 2.319e-03
                                               1.398
                                                       0.1761
                        2.179e-03 2.585e-03
## rock.lg:rock.sm
                                               0.843
                                                       0.4082
## light:rock.lg:rock.sm 8.461e-05 1.083e-04
                                               0.781
                                                       0.4431
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6557 on 22 degrees of freedom
## Multiple R-squared: 0.6592, Adjusted R-squared: 0.5508
## F-statistic: 6.079 on 7 and 22 DF, p-value: 0.0004929
summary(lm(1.A ~ rock.lg + rock.sm + light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.A ~ rock.lg + rock.sm + light, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
               1Q Median
##
      Min
                               3Q
                                      Max
## -7.7485 -0.6511 0.6642 1.3935 5.4237
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                          1.224495 -0.349 0.72991
## (Intercept) -0.427328
                                    2.896 0.00757 **
               0.088123
                          0.030432
## rock.lg
## rock.sm
               0.022591
                          0.050663
                                    0.446 0.65935
## light
               0.009973
                          0.071228
                                   0.140 0.88972
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.346 on 26 degrees of freedom
## Multiple R-squared: 0.2904, Adjusted R-squared: 0.2085
## F-statistic: 3.547 on 3 and 26 DF, p-value: 0.02821
summary(lm(1.R ~ rock.lg + rock.sm + light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.R ~ rock.lg + rock.sm + light, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -5.6550 -1.9714 0.6468 2.0461 6.0752
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 0.371141
                          1.130676
                                    0.328
                                             0.745
                          0.028100
## rock.lg
                                   5.784 4.3e-06 ***
               0.162543
## rock.sm
              -0.005166
                          0.046781
                                   -0.110
                                             0.913
## light
               0.089614
                          0.065770
                                    1.363
                                             0.185
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.089 on 26 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.5672
## F-statistic: 13.67 on 3 and 26 DF, p-value: 1.515e-05
summary(lm(1.D ~ rock.lg + rock.sm + light,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.D ~ rock.lg + rock.sm + light, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
       Min
                 1Q
                    Median
                                   3Q
                                           Max
## -1.20164 -0.37452 0.01855 0.38633 1.20307
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1937003 0.2527542
                                     0.766
                                              0.450
               0.0315016 0.0062816
                                     5.015 3.23e-05 ***
## rock.lg
## rock.sm
              -0.0007058 0.0104575 -0.067
                                              0.947
## light
               0.0217497 0.0147024
                                     1.479
                                              0.151
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6906 on 26 degrees of freedom
## Multiple R-squared: 0.5531, Adjusted R-squared: 0.5016
## F-statistic: 10.73 on 3 and 26 DF, p-value: 9.066e-05
summary(lm(1.A ~ light +rock.lg + rock.sm,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.A ~ light + rock.lg + rock.sm, data = data.frame(1.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -7.7485 -0.6511 0.6642 1.3935 5.4237
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.427328
                          1.224495 -0.349 0.72991
                                   0.140 0.88972
## light
               0.009973
                          0.071228
                          0.030432
                                   2.896 0.00757 **
## rock.lg
               0.088123
## rock.sm
               0.022591
                          ## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.346 on 26 degrees of freedom
## Multiple R-squared: 0.2904, Adjusted R-squared: 0.2085
## F-statistic: 3.547 on 3 and 26 DF, p-value: 0.02821
summary(lm(1.R ~ light +rock.lg + rock.sm,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.R ~ light + rock.lg + rock.sm, data = data.frame(1.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               30
## -5.6550 -1.9714 0.6468 2.0461 6.0752
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.371141
                          1.130676
                                   0.328
                                             0.745
               0.089614
                          0.065770
                                   1.363
                                              0.185
## light
## rock.lg
               0.162543
                          0.028100
                                   5.784 4.3e-06 ***
## rock.sm
              -0.005166
                          0.046781 -0.110
                                              0.913
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.089 on 26 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.5672
## F-statistic: 13.67 on 3 and 26 DF, p-value: 1.515e-05
summary(lm(1.D ~ light +rock.lg + rock.sm,
          data = data.frame(l.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = 1.D ~ light + rock.lg + rock.sm, data = data.frame(l.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
##
       Min
                 1Q
                    Median
                                   3Q
## -1.20164 -0.37452 0.01855 0.38633 1.20307
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.1937003 0.2527542 0.766
                                               0 450
               0.0217497 0.0147024
                                      1.479
                                               0.151
## light
## rock.lg
               0.0315016 0.0062816
                                      5.015 3.23e-05 ***
## rock.sm
              -0.0007058 0.0104575 -0.067
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6906 on 26 degrees of freedom
## Multiple R-squared: 0.5531, Adjusted R-squared: 0.5016
## F-statistic: 10.73 on 3 and 26 DF, p-value: 9.066e-05
```

```
summary(lm(p.A ~ rock.lg * rock.sm * light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.A ~ rock.lg * rock.sm * light, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -45.808 -8.565
                   2.356 11.435
                                  25.518
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -24.997498 10.598639 -2.359
                                                      0.0276 *
                                   0.608981 -0.530
                                                      0.6015
## rock.lg
                        -0.322706
## rock.sm
                        -0.574845
                                   1.226763 -0.469
                                                      0.6440
## light
                         -0.068351
                                    0.656392 -0.104
                                                      0.9180
## rock.lg:rock.sm
                                    0.069993 -0.400
                        -0.027964
                                                      0.6934
## rock.lg:light
                        -0.026183
                                  0.035744 -0.733
                                                      0.4716
## rock.sm:light
                         0.006300 0.062803
                                             0.100
                                                      0.9210
## rock.lg:rock.sm:light -0.001141
                                    0.002933 -0.389
                                                      0.7011
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17.76 on 22 degrees of freedom
## Multiple R-squared: 0.1937, Adjusted R-squared: -0.06288
## F-statistic: 0.7549 on 7 and 22 DF, p-value: 0.6297
summary(lm(p.R ~ rock.lg * rock.sm * light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.R ~ rock.lg * rock.sm * light, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
       Min
                 1Q Median
                                  30
## -1.15006 -0.67011 -0.00113 0.40891 2.13338
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                        -1.121e+00 5.309e-01 -2.111
                                                      0.0463 *
## rock.lg
                        1.329e-02 3.050e-02
                                              0.436
                                                      0.6674
## rock.sm
                        -3.598e-03 6.145e-02 -0.059
                                                      0.9538
## light
                        1.453e-02 3.288e-02
                                              0.442
                                                      0.6629
## rock.lg:rock.sm
                        1.782e-03 3.506e-03
                                              0.508
                                                      0.6163
## rock.lg:light
                        -4.340e-04 1.790e-03 -0.242
                                                      0.8107
## rock.sm:light
                        1.363e-03 3.146e-03
                                             0.433
                                                      0.6690
## rock.lg:rock.sm:light 5.302e-05 1.469e-04
                                             0.361
                                                      0.7217
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
## Residual standard error: 0.8894 on 22 degrees of freedom
## Multiple R-squared: 0.3383, Adjusted R-squared: 0.1278
## F-statistic: 1.607 on 7 and 22 DF, p-value: 0.1857
summary(lm(p.D ~ rock.lg * rock.sm * light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.D ~ rock.lg * rock.sm * light, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
       Min
                 1Q
                      Median
                                   3Q
## -0.61818 -0.27861 -0.01608 0.24591 0.88670
##
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -4.975e-01 2.268e-01
                                              -2.194 0.0391 *
## rock.lg
                        -9.983e-03 1.303e-02
                                              -0.766
                                                        0.4518
## rock.sm
                        -1.668e-02 2.625e-02 -0.635
                                                        0.5317
## light
                        -1.037e-02 1.405e-02 -0.738
                                                        0.4680
## rock.lg:rock.sm
                        -3.217e-04 1.498e-03
                                               -0.215
                                                        0.8319
## rock.lg:light
                        -7.732e-04 7.648e-04 -1.011
                                                        0.3230
## rock.sm:light
                        -2.122e-04 1.344e-03 -0.158
                                                        0.8759
## rock.lg:rock.sm:light -2.246e-05 6.277e-05 -0.358
                                                        0.7239
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3799 on 22 degrees of freedom
## Multiple R-squared: 0.2557, Adjusted R-squared: 0.01892
## F-statistic: 1.08 on 7 and 22 DF, p-value: 0.4088
summary(lm(p.A ~ light *rock.lg * rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.A ~ light * rock.lg * rock.sm, data = data.frame(v.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -45.808 -8.565
                    2.356 11.435 25.518
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
                        -24.997498 10.598639 -2.359
## (Intercept)
                                                        0.0276 *
## light
                         -0.068351
                                     0.656392 -0.104
                                                        0.9180
## rock.lg
                                              -0.530
                         -0.322706
                                    0.608981
                                                        0.6015
## rock.sm
                                     1.226763 -0.469
                         -0.574845
                                                        0.6440
                         -0.026183
## light:rock.lg
                                     0.035744
                                               -0.733
                                                        0.4716
## light:rock.sm
                          0.006300
                                     0.062803
                                                0.100
                                                        0.9210
## rock.lg:rock.sm
                         -0.027964
                                    0.069993 -0.400
                                                        0.6934
## light:rock.lg:rock.sm -0.001141
                                     0.002933 -0.389
                                                        0.7011
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 17.76 on 22 degrees of freedom
## Multiple R-squared: 0.1937, Adjusted R-squared: -0.06288
## F-statistic: 0.7549 on 7 and 22 DF, p-value: 0.6297
summary(lm(p.R ~ light *rock.lg * rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.R ~ light * rock.lg * rock.sm, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.15006 -0.67011 -0.00113 0.40891 2.13338
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                       -1.121e+00 5.309e-01 -2.111
## (Intercept)
                                                       0.0463 *
## light
                         1.453e-02 3.288e-02
                                              0.442
                                                       0.6629
## rock.lg
                        1.329e-02 3.050e-02
                                              0.436
                                                       0.6674
## rock.sm
                        -3.598e-03 6.145e-02 -0.059
                                                       0.9538
## light:rock.lg
                        -4.340e-04 1.790e-03 -0.242
                                                       0.8107
## light:rock.sm
                         1.363e-03 3.146e-03
                                               0.433
                                                       0.6690
## rock.lg:rock.sm
                         1.782e-03 3.506e-03
                                               0.508
                                                       0.6163
## light:rock.lg:rock.sm 5.302e-05 1.469e-04
                                               0.361
                                                       0.7217
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8894 on 22 degrees of freedom
## Multiple R-squared: 0.3383, Adjusted R-squared: 0.1278
## F-statistic: 1.607 on 7 and 22 DF, p-value: 0.1857
summary(lm(p.D ~ light *rock.lg * rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.D ~ light * rock.lg * rock.sm, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.61818 -0.27861 -0.01608 0.24591 0.88670
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                        -4.975e-01 2.268e-01 -2.194
                                                       0.0391 *
                        -1.037e-02 1.405e-02 -0.738
## light
                                                       0.4680
## rock.lg
                        -9.983e-03 1.303e-02 -0.766
                                                       0.4518
## rock.sm
                        -1.668e-02 2.625e-02 -0.635
                                                       0.5317
## light:rock.lg
                        -7.732e-04 7.648e-04 -1.011
                                                       0.3230
```

```
## light:rock.sm
                        -2.122e-04 1.344e-03 -0.158
                                                       0.8759
## rock.lg:rock.sm
                        -3.217e-04 1.498e-03 -0.215
                                                       0.8319
                                                       0.7239
## light:rock.lg:rock.sm -2.246e-05 6.277e-05 -0.358
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3799 on 22 degrees of freedom
## Multiple R-squared: 0.2557, Adjusted R-squared: 0.01892
## F-statistic: 1.08 on 7 and 22 DF, p-value: 0.4088
summary(lm(p.A ~ rock.lg + rock.sm + light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.A ~ rock.lg + rock.sm + light, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -45.955 -8.621
                   2.115 12.151 28.829
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -23.55502
                          6.14481 -3.833 0.000721 ***
                           0.15271
                                   0.770 0.448432
## rock.lg
                0.11754
               -0.53383
                           0.25424 -2.100 0.045607 *
## rock.sm
                                   0.073 0.942215
## light
                0.02616
                           0.35744
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.79 on 26 degrees of freedom
## Multiple R-squared: 0.1479, Adjusted R-squared: 0.04957
## F-statistic: 1.504 on 3 and 26 DF, p-value: 0.2368
summary(lm(p.R ~ rock.lg + rock.sm + light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.R ~ rock.lg + rock.sm + light, data = data.frame(v.ard.dif,
##
      tra.dif, env.dif))
##
## Residuals:
##
                 1Q
                     Median
## -1.09085 -0.72885 0.07251 0.43267 2.04097
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                          0.302605 -3.394 0.00222 **
## (Intercept) -1.027067
                          0.007521
                                   2.614 0.01470 *
## rock.lg
              0.019656
## rock.sm
              -0.036574
                          0.012520 -2.921 0.00712 **
               0.017481
                                   0.993 0.32981
## light
                          0.017602
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.8268 on 26 degrees of freedom
## Multiple R-squared: 0.3242, Adjusted R-squared: 0.2462
## F-statistic: 4.157 on 3 and 26 DF, p-value: 0.01565
summary(lm(p.D ~ rock.lg + rock.sm + light,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.D ~ rock.lg + rock.sm + light, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
                 1Q
##
       Min
                     Median
                                   3Q
                                           Max
## -0.48929 -0.33019 -0.02457 0.29568 0.88860
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3546159 0.1309685 -2.708
                                             0.0118 *
## rock.lg
              0.0027760 0.0032549 0.853
                                              0.4015
## rock.sm
              -0.0142947 0.0054187 -2.638
                                              0.0139 *
## light
              -0.0009857 0.0076183 -0.129
                                              0.8980
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3579 on 26 degrees of freedom
## Multiple R-squared: 0.2196, Adjusted R-squared: 0.1296
## F-statistic: 2.439 on 3 and 26 DF, p-value: 0.08707
summary(lm(p.A ~ light +rock.lg + rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.A ~ light + rock.lg + rock.sm, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
                   2.115 12.151 28.829
## -45.955 -8.621
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -23.55502
                           6.14481 -3.833 0.000721 ***
## light
                0.02616
                           0.35744 0.073 0.942215
## rock.lg
                0.11754
                           0.15271
                                    0.770 0.448432
## rock.sm
               -0.53383
                           0.25424 -2.100 0.045607 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 16.79 on 26 degrees of freedom
## Multiple R-squared: 0.1479, Adjusted R-squared: 0.04957
## F-statistic: 1.504 on 3 and 26 DF, p-value: 0.2368
```

```
summary(lm(p.R ~ light +rock.lg + rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.R ~ light + rock.lg + rock.sm, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
## Residuals:
##
       Min
                 1Q
                    Median
                                   3Q
## -1.09085 -0.72885 0.07251 0.43267 2.04097
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.027067
                          0.302605 -3.394 0.00222 **
## light
              0.017481
                          0.017602
                                   0.993 0.32981
## rock.lg
              0.019656
                          0.007521
                                    2.614 0.01470 *
## rock.sm
              -0.036574
                          0.012520 -2.921 0.00712 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8268 on 26 degrees of freedom
## Multiple R-squared: 0.3242, Adjusted R-squared: 0.2462
## F-statistic: 4.157 on 3 and 26 DF, p-value: 0.01565
summary(lm(p.D ~ light +rock.lg + rock.sm,
          data = data.frame(v.ard.dif, tra.dif, env.dif)))
##
## Call:
## lm(formula = p.D ~ light + rock.lg + rock.sm, data = data.frame(v.ard.dif,
      tra.dif, env.dif))
##
##
## Residuals:
       Min
                 1Q Median
                                   3Q
## -0.48929 -0.33019 -0.02457 0.29568 0.88860
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.3546159 0.1309685 -2.708
                                            0.0118 *
             -0.0009857 0.0076183 -0.129
                                             0.8980
## light
## rock.lg
              0.0027760 0.0032549
                                    0.853
                                             0.4015
## rock.sm
              -0.0142947 0.0054187 -2.638
                                             0.0139 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3579 on 26 degrees of freedom
## Multiple R-squared: 0.2196, Adjusted R-squared: 0.1296
## F-statistic: 2.439 on 3 and 26 DF, p-value: 0.08707
Structural Equation Models
```

1.com.dif <- split(com, 1.dat[, "Tree.pairs"])</pre>

1.com.dif \leftarrow lapply(1.com.dif, function(x) x[2,] - x[1,])

```
1.com.dif <- do.call(rbind, l.com.dif)</pre>
v.com.dif <- split(v.com, l.dat[, "Tree.pairs"])</pre>
v.com.dif <- lapply(v.com.dif, function(x) x[2, ] - x[1, ])
v.com.dif <- do.call(rbind, v.com.dif)</pre>
l.com.dif.d <- dist(l.com.dif)</pre>
v.com.dif.d <- dist(v.com.dif)</pre>
1.com.dif.nms <- nmds(1.com.dif.d, 1, 2)</pre>
1.com.dif.ord <- nmds.min(1.com.dif.nms, 2)</pre>
## Minimum stress for given dimensionality: 0.07460277
## r^2 for minimum stress configuration: 0.9809944
1.com.dif.vec <- envfit(1.com.dif.ord,</pre>
                                                 data.frame(env.dif, tra.dif)[, c("rock.lg",
                                                                                                                      "rock.sm",
                                                                                                                      "light",
                                                                                                                      "litter")])
v.com.dif.nms <- nmds(v.com.dif.d, 2, 3)
v.com.dif.ord <- nmds.min(v.com.dif.nms, 3)</pre>
## Minimum stress for given dimensionality: 0.03324742
## r^2 for minimum stress configuration: 0.9927886
v.com.dif.vec <- envfit(v.com.dif.ord,</pre>
                                                  data.frame(env.dif, tra.dif)[, c("rock.lg",
                                                                                                                      "rock.sm",
                                                                                                                      "light",
                                                                                                                      "litter")])
colnames(l.com.dif.ord) <- paste0("1.", colnames(l.com.dif.ord))</pre>
colnames(v.com.dif.ord) <- paste0("p.", colnames(v.com.dif.ord))</pre>
1.com.dif.ord.proc <- procrustes(env.dif[, "rock.lg"], 1.com.dif.ord)$Yrot</pre>
## Warning in procrustes(env.dif[, "rock.lg"], 1.com.dif.ord): X has fewer axes than Y: X adjusted to c
v.com.dif.ord.proc <- procrustes(tra.dif[, "litter"], v.com.dif.ord)$Yrot
## Warning in procrustes(tra.dif[, "litter"], v.com.dif.ord): X has fewer axes than Y: X adjusted to compare the compared to t
colnames(1.com.dif.ord.proc) <- paste0("rot.", colnames(1.com.dif.ord))</pre>
colnames(v.com.dif.ord.proc) <- paste0("rot.", colnames(v.com.dif.ord))</pre>
1.com.dif.vec.rot <- envfit(1.com.dif.ord.proc,</pre>
                                                          data.frame(env.dif[, c(-1, -3)],
                                                                                litter = tra.dif[, "litter"]))
v.com.dif.vec.rot <- envfit(v.com.dif.ord.proc,</pre>
                                                          data.frame(light = env.dif[, "light"],
                                                                                litter = tra.dif[, "litter"]))
sem.dat <- data.frame(tra.dif, env.dif, l.ard.dif, v.ard.dif, l.com.dif.ord, v.com.dif.ord, l.com.dif.or
colnames(sem.dat)[colnames(sem.dat) == "crown.radius"] <- "crown"</pre>
colnames(sem.dat)[colnames(sem.dat) == "trunk.radius"] <- "trunk"</pre>
```

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:34 2021

	parameter.df		p.value
0.56225	59.00000	79.80633	0.00000
7.69468	59.00000	14.90117	0.00000
3.84706	59.00000	4.79783	0.00030
2.61579	59.00000	0.40567	0.01129
.00000	59.00000	0.02467	0.32139
.00000	59.00000	0.07100	0.32139
2.09160	59.00000	17.67833	0.00000
2.00919	59.00000	17.80833	0.00000
3.30890	59.00000	17.74333	0.00000
3.91476	59.00000	0.02833	0.00024
1.79957	59.00000	0.14000	0.00001
.12174	59.00000	0.14933	0.26652
.00000	59.00000	0.00100	0.32139
	59.00000	0.00000	
.98868	59.00000	0.00233	0.05138
5.70908	59.00000	0.32017	0.00000
2.04690	59.00000	0.01967	0.04513
3.55666	59.00000	0.09633	0.00075
3.82975	59.00000	0.29150	0.00031
3.63277	59.00000	0.62233	0.00059
.25869	59.00000	0.21150	0.00007
2.54509	59.00000	0.03867	0.01356
.00000	59.00000	0.00067	0.32139
.69236	59.00000	0.00250	0.09585
.67611	59.00000	0.04933	0.09901
.23020	59.00000	0.00867	0.22350
	1.56225 1.69468 1.84706 1.61579 1.00000 1.009160 1.00919 1.30890 1.91476 1.79957 1.12174 1.00000 1.98868 1.70908 1.04690 1.55666 1.82975 1.63277 1.25869 1.54509 1.00000 1.69236 1.67611	5.56225 59.00000 6.69468 59.00000 8.84706 59.00000 6.61579 59.00000 .00000 59.00000 .009160 59.00000 8.30890 59.00000 8.79957 59.00000 8.9868 59.00000 8.70908 59.00000 8.70908 59.00000 8.82975 59.00000 8.54509 59.00000 8.54509 59.00000 8.9366 59.00000 8.5975 59.00000 8.63277 59.00000 8.54509 59.00000 8.54509 59.00000 6.67611 59.00000	5.56225 59.00000 79.80633 6.69468 59.00000 14.90117 6.84706 59.00000 4.79783 6.61579 59.00000 0.40567 .00000 59.00000 0.07100 6.09160 59.00000 17.67833 6.00919 59.00000 17.80833 6.30890 59.00000 17.74333 6.91476 59.00000 0.14000 6.7957 59.00000 0.14933 6.0000 59.00000 0.00100 6.9868 59.00000 0.00100 6.9868 59.00000 0.01967 6.55666 59.00000 0.01967 6.55666 59.00000 0.29150 6.63277 59.00000 0.22150 6.54509 59.00000 0.21150 6.54509 59.00000 0.00867 6.0000 59.00000 0.00250 6.67611 59.00000 0.04933

```
xtable::xtable(na.omit(tab.ttest.ldat[tab.ttest.ldat[, "p.value"] <= 0.05,]))</pre>
```

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:34 2021

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:34 2021

	statistic.t	parameter.df	estimate.mean of x	p.value
Litter	30.56	59.00	79.81	0.00
Big.rocks	7.69	59.00	14.90	0.00
Small.rocks	3.85	59.00	4.80	0.00
Shrubs	2.62	59.00	0.41	0.01
LightN	12.09	59.00	17.68	0.00
LightS	12.01	59.00	17.81	0.00
Lightaverage	13.31	59.00	17.74	0.00
Acacon	3.91	59.00	0.03	0.00
Acaame	4.80	59.00	0.14	0.00
Canros	5.71	59.00	0.32	0.00
Calare	2.05	59.00	0.02	0.05
Phydub	3.56	59.00	0.10	0.00
Rhichr	3.83	59.00	0.29	0.00
Xanlin	3.63	59.00	0.62	0.00
Xanpli	4.26	59.00	0.21	0.00
Xanele	2.55	59.00	0.04	0.01

```
xtable::xtable(na.omit(tab.ttest.vdat[tab.ttest.vdat[, "p.value"] <= 0.05,]))</pre>
```

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:34 2021

```
lav.l.all <- 'light ~ crown</pre>
              litter ~ crown
              rock.lg ~ litter
              1.A ~ light + rock.lg
              1.R ~ light + rock.lg
              1.D ~ light + rock.lg
              1.X1 ~ light + rock.lg
              1.X2 ~ light + rock.lg
              1.A ~~ 1.R
              1.A ~~ 1.D
              1.R ~~ 1.D
              1.A ~~ 1.X1
              1.R ~~ 1.X1
lav.v.all <- 'light ~ crown</pre>
              litter ~ crown
              rock.sm ~ litter
              p.A ~ light + rock.sm
              p.R ~ light + rock.sm + litter
              p.D ~ light + rock.sm
              p.X1 ~ light + rock.sm
              p.X2 ~ light + rock.sm
              p.X3 ~ light + rock.sm
              p.A ~~ p.X2
              p.A ~~ p.R
              p.A ~~ p.D
              p.R ~~ p.D
              p.A ~~ p.X1
              p.R ~~ p.X1
lav.l.rot.nolight <- 'litter ~ crown</pre>
```

	statistic.t	parameter.df	estimate.mean of x	p.value
Apache.plume	4.64843	59.00000	6.53333	0.00002
Juniperus.monosperma	1.00000	59.00000	0.08333	0.32139
Rhus.trilobata	1.80478	59.00000	1.58333	0.07621
Asteraceae.ovales	4.64433	59.00000	6.23333	0.00002
Bouteloua.gracilis		59.00000	0.00000	
Pinus.edulis.R	1.00000	59.00000	0.16667	0.32139
Pinus.edulis.S		59.00000	0.00000	
Stipa.A		59.00000	0.00000	
Stipa.B		59.00000	0.00000	
Stipa.très.grand		59.00000	0.00000	
Ephedra		59.00000	0.00000	
Rabbit.brush	1.00000	59.00000	0.33333	0.32139
Grande.grass.corymbe		59.00000	0.00000	
Boraginacée.rosette.grise		59.00000	0.00000	
Avena	1.76218	59.00000	0.10000	0.08322
Grass.à.nœud		59.00000	0.00000	
Brachypode		59.00000	0.00000	
Carex		59.00000	0.00000	
Cactus		59.00000	0.00000	
Hordeum		59.00000	0.00000	
Chenopodiaceae		59.00000	0.00000	
Ribes		59.00000	0.00000	
Aster.grise		59.00000	0.00000	
Rosette.frisée		59.00000	0.00000	
Chamaephyte.gris		59.00000	0.00000	
Castilleja		59.00000	0.00000	
Opuntia		59.00000	0.00000	
Rubiaceae		59.00000	0.00000	
Plante.grise.allongée	1.00000	59.00000	0.05000	0.32139
Scarlet.glia	1.00000	59.00000	0.03333	0.32139
Andropogon		59.00000	0.00000	

	statistic.t	parameter.df	estimate.mean of x	p.value
Apache.plume	4.65	59.00	6.53	0.00
Asteraceae.ovales	4.64	59.00	6.23	0.00

```
rock.lg ~ litter

1.A ~ rock.lg

1.R ~ rock.lg

1.D ~ rock.lg

rot.l.X1 ~ rock.lg

rot.l.X2 ~ rock.lg

1.A ~~ 1.R

1.A ~~ 1.D

1.R ~~ 1.D

1.R ~~ rot.l.X1

1.R ~~ rot.l.X1

p.A ~ rock.sm ~ litter

p.A ~ rock.sm

p.R ~ rock.sm
```

```
p.D ~ rock.sm
                  rot.p.X1 ~ rock.sm
                  rot.p.X2 ~ rock.sm
                  rot.p.X3 ~ rock.sm
                  p.A ~~ rot.p.X2
                  p.A ~~ p.R
                  p.A ~~ p.D
                  p.R ~~ p.D
                  p.A ~~ rot.p.X1
                  p.R ~~ rot.p.X1
lav.l.rot.all <- 'light ~ crown</pre>
                  litter ~ crown
                  rock.lg ~ litter
                  1.A ~ light + rock.lg
                  1.R ~ light + rock.lg
                  1.D ~ light + rock.lg
                  rot.l.X1 ~ light + rock.lg
                  rot.1.X2 ~ light + rock.lg
                  1.A ~~ 1.R
                  1.A ~~ 1.D
                  1.R ~~ 1.D
                  1.A ~~ rot.1.X1
                  1.R ~~ rot.1.X1
lav.v.rot.all <- 'light ~ crown</pre>
                  litter ~ crown
                  rock.sm ~ litter
                  p.A ~ light + rock.sm
                  p.R ~ light + rock.sm
                  p.D ~ light + rock.sm
                  rot.p.X1 ~ light + rock.sm
                  rot.p.X2 ~ light + rock.sm
                  rot.p.X3 ~ light + rock.sm
                  p.A ~~ rot.p.X2
                  p.A ~~ p.R
                  p.A ~~ p.D
                  p.R ~~ p.D
                  p.A ~~ rot.p.X1
                  p.R ~~ rot.p.X1
lav.v.rot.norock <- 'light ~ crown</pre>
                  litter ~ crown
                  p.A ~ light + litter
                  p.R ~ light + litter
                  p.D ~ light + litter
                  rot.p.X1 ~ light + litter
                  rot.p.X2 ~ light + litter
                  rot.p.X3 ~ light + litter
                  p.A ~~ rot.p.X2
                  p.A ~~ p.R
                  p.A ~~ p.D
```

```
p.R ~~ p.D
                  p.A ~~ rot.p.X1
                  p.R ~~ rot.p.X1
lav.v.rot.rocklitter <- 'light ~ crown</pre>
                  litter ~ crown
                  rock.sm ~ litter
                  p.A ~ light + litter + rock.sm
                  p.R ~ light + litter + rock.sm
                  p.D ~ light + litter + rock.sm
                  rot.p.X1 ~ light + litter + rock.sm
                  rot.p.X2 ~ light + litter + rock.sm
                  rot.p.X3 ~ light + litter + rock.sm
                  p.A ~~ rot.p.X2
                  p.A ~~ p.R
                  p.A ~~ p.D
                  p.R ~~ p.D
                  p.A ~~ rot.p.X1
                  p.R ~~ rot.p.X1
lav.v.rot.norock.ind.litter <- 'light ~ crown</pre>
                  litter ~ crown
                  p.A ~ light
                  p.R ~ light
                  p.D ~ light
                  rot.p.X1 ~ light
                  rot.p.X2 ~ light
                  rot.p.X3 ~ light
                  p.A ~~ rot.p.X2
                  p.A ~~ p.R
                  p.A ~~ p.D
                  p.R ~~ p.D
                  p.A ~~ rot.p.X1
                  p.R ~~ rot.p.X1
std \leftarrow function(x)\{(x - mean(x)) / sd(x)\}
set.seed(12345)
fit.1.all.raw <- lavaan::sem(lav.1.all, data = sem.dat)</pre>
set.seed(12345)
fit.v.all.raw <- lavaan::sem(lav.v.all, data = sem.dat)</pre>
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan
## WARNING: some observed variances are (at least) a factor 1000 times larger than
## others; use varTable(fit) to investigate
set.seed(12345)
fit.1.all <- lavaan::sem(lav.1.all, data = apply(sem.dat, 2, std))</pre>
set.seed(12345)
fit.v.all <- lavaan::sem(lav.v.all, data = apply(sem.dat, 2, std))</pre>
```

```
set.seed(12345)
fit.l.rot.all <- lavaan::sem(lav.l.rot.all, data = apply(sem.dat, 2, std))</pre>
set.seed(12345)
fit.v.rot.all <- lavaan::sem(lav.v.rot.all, data = apply(sem.dat, 2, std))</pre>
fit.v.rot.norock <- lavaan::sem(lav.v.rot.norock, data = apply(sem.dat, 2, std))</pre>
fit.v.rot.norock.ind.litter <- lavaan::sem(lav.v.rot.norock.ind.litter,</pre>
                                             data = apply(sem.dat, 2, std))
set.seed(12345)
fit.l.rot.nolight <- lavaan::sem(lav.l.rot.nolight, data = apply(sem.dat, 2, std))</pre>
set.seed(12345)
fit.v.rot.nolight <- lavaan::sem(lav.v.rot.nolight, data = apply(sem.dat, 2, std))</pre>
summary(fit.1.all.raw, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 121 iterations
##
##
     Estimator
                                                         ML
     Optimization method
                                                     NLMINB
##
##
     Number of model parameters
                                                         31
##
##
     Number of observations
                                                          30
##
## Model Test User Model:
##
     Test statistic
                                                     18.541
##
##
    Degrees of freedom
                                                         13
##
     P-value (Chi-square)
                                                      0.138
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                 Structured
##
## Regressions:
                       Estimate Std.Err z-value P(>|z|)
##
##
     light ~
##
                         -0.005
                                   0.024
                                           -0.204
                                                      0.839
       crown
     litter ~
##
##
       crown
                          0.216
                                   0.065
                                             3.341
                                                      0.001
##
    rock.lg ~
       litter
                                   0.059 -11.495
##
                         -0.675
                                                      0.000
##
     1.A ~
##
       light
                          0.016
                                   0.065
                                             0.239
                                                      0.811
##
                          0.092
                                   0.027
                                             3.417
                                                      0.001
       rock.lg
##
     1.R ~
##
                          0.088
                                   0.060
                                             1.478
                                                      0.139
       light
       rock.lg
##
                          0.162
                                   0.025
                                             6.518
                                                      0.000
##
     1.D ~
##
                          0.022
                                   0.013
                                             1.615
                                                      0.106
       light
##
                                   0.006
                                             5.661
                                                      0.000
       rock.lg
                          0.031
##
     1.X1 ~
##
                          0.029
                                   0.040
                                             0.709
                                                      0.479
       light
##
       rock.lg
                          0.037
                                   0.017
                                             2.244
                                                      0.025
```

```
1.X2 ~
##
                         0.025
##
       light
                                   0.034
                                            0.736
                                                     0.462
                                   0.014
                                                     0.090
##
       rock.lg
                        -0.024
                                           -1.697
##
## Covariances:
##
                      Estimate Std.Err z-value P(>|z|)
##
   .1.A ~~
                         4.023
                                            2.236
##
      .1.R
                                   1.799
                                                     0.025
      .1.D
##
                        -0.127
                                   0.368
                                           -0.346
                                                     0.729
##
    .1.R ~~
##
      .1.D
                         1.363
                                   0.420
                                            3.250
                                                     0.001
   .1.A ~~
##
     .1.X1
                         4.221
                                   1.347
                                                     0.002
##
                                            3.132
   .1.R ~~
##
##
     .1.X1
                         2.448
                                   1.111
                                            2.204
                                                     0.028
##
    .1.A ~~
##
     .1.X2
                        -3.251
                                   1.113
                                           -2.919
                                                     0.004
   .1.R ~~
##
##
     .1.X2
                        -0.466
                                   0.871
                                           -0.534
                                                     0.593
   .1.D ~~
##
##
     .1.X1
                         0.048
                                   0.227
                                            0.213
                                                     0.832
##
     .1.X2
                         0.196
                                   0.197
                                            0.994
                                                     0.320
   .1.X1 ~~
##
##
      .1.X2
                         0.297
                                   0.586
                                            0.507
                                                     0.612
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .light
                        77.135
                                  19.916
                                            3.873
                                                     0.000
##
      .litter
                       584.196 150.839
                                            3.873
                                                     0.000
##
                        83.027
                                  21.438
                                            3.873
                                                     0.000
      .rock.lg
##
      .l.A
                         9.776
                                   2.524
                                            3.873
                                                     0.000
##
      .1.R
                         8.276
                                   2.137
                                            3.873
                                                     0.000
##
      .1.D
                         0.413
                                   0.107
                                            3.873
                                                     0.000
##
      .1.X1
                         3.750
                                   0.968
                                            3.873
                                                     0.000
##
      .1.X2
                         2.724
                                   0.703
                                            3.873
                                                     0.000
##
## R-Square:
##
                      Estimate
##
       light
                         0.001
##
                         0.271
       litter
##
       rock.lg
                         0.815
##
       l.A
                         0.282
##
       1.R
                         0.600
##
       1.D
                         0.538
##
       1.X1
                         0.157
##
       1.X2
                         0.101
summary(fit.v.all.raw, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 235 iterations
##
##
                                                         ML
     Estimator
##
     Optimization method
                                                    NLMINB
##
     Number of model parameters
                                                         40
##
```

## ##	Number of observations 30						
	Model Test User	Model:					
##	Test statistic		12.147				
##	Degrees of fre		14				
##	P-value (Chi-s			0.595			
##		•					
##	Parameter Estima	ates:					
##							
##	Standard error	rs			Standard		
##	Information				Expected		
##	Information sa	aturated (h1)	model	St	ructured		
##							
	Regressions:		~	_	56.1.13		
##	2. 2.	Estimate	Std.Err	z-value	P(> z)		
##	light ~	0.005	0.004	0 004	0 000		
##	crown litter ~	-0.005	0.024	-0.204	0.839		
##	crown	0.216	0.065	3.341	0.001		
##	rock.sm ~	0.210	0.000	0.041	0.001		
##	litter	-0.312	0.060	-5.169	0.000		
##	p.A ~	0.012	0.000	0.100	0.000		
##	light	0.047	0.328	0.143	0.887		
##	rock.sm	-0.477	0.224	-2.128	0.033		
##	p.R ~						
##	light	0.020	0.016	1.217	0.224		
##	rock.sm	-0.046	0.012	-3.835	0.000		
##	litter	-0.013	0.003	-4.027	0.000		
##	p.D ~						
##	light	-0.000	0.007		0.944		
##	rock.sm	-0.013	0.005	-2.704	0.007		
##	p.X1 ~	0 110	0.200	0 500	0 556		
##	light rock.sm	0.118 0.093	0.200	0.589 0.684	0.556 0.494		
##	p.X2 ~	0.033	0.130	0.004	0.434		
##	light	-0.018	0.209	-0.086	0.931		
##	rock.sm	0.164	0.142	1.151	0.250		
##							
##	light	0.191	0.248	0.771	0.441		
##	rock.sm	0.356	0.169	2.108	0.035		
##							
##	Covariances:						
##		Estimate	Std.Err	z-value	P(> z)		
##	.p.A ~~						
##	.p.X2	-89.124					
##	.p.R	5.236					
##	.p.D	1.732	1.025	1.690	0.091		
## ##	.p.R ~~ .p.D	0.229	0.064	3.602	0.000		
##	=	0.229	0.004	3.002	0.000		
##	.p.X1	-85.041	31.772	-2.677	0.007		
##	.p.R ~~	22.011		2.311	0.001		
##	.p.X1	-1.262	1.383	-0.913	0.361		

```
##
    .p.R ~~
##
                        -3.100
                                   1.536
                                           -2.019
                                                     0.044
      .p.X2
##
      .p.X3
                         0.231
                                   1.692
                                            0.137
                                                     0.891
##
    .p.D ~~
      .p.X1
##
                        -0.109
                                   0.593
                                           -0.184
                                                     0.854
                                           -2.007
##
                        -1.337
                                   0.666
                                                     0.045
      .p.X2
##
      .p.X3
                         0.241
                                   0.736
                                            0.328
                                                     0.743
    .p.X1 ~~
##
##
      .p.X2
                         8.347
                                  17.700
                                            0.472
                                                     0.637
                                  21.025
                                           -0.605
                                                     0.545
##
      .p.X3
                       -12.723
##
    .p.X2 ~~
##
      .p.X3
                       -28.403
                                  22.483
                                           -1.263
                                                     0.206
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
                                 19.916
                                            3.873
                                                     0.000
##
      .light
                        77.135
                                            3.873
                                                     0.000
##
      .litter
                       584.195 150.839
      .rock.sm
                                            3.873
##
                        87.816
                                  22.674
                                                     0.000
##
      .p.A
                       249.877
                                 64.518
                                            3.873
                                                     0.000
##
      .p.R
                         0.605
                                  0.156
                                            3.873
                                                     0.000
##
                                  0.029
                                            3.873
                                                     0.000
      .p.D
                         0.114
##
      .p.X1
                        92.255
                                  23.820
                                            3.873
                                                     0.000
##
                       101.118
                                  26.109
                                            3.873
                                                     0.000
      .p.X2
##
      .p.X3
                       141.992
                                  36.662
                                            3.873
                                                     0.000
##
## R-Square:
##
                      Estimate
##
                         0.001
       light
##
                         0.271
       litter
##
       rock.sm
                         0.471
##
                         0.131
       p.A
##
                         0.265
       p.R
##
       p.D
                         0.196
##
       p.X1
                         0.027
##
       p.X2
                         0.042
##
       p.X3
                         0.145
summary(fit.1.all, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 58 iterations
##
                                                        ML
##
     Estimator
     Optimization method
                                                    NLMINB
##
##
     Number of model parameters
                                                         31
##
##
     Number of observations
                                                        30
##
## Model Test User Model:
##
##
     Test statistic
                                                    18.541
##
     Degrees of freedom
                                                         13
```

-58.230

35.996 -1.618

0.106

##

##

##

##

P-value (Chi-square)

.p.A ~~

.p.X3

0.138

	Parameter Est	imates:				
## ##	Standard er	rora				Standard
##	Information	1015				Expected
##	Information	saturated	(h1)	model	S+	ructured
##	IIIOIMation	Saturated	(111)	moder	50	Tucturea
##	Regressions:					
##	negrebbionb.	Estin	nate	Std.Err	z-value	P(> z)
##	light ~			204122	_	- (* 121)
##	crown	-0.	037	0.182	-0.204	0.839
##	litter ~					
##	crown	0.	521	0.156	3.341	0.001
##	rock.lg ~					
##	litter	-0.	903	0.079	-11.495	0.000
##	1.A ~					
##	light	0.	037	0.154	0.239	0.811
##	rock.lg	0.	528	0.154	3.417	0.001
##	1.R ~					
##	light	0.	168	0.114	1.478	0.139
##	rock.lg	0.	742	0.114	6.518	0.000
##	1.D ~					
##	light		197	0.122	1.615	0.106
##	rock.lg	0.	691	0.122	5.661	0.000
##	1.X1 ~					
##	light		118	0.167	0.709	0.479
##	rock.lg	0.	374	0.167	2.244	0.025
##	1.X2 ~	0	100	0 171	0.700	0 460
##	light		128	0.174	0.736	0.462
##	rock.lg	-0.	295	0.174	-1.697	0.090
## ##	Covariances:					
##	Coval lances.	Estin	2+0	Std.Err	z-value	P(> z)
##	.1.A ~~	ESCII	late	Stu.EII	Z varue	r (> 2)
##	.1.R	0.	228	0.102	2.236	0.025
##	.1.D		035	0.100	-0.346	0.729
##	.1.R ~~			0.200	0.010	01.20
##	.1.D	0.	297	0.091	3.250	0.001
##	.1.A ~~					
##	.1.X1	0.	520	0.166	3.132	0.002
##	.1.R ~~					
##	.1.X1	0.	242	0.110	2.204	0.028
##	.1.A ~~					
##	.1.X2	-0.	490	0.168	-2.919	0.004
##	.1.R ~~					
##	.1.X2	-0.	056	0.105	-0.534	0.593
##	.1.D ~~					
##	.1.X1		023	0.108	0.213	0.832
##	.1.X2	0.	114	0.114	0.994	0.320
##	.1.X1 ~~					
##	.1.X2	0.	078	0.154	0.507	0.612
##	W					
	Variances:	п_+.	- 4 -	C+3 P		D(>1-1)
##	1: whe	Estin			z-value	
##	.light	0.	965	0.249	3.873	0.000

```
0.705
                                                       0.000
##
      .litter
                                   0.182
                                             3.873
##
      .rock.lg
                          0.179
                                   0.046
                                             3.873
                                                       0.000
                          0.691
                                   0.178
                                             3.873
##
      .l.A
                                                       0.000
##
      .1.R
                          0.375
                                   0.097
                                             3.873
                                                       0.000
##
      .1.D
                          0.432
                                   0.112
                                             3.873
                                                       0.000
##
      .1.X1
                          0.806
                                   0.208
                                             3.873
                                                       0.000
##
      .1.X2
                          0.876
                                    0.226
                                             3.873
                                                       0.000
##
## R-Square:
##
                       Estimate
##
       light
                          0.001
##
                          0.271
       litter
##
       rock.lg
                          0.815
##
                          0.282
       l.A
##
       1.R
                          0.600
##
       1.D
                          0.538
##
       1.X1
                          0.157
##
       1.X2
                          0.101
```

summary(fit.v.all, rsquare = TRUE)

```
## lavaan 0.6-8 ended normally after 52 iterations
##
##
     Estimator
                                                         ML
                                                    NLMINB
##
     Optimization method
     Number of model parameters
##
                                                         40
##
##
     Number of observations
                                                         30
##
## Model Test User Model:
##
     Test statistic
                                                     12.147
##
##
     Degrees of freedom
                                                         14
##
     P-value (Chi-square)
                                                      0.595
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
##
     Information saturated (h1) model
                                                Structured
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
##
     light ~
##
       crown
                         -0.037
                                   0.182
                                           -0.204
                                                      0.839
##
     litter ~
##
       crown
                         0.521
                                   0.156
                                            3.341
                                                      0.001
##
     rock.sm ~
##
       litter
                         -0.686
                                   0.133
                                           -5.169
                                                      0.000
##
     p.A ~
##
       light
                         0.024
                                   0.170
                                            0.143
                                                      0.887
##
                                   0.170
                         -0.363
                                           -2.128
                                                      0.033
       rock.sm
##
     p.R ~
##
                         0.184
                                   0.152
                                            1.217
                                                      0.224
       light
##
       rock.sm
                         -0.634
                                   0.165
                                           -3.835
                                                      0.000
```

##	litter	-0.386	0.096	-4.027	0.000
##	p.D ~				
##	light	-0.012	0.164	-0.071	0.944
##	rock.sm	-0.442	0.164	-2.704	0.007
##	p.X1 ~	0.400	0.400	0 500	0 550
##	light	0.106	0.180	0.589	0.556
##	rock.sm	0.123	0.180	0.684	0.494
##	p.X2 ~	0.015	0 470	0 000	0 004
##	light	-0.015	0.179	-0.086	0.931
##	rock.sm	0.206	0.179	1.151	0.250
##	p.X3 ~				
##	light	0.129	0.167	0.771	0.441
##	rock.sm	0.353	0.167	2.108	0.035
##					
##	Covariances:	_			
##		Estimate	Std.Err	z-value	P(> z)
##	.p.A ~~				
##	.p.X2	-0.495	0.185	-2.679	0.007
##	.p.R	0.319	0.149	2.147	0.032
##	.p.D	0.262	0.155	1.690	0.091
##	.p.R ~~				
##	.p.D	0.628	0.174	3.602	0.000
##	.p.A ~~				
##	.p.X1	-0.497	0.186	-2.677	0.007
##	.p.R ~~				
##	.p.X1	-0.134	0.146	-0.913	0.361
##	.p.A ~~				
##	.p.X3	-0.256	0.158	-1.618	0.106
##	.p.R ~~				
##	.p.X2	-0.312	0.154	-2.019	0.044
##	.p.X3	0.018	0.134	0.137	0.891
##	.p.D ~~				
##	.p.X1	-0.029	0.156	-0.184	0.854
##	.p.X2	-0.334	0.166	-2.007	0.045
##	.p.X3	0.048	0.145	0.328	0.743
##	.p.X1 ~~				
##	.p.X2	0.080	0.171	0.472	0.637
##	.p.X3	-0.097	0.160	-0.605	0.545
##	.p.X2 ~~				
##	.p.X3	-0.206	0.163	-1.263	0.206
##					
##	Variances:				
##		Estimate	Std.Err	z-value	P(> z)
##	.light	0.965	0.249	3.873	0.000
##	.litter	0.705	0.182	3.873	0.000
##	.rock.sm	0.511	0.132	3.873	0.000
##	.p.A	0.842	0.218	3.873	0.000
##	.p.R	0.667	0.172	3.873	0.000
##	.p.D	0.775	0.200	3.873	0.000
##	.p.X1	0.936	0.242	3.873	0.000
##	.p.X2	0.927	0.239	3.873	0.000
##	.p.X3	0.812	0.210	3.873	0.000
##					
##	R-Square:				

```
0.001
##
       light
       litter
                          0.271
##
##
       rock.sm
                          0.471
##
       p.A
                          0.131
##
       p.R
                          0.265
##
       p.D
                          0.196
##
                          0.027
       p.X1
##
       p.X2
                          0.042
##
                          0.145
       p.X3
summary(fit.1.rot.all, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 55 iterations
##
##
                                                          ML
     Estimator
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                          31
##
##
     Number of observations
                                                          30
##
## Model Test User Model:
##
##
     Test statistic
                                                      18.541
##
     Degrees of freedom
                                                          13
                                                      0.138
     P-value (Chi-square)
##
##
## Parameter Estimates:
##
     Standard errors
##
                                                   Standard
##
     Information
                                                   Expected
     Information saturated (h1) model
##
                                                 Structured
##
## Regressions:
##
                       Estimate Std.Err z-value P(>|z|)
##
     light ~
##
                         -0.037
                                   0.182
                                            -0.204
       crown
                                                      0.839
##
     litter ~
##
                          0.521
                                   0.156
                                             3.341
                                                      0.001
       crown
##
     rock.lg ~
                         -0.903
                                   0.079 -11.495
##
       litter
                                                      0.000
##
     1.A ~
##
       light
                          0.037
                                   0.154
                                             0.239
                                                      0.811
##
       rock.lg
                          0.528
                                   0.154
                                             3.417
                                                      0.001
##
     1.R ~
##
                          0.168
                                   0.114
                                             1.478
                                                      0.139
       light
##
       rock.lg
                          0.742
                                   0.114
                                             6.518
                                                      0.000
##
     1.D ~
                                   0.122
                                             1.615
                                                      0.106
##
       light
                          0.197
##
       rock.lg
                          0.691
                                   0.122
                                             5.661
                                                      0.000
##
     rot.1.X1 ~
##
                          0.051
       light
                                   0.161
                                             0.320
                                                      0.749
##
       rock.lg
                          0.462
                                   0.161
                                             2.873
                                                      0.004
##
     rot.1.X2 ~
```

0.174

0.180

Estimate

##

##

light

0.966

0.334

```
##
       rock.lg
                        -0.023
                                   0.180 -0.130
                                                     0.897
##
## Covariances:
##
                      Estimate Std.Err z-value P(>|z|)
##
    .1.A ~~
##
     .1.R
                         0.228
                                   0.102
                                            2.236
                                                     0.025
##
     .1.D
                        -0.035
                                   0.100
                                           -0.346
                                                     0.729
   .1.R ~~
##
     .1.D
##
                         0.297
                                   0.091
                                            3.250
                                                     0.001
##
    .1.A ~~
##
      .rot.l.X1
                         0.677
                                   0.181
                                            3.751
                                                     0.000
   .1.R ~~
##
                         0.241
                                   0.106
                                            2.266
                                                     0.023
##
      .rot.l.X1
##
    .1.A ~~
##
      .rot.1.X2
                        -0.098
                                   0.148
                                           -0.662
                                                     0.508
##
    .1.R ~~
##
                         0.095
                                   0.110
                                            0.866
                                                     0.386
      .rot.1.X2
##
   .1.D ~~
      .rot.l.X1
                                           -0.269
##
                        -0.028
                                   0.104
                                                     0.788
                                   0.118
                                            0.904
##
      .rot.1.X2
                         0.106
                                                     0.366
##
    .rot.l.X1 ~~
##
      .rot.1.X2
                         0.154
                                   0.156
                                            0.987
                                                     0.324
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .light
                         0.965
                                   0.249
                                            3.873
                                                     0.000
##
      .litter
                         0.705
                                   0.182
                                            3.873
                                                     0.000
##
                         0.179
                                   0.046
                                            3.873
                                                     0.000
      .rock.lg
##
                                   0.178
                                            3.873
                                                     0.000
      .l.A
                         0.691
##
      .1.R
                         0.375
                                   0.097
                                            3.873
                                                     0.000
##
      .1.D
                         0.432
                                   0.112
                                            3.873
                                                     0.000
##
      .rot.l.X1
                         0.751
                                   0.194
                                            3.873
                                                     0.000
##
                         0.938
                                   0.242
                                            3.873
                                                     0.000
      .rot.1.X2
##
## R-Square:
##
                      Estimate
##
       light
                         0.001
##
       litter
                         0.271
##
       rock.lg
                         0.815
##
                         0.282
       1.A
##
       1.R
                         0.600
##
       1.D
                         0.538
##
       rot.1.X1
                         0.219
##
       rot.1.X2
                         0.031
summary(fit.v.rot.all, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 46 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         39
##
                                                         30
##
     Number of observations
##
```

```
## Model Test User Model:
##
                                                    24.463
##
     Test statistic
##
     Degrees of freedom
                                                        15
##
     P-value (Chi-square)
                                                     0.058
##
## Parameter Estimates:
##
##
     Standard errors
                                                  Standard
##
     Information
                                                  Expected
##
     Information saturated (h1) model
                                                Structured
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
##
     light ~
##
       crown
                        -0.037
                                   0.182
                                           -0.204
                                                     0.839
##
     litter ~
##
       crown
                         0.521
                                   0.156
                                            3.341
                                                     0.001
##
     rock.sm ~
##
       litter
                        -0.686
                                   0.133
                                           -5.169
                                                     0.000
##
     p.A ~
##
       light
                         0.024
                                   0.170
                                            0.143
                                                     0.887
##
                        -0.363
                                   0.170 -2.128
                                                     0.033
       rock.sm
##
     p.R ~
##
                         0.197
                                   0.169
                                            1.166
                                                     0.244
       light
                        -0.372
##
       rock.sm
                                   0.169
                                           -2.202
                                                     0.028
##
     p.D ~
##
       light
                        -0.012
                                   0.164
                                           -0.071
                                                     0.944
##
                        -0.442
                                   0.164
                                                     0.007
       rock.sm
                                           -2.704
##
     rot.p.X1 ~
##
       light
                        -0.131
                                   0.166
                                           -0.789
                                                     0.430
##
       rock.sm
                        -0.368
                                   0.166
                                           -2.216
                                                     0.027
##
     rot.p.X2 ~
##
                         0.101
                                   0.180
                                            0.562
                                                     0.574
       light
##
       rock.sm
                         0.110
                                   0.180
                                            0.610
                                                     0.542
##
     rot.p.X3 ~
##
       light
                         0.026
                                   0.180
                                            0.142
                                                     0.887
##
       rock.sm
                        -0.174
                                   0.180 -0.969
                                                     0.332
##
## Covariances:
##
                      Estimate Std.Err z-value P(>|z|)
   .p.A ~~
##
##
                        -0.487
                                   0.185
                                           -2.628
                                                     0.009
      .rot.p.X2
##
                         0.363
                                   0.166
                                            2.187
                                                     0.029
      .p.R
##
                         0.262
                                   0.155
                                            1.690
                                                     0.091
      .p.D
##
    .p.R ~~
                         0.672
                                   0.191
                                            3.524
                                                     0.000
##
      .p.D
##
    .p.A ~~
##
      .rot.p.X1
                         0.293
                                   0.159
                                            1.840
                                                     0.066
##
   .p.R ~~
##
                        -0.014
                                   0.148
                                           -0.091
                                                     0.927
      .rot.p.X1
##
   .p.A ~~
##
      .rot.p.X3
                         0.468
                                   0.183
                                            2.550
                                                     0.011
##
   .p.R ~~
```

```
##
                          0.352
                                    0.173
                                             2.033
                                                       0.042
      .rot.p.X3
    .p.D ~~
##
##
                         -0.030
                                    0.144
                                            -0.209
                                                       0.834
      .rot.p.X1
##
      .rot.p.X2
                         -0.030
                                    0.156
                                            -0.190
                                                       0.849
##
                          0.333
                                    0.167
                                             1.991
                                                       0.047
      .rot.p.X3
##
    .rot.p.X1 ~~
                                             0.643
##
      .rot.p.X2
                          0.103
                                    0.159
                                                       0.520
##
      .rot.p.X3
                         -0.220
                                    0.163
                                            -1.350
                                                       0.177
##
    .rot.p.X2 ~~
##
      .rot.p.X3
                         -0.095
                                    0.172
                                            -0.550
                                                       0.582
##
## Variances:
                       Estimate Std.Err z-value P(>|z|)
##
##
                          0.965
                                    0.249
                                             3.873
                                                       0.000
      .light
##
      .litter
                          0.705
                                    0.182
                                             3.873
                                                       0.000
##
                                    0.132
                                             3.873
                                                       0.000
      .rock.sm
                          0.511
##
                          0.842
                                    0.218
                                             3.873
                                                       0.000
      .p.A
##
                          0.825
                                    0.213
                                             3.873
                                                       0.000
      .p.R
##
      .p.D
                          0.775
                                    0.200
                                             3.873
                                                       0.000
##
      .rot.p.X1
                          0.800
                                    0.207
                                             3.873
                                                       0.000
##
      .rot.p.X2
                          0.941
                                    0.243
                                             3.873
                                                       0.000
##
      .rot.p.X3
                          0.938
                                    0.242
                                             3.873
                                                       0.000
##
## R-Square:
##
                       Estimate
##
       light
                          0.001
##
       litter
                          0.271
##
       rock.sm
                          0.471
##
       p.A
                          0.131
##
       p.R
                          0.170
##
       p.D
                          0.196
##
       rot.p.X1
                          0.157
##
       rot.p.X2
                          0.023
##
       rot.p.X3
                          0.031
summary(fit.v.rot.norock, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 44 iterations
##
##
     Estimator
                                                          ML
     Optimization method
##
                                                      NLMINB
     Number of model parameters
##
                                                          37
##
                                                          30
##
     Number of observations
##
## Model Test User Model:
##
##
     Test statistic
                                                       9.761
```

-0.168

0.164

-1.026

0.305

##

##

##

##

Degrees of freedom

Parameter Estimates:

Standard errors

P-value (Chi-square)

.rot.p.X2

7

0.203

Standard

## ## ##	Information Information	saturated	(h1)	model		Expected ructured
##	Regressions:					
##		Estim	ate	Std.Err	z-value	P(> z)
##	light ~					
##	crown	-0.	037	0.182	-0.204	0.839
##	litter ~					
##	crown	0.	521	0.156	3.341	0.001
##	p.A ~					
##	light		029	0.181	-0.162	0.871
##	litter	0.	122	0.181	0.676	0.499
##	p.R ~					
##	light		107	0.181	0.594	0.553
##	litter	-0.	074	0.181	-0.412	0.680
##	p.D ~					
##	light		073	0.179	-0.408	0.684
##	litter	0.	173	0.179	0.967	0.333
##	rot.p.X1 ~	•	0			
##	light		158	0.171	-0.924	0.356
##	litter	0.	285	0.171	1.664	0.096
##	rot.p.X2 ~	^	400	0 404	0.704	0 404
##	light		128	0.181	0.704	0.481
##	litter	0.	022	0.181	0.121	0.904
## ##	rot.p.X3 ~	-0	011	0 102	-0.058	0.954
##	light litter		011 002	0.183 0.183	-0.038	0.992
##	TICCEL	0.	002	0.105	0.010	0.332
##	Covariances:					
##	covariances.	Estim	ata	Std.Err	z-value	P(> z)
##	.p.A ~~	LSCIII	ave	Dua.LII	Z varue	1 (> 2)
##	.rot.p.X2	-0.	526	0.198	-2.652	0.008
##	.p.R		496	0.195	2.539	0.011
##	.p.D		391	0.186	2.104	0.035
##	.p.R ~~					
##	.p.D	0.	836	0.229	3.646	0.000
##	.p.A ~~					
##	.rot.p.X1	0.	384	0.178	2.151	0.031
##	.p.R ~~					
##	.rot.p.X1	0.	133	0.166	0.803	0.422
##	.p.A ~~					
##	.rot.p.X3	0.	526	0.200	2.637	0.008
##	.p.R ~~					
##	.rot.p.X2	-0.	204	0.177	-1.152	0.249
##	.rot.p.X3	0.	411	0.190	2.163	0.031
##	.p.D ~~					
##	.rot.p.X1		074	0.163	0.457	0.648
##	.rot.p.X2		078	0.172	-0.454	0.650
##	.rot.p.X3	0.	404	0.188	2.151	0.031
##	.rot.p.X1 ~~		0.55			<u> </u>
##	.rot.p.X2		059	0.164		0.719
##	.rot.p.X3	-0.	160	0.168	-0.955	0.340
##	.rot.p.X2 ~~	^	110	0 470	0 630	0 500
##	.rot.p.X3	-0.	112	0.176	-0.638	0.523

```
## Variances:
                      Estimate Std.Err z-value P(>|z|)
##
##
                         0.965
                                   0.249
                                            3.873
                                                      0.000
      .light
##
      .litter
                         0.705
                                   0.182
                                            3.873
                                                      0.000
##
                         0.950
                                   0.245
                                            3.873
                                                      0.000
      A.q.
      .p.R
##
                         0.948
                                   0.245
                                            3.873
                                                      0.000
##
                         0.928
                                   0.240
                                            3.873
                                                      0.000
      .p.D
##
      .rot.p.X1
                         0.849
                                   0.219
                                            3.873
                                                      0.000
##
                                   0.246
                                            3.873
                                                      0.000
      .rot.p.X2
                         0.951
##
      .rot.p.X3
                          0.967
                                   0.250
                                            3.873
                                                      0.000
##
## R-Square:
##
                      Estimate
##
       light
                          0.001
##
       litter
                          0.271
##
                         0.016
       p.A
##
       p.R
                          0.017
##
                          0.036
       p.D
##
       rot.p.X1
                          0.109
                          0.017
##
       rot.p.X2
##
       rot.p.X3
                          0.000
summary(fit.l.rot.nolight, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 54 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         24
##
##
     Number of observations
                                                         30
##
## Model Test User Model:
##
##
     Test statistic
                                                     17.024
##
     Degrees of freedom
                                                         11
##
     P-value (Chi-square)
                                                      0.107
##
## Parameter Estimates:
##
##
     Standard errors
                                                   Standard
##
     Information
                                                   Expected
     Information saturated (h1) model
##
                                                Structured
##
## Regressions:
##
                      Estimate Std.Err z-value P(>|z|)
##
     litter ~
                         0.521
##
       crown
                                   0.156
                                            3.341
                                                      0.001
##
     rock.lg ~
##
       litter
                         -0.903
                                   0.079 - 11.495
                                                      0.000
##
     1.A ~
##
                         0.533
                                   0.155
                                            3.446
                                                      0.001
       rock.lg
##
     1.R ~
##
       rock.lg
                         0.764
                                   0.118
                                            6.489
                                                      0.000
```

##

```
##
     1.D ~
##
                          0.718
                                   0.127
                                             5.643
                                                      0.000
       rock.lg
##
     rot.1.X1 ~
                                                      0.004
##
                          0.469
                                   0.161
                                             2.911
       rock.lg
##
    rot.1.X2 ~
                          0.000
                                             0.000
                                                      1.000
##
       rock.lg
                                   0.183
##
## Covariances:
                      Estimate Std.Err z-value P(>|z|)
##
##
    .1.A ~~
##
      .1.R
                          0.234
                                   0.105
                                             2.218
                                                      0.027
##
      .1.D
                         -0.028
                                   0.104
                                            -0.266
                                                      0.790
   .1.R ~~
##
                                   0.099
##
     .1.D
                          0.328
                                             3.303
                                                      0.001
##
    .1.A ~~
##
      .rot.l.X1
                          0.679
                                   0.181
                                             3.751
                                                      0.000
##
    .1.R ~~
##
      .rot.l.X1
                          0.250
                                   0.110
                                             2.261
                                                      0.024
   .1.A ~~
##
##
      .rot.1.X2
                         -0.092
                                   0.150
                                            -0.612
                                                      0.541
    .1.R ~~
##
##
      .rot.1.X2
                          0.123
                                   0.116
                                             1.058
                                                      0.290
##
    .1.D ~~
                         -0.018
                                   0.109
                                            -0.169
                                                      0.866
##
      .rot.l.X1
##
      .rot.1.X2
                          0.139
                                   0.126
                                             1.107
                                                      0.268
##
    .rot.l.X1 ~~
##
      .rot.1.X2
                          0.162
                                   0.159
                                             1.023
                                                      0.306
##
## Variances:
##
                      Estimate Std.Err z-value P(>|z|)
##
      .litter
                          0.705
                                   0.182
                                             3.873
                                                      0.000
##
      .rock.lg
                          0.179
                                   0.046
                                             3.873
                                                      0.000
##
      .l.A
                          0.692
                                   0.179
                                             3.873
                                                      0.000
##
      .1.R
                          0.402
                                   0.104
                                             3.873
                                                      0.000
##
      .1.D
                          0.469
                                   0.121
                                             3.873
                                                      0.000
##
      .rot.l.X1
                          0.754
                                   0.195
                                             3.873
                                                      0.000
##
      .rot.1.X2
                          0.967
                                   0.250
                                             3.873
                                                      0.000
##
## R-Square:
##
                      Estimate
##
       litter
                          0.271
##
       rock.lg
                          0.815
                          0.284
##
       l.A
##
       1.R
                          0.584
##
       1.D
                          0.515
##
       rot.1.X1
                          0.220
                          0.000
       rot.1.X2
summary(fit.v.rot.nolight, rsquare = TRUE)
## lavaan 0.6-8 ended normally after 43 iterations
##
##
     Estimator
                                                         ML
##
     Optimization method
                                                     NLMINB
##
     Number of model parameters
                                                         31
```

## ##	Number of o	haorwations	ı			30
##	Number of o	DSELVACIONS	•			30
	Model Test Use	or Modol.				
##	Model lest os	er Moder.				
##	Test statis	+ic				20.525
##	Degrees of					13
##	P-value (Ch					0.083
##	1 value (OII.	i square)				0.000
	Parameter Est	imates:				
##	rarameter Ebo	ima ocb.				
##	Standard er	rors				Standard
##	Information					Expected
##	Information	saturated	(h1)	model	St	ructured
##						
##	Regressions:					
##	J	Estim	ate	Std.Err	z-value	P(> z)
##	litter ~					
##	crown	0.	521	0.156	3.341	0.001
##	rock.sm ~					
##	litter	-0.	686	0.133	-5.169	0.000
##	p.A ~					
##	rock.sm	-0.	358	0.170	-2.098	0.036
##	p.R ~					
##	rock.sm	-0.	331	0.172	-1.921	0.055
##	p.D ~					
##	rock.sm	-0.	445	0.164	-2.719	0.007
##	rot.p.X1 ~					
##	rock.sm	-0.	395	0.168	-2.355	0.018
##	rot.p.X2 ~	0	101	0 101	0.700	0.470
##	rock.sm	0.	131	0.181	0.722	0.470
## ##	rot.p.X3 ~ rock.sm	-0	169	0.180	-0.940	0.347
##	TOCK.Sm	0.	103	0.100	0.340	0.041
	Covariances:					
##		Estim	ate	Std.Err	z-value	P(> z)
##	.p.A ~~					
##	.rot.p.X2	-0.	484	0.186	-2.607	0.009
##	.p.R	0.	367	0.169	2.169	0.030
##	.p.D	0.	262	0.155	1.688	0.091
##	.p.R ~~					
##	.p.D	0.	670	0.193	3.474	0.001
##	.p.A ~~					
##	.rot.p.X1	0.	290	0.160	1.807	0.071
##	.p.R ~~					
##	.rot.p.X1	-0.	037	0.153	-0.244	0.807
##	.p.A ~~				0 == 1	
##	.rot.p.X3	0.	468	0.184	2.551	0.011
##	.p.R ~~	^	150	0 167	_0 004	0 274
## ##	.rot.p.X2		150 356	0.167 0.177	-0.894 2.018	0.371 0.044
##	.rot.p.X3 .p.D ~~	0.	550	0.111	2.010	0.044
##	.rot.p.X1	-0	029	0.145	-0.198	0.843
##	.rot.p.X2		031	0.157	-0.196	0.845
		٠.				

```
##
      .rot.p.X3
                          0.333
                                    0.167
                                             1.989
                                                       0.047
    .rot.p.X1 ~~
##
                                    0.162
##
      .rot.p.X2
                          0.090
                                             0.558
                                                       0.577
                                    0.165
                                            -1.355
                                                       0.176
##
      .rot.p.X3
                         -0.223
##
    .rot.p.X2 ~~
                                    0.173
                                            -0.533
                                                       0.594
##
      .rot.p.X3
                         -0.092
##
## Variances:
                       Estimate Std.Err z-value P(>|z|)
##
##
                          0.705
      .litter
                                    0.182
                                             3.873
                                                       0.000
##
      .rock.sm
                          0.511
                                    0.132
                                             3.873
                                                       0.000
##
                          0.843
                                    0.218
                                             3.873
                                                       0.000
      A.q.
##
      .p.R
                          0.861
                                    0.222
                                             3.873
                                                       0.000
                                    0.200
##
      .p.D
                          0.776
                                             3.873
                                                       0.000
##
                          0.816
                                    0.211
                                             3.873
                                                       0.000
      .rot.p.X1
##
      .rot.p.X2
                          0.950
                                    0.245
                                             3.873
                                                       0.000
##
                          0.939
                                    0.242
                                             3.873
                                                       0.000
      .rot.p.X3
##
## R-Square:
##
                       Estimate
##
       litter
                          0.271
##
       rock.sm
                          0.471
##
                          0.128
       p.A
##
                          0.110
       p.R
##
       p.D
                          0.198
##
       rot.p.X1
                          0.156
##
                          0.017
       rot.p.X2
                          0.029
       rot.p.X3
```

SEM Variable R-Squares

```
get_R2 <- function(x){</pre>
    out <- capture.output(summary(x, rsquare = TRUE))</pre>
    out <- out[grep("R-Square:",out):length(out)]</pre>
    out <- out[!(grepl("R-Square:", out)) & !(grepl("Estimate", out))]</pre>
    out <- out[out != ""]</pre>
    out <- strsplit(out, " ")</pre>
    out <- lapply(out, function(x) x[x != ""])</pre>
    out <- do.call(rbind, out)</pre>
    out.names <- out[, 1]</pre>
    out <- as.numeric(out[, 2])</pre>
    names(out) <- out.names</pre>
    return(out)
}
r2.1.rot.all <- get_R2(fit.1.rot.all)
r2.v.rot.all <- get_R2(fit.v.rot.all)</pre>
r2.v.rot.norock <- get_R2(fit.v.rot.norock)</pre>
```

SEM variable inter-correlations plot

```
pairs.panels(sem.dat[, c("trunk", "crown", "litter", "light", "rock.lg", "rock.sm")])
```


SEM Skew-Kurtosis Check

	skew	skew_2se	kurt	kurt_2se
l.X1	0.3854049	0.4514075	2.6839461	1.6115042
1.X2	2.6079952	3.0546283	9.3448482	5.6108660
p.X2	1.2498696	1.4639165	1.7056186	1.0240934
rot.l.X2	1.9574132	2.2926307	5.7053688	3.4256372
rot.p.X1	-0.8580346	-1.0049777	0.4676396	0.2807818
rot.p.X3	-1.1479188	-1.3445060	1.3540425	0.8129989

SEM Modification Indices

```
kable(modindices(fit.1.rot.all))
```

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
32	crown	~~	crown	0.00000000	0.0000000	0.0000000	0.0000000	0.0000000
33	light	~~	litter	0.9527985	-0.1469742	-0.1469742	-0.1782132	-0.1782132
34	light	~~	rock.lg	0.0611612	-0.0187615	-0.0187615	-0.0451521	-0.0451521
35	light	~~	l.A	6.6338953	1.8363138	1.8363138	2.2480486	2.2480486
36	light	~~	1.R	1.3608130	-1.7593916	-1.7593916	-2.9230184	-2.9230184
37	light	~~	l.D	1.2521415	2.0466360	2.0466360	3.1691108	3.1691108
38	light	~~	rot.l.X1	6.4213898	-1.9018177	-1.9018177	-2.2333176	-2.2333176

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
39	light	~~	rot.l.X2	9.2003734	7.2520689	7.2520689	7.6211990	7.6211990
40	litter	~~	rock.lg	0.2251392	-0.0590593	-0.0590593	-0.1663697	-0.1663697
41	litter	~~	l.A	2.5377756	-0.0499612	-0.0499612	-0.0715924	-0.0715924
42	litter	~~	1.R	2.5848573	0.1066657	0.1066657	0.2074291	0.2074291
43	litter	~~	l.D	2.3122107	-0.1223407	-0.1223407	-0.2217397	-0.2217397
44	litter	~~	rot.l.X1	1.7620703	0.0438237	0.0438237	0.0602375	0.0602375
45	litter	~~	rot.l.X2	4.1972398	-0.2154688	-0.2154688	-0.2650461	-0.2650461
46	rock.lg	~~	l.A	0.5421891	0.0082106	0.0082106	0.0233517	0.0233517
47	rock.lg	~~	1.R	0.6194653	0.0185655	0.0185655	0.0716576	0.0716576
48	rock.lg	~~	l.D	0.5294390	-0.0208140	-0.0208140	-0.0748756	-0.0748756
49	rock.lg	~~	rot.l.X1	1.0563121	-0.0120638	-0.0120638	-0.0329120	-0.0329120
50	rock.lg	~~	rot.l.X2	0.4209618	0.0242613	0.0242613	0.0592330	0.0592330
51	light	~	litter	0.9527985	-0.2086006	-0.2086006	-0.2086006	-0.2086006
52	light	~	rock.lg	0.5355743	0.1512764	0.1512764	0.1512764	0.1512764
53	light	~	l.A	0.4717917	0.2686234	0.2686234	0.2680132	0.2680132
54	light	~	1.R	0.5433092	0.2053472	0.2053472	0.2023370	0.2023370
55	light	~	l.D	0.5975087	0.2310518	0.2310518	0.2273490	0.2273490
56	light	~	rot.l.X1	0.4708875	0.3059692	0.3059692	0.3051182	0.3051182
57	light	~	rot.l.X2	1.1578680	5.1251721	5.1251721	5.1275946	5.1275946
58	litter	~	light	0.9527983	-0.1522524	-0.1522524	-0.1522524	-0.1522524
59	litter	~	rock.lg	0.2251371	-0.3302052	-0.3302052	-0.3302052	-0.3302052
60	litter	~	l.A	0.0115962	-0.0303685	-0.0303685	-0.0302995	-0.0302995
61	litter	~	1.R	0.3665468	-0.2042869	-0.2042869	-0.2012922	-0.2012922
62	litter	~	l.D	1.6882586	-0.4098733	-0.4098733	-0.4033046	-0.4033046
63	litter	~	rot.l.X1	0.1567435	-0.1076308	-0.1076308	-0.1073314	-0.1073314
64	litter	~	rot.l.X2	3.5695512	-0.4522800	-0.4522800	-0.4524938	-0.4524938
65	rock.lg	~	light	0.0687688	-0.4322800	-0.0205982	-0.4524536 -0.0205982	-0.4324338 -0.0205982
66	rock.lg	~	l.A	0.5182577	-0.0209302	-0.0739771	-0.0738090	-0.0738090
67	rock.lg	~	1.R	0.0000099	-0.0004206	-0.0004206	-0.0004144	-0.0004144
68	rock.lg	~	l.D	0.0010937	0.004200	0.004200	0.004144 0.0040251	0.004144 0.0040251
69	rock.lg	~	rot.l.X1	0.9295709	-0.0949483	-0.0949483	-0.0946842	-0.0946842
70	rock.lg	~	rot.l.X2	0.3233703 0.1070744	-0.0283621	-0.0283621	-0.0283755	-0.0340342 -0.0283755
71	rock.lg	~	crown	0.2251415	0.0436471	0.0436471	0.0436471	0.0443933
72	l.A	~	litter	0.5421946	0.0430471	0.0430471	0.0435471	0.0445368
77	1.A	~	crown	6.6340250	0.0414424 0.0706821	0.0706821	0.0419300	0.0419500 0.0720541
78	1.R	~	litter	0.6194672	0.0937082	0.0937082	0.0951023	0.0951023
83	l.R	~	crown	1.3608608	-0.0677218	-0.0677218	-0.0687293	-0.0699043
84	l.D	~	litter	0.5294406	-0.1050576	-0.1050576	-0.1067687	-0.1067687
89	l.D	~	crown	1.2522185	0.0787793	0.0787793	0.0800624	0.0814311
90	rot.l.X1	~	litter	1.0563215	-0.0608916	-0.0608916	-0.0610615	-0.0610615
95	rot.l.X1	~	crown	6.4215675	-0.0732037	-0.0732037	-0.0734079	-0.0746629
96	rot.l.X2	~	litter	0.4219075 0.4209657	0.1224581	0.1224581	0.1224003	0.1224003
101	rot.l.X2	~	crown	9.2004554	0.1224301 0.2791401	0.1224301 0.2791401	0.1224003	0.1224003 0.2837780
$101 \\ 102$				0.0000000	-0.0018513	-0.0018513	-0.0018513	-0.0018513
$102 \\ 103$	crown	~	light litter	0.0000000	-0.0018313	-0.0018313	-0.0018313	-0.0018313
$103 \\ 104$	crown	~	rock.lg	0.0000000 0.2243893	0.2351109	0.2351109	0.2351109	0.2351109
$104 \\ 105$	crown	~	l.A	0.2245895	-0.1401217	-0.1401217	-0.1398034	-0.1398034
106	crown crown	~ ~	1.A 1.R	0.5499459 0.1383391	0.1401217 0.1106605	0.1401217 0.1106605	0.1090383	0.1090383
$100 \\ 107$		~	1.R 1.D	1.5666494	0.1100005 0.3558286	0.1100005 0.3558286	0.1090363 0.3501261	0.3501261
107	crown		rot.l.X1	0.2542199	-0.1156401	-0.1156401	-0.1153184	-0.1153184
108	crown	~	rot.l.X2	3.0169938	0.3649214	0.3649214	0.3650939	0.3650939
109	crown	~	106.1.72	9.0103398	0.3049214	0.0049214	6.660606.0	<u> </u>

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
40	crown	~~	crown	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
41	light	~~	litter	0.9527991	-0.1469742	-0.1469742	-0.1782133	-0.1782133
42	light	~~	rock.sm	0.4301793	0.0841252	0.0841252	0.1197469	0.1197469
43	light	~~	p.A	3.2977682	-3.3979090	-3.3979090	-3.7678614	-3.7678614
44	light	~~	p.R p.R	2.0767194	-3.4313808	-3.4313808	-3.8451610	-3.8451610
45	light	~~	p.It p.D	1.7400456	3.1325814	3.1325814	3.6206056	3.6206056
46	light	~~	rot.p.X1	1.4964444	3.1786160	3.1786160	3.6173296	3.6173296
47	light	~~	rot.p.X2	1.3744196	-3.4035581	-3.4035581	-3.5716956	-3.5716956
48	light	~~	rot.p.X3	4.5956273	5.8437231	5.8437231	6.1397571	6.1397571
49	litter	~~	rock.sm	0.0849919	0.0613514	0.0613514	0.1022204	0.1022204
50	litter	~~	p.A	1.7853364	0.0013314	0.0013314	0.1022204	0.1022204
51	litter	~~	p.R p.R	4.9495810	-0.1938420	-0.1938420	-0.2542547	-0.2542547
52	litter	~~	p.D	1.7142363	0.1137735	0.1137735	0.1539201	0.1539201
53	litter	~~	rot.p.X1	0.4469697	-0.0635668	-0.0635668	-0.0846751	-0.0846751
54	litter	~~	rot.p.X2	0.4318042	0.0698073	0.0698073	0.0857467	0.0857467
55	litter	~~	rot.p.X3	2.3862463	-0.1540843	-0.1540843	-0.1894940	-0.1894940
56	rock.sm	~~	p.A	0.0032921	0.0039510	0.0039510	0.0060201	0.0060201
57	rock.sm	~~	p.R p.R	9.4839252	-0.2698629	-0.2698629	-0.4155308	-0.4155308
58	rock.sm	~~	p.It p.D	4.5250070	0.1859091	0.1859091	0.2952528	0.2952528
59	rock.sm	~~	rot.p.X1	0.0329745	0.1033031 0.0173647	0.1033031 0.0173647	0.2352528 0.0271538	0.2332528 0.0271538
60	rock.sm	~~	rot.p.X2	0.0323143 0.0251073	-0.0169294	-0.0169294	-0.0244117	-0.0244117
61	rock.sm	~~	rot.p.X3	0.0013514	-0.0036880	-0.0036880	-0.0053243	-0.0053243
62	light	~	litter	0.9527992	-0.2086006	-0.2086006	-0.2086006	-0.2086006
63	light	~	rock.sm	1.2614766	0.2194086	0.2194086	0.2194087	0.2194087
64	light	~	p.A	1.4876382	-0.6540268	-0.6540268	-0.6551379	-0.6551379
65	light	~	p.R	1.4203576	-0.6240171	-0.6240171	-0.6327350	-0.6327350
66	light	~	p.D	1.2259739	-0.4877566	-0.4877566	-0.4872756	-0.4872756
67	light	~	rot.p.X1	1.4102470	-0.6276416	-0.6276416	-0.6217799	-0.6217799
68	light	~	rot.p.X2	1.7445845	2.2279411	2.2279411	2.2231676	2.2231676
69	light	~	rot.p.X3	0.7921923	-0.9759796	-0.9759796	-0.9768191	-0.9768191
70	litter	~	light	0.9527991	-0.1522526	-0.1522526	-0.1522525	-0.1522525
71	litter	~	rock.sm	0.0849912	0.1199982	0.1199982	0.1199983	0.1199983
72	litter	~	p.A	0.1049781	-0.0656561	-0.0656561	-0.0657676	-0.0657676
73	litter	~	p.R	5.4063253	-0.4607574	-0.4607574	-0.4671943	-0.4671943
74	litter	~	p.D	1.4386273	-0.2509793	-0.2509793	-0.2507317	-0.2507317
75	litter	~	rot.p.X1	0.8812718	0.1921541	0.1921541	0.1903595	0.1903595
76	litter	~	rot.p.X2	0.0046997	0.0132450	0.0132450	0.0132166	0.0132166
77	litter	~	rot.p.X3	2.8561879	-0.3286658	-0.3286658	-0.3289484	-0.3289484
78	rock.sm	~	light	0.4419591	0.0882871	0.0882871	0.0882871	0.0882871
79	rock.sm	~	p.A	0.8476695	-0.1906645	-0.1906645	-0.1909883	-0.1909883
80	rock.sm	~	p.R	5.0619232	-0.4500504	-0.4500504	-0.4563376	-0.4563376
81	rock.sm	~	p.D	1.0418197	-0.2204369	-0.2204369	-0.2202195	-0.2202195
82	rock.sm	~	rot.p.X1	0.0262249	0.0337072	0.0337072	0.0333923	0.0333923
83	rock.sm	~	rot.p.X2	0.6378292	0.1549115	0.1549115	0.1545796	0.1545796
84	rock.sm	~	rot.p.X3	0.7318865	-0.1678645	-0.1678645	-0.1680088	-0.1680088
85	rock.sm	~	crown	0.0849921	-0.0453408	-0.0453408	-0.0453408	-0.0461159
86	p.A	~	litter	0.0032921	0.0053042	0.0053042	0.0052952	0.0052952
92	p.A	~	crown	3.2977703	-0.1307888	-0.1307888	-0.1305670	-0.1327991
93	p.R	~	litter	9.4839162	-0.3622878	-0.3622878	-0.3572963	-0.3572963
99	p.R	~	crown	2.0766878	-0.1320761	-0.1320761	-0.1302564	-0.1324832
	r -							-

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
100	p.D	~	litter	4.5250074	0.2495810	0.2495810	0.2498274	0.2498274
106	p.D	~	crown	1.7401531	0.1205798	0.1205798	0.1206988	0.1227622
107	rot.p.X1	~	litter	0.0329740	0.0233117	0.0233117	0.0235314	0.0235314
113	rot.p.X1	~	crown	1.4964111	0.1223466	0.1223466	0.1235000	0.1256113
114	rot.p.X2	~	litter	0.0251077	-0.0227278	-0.0227278	-0.0227766	-0.0227766
120	rot.p.X2	~	crown	1.3744845	-0.1310093	-0.1310093	-0.1312906	-0.1335351
121	rot.p.X3	~	litter	0.0013518	-0.0049516	-0.0049516	-0.0049474	-0.0049474
127	rot.p.X3	~	crown	4.5954471	0.2249261	0.2249261	0.2247328	0.2285747
128	crown	~	light	0.0000000	-0.0038619	-0.0038619	-0.0038619	-0.0038619
129	crown	~	litter	0.0000000	0.0001728	0.0001728	0.0001728	0.0001728
130	crown	~	$\operatorname{rock.sm}$	0.0849345	-0.0856690	-0.0856690	-0.0856690	-0.0856690
131	crown	~	p.A	0.9224363	-0.1948315	-0.1948315	-0.1951624	-0.1951624
132	crown	~	p.R	0.4833298	-0.1422010	-0.1422010	-0.1441876	-0.1441876
133	crown	~	p.D	0.0637165	0.0523722	0.0523722	0.0523205	0.0523205
134	crown	~	rot.p.X1	0.4273514	-0.1357367	-0.1357367	-0.1344689	-0.1344689
135	crown	~	rot.p.X2	0.6133320	0.1548646	0.1548646	0.1545328	0.1545328
136	crown	~	rot.p.X3	1.0912708	0.2059636	0.2059636	0.2061407	0.2061407

kable(modindices(fit.v.rot.norock.ind.litter))

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
38	crown	~~	crown	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
39	light	~~	litter	0.9746758	-0.1489491	-0.1489491	-0.1802123	-0.1802123
40	light	~~	p.A	3.5598867	-3.3177605	-3.3177605	-3.4374519	-3.4374519
41	light	~~	p.R	2.1705718	-3.2915430	-3.2915430	-3.4317200	-3.4317200
42	light	~~	p.D	3.0913882	4.0554483	4.0554483	4.2198712	4.2198712
43	light	~~	rot.p.X1	3.0193218	4.4263198	4.4263198	4.6753175	4.6753175
44	light	~~	rot.p.X2	1.9408464	-3.8306038	-3.8306038	-3.9961358	-3.9961358
45	light	~~	rot.p.X3	5.0520614	5.7776143	5.7776143	5.9795218	5.9795218
46	light	~	litter	0.9486283	-0.2076872	-0.2076872	-0.2021572	-0.2021572
47	light	~	p.A	1.0004077	-1.1065833	-1.1065833	-1.1058996	-1.1058996
48	light	~	p.R	0.9119461	1.6858565	1.6858565	1.6828398	1.6828398
49	light	~	p.D	0.2727159	-0.9485470	-0.9485470	-0.9471758	-0.9471758
50	light	~	rot.p.X1	0.9329982	-0.5467291	-0.5467291	-0.5419994	-0.5419994
51	light	~	rot.p.X2	0.9974866	3.9973493	3.9973493	3.9950508	3.9950508
52	light	~	rot.p.X3	1.6824044	1.6881495	1.6881495	1.6895767	1.6895767
53	litter	~	light	0.9746758	-0.1542986	-0.1542986	-0.1585194	-0.1585194
54	litter	~	p.A	0.9745900	7.2247212	7.2247212	7.4177666	7.4177666
55	litter	~	p.R	0.9747227	-1.5025605	-1.5025605	-1.5409005	-1.5409005
56	litter	~	p.D	0.9746168	1.7988858	1.7988858	1.8454226	1.8454226
57	litter	~	rot.p.X1	0.9746776	1.0346046	1.0346046	1.0537110	1.0537110
58	litter	~	rot.p.X2	0.9746364	-1.2968889	-1.2968889	-1.3315990	-1.3315990
59	litter	~	rot.p.X3	0.9747018	4.4489523	4.4489523	4.5745169	4.5745169
60	p.A	~	litter	3.5597274	-0.2751634	-0.2751634	-0.2680023	-0.2680023
66	p.A	~	crown	3.5597304	-0.1277011	-0.1277011	-0.1277802	-0.1299646
67	p.R	~	litter	2.1704770	-0.2729891	-0.2729891	-0.2661967	-0.2661967
73	p.R	~	crown	2.1704685	-0.1266918	-0.1266918	-0.1269190	-0.1290887
74	p.D	~	litter	3.0913942	0.3363525	0.3363525	0.3278705	0.3278705
80	p.D	~	crown	3.0913990	0.1560985	0.1560985	0.1563246	0.1589970
81	rot.p.X1	~	litter	3.0192609	0.3671079	0.3671079	0.3604513	0.3604513
87	rot.p.X1	~	crown	3.0192730	0.1703721	0.1703721	0.1718590	0.1747969

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
88	rot.p.X2	~	litter	1.9408265	-0.3177023	-0.3177023	-0.3094209	-0.3094209
94	rot.p.X2	~	crown	1.9408375	-0.1474434	-0.1474434	-0.1475284	-0.1500504
95	rot.p.X3	~	litter	5.0519746	0.4791816	0.4791816	0.4660287	0.4660287
101	rot.p.X3	~	crown	5.0519819	0.2223844	0.2223844	0.2221967	0.2259952
102	crown	~	$_{ m light}$	0.0000000	-0.0016923	-0.0016923	-0.0016923	-0.0016923
103	crown	~	litter	0.4633379	0.2728162	0.2728162	0.2655518	0.2655518
104	crown	~	p.A	0.0269119	-0.0299966	-0.0299966	-0.0299780	-0.0299780
105	crown	~	p.R	0.0077903	0.0162406	0.0162406	0.0162115	0.0162115
106	crown	~	p.D	1.1640943	0.1981380	0.1981380	0.1978514	0.1978514
107	crown	~	rot.p.X1	0.0210252	0.0270286	0.0270286	0.0267948	0.0267948
108	crown	~	rot.p.X2	0.2662138	0.0949957	0.0949957	0.0949410	0.0949410
109	crown	~	rot.p.X3	1.6820376	0.2368895	0.2368895	0.2370896	0.2370896

kable(modindices(fit.v.rot.norock))

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
38	crown	~~	crown	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
39	light	~~	litter	0.9527992	-0.1469742	-0.1469742	-0.1782133	-0.1782133
40	light	~~	p.A	4.1481055	-4.1835974	-4.1835974	-4.3683026	-4.3683026
41	light	~~	p.R	0.0744394	-0.6237141	-0.6237141	-0.6521594	-0.6521594
42	light	~~	p.D	0.3039193	1.2982635	1.2982635	1.3713951	1.3713951
43	light	~~	rot.p.X1	1.7910668	3.8668735	3.8668735	4.2709976	4.2709976
44	light	~~	rot.p.X2	1.5634670	-3.9846303	-3.9846303	-4.1578441	-4.1578441
45	light	~~	rot.p.X3	5.7421816	7.1819885	7.1819885	7.4351878	7.4351878
46	litter	~~	p.A	4.1480450	0.2178917	0.2178917	0.2663047	0.2663047
47	litter	~~	p.R	0.0744406	0.0324850	0.0324850	0.0397582	0.0397582
48	litter	~~	p.D	0.3038986	-0.0676148	-0.0676148	-0.0836021	-0.0836021
49	litter	~~	rot.p.X1	1.7911068	-0.2013997	-0.2013997	-0.2603775	-0.2603775
50	litter	~~	rot.p.X2	1.5633983	0.2075260	0.2075260	0.2534708	0.2534708
51	litter	~~	rot.p.X3	5.7423962	-0.3740647	-0.3740647	-0.4532829	-0.4532829
52	light	~	litter	0.9527992	-0.2086006	-0.2086006	-0.2086007	-0.2086007
53	light	~	p.A	1.2321033	-1.8559405	-1.8559405	-1.8549266	-1.8549266
54	light	~	p.R	1.0669539	2.6571923	2.6571923	2.6539618	2.6539618
55	light	~	p.D	0.6593362	-0.9810435	-0.9810435	-0.9791588	-0.9791588
56	light	~	rot.p.X1	1.1468704	-0.7974964	-0.7974964	-0.7920177	-0.7920177
57	light	~	rot.p.X2	0.0015651	-0.1972461	-0.1972461	-0.1973298	-0.1973298
58	light	~	rot.p.X3	2.4867981	9.0577883	9.0577883	9.0578186	9.0578186
59	litter	~	$_{ m light}$	0.9527992	-0.1522526	-0.1522526	-0.1522525	-0.1522525
60	litter	~	p.A	0.4390042	0.1998318	0.1998318	0.1997225	0.1997225
61	litter	~	p.R	0.2999664	-0.1622036	-0.1622036	-0.1620064	-0.1620064
62	litter	~	p.D	0.3029295	-0.1665126	-0.1665126	-0.1661926	-0.1661926
63	litter	~	rot.p.X1	1.2108042	0.3345149	0.3345149	0.3322167	0.3322167
64	litter	~	rot.p.X2	0.5643409	-0.2201771	-0.2201771	-0.2202704	-0.2202704
65	litter	~	rot.p.X3	2.2828880	-0.4524472	-0.4524472	-0.4524484	-0.4524484
71	p.A	~	crown	4.1480399	-0.1610295	-0.1610295	-0.1611176	-0.1638719
77	p.R	~	crown	0.0744416	-0.0240077	-0.0240077	-0.0240369	-0.0244479
83	p.D	~	crown	0.3038976	0.0499696	0.0499696	0.0500658	0.0509217
89	rot.p.X1	~	crown	1.7911085	0.1488415	0.1488415	0.1498711	0.1524332
95	rot.p.X2	~	crown	1.5633925	-0.1533686	-0.1533686	-0.1533037	-0.1559244
101	rot.p.X3	~	crown	5.7424094	0.2764472	0.2764472	0.2764464	0.2811723
102	crown	~	light	0.0000000	0.0000896	0.0000896	0.0000896	0.0000896

	lhs	op	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox
103	crown	~	litter	0.0000000	-0.0000656	-0.0000656	-0.0000656	-0.0000656
104	crown	~	p.A	0.3698238	-0.1312405	-0.1312405	-0.1311687	-0.1311687
105	crown	~	p.R	0.1268967	0.0769844	0.0769844	0.0768907	0.0768907
106	crown	~	p.D	0.4837159	0.1518447	0.1518447	0.1515529	0.1515529
107	crown	~	rot.p.X1	0.7063929	-0.1918607	-0.1918607	-0.1905426	-0.1905426
108	crown	~	rot.p.X2	0.2838771	0.1149094	0.1149094	0.1149581	0.1149581
109	crown	~	rot.p.X3	2.3443747	0.3276204	0.3276204	0.3276214	0.3276214

SEM Parameter Estimates

xtable::xtable(table_results(fit.1.all))

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:42 2021

	label	est_sig	se	pval	confint
1	light.ON.crown	-0.04	0.18	0.84	[-0.39, 0.32]
2	litter.ON.crown	0.52***	0.16	0.00	[0.22, 0.83]
3	rock.lg.ON.litter	-0.90***	0.08	0.00	[-1.06, -0.75]
4	l.A.ON.light	0.04	0.15	0.81	[-0.27, 0.34]
5	l.A.ON.rock.lg	0.53***	0.15	0.00	[0.22, 0.83]
6	l.R.ON.light	0.17	0.11	0.14	[-0.05, 0.39]
7	l.R.ON.rock.lg	0.74***	0.11	0.00	[0.52, 0.96]
8	l.D.ON.light	0.20	0.12	0.11	[-0.04, 0.44]
9	l.D.ON.rock.lg	0.69***	0.12	0.00	[0.45, 0.93]
10	l.X1.ON.light	0.12	0.17	0.48	[-0.21, 0.45]
11	l.X1.ON.rock.lg	0.37*	0.17	0.02	[0.05, 0.70]
12	l.X2.ON.light	0.13	0.17	0.46	[-0.21, 0.47]
13	l.X2.ON.rock.lg	-0.30	0.17	0.09	[-0.64, 0.05]
14	l.A.WITH.l.R	0.23*	0.10	0.03	[0.03, 0.43]
15	l.A.WITH.l.D	-0.03	0.10	0.73	[-0.23, 0.16]
16	l.R.WITH.l.D	0.30**	0.09	0.00	[0.12, 0.48]
17	l.A.WITH.l.X1	0.52**	0.17	0.00	[0.19, 0.85]
18	l.R.WITH.l.X1	0.24*	0.11	0.03	[0.03, 0.46]
19	Variances.light	0.97***	0.25	0.00	[0.48, 1.45]
20	Variances.litter	0.70***	0.18	0.00	[0.35, 1.06]
21	Variances.rock.lg	0.18***	0.05	0.00	[0.09, 0.27]
22	Variances.l.A	0.69***	0.18	0.00	[0.34, 1.04]
23	Variances.l.R	0.38***	0.10	0.00	[0.19, 0.57]
24	Variances.l.D	0.43***	0.11	0.00	[0.21, 0.65]
25	Variances.l.X1	0.81***	0.21	0.00	[0.40, 1.21]
26	Variances.l.X2	0.88***	0.23	0.00	[0.43, 1.32]
27	l.A.WITH.l.X2	-0.49**	0.17	0.00	[-0.82, -0.16]
28	l.R.WITH.l.X2	-0.06	0.11	0.59	[-0.26, 0.15]
29	l.D.WITH.l.X1	0.02	0.11	0.83	[-0.19, 0.23]
30	1.D.WITH.1.X2	0.11	0.11	0.32	[-0.11, 0.34]
31	l.X1.WITH.l.X2	0.08	0.15	0.61	[-0.22, 0.38]
32	Variances.crown	0.97	0.00		[0.97, 0.97]

xtable::xtable(table_results(fit.v.all))

[%] latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:42 2021

```
xtable::xtable(table_results(fit.1.rot.all))
% latex table generated in R 4.0.4 by xtable 1.8-4 package % Fri Jul 9 17:27:42 2021
xtable::xtable(table_results(fit.v.rot.all))
```

% latex table generated in R 4.0.4 by x table 1.8-4 package % Fri Jul 9 17:27:42 2021

SEM Model Fit Measures

```
sem.fm.l.all <- fitMeasures(fit.l.all)</pre>
sem.fm.v.all <- fitMeasures(fit.v.all)</pre>
sem.fm.l.rot.all <- fitMeasures(fit.l.rot.all)</pre>
sem.fm.v.rot.all <- fitMeasures(fit.v.rot.all)</pre>
sem.fm.v.rot.norock <- fitMeasures(fit.v.rot.norock)</pre>
sem.fm.tab.all <- rbind(sem.fm.l.all[c("chisq", "df", "pvalue")],</pre>
                          sem.fm.v.all[c("chisq", "df", "pvalue")])
rownames(sem.fm.tab.all) <- c("Lichens", "Plants")</pre>
colnames(sem.fm.tab.all) <- c("$\\chi^{2}$", "\\textit{df}\", "\\textit{p}-value")</pre>
sem.fm.tab.rot.all <- rbind(sem.fm.l.rot.all[c("chisq", "df", "pvalue")],</pre>
                          sem.fm.v.rot.all[c("chisq", "df", "pvalue")])
rownames(sem.fm.tab.rot.all) <- c("Lichens", "Plants")</pre>
colnames(sem.fm.tab.rot.all) <- c("$\\chi^{2}$", "\\textit{df}\", "\\textit{p}-value")</pre>
sem.fm.tab.rot.norock <- rbind(sem.fm.l.rot.all[c("chisq", "df", "pvalue")],</pre>
                          sem.fm.v.rot.norock[c("chisq", "df", "pvalue")])
rownames(sem.fm.tab.rot.norock) <- c("Lichens", "Plants")</pre>
colnames(sem.fm.tab.rot.norock) <- c("$\\chi^{2}$", "\\textit{df}\", "\\textit{p}-value")</pre>
print(xtable::xtable(sem.fm.tab.all, digits = 3),
                       sanitize.text.function = function(x) {x})
\% latex table generated in R 4.0.4 by xtable 1.8-4 package \% Fri Jul 9 17:27:42 2021
print(xtable::xtable(sem.fm.tab.rot.all, digits = 3),
      sanitize.text.function = function(x) {x})
\% latex table generated in R 4.0.4 by xtable 1.8-4 package \% Fri Jul 9 17:27:42 2021
print(xtable::xtable(sem.fm.tab.rot.norock, digits = 3),
                       sanitize.text.function = function(x) {x})
```

%latex table generated in R4.0.4 by x
table 1.8-4 package % Fri Jul 9 17:27:42 2021

Ordination Plots

```
par(mfrow = c(1,2))
plot(l.com.dif.ord[, 1:2], xlab = "Axis 1", ylab = "Axis 2", pch = 19)
plot(l.com.dif.vec, add = TRUE)
plot(v.com.dif.ord[, 1:2], xlab = "Axis 1", ylab = "Axis 2", pch = 19)
plot(v.com.dif.vec, add = TRUE)
```


SEM Plots

```
ordination = rnorm(30))
lav.apriori <- 'light ~ crown</pre>
               litter ~ crown
               rock.lg ~ litter
               abundance ~ light + rock.lg
               richness ~ light + rock.lg
               diversity ~ light + rock.lg
               ordination ~ light + rock.lg
fit.apriori <- lavaan::sem(lav.apriori, data = apriori.dat)</pre>
lay.apriori <- get_layout("crown", "", "light", "", "abundance",</pre>
                 "", "", "", "",
                                             "richness",
                 rows = 8)
tg.apriori <- prepare_graph(fit.apriori,</pre>
                             layout = lay.apriori,
                             text_size = 2.5)
nodes(tg.apriori)[nodes(tg.apriori)[, "name"] ==
                   "rock.lg", "label"] <- "rock >3cm"
edges(tg.apriori)[, "label"] <- ""</pre>
plot(tg.apriori)
```



```
apriori.norock.dat <- data.frame(crown = rnorm(30),</pre>
                          light = rnorm(30),
                          litter = rnorm(30),
                          richness = rnorm(30),
                           abundance = rnorm(30),
                          diversity = rnorm(30),
                          ordination = rnorm(30))
lav.apriori.norock <- 'light ~ crown</pre>
                litter ~ crown
                abundance ~ light + litter
                richness ~ light + litter
                diversity ~ light + litter
               ordination ~ light + litter
fit.apriori.norock <- lavaan::sem(lav.apriori.norock, data = apriori.norock.dat)</pre>
lay.apriori.norock <- get_layout("crown", "", "light", "",</pre>
                                                               "abundance",
                  "", "", "", "", "",
                                                 "richness",
                  "", "", "litter", "", "diversity",
                  "", "", "", "", "", "ordination",
                  rows = 8)
tg.apriori.norock <- prepare_graph(fit.apriori.norock,</pre>
                              layout = lay.apriori.norock,
                               text_size = 2.5)
edges(tg.apriori.norock)[, "label"] <- ""</pre>
plot(tg.apriori.norock)
```


Some edges involve nodes not in layout. These were dropped.


```
"p.R",
                  "litter", "", "rock.sm", "", "",
"", "", "", "p.D",
"", "", "", "", "rot.p.X1",
                  rows = 7)
tg.v.rot.all <- prepare_graph(fit.v.rot.all,</pre>
                              layout = lay,
                              text_size = 2.6)
nodes(tg.v.rot.all)[nodes(tg.v.rot.all)[, "name"] ==
                    "p.A", "label"] <- "abundance"
nodes(tg.v.rot.all)[nodes(tg.v.rot.all)[, "name"] ==
                    "p.R", "label"] <- "richness"
nodes(tg.v.rot.all)[nodes(tg.v.rot.all)[, "name"] ==
                    "p.D", "label"] <- "diversity"
nodes(tg.v.rot.all)[nodes(tg.v.rot.all)[, "name"] ==
                    "rock.sm", "label"] <- "rock <3cm"
nodes(tg.v.rot.all)[nodes(tg.v.rot.all)[, "name"] ==
                    "rot.p.X1", "label"] <- "axis 1"
plot(tg.v.rot.all)
lay <- get_layout("crown", "", "light", "",</pre>
                           "", "", "",
                  "", "",
                  "", "", "", "",
                                             "p.R",
                      "", "litter", "", "",
                  "", "", "", "", "p.D",
                  "", "", "", "", "",
```

Some edges involve nodes not in layout. These were dropped.

Community Analyses

To examine the lichen and plant community responses to moth susceptibility we analyzed both univariate and multivariate community metrics. All univariate metrics, which included total abundance (as total % cover), species richness and Shannon's diversity, were analyzed using t-tests of the differences between susceptible and resistant trees as done for the tree traits (Pearson 1895). Mulivariate community responses were analyzed with paired PERMANOVAs (Anderson 2001) using Bray-Curtis dissimilarity (Bray & Curtis 1957) adjusted to include zero-sum observations and 10,000 permutations. Mantel correlation was conducted to test for multivariate similarity of lichen and plant community responses to moth susceptibility.

SEM Methods

We used non-metric Multi-Dimensional Scaling (NMDS) to generate ordinations of the community differences between tree pairs. For both communities (lichens and plants) ordinations were conducted using 100 random initial configurations with a maximum of 1000 iterations and a change in stress threshold of less than 10^{-12} . This was repeated for one to four dimension configurations, and the configuration with the lowest dimensionality and an unexplained variation less than 10% was selected. Ordinated scores were then rotated for maximum correlation with the tree trait variables using a procrustes rotation (Oksanen et al. 2019).

Applying an ecological causal modeling approach (Grace and Bollen 2008), we constructed a priori models based on our hypotheses of the effects of tree traits on the two communities, lichens and plants (Figure Supplemental a priori models). We used the differences between moth susceptible and resistant trees for all variables in structural model using linear regressions with only the measured variables. Models were fit to the standardized variables using a maximum likelihood estimator and a X^2 goodness of fit test. We modeled the two communities (lichens and plants) separately because we found no significant correlation between the response of the two communities to moth herbivory (see Results).

Moth Susceptibility Impacted Lichen and Plant Communities

We found significant lichen and plant community differences between moth susceptible and resistant trees. Abundance, richness and diversity were all lower under susceptible trees for both communities (TABLE abundance richness and diversity t-tests). As a whole both lichen ($R^2 = 0.04$, p-value = 0.031) and plant ($R^2 = 0.31$, p-value = 0.0001) communities were significantly predicted by moth susceptibility. Although the moth effect was significant for both lichens and plants, their multivariate differences were not correlated (Mantel r = -0.12, p-value = 0.44).

Causal Pathway of Moth Susceptibility Effects on Communities

Moth susceptiblity indirectly influenced lichen but not plant community composition by impacting local environmental conditions via altered tree traits. The SEMs fit the lichen ($df = 13, X^2 = 18.5406651, p$ -value = 0.1380484) data well, as the model did not show significant differences from their observed covariance matrices based on their respective X^2 Goodness of Fit tests. Moth crown herbivory effects on litter explained significant amounts of community variation in differences in lichen abundance ($R^2 = 0.282$), richness ($R^2 = 0.6$) and diversity ($R^2 = 0.538$). Whole community differences between moth susceptible and resistant trees were also significantly explained by crown size differences for lichens ($R^2 = 0.219$). These effects were significantly mediated by the negative effects of litter on the abundance of large rocks, creating a combined negative effect of moth herbivory on lichen (Figure 5). Similar to the lichen model, the plant SEM displayed good model fit ($df = 15, X^2 = 24.4626076, p$ -value = 0.0576426); however, only the effect of tree crown on litter was significant and neither light nor litter showed significant effects on any of the plant community metrics (see Figure 5). However, pathways involving light differences between resistant and susceptible trees were not supported in the saxicole or vascular plant SEMs (Appendix S1: Table S3).

Removing rocks from the plant model we find the following. The model displays good fit $(df = 7, X^2 = 9.7605366, p$ -value = 0.2025546) data well, as neither model showed significant differences from their observed covariance matrices based on their respective X^2 Goodness of Fit tests. The only significant path in this model is from difference in tree crown size to difference in litter $(R^2 = NA)$.

Software and Data

All analyses were done with R version 4.0.4 (R Core Team 2021). Univariate t-tests were conducted using the stats package (R Core Team 2021). Multivariate analyses were conducted using the ecodist package for distance calculations (Goslee & Urban 2007) and the vegan package (Oksanen et al. 2019) for PERMANOVA and Mantel tests and to conduct the ordination and procrustes rotation. The structural equation modeling was conducted using the lavaan (Rosseel 2012) and tidygraph (Pedersen 2020) packages. Data and software for all the analyses are deposited as a reproducible workflow using the drake package (Landau 2018) at Zenodo (https://zenodo.org/record/4531170).

Citations

Grace, James B. and Bollen, Kenneth A. 2008. Representing general theoretical concepts in structural equation models: the role of composite variables. Environmental and Ecological Statistics, Vol. 15, Issue. 2, p. 191.

Oksanen, Jari F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs and Helene Wagner (2019). vegan: Community Ecology Package. R package version 2.5-6.

Pedersen, Thomas Lin (2020). tidygraph: A Tidy API for Graph Manipulation. R package version 1.2.0.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rosseel, Yves (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36.

Figure Captions

Path diagrams of the structural equation models (SEM) for the (A) lichen and (B) plant communities. Boxes are measured variables and single-headed arrows show the directed hypothesized causal link between variables with the standardized path coefficients overlayed onto their respective arrows. Double-headed arrows and undirected dashed lines show the variances and co-variances, respectively. Only variables with at least one significant path coefficient are shown for clarity and estimates for all modeled pathways can be found in Supplementary Table ?????.

Bivariate plots of the procrustes rotated ordinations for the (A) lichen and (B) plant communities. Overlaid vectors show the magnitude and direction of the correlations for variables indicated by their respective labels.

Table Legends

Combined results from the univariate t-tests of the differences of the community metrics (abundance, richness and diversity) between moth susceptible and resistiant trees (S -R).

```
tab.ard.combined <- tab.ttest.ard
community <- do.call(rbind,
                      strsplit(rownames(tab.ard.combined), "\\."))[, 1]
community <- gsub("l", "lichens", community)</pre>
community <- gsub("p", "plants", community)</pre>
metric <- do.call(rbind,
                      strsplit(rownames(tab.ard.combined), "\\."))[, 2]
metric <- gsub("A", "abundance", metric)</pre>
metric <- gsub("R", "richness", metric)</pre>
metric <- gsub("D", "diversity", metric)</pre>
tab.ard.combined <- data.frame(community, metric, tab.ard.combined)
colnames(tab.ard.combined)[colnames(tab.ard.combined) == "statistic.t"] <- "t"</pre>
colnames(tab.ard.combined)[colnames(tab.ard.combined) == "parameter.df"] <- "df"</pre>
colnames(tab.ard.combined)[colnames(tab.ard.combined) == "estimate.mean.of.x"] <- "mean"</pre>
tab.ard.combined[, "t"] <- round(tab.ard.combined[, "t"], 3)</pre>
tab.ard.combined[, "df"] <- round(tab.ard.combined[, "df"], 0)</pre>
tab.ard.combined[, "mean"] <- round(tab.ard.combined[, "mean"], 3)
tab.ard.combined[, "p.value"] <- round(tab.ard.combined[, "p.value"], 4)</pre>
write.csv(file = "results/table ard combined.csv", tab.ard.combined)
print(xtable::xtable(tab.ard.combined,
                digits = c(0, 0, 0, 3, 0, 3, 4)),
                include.rownames = FALSE)
```

% latex table generated in R 4.0.4 by xtable 1.8-4 package % Fri Jul 9 17:27:52 2021

Standardized path coefficients, variance and covariance statistics from the Lavann structural equation modeling (SEM) for the lichen community. The labels show the pathway for path coefficients with the directionality indicated by "ON" and covariances are indicated by "WITH". Paths common to both models are only shown once while other variables specific to each model are preceded by "l" for lichen and "p" for plant community. The est_sig column contains the standardize path coefficient and possibly asterisks indicating the level of significance. The standard error and p-value for the linear regression for each path are in the following columns se and pval, respectively.

```
sem.combined <- rbind(
    table_results(fit.l.rot.all)[, c("label", "est_sig", "se", "pval")],
    table_results(fit.v.rot.norock)[, c("label", "est_sig", "se", "pval")])
sem.combined <- sem.combined[!(duplicated(sem.combined[, 1])), ]
sem.combined[,1] <- gsub("rot.", "", sem.combined[, 1])
sem.combined[,1] <- gsub(".A.", ".abundance.", sem.combined[, 1])
sem.combined[,1] <- gsub(".R.", ".richness.", sem.combined[, 1])
sem.combined[,1] <- gsub(".D.", ".diversity.", sem.combined[, 1])
sem.combined[,1] <- gsub(".X", ".axis", sem.combined[, 1])

sem.norock <- rbind(
    table_results(fit.v.rot.norock)[, c("label", "est_sig", "se", "pval")])
sem.norock <- sem.norock[!(duplicated(sem.norock[, 1])), ]
sem.norock[,1] <- gsub(".A.", ".abundance.", sem.norock[, 1])
sem.norock[,1] <- gsub(".R.", ".richness.", sem.norock[, 1])
sem.norock[,1] <- gsub(".D.", ".diversity.", sem.norock[, 1])
sem.norock[,1] <- gsub(".X", ".axis", sem.norock[, 1])</pre>
```

	label	est_sig	se	pval
1	light.ON.crown	-0.04	0.18	0.84
2	litter.ON.crown	0.52***	0.16	0.00
3	rock.lg.ON.litter	-0.90***	0.08	0.00
4	l.abundance.ON.light	0.04	0.15	0.81
5	l.abundance.ON.rock.lg	0.53***	0.15	0.00
6	l.richness.ON.light	0.17	0.11	0.14
7	l.richness.ON.rock.lg	0.74***	0.11	0.00
8	l.diversity.ON.light	0.20	0.12	0.11
9	l.diversity.ON.rock.lg	0.69***	0.12	0.00
10	l.axis1.ON.light	0.05	0.16	0.75
11	l.axis1.ON.rock.lg	0.46**	0.16	0.00
12	l.axis 2.ON. light	0.17	0.18	0.33
13	l.axis 2.ON.rock.lg	-0.02	0.18	0.90
14	l.abundance.WITH.l.R	0.23*	0.10	0.03
15	l.abundance.WITH.l.D	-0.03	0.10	0.73
16	l.richness.WITH.l.D	0.30**	0.09	0.00
17	l.abundance.WITH.l.axis1	0.68***	0.18	0.00
18	l.richness.WITH.l.axis1	0.24*	0.11	0.02
19	Variances.light	0.97***	0.25	0.00
20	Variances.litter	0.70***	0.18	0.00
21	Variances.rock.lg	0.18***	0.05	0.00
22	Variances.l.A	0.69***	0.18	0.00
23	Variances.l.R	0.38***	0.10	0.00
24	Variances.l.D	0.43***	0.11	0.00
25	Variances.l.axis1	0.75***	0.19	0.00

	label	est sig	se	pval
26	Variances.l.axis2	0.94***	0.24	0.00
$\frac{20}{27}$	l.abundance.WITH.l.axis2	-0.10	0.24 0.15	0.00
28	l.richness.WITH.l.axis2	0.10	$0.15 \\ 0.11$	0.31
29	l.diversity.WITH.l.axis1	-0.03	0.11 0.10	0.39 0.79
$\frac{29}{30}$	l.diversity.WITH.l.axis2	-0.05 0.11	0.10 0.12	0.79 0.37
$\frac{30}{31}$	l.axis1.WITH.l.axis2	$0.11 \\ 0.15$	$0.12 \\ 0.16$	0.37
$\frac{31}{32}$	Variances.crown	$0.13 \\ 0.97$	0.10	NA
$\frac{32}{35}$	p.abundance.ON.light	-0.03	0.00	0.87
36	p.abundance.ON.litter	0.12	0.18	0.50
37	p.richness.ON.light	0.12 0.11	0.18	0.50
38	p.richness.ON.litter	-0.07	0.18	0.68
39	p.diversity.ON.light	-0.07 -0.07	0.18	0.68
39 40	p.diversity.ON.litter	0.07	0.18	0.08
40	p.axis1.ON.light	-0.16	0.18 0.17	0.36
41	p.axis1.ON.light p.axis1.ON.litter	0.16 0.28	$0.17 \\ 0.17$	0.30
43	p.axis2.ON.light	0.28 0.13	0.17	0.10 0.48
43	p.axis2.ON.light p.axis2.ON.litter	0.13 0.02	0.18	0.48
44	p.axis3.ON.light	-0.02	0.18	0.90
46	p.axis3.ON.litter	-0.01	0.18	0.95 0.99
47	p.abundance.WITH.p.axis2	-0.53**	0.10	0.99 0.01
48	p.abundance.WITH.p.axis2	0.50*	0.20 0.20	0.01
49	p.abundance.WITH.p.D	0.39*	0.20 0.19	0.01
50	p.richness.WITH.p.D	0.84***	0.19 0.23	0.04
51	p.abundance.WITH.p.axis1	0.34*	0.23 0.18	0.00
52	p.richness.WITH.p.axis1	0.38 0.13	0.13 0.17	0.03 0.42
$\frac{52}{55}$	Variances.p.A	0.15	0.17 0.25	0.42
56	Variances.p.R Variances.p.R	0.95***	0.23	0.00
57	Variances.p.D	0.93***	0.24	0.00
58	Variances.p.axis1	0.85***	0.24 0.22	0.00
59	Variances.p.axis2	0.95***	0.22	0.00
60	Variances.p.axis3	0.97***	0.25	0.00
61	p.abundance.WITH.p.axis3	0.53**	0.20	0.01
62	p.richness.WITH.p.axis2	-0.20	0.18	0.25
63	p.richness.WITH.p.axis3	0.41*	0.19	0.03
64	p.diversity.WITH.p.axis1	0.41	0.16	0.65
65	p.diversity.WITH.p.axis2	-0.08	0.10	0.65
66	p.diversity.WITH.p.axis3	0.40*	0.17	0.03
67	p.axis1.WITH.p.axis2	0.40	0.16	0.72
68	p.axis1.WITH.p.axis3	-0.16	0.17	0.12
69	p.axis2.WITH.p.axis3	-0.11	0.18	0.51
	r	U.11	0.10	

label	est_sig	se	pval
light.ON.crown	-0.04	0.18	0.84
litter.ON.crown	0.52***	0.16	0.00
p.abundance.ON.light	-0.03	0.18	0.87
p.abundance.ON.litter	0.12	0.18	0.50
p.richness.ON.light	0.11	0.18	0.55
p.richness.ON.litter	-0.07	0.18	0.68
p.diversity.ON.light	-0.07	0.18	0.68
p.diversity.ON.litter	0.17	0.18	0.33
p.axis1.ON.light	-0.16	0.17	0.36

label	est_sig	se	pval
p.axis1.ON.litter	0.28	0.17	0.10
p.axis2.ON.light	0.13	0.18	0.48
p.axis2.ON.litter	0.02	0.18	0.90
p.axis3.ON.light	-0.01	0.18	0.95
p.axis3.ON.litter	-0.00	0.18	0.99
p.abundance.WITH.p.axis2	-0.53**	0.20	0.01
p.abundance.WITH.p.R	0.50*	0.20	0.01
p.abundance.WITH.p.D	0.39*	0.19	0.04
p.richness.WITH.p.D	0.84***	0.23	0.00
p.abundance.WITH.p.axis1	0.38*	0.18	0.03
p.richness.WITH.p.axis1	0.13	0.17	0.42
Variances.light	0.97***	0.25	0.00
Variances.litter	0.70***	0.18	0.00
Variances.p.A	0.95***	0.25	0.00
Variances.p.R	0.95***	0.24	0.00
Variances.p.D	0.93***	0.24	0.00
Variances.p.axis1	0.85***	0.22	0.00
Variances.p.axis2	0.95***	0.25	0.00
Variances.p.axis3	0.97***	0.25	0.00
p.abundance.WITH.p.axis3	0.53**	0.20	0.01
p.richness.WITH.p.axis2	-0.20	0.18	0.25
p.richness.WITH.p.axis3	0.41*	0.19	0.03
p.diversity.WITH.p.axis1	0.07	0.16	0.65
p.diversity.WITH.p.axis2	-0.08	0.17	0.65
p.diversity.WITH.p.axis3	0.40*	0.19	0.03
p.axis1.WITH.p.axis2	0.06	0.16	0.72
p.axis1.WITH.p.axis3	-0.16	0.17	0.34
p.axis2.WITH.p.axis3	-0.11	0.18	0.52
Variances.crown	0.97	0.00	NA

-	label	est_sig	se	pval	confint
1	light.ON.crown	-0.04	0.18	0.84	[-0.39, 0.32]
2	litter.ON.crown	0.52***	0.16	0.00	[0.22, 0.83]
3	rock.sm.ON.litter	-0.69***	0.13	0.00	[-0.95, -0.43]
4	p.A.ON.light	0.02	0.17	0.89	[-0.31, 0.36]
5	p.A.ON.rock.sm	-0.36*	0.17	0.03	[-0.70, -0.03]
6	p.R.ON.light	0.18	0.15	0.22	[-0.11, 0.48]
7	p.R.ON.rock.sm	-0.63***	0.17	0.00	[-0.96, -0.31]
8	p.R.ON.litter	-0.39***	0.10	0.00	[-0.57, -0.20]
9	p.D.ON.light	-0.01	0.16	0.94	[-0.33, 0.31]
10	${\rm p.D.ON.rock.sm}$	-0.44**	0.16	0.01	[-0.76, -0.12]
11	p.X1.ON.light	0.11	0.18	0.56	[-0.25, 0.46]
12	p.X1.ON.rock.sm	0.12	0.18	0.49	[-0.23, 0.48]
13	p.X2.ON.light	-0.02	0.18	0.93	[-0.37, 0.34]
14	p.X2.ON.rock.sm	0.21	0.18	0.25	[-0.14, 0.56]
15	p.X3.ON.light	0.13	0.17	0.44	[-0.20, 0.46]
16	p.X3.ON.rock.sm	0.35*	0.17	0.03	[0.02, 0.68]
17	p.A.WITH.p.X2	-0.50**	0.18	0.01	[-0.86, -0.13]
18	p.A.WITH.p.R	0.32*	0.15	0.03	[0.03, 0.61]
19	p.A.WITH.p.D	0.26	0.16	0.09	[-0.04, 0.57]
20	p.R.WITH.p.D	0.63***	0.17	0.00	[0.29, 0.97]
21	p.A.WITH.p.X1	-0.50**	0.19	0.01	[-0.86, -0.13]
22	p.R.WITH.p.X1	-0.13	0.15	0.36	[-0.42, 0.15]
23	Variances.light	0.97***	0.25	0.00	[0.48, 1.45]
24	Variances.litter	0.70***	0.18	0.00	[0.35, 1.06]
25	Variances.rock.sm	0.51***	0.13	0.00	[0.25, 0.77]
26	Variances.p.A	0.84***	0.22	0.00	[0.42, 1.27]
27	Variances.p.R	0.67***	0.17	0.00	[0.33, 1.00]
28	Variances.p.D	0.78***	0.20	0.00	[0.38, 1.17]
29	Variances.p.X1	0.94***	0.24	0.00	[0.46, 1.41]
30	Variances.p.X2	0.93***	0.24	0.00	[0.46, 1.40]
31	Variances.p.X3	0.81***	0.21	0.00	[0.40, 1.22]
32	p.A.WITH.p.X3	-0.26	0.16	0.11	[-0.57, 0.05]
33	p.R.WITH.p.X2	-0.31*	0.15	0.04	[-0.61, -0.01]
34	p.R.WITH.p.X3	0.02	0.13	0.89	[-0.24, 0.28]
35	p.D.WITH.p.X1	-0.03	0.16	0.85	[-0.33, 0.28]
36	p.D.WITH.p.X2	-0.33*	0.17	0.04	[-0.66, -0.01]
37	p.D.WITH.p.X3	0.05	0.15	0.74	[-0.24, 0.33]
38	p.X1.WITH.p.X2	0.08	0.17	0.64	[-0.25, 0.42]
39	p.X1.WITH.p.X3	-0.10	0.16	0.55	[-0.41, 0.22]
40	p.X2.WITH.p.X3	-0.21	0.16	0.21	[-0.52, 0.11]
_41	Variances.crown	0.97	0.00		[0.97, 0.97]

	label	est_sig	se	pval	confint
1	light.ON.crown	-0.04	0.18	0.84	[-0.39, 0.32]
2	litter.ON.crown	0.52***	0.16	0.00	[0.22, 0.83]
3	rock.lg.ON.litter	-0.90***	0.08	0.00	[-1.06, -0.75]
4	l.A.ON.light	0.04	0.15	0.81	[-0.27, 0.34]
5	l.A.ON.rock.lg	0.53***	0.15	0.00	[0.22, 0.83]
6	l.R.ON.light	0.17	0.11	0.14	[-0.05, 0.39]
7	l.R.ON.rock.lg	0.74***	0.11	0.00	[0.52, 0.96]
8	l.D.ON.light	0.20	0.12	0.11	[-0.04, 0.44]
9	l.D.ON.rock.lg	0.69***	0.12	0.00	[0.45, 0.93]
10	${ m rot.l.X1.ON.light}$	0.05	0.16	0.75	[-0.26, 0.37]
11	rot.l.X1.ON.rock.lg	0.46**	0.16	0.00	[0.15, 0.78]
12	${ m rot.l. X2. ON. light}$	0.17	0.18	0.33	[-0.18, 0.53]
13	rot.l.X2.ON.rock.lg	-0.02	0.18	0.90	[-0.38, 0.33]
14	l.A.WITH.l.R	0.23*	0.10	0.03	[0.03, 0.43]
15	l.A.WITH.l.D	-0.03	0.10	0.73	[-0.23, 0.16]
16	l.R.WITH.l.D	0.30**	0.09	0.00	[0.12, 0.48]
17	l.A.WITH.rot.l.X1	0.68***	0.18	0.00	[0.32, 1.03]
18	l.R.WITH.rot.l.X1	0.24*	0.11	0.02	[0.03, 0.45]
19	Variances.light	0.97***	0.25	0.00	[0.48, 1.45]
20	Variances.litter	0.70***	0.18	0.00	[0.35, 1.06]
21	Variances.rock.lg	0.18***	0.05	0.00	[0.09, 0.27]
22	Variances.l.A	0.69***	0.18	0.00	[0.34, 1.04]
23	Variances.l.R	0.38***	0.10	0.00	[0.19, 0.57]
24	Variances.l.D	0.43***	0.11	0.00	[0.21, 0.65]
25	Variances.rot.l.X1	0.75***	0.19	0.00	[0.37, 1.13]
26	Variances.rot.l.X2	0.94***	0.24	0.00	[0.46, 1.41]
27	l.A.WITH.rot.l.X2	-0.10	0.15	0.51	[-0.39, 0.19]
28	${\it l.R.WITH.rot.l.} X2$	0.10	0.11	0.39	[-0.12, 0.31]
29	l.D.WITH.rot.l.X1	-0.03	0.10	0.79	[-0.23, 0.18]
30	${\rm l.D.WITH.rot.l.X2}$	0.11	0.12	0.37	[-0.12, 0.34]
31	${\rm rot.l.X1.WITH.rot.l.X2}$	0.15	0.16	0.32	[-0.15, 0.46]
32	Variances.crown	0.97	0.00		[0.97, 0.97]

-	label	est_sig	se	pval	confint
1	light.ON.crown	-0.04	0.18	0.84	[-0.39, 0.32]
2	litter.ON.crown	0.52***	0.16	0.00	[0.22, 0.83]
3	rock.sm.ON.litter	-0.69***	0.13	0.00	[-0.95, -0.43]
4	p.A.ON.light	0.02	0.17	0.89	[-0.31, 0.36]
5	p.A.ON.rock.sm	-0.36*	0.17	0.03	[-0.70, -0.03]
6	p.R.ON.light	0.20	0.17	0.24	[-0.13, 0.53]
7	p.R.ON.rock.sm	-0.37*	0.17	0.03	[-0.70, -0.04]
8	p.D.ON.light	-0.01	0.16	0.94	[-0.33, 0.31]
9	p.D.ON.rock.sm	-0.44**	0.16	0.01	[-0.76, -0.12]
10	rot.p.X1.ON.light	-0.13	0.17	0.43	[-0.46, 0.19]
11	${ m rot.p.X1.ON.rock.sm}$	-0.37*	0.17	0.03	[-0.69, -0.04]
12	${ m rot.p. X2. ON. light}$	0.10	0.18	0.57	[-0.25, 0.45]
13	${ m rot.p.X2.ON.rock.sm}$	0.11	0.18	0.54	[-0.24, 0.46]
14	rot.p.X3.ON.light	0.03	0.18	0.89	[-0.33, 0.38]
15	rot.p.X3.ON.rock.sm	-0.17	0.18	0.33	[-0.53, 0.18]
16	p.A.WITH.rot.p.X2	-0.49**	0.19	0.01	[-0.85, -0.12]
17	p.A.WITH.p.R	0.36*	0.17	0.03	[0.04, 0.69]
18	p.A.WITH.p.D	0.26	0.16	0.09	[-0.04, 0.57]
19	p.R.WITH.p.D	0.67***	0.19	0.00	[0.30, 1.05]
20	p.A.WITH.rot.p.X1	0.29	0.16	0.07	[-0.02, 0.60]
21	p.R.WITH.rot.p.X1	-0.01	0.15	0.93	[-0.30, 0.28]
22	Variances.light	0.97***	0.25	0.00	[0.48, 1.45]
23	Variances.litter	0.70***	0.18	0.00	[0.35, 1.06]
24	Variances.rock.sm	0.51***	0.13	0.00	[0.25, 0.77]
25	Variances.p.A	0.84***	0.22	0.00	[0.42, 1.27]
26	Variances.p.R	0.82***	0.21	0.00	[0.41, 1.24]
27	Variances.p.D	0.78***	0.20	0.00	[0.38, 1.17]
28	Variances.rot.p.X1	0.80***	0.21	0.00	[0.40, 1.20]
29	Variances.rot.p.X2	0.94***	0.24	0.00	[0.46, 1.42]
30	Variances.rot.p.X3	0.94***	0.24	0.00	[0.46, 1.41]
31	p.A.WITH.rot.p.X3	0.47^*	0.18	0.01	[0.11, 0.83]
32	p.R.WITH.rot.p.X2	-0.17	0.16	0.30	[-0.49, 0.15]
33	p.R.WITH.rot.p.X3	0.35*	0.17	0.04	[0.01, 0.69]
34	p.D.WITH.rot.p.X1	-0.03	0.14	0.83	[-0.31, 0.25]
35	p.D.WITH.rot.p.X2	-0.03	0.16	0.85	[-0.34, 0.28]
36	p.D.WITH.rot.p.X3	0.33*	0.17	0.05	[0.01, 0.66]
37	rot.p.X1.WITH.rot.p.X2	0.10	0.16	0.52	[-0.21, 0.42]
38	rot.p.X1.WITH.rot.p.X3	-0.22	0.16	0.18	[-0.54, 0.10]
39	rot.p.X2.WITH.rot.p.X3	-0.09	0.17	0.58	[-0.43, 0.24]
40	Variances.crown	0.97	0.00		[0.97, 0.97]

	χ^2	df	p-value
Lichens	18.541	13.000	0.138
Plants	12.147	14.000	0.595

	χ^2	df	<i>p</i> -value
Lichens	18.541	13.000	0.138
Plants	24.463	15.000	0.058

	χ^2	df	p-value
Lichens	18.541	13.000	0.138
Plants	9.761	7.000	0.203

community	metric	t	df	mean	p.value
Community	metric	ւ	uı	шеан	p.varue
lichens	abundance	-2.249	29	-1.544	0.0323
lichens	richness	-2.955	29	-2.533	0.0062
lichens	diversity	-2.447	29	-0.437	0.0207
plants	abundance	-7.135	29	-22.433	0.0000
plants	richness	-7.477	29	-1.300	0.0000
plants	diversity	-4.219	29	-0.295	0.0002