

US Army Corps of Engineers Hydrologic Engineering Center

Hydrologic Aspects of Flood Warning - Preparedness Programs

Technical Paper No. 131 August 1990

Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Hydrologic Aspects of Flood Warning - Preparedness Programs

Harry W. Dotson*, M.ASCE and John C. Peters*, M.ASCE

Abstract

A reliable flood-threat recognition system is a vital component of a sound flood warning-preparedness program. Fundamental questions associated with the development of a flood-threat recognition system are: what warning times can be achieved, and how reliable will the warnings be? Answers to these questions depend on watershed and storm characteristics, and the flood-threat recognition method being considered. The tradeoff between warning time and warning reliability is illustrated, and methods for estimating warning time are discussed.

Introduction

Flood warning and preparedness programs involve flood-threat recognition, warning dissemination, emergency response and post-flood recovery. The design and implementation of a sound, cost-effective program and the determination of the scope of the program depend substantially on the supporting hydrologic analyses. An important aspect of the hydrologic analyses is the development of a flood-threat recognition system. The analysis includes the evaluation of flood warning times, warning criteria, and the reliability of the warning.

Warning Time and Reliability

The concept of warning time is illustrated in Figure 1 (FIACWD, 1989). As indicated, maximum potential warning time (T_{wp}) is the time from the first indication of precipitation to the time flooding begins. Use of time (T_{wp}) as the actual warning time (T_{w}) would be totally unreliable because it would indicate that it floods every time it rains. There must be a flood recognition time (T_{wp}) which is the time required for specific warning criteria to indicate flooding is imminent. The criteria could be that a specific amount of precipitation has occurred or that a stream has reached a specified stage. The longer the flood recognition time, the

^{*}Hydraulic Engineer, US Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA 95616. Presented at the ASCE Hydraulics Division 1990 National Conference on Hydraulic Engineering, August 1990, San Diego, CA.

warning time. However, one must be aware of the tradeoffs between warning time and warning reliability.

Figure 1. Illustration of Flood Warning Time

Consider Figure 2, which illustrates aspects of reliability. Sets of storm events are labeled {A}, {B}, {C} and {D}, where:

- {A} = storm events that cause flooding
- {B} = storm events that do not cause flooding
- {C} = storm events that cause flooding but for which warnings are not issued
- {D} = storm events that do not cause flooding but for which warnings are issued

Figure 2. Reliability of Flood Warnings

The goal of a warning system is to minimize both {C} and {D}. Events from {C} can cause damage and loss of life that could possibly be prevented; events from {D} increase the likelihood that future warnings will be ignored. Alternative warning systems will be reflected by different configurations of {C} and {D}. The basis for a warning can range from measured stage at an index gage to results of a rainfall-runoff model that incorporate recent rain data and possibly estimates of future rainfall. Although the more sophisticated warning systems will tend to provide longer lead times, their reliability may not necessarily be greater than that associated with simpler systems. Both warning time and reliability should be evaluated when analyzing alternative warning systems

The tradeoff between lead time (warning time) and warning reliability can be illustrated by considering a simple threshold-stage method of warning, as illustrated in Figure 3. The warning stage is sensed at location A. The primary flood threat is downstream at location B. The problem is to choose a threshold (index) stage for location A such that when that stage is exceeded, a warning for flooding at location B is to be issued. It is desired that the lead time to prepare for the flood threat be as long as possible. The lower the index stage at A, presumably the more lead time will be afforded. However, if the threshold stage is too low, there will be too many false warnings, so that genuine warnings will not be heeded. In terms of Figure 2, as {C} is made smaller, {D} becomes larger.

Figure 3. Lead Time Versus Warning Reliability

Illustration of Flood Warning and Reliability

To illustrate the tradeoff between warning time and reliability that is implicit in a flood warning system, consider a situation like that in Figure 3 in which a threshold stage at an index gage is to be used to trigger an alarm that warns of the impending exceedance of flood stage at a damage center. Although most flood warning systems are more sophisticated than this, analysis of a simple system can provide insights that have broader implications.

For	
ŁΙ	100
e d	
THUM -	
101/	
lity O	eebo
il and/	or
pecial	

The basin used in this illustration is part of the Central Great Plains Experimental Watershed near Hastings, Nebraska (USDA, undated). In particular, discharge data collected over a 29-year period (1939-1967) at three gages on the west branch of Beaver Creek were used. The locations are labeled W3, W8 and W11 in Figure 4a. The drainage areas at these locations are very small and warning times will be very short. However, the intent of this analysis is to illustrate concepts rather than a practical design, and the available data is well suited to this purpose.

Assume that location W11 is the damage center for which a warning is to be issued, and that flood stage at W11 corresponds to a discharge of 300 cfs. This discharge was exceeded for 16 events during the 29-year period of record. Locations W3 and W8 will be considered individually as index locations for triggering a warning. That is, when a threshold discharge is exceeded at the index location, a warning is issued. The problem is to determine the threshold discharge to be used, and to assess associated warning time and reliability.

Period-of-record discharge data at a 15-minute interval for the three locations were acquired. The data were processed to determine events that exceed the flood discharge (300 cfs) at W11, and to determine threshold discharge exceedances at W3 and W8. Table

Table 1
Warning Time Analysis for a Threshold Q of 200 cfs at W8

Flood discharge at W11 = 300 cfs.

Date & Time of Flood at W11	Peak Q at W11	Time of Peak Q W11	Thresh. Q at W8 Exceeded?	Time of Exceed. Thresh. Q	Potential Warning Time (hr:min)
12 MAY 44 0315	394	0330	yes	0115	2:00
25 AUG 44 1045	343	1515	yes	1100	-:15
16 JUL 45 2045	333	2100	yes	1745	3:00
9 JUN 49 0030	374	0145	yes	2045 ²	3:45
20 SEP 50 0115	730	0300	yes	2230	2:45
1 JUL 51 2045	1147	2215	yes	1930	1:15
10 JUL 51 0815	918	0900	yes	0630	1:45
14 JUL 52 0400	1063	0430	yes	0115	2:45
7 JUN 53 1815	680	2000	yes	1745	:30
22 MAY 54 2315	999	0200 1	yes	2300	:15
27 MAY 54 0330	325	0345	yes	2345	3:45
15 JUN 57 1730	1459	2115	yes	1215	5:15
29 AUG 57 0045	414	0130	yes	0130	-:45
3 JUL 59 2130	838	2400	yes	2115	:15
27 MAR 60 1645	365	1745	yes	1315	3:30
15 MAY 60 2230	811	0115 1	yes	2230	:00

¹ Next day.

Number of events threshold discharge (200 cfs) was exceeded: 45

Reliability = $16/45 \times 100 = 36\%$

² Previous day

¹⁶ flood events in 29 years

1 illustrates results for a threshold dischage of 200 cfs at W8. The first three columns pertain to the flood event at W11; the last three columns refer to the exceedance of the thresholddischarge at W8. In this illustration, the threshold discharge was exceeded during all 16 flood events. The potential warning time associated with the events is shown in the last column. For two of the events, the time is negative.

As noted at the bottom of Table 1, the threshold discharge was exceeded 45 times during the 29 years of record, which means that a false warning would have been generated 29 times. The realiability of the warning mechanism, that is, the percent of true warnings to total warnings, is $16/45 \times 100$. or 36 percent. As may be noted from the table, a warning time ≥ 1 hour would have been provided for 10 of the 16, or 63 percent of the flood events. A warning time ≥ 30 minutes would have been provided for 69 percent of the events. The analysis illustrated in Table 1 was also applied with threshold discharges

Figure 4. Beaver Creek Watershed

at W8 of 100, 300 and 400 cfs. Figure 4b shows forecast reliability and occurrence of at least a 30-minute warning time, both as a function of threshold discharge at W8. Figure 4c shows results for W3.

The inverse relationship between warning reliability and warning occurrence is readily apparent in Figures 4b and 4c. Suppose that it were desired to have a warning reliability of 70 percent, meaning that 7 out of 10 warnings would be for actual flood events. From Figure 4b, the corresponding threshold discharge at W8 is about 350 cfs and the percent

of flood events for which a warning time \geq 30 minutes is provided is 53 percent. That is, a warning time \geq 30 minutes would be provided for only about half the flood events, and 3 out of 10 warnings would be erroneous. These are not very impressive figures, and such a warning system would obviously be far less than adequate.

By comparison, Figure 4c indicates that a 70 percent reliability could be achieved with a threshold discharge of 400 cfs at W3, for which a warning time \geq 30 minutes would be provided for only 31 percent of the flood events. For this level of reliability, index location W8 is the better of the two locations.

Estimation of Flood Warning Time

Flood-threat recognition essentially involves real-time sampling of characteristics of a storm event and forecasting the probable near-term runoif response. The more variability associated with the event being sampled, the more difficulty there is in obtaining an adequate sample and the more uncertain the forecast.

Key variables upon which warning time depends include: (1) spatial variability of precipitation, (2) temporal variability of precipitation, (3) rainfall-runoff response characteristics of the watershed and (4) antecedent soil moisture conditions. Storm rainfall, and consequently warning time, typically exhibit substantial variability. To properly evaluate the potential warning time for a watershed, a set of storms should be analyzed that reflects such variability. Warning time can then be defined in terms of a median value and a standard deviation or some other measure of variability.

Warning time for a specific historical storm event can be estimated using a rainfall-runoff forecast model such as HEC-IF (Peters, 1985). The model accounts for precipitation and streamflow that has occurred up to the specified time-of-forecast and simulates streamflow into the future. Successive times-of-forecast can be evaluated until the simulated future runoff exceeds flood stage. The time between the time-of-forecast and the time when flooding begins represents an estimate of the gross warning time for the event being analyzed. An estimated time for collecting and analyzing real-time data during an actual storm would need to be estimated and subtracted from the gross warning time. If climatological forecasts had indicated a significant probability of future rainfall, such rainfall could be incorporated in the forecast and a longer warning time achieved. However, quantitative estimates of future precipitation are notoriously uncertain.

Ideally the analysis as described would be made for a number of historical events, and the median value and variability of warning determined. If there were no historical precipitation data for the basin, it would be reasonable to transpose rainfall information from within a hydrometeorologically homogeneous region. If no concurrent precipitation and streamflow data were available for a basin, there would, of course, be additional uncertainty associated with lack of data with which to calibrate the rainfall-runoff model.

References

- 1. USDA, Agricultural Research Service, The Central Great Plains Experimental Watershed, A Summary Report of 30 Years of Hydrologic Research, (undated report).
- Federal Interagency Advisory Committee on Water Data (FIACWD), Hydrology Subcommittee, Guidelines on Community Local Flood Warning and Response Systems, 1985.
- 3. Peters, J., and P. Ely, Flood-Runoff Forecasting with HEC1F, Water Resources Bulletin, 21 (1), 1985.

REPORT DOCUMENTATION PAGE				orm Approved MB No. 0704-0188	
TA PEFORT SECURITY CLASSIFICATION UNCLASSIFIED	THE PESTRIC TIVE MARKINGS				
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT			
26 DECLASSIFICATION/DOWNGRADING SCHEDULE		1			
4 PEPFORMING ORGANIZATION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION F	REPORT NUMBE	:R(S)
Technical Paper No. 131					
64 NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)				
Hydrologic Engineering Center	CEWRC-HEC	Water Resources Support Center			
Fig. ADDRESS (City, State, and ZIP Code)	e ADDRESS (City, State, and ZIP Code)		ty, State, and ZIP	Code)	
609 Second St.		Casey Building, 2594			
Davis, CA 95616		Fort Belve	oir, Virgin	ia 22060	
BY MANTE OF FUNDING SPONSORING OPGANIZATION	8b OFFICE SYMBOL (If applicable)	3 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			NUMBER
BC ADDRESS (City, State, and ZIP Code)	İ	10 SOURCE OF	FUNDING NUMBER	RS	
Tool Controlly, State, and En Code,		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
11 TITLE (Include Security Classification)					
Hydrologic Aspects of Flood Wa	rning - Prepared	dness Progra	ms		
12 PERSONAL AUTHOR(S)					
Harry W. Dotson and John C. Pe		14 DATE OF REPO	ORT (Year Month	Day) 15 PA	GE COUNT
Technical Paper FROM	to	August 1		7	
16 SUPPLEMENTARY NOTATION					
17 COSATI CODES	18 SUBJECT TERMS				
FIELD GROUP SUB-GROUP Flood threat recogniti					
reliability, historical storm events, forecasting, rainfall- runoff modeling, HEC-IF program.					
13 ARSTRACT (Continue on reverse if necessary and identify by block number)					
A reliable flood-threat recognition system is a vital component of a sound flood warning-					
preparedness program. Fundamental questions associated with the development of a thood- threat recognition system are: what warning times can be achieved, and how reliable will the					
warnings be? Answers to these	questions depen	d on watersh	ed and stor	m characte	etistics, and
the flood-threat recognition me warning reliability is illustra	thod being cons	idered. The	tradeoff b	etween war e rime are	oning time and . • discussed.
warning reliability is illustra	ted, and method	s for estima	cing warmin	g crine are	
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED	DOT CHEESE	LINIOT ACC 1	ECURITY CLASSIFI FIED	CATION	
27a NAME OF RESPONSIBLE INDIVIDUAL	RPT DTIC USERS	226 TELEPHONE	(Include Area Coo		
Darryl W. Davis, Director, HEC		(916) 756		CEWRC-	
DD Form 1473, JUN 86	Previous editions are	obsolete	SECURITY	CLASSIFICATION	ON OF THIS PAGE

TECHNICAL PAPER SERIES (\$2.00 per paper)

TP-1	Use of Interrelated Records to Simulate Streamflow	TP-37	Downstream Effects of the Levee Overtopping as Wilkes-Barre, PA, During Tropical Storm Agnes
TP-2	Optimization Techniques for Hydrologic Engineering	TP-38 TP-39	Water Quality Evaluation of Aquatic Systems A Method for Analyzing Effects of Dam Failures
TP-3	Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs	TP-40	in Design Studies Storm Drainage and Urban Region Flood Control
TP-4	Functional Evaluation of a Water Resources System	TP-41	Planning HEC-5C, A Simulation Mcdel for System
TP-5	Streamflow Synthesis for Ungaged Rivers		formulation and Evaluation
TP-6	Simulation of Daily Streamflow	TP-42	Optimal Sizing of Urban Flood Control Systems
TP-7	Pilot Study for Storage Requirements for Low Flow Augmentation	TP-43	Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
TP-8	Worth of Streamflow Data for Project Design - A Pilot Study	TP-44	Sizing Flood Control Reservoir Systems by Systems a Analysis
TP-9	Economic Evaluation of Reservoir System Accomplishments	TP-45	Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River
TP-10	Hydrologic Simulation in Water-Yield Analysis	TP-46	Basin Spatial Data Analysis of Nonstructural
TP-11	Survey of Programs for Water Surface		Measures
	Profiles	TP-47	Comprehensive Flood Plain Studies Using
TP-12	Hypothetical Flood Computation for a		Spatial Data Management Techniques
TP-13	Stream System Maximum Utilization of Scarce Data in	TP-48	Direct Runoff Hydrograph Parameters Versus Urbanization
	Hydrologic Design	TP-49	Experience of HEC in Disseminating Information
TP-14	Techniques for Evaluating Long-Term		on Hydrological Models
	Reservoir Yields	TP-50	Effects of Dam Removal: An Approach to
TP-15	Hydrostatistics - Principles of		Sedimentation
	Application	TP-51	Design of Flood Control Improvements by
TP-16	A Hydrologic Water Resource System		Systems Analysis: A Case Study
	Modeling Techniques	TP-52	Potential Use of Digital Computer Ground Water
TP-17	Hydrologic Engineering Techniques for		Models
	Regional Water Resources Planning	TP-53	Development of Generalized Free Surface Flow
TP-18	Estimating Monthly Streamflows Within a		Models .sing Finite Element Techniques
	Region	TP-54	Adjustment of Peak Discharge Rates for
TP-19	Suspended Sediment Discharge in Streams		Urbanization
TP-20	Computer Determination of Flow Through Bridges	TP-55	The Development and Servicing of Spatial Data Management Techniques in the Corps of
TP-21	An Approach to Reservoir Temperature	:D \$4	Engineers
tn 33	Analysis	1P-56	Experiences of the Hydrologic Engineering
TP-22	A Finite Difference Method for Analyzing		Center in Maintaining Widely Used Hydrologic
	Liquid Flow in Variably Saturated Porous	70 57	and Water Resource Computer Models
TD 27	Media	TP-57	Flood Damage Assessments Using Spatial Data
TP-23	Uses of Simulation in River Basin Planning	70.50	Management Techniques
TP-24	Hydroelectric Power Analysis in Reservoir Systems	TP-58	A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
TP-25	Status of Water Resource Systems Analysis	TP-59	Testing of Several Runoff Models on an Urban
TP-26	System Relationships for Panama Canal		Watershed
	Water Supply	TP-60	Operational Simulation of a Reservoir System
TP-27	System Analysis of the Panama Canal Water		with Pumped Storage
	Supply	TP-61	Technical Factors in Small Hydropower Planning
TP-28	Digital Simulation of an Existing Water	TP-62	Flood Hydrograph and Peak Flow Frequency
	Resources System		Analysis
TP-29	Computer Applications in Continuing	TP-63	HEC Contribution to Reservoir System Operation
	Education	TP-64	Determining Peak-Discharge Frequencies in an
TP-30	Drought Severity and Water Supply		Urbanizing Watershed: A Case Study
	Dependability	14-65	Feasibility Analysis in Small Hydropower
TP-31	Development of System Operation Rules for		Planning
	an Existing System by Simulation	TP-66	Pong. bir Storage Determination by Computer
TP-32	Alternative Approaches to Water Resource System Simulation		Simulation of Flood Control and Conservation
TP-33	System Simulation for Integrated Use of	TP-67	Systems Hydrologic Land Use Classification Using
15-73	Hydroelectric and Thermal Power Generation	16-01	LANDSAT
TP-34	Optimizing Flood Control Allocation for a	TP-68	Interactive Nonstructural Flood-Control
(F:34	Multipurpose Reservoir	15.00	Planning
TP-35	Computer Models for Rainfall Runoff and	TP-69	Critical Water Surface by Minimum Specific
	River Hydraulic Analysis	0,	Energy Using the Parabolic Method
TP-36	Evaluation of Drought Effects at take	1P-70	Corps of Figureers Experience with Automatic
	Atitlan		Calibration of a Precipitation-Runoff Model
			•

7P-71	Determination of Land Use from Sate lite
TF-72	Imagery for Input to Hydrologic Models Application of the Finite Element Method
	to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73	Flood Mitigation Planning Using HEC-SAM
TP-74	Hydrographs by Single Linear Reservoir
	Model
TP-75	HEC Activities in Reservoir Analysis
TP-76	Institutional Support of Water Resource
	Models
TP-77	Investigation of Soil Conservation Service
	Urban Hydrology Techniques
TP-78	Potential for Increasing the Output of
TD 70	Existing Hydroelectric Plants
TP - 79	Potential Energy and Capacity Gains from
	Flood Control Storage Reallocation at
TD - 90	Existing U. S. Hydropower Reservoirs
TP-80	Use of Non-Sequential Techniques in the Analysis of Power Potential at Storage
	Projects
TP-81	Data Management Systems for Water
,, 0,	Resources Planning
TP-82	The New HEC-1 Flood Hydrogruph Package
TP-83	River and Reservoir Systems Water Quality
.,	Modeling Capability
TP-84	Generalized Real-Time Flood Control System
	Model
TP-85	Operation Policy Analysis: Sam Rayburn
	Reservoir
TP-86	Training the Practitioner. The Hydrologic
	Engineering Center Program
TP-87	Documentation Needs for Water Resources
Tr. 00	Models
TP-88	Reservoir System Regulation for Water
TP-89	Quality Control A Software System to Aid in Making
17-09	Real-Time Water Control Decisions
TP-90	Calibration, Verification and Application
11 70	of a Two-Dimensional Flow Model
TP-91	HEC Software Development and Support
TP-92	Hydrologic Engineering Center Planning
	Modeln
TP-93	Flood Routing Through a Flat, Complex
	Flood Plain Using a One-Dimensional
	Unsteady Flow Computer Program
TP-94	Dredged-Material Disposal Management Model
TP-95	Infiltration and Soil Moisture
	Redistribution in HEC-1
TP-96	The Hydrologic Engineering Center
0-	Experience in Nonstructural Planning
TP-97	Prediction of the Effects of a Flood
** 00	Control Project on a Meardering Stream
TP-98	Evolution in Computer Programs Causes
	Evolution in Training Newds: The
TP-99	Hydrologic Engineering Center Experience Reservoir System Analysis for Water
11-33	Quality
TD-100	Probable Maximum Flood Estimation -

TP-100 Probable Maximum Flood Estimation -Eastern United States

Supply Analysis

TP-101 Use of Computer Program HEC-5 for Water

1F-102	Role of Calibration in the Application of MEC-6
TP-10!	Engines,ing and Economic Considerations in Formulating
1P-104	Modeling Water Resource: Systems for Water
TP-105	Quality Use of a Two-Dimensional From Model to
TO 10/	Quantify Aquatic Habitat
TP-106 TP-107	Flood-Runoff Forecasting with HEC-1F Dredged-Material Disposal System Capacity
TP-108	Expansion Role of Small Computers in Two-Dimensional
TP-109	Flow Modeling One-Dimensional Model For Mud Flows
TP-1109	Subdivision Froude Number
TP-110	REC-5Q: System Water Quality Modeling
TP-112	New Developments in HEC Programs for Flood
17-112	Control
TP-113	Modeling and Managing Water Resource Systems
16 113	for Water Quality
TP-114	Accuracy of Computed Water Surface Profiles
11 /1-	Executive Summary
TP-115	Application of Spatial-Data Management
	Techniques in Corps Planning
TP-116	The HEC's Activities in Watershed Modeling
TP-117	HEC-1 and HEC-2 Applications on the
	MicroComputer
TP-118	Real-Time Snow Simulation Model for the
	Monongahela River Basin
TP-119	Multi-Purpose, Multi-Reservoir Simulation on PC
TP-120	Technology Transfer of Corps! Hydrologic Models
TP-121	Development, Calibration and Application of
	Runoff Forecasting Models for the Allegheny
	River Basin
TP-122	The Estimation of Rainfall for Flood
	Forecasting Using Radar and Rain Gage Data
TP-123	Developing and Managing a Comprehensive
404	Reservoir Analysis Model
TP 124	Review of the U.S. Army Corps of Engineering
	Involvement With Alluvial Fan Flooding
TO 100	Problems
TP-125	An Integrated Software Package for Flood
TD 124	Damage Analysis The Value and Depreciation of Existing
TP-126	Facilities: The Case of Reservoirs
10-127	
1P-127 TP-128	Floodplain-Management Plan Enumeration Two-Dimensional Floodplain Modeling
TP-120	Status and New Capabilities of Computer
17-164	Program HEC-6: "Scour and Deposition in
	Rivers and Reservoirs"
TP-130	Estimating Sediment Delivery and Yield on
17 130	Allowiat Fane

Alluvial Fans

TP-131 Hydrologic Aspects of Flood Warning - Preparedness Programs