Bayes decision rule

x – input feature sety - label

• If we know the conditional probability $p(x \mid y)$ and class priors p(y) we can determine the appropriate class by using Bayes rule:

$$P(y=i \mid x) = \frac{P(x \mid y=i)P(y=i)}{P(x)} = q_i(x)$$

- We can use $q_i(x)$ to select the appropriate class.
- We chose class 0 if $q_0(x) \ge q_1(x)$ and class 1 otherwise
- This is termed the 'Bayes decision rule' and leads to optimal classification.
- However, it is often very hard to compute ...

Minimizes our probability of making a mistake

Note that p(x) does not affect our decision

Bayes decision rule

$$P(y = i \mid x) = \frac{P(x \mid y = i)P(y = i)}{P(x)} = q_i(x)$$

• We can also use the resulting probabilities to determine our **confidence** in the class assignment by looking at the likelihood ratio:

$$L(x) = \frac{q_0(x)}{q_1(x)}$$

Also known as likelihood ratio, we will talk more about this later

Bayes decision rule: Example

Normal Gaussians

Normal Gaussians

Bayes error

- For the Bayes decision rule we can calculate the probability of an error
- This is the probability that we assign a sample to the wrong class, also known as the risk

P(Y|X) $P_{1}(X)P(Y=1) / P(X)$ $P_{0}(X)P(Y=0) / P(X)$ X x values for which we will have errors

The risk for sample x is:

R(x) =
$$min{P_1(x)P(y=1), P_0(x)P(y=0)} / P(x)$$

Risk can be used to determine a 'reject' region

Bayes error P(Y|X)

 The probability that we assign a sample to the wrong class, is known as the risk

The risk for sample x is:

$$R(x) = min\{P_1(x)P(y=1), P_0(x)P(y=0)\} / P(x)$$

• We can also compute the expected risk (the risk for the entire range of values of x):

$$E[r(x)] = \int_{x} r(x)p(x)dx$$

$$= \int_{x} \min\{p_{1}(x)p(y=1), p_{0}(x)p(y=0)\}dx$$

$$= p(y=0)\int_{L_{1}} p_{0}(x)dx + p(y=1)\int_{L_{0}} p_{1}(x)dx$$

L₁ is the region where we assign instances to class 1

Loss function

- The risk value we computed assumes that both errors (assigning instances of class 1 to class 0 and vice versa) are equally harmful.
- However, this is not always the case.
- Why?
- In general our goal is to minimize loss, often defined by a loss function: $L_{0,1}(x)$ which is the penalty we pay when assigning instances of class 0 to class 1

$$E[L] = L_{0,1}p(y=0)\int_{L_1} p_0(x)dx + L_{1,0}p(y=1)\int_{L_0} p_1(x)dx$$