BIOS 731 Advanced Statistical Computing Fall 2020

Lecture 13 Applications of MCMC and SMC

Steve Qin

Review

- Gibbs sampler
- Grouping and collapsing
- Convergence check
- Sequential Monte Carlo
 - Acceptance rejection method
 - Importance sampling

Importance sampling

• *Importance sampling:* to evaluate $E_f[h(X)] = \int h(x)f(x)dx$ based on generating \tilde{a} sample X_1, \dots, X_n from a given distribution g and approximating

$$E_f[h(X)] \approx \frac{1}{m} \sum_{j=1}^m \frac{f(X_j)}{g(X_j)} h(X_j)$$

which is based on

$$E_f[h(X)] = \int_{\aleph} h(x) \frac{f(x)}{g(x)} g(x) dx$$

3

Another example

$$f(x,y) = 0.5e^{-90(x-0.5)^2 - 45(y+0.1)^4} + e^{-45(x+0.4)^2 - 60(y-0.5)^2}$$
(a)
(b)

• Both grid-point method and vanilla Monte Carlo methods wasted resources on "boring" desert area.

Another example

• Use proposal function

$$g(x,y) \propto 0.5e^{-90(x-0.5)^2-10(y+0.1)^2} + e^{-45(x+0.4)^2-60(y-0.5)^2},$$
 with $(x,y) \in [-1,1]$ x $[-1,1]$, a truncated mixture of bivariate Gaussian

$$0.46\mathcal{N}\left[\left(\begin{array}{c} 0.5 \\ -0.1 \end{array} \right), \ \left(\begin{array}{cc} \frac{1}{180} & 0 \\ 0 & \frac{1}{20} \end{array} \right) \right] + 0.54\mathcal{N}\left[\left(\begin{array}{c} -0.4 \\ 0.5 \end{array} \right), \ \left(\begin{array}{cc} \frac{1}{90} & 0 \\ 0 & \frac{1}{120} \end{array} \right) \right]$$

Vanilla Monte Carlo

$$\hat{\mu} = 0.1307$$

 $std(\hat{\mu}) = 0.009$

Importance Sampling

$$\hat{\mu} = 0.1259$$

 $std(\hat{\mu}) = 0.0005$

4

Sequential importance sampling

- For high dimensional problem, how to design trial distribution is challenging.
- Suppose the target density of $\mathbf{x} = (x_1, x_2, ..., x_d)$ can be decomposed as

$$\pi(\mathbf{x}) = \pi(x_1)\pi(x_2 \mid x_1)\cdots\pi(x_d \mid x_1,...,x_{d-1})$$

then constructed trial density as

$$g(\mathbf{x}) = g_1(x_1)g_2(x_2 \mid x_1) \cdots g_d(x_d \mid x_1,...,x_{d-1})$$

Sequential importance sampling

$$w(\mathbf{x}) = \frac{\pi(x_1)\pi(x_2 \mid x_1)\cdots\pi(x_d \mid x_1,...,x_{d-1})}{g_1(x_1)g_2(x_2 \mid x_1)\cdots g_d(x_d \mid x_1,...,x_{d-1})}$$

Suggest a recursive way of computing and monitoring importance weight. Denote

$$\mathbf{x}_{t} = (x_{1}, x_{2}, ..., x_{t})$$

then we have

$$W_t(\mathbf{X_t}) = W_{t-1}(\mathbf{X_{t-1}}) \frac{\pi(x_t \mid \mathbf{X_{t-1}})}{g_t(x_t \mid \mathbf{X_{t-1}})}$$

7

Sequential importance sampling

- Advantages of the recursion scheme
 - Can stop generating further components of x if the partial weight is too small.
 - Can take advantage of $\pi(x_t | \mathbf{x_{t-1}})$ in designing $g_t(x_t | \mathbf{x_{t-1}})$
- However, the scheme is impractical since requires the knowledge of marginal distribution $\pi(x_t)$.

Sequential importance sampling

- Add another layer of complexity:
- Introduce a sequence of "auxiliary distributions" $\pi_1(x_1)\pi_2(\mathbf{x_2})\pi_d(\mathbf{x})$ such that $\pi_t(\mathbf{x_t})$ is a reasonable approximation of the marginal distribution $\pi(\mathbf{x}_t)$, for t = 1,...,d-1and $\pi_d = \pi$.
- Note the π_d are only required to be known up to a normalizing constant.

The SIS procedure

For t = 2, ..., d,

• Draw $X_t = x_t$ from $g_t(x_t | x_{t-1})$, and let

$$\mathbf{x}_{\mathbf{t}} = (\mathbf{x}_{\mathbf{t-1}}, x_{t})$$

 $\mathbf{x_t} = (\mathbf{x_{t-1}}, x_t)$ • Compute $u_t = \frac{\pi_t(\mathbf{x_t})}{\pi_{t-1}(\mathbf{x_{t-1}})g_t(x_t \mid \mathbf{x_{t-1}})}$ and let $w_t = w_{t-1} u_t$

- u_t : incremental weight.
- The key idea is to breaks a difficult task into manageable pieces.
- If w_t is getting too small, reject.

An application example of SIS

Assume

- Constant population size *N*,
- Evolve in non-overlapping generation,
- The chromosomal region is sufficiently small,
- No recombination,
- "haplotype": each chromosome only has one parent.

11

Population genetics example

• Notation:

- -E: set of all possible genetic types,
- $-\mu$: mutation rate per chromosome per generation,
- $-P = (P_{\alpha\beta})$: the mutation transition matrix,
- If a parental segment of type $\alpha \in E$,

its progeny is
$$\begin{cases} \alpha & \text{with prob. } 1-\mu, \\ \beta & \text{with prob. } \mu P_{\alpha\beta}. \end{cases}$$

Example data

- From Stephens and Donnelly (2000)
- *E*={*C*,*T*}
- The history $H = (H_{-k}, H_{-(k-1)}, ..., H_{-1}, H_0)$
- $= (\{C\}, \{C,C\}, \{C,T\}, \{C,C,T\}, \{C,T,T\}, \{T,T,T\}, \{T,T,T,T\}, \{C,T,T,T,T\}, \{C,T,T,T,T\})$

Particle filter

Michael Rubinstein IDC

Dynamic System

State equation:

$$x_k = f_k(x_{k-1}, v_k)$$

Stochastic diffusion

 x_k state vector at time instant \overline{k}

 f_k state transition function, $f_k: R^{N_x} \times R^{N_y} \longrightarrow R^{N_x}$ v_k i.i.d process noise

Observation equation: $z_k = h_k(x_k | w_k)$

 Z_k observations at time instant k observation function, $h_k: R^{N_x} \times R^{N_w} \to R^{N_z}$

i.i.d measurement noise

© Michael Rubinstein

Recursive Bayes filter

• Prediction:

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

• Update:

$$p(x_k \mid z_{1:k}) = \frac{p(z_k \mid x_k) p(x_k \mid z_{1:k-1})}{p(z_k \mid z_{1:k-1})}$$
(2)

$$p(z_k \mid z_{1:k-1}) = \int p(z_k \mid x_k) p(x_k \mid z_{1:k-1}) dx_k$$

Particle filtering

• Many variations, one general concept:

Represent the posterior pdf by a set of randomly chosen weighted samples (particles)

- Randomly Chosen = Monte Carlo (MC)
- As the number of samples become very large the characterization becomes an equivalent representation of the true pdf

© Michael Rubinstein

Particle filtering

- Compared to methods we've mentioned last time
 - Can represent any arbitrary distribution
 multimodal support
 - Keep track of many hypotheses as there are particles
 - Approximate representation of complex model rather than exact representation of simplified model
- The basic building-block: *Importance Sampling*

Monte Carlo integration

- Evaluate complex integrals using probabilistic techniques
- Assume we are trying to estimate a complicated integral of a function f over some domain D:

$$F = \int_D f(\vec{x}) d\vec{x}$$

 Also assume there exists some PDF p defined over D

O Michael Rubinstein

Monte Carlo integration

Then

$$F = \int_{D} f(\vec{x}) d\vec{x} = \int_{D} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x}$$

• But

$$\int_{D} \frac{f(\vec{x})}{p(\vec{x})} p(\vec{x}) d\vec{x} = E \left[\frac{f(\vec{x})}{p(\vec{x})} \right], x \sim p$$

• This is true for any PDF p over D!

Monte Carlo integration

• Now, if we have i.i.d random samples $\vec{x}_1,...,\vec{x}_N$ sampled from p, then we can approximate

$$E\left[\frac{f(\vec{x})}{p(\vec{x})}\right] \text{ by}$$

$$F_N = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\vec{x}_i)}{p(\vec{x}_i)}$$

• Guaranteed by law of large numbers:

$$N \to \infty, F_N \stackrel{a.s}{\to} E \left[\frac{f(\vec{x})}{p(\vec{x})} \right] = F$$

© Michael Rubinstein

Importance Sampling (IS)

- What about $p(\vec{x}) = 0$?
- If p is very small, f/p can be arbitrarily weights large, 'damaging' the average
 - Design p such that f/p is bounded
 - Rule of thumb: take p similar to f as possible

 Importance or proposal
- The effect: get more samples in 'important' areas of f, i.e. where f is large

IS for Bayesian estimation

• We draw the samples from the importance density $q(x_{0:k} | z_{1:k})$ with importance weights

$$w_k^i \propto \frac{p(x_{0:k} \mid z_{1:k})}{q(x_{0:k} \mid z_{1:k})}$$

• Sequential update (after some calculation...)

$$x_k^i \sim q(x_k \mid x_{k-1}^i, z_k)$$

Sequential Importance Sampling (SIS)

$$[\{x_k^i, w_k^i\}_{i=1}^N] = SIS[\{x_{k-1}^i, w_{k-1}^i\}_{i=1}^N, z_k]$$

- $\begin{aligned}
 & [\{x_k^i, w_k^i\}_{i=1}^N] = SIS[\{x_{k-1}^i, w_{k-1}^i\}_{i=1}^N, z_k] \\
 & \bullet \text{ FOR i=1:N} \\
 & \text{Draw } x_k^i \sim q(x_k \mid x_{k-1}^i, z_k) \\
 & \text{Update weights } w_k^i = w_{k-1}^i \frac{p(z_k \mid x_k^i) p(x_k^i \mid x_{k-1}^i)}{q(x_k^i \mid x_{k-1}^i, z_k)} \\
 & \bullet \text{ END}
 \end{aligned}$

 - Normalize weights

Choice of importance density

Hsiao et al.

O Michael Rubinstein

Choice of importance density

Most common (suboptimal): the transitional prior

$$\begin{split} q(x_k \mid x_{k-1}^i, z_k) &= p(x_k \mid x_{k-1}^i) \\ \Rightarrow w_k^i &= w_{k-1}^i \frac{p(z_k \mid x_k^i) p(x_k^i \mid x_{k-1}^i)}{q(x_k^i \mid x_{k-1}^i, z_k)} = w_{k-1}^i p(z_k \mid x_k^i) \\ &\text{Grid filter weight update:} \\ w_{k|k}^i &= \frac{w_{k|k-1}^i p(z_k \mid x_k^i)}{\sum\limits_{j=1}^{N_s} w_{k|k-1}^j p(z_k \mid x_k^j)} \end{split}$$

The degeneracy phenomenon

- Unavoidable problem with SIS: after a few iterations most particles have negligible weights
 - Large computational effort for updating particles with very small contribution to $p(x_k | z_{1:k})$
- Measure of degeneracy the effective sample size: $N_{eff} = \frac{1}{\sum_{i=1}^{N} (w_k^i)^2}$

- Uniform: $N_{\it eff} = N$, severe degeneracy: $N_{\it eff} = 1$

Resampling

• The idea: when degeneracy is above some threshold, eliminate particles with low importance weights and multiply particles with high importance weights

$$\{x_k^i, w_k^i\}_{i=1}^N \to \{x_k^{i^*}, \frac{1}{N}\}_{i=1}^N$$

• The new set is generated by sampling with replacement from the discrete representation of $p(x_k | z_{1:k})$ such that $Pr\{x_k^{i*} = x_k^j\} = w_k^j$

Resampling

$$[\{x_k^{i*}, w_k^i\}_{i=1}^N] = \text{RESAMPLE} [\{x_k^i, w_k^i\}_{i=1}^N]$$
• Generate N i.i.d variables $u_i \sim U[0,1]$

- Sort them in ascending order
- Compare them with the cumulative sum of normalized weights

Resampling

- Complexity: O(NlogN)
 - O(N) sampling algorithms exist

© Michael Rubinstein

Hsiao et al.

Generic PF

END

$$\begin{split} & \left[\{ x_{k}^{i}, w_{k}^{i} \}_{i=1}^{N} \right] = \text{PF} \left[\{ x_{k-1}^{i}, w_{k-1}^{i} \}_{i=1}^{N}, z_{k} \right] \\ & \bullet \text{ Apply SIS filtering } \left[\{ x_{k}^{i}, w_{k}^{i} \}_{i=1}^{N} \right] = \text{SIS} \left[\{ x_{k-1}^{i}, w_{k-1}^{i} \}_{i=1}^{N}, z_{k} \right] \\ & \bullet \text{ Calculate } N_{eff} \\ & \bullet \text{ IF } N_{eff} < N_{thr} \\ & \bullet \left[\{ x_{k}^{i}, w_{k}^{i} \}_{i=1}^{N} \right] = \text{RESAMPLE} \left[\{ x_{k}^{i}, w_{k}^{i} \}_{i=1}^{N} \right] \end{aligned}$$

© Michael Rubinstein

Generic PF

PF variants

- Sampling Importance Resampling (SIR)
- Auxiliary Sampling Importance Resampling (ASIR)
- Regularized Particle Filter (RPF)
- Local-linearization particle filters
- Multiple models particle filters (maneuvering targets)

• ...

© Michael Rubinstein

Sampling Importance Resampling (SIR)

- A.K.A Bootstrap filter, Condensation
- **Initialize** $\{x_0^i, w_0^i\}_{i=1}^N$ from prior distribution X_0
- For k > 0 do
 - **Resample** $\{x_{k-1}^i, w_{k-1}^i\}_{i=1}^N$ into $\{x_{k-1}^{i*}, \frac{1}{N}\}_{i=1}^N$
 - **Predict** $x_k^i \sim p(x_k \mid x_{k-1} = x_{k-1}^{i^*})$
 - **Reweight** $w_k^i = p(z_k \mid x_k = x_k^i)$
 - Normalize weights
 - **Estimate** \hat{x}_k (for display)

Appliation: Transcription Factor Binding Sites Discovery

35

Example: cyclic receptor protein (CRP)

cole1	ta a t g t t t t g t g c t g g t t t t t t g t g
ecoarabop	gacaaaaacgcgtaacaaaagtgtctataatcacggcagaaaagtccacattgattatttgcacggcgtcacactttgctatgccatagcatttttatccataagtgcacattgattattttattcataagtgcacattgattattttattcataagtgcacattgattattttattcataagtgcacattgattattttattta
ecobglr1	a caa a a toccaa taa ct taa ttattggg atttgttatata taa acttta taa aattoctaa aa attaca caa aagtta a taa ct g t g ag ca t g g t cat att tt t a toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat att tt t ta toa at taa caa aa act g t g ag ca t g g t cat at t t t t t t t a toa a t taa caa aa act g t g ag ca t g g t cat at t t t t t t t a toa a t t a caa aa act g t g ag ca t g g t cat at t t t t t a t caa a t t a caa aa act g t g ag ca t g g t cat at t t t t t a t caa a t t a caa a
ecocrp	cacaaagcgaaagctatgctaaaacagtcaggatgctacagtaatacattgatgtactgcatgtatgcaaaggacgtcacattaccgtgcagtacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatacagttgatagcaaagcgatagcaaagcgatacagttgatagcaaagcgatagcaaagcagttgatagcaaaggatgcaaaagcaagc
ecocya	acggtgctacacttgtatgtagcgcatctttctttacggtcaatcagcatggtgttaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaaccattgttagaccattttttcgtcgtgaaactaaaaaaaccatggtgttaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaaccatggtgtaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaaccatggtgtaaattgatcacgttttagaccattttttcgtcgtgaaactaaaaaaaccatggtgtaaaattgatcacgttttagaccatttttttcgtcgtgaaactaaaaaaaa
ecodecop	agtgaattatttgaaccagatcgcattacagtgatgcaaacttgtaagtagatttccttaattgtgatgtgtatcgaagtgtgttgcggagtagatgttagaata
ecogale	gcgcataaaaaacggctaaattcttgtgtaaacgattccactaatttattccatgtcacactttttcgcatctttgttatgctatggttatttcataccataagcc
ecoil v bpr	gctccggcggggtttttttgttatctgcaattcagtacaaacgtgatcaacccctcaattttccctttgctgaaaaattttccattgtctcccctgtaaagctgt
ecolac	a acg ca at ta at g t g a g t t a g c t cact cat t a g g cacc c cag g c t t t a c a c t t t at g c t t c c g g c t c g t at g t t g t g g g a a t t g t g a g c g g a t a a c a a t t t c a c c a t t a t g c t c c g g c t c g t at g t t g t g g g a a t t g t g g g g
$_{ m ecomale}$	a cattaccg ccaattctg taacagagatcacacaaaag cgacgg tggggcg tagggg caaggaggatggaaagagg ttgccg tataaagaaactag ag tccgttta
$_{ m ecomalk}$	ggaggaggcgggaggatgagaacacggcttctgtgaactaaaccgaggtcatgtaaggaatttcgtgatgttgcttgc
$_{ m ecomalt}$	gat cag cg tcg ttttt agg tg ag ttg tta at a aa gat ttg ga a ttg tg ac a cag tg ca aa at t cag ac ac aa aa aa aa aa aa ac g ct t gc at tag aa ag g t t t t a aa aa ag g g t t t t a a aa ag g g t t t t a a aa ag g g t t t t g a a ag g g g g g g g
ecoompa	gctgacaaaaaagattaaacataaccttataccaagactttttttt
ecotnaa	ttttttaaacattaaaattcttacgtaatttataatctttaaaaaaagcatttaatattgctccccgaacgattgtgattcgattcacatttaaacaatttcaga
ecouxu1	${\tt cccat} gagagtgaa {\tt att} gttgtgatgtggttaacccaattagaattcgggattgacatgtcttaccaaaaggtagaacttatacgccatctcatccgatgcaagcatgcaatgtcatacgatgcaagcatgcaatgtcatacgatgcaagcatgcaatgtcatacgatgcaagcaa$
${ m pbr} ext{-}{ m p4}$	ctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaaataccgcacagatgcgtaaggagaaaataccgcatcaggcgctc
trn9cat	ctgtgacggaagatcacttcgcagaataaataaatcctggtgtccctgttgataccgggaagccctgggccaacttttggcgaaaatgagacgttgatcggcacg
(tdc)	gatttttatactttaacttgttgatatttaaaggtatttaattgtaataacgatactctggaaagtattgaaagttaatttgtgagtggtcgcacatatcctgtt

36

Stormo and Hartzell, 1989

Example: cyclic receptor protein (CRP)

Stormo and Hartzell 1989

Transcription factor binding site (TFBS)

Motif identification model

 $\begin{array}{c} a_{\mbox{\scriptsize lagctactcg}} \\ a_{\mbox{\scriptsize$

Alignment variable $A = \{a_1, a_2, ..., a_I\}$

39

Posterior distributions

• The posterior conditional distribution for alignment variable *A*

$$p(a_j = l \mid \boldsymbol{\theta_0}, \boldsymbol{\Theta}, \boldsymbol{R}_j, \boldsymbol{A}_{-j}) \propto \prod_{k=1}^4 \theta_{0k}^{h_k(\boldsymbol{R}_j)} \prod_{i=1}^w \prod_{k=1}^4 \left(\frac{\theta_{ik}}{\theta_{0k}} \right)^{h_k(r_{j,l+i-1})} \propto \prod_{i=1}^w \prod_{k=1}^4 \left(\frac{\theta_{ik}}{\theta_{0k}} \right)^{h_k(r_{j,l+i-1})}$$

DNA sequence data

$$R = (R_1, ..., R_I)$$

Lawrence et al. Science 1993, Liu et al. JASA 1995

Motif Alignment Model

The missing data: Alignment variable: $A = \{a_1, a_2, ..., a_k\}$

- Every **non-site positions** follows a common multinomial with $p_0 = (p_{0,1}, ..., p_{0,20})$
- Every position i in the motif element follows probability distribution $p_i = (p_{i,1}, ..., p_{i,20})$

41

Statistical Model

- Objects:
 - Seq: sequence data to search for motif
 - $-\theta_0$: non-motif (genome background) probability
 - $-\theta$: motif probability matrix parameter
 - $-\pi$: site locations
- Problem: $P(\theta, \pi \mid \text{seq}, \theta_0)$
- Approach: alternately estimate
 - $-\pi$ by $P(\pi \mid \theta, \text{seq}, \theta_0)$
 - $-\theta$ by $P(\theta \mid \pi, \text{ seq}, \theta_0)$

The Algorithm

- Initialize by choosing random starting positions
- Iterate the following steps many times;
 - Randomly or systematically choose a sequence to exclude
 - Carry out the predictive-updating step to update the starting position
 - Stop when no more observable changes in likelihood.

43

The Predictive Updating Step

• Compute predictive frequencies of each position i in motif

> C_{ii} = count of amino acid type *j* at position *i*. $c_{\theta i}$ = count of amino acid type j in all non-site positions. $q_{ii} = (c_{ii} + b_i)/(K-I+B)$, $B=b_1 + \cdots + b_K$ "pseudo-counts"

• Sample from the predictive distribution of
$$a_k$$

$$P(a_k = l+1) \propto \prod_{i=1}^{w} \frac{q_{i,R_k(l+i)}}{q_{0,R_k(l+i)}}$$

References

- Lawrence et al. (1993) Science.
- Liu, Neuwald and Lawrence (1995) JASA.
- Liu and Lawrence (1999) Bioinformatics.

45

Infer the 3D shape of chromosomes

Microscopic Methods

• Fluorescent *in situ* hybridization (FISH)

http://en.wikipedia.org/wiki/C47

FISH Data Representation

3D chromosomal structure

Contact Frequency vs. Spatial Distance

Problem setting

Problem setting

- Challenges:
- > Sequencing uncertainties
- ➤ Biases: enzyme, GC content, mappability

51

Problem setting

- Challenges:
- ➤ Sequencing uncertainties
- ➤ Biases: enzyme, GC content, mappability

52

Yaffe and Tanay, 2011

Beads-on-a-string Representation

ACGTAGCTAGATACTGTAGTGTAGTTTTGGAACCTGAGGG

53

Beads-on-a-string Representation

ACGTAGCTAGATACTGTAGTGTAGTTTTGGAACCTGAGGG

Beads-on-a-string Representation

ACGTAGCTAG ATACTGTAGT GTAGTTTGGA ACCTGAGGG

55

Beads-on-a-string Representation

Beads-on-a-string Representation (x_D, y_D, z_D)

Beads-on-a-string Representation

Bayesian Statistical Model

59

Bayesian Statistical Model

Bayesian Statistical Model

• Likelihood:

$$\begin{split} L(u_{ij}, 1 \leq i < j \leq N | x_i, y_i, z_i, 1 \leq i \leq N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m) &= \prod_{1 \leq i < j \leq N} \frac{e^{-\theta_{ij}} \theta_{ij}^{u_{ij}}}{u_{ij}!} \\ \log(\theta_{ij}) &= \beta_0 + \beta_1 \log \left(\sqrt{\left(x_i - x_j\right)^2 + \left(y_i - y_j\right)^2 + \left(z_i - z_j\right)^2} \right) \\ &+ \beta_e \log(e_i e_j) + \beta_g \log(g_i g_j) + \beta_m \log(m_i m_j) \end{split}$$

61

Bayesian Statistical Model

• Likelihood: $\binom{N}{2}$ data points, 3N + 5 parameters

$$L(u_{ij}, 1 \le i < j \le N | x_i, y_i, z_i, 1 \le i \le N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m) = \prod_{1 \le i < j \le N} \frac{e^{-\theta_{ij}} \theta_{ij}^{u_{ij}}}{u_{ij}!}$$

$$\log(\theta_{ij}) = \beta_0 + \beta_1 \log\left(\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}\right)$$

$$+ \beta_e \log(e_i e_j) + \beta_g \log(g_i g_j) + \beta_m \log(m_i m_i)$$

Bayesian Statistical Model

• Likelihood: $\binom{N}{2}$ data points, 3N + 5 parameters

$$L(u_{ij}, 1 \le i < j \le N | x_i, y_i, z_i, 1 \le i \le N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m) = \prod_{1 \le i < j \le N} \frac{e^{-\theta_{ij}} \theta_{ij}^{u_{ij}}}{u_{ij}!}$$

$$\log(\theta_{ij}) = \beta_0 + \beta_1 \log\left(\sqrt{\left(x_i - x_j\right)^2 + \left(y_i - y_j\right)^2 + \left(z_i - z_j\right)^2}\right) + \beta_e \log(e_i e_j) + \beta_g \log(g_i g_j) + \beta_m \log(m_i m_j)$$

Posterior distribution

$$\pi(x_{i}, y_{i}, z_{i}, 1 \leq i \leq N, \beta_{0}, \beta_{1}, \beta_{e}, \beta_{g}, \beta_{m} | u_{ij}, 1 \leq i < j \leq N)$$

$$\propto L(u_{ij}, 1 \leq i < j \leq N | x_{i}, y_{i}, z_{i}, 1 \leq i \leq N, \beta_{0}, \beta_{1}, \beta_{e}, \beta_{g}, \beta_{m}) prior$$

63

Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

$$\pi(x_i, y_i, z_i, 1 \le i \le N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m | u_{ij}, 1 \le i < j \le N)$$

Statistical Inference

Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

$$\pi(x_i, y_i, z_i, 1 \leq i \leq N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m | u_{ij}, 1 \leq i < j \leq N)$$

Initialization 1: use Poisson regression to obtain the initial values for $\beta_0, \beta_e, \beta_a, \beta_m$. Set $\beta_1 = -1$.

$$u_{ij} \sim Poisson(\theta_{ij}) \log(\theta_{ij}) = \beta_0 + \beta_e \log(e_i e_j) + \beta_g \log(g_i g_j) + \beta_m \log(m_i m_j)$$

65

Statistical Inference

• Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

$$\pi(x_i, y_i, z_i, 1 \le i \le N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_g, \beta_m | u_{ij}, 1 \le i < j \le N)$$

Initialization 1: use Poisson regression to obtain the initial values for $\beta_0, \beta_e, \beta_g, \beta_m$. Set $\beta_1 = -1$.

$$u_{ij} \sim Poisson(\theta_{ij}) \log(\theta_{ij}) = \beta_0 + \beta_e \log(e_i e_j) + \beta_g \log(g_i g_j) + \beta_m \log(m_i m_j)$$

➤ Initialization 2: use sequential important sampling to get the initial 3D chromosomal structure $\{x_i, y_i, z_i, 1 \le i \le N\}$.

Statistical Inference

Algorithm: Bayesian 3D constructor for Hi-C data (BACH)

$$\pi(x_i, y_i, z_i, 1 \leq i \leq N, \beta_0, \beta_1, \beta_e, \beta_g, \beta_m | u_{ij}, 1 \leq i < j \leq N)$$

- ightharpoonup Initialization 1: use Poisson regression to obtain the initial values for $eta_0, eta_e, eta_g, eta_m$. Set $eta_1 = -1$. $u_{ij} \sim Poisson(eta_{ij}) \ \log(eta_{ij}) = eta_0 + eta_e \log(e_i e_i) + eta_g \log(g_i g_j) + eta_m \log(m_i m_i)$
- Initialization 2: use sequential important sampling to get the initial 3D chromosomal structure $\{x_i, y_i, z_i, 1 \le i \le N\}$.
- Refinement: use Gibbs sampler with hybrid Monte Carlo to refine the initial values for parameters.

67

SIS in BACH: Outline

 Goal: use sequential importance sampling to sequentially put N loci into 3D space, i.e. sample from:

$$\pi(x_i, y_i, z_i, 1 \le i \le N | u_{ij}, 1 \le i < j \le N)$$

SIS in BACH: Outline

 Goal: use sequential importance sampling to sequentially put N loci into 3D space, i.e. sample from:

$$\pi(x_i, y_i, z_i, 1 \le i \le N | u_{ij}, 1 \le i < j \le N)$$

Bridging distributions:

$$\pi_t(x_i, y_i, z_i, 1 \le i \le t | u_{ii}, 1 \le i < j \le t)$$

69

SIS in BACH: Outline

 Goal: use sequential importance sampling to sequentially put N loci into 3D space, i.e. sample from:

$$\pi(x_i, y_i, z_i, 1 \le i \le N | u_{ij}, 1 \le i < j \le N)$$

Bridging distributions:

$$\pi_t(x_i, y_i, z_i, 1 \le i \le t | u_{ij}, 1 \le i < j \le t)$$

 Proposal distributions (given the first t-1 loci, put the t th locus in to 3D space):

$$g_t(x_t, y_t, z_t | x_i, y_i, z_i, 1 \le i \le t - 1, u_{ij}, 1 \le i < j \le t)$$

SIS in BACH: Illustration

71

SIS in BACH: Illustration

SIS in BACH: Illustration

73

SIS in BACH: Illustration

SIS in BACH: Illustration

Hybrid Monte Carlo

- Goal: do efficient group move to refine initial 3D chromosomal structure, since local 3D coordinates are highly correlated.
- Combine molecular dynamics with Metropolis acceptance-rejection rule.

76 Duane, et al, 1987

Hybrid Monte Carlo in BACH

· Goal: sampling from

$$\pi(x_i, y_i, z_i, 1 \le i \le N | u_{ij}, 1 \le i < j \le N)$$

- Take partial derivate of log likelihood over 3D coordinates $(x_i, y_i, z_i, 1 \le i \le N)$.
- Run the leap-frog algorithm, adaptively tune the time interval to achieve acceptance rate ~ 90%.

77

Conclusions

- · BACH: reconstruct chromosome 3D structures from Hi-C data
- Remove systematic biases
- Predicted spatial distances are consistent with FISH data
- Elongation of chromatin is highly associated with genetic/epigenetic features.
- Separation of compartments of A and B can be visualized.

References

- Hu M, Deng K, Qin ZS, Dixon J, Selvaraj S, Fang J, Ren B, Liu JS.
 (2013) Bayesian inference of three-dimensional chromosomal organization. PLoS Comput Biol. 9 e1002893.

 http://www.people.fas.harvard.edu/~junliu/BACH/
- Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, **Hu M**, Liu JS and Ren B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature*, 485, 376-380.