

이동로봇플랫폼, MDBOT 의 통신사양

1. 서 론

MDUI 를 장착한 MD의 이동로봇플랫폼을 제어하기 위한 사용자 PC(메인제어기)와 MDUI 간의 통신사양

■ 제어기별 사양(OP->Option)

제어기	전압(Volt)	전류 (A)	RS485	TTL 232	CAN	ENC	PULSE _IN	RC_IN	CLUTCH	POW_ SW
PNT50	DC12~24	4x2ch	0			0				
MD400T	DC12~48	20x2ch	0	0	0	0	0	0	0	0
MD750T	DC24~72	30x2ch	0	0	0	0	0	0	0	0

PULSE_IN: 0~500kpps 펄스입력에 의한 속도제어

RC 서보입력: 무선조정기(RC)입력

ENC: 서보제어를 위한 엔코더 입력(4PIN or 5PIN)

CAN: CAN 통신(Extended mode only)

TTL232: TTL 레벨의 RS232 포트(G, Rx, Tx, 5VDC)

CLUTCH: 모터에 장착된 전자클러치(브레이크) 제어를 위한 포트(G, Vpp)

RS485: RS485 통신 커넥터(G, 485+, 485-)

■ 커넥터

커넥터이름	핀번호	명명	내 용	비 고(외부 하니스)
RS485_A 연호전자 SMW250-03	1,2,3	G,485+,485-	RS485 connector 하부 BLDC 모터제어기(PNT50, MD200T, MD400T, MD750T) 연결용 통신포트	SMH250-03
RS485_B 연호전자 SMW250-03	1,2,3	G,485+,485-	PC 와 MDUI 간 통신 또는 RC 제어기와의 접속에 사용	SMH250-03
CAN 연호전자 SMW250-02	1,2	CAN_H, CAN_L	CAN 시리얼통신신호 PC 와 MDUI 간 통신	SMH250-02
RS232 MOLEX, 5567-03	1,2,3	G, Rx, Tx	PC 와 MDUI 간 통신 또는 RC 제어기와의 접속에 사용 232 통신에서는 ROBOT_DATA 에 관한 브로드케스팅 요청이 가능함	MOLEX, 5264-03

2. 본 론

2.1 통신패킷의 구조

Header		ID Number	Parameter ID	Data nubmer	Data	Check sum
RMID	TMID	ID	PID	DataNumber	DATA	СНК
(1 Byte)	(1 Byte)	(1 Byte)	(1 Byte)	(1Byte)	(1~n Bytes)	(1 Byte)

- RMID(Receiving Machine ID): 패킷의 첫번째 인식바이트 (MDUI(184))

- TMID(Transmitting Machine ID): 패킷의 두번째 인식바이트(184, 사용자 제어기) PC(172)

- ID: 각제어기의 ID(0~253, Broadcasting ID: 254)

- PID: Parameter IDentification number

- CHK: Check Sum

- 사용자(PC)가 MDUI 로 보내는 경우의 헤더는 184, 172, 받는 경우는 172, 184 이 된다.

Machine type	Machine ID (MID)	Remark
PC	172	사용자 MMI 제어기
MDUI	184	중간제어기(MDUI)
MDT 시리즈 모터 제어기	183	BLDC 모터 제어기(2ch 용)
RC(Remote Controller)	133	RF 리모컨

Data bytes on the PID

PID Numer	0~127	128~191	192~253
Data bytes	1 byte	2 bytes	N data bytes

Examples

- Data bytes: RMID, TMID, ID, PID, Data number, data,, CHK.

Check Sum 방법:

● 보낼 때:

BYTE byChkSend, byCHK; byChkSend = RMID+TMID+ID+PID+Data number + Data..; $byCHK = (\sim byChkSend) + 1$

● 받을 때:

BYTE byChkRecv;

byChkRecv = RMID+TMID+ID+PID+Data number + Data..+CHK; byChkRecv 가 0 이면 정상.

Data Byte 보낼 때: Data 의 Low Byte 를 먼저 보내는 구조를 사용.

기본설정

- 외부로부터 요구 명령이 있을 때만 해당정보를 요청한 곳으로 보낸다.
- 모터의 응답특성을 각각의 해당 파라미터를 이용해서 변경할 수 있도록 한다.
- 모든 모터에 동시에 명령을 보낼 때는 Broadcasting ID 인 254(0xfe)를 사용한다.
- Broadcasting 으로 데이터를 콜 하는 경우는 데이터 충돌을 방지하기 위해 응답하지 않는다.
- MDUI 로부터의 전송 패킷은 보낼 때와 반대로써 헤더(RMID, TMID)는 (172, 184)이 된다.
- 8 data bits, 1 stop bit, no parity, 57600bps

2.2 PID(Parameter IDentification Number)

-R: Read only(PID_REQ_PID_DATA 를 사용하여 요청이 가능한 데이터)

-W : Parameter change(Writing)

-C: Command(동작명령)

-0xaa(170): Write check byte(writing 시의 보안을 위한 추가 데이터)

-0xfe(254): ID ALL(모든 제어기에 명령을 동시에 보내는 경우에 사용)

-0x55: Default setting 보안을 위한 추가데이터

-색깔있는 칸은 PNT50, MDD750 등의 모터 2 개 제어용 전용 프로토콜 임

(RMID 가 MDUI 인 경우에는 184 적용, PC 인 경우에는 172 적용) -1 Byte data(PID: 0~127)

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value	
			프로그램 버전을 리턴, DATA:버전번호		
1	R	PID_VER	예) DATA = 12->V1.2	BYTE	
			184, 172, ID, 1, 1, DATA, CHK		
		PID_DEFAULT_SET	Data: 0x55(CHECK)	ВҮТЕ	
3	C	공장출하시의 초기셋팅 값	공장출하시의 초기값으로 가변변수를 설정	0x55	
		회복	184, 172, ID, 3, 1, 0x55, CHK	UXOO	
4	С	PID_REQ_PID_DATA	PID : 0~253, 값을 읽기 원하는 PID 번호	ВҮТЕ	
4		데이터 요청	184, 172, 1, 4, 1, PID, CHK	BITE	
		PID_ACK	R_PID : 받은 패킷의 PID 번호		
7	R	ACK 요청신호에 따라	MDUI->PC 통신	BYTE	
		받은 PID 번호 전달	172, 184, ID, 7, 1, R_PID, CHK		

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
10	C	PID_COMMAND CMD_TQ_OFF CMD_BRAKE CMD_MAIN BC_ON CMD_MAIN_BC_OFF CMD_ALARM_RESET CMD_POSI_RESET CMD_MONITOR_BC_ON CMD_MONITOR_BC_OF CMD_PNT_MAIN_DATA_BC_ON CMD_PNT_MAIN_DATA_BC_OFF CMD_EMER_ON CMD_EMER_OFF CMD_EMER_AFTER_ACTION_ON CMD_EMER_AFTER_ACTION_OFF CMD_ROBOT_ANGLE_RESET CMD_ROBOT_MONITOR_BC_ON CMD_ROBOT_MONITOR_BC_OFF	CMD 의 값에 따른 내용 2: CMD_TQ_OFF, 모터 자연정지 4: CMD_BRAKE, 전기적 브레이크, 급작정지 5: PID_MAIN_DATA broadcasting ON 6: PID_MAIN_DATA broadcasting OFF 8: 알람리셋 10: 위치초기화, 모터의 위치를 0 으로 셋팅 11: PID_MONITOR broadcasting OFF 61: PID_PNT_MAIN_DATA 의 BC ON 62: PID_PNT_MAIN_DATA 의 BC OFF 67: CMD_EMER_ON: 비상정지, 시스템의 동작을 중지하고 BRAKE 상태로 유지 68: CMD_EMER_OFF: 비상정지 해제 시스템의 브레이크 상태 해제 73: CMD_EMER_AFTER_ACTION_ON: 비상정지 해제 후 CMD_EMER_OFF 명령 수신과 관계없이 바로 외부 신호(IO, 통신 등)에 의해 동작 가능한 모드 74: CMD_EMER_AFTER_ACTION_OFF: 비상정지 해제 후 CMD_EMER_OFF 명령이 수신되어야만 외부 신호(IO, 통신 등)에 의해 동작 가능한 모드 75: 로봇의 각도(angle)값만 0 으로 리셋 76: PID_ROBOT_MONITOR broadcasting ON 77: PID_ROBOT_MONITOR broadcasting OFF	1BYTE 명령모음
12	С	PID_ALARM_RESET 알람리셋	제어기의 알람상태 해제 184, 172, ID, 12, 1, x, CHK	ВҮТЕ
13	С	PID_POSI_RESET 위치초기화, Position->0	모터의 위치를 0 으로 리셋. 184, 172, ID, 13, 1, x, CHK	BYTE

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
24	R/W	PID_STOP_STATUS 모터정지시의 상태 0:STOP_TQ_OFF 1:STOP_SERVO_LOCK 2:STOP_BRAKE 3:STOP_FREE	DATA 0: 기준속도입력 0 인 경우 모터를 강제정지하고 속도가 0 에 도달하면 제어상태 해제(FREE) 1: 모터가 정지되면 정지한 위치를 계속하여 유지 2: 모터가 정지되면 전기적브레이크 적용 3: 기준입력이 0 이 되면 제어상태 해제(FREE) 184, 172, ID, 24, 1, DATA, CHK	BYTE O
49	R	PID_IN_POSITION_OK 위치제어 도달신호	DATA IN_POSITION(PID 171)값으로 지정된 위치제어정도 안에 위치하는 경우 1 을 출력 그외는 0 을 출력 172, 184, ID, 49, 1, DATA, CHK	ВҮТЕ
135	w	PID_BAUDRATE RS485 통신속도지정	BAUD 값에 따른 통신속도 1:9600bps, 2:19200bps 3:38400bps, 4:57600bps 5:115200bps 184,172,ID, 135, 2, 0xaa, BAUD, CHK	BYTE 1 or 2
137	W	PID_ECAN_BITRATE CAN 통신속도 지정	BIT_RATE 값에 따른 통신속도(Bits/s) 1:50k, 2:100k 3:250k, 4:500k 5:1M 184,172, ID, 137, 2, 0xaa, BIT_RATE, CHK	BYTE 1
143	R	PID_VOLT_IN 제어기 입력전압	제어기의 입력전압값을 리턴합니다 제어기의 입력전압 (0.1V 단위, 10->1.0A) 172, 184, ID, 143, 2, D1, D2, CHK	INT
149	R/W	PID_RETURN_TYPE	PID_REQ_PID_DATA 이외의 명령을 받는 경우에 리턴되는 데이터 타입을 결정 RET_TYPE 0: 어떠한 데이터도 리턴하지 않음 2: PID_ACK 를 리턴(명령받은 PID 번호 리턴) 5: PID_PNT_MAIN_DATA 를 리턴 6: PID_ROBOT_MONITOR 를 리턴 7: PID_ROBOT_MONITOR2 를 리턴 8: PID_ROBOT_IN 을 리턴	

- 2 Bytes data(PID: 128~192)

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
167	R/W	PID_PV_GAIN 위치제어 비례게인	PV_GAIN: 모터 위치제어를 위한 비례게인 PV_GAIN = (D1 D2 < <8) 183, 184, ID, 167, 2, D1, D2, CHK	INT
168	R/W	PID_P_GAIN 속도제어 비례게인	P_GAIN: 모터 속도제어를 위한 비례게인 P_GAIN = (D1 D2 < <8) 183, 184, ID, 168, 2, D1, D2, CHK	INT
169	R/W	PID_I_GAIN 속도제어 적분게인	I_GAIN: 모터 위치제어를 위한 적분게인 I_GAIN = (D1 D2<<8) 183, 184, ID, 169, 2, , D1, D2, CHK	INT
171	R/W	PID_IN_POSITION 위치제어정도 결정	IN_POSITION: 위치정도 Ex) IN_POSITION->10, 10 이하의 위치오차에서 제어 멈춤(위치제어에서만 적용) IN_POSITION = (D1 D2<<8) 183, 184, ID, 167, 2, D1, D2, CHK	INT
174	С	PID_PNT_TQ_OFF 2 개의 모터제어용	D1: ID1(ID1 제어기 ENABLE) or 0(DISABLE) D2: ID2(ID2 제어기 ENABLE) or 0(DISABLE) D3: 리턴받기 원하는 데이터 타입 0: 리턴 받지 않음 1: PID_PNT_MONITOR 리턴 2: PID_PNT_MAIN_DATA 리턴 D1,2 의 내용이 제어기의 와 동일하면 TqOff 실행(모터 FREE 상태) 그외는 영향없슴 184, 172, ID, 174, 3, D1, D2, D3, CHK	BIT, BIT PNT50 MDT
175	С	PID_PNT_BRAKE 2 개의 모터제어용의 브레이크	D1: ID1(ID1 제어기 ENABLE) or 0(DISABLE) D2: ID2(ID2 제어기 ENABLE) or 0(DISABLE) D3: 리턴받기 원하는 데이터 타입 (0, 1, 2 내용은 상기 PID 174 참조) D1,2 의 내용이 제어기의 와 동일하면 전자브레이크실행(모터구속상태) 그외는 영향없슴 184, 172, ID, 175, 3, D1, D2, D3, CHK	BIT, BIT PNT50 MDT

- N Bytes data(PID: 193~240)

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
		PID_TAR_POSI_VEL	D1, D2 : 위치제어시 최대속도(rpm)	
176	R/W	위치제어에서 최대속도를	$TAR_SPEED = (D1 \mid D2 << 8)$	WORD
		설정	184, 172, ID, 176, 2, D1, D2, CHK	
		PID_COM_WATCH_DELAY	D1, D2 : 통신입력없는 경우 멈추는 시간(0.1s)	
185	R/W	COM_DELAY(0.1s 단위)	COM_WATCH_DELAY= (D1 D2<<8)	WORD
103	K/VV	동안 통신신호 없으면	100->10s, 통신입력없는 경우 1-0초후 정지	WORD
		모터 정리	184, 172, ID, 185, 2, D1, D2, CHK	
			Data : 12 Bytes 혹은 11 bytes	
		PID_MONITOR 모니터 데이터	기종에 따라 D12 상태 2 없는 경우 있슴.	
	R		D1,2 : 모터 회전수(rpm)	INT
			D3,4 : 전류 값(0~1023, 0.1A 단위)	INT
196			D5,6 : 제어기 출력(Output)	INT
			D7 : 모터 상태 BIT(상태표시 BIT 데이터 참조)	BIT
			D8,9,10,11 : 모터위치 값	
			D12 : 상태 2(예약)	LONG
			172, 184, ID, 196, 11, D1,, D11, D12, CHK	
201	R	PID_MONITOR2	모터 2 개 구동용 제어기에서 MOT2 의	PNT50
201	K	MOT2 9 MONITOR	MONITOR(PID 196 와 내용 동일)	MDT
			Data : 6 Bytes	
203	R/W	PID_GAIN	D1,2 : 위치제어 비례게인(POSI_P)	INT
	F/ VV	FID_GAIN	D3,4 : 속도제어 비례게인 D5,6 : 적분게인	IINI
			184, 172, ID, 203, 6, D1,D5, D6, CHK	
205	R	PID_TYPE,제어기 타입	Data : 20Bytes 이내(Character 값으로 전송됨)	BYTE

-제어기(모터)상태표시 BIT(PID196, PID201, PID210, PID252 참조)

BIT	명명	내용
0(1)	ALARM	제어기의 알람 유뮤
1(2)	CTRL_FAIL	제어실패(기준속도의 1/3 이하로 접근되지 않는 경우)
2(4)	OVER_VOLT	규정된 전압 이상치가 입력전압으로 감지되는 경우
3(8)	OVER_TEMP	80 도 이상의 온도 감지(온도센서가 있는 제어기 해당)
4(16)	OVED LOAD	사용자가 설정한 전류치이상으로 4 초이상 운전될 때
4(16)	OVER_LOAD	혹은 최대치이상의 과전류가 순간적으로 감지되는 경우
5(32)	HALL_FAIL	홀센서 감지실패
6(64)	INV_VEL	모터회전속도가 출력과 반비례인 경우
7(128)	STALL	모터의 출력이 있고, 모터가 구속되어 2 초이상 움직이지 않는 경우

PID_PNT...로 지정된 항목은 ID(PNT50, MD400T)제어기를 제외한 경우에는 각각의 모터에 해당하는 ID 를 ENABLE 항목에 넣어서 구동한다.

또한 제일 마지막 데이터는 PID_MONITOR 를 요청할 제어기의 ID 이고 요청하지 않은 경우에는 0 을 기압한다.

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type
	.,,,,,	Tib Hame, E 0	contents of data bytes, name	Default value
			Data : 15Bytes	
			D1 : ID1(ID1 제어기 ENABLE), 0(DISABLE)	BYTE
			D2,3,4,5 : ID1 제어기의 기준위치	LONG
		PID_PNT_POSI_VEL_CMD	D6,7 : ID1 제어기의 위치제어시 최대속도	BYTE
206	С	모터 2 개 구동용 제어기의 위치제어명령	D8: ID2(ID2 제어기 ENABLE), 0(DISABLE)	LONG
			D9,10,11,12 : ID2 제어기에 해당하는 기준위치	
			D13,14 : ID2 제어기의 위치제어시 최대속도	PNT50
			D15: PID_MONITOR 데이터 요청할 제어기 ID	MDT
			184, 172, ID, 206, 15, D1, D2,, D15, CHK	
			Data : 7Bytes	BYTE
		PID_PNT_VEL_CMD C 모터 2 개 구동용 제어기의 속도제어명령	D1 : ID1(ID1 제어기 ENABLE), 0(DISABLE)	INT
			D2,3 : ID1 제어기의 기준속도(rpm)	BYTE
207	С		D4 : ID2(ID2 제어기 ENABLE), 0(DISABLE)	INT
			D5,6 : ID2 제어기의 기준속도(rpm)	
			D7: PID_MONITOR 데이터 요청할 제어기 ID	PNT50
			184, 172, ID, 207, 7, D1, D2,, D7, CHK	MDT

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
208	С	PID_PNT_OPEN_VEL_CMD 모터 2 개 구동용 제어기의 오픈루트 제어명령	Data: 7Bytes D1: ID1(ID1 제어기 ENABLE), 0(DISABLE) D2,3: ID1 제어기의 제어출력(-1023~1023) D4: ID2(ID2 제어기 ENABLE), 0(DISABLE) D5,6: ID2 제어기의 제어출력(-1023~1023) D7: PID_MONITOR 데이터 요청할 제어기 ID 184, 172, ID, 208, 7, D1, D2,, D7, CHK	BYTE INT BYTE INT PNT50 MDT
209	С	PID_PNT_TQ_CMD 모터 2 개 구동용 제어기의 토크제어	Data: 7Bytes D1: ID1(ID1 제어기 ENABLE), 0(DISABLE) D2,3: ID1 제어기의 토크기준입력(-1023~1023) D4: ID2(ID2 제어기 ENABLE), 0(DISABLE) D5,6: ID2 제어기의 토크기준입력(-1023~1023) D7: PID_MONITOR 데이터 요청할 제어기 ID 184, 172, ID, 209, 7, D1, D2,, D7, CHK	BYTE INT BYTE INT PNT50 MDT
210	R	PID_PNT_MAIN_DATA 하부 모터 제어기(MID 183, ID 1)의 두 모터 모니터	Data: 18 Bytes D1,2: 모터 1 회전속도(rpm) D3,4: 모터 1 의 전류 값(0~1023, 0.1A 단위) D5: 모터 1 의 상태 BIT D6,7,8,9: 모터 1 의 위치 D10,11: 모터 2 회전속도(rpm) D12,13: 모터 2 의 전류 값(0~1023, 0.1A 단위) D14: 모터 2 의 상태 BIT D15,16,17,18: 모터 2 의 위치 172, 184, ID, 210, 18, D1,, D17, D18, CHK	INT INT BIT LONG INT INT BIT LONG PNT50 MD400T

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type Default value
217		PID_POSI_SET 위치셋팅 (사용자 위치설정)	Data : 4Bytes	
	С		D1,2,3,4: 셋팅 할 모터의 위치	LONG
			제어기의 모터 위치 값을 변경합니다.	
			184, 172, ID, 217, 4, D1, D2, D3, D4, CHK	
	_	PID_POSI_SET2	Data: 4Bytes	LONG
218	С	모터 2 의 위치셋팅	D1,2,3,4: 셋팅 할 모터의 위치	PNT50
		(사용자 위치설정)	184, 172, ID, 218, 4, D1, D2, D3, D4, CHK	MDT
		PID_MAX_RPM	Data: 2Bytes	
221	R/W	^{1 10} _ \\	D1,2: 모터의 설정 최대 회전수(rpm)	
		= = (= , =	184, 172, ID, 221, 2, D1, D2, CHK	
			Data : 10bytes	
			D1,D2: 밧데리 전압(0~1000, 0.1V 단위)	
			D3 : 초음파 1 의 거리	
			D4 : 초음파 2 의 거리(0~255cm)	
			D5 : 초음파 3 의 거리(0 인경우, Don't care)	
			D6 : 초음파 4 의 거리	
			D7: 플랫폼 상태	
			BIT0 : 비상버튼입력상태(ON/OFF)	
			BIT1 : BUSY(움직임 있으면 ON)	
			BIT2 : Reserved	INT
			BIT3 : 범퍼 1 의 상태(ON/OFF)	BYTE
		PID_ROBOT_MONITOR2 MDUI->사용자 PC	BIT4 : 범퍼 2 의 상태(ON/OFF)	BYTE
224	R		BIT5 : 범퍼 3 의 상태(ON/OFF)	BYTE
224			BIT6 : 범퍼 4 의 상태(ON/OF)	BYTE
			BIT7 : Reserved	BIT
			D8 : 도킹시스템 상태	BIT
			BIT0 : 도킹완료(ON/OFF)	int
			BIT1 : 충전기 전원(ON/OFF), 이상유무	
			BIT2 : 충전완료(ON/OFF)	
			BIT3 : Reserved	
			BIT4 : 도킹용 IR 센서 1 의 입력(ON/OFF)	
			BIT5 : 도킹용 IR 센서 2 의 입력(ON/OFF)	
			BIT6 : 도킹용 IR 센서 3 의 입력(ON/OFF)	
			BIT7 : 원격조정용 입력 유무(ON:원격조정)	
			D9 ,10: 헤드모터 속도제어신호(-512~512)	
			172, 184, ID, 224, 12, D1,, D10, CHK	

PID	Туре	PID Name/설명	Contents of data bytes/ 범위	변수형태 기본값
242	С	PID_PNT_INC_POSI_ VEL_CMD	Data: 15bytes D1: 모터 1 의 제어 ON/OFF D2~D5: 모터 1 의 위치제어 증가분 D6,D7: 모터 1 의 위치제어시의 최대제한속도 D8: 모터 2 의 제어 ON/OFF D9~D12: 모터 2 의 위치제어 증가분 D13,D14: 모터 2 의 위치제어 최대제한속도 D15: PID_MONITOR 데이터의 수신여부 184, 172, ID, 242, 15, D1,, D15, CHK	INT MDT
247	R/W	PID_ROBOT_PARAM (사용자 PC<-> MDUI)	Data: 6bytes D1,D2: 휠의 직경(mm) D3,D4: 휠간 거리(mm) D5,D6: 감속비(1~1000) *감속비의 값이 소수점일 시 , 휠의 직경을 비례적으로 조정하여 사용 요망. 184, 172, ID, 247, 6, D1,, D6, CHK	INT
249	R	PID_ROBOT_IN 로봇의 ADC, DI 입력 (MDUI->사용자 PC)	Data: 16bytes D1,D2: ADC1(0~1023) D3,D4: ADC2(0~1023) D5,D6: ADC3(0~1023) D7,D8: ADC4(0~1023) D9,D10: ADC5(0~1023) D11,D12: ADC6(0~1023) D13,D14: ADC7(0~1023) D15: ENC(IR)입력(BIT0~2, B, A, Z 신호입력) D16: DI 입력(DI1~DI7) 172, 184, ID, 249, 16, D1,, D16, CHK	INT INT INT INT INT INT INT BYTE BIT

PID	Туре	PID Name/설명	Contents of data bytes/ Range	Variable type
TID				Default value
			Data : 19 Bytes	
			D1,2 : 모터 1 회전속도(rpm)	INT
			D3,4 : 모터 1 의 전류 값(0~1023, 0.1A 단위)	INT
			D5 : 모터 1 의 상태 BIT	BIT
		PID_PNT_MAIN_DATA2	D6,7,8,9 : 모터 1 의 위치	LONG
			D10,11: 모터 2 회전속도(rpm)	INT
			D12,13 : 모터 2 의 전류 값(0~1023, 0.1A 단위)	INT
251	R	상부 모터 제어기(MID 183,	D14 : 모터 2 의 상태 BIT	BIT
		ID 2)의 두 모터 모니터	D15,16,17,18 : 모터 2 의 위치	LONG
			D19 : 상부제어기의 I/O 상태(Bits, 8 가지 상태)	BIT
			BIT0: 리프트 모터(ch2)의 DIR 신호	
			BIT1: 리프트 모터(ch2)의 START/STOP 신호	
			BIT2~7: Reserved	PNT50
				MD400T
			172, 184, ID, 211, 19, D1,, D18, D19, CHK	

PID	Туре	PID Name/설명	Contents of data bytes/ 범위	변수형태 기본값
PID	Туре	PID Name/설명	Data: 6bytes D1: 제어의 종류 0: 제어하지 않음(Tq Off, 모터 Free 상태) 1: D2~D5의 속도 및 각속도에 의한 제어 선형속도와 각속도값이 0, 0이 들어오면 로봇이 움직이지 않는 서보 LOCK 상태 2: BRAKE, 단순한 전기적 브레이크 상태 로봇의 밀리는 속도에 비례한 저항력 발생 3: D2~D5에 의한 로봇의 회전 제어	
252	С	PID_ROBOT_CMD (사용자 PC->MDUI)	각도와 각속도값이 0, 0 이 들어오면 로봇이 움직이지 않는 서보 LOCK 상태 4: D2~D5 에 의한 로봇의 상부 로타리 모터와 하부 로봇의 회전 동기화 제어 각도와 각속도값이 0, 0 이 들어오면 로봇이 움직이지 않는 서보 LOCK 상태 5: D2~D5 에 의한 상부 로타리 모터와 리프트 모터의 속도 제어 각도와 각속도값이 0, 0 이 들어오면 로봇이 움직이지 않는 서보 LOCK 상태	BYTE int int
			D2,D3: D1 의 값이 1 일 경우 -> 선형속도(mm/s) D1 의 값이 3 혹은 4 일 경우 -> 회전 각도(0.1deg) D1 의 값이 5 일 경우 -> 로타리 모터의 RPM D4,D5: D1 의 값이 1, 3, 4 일 경우 -> 플랫폼의 각속도(0.1deg/s) D1 의 값이 5 일 경우 -> 리프트 모터의 RPM D6: 0: don't care 1: odometry 리셋(모터의 위치값 리셋) 184, 172, ID, 252, 6, D1,, D6, CHK	ВУТЕ

PID	Туре	PID Name/설명	Contents of data bytes/ 범위	변수형태 기본값
	R		Data : 20bytes	
			D1~D4 : X-coord(mm)	
			D5~D8 : Y-coord(mm)	
			D9,10 : 각도(0.1deg unit, 0~3600)	
		PID_ROBOT_MONITOR (MDUI->사용자 PC)	D11 : 밧데리 퍼센트(0~100%)	LONG
			D12~D15 : 초음파 1,2,3,4(0~255cm)	LONG
			D16 : 로봇의 상태(Bits, 8 가지 상태정보)	INT
252			BITO : 비상스위치 입력	BYTE
253			BIT1 : 로봇 주행중(1), 정지(0)	BYTE
			BIT2~5 : 범퍼스위치 1,2,3,4	BIT
			BIT6: 충전기 결속여부	INT
			BIT7: 로봇 회전 혹은 동기화중(1), 정지(0)	INT
			D17, D18: 현재 로봇의 선속도(단위 1mm/s)	
			D19, D20: 현재 로봇의 각속도(단위 0.1 deg/s)	
			_	
			172, 184, ID, 253, 20, D1,, D20, CHK	

PID	Туре	PID Name/설명	Contents of data bytes/ 범위	변수형태 기본값
254	R	PID_RC_DATA RC 의 MID : 133 MDUI 의 MID : 184 RC->MDUI	Data: 14bytes D1,D2: 조이스틱 1(Left)의 X 입력(-512~+512) D3,D4: 조이스틱 1 의 Y 입력(-512~+512) D5,D6: 조이스틱 2(Right)의 X 입력(-512~+512) D7,D8: 조이스틱 2 의 Y 입력(-512~+512) D9,D10: 볼륨 1(Left)의 입력(0~1023) D11,D12: 볼륨 2(Right)의 입력(0~1023) D13: 스위치 입력(0, 1, 2) BIT0~1: 스위치 1의 입력 0: RC don't care(not control) 1: RC 조정에 의한 로봇제어 2: TqOff(구동휠 FREE 상태, 로봇이동 용이) BIT2~7: Reserved D14: 기타 DI BIT0:비상스위치 입력(ON/OFF) BIT1~7: Reserved. 184, 133, ID, 254, 14, D1,, D14, CHK	INT BIT BIT

2.5 기타 프로그램.

```
// Test the packet using check-sum in InBuf
short IsChkSumOK(BYTE *byArray, short nPacketSize)
{
       short i;
      BYTE cbySum;
      cbySum = 0;
      for(i=0; i<nPacketSize; i++) {</pre>
          cbySum += *(byArray + i);
        }
      if(cbySum==0) return 1;
      else return 0;
}
// From the input array, return the chksum
BYTE GetCheckSum(short nPacketSize, BYTE *byArray)
{
      BYTE byTmp=0;
       short i;
      for(i=0; i<nPacketSize; i++) byTmp += *(byArray+i);</pre>
      return (\simbyTmp + 1);
}
/ Make interger from two bytes
short Byte2Int(BYTE byLow, BYTE byHigh)
{
      return (byLow | (short)byHigh < < 8);
}
// Make long type data from four bytes
int Byte2LInt(BYTE byData1, BYTE byData2, BYTE byData3, BYTE byData4)
{
      return((int)byData1 | (int)byData2<<8 | (int)byData3<<16 | (int)byData4<<24);
}
```

```
typedef struct {
       BYTE byLow;
     BYTE byHigh;
} IByte;
typedef struct {
     BYTE byData1;
     BYTE byData2;
     BYTE byData3;
     BYTE byData4;
} LByte;
// Get the low and high byte from interger
IByte Int2Byte(short nln)
{
      IByte Ret;
      Ret.byLow = nln & 0xff;
      Ret.byHigh = nln>>8 & 0xff;
      return Ret;
}
// Get the bytes from long type data
LByte LInt2Byte(int nln)
{
      LByte Ret;
      Ret.byData[0] = nIn & 0xff;
      Ret.byData[1] = nln > 8 & 0xff;
      Ret.byData[2] = nln > 16 \& 0xff;
      Ret.byData[3] = nln > 24 \& 0xff;
      return Ret;
}
```

```
short GetMainData(BYTE byData[])
{
      BLDC.nRPM = Byte2Int(byData[0], byData[1]);
      BLDC.wTq = Byte2Int(byData[2], byData[3]);
      BLDC.byType = byData[4];
                                        //Control type
      BLDC.nRefVel = Byte2Int(byData[5], byData[6]);
      BLDC.nOut = Byte2Int(byData[7], byData[8]);
      // Status
      BLDC.byAlarm = (byData[9] \& 0x01);
      BLDC.byCtrlFail = (byData[9]>>1) & 0x01;
      BLDC.byOverVolt = (byData[9]>>2) & 0x01;
      BLDC.byOverTemp = (byData[9]>>3) & 0x01;
      BLDC.byOverLoad = (byData[9]>>4) & 0x01;
      BLDC.byHallFail = (byData[9]>>5) & 0x01;
      BLDC.byInvVel = (byData[9] >> 6) \& 0x01;
      BLDC.byStall = (byData[9] >> 7) & 0x01;
      BLDC.nPosi = Byte2LInt(byData[10], byData[11], byData[12], byData[13]);
      BLDC.byBrakeDuty = byData[14];
      BLDC.byTemp = byData[15];
      return 1;
}
```


3 사양서 이력

VERSION	DATE	CONTENTS	MDUI VER
\/1.0	2018.03.15	최초 사양서 작성	
V1.0		PID 247, 252, 253 추가.	
V1.1	2018.03.18	PID 253 수정	
V1.1c	2018.03.22	PID 254 RC_DATA 입력 추가	
V1.1d	2018.03.23	HEAD_MOTOR 제어신호 0~1023 으로 int 값 전송으로 수정	
V1.1f	2018.10.15	PID_ROBOT_MONITOR 을 PID224 번과 2 개로 나눔(MDUI 전용으로)	
V1.2	2019.03.06	PID_ROBOT_IN(249) 추가	
		PID_COMMAND 항목에서 CMD_ROBOT_MONITOR_BC_ON	
V1.3	2019.07.11	CMD_ROBOT_MONITOR_BC_OFF 항목 추가	
		PID_ROBOT_CMD 에 데이터종류에 따른 각속도 단위 변경(0.1deg/s)	
V1.3a	2019.11.29	사진 변경	
V1.3b	2019.11.30	PID 174, 175 -> PID_PNT_BREAK 내용 수정	
V1.3c	2019.12.05	PID 185 제어기 및 MDUI 에 설정 및 적용가능 내용 추가	
V4 2 d	2020.01.09	PID 10 COMMAND 64, 65 -> 76, 77 로 변경	
V1.3d		PID 10 CMD_ROBOT_ANGLE_RESET(75) 추가	
V1.3e	2020.03.13	PID 253 로봇의 구동중인 선속도, 각속도 내용 추가	
V1.3f	2020.03.20	PID 149 RETURN TYPE 을 로봇 플랫폼 사양에 맞게 추가	
V/1 2 m	2020.04.10	PID 10 CMD_PNT_MAIN_DATA_BC_ON 추가	
V1.3g	2020.04.10	PID 10 CMD_PNT_MAIN_DATA_BC_OFF 추가	
		PID 252 D1 제어 종류 추가(3-> 로봇의 회전	
	2020.07.18	4-> 로봇의 회전 및 상부 로타리 모터와	
V1.4a		동기화)	
		PID 252 D1 에 따른 D2, D3 의 데이터 종류 내용 추가	
		PID 252 D16 BIT7 항목 추가	
V1.4b	2020.07.28	PID 252 D1 제어 종류 추가(5 -> 로타리 모터 및 리프트 모터	
V 1.40	2020.07.20	속도제어)	
V1.4c	2020.08.11	PID 250 통신 사양 추가	
V1.4d	2020.09.28	PID 250 통신 사양 삭제	
v 1. 1 u	2020.09.20	PID 251 통신 사양 추가	
V1.4e	2020.10.22	PID 247 감속비에 대한 내용 추가	

이상 -