This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

The Delphion Integrated View

Get Now: PDF More choices	Tools: Add to Work File: Create new Work File	
View: Expand Details INPADOC Jump to:	Top Go to: Derwent	⊠ <u>Em</u> a

composition[German][French]

P Derwent Title: Ceramic compsn. for a thermistor device - comprises a perovskite

type structure of p-type and n-type components for high stability high

temp. use. [Derwent Record]

Country: EP European Patent Office (EPO)

§Kind: B1 Patent i (See also: EP0655752A2, EP0655752A3)

Inventor: Iwaya, Masaki c/o NGK Spark Plug Co.Ltd.;

Hayashi, Kyohei NGK Spark Plug Co.Ltd.;

PAssignee: NGK Spark Plug Co. Ltd.

News, Profiles, Stocks and More about this company

Published / Filed: 2003-02-12 / 1994-11-25

Papplication EP1994000118582

Number:

\$\text{ECLA Code: H01C7/04C2D};

Priority Number: 1993-11-25 JP1993000321428

1993-12-29 **JP1993000350190**

PAbstract: [From equivalent EP0655752A2] Described is a ceramic

composition comprising a compound having a perovskite structure represented by the formula AMO± where A is at least one element selected from the group consisting of 2A, 3A and 3B subgroup elements of the international periodic table of IUPAC, where M is at least one element selected from the group consisting of 4A, 5A, 6A, 7A and 8 subgroup elements of the international periodic table of IUPAC, and wherein said perovskite compound is made up of p-type and n-type components and the elements are present essentially within solubility limits in the perovskite structure. This ceramic composition is especially useful as a main component for a thermistor element (1) exhibiting stable properties at elevated

temperatures up to 1100@C.

§ Attorney, Agent DIEHL GLAESER HILTL &, PARTNER;

or Firm: 일INPADOC

Show legal status actions

Get Now: Family Legal Status Report

Legal Status:

PDesignated DE FR GB

Country:

Family: Show known family members (at least 11)

PDescription: Expand full description [From equivalent EP0655752A3]

- **±** Explanation of Numerals
- **±** Explanation of Numerals
- **+ EXAMPLES**
- **± EXAMPLES**
- + Example 1
- ± Example 1± Example 2
- + Example 2
- First Claim:

 Show all claims

1. A ceramic composition consisting essentially of a compound having a perovskite structure represented by the formula

AMO₂

where A is at least one element selected from the group consisting of 2A and 3A subgroup elements of the international periodic table of IUPAC, La being excluded,

where M is at least one element selected from the group consisting of Cr, Mn, Co, Ni, Fe and Ti, and

wherein said perovskite compound is made up of p-type and n-type components and the elements are present essentially within solubility limits in the perovskite structure,

characterized in that

said M is represented by $(Cr,Mn,Co,Ni)_{1-y-z}Fe_yTi_z$ where y/(1-y-z) is 0.05 to 0.4 and z is 0.025 to 0.35. [German] [French]

Forward References:

Go to Result Set: Forward references (2)

PDF	Patent	Pub.Date	Inventor	Assignee	Title
2	US6740261	2004-05-25	Ogata; Itsuhei		Wide-range type thermistor emethod of producing the san
A	<u>US6261480</u>	2001-07-17	Ogata; Itsuhei	Denso Corporation	Wide-range type thermistor emethod of producing the san

CHEMABS 123(24)327685C DERABS C1995-195794

Powered by

Nominate this for the Galle

© 1997-2004 Thomson

Research Subscriptions | Privacy Policy | Terms & Conditions | Site Map | Contact Us | F

(11) EP 0 655 752 B1

(12)

3

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:12.02.2003 Bulletin 2003/07

(51) Int Cl.7: **H01C 7/04**, H01C 7/02

(21) Application number: 94118582.9

(22) Date of filing: 25.11.1994

(54) Ceramic composition and thermistor comprising such ceramic composition

Keramikzusammensetzung und diese Keramikzusammensetzung enthaltender Thermistor

Composition céramique et thermistance comprenant une telle composition céramique

(84) Designated Contracting States: **DE FR GB**

(30) Priority: 25.11.1993 JP 32142893 29.12.1993 JP 35019093

(43) Date of publication of application: 31.05.1995 Bulletin 1995/22

(73) Proprietor: NGK Spark Plug Co. Ltd. Nagoya-shi Aichi-ken 467 (JP)

(72) Inventors:

 Iwaya, Masaki c/o NGK Spark Plug Co.Ltd. Nagoya, Aichi (JP)

 Hayashi,Kyohei NGK Spark Plug Co.Ltd. Nagoya,Aichi (JP) (74) Representative:
DIEHL GLAESER HILTL & PARTNER
Patentanwälte
Augustenstrasse 46
80333 München (DE)

(56) References cited:

US-A- 3 441 517 US-A- 4 013 592 US-A- 3 958 209 US-A- 4 101 454

 PATENT ABSTRACTS OF JAPAN vol. 016 no. 420 (E-1259) ,4 September 1992 & JP-A-04 144201 (SHINAGAWA REFRACT CO LTD) 18 May 1992,

P 0 655 752 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a ceramic composition which is especially useful as a component of a thermistor.

[0002] A ceramic composition according to the preamble of claim 1 is known from US-A- 3 441 517.

[0003] Among the materials for thermistor usable at elevated temperatures, there have hitherto been employed (a) a material based on a corundum type crystal structure, mainly composed of Al₂O₃ and Cr₂O₃, as disclosed for example in JP Patent Kokai Publication JP-A 50-118294, (b) a material based on a spinel type crystal structure, mainly composed of MgAl₂O₄, MgCr₂O₄ and MgFe₂O₄, as disclosed for example in JP Patent Kokai Publication JP-A 49-63995, (c) a material mainly composed of ZrO₂, stabilized mainly with Y₂O₃ etc., as disclosed for example in "Nainen Kikan" (Internal Combustion Engine), vol. 30, No. 8, page 98, and (d) a material mainly composed of a compound having a perovskite type crystal structure, exhibiting a high melting point and electrical conductivity, such as a material having a La(Al_{1-x}Cr_x) O₃ based composition, as disclosed in, for example, JP Patent Kokai Publication JP-A 51-108298, a material having a thin film of LaCrO₃ on an insulating substrate, as disclosed for example in JP Patent Kokai Publication JP-A 61-161701, or a material comprising a mixture of LaCrO₃ and MgAl₂O₄, as disclosed for example in JP Patent Kokai Publications JP-A 51-95297 and JP-A 51-23691.

[0004] Based on eager investigation by the applicant the following has turned out.

[0005] The corundum type crystal structure based material (a), which may exhibit variable resistance-temperature characteristics by addition of some other element(s), suffers from deterioration in thermal stability etc. on addition of a larger quantity of an additive(s).

[0006] The material consisting mainly of the spinel type crystal structure compound (b) has a larger temperature gradient constant (β) so that it cannot be used over a wide temperature range. The NiAl₂O₄ based material (JP Patent Kokai Publication JP-A 49-29493) and CoAl₂O₄ based material (JP Patent Kokai Publication JP-A 48-705 and so forth) are low in thermal resistance and cannot be used at elevated temperatures.

[0007] The zirconia-based material (c) is unstable in its resistance value under a reducing atmosphere and cannot be put to practical use. On the other hand, the perovskite type crystal structure compound based material (d) suffers from a drawback that, if oxides of La are left in a non-reacted state, non-reacted components tend to be reacted with water contained in atmospheric air to yield labile La(OH)₃ to cause the device to collapse or cause unstable resistance values.

[0008] It is therefore the object of the present invention to provide a ceramic composition especially useful as thermistor component which avoids the above mentioned drawbacks. This object is solved by the ceramic composition according to independent claim 1, 9 or 12 the thermistor element of independent claim 15, use of the ceramic composition according to independent claim 16 and the apparatus for measuring temperature according to independent claim 17. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, the examples and the drawings.

[0009] This invention relates to a ceramic material which can be used for thermistor production. The ceramic material has high stability at elevated temperatures and a negative temperature coefficient so as to be advantageously used at 300° to 1100°C.

[0010] Particularly, it is a specific aspect of the present invention to provide a ceramic composition for thermistor in which resistance values over a wide range may be provided by adjusting the composition of material.

[0011] It is a still further aspect to provide a ceramic composition free from hygroscopic substances and being less susceptible to deterioration in characteristics due to environmental humidity or thermal hysteresis.

[0012] It is a further aspect to provide a ceramic composition which can be used over a wide temperature range from ambient temperature up to 1100°C, preferably, with high stability.

[0013] Still further aspects of the present invention will become apparent in the entire disclosure.

[0014] As a result of our eager researches, it has been found that the above problems can be overcome by a ceramic composition defined by the features of claim 1. A satisfactory thermistor may preferably be provided by a ceramic composition for thermistor characterized by a compound represented by a formula

$$(Y_{1-x}Sr_x)(Cr_{1-y-z}Fe_yTi_z)O_3$$
 (I)

where x, y and z are

55

50

45

20

30

0.351≧ x≥ 0.01

 $0.4 \ge y/(1-y-z) \ge 0.05$

and

5

20

25

30

 $0.35 \ge z \ge 0.025$.

[0015] Also, it has been found that the above problems can be overcome and a satisfactory thermistor may be provided by a ceramic composition for thermistor characterized by compounds represented by a chemical formula

$$(Y_{1-x}Sr_x)(Cr_{1-y-z}Fe_vTi_z)O_3$$
 (II)

where x, y and z are the same as in formula (I)

wherein Y (yttrium) may be partly or completely substituted with Sm.

[0016] Generally, substitution occurs based on the basic perovskite YCrO₃ compound as follows:

- (1) For the Y sites of YCrO₃, the 3A subgroup elements and 2A subgroup elements are capable of substitution to form a solid solution, 2A subgroup elements being within the solubility limits.
- (2) For the Cr sites of YCrO₃, elements Mn, Co, Ni, Fe and Ti are capable of substitution.

[0017] In order to give a n-type component Ti and/or Fe should be present, while Cr, Mn, Co and/or Ni serves to give a p-type component. The proportion between the n-type component and p-type component can be varied in a wide range. Accordingly, it is generally expressed by a formula:

$$AMO_3$$
 (III)

where A represents at least one of 2A and 3A subgroup elements, and M at least one of elements Cr, Mn, Co, Ni, Fe and Ti.

[0018] Typically, Y (yttrium) represents the "A" sites and any one of other elements of 3A subgroup elements La being excluded, can be substituted for Y, partially or entirely.

[0019] Typically Sr is representative as an element belonging to the 2A subgroup elements which are capable of assuming the A sites, i.e., (substituting for Y) only partially, i.e., within the solubility limits.

[0020] It is significant that, e.g., the group of Fe³⁺, Cr³⁺, Mn³⁺ and the 3A subgroup elements are mutually solid-soluble in the AMO₃ (YCrO₃) system. The same applies for the group of Ti⁴⁺ and the 2A subgroup elements.

[0021] Note that, in this application the subgroup nomination a, b is based on the international periodic table defined by IUPAC, 1970.

[0022] The temperature property (stability against increasing temperatures) varies depending on the proportion between the p-type and n-type components in the AMO₃ system, and can be adjusted upon necessity.

[0023] Particular stability is observed in the Y(Cr,Fe)O₃ system or generally A(Cr,Fe)O₃ system (IV) within a Fe/Cr ratio of 0.05 to 0.4. In this system, Cr may be replaced by Mn, Co and/or Ni, whereas Fe may be partially or entirely replaced by Ti for giving the n-type component.

[0024] Among the lanthanoid series elements (atomic number 57La to 71Lu) which belong to the 3A subgroup, La is apt to yield labile lanthanum hydroxyde through reaction of nonreacted La components with water, e.g., in the ambient air. Therefore, care should be taken if La is present so as not to leave unreacted La, i.e., unsolved La in the solid-solution of the basic AMO₃ system. Even under the presence of La or La-containing phases, the AMO₃ system can be stable against the temperature change for giving desired values of resistance etc. based on the basic mechanism of the p-type and n-type combination occurring in the sole solid-solution phase (matrix). However, nonpresence of La would be preferred in view of excluding the deterioration.

[0025] The inventive ceramic composition consists essentially of the sole solid-solution matrix phase of the AMO₃ system, and optionally a minor grain boundary phase(s) originating from a sintering aid may also be present.

[0026] If the solubility limits are exceeded for certain substitution elements, a further phase or phases may occur, which is not preferred.

Such further phase(s) would be allowed to be present only within a limited extent such that the essential property of the basic AMO₃ system is not adversely affected.

[0027] More particularly, there is provided a ceramic composition for thermistor characterized by a compound represented by a chemical formula

 $_{5} \qquad \qquad (Y_{1-x}Q_{x})\left(Cr_{1-y-z}Fe_{y}Ti_{z}\right)O_{3} \qquad \qquad (V)$

where Q is at least one selected from 2A and 3A subgroup elements according to the international periodic table of IUPAC La being excluded, and

where x, y and z are

 $0.351 \ge x \ge 0.01$.

 $0.4 \ge y/(1-y-z) \ge 0.05$

and

10

15

20

25

 $0.35 \ge z \ge 0.025$.

[0028] Also there is provided a ceramic composition for thermistor characterized by a compound represented by a chemical formula

 $\{(Y_{1-w}RE_w)_{1-x}Q_x\}\{Cr_{1-y-z}Fe_yTi_z\}O_3$ (VI)

where Q is at least one selected from the 2A subgroup elements and RE is at least one selected from the 3A subgroup elements other than La, and

where w, x, y and z are

 $1.0 \ge w > 0$,

35

30

 $0.351 \ge x \ge 0.01$,

 $0.4 \ge y/(1-y-z) \ge 0.05$,

40 and

 $0.35 \ge z \ge 0.025$.

45

[0029] In the lanthanoid series elements, lanthanide (i.e., except La) elements are preferred. However, La may be present, if the thermistor element is used under water-free conditions.

[0030] As the Q elements, 3A and 2A subgroup elements are counted.

[0031] As the 3A elements, Sm, Pr, Nd, Mo, Dy, Er, Gd, Yb, etc. (particularly Sm), generally rare earth elements or lanthanoid series elements of atomic number 57-71, are counted. As the 3B elements Al, etc. are counted. As the 2A subgroup elements Mg, Ca, Sr, Ba, etc. (particularly, Sr) are counted. Among the lanthanoid series elements, La is not preferred where stability against H₂O is required.

[0032] Above all, or more preferably, a thermistor element having high strength and capable of being sintered at lower temperatures can be provided by adding sintering aids to the above ceramic composition for thermistor to improve its sinterability.

[0033] As sintering aids, those capable of producing a liquidus phase in the grain boundary to form a matrix for improving sinterability of the ceramics are employable, and silica, mullite, calcium silicate (CaSiO₃), strontium silicate

(SrSiO₃), etc. are preferred. The sintering aids are preferably used in an amount of 0.5 to 10 % by weight, most preferably 0.8 to 5 % by weight, usually resulting in a boundary phase (e.g., glass phase) of the perovskite grains as a matrix phase.

[0034] Further, it is preferred to apply aging to further stabilize the resistance value, wherein the aging is done preferably at 1000 to 1200°C for 100 to 300 hours in ambient air.

[0035] The material for the thermistor according to the present invention is of the perovskite structure and hence it is possible for atoms having approximate ionic radii to substitute with each other easily. Consequently, the resistance values or temperature coefficients (β) of resistance values can be adjusted over a wide range by adjusting the compositional ratio continuously over a wide range.

[0036] So long as the composition is free of La, there is no such adverse effect as deterioration due to moisture absorption etc. The composition is also superior in high temperature stability and can be stably used for a prolonged period of time at temperatures of 300°C or higher.

[0037] The ceramic composition for the thermistor according to the present invention especially useful for the production of a thermistor element comprises a mixture of a p-type semiconductor and an n-type semiconductor, such that lattice defects of oxygen or metal ions which are labile against heat are reduced, and hence a thermistor element can be provided which undergoes little change in the resistance when subjected to the heat hysteresis.

[0038] On the other hand, since the oxygen partial pressure dependency of the p-type semiconductor is reversed from that of the n-type semiconductor, mixing the two results in their characteristics cancelling each other to provide characteristics stable against the oxygen partial pressure. Consequently, any adverse effect caused by the oxygen partial pressure in atmospheric air is reduced and hence the thermistor element as an ultimate product may extensively be used as a sensor for cars by being built into a metal tube.

[0039] It is preferred according to the present invention to have a ceramic composition which can detect a wide temperature range, particularly preferred are those having a resistance value of 1 Mohm or less within a range of 300-900°C.

[0040] As for the composition, it is generally preferred to have those which yield as little as an amount of by-product phases other than the aimed single phased solid solution. The compositional range of $0.4 \ge y/(1-y-z) \ge 0.05$ is selected in view of the temperature resistant property. A compositional range of $0.1 \ge z \ge 0.05$ is preferred in view of reduced yielding of by-products. A compositional range of $0.15 \ge x \ge 0.01$ is further preferred in order to achieve a reduced difference in the resistance value after thermal hysteresis. It is assumed that outside the above range for z, it might happen to exceed a solubility limit for solid solution, which might result in a two-phases system giving, rise to a tendency of certain reduction in the stability.

[0041] As for the substitution for Y (yttrium) based on the YCrO₃, generally speaking, the Y site can be substituted with 3A subgroup elements (Sc and lanthanoid series elements of atomic number of 57 to 71, e.g., La, Pr, Nd, Sm, Ho, Dy, Er, Gd, Yb, etc.) or 2A subgroup (Mg, Ca, Sr, Ba, etc.) or mixtures thereof. Among the lanthanoid series, La is not preferred for the reason of yielding labile hydroxide, as explained at the introducting part. The solubility limit depends on the ionic radius. Those having a stable balance number are preferred for better stability. Y has an ion radius of 0.09 nm, whereas the ion radius of other elements ranges from 0.072 nm (Mg) to 0.135 nm (Ba).

[0042] The Cr site in the perovskite YCrO₃ system can be substituted with at least one element selected from Mn, Co, Ni, Fe and Ti provided that the amount is within the solubility limit. Therefore, any one of elements Cr, Mn, Co and Ni other than Fe and Ti can be further present within the solubility limit replacing the elements Fe and/or Ti, for substituting the Cr site in the YCrO₃ system.

[0043] According to the present invention, generally, it is aimed at a combination of the p-type and n-type components. For the p-type components (compounds) based on the YCrO₃ system those elements Cr, Mn, Co and Ni are preferred, whereas for the n-type components (compounds) the elements Ti and Fe are preferably used.

[0044] This fact provides a further possibility of substitution as follows:

45

50

(1) Fe³⁺, Cr³⁺, Mn³⁺ etc. and the 3A subgroup elements are capable of forming a solid solution with each other based on YCrO₃, and Cr, Ti⁴⁺ and 2A subgroup elements are likewise capable of forming a solid solution with each other within the solubility limits.

[0045] The temperature property (stability against increasing temperature) depends on the ratio between the p-type and n-type. Particularly, a ratio of $0.05 \le \text{Fe/Cr} \le 0.4$ in the Y(Cr,Fe)O₃ system or A(Cr,Fe)O₃ or generally AMO₃ system provides a high stability against heat, thus this ratio is preferred.

[0046] Generally, the ceramic composition for thermistor and the thermistor elements according to the invention may be produced by preparing a starting material mixture, molding and sintering. The preparation of the starting material mixture preferably comprises calcination and/or granulation.

[0047] The preparation of the starting material mixture may be carried out, e.g., weighing and mixing raw materials, drying the resulting slurry, calcining the dried mass followed by granulation. The granulation may be carried out by

pulverizing the calcined mass, preferably to a grain size of about one micrometer optionally added with a binder (usually organic) for subsequent granulation and molding, the resulting slurry is dried and followed by granulating, which may be done by spray drying or freeze-drying to provide a granular starting material mixture for sintering. The starting material mixture is molded and sintered to produce a dense sintered ceramic body, typically about 1550°C for one hour in ambient air.

[0048] The calcination is carried out at a temperature sufficient to produce a desired intermediate component (i.e., solid solution) at a temperature such that would not cause excess densification so as to provide no difficulty in subsequent pulverization. Preferably the calcination is carried out at about 1400°C for about 2 hours, e.g., in a crucible of alumina.

[0049] The molding may be carried out using a die or mold usually by cold pressing, however, any other molding methods can be applied.

[0050] The sintering can be carried out typically (as a standard) at 1550°C for one hour in ambient air, the sintering temperature ranging from 1400 to 1600°C, preferably 1500 to 1570°C, for a period of time to become sufficiently dense. The sintering time depends on the shape and size of desired products, and a half hour to 4 hours, preferably up to 2 hours, would be preferred for a size as exemplified herein.

[0051] The sintering can be made in the ambient air, however, a further reduction in variation of the resistance values can be achieved by sintering it in a ceramic box (e.g., alumina ceramic or magnesia ceramic) in the case where the composition comprises those elements or substance which are apt to vaporize at a high temperature during the sintering, e.g., Cr. etc. This is because an atmosphere of a volatile substance is produced in the box, i.e., surrounding the mass to be sintered, which would suppress the vaporization. Also, the inner wall of the box may be coated with the substance per se which are apt to vaporize. Alternatively, a non sintered green product may be placed in a box beforehand and preheated to provide deposition of easily vaporized component in the raw materials for the thermistor composition on the inner wall of the box, which box is used for further sintering.

[0052] In the following, certain preferred conditions for production will be mentioned.

[0053] The raw materials are mixed preferably using a ball mill, for a sufficient period of time, e.g., 15 hours for uniform mixing. It is preferred to use balls and/or a pot of (a) ZrO₂ or silicon nitride, or (b) PTFE (polytetrafluoroethylene) or polyamide type resine (e.g., Nylon, trade name), in order to avoid contamination.

[0054] Drying of the slurry should be carried out without separation of ingredients caused by the difference in the specific gravity, and thus spray drying or freeze drying is preferred.

[0055] The sintering is carried out preferably in an electric furnace, however, other furnaces may be used.

[0056] The pulverization following to the calcination may be carried out substantially in the same manner as the mixing of the raw materials, whereas drying of the resulting slurry may be carried out in the same manner as that following the mixing of the raw materials, provided that a binder (organic, PVA, etc.) and a dispersing agent may be admixed before spraying.

[0057] The granulation may be carried out by spray drying added with a binder and a dispersing agent to make granules having a good flowability. The granulation may be also carried out by freeze drying.

[0058] The mixing conditions hereinabove mentioned generally relate to the case where powdery raw materials are used. Instead, aqueous solutions of metal elements which form the oxides concerned, respectively, may be partly or entirely used as the raw materials. In such a case, aqueous solutions may be, e.g.,, nitrate solutions, e.g., Fe(NO₃)₂, Cr(NO₃)₂, Sr(NO₃)₃, etc., wherein e.g., precipitation or coprecipitation, thermal decomposition and the sol-gel method etc. may be employed.

[0059] In summary the following meritorious effects are achieved by the present invention.

[0060] Thermistor elements could be provided which are to a less extent susceptible to changes in the temperature and resistance characteristics when used in a wider temperature range and which may be practically used with a stable resistance value against the thermal hysteresis. Consequently, a ceramic composition for thermistor could be provided which is superior in mechanical strength and hence is usable as a measurement unit for measuring the temperature of hot gases such as, e.g., an overheat sensor of catalysts for purifying automotive engine exhaust gases, a gas temperature of recirculated gases from an exhaust gas recirculation system etc., a measurement unit mounted at a position susceptible to severe vibrations, or a temperature sensor for various furnaces.

[0061] In the following, the present invention will be described in more detail with reference to the drawings and example.

[0062] Fig. 1 shows an embodiment of the present invention.

Explanation of Numerals

[0063]

50

10

20

1 thermistor element;

2 lead

EXAMPLES

5 Example 1

[0064] A first embodiment of the present invention is now explained.

[0065] First of all, Y_2O_3 , having a purity of not lower than 99.9% and a mean particle size of 1 μ m, SrCO $_3$ having a purity of not lower than 98.5% and a mean particle size of not more than 1 μ m, Cr $_2O_3$ having a purity of not lower than 98.5% and a mean particle size of not more than 1 μ m, Fe $_2O_3$ having a purity of not lower than 98.5% and a mean particle size of not more than 1 μ m, and TiO $_2$ having a purity of not lower than 98.5% and a mean particle size of not more than 1 μ m, were weighed so as to give ratios of x, y, and z shown at the column of "composition" in Table 1 under the formula $(Y_{1-y}Sr_x)(Cr_{1-y-z}Fe_yTi_z)O_3$, wet mixed in a PTFE pot with steel balls coated with PTFE for 15 hours using ion-exchanged water, dried by freeze-drying at -40°C followed by evacuation to 13.3 - 26.6 Pa (0.1-0.2 Torr) and subsequent sublimation at 30°C, and subsequently calcined at 1400°C for two hours in an Al $_2O_3$ crucible. The calcined powders were admixed with 1 wt% of SiO $_2$ powders having a mean particle size of 0.6 μ m, and wet mixed together using ion-exchanged water in a PTFE pot with Si $_3N_4$ balls for 15 hours. The resulting slurry was passed through a sieve having apertures of 74 μ m (200 mesh sieve)and dried by freeze-drying as mentioned above. After drying, a binder composed of 15 wt% of PVB, 10 wt% of DBP, 50 wt% of MEK and 25 wt% of toluene was dispersed in aceton and added to the dried product and the resulting mixture was granulated followed by drying to produce powders for press molding having a grain size of 100 to 355 micrometers.

[0066] In Table 1, Sample numbers 1, 3, 17 and 33 stand for Comparative Examples.

[0067] The powders were charged into a metal die in which two platinum wires of 0.4 mm in diameter were disposed parallel to each other at equal distances from the center of the die with a distance of 1.2 mm from each other, as leads, and pressed under a pressure of 98MPa (1000 kg/cm²), to produce molded compacts having a diameter of 3 mm and a thickness of 2 mm and having two leads embedded therein. The molded compacts were sintered in atmospheric air at 1550°C for one hour to produce thermistor elements. Further, aging was applied to Samples Nos. 2, 4, 5 and 6 by retaining them at 1100°C in ambient air for 200 hours.

[0068] Of the thermistor elements, thus produced, resistance values at 300°C, 350°C, 500°C and 900°C in the atmospheric air were measured. The results are also shown in Table 1.

[0069] The samples were then held at 1000°C for 300 hours in atmospheric air and resistance values thereof were measured at 300°C, 350°C, 500°C and 900°C before and after holding at 1000°C in order to scrutinize durability characteristics thereof. The results are shown in Table 2.

[0070] In Table 1, β indicates the temperature coefficient of the resistance value represented by

35

$$\beta = \ln(R/Ro)/(1/K-1/Ko)$$

whereas the ΔR ratio in Table 2 indicates the rate of change of the resistance value represented by

40

$$\Delta$$
R ratio = (Rt-Ro)/Ro \times 100%

wherein In denotes common logarithm, R and Ro represent resistance values in atmospheric air at absolute temperatures K and Ko, respectively, Rt represents a resistance value at an absolute temperature Kt (t=300°C, 350°C, 500°C or 900°C) following a durability test. In Table 1, 300-500 and 500-900 denote the values for β for temperature ranges of 300°C to 500°C and 500° to 900°C, respectively.

[0071] Table 2 shows the values of the ΔR ratio, calculated as temperature. These values are defined by the equation:

50

45

(value of ΔR ratio calculated as temperature)

=
$$\beta \times \text{Ko/} [\ln(\text{Rt/Ro}) \times \text{Ko} + \beta] - \text{Ko}$$

[0072] Also sample Nos. 7, 8, 12, 23, 24, 25 and 27 were allowed to stand in atmospheric air at 1100°C for two hours, and the resistance values before and after allowing to stand in atmospheric air were measured for conducting a high temperature durability test. Favorable results could be obtained for these samples as the value of ΔR ratio calculated as temperature remained within 15°C.

[0073] It is evident from Table 1 that the resistance value can be adjusted to a great extent by selecting mixing proportions of each of elements in the composition represented by the formula $(Y_{1-x}Sr_x)(Cr_{1-y-z}Fe_yTi_z)O_3$.

[0074] Also, a little amount of by-products are produced as the inventive ceramic composition is essentially composed of a substance resulting from a simple substitution solid solution reaction. Particularly, the by-products are not observed at an amount of Sr substitution of 30 % or less as the ceramic composition results only from the simple substitution solid solution reaction. The latter composition can be sintered at a temperature of 1600°C or less thereby avoiding deterioration of leads embedded in the thermistor elements as well as providing a high mechanical strength.

[0075] It is also seen from Table 1 that the samples having compositions in which the amount of Y substitution relative to Sr is 1 to 35.1 mol%, the ratio of Fe substitution relative to Cr (Fe/Cr) is 0.05 to 0.40 and the amount of Ti substitution is 2.5 to 35 mol% has the resistance values falling in a practically acceptable range for a temperature range of 300° to 900°C. Besides, as for the durability, the ΔR ratio is small and the ΔR ratio calculated as temperature is also small, so that the samples represent a thermistor material advantageously employed in a temperature range of 300° to 1000°C.

[0076] If the amount of substitution of any one of Sr, Fe and Ti is small (sample Nos. 1, 3 and 17) or the amount of substitution of Sr or Ti is larger (sample No. 33), the ΔR ratio calculated as temperature is changed by a temperature exceeding 15°C. Thus, these samples may be said unsuitable for the use at a temperature higher than 500°C in view of the durability.

[0077] The results of the durability test indicate that the ceramic composition for thermistor according to the present invention shows extremely stable properties with respect to the thermal hysteresis.

[0078] This is presumed to be ascribable to the fact that, since the ceramic composition of the present invention is a mixture of YCrO₃, a p-type semiconductor, and Fe₂O₃, an n-type semiconductor, oxygen ion defects or metal ion defects which are labile against thermal hysteresis are reduced in their quantities.

[0079] If the amount of Ti substitution is reduced to less than 2.5%, the resulting composition becomes slightly inferior in sinterability.

Example 2

[0080] The same starting materials as those used in Example 1 and $\rm Sm_2O_3$ having a purity not lower than 99.9% and a mean particle size of not more than 1 μm were weighed to give compositions shown in Table 3. Samples were prepared by a method similar to that of Example 1, and the resistance values as well as durability of the resulting thermistor elements were measured. The results are shown in Tables 3 and 4.

[0081] It is seen from Tables 3 and 4 that a composition produced by substituting Sm for Y in the composition represented by the chemical formula $\{(Y_{1-w}Sm_w)_{1-x}Sr_x\}\{Cr_{1-y-z}Fe_yTi_z\}O_3$ has a reduced resistance value and represents a material for thermistor element which is suitable for the use at lower temperatures and has a superior durability. Further, high temperature durability tests were conducted on Samples Nos. 42 and 43 by measuring resistance before and after holding the Samples in ambient air at 1100°C for 2 hours. The results demonstrated good values of the ΔR ratio calculated as temperature all falling within 15°C.

[0082] Based on this Example, it turned out that the present invention can provide thermistor elements which suffer little changes in the temperature and resistance characteristics even when used in a temperature range of 300 to 1100°C and thus which may be practically used with a stable resistance value against the thermal hysteresis.

[0083] The ceramic composition of the present invention for a thermistor for detecting elevated temperatures exhibits stable properties at elevated temperatures for permitting use in both oxidizing and reducing atmospheres. In a YCrO₃ based material, Sr or Sm can be partly or completely substituted for Y, and Fe and Ti are substituted for part of Cr. Such material enables the production of a thermistor element exhibiting practical, low resistance values at 300° to 1100°C and also exhibiting stability against changes in the environmental conditions or thermal hysteresis. Generally AMO₃ perovskite structure (A=2A,3A subgroup elements, M=Cr,Mn,Co,Ni,Fe,Ti elements) having a combination of n-type and p-type components provides the same property, the subgroup being of IUPAC international periodic table. La-free is preferred and sintering aid may be used.

[0084] It should be noted that modification obvious in the art can be made without departing from the scope of the present invention as claimed in the appended claims.

TABLE 1

sample No.	С	ompositio	on	re	sistance v	β					
	х	у	z	300°C	350°C	500°C	900°C	300-500	500-900		
1	0.0	0.19	0.05	37.0	18.7	4.14	0.398	4851	5312		
2	0.01	0.19	0.05	42.5	21.6	4.71	0.436	4872	5395		

25

30

35

55

50

45

TABLE 1 (continued)

sample No.	C	ompositio	n	re	sistance v	alues (K	Ω)	ı	3
	х	у	z	300°C	350°C	500°C	900°C	300-500	500-900
3	0.011	0.198	0.01	11436	3084	119	0.380	10109	13029
4	0.011	0.219	0.05	5.74	3.271	0.926	0.140	4390	4283
5	0.014	0.271	0.05	14.5	7.989	2.052	0.254	4324	4736
6	0.018	0.19	0.05	95.3	45.4	8.29	0.490	5410	6408
7	0.026	0.195	0.025	13633	2965	67.1	0.225	11769	12916
8	0.029	0.19	0.05	2914	812	47.2	0.630	9131	9785
9	0.037	0.19	0.05	17223	7279	147	0.527	10551	12763
10	0.046	0.19	0.05	18546	6436	104	0.348	11482	12919
11	0.049	0.19	0.05	13435	4417	68.0	0.263	11706	12593
12	0.05	0.19	0.05	10660	2160	49.2	0.208	11911	12391
13	0.051	0.19	0.05	10450	2333	60.2	0.235	11420	12571
14	0.051	0.158	0.05	10670	2216	51.2	0.198	11825	12593
15	0.051	0.124	0.05	8144	1735	41.8	0.179	11676	12374
16	0.051	0.045	0.05	1846	440	14.4	0.132	10746	10639
17	0.051	0.00	0.05	5.28	2.48	0.485	0.065	5288	4549
18	0.052	0.19	0.05	12007	2567	62.3	0.234	11652	12659
19	0.054	0.19	0.05	9641	2144	54.9	0.219	11446	12522
20	0.059	0.19	0.05	3535	874	27.8	0.155	10731	11763
21	0.063	0.19	0.05	723	221	11.4	0.102	9190	10691
22	0.067	0.19	0.05	226	78	5.43	0.076	8259	9675
23	0.069	0.271	0.05	439	136	7.702	0.095	8952	9963
24	0.07	0.219	0.05	52.9	21.9	2.274	0.061	6972	8202
25	0.071	0.19	0.05	19.5	9.64	1.55	0.055	5604	7558
26	0.101	0.18	0.10	1593	421	16.3	0.135	10148	10866
27	0.151	0.17	0.15	2252	522	16.9	0.137	10832	10918
28	0.154	0.111	0.15	706	174	7.24	0.102	10144	9661
29	0.201	0.16	0.20	1243	324	12.8	0.131	10134	10387
30	0.251	0.15	0.25	832	240	11.2	0.129	9541	10119
31	0.301	0.14	0.30	319	117	8.08	0.130	8141	9361
32	0.351	0.13	0.35	138	59.	5.96	0.126	6957	8744
33	0.401	0.12	0.40	52.8	25.	3.69	0.115	5881	7860

TABLE 2

sample No.		∆R rat	io (%)		value of ΔR ratio calculated as temperature (°C				
	300°C	350°C	500°C	900°C	300°C	350°C	500°C	900°C	
1	19.6	15.9	18.7	8.0	-12	-12	-19	-20	
2	15.0	12.5	10.8	4.6	-9	-9	-11	-11	

TABLE 2 (continued)

sample No.	. ΔR ratio (%) value of ΔR ratio calculated as temper							erature (°C)
	300°C	350°C	500°C	900°C	300°C	350°C	500°C	900°C
3	45.0	30.5	26.3	16.8	-12	-10	-11	-16
4	12.5	5.5	5.7	3.0	-9	-5	-8	-9
5	13.0	11.3	7.5	3.0	-9	-9	-9	-9
6	10.0	12.3	14.5	5.5	-6	-8	-12	-11
7	2.9	4.5	5.0	3.5	-1	-1	-2	-4
8	15.6	13.6	13.2	5.6	-5	-5	-7	-8
9	-3.6	-4.7	-2.4	-1.4	1	2	1	2
10	9.0	6.0	-2.7	-2.7	-2	-2	1	3
11	3.9	4.0	-2.1	-3.8	-1	-1	1	4
12	0.6	0.2	-2.5	-2.0	0	0	1	2
13	1.8	1.6	0.3	1.8	-1	-1	0	-2
14	4.4	0.5	-0.6	-0.5	-1	0	0	1
15	5.3	0.8	-0.8	-2.2	-1	0	0	2
16	-9.1	-11.0	-9.1	-7.8	3	4	5	11
17	-29.8	-29.3	-32.1	-9.5	23	27	54	31
18	0.9	1.3	0.5	1.3	0	0	0	-1
19	8.7	5.1	3.7	4.7	-2	-2	-2	-5
20	5.9	5.1	6.6	4.6	-2	-2	-3	-5
21	2.3	5.4	7.7	-1.0	-1	-2	-4	1
22	2.1	2.5	5.8	0.0	-1	-1	-3	0
23	9.5	9.6	8.2	4.5	-3	-4	-5	-6
24	2.6	2.6	3.5	5.7	-1	-1	-2	-9
25	-9.0	-8.5	-4.7	5.0	6	6	4	-9
26	-1.6	7.2	6.4	5.7	1	-3	-3	-7
27	-10.2	1.3	0.8	2.3	3	0	0	-3
28	-10.3	2.2	2.5	2.4	4	-1	-2	-3
29	-14.6	-10.4	-7.0	-0.8	5	4	4	1
30	-19.8	-17.7	-11.4	-3.3	8	8	7	5
31	-25.2	-22.9	-14.7	-5.1	12	13	10	8
32	-20.5	-22.0	-12.1	-6.0	11	14	9	10
33	-30.0	-25.2	-20.0	-12.0	21	20	17	23

TABLE 3

sample No.		composition resistance values (K Ω)					β			
	w	х	у	z	300°C	350°C	500°C	900°C	300-500	500-900
41	1.0	0.051	0.19	0.05	12.7	3.74	0.299	0.023	8303	5814
42	1.0	0.054	0.19	0.05	21.9	6.41	0.471	0.026	8503	6566

TABLE 3 (continued)

sample No.		compo	sition		resistance values (K Ω)				β	
	w	х	у	z	300°C	350°C	500°C	900°C	300-500	500-900
43	0.50	0.054	0.19	0.05	188	50.8	2.331	0.046	9723	8898
44	0.20	0.054	0.19	0.05	1341	301	9.173	0.082	11041	10693
45	0.10	0.054	0.19	0.05	3519	752	19.8	0.121	11472	11555

10

5

TABLE 4

300°C

900°C

value of ΔR ratio calculated as temperature (°C)

500°C

350°C

900°C

ΔR ratio (%)

500°C

350°C

15

1

20

25

41 -11.8 -13.8 -9.0 -3.2 5 7 10 8 42 -8.9 -2.9 -3.0 0 4 1 3 0 43 4.8 6.0 2.9 0 -2 -2 -2 0 44 -4.7 -2.4 0.5 -3.0 1 1 0 4 -2 -3 -4 -4 45 6.1 8.3 7.5 3.8

Claims

Ciali

 A ceramic composition consisting essentially of a compound having a perovskite structure represented by the formula

30

35

45

50

55

 AMO_3

where A is at least one element selected from the group consisting of 2A and 3A subgroup elements of the international periodic table of IUPAC, La being excluded,

where M is at least one element selected from the group consisting of Cr, Mn, Co, Ni, Fe and Ti, and wherein said perovskite compound is made up of p-type and n-type components and the elements are present essentially within solubility limits in the perovskite structure,

characterized in that

sample No.

300°C

said M is represented by $(Cr,Mn,Co,Ni)_{1-v-z}Fe_vTi_z$ where y/(1-y-z) is 0.05 to 0.4 and z is 0.025 to 0.35.

- The ceramic composition as defined in claim 1, characterized in that said M is Cr_{1-y-z}Fe_yTi_z.
 - 3. The ceramic composition as defined in claim 1, characterized in that said A is at least one selected from the group consisting of Y and lanthanoid series elements other than La.
 - 4. The ceramic composition as defined in claim 1, characterized in that A is Y, Sm or a mixture thereof.
 - 5. The ceramic composition as defined in any one of claims 1 to 4, **characterized in that** a phase resulting from a sintering aid is present in the composition.
 - 6. The ceramic composition as defined in claim 5, characterized in that the phase resulting from the sintering aid is present in an amount of 0.5 to 10 % by weight, preferably, 0.8% to 5% by weight, of the entire composition.
 - 7. The ceramic composition as defined in claim 6, **characterized in that** said sintering aid is selected from the group consisting of silica, mullite, calcium silicate and strontium silicate.
 - 8. The ceramic composition as defined in claim 7, characterized in that said sintering aid is silica.

9. A ceramic composition consisting essentially of a compound represented by a chemical formula

$$(Y_{1-x}Q_x)(Cr_{1-y-z}Fe_yTi_z)O_3$$

5

where Q is at least one selected from the group consisting of the 2A and 3A subgroup elements of the international periodic table of IUPAC, La being excluded, where x, y and z are such that

 $0.351 \ge x \ge 0.01$

10

and

 $0.4 \ge y/(1-y-z) \ge 0.05$

and

 $0.35 \ge z \ge 0.025$.

20

15

- 10. The ceramic composition as defined in claim 9, characterized in that Q is Sr.
- 11. The ceramic composition as defined in claim 9, characterized in that Q is at least one element, present within a 25 solubility limit, selected from the group consisting of lanthanoid series elements other than La.
 - 12. A ceramic composition consisting essentially of a compound represented by a formula

30

$$\{(Y_{1-w}RE_w)_{1-x}Q_x\}\{Cr_{1-v-z}Fe_vTi_z\}O_3$$

where Q is at least one selected from the group consisting of 2A subgroup elements and RE is at least one selected from the group consisting of 3A subgroup elements other than La, and where w, x, y and z are such that

35

40

45

50

 $1.0 \ge w > 0$

and

 $0.351 \ge x \ge 0.01$

and

 $0.4 \ge y/(1-y-z) \ge 0.05$

and

 $0.35 \ge z \ge 0.025$.

- 13. The ceramic composition as defined in claim 12, characterized in that Q is Sr and said RE is Sm.
- 14. The ceramic composition as defined in claim 12, characterized in that said RE is at least one of the lanthanoid series elements other than La.

- 15. A thermistor (1) element comprising the ceramic composition as defined by any one of claims 1 to 14.
- 16. Use of the ceramic composition of one of claims 1 to 14 as thermistor.
- 5 17. An apparatus for measuring temperature which comprises the thermistor element as defined in claim 15.

Patentansprüche

 Keramische Zusammensetzung, im wesentlichen bestehend aus einer Verbindung mit einer Perovskit-Struktur, welche durch die Formel

AMO_3

15

20

10

dargestellt ist, wobei A wenigstens ein Element ausgewählt aus der Gruppe bestehend aus 2A- und 3A-Untergruppenelementen der internationalen Periodentafel der IUPAC ist, wobei La ausgeschlossen ist, wobei M wenigstens ein Element ist, welches aus der Gruppe bestehend aus Cr, Mn, Co, Ni, Fe und Ti ausgewählt

wobei die Perovskit-Verbindung aus p-Typ und n-Typ Komponenten gebildet ist und die Elemente im wesentlichen innerhalb von Löslichkeits-Grenzen in der Perovskit-Struktur vorhanden sind,

dadurch gekennzeichnet, dass

das M dargestellt ist durch (Cr, Mn, Co, Ni) $_{1-y-z}$ Fe $_y$ Ti $_z$, wobei y/(1-y-z) 0,05 bis 0,4 und z 0,025 bis 0,35 beträgt.

- Die keramische Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass das M Cr_{1-v-z}Fe_vTi_z ist.
 - 3. Die keramische Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass das A wenigstens eines, ausgewählt aus der Gruppe bestehend aus Y und Elementen der Lanthanoid-Serie, ausser La, ist.
- Die keramische Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass das A Y, Sm oder eine Mischung davon ist.
 - 5. Die keramische Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine aus einem Sinter-Hilfsmittel resultierende Phase in der Zusammensetzung vorhanden ist.

35

- 6. Die keramische Zusammensetzung nach Anspruch 5, dadurch gekennzeichnet, dass die aus einem Sinter-Hilfsmittel resultierende Phase in einer Menge von 0,5 bis 10 % nach Gewicht, vorzugsweise 0,8 % bis 5 % nach Gewicht, der Gesamtzusammensetzung vorhanden ist.
- Die keramische Zusammensetzung nach Anspruch 6, dadurch gekennzeichnet, dass das Sinter-Hilfsmittel aus der Gruppe bestehend aus Silika, Mullit, Kalzium-Silikat und Strontium-Silikat ausgewählt ist.
 - 8. Die keramische Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, dass das Sinter-Hilfsmittel Silika ist.

45

Keramische Zusammensetzung, im wesentlichen bestehend aus einer Verbindung, welche durch eine chemische Formel dargestellt wird:

50

$$(Y_{1-x}Q_x)$$
 $(Cr_{1-y-z}Fe_yTi_z)$ O_3

wobei Q wenigstens eines, ausgewählt aus der Gruppe bestehend aus den 2A- und 3A- Untergruppenelementen der internationalen Periodentafel der IUPAC ist, wobei La ausgenommen ist, und wobei x, y und z derart sind, dass

55

$$0.351 \ge x \ge 0.01$$

und

 $0.4 \ge y/(1-y-z) \ge 0.05$

und

5

10

 $0.35 \ge z \ge 0.025$.

- 10. Die keramische Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass Q Sr ist.
- 11. Die keramische Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, dass Q wenigstens ein Element ist, welches innerhalb einer Löslichkeitsgrenze vorhanden ist, und aus der Gruppe bestehend aus Elementen der Lanthanoid-Reihe ausgewählt ist, ausser La.
- 12. Keramische Zusammensetzung, im wesentlichen bestehend aus einer Verbindung, welche durch eine chemische Formel dargestellt wird:

$$\{(Y_{1-w}RE_w)_{1-xQx}\} \quad \{Cr_{1-y-z}Fe_yTi_z\} \quad O_3$$

20

15

wobei Q wenigstens eines ist, ausgewählt aus der Gruppe, welche aus den 2A- Untergruppenelementen besteht, und RE wenigstens eines ist, ausgewählt aus der Gruppe, welche aus 3A- Untergruppenelementen, ausser La, besteht, und

wobei w, x, y und z so sind, dass

25

30

 $0.351 \ge x \ge 0.01$

und

 $0.4 \ge y/(1-y-z) \ge 0.05$

und

35

 $0.35 \ge z \ge 0.025$.

- 13. Die keramische Zusammensetzung nach Anspruch 12, dadurch gekennzeichnet, dass Q Sr ist und das RE Sm ist.
 - 14. Die keramische Zusammensetzung nach Anspruch 12, dadurch gekennzeichnet, dass das RE wenigstens eines der Elemente der Lanthanoid-Reihe ist, ausser La.
- 45 15. Thermistor (1) -Element, umfassend die keramische Zusammensetzung nach einem der Ansprüche 1 bis 14.
 - 16. Verwendung der keramischen Zusammensetzung nach einem der Ansprüche 1 bis 14 als Thermistor.
 - 17. Vorrichtung zum Messen einer Temperatur, welche das Thermistorelement nach Anspruch 15 umfasst.

50

55

Revendications

1. Composition céramique consistant essentiellement en un composé ayant une structure de perovskite, représenté par la formule

AMO₃

dans laquelle A représente au moins un élément choisi dans le groupe consistant en les éléments des sousgroupes 2A et 3A du Tableau Périodique International de la IUPAC, La étant exclu,

et M représente au moins un élément choisi dans le groupe consistant en Cr, Mn, Co, Ni, Fe et Ti, et dans laquelle ledit composé à structure de perovskite est formé de constituants de type p et de type n et les éléments sont présents essentiellement dans les limites de solubilité dans la structure de perovskite,

caractérisé en ce que

5

15

25

35

40

45

50

55

ledit M est représenté par la formule (Cr, Mn, Co, Ni)_{1-y-z}Fe_yTi_z dans laquelle y/(1-y-z est compris dans l'intervalle de 0,05 à 0,4 et z est compris dans l'intervalle de 0,025 à 0,35.

- Composition céramique répondant à la définition suivant la revendication 1, caractérisée en ce que ledit M répond à la formule Cr_{1-v-z}Fe_vTi_z.
 - Composition céramique répondant à la définition suivant la revendication 1, caractérisée en ce que ledit A consiste
 en au moins un élément choisi dans le groupe consistant en Y et les éléments de la série des lanthanoïdes autres
 que La.
 - 4. Composition céramique répondant à la définition suivant la revendication 1, caractérisée en ce que A représente Y, Sm ou un de leurs mélanges.
- Composition céramique répondant à la définition suivant l'une quelconque des revendications 1 à 4, caractérisée
 en ce qu'une phase résultant d'un adjuvant de frittage est présente dans la composition.
 - 6. Composition céramique répondant à la définition suivant la revendication 5, caractérisée en ce que la phase résultant de l'adjuvant de frittage est présente en une quantité de 0,5 à 10 % en poids, de préférence de 0,8 % à 5 % en poids, de la composition totale.
 - 7. Composition céramique répondant à la définition suivant la revendication 6, caractérisée en ce que ledit adjuvant de frittage est choisi dans le groupe consistant en la silice, la mullite, le silicate de calcium et le silicate de strontium.
- Composition céramique répondant à la définition suivant la revendication 7, caractérisée en ce que ledit adjuvant de frittage est la silice.
 - 9. Composition céramique consistant essentiellement en un composé représenté par la formule chimique

$$(Y_{1-x}Q_x)$$
 $(Cr_{1-y-z}Fe_yTi_z)$ O_3

dans laquelle Q représente au moins un élément choisi dans le groupe consistant en les éléments des sousgroupes 2A et 3A du Tableau Périodique International de la IUPAC, La étant exclu, et x, y et z sont tels que

$$0.351 \ge x \ge 0.01$$

et

$$0,4 \ge y/(1-y-z) \ge 0,05$$

et

 $0.35 \ge z \ge 0.025$.

- Composition céramique répondant à la définition suivant la revendication 9, caractérisée en ce que Q représente Sr.
- 11. Composition céramique répondant à la définition suivant la revendication 9, caractérisée en ce que Q représente au moins un élément, présent dans les limites de solubilité, choisi dans le groupe consistant en les éléments de

la série des lanthanoïdes autres que La.

12. Composition céramique consistant essentiellement en un composé représenté par la formule

 ${((Y_{1-w}RE_w)_{1-x}Q_x)(Cr_{1-y-z}Fe_yTi_z)O_3}$

dans laquelle Q représente au moins un élément choisi dans le groupe consistant en les éléments du sous-groupe 2A et RE représente au moins un élément choisi dans le groupe consistant en les éléments du sous-groupe 3A autres que La, et

w, x, y et z sont tels que

 $1,0 \ge w > 0$

et

5

10

15

20

25

 $0.351 \ge x \ge 0.01$

et

 $0.4 \ge y/(1-y-z) \ge 0.05$

et

 $0.35 \ge z \ge 0.025$.

- 30
- 13. Composition céramique répondant à la définition suivant la revendication 12, caractérisée en ce que Q représente Sr et ledit RE représente Sm.
- 14. Composition céramique répondant à la définition suivant la revendication 12, caractérisée en ce que ledit RE
 représente au moins un élément de la série des lanthanoïdes autres que La.
 - 15. Elément de thermistance (1) comprenant la composition céramique répondant à la définition suivant l'une quelconque des revendications 1 à 14.
- 40 16. Utilisation de la composition céramique suivant l'une quelconque des revendications 1 à 14 comme thermistance.
 - Appareil de mesure de température, qui comprend l'élément de thermistance répondant à la définition suivant la revendication 15.

45

50

55

F I G. 1

