MATH223 - Linear Algebra (class notes)

$Sandrine\ Monfourny-Daigneault$

McGill University

Contents

1	January 7th 2019						
	1.1	Motivation	2				
	1.2	Complex numbers	3				
2	January 9th 2019						
	2.1	Complex numbers as points in R^2	5				
	2.2	Equations with complex numbers	5				
	2.3	Vector spaces (Ch 4)	7				
3	January 11th 2019						
	3.1	Geometric vectors ('arrows')	7				
	3.2	Definition of a vector space	8				
	3.3	Examples of vector spaces	9				
4	January 14th 2019						
	4.1	More examples of vector spaces	11				
5	January 16th 2019						
	5.1	Linear combinations and spans	14				
6	January 18th 2019						
	6.1	Last class	15				
	6.2	Subspaces	16				
7							
	7.1	A note on logic	17				
	7.2	Subspaces (cont'd)	18				
	7.3	Examples of subspaces and non-subspaces	18				
	7.4	Two special subspaces	19				
	7.5	A refinement on the definition of span	20				
8	Jan	uary 23rd 2019	20				

9	January 25th 2019					
	9.1 Interlude: Symbolic logic (briefly)					
		9.1.1	De Morgan's Laws	. 22		
		9.1.2	Quantifiers	. 23		
		9.1.3	Negating quantifiers	. 23		
		9.1.4	Proof by contradiction	. 23		
	9.2 Last time			. 24		
	9.3	Illustration of this theorem				
	9.4	Interse	ection of two subspaces	. 24		

1 January 7th 2019

Should know how to solve a linear system and calculate a determinant... things like that.

• Written assignments (5): 10%

• Webwork assignments (5): 5%

• Midterm: 20%

• Final : 65%

Textbook: Schaum's Outline - Linear Algebra.

1.1 Motivation

We have linear systems, with two equations, like such:

$$3x - 2y + z = 2$$
$$x - y + z = 1$$

There is an algebraic way of seeing this, but we can also see this, from the geometric standpoint, as the intersection of the two planes in \mathbb{R}^3 . Linear algebra has to do with things that are "flat", like a plane. As soon as we add in exponents to these equations, we get some curvature, and the techniques to solve these are different.

- Linear equations are the simplest kind, so you *must* understand them. Also, you *can* understand 'everything' about them.
- Theory used to describe solutions, etc.
- Linear equations are often used to approximate or model more complicated equations/situations.
- In applications, linear systems are often quite big (10000 equations/variables)

1.2 Complex numbers

Def: Let i be a symbol. We declare $i^2 = -1$.

Now, what we'd like to do is take this symbol i and combine it with the usual real numbers that we are familiar with. We set, for example,

$$3i$$

$$i - 4$$

$$3i - \pi$$

$$\sqrt{i} + 21$$

Def: The field of complex numbers C consists of all expressions of the form a+bi, where $a,b\in R$.

Def: Addition (subtraction) and multiplication of complex numbers is defined by the following rules:

(i)

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

(ii)

$$(a+bi)(c+di) = ac + adi + bci + bdi2$$
$$= ac + adi + bci - bd$$
$$= (ac - bd) + (ad + bc)i$$

Notation:

- 0 + bi = bi
- a + 0i = a (a real number)
- 0 + 0i = 0

Ex: If $z_1 = 2 - i$, $z_2 = 5i$, then

$$z_1 + z_2 = 2 + 4i$$

and

$$z_1 z_2 = (2 - i)(5i) = 10i - 5i^2 = 5 + 10i$$

Def: Let $z = a + bi \in C$

- (i) $\bar{z} = a bi$, called the *complex conjugate* of z
- (ii) $|z| = \sqrt{a^2 + b^2}$, called the absolute value or modulus

Def: If $z = a + bi \in C$ and $z \neq 0$ (ie $z \neq 0 + 0i$), then the number

$$z^{-1} = \frac{\bar{z}}{|z|^2}$$
$$= \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

is called the (multiplicative) inverse of z. It has the property $zz^{-1} = 1 = z^{-1}z$.

Proof. We have

$$zz^{-1} = (a+bi)\left(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\right)$$
$$= \frac{a^2 - abi + abi - b^2i^2}{a^2+b^2}$$
$$= \frac{a^2 + 0 + b^2}{a^2+b^2}$$
$$= 1$$

Note: Since $z \neq 0 + 0i$, $a^2 + b^2 \neq 0$

Def: If $z, w \in C$ and $z \neq 0$ then

$$\frac{w}{z} = wz^{-1}$$

Ex: If z = 1 + 2i, w = 3 - i then

$$\begin{aligned} \frac{w}{z} &= wz^{-1} \\ &= (3-i)(\frac{1}{5} - \frac{2}{5}i) \\ &= \frac{3}{5} - \frac{6}{5}i - \frac{i}{5} + \frac{2}{5}i^2 \\ &= \frac{3}{5} - \frac{2}{5} - \frac{7}{5}i \\ &= \frac{1}{5} - \frac{7}{5}i \end{aligned}$$

Or,

$$\frac{3-i}{1+2i} \cdot \frac{(1-2i)}{(1-2i)} = \frac{3-6i-i+2i^2}{1-2i+2i-4i^2}$$
$$= \frac{1-7i}{5}$$

2 January 9th 2019

2.1 Complex numbers as points in R^2

You can view a+bi as a point $(a,b) \in \mathbb{R}^2$. The usefulness of this is that we can consider, say, (3+2i) and (3-i) as vectors in \mathbb{R}^2 , and they will conserve the same properties (addition of complex numbers corresponds to vector addition in \mathbb{R}^2). For the interpretation of multiplication to make sense, it's necessary to use polar coordinates.

2.2 Equations with complex numbers

Fact: Every real number $a \neq 0$ has two square roots:

- if a > 0, roots $\pm \sqrt{a}$
- if a < 0, two roots are $\pm i\sqrt{|a|}$, since:

$$(\pm i\sqrt{|a|}) = i^2(\sqrt{|a|})^2$$

$$= -1 \cdot |a|$$

$$= a \qquad \text{(since } a < 0\text{)}$$

Fact: Quadratic equation $ax^2 + bx + c = 0$ has solution

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

which may be in C.

Ex: Solve $x^2 - 2x + 3 = 0$, and factor $x^2 - 2x + 3$. **Sol:**

$$x = \frac{-2 \pm \sqrt{4 - 4(1)(3)}}{2}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$= \frac{2 \pm i\sqrt{8}}{2}$$

$$= \frac{2 \pm i2\sqrt{2}}{2}$$

$$= 1 \pm i\sqrt{2}$$

Note: If $ax^2 + bx + c$ has $a, b, c \in R$ has a non-real root, say z, its other root is \bar{z} (z = a + bi, $\bar{z} = a - bi$). This is not necessarily true if $a, b, c \in C$.

Back to problem. Factor $x^2 - 2x + 3 = (x - (1 + i\sqrt{2}))(x - (1 - i\sqrt{2}))$.

Caution: -1 has two roots, namely $\pm i$, so you may write $i=\sqrt{-1}$, but be careful:

$$-1 = i^{2}$$

$$= i \cdot i$$

$$= \sqrt{-1} \cdot \sqrt{-1}$$

$$= \sqrt{(-1)(-1)}$$
 (this step doesn't quite work)
$$= \sqrt{1}$$

$$= 1$$

Theorem: (Fundamental Theorem of Algebra) If

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 n^0$$

is a polynomial with $a_n \neq 0$, and $a_n, a_{n-1}, \ldots, a_0 \in C$, then p(x) factors into linear factors,

$$p(x) = a_n \cdot (x - r_1) \cdot (x - r_2) \cdot \dots \cdot (x - r_n)$$

for some complex numbers r_1, r_2, \ldots, r_n . Some r_i 's may be equal.

Corollary: Every such polynomial has at least one root, and at most n distinct roots.

Note: Finding the roots is, in general, quite difficult.

Ex: Factor $2x^3 + 2x$ (over C).

Sol:

$$2(x^{3} + x) = 2(x - 0)(x^{2} + 1)$$

$$= 2(x - 0)(x^{2} - i^{2})$$

$$= 2(x - 0)(x - i)(x + i)$$

Ex: Solve $x^2-i=0$ Sol: $x^2=i$ so $x=\pm\sqrt{i}$. Want \sqrt{i} in format $a+bi,\,a,b\in R$.

$$\sqrt{i} = a + bi$$

$$i = (a + bi)^2$$

$$= a^2 + 2abi + b^2i^2$$

$$0 + i = (a^2 - b^2) + 2abi$$

$$0 = a^2 - b^2$$

$$1 = 2ab$$

$$a = \pm b$$

$$ab = \frac{1}{2}$$

$$a^2 = \frac{1}{2}$$

$$a = \pm \frac{1}{\sqrt{2}} = b$$
(so a=b both + or both -)

Two solutions, $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and $-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$.

2.3 Vector spaces (Ch 4)

Def. The sets R and C (and also Q, rational numbers, although we won't go into details of this) are called fields (or fields of scalars). In this class, "a field of K" means that K is either R or C.

3 January 11th 2019

Last time: Field K is R or C (for this class).

Geometric vectors ('arrows') 3.1

You can add two vectors (arrows).

Observation: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$. You can rescale a vector:

Observation: $a(b\vec{u}) = (ab)\vec{u}$.

Also: $1\vec{u} = \vec{u}$

Question: What properties are interesting? What other objects obey the same

properties?

Abstraction: Focus on properties more than on the objects.

3.2 Definition of a vector space

Let V be a set, called set of "vectors", and let K be a field (R or C) (elements of K called scalars). Assume that we have already defined two operations:

- (1) One called *addition*, which takes two vectors $\vec{u}, \vec{v} \in V$ and produces another vector denoted $\vec{u} + \vec{v} \in V$.
- (2) One called *scalar multiplication* which takes a vector $\vec{u} \in V$ and a scalar $a \in K$ and produces another vector denoted $a\vec{u} \in V$

Then if, for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and all scalars $a, b \in K$, the following 8 properties are true, then V is called a *vector space* (over K).

- (A1) u + v = v + u (commutative laws)
- (A2) There exists a vector in V, named zero vector and denoted 0 (or $\vec{0}$) such that for all $u \in V$, u + 0 = u
- (A3) For each $u \in V$, there is a vector in V, called the (additive) inverse of u and denoted -u, having the property u + (-u) = 0 (where 0 is the zero vector defined in A2)
- (A4) (u+v) + w = u + (v+w)
- (SM1) a(u+v) = au + av (distributive laws)
- (SM2) (a+b)u = au + bu
- (SM3) a(bu) = (ab)u
- (SM4) $1u = u \ (1 \in R \text{ or } C)$

These are called the vector space axioms.

3.3 Examples of vector spaces

Some examples:

(1) $K^n = \{(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in K\}$, with addition defined by

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and scalar multiplication by

$$c(a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n)$$

where $c \in K$ (and K = set of scalar).

Proof that K^n is a vector space

Need to prove all 8 properties. We will do 2, the rest are exercises.

(A4) To prove for all $u, v \in V$, u + v = v + u.

Proof concept: To prove "for all $x \in A$, something", say "let $x \in A$ " (means x is an arbitrary element of A, ie you only know $x \in A$). Then, prove something for that x.

Proof: Let $u, v \in K^n$. This means $u = (a_1, a_2, ..., a_n), v = (b_1, b_2, ..., b_n)$ for some $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in K$. Then

$$u + v = (a_1, \dots, a_n) + (b_1, \dots, b_n)$$

$$= (a_1 + b_1, \dots, a_n + b_n) \qquad \text{(definition of addition in } K^n)$$

$$= (b_1 + a_1, \dots, b_n + a_n) \qquad \text{(since } a + b = b + a \text{ for } R \text{ and } C)$$

$$= (b_1, \dots, b_n) + (a_1, \dots, a_n) \qquad \text{(definition of addition in } K^n)$$

(A2) *Proof concept:* To prove "there exists" something, one method is to describe the thing directly.

Define 0 = (0, 0, ..., 0) (which is in K^n). To prove for all $u \in K^n$, u + 0 = u, let $u \in K^n$. This means $u = (a_1, a_2, ..., a_n)$, so

$$u + 0 = (a_1, a_2, \dots, a_n + (0, 0, \dots, 0))$$
$$= (a_1 + 0, a_2 + 0, \dots, a_n + 0)$$
$$= (a_1, a_2, \dots, a_n)$$
$$= u$$

(2) In the vector space C^2 , $(2+3i, 5-7i) \in C^2$ is an example of a vector and $2i \in C$ is a scalar, so an example of scalar mult is:

$$2i(u) = 2i(2+3i, 5-7i)$$

$$= (4i+6i^2, 10i-14i^2)$$

$$= (-6+4i, 14+10i)$$

4 January 14th 2019

Problem: Let $J = \{(x,y) | x \in R, y \in R\}$ but define addition by

$$(x_1, y_1) + (x_2, y_2) = (-x_1 - x_2, y_1 + y_2)$$

and scalar multiplication by

$$c(x,y) = (cx, cy)$$

Show that J is not a vector space.

Solution: Show *one* of the 8 vector space axioms is false. Consider (A1):

$$(x_2, y_2) + (x_1, y_1) = (-x_2 - x_1, y_2 + y_1)$$

This is actually ok! Now consider (A4):

$$(x_1, y_1) + ((x_2, y_2) + (x_3, y_3)) = (x_1, y_1) + (-x_2 - x_3, y_2 + y_3)$$
$$= (-x_1 - (-x_2 - x_3), y_1 + y_2 + y_3)$$
$$= (-x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$

While

$$((x_1, y_1) + (x_2, y_2)) + (x_3, y_3) = (-x_1 - x_2, y_1 + y_2) + (x_3, y_3)$$
$$= (-(-x_1 - x_2) - x_3, y_1 + y_2 + y_3)$$
$$= (x_1 + x_2 - x_3, y_1 + y_2 + y_3)$$

This does not quite yet prove that the axiom is false. To do so, give *specific* case where the equation is false.

Actual proof: Let u = (1, 1), v = (2, 2) and w = (3, 3). Then,

$$u + (v + w) = (1,1) + ((2,2) + (3,3))$$

$$= (1,1) + (-2 - 3,5)$$

$$= (1,1) + (-5,5)$$

$$= (-1 + 5,6)$$

$$= (4,6)$$

Whereas,

$$(u+v) + w = ((1,1) + (2,2)) + (3,3)$$

$$= (-1-2,3) + (3,3)$$

$$= (-3,3) + (3,3)$$

$$= (-(-3)-3,6)$$

$$= (0,6)$$

Hence, the axiom does not hold.

4.1 More examples of vector spaces

- (1) K^n (ie \mathbb{R}^n or \mathbb{C}^n). See before
- (2) P(K) = polynomials, where coefficients are in K. Addition, scalar multiplication are "as expected", ie for multiplication:

$$f(x) = x^2 + 2ix - 4 \in P(C)$$

$$g(x) = -x^2 + cx \in P(C)$$
 (and also in $P(R)$)

For addition,

$$f(x) + g(x) = 3ix - 4$$

And for scalar multiplication,

$$2if(x) = 2ix^{2} + 4i^{2}x - 8i$$
$$= 2ix^{2} - 4x - 8i$$

(3) $P_n(K) = \text{polynomials of degree } n \text{ or less, coefficient from } K.$ For example,

$$x^{2} - 2x + 2 \in P_{2}(R)$$

$$x^{2} - 2x + 2 \in P_{3}(R)$$

$$x^{2} - 2x + 2 \in P_{2}(C)$$

$$x^{2} - 2x + 2 \notin P_{1}(R)$$

Note: In P(K), $P_n(K)$ the "vectors" are polynomials.

(4) $M_{m \times n}(K) = m \times n$ matrices with entries from K. Scalars are K, addition and scalar multiplication as expected.

$$A = \begin{pmatrix} 2 & i \\ 0 & \pi \end{pmatrix} \in M_{2 \times 2}(C)$$

$$B = \begin{pmatrix} -2 & 1 \\ 1+i & -\pi \end{pmatrix} \in M_{2 \times 2}(C)$$

$$A + B = \begin{pmatrix} 0 & 1+i \\ 1+i & 0 \end{pmatrix}$$

$$2iA = \begin{pmatrix} 4i & 2i^2 \\ 0 & 2i\pi \end{pmatrix}$$

$$= \begin{pmatrix} 4i & -2 \\ 0 & 2\pi i \end{pmatrix}$$

The "zero vector" in $M_{m \times n}(K)$ is the $m \times n$ matrix with all entries 0.

(5) Let X be any set (think x = R or C, but not required). Define $F(X, K) = \{f : X \to K\} = \text{all functions from } X \text{ to } K$.

Ex: $f(x) = x^2 \in F(R, R)$.

Ex: Let $x = \{1, 2\}$. Then g defined by

$$g(1) = 3$$

$$g(2) = \sqrt{2}$$

Addition in this space is defined by:

If $f, g \in F(X, K)$ then f + g is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

Note that $f(x) \in K$ and $g(x) \in K$, in other words they are numbers (scalars). The + in (f+g) is the addition of vectors f and g, while the other + is scalar addition.

Scalar multiplication in this space is defined by: if $f \in F(X, K), c \in K$ then cf is the function defined by

$$(cf)(x) = cf(x)$$

Note that cf is the name of the function, that "multiplication" is scalar multiplication $F(X, \vDash)$ and cf(x) is the multiplication of two scalars (numbers).

The fact that F(X,K) is a vector space and the axioms are followed is not so obvious.

Prove (A2) true for F(X,K)**.** Define $z \in F(X,K)$ by

$$z(x) = 0 (for all x \in X)$$

Note that 0 here is a scalar. Then if $f \in F(X, K)$ is an arbitrary element, then we need to prove f + z = f. This is true since for all $x \in X$,

$$(f+z)(x) = f(x) + z(x)$$
$$= f(x) + 0$$
$$= f(x)$$

Hence, f+z, f have the same output (namely f(x)) for every input. Hence, f+z=f.

Exercise: Try (A3).

5 January 16th 2019

Theorem: ("Cancellation Law") Suppose v is a vector space over K. For all vectors $u, v, w \in V$, if u + w = v + w then u = v.

Note: To prove "for all" you say let $u \in V$ (means u is an arbitrary vector).

To prove "if p then q", denoted $p \to q$, assume p is true and use it to prove q.

Proof. Let $u, v, w \in V$. Assume u + w = v + w. By vector space axiom A3, there is a vector $(-w) \in V$. Add (-w) to both sides:

$$(u+w) + (-w) = (v+w) + (-w)$$

$$u + (w + (-w)) = v + (w + (-w))$$
 (by A1)

$$u + \vec{0} = v + \vec{0} \tag{by A3}$$

$$= u = v (by A2)$$

Theorem:

1. The zero vector is unique

2. For each $u \in V$, -u is unique

 $\it Note:$ To prove something is unique, suppose you have two of them and show they are the same.

Proof. 1) Assume 0 and z both satisfy the property (A2: $\forall u \in V, u + 0 = u$ (*) and u + z = u (**)). Goal is to prove 0 = z.

$$z = z + 0$$
 (by *, with $u = z$)
 $= 0 + z$ (by A4)
 $z = 0$ (by **, with $u = 0$)

So the zero vector is unique.

2) Exercise.

Theorem: $\forall u \in V, c \in K$,

1) $c\vec{0} = \vec{0}$

2) $0u = \vec{0}$

3) -(cu) = ((-c)u)

Proof. Of 2). Let $u \in V$. Then,

$$0u + 0u = (0 + 0)u$$
 (By SM2)

$$0u + 0u = 0u$$
 (by R addition)

$$0u + 0u = 0u + \vec{0}$$
 (by A2)

$$0u + 0u = \vec{0} + 0u$$
 (by A4)

$$0u = \vec{0}$$
 (by cancellation law)

Note: 0 + u = u is true for all $u \in V$ (same as u + 0 = u then apply A4)

5.1 Linear combinations and spans

Def: Let $u, v_1, v_2, \ldots, v_n \in V$. If there are scalars $a_1, a_2, \ldots, a_n \in K$ such that $u = a_1 v_1, a_2 v_2 \ldots a_n v_n$ then u is said to be a linear combination of v_1, v_2, \ldots, v_n . **Ex:** In P(R), $x^2 + 2x - 4$ is a linear comb of $x^2, x, 1$.

Important problem: Given vectors u, v_1, v_2, \ldots, v_n , determine if u is a linear combination of v_1, v_2, \ldots, v_n and if so find a_1, a_2, \ldots, a_n .

Ex: Determine if $f(x) = 2x^2 + 6x + 8$ is a linear combination of

$$g_1(x) = x^2 + 2x + 1$$

$$g_2(x) = -2x^2 - 4x - 2$$

$$g_3(x) = 2x^2 - 3$$

Sol. Are there a_1, a_2, a_3 s.t.

$$2x^{2} + 6x + 8 = a_{1}(x^{2} + 2x + 1) + a_{2}(-2x^{2} - 4x - 2) + a_{3}(2x^{2} - 3)$$
$$= (a_{1} - 2a_{2} + 2a_{3})x^{2} + (2a_{1} - 4a_{2})x + (a_{1} - 2a_{2} - 3a_{3})$$

Equating coefficients,

$$a_1 - 2a_2 + 2a_3 = 2$$
$$2a_1 - 4a_2 = 6$$
$$a_1 - 2a_2 - 3a_3 = 8$$

Solve the linear system:

$$\begin{bmatrix} 1 & -2 & 2 & 2 \\ 2 & -4 & 0 & 6 \\ 1 & -2 & -3 & 8 \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (row reduce)

 \therefore No solution, because of the last row. f is not a linear combination of g_1, g_2, g_3 .

Def: Let $S \subseteq V$ (S is a subset fof V) and assume $s \neq 0$. The span of s, denoted span(s) is the set of all linear combinations of vectors from S, ie

$$span(s) = \{u \in V \mid \exists v_1, v_2, \dots, v_n \in S$$
 and scalars a_1, a_2, \dots, a_n s.t.
$$u = a_1v_1 + a_2v_2 + \dots + a_nv_n\}$$

6 **January 18th 2019**

Last class 6.1

$$S \subseteq V$$

$$span(s) = \{u \in V | \exists v_1, v_2, \dots, v_n \in S \text{ and scalars } a_1, a_2, \dots, a_n \text{ s.t. } u = a_1v_1 + a_2v_2 + \dots + a_nv_n\}$$

Ex: $S = \{\binom{1}{2}, \binom{3}{1}\} \subseteq R^2$. Prove $span(S) = R^2$. **Note:** $\binom{a}{b}$ means (a, b).

Proof note: To prove two sets A, B are equal, ie A = B, you can prove $A \subseteq B$ and $B \subseteq A$.

Sol:

- (1) Prove $span(S) \subseteq \mathbb{R}^2$. Trivial, since any linear combination of vectors in R^2 is still in R^2 .
- (2) Prove $R^2 \subseteq span(S)$. Let $\binom{a}{b} \in R^2$ (arbitrary). To prove that there exists scalars $x_1, x_2 \in K$ so that

$$\binom{a}{b} = x_1 \binom{1}{2} + x_2 \binom{3}{1}$$

In other words,

$$a = x_1 + 3x_2$$
$$b = 2x_1 + x_2$$

Want to show this has a solution (for all a, b). System is:

$$\begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

But,

$$\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 1 - 2(3) \neq 0$$

hence the system has (exactly one) solution. $\binom{a}{b} \in span(S)$ so $R^2 \subseteq$ span(S). So by (1), (2), $span(S) = R^2$. \square

Note: Ax = b, $A_{n \times n}$ if A inv, $x = A^{-1}b$.

Theorem: Let $S \subseteq V$, $S \neq \emptyset$ ($\emptyset = \text{empty set}$). Then,

- (1) If $u, v \in span(S)$ then $u + v \in span(S)$
- (2) If $u \in span(S)$ and $c \in K$, then $cu \in span(S)$

(3) $\vec{0} \in span(S)$

Proof. By direct proof.

(1) (Note, "if $u, v \in span(S)$ " means for all $u, v \in span(S)$). Let $u, v \in span(S)$. Then,

$$u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n$$
 where $u_1, \ldots, u_n \in S, a_1, \ldots, a_n \in K$
 $v = b_1 v_1 + b_2 v_2 + \ldots + b_m v_m$ where $v_1, \ldots, v_m \in S, b_1, \ldots, b_m \in K$

Then $u + v = a_1u_1 + ... + a_nu_n + b_1v_1 + ... b_mv_m$ which is in span(S) since $u_1, ..., u_n, v_1, ..., v_m \in S$.

(2) Let $u \in span(S), c \in K$. Then,

$$u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n$$
 where $u_1, \ldots, u_n \in S, a_1, \ldots, a_n \in K$

So,

$$cu = c(a_1u_1) + c(a_2u_2) + \ldots + c(a_nu_n)$$

= $(ca_1)u_1 + (ca_2)u_2 + \ldots + (c_na_n)u_n$

Note: If you want to be very formal, you need to write down all of the vector space axioms. Which is in span(S) since it is a linear combination of a_1, \ldots, a_n which are in S.

(3) (Prove $\vec{0} \in span(S)$) Let $u \in S$. **Note**: This is possible only because $S \neq \emptyset$.

Then u = 1u, so $u \in span(S)$. Then using c = 0 and (2) and fact that $u \in span(S)$,

$$cu = 0u = \vec{0}$$

is also in span(S). Note: Since $u = 1u, S \subseteq span(S)$.

6.2 Subspaces

Def. Let V be a vector space and $W \subseteq V$ (subset). If W, using addition and scalar multiplication as defined in V, satisfies the definition of vector space, then W is called a subspace of V, denoted $W \leq V$ (less than equal sign, read as "subspace").

Note: Main issue is that addition and scalar multiplication with vector from W produce vectors which are still in W.

Theorem: Let $W \subseteq V$. Then, if the following three properties hold, then $W \leq V$ (subspace).

- (SS1) For all $w_1, w_2 \in W$, we have $w_1 + w_2 \in W$ ("closure under addition")
- (SS2) For all $w \in W$ and scalars $c \in K$, we have $cw \in W$ ("closure under scalar multiplication")

(SS3) $\vec{0} \in W$.

These are the same properties we just proved for spans; in other words, we proved earlier that span(S) is a subspace.

Proof. For W to have operation addition, scalar multiplication, just means (SS1) and (SS2) are true. So now, check (A1) - (SM4). Most of them are true because they are true in a larger vector space.

- (A1) Let $u, v, w \in W$. Then since $u, v, w \in V$, and (A1) holds in V, u+(v+w) = (u+v)+w.
- (A2) This is (SS3).
- (A3) This is the one we have to do a bit more work for. Let $w \in W$. Want to show $-w \in W$. Then, using (SS2) with c = -1 gives

$$-1(w) = -w$$
 (thm from last class)

is in W, as needed.

- (A4) Still true because it is true in V.
- (SM1-SM4) All hold because they hold in V.

7 January 21st 2019

7.1 A note on logic

Let P, Q be statements that are true or false.

(1) "If P then Q", also written symbolically as " $P \Rightarrow Q$ " (P implies Q) means if P is true, then Q is also true. To prove " $P \Rightarrow Q$ ", assume P and prove Q is true. If you know that " $P \Rightarrow Q$ " is true, you can use it: if you can establish that P is true, you may conclude Q is true.

Ex: Let A be an $n \times n$ matrix:

$$P: dot(A) = 1$$
 $Q:$ "A is invertible"

Thm: $P \Rightarrow Q$

(2) The converse of " $P \Rightarrow Q$ " is " $Q \Rightarrow P$ ". This is a (logically) different statement

Ex: With P and Q as above, " $Q \Rightarrow P$ " is not true because $A_{inv} \not\Rightarrow det(A) = 1$.

- (3) The contrapositive of " $P \Rightarrow Q$ " is " $\neg Q \Rightarrow \neg P$ " ie "if Q false, then P also false". Logically, this is the same as " $P \Rightarrow Q$ ".
- (4) The equivalence "P if and only if Q", written " $P \iff Q$ " means " $P \Rightarrow Q$ and also $Q \Rightarrow P$ " is true. Also means that either both P and Q are true or both are false.

Ex: $det(A) \neq 0 \iff A$ is invertible.

To prove " $P \iff Q$ ", need to prove " $P \Rightarrow Q$ " and " $Q \Rightarrow P$ ".

Note: $\neg P \Rightarrow \neg Q$ is the same as $Q \Rightarrow P$.

7.2 Subspaces (cont'd)

Thm (last class): Let $W \subseteq V$ (subset). If

- 1. For all $u, v \in W$, $u + v \in W$
- 2. For all $u \in W$, $c \in K$, $cu \in W$
- $\vec{0} \in W$

then $W \leq V$ (subspace). (ie: (1), (2), (3) are true $\Rightarrow W \leq V$)

Thm. Let $W \subseteq V$. Then

$$W \leq V \Rightarrow (1), (2), (3)$$
 are true

(ie the converse of last theorem is true).

Proof. Exercise.

Thm. Let $W \subseteq V$. Then

$$W \leq V \iff (1), (2), (3)$$
 are true

7.3 Examples of subspaces and non-subspaces

Is each subset a subspace?

- (a) $W = \{\binom{1}{2}, \binom{3}{1}\} \subseteq R^2$. Not a subspace, since the zero vector is not in W. The others are also false, but it's enough to prove that one of the statements does not hold. But $span(W) = R^2$ (so $span(W) \leq R^2$)
- (b) $W = \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 | x + y z = 0 \}$. Need to check (1), (2), (3):
 - (1) Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \in W$. Then we know x+y-z=0 and x'+y'-z'=0.

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$

Verify

$$(x + x') + (y + y') - (z + z') = (x + y - z) + (x' + y' - z')$$
$$= 0 + 0$$
$$= 0$$

So yes, it is in W.

(2) Let
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W$$
 (means $x + y - z = 0$), let $c \in K$. To prove

$$c \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix} \in W$$

Here,
$$cx + cy - cz = c(x + y - z) = c(0) = 0$$
. So $c \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W$

(3)
$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in W$$
, since $0 + 0 - 0 = 0$

Since (1), (2), (3) true, $W \leq R^2$ (subspace)

- (c) $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 | x + y z = 1 \right\}$. This is *not* a subspace. (3) is false.
- (d) $W = \{A \in M_{2\times 2} | A_{ij} \geq 0 \forall i, j\}$, where A_{ij} is the entry of A in row i, column j. (1) and (3) are true:
 - (1) Add two matrices with non-negatives entries, result has non-negative entries.

$$(2) \ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$$

Note, we wrote these out very informally. Now, (2) is false since, for example $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in W$ but

$$(-1)\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \in W$$

7.4 Two special subspaces

Let V be a vector space.

- (1) $V \leq V$ is true
- (2) $\{\vec{0}\} \leq V$ is true ("zero subspace")

7.5 A refinement on the definition of span

Def. If $S = \emptyset$ (emptyset), define $span(S) = \{\vec{0}\}$ (if $S \neq \emptyset$, span(S) defined as before).

Thm. $span(S) \leq V$.

 ${f Proof}$ Two cases:

- 1. If $S = \emptyset$, $span(S) = {\vec{0}} \le V$
- 2. If $S \neq \emptyset$, you already proved span(S) satisfies (1), (2), (3). So $span(S) \leq V$.

Thm. (improved version of subspace conditions) Let $W \subseteq V$. Then

$$W \leq V \iff W \neq \emptyset$$
 and

$$\forall w_1, w_2 \in W \text{ and } c \in K \text{ we have } cw_1 + w_2 \in W$$

Proof We will actually prove $(1), (2), (3) \iff RHS$ (right-hand side). Two parts to proof.

$$(1)$$
 " $(1),(2),(3) \Rightarrow RHS$ " or " \Rightarrow "

8 January 23rd 2019

Recap:

- (1) If $u, v \in W$ then $u + v \in W$
- (2) if $u \in W, c \in K$ then $cu \in W$
- (3) $\vec{0} \in W$

Theorem: Let $W \subseteq V$. Then

$$W < V \iff W \neq \emptyset$$
 and $\forall u, v \in W, c \in K$ we have $cu + v \in W$

Proof: Suffices to prove $(1), (2), (3) \iff RHS$.

- 1. \Rightarrow Assume (1), (2), (3) (prove right-hand side). Two things to prove:
 - (1) Since $\vec{0} \in W$ (by (3)), $W \neq \emptyset$
 - (2) Let $u, v \in W$ and $c \in K$. Since (2) holds, $cu \in W$. Since (1) holds, $cu \in W$ and $v \in W$, so $cu + v \in W$.
- 2. \Leftarrow Assume RHS, prove (1), (2), (3).
 - (1) Let $u, v \in W$. Apply RHS with \Leftarrow to get

$$cu + v = 1u + v = u + v \in W$$

- (2) (Prove $\vec{0} \in W$) Since $W \neq \emptyset$, there is a vector $w \in W$. Apply right-hand side with u = w, v = w, c = -1. So $cu + v = (-1)w + w = -w + w = \vec{0} \in W$.
- (3) Let $u \in W$, $c \in K$. Apply RHS $(cu+v \in W)$ with u=u, c=c, $v=\vec{0}$ (note: $\vec{0} \in W$ by (3) above). Then $cu+v=cu+\vec{0}=cu \in W$

Ex: In F(R,R) = V (functions $f: R \to R$), prove that

$$W = \{ f \in V | f(3) = 0 \}$$

is a subspace. Eg: $f(x) = (x-3)e^x \in W$.

Solution: (1), (2) together (by last thm). Let $f, g \in W, c \in R$ (prove $cf + g \in W$). We know f(3) = 0 and g(3) = 0. Then, check (cf + g)(3) = cf(3) + g(3) = 0 + 0 = 0. So $cf + g \in W$.

Also, prove $w \neq \emptyset$. $f(x) = x - 3 \in W$, since f(3) = 0 (or, z(3) = 0 satisfies z(3) = 0 so $z \in W$. Note that z is he zero vector of F(R, R)).

Theorem: Let $A \in M_{m \times n}(K), b \in K^m$. Define

$$S = \{x \in K^n | Ax = b\}$$

ie S = solution set to linear system Ax = b. Then,

$$S \leq K^n \iff b = \vec{0}$$
 (ie system is homogeneous)

Proof

- (i) \Rightarrow Assume $S \leq K^n$. Then $\vec{0}_n \in S$ (by (3)). So $A\vec{0} = b$ but $A\vec{0}_n = \vec{0}_m$ so $\vec{0} b$.
- (ii) \Leftarrow Assume $b = \vec{0}_m$ (prove $S \leq K^n$). Then $A\vec{0}_n = \vec{0}_m$, so $\vec{0}_n \in S$. Next, let $u, v \in S, c \in K$. So $u, v \in K^n$ and Au = b, Av = b. Verify cu + v is a solution.

$$A(cu+v) = A(cu) + Av$$
 (prop of matrix multiplication)
= $c(Au) + Av$ (prop of matrix multiplication)
= $cb+b$
= $c\vec{0}+\vec{0}$
= $\vec{0}$
= b

Ex: Equation ax + by + cz = d describes a plane in R^3 (eg x + y + z = 1) (and also, every plane can be described this way). That is,

$$\{(x, y, z) \in R^3 | ax + by + z = d\}$$

is a plane.

By last thm,

$$P$$
 is a subspace $\iff ax + by + cz = d$ is a homogeneous system $\iff d = 0$ $\iff P$ passes through origin $(0,0,0)$

Theorem: Let $S \subseteq V$. Then,

- (1) $span(S) \leq V$ and $S \subseteq span(S)$
- (2) If $S \subseteq W$, and $W \le V$ (subspace) then $span(S) \subseteq W$ (actually, $span(S) \le W$, subspace by (1))

Proof:

- (1) \leq We know already. Let $u \in S$. Then u = 1u, so $u \in span(S)$
- (2) Assume $S \subseteq W$, and $W \leq V$. Let $v \in span(S)$. Then $v = a_1u_1 + a_2u_2 + \ldots + a_nu_n$ for some scalars and vectors $u_1, u_2, \ldots, u_n \in S$. Since $S \subseteq W$, $u_1, u_2, \ldots, u_n \in W$. But W subspace. So $a_1u_1, a_2u_2, \ldots, a_nu_n \in W$ (by prop (2) subspace) then $a_1u_1 + a_2u_2 \in W$ (by prop (1) of subspaces). So then $(a_1u_1 + a_2u_2) + a_3u_3 \in W$ (etc.). So $a_1u_1 + a_2u_2 + \ldots + a_nu_n \in W$. **Note:** "etc" here is actually a proof by mathematical induction. Omit for now.

9 January 25th 2019

9.1 Interlude : Symbolic logic (briefly)

Let P, Q be statements that could be true (T) or false (F). Define:

- (1) $\neg P$, "not P", is F when P is T, T when P is F
- (2) $P \wedge Q$, "P and Q", is T exactly when P, Q both T
- (3) $P \vee Q$, "P or Q" is T when P, Q both F
- (4) $P \Rightarrow Q$, "P implies Q", is T unless P is T and Q is F. Hence, $P \Rightarrow Q$ is equivalent to $\neg P \lor Q$. We will write $P \Rightarrow Q \equiv \neg P \lor Q$.
- (5) $P \iff Q$, "P if and only if Q", is T if both T or both F.

9.1.1 De Morgan's Laws

- $\neg (P \land Q) \equiv \neg P \lor \neg Q$
- $\neg (P \lor Q) \equiv \neg P \land \neg Q$

9.1.2 Quantifiers

- \forall means "for all"
- ∃ means "there exists"

Ex. (A4) (commutativity) $\forall u, v \in V \ u + v = v + u$. **Ex.** 2 (A2) (zero vector) $\exists z \in V \ \forall u \in V \ (u + z = u) \land (z + u = u)$ (textbook version)

9.1.3 Negating quantifiers

- $\neg \forall u \in VP(u) \equiv \exists u \in V \neg P(u)$
- $\neg \exists u \in VP(u) \equiv \forall u \in V \neg P(u)$

 $\mathbf{E}\mathbf{x}$.

$$\neg (A2) \equiv \neg \exists z \in V \forall u \in V \quad u + z = u \land z + u = u$$

$$\equiv \forall z \in V \neg \forall u \in V \quad u + z = u \land z + u = u$$

$$\equiv \forall z \in V \exists u \in V \quad \neg (u + z = u \land z + u = u)$$

$$\equiv \forall z \in V \exists u \in V \quad (u + z \neq u \lor z + u \neq u)$$

9.1.4 Proof by contradiction

You want to prove some statement P. Proof by contradiction works this way:

- (1) Assume $\neg P$
- (2) Derive a contradiction (hard part)
- (3) Conclude P is true

Ex. Outline of how to prove (A2) does not hold in some vector space. You want to prove $\neg (A2)$.

$$\neg (A2) \equiv \neg \exists z \in V \ \forall u \in V \quad u + z = u \land z + u = u$$
$$\equiv \forall z \in V \neg \forall u \in V \quad u + z = u \land z + u = u$$

Let $z \in V$. Prove the right-hand part $(\neg \forall u \in V \quad u+z=u \land z+u=u)$ by contradiction. Assume (for contradiction) that

$$\forall u \in V \quad u + z = u \land z + u = u \tag{1}$$

Use (1) by substituting u = some specific vector (derive a contradiction). Conclude that $(\neg \forall u \in V \quad u + z = u \land z + u = u)$ is true.

9.2 Last time

Thm. If $S \subseteq W$, $W \leq V$ then $span(S) \subseteq W$.

Note. This means if you "promote" a subset to a subspace, adding in only what's necessary, what you get is span(S). Or, span(S) is the "smallest" subspace containing S.

Fact. Subspaces are "closed under taking linear combinations". Ie if $W \leq V$, $w_1, \ldots, w_n \in W$ and $a_1, \ldots, a_n \in K$ then

$$a_1w_1 + a_2w_2 + \ldots + a_nw_n \in W$$

Caution. Linear combinations are *finite* sums by definition. So you can't sum up infinitely many vectors.

9.3 Illustration of this theorem

Let
$$S = \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix} \right\} \subseteq W = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} | x, y \in R \right\}$$
. Then $span(S) \subseteq W$ ie $span(S)$ is in xy plan. In fact, $span(S) = W$.

Def. If W = span(S), we say that S spans W or is a spanning set for W.

Ex.
$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$
, $span(S) = xy$ -plane in \mathbb{R}^3 . So S spans the xy-plane.

Ex. 2.
$$S = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $span(S) = \{ \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} | x \in R \} = line.$

9.4 Intersection of two subspaces

Theorem Let $W_1 \leq V, W_2 \leq V$. Then $W_1 \cap W_2 \leq V$ (ie intersection of two subspaces is a subspace).

Proof. $W_1 \cap W_2 = \{ w \in V | w \in W_1 \land w \in W_2 \}.$

- (1) $\vec{0} \in W_1, \vec{0} \in W_2$ (because subspace). So $\vec{0} \in W_1 \cap W_2$.
- (2) Let $u, v \in W_1 \cap W_2, c \in K$. So $u, v \in W_1$ and $W_1 \in V$ so $cu + v \in W_1$ and $u, v \in W_2$ and $W_2 \in V$ so $cu + v \in W_2$. Hence $cu + v \in W_1 \cap W_2$. \square