Number Theory 2

November 19, 2019

1 Euclidean Algorithm

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a. Recursively define

$$F_{a,b}(n+2) = \begin{cases} 0 & \text{if } F_{a,b}(n+1) = 0\\ r & \text{if } F_{a,b}(n) = qF_{a,b}(n+1) + r \quad (0 \leqslant r < F_{a,b}(n+1)) \end{cases}$$

1.1 Properties

Let $a, b, n \in \mathbb{N} \setminus \{0\}$ with b < a. If $F_{a,b}(n) \neq 0$, then $F_{a,b}(n+1) < F_{a,b}(n)$.

Let $a, b, n \in \mathbb{N} \setminus \{0\}$ with b < a. If $F_{a,b}(n) = 0$, then for all $m \ge n, F_{a,b}(m) = 0$.

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a. There exists $n \in \mathbb{N}$ such $F_{a,b}(n) = 0$.

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a and let $n \in \mathbb{N}$. If $F_{a,b}(n) \neq 0$, then $\gcd(a,b) = \gcd(F_{a,b}(n), F_{a,b}(n+1))$.

Let $a, b \in \mathbb{N} \setminus \{0\}$ with b < a. Let $n_0 \ge 2$ be least such that $F_{a,b}(n_0) = 0$. Then $\gcd(a, b) = F_{a,b}(n_0 - 1)$.

1.2 Exercise

Calculate gcd(124, 16).

Solve the Diophantine Equation $124x + 16y = \gcd(124, 16)$.

Find the inverse of $[9]_{124}$ in the group $(\mathbb{Z}/124\mathbb{Z})^*$.

2 Diophantine Equations

2.1 Theorems

Let $a, b, c \in \mathbb{Z}$. There exists a solution to the linear Diophantine equation ax + by = c if and only if gcd(a, b)|c.

Let $a, b, c, d \in \mathbb{Z}$ with $d = \gcd(a, b)$ and d|c. Let (x_0, y_0) be a solution to ax + by = c. For all $t \in \mathbb{Z}$, (x_t, y_t) is a solution to ax + by = c where

$$x_t = x_0 + \frac{b}{d}t$$
 and $y_t = y_0 - \frac{a}{d}t$

Moreover, if (x', y') is a solution to ax + by = c, then there exists a $t \in \mathbb{Z}$ such that $(x', y') = (x_t, y_t)$.

2.2 Exercise

Solve the Diophantine Equation 172x + 20y = 1000.

3 Chinese Remainder Theorem

Let $m_1, ..., m_n \in \mathbb{N} \setminus \{0\}$ be pairwise relatively prime and let $a_1, ..., a_n \in \mathbb{Z}$. Then the system of congruences

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \dots
 $x \equiv a_n \pmod{m_n}$

has a unique solution (mod m) where $m = m_1 \cdots m_n$.

3.1 Proof

First we can find a solution of the system of congruences.

$$x \equiv M_1 M_1^{-1} a_1 + \dots + M_n M_n^{-1} a_n$$

where $M_k = \frac{m}{m_k}$, and $M_k M_k^{-1} \equiv 1 \pmod{m_k}$. Since $\gcd(M_k, m_k) = 1$, then M_k^{-1} exists for every $1 \leqslant k \leqslant n$. $([M_k]_{m_k} \in (\mathbb{Z}/m_k\mathbb{Z})^*)$ Since $m_k | M_t$ if $k \neq t$, then $x \equiv M_k M_k^{-1} a_k \equiv a_k \pmod{m_k}$.

Now we need to show the uniqueness of the solution. If there exists another solution x', then $m_k|(x'-x)$ for all $1 \le k \le n$. Since $m_1, ..., m_n \in \mathbb{N} \setminus \{0\}$ are pairwise relatively prime, then m|(x'-x), which means $x' \equiv x \pmod{m}$.

3.2 Exercise

Find the minimum $x \in \mathbb{Z}^+$ such that

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$

Find the minimum $x \in \mathbb{Z}^+$ such that $43x \equiv 12 \pmod{56}$.

4 Wilsons Theorem

Let $p \in \mathbb{N}$ be prime. Then $(p-1)! \equiv -1 \pmod{p}$.

Proof. The main idea of the proof is finding the inverse.

- 1. For all $1 \leqslant x \leqslant p-1$, there exists $1 \leqslant x^{-1} \leqslant p-1$ such that $xx^{-1} \equiv 1 \pmod{p}$. (Why?)
- 2. The inverse of x is unique. I.e. $1 \le x^{-1} \le p-1$ is unique for all $1 \le x \le p-1$. (Why?)
- 3. However x and x^{-1} are not always different. Find the solution of $x^2 \equiv 1 \pmod{p}$. (The answer is x = 1, p 1.)
- 4. We can conclude that $(p-1)! \equiv 1 \cdot (p-1) \equiv -1 \pmod{p}$

4.1 Another Proof for Wilsons Theorem

Consider the following equations

$$x^{p-1} - 1 = (x-1)f_1(x) + C_1$$

$$f_1(x) = (x-2)f_2(x) + C_2$$

$$\cdots = \cdots$$

$$f_{k-1}(x) = (x-k)f_k(x) + C_k$$

$$\cdots = \cdots$$

$$f_{p-2}(x) = (x-(p-1))f_{p-1}(x) + C_{p-1}$$

$$f_{p-1}(x) = 1(\text{Why?})$$

where C_1, C_2, \dots, C_{p-1} are all numbers. $(C_1, \dots, C_{p-1}$ do not change with x.) Now, you need to prove $p|f_m(n)$ when m < n. Then $p|C_k$ for all $1 \le k \le p-1$. (Prove it yourself. It requires Format's Little Theorem.) Therefore,

$$x^{p-1} - 1 \equiv (x-1)f_1(x) \equiv (x-1)(x-2)f_2(x) \equiv \dots \equiv (x-1)\dots(x-(p-1)) \pmod{p}$$

Let x = p. This can be converted into $(p-1)! \equiv -1 \pmod{p}$

5 Exercise

1. Show that there exists infinite tuples of successive positive integers p, q, r, such that there exists p_1, q_1, r_1 , and $x \equiv 1 \pmod{x_1^3}$ (x = p, q, r)

- 2. Let $m, n \in \mathbb{Z}^+$. For all $k \in \mathbb{N}$, $\gcd(11k-1, m) = \gcd(11k-1, n)$. Show that there exists $l \in \mathbb{Z}$, such that $m = 11^l n$. (Hint. Try to find $p \in \mathbb{Z}^+$ where p is not a multiple of 11, such that p|m and $p \nmid n$.)
- 3. Let $a, b, c, d \in \mathbb{Z}^+$, and gcd(a, b, c, d) = 1. For all $n \in \mathbb{Z}^+$, gcd(an + b, cn + d) = 1. Show that for any prime p|ad bc, a and c are also multiples of p.

6 Quadratic Remainder

Let p be prime and p > 2. Let $d \in \mathbb{Z}^+$ and gcd(p, d) = 1. Show that

- (i) The congruence $x^2 \equiv d \pmod{p}$ has at least one solution if and only if $d^{(p-1)/2} \equiv 1 \pmod{p}$.
- (ii) The congruence $x^2 \equiv d \pmod{p}$ has no solution if and only if $d^{(p-1)/2} \equiv -1 \pmod{p}$.