Tópico 1 — Erros e estabilidade

• Teorema: Seja $f \in C^1(\mathbb{R}; \mathbb{R})$. Seja, ainda, $x \in I_x = [x^* - \varepsilon_x, x^* + \varepsilon_x]$, em que x^* representa um valor aproximado do valor exato x, sendo ε_x um limite superior do erro absoluto. Então, quando se calcula $y^* = f(x^*)$ em vez de y = f(x), tem-se

$$\varepsilon_y \leqslant \varepsilon_x M_x, \varepsilon_y' \leqslant \frac{\varepsilon_x M_x}{|y|}, \text{ com } M_x \geqslant \max_{x \in I_x} |f'(x)|.$$

• Teorema: Seja $f \in C^1(\mathbb{R}^2; \mathbb{R})$. Sejam, ainda, $x \in I_x = [x^* - \varepsilon_x, x^* + \varepsilon_x]$ e $y \in I_y = [y^* - \varepsilon_y, y^* + \varepsilon_y]$, em que x^* e y^* representam valores aproximados dos valores exatos x e y, respetivamente, sendo ε_x e ε_y limites superiores do erro absoluto. Então, quando se calcula $z^* = f(x^*, y^*)$ em vez de z = f(x, y), tem-se

$$\varepsilon_z \leqslant \varepsilon_x M_x + \varepsilon_y M_y, \varepsilon_z' \leqslant \frac{\varepsilon_x M_x + \varepsilon_y M_y}{|z|}, \text{ com } M_x \geqslant \max_{x \in I_x, y \in I_y} \left| f_x'(x,y) \right| \text{ e } M_y \geqslant \max_{x \in I_x, y \in I_y} \left| f_y'(x,y) \right|.$$

Tópico 2 — Equações não lineares

- Teorema de Bolzano: Seja f uma função contínua em [a,b]. Se f(a)f(b) < 0, então f admite pelo menos um zero em [a,b].
- Corolário do Teorema de Rolle: Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Se $f'(x) \neq 0$, para todo o $x \in]a,b[$, então f admite no máximo um zero em]a,b[.
- Teorema do valor médio de Lagrange: Seja f uma função contínua em [a,b] e diferenciável em]a,b[. Então, existe $\xi \in]a,b[$ tal que $f(b)-f(a)=f'(\xi)(b-a).$
- Teorema de Taylor (que é uma extensão do Teorema do valor médio de Lagrange): Seja $f \in C^n([a,b];\mathbb{R})$ e $f^{(n+1)}$ definida em]a,b[. Seja, ainda, $c \in [a,b]$. Então, existe $\xi \in]a,b[$ tal que $f(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!}(x-c)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1}$.
- Método das bisseções sucessivas
 - Algoritmo

```
Input: f \in C([a, b]; \mathbb{R}), \text{ CP}, k_{\text{max}} \in \mathbb{N}
    Output: x_* \in \mathbb{R} ou "não convergiu"
1 a_0 \leftarrow a, b_0 \leftarrow b;
 2 for k \leftarrow 0 to k_{\max} - 1 do
          x_{k+1} \leftarrow (a_k + b_k)/2;
 3
          if f(x_{k+1}) = 0 \lor CP = V then
 5
                 x_* \leftarrow x_{k+1};
 6
                 return x_*;
 7
                 if f(a_k)f(x_{k+1}) < 0 then
                      [a_{k+1}, b_{k+1}] \leftarrow [a_k, x_{k+1}];
10
                  [a_{k+1}, b_{k+1}] \leftarrow [x_{k+1}, b_k];
11
                 k \leftarrow k + 1;
12
```

- 13 return "não convergiu";
- Teorema: Seja f uma função contínua em [a,b] tal que $f(a)f(b) \le 0$ e seja x^* o único zero de f em [a,b]. Então:
 - (a) A sucessão (x_k) gerada pelo método das bisseções sucessivas converge para x^* .
 - (b) O valor $\varepsilon_{k+1} = \frac{b-a}{2k+1}$ constitui um majorante do erro absoluto de x_{k+1} .
- Método iterativo simples
- Algoritmo

```
Input: \varphi \in C(\mathbb{R}; \mathbb{R}), tal que f(x) = 0 \Leftrightarrow x = \varphi(x), x_0 \in \mathbb{R}, CP, k_{\max} \in \mathbb{N} Output: x_* \in \mathbb{R} ou "não convergiu"
```

```
\begin{array}{c|c} \mathbf{1} \ \ \mathbf{for} \ k \leftarrow 0 \ \mathbf{to} \ k_{\max} - 1 \ \mathbf{do} \\ \mathbf{2} \\ \mathbf{3} \\ \mathbf{3} \\ \mathbf{4} \\ \mathbf{4} \\ \mathbf{5} \\ \mathbf{6} \\ \mathbf{6} \\ \mathbf{7} \\ \mathbf{6} \\ \mathbf{k} \leftarrow k + 1; \end{array}
```

s return "não convergiu";

- Teorema: Seja φ uma função contínua em [a,b] e diferenciável em]a,b[tal que $L=\max_{x\in[a,b]}|\varphi'(x)|<1$ e seja x^* o único zero de f em [a,b]. Então:

- (a) Para qualquer valor inicial $x_0 \in [a, b]$, a sucessão (x_k) gerada pelo método iterativo simples converge para x^* .
- (b) O valor $\varepsilon_{k+1} = \frac{L}{1-L}|x_{k+1} x_k|$ constitui um majorante do erro absoluto de x_{k+1} .
- Método de Newton
 - Algoritmo

```
Input: f \in C^1([a,b];\mathbb{R}), x_0 \in [a,b], CP, k_{\max} \in \mathbb{N}
Output: x_* \in \mathbb{R} ou "não convergiu"

1 for k \leftarrow 0 to k_{\max} - 1 do

2 \begin{vmatrix} x_{k+1} \leftarrow x_k - \frac{f(x_k)}{f'(x_k)}; \\ 3 & \text{if } CP = V \text{ then} \\ 4 & \begin{vmatrix} x_* \leftarrow x_{k+1}; \\ \text{return } x_*; \\ 6 & \text{else} \end{vmatrix}
```

- s return "não convergiu":
- Teorema: Seja $f \in C^2([a,b];\mathbb{R})$ tal que x^* é o único zero de f em [a,b].
 - (a) Se (i) $\forall x \in [a, b]$ $[f'(x) \neq 0]$, (ii) $\forall x \in [a, b]$ $[f''(x) \leq 0 \vee f''(x) \geq 0]$, e (iii) $\exists x_0 \in [a, b]$ $[f(x_0)f''(x_0) \geq 0]$, então a sucessão gerada pelo método de Newton com aproximação inicial x_0 converge monotonamente para x^* .
 - (b) Seja (x_k) uma sucessão gerada pelo método de Newton convergente para x^* com $x_k \in [a, b], k = 0, 1, \dots$ Sejam, ainda,

$$M_2 = \max_{x \in [a,b]} |f''(x)| \in m_1 = \min_{x \in [a,b]} |f'(x)|.$$

Então, se $m_1 > 0$, o valor $\varepsilon_{k+1} = \frac{M_2}{2m_1} |x_{k+1} - x_k|^2$ constitui um majorante do erro absoluto de x_{k+1} .

Tópico 3 — Sistemas de equações lineares

• "Algoritmo Transformação em Escada — v2" (ATEsc-v2)

```
Input: matriz A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})
Output: uma matriz em escada equivalente à matriz A
```

Passo 1 [inicializar o algoritmo]

 $i \leftarrow 1, j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

Passo 2 [selecionar o elemento pivô]

```
\begin{aligned} k \leftarrow & \underset{\bar{k} \in \{i, \dots, m\}}{\arg \max} |a_{\bar{k}i}| \\ \text{se } i \neq k \text{ então } \ell_i \leftrightarrow \ell_k \end{aligned}
```

Passo 3 [anular os elementos abaixo do pivô]

Input: matriz $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$

```
\begin{aligned} & \mathbf{para} \ p \leftarrow i + 1 \ \mathbf{at\'e} \ m \ \mathbf{fazer} \\ & m_{pj} \leftarrow \frac{a_{pj}}{a_{ij}}, \quad \ell_p \leftarrow \ell_p - m_{pj} \ell_i \end{aligned}
```

Passo 4 [terminar?]

 ${f se}$ já se obteve uma matriz em escada ${f ent \~ao}$ terminar

senão

 $i \leftarrow i+1, \, j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A(i: end, :)ir para o Passo 2

• "Algoritmo Fatorização PLU de Doolittle" (AFaPLUD)

```
Output: matrizes P = [p_{ij}], L = [\ell_{ij}], U = [u_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})

1 P \leftarrow I_n, L \leftarrow I_n, U \leftarrow A;
2 for k \leftarrow 1 to n - 1 do

3 \begin{vmatrix} i \leftarrow \arg \max_i |u_{ik}|; \\ i \in \{k, ..., n\} \end{vmatrix}

4 if k \neq i then

5 \begin{vmatrix} p_{k,:} \leftrightarrow p_{i,:}, & \ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}, & u_{k,k:n} \leftrightarrow u_{i,k:n}; \\ p_{k,:} \leftrightarrow p_{i,:}, & \ell_{k,1:k-1} \leftrightarrow \ell_{i,1:k-1}, & \ell_{i,1:k-1}, &
```

• Teorema: Seja $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. As seguintes funções são normas de \mathbb{R}^n :

$$||x||_1 \stackrel{\text{def}}{=} |x_1| + \dots + |x_n|, \quad ||x||_2 \stackrel{\text{def}}{=} \sqrt{x_1^2 + \dots + x_n^2}, \quad ||x||_{\infty} \stackrel{\text{def}}{=} \max_{i \in \{1, \dots, n\}} |x_i|.$$

• Teorema: Seja a matriz $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. As seguintes funções são normas de $\mathcal{M}_{n \times n}(\mathbb{R})$:

$$||A||_1 \stackrel{\text{def}}{=} \max_{j \in \{1, \dots, n\}} ||c_{j,A}||_1, \quad ||A||_2 \stackrel{\text{def}}{=} \rho(A^\top A), \quad ||A||_\infty \stackrel{\text{def}}{=} \max_{i \in \{1, \dots, n\}} ||\ell_{i,A}||_1.$$

- Definição: Seja A uma matriz quadrada invertível. Chama-se número de condição da matriz A na norma p, que se representa por $\operatorname{cond}_p(A)$, a $\operatorname{cond}_p(A) \stackrel{\text{def}}{=} \|A\|_p \|A^{-1}\|_p$.
- Teorema: Sejam \bar{x} a solução do sistema de Cramer não-homogéneo Ax = b e \tilde{x} a solução do sistema de Cramer não-homogéneo (perturbado) $Ax = \tilde{b}$. Então, tem-se que $\frac{\|\bar{x} \bar{x}\|_p}{\|\bar{x}\|_p} \leqslant \operatorname{cond}_p(A) \frac{\|b \tilde{b}\|_p}{\|b\|_p}$.
- Teorema: Sejam \bar{x} a solução do sistema de Cramer não-homogéneo Ax = b e \tilde{x} a solução do sistema de Cramer não-homogéneo (perturbado) $\tilde{A}x = b$. Então, tem-se que $\frac{\|\bar{x} \tilde{x}\|_p}{\|\bar{x}\|_p} \leqslant \operatorname{cond}_p(A) \frac{\|A \tilde{A}\|_p}{\|A\|_p}$.
- Teorema: Seja $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Então, $X^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Tópico 4 — Interpolação

• Teorema: (Forma de Lagrange) O polinómio interpolador da tabela matemática $(x_0, y_0), \ldots, (x_n, y_n)$ é

$$p(x) = \sum_{k=0}^{n} L_k(x) y_k L_k(x) \stackrel{\text{def}}{=} \frac{(x - x_0) \cdots (x - x_{k-1}) (x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1}) (x_k - x_{k+1}) \cdots (x_k - x_n)}.$$

• Teorema: (Forma de Newton) O polinómio interpolador da tabela matemática $(x_0, y_0), \ldots, (x_n, y_n)$ é

$$p(x) = y_0 + (x - x_0)[x_0, x_1] + (x - x_0)(x - x_1)[x_0, x_1, x_2] + (x - x_0)(x - x_1)(x - x_2)[x_0, x_1, x_2, x_3] + \dots + (x - x_0) \dots (x - x_{n-1})[x_0, \dots, x_n],$$

com

- diferença dividida de primeira ordem: $[x_i, x_{i+1}] \stackrel{\text{def}}{=} \frac{y_i y_{i+1}}{x_i x_{i+1}}$.
- diferença dividida de segunda ordem: $[x_i, x_{i+1}, x_{i+2}] \stackrel{\text{def}}{=} \frac{[x_i, x_{i+1}] [x_{i+1}, x_{i+2}]}{x_{i+1} x_{i+2}}$.
- ..
- diferença dividida de ordem n: $[x_i, \ldots, x_{i+n}] \stackrel{\text{def}}{=} \frac{[x_i, \ldots, x_{i+n-1}] [x_{i+1}, \ldots, x_{i+n}]}{x_i x_{i+n}}$.
- Teorema: Sejam $f \in C^{n+1}([a,b];\mathbb{R})$ e p o polinómio de grau menor ou igual a n que interpola f nos nós de interpolação x_0, x_1, \ldots, x_n pertencentes a [a,b]. Seja, ainda, $\bar{x} \in [a,b]$. Então:

$$|f(\bar{x}) - p(\bar{x})| \le \frac{h^{n+1}}{4(n+1)}M$$
, com $M \ge \max_{\xi \in [a,b]} |f^{(n+1)}(\xi)|$, $h = \max_{i \in \{0,\dots,n-1\}} (x_{i+1} - x_i)$.

- Definição: Uma função $s_{\ell}: [x_0, x_n] \to \mathbb{R}$ diz-se um spline de grau ℓ interpolador da tabela matemática $(x_0, y_0), \ldots, (x_n, y_n)$ se:
 - $s_{\ell}(x_i) = y_i, i = 0, \dots, n,$
 - em cada um dos intervalos $[x_{i-1}, x_i]$ (i = 1, ..., n) s_{ℓ} é um polinómio de grau menor ou igual a ℓ (representaremos s_{ℓ} no sub-intervalo $[x_{i-1}, x_i]$ por $s_{\ell}^{(i)}$) e
 - $s_{\ell} \in C^{\ell-1}([a,b]; \mathbb{R}).$
- Teorema: O spline linear interpolador da tabela matemática $(x_0, y_0), \ldots, (x_n, y_n)$ é

$$s_1^{(i)}(x) = y_{i-1} + \frac{y_i - y_{i-1}}{x_i - x_{i-1}}(x - x_{i-1}), x \in [x_{i-1}, x_i], i = 1, \dots, n.$$

• Teorema: Sejam $f \in C^2([a,b];\mathbb{R})$ e s_1 o spline linear que interpola f nos nós de colocação $a=x_0 < x_1 < \cdots < x_n = b$. Seja, ainda, $\bar{x} \in [a,b]$. Então,

$$|f(\bar{x}) - s_1(\bar{x})| \le \frac{1}{8}h^2M$$
, com $M \ge \max_{x \in [a,b]} |f^{(2)}(x)|$, $h = \max_{i \in \{0,\dots,n-1\}} (x_{i+1} - x_i)$.

• Teorema: O spline cúbico interpolador da tabela matemática $(x_0,y_0),\,\ldots,\,(x_n,y_n)$ é

$$s_3^{(i)}(x) = \frac{M_{i-1}}{6(x_i - x_{i-1})} (x_i - x)^3 + \frac{M_i}{6(x_i - x_{i-1})} (x - x_{i-1})^3 + \left(\frac{y_{i-1}}{x_i - x_{i-1}} - \frac{M_{i-1}(x_i - x_{i-1})}{6}\right) (x_i - x) + \left(\frac{y_i}{x_i - x_{i-1}} - \frac{M_i(x_i - x_{i-1})}{6}\right) (x - x_{i-1}), x \in [x_{i-1}, x_i], i = 1, \dots, n,$$

em que M_0, \ldots, M_n se obtêm a partir da resolução do sistema linear tridiagonal

- ponto inicial: $M_0 = 0$
- pontos interiores $(i = 1, \dots, n-1)$:

$$(x_i - x_{i-1})M_{i-1} + 2(x_{i+1} - x_{i-1})M_i + (x_{i+1} - x_i)M_{i+1} = \frac{6}{x_{i+1} - x_i}(y_{i+1} - y_i) - \frac{6}{x_i - x_{i-1}}(y_i - y_{i-1})$$

- ponto final: $M_n = 0$

Tópico 5 — Integração Numárica

• Teorema: Fórmula simples do trapézio: Seja $f \in C^2([a,b];\mathbb{R})$. Então:

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \, \mathrm{d}x = I_{\mathrm{ts}} + ET_{\mathrm{ts}},$$

$$I_{\mathrm{ts}} = \frac{(b - a)}{2} \left(f(a) + f(b) \right), ET_{\mathrm{ts}} = -\frac{(b - a)^{3}}{12} f^{(2)}(\xi).$$

• Teorema: Fórmula simples de Simpson: Seja $f \in C^4([a,b];\mathbb{R})$. Então:

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \, \mathrm{d}x = I_{\mathrm{Ss}} + ET_{\mathrm{Ss}},$$

$$I_{\mathrm{Ss}} = \frac{(b - a)}{6} \left(f(a) + 4f\left(\frac{a + b}{2}\right) + f(b) \right), ET_{\mathrm{Ss}} = -\frac{(b - a)^{5}}{2880} f^{(4)}(\xi).$$

• Teorema: Fórmula simples dos três oitavos: Seja $f \in C^4([a,b];\mathbb{R})$. Então:

$$\exists \xi \in [a,b] : \int_{a}^{b} f(x) \, \mathrm{d}x = I_{3/8s} + ET_{3/8s},$$

$$I_{3/8s} = \frac{(b-a)}{8} \left(f(a) + 3f\left(\frac{2a+b}{3}\right) + 3f\left(\frac{a+2b}{3}\right) + f(b) \right), ET_{3/8s} = -\frac{(b-a)^{5}}{6480} f^{(4)}(\xi).$$

• Teorema: Fórmula composta do trapézio — qualquer número de subintervalos igualmente espaçados: Sejam $f \in C^2([a,b];\mathbb{R})$ e a tabela matemática $(a=x_0,y_0),\ldots,(b=x_n,y_n),$ tal que $x_{i+1}-x_i=h,\,i=0,\ldots,n-1,$ e $y_i=f(x_i),\,i=0,\ldots,n.$ Então:

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \, \mathrm{d}x = I_{\text{tc}} + ET_{\text{tc}},$$

$$I_{\text{tc}} = h\left(\frac{1}{2}y_{0} + y_{1} + \dots + y_{n-1} + \frac{1}{2}y_{n}\right), ET_{\text{tc}} = -\frac{(b-a)h^{2}}{12}f^{(2)}(\xi).$$

• Teorema: Fórmula composta de Simpson — número par de subintervalos igualmente espaçados: Sejam $f \in C^4([a,b];\mathbb{R})$ e a tabela matemática $(a=x_0,y_0),\ldots,(x_n,b=y_n)$, tal que $x_{i+1}-x_i=h,\ i=0,\ldots,n-1,$ e $y_i=f(x_i),\ i=0,\ldots,n.$ Então:

$$\exists \xi \in [a, b] : \int_{a}^{b} f(x) \, dx = I_{Sc} + ET_{Sc},$$

$$I_{Sc} = \frac{h}{3} (y_0 + 4y_1 + 2y_2 + \dots + 2y_{n-2} + 4y_{n-1} + y_n), ET_{Sc} = -\frac{(b-a)h^4}{180} f^{(4)}(\xi).$$

• Teorema: Fórmula composta dos três oitavos — número múltiplo de três de subintervalos igualmente espaçados: Sejam $f \in C^4([a,b];\mathbb{R})$ e a tabela matemática $(a=x_0,y_0),\ldots,(b=x_n,y_n)$, tal que $x_{i+1}-x_i=h,\ i=0,\ldots,n-1$, e $y_i=f(x_i),\ i=0,\ldots,n$. Então:

$$\exists \xi \in [a,b] : \int_{a}^{b} f(x) \, \mathrm{d}x = I_{3/8c} + ET_{3/8c},$$

$$I_{3/8c} = \frac{3h}{8} \left(y_0 + 3y_1 + 3y_2 + 2y_3 + \dots + 2y_{n-3} + 3y_{n-2} + 3y_{n-1} + y_n \right), ET_{3/8c} = -\frac{(b-a)h^4}{80} f^{(4)}(\xi).$$