Introduction to MATLAB

Mughees Asif 3rd Year Aerospace Engineering QMUL MathWorks Student Ambassador

MATLAB

- Stands for MATrix LABoratory
- Very good tool for the manipulation of matrices
- Great visualisation capabilities
- Loads of built-in functions
- Easy to learn and simple to use

Desktop

Getting Help and Looking Up Functions

- To get help on a function type "help function_name", e.g., "help plot".
- To find a topic, type "lookfor topic", e.g., "lookfor matrix"

Workspace

- who, whos current workspace vars.
- save save workspace vars to *.mat file.
- load load variables from *.mat file.
- **clear all** clear workspace vars.
- close all close all figures
- clc clear screen
- **clf** clear figure

MATLAB symbols

- >> prompt
- ... continue statement on next line
- , separate statements and data
- % start comment which ends at end of line
- ; (1) suppress output
 - (2) used as a row separator in a matrix

Matrices

• Do not need to initialise type, or dimensions

>>

Manipulating Matrices

Access elements of a matrix

```
>>A(1,2)
ans=
indices of matrix
element(s)
```

A =
3 2 1
5 1 0
2 1 7

- Remember Matrix_name(row,column)
- Naming convention Matrix variables start with a capital letter while vectors or scalar variables start with a simple letter

The: operator

- VERY important operator in MATLAB
- Means 'to'

```
>> 1:10
ans =

1 2 3 4 5 6 7 8 9 10
>> 1:2:10
ans =

1 3 5 7 9
```

Manipulating Matrices

		A =		
>> A.'	% transpose		2	
			1	
>> B * A	% matrix multiplication	2	1	7
>> B. * A	% element by element	B =		
· · D. 11		1	3	1
	% multiplication	4	9	5
>> B / A	% matrix division	2	7	2
>> B. / A	% element by element			
•	% division			
>> [B A]	% join matrices (horizontally	y)		
>> [B; A]	% join matrices (vertically)			

For loops

•
$$x = 0$$
;

for
$$i = 1:2:5$$

$$x = x + i;$$

% start at 1, increment by 2

% end with 5.

end

This computes
$$x = 0 + 1 + 3 + 5 = 9$$

While loops

This computes x = 7 - 2 - 2 - 2 = -1

If statements

```
• if (x == 3)
   disp('The value of x is 3.');
 elseif (x == 5)
   disp('The value of x is 5.');
 else
   disp('The value of x is not 3 or 5.');
 end;
```

Switch statement

• switch dice_face

```
case {1}
 disp('Rolled a 1');
case {2}
 disp('Rolled a 2');
case {5}
 disp('Rolled a 5');
otherwise
 disp('Rolled a 6');
end
```

Break statements

• **break** – terminates execution of for and while loops. For nested loops, it exits the innermost loop only.

Vectorization

- MATLAB is an interpreted language, i.e., it is not compiled before execution, loops run slowly.
- Vectorized code runs faster in MATLAB.
- Example: x = [1 2 3];
 for i = 1:3
 x(i) = x(i) + 5;
 end;

Example

• This code computes the *sine* of 1,001 values ranging from 0 to 10:

```
i = 0;
for t = 0:.01:10
i = i + 1;
y(i) = sin(t);
end
```

• This is a vectorized version of the same code:

$$t = 0:.01:10;$$

y = sin(t);

Graphics

- plot(x, y);
- plot(x, y, 'k-');
- hold on;

figure;

- % plots y vs. x.
- % plots a black line of y vs. x.
- % put several plots in the same
- % figure window.
- % open new figure window.

Graphics

• subplot(m, n, 1)

% Makes an **m x n** array % for plots. Will place plot in 1st % position.

column = n = 3

X

row = m = 2

Graphics

- plot3(x, y, z) plot 2D function.
- mesh(x, y, z) surface plot.
- contour(z) contour plot of z.
- $axis([x_{min} x_{max} y_{min} y_{max}])$ change axes
- **title('**My title**')** add title to figure;
- xlabel('y label'), ylabel('y label') label axes.
- **legend** add key to figure.

Examples of Plots – x vs y

Examples of Plots – 3D surface

Examples of Plots – Bar charts

Scripts and Functions

• Two kinds of M-files:

- **Scripts**, which do not accept input arguments or return output arguments. They operate on data in the workspace. *FIXED*

- **Functions**, which can accept input arguments and return output arguments. Internal variables are local to the function. *VARIABLE*

Advantages

- May behave as a calculator or as a programming language
- Has powerful graphics generation/visualisation of data
- Relatively easy to learn
- Interpreted (not compiled), errors are easy to fix
- Optimized to be relatively fast when performing matrix operations

Disadvantages

- Not a general-purpose programming language such as C, C++, or FORTRAN
- Designed for scientific computing, and is not well suitable for other applications
- Interpreted language, slower than a compiled language such as C++
- MATLAB commands are specific for MATLAB usage. Most of them do not have a direct equivalent with other programming language commands

ns Strategy Growth e B B G S f rafegy t

Let's look at some code now!

Cisco

- Campus Ambassador
- Do join the **LinkedIn page** for graduate/internship opportunities: https://www.linkedin.com/groups/12470630/
- Join the **email newsletter** to stay up-to-date: https://forms.gle/QZamk91qoJm3pt4s6
- To **access** the job opportunities, use the link: https://rb.gy/y8u16a

Developer Student Clubs

Queen Mary, University of London

- Work in a team of 17 students, in collaboration with Google
- Leveraging Google products to solve local community challenges
- Do join the LinkedIn page to get involved:
 https://www.linkedin.com/groups/12467711/
- Check out the team and for future updates, do **join the chapter**: https://dsc.community.dev/queen-mary-university-of-london/

KAHOOT! Challenge

Will post all prizes by next day

First	1 x t-shirt	
	$1 ext{ x baseball cap}$	
	1 x sunglasses	
	10 x pens	
Second	1 x drawstring bag	
	1 x baseball cap	
	10 x pens	
	20 x stickers	
Third	10 x pens	
	10 x stickers	

Thank you!

MATLAB® SIMULINK®

Join the FB group to stay up to date with future events:

https://www.facebook.com/groups/196042678284982

The code and presentation can be downloaded from:

https://github.com/mughees-asif/matlab-qmul#queenmary-matlab-tutorials

