הגדרה: עץ הוא גרף קשיר לא מכוון ללא מעגלים.

טענה 1 בעץ בין שני קדקודים יש מסלול אחד בלבד.

נניח בדרך השלילה שבין שני קדקודים שונים בעץ יש שני מסלולים שונים (כחול, אדום). נמחק צלעות משותפות , נקבל מעגל – סתירה להגדרת העץ. לכן בעץ בין שני קדקודים יש מסלול אחד בלבד. מש״ל.

טענה 2. לכל עץ יש לפחות עלה אחד. הוכחה בדרך השלילה:

נניח בדרך השלילה שלעץ אין עלים, לכן דרגה של כל קדקוד $\mathbf{c}_i \geq \mathbf{d}$. ניקח קדקוד כלשהו, בגלל שדרגתו גדולה או שווה 2 נעבור לקדקוד הבא. בגלל שמספר נעבור לקדקוד הבא, אם היינו בו סגרנו מעגל, אם לא בגלל שדרגתו גדולה או שווה 2 נעבור לקדקוד הבא. בגלל שמספר קדקודים בעץ הוא סופי ,באיזה שהוא שלב נגיע לקדקוד שכבר היינו בו – סגרנו מעגל. סתירה להגדרת העץ. לכן לעץ יש לפחות עלה אחד. משייל.

טענה 3 (Berge) לכל עץ יש לפחות שני עלים.

ניקח P מסלול ארוך ביותר בין שני קדקודי העץ, v_k , v_k , v_k הוא מסלול פשוט P מסלול ארוך ביותר בין שני קדקודי העץ, v_1 הסמוך אליו, נסמן אותו ב-u, לא יכול להיות שייך ל- P (אין מעגלים). אם עלה מכוון שאם הדרגה שלו הייתה לפחות 2 הסמוך אליו, נסמן אותו ב-u, לא יכול להיות שייך ל- P הוא עלה. בדומה ניתן v_1 בדומה ניתן P ארוך מ-P הוא עלה. בדומה ניתן להוכיח כי v_1 גם עלה. משייל.

. **טענה 4** לכל עץ בעל n קדקודים יש בדיוק n-1 צלעות. הוכחה באינדוקציה לפי מספר קדקודי העץ.

. אחת צלה n=2 אפס צלעות, n=1 צלה אחת בסיס האינדוקציה

הנחת אינדוקציה: הטענה נכונה עבור n קדקודים – יש n-1 צלעות.

שלב אינדוקציה: n+1 קדקודים. ניקח עלה ונמחק אותו יחד עם הצלע היחידה שמחוברת אליו, נקבל עץ בעל n קדקודים ו-n-1 צלעות (לפי הנחת אינדוקציה), לכן לעץ בעל n+1 קדקודים יש n-1+1-n צלעות. משייל.

הגדרה1: קוטר (דיאמטר) העץ: אורך של מסלול ארוך ביותר. (הקצוות של הקוטר – עלים).

אחר. x לכל קדקוד אחר (eccentricity) אקסצנטריות אקסצנטריות אקסצנטריות אל פדקוד אחר אוא אקסצנטריות אקסצנטריות אקסצנטריות אל פדקוד אחר.

 $.ex(x) = max{distance(v,x), v \in V}$

מהגדרה זו מיד נובע כי קוטר העץ הוא האקסנטריסיתי הגדול ביותר.

הערה: לגרפים לא קשירים אקסצנטריות מוגדרת כאינסופית.

הגדרה 3: רדיוס העץ הוא האקסצנטריות הקטן ביותר.

radius(T) = $min\{ex(v), v \in V\}$

ex(c)=radius(G) הוא מרכז הגרף אם C הדרה נידרה נידרה בילוד

: מרחקים בין קדקודי הגרף מציאת דיאמטר –מחשבים את כל המרחקים בין ${
m n}^2$

 $O(n^3)+O(n^2)-Floyd-Warshall$, איבר מקסימאלי של המטריצה.

משפט 1: יהי T עץ ו- a∈T – קדקוד כלשהו, ויהיה

 \mathbf{c} עובר דרך מרכז העץ b-b אזי המסלול שבין פא(a) = $\max\{\mathrm{dist}(v,a),v\in V\}=\mathrm{dist}(a,b)$

הוא עץ, אז קיים מסלול המחבר \mathbf{c} עם \mathbf{c} ו-a לא עובר דרך מרכז \mathbf{c} . כוון \mathbf{c} הוא עץ, אז קיים מסלול המחבר \mathbf{c} לא עובר דרך מרכז \mathbf{c} . כוון ש-T הוא עץ, יש מסלול יחיד המחבר \mathbf{c} עם \mathbf{c} ו-b. קדקוד \mathbf{c} המחבר בין \mathbf{c} חייב להיות על המסלול \mathbf{c} שם \mathbf{c} כוון ש-T הרחוק ביותר מ- \mathbf{c} מיקרים: \mathbf{c} נוצר מעגל. נחשב את האקסצנטריות של \mathbf{c} .

- פ(u)=dist(u,b) הוא עלה במקרה ה' פון ש-b. לכוון של קדקוד מבא על הקו a-b הוא עלה במקרה לה מ-b. הען מ-b. אבל (a+b)=a+b העירה (מינימאלית לפי הגדרת המרכז. פון ש-b. לכוון של מדכז הען של מרכז הען של מרכז הער המרכז.
 - גם כאן מגיעים .z וגם איזה שהו עלה מ לא מהם ממקרה (אם a לכוון של פדקוד a -b לכוון של מגיעים מ-b לסתירה מדקוד לסתירה, כי (c) $ex(c) \geq dist(c,u) + dist(u,z) > dist(u,z) = ex(u)$
 - אחרת t' היה קדקוד הרחוק , $dist(t',u) \leq dist(u,b)$ במקרה זה (c-u במקרה ,t' היה קדקוד הרחוק ,t' (t') במקרה זה (a.ex(u)=dist(u,b) כי אז (dist(u,b)<dist(t',u) ביותר מ-b (dist(t',u)) מצד שני לא ייתכן ש- (dist(u,b)=dist(t',u)) לפיכך (t' לא עובר דרך מרכז t' (t', t') היה להנחה שהמסלול הארוך ביותר מ-b (t', t') היה להנחה שהמסלול הארוך ביותר מ-a (t')
 - במקרה ש- ex(u)=dist(u,t), כאשר הוא קדקוד כלשהו שלא נמצא באף מסלול של המקרים הקודמים (4 מקבלים אותה סתירה כמו במקרים 1,2: האקסצנטריות של המרכז היא מינימאלית.

 $ex(c) \ge dist(c,u) + dist(u,t)>dist(u,t)=ex(u)$

מציאת דיאמטר העץ

diameter(T) = dist(z,y) אזי

אזי , y, מוציאים א הרחוק ביותר מ-x, מוציאים א מוציאים א , מוציאים א , מוציאים א , א $x \in T$ בוחרים בקדקוד א . dist(y,z) = diameter

שני המסלולים עוברים .dist(a,b)>dist(x,y) - דרך השלילה שקיים מסלול אחר בין a ל-b מכך שר הוכחה. נניח בדרך השלילה שקיים מסלול אחר בין (x,y) - דרך מרכז העץ .c קדקוד (x,y) דרך מרכז העץ

תובכך, $dist(c,a) \leq dist(c,z)$ באופן דומה $dist(a,b) \leq dist(y,z)$ או $dist(b,c)+dist(c,a) \leq dist(y,c)+dist(c,z)$

משפט 3. לכל עץ T יש מרכז אחד או שניים. (שיטת שרפת עלים).

הוא עלה. נתבונן בעץ T לכל קודקוד אחר v_i מתרחש רק כאשר עלה. נתבונן בעץ T בעל יותר המרבי, מקודקוד נתון v_i לכל קודקוד אחר שני עלים. משני קדקודים. ידוע לנו ל- v_i יש לפחות שני עלים.

: שרפה ראשונה

מוחקים את כל העלים מT, הגרף T_1 שהתקבל הוא שוב עץ. מחיקת כל העלים מT מפחיתה באופן אחיד את מוחקים את כל העלים מT הם גם המרכזים של T_1 . באחד. לפיכך המרכזים של T הם גם המרכזים של T_1 . שרפה שנייה :

. נמחק כל העלים מ T_1 בעל עץ T_2 בעל מרכזים מרכזים נמחק

בהמשך לתהליך השרפות, נקבל קודקוד בודד, שהוא המרכז של ${
m T}$, או צלע אשר קודקודי הקצה שלה הם שני המרכזים של ${
m T}$.

. מסקנה למספר העץ שווה הרדיוס אחד - הרדיוס מסקנה למספר מסקנה מסקנה מסקנה מחדיום אחד - הרדיום מסקנה לעץ מחדים מסקנה מסקנה מסקנה מסקנה מחדים מסקנה מסק

כאשר לעץ יש שני מרכזים - הרדיוס של העץ שווה למספר השרפות פלוס 1.

מסקנה2

2*radius-1≤diameter≤2*radius

$$\{c_1,c_2\} \rightarrow d=2*r-1, \{c\} \rightarrow d=2*r$$

הערה: בגרף שהוא לא עץ מספר מרכזים יכול להיות גדול מ-2:

בגרף זה יש 3 מרכזים המסומנים באדום, האקסצנטריות של כל אחד מהם היא 3.

