FT II – Resolução Exame de Recurso

Felipe B. Pinto 61387 – MIEQB

25 de julho de 2024

Conteúdo

Questão 1	2	Questão 4
Questão 2	3	Questão 5
Questão 3	4	

Um tanque com o topo aberto para a atmosfera contém metanol líquido (CH₃OH, peso molecular 32 g/mol) no fundo do tanque.

- O tanque é mantido a 30°C
- $(d = 1.0 \,\mathrm{m}) \,\mathrm{O}$ diâmetro do tanque cilíndrico é de $1.0 \,\mathrm{m}$
- $(z_1 = 0 \,\mathrm{m})$ A altura total do tanque é de 3.0 m
- $\cdot \, (z_0 = 0.5 \, \mathrm{m})$ O nível do líquido no fundo do tanque é mantido em $0.5 \, \mathrm{m}$
- · O espaço de gás dentro do tanque está estagnado
- $(y_1 = 0)$ Os vapores de CH₃OH são imediatamente dispersos assim que saem do tanque.
- $(P_{*,30^{\circ}\text{C}} = 163 \,\text{mmHg}) \,\text{A} \,30\,^{\circ}\text{C}$, a pressão de vapor exercida pelo CH_3OH líquido é de 163 mmHg
- \cdot $(P_{*,40^{\circ}\text{C}} = 265\,\text{mmHg})~\text{A}~40\,^{\circ}\text{C},$ a pressão de vapor exercida pelo CH₃OH líquido é de 265 mmHg
- $(D_{A,B}=1.66\,\mathrm{cm^2/s})$ O coeficiente de difusão do metanol no ar é 1.66 cm²/s e varia com a temperatura $T^{3/2}$

Q1 a.

Qual é a taxa (W) de emissão de vapor de CH_3OH do tanque em kg/d quando o tanque está a uma temperatura de 30 °C? Deduza a equação necessária e as condições fronteira para este problema.

Resposta

$$p_1 \cong 163 \,\mathrm{mmHg} \frac{\mathrm{atm}}{760.002 \,\mathrm{mmHg}} \cong 0.214 \,\mathrm{atm};$$

$$\begin{cases} z_0 = 0.5 \,\mathrm{m} & p_0 = 0 \,\mathrm{atm} \\ z_1 = 3.0 \,\mathrm{m} & p_1 = 0.214 \,\mathrm{atm} \end{cases}$$

$$W = N_A A =$$

$$= \left(\frac{c \, D_{A,B}}{z_1 - z_0} \,\ln \frac{1 - p_{A,0}}{1 - p_{A,1}}\right) \left(\pi \, (d/2)^2\right) =$$

$$= \frac{\left(\frac{P}{RT}\right) \, D_{A,B}}{z_1 - z_0} \,\ln \frac{1 - p_{A,1}}{1 - p_{A,0}} * \frac{\pi \, d^2}{4} \cong$$

$$\cong \frac{\left(\frac{1}{8.206 \,\mathrm{E}^{-5} * (30 + 273.15)}\right) \left(1.66 \,\mathrm{E}^{-4}\right)}{3.0 - 0.5} \,\ln \frac{1}{1 - 0.214} * \frac{\pi \, 1.0^2}{4} \cong$$

$$\cong 5.061 \,\mathrm{E}^{-4} \, \frac{\mathrm{mol} \, (\mathrm{CH3OH})}{\mathrm{s}} \, \frac{32 \, \mathrm{g}_{\mathrm{CH_3OH}}}{\mathrm{mol}_{\mathrm{CH_3OH}}} \, \frac{3600 \,\mathrm{s}}{\mathrm{h}} \, \frac{24 \,\mathrm{h}}{\mathrm{d}} \cong$$

$$\cong 1.399 \,\mathrm{kg} \, (\mathrm{CH_3OH}) / \mathrm{d}$$

Q1 b.

Se a temperatura do tanque for almentada para 40 °C, qual é a % de almento na taxa de emissão para um aumento de 10 °C na temperatura.

Resposta

$$p_1 = 265 \,\mathrm{mmHg} \, \frac{\mathrm{atm}}{760.002 \,\mathrm{mmHg}} \cong 0.349 \,\mathrm{atm};$$

$$\begin{cases} z_0 = 0.5 \,\mathrm{m} & p_0 = 0 \,\mathrm{atm} \\ z_1 = 3.0 \,\mathrm{m} & p_1 = 0.349 \,\mathrm{atm} \end{cases}$$

Aumento =
$$\frac{\Delta W}{W_{30} \circ \text{C}} = \frac{W_{40} \circ \text{C} - W_{30} \circ \text{C}}{W_{30} \circ \text{C}} = \frac{W_{40} \circ \text{C}}{W_{30} \circ \text{C}} - 1 = \frac{N_{A,40} \circ \text{C}}{N_{A,30} \circ \text{C}} - 1 =$$

$$= \left(\frac{\left(\frac{P}{RT}\right) D_{A,B,40} \circ \text{C}}{z_1 - z_0} \ln \frac{1 - y_{A,1}}{1 - y_{A,0}}\right) \frac{1}{N_{A,30} \circ \text{C}} - 1 =$$

$$= \left(\frac{\left(\frac{P}{RT}\right) \left(D_{A,B,30} \circ \text{C} \left(\frac{40 + 273.15}{30 + 273.15}\right)^{3/2}\right)}{z_1 - z_0} \ln \frac{1 - y_{A,1}}{1 - y_{A,0}}A\right) \frac{1}{N_{A,30} \circ \text{C}} - 1 =$$

$$= \left(\frac{\left(\frac{1}{8.206 \,\text{E}^{-5} * (313.15)}\right) \left(1.66 \,\text{E}^{-4} * \left(\frac{313.15}{303.15}\right)^{3/2}\right)}{3.0 - 0.5} \ln \frac{1}{1 - 0.349}\right) *$$

$$* \frac{1}{6.444 \,\text{E}^{-4}} - 1 \cong$$

*
$$\frac{6.444 \,\mathrm{E}^{-4}}{6.444 \,\mathrm{E}^{-4}} - 1 =$$

 $\cong 0.805 \,\mathrm{E}^2 \,\%$

Um reator de leito fluidizado de carvão foi proposto para uma nova fábrica.

- Se operado a 1145 K, o processo de combustão em ar (21 $\%_{O_2}$ e 79 $\%_{N_2}$) será limitado pela difusão do O_2 em contracorrente ao CO_2 , formado na superfície da partícula
- Suponha que o carvão seja carbono sólido puro com densidade de 1.28 E³ kg/m³
- Que a partícula seja esférica com um diâmetro inicial de $1.5\,\mathrm{E}^{-4}\,\mathrm{m}$ ($150\,\mathrm{\mu m}$).
- Sob as condições do processo de combustão, a difusividade do O_2 na mistura gasosa a 1145 K é $1.3\,\mathrm{E}^-4\,\mathrm{cm}^2/\mathrm{s}$.
- A reação na superfície é: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$
- · Na superfície da partícula de carvão, a reação é muito rápida.

Se for assumido um processo de estado quase estacionário, calcule:

- O₂:A
- CO₂:B

Q2 a.

O tempoo necessário para reduzir o diâmetro da partícula de carbono para $5\,\mathrm{E}^-5\,\mathrm{m}$ $(50\,\mu\mathrm{m})$. Deduza as equações necessárias e as condições fronteira para este problema

Resposta

 $N_{A,r} = -r \pi r c D_{A,B} y_{A,\infty};$

 $-4\pi r c D_{A,B} y_{A,\infty} = \frac{\rho_c}{M} 4\pi r dr t;$

$$dt = -\frac{\rho_c r dr}{M c D_{A,B} y_{A,\infty}} \Longrightarrow t = \frac{\rho_c (r_0^2 - r_1^2)}{2 M c D_{A,B} y_{A,\infty}} \cong$$

$$\approx \frac{(1.28 \,\mathrm{E}^3) ((1.5 \,\mathrm{E}^- 4/2)^2 - (5 \,\mathrm{E}^- 5/2)^2)}{2 * 0.012 * (\frac{1}{8.206 \,\mathrm{E}^{-5} * 1145}) * (1.3 \,\mathrm{E}^- 8) * 0.21} \cong$$

$$\approx 9177.600 \,\mathrm{s} \frac{\mathrm{h}}{3600 \,\mathrm{s}} \cong 2.549 \,\mathrm{h}$$

$$N_{A,r} = y_A (N_A + N_B) - c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}r} = -c D_{A,B} \frac{\mathrm{d}y_A}{\mathrm{d}r} \Longrightarrow$$

$$\implies \int N_{A,r} \,\mathrm{d}r = N_{A,r_0} \,r_0^2 \int \mathrm{d}r/r^2 = -N_{A,r_0} \,r_0^2 \,\Delta(r^{-1}) =$$

$$= \int -c D_{A,B} \,\mathrm{d}y_A = -c D_{A,B} \int \mathrm{d}y_A = -c D_{A,B} \,\Delta y_A \Longrightarrow$$

$$\implies N_{A,r_1} = \frac{c D_{A,B} \,\Delta y_A}{r_1^2 \,\Delta(r^{-1})} = \frac{c D_{A,B} \,\Delta y_A}{r_1^2 \,\Delta(r^{-1})}$$

Q2 b.

Explique por que razão temos neste caso difusão com reação química heterogénea.

Um tanque de agua profundo tem O_2 dissolvido com uma concetração uniforme $1\,\mathrm{g/L}$. Se a concentração de O_2 for subtamente elevada á superfície para $10\,\mathrm{g/L}$, calcule:

•
$$D_{\text{CO}_2-\text{H}_2\text{O}} = 10^{-5} \, \text{cm}^2/\text{s}$$

$$egin{align} rac{c_{A,s}-c_A}{c_{A,s}-c_{A,0}} &= \operatorname{erf} oldsymbol{\xi} & oldsymbol{\xi} = rac{oldsymbol{z}}{\sqrt{4\,D\,t}} \ J_{A,*} &= -Drac{\partial c_A}{\partial oldsymbol{z}} = \sqrt{rac{D}{\pi\,t}}\, \exp\left(rac{-z^2}{4\,D\,t}
ight)\, (c_{A,s}-c_{A,0}) \ \end{split}$$

 C_A é a concentração de O_2 a uma distância (z) da superfície num determinado instante (t)

 $C_{A,0}$ é a concentração inicial

 $C_{A,s}$ é a concentração na superfície

D é o coeficiente de difusão

	$\operatorname{erf}(a)$	a	$\operatorname{erf}(a)$	a	$\operatorname{erf}(a)$	\overline{a}
Tabela 1: Erro	0.82542	0.96	0.50275	0.48	0.0	0.0
	0.84270	1.00	0.53790	0.52	0.04511	0.04
	0.88021	1.10	0.57162	0.56	0.09008	0.08
	0.91031	1.20	0.60386	0.60	0.13476	0.12
	0.93401	1.30	0.63459	0.64	0.17901	0.16
	0.95229	1.40	0.66378	0.68	0.22270	0.20
	0.96611	1.50	0.69143	0.72	0.26570	0.24
	0.97635	1.60	0.71754	0.76	6.30788	0.28
	0.98379	1.70	0.7421	0.80	0.34913	0.32
	0.98909	1.80	0.76514	0.84	0.38933	0.36
	0.99532	2.00	0.78669	0.88	0.42839	0.40
	0.99999	3.24	0.80677	0.92	0.46622	0.44

function values. For negative a, erf(a) is negative

$$\operatorname{erf}(|a|) = 1 - \left(1 + 0.2784 \, |a| + 0.2314 \, |a|^2 + 0.0781 \, |a|^4 \right)^{-4}$$

Q3 a.

A concentração de O₂ a 1 mm de profundidade ao fim de 2 horas?

Resposta

$$C_A = C_{A,S} - (C_{A,S} - C_{A,0}) \operatorname{erf}(A);$$

 $a = \frac{z}{\sqrt{4 D t}} = \frac{10^{-3}}{\sqrt{4 * 10^{-9} * (2 * 3600)}} \cong 0.186 \implies \operatorname{erf}(a) \cong 0.17901 * 0.186/0.16 \cong 0.208$

$$C_A \cong 10 - (10 - 1) \ 0.208 \cong 8.124$$

Q3 b.

O fluxo de O₂ na superfície do tanque para esse tempo?

Resposta

$$J_A = \sqrt{\frac{D}{\pi t}} (C_{A,s} - C_{A,0}) = \sqrt{\frac{10^{-9}}{\pi (2 * 3600)}} (10 - 1) \approx 1.892 \,\mathrm{E}^{-6}$$

- Ar seco (300 K e $1.013\,\mathrm{E^5}$ Pa) circula a uma velocidade de $1.5\,\mathrm{m/s}$
- num tubo com 6 m de comprimento e 0.15 m de diâmetro
- A superficie interior do tubo está revestida com um material adsorvente (com razão diâmetro/rugosidade, d/ε , de 10.000) que está saturado com agua
- Difusidade da água em ar 300 K $D_{\rm H_2O-Ar,300\,K}=D_{\rm H_2O-Ar}=2.6\,\rm E^{-5}\,m^2\cdot s$
- Viscosidade cinemática do ar a 300 K: $1.569\,\mathrm{E^{-5}\,m^2\cdot s}$
- · Pressão de vapor da água a 300 K: 17.5 mmHg
- $R = 0.082 \,\mathrm{L} \cdot \mathrm{atm} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$
- Fator de atrito: $f = 0.00791 Re^{0.12}$

$$Re=rac{
ho\,d\,v}{\mu} \hspace{0.5cm} Sc=rac{\mu}{
ho\,D_{A,B}} \hspace{0.5cm} Sh=rac{k_c\,d}{D_{A,B}}
onumber \ rac{c_{A,s}-c_{A,0}}{c_{A,s}-c_{A,l}}=rac{4\,k_c}{d\,v}L$$

- $C_{A,s} = C_*$
- ν: Velocidade

Analogia de chilton-Colburn:

$$rac{k_c}{v}Sc^{2/3}=f/2$$

Determine:

Q4 a.

A concentração de água à saída do tubo.

Resposta

$$\ln \frac{c_{A,s} - c_{A,0}}{c_{A,s} - c_{A,l}} = \frac{4 k_c L}{d v} \implies c_{A,s} - \frac{c_{A,s} - c_{A,0}}{\exp\left(\frac{4 k_c L}{d v}\right)} = c_{A,s} - \frac{c_{A,s}}{\exp\left(\frac{4 k_c L}{d v}\right)} =$$

$$= c_{A,s} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = c_{A,*} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = c_{A,l} \implies$$

$$\implies c_{A,l} = c_{A,*} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = \left(\frac{P_{A,*}}{RT}\right) \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right);$$

$$\frac{k_c}{v}Sc^{2/3} = f/2 \implies$$

$$\implies k_c = \frac{f \, v}{2 \, Sc^{2/3}} = \frac{(0.00791 * Re^{0.12}) \, v}{2 \, \left(\frac{\mu}{\rho \, D_{A,B}}\right)^{2/3}} =$$

$$= \frac{\left(0.00791 * \left(\frac{\rho \, d \, v}{\mu}\right)^{0.12}\right) \, v}{2 \, \left(\frac{\mu}{\rho \, D_{A,B}}\right)^{2/3}} =$$

$$= \frac{\left(0.00791 * \left(\frac{1*0.15*1.5}{1.569 \, E^{-5}}\right)^{0.12}\right) \, 1.5}{2 \, \left(\frac{1.569 \, E^{-5}}{1*2.6 \, E^{-5}}\right)^{2/3}} \cong$$

$$\cong 0.026 \implies$$

$$\implies c_{A,l} \cong \left(\frac{17.5}{8.206 \,\mathrm{E}^{-5} * 300 * 760.002}\right) \left(1 - \exp\left(\frac{-4 * 0.026 * 6}{0.15 * 1.5}\right)\right) \cong 0.875$$

Q4 b.

A velodicade de transferência de água em ${\rm kg/h}$

$$\begin{split} W &= N_A\,A = c_{A,l}\,v\,\pi\,(d/2)^2 \cong 0.875*1.5*\pi*(0.15/2)^2 \cong \\ &\cong 0.023\,\mathrm{mol}\,(\mathrm{H_2O})/\mathrm{s}\,\frac{3600\,\mathrm{s}}{\mathrm{h}}\,\frac{18\,\mathrm{g}_{\mathrm{H_2O}}}{\mathrm{mol}_{\mathrm{H_2O}}} \cong 1.503\,\mathrm{kg/h} \end{split}$$

Pretende-se remover SO_2 de uma mistura gasosa constituída por SO_2 e ar por adsorção utilizando água.

- A constante de Henry é 1.5 atm
- A coluna usada opera a 15°C e 3 atm.
- Nim dado ponto da coluna a % molar de SO_2 na fase gasosa é 20 % e na fase líquida é 1 %.
- Sabendo que os coeficientes individuais de transferência de massa são $k_y=5.6\,\mathrm{E}^-4\,\mathrm{mol/s}\cdot\mathrm{m}^2$ e $k_x=5.6\,\mathrm{mol/s}\cdot\mathrm{m}^2$.

Determine:

Q5 a.

As composições interfaciais.

Q5 b.

A % da resisência total respeitante a cada uma das fases.

Q5 c.

O coeficiente global de transferência de massa K_x .

Q5 d.

O fluxo de SO₂

Q5 e.

O valor do fluxo quando usar soluções de NaOH com a concentração crítica de NaOH. Comente.

body