

HAET

Hierarchical Attention Erwin Transolver for Large Scale Mesh Processing

Pedro M. P. Curvo Mahdi Rahimi Salvador Torpes

Index

- (1) Introduction, Motivation and Problem
- (2) Erwin: Background and Overview
- (3) Transolver++: Background and Overview
- (4) HAET: Our Implementation
- (5) Experiments and Methodology
- (6) Results and Discussion

Motivation and Problem

Motivation and Problem

Point Clouds and Meshes

Point Clouds/Meshes are essential for **Physical Simulations**

Real-world simulations involve millions of irregular points

Processing must preserve geometric structure and physical fields

Current PDE solvers struggle with such large inputs

Example from the DrivAerNet benchmark

Motivation and Problem

Computational Challenges

- Transformer scale poorly: $O(N^2)$ attention is impractical at large N
- Possible solution: Downsampling = leads to loss of physical detail since points are strongly dependent on each other
- Models must:
 - Preserve local features
 - Capture long-range dependencies
 - Scale efficiently

Existing Solutions

Existing Solutions General

Better efficiency in attention via geometric ball trees

Physics aware tokenization of the input to reduce its dimension

Each solves part of the problem, but not both

Existing Solutions Erwin

[Point Cloud] → [Ball Groups] → [Hierarchical Processing]

Limitations

- Large-scale Challenges
- Geometric Context Loss
- Memory Management

Advantages

- Linear Scaling
- Efficient Processing
- Multi-scale Analysis

Existing SolutionsErwin

Limitations

- Quadratic Scaling in attention
- Slice Limitations
- Memory Requirements

Advantages

- Large Scale Processing
- Physical Context
- Adaptive Learning

Existing Solutions

Transolver & Transolver++

Can we design a model that scales to millions of points with fewer bottlenecks, while remaining aware of the underlying physics?

Key Contributions

Key ContributionsSolve the Scaling Problem

ErwinFlash — Speeding Up Erwin

HAET*

—

Hybrid Architecture

ErwinFlash

ErwinFlashDescription and Results

Key Optimizations:

- FlashAttention
- Mixed-Precision Training
- Fused CUDA Operations

• Improvements:

- Speed: 1.9x over Erwin
- Lower GPU memory usage
- Identical training/validation loss curves
- More stable GPU performance

ErwinFlash Speed Improvement Results

ErwinFlash

ShapeNet Car Results

ErwinFlashShapeNet Car Results

HAET Hierarchical Attention Erwin Transolver

Pros

Cons

Erwin

Scales Linearly

Cannot handle millions of input points

Transolver++

Can handle millions of input points "Downsampling" is physics-based Attention between slices is still $O(N^2)$ Needs small number of slices

HAET

Can handle millions of points

Hierarchical Attention between slices scales linearly

Number of slices is not a bottleneck

Hierarchical attention within localized groups, i.e., Attention is not done among all slices

HAETPhysics Attention Head

Physics Attention Head

HAETStandard Benchmarks

ShapeNet Car Design

- Unstructured Mesh
- 3D
- 32186 Mesh Points

HAETResults

	Point Cloud	Structured Mesh		Regular Grid		
Model	Elasticity	Plasticity	Airfoil	Pipe	Navier-Stokes	Darcy
FNO	/	/	/	/	0.1556	0.0108
WMT	0.0359	0.0076	0.0075	0.0077	0.1541	0.0082
U-FNO	0.0239	0.0039	0.0269	0.0056	0.2231	0.0183
geo-FNO	0.0229	0.0074	0.0138	0.0067	0.1556	0.0108
U-NO	0.0258	0.0034	0.0078	0.0100	0.1713	0.0113
F-FNO	0.0263	0.0047	0.0078	0.0070	0.2322	0.0077
LSM	0.0218	0.0025	0.0059	0.0050	0.1535	0.0065
Galerkin	0.0240	0.0120	0.0118	0.0098	0.1401	0.0084
HT-Net	/	0.0333	0.0065	0.0059	0.1847	0.0079
OFormer	0.0183	0.0017	0.0183	0.0168	0.1705	0.0124
GNOT	0.0086	0.0336	0.0076	0.0047	0.1380	0.0105
FactFormer	/	0.0312	0.0071	0.0060	0.1214	0.0109
ONO	0.0118	0.0048	0.0061	0.0052	0.1195	0.0076
Transolver	0.0064	0.0012	0.0053	0.0033	0.0900	0.0057
HAET (Ours)	0.108	/	0.0085	0.0050	/	0.0053

	ShapeNet Car					
Model	$\overline{ ext{Volume}}\downarrow$	Surf.	$\frac{C_D\downarrow}{C_D\downarrow}$	$\rho_D \uparrow$		
	•	•				
Simple MLP	0.0512	0.1304	0.0307	0.9496		
$\operatorname{GraphSAGE}$	0.0461	0.1050	0.0270	0.9695		
PointNet	0.0494	0.1104	0.0298	0.9583		
Graph U-Net	0.0471	0.1102	0.0226	0.9725		
${\bf MeshGraphNet}$	0.0354	0.0781	0.0168	0.9840		
GNO	0.0383	0.0815	0.0172	0.9834		
Galerkin	0.0339	0.0878	0.0179	0.9764		
Geo-FNO	0.1670	0.2378	0.0664	0.8280		
GNOT	0.0329	0.0798	0.0178	0.9833		
GINO	0.0386	0.0810	0.0184	0.9826		
3D-GEOCA	0.0319	0.0779	0.0159	0.9842		
Transolver	0.0207	0.0745	0.0103	0.9935		
Erwin	0.0766	0.1335	0.1006	0.7681		
HAET (Ours)	0.0257	0.0914	0.0174	0.9865		

^{*} PDE Benchmarks metrics: Relative L2

^{*} ShapeNet metrics: Relative L2 of the surrounding (Volume) and surface (Surf) physics fields, drag coefficient, and their Spearman's rank correlations.

HAETResults

HAETComputational Efficiency

Figure 4: GPU memory usage across models as a function of input size. Models are color-coded as follows: — VanillaAttention, — Galerkin, — GNoT, — Transolver, — Transolver++, — HAET. Transolver++ and HAET demonstrate superior memory efficiency, remaining below the 40 GB threshold up to 1M points.

Conclusion and Future Work

- More efficient: less compute time, less memory
- Performance: close or better than SOTA models
- Future Work
 - Training on larger datasets that would require sharding both the model and the datasets
 - Trying a different task: Classification (e.g. Reduced-8 Dataset)
 - More ambitious: Same concept but using Diffusion instead of Attention

Thank You!

Pedro M. P. Curvo Mahdi Rahimi Salvador Torpes

Algorithm 1 Parallel Physics-Attention with Eidetic States

```
Input: Input features \mathbf{x}^{(k)} \in \mathbb{R}^{N_k \times C} on the k-th GPU.
Output: Updated output features \mathbf{x}^{\prime(k)} \in \mathbb{R}^{N_k \times C}.
// drop f to save 50% memory.
Compute \mathbf{f}^{(k)}, \mathbf{x}^{(k)} \leftarrow \text{Project}(\mathbf{x}^{(k)})
Compute \tau^{(k)} \leftarrow \tau_0 + \text{Ada-Temp}(\mathbf{x}^{(k)})
Compute weights \mathbf{w}^{(k)} \leftarrow \text{Rep-Slice}(\mathbf{x}^{(k)}, \tau^{(k)})
Compute weights norm \mathbf{w}_{\text{norm}}^{(k)} \leftarrow \sum_{i=1}^{N_k} \mathbf{w}_i^{(k)}
Reduce slice norm \mathbf{w}_{\text{norm}} \leftarrow \text{AllReduce}(\mathbf{w}_{\text{norm}}^{(k)}) \mathcal{O}(M)
Compute eidetic states \mathbf{s}^{(k)} \leftarrow \frac{\mathbf{w}^{(k)\mathsf{T}}\mathbf{x}^{(k)}\mathbf{s}^{(k)}}{\mathbf{w}_{\text{norm}}}
Reduce eidetic states s \leftarrow AllReduce(s^{(k)})
                                                                                          O(MC)
Update eidetic states s' \leftarrow Attention(s)
Deslice back to \mathbf{x}'^{(k)} \leftarrow \text{Deslice}(\mathbf{s}', \mathbf{w}^{(k)})
Return \mathbf{x}'^{(k)}
```