VERMES MIKLÓS Fizikaverseny

I. forduló 2015. március 9.

IX. osztály

JAVÍTÓKULCS

I. feladat

a.) Legyen *d* az üveg vastagsága. Ekkor a ceruza hegye *d* távolságra van a tükröző rétegtől, melyről *d* távolságra alkot látszólagos képet.

Ez tárgy az üveg felülete, mint sík törőfelület számára 1 p

A képalkotási egyenlet szerint $\frac{n_2}{x_2} = \frac{n_1}{x_1} \rightarrow \frac{1}{x_2} = \frac{n}{2d} \rightarrow d = \frac{n x_2}{2} = 1,5 \, mm$ 1 p

b.) A fénytörés következtében a higanyoszlop valódi átmérője kisebb annál, mint amekkorának látszik.
 A látszólagos átmérőt olyan sugarak határozzák meg, melyek a higanyoszlop hátsó felületéről indulnak
 1 p
 Helyes ábra

$$\sin \alpha = \frac{L/2}{R} = \frac{L}{2R}$$
 1 p $\sin \beta = \frac{r}{R}$

$$n = \frac{\sin \alpha}{\sin \beta} = \frac{L}{2r}$$
 \rightarrow $r = \frac{L}{2n} = 6 \, mm$ 1 p \rightarrow $d = R - r = 10 - 6 = 4 \, mm$ 1 p

c.) Egy gyűjtőlencse a fókusztávolságnál kisebb tárgytávolság esetén látszólagos képet hoz létre.

Így a tárgyra fókuszált lencse képsíkjában nem jelenhetnek meg a légy körvonalai.

1 p
Az objektíven levő légy csak a kép minőségét zavarhatja, mivel csökkentheti
a filmre jutó fény mennyiségét.

1 p

II. feladat

a.)
$$x'_1 = -2f$$
 \rightarrow $x'_2 = 2f = 20 cm$ 1 p
 $x''_1 = x'_2 - d = -30 cm$; $\frac{1}{x''_2} - \frac{1}{x''_1} = \frac{1}{f''}$ \rightarrow $x''_2 = 60 cm$ 1 p

b.)
$$\beta = \beta' \cdot \beta'' = \frac{x_2'}{x_1'} \cdot \frac{x_2''}{x_1''} = 2$$

c.) Az L_3 lencsét az L_1 lencse képsíkjába kell elhelyezni 1 p

Az L_3 lencse a fényforrást a rendszer képpontjába kell leképezze:

$$x_1 = -40 \, cm$$
 $x_2 = 90 \, cm$ 1 p

Az
$$L_3$$
 lenese a rehyforfast a rehdszer keppontjaba ken lekepezze.
 $x_1 = -40 \, cm$ $x_2 = 90 \, cm$ 1 p
$$\frac{1}{f_3} = \frac{1}{x_2} - \frac{1}{x_1} \longrightarrow f_3 = \frac{360}{13} \, cm \approx 27,69 \, cm$$
 1 p

d.) A lemez számára a lencserendszer által alkotott kép látszólagos tárgy, melyről

$$\Delta x_2 = e\left(1 - \frac{1}{n}\right) = 1 \, cm$$
 -rel távolabb alkot képet (vagy egyszerű fénytöréses levezetés) 2 p

d.) A lencserendszer középső részének törőképessége

$$C = \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_3} + \frac{1}{f_2} = \frac{670}{36} = 18,6 \, m^{-1}$$

A szélének törőképessége:
$$C' = \frac{1}{f_3} = \frac{130}{36} = 3,6 \, m^{-1}$$

III. feladat

1.) a.) A tanár vonatkoztatási rendszerében közeledéskor
$$v_1 = v + u$$
 1 p

$$t = \frac{l}{v_1} = \frac{l}{v + u}$$

távolodáskor
$$v_2 = v - u$$
 1 p

$$l' = \frac{l(v-u)}{v+u}$$

b.)
$$v = u$$
 \rightarrow $l' = 0$ A tanulók együtt szaladnak a tanárral 2 p

c.)
$$v < u$$
 \rightarrow A tanulók sorrendje megváltozik és a tanár után szaladnak 2 p

2.) Vizsgáljuk a feladatot az úszó rönkhöz kötött vonatkoztatási rendszerben. Mindegyik csónakra a rönktől való távolodás ideje és a közeledések ideje megegyezik.