SBML Model Report

Model name: "Bartholome2007_MDCKII"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following two authors: Kilian Bartholom¹ and Lukas Endler² at September 25th 2008 at 4:51 p.m. and last time modified at April eighth 2016 at 3:52 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	3
species types	0	species	7
events	0	constraints	0
reactions	10	function definitions	0
global parameters	12	unit definitions	6
rules	2	initial assignments	0

Model Notes

SBML model exported from PottersWheel on 2007-09-19 15:35:47.

The values for parameters and the inital concentrations of this model where directly provided by the main author:

Parameter values —p0.3—p0.3—p0.3—

¹Department for brain research, Anatomical Institute I, Hansastr. 9a, D-79104 Freiburg, Germany, bartholo@uni-freiburg.de

²EMBL-EBI, lukas@ebi.ac.uk

parameter value unit

p1 0.0025 1/min
p2 0.0784 1/min
p3 0.0013 1/min
p4 0.0827 1/min
p5 0.0091 1/min
p6 0.000064 1/(nmole*min)
p7 0.0397 1/min
p8 1000 nmole
p9 0.0098 1/(nmole*min)
p10 1.6 1/min
p11 1000 nmole
p12 0.0003 ml/min

The basal chamber volume was taken as 1 ml, the apical as 1.5. As starting values x1 was set to 88 nmole, all other species to 0.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of eight unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nmole

Definition nmol

2.2 Unit volume

Name ml

Definition ml

2.3 Unit time

Name min

Definition 60 s

2.4 Unit permin

Name permin

Definition $(60 \text{ s})^{-1}$

2.5 Unit ml_per_min

Name ml_per_min

Definition $ml \cdot (60 s)^{-1}$

2.6 Unit per_nmole_per_ml

Name per_nmole_per_ml

Definition $nmol^{-1} \cdot (60 \text{ s})^{-1}$

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

 $\textbf{Definition}\ m$

3 Compartments

This model contains three compartments.

Table 2: Properties of all compartments.

		1					
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
basolat	basolateral extrocellular space	0000290	3	1	litre		
cell	intracellular	0000290	3	1	litre	$\overline{\mathbf{Z}}$	
apical	apical extracellular space	0000290	3	1.5	ml	$ \overline{\mathbf{Z}} $	

3.1 Compartment basolat

This is a three dimensional compartment with a constant size of one ml.

Name basolateral extrocellular space

SBO:0000290 physical compartment

3.2 Compartment cell

This is a three dimensional compartment with a constant size of one ml.

Name intracellular

SBO:0000290 physical compartment

3.3 Compartment apical

This is a three dimensional compartment with a constant size of 1.5 ml.

Name apical extracellular space

SBO:0000290 physical compartment

4 Species

This model contains seven species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi- tion
x1	free basolateral BSP	basolat	nmol		
x2	basolateral bound BSP	basolat	nmol		
x3	free intracellular BSP	cell	nmol		
x4	bound intracellular BSP	cell	nmol		
x5	apical BSP	apical	nmol		
$BSP_{\mathtt{tot}}$	total BSP	apical	nmol		
BSP_cell	intracellular BSP	cell	nmol		

5 Parameters

This model contains twelve global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
p1			0.003	$(60 \text{ s})^{-1}$	\square
p2			0.078	$(60 \text{ s})^{-1}$	
р3			0.001	$(60 \mathrm{s})^{-1}$	
p4			0.083	$(60 \mathrm{s})^{-1}$	
p5			0.009	$(60 \mathrm{s})^{-1}$	
p6			$6.4\cdot10^{-5}$	$n \text{mol}^{-1} \cdot (60 \text{ s})^{-1}$	
p7			0.040	$(60 \mathrm{s})^{-1}$	
p8			1000.000	nmol	
p9			0.010	$n \text{mol}^{-1} \cdot (60 \text{ s})^{-1}$	
p10			1.600	$(60 \text{ s})^{-1}$	
p11			1000.000	nmol	
p12			$3 \cdot 10^{-4}$	$ml \cdot (60 s)^{-1}$	\square

6 Rules

This is an overview of two rules.

6.1 Rule BSP_tot

Rule BSP_tot is an assignment rule for species BSP_tot:

$$[BSP_tot] = x1 + x2 + x3 + x4 + x5$$
 (1)

Derived unit nmol

6.2 Rule BSP_cell

Rule BSP_cell is an assignment rule for species BSP_cell:

$$[BSP_cell] = x3 + x4 \tag{2}$$

Derived unit nmol

7 Reactions

This model contains ten reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	OATP1B3	OATP1B3 mediated import	$x1 \longrightarrow x3$	0000185
2	ABCC2	ABCC2 mediated export	$x3 \longrightarrow x5$	0000185
3	endo_in_bl	endogenous basolateral import	$x1 \longrightarrow x3$	0000185
4	endo_ex_bl	endogenous basolateral export	$x3 \longrightarrow x1$	0000185
5	endo_ex_ap	endogenous apical export	$x3 \longrightarrow x5$	0000185
6	bl_BSP_binding	basolateral BSP binding	$x1 \longrightarrow x2$	0000177
7	bl_BSP_dissoc	basolateral BSP dissoc	$x2 \longrightarrow x1$	0000180
8	cellular_BSP-	cellular BSP binding	$x3 \longrightarrow x4$	0000177
	_binding			
9	cellular_BSP-	cellular BSP dissoc	$x4 \longrightarrow x3$	0000180
	_dissoc			
10	$paracell_transp$	paracellular transport	$x1 \rightleftharpoons x5$	0000185

7.1 Reaction OATP1B3

This is an irreversible reaction of one reactant forming one product.

Name OATP1B3 mediated import

SBO:0000185 transport reaction

Reaction equation

$$x1 \longrightarrow x3$$
 (3)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
x1	free basolateral BSP	

Product

Table 7: Properties of each product.

Id	Name	SBO
х3	free intracellular BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_1 = p1 \cdot x1 \tag{4}$$

7.2 Reaction ABCC2

This is an irreversible reaction of one reactant forming one product.

Name ABCC2 mediated export

SBO:0000185 transport reaction

Reaction equation

$$x3 \longrightarrow x5$$
 (5)

Reactant

Table 8: Properties of each reactant

1401	Table 6. I Toperties of each reactant.			
Id	Name	SBO		
x3	free intracellular BSP			

Product

Table 9: Properties of each product.

Id	Name	SBO
x5	apical BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_2 = p2 \cdot x3 \tag{6}$$

7.3 Reaction endo_in_bl

This is an irreversible reaction of one reactant forming one product.

Name endogenous basolateral import

SBO:0000185 transport reaction

Reaction equation

$$x1 \longrightarrow x3$$
 (7)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
x1	free basolateral BSP	

Product

Table 11: Properties of each product

racit	of the perties of each p	or o a a c c .
Id	Name	SBO
хЗ	free intracellular BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_3 = p3 \cdot x1 \tag{8}$$

7.4 Reaction endo_ex_bl

This is an irreversible reaction of one reactant forming one product.

Name endogenous basolateral export

SBO:0000185 transport reaction

Reaction equation

$$x3 \longrightarrow x1$$
 (9)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
хЗ	free intracellular BSP	

Product

Table 13: Properties of each product.

Id	Name	SBO
x1	free basolateral BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_4 = p4 \cdot x3 \tag{10}$$

7.5 Reaction endo_ex_ap

This is an irreversible reaction of one reactant forming one product.

Name endogenous apical export

SBO:0000185 transport reaction

Reaction equation

$$x3 \longrightarrow x5$$
 (11)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
хЗ	free intracellular BSP	

Product

Table 15: Properties of each product.

Id	Name	SBO
x5	apical BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_5 = p5 \cdot x3 \tag{12}$$

7.6 Reaction bl_BSP_binding

This is an irreversible reaction of one reactant forming one product.

Name basolateral BSP binding

SBO:0000177 non-covalent binding

Reaction equation

$$x1 \longrightarrow x2$$
 (13)

Reactant

Table 16: Properties of each reactant.

	Name	SBO
x1	free basolateral BSP	_

Product

Table 17: Properties of each product.

	r	
Id	Name	SBO
x2	basolateral bound BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_6 = p6 \cdot x1 \cdot (p8 - x2) \tag{14}$$

7.7 Reaction bl_BSP_dissoc

This is an irreversible reaction of one reactant forming one product.

Name basolateral BSP dissoc

SBO:0000180 dissociation

Reaction equation

$$x2 \longrightarrow x1$$
 (15)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
x2	basolateral bound BSP	

Product

Table 19: Properties of each product.

	Name	SBO
x1	free basolateral BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_7 = p7 \cdot x2 \tag{16}$$

7.8 Reaction cellular_BSP_binding

This is an irreversible reaction of one reactant forming one product.

Name cellular BSP binding

SBO:0000177 non-covalent binding

Reaction equation

$$x3 \longrightarrow x4$$
 (17)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
x3	free intracellular BSP	

Product

Table 21: Properties of each product.

Id	Name	SBO
_x4	bound intracellular BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_8 = p9 \cdot x3 \cdot (p11 - x4) \tag{18}$$

7.9 Reaction cellular_BSP_dissoc

This is an irreversible reaction of one reactant forming one product.

Name cellular BSP dissoc

SBO:0000180 dissociation

Reaction equation

$$x4 \longrightarrow x3$$
 (19)

Reactant

Table 22: Properties of each reactant.

THE TOP THE STATE OF THE STATE		
Id	Name	SBO
x4	bound intracellular BSP	_

Product

Table 23: Properties of each product.

Id	Name	SBO
х3	free intracellular BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_9 = p10 \cdot x4 \tag{20}$$

7.10 Reaction paracell_transp

This is a reversible reaction of one reactant forming one product.

Name paracellular transport

SBO:0000185 transport reaction

Reaction equation

$$x1 \rightleftharpoons x5$$
 (21)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
x1	free basolateral BSP	

Product

Table 25: Properties of each product.

Id	Name	SBO
х5	apical BSP	

Kinetic Law

Derived unit $(60 \text{ s})^{-1} \cdot \text{nmol}$

$$v_{10} = p12 \cdot \left(\frac{x1}{\text{vol}(\text{basolat})} - \frac{x5}{\text{vol}(\text{apical})}\right)$$
 (22)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species x1

Name free basolateral BSP

SBO:0000247 simple chemical

Initial amount 88 nmol

This species takes part in six reactions (as a reactant in OATP1B3, endo_in_bl, bl_BSP_binding, paracell_transp and as a product in endo_ex_bl, bl_BSP_dissoc).

$$\frac{\mathrm{d}}{\mathrm{d}t}x1 = v_4 + v_7 - v_1 - v_3 - v_6 - v_{10} \tag{23}$$

8.2 Species x2

Name basolateral bound BSP

SBO:0000247 simple chemical

Initial amount 0 nmol

This species takes part in two reactions (as a reactant in bl_BSP_dissoc and as a product in bl_BSP_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}x2 = v_6 - v_7 \tag{24}$$

8.3 Species x3

Name free intracellular BSP

SBO:0000247 simple chemical

Initial amount 0 nmol

This species takes part in seven reactions (as a reactant in ABCC2, endo_ex_bl, endo_ex_ap, cellular_BSP_binding and as a product in OATP1B3, endo_in_bl, cellular_BSP_dissoc).

$$\frac{\mathrm{d}}{\mathrm{d}t}x3 = v_1 + v_3 + v_9 - v_2 - v_4 - v_5 - v_8 \tag{25}$$

8.4 Species x4

Name bound intracellular BSP

SBO:0000247 simple chemical

Initial amount 0 nmol

This species takes part in two reactions (as a reactant in cellular_BSP_dissoc and as a product in cellular_BSP_binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}x4 = v_8 - v_9 \tag{26}$$

8.5 Species x5

Name apical BSP

SBO:0000247 simple chemical

Initial amount 0 nmol

This species takes part in three reactions (as a product in ABCC2, endo_ex_ap, paracell_transp).

$$\frac{\mathrm{d}}{\mathrm{d}t}x5 = v_2 + v_5 + v_{10} \tag{27}$$

8.6 Species BSP_tot

Name total BSP

SBO:0000247 simple chemical

Involved in rule BSP_tot

One rule determines the species' quantity.

8.7 Species BSP_cell

Name intracellular BSP

SBO:0000247 simple chemical

Involved in rule BSP_cell

One rule determines the species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:0000177 non-covalent binding: Interaction between several biochemical entities that results in the formation of a non-covalent comple

SBO:0000180 dissociation: Transformation of a non-covalent complex that results in the formation of several independent biochemical entitie

SBO:0000185 *transport reaction:* Movement of a physical entity without modification of the structure of the entity

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany