UNIVERSIDADE FEDERAL DE VIÇOSA <u>DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEL</u> ELT210 – MEDIDAS ELÉTRICAS E MAGNÉTICAS

Professores: Tarcísio Pizziolo

Lista 3 - Exercícios de Aplicação - Corrente Alternada

1) Para o circuito dado considere $R = 200 \Omega$, $\varepsilon(t) = 36.sen(wt)$ (V) e f = 60 Hz.

- a) Qual a diferença de potencial $v_R(t)$ entre os terminais do resistor?
- b) Qual é a corrente $i_R(t)$ no resistor?
- 2) Para o circuito dado considere $C = 15 \mu F$, $\varepsilon(t) = 36.\text{sen(wt)}$ (V) e f = 60 Hz.

- a) Qual a diferença de potencial $v_C(t)$ entre os terminais do capacitor?
- b) Qual é a corrente $i_C(t)$ no capacitor?
- 3) Para o circuito dado considere L = 230 mH, $\varepsilon(t) = 36.\text{sen(wt)}$ (V) e f = 60 Hz.

- a) Qual a diferença de potencial v_L(t) entre os terminais do indutor?
- b) Qual é a corrente $i_L(t)$ no indutor?
- 4) Seja o circuito RLC série alimentado pela fonte de tensão ϵ_{ef} = 120 V, f = 60 Hz, R = 200 Ω , X_L = 80 Ω e X_C = 150 Ω .

Determinar:

- a) a constante de fase do circuito.
- b) o fator de potência do circuito.
- c) a potência média dissipada pelo circuito.

- 5) Para o circuito da questão anterior considere $\epsilon_m=300$ V, f=60 Hz, R=4 $\Omega,$ L=60 mH e C=150 $\mu F.$ Determine:
- $a) \; X_C. \quad b) \; X_L. \quad c) \; Z. \quad d) \; i_m. \quad e) \; \phi. \quad f) \; cos(\phi). \quad g) \; \epsilon_{ef}. \quad h) \; i_{ef}. \quad i) \; P_{m\acute{e}dia}.$
- j) se este circuito é predominantemente indutivo ou capacitivo, por quê?
- 6) Uma tensão contínua $\varepsilon_0=120~V$ é aplicada a um circuito resistivo de uma única malha com $R=150~\Omega$.
- a) Qual a potência dissipada nesta condição?
- b) Se $\varepsilon_0 = 120$ V for substituída por $\varepsilon_0 = \varepsilon_m sen(wt)$ V, quanto deve ser o valor de ε_m para que a potência média permaneça inalterada?
- 7) Os instrumentos de medição analógicos CA apresentam em seus mostradores o Valor Eficaz da corrente ou da tensão medidas. Este Valor Eficaz, o qual é constante na medição em CA, pode ser determinado através do Valor Médio da forma de onda aplicada. Para tal necessita-se de um circuito auxiliar para a realização da conversão do Valor Máximo da grandeza medida em Valor Médio e em seguida determinar-se o Valor Eficaz da mesma. O circuito mais utilizado é denominado "Ponte Retificadora". Considerando uma fonte de tensão $\epsilon(t) = \epsilon_m sen(wt)$ V para os três casos a seguir, a Figura 1b mostra o gráfico da tensão com seu Valor Médio igual a zero, a Figura 2b mostra o gráfico da tensão com seu Valor Médio igual a ϵ_m/π e a Figura 3b mostra o gráfico da tensão com seu Valor Médio igual a ϵ_m/π .

- a) Descreva o funcionamento do circuito da Figura 1 quanto à geração do gráfico de tensão.
- b) Descreva o funcionamento do componente eletrônico denominado "Diodo" aplicado nos circuitos das Figuras 2 e 3 quanto à geração dos gráficos de tensão.
- b) Calcule os Valores Médios das tensões dos gráficos das Figuras 1b, 2b e 3b.
- c) Calcule os Valores Eficazes das tensões dos gráficos das Figuras 1b, 2b e 3b.