Data Mining in Action

Лекция 4 Преобразование признаков

Виктор Кантор

План

- 1. Задача понижения размерности
- 2. Метод главных компонент и SVD
- 3. Manifold learning

Как выглядит обучающая выборка

Fisher's Iris Data

Sepal length ¢	Sepal width 🔺	Petal length \$	Petal width \$	Species +
5.0	2.0	3.5	1.0	I. versicolor
6.0	2.2	5.0	1.5	I. virginica
6.2	2.2	4.5	1.5	I. versicolor
6.0	2.2	4.0	1.0	I. versicolor
6.3	2.3	4.4	1.3	I. versicolor
5.5	2.3	4.0	1.3	I. versicolor
5.0	2.3	3.3	1.0	I. versicolor
4.5	2.3	1.3	0.3	I. setosa
5.5	2.4	3.8	1.1	I. versicolor
5.5	2.4	3.7	1.0	I. versicolor
4.9	2.4	3.3	1.0	I. versicolor
6.7	2.5	5.8	1.8	I. virginica
5.7	2.5	5.0	2.0	I. virginica
6.3	2.5	5.0	1.9	I. virginica
6.3	2.5	4.9	1.5	I. versicolor
4.9	2.5	4.5	1.7	I. virginica

Что хотелось бы уметь

- Визуализировать обучающую выборку, когда признаков больше трёх
- Уменьшать количество признаков, переходя к новым, более информативным

Визуализируем выборку

Iris Data (red=setosa,green=versicolor,blue=virginica)

Более сложный случай

Что делать, если признаков еще больше?

Пример случайной проекции для рукописных цифр

Проблемы «лишних признаков»

Если признаки сильно коррелированы, то у многих методов машинного обучения будут проблемы (например, из-за неустойчивости обращения матрицы ковариаций, где это нужно)

Principal Component Analysis 1

• Идея 1: давайте выделять в пространстве признаков направления, вдоль которых разброс точек наибольший (они кажутся наиболее информативными)

РСА (интерпретация 1)

Пример: eigenfaces

Рукописные цифры: проекция на главные компоненты

Principal Components projection of the digits (time 0.02s) 0

РСА (интерпретация 2)

• Вторая идея: давайте строить проекцию выборки на линейное подпространство меньшей размерности. А выбирать его так, чтобы квадраты отклонений точек от проекций были минимальны.

РСА (интерпретация 2)

original data space

РСА (интерпретация 3)

Пусть точки получены из многомерного нормального распределения. Перейдем в такой базис, в котором матрица ковариаций станет диагональной. И оставим те направления, для которых больше дисперсия.

РСА (интерпретация 4)

Приблизим исходную матрицу признаков произведением двух матриц:

$$X \approx U \cdot V^T$$
 $l \times n \quad l \times k \quad k \times n$

$$||X - U \cdot V^T|| \rightarrow min$$

РСА: как сделать?

- Центрируем выборку (из каждого признака вычитаем среднее значение), получаем матрицу X с новыми значениями признаков
- Делаем SVD-разложение матрицы X:

$$X \approx A \cdot \Lambda \cdot B^T$$

Выбираем $U = A \cdot \Lambda$, V = B

SVD

SVD = Singular Vector Decomposition (сингулярное разложение матриц)

Позволяет получить наилучшее приближение исходной матрицы X матрицей X' ранга k.

Применяется для снижения размерности пространства признаков.

SVD

SVD: пример

SVD: пример

SVD: пример

Геометрический смысл SVD

А что, если линейных преобразований признаков мало?

- Идея 1: объекты могут лежать в пространстве признаков на поверхности малой размерности.
- Идея 2: эта поверхность может быть нелинейной.

Нелинейное преобразование признаков

- SOM (Self-Organizing Maps) самоорганизующиеся карты Кохонена. Не самый новый алгоритм, но идейно очень прост.
- Есть целое направление Manifold Learning

Manifold learning: Isomap

Manifold learning: t-SNE

t-SNE embedding of the digits (time 23.50s)

Резюме

- 1. Задача понижения размерности
- 2. Метод главных компонент и SVD
- 3. Manifold learning

На следующей лекции: анализ текстов