In-Class Activity #8

Vancouver Summer Program 2017 Algorithms and the Internet

1. (Minimum Weighted Triangulation) A triangulation of a convex polygon P is a set of nonintersecting diagonals (chords between vertices of the polygon) that partitions the polygon into triangles. We say that the *weight* of a triangulation is the sum of the lengths of its diagonals. Any given polygon may have many different triangulations. We want to find the minimum weighted triangulation of a given convex polygon P.

Hint: Label the vertices of P by $1, \ldots, n$ starting from an arbitrary vertex and walking clockwise. How many subproblems are there?

2.	. Given is a tree T with n verting is covered on at least 1 end (of T has an endpoint that is	ices. Find mini (i.e., if $VC \subset V$ in VC).	mum set of vertiles is a (vertex) co	tices such that ϵ ver of T , then ϵ	very edge very edge