Abbot Chapter 1 Section 2

Heman Gandhi 2024-10-22

Exercise 1.2.1-a

This follows the exercise_1_2_1 section in Lean, so might be overly detailed. I'm also pretentiously going to use lemmas that correspond to the Lean theorems.

Lemma. First, we show that for $n \in \mathbb{N}$, we know that there is an $x \in \mathbb{N}$ so that 3x = n, 3x + 1 = n, or 3x + 2 = n.

Proof. We proceed by induction, showing that $3 \cdot 0 = 0$, then if the statement holds for n, we proceed by cases and show that for the same x we reached for n, we either have 3x + 1 = n + 1, 3x + 2 = n + 1, or 3(x + 1) = n + 1.

Lemma. If $n \in \mathbb{N}$, then $3 \nmid n$ if and only if for some $x \in \mathbb{N}$, 3x + 1 = n or 3x + 2 = n.

Proof. We can prove the forward direction by the above statement: since 3x = n would contradict the assumption that $3 \nmid n$.

The reverse direction is simplest by contradiction: if we have the x with remainder 1 or 2, we cannot find some y so that 3y = n, since we'd form the equation 3(y - x) = r for r being 1 or 2, which is absurd since 3 cannot divide a non-zero number less than itself.

For the final lemma: we show that

Lemma. For $a, b \in \mathbb{N}$ if $3 \mid ab$, $3 \mid a$ or $3 \mid b$.

Proof. We show the contrapositive: assuming $3 \nmid a$ and $3 \nmid b$, we have $3x_a + r_a = a$ and $3x_b + r_b = b$ for $x_a, x_b \in \mathbb{N}$ and $r_a, r_b \in \{1, 2\}$ from the forward direction of the above. We compute ab with the above in all four cases:

- 1. if $r_a, r_b = 1$, then $ab = 9x_ax_b + 3x_a + 3x_b + 1 = 3(3x_ax_b + x_a + x_b) + 1$;
- 2. if $r_a = 1$, $r_b = 2$, then $ab = 9x_ax_b + 6x_a + 3x_b + 1 = 3(3x_ax_b + 2x_a + x_b) + 2$;
- 3. if $r_a = 2$, $r_b = 1$, then $ab = 9x_ax_b + 3x_a + 6x_b + 1 = 3(3x_ax_b + x_a + 2x_b) + 2$;
- 4. if $r_a, r_b = 2$, then $ab = 9x_ax_b + 6x_a + 6x_b + 4 = 3(3x_ax_b + 2x_a + 2x_b + 1) + 1$.

In all the cases, we can express ab = 3y + r for $y \in \mathbb{N}$ and $r \in \{1, 2\}$ and apply the backwards direction of the lemma above to conclude $3 \nmid ab$, showing the contrapositive.

Lemma. $\sqrt{3}$ is irrational.

Proof. For contradiction, let $a, b \in \mathbb{N}$ and $\frac{a^2}{b^2} = 3$. Without loss of generality, we can assume that a and b don't share factors. Rewriting this as $a^2 = 3b^2$, we see that $3 \mid a^2$, so the above gives us that $3 \mid a$. Hence, we write a = 3d, so $a^2 = 9d^2 = 3b^2$, which means that $b^2 = 3d^2$, so $3 \mid b$. This contradicts the assumption that a and b don't share factors. \square

The proof would more-or-less work for $\sqrt{6}$.

The proof below is kept brief, emphasizing the differences between the case for $\sqrt{3}$ and $\sqrt{6}$. Lean has all the details.

Lemma. $\sqrt{6}$ is irrational.

Proof. We follow the above structure of the proof for $\sqrt{3}$: we have that for $n \in \mathbb{N}$, there is an $x \in \mathbb{N}$ and $0 \le r \le 5$ with $r \in \mathbb{N}$. Futhermore, r = 0 if and only if $6 \mid n$. Finally, instead of the prior lemma, we show $6 \mid a^2$ implies $6 \mid a$. If we attempt the contrapositive, we have 5 cases for a = 6x + r, where we rewrite $a^2 = 6(6x^2 + 2rx) + r^2 = 6y + r^2$:

- 1. if r = 1, $r^2 = 1$, so $a^2 = 6y + 1$;
- 2. if r = 2, $r^2 = 4$, so $a^2 = 6y + 4$;
- 3. if r = 3, $r^2 = 9$, so $a^2 = 6(y+1) + 3$;
- 4. if r = 4, $r^2 = 16$, so $a^2 = 6(y + 2) + 4$;
- 5. if r = 5, $r^2 = 25$, so $a^2 = 6(y+4) + 1$.

This shows that if $a \nmid 6$, $a^2 \nmid 6$. We can proceed with this, showing that if $a^2 = 6b^2$ and a and b don't share factors, we get $6 \mid a$ and $6 \mid b$.

Exercise 1.2.1-b

The proof of theorem 1.1.1 breaks down at the first supposition that $p^2 = 4q^2$ as p = 2, q = 1 already suffices. Furthermore, $4 \mid 6^2$ but $4 \nmid 6$, so in the next step, we cannot conclude anything from the fact that $4 \mid p^2$.

Exercise 1.2.2

Proof. If we suppose that $2^r = 3$ for some rational r, we can show that $2^p = 3^q$ for some $p, q \in \mathbb{N}$ with p > 1. However, we can show that all such powers of 2 are even whereas all powers of 3 are odd. Therefore, such a p, q cannot exist. \square

Exercise 1.2.3-a

We use $A_n = \{2^{(n+k)} : k \in \mathbb{N}\}$. The $\bigcap_{n=1}^{\infty} A_n = \emptyset$.

Exercise 1.2.3-b

I couldn't find the well-ordering principle in the text, but I think that's clearly the way to prove this.

Since all A_n are finite, and each A_n is a subset of the prior ones, there must be one of a minimal cardinality c, and $c \ge 1$ since even the smallest set must be nonempty. All sets will contain this smallest set, so it will be the intersection, which is, therefore, finite and nonempty.

Exercise 1.2.3-c

Take $A = \{1, 2, 3\}, B = \{2, 4\}, \text{ and } C = \{3, 6\} \text{ to observe that } A \cap (B \cup C) = \{2, 3\} \neq (A \cap B) \cup C = \{2, 3, 6\}.$

Exercise 1.2.3-d

Yes: if $x \in A \cap (B \cap C)$, x is in all of A, B, and C, so $x \in (A \cap B) \cap C$ and similarly in the reverse direction.

Exercise 1.2.3-e

Yes: if $x \in A \cap (B \cup C)$, we know $x \in A$ and $x \in B$ or $x \in C$, so either $x \in A \cap B$ since $x \in B$, or $x \in A \cap C$ otherwise. In reverse, if $x \in A \cap B$, in $x \in A$ and B, so $x \in A \cap (B \cup C)$ and similarly if $x \in C$.

Exercise 1.2.4

Let A_i be the subset of \mathbb{N} formed by numbers with i prime factors (forgetting exponents – so $12 \in A_2$). Then, by unique factorization, each $n \in \mathbb{N}$ is in exactly one A_i . Hence, if $i \neq j$, $A_i \cap A_j = \emptyset$, and $\bigcup_{i=1}^{\infty} A_i = \mathbb{N}$.

Exercise 1.2.5-a

Proof. Let $x \in (A \cap B)^c$. Then, $x \notin A \cap B$, so it is not the case that $x \in A$ and $x \in B$; therefore, by the propositional DeMorgan's rule, $x \notin A$ or $x \notin B$, so $x \in A^c \cup B^c$.

Exercise 1.2.5-b

Proof. Put $x \in A^c \cup B^c$. Then, $x \notin A$ or $x \notin B$, which, by the propositional DeMorgan's rule, gives $x \notin (A \cap B)^c$.

Exercise 1.2.5-c

Proof. If $x \in (A \cup B)^c$, then x is not in A or B, so by the propositional DeMorgan's rule, $x \in A^c \cap B^c$. Similarly, if $x \in A^c \cap B^c$, $x \notin A$ and $x \notin B$, so by DeMorgan's rule, $x \notin A \cap B$, thus, $x \in (A \cap B)^c$.

Exercise 1.2.6-a

Proof. Suppose $a, b \ge 0$. Then |a + b| = a + b = |a| + |b| so $|a + b| \le |a| + |b|$. If $a, b \le 0$, then we can rewrite a = -x and b = -y where $x, y \ge 0$, so |-x - y| = |-1||x + y| = x + y = |-x| + |-y|, so $|a + b| \le |a| + |b|$. □

Exercise 1.2.6-b

Proof. If $a, b \ge 0$, |a| = a, |b| = b, so $(a + b)^2 = (|a| + |b|)^2$. If $a, b \le 0$, we can factor out the -1, so $(-a - b)^2 = (a + b)^2$ and since |a| = -a and |b| = -b, we get $(a + b)^2 = (|a| + |b|)^2$. Finally suppose that a and b have different signs. Then, without loss of generality, suppose $a \ge 0$ and $b \le 0$, so that b = -c for $c \ge 0$. Then $(a + b)^2 = a^2 - 2bc + c^2$ while $(|a| + |b|)^2 = a^2 + 2ac + c^2$, and since $a, c \ge 0$, we know that $(a+b)^2 \le (|a|+|b|)^2$.

 $0 \le a \le b$ if and only if $0 \le a^2 \le b^2$, so because $|a+b| \ge 0$ and $|a|+|b| \ge 0$, $|a+b| \le |a|+|b|$ if and only if $|a+b|^2 \le (|a|+|b|)^2$. Then, since $(a+b)^2 \le (|a|+|b|)^2$ and $|a+b|^2 = (a+b)^2$ (because if a+b < 0, the -1 multiplies out), we know that $|a+b| \leq |a| + |b|$.

Exercise 1.2.6-c

Proof. a-b=a-c+c-d+d-b, applying $|\cdot|$ to both sides, $|a-b| \leq |a-c|+|c-d+d-b|$ by the triangle inequality, and the triangle inequality gives $|c-b| \le |c-d| + |d-b|$, so $|a-b| \le |a-c+c-d+d-b|$.

Exercise 1.2.6-d

Proof. $||a| - |b|| = ||a - b + b| - |b|| \le ||a - b|| + |b| - |b|| = ||a - b|| = |a - b||$, where the inequality is from the triangle inequality.