Solutions Lecture 13 Intelligent System Programming (ISP)

Exercise 1 (adapted from C83 5.2)

1) Let c_i denote constraint number i.

Combination 1, $c_3 + c_4 : 7x_1 + 3x_2 \le 12$

Combination 2, $2c_1 + c_4 : 3x_1 - 2x_2 \le 4$

Combination 3, $c_1 + 2c_2 : -x_1 - x_2 \le 1$

2) The Dual Problem

Minimize
$$-y_1 + y_2 + 6y_3 + 6y_4 + 6y_5$$

Subject to
$$-3y_1 + y_2 - 2y_3 + 9y_4 - 5y_5 \ge -1$$

$$y_1 - y_2 + 7y_3 - 4y_4 + 2y_5 \ge -2$$

$$y_1, y_2, y_3, y_4 \ge 0$$

3) The Dual Problem on standard form

Maximize
$$y_1 - y_2 - 6y_3 - 6y_4 - 6y_5$$

Subject to
$$3y_1 - y_2 + 2y_3 - 9y_4 + 5y_5 \le 1$$

$$-y_1 + y_2 - 7y_3 + 4y_4 - 2y_5 \le 2$$

$$y_1, y_2, y_3, y_4 \ge 0$$

Initial dictionary (slack form of dual on standard form)

Maximum increase y₁

$$y_6 = 1 - 3y_1 + y_2 - 2y_3 + 9y_4 - 5y_5$$
 1/3
 $y_7 = 2 + y_1 - y_2 + 7y_3 - 4y_4 + 2y_5$ ∞

$$z = y_1 - y_2 - 6y_3 - 6y_4 - 6y_5$$

First dictionary (optimal)

$$y_1 = \frac{1}{3} + \frac{1}{3}y_2 - \frac{2}{3}y_3 + \frac{3}{4}y_4 - \frac{5}{3}y_5 - \frac{1}{3}y_6$$

$$y_7 = 2 + (\frac{1}{3} + \frac{1}{3}y_2 - \frac{2}{3}y_3 + \frac{3}{4}y_4 - \frac{5}{3}y_5 - \frac{1}{3}y_6) - y_2 + \frac{7}{3}y_3 - 4y_4 + \frac{2}{3}y_5 - \frac{1}{3}y_6$$

$$z = (\frac{1}{3} + \frac{1}{3}y_2 - \frac{2}{3}y_3 + \frac{3}{4}y_4 - \frac{5}{3}y_5 - \frac{1}{3}y_6) - y_2 - 6y_3 - 6y_4 - 6y_5$$

$$= \frac{1}{3} - \frac{2}{3}y_2 - \frac{20}{3}y_3 - \frac{3}{4}y_4 - \frac{23}{3}y_5 - \frac{1}{3}y_6$$

4)

Dual solution: $y_1 = 1/3$, $y_2 = 0$, $y_3 = 0$, $y_4 = 0$, $y_5 = 0$

Primal solution: $x_1 = 1/3$, $x_2 = 0$

5)

Checking primal feasibility:

$$-3*1/3 + 0 \le 0$$
 ok
 $1/3 - 0 \le 1$ ok
 $-2*1/3 + 0 \le 6$ ok
 $9*1/3 - 0 \le 6$ ok
 $-5*1/3 + 0 \le 0$ ok

Primal objective value: -1/3 + 0 = -1/3

Checking dual feasibility

$$-3*1/3 + 0 - 0 + 0 - 0 \ge -1$$
 ok
 $1/3 - 0 + 0 - 0 + 0 \ge -1$ ok

Dual objective value: -1/3 - 0 - 0 - 0 - 0 = -1/3

Dual objective value = Primal objective value ok

Exercise 2

Unbounded dual (make a geometric interpretation of the problem if in doubt)

Minimize $-y_1$ Subject to $y_1 - y_2 \ge 0$

 $y_1, y_2 ≥ 0$

Dual on standard form

Maximize y_1

Subject to $-y_1 + y_2 \le 0$

 $y_1, y_2 \ge 0$

Primal (dual of dual)

Minimize 0
Subject to
$$-x_1 \ge 1$$

 $x_1 \ge 0$
 $x_1, x_2 \ge 0$

The sum of constraint 1 and 2 is $0 \ge 1$ which is impossible. So Primal is infeasible.

Exercise 3

1) Again let c_i denote constraint i

Initial dictionary:

$$y_1 = 0$$
, $y_2 = 0$, $y_3 = 0$

$$0c_1 + 0c_2 + 0c_3 \Leftrightarrow 0x_1 + 0x_2 + 0x_3 \le 0$$

First dictionary:

$$y_1 = 5/2$$
, $y_2 = 0$, $y_3 = 0$

$$5/2c_1 + 0c_2 + 0c_3 \Leftrightarrow 10/2x_1 + 15/2x_2 + 5/2x_3 \le 25/2$$

Second dictionary (optimal):

$$y_1 = 1$$
, $y_2 = 0$, $y_3 = 1$

$$1c_1 + 0c_2 + 1c_3 \Leftrightarrow 5x_1 + 7x_2 + 3x_3 \le 13$$

- 2) z' is equal to the right side ("the bound") of the linear combinations
- 3) They must be since $z' < z^*$ for suboptimal dictionaries while any dual feasible liner combination of the constraints satisfy that the computed bound is larger than or equal to z^* .