

- 19 BUNDESREPUBLIK DEUTSCHLAND
- **® Offenlegungsschrift**
- _® DE 41 39 601 A 1

DEUTSCHES PATENTAMT

- ② Aktenzeichen: Anmeldetag:
- Offenlegungstag:

P 41 39 601.4

30.11.91

9. 6.93

⑤	Int. Cl. ⁵ :	
	C 08 F 210/14	
	C 08 F 220/00	
	C 08 F 212/06	_
	C 08 L 23/24	4
	C 08 L 27/06	•
	C 08 L 27/08	=
	C 08 L 23/08	8
	C 08 L 33/20	
	C 08 L 51/06	39
	B 29 C 33/62	
	// (C08F 210/14.	41
	220:06,220:12,212:06)	7
	(C08L 23/24,33:02,	ш
	33:06,25:02) (C08L	$\overline{\Box}$
	23/08.31:04)	

(71) Anmelder:

Hoechst AG, 6230 Frankfurt, DE

@ Erfinder:

Heinrichs, Franz-Leo, Dr., 8901 Gablingen, DE; Hohner, Gerd, Dr., 8906 Gersthofen, DE; Lukasch, Anton, 8901 Meitingen, DE; Piesold, Jan-Peter, Dr., 8900 Augsburg, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (a) Copolymerisate und ihre Verwendung als Gleit- und Trennmittel für die Verarbeitung thermoplastischer Kunststoffe
- Copolymerisate, hergestellt durch radikalische Polymerisation eines C₁₂-C₆₀-a-Olefins mit einer Carbonsäure der Formel CH₂-CR¹-COOH, einem Carbonsäurester der Formel CH₂-CR¹-COOR² und gegebenenfalls einer Styrolverbindung, erweisen sich als hochwirksame Gleit- und Trennmittel in Polymeren, insbesondere in Polyvinylchlorid, die die Transparenz der Polymeren kaum beeinflussen.

41 39 601 A 1 DE

Beschreibung

Die vorliegende Erfindung bezieht sich auf Copolymerisate aus α-Olefinen, ungesättigten Carbonsäuren, ungesättigten Carbonsäureestern und gegebenenfalls Styrol sowie die Verwendung solcher Copolymerisate als

Hilfsmittel für die Verarbeitung von Kunststoffen.

Bei der Verarbeitung thermoplastischer Kunststoffe werden üblicherweise Gleitmittel eingesetzt, die einerseits das Fließverhalten der Polymerschmelze verbessern und andererseits deren Klebeneigung an den metallischen Teilen der Verarbeitungsmaschinen vermindern sollen. Eine besondere Bedeutung besitzen Gleitmittel bei der Verarbeitung von Polyvinylchlorid, da dieser Kunststoff aufgrund seiner Empfindlichkeit gegen hohe Temperaturbelastungen und Scherkräfte sowie seiner ausgeprägten Klebeneigung nicht ohne Gleitmittel verarbeitet werden kann.

Bei Gleitmitteln unterscheidet man zwischen solchen, die mit der Polymerschmelze gut verträglich sind und daher hauptsächlich fließverbessernd wirken (innere Gleitmittel) und solchen, die eine mehr oder minder große Unverträglichkeit besitzen und sich daher an Phasengrenzen anreichern und dort z. B. Trennwirkung entfalten

(äußere Gleitmittel). Zur Verbesserung des Fließverhaltens von Polyvinylchloridschmelzen steht eine Vielzahl von wohlfeilen, gut zugänglichen Produkten zur Verfügung. Hier sind beispielsweise Fettalkohole, Fettsäuren, Fettsäurepartialester

und Fettsäureamide zu nennen.

Problematischer ist die Auswahl von geeigneten äußeren Gleitmitteln für PVC, da diese zum Teil widersprüchliche Anforderungen erfüllen müssen. Um wirksam zu sein, müssen geeignete Gleitmittel eine gewisse Unverträglichkeit mit der PVC-Schmelze aufweisen, damit ein trennwirksamer Film zwischen der Schmelze und den Metallteilen der Verarbeitungsmaschinen entstehen kann. Unverträgliche Additive haben jedoch den Nachteil, daß sie häufig stark trübend auf das Endprodukt wirken. Bei den zahlreichen Anwendungen, bei denen ein hochtransparentes Endprodukt gewünscht wird, ist deswegen die zulässige Einsatzmenge eines Trennmittels häufig derart limitiert, daß seine Wirkung nicht mehr ausreichend ist. Besonders nachteilig wirken sich diese Probleme bei der Herstellung von dünnen PVC-Kalanderfolien aus, da die Klebeneigung und geringe mechanische Belastbarkeit derartiger Folien im heißen Zustand zur Loslösung von den Walzen einen hohen Gleitmitteleinsatz erfordert, andererseits jedoch an derartige Folien, z. B. im Verpackungssektor, besonders hohe Transparenzanforderungen gestellt werden.

Bekannte Gleitmittel für die Herstellung von weichmacherfreien PVC-Folien sind einerseits Montanwachse und andererseits praktisch neutrale Mischester aus aliphatischen, cycloaliphatischen oder aromatischen Dicarbonsäuren mit 2 bis 22 Kohlenstoffatomen, aliphatischen Polyolen mit 2 bis 6 Hydroxylgruppen und aliphatischen Monocarbonsäuren mit 12 bis 30 Kohlenstoffatomen mit Hydroxyl- bzw. Säurezahlen von 0 bis 6 (vgl. GB 12 92 548), sowie praktisch neutrale Mischester aus aliphatischen Diolen, aliphatischen, cycloaliphatischen oder aromatischen Polycarbonsäuren mit 2 bis 6 Carboxylgruppen und aliphatischen monofunktionellen Alkoholen

mit 12 bis 30 Kohlenstoffatomen (vgl. GB 14 50 273).

Weiterhin sind sind Seifen und Seifen-Ester bekannt, die aus langkettigen Carbonsäuren hergestellt werden, die durch radikalische Addition von kurzkettigen Monocarbonsäuren, vorzugsweise von Propionsäure, an langkettige α-Olefine mit 22 bis 100 C-Atomen zugänglich sind (vgl. US 40 29 682). Die so erhaltenen Seifen und Seifen-Ester sind zwar ausgezeichnete Gleit- und Trennmittel für die Kunststoffverarbeitung, erfordern jedoch zu ihrer Herstellung einen zwei- oder dreistufigen Herstellungsprozeß, der zur Verteuerung dieser Produkte führt. Vorteilhaft wäre es daher, wenn man in einem Reaktionsschritt direkt zu geeigneten Gleit- und Trennmit-

Beschrieben sind auch Gleit- und Trennmittel für chlorhaltige Thermoplaste, die durch Copolymerisation von Acrylsäure, Acrylsäureestern, Maleinsäure oder Maleinsäureestern mit Ethylen hergestellt werden (vgl. US 44 38 008). Diese Gleit- und Trennmittel sind zwar in einem Reaktionsschritt zugänglich und weisen eine gute Verträglichkeit und Trennwirkung in PVC auf, jedoch erfordert die Copolymerisation hohe Drücke und Tempe-

raturen, mithin speziell ausgelegte Apparaturen.

Schließlich sind Copolymerisate aus α-Olefinen mit mehr als 30 C-Atomen und Maleinsäure oder Maleinsäureestern bekannt (vgl. US 43 34 038). Diese Gleitmittel sind zwar in einem Reaktionsschritt ohne speziell ausgelegte Apparaturen zugänglich und weisen eine hohe Trennwirkung auf, besitzen jedoch noch nicht eine allseitig zufriedenstellende Wirkung in PVC.

Die aus anwendungstechnischer Sicht sehr vorteilhaften Montanwachse sind wegen ihres hohen Preises auf technisch anspruchsvolle Gebiete beschränkt. Die bekannten Mischester verursachen in modifiziertem Polyvinylchlorid bereits bei niederer Dosierung relativ starke Trübungen und kommen als Gleit- und Trennmittel für die Herstellung der besonders hochwertigen Niedertemperatur-(NT-) Folien (*Luvithermfolien), bei denen 2 bis 4 Teile Gleit- und Trennmittel auf 100 Teile E-PVC eingesetzt werden, nicht in Betracht.

Es bestand daher die Aufgabe, Gleit- und Trennmittel bereitzustellen, die einerseits die positiven Eigenschaften der Montanwachse, wie beispielsweise ihre Verwendbarkeit in NT-Folien aufweisen, und die andererseits auf

einfache und wirtschaftliche Weise zugänglich sind.

Die erfindungsgemäßen Gleit- und Trennmittel sind Copolymerisate aus α-Olefinen, ungesättigten Carbonsäuren und ungesättigten Carbonsäureestern sowie gegebenenfalls vinylaromatischen Verbindungen vom Sty-

Als a-Olefine kommen solche mit einer Kettenlänge von 12 bis 60, bevorzugt von 18 bis 60, besonders bevorzugt von 24 bis 60 C-Atomen in Frage. Es können sowohl kettenreine Olefine als auch Olefin-Gemische eingesetzt werden, wie sie z. B. in den bekannten Herstellverfahren als Destillationsschnitte oder Destillationsrückstände anfallen. Technische α -Olefingemische, insbesondere solche mit höherer Kettenlänge, können neben 1-Alkenen mehr oder minder hohe Mengen innen- und seitenständige olefinische Doppelbindungen (Vinyliden-

41 39 601 **A**1 DE

und Vinylengruppen) enthalten.

Als ungesättigte Carbonsäuren werden erfindungsgemäß Verbindungen der allgemeinen Formel CH2=CR1-COOH, worin R1 ein Wasserstoffatom oder eine Methylgruppe ist, also beispielsweise Acryl- oder Methacrylsäure eingesetzt. Als ungesättigte Carbonsäureester werden Verbindungen der allgemeinen Formel CH₂=CR¹-COOR² verwendet, wobei R¹ die obige Bedeutung hat und R² einen geradkettigen oder verzweigten Alkylrest mit 1 bis 6 C-Atomen bedeutet. Bevorzugt sind die Methyl- und Ethylester der Acryl- oder Methacrylsäure, besonders bevorzugt ist der Methylester der Acrylsäure.

Als vinylaromatische Verbindungen können Styrol, 3-Methylstyrol, 4- Methylstyrol oder α-Methylstyrol eingesetzt werden. Möglich ist auch der Einsatz mehrerer der genannten Carbonsäuren, Carbonsäureester und

gegebenenfalls Styrolen.

Die Herstellung der erfindungsgemäßen Gleitmittel erfolgt in an sich bekannter Weise durch Umsetzung der Ausgangsmonomeren unter katalytischer Einwirkung geringer Mengen organischer Peroxide in Gegenwart oder in Abwesenheit eines inerten Lösemittels. Bevorzugt ist die Polymerisation in Abwesenheit eines Lösemittels. Beispielsweise kann ein Gemisch aus Carbonsäure, Carbonsäureester und Radikalstarter zu vorgelegtem α-Olefin unter Rühren bei erhöhter Temperatur zugetropft werden. Nach Beendigung der Reaktion können nicht umgesetzte Monomere sowie flüchtige Zerfallsprodukte des Peroxids durch Destillation abgetrennt werden. Als Radikalstarter werden bevorzugt organische Peroxide eingesetzt. Dabei ist die Reaktionstemperatur der Zerfallscharakteristik des jeweils verwendeten Peroxids anzupassen. Bei einer Temperatur von 100 bis 160°C sind beispielsweise Dialkylperoxide wie Di-t-butylperoxid oder Diaroylperoxide wie Dibenzoylperoxid gut geeignet. Das molare Verhältnis der Monomerkomponenten und damit der chemische Aufbau und die Polarität der Copolymerisate können in weiten Grenzen eingestellt werden. Damit besteht die Möglichkeit, die Eigenschaften des Gleitmittels den jeweiligen anwendungstechnischen Erfordernissen in optimaler Weise anzupassen.

Die Monomeren werden in den folgenden Verhältnissen eingesetzt:

α-Olefin ungesättigte Carbonsäure ungesättigte Carbonsäureester Styrolverbindung

20 bis 99,5, vorzugsweise 40 bis 95 Gew.-%, 0,1 bis 50, vorzugsweise 0,5 bis 30 Gew.-%, 0,1 bis 60, vorzugsweise 1,0 bis 40 Gew.-%. 0,0 bis 30, vorzugsweise 0,0 bis 20 Gew.-%.

25

30

60

Die Reaktionstemperatur beträgt 70 bis 180, vorzugsweise 90 bis 160°C, der Reaktionsdruck 1,0 bis 5,0, vorzugsweise 1,0 bis 1,5 bar. die Reaktionszeit 0,5 bis 20, vorzugsweise 1 bis 7 Stunden.

Die erfindungsgemäßen Copolymerisate werden als Gleit- und Trennmittel in thermoplastischen Kunststoff-Formmassen eingesetzt, beispielsweise in Polyvinylchlorid, welches durch die bekannten Verfahren - beispielsweise Suspensions-, Masse-, Emulsionspolymerisation - hergestellt werden kann, Mischpolymeren des Vinylchlorids mit bis zu 30 Gew. % an Comonomeren wie beispielsweise Vinylacetat, Vinylidenchlorid, Vinylether, Acrylnitril, Acrylsäureester, Maleinsäuremono- oder -diestern oder Olefinen, sowie in Pfropfpolymerisaten des Polyvinylchlorids und Polyacrylnitrils. Bevorzugt sind Polyvinylchlorid, Polyvinylidenchlorid, Ethylen-Vinylacetat-Copolymere, Polyacrylnitril, Copolymere aus Vinylchlorid und Vinylacetat sowie daraus abgeleitete Pfropfpolymere oder Mischungen der vorgenannten Thermoplaste. In der Anwendung bei der Verarbeitung von PVC, zeigen solche erfindungsgemäßen Copolymerisate besonders vorteilhafte Eigenschaften, die einen niedrigen Carbonsäuregehalt und einen hohen Estergehalt aufweisen. Ein zu hoher Carbonsäuregehalt wirkt sich negativ auf das Farbverhalten der Gleitmittel, vor allem in Ca/Zn-stabilisiertem PVC aus. Ein hoher Estergehalt führt aufgrund seiner die Verträglichkeit mit dem PVC erhöhenden Wirkung zu einem besseren Transparenzverhalten, einem besseren Fließverhalten der PVC-Schmelze und zu einer geringeren Verzögerung der Plastizierung

des PVC. Die Zugabemenge beträgt 0,05 bis 5 Gew.-%, bezogen auf das Polymere. Basiert die Formmasse auf M- oder S-PVC, so beträgt die Zugabemenge vorzugsweise 0,05 bis 1 Gew.-%, basiert sie auf E-PVC, so ist die Menge vorzugsweise 1,0 bis 5, insbesondere 2 bis 4 Gew.-%, jeweils bezogen auf das Polymere. Das Einmischen der erfindungsgemäßen Copolymeren in die Polymeren geschieht auf die übliche Weise während der Herstellung oder Verarbeitung der Formmassen.

Neben den erfindungsgemäßen Copolymeren kann die Kunststoff-Formmasse zusätzlich Füllstoffe, Wärmestabilisatoren, Lichtschutzmittel, Antistatika, Flammschutzmittel, Verstärkungsstoffe, Pigmente, Farbstoffe, Verarbeitungshilfsmittel, Gleitmittel, Schlagzähmacher, Antioxidantien, Treibmittel oder optische Aufheller in den üblichen Mengen enthalten.

Die nachfolgenden Beispiele sollen die Erfindung erläutern.

Säure- und Verseifungszahlen bzw. Tropfpunkte wurden nach den DGF- Einheitsmethoden M-IV 2 (57) bzw. M-III 3 (75) bestimmt (Normen der Deutschen Gesellschaft für Fettwissenschaft eV.). Die Schmelzviskositäten wurden mit Hilfe eines Rotationsviskosimeters gemessen.

Beispiel 1

Herstellung eines C_{24} — C_{60} - α -Olefin-Acrylsäure-Methylacrylat-Copolymerisats:

in einem mit Thermometer, Rührer, Tropftrichter und Rückflußkühler ausgestatteten Fünfhalskolben wurden 500 g eines handelsüblichen C₂₄ - C₆₀ α-Olefin-Schnittes vorgelegt und auf 140°C erhitzt. Bei dieser Temperatur tropfte man unter Rühren innerhalb von 5 Stunden eine Mischung aus 219,0 g Methylacrylat, 10,0 g Acrylsäure und 5,0 g Di-t-butylperoxid zu. Nach beendetem Zutropfen ließ man das Gemisch noch 30 min nachreagieren

DE 41 39 601 A1

und destillierte flüchtige Bestandteile im Vakuum bei ca. 15 mbar und 170°C Badtemperatur ab. Das farblose, wachsartig erstarrende Reaktionsprodukt wurde in Schalen ausgegossen.

wachsarug erstallelide Reaktionsprodukt wallse in Schaleria ausgegossen.
Physikalische Daten: Säurezahl 11 mg KOH/g; Verseifungszahl ca. 160 mg KOH/g; Tropfpunkt 70°C;
Schmelzviskosität 520 mPa s (gemessen bei 90°C).

Beispiel 2

Herstellung eines 1-Tetradecen-Acrylsäure-Methylacrylat-Copolymerisats:
Nach analogem Verfahren wie in Beispiel 1 beschrieben setzte man 196,0 g 1-Tetradecen, 131,7 g Methylacrylat, 4,0 g Acrylsäure und 2,6 g Di-t-butylperoxid miteinander um. Das resultierende farblose, halbfeste Terpolymerisat wies eine Säurezahl von 10 mg KOH/g und eine Verseifungszahl von ca. 205 mg KOH/g auf.

Beispiel 3

Herstellung eines C₂₄—C₆₀-α-Olefin-Acrylsäure-Methylacrylat-Styrol-Polymerisats:
Analog wie in Beispiel 1 wurden 500 g C₂₄—C₆₀-α-Olefin mit einer Mischung aus 175,0 g Methylacrylat, 47 g
Styrol und 16,0 g Acrylsäure in Gegenart von 5,0 g t-Butylbenzoat copolymerisiert.

Man erhielt ein farbloses Wachs mit folgenden Kenndaten: Säurezahl 16 mg KOH/g; Verseifungszahl 161 mg KOH/g; Tropfpunkt 72°C Schmelzviskosität 390 mPa·s

20 (gemessen bei 90°C).

5

Beispiel 4

Die Copolymeren gemäß Beispiel 1, 2 und 3 wurden in folgendem Rezept auf ihr Transparenzverhalten geprüft. Als Vergleich diente ein handelsüblicher Montansäureester.

	S-PVC (K-Wert ca. 60)	100 GewTeile	
	acrylhaltiges Verarbeitungshilfsmittel	1,0 GewTeile	
	Octylzinnstabilisator	1,5 GewTeile	
30	Glycerinmonooleat	0,3 GewTeile	
••	Prüfnrodukt	0,6 GewTeile	

Diese Mischungen wurden auf einem Walzwerk bei 190°C plastiziert, danach wurden 0,5 und 2,0 mm dicke Plättchen gepreßt. Diese wurden mit einem Transparenzmeßgerät in neutralgrauem Licht geprüft:

Prüfprodukt	Transparenz	in % 2,0 mm
Copolymer I (gem. Beispiel 1)	76.8	66,7
Copolymer II (gem. Beispiel 2)	83.3	74,9
Copolymer III (gem. Beispiel 3)	83.7	67,5
Ethylenglycolmontanat (Hoechst Wachs E)	69,6	41,6

Beispiel 5

Im folgenden Prüfrezept wurden die Copolymeren gemäß Beispiel 1,2 und 3 auf ihre Trennwirkung geprüft:

50	M-PVC (K-Wert ca. 57)	100 GewTeile
	MBS-Schlagzähmacher	8 GewTeile
	acrylathaltiges Verarbeitungshilfsmittel	1,2 GewTeile
	Thiozinnstabilisator	1,6 GewTeile
55	epoxidiertes Sojabohnenöl	1,0 GewTeile
	Glycerinmonooleat	0,3 GewTeile
	Prüfprodukt	0,6 GewTeile

Die Prüfung erfolgte auf einem Walzwerk bei 190°C und 15/20 Upm. Die Prüfung wurde abgebrochen, wenn sich das Walzfell braun verfärbte.

65

40

45

DE 41 39 601 A1

	Prüfprodukt	klebfreie Zeit	Endstabilität	
			20 !	
	Copolymer I (gem. Beisp. 1)	27 min	30 min 30 min	5
	Copolymer II (gem. Beisp. 2)	30 min 22 min	35 min	•
	Copolymer III (gem. Beisp. 3)	16 min	35 min	
	Ethylenglycolmontanat (Hoechst Wachs E)	10 11111		
	•	Beispiel 6		10
Fin PVC	-Compound der folgenden Zusammens	•		
2				
S-PVC, K-	Wert ca. 58	100,0 GewTeile		15
flüssiger Z	inkstabilisator	0,1 GewTeile		
Calciumst	earat	0,3 GewTeile		
Co-Stabili	sator (β-Diketon)	0,3 GewTeile		
epox. Soja	bohnenöl (ESO)	3,0 GewTeile		20
MBS-Schl	agzähmacher	8,0 GewTeile		
acrylathal	tiges Verarbeitungshilfsmittel	1,0 GewTeile		
Glycerinn	nonooleat	1,0 GewTeile		
Schönung	smittel (Blaupigment)	2,0 GewTeile		
Prüfprodu	ıkt	1,2 GewTeile		25
und mit ein	einem Walzwerk bei 190°C 5 Minute em Farbmeßgerät auf ihren Yellownes	ss-Index (YI) gepruit.	Proben des Fells entnommen	30
Prüfprodu	ıkt	Yl		
Conclume	er I (gem. Beisp. 1)	-31,8		
	er II (gem. Beisp. 2)	-31,4		
Copolyme	er III (gem. Beisp. 3)	- 29,0		35
Ethylengi	ycolmontanat (Hoechst Wachs E)	-27,2		
Luiyiengi	youmontailar (1.1000ing in =11in =)	Beispiel 7		
E: D1/6				40
Ein PVC	-Compound der Zusammensetzung			
E-PVC (K	(-Wert ca. 78) 100,0 Gew			
Diphenyl	thioharnstoff 0,5 Gew			
Prüfprod	ukt 3,0 Gew	Teile		45
wurde auf Ausbildun	einem Walzwerk bei 190°C und 15/2 g eines homogenen Walzfells (Fellbild	0 Upm gewalzt. Bestimmt wurde ungszeit).	die Zeit bis zur vollständigen	
Prüfprod	ukt	Fellbildungszeit (min)		50
Conclum	er I (gem. Beisp. 1)	1,0		
	er II (gem. Beisp. 2)	1,0		
Ethyleng	lycolmontanat (Hoechst Wachs E)	4,0		55
		Patentansprüche		
. =				
20 bis 0,5 bis 0,1 bis ableit	oolymerisat, bestehend aus 99,5 GewTeilen Einheiten, die sich vo s 50 GewTeilen Einheiten, die sich vo is 60 GewTeilen Einheiten, die sich en, wobei in diesen Formeln R ¹ für e lkettigen oder verzeigten Alkylrest mi	n einer Carbonsäure der Formel (von einem Carbonsäureester d ein Wasserstoffatom oder eine M t 1 bis 6 C-Atomen stehen, und	CH ₂ =CR'-COOR ableiten, er Formel CH ₂ =CR ¹ -COOR ² Methylgruppe und R ² für einen	60
0,0 bi	s 30 GewTeilen Einheiten, die sich v	von Styrol, 3-Methylstyrol, 4-Me	thylstyrol oder a-Methylstyrol	65
ableiten. 2. Copolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß das α -Olefin ein C_{18} bis C_{60} - α -Olefin ist. 3. Copolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß das α -Olefin ein C_{24} bis C_{60} - α -Olefin ist.				

DE 41 39 601 A1

4. Copolymerisat nach Anspruch 1, dadurch gekennzeichnet, daß der Carbonsäureester der Formel CH2=CR1-COOR2 ein Ester ist, in dessen Formel R1 ein Wasserstoffatom oder eine Methylgruppe und R2 eine Methyl- oder Ethylgruppe ist. 5. Verwendung des Copolymerisats gemäß Anspruch 1 als Verarbeitungshilfsmittel für thermoplastische Kunststoffe. 6. Thermoplastische Kunststoff-Formmasse, enthaltend 0,05 bis 5 Gew.-%, bezogen auf die Formmasse, 5 eines Copolymerisats gemäß Anspruch 1. 7. Thermoplastische Kunststoff-Formmasse nach Anspruch 6, dadurch gekennzeichnet, daß sie auf Polyvinylchlorid, Polyvinylidenchlorid, Ethylen-Vinylacetat-Copolymeren, Polyacrylnitril, Pfropf- oder Copolymeren aus Vinylchlorid und Vinylacetat oder Mischungen dieser Thermoplasten basiert. 10 8. Thermoplastische Kunststoff-Formmasse nach Anspruch 6, dadurch gekennzeichnet, daß sie zusätzlich Füllstoffe, Wärmestabilisatoren, Lichtschutzmittel, Altistatika, Flammschutzmittel, Verstärkungsstoffe, Pigmente, Farbstoffe, Verarbeitungshilfsmittel, Gleitmittel, Schlagzähmacher, Antioxidantien, Treibmittel oder optische Aufheller enthält. 15 20 25

30

45

50

55

60

35 40

65