COSC363 Computer Graphics

Mould your imagination

6 Sweep Representations

Department of Computer Science and Software Engineering University of Canterbury, New Zealand.

Lecture Outline

- Modelling of simple polygonal meshes using vertices and polygonal definitions
 - Eg. Lab02: Octahedron
- Modelling sweep surfaces
 - Extruded shapes
 - Surfaces of revolution

- Quad strips and triangle strips
- Parametric surfaces

Modelling of Simple Objects

- Create a simple sketch on a graph paper.
- With the centre point as the origin, get the x, y coordinates.
- The z coordinate is the out-of-plane distance (depth)
- Tessellate the object into a set of triangles
- Create the triangle definitions using an anti-clockwise ordering of vertex indices.

Modelling of Planar Shapes

Tessellation using triangles

Tessellation using triangle strips

Tessellation using quad strips

Sweep Representations

- Sweep representations are useful for both surface modeling and solid modeling.
- A large class of shapes (both surfaces and solid models) can be formed by sweeping or extruding a 2D shape (base polygon or base curve) through space.
- A ruled surface is generated by moving a straight line in a particular trajectory.

• A polyhedron obtained by sweeping (extruding) a polygon along a straight line is called a **prism**.

Extruded Surfaces

Create a base polygon, centred at the origin.
 For proper rendering of this polygon,
 subdivide it into a set of triangles.

Vertex List: $V_i = (x_i, y_i, z_i), i = 0... n_v - 1.$

Base Polygon

$$\begin{bmatrix} x_i' \\ y_i' \\ z_i' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & h \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ z_i \\ 1 \end{bmatrix}$$

Extruded Shape

Architectural Example:

"Turning Torso", the twisted tower in Malmo, Sweden.

[Source: Wikipedia]

Extruded Surfaces Using Quad Strips

 The polygons surrounding an extruded surface can be generated using a quad strip or a triangle strip.

• Quad strip: Every pair of points V_i , W_i (i > 0) generates a new quad $W_{i-1}V_{i-1}V_iW_i$. Define normal (in the above example) using points $V_{i-1}V_iW_i$.

Extruded Surfaces Using Triangle Strips

Triangle Strip


```
glBegin(GL_TRIANGLE_STRIP);
  for(int i = 0; i < N; i++)
  {
    glVertex3f(vx[i], vy[i], vz[i]);
    glVertex3f(wx[i], wy[i], wz[i]);
  }
glEnd();</pre>
```

• Triangle strip: Every point V_i (i > 0) generates a new triangle $W_{i-1}V_{i-1}V_i$. Every point W_i (i > 0) generates a new triangle $W_{i-1}V_iW_i$.

Extruded Surfaces (Example)

- Quad Strip:
 - Number of vertices: N
 - Vertices: $V_i = (vx[i], vy[i], vz[i]), W_i = (wx[i], wy[i], wz[i]),$

```
glBegin(GL QUAD STRIP);
  for (int i = 0; i < N; i++)
      if(i > 0) normal( vx[i-1], vy[i-1], vz[i-1],
                          vx[i], vy[i], vz[i],
                          WX[i], WV[i], WZ[i]);
      glVertex3f(vx[i], vy[i], vz[i]);
      glVertex3f(wx[i], wy[i], wz[i]);
                       Need to close the surface here.
glEnd();
```

 W_{N-1}

Extruded Surfaces (Example)

Triangle Strip:

```
glBegin (GL TRIANGLE STRIP);
  for (int i = 0; i < N; i++)
      if(i > 0) normal( wx[i-1], wy[i-1], wz[i-1],
                         vx[i-1], vy[i-1], vz[i-1],
                         vx[i], vy[i], vz[i] );
      glVertex3f(vx[i], vy[i], vz[i]);
      if(i > 0) normal( wx[i-1], wy[i-1], wz[i-1],
                         vx[i], vy[i], vz[i],
                         wx[i], wy[i], wz[i]);
      glVertex3f(wx[i], wy[i], wz[i]);
                                                   W_{N-1} W_0
                Need to close the surface here.
glEnd();
```

Surface of Revolution

- A surface of revolution is obtained by revolving a planar curve about an axis, typically the y-axis.
- The curve (called the base curve) is usually generated using a parametric equation, such as Bezier polynomials or other types of splines (eg. Basis splines).

Surface of Revolution

- The vertices on the base curve are given by $V_i = (x_i, y_i, 0)$, $i = 0... n_v 1.$
- Transform the above vertices using a rotation matrix *M* to get the vertices of the revolved shape:

$$W_i = MV_i$$
, $i = 0... n_v - 1.$

- Generate the boundary surface using quadrilaterals V_i V_{i+1} W_{i+1} W_i or quad/triangle strips V_i W_i
- Transform the surface normal vectors also by the same matrix M.

$$\begin{bmatrix} x_i' \\ y_i' \\ z_i' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 0 \\ 1 \end{bmatrix}$$

Parametric Forms of Curves and Surfaces

 The parametric form of a curve in three-dimensional space gives point coordinates on the curve in terms of a single parameter t.

 A parametric surface requires two independent parameters to express points on the surface.

(x(t), y(t), z(t))

Quadrics

 A quadric surface in three dimensions is given by an algebraic equation of the form

$$ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0.$$

Quadric surfaces can also be expressed in parametric form:

• Sphere: $(R \sin\alpha \cos\delta, R \sin\delta, R \cos\alpha \cos\delta)$,

$$0 \le \alpha \le 360$$
, $-90 \le \delta \le 90$

• Cylinder: (R $\sin \alpha$, y, R $\cos \alpha$)

$$0 \le \alpha \le 360$$
, $0 \le y \le h$

• Cone: $((h-y)R \sin \alpha/h, y, (h-y)R \cos \alpha/h)$

$$0 \le \alpha \le 360$$
, $0 \le y \le h$

