Импорт данных в MATLAB

Обзор различных методов получения данных непосредственно из MATLAB

Содержание

Работа с текстовыми файлами и таблицами	1
Интерактивный импорт таблиц	1
Импорт таблиц с помощью команды 'readtable'	1
Импорт таблиц с помощью команды 'readtable'	5
Работа с медиа-файлами	5
Импорт изображений	5
Работа с вебкамерой	6
Подключение к базам данныхПолучение данных из интернета	7
Получение данных из интернета	7
Базовые возможности	7
Продвинутая работа с WEB	8
Работа с оборудованием	8
Работа с измерительным оборудованием	8
Работа с измерительным оборудованием	9
Сбор данных с микроконтроллеров	9
Работа с Arduino	g
Получение данных с датчиков телефона	

Работа с текстовыми файлами и таблицами

- Поддерживаются любые текстовые файлы, в том числе специализированные форматы (CSV, XML, Excel, ...)
- Удобный импорт таблиц

Интерактивный импорт таблиц

В окне инструмента можно настроить параметры импорта и сгенерировать MATLAB код для автоматизации

```
uiimport('tsunamis.csv')
```

Импорт таблиц с помощью команды 'readtable'

Komaнда readtable работает с любыми текстовыми, CSV и Excel-файлами, в которых хранятся табличные данные. Имеет большое количество настроек импорта.

```
tsunamis = readtable('tsunamis.csv')
tsunamis = 162×20 table
```

. . .

	Latitude	Longitude	Year	Month	Day	Hour	Minute	Second
1	-3.8000	128.3000	1950	10	8	3	23	NaN
2	19.5000	-156.0000	1951	8	21	10	57	NaN
3	-9.0200	157.9500	1951	12	22	NaN	NaN	NaN
4	42.1500	143.8500	1952	3	4	1	22	41.0000
5	19.1000	-155.0000	1952	3	17	3	58	NaN
6	43.1000	-82.4000	1952	5	6	NaN	NaN	NaN
7	52.7500	159.5000	1952	11	4	16	58	NaN
8	50.0000	156.5000	1953	3	18	NaN	NaN	NaN
9	-2.4000	147.4000	1953	6	27	NaN	NaN	NaN
10	-18.3000	178.2000	1953	9	14	0	26	36.0000
11	34.0000	141.7000	1953	11	25	17	48	NaN
12	41.7000	-86.8830	1954	6	26	NaN	NaN	NaN
13	67.8000	-32.2830	1954	10	NaN	NaN	NaN	NaN
14	-30.0000	-72.0000	1955	4	19	20	24	NaN
15	39.5000	23.0000	1956	11	2	NaN	NaN	NaN
16	51.2920	-175.6290	1957	3	9	14	22	31.9000
17	-1.5000	137.0000	1957	6	22	23	50	23.0000
18	16.5000	-99.0000	1957	7	28	8	40	NaN
19	1.2000	-79.5000	1958	1	19	14	7	NaN
20	-4.5000	104.0000	1958	4	22	NaN	NaN	NaN
21	58.3400	-136.5200	1958	7	10	6	15	53.6000
22	44.5300	148.5400	1958	11	6	22	58	8.6000
23	44.2000	148.8000	1958	11	12	20	23	NaN
24	53.4000	159.8000	1959	5	4	7	16	NaN
25	-7.5000	156.0000	1959	8	17	21	4	40.0000
26	44.7120	-111.2150	1959	8	18	6	37	13.5000
27	-15.7500	-72.7500	1960	1	13	15	40	34.0000
28	39.8000	143.4000	1960	3	20	17	7	NaN
29	39.4000	143.7000	1960	3	23	0	23	NaN
30	-39.5000	-74.5000	1960	5	22	19	11	17.0000
31	-6.8000	-80.7000	1960	11	20	22	1	56.4000
32	43.2000	147.9000	1961	2	12	21	53	NaN
33	-18.5000	168.5000	1961	7	23	21	51	7.5000
34	-9.9000	160.5000	1961	8	1	5	39	53.2000

	Latitude	Longitude	Year	Month	Day	Hour	Minute	Second
35	38.0000	142.8000	1962	4	12	0	53	NaN
36	38.4200	22.0500	1963	2	2	NaN	NaN	NaN
37	44.8100	149.5400	1963	10	13	5	17	55.8000
38	44.1000	150.1000	1963	10	20	0	53	NaN
39	-24.8000	-176.6000	1963	12	18	0	30	NaN
40	61.1000	-147.5000	1964	3	28	3	36	14.0000
41	38.6500	139.2000	1964	6	16	4	1	44.3000
42	51.2900	178.5500	1965	2	4	5	1	21.6000
43	38.4000	22.4000	1965	7	6	3	18	42.7000
44	-15.8000	167.2000	1965	8	11	22	31	45.9000
45	-15.9000	167.6000	1965	8	13	12	40	NaN
46	-10.3000	160.8000	1966	6	15	0	59	NaN
47	-10.7000	-78.8000	1966	10	17	21	42	NaN
48	-25.5000	-70.6000	1966	12	28	8	18	NaN
49	-11.8000	166.5000	1966	12	31	18	23	3.9000
50	-11.3000	164.8000	1966	12	31	22	15	14.0000
51	-11.8000	166.8000	1967	1	1	NaN	NaN	NaN
52	5.5000	97.3000	1967	4	12	4	51	50.2000
53	-10.6000	-79.8000	1967	9	3	NaN	NaN	NaN
54	39.4000	24.9000	1968	2	19	NaN	NaN	NaN
55	32.3000	132.5000	1968	4	1	0	42	NaN
56	40.8000	143.2000	1968	5	16	0	48	55.4000
57	39.4000	143.1000	1968	6	12	13	41	NaN
58	0.2000	119.8000	1968	8	14	22	14	19.4000
59	15.6000	-92.6000	1968	9	25	NaN	NaN	NaN
60	-3.1000	118.9000	1969	2	23	0	36	56.6000
61	43.6000	147.9000	1969	8	11	21	26	36.0000
62	57.7000	163.6000	1969	11	22	23	9	37.0000
63	15.8000	121.7000	1970	4	7	5	34	NaN
64	-9.2000	-78.8000	1970	5	31	20	23	27.3000
65	-4.9000	145.5000	1970	10	31	17	53	9.3000
66	-32.5000	-71.2000	1971	7	9	3	3	18.7000
67	-5.5000	153.9000	1971	7	14	6	11	29.1000
68	-4.9000	153.2000	1971	7	26	1	23	21.3000

	Latitude	Longitude	Year	Month	Day	Hour	Minute	Second
69	46.5000	141.2000	1971	9	5	18	35	25.0000
70	-6.5000	146.6000	1971	9	25	4	36	14.0000
71	-6.7000	147.0000	1972	8	26	8	15	NaN
72	18.4800	-103.0000	1973	1	30	21	1	12.5000
73	50.5000	156.6000	1973	2	28	6	37	49.5000
74	43.2000	145.8000	1973	6	17	3	55	2.9000
75	-7.5000	155.9000	1974	1	31	23	30	5.3000
76	-7.4000	155.6000	1974	2	1	3	12	33.1000
77	-12.2700	-77.7900	1974	10	3	14	21	29.1000
78	54.0830	-128.6330	1975	4	27	NaN	NaN	NaN
79	35.9970	-17.6490	1975	5	26	9	11	51.5000
80	43.0240	147.7340	1975	6	10	13	47	14.5000
81	-6.5900	155.0540	1975	7	20	14	37	39.9000
82	12.5400	125.9930	1975	10	31	8	28	2.6000
83	19.3340	-155.0240	1975	11	29	14	47	40.4000
84	6.2620	124.0230	1976	8	16	16	11	7.3000
85	-11.0850	118.4640	1977	8	19	6	8	55.2000
86	-10.2330	-78.5200	1978	5	20	13	10	31.1000
87	38.1900	142.0300	1978	6	12	8	14	26.4000
88	16.0100	-96.5910	1978	11	29	19	52	47.6000
89	17.8130	-101.2760	1979	3	14	11	7	16.3000
90	-1.6790	136.0400	1979	9	12	5	17	51.4000
91	43.7000	7.2500	1979	10	16	13	57	NaN
92	1.5980	-79.3580	1979	12	12	7	59	3.3000
93	46.2000	-122.1800	1980	5	18	NaN	NaN	NaN
94	42.1580	142.3610	1982	3	21	2	32	7.7000
95	-4.0560	127.9240	1983	3	12	1	36	35.8000
96	40.4620	139.1020	1983	5	26	2	59	59.6000
97	41.3460	139.0990	1983	6	21	6	25	27.3000
98	-6.8520	72.1100	1983	11	30	17	46	0.6000
99	-33.1350	-71.8710	1985	3	3	22	47	7.2000
100	-9.2450	114.1850	1985	4	13	1	6	0.1000

:

Чтение бинарных файлов

Зная формат хранения данных, можно прочитать любой бинарный файл

```
fileID = fopen('data.bin');
data = fread(fileID, [4, Inf], 'double')

data = 4×4
    16     2     3     13
    5     11     10     8
    9     7     6     12
    4     14     15     1

fclose(fileID);
```

Работа с медиа-файлами

- Чтение видео, аудиофайлов изображений
- Поддерживается работа с камерами
- Запись звука с микрофона

Импорт изображений

Считаем изображение с диска и отобразим размерность считанных данных в МАТLAВ

```
img = imread('MATLAB-logo.jpg');
size(img)

ans = 1×3
564 614 3
```

imshow(img)

Работа с вебкамерой

Требуется установить пакет поддержки.

Подключаемся к камере и выводим картинку с неё

```
cam = webcam()
preview(cam)
```

Сделать снимок с камеры

```
img = snapshot(cam);
imshow(img)
```

Подключение к базам данных

C Database Toolbox поддерживаются базы данных:

- Реляционные
- Графовые
- Документоориентированные

OPC Toolbox позволяет работать с промышленными БД.

Получение данных из интернета

Базовые возможности

MATLAB умеет:

- Скачивать файлы
- Обращаться к веб-сервисам (GET, POST, ...)
- Работать с FTP, Email

Обратимся к сервису RESTCountries, который бесплатно предоставляет информацию о странах.

Получим информацию о России

data = webread('https://restcountries.eu/rest/v2/name/russia')

```
subregion: 'Eastern Europe'
  population: 146599183
      latlng: [2×1 double]
      demonym: 'Russian'
        area: 17124442
        gini: 40.1000
   timezones: {9×1 cell}
      borders: {14×1 cell}
  nativeName: 'Россия'
 numericCode: '643'
  currencies: [1x1 struct]
   languages: [1x1 struct]
translations: [1x1 struct]
        flag: 'https://restcountries.eu/data/rus.svg'
regionalBlocs: [1x1 struct]
        cioc: 'RUS'
```

Получим название и столицу каждой страны в мире (нужно передать дополнительный параметр fields)

```
data = webread('https://restcountries.eu/rest/v2/all', 'fields', 'name;capital')

data = 250×1 struct array with fields:
    name
    capital
```

Продвинутая работа с WEB

Библиотека для работы с веб-сервисами: MATLAB WEB API

Работа с оборудованием

MATLAB может работать с большим количеством оборудования, в т.ч. с измерительными инструментами и платами сбора данных.

Работа с измерительным оборудованием

MATLAB поддерживает протоколы:

- Serial
- UDP, TCP/IP

C Instrument Control Toolbox:

- IVI, VXI, GPIB, VISA, LXI, PXI
- I2C, SPI, MODBUS
- Bluetooth

C Vehicle Network Toolbox:

- CAN, CAN FD
- XCP, J1939

Работа с устройствами сбора данных (DAQ)

Data Aquisition Toolbox позволяет писать свои драйвера и работать с интерфейсами:

- USB
- PCI/PCI-Express
- PXI/PXI-Express

Сбор данных с микроконтроллеров

MATLAB работает с большим количеством микроконтроллеров от разных производителей.

Для работы с профессиональными контроллерами требуется Embedded Coder.

Работа с Arduino

Для работы с Arduino наобходимо установить пакет поддержки.

Получим данные с Arduino Uno. На базе этой платы реализовано устройство с RGB-светодиодом и датчиком освещенности. Подробнее об устройстве.

Подключимся к плате

Снимем значение напряжения с датчика освещенности

```
a.readVoltage('A0')
ans = 3.7488
```

Построим график освещенности в реальном времени

```
f = figure('visible','on');
h = animatedline();
tic();
t = 0;
title('График уровня освещенности')
xlabel('Время, t')
ylabel('Напряжение, B')
while isvalid(f) && t < 10
    t = toc();
   v = a.readVoltage('A0'); % Аналаговый вход А0
   addpoints(h, t, v);
   drawnow limitrate
end</pre>
```


Выберем цвет

```
color = 'white';
c_list = struct('red', [1 0 0], 'green', [0 1 0], 'blue', [0 0 1], 'white', [1 1 1], 'black', [0 0 0]);
color = c_list.(color);
a.writePWMDutyCycle('D9', 1 - color(1)); % Цифровой выход D9
a.writePWMDutyCycle('D10', 1 - color(2)); % Цифровой выход D10
a.writePWMDutyCycle('D11', 1 - color(3)); % Цифровой выход D11
```

Получение данных с датчиков телефона

На телефон нужно установить приложение MATLAB Mobile. На компьютер нужно установить пакет поддержки для датчиков телефона: Android, iOS.

Компьютер и смартфон должны находится в одной сети (например, подключены к одному WiFi-роутеру).

Запускаем коннектор

```
DNS name: WINDOWSPCIP
IP address: 192.168.56.110
Use this link to test the MATLAB Connector:
http://WINDOWSPCIP:31415/

If the test is successful, but MATLAB Mobile cannot connect,
your computer might have multiple IP addresses. To determine
the correct one, see Determining the DNS Name or IP Address of a Computer.
```

На телефоне в MATLAB Mobile нужно подключиться к компьютеру по IP с паролем password.

После этого подключаемся к датчикам телефона

На телефоне выбираем датчик Orientation и нажимаем START.

Считываем углы ориентации телефона с гироскопа

```
angles = m.Orientation

angles = 1×3
-169.4065 -28.4672 8.5426
```

Строим график угла наклона в реальном времени

```
f = figure('visible','on');
h = animatedline();
tic();
t = 0;
title('Угол наклона телефона')
```

```
xlabel('Bpems, t')
ylabel('Yron Pitch, ^o')
while isvalid(f) && t < 10
    t = toc();
    angle = m.Orientation(2); % Pitch
    addpoints(h, t, angle);
    drawnow limitrate
end</pre>
```


Pavel Roslovets, ETMC Exponenta © 2019