MAT2002	Applications of Differential and Difference			T	P	J	C
	Equations						
			3	0	2	0	4
Pre-requisite	MAT1011 - Calculus for Engineers		Syllabus Version				
				1.0			

Course Objectives

The course is aimed at

- [1] Presenting the elementary notions of Fourier series, which is vital in practical harmonic analysis
- [2] Imparting the knowledge of eigenvalues and eigen vectors of matrices and the transform techniques to solve linear systems, that arise in sciences and engineering [3] Enriching the skills in solving initial and boundary value problems
- [4] Impart the knowledge and application of difference equations and the Z-transform in discrete systems, that are inherent in natural and physical processes

Course Outcome

At the end of the course the student should be able to

- [1] Employ the tools of Fourier series to find harmonics of periodic functions from the tabulated values
- [2] Apply the concepts of eigenvalues, eigen vectors and diagonalisation in linear systems
- [3] Know the techniques of solving differential equations
- [4] understand the series solution of differential equations and finding eigen values, eigen functions of Strum-Liouville's problem
- [5] Know the Z-transform and its application in population dynamics and digital signal processing
- [6]demonstrate MATLAB programming for engineering problems

Student Lear	rning Outcomes (SLO):	1, 2, 9
Module:1	Fourier series:	6 hours
Equation comics	Eular's formulas Dirial	alat's conditions. Change of interval. Helf renge

Fourier series - Euler's formulae - Dirichlet's conditions - Change of interval - Half range series - RMS value - Parseval's identity - Computation of harmonics

Module:2 Matrices: 6 hours

 $\label{lem:continuous} \begin{tabular}{ll} Eigen values and Eigen vectors - Properties of eigenvalues and eigen vectors - Cayley-Hamilton theorem - Similarity of transformation - Orthogonal transformation and nature of quadratic form \\ \end{tabular}$

Module:3 Solution of ordinary differential equations: 6 hours

Linear second order ordinary differential equation with constant coefficients – Solutions of homogenous and non-homogenous equations - Method of undetermined coefficients – method of variation of parameters – Solutions of Cauchy-Euler and Cauchy-Legendre differential equations

	Solution of differential equations through Laplace transform and matrix method	8 hours
Solution of	ODE's - Nonhomogeneous terms involving Heaviside function,	Impulse

	tion - Solving nonhomogeneous system using Laplace transform -				
	r differential equation to first order system - Solving nonhomogeneous and	us system of first			
oruc	differential equations and				
Mod	dule:5 Strum Liouville's problems and power series Solutions:	6 hours			
diff	Strum-Liouville's Problem - Orthogonality of Eigen functions - Serie ferential equations about ordinary and regular singular points - Legendration - Bessel's differential equation				
Mod	ule:6 Z-Transform:	6 hours			
Z-tı	ransform -transforms of standard functions - Inverse Z-transform: by particular convolution method				
Mod	ule:7 Difference equations:	5 hours			
	erence equation - First and second order difference equations with con				
Parti	conacci sequence - Solution of difference equations - Compleme cular integral by the method of undetermined coefficients - Solutions using Z-transform				
Mod	ule:8 Contemporary Issues 2 hours				
Indu	stry Expert Lecture				
		_			
	Total Lecture hours:	45 hours			
	Book(s)	T 1 TT7'1			
	Advanced Engineering Mathematics, Erwin Kreyszig, 10 th Edition India, 2015	n, John Wiley			
	rence Books				
	Higher Engineering Mathematics, B. S. Grewal, 43 rd Edition, Khanna India, 2015				
2.	. Advanced Engineering Mathematics by Michael D. Greenberg, 2 nd Edition, Pearson Education, Indian edition, 2006				
	Education, Indian edition, 2006	ntion, i carson			
	e of Evaluation	intion, i carson			
Mod Digi	tal Assignments (Solutions by using soft skills), Continuous	introll, I carson			
Mod Digit Asse	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test				
Mod Digi	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test Solving Homogeneous differential equations arising in engineering problems	2 hours			
Mod Digit Asse	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test Solving Homogeneous differential equations arising in engineering				
Mod Digi Asse 1.	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test Solving Homogeneous differential equations arising in engineering problems Solving non-homogeneous differential equations and Cauchy, Legendre equations Applying the technique of Laplace transform to solve differential	2 hours			
Mod Digit Asse 1.	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test Solving Homogeneous differential equations arising in engineering problems Solving non-homogeneous differential equations and Cauchy, Legendre equations Applying the technique of Laplace transform to solve differential equations Applications of Second order differential equations to Mass spring	2 hours			
Mod Digi Asse 1. 2.	tal Assignments (Solutions by using soft skills), Continuous ssment Tests, Quiz, Final Assessment Test Solving Homogeneous differential equations arising in engineering problems Solving non-homogeneous differential equations and Cauchy, Legendre equations Applying the technique of Laplace transform to solve differential equations	2 hours 2 hours 2 hours			

	applications				
7.	Applying the Power series method to solve differential equations			3 hours	
	arising in engineering applications				
8.	Applying the Frobenius method to solve differential equations			3 hours	
	arising in engineering applications				
9.	Visualising Bessel and Legendre polynomials			3 hours	
10.	Evaluating Fourier series-Harmonic series			3 hours	
11.	Applying Z-Transforms to functions encountered in engineering			3 hours	
12.	Solving Difference equations arising in engineering applications			3 hours	
	Total Laboratory Hours				30 hours
Mod	Mode of Evaluation: Weekly Assessment, Final Assessment Test				
Reco	mmended by Board of				
Studi	Studies				
Appr	Approved by Academic		Date	16-06-2015	
Council					