UCS749: Conversational AI: Speech Proc. [...]

Faculty: RGB

Thapar Institute of Engineering & Technology

Computer Science & Engineering Department EXERCISE (TTS) (2024-25 ODD)

Time: 2 hours MM:-

- 1. If P_{θ} models a data \mathcal{D} with an intent of generating novel samples, $\mathbf{x} \sim P_{\theta}$. Is P_{θ} a posterior distribution? Comment. [2 marks]
- 2. If $X = \{\mathbf{x}_1, \dots, \mathbf{x}_T\}$ is a temporal sequence and each time step is independently and identically distributed,
 - a) Prove that $\log P(X) = \sum_{i=1}^{T} \log P(x_i)$;
 - b) If *X* is a Bernoulli process, *i.e.* if each x_i is a coin toss, with hit rate *p*, the log likelihood of *k* hits is $k \log p + (T k) \log(1 p)$.

2a)
$$X = \{n_1 \dots n_7\}$$

 $P(X) = P(n_1 | n_1 \dots n_{7-1}) \cdot P(n_1 \dots n_{7-1})$
 $= P(n_1 | n_1 \dots n_{1-1}) \cdot P(n_1 \dots n_{7-1})$
 $= \prod_{i=1}^{7} P(n_i | n_1 \dots n_{i-1}) - D$
 $= \lim_{i=1}^{7} P(n_i | n_1 \dots n_{1-1}) = P(n_i)$
 $= \lim_{i=1}^{7} P(n_i) - D$
 $= \lim_{i=1}^{7} P(n_i) - D$

26) For a Bornoulli Process with hit rate
$$\beta'$$
.

The favorable of k' hits in 'T' tricks in given as,

 $P(X) = P(k,T;\beta) = \beta^{x} (1-\beta)^{T-k}$.

Or $\log P(X) = k \log P + (T-k) \log (1-\beta)$

3. If $X = \{\mathbf{x}_1, ..., \mathbf{x}_T\}$ is the temporal sequence of a Markov process, prove that $\log P(X) = \sum_{i=1}^{T} \log P(x_i \mid x_{i-1})$.

Speech sample X is a temporal sequence of intensities,

$$X \equiv \{x_1 \dots x_T\}$$

Given speech samples \mathscr{D} as evidence, estimate $P_{\theta} \approx \mathscr{D}$ so that $X \sim P_{\theta}$ is a valid speech sample.

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- X is the field of inputs.
 - For a continuous model, $X \equiv \mathbb{R}$; whereas,
 - For categorical model, $X = \mathbb{R}^{256}_{[0,1]}$;
 - It may also be a hybrid model, e.g. $G_{\theta,\mathcal{N}}: \mathbb{R}^K \to \mathbb{R}^{256}_{[0,1]}$.

Can you think how?

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- \mathcal{N} is a noise sampler,
 - Generally, implemented as a normal distribution; or
 - Implemented implicitly as dropouts.

Let $G_{\theta,\mathcal{N}}: \mathbb{X}^K \to \mathbb{X}$ represent the model. where,

- θ are parameters of the model; and
- $\mathbf{x}_t = G_{\theta, \mathcal{N}}\left(\left[\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1}\right]\right)$ models the conditional distribution $P(x_t \mid x_{t-K} \dots x_{t-1})$

In case of Conditional Generation,

$$\mathbf{x}_{t} = G_{\theta, \mathcal{N}} ([\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1}], \mathbf{h})$$

models the conditional distribution $P(x_{t} \mid x_{t-K} \dots x_{t-1}, \mathbf{h})$

h represents the global conditions, e.g.

- Text input;
- Speaker;
- Accent;
- and so forth.

Let

 $X \equiv [\mathbf{x}_1 \dots \mathbf{x}_T] \sim G_{\theta,\mathcal{N}}$ be the output of the auto-regressive model, so that

$$\mathbf{x}_{t} = G_{\theta, \mathcal{N}}\left(\left[\mathbf{x}_{t-K} \dots \mathbf{x}_{t-1}\right]\right)$$

And,

 $Y \equiv [\mathbf{y}_1 \dots \mathbf{y}_T] \sim \mathcal{D}$ be a speech sample from dataset. Recall that for each time step, the sound intensity is pre-processed so that the values are remapped, quantised, and converted to one-hot vectors, so that $\mathbf{y}_t \in \{0, 1\}^{256}$; $\|\mathbf{y}_t\|_1 = 1$.

The training objective is the cross entropy function, given as,

minimise
$$\mathbb{E}_{X \sim G, Y \sim \mathcal{D}} \left[\sum_{i,t} y_{i,t} \log x_{i,t} \right]$$

Tacotron

Artificial Neuron

$$\mathbf{y} = \mathcal{N}(W\mathbf{x} + \mathbf{b})$$

where,

- $\mathbf{x}, \mathbf{y} \in V$, for some vector space V;
- W, **b** are learnable weights; and
- $\mathcal N$ is a non-linearity applied element-wise.

without loss of generality

ANN Layer

$$\mathbf{x}_{l+1} = \mathcal{N}(W_l \mathbf{x}_l + \mathbf{b}_l)$$

where,

- $\mathbf{x}_l \in V \ \forall \ l$, for some vector space V;
- W, **b** are learnable weights; and
- \mathcal{N} is a non-linearity applied element-wise.

Sequential Network

e.g. AlexNet, VGG Net etc.

$$\mathbf{y} = \mathbf{g} \otimes \mathbf{x}$$
$$\mathbf{g} = \sigma(W\mathbf{x} + \mathbf{b})$$

where,

- ⊗ represents Hadamard product;
- σ represents the logistic sigmoid function that is applied element-wise; and
- $\mathbf{g} \in \mathbb{R}^n_{[0,1]}$ represents the gate.

Highway Gate

$$\mathbf{y} = (\mathbf{1} - \mathbf{g}) \otimes \mathbf{x} + \mathbf{g} \otimes \mathbf{h}$$
$$\mathbf{g} = W_g \mathbf{x} + \mathbf{b}_g$$
$$\mathbf{h} = W_h \mathbf{x} + \mathbf{b}_h$$

Highway Gate

In practice,

$$\mathbf{y} = (\mathbf{1} - \mathbf{g}) \otimes \mathbf{x} + \mathbf{g} \otimes \mathbf{h}$$
$$(\mathbf{g}, \mathbf{h}) = (\sigma(\tilde{\mathbf{y}}_{:n}), \mathcal{N}(\tilde{\mathbf{y}}_{n:}))$$
$$\tilde{\mathbf{y}} = W\mathbf{x} + \mathbf{b}$$

Constructing a highway network

$$\forall l \in \{1, \dots, L\}$$

$$\mathbf{x}_{l} = (\mathbf{1} - \mathbf{g}_{l}) \otimes \mathbf{x}_{l} + \mathbf{g}_{l} \otimes \mathbf{h}_{l}$$
$$(\mathbf{g}_{l}, \mathbf{h}_{l}) = (\sigma(\tilde{\mathbf{x}}_{l,:n}), \mathcal{N}(\tilde{\mathbf{x}}_{l,n:}))$$
$$\tilde{\mathbf{x}}_{l} = W_{l}\mathbf{x}_{l-1} + \mathbf{b}_{l}$$

With L = 50 layer deep models, the very-deep network building strategy shown here predates googlenet and resnet.

$$P_{\theta}(Y|X)$$
 modelled as $\mathbf{y} = G(\mathbf{x}; \theta)$

as simple as possible

$$X \equiv \{\mathbf{x}_1 \dots \mathbf{x}_N\}$$
$$Y \equiv \{\mathbf{y}_1 \dots \mathbf{y}_N\}$$

$$P(x_i \mid x_1, ..., x_{i-1}, x_{i+1}, ..., x_T)$$

0.53	0.24	0.01	0.45	0.14	0.42	0.59	0.37	0.32	0.18	0.29
0.56	0.16	0.32	0.44	0.32	0.63	0.52	0.85	0.75	0.75	0.33
0.84	0.93	0.13	0.63	0.06	0.83	0.13	0.65	0.11	0.65	0.17
0.92	0.62	0.08	0.13	0.18	0.72	0.83	0.54	0.83	0.29	0.45
0.41	0.33	0.89	0.71	0.33	0.86	0.15	0.13	0.68	0.99	0.14
0.26	0.17	0.03	0.48	0.29	0.40	0.60	0.27	0.85	0.66	0.11
0.95	0.07	0.17	0.79	0.59	0.41	0.07	0.22	0.60	0.11	0.11
0.27	0.72	0.02	0.97	0.62	0.53	0.49	0.81	0.00	0.29	0.52
0.88	0.17	0.24	0.77	0.59	0.40	0.71	0.88	0.07	0.21	0.17
0.23	0.06	0.48	0.97	0.18	0.85	0.62	0.82	0.73	0.66	0.70
0.67	0.66	0.24	0.46	0.19	0.87	0.83	0.19	0.15	0.21	0.70
0.28	0.72	0.32	0.04	0.48	0.16	0.47	0.34	0.52	0.14	0.75
0.94	0.73	0.20	0.57	0.68	0.47	0.90	0.54	0.67	0.18	0.84