Cortical Microcircuit Simulation Project

Mapping Neuron Types, Connectivity & Computational Functions

Reference: Potjans, T. C., & Diesmann, M. (2014).

By-Neelatmajam Dwivedi

Neuron Types

- Layer 2/3 Excitatory (E₂₃): Regular-spiking pyramidal
- Layer 2/3 Inhibitory (I₂₃): Fast-spiking interneurons
- Layer 5 Excitatory (E₅): Thick-tufted bursting pyramidal
- Layer 5 Inhibitory (I₅): Somatostatin/parvalbumin interneurons

Connectivity Patterns

- Connection probabilities defined per pre→post population:
- $E_{23} \rightarrow E_{23}$: 0.10 $E_{23} \rightarrow I_{23}$: 0.06 $E_{23} \rightarrow E_{5}$: 0.04 $E_{23} \rightarrow I_{5}$: 0.02
- $l_{23} \rightarrow E_{23}$: 0.12 $l_{23} \rightarrow l_{23}$: 0.10 $l_{23} \rightarrow E_5$: 0.05 $l_{23} \rightarrow l_5$: 0.04
- $E_5 \rightarrow E_{23}$: 0.08 $E_5 \rightarrow I_{23}$: 0.03 $E_5 \rightarrow E_5$: 0.09 $E_5 \rightarrow I_5$: 0.02
- $l_5 \rightarrow E_{23}$: 0.07 $l_5 \rightarrow l_{23}$: 0.05 $l_5 \rightarrow E_5$: 0.06 $l_5 \rightarrow l_5$: 0.10

Computational Functions

- 1. Balanced Asynchronous Irregular activity: fluctuation-driven Al regime.
- 2. Layer-specific gain modulation:
- - Feedforward ($E_{23} \rightarrow E_5$) for bottom-up processing
- - Feedback $(E_5 \rightarrow I_{23})$ for top-down control
- 3. Population coding: orientation tuning and receptive field refinement

Summary & Next Steps

- Provides a framework to simulate Corticon-induced E/I imbalance.
- Enables in silico rescue experiments: modulate conductances, external drive, STDP.
- Next: implement rescue protocols and analyze recovery trajectories.