

ChatGPT

How do humans learn?

- Learning
 - Observe a phenomenon
 - Recognise a pattern
 - Understand how pattern occurs by determining the relationship between the factors involved
- Example: Occurrence of day and night
- [Human Learning vs Machine Learning | by Gaurav Goel | Towards Data Science]
- We observe a phenomenon (night and day) and We recognise a pattern
 - The pattern suggests that the surface of the Earth receives light from the sun alternately

- Example: Occurrence of day and night
- Model 1: Day/Night is a function of the ON/OFF switch of the Sun

- Example: Occurrence of day and night
- Model 2: Day/Night is a function of the Sun revolving around the Earth

- Example: Occurrence of day and night
- Model 3: Day/Night is a function of the Earth rotating on its own axis

Example: Occurrence of day and night

Possibilities

- Model 3: Day/Night is a function of the Earth rotating on its own axis
- Model 3 gives most accurate explanation of the Day/Night phenomenon
- →Gives the best fit for the observations that explain this phenomenon
- Model can now be used to predict future outcomes for this phenomenon.
 - Model can predict the occurrence of day/night depending on which side/surface of the Earth is facing the Sun

Earth rotates on its own axis Earth Rotation Revolution

How do humans learn?

- Human learning is therefore to:
 - observe something
 - identify a pattern
 - build theory (model)
 - test this theory/model to see whether it fits in most/all cases
- Is it possible for a machine to mimic this process of human learning?
- →That is what the field of machine learning / artificial intelligence aims to do!

Price of diamond (R)
1000
2500
3000
6000
8500

Consider a fake dataset consisting of the size and price of a diamond

Size (mm)	Price (R)
1	1000
2.5	2500
3	3000
6	6000
8.5	8500

- We can observe a pattern/relationship between the size and the price of the diamond
- →Pattern can be described by the model: Price = 1000 * Size

How would a machine determine this relationship?

 It consists of all variables/factors involved (in this case, size and price of diamond) and assumes a relationship of the Price = w * Size[where w = random value]

How would a machine determine this relationship?

- It consists of all variables/factors involved (in this case, size and price of diamond) and assumes a relationship of the Price = w * Size[where w = random value]
- 2. It assumes a value for w[let's say, w = 950]

Size of diamond	Actual price of diamond	Calculated price of diamond	Error
1	1000	=1.0*950	
2.5	2500	=2.5*950	
3	3000	=3.0*950	
6	6000	=6.0*950	
8.5	8500	=8.0*950	

How would a machine determine this relationship?

- 1. It consists of all variables/factors involved (in this case, size and price of diamond) and assumes a relationship of the Price = w * Size[where w = random value]
- 2. It assumes a value for w[let's say, w = 950]

Size of diamond	Actual price of diamond	Calculated price of diamond	Error	
1	(1000	=1.0*950)	→	
2.5	(2500	=2.5*950)	→	
3	(3000	=3.0*950)	→	Calculate average error
6	(6000	=6.0*950)	→	
8.5	(8500	=8.0*950)	→	

How would a machine determine this relationship?

- 1. It consists of all variables/factors involved (in this case, size and price of diamond) and assumes a relationship of the Price = w * Size[where w = random value]
- 2. It assumes a value for w[let's say, w = 980]

Size of diamond	Actual price of diamond	Calculated price of diamond	Error
1	(1000	=1.0*980)	→
2.5	(2500	=2.5*980) —	→
3	(3000	=3.0*980)	→
6	(6000	=6.0*980) —	→
8.5	(8500	=8.0*980)	→

Calculate average error for whole dataset

3. Update value for w and repeat step 2

How would a machine determine this relationship?

- 1. It consists of all variables/factors involved (in this case, size and price of diamond) and assumes a relationship of the Price = w * Size[where w = random value]
- 2. It assumes a value for w[let's say, w = 1000]

Size of diamond	Actual price of diamond	Calculated price of diamond	Error
1	(1000	=1.0*1000)	→
2.5	(2500	=2.5*1000)	→
3	(3000	=3.0*1000)	→
6	(6000	=6.0*1000)	→
8.5	(8500	=8.0*1000)	→

Calculate average error for whole dataset

- 3. Update value for w and repeat step 2
- 4. Continue until a minimum average error is obtained(-- This model describe a relationship that best fits the data)

 Even though a very simple and perfectly linear relationship was considered for the diamond example, a machine learning algorithm has the ability to identify complex patterns and highly non-linear relationships that we cannot identify with our human eye.

Machine learning model:

- Considers a set of data that describes (a various number of) variables
- Tries to determine a relationship between these variables and defines/expresses this relationship
 as a mathematical function / modelprocess of updating the mathematical function until it
 optimally fits the data = training
- The trained model can then be used to make future predictions on previously unseen data that describe the same phenomenon/process/system

- Machines learn in different ways with various amounts of "supervision"
- Machine learning model/algorithm is mainly classified as supervised or unsupervised

- Machine learning model trains on samples that consist of both input and output by determining a function that best describes the relationship between the given input and the output samples.
- Trained model
- Receives new, previously unseen input data and predicts the corresponding output/label.
- Two supervised learning techniques:

- Classification:
 - Task of machine learning algorithm is to categorize or predict a discrete class label.

• Regression:

-Regression is about predicting continuous numerical values (e.g., house prices, temperature) rather than discrete categories.

Machine learning types:

Unsupervised learning

- Unsupervised learning:
 - Machine learning model trains on samples that consist of inputs but no corresponding outputs/labels.
 - Goal is to analyse the dataset and cluster the data into different classes based on patterns/similarities that it has found within the data.
- Most common unsupervised learning technique: clustering

Machine learning pipeline

Machine Learning Pipeline – Data Ingestion

Machine Learning Pipeline – Data Cleaning

Machine Learning Pipeline – Data Splitting

- Splitting the data into training, validation, and testing sets.
 - Training data (70%): Used to train the model
 - Validation data (20%): Used to fine-tune hyperparameters and prevent overfitting.
 - Testing data (10%): Used for final evaluation of the model's generalizability.

Machine Learning Pipeline – Training

Machine Learning Pipeline – Testing and Evaluation

Evaluating the model's performance on the testing data.

- Common metrics: Accuracy, Precision, Recall, F1-Score, AUC-ROC for classification tasks
- Mean Squared Error (MSE) or Root Mean Squared Error (RMSE) for regression tasks.

Machine Learning Pipeline – Deployment

- Deploying the trained model into production.
- Considerations: Scalability, efficiency, infrastructure.
- Monitoring the model's performance and retraining as needed.

ML OR NOT?

