Your Document Title

Your Name

March 23, 2024

Contents

Proof Methods	2
If then statements	2
If then types	2
Induction Proof	2
Proof by contradiction	3
Definitions	4
$Equality = \dots $	4
$\textbf{Inequality} \neq \hspace{0.1cm} \ldots \ldots \ldots \ldots \ldots \ldots$	4
In the set of \in	4
Not in the set of \notin	4
Divisibility	4
2 and other integers	4
Even Integers	4
Subtraction	4
Power	4
Sum	5
Product	5
Non-negative integer $(\mathbb{Z}_{\geq 0})$	5
Factorial	5
Subset (\subseteq)	5
The Empty Set (\emptyset)	5
Equal Sets (=)	5
Functions	5

Proof Methods

If then statements

Format:

Proof. If A, then B:

- 1. Assume A.
- 2. Show that assuming A leads to B.
- 3. Therefore, B is concluded from A.

Example:

Proof. If m = 1, then m + 0 = 1.

- 1. Assume m=1.
- 2. Considering m = 1, we have 1 + 0 = 1.
- 3. This simplifies to 1 = 1, which is true.

If then types

Different types of implications and their meaning:

- $A \Rightarrow B$: "If it is Wednesday, Dr. Beck will get a cup of coffee from the student union."
- $B \Rightarrow A$ (Converse): "If Dr. Beck got a cup of coffee from the student union, then it is Wednesday."
- $A \Leftrightarrow B$ (Bi-conditional): "It is Wednesday if and only if Dr. Beck got a cup of coffee from the student union."
- $\neg B \Rightarrow \neg A$ (Contrapositive): "If Dr. Beck did not get a cup of coffee from the student union, then it is not Wednesday."

Induction Proof

Format:

Proof. Prove that F(x) is true for all $x \in A$:

- 1. Base case: Show F(a) is true, where a is the smallest element in set A.
- 2. **Induction step:** Assume F(k) is true for an arbitrary $k \in A$. Show that $F(k) \Rightarrow F(k+1)$.
- 3. Therefore, F(x+1) is true for all $x \in A$.

Example:

Proof. For all $n \in \mathbb{N}$, n = n:

- 1. Base case (n = 1): 1 = 1 is true.
- 2. **Induction step:** Assume n = n is true for an arbitrary natural number n. Show that this implies n + 1 = n + 1.
- 3. By the induction hypothesis, n = n. Adding 1 to both sides, n + 1 = n + 1, which holds true.

Proof by contradiction

Format:

Proof. Prove that A is true by contradiction:

- 1. Assume **not** A.
- 2. Show that this assumption leads to a contradiction (something that we know is false).
- 3. Therefore, A must be true.

Different Negations

1. **AND** \Rightarrow **OR:** If A and B, then **not** A or **not** B.

Example: Dr. Beck is 5 ft tall and single \Rightarrow Dr. Beck is **not** 5 ft tall or is **not** single.

2. **OR** \Rightarrow **AND:** If *A* or *B*, then **not** *A* and **not** *B*.

Example: Dr. Beck will drink a coffee or it is Wednesday \Rightarrow Dr. Beck will **not** drink a coffee and it is **not** Wednesday.

3. If, then \Rightarrow AND: If A, then B implies not A and not B.

If it is Monday, then Dr. Beck is on campus \Rightarrow It is **not** Monday and Dr. Beck is **not** on campus.

4. For all \Rightarrow There exists: For all m, A is true implies there exists an m, A is not true.

For all $m \in \mathbb{Z}$, m is even \Rightarrow There exists $m \in \mathbb{Z}$, m is **not** even.

5. There exists \Rightarrow For all: There exists an m, A is true implies for all m, A is not true.

There exists an $m \in \mathbb{Z}$, $m+1=0.5 \Rightarrow For \ all \ m \in \mathbb{Z}$, $m+1 \neq 0$.

Example:

Proof. There is no $x \in \mathbb{N}$ that satisfies the equation $1 - x = 0 \cdot x$.

- 1. Assume by way of contradiction that such an x exists in \mathbb{N} .
- 2. Since $x \neq 0$ for any $x \in \mathbb{N}$, cancelling x from both sides of the equation $1 x = 0 \cdot x$ leads to 0 = 1.
- 3. Since $0 \neq 1$ is a true mathematical contradiction, the initial statement is proven to be true by contradiction.

3

Definitions

Equality =

The symbol = means equals. To say m = n means that m and n are the same number. Some properties are:

i. m = m (reflexivity)

ii. If m = n then n = m (symmetry)

iii. If m = n and n = p then m = p (transitivity)

iv. If m = n, then n can be substituted for m in any statement without changing the meaning (replacement)

Inequality \neq

The symbol \neq means is not equal to. To say $m \neq n$ means that m and n are different numbers. Note that \neq satisfies symmetry, but not transitivity and reflexivity.

In the set of \in

The symbol \in means is an element of. For example, $0 \in \mathbb{Z}$ means "0 is an element of the set \mathbb{Z} ."

Not in the set of \notin

The symbol \notin means is not an element of. For example, $0.5 \notin \mathbb{Z}$ means "0.5 is not an element of the set \mathbb{Z} ."

Divisibility

When m and n are integers, we say m is divisible by n (or alternatively, n divides m) if there exists $j \in \mathbb{Z}$ such that m = jn. We use the notation n|m.

2 and other integers

2 is defined as 2 = 1 + 1 and **3** is 2 + 1 and so on.

Even Integers

Even integers are defined to be those integers that are divisible by 2. That is, x = 2j, where $j \in \mathbb{Z}$.

Subtraction

Subtraction is defined as m-n is defined to be m+(-n).

Number Theory

Power

Let b be a fixed integer. We define b^k for all integers $k \ge 0$ by:

- 1. $b^0 := 1$
- 2. Assuming b^n is defined, let $b^{n+1} := b^n \cdot b$

Sum

Let $(x_j)_{j=1}^{\infty}$ be a sequence of integers. $(x_j)_{j=1}^3 = \{1, 2, 3\}$. For each $k \in \mathbb{N}$, we want to define an integer called $\sum_{i=1}^k x_i$:

- 1. Define $\Sigma_{j=1}^1 \mathbf{x_j}$ to be x_1
- **2.** Assuming $\sum_{j=1}^n x_j$ is already defined, we define $\sum_{j=1}^{n+1} \mathbf{x_j}$ to be $\sum_{j=1}^n x_j + x_{n+1}$

Product

Let $(x_j)_{j=1}^{\infty}$ be a sequence of integers. $(x_j)_{j=1}^3 = \{1, 2, 3\}$. For each $k \in \mathbb{N}$, we want to define an integer called $\prod_{i=1}^k x_i$:

- 1. Define $\Pi_{i=1}^1 \mathbf{x_j}$ to be x_1
- **2.** Assuming $\Pi_{j=1}^n x_j$ is already defined, we define $\Pi_{j=1}^{n+1} x_j$ to be $\Pi_{j=1}^n x_j \cdot x_{n+1}$

Non-negative integer $(\mathbb{Z}_{\geq 0})$

$$\mathbb{Z}_{\geq 0} := \{ m \in \mathbb{Z} : m \geq 0 \}$$

Factorial

We define k! ("k factorial") for all integers $k \geq 0$ by:

- 1. Define 0! := 1
- **2.** Assuming n! is defined (where $n \in \mathbb{Z}_{>0}$), define $(\mathbf{n} + \mathbf{1})! := (\mathbf{n}!) \cdot (\mathbf{n} + \mathbf{1})$

Subset (\subseteq)

 $A \subseteq B$ means that if $x \in A$, then $x \in B$

The Empty Set (\emptyset)

The empty set is defined as a set that contains no elements.

Equal Sets (=)

The set A is equal to B means that $A \subseteq B$ and $B \subseteq A$. In order to prove two sets are equal, you have to complete two proofs.

Functions

Informal Definition

A function consists of:

- a set A called the **domain** of the function
- a set B called the **codomain** of the function
- a rule f that assigns to each $a \in A$ an element $f(a) \in B$. Shorthand for this is $f: A \to B$

Abstract Definition

A function with domain A and codomain B is a subset of Γ of $A \times B$ such that for each $a \in A$, there is one and only one element of Γ whose first entry is a. If $(a,b) \in \Gamma$, we write b = f(a).

Axioms

Axioms of Integers

The axioms of integers describe the basic properties that define the structure of the set of integers (\mathbb{Z}) .

Axiom 1.1 (Commutativity and Associativity)

- For any integers m, n, the operation of addition is commutative: m + n = n + m.
- For any integers m, n, p, the operation of addition is associative: (m+n) + p = m + (n+p).
- For any integers m, n, p, the distributive property connects the operations of multiplication and addition: $m \cdot (n+p) = m \cdot n + m \cdot p$.
- For any integers m, n, the operation of multiplication is commutative: $m \cdot n = n \cdot m$.
- For any integers m, n, p, the operation of multiplication is associative: $(m \cdot n) \cdot p = m \cdot (n \cdot p)$.

Axiom 1.2 (Identity Elements)

- There exists an integer 0 such that for any integer m, adding 0 to m leaves it unchanged: m + 0 = m.
- There exists an integer 1 $(1 \neq 0)$ such that for any integer m, multiplying m by 1 leaves it unchanged: $m \cdot 1 = m$.

Axiom 1.3 (Additive Inverse)

For each integer m, there exists an integer denoted by -m such that their sum is 0: m + (-m) = 0.

Axiom 1.4 (Cancellation Law)

For any integers m, n, p, if $m \neq 0$ and $m \cdot n = m \cdot p$, then n = p.

Proof Example

Proof. If m is an integer and $m \cdot 0 = 0$, then m = m.

- Consider an integer m.
- Multiplying by 0 gives $m \cdot 0 = 0$.
- Since $m \cdot 0 = 0$, by the property of zero in multiplication, we have m = m.
- Thus, the statement is proven.