221	1011	90	-
d	/ 62./	م م	1

Aula 11. Estimando Integrais atraves de MC
$f(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{\chi^2}{2}}, -\infty < \times < +\infty$
$f(x) = 1 \cdot e^{-2}$ $-\infty < \times < +\infty$
$\sqrt{2\pi}$
Objetive calcular 1 e 2
Objetivo calcular $\int_{\sqrt{2\pi}}^{2\pi} e^{-\frac{x^2}{2}} dx = ?$
Codigo em R
x/= m
x4- runif (1000, min=0, max=1) y (-runif (1000, min=0, max= sqrt(1/2*pi))
y (= 10 mg (2000, m, m = 0), max = 99" (2) 2 p1"
Jan. 1.1. 200 /- F to 125
densidade_normal <- function(x){ return $(sqrt(1/(2*pi))*exp(-0,5*(x^2)))$ }
reform (squit $27(2pi)$) exp (0,3 (x2)))
C 11 1 () + 10 () 1)
plot (x, y, pch = 16, type = "n")
plot (x, y, pen = 16, 14pe = n)
dentro L- y = denondade norma (x)
1/-1/7 -1/5 / (1 / 4)
points (xIdentro], yIdentro], pch=16, col="onange") points (xI) dentro], yI! dentro], pch=16, col="blue")
points (x) dentros, yl dentros, pch=16, col="blue")
1 1 1 * + 1 * 1 (00)
mean (dentro) * sqrt (1/(2*pi))

1	-		
(014/	01	1	20
27/	0	/	47

X discrete: x_1, x_2, x_3, \dots

 $E[X] = \sum_{i=1}^{\infty} x_i \cdot P(X = x_i)$

Y continua

 $E[X] = \int_{\alpha} x \cdot f(x) \cdot dx$

Função de nsidade de Y

f(x) 20, 4 2 ElR

 $\int_{A}^{\infty} f(x) dx = 1 \qquad P(Y \in A) = \int_{A}^{\infty} f(x) dx$

X-U[0,1]

 $f(x) \begin{cases} 1, & x \in [0, \lambda] \\ 0, & c.c \end{cases}$

 $P(\frac{1}{3} \le \times \le \frac{1}{3}) = \int_{\frac{1}{3}}^{\frac{1}{3}} f(x) dx = x \int_{\frac{1}{3}}^{\frac{1}{3}} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3}$

 $E[X] = \int_{0}^{1} f(x) dx = \int_{0}^{1} \chi . \lambda dx = \int_{0}^{1} \chi dx = \frac{\chi^{2}}{2} \int_{0}^{1} \frac{1}{2} dx$

