Logic Gates

Digital Computers

* Consider electronic signal

- Imply that the computer deals with digital information, i.e., it deals with the information that is represented by binary digits
- Why BINARY? instead of Decimal or other number system?

9 101112131415161718

BASIC LOGIC BLOCK - GATE -

Binary
Digital
Input
Signal

Binary
Digital
Output
Signal

Types of Basic Logic Blocks

- Combinational Logic Block
 Logic Blocks whose output logic value
 depends only on the input logic values
- Sequential Logic Block
 Logic Blocks whose output logic value
 depends on the input values and the
 state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table
- Boolean Function
- Karnaugh Map

Logic Gates

Name	Symbol	Function	Truth Table		
AND	А В — Х	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1		
OR	А x	X = A + B	A B X 0 0 0 0 1 1 1 1 1 1		
ı	A — X	X = A'	A X 0 1 1 0		
Buffer	A ————————————————————————————————————	X = A	A X 0 0 1 1		
NAND	А X	X = (AB)'	A B X 0 0 1 0 1 1 1 1 1 0		
NOR	АX	X = (A + B)'	A B X 0 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0		
XOR Exclusive OR	$A \longrightarrow X$	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 1 1 0		
XNOR Exclusive NOR or Equivalence	А X	X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1		

BOOLEAN ALGEBRA

Boolean Algebra

- * Algebra with Binary(Boolean) Variable and Logic Operations
- * Boolean Algebra is useful in Analysis and Synthesis of Digital Logic Circuits
 - Input and Output signals can be represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram can be constructed using AND, OR, and I

Truth Table

- * The most elementary specification of the function of a Digital Logic Circuit is the Truth Table
 - Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*
 - n input variables \rightarrow 2ⁿ minterms

BASIC IDENTITIES OF BOOLEAN ALGEBRA

```
[1] x + 0 = x [2] x \cdot 0 = 0

[3] x + 1 = 1 [4] x \cdot 1 = x

[5] x + x = x [6] x \cdot x = x

[7] x + x' = 1 [8] x \cdot X' = 0

[9] x + y = y + x [10] xy = yx

[11] x + (y + z) = (x + y) + z [12] x(yz) = (xy)z

[13] x(y + z) = xy + xz [14] x + yz = (x + y)(x + z)

[15] (x + y)' = x'y' [16] (xy)' = x' + y'
```

[15] and [16] : De Morgan's Theorem

Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates
 - -- Ordinarily ANDs, ORs, and Inverters
- -- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs
 - → Applications of De Morgans Theorem

Boolean Algebra

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function

Boolean Algebra

COMPLEMENT OF FUNCTIONS

A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators.

- → Complement of a Boolean function
 - Replace all the variables and subexpressions in the parentheses appearing in the function expression with their respective complements

$$(p+q) \Rightarrow (p+q)'$$

 $A,B,...,Z,a,b,...,z \Rightarrow A',B',...,Z',a',b',...,z'$

- Replace all the operators with their respective complementary operators

$$\begin{array}{c} \mathsf{AND} \Rightarrow \mathsf{OR} \\ \mathsf{OR} \Rightarrow \mathsf{AND} \end{array}$$

- Basically, extensive applications of the De Morgan's theorem

$$(x_1 + x_2 + ... + x_n)' \Rightarrow x_1'x_2'... x_n'$$

 $(x_1x_2 ... x_n)' \Rightarrow x_1' + x_2' + ... + x_n'$

Map Simplification

SIMPLIFICATION

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for simplifying Boolean expressions.

Map Simplification

KARNAUGH MAP

Karnaugh Map for an n-input digital logic circuit (n-variable sum-of-products form of Boolean Function, or Truth Table) is

- Rectangle divided into 2ⁿ cells
- Each cell is associated with a *Minterm*
- An output(function) value for each input value associated with a mintern is written in the cell representing the minterm \rightarrow 1-cell, 0-cell

Each Minterm is identified by a decimal number whose binary representation is identical to the binary interpretation of the input values of the minterm.

MAP SIMPLIFICATION - 2 ADJACENT CELLS -

Rule: xy' + xy = x(y+y') = x

Adjacent cells

- binary identifications are different in one bit
- → minterms associated with the adjacent cells have one variable complemented each other

Cells (1,0) and (1,1) are adjacent Minterms for (1,0) and (1,1) are $x \cdot y' --> x=1, y=0$

 $x \cdot y --> x=1, y=1$

F = xy' + xy can be reduced to F = x

From the map

 $F(x,y) = \sum (2,3)$ = xy' + xy= x

Computer Organization

Computer Architectures Lab

IMPLEMENTATION OF K-MAPS - Sum-of-Products Form -

Logic function represented by a Karnaugh map can be implemented in the form of I-AND-OR

A cell or a collection of the adjacent 1-cells can be realized by an AND gate, with some inversion of the input variables.

Map Simplification

IMPLEMENTATION OF K-MAPS - Product-of-Sums Form -

can be implemented in the form of I-OR-AND

Logic function represented by a Karnaugh map

If we implement a Karnaugh map using 0-cells, the complement of F, i.e., F', can be obtained. Thus, by complementing F' using DeMorgan's theorem F can be obtained

Map Simplification

- Don't-Care Conditions -

In some logic circuits, the output responses for some input conditions are don't care whether they are 1 or 0.

In K-maps, don't-care conditions are represented by d's in the corresponding cells.

Don't-care conditions are useful in minimizing the logic functions using K-map.

- Can be considered either 1 or 0
- Thus increases the chances of merging cells into the larger cells
 - --> Reduce the number of variables in the product terms

Combinational Logic Circuits

Other Combinational Circuits

Multiplexer
Encoder
Decoder
Parity Checker
Parity Generator
etc

Flip Flops

FLIP FLOPS

Characteristics

- 2 stable states
- Memory capability
- Operation is specified by a Characteristic Table

In order to be used in the computer circuits, state of the flip flop should have input terminals and output terminals so that it can be set to a certain state, and its state can be read externally.

CLOCKED FLIP FLOPS

In a large digital system with many flip flops, operations of individual flip flops are required to be synchronized to a clock pulse. Otherwise, the operations of the system may be unpredictable.

Clock pulse allows the flip flop to change state only when there is a clock pulse appearing at the c terminal.

We call above flip flop a Clocked RS Latch, and symbolically as

Flip Flops

EDGE-TRIGGERED FLIP FLOPS

Characteristics

- State transition occurs at the rising edge or falling edge of the clock pulse

Latches

Edge-triggered Flip Flops (positive)

respond to the input only at this time

Flip Flops

CLOCK PERIOD

Clock period determines how fast the digital circuit operates. How can we determine the clock period?

Usually, digital circuits are sequential circuits which has some flip flops

DESIGN EXAMPLE

Design Procedure: Specification →

Specification ⇒ State Diagram ⇒ State Table ⇒ Excitation Table ⇒ Karnaugh Map ⇒ Circuit Diagram

Example: 2-bit Counter -> 2 FF's

current	next						
state	input	state		FF inputs			
A B	X	Α	В	Ja	Ka	Jb	Kb
0 0	0	0	0	0	d	0	d
0 0	1	0	1	0	d	1	d
0 1	0	0	1	0	d	d	0
0 1	1	1	0	1	d	d	1
1 0	0	1	0	d	0	0	d
1 0	1	1	1	d	0	1	d
1 1	0	1	1	d	Ŏ	d	0
1 1	1	0	0	d	1	d	1

n data output lines

READ ONLY MEMORY(ROM)

Characteristics

- Perform read operation only, write operation is not possible
- Information stored in a ROM is made permanent during production, and cannot be changed
- Organization

Information on the data output line depends only

on the information on the address input lines.

Memory Components

TYPES OF ROM

ROM

- Store information (function) during production
- Mask is used in the production process
- Unalterable
- Low cost for large quantity production --> used in the final products

PROM (Programmable ROM)

- Store info electrically using PROM programmer at the user's site
- Unalterable
- Higher cost than ROM -> used in the system development phase -> Can be used in small quantity system

EPROM (Erasable PROM)

- Store info electrically using PROM programmer at the user's site
- Stored info is erasable (alterable) using UV light (electrically in some devices) and rewriteable
- Higher cost than PROM but reusable --> used in the system development phase. Not used in the system production due to eras ability

INTEGRATED CIRCUITS

Classification by the Circuit Density

SSI - several (less than 10) independent gates

MSI - 10 to 200 gates; Perform elementary digital functions; Decoder, adder, register, parity checker, etc

LSI - 200 to few thousand gates; Digital subsystem

Processor, memory, etc

VLSI - Thousands of gates; Digital system Microprocessor, memory module

Classification by Technology

TTL - Transistor-Transistor Logic Bipolar transistors NAND

ECL - Emitter-coupled Logic Bipolar transistor NOR MOS - Metal-Oxide Semicond

Metal-Oxide Semiconductor
Unipolar transistor
High density

CMOS - Complementary MOS Low power consumption