第七章: 树和割集

- 7.1 树及其性质
- 7.2 生成树
- 7.3 割点、桥和割集

有根树

自由树 (无根树)

第七章: 树和割集

第七章: 树和割集

树(无圈的连通图)、最小生成树、割点和割集。

一般作为极小的连通图、图的骨架 来研究和应用,最小生成树应用广泛。

7.1 树及其性质

本节主要内容

- 1、树和森林的定义
- 2、树的性质
- 3、极小连通图的定义
- 4、顶点的偏心率
- 5、图的半径和中心点

1、树和森林的定义

定义7.1.1 连通且无圈(回路)的无向图 称为无向树,简称树。

一个没有圈(回路)的不连通的无向图称为 无向森林,简称森林;

仅有一个顶点的树称为平凡树。

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

- (1) G是树
- (2) G的任意两个不同顶点间有唯一的一条通路联结;
- (3) G是连通的且p=q+1;
- (4) G中无回路且p=q+1;
- (5) G中无回路且G中任意两个不邻接的顶点间加一条 边,则得到一个有唯一的一个回路的图;
- (6) G是连通的,并且若 $p\geq3$,则G不是 K_p 。又若G中任意两个不邻接的顶点间加一条边,则得到一个有唯一的一个回路的图。

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

- (1) G是树
- (2) G的任意两个不同顶点间有唯一的一条通路联结。

证明略。

自由树 (无根树)

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

- (1) G是树
- (5) G中无回路且G中任意两个不邻接的顶点间加一条边,则得到一个有唯一的一个回路的图;

证明略。

自由树 (无根树)

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

(1) G是树

(6) G是连通的,并且若 $p\geq 3$,则G不是 K_p 。又若G中任意两个不邻接的顶点间加一条边,则得到一个有唯一的一个回路的图。

证明略。

自由树 (无根树)

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

自由树 (无根树)

证明:因为G是树,根据定义,G是连通的。

只需证明p=q+1

用归纳法:

当p=1或2时显然成立。

假设当p≤k时成立,证明p=k+1时成立

证明:从树G中任选一条边uv,去掉uv,设G'=G-uv,需要证明G'正好是两棵树。

需要证明: G'不连通, G'有两个支, G'无回路。

- (1)如果G'是连通的,说明在G中u和v间还有别的路,加上uv形成回路,这与G是树矛盾,因此G'不连通。
- (2)如果G'的支多于2个,那么加上边uv,仍然不连通,这与G是连通的矛盾,因此G'的支数是两个。
 - (3) 因为G中无回路, 所以G'中无回路。

因此G'正好由两棵树构成。

- (4)设G'的其中一棵树为 G_1 , 顶点数为 P_1 , 另一棵树为 G_2 , 顶点数为 $P-P_1$ 。
 - (5) 由归纳假设, G_1 的边数为 p_1 -1, G_2 边数为p- p_1 -1
 - (6) 原图G的边数q为 p_1 -1+p- p_1 -1+1=p-1

因此: p=q+1.

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

证明: 只需证明G中无回路即可:

如果G中有回路,去掉回路上的一条边 x_1 ,G- x_1 还是连通的;

如果 $G-x_1$ 中还有回路,去掉回路上的一条边 x_2 , $G-x_1-x_2$ 还是连通的;

设从G中去掉m条边后无回路的连通图为G', G'中边数为 p-1

因此G中边数为q+m=p-1+m

这与G中边数为p-1矛盾。

因此G中无圈

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

证明: 只需证明G是连通的即可

如果G不连通,任选两个分属于不同支的两个顶点,在这两个顶点间加一条边,则减少一个支;

如果所得到的图仍不连通,再任选两个分属于不同支的两个顶点,在这两个顶点间加一条边,则又减少一个支;

设在G中增加了m条边后的图G′连通了,则 G′的边数为p-1。

因此G中边数为p-1-m 矛盾,因此G是联通的。

定理7.1.1 设G=(V, E)是一个(p, q)图,则下列各命题等价:

- (1) G是树
- (2) G的任意两个不同顶点间有唯一的一条通路联结;
- (3) G是连通的且p=q+1;
- (4) G中无回路且p=q+1;
- (5) G中无回路且G中任意两个不邻接的顶点间加一条 边,则得到一个有唯一的一个回路的图;
- (6) G是连通的,并且若 $p\geq3$,则G不是 K_p 。又若G中任意两个不邻接的顶点间加一条边,则得到一个有唯一的一个回路的图。

推论7.1.1 任一非平凡树中至少有两个度为1的

顶点。

证明:

设v₁v₂…v_{m-1}v_m是树G中的一条最长通路。

则v₁和v_m的度数都为1。

如若不然,以v_m为例:

若vm还与除vm-1以外的顶点u关联

若u不在最长路 $v_1v_2...v_{m-1}v_m$ 上,则 $v_1v_2...v_{m-1}v_m$ u是一条更长的路,矛盾。

若u在最长路 $v_1v_2...v_{m-1}v_m$ 上,设u= v_i ,

则v_iv_{i+1}...v_{m-1}v_mv_i是一个回路,矛盾。

所以v₁和v_m的度数都为1。

3、最小连通图的定义

树-极小连通图

定义7.1.2 连通图G称为是极小连通图,如果去掉G的任意一条边后得到的都是不连通图。

推论7.1.2 图G是树当且仅当G是极小 连通图。

4、顶点的偏心率

计算图G中各点的偏心率

a,b,f的偏心率是3 d,e,c的偏心率是2

定义7.1.3 设G=(V, E) 是连通图, v∈V, 数

$$e(v) = \max_{u \in V} \{d(v, u)\}$$

称为v在G中的偏心率,

计算图G中各点的偏心率 a,b,f的偏心率是3 d,e,c的偏心率是2

计算图G的半径、中心点、中心

图G的半径是2

d,e,c是图G的中心点

{d,e,c}是图G的中心

$$r(G) = \min_{v \in V} \{e(v)\}$$

称为G的半径,满足r(G)=e(v)的顶点v称为G的中心点,G的所有中心点组成的集合称为G的中心,G的中心记为C(G)

定理7.1.2 每棵树的中心或含有一个顶点,或含有两个邻接的顶点

离中心最远的点满足什么性质?

都是一度顶点;

如果把1度顶点都去掉,会不会引起中心点的变化? 不会引起中心点的变化。

定理7.1.2 每棵树的中心或含有一个顶点, 或含有两个邻接的顶点。

[证]

- (1)一个顶点的树有一个中心,两个顶点的树 有两个中心。
- (2)每次把所有的一度顶点全去掉,并不引起中心的变化。
- (3)每次把所有的一度顶点全去掉,经有限步必可得到一个只有一个顶点的树,或只有两个顶点的树。

例7.1.1 任何一个树都可用两种颜色给其顶点染色,使得每条边的两个端点不同色(当且仅当为偶图)。

由第六章第4节中偶图的充分必要条件是图中所有 圈都是偶数长可得树是偶图。

因此树可用两种颜色染色,并且每条边的两个端点不同色。

7. 2

7.2 生成树

本节主要内容

- 1、生成树的定义
- 2、生成树的性质
- 3、生成树间的距离
- 4、生成树间的变换
- 5、最小生成树的定义
- 6、最小生成树的Kruskal算法
- 7、最小生成树的prim算法

1、生成树的定义

定义7.2.1 设G=(V, E)是一个图,G的一个生成子图T=(V, F)如果是树,则称T是G的生成树。

- (1)、若图G有生成树,则G是连通的,所以 不连通图没有生成树,
 - (2)、连通图都有生成树吗?

定理7.2.1 图G有生成树的充分必要条件是G为一个连通图。

证明: 必要性:

若G有生成树T,由T是连通的知G是连通的。

定理7.2.1 图G有生成树的充分必要条件是G为一个连通图。

证明: 充分性:

定理7.2.1 图G有生成树的充分必要条件是G为一个连通图。

证明: 充分性:

G是连通的,若G没有回路,则G是树,这时G就是自己本身的一个生成树;

若G有回路,去掉回路上的一条边 x_1 ,G- x_1 还是连通的;

若G- x_1 还有回路,去掉回路上的一条边 x_2 ,G- x_1 - x_2 还是连通的;

• • • • • • • •

经有限步得到一个无回路的连通图T,T就是 G的生成树。

推论7.2.1 设G是一个(p, q)连通图,则 q≥p-1。

定义7.2.2 设G是一个图,若G的生成子图F是一个森林,则F称为G的一个生成森林。

任意图都有生成森林。

定理7.2.2 具有p个顶点的完全图 K_p 有 p^{p-2} 棵 生成树, $p \ge 2$.

图G的一棵生成树

图G的一棵生成树

图G的一棵生成树

定理7.2.2 具有p个顶点的完全图 K_p 有 p^{p-2} 棵生成树, $p\geq 2$.

对p^{p-2}有什么感想?

每一位有p种选择,长度为 p-2的序列的个数

对2n有什么感想?

每一位有两种选择,长度 为n的序列的个数

对mn有什么感想?

每一位有m种选择,长度 为n的序列的个数

建立 K_p 的生成树与每位有p种选择,长度为p-2的序列之间的一一对应。

定理7.2.2 具有p个顶点的完全图 K_p 有 p^{p-2} 棵生成树, $p\geq 2$.

[证]设 K_p 的顶点集 $V=\{1,2,...,p\}$,

定理中的数p^{p-2}恰好是以V中顶点数为项,长为p-2的所有序列的个数,

要证明该定理,只须在 K_p 的所有生成树之集与这些长为p-2的序列之集间建立一个一一对应即可。

设一棵树的顶点集为A

- (1) 从中找到编号最小的叶子结点,去掉该叶子结点a₁及其邻接边(a₁, b₁)。
- (2) 重复以上过程。只到剩一条边为止。
- (1, 2) (4, 3) (3, 2)

这棵树对应序列(2,3,2)

一个棵对应序列 $B=b_1b_2b_3...b_{p-2}$ 而且是唯一的

设树的顶点集合是p个元素的集合A,

任给一个A中元素的序列B $\{b_1,b_2,b_3,...,b_{p-2}\}$

- (1) 从A找到最小的不属于B的元素,设为 a_1 ,与 b_1 连接,从A中去掉 a_1 ,从B中去掉 b_1 .
- (2) 重复以上过程只到B为空, A中剩余两个
- (3) 连接剩余的两个顶点。

树的顶点集合A= 【X, 2, ¾ 4√5} 给定序列 (X, X, X)

因此K_p的所有生成树之集与 长为p-2的序列之集是一一对 应的。定理得证。

定理7.2.3 设G=(V, E)是连通图, T_1 =(V, E_1)和 T_2 =(V, E_2)是G的两个不同的生成树,如果 e_1 \in E $_1$ \E $_2$,则 \exists e $_2$ \in E $_2$ \E $_1$, 使得(T_1 - e_1)+ e_2 为G的一棵生成树。

证明略

3、生成树间的距离

定义7.2.3 设 T_1 , T_2 是G的生成树, 是 T_1 的边但不是 T_2 的边的条数k称为 T_1 与 T_2 的距离, 记为d(T_1 , T_2)=k。

计算 T_1 和 T_2 的距离 T_1 和 T_2 的距离是2。

3、生成树间的距离

定义7.2.3 设 T_1 , T_2 是G的生成树, 是 T_1 的边但不是 T_2 的边的条数k称为 T_1 与 T_2 的距离, 记为d(T_1 , T_2)=k。

定义距离要满足三个条件,分别是:

(1) 非负性 (2) 对称性 (3)满足三角不等式

由定义可知d $(T_1, T_2) \ge 0$,

并且d $(T_2, T_1) = d(T_1, T_2)$

因此满足(1) 非负性 和 (2) 对称性。

3、生成树间的距离

(3)满足三角不等式

是T₁的边但 包括在如下 情况中,

不是 T_2 的边 是 T_1 的边不是 T_2 的边也不是 T_2 的边也不是 T_2 的边也不是 T_2 的边也不是 T3的边,

是T₁的边不是 边,

4、生成树间的变换

两个生成树之间的基本树变换 若 $d(T_1, T_2)=1$,

则 T_1 中有一条边 e_1 不在 T_2 中, T_2 中也有一条边不在 T_1 中,

$$T_2 = (T_1 - e_1) + e_2$$

它称为从T₁到T₂的一个基本树变换。

定理7.2.4 设 T_0 和T是G的两距离为k的生成树,则从 T_0 开始经k次基本树变换便可得到T。

证明略

5、最小生成树

给定边带权连通图G, G中边的权是一个非负 实数(根据实际情况并不一定非负),生成树中 各边的权之和称为该生成树的权;

图G的生成树T的权是6

G的生成树中权最小的那个生成树就是最小生成树。

5、最小生成树

最小生成树不一定唯一

5、最小生成树

Graph Theory (1)

@kvisual

6、最小生成树Kruskal算法

定理7.2.5 设G=(V, E, w)是一个连通的边带权图,边上的权函数w非负,

 $\{(V_1, E_1), (V_2, E_2), \dots, (V_k, E_k)\}$ 是G的生成森林, k>1, $F=\bigcup_{i=1}^k E_i$, 如果e=uv是E\F中权值最小的边且 $u\in V_i$, $v\not\in V_i$ 中,则存在G的一个包含FU {e} 的生成树T,使得T的权不大于任一包含F的生成树的权。

图G的生成森林(生成树)

•

6、最小生成树Kruskal算法

```
输入: 带权连通图G=(V, E, w), 其中V=\{1, 2, ..., n\},
输出:一颗最小生成树:
算法:
void Kruskal (V, T) {
 T=Ø; ncomp=n; //连通分支
 while (ncomp>1) {
   从E中取出删除权最小的边(v, u);
     if (v和u属于T中不同的连通分支)
       {T=T\cup \{(v,u)\}; ncomp--;\}}
```


定理7.2.6 设G=(V, E, w)是一个边带权连通图, U是V的一个真子集, 如果 $\{u, v\}$ 是 $u\in U, v\in V\setminus U$ 的G的一条边, 并且是所有的这样的边中, $\{u, v\}$ 的权w $\{u, v\}$ 最小, 则G中一定存在一个最小生成树,它以 $\{u, v\}$ 为其中一条边。

证明略。

最小生成树的prim算法事例演示

(1) U={a}, V\U={b, c, d, e, f, g}, T={}。 连接U和V\U之间最短的边是ab或ag任选一个例如ab T={ab}, U={a, b}, V\U={c, d, e, f, g}

最小生成树的prim算法事例演示

(1) T={ab}, U={a, b}, V\U={c, d, e, f, g} 连接U和V\U之间最短的边是bc T={ab, bc}, U={a, b, c}, V\U={d, e, f, g}

最小生成树的prim算法事例演示

(1) T={ab, bc}, U={a, b, c}, V\U={d, e, f, g} 连接U和V\U之间最短的边是ag T={ab, bc, ag}, U={a, b, c, g}, V\U={d, e, f}

最小生成树的prim算法事例演示

(1) T={ab, bc, ag}, U={a, b, c, g}, V\U={d, e, f} 连接U和V\U之间最短的边是gd或gf任选一个例如gd T={ab, bc, ag, gd}, U={a, b, c, g, d}, V\U={e, f}

最小生成树的prim算法事例演示

(1) T={ab, bc, ag, gd}, U={a, b, c, g, d}, V\U={e, f} 连接U和V\U之间最短的边是de T={ab, bc, ag, gd, de}, U={a, b, c, g, d, e}, V\U={e}

最小生成树的prim算法事例演示

(1) T={ab, bc, ag, gd, de}, U={a, b, c, g, d, e}, V\U={e} 连接U和V\U之间最短的边是ef T={ab, bc, ag, gd, de, ef}, U={a, b, c, g, d, e, f}, V\U={}

最小生成树的prim算法事例演示

T= {ab, bc, ag, gd, de, ef}

```
输入:连通带权图G=(V, E, w), 其中V={V1, V2,..., Vn},
输出:一颗最小生成树T:
void Prim(V, T) {
  T=\emptyset;
  U={V1};
  i=1;
  while(i<n) {
   求边{u,v}; // {u, v}是满足u∈U,
               v∈V\U中最短的边:
    T=T \cup \{\{u,v\}\};
    U=U\cup\{v\};
    i++;
```