Homework 4 - CH125A

The purpose of this homework is to get you comfortable with angular momentum for next week when we work on spin-orbit coupling and angular momentum addition. The other problem introduces an interesting aspect of spin, which we will further treat in class next week.

Problem 1: Evaluate the following commutators and angular momentum relations

- A. Calculate the following matrix element: $\langle l, m+2|(L_x)^2|l, m\rangle$
- B. A particle moves in a three-dimensional potential V(x, y, z) that satisfies $[L_y, V] = 0$ and $[L_z, V] = 0$. Prove that $[L_x, V] = 0$. What does this mean intuitively about the potential?
- C. The matrix representation of L_x for spin one is

$$\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Find the eigenvector of L_x that corresponds to the zero eigenvalue. For an angular momentum 1 particle with $|\Psi\rangle=\frac{1}{3}\begin{pmatrix}2\\1\\-2\end{pmatrix}$ what is the probability that a measurement of L_x will give zero, as in what is $|\langle L_x=0|\Psi\rangle|^2$?

Problem 2: Outer products

- A. What is the outer product $L \otimes S$ for L = 2, $S = \frac{3}{2}$? (In other words, what are the possible values of J_{total} for J = L + S?)
- B. Describe each of the possible states with spectroscopic notation.
- C. Now, imagine that we apply a strong magnetic field to our particle. Magnetic fields couple with angular momentum, allowing for degeneracy to be fully broken (i.e., each possible state has a different energy). In this case, we will assume that <u>lower values of J correspond to lower energies</u>. Draw an energy level diagram for this system in the presence of a magnetic field and specify each state with its spectroscopic label.

Problem 3: This problem will show that there is not a coordinate space representation of spin $\frac{1}{2}$. In other words, there are no spherical harmonics corresponding to spin $\frac{1}{2}$. This is why spin is talked about as an internal degree of freedom, with the total angular momentum being J = L + S.

- A. Show that $L_+\left|\frac{1}{2},\frac{1}{2}\right\rangle=0$ and $L_-\left|\frac{1}{2},-\frac{1}{2}\right\rangle=0$.
- B. From the coordinate space representation of the raising and lower operators (Equation 12.5.27 Shankar), we expect that

$$L_{+} \left| \frac{1}{2}, \frac{1}{2} \right\rangle = 0 \rightarrow \hbar e^{i\phi} \left(\frac{\partial}{\partial \theta} + i \cot(\theta) \frac{\partial}{\partial \phi} \right) Y_{\frac{1}{2}}^{\frac{1}{2}}(\theta, \phi) = 0$$

$$L_{-} \left| \frac{1}{2}, -\frac{1}{2} \right\rangle = 0 \rightarrow \hbar e^{-i\phi} \left(-\frac{\partial}{\partial \theta} + i \cot(\theta) \frac{\partial}{\partial \phi} \right) Y_{\frac{1}{2}}^{-\frac{1}{2}}(\theta, \phi) = 0$$

To be eigenfunctions of L_z the states must have a ϕ dependence of $e^{\frac{-i\phi}{2}}$. Show that the solutions are $Y_{\frac{1}{2}}^{\frac{1}{2}}(\theta,\phi)=A(sin\theta)^{1/2}e^{\frac{i\phi}{2}}$ and $Y_{\frac{1}{2}}^{-\frac{1}{2}}(\theta,\phi)=B(sin\theta)^{1/2}e^{\frac{-i\phi}{2}}$ where A and B are normalization constants.

C. The answers in (a) look fine, but unfortunately they are not consistent with two more results, namely that $L_+\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2},\frac{1}{2}\right\rangle$ and $L_-\left|\frac{1}{2},\frac{1}{2}\right\rangle=\hbar\left|\frac{1}{2},-\frac{1}{2}\right\rangle$. Starting from $Y_{\frac{1}{2}}^{\frac{1}{2}}(\theta,\phi)$, the lowering operator should give $Y_{\frac{1}{2}}^{-\frac{1}{2}}(\theta,\phi)$. Show that

$$L_{-}Y_{\frac{1}{2}}^{\frac{1}{2}} = -\hbar A \frac{\cos\theta}{\sqrt{\sin\theta}} e^{-\frac{i\phi}{2}}$$

The right hand side is not equal to $Y_{\frac{1}{2}}^{-\frac{1}{2}}$; in fact it is infinite at $\theta=0$ and π . The same can be shown for the raising operator. In other words, no set of spherical harmonics exist for spin ½.

This is a good example, again, of how we started with arbitrary definitions of raising and lowering operators, then found eigenvectors including real-space descriptions, which then lead to new science. In particular, spin ½ is a different degree of freedom that has no real space definition.