Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- ullet L_{eq}
- Noise Dose
- Measuring Sound in Practice

Measuring Microphones (Transducer)

Features:

- Wide Frequency Range
- Flat Frequency Response
- Wide Dynamic Range
- Low Distortion
- Robust, long term stability
- Simple design
-

Converting sound pressure signal into an electrical signal

The Condenser Microphone

The Polarised Condenser Microphone

Principle of Operation

$$\begin{array}{c}
Q = CV \\
C = \varepsilon \frac{A}{d}
\end{array}
\Rightarrow V = \frac{Q}{C} = \frac{Q}{\varepsilon A} d \Rightarrow \Delta V = \frac{Q}{\varepsilon A} \Delta d$$

How much does the diaphragm move?

$$\frac{\Delta V}{V} = \frac{\Delta d}{d}$$

For typical measurement microphone:

- diameter 12.5 mm
- thickness of diaphragm 5 µm
- distance between diaphragm and backplate 20 µm
- polarisation voltage 200 V
- sensitivity 50 mV/Pa

For 94 dB = 1 Pa the diaphragm moves

$$\Delta d = \frac{\Delta V \times d}{V} = \frac{50 \text{ mV} \times 20 \text{ } \mu\text{m}}{200 \text{ V}}$$
$$= 5 \text{ nm}$$

Diameter of diaphragm	Pressure (level re 20µPa		Diaphragm's movement	
12.5mm	1Pa	(94dB)	5nm	(5 x 10 ⁻⁹ m)
12.5mm	0.02Pa	(60dB)	1 Å	$(10^{-10} \mathrm{m})$
12500km	0.02Pa	(60dB)	0.1m	(10 ⁻¹ m)
(thickness of diaphragm 5km)	0.0002Pa	a (20dB)	0.001	$m (10^{-3} m)$

Directional Characteristics

Types of Microphones

Free Field Correction

Free Field Correction

Use of Free Field Microphones

Free-field microphones - One noise source

4189 and 4190 frequency response 1/2" general purpose free field microphone

Use of Random Incidence Microphones

Diffuse-field microphones - Interior noise

Use of Pressure Field Microphones

Measuring in Accordance with Standards:

Frequency Range and Sensitivity

Dynamic Range

Much More Than Sound — B&K Microphones Measurable Range

Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- L_{eq}
- Noise Dose
- Measuring Sound in Practice

The Sound Level Meter (Voltmeter - Overall Analyzer)

Basic Sound Level Parameters

$$\mathbf{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} x^{2}(t) dt}$$

(Root Mean Square)

Peak

Crest factor =
$$\frac{\text{Peak}}{\text{RMS}}$$

Peak Hold (Peak Detector)

Demonstration Equipment

Time Weighting (RMS detector)

Time Weighting (RMS detector)

Squaring & Exp. Averaging:

Track or smooth time variations depending on choice of τ

Time Weighting

• Track or smooth time variations depending on choice of τ

The Digital Display

Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- <u>L</u>eq
- Noise Dose
- Measuring Sound in Practice

Equivalent Level, L_{eq}, (Linear Averaging)

$$L_{eq} = 10 log_{10} \frac{1}{T} \int_0^T \left(\frac{p(t)}{p_0} \right)^2 dt$$

- Integrating Sound Level Meters
- The L_{eq} is the energetic average of the noise

Measuring L_{eq} , (Linear Averaging)

Smooth (or track) time variations depending on choice of T (and mode)

L_{eq} for Transient Noise

Sound Exposure Level and its Origin

Sound Exposure Level, SEL, (Energy)

Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- L_{eq}
- Noise Dose
- Measuring Sound in Practice

Noise Dose Measurement in Practice

Definition of Noise Dose

= 100 % Noise Dose

The actual dB level depends on National Legislations. In some countries the level is 80 dB

Noise Dose Examples

Daily Personal Noise Exposure, L_{EP,d}

$$L_{\text{EP,d}} = L_{\text{Aeq,Te}} + 10log_{10} \frac{T_{e}}{T_{0}}$$

Example:

$$L_{Aeq,Te}$$
 = 89.2 dB and T_e = 4 hours

$$L_{EP,d} = 89.2 + 10 \log_{10} \frac{4}{8} = 89.2 - 3 = 86.2 dB$$

Standards

• ISO 9612

Guidelines for the measurement and assessment of exposure to noise in a working environment

International

ISO 1999

Determination of occupational noise exposure and estimation of noise-induced hearing impairment

• IEEC Directive EEC/86/188

The protection of workers from the risk related to the exposure to noise at work

OSHA

Occupational Safety and Health Act

USA and

Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- ullet L_{eq}
- Noise Dose
- Measuring Sound in Practice

Microphone Position above the Ground

Microphone Position outdoors

To minimize the influence of reflections

In front of facades

Microphone Position indoors

Operator Positioning

Influence from Sound Level Meter and Operator

Standards

Standards for Sound Level Meters

- IEC 61672 International
- ANSI S 1.43 America

Standards for Measurement Procedures

- ISO 1996
 Description and measurement of environmental noise
- ISO 9612
 Guidelines for the measurement and assessment of exposure to noise in a working environment

Accuracies for Sound Level Meters

Four levels of accuracy for Sound Level Meters

- Type/Class 0: Laboratory Standard
- Type/Class 1: Precision (Field and Laboratory)
- Type/Class 2: General Purpose (Field)
- Type/Class 3: Survey (Field)

Accuracies of Sound Level Meters

- Practical accuracies (Non reference conditions) calculated from allowed tolerances for
 - warm-up
 - directional effects
 - frequency weightings
 - range control
 - time weighting

- ambient pressure
- humidity
- temperature
- calibrator
- operator influence

Practical Accuracies

Acoustic Calibration

Acoustical Calibrator

94 dB

114 dB

Pistonphone

124 dB

Calibration according to ISO 1996

- Before and after each series of measurements:
 - use a Sound Level Calibrator or a Pistonphone
 - record the results of calibration
- In addition, if measurements are made over a prolonged period, verify the calibration at least twice daily using:
 - either the method described above
 - or by using an integral calibration system

Equal Loudness Contours for Pure Tones

Frequency Weighting Curves

Conclusion 1

- The sensitivity of a microphone depends on the direction of the noise - that is why there are free-field and diffuse-field microphones
- Sound level meters are integrating measurement equipment with standardized time weightings and measurement parameters (fast, slow, impulse)
- The L_{eq} is the energetic average of the noise over a period of time and is one of the most important noise measurement parameters
- The Noise Dose and Daily Personal Noise Exposure (L_{EP,d}) are ways of showing how much noise exposure a person has received in relation to legal limits

Conclusion 2

- Your measurement position should, in general, be far enough away from reflecting surfaces such as the ground, walls and the operator
- For most practical purposes, a type (class) 1 sound level meter is the most versatile
- You should calibrate your sound level meter before and after each measurement
- Human perception of sound and background for A,B,C and D-weighting

Summary

Fundamentals of Measuring Sound

Contents:

- The Microphone
- The Sound Level Meter
- ullet L_{eq}
- Noise Dose
- Measuring Sound in Practice

Lecture material

 A link to a copy of the presentation will be sent to all participants by email within a few days

Want to know more? Brüel & Kjær Courses and Seminars

