Pemrograman Artificial Neural Network dengan Python

Rabu, 15 Januari 2020

PROBLEM SET

	INPUTS			OUTPUTS	
Example 1	0	0	1	0	
Example 2	1	1	1	1	
Example 3	1	0	1	1	
Example 4	0	1	1	0	
New situation	1	0	0	?	

What should the new output be?

PROBLEM SET

	INPUTS			OUTPUTS	
Example 1	0	0	1	0	
Example 2	1	1	1	1	
Example 3	1	0	1	1	
Example 4	0	1	1	0	
New situation	1	0	0	?	

What should the new output be?

PROBLEM SET

	INPUTS			OUTPUTS
Example 1	0	0	1	0
Example 2	1	1	1	1
Example 3	1	0	1	1
Example 4	0	1	1	0
New situation	1	0	0	1

What should the new output be?

PERCEPTRON

PERCEPTRON

PERCEPTRON

 $\phi = normalizing function$

SIGMOID NORMALIZING FUNCTION

$$\phi(x) = \frac{1}{1 + e^{-x}}$$
 \rightarrow $\phi(x) = \frac{1}{1 + e^{-\sum_{i=1}^{3} x_i w_i}}$

CODEALONG PART1

	INPUTS			OUTPUTS
Example 1	0	0	1	0
Example 2	1	1	1	1
Example 3	1	0	1	1
Example 4	0	1	1	0

	INPUTS			OUTPUTS
Example 1	0	0	1	0
Example 2	1	1	1	1
Example 3	1	0	1	1
Example 4	0	1	1	0

```
x_1 = 0<br/>x_2 = 0<br/>x_3 = 1
```

```
Random starting synaptic weights:

[[-0.16595599]
       [ 0.44064899]
       [-0.99977125]]

Outputs after training:

[[0.2689864 ]
       [0.3262757 ]
       [0.23762817]
       [0.36375058]]
```

	INPUTS			OUTPUTS
Example 1	0	0	1	0
Example 2	1	1	1	1
Example 3	1	0	1	1
Example 4	0	1	1	0

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

$$w_1 = -0.165$$

$$w_2 = 0.440$$

$$w_3 = -0.999$$

	INPUTS			OUTPUTS
Example 1	0	0	1	0
Example 2	1	1	1	1
Example 3	1	0	1	1
Example 4	0	1	1	0

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 1$$

$$w_1 = -0.165$$

$$w_2 = 0.440$$

$$w_3 = -0.999$$

$$\sum_{i=1}^{3} x_i w_i = x_1 w_1 + x_2 w_2 + x_3 w_3$$

$$\sum_{i=1}^{3} x_i w_i = 0.(-0.165) + 0.0.440 + 1.(-0.999) = -0.999$$

SIGMOID NORMALIZING FUNCTION

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

SIGMOID NORMALIZING FUNCTION

$$\phi(x) = \frac{1}{1 + e^{-x}} \qquad \to \qquad \phi(x) = \frac{1}{1 + e^{(-\sum_{i=1}^{3} x_i w_i)}}$$

TRAINING PROCESS

- 1. Take the inputs from the training example, and put them through our formula to get the neuron's output
- Calculate the error, which is the difference between the output we got, and the actual output
- Depending on the severeness of the error, adjust the weights accordingly
- 4. Repeat this 20,000 times

ERROR WEIGHTED DERIVATIVE

Adjust weights by = error . input . $\phi'(output)$

Error = output - actual output

Input = either 1 or 0

ADJUSTMENTS

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

$$\longrightarrow$$

$$\phi'(x) = x \cdot (1 - x)$$

Adjust weights by = $error.input.\phi'(output)$

ADJUSTMENTS

$$\phi(x) = \frac{1}{1 + e^{-x}}$$

$$\longrightarrow$$

$$\phi'(x) = x \cdot (1 - x)$$

Adjust weights by = error . input . $\phi'(output)$

CODE ALONG PART 2