









# chapter 3 the interaction



### The Interaction

- interaction models
  - translations between user and system
- ergonomics
  - physical characteristics of interaction
- interaction styles
  - the nature of user/system dialog
- context
  - social, organizational, motivational



#### What is interaction?

communication

user  $\square \iff$  stem

but is that all ...?

see "language and action" in chapter 4 ...



### models of interaction

terms of interaction

Norman model

interaction framework



#### Some terms of interaction

```
domain – the area of work under study
e.g. graphic design

goal – what you want to achieve
e.g. create a solid red triangle

task – how you go about doing it
– ultimately in terms of operations or actions
e.g. ... select fill tool, click over triangle
```

#### Note ...

- traditional interaction ...
- use of terms differs a lot especially task/goal !!!



### Donald Norman's model

- Seven stages
  - user establishes the goal
  - formulates intention
  - specifies actions at interface
  - executes action
  - perceives system state
  - interprets system state
  - evaluates system state with respect to goal
- Norman's model concentrates on user's view of the interface





- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal





- user establishes the goal
  - formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal





- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
  - perceives system state
- interprets system state
- evaluates system state with respect to goal





- user establishes the goal
- formulates intention
- specifies actions at interface
- executes action
- perceives system state
- interprets system state
- evaluates system state with respect to goal



# Using Norman's model

Some systems are harder to use than others

#### Gulf of Execution

user's formulation of actions

# actions allowed by the system

#### Gulf of Evaluation

user's expectation of changed system state

≠ actual presentation of this state





# Human error - slips and mistakes

#### slip

- understand system and goal
- correct formulation of action
- incorrect action

#### mistake

may not even have right goal!

#### Fixing things?

slip – better interface design mistake – better understanding of system



### Abowd and Beale framework

extension of Norman...
their interaction framework has 4 parts

- user
- input
- system
- output

each has its own unique language

interaction ⇒ translation between languages

problems in interaction = problems in translation





# Using Abowd & Beale's model

#### user intentions

- → translated into actions at the interface
  - → translated into alterations of system state
    - → reflected in the output display
      - → interpreted by the user

#### general framework for understanding interaction

- not restricted to electronic computer systems
- identifies all major components involved in interaction
- allows comparative assessment of systems
- an abstraction



# ergonomics

# physical aspects of interfaces industrial interfaces



# Ergonomics

- Study of the physical characteristics of interaction
- Also known as human factors but this can also be used to mean much of HCI!
- Ergonomics good at defining standards and guidelines for constraining the way we design certain aspects of systems



# Ergonomics - examples

- arrangement of controls and displays
  - e.g. controls grouped according to function or frequency of use, or sequentially
- surrounding environment
  - e.g. seating arrangements adaptable to cope with all sizes of user
- health issues
  - e.g. physical position, environmental conditions (temperature, humidity), lighting, noise,
- use of colour
  - e.g. use of red for warning, green for okay, awareness of colour-blindness etc.





### Industrial interfaces

Office interface vs. industrial interface?

Context matters!

office industrial
type of data textual numeric
rate of change slow fast
environment clean dirty

... the oil soaked mouse!





# Glass interfaces?

- industrial interface:
  - traditional ... dials and knobs
  - now ... screens and keypads
- glass interface
  - cheaper, more flexible,
     multiple representations,
     precise values
  - not physically located, loss of context, complex interfaces
- may need both



multiple representations of same information



# Indirect manipulation



- office- direct manipulation
  - user interacts
     with artificial world



- industrial indirect manipulation
  - user interacts
     with real world
     through interface
- issues ...
  - feedback
  - delays





# interaction styles

dialogue ... computer and user distinct styles of interaction



# Common interaction styles

- command line interface
- menus
- natural language
- question/answer and query dialogue
- form-fills and spreadsheets
- WIMP
- point and click
- three-dimensional interfaces



### Command line interface

- Way of expressing instructions to the computer directly
  - function keys, single characters, short abbreviations, whole words, or a combination
- suitable for repetitive tasks
- better for expert users than novices
- offers direct access to system functionality
- command names/abbreviations should be meaningful!

Typical example: the Unix system



### Menus

- Set of options displayed on the screen
- Options visible
  - less recall easier to use
  - rely on recognition so names should be meaningful
- Selection by:
  - numbers, letters, arrow keys, mouse
  - combination (e.g. mouse plus accelerators)
- Often options hierarchically grouped
  - sensible grouping is needed
- Restricted form of full WIMP system



# Natural language

- Familiar to user
- speech recognition or typed natural language
- Problems
  - vague
  - ambiguous
  - hard to do well!
- Solutions
  - try to understand a subset
  - pick on key words



# Query interfaces

- Question/answer interfaces
  - user led through interaction via series of questions
  - suitable for novice users but restricted functionality
  - often used in information systems
- Query languages (e.g. SQL)
  - used to retrieve information from database
  - requires understanding of database structure and language syntax, hence requires some expertise



# Form-fills

- Primarily for data entry or data retrieval
- Screen like paper form.
- Data put in relevant place
- Requires
  - good design
  - obvious correction facilities





# Spreadsheets

- first spreadsheet VISICALC, followed by Lotus 1-2-3 MS Excel most common today
- sophisticated variation of form-filling.
  - grid of cells contain a value or a formula
  - formula can involve values of other cells
     e.g. sum of all cells in this column
  - user can enter and alter data spreadsheet maintains consistency



### WIMP Interface

```
Windows
Icons
Menus
Pointers
```

... or windows, icons, mice, and pull-down menus!

 default style for majority of interactive computer systems, especially PCs and desktop machines



### Point and click interfaces

- used in ..
  - multimedia
  - web browsers
  - hypertext
- just click something!
  - icons, text links or location on map
- minimal typing



# Three dimensional interfaces

- virtual reality
- 'ordinary' window systems
  - highlighting
  - visual affordance
  - indiscriminate use just confusing!
- 3D workspaces
  - use for extra virtual space
  - light and occlusion give depth
  - distance effects









... or sculptured



# elements of the wimp interface

windows, icons, menus, pointers

buttons, toolbars, palettes, dialog boxes



### Windows

- Areas of the screen that behave as if they were independent
  - can contain text or graphics
  - can be moved or resized
  - can overlap and obscure each other, or can be laid out next to one another (tiled)
- scrollbars
  - allow the user to move the contents of the window up and down or from side to side
- title bars
  - describe the name of the window



#### Icons

- small picture or image
- represents some object in the interface
  - often a window or action
- windows can be closed down (iconised)
  - small representation fi many accessible windows
- icons can be many and various
  - highly stylized
  - realistic representations.



### Pointers

- important component
  - WIMP style relies on pointing and selecting things
- uses mouse, trackpad, joystick, trackball, cursor keys or keyboard shortcuts
- wide variety of graphical images





### Menus

- Choice of operations or services offered on the screen
- Required option selected with pointer



problem – take a lot of screen space solution – pop-up: menu appears when needed



#### Kinds of Menus

- Menu Bar at top of screen (normally), menu drags down
  - pull-down menu mouse hold and drag down menu
  - drop-down menu mouse click reveals menu
  - fall-down menus mouse just moves over bar!
- Contextual menu appears where you are
  - pop-up menus actions for selected object
  - pie menus arranged in a circle
    - easier to select item (larger target area)
    - quicker (same distance to any option)... but not widely used!



#### Menus extras

- Cascading menus
  - hierarchical menu structure
  - menu selection opens new menu
  - and so in ad infinitum
- Keyboard accelerators
  - key combinations same effect as menu item
  - two kinds
    - active when menu open usually first letter
    - active when menu closed usually Ctrl + letter usually different !!!



### Menus design issues

- which kind to use
- what to include in menus at all
- words to use (action or description)
- how to group items
- choice of keyboard accelerators



#### Buttons

 individual and isolated regions within a display that can be selected to invoke an action

- Special kinds
  - radio buttons
    - set of mutually exclusive choices
  - check boxes
    - set of non-exclusive choices



#### Toolbars

- long lines of icons ...... but what do they do?
- fast access to common actions
- often customizable:
  - choose which toolbars to see
  - choose what options are on it



#### Palettes and tear-off menus

- Problem
   menu not there when you want it
- Solution
   palettes little windows of actions
  - shown/hidden via menu option
     e.g. available shapes in drawing package
     tear-off and pin-up menus
  - menu 'tears off' to become palette



## Dialogue boxes

 information windows that pop up to inform of an important event or request information.

e.g: when saving a file, a dialogue box is displayed to allow the user to specify the filename and location. Once the file is saved, the box disappears.



### interactivity

easy to focus on look what about feel?



### Speech-driven interfaces

- rapidly improving ...
   ... but still inaccurate
- how to have robust dialogue?
   ... interaction of course!
  - e.g. airline reservation:reliable "yes" and "no"+ system reflects back its understanding "you want a ticket from New York to Boston?"



#### Look and ... feel

- WIMP systems have the same elements: windows, icons., menus, pointers, buttons, etc.
- but different window systems
   ... behave differently

e.g. MacOS vs Windows menus

appearance + behaviour = look and feel



#### Initiative

- who has the initiative?
   old question-answer computer
   WIMP interface user
- WIMP exceptions ...
   pre-emptive parts of the interface
- modal dialog boxes
  - come and won't go away!
  - good for errors, essential steps
  - but use with care

# C

## Error and repair

can't always avoid errors ...
... but we can put them right

make it easy to *detect* errors ... then the user can *repair* them

hello, this is the Go Faster booking system what would you like?

(user) I want to fly from New York to London you want a ticket from New York to Boston (user) no sorry, please confirm one at a time do you want to fly from New York (user) yes

... ... ...



#### Context

Interaction affected by social and organizational context

- other people
  - desire to impress, competition, fear of failure
- motivation
  - fear, allegiance, ambition, self-satisfaction
- inadequate systems
  - cause frustration and lack of motivation



## Experience, engagement and fun



designing experience physical engagement managing value



## Experience?

- home, entertainment, shopping
  - not enough that people can use a system
  - they must want to use it!
- psychology of experience
  - flow (Csikszentimihalyi)
  - balance between anxiety and boredom
- education
  - zone of proximal development
  - things you can just do with help
- wider ...
  - literary analysis, film studies, drama



### Designing experience



- real crackers
  - cheap and cheerful!
  - bad joke, plastic toy, paper hat
  - pull and bang



### Designing experience



- virtual crackers
  - cheap and cheerful
  - bad joke, web toy, cut-out mask
  - click and bang



Designing experience



- virtual crackers
  - cheap and cheerful
  - bad joke, web toy, cut-out mask
  - click and bang

# G

#### how crackers work













## The crackers experience

#### real crackervirtual cracker

```
Surface elements
```

```
design cheap and cheerful simple page/graphics play plastic toy and joke web toy and joke dressing up paper hat mask to cut out
```

#### Experienced effects

```
shared offered to another sent by email message
co-experience pulled together sender can't see content
until opened by recipient
excitement cultural connotations recruited expectation
hiddenness contents inside first page - no contents
suspense pulling cracker slow ... page change
surprise bang (when it works) WAV file (when it works)
```



## Physical design

- many constraints:
  - ergonomic minimum button size
  - physical high-voltage switches are big
  - legal and safety high cooker controls
  - context and environment easy to clean
  - aesthetic must look good
  - economic ... and not cost too much!



## Design trade-offs

constraints are contradictory ... need trade-offs

#### within categories:

```
e.g. safety – cooker controls
front panel – safer for adult
rear panel – safer for child
```

#### between categories

```
    e.g. ergonomics vs. physical – MiniDisc remote
    ergonomics – controls need to be bigger
    physical – no room!
    solution – multifunction controls & reduced
    functionality
```



## Fluidity

- do external physical aspects reflect logical effect?
  - related to affordance (chap 5)

logical state revealed in physical state?
e.g. on/off buttons

inverse actions inverse effects?
e.g. arrow buttons, twist controls



#### inverse actions

- yes/no buttons
  - well sort of
- 'joystick'
- also left side control





### spring back controls

- one-shot buttons
- joystick
- some sliders

good – large selection sets bad – hidden state



## C

#### a minidisk controller



series of spring-back controls each cycle through some options -natural inverse back/forward twist for track movement pull and twist for volume

- spring back
- natural inverse for twist



## physical layout

#### controls:

logical relationship~ spatial grouping



# C

## compliant interaction





### Managing value

```
only if

it has perceived value

AND

value exceeds cost
```

#### **BUT NOTE**

- exceptions (e.g. habit)
- value NOT necessarily personal gain or money



## Weighing up value

#### value

- helps me get my work done
- fun
- good for others

#### cost

- download time
- money £, \$, €
- learning effort



#### Discounted future

- in economics Net Present Value:
  - discount by (1+rate)<sup>years to wait</sup>
- in life people heavily discount
  - future value and future cost
  - hence resistance to learning
  - need low barriers
     and high perceived present value





### example - HCI book search

- value for people who have the book helps you to look up things
  - chapter and page number



full paragraph of context

... but also says "buy me"!!









## Value and organisational design

- coercion
  - tell people what to do!
  - value = keep your job
- enculturation
  - explain corporate values
  - establish support (e.g share options)
- emergence
  - design process so that individuals value → organisational value



#### General lesson ...

if you want someone to do something ...

- make it easy for them!
- understand their values