

Xyba Project

Analisis 2 Pembahasan Kuis 3 SP Tahun 2018

- 1. This document is version: 0.9.5

 Version should be at least 0.9 if you want to share this document to other people
- 2. You may not share this document if version is less than 1.0 unless you have my permission to do so
- 3. This document is created by Xyba, Student of Mathematics University of Indonesia Batch 2016
- 4. Should there be any mistakes or feedbacks you'd like to give, please contact me
- 5. Last Updated: 16/08/2018

Thank you for your cooperation >v<

<u>Soal</u>

1. Misalkan diberikan fungsi $f:[0,3] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

$$f(x) = \begin{cases} x & ; 0 \le x < 2\\ 3 & ; x = 2\\ 1 & ; 2 < x \le 3 \end{cases}$$

Gunakan definisi untuk membuktikan $f \in \mathcal{R}[0,$

2. Misalkan diberikan fungsi $h: [0,1] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

$$h(x) = \begin{cases} x^2 & ; x \in \mathbb{Q} \\ (1-x)^2 & ; x \in \mathbb{Q}^c \end{cases}$$

Apakah $h \in \mathcal{R}[0,1]$? Jelaskan.

3. Misalkan diberikan fungsi $f:[-1,2]\to\mathbb{R}$ yang didefinisikan sebagai berikut: $f(x)=\begin{cases} 3x-2 & ; x\leq 0 \text{ atau } x>1\\ 1-4x & ; 0< x\leq 1 \end{cases}$

$$f(x) = \begin{cases} 3x - 2 & \text{; } x \le 0 \text{ atau } x > 1 \\ 1 - 4x & \text{: } 0 < x < 1 \end{cases}$$

Gunakan Teorema Dasar Kalkulus 1 untuk mencari integral $\int_{-1}^{2} f(x) dx$.

4. Untuk setiap $n \in \mathbb{N}$, diberikan fungsi $f_n \colon [0,1] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

 $f_n(x) = (1 - x)^n x$ Selidiki konvergensi dari barisan (f_n) tersebut ke sebuah fungsi f pada himpunan A. Apakah $f_n \rightrightarrows f$ pada A? Jelaskan!

<u>Jawaban</u>

1. Misalkan diberikan fungsi $f:[0,3] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

$$f(x) = \begin{cases} x & ; 0 \le x < 2 \\ 3 & ; x = 2 \\ 1 & ; 2 < x \le 3 \end{cases}$$

Gunakan definisi untuk membuktikan $f \in \mathcal{R}[0,3]!$

Jawab:

Akan dibuktikan bahwa $f \in \mathcal{R}[0,3]$ dengan definisi yaitu:

$$\exists L \in \mathbb{R} \ni \forall \varepsilon > 0, \exists \delta > 0 \ni ||\dot{\mathcal{P}}|| < \delta \Rightarrow |S(f,\dot{\mathcal{P}}) - L| < \varepsilon$$

Misal diberikan $\delta > 0$. Kita akan restriksi pemilihan δ kemudian.

Pilih $\dot{\mathcal{P}} \ni ||\dot{\mathcal{P}}|| < \delta$. Maka untuk sembarang $\dot{\mathcal{P}}_k$ subpartisi bertanda dari $\dot{\mathcal{P}} \Rightarrow ||\dot{\mathcal{P}}_k|| < \delta$.

Misal: $\dot{P}_1 = \{(I_{1i}, t_{1i}): i = 1, 2, ..., n\}$ subpartisi bertanda dari \dot{P} dengan tag $t_{1i} \in [0, 2)$

 $\dot{\mathcal{P}}_2=\{(I_{2i},t_{2i}):i=1,2,...,n\}$ subpartisi bertanda dari $\dot{\mathcal{P}}$ dengan tag $t_{2i}=2$

 $\dot{\mathcal{P}}_3=\{(I_{3i},t_{3i})\colon i=1,2,\ldots,n\}$ subpartisi bertanda dari $\dot{\mathcal{P}}$ dengan tag $t_{3i}\in(2,3]$ sedemikian sehingga $\dot{\mathcal{P}}=\dot{\mathcal{P}}_1\cup\dot{\mathcal{P}}_2\cup\dot{\mathcal{P}}_3$.

Untuk $\dot{\mathcal{P}}_1$, definisikan tag dari interval $I_{1i}=[x_{i-1},x_i]$ sebagai $t_{1i}=\frac{1}{2}(x_i+x_{i-1})\in I_{1i}$.

Karena: $0 \le x_{i-1} \le x_i < 2$, maka: $0 \le \frac{1}{2}(x_i + x_{i-1}) < 2$, sehingga $t_{1i} \in I_{1i} \subseteq [0,2]$, maka:

$$S(f, \mathcal{P}_1) = \sum_{i=1}^n f(t_{1i})(x_i - x_{i-1}) = \sum_{i=1}^n t_{1i}(x_i - x_{i-1}) = \sum_{i=1}^n \frac{1}{2}(x_i + x_{i-1})(x_i - x_{i-1})$$
$$= \sum_{i=1}^n \frac{1}{2}(x_i^2 - x_{i-1}^2) = \frac{1}{2}(x_n^2 - x_0^2) = \frac{1}{2}(2^2 - 0^2) = \frac{1}{2}(4 - 0) = \frac{1}{2}(4) = 2$$

Untuk $\dot{\mathcal{P}}_2$, misal $U_2=\bigcup_{i=1}^n I_{2i}=\bigcup_{i=1}^n [x_{i-1},x_i]$ adalah gabungan subinterval di $\dot{\mathcal{P}}_2$.

Akan dibuktikan $\{2\} \subseteq U_2 \subseteq [2,2+\delta]...(1)$

Jelas bahwa $\{2\}\subseteq U_2$, maka kita hanya perlu membuktikan bahwa $U_2\subseteq [2,2+\delta]$.

Ambil $u_2 \in U_2$, maka $\exists I_{2i} = [x_{i-1}, x_i]$ di $\dot{\mathcal{P}}_2$ dengan $t_{2i} = 3$ dan $u_2 \in I_{2i}$.

Sehingga kita peroleh $x_{i-1} \le 2 \le u_2 \le x_i$.

Karena $\|\dot{\mathcal{P}}_2\| < \delta$, maka $x_i - x_{i-1} < \delta \Leftrightarrow x_i < x_{i-1} + \delta$.

Maka $u_2 \le x_i < x_{i-1} + \delta \le 2 + \delta$.

Sehingga kita peroleh $u_2 \in [2,2+\delta]$.

Maka benar bahwa $U_2 \subseteq [2,2+\delta]$.

Karena $\{2\} \subseteq U_2$ dan $U_2 \subseteq [2, 2 + \delta]$, maka (1) benar.

Karena $f(t_{2i}) = 3$ untuk setiap tag dari \dot{P}_2 dan karena panjang interval di (1) adalah 0 dan δ secara berurutan. Maka kita peroleh:

$$0 \le S(f, \dot{\mathcal{P}}_2) \le 3\delta$$

Untuk $\dot{\mathcal{P}}_3$, misal $U_3 = \bigcup_{i=1}^n I_{3i} = \bigcup_{i=1}^n [x_{i-1}, x_i]$ adalah gabungan subinterval di $\dot{\mathcal{P}}_3$.

Akan dibuktikan $[2,3-\delta] \subseteq U_3 \subseteq [2,3+\delta]...(2)$

1) Akan dibuktikan $[2,3-\delta] \subseteq U_3$.

Ambil $v_3 \in [2,3-\delta]$, maka $\exists I_{3i} = [x_{i-1},x_i]$ di $\dot{\mathcal{P}}_3$ dengan $t_{3i} \in (2,3]$ dan $v_3 \in I_{3i}$. Sehingga kita peroleh $x_{i-1} \leq v_3 \leq 3-\delta$.

Karena $\|\dot{\mathcal{P}}_3\| < \delta$, maka $x_i - x_{i-1} < \delta \Leftrightarrow x_i < x_{i-1} + \delta$.

Maka $x_i < x_{i-1} + \delta \le 3 - \delta + \delta = 3$.

Maka tag $t_{3i} \in I_i$ memenuhi $t_{3i} < 3$ dan kita simpulkan $v_3 \in U_3$.

Maka bagian kiri dari (2), yaitu $[2,3-\delta] \subseteq U_3$ benar.

2) Akan dibuktikan $U_3 \subseteq [2,3+\delta]$.

Ambil $u_3 \in U_3$, maka $\exists I_{3i} = [x_{i-1}, x_i]$ di $\dot{\mathcal{P}}_3$ dengan $t_{3i} \in (2,3]$ dan $u_3 \in I_{3i}$.

Sehingga kita peroleh $x_{i-1} \le x_i \le 3$ dan $2 \le u_3 \le x_i$.

Karena $\|\dot{\mathcal{P}}_3\| < \delta$, maka $x_i - x_{i-1} < \delta \Leftrightarrow x_i < x_{i-1} + \delta$.

Maka $u_3 \le x_i < x_{i-1} + \delta \le 3 + \delta$.

Sehingga kita peroleh $u_3 \in [2,3 + \delta]$.

Maka bagian kanan dari (2), yaitu $U_3 \subseteq [2,3+\delta]$ benar.

Karena $f(t_{3i}) = 1$ untuk setiap tag dari \mathcal{P}_3 dan karena panjang interval di (3) adalah $1 - \delta$ dan $1 + \delta$ secara berurutan. Maka kita peroleh:

$$1 - \delta \le S(f, \dot{\mathcal{P}}_3) \le 1 + \delta$$

Karena $\dot{\mathcal{P}}=\dot{\mathcal{P}}_1\cup\dot{\mathcal{P}}_2\cup\dot{\mathcal{P}}_3$ dan karena $\dot{\mathcal{P}}_1,\dot{\mathcal{P}}_2,\dot{\mathcal{P}}_3$ dibangun atas tag-tag yang tidak beririsan, kita peroleh:

$$S(f, \dot{P}) = S(f, \dot{P}_1) + S(f, \dot{P}_2) + S(f, \dot{P}_3)$$

Karena $S(f, \dot{\mathcal{P}}_1) = 2$, $0 \le S(f, \dot{\mathcal{P}}_2) \le 3\delta$, dan $1 - \delta \le S(f, \dot{\mathcal{P}}_3) \le 1 + \delta$, maka kita peroleh: $3 - \delta \le S(f, \dot{\mathcal{P}}) \le 3 + 4\delta \Rightarrow \left|S(f, \dot{\mathcal{P}}) - 3\right| \le 4\delta$

Maka kita bisa pilih $L=3\in\mathbb{R}$ dan δ yang memenuhi $0<\delta<\frac{\varepsilon}{4}$, dan kita akan peroleh:

$$\exists L = 3 \in \mathbb{R} \ni \forall \varepsilon > 0, \exists \delta : 0 < \delta < \frac{\varepsilon}{4} \ni \left\| \dot{\mathcal{P}} \right\| < \delta \Rightarrow \left| S(f, \dot{\mathcal{P}}) - 3 \right| < \varepsilon$$

Berdasarkan Definisi 7.1.1, kita simpulkan bahwa $f \in \mathcal{R}[0,3]$ dan $\int_0^3 f = 3$

∴ Terbukti dengan definisi bahwa $f \in \mathcal{R}[0,3]$.

2. Misalkan diberikan fungsi $h: [0,1] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

$$h(x) = \begin{cases} x^2 & ; x \in \mathbb{Q} \\ (1-x)^2 & ; x \in \mathbb{Q}^c \end{cases}$$

Apakah $h \in \mathcal{R}[0,1]$? Jelaskan.

Jawab:

Klaim: $h \notin \mathcal{R}[0,1]$

Akan dibuktikan $h \notin \mathcal{R}[0,1]$ dengan Kriteria Terintegralkan Lebesgue 7.3.12.

Perhatikan bahwa x^2 adalah fungsi naik dan $(1-x)^2$ adalah fungsi turun, maka pada [0,1]:

- x^2 mencapai nilai maksimum pada x = 1 dan nilai minimum pada x = 0
- $(1-x)^2$ mencapai nilai maksimum pada x=0 dan nilai minimum pada x=1

Karena h terdefinisi pada [0,1] dan karena $0,1 \in \mathbb{Q}$, maka:

```
 \sup\{h: x \in [0,1]\} = \sup\{\sup\{h: x \in [0,1] \cap \mathbb{Q}\}, \sup\{h: x \in [0,1] \cap \mathbb{Q}^c\} 
 = \sup\{\sup\{x^2: x \in [0,1] \cap \mathbb{Q}\}, \sup\{(1-x)^2: x \in [0,1] \cap \mathbb{Q}^c\} 
 = \max\{\max\{x^2: x \in [0,1] \cap \mathbb{Q}\}, \sup\{(1-x)^2: x \in [0,1] \cap \mathbb{Q}^c\} 
 = \max\{1^2, (1-0)^2\} 
 = 1
```

Perhatikan bahwa $\sup\{h: x \in [0,1]\} = \max\{x^2: x \in [0,1] \cap \mathbb{Q}\} \in h([0,1]).$ Sehingga $h(x) \leq 1, \forall x \in [0,1].$ Artinya h terbatas di atas oleh 1.

 $\inf\{h: x \in [0,1]\} = \inf\{\inf\{h: x \in [0,1] \cap \mathbb{Q}\}, \inf\{h: x \in [0,1] \cap \mathbb{Q}^c\}\}$ $= \inf\{\inf\{x^2: x \in [0,1] \cap \mathbb{Q}\}, \inf\{(1-x)^2: x \in [0,1] \cap \mathbb{Q}^c\}\}$ $= \min\{\min\{x^2: x \in [0,1] \cap \mathbb{Q}\}, \inf\{(1-x)^2: x \in [0,1] \cap \mathbb{Q}^c\}\}$ $= \min\{0^2, (1-1)^2\}$

 $= \min\{0^2, (1-1)^2\}$ = 0

Perhatikan bahwa $\inf\{h: x \in [0,1]\} = \min\{x^2: x \in [0,1] \cap \mathbb{Q}\} \in h([0,1]).$

Sehingga $h(x) \ge 0, \forall x \in [0,1]$. Artinya h terbatas di bawah oleh 0.

Karena h terbatas di atas oleh 1 dan di bawah oleh 0, artinya h terbatas.

Karena h adalah fungsi terbatas, maka kita memenuhi premis untuk menggunakan Kriteria Terintegralkan Lebesgue 7.3.12.

Berdasarkan Teorema Densitas 2.4.8, maka:

$$\forall c \in [0,1] \cap \mathbb{Q}^c, \exists (x_n) \subset [0,1] \cap \mathbb{Q} \ni (x_n) \to c$$

Karena $c \in \mathbb{Q}^c$, maka $(h(x_n)) \nrightarrow h(c)$.

Berdasarkan Kriteria Diskontinuitas 5.1.4, f diskontinu di c.

Karena c sembarang, maka kita simpulkan bahwa h diskontinu pada $[0,1] \cap \mathbb{Q}^c$.

Dengan cara serupa, kita dapat buktikan bahwa h diskontinu pada $[0,1] \cap \mathbb{Q} \setminus \left\{\frac{1}{2}\right\}$.

Artinya, *h* diskontinu dimana-mana.

Berdasarkan kontrapositif dari Kriteria Terintegralkan Lebesgue 7.3.12, $h \notin \mathcal{R}[0,1]$.

 $\therefore h \notin \mathcal{R}[0,1].$

3. Misalkan diberikan fungsi $f:[-1,2]\to\mathbb{R}$ yang didefinisikan sebagai berikut: $f(x)=\begin{cases} 3x-2 & ; x\leq 0 \text{ atau } x>1\\ 1-4x & ; 0< x\leq 1 \end{cases}$

$$f(x) = \begin{cases} 3x - 2 & ; x \le 0 \text{ atau } x > 1 \\ 1 - 4x & ; 0 < x \le 1 \end{cases}$$

Gunakan Teorema Dasar Kalkulus 1 untuk mencari integral $\int_{-1}^{2} f(x) dx$.

Jawab:

Akan digunakan Teorema Dasar Kalkulus Pertama 7.3.1 untuk mencari $\int_{-1}^{2} f$.

Pertama, kita akan buktikan $f \in \mathcal{R}[-1,2]$.

Perhatikan bahwa 3x - 2 kontinu dan 1 - 4x kontinu.

Artinya, f kontinu pada [-1,0],

f kontinu pada [a, 1], untuk sembarang 0 < a < 1, dan

f kontinu pada [b, 2], untuk sembarang 1 < b < 2.

Berdasarkan Teorema 7.2.7, maka $f \in \mathcal{R}[-1,0], f \in \mathcal{R}[0,1], f \in \mathcal{R}[1,2]$.

Karena $f \in \mathcal{R}[-1,0], f \in \mathcal{R}[0,1], f \in \mathcal{R}[1,2]$, maka berdasarkan Teorema 7.2.9, $f \in \mathcal{R}[-1,2]$.

Definisikan $F: [-1,2] \to \mathbb{R}$ sebagai:

$$F(x) := \begin{cases} \frac{3}{2}x^2 - 2x & , & x < 0 \\ 0 & , & x = 0 \\ -2x^2 + x & , 0 < x < 1 \\ -1 & , & x = 1 \\ \frac{3}{2}x^2 - 2x - \frac{1}{2} & , & x > 1 \end{cases}$$

Akan ditunjukkan F kontinu pada [-1,2].

Kita akan cek titik-titik yang mungkin diskontinu, yaitu pada x = 0 dan x = 1.

1) Pada x = 0

Perhatikan bahwa:

$$F(0) = 0$$

$$\lim_{x \to 0^{-}} F(x) = \lim_{x \to 0^{-}} \left(\frac{3}{2} x^{2} - 2x \right) = 0 - 0 = 0$$

$$\lim_{x \to 0^{+}} F(x) = \lim_{x \to 0^{+}} (-2x^{2} + x) = 0 + 0 = 0$$
Sehingga kita peroleh
$$\lim_{x \to 0^{-}} F(x) = \lim_{x \to 0^{+}} F(x) = F(0), \text{ maka } F \text{ kontinu pada } x = 0.$$
Pada $x = 1$

2) Pada x = 1

Perhatikan bahwa:

$$F(1) = -1$$

$$\lim_{x \to 1^{-}} F(x) = \lim_{x \to 1^{-}} (-2x^{2} + x) = -2 + 1 = -1$$

$$\lim_{x \to 1^{+}} F(x) = \lim_{x \to 1^{+}} \left(\frac{3}{2}x^{2} - 2x - \frac{1}{2}\right) = \frac{3}{2} - 2 - \frac{1}{2} = -1$$

Sehingga kita peroleh $\lim_{x\to 1^-} F(x) = \lim_{x\to 1^+} F(x) = F(1)$, maka F kontinu pada x=1. Sehingga *F* kontinu pada [-1,2].

Pilih $E = \{0,1\}$. Jelas bahwa E adalah himpunan yang berhingga dan $E \subset [-1,2]$.

Perhatikan bahwa:

$$F'(x) = \begin{cases} 3x - 2 & , & x < 0 \\ \text{Tidak Ada} & , & x = 0 \\ -4x + 1 & , 0 < x < 1 = \begin{cases} 3x - 2 & ; x < 0 \text{ atau } x > 1 \\ 1 - 4x & ; & 0 < x < 1 \end{cases}$$

$$\text{Tidak Ada} & , & x = 1 \\ 3x - 2 & , & x > 1 \end{cases}$$

Artinya $F'(x) = f(x), \forall x \in [-1,2] \backslash E$.

Karena F kontinu pada [-1,2], F'(x)=f(x), $\forall x\in[-1,2]\backslash E$, dan $f\in\mathcal{R}[-1,2]$, maka berdasarkan Teorema Dasar Kalkulus Pertama 7.3.1,

$$\int_{-1}^{2} f = F(2) - F(-1)$$

$$= \left(\frac{3}{2} \cdot 4 - 2 \cdot 2 - \frac{1}{2}\right) - \left(\frac{3}{2} \cdot 1 - 2 \cdot (-1)\right)$$

$$= \left(6 - 4 - \frac{1}{2}\right) - \left(\frac{3}{2} + 2\right)$$

$$= -2$$

∴ Dengan Teorema Dasar Kalkulus 1, kita temukan bahwa integral $\int_{-1}^{2} f(x) dx = -2$.

4. Untuk setiap $n \in \mathbb{N}$, diberikan fungsi f_n : $[0,1] \to \mathbb{R}$ yang didefinisikan sebagai berikut:

$$f_n(x) = (1 - x)^n x$$

Selidiki konvergensi dari barisan (f_n) tersebut ke sebuah fungsi f pada himpunan A. Apakah $f_n \rightrightarrows f$ pada A? Jelaskan!

Jawab:

Misal $f: A \to \mathbb{R}$ dengan $A \subseteq [0,1]$ didefinisikan sebagai $f(x) := \lim (f_n(x))$.

Jika x = 0, maka $f_n(0) = (1 - 0)^n \cdot 0 = 0$, $\forall n \in \mathbb{N}$. Maka $\lim (f_n(x)) = 0$.

Jika 0 < x < 1, maka $\lim(f_n(x)) = \lim((1-x)^n x) = \lim((1-x)^n) \cdot x$, $\forall n \in \mathbb{N}$. Perhatikan bahwa:

$$0 < x < 1 \Leftrightarrow -1 < -x < 0 \Leftrightarrow 0 < 1 - x < 1$$

Misal $(x_n) = ((1 - x)^n)$. Perhatikan bahwa:

$$\lim \left(\frac{x_{n+1}}{x_n}\right) = \lim \left(\frac{(1-x)^{n+1}}{(1-x)^n}\right) = \lim (1-x) = 1-x$$

Karena 0 < 1 - x < 1, maka berdasarkan Teorema 3.2.11, $\lim((1 - x)^n) = 0$. Sehingga jika 0 < x < 1, $\lim(f_n(x)) = \lim((1 - x)^n) \cdot x = 0 \cdot x = 0$, $\forall n \in \mathbb{N}$.

Jika x = 1, maka $f_n(1) = (1 - 1)^n \cdot 1 = 0$, $\forall n \in \mathbb{N}$. Maka $\lim (f_n(x)) = 0$.

Sehingga $f_n \to f$ pada A = [0,1] dimana $f(x) := 0, \forall x \in [0,1]$.

Perhatikan bahwa untuk sembarang $x \in [0,1]$,

$$f_n - f = (1 - x)^n x - 0 = (1 - x)^n x$$

Karena 0 < x < 1 dan 0 < 1 - x < 1, maka $0 < (1 - x)^n x < 1$. Artinya, $f_n - f = (1 - x)^n x$ terbatas.

Karena f_n-f terbatas dan karena A adalah himpunan tertutup, maka berdasarkan Definisi Norm Seragam 8.1.7,

$$||f_n - f||_A = \sup\{|f_n(x) - f(x)| : x \in [0,1]\}$$

$$= \sup\{|(1 - x)^n x - 0| : x \in [0,1]\}$$

$$= \sup\{(1 - x)^n x : x \in [0,1]\}$$

$$= \max\{(1 - x)^n x : x \in [0,1]\}$$

Berdasarkan Uji Turunan Pertama 6.2.8, f_n akan mencapai nilai maksimum pada $x \ni$

$$f'_n(x) = 0 \Leftrightarrow -n(1-x)^{n-1}x + (1-x)^n = 0 \Leftrightarrow (1-x)^{n-1}(-nx + (1-x)) = 0$$

Berdasarkan Teorema 2.1.3, haruslah:

$$(1-x)^{n-1} = 0$$
 atau $-nx + (1-x) = 0$

Untuk $(1-x)^{n-1}=0$, kita peroleh $1-x=0 \Leftrightarrow x=1$. Namun $f_n(1)=0, \forall n \in \mathbb{N}$.

Untuk
$$-nx + (1-x) = 0$$
, kita peroleh $1 - x(n+1) = 0 \Leftrightarrow x = \frac{1}{n+1}$.

Sehingga,

$$||f_n - f||_A = \max\{(1 - x)^n x : x \in [0, 1]\}$$

$$= \left(1 - \frac{1}{n+1}\right)^n \left(\frac{1}{n+1}\right)$$

$$= \left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right)$$

$$= \left(\frac{1}{1 + \frac{1}{n}}\right)^n \left(\frac{1}{n+1}\right)$$

Karena
$$\left(\frac{1}{1+\frac{1}{n}}\right)^n \to 0$$
 dan $\left(\frac{1}{n+1}\right) \to 0$, berdasarkan Teorema 3.2.3, $\|f_n-f\|_A \to 0$.

Karena $\|f_n - f\|_A \to 0$, maka berdasarkan Lemma 8.1.8, $f_n \rightrightarrows f$ pada A.

$$\therefore f_n \rightrightarrows f \text{ pada } A.$$