Termodinámica - Clase 12

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Conceptos en esta clase

El teorema de Nernst

Consecuencias de la tercera ley

Resumer

Conceptos en esta clase

- La tercera ley de la termodinámica
- Teorema de Nernst
- Enunciados de Planck y Simon
- Consecuencias

Conceptos en esta clase

El teorema de Nernst

Consecuencias de la tercera ley

Resumer

El teorema de Nernst

En el límite del cero absoluto, no hay **cambios** de entropía en cualquier proceso entre estados de equilibrio.

Walther Nernst, 1864-1941, físico y químico alemán

El teorema de Nernst

Nernst formuló su teorema basado en resultados de experimentos químicos.

El teorema de Nernst

- Nernst notó que en muchos experimentos químicos ΔH aumenta con mayor temperatura mientras ΔG disminuye (o viceversa).
- En el límite $T \to 0$ se acercan al mismo valor con pendiente cero.

$$\Delta G = \Delta H - \Delta (TS) = \Delta H - T\Delta S$$

• Es obvio que $\Delta H = \Delta G$ en T = 0, pero tocan asintóticamente (tienen pendiente cero) solamente si $\Delta S \rightarrow 0$.

Enunciado de Planck de la tercera ley

La entropía de toda sustancia sólida o líquida (en equilibrio) en $\mathcal{T}=0$ es igual y suponemos que es cero.

En el punto de vista estadístico, $S = k_B \ln(\Omega) = 0$ en T = 0 signifíca $\Omega = 1$, i.e. un sólo microestado.

Enunciado de Planck de la tercera ley

Enunciado de Simon de la tercera ley

La contribución a la entropía de cada **aspecto** del sistema (en equilibrio) desaparece en T=0.

La definición de "aspecto" depende del sistema:

- Configuración de los átomos
- Orientación de los espínes atómicos
- Orientación de los dípolos magnéticos
- Propiedades nucleares
- Vibraciones, rotaciones de las moléculas...

Aspectos de una molécula

Conceptos en esta clase

El teorema de Nernst

Consecuencias de la tercera ley

Resumer

Dilatación cúbica

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{V} \left(\frac{\partial S}{\partial P} \right)_T$$

Por el teorema de Nernst, en el límite $T \to 0$, $dS \to 0$ así que $\beta \to 0$.

Capacidad calorífica

$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V$$

Reformulamos esta ecuación con $d(\ln T)/dT=1/T$, así que $d \ln T=dT/T$ y por lo tanto

$$C_V = \left(\frac{\partial S}{\partial \ln T}\right)_V.$$

En el límite $T \to 0$, ln $T \to -\infty$. Así que en el límite $dS \to 0$, $d \ln T$ puede ser grande y $(\frac{\partial S}{\partial \ln T})_V \to 0$. Entonces, $C_V \to 0$ en el límite. Se puede obtener el mismo resultado para las otras capacidades caloríficas.

Imposibilidad de llegar al cero absoluto

Otra forma de la tercera ley:

Es imposible llegar al cero absoluto por un número finíto de procesos.

Como ejemplo, consideremos el proceso de refrigeración magnética.

Imposibilidad de llegar al cero absoluto

Conceptos en esta clase

El teorema de Nernst

Consecuencias de la tercera ley

Resumen

Resumen

- La tercera ley tiene varias formas:
 - Teorema de Nernst: $\Delta S \rightarrow 0$ en el límite $T \rightarrow 0$.
 - Enunciado de Planck: $S \to 0$ en el límite $T \to 0$.
 - Enunciado de Simon: $S_A \to 0$ en el límite $T \to 0$.
 - Es imposible llegar al cero absoluto por un número finíto de procesos.
- La tercera ley implica que algunas variables termodinámicas se acercan a cero en el límite del cero absoluto.