# Arbori parțiali de cost minim

# Algoritmul lui Prim

## Algoritmul lui Prim

- Se porneşte de la un vârf (care formează arborele iniţial)
- La un pas este selectată o muchie de cost minim de la un vârf deja adăugat la arbore la unul neadăugat

## O primă formă a algoritmului

#### Kruskal

- Iniţial T= (V; Ø)
- pentru i = 1, n−1
  - alege o muchie uv cu cost minim a.î. u,v sunt în componente conexe diferite (T+uv aciclic)
  - $\triangleright$  E(T) = E(T)  $\cup$  uv

#### Prim

- s- vârful de start
- Iniţial T= ({s}; ∅)
- pentru i = 1, n−1
  - > alege o muchie uv cu **cost minim** a.î.  $u \in V(T)$  și  $v \notin V(T)$
  - $ightharpoonup V(T) = V(T) \cup \{v\}$
  - $\triangleright$  E(T) = E(T)  $\cup$  uv

#### Kruskal

 Iniţial: cele n vârfuri sunt izolate, fiecare formând o componentă conexă



 Se încearcă unirea acestor componente prin muchii de cost minim

#### Prim

 Iniţial: se porneşte de la un vârf de start



 Se adăugă pe rând câte un vârf la arborele deja construit, folosind muchii de cost minim

#### Kruskal

#### La un pas:

Muchiile selectate formează o **pădure** 



Este selectată o muchie de cost minim care unește doi arbori din pădurea curentă (două componente conexe)

#### Prim

#### La un pas:

Muchiile selectate formează un arbore



Este selectată o muchie de cost minim care unește un vârf din arbore cu unul care nu este în arbore(neselectat)

## Arbori parțiali de cost minim



Imagine din

R. Sedgewick, K. Wayne - Algorithms, 4th edition, Pearson Education, 2011





$$s = 1$$











































## Implementare+Complexitate



Cum alegem *eficient* o muchie de cost minim cu o extremitate selectată (deja în arbore) și cealaltă nu?

## Implementare+Complexitate



 La fiecare pas parcurgem toate muchiile şi o alegem pe cea de cost minim cu o extremitate selectată şi una neselectată

O(nm)



## Implementare Prim



Cum evităm să comparam de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu.

#### **Exemplu:**

După ce vârfurile 1 și 5 au fost adăugate în arbore, muchiile (2,1) și (2,5) sunt comparate la fiecare pas, deși w(2,1)>w(2,5), deci (2,1) nu va fi selectată niciodată

## Implementare Prim

Cum evităm să comparam de fiecare dată toate muchiile cu o extremitate în arbore și cealaltă nu.



Pentru un vârf (neselectat) memorăm doar muchia de cost minim care îl unește cu un vârf din arbore (selectat)

## Implementare+Complexitate

#### Variante $O(n^2)/O(mlog n)$

 memorăm la fiecare pas pentru fiecare vârf muchia de cost minim care îl uneşte de un vârf care este deja în arbore

#### sau

- heap de muchii

```
(v. laborator+seminar + slideuri implementare+ alg. Dijkstra)
```

## Algoritmi bazați pe eliminare de muchii



**Temă** – Care dintre următorii algoritmi determină corect un arbore parțial de cost minim (justificați)? Pentru fiecare algoritm corect precizați ce complexitate are.

- 2. T ← G cât timp T conţine cicluri execută alege C un ciclu oarecare din T şi fie e muchia de cost maxim din C T ← T - e

## Corectitudine



- Cei doi algoritmi determină corect un apcm? Chiar dacă muchiile au şi costuri negative?
- Costul arborelui obținut de algoritmul lui Prim nu depinde de vârful de start ?

- Fie A ⊆ E o mulţime de muchii
- ▶ Notăm  $A \subseteq apcm \Leftrightarrow \exists T un apcm astfel încât <math>A \subseteq E(T)$

# Atât algoritmul lui Kruskal, cât și cel al lui Prim funcționează după următoarea schemă:

- $A \leftarrow \emptyset$  (mulțimea muchiilor selectate în arborele construit)
- pentru i = 1, n-1 execută
   alege o muchie e astfel încât A ∪ {e} ⊆ apcm
   A = A ∪ {e}
- returnează T = (V, A)

vom demonstra un criteriu de alegere a muchiei e la un pas astfel încât:

$$A \subseteq apcm \Rightarrow A \cup \{e\} \subseteq apcm$$

şi

vom demonstra că algoritmii lui Kruskal şi Prim aplică acest criteriu.



Fie G=(V,E, w) un graf conex ponderat

- Propoziție. Algoritmul Kruskal determină un apcm
- Propoziție. Algoritmul Prim determină un apcm

# Detalii implementare Algoritmul lui Prim

## Implementare Prim

Asociem fiecărui vârf u următoarele informații (etichete) – pentru a reține muchia de cost minim care îl unește de un vârf selectat deja în arbore:

- d[u] = costul minim al unei muchii de la u la un vârf selectat deja în arbore
- tata[u] = acest vârf din arbore pentru care se realizează minimul

## Implementare Prim

#### Avem

- (u, tata[u]) este muchia de cost minim de la u la un vârf din arbore
- d[u] = w(u, tata[u])



# Implementare Prim

#### Atunci algoritmul se modifică astfel:

- La un pas
- se alege **un vârf** u cu **eticheta d minimă** care nu este încă în arbore și se adaugă la arbore muchia (tata[u], u)
- se actualizează etichetele vârfurilor v∉V(T) vecine cu u astfel:



dacă 
$$w(u,v) < d[v]$$
 atunci  $d[v] = w(u,v)$  tata $[v] = u$ 

# Implementare Prim

 Muchiile arborelui vor fi în final (u, tata[u]), u≠ s

Notăm Q=V(G) - V(T) = mulțimea vârfurilor neselectate încă în arbore



Cum putem memora Q pentru a determina eficient vârful u∈Q cu eticheta minimă?

#### Varianta 1 - Folosim vector de vizitat

$$Q[u] = 1$$
, dacă  $u \notin Q$   
0, altfel

#### Complexitate

Varianta 1 - cu vector de vizitat

- Iniţializări −> O(n)
- n \* extragere vârf minim −> O(n²)
- actualizare etichete vecini -> O(m)  $O(n^2)$



| 1<br>d/tata= [0/0, | 2<br>∞/0, | $\frac{3}{\infty/0}$ , | <b>4</b><br>∞/0, | 5<br>∞/0, | 6<br>∞/0] |  |
|--------------------|-----------|------------------------|------------------|-----------|-----------|--|
|                    |           |                        |                  |           |           |  |
|                    |           |                        |                  |           |           |  |
|                    |           |                        |                  |           |           |  |



























Sel. 6: 2/6, 5/6, Sel. 4: 3/4, Sel. 2:



```
Prim(G, w, s)
pentru fiecare u∈V executa
     d[u] = \infty; tata[u]=0
 d[s] = 0
 inițializează Q cu V
 cat timp Q \neq \emptyset executa
       u=extrage vârf cu eticheta d minimă din Q
       pentru fiecare v adiacent cu u executa
              daca v \in Q si w(u,v) < d[v] atunci
                  d[v] = w(u,v)
                  tata[v] = u
                   //actualizeaza Q - pentru Q heap
 scrie (u, tata[u]), pentru u≠ s
```

**Varianta 2 -** memorarea vârfurilor din într-un min-heap Q (min-ansamblu)

- Iniţializare Q −> O(n)
- n \* extragere vârf minim -> O(n log n)
- actualizare etichete vecini -> O(m log n)O(m log n)

**Observație** – Dacă graful este complet (spre exemplu dacă toate punctele se pot conecta și distanța dintre puncte este distanța euclidiană) m = n(n-1)/2 este de ordin  $n^2$ 

 $\Rightarrow$  O(n<sup>2</sup>) mai eficient