Agrégation

Xavier Montillet 4 juillet 2016

Notations:

- todo (pour les oraux blancs)
 ok
 bof (à changer si possible)

- 🗶 pas ok

Première partie

Informatique

Table des matières

Ι	Informatique	3
	Leçons	6
901	-	6
902	1 11	7
903		7
906	- ' ' '	9
907	// /	9
909	Langages rationnels. Exemples et applications. $(1/2)$	10
910	Langages algébriques. Exemples et applications. $(0/2)$	10
912	Fonctions récursives primitives et non primitives. Exemples. $(2/2)$.	10
913		10
914	Décidabilité et indécidabilité. Exemples. $(0/2)$	11
915	Classes de complexité : exemples. $(1/2)$	11
916	Formules du calcul propositionnel : représentation, formes normales,	
	satisfiabilité. Applications. $(1/2)$	11
917		12
918		
	(0/2)	13
919		13
920	1 (/ /	13
921		13
922	,	14
923	0 1 11 (///	14
924		15
925		15
926		15
927	1 1 (1)	15
928	Problèmes NP-complets : exemples de réductions $(1/2)$	16
	Développements	18
1	Théorème de Cook	18
2	FFT	18
3	Décidabilité de l'arithmétique de Presburger	18
4	Unification	18
5	Plus longue sous-séquence commune	19
6	Bellman-Ford	19
7	Tri topologique	19
8	Arbres binaires de recherche optimaux	19
9	Calculable implique récursif	19

II	Mathématiques	22
I	Leçons	24
104	Groupes finis. Exemples et applications. $(0/2)$	24
105	Groupe des permutations d'un ensemble fini. Applications. $(1/2)$.	24
106	Groupe linéaire d'un espace vectoriel de dimension finie E , sous-	
	groupes de GL (E). Applications. $(2/2)$	24
108	Exemples de parties génératrices d'un groupe. Applications. $(0/2)$.	24
120	Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications. $(1/2) \dots \dots \dots \dots$	25
121	Nombres premiers. Applications. $(1/2)$	25
123	Corps finis. Applications. $(1/2)$	25
141	Polynômes irréductibles à une indéterminée. Corps de rupture.	
	Exemples et applications. $(0/2)$	25
150	Exemples d'actions de groupes sur les espaces de matrices. $(1/2)$.	25
151	Dimension d'un espace vectoriel (on se limitera au cas de la dimen-	
	sion finie). Rang. Exemples et applications. $(1/2)$	25
152	Déterminant. Exemples et applications. $(1/2)$	26
153	Polynômes d'endomorphisme en dimension finie. Réduction d'un	
	endomorphisme en dimension finie. Applications. $(0/2)$	26
157	Endomorphismes trigonalisables. Endomorphismes nilpotents. $(0/2)$	26
159	Formes linéaires et hyperplans en dimension finie. Exemples et	
	applications. $(0/2)$	26
162	Systèmes d'équations linéaires; opérations, aspects algorithmiques	
	et conséquences théoriques. $(0/2)$	26
170	Formes quadratiques sur un espace vectoriel de dimension finie.	
	Orthogonalité, isotropie. Applications. $(0/2)$	26
181	Barycentres dans un espace affine réel de dimension finie, convexité.	
100	Applications. $(1/2)$	27
182	Applications des nombres complexes à la géométrie. $(0/2)$	27
183	Utilisation des groupes en géométrie. $(1/2)$	27
190	Méthodes combinatoires, problèmes de dénombrement. $(0/2)$	27
Ι	Développements	28
1	Théorème de Frobenius-Zolotarev	28
2	Sous-groupes compacts de $GL_n(\mathbb{R})$	28

Chapitre

Leçons

901 Structures de données : exemples et applications. (2/2)

901.1 Rapport du jury

Le mot *algorithme* ne figure pas dans l'intitulé de cette leçon, même si l'utilisation des structures de données est évidemment fortement liée à des questions algorithmiques.

La leçon doit donc être orientée plutôt sur la question du choix d'une structure de données que d'un algorithme. Le jury attend du candidat qu'il présente différents types abstraits de structures de données en donnant quelques exemples de leur usage avant de s'intéresser au choix de la structure concrète. Le candidat ne peut se limiter à des structures linéaires simples comme des tableaux ou des listes, mais doit présenter également quelques structures plus complexes, reposant par exemple sur des implantations à l'aide d'arbres.

(Rapport du jury. 2015)

901.2 Développements

Arbres binaires de recherche optimaux

901.3 Références

Cormen, BBC, Froidevaux, Papadimitriou

901.4 Plan

- Défs BBC (type concret, type abstrait, structure de données)
- Structures de base (tableau, liste, arbres binaires)
- Ordonnancement (piles, files, files de priorité)
- Ensembles et dictionnaires
- Graphes

901.5 Remarques

Mentionner les implémentations naïves, et faire une remarques générale sur les implémentations implicites et paresseuses

902 Diviser pour régner : exemples et applications. (1/2)

902.1 Rapport du jury

Cette leçon permet au candidat de proposer différents algorithmes utilisant le paradigme diviser pour régner. Le jury attend du candidat que ces exemples soient variés et touchent des domaines différents.

Un calcul de complexité ne peut se limiter au cas où la taille du problème est une puissance exacte de 2, ni à une application directe d'un théorème très général recopié approximativement d'un ouvrage de la bibliothèque de l'agrégation. (Rapport du jury. 2015)

902.2 Développements

902.3 Références

Cormen, BBC, Papadimitriou

902.4 Plan

- Paradigme et premiers exemples (et Master Theorem)
- Tri et recherche
- Multiplication (Karatsuba, Strassen, FFT)
- Géométrie algorithmique
- Applications théoriques (Savitch, multiplication de matrice -> inversion)

902.5 Remarques

Graphe de dépendances acyclique (ou presque)

903 Exemples d'algorithmes de tri. Complexité. (1/2)

903.1 Rapport du jury

Sur un thème aussi classique, le jury attend des candidats la plus grande précision et la plus grande rigueur.

Ainsi, sur l'exemple du tri rapide, il est attendu du candidat qu'il sache décrire avec soin l'algorithme de partition et en prouver la correction et que l'évaluation des complexités dans le cas le pire et en moyenne soit menée avec rigueur.

On attend également du candidat qu'il évoque la question du tri en place, des tris stables, ainsi que la représentation en machine des collections triées.

Le jury ne manquera pas de demander au candidat des applications non triviales du tri. (Rapport du jury. 2015)

903.2 Développements

903.3 Références

Cormen, BBC, Papadimitriou

903.4 Plan

- Intro (tri, applications, stable, en place, [on se restreint aux entiers?], on compte le nombre de comparaisons, borne inférieure)
- Tris naïfs
- Tri par tas
- Diviser pour régner
- Autres tris (base, paquet, dénombrement, mémoire externe?)

903.5 Remarques

Quand on trie, on trie par rapport à un préordre \leq . On a donc aussi une relation d'équivalence $x \approx y \coloneqq (x \leq y) \land (x \succcurlyeq y)$ qui n'a aucune raison d'être l'égalité.

Si l'on note \sqsubseteq le préordre associé au tableau donné en entrée d'un tri (donc $T[i] \sqsubseteq T[j] \iff i \leq j$), le fait qu'une procédure de tri soit stable veut dire que trier par rapport à \preccurlyeq ou par rapport au préordre lexicographique associé à $(\preccurlyeq, \sqsubseteq)$, que l'on note $\preccurlyeq_{\preccurlyeq, \sqsubseteq}^{lex}$, revient au même. En particulier, si on a une procédure de tri instable, on peut en construire une stable (mais le tri ne peut alors plus être $en\ place$ car pour pouvoir savoir si $x \sqsubseteq y$, on a besoin de stocker de tableau d'entrée et on est donc forcé de travailler sur une copie).

La notion de tri stable n'a aucun intérêt si on se restreint aux entiers muni de leur ordre habituel (ou plus généralement à un ensemble muni d'un ordre [par opposition à un préordre]) car si l'on ne peut jamais distinguer T[i] de T[j], s'assurer qu'ils sont restés dans le même ordre n'est pas vraiment utile.

Pour trier selon $\preccurlyeq_{\preccurlyeq_1, \preccurlyeq_2}^{lex}$, on peut d'abord trier selon \preccurlyeq_2 et ensuite utiliser une procédure de tri stable pour trier selon \preccurlyeq_1 (ce qui peut être plus facile à implémenter que le tri selon $\preccurlyeq_{\preccurlyeq_1, \preccurlyeq_2}^{lex}$ et peut servir si l'on doit trier selon $\preccurlyeq_{\preccurlyeq_1, \preccurlyeq_2}^{lex}$ et $\preccurlyeq_{\preccurlyeq_1, \preccurlyeq_2}^{lex}$).

Dans le tri rapide, on peut choisir la médianne en O(n) comme pivot et donc atteindre un pire cas en $O(n \log n)$ mais en pratique, c'est plus lent.

906 Programmation dynamique : exemples et applications. (3/2)

906.1 Rapport du jury

Même s'il s'agit d'une leçon d'exemples et d'applications, le jury attend des candidats qu'ils présentent les idées générales de la programmation dynamique et en particulier qu'ils aient compris le caractère générique de la technique de mémoïsation. Le jury appréciera que les exemples choisis par le candidat couvrent des domaines variés, et ne se limitent pas au calcul de la longueur de la plus grande sous-séquence commune à deux chaînes de caractères.

Le jury ne manquera pas d'interroger plus particulièrement le candidat sur la question de la correction des algorithmes proposés et sur la question de leur complexité en espace. (Rapport du jury. 2015)

906.2 Développements

- Plus longue sous-séquence commune
- Bellman-Ford
- Arbres binaires de recherche optimaux

907 Algorithmique du texte : exemples et applications. (0/2)

907.1 Rapport du jury

Cette leçon devrait permettre au candidat de présenter une grande variété d'algorithmes et de paradigmes de programmation, et ne devrait pas se limiter au seul problème de la recherche d'un motif dans un texte, surtout si le candidat ne sait présenter que la méthode naïve.

De même, des structures de données plus riches que les tableaux de caractères peuvent montrer leur utilité dans certains algorithmes, qu'il s'agisse d'automates ou d'arbres par exemple.

Cependant, cette leçon ne doit pas être confondue avec la 909 : Langages rationnels. Exemples et applications ni avec la 910 : Langages algébriques. Exemples et applications.

La compression de texte peut faire partie de cette leçon si les algorithmes présentés contiennent effectivement des opérations comme les comparaisons de chaînes : la compression LZW, par exemple, ressortit davantage à cette leçon que la compression de Huffman.

(Rapport du jury. 2015)

907.2 Développements

Aucun.

9	09 Langages rationnels. Exemples et applica-
	tions. $(1/2)$
90	09.1 Rapport du jury
	Des applications dans le domaine de la compilation entrent naturel- lement dans le cadre de ces leçons. (Rapport du jury. 2015)
90	09.2 Développements
	© Décidabilité de l'arithmétique de Presburger
9	10 Langages algébriques. Exemples et applications. $(0/2)$
9	10.1 Développements
	Aucun.
9	12 Fonctions récursives primitives et non primitives. Exemples. $(2/2)$
9:	12.1 Développements
	 Décidabilité de l'arithmétique de Presburger Calculable implique récursif
9	12.2 Références
	Wolper, Carton
9:	12.3 Plan
	 Fonctions primitives récursives (Limites du modèle) (cardinal, Ackermann) Fonctions récursives (calculables, casto affairé)
93	12.4 Remarques
	Aucunes.
9	13 Machines de Turing. Applications. $(2/2)$
9:	13.1 Développements
	Théorème de CookCalculable implique récursif

913.2 Références

Wolper, Carton

913.3 Plan

- Défs (défs équivalentes, codage, machine universelle)
- Calculabilité et décidabilité (RE, R, Rice)
- Complexité

913.4 Remarques

Aucunes.

914 Décidabilité et indécidabilité. Exemples. ______(0/2)

914.1 Développements

Aucun.

915 Classes de complexité : exemples. (1/2)

915.1 Rapport du jury

Le jury attend que le candidat aborde à la fois la complexité en temps et en espace. Il faut naturellement exhiber des exemples de problèmes appartenant aux classes de complexité introduites, et montrer les relations d'inclusion existantes entre ces classes.

Le jury s'attend à ce que le caractère strict ou non de ces inclusions soit abordé, en particulier le candidat doit être capable de montrer la non-appartenance de certains problèmes à certaines classes.

Parler de décidabilité dans cette leçon serait hors sujet.

(Rapport du jury. 2015)

915.2 Développements

Théorème de Cook

916 Formules du calcul propositionnel : représentation, formes normales, satisfiabilité. Applications. (1/2)

916.1 Rapport du jury

Le jury attend des candidats qu'ils abordent les questions de la complexité de la satisfiabilité.

Pour autant, les applications ne sauraient se réduire à la réduction de problèmes NP-complets à SAT.

Une partie significative du plan doit être consacrée à la représentation des formules et à leurs formes normales. (Rapport du jury. 2015)

916.2 Développements

Théorème de Cook

916.3 Références

- Huth, Ryan (tableau avec différentes représentations p. 361, ROBDD)
- Stern (Tseitin)
- Devisme, Lafourcade, Lévy (Tout le reste, en particulier DPLL)

916.4 Plan

- Syntaxe (lecture unique, notation parenthésée, notation polonaise, arbre, circuit)
- Sémantique (compacité, représentations [table, formes normales, OBDD])
- Problèmes associés (SAT, Valie, DPLL, Tseitin)

916.5 Remarques

Aucunes.

917 Logique du premier ordre : syntaxe et sémantique. (2/2)

917.1 Rapport du jury

La question de la syntaxe dépasse celle de la définition des termes et des formules. Elle comprend aussi celle des règles de la démonstration. Le jury attend donc du candidat qu'il présente au moins un système de preuve et les liens entre syntaxe et sémantique, en développant en particulier les questions de correction et complétude.

(Rapport du jury. 2015)

917.2 Développements

- Décidabilité de l'arithmétique de Presburger
- Unification

917.3 Références

- David Nour Raffali
- Cori Lascar
- CK?

917.4	Plan
— q	we
917.5	Remarques
Auc	unes.
918	Systèmes formels de preuve en logique du premier ordre : exemples. $(0/2)$
918.1 Auct	Développements un.
919	Unification : algorithmes et applications $(0/2)$
919.1	Développements
Auc	ın.
920	Réécriture et formes normales. Exemples $(0/2)$
920.1	Rapport du jury
tè pr pe Ui de Lo	u-delà des propriétés standards (terminaison, confluence) des sysmes de réécriture, le jury attend notamment du candidat qu'il ésente des exemples sur lesquels l'étude des formes normales est extinente dans des domaines variés : calcul formel, logique, etc. en candidat ne doit pas s'étonner que le jury lui demande de calculer es paires critiques sur un exemple concret. Desqu'un résultat classique comme le lemme de Newman est évoqué, jury attend du candidat qu'il sache le démontrer. (Rapport du jury. 2015)
920.2	Développements
Auc	ın.
921	Algorithmes de recherche et structures dedonnées associées. (1/2)
	dominous dissocioes. (1/2)
921.1	Développements

© Arbres binaires de recherche optimaux

921.2 Références
— Cormen
921.3 Plan
 Liste et tableau (recherche, rang, min, max) ABR (AVL, ABR optimaux) Tables de Hachage
921.4 Remarques
Demander à Simon pourquoi ABR optimaux -> Huffman (l'ordre des clés factices est conservé dans ABR optimaux mais l'ordre des clés n'est pas conservé dans Huffman)
022 Engambles nécuraits nécurairement écurai
922 Ensembles récursifs, récursivement énumérables. Exemples. $(2/2)$
922.1 Développements
Décidabilité de l'arithmétique de PresburgerCalculable implique récursif
922.2 Références
— Carton— Wolper
— Wolper — Sipser
— Lassaigne Rogemont (Logique et fondements de l'informatique)
922.3 Plan
— Fonction récursives et machines de Turing
— Ensembles récursifs et récursivement énumérables (équivalences, énumérateur, propriétés de clôture)
- Exemples et applications (langages, PCP, théories)
922.4 Remarques

923 Analyses lexicale et syntaxique : applications. ______(0/2)

923.1 Développements

Aucun.

Aucunes.

924	Théories et modèles en logique du premier
	ordre. Exemples. $(1/2)$
924.1	Développements
<mark>©</mark>	Décidabilité de l'arithmétique de Presburger
925	Graphes : représentations et algorithmes. $\underline{\hspace{1cm}}$ $(2/2)$
925.1	Développements
	Bellman-Ford Tri topologique
$\boldsymbol{925.2}$	Références
_ (Cormen
925.3	Plan
— I — (Défs Représentations Parcours Chemins Problèmes de réseaux
$\boldsymbol{925.4}$	Remarques
Auc	unes.
926	Analyse des algorithmes : complexité Exemples. $(1/2)$
926.1	Développements
	FFT
927	Exemples de preuve d'algorithme : correction, terminaison. $(1/2)$
927.1	Rapport du jury
	e jury attend du candidat qu'il traite des exemples d'algorithmes cursifs et des exemples d'algorithmes itératifs.

En particulier, le candidat doit présenter des exemples mettant en évidence l'intérêt de la notion d'invariant pour la correction partielle et celle de variant pour la terminaison des segments itératifs.

Une formalisation comme la logique de Hoare pourra utilement être introduite dans cette leçon, à condition toutefois que le candidat en maîtrise le langage. (Rapport du jury. 2015)

927.2 Développements

927.3 Références

- Cormen
- Winskel
- Luc Albert
- David Nour Raffali

927.4 Plan

```
let f (x : int ref) (y : int ref) =
  x := !x lxor !y;
  y := !x lxor !y;
  x := !x lxor !y
```

- Terminaison (ensemble bien fondé, itératif et récursif)
- Correction (itératif et récursif)
- Sémantique axiomatique

927.5 Remarques

Aucunes.

928 Problèmes NP-complets : exemples de réductions (1/2)

928.1 Rapport du jury

L'objectif ne doit pas être de dresser un catalogue le plus exhaustif possible; en revanche, pour chaque exemple, il est attendu que le candidat puisse au moins expliquer clairement le problème considéré, et indiquer de quel autre problème une réduction permet de prouver sa NP-complétude.

Les exemples de réduction seront autant que possible choisis dans des domaines variés : graphes, arithmétique, logique, etc. Un exemple de problème NP-complet dans sa généralité qui devient P si on contraint davantage les hypothèses pourra être présenté, ou encore un algorithme P approximant un problème NP-complet.

Si les dessins sont les bienvenus lors du développement, le jury attend une définition claire et concise de la fonction associant, à toute instance du premier problème, une instance du second ainsi que la preuve rigoureuse que cette fonction permet la réduction choisie.

(Rapport du jury. 2015)

928.2 Développements

○ Théorème de Cook

Chapitre

Développements

1	Théorème de Cook	
Wo	Leçons: Machines de Turing. Applications. (2/2) Classes de complexité: exemples. (1/2) Formules du calcul propositionnel: représentation, formes normales, satisfiabilité. Applications. (1/2) Problèmes NP-complets: exemples de réductions (1/2) OLPER [11, p. 185] CARTON [3]	
2	FFT	
	Leçons : \odot Structures de données : exemples et applications. (2/2) \odot Diviser pour régner : exemples et applications. (1/2) \odot Analyse des algorithmes : complexité. Exemples. (1/2)	
3	Décidabilité de l'arithmétique de Presburger	
	Leçons: Langages rationnels. Exemples et applications. (1/2) Fonctions récursives primitives et non primitives. Exemples. (2/2) Logique du premier ordre: syntaxe et sémantique. (2/2) Ensembles récursifs, récursivement énumérables. Exemples. (2/2) Théories et modèles en logique du premier ordre. Exemples. (1/2)	
4	Unification	
	Leçons : Logique du premier ordre : syntaxe et sémantique. $(2/2)$ Exemples de preuve d'algorithme : correction, terminaison. $(1/2)$	

5 I	Plus longue sous-séquence commune
Lec	çons :
	Programmation dynamique : exemples et applications. $(3/2)$
	rmen marques :
	Lemme, relation de récurrence et algorithme (et exemple si c'est trop
	court). Il faut juste changer les notations ($\tilde{u}u_{\bullet} = u$)
	If fact justic changer les notations $(aa_{\bullet} - a)$
6 I	Bellman-Ford
Lec	çons :
	Programmation dynamique : exemples et applications. $(3/2)$
	Graphes : représentations et algorithmes. $(2/2)$ marques :
	Bien différentier taille et poids d'un chemin
_	Le poids minimal, un chemin de poids minimal
7	Tri topologique
Leo	çons :
	Exemples d'algorithmes de tri. Complexité. $(1/2)$
	Graphes : représentations et algorithmes. $(2/2)$
Corme Re:	en marques :
	Parcours en profondeur avec date
	intervalles de dates disjoint ou inclusion (on suppose $u.d < v.d$ et après cas selon $u.f < v.d$ ou non)
_	si (u, v) arête alors $u.f > v.f$ (cas selon la couleur de v quand on passe
_	$\begin{array}{l} \operatorname{par}\left(u,v\right)) \\ \operatorname{exemple}? \end{array}$
8 A	Arbres binaires de recherche optimaux
Lec	çons :
©	Structures de données : exemples et applications. $(2/2)$
(ii)	Programmation dynamique : exemples et applications. (3/2)
	Algorithmes de recherche et structures de données associées. $(1/2)$
9 (Calculable implique récursif
Lec	çons :
©	
	Machines de Turing. Applications. (2/2)
	Ensembles récursifs, récursivement énumérables. Exemples. $(2/2)$

${\bf Remarques}:$

- Carton pour les formules
- Wolper four nom des fonctions intermédiaires et vision globale Il faut prendre $f: \Sigma^* \to \Gamma^*$ et à la fin, rajouter une fonction pour transformer (u, q, v) et ε, q, v') pour pouvoir dire que le résultat est v'.

Bibliographie

- [3] O. CARTON. Langages formels Calculabilité et complexité Licence 3&Master Agrégation. Vuibert, 2014. ISBN: 9782311014006. URL: https://books.google.fr/books?id=o2DToAEACAAJ.
- [8] Rapport du jury. 2015. URL: http://agreg.org/Rapports/rapport2015.pdf.
- [11] P. WOLPER. Introduction à la calculabilité: cours et exercices corrigés. Sciences sup. Dunod, 2006. ISBN: 9782100499816. URL: https://books.google.fr/books?id=klMcGQAACAAJ.

lassaigne rougemeont froidevaux godel soria cori lascar (1 ET 2) dehornoy informatique theorique (DEVISME, LAFOURCADE LEVY) : DPLL (et mieux pr calcul prop?) Hutt, Ryan (BDD) Deuxième partie

Mathématiques

Table des matières

Chapitre

Leçons

Aucun.

 104 Groupes finis. Exemples et applications $(0/2)$
104.1 Développements Aucun.
 105 Groupe des permutations d'un ensemble fini Applications. $(1/2)$
105.1 Développements
Théorème de Frobenius-Zolotarev
 106 Groupe linéaire d'un espace vectoriel de dimension finie E , sous-groupes de $\operatorname{GL}(E)$. Applications. $(2/2)$
106.1 Développements
Théorème de Frobenius-Zolotarev Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$
 108 Exemples de parties génératrices d'un groupe. Applications. $(0/2)$
108.1 Développements

 120 Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications. (1/2)
120.1 Développements
© Théorème de Frobenius-Zolotarev
121 Nombres premiers. Applications. $(1/2)$
121.1 Développements
Théorème de Frobenius-Zolotarev
 123 Corps finis. Applications. $(1/2)$
123.1 Développements
Théorème de Frobenius-Zolotarev
 141 Polynômes irréductibles à une indéterminée.
Corps de rupture. Exemples et applications. $(0/2)$
141.1 Développements
Aucun.
 150 Exemples d'actions de groupes sur les es-
paces de matrices. $(1/2)$
150.1 Développements
\odot Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$
 151 Dimension d'un espace vectoriel (on se li-
mitera au cas de la dimension finie). Rang.
Exemples et applications. $(1/2)$
151.1 Développements
\bigcirc Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$

 152	Déterminant. Exemples et applications. $\underline{\hspace{1cm}}$ $(1/2)$
152.1	Développements
	Théorème de Frobenius-Zolotarev
 153	Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications. $(0/2)$
153.1	Développements
Auc	un.
 157	Endomorphismes trigonalisables. Endomorphismes nilpotents. $(0/2)$
157.1 Auc	Développements un.
 159	Formes linéaires et hyperplans en dimension finie. Exemples et applications. $(0/2)$
159.1	Développements
Auc	un.
 162	Systèmes d'équations linéaires; opérations, aspects algorithmiques et conséquences théoriques. $(0/2)$
162.1	Développements
Auc	un.
170	Formes quadratiques sur un espace vectoriel de dimension finie. Orthogonalité, isotropie. Applications. $(0/2)$
170.1 Auc	• •

181	Barycentres dans un espace affine réel de di-
	mension finie, convexité. Applications. $(1/2)$
181.1	Développements
	Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$
 182	Applications des nombres complexes à la géo-
	$ m m\acute{e}trie. \ (0/2)$
182.1	Développements
Aucı	ın.
 183	Utilisation des groupes en géométrie. $(1/2)$
183.1	Développements
	Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$
 190	Méthodes combinatoires, problèmes de dé-
	${ m nombrement.}\;(0/2)$
190.1	Développements
Aucı	ın.

Chapitre

Développements

1 Théorème de Frobenius-Zolotarev

Leçons:

- \odot Groupe des permutations d'un ensemble fini. Applications. (1/2)
- Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications. (2/2)
- \odot Anneaux $\mathbb{Z}/n\mathbb{Z}$. Applications. (1/2)
- \odot Nombres premiers. Applications. (1/2)
- \odot Corps finis. Applications. (1/2)
- \bigcirc Déterminant. Exemples et applications. (1/2)

2 Sous-groupes compacts de $\mathrm{GL}_n\left(\mathbb{R}\right)$

Lecons

- Groupe linéaire d'un espace vectoriel de dimension finie E, sous-groupes de GL(E). Applications. (2/2)
- \odot Exemples d'actions de groupes sur les espaces de matrices. (1/2)
- \bigcirc Dimension d'un espace vectoriel (on se limitera au cas de la dimension finie). Rang. Exemples et applications. (1/2)
- \odot Utilisation des groupes en géométrie. (1/2)