Bounding Chains

Start with all possible states and keep track of various equivalence classes

Equivalence class: States following same transition

M is bounding chain of M' if there exists coupling between M and M' such that

 $X_v^t \in X_v^t, \forall v, \implies X_v^{t+1} \in X_v^{t+1}, \forall v.$

Bounding Chains

M is bounding chain of M' if there exists coupling between M and M' such that

$$X_v^t \in X_v^t, \forall v, \implies X_v^{t+1} \in X_v^{t+1}, \forall v.$$

Idea:

Start with all possible states and keep track of various equivalence classes

Equivalence class: States following same transition

Bounding Chains

