

Fundamentos de Matemática Lista 6 - 28/05/2024

A consulta é livre, mas você deve entregar suas soluções escritas de próprio punho e mencionar as fontes de consulta.

- 120. Sendo n inteiro, determine se cada afirmação a seguir é verdadeira ou falsa. Justifique.
 - (a) n = 2 somente se $n^2 n 2 = 0$.
 - (b) $n = 2 \text{ se } n^2 n 2 = 0.$
 - (c) n = 2 é suficiente para $n^2 n 2 = 0$.
 - (d) n = 2 é necessário para $n^2 n 2 = 0$.
 - (e) $n^2 n 2 = 0 \implies (n = 2 e n = -1)$.
 - (f) $n^2 n 2 = 0 \implies (n = 2 \text{ ou } n = -1)$.
- 121. Considere as seguintes (aparentes) equivalências lógicas:

$$x = 1 \iff$$

$$x^{2} - 2x + 1 = 0 \iff$$

$$x^{2} - 2 \cdot 1 + 1 = 0 \iff$$

$$x^{2} - 1 = 0 \iff$$

$$x = \pm 1$$

Onde está o erro?

- 122. Demonstre que $n^3 n$ é múltiplo de 6 para todo natural n.
- 123. Prove que $n^7 n$ é múltiplo de 7 para todo natural n.
- **124.** Prove que para todo natural n o número $4^n + 15n 1$ é divisível por 9.
- 125. Qual é o maior inteiro positivo n tal que os restos das divisões de 154, 238 e 334 por n são iguais?
- 126. Hoje é sábado. Que dia da semana será daqui a 99 dias?
- 127. Qual é o dígito das unidades do número 3¹⁹⁹⁸? E o das centenas?
- 128. Prove que as expressões 2x + 3y e 9x + 5y são divisíveis por 17 para o mesmo conjunto de valores inteiros de x e y.
- 129. Determine todos os valores inteiros de x tais que $\frac{15x^2 11x + 37}{3x + 2}$ é inteiro.
- 130. Encontre todas as soluções inteiras positivas para as equações
 - (a) $x^2 y^2 = 31$;
 - (b) $x^2 y^2 = 303$;
 - (c) $x^3 + x^2 + x 3 = 0$;
 - (d) xy x y 6 = 0;
 - (e) xy 3x 2y 11 = 0.
 - (f) $x^2 + y^2 = 2023$.
- 131. Determine todos os primos que são soma e diferença de dois primos.
- 132. Prove que a fração $\frac{2\ln + 4}{14n + 3}$ é irredutível para todo inteiro positivo n.
- 133. Se n é um inteiro positivo tal que $\frac{n(n+1)}{3}$ é inteiro e quadrado perfeito, prove que n é múltiplo de 3 e que tanto n+1 como $\frac{n}{3}$ são quadrados perfeitos.

- 134. Os números na sequência 101, 104, 109, 116,... são gerados pela fórmula $a_n = 100 + n^2$, n = 1, 2, 3, ... Sendo $d_n = (a_n, a_{n+1})$, qual é o valor máximo assumido por d_n ?
- 135. Prove que, para x e y inteiros, x + 4y é múltiplo de 13 se, e somente se, 4x + 3y é múltiplo de 13.
- 136. Seja m o máximo divisor comum entre os números 2231 e 989. Encontre inteiros α e β tais que 2231 α + 989 β = m.
- 137. Resolva as seguintes equações em congruências
 - (a) $2x \equiv 1 \pmod{17}$
 - (b) $3x \equiv 6 \pmod{18}$
 - (c) $25x \equiv 15 \pmod{29}$
 - (d) $36x \equiv 8 \pmod{102}$
 - (e) $14x \equiv 36 \pmod{18}$
- 138. Encontre todas as soluções inteiras das equações
 - (a) 48x + 7y = 17
 - (b) 9x + 16y = 35
 - (c) 5x 53y = 17
 - (d) 75x 131y = 6
 - (e) 12x + 25y = 331
- 139. Resolva o sistema de congruências $\begin{cases} x \equiv 8 \pmod{9} \\ x \equiv 2 \pmod{3} \\ x \equiv 5 \pmod{7} \end{cases}$
- 140. Encontre todos os inteiros positivos $a, b, c, \text{ com } a \leq b \leq c, \text{ tais que } a + b + c = abc.$
- 141. Dado um inteiro $a_0 > 1$, define-se a sequência $(a_n)_{n \ge 0}$ da seguinte maneira: para cada $k \ge 0$, a_{k+1} é o menor inteiro maior que a_k tal que $mdc(a_{k+1}, a_0a_1 \cdots a_k) = 1$. Determine todos os valores de a_0 para os quais todos os termos da sequência são primos ou potências de primos.
- 142. Determine todos os pares de inteiros (x, y) tais que

$$1 + 2^x + 2^{2x+1} = y^2.$$

- 143. Determine o último dígito do número $\left| \frac{10^{1992}}{10^{83}+7} \right|$.
- 144. Prove que a sequência 11, 111, 1111, ... não contém quadrados.
- 145. Seja p um número primo e seja $\mathcal{U}(p)$ o conjunto das classes de \mathbb{Z}_p que têm inverso multiplicativo (invertíveis), ou seja, $\mathcal{U}(p) = \{\overline{1}, \overline{2}, \dots, \overline{p-1}\} \subset \mathbb{Z}_p$.
 - (a) Prove que $\overline{1}$ e $-\overline{1}$ são os únicos elementos de $\mathcal{U}(\mathfrak{p})$ que são inversos de si mesmos, ou seja, são as únicas soluções da equação $\chi^2=1$ em $\mathbb{Z}_{\mathfrak{p}}$.
 - (b) Conclua que os elementos de $\mathcal{U}(p)$ diferentes de $\pm \overline{1}$ podem ser agrupados em pares $(\overline{a}, \overline{b})$ tais que $\overline{a} \cdot \overline{b} = \overline{1}$.
 - (c) Prove que o produto de todos os elementos de $\mathcal{U}(p)$ é igual a $-\overline{1}$, ou seja, $(p-1)! \equiv -1 \pmod{p}$ (este resultado é conhecido como *Teorema de Wilson*).
 - (d) Prove que

$$\left(\left(\frac{p-1}{2}\right)!\right)^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}.$$

(e) Prove que se $p \equiv 1 \pmod{4}$, então existe um inteiro x tal que $x^2 \equiv -1 \pmod{p}$.