Classifier Evaluation

Zach Gulde

Why Evaluate?

Plan → Acquire → Prepare → Explore → Model → Deliver

You are here

- Quantifying model performance allows to compare models (ML or otherwise!)
- How we quantify performance is key
- Many different ways to quantify depending on what we want to optimize for

Vocab

- Classifier
 - Binary
 - Multi-Class
- Evaluation Metric
- Label / target / outcome
- Actual and Predicted Values

- **Classification Outcomes**
 - True Positive (TP)
- True Negative (TN)
- False Positive (FP)
- False Negative (FN)

Let's look at an example...

Actual

$$= 4 / 7 \approx 57\%$$

Precision

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$$

Predicted

Precision

How good are our positive predictions?

Recall

$$\frac{TP}{TP + FN}$$

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}}$$

How many of the actually positive cases do we catch?

Consider a classifier that always predicts positive...

What if we always predict negative?

Classifier Evaluation Metrics

Recap

- Accuracy: Overall Performance
- Recall: When we don't want to "miss out" on an actually positive case
- Precision: When a positive prediction is expensive

Other Metrics

- Sensitivity: aka recall
- Specificity: recall for the negative class
- F1 score: harmonic mean of precision and recall
- ROC / AUC