Билет № 13. Предел функции по множеству. Верхний и нижний пределы.

Определения

Предельная точка: $E \subset \mathbb{R}, E \neq \emptyset, x_0 \in \overline{\mathbb{R}}$.

 x_0 — предельная точка E, если $\forall \delta > 0$: $\dot{U}_{\delta}(x_0) \cap E \neq \emptyset$.

Лемма: E — числовое множество, $E \neq \emptyset$, $x_0 \in \mathbb{R}$ — предельная точка.

Тогда $\exists \{x_n\} \subset E \setminus \{x_0\}$: $\lim_{n \to \infty} x_n = x_0$. Любую такую последовательность называем (Гейне) в x_0 для E.

Предел по множеству: $A \in \overline{\mathbb{R}}, x_0 \in \overline{\mathbb{R}}, f : E \to \mathbb{R}, E \neq \emptyset, x_0$ — предельная точка. $\lim_{\substack{x \to x_0 \\ x \in E}} f(x) = A, \text{ если:}$

- (Коши) $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap E \Rightarrow f(x) \in U_{\varepsilon}(A)$
- (Гейне) $\forall \{x_n\} \subset E (\Gamma$ ейне) в x_0 : $\lim_{n \to \infty} f(x_n) = A$

Критерий Коши для предела по множеству

$$\exists \lim_{\substack{x \to x_0 \\ x \in E}} f(x) \in \mathbb{R} \iff \\ \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall x', x'' \in \dot{U}_{\delta(\varepsilon)}(x_0) \cap E \Rightarrow |f(x') - f(x'')| < \varepsilon$$

Верхний и нижний пределы

 $X \subset \mathbb{R}, X \neq \emptyset, x_0$ — предельная точка X.

Определение:

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) = \inf_{\delta > 0} \sup_{x \in \dot{U}_{\delta}(x_0) \cap X} f(x)$$
$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) = \sup_{\delta > 0} \inf_{x \in \dot{U}_{\delta}(x_0) \cap X} f(x)$$

Обозначим:

$$\overline{g}_{x_0}(\delta) = \sup_{x \in \dot{U}_{\delta}(x_0) \cap X} f(x)$$
$$\underline{g}_{x_0}(\delta) = \inf_{x \in \dot{U}_{\delta}(x_0) \cap X} f(x)$$

Лемма 1: Если $\delta_1 < \delta_2$, то:

$$\overline{g}_{x_0}(\delta_1) \le \overline{g}_{x_0}(\delta_2)$$

$$\underline{g}_{x_0}(\delta_1) \ge \underline{g}_{x_0}(\delta_2)$$

Лемма 2: $\forall \delta^* > 0$:

$$\sup_{\delta>0} \underline{g}_{x_0}(\delta) = \sup_{0<\delta<\delta^*} \underline{g}_{x_0}(\delta)$$
$$\inf_{\delta>0} \overline{g}_{x_0}(\delta) = \inf_{0<\delta<\delta^*} \overline{g}_{x_0}(\delta)$$

Замечание: Если $E = E_1 \cup E_2$ и $\forall x_2 \in E_2, \ \forall x_1 \in E_1 \colon x_2 \ge x_1,$ то inf $E = \inf E_1, \ \sup E = \sup E_2$

Доказательство: Для $\overline{g}_{x_0}(\delta).$

Рассмотрим $\inf_{0<\delta<\delta_1}\overline{g}_{x_0}(\delta)$ и $\inf_{0<\delta<\delta_2}\overline{g}_{x_0}(\delta)$, где $0<\delta_1<\delta_2$.

Т.к. $\overline{g}_{x_0}(\delta)$ монотонно возрастает, то при увеличении δ добавляются большие значения, которые не влияют на инфимум.

Лемма 3: $\forall \delta^* > 0$:

$$\begin{array}{l} \overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) = \inf_{0 < \delta < \delta^*} \overline{g}_{x_0}(\delta) \\ \lim_{\substack{x \to x_0 \\ x \in X}} f(x) = \sup_{0 < \delta < \delta^*} \underline{g}_{x_0}(\delta) \end{array}$$

Теорема

 $f: X \to \mathbb{R}, X \subset \mathbb{R}, X \neq \emptyset, x_0$ — предельная точка X.

1.
$$\overline{\lim_{\substack{x\to x_0\\x\in X}}}f(x)=\sup\left\{\overline{\lim}_{n\to\infty}f(x_n):\{x_n\}-(\Gamma$$
ейне) в $x_0\right\}$

2.
$$\lim_{\substack{x \to x_0 \\ x \in X}} f(x) = \inf \left\{ \underline{\lim}_{n \to \infty} f(x_n) : \left\{ x_n \right\} - (\Gamma$$
ейне) в $x_0 \right\}$

Доказательство (1): Обозначим $J=\sup\left\{\overline{\lim_{n\to\infty}}f(x_n):\{x_n\}-(\Gamma$ ейне) $\right\}$

() Покажем: $\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \ge J$

Возьмем $\forall \delta>0$ и произвольную (Гейне) $\{x_n\}\subset X$ в x_0 . Тогда:

$$\overline{g}_{x_0}(\delta) = \sup_{x \in \dot{U}_{\delta}(x_0) \cap X} f(x) \ge \sup_{n \ge N(\delta)} f(x_n) \ge \overline{\lim_{n \to \infty}} f(x_n)$$

Т.к. $\{x_n\}$ — (Гейне), то $\exists N(\delta) : \forall n \geq N(\delta) \Rightarrow x_n \in \dot{U}_{\delta}(x_0) \cap X$ Берём инфимум по $\delta > 0$:

$$\inf_{\delta>0} \overline{g}_{x_0}(\delta) \ge \overline{\lim}_{n\to\infty} f(x_n)$$

Левая часть не зависит от $\{x_n\}$. Берём sup по всем (Гейне):

$$\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \ge J$$

() Покажем: $\overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x) \le J$

По Лемме 2: $\forall n \in \mathbb{N}$:

$$\inf_{0<\delta<\frac{1}{n}}\overline{g}_{x_0}(\delta)=\overline{\lim_{\substack{x\to x_0\\x\in X}}}f(x)=A$$

По определению инфимума $\exists \delta_n \in (0, \frac{1}{n})$:

$$\overline{g}_{x_0}(\delta_n) \in U_{1/n}(A)$$

По определению супремума $\exists y_n \in \dot{U}_{\delta_n}(x_0) \cap X$:

$$f(y_n) \in U_{2/n}(A)$$

Построена (Гейне) $\{y_n\}$ в x_0 , причём $\lim_{n\to\infty} f(y_n)=A$. Следовательно:

$$\overline{\lim}_{n\to\infty} f(y_n) = A \Rightarrow J \ge A = \overline{\lim}_{\substack{x\to x_0\\x\in X}} f(x)$$

Значит, $J = \overline{\lim_{\substack{x \to x_0 \\ x \in X}}} f(x)$.