Deflection of Beams

$$q(z) = q_0$$

Want $u(z)$ vert displacement.

EIu = M(z)

 q_0
 q_0

Recall,
$$V' = -q$$
, $M' = -V$
 $\Rightarrow M'' = q = q_0$
 $M(z) = \frac{q_0 z^2 + \tilde{c}_1 z + \tilde{c}_2}{2}$
Pinned-pinned $M(0) = 0$, $M(1) = 0$
 $U'' = \frac{q_0}{2EI} (z^2 - Lz)$
 $2EI$
 $U = \frac{q_0}{2EI} (z^4 - Lz^3 + c_1 z + c_2)$
 $2EI$ 12 6
 $U(0) = 0$, $U(L) = 0$ $C_1 = C_2$
 $C_2 = 0$, $C_1 = C_2$

$$u(z) = \frac{q_0}{24ET} \qquad \left(\frac{1}{3}z - 2Lz^3 + z^4 \right)$$

$$24ET$$

$$u_{\text{max}} = u(\frac{L}{2}) = \frac{5q_0L^4}{384ET}$$

$$\theta = u'(z)$$

$$\theta_{\text{max}} = u'(0) = \frac{q_0L^3}{24ET}$$

Dnyanesh Pawaska
$$u(z) = \sum_{i=1}^{N} P_i G(z, a_i)$$

$$appropriately chosen$$

$$G(z, a) = \begin{cases} 1 \\ \frac{za^2 - a^3}{2} \end{cases} \quad a \le z$$

$$\frac{1}{EI} \left(\frac{az^2 - z^3}{2} \right) \quad z \le a$$

$$G(z, a) = \text{deflection } Q z \text{ due to}$$

$$\text{unit point load } Q \text{ a}$$

			Dnyanesi	ı Pawaska
	= G(a			
G(z,a)	Greens	function		
		ntilever.		
Linear	super p	osition.		
	1)			

Recall, impulse response func.

$$G(z,a)$$
 for cantilever

Deflection @ z due to unit point

force @ a

 $G(z,a) = G(a,z)$
 $q(a) da$
 $q(a) da$

$$u(z) = \int q(a) da \quad G(z,a)$$

$$0 \quad \text{note}$$
Std trick in linear systems.
$$z$$

$$u(z) = \int q(a) \frac{1}{2} \left(\frac{za^2}{a} - \frac{a^3}{6} \right) da$$

$$0 \quad L$$

$$+ \int \frac{q(a)}{EI} \left(\frac{az^2}{a} - \frac{z^3}{6} \right) da$$

$$EI \quad Z$$

Ex	ample	1	q ·	= 90)		
	check		·				
	u(z) =	9.0Z	2 (2 6 L -	4z L+	z^2	
		24E				·	
N	lote: 1	.Use	Corre	ect (a(z,a)	in	
		each	inle	grati	อก		
	2.	G(z	,a)	lliw	depen	9 ou	
	1	BCs		1			
1	1						
	a L	Z.	1	7	x L	z 9	•
/ }	G(z,0		#		ĝ(Z,a)		
		3. ∐s	e el	a) it	otni c	gration) .

Example 2

$$q_0 = q(z)$$
 L_{12}
 L_{12}
 L_{12}
 L_{12}
 L_{13}
 L_{14}
 L_{15}
 L_{15}

		ı		D.	iry aricsir	Pawaskar
=	<u>41</u> 84	90L	t			
3	84	EI				