中山大学本科生期中考试

考试科目:《离散数学》(A卷)

学年学期: 2017 学年第 2 学期	姓	名:		
学 院/系:数学学院(珠海)	学	号:		
考试方式:半开卷	年级	专业:		
考试时长:120分钟	班	别:		
警示《中山大学授予学士学位工作细》 位。"	则》第 <i>J</i>	\条:"	'考试作弊者,不授 `	予学士学
以下为试题区域,共 <mark>三</mark> 道大题,原	总分 100	0 分,考5	上请在答题纸上作答	
一、填空题(共 8 小题 10 个空,每空 4	· 分,	共 40 🤈	分)	
1. 若 $A = \{\emptyset\}$, $B = \mathcal{P}(\mathcal{P}(A))$, 即集合A的幂集	(power	set)的铜	幂集, $C = \mathcal{P}(A)^{\times n}$, \mathbb{R}	『集合A的幂
集的n次笛卡尔积(Cartesian product),则BU(〕中有	个	元素.	
2. 把 x^6 以 $\{(x)_k\}$ (falling factorials) 为基	底作展	开,其中	¬(x) ₅ 项的系数是	·
3. 下列伪代码(pseudocode)中第5行一共执行	了	次。		
1: product = 1				
2: for i = 1 to n				
3: for $j = 1$ to $2 * i$				
4: for $k = 1$ to j				
5: factorial = k * fa	ctorial	_		
4. 对于迭代关系(recursive relation) $a_n =$	$2a_{n-1}$ +	a_{n-3} ,	$n \geqslant 3\pi a_0 = a_1 = a_2$	= 1, 其特
征方程(character equation)为				

5. 假设B = ($\{0,1,x,y\}$,+,·) 为一含有四个元素的布尔代数(Boolean algebra),则 \bar{x} =

, x + y =

- 7. 考虑 $G = (V_N, V_T, \sigma, P)$ 为正则文法,其中非终结符集为 $V_N = \{A, \sigma\}$,终结符集 $V_T = \{0, 1\}$,生成关系集 $P = \{\sigma \to 1\sigma, \sigma \to 00A, A \to 0\}$.则G 生成的语言为______.
 - 8. $(\forall x)(\forall y)((\forall z)(P(x,z) \land P(y,z)) \rightarrow (\exists u)Q(x,y,u))$ 用等价前束范式表示为_____.

二、计算题(共 6 小题,每小题 6 分,共 36 分)

- 1. 对于搜索模式字串(pattern) "decedent",写出Knuth-Morris-Pratt算法的移动表格(shift table) s[m]和最大配边表格(maximal border table) b[m].
- 2. 求出满足 $a_n = n^2 a_{n-1} + n$ ($n \ge 1$) 和 $a_0 = 0$ 的迭代序列(recursive sequence)的生成函数 (generating function)所满足的方程以及边值条件.
 - 3. 找到包含 $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 4 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ 的所有两两正交的4×4拉丁方矩阵,并用基本替换操作将每个矩阵

的第一行按照升序排列.

- 4. 给定全集(universal set) U,集合S为U的一个子集. 集合S的特征函数(map/morphism)是从U到集合 $\{0, 1\}$ 的一个映射f满足当 $\mathbf{x} \in \mathrm{Spt}_S(\mathbf{x}) = 1$,否则 $f_S(\mathbf{x}) = 0$.若A和B为U的两个子集,把以下特征函数用 f_A 和 f_B 表示: 1) $f_{AOB}(\mathbf{x})$,2) $f_{AUB}(\mathbf{x})$,3) $f_{\bar{A}}(\mathbf{x})$.
- 5. 用特征方程法求解满足下列迭代关系 $a_n = \frac{a_{n-1}^3}{a_{n-2}}$ $(n \ge 2)$, $a_0 = e$ (欧拉数), $a_1 = e^3$ 的数列的显式表达.
- 6. 识别下列何者为确定的有限状态接收器(DFA),何者为不确定的有限状态接收器(NFA),并写出不确定的有限状态接收器(NFA)可接受的语言。

三、证明题(共2小题,每小题12分,共24分)

- 1. 用定义证明 Z×Z 为可数集(countable set).
- 2. 证明若 $2^{n} 1$ 为素数,则 n 为素数.

排版要求: 试卷一级标题须标注分值,至少占两行,字体加粗。行距适当留疏,格式整齐一致,保持卷面美观。各题之间不留答题区域,考生一律将答案写在专用答题纸上。 试卷头版式不可改变,内容可根据考试科目实际需要增减。

说明:此份仅为试卷模板,教师需根据实际内容将红色字迹替换。

中山大学本科生期末考试试卷