# Standard lattices of compatibly embedded finite fields

Luca De Feo, Hugues Randriam, Édouard Rousseau

July 16, 2019







### **CONTEXT**

- Use of Computer Algebra System (CAS)
- ▶ Use of many extensions of a prime finite field  $\mathbb{F}_p$
- ightharpoonup Computations in  $\bar{\mathbb{F}}_p$ .



#### **CONTEXT**

- Use of Computer Algebra System (CAS)
- ▶ Use of many extensions of a prime finite field  $\mathbb{F}_p$
- ightharpoonup Computations in  $\bar{\mathbb{F}}_p$ .



### **EMBEDDINGS**

Context

00000

- ▶ When  $l \mid m$ , we know  $\mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$ 
  - ► How to compute this embedding *efficiently*?
- Naive algorithm: if  $\mathbb{F}_{p^l} = \mathbb{F}_p[x]/(f(x))$ , find a root  $\rho$  of f in  $\mathbb{F}_{p^m}$  and map  $\bar{x}$  to  $\rho$ . Complexity strictly larger than  $\tilde{O}(l^2)$ .
- Lots of other solutions in the litterature:
  - ► [Lenstra '91]
  - ► [Allombert '02]  $\tilde{O}(l^2)$
  - ► [Rains '96]
  - ► [Narayanan '18]

### **COMPATIBILITY**

Context 00000

- ▶ K, L, M three finite fields with  $K \hookrightarrow L \hookrightarrow M$
- ▶  $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$  embeddings

## Compatibility:



## **COMPATIBILITY**

- ▶ K, L, M three finite fields with  $K \hookrightarrow L \hookrightarrow M$
- ▶  $f: K \hookrightarrow L, g: L \hookrightarrow M, h: K \hookrightarrow M$  embeddings

## Compatibility:



$$g \circ f \stackrel{?}{=} h$$

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate  $\mathbb{F}_{p^m}^{\times}$ )
- ightharpoonup norm-compatible (i.e.  $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0\mod C_m$  if  $l\mid m$ )

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate  $\mathbb{F}_{p^m}^{\times}$ )
- ▶ norm-compatible (i.e.  $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$  if  $l\mid m$ )
- Standard polynomials

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate  $\mathbb{F}_{p^m}^{\times}$ )
- ▶ norm-compatible (i.e.  $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$  if  $l\mid m$ )
- Standard polynomials
- ► Compatible embeddings:  $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$

- monic
- irreducible
- ▶ degree *m*
- ▶ primitive (*i.e.* its roots generate  $\mathbb{F}_{p^m}^{\times}$ )
- ▶ norm-compatible (i.e.  $C_l\left(X^{\frac{p^m-1}{p^l-1}}=0\right)=0 \mod C_m$  if  $l\mid m$ )
- Standard polynomials
- ► Compatible embeddings:  $\bar{X} \mapsto \bar{Y}^{\frac{p^m-1}{p^l-1}} \tilde{O}(m^2)$
- ► Hard to compute (exponential complexity)

# ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- ▶ Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive



# ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive
  - ► Inefficient as the number of extensions grows



# ENSURING COMPATIBILITY: BOSMA, CANNON AND STEEL

- Framework used in MAGMA
- Based on the naive embedding algorithm
- Constraints on the embedding imply that adding a new embedding can be expensive
  - ▶ Inefficient as the number of extensions grows



Non standard polynomials

#### **IDEAS**

- Plugging Allombert's embedding algorithm in Bosma, Cannon, and Steel
- ► Generalizing Bosma, Cannon, and Steel
- Generalizing Conway polynomials

Goal: bring the best of both worlds

## ALLOMBERT'S EMBEDDING ALGORITHM I

- ▶ Based on *Kummer theory*
- ▶ For l | (p-1), we work in  $\mathbb{F}_{p^l}$ , and study

$$\sigma(x) = \zeta_l x \tag{H90}$$

where  $(\zeta_l)^l = 1$  and  $\zeta_l \in \mathbb{F}_p \subset \mathbb{F}_{p^l}$ 

- ▶ Solutions of (H90) form a  $\mathbb{F}_p$ -vector space of dimension 1
- $ightharpoonup \alpha_l$  solution of (H90) generates  $\mathbb{F}_{n^l}$
- $(\alpha_l)^l = c \in \mathbb{F}_p$

## ALLOMBERT'S EMBEDDING ALGORITHM II

**Input:**  $\mathbb{F}_{p^l}$ ,  $\mathbb{F}_{p^m}$ , with  $l \mid m \mid (p-1)$ ,  $\zeta_l$  and  $\zeta_m$  with  $(\zeta_m)^{m/l} = \zeta_l$  **Output:**  $s \in \mathbb{F}_{p^l}$ ,  $t \in \mathbb{F}_{p^m}$ , such that  $s \mapsto t$  defines an embedding  $\phi : \mathbb{F}_{p^l} \to \mathbb{F}_{p^m}$ 

- 1. Find  $\alpha_l \in \mathbb{F}_{p^l}$  and  $\alpha_m \in \mathbb{F}_{p^m}$ , nonzero solutions of (H90) for the roots  $\zeta_l$  and  $\zeta_m$
- 2. Compute  $(\alpha_l)^l = c_l$  and  $(\alpha_m)^m = c_m$
- 3. Compute  $\kappa_{l,m}$  a *l*-th root of  $c_l/c_m$
- 4. Return  $\alpha_l$  and  $\kappa_{l,m}(\alpha_m)^{m/l}$

# ALLOMBERT AND BOSMA, CANON, AND STEEL

- Need to store one constant  $\kappa_{l,m}$  for each pair  $(\mathbb{F}_{p^l},\mathbb{F}_{p^m})$
- ▶ The constant  $\kappa_{l,m}$  depends on  $\alpha_l$  and  $\alpha_m$

#### We would like to:

- get rid of the constants  $\kappa_{l,m}$  (e.g. have  $\kappa_{l,m} = 1$ )
- equivalently, get "standard" solutions of (H90)
  - select solutions  $\alpha_l$ ,  $\alpha_m$  that always define the same embedding
  - such that the constants  $\kappa_{l,m}$  are well understood (*e.g.*  $\kappa_{l,m} = 1$ )

# CAN WE HAVE $\kappa_{l,m} = 1$ ?

Let 
$$l | m | p - 1$$
,  $(\zeta_m)^{m/l} = \zeta_l$ 

- $\alpha_l \in \mathbb{F}_{p^l}$  and  $\alpha_m \in \mathbb{F}_{p^m}$  solutions of H90 for  $\zeta_l$  and  $\zeta_m$
- $ightharpoonup \kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1 \text{ implies } c_l = c_m$

# Can we have $\kappa_{l,m} = 1$ ?

Let 
$$l | m | p - 1$$
,  $(\zeta_m)^{m/l} = \zeta_l$ 

- $\alpha_l \in \mathbb{F}_{v^l}$  and  $\alpha_m \in \mathbb{F}_{p^m}$  solutions of H90 for  $\zeta_l$  and  $\zeta_m$
- $ightharpoonup \kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1 \text{ implies } c_l = c_m$

In particular, for m = p - 1

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

# Can we have $\kappa_{l,m} = 1$ ?

Let l | m | p - 1,  $(\zeta_m)^{m/l} = \zeta_l$ 

- $\alpha_l \in \mathbb{F}_{p^l}$  and  $\alpha_m \in \mathbb{F}_{p^m}$  solutions of H90 for  $\zeta_l$  and  $\zeta_m$
- $ightharpoonup \kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1 \text{ implies } c_l = c_m$

In particular, for m = p - 1

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

$$(\alpha_{p-1})^{p-1} = c_{p-1} = \zeta_{p-1}$$

# CAN WE HAVE $\kappa_{l,m} = 1$ ?

Let l | m | p - 1,  $(\zeta_m)^{m/l} = \zeta_l$ 

- $\alpha_l \in \mathbb{F}_{p^l}$  and  $\alpha_m \in \mathbb{F}_{p^m}$  solutions of H90 for  $\zeta_l$  and  $\zeta_m$
- $ightharpoonup \kappa_{l,m} = \sqrt[l]{c_l/c_m} = 1 \text{ implies } c_l = c_m$

In particular, for m = p - 1

$$\sigma(\alpha_{p-1}) = (\alpha_{p-1})^p = \zeta_{p-1}\alpha_{p-1}$$

- $(\alpha_{p-1})^{p-1} = c_{p-1} = \zeta_{p-1}$
- ▶ this implies  $\forall l \mid p-1, c_l = \zeta_{p-1}$

#### STANDARD SOLUTIONS

How to define standard solutions of (H90)?

## Definition (Standard solution)

Let  $l \mid p-1$  and  $\alpha_l \in \mathbb{F}_{p^l}$  a solution of (H90) for  $\zeta_l = (\zeta_{p-1})^{\frac{p-1}{l}}$ ,  $\alpha_l$  is **standard** if  $c_l = \zeta_{p-1}$ .

## Definition (Standard polynomial)

All standard solutions  $\alpha_l$  define the same irreducible polynomial of degree l, we call it the **standard polynomial** of degree l.

Let l | m | p - 1

- $ightharpoonup \zeta_l = (\zeta_m)^{m/l}$
- ightharpoonup and  $\alpha_m$  standard solutions of (H90) for  $\zeta_l$  and  $\zeta_m$

Let 
$$l | m | p - 1$$

- $ightharpoonup \zeta_l = (\zeta_m)^{m/l}$
- $\alpha_l$  and  $\alpha_m$  standard solutions of (H90) for  $\zeta_l$  and  $\zeta_m$

$$c_l = c_m = \zeta_{p-1}$$

Let 
$$l \mid m \mid p-1$$

- $ightharpoonup \zeta_l = (\zeta_m)^{m/l}$
- ightharpoonup  $\alpha_l$  and  $\alpha_m$  standard solutions of (H90) for  $\zeta_l$  and  $\zeta_m$

$$c_l = c_m = \zeta_{p-1}$$

$$ightharpoonup \kappa_{l,m} = 1$$

Let  $l \mid m \mid p-1$ 

- $ightharpoonup \zeta_l = (\zeta_m)^{m/l}$
- $ightharpoonup \alpha_l$  and  $\alpha_m$  standard solutions of (H90) for  $\zeta_l$  and  $\zeta_m$ 
  - $c_l = c_m = \zeta_{p-1}$ 
    - $\kappa_{l,m}=1$
- ► The embedding  $\alpha_l \mapsto (\alpha_m)^{m/l}$  is **standard** too (only depends on  $\zeta_{p-1}$ ).

# What happens when $l \nmid p-1$ ?

Let  $p \nmid l$  and  $l \nmid p - 1$ 

- ▶ no *l*-th root of unity  $\zeta_l$  in  $\mathbb{F}_p$ 
  - ▶ add them! Consider  $A_l = \mathbb{F}_{p^l} \otimes \mathbb{F}_p(\zeta_l)$  instead of  $\mathbb{F}_{p^l}$   $(\sigma \otimes 1)(x) = (1 \otimes \zeta_l)x$  (H90')
- ► Allombert's algorithm still works!

If  $l \mid m$  and  $(\zeta_m)^{m/l} = \zeta_l$ 

- ▶ Still possible to find standard solutions  $\alpha_l$ ,  $\alpha_m$  of H90′
- $ightharpoonup \kappa_{l,m} \neq 1$  but easy to compute
- **Standard embedding** from  $\alpha_l$  and  $\alpha_m$











## **COMPATIBILITY AND COMPLEXITY**

## Proposition (Compatibility)

Let  $l \mid m \mid n$  and  $f : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$ ,  $g : \mathbb{F}_{p^m} \hookrightarrow \mathbb{F}_{p^n}$ ,  $h : \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^n}$  the standard embeddings. Then we have  $g \circ f = h$ .

# Proposition (Complexity)

Given a collection of Conway polynomials of degree up to d, for any  $l \mid m \mid p^i - 1$ ,  $i \leq d$ 

- Computing a standard solution  $\alpha_l$  takes  $\tilde{O}(l^2)$
- ▶ Given  $\alpha_l$  and  $\alpha_m$ , computing the standard embedding  $f: \mathbb{F}_{p^l} \hookrightarrow \mathbb{F}_{p^m}$  takes  $\tilde{O}(m^2)$

#### **IMPLEMENTATION**

Implementation using Flint/C and Nemo/Julia.



Figure: Timings for computing  $\alpha_l$  (left, logscale), and for computing  $\mathbb{F}_{p^2} \hookrightarrow \mathbb{F}_{p^l}$  (right, logscale) for p = 3.

### STANDARD POLYNOMIALS

$$\begin{array}{c}
 x + 1 \\
 x^3 + x + 1 \\
 x^5 + x^3 + 1 \\
 x^7 + x + 1 \\
 x^9 + x^7 + x^4 + x^2 + 1 \\
 x^{11} + x^8 + x^7 + x^6 + x^2 + x + 1 \\
 x^{13} + x^{10} + x^5 + x^3 + 1 \\
 x^{15} + x + 1 \\
 x^{17} + x^{11} + x^{10} + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + x + 1 \\
 x^{19} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^8 + x^7 + x^6 + x^5 + x^3 + 1
 \end{array}$$

Table: The ten first standard polynomials derived from Conway polynomials for p = 2.

# CONCLUSION, OPEN PROBLEMS

- ► We implicitly assume that we have **compatible roots**  $\zeta$  (*i.e.*  $\zeta_l = (\zeta_m)^{m/l}$  for  $l \mid m$ )
  - ► In practice, this is done using Conway polynomials
- ▶ With Conway polynomials up to degree d, we can compute embeddings to finite fields up to any degree  $l | p^i 1, i \le d$ 
  - quasi-quadratic complexity

### Open problems:

- ▶ Make this work less standard, but more practical
- ► Can we prove better than quasi-quadratic?
  - for the isomorphism problem (in the general case)
  - for the computations in  $\bar{\mathbb{F}}_p$
- Compute (pseudo-)Conway polynomials faster

# Thank you!