

Machine Learning

Prof. Dr. Fabian Brunner

<fa.brunner@oth-aw.de>

Amberg, 3. November 2020

Übersicht

Wiederholung von Grundbegriffen der Stochastik

- Zufallsexperiment und Wahrscheinlichkeitsraum
- Stochastische Unabhängigkeit von Ereignissen
- Zufallsvariablen
- Erwartungswert und Varianz
- Bedingte Wahrscheinlichkeit und bedingter Erwartungswert

Weiterführendes Material

Vorabbemerkung:

- Auf den folgenden Folien sind einige Definitionen und Aussagen aus der Stochastik zusammengestellt, die im weiteren Verlauf der Vorlesung "Machine Learning" benötigt werden.
- Die Lektüre dieser Folien kann ein eingehendes Studium der Materie nicht ersetzen.
- Es wird daher dringend empfohlen, als Begleittext ein Stochastik-Buch heranzuziehen.

Literaturhinweise

- K. Bosch: Elementare Einführung in die Wahrscheinlichkeitsrechnung. Vieweg Verlag.
- 🦫 K. Bosch: Elementare Einführung in die angewandte Statistik. Vieweg-Verlag.
- 🔪 C. Dietmaier: Mathematik für angewandte Wissenschaften. Springer-Verlag.
- G. Fischer, M. Lehner, A. Puchert: Einführung in die Stochastik. Springer Spektrum.

Grundraum, Ergebnis, Ereignis

Ein **Ergebnis** ω ist ein möglicher Ausgang eines Zufallsexperiments. Der **Grundraum** Ω ist die Menge aller möglichen Ergebnisse eines Zufallsexperiments. Ein Ereignis $A \subset \Omega$ ist eine Teilmenge des Grundraums, d.h. eine Menge gewisser Ergebnisse.

Beispiel: Zweifacher Würfelwurf

- Grundraum: $\Omega = \{(1,1), (1,2), (1,3), \dots (6,5), (6,6)\}, |\Omega| = 36.$
- Elementarereignis "1 und 5": $\omega = \{(1,5)\}$
- Ereignis "Pasch": $A = \{(1,1), (2,2), \dots, (6,6)\}.$

Wahrscheinlichkeitsmaß

Sei Ω ein nichtleerer Grundraum und Σ eine Ereignis-Sigma-Algebra in Ω (d.h. eines bestimmten Systems von Teilmengen von Ω). Eine Abbildung $P:\Sigma \to [0,1]$ heißt **Wahrscheinlichkeitsmaß**, wenn folgende Eigenschaften erfüllt sind:

- 1. $P(\Omega) = 1$
- 2. Für paarweise disjunkte Mengen $A_1, A_2, A_3, \ldots \in \Sigma$ gilt stets

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$
 (Sigma-Additivität).

Das Tripel (Ω, Σ, P) heißt Wahrscheinlichkeitsraum. Die Zahl P(A) heißt Wahrscheinlichkeit des Ereignisses A.

Beispiel: Laplace-Verteilung

- Voraussetzung: jedes Ergebnis ist gleich wahrscheinlich.
- Laplace-Wahrscheinlichkeit: $P(A) = \frac{|A|}{|\Omega|}$ für alle $A \in \mathcal{P}(\Omega)$.

Bedingte Wahrscheinlichkeit

Sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum und sei $B \in \Sigma$ ein Ereignis mit P(B) > 0. Für jedes Ereignis $A \in \Sigma$ heißt

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

die bedingte Wahrscheinlichkeit für A unter der Bedingung B. Die Abb.

$$P(\cdot|B): \Sigma \to [0,1], \quad A \mapsto P(A|B)$$

heißt bedingte Verteilung unter der Bedingung B.

Unabhängigkeit von Ereignissen

Zwei Ereignisse A und B heißen **unabhängig**, falls

$$P(A \cap B) = P(A) \cdot P(B) .$$

Bemerkungen:

• Gilt P(B) > 0, so ist die obige Bedingung gleichbedeutend mit

$$P(A|B) = P(A)$$
.

- Wenn die Ereignisse nicht unabhängig sind, können wir aus dem einen etwas über das andere lernen.
- Können disjunkte Ereignisse unabhängig sein?

${\bf Grund be griffe}$

Totale Wahrscheinlichkeit

Sei $\Omega=B_1\cup\ldots\cup B_n$ eine Zerlegung in paarweise disjunkte Ereignisse und sei $P(B_j)>0$ für alle $j=1,\ldots,n$. Dann gilt für jedes Ereignis A:

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)$$
.

Formel von Bayes

Seien A und B Ereignisse mit P(A) > 0 und P(B) > 0. Dann gilt

$$P(B|A) = \frac{P(A|B) \cdot P(B)}{P(A)}.$$

Unter den Voraussetzungen des Satzes von der totalen Wahrscheinlichkeit gilt ferner

$$P(B_i|A) = \frac{P(A|B_i) \cdot P(B_i)}{\sum_{i=1}^n P(A|B_i) \cdot P(B_i)}.$$

Zufallsvariable

Sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum. Eine **Zufallsvariable** ist eine Abbildung $X: \Omega \to \mathbb{R}$ mit der Eigenschaft $X^{-1}(A) \in \Sigma$ für alle $A \in \mathcal{B}(\mathbb{R})$. Die Zufallsvariable induziert durch

$$P_X(A):=P(X\in A)=P(X^{-1}(A))=P(\{\omega\in\Omega\,:\,X(\omega)\in A\})\, {\sf für alle}\, A\in\mathcal{B}(\mathbb{R})$$

ein Wahrscheinlichkeitsmaß auf $\mathcal{B}(\mathbb{R})$. Man nennt P_X die Wahrscheinlichkeitsverteilung von X (unter P).

In der obigen Definition bezeichnet $\mathcal{B}(\mathbb{R})$ die Borel-Mengen von \mathbb{R} , d.h. ein System von Teilmengen, welches die für uns relevanten Teilmengen (z.B. Intervalle) enthält.

Beispiel

- Beim zweifachen Würfelwurf ist die Augensumme X eine Zufallsvariable.
- Ist $\omega = \{(\omega_0, \omega_1)\} \in \{1, 2, \dots, 6\} \times \{1, 2, \dots, 6\}$ ein Elementarereignis, so gilt

$$X(\omega)=\omega_0+\omega_1.$$

Diskrete und stetige Zufallsvariablen

Diskrete Zufallsvariable

- Eine Zufallsvariable heißt diskret, falls sie eine endliche oder abzählbare Wertemenge $W = \{x_1, x_2, ...\}$ besitzt.
- Die Funktion

$$f(x) = \begin{cases} P(X = x) & \text{für } x \in W \\ 0 & \text{sonst} \end{cases}$$

heißt Wahrscheinlichkeitsfunktion von X.

Stetige Zufallsvariable

Eine Zufallsvariable X heißt stetig, falls es eine Funktion f_X gibt mit:

$$P(a < X \le b) = \int_a^b f_X(x) dx$$
 für alle $a, b \in \mathbb{R}$ mit $a < b$.

Die Funktion f_X heißt Wahrscheinlichkeitsdichte (oder nur Dichte) von X.

Verteilungsfunktion

Kumulative Verteilungsfunktion

Sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum und $X : \Omega \to \mathbb{R}$ eine Zufallsvariable. Die Funktion

$$F_X: \mathbb{R} \to \mathbb{R}, x \mapsto P_X(]-\infty; x]) = P(X \le x)$$

heißt (kumulative) Verteilungsfunktion von X.

Eigenschaften der Verteilungsfunktion:

- $0 \le F_X(x) \le 1$ für alle x
- F_X ist monoton wachsend.
- $\lim_{x\to\infty} F_X(x) = 1$ und $\lim_{x\to-\infty} F_X(x) = 0$.
- F_X ist rechtsseitig stetig.
- Für die Verteilungsfunktion F_X einer stetigen Zufallsvariable X gilt

$$F_X(x) = \int\limits_{-\infty}^x f_X(u) du .$$

Beispiel zur Verteilungsfunktion

Zweifacher Wurf eines Würfels

$$\begin{split} &\Omega = \{(1,1),(1,2),(1,3),\dots,(6,5),(6,6)\} \ , \\ &A = \{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\} \quad \text{(Ereignis: "Pasch")} \\ &X((\omega_1,\omega_2)) := \omega_1 + \omega_2 \quad \text{(Zufallsvariable: Augensumme)} \ , \end{split}$$

Xi	1	2	3	4	5	6	7	8	9	10	11	12
$P(X = x_i)$	0	1 36	<u>2</u> 36	3 36	<u>4</u> 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	<u>4</u> 36	3 36	2 36	1 36
$F_X(x_i)$	0	1 36	3 36	<u>6</u> 36	10 36	15 36	2 <u>1</u> 36	26 36	30 36	33 36	35 36	1

Erwartungswert

Erwartungswert

Der Erwartungswert einer Zufallsvariablen ist gegeben durch

$$X$$
 diskret: $E(X) := \mu_X := \sum_{i \in \mathbb{N}} x_i P(X = x_i) = \sum_{i \in \mathbb{N}} x_i f_X(x_i)$,

$$X$$
 stetig: $E(X) := \mu_X := \int_{-\infty}^{\infty} x f_X(x) dx$.

Eigenschaften und Rechenregeln für den Erwartungswert

1. Linearität: seien X und Y Zufallsvariablen und $a,b\in\mathbb{R}$ Konstanten. Dann gilt

$$E(aX + bY) = aE(X) + bE(Y).$$

- 2. Nichtnegativität: Gilt $X \ge 0$, dann auch $E(X) \ge 0$.
- 3. Gilt $X \ge 0$ und E(X) = 0, dann folgt P(X = 0) = 1.

Varianz und Standardabweichung

Varianz einer Zufallsvariable

Die Varianz einer Zufallsvariablen X ist gegeben durch

$$X$$
 diskret : $\operatorname{\sf Var}(X) := \sigma^2 := \sum_{i \in \mathbb{N}} (x_i - \mu)^2 f_X(x_i) \; ,$

$$X$$
 stetig: $\operatorname{Var}(X) := \sigma^2 := \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$.

Die Größe $\sigma = \sqrt{\text{Var}(X)}$ heißt **Standardabweichung** von X.

Eigenschaften der Varianz

- 1. $Var(X) \ge 0$
- 2. Für Konstanten $a, b \in \mathbb{R}$ gilt

$$Var(aX + b) = a^2 Var(X) .$$

3. $Var(X) = E(X^2) - \mu_X^2$.

Gemeinsam verteilte Zufallsvariablen

Gemeinsame Verteilung, diskreter Fall

Seien X und Y diskrete Zufallsvariablen auf Ω mit Wertevorräten $W_X = \{x_1, x_2, \ldots\}$ und $W_Y = \{y_1, y_2, \ldots\}$. Dann ist die **gemeinsame** Wahrscheinlichkeitsfunktion von X und Y gegeben durch

$$f_{X,Y}(x_i,y_j) = \left\{ egin{array}{ll} P(X=x_i,Y=y_j) & \text{falls } (x_i,y_j) \in W_X \times W_Y \ , \\ 0 & \text{sonst }. \end{array} \right.$$

Aus einer gemeinsamen Wahrscheinlichkeitsfunktion kann man auch die Wahrscheinlichkeitsfunktionen für X und Y ableiten (Randverteilungen):

$$f_X(x) = P(X = x) = \sum_{i \in \mathbb{N}} f_{X,Y}(x, y_i)$$
 für alle $x \in W_X$,

$$f_Y(y) = P(Y = y) = \sum_{i \in \mathbb{N}} f_{X,Y}(x_i, y)$$
 für alle $y \in W_Y$.

Gemeinsam verteilte Zufallsvariablen

Gemeinsame Verteilung, stetiger Fall

Zwei stetige Zufallsvariablen X und Y heißen gemeinsam verteilt, falls es eine Dichtefunktion $f_{X,Y}$ gibt, sodass

$$P(a < X \le b, c < Y \le d) = \int_a^b \int_c^d f_{X,Y}(x,y) \, dy \, dx$$
 für $a < b, c < d$.

Die Randverteilungen besitzen die Dichtefunktionen

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy ,$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx.$$

Stochastische Unabhängigkeit

Stochastische Unabhängigkeit

Die Zufallsvariablen X und Y heißen **stochastisch unabhängig**, wenn die gemeinsame Wahrscheinlichkeits- bzw. Dichtefunktion gerade gleich dem Produkt der beiden Randverteilungen ist:

$$X, Y \text{ diskret}: \quad f_{X,Y}(x_i, y_j) = f_X(x_i) f_Y(y_j) \quad \text{für alle } (x_i, y_j) \in W_X \times W_Y ,$$

$$X, Y ext{ stetig}: f_{X,Y}(x,y) = f_X(x)f_Y(y) ext{ für alle } x,y \in \mathbb{R} .$$

Bemerkung: Sind X und Y unabhängig, dann gilt

$$E(XY) = E(X)E(Y) .$$

Beispiel zur stochastischen Unabhängigkeit

Die gemeinsame Dichtefunktion der Zufallsvariablen X und Y laute

$$f_{X,Y}(x,y) = \left\{ \begin{array}{ll} 6xy^2 & \text{falls } 0 \leq x,y \leq 1 \\ 0 & \text{sonst }. \end{array} \right.$$

Sind *X* und *Y* stochastisch unabhängig? **Lösung:**

• Für $0 \le x \le 1$ gilt

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 6xy^2 dy = 6x \int_{0}^{1} y^2 dy = 6x \left[\frac{y^3}{3} \right]_{0}^{1} = 2x.$$

Beispiel zur stochastischen Unabhängigkeit

Die gemeinsame Dichtefunktion der Zufallsvariablen X und Y laute

$$f_{X,Y}(x,y) = \left\{ egin{array}{ll} 6xy^2 & \mbox{falls } 0 \leq x,y \leq 1 \ , \\ 0 & \mbox{sonst }. \end{array}
ight.$$

Sind *X* und *Y* stochastisch unabhängig? **Lösung:**

• Für 0 < x < 1 gilt

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 6xy^2 dy = 6x \int_{0}^{1} y^2 dy = 6x \left[\frac{y^3}{3} \right]_{0}^{1} = 2x.$$

• Für $0 \le y \le 1$ gilt

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} 6xy^2 dx = 6y^2 \int_{0}^{1} x dx = 6y^2 \left[\frac{x^2}{2} \right]_{0}^{1} = 3y^2.$$

Beispiel zur stochastischen Unabhängigkeit

Die gemeinsame Dichtefunktion der Zufallsvariablen X und Y laute

$$\label{eq:fitting_fit} f_{X,Y}(x,y) = \left\{ \begin{array}{ll} 6xy^2 & \text{falls } 0 \leq x,y \leq 1 \\ 0 & \text{sonst }. \end{array} \right.$$

Sind *X* und *Y* stochastisch unabhängig? **Lösung:**

• Für 0 < x < 1 gilt

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy = \int_{0}^{1} 6xy^2 dy = 6x \int_{0}^{1} y^2 dy = 6x \left[\frac{y^3}{3} \right]_{0}^{1} = 2x.$$

• Für $0 \le y \le 1$ gilt

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx = \int_{0}^{1} 6xy^2 dx = 6y^2 \int_{0}^{1} x dx = 6y^2 \left[\frac{x^2}{2} \right]_{0}^{1} = 3y^2.$$

Man erhält also

$$f_X(x) = \left\{ \begin{array}{ll} 2x & \text{falls } 0 \leq x \leq 1 \\ 0 & \text{sonst} \end{array} \right. \quad \text{und} \quad f_Y(y) = \left\{ \begin{array}{ll} 3y^2 & \text{falls } 0 \leq y \leq 1 \\ 0 & \text{sonst} \end{array} \right. .$$

Daraus folgt, dass X und Y unabhängig sind, denn:

$$f_X(x)f_Y(y) = f_{X,Y}(x,y) = \begin{cases} 6xy^2 & \text{falls } 0 \le x, y \le 1\\ 0 & \text{sonst.} \end{cases}$$

Erwartungswerte bei mehreren Zufallsvariablen

Sind X,Y zwei Zufallsvariablen und sei $g:\mathbb{R}^2\to\mathbb{R}$ eine reelle Funktion. Dann ist der Erwartungswert von g(X,Y) gegeben durch

$$X$$
 diskret: $E(g(X,Y)) = \sum_{i,j \in \mathbb{N}} g(x_i,y_j) f_{X,Y}(x_i,y_j) ,$ X stetig: $E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dy \, dx .$

Beispiel:

Sei \dot{X} die Augensumme und Y der Betrag der Differenz der Augen beim zweifachen Würfeln. Dann gilt

$$E(X \cdot Y) = 3 \cdot \frac{1}{18} + 5 \cdot \frac{1}{18} + 7 \cdot \frac{1}{18} + 9 \cdot \frac{1}{18} + 11 \cdot \frac{1}{18}$$
$$+ 8 \cdot \frac{1}{18} + 12 \cdot \frac{1}{18} + 16 \cdot \frac{1}{18} + 20 \cdot \frac{1}{18} +$$
$$+ 15 \cdot \frac{1}{18} + 21 \cdot \frac{1}{18} + 27 \cdot \frac{1}{18}$$
$$+ 24 \cdot \frac{1}{18} + 32 \cdot \frac{1}{18} + \frac{35}{18} = \frac{245}{18} .$$

Bedingter Erwartungswert

Bedingter Erwartungswert, stetiger Fall

Sei (Ω, Σ, P) ein Wahrscheinlichkeitsraum und seien $X, Y: \Omega \to \mathbb{R}$ zwei stetige Zufallsvariablen mit gemeinsamer Dichte f(x,y) sodass $\int_{-\infty}^{\infty} |y| f_Y(y) dy < \infty$. Sei ferner $f_X(x) = \int_{\mathbb{R}} f(x,y) \, dy$ die Randdichte von X und

$$f(y|x) = \frac{f(x,y)}{f_X(x)}$$

die bedingte Dichte von Y gegeben X = x. Dann definiert der Ausdruck

$$E(Y|X=x) := \int_{\mathbb{R}} yf(y|x) \ dy$$

den **bedingten Erwartungswert** von Y gegeben X = x.

Für den diskreten Fall erfolgt die Definition analog mit der Wahrscheinlichkeitsfunktion.

Beispiel zum bedingten Erwartungswert

Es wird das (unabhängige) Werfen zweier idealer Würfel betrachtet. Sei X die Augenzahl des ersten Würfels und Y die Augensumme beider Würfel.

- a) Man bestimme E(Y).
- b) Man bestimme E(Y|X=1).

Lösung:

- a) E(Y) = 7.
- b) E(Y|X=1)=4.5.