Evaluating Effectiveness of Shallow and Deep Networks to Intrusion Detection System

Vinayakumar R¹, K.P Soman¹ and Prabaharan Poornachandran²

¹Centre for Computational Engineering and Networking (CEN), Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham,

Amrita University, India.

²Center for Cyber Security Systems and Networks, Amrita School of Engineering, Amritapuri, Amrita Vishwa Vidyapeetham,

Amrita University, India.

Outline

- Introduction
- Methodology
- Description of the data set and Results
- Summary
- Future Work
- References

Introduction

- Information and communication technology (ICT) systems are essential for today's rapidly growing powerful technologies. At the same time, ICT system has been encountered by various attacks.
- Network intrusion detection system (NIDS) is a tool used to detect and classify the network breaches dynamically in ICT systems in both academia and industries.

Methodology

 Feature sets of connection records are passed to shallow networks such as Logistic regression, Naive Bayes, k-nearest neighbor, decision tree, Ada boost, random forest, support vector machine and extreme learning machine and deep networks such as multi layer perceptron and deep belief network.

Description of the data set and Results

Network intrusion detection data sets: DARAPA / KDDCup '99' [1] and NSL-KDD [2].

Table 1. Description of Data set

Attack	Data instances 10% data								
Category	KI	DD	NSL-	NSL-KDD					
	Train	Test	Train	Test					
Normal	97278	60593	67343	9710					
DOS	391458	229853	45927	7458					
Probe	4107	4166	11656	2422					
R2L	1126	16189	995	2887					
U2R	52	228	52	67					
Total	494021	311029	125973	22544					

Algorithm		KDDCup	'99'		NSL-KDD						
Aigoritiiii	Accuracy	Precision	Recall	F-score	Accuracy	Precision	Recall	F-score			
LR	0.848	0.989	0.821	0.897	0.720	0.620	0.905	0.736			
NB	0.929	0.988	0.923	0.955	0.728	0.622	0.935	0.747			
KNN	0.929	0.998	0.913	0.954	0.788	0.677	0.971	0.798			
DT	0.929	0.999	0.913	0.954	0.796	0.687	0.969	0.804			
AB	0.925	0.995	0.911	0.951	0.774	0.662	0.970	0.787			
RF	0.927	0.999	0.910	0.952	0.779	0.667	0.975	0.792			
SVM	0.924	0.996	0.909	0.950	0.772	0.666	0.947	0.782			

Table 2. Detailed results of various classical machine learning classifiers

Network	Number of		KDDCup	'99'		NSL-KDD					
Layers	Neurons	Accuracy	Precision	Recall	F-score	Accuracy	Precision	Recall	F-score		
MLP1	[60]	0.924	0.996	0.908	0.950	0.799	0.717	0.879	0.790		
MLP2	[90,90]	0.934	0.995	0.922	0.958	0.811	0.701	0.879	0.817		
MLP3	[120,120,120]	0.938	0.988	0.934	0.960	0.861	0.766	0.977	0.859		
MLP4	[150,150,150,150]	0.939	1.000	0.924	0.960	0.866	0.768	0.988	0.864		
DBN1	[200]	0.924	0.996	0.909	0.950	0.885	0.821	0.939	0.876		
DBN2	[250,250]	0.929	0.998	0.913	0.954	0.896	0.814	0.984	0.891		
DBN3	[300,300,300]	0.937	0.999	0.923	0.960	0.914	0.838	0.992	0.909		
DBN4	[350,350,350,350]	0.997	1.000	0.997	0.998	0.973	0.944	0.996	0.969		

Table 3. Summary of test results of various MLP and DBN networks

	KDDCup '99'										
Minimal	NOR	NORMAL DOS		PRO	PROBE U		U2R		2L	ACC	
Features	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	- ACC
MLP4	0.871	0.079	0.927	0.170	0.553	0.011	0.0	0.0	0.0	0.0	0.886
MLP8	0.995	0.092	0.938	0.015	0.712	0.002	0.0	0.0	0.01	0.0	0.921
MLP12	0.996	0.081	0.941	0.040	0.794	0.002	0.0	0.0	0.001	0.0	0.923
DBN4	1.0	0.081	0.938	0.099	0.0	0.0	0.0	0.0	0.0	0.0	0.912
DBN8	0.998	0.081	0.939	0.052	0.654	0.002	0.0	0.0	0.018	0.0	0.921
DBN12	0.999	0.743	0.248	0.095	0.0002	0.0	0.0	0.0	0.0	0.0	0.381
						NSL-KDD					
MLP12	0.760	0.168	0.901	0.318	0.470	0.012	0.0	0.0	0.0	0.0	0.684
MLP8	0.999	0.530	0.55	0.044	0.464	0.0024	0.0	0.0	0.0	0.0	0.667
MLP4	0.871	0.079	0.927	0.17	0.553	0.011	0.0	0.0	0.0	0.0	0.885
DBN12	0.996	0.095	0.781	0.024	0.849	0.077	0.447	0.001	0.529	0.019	0.686
DBN8	1.0	0.065	0.807	0.043	0.773	0.108	0.358	0.008	0.387	0.003	0.799
DBN4	0.999	0.003	0.928	0.059	0.842	0.109	0.388	0.003	0.194	0.001	0.715

Table 4. KDDCup '99' and NSL-KDD attack detection rate with minimal feature sets such as 4, 8 and 12

Algorithm – LR NB	NOR TPR 0.969 0.711 0.994	FPR 0.185 0.077	TPR 0.841 0.848	OS FPR 0.07	PRO TPR 0.073	DBE FPR	TPR	2R FPR	TPR	2L	ACC
LR	0.969 0.711	0.185 0.077	0.841			FPR	TPR	FPR	TPR	EDD	ACC
	0.711	0.077		0.07	0.073				111	FPR	ACC
NB			0.848		0.075	0.002	0.0	0.0	0.0	0.0	0.833
	0.994		31010	0.023	0.963	0.076	0.8	0.053	0.152	0.001	0.803
KNN		0.087	0.939	0.012	0.693	0.004	0.229	0.0	0.063	0.001	0.922
DT	0.995	0.085	0.941	0.004	0.745	0.002	0.343	0.002	0.125	0.0003	0.926
AB	0.99	0.625	0.383	0.03	0.116	0.002	0.0	0.0	0.003	0.0	0.487
RF	0.995	0.093	0.940	0.004	0.753	0.002	0.271	0.0	0.001	0.0	0.922
SVM	0.987	0.061	0.939	0.004	0.928	0.026	0.0	0.0	0.147	0.0001	0.926
ELM	0.997	0.073	0.940	0.005	0.809	0.009	0.157	0.001	0.172	0.002	0.929
					N	SL-KDD					
LR	0.926	0.468	0.641	0.122	0.171	0.020	0.0	0.0	0.0	0.0	0.635
NB	0.269	0.083	0.762	0.165	0.539	0.02	0.806	0.258	0.365	0.104	0.478
KNN	0.976	0.333	0.73	0.031	0.589	0.038	0.179	0.0001	0.084	0.016	0.741
DT	0.971	0.334	0.756	0.012	0.715	0.032	0.328	0.002	0.01	0.019	0.753
AB	0.936	0.37	0.796	0.146	0.11	0.009	0.0	0.0	0.0	0.0	0.685
RF	0.975	0.408	0.749	0.013	0.618	0.02	0.254	0.0003	0.002	0.0002	0.741
SVM	0.977	0.242	0.697	0.014	0.913	0.108	0.0	0.0	0.011	0.0009	0.755
ELM	0.974	0.232	0.774	0.015	0.854	0.091	0.0	0.0	0.023	0.001	0.776

Table 5. Detailed results for KDDCup '99' and NSL-KDD using classical machine learning classifiers

	KDDCup '99'										
Network	NOR	NORMAL		DOS		PROBE		U2R		R2L	
Layers	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	TPR	FPR	- ACC
MLP 1	0.989	0.091	0.939	0.015	0.771	0.003	0.0	0.0	0.001	0.0	0.919
MLP 2	0.981	0.095	0.938	0.019	0.674	0.003	0.0	0.0	0.001	0.0001	0.917
MLP 3	0.983	0.144	0.882	0.013	0.785	0.006	0.0	0.0	0.0003	0.0	0.876
MLP 4	0.984	0.134	0.899	0.021	0.669	0.003	0.0	0.0	0.0	0.0	0.887
DBN 1	0.988	0.078	0.941	0.051	0.616	0.002	0.0	0.0	0.134	0.002	0.922
DBN 2	0.988	0.076	0.939	0.022	0.709	0.003	0.0	0.001	0.332	0.003	0.928
DBN 3	0.979	0.071	0.959	0.023	0.708	0.003	0.0	0.0	0.001	0.001	0.933
DBN 4	0.953	0.082	0.937	0.127	0.105	0.003	0.0	0.0	0.0	0.0	0.902
					N	SL-KDD)				
MLP 1	0.975	0.093	0.768	0.031	0.775	0.128	0.0	0.0	0.214	0.027	0.789
MLP 2	0.976	0.149	0.777	0.058	0.817	0.065	0.0	0.0	0.343	0.007	0.812
MLP 3	0.972	0.254	0.758	0.025	0.785	0.089	0.0	0.0	0.035	0.001	0.764
MLP 4	0.975	0.392	0.658	0.018	0.733	0.056	0.0	0.0	0.0	0.0	0.721
DBN 1	0.998	0.084	0.828	0.073	0.839	0.114	0.0	0.0	0.002	0.004	0.793
DBN 2	0.974	0.233	0.778	0.015	0.857	0.091	0.0	0.0	0.029	0.001	0.776
DBN 3	0.982	0.092	0.776	0.014	0.922	0.111	0.0	0.0	0.261	0.029	0.817
DBN 4	0.979	0.256	0.778	0.014	0.809	0.058	0.0	0.0	0.089	0.015	0.793

Table 6. Detailed results for KDDCup '99' and NSL-KDD using deep networks

Summary

- Shallow and Deep network is applied for network intrusion detection.
- Deep network performed well in comparison to the shallow networks.
- The primary reason to that is, a deep network passes the information through the several layers and nonlinearity in each layer facilitates to learn the distinguishable patterns between normal and attack connection records.

Future Work

KDDCup '99' and NSL-KDD are most well-known and outdated. Moreover, these are not representative for today's network traffic. Applying the proposed methodologies on the recent network traffic data set is essential. This will be remained as one of significant future work direction.

References

[1]http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[2] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the kdd cup 99 data set," in Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on. IEEE, 2009, pp. 1–6