INSA. Rouen. GM3 et EM Sic 3. 2022/2023. Rachida El Assoudi.

Cours : Mesure et Intégration. Partie II. Intégration.

Ce résumé présente la suite du chapitre 2 (Intégration), il contient les définitions, les propriétés et les théorèmes fondamentaux. Les démonstrations sont faites en cours.

La partie I du Chapitre 2 contient le I et II :

- I. Intégrale d'une fonction simple positive.
- 1. Définitions, exemples.
- 2. Propriétés. Théorèmes fondamentaux.
- II. Intégrale d'une application mesurable positive.
- 1. Définitions, exemples. Théorèmes fondamentaux.
- 2. Théorème de Beppo-Levi Corollaires. Lemme de Fatou.
- 3. Mesure définie par densité (mesure image).

III. Fonctions μ -intégrables à valeurs réelles ou complexes.

- 1. Définitions et propriétés.
- 2. Théorème de convergence dominée. Corollaires
- 4. Mesure image. Théorème de transfert.
- 5. Théorème de Fubini -Tonelli.
- 6. Espaces vectoriels $\mathcal{L}^p(\mu)$ et espaces normés $L^p(\mu)$.
- 7. Intégrale dépendant d'un paramètre.

Exemples : Transformée de Fourier. Transformée de Laplace.

III. Fonctions μ -intégrables à valeurs réelles ou complexes

1. Définitions et propriétés

Soient (E, \mathcal{B}, μ) un espace mesuré et $f \mid E \to \mathbb{C}$ une application.

• Soit $f^-(E, \mathcal{B}) \to \mathbb{R}, \mathcal{B}_{\mathbb{R}}$) une application à valeurs réelles mesurable. On note pour $x \in E$,

$$f^+(x) = \text{Sup}(f(x), 0)$$
 et $f^-(x) = -\text{Inf}(f(x), 0)$

Il est clair que f^+ et f^- sont positives et que $f = f^+ - f^-$.

On sait que le Sup et l'Inf de deux applications mesurables sont mesurables. Donc f^+ et f^- sont mesurables. Leurs intégrales sont bien définies.

En plus, il est clair que

$$|f| = f^+ + f^-; |f^+| \le |f| \text{ et } |f^-| \le |f|.$$

• Soit $f \ E \to \mathbb{C}$ une application à valeurs complexes. Pour tout $x \in E$, $f(x) = \operatorname{rel}(f(x)) + i \operatorname{im}(f(x))$, $(i^2 = -1)$. On pose

$$f = rel(f) + i im(f),$$

avec rel(f)(x) = rel(f(x)) et im(f)(x) = iim(f(x)).

Définition. On dit que f est mesurable si et seulement si rel(f) et im(f) sont mesurables.

Définition. Soient (E, \mathcal{B}, μ) un espace mesuré et $f \in E \to \mathbb{C}$ une application. On dit que f est μ -intégrable (ou absolument intégrable) si et seulement si f est mesurable et $\int |f| d\mu$ est fini.

Définition. Soient (E, \mathcal{B}, μ) un espace mesuré et $f \in E \to \mathbb{R}$ une application à valeurs réelles, μ -intégrable. On définit

$$\int f \ d\mu = \int f^+ \ d\mu - \int f^- \ d\mu.$$

Proposition Soient (E, \mathcal{B}, μ) un espace mesuré et $f \ E \to \mathbb{R}$ une application.

- 1. f est mesurable $\iff f^+$ et f^- sont mesurables.
- 2. $\int |f^+| d\mu \le \int |f| d\mu \ et \int |f^-| d\mu \le \int |f| d\mu$.
- 3. f est μ -intégrable $\iff f^+$ et f^- sont μ -intégrables.

Définition. Soient (E, \mathcal{B}, μ) un espace mesuré et $f \in E \to \mathbb{C}$ μ -intégrable. On définit

$$\int f \ d\mu = \int rel(f) \ d\mu + i \int im(f) \ d\mu.$$

Proposition Soient (E, \mathcal{B}, μ) et $f E \to \mathbb{C}$ une application. On a: 1. f est μ -intégrable si et seulement si rel(f) et im(f) sont μ -intégrable.

- 1. f est μ -integrable si et seulement si f et (f) et im(f) soint μ -1. 2. Si f est μ intégrable alors $|\int f du| < \int |f| du$
- 2. Si f est μ -intégrable alors $|\int f d\mu| \le \int |f| d\mu$.

2. Convergence dominée - Corollaires

Théorème de convergence dominée de Lebesgue.

Soient (E, \mathcal{B}, μ) un espace mesuré et $(f_n)_{n \in \mathbb{N}}$ une suite quelconque d'applications mesurables à valeurs réelles ou complexes qui converge simplement vers f.

S'il existe une application mesurable g telle que pour tout entier n, $|f_n| \leq g$ et $\int g \ d\mu$ est fini, $(g \text{ est } \mu\text{-intégrable})$, alors $f \text{ est } \mu\text{-intégrable}$ et

$$\lim_{n \to +\infty} \int f_n \ d\mu = \int \lim_{n \to +\infty} f_n \ d\mu = \int f \ d\mu.$$

Corollaire 1 Soient (E, \mathcal{B}, μ) un espace mesuré et $(f_n)_{n \in \mathbb{N}}$ une suite quelconque de fonctions mesurables à valeurs réelles ou complexes telle que la série $\sum_{n=0}^{+\infty} f_n$ converge simplement.

S'il existe une application g, μ -intégrable telle que pour tout entier $N \ge 0$, on a $|\sum_{0 \le n \le N} f_n| \le g$, alors $\sum_{n=0}^{+\infty} f_n$ est μ -intégrable et

$$\int \sum_{n=0}^{+\infty} f_n d\mu = \sum_{n=0}^{+\infty} \int f_n d\mu.$$

Corollaire 2 Soient (E, \mathcal{B}, μ) un espace mesuré et $(f_n)_{n \in \mathbb{N}}$ une suite quelconque d'applications mesurables à valeurs réelles ou complexes telle que $\sum_{n=0}^{+\infty} \int |f_n| d\mu < +\infty$ alors on a :

- 1. la série $\sum_{n=0}^{+\infty} f_n(x)$ est absolument convergente (la série $\sum_{n=0}^{+\infty} |f_n(x)|$ est convergente),
- 2. $\sum_{n=0}^{+\infty} f_n$ est μ -intégrable et 3. $\int \sum_{n=0}^{+\infty} f_n d\mu = \sum_{n=0}^{+\infty} \int f_n d\mu$.

3. Intégration par rapport à une mesure image

Soient (E, \mathcal{B}, μ) un espace mesuré, (F, \mathcal{B}') un espace mesurable et $f(E,\mathcal{B}) \to (F,\mathcal{B}')$ une application mesurable.

La mesure image de μ par f notée μ_f est définie sur (F, \mathcal{B}') par :

$$\forall A \in \mathcal{B}', \ \mu_f(A) = \mu(f^{-1}(A)).$$

Théorème de transfert Soient (E, \mathcal{B}, μ) un espace mesuré, (F, \mathcal{B}') un espace mesurable et $f(E, \mathcal{B}) \to (F, \mathcal{B}')$ une application mesurable. On considère μ_f la mesure image de μ par f sur (F, \mathcal{B}') . Soit $\varphi F \to \mathbb{C}$ mesurable. Si φ est positive ou φ est μ_f -intégrable alors

$$\int_{F} \varphi \ d\mu_f = \int_{E} \varphi \circ f \ d\mu.$$

4. Espace mesuré produit -Théorème de Fubini-Tonelli

Soient $(E_i, \mathcal{B}_i, \mu_i)$ un espace mesuré pour i = 1, 2, ..., n. On considère le produit cartesien :

$$E = \pi_i^n E_i = E_1 \times E_2 \times ... \times E_n = \{(x_1, ..., x_n), x_i \in E_i\}.$$

Définition. On appelle un pavé mesurable de E toute partie A de E de la forme $A = A_1 \times A_2 \times ... \times A_n = \{(x_1, ..., x_n), x_i \in A_i\}$ avec $A_i \in \mathcal{B}_i$. Soit X l'ensemble des pavés mesurables de E. La tribu $\sigma(X)$,

engendrée par X, est appelée la tribu produit et notée $\bigotimes_{i=1}^{n} \mathcal{B}_{i} = \mathcal{B}$.

Théorème (Mesure produit) (admis). Il existe sur l'espace mesurable produit (E, \mathcal{B}) une unique mesure notée $\mu = \bigotimes_{i=1}^n \mu_i$ qui vérifie pour tout $A = A_1 \times A_2 \times ... \times A_n \in X$, $\mu(A) = \mu_1(A_1)...\mu_n(A_n)$.

Théorème de Fubini-Tonelli (admis)

Soient $(E, \mathcal{B}, \mu) = (\pi_i^n E_i, \bigotimes_{i=1}^n \mathcal{B}_i, \bigotimes_{i=1}^n)$ un espace mesuré produit et $f \in \mathcal{E} \to \mathbb{C}$ un application mesurable.

Si f est positive ou f est μ -intégrable alors

 $\int_{E} f(x) d\mu(x) = \int_{E_{n}} [\int_{E_{n-1}} ... [\int_{E_{1}} f(x_{1},...,x_{n}) d\mu_{1}(x_{1})] d\mu_{2}(x_{2})...] d\mu_{n}(x_{n}).$ Et l'ordre de l'intégration n'intervient pas : on peut remplacer dans la formule, i par s(i) où s est une bijection de $\{1,2,...,n\}$ dans $\{1,2,...,n\}$.

5. Espaces $\mathcal{L}^p(\mu)$ et $L^p(\mu)$

Soit (E, \mathcal{B}, μ) un espace mesuré. On note

 $\mathcal{L}^1_{\mathbb{R}}(\mu)$ l'ensemble des applications $f \ E \to \mathbb{R} \ \mu$ -intégrables.

 $\mathcal{L}^1(\mu)$ l'ensemble des applications $f \ E \to \mathbb{C} \ \mu$ -intégrables.

Proposition $\mathcal{L}^1_{\mathbb{R}}(\mu)$ est un espace vectoriel sur \mathbb{R} . $\mathcal{L}^1(\mu)$ est un espace vectoriel sur \mathbb{C} .

On veut définir une norme sur ces espaces vectoriels telle que

$$||f||_1 = \int |f| \ d\mu.$$

Mais on sait que $\int |f| d\mu = 0$ si et seulement si f = 0 μ -presque partout. Donc $|| ||_1$ n'est pas une norme sur $\mathcal{L}^p(\mu)$. Pour cela on considère l'ensemble suivant $L^1(\mu)$.

Définition. Soient (E, \mathcal{B}, μ) un espace mesuré et f, g deux applications mesurables f, g $(E, \mathcal{B}) \to (\overline{\mathbb{R}}, \mathcal{B}_{\overline{\mathbb{R}}})$.

On dit que f est équivalente à g, (on note $f \sim g$) si et seulement si f = g μ -presque partout $(\mu(\{x \in E \mid f(x) \neq g(x)\}) = 0)$.

On sait par la proposition suivante que si f et g sont μ -intégrables et $f \sim g$ alors $\int |f| d\mu = \int |g| d\mu$.

Proposition Soient (E, \mathcal{B}, μ) un espace mesuré et f, g deux applications mesurables positives. On a :

1. $\int f d\mu = 0$ si et seulement si f = 0 μ -presque partout.

2. Ši f = g μ -presque partout alors $\int f d\mu = \int g d\mu$.

La relation \sim est une relation d'équivalence.

On note \overline{f} la classe d'équivalence de f; (\overline{f} est l'ensemble des applications g mesurables équivalentes à f).

On note $L^1(\mu)$ l'ensemble des classes d'équivalence \overline{f} avec $f \in \mathcal{L}^1(\mu)$.

 $L^{1}(\mu)$ est l'ensemble des applications μ -intégrables dans lequel on identifie deux applications égales μ -presque partout.

Proposition. $L^1(\mu)$ est un espace vectoriel sur \mathbb{C} et $||\overline{f}||_1 = ||f||_1 = \int |f| d\mu$ définit une norme sur $L^1(\mu)$.

On note pour tout entier $p \geq 1$, $\mathcal{L}^p(\mu)$ l'ensemble des applications $f \to \mathbb{C}$ mesurables telles que $\int |f|^p d\mu$ est fini.

 $L^p(\mu)$ est l'ensemble des classes d'équivalences \overline{f} avec $f \in \mathcal{L}^p(\mu)$.

Proposition $L^p(\mu)$ est un espace vectoriel sur \mathbb{C} et $||\overline{f}||_p = ||f||_p = (\int |f|^p d\mu)^{\frac{1}{p}}$ définit une norme sur $L^p(\mu)$.

Proposition Pour p = 2, on a pour $f, g \in L^2(\mu)$,

$$||fg||_1 \le ||f||_2 ||g||_2.$$

On note $\mathcal{L}^{+\infty}(\mu)$ l'ensemble des applications $f \ E \to \mathbb{C}$ mesurables bornées.

 $L^{+\infty}(\mu)$ l'ensemble des classes d'équivalences \overline{f} avec $f \in \mathcal{L}^{+\infty}(\mu)$.

Proposition. $L^{+\infty}(\mu)$ est un espace vectoriel sur \mathbb{C} et $||\overline{f}||_{+\infty} = ||f||_{+\infty} = Sup_{x \in E}|f(x)|$ définit une norme sur $L^{+\infty}(\mu)$.

6. Intégrale dépendant d'un paramètre.

Soit (E, \mathcal{B}, μ) un espace mesuré. On considère un ensemble de paramètres Y et une application f $E \times Y \to \mathbb{C}$ telle que pour chaque paramtère $y \in Y$ fixé l'application f_y $E \to \mathbb{C}$ définie par $f_y(x) = f(x, y)$ pour tout $x \in E$ est mesurable.

Si f_y est μ -intégrable alors $\int f_y d\mu$ est finie et on note :

$$\int f_y d\mu = \int_E f_y d\mu = \int_E f(x, y) d\mu(x).$$

Dans ce cas l'application $\varphi \ y \mapsto \int_E f(x,y) \ d\mu(x)$ est bien définie.

Définition. Soit $\varphi Y \to \mathbb{C}$, $\varphi(y) = \int_E f(x,y) d\mu(x)$, est une intégrale dépendant d'un paramètre y.

• Continuité d'une intégrale dépendant d'un paramètre.

On suppose que Y est un espace métrique et $\varphi(y) = \int_E f(x,y) \ d\mu(x)$ est bien définie sur Y. Soit $y_0 \in Y$. Le théorème suivant donne les conditions pour que φ soit continue en $y_0 \in Y$.

Théorème Si

1. pour μ -presque tout x l'application $y \mapsto f(x,y)$ est continue en y_0 .

2. ils existent une application $g \to \mathbb{C}$ μ -intégrable et un voisinage V de y_0 tels que $\forall y \in V \mid f(x,y) \mid \leq |g(x)| \mid \mu - presque partout sur <math>E$, alors φ est continue en y_0 .

 φ est continue sur Y si φ est continue en tout $y_0 \in Y$.

• Dérivabilité d'une intégrale dépendant d'un paramètre.

On suppose que Y est un intervalle de \mathbb{R} et que φ $Y \to \mathbb{C}$, $\varphi(y) = \int_E f(x,y) \ d\mu(x)$ est bien définie sur Y. Le théorème suivant donne les conditions pour que φ soit dérivable en $y_0 \in Y$.

Théorème. Si

1. pour μ -presque tout $x \in E$, $\frac{\partial f}{\partial y}(x, y_0)$ existe, et

2. ils existent une application g $E \to \mathbb{C}$ μ -intégrable et un voisinage V de y_0 tels que

$$\forall y \in V, y \neq y_0 \mid \frac{f(x,y) - f(x,y_0)}{y - y_0} \mid \leq |g(x)| \quad \mu - presque \ partout \ sur \ E$$

alors φ est dérivable en y_0 et $\varphi'(y_0) = \int_E \frac{\partial f}{\partial y}(x, y_0) \ d\mu(x)$.

Corollaire φ est dérivable sur un intervalle ouvert Y de \mathbb{R} si :

- 1. pour μ -presque tout $x \in E$, $\frac{\partial f}{\partial y}(x,y)$ existe pour tout $y \in Y$.
- 2. $\forall y \in Y$ ils existent une application $g \ E \to \mathbb{C}$ μ -intégrable et un voisinage V de y tels que

$$\forall z \in V, \ |\frac{\partial f}{\partial y}(x,z)| \le |g(x)| \ \mu - presque \ partout \ sur \ E$$

Alors φ est dérivable en tout $y \in Y$ et $\varphi'(y) = \int_E \frac{\partial f}{\partial y}(x, y) \ d\mu(x)$.

7. Exemples d'intégrale dépendant d'un paramètre

Transformée de Fourier, transformée de Laplace et produit de convolution.

On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$, μ est la mesure de Lebesgue.

Définition Soient $f, g \in \mathcal{L}^1(\mu)$. Le produit de convolution de f et g, noté f * g est défini par :

$$f * g (y) = \int f(x)g(y - x)dx$$

6

Proposition Si $f, g \in \mathcal{L}^1(\mu)$ alors $f * g \in \mathcal{L}^1(\mu)$. Et on a $||f * g||_1 \le ||f||_1 ||g||_1$.

Définition On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$, μ est la mesure de Lebesgue. Soit $f \mathbb{R} \to \mathbb{C}$ une fonction μ -intégrable $(f \in \mathcal{L}^1(\mu))$. La transformée de Fourier de f est la fonction notée \hat{f} définie par :

$$\forall y \in \mathbb{R}, \ \widehat{f}(y) = \int e^{-2i\pi xy} f(x) dx.$$

Proposition Propriétés de la transformée de Fourier .

- 1. Soit $f \in \mathcal{L}^1(\mu)$. La transformée de Fourier \widehat{f} est continue sur \mathbb{R} .
- $2. \lim_{x \to \pm \infty} \widehat{f}(x) = 0.$
- 3. Si $f \in \mathcal{L}^1(\mu)$ et $xf \in \mathcal{L}^1(\mu)$ alors la transformée de Fourier de f est dérivable sur \mathbb{R} et $(\widehat{f})'(y) = -2i\pi \widehat{xf}(y) = -2i\pi \int e^{-2i\pi xy} x f(x) dx$.
- 4. Si f est dérivable sur \mathbb{R} et $f, f' \in \mathcal{L}^1(\mu)$ alors $\widehat{f'}(y) = 2i\pi y \widehat{f}(y)$.
- 5. Soient $f, g \in \mathcal{L}^1(\mu)$. $\int \hat{f}(x)g(x)dx = \int f(x)\hat{g}(x)dx$.
- 6. Soient $f, g \in \mathcal{L}^1(\mu)$. La transformée de Fourier de f * g est égale au produit des transformées de Fourier de f et de $g : \widehat{f * g} = \widehat{f} \widehat{g}$.

Définition On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu)$, μ est la mesure de Lebesgue. Soit $f \mathbb{R} \to \mathbb{R}$ une application mesurable. La transformée de Laplace de f est la fonction notée F définie par : pour $y \in \mathbb{R}$, $F(y) = \int_0^{+\infty} e^{-yx} f(x) dx$ lorsqu il existe.

La transfomée de Laplace a des propriétés intéressantes de dérivation comme la transformée de Fourier. Ces deux transformations sont utilisées pour la résolution d'équations diffférentielles.