

COMP9321: Data services engineering

Week 8: Data Analytics

Semester 2, 2018 By Mortada Al-Banna, CSE UNSW

Data Driven Organizations

lmage source: Icommons.wikimedia.org

Data Driven Organizations and Data Analytics

- Product and service recommendation
- Customer support
- Dashboard and reporting services
- Customer engagement
- Promotions and deals
- Product and service customization
- Communication

Clients

Data Driven Organizations and Data Analytics

- Key process performance indicators
- Process execution predictions
- Decision making support services
- Process mining
- Dynamic process adaptation
- People to task assignment
- Compliance verification

business processes

Data Driven Organizations and Data Analytics

- Product and service advertisement
- Sentiment analysis
- Demographics analysis
- Virality
- Social network insights

social media1

Data Used for Analytics

structured data

semi-structured data

unstructured data

image source: Icommons.wikimedia.org

Data Used for Analytics

image source: Icommons.wikimedia.org

What is Machine Learning?

- Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.
- Machine learning focuses on the development of "computer programs that can access data and use it learn for themselves".

Useful Terminology

Features

 The number of features or distinct traits that can be used to describe each item in a quantitative manner.

Samples

 A sample is an item to process (e.g. classify). It can be a document, a picture, a sound, a video, a row in database or CSV file, or whatever you can describe with a fixed set of quantitative traits.

Feature vector

 is an n-dimensional vector of numerical features that represent some object.

Feature extraction

- Preparation of feature vector
- transforms the data in the high-dimensional space to a space of fewer dimensions.
- Training/Evolution set
 - Set of data to discover potentially predictive relationships.

Machine Learning for Data Analytics

Machine Learning for Data Analytics

- 1. Define and Initialize a Model
- 2. Train your Model (using your training dataset)
- 3. Validate the Model (by prediction using your test dataset)
- 4. Use it: **Explore** or **Deploy** as a web service
- 5. Update and Revalidate

Example of a General Flow

What is an Apple?

Features:

1. Color: Radish/Red

2. Type: Fruit

3. Shape

etc...

Features:

1. Sky Blue

2. Logo

3. Shape

etc...

Features:

1. Yellow

2. Fruit

3. Shape

etc...

Machine Learning Methods

Machine Learning Methods

Top 10 Data Science, Machine Learning Methods Used, 2017

1. Is this A or B?

Classification Algorithms

2. Is this Weird?

Anomaly detection algorithms

3. How much? How many?

Regression algorithms

4. How is this organized?

Clustering algorithms

5. What should I do now?

Reinforcement learning algorithms

Regression Analysis

Regression Analysis

Linear Regression (terminology)

- Independent Variables (features): An independent variable is a variable that is manipulated to determine the value of a dependent variable. Simply, they are the features which we want to use to predict some given value of Y. It can be also called an explanatory variable
- Dependent Variable(target): The dependent variable depends on the values of the independent variable. Simply put, it is the feature which we are trying to predict. This can also be commonly known as a response variable.

How Linear Regression Works

$$\widehat{Y} = f(X) + \epsilon$$

```
X (input) = Assignment Results
Y (output) = Final Exam Mark
f = function which describes the relationship between X and Y
e (epsilon) = Random error term (positive or negative) with a mean
zero (there are move assumptions for our residuals, however we won't
be covering them)
```

Linear Regression Example

Training Set

StudentID	Assignment_Mark (X)	Final_Exam_Mark (Y)
1292393	80	90
1823812	70	53
281823	63	74
183823	58	63
238381	54	61

Linear Regression Example

Test Set

StudentID	Assignment_Mark (X)	Final_Exam_Mark (Y)
184712	80	???
937217	70	???
		???
836162	63	???

Linear Regression Example

Where Y is our Final Exam Mark, and X is our Assignment Mark

- Supervised Learning
- You need the data labelled with the correct answer to train the algorithm
- Trained classifiers then can map input data to a category.

"draw a line through it"

"draw a line through it"

Linear Discriminants...

Probably Don't use these for all cases

We will introduce other options later

Clustering

Unsupervised Learning

Automated grouping of objects into so called clusters

Objects of the same group are similar

Different groups are dissimilar

Clustering

Clustering

Examples of Clustering

Useful Tools

about 18 hours ago

Useful Tools

- TensorFlow
- scikit-learn
- PredictionIO

Further Reading and Useful Resources

- https://jakevdp.github.io/PythonDataScienceHandbook/ k/05.02-introducing-scikit-learn.html
- https://towardsdatascience.com/introduction-tomachine-learning-db7c668822c4
- https://www.digitalocean.com/community/tutorials/anintroduction-to-machine-learning
- http://gael-varoquaux.info/scikit-learn-tutorial/

Q&A

