Sardar Vallabhbhai Patel Institute of Technology, Vasad

B. E. First Semester (Mathematics-1 -3110014)

Tutorial: 5

1 Discuss the convergence of

(a)
$$\sum_{n=1}^{\infty} \tan^{-1} \left(\frac{1}{n^2 + n + 1} \right)$$
 (b) $\sum_{n=1}^{\infty} \frac{1 + \cos n}{n^2}$ (c) $\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}$

2 Discuss the convergence of

(a)
$$\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^n}$$
 (b) $\sum_{n=1}^{\infty} n! e^{-n}$ (c) $\sum_{n=1}^{\infty} \frac{n}{(\ln n)^n}$ (d) $\sum_{n=1}^{\infty} \frac{4^n + 5^n}{6^n}$ (e) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n+2}\right)^n x^n$

3 Discuss the convergence of

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$
 (b) $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{n^2(n+1)} \right)$

4 Which of the following series is converges absolutely

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + \sqrt{n+1}}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{\tan^{-1} n}{n^2 + 1}$

5 Do as directed.

- (i) Dose the sequence whose nth term is $a_n = \left(\frac{n+1}{n+2}\right)^n$ cgt? If so, find $\lim_{n \to \infty} a_n$.
- (ii) State Sandwich theorem on Sequences and using it show that, if $x \in R$ with |x| < 1, then $x^n \to 0$ as $n \to \infty$
- (iii) Is the sequence $a_n = \frac{n}{n^2 + 1}$ convergent?

6 For the following series

- (a) Find the radius of convergence of the series.
- (b) For what values of x, the series converges absolutely?
- (c) For what values of x, the series converges conditionally?

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-1} (3x-1)^n}{n^2}$$
 (ii) $\sum_{n=0}^{\infty} \frac{(2x+3)^{2n+1}}{n!}$

7 Test the convergence for the following series.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n+1)^n}{(2n)^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{1}{n(1+\log^2 n)}$ (iii) $\sum_{n=1}^{\infty} \frac{n2^n(n+1)!}{3^n n!}$ (iv) $\sum_{n=0}^{\infty} n!(x-4)^n$

(v)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{n+1}}{(2n-1)}$$
, $0 < x < 1$ (vi) $\sum_{n=1}^{\infty} n e^{-n^2}$ (vii) $\sum_{n=1}^{\infty} \frac{n^3 + 2}{2^n + 2}$ (viii) $\sum_{n=0}^{\infty} \frac{n^p}{\sqrt{n+1} + \sqrt{n}}$

8 Test for convergence of the following series.

(i)
$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} + \dots$$

(ii)
$$1 - 2x + 3x^2 - 4x^3 + \dots 0 < x < 1$$

(iii)
$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \dots$$