

Hamming Cole Error Tabulation Consider all possible error cases visto 1 or 0 bit in error. Let e = a - p denote. The error Vector. S=25,,52,533 (= calley syndrome e, e₂ e₃ e₄ e₅ e₆ e₇ s, s₂ s₃ 0 0 0 0 0 0 0 o o o o o o o o o 0 0 0 0 0 0 ment the occasion in the occasion the occasion 0 0 0 0 0 spell that add to to to small ear part be 1 0 0 0 0 0 1 it is November of the telephology comments to it Decoding Strategy : 1 receive of Notes: syndrome for to and & > (2) compute syndrome, using to. : Requires to store above -> (3) Look up The corresponding vow. : Assumes That only one -> (4) Flip The bit at which error occurs bit has occurred, in That row.

(4) Definitions: Homming Distance of month dH(X, y) = Number of elements for which x; + y; and stone of - 5 = 5 to worse in Minimum Distance: $d_{min} = \min_{\overline{c_1}, \overline{c_2} \in \mathbb{Q}} d_{H}(\overline{c_1}, \overline{c_2})$ T set of all coleworks ! Minimum Distance Decolers: Given The received vector of, output The colework E such That dH (F, E) is as small as possible. to There's on a whole be used to s If There are mutiple such &, pick any one of Them (bit) to: Number of detectable errors by The cole to : Number of correctable pervoys by The cole. Reflects to store above - = (3) copy my The consequently your evis doubt to fid out girl (2) to a place but compact

(6) Saveral Different Types of Block Colos Cole Geometry: - 9 Reportion Coles: dmin = dmin -1 = [dmin-1] 3 the simplest but × 0 Homming Code 5 5 mg) DESIGN PARAMETERS IN THE TON = # of Information Bits K Block CODES GOLD TOLOW N = # of encoded bits (size of codeword) (take a K = 12 my = 23 my = 12/23 block of K/N = rate A encoder; 0 < P < 1 K bits at agtime and + ... + (") + (") + (") + ... + (sup smit) convert drin = Min. Hamming Distance a block to = [dmin-1] = # of correctable bits. of N coles, bits

(22)	
Example Product colo : N = 9; K = 4	
Therefore capacity A Rus	
while production is another areas	
$C_1 = M, \qquad C_2 = M_2 \qquad C_3 = M, $	9 m2
Gransmitter does not know the localitys of	
$c_4 = m_3$ $c_5 = m_4$ $c_6 = m_3$	1 m4
(How about the specific family had	
$c_7 = m_1 \oplus m_3 : c_8 = m_2 \oplus m_4 : c_9 = c$	3 6 C6
-+ (an correct one exosure in any position	
mattering the lost towns of sound = &	
encoure ero	ř
1 1 0	
Product Coles: services: 1) toutor?	*
O 1 1 1 1	
K is a perfect square number of 16,28	
Example Decoding with five 67 9 evasure bits	* 5
- NR+1)= K+1+2/K+	1
X X I X X I I X I I X I I X I I X X I I X X I I X X I I X X I X X X I X	
Metid (Accessed my) mitter with mit work	
	10
O X X O X I	211
You by you column by you	decoling
	J
Iterative row - column - row Lecoling	

Decoping of product copies: 24) These five equations can be written as The following matrix product: Deleter Doseible to (W-K) X W WXI = ONXI for The above cale, + - 1 = 0 0 0 0 0 0 0 C. T. or < 0 0 0 0 1 1 1 0 0 0 C.ST mis Ose Ishopsohart been contectable 0 1 0 1 0 0 0 1 0 The protocolog solve boils 165 Parity chede, matrix Harry Fin (m-k=9-4=5)of five linearly-independent equations. G = 63 (1) C6 (1) C9 = 0 This parity-check matrix can be represented by a Tormer Graph which is a Bipartite Graph. - Two types of nozes: N-K check nozes, and -> Nodes of one type are not connected to The some type of notes (bi-partition of notes) - In general, it takes (N-15) linearly inch