Проекции.

Проекцией вектора $\alpha = (a_1, a_2, ..., a_n)$ на i – тую ось называется i – тая компонента этого вектора, и обозначается $np_i\alpha$, то есть

$$np_i\alpha = a_i. (23)$$

Проекцией множества векторов $G = \{\alpha \mid \alpha = (a_1, a_2, ..., a_n)\}$ на i – тую ось называется множество проекций векторов этого множества на i – тую ось и обозначается np_iG , то есть

$$np_iG = \{np_i\alpha \mid \alpha \in G\}.$$
 (24)

Соответствия.

Соответствием Γ называется тройка $\Gamma = (X, Y, G)$, такая, что $G \subseteq X \times Y$. Где X называется областью отправления соответствия Γ , Y – областью прибытия соответствия Γ , G – график соответствия Γ .

Если $(x, y) \in G$, то говорят, что y - oбраз x при данном соответствии G, а x - npooбраз y при данном соответствии G.

Если $A \subseteq X$, то *образ множества* A при данном соответствии обозначается $\Gamma(A)$ и определяется так:

$$\Gamma(A) = \{ y \mid x \in A, (x, y) \in G \}. \tag{25}$$

Если $B \subseteq Y$, то *прообраз множества* B при данном соответствии обозначается $\Gamma^{-1}(B)$ и определяется так:

$$\Gamma^{-1}(B) = \{ x \mid y \in B, (x, y) \in G \}.$$
 (26)

Областью определения соответствия G называется np_1G . Областью значений соответствия G называется np_2G .

Пример. Пусть $\Gamma = \{\{a, b, c, d\}, \{1, 2, 3, 4\}, \{(a, 1), (a, 1), (a,$

 $\Gamma = (\{a,b,c,d\},\{1,2,3,4\},\{(a,1),(a,2),(b,3),(c,3)\}).$

Это соответствие можно записать в виде графа:

Областью отправления этого соответствия является множество $\{a,b,c,d\}$, областью прибытия - $\{1,2,3,4\}$, областью определения - $\{a,b,c\}$, областью значений - $\{1,2,3\}$.

Если $A = \{a,b\}$, $B = \{3,4\}$, то $\Gamma(A) = \{1,2,3\}$, $\Gamma^{-1}(B) = \{b,c\}$.

Свойства соответствий.

Соответствие называется всюду определённым, если его область определения совпадает с областью отправления, то есть $X = np_1G$.

Всюду определённое соответствие схематично можно изобразить так:

Соответствие называется *сюръективным*, если его область значений совпадает с областью прибытия, то есть $Y = np_2G$.

Сюръективное соответствие схематично можно изобразить так:

Соответствие называется функциональным соответствием, или функцией, если его график не содержит пар с одинаковыми первыми и различными вторыми координатами. Другими словами, для функционального соответствия выполняется соотношение:

$$(x, y_1) \in G, (x, y_2) \in G \implies y_1 = y_2.$$
 (27)

Пример функционального соответствия схематично можно изобразить так:

Соответствие называется *инъективным соответствием*, или *инъекцией*, если его график не содержит пар с одинаковыми вторыми и различными первыми координатами. Другими словами, для инъективного соответствия выполняется соотношение:

$$(x_1, y) \in G, (x_2, y) \in G \implies x_1 = x_2.$$
 (28)

Пример инъективного соответствия схематично можно изобразить так:

Отображением $X_{\mathcal{B}}Y$ называется всюду определённая функция. Пример отображения $X_{\mathcal{B}}Y$ схематично можно изобразить так:

Отваражением X на Y называется всюду определённая сюръективная функция.

Пример отображения X на Y схематично можно изобразить так:

Взаимно-однозначным соответствием называется инъективная функция.

Пример взаимно-однозначного соответствия схематично можно

изобразить так:

Биекцией называется взаимно-однозначное отображение X на Y. Пример биекции схематично можно изобразить так:

Если между множествами X и Y можно установить биекцию, то пишут $X \sim Y$.

<u>Пример.</u> Пусть N- множество натуральных чисел, а $N_{2n}-$ множество чётных натуральных чисел.

Тогда формула f(n)=2n (*) задаёт биекцию между этими двумя множествами.

Действительно, для каждого натурального числа n однозначно найдётся результат умножения его на 2, значит данное соответствие всюду определено и функционально.

И обратно, для каждого чётного натурального числа однозначно найдётся результат деления его на 2, значит данное соответствие сюръективно и инъективно.

Значит, формула (*) устанавливает биекцию между множествами N и N_{2n} .

Теорема о равномощных конечных множествах.

Между двумя конечными множествами можно установить биекцию тогда и только тогда, когда они имеют одинаковую мощность.

Запишем эту теорему в виде формулы:

$$(|A| < \infty, |B| < \infty) \Rightarrow (A \sim B \Leftrightarrow |A| = |B|)$$
(29)

Доказательство.

Необходимость.

Докажем необходимость от противного.

Пусть
$$A \sim B$$
, $|A| = n$, $|B| = k$, $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_k\}$,

и $n \neq k$. Рассмотрим случаи:

- 1) n < k. Тогда, в силу функциональности соответствия, только n элементов из множества B будут иметь прообразы, что противоречит сюръективности;
- 2) n > k. Тогда, в силу инъективности соответствия, только k элементов из множества A будут иметь образы, что противоречит всюду определённости.

Допущение, что n может не равняться k, приводит к противоречию, необходимость доказана.

Достаточность.

Пусть |A| = |B|, $A = \{a_1, a_2, ..., a_n\}$, $B = \{b_1, b_2, ..., b_n\}$, биекцию между множествами A и B можно установить, например, сопоставив каждому элементу a_i элемент b_i , где $i \in \{1, 2, ..., n\}$. Нетрудно проверить, что данное соответствие обладает всеми свойствами биекции.

Теорема полностью доказана.

Множество A называется *счётным*, если между ним и множеством натуральных чисел можно установить биекцию, то есть, если $A \sim N$.

Теорема о счётном подмножестве бесконечного множества.

Каждое бесконечное множество содержит счётное подмножество.

Эту теорему можно записать формулой:

$$|A| = \infty \Rightarrow \exists_{A^*} (A^* \subseteq A, A^* \sim N)$$
 (30)

<u>Доказательство.</u>

Возьмём $a_1 \in A$,

 $a_2 \in A \setminus \{a_1\},$

 $a_3 \in A \setminus \{a_1, a_2\},\$

...

$$a_n \in A \setminus \{a_1, a_2, ... a_{n-1}\},\$$

. . .

Этот процесс выбора всё новых элементов из A никогда не остановится, так как невозможность выбора на каком-то шаге нового элемента из A означала бы конечность множества A, что противоречит условию. Образуем из выбранных элементов множество A^* : $A^* = \{a_1, a_2, ..., a_n, ...\}$. Каждый элемент множества A снабжён уникальным индексом, то есть между множеством A и множеством натуральных чисел установлена биекция. Итак, счётное подмножество A^* бесконечного множества A найдено.

Критерий бесконечного множества.

Множество бесконечно тогда и только тогда, когда между ним и его некоторым собственным подмножеством можно установить биекцию.

Эту теорему можно записать в виде формулы:

$$|A| = \infty \Leftrightarrow \exists_{A^*} (A^* \subset A, A^* \sim A) \tag{31}$$

<u>Доказательство.</u> Необходимость.

Пусть множество A бесконечно. По теореме о счётном подмножестве бесконечного множества, в A найдётся счётное подмножество $M = \{a_1, a_2, ..., a_n, ...\}$. Пусть $M^* = \{a_2, a_4, ..., a_{2n}, ...\}$.

Очевидно, что $A = (A \setminus M) \cup M$. Пусть $A^* = (A \setminus M) \cup M^*$.

Заметим, что $A^* \subset A$, так как A^* составлено только из элементов множества A, но некоторые элементы множества A, например, a_1 , не принадлежат A^* .

Заметим также, что между A и A^* можно установить биекцию, например, так: между множеством $A \backslash M$ и им же самим биекцию задаёт тождественное соответствие, а между множествами M и M^* биекцию можно задать так: каждому элементу $a_n \in M$ ставим в соответствие элемент $a_{2n} \in M^*$. Таким образом, между A и A^* установлена биекция. Необходимость доказана.

Достаточность.

Докажем достаточность от противного: допустим, что правая часть эквиваленции (31) выполнена, а левая — нет, то есть множество A является конечным. Но так как $A^* \subset A$, то $|A^*| < |A|$.

Получили, что между двумя конечными множествами различной мощности существует биекция, что противоречит теореме о равномощных конечных множествах. Значит, допущение о том, что достаточность может быть нарушена, неверно, и теорема полностью доказана.

Теорема о счётности множества рациональных чисел.

Множество рациональных чисел счётно, т.е.

$$Q \sim N.$$
 (32)

Доказательство.

 $\frac{\pmb{B}$ ысотой рационального числа $\frac{p}{q}$ назовём величину |p|+q. Вы-

соту 1 имеет только дробь $\frac{0}{1}$, высоту 2 — дроби $-\frac{1}{1}$ и $\frac{1}{1}$, высоту 3

$$-$$
дроби $-\frac{2}{1}, -\frac{1}{2}, \frac{1}{2}, \frac{2}{1}$ и т.д.

Будем перебирать различные высоты в порядке возрастания, и для каждой фиксированной высоты упорядочим рациональные числа в порядке возрастания. Перебирая рациональные числа, упорядоченные таким образом, будем присваивать дробям последовательные номера.

Таким образом, каждое рациональное число получит свой единственный номер, то есть построенное соответствие всюду определено и функционально. В процессе нумерации дробей будут использованы все номера, так как множество рациональных чисел бесконечно, причём из алгоритма нумерации видно, что каждый номер использовался ровно один раз, то есть соответствие сюръективно и инъективно. Итак, построенное соответствие — биекция, следовательно, счётность множества рациональных чисел доказана.

Теорема об объединении счётного класса счётных множеств. Объединение счётного класса счётных множеств счётно.

$$\forall_{i \in N} (A_i \sim N) \Rightarrow (\bigcup_{i \in N} A_i) \sim N$$
(33)

<u>Доказательство.</u>

Пусть
$$A_1 = \{a_1^1, a_2^1, ..., a_n^1, ...\}, A_2 = \{a_1^2, a_2^2, ..., a_n^2, ...\},...$$

Выпишем все элементы всех множеств в таблицу и обойдём таблицу по маршруту, помеченному стрелкой:

Проходя по указанному маршруту, будем последовательно навешивать номера на встречающиеся элементы, пропуская элементы, встретившиеся ранее. В результате будет установлена биекция между объединением счётного класса счётных множеств и множеством натуральных чисел, то есть доказана теорема. ■