Question 1

Compute M^n

Write n in binary form, $n=2^{k_1}+2^{k_2}+2^{k_3}+\cdots+2^{k_m} \ \ \text{where} \ \ k_1>k_2>k_3>\cdots>k_m$ And $k_1=\lfloor\log_2 n\rfloor$

Therefore
$$M^n = M^{2^{k_1} + 2^{k_2} + 2^{k_3} + \dots + 2^{k_m}} = M^{2^{k_1}} \cdot M^{2^{k_2}} \cdot M^{2^{k_3}} \cdots M^{2^{k_m}}$$

It involves at most $\lfloor \log_2 n \rfloor$ multiplications.

So, it can represent as A^{2^k} , $1 \le k \le \lfloor \log_2 n \rfloor$ and at most $\lfloor \log_2 n \rfloor$ multiplications

Therefore, compute M^n using $O(\log n)$ multiplications.