Verification Report AHB-Lite Protocol

Introduction to the Device-Under-Test (DUT)

AMBA AHB-Lite addresses the requirements of high-performance synthesizable designs. It is a bus interface that supports a single bus master and provides high-bandwidth operation. AHB-Lite implements the features required for high-performance, high clock frequency systems including:

- burst transfers
- Single-clock edge operation
- Non-tristate implementation
- Wide data bus configurations, 64, 128, 256, 512, and 1024 bits.

The most common AHB-Lite slaves are internal memory devices, external memory interfaces, and high bandwidth peripherals. Although low-bandwidth peripherals can be included as AHB-Lite slaves, for system performance reasons they typically reside on the AMBA Advanced Peripheral Bus (APB). Bridging between this higher level of bus and APB is done using an AHB-Lite slave, known as an APB bridge.

The figure shown below describes a single master AHB-Lite system design with one AHB-Lite master and three AHB-Lite slaves. The bus interconnect logic consists of one address decoder and a slave-to-master multiplexor. The decoder monitors the address from the master so that the appropriate slave is selected and the multiplexor routes the corresponding slave output data back to the master.

Verification Plan

No.	Feature	Test Description	Ref.	Туре	Expected Outcome	Result	Comments
1.	Bus	At the positive edge	IHI0033.pdf/Sec3.5	Т	During an undefined		The protocol does not
	termination	of the clock, after a	.1/pg3-10		length burst, INCR, the		permit a master to end a
	after a BUSY	burst has started, the			master might insert		burst with a BUSY transfer
	transfer for	master uses BUSY			BUSY transfers at the		for fixed length bursts of
	an	transfers if it requires			positive edge of the		type incrementing or
	Undefined	more time before			clock and then decide		wrapping
	Length Burst	continuing with the			that no more data		
		next transfer in the			transfers are required.		
		burst.			Under these		
					circumstances, it is		
					acceptable for the		
					master to then		
					perform a NONSEQ or		
					IDLE transfer at the		
					next positive edge		
					that then effectively		
					terminates the		
					undefined length		
					burst		
2.	Bus	After a burst has	IHI0033.pdf/Sec3.5	Т	At the positive edge of		The master is not permitted
	termination	started, the master	.1/pg3-10		the clock, the fixed		to perform a BUSY transfer
	after a BUSY	uses BUSY transfers if			length burst types		immediately after a SINGLE
	transfer for a	it requires more time			must terminate with a		burst. SINGLE bursts must
	SINGLE	before continuing			SEQ transfer		be followed by an IDLE
	length	with the next					transfer or a NONSEQ
		transfer in the burst.					transfer.
3.	Change in	Slaves use HREADY	IHI0033.pdf/Sec3.6	Т	At positive edge of the		-
	transfer type	to insert wait states if	.1/pg3-16		clock, when the		

	to NONSEQ	they require more			HTRANS transfer type	
	From IDLE	time to provide or			changes to NONSEQ	
	Transfer	sample the data.			the master must keep	
	Transici	During a waited			HTRANS constant,	
		transfer, the master			until HREADY is HIGH	
		is restricted to what			at the second positive	
		changes it can make			clock edge	
		to the transfer type			ciock eage	
		and address. During a				
		waited transfer, the				
		master is permitted				
		to change the				
		transfer type from				
		IDLE to NONSEQ				
4.	Change in	During a waited	IHI0033.pdf/Sec3.6	Т	At positive edge of the	Because BUSY transfers
	transfer type	transfer for a fixed	.1/pg3-17		clock, when the	must only be inserted
	to SEQ from	length burst, the			HTRANS transfer type	between successive beats of
	BUSY	master is permitted			changes to SEQ the	a burst, this does not apply
	Transfer	to change the			master must keep	to SINGLE bursts
	when Length	transfer type from			HTRANS constant,	
	of Burst is	BUSY to SEQ			until HREADY is HIGH	
	fixed				at the next positive	
					edge	
5.	Change in	During a waited	IHI0033.pdf/Sec3.6	Т	At the positive edge of	-
	transfer type	transfer for an	.1/pg3-18		the clock, the burst	
	to any other	undefined length			continues if a SEQ	
	type from	burst, INCR, the			transfer is performed	
	BUSY	master is permitted			but terminates if an	
	Transfer	to change from BUSY			IDLE or NONSEQ	
	when Length	to any other transfer			transfer is performed	
	of Burst is	type, when HREADY				
	Undefined	is LOW				

_	T			_		I	I
6.	Change in	When the slave is	IHI0033.pdf/Sec3.6	Т	When the HTRANS		-
	address	requesting wait	.2/pg3-19		transfer type changes		
	during IDLE	states, the master			to NONSEQ at the		
	Transfer	can only change the			positive edge of clock,		
		address once except			the master must keep		
		in case of an IDLE			the address constant,		
		Transfer. During a			until HREADY is HIGH		
		waited transfer, the			at the next clock edge		
		master is permitted					
		to change the					
		address for IDLE					
		transfers					
7.	Change in	When the slave is	IHI0033.pdf/Sec3.6	Т	During a waited		-
	address after	requesting wait	.2/pg3-20		transfer, if the slave		
	an ERROR	states, the master			responds with an		
	response	can only change the			ERROR response then		
		address once except			the master is		
		after an ERROR			permitted to change		
		response			the address when		
					HREADY is LOW at the		
					positive edge of the		
					clock		
8.	Transfer	After a master has	IHI0033.pdf/Sec5.1	Α	At the positive edge of		-
	done	started a transfer,	.1/pg5-3		the clock, a successful		
		the slave controls			completed transfer is		
		how the transfer			signalled when		
		progresses. A master			HREADY is HIGH and		
		cannot cancel a			HRESP is OKAY (0)		
		transfer after it has					
		commenced. A slave					
		must provide a					
		response that					
		indicates the status					

		of the transfer when it is accessed. The transfer status is provided by the HRESP signal				
9.	Transfer pending	A slave uses HREADY to insert the appropriate number of wait states into the data phase of the transfer.	IHI0033.pdf/Sec5.1 .2/pg5-3	А	In pending transfer, at the positive edge of the clock, HREADY is LOW and HRESP is OKAY (0). A transfer then completes with HREADY HIGH and an OKAY response at the next edge	-
10.	ERROR response	A slave uses the ERROR response to indicate some form of error condition with the associated transfer. Usually this denotes a protection error such as an attempt to write to a read-only memory location	IHI0033.pdf/Sec5.1 .3/pg5-3	A	The slave will give an ERROR response in the first cycle with HREADY LOW and HRESP ERROR (1). In the next cycle, HREADY is driven HIGH and HRESP remains HIGH to indicate error	The two-cycle response is required because of the pipelined nature of the bus. By the time a slave starts to issue an ERROR response then the address for the following transfer has already been broadcast onto the bus. The two-cycle response provides sufficient time for the master to cancel this next access and drive HTRANS[1:0] to IDLE before the start of the next transfer

Explanation of Different Fields

No. The serial number of the test.

Feature The feature which the current test is verifying in full or partially. The feature is usually on the abstraction level

of a user.

Test Description A detailed description of the test case being performed. You can be as verbose as you want.

Ref. Reference to the section in the related standard document. The section number as well as page numbers

should be described here.

Type Type of the test. Whether the test is an assertion (A) or a transaction (T) type.

Result Pass (P) or Fail (F).

Comments Any other comments about the test or its results that you want to mention.