ANOVA in simple linear regression Statistics

Anton Afanasev

Higher School of Economics

DSBA 211 March 11, 2023

Seminar Overview

- 1 Quiz
- ANOVA in simple linear regression Sources of variance Decomposition Pivot function
- 3 Coefficient of determination
- 4 Practice

)uiz

- 1 Explain the difference between following terms in simple linear regression:

 - y_i , \widehat{y}_i ,
 - E(y_i).
- 2 Sketch a simple linear regression with
 - confidence intervals for E(y),
 - prediction intervals for y,

of arbitrary confidence level in chosen interval. What's the difference between confidence and prediction intervals?

A car insurance company would like to examine the relationship between driving experience and insurance premium. For this reason, a random sample of ten drivers is taken and the years of driving experience (x) as well as the monthly insurance premium $(y, \text{in } \pounds)$ is recorded. The data are shown in the table below:

Driver	№1	№2	№3	№4	№5	№6	№7	№8	№9	№10
Driving experience (x)	6	3	11	10	15	6	25	16	15	20
Insurance premium (y)	66	88	51	70	44	56	42	60	45	40

The summary statistics for these data are:

	Sum of the squares of <i>x</i> data: 2033			
Sum of <i>y</i> data: 562	Sum of the squares of <i>y</i> data: 33662			
Sum of the products of x and y data: 6402				

- 1 Draw a scatter diagram of these data. Label the diagram carefully.
- 2 Calculate the sample correlation coefficient. Interpret your findings.
- 3 Calculate the least squares line of *y* on *x* and draw the line on the scatter diagram.
- 4 Based on the regression equation in part 3, what will be the predicted monthly insurance premium for a driver with 10 years of experience? Will you trust this value? Justify your answer.

Sources of variance in simple linear regression

Model of simple linear regression:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \mathsf{E}(\varepsilon_i) = 0, \mathsf{V}(\varepsilon_i) = \sigma^2.$$

Regressand *y* can change because of:

$$\varepsilon_i$$
 – error/noise,
 $\beta_1 x_i$ – change in regressor x .

 We can compare variances, created by both sources, to find a significant evidence of presence of dependency between x and y.

Total SS =
$$\underbrace{\text{Regression SS}}_{\beta_1 x_i} + \underbrace{\text{Residual SS}}_{\varepsilon_i}$$

Variation, produced by error

• Estimate of ε_i :

$$e_i = y_i - \widehat{y}_i = y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i,$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ are sample regression line instants (estimates of $E(y_i)$).

• Variation, created by ε_i (residual, error):

$$RSS = SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

with n-2 degrees of freedom.

• Correspondence of estimates to a model:

model:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 estimates: $y_i = \widehat{y}_i + (y_i - \widehat{y}_i)$

Anton Afanasev (HSE) 7/16

Variation, produced by regression

• Sample regression line with OLS estimate of β_0 :

$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i,$$

$$\widehat{y}_i = \overline{y} - \widehat{\beta}_1 \overline{x} + \widehat{\beta}_1 x_i.$$

 Deviation of regressand estimate from the mean is in direct ratio to the deviation of regressor:

$$\widehat{y}_i - \overline{y} = \widehat{\beta}_1(x_i - \overline{x}).$$

This difference will produce required variation (from regression):

$$(y_i - \overline{y}) = (\widehat{y}_i - \overline{y}) + (y_i - \widehat{y}_i),$$

$$(y_i - \overline{y}) = \widehat{\beta}_1(x_i - \overline{x}) + (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i).$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽9<</p>

8/16

ANOVA decomposition

• Total variation decomposition:

Total SS = Regression SS + Residual SS

$$TSS$$
 = ESS + RSS
 SST = SSR + SSE

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \widehat{\beta}_1^2 \sum_{i=1}^{n} (x_i - \overline{x})^2 + \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

$$SS_{yy} = \widehat{\beta}_1^2 \cdot SS_{xx} + \sum_{i=1}^{n} (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

with degrees of freedom

$$n-1 = 1 + n-2$$

Pivot function

• Under assumptions of normal regression $(\varepsilon_i \sim \mathcal{N}\left(0, \sigma^2\right))$ and truth of null hypothesis of ANOVA in simple linear regression

$$H_0: \beta_1 = 0,$$

the following is true:

$$\begin{split} &SST/\sigma^2 \sim \chi^2_{n-1}, \\ &SSR/\sigma^2 \sim \chi^2_1, \\ &SSE/\sigma^2 \sim \chi^2_{n-2}. \end{split}$$

Pivot function:

$$F\Big|_{H_0} = \frac{SSR/1}{SSE/(n-2)} = \frac{\widehat{\beta}_1^2 \cdot SS_{xx}}{MSE} \sim F_{1; n-2}.$$

 H_0 is rejected in favor of $H_1: \beta_1 \neq 0$ if $F > F_1; n-2; \alpha$.

Anton Afanasev (HSE) Seminars 40-41 March 11, 2023 10 / 16

Coefficient of determination

Coefficient of determination is a goodness-of-fit metric:

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST},$$

proportion of the total variation of y, explained by x. The closer R^2 to 1 – the better explanatory power of the regression model.

• For OLS estimates in simple linear regression:

$$R^{2} = \frac{\widehat{\beta}_{1}^{2} \cdot SS_{xx}}{SS_{yy}} = \frac{SS_{xy}^{2}}{SS_{xx}^{2}} \cdot \frac{SS_{xx}}{SS_{yy}} = \frac{SS_{xy}^{2}}{SS_{xx} \cdot SS_{yy}} = \widehat{\rho}^{2}.$$

◆ロト ◆園 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕へで

A simple linear regression model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ is estimated. The following results and statistics are available:

$$R^2 = 0.80;$$
 $\widehat{\beta}_1 = 1.6;$ $n = 20;$

$$\overline{x} = 10;$$
 $\overline{y} = 12;$ $\sum_{i=1}^{20} x_i^2 = 2500.$

- **1** Find $\sum_{i=1}^{20} y_i^2$.
- **2** At 10% significance level test H_0 : $\beta_1 = 1.3$ against two-sided alternative.

Anton Afanasev (HSE)

The table shows, for eight vintages of select wine, purchases per buyer (y) and the wine buyer's rating in a year (x).

- Estimate the regression of purchases per buyer on the buyer's rating.
- 2 Interpret the slope of the estimated regression line.
- **3** Find and interpret the coefficient of determination.
- 4 Find and interpret a 90% confidence interval for the slope of the population regression line.
- **5** Find a 90% confidence interval for expected purchases per buyer for a vintage for which the buyer's rating is 2.0.

A random sample of 15 less-developed countries showed the following relation between population density X and economic growth rate Y (Simon, 1981).

Country	Population density per $km^2(X)$	Percent annual change in per capita income (<i>Y</i>)			
A	27	3.3			
В	32	0.8			
С	118	1.4			
D	270	5.4			
E	10	1.4			
Average	54	2.4			
Total SS	80920	46.9			
MS (variance)	5780	3.35			
St. dev.	76.0	1.83			
Correlation, $\widehat{\rho}$	0.54				

- Calculate the regression line of *Y* on *X*. Graph the regression line, along with the first 5 points.
- **2** Carry out the ANOVA table as far as the *p*-value for $H_0: \beta_1 = 0$. Can you reject H_0 at the 5% error level?
- 3 Using the slope in part 1 and the residual variance in part 2, calculate the 95% confidence interval for β_1 . Can you reject H₀ at 5% error level?
- **4** Test $H_0: \rho = 0$ against $H_1: \rho \neq 0$. Can you reject H_0 at the 5% error level?
- **5** Do you get consistent answers in parts 2, 3, and 4 for the question "Are *X* and *Y* linearly related?"
- **6** From the ANOVA table in 2, find the proportion of the SS that is explained by the regression. Does it agree with $\hat{\rho}^2$? Also find the proportion left unexplained. Does it agree with $(1 \hat{\rho}^2)$?

Anton Afanasev (HSE) Seminars 40-41 March 11, 2023 15 / 16

Look at the time!