

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FO Box 1430 Alexandria, Virginia 22313-1450 www.tepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO	
10/747,628	12/30/2003	Joseph Donald Ternasky	305837.01/MFCP.139664	2915	
45899 7599 11/23/2599 SHOOK, HARDY & BACON LL.P. (c/o MICROSOFF CORPORATION) INTELLECTUAL PROPERTY DEPARTMENT 2555 GRAND BOULEVARD KANSAS CITY, MO 64108-2613			EXAM	EXAMINER	
			KASSA, HILINA S		
			ART UNIT	PAPER NUMBER	
			2625		
			MAIL DATE	DELIVERY MODE	
			11/23/2009	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/747.628 TERNASKY ET AL. Office Action Summary Examiner Art Unit HILINA S. KASSA -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 23 July 2009. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-19 and 21-32 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-19 and 21-32 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.

| Attachment(s) | Attachment(s

Art Unit: 2625

DETAILED ACTION

The amendment submitted on 07/23/2009 has been acknowledged.
 Claims 1-19 and 21-32 are pending.

Response to Arguments

 Applicant's arguments with respect to claims 1-19 and 21-32 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior at are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. Claims 1-19 and 21-22 are rejected under 35 U.S.C. 103(a) as being unpatentable over Nusser et al. (US Patent Number 7,093,296 B2, see IDS) and Newman et al. (US Publication Number 2005/0280853) and Wilkins et al. (Patent Number 7,042,583 B1) and further in view of Haikin et al. (US Patent Number 6,603,879 B2).

(1) regarding claim 1:

Art Unit: 2625

As shown in figures 1 and 3 Nusser et al. discloses a computer-readable medium encoded with a container configured to (102, figure 1), transparently allow access to one or more list tags (column 4, lines 35-43; note that the digital rights management processes the media data set to retrieve the list in order to determine the usage rights that are able to be granted for the media data set that conforms usage rights and usage conditions for access to the data set)..

Nusser et al. discloses all of the subject matter as described as above except for specifically teaching a color characterization profile format comprising: a color management measurement data portion.

However, Newman et al. teaches a color characterization profile format (160, figure 4; paragraph [0041], lines 1-8; note that the color measurement profile corresponds to a specific device such as printer and the data in the aforementioned data fields represents the color characteristics) comprising: a color management measurement data portion (163, figure 4; paragraph [0041], lines 13-29; note that the color characteristic measurement data contains measurement data which represents the color behavior of the device and can include other measured day such as color points which represent the range of neutral gravs of the device).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor, such that both deal with digital image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have a color characterization profile format comprising a color

Art Unit: 2625

management measurement data portion. The suggestion/motivation for doing so would have been in order to provide the ability to perform color management on color image data using current measurement data of the involved color devices (paragraph [0016], lines 1-4). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 1.

Nusser et al. and Newman et al. disclose all of the subject matter as described as above except for specifically teaching receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information.

However, Haikin et al. teaches receive and store one or more independent data extension (column 7, lines 15-22; note that input device color table is accessed and is used to transform to a device and viewing condition independent color space), wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device (column 7, lines 38-42; note that the device has independent color space which ready for gamut mapping in order to ensure the color image data is within the color gamut boundary of the output device) and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information (column 7, lines 43-55; note that the developers of the output

Art Unit: 2625

device color profile can customtailor the gamut mapping for optimum color image rendering on the output device).

Nusser et al., Newman et al. and Haikin et al. are combinable because they are from the same field of endeavor, such that both deal with digital .image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device. The suggestion/motivation for doing so would have been to efficiently acquire optimum color image rendering on the output device which corresponds to output device color profile (column 7, lines 51-55). Therefore, it would have been obvious to combine Nusser et al. and Newman et al. with Haikin et al. to obtain the invention as specified in claim 1.

Nusser et al., Newman et al. and Haikin et al. disclose all of the subject matter as described as above except for specifically teaching to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container.

However, Wilkins et al. discloses storing a plurality of color profiles associated with a plurality of devices (column 14, lines 13-26; note that the digital appliances have color profiles), wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to

Art Unit: 2625

edit color profiles specific the container (column 14, lines 15-23; note that the color profile could be edited by a device independent editor. see column 9, lines 28-38).

Nusser et al., Newman et al., Haikin et al. and Wilkins et al. are combinable because they are from the same field of endeavor, such that each deal with digital image/video data i.e. editable. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container. The suggestion/motivation for doing so would have been in order to efficiently access and modify profiles by using device independent editor (column 30-40). Therefore, it would have been obvious to combine Nusser et al., Newman et al. and Haikin et al. with Wilkins et al. to obtain the invention as specified in claim 1.

(2) regarding claim 2:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container includes at least one linked and embedded object (column 4, lines 23-30; note that embedded objects are specified as executable files executable functions and other processing objects. Also in column 5, lines 56-64; note that linked objects like wide verity of data types including audio, video, a database, or any other type of data which could be acquired with linked object).

Application/Control Number: 10/747,628 Page 7

Art Unit: 2625

(3) regarding claim 3:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container includes extensible markup language (column 4, lines 44-45; note that digital rights management system confirms with the XML standard).

(4) regarding claim 4:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is an advanced systems format container (column 3, lines 51-55; note that as ADF is considered as the multi-media video, sound, text, database, documents or software application programs).

(5) regarding claim 5:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is configured to enable private data extensions (column 5, lines 30-46; note that digital rights management system verifies the authenticity of each extension module in order to preclude modified DPR modules).

(6) regarding claim 6:

Art Unit: 2625

Nusser et al. further disclose the color characterization profile format of claim 5, wherein said container is configured to operate interface description language (column 6, line 41-column 7, line 7; note that the interface description language is considered as the interface that is taken place with the combination media files and the DPR data package), wherein said container includes at least one linked and embedded object (column 4, lines 23-30; note that embedded objects are specified as executable files executable functions and other processing objects. Also in column 5, lines 56-64; note that linked objects like wide verity of data types including audio, video, a database, or any other type of data which could be acquired with linked object).

Nusser et al. disclose all of the subject matter as described as above except for specifically teaching to store a rendering intent separate from the color management measurement data portion.

However, Newman et al. disclose to store a rendering intent separate from the color management measurement data portion (paragraph [0039]-paragraph [0040], line 1-3).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a rendering intent separate from the color management measurement data portion. The suggestion/motivation for doing so would have been such that it provides the ability to perform color management on color image data using current

Art Unit: 2625

measurement data every time color image data is rendered (paragraph [0016], lines 1-7). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 6.

(7) regarding claim 7:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is configured to operate interface description language (column 6, line 41-column 7, line 7; note that the interface description language is considered as the interface that is taken place with the combination media files and the DPR data package).

(8) regarding claim 8:

Nusser et al. disclose all of the subject matter as described as above except for specifically teaching wherein said container is configured to store a rendering intent separate from the color management measurement data portion.

However, Newman et al. disclose wherein said container is configured to store a rendering intent separate from the color management measurement data portion (paragraph [0039]-paragraph [0040], line 1-3).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a rendering intent separate from the color management measurement data portion. The

Art Unit: 2625

suggestion/motivation for doing so would have been such that it provides the ability to perform color management on color image data using current measurement data every time color image data is rendered (paragraph [0016], lines 1-7). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 8.

(9) regarding claim 9:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is configured to be edited by a text editor application (column 4, lines 56-62; note that XML is one of the many text editor application).

(10) regarding claim 10:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is configured to prevent tampering (column 3, line 56-column 4, line 14; note that the data is secured from anybody trying to tamper it) with the color characterization profile format.

Nusser et al. teach all of the subject matter as described as above except for specifically teaching the color characterization profile format.

However, Newman et al. disclose the color characterization profile format (paragraph [0017], lines 1-2; note that the color management of color image data is performed).

Art Unit: 2625

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have data as a color characterization profile format. The suggestion/motivation for doing so would have been in order to advance security and management to generate an authorization for a desired type of access to a data set (column 2, lines 35-37). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 10.

(11) regarding claim 11:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein said container is operable across a plurality of operating platforms (column 10, line 62-column 11, line 2; note that the digital rights management system could be implemented in one or different elements across several interconnected computer systems).

(12) regarding claim 12:

Nusser et al. further disclose the color characterization profile format of claim 1, wherein the container is configured to permit incorporation of executable code (column 11, lines 2-6; note that such systems method could be loaded and executed in computer system).

Art Unit: 2625

(13) regarding claim 13:

Nusser et al. disclose all of the subject matter as described as above except for specifically teaching the color characterization profile format of claim 12, wherein the executable code provides instructions to translate the color management measurement data portion into color management representations.

However, Newman et al. teach wherein the executable code provides instructions to translate the color management measurement data portion into color management representations (paragraph [0013], lines 1-18; note that the color management measurement data gets transformed to color management profiles).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor, such that both deal with digital image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have a color characterization profile format comprising a color management measurement data portion. The suggestion/motivation for doing so would have been in order to provide the ability to perform color management on color image data using current measurement data of the involved color devices (paragraph [0016], lines 1-4). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 13.

(14) regarding claim 14:

As shown in figures 1 and 3 Nusser et al. discloses a container (102, figure 1), wherein said container is configured to provide to transparently allow

Art Unit: 2625

access to one or more list tags (column 4, lines 35-43; note that the digital rights management processes the media data set to retrieve the list in order to determine the usage rights that are able to be granted for the media data set that conforms usage rights and usage conditions for access to the data set).

Nusser et al. discloses all of the subject matter as described as above except for specifically teaching a computer-readable medium having a computer-executable data structure for maintaining a color characterization profile format, the data structure comprising: a color management measurement data portion.

However, Newman et al. teaches a computer-readable medium having a computer-executable data structure for maintaining a color characterization profile format the data format (160, figure 4; paragraph [0041], lines 1-8; note that the color measurement profile corresponds to a specific device such as printer and the data in the aforementioned data fields represents the color characteristics) comprising: a color management measurement data portion (163, figure 4; paragraph [0041], lines 13-29; note that the color characteristic measurement data contains measurement data which represents the color behavior of the device and can include other measured day such as color points which represent the range of neutral grays of the device).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor, such that both deal with digital image/video data. At the time of the invention, it would have been obvious to a person of ordinary

Art Unit: 2625

skilled in the art to have a color characterization profile format comprising a color management measurement data portion. The suggestion/motivation for doing so would have been in order to provide the ability to perform color management on color image data using current measurement data of the involved color devices (paragraph [0016], lines 1-4). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 14.

Nusser et al. and Newman et al. disclose all of the subject matter as described as above except for specifically teaching receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information.

However, Haikin et al. teaches receive and store one or more independent data extension (column 7, lines 15-22; note that input device color table is accessed and is used to transform to a device and viewing condition independent color space), wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device (column 7, lines 38-42; note that the device has independent color space which ready for gamut mapping in order to ensure the color image data is within the color gamut boundary of the output device) and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space

Art Unit: 2625

information (column 7, lines 43-55; note that the developers of the output device color profile can customtailor the gamut mapping for optimum color image rendering on the output device).

Nusser et al., Newman et al. and Haikin et al. are combinable because they are from the same field of endeavor, such that both deal with digital .image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device. The suggestion/motivation for doing so would have been to efficiently acquire optimum color image rendering on the output device which corresponds to output device color profile (column 7, lines 51-55). Therefore, it would have been obvious to combine Nusser et al. and Newman et al. with Haikin et al. to obtain the invention as specified in claim 14.

Nusser et al., Newman et al. and Haikin et al. disclose all of the subject matter as described as above except for specifically teaching to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container.

However, Wilkins et al. discloses storing a plurality of color profiles associated with a plurality of devices (column 14, lines 13-26; note that the digital appliances have color profiles), wherein each of the plurality of color

Art Unit: 2625

profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container (column 14, lines 15-23; note that the color profile could be edited by a device independent editor. see column 9, lines 28-38).

Nusser et al., Newman et al., Haikin et al. and Wilkins et al. are combinable because they are from the same field of endeavor, such that each deal with digital image/video data i.e. editable. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container. The suggestion/motivation for doing so would have been in order to efficiently access and modify profiles by using device independent editor (column 30-40).

Therefore, it would have been obvious to combine Nusser et al., Newman et al. and Haikin et al. with Wilkins et al. to obtain the invention as specified in claim 14.

(15) regarding claim 15:

Nusser et al. further disclose the computer-readable medium of claim 14, wherein said container includes at least one linked and embedded object (column 4, lines 23-30; note that embedded objects are specified as executable files executable functions and other processing objects. Also in

Art Unit: 2625

column 5, lines 56-64; note that linked objects like wide verity of data types including audio, video, a database, or any other type of data which could be acquired with linked object).

(16) regarding claim 16:

Nusser et al. further disclose the computer-readable medium of claim 14, wherein said container is configured to enable private data extensions (column 5, lines 30-46; note that digital rights management system verifies the authenticity of each extension module in order to preclude modified DPR modules).

(17) regarding claim 17:

Nusser et al. further disclose the color characterization profile format of claim 5, wherein said container is configured to operate interface description language (column 6, line 41-column 7, line 7; note that the interface description language is considered as the interface that is taken place with the combination media files and the DPR data package), wherein said container includes at least one linked and embedded object (column 4, lines 23-30; note that embedded objects are specified as executable files executable functions and other processing objects. Also in column 5, lines 56-64; note that linked objects like wide verity of data types including audio, video, a database, or any other type of data which could be acquired with linked object).

Art Unit: 2625

Nusser et al. disclose all of the subject matter as described as above except for specifically teaching to store a rendering intent separate from the color management measurement data portion.

However, Newman et al. disclose to store a rendering intent separate from the color management measurement data portion (paragraph [0039]-paragraph [0040], line 1-3).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a rendering intent separate from the color management measurement data portion. The suggestion/motivation for doing so would have been such that it provides the ability to perform color management on color image data using current measurement data every time color image data is rendered (paragraph [0016], lines 1-7). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 17.

(18) regarding claim 18:

Nusser et al. further disclose the computer-readable medium of claim 14, wherein said container is configured to operate interface description language (column 6, line 41-column 7, line 7; note that the interface description language is considered as the interface that is taken place with the combination media files and the DPR data package).

Art Unit: 2625

(19) regarding claim 19:

Nusser et al. disclose all of the subject matter as described as above except for specifically teaching wherein said container is configured to store a rendering intent separate from the color management measurement data portion.

However, Newman et al. disclose wherein said container is configured to store a rendering intent separate from the color management measurement data portion (paragraph [0039]-paragraph [0040], line 1-3).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a rendering intent separate from the color management measurement data portion. The suggestion/motivation for doing so would have been such that it provides the ability to perform color management on color image data using current measurement data every time color image data is rendered (paragraph [0016], lines 1-7). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 19.

(20) regarding claim 20:

Nusser et al. further disclose the computer-readable medium of claim 14, wherein said container is configured to be edited by a text editor application (column 4, lines 56-62; note that XML is one of the many text editor application).

Art Unit: 2625

(21) regarding claim 21:

As shown in figures 1 and 3 Nusser et al. discloses a computer-readable medium encoded with a container (102, figure 1), wherein said container is configured to provide digital rights management capabilities (column 3, lines 32-38; note that the capabilities of the digital rights management system is disclosed); and at least one application program interface to access the at least one component (column 11, lines 28-33), and transparently allow access to one or more list tags (column 4, lines 35-43; note that the digital rights management processes the media data set to retrieve the list in order to determine the usage rights that are able to be granted for the media data set that conforms usage rights and usage conditions for access to the data set).

Nusser et al. discloses all of the subject matter as described as above except for specifically teaching a software architecture for maintaining a color characterization profile format, comprising: at least one component configured to maintain color management measurement data.

However, Newman et al. teaches a software architecture for maintaining a color characterization profile format (160, figure 4; paragraph [0041], lines 1-8; note that the color measurement profile corresponds to a specific device such as printer and the data in the aforementioned data fields represents the color characteristics) comprising: at least one component configured to maintain color management measurement data (163, figure 4; paragraph [0041], lines 13-29; note that the color characteristic measurement data

Art Unit: 2625

contains measurement data which represents the color behavior of the device and can include other measured day such as color points which represent the range of neutral grays of the device).

Nusser et al. and Newman et al. are combinable because they are from the same field of endeavor, such that both deal with digital image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have a color characterization profile format comprising at least one component configured to maintain color management measurement data. The suggestion/motivation for doing so would have been in order to provide the ability to perform color management on color image data using current measurement data of the involved color devices (paragraph [0016], lines 1-4). Therefore, it would have been obvious to combine Nusser et al. with Newman et al. to obtain the invention as specified in claim 21.

Nusser et al. and Newman et al. disclose all of the subject matter as described as above except for specifically teaching receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information.

However, Haikin et al. teaches receive and store one or more independent data extension (column 7, lines 15-22; note that input device color table is accessed and is used to transform to a device and viewing condition

Art Unit: 2625

independent color space), wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device (column 7, lines 38-42; note that the device has independent color space which ready for gamut mapping in order to ensure the color image data is within the color gamut boundary of the output device) and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information (column 7, lines 43-55; note that the developers of the output device color profile can customtailor the gamut mapping for optimum color image rendering on the output device).

Nusser et al., Newman et al. and Haikin et al. are combinable because they are from the same field of endeavor, such that both deal with digital .image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device. The suggestion/motivation for doing so would have been to efficiently acquire optimum color image rendering on the output device which corresponds to output device color profile (column 7, lines 51-55). Therefore, it would have been obvious to combine Nusser et al. and Newman et al. with Haikin et al. to obtain the invention as specified in claim 21.

Nusser et al., Newman et al. and Haikin et al. disclose all of the subject matter as described as above except for specifically teaching to store a plurality

Art Unit: 2625

of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container.

However, Wilkins et al. discloses storing a plurality of color profiles associated with a plurality of devices (column 14, lines 13-26; note that the digital appliances have color profiles), wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container (column 14, lines 15-23; note that the color profile could be edited by a device independent editor. see column 9, lines 28-38).

Nusser et al., Newman et al., Haikin et al. and Wilkins et al. are combinable because they are from the same field of endeavor, such that each deal with digital image/video data i.e. editable. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container. The suggestion/motivation for doing so would have been in order to efficiently access and modify profiles by using device independent editor (column 30-40). Therefore, it would have been obvious to combine Nusser et al., Newman et al. and Haikin et al. with Wilkins et al. to obtain the invention as specified in claim 21.

Art Unit: 2625

(22) regarding claim 22:

Nusser et al. further disclose the software architecture of claim 21, wherein the at least one application program interface is configured to access the at least one component responsive to a request (column 11, lines 28-33; column 3, lines 58-64).

 Claims 23-32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Newman et al. (US Publication Number 2005/0280853), Nusser et al. (US Patent Number 7,093,296 B2, see IDS) and Haikin et al. (US 6,603,879 B2) further in view of Wilkins et al. (Patent Number 7,042,583 B1).

(1) regarding claim 23: same as 1

Newman et al. discloses a computer-readable medium encoded with a color characterization profile (160, figure 4; paragraph [0041], lines 1-8; note that the color measurement profile corresponds to a specific device such as printer and the data in the aforementioned data fields represents the color characteristics) comprising: intra-device objective measurement data (paragraph [0013], lines 1-4, note that current measurement data of the involved color device in considered as the intra-device objective measurement data); analytical device model parameter data (paragraph [0013], lines 6-8; note that the gamut mapping step is considered as the analytical device model parameter data); and timing data representing when

Art Unit: 2625

the intra-device measurement data and analytical device model parameter data was last edited (paragraph [0036], lines 7-9; paragraph [0037], lines 10-14; note that the run-time data is stored in RAM 116 of figure 2 which also stores modified or updated data); and

Newman et al. disclose all of the subject matter as described as above except for specifically teaching a container configured to provide digital rights management capabilities, and transparently allow access to one or more list tags.

Nusser et al. disclose a container (102, figure 1), wherein said container is configured to provide digital rights management capabilities (column 3, lines 32-38; note that the capabilities of the digital rights management system is disclosed); and transparently allow access to one or more list tags (column 4, lines 35-43; note that the digital rights management processes the media data set to retrieve the list in order to determine the usage rights that are able to be granted for the media data set that conforms usage rights and usage conditions for access to the data set).

Newman et al. and Nusser et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have a container configured to provide digital rights management capabilities, and transparently allow access to one or more list tags. The suggestion/motivation for doing so would have been in order to achieve a secure data access (column 2, lines 35-41). Therefore, it

Art Unit: 2625

would have been obvious to combine Newman et al. with Nusser et al to obtain the invention as specified in claim 23.

Newman et al. and Nusser et al. disclose all of the subject matter as described as above except for specifically teaching receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information.

However, Haikin et al. teaches receive and store one or more independent data extension (column 7, lines 15-22; note that input device color table is accessed and is used to transform to a device and viewing condition independent color space), wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device (column 7, lines 38-42; note that the device has independent color space which ready for gamut mapping in order to ensure the color image data is within the color gamut boundary of the output device) and provide a user operating the generic text editor access to a gamut mapping associated with the additional extensions of color space information (column 7, lines 43-55; note that the developers of the output device color profile can customtailor the gamut mapping for optimum color image rendering on the output device).

Art Unit: 2625

Nusser et al., Newman et al. and Haikin et al. are combinable because they are from the same field of endeavor, such that both deal with digital .image/video data. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to receive and store one or more independent data extension, wherein the one or more independent data extensions comprise additional extensions of color space information that are specific to an electronic device. The suggestion/motivation for doing so would have been to efficiently acquire optimum color image rendering on the output device which corresponds to output device color profile (column 7, lines 51-55). Therefore, it would have been obvious to combine Nusser et al. and Newman et al. with Haikin et al. to obtain the invention as specified in claim 23.

Nusser et al., Newman et al. and Haikin et al. disclose all of the subject matter as described as above except for specifically teaching to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container.

However, Wilkins et al. discloses storing a plurality of color profiles associated with a plurality of devices (column 14, lines 13-26; note that the digital appliances have color profiles), wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container (column 14, lines 15-23; note that the color profile could be edited by a device independent editor. see column 9, lines 28-38).

Art Unit: 2625

Nusser et al., Newman et al., Haikin et al. and Wilkins et al. are combinable because they are from the same field of endeavor, such that each deal with digital image/video data i.e. editable. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to store a plurality of color profiles associated with a plurality of devices, wherein each of the plurality of color profiles are editable by a generic text editor that is not specifically designed to edit color profiles specific the container. The suggestion/motivation for doing so would have been in order to efficiently access and modify profiles by using device independent editor (column 30-40). Therefore, it would have been obvious to combine Nusser et al., Newman et al. and Haikin et al. with Wilkins et al. to obtain the invention as specified in claim 23.

(2) regarding claim 24:

Newman et al. further discloses the color characterization profile of claim 23, wherein the analytical device model parameter data is derived from statistical analysis of a series of target measurements (paragraph [0041], lines 17-23; note that the target measurement get generated by the device).

(3) regarding claim 25:

Newman et al. further discloses the color characterization profile of claim 23, wherein the timing data determines which of the intra-device objective measurement data and the analytical device model parameter data is used by an

Page 29

Application/Control Number: 10/747,628

Art Unit: 2625

application program (paragraph [0041], lines 1-29; paragraph [0059], lines 1-4).

(4) regarding claim 26:

Newman et al. disclose all of the subject matter as described as above except for specifically teaching the color characterization profile of claim 23, further comprising a container, wherein the container is configured to provide digital rights management capabilities.

However, Nusser et al. teaches a container (102, figure 1), wherein the container is configured to provide digital rights management capabilities (column 3, lines 32-38; note that the capabilities of the digital rights management system is disclosed).

Newman et al. and Nusser et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art to have a container wherein the container is configured to provide digital rights management capabilities. The suggestion/motivation for doing so would have been in order to achieve a secure data access (column 2, lines 35-41). Therefore, it would have been obvious to combine Newman et al. with Nusser et al to obtain the invention as specified in claim 26.

(5) regarding claim 27:

Art Unit: 2625

Newman et al. further disclose the intra-device objective measurement data (paragraph [0013], lines 1-4, note that current measurement data of the involved color device in considered as the intra-device objective measurement data); the analytical device model parameter data (paragraph [0013], lines 6-8; note that the gamut mapping step is considered as the analytical device model parameter data).

Newman et al. disclose all of the subject matter as described as above except for specifically teaching wherein the digital rights management capabilities prevent changes to data.

However, Nusser et al. disclose all of the subject matter as described as above except for specifically teaching wherein the digital rights management capabilities prevent changes to data (column 3, line 56-column 4, line 14; note that the data is secured from anybody trying to tamper it).

Newman et al. and Nusser et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art wherein the digital rights management capabilities prevent changes to data. The suggestion/motivation for doing so would have been in order to achieve a secure data access (column 2, lines 35-41). Therefore, it would have been obvious to combine Newman et al. with Nusser et al to obtain the invention as specified in claim 27.

(6) regarding claim 28:

Art Unit: 2625

Newman et al. disclose all of the subject matter as described as above except for specifically teaching the color characterization profile of claim 26, wherein the container includes extensible markup language.

However, Nusser et al. disclose wherein the container includes extensible markup language (column 4, lines 44-45; note that digital rights management system confirms with the XML standard).

Newman et al. and Nusser et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art wherein the container includes extensible markup language. The suggestion/motivation for doing so would have been in order to facilitate data sharing across different systems. Therefore, it would have been obvious to combine Newman et al. with Nusser et al to obtain the invention as specified in claim 28.

(7) regarding claim 29:

Newman et al. disclose all of the subject matter as described as above except for specifically teaching the color characterization profile of claim 26, wherein the container is an advanced systems format container.

However, Nusser et al. disclose wherein the container is an advanced systems format container (column 3, lines 51-55; note that as ADF is considered as the multi-media video, sound, text, database, documents or software application programs).

Art Unit: 2625

Newman et al. and Nusser et al. are combinable because they are from the same field of endeavor. At the time of the invention, it would have been obvious to a person of ordinary skilled in the art wherein the container is an advanced systems format container. The suggestion/motivation for doing so would have been in order to facilitate variety of application programs. Therefore, it would have been obvious to combine Newman et al. with Nusser et al to obtain the invention as specified in claim 29.

(8) regarding claim 30:

Newman et al. further disclose the color characterization profile of claim 23, further comprising executable code (paragraph [0060], lines 6-9).

(9) regarding claim 31:

Newman et al. further disclose the color management characterization profile of claim 30, wherein the executable code provides instructions to translate the intra-device objective measurement data into color measurement representations (paragraph [0013], lines 1-18; note that the color management measurement data gets transformed to color management profiles).

(10) regarding claim 32:

Newman et al. further disclose the color management characterization profile of claim 30, wherein the executable code provides instructions to translate

Art Unit: 2625

the analytical device model parameter data into color measurement representations (paragraph [0041], lines 23-27; note that the color characteristics measurement data is accessed and used by the color management module to generate device transforms for use in mapping color image data to or from the device corresponding to color measurement profile).

Conclusion

 Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, THIS ACTION IS MADE FINAL.
 See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Art Unit: 2625

 Any inquiry concerning this communication or earlier communication from the examiner should be directed to Hilina Kassa whose telephone number is (571) 270-1676.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David Moore could be reached at (571) 272-7437. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about PAIR system, see http://pari-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Hilina S Kassa/ Examiner, Art Unit 2625 November 16, 2009

/David K Moore/

Supervisory Patent Examiner, Art Unit 2625