Содержание

1	Основные алгебраические структуры		2
	1.1	Бинарные операции и их свойства	2
	1.2	Алгебраические структуры с одной бинарной операцией	3
	1.3	Кольца и поля	7

1. Основные алгебраические структуры

1.1. Бинарные операции и их свойства

Определение 1.1. Пусть A - множество. Бинарной операцией на множестве A называется отображение:

$$f: A^2 \to A \quad (f: A \times A \to A)$$
 (1)

Замечание 1.2. Если f - бинарная операция на A и пара $(a,b) \in A^2$, то образ пары (a,b) при отображении f называется значением операции f на элементах a и b (результатом применения операции f κ элементам a и b) и обозначается f(a,b) или afb.

Пример 1.3. Примеры бинарных операций

- 1) Сложение и усножение на множествах $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- 2) Вычитание на $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ определеноб \mathbb{N}, \mathbb{N}_0 не определено.
- 3) Пусть f_1, f_2 такие, что $f_1: (1,n)^2 \to (\overline{1,n}), f_2: (\overline{1,n})^2 \to (1,n)$ при этом

$$f_1(a,b) = \max\{a,b\}, \quad f_2(a,b) = \min\{a,b\}$$
 (2)

Так как $\forall a, b \in \overline{1, n}$ max и min однозначно определены и содержатся во множестве от $\overline{1, n}$, то отображения f_1, f_2 являются бинарными операциями на множестве $\overline{1, n}$.

4) M - множество, P(M) - множество всех подмножеств, тогда пересечение и объединение $\forall A, B \in P(M)$ является бинарными операциями на множестве P(M).

Определение 1.4. Бинарная операция * на множестве M называется ассоциативной, если $\forall a, b \in M$ выполняется условие (a*b)*c = a*(b*c). Примерами ассоциативных операций могут служить бинарные операции из примера 1.3.

Определение 1.5. Бинарная операция * на множестве M называется коммутативной, если $\forall a, b \in M$ выполняется условие

$$a * b = b * a \tag{3}$$

Пример 1.6. Примеры коммутативных и некоммутативных операций:

- 1) Коммутативные пункты 1, 3, 4 из 1.3.
- 2) Некоммутативная пункт 2 из 1.3, декартово произведение, композиция.

Замечание 1.7. Для отдельных элементов $a, b \in M$ равенство a * b = b * a может выполняться в том случае, если операция * не коммутативна. Такие элементы называются перестановочными (коммутирующими) друг с другом

Пример 1.8.
$$a = 0, b = 0$$
: $a - b = b - a$

Замечание 1.9. Свойства ассоциативности и коммутативности операции независимы. пример коммутативной но не ассоциативной операции:

$$a * b = \frac{a+b}{2} \tag{4}$$

Определение 1.10. Бинарная операция * на множесстве M называется леводистрибутивной (праводистрибутивной) относительно операции о если \forall $a, b, c \in M$ выполнено условие:

$$a*(b\circ c)=(a*b)\circ (a*c)$$
 - леводистрибутивная (5)

$$(b \circ c) * a = (b * a) \circ (c * a)$$
 - праводистрибутивная (6)

если выполняются оба этих равенства, то говорят, что * дистрибутивна относительно операции \circ . Например умножение дистрибутивна κ сложению.

1.2. Алгебраические структуры с одной бинарной операцией

Определение 1.11. Алгебраической структурой (алгеброй) называется множество с системой операций.

Определение 1.12. Множество G с одной бинарной операцией называют группоидом, обозначают (G,*).

Замечание 1.13. Из определения группоида следует, что если множество G - конечно, то правило по которому можно найти значение операции *. $\forall a,b \in G$, можно записать в таблицу $G = \{a_1,\ldots,a_n\}$ - m.к. G - конечно.

$$\begin{pmatrix} * & a_1 & \dots & a_j & \dots & a_n \\ a_1 & a_1 * a_1 & \dots & a_1 * a_j & \dots & a_1 * a_n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_i & a_i * a_1 & \dots & a_i * a_j & \dots & a_i * a_n \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_n & a_n * a_1 & \dots & a_n * a_j & \dots & a_n * a_n \end{pmatrix}$$

Определение 1.14. Пусть $G_1 \subset G$, $\exists (G,*)$, G_1 называют замкнутым относительно операции *, если выполнены условия $\forall a,b \in G: ab \in G_1$. В этом случае группоид $(G_1,*)$ называют подгруппоидом группоида (G,*).

Определение 1.15. Элемент Λ группоида (G,*) называют нейтральным, если $\forall a \in G$ выполнено:

$$\Lambda * a = a \tag{7}$$

Пример 1.16. []

- 1) $(\mathbb{N}_0, +)(\mathbb{Q}, +)$ 0-нейтральные
- 2) (\mathbb{N}_0 , •)(\mathbb{Q} , •) 1-нейтральные
- 3) $(\mathbb{N},+)(\mathbb{Z},+)$ не имеют нейтрального элемента

Утверждение 1.17. Если в группоиде (G, *) существует нейтральный элемент, то он единственный.

Доказательство. пусть это не так, тогда Λ_1, Λ_2 - нейтральные элементы группоида (G,*). Т.к. Λ_1 - нейтральный, то $\Lambda_1 * \Lambda_2 = \Lambda_2$, а т.к. Λ_2 - нейтральный, то $\Lambda_1 * \Lambda_2 = \Lambda_1$.

Тогда
$$\Lambda_1 = \Lambda_2$$
.

Определение 1.18. Пусть есть (G,*), Λ - нейтральный элемент. Элемент $a' \in G$ Называется симметричным элементом элемента $a \in G$, если выполнено условие:

$$a' * a = a * a' = \Lambda \tag{8}$$

Замечание 1.19. В общем случае в группоиде с нейтральным элементом Λ элемент α может не иметь симметричных элементов, а может иметь 1 или несколько симметричных элементов.

Определение 1.20. Группоид (G,*) с ассоциативной операцией называют полугруппой.

Утверждение 1.21. Если в полугруппе (G,*) с нейтральным элементом Λ для элемента α существует симметричный элемент, то он единственный.

Доказательство. Пусть есть α' и α'' - симметричные элементы для α , тогда получается:

$$\alpha' = \alpha' * \Lambda = \alpha' * (\alpha * \alpha'') = (\alpha' * \alpha) * \alpha'' = \Lambda * \alpha'' = \alpha'' \Rightarrow \alpha' = \alpha'' \quad (9)$$

Определение 1.22. Группоид (G,*) называется группой, если выполнены условия:

- 1) * accoциативна
- 2) в (G,*) существует нейтральный элемент Λ
- 3) $\forall \alpha \in G \quad \exists \alpha' \in G$ если кроме того выполнено:
- 4) * коммутативна, то такую группу будут называть абалевой группой

Пример 1.23. $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ - группы (абелева группа)

 $(\mathbb{Q}, \bullet), (\mathbb{R}, \bullet)$ - коммутативные полугруппы с нейтральным элементом $\Lambda = 1$, но они не являются группами.

$$(\mathbb{Q}\backslash\{0\},ullet), (\mathbb{R}\backslash\{0\},ullet)$$
 - группы

 $(\{1\}, ullet)$ - группа

 $(\{1, -1\}, \bullet)$ - группа

Теорема 1.24. В любой группе (G,*) $\forall a,b \in G$ однозначно разрешимы уравнения:

$$a * x = b \qquad y * a = b \tag{10}$$

Доказательство. С помощью непосредственной проверки, можно убедиться, что решением уравнения:

$$a*x=b$$
 является $x=a'*b \rightarrow a*(a'*b)=b,$

и решением уравнения:

$$y*a=b$$
 является $y=b*a' \rightarrow (a*a')*b=b$

Теперь необходимо доказать единственность этих решений. Допустим первое уравнение имеет 2 решения x_1, x_2 , тогда:

$$a*x_1=a*x_2$$
 - умножим на a'

$$a' * (a * x_1) = a' * (a * x_2) \Rightarrow (a' * a) * x_1 = (a' * a) * x_2$$

 $\Lambda * x_1 = \Lambda * x_2 \Rightarrow x_1 = x_2$ - противоречие, \Rightarrow существует только одно решение. Аналогично с y.

Определение 1.25. Пусть есть (G,*) - полугруппа $(a_1,...,a_n) \in G$, если $a_1 = a_2 = ... = a_n$. Тогда

- 1) $a_1 * a_2 * ... * a_n = a^n$, ecnu * умножение.
- 2) $a_1 * a_2 * ... * a_n = na$, ecnu * сложение.

B таком случае элемент a^n называется n-степенью элемента a, элемент na называется n-кратным элементом a.

Утверждение 1.26. *Если* (G, \bullet) *и* (G, +) - *полугруппы, то для* $\forall a \in G, \forall n_1, n_2 \in \mathbb{N}$ *выполнены условия:*

- 1) $a^{n_1} * a^{n_2} = a^{n_1 + n_2}$
- 2) $(a^{n_1})^{n_2} = a^{n_1 * n_2}$
- 3) $n_1a + n_2a = (n_1 + n_2)a$
- 4) $n_1(n_2a) = (n_1n_2)a$

Замечание 1.27. Если группоид $(G, \bullet)(G, +)$ являктся группой, то понятия n-ой степени и n-кратного элемента можно распространить на любое $n \in \mathbb{Z}$ для этого введем следующие обозначения:

- 1) 0 нейтральный элемент относительно +
- 2) е нейтральный элемент относительно •

- 3) -a противоположный элемент κ a относительно +
- 4) a^{-1} обратный к а относительно \bullet
- 5) $a^0 = e$
- 6) 0 * a = 0
- 7) $(a^n)^{-1} = a^{-n}$
- 8) (-n)a = -(na)

1.3. Кольца и поля

Определение 1.28. Кольцом называется множество R с бинарными операциями +, \bullet если выполены условия:

- 1) (R,+) абелева группа
- 2) (R, \bullet) полугруппа
- 3) умножение дистрибутивно относительно +

npu этом rpynna (R, +) называется аддитивной rpynnoй кольца R.

Определение 1.29. Кольцо $(R, +, \bullet)$ называется коммутативным, если умножение коммутативно и кольцом с единицей, если (R, \bullet) - полугруппа с единицей.

Пример 1.30. []

- 1) $(\mathbb{Z},+,ullet),(\mathbb{Q},+,ullet),(\mathbb{R},+,ullet)$ коммутативные кольца с единицей
- 2) $(2\mathbb{Z},+, \bullet)$, где $2\mathbb{Z}$ множество всех четных чисел
- 3) $R^2 = \{(a,b)|a,b \in \mathbb{R}\}$ множество упорядоченных пар (кольцо не коммутативно)

Введем на множестве R^2 операции сложения и умножения:

$$\forall (c,d) \in R^2 : (a,b) + (c,d) = (a+c,b+d) \qquad (a,b) \bullet (c,d) = (ac,bd) \tag{11}$$

Так как операции над парами производятся покомпонентно, то из свойств целых чисел получаем:

- 1) $+, \bullet$ в R^2 коммутативны и ассоциативны
- 2) - дистрибутивна относительно +
- (0,0) нулевой элемент
- 4) (1,1) единичный элемент
- (-a, -b) противоположный элемент для (a, b)

 $(R^2, +, \bullet)$ - коммутативное кольцо с единицей

Теорема 1.31. $\forall a, b, c \in \mathbb{R}^2$, где \mathbb{R}^2 - произвольное кольцо с нулем, справедливы следующие выражения:

- 1) a * 0 = 0 * a = 0
- 2) -(-a) = a
- 3) (-a)b = -(ab)
- 4) (-a)(-b) = ab
- $5) \ a(b-c) = ab ac$
- 6) $m(ab) = (ma)b, \quad m \in \mathbb{Z}$
- 7) $(m_1a)(m_2b) = (m_1m_2)(ab), \quad m_1, m_2 \in \mathbb{Z}$

Доказательство. Пункт 1: $a*0=0*a=0, 0-\Lambda, 0+0=0$ $a*0=a(0+0)=a*\overline{0+a*0}$ прибавим к обеим частям противоположный элемент (-a*0)

$$(a*0) - (a*0) = -a*0 + a*0 + a*0 \Rightarrow 0 = 0_a*0 \Rightarrow a*0 = 0$$

<u>Пункт 2</u>: -(-a) = a (-a) противоположный для (a), (a) - противоположный для (-a)

Пункт 3: (-a)(b) = -(ab)

т.к. $\overline{-(ab)}$ противоположный к (ab), то для доказательства достаточно показать, что -(a)b противоположен (ab):

$$ab + (-a)b = (a + (-a))b = 0 * b = 0$$

 $a * (-b) = -(ab)$ - аналогично

$$\frac{\text{Пункт 4: } (-a)(-b) = ab}{(-a)(-b) = -(a(-b)) = -(-ab) = ab}$$

$$\frac{\text{Пункт 5: } a(b-c) = ab - ac}{a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-(ac)) = ab - ac}$$

Пункт 6: m(ab) = (ma)b = a(mb)

Для доказательства достаточно воспользоваться определением *n*-кратного элемента. Свойствами ассоциативности умножения пользоваться нельзя.

1)
$$m \in \mathbb{N}$$
 $m(ab) = ab + ab + ... + ab = (a + ... + a)b = (ma)b$

- 2) m=0 $m(ab)=(ma)b\Rightarrow$ из свойства 1
- 3) $m \in \mathbb{Z} \backslash \mathbb{N}_0 \Rightarrow m = -n$, где $n \in \mathbb{N}$ -n(ab) = (-na)b (-n)a = -(na) по определению n-кратного элемента -n(ab) = (-na)b, так как (-a)b = a(-b) = -ab

$$\frac{\Pi \text{ ункт } 7: (m_1 a)(m_2 b) = (m_1 m_2)(ab)}{(m_1 a)(m_2 b)} = (a + a + \dots + a)(b + b + \dots + b) = ab + ab + \dots + ab = m_1(m_2 ab)$$