FLIP01 MIDTERM PRESENTATION

Zhaoyang Wang Xi'an Shiyou University

January 12, 2020

Overview

Problem Statement

Text feature extraction

Modeling

Conclusion

Thanks for watching

Problem Definition

Data Set

Text feature extraction

Modeling

Conclusion

Thanks for watching

Problem Statement

FLIP01 MIDTERM PRESENTATION

Problem Definition

Problem Statement

Problem Definition

Data Set

Text feature extraction

Modeling

Conclusion

Thanks for watching

Some of our strongest geographic and cultural associations are tied to a region's local foods. This playground competitions asks you to predict the category of a dish's cuisine given a list of its ingredients.

Data Set

Problem Statement

Problem Definition

Data Set

Text feature extraction

Modeling

Conclusion

Thanks for watching

■ train data

Table 1: The head of the train data					
	cuisine	id	igredients		
0	greek	10259	[romaine lettuce, black olives, grape tomatoes		
1	southern_us	25693	[plain flour, ground pepper, salt, tomatoes, g		
2	filipino	20130	[eggs, pepper, salt, mayonaise, cooking oil, g		
3	indian	22213	[water, vegetable oil, wheat, salt]		
4	indian	13162	[black pepper, shallots, cornflour, cayenne pe		

■ Display the data set

Table 2: The head of the test data				
	id	igredients		
0	18009	[baking powder, eggs, all-purpose flour, raisi		
1	28583	[sugar, egg yolks, corn starch, cream of tarta		
2	41580	[sausage links, fennel bulb, fronds, olive oil		
3	29752	[meat cuts, file powder, smoked sausage, okra,		
4	35687	[ground black pepper, salt, sausage casings, l		

Text feature extraction

Count Vectorizer

Modeling

Conclusion

Thanks for watching

Text feature extraction

CountVectorizer

Problem Statement

Text feature extraction

CountVectorizer

Modeling

Conclusion

Thanks for watching

By using CountVectorizer to transform the text data to be the word frequency matrix. And we can use tha toarray to help us.

The output example:

Text feature extraction

Modeling

Conclusion

Thanks for watching

Modeling

Modeling

Problem Statement

Text feature extraction

Modeling

Conclusion

Thanks for watching

problem analysis

This is a text classification problem. Machine learning has many ways to solve text classification problems.

- Random forest
- SVM

Random forest

- Divide training data and test data
- Do a model training
- Model evaluation
- Model prediction

SVM

- Divide training data and test data
- Do a model training
- Model evaluation
- Model prediction

The score of Random forest and SVM

Table 3: The score of 2 model						
	model	score				
1	Random forest	0.71				
2	SVM	0.79				

Forcasting

Problem Statement

Text feature extraction

Modeling

Conclusion

Thanks for watching

By using the above model, the prediction classification results can be obtained.

The output is:

array(['southern_us', 'southern_us', 'italian', ..., 'italian', 'southern_us', 'mexican'], dtype=object)

Text feature extraction

Modeling

Conclusion

Thanks for watching

Conclusion

Conclusion

Problem Statement

Text feature extraction

Modeling

Conclusion

Thanks for watching

Text feature extraction Using the CountVectorizer and TfidfVectorizer to help us process the text data. If the text data is Chinese, you can use jieba for word segmentation.

Modeling There are many ways to deal with text classification in machine learning Can be appropriately selected on combination with the problem.

Prospeting I woule like to select multiple models for comparison later. For example, Naive Bayes, there are some deep learning methods (RNN, CNN)

Text feature extraction

Modeling

Conclusion

Thanks for watching

Thanks for watching

