Loan Prediction Project

Members:

1) Samy Samer	20201700340
2) Mina Nabil	20201700897
3) Marina Atef	20201701120
4) Maria Abadir	20201701219
5) Sandra Alfy	20201700342
6) Michel Magdy	20201700886

Under supervision:

Dr. Verena Nashaat

1) Pre-Processing:

First, we removed duplicates then replacing the string by numeric values.

```
#data cleaning

#drop duplicates
data.drop_duplicates()

#replacing strings by numeric values
data['Loan_ID'] = data['Loan_ID'].str.replace('LP', '')
data["Gender"] = data["Gender"].replace(['Female', 'Male'],[0,1])
data["Married"] = data["Married"].replace(['No', 'Yes'],[0,1])
data["Education"] = data["Education"].replace(['Not Graduate', 'Graduate'],[0,1])
data["Self_Employed"] = data["Self_Employed"].replace(['No', 'Yes'],[0,1])
data["Property_Area"] = data["Property_Area"].replace(['Urban', 'Rural', 'Semiurban'],[0,1,2])
data["Loan_Status"] = data["Dependents"].replace(('N', 'Y'],[0,1])
data["Dependents"] = data["Dependents"].replace('3+',3)
```

We found two columns with different data types.

```
data["Dependents"]=data["Dependents"].astype(float)
data['Loan_ID'] = data['Loan_ID'].astype(float)
```

Then calculated the correlation to know data which we need to drop.

#calculate the correlation data.corr()													
	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
Loan_ID	1.000000	-0.031415	-0.014705	0.054679	-0.037547	0.033295	0.019331	0.039516	0.038447	-0.030481	-0.032910	0.072041	0.011958
Gender	-0.031415	1.000000	0.369612	0.175970	-0.049258	-0.009829	0.053989	0.083946	0.106947	-0.075117	0.016337	-0.085306	0.019857
Married	-0.014705	0.369612	1.000000	0.343417	-0.014223	0.001909	0.051332	0.077770	0.149519	-0.103810	0.004381	0.001875	0.089280
Dependents	0.054679	0.175970	0.343417	1.000000	-0.059161	0.057867	0.118679	0.027259	0.163997	-0.100484	-0.050082	-0.000813	0.006781
Education	-0.037547	-0.049258	-0.014223	-0.059161	1.000000	0.012333	0.140760	0.062290	0.171133	0.078784	0.081822	0.003592	0.085884
Self_Employed	0.033295	-0.009829	0.001909	0.057867	0.012333	1.000000	0.140826	-0.011152	0.123931	-0.037069	0.003883	0.019688	-0.002303
ApplicantIncome	0.019331	0.053989	0.051332	0.118679	0.140760	0.140826	1.000000	-0.116605	0.570909	-0.045306	-0.014715	-0.007894	-0.004710
CoapplicantIncome	0.039516	0.083946	0.077770	0.027259	0.062290	-0.011152	-0.116605	1.000000	0.188619	-0.059878	-0.002056	-0.028356	-0.059187
LoanAmount	0.038447	0.106947	0.149519	0.163997	0.171133	0.123931	0.570909	0.188619	1.000000	0.039447	-0.008433	0.014074	-0.037318
Loan_Amount_Term	-0.030481	-0.075117	-0.103810	-0.100484	0.078784	-0.037069	-0.045306	-0.059878	0.039447	1.000000	0.001470	0.090610	-0.021268
Credit_History	-0.032910	0.016337	0.004381	-0.050082	0.081822	0.003883	-0.014715	-0.002056	-0.008433	0.001470	1.000000	0.037822	0.561678
Property_Area	0.072041	-0.085306	0.001875	-0.000813	0.003592	0.019688	-0.007894	-0.028356	0.014074	0.090610	0.037822	1.000000	0.103253
Loan_Status	0.011958	0.019857	0.089280	0.006781	0.085884	-0.002303	-0.004710	-0.059187	-0.037318	-0.021268	0.561678	0.103253	1.000000

According to correlation we dropped the useless features.

```
data.drop(['Loan_ID'],axis=1,inplace=True)
data.drop(['Gender'],axis=1,inplace=True)
```

Replace Null values in a column with mode of column values.

```
data['Married'].fillna(value=data['Married'].mode()[0], inplace=True)
data['Dependents'].fillna( data.Dependents.mode()[0], inplace = True )
data['Self_Employed'].fillna(value=data['Self_Employed'].mode()[0], inplace=True)
data['Loan_Amount_Term'].fillna(value=data['Loan_Amount_Term'].mode()[0], inplace=True)
data['LoanAmount'].fillna(value=data['LoanAmount'].mode()[0], inplace=True)
data['Credit_History'].fillna(value=data['Credit_History'].mode()[0], inplace=True)
```

separate array into input and output components.

```
Y = data["Loan_Status"]
X = data.drop("Loan_Status", axis=1)
#split our data to train and test
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.3,random_state=1)
```

Then we made data scaling to set range of values between 0 and 1 to make Y depends on weight of X only.

```
scaler = MinMaxScaler()
X_train = pd.DataFrame(scaler.fit_transform(X_train), columns=X_train.columns)
X_test = pd.DataFrame(scaler.fit_transform(X_test), columns=X_test.columns)
```

Principle components analysis (PCA) for feature extraction.

```
pca = PCA(n_components=3)
pca_train = pca.fit_transform(X_train)
pca_test = pca.fit_transform(X_test)
```

2) Algorithms:

A) Logistic Regression:

Before Feature extraction:

We set

Solver by Liblinear: because it is a simple package for solving large-scale regularized linear classification, regression and outlier detection.

C by 1: as it's average value as by increasing value of C overfitting occurs and by decreasing value of C underfitting occurs.

```
#Logistic Regression before feature extraction

L_model = LogisticRegression(solver='liblinear',C=1.0,random_state=1)

L_model.fit(X_train,Y_train)

model_accuracy=L_model.score(X_train,Y_train)

print("the Logistic Regression accuracy before feature extraction is :",model_accuracy)

✓ 0.7s

the Logistic Regression accuracy before feature extraction is : 0.81818181818182
```

B) SVM:

Before feature extraction:

We set:

Kernel by poly: we found it was the best choice for our data with best accuracy.

```
#SVM before feature extraction
S_model = svm.SVC(kernel='poly')
S_model.fit(X_train,Y_train)
model_accuracy=S_model.score(X_test,Y_test)
print("the SVM accuracy before feature extraction is :",model_accuracy)

✓ 0.1s

the SVM accuracy before feature extraction is : 0.7891891891892
```

After feature extraction:

```
#SVM after feature extraction
S_model.fit(pca_train,Y_train)
model_accuracy=S_model.score(pca_test,Y_test)
print("the SVM accuracy after feature extraction is :",model_accuracy)

✓ 0.3s

the SVM accuracy after feature extraction is : 0.6756756756757
```

C) Decision tree:

Before feature extraction:

We used **max_depth**: it represents the number of levels of tree as we used an average number to avoid overfitting with best accuracy.

```
#Decision tree after feature extraction

D_model.fit(pca_train,Y_train)

model_accuracy=D_model.score(pca_test,Y_test)

print("the Decision tree accuracy after feature extraction is :",model_accuracy)

✓ 0.1s

the Decision tree accuracy after feature extraction is : 0.6864864864864865
```

Bonus Algorithms:

A) Random Forest:

Before feature extraction:

we used:

n_estimators: as it represents number of trees in forest and we used the value 100 as it was best for our accuracy.

Max_depth: it represents the number of levels of forest as we used an average number to avoid overfitting with best accuracy.

```
#Random Forest before feature extraction

R_model=RandomForestClassifier(n_estimators=100,max_depth=5)

R_model.fit(X_train,Y_train)

model_accuracy=R_model.score(X_test,Y_test)

print("the Random Forest accuracy before feature extraction is :",model_accuracy)

✓ 0.6s

the Random Forest accuracy before feature extraction is : 0.7837837837837838
```

```
#Random Forest after feature extraction

R_model.fit(pca_train,Y_train)

model_accuracy=R_model.score(pca_test,Y_test)

print("the Random Forest accuracy after feature extraction is :",model_accuracy)

✓ 0.5s

the Random Forest accuracy after feature extraction is : 0.6324324324324324
```

B) Naïve bayes:

Before feature extraction:

```
#Naive bayes before feature extraction
N_model= GaussianNB()
N_model.fit(X_train,Y_train)
model_accuracy=N_model.score(X_test,Y_test)
print("the Naive bayes accuracy before feature extraction is :",model_accuracy)

✓ 0.7s

the Naive bayes accuracy before feature extraction is : 0.772972972973
```

After feature extraction:

C) KNN:

Before feature extraction:

We used **n_neighbors = 5**: because it was a stable number for our accuracy.

```
#KNN before feature extraction

K_model= KNeighborsClassifier(n_neighbors=5)

K_model.fit(X_train, Y_train)

model_accuracy=K_model.score(X_test,Y_test)

print("the KNN accuracy before feature extraction is :",model_accuracy)

✓ 0.1s

the KNN accuracy before feature extraction is : 0.7513513513513513
```