Tarea 1

Angel Caceres Licona

June 12, 2020

1 Encontrar los ceros del polinomio

Empezamos por graficar el polinomio:

Para el primer punto usamos $p_0=-8+0i,\ p_1=-7+0i$ y $p_2=-6+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	-5.56988770741102 + 0j	1366.1300931573928 + 0j
1	-5.253213136295214 + 0j	495.11617890693424 + 0j
2	-5.098845924131111+0j	173.8892671646845 + 0j
3	-5.024791372074857+0j	41.38752244099669+0j
4	-5.003476678249181 + 0j	5.716037928335936 + 0j
5	-5.000158597502512+0j	0.26012961100877874 + 0j
6	-5.000001181494323+0j	0.0019376523382561572 + 0j
7	-5.000000000421358+0j	6.910286174388602e-07+0j
8	-5+0j	0j

Para el segundo punto usamos $p_0 = -5.5 + 0i$, $p_1 = -4 + 0i$ y $p_2 = -3 + 0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	-2.73014360107805+0j	-136.74477205133985+0j
1	-2.5499814337627+0j	-29.08776618373531+0j
2	-2.507713928583022+0j	-4.460345829948892 + 0j
3	-2.5003258053984068+0j	-0.18816259248796996 + 0j
4	-2.500002511682252+0j	-0.0014504970934012817+0j
5	-2.5000000008553442+0j	-4.939613518217811e-07+0j
6	-2.5000000000000002+0j	-1.3642420526593924e-12+0j

Para el tercer punto usamos $p_0=-1+0i,\, p_1=-0.5+0i$ y $p_2=-0+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	0.10636615495378643 + 0j	11.48189096004183+0j
1	0.12432985679642755 + 0j	0.4146504754316993 + 0j
2	0.12499576897414577 + 0j	0.0026183413773708253 + 0j
3	0.12499999900157793 + 0j	6.178672578016631e-07+0j
4	0.1249999999999985 + 0j	9.237055564881302e-13+0j

Para el cuarto punto usamos $p_0=1+0i,\ p_1=1.5+0i$ y $p_2=2+0i$ y obtenemos lo siguiente:

$ 0 0.10636615495378643 + 0j \qquad 11.48189096004183 + 0j $	
$\parallel 1 0.12432985679642755 + 0j 0.4146504754316993 + 0$	j
2 0.12499576897414577+0j 0.0026183413773708253+	-0j
3 0.12499999900157793 + 0j 6.178672578016631e-07 +	-Oj
4 0.124999999999995+0j 9.237055564881302e-13+	-Oj

2 2o ejercicio

Encontrar las raíces del polinomio $x^5-3.4x^4+5.4521x^3-4.2077x^2+1.50924x-0.20304$

Empezamos por graficar el polinomio para localizar las raíces:

Para el primer punto usamos $p_0=0.1+0i,\ p_1=0.2+0i$ y $p_2=0.3+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	0.4458286112629127 + 0j	-4.5035571730744905e-06+0j
1	0.447862249714668 + 0j	-1.984579714342516e-06+0j
2	0.44911066631197444 + 0j	-7.480005712046101e $-07+0$ j
3	0.44973410889903526 + 0j	0.44973410889903526 + 0j
4	0.4499539551055597 + 0j	-3.612369059435849e-08+0j
5	0.44999683279627883 + 0j	-2.4758296524041157e-09+0j
6	0.44999995472396714 + 0j	-3.5383473928618514e-11+0j
7	0.4499999999522736 + 0j	-3.735900477863652e-14+0j
8	0.450000000000077 + 0j	0j

Para el segundo punto usamos $p_0=0.44449+0i,\ p_1=0.45+0i$ y $p_2=0.46+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	$0.46361984035922454 \hbox{-} 0.006480490395900713 j$	$2.315981070533102 \mathrm{e}\hbox{-}06+2.077710561383672 \mathrm{e}\hbox{-}06\mathrm{j}$
1	$0.4644536016521566 \hbox{-} 0.0013817275971592683 j$	1.6195876901825557e-06+3.940042875242439e-07j
2	$0.4681675684182604 \hbox{-} 0.0016224161844768433 j$	$4.894803319333008 \mathrm{e}\hbox{-}07 + 4.777100273906446 \mathrm{e}\hbox{-}07\mathrm{j}$
3	0.46941074191987503 - 0.0005016559512962782j	$1.5250603035976695 \mathrm{e}\hbox{-}07 + 1.357088822529851 \mathrm{e}\hbox{-}07\mathrm{j}$
4	$0.46996400037246505 - 0.0001786353845617478 \mathrm{j}$	8.828068498445418e-09+4.5936642648156806e-08j
5	0.4700099838395804-1.818521082275532e-05j	-2.5606796683064204 e - 09 + 4.653959900532918 e - 09j
6	0.47000065692413423 + 3.1214107531578656e-07j	$-1.682864958496566 \\ e-10-7.995896020945756 \\ e-11 \\ j$
7	0.46999999705608536 + 1.2287968008216802 e-09j	7.541745006278688 e - 13 - 3.147932586412226 e - 13 j
8	0.470000000000476 + 1.5254619116459673 e-13j	$-2.220446049250313 \mathrm{e}\hbox{-}16\hbox{-}3.907928325070722 \mathrm{e}\hbox{-}17 \mathrm{j}$

Para el tercer punto usamos $p_0=0.46+0i,\ p_1=0.47002+0i$ y $p_2=0.48321+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	0.47660443303598554 + 0j	-7.600668973095637e-07+0j
1	0.47989521248348477 + 0j	-3.938347747922677e-08+0j
2	0.47999870157997 + 0j	-4.947687815004542e-10+0j
3	0.4800000011944164 + 0j	4.551914400963142e-13+0j
4	0.4800000000005055 + 0j	-1.1102230246251565e-16+0j

Para el cuarto punto usamos $p_0=0.96-0.96i,\ p_1=0.97-0.97i$ y $p_2=0.98-0.98i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	$0.999999989509428\hbox{-} 0.999999819177748 j$	-5.54634412841537e-08-2.507695140430144e-08j
1	1.0000000153197894-0.9999999870935946j	$-3.288684002900055 \mathrm{e}\hbox{-}08+4.8170878397257866 \mathrm{e}\hbox{-}08\mathrm{j}$
2	1.0000000147687256-1.000000005888029j	2.139572685688762 e - 08 + 4.105273565535583 e - 08j
3	1.0000000006269771-1.0000000024209634j	7.197350604393193e-09+1.104973446075519e-09j
4	1.00000000163686290.9999999988980542j	-2.7112517786420653e-09+5.065483144051086e-09j

Para el cuarto punto usamos $p_0=0.96+0.96i,\ p_1=0.97+0.97i$ y $p_2=0.98+0.98i$ y obtenemos lo siguiente:

$\mid \mid n \mid$	p_n	$f(p_n)$
0	$0.999999989509428 + 0.9999999819177748 \mathbf{j}$	-5.54634412841537e-08+2.507695140430144e-08j
1	1.0000000153197894 + 0.9999999870935946j	$-3.288684002900055 \mathrm{e}\hbox{-}08\hbox{-}4.8170878397257866 \mathrm{e}\hbox{-}08\mathrm{j}$
2	1.0000000147687256 + 1.000000005888029j	$2.139572685688762 \mathrm{e}\hbox{-}08\hbox{-}4.105273565535583 \mathrm{e}\hbox{-}08\mathrm{j}$
3	1.0000000006269771 + 1.0000000024209634j	7.197350604393193 e-09-1.104973446075519 e-09 j
4	1.0000000016368629 + 0.9999999988980542j	-2.7112517786420653e-09-5.065483144051086e-09j

3 3er ejercicio

Encontrar las raíces del polinomio $4x^4 - 9x^3 + 3x^2 + 5x - 3$ Empezamos por graficar el polinomio para localizar las raíces:

Para el primer punto usamos $p_0=-1.2+0i,\, p_1=-1+0i$ y $p_2=-0.7+0i$ y obtenemos lo siguiente:

9106211555j
3110868e-05j
6436136e-08j
296725e-12j
2

Para el segundo punto usamos $p_0=0.7+0i,\, p_1=0.8+0i$ y $p_2=0.9+0i$ y obtenemos lo siguiente:

n	p_n	$f(p_n)$
0	0.9999917539097252 + 0j	-3.9968028886505635e-15+0j
1	0.9999930288112501 + 0j	-2.6645352591003757e-15+0j
2	0.9999949014295727 + 0j	-2.239556913252727e-07+6.696217955436136e-08j
3	0.9999969129400132 + 0j	0j

4 4o ejercicio

Encuentre la raíz en el intervelo (1,4) de la ecuación 0=tan(x)-x... Graficamos la ecuación:

Obtuve la siguiente salida:

```
Ph = (0.5856668850499257+0.031871354027825226j) f(Ph) = (0.67763120524727807-0.031871354027825226j) f(Ph) = (0.67763120524727807-0.0318713540278252526j) f(Ph) = (0.67763120524727807-0.031871354027825256j) f(Ph) = (0.6987807380615592-0.090124017011029953j) f(Ph) = (0.698780739343080837-0.02289612845312682j) f(Ph) = (0.69878073963615592-0.090124017011029953j) f(Ph) = (0.69878073943780315408272) f(Ph) = (0.77641159449943612-0.022961282845312682j) f(Ph) = (0.77641159449943613-0.022961282845312682j) f(Ph) = (0.77641159449943613-0.022961282845312682j) f(Ph) = (0.77641159449943613-0.022961282845312682j) f(Ph) = (0.786451515859996-0.099431783113480422j) f(Ph) = (0.698295591655758-0.0868610462423367j) f(Ph) = (0.1635804160775876-0.07141994090222072j) f(Ph) = (0.698295591655758-0.0868610462423367j) f(Ph) = (0.69829591655758-0.098291493876575j) f(Ph) = (0.69829591655758-0.09829149376572797j) f(Ph) = (0.978279295251555-0.3982937471727897j) f(Ph) = (0.978279295255666956555-0.3982783741727897j) f(Ph) = (0.97827929525566956555-0.3982783741727897j) f(Ph) = (0.9982631958566693555-0.3982783741727897j) f(Ph) = (0.69836756669555-0.3982787347127897j) f(Ph) = (0.69836756669555-0.0982937471727897j) f(Ph) = (0.69836756669555-0.0992837471727897j) f(Ph) = (0.69836756669555-0.0992837471727897j) f(Ph) = (0.69836756669555-0.09928374717343153523j) f(Ph) = (0.69836756669555-0.09928374717343153523j) f(Ph) = (0.698367566695655-0.09928374717343153523j) f(Ph) = (0.698367566955526669565-0.09928374734514056637950137656469555-0.09928374566499555-0.09928374566499555-0.09928374566499555-0.09928374566499555-0.09928374566499555-0.09928374566499555-0.09928374566499555-0.09928374566499
```

como podemos ve el metodo no converge. Usando la otra forma de la ecuación obtuve lo siguiente:

n	p_n	$f(p_n)$
0	4.49331814720452	9.13125603730081e-5
1	4.49340765899325	1.79891653645514e-6
2	4.49340945620222	1.70684263944842e-9
3	4.49340945790903	3.2834845953289e-14

Y como podemos observar me dio una raiz fuera del intervalo aunque en la gradica vemos que efectivamente la raiz está fuera del intervalo dado.

5 50 ejercicio

Encontrar las raíces complejas cercanas al origen de la ecuación $x - \sin(x)$ Empezamos por graficar el polinomio para localizar las raíces:

Esta función sólo tiene una raiz real en (0,0)Usando los puntos $p_0=-0.1+0i,\,p_1=0.001+0i$ y $p_2=0.00001+0i$ obtuve

6 Codigo del programa

```
def MullerM(f,p0,p1,p2,tol,maxIter):
    from numpy.lib.scimath import sqrt
    p0 = p0
    p1 = p1
    p2 = p2
    f0 = f(p0)
    f1 = f(p1)
```

```
f2 = f(p2)
                             f3 = 0
                            i = 0
 10
 11
                             while i<=maxIter:</pre>
                                             c = f2
 12
 13
                                              b = ((p0-p2)**2 *(f1-f2)-(p1-p2)**2 *(f0-f2))/((p0-p2)*(p1-p2)**2 *(f0-f2))/((p0-p2)**2 *(p1-p2)**2 
                                                                p2)*(p0-p1))
                                              a = ((p1-p1)*(f0-f2) - (p0-p2)*(f1-f2))/((p0-p2)*(p1-p2)*(
 14
                                                             p0-p1))
                                              p3 = p2 - 2*c/(b+(b/abs(b))*sqrt(b**2 -4*a*c))
 15
                                              f3 = f(p3)
 16
                                              print ("Pnu=uu", p3, "uuuf(Pn)u=uu", f3)
 17
                                              if abs(p3-p2)<tol:
18
 19
                                                                return p3
                                              p0 = p1
 20
                                              p1 = p2
 21
                                              p2 = p3
22
                                              f0 = f(p0)
23
 24
                                              f1 = f(p1)
                                              f2 = f(p2)
25
                                              i = i+1
 26
                             print ("Nouseuencontroulauraiz")
27
28
29 def f(x):
                           fx = 16*x**4 + 70*x**3 - 169*x**2 - 580*x + 75
30
                             return fx
31
32
33 MullerM(f, complex(1.5,0), complex(2,0), complex(2.5,0)
                              ,0.00000001,100)
```