Question	Answer		Mark
Number		(4)	
15a	See $I_T = I_1 + I_2$	(1)	
	See $V/R_T = V/R_1 + V/R_2$	(1)	
	Divides both sides by V to give $1/R_T = 1/R_1 + 1/R_2$		
	Or V is the same in parallel, so $1/R_T = 1/R_1 + 1/R_2$	(1)	3
	·		
	(MP3 cannot be awarded for just seeing the equation as this is given on		
	the formula sheet).		
15bi	Use of resistors in parallel formula for N, P and Q (or see 3.3 Ω from		
	relevant working)	(1)	
	relevant working)	(1)	
	Adds total to resistance of O (or see 8.3 Ω)	(1)	
	Adds total to resistance of O (of see 6.5 12)	(1)	
	Tatal vasistavas 24 (O)	(4)	
	Total resistance = 3.1 (Ω)	(1)	3
	(No unit penalty as is a "show that")		
	(Each step in calculation could be achieved with product/sum		
	calculations, but need to see bracketed values for MP1 and MP2)		
	Example of calculation		
	Resistor N = 5.0Ω ,		
	P + Q = 5.0Ω + 5.0Ω = 10.0Ω		
	$1/R_T$ for N parallel with (P+Q) = (1/5.0 Ω) + (1/10.0 Ω). R_T = 10/3 = 3.3 Ω.		
	O in series with this 3.3 Ω , so total for N,O,P,Q section = 25/3 = 8.3 Ω .		
	$1/R_T$ (for whole combination) = $(1 / 8.3 \Omega) + (1 / 5.0 \Omega)$		
	$R_{\rm T} = 3.1 \ \Omega$		
	N = 3.1 22		
15bii	Replace resistor M	(1)	
ווטכו	replace resistor ivi	(1)	
	The resistance of a parallel combination is always less than a single		
	The resistance of a parallel combination is always less than a single	(1)	,
	resistor in parallel with the others.	(1)	2
	(MP2 dependent on MP1)_		
			o
	Total for question 15		8