PROBLEM SOLVING WITH PYTHON

Umolu Peace

2018/2019

Índice

1.	CSES Problem Set			
	1.1.	Introd	uctory Problems	1
		1.1.1.	Weird Algorithm	1
		112	Missing Number	1

1. CSES Problem Set

1.1. Introductory Problems

1.1.1. Weird Algorithm

Consider an algorithm that takes as input a positive integer n. If n is even, the algorithm divides it by two, and if n is odd, the algorithm multiplies it by three and adds one. The algorithm repeats this, until n is one. For example, the sequence for n = 3 is as follows:

$$3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

Your task is to simulate the execution of the algorithm for a given value of n.

Input: The only input line contains an integer n.

Output: Print a line that contains all values of *n* during the algorithm.

Constraints: $1 \le n \le 10^6$

Example:

• Input(1) \implies Output (3, 10, 5, 16, 8, 4, 2, 1)

1.1.2. Missing Number

You are given all numbers between $1, 2 \dots, n$ except one. Your task is to find the missing number.

Input: The first input line contains an integer n. The second line contains n-1 numbers.

Each number is distinct and between 1 and n (inclusive).

Output: Print the missing number.

Constraints: $2 \le n \le 2 \cdot 10^5$

Example:

• Input $(5, \{2,3,1,5\}) \implies \text{Output}(4)$