# 幾何数理工学演習 (位相空間)

2020/11/30 (月) 数理 7 研 特任助教 坂上 晋作 sakaue@mist.i.u-tokyo.ac.jp

# 1 定義と要項

#### ■距離空間における近傍と連続性

• 距離空間 (X,d) における  $x \in X$  の  $\varepsilon$ -近傍  $N(X,d,x,\varepsilon)$ :

$$N(X, d, x, \varepsilon) := \{ y \in X \mid d(x, y) < \varepsilon \}.$$

考えている距離空間が自明の場合には  $N(x,\varepsilon)$  とも書く.

- 距離空間 (X,d) において,  $U \subset X$  とする.  $\forall x \in U, \exists \varepsilon > 0, N(x,\varepsilon) \subset U$  であるとき, U を 開集合という.
- 開集合の補集合を閉集合という.
- $(X, d_X)$ ,  $(Y, d_Y)$  を距離空間とし, f を X から Y への写像とする.  $x \in X$  について, 次の(同値な) 3 つの条件のどれかが成り立つとき f は x で連続であるという:
  - 1.  $(X, d_X)$  の任意の点列  $\{x_n\}$  について  $[x_n \to x]$  ならば  $f(x_n) \to f(x)$ 」.
  - 2. 任意の  $\varepsilon > 0$  に対して、ある  $\delta > 0$  が存在して

$$f(N(X, d_X, x, \delta)) \subset N(Y, d_Y, f(x), \varepsilon).$$

3. 任意の $\varepsilon > 0$  に対して、ある $\delta > 0$  が存在して

$$d_x(x,x') < \delta \Rightarrow d_Y(f(x),f(x')) < \varepsilon.$$

### ■位相, 開集合, 閉集合

- X を集合とし、T をその部分集合族とする。T が以下の公理を満たすとき、(X,T) を**位 相空間** (topological space) といい、T を**位相** (topology)、T の元を開集合という:
  - (T1)  $X \in \mathcal{T}, \emptyset \in \mathcal{T},$
  - (T2)  $U_1, U_2 \in \mathcal{T} \Longrightarrow U_1 \cap U_2 \in \mathcal{T}$ ,
  - (T3)  $\forall \lambda \in \Lambda, U_{\lambda} \in \mathcal{T} \Longrightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}.$
- 閉集合: 開集合の補集合を閉集合という.
- 相対位相:  $Y \subset X$  に対して, $\mathcal{T}_Y = \{O \cap Y \mid O \in \mathcal{T}\}$  とすると, $(Y, \mathcal{T}_Y)$  は位相空間になる.このようにして構成された位相を**相対位相 (relative topology)** という.

- ■連続写像, 位相同型写像  $(X,\mathcal{T}_X)$ ,  $(Y,\mathcal{T}_Y)$  を位相空間とする.
  - $f: X \to Y$  が連続  $\Leftrightarrow {}^{\forall}O_Y \in \mathcal{T}_Y, \quad f^{-1}(O_Y) \in \mathcal{T}_X.$
  - $f: X \to Y$  が  $x \in X$  で連続  $\Leftrightarrow x$  における f の像 y = f(x) の任意の近傍  $O_Y(y)$  に対して、x の近傍  $O_X(x)$  が存在して、 $f(O_X(x)) \subset O_Y(y)$ .
  - $f: X \to Y$  が全単射で連続かつ逆写像も連続であるとき f は**位相同型写像**(または**同相写像** (homeomorphism))であるという.また、X から Y への位相同型写像が存在するとき、X,Y は**位相同型**(または**同相** (homeomophic))であるという.

#### ■コンパクト性

- (開) 被覆: 位相空間  $(X, \mathcal{T})$  に対し,  $X \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$  となる集合族  $\{U_{\lambda}\}$  を**被覆 (cover)** という. 特に  $U_{\lambda} \in \mathcal{T}$  であるとき**開被覆 (open cover)** という.
- コンパクト空間:  $(X, \mathcal{T})$  の任意の開被覆のある有限部分集合が再び被覆となるとき, 位相空間  $(X, \mathcal{T})$  は**コンパクト**であるという.

#### ■連結性

• 位相空間 (X,T) が**連結 (connected)** であるとは、 $X \in \emptyset$  以外に開集合かつ閉集合であるような集合が存在しないこと。あるいは、

$$X = U_1 \cup U_2, U_1 \cap U_2 = \emptyset \ (U_1, U_2 \in \mathcal{T}) \Longrightarrow U_1 = \emptyset \ \text{or} \ U_2 = \emptyset$$

■ X の部分集合 S が (部分空間として) 連結とは,

$$S \subset U_1 \cup U_2, S \cap U_1 \cap U_2 = \phi \ (U_1, U_2 \in \mathcal{T}) \Longrightarrow S \subset U_1 \text{ or } S \subset U_2$$

- $(X, \mathcal{T}_X)$ ,  $(Y, \mathcal{T}_Y)$  を位相空間とし, $f: X \to Y$  を連続な写像とする.X が連結であれば f(X) は連結.
- 位相空間  $(X, \mathcal{T})$  の任意の 2 点  $x_1, x_2$  に対してそれらを結ぶ道 (連続写像  $f: [0,1] \to X, f(0) = x_1, f(1) = x_2$ ) が存在するとき,X は**弧状連結 (path connected)** であるという.

#### ■Hausdorff 空間

• 位相空間  $(X, \mathcal{T})$  が **Hausdorff 空間**:相異なる 2 点は互いに交わらない開近傍を持つ.

## 演習問題

**■問題** 1 距離空間 (X,d) から定まる開集合で構成される部分集合族  $\mathcal T$  が位相空間の定義 (T3) の

$$\forall \lambda \in \Lambda, U_{\lambda} \in \mathcal{T} \Longrightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}$$

を満たすことを示せ. 一方

$$\forall \lambda \in \Lambda, U_{\lambda} \in \mathcal{T} \Longrightarrow \bigcap_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}$$

は成り立つとは限らないことを示せ.

答: 任意の  $x \in \bigcup_{\lambda \in \Lambda} U_{\lambda}$  に対してある  $\lambda$  が存在して  $x \in U_{\lambda}$  なので,ある  $\varepsilon > 0$  に対して  $N(x,\varepsilon) \subset U_{\lambda}$ ,したがって  $N(x,\varepsilon) \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$ .よって  $\bigcup_{\lambda \in \Lambda} U_{\lambda}$  は開集合の定義を満たす.その一方で,例えば  $X = \mathbb{R}$ ,位相空間を通常の距離からなる開集合(つまり開区間の和集合)で構成すると, $\bigcap_n (-1/n,1) = [0,1) \notin \mathcal{T}$  となる.

**■問題** 2 次の空間 (*X*, *T*) は位相空間か?

- 1.  $X = \mathbb{N} = \{1, 2, 3, \ldots\}, \ \mathcal{T} = \{\emptyset, U_1, U_2, \cdots, U_n, \cdots\}, \ U_n = \{n, n+1, n+2, \cdots\}.$
- 2.  $X = \mathbb{R}, \mathcal{T} = \{(a, b) \mid -\infty \le a \le b \le \infty\}.$
- 3.  $X = \mathbb{R}, \mathcal{T} = \{[a, \infty) \mid -\infty \le a \le \infty\}.$

ただし、形式的に  $[-\infty,\infty)=(-\infty,\infty)=\mathbb{R},\ [\infty,\infty)=(\infty,\infty)=(-\infty,-\infty)=\emptyset$  などとする.

答:

- 1. 位相空間. (T1) は自明. (T2), (T3) は  $\bigcup_{i \in \Lambda} U_i = U_{\min \Lambda}, U_{i_1} \cap U_{i_2} = U_{\max\{i_1, i_2\}}$  から従う.
- 2. 位相空間でない.  $(a,b) \cap (c,d) = \emptyset$  のとき,  $(a,b) \cup (c,d) \notin \mathcal{T}$ .
- 3. 位相空間でない.  $\bigcup_{n}[1/n,\infty)=(0,\infty)\notin\mathcal{T}$ .

#### ■問題 3

$$\mathcal{T}_1 = \{ \bigcup_{\lambda \in \Lambda} (a_{\lambda}, b_{\lambda}) \mid a_{\lambda}, b_{\lambda} \in \mathbb{R}, \Lambda は集合 \},$$

$$\mathcal{T}_2 = \{ (a, \infty) \mid a \in \mathbb{R} \cup \{-\infty, \infty\} \},$$

とすると, 位相空間  $(\mathbb{R}, \mathcal{T}_1)$  と  $(\mathbb{R}, \mathcal{T}_2)$  は位相同型か?

答: 位相同型ではない.  $(\mathbb{R},\mathcal{T}_1)$  から  $(\mathbb{R},\mathcal{T}_2)$  への位相同型写像 f が存在するとする.  $(a,b),(c,d)\in\mathcal{T}_1$  を  $(a,b)\cap(c,d)=\emptyset$  となるように取る. f による像は  $\mathcal{T}_2$  の要素になるので、それぞれ、 $(g,\infty),(h,\infty)$  の形になるが、明らかに  $(g,\infty)\cap(h,\infty)\neq\emptyset$ . これは f が全単射であることに矛盾.

| 別解  $|\mathcal{T}_1$  は Haussdorff だが  $\mathcal{T}_2$  は Haussdorff でないので,位相同型ではありえない.

**■問題** 4 距離空間は Hausdorff 空間であることを示せ、一方、要素数が有限の集合 X に対する Hausdorff 空間に対し、その位相を構成する距離を X に入れることができるか?

答: (X,d) を距離空間とする. このとき,  $x,y\in X, x\neq y$  に対し,  $\delta:=d(x,y)\neq 0$  であるが, x,y の  $\delta/2$  近傍を考えると, それらは交わりを持たない. 一方, 要素数が有限の集合 X に対する Hausdorff 空間の位相は離散位相(任意の部分集合を開集合とする位相)しかない. よって X に離散距離

$$d(x,y) = \begin{cases} 1 & x \neq y \\ 0 & x = y \end{cases}$$

を入れればよい.

**■問題** 5 Hausdorff 空間 X の部分集合 S がコンパクトならば, S は閉集合であることを示せ. 答: S の補集合を  $S^c$  で表し、これが開であることを示す。  $\forall x \in S^c$  を固定する。 X は Hausdorff 空間だから、各  $s \in S$  に対して互いに交わらない x の近傍  $N_s(x)$  と s の近傍 N(s) が とれる。このとき、明らかに  $\{N(s) \mid s \in S\}$  は S の開被覆であるので、S のコンパクト性から 有限部分集合  $N(s_1),\ldots,N(s_n)$  が存在して、 $S \subset \bigcup_{j=1}^n N(s_j)$ . 一方、  $N(x) = \bigcap_{j=1}^n N_{s_j}(x)$  は x の近傍で、作り方から N(x) は  $\bigcup_{i=1}^n N(s_i)$  と交わりをもたないので  $N(x) \subset S^c$ . したがって

#### ■問題 6 以下の問いに答えよ.

- 1. X は連結とする. 全単射  $f: X \to Y$  において f(X) は必ず連結であるか?
- 2. X は連結とする. 連続写像  $f: Y \to X$  が存在するとき, Y は必ず連結であるか?
- 3. X は有理数全体とし、位相は $\mathbb{R}$  の相対位相とした場合、X は連結であるか?

答:

 $S^c$  は開.

- 1. 連結とは限らない. Y=X としてその位相を離散位相とすると, f(x)=x は全単射だが Y は連結でない.
- 2. 連結とは限らない.  $Y = [0,1] \cup [2,3]$ ,  $X = \{0\}$  とし  $f: Y \to X$  を  $f(Y) = \{0\}$  とすると, f は連続で,  $X = \{0\}$  は連結であるが, Y は連結ではない.
- 3. 例えば  $X = ((-\infty, \pi) \cap X) \cup ((\pi, \infty) \cap X)$  と分割できるので連結ではない.

## 小テスト

以下では、特に指定のない場合 $\mathbb{R}^n$ はユークリッド距離から定まる位相を持つものとする.

#### **■問題** 7 以下の問に答えよ.

- 1. (10 点) 有理数全体を  $\mathbb{Q}$  とし, $X = [0,1] \cap \mathbb{Q}$  に  $\mathbb{R}$  の相対位相を入れた位相空間はコンパクトか? また,ある有界な連続関数  $f: X \to [a,b] \subset \mathbb{R}$  が与えられたとき, f(X) に最大値,最小値は存在するか?
- 2. (20 点) X がコンパクトで  $f: X \to \mathbb{R}$  が連続ならば、f(X) には最大値、最小値が存在することを示せ、ただし、次の事実を利用してもよい:
  - X をコンパクトな位相空間とし、f を X から位相空間 X' への連続写像とする. このとき f(X) もコンパクトである.
  - Heine-Borel **の定理** ユークリッド空間  $\mathbb{R}^n$  の部分集合 S がコンパクトであるためには, S が  $\mathbb{R}^n$  の有界な閉集合であることが必要十分.

#### 答:

- 1.  $X = [0, 1/\sqrt{2}) \cup (1/\sqrt{2}, 1] \cap \mathbb{Q}$  の開被覆  $U_n = [0, 1/\sqrt{2} 1/10n) \cup (1/\sqrt{2} + 1/10n, 1] \cap \mathbb{Q}$  (n = 1, 2, ...) の有限部分集合は被覆とならないのでコンパクトでない。また  $f(x) = \sin(6x)$  とすると  $\sup_{x \in X} f(x) = 1$ ,  $\inf_{x \in X} f(x) = -1$  ( $\mathbb{R}$  が Hausdorff かつ X が [0, 1] の稠密部分集合であるため,f の [0, 1] への連続拡張が一意に存在することから従う)だが, $\mathbb{R}$  上の  $\pi/12$ ,  $\pi/4$  ともに X に含まれないため最大値,最小値は存在しない.
- 2. X のコンパクト性より,  $f(X) \subset \mathbb{R}$  はコンパクト, したがって有界であるので, 上限および下限が存在する. また閉集合でもあるので, 上限および下限は f(X) に属する. よって最大値, 最小値が存在する.

#### 最適化の可能性

コンパクト集合上の連続関数は最大値、最小値を持つので、この関数を目的関数とする最適 化問題を考えることができる.しかし、定義域がコンパクトでない場合には最適化しようと しても最適解は存在しないかもしれない.

### ■問題 8 (topologist's sine curve; 30 点)

$$f(x) = \begin{cases} \sin(\frac{1}{x}) & 0 < x \le 1\\ 0 & x = 0 \end{cases}$$

とする.  $Y=\{(x,f(x))\mid x\in [0,1]\}\subset \mathbb{R}^2$  を  $\mathbb{R}^2$  の通常の位相から相対位相を入れて位相空間とみなす. このように構成した位相空間  $(Y,\mathcal{T}_Y)$  は連結か? 連結の場合は弧状連結かどうかも述べよ.



#### 答: 連結だが弧状連結ではない.

(連結性) f を (0,1] に制限すると g(x)=(x,f(x)) は (0,1] と  $Y\setminus\{(0,0)\}$  の間の同相写像になっていることに注意する。  $Y=O_1\cup O_2$  と 2 つの互いに交わらない開集合へ分解できたと仮定する。 一般性を失わず, $(0,0)\in O_1$  としてよい。  $O_1'=g^{-1}(O_1\setminus\{(0,0)\})$ , $O_2'=g^{-1}(O_2)$  とすると, $(0,1]=O_1'\cup O_2'$  となる。  $O_1',O_2'$  は明らかに交わりのない (0,1] の非空な開集合なので,(0,1] が(弧状)連結であることに反する。

(弧状連結でないこと) 道  $\phi:[0,1] \to Y$  s.t.  $\phi(0)=(0,0), \phi(1)=(1/2,\sin(2))$  が存在するとして矛盾を導く.一般性を失わず, $\phi(t) \neq (0,0)$  ( $t \neq 0$ ) としてよい. $\phi(t)=(\phi_1(t),\phi_2(t))$  とする. $\phi_2$  の連続性より,ある  $\delta>0$  で  $|\phi_2(t)|<1$  ( $t\in[0,\delta)$ ) となるものが存在. $\phi_1$  の連続性より,ある a>0 が存在して  $\phi_1([0,\delta))\subseteq[0,a]$ .ところが, $\sin(1/x)$  は [0,a] 上で無限に振動しているので,中間値の定理からある  $t^*\in(0,\delta)$  s.t.  $\phi_1(t^*)\in[0,a), |\phi_2(t^*)|=1$ .これは  $\delta$  のとり方に矛盾.