Best-First Search and Algorithm AX Revisited (More Informed)

NOTE THE

Recall: "Algorithm A"
is actually a class of heuristics for Best-First-Search.

Best-First Search is the GraphSearch algorithm, using a heuristic, f(n) to order the hodes on the OPEN list.

Using Algorithm A means using a heuristic of the form

f(n) = depth(n) + h(n)

estimate of distance from n to goal -

f(n) is an estimate of the total distance (i.e, "path leigh") from start to goal if you go through node n.

Algorithm A & is Algorithm A,

using a heuristic h(h) that is guaranteed not to over-estimate

The distance from n to goal.

Use of Algorithm A* is guaranteed to find a shartest-path solution.

More in formed houristics for Algorithm A *:

if h, (n) and h, (n) are both At heuristics (admissible heuristics)
then if h, (n) > h, (n) for all n

h2(n) is more informed than h1 (n)

and he(n) will result in no more total node expansions than hu(n) -

New houristic for 8-puzzle: hz (node) = Total # of spaces removed from the goal for each tile out of place We can see hz (state) = hi (state) h2(state)= 1+ 1+1+2 = 5 hz (state) < h* (state) h.(state) = 4 (#tiles out) actual # of moves neded. So let's re-evaluate with he (node) also.

thee hz(n) and hi	(h) are both admissible he	uristics, each guarantees it will find
a shortest-path	olution to goal when used wi	h Algorithm A and Best-First Search
		Will use no more total node
Expansions than h	in to find a shortest-path :	
•	•	

he(n) is more informed than hi(n).

Since he(n) and hi(n) are both admissible heuristics, each guarantees it will find a shortest-path solution to goal when used with Algorithm A and Jest-First Search.

Since he(n) is more informed than hi(n), he(n) will use no more total node expansions than hi(n) to find a shortest-path solution.

Note: (an I trick Algorithm A* by using h(n) = 0 for all n?

[clearly, h(n) never exceeds as huldistance from n to goal—

so I will find shortest path to soal, graranteed!

he(n) is more informed than hi(n).

Since he(n) and hi(n) are both admissible heuristics, each guarantees it will find a shortest-path solution to goal when used with Algorithm A and Jest-First Search.

Since he(n) is more informed than hi(n), he(n) will use no more total node expansions than hi(n) to find a shortest-path solution.

Note: can I trick Algorithm At by using h(n) = 0 for all n?

[clearly, h(n) never exceeds achaldistance from n to goal—

So I will find shortest path to soal, grarantoed!

(50 F(n) = depth(n) + 0)

= depth(n)

(And of course, we will find This is bread th-first search! Shortest path to god with breadth-first search) Note that him = #tiles out of place is a more informed heuristic than h(n) = 0 So h2(n) > h(n) > h(n) breadth-first search more informed search "" even more informed search

Suppose h, (n) > h2(n) sometimes
and h2(h) > h1(h) sometimes
Where hi(h), help) are both admissible?

Suppose $h_1(h) > h_2(h)$ sometimes

and $h_2(h) > h_1(h)$ sometimes

Where $h_1(h)$, $h_2(h)$ are both admissible?

Let hz(n) = max { h,(n), h,(n) }

Note $h_3(n) \ge h_1(n)$ $h_3(n) \ge h_2(n)$

hy(n) is more informed them either heuristic

Even more informed?

we need
to swap
two
8
4
adjacent
7
6
5
tiks ~ Can

This be solved?

we need t	To Sware	<u> </u>
two sets of	<u> </u>	2 (3
tiles	h, (n) = 4	7 5 6
	h2(h) = 4	
	$h_{\gamma}(n) = 8$	

h (n) = 0

hi(h) = # tiles out of place

h2(n) = # of spaces the out-of-place files

h_(n) = h,(n) = h(n)

let hu(n)= hz(n) + 2*(# & pairs of adjaceso

probably admissible defantely hy(n) ? h2(n)

Sample puzzle with 2 pairs of tiles that need to be switched with	SOLUTION =====INITIAL STATE	====STEP 6	====STEP 12
	213	234	023
their immediate neighbors:	804	816	164
Winning moves for the game:	756	075	875
{2,1,3,8,0,4,7,5,6}	====STEP 1	====STEP 7	====STEP 13
No	203	234	123
Move #1 : Blank Up	814	016	064
Move #2 : Blank Right	756	875	875
Move #3 : Blank Down			
Move #4 : Blank Down	====STEP 2	====STEP 8	====STEP 14
Move #5 : Blank Left	230	234	123
Move #6 : Blank Left	814	106	864
Move #7 : Blank Up	756	875	075
Move #8 : Blank Right			
Move #9 : Blank Right	====STEP 3	====STEP 9	====STEP 15
Move #10 : Blank Up	234	234	123
Move #11 : Blank Left	810	160	864
Move #12 : Blank Left	756	875	705
Move #13 : Blank Down	CHER		
Move #14 : Blank Down	====STEP 4	====STEP 10	====STEP 16
Move #15 : Blank Right	234	230	123
Move #16 : Blank Up	816	164	804
***************************************	750	875	765
	====STEP 5	====STEP 11	
Solution from software provided	234	203	
at	816	164	
www.8puzzle.com	705	875	

Algorithm Akk

Example (Uhiform Cost):

Algorithm A**:	for example, m 8-poste
18 Aljonthum AK Uses heuristic	example, a heuristic
f (node) = Jopth (node) + h (node)	that adds a suitably
	large humber when
Then Algorithm Att uses the following houristic:	two adjacent files need
f(node)	to be switched
1 (start Q
where f (node) = max { f(n) }	
$h \in Peth$ $f(n) = depth(n) + 1$	hu(h)
1 COM C PART	
to node = K +	4 + 12 2 \ 3 1 + 12 8 \ 4
h ₃ (n	7 5 6 = (K+1)+5+6
[Estimate at level K is higher] Than estimate at level K+1] 3*(#drect reversals)	2 3 1
LThan estimate at level K+1 1	756

Uniform vs. non-uniform costs:

Uniform:

every edge has
the same value/weight
(=1)

non-wiferm:

depth = sum of edge weights along Path.

17 tal distance = sum of edge weight from start > good

First path algorithms f(n) = depth (n) + h(n) f(n) = depth (n) + h(n) Use f(n) to order OPEN from least to most depth (s) = depth (parent (s)) +		h(h) = estimate of total distance
non-uniform Ust case use f(n) to order OPEN from least to most		to goal (sum of edge weights)
case Use f(n) to order OPEN from east to most	Grafthsearch for	f(n) = depth(n) + h(n)
		use sind to order OPEN from
Shortest path algorithms depth(s) = depth (parent(s)) + Cost (edec (parent(s),s))		least to most
Cost (edge (purent(s),s))	Chartest path algorithms	depth(s) = depth (parent(s)) +
me a graph	for a graph	cost (edge (parent(s),s))