

MCTA004-17 – Arquitetura de Comp UFABC Professor – Hugo Puertas de Araújo MCTA004-17 - Arquitetura de Computadores

Lista 01 de Exercícios

- 1. O que é arquitetura e organização de um computador?
- 2. Quais são as quatro funções principais de um computador?
- 3. Liste e defina resumidamente os principais componentes estruturais de um computador.
- 4. Liste e defina resumidamente os principais componentes estruturais de um processador.
- 5. Explique o conceito do balanço do desempenho.
- 6. Caracterize brevemente a lei de Amdahl.
- 7. Qual é o speedup máximo que se obtém para uma tarefa que é 75% paralelizável?
- 8. Defina MIPS e FLOPS.
- 9. Liste as características desejáveis de um programa de benchmark.
- 10. Um programa de benchmark é executado em um processador a 40 MHz. O programa executado consiste em 100.000 execuções de instrução, com os seguintes tipos de instruções e número de ciclos de clock:

Tipo de instrução	Número de instruções	Ciclos por instrução		
Aritmética de inteiros	45.000	1		
Transferência de dados	32.000	2		
Ponto flutuante	15.000	2		
Controle de fluxo de execução	8.000	2		

Determine o CPI efetivo, a taxa de MIPS e o tempo de execução para esse programa.

11. Considere duas máquinas diferentes, com dois conjuntos de instruções diferentes, ambos tendo uma frequência do clock de 200 MHz. As medições a seguir são registradas nas duas máquinas executando um determinado conjunto de programas de benchmark:

Tipo de instrução		Número de instruções (milhões)	Ciclos por instrução	
Máquina A	Aritmética e lógica	8	1	
	Load & Store	4	3	
	Desvios	2	4	
	Outros	4	3	

MCTA004-17 – Arquitetura de Comp UFABC Professor – Hugo Puertas de Araújo MCTA004-17 - Arquitetura de Computadores

	Tipo de instrução	Número de instruções (milhões)	Ciclos por instrução
Máquina B	Aritmética e lógica	10	1
	Load & Store	8	2
	Desvios	2	4
	Outros	4	3

- a. Determine o CPI efetivo, a taxa MIPS e o tempo de execução para cada máquina. b. Comente os resultados.
 - 12. Quais são os mecanismos que mantém a cache e a memória principal sincronizadas (garantia de mesmo conteúdo)?
 - 13. Quais são as diferenças entre mapeamento direto, mapeamento associativo e mapeamento associativo em conjunto?
 - 14. Explique e exemplifique os mecanismos de acesso à memória principal.
 - 15. Que categorias gerais de funções são especificadas pelas instruções do computador?
 - 16. Liste e defina resumidamente duas técnicas para lidar com múltiplas interrupções.
 - 17. Considere um microprocessador de 32 bits hipotético com instruções de 32 bits, compostas de dois campos: o primeiro byte contém o opcode e o restante, o operando imediato ou o endereço de um operando.
 - **a.** Qual é a capacidade de memória máxima endereçável diretamente (em bytes)?
 - **b.** Discuta o impacto sobre a velocidade do sistema se o barramento do microprocessador
 - 1. Um barramento de endereço local de 32 bits e um barramento de dados local de 16 bits,
 - **2.** Um barramento de endereço local de 16 bits e um barramento de dados local de 16 bits.
 - c. Quantos bits são necessários para o contador de programa e o registrador de instrução?
 - 18. Suponha que se deseje transferir o seguinte byte de informação: 1001 1110. Mas, ao final do processo, o byte recebido foi 1101 1110. Graças aos mecanismos de correção de erros, o sistema foi capaz de identificar e corrigir o bit errado.
 - a) Quantos bits de correção de erro são necessários para detectar até 2 bits errados e ser capaz de corrigir até 1 bit errado?
 - b) Qual a palavra enviada que permitiu o resultado acima (determine os bits do código e a posição onde os mesmos são inseridos no byte original).
 - 19. Em uma unidade de armazenamento de massa, do tipo Hard Drive, as informações são organizadas em trilhas e setores. A figura abaixo apresenta a forma como os dados são organizados em setores, que é a unidade que divide uma trilha. Ainda considerando a figura abaixo, pra que serve o byte de sincronismo? Explique a razão da necessidade de se ter tal sincronismo.

MCTA004-17 – Arquitetura de Comp UFABC Professor – Hugo Puertas de Araújo MCTA004-17 – Arquitetura de Computadores

20. Dada a figura abaixo, preencha os valores dos registradores conforme o computador vai executando o programa.

Memói	ria	Regist	radores da CPU	Memó	ria	Regist	radores da CPU
300	1940	PC		300	1940	PC	
301	5941	AC		301	5941	AC	
302	2941	IR		302	2941	IR	
:	:			:	:		
940	0003			940	0003		
941	0005			941	0005		
Etapa 0	1			Etapa (02		
Memói	ria	Regist	tradores da CPU	Memó	ria	Regist	radores da CPU
300	1940	PC		300	1940	PC	
301	5941	AC		301	5941	AC	
302	2941	IR		302	2941	IR	
:	:	_		:	:		
940	0003			940	0003		
941	0005			941	0005		
Etapa 0	3			Etapa (04		
Memói	ria	Regist	tradores da CPU	Memó	ria	Regist	radores da CPU
300	1940	PC		300	1940	PC	
301	5941	AC		301	5941	AC	
302	2941	IR		302	2941	IR	
:	:			:	:		
940	0003			940	0003		
941	0005			941	0005		
Etapa 0	5			Etapa (06		

MCTA004-17 – Arquitetura de Comp UFABC Professor – Hugo Puertas de Araújo MCTA004-17 – Arquitetura de Computadores

21. Explique o que é RAID e quais são os seus diversos níveis.