Topic: Measurement of Mass, Weight, Length, and Time

1. INTRODUCTION

In physics, **measurement** refers to the process of comparing a physical quantity with a standard unit. To understand and describe physical phenomena accurately, we need to measure key quantities such as **mass**, **weight**, **length**, **and time**. These are **fundamental quantities**, and they form the basis of all physical measurements.

2. MEASUREMENT OF MASS

Definition of Mass

Mass is the **quantity of matter** contained in an object. It is a **scalar quantity** (i.e., it has magnitude but no direction).

- SI Unit: kilogram (kg)
- Other units: gram (g), milligram (mg), tonne (t)

```
1 kg = 1000 g
1 g = 1000 mg
1 tonne = 1000 kg
```

Instruments for Measuring Mass

- 1. **Triple Beam Balance**: Used in school laboratories for measuring solid objects.
- 2. **Electronic Balance**: Gives accurate digital readings of mass.
- 3. **Spring Balance** (not ideal for mass): Measures weight (which is related to mass via gravity).
- 4. **Beam Balance**: Compares mass by balancing two sides with standard weights.

Properties of Mass

- Mass is constant everywhere (Earth, Moon, space).
- It is not affected by gravity or location.
- It is a fundamental property of matter.

3. MEASUREMENT OF WEIGHT

Definition of Weight

Weight is the **force** with which the earth attracts a body towards its center due to gravity. It is a **vector quantity** (i.e., it has both magnitude and direction—downward).

• Formula:

Weight(W)=Mass(m) \times Acceleration due to gravity(g)

Where:

- m = mass in kilograms (kg)
- \circ g = 9.8 m/s² on Earth
- SI Unit: Newton (N)

Example: A mass of 2 kg has a weight of $2 \times 9.8 = 19.6$

Instrument for Measuring Weight

• Spring Balance: Measures the weight (force) based on how much a spring stretches.

Properties of Weight

- Weight varies with gravity (e.g., on the Moon, weight is 1/6th of Earth's).
- Weight acts downwards.
- Weight is zero in space (zero gravity).

4. MEASUREMENT OF LENGTH

Definition of Length

Length is the **distance** between two points. It is a **scalar quantity**.

- SI Unit: metre (m)
- Other units: centimeter (cm), millimeter (mm), kilometer (km)

1 m = 100 cm = 1000 mm 1 km = 1000 m

Instruments for Measuring Length

Instrument	Usage	Accuracy
Meter Rule	Measuring objects longer than 1 cm (up to 1 m)	±0.5 mm
Vernier Caliper	Measuring small distances, external and internal diameters	±0.1 mm
Micrometer Screw Gauge	Measuring very small thicknesses (e.g., wire, foil)	±0.01 mm
Measuring Tape	Measuring long curved surfaces (e.g., body, room)	±1 cm
Ruler	Short distances (usually 15–30 cm)	±0.5 mm

Precautions When Measuring Length

- Ensure the ruler is straight and aligned.
- Avoid parallax error: the eye should be perpendicular to the scale.
- Start from the zero mark.
- Use appropriate instrument for the object's size.

5. MEASUREMENT OF TIME

Definition of Time

Time is the **interval between two events**. It helps us measure how long something lasts.

- SI Unit: second (s)
- Other units: minute (min), hour (h)

1 min = 60 seconds

1 hour = 60 minutes = 3600 seconds

Instruments for Measuring Time

Instrument	Usage	Accuracy
Stopwatch/Stop clock	Timing experiments or races	±0.1 s (manual), ±0.01 s (digital)
Pendulum clock	Uses oscillations of a pendulum	±0.5 s
Electronic Timer	Accurate timing in labs and physics practicals	±0.001 s
Wristwatch/Clock	General timekeeping	±1 s or better

Methods of Measuring Time

- 1. **Simple Pendulum**: Time is measured based on the regular swing (oscillation) of a pendulum.
- 2. **Stopwatch**: Used to measure the time taken for an event, such as a fall or a chemical reaction.

6. Differences Between Mass and Weight

Property	Mass	Weight
Definition	Quantity of matter in a body	Force acting on mass due to gravity
Symbol	mmm	www
SI Unit	Kilogram (kg)	Newton (N)
Type of Quantity	Scalar	Vector
Affected by Gravity?	? No	Yes
Instrument Used	Beam balance, electronic balance Spring balance	