we were work under the assumption that the model always includes the intercept $x_1 = \pm_n$ with β_1 the associated coefficient.

1. TEST about an individual coefficient β_i (j=2,...,P)

assume that we want to test a single coefficient:

In possicular, we are often interested in testing the statistical significance of an individual coefficient

Recall,
$$\hat{B} \sim N_{P}(\underline{\beta}, (x^{T}x)^{-1} \sigma^{2})$$

the j-th element $\hat{B}_{j} \sim N(\beta_{j}, \sigma^{2} [(x^{T}x)^{-1}]_{j,j})$
 $\frac{n\hat{\Sigma}^{2}}{\sigma^{2}} \sim \chi_{n-P}^{2}$ var (\hat{B}_{j})

•
$$\hat{\underline{\beta}} \perp \hat{\Sigma}^2$$
 and $\hat{\underline{\beta}} \perp \hat{\Sigma}^2$

1) We need to define a TEST STATISTIC with known distribution under Ho.

$$\frac{\hat{B}_{j} - b_{j}}{\sqrt{|ar(\hat{B}_{j})|}} = \frac{\hat{B}_{j} - b_{j}}{\sqrt{|ar(\hat{B}_{j})|}}$$
the N(0,1) but it depends on the unknown of (hence we can't use it)

we consider instead

$$T_{j} = \frac{\hat{\beta}_{j} - b_{j}}{\sqrt{S^{2} \left[(X^{T}X)^{-1} \right]_{j,j}}} = \frac{\hat{\beta}_{j} - b_{j}}{\sqrt{\hat{\rho}_{n}(\hat{\beta}_{j})}} =$$

$$= \frac{\hat{\beta}_{j} - b_{j}}{\sqrt{\frac{5^{2}}{6^{2}}}} \times \text{N(O,1)}$$

$$= \sqrt{\frac{5^{2}}{6^{2}}} \times \text{Von}(\hat{\beta}_{j}) = \sqrt{\frac{3^{2}}{6^{2}}} \times \sqrt{\frac{\chi_{n-p}^{2}}{(n-p)}}$$

$$= \sqrt{\hat{\beta}_{j} - b_{j}^{2}} \times \text{N(O,1)}$$

$$= \sqrt{\frac{5^{2}}{6^{2}}} \times \sqrt{\frac{\chi_{n-p}^{2}}{(n-p)}}$$

$$= \sqrt{\hat{\beta}_{j}^{2} - b_{j}^{2}} \times \sqrt{\frac{\chi_{n-p}^{2}}{(n-p)}}$$

=
$$\left(\sigma^{2}\left[(X^{T}X)^{-1}\right]_{ij}\right) \cdot \frac{S^{2}}{\sigma^{2}} = vor(\hat{B}_{j}) \cdot \frac{S^{2}}{\sigma^{2}}$$
 general expression

$$\Rightarrow \overline{I_j} = \frac{\hat{B}_j - b_j}{\sqrt{\hat{var}(\hat{B}_j)}} \stackrel{\text{Ho}}{\sim} tn-p$$

in the simple em we had (t-2)degrees of freedom. Indeed p=2for the simple em $X = [1 \times]$

- 2) With the data, I compute the observed value of the test tights
- 3) We study the position of the sample space into the REJECT and ACCEPTANCE REGION: As for the simple linear model, large values of the test (in obsolute value) lead to rejecting the next hypothesis (if Ho is not true, $\hat{\beta}_j$ will be very different from bj, hence $|\hat{\beta}_j b_j| \gg 0$ and also $|t^{abs}| \gg 0$).

Hence:
$$A = (-k, k)$$

 $R = (-\infty; -k) \cup (k, +\infty)$

4) We conclude the test

μα) FIXED SIGNIFICANCE LEVEL
$$\alpha$$

$$P_{Ho}(T_j \in \mathcal{R}) = P_{Ho}(|T_j| > t_{n-p_j} \cdot 4 - \frac{\alpha}{\lambda}) = \alpha$$
i.e.

$$R = (-\infty_1 - t_{n-p_j} \cdot 4 - \frac{\alpha}{\lambda}) \cdot (t_{n-p_j} \cdot 4 - \frac{\alpha}{\lambda}, +\infty)$$
and reject Ho if $t^{obs} \in \mathcal{R}$

