Logarithms (HKMO Classified Questions by topics)

1982 FI4.1

Find the value of x if $x = \frac{\log a^3}{\log a^2}$ where a > 0 and $a \ne 1$.

1982 FI4.2

若
$$y-1 = \log \frac{3}{2} + \log 2 - \log 3$$
 , 求 y 的值。

If $y-1 = \log \frac{3}{2} + \log 2 - \log 3$, find the value of y.

1982 FI4.3

若 log₂ Z=3 則 Z 為何?

What is the value of Z if $\log_2 Z = 3$?

1982 FI4.4

求 log₈ 1 的值。

Find the value of $log_8 1$.

1982 FG6.1

設 $\log 2 = a$, $\log 3 = b$, $\log 5 = c$ 。以 $a \cdot b$ 及 c 表示 $\log 6$ 。

Let $\log 2 = a$, $\log 3 = b$, $\log 5 = c$. Express $\log 6$ in terms of $\log 2$, $\log 3$ and $\log 5$.

1982 FG6.2

計算 3.5 log 2 + 3.5 log 5。

Evaluate $3.5 \log 2 + 3.5 \log 5$.

1982 FG6.3

設
$$\log 2 = a$$
, $\log 3 = b$, $\log 5 = c \circ 以 a \circ b$ 及 c 表示 $\frac{\log 30}{\log 15}$ \circ

Let $\log 2 = a$, $\log 3 = b$, $\log 5 = c$.

Express $\frac{\log 30}{\log 15}$ in terms of log 2, log 3 and log 5.

1982 FG6.4

設 $\log 2 = a$, $\log 3 = b$, $\log 5 = c \circ 以 \ a \circ b \$ 及 c 表示 $(\log 15)^2 - \log 15 \circ$ Let $\log 2 = a$, $\log 3 = b$, $\log 5 = c$.

Express $(\log 15)^2 - \log 15$ in terms of $\log 2$, $\log 3$ and $\log 5$.

1982 FG9.3

若 $\log_7 56 = \log_7 8 + 7^X$, 求 X 的值。

If $\log_7 56 = \log_7 8 + 7^X$; find the value of X.

1984 FI5.2

若 $b = \log_2 16$, 求 b 的值。If $b = \log_2 16$, find the value of b.

1985 FI1.1

若 $a = \log_5 \frac{(125)(625)}{25}$, 求 a 的值。Find the value of a if $a = \log_5 \frac{(125)(625)}{25}$.

1986 FI2.3

若 $\log_{10}210 + \log_{10}32 - \log_{10}56 + \log_{10}40 - \log_{10}120 + \log_{10}25 = p$,求 p 的值。 If $\log_{10}210 + \log_{10}32 - \log_{10}56 + \log_{10}40 - \log_{10}120 + \log_{10}25 = p$, find the value of p.

1987 FG7.3

若 $\log_{10}(75\times3) = C \log_{10}15$, 求 C 的值。

If $log_{10}(75\times3) = C log_{10}15$, find the value of C.

1989 HI4

已知 $10^{\log_{10} 9} = 8b + 5$, 求 b 的值。

Find the value of b such that $10^{\log_{10} 9} = 8b + 5$.

1991 HI1

求 $\log_3 14 - \log_3 12 + \log_3 486 - \log_3 7$ 的值。

Find the value of $\log_3 14 - \log_3 12 + \log_3 486 - \log_3 7$.

1991 FI4.2

若 $f(x) = \log_2 x$,且 f(32) = b,求 $b \circ \text{If } f(x) = \log_2 x \text{ and } f(32) = b$, find the value of b.

1992 FI2.3

若 $c = \log_2 \frac{144}{9}$, 求 c 的值。If $c = \log_2 \frac{144}{9}$, find the value of c.

1992 FI4.2

若 $B = \log_2\left(\frac{8\times40}{5}\right)$,求 B 的值 。 If $B = \log_2\left(\frac{8\times40}{5}\right)$, find the value of B .

1995 FI1.1

1999 FI1.3

若 $\log_2 8 + \log_4 8 + \log_8 8 = \frac{R}{2}$, 求 R 之值。

If $\log_2 8 + \log_4 8 + \log_8 8 = \frac{R}{2}$, find the value of *R*.

Logarithms (HKMO Classified Questions by topics)

2002 FI2.4

已知
$$S = \log_{144} \sqrt[3]{2} + \log_{144} \sqrt[6]{3}$$
 , 求 S 的值。

Given that $S = \log_{144} \sqrt[3]{2} + \log_{144} \sqrt[6]{3}$, find the value of S.

2003 HI2

若
$$P = \frac{1}{4}$$
 , 求 $P \log_2 P$ 的值。If $P = \frac{1}{4}$, find the value of $P \log_2 P$.

2003 HI3

若
$$0 \le x \le 1$$
 , 求 $\left[\log_{10} \left(\frac{999999x+1}{1000} \right) \right]^2$ 的最大值。

If $0 \le x \le 1$, find the maximum value of $\left[\log_{10}\left(\frac{99999x+1}{1000}\right)\right]^2$.

2004 HG8

設
$$y = \log_{1400} \sqrt{2} + \log_{1400} \sqrt[3]{5} + \log_{1400} \sqrt[6]{7}$$
 , 求 y 的值。

Let $y = \log_{1400} \sqrt{2} + \log_{1400} \sqrt[3]{5} + \log_{1400} \sqrt[6]{7}$, find the value of y.

2005 FG4.1

若 $a = \log_{\frac{1}{2}} 0.125$,求 a 的值。If $a = \log_{\frac{1}{2}} 0.125$, find the value of a .

2006 HG2

若
$$\log \left(\log \left(\log \left(\frac{n \log 0}{100...0} \right) \right) \right) = 1$$
,求 n 的值。

If
$$\log \left(\log \left(\frac{n \text{ zeros}}{100 \cdots 0} \right) \right) = 1$$
, find the value of n .

2007 FI3.4

設
$$d = \log_4 2 + \log_4 4 + \log_4 8 + \dots + \log_4 2^8$$
, 求 d 的值。

Suppose that $d = \log_4 2 + \log_4 4 + \log_4 8 + \dots + \log_4 2^8$, find the value of d.

2008 HI10

求 $\log_2(\sin^2 45^\circ) + \log_2(\cos^2 60^\circ) + \log_2(\tan^2 45^\circ)$ 的值。

Find the value of $log_2(sin^2 45^\circ) + log_2(cos^2 60^\circ) + log_2(tan^2 45^\circ)$.

2010 FI4.2

已知
$$b = \frac{\log 8^{\frac{2}{3}} + \log 27^{\frac{2}{3}} + \log 125^{\frac{2}{3}}}{\log 9 + \log 25 + \log 2 - \log 15}$$
 , 求 b 的值。

Given that
$$b = \frac{\log 8^{\frac{2}{3}} + \log 27^{\frac{2}{3}} + \log 125^{\frac{2}{3}}}{\log 9 + \log 25 + \log 2 - \log 15}$$
, find the value of b.

2011 FIS.2

設
$$Q = \log_{128} 2^3 + \log_{128} 2^5 + \log_{128} 2^7 + \dots + \log_{128} 2^{95}$$
。求 Q 的值。

Let $Q = \log_{128} 2^3 + \log_{128} 2^5 + \log_{128} 2^7 + \dots + \log_{128} 2^{95}$. Find the value of Q.

2014 FG3.2

求和
$$\frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!}$$
 的值,

Determine the value of the sum

$$\frac{1}{\log_2 100!} + \frac{1}{\log_3 100!} + \frac{1}{\log_4 100!} + \dots + \frac{1}{\log_{100} 100!},$$

where $100! = 100 \times 99 \times 98 \times ... \times 3 \times 2 \times 1$.

2016 FI2.2

求
$$b = \left\lceil \log_2(3^2) + \log_4\left(\frac{1}{3^2}\right) \right\rceil \times \left\lceil \log_3 2 + \log_{3^2}\left(\frac{1}{2}\right) \right\rceil$$
 的值。

Determine the value of $b = \left[\log_2(3^2) + \log_4\left(\frac{1}{3^2}\right)\right] \times \left[\log_3 2 + \log_{3^2}\left(\frac{1}{2}\right)\right].$

2016 FI4.1

若
$$m$$
 和 n 為正整數及 $a = \log_2 \left[\left(\frac{m^4 n^{-4}}{m^{-1} n} \right)^{-3} \div \left(\frac{m^{-2} n^2}{m n^{-1}} \right)^5 \right]$,求 a 的值。

If m and n are positive integers and $a = \log_2 \left[\left(\frac{m^4 n^{-4}}{m^{-1} n} \right)^{-3} \div \left(\frac{m^{-2} n^2}{m n^{-1}} \right)^5 \right]$,

determine the value of a.

2019 HG1

對所有正實數
$$x$$
,定義 $f(x) = \log_{2019} x^{2020}$ 。若 $D = f\left(\sqrt{3}\right) + f\left(\sqrt{673}\right)$,求 D 的值。

For all positive value real numbers x, define $f(x) = \log_{2019} x^{2020}$.

If $D = f(\sqrt{3}) + f(\sqrt{673})$, find the value of D.

2021 P2 Q6

如果
$$d = \log_2(\sqrt{2^2 + 2^{1013} + 2^{2022}} - 2)$$
,求 d 的值。

If
$$d = \log_2(\sqrt{2^2 + 2^{1013} + 2^{2022}} - 2)$$
, find the value of d.

Answers

Answers				
$ \begin{array}{c c} 1982 & 14.1 \\ \hline 3 \\ \hline 2 \end{array} $	1982 I4.2	1982 I4.3	1982 I4.4	1982 FG6.1
	1	8	0	a+b
1982 FG6.2 3.5	$ \frac{a+b+c}{b+c} \text{ or } \frac{b+1}{b+1-a} $	1982 FG6.4 (b+c)(b+c-1) or (b-a+1)(b-a)	1982 FG9.3 0	1984 FI5.2 4
1985 FI1.1	1986 FI2.3	1987 FG7.3	1989 HI4 $\frac{1}{2}$	1991 HI1
5	3	2		4
1991 FI4.2	1992 FI2.3	1992 FI4.2	1995 FI1.1 $\frac{1}{2}$	1999 FI1.3
5	4	6		11
$ \begin{array}{c c} 2002 & \text{FI2.4} \\ & \frac{1}{12} \end{array} $	$ \begin{array}{r} 2003 \text{ H2} \\ -\frac{1}{2} \end{array} $	2003 H3 9	$\frac{2004 \text{ HG8}}{\frac{1}{6}}$	2005 FG4.1 3
2006 HG2	2007 FI3.4	2008 HI10	2010 FI4.2	2011 FIS.2
10 ¹⁰	18	-3	2	329
2014 FG3.2	2016 FI2.2 $\frac{1}{2}$	2016 FI4.1	2019 HG1	2021 P2Q6
1		0	1010	1011