Lecture 7

Algorithms on graphs. Tools for network analysis

Analysis and Development of Algorithms

Overview

- Basic and degree measures
- 2 Distance measures
- Density measures
- Modularity
- Network analysis with Gephi

Problem statement

How to distinguish networks (graphs)? Which concepts and measures should be used for network analysis?

Recall the definition of

- directed and undirected graphs;
- weighted and unweighted graphs;
- complete and non-complete graphs;
- connected and disconnected graphs;
- dense and sparse graphs.

Bank group subscribers (BGS) network

A network of VK bank group subscribers represented by an unweighted undirected connected graph with 15,923 nodes and 200,633 edges

Question: How can we analyse this network?

Basic and degree measures

Basic measures:

|V|, the number of vertices

|E|, the number of edges

Degree measures:

d(v), **degree of** v, i.e. the number of edges for vertex v $d_{\text{in}}(v)$, **in-degree of** v, i.e. the number of in-edges for vertex v $d_{\text{out}}(v)$, **out-degree of** v, i.e. the number of out-edges for vertex v $\overline{d} = \frac{1}{|V|} \sum_{v \in V} d(v)$, **average degree** over all vertices

Values for BGS:

$$|V| = 15,923$$

$$|E| = 200,633$$

$$\overline{d} = 25.20$$

Large part: low d

Small part (aka hubs): high d

Statistical hypotheses about the distribution?

Distance measures

Given a connected G, $\operatorname{dist}(v,u)$ is the distance (shortest path length) between v and u. The **eccentricity** $\epsilon(v)$ of v is the greatest distance between v and any other vertex: $\epsilon(v) = \max_{u \in V} \operatorname{dist}(v,u)$ ("how far a node is from the node most distant from it").

The **radius** *r* is the minimum eccentricity of any vertex:

$$r = \min_{v \in V} \epsilon(v) = \min_{v \in V} \max_{u \in V} \operatorname{dist}(v, u).$$

The **diameter** D is the maximum eccentricity of any vertex, i.e. the greatest distance between any pair of vertices: $D = \max_{v \in V} \epsilon(v)$.

The average path length $\ell = \frac{1}{|V| \cdot (|V|-1)} \sum_{v \neq u} \operatorname{dist}(v, u)$ ("the efficiency of information or mass transport on a network").

Values for BGS:

$$r = 5$$

 $D = 9$
 $\ell = 3.48$

Density measures

The **density** ρ of an undirected G is the ratio of |E| and the number of possible edges, i.e. the number of edges in the complete graph with the same |V|:

$$ho = rac{2|E|}{|V|(|V|-1)}$$
 (if $ho pprox 0 \Rightarrow$ graph is sparse)

Complete graph

$$|E| = \frac{|V|(|V|-1)}{2}$$
 if $|V| = 15,923$, then $|E| = 126,763,003$

Values for BGS:

$$|V| = 15,923$$

 $|E| = 200,633$
 $\rho = 0.002$

Modularity

Modularity Q measures the strength of division of a graph into clusters (subgraphs, modules). Graphs with high Q>0 have dense connections between the vertices within clusters but sparse between those in different clusters.

Q compares the number of edges within clusters in G with the expected number of edges in a random graph regardless of clusters.

Values for BGS:

Q = 0.463

For simplicity: an undirected unweighted graph G with the adjacency matrix A

Random distribution of edges between all vertices

Configuration model (CM)

For G with v having d(v), CM cuts each edge into halves (each called a stub), and then each stub is rewired randomly with any other stub in G (except itself). Thus, d(v)-distribution remains the same but CM results in a new random \tilde{G} .

The expected number of edges between $v,u\in ilde{G}$

The total number of stubs in \tilde{G} is $\sum_{w \in V} d(w) = 2|E|$. For $i = 1, \ldots, d(v)$, let $I_i = 1$ if the i-th stub of v connects to one of stubs of u and $I_i = 0$, otherwise. Since the i-th stub of v can connect to any of the 2|E| - 1 remaining stubs with equal probability and since there are d(u) stubs of u,

$$\mathbb{E}[I_i] = \frac{d(u)}{2|E|-1}.$$

The total number of edges between v and u is $J_{vu} = \sum_{i=1}^{d(v)} I_i$, so

$$\mathbb{E}[J_{vu}] = \sum\nolimits_{i=1}^{d(v)} \mathbb{E}[I_i] = \frac{d(v)d(u)}{2|E|-1} \approx \frac{d(v)d(u)}{2|E|} \quad \text{(for large } |E|\text{)}.$$

Algorithms Lecture 7 9/

Calculating Modularity Q

The difference between the actual number A_{vu} of edges between v and u (from the adjacency matrix A) and the expected number of edges between them is

$$\Delta(u,v):=A_{vu}-\frac{d(v)d(u)}{2|E|}.$$

Let C be a division of G into clusters and c(v) denote the cluster of v.

- If c(v) = c(u), Q should increase if $\Delta(u, v) > 0$ and decrease otherwise.
- If $c(v) \neq c(u)$, Q should not change.

Thus, after normalization,

Modularity (Newman and Girvan, 2004; Newman, 2006)

$$Q(C) = \frac{1}{2|E|} \sum_{v, u \in V} \left(A_{vu} - \frac{d(v)d(u)}{2|E|} \right) \mathbb{1} \left(c(v) = c(u) \right),$$

$$Q = \max_{C} Q(C).$$

To calculate Q, one has to find divisions C of G providing maximal Q(C). It can be approximately done via numerical optimization (Fast Greedy, Louvain, etc.),

Algorithms Lecture 7

Network analysis with Gephi

"Gephi is the leading visualization and exploration software for all kinds of graphs and networks. Gephi is open-source and free." — https://gephi.org/

- Choose a graph from https://snap.stanford.edu/data/
- Change the format for that accepted by Gephi (.csv, .xls, etc.), if necessary

11 / 16

Import data

Process data

Graph layout

Calculate measures

Thank you for your attention!