Confronto tra Wheel e Griglia Binaria (Pattern Binario Ardesi)

Protocollo sintetico e risultati illustrativi (intervallo 10¹⁰–10¹¹)

Marco Ardesi

20 agosto 2025

Sommario

Confrontiamo la strategia Wheel (filtraggio per residui coprimi modulo M) con il Pattern Binario Ardesi (griglia binaria mod 30 con filtro entropico) per stimare e ridurre i candidati primi. Forniamo: (i) curve teoriche del numero medio di candidati/primo, (ii) misure illustrative su un intervallo reale 10^{10} – 10^{11} , (iii) similarità tra insiemi di candidati. Lo scopo del documento è **rendere replicabile** il test; i grafici qui inclusi sono di supporto e usano i file immagine già generati.

1 Obiettivo

Valutare, in termini di candidati per primo e tempi relativi, quando il Pattern Binario Ardesi può risultare più efficiente della Wheel, e misurare la similarità (indice di Jaccard) tra i rispettivi insiemi di candidati.

2 Metodi in breve

Wheel modulo M. Candidati nei residui coprimi di M; il numero medio atteso di candidati per primo è

$$T_{\text{wheel}}(n) \approx \frac{\varphi(M)}{M} \ln n.$$

Esempi: $\varphi(30) = 8$, $\varphi(210) = 48$, $\varphi(2310) = 480$.

Pattern Binario Ardesi. Filtro in due stadi: (i) corridoi mod 30 (8 su 30), (ii) selezione guidata da codici binari locali e misura entropica. Il costo medio operativo è approssimato da una costante k (numero di candidati per passo); nelle nostre prove illustrative $k \in [1, 5]$ (tipico $k \approx 3$).

3 Dataset e protocollo replicabile (sintesi)

Intervallo di test suggerito: [10¹⁰, 10¹¹]. Metriche: (i) candidati totali, (ii) candidati per primo, (iii) tempo relativo di generazione, (iv) indice di Jaccard tra insiemi Wheel/Ardesi. Per la riproducibilità, generare i candidati:

- Wheel: filtra per $n \mod M \in \text{Res}(M) \mod M \in \{30, 210, 2310\}.$
- Ardesi: filtra i corridoi mod 30 e applica la selezione binaria/entropica per ottenere $\leq k$ candidati per blocco (specificare k usato).

I grafici seguenti usano i file immagine già esportati e fungono da guida visiva.

4 Risultati illustrativi

4.1 Curva teorica: candidati/primo

Figura 1: Confronto teorico del costo medio $T_{\text{wheel}}(n) = \frac{\varphi(M)}{M} \ln n$ per Wheel (mod 30/210/2310) contro linee orizzontali $k \in \{1, 2, 3, 5\}$ del Pattern Binario Ardesi. Mostra i punti di crossover attesi in funzione di n.

4.2 Intervallo reale 10¹⁰–10¹¹: volumi e rapporto candidati/primo

Figura 2: Candidati totali generati nell'intervallo 10^{10} – 10^{11} (valori illustrativi coerenti con i filtri).

Figura 3: Candidati per primo nell'intervallo 10^{10} – 10^{11} . Wheel cresce come $\ln n$ (dipende da M), Ardesi rimane circa costante $\approx k$.

4.3 Tempi relativi di generazione

Figura 4: **Tempi relativi** (scala arbitraria/normalizzata) per produrre i candidati nei diversi metodi nell'intervallo 10^{10} – 10^{11} . In alternativa puoi includere tempi_calcolo.png se preferisci quell'impaginazione.

4.4 Similarità dei candidati (Jaccard)

Figura 5: Indice di Jaccard tra insiemi di candidati Wheel (mod 30/210/2310) e Ardesi. Valori crescenti al crescere di M indicano maggiore allineamento dei filtri.

5 Discussione

Le curve teoriche (Figura 1) mostrano che il costo atteso della Wheel cresce come $\ln n$ con pendenza proporzionale a $\varphi(M)/M$, mentre il Pattern Binario Ardesi si mantiene (in media)

vicino a una costante k. Nei grafici empirici dell'intervallo 10^{10} – 10^{11} (Figura 2, Figura 3, Figura 4) si osserva una riduzione dei candidati (e quindi del lavoro) a favore di Ardesi; la similarità (Figura 5) aumenta con moduli Wheel più grandi, coerentemente con filtri più selettivi.

6 Istruzioni per la riproducibilità

- Generare i candidati Wheel per $M \in \{30, 210, 2310\}$ filtrando i residui coprimi.
- Generare i candidati **Ardesi** applicando: (i) corridoi mod 30, (ii) selezione binaria/entropica locale per ottenere $\leq k$ numeri per blocco.
- Misurare su più sotto-intervalli casuali in [10¹⁰, 10¹¹]: candidati totali, candidati/primo, tempo relativo, Jaccard (tra insiemi Wheel/Ardesi).
- Strumenti consigliati: Python 3, libreria per primalità (es. gmpy2) per la verifica dei pochi candidati finali.

7 Conclusioni

Il **Pattern Binario Ardesi** fornisce un filtro strutturale competitivo rispetto a **Wheel**, con costo medio operativo che, per k contenuto, può superare le ruote standard già in intervalli pratici. Il protocollo proposto consente a terzi di *replicare* facilmente il confronto su $[10^{10}, 10^{11}]$ o su intervalli più grandi.