Portail René Descartes, Aix-Marseille Université

Analyse 1, Fiche d'exercices 2

Année 2022-23, semestre 2

1 Calculs de limites

Exercice 1.1

Pour tout entier $n \ge 2$, posons

$$u_n = \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) .$$

Calculer u_n et en déduire que $\lim_{n\to\infty} u_n = \frac{1}{2}$.

<u>Indication</u>: remarquer que pour tout entier $k \neq 0$, $1 - k^{-2} = (k+1)(k-1)/k^2$.

Exercice 1.2

Démontrer la formule

$$1 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

et calculer

$$\lim_{n \to \infty} \frac{1 + 2^2 + 3^2 + \dots + n^2}{n^3}.$$

Exercice 1.3 _

Montrer que si la suite $(a_n)_n$ est bornée et si la suite $(b_n)_n$ vérifie $\lim_{n\to\infty} b_n = 0$, alors $\lim_{n\to\infty} a_n b_n = 0$. Calculer les limites suivantes :

(i)
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} \sin(3n + 1)$$
, (ii) $\lim_{n \to \infty} \frac{1 + 2 + \ldots + n}{n^3 + 1} \cos(n!)$, (iii) $\lim_{n \to \infty} (\sin \sqrt{n + 1} - \sin \sqrt{n})$.

Exercice 1.4

Soit $(a_n)_n$ une suite à termes non nuls et telle que $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = q$. Montrer que si q<1, alors $\lim_{n\to\infty} a_n = 0$. Calculer les limites des suites suivantes :

(i)
$$a_n = \frac{2^n}{n!}$$
, (ii) $b_n = \frac{2^n n!}{n^n}$, (iii) $c_n = \frac{(n!)^2}{(2n)!}$.

Exercice 1.5

Calculer les limites suivantes :

$$(i) \lim_{n \to \infty} \frac{(n+1)^2}{2n^2}, \qquad (ii) \lim_{n \to \infty} \frac{(n+1)^2 - (n-1)^2}{(n+1)^2 + (n-1)^2}, \qquad (iii) \lim_{n \to \infty} \frac{\sqrt{n^2 + 1}}{n+1}, \qquad (iv) \lim_{n \to \infty} \frac{n + \cos n}{3n + \sin n},$$

$$(v) \lim_{n \to \infty} \frac{4 \cdot 3^{n+1} + 2 \cdot 4^n}{5 \cdot 2^n + 4^{n+2}}, \qquad (vi) \lim_{n \to \infty} \frac{1 + 2 + \ldots + n}{n+2} - \frac{n}{2}, \qquad (vii) \lim_{n \to \infty} \frac{1 + 4 + 7 + \ldots + (3n-2)}{n^2},$$

Exercice 1.6

Calculer les limites des suites suivantes en multipliant par le terme conjugué:

(i)
$$a_n = n - \sqrt{n^2 + 5n}$$
, (ii) $b_n = \sqrt{n^2 + n} - \sqrt{n^2 - n}$, (iii) $c_n = \sqrt{n^4 + n^2} - \sqrt{n^4 - n^2}$,
(iv) $d_n = \frac{\sqrt{n^2 + 5} - n}{\sqrt{n^2 + 2} - n}$, (v) $e_n = \frac{\sqrt{n^2 + \sqrt{n+1}} - \sqrt{n^2 - \sqrt{n-1}}}{\sqrt{n+1} - \sqrt{n}}$.

Exercice 1.7

Calculer les limites des suites suivantes en appliquant le théorème des gendarmes :

(i)
$$a_n = \sqrt[n]{2 \cdot 3^n + 4 \cdot 7^n}$$
, (ii) $b_n = \sqrt[n]{3n + \sin n}$, (iii) $c_n = \sqrt[n]{2n + \frac{(-1)^n}{n}}$, (iv) $d_n = \sqrt[n]{\frac{3^n + 2^n}{5^n + 4^n}}$,

(v)
$$e_n = \sqrt[n]{2n^3 - 3n^2 + 15}$$
, (vi) $f_n = \sqrt[n]{1 + \frac{1}{2} + \ldots + \frac{1}{n}}$, (vii) $g_n = \sqrt[n]{1^k + 2^k + \ldots + n^k}$.

2 Suites extraites

Exercice 2.1

En utilisant des suites extraites, établir la divergence des suites $(u_n)_n$, $(v_n)_n$ et $(w_n)_n$ suivantes :

$$u_n = n^{-1+(-1)^n}$$
, $v_n = \cos(\pi\sqrt{n})$, $w_n = \sqrt{n} - E(\sqrt{n})$

Exercice 2.2

Soit $(u_n)_n$ une suite de nombres réels telle que les suites extraites $(u_{3n})_n$, $(u_{3n+1})_n$ et $(u_{3n+2})_n$ convergent vers la même limite. Montrer qu'alors la suite $(u_n)_n$ converge vers cette même limite.

Exercice 2.3

Soit $(u_n)_n$ une suite de nombres réels telle que les suites extraites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ convergent. Montrer que la suite $(u_n)_n$ converge.

Exercice 2.4 _____

Soit q un entier supérieur ou égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{q}$.

- 1. Montrer que $\forall n \in \mathbb{N}, \ u_{n+q} = u_n$.
- 2. Calculer u_{nq} et u_{nq+1} . En déduire que la suite $(u_n)_n$ n'a pas de limite.

3 Suites de Cauchy

Exercice 3.1 _

Soit $(u_n)_n$ une suite dans \mathbb{R} telle que la suite $(v_n)_n$ de terme général $v_n = \sum_{k=0}^{n-1} |u_{k+1} - u_k|$ est bornée.

Montrer que $(v_n)_n$ et $(u_n)_n$ sont convergentes.

Exercice 3.2

Montrer en utilisant le critère de Cauchy que la suite $(u_n)_n$ donnée par $u_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$ est divergente.

Exercice 3.3

On considère une suite de nombres réels $(u_n)_n$ tels que pour tout $n \in \mathbb{N}^*$ on a $|u_{n+1} - u_n| \leq k|u_n - u_{n-1}|$. Montrer à l'aide du critère de Cauchy que $(u_n)_n$ est convergente lorsque $k \in [0, 1[$.

Exercice 3.4

1. Démontrer par récurrence sur p que pour tout $p \in \mathbb{N}^*$ et pour tout $n \in \mathbb{N}$ on a

$$\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2} \leqslant \frac{1}{n} - \frac{1}{n+p} .$$

2. Montrer que la suite $(u_n)_n$ donnée par $u_n = \sum_{k=1}^n \frac{1}{k^2}$ est une suite de Cauchy.

Exercice 3.5

Montrer, en utilisant la définition, que

- 1. la suite $(u_n)_n$ définie par $u_n = \frac{(-1)^n n}{n+1}$ n'est pas de Cauchy.
- 2. la suite $(u_n)_n$ définie par $u_n = \frac{2+(-1)^n}{n}$ est de Cauchy.