## CONVERGENCES DE SUITES DE VARIABLES ALÉATOIRES RÉELLES THÉORÈMES LIMITES

## Partie A:



## Exercice 1.

- (1) Soit U une variable aléatoire de loi uniforme sur [-1, 1]. Déterminer la loi de |U|.
- (2) Soit V une variable aléatoire de loi uniforme sur  $[0, \pi]$ . Déterminer la loi de  $\sin(V)$  (on pourra utiliser le principle de la fonction muette).
- (3) Soit W une variable aléatoire de loi uniforme sur [-1,1]. Déterminer la loi de  $\frac{1}{2} \ln \left( \frac{1+W}{1-W} \right)$  (on pourra utiliser le principle de la fonction muette).

Exercice 2. Soient X et Y deux variables aléatoires indépendantes de loi  $\mathcal{N}(m, \sigma^2)$ . Calculer  $\mathbb{E}\left[(X+Y)^2\right]$ .

Exercice 3. Soit  $\alpha > 0$ . Sur un même espace de probabilité on considère une suite de variables aléatoires  $(Z_n)_{n \geq 1}$  indépendantes de loi donnée par

$$\mathbb{P}(Z_n = 1) = \frac{1}{n^{\alpha}} \text{ et } \mathbb{P}(Z_n = 0) = 1 - \frac{1}{n^{\alpha}}.$$

Montrer que  $Z_n \to 0$  dans  $\mathbb{L}^1$ . Pour quelles valeurs de  $\alpha$  la suite  $(Z_n, n \ge 1)$  converge-t-elle presque sûrement?

Exercice 4. Soit  $\lambda > 0$  et soit X une variable aléatoire réelle telle que  $\mathbb{P}(X \ge a) = a^{-\lambda}$  pour tout  $a \ge 1$ . Soit  $(X_n, n \ge 1)$  une suite de variables aléatoires indépendantes et de même loi que X, définies sur le même espace de probabilité. On pose

$$T_n = \left(\prod_{i=1}^n X_i\right)^{1/n}.$$

Montrer que  $T_n$  converge presque sûrement vers une variable aléatoire qu'on déterminera.

Exercice 5. Soit  $(X_n)_{n\geq 1}$  une suite de variables aléatoires indépendantes de loi exponentielle de paramètre  $\lambda > 0$ .

(1) Montrer que la convergence

$$\frac{1}{\ln(n)}\max_{1\leq k\leq n}X_k\quad \underset{n\to\infty}{\xrightarrow{\mathbb{P}}}\quad \frac{1}{\lambda}$$

a lieu en probabilité.

(2) On pose  $Z_n = \frac{1}{\ln(n)} \max_{1 \le k \le n} X_k - \frac{1}{\lambda}$ . En notant  $F_n$  la fonction de repartition de  $Z_n$ , montrer que, pour tout réel x,  $F_n(x)$  converge vers un réel noté F(x) lorsque  $n \to \infty$  et que F est la fonction de répartition d'une variable aléatoire à densité.

Exercice 6. En utilisant le théorème central limite, déterminer la limite suivante :

$$\lim_{n\to\infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

On pourra utiliser le fait que la somme de n variables aléatoires de Poisson indépendantes de paramètres  $\lambda_1, \ldots, \lambda_n$  est une variable aléatoire de Poisson de paramètre  $\lambda_1 + \cdots + \lambda_n$ .