Pour le jun... premier exemple

$$x: t \mapsto t^2 - 3t$$
 est délivable seu \mathbb{R} , et:
 $f \in \mathbb{R}$, $x'(t) = 2t - 3$
 $= 2(t - \frac{3}{2})$

d'ori le tableau de variation de re et y ensembles:

t	- 00	1 () /	3	٤	+ 60
x (t)	I	j	1	- 0	/	
×	160 ————		<u> </u>	2	V4	7+0
y	***	2	\$ / \$	2 ——-	12 6	7+6
y'(t)	- () <i>+</i>	- 0	+	+	

pour t=-1, on obtient le point de coordonnées (4,2) et comme $\int x'(-1) \neq 0$: y'(-1) = 0tangente horizontole pour t = 1, point (-2,2), tangente horizontale

point $t = \frac{3}{2}$; point $\left(-\frac{9}{2}, \frac{97}{36}\right)$ tangente verticale (a) $\left(\frac{3}{2}\right) = 0$ $\left(\frac{3}{2}\right) \neq 0$

Lorsque t >0: $\chi(l) \xrightarrow{} 0$ $y(t) \xrightarrow{} +\infty$ il y a une asymptote verticale ...

Tracé pas à pas de la combe paramétrie:

• De t produc de $-\infty$ à t=-1:

x part d'une très grande valeur et diminue juesqu'à 4 y part d'une très grande valeur et diminue juesqu'à 2 et en (4,2), tangente horizontale

De t=-1 à t produe de 0 en restant négatif x part de 4 et disminue jusqu'à s'approche de 0y part de 2 et augmente, $y(t) = +\infty$

De t poodre de 0 en étant positif à t = 1 x part de 0 en étant négatif et diminue jusqu'à -2 y part de + ∞ et diminue jusqu'à 2 et en (-2,2), fangente horizontale

De t = 1 à t = 3/2 x diminue encore de -2 à -9/4 y augmente légérement de 2 à 97/36 ≥ 2,7 et en ce point, fangente verticale

Enfin, à partir de $t=\frac{3}{2}$ jusqu'à tes, κ et y augmentent tous les deux jusqu'à prendre de très grandes voluis...

On peut remarquer que κ s'annule pour t=3, et alors y vout $9+\frac{1}{4}$, proche de 9.

Combe pour t proche de - es et de +00.

On paut montrer que $y(t) - (x(t) + 3\sqrt{x(t)} + \frac{9}{2}) \xrightarrow{t \rightarrow to}$

ce qui signifie que la combe se rappodre de la combe représentative de $f: x \mapsto x + 3\sqrt{x} + \frac{9}{2}$; et en - co, c'est $g: x \mapsto x - 3\sqrt{x} + \frac{9}{2}$

Pour le jun... deuxième exemple

• $x: t \mapsto 3\cos(t) - \cos(3t)$ est dérivable pour somme et composition sur $[0, \overline{z}]$ et : $\forall t \in [0, \overline{z}]$, $x'(t) = -3\sin(t) + 3\sin(3t)$

$$\kappa'(t) = 3\left(\sin(2t+t) - \sin(2t-t)\right)$$

$$= 3\left[\sin(2t)\cos(t) + \cos(2t)\sin(t) - \left(\sin(2t)\cos(t) - \cos(2t)\sin(t)\right)\right]$$

$$\kappa'(t) = 6\left(\cos(2t)\sin(t)\right)$$

or $\forall t \in [0, \mp]$, sim(t) > 0, annulation uniquement un 0 et $t \mapsto cs(2t)$ est sin sur cet intervalle, $cs(\pm) = 0$ d'où le Signe de cs(2t) et donc de x'(t)

F	0	Ţ	74	T/2
χ'(ŧ)	Ф	+ () –	
×		72	\(\overline{\text{L}}\)	> 0 K
yb	O.	V	 	4
y'(t)	Ф	+	+	Ф
. 0	П	7	h	7

y a-t-îl une tangente en (2,0)? pas clair ... point $(2\sqrt{2},\sqrt{2})$: $fx'(\frac{\pi}{4}) = 0$ $f(\frac{\pi}{4}) \neq 0$ d'où une tangente Verticale en ce point

point (0,4): $\begin{cases} x'(T_2) \neq 0 \\ y'(T_2) = 0 \end{cases}$ d'où me tangente
horizontale en
ce point

De
$$t=0$$
 à $t=\frac{\pi}{4}$, x et y augmenteut

y continue d'augmenter mais x diminue jusqu'à 0.

• Courbe sur [0,2 ∏, avec l'aide de l'énoncé:

Explications:

Jx(IT-t) = -x(t)

Ly(IT-t) = y(t)

et quand travie dans [0, I],

IT-travic dans [I, I].

Done la combe son [I, II]

S'obtient par symitrie par

rappert à Oy

De même, on en tire que la course tru [T,2T] s'obtient par symitrie par rapport à 0x

