Focal loss for dense object detection

Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *IEEE transactions on pattern analysis and machine intelligence*(2018).

One-stage vs Two-stage Detectors

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [16]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [20]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [34]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [32]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [27]	DarkNet-19 [27]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [22, 9]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [9]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet (ours)	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet (ours)	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2

Two-stage Detectors

Two-stage Detectors

- 복잡하다
- 느리다

• 하지만 정확하다

One-stage Detectors

One-stage Detectors

- 빠르다
- 가볍다
- 구현하기도 쉽다
- 하지만 정확성이 떨어진다

One-stage Detectors

- number of Hard Positives (맞추기 어려운 물체들) 가 매우 적음
- number of Easy Negatives (맞추기 쉬운 배경) 가 매우 많음
- -> 트레이닝을 방해

많은 Easy Negative들이 학습 과정을 압도한다. (overwhelming)

Cross Entropy

$$-plog(p^{^{\wedge}}) - (1-p)log(1-p^{^{\wedge}})$$

$$CE(p,y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise.} \end{cases}$$

$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1-p & \text{otherwise,} \end{cases}$$

$$CE(p,y) = CE(p_{t}) = -\log(p_{t})$$

ure 1. One notable property of this loss, which can be easily seen in its plot, is that even examples that are easily classified ($p_t \gg .5$) incur a loss with non-trivial magnitude. When summed over a large number of easy examples, these small loss values can overwhelm the rare class.

Balanced Cross Entropy

weighting factor $\alpha \in [0, 1]$ for class 1 and $1-\alpha$ for class -1 α may be set by inverse class frequency or treated as a hyperparameter

$$CE(p_t) = -\alpha_t \log(p_t)$$

$$-\alpha p log(p^{\hat{}}) - (1-\alpha)(1-p)log(1-p^{\hat{}})$$

This loss is a simple extension to CE that we consider as an experimental baseline for our proposed focal loss.

Focal Loss

we propose to reshape the loss function to down-weight easy examples and thus focus training on hard negatives

$$FL(p_{t}) = -(1 - p_{t})^{\gamma} \log(p_{t})$$

감마는 해보니깐 2가 제일로 좋더라! (we found $\gamma = 2$ to work best in our experiments).

$$-(1-p^{\hat{}})^2plog(p^{\hat{}}) - (p^{\hat{}})^2(1-p)log(1-p^{\hat{}})$$

$$-plog(p^{^{\wedge}}) - (1-p)log(1-p^{^{\wedge}})$$

- 강아지인 확률 * log(강아지로 예측한 확률) - 배경인 확률 * log(배경으로 예측한 확률)

실제	예측	예측 확률		
강아지	배경	0.89	0.958607315	- 1 * log(0.11) - 0 * log(0.89)
배경	배경	0.89	0.050609993	- 0 * log(0.11) - 1 * log(0.89)

$$-(1-p^{\hat{}})^2plog(p^{\hat{}}) - (p^{\hat{}})^2(1-p)log(1-p^{\hat{}})$$

- modulating factor * 강아지인 확률 * log(강아지로 예측한 확률) - modulating factor * 배경인 확률 * log(배경으로 예측한 확률)

실제	예측	예측 확률							
강아지	배경	0.89	0.7593	12854	- 0.89^2 *	1 * log(0.1	1) - 0.11^	2 * 0 * log	(0.89)
배경	배경	0.89	0.0006	12381	- 0.89^2 *	0 * log(0.1	1) - 0.11^	2 * 1 * log	(0.89)

$$-plog(p^{^{\prime}}) - (1-p)log(1-p^{^{\prime}}) -(1-p^{^{\prime}})^2plog(p^{^{\prime}}) - (p^{^{\prime}})^2(1-p)log(1-p^{^{\prime}})$$

실제	예측	예측 확률				실제	예측	예측 확률			
강아지	배경	0.89				배경	배경	0.89			
0.958607315 - 1 * log(0.11) - 0 * log(0.89)				0.050609993 - 0 * log(0.11) - 1 * log(0.89)							
실제	예측	예측 확률				실제	예측	예측 확률			
강아지	배경	0.89				배경	배경	0.89			
0.759312854 - 0.89^2 * 1 * log(0.11) - 0.11^2 * 0 * log(0.89)		(0.89)	0.000	612381	- 0.89^2 * 0	* log(0.11)	-0.11^2 * 1	* log(0.89)			

이미 예측을 잘하는 쉬운 문제(배경)의 loss는 down-weight 예측을 잘 못하고 있는 어려운 문제(강아지)의 loss는 그대로

결과물 (+ Balanced Cross Entropy)

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

Balanced Cross Entropy 추가 하니깐 더 잘되더라!

α	AP	AP_{50}	AP_{75}
.10	0.0	0.0	0.0
.25	10.8	16.0	11.7
.50	30.2	46.7	32.8
.75	31.1	49.4	33.0
.90	30.8	49.7	32.3
.99	28.7	47.4	29.9
.999	25.1	41.7	26.1

γ	α	AP	AP_{50}	AP_{75}
0	.75	31.1	49.4	33.0
0.1	.75	31.4	49.9	33.1
0.2	.75	31.9	50.7	33.4
0.5	.50	32.9	51.7	35.2
1.0	.25	33.7	52.0	36.2
2.0	.25	34.0	52.5	36.5
5.0	.25	32.2	49.6	34.8

We adopt this form in our experiments as it yields slightly

improved accuracy over the non- α -balanced form. Finally,

(b) Varying γ for FL (w. optimal α)

⁽a) Varying α for CE loss ($\gamma = 0$)

RetinaNet

RetinaNet

Experiments

Analysis of the Focal Loss

Focal Loss vs OHEM(online hard example mining)

method	batch size	nms thr	AP	AP_{50}	AP ₇₅
OHEM	128	.7	31.1	47.2	33.2
OHEM	256	.7	31.8	48.8	33.9
OHEM	512	.7	30.6	47.0	32.6
OHEM	128	.5	32.8	50.3	35.1
OHEM	256	.5	31.0	47.4	33.0
OHEM	512	.5	27.6	42.0	29.2
OHEM 1:3	128	.5	31.1	47.2	33.2
OHEM 1:3	256	.5	28.3	42.4	30.3
OHEM 1:3	512	.5	24.0	35.5	25.8
FL	n/a	n/a	36.0	54.9	38.7

(d) **FL** vs. **OHEM** baselines (with ResNet-101-FPN)

About RetinaNet

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [16]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [20]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [34]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [32]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [27]	DarkNet-19 [27]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [22, 9]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [9]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet (ours)	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet (ours)	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2

About RetinaNet

#s	sc #ar	AP	AP_{50}	AP_{75}
1	1	30.3	49.0	31.8
2	2 1	31.9	50.0	34.0
3	3 1	31.8	49.4	33.7
1	3	32.4	52.3	33.9
2	2 3	34.2	53.1	36.5
3	3	34.0	52.5	36.5
4	3	33.8	52.1	36.2

(c) Varying anchor scales and aspects

depth	scale	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	time
50	400	30.5	47.8	32.7	11.2	33.8	46.1	64
50	500	32.5	50.9	34.8	13.9	35.8	46.7	72
50	600	34.3	53.2	36.9	16.2	37.4	47.4	98
50	700	35.1	54.2	37.7	18.0	39.3	46.4	121
50	800	35.7	55.0	38.5	18.9	38.9	46.3	153
101	400	31.9	49.5	34.1	11.6	35.8	48.5	81
101	500	34.4	53.1	36.8	14.7	38.5	49.1	90
101	600	36.0	55.2	38.7	17.4	39.6	49.7	122
101	700	37.1	56.6	39.8	19.1	40.6	49.4	154
101	800	37.8	57.5	40.8	20.2	41.1	49.2	198

(e) **Accuracy/speed trade-off** RetinaNet (on test-dev)

Appendix.

