Содержание

1	Слу	чайные события	4
	1.1	Определение пространства элементарных исходов, примеры. Понятие события (нестрогое),	
		следствие события, невозможное и достоверное события, примеры. Операции над события-	
		ми. Сформулировать классическое определение вероятности и доказать его следствия	4
	1.2	Определение пространства элементарных исходов, примеры. Понятие события (нестрогое).	
		Сформулировать геометрическое и статистическое определения вероятности. Достоинства	
		и недостатки этих определений	5
	1.3	Определение пространства элементарных исходов, примеры. Сформулировать определение	
		сигма-алгебры событий. Доказать простейшие свойства сигма-алгебры. Сформулировать	
		аксиоматическое определение вероятности	6
	1.4	Определение пространства элементарных исходов, примеры. Сформулировать определе-	
		ние сигма-алгебры событий. Сформулировать аксиоматическое определение вероятности и	
		доказать простейшие свойства вероятности	8
	1.5	Сформулировать определение условной вероятности. Доказать, что при фиксированном со-	
		бытии B условная вероятность $P(A B)$ обладает всеми свойствами безусловной вероятности.	9
	1.6	Сформулировать определение условной вероятности. Доказать теорему (формулу) умноже-	
		ния вероятностей. Привести пример использования этой формулы	10
	1.7	Сформулировать определение пары независимых событий. Доказать критерий независимо-	
		сти двух событий. Сформулировать определение попарно независимых событий и событий,	
		независимых в совокупности. Обосновать связь этих свойств	11
	1.8	Сформулировать определение полной группы событий. Доказать теоремы о формуле полной	
		вероятности и о формуле Байеса. Понятия априорной и апостериорной вероятностей	12
	1.9	Сформулировать определение схемы испытаний Бернулли. Доказать формулу для вычисле-	
		ния вероятности реализации ровно k успехов в серии из n испытаний по схеме Бернулли.	
		Доказать следствия этой формулы	13
2	Слу	чайные величины	15
	2.1	Сформулировать определение случайной величины и функции распределения вероятностей	
			15
	2.2	Сформулировать определения случайной величины и функции распределения случайной	
		величины. Сформулировать определения дискретной и непрерывной случайной величины.	
		Доказать свойства плотности распределения вероятностей непрерывной случайной величины.	16
	2.3	Сформулировать определение нормальной случайной величины, указать геометрический	
		смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вы-	
		числения вероятности попадания нормальной случайной величины в интервал	16
	2.4	Сформулировать определение случайного вектора и функции распределения вероятностей	
		случайного вектора. Сформулировать свойства функции распределения двумерного слу-	
		чайного вектора. Доказать предельные свойства	17
	2.5	Сформулировать определение случайного вектора и функции распределения вероятностей	
		случайного вектора. Сформулировать свойства функции распределения двумерного слу-	
		чайного вектора. Доказать формулу для вычисления $P\{a_1 \leq X_1 < b1, a_2 \leq X_2 < b_2\}$	18

2.6	Сформулировать определение случайного вектора и функции распределения вероятностей	
	случайного вектора. Сформулировать определение непрерывного случайного вектора и до-	10
2.7	казать свойства плотности распределения вероятностей для двумерного случайного вектора.	19
2.7	Сформулировать определение пары независимых случайных величин. Доказать свойства	
	независимых случайных величин. Понятия попарно независимых случайных величин и слу-	
	чайных величин, независимых в совокупности	20
2.8	Понятие условного распределения случайной величины. Сформулировать определение	
	условного ряда распределения компоненты двумерного дискретного случайного вектора.	
	Привести рассуждения, приводящие к такому определению. Сформулировать определение	
	условной плотности распределения компоненты двумерного непрерывного случайного век-	
	тора. Сформулировать критерии независимости случайных величин в терминах условных	
	распределений	22
2.9	Понятие функции скалярной случайной величины. Доказать теорему о формуле для вычис-	
	ления плотности $f_Y(y)$ случайной величины $Y=\varphi(X),$ если X – непрерывная случайная	
	величина, а φ — монотонная непрерывно дифференцируемая функция. Сформулировать	
	аналогичную теорему для кусочно-монотонной функции φ	23
2.10	Понятие скалярной функции случайного вектора. Обосновать формулу для вычисления	
	функции распределения случайной величины Y , функционально зависящей от случайных	
	величин X1 и X2, если (X1, X2) – непрерывный случайный вектор. Доказать теорему о	
	формуле свертки	25
2.11	Сформулировать определение математического ожидания для дискретной и непрерывной	
	случайных величин. Механический смысл математического ожидания. Доказать свойства	
	математического ожидания. Записать формулы для вычисления математического ожидания	
	функции случайной величины и случайного вектора	26
2.12	Сформулировать определение дисперсии случайной величины. Механический смысл дис-	
	персии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной	
	величины	27
2.13	Сформулировать определение математического ожидания и дисперсии. Записать законы	
	распределения биномиальной, пуассоновской, равномерной, экспоненциальной и нормаль-	
	ной случайной величин. Найти математические ожидания и дисперсии этих случайных	
	величин	29
2.14	Сформулировать определение ковариации и записать формулы для ее вычисления в случае	
	дискретного и непрерывного случайных векторов. Доказать свойства ковариации	31
2.15	Сформулировать определение ковариации и коэффициента корреляции случайных величин.	
	Сформулировать свойства коэффициента корреляции. Сформулировать определения неза-	
	висимых и некоррелированных случайных величин, указать связь между этими свойствами.	
	Понятия ковариационной и корреляционной матриц. Записать свойства ковариационной	
	матрицы	33
2.16	Понятие условного распределения компоненты двумерного случайного вектора (дискрет-	
	ный и непрерывный случаи). Сформулировать определения значений условного математи-	
	ческого ожидания и условной дисперсии. Сформулировать определения условного матема-	
	тического ожидания и условной дисперсии. Записать формулы для вычисления условных	
	математического ожидания и дисперсии для компоненты двумерного нормального вектора .	34

2.17	Понятие п-мерного нормального распределения. Сформулировать основные свойства мно-	
	гомерного нормального распределения	35

1 Случайные события

1.1 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое), следствие события, невозможное и достоверное события, примеры. Операции над событиями. Сформулировать классическое определение вероятности и доказать его следствия.

Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Множество Ω всех исходов данного случайного эксперимента называют **пространством элементарных исходов**, при этом выполняются следующие условия:

- каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- в результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример №1. Бросают монетку. Возможные исходы: выпадение герба или решки. Тогда $\Omega = \{\text{Герб, Решка}\}$ – множество элементарных исходов. $|\Omega| = 2$.

Пример №2. Бросают игральную кость: $\Omega = \{ «1», «2», «3», «4», «5», «6» \}, |\Omega| = 6.$

Пример №3. Из колоды в 36 карт последовательно извлекают 2 карты (без возвращения). Исход можно описать парой (x_1,x_2) , где x_i — номер карты при i-ом извлечении. Тогда $\Omega = \{(x_i,\,x_j):\,x_i,\,x_j\in\{1,...,36\},\,i\neq j\}, |\Omega| = 36\cdot35.$

Нестрогое определение. Событием будем называть произвольное подмножество множества элементарных исходов Ω .

Пример №4. Бросают игральную кость: $\Omega = \{ «1», «2», «3», «4», «5», «6» \}, |\Omega| = 6$. Можно определить событие $A = \{$ выпавшее число очков равно «5» или «6» $\}$, т.е. $A = \{ «5», «6» \}, |A| = 2$. Если в результате эксперимента выпавшее число очков равно «5» или «6», то всё событие A целиком «наступило».

Событие A называют **следствием события** B, если из того, что произошло B, следует то, что произошло A, т. е. $B\subseteq A$.

Любое множество Ω содержит в себе два подмножества: \emptyset и Ω . События, соответствующие данным множествам, называются **невозможным и достоверным** соответственно. Эти события называются несобственными событиями. Все остальные события называются собственными.

Пример №5. Из урны, содержащей два красных и три синих шара, извлекают один шар. Возможные события: $A = \{$ извлечённый шар является красным или синим $\}$ – является достоверным, $B = \{$ извлечён белый шар $\}$ – невозможным.

Операции над событиями

События – множества элементарных исходов. Следовательно, над ними можно выполнять все операции над множествами. При этом вводится следующая терминология.

- 1. Объединение множеств принято называть суммой событий: $A \cup B = A + B$;
- 2. Пересечение множеств называют произведением событий: $A \cap B = A \cdot B$;
- 3. Дополнение A называют событием, противоположным A: $\overline{A} = \Omega \setminus A$.

Классическое определение вероятности

Пусть:

- 1) Ω пространство исходов некоторого случайного эксперимента, $|\Omega|=N<\infty$;
- 2) все элементарные исходы равновозможны;
- 3) существует событие $A \subseteq \Omega, |A| = N_A$.

Тогда вероятностью осуществления события A называют число $P(A) = \frac{N_A}{N}$.

Свойства

1. P(A) > 0.

Доказательство. Т. к. $N_A \ge 0, N > 0$, то $P(A) = \frac{N_A}{N} \ge 0$.

2. $P(\Omega) = 1$.

Доказательство. $P(\Omega) = \frac{N_{\Omega}}{N} = \frac{N}{N} = 1, |\Omega| = N_{\Omega} = N.$

3. Если A, B – несовместные события, то P(A+B) = P(A) + P(B).

Доказательство. Т. к. Ω – конечно, тогда $A,B\subseteq\Omega$ – конечны. Существует формула: |A+B|=|A|+|B|-|AB|. Т. к. A,B – несовместны, то $AB=\emptyset\Longrightarrow N_A+N_B=N_{A+B}$. Таким образом, $P(A+B)=\frac{N_{A+B}}{N}=\frac{N_A+N_B}{N}=\frac{N_A}{N}+\frac{N_B}{N}=P(A)+P(B)$.

1.2 Определение пространства элементарных исходов, примеры. Понятие события (нестрогое). Сформулировать геометрическое и статистическое определения вероятности. Достоинства и недостатки этих определений.

Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Множество Ω всех исходов данного случайного эксперимента называют **пространством элементарных исходов**, при этом выполняются следующие условия:

- каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- в результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример №1. Бросают монетку. Возможные исходы: выпадение герба или решки. Тогда $\Omega = \{\text{Герб, Решка}\}$ – множество элементарных исходов. $|\Omega| = 2$.

Пример №2. Бросают игральную кость: $\Omega = \{ \text{«1», «2», «3», «4», «5», «6»} \}, |\Omega| = 6.$

Пример №3. Из колоды в 36 карт последовательно извлекают 2 карты (без возвращения). Исход можно описать парой (x_1,x_2) , где x_i — номер карты при i-ом извлечении. Тогда $\Omega = \{(x_i,\,x_j):\,x_i,\,x_j\in\{1,...,36\},\,i\neq j\}, |\Omega| = 36\cdot35.$

Нестрогое определение. Событием будем называть произвольное подмножество множества элементарных исходов Ω .

Пример №4. Бросают игральную кость: $\Omega = \{ «1», «2», «3», «4», «5», «6» \}, |\Omega| = 6$. Можно определить событие $A = \{$ выпавшее число очков равно «5» или «6» $\}$, т.е. $A = \{ «5», «6» \}, |A| = 2$. Если в результате эксперимента выпавшее число очков равно «5» или «6», то всё событие A целиком «наступило».

Геометрическое определение вероятности

Пусть:

- 1) $\Omega \subseteq \mathbb{R}^n$;
- 2) $\mu(\Omega) < \infty$, где μ мера множества;
- 3) возможность принадлежности некоторого элементарного исхода случайного эксперимента событию A пропорциональна мере этого события и не зависит от формы A и его расположения внутри Ω .

Тогда вероятностью осуществления события A называется число $P(A) = \frac{\mu(A)}{\mu(\Omega)}$.

Геометрическое определение вероятности является обобщением классического определения на случай, когда $|\Omega|=\infty$.

Недостаток геометрического определения заключается в том, что оно не учитывает возможность того, что некоторые области внутри Ω окажутся более предпочтительными, чем другие.

Статистическое определение вероятности

Пусть:

- 1) некоторый случайный эксперимент произведён n раз;
- 2) при этом некоторое наблюдаемое в этом эксперименте событие A произошло n_A раз.

Тогда вероятностью осуществления события A называют эмпирический (т. е. найденный экспериментальным путём) предел: $\lim_{n \to \infty} = \frac{n_A}{n}$.

Недостатки статичестического определения вероятности:

- 1) никакой эксперимент не может быть произведён бесконечно много раз;
- 2) с точки зрения современной математики статистическое определение является архаизмом, т. к. не даёт достаточно базы для дальнейшего построения теории.

1.3 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма-алгебры событий. Доказать простейшие свойства сигма-алгебры. Сформулировать аксиоматическое определение вероятности.

Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Множество Ω всех исходов данного случайного эксперимента называют **пространством элементарных исходов**, при этом выполняются следующие условия:

- каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- в результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.

Пример №1. Бросают монетку. Возможные исходы: выпадение герба или решки. Тогда $\Omega = \{\text{Герб, Решка}\}$ – множество элементарных исходов. $|\Omega| = 2$.

Пример №2. Бросают игральную кость: $\Omega = \{$ «1», «2», «3», «4», «5», «6» $\}, |\Omega| = 6.$

Пример №3. Из колоды в 36 карт последовательно извлекают 2 карты (без возвращения). Исход можно описать парой (x_1,x_2) , где x_i — номер карты при i-ом извлечении. Тогда $\Omega = \{(x_i,\,x_j):\,x_i,\,x_j\in\{1,...,36\},\,i\neq j\}, |\Omega| = 36\cdot35.$

Определение сигма-алгебры событий

Пусть:

- 1) Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2) $\mathcal{B} \neq \emptyset$ набор подмножеств в множестве Ω .

Тогда \mathcal{B} называется сигма–алгеброй событий, если выполнены условия:

- 1) Если $A \in \mathcal{B}$, то $\overline{A} \in \mathcal{B}$;
- 2) Если $A_1, ..., A_n, ... \in \mathcal{B}$, то $A_1 + ... + A_n + ... \in \mathcal{B}$.

Простейшие свойства

1. $\Omega \in \mathcal{B}$.

Доказательство. $\mathcal{B} \neq \emptyset$ – по определению $\Rightarrow \exists A \subseteq \Omega : A \in \mathcal{B} \Rightarrow$ (аксиома 1) $\overline{A} \in \mathcal{B} \Rightarrow$ (аксиома 2) $A + \overline{A} \in \mathcal{B}$. Т. к. $A + \overline{A} = \Omega \Rightarrow \Omega \in \mathcal{B}$.

 $2. \emptyset \in \mathcal{B}.$

Доказательство. Т. к. $\Omega \in \mathcal{B} \Rightarrow$ (аксиома 1) $\overline{\Omega} \in \mathcal{B}, \overline{\Omega} = \emptyset \Rightarrow \emptyset \in \mathcal{B}$.

3. Если $A_1, ..., A_n, ... \in \mathcal{B}$, то $A_1 \cdot ... \cdot A_n \cdot ... \in \mathcal{B}$.

Доказательство. Т. к. $A_1,...,A_n,... \in \mathcal{B} \Rightarrow (\text{аксиома 1}) \ \overline{A_1},...,\overline{A_n},... \in \mathcal{B} \Rightarrow (\text{аксиома 2}) \ \overline{A_1} + ... + \overline{A_n} + ... \in \mathcal{B} \Rightarrow (\text{аксиома 1}) \Rightarrow \overline{\overline{A_1} + ... + \overline{A_n} + ...} \in \mathcal{B} \Rightarrow (\text{по закону Де Моргана}) \ \overline{\overline{A_1}} \cdot ... \cdot \overline{\overline{A_n}} \cdot ... \in \mathcal{B} \Rightarrow A_1 \cdot ... \cdot A_n \cdot ... \in \mathcal{B}.$

4. Если $A, B \in \mathcal{B}$, то $A \setminus B \in \mathcal{B}$.

Доказательство. Из свойств операций над множествами: $A \setminus B = A \cdot \overline{B}$. $B \in \mathcal{B} \Rightarrow$ (аксиома 1) $\overline{B} \in \mathcal{B} \Rightarrow A, \overline{B} \in \mathcal{B} \Rightarrow$ (свойство 3) $A \cdot \overline{B} \in \mathcal{B} \Rightarrow A \setminus B \in \mathcal{B}$.

Аксиоматическое определение вероятности

Пусть:

- 1) Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2) \mathcal{B} сигма–алгебра на Ω .

Тогда вероятностью (вероятностной мерой) называется функция $P:\mathcal{B}\to\mathbb{R}$ обладающая следующими свойствами:

- 1) $\forall A \in \mathcal{B} \Rightarrow P(A) \geq 0$ (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) если $A_1, ..., A_n, ...$ попарно несовместные события, то $P(A_1 + ... + A_n + ...) = P(A_1) + ... + P(A_n) + ...$ (расширенная аксиома сложения).

1.4 Определение пространства элементарных исходов, примеры. Сформулировать определение сигма–алгебры событий. Сформулировать аксиоматическое определение вероятности и доказать простейшие свойства вероятности.

Случайным называют эксперимент, результат которого невозможно точно предсказать заранее.

Множество Ω всех исходов данного случайного эксперимента называют **пространством элементарных исходов**, при этом выполняются следующие условия:

- каждый элементарный исход является «неделимым», т. е. он не может быть разбит на более «мелкие» исходы;
- в результате каждого эксперимента обязательно имеет место ровно один из входящих в Ω элементарных исходов.
- Пример №1. Бросают монетку. Возможные исходы: выпадение герба или решки. Тогда $\Omega = \{$ Герб, Решка $\}$ множество элементарных исходов. $|\Omega| = 2$.

Пример №2. Бросают игральную кость: $\Omega = \{ «1», «2», «3», «4», «5», «6» \}, |\Omega| = 6.$

Пример №3. Из колоды в 36 карт последовательно извлекают 2 карты (без возвращения). Исход можно описать парой (x_1,x_2) , где x_i — номер карты при i-ом извлечении. Тогда $\Omega = \{(x_i,\,x_j):\,x_i,\,x_j\in\{1,...,36\},\,i\neq j\}, |\Omega| = 36\cdot 35.$

Определение сигма-алгебры событий

Пусть:

- 1) Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2) $\mathcal{B} \neq \emptyset$ набор подмножеств в множестве Ω .

Тогда \mathcal{B} называется сигма–алгеброй событий, если выполнены условия:

- 1) Если $A \in \mathcal{B}$, то $\overline{A} \in \mathcal{B}$:
- 2) Если $A_1, ..., A_n, ... \in \mathcal{B}$, то $A_1 + ... + A_n + ... \in \mathcal{B}$.

Аксиоматическое определение вероятности

Пусть:

- 1) Ω пространство элементарных исходов некоторого случайного эксперимента;
- 2) \mathcal{B} сигма–алгебра на Ω .

Тогда вероятностью (вероятностной мерой) называется функция $P:\mathcal{B}\to\mathbb{R}$ обладающая следующими свойствами:

- 1) $\forall A \in \mathcal{B} \Rightarrow P(A) \geq 0$ (аксиома неотрицательности);
- 2) $P(\Omega) = 1$ (аксиома нормированности);
- 3) если $A_1, ..., A_n, ...$ попарно несовместные события, то $P(A_1 + ... + A_n + ...) = P(A_1) + ... + P(A_n) + ...$ (расширенная аксиома сложения).

Простейшие свойства

1. $P(\overline{A}) = 1 - P(A)$.

Доказательство. $A+\overline{A}\in\mathcal{B}$ (аксиома 2 сигма–алгебры), $A+\overline{A}=\Omega\Rightarrow$ (по свойству вероятностей) $P(\Omega)=1=P(A+\overline{A})\Rightarrow$ т. к. A,\overline{A} – несовместны, то $P(A+\overline{A})=P(A)+P(\overline{A})\Rightarrow P(A)+P(\overline{A})=1\Rightarrow P(\overline{A})=1-P(A).$

2. $P(\emptyset) = 0$.

Доказательство. $P(\emptyset) = P(\overline{\Omega}) \Rightarrow$ (свойство 1) $P(\emptyset) = P(\overline{\Omega}) = 1 - P(\Omega) = 1 - 1 = 0, P(\Omega) = 1 - 1 = 0$ аксиома нормированности.

3. Если $A \subseteq B$, то $P(A) \le P(B)$.

Доказательство. $A \subseteq B \Rightarrow B = A + (B \setminus A)$. Тогда $P(B) = P(A + (B \setminus A)) = (A, B \setminus A - \text{несовместны},$ аксиома $3) = P(A) + P(B \setminus A) \ge P(A) \Rightarrow P(B) \ge P(A)$.

4. $\forall A \in \mathcal{B} : 0 \leq P(A) \leq 1$.

Доказательство. $P(A) \ge 0$ – из аксиомы 1. $\forall A: A \subseteq \Omega \Rightarrow$ (свойство 3) $P(A) \le P(\Omega) \Rightarrow$ (свойство 2) $P(A) \le 1$.

5. P(A + B) = P(A) + P(B) - P(AB), где $A, B \in \mathcal{B}$.

Доказательство. $\forall \forall A, B$:

(a)
$$A + B = A + (B \setminus A), A \cdot (B \setminus A) = \emptyset \Rightarrow$$
 (аксиома 3) $P(A + B) = P(A) + P(B \setminus A).$

(б)
$$B = AB + (B \setminus A), (AB)(B \setminus A) = \emptyset \Rightarrow$$
 (аксиома 3) $P(B) = P(AB) + P(B \setminus A) \Rightarrow P(B \setminus A) = P(B) - P(AB).$

Из (a) и (б):
$$P(A+B) = P(A) + P(B) - P(AB)$$

6. $\forall \forall A_1, ..., A_n : P(A_1 + ... + A_n) = P(A_1) + ... + P(A_n) - P(A_1 A_2) - P(A_1 A_3) - ... - P(A_{n-1} A_n) + P(A_1 A_2 A_3) + ... + (-1)^{n+1} P(A_1 A_2 ... A_n).$

Доказательство. Является обобщением свойства 5, может быть доказано с использованием метода математической индукции.

1.5 Сформулировать определение условной вероятности. Доказать, что при фиксированном событии B условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности.

Пусть:

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) известно, что в результате эксперимента произошло событие B.

Тогда **условной вероятностью** осуществления события A при условии, что произошло событие B, называется число $P(A|B) = \frac{P(AB)}{P(B)}, P(B) \neq 0$.

Теорема. Пусть:

- 1) зафиксировано событие $B, P(B) \neq 0$;
- 2) P(A|B) рассматривается как функция события A.

Тогда P(A|B) обладает всеми свойствами безусловной вероятности.

Доказательство.

- 1. Докажем, что условная вероятность P(A|B) удовлетворяет трём аксиомам вероятности:
 - (a) $P(A|B) = \frac{P(AB)}{P(B)}, P(AB) \ge 0, P(B) > 0 \Rightarrow P(A|B) \ge 0.$
 - (6) $P(\Omega|B) = \frac{P(\Omega B)}{B} = \frac{P(B)}{P(B)} = 1.$
 - (в) $P(A_1+\ldots+A_n+\ldots|B)=\frac{P((A_1+\ldots+A_n+\ldots)B)}{P(B)}=\frac{1}{P(B)}\cdot P(A_1B+A_2B+\ldots+A_nB+\ldots)=|A_1,\ldots,A_n,\ldots-$ попарно несовместны $\Rightarrow A_1B,\ldots A_nB,\ldots-$ попарно несовместны, тогда используем расширенную аксиому сложения $|A_1B|\cdot P(A_1B)+P(A_2B)+\ldots+P(A_nB)+\ldots|=\frac{P(A_1B)}{P(B)}+\ldots+\frac{P(A_nB)}{P(B)}+\ldots==P(A_1|B)+\ldots+P(A_n|B)+\ldots$
- 2. Т.к. свойства безусловной вероятности являются прямыми следствиями из аксиом безусловной вероятности, а условная вероятность этим аксиомам удовлетворяет, то она удовлетворяет свойствам безусловной вероятности.
- 1.6 Сформулировать определение условной вероятности. Доказать теорему (формулу) умножения вероятностей. Привести пример использования этой формулы.

Пусть:

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) известно, что в результате эксперимента произошло событие B.

Тогда **условной вероятностью** осуществления события A при условии, что произошло событие B, называется число $P(A|B) = \frac{P(AB)}{P(B)}, P(B) \neq 0.$

Теорема. Формула умножения вероятностей для двух событий. Пусть:

- 1) A и B два события, связанные с одним случайным экспериментом;
- 2) P(A) > 0.

Тогда P(AB) = P(A)P(B|A).

Доказательство. Т.к. P(A)>0, то определена условная вероятность $P(B|A)=\frac{P(AB)}{P(A)}\Rightarrow P(AB)=P(A)P(B|A).$

Теорема. Формула умножения вероятностей для n событий. Пусть:

- 1) $A_1, ..., A_n$ события, связанные с одним случайным экспериментом;
- 2) $P(A_1 \cdot ... \cdot A_{n-1}) > 0$.

Тогда $P(A_1 \cdot A_2 \cdot \ldots \cdot A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \cdot \ldots \cdot P(A_n|A_1 \cdot \ldots \cdot A_{n-1}).$

Доказательство.

1. $k = \overline{1, n-1}: A_1 \cdot ... \cdot A_{n-1} \subseteq A_1 \cdot ... \cdot A_k$. По 3-му свойству вероятности $P(A_1 \cdot ... \cdot A_k) \ge P(A_1 \cdot ... \cdot A_{n-1}) > 0$. Следовательно, все условные вероятности, входящие в правую часть доказываемой формулы, определены, и можно задавать условные вероятности по типу $P(A_n | A_1 A_2 ... A_{n-1})$, и, следовательно, можно пользоваться формулой умножения вероятностей для двух событий.

2. Последовательно применим формулу умножения вероятностей для двух событий:

$$P(A_1 \cdot ... \cdot A_{n-1} \cdot A_n) = P(A_1 \cdot ... \cdot A_{n-2} \cdot A_{n-1}) \cdot P(A_n | A_1 \cdot ... \cdot A_{n-1}) = P(A_1 \cdot ... \cdot A_{n-3} \cdot A_{n-2}) \cdot P(A_{n-1} | A_1 \cdot ... \cdot A_{n-2}) \cdot P(A_n | A_1 \cdot ... \cdot A_{n-1}) = ... = P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) \cdot ... \cdot P(A_n | A_1 ... A_{n-1}).$$

Пример. На семи карточках написаны буквы слова «ШОКОЛАД». Карточки тщательно перемешивают, и по очереди извлекают случайным образом три из них без возвращения первых карточек. Найти вероятность того, что эти три карточки в порядке появления образуют слово «ШОК»:

Событие $A = \{$ три карточки в порядке появления образуют слово «ШОК» $\}$.

Введет следующие события: $A_1 = \{$ на первой извлеченной карточке написано «Ш» $\}$; $A_2 = \{$ на второй извлеченной карточке написано «С» $\}$; $A_3 = \{$ на третьей извлеяенной карточке написано «К» $\}$.

Тогда
$$A = A_1 \cdot A_2 \cdot A_3$$
.

$$P(A) = P(A_1 A_2 A_3) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) = \frac{1}{7} \cdot \frac{2}{6} \cdot \frac{1}{5} = \frac{1}{105}$$

1.7 Сформулировать определение пары независимых событий. Доказать критерий независимости двух событий. Сформулировать определение попарно независимых событий и событий, независимых в совокупности. Обосновать связь этих свойств.

События A и B, связанные с некоторым случайным экспериментом и имеющие ненулевую вероятность, называеются **независимыми**, если P(AB) = P(A)P(B).

События $A_1,...,A_n$ называются попарно независимыми, если $\forall \forall i,j: i \neq j; i,j \in \{1,...,n\}: P\{A_iA_j\} = P\{A_i\}P\{A_j\}.$

События $A_1, ..., A_n$, связанные с некоторым случайным экспериментом, называются **независимыми** в совокупности, если $\forall k \in 2, ..., n, \forall \forall i_1 < i_2 < ... < i_k : P\{A_{i_1}...A_{i_k}\} = P\{A_{i_1}\} \cdot ... \cdot P\{A_{i_k}\}.$

Если $A_1, ..., A_n$ независимые в совокупности, то $A_1, ..., A_n$ – попарно независимые. Обратное неверно.

Пример Берништейна.

Рассмотрим правильный тетраэдр, на трех гранях которого написаны цифры «1», «2», «3» соответственно, а на четвертой написано «123». Тетраэдр подбрасывают и смотрят, что написано на нижней грани. Докажем, что события $A_i = \{$ на нижней грани есть $i\}, i \in 1, 2, 3$ — попарно независимы, но не являются независимыми в совокупности.

- 1. $P(A_1) = \frac{1}{2} = P(A_2) = P(A_3)$.
- 2. $P(A_1A_2) = P(A_1)P(A_2) = P(A_1A_3) = P(A_1)P(A_3) = P(A_2A_3) = P(A_2)P(A_3) = \frac{1}{4} \Rightarrow A_1, A_2, A_3$ попарно независимые.
- 3. $P(A_1A_2A_3)=\frac{1}{4} \neq P(A_1)P(A_2)P(A_3) \Rightarrow A_1,A_2,A_3$ не являются независимыми в совокупности.

Теорема

- 1. Если P(B) > 0, то A, B независимые $\Leftrightarrow P(A|B) = P(A)$.
- 2. Если P(A)>0, то A,B независимые $\Leftrightarrow P(B|A)=P(B)$.

Доказательство

Необходимость. A, B – независимые события, т.е. P(AB) = P(A)P(B). P(A|B) = |по определению условной вероятности $|=\frac{P(AB)}{P(B)}=\frac{P(A)P(B)}{P(B)}=P(A).$ Достаточность. P(A|B)=P(A). P(AB)=| по формуле умножения вероятностей|=

 $P(B)P(A|B) = P(B)P(A), P(B) > 0 \Rightarrow A, B$ – независимые.

Доказательство для (2) аналогично.

1.8 Сформулировать определение полной группы событий. Доказать теоремы о формуле полной вероятности и о формуле Байеса. Понятия априорной и апостериорной вероятностей.

Пусть Ω – пространство элементарных исходов, связанных с некоторым случайным экспериментом, а (Ω, \mathcal{B}, P) – вероятностное пространство этого случайного эксперимента.

Говорят, что события $H_1, ..., H_n \in \mathcal{B}$ образуют полную группу событий, если:

- 1) $P(H_i) > 0, i = \overline{1, n}$;
- 2) $H_iH_i = \emptyset, i \neq j$;
- 3) $H_1 + ... + H_n = \Omega$.

Теорема. Формула полной вероятности

Пусть:

- 1. $H_1, ..., H_n$ полная группа событий.
- 2. $P(H_i) > 0, i = \overline{1, n}$.
- 3. $A \in \mathcal{B}$ событие.

Тогда $P(A) = P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n)$.

Доказательство. $P(A) = P(A\Omega) = P(A(H_1 + ... + H_n)) = P(AH_1 + ... + AH_n) = |H_1, ..., H_n - H_n|$ попарно независимые события $| = P(AH_1) + ... + P(AH_n) = P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n).$

Теорема. Формула Байеса

Пусть:

- 1. Выполнены условия теоремы о формуле полной вероятности.
- 2. $A \in \mathcal{B} : P(A) > 0$.

Тогда
$$P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)} = \frac{P(A|H_i)P(H_i)}{P(A)}, i = \overline{1,n}.$$

Тогда $P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)} = \frac{P(A|H_i)P(H_i)}{P(A)}, i = \overline{1,n}.$ Доказательство. $P(H_i|A) = \frac{P(AH_i)}{A} = |$ числитель – теорема умножения тероятностей, знаменатель – формула полной вероятности $| = \frac{P(A|H_i)P(H_i)}{P(A|H_1)P(H_1)+...+P(A|H_n)P(H_n)}.$

Априорная вероятность – это вероятность, которая известна или оценивается до проведения случайного эксперимента.

Апостериорная вероятность – это вероятность события, рассчитанная после того, как был проведён эксперимент.

1.9 Сформулировать определение схемы испытаний Бернулли. Доказать формулу для вычисления вероятности реализации ровно k успехов в серии из n испытаний по схеме Бернулли. Доказать следствия этой формулы

Схемой испытаний Бернулли называется серия из однотипных экспериментов указанного вида, в которой отдельные испытания независимы, т.е. вероятность реализации успеха в i-ом испытании не зависит от исходов первого, второго,...,i-1-го испытаний.

Теорема

Пусть проводится серия из n испытаний по схеме Бернулли с вероятностью успеха p. Тогда $P_n(k)$ есть вероятность того, что в серии из n испытаний произойдёт ровно k успехов: $P_n(k) = C_n^k p^k q^{n-k}$.

Доказательство

- 1. Результат проведения серии из n экспериментов запишем с использованием кортежа $(x_1,...,x_n)$, где $x_i = \begin{cases} 1, & \text{если в } i\text{-м испытании имел место успех,} \\ 0, & \text{если в } i\text{-м испытании имела место неудача.} \end{cases}$
- 2. Пусть $A = \{$ в серии из n испытаний произошло ровно k успехов $\}$. Тогда A состоит из кортежей, в которых будет ровно k единиц и n-k нулей. В событии A будет столько элементарных исходов, сколькими способами можно расставить k единиц по n позициям. Выбрать k позиций из имеющихся n можно C_n^k способами. Вероятность каждого отдельного исхода равна произведению вероятностей каждого отдельного x_i , и тогда общая вероятность исхода будет равна: p^kq^{n-k} . Все испытания независимы; следовательно, все кортежи из A равновероятны, и их C_n^k штук, что означает: $P_n(k) = C_n^k p^k q^{n-k}$.

Следствие (1)

Вероятность того, что количество успехов в серии из n испытаний по схеме Бернулли с вероятностью успеха p будет заключено между k_1 и k_2 , равна: $P_n(k_1 \le k \le k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$.

Доказательство

- 1. Пусть $A_i = \{$ в серии произошло ровно i успехов $\}, \quad i = k_1, \dots, k_2,$ и $P(A_i) = P_n(i) = C_n^i p^i q^{n-i}.$
- 2. Тогда $A=A_{k_1}+A_{k_1+1}+\cdots+A_{k_2}$, где $P(A)=P(A_{k_1}+\cdots+A_{k_2})$.

Так как события A_i и A_j несовместны при $i \neq j$, то $P(A) = P(A_{k_1}) + \cdots + P(A_{k_2})$.

Подставим выражение для $P(A_i)$: $P(A) = \sum_{i=k_1}^{k_2} P\{A_i\} = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$.

Таким образом: $P_n(k_1 \le k \le k_2) = \sum_{i=k_1}^{k_2} C_n^i p^i q^{n-i}$.

Следствие (2)

Вероятность того, что в серии испытаний Бернулли с вероятностью успеха p (и неудачи q=1-p) произойдёт хотя бы один успех, равна: $P_n(k\geq 1)=1-q^n$.

Доказательство

Пусть $A=\{$ в серии произошёл хотя бы один успех $\}$. Тогда противоположное событие: $\bar{A}=\{$ в серии не будет ни одного успеха $\}$.

Вероятность события A равна: $P(A) = 1 - P(\bar{A})$.

Вероятность $P(\bar{A})$ соответствует $P_n(0)$, то есть вероятности того, что в серии из n испытаний не произойдёт ни одного успеха: $P(\bar{A}) = P_n(0) = C_n^0 p^0 q^{n-0}$.

Подставляя значения, получаем: $P(\bar{A})=q^n$.

Таким образом: $P(A) = 1 - P(\bar{A}) = 1 - q^n$.

2 Случайные величины

2.1 Сформулировать определение случайной величины и функции распределения вероятностей случайной величины. Доказать свойства функции распределения.

Пусть (Ω, β, P) – вероятностное пространство некоторого случайного эксперимента.

Случайной величиной называется функция $X:\Omega \to \mathbb{R}$ такая, что $\forall x \in \mathbb{R}: \{\omega: X(\omega) < x\} \in \beta$.

Функцией распределения вероятностей случайной величины X называется отображение $F_X: \mathbb{R} \to \mathbb{R}$, определенное правилом $F_X(x) = P\{X < x\}$.

Свойства функции распределения

1. $0 \le F(x) \le 1$.

Доказательство. F(x) определена как вероятность, т.е. $F(x) = P\{...\} \in [0;1]$.

2. F – неубывающая функция, т.е. если $x_1 \le x_2$, то $F(x_1) \le F(x_2)$.

Доказательство. Если
$$x_1 \leq x_2$$
, тогда $F(x_2) = P\{X < x_2\} = P\{\underbrace{\{X < x_1\}}_{\text{Событие } A} + \underbrace{\{x_1 \leq X < x_2\}}_{\text{Событие } B}\}$. События A и B несовместны $\Rightarrow F(x_2) = P\{\underbrace{\{X < x_1\}}_{F(x_1)} + \underbrace{\{x_1 \leq X < x_2\}}_{\geq 0}\} \geq F(x_1)$.

3. $\lim_{x \to -\infty} F(x) = 0$; $\lim_{x \to +\infty} F(x) = 1$.

Доказательство. Рассмотрим последовательность $x_1, x_2, x_3, ...$ такую, что

(a)
$$x_1 < x_2 < x_3 < ...$$
;

(b)
$$\lim_{i \to \infty} x_i = +\infty$$
.

$$A_i = \{X < x_i\}, i \in \mathbb{N}; \ A_1 \subseteq A_2 \subseteq ... \subseteq A_n \subseteq A_{n+1} \subseteq ...$$
 – неубывающая последовательность событий. $\Rightarrow \lim_{x \to \infty} F(x_i) = \lim_{i \to \infty} P(A_i) = |$ аксиома непрерывности $| = P\{X < +\infty\} = 1$.

Т.к. x_1, x_2, x_3, \dots – произвольная последовательность (неубывающая и стремящаяся к бесконечности), то в соответствии с определением предела функции по Гейне $\lim_{x\to +\infty} F(x)=1$. Вторая часть этого свойства доказывается аналогично.

4. $\lim_{x \to x_0 -} F(x) = F(x_0)$, в каждой точке F непрерывна слева.

Доказательство. Пусть $x_1, x_2, ...$ – возрастающая последовательность, $\lim_{i \to \infty} x_i = x_0$.

Пусть $A_i = \{X < x_i\}, i \in \mathbb{N}.$ Тогда событие $\{X < x_i\} = \bigcup_{i=1}^{\infty} A_i$, причем последовательность событий A_1, A_2, \ldots является возрастающей $\Rightarrow \lim_{i \to \infty} F(x_i) = \lim_{i \to \infty} P(A_i) = |$ аксиома непрерывности $| = P\{X < x_0\} = F(x_0)$. Т.к. x_1, x_2, \ldots - произвольная последовательность, сходящаяся к x_0 слева, то в соответствии с определением предела функции по Гейне $\lim_{x \to x_0-} F(x) = F(x_0)$.

5.
$$P\{a \le X < b\} = F(b) - F(a)$$
.

Доказательство.
$$\{X < b\} = \{X < a\} + \{a \le X < b\} \Rightarrow \underbrace{P\{X < b\}}_{F(b)} = \underbrace{P\{X < a\}}_{F(a)} + P\{a \le X < b\} \Rightarrow P\{a \le X < b\} = F(b) - F(a).$$

2.2 Сформулировать определения случайной величины и функции распределения случайной величины. Сформулировать определения дискретной и непрерывной случайной величины. Доказать свойства плотности распределения вероятностей непрерывной случайной величины.

Пусть (Ω, β, P) – вероятностное пространство некоторого случайного эксперимента.

Случайной величиной называется функция $X:\Omega \to \mathbb{R}$ такая, что $\forall x \in \mathbb{R}: \{\omega: X(\omega) < x\} \in \beta.$

Функцией распределения вероятностей случайной величины X называется отображение $F_X: \mathbb{R} \to \mathbb{R}$, определенное правилом $F_X(x) = P\{X < x\}$.

Случайная величина называется дискретной, если множество её значений конечно или счётно.

Случайная величина X называется **непрерывной**, если существует функция $f(x): \mathbb{R} \to \mathbb{R}$ такая, что $\forall x \in \mathbb{R}: F(x) = \int_{-\infty}^x f(t) dt \ (F$ – функция распределения вероятностей случайной величины X). При этом f называют функцией плотности распределения вероятности случайной величины X.

Свойства плотности распределения вероятностей

1. $f(x) \ge 0$.

Доказательство. F – неубывающая функция $\Rightarrow f(x) = F'(x) \ge 0$.

2. $P\{a \le X < b\} = \int_a^b f(x) dx$.

Доказательство. $P\{a \leq X < b\} = F(b) - F(a) = [f(x) = F'(x);$ по формуле Ньютона–Лейбница] $= \int_a^b f(x) dx$.

 $3. \int_{-\infty}^{+\infty} f(x)dx = 1.$

Доказательство. $\int_{-\infty}^{+\infty} f(x) dx = \lim_{\substack{x_1 \to -\infty \\ x_2 \to +\infty}} \int_{x_1}^{x_2} f(x) dx = |\text{свойство 2}| = \lim_{x_2 \to +\infty} F(x_2) - \lim_{x_1 \to -\infty} F(x_1) = F(+\infty) - F(-\infty) = 1 - 0 = 1.$

4. $P\{x_0 \le X < x_0 + \Delta x\} pprox f(x_0) \Delta x; x_0$ – точка непрерывности функции $f, \Delta x$ – мало.

Доказательство. $P\{x_0 \leq X < x_0 + \Delta x\} = |\text{свойство 2}| = F(x_0 + \Delta x) - F(x_0)$. Т.к. x_0 – точка непрерывности f, а Δx – мало, то можно считать, что в окрестности $(x_0, x_0 + \Delta x)$ функция F' = f непрерывна. Применим к функции f на $[x_0, x_0 + \Delta x]$ т. Лагранжа $F(x_0 + \Delta x) - F(x_0) = \underbrace{F'(\xi)}_{f(\xi)} \Delta x$,

где $\xi \in (x_0, x_0 + \Delta x)$. Т.к. Δx мало, а f непрерывна в некоторой окрестности x_0 , то можно считать, что $f(\xi) \approx f(x_0)$. Таким образом, $P\{x_0 \leq X < x_0 + \Delta x\} \approx f(x_0)\Delta x$.

5. Для любого наперед заданного $x_0 \in \mathbb{R}$: $P\{X = x_0\} = 0$.

Доказательство. $P\{X=x_0\}=\lim_{\Delta x \to 0} P\{x_0 \le X < x_0 + \Delta x\} = \lim_{\Delta x \to 0} [F(x_0 + \Delta x) - F(x_0)] = 0$, т.к. F – непрерывна.

2.3 Сформулировать определение нормальной случайной величины, указать геометрический смысл параметров. Понятие стандартного нормального закона. Доказать формулу для вычисления вероятности попадания нормальной случайной величины в интервал.

Говорят, что случайная величина X имеет **нормальное распределение** с параметрами m и $\sigma^2(\sigma>0)$, если её функция плотности имеет вид $f(x)=\frac{1}{\sigma\sqrt{2\pi}}\cdot e^{-\frac{(x-m)^2}{2\sigma^2}}, x\in\mathbb{R}.$ Обозначается $X\sim N(m,\sigma^2).$

Функция плотности нормального распределения имеет характерную колоколообразную форму; m является координатой x «центра» этого колокола (центра симметрии), а σ характеризует разброс значений случайной величины; чем меньше σ , тем выше экстремум функции плотности.

Распределение N(0,1) называет **стандартным нормальным распределением**; для него функция плотности равна $f(x)=\frac{1}{\sqrt{2\pi}}\cdot e^{-\frac{x^2}{2}}, x\in\mathbb{R}.$

Формула для вычисления вероятности попадания нормальной случайной величины в интервал.

Рассмотрим

$$P\{a \leq X < b\} = \left\langle \text{по свойству плотности распределения} \right\rangle = \int_a^b f_X(x) \, dx = \int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}} \, dx = \\ = \left\langle t = \frac{x-m}{\sigma}, \, dx = \sigma \, dt; \, x = a \implies t = \frac{a-m}{\sigma}, \, x = b \implies t = \frac{b-m}{\sigma} \right\rangle = \\ = \int_{\frac{a-m}{\sigma}}^{\frac{b-m}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \, dt = \left\langle \Phi(t) = \int_{-\infty}^t f_{0,1}(t) \, dt \right\rangle = \\ = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right) = \left\langle \Phi(t) - \text{стандартное нормальное распределение, такое, что} \right.$$

$$\Phi(0) = \frac{1}{2} \implies \Phi(t) \right\rangle = \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right).$$

Т.к. $X \sim N(m, \sigma^2)$ – непрерывная случайная величина, то

$$P\{a \le X \le b\} = \Phi_0\left(\frac{b-m}{\sigma}\right) - \Phi_0\left(\frac{a-m}{\sigma}\right) = \Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right).$$

2.4 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать предельные свойства.

Пусть:

- 1. (Ω, \mathcal{B}, P) вероятностное пространство.
- 2. $X_{\omega} = X_1(\omega), ..., X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Тогда n-мерным **случайным вектором** называется кортеж $\vec{X} = (X_1, ..., X_n)$.

Функцией распределения вероятностей случайного вектора называют отображение $F: \mathbb{R}^n \to \mathbb{R}$, определенное правилом $F(x_1,...,x_n) = P\{X_1 < x_1,...,X_n < x_n\}$.

Свойства

- 1. $0 < F(x_1, x_2) < 1$.
- 2. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является неубывающей функцией;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является неубывающей функцией;

3.
$$\lim_{\substack{x_1 \to -\infty \\ x_2 = \text{const}}} F(x_1, x_2) = 0, \quad \lim_{\substack{x_1 = \text{const} \\ x_2 \to -\infty}} F(x_1, x_2) = 0.$$

Доказательство. По определению, $F(x_1,x_2)=P(\{X_1< x_1\}\cdot \{X_2< x_2\});$ при $x_1\to -\infty$ событие $\{X_1< -\infty\}$ является невозможным. Произведение невозможного события на событие $\{X_2< x_2\}$ является невозможным событием, поэтому $F(x_1,x_2)$ стремится к нулю при $x_1\to -\infty,\ x_2=$ const.

 $\lim_{\substack{x_1=\mathrm{const}\\x_2\to-\infty}}F(x_1,x_2)=0$ доказывается аналогично.

4.
$$\lim_{\substack{x_1 \to +\infty \\ x_2 \to +\infty}} F(x_1, x_2) = 1..$$

Доказательство. По определению, $F(x_1, x_2) = P(\{X_1 < x_1\} \cdot \{X_2 < x_2\})$. Событие $\{X_1 < +\infty\}$ является достоверным, $\{X_2 < +\infty\}$ также является достоверным, а произведение достоверных событий – достоверное событие.

5.
$$\lim_{\substack{x_1 \to +\infty \\ x_2 = \text{const}}} F(x_1, x_2) = F_{X_2}(x_2), \quad \lim_{\substack{x_1 = \text{const} \\ x_2 \to +\infty}} F(x_1, x_2) = F_{X_1}(x_1),$$

где F_{X_i} – маргинальная функция распределения случайной величины X_i .

Доказательство. По определению, $F(x_1,x_2)=P(\{X_1< x_1\}\cdot \{X_2< x_2\}).$ Событие $\{X_2<+\infty\}$ является достоверным, следовательно, $\lim_{\substack{x_1\to +\infty\\x_2=\mathrm{const}}}F(x_1,x_2)=P\{X_2< x_2\}=F_{X_2}(x_2).$

Для второго предела – доказывается аналогично.

6.
$$D = \{(x,y) : x \in [a_1,b_1), y \in [a_2,b_2)\} : P\{a_1 \leq X < b_1, a_2 \leq Y < b_2\} = F(b_1,b_2) - F(a_1,b_2) - F(a_2,b_1) + F(a_1,a_2).$$

- 7. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является непрерывной слева в каждой точке;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является непрерывной слева в каждой точке;
- 2.5 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать свойства функции распределения двумерного случайного вектора. Доказать формулу для вычисления $P\{a_1 \leq X_1 < b1, a_2 \leq X_2 < b_2\}$.

Пусть:

- 1. (Ω, \mathcal{B}, P) вероятностное пространство.
- 2. $X_{\omega} = X_1(\omega), ..., X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Тогда n-мерным **случайным вектором** называется кортеж $\vec{X} = (X_1, ..., X_n)$.

Функцией распределения вероятностей случайного вектора называют отображение $F: \mathbb{R}^n \to \mathbb{R}$, определенное правилом $F(x_1, ..., x_n) = P\{X_1 < x_1, ..., X_n < x_n\}$.

Свойства

- 1. $0 \le F(x_1, x_2) \le 1$.
- 2. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является неубывающей функцией;
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является неубывающей функцией;
- 3. $\lim_{\substack{x_1 \to -\infty \\ x_2 = \text{const}}} F(x_1, x_2) = 0, \quad \lim_{\substack{x_1 = \text{const} \\ x_2 \to -\infty}} F(x_1, x_2) = 0.$
- 4. $\lim_{\substack{x_1 \to +\infty \\ x_2 \to +\infty}} F(x_1, x_2) = 1..$
- 5. $\lim_{\substack{x_1 \to +\infty \\ x_2 = \text{const}}} F(x_1, x_2) = F_{X_2}(x_2), \quad \lim_{\substack{x_1 = \text{const} \\ x_2 \to +\infty}} F(x_1, x_2) = F_{X_1}(x_1),$

где F_{X_i} – маргинальная функция распределения случайной величины X_i .

- 6. $D = \{(x,y) : x \in [a_1,b_1), y \in [a_2,b_2)\} : P\{a_1 \leq X < b_1, a_2 \leq Y < b_2\} = F(b_1,b_2) F(a_1,b_2) F(a_2,b_1) + F(a_1,a_2).$
- 7. (а) При фиксированном x_2 функция $F(x_1, x_2)$ как функция переменного x_1 является непрерывной слева в каждой точке:
 - (b) При фиксированном x_1 функция $F(x_1, x_2)$ как функция переменного x_2 является непрерывной слева в каждой точке;

Формула для вычисления $P\{a_1 \le X_1 < b1, a_2 \le X_2 < b_2\}$

- (a) Найдем вероятность попадания случайного вектора (X_1, X_2) в полосу $\{X_1 < x_1, a_2 \le X_2 < b_2\}$
 - 1. $\{X_1 < x_1, X_2 < b_2\} = \{X_1 < x_1, a_2 \le X_2 < b_2\} + \{X_1 < x_1, X_2 < a_2\}$
 - 2. По теореме сложения: $P\{X_1 < x_1, X_2 < b_2\} = P\{X_1 < x_1, a_2 \le X_2 < b_2\} + P\{X_1 < x_1, X_2 < a_2\} \Rightarrow P\{X_1 < x_1, a_2 \le X_2 < b_2\} = F(x_1, b_2) F(x_1, a_2).$
- (b) 1. $\{X_1 < b_1, a_2 \le X_2 < b_2\} = \{a_1 \le X_1 < b_1, a_2 \le X_2 < b_2\} + \{X_1 < a_1, a_2 \le X_2 < b_2\}.$
 - 2. По формуле сложения: $P\{X_1 < b_1, a_2 \le X_2 < b_2\} = P\{a_1 \le X_1 < b_1, a_2 \le X_2 < b_2\} + P\{X_1 < a_1, a_2 \le X_2 < b_2\} \Rightarrow$ из пункта (a) : $P\{a_1 \le X_1 < b_1, a_2 \le X_2 < b_2\} = F(b_1, b_2) F(a_1, b_2) F(a_2, b_1) + F(a_1, a_2)$.
- 2.6 Сформулировать определение случайного вектора и функции распределения вероятностей случайного вектора. Сформулировать определение непрерывного случайного вектора и доказать свойства плотности распределения вероятностей для двумерного случайного вектора.

- 1. (Ω, \mathcal{B}, P) вероятностное пространство.
- 2. $X_{\omega} = X_1(\omega), ..., X_n(\omega)$ случайные величины, заданные на этом вероятностном пространстве.

Тогда n-мерным **случайным вектором** называется кортеж $\vec{X} = (X_1,...,X_n)$.

Функцией распределения вероятностей случайного вектора называют отображение $F: \mathbb{R}^n \to \mathbb{R}$, определенное правилом $F(x_1, ..., x_n) = P\{X_1 < x_1, ..., X_n < x_n\}$.

Случайный вектор $\vec{X}=(X_1,...,X_n)$ называется **непрерывным**, если существует функция $f:\mathbb{R}^n \to \mathbb{R}$ такая, что для каждой точки $(x_1,...,x_n)$ выполняется $F(x_1,...,x_n)=$

 $=\int_{-\infty}^{x_1}dt_1\int_{-\infty}^{x_2}dt_2...\int_{-\infty}^{x_n}f(t_1,...,t_n)dt_n$, где F – функция распределения плотности случайного вектора \vec{X} . При этом f называется функцией плотности распределения вероятностей этого вектора.

Свойства (n=2):

- 1. $f(x_1, x_2) \ge 0$;
- 2. $P\{a_1 \le X_1 < b_1, a_2 \le X_2 < b_2\} = \int_{a_1}^{b_1} dx_1 \cdot \int_{a_2}^{b_2} f(x_1, x_2) dx_2;$
- 3. $\int \int_{\mathbb{R}} f(x_1, x_2) dx_1 dx_2 = 1;$
- 4. $P\{x_1 \leq X_1 < x_1 + \Delta x_1, x_2 \leq X_2 < x_2 + \Delta x_2\} \approx f(x_1, x_2) \cdot \Delta x_1 \cdot \Delta x_2$, если (x_1, x_2) точки непрерывности;
- 5. Для любого, наперед заданного $(x_1^\circ, x_2^\circ): P\{(X_1, X_2) = (x_1^\circ, x_2^\circ)\} = 0$, если (X_1, X_2) непрерывный случайный вектор;
- 6. $P\{(X_1, X_2) \in D\} = \int \int_D f(x_1, x_2) dx_1 dx_2;$
- 7. $f_{X_1}(x_1) = \int_{-\infty}^{+\infty} f(x_1, x_2) \, dx_2, f_{X_2}(x_2) = \int_{-\infty}^{+\infty} f(x_1, x_2) \, dx_1$, где $f_{X_i}(x_i)$ функция (частная, маргинальная) плотности распределения вероятностей случайной величины.

Доказательства

Доказательства свойств 1-5 аналогичны одномерному случаю.

Свойство 6 является обобщением свойства 2 на случай произвольной области D (без доказательства).

Доказательство свойства 7. $F(x_1,+\infty)=F_{X_1}(x_1)$ – по свойству двумерной функции распределения; таким образом (подставим определение функции распределения для двумерного вектора), $F_{X_1}(x_1)=\int_{-\infty}^{x_1}\int_{-\infty}^{+\infty}f(x_1,x_2)\,dx_2\,dx_1.$

 $f_{X_1}(x_1)=rac{dF_{X_1}(x_1)}{dx_1}=\left\langle x_1$ — точка непрерывности функции $f_{X_1}(x_1)$, и точка по теореме о производной интеграла с переменным верхним пределом $\right\rangle=\int_{-\infty}^{+\infty}f(x_1,x_2)dx_2.$

Вторая формула доказывается аналогично.

2.7 Сформулировать определение пары независимых случайных величин. Доказать свойства независимых случайных величин. Понятия попарно независимых случайных величин и случайных величин, независимых в совокупности.

Случайные величины X и Y называются независимыми, если $F(x,y) = F_X(x)F_Y(y)$, где F – совместная функция распределения X и Y (\equiv функция распределения случайного вектора (X,Y)); F_X , F_Y – маргинальные функции распределения случайных величин X и Y.

Свойства независимых случайных величин

- 1. Случайные величины X и Y независимы $\Leftrightarrow \forall x,y \in \mathbb{R}, \text{ события}\{X < x\}$ и $\{Y < y\}$ независимы. Доказательство. Очевидно следует из определения независимых случайных величин.
- 2. Случайные величины X и Y независимы $\Leftrightarrow \forall x_1, x_2 \in \mathbb{R}, \ \forall y_1, y_2 \in \mathbb{R}, \ \text{события} \{x_1 \leq X < x_2\}$ и $\{y_1 \leq Y < y_2\}$ независимы.

Доказательство.

(a) **Необходимость** (\Rightarrow). Пусть $F(x,y) = F_X(x)F_Y(y)$. Тогда

$$P\{x_1 \leq X < x_2, \ y_1 \leq Y < y_2\} = (\text{свойство функции распределения случайного вектора})$$

$$= F(x_1, y_1) + F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1)$$

$$= F_X(x_1)F_Y(y_1) + F_X(x_2)F_Y(y_2) - F_X(x_1)F_Y(y_2) - F_X(x_2)F_Y(y_1)$$

$$= [F_X(x_2) - F_X(x_1)][F_Y(y_2) - F_Y(y_1)]$$

$$= (\text{свойство одномерной функции распределения})$$

$$= P\{x_1 < X < x_2\}P\{y_1 < Y < y_2\}.$$

(b) Достаточность (\Leftarrow). Пусть $\forall x_1, x_2, y_1, y_2 \in \mathbb{R}$, $P\{x_1 \leq X < x_2, y_1 \leq Y < y_2\} = P\{x_1 \leq X < x_2\}P\{y_1 \leq Y < y_2\}$. Тогда

$$F(x,y) = P\{X < x, Y < y\} = P\{-\infty < X < x, -\infty < Y < y\}$$

$$= (при $x_1 = -\infty, x_2 = x, y_1 = -\infty, y_2 = y)$

$$= P\{-\infty < X < x\}P\{-\infty < Y < y\}$$

$$= F_X(x)F_Y(y).$$$$

3. Случайные величины X и Y независимы $\Leftrightarrow \forall M_1, M_2$ события $\{X \in M_1\}$ и $\{Y \in M_2\}$ независимы, где M_1, M_2 – промежутки или объединения промежутков в \mathbb{R} .

Доказательство. Является обобщением свойств 1 и 2.

4. Если X и Y — дискретные случайные величины, то X,Y независимы $\Leftrightarrow p_{ij} \equiv P_X(x_i)P_Y(y_j)$, где $p_{ij} = P\{(X,Y) = (x_i,y_j)\}, P_X(x_i) = P\{X = x_i\}, P_Y(y_j) = P\{Y = y_j\}.$

Доказательство.

- (a) Достаточность (⇐). Достаточность была доказана выше, в рассуждениях перед определением независимых случайных величин.
- (b) Необходимость (⇒). Необходимость студентам предлагается доказать самостоятельно.
- 5. Если X и Y непрерывные случайные величины, то X,Y независимы $\Leftrightarrow f(x,y) \equiv f_X(x) f_Y(y).$ Доказательство.
 - (a) **Необходимость** (\Rightarrow). Пусть $F(x,y) \equiv F_X(x)F_Y(y)$. По свойству двумерной плоскости:

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \, \partial y} = \frac{\partial}{\partial x} \frac{\partial}{\partial y} [F_X(x) F_Y(y)] = \frac{dF_X(x)}{dx} \cdot \frac{dF_Y(y)}{dy} = f_X(x) f_Y(y)$$

(b) Достаточность (\Leftarrow). Пусть $f(x,y) = f_X(x)f_Y(y)$. Тогда

$$F(x,y) = \int_{-\infty}^{x} dt \int_{-\infty}^{y} f(t,v) dv = \int_{-\infty}^{x} dt \int_{-\infty}^{y} f_X(t) f_Y(v) dv = \underbrace{\int_{-\infty}^{x} f_X(t) dt}_{F_X(x)} \underbrace{\int_{-\infty}^{y} f_Y(v) dv}_{F_Y(y)} = F_X(x) F_Y(y)$$

Случайные величины X_1, \dots, X_n , заданные на одном вероятностном пространстве, называются:

- **Попарно независимыми**, если X_i и X_j независимы при $i \neq j$;
- **Независимыми в совокупности**, если $F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdot\cdots\cdot F_{X_n}(x_n)$, где F совместная функция распределения случайных величин X_1,\ldots,X_n (\equiv функция распределения случайного вектора (X_1,\ldots,X_n)); F_{X_i} маргинальные функции распределения случайных величин $X_i, i=1,\ldots,n$.
- 2.8 Понятие условного распределения случайной величины. Сформулировать определение условного ряда распределения компоненты двумерного дискретного случайного вектора. Привести рассуждения, приводящие к такому определению. Сформулировать определение условной плотности распределения компоненты двумерного непрерывного случайного вектора. Сформулировать критерии независимости случайных величин в терминах условных распределений

Условное распределение случайного вектора (X,Y) описывает распределение одной из случайных величин (или их совокупности) при фиксированном значении другой.

Случай дискретного случайного вектора

Пусть выполняются следующие условия.

- 1. (X, Y) дискретный случайный вектор;
- 2. $X \in \{x_1, ..., x_m\}, Y \in \{y_1, ..., y_n\};$

3.
$$p_{ij} = P\{(X,Y) = (x_i, y_i)\}, i = \overline{1; m}, j = \overline{1; n}.$$

$$P_{X_i} = P\{X = x_i\}, i = \overline{1; m}.$$

$$P_{Y_i} = P\{Y = y_i\}, j = \overline{1; n}.$$

4. Известно, что $Y = y_j$ для некоторого фиксированного j.

Тогда

$$P\{X=x_i\,|\,Y=y_j\}=\text{(из определения условной вероятности)}=\\ =\frac{P(\{X=x_i\}\cap\{Y=y_j\})}{P(Y=y_j)}=\frac{P((X,Y)=(x_i,y_j))}{P(Y=y_j)}=\frac{p_{ij}}{P_Y}.$$

Условная вероятность того, что случайная величина Y приняла значение y_j при условии $X=x_i$ определяется аналогично.

Набор вероятностей $P\{X=x_i\,|\,Y=y_j\}, i=\overline{1;m}$ для данного фиксированного j называется условным распределением случайной величины X при условии $Y=y_j$ (аналогично для случайной величины Y

при условии $X=x_i$ для данного фиксированного i). По этому набору можно составить ряд распределения, представленного таблицей значений.

Случай непрерывного случайного вектора

В случае непрерывного случайного вектора (X, Y).

$$f_X(x|Y=y) = \frac{f(x,y)}{f_Y(y)},$$

где f — совместная плотность распределения случайных величин X и Y (плотность распределения случайного вектора (X,Y)), f_Y — маргинальная плотность распределения случайной величины Y.

Аналогичным образом определяется условная плотность распределения случайной величины Y при условии X=x.

Критерии независимости случайных величин в терминах условных распределений

- 1. Пусть (X, Y) двумерный случайный вектор. Тогда следующие условия эквивалентны:
 - X, Y независимые.
 - $F_X(x|Y=y) \equiv F_X(x)$ для всех y, в которых определена $F_X(x|Y=y)$.
 - $F_Y(y|X=x) \equiv F_Y(y)$ для всех x, в которых определена $F_Y(y|X=x)$.
- 2. Если (X,Y) непрерывный случайный вектор, то следующие условия эквивалентны:

 - $f_X(x|Y=y) \equiv f_X(x)$ для всех y, в которых определена $f_X(x|Y=y)$.
 - $f_Y(y|X=x) \equiv f_Y(y)$ для всех x, в которых определена $f_Y(y|X=x)$.
- 3. Если (X,Y) дискретный случайный вектор $(X \in \{x_1,...,x_m\}, Y \in \{y_1,...,y_n\})$, то следующие утверждения эквивалентны:
 - X. Y независимые.
 - $P\{X=x_i|Y=y_j\}\equiv P\{X=x_i\}$ для всех $j=\overline{1,n}$.
 - $P\{Y=y_i|X=x_i\}\equiv P\{Y=y_i\}$ для всех $i=\overline{1,m}$.
- 2.9 Понятие функции скалярной случайной величины. Доказать теорему о формуле для вычисления плотности $f_Y(y)$ случайной величины $Y=\varphi(X)$, если X непрерывная случайная величина, а φ монотонная непрерывно дифференцируемая функция. Сформулировать аналогичную теорему для кусочно-монотонной функции φ

Пусть:

1. X – некоторая случайная величина;

2. $\varphi: \mathbb{R} \to \mathbb{R}$ – некоторая известная функция.

Тогда $\varphi(X) = Y$ – некоторая случайная величина.

Если X – **непрерывная** случайная величина, то в зависимости от функции φ случайная величина $Y=\varphi(X)$ может быть как непрерывной случайной величиной, так и дискретной или смешанного типа.

Теорема

Пусть

- 1. X непрерывная случайная величина;
- 2. $\varphi: \mathbb{R} \to \mathbb{R}$;
- 3. φ монотонна и непрерывно дифференцируема;
- 4. ψ функция, обратная к φ (так как φ монотонная, то существует $\psi = \varphi^{-1}$);
- 5. $Y = \varphi(X)$.

Тогда

- 1. У также является непрерывной случайной величиной;
- 2. Плотность вероятности $f_Y(y)$ задается следующим образом:

$$f_Y(y) = f_X(\psi(y)) \cdot |\psi'(y)|.$$

Доказательство

- 1. $F_Y(y) = P\{Y < y\} = P\{\varphi(X) < y\}$
 - (a) Если φ монотонно возрастающая функция, то $\varphi(X) < y \iff X < \varphi^{-1}(y) = \psi(y)$;
 - (b) Если φ монотонно убывающая функция, то $\varphi(X) < y \iff X > \varphi^{-1}(y) = \psi(y);$
- 2. В случае случая а, $F_Y(y) = P\{X < \psi(y)\} = F_X(\psi(y));$ в случае в $F_Y(y) = P\{X > \varphi(y)\} = 1 P\{X \leq \psi(y)\} = \langle X$ непрерывна $\rangle = 1 P\{X < \psi(y)\} = 1 F_X(\psi(y));$

3.

$$f_Y(y) = F_Y'(y) = \begin{cases} \frac{d}{dy} [F_X(\psi(y))] = F_X'(\psi(y)) \cdot \psi'(y), & \text{если a} \\ \frac{d}{dy} [1 - F_X(\psi(y))] = -F_X'(\psi(y)) \cdot \psi'(y), & \text{если b} \end{cases} = f_X(\psi(y)) \cdot |\psi'(y)|.$$

Теорема

Пусть

- 1. X непрерывная случайная величина;
- 2. $\varphi: \mathbb{R} \to \mathbb{R}$ является кусочно-монотонной функцией, имеющей п интервалов монотонности;
- $3. \varphi$ дифференцируема;

4. Для данного $y \in \mathbb{R}, x_1 = x_1(y), ..., x_k = x_k(y)(k \le n)$ — это все решения уравнения $y = \varphi(x)$, принадлежащие интервалам $I_1, ..., I_k$ монотонности функции φ .

Тогда для данного в последнем условии значения y:

$$f_Y(y) = \sum_{j=1}^k f_X(\psi_j(y)) \cdot |\psi_j'(y)|,$$

где $\psi_j(y)$ – функция, обратная к $\varphi(x)$ на интервале $I_j, j=\overline{1,k}.$

2.10 Понятие скалярной функции случайного вектора. Обосновать формулу для вычисления функции распределения случайной величины Y , функционально зависящей от случайных величин X1 и X2, если (X1, X2) – непрерывный случайный вектор. Доказать теорему о формуле свертки

Скалярные функции случайного вектора

Пусть:

- 1. (X_1, X_2) двумерный случайный вектор.
- 2. $\varphi: \mathbb{R}^2 \to \mathbb{R}$.
- 3. $Y = \varphi(X_1, X_2)$ некоторая одномерная случайная величина.

Случай непрерывного случайного вектора

Если (X_1,X_2) – непрерывный случайный вектор, то функцию распределения случайной величины $Y=\varphi(X_1,X_2)$ можно найти по формуле:

$$F_Y(y) = \iint_{D(y)} f(x_1, x_2) dx_1 dx_2,$$

где f – совместная плотность распределения случайных величин X_1 и X_2 , $D(y) = \{(x_1, x_2) : \varphi(x_1, x_2) < y\}$. Пусть есть двумерный случайный вектор (X_1, X_2) , и:

- 1. (X_1, X_2) непрерывный случайный вектор;
- 2. X_1, X_2 независимы;
- 3. $Y = X_1 + X_2$;
- 4. $f(x_1, x_2)$ совместная плотность распределения.

Тогда
$$f_Y(y) = \int_{-\infty}^{+\infty} f_{X_1}(x_1) f_{X_2}(y-x_1) dx_1$$
 – функция свертки.

Доказательство.
$$F_Y(y) = P\{Y < y\} = P\{X_1 + X_2 < P(y) : x_1 + x_2 < y\}$$
 $= \int \int_{D(y)} f(x_1, x_2) dx_1 dx_2 = \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{y-x_1} f(x_1, x_2) dx_2 = \begin{cases} x_1, x_2 - \text{независимы}, f(x_1, x_2) \end{cases} = f_{X_1}(x_1) f_{X_2}(x_2)$

$$\int_{-\infty}^{+\infty} dx_1 f_{X_1}(x_1) \int_{-\infty}^{y-x_1} f_{X_2}(x_2) \, dx_2 = \int_{-\infty}^{+\infty} dx_1 f_{X_1}(x_1) F_{X_2}(y-x_1).$$
 Продифференцируем:
$$f_Y(y) = \frac{d}{dy} (F_Y(y)) = \left[\int_{-\infty}^{+\infty} f_{X_1}(x_1) F_{X_2}(y-x_1) \, dx_1 \right]' = \left\langle \frac{d}{dy} (F_{X_2}(y-x_1)) = f_{X_2}(y-x_1) \right\rangle = \int_{-\infty}^{+\infty} f_{X_1}(x_1) f_{X_2}(y-x_1) \, dx_1.$$

2.11 Сформулировать определение математического ожидания для дискретной и непрерывной случайных величин.

Механический смысл математического ожидания. Доказать свойства математического ожидания. Записать формулы для вычисления математического ожидания функции случайной величины и случайного вектора

Пусть X — **непрерывная** случайная величина, $f_X(x)$ — плотность распределения. **Математическое ожидание** (среднее значение) случайной величины $X: M[X] = \int_{-\infty}^{+\infty} x f(x) \, dx$.

Свойства:

- 1. Если $P\{X=x_0\}=1$ (т.е. если X фактически не является случайной), то $MX=x_0$;
- 2. $M[aX + b] = a \cdot MX + b;$
- 3. $M[X_1 + X_2] = MX_1 + MX_2;$
- 4. Если X_1, X_2 независимы, то $M[X_1X_2] = (MX_1)(MX_2)$.

Доказательства:

По определению: $MX = \sum_{i} p_{i}x_{i} = 1 \cdot x_{0} = x_{0}$;

2. Докажем для случая непрерывной случайной величины:

$$M[aX+b]=\langle \varphi(x)=ax+b;aX+b-\text{непрерывная случайная величина}\rangle$$

$$=\int_{-\infty}^{+\infty}(ax+b)f(x)\,dx=a\int_{-\infty}^{+\infty}xf(x)\,dx+b\int_{-\infty}^{+\infty}f(x)\,dx$$

$$=a\cdot MX+b;$$

Пусть X — дискретная случайная величина. Математическое ожидание (среднее значение) случайной величины $X:M[X]=\sum_i x_i p_i$, где $p_i=P\{X=x_i\}, i$ пробегает все номера элементов конечного множества значений случайной величины.

3. Доказательство для дискретного случая. Элементы X_1 обозначаются индексами i, пробегающими множество I; для X_2 используются j и J. Запись о:

$$M[X_1 + X_2] = \langle \varphi(x_1, x_2) = x_1 + x_2 \rangle$$

$$= \sum_{i \in I} \sum_{j \in J} (x_{1,i} + x_{2,j}) p_{ij} = \sum_{i \in I} \sum_{j \in J} x_{1,i} p_{ij} + \sum_{i \in I} \sum_{j \in J} x_{2,j} p_{ij}$$

$$= \sum_{i \in I} x_{1,i} \sum_{j \in J} p_{ij} + \sum_{j \in J} x_{2,j} \sum_{i \in I} p_{ij}$$

$$= MX_1 + MX_2;$$

4. Докажем для непрерывных случайных величин:

$$\begin{split} M[X_1X_2] &= \langle \varphi(x_1,x_2)x_1x_2 \rangle = \int \int_{R^2} x_1x_2 f(x_1,x_2) \, dx_1 \, dx_2 \\ &= \langle X_1, X_2 - \text{независимы} \Rightarrow f(x_1,x_2) = f_{X_1}(x_1) f_{X_2}(x_2) \rangle \\ &= \int_{-\infty}^{+\infty} dx_1 \int_{-\infty}^{+\infty} x_1x_2 f_{X_1}(x_1) f_{X_2}(x_2) \, dx_2 = (\int_{-\infty}^{+\infty} x_1 f_{X_1}(x_1) \, dx_1) (\int_{-\infty}^{+\infty} x_2 f_{X_2}(x_2) \, dx_2) \\ &= (MX_1)(MX_2). \end{split}$$

Формулы для вычисления математического ожидания

- 1. X случайная величина, $\varphi: \mathbb{R} \to \mathbb{R}$:
 - $M[\varphi(X)] = \sum_i \varphi(x_i) p_i$, если X дискретная случайная величина;
 - $M[\varphi(X)] = \int_{-\infty}^{+\infty} \varphi(x) f(x) \, dx$, если X непрерывная случайная величина, f(x) плотность;
- 2. $\vec{X}=(X_1,X_2)$ случайный вектор, $\varphi:\mathbb{R}^2 \to \mathbb{R}, Y=\varphi(X_1,X_2).$ $p_{ij}=P_i\{(X_1,X_2)=(x_{1,i},x_{2,j})\}$:
 - $M[\varphi(X_1,X_2)] = \sum_{i,j} \varphi(x_{1,i},x_{2,j}) p_{ij}$, если \vec{X} дискретный вектор;
 - $M[\varphi(X_1,X_2)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \varphi(x_1,x_2) f(x_1,x_2) dx_1 dx_2$, где $f(x_1,x_2)$ совместная плотность непрерывного случайного вектора \vec{X} .
- 2.12 Сформулировать определение дисперсии случайной величины. Механический смысл дисперсии. Доказать свойства дисперсии. Понятие среднеквадратичного отклонения случайной величины

Дисперсией случайной величины X называется $DX = M[(X - m)^2]$, где m = MX.

Если X – дискретная случайная величина, то $DX = \sum_i (x_i - m)^2 p_i$, где $p_i = P\{X = x_i\}$. Если X – непрерывная случайная величина, то $DX = \int_{-\infty}^{+\infty} (x-m)^2 f(x) \, dx$, где f – функция плотности случайной величины X.

Механический смысл дисперсии: дисперсия является моментом инерции вероятностной массы относительно точки m=MX, т.е. характеризует «разброс» вероятностной массы относительно математического ожидания этой случайной величины. Чем больше D, тем больше «разброс».

Свойства:

1. для любого случайного вектора $X: DX \ge 0$;

2. если
$$P\{X = x_0\} = 1$$
, то $DX = 0$;

3.
$$D[aX + b] = a^2DX, a, b = const;$$

4.
$$D[X] = M[X^2] - (MX)^2$$
;

5. если X_1, X_2 – независимые случайные величины, то $D[X_1 + X_2] = D[X_1] + D[X_2]$.

Доказательства:

1.
$$DX = MY$$
, где $Y = (X - m)^2$. Т.к. $Y \ge 0$, то следует, что $DX = MY \ge 0$;

Математическое ожидание $MX=m=x_0$. Дисперсия $DX=\sum_i (x_i-m)^2 p_i=(x_0=x_0)^2\cdot 1=0$;

3.

$$D[aX + b] = M[[(aX + b) - M(aX + b)]^{2}] = M[[aX + b - a \cdot MX - b]^{2}]$$

$$= M[(a(X - MX))^{2}] = a^{2}M[(X - MX)^{2}]$$

$$= a^{2}DX;$$

4. Обозначим m = MX, тогда:

$$DX = M[(X = m)^2] = M[X^2 - 2mX + m^2] = M[X^2] - 2m \cdot M[X] + m^2$$
$$= M[X^2] - m^2;$$

5.

$$D(X_1+X_2)=\langle \text{по свойству 4}\rangle=M[(X_1+X_2)^2]-(M(X_1+X_2))^2$$

$$=M[X_1^2]+M[X_2^2]+2M[X_1X_2]-(MX_1)^2-(MX_2)^2-2MX_1\cdot MX_2=$$

$$=\langle X_2,X_2-\text{независимые, тогда }M[X_1X_2]=MX_1\cdot MX_2\rangle$$

$$=(M[X_1^2]-(MX_1)^2)+(M[X_2^2]-(MX_2)^2)$$

$$=DX_1+DX_2.$$

DX имеет размерность, равную квадрату размерности случайной величины X. Это не всегда удобно на практике, поэтому рассматривают такую числовую характеристику, как среднеквадратичное отклонение.

Среднеквадратичным отклонением случайной величины X называют число $\sigma_X = \sqrt{D[X]}$.

2.13 Сформулировать определение математического ожидания и дисперсии. Записать законы распределения биномиальной, пуассоновской, равномерной, экспоненциальной и нормальной случайной величин. Найти математические ожидания и дисперсии этих случайных величин

Пусть X – дискретная случайная величина. Математическое ожидание (среднее значение) случайной величины $X: M[X] = \sum_i x_i p_i$, где $p_i = P\{X = x_i\}$, i пробегает все номера элементов конечного множества значений случайной величины.

Пусть X – непрерывная случайная величина, $f_X(x)$ – плотность распределения. Математическое ожидание (среднее значение) случайной величины $X:M[X]=\int_{-\infty}^{+\infty}xf(x)\,dx$.

Дисперсией случайной величины X называется $DX = M[(X - m)^2]$, где m = MX.

Биноминальная случайная величина

Говорят, что случайная величина X имеет биноминальное распределение с параметром $n \in \mathbb{N}$ и $p \in (0,1)$, если она принимает значения 0,1,...,n с вероятностями: $P\{X=k\}=C_n^k \cdot p^k \cdot q^{n-k}, k=\overline{0,n}, q=1-p$. Обозначается: $X \sim B(n,p)$.

$$MX = M[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} MX_i = np$$

$$DX = D[\sum_{i=1}^n X_i] = \langle X_i$$
 независимы $\rangle = \sum_{i=1}^n DX_i = npq.$

Пуассоновская случайная величина

Говорят, что случайная величина X распределена по закону Пуассона с параметром $\lambda>0$, если она принимает значения 0,1,2,... с вероятностями: $P\{X=k\}=\frac{\lambda^k}{k!}\cdot e^{-\lambda}, k\in\{0,1,2,...\}$. Обозначается: $X\sim\Pi(\lambda)$.

$$\begin{split} MX &= \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=1}^{\infty} k \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1} \lambda}{(k-1)!} \\ &= \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \langle i = k-1 \rangle = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} \\ &= \lambda. \end{split}$$

Дисперсия выражается как $DX = M[X^2] - (MX)^2$.

$$MX^2 = \sum_{k=0}^{\infty} k^2 rac{\lambda^k}{k!} e^{-\lambda} = \ldots = \lambda^2 + \lambda$$
. Тогда $DX = \lambda$.

Равномерное распределение

Говорят, что случайная величина X имеет равномерное распределение на отрезке [a,b], если она является непрерывной случайной величиной с функций плотности распределения:

•

$$f(x) = egin{cases} c, & x \in [a,b] \\ 0, & ext{иначе} \end{cases}$$
 , где $c = const.$

Обозначается: $X \sim R(a, b)$. $X \sim R(0, 1)$.

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b) \\ 0, & \text{иначе} \end{cases}$$

$$MX = \int_{-\infty}^{\infty} x f(x) \, dx = \frac{1}{b-a} \int_a^b x \, dx = \frac{1}{2(b-a)} (b^2 - a^2) = \frac{a+b}{2}$$

$$\begin{split} DX &= \int_{-\infty}^{+\infty} (x - \frac{a+b}{2}) f(x) \, dx = \frac{1}{b-a} \int_{a}^{b} (x - \frac{a+b}{2})^2 \, dx \\ &= \frac{1}{3(b-a)} (x - \frac{a+b}{2})^3 \, \Big|_{b}^{a} = \frac{1}{3(b-a)} (\frac{(b-a)^3}{8} - \frac{(a-b)^3}{8}) = \frac{(b-a)^3}{12(b-a)} \\ &= \frac{(b-a)^2}{12}. \end{split}$$

Экспоненциальное распределение

Говорят, что случайная величина X распределена по закону с параметром $\lambda>0$, если X является непрерывной случайной величиной, функция плотности которой имеет вид:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{иначе.} \end{cases}$$

Обозначается: $X \sim Exp(\lambda)$.

$$MX = \int_{-\infty}^{+\infty} x f(x) x = \lambda \int_{0}^{+\infty} x e^{-\lambda x} dx = -\int_{0}^{+\infty} x de^{-\lambda x}$$
$$= -x e^{-\lambda x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} e^{-\lambda x} dx = -\frac{1}{\lambda} e^{-\lambda x} \Big|_{0}^{+\infty}$$
$$= \frac{1}{\lambda}.$$

$$DX = M[X^2] - (MX)^2,$$

$$\begin{split} M[X^2] &= \int_{-\infty}^{+\infty} x^2 f(x) \, dx = \lambda \int_0^{+\infty} x^2 e^{-\lambda x} \, dx = -\int_0^{+\infty} x^2 \, de^{-\lambda x} = -x^2 e^{-\lambda x} \, \bigg|_0^{+\infty} + 2 \int_0^{+\infty} x e^{-\lambda x} \, dx \\ &= \frac{2}{\lambda^2}. \end{split}$$

Таким образом, $DX = \frac{2}{\lambda^2} - (\frac{1}{\lambda})^2 = \frac{1}{\lambda^2}$.

Нормальное распределение

Говорят, что случайная величина X имеет нормальное распределение с параметрами m и σ^2 , если X – является непрерывной случайной величиной, функция плотности которой имеет вид:

$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}.$$

Обозначается: $X \sim N(m, \sigma^2)$.

$$MX = \int_{-\infty}^{+\infty} x f(x) \, dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{(x-m)^2}{2\sigma^2}} \, dx = \langle x - m = t \rangle$$

$$= \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} (t+m) e^{-\frac{t^2}{2\sigma^2}} \, dt = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2\sigma^2}} \, dt + m \cdot \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2\sigma^2}} \, dt$$

$$= m. \tag{2.1}$$

$$DX = M[(X - MX)^{2}] = \int_{-\infty}^{+\infty} (x - m)^{2} f(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{+\infty} (x - m)^{2} e^{-\frac{(x - m)^{2}}{2\sigma^{2}}} dx$$

$$= \langle \frac{x - m}{\sigma} = t, dx = \sigma dt \rangle = \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t^{2} e^{-\frac{t^{2}}{2}} dt = \frac{\sigma^{2}}{2\sqrt{2\pi}} \int_{-\infty}^{+\infty} t e^{\frac{t^{2}}{2}} dt^{2}$$

$$= -\frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} t de^{-\frac{t^{2}}{2}} dt^{2} = \langle \text{ по частям} \rangle = -\frac{\sigma^{2}}{\sqrt{2\pi}} t e^{-e^{\frac{t^{2}}{2}}} \Big|_{-\infty}^{+\infty} + \sigma^{2} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}}{2}} dt$$

$$= \sigma^{2}. \tag{2.2}$$

2.14 Сформулировать определение ковариации и записать формулы для ее вычисления в случае дискретного и непрерывного случайных векторов. Доказать свойства ковариации

Ковариация является числовой характиристикой случайного вектора. Пусть (X_1,X_2) – двумерный случайный вектор. случайной величины X_1 и X_2 называется число $cov(X_1,X_2)=M[(X_1-m_1)(X_2-m_2)],$ где $m_i=MX_i, i=\overline{1,2}.$

Если X_1,X_2 - дискретный случайные величины, то $cov(X_1,X_2)=\sum_{i_1,i_2}(x_{1,i_1}-m_1)(x_{2,i_2}-m_2)p_{i_1i_2},$ где $p_{i_1i_2}=P\{(X_1,X_2)=(x_{1,i_1},x_{2,i_2})\}.$

Если X_1,X_2 - непрерывные случайные величины, то $cov(X_1,X_2)=\int\int_{\mathbb{R}}(x_1-m_1)(x_2-m_2)f(x_1,x_2)\,dx_1\,dx_2$, где f – совместная плотность распределения X_1 и X_2 .

Свойства:

- 1. D[X + Y] = DX + DY + 2cov(X, Y);
- 2. cov(X, X) = DX;
- 3. если X, Y независимы, то cov(X, Y) = 0. Обратное не верно;
- 4. $cov(a_1X + b_1, a_2Y + b_2) = a_1a_2cov(X, Y);$
- 5. $|cov(X,Y)| \leq \sqrt{DX \cdot DY}$, причем $|cov(X,Y)| = \sqrt{DX \cdot DY} \equiv$ случайные величины X и Y связаны линейной зависимостью;

6. cov(X, Y) = M[XY] - (MX)(MY).

Доказательства:

1.

$$D(X+Y) = M[((X+Y) - M[X+Y])^2] = \langle MX = m_1, MY = m_2 \rangle = M[((X-m_1) - M[Y-m_2])^2]$$

= $M[(X-m_1)^2] + M[(Y-m_2)^2] + 2M[(X-m_1)(Y-m_2)] =$
= $DX + DY + 2cov(X,Y);$

2.
$$cov(X, X) = M[(X - m)(X - m)] = M[(X - m)^2] = DX;$$

3.

$$cov(X,Y)=M[(X-m_1)(Y-m_2)]=\langle X,Y$$
 – независимые \Rightarrow $(X-m_1)$ и $(Y-m_2)$ тоже независимые $\rangle=[M(X-m_1)][M(Y-m_2)]$ $=0$;

4.

$$cov(a_1X + b_1, a_2X + b_2) = M[[a_1X + b_1 - M(a_1X + b_1)] \cdot [a_2X + b_2 - M(a_2X + b_2)]]$$

$$= M[[a_1X + b_1 - a_1m_1 - b_1][a_2X + b_2 - a_2m_2 - b_2]]$$

$$= M[a_1a_2(X_1 - MX_1)(X_2 - MX_2)];$$

5. (а) Выберем произвольное число $t \in \mathbb{R}$. Рассмотрим случайную величину Z(t) = tX - Y. Тогда $D[Z(t)] = D[tX - Y] = \langle$ свойство 1 + свойство дисперсии $\rangle = t^2DX + DY - 2t \cdot cov(X,Y) = DX \cdot t^2 - 2t \cdot cov(X,Y) + DY$ – квадратный трехчлен относительно t. Так как $D[X(t)] \geq 0$, следовательно, трехчлен должен быть параболой вверх, т.е. дискриминант $D \leq 0$.

$$\frac{D}{4} = (cov(X,Y))^2 - DX \cdot DY \le 0 \Rightarrow |cov(X,Y)| \le \sqrt{DX \cdot DY};$$

- (b) Необходимость (\Rightarrow). Если $|cov(X,Y)| = \sqrt{DX \cdot DY} \Rightarrow$ дискриминант $= 0 \Rightarrow D[Z(t)]$ имеет единственный корень. Обозначим его $t = a \Rightarrow Z(a) = aX Y$ принимает единственное значение с вероятностью 1, обозначим это значение как $-b \Rightarrow Z(a) = aX Y = -b \Rightarrow Y = aX + b$;
- (c) Достаточность (\Leftarrow). Если $Y = aX + b \Rightarrow Z(a) = -b \Rightarrow D[Z(a)] = 0 \Rightarrow$ дискриминант $= 0 \Rightarrow |cov(X,Y)| = \sqrt{DX \cdot DY}$.

6.

$$cov(X,Y) = M[(X - m_1)(Y - m_2)] = M[XY - m_1Y - m_2X + m_1m_2]$$
$$= M[XY] - m_1MY - m_2MX + m_1m_2$$
$$= M[XY] - m_1m_2;$$

2.15 Сформулировать определение ковариации и коэффициента корреляции случайных величин. Сформулировать свойства коэффициента корреляции. Сформулировать определения независимых и некоррелированных случайных величин, указать связь между этими свойствами. Понятия ковариационной и корреляционной матрицы

Ковариация является числовой характиристикой случайного вектора. Пусть (X_1,X_2) – двумерный случайный вектор. случайной величины X_1 и X_2 называется число $cov(X_1,X_2)=M[(X_1-m_1)(X_2-m_2)],$ где $m_i=MX_i, i=\overline{1,2}.$

Недостатком ковариации является то, что она имеет размерность равную произведению разностей случайных величин X и Y. Часто рассматривают аналогичную безразмерную характеристику, которая называется коэффициентом корреляции случайных величин X и Y:

$$\rho(X,Y) = \rho_{XY} = \frac{cov(X,Y)}{\sqrt{DX \cdot DY}},$$

где $DX \cdot DY > 0$.

Свойства коэффициента корреляции:

- 1. $\rho_{XX} = 1$;
- 2. Если X, Y независимые, то $\rho_{XY} = 0$;
- 3. $\rho(a_1X + b_1, a_2Y + b_2) \pm \rho(X, Y)$, причем \pm заменяется на
 - +, если $a_1a_2 < 0$;
 - -, если $a_1a_2 > 0$;
- 4. $\rho_{XY} \leq 1$, причем:

$$\rho_{XY} = \begin{cases} 1, & \text{когда } Y = aX + b, \text{где } a > 0 \\ -1, & \text{когда } Y = aX + b, \text{где } a < 0 \end{cases}$$

Случайные величины X и Y называются некоррелированными, если cov(X,Y) = 0.

 $F(x,y) = F_X(x)F_Y(y)$, где F – совместная функция распределения X и Y (\equiv функция распределения случайного вектора (X,Y)); F_X , F_Y – маргинальные функции распределения случайных величин X и Y.

Из свойства 3 ковариации следует, что еслим X,Y – независимые, то X,Y – некоррелированные. Обратное неверно.

Ковариационной матрицей случайного вектора \vec{X} называется матрица

$$\sum_{\vec{X}} = (\sigma_{ij})_{i,j=\overline{1,n}},$$

где
$$\sigma_{ij} = cov(X_i, X_j)$$
.

Свойства коэффициента корреляции:

- 1. $\sigma_{ii} = DX_i$;
- 2. $\sum_{\vec{X}} = \sum_{\vec{X}}^{T}$;

- 3. Если $\vec{Y} = \vec{X}B + \vec{c}$, где $\vec{Y} = (Y_1, ..., Y_m), \vec{X} = (X_1, ..., X_n), B \in M_{n,m}(\mathbb{R})$ (т.е. \vec{Y} является линейной функцией от вектора \vec{X}), то $\sum_{\vec{Y}} = B^T \sum_{\vec{X}} B$;
- 4. Матрица $\sum_{\vec{X}}$ является неотрицательной определенной, т.е. $\forall \vec{b} \in \mathbb{R}^w : \vec{b}^T \sum_{\vec{X}} \vec{b} \geq 0;$
- 5. Если все компоненты вектора \vec{X} попарно независимы, то $\sum_{\vec{X}}$ диагональная матрица.

Корреляционной матрицей вектора $\vec{X} = (X_1, ..., X_n)$ называют матрицу

$$P = (\rho_{ij})_{i,j=\overline{1.n}},$$

где
$$\rho_{ij} = \rho(X_i, X_j)$$
.

2.16 Понятие условного распределения компоненты двумерного случайного вектора (дискретный и непрерывный случаи). Сформулировать определения значений условного математического ожидания и условной дисперсии. Сформулировать определения условного математического ожидания и условной дисперсии. Записать формулы для вычисления условных математического ожидания и дисперсии для компоненты двумерного нормального вектора

Пусть (X,Y) – двумерный случайный вектор. Рассмотрим распределение компоненты X этого вектора при условии, что Y=y. Т. к. условное распределение обладает всеми свойствами безусловного распределения, то для него также можно рассмотреть числовые характеристики.

Дискретный случай. (X,Y) – дискретный случайный вектор. Условное распределение компоненты X при условии $Y=y_j:\pi_{ij}=P\{X=x_i|Y=y_j\}=\frac{p_{ij}}{PY_j}$. Значением условного математического ожидания случайной величины X при условии $Y=y_j$ называется число $M[X|Y=y_j]=\sum_i \pi_{ij}x_i$. Значение условного математического ожидания $M[Y|X=x_j]$ определяется аналогично.

Непрерывный случай. Пусть (X,Y) – непрерывный случайный вектор. Была определена условная плотность: $f_X(x|Y=y)=\frac{f(x,y)}{f_Y(y)}$. Значением математического ожидания случайной величины X при условии Y=y называют число: $M[X|Y=y]=\int_{-\infty}^{+\infty}xf_X(x|Y=y)\,dx$.

Условным математическим ожиданием случайной величины относительно случайной величины Y называют функцию g(Y) = M[X|Y] которая:

- 1. имеет область определения, совпадающую со множеством значений случайной величины Y;
- 2. для каждого возможного значения y случайной величины Y значение g(Y) = M[X|Y=y] является значением условного математического ожидания.

Условное математическое ожидание M[Y|X] определяется аналогично.

Условной дисперсией случайной величины X относительно случайной величины Y называют случайную величину $D[X|Y] = M[(X-M[X|Y])^2].$

Значение условной дисперсии:

- для дискретного случайного вектора: $D[X|Y=y_j] = \sum_i \pi_{ij} (x_i M[X|Y=y_j])^2$;
- для непрерывного случайного вектора: $D[X|Y=y_j]=\int_{-\infty}^{+\infty}(x-M[X|Y=y_j])^2f_X(X|Y=y_j)\,dx.$

Если
$$(X,Y)$$
 – непрерывный случайный вектор и $\vec{m}=(m_1,m_2)$ и $\sum=\begin{pmatrix}\sigma_1^2&\rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2&\sigma_2^2\end{pmatrix}$, тогда:

— условное распределение X при Y = y будет нормальным;

-
$$M[X|Y=y] = m_1 + \rho \frac{\sigma_1}{\sigma_2}(y-m_2);$$

-
$$D[X|Y = y] = \sigma_1^2(1 = \rho^2).$$

2.17 Понятие n-мерного нормального распределения. Сформулировать основные свойства многомерного нормального распределения

Случайный вектор $(X_1,...,X_n)$ имеет нормальное распределение, если его функция плотности распределения имеет вид:

$$f(x_1,...,x_n)=rac{1}{(\sqrt{2\pi})^n\sqrt{\det\Sigma}}e^{-rac{1}{2}Q(ec{x}-ec{m})},$$
 где $ec{r}=(x_1,...,x_n)$ $ec{m}=(m_1,...,m_n)$ $Q(ec{lpha})=ec{lpha}\cdot\sum^\simec{lpha}^T$ квадр форма от n перем., $\sum^\sim=\sum^{-1} ec{lpha}=(lpha_1,...,lpha_n)$ \sum – положительно опред. матрица порядка n

Свойства многомерного нормального распределения

- 1. Если $(x_1,...,x_n)$ нормальный случайный вектор, то существует его компонента $x_i \sim N(m_i,\sigma_i^2)$ тоже нормальная случайная величина;
- 2. Пусть $\vec{x} \sim N(\vec{m}, \sum)$. Тогда, если \sum диагональная, то случайная величина $x_1, ..., x_n$ независимы;
- 3. Пусть $\vec{x} \sim N(\vec{m}, \sum) n$ -мерный случайный вектор. Тогда $\vec{x}' = (x_1, ..., x_{n-1})$ нормальный случайный вектор с $\vec{m}' = (m_1, ..., m_{n-1})$ и ковариационной матрицей: \sum' , которая получена из \sum отбрасыванием последней строчки и столбца;
- 4. Пусть $\vec{x} \sim N(\vec{m}, \sum), \ \ \vec{Y} = \lambda_1 x_1 + ... + \lambda_n x_n + \lambda_0.$ Тогда \vec{Y} нормальная случайная величина;
- 5. Пусть $\vec{x} = (x_1, x_2)$ двумерный случайный вектор с $\vec{m} = (m_1, m_2)$ и $\sum = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$ Тогда:
 - (a) условное распределение X при условии Y = y будет нормальным;

(b)
$$M[X|Y=y] = m_1 + \rho \frac{\sigma_1}{\sigma_2}(y-m_2);$$

(c)
$$D[X|Y=y] = \sigma_1^2(1-\rho^2)$$
.