

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2005年9月1日 (01.09.2005)

PCT

(10)国際公開番号
WO 2005/080646 A1(51)国際特許分類⁷:

C30B 15/20

(71)出願人(米国を除く全ての指定国について):コマツ
電子金属株式会社 (KOMATSU DENSHI KINZOKU
KABUSHIKI KAISHA) [JP/JP]; 〒2540014 神奈川県平
塚市四之宮3丁目25番1号 Kanagawa (JP).

(21)国際出願番号:

PCT/JP2005/002627

(72)発明者; および

(22)国際出願日: 2005年2月18日 (18.02.2005)

(75)発明者/出願人(米国についてのみ):浦雅富見 (URA,
Masafumi) [JP/JP]; 〒2540014 神奈川県平塚市四之宮
3丁目25番1号 コマツ電子金属株式会社内 Kanagawa (JP). 黒木英俊 (KUROGI, Hidetoshi) [JP/JP]; 〒
2540014 神奈川県平塚市四之宮3丁目25番1号
コマツ電子金属株式会社内 Kanagawa (JP). 指谷利
治 (YUBITANI, Toshiharu) [JP/JP]; 〒2540014 神奈川

(25)国際出願の言語:

日本語

(26)国際公開の言語:

日本語

(30)優先権データ:

特願2004-043211 2004年2月19日 (19.02.2004) JP

/続葉有/

(54) Title: METHOD FOR MANUFACTURING SINGLE CRYSTAL SEMICONDUCTOR

(54)発明の名称: 単結晶半導体の製造方法

A CRYSTAL PERIPHERAL VELOCITY (m/sec)

B STANDARD 1
STANDARD 2
STANDARD 3
STANDARD 4
STANDARD 5
STANDARD 6
STANDARD 7
STANDARD 8
STANDARD 9
STANDARD 10
STANDARD 11
STANDARD 12
STANDARD 13
STANDARD 14

(57) Abstract: In a method of manufacturing a single crystal semiconductor, impurity concentration nonuniformity within a semiconductor wafer plane is reduced, by taking impurities more uniformly in the single crystal semiconductor, in a process of growing the single crystal semiconductor by pulling it up from a melt, and thus, planarity of the wafer is improved. In the process of pulling up the single crystal semiconductor (6), a rotating velocity (ω_2) of the single crystal semiconductor (6) to be pulled up is adjusted at a prescribed value or more, and a magnetic field having a strength within a prescribed range is applied to the melt (5). Especially, a crystal peripheral velocity is adjusted at 0.126m/sec or higher, and $M/V1/3$ at $35.5 \leq M/V1/3 \leq 61.3$. Preferably, a crystal peripheral velocity is adjusted at 0.141m/sec or higher and $M/V1/3$ at $40.3 \leq M/V1/3 \leq 56.4$.

(57) 要約: 融液から単結晶半導体を引上げ成長させる過程で、単結晶半導体に不純物が、より均一に取り込まれるようにすることで、半導体ウェーハの面内での不純物濃度ムラを小さくさせ、もってウェーハの平坦度を向上させることを目的とする単結晶半導体の製造方法であり、単結晶半導体(6)を引き上げる過程で、引き上げられる単結晶半導体(6)の回転速度(ω_2)

を所定値以上に調整し、かつ所定範囲の強度の磁場を融液(5)に印加する。特に、結晶周速度を0.126m/sec以上に調整し、かつ $M/V1/3$ を

/続葉有/

WO 2005/080646 A1

県平塚市四之宮3丁目25番1号コマツ電子金属株式会社内 Kanagawa (JP). 古市 登 (FURUICHI, Noboru) [JP/JP]; 〒2540014 神奈川県平塚市四之宮3丁目25番1号コマツ電子金属株式会社内 Kanagawa (JP).

(74) 代理人: 木村 高久, 外 (KIMURA, Takahisa et al.); 〒1040043 東京都中央区湊1丁目8番11号千代ビル6階 Tokyo (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,

SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

明 細 書

単結晶半導体の製造方法

技術分野

[0001] 本発明は、CZ法(チョクラルスキー法)を用いて単結晶シリコンなどの単結晶半導体を製造する製造方法に関し、平坦度の高い半導体ウェーハを取得できるように単結晶半導体を製造する方法に関するものである。

背景技術

[0002] 単結晶シリコンの製造方法の1つにCZ法がある。

[0003] CZ法で成長させて引き上げられた単結晶シリコン(インゴット)は、スライスされ、研磨され、エッチングされて、半導体デバイス製造用のシリコンウェーハとして提供される。

[0004] すなわち、融液には、シリコンウェーハが所望の抵抗率を得るためにボロンB等の不純物が添加された上で、単結晶シリコンを融液から引上げ成長される。

[0005] ここで、単結晶シリコンを引上げ成長させる過程で、不純物は、均一に取り込まれるわけではない。このため、引上げ成長させた単結晶シリコン(インゴット)から取得されたシリコンウェーハを、縦方向(ウェーハ面に対して垂直)に切ったとき、不純物の濃度ムラに応じた成長縞が観察され、ウェーハ面内では、リング状の不純物濃度ムラが観察される。

[0006] 一方、近年、半導体デバイスの種類によっては、シリコンウェーハの表面の平坦度に高いスペックのものが要求されている。

[0007] 本発明に関連する従来技術として、下記特許文献1がある。

[0008] この特許文献1には、石英るつぼから融液を介して単結晶シリコンに取り込まれる酸素に着目し、シリコンウェーハの面内の現れる酸素濃度ムラを小さくさせる発明が記載されている。その手法は、ヒータのスリットのオーバーラップ長さhと、ヒータの内径dとの比率h/dを0.70以下にすることによって、シリコンウェーハの面内の酸素濃度ムラを小さくさせるというものである。

特許文献1:特開平11-116390号公報

発明の開示

発明が解決しようとする課題

[0009] 本発明者は、シリコンウェーハ面内の不純物の濃度ムラは、硬さのムラとなって現れ、これがウェーハの平坦度に影響を及ぼすという新たな知見を発見するに至った。特に不純物を高濃度に添加した場合には、硬さのムラが生じやすい。

[0010] すなわち、不純物が添加されると、結晶硬化効果が生じる。このためシリコンウェーハ面内では不純物濃度ムラは硬さのムラとして顕在化し、研磨工程で研磨すると、ウェーハ面内各部での硬さの違いによって微小な凹凸が生じる。同様に、エッチング工程でエッチングを行うと、濃度ムラにより微小な凹凸が生じる。このように形成された微小な凹凸は、平坦度を劣化させる原因となる。

[0011] 本発明は、こうした実状に鑑みてなされたものであり、融液から単結晶半導体を引き上げ成長させる過程で、単結晶半導体に不純物が、より均一に取り込まれるようにすることで、半導体ウェーハ面内での不純物濃度ムラを小さくさせ、もってウェーハの平坦度を向上させることを、解決課題とするものである。

[0012] なお、上記特許文献1に記載された発明は、石英るつぼから融液を介して単結晶半導体に取り込まれる酸素を対象とし、ウェーハ面内酸素濃度ムラを小さくさせる発明であり、融液から単結晶半導体に取り込まれる不純物(ボロン等)を対象とし、ウェーハ面内での不純物濃度ムラを小さくさせる本発明とは、異なるものである。

課題を解決するための手段

[0013] 第1発明は、
種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の回転速度を所定値以上に調整し、かつ所定範囲の強度の磁場を融液に印加することを特徴とする。

[0014] 第2発明は、
種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げること

により、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、
単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0.126m/sec以上に調整し、かつ

$$35.5 \leq M/V1/3 \leq 61.3$$

となるように磁場を融液に印加すること
を特徴とする。

[0015] 第3発明は、

種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0.126m/sec以上に調整すること
を特徴とする。

[0016] 第4発明は、

種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、
35.5 $\leq M/V1/3 \leq 61.3$
となるように磁場を融液に印加すること
を特徴とする。

[0017] 第5発明は、

種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、

単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0.141m/sec以上に調整し、かつ

$$40.3 \leq M/V1/3 \leq 56.4$$

となるように磁場を融液に印加すること
を特徴とする。

[0018] 第6発明は、

種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0.141m/sec以上に調整すること
を特徴とする。

[0019] 第7発明は、

種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、

るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、

$$40.3 \leq M/V1/3 \leq 56.4$$

となるように磁場を融液に印加すること
を特徴とする。

[0020] 第8発明は、第1発明～第7発明において、

単結晶半導体に添加される不純物は、ボロンBまたはガリウムGaであり、不純物濃度は、8.0e17atoms/cc以上であること
を特徴とする。

[0021] 第9発明は、第1発明～第7発明において、

単結晶半導体に添加される不純物は、リンPまたはアンチモンSbまたは砒素Asであり、不純物濃度は、5.0e17atoms/cc以上であること
を特徴とする。

[0022] 本発明者は、ウェーハ面に対して垂直に切断したときの成長縞の間隔が不均一で、ウェーハ面内でリング状の不純物濃度ムラがあるのは、つぎの原因であると考えた。

[0023] 1) 単結晶シリコン6の引き上げ時に、融液5の対流に不均一な流れが形成され、融液5から単結晶シリコン6に取り込まれる不純物濃度が変化する。

[0024] 2) 単結晶シリコン6が成長する間に単結晶シリコン6が回転することにより温度差が生じてリメルト(一旦固まった結晶が液状に戻る)が発生し、それによって融液5から単結晶シリコン6に取り込まれる不純物濃度が変化する。

[0025] 3) 単結晶シリコン6と融液5との接合部である成長界面(固液界面)の勾配がきつく、このためウェーハ縦断面でみたとき多くの成長界面を横切った成長縞(不純物濃度のムラがある)が観察される。

[0026] そこで、本発明者は、ウェーハ面に対して垂直に切断したときの成長縞の間隔を均一に(かつ成長縞を緻密かつ薄く)し、ウェーハ面内のリング状の不純物濃度ムラを小さくする(無くす)には、つぎの点が重要であると考えた。

[0027] 4) 成長界面(固液界面)近傍での融液5内の不純物を均一にする。

[0028] 5) 融液5の対流を抑制して成長界面(固液界面)近傍での温度を安定化させ、リメルトの発生を無くす。

[0029] 6) 融液5の表面での温度分布が対称になるようにしてリメルトの発生を無くす。

[0030] 7) 上記4)を達成するには、単結晶シリコン6を引き上げる過程で、引き上げられる単結晶シリコン6の回転速度 ω_2 を所定値以上に調整することが必要であると仮定した。

[0031] 8) また上記5)、6)を達成するには、所定範囲の強度の磁場を融液5に印加することが必要であると仮定した。

[0032] そして、上記仮定のもとに実験を行ったところ、図4に示す結果が得られ、上記仮定が正しいことが照明された。

[0033] すなわち、第1発明によれば、単結晶半導体6を引き上げる過程で、引き上げられる単結晶半導体6の回転速度 ω_2 を所定値以上に調整し、かつ所定範囲の強度の磁場を融液5に印加することにより、単結晶半導体6内の不純物の濃度ムラを小さくすることができる。

[0034] 第2発明によれば、単結晶半導体6を引き上げる過程で、結晶周速度を0.126

m/sec以上に調整し、かつM/V1/3 を35. 5≤M/V1/3≤61. 3に調整することで、単結晶半導体6内の不純物の濃度ムラを小さくすることができた(図4の破線内)。

- [0035] 結晶周速度のみでみたときには、不純物濃度ムラを小さくするには、結晶周速度を0. 126m/sec以上に調整すればよい(第3発明)。
- [0036] M/V1/3 のみでみたときは、不純物濃度ムラを小さくするには、35. 5≤M/V1/3≤61. 3に調整すればよい(第4発明)。
- [0037] 第5発明によれば、単結晶半導体6を引き上げる過程で、結晶周速度を0. 141m/sec以上に調整し、かつM/V1/3 を40. 3≤M/V1/3≤56. 4に調整することで、単結晶半導体6内の不純物の濃度ムラを小さくすることができた(図4の太実線内)。
- [0038] 結晶周速度のみでみたときには、不純物濃度ムラを小さくするには、結晶周速度を0. 141m/sec以上に調整すればよい(第6発明)。
- [0039] M/V1/3 のみでみたときは、不純物濃度ムラを小さくするには、40. 3≤M/V1/3≤56. 4に調整すればよい(第7発明)。
- [0040] 本発明によれば、不純物濃度ムラが小さくなるため、半導体ウェーハ面内の硬さのムラは小さくなり、研磨あるいはエッティング加工を施した場合、濃度ムラによる微小な凹凸は無くなり(少なくなり)、加工後の平坦度が従来よりも向上する。
- [0041] 不純物濃度ムラが平坦度に影響を及ぼすのは、不純物が結晶硬化効果を得る程度の高濃度に添加されているからであると考えられる。
- [0042] このため、不純物がボロンB、ガリウムGaの場合には、8. 0e17atoms/cc以上の濃度を添加することが望ましい(第8発明)。
- [0043] また、不純物がリンP、アンチモンSb、砒素Asである場合には、5. 0e17atoms/cc以上の濃度を添加することが望ましい(第9発明)。
- [0044] しかし、本発明によれば、不純物濃度の大きさ如何によらずに、結晶周速度、M/V1/3 を上述した条件に調整することで、シリコンウェーハの不純物濃度ムラを小さくできるという効果が得られるため、第8発明、第9発明に示す高濃度に限定されることなく、実施することができる。
- [0045] また、本発明は、ガリウム砒素などのシリコン以外の単結晶半導体の引上げにも適

用することが可能である。

図面の簡単な説明

[0046] [図1]図1は実施形態の単結晶引上げ装置を示す図である。

[図2]図2は融液(石英るつぼ)各部の磁場強度分布を示した図である。

[図3]図3は各水準毎に条件を変えて単結晶シリコンを引き上げて、シリコンウェーハの不純物濃度ムラを評価した実験結果を示した表である。

[図4]図4は図3に示す実験結果を、横軸を結晶周速度とし、縦軸をM/V1/3として表したグラフを示す図である。

[図5]図5は石英るつぼを上面からみた図であり、強磁場により温度分布が非対称となる様子をイメージで示した図である。

[図6]図6(a)、(b)、(c)は、シリコンウェーハの濃度ムラの各評価ごとに、ウェーハ縦断面の成長縞の写真を示した図である。

発明を実施するための最良の形態

[0047] 以下図面を参照して実施形態の装置について説明する。

[0048] 図1は実施形態の構成を側面からみた図である。

[0049] 同図1に示すように、実施形態の単結晶引上げ装置1は、単結晶引上げ用容器としてのCZ炉(チャンバ)2を備えている。図1の単結晶引上げ装置1は、たとえば直径200mm～300mmの単結晶シリコンインゴット6を製造するに好適な装置である。

[0050] CZ炉2内には、多結晶シリコンの原料を溶融して融液5として収容する石英るつぼ3が設けられている。なお、直径300mmの単結晶シリコンを引き上げるために、300kg程度の多結晶シリコンが石英るつぼ3内にチャージされる。石英るつぼ3は、その外側が黒鉛るつぼ11によって覆われている。石英るつぼ3の外側にあって側方には、石英るつぼ3内の多結晶シリコン原料を加熱して溶融する、円筒形状のヒータ9が設けられている。ヒータ9の出力(パワー;kW)は制御され、融液5に対する加熱量が調整される。たとえば、融液5の温度が検出され、検出温度をフィードバック量とし融液5の温度が目標温度になるように、ヒータ9の出力が制御される。

[0051] なお実施形態ではヒータ9によって融液5を外部より加熱しているが、加熱手段としてはヒータに限定されるものではなく、いかなる加熱手段を使用してもよい。たとえば

電磁加熱による方法、レーザ照射による加熱を採用してもよい。

[0052] ヒータ9とCZ炉2の内壁との間には、保温筒13が設けられている。

[0053] 石英るつぼ3の上方には引上げ機構4が設けられている。引上げ機構4は、引上げ軸4aと引上げ軸4aの先端のシードチャック4cを含む。シードチャック4cによって種結晶14が把持される。ここで、引上げ軸4aは、たとえばシャフトやワイヤであり、シャフトでの引上げやワイヤでの巻き上げが行われる。

[0054] 石英るつぼ3内で多結晶シリコン(Si)が加熱され溶融される。融液5の温度が安定化すると、引上げ機構4が動作し融液5から単結晶シリコン6(単結晶シリコンインゴット)が引き上げられる。すなわち引上げ軸4aが降下され引上げ軸4aの先端のシードチャック4cに把持された種結晶14が融液5に浸漬される。種結晶14を融液5になじませた後引上げ軸4aが上昇する。シードチャック4cに把持された種結晶14が上昇するに応じて単結晶シリコンが成長する。引上げの際、石英るつぼ3は回転軸10によって回転速度 ω 1(たとえば0.1～0.2rpm)で回転する。また引上げ機構4の引上げ軸4aは回転軸10と同方向に回転速度 ω 2で回転する。

[0055] また回転軸10は鉛直方向に駆動することができ、石英るつぼ3を上下動させ任意の位置に移動させることができる。

[0056] CZ炉2内と外気を遮断することで炉2内は真空(たとえば20Torr程度)に維持される。すなわちCZ炉2には不活性ガスとしてのアルゴンガス7が供給され、CZ炉2の排気口からポンプによって排気される。これにより炉2内は所定の圧力に減圧される。

[0057] 単結晶引上げのプロセス(1バッチ)の間で、CZ炉2内には種々の蒸発物が発生する。そこでCZ炉2にアルゴンガス7を供給してCZ炉2外に蒸発物とともに排気してCZ炉2内から蒸発物を除去しクリーンにしている。アルゴンガス7の供給流量は1バッチ中の各工程ごとに設定する。

[0058] 単結晶シリコン6の引上げに伴い融液5が減少する。融液5の減少に伴い融液5と石英るつぼ3との接触面積が変化し石英るつぼ3からの酸素溶解量が変化する。この変化が、引き上げられる単結晶シリコン6中の酸素濃度分布に影響を与える。そこで、これを防止するために、融液5が減少した石英るつぼ3内に多結晶シリコン原料または単結晶シリコン原料を引上げ後あるいは引上げ中に追加供給してもよい。

[0059] 石英るつぼ3の上方にあって、単結晶シリコン6の周囲には、略逆円錐台形状の熱遮蔽板8(ガス整流筒、輻射シールド)が設けられている。熱遮蔽板8は、保温筒13に支持されている。熱遮蔽板8は、CZ炉2内に上方より供給されるキャリアガスとしてのアルゴンガス7を、融液表面5aの中央に導き、さらに融液表面5aを通過させて融液表面5aの周縁部に導く。そして、アルゴンガス7は、融液5から蒸発したガスとともに、CZ炉2の下部に設けた排気口から排出される。このため液面上のガス流速を安定化することができ、融液5から蒸発する酸素を安定な状態に保つことができる。

[0060] また輻射シールドとしての熱遮蔽板8は、種結晶14および種結晶14により成長される単結晶シリコン6を、石英るつぼ3、融液5、ヒータ9などの高温部で発生する輻射熱から、断熱、遮蔽する。また熱遮蔽板8は、単結晶シリコンに、炉内で発生した不純物(たとえばシリコン酸化物)等が付着して、単結晶育成を阻害することを防止する。熱遮蔽板8の下端と融液表面5aとの間隙のギャップGの大きさは、回転軸10を上昇下降させ、石英るつぼ3の上下方向位置を変化させることで調整することができる。また熱遮蔽板8を昇降装置により上下方向に移動させてギャップGを調整してもよい。

[0061] CZ炉2の外側にあって周囲には、石英るつぼ3内の融液5に磁場(横磁場)を印加する磁石20が設けられている。

[0062] 本発明者は、ウェーハ面に対して垂直に切断したときの成長縞の間隔が不均一で、ウェーハ面内でのリング状の不純物濃度ムラがあるのは、つぎの原因であると考えた。

[0063] 1) 単結晶シリコン6の引上げ時に、融液5の対流に不均一な流れが形成され、融液5から単結晶シリコン6に取り込まれる不純物濃度が変化する。

[0064] 2) 単結晶シリコン6が成長する間に単結晶シリコン6が回転することにより温度差が生じてリメルト(一旦固まった結晶が液状に戻る)が発生し、それによって融液5から単結晶シリコン6に取り込まれる不純物濃度が変化する。

[0065] 3) 単結晶シリコン6と融液5との接合部である成長界面(固液界面)の勾配がきつく、このためウェーハ縦断面でみたとき多くの成長界面を横切った成長縞(不純物濃度のムラがある)が観測される。

[0066] そこで、本発明者は、ウェーハ面に対して垂直に切断したときの成長縞の間隔を均

一に(かつ成長縞を緻密かつ薄く)し、ウェーハ面内でのリング状の不純物濃度ムラを小さくする(無くす)には、つぎの点が重要であると考えた。

- [0067] 4)成長界面(固液界面)近傍での融液5内の不純物を均一にする。
- [0068] 5)融液5の対流を抑制して成長界面(固液界面)近傍での温度を安定化させ、リメルトの発生を無くす。
- [0069] 6)融液5の表面での温度分布が対称になるようにしてリメルトの発生を無くす。
- [0070] 7)上記4)を達成するには、単結晶シリコン6を引き上げる過程で、引き上げられる単結晶シリコン6の回転速度 ω_2 を所定値以上に調整することが必要であると仮定した。
- [0071] 8)また上記5)、6)を達成するには、所定範囲の強度の磁場を融液5に印加することが必要であると仮定した。
- [0072] 以下、上記7)、8)の仮定のもとに、図1に示す単結晶引上げ装置1を用いて行った実験について説明する。
- [0073] 図3は、各水準1ー16について各種条件、つまり結晶直径(単結晶シリコンインゴット6の直胴部の直径)、磁場の強度M(Gauss)、M/V1/3 (Mは磁場強度、Vは融液5の体積)、結晶回転数 ω_2 (rpm)、結晶周速度(m/sec)を変えて、単結晶シリコン6の引上げを行い、単結晶シリコンインゴット6をスライスして得られたシリコンウェーハについて、たとえばX線トポグラフ法による計測によって、ウェーハ面内での不純物濃度ムラ(ウェーハ縦断面での成長縞)を評価した結果を、◎、○、×の評価で示した表である。◎は「不純物濃度ムラが無い」という評価であり、○は「不純物濃度ムラが殆ど無い」という評価であり、×は「不純物濃度ムラがある」という評価である。
- [0074] ここで、結晶直径は200mmと300mmについて行った。また、不純物についてはボロンBを用いて $1e18$ atoms/cc～ $1e19$ atoms/ccの範囲の濃度が単結晶シリコン6に取り込まれるように調整した。
- [0075] また、磁場の強度Mは、図2に示すように、石英るつぼ3の底部中心での磁場の強度である。磁石20によって融液5に磁場(横磁場)を印加したとき同図2に示すように、磁場の強度は融液5(石英るつぼ3)の各所で異なるため、石英るつぼ3の底部中心位置での磁場強度Mを代表値で示したものである。
- [0076] また、結晶周速度とは、引き上げられる単結晶シリコン6の外周部(単結晶シリコンイ

ンゴットの直胴部の外周部)での周速度のことである。

[0077] 上記図3の表において、結晶回転数 ω_2 とは別に、結晶周速度をパラメータとして掲げたのは、次の理由による。

[0078] すなわち、単結晶シリコン6が回転することによる成長界面(固液界面)近傍での融液5内の不純物を均一にする効果は、結晶直径の大きさの違い(たとえば200mmであるか300mmであるか)によって異なる。そこで、結晶直径の大きさの違いによらず、結晶回転数 ω_2 による不純物濃度ムラ消滅効果の指標を一般化して求めるべく、結晶直径に依存しない回転速度として結晶周速度なるパラメータを掲げたものである。

[0079] また上記図3の表において磁場強度Mとは別に、 $M/V1/3$ なるパラメータを掲げたのは、つぎの理由による。

[0080] すなわち、磁場印加による融液5の対流抑制効果は、融液5のメルト量によって異なる。そこで、融液5のサイズ(体積V)によらず、磁場Mによる不純物濃度ムラ消滅効果の指標を一般化して求めるべく、融液5のサイズ(体積V)に依存しない磁場強度値として $M/V1/3$ なるパラメータを掲げたものである。 $V1/3$ と体積を1/3乗しているのは、融液5の3次元のメルト量(体積)を1次元の代表長さに変換するためである。

[0081] 以上の図3に示す各水準1ー16で行った実験結果を、横軸を結晶周速度(m/sec)とし、縦軸を $M/V1/3$ としたグラフで図4に示す。

[0082] 同図4は、「不純物濃度ムラは殆ど無い」(○印)という評価が得られる範囲を破線で示し、「不純物濃度ムラは無い」(◎印)という評価が得られる範囲を太実線で示す。同図4より、「不純物濃度ムラは殆ど無い」(○印)という評価が得られる条件は、結晶周速度で0. 126m/sec以上で、かつ $M/V1/3$ で $35. 5 \leq M/V1/3 \leq 61. 3$ という条件であった。

[0083] また「不純物濃度ムラは無い」(◎印)という評価が得られる条件は、結晶周速度で0. 141m/sec以上で、かつ $M/V1/3$ で $40. 3 \leq M/V1/3 \leq 56. 4$ という条件であった。

[0084] また、結晶周速度のみでみたときには、不純物濃度ムラを小さくするには、結晶周速度を0. 126m/sec以上に調整する必要があり(図4の破線参照)、0. 141m/sec以上であること(図4の太実線参照)が望ましい。

[0085] また、M/V1/3 のみでみたときは、不純物濃度ムラを小さくするには、 $35.5 \leq M/V1/3 \leq 61.3$ に調整する必要があり(図4の破線参照)、 $40.3 \leq M/V1/3 \leq 56.4$ であること(図4の太実線参照)が望ましい。

[0086] 実際に、上記条件の範囲で単結晶シリコン6を引き上げ、引き上げた単結晶シリコン6からシリコンウェーハをスライスして、不純物濃度ムラ(縦断面での成長縞)を計測したところ、不純物濃度ムラは、殆ど無いか、全く無いことが確認された。

[0087] 上記条件について検討するに、結晶回転数 ω を上昇させて、結晶周速度で、0.126m/sec以上(望ましくは0.141m/sec以上)の高速回転に調整することで、成長界面(固液界面)直下での融液5内の不純物濃度が均一化されて、不純物濃度ムラを小さくすることに貢献したものと考えられる。

[0088] また、磁石20によって融液5に、所定強度以上の磁場を印加して、M/V1/3で、35.5以上(望ましくは40.3以上)の強磁場に調整することで、成長界面(固液界面)近傍での融液5の対流が抑制されて温度変動が抑制され、不純物濃度ムラを小さくすることに貢献したものと考えられる。

[0089] しかし、磁場強度を強くし過ぎると、つぎのよう不具合が生じると考えられる。

[0090] すなわち、図5は、石英るつぼ3を上面からみた図であり、融液5の表面における等温線を示している。磁場印加方向は、図5中、上下方向であるとする。融液5の対流を抑制して融液5の温度勾配を小さくできる効果は、磁場の印加方向に対して垂直な図中左右方向に現れる。磁場の印加方向に対し垂直な方向の対流は、抑制されるので、温度勾配が大きくなる。磁場の印加方向と平行な方向は、対流が抑制されないので、温度勾配は、磁場印加方向に対し垂直な方向に較べて小さい。このため、磁場強度を大きくし過ぎると、融液5の温度分布は、非対称な橢円状の分布となり、等温線は図5中、左右に長い橢円状を呈する。このため、磁場の強度が強すぎると、成長界面(固液界面)近傍での融液5の温度分布は不均一となり、リメルトを引き起こし、却って不純物濃度ムラを大きくすることになる。

[0091] このため磁場の強度については、上限値が存在し、磁石20によって融液5に磁場を印加するには、M/V1/3 で、61.3以下(望ましくは56.4以下)の強度の磁場に抑えるよう調整することが必要であり、このように磁場を調整することで不純物濃度ム

ラを小さくすることに貢献するものと考えられる。

[0092] 図6(a)、(b)、(c)は、シリコンウェーハの縦断面における成長縞を、X線トポグラフ法で計測した結果を示す。

[0093] 図6(a)は、「不純物濃度ムラは無い」(◎印)と評価された場合の、シリコンウェーハ縦断面の写真を示し、図6(b)は、「不純物濃度ムラは殆ど無い」(○印)と評価された場合の、シリコンウェーハ縦断面の写真を示し、図6(c)は、「不純物濃度ムラがある」(×印)と評価された場合の、シリコンウェーハ縦断面の写真を示している。

[0094] 図6(a)から、シリコンウェーハ縦断面での成長縞の間隔は、等間隔(均一)であり、かつ成長縞は緻密で薄いことがわかり、「不純物濃度ムラは無い」という評価がされたことがわかる。

[0095] 図6(b)から、シリコンウェーハ縦断面での成長縞の間隔は、やや不均一であり、「不純物濃度ムラは殆ど無い」という評価がされたことがわかる。

[0096] 図6(c)から、シリコンウェーハ縦断面での成長縞の間隔は、不均一であり、かつ成長縞が濃いことがわかり、「不純物濃度ムラがある」という評価がされたことがわかる。

[0097] 図6(a)あるいは図6(b)のように観察されたシリコンウェーハの表面を、研磨工程、あるいはエッチング工程で加工を施し、平坦度を計測したところ、極めて高い平坦度が得られ、このシリコンウェーハを用いて半導体デバイスを作成したところ、極めて歩留まりの高い製品が得られた。

[0098] 上述した実施形態では、不純物としてボロンBを添加する場合について説明した。しかし、ボロンB以外の不純物として、ガリウムGa、リンP、アンチモンSb、砒素Asを添加する場合でも、ボロンBを添加する場合と同等の効果が得られる。

[0099] つぎに、単結晶シリコン6に添加される不純物濃度の大きさについて、検討する。

[0100] 不純物濃度ムラが平坦度に影響を及ぼすのは、不純物が結晶硬化効果を得る程度の高濃度に添加されているからであると考えられる。

[0101] このため、不純物がボロンB、ガリウムGaの場合には、8. 0e17atoms/cc以上の高濃度を添加することが望ましい。

[0102] また、不純物がリンP、アンチモンSb、砒素Asである場合には、5. 0e17atoms/cc以上の高濃度を添加することが望ましい。

[0103] しかし、本発明によれば、不純物濃度の大きさによらずに、結晶周速度、M/V1/3を上述した条件に調整することで、シリコンウェーハの不純物濃度ムラを小さくできるという効果が得られるため、上述した高濃度に限定されることなく、実施することができる。

[0104] なお、本実施形態では、横磁場を融液5に印加する場合を想定して説明したが、カスプ磁場を融液5に印加するように構成してもよい。

[0105] また、本実施形態で、単結晶シリコン6を引き上げるに際して、ネッキング処理を行ってもよく、ネッキング処理を行わなくともよい。特に、種結晶14側に、融液5に添加する不純物濃度と同等の濃度で不純物を添加するのであれば、ネッキング処理を行わなくても本発明を適用することができる。

[0106] また、本実施形態では、石英るつぼ3の側方にシングルヒータ9を設けた単結晶引上げ装置1で単結晶シリコン6を引き上げる場合について説明したが、もちろんマルチヒータ、つまり石英るつぼ3の側方の上下方向に沿って複数のサイドヒータを設けた構成あるいは石英るつぼ3の側方にサイドヒータを、そして石英るつぼ3の底部にボトムヒータをそれぞれ設けた構成の単結晶引上げ装置で単結晶シリコンを引き上げる場合にも適用することができる。

産業上の利用可能性

[0107] 本発明は、ガリウム砒素などのシリコン以外の単結晶半導体の引上げにも適用することが可能である。

請求の範囲

[1] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
 単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の回転速度を所定値以上に調整し、かつ所定範囲の強度の磁場を融液に印加すること
 を特徴とする単結晶半導体の製造方法。

[2] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
 るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、
 単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0. 126m/sec以上に調整し、かつ

$$35.5 \leq M/V1/3 \leq 61.3$$

 となるように磁場を融液に印加すること
 を特徴とする単結晶半導体の製造方法。

[3] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
 単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0. 126m/sec以上に調整すること
 を特徴とする単結晶半導体の製造方法。

[4] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
 るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、

$$35.5 \leq M/V1/3 \leq 61.3$$

 となるように磁場を融液に印加すること

を特徴とする単結晶半導体の製造方法。

[5] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、
単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0. 141m/sec以上に調整し、かつ
40. 3≤M/V1/3≤56. 4
となるように磁場を融液に印加すること
を特徴とする単結晶半導体の製造方法。

[6] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
単結晶半導体を引き上げる過程で、引き上げられる単結晶半導体の外周部の周速度を0. 141m/sec以上に調整すること
を特徴とする単結晶半導体の製造方法。

[7] 種結晶をるつぼ内の融液に着液させ、前記種結晶を回転させながら引き上げることにより、不純物が添加された単結晶半導体を製造する単結晶半導体の製造方法において、
るつぼ底部の磁場強度をM、るつぼ内の融液の体積をVとしたとき、
40. 3≤M/V1/3≤56. 4
となるように磁場を融液に印加すること
を特徴とする単結晶半導体の製造方法。

[8] 単結晶半導体に添加される不純物は、ボロンBまたはガリウムGaであり、不純物濃度は、8. 0e17atoms/cc以上であること
を特徴とする請求項1～7に記載の単結晶半導体の製造方法。

[9] 単結晶半導体に添加される不純物は、リンPまたはアンチモンSbまたは砒素Asであり、不純物濃度は、5. 0e17atoms/cc以上であること

を特徴とする請求項1～7に記載の単結晶半導体の製造方法。

[図1]

[~~※~~2]

[図3]

水準No	結晶直径 (mm)	磁場強度 M(Gauss)	$M/V^{1/3}$	結晶回転 数(rpm)	結晶周速 度(m/sec)	結果
1	200	1497	40.4	13.5	0.141	◎
2	300	1975	40.3	10.0	0.157	◎
3	300	2370	48.4	10.0	0.157	◎
4	300	2765	56.4	9.0	0.141	◎
5	200	1580	42.6	13.5	0.141	○
6	200	2079	56.1	12.0	0.126	○
7	300	1738	35.5	8.0	0.126	○
8	300	3002	61.3	10.0	0.157	○
9	200	582	15.7	8.0	0.084	×
10	200	582	15.7	12.0	0.126	×
11	200	1247	33.6	13.5	0.141	×
12	200	3326	89.7	13.0	0.136	×
13	300	1580	32.2	10.0	0.157	×
14	300	2370	48.4	7.0	0.110	×
15	300	3160	64.5	8.0	0.126	×
16	300	3160	64.5	10.0	0.157	×

[図4]

[図5]

[図6]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002627

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C30B15/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C30B15/20

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2005
Kokai Jitsuyo Shinan Koho 1971-2005 Jitsuyo Shinan Toroku Koho 1996-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 62-260795 A (Toshiba Ceramics Co., Ltd.), 13 November, 1987 (13.11.87), Claims; page 2, upper left column, line 7 to lower left column, line 1 (Family: none)	1
Y		8, 9
A	JP 4-55388 A (Shin-Etsu Handotai Co., Ltd.), 24 February, 1992 (24.02.92), Claims; page 2, lower right column, line 3 to page 5, upper right column, line 10 & US 5306387 A & EP 0462741 A2	1
A	JP 60-33289 A (Toshiba Corp.), 20 February, 1985 (20.02.85), Claims (Family: none)	1

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
06 May, 2005 (06.05.05)

Date of mailing of the international search report
24 May, 2005 (24.05.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002627

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 9-263493 A (Shin-Etsu Handotai Co., Ltd.), 07 October, 1997 (07.10.97),	3,6
Y		8,9
A	Claims; Par. Nos. [0008] to [0022] & US 5976246 A & EP 0829561 A1 & WO 97/036025 A1	2,4,5,7
A	JP 7-61893 A (NEC Corp.), 07 May, 1995 (07.03.95), Claims; Par. Nos. [0015] to [0026] (Family: none)	2,4,5,7
A	JP 60-33291 A (Toshiba Ceramics Co., Ltd.), 20 February, 1985 (20.02.85), Claims; page 2, upper right column, line 19 to lower right column, line 9 (Family: none)	2,4,5,7
Y	JP 2003-246695 A (Wacker Siltronic AG.), 02 September, 2003 (02.09.03), Claims; Par. No. [0008] & US 2003-0154906 A1	8,9

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. C17 C30B15/20

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C17 C30B15/20

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1926-1996
日本国公開実用新案公報	1971-2005
日本国登録実用新案公報	1994-2005
日本国実用新案登録公報	1996-2005

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 62-260795 A(東芝セラミックス株式会社), 1987.11.13, 特許請求の範囲, 第2頁左上欄第7行-左下欄第1行(ファミリーなし)	1
Y		8, 9
A	JP 4-55388 A(信越半導体株式会社), 1992.02.24, 特許請求の範囲, 第2頁右下欄第3行-第5頁右上欄第10行 & US 5306387 A & EP 0462741 A2	1
A	JP 60-33289 A(株式会社東芝), 1985.02.20, 特許請求の範囲(ファミリーなし)	1

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日 06.05.2005	国際調査報告の発送日 24.05.2005	
国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号 100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官（権限のある職員） 新居田 知生	4G 8618

電話番号 03-3581-1101 内線 3464

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
X	JP 9-263493 A(信越半導体株式会社), 1997. 10. 07, 特許請求の範囲, 段落【0008】-【0022】& US 5976246 A & EP 0829561 A1 & WO 97/036025 A1	3, 6
Y		8, 9
A		2, 4, 5, 7
A	JP 7-61893 A(日本電気株式会社), 1995. 03. 07, 特許請求の範囲, 段落【0015】-【0026】(ファミリーなし)	2, 4, 5, 7
A	JP 60-33291 A(東芝セラミックス株式会社), 1985. 02. 20, 特許請求の範囲, 第2頁右上欄第19行-右下欄第9行(ファミリーなし)	2, 4, 5, 7
Y	JP 2003-246695 A(ワッカーゼルトロニック アクチエンゲゼルシャフト), 2003. 09. 02, 特許請求の範囲, 段落【0008】& US 2003-0154906 A1	8, 9