Fahrzeugmechatronik II Beschreibung und Verhalten von Mehrgrößensystemen

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Beschreibung im Zeitbereich Linearisierung nichtlinearer Systeme

Ausgangspunkt ist

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \quad \mathbf{x}(0) = \mathbf{x}_0$$

 $\mathbf{y}(t) = \mathbf{g}(\mathbf{x}(t), \mathbf{u}(t)) \quad \text{bzw.}$

$$\begin{cases}
\dot{x}_{1} \\
\dot{x}_{2} \\
... \\
\dot{x}_{n}
\end{cases} = \begin{cases}
f_{1}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{n},) \\
f_{2}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{n},) \\
... \\
f_{n}(x_{1}, x_{2}, ..., x_{n}, u_{1}, u_{2}, ..., u_{n},)
\end{cases}$$

Beschreibung im Zeitbereich Linearisierung nichtlinearer Systeme

Seite 4

Beschreibung im Zeitbereich Linearisierung nichtlinearer Systeme

Verhalten im Zeitbereich Lösung der Zustandsgleichung

Gesucht ist die Lösung von

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{x}(0) = \mathbf{x}_0$$

Seite 6

Verhalten im Zeitbereich Lösung der Zustandsgleichung

Seite 7

Verhalten im Zeitbereich Freie Schwingung

Für die homogene Lösung gilt $\mathbf{x}_h(t) = e^{\mathbf{A}t}\mathbf{x}_0$

Seite 8

Verhalten im Zeitbereich Übergangsverhalten und stationäres Verhalten

Ausgangspunkt ist
$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
 $\mathbf{x}(0) = \mathbf{x}_0$ $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Für die Anregung gilt $\mathbf{u}(t) = \overline{\mathbf{u}}e^{\mu t}$.

Seite 9

Verhalten im Zeitbereich Übergangsverhalten und stationäres Verhalten

Seite 10

Beschreibung im Frequenzbereich E/A-Beschreibung - Übertragungsfunktionsmatrix

Ausgangspunkt ist
$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Seite 11

Beschreibung im Frequenzbereich Übertragungsfunktionsmatrix eines EMS

Übertragungsfunktionsmatrix

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

Pole von Mehrgrößensystemen Definition

SISO-Systeme

Die Pole s_i sind die Nullstellen des Nennerpolynoms der Übertragungsfunktion im Frequenzbereich G(s).

MIMO-Systeme

Die Pole s_i sind die Menge aller Nullstellen der Nennerpolynome der Übertragungsfunktionen $G_{ij}(s)$.

Es lässt sich zeigen (s. z.B. Lunze I):

- Pole von G(s) stimmen mit den Eigenwerten von A überein.
- Nicht jeder Eigenwert von A ist ein Pol von G(s).
- => Pole von G(s) sind Untermenge der Eigenwerte von A

Stabilität von Mehrgrößensystemen Allgemein

Stabilität

Zustandsstabilität

Das System kehrt von einer Auslenkung \mathbf{x}_0 des Zustandes aus der Gleichgewichtslage in die Gleichgewichtslage zurück.

Das System besitzt bei Erregung durch eine beschränkte Eingangsgröße eine beschränkte Ausgangsgröße.

Seite 14

Stabilität von Mehrgrößensystemen Definition Zustandsstabilität

Definition (Zustandsstabilität)

Der Gleichgewichtszustand $x_g = 0$ des Systems heißt stabil (im Sinne von LJAPUNOW) oder zustandsstabil, wenn für jedes $\varepsilon > 0$ eine Zahl $\delta > 0$ existiert, so dass bei einem beliebigen Anfangszustand, der die Bedingung

$$\|\boldsymbol{x}_0\| < \delta$$

g des Systems die Bedingung

$$\|x(t)\| < \varepsilon$$
 für alle $t > 0$

utszustand heißt asymptotisch stabil, wenn er stabil ist

$$\lim_{t \to \infty} \| \boldsymbol{x}(t) \| = 0$$

Stabilität von Mehrgrößensystemen Kriterien für Zustandsstabilität (ohne Beweis)

Satz (Kriterium für die Zustandsstabilität)

• Der Gleichgewichtszustand $x_{
m g}=0$ des Systems ist stabil, wenn die Matrix A diagonalähnlich ist und alle Eigenwerte der Matrix A die Bedingung

$$\operatorname{Re}\{\lambda_i\} \leq 0 \quad (i = 1, 2, ..., n)$$

erfüllen.

• Der Gleichgewichtszustand $x_{
m g}=0$ des Systems ist genau dann asymptotisch stabil, wenn die Eigenwerte der Matrix A die Bedingung

$$\operatorname{Re}\{\lambda_i\} < 0 \quad (i = 1, 2, ..., n)$$

erfüllen.

Stabilität von Mehrgrößensystemen Definition Eingangs-Ausgangs-Stabilität

Definition 2.4 (Eingangs-Ausgangs-Stabilität)

Ein lineares System (2.72), (2.73) heißt eingangs-ausgangs-stabil (E/A-stabil), wenn für verschwindende Anfangsauslenkungen $x_o = 0$ und ein beliebiges beschränktes Eingangssignal

$$\|\boldsymbol{u}(t)\| < u_{\max}$$
 für alle $t > 0$

das Ausgangssignal beschränkt bleibt:

$$\|y(t)\| < y_{\text{max}} \quad \text{für alle } t > 0.$$
 (2.74)

Stabilität von Mehrgrößensystemen Kriterien für Eingangs-Ausgangs-Stabilität (ohne Beweis)

• Das System (2.72), (2.73) ist genau dann E/A-stabil, wenn sämtliche Pole s_i seiner Übertragungsfunktionsmatrix G(s) die Bedingung

$$Re\{s_i\} < 0 \quad (i = 1, 2, ..., n)$$
 (2.76)

erfüllen.

- Ist das System asymptotisch stabil, so ist es auch E/A-stabil.
- Gilt $Re(s_i) \le 0$ (i=1,2,...,n) kann das System noch zustandsstabil sein

Seite 18

Vielen Dank für Ihre Aufmerksamkeit!