

1^{ère} année Master MAS Séries Chronologiques Année : 2018/2019

Examen Final

EXERCICE N° 1:

Dans le tableau suivant, on a indiqué les ventes (en tonnes par trimestre) d'un certain produit au cours de quatre années.

Années	trimestre 1	trimestre 2	trimestre 3	trimestre 4
2010	52	36	69	89
2011	65	45	86	111
2012	81	56	108	139
2013	102	70	135	174

- 1. Représenter graphiquement cette série temporelle.
- 2. Au vu du graphique, justifier le choix d'un modèle multiplicatif.
- 3. Estimer la tendance de cette série par la méthode des moindres carrés ordinaires (MCO).
- 4. Représenter la droite d'ajustement sur le graphique précédent.
- 5. Estimer les coefficients saisonniers.
- 6. Etablir la série désaisonnalisée ou corrigée des variations saisonnières.
- 7. Calculer les moyennes mobiles d'ordre 4 de cette série.
- 8. Donner une prévision de la vente au quatrième trimestre 2014.

EXERCICE N° 2:

1. On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \theta \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

Montrer que *X* est stationnaire et calculer sa fonction d'auto-covariance.

2. On considère le processus défini par,

$$X_t = Z_1 \cos \omega t + Z_2 \sin \omega t, \qquad -\infty < t < +\infty$$

où
$$\mathbb{P}(Z_i = 1) = \mathbb{P}(Z_i = -1) = \frac{1}{2}, i = 1, 2.$$

Montrer que X_t est stationnaire.