

Prof. Dr. Agnes Koschmider Dominik Janssen

Advanced Process Mining

Summer term 2020

Exercise sheet 7

Predictive Process Monitoring

Exercise 1: Sequence encoding

Case ID	ID Timestamp Activity		Resource	Pulse Medication		Gender	Age
1	01.05.20	Admission	ER	40	-	Male	86
1	01.05.20	Surgery	OR	30	Propofol	Male	86
1	01.05.20	CPR	OR	0	Epinephrine	Male	86
1	01.05.20	ToD	OR	0	-	Male	86
2	05.05.20	Admission	ER	60	-	Female	80
2	05.05.20	Surgery	OR	70	Bupivacaine	Female	80
2	05.05.20	Recovery	PACU	55	Saline	Female	80
3	06.05.20	Admission	ER	80	-	Female	75
3	06.05.20	IV Fluids	ER	70	Saline	Female	<i>7</i> 5
3	06.05.20	Release	Geriatrics	65	-	Female	75
2	10.05.20	Release	Geriatrics	60	Ibuprofen	Female	80

- a) In the event log above, identify case and event attributes of the three shown cases.
- b) Transform the following event log into an index-based encoded table.

Case ID	Timestamp	Activity	Pulse	Gender	Age
1	01.05.20	Admission	40	Male	86
1	01.05.20	Surgery	30	Male	86
1	01.05.20	CPR	0	Male	86
1	01.05.20	ToD	0	Male	86
2	05.05.20	Admission	60	Female	80
2	05.05.20	Surgery	70	Female	80
2	05.05.20	Recovery	55	Female	80
3	06.05.20	Admission	80	Female	75
3	06.05.20	IV Fluids	70	Female	75
3	06.05.20	Release	65	Female	75
2	10.05.20	Release	60	Female	80

- c) Transform the first event log into an aggregation encoded table.
- d) Why could it be useful to apply predictive process monitoring in this scenario?

Solution

- a) Every attribute that is time invariant (over the recorded time period) is called a *case attribute*. Attributes than are variable and can change based on the event are called *event attributes*.
 - Event attributes:

Timestamp

Activity

Resource

Pulse

Medication

• Case attributes:

Case ID

Gender

Age

b) Index based encoding:

ID	Gender	Age	Time ₁	Time ₂	Time ₃	Time ₄	Act_1	Act ₂	Act ₃	Act ₄	Pulse ₁	Pulse ₂	Pulse ₃	Pulse ₄
1	Male	86	01.05.	01.05.	01.05.	01.05.	Admission	Surgery	CPR	ToD	40	30	0	0
2	Female	80	05.05.	05.05.	05.05.	05.05.	Admission	Surgery	Recovery	Release	60	70	55	60
3	Female	75	06.05.	06.05.	06.05.	-	Admission	IV Fluids	Release	-	80	70	65	-

c) A possible aggregation of the original event log could look like the following:

ID	Gender	Age	count(OR)	min(Pulse)	max(Pulse)	count(Medication)	count(ToD)
1	Male	86	3	0	40	2	1
2	Female	80	1	55	70	3	0
3	Female	75	0	65	80	2	0

d) Predictive process monitoring could be useful in this scenario to predict the outcome of a hospital treatment. In this case the prediction if a patient dies or survives will be something to observe.