neural networks in ocaml

colin shaw 07.14.2016

1. introduction

- a. welcome to computer science club
- b. thank you to revunit for sponsoring
- c. what are we talking about
 - i. neural networks
 - 1. motivation
 - 2. history
 - 3. types
 - 4. theory
 - 5. implementation
 - ii. blas / lapack
 - iii. ocaml
 - 1. applicative / functional programming
 - 2. imperative features
 - 3. interface with other languages
 - 4. modular design

2. motivations

- a. problem solving
 - i. problems we can solve explicitly
 - 1. closed form solutions
 - ii. problems we cannot solve explicitly
 - 1. do not understand the problem
 - 2. do not understand how to optimize specific solution
 - 3. desire more organic solution
 - iii. learning algorithms solve problems without us knowing how
- b. biological imperative
 - i. solving problems without understanding explicit solutions
 - ii. modeling neurons since we know they work

3. alternatives

- a. depends on type of problem
- b. some examples
 - i. regression
 - ii. analysis of variance
 - iii. k-means and similar clustering
 - iv. principal component analysis
 - v. support vector machine
 - vi. self organizing maps

4. brief history

- a. 1800s
 - i. linear regression (legendre, gauss)
- b. 1900s
 - i. gradient descent (hadamard)
- c. 1940s
 - i. early architecture (mcculloch, pitts)
- d. 1950s
 - i. simple supervised learning (perceptron; rosenblatt)
 - ii. visual cortex experiments (hubel, wiesel)
- e. 1960s
 - i. unsupervised learning
 - ii. gradient descent backpropagation
 - iii. multiple layer perceptron (deep learning)
 - iv. grossberg, ivakhnenko
- f. 1970s
 - i. convolution, subsampling (fukushima)
- g. 1980s
 - i. convolutional backpropagation (rumelhart)
 - ii. hopfield network, bolzmann machines
- h. 1990s
 - i. convergence optimization
 - ii. neural networks start winning pattern recognition contests
- i. 2000s
 - i. gpus become prevalent in non-graphical computation
- j. 2010s
 - i. mnist record broken by neural network
 - ii. gpu-based neural network surpasses human vision recognition
 - iii. neural network beats world class go player
 - iv. neural network drives a car

5. types of neural network

a. the inspiration

b. perceptron

- i. 1957 by rosenblatt as mark i perceptron (physical machine)
- ii. sparked hype about artificial intelligence
- iii. can only solve linearly separable problems
- iv. cannot represent xor

c. multiple layer perceptron

- i. one or more hidden layers
- ii. can represent xor

d. convolutional

- i. term derived generally from convolution operations on images
- ii. preliminary feature detectors
- iii. typically followed by mlp hidden layers

e. recurrent

- can learn based on training order i.
- ii. must abide shannon sampling theorem
- iii. scaling can be difficult
- possible implementation ίV.
 - 1. inter-layer recurrence
 - 2. delay line recurrence

6. how the multiple layer perceptron works

- a. simple regression example
 - i. y = m x + b
 - ii. compute output error for given input
 - 1. $\Delta y = y_{\text{new}} y_{\text{old}}$
 - compute derivatives iii.
 - update a and b ίV.
 - 1. let η be a learning constant

 - 2. $\Delta m = \eta \cdot \frac{dy}{dm} \cdot \Delta y = \eta \cdot x \cdot \Delta y$ 3. $\Delta b = \eta \cdot \frac{dy}{db} \cdot \Delta y = \eta \cdot \Delta y$

- b. cost function
 - i. a measure of output error
 - ii. in our regression example: $\Delta y = y_{new} y_{old}$
 - 1. the gradient of a cost function (∇C)
 - 2. cost function itself is $\frac{1}{2}$ ($y_{new} y_{old}$)²
 - iii. in general can be any analytic function
 - iv. to be able to perform mini-batch optimizations
 - 1. must satisfy C = $\frac{1}{n} \sum_{x=1}^{n} C_x$
- c. activation function
 - i. purpose
 - 1. facilitating better convergence and problem conditioning
 - 2. avoid stalling for zero-valued weights
 - 3. avoid excessive change for large weights and errors
 - ii. common examples
 - 1. hidden layer (zero-centered, bounded)
 - a. tanh
 - b. softsign
 - 2. output layer (non-negative, bounded)
 - a. rectified linear (relu)
 - b. softplus
- c. putting it all together
 - i. Network diagram

- ii. compute forward pass
 - 1. $o_i = \sigma_i (w_i \cdot i_i + b_i)$
 - 2. i_0 is the input (feature)
 - 3. o_L is the final output

- iii. compute final layer error
 - 1. compute gradient of cost function
 - a. example: quadratic cost function
 - b. $\nabla C = O_{new} O_{old}$
 - 2. compute output error

a.
$$\delta_{L} = \nabla C \odot \frac{d\sigma_{L}}{dx} (O_{L})$$

- iv. recursively compute prior layer errors
 - 1. $\delta_{l-1} = [(\mathbf{w}_l)^T \cdot \delta_l] \odot \frac{d\sigma_{l-1}}{dx} (O_{l-1})$
- v. update weight
 - 1. $\Delta w_i = \frac{\eta}{m} \delta_i (o_{i-1})^T$
 - 2. η learning constant, m layer inputs
- vi. update bias
 - 1. $\Delta b_{l} = \frac{\eta}{m} \delta_{l}$
 - 2. η learning constant, m layer inputs
- vii. repeat until satisfied with training
- d. training issues
 - i. convergence
 - 1. cost function minimization
 - 2. problem solves general test cases sufficiently
 - ii. overfitting
 - 1. too much training fits the training set
 - 2. does not make for a general purpose solution
- e. mini-batches
 - i. compute multiple forward stages
 - ii. cost function must satisfy summation condition
 - iii. computational complexity
 - 1. eliminates most of the backpropagation steps
 - 2. eliminates most of the weight and bias updates
 - 3. problem still remains in same class, just faster

7. Implementation

- a. intro to ocaml
 - i. applicative / functional programming
 - 1. lists
 - 2. first class functions
 - 3. higher order functions
 - ii. imperative features
 - 1. refs
 - 2. arrays

- b. intro to blas / lapack
 - i. blas 1
 - 1. vector scalar
 - 2. O(n) operations for O(n) data
 - 3. memory bandwidth limited
 - ii. blas 2
 - 1. matrix vector
 - 2. O(n²) operations for O(n²) data
 - 3. memory bandwidth limited
 - iii. blas 3
 - 1. matrix matrix
 - 2. O(n3) operations for O(n2) data
 - 3. most able to be optimized
 - iv. compare with lists in heap
- c. lacaml
 - i. brief overview of organization
 - ii. what we are using it for
- d. source
 - i. math.ml
 - 1. functional
 - a. lists
 - b. heap
 - 2. imperative
 - a. arrays
 - b. fixed memory block
 - 3. performance and elegance tradeoffs
 - 4. binop versus full blas / lapack routines
 - ii. types.ml
 - iii. activation.ml
 - iv. cost.ml
 - v. layer.ml
 - vi. network.ml
 - 1. three data structures
 - a. layer: $[\ell_1; \ell_2; \ell_3; \dots; \ell_1]$
 - b. forward: $[i; o_1; o_2; ...; o_{L-1}]$
 - c. backward: $[\delta_1; \delta_2; \delta_3; ...; \delta_L]$
 - vii. utils.ml
 - viii. time.ml
- e. examples (including data)
 - i. iris.ml
 - ii. letters.ml
 - iii. mnist.ml

- f. observations
 - i. issues training letters example
 - ii. mini-batch optimization and speed enhancements
 - 1. can treat mini-batch as matrix input instead of vector
 - 2. blas 3 optimizations matter
 - 3. significantly increased performance, same computational complexity

8. the future

- a. technique
 - i. half-precision floating point
 - ii. convolutional, recurrent networks
- b. gpus
 - i. baseline
 - 1. raspberry pi 2 b (used in demo)
 - 2. 98 mflops (single precision, one core)
 - ii. modern gpu
 - 1. nvidia tesla p100
 - 2. 18.7 tflops half-precision
- c. example libraries
 - i. accelerator
 - 1. cuda
 - 2. opencl
 - ii. machine learning
 - 1. tensor flow
 - 2. caffe
 - 3. theano