1 LDA

1.1 Data Pre-Processing & Visualisation

WHAT DOES data.csv HAVE?

- 1. It has three columns x, y and label (2000 X 3)
- 2. Both x and y are float values while label is 0 or 1
- 3. No missing data

OUTLIERS

Figure 1: outliers

VISUALIZATION OF DATA

Figure 2: plotting data

1.2 Linear Discriminant Analysis

Figure 3: vector on raw data

Figure 4: projection

Figure 5: reorientation

1.3 performance of 1-NN neighbor classifier on original data vs projected data

BEFORE LDA:

1. CLASSIFICATION REPORT

label	precision	recall	f1-score	support
0	0.89	0.88	0.89	199
1	0.89	0.89	0.89	201

Figure 6: confusion matrix

AFTER LDA:

1. CLASSIFICATION REPORT

label	precision	recall	f1-score	support
0	0.88	0.88	0.88	199
1	0.88	0.88	0.88	201

Figure 7: confusion matrix

^{*} The accuracy is almost same for original and projected data

Reasons for misclassifications:

- 1. As 1NN is very sensitive to outliers, which here they are present so it is possible for wrong prediction
- 2. Projecting data on 1D always invloves in loss of information
- 3. We are forcefully assuming that the decision boundary is LINEAR
- 4. Overlapping between boundary, ie mixing of classes

1.4 REMOVING OUTLIERS

X PLOT

Y PLOT

VISUALIZATION OF DATA

Figure 8: data after removing outliers

BEFORE LDA after removing outliers:

1. CLASSIFICATION REPORT

label	precision	recall	f1-score	support
0	0.89	0.87	0.88	184
1	0.89	0.91	0.90	211

Figure 9: confusion matrix

AFTER LDA after removing outliers:

1. CLASSIFICATION REPORT

label	precision	recall	f1-score	support
0	0.93	0.89	0.91	184
1	0.91	0.94	0.92	211

Figure 10: confusion matrix

^{*} As we can see the accuracy has indeed increased by removing outliers from 88 to 91.6