

NCERT solutions for class-8 maths algebraic expressions and identities Ex-9.3

# Q1. Carry out the multiplication of the expressions in each of the following pairs:

(i) 
$$4p, q+r$$

(iii) 
$$a + b, 7a^2b^2$$

(iv) 
$$a^2 - 9.4a$$

(v) 
$$pq + qr + rp, 0$$

(i) 
$$4p \times (q+r) = 4p \times q + 4p \times r$$

$$=4pq+4pr$$

(ii) 
$$ab \times (a-b) = ab \times a - ab \times b$$

$$= a^2b - ab^2$$

(iii) 
$$(a+b) \times 7a^2b^2 = a \times 7a^2b^2 + b \times 7a^2b^2$$

$$= 7a^3b^2 + 7a^2b^3$$

(iv) 
$$(a^2 - 9) \times 4a = a^2 \times 4a - 4a \times 9$$

$$= 4a^3 - 36a$$

(v) 
$$(pq+qr+rp)\times 0 = pq\times 0 + qr\times 0 + rp\times 0$$

$$= 0 + 0 + 0 = 0$$

## Q2. Complete the table:

|       | First<br>expression | Second<br>expression | Product |
|-------|---------------------|----------------------|---------|
| (i)   | а                   | b+c+d                |         |
| (ii)  | x+y-5               | 5xy                  |         |
| (iii) | p                   | $6p^2 - 7p + 5$      |         |
| (iv)  | $4p^2q^2$           | $p^2-q^2$            |         |
| (v)   | a+b+c               | abc                  |         |

|     |   | Second<br>expression | Product                                                     |
|-----|---|----------------------|-------------------------------------------------------------|
| (i) | а | b+c+d                | $a(b+c+d)$ = $a \times b + a \times c + a$ = $ab + ac + ad$ |

| (ii)  | x+y-5     | 5xy                   | $5xy(x+y-5)$ = $5xy \times x + 5xy \times y$ = $5x^2y + 5xy^2 - 2$                         |
|-------|-----------|-----------------------|--------------------------------------------------------------------------------------------|
| (iii) | р         | 6p <sup>2</sup> -7p+5 | $p(6p^{2}-7p+5)$ $= p \times 6p^{2}-p \times 7$ $= 6p^{3}-7p^{2}+5p$                       |
| (iv)  | $4p^2q^2$ | $p^2-q^2$             | $4p^{2}q^{2}(p^{2}-q^{2})$ $= 4p^{2}q^{2} \times p^{2}-4p^{2}$ $= 4p^{4}q^{2}-4p^{2}q^{4}$ |
| (v)   | a+b+c     | abc                   | $abc(a+b+c)$ = $abc \times a + abc \times a$ = $a^{2}bc + ab^{2}c + a$                     |

## Q3. Find the product:

(i) 
$$(a^2) \times (2a^{22}) \times (4a^{26})$$

**(ii)** 
$$\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$$

(iii) 
$$\left(\frac{-10}{3}pq^3\right) \times \left(\frac{6}{5}p^3q\right)$$

(iv) 
$$x \times x^2 \times x^3 \times x^4$$

(i) 
$$(a^2) \times (2a^{22}) \times (4a^{26})$$

$$= (2 \times 4) \left(a^2 \times a^{22} \times a^{26}\right)$$

$$= 8 \times a^{2+22+26} = 8a^{50}$$

**(ii)** 
$$\left(\frac{2}{3}xy\right) \times \left(\frac{-9}{10}x^2y^2\right)$$

$$= \left(\frac{2}{3} \times \frac{-9}{10}\right) \left(x \times x^2 \times y \times y^2\right)$$

$$=\frac{-3}{5}x^3y^3$$

(iii) 
$$\left(\frac{-10}{3}pq^3\right)\left(\frac{6}{5}p^3q\right)$$

$$= \left(\frac{-10}{3} \times \frac{6}{5}\right) \left(p \times p^{3} \times q^{3} \times q\right)$$

$$= -4p^4q^4$$

(iv) 
$$x \times x^2 \times x^3 \times x^4 = x^{1+2+3+4} = x^{10}$$

- **Q4.** (a) Simplify: 3x(4x-5)+3 and find values for
- (i) x = 3

(ii) 
$$x = \frac{1}{2}$$
.

- **(b)** Simplify:  $a(a^2 + a + 1) + 5$  and find its value for
- (i) a = 0
- (ii) a = 1
- (iii) a = -1.

**Ans:** (a) 
$$3x(4x-5)+3$$

$$=3x\times4x-3x\times5+3$$

$$= 12x^2 - 15x + 3$$

(i) For 
$$x = 3$$
,  $12x^2 + 15x + 3$ 

$$=12(3)^2-15\times3+3$$

$$=12\times9-45+3=108-45+3=66$$

(ii) For 
$$x = \frac{1}{2}$$
,  $12x^2 - 15x + 3$ 

$$= 12\left(\frac{1}{2}\right)^2 - 15 \times \frac{1}{2} + 3$$

$$=12\times\frac{1}{4}-\frac{15}{2}+3$$

$$=6-\frac{15}{2}=\frac{12-15}{2}=\frac{-3}{2}$$

**(b)** 
$$a(a^2+a+1)+5$$

$$= a \times a^2 + a \times a + a \times 1 + 5$$

$$= a^3 + a^2 + a + 5$$

(i) For 
$$a = 0$$
,  $a^3 + a^2 + a + 5$ 

$$= (0)^3 + (0)^2 + (0) + 5$$

$$= 0 + 0 + 0 + 5 = 5$$

(ii) For 
$$a = 1$$
,  $a^3 + a^2 + a + 5$ 

$$=(1)^3+(1)^2+(1)+5$$

$$= 1 + 1 + 1 + 5 = 8$$

(iii) For 
$$a = -1$$
,  $a^3 + a^2 + a + 5$ 

$$=(-1)^3+(-1)^2+(-1)+5$$

$$= -1+1-1+5 = -2+6 = 4$$

**Q5.** (a) Add: 
$$p(p-q), q(q-r)$$
 and  $r(r-p)$ .

**(b)** Add: 
$$2x(z-x-y)$$
 and  $2y(z-y-zx)$ .

(c) Subtract: 
$$3l(l-4m+5n)$$
 from  $4l(10n-3m+2l)$ .

(d) Subtract: 
$$3a(a+b+c)-2b(a-b+c)$$
 from  $4c(-a+b+c)$ .

**(a)** 
$$p(p-q)+q(q-r)+r(r-p)$$

$$= p^2 - pq + q^2 - qr + r^2 - rp$$

$$= p^2 + q^2 + r^2 - pq - qr - rp$$

(b) 
$$2x(z-x-y)+2y(z-y-x)$$
  
=  $2xz-2x^2-2xy+2yz-2y^2-2xy$   
=  $2xz-2xy-2xy+2yz-2x^2-2y^2$   
=  $-2x^2-2y^2-4xy+2yz+2zx$   
(c)  $4l(10n-3m+2l)-3l(l-4m+5n)$   
=  $40ln-12lm+8l^2-3l^2+12lm-15ln$   
=  $8l^2-3l^2-12lm+12lm+40ln-15ln$   
=  $5l^2+25ln$   
(d)  $4c(-a+b+c)-[3a(a+b+c)-2b(a-b+c)]$   
=  $-4ac+4bc+4c^2-[3a^2+3ab+3ac-2ab+2b^2-2bc]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+3ab-2bc+3ac-2ab]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+3ab-2bc+3ac-2ab]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+3ab-2bc+3ac-2ab]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+3ab-2bc+3ac-2ab]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+ab+3ac-2bc]$   
=  $-4ac+4bc+4c^2-[3a^2+2b^2+ab+3ac-2bc]$   
=  $-4ac+4bc+4c^2-3a^2-2b^2-ab-3ac+2bc$   
=  $-3a^2-2b^2+4c^2-ab+4bc+2bc-4ac-3ac$   
=  $-3a^2-2b^2+4c^2-ab+6bc-7ac$ 

\*\*\*\*\*\*\*\*\* END \*\*\*\*\*\*\*\*