Aufgabenblatt 6

Abstand Punkt-Gerade

Gegeben sei eine Gerade q mit der Geradengleichung g(t) = p + tu und einem Richtungsvektor u der Länge 1. Machen Sie sich anhand der Skizze klar, daß der Abstand d(q, g) eines Punktes q von der Gerade g durch

$$d(\mathbf{q}, g) = \|\mathbf{u} \times (\mathbf{q} - \mathbf{p})\|$$

bestimmt ist. Berechnen Sie damit den Abstand von $\mathbf{q} := [15, 6, 5]$ zur Gerade

$$g \coloneqq \left\{ \begin{array}{c|c} \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} + t \cdot \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix} \ \middle| \ t \in \mathbb{R} \end{array} \right\} \,.$$

Eine Kugeloberfläche K ist der geometrische Ort aller Punkte x, die von einem gegebenen Punkt m – dem Mittelpunkt – einen festen Abstand r haben. Das bedeutet also

$$K = \left\{ x \in \mathbb{R}^3 \mid \|x - \mathbf{m}\| = r \right\}.$$

In der Koordinatenform verwendet man meist die quadrierte Version von $\|\mathbf{x} - \mathbf{m}\| =$ r als Kugelgleichung (genauer müßte es natürlich Gleichung der Kugeloberfläche, oder Sphäre heißen)

$$(x_1-m_1)^2+(x_2-m_2)^2+(x_3-m_3)^2=r^2.$$

Zur Abstandsformel d(q, g).

Eine Kugel mit Mittelpunkt m und Radius r.

Zeigen Sie, daß die Tangentialebene T der Kugel K in einem Punkt $\mathbf{p} \in K$ durch die Menge

$$\mathsf{T} = \{ \ \mathbf{x} \in \mathbb{R}^3 \mid \langle \mathbf{x} - \mathbf{m} | \mathbf{p} - \mathbf{m} \rangle = \mathbf{r}^2 \ \}$$

gegeben ist. Finden Sie eine Darstellung der Kugel (also nicht nur der Sphäre). Zeigen Sie für $\mathbf{m}\coloneqq [3,2,2], \mathbf{r}\coloneqq 1.5 \text{ und } \mathbf{p}\coloneqq [4,1.5,3], \text{ daß } \mathbf{x}\coloneqq [-9,213.5,122] \text{ zu T gehört.}$

Determinanten

Berechnen Sie die folgende Determinante

$$\det \begin{bmatrix} 1 & 1 & 3 & 0 & 1 \\ 2 & 4 & -1 & 1 & 5 \\ 3 & 3 & 2 & 1 & 0 \\ -1 & 0 & 1 & 3 & 3 \\ 5 & 6 & 3 & 1 & 1 \end{bmatrix}.$$

Ein effizientes Rechenschema, das sich eng an das für LGSe anlehnt, finden Sie im Skript auf S. 165.

J. Hellmich 14.1.2024

Lineare Unabhängigkeit

Untersuchen Sie die folgenden Mengen auf lineare Unabhängigkeit

$$\mathcal{B} \coloneqq \left\{ \begin{bmatrix} 2\\3\\6\\5 \end{bmatrix}, \begin{bmatrix} 3\\5\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\3\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix} \right\}, \quad \mathfrak{C} \coloneqq \left\{ \begin{bmatrix} 2\\5\\14 \end{bmatrix}, \begin{bmatrix} 11\\-10\\2 \end{bmatrix}, \begin{bmatrix} 10\\10\\-5 \end{bmatrix} \right\}$$

Entwickeln Sie den Vektor $\mathbf{x} \coloneqq [5, 20, 23, 11]$ in der Basis \mathcal{B} und $\mathbf{y} \coloneqq [45, 30, 15]$ in der Basis \mathcal{C} . Finden Sie also die Koeffizienten $\mathbf{t}_1, \dots, \mathbf{t}_4$ in

$$\mathbf{t}_{1} \begin{bmatrix} 2 \\ 3 \\ 6 \\ 5 \end{bmatrix} + \mathbf{t}_{2} \begin{bmatrix} 3 \\ 5 \\ 2 \\ 1 \end{bmatrix} + \mathbf{t}_{3} \begin{bmatrix} -1 \\ 1 \\ 3 \\ 0 \end{bmatrix} + \mathbf{t}_{4} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 20 \\ 23 \\ 11 \end{bmatrix}$$

und gehen Sie entsprechend für C und y vor.

LGS

Finden Sie alle Lösungen des Gleichungssystems

Hinweis: Es ist hilfreich, wenn man beim GAUSS-Verfahren geeignete Zeilen und Spalten vertauscht.

Prinz Rupert

Gegeben sei ein Würfel mit der Seitenlänge 1. Wir positionieren ihn so in einem Koordinatensystem, daß eine Ecke der Ursprung [0,0,0] ist und die angrenzenden Würfelkanten auf den positiven Koordinatenachsen liegen. Außerdem sind die Punkte $\mathbf{q}_1\coloneqq [\frac{1}{4},0,0]$, $\mathbf{q}_2\coloneqq [1,0,\frac{3}{4}]$ und $\mathbf{q}_3\coloneqq [\frac{3}{4},1,1]$ gegeben.

J. Hellmich 14. 1. 2024

- i) Vergewissern Sie sich, daß der Streckenzug $\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3$ zu einem Quadrat $\mathbf{q}_1\mathbf{q}_2\mathbf{q}_3\mathbf{q}_4$ ergänzt werden kann. Wo liegt \mathbf{q}_4 ? Können Sie an diesem Quadrat etwas Besonderes bemerken?
- ii) Bestimmen Sie die Ebenengleichung der Ebene, die die Punkte \mathbf{q}_1 , \mathbf{q}_2 , \mathbf{q}_3 und \mathbf{q}_4 enthält. Welche Winkel schließt sie mit den Koordinatenebenen $\mathsf{E}_{\mathsf{x},\mathsf{y}} \coloneqq \{\,[\mathsf{x},\mathsf{y},0] \mid \mathsf{x},\mathsf{y} \in \mathbb{R}\,\}$ und $\mathsf{E}_{\mathsf{x},z} \coloneqq \{\,[\mathsf{x},0,z] \mid \mathsf{x},z \in \mathbb{R}\,\}$ ein?
- iii) Wieso löst das Quadrat $q_1q_2q_3q_4$ Prinz Ruperts Problem?

J. Hellmich 14. 1. 2024