Procedimiento para obtener el circuito equivalente de Thevenin.

Supóngase que se tiene el siguiente sistema formado por dos secciones A y B:

Dr. Javier Cuevas

Circuitos eléctricos I

Y se desea obtener el equivalente de Thévenin de la sección A, vista desde los puntos a y b.

Esto es, sustituir la sección ${\bf A}$ por una fuente de voltaje $V_{\it th}$ conectada a una resistencia $R_{\it th}$ en serie.

En el caso de Norton, el equivalente será una fuente de corriente I_N conectada en paralelo a una resistencia R_{th} .

Equivalente de Thévenin

Equivalente de Norton

La relación entre estas cantidades está dada por la siguiente expresión: $V_{th} = R_{th}I_N$

El procedimiento para encontrar estos equivalentes es el siguiente:

Paso 1. Cortar el circuito en los puntos a-b, en donde se desea obtener el equivalente de Thévenin y se calcula el voltaje de circuito abierto V_{ca} en esos puntos; este voltaje es el llamado *voltaje de*

Thévenin V_{th} :

Paso 2. Calcular la resistencia vista desde los puntos a - b, para encontrar la resistencia de Thévenin R_{th} :

Métodos para encontrar la resistencia de Thévenin R_{th} .

En caso de tener fuentes independientes solamente, matar las fuentes (en corto circuito las de voltaje; en circuito abierto las de corriente).

En caso de tener fuentes dependientes, insertar una fuente de voltaje V, o de corriente I de cualquier valor en los puntos a-b.

En caso de insertar una fuente de voltaje V, se calcula la corriente que introduce esta fuente en esos puntos; en caso de insertar una fuente de corriente I, se calcula el voltaje a través de esta fuente en esos puntos.

La resistencia de Thévenin R_{th} se calcula como:

$$R_{th} = \frac{V}{I}$$

Circuitos eléctricos I

Caso fuente de voltaje:

Caso fuente de corriente:

Aplicar un corto circuito en los puntos a-b, en caso de no haber fuentes dependientes y las fuentes independientes se dejan intactas; a continuación, se calcula la corriente de corto circuito I_{cc} en esos puntos.

Dr. Javier Cuevas

10

La resistencia de Thévenin R_{th} se calcula como:

$$R_{th} = \frac{V_{th}}{I_{cc}}$$

Métodos

	Circuit contains		
Methods		-~~ - - - - - -	~~~~
R_{th} and v_{oc} or i_{sc} v_{oc} and i_{sc} i = 1 A or $v = 1$ V	Possible —		