LES PARAMETRES DE REDUCTION

1. INTRODUCTION

Paramètres de réduction = Statistiques de réduction :

Valeurs numériques permettant de **résumer et** de donner les **principales caractéristiques** d'une distribution statistique

Echantillon:

Généralisation des résultats de l'échantillon à l'ensemble de la population

3 Groupes de paramètres :

- > Les paramètres de tendance centrale
- Les paramètres de position
- > Les paramètres de dispersion

$$\ddot{y} x_i = x_1 + x_2 + \dots + x_n$$

$$\ddot{\mathbf{y}} kx_i = k \ddot{\mathbf{y}} x_i = kx_1 + kx_2 + \dots + kx_n$$

$$\ddot{y} x_i y_i = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

$$\ddot{y} (ax - by + cz) = a\ddot{y} x - b\ddot{y}y + c\ddot{y} z$$

$$\ddot{y}(x_i + x_i^2) = \ddot{y} x_i + \ddot{y} x_i^2$$

$$\ddot{y}(x_i + 5) = \ddot{y}x_i + 5n$$

$$\ddot{y}(x_i/a) = x_1/a + x_2/a + \dots + x_n/a = (\ddot{y} xi)/a$$

$$\dot{y}(x_i/x_i^2) = x_1/x_1^2 + x_2/x_2^2 + \dots + x_n/x_n^2$$

2. LES PARAMETRES DE TENDANCE CENTRALE

Centre de la série statistique

2.1. LA MOYENNE

2.1.1. La moyenne arithmétique

La moyenne arithmétique simple :

$$m = \frac{\dot{y} x_i}{n}$$

Soit la série suivante : 3,3,3,3,4,4,5,5,5,5,7,9

$$m = \frac{3+3+3+3+4+4+5+5+5+5+7+9}{12} = \frac{56}{12}$$

La moyenne arithmétique pondérée :

Observations répétées Calcul plus simple

$$m = \frac{\sum_{i=1}^{\infty} n_i x_i}{n}$$

$$m = \frac{(4x3)+(2x4)+(4x5)+7+9}{12} = \frac{56}{12} = 4,67$$

Recours aux fréquences relatives :

$$f_{i} = \frac{n_{i}}{n}$$

$$m = \ddot{y} f_{i} x_{i}$$

$$\ddot{y} f_{i} = f_{1} + f_{2} + f_{3} + \dots + f_{n} = 1$$

$$m = \frac{4}{12} \times 3 + \frac{2}{12} \times 4 + \frac{4}{12} \times 5 + \frac{1}{12} \times 7 + \frac{1}{12} \times 9$$

$$= 1 + 0.67 + 1.67 + 0.58 + 0.75 = 4.67$$

Poids de 19 étudiants (kg)

76,34	52,99
60,4	57 <i>,</i> 74
68,28	59,79
57,74	60,4
64,99	61,82
83,45	61,82
79,65	64,1
64,1	64,99
72,88	65,45
69,12	66,33
59,79	68,28
61,82	69,12
61,82	70,13
76,36	70,56
66,33	72,88
52,99	76,34
70,56	76,36
70,13	79,65
65,45	83,45

7 classes de 5 kg

Indice de classe	Classe	X _i	Ni	Ni X _i
1	50 – 55	52,5	1	52,5
2	55 – 60	57,5	2	115
3	60 – 65	62,5	5	312,5
4	65 – 70	67,5	4	270
5	70 – 75	72,5	3	217,5
6	75 – 80	77,5	3	232,5
7	80 - 85	82,5	1	82,5
Σ			19	1282 ,5

$$\Sigma N_i X_i = 1282,5 \text{ kg}$$

 $m = 1282,5 / 19$
 $m = 67,5 \text{ Kg}$

$$\Sigma X_i = 1282,2 \text{ kg}$$

 $m = 1282,2 / 19$
 $m = 67,48 \text{ Kg}$

Propriétés de la moyenne arithmétique :

- \Box d $(X_i m) = 0$
- \square d ($X_i m$)² = Quantité minimale
- ☐ Echantillon constitué de 2 sous-échantillons A et B

$$m = \frac{n_A m_A + n_B m_B}{m_A + n_B}$$

☐ Généralisation à k sous-échantillons

$$m = rac{\operatorname{d} n_k \, m_k}{\operatorname{d} n_k}$$

2.2. LE MODE

Modalité de la variable correspondant à l'effectif absolu le plus élevé

Distribution du nombre annuel d'épisodes de syndrome grippal chez une population de 77 sujets

X_{i}	N _i	_	
0	14	_	
1	16		
2	(18)	-	Mode m_o
3	17		
4	12	_	
ÿN _i	77	_	

Série statistique groupée

Taille de 307 footballeurs algériens

	Indice de classe	Classe	Contre de classe	Effectif	
	ue classe		X _i	N _i	
	1	159,5 – 161,5	160,5	7	
	2	161,5 – 163,5	162,5	4	
	3	163,5 – 165,5	164,5	10	
	4	165,5 – 167,5	166,5	23	
	5	167,5 – 169,5	168,5	19	
	6	169,5 – 171,5	170,5	39	
Classe modale -	7	171,5 – 173,5	172,5	(55)	$-$ Mode m_o
	8	173,5 – 175,5	174,5	48	
	9	175,5 – 177,5	176,5	35	
	10	177,5 – 179,5	178,5	31	
	11	179,5 – 181,5	180,5	16	
	12	181,5 – 183,5	182,5	9	
	13	183,5 – 185,5	184,5	5	
	14	185,5 – 187,5	186,5	3	
	15	187,5 – 189,5	188,5	1	
	16	189,5 – 191,5	190,5	2	
				$\sum N_i = 307$	

Détermination graphique du mode

Taille (cm)

Détermination du mode par les calculs :

$$m_{o} = x_{i} + \cfrac{D_{1}}{D_{1} + D_{2}} \times a$$
 $D_{1} + D_{2}$
 16
 $m_{o} = 171.5 + \cfrac{16 + 7}{m_{o} = 172.9 \ cm}$

Séries monomodales

- bimodales
- multimodales

$$m_o = x_i + \cfrac{D_1}{D_1 + D_2} \quad x a$$

Taille de 307 footballeurs algériens

Indice	Classe	Contre de classe	Effectif	-
de classe		X_{i}	N _i	x_i = Limite inférieure de la classe modale
1	159,5 – 161,5	160,5	7	_
2	161,5 – 163,5	162,5	4	$D_1 = 55 - 39 = 16$
3	163,5 – 165,5	164,5	10	
4	165,5 – 167,5	166,5	23	$D_2 = 55 - 48 = 7$
5	167,5 – 169,5	168,5	19	
6	169,5 – 171,5	170,5	39	a = Amplitude de classe = 2
7	171,5 173,5	172,5	55	
8	173,5 – 175,5	174,5	48	
9	175,5 – 177,5	176,5	35	
10	177,5 – 179,5	178,5	31	
11	179,5 – 181,5	180,5	16	16
12	181,5 – 183,5	182,5	9	
13	183,5 – 185,5	184,5	5	$m_o = 171.5 + $
14	185,5 – 187,5	186,5	3	16 + 7
15	187,5 – 189,5	188,5	1	IO + 7
16	189,5 – 191,5	190,5	2	
			$\sum N_i = 307$	_

2.3. LA MEDIANE

Valeur de la variable qui se trouve au milieu de la série statistique Après classement :

Observations inférieures à la médiane

_

Observations supérieures à la médiane

Données non groupées:

Petit effectif:

Ordonner les observations Pendre celle du milieu

Poids de 19 étudiants (kg)

Modalités peu nombreuses d'une série discontinue :

Médiane correspond au 1^{er} effectif cumulé « moins de » \geq N/2 N/2 = 77 / 2 = 38,5

Distribution du nombre annuel d'épisodes de syndrome grippal chez une population de 77 sujets

Données groupées:

- ☐ Classe médiane
- ☐ Centre de la classe médiane

Méthode d'interpolation :

$$m_e = x_i + \frac{N/2 - S}{Ni}$$

$$m_e = 171.5 + \frac{153.5 - 102}{55}$$
 $x = 173.4 \text{ cm}$

$$m_e = x_i + \frac{N/2 - S}{Ni}$$
 $\times a$

$$N/2 = 307 / 2 = 153,5$$

Taille de 307 footballeurs algériens

Indice	Classe	Contre de classe	Effectif	Effectif Cumulé
de classe		X_{i}	N_{i}	« moins de »
				N _i (-)
1	159,5 – 161,5	160,5	7	7
2	161,5 – 163,5	162,5	4	11
3	163,5 – 165,5	164,5	10	21
4	165,5 – 167,5	166,5	23	*4
5	167,5 – 169,5	168,5	10	63
6	<u> 169,5</u> – 171,5	170.5	39	(102)
7	171,5 173,5	172,5	(55)	—— (157) ×
8	173,5 – 175,5	174,5	48	205
9	175,5 – 177,5	176,5	35	240
10	177,5 – 179,5	178,5	31	271
11	179,5 – 181,5	180,5	16	287
12	181,5 – 183,5	182,5	9	296
13	183,5 – 185,5	184,5	5	301
14	185,5 – 187,5	186,5	3	304
15	187,5 – 189,5	188,5	1	305
16	189,5 – 191,5	190,5	2	307
			ÿ N _i = 307	

1^{er} effectif cumulé « moins de » N/2 = 157

x_i = Limite inférieure de la classe médiane

S = Effectif cumulé « moins de » jusqu' à la classe médiane non comprise

Ni = Effectif absolu de la classe médiane

a = Amplitude de classe = 2

$$m_e = 171.5 + \frac{153.5 - 102}{55}$$
 $\times 2 = 173.4 \text{ cm}$

3. LES PARAMETRES DE POSITION

SERIE ORDONNEE:

- Divisible en parties égales (2, 4, 10 ou 100)
- Paramètres occupant un certain rang
- Médiane = paramètre de position :

divise la série en 2 parties égales

3.1. LES QUARTILES

Divisent la série statistique en 4 parties égales comprenant le même nombre de sujets

```
Q_1 = 25^{\text{ème}} valeur sur 100

Q_2 = 50^{\text{ème}} valeur sur 100 = Médiane

Q_3 = 75^{\text{ème}} valeur sur 100
```

Taille de 307 footballeurs algériens

Indice	Classe	Contre de classe	Effectif	Effectif Cumulé	Effectif Cumulé
de classe		X_{i}	N_{i}	« moins de »	« plus de »
				N _i (-)	N _i (+)
1	159,5 – 161,5	160,5	7	7	307
2	161,5 – 163,5	162,5	4	11	300
3	163,5 – 165,5	164,5	10	21	296
4	165,5 – 167,5	166,5	23	44	286
5	167,5 – 169,5	168.5	19	63	263
6	169,5 – 171,5	170,5	39	— 102	244
7	171,5 – 173,5	172,5	55	_ 157	205
8	173,5 – 175,5	174,5	48	205	150
9	175,5 – 177,5	176,5	35		102
10	177,5 – 179,5	178,5	31	271	67
11	179,5 – 181,5	180,5	16	287	36
12	181,5 – 183,5	182,5	9	296	20
13	183,5 – 185,5	184,5	5	301	11
14	185,5 – 187,5	186,5	3	304	6
15	187,5 – 189,5	188,5	1	305	3
16	189,5 – 191,5	190,5	2	307	2
			ÿ N _i = 307		

Q₁ correspond à la **76,75**ème valeur (25 % de 307) : 170,5 cm

Q₂ correspond à la **153,5**ème valeur (50 % de 307) : 172,5 cm

Q₃ correspond à la **230,25**ème valeur (75 % de 307) : 176,5 cm

Méthode d'interpolation :

Tenir compte du rang recherche

$$Q_1 = 169.5 + \frac{(307/4) - 63}{39}$$
 $\times 2 = 170.2 \text{ cm}$

$$Q_3 = 175,5 + \frac{(307 \times \%) - 205}{35}$$
 $\times 2 = 176,9 \text{ cm}$

Possibilité de déterminer les quartiles graphiquement

Q_1 correspond à la **76,75**ème valeur (25 % de 307)

 1^{er} effectif cumulé « moins de » N/4 = 102

1 ^{ct} effec	etif cumule «	moins de »	N/4 = 10	12		
	$x_i =$	Limite inférie	eure de la	classe correspone	lante	
Taille (de 307 foot	balleurs alg	la c	ectif cumulé « mo classe en question	oins de » jusqu'à non comprise	
Indice	Q lasse	Contre de slasse	Effectif	Effectif Cumulé	Ni = Effectif absolu	
de	Jusse	X _i	N _i	« moins de »	de la classe en question	n
classe\$\$	1	' \	'	N _i (-)	de la classe en question	11
1	159,5 – 161,5	160,5	7	7		
2	161,5 – 163,5	162,5	×	11		
3	1 6 3,5 – 165,5	164,5	10	$\sqrt{21}$	= Amplitude de classe = 2	
4	165,5 – 167,5	166,5	23	44		
5	1 67.5 – 169,5	168,5	19	3 63		
6	169,5 – 171,5	< 170,5	39	102	(207 /1) 62	
7	171,5 – 173,5	172,5	55	157	(307/4) - 63	
8	173,5 – 175,5	174,5	48	$O_1 =$	169,5 +	$\times 2$
9	175,5 – 177,5	176,5	35	240		
10	177,5 – 179,5	178,5	31	271	39	
11	179,5 – 181,5	180,5	16	287		
12	181,5 – 183,5	182,5	9	296	170.2	
13	183,5 – 185,5	184,5	5	301	= 170,2 cm	
14	185,5 – 187,5	186,5	3	304		
15	187,5 – 189,5	188,5	1	305		
16	189,5 – 191,5	190,5	2	307		

 \ddot{y} N_i = 307

Q₃ correspond à la **230,25**ème valeur (75 % de 307)

 1^{er} effectif cumulé « moins de » N x $\frac{3}{4}$ = 240

x_i = Limite inférieure de la classe correspondante

S = Effectif cumulé « moins de » jusqu' à la classe en question non comprise

	$\sqrt{}$		1a (crasse en questi	ion non comprise	
Taille o	de 307 foot	balleurs alg	ériens			
Indice	Classe	Contre de classe	Effectif	Effectif Cumulé	/ Ni = Effectif absolu	
de	1	X	N_{i}	« moins de »	de la classe enq ustion	
classe\$\$				N _i (-)		
1	159, 5 – 161,5	160,5	7	7		
2	161 / 5 – 163,5	162,5	4	11		
3	163,5 – 165,5	164,5	10	21	a = Amplitude de classe = 2	
4	16 5 ,5 – 167,5	166,5	23	44	a implicade de classe 2	
5	167,5 – 169,5	168,5	19	63		
6	1 6 9,5 – 171,5	170,5	39	102	(207 - 3/.) 205	
7	1/71,5 – 173,5	172,5	55	157/	$(307 x^{3/4}) - 205$	
8	173.5 – 175,5	174,5	48	$\sqrt{205}$ Q_2	<i>y</i> = 175,5 +	x 2
9	175,5 – 177,5	< 176,5	-35			
10	177,5 – 179,5	178,5	31	271	35	
11	179,5 – 181,5	180,5	16	287		
12	181,5 – 183,5	182,5	9	296	1-6.0	
13	183,5 – 185,5	184,5	5	301	= 176,9 cm	
14	185,5 – 187,5	186,5	3	304		
15	187,5 – 189,5	188,5	1	305		
16	189,5 – 191,5	190,5	2	307		

 \ddot{y} N_i = 307

Intervalle inter-quartile

$$= Q_3 - Q_2$$

Englobe 50 % de sujets

3.2. LES DECILES

Divisent la série statistique en 10 parties égales comprenant le même nombre de sujets

$$D_1$$
 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9

$$D_1 = 10^{\text{ème}}$$
 valeur sur 100
 $D_2 = 20^{\text{ème}}$ valeur sur 100
 $D_5 = 50^{\text{ème}}$ valeur sur 100 = **Médiane**

Méthode d'interpolation :

Tenir compte du rang recherche

$$D_2 = 167.5 + \frac{(307 \times 2/10) - 44}{19} \times 2 = 169.3 \text{ cm}$$

$$D_8 = 177.5 + \frac{(307 \times 8/10) - 240}{31} \times 2 = 177.9 \text{ cm}$$

Possibilité de déterminer les déciles graphiquement

3.3. LES PERCENTILES

Divisent la série statistique en 100 parties égales comprenant le même nombre de sujets N | 1000

$$egin{aligned} P_1 &= 10^{\grave{e}me} \ valeur \ sur \ 1000 \ P_{42} &= 420^{\grave{e}me} \ valeur \ sur \ 1000 \ P_{50} &= 500^{\grave{e}me} \ valeur \ sur \ 1000 \ = M\acute{e}diane \ P_{10} &= 100^{\grave{e}me} \ valeur \ sur \ 1000 \ P_{20} &= D_2 \ P_{25} &= Q_1 \ P_{75} &= Q_3 \end{aligned}$$

Méthode d'interpolation :

Tenir compte du rang recherche

$$P_{25} = x_i + \frac{(n \times 25/100) - S}{n_i}$$
 x 2

$$= 170,2 cm = Q1$$

Possibilité de déterminer les déciles graphiquement

4. LES PARAMETRES DE DISPERSION

2 Séries statistiques :

- $S_1 = 15, 20, 25, 30, 35$
- $S_2 = 5, 15, 25, 35, 45$

$$m1 = m2 = 25$$

Estimation de la variabilité de la série

Mesures d'étalement des observations autour des paramètres de tendance centrale

4.1. L'ETENDUE (La marge)

Différence entre les deux valeurs extrêmes de la série

Taille de 307 footballeurs algériens Minimum 159,5 cm Maximum 191,5 cm Marge = 191,5 - 159,5 = 32 cm

- $S_1: 35 15 = 20$
- $S_2: 45 5 = 40$

4.2. L'INTERVALLE INTER-QUARTILE

Q1 - Q3:50 % des observations

4.3. LE 10-90 PERCENTILE RANGE

Elimine 10 % des valeurs à chaque extrémité Garde 80 % des valeurs

Taille de 307 footballeurs algériens : 166,3 – 180,2 cm

4.4. L'ECART ABSOLU MOYEN

$$EAM = \frac{\ddot{y} n_i / x_i - m /}{n}$$

• $S_1:6$

• $S_2: 12$

S1

xi	xi - m	(xi – m) ²
15	10	100
20	5	25
25	0	0
30	5	25
35	10	100
ÿ xi = 125	ÿ xi - m =30	ÿ(xi – m)² = 250

S2

xi	xi - m	(xi – m) ²
5	20	400
15	10	100
25	0	0
35	10	100
45	20	400
ÿ xi = 125	ÿ xi - m =60	$\ddot{y}(xi - m)^2 = 1000$

4.5. LA VARIANCE ET L'ECART-TYPE

4.5.1. Formules :

Variance : S_x^2

Données non groupées :

$$S_x^2 = \frac{\ddot{y} (x_i - m)^2}{n}$$

Données groupées :

$$S_x^2 = \frac{\ddot{y} n_i (x_i - m)^2}{n}$$

Ecart - type : S_x

Données non groupées :

$$S_x = \eth \qquad \frac{\ddot{y} (x_i - m)^2}{n}$$

Données groupées :

$$S_x = \eth \frac{\ddot{y} n_i (x_i - m)^2}{n}$$

$$S_x^2 = \frac{250}{5}$$

$$S_x = \delta 50 = 7.07$$

$$S_x^2 = \frac{1000}{5} = 200$$

$$S_x = \eth 200 = 14,14$$

4.5.2. Variance d'une série à faible effectif :

N < 30

Remplacer le dénominateur par : (n-1)

= Variance intra échantillon

4.5.3. Variance d'un échantillon constitué de sous-échantillons :

Même moyenne : Variance totale = Variance résiduelle

Exemple : Etude de la masse grasse en Kg de filles scolarisées âgées de 9 ans de 4 communes

Commune	C1	C2	C3	C4
Effectif	42	62	32	38
Moyenne	4,6	4,1	5	4,3
Ecart-type	1,3	0,9	1,4	0,9

$$m = \frac{(42 \times 4,6) + (62 \times 4,1) + (32 \times 5) + (38 \times 4,3)}{42 + 62 + 32 + 38} = \frac{770,8}{174} = 4,4 \text{ Kg}$$

$$S^{2} = \frac{(42 \times 1,7) + (62 \times 0,8) + (32 \times 2) + (38 \times 0,8)}{42 + 62 + 32 + 38}$$

$$+ \frac{42 \times (4,6 - 4,4)^{2} + 62 \times (4,1 - 4,4)^{2} + 32 \times (5 - 4,4)^{2} + 38 \times (4,3 - 4,4)^{2}}{42 + 62 + 32 + 38}$$

 $S^2 = 1,24 + 0,11 = 1,35 \text{ kg}^2$ $S = \sqrt{1,35} = 1,16 \text{ kg}$

4.5.3. Variance d'une variable x = y + z:

2 séries de variables y et z de même taille échantillonnale n telles que :

$$xi = y_i + z_i$$

$$S_{x}^{2} = \frac{\ddot{y} (y - m_{y})^{2}}{n} + \frac{\ddot{y} (z - m_{z})^{2}}{n} + \frac{2\ddot{y} (y - m_{y}) (z - m_{z})}{n}$$

Variance totale = variance de y + Variance de z + covariance (y,z)

4.6. LE COEFFICIENT DE VARIATION

$$CV = \frac{S}{m}$$
 (%)

- ✓ Degré d'homogénéité (hétérogénéité) d'une série statistique
- ✓ Degré de dispersion de 2 variables d'une même série statistique
- ✓ Proportion de dispersion des variables de deux séries statistiques

X ₁	X ₂	Etendue	Variance	Ecart-type	CV (%)
4	4	0	0	0	0
5	3	2	1	1	25
6	2	4	4	2	50
7	1	6	9	3	75
8	0	8	16	4	100

2 groupes:

- Groupe 1:
$$m_1 = 115$$
 $s_1 = 4$ $CV = 3,48 \%$

- Groupe 2 :
$$m_2 = 145$$
 $s_2 = 4$ $CV = 2,76 \%$