2 H(34 S,p γ) **1973Wa10**

 34 S(d,p) 35 S in inverse kinematics.

1973Wa10: A 59.6-MeV 34 S beam was produced from the BNL MP-tandem Van de Graaff facility. Targets were 200 μ g/cm² TiD prepared by evaporating titanium onto the Cu, Al, and Mg target backings in a deuterium atmosphere. γ rays were detected using a 35 cm³ Ge(Li) detector at 0° with FWHM=2 keV at 656 keV. Measured E γ . Deduced T_{1/2} for two 35 S levels using Doppler Shift Attenuation lineshape analysis.

35S Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$	Comments
0	3/2+		
1574	$1/2^{+}$	2.29 ps <i>35</i>	$T_{1/2}$: Lifetime=3.3 ps 5 from 1973Wa10.
2350	$3/2^{-}$	0.90 ps <i>14</i>	$T_{1/2}$: Lifetime=1.3 ps 2 from 1973Wa10.

 $^{^{\}dagger}$ From the Adopted Levels.

$$\gamma(^{35}S)$$

$$\frac{\text{E}_{\gamma}}{776}$$
 $\frac{\text{E}_{i}(\text{level})}{2350}$ $\frac{\text{J}_{i}^{*}}{3/2^{-}}$ $\frac{\text{E}_{f}}{1574}$ $\frac{\text{J}_{f}^{*}}{1/2^{+}}$ $\frac{\text{J}_{f}^{*}}{1574}$ $\frac{1}{1/2^{+}}$ $\frac{1}{1}$

2 H(34 S,p γ) 1973Wa10

Level Scheme

[‡] Using Doppler Shift Attenuation Method (DSAM).