

Racine carrée

YE	רו ס	CE	1

On pose E = .

Ecrire E sous forme $a + b\sqrt{5}$.

(a et b étant des nombres relatifs) .

EXERCICE 2:

Calculer D et E et donner les résultats sous la forme $a\sqrt{b}$ où a et b sont des nombres entiers avec b le plus petit possible.

D =

E =

EXERCICE 3:

On donne:

A =

B =

Ecrire A sous la forme $a\sqrt{3}$ et B sous la forme $b\sqrt{3}$ où a et b sont deux entiers relatifs .

EXERCICE 4:

On pose :

- 1. Calculer a^2 , b^2 et a^2+b^2 .
- 2. Montrer que a²+b² est un nombre entier.
- 3. Si a et b sont les longueurs des côtés de l'angle droit dans un triangle, quelle est la longueur de l'hypoténuse ?

EXERCICE 5 : UNE PIÈCE RECTANGULAIRE.

Une pièce rectangulaire dont la longueur est le double de la largeur a une aire de $12,5 \text{ m}^2$. Quelles sont ses dimensions?

EXERCICE 6 : RACINE CARRÉE ET PGCD.

1. Sans calculer leur PGCD, explique pourquoi les nombres 648 et 972 ne sont pas premiers entre eux.

2. a. Calculer PGCD (972; 648) en expliquant la méthode utilisée.

b. Démontrer que
$$\sqrt{648}+\sqrt{972}=18(\sqrt{3}+\sqrt{2})$$
.

EXERCICE 7 : THÉORÈME DE PYTHAGORE.

Considèrons la figure suivante, nous avons (KH) // (AB).

a. calculer les valeurs exactes de AC et AB.

b. Démontrer que le triangle ABC est rectangle en A.

c. Calculer la valeur exacte de KH.

EXERCICE 8

Calculer mentalement $\sqrt{1}\,,\,\sqrt{0,04}\,,\,\sqrt{64}\,,\,\sqrt{10000}\,,\,-\sqrt{36}$.

EXERCICE 9

Un élève a écrit : $\sqrt{14} = 7$, $\sqrt{9} = 3$

A-t-il raison, (à justifier).

EXERCICE 10

Les nombres suivants sont-ils égaux à 3 ou à - 3?

$$\sqrt{3}^2$$
, $-\sqrt{9}$, $(-\sqrt{3})^2$, $-\sqrt{3^2}$, $\sqrt{(-3)^2}$, $-\sqrt{3}^2$.

EXERCICE 11

a. Un carré a pour aire 13 cm². Combien mesure son côté?

b. Un carré a pour côté $\sqrt{6}~{\rm cm}$.

Quelle est son aire?

EXERCICE 12

Simplifier:

$$\sqrt{4} \times \sqrt{9}$$
, $\sqrt{0,01} \times \sqrt{225}$, $\sqrt{2^2 \times 3^2 \times 5^2}$, $\sqrt{\frac{4}{9}}$, $\sqrt{\frac{100}{81}}$, $\sqrt{\frac{30}{7}} \times \frac{\sqrt{21}}{\sqrt{40}}$.

EXERCICE 13

a. Ecrire sous la forme $a\sqrt{b}$ les expressions suivantes :

$$\sqrt{8}$$
, $\sqrt{54}$, $\sqrt{500}$, $\sqrt{0,07}$, $-\sqrt{125}$.

b. Ecrire sous la forme $a\sqrt{7}$ (a entier) :

$$A = B = B$$

EXERCICE 14

Développer et réduire :

EXERCICE 15

Montrer que E = 0.

$$E =$$

EXERCICE 16: RECTANGLE D'OR.

Un rectangle est appelé rectangle d'or lorsque le quotient de sa longueur et de sa largeur est égale au nombre d'or.

1. Construire un carré ADEF de côté 6 cm.

Placer le milieu I de [DE].

Tracer un arc de cercle de centre I, de rayon IF, comme sur la figure ci-dessous.

Terminer la construction comme ci-dessous.

2. démontrer que ABCD est un rectangle d'or.

EXERCICE 17 : SIMPLIFIER DES RACINES CARRÉES. $A = \sqrt{300} - 4\sqrt{27} + 6\sqrt{3}$

$$A = \sqrt{300} - 4\sqrt{27} + 6\sqrt{3}$$

On donne :
$$B = (5$$

$$A = \sqrt{300 - 4\sqrt{27} + 6\sqrt{3}}$$

$$B = (5 + \sqrt{3})^{2}$$

$$C = (3\sqrt{2} + \sqrt{5})(3\sqrt{2} - \sqrt{5})$$

- a) Écrire A sous la forme $a\sqrt{3}$, où <u>a</u> est un nombre entier.
- b) Écrire B sous la forme $e + f\sqrt{3}$, avec e et f entiers.
- c) Montrer que C est un entier.

EXERCICE 18 : ÉGALITÉ COMPLEXE

Démontrer, sans utiliser la calculatrice, que :

$$\frac{\sqrt{11}}{2\sqrt{3} - \sqrt{11}} = 2\sqrt{33} + 11$$

EXERCICE 19 : DÉVELOPPEMENT ET EXPRESSION COMPLEXE

Développer et donner le résultat sous la forme

la plus simplifiée possible.

$$K = 2\sqrt{5} \times (3\sqrt{5} - 1) - (3\sqrt{5} + 2) \times (3\sqrt{5} - 2)$$

EXERCICE 20 : DÉVELOPPER ET RÉDUIRE CETTE EXPRESSION.

$$A = (2\sqrt{7} - 9)(2\sqrt{7}) + 9$$

EXERCICE 21 :POINTS ALIGNÉS.

Soient trois points O, U et I tels que : $UI = \sqrt{63}$; $OU = \sqrt{343}$ et $OI = \sqrt{700}$.

Les points O, U et I sont-ils alignés ? Justifier.

EXERCICE 22 : DÉVELOPPER ET RÉDUIRE DES RACINES.

Développer et réduire les expressions suivantes et donne le résultat sous la forme $a + b\sqrt{c}$,

où a et b sont des entiers relatifs et c un nombre entier positif.

$$D = \sqrt{5}(\sqrt{5} - 1)$$

$$E = \sqrt{2}(\sqrt{2} - 5) - 7\sqrt{2}$$

EXERCICE 23 : GÉOMÉTRIE.

Exprimer les aires de ces trois rectangles sous la forme $a + b\sqrt{5}$

(où a et b sont des nombres entiers).

EXERCICE 24 : CLOCHE À FROMAGE ET DEMI-CERCLE.

on dispose d'une cloche à fromage qui est une demi-sphère de rayon 9 cm. quelle est la hauteur maximum d'un fromage de la forme d'un cylindre de rayon 7 cm qui peut tenir sous cette cloche? Expliquer.

EXERCICE 25 : ÉTUDE D'UN CUBE.

ABCDEFGH est un cube de 4 cm d'arête.

- a. Calculer la valeur exacte de GD et écrire le résultat sous la forme $a\sqrt{2}$ avec a un nombre entier.
- b. Quel est le périmètre du triangle BDG?

Donner le résultat sous la forme $a\sqrt{2}$ avec a un nombre entier.

- c. Calculer la valeur exacte de GK.
- d. Calculer l'aire du triangle BGD.

Donner la valeur exacte puis une valeur arrondie au centième.

EXERCICE 26 : SPIRALE DE THÉODORE DE CYRÈNE.

Observer la figure ci-dessous.

- a. Sachant que le triangle ABC est un triangle rectangle isocèle en A, calculer la valeur exacte de BC.
- b. En vous aidant de la figure ci-dessous et de la question a, calculer les valeurs exactes de DB et EB.

EXERCICE 27 : DIAGONALES D'UN CARRÉ.

On considère un carré ANIM.

- a. Calculer la longueur exacte de la diagonale Al du carré MANI.
- b. Si $AN=a\,(a>0)$, que vaut la longueur Al ?

EXERCICE 28 : AIRES DE TRIANGLES.

En utilisant les données de la figure, déterminer l'aire du triangle ABC.

Les proportions ne sont pas respectées.

EXERCICE 29 : DÉVELOPPER UN PRODUIT.

Développer et réduire : $(\sqrt{2}+3)(4-5\sqrt{2})$.

EXERCICE 30 : DÉVELOPPEZ EN UTILISANT LES IDENTITÉS REMARQUABLES.

$$\overline{A} = (1 + \sqrt{2})^2$$

$$B = (2\sqrt{3} + 4)^2$$

$$C = (\sqrt{5} - \sqrt{6})(\sqrt{5} + \sqrt{6})$$

$$D = (\sqrt{7} - \sqrt{2})^2$$

EXERCICE 31 : SIMPLIFICATION.

Simplifier les expressions suivantes et les mettre sous la forme $a\sqrt{b}$, où a est un nombre entier relatif et b un nombre entier le plus petit possible.

$$A = 8\sqrt{7} - 2\sqrt{28} + \sqrt{112}$$

$$B = 2\sqrt{24} - 3\sqrt{96} + 9\sqrt{294}$$

EXERCICE 32 : ESCARGOT DE PYTHAGORE.

En te servant du schéma ci-contre, trace un segment

de longueur $\sqrt{8}$ cm.

Explique ton raisonnement.

EXERCICE 33 : FONCTIONS NUMÉRIQUES

On considère la fonction h telle que $h(x) = x^2 + 5x - 3$.

- 1. Calculer l'image de 1 par la fonction h.
- 2. Calculer l'image de $\sqrt{2}$ par la fonction h.
- 3. Calculer l'image de $2\sqrt{3}$ par la fonction h.

EXERCICE 34 : VOLUMES DANS L'ESPACE.

Un verre de la forme conique a une hauteur de 11 cm.

Quelle doit être la valeur exacte de la longueur de son diamètre, en cm, pour qu'il

contienne 25 cL?

EXERCICE 35 : DIAGONALES D'UN CERF VOLANT.

Les mesures des diagonales de ce cerf-volant sont données en centimètres. Calcule la valeur exacte de son périmètre puis la valeur arrondie au millimètre.

EXERCICE 36 : ÉTUDE D'UN CARRÉ.

On considère la figure suivante. L'unité est le centimètre.

- a. Ecrire $5\sqrt{12} = \sqrt{75}$ sous la forme $a\sqrt{b}$, où a et b sont des entiers relatifs, b étant le plus petit possible.
- b. Quelle est le nature exacte de ABCD? Justifier votre réponse.
- c. déterminer le périmètre de ABCD sous la forme la plus simple possible.

Donner, ensuite, l'arrondi au millimètre.

d. Déterminer la valeur exacte de l'aire de ABCD.

EXERCICE 37 : SIMPLIFICATION DE RACINES CARRÉES.

Écrire sous la forme $a\sqrt{3}$, a étant un entier naturel:

$$A = \sqrt{27} + 7\sqrt{75} - \sqrt{300}.$$

Ecrire sous la forme $p+m\sqrt{3}$ ou m et p sont des entiers relatifs :

$$A = (3\sqrt{3} - 2)(4 - \sqrt{3})$$

EXERCICE 38 : LES RACINES CARRÉES.

Mettre les nombres suivants sous la forme $a\sqrt{b}$

où a et b sont deux nombres entiers et $\ b$ le plus petit possible .

$$t = \sqrt{96}$$
; $u = \sqrt{108}$; $v = \sqrt{162}$

EXERCICE 39 : CALCUL AVEC LES RACINES.

Mettre les nombres suivants sous la forme $a\sqrt{5}$.

$$x = \sqrt{125}$$
; $y = \sqrt{500}$; $z = \sqrt{80}$

EXERCICE 40 : VOLUME D'UN PRISME.

Calculer le volume d'un prisme droit de hauteur $\sqrt{20}$ cm et de base un triangle de dimensions: 1 cm; 3cm et $\sqrt{10}$ cm .

Ecrire le résultat sous la forme $a\sqrt{b}$ (où a et b sont des nombres entiers) .

EXERCICE 41 : THÉORÈME DE THALÈS.

Les droites (AB) et (ED) sont parallèles .

$$BC=\sqrt{5}$$
 ; $CD=\sqrt{3}$ et $CE=3$.

Les longueurs sont en centimètres.

Calculer la longueur du segment [AC].

EXERCICE 42 : ÉQUATIONS DU TYPE X²=A.

Résoudre les équations suivantes (justifier vos réponses):

a)
$$3x^2 = 75$$

b)
$$x^2 = -36$$

c)
$$25x^2 = 4$$

d)
$$49x^2 = -64 \text{ e}$$
) $x^2+9=0$

f)
$$27x^2 = 12$$

EXERCICE 43 : FRACTIONS ET PRODUIT DE RACINES CARRÉES.

Calculer le produit suivant et donner le résultat sous la forme la plus simplifiée possible .

$$A = \frac{3\sqrt{5} - 1}{\sqrt{5} + 2} \times \frac{-\sqrt{15}}{\sqrt{5} - 2}$$

EXERCICE 44 : PROBLÈME SUR LES RACINES CARRÉES.

Soit a=
$$\sqrt{5}(1-\sqrt{2})$$
 et b=5+ $\sqrt{2}$.

- a. Calculer a² et b².
- b. En déduire les valeurs de a^2+b^2 et $\sqrt{a^2+b^2}$.

EXERCICE 45 : RACINE CARRÉE ET RECTANGLE.

ABCD est un rectangle tel que :

$$AB = (\sqrt{27} + \sqrt{3}) \ cm \ {\rm et} \ BC = \sqrt{48} \ cm \ .$$

- a) Démontrer que ABCD est un carré.
- b) calculer son périmètre et son aire .

EXERCICE 46:

Simplifier les expressions suivantes et les mettre sous la forme $a\sqrt{b}$, où a est un nombre entier relatif et b un nombre entier le plus petit possible.

$$A = 8\sqrt{7} - 2\sqrt{28} + \sqrt{112}$$

$$B = 2\sqrt{24} - 3\sqrt{96} + 9\sqrt{294}$$

