Johns Hopkins Engineering for Professionals

Mathematical Methods for Applied Biomedical Engineering EN. 585.409

Residue Theorem

Let's prove the residue theorem. Given the tools we already have it is fairly straight forward.

Suppose we want to evaluate the following integral $\oint_{\gamma} f(z)dz$

Take the general Laurent expansion $f(z) = \sum_{n=-m}^{\infty} a_n (z-z_0)^n$ with pole of order m and substitute into our integral.

$$\oint_{\gamma} \sum_{n=-m}^{\infty} a_n (z-z_0)^n dz = \sum_{n=-m}^{\infty} a_n \oint_{\gamma} (z-z_0)^n dz$$

Take as our closed patha circle centered at $z_{_0}$ with radius ρ parameterized in terms of θ (as we have done previously)

$$z = z_o + \rho e^{i\theta}$$
, $dz = i\rho e^{i\theta} d\theta$

Substitution gives

$$\sum_{n=-m}^{\infty} a_n \int_{0}^{2\pi} (z_0 + \rho e^{i\theta} - z_0)^n i\rho e^{i\theta} d\theta = i\sum_{n=-m}^{\infty} a_n \int_{0}^{2\pi} (\rho e^{i\theta})^n \rho e^{i\theta} d\theta =$$

$$i\sum_{n=-m}^{\infty}a_{n}\rho^{n+1}\int_{0}^{2\pi}e^{i(n+1)\theta}d\theta$$

Next evaluate the integral $\int_{0}^{2\pi} e^{i(n+1)\theta} d\theta$ This can be done with two cases.

Case 1: $n \neq -1$

$$\int_{0}^{2\pi} e^{i(n+1)\theta} d\theta = \frac{e^{i(n+1)\theta}}{i(n+1)} \Big|_{0}^{2\pi} = \frac{e^{i(n+1)2\pi}}{i(n+1)} - \frac{e^{i(n+1)\theta}}{i(n+1)} = \frac{e^{i(n+1)2\pi}}{i(n+1)} - \frac{e^{0}}{i(n+1)} = \frac{e^{i(n+1)2\pi}}{i(n+1)} - \frac{e^{0}}{i(n+1)} = \frac{e^{i(n+1)2\pi}}{i(n+1)} - \frac{1}{i(n+1)} = \frac{1}{i(n+1)} \Big[e^{i(n+1)2\pi} - 1 \Big] = \frac{1}{i(n+1)} \Big[\cos i(n+1)2\pi + i \sin i(n+1)2\pi - 1 \Big] = \frac{1}{i(n+1)} \Big[1 + i(0) - 1 \Big] = 0 \text{ and our integral is } \oint_{\gamma} f(z) dz = i \sum_{n=-m}^{\infty} a_n \rho^{n+1} 0 = 0$$

Case 2: n = -1

$$\int_{0}^{2\pi} e^{i(n+1)\theta} d\theta \to \int_{0}^{2\pi} e^{i(-1+1)\theta} d\theta = \int_{0}^{2\pi} e^{i(0)\theta} d\theta = \int_{0}^{2\pi} d\theta = 2\pi$$

Therefore the only contribution to the sum is for n = -1 and our integral

$$\oint_{\gamma} f(z) dz = ia_{-1} \rho^{-1+1} \int_{0}^{2\pi} e^{i(-1+1)\theta} d\theta = ia_{-1} \rho^{0} 2\pi = 2\pi ia_{-1}$$

Key: Notice which coefficient is used to evaluate the integral a₋₁ the residue!

Residue theorem

For multiple poles this result is easily generalized where the R_js are the residues for each pole

$$\oint_{\gamma} f(z) dz = 2\pi i a_{-1} \rightarrow \oint_{\gamma} f(z) dz = 2\pi i \sum_{j} R_{j}$$

Examples of the use of Residue theorem

Let's use the residue theorem to evaluate the following general real integral

$$\int_{-\infty}^{\infty} f(x) dx$$

This can be done via the Residue theorem

Consider the integral $\oint_C f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz = 2\pi i \sum_j R_j$

where $C = C_1 + C_2$ and the semicircle path has radius **R**

Now for path C₂ the function is restricted to the REAL axis

therefore
$$\int_{C_2} f(z)dz \rightarrow \int_{-R}^{R} f(x)dx$$

Key: C_2 on REAL axis therefore $f(z) \rightarrow f(x)$ real

Substitution gives
$$\oint_C f(z)dz = \int_{C_1} f(z)dz + \int_{-R}^R f(x)dx = 2\pi i \sum_j R_j$$

or
$$\int_{-R}^{R} f(x) dx = 2\pi i \sum_{j} R_{j} - \int_{C_{1}} f(z) dz$$

Now we will make an assumption for the form of f(z)so the can evaluate the integral $\int\limits_{z}^{z} f(z)dz$

Take
$$f(z) = \frac{p(z)}{q(z)}$$
 where the $deg[q(z)] > deg[p(z)] + 1$

Key: Otherwise the Integral would diverge

Therefore
$$f(z) < \frac{k}{|z|^2}$$
 for $|z| = \mathbf{R}$ and

$$\left| \int_{C_1} f(z) dz \right| < \frac{k}{\mathbf{R}^2} \int_{C_1} dz = \frac{k}{\mathbf{R}^2} (2\pi \mathbf{R}) = \frac{2\pi k}{\mathbf{R}}$$

Substitution gives
$$\int_{-R}^{R} f(x) dx = 2\pi i \sum_{j} R_{j} - \frac{2\pi k}{R}$$

Finally let **R** go to ∞ , that is

$$\lim_{\mathbf{R}\to\infty}\int_{-\mathbf{R}}^{\mathbf{R}} f(\mathbf{x}) d\mathbf{x} = 2\pi i \sum_{i} R_{i} - \lim_{\mathbf{R}\to\infty} \frac{2\pi k}{\mathbf{R}}$$

or

$$\int_{-\infty}^{\infty} f(x) dx = 2\pi i \sum_{j} R_{j} - 0 = 2\pi i \sum_{j} R_{j}$$
 where R_{j} are the residues of $f(z)$

Examples of the use of Residue theorem

Let's use the residue theorem to evaluate the following real integral

$$\int_{0}^{\infty} \frac{\mathrm{dx}}{1+x^{4}}$$

Start by finding poles of $f(z) = \frac{1}{1+z^4}$ that is $1+z^4 = 0 \rightarrow z^4 = -1 = 1(\cos \pi + i \sin \pi)$ |z| = 1 (real), $\arg z = \pi$ therefore using our process for finding roots of a complex value

$$z = (-1)^{\frac{1}{4}} = 1 (real)^{\frac{1}{4}} \cos(\frac{\pi + 2k\pi}{4}) + i \sin(\frac{\pi + 2k\pi}{4}) \text{ and } k = 0, 1, 2, 3$$
 This gives values for $z = e^{\frac{\pi}{4}i}$, $e^{\frac{3\pi}{4}i}$ and $e^{\frac{-3\pi}{4}i}$, $e^{\frac{-\pi}{4}i}$

We only need the first two poles as our integral only involve the half-plane!

If a function $f(z) = \frac{g(z)}{h(z)}$ has a simple pole at z_0 then the residue is $Res(z_0) = \frac{g(z_0)}{h'(z_0)}$

Therefore the residues for the two poles for our function $f(z) = \frac{g(z)}{h(z)} = \frac{1}{1+z^4}$ where $h'(z) = 4z^3$

$$\operatorname{Res}(e^{\frac{\pi_{i}}{4}}) = \frac{1}{4(e^{\frac{\pi_{i}}{4}})^{3}} = \frac{1}{4e^{\frac{3\pi_{i}}{4}}} = \frac{1}{4}e^{-\frac{3\pi_{i}}{4}} = -\frac{1}{4}e^{\frac{\pi_{i}}{4}} \text{ (key: graph the angles to see the relation)}$$

$$\operatorname{Res}(e^{\frac{3\pi}{4}i}) = \frac{1}{4(e^{\frac{3\pi}{4}i})^3} = \frac{1}{4e^{\frac{9\pi}{4}i}} = \frac{1}{4}e^{-\frac{9\pi}{4}i} = \frac{1}{4}e^{-\frac{\pi}{4}i} \text{ (key: graph the angles to see the relation)}$$

Finally
$$\int_{0}^{\infty} \frac{dz}{1+z^{4}} = 2\pi i \sum_{j} R_{j} \rightarrow 2\pi i (R_{1}+R_{2}) = 2\pi i (-\frac{1}{4}e^{\frac{\pi i}{4}} + \frac{1}{4}e^{-\frac{\pi i}{4}}) = \frac{-2\pi i}{4} [e^{\frac{\pi i}{4}} - e^{-\frac{\pi i}{4}}] = \frac{-\pi i}{2} [2i\sin\frac{\pi}{4}] = \frac{-\pi i}{2} [2i\sin\frac{\pi}{4}] = -\pi i^{2}\sin\frac{\pi}{4} = -\pi (-1)\frac{\sqrt{2}}{2} = \pi \frac{\sqrt{2}}{2}$$

Therefore
$$\int_{0}^{\infty} \frac{dx}{1+x^4} = \pi \frac{\sqrt{2}}{2}$$

Example of the use of Residue theorem to perform the inverse Laplace transform

You may have noticed (or not) earlier in the course we had a Fourier transform and its inverse. One might ask what does the inverse Laplace transform look like. Its called The Bromwich integral and has the following form

Given
$$L\{f(x)\}=\tilde{f}(s)=\int_{0}^{\infty}e^{-sx}f(x)dx$$

then

$$f(x)=L^{-1}\{\tilde{f}(s)\}=\frac{1}{2\pi i}\int_{\lambda-i\infty}^{\lambda+i\infty}e^{sx}\tilde{f}(s)ds, \ \lambda>0$$
Bromwich Integral

where s is considered a complex variable and by the residue theorem

$$\frac{1}{2\pi i} \int_{\lambda-i\infty}^{\lambda+i\infty} e^{-sx} \tilde{f}(s) ds = \sum_{\text{all poles}} \text{Res}[e^{-sx} f(s)]$$

Take
$$\tilde{f}(s) = \frac{s}{s^2 - k^2} = \frac{s}{(s+k)(s-k)}$$

Now
$$e^{sx}\tilde{f}(s) = \frac{se^{sx}}{(s+k)(s-k)} = \frac{g(s)}{h(s)}$$

where $g(s)=se^{sx}$, $h(s)=s^2-k^2$ and h'(s)=2s

The poles are at $s_0 = k$, -k and the residues are

$$R_1(k) = \frac{g(k)}{h'(k)} = \frac{ke^{kx}}{2k} = \frac{e^{kx}}{2}$$
 and $R_2(k) = \frac{g(-k)}{h'(-k)} = \frac{-ke^{-kx}}{2(-k)} = \frac{e^{-kx}}{2}$

Therefore
$$f(x)=L^{-1}\{\tilde{f}(s)\}=\sum_{\text{all poles}} \text{Res}[e^{-sx}f(s)]=\frac{e^{kx}}{2}+\frac{e^{-kx}}{2}\equiv \cosh kx$$