Econ 106: Data Analyis for Economics

Lecture 8

slides adapted from: https://r4ds.had.co.nz/tidy-data.html

Reminders

- Lab 2 is due Sunday, 11:59pm
- Please plan on finalizing your data selection for your research project by this weekend (reach out to me if you have any questions)
- I will review your proposed datasets if you post it here
 by Friday 5pm

https://pollev.com/vsovero

#tidytuesday

 time for some study music (midterms are coming up)

The Flavors of 3 Playlists

Backyard BBQ Mellow Jams Study Songs

Data from Spotify & Spotify R | Visualization by @Jake_Lawlor1

Outline for Today

- reading in "real" data
- cleaning categorical variables:
 - converting type from character to factor
 - collapsing levels

Loading Different Types of Data

- Real data isn't going to come pre-loaded into a package
- It will typically come from excel, csv files
- We will need to import it into Rstudio

Step 1: Put your csv file in your Econ 106 folder

- Create an Econ 106 folder on your computer if you haven't already done so
- Then move the csv file to the folder

Step 2: Set your file pane to your 106 folder

 In R studio, navigate to your 106 folder in the file pane window

Step 3: Set Working Directory

- Set the working directory to the location of the data file:
 - click Session
 - click Set Working Directory

Step 4: Use read_csv() function

- Important: this only works if you placed the file in your working directory
- Otherwise you will have to figure out and write the whole path name (next slide)

flying<-read_csv("flying-etiquette.csv")

The other (not recommended) way

- somehow your csv file ends up in another folder
- There is a way to get it loaded into R using some point and click options

Point and click Alternative

Converting Vector Type

- as.numeric(): your values should be numbers
- as.character(): your values can be numbers or characters
- factor(): your values are categorical (finite set of values)

Categorical Variables as Factor Variables

- Currently, Education is stored as character type
- If we convert it to a factor variable, we will be able to:
 - change the order of the levels
 - change the values of the levels

```
$ Gender : chr [1:1040] NA "Male" "Male...
$ Age : chr [1:1040] NA "30-44" "30...
$ Household Income : chr [1:1040] NA NA "$100,000 - $149...
$ Education : chr [1:1040] NA "Graduate degree" "...
$ Location (Census Region) : chr [1:1040] NA "Pacific" "Pacific"...
```

factor()

Arguments:

 the variable you are converting to factor

Check the Current Levels

 When Education is a factor variable, we have some Base R options for examining the levels

```
levels(flying_factor$Education_f)
```

```
summary(flying_factor$Education_f)
```

nlevels(flying_factor\$Education_f)

https://pollev.com/vsovero

Order of levels

https://pollev.com/vsovero

- levels will be sorted alphabetically
- This doesn't look great when you are plotting your data (order should go from most to least educational attainment)

Ordering levels

you can set the order of the levels yourself using the levels argument

```
flying_factor_ordered<-flying%>%

mutate(Education_order=factor(Education,

levels=c("Graduate degree", "Bachelor degree", "Some college or Associate degree",

"High school degree", "Less than high school degree"))))
```

Ordered Levels

 Now our visualizations make more sense (order goes from most to least educational attainment)

Exercise

- convert `Do you ever recline your seat when you fly?`
 into a factor variable
- Order the levels from Always to Never
- Make a bar graph of the frequencies

What's in a (sur)Name?

- Why do women choose to retain their surname at marriage?
- Claudia Goldin (Nobel Laureate) has a thing or two to say about it:
 - Women's educational attainment has been increasing over time
 - Women are waiting longer to marry
 - They may have "made a name for themselves" in the profession by the time they marry
 - Less likely to change surname to not lose the professional reputation they have built for themselves

Making a Name: Women's Surnames at Marriage and Beyond (Goldin and Shim 2004)

https://scholar.harvard.edu/goldin/files/making_a_name_wome_ns_surnames_at_marriage_and_beyond.pdf

 Used Nytimes wedding announcements to track trends in surname retention over time

Nytimes Example

```
nytimes_factor<-nytimes%>%
    mutate(name_status_f=factor(name_status))
```

Nytimes Example

```
ggplot(data=nytimes_factor,
    mapping=aes(x=name_status_f))
geom_bar(aes(fill=name_status_f))
```


Name Change Status

Goldin and Shim (2004):

- brides are coded as "keepers" if they stated they would retain their surnames socially and/or professionally
- All others are deemed "changers"—those taking the groom's surname, those hyphenating their names and those for whom no information is given

Nytimes wedding announcements

How do we recategorize name_status to match the approach taken by Goldin and Shim (2004)?

Changing the Levels of a Factor Variable

Current Levels:

- "both names"
- "husband took bride's name" "hyphenated "
- "keeping"
- "other"
- "professionally"
- "taking "
- "unclear"

Desired Levels:

- "Keepers"
- "Takers"

Mapping the Current Levels to New Levels

Current Levels:

- "both names"
- "husband took bride's name"
- "hyphenated"
- "keeping"
- "other"
- "professionally"
- "taking"
- "unclear"

Desired Levels:

- "Keeper"
- "Changer"

Mapping the Current Levels to New Levels

Current Levels:

- "keeping"
- "husband took bride's name"
- "professionally"
- "both names"
- "hyphenated"
- "other"
- "taking"
- "unclear"

Desired Levels:

- "Keeper"
- " Changer "

fct_recode()

From the forcats package inside the tidyverse

Arguments:

- the factor variable you are recoding
- 2. the names of the new levels
- 3. the old levels you want to assign to the new levels

nytimes_recode<-nytimes_factor%>%

fct_recode()

```
nytimes_recode<-nytimes_factor%>%
```

name_status_f	name_status_recode	
keeping	Keeper	
taking	Changer	
taking	Changer	
keeping	Keeper	
keeping	Keeper	
taking	Changer	
unclear	Changer	
keeping	Keeper	
keeping	Keeper	
taking	Changer	
taking	Changer	
keeping	Keeper	
keeping	Keeper	
unclear	Changer	

fct_collapse()

- useful when you want to combine (collapse) a lot of levels together
- You list all the levels that will go into "Keeper", "Changer"
- Any thing not listed in the collapse will remain as its own level

Exercise

- collapse levels of `How often do you travel by plane?` that are once a month or more frequent
- Call the new level "monthly"
- Order the levels from highest to lowest frequency of travel

fct_lump()

- Have a lot of levels that you don't really care about and want to lump together? This is the function for you
- lumps all of the smaller levels together into a single "other" level

fct_lump()

Arguments:

- the factor variable you are recoding
- 2. the number of groups (excluding other) that you want to keep

```
nytimes_lump<-nytimes_factor%>%
```

mutate(surname=fct_lump(name_status_f, n=3))

fct_lump()

```
nytimes_lump<-nytimes_factor%>%

mutate(surname=fct_lump(name_status_f, n=3))

ggplot(data=nytimes_lump,
mapping=aes(x=surname)) +
geom_bar(aes(fill=surname))
```


https://pollev.com/vsovero

Exercise

- create a new factor variable that groups everything but the two most frequent levels of `How often do you travel by plane?`
- What level is now in "Other"?

Creating Factors from Numeric Variables

- We can also convert numeric variables into Factors
- we break up the numeric variable into intervals

bride_age [‡]	groom_age [‡]	bride_age_f
25	27	[20,30)
29	32	[20,30)
31	38	[30,40)
25	27	[20,30)
27	26	[20,30)
30	29	[30,40)
31	29	[30,40)
28	31	[20,30)
32	34	[30,40)
25	27	[20,30)

https://bookdown.org/rwnahhas/IntroToR/convert-numeric-to-categorical-by-binning.html

cut() : choose your own ranges

Arguments:

- the name of the numeric variable
- breaks: the end points of the interval ranges
- include.lowest : whether you want to include the low value (strict inequality)
- right: whether you want to include the high value (strict inequality)

How do you know where to cut?

 I always use summary() to first check the summary statistics (min, max) summary(nytimes\$bride_age)

cut_interval() : equally sized intervals

Arguments:

- the name of the numeric variable
- length: the size of the interval
- right: whether you want to include the high value (strict inequality)