MA LEC 03

isagila ablearthy @pochtineploho

Собрано 28.01.2024 в 08:04

Содержание

1.	Лекции
	1.1. Лекция 23.09.01
	1.2. Лекция 23.09.08
	1.3. Лекция 23.09.15
	1.4. Лекция 23.09.22
	1.5. Лекция 23.09.29
	1.6. Лекция 23.10.06
	1.7. Лекция 23.10.13
	1.8. Лекция 23.10.20
	1.9. Лекция 23.10.27
	1.10. Лекция 23.11.03
	1.11. Лекция 23.11.10
	1.12. Лекция 23.11.17
	1.13. Лекция 23.11.24
	1.14. Лекция 23.12.01
	1.15. Лекция 23.12.08
	1.16. Лекция 23.12.15
	1.17 Heving 23. 12. 22

1. Лекции

1.1. Лекция 23.09.01.

Def 1.1.1. Числовым рядом называется выражение $u_1+u_2+\ldots+u_n$, где $\{u_n\}$ это некоторая числовая последовательность. Обозначается $\sum_{n=1}^{\infty} u_n$.

Замечание 1.1.2. Нумерация может вестись с любого целого числа.

Def 1.1.3. u_n называется общим членом ряда.

Def 1.1.4. $S_n = u_1 + \ldots + u_k$ называется частичной суммой ряда.

 $Замечание 1.1.5. S_n$ также образуют последовательность.

Def 1.1.6. Если последовательность частичных сумм сходится, т.е. $\lim_{n\to\infty} S_n = S \in \mathbb{R}$, то говорят, что ряд сходится к сумме S (S называется суммой ряда). Если предел равен бесконечности или не существует, то ряд расходится.

Иногда сумму ряда можно найти простой арифметикой.

Пример 1.1.7 (Непосредственное вычисление суммы ряда).

$$u_n = \frac{1}{n(n+1)} \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \underbrace{\left(\frac{1}{2} - \frac{1}{2}\right)}_{k=1} + \underbrace{\left(\frac{1}{2} - \frac{1}{3}\right)}_{k=2} + \underbrace{\left(\frac{1}{3} - \frac{1}{4}\right)}_{k=3} + \dots + \underbrace{\left(\frac{1}{n} - \frac{1}{n}\right)}_{k=n-1} + \underbrace{\left(\frac{1}{n} - \frac{1}{n+1}\right)}_{k=n} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1 = S$$

Пример 1.1.8 (Геометрический ряд (эталонный)). Пусть $b \neq 0, b \in \mathbb{R}$.

$$\sum_{n=0}^{\infty} bq^n = b + bq + bq^2 + bq^3 + \dots + bq^n = b(1 + q + q^2 + q^3 + \dots + q^n) = b\frac{1 - q^{n+1}}{1 - q} = S_n$$

$$\lim_{n \to \infty} S_n = \frac{b}{1 - q} \lim_{n \to \infty} (1 - q^{n+1})$$

Далее значение предела зависит от q.

1.
$$|q| < 1 \Longrightarrow q^n \to 0 \Longrightarrow \lim_{n \to \infty} S_n = \frac{b}{1-a} = S$$

2.
$$|q| > 1 \Longrightarrow q^n \to \infty \Longrightarrow$$
 ряд расходится.

3.
$$q=1\Longrightarrow S_n=b(n+1)\to\infty\Longrightarrow$$
 ряд расходится.

4.
$$q = -1 \Longrightarrow S_n = \frac{b}{2}(1+1-1+\ldots+1-1) = \begin{cases} b \\ 0 \end{cases}$$
 \Longrightarrow две подпоследовательность сходятся к разным числам, значит предела нет и ряд расходится.

Замечание 1.1.9. Чаще требуется только определить сходимость ряда не вычисляя его сумму.

Свойства числовых рядов

Теорема 1.1.10.

$$\sum_{n=1}^{\infty} u_n \succ \Longleftrightarrow \sum_{n=k>1}^{\infty} u_n \succ \sum_{n=k>1}^{\infty} u_n \leftarrow \sum_{n=k>1}^{\infty} u_n \prec \Longleftrightarrow \sum_{n=k>1}^{\infty} u_n \prec \sum_{n=k>1}^{\infty} u_n \leftarrow \sum_{n=k=1}^{\infty} u_n \leftarrow \sum_$$

$$\sum_{n=1}^{\infty} u_n \succ \iff \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\underbrace{u_1 + u_2 + \ldots + u_k}_{v} + u_{k+1} + \ldots + u_n \right) = \underbrace{\lim_{n \to \infty} v}_{v \in \mathbb{R}} + \lim_{n \to \infty} \left(u_{k+1} + \ldots + u_n \right)$$

Для расходящихся доказательство аналогично.

Замечание 1.1.11. Теорему 1.1.10 можно сформулировать по-другому (не формально): ряд и его «хвост» одновременно сходятся и расходятся.

Теорема 1.1.12.

$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}$$
 $\Longrightarrow \sum_{n=1}^{\infty} \alpha u_n = \alpha S$
$$\sum_{n=1}^{\infty} u_n \succ \Longleftrightarrow \exists \lim_{n \to \infty} S_n \in \mathbb{R}$$

$$\lim_{n \to \infty} (\alpha u_1 + \ldots + \alpha u_n) = \alpha \lim_{n \to \infty} (u_1 + \ldots + u_n) = \alpha S$$

3амечание 1.1.13. Если ряд расходится, то умножение на $\alpha \neq 0$ не меняет его расходимости.

Теорема 1.1.14.

$$\left. \begin{array}{l} \sum_{n=1}^{\infty} u_n = S \in \mathbb{R} \\ \sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R} \end{array} \right\} \Longrightarrow \sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$$

 $\underbrace{\lim_{n\to\infty} S_n}_{S} \pm \underbrace{\lim_{n\to\infty} \sigma_n}_{\sigma} = \lim_{n\to\infty} (S_n \pm \sigma_n) = \sum_{n=1}^{\infty} (u_n \pm v_n)$

Замечание 1.1.15. Ряды складываются и вычитаются почленно.

Замечание 1.1.16. Из сходимости разности рядов не следует сходимость самих рядов. Например,

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) \neq \underbrace{\sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}}_{\text{расходятся}}$$

Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

Рассмотрим вспомогательный ряд и вычислим его частичные суммы

$$\frac{1}{1} + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4}}_{\frac{1}{2}} + \underbrace{\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{\frac{1}{2}} + \underbrace{\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}}_{\frac{1}{2}} + \dots$$

$$\sigma_{1} = 1 + 0 \cdot \frac{1}{2} \qquad \sigma_{2} = 1 + 1 \cdot \frac{1}{2} \qquad \sigma_{n} = 1 + (n - 1) \cdot \frac{1}{2}$$

Последовательность частичных сумм σ_n расходится при $n \to \infty$. Последовательность частичных сумм исходного ряда почленно не меньше σ_n , значит $\lim_{n \to \infty} S_n = \infty$.

Теорема 1.1.17. Члены сходящегося ряда можно группировать произвольным образом не переставляя.

□ Группируя члены ряда получаем подпоследовательность последовательности частичных сумм. Если существует предел исходной последовательности, то существует и предел любой ее подпоследовательности.

Замечание 1.1.18. Перестановка членов ряда может изменить сумму. Например, рассмотрим ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Он сходится (без доказательства). Далее имеем

$$\begin{split} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} &= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} - \frac{1}{16} + \dots \\ &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{16} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{32} + \dots \\ &= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \frac{1}{3} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{8} + \frac{1}{5} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{16} + \frac{1}{7} \cdot \left(1 - \frac{1}{2}\right) - \frac{1}{32} + \dots \\ &= \frac{1}{2}\left(1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots\right) - \frac{1}{4} - \frac{1}{8} - \frac{1}{16} - \frac{1}{32} - \dots \\ &= \frac{1}{2}\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots\right) \\ &= \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \end{split}$$

Получили, что сумма ряда равна своей половине.

1.2. Лекция 23.09.08.

Замечание 1.2.1. Можно доказать, что определенной перестановкой членов ряда в качестве суммы можно получить любое заданное число.

Замечание 1.2.2. Также возможно перемножение рядов. Произведение сходящихся рядов — сходящийся ряд. Формулы для произведения можно найти в литературе.

Далее для краткости ряды будут записываться в виде $\sum u_n$. Нижней границей по умолчанию будем считать единицу. В рядах с другой нижней границей и в местах, где необходимо сделать акцент на границе, будет использоваться запись вида $\sum_{n=0}^{\infty} v_n$.

Далее рассмотрим некоторые условия сходимости рядов.

Теорема 1.2.3. (Необходимое условие сходимости ряда)

$$\sum u_n \succ \Longrightarrow \lim_{n \to \infty} u_n = 0$$

$$\sum u_n \succ \Longleftrightarrow \exists \lim_{n \to \infty} S_n = S \in \mathbb{R}$$

$$u_{n+1} = S_{n+1} - S_n$$

$$\lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} (S_{n+1} - S_n) = \lim_{n \to \infty} S_{n+1} - \lim_{n \to \infty} S_n = S - S = 0$$

Замечание 1.2.4. Обратное в общем случае неверно. Например

$$\sum \frac{1}{n} \prec, \text{ Ho } \lim_{n \to \infty} \frac{1}{n} = 0$$

Замечание 1.2.5. Необходимым условием сходимости удобно пользоваться в обратную сторону, т.е. с его помощью проще показать, что ряд расходится.

Пример 1.2.6.

$$\sum \underbrace{(2n+3) \cdot \sin \frac{1}{n}}_{u_n}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\frac{1}{2n+3}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{2n+3}} = \lim_{n \to \infty} \frac{2n+3}{n} = 2$$

$$\lim_{n \to \infty} u_n \neq 1 \Longrightarrow \sum (2n+3) \cdot \sin \frac{1}{n} \prec$$

$$\sum \frac{1}{2n+3} \qquad \lim_{n \to \infty} \frac{1}{2n+3} = 0$$

Пример 1.2.7.

Рассмотрим вспомогательный ряд $\sum \frac{1}{3n}$. Можно убедиться, что начиная с n=4 члены вспомогательного ряда меньше соответствующих членов исследуемого ряда. Заметим, что

$$\sum \frac{1}{3n} = \frac{1}{3} \sum \frac{1}{n} \Longrightarrow \prec$$

Значит, исходный ряд также расходится.

Теорема 1.2.8. (Критерий Коши для сходимости рядов)

$$\sum u_n \succ \iff \exists \lim_{n \to \infty} S_n = S \in \mathbb{R} \iff \forall \varepsilon > 0 \mid \exists n_0 \in \mathbb{N} \mid n \geqslant p \geqslant n_0 \colon |S_n - S_p| < \varepsilon$$

Стоит отметить, что $|S_n - S_p| = |u_p + u_{p+1} + \ldots + u_n|$. Такая форма записи иногда будет полезна в дальнейшем.

Замечание 1.2.9. Смысл критерия Коши в том, что у сходящегося ряда при заданном ε начиная с n_0 весь хвост попадает в ε -трубу.

Замечание 1.2.10. Критерий не удобен для исследования на сходимость, поэтому обычно используют признаки сходимости.

Достаточные условия (признаки) сходимости знакоположительных рядов

Замечание 1.2.11. Будем рассматривать только ряды, в которых $u_n > 0$, но описанные далее признаки можно применять для любых рядов, предварительно навесив модуль.

Теорема 1.2.12. (Признак сравнения в неравенствах) Пусть $\sum u_n$ — исследуемый ряд, а $\sum v_n$ — вспомогательный ряд и $u_n, v_n \geqslant 0$. Тогда

$$\begin{cases} \forall n \in \mathbb{N} \mid u_n < v_n \\ \sum v_n \succ \end{cases} \Longrightarrow \sum u_n \succ$$
 (1)

$$\left. \begin{array}{c|c} \forall n \in \mathbb{N} \mid u_n > v_n \\ \sum v_n \prec \end{array} \right\} \Longrightarrow \sum u_n \prec \tag{2}$$

 \square Сначала докажем (1). Пусть $S_n = u_1 + u_2 + \dots$ и $\sigma_n = v_1 + v_2 + \dots$, т.к. $\forall n \in \mathbb{N} \ | \ u_n < v_n$, то $S_n \leqslant \sigma_n$. Причем эти последовательности возрастают, т.к. ряды знакоположительные. Далее

$$\sum v_n \succ \Longrightarrow \exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$$

Таким образом последовательность $\{\sigma_n\}$ ограничена числом σ . Последовательность $\{S_n\}$ возрастает и также ограничена числом σ . Значит по т. Вейерштрасса $\exists \lim_{n \to \infty} S_n = S$, причем $S \leqslant \sigma$.

Теперь от противного докажем (2). Пусть $\sum_{n=0}^{\infty} u_n$ сходится, тогда согласно (1) $\sum_{n=0}^{\infty} v_n$ тоже должен сходится. Противоречие.

Замечание 1.2.13. Для установления расходимости ряда в качестве вспомогательного не следует брать ряды с несуществующей как предел суммой.

 $\Pi puмep$ 1.2.14.

$$\sum \frac{1}{n^2} \qquad u_n = \frac{1}{n^2}$$

$$\sum \frac{1}{n(n+1)} = 1 \in \mathbb{R} \qquad v_n = \frac{1}{n(n+1)}$$

Неравенство $\frac{1}{n^2} < \frac{1}{n(n+1)}$ неверно, однако заметим, что

$$\frac{1}{n(n+1)} = \frac{1}{n^2 + n} > \frac{1}{n^2 + 2n + 1} = \frac{1}{(n+1)^2}$$

Таким образом по признаку сравнения ряд $\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}$ сходится. Если перенумеровать, то получим, что и ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится.

Теорема 1.2.15. (Предельный признак) Пусть $\sum u_n$ — исследуемый ряд, а $\sum v_n$ — вспомогательный ряд и $u_n, v_n \geqslant 0$. Тогда, если

$$\lim_{n \to \infty} \frac{u_n}{v_n} = q \in \mathbb{R} \setminus \{0\}$$

то ряды имеют одинаковую сходимость.

□ Распишем предел по определению, после чего раскроем получившийся модуль (учитывая то, что ряды знакоположительные).

$$\lim_{n \to \infty} \frac{u_n}{v_n} = q \iff \forall \varepsilon > 0 \left| \exists n_0 \in \mathbb{N} \left| \forall n > n_0 : \left| \frac{u_n}{v_n} - q \right| < \varepsilon \right.$$

$$q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon$$

$$(q - \varepsilon)v_n < u_n < (q + \varepsilon)v_n$$

$$(1)$$

При достаточно малом ε ряды $\sum (q+\varepsilon)v_n, \sum (q-\varepsilon)v_n$ и $\sum v_n$ имеют одинаковую сходимость, т.к. домножение на ненулевую константу не влияет на сходимость. Применим признак сравнения.

$$\sum v_n \prec \Longrightarrow \sum u_n \prec \qquad \sum v_n \succ \Longrightarrow \sum u_n \succ \tag{2}$$

В первом случае u_n расходится, т.к. он больше расходящегося ряда (левая часть неравенства (1)), во втором случае u_n сходится, т.к. он меньше сходящего ряда (правая часть неравенства (1)).

Замечание 1.2.16. Т.к. u_n и v_n являются бесконечно малыми (иначе вопрос о расходимости ряда u_n решен, т.к. не выполнено необходимое условие сходимости 1.2.3), то в предельном признаке устанавливается порядок u_n по отношению к v_n . Ряды имеют одинаковый характер сходимости при одином порядке малости.

$$\underline{\operatorname{Lm}}$$
 1.2.17. Пусть $\lim_{n\to\infty}\frac{u_n}{v_n}=0 \Longleftrightarrow u_n=o(v_k)$. Тогда $\sum v_n \succ \Longrightarrow \sum u_n \succ$.

□ Распишем предел по определению.

$$\lim_{n \to \infty} \frac{u_n}{v_n} = 0 \iff \forall \varepsilon > 0 \mid \exists n_0 \in \mathbb{N} \mid \forall n > n_0 \colon \left| \frac{u_n}{v_n} \right| < \varepsilon \implies u_n < \varepsilon v_n \tag{1}$$

Т.к. ряд $\sum v_n$ сходится, то выполнен критерий Коши (1.2.8), имеем

$$\forall \varepsilon' > 0 \mid \exists m_0 \in \mathbb{N} \mid \forall n \geqslant p \geqslant m_0 \colon |v_p + \ldots + v_n| < \varepsilon'$$
 (2)

Домножим последнее неравенство на ε и объединив его с неравенством в (1) получим, что

$$|u_p + \ldots + u_n| < \varepsilon |v_p + \ldots + v_n| < \underbrace{\varepsilon \varepsilon'}_{z}$$
 (3)

Подставим это в (2), получим

$$\forall \tilde{\varepsilon} > 0 \mid \exists m_0 \in \mathbb{N} \mid \forall n \geqslant p \geqslant m_0 \colon |u_p + \ldots + u_n| < \tilde{\varepsilon}$$

Значит ряд $\sum u_n$ сходится по критерию Коши.

Замечание 1.2.18. Если в отношении общих членов ряда получилась бесконечность, то лучше использовать другие признаки.

Теорема 1.2.19. (Признак Даламбера)

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=D\in\mathbb{R}=\begin{cases}0\leqslant D<1&\Longrightarrow\succ\\D=1&\Longrightarrow\text{ необходимо дополнительное исследование}\\D>1&\Longrightarrow\prec\end{cases}$$

□ Распишем предел по определению.

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = D \iff \forall \varepsilon > 0 \ \Big| \ \exists n_0 \in \mathbb{N} \ \Big| \ \forall n > n_0 \colon \left| \frac{u_{n+1}}{u_n} - D \right| < \varepsilon \implies (D + \varepsilon)u_n < u_{n+1} < (D + \varepsilon)u_n$$
 (1)

Рассмотрим правую часть полученного неравенства. Положим $D + \varepsilon = r < 1$. Тогда $u_{n+1} < r \cdot u_n$ начиная с n_0 . Имеем

Отбросим «голову» полученных рядов до члена u_{n_0} включительно. Тогда из ряда $\sum v_n$ получим ряд

$$\sum v_n' = \sum_{k=1}^{\infty} r^k \underbrace{u_{n_0}}_{const} = u_{n_0} \sum_{k=1}^{\infty} r^k$$
(3)

Получаем эталонный геометрический ряд, т.к. r < 1 то он сходится. Значит по признаку сравнения сходится и ряд $\sum u'_n$, полученный отбрасыванием «головы» ряда $\sum u_n$. Отбрасывание конечного числа членов ряда не влияет на его сходимость, а значит ряд $\sum u_n$ также сходится.

Аналогично рассмотрим левую часть неравенства (1) и положим $D-\varepsilon=r>1$. Оценим члены ряда снизу вспомогательным рядом $\sum v'_{n_0+k}=r^ku_{n_0}$. При r>1 исходный ряд почленно больше расходящегося, значит тоже расходится.

1.3. Лекция 23.09.15.

Теорема 1.3.1. (Радикальный признак Коши)

$$\lim_{n\to\infty}\sqrt[n]{u_n}=K\in\mathbb{R}=\begin{cases} 0\leqslant K<1 &\Longrightarrow\succ\\ K=1 &\Longrightarrow \text{ необходимо дополнительное исследование}\\ K>1 &\Longrightarrow\prec\end{cases}$$

□ Распишем предел по определению.

$$\lim_{n \to \infty} \sqrt[n]{u_n} = K \iff \forall \varepsilon > 0 \ \Big| \ \exists n_0 \in \mathbb{N} \ \Big| \ \forall n > n_0 \colon \left| \sqrt[n]{u_n} - K \right| < \varepsilon \implies K - \varepsilon < \sqrt[n]{u_n} < K + \varepsilon$$

Рассмотрим случай $0 \leqslant K < 1$. Тогда из правой части неравенства получаем

$$\exists r \mid K < r < 1 \ (\varepsilon = r - K) \Longrightarrow \sqrt[n]{u_n} < r \Longrightarrow u_n < r^n$$

Таким образом ряд $\sum u_n$ почленно меньше ряда $\sum r^n (0 < r < 1)$, который сходится. Значит по признаку сравнения он тоже сходится. Аналогично рассмотрим случай K > 1. Тогда из левой части неравенства получаем

$$\exists r \mid K > r > 1 \ (\varepsilon = K - r) \Longrightarrow r < \sqrt[n]{u_n} \Longrightarrow u_n > r^n$$

Таким образом ряд $\sum u_n$ почленно больше расходящегося ряда $\sum r^n \ (r > 1)$, значит он тоже расходится.

Рис. 1.3.2: Иллюстрация к 1.3.3

Теорема 1.3.3. (Интегральный признак Коши) Пусть есть ряд $\sum_{n=a}^{\infty} u_n$ и интеграл $\int_a^{\infty} f(x) dx$. Тогда если $f(x) \geqslant 0, f(x)$ монотонно убывает и $\forall n \in \mathbb{N} \ \Big| \ f(n) = u_n$, то ряд и интеграл имеют одинаковую сходимость.

□ Пользуясь иллюстрацией рис. 1.3.2 составим неравенство и воспользуемся предельным переходом.

$$\underbrace{\sum_{k=2}^n u_k}_{\text{Нижние столбцы}} \leqslant \int_1^n f(x) \mathrm{d}x \leqslant \underbrace{\sum_{k=1}^{n-1} u_k}_{\text{Верхние столбцы}}$$

$$S_n - u_1 \leqslant \int_1^n f(x) \mathrm{d}x \leqslant S_{n-1}$$

$$\lim_{n \to \infty} (S_n - u_1) \leqslant \int_1^\infty f(x) \mathrm{d}x \leqslant \lim_{n \to \infty} (S_{n-1})$$

1.
$$\sum u_n = S \in \mathbb{R}$$

Интеграл сходится, т.к. ограничен снизу и сверху числами $S-u_1$ и S соответственно.

2.
$$\sum u_n \prec$$

Интеграл расходится, т.к. он не менее бесконечности (левая часть неравенства).

3.
$$\int \succ , \int = I$$

$$\lim_{n \to \infty} (S_n - u_1) < I \in \mathbb{R} \Longrightarrow \sum u_n > 0$$

Ряд расходится, т.к. предел его частичных сумм не менее бесконечности (правая часть неравенства).

Пример 1.3.4. Рассмотрим обобщенный гармонический ряд $\sum \frac{1}{n^p}$ и исследуем его сходимость с помощью интегрального признака Коши. Введем функцию $f(x) = \frac{1}{x^p}$, $f(x) \colon [1; +\infty] \to R^+$. Если p = 1, то получаем

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x} = \ln x \Big|_{1}^{\infty} = \infty$$

Если $p \neq 1$, то

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{p}} = \frac{x^{-p+1}}{-p+1} \bigg|_{1}^{\infty} = \frac{1}{1-p} \cdot \lim_{x \to \infty} \left(x^{-p+1} - 1 \right)$$

Значит, если -p+1<0, т.е. p>1, то интеграл (а значит и ряд) сходится. Если же p<1, то ряд расходится. В итоге

$$\sum \frac{1}{n^p} \qquad \begin{cases} p > 1 \Longrightarrow \succ \\ p \leqslant 1 \Longrightarrow \prec \end{cases}$$

Знакочередующиеся ряды

Def 1.3.5. Ряд вида

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - \dots \pm u_n \mp$$

где $u_n > 0$ называют знакочередующимся рядом.

Замечание 1.3.6. Следует различать знакочередующиеся и знакопеременные ряды. В знакочередующихся рядах знак чередуется с каждым следующим членом ряда. В знакопеременных знак члена ряда не обязательно чередуется — он может меняться и по более сложным правилам. Примером знакопеременного ряда может быть

$$\sum u_n = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} - \frac{1}{7} + \dots$$

Теорема 1.3.7. (Признак Лейбница о сходимости ряда) Пусть дан знакочередующийся ряд $\sum (-1)^{n-1}u_n$. Тогда если u_i монотонно убывают и $\lim_{n\to\infty}u_n=0$, то данный ряд сходится.

 \square Рассмотрим частичную сумму ряда S_{2n}

$$S_{2n} = u_1 - u_2 + u_3 - u_4 + \ldots + u_{2n-1} - u_{2n} = (u_1 - u_2) + (u_3 - u_4) + \ldots + (u_{2n-1} - u_{2n})$$

Т.к. $\{u_i\}$ монотонно убывает, то $u_i > u_{i+1}$, значит все полученные скобки положительные, причем при увеличении n сумма S_{2n} накапливается. Таким образом последовательность $\{S_{2n}\}$ возрастает. Сгруппируем члены ряда в частичной суммой по другому.

$$S_{2n} = u_1 - u_2 + u_3 - u_4 + \ldots + u_{2n-1} - u_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \ldots - (u_{2n-2} - u_{2n-1}) - u_{2n}$$

Опять же, в силу монотонности $\{u_i\}$ все полученные скобки положительные, а u_{2n} положителен по условию. Значит $S_{2n} < u_1$. Итого последовательность $\{S_{2n}\}$ ограничена сверху и монотонно возрастает, значит

$$\exists \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$$

 S_{2n+1} отличается от S_{2n} одним слагаемым u_{2n+1} , которое не влияет на сходимость.

$$\lim_{n \to \infty} S_{2n+1} = \underbrace{\lim_{n \to \infty} S_{2n}}_{S} + \underbrace{\lim_{n \to \infty} u_{2n+1}}_{0} = S$$

Замечание 1.3.8 (Об оценке остатка ряда). В доказательстве теоремы 1.3.7 установили, что $S_{2n} < u_1$ (для S_{2n+1} это также верно). Рассмотрим следующий ряд

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n = u_1 - u_2 + u_3 - u_4 + \dots \underbrace{\pm u_{k+1} \mp u_{k+2} \pm \dots}_{R_{k+1}}$$

$$R_{k+1} = \sum_{n=k+1}^{\infty} (-1)^{n-1} u_n = \pm \sum_{m=1}^{\infty} (-1)^{m-1} u_n$$

Если исходный ряд сходится, то и его остаток R_{k+1} также сходится. При этом остаток можно оценить (по модулю) старшим членом, т.е. $|R_{k+1}| < |u_{k+1}|$. Это позволяет определить, какая погрешность получится, если в приближенных вычислениях использовать частичную сумму ряда.

Пример 1.3.9. Пусть дан ряд

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

Вычислим его остаток R_4 .

$$R_4 = \left(\frac{1}{16} - \frac{1}{32}\right) + \left(\frac{1}{64} - \frac{1}{128}\right) + \dots = \frac{1}{32} + \frac{1}{128} + \frac{1}{512} + \dots = \sum_{k=2}^{\infty} \frac{1}{2^{2k+1}}$$

Преобразуем полученное выражение перенумеровав ряд.

$$R_5 = \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{2^{2k}} = \frac{1}{2} \sum_{k=2}^{\infty} \frac{1}{4^k} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{4^{k+2}} = \frac{1}{32} \sum_{k=0}^{\infty} \frac{1}{4^k} = \frac{1}{32} \cdot \frac{1}{1 - \frac{1}{4}} = \frac{1}{24} < \frac{1}{16} = u_4$$

Замечание 1.3.10. Заметим, что оценка 1.3.8 не работает для знакоположительных рядов. Приведем пример.

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \underbrace{\frac{1}{16} + \dots}_{R_4}$$

$$R_4 = \frac{1}{16} + \frac{1}{32} + \dots = \frac{1}{16} \left(1 + \frac{1}{2} + \dots \right) = \frac{1}{8} > \frac{1}{16} = u_4$$

Теорема 1.3.11. (Абсолютная сходимость)

$$\sum |u_n| \succ \Longrightarrow \sum u_n \succ$$

 \square Применим критерий Коши для ряда $\sum |u_n|$.

$$\sum |u_n| \succ \iff \forall \varepsilon > 0 \mid \exists n_0 \in \mathbb{N} \mid \forall n > p > n_0 \colon |S_n - S_p| < \varepsilon$$
 (1)

Раскроем и преобразуем последнее неравенство. Воспользуемся тем, что модуль суммы не превышает суммы модулей.

$$|S_n - S_p| = |[|] |u_p| + \dots + |u_n| < \varepsilon$$

$$|u_p + \dots + u_n| \le |u_p| + \dots + |u_n| < \varepsilon$$

$$|u_p + \dots + u_n| < \varepsilon$$
(2)

Если вернуться к 1 и подставить полученное неравенство, то получим критерий Коши для ряда $\sum u_n$.

Def 1.3.12. Ряд называется абсолютно сходящимся, если ряд из модулей сходится. Ряд называется условно сходящимся, если он сходится, но ряд из модулей расходится.

Пример 1.3.13. Примером условно сходящегося ряда может быть ряд $\sum (-1)^{n-1} \frac{1}{n}$.

Замечание 1.3.14. Перестановка членов абсолютно сходящегося ряда не меняет его суммы.

Замечание 1.3.15. Ряд из модулей знакоположителен, значит для него можно применять все признаки для знакоположительных рядов рассмотренные ранее.

1.4. Лекция 23.09.22.

Функциональные ряды

Def 1.4.1. Ряд $\sum u_n(x)$, где $u_n(x)$ вещественно-значные, называется функциональным.

Замечание 1.4.2. Функциональный ряд при фиксированном х становится числовым. Например

$$\sum x_n \qquad \begin{array}{c} x = 2 & \sum 2^n \prec \\ x = \frac{1}{2} & \sum \frac{1}{2^n} \succ \end{array}$$

Замечание 1.4.3. Определение общего члена, частичной суммы и суммы ряда сохраняются, но теперь это функции.

Def 1.4.4. Если при фиксированном x_0 числовой ряд $\sum u_n(x_0) \succ$, то говорят, что этот ряд сходится в точке $x = x_0$. При этом множество x, в которых ряд \succ называется областью сходимости ряда.

Замечание 1.4.5. Заметим, что если ряд $\sum u_n(x)$ сходится к сумме S(x) и $S_n(x)$, $r_{n+1}(x)$ — частичная сумма и остаток ряда (т.е. $S(x) = S_n(x) + r_{n+1}(x)$), то

$$\lim_{n \to \infty} r_{n+1}(x) = \lim_{n \to \infty} \left(S(x) - S_n(x) \right) = S(x) - \underbrace{\lim_{n \to \infty} S_n(x)}_{S(x)} = 0$$

Таким образом, у сходящегося ряда остаток стремится к нулю.

Замечание 1.4.6 (О критерии Коши для функциональных рядов).

$$\sum u_n(x) \succ \text{ в области } D \Longleftrightarrow \forall \varepsilon > 0 \ \Big| \ \exists n_0 = n_0(\varepsilon,x) \in \mathbb{N} \ \Big| \ \forall n > m > n_0 \colon \ |S_n - S_m| < \varepsilon$$

Критерий неудобен, т.к. n_0 различны для разных x. Можно определить сходимость так, чтобы избавиться от зависимости x.

Def 1.4.7. Ряд $\sum u_n(x)$ называется сходящимся равномерно в области D, если

$$\forall \varepsilon > 0 \mid \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 \colon |r_{n+1}(x)| < \varepsilon$$

Def 1.4.8. Пусть дан функциональный ряд $\sum u_n(x)$ и сходящийся числовой ряд $\sum a_n$ такой, что $\forall n \in \mathbb{N} \ | \ u_n(x) \leqslant a_n$ в области D. Тогда ряд $\sum u_n(x)$ называется мажорируемым числовым рядом $\sum a_n$.

Теорема 1.4.9. (Признак Вейерштрасса) Если ряд $\sum u_n(x)$ мажорируемый, то он равномерно сходится.

 \square Пусть исходный ряд мажорируем рядом $\sum a_n$. Обозначим остаток этого ряда $\overline{r_{n+1}}=a_{n+1}+\ldots$, тогда

$$\sum a_n \succ \iff \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 \colon |\overline{r_{n+1}}| < \varepsilon$$
 (1)

Рассмотрим модуль остатка исходного ряда.

$$|r_{n+1}| = |u_{n+1}(x) + u_{n+2}(x) + \ldots| < \underbrace{|u_{n+1}(x)|}_{< a_{n+1}} + \underbrace{|u_{n+2}(x)|}_{< a_{n+2}} + \ldots < \varepsilon$$
 (2)

Подставим (2) в (1).

$$\sum a_n \succ \iff \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 \colon |r_{n+1}| < \varepsilon$$
(3)

Замечание 1.4.10. Для мажорируемых рядов работают признаки сходимости Даламбера, Коши и т.д. Они позволяют оценить область сходимости.

Пример 1.4.11. Пусть дан функциональный ряд $\sum \left(\frac{x+n}{2nx}\right)^2$. Применим признак радикальный Коши и получим

$$K = \lim_{n \to \infty} \left| \frac{x+n}{2nx} \right| = \frac{1}{2|x|} \lim_{n \to \infty} \left| \frac{x}{n} + 1 \right| = \frac{1}{2|x|}$$

Теперь, если K<1, т.е. $|x|>\frac{1}{2}$, то ряд сходится. Далее нужно проверить случай K=1, ведь радикальный признак Коши ничего не утверждает о сходимости в этом случае. Для начала рассмотрим $x=\frac{1}{2}$.

$$\sum \left(\frac{\frac{1}{2}+n}{n}\right)^n = \sum \left(1+\frac{1}{2n}\right)^n$$
$$\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^{2n\cdot\frac{1}{2}} = e^{\frac{1}{2}} \neq 0$$

Таким образом полученный ряд расходится, т.к. нарушено необходимое условие сходимости ряда. Аналогично рассмотрим случай $x = -\frac{1}{2}$.

$$\sum \left(\frac{-\frac{1}{2} + n}{-n}\right)^n = \sum \left(-1 + \frac{1}{2n}\right)^n = \sum (-1)^n \cdot \left(1 - \frac{1}{2n}\right)^n$$

Здесь мы также видим, что нарушено необходимое условие сходимости. Итого, область сходимости имеет вид $D = (-\infty; -\frac{1}{2}) \cup (\frac{1}{2}; \infty)$.

Непрерывность суммы ряда

Замечание 1.4.12.

$$\left. \begin{array}{l}
f_1(x) + \ldots + f_n(x) = f(x) \\
f_i \in C_0 \left[a; b \right]
\end{array} \right\} \Longrightarrow f(x) \in C_0 \left[a; b \right]$$

Однако для бесконечных сумм это в общем случае неверно. Покажем это на следующем примере

$$\sum \left(x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}\right)$$

$$S_n(x) = x^{\frac{1}{2n+1}} - x$$

$$S(x) = \lim_{n \to \infty} S_n(x)$$

Требуется узнать, непрерывна ли функция S(x). Рассмотрим три случая.

$$x > 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = 1 - x$$

$$x = 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = 0$$

$$x < 0 \Longrightarrow \lim_{n \to \infty} \left(x^{\frac{1}{2n+1}} - x \right) = -1 - x$$

$$S(x) = \begin{cases} 1 - x & x > 0 \\ 0 & x = 0 \\ -1 - x & x < 0 \end{cases}$$

Итого мы видим, что непрерывность нарушена.

Теорема 1.4.13.

$$S(x) = \sum u_n(x)$$

$$u_n(x) \in C_0\left[a;b\right]$$

$$\sum u_n(x)$$
 мажорируем на
$$\left[a;b\right]$$

□ Мы хотим доказать, что

$$\forall \varepsilon > 0 \mid \exists \delta > 0 \colon |\Delta x| < \delta \Longrightarrow |\Delta S| < \varepsilon$$
 (1)

Введем следующие обозначения

$$\Delta S = S(x + \Delta x) - S(x)$$

$$S(x) = S_n(x) + r_{n+1}(x)$$

$$\Delta S_n = S_n(x + \Delta x) - S_n(x)$$
(2)

Тогда получаем, что

$$\Delta S = \Delta S_n(x + \Delta x) + r_{n+1}(x + \Delta x) - S_n(x) - r_{n+1}(x)$$

$$\Delta S_n + r_{n+1}(x + \Delta x) - r_{n+1}(x)$$
(3)

 ΔS_n это конечная сумма, значит

$$\forall \varepsilon > 0 \mid \exists \delta > 0 \colon |\Delta x| < \delta \Longrightarrow |\Delta S_n| < \frac{\varepsilon}{3}$$
 (4)

Далее рассмотрим $r_{n+1}(x)$. Применим условие мажорируемости (т.е. равномерной сходимости).

$$\forall \varepsilon > 0 \mid \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \mid \forall n > n_0 \colon |r_{n+1}(x)| < \frac{\varepsilon}{3} \qquad (\forall x \in [a; b])$$
 (5)

Аналогично можно рассмотреть $r_{n+1}(x + \Delta x)$. Итого из (4) и (5) получаем, что

$$|\Delta S| = |\Delta S_n + r_{n+1}(x + \Delta x) - r_{n+1}(x)| \leqslant |S_n| + |r_{n+1}(x + \Delta x)| + |r_{n+1}(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
 (6)

Замечание 1.4.14. Непрерывность суммы мажоритируемого ряда позволяет такие ряды почленно интегрировать и дифференцировать.

1.5. Лекция 23.09.29.

Теорема 1.5.1. (Интегрирование рядов) Пусть $\sum u_n(x) = S(x)$ — мажорируем на [a;b]. Тогда имеет смысл $\int_a^x S(t) dt$ ($\forall x \in [a;b]$), а также

$$\int_{a}^{x} \left(\sum_{n=1}^{\infty} u_n(t) dt \right) = \sum_{n=1}^{\infty} \int_{a}^{x} u_n(t) dt$$
 (0)

 \square Если ряд мажорируем, то S(x) непрерывна и определен интеграл $\int_a^x S(t) \mathrm{d}t = A \in \mathbb{R}$. Докажем равенство (0). Пользуясь линейностью интеграла получаем

$$S(x) = \sum_{k=1}^{n} u_k(x) + r_{n+1}(x)$$

$$\int_a^x S(t) dt = \int_a^x \left(u_1(t) + \dots + u_n(t) \right) dt + \int_a^x r_{n+1}(t) dt = \sum_{k=1}^n \left(\int_a^x u_k(t) dt \right) + \int_a^x r_{n+1}(t) dt$$
(1)

Далее поработаем с остатком ряда. Имеем $|r_{n+1}| = |u_{n+1}(t) + u_{n+2}(t) + \ldots|$. Т.к. ряд мажорируем, то $\forall i \colon |u_i| \leqslant a_i$, где $\sum_{i=n+1}^{\infty} a_i$ это остаток мажорирующего ряда.

Т.к. мажорирующий ряд сходится, то его остаток $\sum_{i=n+1}^{\infty} a_i = \varepsilon_i \xrightarrow{n \to \infty} 0$. Тогда $|r_{n+1}(t)| < \varepsilon_n \xrightarrow{n \to \infty} 0$. Получаем

$$\left| \int_{a}^{x} r_{n+1}(t) dt \right| \leqslant \int_{a}^{x} |r_{n+1}(t)| dt < \int_{a}^{x} \varepsilon_{n} dt = \varepsilon_{n}(x-a) \xrightarrow{n \to \infty} 0$$
 (2)

Таким образом $\int_a^x r_{n+1}(t) dt$ абсолютно сходится к нулю. Используя это и (1), получаем

$$\lim_{n \to \infty} \int_{a}^{x} S(t) dt = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\int_{a}^{x} u_{k}(t) dt \right) + \underbrace{\lim_{n \to \infty} \int_{a}^{x} r_{n+1}(t) dt}_{=0}$$

$$\int_{a}^{x} S(t) dt = \sum_{k=1}^{\infty} \left(\int_{a}^{x} u_{k}(t) dt \right)$$
(3)

Полученная формула разрешает почленно интегрировать мажорируемые ряды.

Теорема 1.5.2.

$$\sum u_n(x) = S(x)$$

$$\forall n \colon u_n \in C_1 [a; b]$$

$$\forall n \colon u'_n \in C_0 [a; b]$$

$$\sum u'_n(x)$$
 мажорируем на $[a; b]$

$$\Longrightarrow \sum u'_n(x) = D(x) = S'(x)$$

 $\Box \ D(x)$ непрерывна, т.к. ряд производных мажорируем. Тогда имеет смысл $\int_a^x D(t) \mathrm{d}t \ (\forall x \in [a;b])$. Используя линейность интеграла получаем

$$\int_{a}^{x} D(t)dt = \int_{a}^{x} u'_{1}(t)dt + \int_{a}^{x} u'_{2}(t)dt + \dots = \sum_{n=1}^{\infty} u_{n}(t) \Big|_{a}^{x} = \sum_{n=1}^{\infty} \left(u_{n}(x) - u_{n}(a) \right) \xrightarrow{\sum u_{n}(x) = S(x)} S(x) - \underbrace{\sum u_{n}(x) = S(x)}_{=const} S(x) - \underbrace{\sum u_{n}(x) = S(x)}_{=$$

Замечание 1.5.3. Не мажорируемые ряды формально дифференцируются и интегрируются почленно, но равенство сумм не выполняется (интеграл суммы не равен сумме интегралов).

Пример 1.5.4. Рассмотрим следующий ряд

$$\sum rac{\sin n^4 x}{n^2} \qquad \left| rac{\sin n^4 x}{n^2}
ight| \leqslant rac{1}{n^2} \Longrightarrow \sum rac{1}{n^2}$$
 мажорирующий

Допустим, мы не проверили, что $\sum u_n'(x)$ мажорируем и продифференцировали исходный ряд «не глядя».

$$\sum u'_n(x) = \sum \frac{1}{n^2} \left(\cos(n^4 x) \cdot n^4 \right) = \sum n^2 \cos n^4 x$$

$$u'_n = n^2 \underbrace{\cos n^4 x}_{\text{ограничена}} \xrightarrow{n \to \infty} \infty$$

Мы видим, что не выполнятся необходимое условие сходимости.

Степенные ряды

Def 1.5.5. Ряд $\sum_{n=0}^{\infty} c_n x^n$ называется степенным рядом или рядом по степени x.

В степенных рядах обозначение $\sum c_n x^n$ будет подразумевать, что нижняя граница равна нулю, а не единице, как это было ранее.

 $\it Замечание 1.5.6.$ Можно рассматривать степенные ряды со сдвигом в точку $\it a.$

$$\sum c_n(x-a)^n \xrightarrow{x-a=t} \sum c_n t^n$$

Теорема 1.5.7. (Абеля. Признак сходимости степенного ряда) Если $\sum c_n x^n$ сходится в $x_0 \neq 0$, тогда $\forall x \colon |x| < |x_0|$ ряд сходится абсолютно и равномерно. Если $\sum a_n x^n$ расходится в x_1 , тогда $\forall x \colon |x| > |x_1|$ ряд расходится.

 \square Сначала докажем первую часть теоремы. Ряд $\sum c_n x^n$ сходится в $x_0 \Longrightarrow$ выполнено необходимое условие сходимости $c_n x^n \xrightarrow{n \to \infty} 0$. Значит последовательность $\{u_n\}$ ограничена, т.е. $\exists M>0\colon |c_n x_0^n|\leqslant M$. Рассмотрим ряд из модулей элементов исходного ряда

$$\sum |c_n x^n| = |c_0| + |c_1 x| + |c_2 x^2| + \ldots + |c_n x^n| + \ldots = \underbrace{|c_0|}_{\leq M} + \underbrace{|c_1 x_0|}_{\leq M} \cdot \left| \frac{x}{x_0} \right| + \underbrace{|c_2 x_0^2|}_{\leq M} \cdot \left| \frac{x^2}{x_0^2} \right| + \ldots = \sum |c_n x_0^n| \left| \frac{x}{x_0} \right|^n \leqslant \sum M \cdot \left| \frac{x}{x_0} \right|^n$$

Т.к. $|x| < |x_0|$, то этот ряд сходится \Longrightarrow исходный ряд сходится абсолютно. Если $|x| < |x_0|$, то $\exists r > 0$: $|x| < r < |x_0|$. Таким образом

$$|c_n x^n| \leqslant M \cdot \left| \frac{x}{x_0} \right|^n \leqslant M \cdot \left| \frac{r}{x_0} \right|^n$$

и $M \left| \frac{r}{r_0} \right|^n$ — члены мажорирующего ряда.

Вторую часть теоремы докажем от противного. Пусть $\exists : |x| > |x_1|$ и $\sum c_n x^n$ сходится. Тогда согласно первой части теоремы в точке x_1 ряд должен сходится. Противоречие.

Замечание 1.5.8. Между интервалами сходимости и расходимости степенного ряда найдется точка $\pm R$ называемая радиусом сходимости ряда. Интервал (-R;R) называется кругом сходимости.

Замечание 1.5.9. В круге сходимости ряд мажорируем \Longrightarrow интегрируем. Исследуем возможность дифференцирования. Нужно показать, что $\sum u_n'(x) = \sum c_n \cdot n \cdot x^{n-1}$ мажорируем. Рассмотрим интервал $(-r;r) \in (-R;R)$. В этом интервале исходный ряд сходится, значит

$$\forall \xi \in (-R;R) \setminus (-r;r) \Longrightarrow \begin{cases} |c_n \xi^n| \leqslant M \in \mathbb{R}^+ \\ \frac{r}{\xi} < 1 \end{cases}$$

$$\forall x \in (-r;r): |u_n'(x)| = \left|c_n \cdot n \cdot x^{n-1}\right| \leqslant \left|c_n \cdot n \cdot r^{n-1}\right| = \left|\frac{c_n \xi^n}{\xi}\right| \cdot \left|n \cdot \left(\frac{r}{\xi}\right)^{n-1}\right| \leqslant \left|\frac{M}{\xi}\right| \cdot \left|n \cdot \left(\frac{r}{\xi}\right)^{n-1}\right|$$

Если ряд из производных мажорируем, то ряд из вторых производных также мажорируем и т.д.

1.6. Лекция 23.10.06.

Теорема 1.6.1. (Формула Тейлора)

$$f(x) \in C_{\infty} u_{\delta}(x_0)$$

$$\forall x \in (-R; R) \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n = T$$

$$\lim_{n \to \infty} R_{n+1}(x) = 0$$

$$\Longrightarrow f(x) = T$$

$$f(x) = T_n(x) + R_{n+1}(x) = \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
 (1)

Заметим, что $T_n(x)$ это частичная сумма ряда (2)

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \tag{2}$$

T.к. ряд степенной, то можно найти радиус сходимости. Пусть в круге радиуса R ряд Tейлора (2) сходится к сумме T, тогда перейдем к пределу

$$\lim_{n \to \infty} f(x) = \underbrace{\lim_{n \to \infty} T_n(x)}_{T} + \underbrace{\lim_{n \to \infty} R_{n+1}(x)}_{=0} \Longrightarrow f(x) = T$$

Def 1.6.2 (Ряд Маклорена).

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

Такое разложение f(x) называется стандартным.

Стандартные разложения элементарных фукнций

 $\mathbf{I} f(x) = e^x$

$$e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$R_{n+1}(x) = \frac{e^\xi}{(n+1)!} x^{n+1} \xrightarrow{n \to \infty} 0$$

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{|x|}{n+1} < 1 \Longrightarrow \text{область сходимости } \mathbb{R}$$

II $f(x) = \sin x$

$$f^{(n)}(x) = \sin\left(x + \frac{\pi n}{2}\right)$$

$$\sin x = \sum_{n=0}^{\infty} \frac{\sin\left(\frac{\pi n}{2}\right)}{n!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!}$$

$$R_{n+1}(x) = \frac{\sin\left(\frac{\pi}{2}(n+1) + \xi\right)}{(n+1)!} x^{n+1} \leqslant \frac{x^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0$$

$$\lim_{k \to \infty} \left|\frac{u_{k+1}}{u_k}\right| = \lim_{k \to \infty} \frac{x^2}{(2k+2)(2k+3)} = 0 \Longrightarrow \text{область сходимости } \mathbb{R}$$

III $f(x) = \cos x$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
$$R_{n+1}(x) \xrightarrow{n \to \infty} 0$$
область сходимости \mathbb{R}

IV.1 $f(x) = \sinh x$

$$\sinh x = \frac{e^x - e^{-x}}{2} = \frac{1}{2} \left(\sum_{n=0}^{\infty} \frac{x^n}{n!} - \sum_{n=0}^{\infty} \frac{(-x)^n}{n!} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

IV.2 $f(x) = \cosh x$

$$\cosh x = \frac{e^x + e^{-x}}{2} = 1 + \frac{x^2}{2} + \frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$

Замечание 1.6.3.

$$e^{i\pi} = \sum_{(i\pi)^n}^{n!} = 1 + \frac{i\pi}{1!} - \frac{\pi^2}{2!} - \frac{i\pi^3}{3!} + \frac{\pi^4}{4!} = \underbrace{\left(1 - \frac{\pi^2}{2!} + \frac{\pi^4}{4!} - \ldots\right)}_{\cos \pi} + i\underbrace{\left(\frac{\pi}{1!} - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \ldots\right)}_{\sin \pi} = -1 + 0 = -1$$

Или, если обобщить, $e^{ix} = \cos x + i \sin x$.

V Биномиальный ряд $f(x) = (1+x)^m, m \in \mathbb{R}$

Замечание 1.6.4. Представление остаточного члена в форме Лагранжа и доказательство его сходимости к нулю это сложная задача, поэтому получим представление другим способом.

$$f'(x) = m(1+x)^{m-1}$$
$$(1+x)f'(x) = m(1+x)^m = mf(x)$$
$$\begin{cases} (1+x)f'(x) = mf(x) \\ f(0) = 1 \end{cases}$$

Получили задачу Коши. Запишем ее для суммы ряда.

$$\begin{cases} (1+x)S'(x) = mS(x) \\ S(0) = 1 \end{cases} \begin{cases} S(x) = 1 + a_1x + a_2x^2 + \dots + a_nx^n + \dots \\ S'(x) = a_1 + 2a_2x + \dots + na_nx^{n-1} + \dots \end{cases}$$
$$(1+x)S'(x) = a_1 + \underbrace{a_1x + 2a_2x}_{} + \underbrace{2a_2x^2 + 3a_3x^2}_{} + 3a_3x^3 + \dots = mS(x) = m + ma_1x + ma_2x^2 + ma_3x^3 + \dots$$

Приравняем коэффициенты.

$$a_{1} = m a_{1} = \frac{m}{1}$$

$$a_{1} + 2a_{2} = ma_{1} 2a_{2} = a_{1}(m-1) \Longrightarrow a_{2} = \frac{m(m-1)}{2}$$

$$2a_{2} + 3a_{3} = ma_{2} 3a_{3} = ma_{2} - 2a_{2} \Longrightarrow a_{3} = \frac{m(m-1)(m-2)}{2 \cdot 3}$$

$$\vdots \vdots$$

$$a_{n} = \frac{m(m-1) \dots (m-n+1)}{n!} = \frac{m!}{n!(m-n)!} = \binom{m}{n}$$

Итого $(1+x)^m = \sum_{n=0}^{\infty} C_m^n x^n$. Выясним радиус сходимости.

$$u_{n-1} = \frac{m(m-1)\dots(m-n+2)}{(n-1)!}x^{n-1} \qquad u_n = \frac{m(m-1)\dots(m-n+1)}{n!}x^n$$

$$\lim_{n \to \infty} \left| \frac{u_n}{u_{n-1}} \right| = \lim_{n \to \infty} \left| \frac{(m-n+1)x}{n} \right| = |x| \lim_{n \to \infty} \left| \frac{m}{n} - 1 + \frac{1}{n} \right| = |x| < 1$$

Таким образом, область сходимости (-1; 1).

3амечание 1.6.5. В некоторых случаях (например $m \in \mathbb{Z}^-$) x=1 входит в область сходимости.

VI
$$f(x) = \ln(1+x)$$

Заметим, что $f'(x) = \frac{1}{1+x} = (1+x)^{-1}$ это бином. Получаем

$$f'(x) = \sum_{n=0}^{\infty} C_m^n x^n = 1 - x + x^2 - x^3 + \dots$$
$$f(x) = \ln(1+x) = \int_0^x (1 - x + x^2 - x^3 + \dots) dx = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n!}$$

Область сходимости, как и у бинома, будет равна (-1;1).

Замечание 1.6.6. Если взять $x = \frac{1}{k}$, то тогда

$$\ln(1+x) = \ln\left(1+\frac{1}{k}\right) = \ln\left(\frac{k+1}{k}\right) = \ln(k+1) - \ln k$$

Т.е. можно рекурсивно получать значения натуральных логарифмов с помощью рядов.

Замечание 1.6.7 (О применении к приближенным вычислениям). Рассмотрим «неберущийся» интеграл.

$$\int_0^a \frac{\sin x}{x} dx = \int_0^a \frac{1}{x} \left(\sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n+1)!} \right) dx$$

$$= \int_0^a \sum_{n=0}^\infty \frac{(-1)^n x^{2n}}{(2n+1)!} dx$$

$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \int_0^a x^{2n} dx$$

$$= \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} \cdot \frac{a^{2n+1}}{(2n+1)}$$

Рассмотрим другой «неберущийся» интеграл.

$$\int_0^a e^{-x^2} dx = \int_0^a \sum_{n=0}^\infty \frac{(-x^2)^n}{n!} dx = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \cdot \frac{a^{2n+1}}{2n+1}$$

1.7. Лекция 23.10.13.

Лекция отменена в связи с болезнью лектора.

1.8. Лекция 23.10.20.

Множество функций, непрерывных на отрезке [a;b], образуют линейное пространство. Определим скалярное произведение и норму

$$(f;g) = \int_{a}^{b} f(x)g(x)dx$$
 $||f|| = \sqrt{(f;f)} = \sqrt{\int_{a}^{b} f^{2}(x)dx}$

и получим Евклидово пространство. Рассмотрим следующую ортонормированную систему

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\sin x, \frac{1}{\sqrt{\pi}}\cos x, \dots \frac{1}{\sqrt{\pi}}\sin nx, \frac{1}{\sqrt{\pi}}\cos nx\right\}$$

Натянем на нее линейную оболочку.

$$P_n(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos kx + b_k \sin kx \right)$$

Получим подпространство. Ортогональная проекция f_{\perp} это минимально отстоящий от f многочлен $P_n(x)$. Его коэффициенты называются коэффициентами Фурье и имеют вид

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$

В таком случае многочлен $P_n(x)$ называется многочленом Фурье. Определим расстояние от f(x) до $P_n(x)$ как среднеквадратическое отклонение (СКО):

$$\sigma^{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f(x) - \frac{\alpha_{0}}{2} - \sum_{k=1}^{n} (\alpha_{k} \cos kx + \beta_{k} \sin kx) \right)^{2} dx$$

Далее будет показано, что именно многочлен Фурье является минимально отстоящим, т.е. σ^2 — наименьшее при $\alpha_k = a_k$ и $\beta_k = b_k$. Более того, $\sigma \to 0$ при $n \to \infty$. Сейчас определим ряд Фурье и изучим его свойства.

Def 1.8.1 (Тригонометрический ряд Фурье). Дана f(x) — периодическая, $T=2\pi$. Тогда

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx \qquad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

называется представлением функции f(x) тригонометрическим рядом Фурье.

Теорема 1.8.2. (Критерий сходимости ряда Фурье к значению функции. Условие Дирихле) f(x): $[-\pi;\pi] \to \mathbb{R}$ — кусочно-непрерывна, кусочно-монотонна, ограничена. Тогда если S(x) это сумма ряда Фурье, то во всех внутренних точках S(x) = f(x), а точках конечных разрывов x_0 : $S(x) = \frac{1}{2} \left(f(x_0 - 0) + f(x_0 + 0) \right)$. При этом $f(-\pi) = f(\pi) = \frac{1}{2} \left(f(-\pi + 0) + f(\pi - 0) \right)$.

Замечание 1.8.3. Значения функции в точках разрыва не влияют на ее ряд Фурье, поэтому две функции равные везде, кроме точек разрыва, имеют один и тот же ряд.

Замечание 1.8.4. За пределами отрезка $[\pi;\pi]$ функция будет представлена тем же рядом, если она периодична с периодом 2π . Т.к. $\cos kx$ и $\sin kx$ периодичны с $T=2\pi$, то

$$S_n(x+T) = S_n(x)$$
 $S(x+T) = \lim_{n \to \infty} S_n(x+T) = S(x)$

 Π ример 1.8.5. Пусть f(x)=x на отрезке $[-\pi;\pi]$. Условие Дирихле выполнено, найдем коэффициенты Фурье.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos 0x dx = \frac{1}{2} \int_{-\pi}^{\pi} x dx = 0$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx = \frac{1}{\pi k} \int_{-\pi}^{\pi} x d \sin x = \frac{1}{\pi k} \left((x \sin kx) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \sin kx dx \right) = \frac{1}{\pi k^{2}} \cos kx \Big|_{-\pi}^{\pi} = 0$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx = -\frac{1}{\pi k} \int_{-\pi}^{\pi} x d \cos x = -\frac{1}{\pi k} \left((x \cos kx) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \cos kx dx \right) = \frac{1}{\pi k} (\pi \cos \pi k + \pi \cos \pi k) = \frac{2}{k} (-1)^{k+1}$$

Тогда получаем, что

$$x = \sum_{k=1}^{\infty} \frac{2}{k} (-1)^{k+1} \sin kx$$

$$S(-\pi) = S(\pi) = \frac{1}{2} \left(f(-\pi + 0) + f(\pi - 0) \right) = 0$$

3амечание 1.8.6. В примере пользовались свойствами интегралов от четных и нечетных функций. Заметим, что если f(x) — четная, то

$$a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos kx dx$$
 $b_k = 0$

A если f(x) — нечетная, то

$$a_k = 0$$
 $b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx dx$

Как изменится ряд Фурье, если f(x): $[a;b] \to \mathbb{R}$, но $[a;b] \neq [-\pi;\pi]$? Рассмотрим сдвиг и растяжение отрезка.

Сдвиг

Пусть f(x): $[a;b] \to \mathbb{R}$, $b-a=2\pi$. Тогда ряд Фурье для f(x) не изменится. Заметим, что если $\varphi(x)$ периодична с периодом $T=2\pi$, то

$$\int_{c}^{c+2\pi} \varphi(x) dx = \int_{-\pi}^{\pi} \varphi(x) dx$$

По геометрическому смыслу получаем

$$\int_{-\pi}^{c} = \int_{\pi}^{c+2\pi} \Longrightarrow \int_{c}^{c+2\pi} = \int_{c}^{\pi} + \int_{\pi}^{c+2\pi} = \int_{c}^{\pi} + \int_{-\pi}^{c} = \int_{-\pi}^{\pi}$$

При этом

$$\int_{a}^{b} \varphi(x+T) \, \mathrm{d}(x+T) = \int_{a}^{b} \varphi(x) \, \mathrm{d}x$$

Тогда разложение в ряд Фурье будет иметь вид

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

$$a_k = \frac{1}{\pi} \int_a^b f(x) \cos kx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \underbrace{f(x)}_{f(x-mT)} \cos kx dx \qquad = \frac{1}{\pi} \int_a^b f(x) \sin kx dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$$

Растяжение

Пусть $f(x)\colon [-l;l]\to \mathbb{R}, \, f(x)$ периодична с периодом T=2l. Введем замену

$$x = \frac{lt}{\pi} \qquad \qquad t = \frac{\pi x}{l}$$

$$x \in [-l; l] \longrightarrow \quad t \in [-\pi; \pi]$$

Тогда получим следующие коэффициенты.

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{lt}{\pi}\right) \cos kt dt = \frac{1}{l} \int_{-\pi}^{\pi} f\left(\frac{lt}{\pi}\right) \cos kt d\frac{lt}{\pi} = \frac{1}{l} \int_{-l}^{l} f\left(\frac{lt}{\pi}\right) \cos \frac{\pi k}{l} x dx = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi k}{l} x dx$$

И аналогично

$$b_k = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi k}{l} x dx$$

В итоге имеем

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{\pi n}{l} x + b_n \sin \frac{\pi n}{l} x \right)$$

3амечание 1.8.7. Таким образом функции, определенные на произвольном отрезке [a;b] можно разложить в ряд Фурье используя сдвиг и растяжение.

Замечание 1.8.8. Если функция определена на [0; l], то получить ее разложение можно дополнив четным или нечетным образом до функции на отрезке [-l; l].

1.9. Лекция 23.10.27.

Свойства коэффициентов

Дана f(x) на $[-\pi;\pi]$. Многочлены вида

$$\varphi(x) = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} (\alpha_k \cos kx + \beta_k \sin kx)$$

приближают f(x). Среднеквадратичное отклонение примем за

$$\sigma^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - \varphi(x))^2 dx$$

Найдем коэффициенты $\alpha_k, \, \beta_k$ для «хорошего» приближения (σ^2 минимально).

$$\sigma^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(f^2(x) - 2f(x)\varphi(x) + \varphi^2(x) \right)^2 \mathrm{d}x$$

Это можно привести к виду

$$\sigma^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{a_0}{4} - \frac{1}{2} \sum_{k=1}^{n} \left(a_k^2 + b_k^2 \right) + \frac{(a_0 - \alpha_0)^2}{4} + \sum_{k=1}^{\infty} \left((a_k - \alpha_k)^2 + (b_k - \beta_k)^2 \right)$$

Где a_k, b_k это коэффициенты ряда Фурье для функции f(x). Таким образом

$$\sigma_{\min}^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx - \frac{1}{2} \left(\frac{a_0}{2} + \sum_{k=1}^{n} \left(a_k^2 + b_k^2 \right) \right)$$

при $\alpha_k=a_k$ и $\beta_k=b_k$. Отсюда, т.к. $\sigma_{\min}^2\geqslant 0$ получаем неравенство, которое называется неравенством Бесселя

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx \geqslant \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right) \tag{1}$$

Мы может заменить n на ∞ , т.к. рассуждения выше справедливы для любого n. Таким образом, если $f^2(x)$ интегрируема и интеграл в левой части неравенства существует и конечен, то ряд в правой части сходится (он меньше конечного числа).

Если f(x) удовлетворяет условиям Дирихле и раскладывается по системе $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \ldots\right\}$, то неравенство превращается в равенство, которое называется равенством Парсенваля и при этом $\sigma^2 \to 0$ при $n \to \infty$.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k^2 + b_k^2 \right)$$
 (2)

Комплексная форма ряда Фурье

Известно, что

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$
 $e^{-i\varphi} = \cos\varphi - i\sin\varphi$

Используя эти равенства получаем

$$\cos nx = \frac{e^{inx} + e^{-inx}}{2} \qquad \sin nx = \frac{e^{inx} - e^{-inx}}{2}$$

Подставим это в общий вид ряда Фурье.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_n \cdot \frac{e^{inx} + e^{-inx}}{2} + b_n \cdot \frac{e^{inx} - e^{-inx}}{2i} \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(e^{inx} \left(\frac{a_n}{2} + \frac{b_n}{2i} \right) + e^{-inx} \left(\frac{a_n}{2} - \frac{b_n}{2i} \right) \right)$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(e^{inx} \cdot \frac{a_n - ib_n}{2} + e^{-inx} \cdot \frac{a_n + ib_n}{2} \right)$$

Введем новые обозначения

$$c_0 = \frac{a_0}{2}$$
 $c_n = \frac{a_n - ib_n}{2}$ $c_{-n} = \frac{a_n + ib_n}{2}$ $(n > 0)$

Поработаем с c_n и c_{-n} .

$$c_{n} = \frac{1}{2} \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx - \frac{i}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \left(\cos nx - i \sin nx \right) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$c_{-n} = \dots = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$\implies c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx \qquad (n \in \mathbb{Z})$$

Итого получаем следующий общий вид ряда Фурье в комплексной форме.

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{-inx}$$

Замечание 1.9.1. Если f(x) имеет период T = 2l, тогда

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{-i\frac{\pi n}{l}x} \qquad c_n = \frac{1}{2l} \int_{-l}^{l} f(x)e^{-i\frac{\pi n}{l}x} dx$$

3амечание 1.9.2. $\alpha_n = \frac{\pi n}{l}$ это волновые числа, а последовательность $\{\alpha_n\}$ это дискретный спектр. Получаем гармонику:

$$e^{-i\frac{\pi n}{l}x} = \cos\frac{\pi n}{l}x - i\sin\frac{\pi n}{l}x$$

Преобразование Фурье

Рассмотрим функцию $f\colon \mathbb{R} \to \mathbb{R}$, для которой $\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x \in \mathbb{R}$. Имеем

$$f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{n=1}^{\infty} \left(\cos nx \cdot \left(\int_{-l}^{l} f(t) \cos \frac{\pi n}{l} t dt \right) + \sin nx \cdot \left(\int_{-l}^{l} f(t) \sin \frac{\pi n}{l} t dt \right) \right)$$

$$f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{l} \sum_{n=1}^{\infty} \int_{-l}^{l} f(t) \cos \left(\frac{\pi n}{l} (t - x) \right) dt$$

$$d\alpha = \frac{\pi}{l}$$

$$\alpha_k = \frac{\pi k}{l}$$

$$d\alpha = \Delta_k \alpha = \alpha_{k+1} - \alpha_k = \frac{\pi}{l}$$

$$f(x) = \frac{1}{2l} \int_{-l}^{l} f(t) dt + \frac{1}{\pi} \int_{1}^{\infty} \left(\int_{-\infty}^{\infty} f(t) \cos(\alpha(t - x)) dt \right) d\alpha$$

$$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos(\alpha(t - x)) dt d\alpha$$

Последний полученный интеграл называется интегралом Фурье.

Замечание 1.9.3. Для интеграла Фурье выполнены свойства ряда Фурье (значения в точках разрыва функции, свойство четности и нечетности).

Полученный интеграл можно разбить на части, тогда

$$f(x) = \frac{1}{\pi} \int_0^\infty \underbrace{\left(\int_{-\infty}^\infty f(t)\cos\alpha t dt\right)}_{A(\alpha)} \cos\alpha x dx + \frac{1}{\pi} \int_0^\infty \underbrace{\left(\int_{-\infty}^\infty f(t)\sin\alpha t dt\right)}_{B(\alpha)} \sin\alpha x dx$$
$$f(x) = \int_0^\infty \left(A(\alpha)\cos\alpha x + B(\alpha)\sin\alpha x\right) dx$$
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^\infty d\alpha \int_{-\infty}^\infty f(t)e^{-i\alpha(t-x)} dt$$

Последний переход выполнен по формуле Эйлера. Выражение, получившееся в итоге, называется преобразованием Фурье.

1.10. Лекция 23.11.03.

Теория функции комплексного переменного (элементы)

1. Основные понятия

 $z \in CC$ — комплексное число. $z = \langle x,y \rangle$ — упорядоченная пара вещественных чисел x и y.

$$0_{\mathbb{C}} = \langle 0, 0 \rangle$$
 $1_{\mathbb{C}} = \langle 1, 0 \rangle$ $\langle 0, 1 \rangle \stackrel{\text{def}}{\Longleftrightarrow} i$ $i^2 = -1$

Алгебраическая форма z = x + iy, x = Re z, y = Im z. Базовые операции определяем как

$$z_1 + z_2 = \langle x_1 + x_2, y_1 + y_2 \rangle$$
 $z_1 z_2 = \langle x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1 \rangle$

Если z=x+iy, то $\overline{z}=x-iy$ называется комплексным сопряженным.

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{|z_2|^2}$$
 $|z| = \sqrt{x^2 + y^2}$

Комплексные числа можно изображать на плоскости (рис. 1.10.1) Тогда аргументом (главным значением аргумента) называется $\text{arg } z = \varphi$ при условии, что $0 \leqslant \varphi < 2\pi$. При этом $\text{arg}(z) = \text{arg } z + 2\pi k$.

Рис. 1.10.1: Геометрическая интерпретация

$$\begin{cases} \cos \varphi = \frac{x}{\rho} \\ \sin \varphi = \frac{y}{\rho} \end{cases} \qquad \rho = |z|$$

Комплексное число также имеем тригонометрическую форму $z = \rho(\cos \varphi + i \sin \varphi)$ и показательную форму $z = \rho e^{i\varphi} = \rho e^{i(\arg z + 2\pi k)}$.

2. Множества

Def 1.10.2. Окрестностью радиуса δ с центром z_0 называется

$$u_{\delta}(z_0) \stackrel{\text{def}}{\Longleftrightarrow} \left\{ z \in \mathbb{C} \,\middle|\, |z - z_0| < \delta \right\}$$

Замечание 1.10.3.

$$\mathring{u}_{\delta}(z_0) \stackrel{\text{def}}{\Longleftrightarrow} u_{\delta}(z_0) \setminus \{z_0\}$$

Def 1.10.4. Окрестностью бесконечно удаленной точки называется

$$u_{\delta}(\infty) \stackrel{\text{def}}{\Longleftrightarrow} \left\{ z \in \mathbb{C} \mid |z| > \delta \right\}$$

Замечание 1.10.5. Почему «точка»? Введем понятие стереографической проекции (сферы Римана). Это взаимнооднозначное соответствие между точками сферы и точками комплексной плоскости (кроме одной, которую и называем бесконечно удаленной)

Замечание 1.10.6. Операции сложения и умножения вида $z + \infty$, $z \cdot \infty$, $\infty + \infty$ не определены, поскольку в общем случае про $\zeta = \infty$ нельзя сказать каковы $\operatorname{Re} z$, $\operatorname{Im} z$, $\operatorname{arg}(z)$.

Замечание 1.10.7. Хотя мы не можем явно обозначить координаты бесконечно удаленной точки, мы можем задавать направления стремления к ней. Например, $\langle -\infty, \infty \rangle$ это Re z, a $\langle -i\infty, i\infty \rangle$ — Im z.

Def 1.10.8. Точка $z_0 \in E$ называется внутренней точкой множества E, если

$$\exists u_{\delta}(z_0) \mid u_{\delta}(z_0) \subset E$$

Def 1.10.9. Точка $\hat{z} \in \mathbb{C}$ называется граничной точкой множества E, если

$$\forall u_{\delta}(\hat{z}) \qquad \begin{cases} \exists z \in E \mid z \in u_{\delta}(\hat{z}) \\ \exists z' \notin E \mid z' \in u_{\delta}(\hat{z}) \end{cases}$$

Def 1.10.10. Множество граничных точек называется границей Γ_E множества E.

Def 1.10.11. Открытое множество это множество, у которого все точки внутренние.

Def 1.10.12. Замкнутое множество это множество, включающее в себя все свои граничные точки.

Def 1.10.13. Множество $D \subset \mathbb{C}$ называется областью, если

- 1. D это открытое множество
- 2. Любые две точки множества D можно соединить ломаной с конечным числом звеньев, которая вся лежит в этой области.

Таким образом область это открытое и связное множество.

Def 1.10.14 (Кривая на комплексной плоскости (комплексная переменная)). $z = \varphi(t) + i\psi(t)$ — переменная \mathbb{C} -величина, $t \in [t_1; t_2] \in \mathbb{R}$. Если t меняется от t_1 до t_2 , то z движется ориентированно. Тогда если $\varphi(t)$, $\varphi(t)$ непрерывны, то $z = \varphi(t) + i\psi(t)$ задает параметрически заданную непрерывную ориентированную кривую.

3амечание 1.10.15. Если $\varphi(t)$ и $\psi(t)$ имеют непрерывные производные, то кривая гладкая.

Def 1.10.16. Замкнутая простая кривая называется контуром.

Def 1.10.17. Область D называется односвязной, если всякий контур, лежащий в ней, может быть непрерывно стянут в точку области D. В противном случае область называется многосвязной.

 Π ример 1.10.18. Область $D\colon 0<|z-a|<arepsilon$ не будет односвязной. Точка a в данном примере будет изолированной.

Пример 1.10.19. Пусть $D: |z| < 1, 0 < \arg z < 2\pi$. Тогда Γ_D это окружность радиуса 1 и отрезок [0;1] проходится в двух направлениях (при этом область является односвязной).

Замечание 1.10.20. Далее будем рассматривать области с кусочно-гладкой границей + с изолированные точки.

 $\mathbf{Def} \ \mathbf{1.10.21.} \ \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\} -$ расширенная \mathbb{C} -плоскость.

Замечание 1.10.22. В расширенной С-плоскости определение односвязной сохраняется, но стягивание контура к бесконечно удаленной точке следует рассматривать на сфере Римана.

Пример 1.10.23. Пусть $D \subset \overline{\mathbb{C}}$: $z \neq a$. Данная область будет односвязной, т.к. любой контур можно стянуть в ∞ (бесконечно удаленную точку).

Замечание 1.10.24. Любой контур стягивается в точку может быть равную бесконечности.

Теорема 1.10.25. (Жордана) Всякая непрерывная замкнутая кривая разбивает расширенную С-плоскость на две односвязные области.

3. Предел последовательности

$$z_n = \{z_1, z_2, \dots, z_n, \dots\}, \qquad z_n = x_n + iy_n$$

Таким образом последовательность z_n определена парой вещественных последовательностей $\{x_n\}$ и $\{y_n\}$.

$$L \in CC \iff \lim_{n \to \infty} z_n \iff \forall \varepsilon > 0 \mid \exists N(\varepsilon) \in \mathbb{N} \mid \forall n > N \colon |z_n - L| < \varepsilon$$

3амечание 1.10.26. Пусть z_n такова, что

$$\forall \varepsilon > 0 \mid \exists N(\varepsilon) \in \mathbb{N} \mid \forall n > N \colon |z_n| > \varepsilon$$

T.e. $\lim_{n\to\infty} z_n = \infty$ — определение бесконечно удаленной точки.

1.11. Лекция 23.11.10.

Теорема 1.11.1. (Необходимое и достаточное условие существование предела) Пусть $z_n = x_n + iy_n$, тогда

$$\exists \lim_{n \to \infty} z_n = L \in \mathbb{C} \iff \begin{cases} \exists \lim_{n \to \infty} x_n = X \in \mathbb{R} \\ \exists \lim_{n \to \infty} y_n = Y \in \mathbb{R} \end{cases}$$

$$\Box \ (\Leftarrow)$$

$$\exists \lim_{n \to \infty} x_n = X \iff \forall \varepsilon_1 > 0 \ \middle| \exists N(\varepsilon_1) \in \mathbb{N} \ \middle| \forall n > N \colon |x_n - X| < \varepsilon_1 \qquad \varepsilon_1 = \frac{\varepsilon}{\sqrt{2}}$$

$$\exists \lim_{n \to \infty} y_n = Y \iff \forall \varepsilon_2 > 0 \ \middle| \exists N(\varepsilon_2) \in \mathbb{N} \ \middle| \forall n > N \colon |y_n - Y| < \varepsilon_2 \qquad \varepsilon_2 = \frac{\varepsilon}{\sqrt{2}}$$

$$\sqrt{(x_n - X)^2 + (y_n - Y)^2} < \sqrt{\varepsilon_1^2 + \varepsilon_2^2} = \varepsilon$$

$$\forall \varepsilon > 0 \ \middle| \exists N(\varepsilon) \in \mathbb{N} \ \middle| \forall n > N \colon |z_n - \underbrace{X + iY}_z| < \varepsilon \iff z_n \xrightarrow{n \to \infty} z \in \mathbb{C}$$

$$\iff |z_n - L| < \varepsilon \iff |$$

4 Функия комплексного переменного (Φ K Π)

Def 1.11.2. Функция комплексного переменного это отображение $f \colon D \to \mathbb{C}$ такое, что

$$\forall z \in D \subset \mathbb{C} \ \middle| \ \exists \omega \in G \subset \mathbb{C} \ \middle| \ \omega = f(z)$$

Замечание 1.11.3. Заметим, что не накладывается условие единственности значения функции, поэтому функции делятся на однозначные и многозначные.

Def 1.11.4. Пусть $\omega = f(z)$ — функция комплексного переменного. Если $\forall z_1 \neq z_2$ выполняется $f(z_1) \neq f(z_2)$, то функция f(z) называется однолистной. В противном случае она называется многолистной.

Замечание 1.11.5. Функция взаимнооднозначна, если она однозначна и однолистна. В этом случае определена обратная функция $z = f^{-1}(\omega)$.

Замечание 1.11.6. Определение суперпозиции (сложной функции) аналогично определению вещественной суперпозиции.

Def 1.11.7. Предел функции в точке Пусть $f: D \to \mathbb{C}$, тогда пределом функции f(z) в точке z_0 называется

$$L \in \mathbb{C} = \lim_{z \to z_0} f(z) \stackrel{\text{def}}{\Longleftrightarrow} \forall \varepsilon > 0 \mid \delta > 0 \mid \forall z \in u_{\delta}(z_0) \cap D \colon |f(x) - L| < \varepsilon$$

Замечание 1.11.8. Что означает $z \to z_0$? z стремится к z_0 вдоль какого-либо пути l ($z = \varphi(t) + i\psi(t)$). В определении предел существует при стремлении $z \to z_0$ по любому пути.

Пример 1.11.9.

$$f(z) = \frac{1}{2i} \left(\frac{z}{\overline{z}} - \frac{\overline{z}}{z} \right)$$

Будем приближать z к $z_0 = 0$ по путям $\varphi = const.$

$$f(z) = \frac{1}{2i} \left(\frac{\rho e^{i\varphi}}{\rho e^{-i\varphi}} - \frac{\rho e^{-i\varphi}}{\rho e^{i\varphi}} \right) = \frac{1}{2i} \left(e^{2i\varphi} - e^{-2i\varphi} \right) = \sin 2\varphi$$

Таким образом, при фиксированном φ получаем фиксированное число, при этом

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \sin 2\varphi$$

заполняют весь отрезок [-1;1], поэтому нельзя говорить о существовании предела в общем смысле.

Замечание 1.11.10. Предел вдоль выбранного пути аналогичен одностороннему пределу вещественной функции. Для существования предела в общем смысле необходимо существование, конечность и равенство пределов по любому пути.

Def 1.11.11.

$$L \in \mathbb{C} = \lim_{z \to \infty} f(z) \stackrel{\text{def}}{\Longleftrightarrow} \forall \varepsilon > 0 \mid \delta > 0 \mid \forall z \in D, |z| > 0 \colon |f(x) - L| < \varepsilon$$

Def 1.11.12.

$$L = \lim_{z \to z_0} f(z) = \infty \iff \forall \varepsilon > 0 \mid \delta > 0 \mid \forall z \in u_\delta(z_0) \cap D \colon |f(x)| > \varepsilon$$

Def 1.11.13. Непрерывность функции в точке

$$f(z) \in C_0(z_0 \in D) \stackrel{\text{def}}{\Longleftrightarrow} \exists \lim_{z \to z_0} f(z) = f(z_0)$$

Замечание 1.11.14. Существует равносильное определение непрерывности функции в точке

$$f(z) \in C_0(z_0 \in D) \stackrel{\text{def}}{\Longleftrightarrow} \Delta f(z) \stackrel{\Delta z \to 0}{\longrightarrow} 0 \qquad \begin{cases} \Delta z = z - z_0 \\ |\Delta z| = \sqrt{(x - x_0)^2 + (y - y_0)^2} \\ \Delta f(z) = f(z_0 + \Delta z) - f(z_0) \end{cases}$$

Замечание 1.11.15. Непрерывность f(z) в точке $z_0 = x_0 + iy_0$ равносильна непрерывности u(x,y) = Re f(z) и v(x,y) = Im f(z) в точках x_0 и y_0 .

Элементарные функции:

- 1. Линейная f(z) = az + b.
- 2. Степенная $f(z) = z^n \ (n \in \mathbb{N})$.
- 3. Рациональная $f(z)=rac{P_n(z)}{Q_m(z)},$ где $P_n(z),$ $Q_m(z)$ полиномы.
- 4. Показательная $f(z) = e^z = e^{x+iy} = e^{\rho(\cos\varphi + i\sin\varphi)}$.
- 5. Логарифм $f(z) = \operatorname{Ln} z$. (определение ниже)

6. Тригонометрические, гиперболические.

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

$$\sinh z = \frac{e^z - e^{-z}}{2} = -i\sin(iz)$$

$$\cosh z = \frac{e^z - e^{-z}}{2} = \cos(iz)$$

Замечание 1.11.16.

$$e^{z+2i\pi k} = e^z e^{2i\pi k} = e^z (\cos 2\pi k + i\sin 2\pi k) = e^z$$

Таким образом это многолистная, однозначная функция.

Замечание 1.11.17. Логарифм Ln z определим как обратную операцию для $e^{\omega}=z.$

$$\omega = u + iv \Longrightarrow e^{u + iv} = z = \rho e^{i(\varphi + 2\pi k)} \qquad \varphi = \arg z, \arg(z) = \varphi + 2\pi k$$

$$e^{u + iv} = \rho e^{i(\varphi + 2\pi k)} \Longrightarrow \begin{cases} e^u = \rho \\ v = \varphi + 2\pi k \end{cases} \Longrightarrow \begin{cases} u = \ln \rho \\ v = \arg z + 2\pi k \end{cases}$$

$$\operatorname{Ln} z = \omega = \ln \rho + i(\arg z + 2\pi k)$$

Получили однолистную, но многозначную функцию. Причем $\ln z = \ln |z| + i \arg z$ это главное значение логарифма. Замечание 1.11.18. Геометрический смыслы функций $f(z) = az + b, \ f(z) = \frac{1}{z}$ и $f(z) = z^2$ рассмотрим позже.

5 Дифференцирование функции комплесконого переменного

Def 1.11.19. Пусть $f: D \to \mathbb{C}$. Производной f(z) в точке $z_0 \in D$ называется

$$f'(z_0) \stackrel{\text{def}}{\Longleftrightarrow} \lim_{z \to z_0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{z - z_0} \in \mathbb{C}$$

Def 1.11.20. Дифференцируемость в точке z_0 равносильна существованию конечной производной $f'(z_0)$. По определению дифференцируемость это представление

$$\Delta f = f'(z_0)\Delta z + o(\Delta z)$$

Def 1.11.21. Если функция в точке имеет непрерывную производную, то она называется аналитической.

1.12. Лекция 23.11.17.

Теорема 1.12.1. (Условия Коши-Римана (условия аналитичности функции)) $f(z) \colon D \to \mathbb{C}$ аналитическая в $z_0 \in D$ тогда и только тогда, когда функции $u(x,y) = \operatorname{Re} f(z)$ и $v(x,y) = \operatorname{Im} f(z)$ дифференцируемы, имеют непрерывные производные в точках $x_0 = \operatorname{Re} z_0$ и $y_0 = \operatorname{Im} z_0$ и выполнены условия:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

$$\square \iff$$

$$\exists f'(z_0) \in \mathbb{C}$$

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\left(u(x_0 + \Delta x, y_0 + \Delta y) + iv(x_0 + \Delta x, y_0 + \Delta y)\right) - \left(u(x_0, y_0) + iv(x_0, y_0)\right)}{(x + iy) - (x_0 + iy_0)}$$

Выберем направление для $\Delta z \to 0$. Пусть $\Delta z = \Delta x \to 0$, тогда

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0) + iv(x_0 + \Delta x, y_0) - iv(x_0, y_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta_x u}{\Delta x} - i \lim_{\Delta x \to 0} \frac{\Delta_x v}{\Delta x} = u_x(x, y) - iv_x(x, y)$$

Аналогично, если $\Delta = i \Delta y \rightarrow 0$, то

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = v_y(x, y) - iu_y(x, y)$$

Итого имеем

$$f'(z_0) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} \Longrightarrow \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} \end{cases}$$

Дифференцируемость функций u(x,y) и v(x,y) следует из существования пределов частных приращений, а непрерывность производных следует из аналитичности функции f(z).

 (\longleftarrow) u(x,y) и v(x,y) дифференцируемы в точке (x_0,y_0) .

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \underbrace{o(\Delta z)}_{\varepsilon_1} \qquad \Delta v = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \underbrace{o(\Delta z)}_{\varepsilon_2}$$

Таким образом

$$\frac{\Delta f}{\Delta z} = \frac{\Delta u + i\Delta v}{\Delta x + i\Delta y} = \frac{u_x \Delta x + u_y \Delta y + iv_x \Delta x + iv_y \Delta y + \varepsilon_1 + \varepsilon_2}{\Delta x + i\Delta y} = \frac{u_x \Delta x + iv_y \Delta y}{\Delta x + i\Delta y} + \frac{u_y \Delta y + iv_x \Delta x}{\Delta x + i\Delta y} + \frac{\varepsilon_1 + \varepsilon_2}{\Delta x + i\Delta y}$$

Используем условия Коп
и-Римана: $v_y=u_x$ и $u_y=i^2v_x.$

$$\frac{\Delta f}{\Delta z} = \frac{u_x \Delta x + i u_x \Delta y}{\Delta x + i \Delta y} + i \cdot \frac{i v_x \Delta y + v_x \Delta x}{\Delta x + i \Delta y} + \frac{\varepsilon_1 + \varepsilon_2}{\Delta x + i \Delta y} = \frac{u_x (\Delta x + i \Delta y)}{\Delta x + i \Delta y} + i \cdot \frac{v_x (i \Delta y + \Delta x)}{\Delta x + i \Delta y} + \frac{\varepsilon_1 + \varepsilon_2}{\Delta x + i \Delta y} = u_x + i v_x + \frac{\varepsilon_1 + \varepsilon_2}{\Delta x + i \Delta y}$$

Тогда

$$\exists \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = u_x + i v_x$$

Причем u_x и v_x непрерывны по условию, а полученный предел конечен.

Замечание 1.12.2. В условиях теоремы 1.12.1 справедливо

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Условия Коши-Римана в полярной системе координат

Зададим полярную систему координат.

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \qquad \begin{cases} r = \sqrt{x^2 + y^2} \\ \varphi = \arctan\frac{y}{x} + \text{ надо учесть знак} \end{cases}$$

<u>Lm</u> 1.12.3. В полярных координатах условия Коши-Римана имеют вид

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \varphi} \qquad \frac{\partial u}{\partial \varphi} = -r \frac{\partial v}{\partial r}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \varphi} = \frac{\partial v}{\partial x} (-r \sin \varphi) + \frac{\partial v}{\partial y} r \cos \varphi$$
$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \varphi + \frac{\partial u}{\partial y} \sin \varphi$$

Во втором полученном равенстве воспользуемся условиями Коши-Римана, получим

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x}\cos\varphi + \frac{\partial u}{\partial y}\sin\varphi = \frac{\partial v}{\partial y}\cos\varphi - \frac{\partial v}{\partial x}\sin\varphi = \frac{1}{r}\frac{\partial v}{\partial\varphi}$$

Доказательство второго равенства аналогично

$$\begin{split} \frac{\partial v}{\partial r} &= \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial v}{\partial x} \cos \varphi + \frac{\partial v}{\partial y} \sin \varphi \\ \frac{\partial u}{\partial \varphi} &= \frac{\partial u}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \varphi} = \frac{\partial u}{\partial x} (-r \sin \varphi) + \frac{\partial u}{\partial y} r \cos \varphi \end{split}$$

Во втором полученном равенстве воспользуемся условиями Коши-Римана, получим

$$\frac{\partial u}{\partial \varphi} = \frac{\partial v}{\partial y}(-r\sin\varphi) - \frac{\partial v}{\partial x}r\cos\varphi = -r\left(\frac{\partial v}{\partial y}\sin\varphi + \frac{\partial v}{\partial x}\cos\varphi\right) = -r\frac{\partial v}{\partial r}\cos\varphi$$

Lm 1.12.4.

$$f'(z) = \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}\right) \cdot \frac{r}{z}$$

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \left(\frac{\partial u}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x}\right) + i \left(\frac{\partial v}{\partial r} \cdot \frac{\partial r}{\partial x} + \frac{\partial v}{\partial \varphi} \cdot \frac{\partial \varphi}{\partial x}\right) = \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}\right) \cdot \frac{\partial r}{\partial x} + \left(\frac{\partial u}{\partial \varphi} + i \frac{\partial v}{\partial \varphi}\right) \cdot \frac{\partial \varphi}{\partial x}$$
(1)

Теперь заметим, что

$$\frac{\partial r}{\partial x} = \frac{\partial \sqrt{x^2 + y^2}}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} = \frac{x}{r}$$

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \arctan \frac{y}{x}}{\partial x} = \frac{1}{1 + \frac{y^2}{x^2}} \cdot \left(-\frac{y}{x^2}\right) = -\frac{y}{x^2 + y^2} = -\frac{y}{r^2}$$
(2)

Подставим (2) в (1) и получим

$$f'(z) = \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{x}{r} + \left(\frac{\partial u}{\partial \varphi} + i\frac{\partial v}{\partial \varphi}\right) \cdot \left(-\frac{y}{r^2}\right) \tag{3}$$

Для второй скобки применим условия Коши-Римана в полярных координатах.

$$f'(z) = \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{x}{r} + \left(-r\frac{\partial v}{\partial r} + ir\frac{\partial u}{\partial r}\right) \cdot \left(-\frac{y}{r^2}\right)$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{x}{r} + \left(\frac{\partial v}{\partial r} - i\frac{\partial u}{\partial r}\right) \cdot \frac{y}{r}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{x}{r} - i\left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{y}{r}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \left(\frac{x}{r} - i\frac{y}{r}\right)$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{\overline{z}}{r}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{\overline{z}}{r} \cdot \frac{z}{z}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{r^2}{rz}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{r}{z}$$

$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right) \cdot \frac{r}{z}$$

Замечание 1.12.5. Аналогично доказательству выше можно показать, что

$$f'(z) = \frac{1}{z} \left(\frac{\partial v}{\partial \varphi} - i \frac{\partial u}{\partial \varphi} \right)$$

Замечание 1.12.6. Свойства дифференцируемых функций комплексного переменного полностью аналогичны свойствам дифференцируемых вещественных функций (дифференцируемость суммы, произведения, частного, композиции).

Пример 1.12.7. Рассмотрим гладкую кривую в области D: $z = \varphi(t) + i\psi(t) = \sigma(t)$.

$$\omega'(t_0) = f'(z(t_0)) = f'(z_0)\sigma'(t_0)$$

Если потребуем $f'(z_0) \neq 0$, то $\omega'(t_0) \neq 0$.

$$\Theta = \arg \sigma'(t_0) \qquad \widetilde{\Theta} = \arg \omega'(t_0)$$

$$\underbrace{\arg \omega'(t_0)}_{\widetilde{\Theta}} = \arg f'(z_0) + \underbrace{\arg \sigma'(t_0)}_{\Theta}$$

$$\widetilde{\Theta} - \Theta = \arg f'(z_0) = \alpha$$

Таким образом α это угол поворота. Он не зависит от вида кривой, значит функция $\omega = f(z)$ сохраняет углы между кривыми.

Пример 1.12.8. Рассмотрим окружность $|z-z_0|=\rho$. Пусть $\omega=f(z)$ — аналитическая. Тогда

$$\Delta z = f'(z_0)\Delta z + o(\Delta z)$$

$$\lim_{\Delta z \to 0} \left| \frac{\Delta \omega}{\Delta z} \right| = |f'(z_0)| \Longrightarrow |\Delta \omega| = |\omega - \omega_0| = |f'(z_0)| \underbrace{|z - z_0|}_{o} + o(|\Delta z|)$$

Окружность $|z - z_0| = \rho$ переходит в окружность $|\omega - \omega_0|$ с постоянным растяжением $|f'(z_0)|$. Таким образом аналитическая функция сохраняет постоянство растяжения области D в область D'.

Def 1.12.9. Отображение, сохраняющее углы и постоянное растяжение, называется конформным.

1.13. Лекция 23.11.24.

Замечание 1.13.1 (Геометрический смысл производной). Модуль производной в точке отвечает за коэффициент растяжения в этой точке. Главное значения аргумента производной отвечает за угол поворота в данной точке.

Замечание 1.13.2. Если f(z) определяющая отображение $\omega \colon D \to D'$ аналитична и однолистна в области D и $\forall z \in D \ \Big| \ f'(z) \neq 0$, то отображение ω конформно.

 $Пример \ 1.13.3.$ Рассмотрим линейную функцию $\omega = az + b$, где $a,b \in \mathbb{C},\ a \neq 0.$ Эта функция однозначна. Найдем обратную функцию

$$g(\omega) = f^{-1}(\omega) = \frac{\omega}{a} - \frac{\omega}{b} = z$$

T.к. обратная функция однозначна, то исходная функция однолистна. Таким образом f(z) это взаимооднозначная функция.

Для того, чтобы понять геометрический смысл, рассмотрим вспомогательную функцию

$$\zeta = az = |a| |z| (\cos(\arg a + \arg z) + i\sin(\arg a + \arg z))$$

Она определяет растяжение вектора, соответствующего z, в |a| раз и поворот на $\arg a$. Тогда $\omega = \zeta + b$ геометрически задает растяжение плоскости $\mathbb C$ в |a| арз, поворот на $\arg a$ и сдвиг на вектор \overrightarrow{b} , соответствующий числу $b = b_x + ib_y$.

Замечание 1.13.4. Убедимся в аналитичности $\omega = f(z) = u(x,y) + iv(x,y)$.

$$f(z) = az + b = (a_x + ia_y)(x + iy) + (b_x + ib_y) = \underbrace{(a_x - a_y + bx)}_{u(x,y)} + i\underbrace{(a_y + a_x + by)}_{v(x,y)}$$

u(x,y) и v(x,y) непрерывны, дифференцируемы.

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = a_x \\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = a_y \end{cases} \implies$$
 Выполнены условия Коши-Римана

Также f'(z) = a, а значит модуль и аргумент производной постоянны, значит отображение ω конформно.

Замечание~1.13.5. Инверсия плоскости относительно окружности радиуса R с центром O это преобразование плоскости в себя такое, что

$$\begin{cases} \operatorname{Im} M = M' \\ M' \in OM \\ R^2 = OM \cdot OM' \end{cases}$$

Инверсия делает внутренность круга (O,R) его внешностью и наоборот, причем

окружность
$$\not\ni O \xrightarrow{Inv}$$
 окружность $\not\ni O$ окружность $\not\ni O \xrightarrow{Inv}$ прямая $\not\ni O \xrightarrow{Inv}$ окружность $\not\ni O$ прямая $\not\ni O \xrightarrow{Inv}$ в себя

Пример 1.13.6. Рассмотрим отображение $\omega = f(z) = \frac{1}{z}$. Заметим, что f(z) непрерывна на $\mathbb{C} \setminus \{0\}$. Также f(z) однозначна и однолистна, т.к. обратная однозначна. Выясним геометрический смысл.

$$\omega = re^{i\psi} \stackrel{\underline{z} = \rho e^{i\varphi}}{= \frac{1}{\rho e^{i\varphi}}} \frac{1}{\rho e^{i\varphi}} = \frac{1}{\rho} e^{-i\varphi}$$
$$|\omega| = \frac{1}{|z|} \qquad \arg \omega = -\arg z$$

Таким образом функция $\omega=\frac{1}{z}$ это инверсия относительно единичной окружности с центром O и симметрия относительно $\operatorname{Re} z.$

Проверим условия Коши-Римана, для этого перейдем в полярные координаты.

$$f(z) = \frac{1}{z} = \frac{1}{\rho} e^{-i\varphi} = \underbrace{\frac{1}{\rho} \cos \varphi}_{u} - \underbrace{\frac{1}{\rho} \sin \varphi}_{v}$$
$$\frac{\partial u}{\partial \rho} = -\frac{1}{\rho^{2}} \cos \varphi \qquad \frac{1}{\rho} \frac{\partial v}{\partial \varphi} = -\frac{1}{\rho^{2}} \cos \varphi$$
$$\frac{\partial v}{\partial \rho} = -\frac{1}{\rho^{2}} \sin \varphi \qquad -\frac{1}{\rho} \frac{\partial u}{\partial \varphi} = -\frac{1}{\rho^{2}} \sin \varphi$$

Рис. 1.13.7: $\omega = z^2$

Пример 1.13.8. Рассмотрим отображение $\omega = z^2 = |z|^2 (\cos 2\varphi + i \sin 2\varphi)$. f(z) однозначна, но не однолистна, т.к. $z_1^2 = z_2^2$, если $\arg z_1 = \arg z_2 + 2\pi k, \ k \in \mathbb{Z}$.

Выделим область однолистности: $0\leqslant \varphi\leqslant \pi$. Заметим, что $2\varphi=0$, если $\varphi=0$ и $2\varphi=0$, если $\varphi=\pi$. Сделаем границы взаимнооднозначными, для этого нужен разрез $\operatorname{Re} z\geqslant 0$, $\operatorname{Im} z=0$. Пусть $\delta>0$ сколь угодно мало, тогда

- Рассмотрим $\varphi_1=0+\delta\Longrightarrow 2\varphi_1=0+2\delta$ верхний берег разреза.
- Рассмотрим $\varphi_2 = \pi \delta \Longrightarrow 2\varphi_2 = 2\pi 2\delta$ нижний берег разреза.

Замечание 1.13.9. Аналогично нижняя полуплоскость $\pi \leqslant \varphi \leqslant 2\pi$ это область однолистности и область значений — плоскость с тем же разрезом.

<u>Lm</u> 1.13.10. Если f(z) аналитична в области D и $\forall z \in D \mid f'(z) \neq 0$, то $\exists g(\omega) = f^{-1}(\omega)$ — аналитическая функция на множестве значений f(z), причем

$$g'_{\omega}(\omega_0) = \frac{1}{f'_z(z_0)}$$
 $\omega_0 = f(z_0)$

□ Рассмотрим Якобиан.

$$J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x} = \frac{1.12.1}{2} \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 = \left| f'(z) \right|^2$$

Таким образом условие $f'(z) \neq 0$ (а значит и $|f'(z)| \neq 0$) гарантирует то, что $J \neq 0$.

Якобиан это отношение площадей элементарных прямоугольников (рис. ??). $J \neq 0$ означает, что прямоугольник не вырожден, т.е. не склейки/разрыва линий u, v = const. Значит преобразование $(x, y) \xrightarrow{f} (u, v)$ обратимо. Это гарантирует то, что система

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$

имеет единственное решение x=x(u,v), y=y(u,v) и определена обратная функция $g(\omega)=x(u,v)+iy(u,v)$. Покажем аналитичность $g(\omega)$. В точке z_0 определена $f'(z_0)\neq 0$ и $\Delta z\to 0\Longrightarrow \Delta\omega=\Delta f(z)\to 0$. Составим отношение

$$\frac{\Delta z}{\Delta \omega} = \frac{1}{\frac{\Delta \omega}{\Delta z}} \xrightarrow{\Delta z, \Delta \omega \to 0} \frac{1}{f_z'(z_0)} = g_\omega'(\omega_0)$$

Def 1.13.11. Гармоническая функция h(x,y) это функция, у которой $\nabla^2 h = 0$.

Замечание 1.13.12. Если функция f(z) = u(x,y) + iv(x,y) аналитична в области D, тогда u(x,y) и v(x,y) это гармонические функции.

 $\underline{\mathbf{Lm}}$ 1.13.13. Если задана одна из функций u(x,y) или v(x,y), то считая ее действительной/мнимой частью можно найти аналитическую функцию f(z)=u(x,y)+iv(x,y) с точностью до произвольной постоянной.

 \square Пусть $u(x,y)=\mathrm{Re}\,f(z)$. Найдем функцию $v(x,y)=\mathrm{Im}\,f(z)$ по ее полному дифференциалу $\mathrm{d}v(x,y)=v_x\mathrm{d}x+v_y\mathrm{d}y$. При этом, т.к. f(z) аналитическая функция, то выполнены условия Коши-Римана

$$v = \int_{(x_0, y_0)}^{(x, y)} dv = \int_{(x_0, y_0)}^{(x, y)} v_x dx + v_y dy = \int_{(x_0, y_0)}^{(x, y)} -u_y dx + u_x dy$$

где (x_0, y_0) — произвольная точка в области D, т.е. интеграл найдется с точностью до $C = C(x_0, y_0)$.

Интеграл по комплексной переменной

Замечание 1.13.14. Интеграл $\int_{z_1}^{z_2} f(z) dz$ — интеграл от точки z_1 до точки z_2 определяется аналогично криволинейному. Возьмем на на комплексной плоскости кусочно-гладкую кривую l, заданную параметрически

$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} (\varphi'(t))^2 + (\psi'(t))^2 \neq 0$$

где $\alpha \leqslant t \leqslant \beta$ и $\alpha, \beta \in \overline{\mathbb{R}}$. Дробление кривой на частичные дуги с выбором средней точки позволяет построить интегральную сумму

$$\sigma_n = \sum_{k=1}^n f(\zeta_k) \Delta z_k$$

где $\omega = f(z)$ — функция действующая вдоль $l, \Delta z_k = z_k - z_{k-1}$ — длина хорд, стягивающих элементарные дуги, а $\zeta_k \in [z_{k-1}; z_k]$ — средняя точка на дуге.

Если предел интегральных сумм существует, конечен, не зависит от типа/ранга дробления и выбора средней точки, то он называется интегралом от функции f(z) по контуру l.

1.14. Лекция 23.12.01.

$$\int_{C} f(z) dz \stackrel{\text{def}}{\Longleftrightarrow} \lim_{\substack{n \to \infty \\ \tau \to 0}} \sigma_{n} = \lim_{\substack{n \to \infty \\ \tau \to 0}} \sum_{k=1}^{n} f(\zeta_{k}) \Delta z_{k}$$

Обозначим $f(z)=u(x,y)+iv(x,y),\ z=x+iy$ и $\zeta_k=\xi_k+i\eta_k.$ Тогда

$$\sigma_{n} = \sum_{k=1}^{n} \left(u\left(\xi_{k}, \eta_{k}\right) + iv\left(\xi_{k}, \eta_{k}\right) \right) \cdot \left(\Delta x_{k} + i\Delta y_{k} \right) = \sum_{k=1}^{n} \left(u\left(\xi_{k}, \eta_{k}\right) \Delta x_{k} - v\left(\xi_{k}, \eta_{k}\right) \Delta y_{k} \right) + i\left(u\left(\xi_{k}, \eta_{k}\right) \Delta y_{k} + v\left(\xi_{k}, \eta_{k}\right) \Delta x_{k} \right)$$

Таким образом

$$\int_C f(z)dz = \int_C udx - vdy + i \int_C udy + vdx$$

Замечание 1.14.1. Свели исходный интеграл к двум криволинейным интегралам второго рода от вещественной функции, значит справедливы свойства:

1.
$$\int_{C^{+}} f(z)dz = -\int_{C^{-}} f(z)dz$$

- 2. Аддитивность
- 3. Линейность
- 4. Оценка $\left| \int_C f(z) dz \right| \leqslant \int_C |f(z)| dz$
- 5. Замена переменной $\int_C f(z) dz = \int_{\gamma} f(g(\omega)) g'(\omega) d\omega$ при условии, что $z = g(\omega)$ аналитичная взаимнооднозначная функция. Если z = g(t), где $t \in \mathbb{R}$, то замена также справедлива.

Пример 1.14.2. Пусть $I=\int_C \frac{\mathrm{d}z}{z-z_0}$, где C это окружность с центром z_0 и радиусом ρ . Тогда используя показательную форму комплексного числа получаем

$$I = \int_C \frac{\mathrm{d}\left(z_0 + \rho e^{i\varphi}\right)}{\rho e^{i\varphi}} = \int_0^{2\pi} \frac{i\rho e^{i\varphi}}{\rho e^{i\varphi}} \mathrm{d}\varphi = \int_0^{2\pi} i\mathrm{d}\varphi = 2\pi i$$

Заметим, что $f(z) = \frac{1}{z - z_0}$ аналитична в $D \setminus \{0\}$. Интеграл I не зависит от выбора окружности и ее центра z_0 .

Теорема 1.14.3. (**Коши**) Пусть f(z) аналитична и однозначна в односвязной области D, а замкнутый контур C полностью содержится в области D. Тогда $\int_C f(z) \mathrm{d}z = 0$.

$$\int_{C} f(z)dz = \underbrace{\int_{C} udx - vdy}_{I_{1}} + i\underbrace{\int_{C} udy + vdx}_{I_{2}}$$

Рассмотрим интеграл I_1 . Т.к. f(z) аналитична в области D, то существуют непрерывные частные производные функций u(x,y) и v(x,y). Тогда для них справедлива формула Грина

$$I_1 = \int_C u \mathrm{d}x - v \mathrm{d}y = \iint_{D_C} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \mathrm{d}x \mathrm{d}y \xrightarrow{\underline{=1.12.1}} \iint_{D_C} \left(\frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) \mathrm{d}x \mathrm{d}y = 0$$

Аналогично $I_2 = 0$, таким образом исходный интеграл также равен нулю.

Замечание 1.14.4. Теорему 1.14.3 можно усилить. Если f(z) непрерывна на Γ_D , то $\int_{\Gamma_D} f(z) \mathrm{d}z = 0$. Формула Грина также верна, в качестве C берем Γ_D .

Обобщим теорему 1.14.3 на случай многосвязной области.

Замечание 1.14.5. Положительным обходом области будем считать такой обход, что область остается слева.

Рис. 1.14.6: Многосвязная область D

Рис. 1.14.7: Односвязная область D'

Теорема 1.14.8. Пусть f(z) аналитична и однозначна в многосвязной области D (рис. 1.14.6) и непрерывна на Γ_D . Тогда $\int_{\Gamma^{\pm}} f(z) \mathrm{d}z = 0$.

 \square Соединим внутренние контуры с внешним при помощи гладких кривых $\gamma_1, \ldots, \gamma_n$ (рис. 1.14.7). Обход границы Γ'_D будет складываться из обходов $C_0^+, C_1^-, \ldots C_n^-$ и дважды пройденных $\gamma_1, \ldots, \gamma_n$. Область с добавленными $\gamma_1, \ldots, \gamma_n$ стала односвязной, поэтому к ней применима 1.14.3.

$$\int_{\Gamma_{D'}^{+}} f(z) dz = \underbrace{\int_{C_{0}^{+}} f(z) dz + \int_{C_{1}^{-}} f(z) dz + \dots}_{S_{1}} + \underbrace{\int_{\gamma_{1}^{+}} f(z) dz + \int_{\gamma_{1}^{-}} f(z) dz + \dots}_{S_{2}}$$

По $1.14.3~S_1=0$, также по свойству интегралов S_2 также равна нулю. Значит исходный интеграл равен нулю.

Замечание 1.14.9. Из теоремы следует, что интеграл по внешнему контуру равен сумме интегралов по внутренним контурам в том же направлении обхода.

Первообразная С-функции

Из теоремы 1.14.3 следует, что если z и z_0 лежат в области аналитичности функции f(z), то интеграл

$$\Phi(z, z_0) = \int_{z_0}^{z} f(\zeta) d\zeta$$

является интегралом не зависящим от пути. Если зафиксировать z_0 , то получим функцию переменной z

$$\Phi(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

Теорема 1.14.10. Пусть f(z) непрерывна в односвязной области D, для всякого контура $\gamma \subset D$ выполнено $\int_{\gamma} f(z) \mathrm{d}z = 0$. Тогда при фиксированном $z_0 \in D$

$$\Phi(z) = \int_{z}^{z} f(\zeta) d\zeta$$

аналитична в области D и $\Phi'(z) = f(z)$, т.е. $\Phi(z)$ это первообразная функции f(z).

□ По определению производной имеем

$$\Phi'(z) = \lim_{\Delta z \to 0} \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int_{z}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z}$$

Т.к. $\int_C f(z) dz = 0$, то интеграл, получившийся в числителе, не зависит от пути. Выберем в качестве пути отрезок $[z; z + \Delta z] \in D$. Рассмотрим

$$\left| \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} - f(z) \right| = \left| \frac{\int_{z}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z} - f(z) \right|$$

$$= \frac{1}{|\Delta z|} \left| \int_{z}^{z + \Delta z} f(\zeta) - f(z) d\zeta \right|$$

$$\leqslant \frac{1}{|\Delta z|} \int_{z}^{z + \Delta z} |f(\zeta) - f(z)| d\zeta$$

$$\leqslant \frac{1}{|\Delta z|} \max |f(\zeta) - f(z)|$$

$$= \max |f(\zeta) - f(z)|$$

T.к. f(z) непрерывна, то

$$\forall \varepsilon > 0 \mid \exists \delta > 0 \mid \forall \Delta z < \delta \mid \max |f(\zeta) - f(z)| < \varepsilon$$

Это значит, что

$$\forall \varepsilon > 0 \left| \exists \delta > 0 \colon \left| \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} - f(z) \right| < \varepsilon \qquad |\Delta z| < \delta$$

Другими словами

$$f(z) = \lim_{\Delta z \to 0} \frac{\Phi(z + \Delta z) - \Phi(z)}{\Delta z} = \Phi'(z)$$

f(z) непрерывна и $\forall z \in D \mid \exists \Phi'(z) \Longrightarrow \Phi(z)$ аналитична в области D.

Замечание 1.14.11. Формула Ньютона-Лейбница доказывается аналогично вещественному случаю, т.е.

$$\int_{z_1}^{z_2} f(\zeta) d\zeta = F(z_2) - F(z_1)$$

где F(z) это какая-либо первообразная функции f(z).

Рис. 1.14.12: Связь между значениями функции внутри области и на ее границе

Установим связь между значениями функции внутри области и на ее границе. Рассмотрим функцию f(z), которая аналитична в односвязной области D. Выберем $z_0 \in D$, внутри области окружим эту точку контуром Γ и контуром γ внутри Γ .

Введем функцию $\varphi(z)=\frac{f(z)}{z-z_0},$ которая будет аналитична в «кольце» между γ и Γ . Тогда по 1.14.3 имеем

$$\int_{\Gamma^+} \varphi(\zeta) \mathrm{d}\zeta + \int_{\gamma^-} \varphi(\zeta) \mathrm{d}\zeta = 0 \Longrightarrow \int_{\Gamma^+} \varphi(\zeta) \mathrm{d}\zeta = \int_{\gamma^+} \varphi(\zeta) \mathrm{d}\zeta$$

Пусть γ это окружность с центром z_0 и радиусом ρ , т.е. $\zeta=z_0+\rho e^{i\varphi}$. Тогда

$$\int_{\gamma^{+}} f(\zeta) d\zeta = \int_{\gamma^{+}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta = i \int_{0}^{2\pi} f(\zeta) d\varphi = i \int_{0}^{2\pi} (f(\zeta) - f(z_{0})) d\varphi + i \underbrace{\int_{0}^{2\pi} f(z_{0}) d\varphi}_{2\pi f(z_{0})}$$

При $\rho \to 0$ справедливо $f(\zeta) - f(z_0) \to 0$, т.к. функция f(z) аналитическая и непрерывная. Значит

$$\int_{\gamma^{+}} \varphi(\zeta) d\zeta = \int_{\gamma^{+}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta = 2\pi i f(z_{0}) \Longrightarrow f(z_{0}) = \frac{1}{2\pi i} \int_{\gamma^{+}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta$$

1.15. Лекция 23.12.08.

3. Ряды

3.1 Числовые ряды

Def 1.15.1. $\sum c_n$, где $c_n \in \mathbb{C}$ называется числовым рядом.

$${f Def 1.15.2.}\ S_n = \sum_{k=1}^n -$$
 частичная сумма ряда

$${f Def 1.15.3.}\ S=\lim_{n o\infty}S_n\in{\Bbb C}$$
 — сумма ряда.

Замечание 1.15.4. Для исследования можно использовать те же условия сходимости, что и в вещественном случае

- 1. Необходимое условие сходимости $\lim_{n\to\infty} c_n = 0$
- 2. Признак сравнения (по модулю)
- 3. Абсолютная сходимость
- 4. Признаки Даламбера, Коши и т.п. (везде считаем по модулю)

3амечание 1.15.5 (Критерий Коши). Ряд $\sum c_n$ сходится к $S \in \mathbb{C}$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \mid \exists N(\varepsilon) \in \mathbb{N} \mid \forall n > N \colon |S_n - S| < \varepsilon$$

Т.е. остаток ряда $r_{n+1} = S - S_n$ стремится к нулю $(|r_{n+1}| < \varepsilon)$.

3.2 Функциональные ряды

 ${f Def 1.15.6.} \sum u_n(z) - {f \phi}$ ункциональный ряд.

Def 1.15.7. $f(z) = \sum u_n(z)$ — сумма ряда, т.к. $\forall z \in D$ определена сумма соответствующего числового ряда.

Def 1.15.8. Сходящийся числовой ряд $\sum c_n$ называется мажорирующим, если $\forall z \in D \colon |u_n(z)| < |c_n|$.

<u>Lm</u> 1.15.9 (Признак Вейерштрасса). Если ряд мажорируем в области D, то он равномерно сходится в области D и f(z) непрерывна в D.

Замечание 1.15.10. Сходимость функционального ряда означает, что

$$\forall \varepsilon > 0 \mid \exists N(\varepsilon, z) \in \mathbb{N} \mid \forall n > N \colon \left| f(z) - \sum_{k=1}^{n} u_k(z) \right| < \varepsilon$$

3амечание 1.15.11. В случае равномерной сходимости $N=N(\varepsilon)$ и

$$|r_{n+1}(z)| = \left| f(z) - \sum_{k=1}^{n} u_k(z) \right| < \varepsilon < \varepsilon$$

Теорема 1.15.12. (Почленное интегрирование равномерносходящегося ряда) Пусть $f(z) = \sum u_n(z)$ сходится равномерно в области D, тогда

$$\int_{C} f(\zeta) d\zeta = \sum_{n=1}^{\infty} \int_{C} f(\zeta) d\zeta$$

где C это кривая в области D.

 \square Т.к. ряд сходится равномерно, то $|r_{n+1}(z)|<arepsilon'=rac{arepsilon}{l}$, где l это длина кривой C. Рассмотрим

$$\left| \int_{C} f(\zeta) d\zeta - \sum_{k=1}^{n} \int_{C} u_{k}(\zeta) d\zeta \right| = \left| \int_{C} \left(f(\zeta) - \sum_{k=1}^{n} u_{k}(\zeta) \right) d\zeta \right|$$

$$\leq \int_{C} \left| f(\zeta) - \sum_{k=1}^{n} u_{k}(\zeta) \right| d\zeta$$

$$= \int_{C} |r_{n+1}(\zeta)| d\zeta$$

$$< \int_{C} \frac{\varepsilon}{l} d\zeta$$

$$= \varepsilon$$

3.3 Степенные ряды

Def 1.15.13. $\sum c_n(z-a)^n$ — степенной ряд в точке z=a.

Замечание 1.15.14. Обозначив $\zeta = z - a$, получим более удобный ряд $\sum c_n \zeta^n$ (ряд в $\zeta = 0$).

Теорема 1.15.15. (Абеля) Если ряд $\sum c_n z^n$ сходится в точке z_1 , то он сходится равномерно и абсолютно в точках z в круге радиуса $|z_1|$. Если ряд $\sum c_n z^n$ расходится в точке z_2 , то он расходится $\forall z$ за пределами круга радиуса $|z_2|$.

3амечание 1.15.16. Существует $R \in \mathbb{R}$ — радиус сходимости такой, что в круге радиуса R степенной ряд сходится.

Def 1.15.17. Функция f(z) представима степенным рядом $\sum c_n(z-a)^n$, то она называется регулярной в точке a.

Замечание 1.15.18. Далее докажем, что регулярность функции в области равносильна аналитичности в этой области.

Теорема 1.15.19. Регулярная в области D функция f(z) дифференцируема в D и

$$f'(z) = \left(\sum c_n z^n\right)' = \sum \left(c_n z^n\right)'$$

 \square Рассмотрим функцию $S(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}$. Ряд равномерно сходится в радиусе ρ . Тогда S(z) непрерывна и определен интеграл $\int_C S(\zeta) \mathrm{d}\zeta$, где C это кривая в круге радиуса ρ .

Проинтегрируем функции ζ^k , где $k \in \mathbb{N}_0$. Отметим, что ζ^k аналитическая в \mathbb{C} , поэтому по 1.14.3 $\oint_K \zeta^k \mathrm{d}\zeta = 0$, таким образом интеграл $\int_C \zeta^k \mathrm{d}\zeta$ не зависит от пути, поэтому

$$\int_C \zeta^k d\zeta = \frac{\zeta^{k+1}}{k+1} \bigg|_0^z$$

где кривая C связывает точки 0 и z. Получаем, что

$$\sum_{k=0}^{\infty} \int_{C} \zeta^{k} d\zeta = \sum_{k=0}^{\infty} \frac{z^{k+1}}{k+1} \xrightarrow{\frac{k+1}{n}} \sum_{n=1}^{\infty} \frac{z^{n}}{n}$$

Используем полученное равенство и получим

$$\int_{C} S(\zeta) d\zeta = \int_{C} \sum_{n=1}^{\infty} n c_{n} \zeta^{n-1} d\zeta = \sum_{n=1}^{\infty} \int_{C} n c_{n} \zeta^{n-1} d\zeta = \sum_{n=1}^{\infty} c_{n} z^{n} = \sum_{n=0}^{\infty} c_{n} z^{n} - c_{0} = f(z) - c_{0}$$

Таким образом $f(z) = \int_0^z S(\zeta) d\zeta + c_0$, т.е. f(z) является первообразной для S(z) и f'(z) = S(z).

Замечание 1.15.20. Очевидно, что регулярную функцию можно продифференцировать еще раз и сколько угодно раз (т.к. производная также степенной ряд), значит она является аналитической.

Замечание 1.15.21. Запишем

$$f^{(n)}(z) = \left(\sum c_k z^k\right)^{(n)}$$

$$f(z) = c_0 + c_1 z + \dots$$

$$f'(z) = c_1 + 2c_2 z + \dots$$

$$f''(z) = 2c_2 + 3 \cdot 2 \cdot c_3 z + \dots$$

$$\vdots \vdots \vdots \vdots$$

$$f^{(n)}(z) = n!c_n + (n+1)!c_{n+1}z + \dots$$

Отсюда получаем, что

$$\begin{cases}
f(0) &= c_0 \\
f'(0) &= c_1 \\
f''(0) &= 2c_2 \\
f^{(n)}(0) &= n!c_n
\end{cases} \Longrightarrow c_n = \frac{f^{(n)}(0)}{n!}$$

Для ряда $\sum c_n(z-a)^n$ имеем $c_n=rac{f^{(n)}(a)}{n!}$ Таким образом получаем ряд Тейлора

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

Замечание 1.15.22. Ряд Тейлора единственный. Доказательство аналогично вещественному случаю.

1.16. Лекция 23.12.15.

Итак, доказали, что регулярная в области D функция аналитична и сколько угодно раз дифференцируема, при этом представима рядом Тейлора. Теперь докажем обратное: аналитическая в области D функция f(z) регулярна в D. **Теорема 1.16.1.** f(z) аналитична в $D \Longrightarrow f(z)$ регулярна в D.

 \square Пусть $K\subset D$ это круг с центром a радиуса ρ . Обозначим его границу γ_{ρ} . Рассмотрим $z\in K$, по интегральной формуле Коши $\forall z\in K$ имеем

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_o} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Разложим в ряд по степеням $(z-a)^n$.

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a - (z - a)} = \frac{1}{(\zeta - a)\left(1 - \frac{z - a}{\zeta - a}\right)}$$

Далее учитываем, что $\zeta-a=\rho$ и $\left|\frac{z-a}{\zeta-a}\right|=\frac{|z-a|}{\rho}<1,$ значит

$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\zeta - a)^{n+1}} \Longrightarrow \frac{f(\zeta)}{\zeta - z} = \sum_{n=0}^{\infty} \frac{f(\zeta)}{(\zeta - a)^{n+1}} (z - a)^n$$

Причем полученный ряд сходится равномерно. Подставим его в интегральную формулу Коши.

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta \right) (z - a)^{n}$$

$$= \sum_{n=0}^{\infty} c_{n} (z - a)^{n} \qquad c_{n} = \frac{1}{2\pi i} \int_{\gamma_{\rho}} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

Т.к. точка $a \in D$ — произвольная, то f(z) представима степенным рядом в $D \Longrightarrow$ она регулярна.

Замечание 1.16.2. Таким образом аналитичная области и регулярная в той же области функция это тождественные понятия.

Теорема 1.16.3. (Бесконечная дифференцируемость аналитической функции. Формула n-ой производной) Если f(z) аналитична в области D, то f(z) бесконечно дифференцируема в этой области и

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \qquad \gamma \in D$$

 \square Т.к. f(z) аналитична в области D, то она регулярна в этой области, а значит представима в виде

$$f(z) = \sum_{n=0}^{\infty} b_n (z-a)^n$$
 $b_n = \frac{f^{(n)}(a)}{n!}$

Возьмем представление из предыдущей теоремы

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n \qquad c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

Т.к. разложение единственно, то $b_n = c_n$, значит

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta$$

Замечание 1.16.4. Итак, всякая аналитическая функция бесконечно раз дифференцируема и представима единственным рядом Тейлора, который всегда сходится к значению функции (в области аналитичности).

Теорема 1.16.5. (Морера)

$$f(z)$$
 непрерывна в D $\forall \gamma \in D \, \Big| \, \oint_{\gamma} f(\zeta) \mathrm{d}\zeta = 0 \Bigg\} \Longrightarrow f(z)$ аналитична в D

 \Box Т.к. f(z) непрерывна и интеграл $\oint_{\gamma} f(\zeta) \mathrm{d}\zeta$ не зависит от пути, то по теореме о первообразной $\exists \Phi(z) = \int_{z_0}^z f(\zeta) \mathrm{d}\zeta$ — аналитическая в области D. Это значит, что $\Phi(z)$ сколько угодно раз дифференцируема и $\Phi^{(n)}(z)$ (в том числе $\Phi'(z) = f(z)$) аналитическая в D.

Теорема 1.16.6. (Лиувилля) Если f(z) аналитическая и ограниченная на \mathbb{C} , то f(z) = const.

$$\begin{split} |f'(z)| &= \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^2 \mathrm{d}\zeta} \right| \\ &= \left[\gamma = \left\{ \zeta \, \middle| \, \zeta = z + e^{i\varphi} \right\} \right] \\ &= \frac{1}{2\pi} \left| \int_{0}^{2\pi} \frac{f(\zeta)\rho i e^{i\varphi}}{i\rho^2 e^{i2\varphi}} \mathrm{d}\varphi \right| \\ &= \frac{1}{2\pi} \left| \int_{0}^{2\pi} \frac{f(\zeta)}{\rho e^{i\varphi}} \mathrm{d}\varphi \right| \\ &\leqslant \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{f(\zeta)}{\rho e^{i\varphi}} \right| \mathrm{d}\varphi \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\left| f(z + e^{i\varphi}) \right|}{\rho} \mathrm{d}\varphi \\ &\leqslant \left[f(\zeta) \text{ ограниченная} \right] \\ &\leqslant \left[f(\zeta) \text{ ограниченная} \right] \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{M}{\rho} \mathrm{d}\varphi \\ &= \frac{M}{\rho} \end{split}$$

Т.к. f'(z) не зависит от ρ и по модулю меньше любого \mathbb{R}^+ числа (ρ — произвольное), то $f'(z) = 0 \Longrightarrow f(z) = const$. \blacksquare Замечание 1.16.7. Отсюда следует, что функции $\sin z$ и $\cos z$, не являясь постоянными, не могут быть ограниченными, т.е. $\exists z \mid \sin z > 1$.

4. Ряды Лорана. Вычеты

4.1 Ряд Лорана

Def 1.16.8. Рядом Лорана для функции f(z) называется ряд вида $\sum_{n=-\infty}^{\infty} c_n (z-a)^n$, где

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$$

$$f_2(z) = \sum_{n=-1}^{-\infty} c_n (z-a)^n = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n}$$

и ряд сходится к f(z), если $f_1(z)$ и $f_2(z)$ сходятся и $f(z) = f_1(z) + f_2(z)$.

Замечание 1.16.9 (Об области сходимости). Заметим, что $f_1(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ — обычный степенной ряд, который сходится в круге радиуса R_1 . Ряд $f_2(z) = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} = \sum_{n=1}^{\infty} c_{-n} t^n$ сходится в круге радиуса R'. Таким образом $|t| < R' = \frac{1}{R_2}$, значит $|z-a| > R_2$. Итак, ряд Лорана сходится в кольце $K(a,R_2,R_1)$.

<u>Lm</u> 1.16.10. Ряд Лорана сходится к аналитической функции абсолютно и равномерно.

 \square Ряды $\sum_{n=1}^{\infty}c_nt^n$ и $\sum_{n=0}^{\infty}c_n(z-a)^n$ — степенные, сходятся абсолютно и непрерывно к непрерывным функциям $f_2(z)$ и $f_1(z)$ (по теореме Абеля). Члены этих рядов также аналитические функции. В кольце $K(z_0,R_2,R_1)$ по теореме Коши все $\oint_{\gamma}c_n(\zeta-z_0)^k\mathrm{d}\zeta=0$, т.к. функции аналитичны в $z_0\in K$. Итого

$$\oint_{\gamma} f(\zeta) d\zeta = \sum_{n} \oint_{\gamma} c_n (z - z_0)^k = 0$$

Тогда по теореме Морера f(z) аналитическая.

Обратное: всякая ли аналитическая функция разложима в ряд Лорана?

Рис. 1.16.11: Разложение в ряд Лорана

Теорема 1.16.12. (Разложение в ряд Лорана) Если f(z) аналитична в кольце $K(a, R_2, R_1)$ тогда f(z) единственным образом разложима в ряд Лорана в кольце K.

 \square В кольце K выделим два контура (окружности) r_1 и r_2 (рис. 1.16.11). Между ними получим кольцо $D'=(a,r_2,r_1),$ в котором f'(z) аналитична. По формуле Коши

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \underbrace{\frac{1}{2\pi i} \int_{\Gamma_1^+} \frac{f(\zeta)}{\zeta - z} d\zeta}_{I_1} - \underbrace{\frac{1}{2\pi i} \int_{\Gamma_2^+} \frac{f(\zeta)}{\zeta - z} d\zeta}_{I_2}$$

По теореме о бесконечной дифференцируемости для I_1 имеем

$$f(z) = \frac{1}{2\pi i} \int_{r_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} c_n (z - a)^n$$

Аналогично можно рассмотреть I_2 , но

$$-\frac{1}{\zeta - a} = \dots = \sum_{k=0}^{\infty} c_k \frac{(\zeta - a)^k}{(z - a)^{k+1}} \qquad \begin{bmatrix} \left| \frac{\zeta - a}{z - a} \right| < 1 \\ \left| \zeta - a \right| = \rho \text{ (радиус } r_2) \\ \left| z - a \right| > \rho \end{bmatrix}$$

Окончательно имеем

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z-a)^n} \qquad c_n = \frac{1}{2\pi i} \int_{r_i} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d\zeta$$

Замечание 1.16.13. Единственность разложения доказывается аналогично ряду Тейлора.

Замечание 1.16.14. Видим, что $f_1(z)$ (половина ряда) это ряд Тейлора и стремление z к a его не портит, в то время как $f_2(z)$ при $z \to a$ содержит бесконечности.

4.2 Изолированные особые точки

Замечание 1.16.15. Возможны три ситуации для аналитичной функции f(z) в кольце $0 < |z-a| < r \ (a \in \mathbb{C})$ или |z| > R $(a = \infty)$ и неопределенной в точке $a \in \overline{\mathbb{C}}$.

- 1. $\lim_{z \to a} f(z) \in C \Longrightarrow$ точка называется устранимой особой точкой
- 2. $\lim_{z \to a} f(z) = \infty \Longrightarrow$ точка a называется полюсом.
- 3. $\exists \lim_{z \to a} f(z) \Longrightarrow$ точка a называется существенно особой точкой.

Критерии особых точек

- 1. $\forall c_{-n} = 0$
- 2. $\exists c_{-n} \neq 0$
- 3. $\forall c_{-n} \neq 0$

Def 1.16.16. c_{-1} в ряде Лорана в особой точке называется вычетом f(z) в этой точке.

1.17. Лекция 23.12.22.

Замечание 1.17.1. Рассматриваем только изолированные точки однозначного характера (не ветвления).

Пример 1.17.2.

$$f(z)=rac{\sin z}{z}$$
 $z_0=0$ $\lim_{z o z_0}rac{\sin z}{z}=1\Longrightarrow z_0$ устранимая $f(z)=rac{z}{z-1}$ $z_0=1$ $\lim_{z o z_0}rac{z}{z}=1\Longrightarrow z_0$ устранимая $f(z)=e^{-rac{1}{z^2}}$ $z_0=0$ $\lim_{z o z_0}e^{-rac{1}{x^2}}=0$ $\lim_{z o z_0}e^{rac{1}{x^2}}=0$ $\lim_{z o z_0}e^{rac{1}{x^2}}=\infty$ $\Rightarrow z_0$ существенно особая точка $f(z)=0$ $\lim_{z o z_0}e^{rac{1}{z^2}}=0$ $\lim_{z o z_0}e^{rac{1}{x^2}}=0$

Замечание 1.17.3. Особые точки находятся только на границе области аналитичности. В случае, если особая точка находится в области аналитичности, то мы окружаем ее бесконечно малым контуром, который является одной из границ области аналитичности.

Ряды Лорана в особых точках

Если $z=z_0\in\mathbb{C}$, то

$$f(z) = \underbrace{\sum_{n=0}^{\infty} c_n (z-z_0)^n}_{\text{правильная часть}} + \underbrace{\sum_{n=1}^{\infty} \frac{c_{-n}}{(z-z_0)^n}}_{\text{главная часть}}$$

Если $z=\infty$, то

$$f(z) = \sum_{n=1}^{\infty} c_n z^n + \sum_{n=0}^{\infty} \frac{c_{-n}}{z^n} \xrightarrow{z = \frac{1}{\omega}} \sum_{n=1}^{\infty} \frac{c_n}{\omega^n} + \sum_{n=0}^{c_{-n}\omega^n} \frac{c_n}{\omega^n} = \sum_{n=0}^{\infty} \frac{c$$

Причем правильная часть стремится к нулю, а главная часть — к бесконечности.

Теорема 1.17.4. $z_o \in \mathbb{C}$ — устранимая особая точка для $f(z) \Longleftrightarrow$ главная часть ряда Лорана равна нулю.

 \square (\Longleftarrow) Пусть $\lim_{z\to z_0} f(z) = A \in \mathbb{C}$. Разложим f(z) в ряд Лорана, получим

$$f(z) = \sum_{-\infty}^{\infty} c_n (z - z_0)^n \qquad c_n = \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

Вычетом f(z) в точке z_0 называется

$$\operatorname{res} f(z_0) \stackrel{\operatorname{def}}{\Longleftrightarrow} c_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) d\zeta$$

T.к. в z_0 предел конечен, то

$$\exists \mathring{u}_{\rho}(z_0) \colon |f(z)| < M \qquad \forall z \in \mathring{u}_{\rho}(z_0) \qquad 0 < |z - z_0| < \rho$$

Рассмотрим $|c_n|$.

$$c_n = \frac{1}{2\pi i} \int_{\gamma_\rho} \frac{f(\zeta) d\left(z_0 + \rho e^{i\varphi}\right)}{\left(\rho e^{i\varphi}\right)^{n+1}}$$
$$|c_n| = \left| \frac{1}{2\pi} \int_0^{2\pi} \frac{f(\zeta) \rho e^{i\varphi} d\varphi}{\left(\rho e^{i\varphi}\right)^{n+1}} \right| = \left[\frac{|e^{i\varphi}|}{|f(\zeta)|} \le M \right] \le \frac{1}{2\pi} \int_0^{2\pi} \frac{M\rho}{\rho^{n+1}} d\varphi = \frac{1}{2\pi} \cdot \frac{M}{\rho^n} \cdot 2\pi = \frac{M}{\rho^n}$$

Т.к. n < 0, то $\frac{M}{\rho^n} \xrightarrow{\rho \to 0} 0$. Таким образом $\forall c_{-n} = 0$, где $n = 1, 2, \dots$ Т.е. главная часть равна нулю. (\Longrightarrow) Если главная часть ряда Лорана равна нулю, то

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n = c_0 + c_1 (z - z_0) + \dots$$

При $z \to z_0$ эта сумма стремится к c_0 . Таким образом

$$\lim_{z \to z_0} f(z) = c_0 \in \mathbb{C}$$

Замечание 1.17.5. Таким образом функцию f(z) можно доопределить в устранимой особой точке z_0 значением $f(z_0) = c_0$, тогда f(z) будет аналитична в круге $|z - z_0| < R$ (включая центр круга z_0).

Def 1.17.6. Полюсом порядка m называется особая точка функции f(z) такая, что $g(z) = \frac{1}{f(z)}$ число в этой точке нуль порядка m, т.е. g(z) представима в виде $g(z) = (z-z_0)^m h(z)$, где h(z) аналитична в z_0 и $h(z_0) \neq 0$.

Замечание 1.17.7. Справедливость представления можно доказать, разложив g(z) в ряд.

Теорема 1.17.8. $z_0 \in \mathbb{C}$ — полюс \iff главная часть содержит $m \in \mathbb{N}$ ненулевых членов, причем $\forall n \geqslant m+1 \mid c_{-n}=0$, но остальные $c_{-n} \neq 0$. Говорят, что в этом случае f(z) имеет полюс порядка m. Если m=1, то полюс называется простым.

 \square (—) Т.к. h(z)аналитична в z_0 и $h(z_0) \neq 0,$ то разложим в ряд функцию

$$\frac{1}{h(z)} = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

Имеем

$$f(z) = \frac{1}{g(z)} = \frac{1}{(z-z_0)^m h(z)} = \frac{1}{(z-z_0)^m} \sum_{n=0}^{\infty} b_n (z-z_0)^n = \underbrace{b_0 (z-z_0)^{-m} + b_1 (z-z_0)^{-m+1} + \ldots + b_m + b_{m+1} (z-z_0) + \ldots}_{\text{правильная часть}} + \underbrace{b_m + b_{m+1} (z-z_0) + \ldots + b_{m+1} (z-z_0) + \ldots}_{\text{правильная часть}}$$

Переобозначим и получим

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \frac{c_{-1}}{z - z_0} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Причем

$$c_{-1} = b_0 = \lim_{z \to z_0} \frac{1}{h(z)} \neq 0$$

Т.к. $h(z_0) \neq \infty$ в силу аналитичности.

(⇒) Рассмотрим разложение в ряд Лорана.

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \frac{c_{-1}}{z - z_0} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Умножив на $(z-z_0)^m$ получим аналитичную функцию $\frac{1}{h(z)}$. Тогда $g(z)=\frac{1}{f(z)}$, которая представима в виде $(z-z_0)^m f(z)$. Таким образом $z=z_0$ — это ноль порядка m, т.е. по определению является полюсом m-ого порядка для f(z).

Теорема 1.17.9. $z_0 \in \mathbb{C}$ является существенно особой точкой \iff главная часть ряда Лорана содержит бесконечное число ненулевых членов.

□ Это следствие из двух предыдущих теорем.

Замечание 1.17.10. Таким образом, если z_0 это устранимая особая точка, то $\operatorname{res} f(z_0) = 0$, в остальных случаях $\operatorname{res} f(z_0) \neq 0$.

Замечание 1.17.11. Определение и критерии особых точек сохраняются для $z=\infty,$ но res $f(\infty)=-c_{-1}.$

Пример 1.17.12.

$$f(z) = \frac{\left(e^z-1\right)^2}{1-\cos z} \sim \frac{z^2}{\frac{z^2}{2}} = 2 \Longrightarrow \ \text{устранимая} \implies c_{-1} = 0$$

$$f(z) = \frac{1}{\sin\frac{1}{z}} \xrightarrow{\frac{1}{z}=\pi k} \infty \Longrightarrow z_k = \frac{1}{\pi k} \ \text{полюсы}$$

$$z_0 = \infty \qquad \frac{1}{\sin\frac{1}{z}} = \begin{bmatrix} z = \frac{1}{\omega} \\ \omega \to 0 \end{bmatrix} = \frac{1}{\sin\omega} \xrightarrow{\omega \to 0} \infty \Longrightarrow z_0 = \infty \ \text{простой полюс}$$

Замечание 1.17.13. Вычет всегда можно найти разложением в ряд Лорана, но чаще всего это бывает неудобно, поэтому вычеты ищут с помощью специальных формул и теорем о вычетах.

Теоремы о вычетах

Теорема 1.17.14. (Основная) Если f(z) аналитична в односвязной области D кроме конечного числа точек $z_1, \ldots, z_N \in \mathbb{C}$, то

$$\oint_{\gamma_{\rho}} f(\zeta) d\zeta = 2\pi i \sum_{k=1}^{N} \operatorname{res} f(z_{k})$$

при условии, что $\forall z_k$ внутри контура γ_ρ .

□ По теореме Коши для многосвязной области

$$\int_{\text{внеш}} f(\zeta) d\zeta = \sum \int_{\text{внут}} f(\zeta) d\zeta = \int \frac{f(\zeta)}{(\zeta - z)^0} d\zeta = 2\pi i c_{-1} = 2\pi i \operatorname{res} f(z_0)$$

Теорема 1.17.15. Пусть z_1,\ldots,z_N — особые точки f(z), причем $z_k\in\overline{\mathbb{C}}$. В области $\overline{\mathbb{C}}\setminus\{z_k\}$ функция аналитична. Тогда

$$\sum_{p=1}^{N} \operatorname{res} f(z_p) = \sum_{k=1}^{N-1} \operatorname{res} f(z_k) + \operatorname{res} f(\infty) = 0 \qquad z_k \in \mathbb{C}$$

 \square Пусть контур C это окружность с центром в нуле, которая охватывает все конечные особые точки и имеет радиус R. Тогда по предыдущей теореме

$$\int_C f(\zeta) d\zeta = 2\pi i \sum_{k=1}^{N-1} \operatorname{res} f(z_k)$$

Контур C, пройденный в обратном направлении, охватывает $z=\infty$, поэтому

$$\int_{C} f(\zeta) d\zeta = -\int_{C^{-}} f(\zeta) d\zeta = -\operatorname{res} f(\infty)$$

Замечание 1.17.16. Таким образом, если вычеты в конечных точках посчитать проще, чем разложить функцию в ряд Лорана, то оставшийся вычет получается как минус сумма первых.

Вычисление вычетов в полюсе

I. m = 1

$$f(z) = c_{-1}(z - z_0)^{-1} + c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \dots$$

Умножим это на $(z-z_0)$ и устремим $z \to z_0$. Получим

$$(z-z_0)f(z) = c_1 + \underbrace{\cdots}_{\rightarrow 0}$$

Итого

$$c_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$$

I. m > 1

$$(z-z_0)^m f(z) = c_{-m} + \ldots + c_{-1}(z-z_0)^{m-1} + \ldots$$

Продифференцируем это m-1 раз, тогда

$$\lim_{z \to z_0} ((z - z_0)^m f(z))_z^{(m-1)} = c_{-1} m!$$

Вычисление несобственных вещественных интегралов

<u>Lm</u> 1.17.17. Пусть $I = \int_{-\infty}^{\infty} f(x) \mathrm{d}x \succ$. Построим контур C, который будет представлять их себя полуокружность радиуса R в верхней полуплоскости и будет охватывать все особые точки. f(z) аналитична в $\mathrm{Im}\,z > 0$ и $\lim_{R \to \infty} \int_C f(\zeta) \mathrm{d}\zeta = 0$. Тогда

$$I = 2\pi i \sum_{k=1}^{N} \operatorname{res} f(z_0)$$

Пример 1.17.18. Дан интеграл

$$I = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{\left(x^2 + 1\right)^4}$$

Рассмотрим

$$\int_C \frac{\mathrm{d}\zeta}{(\zeta^2 + 1)^4} = \int_C \frac{\mathrm{d}\zeta}{(\zeta - i)^4 (\zeta + i)^4}$$

где $C\colon |z|=2$. Получаем, что

$$I = 2\pi i \operatorname{res} f(i) = 2\pi i c_{-1} = 2\pi i \cdot \frac{1}{3!} \lim_{z \to z_0} \frac{d^3 \left(\frac{1}{(z+i)^4}\right)}{dz^3} = \dots = \frac{-5i}{32}$$

т.к. i это полюс.