STAT 7200

Introduction to Advanced Probability
Lecture 2

Taylor R. Brown

- Mathematical Background
 - Limits
 - Limits of Sequences of Real Numbers
 - Sequences that Converge to Infinity and Sequences without Limits
 - Properties of Limits
 - More on Limits: Squeeze Theorem
 - Limits Preserve Order
 - Sums of Infinite Sequences
 - On Sums of Infinite Sequences
 - Bounds of Limit
 - Supremum and Infimum
 - The Bolzano-Weierstrass Theorem
 - Limit Superior and Limit Inferior
 - Limit Superior, Limit Inferior and Limit
 - Exchange Summation and Limit

"A First Look at Rigorous Probability Theory" (Jeffrey Rosenthal) Sections A.3 and A.4

Limits: Limits of Sequences of Real Numbers

- Limit of A Sequence of Real Numbers A sequence of real numbers x_1, x_2, \ldots converges to another real number x if, given any $\varepsilon > 0$, there is a $N \in \mathbb{N}$, such that n > N implies $|x_n x| < \varepsilon$. We denote this as $\lim_{n \to \infty} x_n = x$ or $x_n \to x$.
- **Example** Show that $\lim_{n\to\infty}\frac{1}{n^k}=0$.
- **Proof** First, choose an arbitrary $\varepsilon > 0$. Set $N := \left\lceil \frac{1}{\varepsilon^{1/k}} \right\rceil$. Then n > N guarantees $\left| \frac{1}{n^k} - 0 \right| < \varepsilon$.

Sequences that Converge to Infinity and Sequences without Limits

- Converges to Infinity A sequence of real numbers x_1, x_2, \ldots converges to infinity if for any $M \in \mathbb{R}$, there is a $N \in \mathbb{N}$, such that n > N implies $X_n > M$. We write this as $\lim_{n \to \infty} x_n = \infty$. We define the convergence to negative infinity in a similar fashion.
- Example $n^2 \to \infty$.
- There are sequences that do not have a finite or infinite limit (e.g. 0, 1, 0, 1, 0, 1, ..., which oscillates between 0 and 1). These do not converge to anything, finite or infinite.

Properties of Limits

Theorem 1

If $\lim_{n\to\infty} x_n = x$, and $\lim_{n\to\infty} y_n = y$, then

- 1) For any a, $\lim_{n\to\infty} ax_n = ax$; 2) $\lim_{n\to\infty} (x_n + y_n) = x + y$;
- 3) $\lim_{n\to\infty} (x_n y_n) = xy$; 4) If x > 0, then $\lim_{n\to\infty} \frac{1}{x_n} = \frac{1}{x}$.

- Proof We only consider the situation in which both limits are finite.
 - 2): By definition, given any $\varepsilon > 0$, there are $N_1, N_2 \in \mathbb{N}$, such that $|x_n x| < \varepsilon/2$ for $n > N_1$ and $|y_n y| < \varepsilon/2$ for $n > N_2$.

Now we let $N^* = \max(N_1, N_2)$, then for any $n > N^*$, $|x_n - x| < \varepsilon/2$ and $|y_n - y| < \varepsilon/2$.

Furthermore, for $n > N^*$, we have,

$$|x_n + y_n - x - y| \le |x_n - x| + |y_n - y| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Thus, $\lim_{n\to\infty} (x_n + y_n) = x + y$.

Properties of Limits (continued)

- 3) $\lim_{n\to\infty}(x_ny_n)=xy$
- **Proof:** The intuition is to show $|x_ny_n-xy|$ can be arbitrarily small for large enough n. This can be shown by the following inequality: $|x_ny_n-xy|=|x_ny_n-xy_n+xy_n-xy|\leq |y_n||x_n-x|+|x||y_n-y|$, in which $|y_n|$ approaches y, and $|x_n-x|$, $|y_n-y|$ approaches 0 for large n. A rigorous proof for the case $x\neq 0$ is shown below:
 - a) For any $\varepsilon > 0$, there is $N_1 \in \mathbb{N}$ such that for any $n > N_1$, $|y_n y| < \varepsilon/(2|x|)$.
 - b) Choose any constant $\delta > 0$. Then there is $N_2 \in \mathbb{N}$ such that for any $n > N_2$, $|y_n y| < \delta$, which further implies $|y_n| < |y| + \delta$.
 - c) For the same $\varepsilon > 0$, there is $N_3 \in \mathbb{N}$ such that for any $n > N_3$, $|x_n x| < \varepsilon/(2(|y| + \delta))$.
 - d) Now we let $N^* = \max(N_1, N_2, N_3)$, then for any $n > N^*$,

$$|x_ny_n - xy| = |x_ny_n - xy_n + xy_n - xy| \le |y_n||x_n - x| + |x||y_n - y|$$

$$\le (|y| + \delta)\varepsilon/(2(|y| + \delta)) + |x|\varepsilon/(2|x|) = \varepsilon$$

Thus, $\lim_{n\to\infty}(x_ny_n)=xy$.

Squeeze Theorem

Theorem 2

Suppose that we have three sequences $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ that satisfy $a_n \leq b_n \leq c_n$ for all n and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$. Then $\lim_{n \to \infty} b_n = L$

• **Proof** For any $\varepsilon > 0$, there are $N_1, N_2 \in \mathbb{N}$, such that $|a_n - L| < \varepsilon$ for $n > N_1$ and $|c_n - L| < \varepsilon$ for $n > N_2$.

Now we let $N^* = \max(N_1, N_2)$, then for any $n > N^*$, $|a_n - L| < \varepsilon$ and $|c_n - L| < \varepsilon$. These two inequalities further imply $L - \varepsilon < a_n \le b_n \le c_n < L + \varepsilon$.

Thus, for $n > N^*$, $|b_n - L| < \varepsilon$. We have $\lim_{n \to \infty} b_n = L$

• Example $\lim_{n\to\infty} \frac{\sin n}{n} = 0$ since $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$

Limits Preserve Order

Theorem 3

Suppose that we have two sequences $\{a_n\}$, $\{b_n\}$ that satisfy $a_n \leq b_n$ for all n. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$. Then $L \leq M$.

• **Proof** Assume to the contrary that L > M. Pick $\varepsilon > 0$ such that $M + \varepsilon < L - \varepsilon$ (e.g. $\varepsilon = (L - M)/4$)

For this same $\varepsilon > 0$, pick $N \in \mathbb{N}$ such that $|a_n - L| < \varepsilon$ and $|b_n - M| < \varepsilon$ for n > N. However, these two inequalities imply $a_n > L - \varepsilon > M + \varepsilon > b_n$ when n > N, which contradicts the hypothesis that $a_n \le b_n$ for all n. Thus, $L \le M$.

Sums of Infinite Sequences

• For a sequence x_1, x_2, \ldots , we define its sum as

$$\sum_{n=1}^{\infty} x_n = \lim_{n \to \infty} \sum_{i=1}^{n} x_i$$

- This boils down to a different sequence: the partial sums $s_n := \sum_{i=1}^n x_i$.
- For nonnegative sequences, the limit is either finite or infinite.
- Examples

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty; \sum_{n=1}^{\infty} \frac{1}{n!} = e.$$

Sums of Infinite Sequences

Theorem 4

- 1) If $\sum_{n=1}^{\infty} x_n$ converges, then for every $\varepsilon > 0$, there is an $N \in \mathbb{N}$ such that $|\sum_{k=n+1}^{\infty} x_k| < \varepsilon$ for all n > N
- 2) Let $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ be two sequences of real numbers with $|x_n| < y_n$ for all n. If $\sum_{n=1}^{\infty} y_n$ converges, then $\sum_{n=1}^{\infty} x_n$ also converges and $|\sum_{n=1}^{\infty} x_n| < \sum_{n=1}^{\infty} y_n$

Bounds and Limits

• A set $A \subseteq R$ is **bounded above (or below)** if there is a real number M such that $a \le M$ (or $a \ge M$) for all $a \in A$. A set that is bounded above and below is called **bounded**.

Proposition 5

If $\lim_{n\to\infty} x_n = x$, then $\{x_n : n \in \mathbb{N}\}$ is bounded.

• **Proof** Choose $\varepsilon = 1$. Because $\lim_{n \to \infty} x_n = x$, we can find a large N where $|x_n - x| < 1$ for any n > N.

Let $M=\max\{x_1,x_2,\cdots,x_N,x+1\}$, $L=\min\{x_1,x_2,\cdots,x_N,x-1\}$. Clearly $L\leq x_n\leq M$ for all $n\in\mathbb{N}$.

Taylor R. Brown STAT 7200 11/21

Supremum and Infimum

- **Supremum** For any nonempty subset A of R that is bounded above, the **supremum** or **least upper bound** is the number L such that 1) $a \le L$ for all $a \in A$. 2) For any other upper bound L' of A, $L' \ge L$. The supremum of A is denoted by $\sup A$.
- Infimum Similarly, we can also define the infimum or greatest lower bound for any nonempty subset A of R that is bounded below as inf A
- Example
 - 1) $\inf\{0,1,2,3,\ldots\}=0$;
 - 2) $\sup\{1/2, 2/3, 3/4, \dots, n/(n+1), \dots\} = 1.$
- Exercise Show that, if A and B are two nonempty subset of R, $A \subseteq B$, and if the corresponding suprema and infima exist, then $\sup A \le \sup B$ and $\inf A \ge \inf B$.

Properties of Supremum and Infimum

- Every nonempty subset of R that is bounded above has a supremum.
 Similarly, every nonempty subset R that is bounded below has an infimum.
- If a nonempty set A is not bounded below, we will denote inf $A=-\infty$. Similarly, if A is not bounded above, sup $A=\infty$.

Proposition 6

If A is a non-empty set that is bounded below. Then for any $\varepsilon > 0$, there is $a \in A$ with inf $A < a < \inf A + \varepsilon$

• **Proof** If such a does not exist, then for all $a \in A$, we have $a \ge \inf A + \varepsilon$. That is, $\inf A + \varepsilon$ is a lower bound of A. However, by definition $\inf A$ is the greatest lower bound of A and we reach a contradiction.

Towards the Bolzano-Weierstrass Theorem

Lemma 7

A monotone increasing sequence that is bounded above converges (to a finite value). A monotone decreasing sequence that is bounded below converges (to a finite value).

• **Proof** Suppose that sequence $x_1, x_2,...$ is a monotone increasing sequence that is bounded above. Then $x_n \to \sup\{x_n : n \in \mathbb{N}\}$. Why?

For any $\varepsilon>0$, since $L-\varepsilon$ can not be an upper bound of $\{x_n\}$, there must be a natural number N such that $x_N>L-\varepsilon$.

However, since $\{x_n\}$ is a increasing sequence, for all n > N, $L \ge x_n \ge x_N > L - \varepsilon$.

The inequality above suggests that $|x_n - L| < \varepsilon$ for all n > N. Thus, $\lim_{n \to \infty} x_n = L$.

Towards the Bolzano-Weierstrass Theorem

Lemma 8

Every real sequence x_n has a monotone subsequence x_{n_k} .

- **Proof** Define $S = \{n : x_m > x_n, \forall m > n\}$. This is either countably infinite or finite. If it's the first, write it as $\{n_1, n_2, \ldots\}$. Clearly x_{n_k} is monotone in this case.
- Suppose S is finite now. That means it's bounded, so there exists n_1 greater than all elements of S. This means $n_1 \notin S$. In other words, $n_1 \in S^c$.
- Looking at the definition of S, we see there exists $n_2 > n_1$ such that $x_{n_2} \le x_{n_1}$. As $n_2 \notin S$, we can find n_3, n_4, \ldots This mean x_{n_k} is monotonically decreasing.

The Bolzano-Weierstrass Theorem

Theorem 9

Every bounded real sequence x_n has a convergent subsequence x_{n_k} .

• Proof Just use the previous two lemmas.

Limit Superior and Limit Inferior

- Limit Superior and Limit Inferior For x_1, x_2, \ldots , the limit inferior is defined as $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} (\inf_{m\geq n} x_m)$ the limit superior is defined as $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} (\sup_{m>n} x_m)$
- Exercise Find the limit superior and limit inferior for $0, 1, 0, 1, \cdots$?
- Both limit superior and limit inferior exist (maybe infinity). For this, note that both $\{\inf_{m\geq n} x_m\}_{n=1}^{\infty}$ and $\{\sup_{m\geq n} x_m\}_{n=1}^{\infty}$ are monotone sequences.

Proposition 10

 $\inf_{n} x_n \le \liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n \le \sup_{n \to \infty} x_n$

Limit Superior, Limit Inferior and Limit

Theorem 11

 $\lim_{n\to\infty} x_n$ exists if and only if $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n$

- **Proof** Let $\{v_n: v_n = \inf_{m \geq n} x_m\}$ and $\{u_n: u_n = \sup_{m \geq n} x_m\}$, then $\liminf_{n \to \infty} x_n = \lim_{n \to \infty} v_n$ and $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} u_n$. Note that for all n, we have $v_n \leq x_n \leq u_n$.
 - 1) "if" part: By the Squeeze Theorem, if $\lim_{n\to\infty} v_n = \lim_{n\to\infty} u_n = x$, we must have $\lim_{n\to\infty} x_n = x$.
 - 2) "only if" part: If $\lim_{n\to\infty} x_n = x$, then for any ε , there is a $N \in \mathbb{N}$, such that for n > N, $x \varepsilon < x_n < x + \varepsilon$.

Consequently, we deduce that, for n > N, $x - \varepsilon \le v_n \le u_n \le x + \varepsilon$. Thus, $x - \varepsilon \le \lim_{n \to \infty} v_n \le \lim_{n \to \infty} u_n \le x + \varepsilon$. Furthermore, since ε is arbitrary. we must have $x \le \lim_{n \to \infty} v_n \le \lim_{n \to \infty} u_n \le x$. Thus, $\lim_{n \to \infty} x_n = \lim\sup_{n \to \infty} x_n = x$.

Example

- **Problem:** Let $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ be two sequences of real numbers with $y_n\geq 0$ for all n such that $\limsup_{n\to\infty}\frac{|x_n|}{y_n}<\infty$ and $\sum_{n=1}^\infty y_n<\infty$, then $\sum_{n=1}^\infty x_n$ converges .
- **Proof:** The key here is to show that $|x_n|$ is bounded by y_n times a positive constant.

Since $\limsup_{n\to\infty}\frac{|x_n|}{y_n}=\lim_{n\to\infty}(\sup_{m\geq n}\frac{|x_m|}{y_m})$ converges, $\sup_n\frac{|x_n|}{y_n}$ must be finite and positive.

Assuming that $\sup_n \frac{|x_n|}{y_n} = M > 0$, then for any $n, \frac{|x_n|}{y_n} \leq M$, and $|x_n| \leq My_n$.

However, as $\sum_{n=1}^{\infty} y_n < \infty$, $\sum_{n=1}^{\infty} My_n$ is also finite. That is, $|x_n|$ is bounded by a sequence whose sum converges, then $\sum_{n=1}^{\infty} x_n$ also converges and $|\sum_{n=1}^{\infty} x_n| \le M \sum_{n=1}^{\infty} y_n$.

Exchange Summation and Limit

Theorem 12

Let $\{x_{nk}\}_{n,k\in\mathbb{N}}$ be a collection of real numbers, such that $\lim_{n\to\infty}x_{nk}=a_k$ for each fixed k. If $\sum_{k=1}^\infty\sup_n|x_{nk}|<\infty$, then $\lim_{n\to\infty}\sum_{k=1}^\infty x_{nk}=\sum_{k=1}^\infty a_k=\sum_{k=1}^\infty\lim_{n\to\infty}x_{nk}$

• **Proof** For any fixed k, $|a_k| = |\lim_{n \to \infty} x_{nk}| \le \sup_n |x_{nk}|$, so $\sum_{k=1}^n |a_k| < \infty$.

We now need to prove that

$$\begin{aligned} &|\sum_{k=1}^{\infty} x_{nk} - \sum_{k=1}^{\infty} a_k| = |\sum_{k=1}^{\infty} (x_{nk} - a_k)| \text{ is smaller than any } \varepsilon > 0 \\ &\text{for large } n. \text{ To achieve this, we should break this sum into two parts:} \\ &|\sum_{k=1}^{\infty} (x_{nk} - a_k)| \leq |\sum_{k=1}^{K} (x_{nk} - a_k)| + |\sum_{k=K+1}^{\infty} (x_{nk} - a_k)|. \end{aligned}$$

1) For the second sum, note that

 $\begin{aligned} &|\sum_{k=K+1}^{\infty}(x_{nk}-a_k)| \leq \sum_{k=K+1}^{\infty}|x_{nk}-a_k| \leq 2\sum_{k=K+1}^{\infty}\sup_n|x_{nk}|. \\ &\text{However, since } \sum_{k=1}^{\infty}\sup_n|x_{nk}| < \infty, \text{ we should be able to choose } K \\ &\text{big enough such that } \sum_{k=K+1}^{\infty}\sup_n|x_{nk}| < \varepsilon/4. \end{aligned}$

Exchange Sum and Limit: continued

- Proof: continued Our goal is to show that
 - $$\begin{split} |\sum_{k=1}^{\infty}(x_{nk}-a_k)| &\leq |\sum_{k=1}^{K}(x_{nk}-a_k)| + |\sum_{k=K+1}^{\infty}(x_{nk}-a_k)| < \varepsilon \\ \text{for big n, and we have already proved that we can choose K big} \\ \text{enought such that } |\sum_{k=K+1}^{\infty}(x_{nk}-a_k)| < \varepsilon/2. \end{split}$$
 - 2) For the first sum, since $|\sum_{k=1}^K (x_{nk} a_k)| \le \sum_{k=1}^K |(x_{nk} a_k)|$, and $\lim_{n \to \infty} x_{nk} = a_k$. Then for each $1 \le k \le K$, we can find $N_K \in \mathbb{N}$ such that for $n > N_k$, $|x_{nk} a_k| < \varepsilon/(2K)$.

If we choose $N^* = \max(N_1, N_2, \dots, N_K)$, then for all $n > N^*$, $\sum_{k=1}^K |(x_{nk} - a_k)| < \sum_{k=1}^K \varepsilon/(2K) = \varepsilon/2$.

3) Now combine the results in both 1) and 2), we conclude that $|\sum_{k=1}^{\infty}(x_{nk}-a_k)|<\varepsilon$ for $n>N^*$. Thus,

 $\lim_{n\to\infty}\sum_{k=1}^\infty x_{nk}=\sum_{k=1}^\infty a_k=\sum_{k=1}^\infty \lim_{n\to\infty} x_{nk}$. That is, the exact order of taking limit with respect to n and summing over k does not matter.