

Universitatea Tehnică din Cluj-Napoca Facultatea de Automatică si Calculatoare Secția de Automatică si Informatică Aplicată

PROIECT ELEMENTE DE INGINERIE MECANICA

Student: Moldovan Dan Alexandru

Grupa:30122

An universitar

2022-2023

Cuprins

Cuprins	2
Гета Proiectului	3
Tabel pentru calculul geometric al angrenajului cilindric cu dinți drepți	4
Script MatLab pentru calculul geometric al angrenajului cu dinți drepți	6
Desen Reductor	7
Analiza cinematica pentru mecanismul cu manivela piston	8
Script MatLab pentru analiza cinematica a mecanismului manivela piston	10
Tabel pentru calculul marimilor pentru crucea de Malta	11
Script MatLab pentru calculul marimilor pentru crucea de Malta	13
Desen mecanism cu cruce de Malta	14
Diagramele de variatie pentru mecanismul cu cruce de Malta	15
Script MatLab pentru calculul diagramelor de variatie	17
Bibiliografie	18

Tema proiectului: Proiectarea unui sistem mecanic ce care in componenta un reductor, un mecanism manivela piston si un mecanism pentru transmiterea intermitenta a miscarii (mecanism cu cruce de Malta).

1. Tabel pentru calculul geometric al angrenajului cilindric cu dinți drepți

	Tr. Denumirea marimii Simb Relatia de calcul Valoarea Dimensiune				
Nr. crt	Denumirea marimii	ol	Relația de calcul	Valoarea	Dimensiune
1	Numărul de dinți	Z_1	-	12	-
		\mathbb{Z}_2	-	65	-
2	Coeficienții de Deplasare a profilurilor	X_1	Se alege din tabelul 9.2 sau din conturele de blocare in	0.64	-
		X_2	functie de ce se urmareste a fi imbunatatit la angrenaj	1.00	-
3	Modul	m	Se rotunjeste conform STAS 822-61	3	mm
4	Unghiul de angrenare	α	$inv\alpha = inv\alpha_0 + 2 \cdot \frac{x_1 + x_2}{z_1 + z_2} tan\alpha_0$ $\alpha_0 = 20$	25 grade si 6 min (0.0304)	grade
5	Coeficientul de modificare a distantei dintre axe	y	$y = \frac{z1 + z2}{2} \times (\frac{\cos \alpha 0}{\cos \alpha} - 1)$	1.4545	-
6	Distanta axiala	a	$a = m \times \underbrace{\frac{z1 + z2}{\cos \alpha}}_{2} \times \underbrace{\frac{\cos \alpha 0}{\cos \alpha}}_{}$	119.8634	mm
7	Coeficientul de scurtare a inaltimii dintilor	ψ	$\psi = x1 + x2 - y$	0.1855	-
8	Inaltimea dintilor	h	$h = mm \times (2.25 - \psi)$	6.1934	mm
9	Diametrul cercurilor de divizare	d1	d1=m×z1	36	mm
		d2	$d2=m\times z2$	195	mm
10	Diametrul cercurilor de baza	db1	$d_{b1} = 2r_{b1} = mz_1 cos\alpha_0$	33.8289	mm
		d <i>b</i> 2	$d_{b2} = 2r_{b2} = mz_2 cos\alpha_0$	183.2401	mm
11	Diametrul cercurilor de rostogolire	uu_{w1}	$d_{w1} = 2r_{w1} = mz_1 \frac{\cos \alpha_0}{\cos \alpha}$	37.3600	mm
<u> </u>		uu_{w2}	$d_{w1} = 2r_{w1} = mz_1 \frac{\cos \alpha_0}{\cos \alpha}$ $d_{w2} = 2r_{w2} = mz_2 \frac{\cos \alpha_0}{\cos \alpha}$	202.3668	mm

12	Diametrul cercurilor de cap	uu_{a1}	$da1 = m(z1 + 2 + 2x1 - 2\psi)$	44.7268	mm
		uu_{a2}	$da2 = m(z2 + 2 + 2x2 - 2\psi)$	205.8868	mm
13	Diametrul cercurilor de	uu_{fl}	df1 = m(z1 - 2 + 2x1 - 0.5)	32.3400	mm
	picior	$uu_{\rm f2}$	df1 = m(z2 - 2 + 2x2 - 0.5)	193.5000	mm
14	Arcele dintilor pe cercurile de divizare	S ₁	$s_1 = \frac{\pi * m}{2} + 2mx_1 tan\alpha_0$	6.1100	mm
		S ₂	$s_2 = \frac{\pi * m}{2} + 2mx_2 tan\alpha_0$	6.8962	mm
15	Gradul de acoperire	ε	ε	1.2081	_
			$-\frac{\sqrt{r_{a2}^2 - r_{b2}^2} + \sqrt{r_{a1}^2 - r_{b1}^2} - asin\alpha}{2}$		
			$\pi * mcos\alpha_0$		

2. Script MatLab pentru calculul geometric al angrenajului cu dinți drepți

```
%1.Numarul de dinti
z1 = 12;
z2 = 65;
%2.Coeficientii de deplasare a profilurilor
x1 = 0.64;
x2 = 1.00;
%3.Modulul
m=3;
%4.Unghiul de angrenare
inva0 = 0.01490;
%involut de alfa0
alfa0 = 20*pi/180;
%20 de grade -> radiani
invalfa = inva0+(2*(x1+x2)*tan(alfa<math>0))/(z1+z2);
%5.Coeficientul de modificare a distantei dintre axe
alfa=25.11133*pi/180;
y = ((z1+z2)/2)*((cos(alfa0)/cos(alfa))-1);
%6.Distanta axiala
a = m*(z1+z2)*cos(alfa0)/(2*cos(alfa));
%7.Coeficientul de scurtare a inaltimii dintilor
psi = x1+x2-y;
%8.Inaltimea dintilor
h = m*(2.25-psi)
%9.Diametrul cercurilor de divizare
d1 = m*z1; r1 = d1/2;
d2 = m*z2; r2 = d2/2;
%10.Diametrul cercurilor de baza
db1 = m*z1*cos(alfa0)
db2 = m*z2*cos(alfa0)
rb1 = db1/2;
rb2 = db2/2;
%11.Diametrul cercurilor de rostogolire
dw1 = m*z1*cos(alfa0)/cos(alfa)
rw1 = dw1/2;
dw2 = m*z2*cos(alfa0)/cos(alfa)
rw2 = dw2/2;
%12.Diametrul cercurilor de cap
da1 = m*(z1+2+2*x1-2*psi)
ra1 = da1/2;
da2 = m*(z2+2+2*x2-2*psi)
ra2 = da2/2;
%13.Diametrul cercurilor de picior
df1 = m*(z1-2+2*x1-0.5)
rf1 = df1/2;
df2 = m*(z2-2+2*x2-0.5)
rf2 = df2/2;
%14.Arcele dintilor pe cercurile de divizare
s1 = pi*m/2 + 2*m*x1*tan(alfa0)
s2 = pi*m/2 + 2*m*x2*tan(alfa0)
%15.Gradul de acoperire
E = (\sqrt{ra2^2 - rb2^2} + \sqrt{ra1^2 - rb1^2} - a*\sin(alfa))/(pi*m*\cos(alfa0))
```


3.Desen Reductor

4. Analiza cinematica a mecanismului manivela piston

Nr.	Denumirea mărimii	Formule de calcul	
1	Spatiul	1 11 S _B = l_3 = $ll_1(\lambda\lambda - 4\lambda\lambda + cccccc\phi\varphi_1 + 4\lambda\lambda cccccc2\varphi\varphi_1)$	
2	Viteza	$^{1\mathrm{V}_{\mathrm{B}}}$ = $-ll_1\omega\omega_1(cciiiiarphiarphi_1+_{2-}$ $\lambda\lambda cciiii2arphiarphi_1)$	
3	Acceleratia	$a_B = -ll_1 \omega \omega_1^2 (ccccc \varphi \varphi_1 + \lambda \lambda ccccc 2 \varphi \varphi_1)$	

5. Script MatLab pentru analiza cinematica a mecanismului manivela piston

```
%numarul de antrenori
na = 2;
%Numarul de canale
z = 3;%Turatia
z1=12;
z2=65;
%numarul de ordine i
i = 18;
%turatia motorului de antrenare
ni = (44 + 7*i)*10
% n1/n2 = w1/w2 = -z2/z1
% turatia motorului (ni) este egala cu n1
n1=ni; n2 = n1*z1/z2;
%cursa pistonului
smax=135+i;
%lungimea manivelei pe lungimea bielei
lambda1=1/(4.5 + 0.05*i)
%spatiul -Manivela piston
11=smax/2;
w1 = pi*n2/30
12=11/lambda1;
phi1=0:0.01:2*pi;
for i=1:length(phi1)
sB(i)=11.*((1/lambda1)-((1/4).*lambda1)+cos(phi1(i)) +
((1/4).*lambda1.*cos(2.*phi1(i))));
vB(i) = -11.*w1.*(sin(phi1(i)) + (1/2).*lambda1.*sin(2.*phi1(i))); aB(i) = -11.*(sin(phi1(i)) + (1/2).*(sin(phi1(i)) + (1/2).*(sin(phi1(i)))); aB(i) = -11.*(sin(phi1(i)) + (1/2).*(sin(phi1(i)) + (1/2).*(sin(phi1(i)))); aB(i) = -11.*(sin(phi1(i)) + (1/2).*(sin(phi1(i)) + (1/2).*(sin(phi1(i
11.*(w1.^2).*(cos(phi1(i)) +lambda1.*cos(2.*phi1(i)));
end
   figure;
plot(phi1,sB); grid; xlabel('\phi_1'); title('Spatiul');
ylabel('sB=f(\phi_1)'); figure;
plot(phi1,vB); grid; xlabel('\phi 1'); title('Viteza');
ylabel('vB=f(\phi_1)'); figure;
plot(phi1,aB); grid; xlabel('\phi_1'); title('Acceleratia');
ylabel('aB=f(\phi_1)');
```


6. Tabelul pentru calculul mărimilor pentru Crucea de Malta

Date: 1. Turația motorului de antrenare $n_1 = 1650$

- 2. Distanța dintre centrele de rotație L=0.03
- 3. Numărul de antrenori n = 1
- 4. Numărul de canale ale crucii de Malta z = 5

Nr.	Denumirea mărimii	Formule de calcul	Valori rezultate
1	Viteza unghiulară a elementului conducător	$\pi\pi i i_1$ $\omega\omega_1 = \underline{\qquad} ii1 - ii2 ccaarruu iiuuccuu uuiiii$ $rruuuuuuuccttccrr$ 30	$\omega\omega_1 = 32.8659$
2	Constanta mecanismului cu cruce de Malta	$RR_1 \qquad \pi\pi \ \lambda\lambda = \underline{ } = cciiii arphi arphi_2 = cciiii \underline{ } \ LL \qquad zz$	$\lambda\lambda = 0.8660$
3	Lungimea brațului de antrenare (raza elementului de antrenare)	$RR_1 = LL \ cciiii arphi arphi_2 = LL \ cciiii_{-zz}$	$RR_1 = 0.0346$
4	Timpul de mişcare în care elementul conducător antrenează elementul condus	$tt_{mm} = 2\varphi \varphi_1 = \pi \pi (1 - zz)$ $\omega \omega_1 \qquad \omega \omega_1$	$tt_{mm} = 0.0319$
5	Timpul de repaus al elementului condus	$ttrr = \frac{2\pi\pi - 2\varphi\varphi}{\omega\omega_1} = \frac{\pi\pi(1\pm)}{\omega\omega_1^{zz}}$	$tt_{rr} = 0.1593$
6	Timpul de rotație completă al elementului conducător	$2\pi\pi \ TT = tt_{mm} + tt_{rr} = \underline{\hspace{1cm}} \ \omega\omega_1$	TT = 0.1912
7	Coeficientul de mişcare kk _{mm}	$kk_{mm} = \frac{tt_{mm}}{=} = \frac{1}{-} - \frac{1}{-}$ $TT = 2$ zz	kk_{mm} =0.1667
8	Coeficientul de repaus kk_{rr}	$tt_{rr} 1 1 \ kk_{rr} = + TT 2 \ zz$	$kk_{rr} = 0.8333$

9	Coeficientul timpului de lucru al mecanismului k	$kk_{mm} zz - 2$ $kk = \frac{1}{2} kk_{rr}zz + 2$	kk = 0.2000
	Viteza unghiulară maximă a elementului condus	$\lambda\lambda \ \omega\omega_{2mmmmm} = \ \dfrac{-\omega\omega_{1}}{1-\lambda\lambda}$	ωω _{2mmmmm} = 212.4485

7. Script MatLab pentru calculul marimilor pentru crucea de Malta

```
%1.Numarul de dinti
z1 = 12
z2 = 65
%calcule cruce de malta
%Numarul de antrenori
na = 2;
%Numarul de canale
z = 3; %Turatia
%numarul de ordine i
i = 18;
%turatia motorului de antrenare
ni = (44 + 7*i)*10
% n1/n2 = w1/w2 = -z2/z1
% turatia motorului (ni) este egala cu n1
n1=ni;
n2 = n1*z1/z2;
% n3 = turatia antrenorului
n3=n2;
% 1.Viteza unghiulara a elementului conducator
w1 = pi*n2/30
% 2.Constanta mecanismului
lambda = sin(pi/z)
% 3.Lungimea bratului de antrenare (R1<L)
L=0.04; %metri
R1=L*sin(pi/z)
% 4.Timpul de miscare in care elementul conducator antreneaza elementulcondus
tm = 2*pi*(1/2-1/z)/w1
% 5.Timpul de repaus al elementului condus
tr = 2*pi*(1/2 + 1/z)/w1
%6. Timpul de rotatie completa a elementului conducator
T = tm+tr
% 7.Coeficientul de miscare
km = 1/2 - 1/z
% 8.Coeficientul de repaus
kr = 1/2 + 1/z
% 9.Coeficientul timpului de lucru al mecanismului k
k = (z-2)/(z+2)
% 10. Viteza unghiulara maxima a elementului condus
w2max = w1*(lambda/(1-lambda))
```


8.Desen mecanism cu cruce de Malta

9. Diagramele de variatie pentru crucea de Malta

Nr.	Denumirea mărimii	Formule de calcul	
1	Unghiul de rotație al elementului condus	$\lambda\lambda \ cciiii\varphi \phi_1$ $\varphi \varphi_2 = aarrcctttt(\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
2	Viteza unghiulară a elementului condus	$\lambda\lambda(ccccc\phi\varphi_1 - \lambda\lambda)$ $\omega\omega_2 = 2\omega\omega_1$ $1 - 2\lambda\lambda \ ccccc\phi\varphi_1 + \lambda\lambda$	
3	Accelerația unghiulară a elementului condus	$\lambda\lambda(1 - \lambda\lambda^2)\sin\varphi\varphi_1\omega\omega_{12}$ $\varepsilon\varepsilon_2 = -\underline{}_1 \qquad 2)_2$ $(1 - 2\lambda\lambda\cos\varphi\varphi + \lambda\lambda$	

Se construiesc diagramele de variație: $\varphi \varphi_2 = f(\varphi \varphi_1)$, $\omega \omega_2 = f(\varphi \varphi_1)$ și $s_2 = f(\varphi \varphi_1)$:

10. Script MatLab pentru calculul diagramelor de variatie

```
%1.Numarul de dinti
z1 = 12
z2 = 65
%numarul de ordine i
i = 18;
%turatia motorului de antrenare
ni = (44 + 7*i)*10
% n1/n2 = w1/w2 = -z2/z1
% turatia motorului (ni) este egala cu n1
n1=ni; n2 = n1*z1/z2;
% Viteza unghiulara a elementului conducator
w1 = pi*n2/30
% Constanta mecanismului
lambda = sin(pi/z)
phi1 = -pi/2:0.01:pi/2;
%unghiul de rotatie al antrenorului
for i=1:length(phi1)
    phi2(i) = atan((lambda*sin(phi1(i)))/(1-lambda*cos(phi1(i))));
    eps2(i) = -((lambda*(1-
lambda^2)*sin(phi1(i)))/((12*lambda*cos(phi1(i))+lambda^2)^2))*w1^2;
    w2(i) = (lambda*(cos(phi1(i))-lambda)/(1-2*lambda*cos(phi1(i))+lambda^2))*w1;
end
%diagramele de variatie plot(phi1,phi2)
plot(phi1,phi2); grid; xlabel('\phi_1'); ylabel('\phi_2=f(\phi_1)'); title('Unghiul de
rotatie');
figure; plot(phi1,eps2); grid; xlabel('\phi 1');
ylabel('\epsilon_2=f(\phi_1)[rad/s]'); title('Viteza unghiulara'); figure;
plot(phi1,w2); grid; xlabel('\phi_1');
ylabel('\omega_2=f(\phi_1)[rad/s]'); title('Acceleratia unghiulara');
```


11.Bibliografie

Informatiile cu privire la tema proiectului :

https://didatec.sharepoint.com/sites/IIISA_30126-EIM-2022/Shared%20Documents/General/PROIECT/TEMA/Proiect%20EIM%20-%20Tema%205.pdf?CT=1651727403943&OR=ItemsView

Formulele si informartiile necesare pentru calculele la mecanismul cu cruce de Malta:

https://didatec.sharepoint.com/sites/IIISA_30126-EIM-2022/Shared%20Documents/General/PROIECT/DOCUMENTATIE%20PENTRU%20P ROIECT/Anexa%20calcule%20Mecanism%20cu%20Cruce%20de%20Malta.pdf?C T=1651727413083&OR=ItemsView

Documentatie pentru proiect:

https://didatec.sharepoint.com/sites/IIISA 30126-EIM-2022/Shared%20Documents/General/PROIECT/DOCUMENTATIE%20PENTRU%20P ROIECT/Documentatie%20Proiect%20EIM.pdf?CT=1651727416205&OR=ItemsView

Site-uri folosit pentru calcularea involutului unghiului α si inversul involutului:

https://www.intuwiz.com/inverse-of-involute.html

https://keisan.casio.com/exec/system/13740457438197