Hidden Markov Model

By

Charles Silkin

Contents

Project instructions	3
PART 1.A	
PART 1.B	
PART 2	
REFERENCES	7

PROJECT INSTRUCTIONS

- 1. The dataset hmm_pb1.csv represents a sequence of dice rolls x from the Dishonest casino model. The states of Y are 1='Fair' and 2='Loaded'.
 - a) Implement the Viterbi algorithm and find the most likely sequence y that generated the observed x. Use the log probabilities, as shown in the HMM slides. Report the obtained sequence y of 1's and 2's for verification.
 - b) Implement the forward and backward algorithms and run them on the observed x. You should memorize a common factor u_t for the α_t^k to avoid floating point underflow, since α_t^k quickly become very small. The same holds for β_k^t . Report $\frac{\alpha_{133}^1}{\alpha_{133}^2}$ and $\frac{\beta_{133}^1}{\beta_{133}^2}$, where the counting starts from t=0.
- 2. The dataset hmm_pb2.csv represents a sequence of 10000 dice rolls x from the Dishonest casino model but with other values for the a and b parameters. Having so many observations, you are going to learn the model parameters. Implement and run the Baum-Welch algorithm using the forward and backward algorithms that you already implemented. You can initialize the π , a, b with your guess, or with some random probabilities (make sure that π sums to 1 and that a_i^j , b_i^k sum to 1 for each i). The algorithm converges quite slowly, so you might need to run it for up 1000 iterations or more for the parameters to converge. Report the values of π , a, b that you have obtained.

PART 1.A

<u>PART 1.B</u>

$$\frac{\alpha_{133}^1}{\alpha_{133}^2} = \frac{0.84}{0.16} = 5.26$$

$$\frac{\beta_{133}^4}{\beta_{133}^2} = \frac{0.223}{0.777} = 0.287$$

PART 2

$$\pi = [0.001 .999]$$

$$a = \begin{bmatrix} 0.625 & 0.375 \\ 0.012 & 0.988 \end{bmatrix}$$

$$b = \begin{bmatrix} 0.079 & 0.11 & 0.062 & 0.039 & 0.625 & 0.084 \\ 0.201 & 0.205 & 0.193 & 0.201 & 0.107 & 0.094 \end{bmatrix}$$

REFERENCES

- $1. \ \underline{https://github.com/adeveloperdiary/HiddenMarkovModel/tree/master/part4}$
- 2. https://www.youtube.com/watch?v=6JVqutwtzmo
- 3. https://numpy.org/doc/stable/reference/generated/numpy.dot.html
- $\textbf{4.} \quad \underline{\text{https://stackoverflow.com/questions/8437964/python-printing-horizontally-rather-than-current-default-printing}$