Ejercicio 4 Tarea 2

INFERENCIA ESTADÍSTICA

Hairo Ulises Miranda Belmonte

11 de septiembre de 2018

EJERCICIO 4a

Función que simula lanzamientos de monedas

```
con paramétros "p" y "n".
```

0 Éxito (Aguila)

```
1 Fracaso (Sol)
lanzamiento <- function(p,n){</pre>
resultado <- numeric(n) # Vector para almacenar resultados
for (i in c(1:n)) {
  contador <- 1 # Almacena el número d intentos
  repeat { # Se realiza el sample. Cuando sea 0 se detiene
    muestra \leftarrow sample(c(0, 1), 1, prob = c(p, 1-p)) # asignamos
probabilidades
                                              # debo a que es una moneda
sesgada
    if (muestra == 1) {
      contador <- contador + 1 # Sumamos uno, lo cual indica otro fracaso
    } else {
      break # En caso de que no sea 1, rompemos el repeat
    }
  }
  resultado [i] <- contador # vector tamaño cero
return(resultado) # regresa el vector con el número de
                  # fracasos hasta encontrar éxito
```

EJERCICIO 4b

Función que regresa el número de fracasos en lanzamientos de monedas

hasta encontrar la primera águila.

Histograma Normalizado

Para el lanzamiento con probabilidad de .1

Para el lanzamiento con probabilidad de .01
probabilidad.Lanz3 <- table(lanz3)
for (i in seq(1, length(probabilidad.Lanz3), 1)){ # probabilidad
 probabilidad.Lanz3[i] = probabilidad.Lanz3[i]/10000</pre>

EJERCICIO 4c

Ejercicio anterior, pero con 10^6 simulaciones

```
lanz1 <- rep(0,1000000)
lanz2 <- rep(0,1000000)
lanz3 <- rep(0,1000000)
```

Histograma Normalizado


```
# PMF

# Para el Lanzamiento con probabilidad de .5

probabilidad.Lanz1 <- table(lanz1) # Vector en formato table

for (i in seq(1, length(probabilidad.Lanz1), 1)){ # probabilidades
    probabilidad.Lanz1[i] = probabilidad.Lanz1[i]/1000000
}</pre>
```

```
prob.Lanz1 <- c() # Sacndo de formato table

for (i in seq(1, length(probabilidad.Lanz1), 1)){
    prob.Lanz1[i]=probabilidad.Lanz1[[i]]
}

# Histograma del sample traslapando la pmf de la geometrica

par(bg = "gray")
hist(lanz1,freq = FALSE,xlab="Lanzamientos previos a un éxito", main =
"Histograma y PMF (Pr=0.5)",
    col="blue", xlim=c(1,10))
lines(dgeom(0:length(lanz1),.5),type="l", col="red", lwd=3)</pre>
```



```
# Para el lanzamiento con probabilidad de .1

probabilidad.Lanz2 <- table(lanz2)
for (i in seq(1, length(probabilidad.Lanz2), 1)){ # probabilidad
    probabilidad.Lanz2[i] = probabilidad.Lanz2[i]/1000000
    }

prob.Lanz2 <- c()
for (i in seq(1, length(probabilidad.Lanz2), 1)){ # sacando del formato
    table
    prob.Lanz2[i]=probabilidad.Lanz2[[i]]</pre>
```


Para el lanzamiento con probabilidad de .01

probabilidad.Lanz3 <- table(lanz3)
for (i in seq(1, length(probabilidad.Lanz3), 1)){ # probabilidad
 probabilidad.Lanz3[i] = probabilidad.Lanz3[i]/1000000

}

prob.Lanz3 <- c()
for (i in seq(1, length(probabilidad.Lanz3), 1)){ # sacando del formato
 table
 prob.Lanz3[i]=probabilidad.Lanz3[i]]
}</pre>


```
# Promedio y desviación estandar del lanzamiento con probabilidad .5
(sample y original)
mean(prob.Lanz1)
## [1] 0.05263158
mean(dgeom(0:length(prob.Lanz1),.5))
## [1] 0.04999995
sd(prob.Lanz1)
## [1] 0.1247491
sd(dgeom(0:length(prob.Lanz1),.5))
## [1] 0.1221159
# Promedio y desviación estandar del lanzamiento con probabilidad .1
mean(prob.Lanz2)
```

```
## [1] 0.008849558
mean(dgeom(0:length(prob.Lanz2),.1))
## [1] 0.008771877
sd(prob.Lanz2)
## [1] 0.01975462
sd(dgeom(0:length(prob.Lanz2),.1))
## [1] 0.01970125
# Promedio y desviación estandar del lanzamiento con probabilidad .01
mean(prob.Lanz3)
## [1] 0.001026694
mean(dgeom(0:length(prob.Lanz3),.01))
## [1] 0.001025584
sd(prob.Lanz3)
## [1] 0.002028659
sd(dgeom(0:length(prob.Lanz3),.01))
## [1] 0.002026417
```