Lesson 3. Useful and Interesting Properties of Matrix Algebra

0 Warm up

Example 1. Let

$$A = \begin{bmatrix} 6 & -5 & 1 \\ 1 & 0 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -1 \\ 5 & 2 \\ 0 & 1 \end{bmatrix}$$

Find AB and BA. Do we have AB = BA?

Example 2. Let $u = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ and $v' = \begin{bmatrix} 1 & 8 & 3 \end{bmatrix}$. Find uv'.

Example 3. Let $u' = \begin{bmatrix} 4 & 3 \end{bmatrix}$ and $v = \begin{bmatrix} 9 \\ 7 \end{bmatrix}$. Find u'v.

1	Important points from the warm up						
	• Order of multiplication matters! Typically, $AB \neq BA$						
• u is a $m \times 1$ column vector, v' is a $1 \times n$ row vector							
	$\Rightarrow uv'$ has dimension						
• u' is a $1 \times n$ row vector, v is a $n \times 1$ column vector							
	$\Rightarrow u'v$ has dimension						
	• As as result, $u'v$ can be viewed as a scalar						
2	latrices act like scalars under addition						
	$\bullet \ A - B = A + (-B)$						
	Commutative law. For any two matrices <i>A</i> , <i>B</i> :						
	Associative law. For any three matrices <i>A</i> , <i>B</i> , <i>C</i> :						
3	Matrices don't always act like scalars under multiplication						
	• As we saw in Example 1, matrix multiplicative is $\underline{\text{not}}$ commutative: $AB \neq BA$						
• Since order matters in multiplication, we have terminology that specifies the order							
	• In the product <i>AB</i> :						
	 B is premultiplied by A A is postmultiplied by B 						
	Associative law. For any three matrices <i>A</i> , <i>B</i> , <i>C</i> :						
4	The distributive law						
	• Distributive law. For any three matrices <i>A</i> , <i>B</i> , <i>C</i> :						

With your neighbor

Example 4. Let

$$A = \begin{bmatrix} 3 & 6 \\ 4 & 2 \end{bmatrix}$$

$$B = \begin{bmatrix} -4 & 0 \\ 2 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 6 \\ 4 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} -4 & 0 \\ 2 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 4 & -1 & 3 \\ 0 & 6 & 2 \end{bmatrix}$$

Compute the following:

b.
$$BC$$
 c. $(B+A)C$

Example 5. Compute the following:

a.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \end{bmatrix}$$

a.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \end{bmatrix}$$
 b. $\begin{bmatrix} 3 & -2 & 4 \\ -9 & 8 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Example 6. Compute the following:

a.
$$\begin{bmatrix} -2 & 4 & 1 \\ 8 & 6 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 b. $\begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$

b.
$$\begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}$$

Example 7. Let

$$C = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 3 \\ 6 & 9 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \qquad E = \begin{bmatrix} -2 & 1 \\ 3 & 2 \end{bmatrix}$$

Find CD and CE.

Identity matrices

• An **identity matrix** is a square matrix with 1s in its principal diagonal (northwest to southeast) and 0s everywhere else:

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- I_n is the $n \times n$ identity matrix
- What happened in Example 5?
- The identity matrix plays the role that "1" has with scalars
- For any matrix *A*, we have

• We can insert or delete an identity matrix without affecting a matrix product:

• What is $(I_n)^2 = (I_n)(I_n)$? How about $(I_n)^k$ for any integer $k \ge 1$?

7 Null matrices

• A **null matrix** (or **zero matrix**) is a matrix whose elements are all 0

• A null matrix is not restricted to being square

o It's important to keep track of a null matrix's dimension

• We denote a null matrix by 0:

$$\begin{array}{c}
0 \\
(2\times2)
\end{array} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} \qquad \begin{array}{c}
0 \\
(2\times3)
\end{array} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

• What happened in Example 6a?

• The null matrix plays the role that "0" has with scalars

• For any matrix *A*, we have:

8 Matrix algebra can be weird

• Unlike algebra with scalars, AB = 0 does not necessarily imply either A = 0 or B = 0

o To illustrate, recall Example 6b

• Also unlike algebra with scalars, CD = CE does <u>not</u> necessarily imply D = E

 $\circ~$ To illustrate, recall Example 7