Automi a stati finiti non deterministici (NFA)

Un Automa a stati finiti non deterministico (NFA) è definito dalla quintupla:

 $A=<\Sigma,Q, \delta,q_0,F>$ dove

 $\Sigma = {\sigma_1, ..., \sigma_n}$ alfabeto di input

 $Q = \{q_0,...,q_n\}$ insieme finito non vuoto di stati

 $F \subset Q$ insieme di stati finali

q₀ ∈ Q stato iniziale

 δ : Q × Σ \to P(Q) funzione di transizione, funzione totale che determina l'insieme (eventualmente vuoto) degli stati successivi

La **E- chiusura di uno stato q** è l'insieme degli stati raggiungibili da q mediante zero, una o più transazioni **E**.

Costruzione di un DFA da un NFA

- Eliminazione ξ-mosse
- 2. Costruzione DFA

ESERCIZIO 1

Costruire un DFA a partire dal seguente NFA:

- \mathcal{E} chiusura(A)={A,B,C,D}
- \mathcal{E} chiusura(B)={B,D}
- \mathcal{E} chiusura(C)={C}
- \mathcal{E} chiusura(D)={D}
- \mathcal{E} chiusura(E)={E}

Eliminazione **E**-mosse

- δ N (A, a)= δ * (A, a)= ϵ chiusura(δ (A, a) \cup δ (B, a) \cup δ (C, a) \cup δ (D, a))={D}
- $\delta N(A, b) = \delta^*(A, b) = \xi$ chiusura $(\delta(A, b) \cup \delta(B, b) \cup \delta(C, b) \cup \delta(D, b)) = \{D\}$
- δ N (A, c)= δ * (A, c)= ϵ chiusura(δ (A, c) \cup δ (B, c) \cup δ (C, c) \cup δ (D, c))={E,D}
- $\delta N(A, d) = \delta^*(A, d) = \xi$ chiusura $(\delta(A, d) \cup \delta(B, d) \cup \delta(C, d) \cup \delta(D, d)) = \{C\}$
- $\delta N(B, a) = \delta^*(B, a) = \xi$ chiusura $(\delta(B, a) \cup \delta(D, a)) = \{\}$
- $\delta_N (B, b) = \delta^* (B, b) = \xi$ chiusura $(\delta (B, b) \cup \delta (D, b)) = \{\}$
- $\delta N(B, c) = \delta^*(B, c) = \xi$ chiusura $(\delta(B, c) \cup \delta(D, c)) = \{D\}$
- $\delta N(B, d) = \delta^*(B, d) = \xi$ chiusura $(\delta(B, d) \cup \delta(D, d)) = \{C\}$

•

ESERCIZIO 2

Costruire un DFA a partire dal seguente NFA:

Da espressione regolare a E- NFA

Un'espressione regolare può essere trasformata in un automa a stati finiti mediante una decomposizione in blocchi.

Sia r un'espressione regolare. Esiste un automa M che accetta tutte e solo le stringhe generate da r.

- si individuano i componenti di base che costituiscono *r*;
- si costruisce un NFA per ciascuno di essi;
- guidati dalla struttura sintattica di *r*, si combinano induttivamente i vari NFA prodotti al passo precedente.

ESERCIZIO 3

Dato il linguaggio L, descritto mediante espressione regolare, costruire un automa deterministico che riconosca lo stesso linguaggio.

Per comodità rinominiamo gli stati nel seguente modo:

Eliminazione \mathcal{E} -mosse:

 \mathcal{E} - chiusura(A)={A,B,C}

- $\bullet\quad \delta_{N}\left(A,\,a\right)=\delta^{*}\left(A,\,a\right)=\;\mathcal{E}\;\text{-}\;\text{chiusura}(\delta\;(A,\,a)\cup\;\delta\;(B,\,a)\cup\;\delta\;(C,\,a)\;)\text{=\{D\}}$
- $\delta_N (A, b) = \delta^* (A, b) = \{ \}$
- δ_N (A, c)= δ* (A, c)= { }

 \mathcal{E} - chiusura(B)={B,C}

- δ_N (B, a)= δ^* (B, a)= \mathcal{E} chiusura(δ (B, a) \cup δ (C, a))={D}
- $\delta_N (B, b) = \delta^* (B, b) = \{ \}$
- δ_N (B, c)= δ* (B, c)= { }

 \mathcal{E} - chiusura(C)={C}

- $\delta_N (C, a) = \delta^* (C, a) = \mathcal{E} \text{chiusura}(\delta (C, a)) = \{D\}$
- $\delta_N (C, b) = \delta^* (C, b) = \{ \}$
- δ_N (C, c)= δ* (C, c)= { }

```
\mathcal{E} - chiusura(D)={D}
    • \delta_N (D, a)= \delta^* (D, a)= \mathcal{E} - chiusura(\delta (D, a) )= \mathcal{E} - chiusura(E)={E,F,G,K,L,B,H,C}

 δ<sub>N</sub> (D, b)= δ* (D, b)= { }

 δ<sub>N</sub> (D, c)= δ* (D, c)= { }

\mathcal{E} - chiusura(E)={E,F,G,K,B,L,H,C}
    • \delta_N (E, a)= \delta^* (E, a)= \mathcal{E} - chiusura(\{D,I\})= \{D,I\}
    • \delta_N (E, b)= \delta^* (E, b)= \mathcal{E} - chiusura({G})= {G,K,L,B,C}

 δ<sub>N</sub> (E, c)= δ* (E, c)= { }

\mathcal{E} - chiusura(F)={F,G,K,L,B,C,H}
    • \delta_N(F, a) = \delta^*(F, a) = \mathcal{E} - \text{chiusura}(\{D,I\}) = \{D,I\}

    δ<sub>N</sub> (F, b)= δ* (F, b)= ε - chiusura({G})= {G,K,L,B,C}

 δ<sub>N</sub> (F, c)= δ* (F, c)= { }

\mathcal{E} - chiusura(G)={G,K,B,L,C}

    δ<sub>N</sub> (G, a)= δ* (G, a)= ε - chiusura({D})= {D}

    • \delta_N (G, b) = \delta^* (G, b) = \mathcal{E} - \text{chiusura}(\{G\}) = \{G, K, L, B, C\}

 δ<sub>N</sub> (G, c)= δ* (G, c)= { }

\mathcal{E} - chiusura(H)={H}

    δ<sub>N</sub> (H, a)= δ* (H, a)= ε - chiusura({I})= { I}

    • \delta_N (H, b) = \delta^* (H, b) = \{ \}
    • \delta_N (H, c) = \delta^* (H, c) = \{ \}
\mathcal{E} - chiusura(I)={I}

 δ<sub>N</sub> (I, a)= δ* (I, a)={ }

 δ<sub>N</sub> (I, b)= δ* (I, b)= { }

    • \delta_N (I, c) = \delta^* (I, c) = \mathcal{E} - \text{chiusura}(\{J\}) = \{J, K, L, B, C\}
\mathcal{E} - chiusura(J)={J,K,L,B,C}
    • \delta_N (J, a) = \delta^* (J, a) = \mathcal{E} - \text{chiusura}(\{D\}) = \{D\}

 δ<sub>N</sub> (J, b)= δ* (J, b)= { }

 δ<sub>N</sub> (J, c)= δ* (J, c)= { }

\mathcal{E} - chiusura(K)={K,L,B,C}

    δ<sub>N</sub> (K, a)= δ* (K, a)= ε - chiusura({D})={D}

 δ<sub>N</sub> (K, b)= δ* (K, b)= { }

 δ<sub>N</sub> (K, c)= δ* (K, c)= { }
```

La matrice di transizione dell'automa ottenuto dall'eliminazione delle $\,\mathcal{E}\,$ -mosse è la seguente:

	а	b	С
→ A	{D}	{}	{}
В	{D}	{}	{}
С	{D}	{}	{}
D	{E,F,G,K,L,B,H,C}	{}	{}
E	{D,I}	{G,K,L,B,C}	{}
F	{D,I}	{G,K,L,B,C}	{}
G	{D}	{G,K,L,B,C}	{}
Н	{I}	{}	{}
I	{}	{}	{J,K,L,B,C}
J	{D}	{}	{}
K	{D}	{}	{}
*L	{}	{}	{}

Costruiamo quindi il DFA:

Utilizzando questo automa è immediato scrivere il seguente metodo di riconoscimento in Java che restituisce true se la stringa *st* appartiene al linguaggio:

indichiamo con q0=A;q1=D;q2={E,F,G,K,L,B,H,C}:q3={G,K,L,B,C};q4={D,I};q5={J,K,L,B,C}

```
boolean riconosciStringa ( char [] st, int n ) {
  boolean errore = false; int q = 0; int i = 0;
  for (int i=0; i<n && !errore; i++)
     switch (q) {
     0: if ( st[i] == "a") q=1;</pre>
```

```
else errore=true; break;
1: if ( st[i] == "a" ) q=2;
        else errore=true; break;
2: if (st[i] == "a") q=4;
        else if (st[i] == "b") q=3; else errore=true; break;
3: if (st[i] == "a") q=1;
        else if (st[i] == "b") q=3; else errore=true; break;
4: if (st[i] == "a") q=2;
        else if (st[i] == "c") q=5; else errore=true; break;
5: if (st[i] == "a") q=1;
        else errore=true; break;
}
return !errore && (q=2 || q=3 || q==5)
}
```

ESERCIZIO 4

Si costruisca un automa deterministico per il linguaggio definito dalla seguente espressione regolare:

L=(0*+1*+(01)*)

 \mathcal{E} - chiusura(q₀)={q0,q1,q2,q3}

- δ_N (q0,0)= δ^* (q0,0)= \mathcal{E} chiusura(δ (q0,0) \cup δ (q1,0) \cup δ (q2, 0) \cup δ (q3,0)) ={q1,q4}
- $\delta_N (q0,1) = \delta^* (q0,1) = \mathcal{E} \text{chiusura}(q2) = \{q2\}$

 ${\mathcal E}$ - chiusura(q1)={q1}

- $\delta_N (q1,0) = \delta^* (q1,0) = \mathcal{E} chiusura(q1) = \{q1\}$
- $\delta_N (q1,1) = \delta^* (q1,1) = \{ \}$

 \mathcal{E} - chiusura(q₂)={q₂}

•
$$\delta_N (q2,0) = \delta^* (q2,0) = \{\}$$

•
$$\delta_N (q2,1) = \delta^* (q2,1) = \mathcal{E} - \text{chiusura}(q2) = \{q2\}$$

 \mathcal{E} - chiusura(q₃)={q₃}

•
$$\delta_N (q3,0) = \delta^* (q3,0) = \{q4\}$$

•
$$\delta_N (q3,1) = \delta^* (q3,1) = \{ \}$$

 \mathcal{E} - chiusura(q₄)={q4}

•
$$\delta_N (q4,0) = \delta^* (q4,0) = \{ \}$$

•
$$\delta_N (q4,1) = \delta^* (q4,1) = \{q3 \}$$

Tabella di transizione dell'automa indeterministico senza $\,\mathcal{E}\,$ -mosse:

		0	1
-	-*q0 -	{q1,q4}	{q2}
	*q1	{q1}	\
	*q2	{}	{q2}
	*q3	{q4}	\(\)
	q4	{}	{q3}

Il DFA mostrato è quindi ottenuto sostituendo per comodità:

