CLAD MATERIAL

Patent Number:

JP63102326

Publication date:

1988-05-07

Inventor(s):

ABE MASAHIKO; others: 02

Applicant(s)::

HITACHI CABLE LTD

Requested Patent: JP63102326

Application Number: JP19860249308 19861020

Priority Number(s):

IPC Classification:

H01L21/52

EC Classification:

Equivalents:

Abstract

PURPOSE:To simply but accurately perform a soldering work in the manufacture of a semiconductor device by a method wherein a solder layer of a specific thickness is formed on the prescribed part on one side or both sides of the clad material of a copper-inver-copper three layer structure. CONSTITUTION:A CIC (copper 3/inver 4/copper 5) clad material 2 having excellent heat dissipating property and excellent conductivity is used as a base material. At this point, the invar 4 is the alloy containing Fe and about 36.5% of Ni, and it has the characteristics of low coefficient of thermal expansion. Solder layers 6 and 6 are formed on the whole surface of both sides of the CIC clad material 2. The thickness of the solder layers is to be 20-150mum. The form of the clad material is to be a belt-like long-sized form taking into consideration of handling convenience and the like of the material. When a semiconductor device is assembled using said clad material, the works such as the cutting, positioning, placing and the like of a solder sheet are unnecessitated, and the productivity of the semiconductor device can be improved.

Data supplied from the esp@cenet database - 12

19日本国特許庁(JP)

⑩特許出 煦公開

⑩ 公 開 特 許 公 報 (A)

昭63 - 102326

@Int_Cl_*

識別記号

庁内整理番号

砂公開 昭和63年(1988)5月7日

H 01 L 21/52

B-8728-5F

審査請求 未請求 発明の数 1 (全5頁)

公発明の名称 クラッド材

②特 頭 昭61-249308

空出 頭 昭61(1986)10月20日

母発 明 者 阿 部 雅 彦 茨城県日立市助川町3丁目1番1号 日立電線株式会社電

綠上場內

碌上場内

線工場内

愈出 願 人 日立電線株式会社

②代 理 人 弁理士 渡辺 望稔

東京都千代田区丸の内2丁目1番2号

明 却 包

1. 発明の名称

クラッド材

- 2. 特許請求の範囲
- (1) 網/インバー/網なる3 層構造のクラッド 材の片面または両面の所定部分に、厚さ20~ 150 血の半田層を形成してなることを特徴とす るクラッド材。
- (2) 解記クラッド材は帯状長尺物である特許翻 求の延囲第1項に記載のクラッド材。
- 3. 発明の詳細な説明

<政泉上の利用分野>

本発明は、主に半導体デバイスにおける半導体 チャブ (パワー数子) とアルミナ間の支持電極の 材料として使用されるクラッド材に関する。

<従来の技術>

近年パワー半導体デバイスの高集積化、大容強化に件ない、パワー素子の実装法はまずます多岐にわたっている。

このような状況に対応するパワー系子搭級用電

格材料としては、(1)パワー来子の秘動時に発生する然を選やかに拡散させるために熱伝導性の良いこと、(2)発明に伴なう世極材料と素子問の熱応力を抑えるように、熱膨張係数が素子その他構成材料との間で整合がとれていること、(3) 寸法精度の高い加工が容易であること、

(4) 更に系子の接合が容易であること、などの 性質が要求される。

そこで、通常パワー素子は電極材料としての銅板と、その上に熱膨張係数盤合用のMo、Wを介してはんだ付けされることが多い。しかしMo、Wは資源的に極少で製造コストも高いため、かねてからその代替材料が望まれていた。

このような状況に踏み、Mo、Wの役目を浚む 切えた電磁材料として、熱伝導の良好な無酸素剤 と無聴張の少ないインパー(Fe-約36.5%Ni 合金)からなる銅/インパー/鍋3層クラッド付 (以下、CIC クラッド材と略す)が提案されてい

このようなCIC クラッド材を川いた半導体デバ

イスの格成を羽8図に示す。同図に示すように、 半導体デバイス L はヒートシンクである蛸板 8 上にアルミナ T、CIC クラッド材 2 およびパワー 素子(半導体チップ) 9 が頑次半田シート 6 を 介して重ねられこれらを半田付けした構成となっ ている。

このような半導体デバイス 1 、の製造(組立て)においては、例えばCIC クラッド材 2 上の半 田付けする部分にクリーム状半田を競布し、あるいは所定形状に切断したシート状の半田 6 、を位 置读めして越せ、その上にパワー楽子 9 を想せて 半田付けを行っている。

しかるにこのような製造方法では、次のような 欠点がある。

- ① CIC クラッド材と同一の形状または半田付け する距回に対応した形状に半田シート材を切断し なければならない。
- ② 羊田シート 6′の位置快めに手間と時間がかかる。
- ③ 半田は、教賞のため収扱が難しく、半田シー

以下、本発明のクラッド材を経付図面に示す好 / 適実施例について詳細に説明する。

第1 図~第6 図は、本発明のクラッド材の根成例を示す料収図である。これらの図に示すように本発明のクラッド材は、好ましくは帯状長尺物であって、延材としてのCIC クラッド材 2 の片面または周面に半田暦 6 を形成、好ましくはクラッドした 4 間または 5 触線造のクラッド材である。

クラッド材とは、異種金属を金属学的に接着一体化した材料のことをいい、本発明では、基材として熱放散性に優れかつ専業性に優れているCIC クラッド材 2、即ち網3/インパー4/倒5なる3層相違のクラッド材を用いる。

ここでインバー4はFe-約36.5%Ni合金であり、熱脳吸係致が低いという特性を打する。

また、約3、4は熱伝退体の良好な無酸素網を 用いるのが好ましいが、Sn入り網、As入り網 等の網系合金を用いてもよい。

 ト 6°の曲り等の変形が生じ易いので作田付けの 歩型りが低下する。

① 半田付けの側所が多いため、工程数が多くなる。

そこで、羊導体デバイスの製造における半旧付 けの合理化が狙まれている。

< 発明が解決しょうとする問題点> 本発明の目的は、上述した従来技術の欠点を解消 し、半導体デバイスの製造(組立て)において簡 めかつ確実に半田付けをすることができるクラッ ド材を提供することにある。

<問題点を解決するための手段>

このような目的は、以下の本発明によって遠成 される。

即ち、第/インパー/網なる3 関構造のクラッド材の片面または両面の所定部分に、厚さ20~150 皿の半田暦を形成してなることを特徴とするクラッド材を提供するものである。

また、前記クラッド材は帯状長尺物であるのが よい。

1 (インバーの体析率が33.3%)程度とするのが熱放散性に優れる(Mo使用の場合と何程度)ので好ましい。

第1 図に示す例えば、上述したCIC クラッド材 2の両面全面に半田M6、8を形成(クラッド) した構成となっている。なお、半田圏8は、CIC クラッド材2の両面形成、片面形成のいずれでも よい。

また、半田以6をCIC クラッド材2の片面または両面の全面にわたって形成(クラッド)する場合の他、CIC クラッド材2の必要部分(例えばパワー素子9を半田付けする部分)にのみ形成(クラッド)することも可能である。これをインレイクラッドというが、このインレイクラッドは、母能的にも材料費の面からも有利である。

このような半田暦 6 をCIC クラッド材 2 に対して部分的に形成(クラッド)したパターンを第 2 凶~羽 6 凶に例示する。

第 2 図はシングルオーバレイタイプ、第 3 図は ダブルオーバレイタイプ、第 4 図は 2 条ィンレイ

特開昭63-102326(3)

タイプ、第5図はシングルエッジレイタイプ、第6図はダブルエッジレイタイプのクラッド材を示す。このような本発明のクラッド材においては、 平田冠 6 が CIC クラッド材 2 の 約3 、 5 に 埋設されており、 第3 、 5 の表面と 半田暦 6 の表面が同

なお、本発明のクラッド材における半田暦 6 の 形成パターンは、上述したものに取らず、上述した た材成のものを任意に組み合せたものまたはその 他の材成のものでもよい。

このような半田暦6の厚さは20~150mとするのがよい。その理由は、厚さが20m未調であると半田付の接奇強度が低下し、厚さが150mを超えると半導体チャブが半田中に埋役してしまうからである。なお、半田暦6の厚さが上記範囲内であれば、半田暦6を形成する各部分(例えばCIC クラッド材2の表面と裏面)によってその厚さが異なっていてもよい。

例えば、パワー素子(半球体チップ)9を半田付けする側の半田路6の原さを20~70回、よ

り扱いがし易いという点で半田線を用いるのが有 利であるが、半田暦 6 が比傚的広い頃を必要とす る場合には、リポン状の半田を用いるのがよい。

<作用>

これに対して、第7図に示すように、本発明の

り好ましくは40~50 mとし、鶏板(塩板)8 側の半田 M 6の M さを70 m~150 m、より好ましくは100 m 前後とすることができる。

また、半川州6を構成する半川は、Pb- 5 % S n をはじめPb- 8 0 % S n、Pb- 5 % S n - 2.5 % A g 等、半球体チップの実装に用いることができるものであればいかなるものでもよい。

なお、水発明のクラッド材の形態としては、取り扱い上の点などを増越して、帯状反尺物とするのが好ましいが、これを適当な及さに切断して 1 ビース毎にしたものでもよい。

本発明のクラッド材は例えば次のような方法により製造される。

通常の方法により基材であるCIC クラッド材 2 を製造し、該CIC クラッド材 2 の片面または両面に半田をロール圧着する。

前記第2図〜第6図に示す半田インレイクラッド材を製造する場合には、予め製造したCIC クラッド材2にリポン上の半田または半田線を位置合せしてロール圧引する。製造工程中での材料の取

クラッド材を用いて半導体デバイス1の組立てを行う場合には、CIC クラッド材2に予め半回位6.6が形成されているため、上記①、②の工程の後、アルミナ7上に本発明のクラッド材を超速し、次いで上記⑤、②の工程を行えばよい。

従って、本名明のクラッド材を用いて半導体デバイスの組立てを行えば、上記切および⑤の半田シートの切断、位置決めおよび弧置(またはクリーム状半田の強布)といっためんどうな作業が不要となり、半導体デバイスの生産性が向上する。

<発明の効果>

本党明のクラッド材によれば、CIC クラッド材の片面または両面に予め半田間が形成されているので、これを用いて半導体デバイスの製造(組立て)を行った場合には、従来の製造方法のように、半田シートの切断、位置状めおよび報道(またはクリーム状半田の堂布)といっためんどうな作業が不要となる。その結果、製造工程数の級・・製造時間の短筋が図られ、半導体デバイスの

特開昭63-102326(4)

生座性が向上するとともに、デバイス製造(和立 て)の自動化にも対応することが可能となる。

また、半田シートの挿入ミスや、半田シートの 山り等の変形による半田付けの歩知り低下が生じ ないことにより、デバイスの信頼性が向上する。 4. 図値の簡単な説明

第1図、第2図、第3図、第4図、第5図および第6図は、各々本発明のクラッド材の構成例を示す料視図である。

第7図は、本発明のクラッド材を用いて組立てた半導体デバイスの正面図である。

第8図は、従来のCIC クラッド材を用いて組立 てた半導体デバイスの正面図である。

符合の説明

- 1、11一半導体デバイス、
- 2…CIC クラッド付、
- 3 . 5 -- 弱、
- 4ーインバー、
- 5 -- 学山周、
- 6′ 一半 ロシート、

FIG. 3

FIG. 3

FIG. 3

FIG. 3

FIG. 3

FIG. 3

7ーアルミナ、 8一綱版、 9ーパワーネ子(半導体チップ)

出頭人 日立 電線 株式 会社 代理人 并理士 被 辺 里 均

待開昭63-102326(5)

F1 G. 7

FIG.8

2

5
6

7