MA1201 Calculus and Basic Linear Algebra II

Chapter 3

Application of Integration

Application of Integration

- 1. Geometric Application
 - Area of region bounded by curves and / or axes (pp. 3-17)
 - Volume of a solid generated by revolving a region bounded by curves about a horizontal line or vertical line (pp. 18-38)
 - Arc length of a curve (pp. 39-46 and pp. 60-67)
 - Surface area of a solid generated by revolving a region bounded by curves about a horizontal line or vertical line (pp. 47-57 and pp. 68-69)

Area of region bounded by curves, axes

Recall in Chapter 1, the definite integral is defined as the area under the curve y = f(x).

As mentioned in Chapter 1, this integral gives the signed area of the region under the graph:

- If the curve y = f(x) lies above the x-axis,
 - $\int_a^b f(x)dx$ returns the true area of the region bounded by the curve y = f(x), the x-axis, the lines x = a and x = b.
- If the curve y = f(x) lies below the x-axis,

 $\int_a^b f(x)dx$ will become a negative number. However, $-\int_a^b f(x)dx$ (which is positive) represents the area of the region bounded by the curve y = f(x), the x-axis, the lines x = a and x = b.

Thus, we should use the following formula when finding the area under the curve:

$$\int_{a}^{b} |f(x)| dx.$$

Calculate the area bounded by the x-axis and the curve y = x(x-4).

©Solution:

Note that $x(x-4) = 0 \Rightarrow x = 0$ or x = 4.

Since the entire shaded region is below the x-axis. The shaded area is given by

$$-\int_0^4 x(x-4)dx = \int_0^4 (4x-x^2)dx = 4\int_0^4 xdx - \int_0^4 x^2dx$$
$$= 4\left[\frac{x^2}{2}\right]_0^4 - \left[\frac{x^3}{3}\right]_0^4 = 4(8) - \frac{64}{3} = \frac{32}{3} \text{ (square units)}.$$

Find the whole area enclosed by the curve $y = \sin x$ and the x-axis between x = 0 and $x = 2\pi$.

©Solution:

The curve $y = \sin x$ lies above the x-axis when $0 \le x \le \pi$ and lies below the x-axis when $\pi \le x \le 2\pi$.

The area of shaded region is given by

$$= \int_0^{2\pi} |\sin x| dx$$

$$= \int_0^{\pi} \sin x \, dx + \left(-\int_{\pi}^{2\pi} \sin x \, dx\right) = [-\cos x]_0^{\pi} - [-\cos x]_{\pi}^{2\pi} = 4.$$

lies above the x-axis lies below the x-axis

Example 3

Find the area enclosed by the curve y = x(x-1)(x-2) and the x-axis between x = 0 and x = 4.

©Solution:

Note that	f(x)	=x(x-	-1)(x -	-2) = 0	$\Rightarrow x$	t=0,	x = 1,	x=2.
-----------	------	-------	---------	---------	-----------------	------	--------	------

	x < 0	x = 0	0 < x < 1	x = 1	1 < x < 2	x = 2	<i>x</i> > 2
f(x)	_	0	+	0	_	0	+

The figure (and required shaded region) is shown below:

The area of shaded region is given by

$$= \int_0^4 |x(x-1)(x-2)| dx$$

$$= \int_0^1 x(x-1)(x-2) dx + \left(-\int_1^2 x(x-1)(x-2) dx\right) + \int_2^4 x(x-1)(x-2) dx$$

$$= \left[\frac{x^4}{4} - x^3 + x^2\right]_0^1 - \left[\frac{x^4}{4} - x^3 + x^2\right]_1^2 + \left[\frac{x^4}{4} - x^3 + x^2\right]_2^4 = 16.5 \text{ (square units)}.$$

Area between curves

Let y = f(x) and y = g(x) be two graphs of functions shown below:

Then the area of the shaded region (area between curves) is given by

$$A = \int_a^b (f(x) - g(x)) dx.$$

• One has to make sure that the upper function is placed in the first term of the formula or otherwise "negative" area will be resulted.

Find the area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$.

©Solution:

We first find the intersection points of these 2 curves.

$$\begin{cases} y^2 = 4x \\ x^2 = 4y \end{cases} \Rightarrow \left(\frac{y^2}{4}\right)^2 = 4y \Rightarrow y^4 - 64y = 0 \Rightarrow y(y^3 - 64) = 0$$
$$\Rightarrow y(y - 4)(y^2 + 4y + 16) = 0 \Rightarrow y = 0 \ (x = 0) \ \text{or} \ y = 4 \ (x = 4).$$
So $O = (0, 0)$ and $B = (4, 4).$

The area of shaded region is then given by

$$\int_0^4 (\sqrt{4x} - \frac{x^2}{4}) dx = 2 \int_0^4 \sqrt{x} dx - \frac{1}{4} \int_0^4 x^2 dx = 2 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^4 - \frac{1}{4} \left[\frac{x^3}{3} \right]_0^4 = \frac{32}{3} - \frac{16}{3} = \frac{16}{3}.$$

Example 5

Find the area of the region bounded by $y = 4 - x^2$ and $y = x^2 - 2x$.

Solution

We first find the coordinates of the intersection between two curves.

$$\begin{cases} y = 4 - x^2 \\ y = x^2 - 2x \end{cases} \Rightarrow x^2 - 2x = 4 - x^2 \Rightarrow x^2 - x - 2 = 0$$
$$\Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = 2 \ (y = 0) \text{ or } x = -1 \ (y = 3).$$

Then the area of the region is given by

$$\int_{-1}^{2} [(4 - x^{2}) - (x^{2} - 2x)] dx = \int_{-1}^{2} (-2x^{2} + 2x + 4) dx$$

$$= -2 \int_{-1}^{2} x^{2} dx + 2 \int_{-1}^{2} x dx + 4 \int_{-1}^{2} dx$$

$$= -2 \left[\frac{x^{3}}{3} \right]_{-1}^{2} + 2 \left[\frac{x^{2}}{2} \right]_{-1}^{2} + 4[x]_{-1}^{2} = 9 \text{ (square units)}$$

Find the area of the ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a, b > 0.

©Solution:

By symmetry the area of the ellipse is then given by

$$4 \int_{0}^{a} b \sqrt{1 - \frac{x^{2}}{a^{2}}} dx = \frac{4b}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx$$

$$x = a \sin \theta, \frac{dx}{d\theta} = a \cos \theta$$

$$\stackrel{=}{=} \frac{4b}{a} \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} - (a \sin \theta)^{2}} (a \cos \theta \, d\theta) = 4ab \int_{0}^{\frac{\pi}{2}} \cos^{2} \theta \, d\theta$$

$$= 4ab \int_{0}^{\frac{\pi}{2}} \frac{(\cos 2\theta + 1)}{2} d\theta = 2ab \left[\frac{\sin 2\theta}{2} + \theta \right]_{0}^{\frac{\pi}{2}} = \pi ab.$$

Find the area of the region bounded by the curves $y = \sin 2x$ and $y = \sin x$ for $0 \le x \le 2\pi$.

We need to compute the area part by part. First of all, we need to find the intersection points A, B, C between these two curves. We solve the equation

$$\sin 2x = \sin x \Rightarrow \sin 2x - \sin x = 0$$

compound angle

formula

$$\Rightarrow 2\sin x \cos x - \sin x = 0$$

$$\Rightarrow \sin x (2\cos x - 1) = 0 \Rightarrow \sin x = 0 \text{ or } \cos x = \frac{1}{2}$$

$$\Rightarrow x = 0, \pi, 2\pi \text{ or } \frac{\pi}{3}, \frac{5\pi}{3}.$$

Hence, the coordinates of A, B and C are given by $\left(\frac{\pi}{3}, \frac{\sqrt{3}}{2}\right)$, $(\pi, 0)$, $\left(\frac{5\pi}{3}, -\frac{\sqrt{3}}{2}\right)$, respectively.

Then, the area of the entire region is given by

$$A = \int_0^{\frac{\pi}{3}} (\sin 2x - \sin x) dx + \int_{\frac{\pi}{3}}^{\pi} (\sin x - \sin 2x) dx + \int_{\pi}^{\frac{5\pi}{3}} (\sin 2x - \sin x) dx$$
$$+ \int_{\frac{5\pi}{3}}^{2\pi} (\sin x - \sin 2x) dx$$
$$= \left[-\frac{1}{2} \cos 2x + \cos x \right]_0^{\frac{\pi}{3}} + \left[-\cos x + \frac{1}{2} \cos 2x \right]_{\frac{\pi}{3}}^{\pi} + \left[-\frac{1}{2} \cos 2x + \cos x \right]_{\pi}^{\frac{5\pi}{3}}$$
$$+ \left[-\cos x + \frac{1}{2} \cos 2x \right]_{\frac{5\pi}{3}}^{2\pi}$$

$$= \frac{1}{4} + \frac{9}{4} + \frac{9}{4} + \frac{1}{4} = 5.$$

Calculation of volumes of some objects

- Consider a solid which the cross sections are perpendicular to a given line (say the x-axis).
- As an example, suppose we would like to find the volume of the solid shown below

Suppose the cross section area A(x) is known, one can find the volume of the solid using integration. To do this, we first try to cut the solid into n small pieces.

Each small piece "looks like" a cylinder.

The volume of each small piece is approximated by $\Delta V_i \approx A(\bar{x}_i) \Delta x_i$ where \bar{x}_i is some point between x_{i-1} and x_i .

Therefore, the volume of the solid is approximated by $V \approx \sum_{i=1}^n A(\bar{x}_i) \Delta x_i$. If we cut the solid into more pieces $(n \to \infty \text{ and } \Delta x_i \to 0)$, then

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(\bar{x}_i) \Delta x_i = \int_{a}^{b} A(x) dx.$$

Suppose we would like to find the volume of the solid formed by rotating a continuous curve y = f(x) about the x-axis.

• Each cross-section is a circle. Therefore

$$A(x) = \pi[f(x)]^2.$$

• Therefore, the volume of the solid is given by

$$V_x = \int_a^b A(x)dx = \int_a^b \pi [f(x)]^2 dx.$$

Remark:

• Different from finding the area bounded by curves, we need not to care whether the curve is above the x-axis or below the x-axis.

The portion of the curve xy = 8 from x = 2 to x = 4 is rotated about the x-axis. Find the volume of the solid generated.

©Solution:

The volume

$$V_x = \int_2^4 \pi y^2 dx = \int_2^4 \pi \left(\frac{8}{x}\right)^2 dx = 64\pi \int_2^4 \frac{1}{x^2} dx = 64\pi \left[-\frac{1}{x}\right]_2^4 = 16\pi.$$

Find the volume of a right circular cone of height h and semi-vertical angle α .

©Solution:

The required circular cone can be generated by rotating the straight line $y = x \tan \alpha$ from x = 0 to x = h about the x-axis.

The volume is then given by

$$V_x = \int_0^h \pi y^2 dx = \int_0^h \pi (x \tan \alpha)^2 dx = \pi \tan^2 \alpha \int_0^h x^2 dx$$
$$= \pi \tan^2 \alpha \left[\frac{x^3}{3} \right]_0^h = \frac{1}{3} \pi \tan^2 \alpha h^3.$$

Find the volume of the solid formed by rotating the region bounded by the upper half of the ellipse $x^2 + \frac{y^2}{2^2} = 1$ and the upper half of the circle $x^2 + y^2 = 1$ about the x-axis.

©Solution:

Using the graph above, the volume of the solid is then given by

$$V_{x} = \underbrace{\int_{-1}^{1} \pi \left(2\sqrt{1-x^{2}}\right)^{2} dx}_{\text{volume of ellipoid}} - \underbrace{\int_{-1}^{1} \pi \left(\sqrt{1-x^{2}}\right)^{2} dx}_{\text{volume of sphere}}$$

$$=3\pi\int_{-1}^{1}(1-x^2)dx=6\pi\int_{0}^{1}(1-x^2)dx$$
 as the integrand is an even function

$$=6\pi \left[x-\frac{x^3}{3}\right]_0^1$$

$$=4\pi$$
.

Let R be the region bounded by $y = 9 - x^2$ and y = 7 - x. Find the volume of the solid generated by rotating the region R about the x-axis.

©Solution:

The intersection points between two given curves are found to be

$$\begin{cases} y = 9 - x^2 \\ y = 7 - x \end{cases} \Rightarrow 9 - x^2 = 7 - x \Rightarrow x^2 - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0$$
$$\Rightarrow x = 2 \ (y = 5), \qquad x = -1 \ (y = 8)$$

Using similar technique as in Example 10, the required volume is given by

$$V_x = \pi \int_{-1}^{2} (9 - x^2)^2 dx - \pi \int_{-1}^{2} (7 - x)^2 dx$$
$$= \pi \int_{-1}^{2} (x^4 - 19x^2 + 14x + 32) dx$$
$$= \pi \left[\frac{x^5}{5} - \frac{19x^3}{3} + 7x^2 + 32x \right]^2 = \frac{333\pi}{5}.$$

The rotation axis is the y-axis: Volume $V_y = \int_c^d \pi [g(y)]^2 dy$ for revolving the region bounded by the curve x = g(y) over [c,d] about the y-axis

Example 12

Find the volume of the solid generated by revolving the area bounded by the curve $y = e^{-x}$, the x-axis, the y-axis and x = 1 about the y-axis.

©Solution:

Although the rotation axis is not the x-axis, one can use the formula to obtain the volume by *interchanging the role of* x *and* y.

The equation of the graph $y=e^{-x}$ can be rewritten as $x=-\ln y$. The volume is then given by

$$V_{y} = \int_{0}^{e^{-1}} \pi(1)^{2} dy + \int_{e^{-1}}^{1} \pi(-\ln y)^{2} dy = \pi \int_{0}^{e^{-1}} 1 dy + \pi \int_{e^{-1}}^{1} (\frac{\ln y}{u})^{2} \frac{dy}{dv}$$

$$= \pi e^{-1} + \pi \left[y(\ln y)^{2} \Big|_{e^{-1}}^{1} - \int_{e^{-1}}^{1} y \, d(\ln y)^{2} \right] \text{ by integration by parts}$$

$$= \pi e^{-1} - \pi e^{-1} - \pi \int_{e^{-1}}^{1} y \left(\frac{2 \ln y}{y} \right) dy = -2\pi \int_{e^{-1}}^{1} \frac{\ln y}{u} \frac{dy}{dv}$$

$$= -2\pi \left[y \ln y \Big|_{e^{-1}}^{1} - \int_{e^{-1}}^{1} y \, d(\ln y) \right] \text{ by integration by parts}$$

$$= -2\pi e^{-1} + 2\pi \int_{e^{-1}}^{1} 1 dy$$

$$= -2\pi e^{-1} + 2\pi (1 - e^{-1}) = 2\pi (1 - 2e^{-1}).$$

Let R be the region bounded by upper half of a circle $(x-1)^2+y^2=4$ and the line y=1. Find the volume of the solid generated by revolving the region R about the line y=1 (not the x-axis or the y-axis).

©Solution: Lower and upper limits:

$$(x-1)^2 + 1^2 = 4 \implies x = 1 \pm \sqrt{3}$$
.

Using the graph on the R.H.S, the volume is given by

$$V = \int_{1-\sqrt{3}}^{1+\sqrt{3}} \pi \left(\sqrt{4 - (x - 1)^2} - 1 \right)^2 dx$$

$$= \pi \int_{1-\sqrt{3}}^{1+\sqrt{3}} \left(5 - (x-1)^2 - 2\sqrt{4 - (x-1)^2}\right) dx$$

$$\stackrel{(x-1)=2\sin\theta}{=} \pi \int_{1-\sqrt{3}}^{1+\sqrt{3}} (4+2x-x^2)dx - 2\pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \sqrt{4-4\sin^2\theta} \left(2\cos\theta \,d\theta\right)$$

$$= \pi \left[4x + x^2 - \frac{x^3}{3} \right]_{1-\sqrt{3}}^{1+\sqrt{3}} - 8\pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \cos^2 \theta \ d\theta$$

$$=8\sqrt{3}\pi - 8\pi \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\cos 2\theta + 1}{2} d\theta = \dots = 6\sqrt{3}\pi - \frac{8\pi^2}{3}.$$

Volume by cylindrical shells: Shell method

The volume of the solid generated by revolving the region bounded by the curve y = f(x) over [a, b] one complete revolution about the y-axis:

$$V_{y} = \lim_{n \to \infty} \sum_{i=1}^{n} \underbrace{2\pi x_{i} f(x_{i})}_{\text{area of the shell with radius } r_{i} = x_{i}} \underbrace{\Delta x_{i}}_{\text{shell width and height } h_{i} = f(x_{i})} \underbrace{\Delta x_{i}}_{\text{shell width}} = \int_{a}^{b} 2\pi x f(x) dx$$

Example 14

Find the volume of the solid generated by revolving the region R bounded by the curve $y = 2x^2 - x^3$ and the x-axis about the y-axis.

©Solution:

Lower and upper limits: $0 = 2x^2 - x^3 = x^2(2-x) \Rightarrow x = 0$ or 2.

$$V_y = 2\pi \int_0^2 xy dx = 2\pi \int_0^2 x(2x^2 - x^3) dx = 2\pi \int_0^2 (2x^3 - x^4) dx = \frac{16\pi}{5}.$$

Find the volume of the solid generated by revolving the region R bounded by the curve y=x and $y=x^2$ about the y-axis.

©Solution:

Lower and upper limits: $x = x^2 \implies 0 = x^2 - x = x(x-1) \implies x = 0, 1.$

Height: $h = x - x^2$

$$V_y = 2\pi \int_0^1 xh dx = 2\pi \int_0^1 x(x - x^2) dx = 2\pi \int_0^1 (x^2 - x^3) dx$$
$$= 2\pi \left[\frac{x^3}{3} - \frac{x^4}{4} \right]_0^1 = 2\pi \left[\frac{1}{3} - \frac{1}{4} \right] = \frac{2\pi}{12} = \frac{\pi}{6}.$$

Find the volume of the solid generated by revolving the region R bounded by the curve $y = \sqrt{x}$, the x-axis and x = 1 about the x-axis.

©Solution:

Lower and upper limits of y: $x = 0 \Rightarrow y = \sqrt{0} = 0$; $x = 1 \Rightarrow y = \sqrt{1} = 1$.

Horizontal height: $h = 1 - y^2$

$$V_x = 2\pi \int_0^1 yhdy = 2\pi \int_0^1 y(1-y^2)dy = 2\pi \int_0^1 (y-y^3)dy$$

$$=2\pi \left[\frac{y^2}{2} - \frac{y^4}{4}\right]_0^1 = 2\pi \left[\frac{1}{2} - \frac{1}{4}\right] = \frac{2\pi}{4} = \frac{\pi}{2}.$$

Example 17

Find the volume of the solid generated by revolving the region R bounded by the curve $y = x - x^2$ and the x-axis about the line x = 2.

©Solution: Lower and upper limits: $0 = x - x^2 = x(1 - x) \Rightarrow x = 0$, 1.

Radius: r = 2 - x; Height: $y = x - x^2$

$$V = 2\pi \int_0^1 rhdx = 2\pi \int_0^1 (2-x)(x-x^2)dx = 2\pi \int_0^1 (2x-3x^2+x^3)dx$$

$$=2\pi\left[x^2-x^3+\frac{x^4}{4}\right]_0^1=2\pi\left[1-1+\frac{1}{4}\right]=\frac{2\pi}{4}=\frac{\pi}{2}.$$

Remark: If we apply the shell method for Example 12,

$$V_y = 2\pi \int_0^1 xy dx = 2\pi \int_0^1 xe^{-x} dx = 2\pi \int_0^1 xd(-e^{-x})$$

$$= 2\pi \{ [-xe^{-x}]_0^1 + \int_0^1 e^{-x} dx \} \quad \text{(integration by parts)}$$

$$= 2\pi \{ [-e^{-1} + 0] + [-e^{-x}]_0^1 \} = 2\pi \{ -e^{-1} + [-e^{-1} + 1] \}$$

$$= 2\pi (1 - 2e^{-1}).$$

Arc length of a curve

ullet We adopt the similar procedure as we did when finding the volume of the solid. We first divide the curve into n parts:

• Each part of curve is approximated by a straight line joining the endpoints of the curve.

• The length of straight line Δs_i is found to be

$$\Delta s_i = \sqrt{(\Delta x_i)^2 + [f(x_i + \Delta x_i) - f(x_i)]^2}$$

$$= \Delta x_i \sqrt{1 + \left[\frac{f(x_i + \Delta x_i) - f(x_i)}{\Delta x_i}\right]^2} \approx \Delta x_i \sqrt{1 + (f'(x_i))^2}.$$

Therefore, the total length of the curve (arc length)

$$s = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + (f'(x_i))^2} \Delta x_i$$

$$s = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx.$$

Find the arc length of the curve $6xy = 3 + x^4$ (or $y = \frac{3+x^4}{6x}$) between the points whose abscissa (*x*-coordinate) are 1 and 4.

©Solution:

Take $f(x) = \frac{3+x^4}{6x}$, note that

$$f'(x) = \frac{1}{6} \frac{x(4x^3) - (3 + x^4)}{x^2} = \frac{1}{6} \frac{3x^4 - 3}{x^2} = \frac{x^4 - 1}{2x^2}.$$

So the arc length is seen to be

$$s = \int_{1}^{4} \sqrt{1 + [f'(x)]^{2}} dx = \int_{1}^{4} \sqrt{1 + \left(\frac{x^{4} - 1}{2x^{2}}\right)^{2}} dx$$

$$= \int_{1}^{4} \sqrt{\frac{(2x^2)^2 + (x^4 - 1)^2}{(2x^2)^2}} dx$$

$$= \int_{1}^{4} \sqrt{\frac{4x^4 + x^8 - 2x^4 + 1}{4x^4}} dx$$

$$= \int_{1}^{4} \sqrt{\frac{x^8 + 2x^4 + 1}{4x^4}} \, dx$$

$$= \int_{1}^{4} \sqrt{\frac{(x^4+1)^2}{4x^4}} \, dx$$

$$= \int_{1}^{4} \frac{x^{4} + 1}{2x^{2}} dx = \frac{1}{2} \int_{1}^{4} \left(\frac{x^{4}}{x^{2}} + \frac{1}{x^{2}} \right) dx$$

$$= \frac{1}{2} \int_{1}^{4} \left(x^{2} + \frac{1}{x^{2}} \right) dx = \frac{1}{2} \left[\frac{x^{3}}{3} - \frac{1}{x} \right]_{1}^{4} = \frac{87}{8}$$
 (units).

Let R be the region bounded by $y = 9 - x^2$ and y = 7 - x. Find the arc length of the boundary curve of the region R.

©Solution: As shown in Example 11,

Low and Upper limits: $9-x^2=7-x \implies x^2-x-2=0 \implies x=2 \text{ or } x=-1.$ Note that the boundary curves consists of two different parts: (1) the curve $y=9-x^2$ from x=-1 to x=2 and (2) the straight line y=7-x from x=-1 to x=2. Hence the total arc length is given by

$$\int_{-1}^{2} \sqrt{1 + \left(\frac{d}{dx}(9 - x^{2})\right)^{2}} \, dx + \int_{-1}^{2} \sqrt{1 + \left(\frac{d}{dx}(7 - x)\right)^{2}} \, dx = \int_{-1}^{2} \sqrt{1 + 4x^{2}} \, dx + \int_{-1}^{2} \sqrt{2} \, dx$$

$$= \int_{-1}^{2} \sqrt{1 + 4x^{2}} \, dx + \int_{-1}^{2} \sqrt{2} \, dx$$

$$= \int_{-1}^{2} \sqrt{1 + 4x^{2}} \, dx + \int_{-1}^{2} \sqrt{2} \, dx$$

$$= \int_{-1}^{2} \tan \theta$$

$$\Rightarrow \frac{dx}{d\theta} = \frac{1}{2} \sec^{2} \theta$$

$$= \int_{-1}^{2} \tan^{-1} 4 \left(\frac{1}{4} \tan^{2} \theta\right) \left(\frac{1}{2} \sec^{2} \theta \, d\theta\right) + \left[\sqrt{2}x\right]_{-1}^{2}$$

$$= \frac{1}{2} \int_{-1}^{1} \tan^{-1} 4 \left(\frac{1}{4} \tan^{2} \theta\right) \left(\frac{1}{2} \sec^{2} \theta \, d\theta\right) + \left[\sqrt{2}x\right]_{-1}^{2}$$

$$= \frac{1}{2} \left[\frac{1}{2} \left(\sec \theta \tan \theta + \ln|\sec \theta + \tan \theta|\right)\right]_{-1}^{1} \tan^{-1} 4 + 3\sqrt{2} = \cdots$$

$$= \sqrt{17} + \frac{\sqrt{5}}{2} + \frac{1}{4} \ln|\sqrt{17} + 4| - \frac{1}{4} \ln|\sqrt{5} - 2| + 3\sqrt{2}$$

$$= \sqrt{17} + \frac{\sqrt{5}}{2} + 3\sqrt{2} + \frac{1}{4} \ln|\sqrt{17} + 4| + \frac{1}{4} \ln|\sqrt{5} + 2|.$$

Area of surface of revolution

Suppose we would like to find the area of surface generated by rotating a continuous curve y = f(x) about the x-axis.

We cut the object into n parts.

- Each smaller solid is approximated by the frustum.
- The surface area of each smaller solid approximately equals the surface area of the frustum.

Question: How to find the surface area of the frustum?

Recall that the surface area of a circular cone (shown below) is given by

$$S = \pi r l$$
,

where r is the base radius and l is the slant height.

If we add a circular cone (red part) onto the frustum, the solid becomes a bigger cone.

Therefore, the surface area of the frustum is given by the difference of surface areas between two cones, i.e.

To compute l_0 , one can consider the following figure:

Note that $\triangle ABC \sim \triangle ADE$, then we have

$$\frac{AB}{AD} = \frac{BC}{DE} \Rightarrow \frac{l_0}{l + l_0} = \frac{r_1}{r_2} \Rightarrow l_0 = \frac{r_1 l}{r_2 - r_1}.$$

Surface area of frustum

= (surface area of bigger cone) – (surface area of smaller cone)

$$=\pi r_2(l+l_0)-\pi r_1(l_0)$$

$$= \pi r_2 \left(l + \frac{r_1 l}{r_2 - r_1} \right) - \pi r_1 \left(\frac{r_1 l}{r_2 - r_1} \right)$$

$$= \frac{\pi l(r_2^2 - r_1^2)}{r_2 - r_1} = \frac{\pi l(r_2 - r_1)(r_2 + r_1)}{(r_2 - r_1)} = \pi l(r_1 + r_2)$$

Back to our case, we know

- $r_1 = f(x_i)$ and $r_2 = f(x_i + \Delta x)$
- *l* is given by

$$l = \sqrt{(\Delta x)^2 + [f(x_i + \Delta x) - f(x_i)]^2}$$
$$= \Delta x \sqrt{1 + \left[\frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}\right]^2} \approx \Delta x \sqrt{1 + (f'(x_i))^2}.$$

Then the surface area of small frustum is given by

$$A(x_i) \approx \pi [f(x_i + \Delta x) + f(x_i)] \sqrt{1 + (f'(x_i))^2} \Delta x$$

$$\approx \pi [f(x_i) + f(x_i)] \sqrt{1 + (f'(x_i))^2} \Delta x \approx 2\pi f(x_i) \sqrt{1 + (f'(x_i))^2} \Delta x$$

Therefore surface area of the solid generated by revolving the curve y = f(x) over [a, b] about the x-axis:

$$S_{x} = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_{i}) = \lim_{n \to \infty} \sum_{i=1}^{n} \underbrace{2\pi f(x_{i})}_{\text{perimeter}} \underbrace{\sqrt{1 + (f'(x_{i}))^{2}} \Delta x_{i}}_{\text{width } \Delta s_{i}}$$
with raduis
$$r_{i} = f(x_{i})$$

$$S_x = 2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx.$$

The sphere with radius a (a>0) can be formed by rotating the upper half of the curve $y=\sqrt{a^2-x^2}$ (or $x^2+y^2=a^2$) from x=-a to x=a about the x-axis. Find the surface area of the sphere.

©Solution:

Let
$$f(x) = \sqrt{a^2 - x^2}$$
.

Step 1: Compute f'(x)

$$f'(x) = \frac{d}{dx} \sqrt{a^2 - x^2} = \frac{d}{dx} (a^2 - x^2)^{\frac{1}{2}}$$

$$= \frac{d \left((a^2 - x^2)^{\frac{1}{2}} \right)}{d(a^2 - x^2)} \frac{d(a^2 - x^2)}{dx}$$
 (Chain Rule)
$$= -\frac{x}{\sqrt{a^2 - x^2}}$$

Step 2: Calculate the surface area

$$A = 4\pi \int_0^a f(x)\sqrt{1 + [f'(x)]^2} dx \quad \text{by symmetry}$$

$$= 4\pi \int_0^a \sqrt{a^2 - x^2} \sqrt{1 + \left(-\frac{x}{\sqrt{a^2 - x^2}}\right)^2} dx$$

$$= 4\pi \int_0^a \sqrt{a^2 - x^2} \sqrt{1 + \frac{x^2}{a^2 - x^2}} dx$$

$$= 4\pi \int_0^a \sqrt{a^2} dx = 4\pi \int_0^a a dx = 4\pi a \int_0^a dx$$

$$= 4\pi a [x]_0^a = 4\pi a(a) = 4\pi a^2.$$

Find the area A of the surface generated by rotating the line y=x from x=-1 to x=1 about the x-axis.

⊗Wrong Solution

Take f(x) = x, we have f'(x) = 1.

The required surface area

$$A = 2\pi \int_{-1}^{1} f(x)\sqrt{1 + [f'(x)]^{2}} dx$$

$$= 2\pi \int_{-1}^{1} x\sqrt{1 + 1} dx$$

$$= 2\sqrt{2}\pi \int_{-1}^{1} x dx$$

$$= 2\sqrt{2}\pi \left[\frac{x^{2}}{2}\right]_{-1}^{1} = 0 < ---- (0\text{ops})$$

Remark about the surface area formula

- The formula works well when the entire curve y = f(x) lies above the x-axis (i.e., f(x) is positive).
- When the curve y = f(x) lies below the x-axis, the integral

$$2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^{2}} dx$$

becomes a negative number.

• If such case happens, split the surface into two main parts (lies above the x-axis / below the x-axis) and compute the surface area separately.

©Correct Solution of Example 21

Take f(x) = x, we have f'(x) = 1.

The required surface area

$$A = 2\pi \left[\int_0^1 f(x) \sqrt{1 + [f'(x)]^2} dx + \left(-\int_{-1}^0 f(x) \sqrt{1 + [f'(x)]^2} dx \right) \right]$$

$$= 2\pi \left[\int_0^1 x \sqrt{1 + 1} dx - \int_{-1}^0 x \sqrt{1 + 1} dx \right]$$

$$= 2\pi \left\{ \sqrt{2} \left[\frac{x^2}{2} \right]_0^1 - \sqrt{2} \left[\frac{x^2}{2} \right]_{-1}^0 \right\}$$

$$= 2\sqrt{2}\pi.$$

Let R be the region bounded by the curves $y = x^2 + 1$ and $y = 9 - x^2$. Find the area A of the surface generated by rotating the region R about the x-axis.

Solution

The surface area of the entire object

= surface area of outer part of the solid + surface area of inner part of the solid

$$=2\pi\int_{-2}^{2}(9-x^2)\sqrt{1+[-2x]^2}dx+2\pi\int_{-2}^{2}(1+x^2)\sqrt{1+[2x]^2}dx$$

$$= 20\pi \int_{-2}^{2} \sqrt{1 + 4x^2} dx = 40\pi \int_{0}^{2} \sqrt{1 + 4x^2} dx$$
 by symmetry

$$\stackrel{x = \frac{\tan \theta}{2}}{=} 40\pi \int_0^{\tan^{-1} 4} \sqrt{1 + \tan^2 \theta} \left(\frac{\sec^2 \theta}{2} d\theta \right) = 20\pi \int_0^{\tan^{-1} 4} \sec^3 \theta d\theta$$

 $= 10\pi[\sec\theta\tan\theta + \ln|\sec\theta + \tan\theta|]_0^{\tan^{-1}4}$

$$= 40\sqrt{17}\pi + 10\pi \ln |\sqrt{17} + 4|.$$

Parametric equations of curve

• Alternatively, the curve in 2-D plane can be expressed in the following form:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \ a \le t \le b$$

where t is another variable called a parameter.

ullet This notion is commonly used in Physics. If we interpret t as time, then the above pair of equations describes the position of a moving particle at different time t.

Example 23a

Suppose (x, y) is governed by the following parametric equations:

$$\begin{cases} x = t \\ y = 2t \end{cases} \quad \text{where } t \ge 0.$$

• Then the particle is moving along the straight line y = 2x (starting from (0,0)).

Example 23b

Suppose (x, y) is governed by the following parametric equations:

$$\begin{cases} x = \cos t \\ y = \sin t \end{cases} \quad \text{where } 0 \le t \le 2\pi.$$

• Then the particle is moving along the circle with equation $x^2 + y^2 = 1$ along anti-clockwise direction once.

How to compute the arc length for this case?

Given a curve with parametrization x = x(t) and y = y(t), we can find the arc length using the following approach:

We first shall divide the whole curve into $\,n\,$ small segments.

Since each small segment is close to a straight line, the arc length is given by

$$\Delta s_{i} = \sqrt{[x(t_{i} + \Delta t_{i}) - x(t_{i})]^{2} + [y(t_{i} + \Delta t_{i}) - y(t_{i})]^{2}}$$

$$= \sqrt{\left(\frac{x(t_{i} + \Delta t_{i}) - x(t_{i})}{\Delta t_{i}}\right)^{2} + \left(\frac{y(t_{i} + \Delta t_{i}) - y(t_{i})}{\Delta t_{i}}\right)^{2}} \Delta t_{i}$$

$$\approx \sqrt{[x'(t_{i})]^{2} + [y'(t_{i})]^{2}} \Delta t_{i}$$

Then the entire arc length is given by

$$s = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta s_i = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{[x'(t_i)]^2 + [y'(t_i)]^2} \Delta t_i = \int_{t_0}^{t_1} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$$

Find the arc length of the curve with parametric equations (circle)

$$x(t) = a \cos t$$
, $y(t) = a \sin t$

for $0 \le t \le 2\pi$.

(Remark: It traces out a circle with equation $x^2 + y^2 = a^2$ once)

©Solution:

Take $x(t) = a \cos t$ and $y(t) = a \sin t$, then

$$x'(t) = -a \sin t$$
, $y'(t) = a \cos t$.

So the arc length is then given by

$$s = \int_0^{2\pi} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt = \int_0^{2\pi} \sqrt{(-a\sin t)^2 + (a\cos t)^2} dt$$
$$= \int_0^{2\pi} \sqrt{a^2(\sin^2 t + \cos^2 t)} dt$$
$$= \int_0^{2\pi} a dt = a \int_0^{2\pi} dt = a[t]_0^{2\pi} = 2\pi a.$$

Find the arc length of the curve with parametric equations

$$x = t^3 - 3$$
, $y = t^2 + 1$ for $1 \le t \le 2$.

©Solution:

Let
$$x(t)=t^3-3$$
 and $y(t)=t^2+1$, then
$$x'(t)=3t^2 \text{ and } y'(t)=2t.$$

Then the arc length is given by

$$s = \int_{1}^{2} \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt = \int_{1}^{2} \sqrt{9t^{4} + 4t^{2}} dt = \int_{1}^{2} t\sqrt{9t^{2} + 4} dt$$

Let $u = 9t^2 + 4$, then $\frac{du}{dt} = 18t \Rightarrow dt = \frac{1}{18t}du$.

When t = 2, u = 40; when t = 1, u = 13.

$$\int_{1}^{2} t\sqrt{9t^{2} + 4} dt = \int_{13}^{40} t\sqrt{u} \left(\frac{1}{18t} du\right) = \frac{1}{18} \int_{13}^{40} \sqrt{u} du = \frac{1}{18} \int_{13}^{40} u^{\frac{1}{2}} du = \frac{1}{18} \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]_{13}^{10}$$
$$= \frac{1}{27} \left(40^{\frac{3}{2}} - 13^{\frac{3}{2}}\right).$$

Find the arc length of the curve with parametric equations (Astroid: $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$):

$$\begin{cases} x(t) = a \cos^3 t \\ y(t) = a \sin^3 t \end{cases}, \quad 0 \le t \le 2\pi, \quad a > 0.$$

©Solution:

$$s = 4 \int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{d}{dt} a \cos^3 t\right)^2 + \left(\frac{d}{dt} a \sin^3 t\right)^2} dt \quad \text{by symmetry}$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{(-3a \cos^2 t \sin t)^2 + (3a \sin^2 t \cos t)^2} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^4 t \sin^2 t + 9a^2 \sin^4 t \cos^2 t} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} \sqrt{9a^2 \cos^2 t \sin^2 t \left(\cos^2 t + \sin^2 t\right)} dt$$

$$= 4 \int_0^{\frac{\pi}{2}} |3a \cos t \sin t| dt = 12a \int_0^{\frac{\pi}{2}} \sin t d \sin t$$

$$= 6a [\sin^2 t]_0^{\frac{\pi}{2}} = 6a [1^2 - 0^2] = 6a.$$

Find the surface area of the solid generated by revolving the Cycloid about the x-axis:

$$x = a(t - \sin t), \ y = a(1 - \cos t), \ t: 0 \to 2\pi, \ a > 0$$

Solution

$$\frac{ds}{dt} = \sqrt{x'(t)^2 + y'(t)^2} = \sqrt{a^2(1 - \cos t)^2 + a^2 \sin^2 t}$$

$$= a\sqrt{1 - 2\cos t + \cos^2 t + \sin^2 t} = \sqrt{2}a\sqrt{1 - \cos t}$$

$$S_x = \int_0^{2\pi a} 2\pi y ds = 2\pi \int_0^{2\pi} a(1 - \cos t)\sqrt{2}a\sqrt{1 - \cos t} dt$$

$$= 2\sqrt{2}\pi a^2 \int_0^{2\pi} \left(\underbrace{1 - \cos t}_{2\sin^2 \frac{t}{2}}\right)^{\frac{3}{2}} dt = 8\pi a^2 \int_0^{2\pi} \sin^3 \frac{t}{2} dt$$

$$= 16\pi a^2 \int_0^{2\pi} (1 - \cos^2 \frac{t}{2}) d(-\cos \frac{t}{2}) = -16\pi a^2 \left[\cos \frac{t}{2} - \frac{\cos^3 \frac{t}{2}}{3}\right]_0^{2\pi}$$

$$= -16\pi a^2 \left[\left(\underbrace{\cos \pi - \cos 0}_{-1}\right) - \frac{1}{3}\left(\underbrace{\cos^3 \pi - \cos^3 0}_{-1}\right)\right] = \frac{64}{3}\pi a^2.$$

Summary of formula

	Formula	$x(t_0) = a, x(t_1) = b$ or $y(t_0) = c, y(t_1) = d$
Area bounded by the region R_x : $y_{top} = f(x)$, $y_{bottom} = g(x)$, $x = a$ and $x = b$	$\int_{a}^{b} [f(x) - g(x)] dx$	$\int_{t_0}^{t_1} [f(x(t)) - g(x(t))]x'(t)dt$
Area bounded by the region R_y : $x_{\text{right}} = \phi(y)$, $x_{\text{left}} = \psi(y)$, $y = c$ and $y = d$	$\int_{c}^{d} [\phi(y) - \psi(y)] dy$	$\int_{t_0}^{t_1} [\phi(y(t)) - \psi(y(t))] y'(t) dt$
Volume of solid generated by rotating R_x about the line $y = y_0$ (not cut R_x)	$\pi \int_{a}^{b} [f(x) - y_0]^2 - [g(x) - y_0]^2 dx$	$\pi \int_{t_0}^{t_1} [f(x(t)) - y_0]^2 - [g(x(t)) - y_0]^2 x'(t) dt$
Volume of solid generated by rotating R_x about the line $x = x_0$ (not cut R_x)	$2\pi \int_a^b x - x_0 [f(x) - g(x)] dx$	$2\pi \int_{t_0}^{t_1} x(t) - x_0 [f(x(t))]$ $-g(x(t))]x'(t)dt$

Volume of solid generated by rotating	$\pi \int_{c}^{d} [\phi(y) - x_{0}]^{2} - [\psi(y) - x_{0}]^{2} dy$	$\pi \int_{t_0}^{t_1} \left \left[\phi \left(y(t) \right) - x_0 \right]^2$
R_y about the line	$-\left[\psi(y)-x_0\right]^2 dy$	$-\left[\psi(y(t))-x_0\right]^2 y'(t)dt $
$x = x_0$ (not cut R_y)		
Volume of solid	$a = \int_{-\infty}^{d} dx$	$2 - \int_{-1}^{t_1} a_1(t) dt = \int_{-1}^{t_1} a_1(t) dt$
generated by rotating	$2\pi \int_{c}^{a} y - y_0 [\phi(y) - \psi(y)] dy$	$2\pi \int_{t_0}^{t_1} y(t) - y_0 [\phi(y(t))]$
R_y about the line		$-\psi(y(t)]y'(t)dt$
$y = y_0$ (not cut R_y)		7 (3 (3)]3 (3)
Arc length of $y =$	\int_{a}^{b}	$\int_{0}^{t_{1}} \int_{0}^{t_{1}} $
f(x) over $[a,b]$	$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx$	$\int_{t_0}^{t_1} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
Area of surface	b	
generated by rotating	$2\pi \int_{a}^{b} f(x) - y_0 \sqrt{1 + [f'(x)]^2} dx$	$2\pi \int_{t_{-}} y(t) $
y = f(x) over $[a, b]$	- a	$-y_0 \sqrt{[x'(t)]^2+[y'(t)]^2}dt$
about the line $y = y_0$		$-y_0 _{V}[x(t)] + [y(t)] = ut$
Area of surface	$\int_{0}^{d} \int_{0}^{d} \int_{0$	$2-\int_{-1}^{t_1} dt$
generated by rotating	$2\pi \int_{c}^{a} \phi(y) - x_{0} \sqrt{1 + [\phi'(y)]^{2}} dy$	$2\pi \int_{t_{-}}^{t_{1}} x(t) $
$x = \phi(y)$ over $[c, d]$	- 0	$-x_0 \sqrt{[x'(t)]^2+[y'(t)]^2}dt$
about the line $x = x_0$		$-x_0 \sqrt{[x(\iota)]^-+[y(\iota)]^-a\iota}$

Note: the x-axis: y = 0; the y-axis: x = 0