Experiment #06 - LATERAL VIBRATIONS OF HANGING ROPE

Aim: To find the power series solution of the Bessel's equation of order zero by the method of Frobenius and visualize it using MATLAB.

Mathematical Background:

Series solution of differential equations

- Many differential equations arising from physical problems are linear with variable coefficients.
- A general solution in terms of known function does not exist for types of equations.
- Such equations can be solved by finding the solution in the form of an infinite convergent series.

Singular Point

Consider the differential equation of the form,

$$P_0(x)\frac{d^2y}{dx^2} + P_1(x)\frac{dy}{dx} + P_2(x)y = 0 \dots (1)$$

If $P_0(a) \neq 0$, then x = a is called an *ordinary point* of (1), otherwise *singular point*. When x = a is a regular singular point of (1), then it can be solved using method of Frobenius.

Frobenius Method

Let b(x) and c(x) be any functions that are analytic at x = 0. ('x' is regular singular point). Then the ODE:

$$y'' + \frac{b(x)}{x}y' + \frac{c(x)}{x^2}y = 0...(2)$$

Has at least one solution that can be represented in the form:

$$y(x) = x^r \sum_{m=0}^{\infty} a_m x^m ...(3)$$

1

Where $a_0 \neq 0$, the exponent r may be real or complex.

Matlab syntax

coeffs(P,var)	Returns coefficients of the polynomial 'P' with respect to the variable 'var'.
collect(P,var)	Rewrites 'P' in terms of the powers of the variable 'var'.
n=numel(A)	Returns the number of elements 'n' in array 'A', equivalent to prod(size(A)).
simplify(S)	Performs an algebraic simplification of S.
J=besselj(nu,Z)	Computes the Bessel function of the first kind, where 'nu' is order and 'Z' is an argument.
Y=bessely(nu,Z)	Computes Bessel function of the second kind, where 'nu' represents order and 'Z' is an argument.

MATLAB Code:

```
clc;
clear all;
syms x a0 a1 a2 a3 a4 m c1 c2
y=a0*x^m+a1*x^(m+1)+a2*x^(m+2)+a3*x^(m+3)+a4*x^(m+4)
eq=x^2*diff(y,x,2)+x*diff(y,x,1)+x^2*y
eq1=collect(eq)
eq2=coeffs(simplify(eq1*x^{(1-m)}),x)
eq3=solve(eq2(1),m) %roots of indicial equation
a1=solve(eq2(2),a1)
a2=solve(eq2(3),a2)
a3=subs(solve(eq2(4),a3))
a4=subs(solve(eq2(5),a4))
ss=a0*x^m+a1*x^(m+1)+a2*x^(m+2)+a3*x^(m+3)+a4*x^(m+4)
y1=subs(ss,m,eq3(1))
y2=subs(diff(ss,m),m,eq3(1))
gs=c1*y1+c2*y2
%%visualization of bessel's (order zero)
X = 0:0.1:20;
%Y= zeros(5,numel(X));
%J= zeros(5,numel(X));
Y0 = bessely(0,X);
J0 = besselj(0,X);
subplot(1,2,1), plot(X,J0)
title('First kind')
xlabel('X')
ylabel('J_0(X)')
subplot(1,2,2),plot(X,Y0)
title('second kind')
xlabel('X')
ylabel('Y_0(X)')
```

Output:

```
y =
a0*x^m + a1*x^m + 1) + a2*x^m + 2) + a3*x^m + 3) + a4*x^m + 4)
eq =
 x^2(a\theta^*x^m + a1^*x^m + 1) + a2^*x^m + 2) + a3^*x^m + 3) + a4^*x^m + 4) + x^2^*(a\theta^*m^*x^m + 2) + a4^*x^m + 3) + a4^*x^m + 4)
 2)*(m - 1) + a1*m*x^{(m - 1)}*(m + 1) + a2*x^m*(m + 1)*(m + 2) + a3*x^{(m + 1)}*(m + 2)*(m + 3)
  + a4*x^{(m + 2)*(m + 3)*(m + 4)} + x*(a2*x^{(m + 1)*(m + 2)} + a3*x^{(m + 2)*(m + 3)} + a4*x^{(m + 4)}
 3)*(m + 4) + a0*m*x^{(m - 1)} + a1*x^{m*(m + 1)}
eq1 =
 (a0*x^m + a1*x^m + 
 + a1*m*x^{(m-1)*(m+1)} + a2*x^{m*(m+1)*(m+2)} + a3*x^{(m+1)*(m+2)*(m+3)} + a4*x^{(m+1)*(m+2)}
2)*(m + 3)*(m + 4))*x^2 + (a2*x^(m + 1)*(m + 2) + a3*x^(m + 2)*(m + 3) + a4*x^(m + 3)*(m + 
4) + a0*m*x^{(m-1)} + a1*x^{m*(m+1)}*x
eq2 =
 [ a0*m^2, a1*m^2 + 2*a1*m + a1, a2*m^2 + 4*a2*m + a0 + 4*a2, a3*m^2 + 6*a3*m + a1 + 9*a3,
a4*m^2 + 8*a4*m + a2 + 16*a4, a3, a4]
eq3 =
     0
     0
a1 =
a2 =
 -a0/(m^2 + 4*m + 4)
a3 =
0
a4 =
a0/((m^2 + 4*m + 4)*(m^2 + 8*m + 16))
ss =
```

```
a0*x^m - (a0*x^n + 2)/(m^2 + 4*m + 4) + (a0*x^n + 4)/((m^2 + 4*m + 4)*(m^2 + 8*m + 16))
y1 = (a0*x^4)/64 - (a0*x^2)/4 + a0
y2 = (a0*x^2)/4 - (3*a0*x^4)/128 + a0*log(x) - (a0*x^2*log(x))/4 + (a0*x^4*log(x))/64
gs = c1*((a0*x^4)/64 - (a0*x^2)/4 + a0) + c2*((a0*x^2)/4 - (3*a0*x^4)/128 + a0*log(x) - (a0*x^2*log(x))/4 + (a0*x^4*log(x))/64)
>>
```


Hanging Chain

- Chain is perfectly flexible.
- The flexible uniform chain of length l and constant linear density ρ is fixed at the upper end (x = l).
- x-axis is the vertical axis.
- u(x, t) is displacement function for the point x on the chain.
- The displacements are small compared to the length of the chain.
- The chain's equilibrium position is due to the gravitational force.
- No air resistance.
- The tension in the chain is due to the weight below point x. $w(x) = u \cdot g \cdot x$

$$sin(\alpha) = \frac{\Delta u(x)}{\Delta x} = u_x(x)$$

• For any displacement of angle α the restoring force:

$$= f(x) \propto u(x)$$
$$= wu(x)$$
$$= \rho gx \cdot u(x)$$

$$F(x) = w \cdot sin(x) = wu_x(x)$$

Therefore, the net force:

$$F(x + \Delta x) - F(x) = wu_x(x + \Delta x) - wu_x(x) = w \left[\frac{u_x(x + \Delta x) - u_x(x)}{\Delta x} \right] = \rho gx \cdot [u_x]_x \cdot \Delta x$$

$$F = ma$$

$$\rho gx \cdot [u_x]_x \cdot \Delta x = \rho \Delta x \cdot u_{xx}$$

$$\rho gx \cdot [u_x]_x \cdot \Delta x - \rho \Delta x \cdot u_{xx}$$
(i.e.) $u_{tt} = g(u_x + xu_{xx}) \dots (1)$

$$y_{tt} = ay_{xx}$$

$$y(x,t) = X(x) \cdot T(t)$$

$$y_{tt} = XT''$$

$$y_{xx} = X''T$$

$$XT'' = aX''T$$

$$\frac{T''}{T} = \frac{aX''}{X} = k$$

$$T'' - kT = 0 \Rightarrow T(t)$$

$$aX'' - kx = 0 \Rightarrow X(t)$$

$$u(x, t) = F(x)G(t)$$

$$u_x = F'(x)G(t)$$

$$u_{xx} = F''(x)G(t)$$

$$u_{tt} = F(x)G''(t)$$

Substituting into (1)

$$F(x)G''(t) = g \left[F'(x)G(t) + xF''(x)G(t)\right]$$

(i.e.)
$$\frac{G''}{F} = \frac{gG(F'+xF'')}{F}$$

(i.e.)
$$\frac{G''}{F} = \frac{gG(F'+xF'')}{F}$$

(i.e.) $\frac{G''}{G} = \frac{gF'+gxF''}{F} = -w^2$

(i.e.)
$$G'' + w^2 G = 0 \dots (2)$$

$$xF'' + F' + \frac{w^2}{g}F = 0...(3)$$

By substituting $z = 2\sqrt{\frac{x}{g}}$ in (3), we have:

$$\frac{d^2F}{dz^2} + \frac{1}{z}\frac{dF}{dz} + w^2F = 0$$

(i.e.) $z^2F'' + zF' + w^2z^2F = 0$...which is a kind of Bessel equation.

