CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 16 DICEMBRE 2013

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Per definizione, quando è che un elemento a di un semigruppo (S, *) si dice cancellabile? È vero che, in un monoide, ogni elemento simmetrizzabile è cancellabile? È vero che, in un monoide, ogni elemento cancellabile è simmetrizzabile?

Nel monoide $(\mathcal{P}(\mathbb{Z}), \cup)$, l'elemento \mathbb{N} è cancellabile?

Esercizio 2. È data l'applicazione $f: n \in \mathbb{Z} \mapsto \bar{6}\bar{n}^2 + \bar{4} \in \mathbb{Z}_{10}$.

- (i) f è iniettiva? f è suriettiva?
- (ii) Descrivere in modo esplicito $[0]_{\rho}$ e $[1]_{\rho}$, dove ρ è il nucleo di equivalenza di f.

Esercizio 3. Per ogni $X \in \mathcal{P}(\mathbb{N})$ si definisca in \mathbb{N} la relazione binaria \mathcal{R}_X ponendo, per ogni $a, b \in \mathbb{N}$:

$$a \mathcal{R}_X b \iff (\exists x \in X)(b = ax).$$

- (i) È vero che, per ogni scelta di X, la relazione \mathcal{R}_X è antisimmetrica?
- (ii) Caratterizzare le parti X di \mathbb{N} tali che \mathcal{R}_X sia riflessiva.
- (iii) Caratterizzare le parti X di \mathbb{N} tali che \mathcal{R}_X sia transitiva. [Suggerimento: siano $a, b \in X$; allora 1 \mathcal{R}_X a e a \mathcal{R}_X ab. Se \mathcal{R}_X è transitiva, quale conseguenza se ne trae?]

Avendo posto $A=2\mathbb{N}$ (l'insieme dei naturali pari), $B=\mathbb{N} \setminus 2\mathbb{N}$ (l'insieme dei naturali dispari) e $C=\{n\in\mathbb{N}\mid n>10\}$, esattamente uno tra $A,\ B\in C$, chiamiamolo T, ha la proprietà che \mathcal{R}_T sia una relazione d'ordine.

- (iv) Quale tra $A, B \in C \ earrow T$?
- (v) Caratterizzare in $(\mathbb{N}, \mathcal{R}_T)$ gli eventuali elementi minimali, massimali, minimo, massimo;
- (vi) indicare se esistono (o spiegare perché non esistono) inf $\{18,30\}$ e sup $\{18,20\}$ in $(\mathbb{N},\mathcal{R}_T)$;
- (vii) (N, \mathcal{R}_T) è un reticolo? Nel caso lo sia, è distributivo? È complementato? È booleano?
- (viii) Se $S = \{0, 1, 2, 6, 9, 18\}$ e $X = \mathbb{N} \setminus \{2, 4, 5, 121\}$, \mathcal{R}_X induce una relazione d'ordine su S. Disegnare il diagramma di Hasse di (S, \mathcal{R}_X) ;
- (ix) (S, \mathcal{R}_X) è un reticolo?
- (x) Esiste un elemento $x \in S$ tale che $S \setminus \{x\}$, ordinato dalla relazione indotta da \mathcal{R}_X , sia un reticolo? (Nel caso, indicare un tale x?). Questo reticolo è distributivo?
- (xi) Esistono $x, y \in S$ tali che $S \setminus \{x, y\}$, ordinato dalla relazione indotta da \mathcal{R}_X , sia un reticolo booleano? (Nel caso, indicare tali $x \in y$).

Esercizio 4. Per ogni $f \in \mathbb{Q}[x]$, sia $R(f) = \{c \in \mathbb{Q} \mid f(c) = 0\}$, l'insieme delle radici razionali di f.

- (i) È vero che, per ogni $f, g \in \mathbb{Q}[x]$, se f divide g (in $\mathbb{Q}[x]$) allora $R(f) \subseteq R(g)$?
- (ii) Viceversa, è vero che, per ogni $f, g \in \mathbb{Q}[x]$, se $R(f) \subseteq R(g)$ allora f divide g (in $\mathbb{Q}[x]$)?
- (iii) Trovare, se esiste, un polinomio $h \in \mathbb{Q}[x]$ di grado 5 tale che |R(h)| = 1 e h non abbia divisori irriducibili di grado maggiore di 1.
- (iv) Descrivere esplicitamente l'insieme $A = \{g \in \mathbb{Q}[x] \mid \{1, -1\} \subseteq R(g)\}.$

Si definisca un'operazione binaria * in $\mathbb{Q}[x]$ ponendo, per ogni $f, g \in \mathbb{Q}[x]$,

$$f * g = \begin{cases} \prod_{c \in R(g)} (x - c) & \text{se } R(g) \neq \emptyset \\ 1 & \text{se } R(g) = \emptyset. \end{cases}$$

- (v) *è commutativa? * è associativa?
- (vi) ($\mathbb{Q}[x],*$) ha elementi neutri a destra? Ha elementi neutri a sinistra? Ha elemento neutro?
- (vii) L'insieme dei polinomi monici in $\mathbb{Q}[x]$ è una parte chiusa rispetto a *?