

Virtual Memory: Systems

These slides adapted from materials provided by the textbook authors.

Virtual Memory: Systems

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- **P = 2**^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- **CO**: Byte offset within cache line
- CI: Cache index
- CT: Cache tag

Simple Memory System Example

Addressing

- 14-bit virtual addresses
- 12-bit physical address
- Page size = 64 bytes

1. Simple Memory System TLB

- 16 entries
- 4-way associative

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	_	0	03	_	0
3	07	_	0	03	0D	1	0A	34	1	02	_	0

2. Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN	PPN	Valid
00	28	1
01	_	0
02	33	1
03	02	1
04	_	0
05	16	1
06	_	0
07	_	0

VPN	PPN	Valid
08	13	1
09	17	1
0A	09	1
ОВ	-	0
OC	1	0
0D	2D	1
0E	11	1
OF	0D	1

3. Simple Memory System Cache

- 16 lines, 4-byte block size
- Physically addressed

Idx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	_	-	_	_
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

Idx	Tag	Valid	В0	B1	B2	В3
8	24	1	3A	00	51	89
9	2D	0	_	_	-	_
Α	2D	1	93	15	DA	3B
В	0B	0	_	_	-	_
С	12	0	-	-	-	_
D	16	1	04	96	34	15
Е	13	1	83	77	1B	D3
F	14	0	_	_	_	_

Memory System: 14-bit Virtual Addresses; 12-bit Physical Addresses; 64 byte pages

Page Table
256 Entries
(first 16 shown)

Ī	VPN	PPN	Valid									
Ī	00	28	1	04		0	08	13	1	0C	-	0
	01	-	0	05	16	1	09	17	1	0D	2D	1
	02	33	1	06	-	0	0A	09	1	0E	11	1
	03	02	1	07	-	0	0B	-	0	0F	0D	1

TLB
4-way Set
Associative;
16 entries

Set	Tag	PPN	Valid									
0	03	-	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02		0	04	-	0	0A	-	0
2	02	-	0	08	-	0	06	-	0	03	-	0
3	07	-	0	03	0D	1	0A	34	1	02	-	0

Cache: 16 lines; 4-byte block size; Direct-mapped

ldx	Tag	Valid	В0	B1	B2	В3
0	19	1	99	11	23	11
1	15	0	_	_	_	_
2	1B	1	00	02	04	08
3	36	0	_	_	_	_
4	32	1	43	6D	8F	09
5	0D	1	36	72	F0	1D
6	31	0	_	_	_	_
7	16	1	11	C2	DF	03

	ioux size, zireut mappea												
ldx	Tag	Valid	В0	B1	B2	В3							
8	24	1	3A	00	51	89							
9	2D	0	_	_	_	_							
Α	2D	1	93	15	DA	3B							
В	0B	0	_	_	_	-							
С	12	0	-	-	_	-							
D	16	1	04	96	34	15							
E	13	1	83	77	1B	D3							
F	14	0	_	_	_	_							

Address Translation Example #1

Virtual Address: 0x03D4

Physical Address

Address Translation Example #2

Virtual Address: 0x0020

Physical Address

Virtual Memory: Systems

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Intel Core i7 Memory System

Review of Symbols

Basic Parameters

- N = 2ⁿ: Number of addresses in virtual address space
- M = 2^m: Number of addresses in physical address space
- **P = 2**^p : Page size (bytes)

Components of the virtual address (VA)

- TLBI: TLB index
- TLBT: TLB tag
- VPO: Virtual page offset
- VPN: Virtual page number

Components of the physical address (PA)

- PPO: Physical page offset (same as VPO)
- PPN: Physical page number
- CO: Byte offset within cache line
- CI: Cache index
- CT: Cache tag

End-to-end Core i7 Address Translation

Core i7 Level 1-3 Page Table Entries

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Core i7 Level 4 Page Table Entries

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

Core i7 Page Table Translation

Cute Trick for Speeding Up L1 Access

Observation

- Bits that determine CI identical in virtual and physical address
- Can index into cache while address translation taking place
- Generally we hit in TLB, so PPN bits (CT bits) available next
- "Virtually indexed, physically tagged"
- Cache carefully sized to make this possible

Virtual Address Space of a Linux Process

Linux Organizes VM as Collection of "Areas"

Linux Page Fault Handling

Segmentation fault:

accessing a non-existing page

Normal page fault

Protection exception:

e.g., violating permission by writing to a read-only page (Linux reports as Segmentation fault)

Virtual Memory: Systems

- Simple memory system example
- Case study: Core i7/Linux memory system
- Memory mapping

Memory Mapping

- VM areas initialized by associating them with disk objects.
 - Process is known as memory mapping.
- Area can be backed by (i.e., get its initial values from):
 - Regular file on disk (e.g., an executable object file)
 - Initial page bytes come from a section of a file
 - Anonymous file (e.g., nothing)
 - First fault will allocate a physical page full of 0's (demand-zero page)
 - Once the page is written to (dirtied), it is like any other page
- Dirty pages are copied back and forth between memory and a special swap file.

Sharing Revisited: Shared Objects

Process 1 maps the shared object.

Sharing Revisited: Shared Objects

- Process 2 maps the shared object.
- Notice how the virtual addresses can be different.

Sharing Revisited: Private Copy-on-write (COW) Objects

- Two processes mapping a private copy-on-write (COW) object.
- Area flagged as private copy-onwrite
- PTEs in private areas are flagged as read-only

Sharing Revisited: Private Copy-on-write (COW) Objects

- Instruction writing to private page triggers protection fault.
- Handler creates new R/W page.
- Instruction restarts upon handler return.
- Copying deferred as long as possible!

27

The fork Function Revisited

- VM and memory mapping explain how fork provides private address space for each process.
- To create virtual address for new new process
 - Create exact copies of current mm_struct, vm_area_struct, and page tables.
 - Flag each page in both processes as read-only
 - Flag each vm_area_struct in both processes as private COW
- On return, each process has exact copy of virtual memory
- Subsequent writes create new pages using COW mechanism.

The execve Function Revisited

- To load and run a new program a . out in the current process using execve:
- Free vm_area_struct's and page tables for old areas
- Create vm_area_struct's and page tables for new areas
 - Programs and initialized data backed by object files.
 - .bss and stack backed by anonymous files .
- Set PC to entry point in . text
 - Linux will fault in code and data pages as needed.

User-Level Memory Mapping

- Map len bytes starting at offset offset of the file specified by file description fd, preferably at address start
 - start: may be 0 for "pick an address"
 - prot: PROT_READ, PROT_WRITE, ...
 - flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...
- Return a pointer to start of mapped area (may not be start)

User-Level Memory Mapping

file descriptor fd

Example: Using mmap to Copy Files

Copying a file to stdout without transferring data to user space.

```
#include "csapp.h"
void mmapcopy(int fd, int size)
 /* Ptr to memory mapped area */
 char *bufp;
 bufp = Mmap(NULL, size,
        PROT READ,
        MAP PRIVATE,
       fd, 0);
 Write(1, bufp, size);
 return:
                                mmapcopy.c
```

```
/* mmapcopy driver */
int main(int argc, char **argv)
  struct stat stat;
  int fd;
  /* Check for required cmd line arg */
  if (argc != 2) {
    printf("usage: %s <filename>\n",
        argv[0]);
    exit(0);
  /* Copy input file to stdout */
  fd = Open(argv[1], O_RDONLY, 0);
  Fstat(fd, &stat);
  mmapcopy(fd, stat.st size);
  exit(0);
                                            mmapcopy.c
```


Dynamic Memory Allocation: Basic Concepts

These slides adapted from materials provided by the textbook authors.

Dynamic Memory Allocation

- Basic concepts
- Implicit free lists

Dynamic Memory Allocation

- Programmers use dynamic memory allocators (such as malloc) to acquire VM at run time.
 - For data structures whose size is only known at runtime.
- Dynamic memory allocators manage an area of process virtual memory known as the heap.

Dynamic Memory Allocation

- Allocator maintains heap as collection of variable sized blocks, which are either allocated or free
- Types of allocators
 - Explicit allocator: application allocates and frees space
 - E.g., malloc and free in C
 - Implicit allocator: application allocates, but does not free space
 - E.g. garbage collection in Java, ML, and Lisp
- Will discuss simple explicit memory allocation first

The malloc Package

```
#include <stdlib.h>
void *malloc(size_t size)
```

- Successful:
 - Returns a pointer to a memory block of at least size bytes aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - If size == 0, returns NULL
- Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

- Returns the block pointed at by p to pool of available memory
- p must come from a previous call to malloc or realloc

Other functions

- calloc: Version of malloc that initializes allocated block to zero.
- realloc: Changes the size of a previously allocated block.
- sbrk: Used internally by allocators to grow or shrink the heap

malloc Example

```
#include <stdio.h>
#include <stdlib.h>
void foo(int n) {
  int i, *p;
  /* Allocate a block of n ints */
  p = (int *) malloc(n * sizeof(int));
  if (p == NULL) {
    perror("malloc");
    exit(0);
  /* Initialize allocated block */
  for (i=0; i<n; i++)
           p[i] = i;
  /* Return allocated block to the heap */
  free(p);
```

Assumptions Made

- Memory is word addressed.
- Words are int-sized.

Allocation Example

$$p1 = malloc(4)$$

$$p2 = malloc(5)$$

$$p3 = malloc(6)$$

free (p2)

$$p4 = malloc(2)$$

Constraints

Applications

- Can issue arbitrary sequence of malloc and free requests
- free request must be to a malloc'd block

Constraints

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, can only place allocated blocks in free memory

Constraints

Allocators

- Must align blocks so they satisfy all alignment requirements
 - 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

- Can manipulate and modify only free memory
- Can't move the allocated blocks once they are malloc'd
 - *i.e.*, compaction is not allowed

Performance Goal: Throughput

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- Goals: maximize throughput and peak memory utilization
 - These goals are often conflicting

Throughput:

- Number of completed requests per unit time
- Example:
 - 5,000 malloc calls and 5,000 free calls in 10 seconds
 - Throughput is 1,000 operations/second

Performance Goal: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$
- Def: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the **aggregate payload** P_k is the sum of currently allocated payloads
- Def: Current heap size H_k
 - Assume H_k is monotonically nondecreasing
 - i.e., heap only grows when allocator uses **sbrk**
- Def: Peak memory utilization after k+1 requests
 - $U_k = (\max_{i < = k} P_i) / H_k$