Geometry II

Felix Chen

Contents

 $Deck_{\widetilde{X}/X}$.

Here's another definition of regular covering: If the group action $Deck_{\widetilde{X}/X}$ onto \widetilde{X} are transitive in $p^{-1}(x_0)$, then we say the covering is **regular covering**.

There should be some pictures of regular and non-regular coverings of $S^1 \vee S^1$, but I'm a bit lazy :-)

Now we'll prove this two definitions are equivalent.

Proposition 0.0.1

Let $p: \widetilde{X} \to X$ be a covering, p is regular iff $p_{\sharp}\pi_1(\widetilde{X}, \widetilde{x}_0) \subset \pi_1(X, x_0)$ is a normal subgroup.

Proof. When $p_{\sharp}\pi_1(\widetilde{X},\widetilde{x}_0) \lhd \pi_1(X,x_0)$, for $\widetilde{x}_0,\widetilde{x}'_0 \in \widetilde{X}$, we need to prove that there exists $\tau \in Deck_{\widetilde{X}/X}$ s.t. $\tau(\widetilde{x}_0) = \widetilde{x}'_0$.

We'll use lifting theorem on p, thus we only need to show

$$p_{\sharp}\pi_1(\widetilde{X},\widetilde{x}_0) \subset p_{\sharp}\pi_1(\widetilde{X},\widetilde{x}'_0).$$

Let γ be a path from \tilde{x}_0 to \tilde{x}'_0 , and $\alpha \in \pi_1(\widetilde{X}, \tilde{x}_0)$. Note that $\alpha \simeq \gamma \overline{\gamma} \alpha \gamma \overline{\gamma}$, $\alpha' = \overline{\gamma} \alpha \gamma \in \pi_1(\widetilde{X}, \tilde{x}'_0)$. Hence

$$p_{\sharp}(\alpha) = p_{\sharp}(\gamma)p_{\sharp}(\alpha')p_{\sharp}(\overline{\gamma}) \in hp_{\sharp}\pi_{1}(\widetilde{X}, \widetilde{x}'_{0})h^{-1} = p_{\sharp}\pi_{1}(\widetilde{X}, \widetilde{x}'_{0}).$$

The converse is the same.

Now we'll prove ??: First we'll handle the case of universal covering.

Theorem 0.0.2

Universal covering space and is unique under isomorphism for path connected and locally path connected space X. If X is also locally semi-simply connected, then universal covering exists.

Proof. If $\widetilde{x},\widetilde{X}'$ are both universal coverings, by map lifting theorem, since $\pi_1(\widetilde{X})$ is trivial, $p:\widetilde{X}\to X$ can be lifted to $\sigma:\widetilde{X}\to\widetilde{X}'$, similarly we have σ' , and it's easy to see σ and σ' are inverse maps, so they are isomorphic.

For existence part, X locally semi-simply connected means for $\forall x \in X$, there exists a neighborhood basis $\{U_i\}$ s.t. $\pi_1(U_i, x) \to \pi_1(X, x)$ is trivial.

Geometry II CONTENTS

Let $P(X, x_0)$ be all paths in X starting from x_0 , and \mathscr{X} is the homology equivalent classes (with fixed endpoints) of $P(X, x_0)$.

Let $p: \mathcal{X} \to X$ by $\langle a \rangle \mapsto a(1)$, and \tilde{x}_0 denote the constant path.

Next we'll define the topology on \mathscr{X} :

Let $\{U_{\alpha}\}$ be a topology basis of X, consider the following sets:

$$U(U_{\alpha}, a) = \{ \langle ac \rangle \mid c \in P(U_{\alpha}, a(1)) \}.$$

Let the topology basis on \mathscr{X} be the above sets. We claim $p:\mathscr{X}\to X$ is indeed a covering.

Example 0.0.3

A counter example of above theorem when X is not locally semi-simply connected: Hawaiian earrings (a family of tangent circles with radius $\to 0$).

§0.1 Covering spaces and group actions

Now we can view all these things from group actions.

Let X be a topological space, G is a group acting on X. We say the action is **freely discontinuous** if for all $x \in X$, there's a neighborhood U s.t. $gU \cap U \neq \emptyset$ only holds for g = e.

Proposition 0.1.1

Let $G \cap X$ be a freely discontinuous action, then the quotient map $X \to X/G$ by $x \mapsto Gx$ is a regular covering, and the group action is just deck transformations.

Example 0.1.2

The antipodal map in S^n generates a group $\{\pm 1\}$, and the action is freely discontinuous, so $S^n \to S^n/\{\pm 1\} = \mathbb{R}P^n$ is a covering.

Let $\alpha:(x,y)\mapsto (x,y+1)$ and $\beta:(x,y)\mapsto (x+1,-y)$ on \mathbb{E}^2 generates a group action $G\curvearrowright \mathbb{E}^2$. This is also freely discontinuous, and \mathbb{E}^2/G is a Klein bottle.

Let X be a topological space, G is a group acting on X. We say the action is **properly** discontinuous if for all compact set $K \subset X$, $gK \cap K \neq \emptyset$ only holds for finitely many g.

Usually we suppose X is a locally compact Hausdorff space.

Example 0.1.3

Let \mathbb{Z} acts on \mathbb{C} by $\sigma: x+iy\mapsto \lambda x+i\lambda^{-1}y$. Then it's not properly discontinuous.

Proposition 0.1.4

Let G acts on X properly discontinuously. If X is locally compact Hausdorff, then so is X/G.

Proof. For $\overline{x} \neq \overline{y} \in X/G$, take compact neighborhoods $K(x), K(y) \subset X$, since $gK(x) \cap K(y) \neq \emptyset$ only holds for finitely many g, we can "shrink" K(x) and K(y) so that $gK(x) \cap K(y) = \emptyset$ for all $g \in G$. Thus X/G is Hausdorff.

Clearly X/G is locally compact.

Geometry II CONTENTS

Proposition 0.1.5

Let X be a locally compact Hausdorff space, G act on X. The action is properly discontinuous + free \iff it's freely discontinuous.

Proof. Trivial. \Box

Corollary 0.1.6

Let X be a locally compact Hausdorff space, and G acts on X properly discontinuously. If G has no torsion, then the action is freely discontinuous.

Proof. If the action is not free, there exists $g \neq \text{id}$, gx = x. Thus $\{x\} \cap \{gx\} \neq \emptyset$ holds for any g^n . Since g is not a torsion, this contradicts with proper discontinuity.

Example 0.1.7

Consider the action of $\Gamma = \mathrm{SL}(2,\mathbb{Z})$ on the space $UHP = \{z \in \mathbb{C} \mid Im(z) > 0\}$ by fractional linear transformation. (hyberbolic transformation)

This action is properly discontinuous, let $\Gamma(2) = \{A \in \Gamma \mid A \equiv I(\text{mod}2)\}$, which has no torsion, thus it's freely discontinuous. Note that $[\Gamma : \Gamma(2)] = 6$, and $UHP \to UHP/\Gamma(2)$ is a covering map.

At last, we'll combined what we've learned and prove a well-known theorem:

Theorem 0.1.8

Simply connected surfaces with complete metric and constant curvature -1 are globally isometrically isomorphic to \mathbb{H}^2 .

Remark 0.1.9 — Here the curvature is the Gauss curvature. The proof is similar for $\mathbb{S}^2(k=1)$ and $\mathbb{E}^2(k=0)$.

Sketch of the proof. The surface can be viewed as a manifold, whose charts are assigned the first fundamental form. The proof can be spilt to 2 parts, one for local properties and one for global properties

If we have the local result, i.e. each point has an open neighborhood homeomorphic to an open disk in \mathbb{H}^2 , we'll prove the theorem:

• There exists a unique well-defined locally isometric extension $f: M \to \mathbb{H}^2$. (Here we need M simply connected)

Since f is locally isometric, f is a covering map. But $\pi_1(M) = \{1\}$, by the uniqueness of universal covering, there exists an isomorphism of coverings σ s.t. $f = \mathrm{id} \circ \sigma = \sigma$. Thus f is a homeomorphism.

• Locally, we'll take a geodesic parallel parameter, i.e. the y-axis and x-curves are geodesic lines. We have $I = dx^2 + G(x,y) dy^2$, where G(0,y) = 1, $G_x(0,y) = 0$.