

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Crash recovery

Hogeschool Rotterdam Rotterdam, Netherlands

Introduction

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Lecture topics

- The log.
- Analysis phase.
- Redo phase.
- Undo phase.

Introduction to crash recovery

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Transactions vs Crash recovery

- Transaction manager only grants Consistency and Isolation properties.
- We have not seen the case of an aborting transaction.
- If a transaction aborts we have to undo everything. This grants *Atomicity*.

Introduction to crash recovery

Crash recovery

Introduction

Introduction to crash recovery

The log

Crash recovery

Reasons

- We have to grant Consistency.
- DBMS malfunctions after Commit operations.
- We have to redo everything the transaction committed.

Introduction to crash recovery

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Cause of malfunctions

- Hardware failure
- Power grid failure
- Flooding
- Nuclear holocaust
- ...
- We must grant that the data is not lost

ARIES

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Overview

- Algorithm for crash recovery.
- Three phases:
 - Analysis: tracks uncommitted data and active transactions during the crash.
 - Redo: repeats all the actions to rebuild a valid state of the DB before the crash.
 - **Undo:** cancel all the actions that were not committed at the crash.

ARIES

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Algorithm principles

- Write-ahead logging: keep track of the actions before you do them.
- Repeating history: After restarting retrace all the actions before the crash to bring back the DB to a consistent state.
- Logging undo: keep track of the undo actions before you do them (crash during restart).

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Overview

- It is a history of the operations on the database.
- Each entry is called log record.
- Each record contains a unique id (Log Sequence Number -LSN), a type (kind of operation), and extra info.
- Log tail partially maintained in main memory (RAM).
- Periodically stored into persistent memory.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Update log record

- Used when a transaction modifies (i.e. writes) an object.
- Add the record to the log tail.
- The log record contains the transaction id, the object modified, the old value, and the updated value.

Update					
LSN	Type	TransID	Object	OldValue	NewValue

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Commit log record

- Add the record to the log tail
- Force writing the log tail to permanent storage.
- The transaction is considered committed when the log tail is written successfully (handle crashes while writing the commit).
- The log record contains the transaction id that committed.

Commit			
LSN	Туре	TransID	

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Abort log record

- Add the record to the log tail
- Start undo phase for that transaction (see slides about undo phase).
- The log record contains the transaction id that committed.

Abort				
LSN	Type	TransID		

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

End log record

- Add the record to the log tail
- Written after extra actions of Commit or Abort are successfully executed.

End				
LSN	Type	TransID		

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Compensation log record

- Add the record to the log tail.
- Added after an undo operation is executed.
- It contains the type of the undo operation, and the LSN of the next record to be undone.

CLR				
LSN	Type	UndoType	NextLSN	

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Checkpoint

- Snapshot of the DBMS state.
- Used to reduce the amount of work during a restart.
- Insert a BeginCheckpoint record in the log.
- Save the infos on active transactions and the dirty objects (i.e. written but uncommitted objects).
- Insert a EndCheckpoint record in the log after this phase.
- Inexpensive: the system does not write the state, it writes the info to rebuild the state.

BeginCheckpoint		
LSN Type		

EndCheckpoint				
LSN	Type	TransactionTable	DirtyObjects	

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Logging active transactions

- Transaction id: the name of the transaction.
- LastLSN: the LSN of the most recent log for this transaction.
- Status: In progress (P), Committed (C), or Undone (U).

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Logging dirty objects

- **Object id:** The name of the modified object/variable.
- RecLSN: LSN of the first record that caused the object to become dirty.
- If possible (only if committed) the DBMS periodically writes to disk the dirty objects.
- When the objects are written to the disk they are removed from the table.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Example

- Consider the execution of operations on the database below and the initial state below.
- Write the log that must be created for that execution to support crash recovery.

Variable	Value
А	2
В	0

Time	Operation
16:00 PM	T1 writes A + 1
16:01 PM	T2 writes B + 5
16:02 PM	Checkpoint
16:03 PM	Commit T1
16:05 PM	T2 writes A + 3
16:06 PM	T2 writes B - 2
16:07 PM	Commit T2

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Example

• The following is the created log:

0	Update	T1	A	2	3
1	Update	T2	В	0	5
2	BeginCheckpoint				
3	EndCheckpoint	(T1,0,P),(T2,1,P)	(A,0),(B,1)		
4	Commit	T1			
5	End	T1			
6	Update	T2	А	3	6
7	Update	T2	В	0	3
8	Commit	T2			
9	End	T2			

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Assignment

- Consider the execution of operations on the database below and the initial state below.
- Write the log that must be created for that execution to support crash recovery.

Variable	Value
A	2
В	0
С	3

Time	Operation
10:00 AM	T1 writes A - 5
10:02 AM	T2 writes B + 3
10:03 AM	Commit T1
10:05 AM	T2 writes A + 2
10:06 AM	T3 writes C - 4
10:10 AM	T2 writes A + 1
10:12 AM	Checkpoint
10:14 AM	T2 Commit
10:20 AM	T3 writes A + 3
10:21AM	T3 writes C + 2
10:22AM	T3 Commit

Crash recovery

Introduction

Introduction to crash recovery

ARIES
The log

. .

Crash recovery

Analysis phase

- We need a point in the log to start from.
- The latest checkpoint is the point where we could have a valid state of the DBMS.
- Start from the latest checkpoint.
- Scan forward the log.
- From simplicity we assume that no record is written between the start and end checkpoint logs (the operation is atomic and never fails).

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Analysis phase

- If we find an end log for T, we remove T from the active transactions
- If we find a log record different from an end log, we add transaction T to the active transactions if not there.
 - Set LastLSN for T to be the current LSN.
 - If the log record is a Commit change the state into C, otherwise into U.
- If we find an update log affecting object A, and A is not among the dirty objects, we add A to the dirty object and set RecLSN to the current LSN.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Example

• Given the log below, show the active transaction table, and the dirty object table after analysing each log record.

0	Update	T1	A	2	3		
1	Update	T2	В	0	5		
2	BeginCheckpoint						
3	EndCheckpoint	(T1,0,P),(T2,1,P)	(A,0),(B,1)				
4	Commit	T1					
5	End	T1					
6	Update	T2	С	-1	6		
7	Update	T2	D	1	3		
Crash, restart							

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Example

• The follwing tables are the active transaction table and the dirty object table at each step:

Active transactions						
LSN	TransactionId	LastLSN	Status			
4	T1	4	С			
7	T2	1	Р			
5	T2	1	Р			
6	T2	6	U			
7	T2	7	U			

Dirty Objects						
LSN	Object	RecLSN				
4, 5	А	0				
4, 5	В	1				
	Α	0				
6	В	1				
	С	6				
	А	0				
7	В	1				
,	C	6				
	D	7				

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase

- Redo all the updates of all the transactions in the active transaction table.
- Find the smallest among all RecLSN of all the objects.
- This phase redoes also all the CLR's (see undo phase).
- In this phase we assume that we maintain a ObjectLSN used after each redo operation on an object.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase

- Each action must be redone unless one of the following rules is satisfied:
 - The affected object is not dirty.
 - ② The affected object is dirty, but RecLSN is greater than the LSN of the current log record.
 - The ObjectLSN is greater than or equal to the LSN of the log record.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase: Rule 1

- The first rules means that the object has been written to disk.
- It happens when there is a crash after a checkpoint and the object was added in the dirty object table at that checkpoint.
- The page might have been written to disk but we have gone back before the checkpoint.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase: Rule 2

- The first rule means that the object is still in the dirty object table but it was later written to disk.
- It happens when there is a crash after a checkpoint and the object was added in the dirty object table at that checkpoint.
- The page might have been written to disk but we have gone back before the checkpoint.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase: Rule 3

- The third rule requires to access the dirty object table
- It might happen when there is a crash during a redo phase which successfully redid some of the operations.
- This condition alone is sufficient also for rules 1 and 2.
- It is an expensive operations because we have to access to the disk. Better check also rule 1 and rule 2 that do not require this.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Redo Phase: redoing operations

- The logged operation is re-applied.
- The ObjectLSN is set to the LSN of the log record that was re-applied.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Example

 Given the log used in the analysis phase and the generated tables, determine the log from which the redo phase start and what operations are affected. Motivate the answer.

- The smallest RecLSN = 6.
- The update on C is redone, because $SLN \leq RecLSN$.
- The update on D is redone, same reason.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Undo Phase

- Start from the transaction with largest LastLSN.
- For each transaction do the following
 - Write a CLR setting NextLSN to the LSN of the action of the operation on this transaction before this log record.
 - If it does not exist, set it to null.
 - Undo the operation.
- If the action is a CLR:
 - if NextSLN is not null, repeat the undo on that operation.
 - if it is null add an end record for the transaction because it has completely undone.

Crash recovery

Introduction

Introduction to crash recovery

ARIES

The log

Crash recovery

Aborting transactions

- Aborting transactions is just like a system crash.
- Consider the entries in the table just for the aborting transaction.
- Apply the undo phase for that transaction.

Crash recovery

Introduction

Introduction to crash recovery

ΔRIE

The log

Crash recovery

Assignment

 Using the log and the tables built in the analysis phase, write an updated log by inserting the appropriate CLR added during the Undo phase.