Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «ОТВЁРТКА» ДЛЯ «КОМПАС-3D» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

по дисциплине

«Основы разработки САПР» (ОРСАПР)

	Выполі	нил:		
	студент	г гр. 581		
		Мир	ошник	сов А.В.
«	_»			2024 г.
	Провер	рил:		
	к.т.н.,	доцент	каф.	КСУП
		Кал	ентье	3 A.A.
11	**			2024

РЕФЕРАТ

Курсовая работа, 34 страницы, 25 рисунков, 12 таблиц, 12 источников.

Ключевые слова: САПР, КОМПАС-3D, Плагин для САПР, Плагин отвёртки, С#, Windows Forms.

Объектом исследования являются технологии разработки плагинов для САПР.

Предметом исследования является применение технологий разработки плагинов, для автоматизации построения отвёрток разных размеров и параметров в САПР КОМПАС-3D.

Цель работы: создание программы для автоматизации построения отвёртки в САПР КОМПАС-3D.

Для создания использовались Microsoft Visual Studio 2022 (Windows Forms), .NET Framework 4.7.2, NUnit 3.14.0, NUnit3TestAdapter 3.17.0, StyleCop.Analyzers 1.1.118, StyleCop.Analyzers.Unstable 1.2.0.556, ReSharper, Fine Code Coverage, GitHub.

В результате работы было создано приложение Windows Forms, взаимодействующее с САПР КОМПАС-3D.

Областью применения являются предприятия связанные с моделированием отвёрток.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	4
2 ПОСТАНОВКА И АНАЛИЗ ЗАДАЧИ	5
3 ОПИСАНИЕ ПРЕДМЕТА ПРОЕКТИРОВАНИЯ	7
4 ВЫБОР ИНСТРУМЕНТОВ И СРЕДСТВ РЕАЛИЗАЦИИ	8
5 НАЗНАЧЕНИЕ ПЛАГИНА	9
6 ОБЗОР АНАЛОГОВ	10
7 ОПИСАНИЕ РЕАЛИЗАЦИИ	12
8 ОПИСАНИЕ ПРОГРАММЫ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ	20
9 ТЕСТИРОВАНИЕ ПЛАГИНА	23
9.1 Функциональное тестирование	23
9.2 Модульное тестирование	28
9.3 Нагрузочное тестирование	30
10 ЗАКЛЮЧЕНИЕ	32
11 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	33

1 ВВЕДЕНИЕ

САПР — организационно-техническая система, входящая в структуру проектной организации и осуществляющая проектирование при помощи комплекса средств автоматизированного проектирования[1].

API (Application Programming Interface) — набор правил и протоколов, с помощью которых различные программные приложения могут взаимодействовать друг с другом и обмениваться данными, повышая тем самым функциональность и эффективность работы.[2]

Для разработки плагина для САПР прежде всего необходимо выбрать объект проектирования, подходящую для выбранного объекта САПР, средства разработки плагина (язык программирования и дополнительные средства разработки, выбор может быть основан на наличии АРІ для выбранной САПР на конкретном языке).

Плагин автоматизации построения отвёртки необходим и может быть использован на предприятиях, занимающихся моделированием отвёрток, поскольку он упростит процесс моделирования и снизит нагрузку на моделлеров.

2 ПОСТАНОВКА И АНАЛИЗ ЗАДАЧИ

Этапы проведения работ по разработке плагина «Отвёртка» для САПР «Компас 3D» приведены в таблице 2.1.

Таблица 2.1 — Этапы проведения работ по разработке плагина «Отвёртка» для САПР «Компас 3D».

Этап	Состав работ	Наименование	Обозна	Разработано	Сроки
		документа	чение	согласно	выполнения
1	Создание	Техническое	-	ГОСТ	Не позднее
	технического	задание		34.602-2020	8.10.2024
	задания				
2	Создание	Проект	-	ОС ТУСУР	Не позднее
	проекта	системы		01-2021	29.10.2024
	системы				
3	Реализация	Программный	-	RSDN	Не позднее
	плагина	код		Magazine	10.12.2024
		Документ с		#1-2004	
		тремя			
		вариантами			
		дополнительн			
		ой			
		функциональн			
		ости плагина			
		для			
		согласования			
		Модульные			
		тесты			

Таблица 2.1 – Продолжение

Этап	Состав работ	Наименование	Обозна	Разработано	Сроки
		документа	чение	согласно	выполнения
4	1. Доработка	Программный	-	1. RSDN	Не позднее
	плагина	код		Magazine	31.12.2024
	2. Создание	Модульные		#1-2004	
	пояснительно	тесты		2. OC	
	й записки	Пояснительна		ТУСУР 01-	
		я записка		2021	

Главной проблемой среди всех этапов оказалась связь второго и третьего этапа. Это обусловлено малыми познаниями в сфере составления проекта системы и допущении множества неточностей, в результате на этапе реализации плагина приходилось вносить некоторые изменения, которые повлекли за собой изменения конечной версии UML-диаграммы классов. Не смотря на моё описание проблемы также известно, что изменения в конечной версии диаграммы классов по сравнению с ней же на этапе проекта системы не являются редкостью. Только в реальных проектах эти изменения чаще вызваны желаниями и потребностями заказчика, чем неопытностью формирования диаграмм разработчиками.

Помимо этого, на этапе выбора предмета проектирования были слабо изучены особенности АРІ КОМПАС-3D. Хоть это и не привело к значительным трудностям в написании кода, данный факт привёл к более высоким затратам по времени, чем планировалось изначально. Вывод один, необходимо более детально изучать выбираемые средства для разработки, во избежании казусов связанных с непредусмотрительностью разработчика.

3 ОПИСАНИЕ ПРЕДМЕТА ПРОЕКТИРОВАНИЯ

Отвёртка — ручной слесарный и столярный монтажный инструмент, предназначенный для завинчивания и отвинчивания крепёжных изделий с резьбой.[3]

Рисунок 3.1 – Модель отвёртки

Изменяемые параметры для предмета проектирования (также все обозначения показаны на рисунке 3.1):

- Длина ручки отвёртки 1 (45-150мм);
- Длина наконечника отвёртки L (45-500мм, но не меньше ручки);
- Диаметр наконечника отвёртки D (2/10 (длины ручки+наконечника) +/- 2 мм);
 - Диаметр ручки d (1/4 длины ручки +/- 5 мм);
 - Форма ручки (шестиугольная призма/цилиндрическая);
 - Форма наконечника (крестообразная/плоская).

4 ВЫБОР ИНСТРУМЕНТОВ И СРЕДСТВ РЕАЛИЗАЦИИ

При создании плагина использовались следующие инструменты:

- WindowsForms и .NET Framework 4.7.2;
- GitHub;
- ReSharper;
- Fine Code Coverage;
- StyleCop.Analyzers 1.1.118;
- StyleCop.Analyzers.Unstable 1.2.0.556;
- NUnit 3.14.0;
- NUnit3TestAdapter 3.17.0.

Плагин был создан на технологии Windows Forms, поддерживающей широкий набор функций для разработки приложений, включая элементы управления, графику, привязку данных и ввод пользователя[4], а также .NET Framework 4.7.2, программной платформе основанной на сервероцентрической модели.

GitHub — платформа с возможностями хранения, распространения и совместной работы над написанием кода. Git — система управления версиями, которая интеллектуально отслеживает изменения в файлах.[5]

ReSharper – расширение для Microsoft Visual Studio, помогающее программировать эффективнее. Позволяет исследовать, улучшать, писать и обслуживать код.[6]

Fine Code Coverage – расширение для Microsoft Visual Studio, визуализирующий покрытие кода модульными тестами.[7]

StyleCop — средство для контроля кода, автоматически находящее синтаксические ошибки.[8]

NUnit – фреймфорк для модульного тестирования всех языков .Net.[9]

5 НАЗНАЧЕНИЕ ПЛАГИНА

Назначение разрабатываемого плагина обусловлено быстрым моделированием отвёрток разных видов. Благодаря данному расширению, производители отвёрток смогут наглядно рассмотреть спроектированную модель, при необходимости перестроить под необходимые им параметры.

6 ОБЗОР АНАЛОГОВ

Первым аналогом является приложении «Разъёмные соединения» [10] для Компас-3D, позволяющее формировать и размещать в сборке набор крепёжных элементов. Данное приложение требует оплаты дополнительной лицензии в размере 46 400 руб (+20% НДС) и позволяет создавать болтовые и винтовые соединения, а также шайбы/гайки для соединения. Данный аналог является прямым для разрабатываемого плагина «Отвёртка». Интерфейс взаимодействия представлен на рисунке 6.1.

Рисунок 6.1 – Интерфейс приложения «Разъёмные соединения»

Вторым аналогом является специализированный модуль к базовому приложению Компас-3D «Валы и механические передачи 3D. Зуборезный инструмент»[11]. Модуль позволяет рассчитать и построить модели червячных фрез для нарезания:

- цилиндрических зубчатых колес с эвольвентным профилем (черновые и чистовые фрезы);
- цилиндрических передач Новикова с двумя линиями зацепления;
- звездочек к приводным роликовым и втулочным цепям;

- червячных колес цилиндрической червячной передачи (черновые и чистовые фрезы);
- шлицевых валов с эвольвентным профилем;
- шлицевых валов с прямобочным профилем.

Лицензия является платной (216 000 руб.). Данный аналог является прямым к плагину «Отвёртка». Пользовательский интерфейс представлен на рисунке 6.2.

Рисунок 6.2 – Интерфейс приложения «Валы и механические передачи 3D. Зуборезный инструмент»

7 ОПИСАНИЕ РЕАЛИЗАЦИИ

UML — это стандартный язык визуального моделирования, предназначенный для следующего использования:

- моделирование бизнеса и подобных процессов;
- анализ, проектирование и внедрения программных систем.

UML — это общий язык для бизнес-аналитиков, архитекторов и разработчиков программного обеспечения, используемый для описания, спецификации, проектирования и документирования существующих или новых бизнес-процессов, структуры и поведения артефактов программных систем.[12]

UML диаграмма классов после проектирования для плагина «Отвёртка» представлена на рисунке 7.1.

Рисунок 7.1 – UML диаграмма классов после проектирования для плагина «Отвёртка»

UML диаграмма классов после реализации плагина «Отвёртка» представлена на рисунке 7.2.

Рисунок 7.2 — UML диаграмма классов после реализации плагина «Отвёртка»

В таблицах ниже представлена информация о свойствах и методах каждого из классов.

Таблица 7.1 – Свойства класса MainForm

Название	Тип данных	Описание
_builder	Builder	Хранит в себе объект построения
_parameters	Parameters	Хранит в себе параметры для объекта
		построения

Таблица 7.2 – Методы класса MainForm

Название	Входные параметры	Описание
ButtonCreate_Click	_	Запуск построения модели по
		заданным параметрам
MainForm	_	Конструктор MainForm
FirstValidate	TextBox, ParameterType	Проверка введённых данных по
		формату
TextBoxHandleLen	_	Обработчик выхода из текстбокса
gth_Leave		длины ручки
TextBoxHandleWid	_	Обработчик выхода из текстбокса
th_Leave		диаметра ручки
TextBoxRodLength	-	Обработчик выхода из текстбокса
_Leave		длины наконечника
TextBoxRodWidth_	-	Обработчик выхода из текстбокса
Leave		ширины наконечника
ComboBoxShapeOf	-	Обработчик изменения значения
Rod_SelectedIndex		ComboBoxShapeOfRod
Changed		
ComboBoxShapeOf	-	Обработчик изменения значения
Handle_SelectedInd		ComboBoxShapeOfHadle
exChanged		
SetColors	ParameterType, int, int,	Устанавливает цвета для всех текст
	string	боксов по результатам проверки, int -
		выбор цвета для закраски, int – выбор
		причины закраски, string –
		передаваемый текст ошибки для
		установки правильного toolTip
SecondValidate	TextBox, ParameterType	Вызов валидации параметров

Таблица 7.3 — Свойства класса Parameters

Название	Тип данных	Описание
_parameter	Dictionary <paramete< td=""><td>Хранит в себе словарь параметра</td></paramete<>	Хранит в себе словарь параметра
	rType, Parameter>	
_parameters	Dictionary <paramete< td=""><td>Хранит в себе словарь всех</td></paramete<>	Хранит в себе словарь всех
	rType, Parameter>	параметров
_handleType	HandleType	Хранит в себе тип ручки
		(цилиндрическая/шестиугольная
		призма)
_rodType	RodType	Хранит в себе тип наконечника
		(плоский/крестообразный)

Таблица 7.4 — Методы класса Parameters

Название	Входные	Выходные	Описание
	параметры	параметры	
ValidateParameters	_	_	Валидирует
			зависимые параметры
SetParameter	ParameterTyp	_	Устанавливает
	e, Parameter		параметр
AllParameters	_	Dictionary <paramet< td=""><td>Свойство для поля</td></paramet<>	Свойство для поля
		erType, Parameter>	_parameters
ShapeOfRod	_	RodType	Устанавливает и
			возвращает форму
			наконечника
ShapeOfHandle	_	HandleType	Устанавливает и
			возвращает форму
			ручки

Таблица 7.5 — Свойства класса Builder

Название	Тип данных	Описание
_wrapper	Wrapper	Хранит в себе объект обёртки АРІ

Таблица 7.6 – Методы класса Builder

Название	Входные	Описание
	параметры	
Build	Parameters	Построение модели по заданным
		параметрам
BuildRod	Parameters	Построение стержня отвёртки
BuildHandle	Parameters	Построение ручки отвёртки
Helper	double[,], int[],	Вспомогательный метод, позволяющий
	int[], double[],	избавиться от дублирования кода
	int[], int[]	(повторяет цикл операций: создать
		эскиз, создать линию, выдавить).
		double[,] двумерный массив с
		координатами точек по которым
		строится линия, int[] тип выдавливания,
		int[] тип эскиза (на какой плоскости),
		double[] глубина выдавливания, int[]
		начало для сбора точек в двумерном
		массиве, int[] количество сборов точек
		(построенных линий)

Таблица 7.7 — Свойства класса Parameter

Название	Тип данных	Описание
_maxValue	int	Максимально допустимое значение параметра
	:4	M
_minValue	int	Минимально допустимое значение параметра
_value	int	Значение параметра

Таблица 7.8 — Методы класса Parameter

Название	Описание
Value	Свойство для поля _value
MaxValue	Свойство для поля _maxValue
MinValue	Свойство для поля _minValue
Validate	Сравнивает полученное значение с максимальным и
	минимальным возможными

Таблица 7.9 — Свойства класса Wrapper

Название	Тип данных	Описание
_kompas	KompasObject	Поле, хранящее в себе экземпляр
		программы Компас
_part	ksPart	Поле, хранящее в себе основную модель
_sketchEntity	ksEntity	Поле, хранящее в себе текущий эскиз
_plane	ksEntity	Поле, хранящее в себе текущий вид

Таблица 7.10 – Методы класса Wrapper

Название	Входные	Выходные	Описание
	параметры	параметры	
CreateArc	double, double,	_	Создание дуги по трём
	double, double,		точкам (double координаты
	double, double		х и у для каждой точки)
CreateLine	double[,], int,	_	Создание линии по двум
	int		точкам, double[,] массив
			точек по которым
			строяться линии, int
			позиция с которой
			необходимо начать
			считывать строки массива,
			int количество строк
CreateSketch	int	_	Создание эскиза (по int
			выбираем базисную
			плоскость)
Spin	_	_	Вращение эскиза
Extrusion	int, double	_	Выдавливание эскиза (int -
			тип, double - глубина)
CreateFie	_	_	Создание файла
OpenCAD	_	_	Открытие Компас3D

В отличии от диаграммы классов проекта системы диаграмма классов после реализации плагина имеет следующие отличия:

MainForm: BuildModel заменили на ButtonCreate_Click; FirstValidate,
 SecondValidate и SetColors получили входные параметры;

- Parameters: получил 3 дополнительных поля _parameters, _handleType, _rodType; ValidateParameters перестал принимать входные аргументы, а SetParameter перестал возвращать Dictionary<ParameterType, parameter>;
- Builder: убрали метод BuildScredriwer и добавили метод Helper, избавляющий разработчика от циклических повторений строк в коде;
- Parameter: были переименованы поля в соответствии с RSDN, а также
 были созданы свойства для каждого из полей;
- Wrapper: были убраны ненужные поля _document3D, _document2D, _sketchDef; было добавлено необходимое поле _plane, а также переопределены типы у полей на ksPart у _part и ksEntity у _sketchEntity и _plane; CreateLine изменены входные параметры для избавления от повторений в коде.

Большинство из описанных изменений связаны с малым опытом подготовки проекта системы перед написанием кода и упущением деталей, кроме классов Wrapper и Builder, у которых были добавлены изменения в соответствии с объектом моделирования.

8 ОПИСАНИЕ ПРОГРАММЫ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ

При запуске приложения открывается форма для заполнения параметров объекта (рисунок 8.1).

иугольная 🗸 Шестиуголь	ьная/Цилиндрическ	ая	
45-150 mm			
Четверть о	от длины ручки (+/- 5	MM)	
ообразная 🗸 Крестообра	азная/Плоская		
45-500 mm,	больше чем длина	ручки	
1/2 диамет	тра ручки (-2 мм)		
	45-150 мм Четверть о тообразная У Крестообр 45-500 мм.	45-150 мм Четверть от длины ручки (+/- 5 тообразная У Крестообразная/Плоская	45-150 мм Четверть от длины ручки (+/- 5 мм) тообразная Крестообразная/Плоская 45-500 мм, больше чем длина ручки

Рисунок 8.1 – Начальная форма в момент запуска приложения

При нажатии на кнопку с незаполненными или неверно заполненными полями не будет происходить ничего, при правильном же заполнении откроется КОМПАС-3D и начнётся построение модели по заданным параметрам.

При наведении на незаполненное поле выведется подсказка по заполнению (рисунок 8.2).

Рисунок 8.2 – Подсказка по заполнению

При неверном заполнении поля (выходе за допустимые пределы) текстбокс будет подсвечен красным, а текст подсказки останется неизменным (рисунок 8.3).

Рисунок 8.3 – Длина ручки выходит за минимальные пределы (меньше 45)

При этом, некорректно заполненные (непрошедшие собственную валидацию) или незаполненные поля не будут мешать возможно корректному заполнению зависимых от них полей (рисунок 8.4).

Рисунок 8.4 – Ошибка в собственной валидации длины ручки не влияет на валидацию её диаметра

Значение 11 является допустимым (т.к. 45/4 - 5 минимальное значение для диаметра ручки равняется 7) и подсвечивается зелёным. Помимо этого

можно заметить, что при наведении на корректно заполненный текстбокс не выводится никакая подсказка.

Помимо собственной ошибки также может быть вызвана ошибка в зависимых параметрах. Для решения каждой из таких ошибок текст подсказки меняет своё значение и выдаёт рекомендуемые к заполнению параметры для пользователя. Пользователь может изменить значение для любого из зависимых параметров для получения корректных результатов. При наличии ошибок в нескольких зависимых параметрах от одного у пользователя есть два пути решения:

- 1. Изменить сначала основной параметр, подходящий под хотя бы одну из валидаций, а после изменить оставшийся зависимый от него параметр.
- 2. Изменить оба зависимых от основного параметра.

К сожалению система не будет настолько подробно описывать вызванные ошибки, поэтому пользователю придётся самому принимать решение.

Помимо этого при появлении в текстбоксе некорректных символов (буквы, символы) – текстбокс очищается и приобретает стандартный цвет.

9 ТЕСТИРОВАНИЕ ПЛАГИНА

9.1 Функциональное тестирование

Во время использования плагина, плагин обрабатывает ошибки следующим образом.

На рисунках 9.1.1 и 9.1.2 представлен результат обработок ошибок системой для зависимых параметров длина и диаметр ручки.

Рисунок 9.1.1 – Ошибка валидации зависимых параметров длины ручки и диаметра ручки

Рисунок 9.1.2 – Ошибка валидации зависимых параметров длины ручки и диаметра ручки

При ошибки в валидации зависимых параметрах оба зависимых параметра приобретают красный цвет и стандартные подсказки в них

изменяются на подсказки для получения корректных значений. Доказательства правильности выведенных подсказок представлены на рисунках 9.1.3 и 9.1.4.

Рисунок 9.1.3 – Увеличение диаметра ручки до рекомендованных 17 мм

Рисунок 9.1.4 – Уменьшение длины ручки до рекомендованных 64 мм

Ещё один вариант валидации возможен при некорректности сразу в нескольких связанных параметрах (рисунок 9.1.5)

Рисунок 9.1.5 – Ошибка в валидации длины и диаметра ручки, а также длины ручки и длины наконечника

К сожалению при такой ошибке валидации пользователь должен сам принимать более подходящие ему решения. Но данный вариант не является самым нестандартным, следующий пример (рисунок 9.1.6) может сильно запутать пользователя.

Рисунок 9.1.6 – Ошибка в валидации длины и диаметра ручки (длина менее чем в 4 раза больше диаметра) и длины ручки с длиной наконечника.

На рисунке 9.1.7 представлено заполнение формы минимальными параметрами.

Рисунок 9.1.7 – Минимальные параметры

На рисунке 9.1.8 представлен результат построения модели с минимальными параметрами.

Рисунок 9.1.8 – Модель по минимальным параметрам

На рисунке 9.1.9 представлено заполнение формы максимальными параметрами.

Рисунок 9.1.9 – Максимальные параметры

На рисунке 9.1.10 представлен результат построения модели с максимальными параметрами.

Рисунок 9.1.10 – Модель по максимальным параметрам

На рисунке 9.1.11 представлено заполнение формы стандартными параметрами.

Рисунок 9.1.11 – Стандартные параметры

На рисунке 9.1.12 представлен результат построения модели с стандартными параметрами.

Рисунок 9.1.12 – Модель по стандартным параметрам

9.2 Модульное тестирование

На рисунке 9.2.1 представлено количество написанных Unit-тестов, а также что их выполнение происходит корректно.

Рисунок 9.2.1 – Количество написанных Unit-тестов

Необходимо было написать тесты для 2-ух классов: Parameters и Parameter. В таблице 9.2.1 представлены все написанные тесты и их описание.

Таблица 9.2.1 – Unit-тесты

Название теста	Описание теста	
Позитивный тест Геттера MaxValue	Проверяет работу get y MaxValue	
Позитивный тест Сеттера MaxValue	Проверяет работу set у MaxValue	
Позитивный тест Геттера MinValue	Проверяет работу get y MinValue	
Позитивный тест Сеттера MinValue	Проверяет работу set y MinValue	
Позитивный тест Геттера Value	Проверяет работу get y Value	
Позитивный тест Сеттера Value	Проверяет работу set y Value	
Негативный тест Validate	Проверяет вызов исключения при	
	Value <minvalue< td=""></minvalue<>	
	Проверяет вызов исключения при	
	Value>MaxValue	

Продолжение таблицы 9.2.1

Название теста	Описание теста
Позитивный тест Геттера AllParameters	Проверяет работу get y AllParameters
Позитивный тест Сеттера AllParameters	Проверяет работу set у AllParameters
Позитивный тест Геттера ShapeOfHandle	Проверяет работу get y ShapeOfHandle
Позитивный тест Сеттера ShapeOfHandle	Проверяет работу set y ShapeOfHandle
Позитивный тест Геттера ShapeOfRod	Проверяет работу get y ShapeOfRod
Позитивный тест Сеттера ShapeOfRod	Проверяет работу set y ShapeOfRod
Позитивный тест метода SetParameter	Проверяет работу set для _parameter
Негативный тест ValidateParameters	Проверяет вызов исключения при длине ручке большей более чем в 4 раза диаметра ручки
	Проверяет вызов исключения при длине ручке большей менее чем в 4 раза диаметра ручки
	Проверяет вызов исключения при длине ручке
	большей длины наконечника
	Проверяет вызов исключения при диаметре
	ручки более чем в 4 раза меньшем длины ручки
	Проверяет вызов исключения при диаметре
	ручки менее чем в 4 раза меньшем длины ручки
	Проверяет вызов исключения при диаметре
	ручки менее чем в 2 раза меньшем диаметра
	наконечника
	Проверяет вызов исключения при диаметре ручки более чем в 2 раза меньшем диаметра
	ручки оолее чем в 2 раза меньшем диаметра наконечника
	Проверяет вызов исключения при длине наконечника меньшем длины ручки
	Проверяет вызов исключения при диаметре наконечника менее чем в 2 раза меньшем диаметра ручки
	Проверяет вызов исключения при диаметре наконечника более чем в 2 раза меньшем диаметра ручки

На рисунке 9.2.2 также представлен скриншот плагина, измеряющего процент покрытия модульными тестами

Рисунок 9.2.2 – Результаты плагина

9.3 Нагрузочное тестирование

На рисунке 9.3.1 представлен график зависимости памяти ОЗУ от построения модели, а на рисунке 9.3.2 представлен график зависимости времени от построения модели.

Рисунок 9.3.1 – График зависимости памяти ОЗУ от количества построенных моделей

При достижении порогового значения ~32 ГБ происходит экстренное завершение работы КОМПАС-3D и остановка работы программы. Проанализировав график можно сделать вывод, что объём оперативной памяти, затрачиваемой плагином на построение трёхмерных моделей, линейно увеличивается до достижения предела объёма оперативной памяти.

Рисунок 9.3.2 – График гистограммы построения модели

По графику можно сделать вывод, что основное время построения модели от 0 до 3 с. Скорее всего, это связанно с простотой модели, из-за чего даже при значительных количествах моделей нагрузки на оперативную память и процессор недостаточно для замедления построения моделей. Оставшиеся модели лежащие в диапазоне от 4 до 5 с можно связать с загруженностью ОС другими задачами, не связанными с выполнением моделирования.

10 ЗАКЛЮЧЕНИЕ

В результате выполнения лабораторных работ был разработан плагин для КОМПАС-3D, способный самостоятельно строить отвёртку по заданным пользователем параметрам. Каждая из лабораторных работы была направлена на достижение данного результата, выбор объекта моделирования и САПР повлиял на изучение материалов связанных с ними, техническое задание позволило скорректировать курс направленности лабораторных работ, проект системы заставлял продумывать разные мелочи во избежании дальнейших серьёзных изменений в коде, ну и само написание кода, затрагивающее обращение с АРІ, а также взаимодействие с формой пользователя. Из неожиданных результатов была изучена провальность подхода при валидации обоих параметров, что привело к изменению траектории мышления и правильному результату. Также немалое удивление произвело использование различных средств для стандартизации кода, например StyleCops. Код действительно становится более читаемым И перевариваемым ДЛЯ дальнейшей разработки.

11 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 23501.101-87 «Системы автоматизированного проектирования. Основные положения» (дата обращения 13.12.2024)
- 2. API [Электронный ресурс]. Режим доступа https://itglobal.com/ru-ru/company/glossary/api/ (дата обращения 28.09.2024)
- 3. ГОСТ 17199-88 «Отвёртки слесарно-монтажные» (дата обращения 20.09.2024)
- 4. Windows Forms [Электронный ресурс]. Режим доступа https://learn.microsoft.com/ru-ru/dotnet/desktop/winforms/overview/?view=netdesktop-9.0 (дата обращения 13.12.2024)
- 5. Github [Электронный ресурс]. Режим доступа https://docs.github.com/ru/get-started/start-your-journey/about-github-and-git (13.12.2024)
- 6. ReSharper [Электронный ресурс]. Режим доступа https://www.jetbrains.com/ru-ru/resharper/ (13.12.2024)
- 7. Fine Code Coverage [Электронный ресурс]. Режим доступа https://marketplace.visualstudio.com/items?itemName=FortuneNgwenya.FineCode Coverage (13.12.2024)
- 8. StyleCop [Электронный ресурс]. Режим доступа https://andrey.moveax.ru/post/net-standard-using-style-cop (13.12.2024)
- 9. NUnit [Электронный ресурс]. Режим доступа https://nunit.org/ (13.12.2024)
- 10. Разъёмные соединения [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/threaded-connection/ (дата обращения 05.10.2024)

- 11. Валы и механические передачи 3D. [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/gear-cutting/ (дата обращения 05.10.2024)
- 12. UML [Электронный ресурс]. Режим доступа https://www.uml-diagrams.org/ (дата обращения 07.10.2024)