Constrained extrema and Lagrange multipliers Inverse and implicit function theorems

Department of Mathematics
IIT Guwahati

Let $U \subset \mathbb{R}^n$ be open and $f,g:U \subset \mathbb{R}^n \to \mathbb{R}$ be continuous. Then

Maximize or Minimize $f(\mathbf{x})$ Subject to the constraint $g(\mathbf{x}) = \alpha$.

Let $U \subset \mathbb{R}^n$ be open and $f,g:U \subset \mathbb{R}^n \to \mathbb{R}$ be continuous. Then

Maximize or Minimize $f(\mathbf{x})$ Subject to the constraint $g(\mathbf{x}) = \alpha$.

Example: Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

It turns out that f attains minimum at $(0,\pm 1)$ and maximum at $(\pm 1,0)$ although $\nabla f(0,\pm 1) \neq 0$ and $\nabla f(\pm 1,0) \neq 0$.

Theorem: Let $f,g:U\subset\mathbb{R}^2\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $(a,b)\in U$ such that $g(a,b)=\alpha$ and that $\nabla g(a,b)\neq (0,0)$. Then there is a $\lambda\in\mathbb{R}$, called Lagrange multiplier, such that $\nabla f(a,b)=\lambda\nabla g(a,b)$.

Theorem: Let $f,g:U\subset\mathbb{R}^2\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $(a,b)\in U$ such that $g(a,b)=\alpha$ and that $\nabla g(a,b)\neq (0,0)$. Then there is a $\lambda\in\mathbb{R}$, called Lagrange multiplier, such that $\nabla f(a,b)=\lambda\nabla g(a,b)$.

Proof: Let $\mathbf{r}(t)$ be a local parametrization of the curve $g(x,y)=\alpha$ such that $\mathbf{r}(0)=(a,b)$. Then $f(\mathbf{r}(t))$ has an extremum at t=0. Therefore

$$\frac{\mathrm{d}f(\mathbf{r}(t))}{\mathrm{d}t}|_{t=0} = \nabla f(a,b) \bullet \mathbf{r}'(0) = 0.$$

Theorem: Let $f,g:U\subset\mathbb{R}^2\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $(a,b)\in U$ such that $g(a,b)=\alpha$ and that $\nabla g(a,b)\neq (0,0)$. Then there is a $\lambda\in\mathbb{R}$, called Lagrange multiplier, such that $\nabla f(a,b)=\lambda\nabla g(a,b)$.

Proof: Let $\mathbf{r}(t)$ be a local parametrization of the curve $g(x,y)=\alpha$ such that $\mathbf{r}(0)=(a,b)$. Then $f(\mathbf{r}(t))$ has an extremum at t=0. Therefore

$$\frac{\mathrm{d}f(\mathbf{r}(t))}{\mathrm{d}t}|_{t=0} = \nabla f(a,b) \bullet \mathbf{r}'(0) = 0.$$

Now $g(\mathbf{r}(t)) = \alpha \Rightarrow \nabla g(a,b) \bullet \mathbf{r}'(0) = 0$. This shows that $\mathbf{r}'(0) \perp \nabla g(a,b)$ and $\mathbf{r}'(0) \perp \nabla f(a,b)$. Hence $\nabla f(a,b) = \lambda \nabla g(a,b)$ for some $\lambda \in \mathbb{R}$.

To find extremum of f subject to the constraint $g(x,y) = \alpha$, define $L(x,y,\lambda) := f(x,y) - \lambda(g(x,y) - \alpha)$ and solve the equations

To find extremum of f subject to the constraint $g(x,y) = \alpha$, define $L(x,y,\lambda) := f(x,y) - \lambda(g(x,y) - \alpha)$ and solve the equations

$$\frac{\partial L}{\partial x} = 0 \Rightarrow \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x},$$

$$\frac{\partial L}{\partial y} = 0 \Rightarrow \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y},$$

$$\frac{\partial L}{\partial \lambda} = 0 \Rightarrow g(x, y) = \alpha.$$

To find extremum of f subject to the constraint $g(x,y) = \alpha$, define $L(x,y,\lambda) := f(x,y) - \lambda(g(x,y) - \alpha)$ and solve the equations

$$\frac{\partial L}{\partial x} = 0 \Rightarrow \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x},$$

$$\frac{\partial L}{\partial y} = 0 \Rightarrow \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y},$$

$$\frac{\partial L}{\partial \lambda} = 0 \Rightarrow g(x, y) = \alpha.$$

• The auxiliary function $L(x, y, \lambda)$ is called Lagrangian which converts constrained extrema to unconstrained extrema.

To find extremum of f subject to the constraint $g(x,y) = \alpha$, define $L(x,y,\lambda) := f(x,y) - \lambda(g(x,y) - \alpha)$ and solve the equations

$$\frac{\partial L}{\partial x} = 0 \Rightarrow \frac{\partial f}{\partial x} = \lambda \frac{\partial g}{\partial x},$$

$$\frac{\partial L}{\partial y} = 0 \Rightarrow \frac{\partial f}{\partial y} = \lambda \frac{\partial g}{\partial y},$$

$$\frac{\partial L}{\partial \lambda} = 0 \Rightarrow g(x, y) = \alpha.$$

- The auxiliary function $L(x, y, \lambda)$ is called Lagrangian which converts constrained extrema to unconstrained extrema.
- Critical points of *L* are eligible solutions for constrained extrema.

Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

The equations $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x, y) = 1 give $2x = \lambda 2x$, $-2y = \lambda 2y$ and $x^2 + y^2 = 1$. The first equation shows either x = 0 or $\lambda = 1$.

Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

The equations $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x,y) = 1 give $2x = \lambda 2x$, $-2y = \lambda 2y$ and $x^2 + y^2 = 1$. The first equation shows either x = 0 or $\lambda = 1$.

If x=0 then $y=\pm 1 \Rightarrow \lambda=-1$. Thus $(x,y,\lambda):=(0,\pm 1,-1)$ are possible solutions.

Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

The equations $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x,y) = 1 give $2x = \lambda 2x$, $-2y = \lambda 2y$ and $x^2 + y^2 = 1$. The first equation shows either x = 0 or $\lambda = 1$.

If x=0 then $y=\pm 1 \Rightarrow \lambda=-1$. Thus $(x,y,\lambda):=(0,\pm 1,-1)$ are possible solutions.

If $\lambda=1$ then $y=0 \Rightarrow x=\pm 1$. Thus $(x,y,\lambda):=(\pm 1,0,1)$ are also possible solutions.

Find the extreme values of $f(x, y) = x^2 - y^2$ on the circle $x^2 + y^2 = 1$.

The equations $f_x = \lambda g_x$, $f_y = \lambda g_y$ and g(x,y) = 1 give $2x = \lambda 2x$, $-2y = \lambda 2y$ and $x^2 + y^2 = 1$. The first equation shows either x = 0 or $\lambda = 1$.

If x=0 then $y=\pm 1 \Rightarrow \lambda=-1$. Thus $(x,y,\lambda):=(0,\pm 1,-1)$ are possible solutions.

If $\lambda=1$ then $y=0 \Rightarrow x=\pm 1$. Thus $(x,y,\lambda):=(\pm 1,0,1)$ are also possible solutions.

Now f(0,1) = f(0,-1) = -1 and f(1,0) = f(-1,0) = 1 so that minimum and maximum values are -1 and 1.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $U \subset \mathbb{R}^2$ be a region with smooth closed boundary curve C. To find global emtremum of f in U:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $U \subset \mathbb{R}^2$ be a region with smooth closed boundary curve C. To find global emtremum of f in U:

Locate all critical points of f in U.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $U \subset \mathbb{R}^2$ be a region with smooth closed boundary curve C. To find global emtremum of f in U:

- Locate all critical points of f in U.
- Find eligible global extremum of f on the curve C by using Lagrange multipliers or parametrization.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $U \subset \mathbb{R}^2$ be a region with smooth closed boundary curve C. To find global emtremum of f in U:

- Locate all critical points of f in U.
- Find eligible global extremum of f on the curve C by using Lagrange multipliers or parametrization.
- Choose points among eligible solutions in C and the critical points at which f attains extreme values. These extreme values are global extremum.

Find global maximum and global minimum of the function $f(x,y) := (x^2 + y^2)/2$ such that $x^2/2 + y^2 \le 1$.

Find global maximum and global minimum of the function $f(x,y) := (x^2 + y^2)/2$ such that $x^2/2 + y^2 \le 1$.

Since $f_x = x$ and $f_y = y$, (0,0) is the only critical point.

Find global maximum and global minimum of the function $f(x,y) := (x^2 + y^2)/2$ such that $x^2/2 + y^2 \le 1$.

Since $f_x = x$ and $f_y = y$, (0,0) is the only critical point.

Next, consider $L(x, y, \lambda) := (x^2 + y^2)/2 - \lambda(x^2/2 + y^2 - 1)$. Then Lagrange multiplier equations are

$$x = \lambda x$$
, $y = 2\lambda y$, $x^2/2 + y^2 = 1$.

If x=0 then $y=\pm 1$ and $\lambda=1/2$. If y=0 then $x=\pm \sqrt{2}$ and $\lambda=1$. If $xy\neq 0$ then $\lambda=1$ and $\lambda=1/2$ -which is not possible.

Find global maximum and global minimum of the function $f(x,y) := (x^2 + y^2)/2$ such that $x^2/2 + y^2 \le 1$.

Since $f_x = x$ and $f_y = y$, (0,0) is the only critical point.

Next, consider $L(x, y, \lambda) := (x^2 + y^2)/2 - \lambda(x^2/2 + y^2 - 1)$. Then Lagrange multiplier equations are

$$x = \lambda x$$
, $y = 2\lambda y$, $x^2/2 + y^2 = 1$.

If x=0 then $y=\pm 1$ and $\lambda=1/2$. If y=0 then $x=\pm \sqrt{2}$ and $\lambda=1$. If $xy\neq 0$ then $\lambda=1$ and $\lambda=1/2$ -which is not possible.

Thus $(0,\pm 1)$ and $(\pm \sqrt{2},0)$ are eligible solutions for the boundary curve. We have $f(0,\pm 1)=1/2,\, f(\pm \sqrt{2},0)=1$ and f(0,0)=0.

Theorem: Let $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $\mathbf{p}\in U$ such that $g(\mathbf{p})=\alpha$ and $\nabla g(\mathbf{p})\neq \mathbf{0}$. Then there is a $\lambda\in\mathbb{R}$ such that $\nabla f(\mathbf{p})=\lambda\nabla g(\mathbf{p})$.

Theorem: Let $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $\mathbf{p}\in U$ such that $g(\mathbf{p})=\alpha$ and $\nabla g(\mathbf{p})\neq \mathbf{0}$. Then there is a $\lambda\in\mathbb{R}$ such that $\nabla f(\mathbf{p})=\lambda\nabla g(\mathbf{p})$.

Proof:

Theorem: Let $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $\mathbf{p}\in U$ such that $g(\mathbf{p})=\alpha$ and $\nabla g(\mathbf{p})\neq \mathbf{0}$. Then there is a $\lambda\in\mathbb{R}$ such that $\nabla f(\mathbf{p})=\lambda\nabla g(\mathbf{p})$.

Proof:

If $g(\mathbf{x}) = \alpha$ is a closed surface then global extremum is obtained by finding all points where $\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$ and choosing those where f is largest or smallest.

Theorem: Let $f,g:U\subset\mathbb{R}^n\to\mathbb{R}$ be C^1 . Suppose that f has an extremum at $\mathbf{p}\in U$ such that $g(\mathbf{p})=\alpha$ and $\nabla g(\mathbf{p})\neq \mathbf{0}$. Then there is a $\lambda\in\mathbb{R}$ such that $\nabla f(\mathbf{p})=\lambda\nabla g(\mathbf{p})$.

Proof:

If $g(\mathbf{x}) = \alpha$ is a closed surface then global extremum is obtained by finding all points where $\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x})$ and choosing those where f is largest or smallest.

The Lagrangian is given by $L(\mathbf{x}, \lambda) := f(\mathbf{x}) - \lambda(g(\mathbf{x}) - \alpha)$. So, the multiplier equations are $\nabla L(\mathbf{x}, \lambda) = \mathbf{0}$.

Maximize the function f(x, y, z) := x + z subject to the constraint $x^2 + y^2 + z^2 = 1$.

Maximize the function f(x, y, z) := x + z subject to the constraint $x^2 + y^2 + z^2 = 1$.

The multiplier equations are

$$1 = 2x\lambda$$
, $0 = 2y\lambda$, $1 = 2z\lambda$, $x^2 + y^2 + z^2 = 1$.

From first and 3rd equation, $\lambda \neq 0$. Thus, by second equation, y = 0. By first and 3rd equations $x = z \Rightarrow x = z = \pm 1/\sqrt{2}$.

Maximize the function f(x, y, z) := x + z subject to the constraint $x^2 + y^2 + z^2 = 1$.

The multiplier equations are

$$1 = 2x\lambda$$
, $0 = 2y\lambda$, $1 = 2z\lambda$, $x^2 + y^2 + z^2 = 1$.

From first and 3rd equation, $\lambda \neq 0$. Thus, by second equation, y = 0. By first and 3rd equations $x = z \Rightarrow x = z = \pm 1/\sqrt{2}$.

Hence $\mathbf{p}:=(1/\sqrt{2},0,1/\sqrt{2})$ and $\mathbf{q}:=(-1/\sqrt{2},0,-1/\sqrt{2})$ are eligible solutions. This shows that $f(\mathbf{p})=\sqrt{2}$ and $f(\mathbf{q})=-\sqrt{2}$.

What does the Implicit function theorem say?

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be C^1 . Consider the curve

$$V(F) := \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\}.$$

Does there exist $f : \mathbb{R} \to \mathbb{R}$ such that $V(F) = \operatorname{Graph}(f)$? Equivalently, can F(x, y) = 0 be solved either for x or for y?

What does the Implicit function theorem say?

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be C^1 . Consider the curve

$$V(F) := \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\}.$$

Does there exist $f : \mathbb{R} \to \mathbb{R}$ such that $V(F) = \operatorname{Graph}(f)$? Equivalently, can F(x, y) = 0 be solved either for x or for y?

Considering $F(x, y) := x^2 + y^2 - 1$, it follows that F(x, y) = 0 cannot be solved for y or x.

What does the Implicit function theorem say?

Let $F: \mathbb{R}^2 \to \mathbb{R}$ be C^1 . Consider the curve

$$V(F) := \{(x, y) \in \mathbb{R}^2 : F(x, y) = 0\}.$$

Does there exist $f : \mathbb{R} \to \mathbb{R}$ such that $V(F) = \operatorname{Graph}(f)$? Equivalently, can F(x, y) = 0 be solved either for x or for y?

Considering $F(x, y) := x^2 + y^2 - 1$, it follows that F(x, y) = 0 cannot be solved for y or x.

The implicit function theorem says that if F(a, b) = 0 and $\nabla F(a, b) \neq (0, 0)$ then in a neighbourhood of (a, b), we have

$$V(F) = Graph(f)$$

for some function f.

Implicit function theorem

Theorem: Let $F: U \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 , where U is open. Consider the curve $V(F) := \{(x,y) \in U : F(x,y) = 0\}$. Let $(a,b) \in V(F)$. Suppose that $\partial_V F(a,b) \neq 0$.

Implicit function theorem

Theorem: Let $F: U \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 , where U is open. Consider the curve $V(F) := \{(x,y) \in U : F(x,y) = 0\}$. Let $(a,b) \in V(F)$. Suppose that $\partial_y F(a,b) \neq 0$.

• Then there exists r > 0 and a C^1 function $g: (a-r, a+r) \to \mathbb{R}$ such that F(x, g(x)) = 0 for $x \in (a-r, a+r)$.

Implicit function theorem

Theorem: Let $F: U \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 , where U is open. Consider the curve $V(F) := \{(x,y) \in U : F(x,y) = 0\}$. Let $(a,b) \in V(F)$. Suppose that $\partial_y F(a,b) \neq 0$.

- Then there exists r > 0 and a C^1 function $g: (a-r, a+r) \to \mathbb{R}$ such that F(x, g(x)) = 0 for $x \in (a-r, a+r)$.
- For W:=(a-r,a+r) imes(b-r,b+r), we have $W\cap \mathrm{V}(F)=\mathrm{Graph}(g).$

Implicit function theorem

Theorem: Let $F: U \subset \mathbb{R}^2 \to \mathbb{R}$ be C^1 , where U is open. Consider the curve $V(F) := \{(x,y) \in U : F(x,y) = 0\}$. Let $(a,b) \in V(F)$. Suppose that $\partial_y F(a,b) \neq 0$.

- Then there exists r > 0 and a C^1 function $g: (a-r, a+r) \to \mathbb{R}$ such that F(x, g(x)) = 0 for $x \in (a-r, a+r)$.
- For W:=(a-r,a+r) imes(b-r,b+r), we have $W\cap \mathrm{V}(F)=\mathrm{Graph}(g).$
- Further, $\partial_x F(a,b) + \partial_y F(a,b)g'(a) = 0$.

Implicit derivative

Thus if $\partial_y f(a, b) \neq 0$ then in some disk about (a, b) the set of points (x, y) satisfying F(x, y) = 0 is the graph of a function y = g(x) with

$$\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=a}=g'(a)=-F_x(a,b)/F_y(a,b).$$

Implicit derivative

Thus if $\partial_y f(a, b) \neq 0$ then in some disk about (a, b) the set of points (x, y) satisfying F(x, y) = 0 is the graph of a function y = g(x) with

$$\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=a}=g'(a)=-F_x(a,b)/F_y(a,b).$$

Example: Consider $F(x,y) := e^{x-2+(y-1)^2} - 1$ and the equation F(x,y) = 0. Then F(2,1) = 0, $\partial_x F(2,1) = 1$, and $\partial_y F(2,1) = 0$.

Hence x = g(y) for some C^1 function $g: (1 - r, 1 + r) \to \mathbb{R}$. Moreover, g'(1) = 0.

Let $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be C^1 , where U is open. Consider the level set $V(F) := \{(\mathbf{x} \in U : F(\mathbf{x}, y) = 0\}.$ Let $(\mathbf{a}, b) \in V(F)$. Suppose that $\partial_v F(\mathbf{a}, b) \neq 0$.

Let $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be C^1 , where U is open. Consider the level set $V(F) := \{ (\mathbf{x} \in U : F(\mathbf{x}, y) = 0 \}$. Let $(\mathbf{a}, b) \in V(F)$. Suppose that $\partial_y F(\mathbf{a}, b) \neq 0$.

• Then there exists r > 0 and a C^1 function $g: B(\mathbf{a}, r) \to \mathbb{R}$ such that $F(\mathbf{x}, g(\mathbf{x})) = 0$ for $\mathbf{x} \in B(\mathbf{a}, r)$.

Let $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be C^1 , where U is open. Consider the level set $V(F) := \{ (\mathbf{x} \in U : F(\mathbf{x}, y) = 0 \}$. Let $(\mathbf{a}, b) \in V(F)$. Suppose that $\partial_y F(\mathbf{a}, b) \neq 0$.

- Then there exists r > 0 and a C^1 function $g: B(\mathbf{a}, r) \to \mathbb{R}$ such that $F(\mathbf{x}, g(\mathbf{x})) = 0$ for $\mathbf{x} \in B(a, r)$.
- For $W := B(\mathbf{a}, r) \times (b r, b + r)$, we have

$$W \cap V(F) = Graph(g).$$

Let $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be C^1 , where U is open. Consider the level set $V(F) := \{(\mathbf{x} \in U : F(\mathbf{x}, y) = 0\}.$ Let $(\mathbf{a}, b) \in V(F)$. Suppose that $\partial_y F(\mathbf{a}, b) \neq 0$.

- Then there exists r>0 and a C^1 function $g:B(\mathbf{a},r)\to\mathbb{R}$ such that $F(\mathbf{x},g(\mathbf{x}))=0$ for $\mathbf{x}\in B(a,r)$.
- For $W:=B(\mathbf{a},r)\times(b-r,b+r),$ we have $W\cap \mathrm{V}(F)=\mathrm{Graph}(g).$

• Further, $\partial_i F(\mathbf{a}, b) + \partial_y F(\mathbf{a}, b) \partial_i g(\mathbf{a}) = 0, i = 1, 2, \dots, n$

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear and represented (standard basis) by an $n \times n$ matrix A. Then f is invertible on $\mathbb{R}^n \Leftrightarrow \det(A) \neq 0$.

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear and represented (standard basis) by an $n \times n$ matrix A. Then f is invertible on $\mathbb{R}^n \Leftrightarrow \det(A) \neq 0$.

Note that $J_f(\mathbf{x}) = A$. Thus $\det(J_f(\mathbf{x})) \neq 0 \Longrightarrow f$ is invertible on \mathbb{R}^n .

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear and represented (standard basis) by an $n \times n$ matrix A. Then f is invertible on $\mathbb{R}^n \Leftrightarrow \det(A) \neq 0$.

Note that $J_f(\mathbf{x}) = A$. Thus $\det(J_f(\mathbf{x})) \neq 0 \Longrightarrow f$ is invertible on \mathbb{R}^n .

Example: Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \longmapsto (e^x \cos y, e^x \sin y)$. Then

$$J_f(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} \Rightarrow \det(J_f(x,y)) = e^{2x} \neq 0.$$

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear and represented (standard basis) by an $n \times n$ matrix A. Then f is invertible on $\mathbb{R}^n \Leftrightarrow \det(A) \neq 0$.

Note that $J_f(\mathbf{x}) = A$. Thus $\det(J_f(\mathbf{x})) \neq 0 \Longrightarrow f$ is invertible on \mathbb{R}^n .

Example: Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \longmapsto (e^x \cos y, e^x \sin y)$. Then

$$J_f(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} \Rightarrow \det(J_f(x,y)) = e^{2x} \neq 0.$$

But $f(x,y) = f(x,y+2\pi) \Rightarrow f$ is not invertible on \mathbb{R}^2 .

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear and represented (standard basis) by an $n \times n$ matrix A. Then f is invertible on $\mathbb{R}^n \Leftrightarrow \det(A) \neq 0$.

Note that $J_f(\mathbf{x}) = A$. Thus $\det(J_f(\mathbf{x})) \neq 0 \Longrightarrow f$ is invertible on \mathbb{R}^n .

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \longmapsto (e^x \cos y, e^x \sin y)$. Then

$$J_f(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} \Rightarrow \det(J_f(x,y)) = e^{2x} \neq 0.$$

But $f(x,y) = f(x,y+2\pi) \Rightarrow f$ is not invertible on \mathbb{R}^2 .

Moral: Nonsingularity of $J_f(\mathbf{x})$ does not guarantee invertibility of $f: \mathbb{R}^n \to \mathbb{R}^n$ on \mathbb{R}^n .

Fact: Let $f: \mathbb{R} \to \mathbb{R}$ be C^1 and $f'(x_0) \neq 0$. Then

- f is invertible in a neighborhood of x_0 ,
- the inverse is continuously differentiable, and

•
$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$
.

Fact: Let $f: \mathbb{R} \to \mathbb{R}$ be C^1 and $f'(x_0) \neq 0$. Then

- f is invertible in a neighborhood of x_0 ,
- the inverse is continuously differentiable, and

•
$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$
.

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be C^1 and $\det(J_f(\mathbf{a})) \neq 0$. Then there are open subsets $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ such that

- $\mathbf{a} \in U$ and $f(\mathbf{a}) \in V$,
- $f: U \longrightarrow V$ is bijective,
- $f^{-1}: V \to U$ is C^1 and $J_{f^{-1}}(f(\mathbf{a})) = (J_f(\mathbf{a}))^{-1}$.

Fact: Let $f: \mathbb{R} \to \mathbb{R}$ be C^1 and $f'(x_0) \neq 0$. Then

- f is invertible in a neighborhood of x_0 ,
- the inverse is continuously differentiable, and

•
$$(f^{-1})'(f(x_0)) = \frac{1}{f'(x_0)}$$
.

Theorem: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be C^1 and $\det(J_f(\mathbf{a})) \neq 0$. Then there are open subsets $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ such that

- $\mathbf{a} \in U$ and $f(\mathbf{a}) \in V$,
- $f: U \longrightarrow V$ is bijective,
- $f^{-1}: V \to U$ is C^1 and $J_{f^{-1}}(f(\mathbf{a})) = (J_f(\mathbf{a}))^{-1}$.
- Stronger version: $J_{f^{-1}}(\mathbf{y}) = (J_f(f^{-1}(\mathbf{y})))^{-1}$ for $\mathbf{y} \in V$.

Example

Consider the system $u = x \cos y$, $v = x \sin y$. Then x and y can be expressed as C^1 functions of (u, v) in a neighbourhood of (a, b) when $a \neq 0$.

Example

Consider the system $u = x \cos y$, $v = x \sin y$. Then x and y can be expressed as C^1 functions of (u, v) in a neighbourhood of (a, b) when $a \neq 0$.

Let
$$f(x, y) := (x \cos y, x \sin y)$$
. Then

$$J_f(a,b) = \begin{bmatrix} \cos b & -a\sin b \\ \sin b & a\cos b \end{bmatrix} \Rightarrow \det(J_f(a,b)) = a.$$

Example

Consider the system $u = x \cos y$, $v = x \sin y$. Then x and y can be expressed as C^1 functions of (u, v) in a neighbourhood of (a, b) when $a \neq 0$.

Let
$$f(x, y) := (x \cos y, x \sin y)$$
. Then

$$J_f(a,b) = \begin{bmatrix} \cos b & -a\sin b \\ \sin b & a\cos b \end{bmatrix} \Rightarrow \det(J_f(a,b)) = a.$$

Set
$$(x, y) := f^{-1}(u, v)$$
. Then

$$\begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = J_{f^{-1}}(f(a,b)) = \begin{bmatrix} \cos b & -a\sin b \\ \sin b & a\cos b \end{bmatrix}^{-1}.$$

*** End ***

