# HPS DAQ Operations Manual v1.0

Per Hansson Adrian, Sergey Boiarinov\*
October 22, 2014

## 1 System Description

The HPS experiment data acquisition (DAQ) handles the acquisition of data for the two sub-detectors: the SVT, and the ECal. HPS employs two DAQ architectures: the SVT is readout with Advanced Telecom Communications Architecture (ATCA) hardware while the ECal use VXS based hardware. The trigger system receives input from the ECal, and distributes a trigger signal to all detector subsystems to read out a selected event. Figure?? gives a schematic block diagram of the DAQ system. For the ECal, every VXS crate contains a Readout Controller (ROC) that collects digitized information, processes it, and sends it on to the Event Builder (EB). The ROC is a single blade Intel-based CPU module running DAQ software under CentOS Linux OS. For the SVT ATCA system, a multi-ROC setup runs on embedded processors situated on the ATCA main board. The EB assembles information from the SVT and ECal ROCs into a single event which is passed to the Event Recorder (ER) that writes it to a RAID5-based data storage system. The DAQ network system is a Foundry router providing high-speed connections between the DAQ components and to the JLab computing facility.

## 2 DAQ Control

## 2.1 Starting the DAQ from scratch

1. Log into clondaq1 as clasrun.

<sup>\*</sup>Contact person for document.



Figure 1: Schematic overview of the DAQ and trigger system.

- 2. To start all DAQ processes, type the following command in a terminal: hps\_start. This opens up all windows and GUIs needed on the current workspace.
- 3. The workspace should look like Fig. ??.



Figure 2: CODA workspace.

## 2.2 Starting a normal run

- 1. Make sure beam conditions are stable and ready for running. See beam line manual for more details.
- 2. Make sure the ECal is powered and its status is OK. See ECal manual for more details.
- 3. Make sure the SVT is powered and its status is OK. See SVT manual for more details.

- 4. Make sure the SVT position is appropriate for the run. Check with shift leader if not sure.
- 5. Check that the DAQ workspace is ready to go (see Section above how to start the DAQ).
- 6. If continuing with same the same run configuration from a stopped run continue to ??.
- 7. In the RunControl GUI: click connect, a new GUI opens.
- 8. Click on DAQ Configuration and choose the HPS configuration.
- 9. Press Config in the same GUI and choose run configuration file. Click OK.
- 10. Make sure that datafile name, daq configuration and run configuration file name shown on RunControl GUI are correct.
- 11. Press Download. When Prestart button shows up the DAQ is ready to take data.
- 12. Press Prestart and wait between 5 and 10s and no errors are reported.
- 13. Press Start Run to start data taking. Check that the run status is 'running' and that triggers are issued.

### 2.3 Stopping a run

1. Go to the RunControl GUI and press End Run to stop data taking. Check that the run status is 'stopped' and that triggers are not issued.

### 2.4 Stopping and restarting the DAQ in case of problems

#### 2.4.1 Stopping the DAQ

If DAQ problems occur and restarting the run do not work all DAQ processes can be restarted by typing:

1. hps\_exit in a terminal on clondag1

This will cleanup all processes and you can restart by following the procedures above.

#### 2.4.2 Restarting the DAQ in case of problems

Sometimes hardware reset needed to bring DAQ system back to normal. For HPS there are four VME/VXS crates: hps11, hps12, hps1 and hps2. These can be power cycled to try and get back into the normal state. Crate hps11 is a master, so it have to be rebooter first, followed by others. To reboot, do the following:

- 1. Type command roc\_reboot hps11 in a terminal.
- 2. Type command roc\_reboot crate\_id in the same terminal where crate\_id is hps12, hps1 or hps2.

If it does not help or you are unsure, contact the DAQ expert.