Current Electricity

Electric Current

• Electric Current =
$$\frac{\text{Electric Charge}}{\text{time}} \Rightarrow I = \frac{Q}{t} = \frac{ne}{t} = nef = \frac{nev}{2\pi r}$$

In SI system, unit of electric current is Ampere (A).

Dimensional formula of electric current is $M^{\circ}L^{\circ}T^{\circ}A^{1}$ or $M^{\circ}L^{\circ}T^{-1}Q^{1}$.

$$1mA = 10^{-3} A$$
; $1\mu A = 10^{-6} A$

Electric Current,
$$I = \frac{dQ}{dt}$$
, $\therefore dQ = I dt$

Electric charge $Q = \int dQ = \int I dt$

- An Electron revolves in circular orbit of radius 5.3.×10⁻¹¹ m in hydrogen atom with constant (1) speed of ______ so that 1.06 mA current is constituted.
- (A) $2 \times 10^6 \text{ ms}^{-1}$ (B) $1.1 \times 10^6 \text{ ms}^{-1}$ (C) $2.2 \times 10^6 \text{ ms}^{-1}$
- (D) $1.5 \times 10^6 \,\mathrm{ms}^{-1}$
- (2) 9 mA electric current is flowing through a conducting wire then number of electrons passing through it in 3min is ____
 - (A) 2×10^{18}
- (B) 1×10^{18}
- (C) 2×10^{19}
- (D) 1.01×10^{19}
- A current through a wire varies with time as $I = I_0 + \alpha t$ where $I_0 = 100$ A and $\alpha = 8$ As⁻¹. Then (3) the charge flows across a cross section of the wire in first 20 sec ____
 - (A) 2000
- (B) 3600
- (C) 1600
- (D) 400
- An electron in the hydrogen atom is revolving around nucleus in the orbit of radius $\frac{h^2}{16\pi^2 \text{m}c^2}$ (4)

with speed $\frac{4\pi e^2}{h}$. Then the equation of electric current will be ______ . Here m = mass of Electron, e = Charge of electron.

- (A) $\frac{4\pi^2 \text{ me}^5}{h^3}$ (B) $\frac{4\pi^2 \text{ me}^3}{h^5}$ (C) $\frac{32\pi^2 \text{ me}^5}{h^3}$ (D) $\frac{32\pi \text{ me}^3}{h^5}$
- The current flowing through wire changes with time as I = (3 + 2t) then the electric charge (5) flowing through any cross-section of wire in time t = 0 s to t = 4 s will be ______ C
 - (A) 20
- (B) 24
- (C) 28
- (D) 14

Ans.: 1 (C), 2 (D), 3 (B), 4 (C), 5 (C)

Drift velocity and Mobility

Electric current density,
$$J = \frac{\Delta I}{\Delta a \cos \theta} = \frac{I}{A}$$

Drift velocity of electron in conductor, $(v_d) = \frac{\text{Effective displacement of electron}}{\text{Time Interval}}$

$$v_{\rm d} = a.\tau$$
 but $F = ma = eE \Rightarrow a = \frac{eE}{m}$

$$\therefore v_{d} = \left[\frac{eE}{m}\right] \tau, \text{ where, } \tau = \text{ Relaxation time of electron}$$

Electric current density, $J = \frac{I}{\Delta} = nev_d$

$$\sigma E = nev_d$$

$$\frac{1}{\rho} E = ne \left[\frac{Ee}{m} \tau \right] \qquad \left[\because \sigma = \frac{1}{\rho} \right]$$

$$\therefore \text{ Resistivity, } \rho = \frac{\text{m}}{ne^2 \tau}$$

Mobility for material, $\mu = \frac{v_d}{E} = \frac{\sigma}{ne}$ and conductivity $\sigma = ne\mu$

SI unit of mobility is $m^2 v^{-1} s^{-1}$.

- An electron covers 4×10^{-4} m distance in presence of electric field and 10^{-4} m distance in (6) absence of electric field. Then it's drift velocity is ______. Electric field is applied for 10s.
 - (A) $3 \times 10^{-5} \text{ ms}^{-1}$

- (B) $4 \times 10^{-3} \text{ ms}^{-1}$ (C) $2 \times 10^{-5} \text{ ms}^{-1}$ (D) $3 \times 10^{-4} \text{ ms}^{-1}$
- 10A electric current is flowing through the copper wire having cross sectional area of 6mm². (7) The drift velocity of electron flowing through this wire is ____

 $M_{cu} = 63.5 \text{ kg/kmol}$, Density of copper = 8920 kg m⁻³

- (A) $1.2 \times 10^3 \text{ ms}^{-1}$ (B) $1.2 \times 10^{-3} \text{ ms}^{-1}$ (C) $1.2 \times 10^{-4} \text{ ms}^{-1}$ (D) 0.12 ms^{-1}
- An electric current density of 5Am⁻² is obtained when 8×10⁻⁸ Vm⁻¹ electric field is applied to (8) conducting wire, then resistivity of conductor is _____
 - (A) $1.6 \times 10^{-8} \ \Omega \text{m}$
- (B) $2 \times 10^{-8} \Omega m$ (C) $16 \times 10^{-5} \Omega m$
- (D) $20 \Omega m$
- 6×10^{12} electrons are flowing through any cross-section of conductor per unit time with drift (9) velocity 8×10^{10} ms⁻¹. If cross-sectional area of conductor is 4 cm² then electric current flowing through conductor is ______ A.
 - (A) 307.2
- (B) 30.72
- (C) 3.072
- (D) 6.015

(10)	In two conducting wires of same material, same current is flowing. If ratio of radii of wires is 1:4
	and drift velocity of electron in thick wire is v_d then drift velocity of electron in thin wire is

- (A) $\frac{v_{\rm d}}{16}$
- (B) $\frac{v_{\rm d}}{}$
- (C) $16 v_d$
- (D) $4 v_{d}$
- The relaxation time for collision of electron with proton in a conducting wire is 18.2×10^{-12} s, (11)then mobility of conductor is _____
 - (A) 16 Cs kg^{-1}
- (B) 1.6 Cs kg^{-1} (C) $1.6 \times 10^{-2} \text{ Cs kg}^{-1}$ (D) 3.2 Cs kg^{-1}
- In conducting wire having electron density 8×10^{12} , the average time interval between two (12)successive collision for electron with ions is 4×10^{-12} s and mass of ions is 2.56×10^{-27} kg, then the resistivity of that conducting wire is $___$ Ωm
 - (A) 31.25×10^{10}
- (B) 0.31×10^{10} (C) 0.66×10^{10}
- (D) 0.36×10^{10}
- Area of the plane shown in figure is 2cm². 4A current is flowing through the wire, then the (13)electric current density at point P of conductor will be.

- (A) $4\sqrt{3} \times 10^4 \text{ Am}^{-2}$ (B) $\frac{4}{\sqrt{3}} \times 10^4 \text{ Am}^{-2}$
- (C) $4 \times 10^4 \text{ Am}^{-2}$ (D) $2 \times 10^4 \text{ Am}^{-2}$
- Two conductors having same diameter have resistivities ρ_1 and ρ_2 , and lengths l_1 and l_2 . Then (14)resultant resistivity of series combination of these two conductor is ____

- (A) $\frac{\rho_1 l_1 + \rho_2 l_2}{l_1 + l_2}$ (B) $\frac{\rho_1 l_2 + \rho_2 l_1}{l_1 l_2}$ (C) $\frac{\rho_1 l_2 + \rho_2 l_1}{l_1 + l_2}$ (D) $\frac{\rho_1 l_1 + \rho_2 l_2}{l_1 l_2}$
- The current density along the axis of a cylindrical conductor having radius equal to R is given (15)by $J = J_0 \frac{r^3}{\mathbf{p}^4}$. Then the current along the conductor is ______. The distance from the axis is r.
 - (A) $\frac{\pi J_0 R^2}{2}$ (B) $\frac{2\pi J_0 R}{5}$ (C) $\frac{\pi J_0 R^2}{5}$ (D) $\frac{\pi^2 J_0 R}{2}$

- (16)0.4 mm diameter copper wire is connected with 2 mm diameter iron wire and 4 mA current is passed through copper wire then current density in iron wire will be _____
 - (A) $1.27 \times 10^3 \text{ Am}^{-2}$
- (B) $2 \times 10^5 \text{ Am}^{-2}$ (C) $1.5 \times 10^6 \text{ Am}^{-2}$ (D) $3 \times 10^3 \text{ Am}^{-2}$

Ans.: 6 (A), 7 (C), 8 (A), 9 (B), 10 (C), 11 (D) 12 (B), 13 (C), 14 (A), 15 (B), 16 (A)

Ohm's law: $R = \frac{V}{I} \Rightarrow V = IR$.

Electrical Resistivity and conductivity

Resistance $R = \rho \frac{l}{A}$, where $\rho =$ Resistivity of material of wire

$$V = IR = \frac{I \rho l}{A} = J \rho l$$
, but $V = El$

$$\therefore E = J \rho$$

Conductivity, $\sigma = \frac{1}{\rho}$ unit of conductivity is $\mathfrak{T} \mathbf{m}^{-1}$ or siemen \mathbf{m}^{-1}

Limitations of ohm's law

In practice, for some devices, V - I relationship are nonlinear e.g. diode, transistor

(ii) Relation of V and I depends on sign of V.

(iii) The relation between $V \rightarrow I$ is not unique. i.e. there is more than one value of V for same

current (I).

(17)By stretching uniformly, the length of copper wire is increased by n times or it's radius is made

 $\frac{1}{\sqrt{n}}$ times then it's resistance will be increased by ______ times.

- (A) *n*
- (B) n^2 (C) n^3

(18)	The electric current is	flowing through two par	rallel wires having same	material. If the ratio of
	lengths and radii are $\frac{8}{6}$	and $\frac{4}{6}$ then the ratio of	currents flowing through	h wires is
	(A) 3	(B) $\frac{1}{3}$	(C) $\frac{8}{9}$	(D) 2
(19)	The material of resistiv	vity ρ is filled between	two concentric spherical	shells of radil a and b
	(b > a) then the resista	ance of space between th	ese two spherical shells	is
	(A) $\frac{\rho}{4\pi (a+b)}$	(B) $\frac{\rho}{4\pi} \left[\frac{1}{b} - \frac{1}{a} \right]$	(C) $\frac{\rho}{4\pi} \left[\frac{1}{a^2} - \frac{1}{b^2} \right]$	(D) $\frac{\rho}{4\pi} \left(\frac{1}{a} - \frac{1}{b} \right)$
(20)	The dimensions of bloc	k is $6 \text{ cm} \times 4 \text{ cm} \times 2 \text{ cm}$.	The ratio of maximum a	and minimum resistances
	obtained between mutua	ally opposite sides is		
	(A) 9:1	(B) 1:9	(C) 1:6	(D) 1:18
(21)	The resistance per uni	t length of wire is 6Ω	. If the wire is bent to	form a circle of radius
	12 cm then the resistan	ce between two diametric	cally opposite points will	be
	(A) $0.72 \pi \Omega$	(B) $0.36 \pi \Omega$	(C) $0.24 \pi \Omega$	(D) $1.44 \pi \Omega$
(22)	The charge flowing th	rough each resistance cl	hanges with time as Q :	$= \alpha t - \beta t^2$, then current
		ill be maximum at time _		
	(A) $\frac{\alpha}{2\beta}$	(B) $\frac{2\beta}{\alpha}$	(C) $\frac{\alpha^2}{2\beta^2}$	(D) $\frac{\alpha^3}{\beta}$
	(A) 2β	(B) $\frac{\alpha}{\alpha}$	(C) $2\beta^2$	(D) β
(23)	The conducting cylinde	r of length <i>l</i> have inner an	d outer radii are r_1 and r_2	. If resistivity of material
	of cylinder is ρ then the	ne resistance between inr	ner and outer wall at cylin	nder is
	(A) $\frac{\rho l}{2\pi} l_n \left[\frac{r_1}{r_2} \right]$	(B) $\frac{\rho}{2\pi l} l_n \left[\frac{r_1}{r_2} \right]$	(C) $\frac{\rho}{2\pi l} l_n \left[\frac{r_2}{r_1} \right]$	(D) $\frac{\rho l}{2\pi} \left(r_2 - r_1 \right)$
(24)	A wire of resistance 8	Ω is bent from the cente	er by 180° then it's ends a	are joined and is twisted,
	So it's resistance become	nes		
	(A) 8 Ω	(B) 2 Ω	(C) 4 Ω	(D) 1Ω
(25)	A copper wire is stretc	hed to make it longer by	0.1 %. The percentage	increase in its resistance
	is			
	(A) 0.1 %	(B) 0.4 %	(C) 0.2 %	(D) 2 %
(26)	When P.d. across two	terminal of copper wire	e is increased the curren	nt flowing throgh it also
	increases. Then for n e	lectric charge flowing the	rough wire per unit volu	me and drift velocity V_d
	of electric charge, which	h of the fallowing statem	nent is true ?	
	(A) n constant and v_d	decreases	(B) n constant and v_d	increases.
	(C) n increases and v	decreases	(D) n increases and v_0	remains constant
		<u>.</u>		<u>.</u>

- (27) Masses of three wires of copper are in the ratio 2:3:5 and their lengths are in ratio 3:5:7, then the ratio of their resistance is ______.
 - (A) 20:30:50
- (B) 125:15:1
- (C) 3:5:7
- (D) 135:250:294

Ans.: 17 (B), 18 (B), 19 (B), 20 (A), 21 (B), 22 (A), 23 (C), 24 (B), 25 (C), 26 (B), 27 (D)

Colour code for carbon Resistors:

First		Second Band	Third Band	Fourth Band
Tenth Di	git	Ones Digit	Multiple	Tolerence
Black	0	0	10°	-
Brown	1	1	10¹	<u>+</u> 1 %
Red	2	2	10^{2}	± 2 %
Orange	3	3	10^{3}	<u>+</u> 3 %
Yellow	4	4	10 ⁴	<u>+</u> 4 %
Green	5	5	105	_
Blue	6	6	10^{6}	_
Violet	7	7	107	_
Gray	8	8	10^{8}	_
White	9	9	10 ⁹	_
Gold	_	_	10-1	<u>+</u> 5 %
Silver	_	_	10-2	± 10 %
None	_	_	_	± 20 %

To remember colour code

<u>B</u> <u>B</u> <u>R</u> <u>O</u> <u>Y</u> <u>G</u>oes to <u>B</u>ombay <u>V</u>ia <u>G</u>walior.

Temperature dependence of resistivity

The empirical formula for resistivity and temperature

$$\rho_{\theta} = \rho_{\theta_0} \left[1 + \alpha \left(\theta - \theta_0 \right) \right]$$
, where α = temperature co-efficient of resistivity

 ρ_{θ} = Resistivity at a temperature θ

 ρ_{θ_0} = Resistivity at proper reference temperature θ_0

The above equation can be written in the form of resistance as follows

$$R_{\theta} = R_{\theta_0} \left[1 + \alpha \left(\theta - \theta_0 \right) \right]$$
. Temerature co-efficient of Resistivity, $\alpha = \frac{R_t - R_o}{R_o \times t}$

(28)	-	per wire is 5Ω at $50 ^{\circ}$ 0 at 0° C temperature will	-	at 100 °C temperature then
	(A) 1	(B) 2	(C) 3	(D) 4
(29)	At	temperature, the resi	stance of copper wire	will be four times than it's
	resistance at 27 °C	temperature. For coppe	$\alpha = 4 \times 10^{-3} \text{ C}^{-1}$.	
	(A) 354 °C	(B) 758 °C	(C) 1023 °C	(D) 1516 °C
(30)		nce at temperature 30°C icient of resistivity of wir	•	rature 100° C is 4.5Ω then
	(A) 0.0012 °C ⁻¹	(B) 0.0024°C ⁻¹	(C) 0.0032 °C ⁻¹	(D) 0.008 °C ⁻¹
(31)	room temperature	(27 °C), it's resistance	is obtained 75.3 Ω . Wh	en toaster is connected with rom, $\alpha = 1.7 \times 10^{-4} ^{\circ}\text{C}^{-1}$ then
	it's final temperatu	re will be	<u></u> .	
	(A) 747 °C	(B) 847 °C	(C) 897 °C	(D) 927 °C
(32)	is 5.23Ω . When		n a heatbath, the resista	$0 ^{\circ}\text{C}$ is $5 ^{\circ}\Omega$ and at $100 ^{\circ}\text{C}$ nnce of platinum is obtained
	(A) 278 °C	(B) 346 °C	(C) 372°C	(D) 412°C
(33)				27°C temperature. Steady supply of 45 V. For tungsten,
	$\alpha = 4.5 \times 10^{-3} \text{ K}^{-1}$	then find the temperature	e of Bulb filament. Supp	ose Ohm's law is obeyed.
	(A) 2160 K	(B) 1800 K	(C) 2070 K	(D) 2300 K
(34)	Two materials have	We the value of α_1 and α_2	v_2 as $5 \times 10^{-4} {}^{\circ}\text{C}^{-1}$ and -	$-3.8 \times 10^{-4} \circ \text{C}^{-1}$ respectively.
	two materials such resistivity ρ_{20} or	that it's resistivity does	not change with tempera ce reference temperatur	is made by combining these ture, then what should be the 20° C. Assume that the mponent materials.
	(A) 3.185×10^{-6} §	Ωm (B) 3.158×10^{-9} C	$2m$ (C) 3.185×10^{-8} Ω	Ωm (D) $3.158 \times 10^{-8} \Omega m$
(35)	•	e of carbon resistor, the rours in order, is		of Indian National flag, from
	(A) $39 \times 10^5 \pm 20$	% (B) $59 \times 10^5 \pm 20$	% (C) $39 \times 10^5 \pm 10$	% (D) $39 \times 10^5 \pm 5$ %
(36)	The value of a car	bon resistor is 1760 Ω to	o 2640 Ω , then colour c	eode at that carbon resistor is
	(A) Brown, Red,	Brown, No colour	(B) Red, Red, Bla	ck, No colour
	(C) Red, Black, I	Red, No colour	(D) Red, Red, Red	d, No colour
Ans	.:28 (D), 29 (B),	30 (D), 31 (B), 32 (B)	, 33 (D), 34 (D), 35 ((A), 36 (D)
		3	102 ————	

	The relation between	en terminal voltege and e	emf of cell, $V = \varepsilon - Ir$	The relation between terminal voltege and emf of cell, $V = \varepsilon - Ir$				
	Where, $r = intern$	al resistance of electric c	eell.					
	Electric Force, F _e	$= eE$, work $W = \int \vec{F_n} \cdot \vec{d}$) I					
	Non electrical force	$e = F_n$						
	When $F_n = F_e$ the	n electric current flowing	g through the battery be	comes zero $I = o$.				
	which is called Op-	en circuit condition.						
•	Charging current for	or lead Accumulator, I =	$\frac{\mathbf{V} - \boldsymbol{\varepsilon}}{R + r}$					
•	Electrical energy c	onsumed in resistance =	I^2 Rt					
•	Electrical energy c	onsumed in D.C.source	= V <i>I</i> t					
•	Energy consumed	to charge electric cell = 1	E <i>l</i> t					
(37)	then it's internal re	esistance is	·	nnecting resistance R Ω with it				
	(A) $r = \frac{\varepsilon R}{V} - R$	(B) $r = \left(\frac{\varepsilon + V}{V}\right) R$	(C) $r = (\varepsilon - V)$	$R (D) r = \frac{\varepsilon}{V} - R$				
(38)	By an electric cell	, the electric current is p	bassed through resistance	ce R_1 for time t . Now by the				
	same cell, the ele	ctric current is passed t	through resistance R ₂	for same time. If in both the				
	cases Joule heat pr	oduced is same then inte	ernal resistance of electr	ric cell is				
	$(A) \frac{R_1 + R_2}{2}$	(B) $\frac{R_1 - R_2}{2}$	(C) $R_1 \times R_2$	(D) $\sqrt{R_1 \cdot R_2}$				
(39)	Electromotive force	e of electric cell is						
	(A) Electric force	e (B) Non electric	force (C) Energy	(D) Electromagnetic force				
(40)	When electric cell	is in open circuit condition	on then	_				
	(A) $r = 0$	(B) $\varepsilon = 0$	(C) $V = \varepsilon$	(D) $F_n < F_e$				
(41)		ing same emf of 2 V ar I resistance R, then maxi		ance of 1Ω are connected in e				
	(A) 3.2 W	(B) $\frac{16}{9}$ W	(C) 5 W	(D) 2 W				
(42)		have emf 2.2 V. It's te		ed 1.8 V on connecting 5Ω				
	(A) $\frac{10}{9} \Omega$	(B) $\frac{9}{10}\Omega$	(C) $\frac{9}{5}\Omega$	(D) $\frac{5}{9}\Omega$				
		:	303 —					

Electromotive force (emf) and terminal voltage of electric cells.

(43)Electric current of 0.75 A is obtained on connecting 4 Ω resistance across electrodes of electric cell. But when 10Ω resistance is connected, terminal voltage obtained is 3.75 V, then electric current flowing through cell is ______ A at that time.

(A) 0.25

(B) 0.34

(C) 0.50

(D) 1

(44)0.9 A current is obtained on connecting 2.4 Ω resistance with electric cell. On connecting 7 Ω resistance with the same cell, 0.3 A current flows then it's internal resistance is _____

(B) 0.5

(C) 0.3

(45)Two electric cells have same emf ε and internal resistances r_1 and r_2 . These two electric cell are connected in series with external resistance R. The electric potential difference across two terminal of first electric cell is obtained zero then value of resistance R is _

(A) $\sqrt{r_1 r_2}$

(B) $r_1 + r_2$ (C) $r_1 - r_2$

(D) $\frac{r_1 + r_2}{2}$

Ans.: 37 (A), 38 (D), 39 (C), 40 (C), 41 (D), 42 (A), 43 (B), 44 (B), 45 (C)

Kirchoff's Rules:

Kirchoff's first rule $\rightarrow \sum I = 0$

- Kirchoff's second rule $\rightarrow \sum IR = \sum \varepsilon$
 - (a) If our journey through the resistor is in the direction of flow of current which is arbitrarily choosen, IR should be considered negative and if our journey is in the opposite direction of electric current then take IR positive.
 - The emf of the battery should be considered negative while moving from positive (b) terminal to negative terminal through battery but if Journey is from negative terminal to positive terminal through battery then emf should be considered positive.
- (iii) Equivalent resistance for series combination of resistances, $R = R_1 + R_2 + \dots + R_n$
- (iv) Equivalent resistance for parallel combination of resistances

 $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$

Six resistances each having resistance of 10Ω are connected as shown in the figure. The equivalent (46)resistance between points P and R will be __

- (A) 20Ω
- (B) $\frac{80}{3}\Omega$
- (C) $\frac{80}{11} \Omega$
- (D) 80Ω

(47) In the given electrical circuit, the value of unknown resistance R should be Ω , so that resultant resistance between P and Q is also R.

(48) When the switch is on in the following circuit, the electric current flowing through it is

When 7A current is flowing in electric circuit then the electric potential difference between B

B and C will be ______ volt.

(50) In the following circuit, the effective resistance between P and Q is ______

Resistance of each wire is 8Ω

- (51) A cube is made by connecting 12 wires each of resistance 12 Ω . The equivalent resistance between two end points of any diagonal of cube will be _____.
 - (A) 6 Ω
- (B) 5Ω
- (C) 10Ω
- (D) 12Ω

Five resistances are connected as shown in figure. On the dotted line shown in figure two (52)resistances of 2Ω are connected. The ratio of the resistance between A and B in the circuit before and after joining resistances on dotted line is __

- The equivalent resistance between points A and B will be ______ in the given circuit. (53)

- (D) 2R
- A circular wire of radius 8 cm have $\frac{1}{\pi}$ resistance per unit length. Battery of 10 V is connected (54)between points A and B on circular wire then current flowing through the battery is ______. Points A and B form right angle at center O.

- (A) 3 A
- (B) 5 A
- (C) 3.33 A
- (D) 10 A
- Nine resistances each with value R are connected as shown in figure. Then equivalent resistance (55)between A and B will be _____

- (A) $\frac{7}{6}$ R Ω

- (C) $\frac{3}{5}$ R Ω (D) $\frac{2}{9}$ R Ω

The equivalent resistance between points A and B in the given circuit is _____ (56)

- (A) 50Ω
- (B) $\frac{60}{11} \Omega$

- - B (C) $\frac{80}{7}$ Ω
- (D) 60Ω
- In a given circuit, resistance of each resistor is r. Then equivalent resistance between A and B is (57)

- (A) $\frac{3}{4}r$ (B) $\frac{2}{3}r$ (C) $\frac{8}{15}r$ (D) $\frac{8}{7}r$
- (58)Seven resistances each of 10Ω are connected with 2 V battery as shown in the figure, then current flowing through ammeter will be _____

- (A) 2 A
- (B) 1 A
- (C) 0.4 A
- (D) 0.8 A
- (59)Thirteen resistors each of resistance R Ω are connected in the circuit as shown in the figure. The effective resistance between A and B is _____

- (A) $2R \Omega$
- (B) $\frac{4R}{3} \Omega$
- (C) $\frac{2R}{3} \Omega$
- (D) $R \Omega$
- (60)The effective resistance between points A and B in the given network shown in the figure will be

- (A) $r \Omega$
- (B) $2r \Omega$
- (C) $4r \Omega$ (D) $\frac{r}{2}\Omega$

- (A) 10Ω
- (B) 5Ω
- (C) 20Ω
- (D) 14Ω

The equivalent resistance of given network is __ (62)

(63)The electric current flowing through the battery, of 10V and internal resistance 0.5Ω , connected with an infinite network formed by resistances each of value 4Ω is ______ A.

(64)The equivalent resistance between points A and B in the following network will be _____ Each resistance is of 2Ω .

- (A) 2Ω
- (B) 1Ω
- (C) 3Ω
- (D) 4Ω

Each resistance of network is of 4Ω , then the effective resistance between points A and B will (65)

- (A) 1Ω
- (C) 4Ω
- (D) 8 Ω

(66)		e		3:1. If resistance of thick wire wire is
	(A) 40Ω	(B) $\frac{40}{3} \Omega$	(C) $\frac{5}{2}$ Ω	(D) 100 Ω

- A polygon of *n* sides is formed from the wire of uniform cross-section and resistance R. Sides of polygon are in even number. Then the ratio of equivalent resistance between mutually opposite points and equivalent resistance between two end points of any side will be ______.
 - (A) $\frac{4(n-1)}{n^2}$ (B) $\frac{2(n-1)}{n^2}$ (C) $\frac{4(n-1)}{n}$ (D) $\frac{2n^2}{(n-1)}$
- (68) Three resistances are in ratio 1 : 2 : 3. The equivalent resistance in parallel combination is 6 Ω then equivalent resistance in series combination will be ______.
 (A) 36 Ω (B) 84 Ω (C) 66 Ω (D) 18 Ω
- (A) 36Ω (B) 84Ω (C) 66Ω (D) 18Ω (69) When two resistances R_1 and R_2 are connected in series, their equivalent resistance is 50Ω and 12Ω when connected in parallel, then the values of these resistances will be
 - (A) 30Ω , 20Ω (B) 40Ω , 10Ω (C) 35Ω , 15Ω (D) 45Ω , 5Ω
- When R_1 and R_2 are connected in series, the equivalent resistance is R_S and when connected parallel the equivalent resistance is R_p . If $R_S \cdot R_p = 16$ and $\frac{R_1}{R_2} = 4$ then R_1 and $R_2 =$.

 (A) 2Ω , 0.5Ω (B) 1Ω , 0.25Ω (C) 8Ω , 2Ω (D) 4Ω , 1Ω
- (71) In series combination of two resistors, the equivalent resistance is S. When connected parallel, the equivalent resistance is P. If S = nP then the minimum value of n will be ______.
 (A) 3
 (B) 4
 (C) 2
 (D) 1
- (72) The galvanometer shows zero deflection in the circuit shown in figure. If internal resistances of battery A and B is negligible then value of R is _____.

(73) For the given network currents; I_1, I_2 and I_3 are ______.

____ and ____

(74)The resistance of galvanometer is 5Ω is connected in adjacent circuit, then current flowing through the galvanometer will be _____

- (A) $\frac{1}{17}$ A (B) $\frac{2}{17}$ A (C) $\frac{3}{17}$ A (D) $\frac{4}{17}$ A

- (75)For the given circuit, obtain current flowing through resistance R₁ and electric potential at junction O.

- (D) $I_1 = 0.19 \text{ A}, V_o = 1.215 \text{ V}$
- Ans.: 46 (C), 47 (C), 48 (B), 49 (B), 50 (B), 51 (C) 52 (C), 53 (C), 54 (C), 55 (D), 56 (C), 57 (C), 58 (D), 59 (C), 60 (D), 61 (D), 62 (C), 63 (A), 64 (A), 65 (B), 66 (A), 67 (A), 68 (C), 69 (A), 70 (C), 71 (B), 72 (D), 73 (A), 74 (B), 75 (C)
 - (1) The current flowing in circuit for series combination of two cells, $I = \frac{\varepsilon_{eq}}{R + r_{eq}}$ Where, $\varepsilon_{eq} = \varepsilon_1 + \varepsilon_2 = \text{Equivalent emf of series connection of two cells}$ and, $r_{eq} = r_1 + r_2 =$ Equivalent internal resistance of series connection of to cells.
 - The current flowing in circuit for parallel combination of two cells, $I = \frac{\varepsilon_{eq}}{R + r_{eq}}$

Where, $\varepsilon_{eq} = \frac{\varepsilon_1 r_2 + \varepsilon_2 r_1}{r_1 + r_2} = \text{Equivalent emf of parallel combination of two cells.}$

 $r_{eq} = \frac{r_1 r_2}{r_1 + r_2}$ = Equivalent internal resistance of parallel combination of two cells.

(3) For mix combination of n cells, the current flowing in the circuit

$$I = \frac{\sum_{i=1}^{n} \mathcal{E}_{i}}{R + \frac{\sum_{i=1}^{n} r_{i}}{m}}$$
 where, $m =$ number of rows formed by series combination of n cells.

- Resistance of an ammeter is 0.02Ω . When it is connected with a battery, it shows 8 A current. (76)Now if 3Ω resistance is connected in series, the current is decreased by 6 A then emf of battery is _____ V and internal resistance is _____.
 - (A) $0.49 \text{ V}, 2\Omega$
- (B) $0.98 \text{ V}, 8 \Omega$
- (C) $8 \text{ V}, 0.98 \Omega$
- (D) $2 \text{ V}, 4.9 \Omega$
- (77)n electric cells each with emf ε and internal resistance r are connected in closed cricuit. In this, cell A is connected in destructive manner. Then except for cell A the electric potential difference for each cell is _____

- (B) $\left(\frac{n-1}{n}\right)\varepsilon$ (C) $\left(\frac{n}{n-1}\right)\varepsilon$ (D) $\left(\frac{n-2}{n}\right)\varepsilon$
- (78)Two cells of emf 10 V, Internal resistance 2Ω and emf 4 V and internal resistance 1Ω are connected with 20Ω resistance as shown in figure, then current flowing through 20Ω resistance is ____

- (B) 0.03 A
- (D) 2 A
- Two cells each with emf 4 V and internal resistance 2Ω are connected in parallel then current (79)flowing by these two cells from 1Ω resistance is ______ A.
 - (A) 0.5
- (B) 1
- (C) 2
- (D) 4

Ans.: 76 (C), 77 (A), 78 (B), 79 (C)

(a) Wheatstone Bridge

- (1) Ratio of resistances in balance conditation of wheatstone bridge, $\frac{R_1}{R_2} = \frac{R_3}{R_1}$
- (2) Experimentally resistance measured with meter bridge, $R_1 = R_2 \frac{l_1}{(100 l_1)}$

(b) Potentiometer

(1) The current flowing through potentiometer circuit, $I = \frac{\mathcal{E}}{R + L\rho + R}$

Where, $L\rho$ = Resistance of potentiometer wire

- (2) emf of battery measured with potentiometer, $V_l = \left[\frac{\varepsilon \rho}{R + L\rho + r}\right] l$
- (3) Potential gradient of potentiometer wire, $\sigma = \frac{V_l}{l} = \frac{\varepsilon \rho}{R + L\rho + r}$.
- (4) Comparison of emf of two cells, $\frac{\mathbf{E}_1}{\mathbf{E}_2} = \frac{l_1}{l_2}$.
- (5) For constructive and destructive combination of cells $\frac{\mathbf{\mathcal{E}}_1}{\mathbf{\mathcal{E}}_2} = \frac{l_3 + l_4}{l_3 l_4}$
- (6) Internal resistance of cell by potentiometer, $r = \left[\frac{\varepsilon}{V} 1\right] R = \left[\frac{l_1 l_2}{l_2}\right] R$
- (80) When 5Ω resistance is in one branch and R Ω resistance is in other branch of wheastone bridge, the null point is obtained at distance l_1 . It another resistance R Ω is connected in parallel with R then new null point is obtained at $1.6 l_1$. Then value of R will be ______.
 - (A) 10Ω
- (B) 15Ω
- (C) 20Ω
- (D) 25 Ω
- (81) When D.C. voltage is applied between P and Q in the following circuit, the current flowing through 4Ω resistance is 1 A, then p.d. between points P and Q is _____.

- (A) 0.5 V
- (B) 3.2 V
- (C) 1.5 V
- (D) 1 V
- (82) Length of a potentiometer wire is 200 cm. The emf of standard battery is ε V. It is used to find emf of battery having 1Ω internal resistance. If null point is obtained at 40 cm from the positive terminal then emf of battery is ______.
 - (A) ε
- (B) $\frac{\varepsilon}{2}$
- (C) $\frac{\varepsilon}{5}$
- (D) $\frac{\varepsilon}{4}$
- (83) The current flowing through the battery in the given network will be _____.

- (A) 1.55
- (B) 3
- (C) 3.5
- (D) 4

(84)	resistance is connec	ondition of meterbric cted in right branch, to Ω then value of residuals.	he null point is	obtained at dista		•
	(A) 6.7 Ω	(B) 8.2 Ω	(C) 9	.1 Ω	(D) 10.5 Ω	
(85)	In the electric circu	it of potentiometer, tw	vo cell are conn	ected in series in		
	.,	ii) opposing mode the	-		t distances 6 m	and 2 m
	(A) 1:1	(B) 1:2	(C) 2	:1	(D) 3:1	
(86)	is used. In open cir 9.5Ω resistance is	gure to find internal recuit condition of batts connected in outer conficely will be	ery, the null poi	int is obtained at	distance 76.3 c	em. Now,
	internal resistance of	V	 ·			
			(A) 1.5Ω	(B)	1.6 Ω	
	A 1.5 V G G	В	(C) 1.7 Ω	(D)	1.8 Ω	
(87)	9.5Ω	otentiometer for com	parison of two	cells of emf c	and c the nul	1 noint is
(07)		e 64 cm in series con				
			_		S or G_2 are reve	riscu, tric
	null point is obtained	ed at distance 32 cm t	hen $\frac{\varepsilon_1}{\varepsilon_2} = \underline{\hspace{1cm}}$	·		
	(A) 1:1	(B) 2:1	(C) 3	:1	(D) 4:1	
(88)	20Ω resistance is i	n one branch and 60 g	2 resistance is in	n other branch of	meterbridge. If re	esistances
	are interchanged in the	he branches then the nu	ll point will be d	isplaced by distance	ce	
	(A) 33.3 cm	(B) 66.67 cm	(C) 2:	5 cm	(D) 50 cm	
(89)	The specific resista	ance of potentiometer	wire is $10^{-12} \Omega$	and current flov	wing through it	is 0.5 A.
	If area of cross sec	tion of wire is 10 ⁻⁶ m	then potentia	l gradient will be	; v	m^{-1} .
	(A) 2.5×10^{-7}	(B) 5×10^{-7}	(C) 7	1.5×10^{-7}	(D) 10×10^{-7}	
(90)	The potentiometer	wire of length 10 n				ance box

Ans.: 80 (B), 81 (B), 82 (C), 83 (A), 84 (B), 85 (C), 86 (C), 87 (C), 88 (D), 89 (B), 90 (B)

(B) 760Ω

the resistance box. .

(A) 260Ω

and cell of 2 V. If potential gradient is of 0.1 mVcm^{-1} then the resistance R = _____ from

(C) 960 Ω

(D) 1060Ω

Electrical energy and power

Electrical energy consumed, $W = VIt = I^2Rt = \frac{V^2}{R}t$

Joule's law, The heat energy produced, $P = I^2R t$

Now,
$$J = \frac{W}{H} \Rightarrow H = \frac{W}{J} = \frac{I^2 Rt}{J}$$

(91)In the following circuit the heat produced per minute in $R_2 = 3\Omega$ resistance will be ______ J.

- (A) 640
- (B) 1280
- (C) 960
- (D) 320

(92)There are 15 bulbs each of 40 W, 5 bulbs each of 100 W, 5 fans each of 80 W and a heater of 1 kW in a house. Electric source has potential of 220 V. Then the fuse in the house should be with minimum capacity of _____ A.

- (A) 12
- (B) 14
- (C) 8
- (D) 10

(93)An electric motor draws 5 A electric current when connected with 200 V D.C. supply. If efficiency of motor is 60 % then resistance of winding wire of motor will be _____

- (A) 4Ω
- (B) 8Ω
- (C) 16Ω
- (D) 24Ω

(94)n bulbs are made such that each have power P for same supply voltage. If all are connected in series with same supply voltage then power drawn in each will be _____

- (A) P
- (B) nP
- (C) $\frac{P}{n}$
- (D) $\frac{P}{r^2}$

(95)Two filaments of same length are first connected in series and then connected in parallel. For the same current of source, the ratio of heat produced in both the cases will be _____

- (A) 1:2
- (B) 4:1
- (C) 1:4
- (D) 2:1

(96)Two resistances R_1 and R_2 are connected with a battery of zero internal resistance. The Joule heat produced in parallel combination should be 5 times than the Joule heat produced in series combination. If resistance $R_1 = 100 \Omega$ then $R_2 = \underline{\qquad} \Omega$.

- (A) 200 or 30
- (B) 249 or 51 (C) 262 or 38
- (D) 410 or 65

The rate of melting of ice when 210 V supply is given to the wire of 20Ω resistance passed (97)through ice will be _____.

- (A) 6.56 gs^{-1}
- (B) 5.66 gs^{-1} (C) 1.92 gs^{-1}
- (D) 0.85 gs^{-1}

(98)A bulb B_1 of 100 W-250 V rating and two bulbs B_2 and B_3 of 60 W, 250 V rating are connected with supply of 250 V as shown in the figure. If W_1 , W_2 and W_3 are output power of bulb B_1 , B_2 and B_3

respectively then _

- (A) $W_1 > W_2 = W_3$ (B) $W_1 > W_2 > W_3$ (C) $W_1 < W_2 = W_3$ (D) $W_1 < W_2 < W_3$

- (99)The water in the electric kettle start boiling after 15 minute. Now if length of heating wire of electric kettle is made $\frac{2}{3}$ times than initial length, then the same amount of water will start boiling after _____ time for same supply voltage.
 - (A) 8 minute
- (B) 10 minute
- (C) 12 minute
- (D) 15 minute
- (100)The series combination of four identical resistors connected with battery consumes 20W power. If these four resistances are connected parallel to the same battery then power consumed will
 - (A) 80 W
- (B) 100 W
- (C) 5 W
- (D) 320 W

91 (B), 92 (A), 93 (C), 94 (C), 95 (B), 96 (C), 97 (A), 98 (D), 99 (B), 100 (D)

Question related to experiments

(101)Which of the following circuit can be used to prove Ohm's law?

(102)The dimensions of a conductor having specific resistance ρ are as shown in figure. Then what will be effective resistance between A and B?

(103)The resistance of a conductor is 2Ω at 300 K temperature, then at what temperature it's resistance will be 4 Ω ? For this resistance $\alpha = 1.25 \times 10^{-3} \, {}^{\circ}\text{C}^{-1}$.

(A) 1100 °C

(B) 827 °C

(C) 1127 °C

(D) 800 °C

(104)The equivalent resistance of parallel combination of n resistances is $x \Omega$. When one resistance is removed from this combination, the equivalent resistance becomes $y \Omega$. Then the value of removed resistance will be ____

(A) $\frac{xy}{(x+y)}$ (B) $\frac{xy}{(y-x)}$ (C) (y-x)

The $V \rightarrow I$ graph for a conductor at temperature T_1 and T_2 is as shown in figure. Then the term (105) $(T_2 - T_1)$ proportional to ______.

- (A) $\cos 2\theta$
- (B) $\sin 2\theta$
- (C) $\cot 2\theta$
- (D) $\tan 2\theta$

(106)As shown in the figure, eight resistances each of 4Ω are connected with battery of 6 V and negligible internal resistance. Then the current flowing in circuit $I = \underline{\hspace{1cm}}$.

- (A) 0.25 A
- (B) 0.50 A
- (C) 0.75 A
- (D) 1.0 A

(107)The electric current flowing through the battery in given circuit will be ______A.

- (A) 2 A
- (B) 3 A
- (C) 6 A
- (D) 9 A

(108)A wire of resistance R is compressed uniformly till its radius becomes n times the initial radius, then new resistance of wire will be _____

- (A) $\frac{R}{n^4}$
- (B) $\frac{R}{n^2}$ (C) $\frac{R}{n}$
- (D) nR

- (109)Three identical resistors connected in series with source of emf consumes 100 W power. If three resistances are connected in parallel with same source of emf then the power consumed will be _____W.
- (B) 100
- (C) 300
- (D) 900
- $V \rightarrow I$ graphs for series and parallel connection of two identical resistors are as shown in figure. (110)Which graph is for parallel connection?

- (A) a
- (B) *b*
- (C) a and b
- (D) Not any one from a and b
- (111)In an experiment of a meter bridge, unknown resistance x Ω and resistance 12 Ω are connected with thin uniform wire of meter bridge. After connecting electrical components properly, the null point is obtained with jocky key at distance 60 cm from point A on AB wire, then value of unknown resistance will be ______. (Positive terminal of battery is connected with A)
 - (A) 18Ω
- (B) 8Ω
- (C) 16Ω
- In the circuit of meterbridge, coil P and Q with small resistance are connected in two gaps. At (112)that time, the null point in obtained with jockey key at 40 cm from the end of P. If 60Ω resistance is connected parallel to Q, the null point is displaced by 20 cm then what will be resistance of P and Q?
 - (A) 50Ω and 75Ω
- (B) 60Ω and 30Ω
- (C) 20Ω and 40Ω
- (D) 10Ω and 50Ω
- Six resistances each of value r are arranged as shown in the figure, then effective resistance (113)between A and B will be _

- (A) $\frac{2}{3}r$

- (C) r
- (D) $\frac{r}{2}$
- (114)For any conductor, $V \rightarrow I$ graphs at different temperatures are as shown in figure, then ______

- (A) $T_1 < T_2 < T_3$ (B) $T_1 = T_2 = T_3$
- (C) $T_1 > T_2 > T_3$ (D) $T_2 = \frac{T_1 + T_3}{2}$

end of wire is obtained at distance 20 cm. If P < Q and 4P is balanced with Q then the null point will be at distance (A) 50 cm (B) 80 cm (C) 40 cm (D) 70 cm (II6) The resistances of four branches P, Q, R, and S of a wheatstone bridge are 10 Ω, 30 Ω, 20 Ω and 60 Ω respectively. The emf and internal resistance of cell are 5 V and 2 Ω respectively. If resistance of galvenometer is 60 Ω then current drawn from the cell will be (A) 2 Λ (B) 0.2 Λ (C) 0.15 Λ (D) 0.174 Λ (D) 0	(115)	_	_	-	Q, the null point from one
(A) 50 cm (B) 80 cm (C) 40 cm (D) 70 cm (I16) The resistances of four branches P, Q, R, and S of a wheatstone bridge are 10 Ω, 30 Ω, 20 Ω and 60 Ω respectively. The emf and internal resistance of cell are 5 V and 2 Ω respectively. It resistance of galvenometer is 60 Ω then current drawn from the cell will be (A) 2 A (B) 0.2 A (C) 0.15 A (D) 0.174 A (I17) In the circuit of wheatstone bridge, different resistances are connected as shown in figure. Current flowing through galvanometer is zero. If heating effect are neglected then in which following condition, the current through galvanometer will not be zero? (A) emf of cell is doubled (B) Exchanging battery and galvenometer (C) Resistances of circuit are doubled (D) Interchanging resistances R ₁ and R ₂ (I18) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (I19) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (I20) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1Ω (I21) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω				11 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ianced with Q then the hun
 (116) The resistances of four branches P, Q, R, and S of a wheatstone bridge are 10 Ω, 30 Ω, 20 Ω and 60 Ω respectively. The emf and internal resistance of cell are 5 V and 2 Ω respectively. If resistance of galvenometer is 60 Ω then current drawn from the cell will be		_		(C) 10	(D) 70
and 60Ω respectively. The emf and internal resistance of cell are 5 V and 2Ω respectively. If resistance of galvenometer is 60Ω then current drawn from the cell will be	(11.6)		,	` '	
resistance of galvenometer is 60 Ω then current drawn from the cell will be	(116)				_
(A) 2 Λ (B) 0.2 Λ (C) 0.15 Λ (D) 0.174 Λ In the circuit of wheatstone bridge, different resistances are connected as shown in figure. Current flowing through galvanometer is zero. If heating effect are neglected then in which following condition, the current through galvanometer will not be zero? (A) emf of cell is doubled (B) Exchanging battery and galvenometer (C) Resistances of circuit are doubled (D) Interchanging resistances R₁ and R₂ (III8) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be		and 60Ω respective	vely. The emf and intern	al resistance of cell are 5	δ V and 2Ω respectively. If
In the circuit of wheatstone bridge, different resistances are connected as shown in figure. Current flowing through galvanometer is zero. If heating effect are neglected then in which following condition, the current through galvanometer will not be zero? (A) emf of cell is doubled (B) Exchanging battery and galvenometer (C) Resistances of circuit are doubled (D) Interchanging resistances R ₁ and R ₂ (II8) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be		resistance of galver	nometer is 60Ω then cu	rrent drawn from the cell	will be
flowing through galvanometer is zero. If heating effect are neglected then in which following condition, the current through galvanometer will not be zero? (A) emf of cell is doubled (B) Exchanging battery and galvanometer (C) Resistances of circuit are doubled (D) Interchanging resistances R₁ and R₂ (E) is connected. If the cell is changed, the null point displaces to distance 63 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (E) 2.2 SV (D) 2.5		(A) 2 A	(B) 0.2 A	(C) 0.15 A	(D) 0.174 A
condition, the current through galvanometer will not be zero? (A) emf of cell is doubled (B) Exchanging battery and galvanometer (C) Resistances of circuit are doubled (D) Interchanging resistances R ₁ and R ₂ (I18) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (I19) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (I20) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (I21) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω	(117)	In the circuit of who	eatstone bridge, different	resistances are connected	d as shown in figure. Current
(A) emf of cell is doubled (B) Exchanging battery and galvenometer (C) Resistances of circuit are doubled (D) Interchanging resistances R ₁ and R ₂ (In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (I20) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (I21) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω					ted then in which following
(C) Resistances of circuit are doubled (D) Interchanging resistances R ₁ and R ₂ (E) Interchanging resistances R ₁ and R ₂ (D) Interchanging resistances R ₁ and R ₂ (E) Interchanging resistances R ₁ and R ₂ (E) Interchanging resistance S ₁ and R ₂ (E) Interchanging resistance S ₂ and then emf of second cell will be (E)		condition, the curr	ent through galvanomet		
(C) Resistances of circuit are doubled (D) Interchanging resistances R_1 and R_2 (118) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (119) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω		R	\mathbf{R}_{2}	. ,	
(118) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (119) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω		nu.	m		
 (118) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be		Ma G	w l	(C) Resistances of	circuit are doubled
 (118) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be		R_3	R_4	(D) Interchanging	resistances R_1 and R_2
 (118) In the circuit of potentiometer, the null point is obtained at distance 35 cm when a cell of 1.25 V is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be		E			
is connected. If the cell is changed, the null point displaces to distance 63 cm then emf of second cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (119) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω					
cell will be (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (I19) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (I20) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (I21) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω	(118)	In the circuit of pot	tentiometer, the null poin	t is obtained at distance	35 cm when a cell of 1.25 V
 (A) 1.75 V (B) 2 V (C) 2.25 V (D) 2.5 V (119) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 		is connected. If the	cell is changed, the null	point displaces to distance	ee 63 cm then emf of second
 (119) In an experiment of potentiometer, the null point is obtained at 250 cm for one cell. If parallel to this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 		cell will be	 ·		
this cell, a 2 Ω resistance is connected then the null point is obtained at 125 cm, then the internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω		(A) 1.75 V	(B) 2 V	(C) 2.25 V	(D) 2.5 V
internal resistance of cell will be (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω	(119)	In an experiment of	f potentiometer, the null	point is obtained at 250 c	cm for one cell. If parallel to
 (A) 2 Ω (B) 4 Ω (C) 0.5 Ω (D) 1 Ω (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 				_	otained at 125 cm, then the
 (120) A wire of length 10 m is connected with steady voltage source of potentiometer. When primary cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 					
cell connected with it is in open circuit condition, the null point is obtained at 7.8 m. When current is flowing through primary cell and resistance of 10 Ω connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω		(A) 2 Ω	(B) 4 Ω	(C) 0.5Ω	(D) 1Ω
current is flowing through primary cell and resistance of $10~\Omega$ connected with it, the null point is obtained at distance 7 m, then internal resistance of primary cell will be (A) $1.24~\Omega$ (B) $1.36~\Omega$ (C) $1.14~\Omega$ (D) $1~\Omega$ (121) The resistance and length of potentiometer wire are $10~\Omega$ and $100~\mathrm{cm}$ in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length $40~\mathrm{cm}$ for a voltage source of $10~\mathrm{mV}$ emf then value of resistance R will be (C) $790~\Omega$ (D) $670~\Omega$	(120)				•
obtained at distance 7 m, then internal resistance of primary cell will be (A) 1.24Ω (B) 1.36Ω (C) 1.14Ω (D) 1Ω (121) The resistance and length of potentiometer wire are 10Ω and $100\mathrm{cm}$ in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length $40\mathrm{cm}$ for a voltage source of $10\mathrm{mV}$ emf then value of resistance R will be (A) 900Ω (B) 820Ω (C) 790Ω (D) 670Ω			-	-	
 (A) 1.24 Ω (B) 1.36 Ω (C) 1.14 Ω (D) 1 Ω (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 		_			-
 (121) The resistance and length of potentiometer wire are 10 Ω and 100 cm in an experiment of potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900 Ω (B) 820 Ω (C) 790 Ω (D) 670 Ω 					
potentiometer. A cell of 2 V emf with negligible internal resistance and resistance R are connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900Ω (B) 820Ω (C) 790Ω (D) 670Ω	(101)	` '		. ,	
connected in series with it. If null point is obtained at length 40 cm for a voltage source of 10 mV emf then value of resistance R will be (A) 900Ω (B) 820Ω (C) 790Ω (D) 670Ω	(121)		-		•
emf then value of resistance R will be (A) $900~\Omega$		•			
(A) 900Ω (B) 820Ω (C) 790Ω (D) 670Ω			-	-	or a rounge source or to my
					(D) 670 Ω
		<u> </u>	. ,	` '	(-) 2.2

- A battery of emf 2 V and internal resistance 1Ω is connected with the potentiometer of length (122)200 cm and resistance 4Ω and electric current is passed then the potential gradient will
 - (A) $8 \times 10^{-3} \text{ Vcm}^{-1}$
- (B) $4 \times 10^{-3} \text{ Vcm}^{-1}$ (C) $6 \times 10^{-3} \text{ Vcm}^{-1}$ (D) $2 \times 10^{-3} \text{ Vcm}^{-1}$

- A steady voltage source is connected with potentiometer wire of length 4 m. The null point is (123)obtained at distance 1 m for Leclanche cell. If length of potentiometer wire is increased by 1 m then for the same Lenchanche cell, the null point will be obtained at _____.
 - (A) 1.25 cm
- (B) 1.4 m
- (C) 1.75 m
- (D) 1.2 m
- Resistance of potentiometer wire of length 15 m is 30Ω . It is connected in series with 5 V (124)battery and 20Ω resistance, then the potential difference between two point seperated by 40 cm on the wire will be _____.
 - (A) 0.02 V
- (B) 0.06 V
- (C) 0.08 V
- (D) 0.1 V

101 (A), 102 (A), 103 (B), 104 (B), 105 (C), 106 (D), 107 (B), 108 (A), 109 (D), Ans.: 110 (A), 111 (B), 112 (A), 113 (D), 114 (A), 115 (A), 116 (D), 117 (D), 118 (C), 119 (A), 120 (C), 121 (C), 122 (A), 123 (A), 124 (C)

Comprehension Type Questions:

Passage I:

In an experiment, the current flowing through a cell and potential difference across it's terminal are measured and following observation table is prepared.

S.No.	V (volt)	I (Ampere)
1.	1.2	0.04
2.	0.8	0.12
3.	0.4	0.20

- What is the emf of cell used in experiment? (125)
 - (A) 1.5 V
- (B) 1.4 V
- (C) 2 V
- (D) 2.5 V
- (126)What will be the maximum current that can be withdrawn from cell?
 - (A) 0.25 A
- (B) 0.28 A
- (C) 0.3 A
- (D) 0.35 A
- What will be maximum power can be withdrawn from cell? (127)
 - (A) 50 mW
- (B) 98 mW
- (C) 9.8 mW
- (D) 49 mW

Passage II:

A battery of emf 14 V and internal resistance 1Ω is connected with another battery of emf 20 V and internal resistance 2Ω in opposing mode and circuit is completed. Find the following quantities in this condition.

(100)		α	•	•	•	• ,
(128)	Current	†IC	owing	ın	circ	uıt.
(-)						

(A) 1 A

(B) 3 A

(C) 2A

(D) 4 A

(129) Electric power in both batteries

(A) 14 W, 20 W

(B) 15 W, 10 W

(C) 30 W, 45 W

(D) 28 W, 40 W

(130) Terminal voltage of both batteries

(A) 12 V, 24 V

(B) 15 V, 20 V

(C) 10 V, 30 V

(D) 8 V, 12 V

(131) Electric power consumed in both batteries.

(A) 8 W, 4 W

(B) 4 W, 8 W

(C) 5 W, 10 W

(D) 6 W, 9 W

(132) Bulbs A and B have ratings 40 W, 110 V and 100 W, 110 V respectively, then find the resistances of their filament.

(A) $120 \Omega, 250 \Omega$

(B) $302.5 \Omega, 121 \Omega$

(C) $100 \Omega, 110 \Omega$

(D) 25Ω , 60Ω

(133) If above two bulbs are connected in series with supply of 220 V then which bulb will be fused?

(A) Bulb A

(B) Bulb B

(C) Both A and B

(D) No one will be fused

Ans.: 125 (B), 126 (B), 127 (B), 128 (C), 129 (D), 130 (A), 131 (B), 132 (B), 133 (A)

Assertion - Reason type Question:

Instruction: Read assertion and reason carefully, select proper option from given below.

- (a) Both assertion and reason are true and reason explains the assertion.
- (b) Both assertion and reason are true but reason does not explain the assertion.
- (c) Assertion is true but reason is false.
- (d) Assertion is false and reason is true.

(134) **Assertion**: As temperature is increased, the drift volecity of electrons in metal decreases.

Reason: If temperature is increased, the conductivity of metal decreases.

(A) a

(B) b

(C) c

(D) d

(135) **Assertion :** When Wheatstone bridge is in balanced condition $R_{AC} = \frac{(P+Q)(R+S)}{(P+Q+R+S)}$

Reason : Points B and D are at same electric potential.

(A) a

(B) b

(C) c

(D) d

(136)	Assertion :	Two bulbs of 60 W and 200 W a glow more bright and when con		vare conected in series, bulb of 60 W 00 W bulb glow more bright.
	Reason:	In series connection, power	directly proportion	onal to resistance and in parallel
		connection, power inversly pre-	oportional to resista	ance.
	(A) a	(B) b	(C) c	(D) d
(137)	Assertion :	The ratio of resultant resista	nce of two resiste	ors of same resistance when first
		connected in series and then co	onnected in parallel	is 4:1.
	Reason:	In series connection, resistancce in	ncreases and in paral	lel connection, the resistance decreases
	(A) a	(B) b	(C) c	(D) d
(138)	Assertion:	The resistance of fuse wire is n	nore and it's meltin	g point is high.
	Reason:	Fuse wire is used for small ele	ctric current only.	
	(A) a	(B) b	(C) c	(D) d
(139)	Assertion:	Voltmeter measures terminal vo	oltage (V) of batter	y, not it's emf (ε)
	Reason:	When voltmeter is connected v	with battery, electric	c current passes through battery.
	(A) a	(B) b	(C) c	(D) d
(140)	Assertion :	For semi conductors, as temper	rature is increased,	their resistivity decreases.
	Reason ·	Semiconductors obey Ohm's Is	aw	

(C) c

Ans.: 134 (B), 135 (B), 136 (A), 137 (B), 138 (D), 139 (A), 140 (C)

(B) b

Matching type Questions:

(A) a

(141)

	Column-1		Column-2
(a)	Resistivity	(p)	M ⁻¹ L ^o T ⁻² A ¹
(b)	Mobility	(q)	$M^1 L^2 T^{-3}$
(c)	Electomotive force	(r)	$M^1 L^3 T^{-3} A^{-2}$
(d)	Electric Power	(s)	$\mathbf{M}^1 \mathbf{L}^2 \mathbf{T}^{-3} \mathbf{A}^{-1}$

(A) a (r), b (p), c (s), d (q)

(D) d

(B) a (p), b (q), c (r), d (s)

(C) a (q), b (r), c (s), d (p)

(D) a (s), b (p), c (q), d (r)

(142)

Column-1		Column-2		
(a)	Kirchoff's first law	(p)	$\sum IR = \sum \epsilon$	
(b)	Wheatstone bridge	(q)	$\frac{\mathbf{E}_1}{\mathbf{E}_2} = \frac{l_1}{l_2}$	(A) a (s), b (q), c (r), d (p) (B) a (p), b (r), c (q), d (s)
(c)	Kirchoff's second law	(r)	$\sum I = 0$	(C) a (q), b (p), c (r), d (s)
(d)	Potentiometer	(s)	$\frac{R_1}{R_2} = \frac{R_3}{R_4}$	(D) a (r), b (s), c (p), d (q)

Ans.:141 (A), 142 (D)