- 1. (currently amended): A heat-curable powder coating composition comprising
- a) an organic film forming binder epoxy resin, a polyester-hydroxyalkylamide, a polyester-glycoluril, an epoxy-polyester resin, a polyester-triglycidyl isocyanurate, a hydroxy-functional polyester-blocked polyisocyanate, a hydroxy-functional polyester-uretdione, an acrylate resin with hardener or a mixture of such resins and
- b) as stabilizer at least one compound of the benzofuran-2-one type, which composition in the course of curing is in contact with nitrogen oxides originating from combustion gases.
- 2. (currently amended): A <u>heat-curable</u> powder coating composition according to claim 1, in which component (b) is a compound of the formula I

$$\begin{bmatrix} R_2 & R_5 \\ R_3 & R_4 \end{bmatrix}$$
 (I)

in which, if n is 1,

 R_1 is unsubstituted or C_1 - C_4 alkyl-, C_1 - C_4 alkoxy-, C_1 - C_4 alkylthio-, hydroxyl-, halogen-, amino-, C_1 - C_4 alkylamino-, phenylamino- or di(C_1 - C_4 alkyl)amino-substituted naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thienyl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, β -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, or R_1 is a radical of the formula II

$$\begin{array}{c}
R_9 \\
R_7 \\
R_8
\end{array}$$

$$\begin{array}{c}
R_{10} \\
R_{11}
\end{array}$$
(II)

and,

if n is 2,

formula III

R₁ is unsubstituted or C₁-C₄alkyl- or hydroxyl-substituted phenylene or naphthylene; or is -R₁₂-X-R₁₃-,

 R_2 , R_3 , R_4 and R_5 independently of one another are hydrogen, chlorine, hydroxyl, C_1 - C_2 5-alkyl, C_7 - C_9 phenylalkyl, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy, C_1 - C_{18} alkylthio, C_1 - C_4 alkylamino, di(C_1 - C_4 -alkyl)amino, C_1 - C_2 5alkanoyloxy, C_1 - C_2 5alkanoyloxy, C_3 - C_2 5-alkanoyloxy, C_3 - C_2 5-alkanoyloxy interrupted by oxygen, sulfur or N- R_{14} ; C_6 - C_9 cycloalkylcarbonyloxy, benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or else the radicals R_2 and R_3 or the radicals R_3 and R_4 or the radicals R_4 and R_5 , together with the carbon atoms to which they are attached, form a benzo ring, R_4 is additionally

-(CH₂)_p-COR₁₅ or -(CH₂)_qOH or, if R₃, R₅ and R₆ are hydrogen, R₄ is additionally a radical of the

$$R_{2}$$

$$R_{16}$$

$$C-R_{17}$$
(III)

in which R_1 is as defined above for n = 1, R_6 is hydrogen or a radical of the formula IV

where R_4 is not a radical of the formula III and R_1 is as defined above for n=1, R_7 , R_8 , R_9 , R_{10} and R_{11} independently of one another are hydrogen, halogen, hydroxyl, C_1 - C_{25} alkyl, C_2 - C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_1 - C_{25} alkoxy, C_2 - C_{25} -alkoxy interrupted by

 C_3 - C_{25} alkynyloxy, C_7 - C_9 phenylalkyl, C_7 - C_9 phenylalkoxy, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 -alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino,

 C_1 - C_{25} alkanoyloxy, C_3 - C_{25} -alkanoyloxy interrupted by oxygen, sulfur or $N-R_{14}$;

 C_1 - C_{25} alkanoylamino, C_3 - C_{25} -alkenoyl, C_3 - C_{25} alkenoyl interrupted by oxygen, sulfur or $N - R_{14}$;

 C_3 - C_{25} alkenoyloxy, C_3 - C_{25} alkenoyloxy interrupted by oxygen, sulfur or $N - R_{14}$;

C₆-C₉cycloalkylcarbonyl, C₆-C₉cycloalkylcarbonyloxy, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; $-O - \begin{matrix} R_{18} & O \\ C & C \end{matrix} - C - R_{15}$ or $\begin{matrix} R_{19} \end{matrix}$

$$R_{20}$$
 R_{21} R_{20} R_{21} R_{20} R_{23} , or else, in formula II, the radicals R_7 and R_8 or the radicals R_8 and R_{11} , R_{22}

together with the carbon atoms to which they are attached, form a benzo ring,

R₁₂ and R₁₃ independently of one another are unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene,

R₁₄ is hydrogen or C₁-C₈alkyl,

$$R_{15}$$
 is hydroxyl, $\left[-O^{-} \frac{1}{r} M^{r+} \right]$, C_1 - C_{18} alkoxy or $-N \left[-N \right]_{R_{26}}^{R_{24}}$,

 R_{16} and R_{17} independently of one another are hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the C atom to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkylidene ring;

R₁₈ and R₁₉ independently of one another are hydrogen, C₁-C₄alkyl or phenyl,

R₂₀ is hydrogen or C₁-C₄alkyl,

 R_{21} is hydrogen, unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl, C_2 - C_{25} alkyl interrupted by oxygen, sulfur or $N-R_{14}$; C_7 - C_9 phenylalkyl which is unsubstituted or substituted on the phenyl

radical 1 to 3 times by C₁-C₄alkyl; C₇-C₂₅phenylalkyl which is interrupted by oxygen, sulfur or

N-R₁₄ and which is unsubstituted or substituted on the phenyl radical 1 to 3 times by

 C_1 - C_4 alkyl, or else the radicals R_{20} and R_{21} , together with the carbon atoms to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted C_5 - C_{12} cycloalkylene ring; R_{22} is hydrogen or C_1 - C_4 alkyl,

R₂₃ is hydrogen, C₁-C₂₅alkanoyl, C₃-C₂₅alkenoyl, C₃-C₂₅alkanoyl interrupted by oxygen, sulfur or

N—R₁₄; C₂-C₂₅alkanoyl substituted by a di(C₁-C₆alkyl)phosphonate group;

C₆-C₉cycloalkylcarbonyl, thenoyl, furoyl, benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

$$\begin{array}{c} O \\ - C \\$$

 R_{24} and R_{25} independently of one another are hydrogen or C_1 - C_{18} alkyl, R_{26} is hydrogen or C_1 - C_8 alkyl,

 R_{27} is a direct bond, C_1 - C_{18} alkylene, C_2 - C_{18} alkylene interrupted by oxygen, sulfur or $N - R_{14}$;

 $C_2\text{-}C_{18} \\ \text{alkenylene, } C_2\text{-}C_{20} \\ \text{alkylidene, } C_7\text{-}C_{20} \\ \text{phenylalkylidene, } C_5\text{-}C_8\text{-cycloalkylene, } \\ \text{cycloalkylene, } C_7\text{-}C_{20} \\ \text{phenylalkylidene, } C_7\text{-}C_8\text{-cycloalkylene, } \\ \text{cycloalkylene, } C_8\text{-}C_8\text{-cycloalkylene, } \\ \text{cycloalkylene, } \\ \text{cycloalkyl$

C₇-C₈bicycloalkylene, unsubstituted or C₁-C₄alkyl-substituted phenylene, or

$$\sqrt{s}$$

$$R_{28}$$
 is hydroxyl, $\left[-O^{-\frac{1}{r}M}^{r+}\right]$, C_1 - C_{18} alkoxy or $-N$
 R_{25}

$$R_{29}$$
 is oxygen, -NH- or $\begin{array}{c} O \\ II \\ N-C-NH-R_{30} \end{array}$,

R₃₀ is C₁-C₁₈alkyl or phenyl,

R₃₁ is hydrogen or C₁-C₁₈alkyl,

M is an r-valent metal cation,

X is a direct bond, oxygen, sulfur or -NR₃₁-,

n is 1 or 2,

p is 0, 1 or 2,

q is 1, 2, 3, 4, 5 or 6,

r is 1, 2 or 3, and

s is 0, 1 or 2.

3. (currently amended): A <u>heat-curable</u> powder coating composition according to claim 1, in which component (b) is a compound of the formula V

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{10}$$

$$R_{11}$$

$$(V)$$

in which

R₂ is hydrogen or C₁-C₆alkyl,

R₃ is hydrogen,

R₄ is hydrogen, C₁-C₆alkyl or a radical of the formula IIIa

$$R_{2}$$
 R_{16}
 R_{17}
 R_{17}
 R_{10}
 R_{11}
 R_{11}
 R_{11}

R₅ is hydrogen,

R₇, R₈, R₉ and R₁₀ independently of one another are hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy,

proviso that at least two of the radicals R₇, R₈, R₉, R₁₀ and R₁₁ are hydrogen;

 R_{16} and R_{17} , together with the C atom to which they are attached, form an unsubstituted or mono- to tri- C_1 - C_4 alkyl-substituted cyclohexylidene ring,

 R_{20} , R_{21} and R_{22} are hydrogen, and

R₂₃ is C₂-C₁₈alkanoyl.

4. (currently amended): A <u>heat-curable</u> powder coating composition according to claim 1, in which component (b) is a compound of the formula V

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{8}$$

$$R_{10}$$

$$R_{11}$$

$$R_{9}$$

$$R_{10}$$

$$R_{11}$$

in which

R₂ is tert-butyl,

R₃ is hydrogen,

R4 tert-butyl or a radical of the formula IIIa

$$R_{2}$$
 R_{10}
 R_{16}
 R_{17}
 R_{17}
 R_{10}
 R_{11}
 R_{11}

R₅ is hydrogen,

 R_7 , R_8 , R_9 and R_{10} independently of one another are hydrogen, C_1 - C_4 alkyl or C_1 - C_4 alkoxy,

R₁₁ is hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy, C₂-C₈alkanoyloxy or
$$\begin{array}{ccc} R_{20} & R_{21} \\ -O-C-C-C-O-R_{23} & , \text{ with the } \\ H & R_{22} \end{array}$$

proviso that at least two of the radicals R_7 , R_8 , R_9 , R_{10} and R_{11} are hydrogen; R_{16} and R_{17} , together with the C atom to which they are attached, form a cyclohexylidene ring, R_{20} , R_{21} and R_{22} are hydrogen, and R_{23} is C_2 - C_{18} alkanoyl.

- 5. (cancelled).
- **6.** (currently amended): A <u>heat-curable</u> powder coating composition according to claim 1, comprising further additives in addition to components (a) and (b).
- 7. (currently amended): A heat-curable powder coating composition according to claim 6, comprising as further additives, in addition, one or more components from the group consisting of pigments, dyes, fillers, levelling assistants, devolatilizing agents, charge control agents, optical brighteners, adhesion promoters, antioxidants, light stabilizers, curing catalysts, photoinitiators, wetting auxiliaries or corrosion protection agents.
- **8.** (currently amended): A <u>heat-curable</u> powder coating composition according to claim 6, comprising as further additives phenolic antioxidants, sterically hindered amines, organic phosphites or phosphonites; and/or thiosynergists.
- **9.** (currently amended): A <u>heat-curable</u> powder coating composition according to claim 1, in which component (b) is present in an amount of from 0.001 to 10% based on the weight of component (a).
- 10. (cancelled).
- 11. A process for reducing the discoloration of heat-curable powder coating compositions which comprises an epoxy resin, a polyester-hydroxyalkylamide, a polyester-glycoluril, an epoxy-polyester resin, a polyester-triglycidyl isocyanurate, a hydroxy-functional polyester-blocked polyisocyanate, a hydroxy-functional polyester-ureddione, an acrylate resin with hardener or a mixture of such resins,

which comprises comprising

incorporating into or applying to thesesaid compositions before curing at least one component (b) according to claim 1 compound of the benzofuran-2-one type as stabilizer, which compositions in the course of curing, are in contact with nitrogen oxides originating from combustion gases.

- 12. (cancelled).
- 13. (currently amended): A heat-cured coating film which comprises an epoxy resin, a polyester-hydroxyalkylamide, a polyester-glycoluril, an epoxy-polyester resin, a polyester-triglycidyl isocyanurate, a hydroxy-functional polyester-blocked polyisocyanate, a hydroxy-functional polyester-uretdione, an acrylate resin with hardener or a mixture of such resins, wherein the cured coating film incorporates at least one compound as stabilizer of the benzofuran-2-one type and in the course of curing, the coating film is in contact with nitrogen oxides originating from combustion gases applied and cured by a process according to claim 11 or 12.
- **14.** (new): A process for reducing the discoloration of heat-curable powder coating compositions according to claim 11 further comprising conducting the curing in a gas oven.
- **15.** (new): A heat-curable powder coating composition according to claim 1, in which component (a) is an epoxy-polyester resin or a hydroxy-functional polyester-uretdione.
- **16.** (new): A heat-curable powder coating composition according to claim 16, in which component (a) is an epoxy-polyester resin.