L	Hits	Search Text	DB	Time stamp
Number 1	2270	(-1	HCDAM.	2004/00/24
1	2370	(sloped or taper\$3) near3 via	USPAT; US-PGPUB	2004/08/24
2	98	((sloped or taper\$3) near3 via) and (back	USPAT;	2004/08/24
-	70	near3 (chip or substrate or wafer))	US-PGPUB	08:56
3	71	(((sloped or taper\$3) near3 via) and	USPAT;	2004/08/24
	, -	(back near3 (chip or substrate or	US-PGPUB	08:48
		wafer))) and @ad<20011220	05 10105	
4	10	((((sloped or taper\$3) near3 via) and	USPAT;	2004/08/24
		(back near3 (chip or substrate or	US-PGPUB	08:56
		wafer))) and @ad<20011220) and isotropic		
5	1083	(sloped or taper\$3) near3 via	EPO; JPO;	2004/08/24
		-	DERWENT;	08:49
			IBM_TDB	
6	2	((sloped or taper\$3) near3 via) and (back	EPO; JPO;	2004/08/24
		near3 (chip or substrate or wafer))	DERWENT;	08:49
			IBM_TDB	
7	1034	438/667,668,673,928,978.ccls.	USPAT;	2004/08/24
		,	US-PGPUB	08:58
8	864	438/667,668,673,928,978.ccls. and	USPAT;	2004/08/24
		@ad<20011220	US-PGPUB	08:59
9	166	(438/667,668,673,928,978.ccls. and	USPAT;	2004/08/24
		@ad<20011220) and (back near3 (chip or	US-PGPUB	08:59
10	1.0	substrate or wafer))	TIGDAM:	2004/00/24
10	19	((438/667,668,673,928,978.ccls. and	USPAT;	2004/08/24
		<pre>@ad<20011220) and (back near3 (chip or substrate or wafer))) and isotropic</pre>	US-PGPUB	08:59
11	25.02	257/774-776.ccls.	IICDAM.	2004/08/24
11	2503	25////4-//6.CCIS.	USPAT; US-PGPUB	2004/08/24
12	2023	257/774-776.ccls. and @ad<20011220	USPAT;	2004/08/24
12	2023	23////4-//6.CCIS. and ead\20011220	US-PGPUB	08:59
13	128	(257/774-776.ccls. and @ad<20011220) and	USPAT;	2004/08/24
13	120	(back near3 (chip or substrate or wafer))	US-PGPUB	08:59
14	128	((257/774-776.ccls. and @ad<20011220) and	USPAT;	2004/08/24
		(back near3 (chip or substrate or	US-PGPUB	08:59
		wafer))) not		
		(((438/667,668,673,928,978.ccls. and		
1		@ad<20011220) and (back near3 (chip or		
1		substrate or wafer))) and isotropic)		
15	16	(((257/774-776.ccls. and @ad<20011220)	USPAT;	2004/08/24
1		and (back near3 (chip or substrate or	US-PGPUB	09:06
]	wafer))) not		
		(((438/667,668,673,928,978.ccls. and		
		@ad<20011220) and (back near3 (chip or		
		substrate or wafer))) and isotropic)) and		
16] .	isotropic ("c1940c0") DN	HCDAE.	2004/08/24
16	1	("6184060").PN.	USPAT; US-PGPUB	09:38
17	126	(two adj sided) with etching	USPAT;	2004/08/24
* '	120	(two ad) sided, with eccuring	US-PGPUB	09:47
18	62	((two adj sided) with etching) and via	USPAT;	2004/08/24
		(and plane, with conting , and via	US-PGPUB	09:39
19	51	(((two adj sided) with etching) and via)	USPAT;	2004/08/24
		and @ad<20011220	US-PGPUB	09:48
20	73	(one adj sided) with etching	USPAT;	2004/08/24
			US-PGPUB	09:47
21	63	((one adj sided) with etching) and	USPAT;	2004/08/24
		@ad<20011220	US-PGPUB	09:48
22	58	(((one adj sided) with etching) and	USPAT;	2004/08/24
		@ad<20011220) not ((((two adj sided) with	US-PGPUB	10:40
1		etching) and via) and @ad<20011220)		
23	1214	(DRIE or (deep adj reactive adj ion adj	USPAT;	2004/08/24
1 24		etching))	US-PGPUB	10:41
24	670	((DRIE or (deep adj reactive adj ion adj	USPAT;	2004/08/24
25	567	etching))) and @ad<20011220	US-PGPUB	10:41 2004/08/24
23	36/	(((DRIE or (deep adj reactive adj ion adj etching))) and @ad<20011220) and (wafer	USPAT; US-PGPUB	10:41
		or substrate or chip)	US-FGFUD	10.71
L	<u> </u>	Tor penacrace or curbi	L	ll

26	131	(((DRIE or (deep adj reactive adj ion	USPAT;	2004/08/24
		adj etching))) and @ad<20011220) and	US-PGPUB	11:01
		(wafer or substrate or chip)) and (sloped		
		or tapered)		
27	365	((((DRIE or (deep adj reactive adj ion	USPAT;	2004/08/24
		adj etching))) and @ad<20011220) and	US-PGPUB	11:01
		(wafer or substrate or chip)) and (via or		
		groove)		

US-PAT-NO: 6662419

DOCUMENT-IDENTIFIER: US 6662419 B2

TITLE: Method for fabricating film bulk

acoustic resonators to

achieve high-Q and low loss

----- KWIC -----

Detailed Description Text - DETX (6):

FIGS. 5A and 5B illustrate top and side views respectively of the substrate

300 after a portion of the substrate material beneath the piezoelectric layer

and the seed layer 310 have been removed. Removing a portion of the substrate

300 produces an opening 500 on the back side of the substrate. The substrate

material 300 that is removed corresponds to the portion of the substrate 300

which is under the active area of the final device or FBAR. The substrate

material is removed using deep-trench reactive-ion etching (DRIE). The etched

profile of the **DRIE** is adjusted to be negative so as to produce a first sloped

sidewall 502 and a second sloped sidewall 504.

Detailed Description Text - DETX (7):

FIGS. 6A and 6B illustrate the substrate after a portion of the seed layer

310 beneath the piezoelectric film 410 has been removed. The single crystal

seed layer 310 is etched from the back side of the wafer through the previously

etched **DRIE** window or opening 500 formed when the substrate material 300 was

removed from the back side of the wafer. The etch for removing the single

crystal seed layer 310 is self aligned and is stopped on the piezoelectric

layer 410 by end point detection. More specific, the etch

for removing the single crystal seed layer 310 stops at or near the first surface 412 of the piezoelectric layer 410. The etch to remove the single crystal seed layer 310 exposes the piezoelectric layer 410 and specifically surface 412 along the back side of the substrate. This etch can be said to form a second window 600 which is bounded by the single crystal seed layer 310 and exposes the surface 412 of the piezoelectric crystal 410 at the back side of the substrate 300.

Detailed Description Text - DETX (8): FIGS. 7A and 7B show top and side views of the substrate after a second portion 700 of the first electrode is deposited on the first surface 412 of the The bottom electrode metal is piezoelectric film 410. deposited from the back side of the wafer. Depositing metal from the back side of the wafer or substrate 300 produces the second portion 700 of the first electrode. The back side surface of the substrate 300 is also metallized as is shown by metal layers 710 and 712 in FIG. 7B. The second electrode 700 makes electrical contact with the first portion of the first electrode 400 or what is also known as the buried metal trace. It should be noted that there is no metal deposited on the sidewalls of the opening 500. When the opening 500 was made, the DRIE was adjusted to be negative thereby producing sloping sidewalls 502 and 504. When the metal layer is deposited which forms the second portion 700 of the first electrode, the sloped sidewalls prevent deposit of metal on the sidewalls 502, 504. This prevents a continuous metal layer being formed over all the bulk silicon substrate 300 and provides for a separate electrode 700 which covers most of the first surface 412 of the piezoelectric film 410. It should

be noted that the first portion 400 of the first electrode and the second portion 700 of the first electrode form the first electrode. Typically the second portion 700 of the first electrode overlaps the first portion 400 of the first electrode by an amount to provide adequate electrical connection between the first portion 400 and the second portion 700 of the

first electrode. As

shown, the overlapping is approximately 10 micrometers.

Detailed Description Text - DETX (11):

FIGS. 10A and 10B illustrate the substrate 800 after a portion of the

substrate material beneath the piezoelectric film 910 has been removed. As

best illustrated by FIG. 10B, the silicon substrate under piezoelectric film

910 is removed using deep-trench reactive-ion etching (DRIE). Removing a

portion of the silicon substrate 800 from the back side of the substrate 800,

produces an opening 1000. The opening 1000 can also be termed a **DRIE** etch

window. The etch profile of the **DRIE** window or opening 1000 is adjusted to be

negative. The negative etched profile of the opening or DRIE window 1000

produces a first sloped sidewall 1002 and a second sloped sidewall 1004.

Detailed Description Text - DETX (12):

FIGS. 11A and 11B illustrate the substrate or the device after a portion of

the seed layer beneath the piezoelectric material or beneath the piezoelectric

film 910 has been removed. The nonconductive seed layer 810 is etched or

removed from the back side of the substrate through the previously etched **DRIE**

window or opening 1000. The etch is self aligned and effectively stops on the

piezoelectric layer 910 by end point detection.

Specifically, the etch stops

at or near the first surface 912 of the piezoelectric layer

or film 910. The result of the etch from the back side that removes the nonconductive seed layer 810 is an opening 1100 in the seed layer 810. The opening 1100 exposes surface 912 of the piezoelectric film or layer 910 as well as part of the portion 1214 of the first portion 1210 of the first electrode.

Detailed Description Text - DETX (13): FIGS. 12A and 12B illustrate top and side views, respectively, of the substrate after the back side of the substrate 800 is metallized. Metal is deposited on the back side of the wafer. The deposited metal form the second portion 1212 of the first electrode 1200 as well as metallized layers 1220 and 1222 on the back side of the substrate 800. The opening 1000 or DRIE window which was previously adjusted to have a negative profile and to produce sloping sidewalls 1002 and 1004 prevents deposit of the metal on the sidewalls 1002, This in turn prevents a continuous metal layer being formed on the bulk silicon substrate so that the second portion 1212 of the first electrode 1200 is separated from the other metallized portions 1220 and The second portion 1212 of the first electrode 1200 contacts the first portion 1210 of the The first portion 1210 and the second first electrode. portion 1212 of the first electrode 1200 overlap so that electrical contact is made between the first and second portions. In this particular embodiment, the overlap is approximately 12 micrometers.

Detailed Description Text - DETX (17):

As best seen in FIG. 15B, the silicon substrate 1300 beneath the piezoelectric film 1410 has been removed by deep-trench reactive-ion etching (DRIE). Removal of the substrate portion beneath the

US-PAT-NO: 6723250

DOCUMENT-IDENTIFIER: US 6723250 B1

TITLE: Method of producing structured

wafers

----- KWIC -----

Detailed Description Text - DETX (2):

FIG. 1 shows a first embodiment of the method according to the present

invention as a <u>two-sided</u> one-step <u>etching</u> process. Part 1 shows a

cross-sectional view of wafer 20, which made be made of a single material, with

a front side 22, a back side 23 and an edge area 21. The wafer is shown only

partially, continuing toward the left, where it is delimited by another edge

area (not shown). A nitride layer is applied to the wafer by gas phase

deposition. Then the nitride layer is structured by a conventional photoresist

technique, with the resist being applied to the nitride layer, exposed

selectively and then developed; (when using a positive resist) the exposed part

of the resist is next removed, then the exposed part of the nitride layer is

removed, usually by a plasma etching process, and finally the remaining

unexposed part of the resist is removed, e.g., by ashing the resist in an

oxygen plasma. Nitride structuring is performed first on the front side of the

wafer, as shown in Part 1; this structuring yields structured nitride layer 25.

Unstructured nitride layer 24 is still imaged on the back side.

Detailed Description Text - DETX (5):

The wafer with the structure illustrated in Part 8 is

then exposed to a wet

chemical etching process in a KOH bath. First the wafer is pre-etched in the

area of through hole 29 to be formed later, in order to partially remove the

silicon and produce recesses 42 on both sides (see Part 9). Then thin oxide

layer 41 is removed in subregion 40 with a hydrofluoric acid etchant medium

which attacks all areas of the silicon dioxide layer in the immersion bath;

however, since the oxide layer in subregion 40 is thinner than the remaining

layer, it can be removed completely selectively with respect to the remaining

oxide layer in subregion 40 if the etching process with the hydrofluoric acid

etchant medium is terminated as soon as thin oxide layer 41 is removed (Part

10). Finally, the wafer is etched in KOH until the silicon is removed to the

final etching depths. Part 11 shows the structured wafer after subsequent

removal of the passivation layer; it has a through hole 29 and a shallow cavern

43. A structuring of the wafer has been achieved through the procedure of a

two-sided two-step KOH etching process illustrated in FIG.
2 in comparison with

FIG. 1, resulting in a cavern 43 which is shallower than cavern 28 from FIG. 1.

US-PAT-NO: 6517402

DOCUMENT-IDENTIFIER: US 6517402 B1

TITLE: Plasma addressed liquid crystal

display with etched

glass spacers

----- KWIC -----

Detailed Description Text - DETX (10):

Two preferred ways for etching the glass to make the hole walls as close to

the vertical as possible are described in FIGS. 6 and 7 of the fourth

referenced related application, whose contents are incorporated herein. In

brief, this can be done as **one-sided etching** with an etch mask on one surface

of the spacer plate and with relatively small openings in the etch mask and

etching holes whose lateral dimensions are at least five times larger than the

mask opening and the depth of the hole, in this case the thickness of the sheet

50. Using an isotropic etchant during the etching process, as the etching

progresses, the sidewalls become steeper. The larger the lateral dimensions of

the etched hole relative to the thickness of the glass sheet 50, the steeper

the sidewalls. As an example, not meant to be limiting, for a glass sheet 50

of about 100 .mu.m thick, to etch holes that are 500 .mu.m wide, the mask hole

is preferably 100 .mu.m wide. For a panel with straight channels as

illustrated in FIG. 2, the holes 52 would be elongated slots extending nearly

the full length of the plate 50, but would terminate at opposite sides in an

annular glass border region 53 so that the plate 50 remains as an integral

element except for the holes 52 in the form of parallel

slots spaced apart by spacer walls 58.