class 17 Vaccination Mini Project

Getting Started

```
vax <- read.csv("statewide-covid-19-vaccines-administered-by-zip-code.csv")
head(vax)
tail(vax)</pre>
```

Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated

Q2. What column details the Zip code tabulation area?

 $zip_code_tabulation_area$

Q3. What is the earliest date in this dataset?

2021 - 01 - 05

Q4. What is the latest date in this dataset?

2022-11-22

skimr::skim(vax)

Table 1: Data summary

Name	vax
Number of rows	174636
Number of columns	18
Column type frequency:	
character	5

Table 1: Data summary

numeric	13
Group variables	- None

Variable type: character

skim_variable	n_missing	complete_	_rate	min	max	empty	n_unique	whitespace
as_of_date	0		1	10	10	0	99	0
local_health_jurisdiction	0		1	0	15	495	62	0
county	0		1	0	15	495	59	0
vem_source	0		1	15	26	0	3	0
redacted	0		1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missim	mplete	maae	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_a	area 0	1.00	93665.	.11817.3	399000	192257.	.7933658	.5905380	.5907635	.0
vaccine_equity_metric_	_&64 8tile	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
age12_plus_population	0	1.00	18895.	.0148993	.880	1346.9	513685	. 1301756	.128556	.7
age5_plus_population	0	1.00	20875.	.2241105	.980	1460.5	015364	.0304877	.000190	2.0
$tot_population$	8514	0.95	23372.	722628	.512	2126.0	018714	.038168	.001116	5.0
persons_fully_vaccinat	ed4921	0.91	13466.	3144722	.461	883.00	8024.0	022529	.007186	.0
persons_partially_vacc	in 4921	0.91	1707.5	01998.8	80 11	167.00	1194.0	02547.0	039204	.0
percent_of_population	_168616 5_vac	c On&9 ec	0.55	0.25	0	0.39	0.59	0.73	1.0	
percent_of_population	_1p&6i65 ally_	0 a& 9 in	1a 0e01 8	0.09	0	0.05	0.06	0.08	1.0	
percent_of_population	1 97562_1_	p 0u8 9_d	o £ e61	0.25	0	0.46	0.65	0.79	1.0	
booster_recip_count	70421	0.60	5655.1	76867.4	49 11	280.00	2575.0	009421.0	058304	.0
bivalent_dose_recip_co	o d: 6958	0.10	1646.0	22161.8	34 11	109.00	719.00	2443.0	018109	.0
eligible_recipient_coun	t 0	1.00	12309.	.1194555	.83 0	466.00	5810.0	0021140	.0806696	.0

To find all the NA values in the persons_fully_vaccinated column sum(is.na(vax\$persons_fully_vaccinated))

[1] 14921

Q5. How many numeric columns are in this dataset?

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

14921

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

9.2%

Working with Dates

```
library(lubridate)
```

Loading required package: timechange

Attaching package: 'lubridate'

The following objects are masked from 'package:base':

```
date, intersect, setdiff, union
```

```
today()
```

[1] "2022-11-28"

```
# Specify that we are using the year-month-day format
vax$as_of_date <- ymd(vax$as_of_date)</pre>
```

Using this format, we can determine the span of the datasets.

```
today() - vax$as_of_date[1]
```

Time difference of 692 days

```
vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
```

Time difference of 686 days

Q9. How many days have passed since the last update of the dataset?

6 Days

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?

99 unique dates

Working with Zip-Codes

```
library(zipcodeR)
  geocode_zip('92037')
# A tibble: 1 x 3
 zipcode
            lat
                  lng
  <chr>
          <dbl> <dbl>
1 92037
           32.8 -117.
  # Calculate distance of zipcode centers in miles
  zip_distance('92037','92109')
 zipcode_a zipcode_b distance
      92037
                92109
                          2.33
```

You can pull useful data from zipcodes with this function.

```
# ... with 14 more variables: radius_in_miles <dbl>, area_code_list <blob>,
# population <int>, population_density <dbl>, land_area_in_sqmi <dbl>,
# water_area_in_sqmi <dbl>, housing_units <int>,
# occupied_housing_units <int>, median_home_value <int>,
# median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
# bounds_north <dbl>, bounds_south <dbl>, and abbreviated variable names
# 1: zipcode_type, 2: major_city, 3: post_office_city, ...
```

Focus on the San Diego Area

```
# Subset to San Diego county only areas
  sd <- vax[ vax$county == "San Diego" , ]</pre>
or, use the dplyr package
  library(dplyr)
Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
    filter, lag
The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union
  sd <- filter(vax, county == "San Diego")</pre>
  nrow(sd)
[1] 10593
  sd.10 <- filter(vax, county == "San Diego" &
                   age5_plus_population > 10000)
```

```
as_of_date == "2022-11-15")
  as_of_date zip_code_tabulation_area local_health_jurisdiction
1 2022-11-15
                                 92126
                                                        San Diego San Diego
2 2022-11-15
                                 91911
                                                        San Diego San Diego
3 2022-11-15
                                 92154
                                                        San Diego San Diego
  vaccine_equity_metric_quartile
                                                   vem_source
                                4 Healthy Places Index Score
1
2
                                2 Healthy Places Index Score
3
                                2 Healthy Places Index Score
  age12_plus_population age5_plus_population tot_population
1
                71820.2
                                         77775
                                                        82658
2
                71642.8
                                         79225
                                                        84026
3
                76365.2
                                         82971
                                                        88979
  persons_fully_vaccinated persons_partially_vaccinated
                      60484
                                                     5255
1
2
                      83188
                                                    16550
3
                      87151
                                                    17243
  percent_of_population_fully_vaccinated
1
                                 0.731738
2
                                 0.990027
3
                                 0.979456
  percent_of_population_partially_vaccinated
1
                                     0.063575
2
                                     0.196963
3
                                     0.193787
  percent_of_population_with_1_plus_dose booster_recip_count
                                 0.795313
                                                         39544
1
2
                                 1.000000
                                                         44281
3
                                 1.000000
                                                         45961
  bivalent_dose_recip_count eligible_recipient_count redacted
                       10069
                                                 59905
1
                                                              No
2
                        6992
                                                 82731
                                                              No
3
                        7033
                                                 86696
                                                              No
```

filter (vax, county == "San Diego" &

age12_plus_population > 70000 &

Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?

Q11. How many distinct zip codes are listed for San Diego County?

107

[1] 0.7369099

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-11-15"?

73.69%

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-11-15"?

```
library(ggplot2)
hist(fullyVaccPercent,
    main = "Histogram of Vaccination Rates Across San Diego County",
    xlab = "Percent of Population Fully Vaccinated on 2022-11-15")
```

Histogram of Vaccination Rates Across San Diego Count

Percent of Population Fully Vaccinated on 2022-11-15

Focus on UCSD/La Jolla

```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

Vaccination rate for La Jolla CA 92109

Comparing to Similar Sized Area

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                         county
1 2022-11-15
                                 92236
                                                        Riverside
                                                                      Riverside
2 2022-11-15
                                 92130
                                                        San Diego
                                                                      San Diego
3 2022-11-15
                                 94121
                                                    San Francisco San Francisco
4 2022-11-15
                                 94551
                                                          Alameda
                                                                        Alameda
5 2022-11-15
                                                   San Francisco San Francisco
                                 94112
6 2022-11-15
                                 94303
                                                      Santa Clara
                                                                    Santa Clara
  vaccine_equity_metric_quartile
                                                   vem_source
                                1 Healthy Places Index Score
1
2
                                4 Healthy Places Index Score
3
                                4 Healthy Places Index Score
4
                                4 Healthy Places Index Score
5
                                3 Healthy Places Index Score
                                3 Healthy Places Index Score
6
```

```
age12_plus_population age5_plus_population tot_population
1
                 38505.3
                                          42923
                                                          45477
2
                 46300.3
                                          53102
                                                          56134
3
                 39105.0
                                          41363
                                                          43616
4
                 38947.9
                                                          47227
                                          43399
5
                 75681.8
                                          81107
                                                          84707
6
                 40033.3
                                          44989
                                                          48244
  persons_fully_vaccinated persons_partially_vaccinated
1
                      30465
                                                       3858
2
                      52380
                                                       5751
3
                      36566
                                                       2373
4
                      32557
                                                       2333
5
                      78358
                                                       4646
6
                      41275
                                                       4175
  percent_of_population_fully_vaccinated
1
                                  0.669899
2
                                  0.933124
3
                                  0.838362
4
                                  0.689373
5
                                  0.925048
6
                                  0.855547
  percent_of_population_partially_vaccinated
1
                                      0.084834
2
                                      0.102451
3
                                      0.054407
4
                                      0.049400
5
                                      0.054848
6
                                      0.086539
  percent_of_population_with_1_plus_dose booster_recip_count
1
                                  0.754733
                                                           12943
2
                                  1.000000
                                                           34821
3
                                  0.892769
                                                           28345
4
                                                           20223
                                  0.738773
5
                                  0.979896
                                                           56744
6
                                  0.942086
                                                           26288
  bivalent_dose_recip_count eligible_recipient_count redacted
1
                        1395
                                                   30375
                                                               No
2
                       11203
                                                  51780
                                                               No
3
                       10994
                                                   36013
                                                               No
4
                        5568
                                                  32234
                                                               No
5
                       16019
                                                  77580
                                                               No
6
                        8573
                                                  40853
                                                               No
```

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
mean(vax.36$percent_of_population_fully_vaccinated)
```

[1] 0.7172851

Vaccination rate for La Jolla CA 92109

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-11-15"?

summary(vax.36\$percent_of_population_fully_vaccinated)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.3785 0.6396 0.7155 0.7173 0.7880 1.0000
```

Q18. Using ggplot generate a histogram of this data.

hist(vax.36\$percent_of_population_fully_vaccinated)

Histogram of vax.36\$percent_of_population_fully_vaccination_fully_fully_vaccination_fully_vaccination_fully_vaccination_fully_fully_vaccination_fully_

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
filter(vax, zip_code_tabulation_area == "92109", as_of_date == "2022-11-15")$percent_of_po
```

[1] 0.693299

```
filter(vax, zip_code_tabulation_area == "92040", as_of_date == "2022-11-15")$percent_of_po
```

[1] 0.546646

Both of these area codes are below the average.

```
vax %>% filter(as_of_date == "2022-11-15") %>%
    filter(zip_code_tabulation_area=="92040") %>%
    select(percent_of_population_fully_vaccinated)

percent_of_population_fully_vaccinated
1 0.546646
```

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a $age5_plus_population > 36144$.

```
vax.36.all <- filter(vax, age5_plus_population > 36144)

ggplot(vax.36.all) +
   aes(as_of_date,
        percent_of_population_fully_vaccinated,
        group=zip_code_tabulation_area) +
   geom_line(alpha=0.2, color="blue") +
   ylim(c(0,1)) +
   labs(x = "Date", y = "Percent Vaccinated",
        title = "Vaccination Rate Across California",
        subtitle = "Only areas with a population above 36k are shown") +
   geom_hline(yintercept = 0.7172851, linetype="dashed", col = "red")
```

Warning: Removed 184 rows containing missing values (`geom_line()`).

Vaccination Rate Across California

Only areas with a population above 36k are shown

Q21. How do you feel about traveling for Thanksgiving Break and meeting for in-person class afterwards?

Great.