Organometallic compounds & Catalysis

Books to Refer:

Inorganic Chemistry by James E. Huheey Advanced Inorganic Chemistry: Cotton and Wilkinson

Prof. Madhab Chandra Das
Department of Chemistry
High Pressure Lab (Ground Floor)

IIT Kharagpur

Ph: 03222-282894

Email: mcdas@chem.iitkgp.ernet.in

~2000 billion dollars industry

Transition metal organometallic compounds & Catalysis

Which one is organometallic?

Ni(CO)₄ or NaCN?

One metal-carbon bond should be present (C: part of org gr or attached to H).

The term "organometallic" is rather loosely defined

Metals in Low Oxidation States

- In low oxidation states, the electron density on the metal ion is very high.
- To stabilize low oxidation states, we require ligands, which can simultaneously bind the metal center and also withdraw electron density from it.

[Ni(CO)₄], [Fe(CO)₅], [Cr(CO)₆], [Mn₂(CO)₁₀], [Co₂(CO)₈], Na₂[Fe(CO)₄], Na[Mn(CO)₅]

CO does the job (already discussed in Chemical Bonding Part-II)

 σ donor + π acceptor

18 electron rule (EAN Rule)

1920 British Chemist Sidgwick

Organic compounds – Octet rule

Organometallic – 18 electron rule (EAN rule for next inert gas)

•predicting stabilities and structures of organometallic compounds

Counting electrons: 1) Oxd state method $\sqrt{}$

2) Neutral atom method

Counting the number of electrons

Determine the oxidation state of the transition metal center(s) To do this one must:

- a) note any overall charge on the metal complex
- b) know the charges of the ligands bound to the metal center
- c) know the number of electrons being donated to the metal center from each ligand
- 2) Add up the electron counts for the metal center and ligands

Counting the number of electrons

Ligand Name	Bonding Type	Formal Charge	Electrons donated
Molecular Hydrogen: H ₂	H M ← H	0	2
Hydride H ⁻	M-H	-1	2
Halide X ⁻	M-X	-1	2
Amine, phosphine, arsine: NR ₃ , PR ₃ , AsR ₃	M-NR3 M-PR3	0	2
Carbonyl: C≡O	M-C=O	0	2
Alkyl, Aryl	M-CR M-Ph	-1	2
Alkene	$H_2C \stackrel{M}{=} CH_2$	0	2

Rh is
$$s^1 d^8 = 9e$$

since Cl is -1, Rh is +1 (the complex is neutral)

$$9e - 1e + 8e = 16e$$

4 ligands x 2e each = 8e

therefore coordinately unsaturated

21	22	23	24	25	26	27	28	29
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper
39	40	41	42	43	44	45	46	47
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenum	Rhodium	Palladium	Silver
57	72	73	74	75	76	77	78	79
La	Hf	Ta	W	Re	Os	Ir	Pt	Au
Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold

Early Transition Metals

16e and sub-16e configurations are common

Coordination geometries higher than 6

Middle Transition
Metals

18e configurations are common

Coordination geometries of 6 are common

Late Transition
Metals

16e and sub-16e configurations are common

Coordination geometries of 5 or lower

Catalysis

$$A + B \stackrel{Catalyst}{\longrightarrow} C$$

A catalyst lowers the $\Delta \mathbf{G}$ activation barrier for a transformation, by introducing a new reaction pathway.

Reaction Coordinate

Heterogeneous

Homogeneous

Catalysis: Why?

Synthesis of chemicals... pharmaceutical, agricultural

Catalytic converter ... environmental

Biology: Enzymes

Catalytic Converter

How to select an efficient catalyst?

Activity: related to rate of reaction (also called turnover)

efficient catalyst: good activity

Turnover frequency (N): catalytic cycles/unit time

Large turnover frequency – efficient catalyst

Selectivity: Byproducts should be minimized

Lifetime: It is costly to replace the catalyst frequently

Cost: The acceptable cost depends upon the catalyst

lifetime and product value

Poisoning: decomposition of catalyst, adsorption of

reactant/product

Coordination compounds in catalysis Nobel Prizes

2010	Richard F. Heck, Ei-ichi Negishi, Akira Suzuki
2005	Yves Chauvin, Robert H. Grubbs and Richard R.
	Schrock.
2001	KNOWLES, NOYORI, SHARPLESS
1973	WILKINSON
1963	ZIEGLER, NATTA
1918	HABER
1909	OSTWALD

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$H_2 \rightarrow$$
 -CH-CH-

NOBEL: 1973

The most common catalyst

Wilkinson's Catalyst, [RhCl(PPh₃)₃]

Wilkinson's Catalyst (WC)

Chlorotris(triphenylphosphine)rhodium(I)

square planar 16 e d⁸ configuration

Geoffrey Wilkinson

- Born July 14, 1921, Yorkshire, England
- Ph.D from UC Berkeley studying with Glenn Seaborg
- First published compound in 1965 in Journal of the Chemical Society *Chemical Communications*
- •Nobel Prize in Chemistry 1973 (shared with Ernst Otto Fischer) for their pioneering work, performed independently, on the chemistry of the organometallics

Organometallic compounds prepared by Wilkinson in display at Harvard Univ.

"Advanced Inorganic Chemistry", often referred to simply as "Cotton and Wilkinson"

Synthesis of WC

Commercially available

Few Common Organometallic Catalytic Steps

(a) Ligand coordination and dissociation

Facile coordination of the reactant and facile loss of products.

Coordinatively unsaturated - 16-electron complexes

(b) Oxidative addition

Coordinatively unsaturated complex in a low OS undergoes a formal oxdn by 2 units (loss of 2 e) & at the same time increases CN by 2.

Oxidation of metal by two units: Mⁿ to Mⁿ⁺²

CN of metal by two units: 4 to 6 (in general)

Oxidative addition...

$$L_{n}M^{n} \longrightarrow L_{n}M^{n+2} \longrightarrow L_{n}M^{n+2}$$

Vaska's complex

(c) Insertion or migration Migration of alkyl and hydride ligands

L is generally solvents

(d) Nucleophilic attack

$$\begin{array}{c|c}
R & R & 2+ \\
 & & H & R \\
\hline
 & & L_3Pd & C & C & OH \\
\hline
 & & & R & R
\end{array}$$

$$\begin{array}{c|c}
R & R & R
\end{array}$$

$$\begin{array}{c}
O \\
L_5M \longrightarrow CO \\
+ OH \longrightarrow C \longrightarrow \begin{bmatrix} L_5M \longrightarrow H \end{bmatrix} \\
+ CO_2
\end{array}$$

(d) Reductive elimination

Involves decrease in the oxidation and coordination number

Hydrogenation of Unsaturated Hydrocarbons

-CH=CH- +
$$\frac{H}{L_2}$$
 -CH-CH-

$$\Delta G^0 = -101 \text{ kJ/mol}$$

thermodynamically favourable but does not occur at RT and P

(1) Oxidative addition

(2) Ligand Dissociation

(3) Ligand Association

(4) Migration/Insertion

(5) Ligand association

(6) Reductive elimination

Homogeneous Hydrogenation

WC in alkene Hydrogenation: Additional Notes

Highly sensitive to the nature of the phosphine ligand Highly selective for C=C over C=O

It is used in the selective hydrogenation of alkenes and alkynes without affecting the functional groups like: C=O, CN, NO₂, Aryl, CO₂R etc.

Applications

- * Laboratory scale organic synthesis
- * Production of fine chemicals

Alkene Hydrogenation & Chirality & Nobel

Chiral phosphine ligands have been developed to synthesize optically active products.

Synthesis of L-DOPA (used in the treatment of Parkinson's diseases)
Synthetic route was developed by Knowles & co-workers at Monsanto

Dr. William S. Knowles received Nobel prize in chemistry 2001 along with other two scientists.

Alkene Hydrogenation, Chirality & Nobel Prize

This reaction, developed by Knowles, Vineyard, and Sabacky, was used at Monsanto as a commercial route to the Parkinson's drug L-DOPA.

Acetic Acid

- > Acetic acid is an important industrial chemical
- ➤ Over 8 million tonnes is produced all over the world annually

de-icing chemicals are efficient freezing-point depressants

Synthesis of Acetic Acid

The traditional synthesis uses bio-oxidation of ethanol obtained via fermentation:

$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$

 $C_2H_5OH + O_2 \rightarrow CH_3COOH + H_2O$

This is *not* a clean and efficient process! (need conc EtOH)

Industrial acetic acid synthesis:

 $CH_3OH + CO \rightarrow CH_3COOH$ (catalyzed by a rhodium complex)

Prior to 1970, acetic acid was made using cobalt catalysts (BASF process)

In 1970 Monsanto commercialized a rhodium carbonyl iodide catalyst that is commonly called the Monsanto Acetic Acid Process

Monsanto Acetic Acid Process (carbonylation of methanol)

Active/pre- catalyst: [Rh (CO)₂I₂]⁻

The rkn can be initiated with any Rh salt eg RhCl₃ & source of iodine (HI), the two combining the CO to produce the active catalyst $[Rh(CO)_2I_2]^{-1}$

1. CH₃I generation:

$$CH_3OH + HI \longrightarrow CH_3I + H_2O$$

2. Oxidative addition of CH₃I to the Rh^I-complex

This is the slowest stage of the process

3. Migration insertion of CO (plus new CO addition to the coordination

4. Reductive elimination of CH₃COI

5. Formation of acetic acid through the following processes:

$$CH_3COI + H_2O \longrightarrow CH_3COOH + HI$$

Monsanto Acetic Acid Process Carbonylation of Methanol

OS of Rh: = +1&+3