Chapter Five

Estimating Project Times and Costs

Estimating Projects

Estimating

- The process of forecasting or approximating the time and cost of completing project deliverables
- The task of balancing expectations of stakeholders and need for control while the project is implemented

Types of Estimates

- Top-down (macro) estimates: analogy, group consensus, or mathematical relationships
- Bottom-up (micro) estimates: estimates of elements of the work breakdown structure

Why Estimating Time and Cost Is Important

- To support good decisions
- To schedule work
- To determine how long the project should take and its cost
- To determine whether the project is worth doing
- To develop cash flow needs
- To determine how well the project is progressing

Factors Influencing the Quality of Estimates

Developing Work Package Estimates

Top-Down versus Bottom-Up Estimating

Top-Down Estimates

- Are usually derived from someone who uses experience and/or information to determine the project duration and total cost.
- Are sometimes made by top managers who have little knowledge of the processes used to complete the project.

Bottom-Up Approach

 Can serve as a check on cost elements in the WBS by rolling up the work packages and associated cost accounts to major deliverables at the work package level.

Top-Down versus Bottom-Up Estimating

Conditions for Preferring Top-Down or Bottom-up Time and Cost Estimates

	Top-down	Bottom-up
Condition	Estimates	Estimates
- Strategic decision making	X	
- Cost and time important		X
- High uncertainty	X	
- Internal, small project	X	
- Fixed-price contract		X
- Customer wants details		X
- Unstable scope	X	

Estimating Projects: Preferred Approach

- Make rough top-down estimates
- Develop the WBS/OBS
- Make bottom-up estimates
- Develop schedules and budgets
- Reconcile differences between top-down and bottom-up estimates

Top-Down Approaches for Estimating Project Times and Costs

- Consensus methods
- Ratio methods (sometimes called parametric)
- Apportion method
- Function point methods for software and system projects
- Learning curves

Apportion Method of Allocating Project Costs Using the Work Breakdown Structure

Simplified Basic Function Point Count Process for a Prospective Project or Deliverable

Element	Complexity Weighting							
	Low	Average	High	Total				
Number of <i>inputs</i>	×2+	× 3+	× 4	=				
Number of outputs	×3+	× 6+	× 9	=				
Number of inquiries	×2+	× 4+	× 6	=				
Number of files	\times 5 +	× 8 +	× 12	=				
Number of interfaces	×5+	× 10 +	× 15	=				

Example: Function Point Count Method

	Software P	roject 13: Patio	ent Admitting and B	illing			
15	Inputs	R	Rated complexity as low				
5	Outputs	R	ated complexity as	average	(6)		
10	Inquiries	R	Rated complexity as average				
30	Files	R	Rated complexity as high				
20	Interfaces	R	Rated complexity as average				
	Ap	plication of Co	mplexity Factor				
Element	Count	Low	Average	High	Total		
Inputs	15	\times 2			= 30		
Outputs	5		\times 6		= 30		
Inquiries	10		\times 4		= 40		
Files	30			\times 12	= 360		
Interfaces	20		\times 10		= 200		
				Total	660		

Learning Curves Unit Values

Units	60%	65 %	70%	75 %	80%	85 %	90%	95%
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	.6000	.6500	.7000	.7500	.8000	.8500	.9000	.9500
3	.4450	.5052	.5682	.6338	.7021	.7729	.8462	.9219
4	.3600	.4225	.4900	.5625	.6400	.7225	.8100	.9025
5	.3054	.3678	.4368	.5127	.5956	.6857	.7830	.8877
6	.2670	.3284	.3977	.4754	.5617	.6570	.7616	.8758
7	.2383	.2984	.3674	.4459	.5345	.6337	.7439	.8659
8	.2160	.2746	.3430	.4219	.5120	.6141	.7290	.8574
9	.1980	.2552	.3228	.4017	.4930	.5974	.7161	.8499
10	.1832	.2391	.3058	.3846	.4765	.5828	.7047	.8433
12	.1602	.2135	.2784	.3565	.4493	.5584	.6854	.8320
14	.1430	.1940	.2572	.3344	.4276	.5386	.6696	.8226
16	.1296	.1785	.2401	.3164	.4096	.5220	.6561	.8145
18	.1188	.1659	.2260	.3013	.3944	.5078	.6445	.8074

Learning Curves Cumulative Values

Units	60%	65%	70%	75 %	80%	85%	90%	95%
1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2	1.600	1.650	1.700	1.750	1.800	1.850	1.900	1.950
3	2.045	2.155	2.268	2.384	2.502	2.623	2.746	2.872
4	2.405	2.578	2.758	2.946	3.142	3.345	3.556	3.774
5	2.710	2.946	3.195	3.459	3.738	4.031	4.339	4.662
6	2.977	3.274	3.593	3.934	4.299	4.688	5.101	5.538
7	3.216	3.572	3.960	4.380	4.834	5.322	5.845	6.404
8	3.432	3.847	4.303	4.802	5.346	5.936	6.574	7.261
9	3.630	4.102	4.626	5.204	5.839	6.533	7.290	8.111
10	3.813	4.341	4.931	5.589	6.315	7.116	7.994	8.955
12	4.144	4.780	5.501	6.315	7.227	8.244	9.374	10.62
14	4.438	5.177	6.026	6.994	8.092	9.331	10.72	12.27
16	4.704	5.541	6.514	7.635	8.920	10.38	12.04	13.91
18	4.946	5.879	6.972	8.245	9.716	11.41	13.33	15.52
20	5.171	6.195	7.407	8.828	10.48	12.40	14.64	17.13
22	5.379	6.492	7.819	9.388	11.23	13.38	15.86	18.72
24	5.574	6.773	8.213	9.928	11.95	14.33	17.10	20.31
25	5.668	6.909	8.404	10.19	12.31	14.80	17.71	21.10

Bottom-Up Approaches for Estimating Project Times and Costs

- Template methods
- Parametric procedures applied to specific tasks
- Range estimates for the WBS work packages
- Phase estimating: A hybrid

Range Estimating Template

	A	В	C	D	E	F	G	Н
1	Project n	umber: 18	10.0		Project Mana	'Connor		
2	Project de	escription: New Organic Wine La	aunch		Date: 2/17/2	XXX		
3			Organic W	ine Launch				
4			Ra	nge Estima	tes			
5				_				
6	WBS	Description	Low	Average	High	Range	Risk	
7	ID		Estimate	Estimate	Estimate		Level	
8			Days	Days	Days	Days		
9						_		
10	102	Approval	1	1	3	2	low	
11	103	Design packaging	4	7	12	8	medium	
12	104	ID potential customers	14	21	35	21	high	
13	105	Design bottle logo	5	7	10	5	low	
14	106	Contract kiosk space	8	10	15	7	medium	
15	107	Construct kiosk	4	4	8	4	medium	
16	108	Design fair brochure	6	7	12	6	high	
17	109	Trade journal advertising	10	12	15	5	medium	
18	110	Production test	10	14	20	10	high	
19	111	Produce to inventory	5	5	10	5	high	
20	112	Business card scanner hookup	1	2	3	2	low	
21	113	Video hook up	2	2	4	2	medium	
22	114	Event rehearsal	2	2	5	3	high	

Level of Detail

- Level of detail in the WBS varies with the complexity of the project, the need for control, the project size, cost, duration, and other factors.
- Excessive detail is costly.
 - Fosters a focus on departmental outcomes rather than on deliverable outcomes
 - Creates unproductive paperwork
- Insufficient detail is costly.
 - Lack of focus on goals
 - Wasted effort on nonessential activities

Three Views of Cost

Refining Estimates

- Reasons for Adjusting Estimates
 - Interaction costs are hidden in estimates.
 - Normal conditions do not apply.
 - Things go wrong on projects.
 - Changes in project scope and plans
 - Overly optimistic
 - Strategic misrepresentation
- Adjusting Estimates
 - Time and cost estimates of specific activities are adjusted as the risks, resources, and situation particulars become more clearly defined.

Three Steps of the Reference Class Forecasting (RCF) Process

- Select a reference class of projects similar to your potential projects.
- Collect and arrange outcome data as a distribution. Create a distribution of cost overruns as a percentage of the original project estimate.
- Use the distribution data to arrive at a realistic forecast. Compare the original cost estimate for the project with the reference class projects.