Sciences des données Un voyage initiatique

Cécile Capponi, Rémi Eyraud, Hachem Kadri

LIS, Aix-Marseille Université, CNRS Equipe QARMA

M1 Informatique

Plan

1 Régression

Problème de régression

Cas simple

On observe des données

$$(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$$

On cherche à exprimer la dépendance entre le vecteur \mathbf{x} et le réel y par une fonction, en se trompant le moins possible en généralisant

plusieurs classes de fonctions f, tq $f(\mathbf{x}) = y$

Calculer f à partir d'un échantillon $\{(\mathbf{x}_i, y)\}$, on veut calculer ce qui définit f: savoir ce qui la définit, donc savoir quoi chercher!

- La fonction est de la forme $f(\mathbf{x}) = a\mathbf{x} + b$: régression linéaire
- La fonction est un polynôme (ci-dessus) $f(\mathbf{x}) = a\mathbf{x}^3 + b\mathbf{x}^2 + c\mathbf{x} + d\mathbf{x}$
- Plus le polynôme est de degré élevé = plus on cherche de *paramètres* de la fonction = plus c'est compliqué
- Au delà des polynômes

Dans ce cours : régression linéaire

$$f(x) = ax + b$$

Souvenez vous...

Expliquer une variable par une (ou plusieurs) autre(s)

Un exemple : USCrime (L. Wasserman)

Crimes reliés à statistiques démographiques dans 47 états des USA : expliquer le taux de crimes par des variables mesurées.

- 1 R: Crime rate: # of offenses reported to police per million population
- 2 Age: The number of males of age 14-24 per 1000 population
- S: Indicator variable for Southern states (0 = No, 1 = Yes) Ed: Mean # of years of schooling x 10 for persons of age 25 or older
- 4 Ex0: 1960 per capita expenditure on police by state and local government
- 5 Ex1: 1959 per capita expenditure on police by state and local government
- 6 LF: Labor force participation rate per 1000 civilian urban males age 14-24
- 7 M: The number of males per 1000 females
- 8 N : State population size in hundred thousands
- 9 NW: The number of non-whites per 1000 population
- 10 U1: Unemployment rate of urban males per 1000 of age 14-24
- 11 U2: Unemployment rate of urban males per 1000 of age 35-39
- W: Median value of transferable goods and assets or family income in tens of \$
- 13 X: The number of families per 1000 earning below 1/2 the median income

Un exemple : USCrime (suite)

R	Age	S	Ed	Ex0	Ex1	LF	M	N	NW	U1	U2	W	Χ
79.1	151	1	91	58	56	510	950	33	301	108	41	394	261
163.5	143	0	113	103	95	583	1012	13	102	96	36	557	194
57.8	142	1	89	45	44	533	969	18	219	94	33	318	250
196.9	136	0	121	149	141	577	994	157	80	102	39	673	167
123.4	141	0	121	109	101	591	985	18	30	91	20	578	174
68.2	121	0	110	118	115	547	964	25	44	84	29	689	126
96.3	127	1	111	82	79	519	982	4	139	97	38	620	168
155.5	131	1	109	115	109	542	969	50	179	79	35	472	206
85.6	157	1	90	65	62	553	955	39	286	81	28	421	239
70.5	140	0	118	71	68	632	1029	7	15	100	24	526	174
167.4	124	0	105	121	116	580	966	101	106	77	35	657	170
84.9	134	0	108	75	71	595	972	47	59	83	31	580	172
51.1	128	0	113	67	60	624	972	28	10	77	25	507	206
66.4	135	0	117	62	61	595	986	22	46	77	27	529	190
79.8	152	1	87	57	53	530	986	30	72	92	43	405	264

Expliquer la variable R par les autres attributs

Calculer R = f(Age, S, Ed, etc., W,X))

Bien calculer pour ne pas se tromper pour prédire les futurs crimes...

Comment calculer en faisant le moins d'erreurs possible?

Comment calculer?

Résoudre un système d'équations basé sur l'échantillon

- Que cherche t'on : une fonction, par exemple linéaire $y = a_1x_1 + a_2x_2 + \cdots + a_dx_d + a_{d+1}$
- On cherche le vecteur de coefficients $a_1, \dots a_{d+1}$ dans le cas d'une fonction linéaire

Comment faire le moins d'erreurs en généralisation?

- Qu'est-ce qu'une erreur en régression?
- Sur l'échantillon : minimiser l'écart de chaque point à la droite calculée (cela se mesure)
- Sur toute la population : cela s'estime

Modélisation de la régression

Un échantillon supposé i.i.d. selon une distribution jointe

- Une variable aléatoire Z = (X, Y) à valeurs dans $\mathbb{R}^n \times \mathbb{R}$ (porteuse de liens entre les variables X facteurs et la variable Y à prédire à expliquer)
- Les exemples sont des couples $(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R}$ tirés selon la distribution jointe P(Z = (x, y)) = P(X = x)P(Y = y|X = x).
- Un échantillon S est un ensemble fini d'exemples $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ i.i.d. selon P.

La fonction que l'on cherche et sa qualité

- Fonction de perte (loss) : $\ell(y, f(\mathbf{x})) = (y f(\mathbf{x}))^2$
- Fonction risque (erreur) : espérance mathématique de la fonction de perte

$$R(f) = \int \ell(y, f(\mathbf{x})) dP(\mathbf{x}, y) = \int_{\mathbb{R}^n \times \mathbb{R}} (y - f(\mathbf{x}))^2 dP(\mathbf{x}, y)$$

Modélisation de la régression (suite)

Le problème général de la régression

Etant donné un échantillon $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$, trouver un classifieur f qui minimise le risque R(f)

La fonction de régression

- Bonne nouvelle : il existe une fonction qui minimise l'écart quadratique moyen : la fonction de régression $r(\mathbf{x}) = \int_Y y dP(y|\mathbf{x})$
- Mauvaise nouvelle : la fonction de régression est le plus souvent inaccessible (distribution inconnue, cf en classification)

Alternative : le principe MRE basé sur le risque empirique, celui qui se mesure sur l'échantillon d'apprentissage

Minimisation du risque empirique (MRE)

Risque empirique en régression

■ Le risque empirique $R_{emp}(f)$ de f est la moyenne des carrés des erreurs de prédiction par f, calculée sur S

$$R_{emp}(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

Principe de minimisation du risque empirique : calculer

$$\underset{f}{\operatorname{argmin}} R_{emp}(f)$$

- Dans quel espace de fonctions chercher f?
- Une notation parmi d'autres : $f_{\theta}(\mathbf{x})$ où θ symbolise les paramètres de la fonction à déterminer, par exemple :

$$f(\mathbf{x}) = a\sin^k(\mathbf{b}\dot{\mathbf{x}} + c), \theta = \{a, k, \mathbf{b}, c\}$$
$$f(\mathbf{x}) = a\dot{\mathbf{x}} + b, \theta = \{a, b\}$$

■ Apprentissage = déterminer θ qui minimise le risque empirique

Régression linéaire

Définition de la régression linéaire

On suppose que

$$y = \langle \boldsymbol{\alpha}, \mathbf{x} \rangle + \beta + \epsilon$$

οù

- **x** prend ses valeurs dans \mathbb{R}^d , la description des données
- $m{\alpha} \in \mathbb{R}^d$ et $eta \in \mathbb{R}$ sont les paramètres θ à estimer
- ϵ est une variable aléatoire telle que $\mathbb{E}(\epsilon)=0$ et $\mathbb{V}(\epsilon)=\sigma^2$ (variance indépendante de X) : du bruit
- \blacksquare $\langle \mathbf{u}, \mathbf{v} \rangle$ est le produit scalaire entre les vecteurs \mathbf{u} et \mathbf{v}

La fonction de régression est

$$r(\mathbf{x}) = \langle \boldsymbol{\alpha}, \mathbf{x} \rangle + \beta = \alpha_1 x_1 + \dots + \alpha_d x_d + \beta$$

Régression linéaire - cas d = 1 (une seule variable facteur)

On cherche une équation de droite : deux paramètres!

On suppose que La fonction de régression est

$$r(x) = \alpha x + \beta$$

On suppose une corrélation linéaire entre x et y laquelle?

Estimation de la fonction de régression à partir des données :

$$\hat{lpha}=-rac{1}{200}$$
 et $\hat{eta}=13$

$$\hat{r}(x) = -\frac{1}{200}x + 13$$

Test :
$$\hat{r}(1800) = -9 + 13 = 4$$

Régression linéaire : estimateurs des moindres carrés (MC)

Récapitulatif et notations

En une dimension, on cherche α et β qui réalisent l'idéal $r(x) = \alpha x + \beta$ pour tout x de l'échantillon et en généralisation

- On ne trouvera pas l'idéal... Admettons.
- On va estimer α et β sur la base de l'échantillon : $\hat{\alpha}$ et $\hat{\beta}$ désignent les paramètres estimés via le principe MRE : sur la base de l'échantillon

Principe de l'estimateur des moindres carrés

Fondé sur l'écart quadratique de l'échantillon à la solution potentielle : à minimiser sur l'ensemble des points de l'échantillon

Régression linéaire par l'estimateur des moindres carrés, d = 1 dimension

L'estimateur des moindres carrés pour d = 1, formellement

Soit $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ un échantillon de n exemples. Les valeurs de $\hat{\alpha}$ et $\hat{\beta}$ qui minimisent

$$\sum_{i=1}^{n} (y_i - (\hat{\alpha}x_i + \hat{\beta}))^2$$

sont

$$\hat{\alpha} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$
$$\hat{\beta} = \overline{y} - \hat{\alpha}\overline{x}$$

où les moyennes considérées sont

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ et } \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Régression linéaire d=1: la fonction de régression et son erreur apparente

Fonction de regression estimée

La fonction de régression estimée est alors

$$\hat{r}(x) = \hat{\alpha}x + \hat{\beta}.$$

Les erreurs estimées de cette fonction

■ Erreur estimée sur un exemple = résidu

$$\widehat{\epsilon}_i = y_i - \widehat{y}_i = y_i - (\widehat{\alpha}x_i + \widehat{\beta})$$

■ Variance estimée = erreur quadratique moyenne estimée (mse)

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\epsilon}_i^2$$

Estimateurs des moindres carrés d = 1 : exemple

Soit $S = \{(0,1), (1,0), (2,1), (3,4)\}$ notre échantillon

- Tracer l'échantillon sur un graphique
- Indiquer grossièrement une droite de régression linéaire
- Calculer la droite de régression linéaire par l'estimateur des moindres carrés, et son erreur

Solution

$$\overline{x} = 3/2, \overline{y} = 3/2, \hat{\alpha} = 1 \text{ et } \hat{\beta} = 0.$$

$$\widehat{\epsilon_1} = 1, \widehat{\epsilon_2} = -1, \widehat{\epsilon_3} = -1$$

$$\widehat{\epsilon_4} = 1 \text{ et } \hat{\sigma}^2 = 2$$

Simulateur sur internet: https://bit.ly/2qwb5g2

Propriétés de l'estimateur des moindres carrés

Estimateur sans biais

- $\hat{\alpha}, \hat{\beta}$ et $\hat{\sigma}^2$ sont des *estimateurs non biaisés* de α, β et σ^2
 - Répéter m fois l'apprentissage des paramètres avec m échantillons différents de la même population
 - La moyenne des m paramètres estimés converge vers les paramètres du modèle

Illustration (m = 10 expériences)

- X prend 11 valeurs équidistantes dans [0,1]; Y = 2 * X + 1 + Norm(0,1)
- $lue{}$ Les m échantillons diffèrent en raison du bruit dans l'étiquette

$$S_1 = \{(0, 1.24), (0.1, 0.99), (0.2, 1.31), \dots, (1, 2.95)\},\$$

 $S_2 = \{(0, 0.88), (0.1, 0.99), (0.2, 1.55), \dots, (1, 3.17)\}, \text{ etc.}$

- en bleu : la droite de régression
 - en rouge : chaque estimation
 - en noir : la moyenne des estimations.

Propriétés de l'estimateur des moindres carrés (suite)

Estimateur consistant (convergent)

plus on dispose d'observations (*n* grand), plus les estimations se rapprochent des paramètres du modèle.

Illustration

- **X** prend *n* valeurs équidistantes dans [0,1]; Y = 2 * X + 1 + Norm(0,1).
- Faisons varier n, de 11 à 1001

- en bleu : la droite de régression
- en rouge : n = 11
- en vert : n = 101
- en noir : *n* = 1001.

Régression linéaire multivariée : d > 1

Plusieurs variables facteurs, une variable expliquée

Soit $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ l'échantillon d'apprentissage, $\mathbf{x}_i \in \mathbb{R}^d$, $y \in \mathbb{R}$

- Soit X la matrice $n \times (d+1)$ dont la i-ème ligne est \mathbf{x}_i , 1:ième exemple, composé de d+1 valeurs (la dernière indique l'écart à l'origine)
- Soit *Y* le vecteur colonne composé des étiquettes *y_i*.

Estimateur des moindres carrés, d > 1

Les paramètres θ du modèle sont : α un vecteur de \mathbb{R}^d , β un réel La fonction de régression est $r_{\theta}(\mathbf{x}) = \langle \mathbf{x}, \alpha \rangle + \beta$

L'estimateur des moindres carrés est

$$\begin{pmatrix} \hat{\boldsymbol{\alpha}} \\ \hat{\boldsymbol{\beta}} \end{pmatrix} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

où X^T = matrice transposée de X

■ Si X^TX n'est pas inversible, ou si $det(X^TX) \simeq 0, \dots$ il est nécessaire de transformer le problème (second semestre)

Exemple de régression linéaire multivariée

$$S = \{((0,0),-1),((0,1),1),((1,0),1),((1,1),1)\}.$$

On a

$$X = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}, X^{T} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \text{ et } Y = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

On vérifie que

$$X^{T}X = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 4 \end{pmatrix}, (X^{T}X)^{-1} = \begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ -1/2 & -1/2 & 3/4 \end{pmatrix}$$

$$(X^T X)^{-1} X^T = \begin{pmatrix} -1/2 & -1/2 & 1/2 & 1/2 \\ -1/2 & 1/2 & -1/2 & 1/2 \\ 3/4 & 1/4 & 1/4 & -1/4 \end{pmatrix}$$
 et $(X^T X)^{-1} X^T Y = \begin{pmatrix} 1 \\ 1 \\ -1/2 \end{pmatrix}$

soit

$$\hat{lpha}=(1,1)$$
 et $\hat{eta}=-1/2$.

Prédiction
$$r((0.2, 0.7) = 0.2\alpha_1 + 0.7\alpha_2 + \beta = 0.2 + 0.7 - 0.5 = 0.4$$