

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8950000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 160000 N
Ν
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 11800000 Nmm
                                                    = -7590000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            18.05.18
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 164000 N	M _×	= -5090000 Nmm		= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11000000 Nmm	M_{v}	= -7810000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	, () =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7190000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 187000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 8960000 Nmm
                                                           = -8580000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca}=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 128000 N	M _x	= -6120000 Nmm		= 250 N/mm ²	G	= 72000 N/mm ²
M_t	= 8510000 Nmm	M_{y}	= -8620000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	y	σ_{mise}	es=
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{treso}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9020000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 162000 N
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12000000 Nmm
                                                          = -7750000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5120000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11100000 Nmm
                                                          = -7990000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 190000 N	M _x	= -7250000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9130000 Nmm	M_{v}	= -8770000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6150000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                            = 72000 \text{ N/mm}^2
        = 130000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 8680000 Nmm
                                                    = -8830000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8040000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
Ν
        = 163000 N
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 11000000 Nmm
                                                    = 7410000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            18.05.18
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -4400000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 166000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 10000000 Nmm
                                                          = 7580000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 194000 N	M _×	= -6560000 Nmm	$\sigma_{\rm a}$	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 8560000 Nmm	M_{v}	= 8480000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M) .	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M)$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	\mathbf{r}_{u}	=
Α	=	J_t	=	σ_{I}	=	r_v	=
J_xx	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5340000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 131000 N
Ν
                                                                                                                                                   G
                                                                                                            = 200000 \text{ N/mm}^2
         = 7950000 Nmm
                                                          = 8500000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7930000 \text{ Nmm} \sigma_{a} = 250 \text{ N/mm}^{2}
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 161000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 10800000 Nmm
                                                           = 7250000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 163000 N	M _×	= -4340000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9930000 Nmm	M_{v}	= 7390000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6430000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 190000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 8380000 Nmm
                                                          = 8340000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 129000 N	M _×	= -5250000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 7800000 Nmm	M_{v}^{λ}	= 8300000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{ca} =	-	

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 148000 N	M _×	= -7810000 Nmm		$= 250 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 11000000 Nmm	M_{v}	= -7590000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N)$) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 153000 N	M _×	= -4420000 Nmm	σ_a	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10100000 Nmm	M_{v}^{λ}	= -7830000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M		σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	sca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 174000 N	M _x	= -6290000 Nmm	σ_{a}	= 250 N/mm ²	G	= 72000 N	N/mm ²
M_t	= 8390000 Nmm	$\hat{M_v}$	= -8630000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M _y	,,	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{ca} =			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13							18.05.18	

 $= 72000 \text{ N/mm}^2$ Ν = 119000 NG $= 200000 \text{ N/mm}^2$ = 7880000 Nmm = -8690000 Nmm M₊ Ε $\sigma(M_v)=$ X_{G} $\sigma_{\text{mises}} =$ $\tau(M_t) =$ y_{G} σ_{I} $\sigma(N) =$ σ_{II} $\sigma(M_x)=$

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7850000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 150000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11100000 Nmm
                                                          = -7750000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -4430000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                             = 72000 \text{ N/mm}^2
        = 155000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 10300000 Nmm
                                                     = -8010000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                        \tau(M_t) =
y_{G}
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               18.05.18
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6320000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 176000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 8530000 Nmm
                                                          = -8810000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5330000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                              = 72000 \text{ N/mm}^2
Ν
        = 121000 N
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 8030000 Nmm
                                                     = -8890000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                         \tau(M_t) =
y_{G}
                                                                                        \sigma_{\text{I}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 193000 N	M _×	= -12600000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 14100000 Nmm	M_{v}	= 8260000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 191000 N	M _×	= -6730000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12800000 Nmm	M_y	= 8220000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_G	=	J_{xy}	=	σ(M	y'	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 229000 N	M _×	= -10200000 Nmm	$\sigma_{\rm a}$	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10800000 Nmm	M_{v}	= 9500000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 151000 N	M _×	= -8170000 Nmm	$\sigma_{\rm a}$	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 10000000 Nmm	M_{v}	= 9240000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 190000 N	M _x	= -12400000 Nmm		= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13800000 Nmm	M_{v}	= 8090000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	l _y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	sca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6660000 \text{ Nmm} \sigma_{a} = 250 \text{ N/mm}^{2}
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 188000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 12500000 Nmm
                                                          = 8030000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 226000 N	M _×	= -10100000 Nmm	$\sigma_{\rm a}$	$= 250 \text{ N/mm}^2$	G	$= 72000 \text{ N/mm}^2$
M_t	= 10600000 Nmm	M_{v}	= 9290000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mise}	es=
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.ve}}$	_{en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 149000 N	M _×	= -8060000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9840000 Nmm	M_{v}	= 9020000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9260000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
Ν
         = 168000 N
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12700000 Nmm
                                                          = -8430000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 172000 N	M _×	= -5270000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11800000 Nmm	M_{v}^{λ}		Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7450000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 196000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 9730000 Nmm
                                                    = -9580000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             18.05.18
```


Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6330000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 134000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 9250000 Nmm
                                                    = -9670000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9350000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 170000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 12900000 Nmm
                                                          = -8620000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5310000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                           = 72000 \text{ N/mm}^2
        = 174000 N
Ν
                                                                                                                                   G
                                                                                               = 200000 \text{ N/mm}^2
        = 12000000 Nmm
                                                    = -8930000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       σ
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                            18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7520000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 199000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 9890000 Nmm
                                                          = -9790000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6380000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                            = 72000 \text{ N/mm}^2
        = 136000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 9400000 Nmm
                                                    = -9910000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 181000 N	M _×	= -12400000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13700000 Nmm	M_{v}^{λ}	= 8070000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(_x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -6770000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                         = 72000 \text{ N/mm}^2
         = 180000 N
Ν
                                                                                                                                                G
                                                                                                         = 200000 \text{ N/mm}^2
         = 12500000 Nmm
                                                         = 8050000 Nmm
M₊
                                                                                               Ε
                                                                                               \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                               \tau(M_t) =
y_{G}
                                                                                                σ
                                                                                               \sigma_{l}
                                               \sigma(N) =
                                                                                               \sigma_{\text{II}}
                                               \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 216000 N	M _x	= -10100000 Nmm		= 250 N/mm ²	G	= 72000 N/mm ²
M_t	= 10600000 Nmm	M_{y}	= 9440000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t$) =	$\sigma_{\text{st.ve}}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	x)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 143000 N	M _x	= -8220000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9940000 Nmm	M_{v}	= 9200000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_G	=	J_{u}	=	τ(M	,) =	$\sigma_{\text{st.}}$	_{ven} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 179000 N	M _x	= -12300000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 13500000 Nmm	M_{v}	= 7960000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.v}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_{u}	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 179000 N	M _×	= -6730000 Nmm		= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12300000 Nmm	M_{v}	= 7930000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{ven} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -10000000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                          = 72000 \text{ N/mm}^2
         = 214000 N
Ν
                                                                                                                                                 G
                                                                                                          = 200000 \text{ N/mm}^2
         = 10500000 Nmm
                                                         = 9290000 Nmm
M₊
                                                                                                 Ε
                                                                                                \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_x = -8170000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
Ν
         = 142000 N
                                                                                                                                                      G
                                                                                                   \sigma_{\text{a}}
                                                                                                             = 200000 \text{ N/mm}^2
         = 9790000 Nmm
                                                           = 9050000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                    σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 168000 N	M _x	= -10400000 Nmm		= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12900000 Nmm	M_{y}	= -7990000 Nmm	Ε	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mise}	es =
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	en=
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	$\sigma(N)$		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{tres}	_{ca} =		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -5580000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 168000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 11600000 Nmm
                                                          = -8030000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 197000 N	M _×	= -8410000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9850000 Nmm	M_{v}	= -9060000 Nmm		$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_G	=	J_{u}	=	$\tau(M_1$	<u>,</u>) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_{v}	=
J_xx	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6700000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                             = 72000 \text{ N/mm}^2
        = 131000 N
Ν
                                                                                                                                     G
                                                                                                 = 200000 \text{ N/mm}^2
        = 9020000 Nmm
                                                     = -8880000 Nmm
M₊
                                                                                        Ε
                                                                                        \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                         \tau(M_t) =
y_{G}
                                                                                         σ
                                                                                        \sigma_{l}
                                            \sigma(N) =
                                                                                        \sigma_{\text{II}}
                                            \sigma(M_x)=
                                                                                         \sigma_{tresca} =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                               18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					o. tago <u>_</u> .a			0
Ν	= 170000 N	M_{x}	= -10500000 Nmm	σ_{a}	= 250 N/mm ²	G	= 72000 N	√l/mm²
M_t	= 13200000 Nmm	M_y	= -8160000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	$\sigma(M_{y})$,,	σ_{mis}	es=	
y_G	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{st.ve}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	$\sigma(N)$	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_x)$)=	σ_{tres}	_{:a} =			
	dolfo Zavelani Rossi, F	Politecr	nico di Milano, vers.27.	03.13				18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

					o			•
Ν	= 170000 N	M_{x}	= -5620000 Nmm	σ_{a}	= 250 N/mm ²	G	= 72000 N	√mm²
M_t	= 11800000 Nmm	M_{v}^{λ}	= -8210000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M,	y ′	σ_{mis}	es=	
y_{G}	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	_{en} =	
u_o	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_t	=	σ_{I}	=	r_{v}	=	
J_{xx}	=	σ(N)	=	σ_{II}	=	r_{o}	=	
J_{yy}	=	$\sigma(M_s)$	_{<})=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, F	Politec	nico di Milano, vers.27.	.03.13	}			18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 200000 N	$M_{\star} = -849000$	$0 \text{ Nmm} \qquad \sigma_{a}$	= 250 N/mm ²	G	= 72000 N/mm ²
M_t	= 10000000 Nmm	$M_{v}^{} = -926000$		$= 200000 \text{ N/mm}^2$		
x_{G}	=	$J_{xy} =$	σ(M	y'	σ_{mise}	es=
y_{G}	=	$J_u =$	$\tau(M_t)$	<u>(</u>) =	$\sigma_{st.ve}$	en=
u_o	=	$J_v =$	σ	=	θ_{t}	=
V_{o}	=	α =	τ	=	r_u	=
Α	=	$J_t =$	σ_{l}	=	r_{v}	=
J_{xx}	=	$\sigma(N) =$	σ_{II}	=	r_{o}	=
J_{yy}	=	$\sigma(M_x)=$	σ_{tres}	ca=		
	dolfo Zavelani Rossi, I	Politecnico di Mila	no, vers.27.03.13	3		18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6750000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                               = 72000 \text{ N/mm}^2
         = 133000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 9190000 Nmm
                                                           = -9080000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 173000 N	M _×	= -9610000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 12300000 Nmm	M_{v}	= 7830000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	τ(M	<u>,</u>) =	$\sigma_{\text{st.}}$	_{/en} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 175000 N	M _×	= -5400000 Nmm	σ_a	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 11400000 Nmm	M_y	= 8050000 Nmm	Ε̈́	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_G	=	J_u	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_xx	=	σ(N)		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_×)=	σ_{treso}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 206000 N	M _×	= -7850000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9520000 Nmm	M_{v}^{λ}	= 8970000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	es=
y_{G}	=	J_u	=	τ(M	_t) =	$\sigma_{\text{st.}}$	_{ren} =
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	ro	=
J_{yy}^{∞}	=	σ(M	=(_x	σ_{tres}	_{ca} =	J	

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6580000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                            = 72000 \text{ N/mm}^2
        = 139000 N
Ν
                                                                                                                                   G
                                                                                                = 200000 \text{ N/mm}^2
        = 9030000 Nmm
                                                    = 9020000 Nmm
M₊
                                                                                       Ε
                                                                                       \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                       \tau(M_t) =
y_{G}
                                                                                       \sigma_{l}
                                           \sigma(N) =
                                                                                       \sigma_{\text{II}}
                                           \sigma(M_x)=
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13
                                                                                                                                                             18.05.18
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -9450000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                           = 72000 \text{ N/mm}^2
         = 170000 N
Ν
                                                                                                                                                  G
                                                                                                          = 200000 \text{ N/mm}^2
         = 12000000 Nmm
                                                          = 7680000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                 \tau(M_t) =
y_{G}
                                                                                                 σ
                                                α
                                                                                                 \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 173000 N	M _×	= -5330000 Nmm	σ_{a}	= 250 N/mm ²	G	= 72000 1	N/mm ²
M_t	= 11200000 Nmm	M_{v}^{r}	= 7860000 Nmm	E	$= 200000 \text{ N/mm}^2$			
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	es=	
y_{G}	=	J_{u}	=	$\tau(M_t)$) =	$\sigma_{\text{st.v}}$	en=	
u_{o}	=	J_v	=	σ	=	θ_{t}	=	
V_{o}	=	α	=	τ	=	r_u	=	
Α	=	J_{t}	=	σ_{l}	=	r_{v}	=	
J_{xx}	=	σ(N)) =	σ_{II}	=	r_{o}	=	
J_{yy}	=	σ(M	_x)=	σ_{tres}	_{ca} =			
	dolfo Zavelani Rossi, I	Politec	nico di Milano, vers.27.	.03.13	}			18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 202000 N	M _x	= -7680000 Nmm	σ_{a}	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 9300000 Nmm	M_{v}	= 8850000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	_y)=	σ_{mis}	ses=
y_{G}	=	J_{u}	=	$\tau(M_1$,) =	$\sigma_{\text{st.v}}$	
u_{o}	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{l}	=	r_v	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	(x)=	σ_{tres}	ca=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -6460000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 137000 N
Ν
                                                                                                                                                   G
                                                                                                           = 200000 \text{ N/mm}^2
         = 8840000 Nmm
                                                          = 8850000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 190000 N	M _×	= -14100000 Nmm	σ_a	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 16200000 Nmm	M_{v}^{λ}	= -9550000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y ·	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N		σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7350000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                              = 72000 \text{ N/mm}^2
         = 187000 N
Ν
                                                                                                                                                     G
                                                                                                             = 200000 \text{ N/mm}^2
         = 14400000 Nmm
                                                           = -9470000 Nmm
M₊
                                                                                                   Ε
                                                                                                   \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -11400000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                                 = 72000 \text{ N/mm}^2
         = 224000 N
Ν
                                                                                                                                                       G
                                                                                                              = 200000 \text{ N/mm}^2
         = 12300000 Nmm
                                                            = -10900000 Nmm
M₊
                                                                                                    Ε
                                                                                                    \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                     \tau(M_t) =
y_{G}
                                                                                                     σ
                                                                                                    \sigma_{\text{I}}
                                                  \sigma(N) =
                                                                                                    \sigma_{\text{II}}
                                                  \sigma(M_x)=
                                                                                                     \sigma_{tresca} =
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -8850000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                             = 72000 \text{ N/mm}^2
         = 147000 N
Ν
                                                                                                                                                    G
                                                                                                            = 200000 \text{ N/mm}^2
         = 11200000 Nmm
                                                           = -10500000 Nmm
M₊
                                                                                                  Ε
                                                                                                  \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                   \tau(M_t) =
y_{G}
                                                                                                   σ
                                                                                                   \sigma_{l}
                                                 \sigma(N) =
                                                                                                  \sigma_{\text{II}}
                                                 \sigma(M_x)=
                                                                                                   \sigma_{tresca}=
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 192000 N	M _×	= -14300000 Nmm	σ_a	= 250 N/mm ²	G	$= 72000 \text{ N/mm}^2$
M_t	= 16500000 Nmm	M_{v}^{λ}	= -9740000 Nmm	E	$= 200000 \text{ N/mm}^2$		
x_{G}	=	J_{xy}	=	σ(M	y.	σ_{mis}	ses=
y_{G}	=	J_u	=	$\tau(M_1$	_t) =	$\sigma_{st.v}$	_{/en} =
u_o	=	J_v	=	σ	=	Θ_{t}	=
V_{o}	=	α	=	τ	=	r_u	=
Α	=	J_t	=	σ_{I}	=	r_{v}	=
J_{xx}	=	σ(N) =	σ_{II}	=	r_{o}	=
J_{yy}	=	σ(M	_x)=	σ_{tres}	ca=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

```
Facoltativo: rappresentare l'andamento delle tens. tangenziali. 00 N M_{\star} = -7410000 \text{ Nmm} \sigma_a = 250 \text{ N/mm}^2
                                                                                                                                                            = 72000 \text{ N/mm}^2
         = 190000 N
Ν
                                                                                                                                                  G
                                                                                                           = 200000 \text{ N/mm}^2
         = 14600000 Nmm
                                                          = -9670000 Nmm
M₊
                                                                                                 Ε
                                                                                                 \sigma(M_v)=
X_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                  \tau(M_t) =
y_{G}
                                                                                                  σ
                                                                                                  \sigma_{l}
                                                \sigma(N) =
                                                                                                 \sigma_{\text{II}}
                                                \sigma(M_x)=
```

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13