

PROGRAMOZÁS Rendezések

Horváth Győző, Horváth Gyula, Szlávi Péter

Rendezési feladat

Specifikáció:

Jelölések:

- RendezettE_<(X/H): X/H rendezett-e a ≤-ra?
- Y∈Permutáció(X): Y az X elemeinek egy permutációja-e?

Rendezési feladat

A rendezések egy részében olyan megvalósítást választunk, amiben a bemenetnek és a kimenetnek ugyanaz a sorozat felel meg, azaz helyben rendezünk.

Specifikáció:

Egyszerű cserés rendezés

A lényeg:

 Hasonlítsuk az első elemet az összes mögötte levővel, s ha kell, cseréljük meg!

A minimum az "alsó" végére kerül.

Ezután ugyanezt csináljuk a második elemre!

• ...

$$X$$
 X X X X X

Végül az utolsó két elemre!

A pirossal jelöltek már a helyükön vannak

Egyszerű cserés rendezés

- Hasonlítások száma: 1+2+...+N-1=N- $\frac{N-1}{2}$
- Mozgatások száma: 0 . . $3 \cdot N \cdot \frac{N-1}{2}$

Minimumkiválasztásos rendezés

A lényeg:

Határozzuk meg az 1..N elemek minimumát, s cseréljük

meg az 1.-vel!

A minimum az "alsó" végére kerül.

Ezután ugyanezt tegyük a 2...N elemre!

• ...

A pirossal jelöltek már a

helyükön vannak

Végül az utolsó két (N-1..N) elemre!

•min

Minimumkiválasztásos rendezés

- Hasonlítások száma: 1+2+...+N-1= $N \cdot \frac{N-1}{2}$
- Mozgatások száma: 3*(N-1)

Buborékos rendezés

A lényeg:

 Hasonlítsunk minden elemet a mögötte levővel, s ha kell, cseréljük meg!

 $X \quad X \quad X \quad \dots \quad X \quad X$

A maximum a "felső" végére kerül.

Ezután ugyanezt csináljuk az utolsó elem nélkül!

• ...

Végül az első két elemre!

A többiek is tartanak a helyük felé.

A pirossal jelöltek már a helyükön vannak

Buborékos rendezés

- Hasonlítások száma: 1+2+...+N-1= $N \cdot \frac{N-1}{2}$
- Mozgatások száma: 0 . . $3 \cdot N \cdot \frac{N-1}{2}$

Javított buborékos rendezés

Megfigyelések:

- Ha a belső ciklusban egyáltalán nincs csere, akkor be lehetne fejezni a rendezést.
- Ha a belső ciklusban a K. helyen van az utolsó csere, akkor a K+1. helytől már biztosan jó elemek vannak, a külső ciklus-változóval többet is léphetnénk.

Javított buborékos rendezés

Algoritmus: (átalakítva feltételes ciklusúvá)

```
Változó
                            i,j:Egész,
i ≥ 2
                            s:TH
   j=1..i-1
       x[j]>x[j+1]
     s := x[j]
     x[j] := x[j+1]
     x[j+1] := s
  i := i - 1
```


Javított buborékos rendezés


```
Változó
i:=n
                             i,j:Egész,
i \geqslant 2
                             cs:Egész,
   cs:=0
                             s:TH
   j:=1..i-1
        x[j]>x[j+1]
      s := x[j]
      x[j] := x[j+1]
      x[j+1] := s
      cs:=j
   1:=CS
```

Beillesztéses rendezés

A lényeg:

- Egy elem rendezett.
 X
 X
 X
 X
- A másodikat vagy mögé, vagy elé tesszük, így már ketten is rendezettek.
- ... x x x x x x
- Az i-ediket a kezdő, i–1 rendezettben addig hozzuk előre cserékkel, amíg a helyére nem kerül; így már i darab rendezett lesz.
- ...
- Az utolsóval ugyanígy!
 x
 x
 x
 x
 x

Beillesztéses rendezés

• Mozgatások száma: 0 . . $3 \cdot N$

Javított beillesztéses rendezés

A lényeg:

- Egy elem rendezett.
 X
 X
 X
 X
- A másodikat vagy mögé, vagy elé tesszük, így már ketten is rendezettek.
- ... x x x x x x
- Az i-ediknél a nála nagyobbakat tologassuk hátra, majd illesszük be eléjük az i-ediket; így már i darab rendezett lesz.
- ...
- Az utolsóval ugyanígy! X X X X X

Javított beillesztéses rendezés

Rendezésvizualizációk

- Inkább hatékonyság szemléltetésére, mint megértésére valók
- Vizualizációk
 - https://www.toptal.com/developers/sorting-algorithms
 - https://www.sortvisualizer.com/selectionsort/
 - https://sorting-algorithm-jet.vercel.app/
 - https://visualizeit.github.io/sorting_algos/simulation.html