

Méthodes d'interpolations appliquées aux données archéologiques : exemple d'application du krigeage

Amélie Laurent-Dehecq (amelie.laurent@loiret.fr)
Service Archéologie Préventive du Loiret
UMR 7324 CITERES – LAT

- Principes généraux des méthodes
- Avantages et inconvénients

2/ Le krigeage pas à pas

- Etape 1 : Etude du variogramme expérimental et ajustement du variogramme théorique
 - Structuration du SIG
 - Etude de la structuration spatiale des données
- Etape 2 : L'interpolation dans R
- Etape 3 : Lecture des données dans SIG
 - Export et commentaires des résultats
 - Bonus : test de mise en œuvre dans un Geostatistical Analyst

3/ Exercice et bilan

Bibliographie

ARNAUD M., EMERY X. - Estimation et interpolation spatiale. Méthodes déterministes et méthodes géostatistiques, Paris, Hermes Science Europe, 2000, 221p.

GRATTON Y. - Le krigeage : la méthode optimale d'interpolation spatiale, *Les articles de l'Institut d'Analyse Géographique* : www.iag.asso.fr, 2002.

KRIGE D.G. - A statistical approach to some basic mine valuation problems on the Witwatersrand, *Journal of Chem., Metal. and Minning Soc. of South Africa*, 52, 1951: 119-139.

LAURENT A. – Evaluation du potentiel archéologique du sol en milieu urbain, doctorat d'Histoire spécialité archéologie (dir. H. Galinié), 4 volumes, http://tel.archives-ouvertes.fr/, 2007.

LAURENT A. – Une méthode d'interpolation spatiale : le krigeage, in : Rodier X. dir. – Information spatiale et archéologie, Collection archéologique, édition Errance : 166-170, 2011.

MATHERON G. - La théorie des variables régionalisées et ses applications, Les cahiers du centre de morphologie mathématique de Fontainebleau, Paris, 1970.

PANNATIER Y. - VARIOWIN: Software for Spatial Data Analysis in 2D, New-York, Springer-Verlag, 1996.

ZANINETTI J.-M. - Statistique spatiale, méthodes et applications géomatiques, Paris, Hermes sciences, 2005, 321 p.

Choix de la méthode d'interpolation :

- Approche déterministe, où la pondération est définie a priori (fonction Spline, inverse de la distance, méthodes des plus proches voisins...)
- Approche probabiliste, où la pondération est définie à partir des données (krigeage)

Méthode déterministe				
Méthodes locales (voisinage)	IDW : Inverse de la distance pondérée	-> grille avec cellule associés à un poids W avec n éléments + 2 paramètres frottement de la distance + rayon de recherche à définir (ajustement linéaire)	Plus les points sont proches,plus la pondération affectée est forte ("effet œil de bœuf") Pb pour déterminer les 2 paramètres. Estime que les points plus proches de l'emplacement à calculer auront plus d'influence.	
	NN : Voisin Naturel	cherche le sous-ensemble d'échantillons le plus proche à un point et applique une pondération en fonction de la zone où ils se trouvent.	Ne produit pas de pics, de fosses, de crêtes ou vallées qui ne sont pas déjà présents dans les échantillons en entrée et s'adapte localement à la structure des données en entrée. Ne nécessite pas de paramétrage par l'utilisateur et fonctionne aussi bien pour des données réparties régulièrement ainsi qu'irrégulièrement.	
	Splines	minimiser la courbure de la surface et produit une surface lisse qui correspond exactement aux points d'entrée (ajustement de polynômes)	adapte une surface courbe minimale en passant par les points d'entrée. Elle préserve les tendances dans les données de l'échantillon et s'adapte aux changements rapides de gradient ou de pente.	
	ANUDEM (topo vers Raster ArcGIS 3D analyst)		bonnes performances quand il s'agît du calcul de crêtes et de zones de flux d'écoulement	
Méthode globales (tous les points)	Fonctions polynomiales ex : Surface de tendance (approximation des moindres carrés)		méthode approximative, algorithmes lourds Section 2017 ■ Amelie Laurent-Deneco 2017	

KRIGEAGE

Daniel G. Krige (années 1950) / Georges Matheron => théorie variables régionalisées = géostatistique (application des probabilités aux phénomènes naturels qui se développent dans l'espace et le temps)

Méthode probabiliste					
	Krigeage simple	Variable stationnaire de moyenne connue	2 Etapes: 1-Analyse structuration spatiale (Variogramme), déduit le poids à partir du degré de similarité des points, dépend de la distance entre les points et non pas de leur position 2-Interpolation (Krigeage)		
	Krigeage ordinaire	Variable stationnaire avec moyenne inconnue			
Géostatistiques	Krigeage universel ou krigeage avec dérive externe	Variable non-stationnaire (une tendance ou une dérive de la variable)			
	Krigeage sous contrainte d'inégalité	Variable stationnaire associe mesure "vraie" et mesure "simulée" à partir de bornes définies			
	Krigeage d'indicatrices, Méthodes gaussiennes, Krigeage disjonctif	méthode non-linéaire détermine des indicateurs comme une probabilité d'excéder un seuil			

Résultats - Outils ArcGIS - Geostastical Wizard

2/ Krigeage – Etape 1 - Mise en place d'un SIG

Qu'est-ce que je dois interpoler ?

- Réaliser une épaisseur du dépôt archéologique à l'échelle de l'espace urbanisé ancien
 - Définition de la variable et de l'échelle

Mise en place d'un SIG :

- 56 observations archéologiques issues des fouilles et des diagnostics
- 80 observations géotechniques issues des bureaux d'étude (grille d'analyse spécifique)
- 7 observations géotechniques issues de la prospection au PANDA

BDdepot1 = 145 points

BDdepot2 = 143 points (sans les 2 points symbolisés par étoile)

2/ Krigeage – Etape 1 - Mise en place d'un SIG

BDdepot1.shp =

- Identifiant
- Coordonnées géographiques X et Y
- Source
- Cote altimétrique du niveau actuel (en m NGF)
- Cote altimétrique du toit du niveau naturel = alluvions de la Loire (en m NGF)
- Epaisseur du dépôt archéologique (en m NGF)
- Indice de qualité de l'information

3/ Krigeage – Etape 1 - Analyse de la structuration spatiale des données

Choix de la méthode d'interpolation = krigeage ordinaire

Intérêt = Analyse variographique

Tracer un semi-variogramme qui est un graphe qui présente le demi-écart quadratique moyen de couples de points en fonction de leur distance selon la relation suivante :

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [X(z_i + h) - X(z_i)]^2$$

où Zi et Zi + h sont les positions des mesures et X(Zi) est la valeur de l'épaisseur correspondant au point considéré.

La variable h correspond à la distance entre deux mesures.

La sommation est étendue à tous les couples de points (Zi, Zi + h) distants de h, N(h) représentant l'effectif des couples de points.

Choix de la méthode d'interpolation = krigeage ordinaire

Tracer un semi-variogramme qui est un graphe qui présente le demi-écart quadratique moyen de couples de points en fonction de leur distance selon la relation suivante :

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} [X(z_i + h) - X(z_i)]^2$$

où Zi et Zi + h sont les positions des mesures et X(Zi) est la valeur de l'épaisseur correspondant au point considéré.

La variable h correspond à la distance entre deux mesures. La sommation est étendue à tous les couples de points (Zi, Zi + h) distants de h, N(h) représentant l'effectif des couples de points. 3/ Krigeage – Etape 1 - Analyse de la structuration spatiale des données

Paramètres du variogramme expérimental de BDdepot2 :

- Nb de points > 30 si omnidirectionnel, (> 60 si directionnel)
- Hypothèse stationnarité, moyenne inconnue, paramètres qui pourrait influencer les mesures ? (ex : distance à l'eau, relief...)
- Portée limite qui définit la limite de la recherche : (h < hmax/2) env. moitié de la fenêtre d'étude = 1200 m (L = 2600 m sur I = 1000 m)
- Distance entre les pas de recherche ou distance de voisinage = 100 m (car 1pt tous les 128 m = 143 pts sur 235,27 ha (env. 2 350 000 m²) donc 1 pt sur 16433,5 m^2)
- Nombre de pas de recherche = 1200/100 = 12
- Distribution spatiale des valeurs des données (histogramme, mini, maxi)

Paramètres du variogramme expérimental de BDdepot2 :

- la direction du variogramme, omnidirectionnel ou directionnel

Omnidirectionnel

- le champ du cône d'orientation de l'orientation retenue = 10°

directionnel = $70^{\circ}/160^{\circ}$

Théorie

Nb de paire de point mini > 20,

> 50 considéré comme robuste

Effet de pépite (1/10e variance totale)

c/ Utilisation modèle sur BDdepot1 (distance de voisinage unique) (krige) d/ Validation croisée (krige.cv) ici r = 0,67, erreur de l'ordre du mètre (0,96 m) = modèle correct

3/ Krigeage – Etape 2 – Carte d'interpolation spatiale

Outils ArcGIS - Geostastical Wizard

3/ Krigeage – Etape 2 – Carte d'interpolation spatiale

Outils ArcGIS - Geostastical Wizard – Carte des erreurs standard

3/ Krigeage – Etape 2 – Carte d'interpolation spatiale

...pour créer un outil d'aide à la décision

Source : ToToPI – Université F. Rabelais de Tours – UMR CITERES - LAT /

A. Laurent : Carte du potentiel archéologique de Tours

 Projet aménagement
 Valorisation scientifique et grand public

