Matematično modeliranje

5. predavanje

UP FAMNIT

Barbara Boldin

Kazalo

1 Periodične rešitve in asimptotska dinamika ravninskih sistemov

V tem predavanju obravnavamo periodične rešitve skalarnih diferencialnih enačb in ravninskih sistemov diferencialnih enačb ter spoznamo nekaj rezultatov, ki govorijo o asimptotski dinamiki takih sistemov.

Definicija. Naj bo

$$X'(t) = F(X),$$

 $kjer\ X \in \mathbb{R}^n\ in\ F: D \subseteq \mathbb{R}^n \to \mathbb{R}^n\ dana\ funkcija.$ Periodična rešitev $\varphi(t)$ je nekonstantna rešitev danega sistema, za katero velja $\varphi(t) = \varphi(t+T)$ za nek T>0 in vse t za katero rešitev obstaja. Najmanjši tak T imenujemo perioda dane rešitve.

Pokažimo najprej, da skalarne diferencialne enačbe nimajo periodičnih rešitev.

IZREK. Naj bo $f: \mathbb{R} \to \mathbb{R}$ zvezna na \mathbb{R} . Enačba x'(t) = f(x) nima periodičnih rešitev.

Dokaz. Denimo, da obstaja periodična rešitev $\varphi(t)$ in naj bo T perioda te rešitve. Tedaj velja

$$0 \neq \int_{t}^{t+T} \varphi'(s)^{2} ds = \int_{t}^{t+T} f(\varphi(s)) \varphi'(s) ds = \int_{\varphi(t)}^{\varphi(t+T)} f(u) du = 0,$$

kar je protislovje. \Box

Na prejšnjem predavanju smo videli, da ima sistem Lotka-Volterra za poljubne pozitivne vrednosti parametrov neskončno mnogo periodičnih rešitev, medtem ko ima model Rosenzweig-MacArthur pri določenih vrednostih parametrov eno samo periodično orbito, ki jo imenujemo limitni cikel (in za katero velja, da k njej konvergira za $t \to \infty$ poljubna rešitvena krivulja z izjemo ravnovesij).

V nadaljevanju bomo obravnavali asimptotsko dinamiko ravninskih sistemov (t.j. dinamiko za $t \to \infty$ ali $t \to -\infty$) in spoznali dva kriterija, s pomočjo katerih dokažemo, da določen ravninski sistem nima periodičnih rešitev. Začnimo z nekaj definicijami.

DEFINICIJA. Naj bo $\varphi(t, X_0)$ rešitev sistema X'(t) = F(X), ki zadošča začetnemu pogoju $\varphi(0, X_0) = X_0$.

(i) Orbita (oz. trajektorija) z začetno točko v X_0 je množica

$$\Gamma(X_0) = \{ X \in \mathbb{R}^n : X = \varphi(t, X_0), t \in \mathbb{R} \}.$$

(ii) Pozitivna orbita $\Gamma^+(X_0)$ z začetno točko v X_0 je množica

$$\Gamma^{+}(X_{0}) = \{ X \in \mathbb{R}^{n} : X = \varphi(t, X_{0}), t \ge 0 \}.$$

(iii) Negativna orbita $\Gamma^-(X_0)$ z začetno točko v X_0 je množica

$$\Gamma^{-}(X_0) = \{ X \in \mathbb{R}^n : X = \varphi(t, X_0), t \le 0 \}.$$

Definirajmo še dve limitni množici.

Definicija. (i) α -limitna množica, $\alpha(X_0)$, je množica točk, h kateri konvergira negativna orbita

$$X \in \alpha(X_0) \iff \exists \{t_n\}_{n=1}^{\infty}, \lim_{n \to \infty} t_n = -\infty : \lim_{n \to \infty} \varphi(t_n, X_0) = X.$$

(ii) ω -limitna množica, $\omega(X_0)$, je množica, h kateri konvergira pozitivna orbita

$$X \in \omega(X_0) \iff \exists \{t_n\}_{n=1}^{\infty}, \lim_{n \to \infty} t_n = \infty : \lim_{n \to \infty} \varphi(t_n, X_0) = X.$$

PRIMER. (i) Če je \bar{X} iravnovesna točka, potem je $\alpha(\bar{X}) = \{\bar{X}\} = \omega(\bar{X})$.

(ii) Za lokalno asimptotsko stabilno ravnovesje \bar{X} je $\omega(X_0)=\{\bar{X}\}$ za začetne vrednosti X_0 blizu \bar{X} .

1.1 Asimptotska dinamika ravninskih sistemov

Naj bo

$$x'(t) = f(x, y)$$

$$y'(t) = g(x, y).$$
(1)

Imamo

IZREK (Poincare - Bendixon). Naj bo $\Gamma^+(X_0)$ pozitivna orbita sistema (1), ki je vsebovana v neki kompaktni (t.j. zaprti in omejeni) množici v \mathbb{R}^2 . Če $\omega(X_0)$ ne vsebuje nobene ravnovesne točke sistema (1), potem velja ena od naslednjih možnosti:

Slika 1: (a) ravnovesna točka, (b) a periodična orbita, (c) a homoklinična orbita, (d) a heteroklinična orbita

- (i) $\Gamma^+(X_0)$ je periodična orbita (torej $\Gamma^+(X_0) = \omega(X_0)$) ali
- (ii) $\omega(X_0)$ je periodična orbita.

IZREK (Trihotomoja Poincare-Bendixon). Naj bo $\Gamma^+(X_0)$ pozitivna orbita sistema (1), ki je vsebovana v neki kompaktni (t.j. zaprti in omejeni) množici v $B \subset \mathbb{R}^2$. Naj B vsebuje kvečjemu končno mnogo ravnovesnih točk sistema (1). Tedaj velja ena od naslednjih možnosti:

- (i) $\omega(X_0)$ je ravnovesna točka,
- (ii) $\omega(X_0)$ je periodična orbita,
- (iii) $\omega(X_0)$ vsebuje končno mnogo ravnovesij ter končno množico orbit $\{\Gamma_1, \ldots, \Gamma_k\}$, za katere sta α in ω -limitni množici katera od teh ravnovesij.

Za dokaz teh trditev glej [1].

- OPOMBA. Za primer (ii): če $\Gamma^+(X_0) \neq \omega(X_0)$ potem $\omega(X_0)$ imenujemo limitni cikel (glej model Rosenzweig-MacArthur).
 - V primeru (iii) limitne množice imenujemo *ciklični grafi. Homoklinična* orbita "povezuje" ravnovesje s samim seboj, *heteroklinična* orbita "povezuje" različna ravnovesja (glej Sliko 1).
 - Periodična orbita vedno obkroža vsaj eno ravnovesje. Če obkroža natanko eno ravnovesje, potem to ravnovesje ne more biti sedlo.

Preden predstavimo dva rezultata, ki obravnavata (ne)obstoj periodičnih orbit v ravninskih sistemih potrebujemo dve definiciji.

Definicija. $Množica\ D\subseteq \mathbb{R}^2$ je povezana s potmi, če za poljubna $x,y\in D$ obstaja zvezna preslikava $p:[0,1]\to D$ za katero velja p(0)=x in p(1)=y.

DEFINICIJA. Množica $D \subseteq \mathbb{R}^2$ je enostavno povezana, če je povezana s potmi in za poljubni dve poti $p,q:[0,1] \to D$ z p(0)=q(0) in p(1)=q(1) obstaja zvezna preslikava $H:D \times [0,1] \to D$, za katero H(x,0)=p(x) in H(x,1)=q(x) za vsak $x \in D$.

IZREK (Bendixon). Naj bo dan sistem (1) in naj bo D enostavno povezana množica v \mathbb{R}^2 . Če

$$div(f,g) = \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y}$$

ni identično enaka nič na D in na D ne spremeni predznaka, potem sistem (1) v množici D nima periodičnih rešitev.

Dokaz. Trditev dokazujemo s protislovjem. Denimo da sistem (1) ima periodično rešitev C v D in naj S označuje notranjost C. Iz Greenove formule tedaj sledi

$$\int_{C} (f(x,y)dy - g(x,y)dx) = \iint_{S} (\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y})dxdy.$$

Desna stran je neničelna saj div(f,g) ni identično enaka 0 in ne spremeni predznaka v D . Ampak iz (1) sledi

$$\frac{dx}{dy} = \frac{f(x,y)}{g(x,y)},$$

kar da ničelno levo stran.

Naslednja trditev je posplošitev Bendixonovega kriterija.

IZREK (Dulac). Naj bo dan sistem (1) in naj bo D enostavno povezana množica v \mathbb{R}^2 . Če obstaja realna C^1 funkcija B(x,y) na D za katero

$$div(Bf, Bg) = \frac{\partial(Bf)}{\partial x} + \frac{\partial(Bg)}{\partial y}$$

ni identično enaka nič na D in v D ne spremeni predznaka, potem sistem (1) v množici D nima periodičnih rešitev.

Dokaz. Analogno kot dokaz prejšnje trditve.

Primer. Kaj lahko povemo o periodičnih rešitvah linearnih sistemov

$$x'(t) = ax + by$$
$$y'(t) = cx + dy$$

 $\mathbf{v} \mathbb{R}^2$?

Za f(x,y) = ax + by in g(x,y) = cx + dy imamo div(f,g) = a + d. Če $a + d \neq 0$, potem po Bendixonovem kriteriju sistem nima periodičnih rešitev v \mathbb{R}^2 .

Če a+d=0, potem Bendixonovega kriterija ne moremo uporabiti. Izkaže se, da v primeru a+d=0 sistem v določenih primerih ima, v drugih pa nima periodičnih rešitev. Za a=1, d=-1 in b=c=0 imamo denimo

$$x'(t) = x$$
$$y'(t) = -y,$$

kar ima rešitvi $x(t) = x(0)e^t$ ter $y(t) = y(0)e^{-t}$. V tem primeru periodičnih rešitev ni. Za a = d = 0 ter b = 1, c = -1 pa imamo

$$x'(t) = y$$
$$y'(t) = -x,$$

kar ima rešitev $x^2 + y^2 = C$ za neko konstanto C. Rešitvene krivulje so torej sklenjene množice (t.j. dinamika je periodična).

Primer. Analizirajmo enostaven model tekmovanja dveh populacij

$$x_1'(t) = r_1 x_1 \frac{K_1 - x_1 - \beta_{12} x_2}{K_1}$$
$$x_2'(t) = r_2 x_2 \frac{K_2 - x_2 - \beta_{21} x_1}{K_2}.$$

Vsaka od populacij i=1,2 ima v osami logistično rast z nosilno kapaciteto K_i in osnovno stopnjo rasti r_i . Ko sta prisotni obe populaciji, je zaradi tekmovanja rast vsake od populacij manjša: parameter β_{ij}/K_i opisuje negativen učinek j-te populacije na i-to.

Pokažimo najprej, da sistem v množici

$$D = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}$$

nima periodičnih rešitev. Če najprej poskusimo z Bendixonovim kriterijem ugotovimo, da div(f,g) spremeni znak v D. Definirajmo

$$B(x_1, x_2) = \frac{1}{x_1 x_2}$$

in
$$f(x_1,x_2)=r_1x_1\frac{K_1-x_1-\beta_{12}x_2}{K_1}$$
 , $g(x_1,g_2)=r_2x_2\frac{K_2-x_2-\beta_{21}x_1}{K_2}$. Tedaj je

$$div(f,g) = -\frac{r_1}{K_1 x_2} - -\frac{r_2}{K_2 x_1} < 0$$

v D. Iz Dulacovega kriterija tedaj sledi, da sistem nima periodičnih orbit v D. Model ima štiri ravnovesne točke:

- (i) (0,0),
- (ii) $(K_1, 0)$,
- (iii) $(0, K_2)$,
- (iv) $(x_1^*, x_2^*) = \left(\frac{K_1 \beta_{12} K_2}{1 \beta_{12} \beta_{21}}, \frac{K_2 \beta_{21} K_1}{1 \beta_{12} \beta_{21}}\right)$. Le to je biološko smiselno natanko tedaj, ko je
 - (a) $1 \beta_{12}\beta_{21} > 0$, $K_1 \beta_{12}K_2 > 0$ in $K_2 \beta_{21}K_1 > 0$ ali
 - (b) $1 \beta_{12}\beta_{21} < 0$, $K_1 \beta_{12}K_2 < 0$ in $K_2 \beta_{21}K_1 < 0$

kar je ekvivalentno

Slika 2: (a) $\beta_{21}K_1 > K_2$ in $K_1 > \beta_{12}K_2$, (b) $\beta_{21}K_1 < K_2$ in $K_1 < \beta_{12}K_2$, (c) $\beta_{21}K_1 < K_2$ in $K_1 > \beta_{12}K_2$, (d) $\beta_{21}K_1 > K_2$ in $K_1 < \beta_{12}K_2$

(a)
$$K_1 - \beta_{12}K_2 > 0$$
 in $K_2 - \beta_{21}K_1 > 0$ ali

(b)
$$K_1 - \beta_{12}K_2 < 0$$
 in $K_2 - \beta_{21}K_1 < 0$.

Jacobijeva matrika ima obliko

$$J = \begin{pmatrix} r_1 \frac{K_1 - x_1 - \beta_{12} x_2}{K_1} - \frac{r_1 x_1}{K_1} & -\frac{r_1 \beta_{12} x_1}{K_1} \\ -\frac{r_2 \beta_{21} x_2}{K_2} & r_2 \frac{K_2 - x_2 - \beta_{21} x_1}{K_2} - \frac{r_2 x_2}{K_2} \end{pmatrix}.$$

Sledi

(i)
$$J(0,0) = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix},$$

torej je (0,0) nestabilen vozel.

(ii)
$$J(K_1,0) = \begin{pmatrix} -r_1 & * \\ 0 & r_2 \frac{K_2 - \beta_{21} K_1}{K_2} \end{pmatrix},$$

torej je $(K_1,0)$ LAS kadar $K_2-\beta_{21}K_1<0$ in sedlo kadar $K_2-\beta_{21}K_1>0.$

(iii)
$$J(0, K_2) = \begin{pmatrix} r_1 \frac{K_1 - \beta_{12} K_2}{K_1} & 0 \\ * & -r_2 \end{pmatrix},$$

torej je $(0, K_2)$ LAS kadar $K_1 - \beta_{12}K_2 < 0$ in sedlo kadar $K_1 - \beta_{12}K_2 > 0$.

(iv)
$$J(x_1^*, x_2^*) = \begin{pmatrix} -\frac{r_1 x_1^*}{K_1} & -\frac{r_1 \beta_{12} x_1^*}{K_1} \\ -\frac{r_2 \beta_{21} x_2^*}{K_2} & -\frac{r_2 x_2^*}{K_2} \end{pmatrix}.$$

Kadar je (x_1^*, x_2^*) pozitivno ima matrika $J(x_1^*, x_2^*)$ negativno sled. Determinatna pa je pozitivna natanko tedaj, ko je $1 - \beta_{12}\beta_{21} > 0$. Če je (x_1^*, x_2^*) biološko smiselno in je $1 - \beta_{12}\beta_{21} < 0$, potem je T_4 sedlo. V tem primeru sta tako $(K_1, 0)$ kot $(0, K_2)$ LAS. Na dolgi rok v tem primeru preživi le ena od populacij, katera pa je odvisno od začetnega pogoja (glej fazne portrete).

Štirje kvalitativno različni fazni portreti so na Sliki 2.

Literatura

[1] Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2012.