TKT20005 Laskennan mallit Viikko1

Tehtävä 1 Implikaatio ja ekvivalenssi.

 Alicella ja Bobilla on molemmilla lehmiä, jotka laiduntavat samalla niityllä. Tiedämme, että seuraavat loogiset lauseet niityllä olevista lehmistä ovat totta:

```
"Lehmä on Alicen." ⇒ "Lehmä on ruskea."
"Lehmä on Bobin." ⇔ "Lehmällä on sarvet."
```

Luonnollisella kielellä yllä olevat lauseet voidaan ilmaista esim.:

- · Jos lehmä on Alicen, se on ruskea.
- Lehmä on Bobin, jos ja vain jos sillä on sarvet.
- **(a)(1) Lehmä on ruskea.** Implikaatiosta "Jos lehmä on Alicen, se on ruskea" $(A \Rightarrow R)$ ei voi päätellä mitään omistajasta jos lehmä on ruskea. Ruskea lehmä voi olla Alicen, mutta se voi olla myös jonkun muun lehmä. **Omistajasta ei siis voida päätellä mitään.**
 - **(2)** Lehmä ei ole ruskea. Implikaatiosta $A \Rightarrow R$ seuraa loogisesti $\neg R \implies \neg A$. Tämä tarkoittaa: "Jos lehmä ei ole ruskea, se ei ole Alicen."Koska lehmä ei ole ruskea, voimme varmuudella sanoa, että lehmä ei ole Alicen
 - (3) Lehmällä on sarvet. Ekvivalenssi "Lehmä on Bobin, jos ja vain jos sillä on sarvet" ($B \iff S$) tarkoittaa, että lauseilla on aina sama arvo. Koska lehmällä on sarvet, sen on oltava Bobin.
 - **(4)** Lehmällä ei ole sarvia. Ekvivalenssin ($B \iff S$) mukaan, koska lehmällä ei ole sarvia se ei voi olla Bobin. Lehmä ei ole Bobin.
- (b)(1) Jos D on tosi, implikaatiosta $A \Rightarrow D$ ei voida päätellä mitään A:n totuusarvosta.
 - (2) Jos D ei ole tosi, niin $\neg D \Rightarrow \neg A$ nojalla voidaan todeta, että **A ei ole tosi.**
 - (3) Jos tiedetään että E on tosi, ekvivalenssin $B \iff E$ nojalla myös **B** on tosi.
 - (4) Jos tiedetään että E ei ole tosi, ekvivalenssin $B \iff E$ nojalla myös **B ei ole tosi.**

Tehtävä 2 Vastaesimerkki ja epäsuora todistus.

Tunnetusti kahden luonnollisen luvun summa on luonnollinen luku. Toisin sanoen pätee:

$$a \in \mathbb{N}$$
 ia $b \in \mathbb{N} \implies a + b \in \mathbb{N}$

- 1. Tiedetään, että a on luonnollinen luku ja b ei ole luonnollinen luku. Voidaanko tästä päätellä, että a+b ei ole luonnollinen luku? Perustele vastauksesi täsmällisesti antamalla vastaesimerkki tai todistus perustuen yllä olevaan implikaatioon ja epäsuoraan todistustekniikkaan.
- 2. Tiedetään, että a on luonnollinen luku ja a+b ei ole luonnollinen luku. Voidaanko tästä päätellä, että b ei ole luonnollinen luku? Perustele vastauksesi täsmällisesti antamalla vastaesimerkki tai todistus perustuen yllä olevaan implikaatioon ja epäsuoraan todistustekniikkaan.
- (1) Väite on: $a \in \mathbb{N}$ ja $b \notin \mathbb{N} \Rightarrow a + b \notin \mathbb{N}$ ($a \in \mathbb{N}$ ja $b \notin \mathbb{N}$), mutta johtopäätös ei päde ($a + b \in \mathbb{N}$) Valitaan a=3 ja b=-2
 - Tällöin a=3 on luonnollinen luku.
 - Luku b = -2 ei ole luonnollinen luku.
 - a+b = 3 + (-2) = 1. Luku 1 on luonnollinen luku; siis $a + b \in \mathbb{N}$

Koska löysimme tapauksen, missä oletukset on voimassa mutta väite ei pidä paikkaansa, emme voi yleisesti sanoa a+b ei ole luonnollinen luku. **Väite on siis epätosi.**

(2) Väite on: $a \in \mathbb{N}$ ja $a + b \notin \mathbb{N} \Rightarrow b \notin \mathbb{N}$

Väite on tosi. Todistetaan tämä epäsuorasti.

Oletetaan, että $a \in \mathbb{N}$ ja $a + b \notin \mathbb{N}$. Oletetaan vastoin väitettä, että b on luonnollinen luku: $b \in \mathbb{N}$.

Nyt meillä on tiedossa kaksi asiaa:

- Alkuperäisen oletuksen mukaan $a \in \mathbb{N}$.
- Vastaoletuksen mukaan $b \in \mathbb{N}$.

Koska a ja b ovat molemmat oletustemme mukaan luonnollisia lukuja, niiden summan a+b on siis pakko olla luonnollinen luku, eli $a+b\in\mathbb{N}$

Tämä on kuitenkin ristiriidassa alkuperäisen oletuksen kanssa, jonka mukaan $a+b\notin\mathbb{N}$ eli alkuperäinen **väite on tosi.**

Tehtävä 3 Induktiotodistus.

Todista induktiolla, että

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n \cdot (n+1) \cdot (n+2) = \frac{n \cdot (n+1) \cdot (n+2) \cdot (n+3)}{4}.$$

(1) Perusaskel

Tarkistetaan, päteekö väite, kun n=1

- Vasen puoli: $1 \cdot (1+1) \cdot (1+2) = 1 \cdot 2 \cdot 3 = 6$
- Oikea puoli: $\frac{1\cdot (1+1)\cdot (1+2)\cdot (1+3)}{4}=\frac{1\cdot 2\cdot 3\cdot 4}{4}=\frac{24}{4}=6$

Koska 6=6 perusaskel on kunnossa.

(2) Induktio-oletus

Oletetaan, että väite P(k) on tosi mielivaltaisella kokonaisluvulla $k \ge 1$. Oletetaan siis, että:

$$1 \cdot 2 \cdot 3 + \dots + k(k+1)(k+2) = \frac{k(k+1)(k+2)(k+3)}{4}$$

(3) Induktioaskel

Tavoitteenamme on osoittaa, että:

$$\sum_{i=1}^{k+1} i(i+1)(i+2) = \frac{(k+1)((k+1)+1)((k+1)+2)((k+1)+3)}{4} = \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

Aloitetaan vasemmasta puolesta ja käytetään induktio-oletusta:

$$1 \cdot 2 \cdot 3 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

$$= \left(\frac{k(k+1)(k+2)(k+3)}{4}\right) + (k+1)(k+2)(k+3)$$

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4} + 1\right)$$

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4} + \frac{4}{4}\right)$$

$$= (k+1)(k+2)(k+3)\left(\frac{k+4}{4}\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}$$

Tämä on täsmälleen väitteen P(k+1) oikea puoli.

Koska perusaskel on tosi ja induktioaskel on osoitettu paikkansapitäväksi, väite pätee kaikilla positiivisilla kokonaisluvuilla $n \ge 1$.

Tehtävä 4 Joukko-opin merkinnät ja kahden joukon osoittaminen samoiksi.

- (a) Annetut joukot ovat $A = \{1, 2, 3\}$ ja $B = \{2, 3, 4\}$ luonnollisten lukujen joukossa. Määritetään ensin tarvittavat komplementit ja leikkaukset:
 - $\overline{A} = \mathbb{N} A = \{0, 4, 5, 6, \ldots\}$
 - $\overline{B} = \mathbb{N} B = \{0, 1, 5, 6, \ldots\}$
 - $\overline{A} \cap B = \{4\}$ (alkiot, jotka ovat B:ssä mutta eivät A:ssa)
 - $A \cap \overline{B} = \{1\}$ (alkiot, jotka ovat A:ssa mutta eivät B:ssä)

(1)

$$(\overline{A}\cap B)\cup (A\cap \overline{B})=\{4\}\cup \{1\}=\{1,4\}$$

(2) De Morganin lain mukaan $\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}} = A \cup B$

$$A \cup B = \{1, 2, 3\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\}$$

Siis
$$\overline{\overline{A} \cap \overline{B}} = \{1,2,3,4\}$$

(b) Todista, että $(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D)$

Olkoon x, y mielivaltaisia

$$(x,y) \in (A \cap B) \times (C \cap D) \iff x \in A \cap B \land y \in C \cap D$$

$$\iff (x \in A \land x \in B) \land (y \in C \land y \in D)$$

$$\iff (x \in A \land y \in C) \land (x \in B \land y \in D)$$

$$\iff (x,y) \in A \times C \land (x,y) \in B \times D$$

$$\iff (x,y) \in (A \times C) \cap (B \times D)$$

Koska tämä pätee kaikille (x,y), saadaan $(A\cap B)\times (C\cap D)=(A\times C)\cap (B\times D)$

Tehtävä 5. Verkot ja leveyssuuntainen haku.

Leveyssuuntaispuu (juuri a; valinnat aakkosjärjestyksessä):

Tehtävä 6. Kyyhkyslakkaperiaate.

Kyyhkyslakkaperiaatteen mukaan, kun k kyyhkystä sijoitetaan n kyyhkyslakkaan, missä n < k, ainakin yhteen kyyhkyslakkaan tulee enemmän kuin yksi kyyhkynen. Tätä periaatetta voidaan soveltaa monissa matemaattisissa todistuksissa, joissa k alkiota luokitellaan n:ään luokkaan: Jos n < k, ainakin yhteen luokkaan tulee enemmän kuin yksi alkio.

[Sipser Problem 0.10] Osoita, että jos suuntaamattomassa verkossa on ainakin kaksi solmua, niin siinä on kaksi solmua, joiden aste (naapurien lukumäärä) on sama. (Tässä kuten yleensäkin suuntaamattomassa verkossa ei sallita kaarta solmusta itseensä.)

Todistus Todari I esimerkkien avulla.

$$G = (V, E)$$
 suuntaamaton verkko, $|V| = n \ge 2$

Jaetaan solmut asteen mukaan luokkiin $V_1,...,V_r$, missä r on aste arvojen lukumäärä. Asteet 0 ja n-1 eivät voi esiintyä samanaikaisesti $\Rightarrow r \leq n-1$

Valitaan nyt satunnaisesti yksi luokista; olkoon J satunnaisluku joukossa $\{1,...,r\}$ ja tarkastellaan satunnaismuuttujaa $X=|V_J|$ (siis valitun luokan koko). Silloin odotusarvo luokan koolle

$$E[X] = \frac{1}{r} \sum_{i=1}^{r} |V_i| = \frac{n}{r} \ge \frac{n}{n-1} > 1$$

Koska X saa vain kokonaislukuarvoja, E[X]>1 merkitsee, että jollakin i on $|V_i|\geq 2$; ts. vähintään kahdella solmulla on sama aste.