Simple Linear Regression: Estimation

EC 320: Introduction to Econometrics

Amna Javed Winter 2020

Prologue

We considered a simple linear regression of Y_i on X_i :

$$Y_i = \beta_1 + \beta_2 X_i + u_i.$$

- \cdot β_1 and β_2 are **population parameters** that describe the "true" relationship between X_i and Y_i .
- **Problem:** We don't know the population parameters. The best we can do is to estimate them.

We derived the OLS estimator by picking estimates that minimize $\sum_{i=1}^{n} \hat{u}_{i}^{2}$.

· Intercept:

$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X}.$$

· Slope:

$$\hat{\beta}_2 = \frac{\sum_{i=1}^n (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^n (X_i - \bar{X})^2}.$$

We used these formulas to obtain estimates of the parameters β_1 and β_2 in a regression of Y_i on X_i .

 \wedge

With the OLS estimates of the population parameters, we constructed a regression line:

$$\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2 X_i.$$

• Y_i are predicted or **fitted** values of Y_i .

Λ

 \cdot You can think of Y_i as an estimate of the average value of Y_i given a particular of X_i .

OLS still produces prediction errors: $\hat{u}_i = Y_i - Y_i$.

• Put differently, there is a part of Y_i we can explain and a part we cannot: $Y_i = Y_i + \hat{u}_i$.

Λ

Review

What is the equation for the regression model estimated below?

Review

The estimated **intercept** is -12.26. What does this tell us?

Review

The estimated **slope** is 2.43. How do we interpret it?

Today

Agenda

- 1. Highlight important properties of OLS.
- 2. Discuss goodness of fit: how well does one variable explain another?
- 3. Units of measurement.

OLS Properties

OLS Properties

The way we selected OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$ gives us three important properties:

- 1. Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.
- 2. The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^{n} X_i \hat{u}_i = 0 \ .$
- 3. The point (\bar{X}, \bar{Y}) is always on the regression line.

OLS Residuals

Residuals sum to zero: $\sum_{i=1}^{n} \hat{u}_i = 0$.

- By extension, the sample mean of the residuals are zero.
- You will prove this in Problem Set 3.

OLS Residuals

The sample covariance between the independent variable and the residuals is zero: $\sum_{i=1}^n X_i \hat{u}_i = 0 \; .$

• You will prove a version of this in Problem Set 3.

OLS Regression Line

The point (\bar{X}, \bar{Y}) is always on the regression line.

• Start with the regression line:
$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i$$
.

$$\cdot Y_i = \bar{Y} - \hat{\beta}_2 \bar{X} + \hat{\beta}_2 X_i .$$

• Plug \bar{X} into X_i :

$$\hat{Y}_{i} = \bar{Y} - \hat{\beta}_{2}\bar{X} + \hat{\beta}_{2}\bar{X}$$
$$= \bar{Y}.$$

Regression 1 vs. **Regression 2**

- · Same slope.
- · Same intercept.

Q: Which fitted regression line "explains" the data better?

^{*} Explains = fits.

Regression 1 vs. **Regression 2**

The **coefficient of determination** \mathbb{R}^2 is the fraction of the variation in Y_i "explained" by X_i in a linear regression.

- $R^2 = 1 \implies X_i$ explains all of the variation in Y_i .
- $R^2 = 0 \implies X_i$ explains none of the variation in Y_i .

$$R^2 = 0.73$$

$$R^2 = 0.08$$

Explained and Unexplained Variation

Residuals remind us that there are parts of Y_i we can't explain.

$$Y_i = Y_i + \hat{u}_i$$

• Sum the above, divide by n, and use the fact that OLS residuals sum to zero to get $\hat{u} = 0 \implies \bar{Y} = \hat{Y}$.

Total Sum of Squares (TSS) measures variation in Y_i :

$$TSS \equiv \sum_{i=1}^{n} (Y_i - \bar{Y})^2.$$

· We will decompose this variation into explained and unexplained parts.

Explained and Unexplained Variation

Explained Sum of Squares (ESS) measures the variation in Y_i :

$$ESS \equiv \sum_{i=1}^{n} (Y_i - \bar{Y})^2.$$

 \wedge

Residual Sum of Squares (RSS) measures the variation in \hat{u}_i :

$$RSS \equiv \sum_{i=1}^{n} \hat{u}_{i}^{2}.$$

Goal: Show that TSS = ESS + RSS.

Step 1: Plug $Y_i = Y_i + \hat{u}_i$ into TSS.

TSS

$$= \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$= \sum_{i=1}^{n} ([Y_i + \hat{u}_i] - [\hat{Y} + \hat{u}])^2$$

Step 2: Recall that $\hat{u} = 0$ and $\bar{Y} = \hat{Y}$.

TSS

$$= \sum_{i=1}^{n} \left([Y_i - \bar{Y}] + \hat{u}_i \right)^2$$

$$= \sum_{i=1}^{n} \left([Y_i - \bar{Y}] + \hat{u}_i \right) \left([Y_i - \bar{Y}] + \hat{u}_i \right)$$

$$= \sum_{i=1}^{n} (Y_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2 + 2\sum_{i=1}^{n} \left((Y_i - \bar{Y}) \hat{u}_i \right)$$

Step 3: Notice **ESS** and **RSS**.

TSS

$$= \sum_{i=1}^{n} (Y_i - \bar{Y})^2 + \sum_{i=1}^{n} \hat{u}_i^2 + 2\sum_{i=1}^{n} \left((Y_i - \bar{Y}) \hat{u}_i \right)$$

$$= \text{ESS} + \text{RSS} + 2\sum_{i=1}^{n} \left((Y_i - \bar{Y}) \hat{u}_i \right)$$

Step 4: Simplify.

TSS

$$= ESS + RSS + 2\sum_{i=1}^{n} \left((Y_i - \bar{Y}) \hat{u}_i \right)$$

$$= ESS + RSS + 2\sum_{i=1}^{n} Y_i \hat{u}_i - 2\bar{Y}\sum_{i=1}^{n} \hat{u}_i$$

Step 5: Shut down the last two terms. Notice that

$$\sum_{i=1}^{n} Y_{i} \hat{u}_{i}$$

$$= \sum_{i=1}^{n} (\hat{\beta}_{1} + \hat{\beta}_{2} X_{i}) \hat{u}_{i}$$

$$= \hat{\beta}_{1} \sum_{i=1}^{n} \hat{u}_{i} + \hat{\beta}_{2} \sum_{i=1}^{n} X_{i} \hat{u}_{i}$$

$$= 0$$

Calculating R^2

$$R^2 = \frac{\text{ESS}}{\text{TSS}}$$
.

$$R^2 = 1 - \frac{RSS}{TSS} .$$

 \mathbb{R}^2 is related to the correlation between the actual values of Y and the fitted values of Y.

• Can show that $R^2 = (r_{Y,\hat{Y}})^2$.

So what?

In the social sciences, low R^2 values are common.

Low \mathbb{R}^2 doesn't mean that an estimated regression is useless.

• In a randomized control trial, R^2 is usually less than 0.1.

High \mathbb{R}^2 doesn't necessarily mean you have a "good" regression.

· Worries about selection bias and omitted variables still apply.

Units of Measurement

We ran a regression of crimes per 1000 students on police per 1000 students. We found $^{\wedge}$ that β_1 = 18.41 and β_2 = 1.76.

What if we had run a regression of crimes per student on police per 1000 students? What would happen to the slope?

 $\beta_2 = 0.001756.$

Demeaning

Practice problem

Suppose that, before running a regression of Y_i on X_i , you decided to demean each variable by subtracting off the mean from each observation. This gave you $\tilde{Y}_i = Y_i - \bar{Y}$ and $\tilde{X}_i = X_i - \bar{X}$.

Then you decide to estimate

$$\tilde{Y}_i = \beta_1 + \beta_2 \tilde{X}_i + u_i.$$

What will you get for your intercept estimate $\hat{\beta}_1$?