Reducibilities

And other cool stuff

Co-hosted by Paul

Alien-Computability

• We saw A-computable, A-c.e. (given any set A: Alien)

• P_e^A , Φ_e^A , W_e^A (everything can be relativized)

• We can have: A- Σ_n and A- Π_n (written as Σ_n^A , Π_n^A)

- A function f is A-p.c. iff for some $e \in \mathbb{N}$, $f = \mathbf{\Phi}_e^A$. We can say f is A-p.c. via $\mathbf{\Phi}_e$
- A function f is A-computable iff for some $e \in \mathbb{N}$, $f = \mathbf{\Phi}_e^A$ and $\mathbf{\Phi}_e^A$ is total. We also write $f \leq_T A$.
- A set B is A-c.e. iff for some $e \in \mathbb{N}$, $B = W_e^A$
- A set B is A-computable iff I_B is A-computable. We write $B \leq_T A$
- We can also write $f \leq_T g$ for functions f,g

Turing Degrees **D**

• If $S \leq_T B$ and $S \geq_T B$, then we write $S \equiv_T B$ and say they are Turing equivalent

• \equiv_T is an equivalence relation

The equivalence classes are called Turing degrees

Also called degrees of unsolvability

Partial Order

• Let S be a set and R be a binary relation on S (i.e. $R \subseteq S \times S$) R is said to be a partial order (non-strict) on S if:

- 1. $(\forall a \in S)[R(a, a)]$
- 2. $(\forall a \in S)(\forall b \in S)[R(a,b)\&R(b,a) \rightarrow a = b]$
- 3. $(\forall a \in S)(\forall b \in S)(\forall c \in S)[R(a,b) \& R(b,c) \rightarrow R(a,c)]$

Total Order

4. $(\forall a \in S)(\forall b \in S)[R(a,b) \ or \ R(b,a)]$ Every two elements are comparable

Every total order is a partial order, but not the converse

Examples

• Partial order: $P(\mathbb{N})$ and the relation \subseteq

• Total order: \mathbb{N} and \leq

Structures

A set equipped with relations and functions

• (\mathbb{N}, \leq) is a partial order structure

• We know also it is a total order structure

(\mathcal{D}, \leq)

• The set of Turing degrees can be equipped with a partial order

ullet This partial order is obtained by defining Turing reducibility on $oldsymbol{\mathcal{D}}$

• Note that, so far \leq_T is defined on $P(\mathbb{N})$

• Recall that, an element from \mathcal{D} is an equivalence class (set of sets) This makes $\mathcal{D} \subseteq P(P(\mathbb{N}))$

Lifting \leq_T to $\boldsymbol{\mathcal{D}}$

• For $a, b \in \mathcal{D}$, we write $a \leq b$ if:

for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$ we have: $A \leq_T B$

Is this well-defined?

In other words, if $A \leq_T B$ for some $A \in \mathbf{a}$ and $B \in \mathbf{b}$, does this mean that $A \leq_T B$ for all $A \in \mathbf{a}$ and $B \in \mathbf{b}$?

 For the definition to make sense, you want the behavior of a degree to be the same as any of its sets

- One can show that (\mathcal{D}, \leq) is a partial order structure
- One can also show that it is NOT total order
- Note: I made a mistake last lecture when I said that $(P(\mathbb{N}), \leq_T)$ is a partial order. Why?
- \leq_T is a partial order on degrees, not on sets.
- $(P(\mathbb{N}), \leq_T)$ is just a preorder, also called quasiorder (reflexive and transitive binary relation)

Sad thing about Turing Reducibility

• It does not distinguish between C.e. sets and Co-c.e. sets

• This is because for any set A, A and its complement \overline{A} are both of the same Turing degree

• It is possible to have $A \leq_T B$ where we can computably enumerate B but can't enumerate A

m-reducibility: A stronger reducibility

• $A \leq_m B$, A is many-one reducible to B if there is a computable function f such that:

For all
$$x \in \mathbb{N}$$
, $x \in A$ iff $f(x) \in B$

• Again, \leq_m is a preorder on $P(\mathbb{N})$, which can induce an equivalence relation with equivalence classes called m-degrees

• If f is injective, we write $A \leq_1 B$ and say A is 1-reducible to B

• \leq_1 implies \leq_m implies \leq_T

• Exercise: Find examples that the converse implications fail

• If $C \leq_m B$ and B is A-c.e., then C is also A-c.e.

• If $B \in \Sigma_n^A$ (or Π_n^A), and $C \leq_m B$, then $C \in \Sigma_n^A$ (or Π_n^A)

Break

How many elements in ${m {\mathcal D}}$?

Example 1

• $K_0 = \{\langle e, x \rangle : \varphi_e(x) \downarrow \}$ is in Σ_1

• For every A in Σ_1 , $A \leq_m K_0$

Indeed, we know that $A = W_e$ for some $e \in \mathbb{N}$. Consider now the function f given by $f(x) = \langle e, x \rangle$. Clearly f is computable, and $x \in A \Leftrightarrow f(x) \in K_0$

• Note that f is also injective, and so $A \leq_1 K_0$

C-complete

- The example we gave shows that the set K_0 is Σ_1 -complete
- More generally, given a reducibility \leq_r and a class of sets \mathbf{C} , we say that a set B is \mathbf{C} -complete w.r.t. \leq_r if:
- 1. $B \in \mathbf{C}$
- 2. $C \leq_r B$ for every $C \in \mathbf{C}$
- If 1. isn't happening, we say B is C-hard
- When we don't specify the reducibility, we mean it is m-reducibility

Σ_n -completeness (and Π_n -completeness)

• When we say Σ_n -complete, without a reducibility specified, we mean with respect to 1-reducibility

Equivalently in this case, m-reducibility

• $\emptyset^{(n)}$ is Σ_n -complete

• $\overline{\emptyset^{(n)}}$ is Π_n -complete

Examples 2

• Consider the set $\mathbf{Tot} = \{e : \varphi_e \text{ is total}\}\$

• **Tot** is in Π_2

• For every A in Π_2 , $A \leq_m \mathbf{Tot}$

• This means that \mathbf{Tot} is Π_2 -complete

Proof:

• A in Π_2 means that there exists a computable relation R such that

$$x \in A \iff (\forall y)(\exists z)R(x,y,z)$$

Consider the following function:

$$\gamma(x,u) = \begin{cases} 0 & \text{if } (\forall y \le u)(\exists z) R(x,y,z) \\ \uparrow & o.w. \end{cases}$$

• $\gamma(x, u)$ is clearly p.c.

- There exists computable f such that $\gamma(x,u)=\varphi_{f(x)}(u)$
- This follows from the s-m-n theorem
- Now observe the following:

$$x \in A \Longrightarrow \varphi_{f(x)}$$
 is total

$$x \in \bar{A} \Longrightarrow \varphi_{f(x)}$$
 is NOT total

• This means that:

$$x \in A \iff f(x) \in \mathbf{Tot}$$

Q.E.D

• Remark: f could be chosen injective

Example 3

• Consider the set $Fin = \{e: W_e \text{ is finite}\}$

• Fin is $\Sigma_?$

• Actually, **Fin** is Σ_2 -complete

• Because in the proof of Example 2, we have that when $x \in \overline{A}$, the domain of $\varphi_{f(x)}$ is finite

So, we have

- Let A be an arbitrary set from Σ_2
- Then $\bar{A} \in \Pi_2$, and so by the proof of Example 2, there is a computable (can be chosen injective) f such that:

$$x \in \bar{A} \Longrightarrow \varphi_{f(x)}$$
 is total $\iff W_{f(x)} = \mathbb{N}$ which is infinite $x \in A \Longrightarrow W_{f(x)}$ is finite

• In other words, $x \in A \iff f(x) \in \mathbf{Fin}$

Facts:

- B is c.e. in A iff $B \leq_1 A'$
- If $B \leq_T A$ then $B' \leq_1 A'$
- A' is c.e. in A
- If B is c.e. in A then B is c.e. in \bar{A}
- $\Sigma_n^{\emptyset^{(m)}} = \Sigma_{m+n}$

Break

Some cool stuff: Kolmogorov Complexity

• Consider the following function: $K(x) = \mu e(\varphi_e(0) = x)$

ullet In some sense, this function gives the shortest program that can output x

• This output can be regarded as the shortest description of the string $gn^{-1}(x)$

• We say a string s is **random**, if $K(gn(s)) \ge gn(s)$

Useful stuff

- Let A, B be two sets (very general)
- We denote the set of functions from A to B by B^A
- This notation is a cool connection with combinatorics. What is $|B^A|$?
- P(A) can be identified with $\{0,1\}^A$ (the set of characteristic functions of subsets of A)
- $|P(A)| = |\{0,1\}|^{|A|}$

Computability and real numbers

• A real number $r \in \mathbb{R}$ is computable if when given any $n \in \mathbb{N}$ one can compute a rational number $q \in \mathbb{Q}$ such that $|r-q| \leq 2^{-n}$

• \mathbb{R} can be viewed as $\{0,1\}^{\mathbb{N}}$

• $\{0,1\}^{\mathbb{N}}$ this is known as the Cantor space

The word space is related to topology

H10

After some experience

Remember H10?

• A set A is Diophantine if there exists a polynomial $P_A(x,y_1,\ldots,y_n)$ such that

$$a \in A \iff (\exists y_1) \dots (\exists y_n) P_A(x, y_1, \dots, y_n) = 0$$

- A is clearly Σ_1 , i.e. C.E.
- Every set from Σ_1 is Diophantine
- One can show that a set of positive integers is Diophantine iff it is the range of a polynomial function

Simple examples of Diophantine sets

•
$$\leq$$
 = { (x, y) : $(\exists z) x + z - y = 0$ }

• The set of prime numbers is the range of a polynomial function

• The record for the lowest degree of such a polynomial is 5 (with 42 variables)

• The record for fewest variables is 10 with degree about 1.6×10^4

The key result for H10

• The exponential function $h(x,y)=x^y$ is Diophantine. We mean by that

$$\{(x, y, z): x^y = z\}$$

is Diophantine

Open Problem

• Hilbert 10th over $\mathbb Q$

Lots of number theory, rings and fields stuff

Logic

Theories and Axioms

- You saw the partial order definition
- They form a set of sentences (logical formulas without free variables)
- Such a collection of sentences is called a theory
- A set of axioms is just a theory. Usually it is picked so they describe the basic facts about the theory without redundancy
- By describing basic facts I mean one can deduce the whole theory from the axioms by a proof

Proof system

• A list of formulas such that each formula is either an axiom, or comes from previous formulas by a rule of inference

• Example of a rule of inference: Modus ponens

$$P \rightarrow Q$$

$$----$$

$$Q$$

Logic: Theorems

• A theorem is a sentence that can be the end of a proof

• A theorem is also called a *consequence*

Example: Let PO denote the set of partial order axioms.

We have

PO
$$\vdash$$
 $(\forall x)(\forall y)(\forall z)(\forall w)[x \le y \& y \le z \& z \le w \to x \le w]$
(\vdash is the verb "proves")

Theories and Computability

 A set Ax axiomatizes a theory T if every sentence in T is provable from Ax

• It is of interest sometimes to look for Ax which is computable, or c.e.

• Fact: The set of consequences (theorems) of a c.e. set of axioms is c.e.

 Craig's Theorem: A c.e. theory has a computable set of axioms (primitive recursive actually)

Consistency

- A theory is consistent if it has a model
- Examples: The structure $(\mathbb{N}, \leq) \models PO \ (\models is the verb "models")$ $(\mathcal{D}, \leq_T) \models PO$
- A theory T is inconsistent if it can prove a sentence and its negations $\mathsf{T} \vdash \varphi \& \neg \varphi$
- This also means that for **any** sentence φ , T $\vdash \varphi$

Soundness

• Suppose you have a theory T and a sentence φ such that T $\vdash \varphi$

• Soundness of the proof system means that for every model M, $M \models T \Longrightarrow M \models \varphi$

• The last line is usually abbreviated as $T \vDash \varphi$ (semantic implication)

• So basically, soundness of a proof system is: If $T \vdash \varphi$ then $T \vDash \varphi$

Completeness

• Completeness of a proof system is: If $T \vDash \varphi$ then $T \vdash \varphi$

• Gödel completeness theorem: For any first order theory T, and any sentence φ (in the language of the theory): If T $\models \varphi$ then T $\vdash \varphi$

A theory T is complete if for every sentence φ its language,
 either T ⊢ φ or T ⊢ ¬φ

Axiom Independence

• Suppose you have a consistent list of axioms A1,A2,A3,A4

What does it mean that, say, A2 is independent from the rest?

• This means {A1,A3,A4} ⊬ A2

• This also means that: There is a model M1 \models {A1,A2,A3,A4} and there is also a model M2 \models {A1, \neg A2,A3,A4}

Example

- A1: $(\forall a)[R(a,a)]$ A2: $(\forall a)(\forall b)[R(a,b)\&R(b,a) \to a = b]$ A3: $(\forall a)(\forall b)(\forall c)[R(a,b)\&R(b,c) \to R(a,c)]$
- PO = {A1,A2,A3}, Pre = {A1,A3}
- A2 is independent of A1, A3 because $(\mathcal{D},\leq_T)\vDash \{\text{A1,A2,A3}\} \text{ and } (P(\mathbb{N}),\leq_T)\vDash \{\text{A1,}\neg\text{A2,A3}\}$
- Pre is clearly an example of an incomplete theory since $Pre \not\vdash A2$ and $Pre \not\vdash \neg A2$

Theory of Arithmetic

• The theory $\mathsf{Th}(\mathbb{N})$ of all the facts about the structure of natural numbers is LIFE

- Naturally there is a desire to capture it through a manageable set of axioms
- By manageable I mean finite, or just computable
- By capture I mean axiomatize
- Sadly, this isn't possible (Gödel's Incompleteness Theorem)

Gödel's First Incompleteness

- Within the language of PA, Gödel used his numbering tricks to make sentences speak about themselves (self reference)
- The idea is to create a formula P(x, y) using $0,+,x,(,),s,\rightarrow,\neg$, ... such that y is the Gödel number of a proof in PA of the sentence whose Gödel number is x
- Look now at this sentence: $\neg \exists y P(e, y)$ where $e = gn(\neg \exists y P(e, y))$
- It says e (myself), not provable
- We see (as outsiders) that it is true in the model $(\mathbb{N}, 0, +, \times, s)$

Gödel's Second Incompleteness

 Gödel decided to play more with his numbering trick and created a sentence that speaks about PA (about the system from within the system)

- The sentence said: PA is consistent
- Consis(PA): $\neg \exists y P(gn(0 \neq 0), y)$ (there is no proof of $0 \neq 0$)
- In other words, PA cannot prove its own consistency

Generalizability of the Incompleteness Theorems

 All those proofs of Gödel just required that the system is powerful enough to express arithmetic

• So, he was able to prove similar facts about, e.g., set theory

•
$$\emptyset = 0, \{\emptyset\} = 1, \{\emptyset, \{\emptyset\}\} = 2, ..., n = \{0,1,...,n-1\}$$

In philosophical terms

 A system which is powerful (powerful enough to describe arithmetic) does not have a computable list of axioms from which every fact could follow

 Imagine yourself creating a manageable (finite or computable) list of rules (laws) from which everything in your system of interest should follow.

• Unless your system is very weak, you can't

Factory Analogy

Imagine you have a factory that creates machines

 You want to create a machine which can test every machine in the factory

It can test everything except itself

 It might be able to test certain aspects of itself, but not all of itself without external interference

Camera analogy

• A camera can't take a picture of itself

Maybe with the aid of an external system of mirrors

Peano Arithmetic (example of axiomatization)

- The structure of natural numbers could be described (axiomatized) by the following set of axioms PA:
- 1. Natural numbers not empty
- 2. They can be built from a special number, call it 0, and a special function s (call it successor)
- 3. So, for every x, if x is a natural number, then s(x) is also a natural
- 4. For every x, s(x) is not 0
- 5. m=n iff s(m)=s(n)
- 6. If a = b, and a is natural, then b is natural
- 7. If 0 has a property P, and for every n, if n has P then s(n) has P, then P applies to all natural numbers

Structure of arithmetic

We have a structure $\mathbb{N} = (\mathbb{N}, 0, +, \times, s)$ which satisfies:

- 1. $\forall x \ 0 \neq s(x)$
- 2. $\forall x \forall y (s(x) = s(y) \rightarrow x = y)$
- 3. $\forall x \ 0 \neq s(x)$
- 4. For each formula $\varphi(x, \bar{y})$ in the language of Peano Arithmetic: $\forall \bar{y} \ [\varphi(0, \bar{y}) \& \forall x (\varphi(x, \bar{y}) \to \varphi(s(x), \bar{y})) \to \forall x \ \varphi(x, \bar{y})]$

That last axiom is actually an axiom schema. It unfolds into an infinite set of axioms

+, X

•
$$\forall x \ x + 0 = x$$

•
$$\forall x \forall y (x + s(y) \rightarrow s(x + y))$$