ДИС 1 2017/2018

Владимир Бабев

15.11.2017

Съдържание

Карикатури Нерез Софтуерен инженер

Експонента

Тригонометрични функции

Граница на функция

Нерез

NAFANJO NH KNILAU VERNAGO

Софтуерен инженер

Експонента I

• Дефиниция:
$$e^{x} = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^{n}$$

- Мотивация
- Основно равенство: $e^{x+y} = e^x e^y$
- Свойства:
 - $e^x > 0$ за всяко $x \in \mathbb{R}$

 - $e^x \geq 1+x$ за всяко $x \in \mathbb{R}$ $e^x \leq \frac{1}{1-x}$ за всяко x < 1
 - e^{x} е строго растяща, следователно обратима.
 - за всяко y>0 съществува $x\in\mathbb{R}$, за което $e^x=y$.

Експонента II

- Натурален логаритъм обратната на експонентата (единственото решение на уравнението $e^x = y$ за y > 0.
- Свойства:

- $\ln(xy) = \ln x + \ln y$ за всяко x > 0 и всяко y > 0
- $\ln(x+1) \le x$ за всяко x > -1
- $\ln (x+1) \geq \frac{x}{x+1}$ за всяко x>-1
- In x е строго растяща
- Степен с положителна основа $a^b = e^{b \ln a}$ за a > 0 .
- Свойства:
 - $a^{b+c} = a^b a^c$
 - $(ab)^c = a^c b^c$
 - $(a^b)^c = a^{bc}$
 - a^x е обратима за $a \neq 1$.
- Логаритъм с положителна основа $a \neq 1$ обратната на a^x .
- $\log_a x = \frac{\ln x}{\ln a}$

Тригонометрични функции I

- Радиан
- Тригонометрична окръжност

Тригонометрични функции II

• Аргументът като лице

Тригонометрични функции III

Тригонометрични функции

Основни равенства

•
$$\sin 0 = 0$$
, $\cos 0 = 1$, $\sin \frac{\pi}{2} = 1$, $\cos \frac{\pi}{2} = 0$

- $\sin(x + y) = \sin x \cos y + \cos x \sin y$
- $\sin(x y) = \sin x \cos y \cos x \sin y$
- cos(x + y) = cos x cos y sin x sin y
- cos(x y) = cos x cos y + sin x sin y
- Питагорова теорема $\cos^2 x + \sin^2 x = 1$

Тригонометрични функции IV

ullet sin x — периодична с период 2π , нечетна, обратима в $\left[-\frac{\pi}{2}\,,\,\frac{\pi}{2}
ight]$ (строго растяща)

Тригонометрични функции V

• $\cos x$ – периодична с период 2π , четна, обратима в $[0\,,\,\pi]$ (строго намаляваща)

Тригонометрични функции VI

• $tg\,x=rac{\sin x}{\cos x}$ — периодична с период π , нечетна, обратима в $\left(-rac{\pi}{2},rac{\pi}{2}
ight)$ (строго растяща)

Тригонометрични функции VII

• $ctg\,x=rac{\cos x}{\sin x}$ – периодична с период π , нечетна, обратима в $(0\,,\,\pi)$ (строго намаляваща)

Тригонометрични функции VIII

ullet $0<\sin x < x < tg\,x$ — за всяко $x\in \left(0\,,\,rac{\pi}{2}
ight)$

Тригонометрични функции IX

Тригонометрични функции Х

ullet arcsin x — дефинирана в $[-1\,,\,1]$, стойности $\left[-rac{\pi}{2}\,,\,rac{\pi}{2}
ight]$, строго растяща, нечетна

Тригонометрични функции XI

$$\sin(\arcsin x) = x$$
 3a $x \in [-1, 1]$ $\arcsin(\sin x) = x$ 3a $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Тригонометрични функции XII

• $\arccos x$ – дефинирана в $[-1\,,\,1]$, стойности $[0\,,\,\pi]$, строго намаляваща, $\arccos(-x)=\pi-\arccos x$

Тригонометрични функции XIII

$$\cos(\arccos x) = x$$
 3a $x \in [-1, 1]$ $\arccos(\cos x) = x$ 3a $x \in [-0, \pi]$

•
$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 3a $x \in [-1, 1]$ $\sin(\arccos x) = \sqrt{1 - x^2}$ 3a $x \in [-1, 1]$ $\cos(\arcsin x) = \sqrt{1 - x^2}$ 3a $x \in [-1, 1]$

Тригонометрични функции XIV

• $\operatorname{arctg} x$ – дефинирана в \mathbb{R} , стойности $\left(-\frac{\pi}{2}\,,\,\frac{\pi}{2}\right)$, строго растяща, нечетна

Тригонометрични функции XV

• $\operatorname{arcctg} x$ – дефинирана в \mathbb{R} , стойности $(0,\pi)$, строго намаляваща, $\operatorname{arcctg}(-x) = \pi - \operatorname{arcctg} x$

Тригонометрични функции XVI

- $\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2} \quad \operatorname{sa} x \in \mathbb{R}$ $tg\left(\operatorname{arcctg} x\right) = \frac{1}{x} \quad \operatorname{sa} x \neq 0$ $ctg\left(\operatorname{arctg} x\right) = \frac{1}{x} \quad \operatorname{sa} x \neq 0$
- $\sin(\operatorname{arctg} x) = \frac{x}{\sqrt{1+x^2}}$ $\exists a \ x \in \mathbb{R}$ $\cos(\operatorname{arctg} x) = \frac{1}{\sqrt{1+x^2}}$ $\exists a \ x \in \mathbb{R}$
- $\sin(2\operatorname{arctg} x) = \frac{2x}{1+x^2}$ $\exists a \ x \in \mathbb{R}$ $\cos(2\operatorname{arctg} x) = \frac{1-x^2}{1+x^2}$ $\exists a \ x \in \mathbb{R}$

Граница на функция I

- Точка на сгъстяване на множество
 - Дефиниция 1 (Хайне) a се нарича точка на сгъстяване на множеството $A \subset \mathbb{R}$, ако съществува редица $\{x_n\}_1^\infty$, за която 1) $x_n \in A$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$
 - Дефиниция 2 (Коши) a се нарича точка на сгъстяване на множеството $A \subset \mathbb{R}$, ако за всяко $\delta > 0$ има $x \in A$, за което $0 < |x-a| < \delta$
 - Двете дефиниции са еквивалентни
 - Пример: точките на сгъстяване на дефиниционната област

на функцията
$$\sqrt{\frac{x^2}{x^2-1}}$$
 са $(-\infty,\,-1]\cup[1,\,+\infty)$; 0 не е точка на сгъстяване, въпреки че в нея функцията е дефинирана.

Граница на функция II

- Граница на функция нека a е точка на сгъстяване за D_f .
- Дефиниция 1 (Хайне) Казваме, че f има граница в a, ако за всяка редица $\{x_n\}_1^\infty$, за която 1) $x_n \in D_f$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$, редицата $\{f(x_n)\}_1^\infty$ е сходяща.
- Всички такива редици имат една и съща граница.
- Дефиниция 1 (Хайне) уточнение Казваме, че f има граница l в a, ако за всяка редица $\{x_n\}_1^\infty$, за която 1) $x_n \in D_f$; 2) $x_n \neq a$; 3) $\lim_{n \to \infty} x_n = a$, е изпълнено $\lim_{n \to \infty} f(x_n) = l$.
- Означение: $l = \lim_{x \to a} f(x)$

Граница на функция III

- Примери:
 - $\chi_{\mathbb{O}}$ няма граница в никоя точка
 - [x] няма граница в никоя точка в целите числа, а в нецелите има граница
 - $\lim_{x\to 0}\sin x=0$
 - $\lim_{x\to 0} \cos x = 1$
 - $\lim_{x\to 0} e^x = 1$
 - $\lim_{x\to 0} \ln(1+x) = 0$
- Аритметични действия
- Граница на съставна функция Нека $\lim_{x\to a}f(x)=b$ и $\lim_{x\to b}g(x)=L$. Тогава $\lim_{x\to a}\varphi(x)=L$, където $\varphi(x)=g(f(x))$

Пример:
$$\lim_{x\to 0} e^{\sin x} = L$$

- Граница на съставна функция точна формулировка Нека: 1) $\lim_{x \to a} f(x) = b$ (a е точка на сгъстяване на D_f) 2.1) b е точка на сгъстяване на D_g 2.2) $\lim_{x \to b} g(x) = L$ и, когато $b \in D_g$, е изпълнено L = g(b) 3) a е точка на сгъстяване на $\{x \in D_f : f(x) \in D_g\}$ Тогава $\lim_{x \to a} \varphi(x) = L$, където $\varphi(x) = g(f(x))$
- Дефиниция 2 (Коши) Казваме, че f има граница L в a, ако за всяко $\varepsilon>0$ има $\delta>0$ такова, че за всяко $x\in D_f$ с $0<|x-a|<\delta$ е изпълнено $|f(x)-L|<\varepsilon$.
- Еквивалентност на двете дефиниции
- Допълнителни основни свойства ограниченост, постоянност на знака, граничен преход в неравенства