TP#1 - Équation de la chaleur

On considère l'équation de la chaleur monodimensionnelle :

$$\begin{cases} \frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = 0, & (x, t) \in [0, 1] \times \mathbb{R}^+ \\ u(0, t) = u(1, t) = 0, & t \in \mathbb{R}^+ \\ u(x, t = 0) = \sin(\pi x), & x \in [0, 1]. \end{cases}$$

On considèrera dans ce TP que $\nu = 0, 1$.

On se limitera dans ce TP à t dans l'intervalle [0, 5]

On discrétise l'intervalle d'espace [0,1] avec un pas d'espace h uniforme, avec N+2 nœuds : $h=\frac{1}{N+1},\ x_0=0$ et $x_{N+1}=1.$

On discrétise l'intervalle de temps avec un pas de temps τ uniforme.

On se propose d'approcher le problème ci-dessus par des schémas aux différences finies explicite, implicite et de Crank-Nicolson.

1. Programmer une fonction SolEE(N,tau) qui prend en argument l'entier N qui permet de définir le pas d'espace et τ le pas de temps choisi.

Cette fonction calculera le schéma d'Euler explicite et rendra :

- (a) X la liste des x_i pour $0 \le j \le N+1$;
- (b) T la liste des t_n considérés (avec donc n tels que $0 \le t_n = n\tau \le 5$).
- (c) U qui contiendra tous les u_j^n considérés. Chaque ligne correspondra à un u^n . Chaque ligne sera faite de N+2 colonnes.
- 2. Expérimenter la fonction écrite dans les cas suivants de choix de pas :
 - (a) h = 0.05 et $\tau = 0.1$.
 - (b) h = 0.05 et $\tau = 0.01$.
 - (c) h = 0.02 et $\tau = 0.01$.
 - (d) h = 0.01 et $\tau = 0.005$.

Pour illustrer les résultats, on pourra par exemple représenter u(x,t) calculé par la méthode numérique en fonction de x pour quelques valeurs de t (on pourra représenter pour t=0;1;2;3;4;5).

Interpréter les résultats.

- 3. Reprendre les questions précédentes en programmant les schémas d'Euler implicite et de Crank-Nicolson (on notera SolEI et SolCN les fonctions programmées). Que constate-t-on?
- 4. Vérifier que la fonction $u(x,t)=\mathrm{e}^{-\alpha t}\sin(\pi x)$ avec $\alpha=\nu\pi^2$ est la solution du problème posé.

Mesurer dans les différents cas étudiés pour les différents schémas l'erreur commise avec la méthode numérique, en mesurant

$$E = \max_{j,n} \left| u_j^n - u(x_j, t_n) \right|$$

(le max portant sur tous les $j,\,n$ calculés). Commenter.