Logic

Paolo Bettelini

Contents

1	Boo	olean Algebra
2	Log	ical inference
	2.1	Modus Ponens
	2.2	Modus Tollens
	2.3	Fallacy of affirming the consequent
	2.4	Fallacy of denying the antecedent
3	Nec	essity and sufficiency
	3.1	Sufficiency
	3.2	Necessity
	3.3	Biconditional logical connective
4	Indu	uction
5	Pro	positional Logic
	5.1	Propositional variable
	5.2	Connectives
	5.3	k-ary Boolean function
	5.4	0-ary Boolean function
	5.5	Propositional formula
	5.6	Truth assignment
	5.7	Tautology
	5.8	Satisfiability
	5.9	Substitution
	5.10	Propositional Proof System
	5.11	Soundness \mathcal{F}
	5.12	Completness \mathcal{F}

1 Boolean Algebra

$$x \lor 0 = x$$

$$x \land 0 = 0$$

$$x \lor 1 = 1$$

$$x \land 1 = x$$

$$x \lor x = x$$

$$x \land x = x$$

$$x \land (x \lor y) = x$$

$$x \lor (x \land y) = x$$

$$x \lor \neg x = 0$$

$$x \lor \neg x = 1$$

$$\neg x \land \neg y = \neg (x \lor y)$$

$$\neg x \lor \neg y = \neg (x \land y)$$

2 Logical inference

A logical inference is a logical deduction to infer the truth of a statement given a premise.

There are 4 forms of hypothetical syllogisms.

2.1 Modus Ponens

Modus Ponens or affirming the antecedent is a valid form hypothetical syllogism.

$$\frac{P \implies Q \qquad P}{Q}$$

If P implies Q and P is true, then Q is also true.

2.2 Modus Tollens

Modus Tollens or denying the consequent is a valid form hypothetical syllogism.

$$\frac{P \implies Q \qquad \neg Q}{\neg P}$$

If P implies Q and Q is false, then P is also false.

2.3 Fallacy of affirming the consequent

Affirming the consequent is an invalid form hypothetical syllogism.

$$\frac{P \Longrightarrow Q \qquad Q}{P}$$

If P implies Q and Q is true, then P is also true.

2.4 Fallacy of denying the antecedent

Denying the antecedent is an invalid form hypothetical syllogism.

$$\begin{array}{ccc} P \implies Q & \neg P \\ \hline \neg Q & \end{array}$$

If P implies Q and P is false, then Q is also false.

3 Necessity and sufficiency

3.1 Sufficiency

Given two statements P and Q where $P \implies Q$, P suffices for Q to be true.

3.2 Necessity

Given two statements P and Q where $P \implies Q$, Q is a necessity for P to be true $(Q \Longleftarrow P)$, but Q does not necessarily imply Q.

3.3 Biconditional logical connective

A biconditional logical connective (written as iff or xnor) is the relation of equivalence between two statements P and Q. The relation $P \iff Q$ is both a sufficient condition and a necessary condition.

$$P \iff Q \equiv (P \implies Q) \land (P \iff Q)$$

4 Induction

Induction can be used to prove a statement in the form $P(n \in \mathbb{N})$ for all n. In second-order logic

$$\forall P\left(P(0) \land \forall n \left(P(n) \implies P(n+1)\right) \implies \forall n \left(P(n)\right)\right)$$

5 Propositional Logic

5.1 Propositional variable

A propositional variable is an input boolean variable. A propositional variable represents the value of a proposition (E:g. it is snowy today).

5.2 Connectives

Propositional variables can be connected using *connectives*. They usually are \land , \lor , \neg or \Longrightarrow . These connectives are not independent and could be defined in terms of the others. Terms like \land , \lor and \neg could also be defined as a composition of a single connective.

5.3 k-ary Boolean function

A k-ary Boolean function is a mapping from $\{T, F\}^k \to \{T, F\}$

5.4 0-ary Boolean function

The 0-ary Boolean function are the verum (\top) and falsum (\bot) connectives. The represent respectively the True value and the False value.

5.5 Propositional formula

A propositional formula is a formula which has a unique truth value given all variables.

The set of all formulas is countable.

5.6 Truth assignment

A truth assignment is a function which maps a set of propositional variables $V = \{p_1, p_2, \dots, p_n\}$ to a boolean value

$$\tau:V\to \{T,F\}$$

A formula A involving the variables $V = \{p_1, p_2, \dots, p_n\}$ defines a k-ary boolean function $f_A(x_1, x_2, \dots, x_n)$ where $x_n = \tau(p_n)$.

5.7 Tautology

A propositional formula A is a $tautology \models A$ if its k-ary boolean function f_A is always T. Otherwise, we say $\not\models A$.

5.8 Satisfiability

A propositional formula A is satisfiable if f_A is T for some input.

If Γ is a <u>set</u> of propositional formulas, Γ is satisfiable if there are some assignments to satisfy all its members.

 $\Gamma \vDash A$ (tautologically implies A) if every truth assignment satisfying Γ also satisfies A.

5.9 Substitution

A substitution σ is a mapping from a set of propositional variables to the set of propositional formulas. If A is a propositional formula, $A\sigma$ is equal to the formula obtained by simultaneously replacing each variable appearing in A by its image under σ .

5.10 Propositional Proof System

A Propositional Proof System \mathcal{F} has every substitution into the axioms scheme as his axioms and a set of inference rules.

If A has an \mathcal{F} -proof, then $\vdash A$. If the proof needs extra hypothesis Γ (which may not be tautologies), then $\Gamma \vdash A$.

5.11 Soundness \mathcal{F}

 \mathcal{F} is sound iff every \mathcal{F} -formula is logically valid with respect to the semantics of the system.

5.12 Completness \mathcal{F}

 \mathcal{F} is complete iff it can prove any valid formula, meaning that the semantic noion of validity and the syntactic notion of provability coincide, and a formula is valid iff it is has an \mathcal{F} -proof.