Vektorterek

- 1. Vektorteret alkotnak-e az alábbi struktúrák:
- a, $V = \begin{cases} a \\ 0 \\ -2a \end{cases}$ $a \in R$ vektorok halmaza a szokásos vektor összeadással és szám-szorossal.
- b, R^+ a pozitív valós számok halmaza az alább megadott \oplus és $\lambda \cdot$ műveletekkel:

$$a \oplus b = a \cdot b$$
 $\lambda \cdot a = a^{\lambda}$

- c, $P = \left| ax + bx^5 \right| \ a, b \in R$ alakú polinomok halmaza a szokásos összeadással és szám-szorossal.
- d, R² kétdimenziós vektorok halmaza az alábbi két művelettel:

$$\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} := \begin{bmatrix} a+c \\ b+d \end{bmatrix}$$
 (a szokásos összeadás)
$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} := \begin{bmatrix} \lambda a \\ b \end{bmatrix}$$

e, R² kétdimenziós vektorok halmaza az alábbi két művelettel:

$$\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} := \begin{bmatrix} a+c \\ b+d \end{bmatrix}$$
 (a szokásos összeadás)
$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} := \begin{bmatrix} \lambda^2 a \\ \lambda^2 b \end{bmatrix}$$

Megoldás:

- a, igen
- b, igen
- c, igen
- d, nem
- e, nem
- 2. Bizonyítsa be, hogy az alábbi halmazok vektorteret alkotnak a szokásos összeadással és valós számmal való szorzással!

$$R$$
, R^2 , R^3 , R^n , $R^{n\times m}$,

$$R^{2}$$
, R^{3} , R^{n} , $R^{n \times m}$, $P_{n} = \left\{ a_{0} + a_{1}x + ... + a_{n}x^{n} \Big|_{b}^{a} a, b \in R \right\}$

Vektortér axiómák:

+ 1.
$$(\underline{a} + \underline{b}) + \underline{c} = \underline{a} + (\underline{b} + \underline{c})$$
 $\lambda \cdot$ 1. $\lambda(\underline{a} + \underline{b}) = \lambda \underline{a} + \lambda \underline{b}$
2. $\exists e, \forall a : a + e = a$ 2. $(\lambda + \mu)a = \lambda a + \mu a$

$$\lambda \cdot 1. \ \lambda(\underline{a} + \underline{b}) = \lambda \underline{a} + \lambda$$

$$2. \exists e, \forall a: a+e=a$$

2.
$$(\lambda + \mu)\underline{a} = \lambda\underline{a} + \mu\underline{a}$$

3.
$$\forall a, \exists a^{-1}: a+a^{-1}=e$$

3.
$$(\lambda \mu)\underline{a} = \lambda(\mu\underline{a})$$

4.
$$\underline{a} + \underline{b} = \underline{b} + \underline{a}$$

4.
$$1 \cdot \underline{a} = \underline{a}$$

Alterek

1. Adott V vektortér W részhalmaza alteret alkot-e? Ha igen, hány dimenziós az altér?

a,
$$V = R^3 A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x = y = z \right\}$$

b,
$$V = R^4 A = \begin{cases} \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix} : x + y + z + u = 0 \end{cases}$$

c,
$$V = R^3 A = \left\{ \begin{pmatrix} 0 \\ y^2 \\ 0 \end{pmatrix} : y \in R \right\}$$

d,
$$V = R^4$$
 $A = \left\{ \begin{pmatrix} 2x \\ 3y - x \\ 0 \\ x + y \end{pmatrix} : x, y \in R \right\}$

e,
$$V = R^3 A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x \cdot y \cdot z = 1 \right\}$$

f,
$$V = R^{2\times 2}A = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} : a, d \in R \right\}$$

g,
$$V = R^{2\times 2}A = \left\{ \begin{bmatrix} a & b \\ 1 & d \end{bmatrix} : a, b, d \in R \right\}$$

h,
$$V = R^{2\times 2}$$
 $A = \{A \in R^{2\times 2} : A = A^T\}$

i,
$$V = R^{2\times 2}A = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} : a, b, d \in R \right\}$$

j,
$$V = R^{2\times 2}A = \{A \in R^{2\times 2} : \det A = 0\}$$

k,
$$V = P_6 A = \{ax^2 + bx^4 + cx^6 : a, b, c \in R\}$$

1,
$$V = P_3$$
 $A = \{a + ax : a \in R\}$

m, $V = P_2$ $A = \{p(x) \in P_2 : p''(x) = 0\}$

(Azok a polinomok amelyeknek a második deriváltja 0)

Megoldás:

Altér egy részhalmaz, ha zárt az összeadásra és számmal való szorzásra:

- Ha $\underline{a}_1 \in A$ és $\underline{a}_2 \in A$, akkor ebből következik, hogy $\underline{a}_1 + \underline{a}_2 \in A$
- Ha $\underline{a} \in A$ és $\lambda \in R$ tetszőleges, akkor ebből következik, hogy $\lambda \cdot \underline{a} \in A$

a, igen 1D	b, igen 3D
c, nem	d, igen 2D
e, nem	f, igen 2D
g, nem	h, igen 3D
i, igen 1D	j, nem
k, igen 3D	1, igen 1D
m, igen 2D	