1.1 Notion de matrice et vocabulaire

1.1.1 Matrice

Définition 1.1.

Soient n et p deux entiers naturels non nuls.

On appelle matrice de dimension $n \times p$, ou d'ordre $n \times p$ voire de format $n \times p$, un tableau de n lignes et p colonnes de nombres réels.

On note $a_{i,j}$ l'élément de la matrice situé à l'intersection de la i-ième ligne et de la j-ième colonne.

Une matrice A est représentée entre deux parenthèses ou deux crochets :

$$A = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,p} \end{pmatrix} \text{ ou } A = \begin{bmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i,1} & \cdots & a_{i,j} & \cdots & a_{i,p} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,j} & \cdots & a_{n,p} \end{bmatrix}$$

Exemple. La matrice $A = \begin{pmatrix} 1 & 0 & 5 & -4 \\ 6 & 1 & 0 & \pi \\ \sqrt{2} & 1 & \frac{1}{2} & 8 \end{pmatrix}$ est une matrice d'ordre ______

Le coefficient $a_{2,4}$, coefficient situé à la _______ de la ______, de la matrice A est :

$$a_{2,4} = \underline{\hspace{1cm}}$$

▶ Note 1.1.

L'ensemble des matrices à n lignes et p colonnes à coefficients réels est noté $\mathfrak{M}_{n,p}(\mathbb{R})$.

1.1.2 Matrice carrée

Définition 2.1. Matrice carrée

Une matrice ayant le $m\hat{e}me$ nombre n de lignes et de colonnes est une matrice ______ d'ordre

Exemple. La matrice $M = \begin{pmatrix} -1 & 7 \\ 4 & 2 \end{pmatrix}$ est une matrice carrée _____

▶ Note 2.1.

L'ensemble des matrices à n lignes et n colonnes à coefficients réels est noté $\mathfrak{M}_n(\mathbb{R})$.

1.1.3 Matrice ligne

Définition 3.1. Matrice ligne

Une matrice formée d'une seule ligne et de n (avec $n \in \mathbb{N}^*$) colonnes est une matrice ligne ou vecteur ligne.

Exemple. La matrice $A = \begin{pmatrix} -7 & 9 & 8 & 5 \end{pmatrix}$ est une matrice ligne de dimension

1.1.4 Matrice colonne

Définition 4.1. Matrice colonne

Une matrice formée de p (avec $p \in \mathbb{N}^*$) lignes et d'une seule colonne est une matrice colonne ou vecteur colonne.

Exemple. La matrice $C = \begin{pmatrix} 25 \\ 28 \\ 16 \end{pmatrix}$ est une *matrice colonne* de dimension _____.

1.1.5 Égalité de deux matrices

Propriété 1.1.

Deux matrices A et B sont égales si, et seulement si :

- elles ont $m\hat{e}me \ dimension$;
- tous leurs éléments situés à la même place sont égaux.

Application 1.1. On considère
$$A = \begin{pmatrix} 5 & 2-a & -3 \\ -1 & 3 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 5 & 1 & -3 \\ -1 & 3 & b+2 \end{pmatrix}$

Déterminer les valeurs de a et b pour que les matrices A et B soient égales.

1.2 Opérations sur les matrices

1.2.1 Addition de matrices

Définition 5.1.

La somme de deux matrices A et B de $m\hat{e}me$ dimension est la matrice notée A+B obtenue en ajoutant les éléments de A et ceux de B situés à la même place.

Si
$$A=(a_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$$
 et $B=(b_{i,j})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ sont deux matrices d'ordre $n\times p$ alors :

$$A + B = (a_{i,j} + b_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Exemple. Soient les matrices $A = \begin{pmatrix} 2 & 4 \\ -1 & 10 \end{pmatrix}$ et $B = \begin{pmatrix} 3 & -4 \\ 6 & 5 \end{pmatrix}$:

$$A+B=\left(\begin{array}{c} \\ \end{array} \right) =\left(\begin{array}{c} \\ \end{array} \right)$$

Propriété 2.1.

Soient A, B et C sont des matrices de ______.

- 1. A + B = B + A.
- 2. A + (B + C) = (A + B) + C

1.2.2 Multiplication par un réel

Définition 6.1.

Le produit d'une matrice A par un réel k est la matrice kA obtenue en multipliant chaque élément de A par le réel k.

Si $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}$ est une matrice d'ordre $n \times p$ alors pour tout réel k :

$$kA = (ka_{i,j})_{\substack{1 \leqslant i \leqslant m \\ 1 \leqslant j \leqslant n}}$$

Exemple. Soit
$$A = \begin{pmatrix} 2, 3 & 4 & 2 \\ -2 & 0 & -0, 5 \end{pmatrix}$$
 alors : $10A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

1.2.3 Produit de matrices

Définition 7.1.

Soient p un entier naturel non nul, A une matrice ligne de dimension $1 \times p$ et B une matrice colonne de dimension $p \times 1$.

Le produit $A \times B$ de ces deux matrices est :

$$\begin{pmatrix} a_1 & \cdots & a_i & \cdots & a_p \end{pmatrix} \times \begin{pmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_p \end{pmatrix} = (a_1 \times b_1 + \cdots + a_i \times b_i + \cdots + a_p \times b_p)$$

Le produit $A \times B$ de ces deux matrices est la matrice de dimension 1×1 qui n'a qu'un seul élément.

Exemple.

$$\begin{pmatrix} 60 & 50 & 0 \end{pmatrix} \times \begin{pmatrix} 25 \\ 28 \\ 30 \end{pmatrix} =$$

Le produit AB de deux matrices A et B est défini si et seulement si le nombre de ______ de A est égal au nombre de ______ de B.

Définition 8.1. Produit de deux matrices

Soient $A = (a_{i,j})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$ une matrice $\mathfrak{M}_{n,p}(\mathbb{R})$ et $B = (b_{i,j})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant m}}$ une matrice $\mathfrak{M}_{p,m}(\mathbb{R})$.

Le produit C = AB est une matrice de format $n \times m$ dont les coefficients $c_{i,j}$ sont définis par :

$$c_{i,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}$$

On peut écrire le coefficient de façon plus développée, à savoir :

$$c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,k}b_{k,j} + \dots + a_{i,p}b_{p,j}$$

Remarque. Il peut être utile de disposer les calculs de la façon suivante :

$$\begin{pmatrix}
 & \times & \\
 & \times & \\
 & \times & \\
 & \times & \\
 & & \times
\end{pmatrix}
\leftarrow B$$

$$A \to \begin{pmatrix}
 & \times & \\
 & \times & \\
 & \times & \\
 & & \times
\end{pmatrix}$$

$$\begin{pmatrix}
 & \times & \\
 & \times & \\
 & & \times
\end{pmatrix}$$

$$\begin{pmatrix}
 & \times & \\
 & \times & \\
 & & \times
\end{pmatrix}$$

$$\begin{pmatrix}
 & & | & \\
 & & | & \\
 & & - & - & c_{ij}
\end{pmatrix}$$

$$\leftarrow AB$$

Avec cette disposition, on considère d'abord la ligne de la matrice A située à gauche du coefficient que l'on veut calculer (ligne représentée par des \times dans A) et aussi la colonne de la matrice B située au-dessus du coefficient que l'on veut calculer (colonne représentée par des \times dans B). On calcule le produit du premier coefficient de la ligne par le premier coefficient de la colonne $(a_{i1} \times b_{1j})$, que l'on ajoute au produit du deuxième coefficient de la ligne par le deuxième coefficient de la colonne $(a_{i2} \times b_{2j})$, que l'on ajoute au produit du troisième...

Application 2.1. On donne les matrices
$$A = \begin{pmatrix} 6 & -3 \\ 1 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & -1 & 3 \\ 5 & 0 & 4 \end{pmatrix}$.

- 1. Peut-on calculer le produit $A \times B$? Si oui, calculer ce produit.
- 2. Peut-on calculer le produit $B \times A$? Si oui, calculer ce produit.

1.2.4 Quelques règles opératoires

Propriété 3.1.

Soient A, B et C trois matrices telles que les sommes et les produits ci-dessous sont définis.

- $A \times (B \times C) = (A \times B) \times C$.
- $A \times (B+C) = A \times B + A \times C$.
- $(A+B) \times C = A \times C + B \times C$.

En général $A \times B \neq B \times A$, on dit que la multiplication n'est pas *commutative* et il faut faire attention à l'ordre dans lequel on effectue les calculs.

Exemple.

$$\begin{pmatrix} -3 & -2 \\ 1 & 1 \\ -1 & -1 \end{pmatrix} \times \begin{pmatrix} -1 & -2 & 2 \\ 1 & 3 & -3 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

Et

$$\begin{pmatrix} -1 & -2 & 2 \\ 1 & 3 & -3 \end{pmatrix} \times \begin{pmatrix} -3 & -2 \\ 1 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots \\ \cdots & \cdots \end{pmatrix}$$

 $A \times C = B \times C$ ne signifie pas que A = B. De même $A \times B = 0$ ne signifie pas que A = 0 ou B = 0.

Exemple.

$$\begin{pmatrix} -3 & -2 & 1 \\ 2 & 4 & -7 \end{pmatrix} \times \begin{pmatrix} -1 & 3 \\ 2 & -5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots \\ \cdots & \cdots \end{pmatrix}$$

et

$$\begin{pmatrix} 2 & 3 & -4 \\ 1 & 3 & -6 \end{pmatrix} \times \begin{pmatrix} -1 & 3 \\ 2 & -5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots \\ \cdots & \cdots \end{pmatrix}$$

$$\begin{pmatrix} 4 & -2 & 2 \\ -6 & 3 & -3 \end{pmatrix} \times \begin{pmatrix} -1 & 2 & 1 \\ 3 & -2 & -3 \\ 5 & -6 & -5 \end{pmatrix} = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$$

1.3 Matrices carrées

1.3.1 Matrice identité

Définition 9.1. Matrice diagonale

Une matrice carrée dont tous les coefficients sont nuls, sauf éventuellement les coefficients de la diagonale, est appelée *matrice diagonale*.

Exemple. La matrice $A = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}$ est une matrice diagonale mais en revanche, la matrice $B = \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}$ n'est pas une matrice diagonale.

Définition 10.1. Matrice identité

Soit $n \in \mathbb{N}^*$. La matrice diagonale d'ordre n dont tous les coefficients sur la diagonale sont égaux à 1 est appelée matrice identité d'ordre n, on la note I_n .

Exemples.

$$I_2 = \begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix} \qquad \qquad I_4 = \begin{pmatrix} \dots & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{pmatrix}.$$

Propriété 4.1.

Soit A une matrice carrée d'ordre n alors $A \times I_n = I_n \times A = A$, où I_n est la matrice identité d'ordre n.

Exemple.

$$\begin{pmatrix} 1 & -2 & 5 \\ 1 & 0 & 3 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 5 \\ 1 & 0 & 3 \\ 1 & -3 & 2 \end{pmatrix} \text{ et } \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 & 5 \\ 1 & 0 & 3 \\ 1 & -3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 5 \\ 1 & 0 & 3 \\ 1 & -3 & 2 \end{pmatrix}$$

1.3.2 Puissances d'une matrice carrée

Définition 11.1. Matrice puissance

Soient A une matrice carré d'ordre n et p un entier supérieur ou égal à 1.

La puissance p-ième de la matrice A est la matrice carrée d'ordre n obtenue en effectuant le produit de p matrices égales à A.

$$A^p = \underbrace{A \times A \times \cdot \times A}_{p \text{ fois}}$$

Par convention $A^0 = I_n$.

Exemple. Soit
$$A = \begin{pmatrix} -3 & 1 & 2 \\ -5 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix}$$
:

$$A^{2} = A \times A = \begin{pmatrix} -3 & 1 & 2 \\ -5 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix} \times \begin{pmatrix} -3 & 1 & 2 \\ -5 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

$$A^{3} = A^{2} \times A = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix} \times \begin{pmatrix} -3 & 1 & 2 \\ -5 & 1 & 4 \\ 1 & -1 & 2 \end{pmatrix} = \begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

1.3.3 Inverse d'une matrice carrée

Définition 12.1.

Une matrice carrée A d'ordre n est inversible, s'il existe une matrice carrée B d'ordre n telle que $A \times B = B \times A = I_n$, où I_n est la matrice identité d'ordre n.

La matrice inverse de A si elle existe, est unique et est notée :

Méthode

Pour montrer qu'une matrice A est inversible, on peut chercher une matrice Btelle que $AB = I_n$. On pourra conclure que A est inversible et que $A^{-1} = B$.

Application 3.1. On donne les matrices
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$.

- 1. Calculer $A(I_2 + B)$.
- 2. En déduire que A est inversible et calculer A^{-1} .

Propriété 5.1. Cas de la dimension 2

Soit
$$A$$
 une matrice carrée d'ordre 2, $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

La matrice A est inversible si et seulement si $ad - bc \neq 0$.

Le réel ad - bc est appelé déterminant de la matrice A et est noté Δ .

Si
$$ad - bc \neq 0$$
 alors, $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Application 4.1. Soit
$$A = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$$
. Justifier que A est inversible et préciser A^{-1} .

Application aux systèmes linéaires

Définition 13.1.

Un système linéaire à n équations et n inconnues : $\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \dots \\ a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n \end{cases}$ peut s'écrire sous la forme matricielle AX = B où $A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix}$ est une matrice

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

carrée d'ordre $n, X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $B = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ sont des matrices colonnes de dimension $n \times 1$.

Si la matrice A est inversible, alors le système admet une unique solution donnée par :

$$X = A^{-1}B$$

Application 5.1. Résoudre dans \mathbb{R}^3 le système $\begin{cases} x-3y+z=6\\ 2x-y+3z=-2\\ -4x+3y-6z=1 \end{cases}$ en utilisant la méthode du pivot.