ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 10

Cap. 2.2 – Autômato com pilha (cont.)

Profa. Ariane Machado Lima ariane.machado@usp.br

Cap 2.2 – Autômato com pilha (AP)

Exemplo

 $\{0^n 1^n | n \geq 0\}$. Suponha que M_1 seja $(Q, \Sigma, \Gamma, \delta, q_1, F)$

$$Q = \{q_1, q_2, q_3, q_4\},\,$$

$$\Sigma = \{0,1\},\$$

$$\Gamma = \{0, \$\},$$

$$F = \{q_1, q_4\}, e$$

 δ é dada pela tabela abaixo, na qual entradas em branco significam \emptyset .

Ent	rada:	0			1			ϵ		
F	Pilha:	0	\$	ε	0	\$	ε	0	\$	ε
	q_1									$\{(q_2,\$)\}$
	q_2			$\{(q_2,\mathtt{0})\}$	$\{(q_3,\boldsymbol{\varepsilon})\}$					
	q_3				$\{(q_3, \boldsymbol{\varepsilon})\}$				$\{(q_4,\varepsilon)\}$	
	q_4									ti.

Equivalência entre APN e GLC

TEOREMA 2.20 -----

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece.

Autômato com pilha NÃO DETERMINÍSTICO!!!

Equivalência entre APN e GLC

LEMA 2.21

Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece.

Ideia da prova:

Uma LLC é gerada por uma GLC

Mostrar como converter uma GLC em um APN equivalente

Conversão GLC em APN (ideia)

Exemplo

$$S
ightarrow a T b \mid b$$

 $T
ightarrow T a \mid arepsilon$

Conversão GLC em APN (ideia)

Caso Geral:

Equivalência entre APN e GLC

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece. LEMA 2.21 Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece. LEMA 2.27

Se um autômato com pilha reconhece alguma linguagem, então ela é livre-do-

contexto.

 Para facilitar, vamos considerar que o APN possui as seguintes características:

- 1. Ele tem um único estado de aceitação, q_{aceita} .
- 2. Ele esvazia sua pilha antes de aceitar.
- 3. Cada transição ou empilha um símbolo (um movimento de *empilha*) ou desempilha um símbolo (um movimento de *desempilha*), mas não faz ambas as coisas ao mesmo tempo.

- G deve gerar uma cadeia x se x faz o APN ir do estado inicial ao estado de aceitação.
- Para cada par de estados (p, q), criamos uma variável A_{pq} que gere todas as cadeias x que levam o APN do estado p (com uma pilha vazia) ao estado q (com uma pilha vazia).

Neste APN:

- no estado p (com pilha vazia), o primeiro movimento é de EMPILHA.
- O último movimento é de DESEMPILHA (chegando no estado q, com pilha vazia)

- No caminho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

- No camilho de p a q (reconhecendo x), 2 situações:
 - A pilha só se torna vazia novamente quando chega em q
 - A pilha se torna vazia em algum ponto do caminho, antes de chegar em q

PROVA Digamos que $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{aceita}}\})$ e vamos construir G. As variáveis de G são $\{A_{pq} | p, q \in Q\}$. A variável inicial é $A_{q_0,q_{\text{aceita}}}$. Agora descrevemos as regras de G.

- Para cada $p,q,r,s\in Q,\ t\in \Gamma$ e $a,b\in \Sigma_{\varepsilon}$, se $\delta(p,a,\varepsilon)$ contém (r,t) e $\delta(s,b,t)$ contém (q,ε) , ponha a regra $A_{pq}\to aA_{rs}b$ em G.
- Para cada $p,q,r\in Q$, ponha a regra $A_{pq}\to A_{pr}A_{rq}$ em G.
- Finalmente, para cada $p \in Q$, ponha a regra $A_{pp} \to \varepsilon$ em G.

Temos que provar que essa construção funciona, ou seja, que A_{pq} gera x se e somente se x pode levar o APN de p (com pilha vazia) a q (com pilha vazia).

AFIRMATIVA 2.30

Se A_{pq} gera x, então x pode levar P de p com pilha vazia a q com pilha vazia.

AFIRMATIVA 2.31

Se x pode levar P de p com pilha vazia para q com pilha vazia, A_{pq} gera x.

AFIRMATIVA 2.30

Se A_{pq} gera x, então x pode levar P de p com pilha vazia a q com pilha vazia.

Provamos essa afirmação por indução sobre o número de passos na derivação de x a partir de A_{pq} .

Base: A derivação tem 1 passo.

Uma derivação com um único passo tem de usar uma regra cujo lado direito não contém variáveis. As únicas regras em G onde nenhuma variável ocorre no lado direito são $A_{pp} \to \varepsilon$. Claramente, a entrada ε leva P de p com pilha vazia a p com pilha vazia e, portanto, a base está provada.

Se A_{pq} gera x, então x pode levar P de p com pilha vazia a q com pilha vazia.

Passo da Indução: Assuma verdadeiro para derivações de comprimento no máximo k, onde $k \geq 1$, e prove verdadeiro para derivações de comprimento k+1. Suponha que $A_{pq} \stackrel{*}{\Rightarrow} x \operatorname{com} k + 1$ passos. O primeiro passo nessa derivação é ou $A_{pq} \Rightarrow aA_{rs}b$ ou $A_{pq} \Rightarrow A_{pr}A_{rq}$. Lidamos com esses dois casos separadamente.

No primeiro caso, considere a parte y de x que A_{rs} gera, de forma que x=ayb. Em razão do fato de que $A_{rs} \stackrel{*}{\Rightarrow} y$ com k passos, a hipótese da indução nos diz que P pode ir de r com pilha vazia para s com pilha vazia. Em razão do fato de que $A_{pq} \to aA_{rs}b$ é uma regra de G, $\delta(p,a,\varepsilon)$ contém (r,t) e $\delta(s,b,t)$ contém (q,ε) , para algum símbolo de pilha t. Logo, se P começa em p com uma pilha vazia, após ler a ele pode ir para o estado r e empilhar t. Então, ler a cadeia p pode levá-lo a p0 e deixar p1 na pilha. E após ler p2 ele pode ir para o estado p3 e desempilhar p4. Conseqüentemente, p5 pode levá-lo de p6 com pilha vazia para p6 com pilha vazia.

Se A_{pq} gera x, então x pode levar P de p com pilha vazia a q com pilha vazia.

Passo da Indução: Assuma verdadeiro para derivações de comprimento no máximo k, onde $k \geq 1$, e prove verdadeiro para derivações de comprimento k+1. Suponha que $A_{pq} \stackrel{*}{\Rightarrow} x \operatorname{com} k + 1$ passos. O primeiro passo nessa derivação é ou $A_{pq} \Rightarrow aA_{rs}b$ ou $A_{pq} \Rightarrow A_{pr}A_{rq}$. Lidamos com esses dois casos separadamente.

No segundo caso, considere as partes y e z de x que A_{pr} e A_{rq} , respectivamente, geram, de forma que x=yz. Como $A_{pr} \stackrel{*}{\Rightarrow} y$ em no máximo k passos e $A_{rq} \stackrel{*}{\Rightarrow} z$ em no máximo k passos, a hipótese da indução nos diz que y pode levar P de p para r e z pode levar P de p para p0, com pilha vazia no início e no final. Logo, p1 pode levá-lo de p2 com pilha vazia para p3 com pilha vazia. Isso completa o passo da indução.

AFIRMATIVA 2.31

Se x pode levar P de p com pilha vazia para q com pilha vazia, A_{pq} gera x.

Provamos essa afirmação por indução sobre o número de passos na computação de P que vai de p para q com pilhas vazias sobre a entrada x.

Base: A computação tem 0 passos.

Se uma computação tem 0 passos, ela começa e termina no mesmo estado — digamos, p. Portanto, temos de mostrar que $A_{pp} \stackrel{*}{\Rightarrow} x$. Em 0 passos, P só tem tempo de ler a cadeia vazia, portanto $x = \varepsilon$. Por construção, G tem a regra $A_{pp} \rightarrow \varepsilon$; portanto, a base está provada.

Se x pode levar P de p com pilha vazia para q com pilha vazia, A_{pq} gera x.

Passo da Indução: Assuma verdadeiro para computações de comprimento no máximo k, onde $k \geq 0$, e prove verdadeiro para computações de comprimento k+1.

Suponha que P tenha uma computação na qual x leva de p para q com pilhas vazias em k+1 passos. Ou a pilha está vazia apenas no início e no final dessa computação, ou ela se torna vazia em algum outro ponto também.

Se x pode levar P de p com pilha vazia para q com pilha vazia, A_{pq} gera x.

Passo da Indução: Assuma verdadeiro para computações de comprimento no máximo k, onde $k \geq 0$, e prove verdadeiro para computações de comprimento k + 1.

Suponha que P tenha uma computação na qual x leva de p para q com pilhas vazias em k+1 passos. Ou a pilha está vazia apenas no início e no final dessa computação, ou ela se torna vazia em algum outro ponto também.

Caso 1:

- O primeiro símbolo a ser empilhado (t) deve ser o último a ser desempilhado
- Símbolos a e b lidos da entrada no primeiro e último movimento, respectivamente
 - Segundo estado r e penúltimo estado s
- $\delta(p,a,\epsilon)$ contém (r,t) e $\delta(s,b,t)$ contém (q, ϵ), logo $A_{pq} \rightarrow aA_{rs}$ b está em G
- x = ayb. y faz o APN ir de r a s, sem tocar em t, em k-1 passos
- Pela hipótese de indução, $A_{rs} =>^* y$. Logo, $A_{pq} =>^* x$

Se x pode levar P de p com pilha vazia para q com pilha vazia, A_{pq} gera x.

Passo da Indução: Assuma verdadeiro para computações de comprimento no máximo k, onde $k \geq 0$, e prove verdadeiro para computações de comprimento k+1.

Suponha que P tenha uma computação na qual x leva de p para q com pilhas vazias em k+1 passos. Ou a pilha está vazia apenas no início e no final dessa computação, ou ela se torna vazia em algum outro ponto também.

Caso 2:

- Estado r onde a pilha fica vazia no meio da computação de x
- Cada caminho (de p a r, e de r a q) tem no máximo k passos,
 x = yz
- Pela hipótese de indução: A_{pr} =>* y e A_{rq} =>* z.
- Como $A_{pq} \rightarrow A_{pr}A_{rq}$ está em G, $A_{pq} =>^* x$

Equivalência entre APN e GLC

Uma linguagem é livre-do-contexto se e somente se algum autômato com pilha a reconhece. LEMA 2.21 Se uma linguagem é livre-do-contexto, então algum autômato com pilha a reconhece. LEMA 2.27

Se um autômato com pilha reconhece alguma linguagem, então ela é livre-do-

contexto.