Lab 02: Variables in Assembly Language EE222: Microprocessor Systems

February 23, 2018

Contents

1	Assembly Coding				
	1.1	Design Problem	2		
	1.2	x86 Assembly Code	2		
	1.3	Code Execution	3		
	1.4	Analysis	3		
2	x86	Operation Modes	4		
	2.1	Real Mode	4		
	2.2	Protected Mode	4		

1 Assembly Coding

1.1 Design Problem

Write a program that calculates the following expression, using registers

$$A = (A+B) - (C+D)$$

Assign integer values to the EAX, EBX, ECX and EDX registers. Also look up rules of the MOVADD and SUB instructions before writing the program.

1.2 x86 Assembly Code

Assuming the values of A, B, C and D be 5, 6, 2 and 3 respectively.

```
TITLE AddTwoProgram
```

```
INCLUDE Irvine32.inc
.code
main PROC
;assigning values
    mov eax, 5
    mov ebx, 6
    mov ecx, 2
    mov edx, 3
    ;aritherematci operations
    add eax, ebx
    add ecx, edx
    sub eax,ecx
    ;output
    Call DumpRegs
    exit
main ENDP
```

END main

1.3 Code Execution

```
Microsoft (R) Incremental Linker Version 6.00.8447
Copyright (C) Microsoft Corp 1992–1998. All rights reserved.
 Volume in drive C has no label.
Volume Serial Number is 2079-53BB
 Directory of c:\Masm615
                                                  211 test.asm
28,708 test.exe
02/19/2018
                  01:32 AM
02/19/2018
02/19/2018
                   01:33 AM
                                                  29,584 test.ilk
13,373 test.lst
3,418 test.obj
                  01:33 AM
02/19/2018
02/19/2018
                  01:33 AM
01:33 AM
02/19/2018
                   01:33 AM
                                                  91,136 test.pdb
                       6 File(s) 166,430 bytes
0 Dir(s) 132,455,768,064 bytes free
Press any key to continue . . .
c:\Masm615>test
                                              ECX=00000005 EDX=00000003
EBP=0012FF94 ESP=0012FF8C
CF=0 SF=0 ZF=0 OF=0
   EAX=000000006
                        EBX =000000006
                        EDI =00000000
EFL=00000206
   ES I =000000000
   EIP=0040102F
c:∖Masm615>
```

1.4 Analysis

Registers	Hexadecimals	Decimals
EAX	00000006	6
EBX	00000006	6
ECX	00000005	5
EDX	00000003	3

Hence execution has been verified.

2 x86 Operation Modes

2.1 Real Mode

An operating mode of all x86-compatible CPUs. Real mode is characterized by a 20-bit segmented memory address space (giving exactly 1 MB of addressable memory) and unlimited direct software access to all addressable memory, I/O addresses and peripheral hardware.

Real mode provides no support for memory protection, multitasking, or code privilege levels.

- The Real mode lets Operating System access only first 1 MB of memory.
- DOS operates only in Real addressing mode.

2.2 Protected Mode

Also called protected virtual address mode, is an operational mode of x86-compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and safe multi-tasking designed to increase an operating system's control over application software

- The Protected mode lets Operating System access more memory (4 GByte for 32-bit mode) as well as first 1 MB of memory.
- Windows operate in Protected addressing mode.