

Energetske pretvorbe i procesi u hidroelektranama

Pretvorba energije položaja vode u mehanički rad – I Energijske tehnologije FER 2008.

Gdje

- 1. Organizacija i sadržaj predmeta
- smo: 2. Uvodna razmatranja
 - 3. O energiji
 - 4. Energetske pretvorbe i procesi u termoelektranama
 - 5. Energetske pretvorbe i procesi u hidroelektranama
 - 6. Energetske pretvorbe i procesi u nuklearnim el.
 - 7. Energija Sunca
 - 8. Energija vjetra
 - 9. Geotermalna energija
 - 10. Biomasa
 - 11. Gorivne ćelije i ostale neposredne pretvorbe
 - 12. Potrošnja električne energije
 - 13. Prijenos i distribucija električne energije
 - 14. Skladištenje energije
 - 15. Energija, okoliš i održivi razvoj

Sadržaj

- Uvod o električnoj energiji i hidroenergiji
- Hidrološki uvjeti
- Protok vode i nadmorska visina
- Protok vode i vrijeme
- Veličina izgradnje
- Snaga i energija hidroelektrane
- Vrste hidroelektrana

Uvod o električnoj energiji i hidroenergiji

Literatura

- Hrvoje Požar, Osnove energetike, I dio
- Hrvoje Požar, Osnove energetike, 11 dio
- Tehnička enciklopedija, 3. svezak
- Tehnička enciklopedija, 6. svezak
- Predavanja dostupna na:
 - www.fer.hr
- Dodatne informacije i na Internetu
 - www.hep.hr
 - www.energetika-net.hr itd.

Hidroenergija

- Obnovljivi izvor energije
- Mala emisija stakleničkih plinova
- Visoka efikasnost pretvorbe u mehanički rad
- Širok raspon instaliranih snaga
- Relativno niska koncentracija energije
- Relativno visoka pouzdanost u odnosu na druge obnovljive izvore
- Mogućnost izvedbe određena karakteristikama lokacije
- Relativno veliki investicijski troškovi
- Ovisno od izvedbe relativno velika fleksibilnost prilagođavanja promjeni opterećenja u EES

Udjel obnovljivih izvora u ukupnoj proizvodnji električne energije

- Hidroenergija ima udjel od oko 16% u ukupnoj svjetskoj proizvodnji električne energije
- Struktura udjela razvijenih zemalja u ukupnoj proizvodnji električne energije u HE se smanjuje (iskorištenost ovog oblika proizvodnje u razvijenim zemljama je velika)
- Trenutno najzastupljeniji obnovljivi izvor (slijede ga vjetroelektrane i primjena energije sunca)
- Velike HE su klasični elektroenergetski objekti
- Male elektrane se često označavaju kao novi obnovljivi izvori

El. energija koju trošimo 15 PWh 2001.

Figure 62. Fuel Shares of World Electricity Generation, 2001-2025

Sources: 2001: Energy Information Administration (EIA), calculated by the Office of Integrated Analysis and Forecasting, based on estimates of fuel inputs for electricity generation and assumed average generation efficiencies by fuel type. Projections: EIA, System for the Analysis of Global Energy Markets (2004).

1 Peta = 10^{15}

Potrošnja el. energije 2001. [PWh]

Obnovljivi: 0,15 PWh, 1,0% biomasa; 2,76 PWh, 18,4% HE; 0,09 PWh, 0,6% ostali.

Hidroenergija u svijetu

Pokazatelji: vodeći svjetski proizvođači, udjel u ukupnim svjetskim instaliranim kapacitetima, udjel HE u proizvodnji električne energije u zemljama vodećim proizvođačima

Producers	TWh	% of World total	
People's Rep. of China	354	12.6	
Canada	341	12.1	
Brazil	321	11.4	
United States	271	9.7	
Russia	176	6.3	
Norway	109	3.9	
Japan	94	3.3	
India	85	3.0	
Venezuela	70	2.5	
Sweden	60	2.1	
Rest of the World	927	33.1	
World	2 808	100.0	

Installed Capacity (based on production)	GW
United States	99
People's Rep. of China	86
Canada	67
Brazil	59
Japan	46
Russia	44
India	30
Norway	28
France	25
Sweden	16
Rest of the World	307
World	807

Country (based on first 10 producers)	% of hydro in total domestic electricity generation
Norway	98.8
Brazil	82.8
Venezuela	71.0
Canada	57.0
Sweden	39.6
Russia	18.9
People's Rep. of China	16.1
India	12.7
Japan	8.8
United States	6.5
Rest of the World*	14.2
World	16.1

2004 data

Promjene u zastupljenosti pojedinih zemalja u ukupnoj svjetskoj produkciji u HE

Situacija u Hrvatskoj

- Raspoloživa snaga u HE i TE (NE) u RH je približno jednaka
- Proizvedena energija u našim HE značajno varira od godine do godine, ovisno o hidrološkim uvjetima
- Značajan udjel instalirane snage HE u akumulacijskim elektranama jadranskog sliva
- Raspoloživost HE bitno ovisi o hidrološkim uvjetima ovisno o godišnjem dobu i od godine do godine

	Electricity Balance (GWh) Elektroenergetska bilanca (GWh)	2003	2004	Change (%) Promjena (%)
	Hydro production Proizvodnja HE	4,897	7,001	43.0
_	Thermal production Proizvodnja TE	5,087	4,068	-20.0
E	Own production Vlastita proizvodnja	9,984	11,069	10.9
	NE Krško d.o.o. NE Krško d.o.o.	1,623	2,606	60.6
_	TE Plomin d.o.o. TE Plomin d.o.o.	1,616	1,320	-18.3
_	Purchase Kupnja	2,659	2,572	-3.3
_	Sale to other power companies Prodaja drugim elektroprivredama	-355	-1,472	314.6
	Available electricity Raspoloživa električna energija	15,527	16,095	3.7
	Transmission network losses Gubici na mreži prijenosa	660	587	-11.1
_	Auxiliary consumption on transmission network Vlastita potrošnja na mreži prijenosa	130	180	-38.5
	Gross consumption on distribution network Bruto potrošnja na mreži distribucije	14,737	15,328	4.0
	Consumption on distribution network Potrošnja na mreži distribucije	13,644	14,458	6.0
_	Excange, purchase, sale and supply outside Croatia Gubici i neobračunata potrošnja na mreži distribucije	1,883	1,637	-13.1
	Gross consumption of electricity Bruto potrošnja električne energije	15,527	16,095	3.7

System Load Opterećenje sustava

	1 1995 - 2004 sustava 1995 2	2004.		
Year	Pmax	Pmin	Pmin/Pmax	W

Yea r Godina	Pmax MW	Pmin MW	Pmin/Pmax %	Wd MWh
1995	2,097	1,151	54.89	42,178
1996	2,471	1,314	53.18	47,143
1997	2,417	1,328	54.94	48,172
1998	2,585	1,316	50.91	51,168
1999	2,600	1,468	56.46	51,266
2000	2,661	1,556	58.47	54,059
2001	2,796	1,601	57.26	56,899
2002	2,685	1,586	59.07	54,617
2003	2,673	1,546	57.84	53,334
2004	2,792	1,626	58.24	55,830

Pmax- Peak system load Maksimalno opterećenje sustava

Pmin- Minimum system load on the day of Pmax Minimalno opterećenje u danu ostvarenog Pmax

Wd- Maximum daily consumption Maksimalna dnevna potrošnja

Electricity generation and procurement 1995-2004 Proizvodnja i nabava električne energije 1995.-2004.

GWh	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004
Hydro power plants Hidroelektrane	5,164	7,190	5,260	5,428	6,531	5,841	6,550	5,372	4,897	7,001
Thermal* & diesel power plants Termoelektrane* i dizel elektrane	2,740	2,520	3,578	4,561	4,768	3,958	4,713	5,899	6,703	5,388
Krško nuclear power plant NE Krško	2,279	2,182	2,393	1,250	0	0	0	0	1,623	2,606
Imports** - exports Uvoz** - Izvoz	1,221	166	1,562	2,115	2,376	4,037	3,192	3,560	2,304	1,100
Total Ukupno	11,404	12,058	12,793	13,354	13,675	13,836	14,455	14,831	15,527	16,095

HEP Generation HEP Proizvodnja d.o.o.

Hydro power plants Hidroelektrane

		ailable capacity (MW) espoloživa snaga (MW)	minimum safe output tehnički	type
	generator generator	total ukupno	minimum	tip elektrane
Pogon HE Varaždin A,B,C* Pogon HE Čakovec A,B,C,D Pogon HE Dubrava A,B,C,D,E Pogon HE Rijeka A,B Pogon HE Vinodol A,B,C CHE Fužine A CHE Lepenica HE Zeleni Vir Pogon HE Senj A,B,C	2x47+0.46 2x40.3+1.1+0.34 2x40.3+1.1+2x0.34 2x18 3x30 4/(-4.8) 1.4(-1.25) 1.44 3x72 22,5	94.46 82.04 82.38 36 90 4/(-4.8) 1.4(-1.25) 1.44 216 22,5	2x18 2x15 2x15 2x9	run-of-river protočna run-of-river protočna run-of-river protočna run-of-river protočna storage akumulacijska storage akumulacijska storage akumulacijska storage akumulacijska storage akumulacijska storage akumulacijska
Pogon HE Gojak A,B,C Pogon HE Ozalj A,B,C,D Pogon RHE Velebit A,B Pogon HE na Krki	3x16 2x1+0.8+2x1.1 2x138/(2x-120)	48 5,24 276/(-240)	3x2 80	run-of-river protočna run-of-river protočna storage akumulacijska
HE Miljacka A,B,C,D HE Krčić HE Golubić A,B HE Jaruga A,B Pogon HE Peruča A,B HE Orlovac A,B,C Buško Blato d.o.o.	4.8+3x6.4 0.34 2x3.27 2x3.6 2x20.8 3x79	24 0,34 6,54 7,2 41,6 237	1 1 5 50	run-of-river protočna run-of-river protočna run-of-river protočna run-of-river protočna storage akumulacijska storage akumulacijska
CS Buško Blato A,B,C Pogon HE Đale A,B Pogon HE Kraljevac A,B,C Pogon HE Zakučac A,B,C,D Pogon HE Dubrovnik A,B HE Zavrelje	3x3.8/3x(-3.4) 2x20.4 2x20.8+4.8 2x108+2x135 2x108	11.4/(-10.3) 40,8 46,4 486 216 2	0.81 6 1 50+80 50	storage akumulacijska storage akumulacijska run-of-river protočna storage akumulacijska storage akumulacijska storage akumulacijska
Total hydro power plants Ukupno H	E	2,078.74/(-256.35)		

Available capacity of generating plants (net)* Raspoloživa snaga proizvodnih kapaciteta (na pragu)*

Pretvorba energije položaja

- Uvod
- Hidrološki uvjeti
- Protok vode i visina
- Protok vode i vrijeme
- Veličina izgradnje
- Snaga i energija hidroelektrane
- Vrste hidroelektrana

Ciklus vode u prirodi

2008.

Pretvorba EP vode u MR (1)

Energija

- plime i oseke
- morskih valova
- vodotoka

opisuje se energijom položaja (kretanja) vode.

Energija položaja (EP) jest početni oblik energije vode u prirodi koja se može iskoristiti u tehničkim pretvorbenim sustavima.

EP je posljedica transformacije energije Sunca.

Pretvorba EP vode u MR (2)

• obnovljivi izvor energije, energija dolazi od Sunca

Pretvorba EP vode u MR (3)

- "dostupni" dio energije položaja vode, elementi za procjenu
 - prosječna nadmorska visina tla: 700 m
 - visina taloga prosječnih padavina: 0.9 m
 - površina kopna: 130 milijuna km²

$$W = m g h = \rho V g h$$

$$W = 1000 x 130 x 10^{12} x 0.9 x 9.81 x 700$$

$$W = 8,035 \times 10^{20} J = 223 \times 10^6 GWh$$

2/3 dostupne energije položaja ispariva od ostatka (koncentracije vodotoka) moguće je iskoristiti oko 16% što iznosi 11.9 x10³ TWh stvarna svjetska proizvodnja u HE 2003 je bila oko 3000 TWh

U osnovni način iskorištavanja energije vodotokova je star više tisuća godina

Izvedbe se razlikuju po:

- načinu dovođenja vode,
- tipu i
- efikasnosti pretvorbe

Prva prava turbina 1827 godine (Fourneyronova turbina)

Figure 5.10 Fourneyron's turbine. The runner consists of a circular plate with curved blades around its rim and a central shaft. It spins under the force exerted by water flowing outwards between the fixed guide vanes and across its blades: (a) vertical section; (b) flow across guide vanes and runner

Primjer moderne reakcijske turbine

Efikasnosti modernih turbina su od 75 do 95%

2008.

Hidrološka svojstva i karakteristike lokacije HE

- Protok u vodotoku je promjenjiv u prostoru (od izvora do ušća) i vremenu
- Vrlo približno se snaga HE može jednostavno procijeniti poznavajući potencijalnu energiju vode za dani pad i raspoloživi volumni (maseni) protok vode
- Ukupna proizvedena energija u HE ovisi o stalnosti pretpostavljenog protoka i raspoloživosti pretpostavljenog pada vode

Snaga i energija HE

$$W = mgh$$
 /t [W] maseni protok, \dot{m} [kg/s]
$$\frac{W}{t} = P = \frac{m}{t} gh$$
volumni protok, Q [m³/s]
$$P = \frac{V}{t} \rho \cdot g \cdot h = Q \cdot \rho \cdot g \cdot h$$

$$P = 9.81 \cdot 10^{3} \cdot Q \cdot h$$
 [W]
$$Snaga \ HE \quad P=9.81 \ Q_{si} \ h \quad [kW]$$

Vjerojatna energija W=8760 P [kWh]

Q - H dijagram (1)

Q-H dijagram opisuje protok vode u osnovnom vodotoku od izvora do ušća

Q - H dijagram (2)

Integral funkcije $Q_{sr}(H)$ po dH od izvora do ušća daje *bruto* snagu odnosno energiju vodotoka:

$$dP = 9.81 \cdot Q_{sr}(H) \cdot dH$$

$$P = 9.81 \int_{H_u}^{H_i} Q(H) dH$$

$$W = 8760 \cdot 9.81 \int_{H_u}^{H_i} Q(H) dH$$

Q - H dijagram (3)

 tehnički iskoristiva energija vodotoka smanjena je zbog trenja u dovodima (tunel, tlačni cjevovod) te gubitaka protoka

Q - H dijagram (4)

Primjer Q-H dijagrama za vodotok s pritocima

Hidrološka svojstva HE (1)

 količina vode koja pritječe u vodotoke definira se kao:

$$faktor otjecanja = \frac{voda u promatranom vodotoku}{oborinsko područje \cdot količina padavina}$$

faktor otjecanja ide i do 0,95

 mogućnost pretvorbe energije položaja vode ovisi o poznavanju količine vode u vodotoku po iznosu i vremenu (H=f(Q) – konsumpciona krivulja)

Kretanje protoka za jedan vodotok na jednom mjestu u nekoj godini

Hidrološka svojstva HE (2)

- količinu vode u vodotoku određuje:
 - količina oborina
 - sastav i topografija tla
 - vremenski raspored oborina
- osnovno mjerenje razine vode u vodotoku (vodostaj) pomoću vodokaza
- KONSUMPCIONA KRIVULJA
 - istovremeno mjerenje protoka na određenom mjestu vodotoka, odnosno na određenom profilu
 - mjerenja se obavljaju za određeno mjesto i sve očekivane vodostaje
 - ovisna je o obliku korita na mjestu vodokaza

Konsumpciona krivulja

Krivulja trajanja protoka (1)

Krivulja trajanja protoka (2)

• krivulja trajanja protoka predstavlja vjerojatnosnu krivulju - vjerojatnost pojave protoka Q_{TA} jednaka je omjeru vremena T_A i ukupnog vremena promatranja

- krivulja trajanja protoka za siječanj u razdoblju od 10 god.

Krivulja trajanja protoka (3)

 ukupna količina vode koja proteče kroz promatrani profil vodotoka

$$V_{Ag} = \int_{0}^{12} Q(t)dt = \int_{0}^{12} Q_{T}(t)dt$$
 [m³]

 srednji godišnji protok vodotoka

$$Q_{sr} = \frac{V_{Ag}}{31.54 \cdot 10^6} \qquad \left[\text{m}^3 / s \right]$$

Veličina izgradnje - Qi

- maksimalni protok koji može HE propustiti kroz postrojenje
- iskoristivi volumen vode V_i

$$V_i = \int_0^{Q_i} t dQ$$

• srednji iskoristivi protok

$$Q_{si} = \frac{V_i}{t_o} = \frac{V_i}{31.54 \cdot 10^6}$$

$$\frac{V_i}{V_{Ag}}$$
 - stupanj iskorištenja $vode$

Hidroelektrane (HE) - definicija

- HE su postrojenja u kojima se energija položaja vode pretvara u električnu energiju
- HE se sastoji od objekata i dijelova koji služe za:
 - skupljanje vode,
 - odvođenje vode,
 - pretvorbu energije položaja vode u mehaničku energiju,
 - pretvorbu mehaničke u električnu energiju,
 - transformaciju električne energije i
 - razvod električke energije

Hidroelektrane - dijelovi

- brana ili pregrada
- zahvat vode
- dovod vode
- vodna komora, vodostan
- tlačni cjevovod, kanal
- strojarnica
- odvod vode

HE - uvjeti izgradnje

- topografski i geološki uvjeti
- pogonski zahtjevi
- hidroenergetsko iskorištenje vodotoka
- uvjeti poljoprivrede i opskrbe vodom
- ribarstvo i ekologija

Hidroelektrane - podjela

- prema padu
 - niskotlačne (do 25 m)
 - srednjetlačne (25 200 m)
 - visokotlačne (> 200 m)
- HE koje koriste promjenu razine mora (plima i oseka)

- prema korištenju vode
 - protočne
 - pribranske
 - derivacijske
 - crpno-akumulacijske
 - dnevne (punjenje po noći, pražnjenje po danu)
 - sezonske (ravnoteža kišnog i sušnog perioda)

Osnovne izvedbe HE ovisno o raspoloživom padu vode

- mali pad niskotlačne (do 25 m)
- srednji pad srednjetlačne (25 200 m)
- veliki pad visokotlačne (> 200 m)

Hidroelektrane – podjela prema veličini

- Velike HE
 - Snaga veća od 100 MW, spojene na EES
- Srednje HE
 - Snage 15 100 MW, obično spojene na EES
- Male HE
 - Snage 1 15 MW, obično spojene na EES
- Mini HE
 - Snage od 100 kW do 1 MW
 - Otočni rad ili direktni spoj na EES ovisno o lokaciji
- Mikro HE
 - Snage od 5kW do 100 kW
 - Obično otočni rad iako se u novije vrijem razmatra spajanja na EES.
- Piko HE
 - Od 100 W do 5kW
 - Izolirana područja, posebne aplikacije.

HE – animacija rada različitih tipova

Moguća izvedba HE s oduzimanjem vode iz akumulacije i vraćanjem u vodotok

Način korištenja pumpne HE u dnevnonoćnom režimu rada

- Efikasnost pretvorbe nije na prvom mjestu
- Zadovoljavanje potrošnje u razdobljima povećane potrošnje
- Cijena kWh ovisi o ponudi i potražnji

Figure 5.27 Pumped storage system: (a) at time of low demand; (b) at time of high demand

Niskotlačna hidroelektrana (1)

Niskotlačna hidroelektrana (2)

Niskotlačna hidroelektrana (3)

HE PODSUSED

LEGENDA

- 1 PACITYODNA LIEBINOSA
- 2. MOSSIA DIZALICA
- GREDNA POMOĆNA ZAPORNICA
- UREĐAJ ZA DIZANJE
- GREDNA POMOĆNA ZAPORNICA
- 6 PEŠETKA
- 7. ČISTILICA
- B. PROMETNI MOST

Instalirana snaga P=43 MW

Godišnja proizvodnja W_{Ee}= 220 x 10⁶ kWh

Investicija C_i=135 x 10⁶ EUR

Niskotlačna hidroelektrana (4)

HE PODSUSED

LEGENDA:

- SEGMENTNI ZATVARAĆ SA ZAKLOPKOM
- 2. SERVOMOTOR
- GREDNA POMOČNA ZAPORNICA
- 4. MOSNA DIZALICA
- 5. POMOČNA ZAPORNICA
- PROMETNI MOST
- NORMALNI USPOR
- 8. DONJA VODA

Instalirana snaga P=43 MW

Godišnja proizvodnja W_{Ee}= 220 x 10⁶ kWh

Investicija C_i=135 x 10⁶ EUR

Srednjetlačna HE - derivacijski tip (1)

Srednjetlačna HE - derivacijski tip (2)

HE Kraljevac:

- pad od 110 m; na Cetini;

-građena u tri etape: 1912. 30 m³/s, 2x12,8 MW; 1932. dodano 2x20,8 MW, 50 m³/s -> najveća hidroelektrana na Balkanu; 1990. 4.8 MW (mjesto agregata iz 1912.) Instalirana snaga HE Kraljevac iznosi 59,2 MW (2x20,8 + 12,8 + 4,8), a prosječna godišnja proizvodnja 40 GWh.

Puštanjem u pogon druge etape na HE Zakučac, gubi se značaj HE Kraljevac. Voda iz kompenzacijskog bazena Prančevići najvećim dijelom ide prema turbinama HE Zakučac dok se prema HE Kraljevac ispuštaju vode radi održavanja biološkog minimuma (~ 6 m³/s). Taj dio vode kasnije preradi HE Kraljevac s agregatom biološkog minimuma. U slučaju velikih dotoka, kad HE Zakučac ne može primiti svu vodu koja pristigne u Prančeviće, višak se ispušta prema HE Kraljevac.

Srednjetlačna HE - pribranski tip (1)

2008.

Srednjetlačna HE - pribranski tip (2)

HE KOSINJ

Instalirana snaga P>25 MW Godišnja proizvodnja $W_{Ee}=76$ x 10^6 kWh Investicija $C_i=160$ x 10^6 EUR

Srednjetlačna HE - pribranski tip (3)

HE LEŠĆE

Visokotlačna HE (1)

2008.

Visokotlačna HE (2)

Visokotlačna HE s akumulacijom

Crpno-akumulacijska HE

- 5. sink. generator
- 6. spojka
- 7. crpka

- 3. tlačni cjevovod
- 4. turbina

Derivacijska crpno-akumulacijska HE

Dijelovi HE - pregrada

- višestruka namjena
 - skretanje vode od njezinog prirodnog toka prema zahvatu
 - povišenje razine vode radi postizanja većeg pada
 - ostvarivanje akumulacije
- sastavni dijelovi pregrade
 - tijelo pregrade
 - elementi za regulaciju vodenog toka:
 - preljevi, ispusti, preljevna polja (zapornice), temeljni ispust
- osnovni tipovi:
 - gravitacijska pregrada (vlastitom težinom osigurava stabilnost)
 - lučna pregrada (oblikom osigurava stabilnost)
 - lučno gravitacijska
 - olakšana pregrada

Pregrada "Prančevići"-HE Zakučac

•maksimalna godišnja proizvodnja: ('74-'97) W_{max} = 2022 GWh ('96)

Preg. "Prančevići" - preljev i temeljni ispust

Dijelovi HE - zahvat

Zahvat prima i usmjerava prema hidroelektrani vodu

- zahvat na površini (razina vode stalna)
- zahvat ispod površine (akumulacija ili promjenjiva razina vode

Dijelovi HE - dovod vode

- Dovod vode spaja zahvat sa vodnom komorom ili vodostanom
 - gravitacijski dovod (kanal ili tunel nije posve ispunjen vodom)
 - tlačni tunel (tunel posve ispunjen vodom)
- Regulacija protoka u dovodu
 - kod gravitacijskog dovoda protok se regulira visinom zahvata
 - kod tlačnog tunela samo odvodom odn. otvorom na turbini

Dijelovi HE - vodna komora

Vodna komora

 nalazi se na početku tlačnog cjevovoda sa svrhom da kod naglog smanjenja opterećenja HE tlak vode u cjevovodu ne poraste iznad dopuštene granice

Dijelovi HE - tlačni cjevovod

- Tlačni cjevovod je specijalne izradbe i koristi se za dovod vode do turbine
 - slobodno stojeći
 - integralni dio stijene

Hidroelektrane sliva Cetine (1)

Hidroelektrane sliva Cetine (2)

Sliv rijeke Cetine

Situacija objekata HE Zakučac (2)

Proračuni vezani za HE – prvi dio

- Primjena 1. glavnog stavka za otvorene sustave na vodnu turbinu
- Bernoullieva jednadžba pristup preko energije
- Jednostavni primjeri proračuna ilustracija ovisnosti snage elektrane o padu vode i raspoloživom protoku
- Proračun lociranja pribranske i derivacijske HE

JSS procesi otvorenih sustava – strujanje vode

Strujanje vode u cjevovodu: Bernoullijeva jednadžba

$$q_{12} = 0$$
, $w_{RT12} = 0$

$$u_{1} + p_{1}v_{1} + \frac{1}{2}c_{1}^{2} + gz_{1} = u_{2} + p_{2}v_{2} + \frac{1}{2}c_{2}^{2} + gz_{2}$$

$$q_{12} = \int_{v_{1}}^{v_{2}} pdv - |w_{RT12}| + u_{2} - u_{1} \qquad u_{1} = u_{2}$$

$$(q_{12} = 0, w_{RT12} = 0, \int_{v_{1}}^{v_{2}} pdv = 0 / v = \text{konst, d}v = 0/)$$

$$p_1v_1 + \frac{1}{2}c_1^2 + gz_1 = p_2v_2 + \frac{1}{2}c_2^2 + gz_2$$

JSS procesi otvorenih sustava - proces u vodnoj turbini

Tehnički rad vodne turbine

$$q_{12} = 0, u_1 = u_2 \qquad v_1 = v_2 = v$$

$$w_{t12} = -v (p_2 - p_1) - \frac{1}{2} (c_2^2 - c_1^2) - g(z_2 - z_1) [J/kg]$$

$$v = konst,$$

$$w_{t12} = -\int_{p_1}^{p_2} v dp - \frac{1}{2} (c_2^2 - c_1^2) - g(z_2 - z_1) =$$

$$= -v (p_2 - p_1) - \frac{1}{2} (c_2^2 - c_1^2) - g(z_2 - z_1) [J/kg]$$

Primjer 1a

Mala hidroelektrana stupnja djelovanja 83% smještena je na planinskom potoku koji ima efektivni pad vode od 25 m i volumni protok od 600 l/m. Kolika je snaga navedene male HE?

- H = 25 m (pad vode)
- $Q = 600 \, \ell/\text{min} \times 1 \, \text{m}^3/1000 \, \ell \times 1 \, \text{min/60s}$ = 0,01 m³/s (volumni protok)
- Stupanj djelovanja HE $\eta = 0.83$
- $P \cong 9.81 \rho \eta QH = 9.81(1000)(0.83)(0.01)(25) = 2036 \text{ W}$ $\cong 2.0 \text{ kW}$

Primjer 1b

Koliko energije (E) može proizvesti navedena mala HE ako radi cijelu godinu bez prekida i koliko ljudi može opskrbljivati električnom energijom ako je prosječna godišnja potrošnja energije po osobi 3000 kWh?

```
E = P \cdot t
= 2,0 kW · 24 h/dan · 365 dan/god
= 17520 kWh godišnje
```

Populacija = E/3000 = 17520/3000 = 5,845 ljudi ima sigurnu opskrbu el.energijom

Primjer 2

HE stupnja djelovanja 83% je izgrađena na lokaciji s efektivnim padom vode od 100 m i raspoloživim volumnim protokom 6000 m³/s (približno uvjeti na lokaciji Niagara Falls). Kolika je snaga elektrane, proizvedena električna energija (uz pretpostavku nepromjenjivih uvjeta protoka i nivoa vode) i koliki je potencijalni broj potrošača uz pretpostavke navedene u primjeru 1)?

- $P \cong 9.81 \rho \eta QH = 9.81(1000*0.83)(6000)(100) \cong 4.88*10^9 \text{ W}$ $\cong 4.88 \text{ GW}$
- $E = P \times t = 4,88GW \times 24 \text{ h/dan } \times 365 \text{ dan/god}$ = 42749 GWh = 42,7 TWh
- Populacija = E/3000 = 42,7 TWh / 3000 kWh = 1,42 milijuna ljudi
- (pretpostavljena je 100% raspoloživost, tj. 8760 sati rada godišnje, što nije ostvarivo čak i uvjetima povoljnih hidroloških uvjeta jer je potrebno planirati i održavanje)

Zadatak 1: pribranska elektrana

Izgradnjom se pribranske hidroelektrane, na nadmorskoj visini 200 m, rijeke koja ima srednji godišnji protok $Q_{sr} = 300$ -H[m]/2 [m³/s], želi omogućiti rad agregata S_n =80 MVA (nazivni faktor snage 0,8) i stupnja iskorištenja 0,93 punom snagom. Kolika je potrebna visina vode ispred pregrade/brane HE?

Pribranska HE

Q-H dijagram vodotoka i lokacija HE

$$\Rightarrow Q_i = Q_{sr}(H_Z) = 300 - \frac{200}{2} = 200 \left[\frac{m^3}{s} \right]$$

Zadatak 1

Rješenje:

$$P = S_n \cdot \cos \varphi_n = \rho \cdot g \cdot Q_{sr} \cdot H_{neto} \cdot \eta = \left\{ \rho = 10^3 \left[kg/m^3 \right] \right\} =$$

$$P = g \cdot Q_{sr} \cdot H_{neto} \cdot \eta \quad [kW]$$

$$H_{neto} = H_P$$

$$H_p = \frac{S_n \cdot \cos \varphi_n}{g \cdot Q_{sr} \cdot \eta} = \frac{80 \cdot 10^3 \cdot 0.8 [kW]}{9.81 \cdot 200 \cdot 0.93} = 35 \quad [m]$$

Zadatak 2: derivacijska elektrana

Planira se izgradnja derivacijske HE sa zahvatom na n.v. (nadmorskoj visini) 200 m, na vodotoku koji ima srednji godišnji protok $Q_{sr}=160$ -H[m]/2,5 [m³/s]. Agregat elektrane je izabran tako da na punoj snazi daje u mrežu snagu $S_n=100$ MVA uz faktor snage 0,8. Pretpostavljen je stupanj iskorištenja na pragu HE 0,9. Kolika mora iznositi visina vode iza pregrade/brane HE ako je donja voda na n.v. 100 m? Ukupni gubitci u dovodu vode su procijenjeni na 10 m.

Q-H dijagram vodotoka i lokacija HE

$$DH_P = \Delta H_P$$

Korištene oznake:

DH_p=H_{brane} visina vode ispred pregrade/brane

Q_{sr} srednji godišnji volumni protok na mjestu izgradnje

H nadmorska visina

H_g -smanjenje visine zbog gubitaka,

H_{neto} efektivna visina vode,

H_{te} razlika u elevacijama korijena brane i turbine derivacijske HE

Zadatak 2

Rješenje:

$$H = 0[m] \Rightarrow Q_{sr} = 160 \left[\frac{m^3}{s} \right]$$

$$Q_{sr} = 0 \left[\frac{m^3}{s} \right] \Rightarrow H = 400[m]$$

$$Q_{sr} = 160 - \frac{H}{2.5} = 160 - \frac{200}{2.5} = 160 - 80 = 80 \left[\frac{m^3}{s} \right]$$

$$H_{te} = 100[m]; H_g = 10[m]$$

$$P = 9.81 \cdot Q_{sr} \cdot H_{neto} \cdot \eta \cdot 10^{-3} [MW]$$

$$H_{neto} = \frac{S_n \cdot \cos \varphi}{9.81 \cdot Q_{sr} \cdot \eta \cdot 10^{-3}} = \frac{100 \cdot 0.8 \cdot 10^3}{9.81 \cdot 80 \cdot 0.9} = 113.3[m]$$

$$H_{neto} = H_{brane} + H_{te} - H_g \Rightarrow H_{brane} = H_{neto} - H_{te} + H_g = 113.3 - 100 + 10 = 23.3[m]$$

Hidroenergija i okoliš – za i protiv

- Nema emisije u okoliš (uvjetno)
- Reguliranje toka vode

- Ugrožavanje riba
- Umanjivanje kvalitete vode u toku iza
- Negativan utjecaj na neposredni bio-sustav
- Društveni utjecaj na regiju

Pozitivno

- Kontrola plavljenja i toka
- Obnovljivi izvor el. en.
- Efikasnost do
 90% za el. en.

Source: U.S. Army Corps of Engineers, National Inventory of Dams

Negativno

- Drastično mijenja prirodni tok rijeke
- Preseljenje ljudi
- Fertilizacija potopljenog prostora
- Migracije riba
- Sedimentacija
- Dekomisija uklanjanje brane
- Izgradnja i održavanje hidro postrojenja
 - Niz državnih institucija s nejasnim ovlastima i procedurama.
 - Javno mnijenje

Utjecaj velikih brana na okoliš

2008.

HE Itaipú (Brazil & Paraguay)

