What is claimed is:

7.

1. A method of sharing data for a computer system having a first
computer, a second computer, a plurality of memory units and a control unit for
controlling the plurality of themory units, wherein a data storage subsystem for
connection to the first and second computers is provided, the method comprising:
forming a paired state in which contents of a first memory unit and a
second memory unit are maintained the same as the first memory unit stores data used by
the first computer;
dissolving the paired state between the first memory unit and the second
memory unit, and not allowing updating of the first memory unit to be reflected in the
second memory unit;
re-mapping a third memory unit used by the second computer, and the
second memory unit with each other; and
controlling any access by the second computer to the third memory unit to
instead be made to the second memory unit.
2. A method of sharing data as in claim 1 further comprising, after the
step of re-mapping, a step of forming a paired state of the first memory unit and the third
memory unit.
3. A method of sharing data as in claim 1 wherein the data storage
subsystem consists of a first data storage system having the first memory unit, and
connected to the first computer, and a second data storage subsystem having the second
memory unit and the third memory unit, and connected to the second computer, and
wherein the first computer and the first data storage subsystem are geographically
separated from the second data storage subsystem.
4. A method of sharing data as in claim 2 wherein the data storage
subsystem consists of a first data storage system having the first memory unit, and
connected to the first computer, and a second data storage subsystem having the second
connected to the mist computer, and a second data storage subsystem having the second

memory unit and the third memory unit, and connected to the second computer, and

wherein the first domputer and the first data storage subsystem are geographically

6 separated from the second data storage subsystem.

	1
1	5. A method of sharing data for a computer system having a first
2	computer, a second computer, a plurality of memory units and a control unit for
3	controlling the plurality of memory units, and including a data storage subsystem for
4	connection to the first computer and the second computer, the method comprising:
5	forming a paired state in which contents of a first memory unit and
6	contents of a second memory unit are controlled to correspond to each other as the first
7	memory unit stores data used by the first computer;
8	dissolving the paired state between the first memory unit and the second
9	memory unit, so as not to allow updating of the first memory unit to be reflected in the
10	second memory unit;
11	copying the contents of the second memory unit to a third memory unit;
12	re-mapping a fourth memory unit used by the second computer and the
13	third memory unit with each other; and
14	controlling any access by the second computer to the fourth memory unit
15	to instead be made to the third memory unit.
1	6. A method of sharing data as in claim 5 wherein the step of copying
2	the contents of the second memory unit to the third memory unit includes a step of
3	converting a first data format stored in the second memory unit for use by the first
4	computer into a second data format for use by the second computer.
7	computer into a second data format for also by the second second second
1	7. A method of sharing data as in claim 6 wherein the step of
2	converting data from the first data format to the second data format is based on interfaces
3	among the first computer, the second computer and the data storage subsystem.
1	8. A method of sharing data as in claim 7 wherein the step of
2	converting data comprises converting data between a count key data format and a fixed-
	length block format.
3	length block format.
1	9. A method of sharing data as in claim 5 wherein at least one of the
2	first through fourth memory units is a logical memory unit recognized by at least one of
3	the first or second computer as a memory unit.
•	10 A washed of shoring data as in claim 5 wherein the stan of convinc
1	10. A method of sharing data as in claim 5 wherein the step of copying
2	is performed using a third computer separate from the first and the second computers.

	1	11. A method of sharing data as in claim 5 wherein the data storage
		subsystem consists of a first data storage subsystem having the first memory unit and
\ \ \	2	connected to the first computer, and a second data storage subsystem having the second,
	3	the third, and the fourth memory units connected to the second computer, and wherein the
	4	first computer and the first data storage subsystem are geographically separate from the
	5	second computer and the second data storage subsystem.
	6	second computer and the second data storage subsystem.
	1	12. A method of sharing data for a computer system having a first
	2	computer, a second computer, a plurality of memory units and a control unit for
	3	controlling the plurality of memory units, wherein a data storage subsystem for
	4	connection to the first and second computers are provided, the method comprising:
	5	storing a copy of data in the first memory unit as of a certain time in a
	6	second memory unit;
	7	recording, in response to changes in the data in the first memory, the
	8	changed contents in a third memory unit;
	9	updating the contents of a second memory unit on the basis of the changed
	10	contents recorded in the third memory unit;
	11	connecting the second memory unit to the second computer; and
	12	causing the second computer to directs its data access to the second
	13	memory unit.
	1	13. A method of sharing data as in claim 12, wherein the step of
	1	connecting the second memory unit to the second computer further comprises a step of re
	2	mapping a fourth memory unit and the second memory unit connected the second
	3	
	4	computer.
	1	14. A computer system, comprising:
	2	a first computer;
	3	a second computer; and
	4	a data storage subsystem connected to the first and the second computer,
	5	the data storage subsystem including:
	6	at least three memory units,
	7	a control unit for writing data written from the first computer to a first
	8	memory unit into a second memory unit in duplication and for replacing the second

	1
9	memory unit with a third memory unit when the second unit is accessed by the second
10	computer.
1.	15. A computer system as in claim 14 wherein the first, the second and
2	the third memory units each comprise logical memory units formed in a physical memory
3	unit of the data storage subsystem.
1	16. A computer system comprising:
2	a data storage subsystem having a plurality of interfaces and a memory
3	unit in which a plurality of logical volumes are formed;
4	a first computer for accessing the data storage subsystem in accordance
5	with count key data format; and
6	second and third computers for accessing the data storage subsystem in
7	accordance with a fixed-length block format, wherein:
8	the data storage subsystem writes, into a second logical volume, a
9	duplicate of data written from the first computer to a first logical volume;
10	the second computer reads the second logical volume in a count key data
11	format and writes to a third logical volume, and the third computer replaces the third
12	logical volume with a fourth logical volume to which it accesses.
1	17. A data storage subsystem connected to at least one computer, the
2	data storage subsystem comprising:
3	a plurality of volumes accessed from the at least one computer; and
4	a means to replace instructions from the at least one computer to a logical
5	volume with another logical volume.

