report_executed

July 13, 2021

1 Statistics

T-test

```
[1]: import modules.adapml_data as adapml_data
     import modules.adapml_classification as adapml_classification
     import modules.adapml_clustering as adapml_clustering
     import modules.adapml_chemometrics as adapml_chemometrics
     import modules.adapml_statistics as adapml_statistics
     import modules.adapml_regression as adapml_regression
     import numpy as np
     import modules.loadTestData as load data
     import sklearn.preprocessing as pre
     from sklearn.cross_decomposition import PLSRegression as PLS
     from matplotlib import pyplot as plt
     from sklearn import cluster as clst
     from scipy.cluster.hierarchy import dendrogram
     import os
     reldir = os.getcwd()
     path_to_data = os.path.join(reldir, '..', 'data', 'SCLC_study_output_filtered_2.
     ⇔csv')
     data = adapml_data.DataImport(path_to_data)
     response1D = data.resp
     #response1D = adapml_data.DataImport.getResponse(path_to_data)
     response2D = adapml_data.DataImport.getDummyResponse(response1D)
     variables = data.getVariableNames()
     samples = data.getSampleNames()
     t_test = adapml_statistics.Statistics(data.data, 'anova', response1D)
     t_test.plot_logp_values(variables)
     t_test.plot_volcano_t(variables)
```


2 Dimension-Reduction

PCA, LDA

```
[2]: data.normalizeData("autoscale")

pca = adapml_chemometrics.Chemometrics(data.data, "pca", response1D)
```

```
lda = adapml_chemometrics.Chemometrics(data.data, "lda", response1D) # Alsou → Predicts

print("PCA Projections");pca.plotProjectionScatterMultiClass(2, u → labels=["Healthy", "Not Healthy"])

print("LDA Projections");lda.plotProjectionScatterMultiClass(1, u → labels=["Healthy", "Not Healthy"])

print("PCA Vectors"); pca.plotVectorLoadings(variables, 1)

print("LDA Vectors"); lda.plotVectorLoadings(variables, 1)
```

PCA Projections
Projections of data into latent space.
Data is colored by response

LDA Projections
Projections of data into latent space.
Data is colored by response

PCA Vectors
Plotting the squared loadings of the latent space transformation vectors
A Larger magnitude indicates larger importance for corresponding feature

LDA Vectors
Plotting the squared loadings of the latent space transformation vectors
A Larger magnitude indicates larger importance for corresponding feature

3 Clustering

K-means, hierarchical,

```
Cluster 1
                            Cluster 2
                                              Cluster 3
0
      NSCLC_H1437_1
                        NSCLC_H522_1
                                           NSCLC_A549_1
1
      NSCLC_H2228_1
                          SCLC_86M1_2
                                          NSCLC_H1703_2
2
      NSCLC_H2228_2
                          SCLC_86M1_1
                                          NSCLC_H1703_1
3
      NSCLC_H1437_2
                          SCLC_16HV_1
                                           NSCLC_A549_2
4
                                           NSCLC_H322_1
      NSCLC_H3122_1
                          SCLC_16HV_2
5
       NSCLC_H322_2
                        SCLC_DMS79_1
                                           NSCLC_H358_2
6
      NSCLC_H3122_2
                        SCLC_DMS79_2
                                           NSCLC_H522_2
7
    NSCLC_HCC4006_1
                         SCLC_H187_2
                                           NSCLC_H358_1
8
                                            NSCLC_PC9_1
                 NaN
                          SCLC_H187_1
9
                 NaN
                          SCLC_H209_1
                                            NSCLC_PC9_2
                                       NSCLC_HCC4006_2
10
                 NaN
                          SCLC_H524_1
11
                 NaN
                          SCLC_H209_2
                                                     NaN
12
                 NaN
                          SCLC_H524_2
                                                     NaN
13
                 NaN
                          SCLC_H69_1
                                                    NaN
14
                          SCLC_H82_1
                 NaN
                                                     {\tt NaN}
15
                 NaN
                          SCLC_H82_2
                                                     NaN
16
                 NaN
                           SCLC_H69_2
                                                     NaN
17
                 NaN
                          SCLC_N417_2
                                                     NaN
18
                 NaN
                          SCLC_N417_1
                                                     NaN
19
                      SCLC_SW210-5_1
                                                     NaN
                 NaN
20
                 NaN
                      SCLC_SW210_5_2
                                                     NaN
         Cluster 1
                                           Cluster 3
                            Cluster 2
0
       SCLC_86M1_2
                        NSCLC_A549_1
                                       NSCLC_H358_2
1
       SCLC_86M1_1
                                       NSCLC_H522_1
                       NSCLC_H1703_2
2
       SCLC_16HV_1
                       NSCLC_H1703_1
                                       NSCLC_H522_2
3
       SCLC_16HV_2
                        NSCLC_A549_2
                                       NSCLC_H358_1
4
      SCLC_DMS79_1
                       NSCLC_H1437_1
                                         NSCLC_PC9_1
5
                                         NSCLC_PC9_2
      SCLC_DMS79_2
                       NSCLC_H2228_1
6
       SCLC_H187_2
                       NSCLC_H2228_2
                                                 NaN
7
                                                 NaN
       SCLC_H187_1
                       NSCLC_H1437_2
8
       SCLC_H209_1
                       NSCLC_H3122_1
                                                 NaN
9
       SCLC_H524_1
                        NSCLC_H322_2
                                                 NaN
```

10	SCLC_H209_2	NSCLC_H322_1	NaN
11	SCLC_H524_2	NSCLC_H3122_2	NaN
12	SCLC_H69_1	NSCLC_HCC4006_1	NaN
13	SCLC_H82_1	NSCLC_HCC4006_2	NaN
14	SCLC_H82_2	NaN	NaN
15	SCLC_H69_2	NaN	NaN
16	SCLC_N417_2	NaN	NaN
17	SCLC_N417_1	NaN	NaN
18	SCLC_SW210-5_1	NaN	NaN
19	SCLC_SW210_5_2	NaN	NaN

4 Classification

PLS-DA, SVM, random forests, logstic regression

```
[4]: def plotProjectionScatterMultiClass(pc, resp, num_var):
    plt.figure(figsize=(24, 18))

for i in range(num_var):
    for j in range(num_var):
        plt.subplot(5,5,5*(i) + j + 1)
        for c in range(resp.shape[1]):
```

```
inx = np.where(resp[:,c] == 1)[0]
               tmp = pc[inx,:]
               pc1 = tmp[:,i]
               pc2 = tmp[:,j]
               plt.scatter(pc1, pc2)
           plt.xlabel("PLS Component "+str(i+1))
           plt.ylabel("PLS Component "+str(j+1))
   plt.show()
data = load_data.loadDataPandas(path_to_data)
d = data.to_numpy()
var_index = data.columns.values.tolist()
resp = load_data.getResponseMatrix2D()
norm_trans = pre.StandardScaler().fit(d)
data_norm = norm_trans.transform(d)
#data_norm, norm_trans = pre.mean_center(d)
#In-built preprocessing method - TBD
pls = PLS().fit(data_norm, resp)
pls_trans = pls.transform(data_norm)
plotProjectionScatterMultiClass(pls_trans, resp, 2)
data = adapml_data.DataImport(path_to_data)
svm = adapml_classification.Classification(data.data, response1D, 'svm', .75, ...
→kfolds=3)
rnf = adapml_classification.Classification(data.data, response1D,_
adapml_classification.print_model_stats(svm, "SVM")
adapml_classification.print_model_stats(rnf, "RF")
logistic = adapml_classification.Classification(data.data, response1D,__
print(logistic)
```


SVM Validated Parameters: {'kernel': 'linear', 'shrinking': True}

Random Forest Validated Parameters: {'criterion': 'gini', 'n_estimators': 10}

SVM: R^2=1.0 Q^2=1.0 RF: R^2=1.0 Q^2=1.0

Accuracy: 1.0

 $\verb|\coloredge | classification.Classification | object | at | 0x7faa2888c340>| classification | object | at | 0x7faa2888c340>| classification | object | ob$

Confusion matrix

5 Regression

Linear regression

```
[5]: reg = adapml_regression.Regression(data.data, "linear") reg.linear
```

