Regular functions and regular maps.
R = Alg. dosed field. Recall from last time: X C x affine algebraic set. f: X -> k regular if it is the restriction
& a polynomial function. k[X] = k-algebra g regular functions on X = k[X1,,Xn]/I(X). = Finitely generated nilpotent free - k-algebra.
Observe - Any finitely generalted nilpotent free k-algebra is of the form K[X] for some X.
Why? Let A be such an algebra. Let a,,, an $\in A$ be a set of generators. Then we have a map $\varphi: k[X_1,-,X_n] \to A$

This map is surjective because 29i3 generals

A: By the first iso thm $A \cong k[x_1, ..., x_n](I$

where $I = \text{Ker } \varphi$. Since A is nilpotent free, I is radical. Then take X = V(I). By the Null stellen sutz,

As a result we have the dictionary.

Algebra

- · Finitely generated reduced k-alg. A
- · max ideal of A
- · Given J C A V(J) = 3 m | m > J }

Geometry

- · Alg of regular functions on affine alg set X.
- . Point of X
- · Given J ck[X] V(J)={x|H(x)=0 +fEJ}

In partialer $V(J) = \beta$ iff J = (i).

Regular Maps
XCA, YCA offine alg sets. f: X-14 is a regular function if
I firm E K[X] such that
$f(x) = (f_1(x), \dots, f_m(x)) \forall x \in X.$
Equivalently, if there exist $F_{1,-1}, F_{m}$ in $k(x_{1},-1,x_{n})$ such that $f(x) = (F_{1}(x_{1}),-1,F_{m}(x_{1})) \forall x \in X$.
Ex 1: f: X - A regular map f is a regular function.
Ex2: L: A-1/A" linear transf" is regular.
Ex3: Projections A-A
Ex4: Compositions of regular maps are regular

Ex5: XCA Zaniski closed. The inclusion X-1/A is regular.

Def: A regular f: X->Y is an isomorphism if there exists a regular inverse map J: Y->X.

 $\frac{E \times 6}{Y} = \frac{1}{2} y^{2} - x^{3} = 0$ $C \propto 2$

t: X->Y

the (t,t) is a regular

bijection but not an isomorphism!

fluw dues one see that it's not an

iso? Wait and see...

Let $\varphi: X \to Y$ be any map. Then we get an induced map

φ*: Functions on Y -> Functions on X

f +> fo φ.

Proposition: Q is regular if and only if cp^* sends regular functions on Y he regular functions on X.

Pt: Suppose of is regular

If $f: Y \rightarrow A'$ is a regular function then

of of is regular because composition of regular

maps is regular.

Convenely, suppose $f^*(f)$ is regular for every regular f. Let $f(x) = (f_1(x), \dots, f_m(x))$. We want to show each $f_i(x)$ is regular. But $f_i = f^*(x)$ and $f_i \in k[f]$ is regular.

Thus a regular map $\varphi: Y \to X$ induces a k-alg. hom $\varphi^*: k[Y] \to k[X]$.

Prop: Let $\alpha: K[Y] \rightarrow K[X]$ be a k-alg hom. Then there is a unique regular $\varphi: X\rightarrow Y$ such that $\alpha = \varphi^*$.

H: suppose $Y = V(J) \subset A^m$ and $X = V(I) \subset A^n$ Then k[Y] = k[Y,-y,Y,m]/J k[X] = K[X,y,-y,X,m]/J.

Let $Q_1 = \alpha(y_1) \in k[X]$ Consider $Q := (Q_1,-y,Q_m) : X \rightarrow A^m$.

Let us check that Q maps X to Y.

To see this, we must show that $f(Q_1(x),-y,Q_m(x)) = 0 + 2 \in X$ $f \in J$.

But $f(Q_1(x),-y,Q_m(x))$ $= f(\alpha(y_1,-y,y_m))$ $= \alpha(0) = 0$.

So $f: X \rightarrow Y$. Note $Q^*(yi) = \chi(yi)$ so $Q^* = \chi$ because Yi? generate $\chi[Y]$. Finally, it $Q: X \rightarrow Y$ is such that $Q^* = \chi$, and $Q = (P_1, \dots, Q_m)$, then $Q^*(yi) = Qi = \chi(Yi)$, so there is only one possible Q. Conseg: X ---> 1/2 défines an equivalence of catégories Sets with

regular maps

Fin gen reduced

k-eyebrus

with k-elg.

homs Ex: X = A $Y = V(y^2 - x^3) \subset A^2$ $k[X] = k[t] \qquad k[Y] = k[Xri]/23$ $\varphi(t) = (t,t^3)$ 9 : K[Y] -> k[X] $x \mapsto t^2$ $y \mapsto t^3$ It is not an isomorphism? Any element in the image of of has vanishing linear term.

Def :	Affine algebraic variety
	Affine algebraic variety = Affine algebraic set.

We eventually want to define more general algebraic varieties. The first step is

Def: Ouesi-affine vanieties = Zanski open subsets à affine alg. var.

We now define regular functions and regular maps for quasi-affines.

Def: $U \subset X$ open. $f: U \to k$ regular if the following holds — $\forall x \in U$ there exists an open U_x containing $x \in X$. $f_x, G_x \in k[x]$ such that G_x is nowhere U on U_x and U_x .

Example (1): U = 1/2 - 803 C/2.

Then I is regular on U.

Before we proceed, we must show that we get the same notion of regular as before for affines.

Prop: Let XC/A be zar. closed. f: X-1 k is regular in the new sense (welly poly/poly) iff it is regular in the old sense (globally a polynomial).

Pf: Let $z \in X$. There exist U_x , F_x , G_x such that $f = F_x/G_x$ on U_x & $z \in U_x$.

Say $U_x = X - V(I_x)$. Take $H \in I_x$ such that $H_x(x) \neq 0$. Replace U_x by $U_x' = X - V(H_x)$ $\subset U_x$.

Fa by $A_x = F_xH_x$ and G_x by $B_x = G_xH_x$.

Then f= Ax on U2, ac U_x and A_x , $B_x = 0$ on the comparphenent of U_x . Now EB2/2EX9 have no common Zero, so by the Nullstellensetz they generate the unit ideal of K[X]. Myte l = GB2+---+ CeBxe where Ci & k[x]. Multiply both sides by f f = I Ci Bai f A Note $B_{xi} f = A_{xi} \quad \text{on} \quad X$ so $f = \sum C_i A_{xi} \in K[x]$ Having defined regular functions, we

can define regular maps just as before.

Def: UC/A VC/A opens in closed.

P: U-1 V regular map

 $q = (q_1, -, q_m)$ where q_i is reg. fun.

Obs: 1 Pull backs of reg. fun under rey maps are regular

@ Compositions of rg. fun are regular

Example (Important).

X = /2 - 303.

 $Y = V(xy-1) \subset A^2$

9: Y -> X (x,y) -> x. reguler

 $(x, \frac{1}{2})$

regular.

 $\varphi \circ \gamma = id$, $\varphi \circ \varphi = id$. So $\times = \gamma$.

That is the guessi-affine X is achiefly affine !

Ring of reg. fun on $X = \frac{1}{k[x_1y_1]} = \frac{1}{(xy_1)} = \frac{1}{k[t_1t_1]} = \frac{1}{k[$

by $a \mapsto t, y \mapsto t'$.

Example (Important)

$$X = A - V(f).$$

$$Y = V(yf-1) C A^{n+1}.$$

$$P_{1} Y \rightarrow X \qquad regular$$

$$(2, y) \mapsto X$$

$$Y = X \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \qquad x \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \qquad x \rightarrow$$

A non-affine variety $X = A^2 - \{0\}$ We have a map $k[X] \rightarrow k(x,y)$ $f \mapsto F$ where f = F on some open U The choice of U does not matter -First any two opens in X intersect =) any open is dense. So if f= FI on U1 $= \frac{F_2}{G_3} \text{ on } U_2$ then GzF-FGz=0 on UnOz =0 on /A by continuity. So F/G, = F2/Gz in K(X,4). Write X= /A V(x) U /A V(4) Now the reg fun on A-V(x) in \$ (x,1) are } = { + } Similarly reg- tun on A-V(4) are

{ fys.

A reg fun on X must lie in the intersection

5± 1 + CR[X17] 1 } frac[X17] }

11

12[X17].

So R[X] = R[X1] = K[A].

To conclude that X is not affine see that the ideal $(x_{1}y)$ $\subset k[X]$ is non unit but $V(x_{1}y) = \emptyset$ in X. This does not happen for affine X

1