1 Conceitos Fundamentais

1.1 Divisão Euclidiana

Sejam $a,b\in\mathbb{Z}$ com $b\neq 0$, a divisão euclidiana de a por b consiste na identidade

$$a = b \cdot q + r \qquad q, r \in \mathbb{Z} \, \wedge \, 0 \leq r < b$$

1.2 Divisibilidade

Sejam $a, b \in \mathbb{Z}$ com $b \neq 0$, dizemos que b divide a, denotando $b \mid a$, se

$$\exists c \in \mathbb{Z}: \ a = b \cdot c$$

Propriedades:

• $\forall a \in \mathbb{Z} : a \mid 0$

• $\forall a \in \mathbb{Z} : \pm 1 \mid a$

• $\forall a \in \mathbb{Z} : \pm a \mid a$

• $\forall c \in \mathbb{Z} : a \mid b \implies ac \mid bc$

• $\forall x, y \in \mathbb{Z} : a \mid b \land a \mid c \implies a \mid (bx + cy)$

• $\forall a, b \in \mathbb{Z}$: $a \mid b \land b \mid a \implies b = \pm a$

1.3 Máximo Divisor Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o máximo divisor comum de a e b é um inteiro d tal que

$$d \mid a \wedge d \mid b$$

$$\forall d': d' \mid a \wedge d' \mid b \implies d' \mid d$$

<u>Lema</u>: Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, e $q, r \in \mathbb{Z}$ com $a = b \cdot q + r$. O mdc(a, b), se existe, é igual a mdc(b, r).

Identidade de Bézout: Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, então

$$\exists \alpha, \beta \in \mathbb{Z} : \alpha \cdot a + \beta \cdot b = \mathrm{mdc}(a, b)$$

1

Lema de Euclides: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$. Se a|bc e $\mathrm{mdc}(a, b) = 1$, então a|c.

Propriedades: Sejam $a, b, c \in \mathbb{Z}$ com $a, b, c \neq 0$

• $mdc(a, c) = mdc(b, c) \iff mdc(ab, c) = 1$

• $\operatorname{mdc}(a,b) = d \iff \operatorname{mdc}\left(\frac{a}{d}, \frac{b}{d}\right) = 1$

• $a \mid c \land b \mid c \implies \left(\frac{ab}{\operatorname{mdc}(a,b)}\right) \mid c$

• $(a \mid c \land b \mid c \land \operatorname{mdc}(a, b) = 1) \implies ab \mid c$

1.4 Mínimo Multiplo Comum

Sejam $a, b \in \mathbb{Z}$ com $(a, b) \neq (0, 0)$, o mínimo multiplo comum de $a \in b$ é um inteiro m tal que

$$a\mid m \,\wedge\, b\mid m$$

$$\forall m': a \mid m' \land b \mid m' \implies m \mid m'$$

$$\underline{\text{Teorema:}} \ \forall \, a,b \in \mathbb{Z}, (a,b) \neq (0,0): \ \operatorname{mmc}(a,b) = \frac{ab}{\operatorname{mdc}(a,b)}$$

1.5 Fatoração

<u>Lema</u>: Seja $n=ab\in\mathbb{Z}$ com $n\neq 0,\pm 1,$ então $a\leq \lfloor \sqrt{n}\rfloor \ \lor\ b\leq \lfloor \sqrt{n}\rfloor.$

1.6 Números Primos

Um número p é primo se os únicos divisores de p são ± 1 e $\pm p$.

<u>Lema</u>: Seja $p \in \mathbb{Z}$ primo, e $x_1, \ldots, x_n \in \mathbb{Z}$.

Se $p \mid (x_1 \cdot \ldots \cdot x_n)$, então $p \mid x_i$ para ao menos algum $i \in [1, n] \subset \mathbb{Z}$.

<u>Teorema</u>: Qualquer número natural $n \ge 2$ é produto de um conjunto único e finito de números primos.

Corolário: Seja $a \in \mathbb{Z}$ com $a \neq 0, \pm 1$.

Sejam $p_1, \ldots, p_n \in \mathbb{Z}$ primos.

Sejam $h_1, \ldots, h_n \in \mathbb{Z}$ maiores que 0.

a pode ser escrito como $a = \pm \left(p_1^{h_1} \cdot \ldots \cdot p_n^{h_n} \right)$

Corolário: Seja $a, b \in \mathbb{Z}$ com $a \in b \neq 0, \pm 1$.

Sejam $\forall i: h_i, k_i \geq 0, e p_1, \dots, p_n \in \mathbb{Z}$ primos tais que

$$a = \pm \ p_1^{h_1} \cdot \ldots \cdot p_n^{h_n}$$

$$b = \pm p_1^{k_1} \cdot \ldots \cdot p_n^{k_n}$$

Então:

• $mdc(a, b) = p_1^{d_1} \cdot \ldots \cdot p_n^{d_n}$, onde $d_i = min(h_i, k_i)$

• $\operatorname{mmc}(a,b) = p_1^{d_1} \cdot \ldots \cdot p_n^{d_n}$, onde $d_i = \max(h_i, k_i)$

Teorema: Há um número infinito de números primos.

Corolário: Seja $p \in \mathbb{Z}$ primo com p > 0, então $\sqrt{p} \in \mathbb{Q}$.

Teorema: Não há forma polinomial que gere apenas números primos.

<u>Teorema</u>: Sejam $a, b \in \mathbb{N}^+$ com $\mathrm{mdc}(a, b) = 1$, então a sequência $(an + b)_{n=0}^{\infty}$ contém infinitos primos.

A função para o número de primos menores que $x \in \mathbb{R}$ é

$$\pi(x) \sim \frac{x}{\ln x}$$

2

1.6.1 Números de Fermat

Os números de Fermat são dados pela função

$$F: \mathbb{N}^+ \to \mathbb{N}^+$$
$$F(n) = 2^{2^n} + 1$$

Teorema: Nem todos números de Fermat são primos.

Teorema: Seja $a \ge 2 \in \mathbb{Z}$ e $a^2 + 1$ primo. Então a é par e $n = 2^m$.

Teorema: $\forall k \in \mathbb{Z}, n \in \mathbb{N}^+ : \operatorname{mdc}(F(n), F(n+k)) = 1.$

Ou seja, todos números de Fermat são co-primos entre si.

Corolário: Como $F(1), \ldots, F(n)$ são co-primos, entre seus fatores há ao menos n números primos distintos.

1.6.2 Números de Mersenne

Os números de Mersenne são dados pela função

$$M: \mathbb{P} \to \mathbb{N}^+$$
$$M(p) = 2^p - 1$$

Teorema: Nem todos números de Mersenne são primos.

Teorema: Seja $a \in \mathbb{Z}$ com $a \ge 1$. Então $a^n - 1$ é primo se e somente se a = 2 e n é primo.

2 Congruências

2.1 Relações de Equivalência

Uma relação sobre um conjunto A é um subconjunto $R \subset A \times A$. Dizemos que aRb se $(a,b) \in R$.

Uma relação pode ter as seguintes propriedades:

- Reflexividade: se $\forall a \in A : aRa$.
- Simetria: se $\forall a, b \in A : aRb \implies bRa$.
- Transitividade: $\forall a, b, c \in A : aRb \land bRc \implies aRc$.
- Antissimetria: se $\forall a, b \in A : aRb \land bRa \implies a = b$.
- Totalidade: se $\forall a, b \in A : aRb \oplus bRa$.

 $\underline{\text{Definição}}$: Uma relação R sobre A é de $\underline{\text{equivalência}}$ se ela é reflexiva, simétrica e transitiva.

2.2 Classes de Equivalência

Seja $a \in A$ e R uma relação de equivalência sobre A. Definimos a classe de equivalência de a como

$$[a]_R := \{x \in A \mid aRx\} = \{x \in A \mid xRa\}$$

Propriedades:

- $\forall a \in A : a \in [a]_R$
- $[a]_R = [b]_R \iff aRb$
- $[a]_R \cap [b]_R = \varnothing \iff a Rb$
- As classes de equivalência de um conjunto formam uma partição deste: $\forall A : A = \bigsqcup_{a \in A} [a]_R$

Seja R uma relação de equivalência sobre A. Denotamos o conjunto das classes de equivalência de R

$$A_{/R} := \{ [a]_R \mid a \in A \}$$

2.3 Congruência

Seja $m \in \mathbb{Z}$ com m > 1. Dizemos que a é congruente b módulo m se $m \mid (a - b)$. Denota-se

$$a \equiv_m b$$

Teorema: Para qualquer m>1, \equiv_m forma uma relação de equivalência sobre $\mathbb{Z}.$

- $\forall a \in \mathbb{Z} : a \equiv_m a$.
- $\forall a, b \in \mathbb{Z} : a \equiv_m b \implies b \equiv_m a$.
- $\forall a, b, c \in \mathbb{Z} : a \equiv_m b \land b \equiv_m c \implies a \equiv_m c$.

Propriedades:

- $a \equiv_m 0 \iff m \mid a$.
- $a \equiv_m b \iff -a \equiv_m -b$.
- $a \equiv_m b \wedge a' \equiv_m b' \implies (a+a') \equiv_m (b+b').$
- $a \equiv_m b \wedge a' \equiv_m b' \implies (a \cdot a') \equiv_m (b \cdot b').$
- $\forall k \neq 0 \in \mathbb{Z} : a \equiv_m b \iff ka \equiv_m kb$.

<u>Teorema</u>: Seja $m \in \mathbb{Z}$ com m > 1. Então $\mathbb{Z}_{/m} = \{[0]_m, [1]_m, \dots [m-1]_m\}$ Portanto, $|\mathbb{Z}_{/m}| = m$.

Corolário: Seja p(x) um polinômio com coeficientes inteiros. Então $a \equiv_m b \implies p(a) \equiv_m p(b)$.