

Taller Teoría de números

Matemáticas Discretas I / 750083M / Grupo 01 / Prof. Juan Francisco Díaz / Monitor Juan Marcos Caicedo / 2018-2

1. Completar la tabla. Dados los números iniciales en **distintas bases** (la base del número está indicada en su subíndice), realizar el procedimiento de conversión de una base a otra y colocar su respectivo número equivalente en **base 10**.

	Número en base 10		
1011011_2			
11010011 ₂			
76248			
504328			
$DEA8_{16}$			
$F6AD_{16}$			

2. Completar. Dados los siguientes números en base 10 , realizar el proceso de conversión a las distintas bases solicitadas para cada número y escribir su número equivalente en la otra base.
(a) 42_{10} se escribe en base 2 como:
(b) 157_{10} se escribe en base 2 como:
(c) 4627_{10} se escribe en base 8 como:

(d) 28747_{10} se escribe en **base 8** como:

(e) 59943_{10} se escribe en **base 16** como:

- 3. Calcular las siguientes operaciones con módulo:
 - (a) $-34 \mod 4$
 - (b) 7 mod 9
 - (c) 73 mod 8
 - (d) $-24 \mod 7$
 - (e) $-21 \mod 9$
 - (f) 4 mod 2
 - (g) 2 mod 4
 - (h) $-12 \mod 5$
 - (i) 17 mod 5
 - (j) 9 mod 4
 - $(k)\ -7\ mod\ 3$
 - (l) 2 mod 2
- (m) $-5 \mod 2$

(n)	$-159 \ mod \ 5$
(o)	$-260 \bmod 7$
(p)	17 mod 39
4. Ca	dcule las siguientes operaciones con MCD:
(a)	mcd(287, 91)
(b)	mcd(342,76)
(c)	mcd(512, 48)
result	alcule las siguientes operaciones con MCD, y, además, exprese el cado (el MCD entre esos dos números) como combinación lineal de mismos (implica hallar los coeficientes de Bezout):
(a)	mcd(512, 48)
(b)	mcd(252, 198)
(c)	mcd(322, 51)
(d)	mcd(235,37)
(e)	mcd(426, 37)
(f)	mcd(172, 123)
(g)	mcd(543, 131)
(h)	mcd(231, 102)
6. En	cuentre los inversos respectivos de cada operación con módulo:
(a)	Inverso de 3 mod 7
(b)	Inverso de 235 mod 7

(c) Inverso de 7 mod 3

(d) Inverso de 5 mod 7

(e) Inverse	de	3	mod	17
-------------	----	---	-----	----

(h) Inverso de 5
$$mod$$
 11

7. Halle la solución (el número x que hace que la congruencia sea verdadera) para las siguientes congruencias lineales:

(a)
$$3x \equiv_{7} 4$$

(b)
$$5x \equiv_{7} 2$$

(c)
$$7x \equiv_5 3$$

(d)
$$11x \equiv_6 5$$

(e)
$$8x \equiv_5 2$$

(f)
$$13x \equiv_{7} 5$$

8. Halle al menos 3 soluciones distintas (números x tal que satisfagan la congruencia) para las siguientes congruencias lineales:

(a)
$$4x \equiv_9 5$$

(b)
$$2x \equiv_{17} 7$$

(c)
$$3x \equiv_{16} 5$$

(d)
$$3x \equiv_5 4$$

(e)
$$5x \equiv_7 3$$

(f)
$$7x \equiv_6 4$$

(g)
$$4x \equiv_5 3$$

(h)
$$7x \equiv_{11} 2$$