#Assignment 4

通訊碩一 112523059 馬寧

題目:

作業四

• 問題描述:於 Linux 環境,以 C 語言實作 AES 演算法之加密 與 解密函式, 並利用此函式實作可以對一檔案加密與解密 應用程式。

系統參數:

- 1. Key = 區塊長度 (為 128 或 256),
- 2. 應用程式對檔案加密, 支援使用 CBC 與 CTR。

程式支援 command line CLI 操作,例如使用 CBC 的演算法:

- > aes_enc "filename" "key" "CBC"
- > aes_dec "filename" "key" "CBC"

註: 注意資料長度不足 block length 的特殊處理做法,網路上面有答案。

Deadline: 12/06

實現方法:

A. Code

● 設定基本參數 Nr、Nb、Nk、BLOCK SIZE、ROUNDKEY SIZE

依 AES 標準規範,若依金鑰輸入長度分類,可分:AES-128, AES-192 及 AES-256。

表 2.1 運算回合數Nr與Nb和Nk之關係

	加解密區塊數目	運算回合次數
(Nk) /	(Nb)	(Nr)
4	4	10
6	4	12
8	4 11	14
	4	4 4

AES-128

(Nb = 4, Nk = keysize/32 = 4, Nr = Nk+6 = 10, BLOCK_SIZE = 16, ROUNDKEY_SIZE = BLOCK_SIZE * (Nr+1) = 176)

- #define Nb 4

 #define Nk 4 // keysize / 32, keysize = 128 in this case

 #define Nr 10 // Nr = Nk + 6

 #define BLOCK_SIZE 16 // AES block size in bytes

 #define ROUNDKEY_SIZE 176 // BLOCK_SIZE * (Nr+1)
- 加密主要包含 SubBytes、ShiftRows、MixColumns 及 AddRoundKey,四個步驟 AES 加密演算步驟:在執行第一個回合之前,先把明文與初始金鑰經過 AddRoundKey 運算。再經過(Nr-1)回合運算,每回合會運用到的四個函數:SubBytes、ShiftRows、MixColumns 及 AddRoundKey。最後一個回合運算省略 MixColumns,只經過 SubBytes、ShiftRows 及 AddRoundKey 運算。

♦ SubBytes

2.2.1 SubBytes 函數

SubBytse 函數轉換是將狀態矩陣(state),經過下列兩個步驟:

- 1. 首先對狀態矩陣每一 byte 求出其在有限場乘法反元素。
- 2. 將第一步運算結果,經仿射轉換(affine transformation),如下列數學公式 2-2。

上述雨步驟,可以簡化成S-box表格(表 2.2)。S-box 是一個包含了 256 個byte數值的表格;查詢時我們將每個byte的最高 4 個位元拿來當作列的索引,每個byte的最低 4 個位元當作行的索引,查出所對應的數值。例如:若53.0= $(57)_{16}$,最高 4 個位元為 5,所以查表第 5 列; 最低 4 個位元為 7,所以查表第 7 行,利用S-box(表 2.2)查第 5 列第 7 行對應到 $(5b)_{16}$,因此我們知道經S-box轉換可以得到 $5'_{30}$ = $(5b)_{16}$ 。

表 2.2 S-box 位元轉換對照表

	Y																
X		0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	fl	71	d8	31	15
	3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	dl	00	ed	20	fc	bl	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3с	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	c	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	cl	1d	9e
	e	el	f8	98	11	69	d9	8e	94	9b	le	87	e9	ce	55	28	df
	f	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

♦ ShiftRows

2.2.2 ShiftRows 左旋轉位移函數

ShiftRows 函數為一向左旋轉位移函數。Shiftrows 就是將狀態矩陣的每一列分別做不同程度的旋轉位移。第一列不做任何動作外,第二列向左旋轉位移一個位元組(byte),第三列向左旋轉位移兩個位元組(byte),第四列向左旋轉位移三個位元組(byte)。

♦ MixColumns

2.2.3 MixColumns 函數

MixColumns 是將狀態矩陣的每一行是被視為在 $GF(2^8)$ 中的多項式,乘上一 固定多項式 $\alpha(x)=\{03\}x^3+\{01\}x^2+\{01\}x+\{02\}$ 之後,如果發生溢位則同餘 (x^4+1) 。

我們可將其簡化為矩陣乘法,令 $s'(x)=\alpha(x)\otimes s(x)$

$$\begin{bmatrix} \dot{\mathbf{S}}_{0,c} \\ \dot{\mathbf{S}}_{1,c} \\ \dot{\mathbf{S}}_{2,c} \\ \dot{\mathbf{S}}_{3,c} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} \mathbf{S}_{0,c} \\ \mathbf{S}_{1,c} \\ \mathbf{S}_{2,c} \\ \mathbf{S}_{3,c} \end{bmatrix}$$
 (2-3)

展開得到如下式子:

$$\begin{split} & \dot{S}_{0,c} = (\{02\} \bullet S_{0,c}) \oplus (\{03\} \bullet S_{1,c}) \oplus S_{2,c} \oplus S_{3,c} \\ & \dot{S}_{1,c} = S_{0,c} \oplus (\{02\} \bullet S_{1,c}) \oplus (\{03\} \bullet S_{2,c}) \oplus S_{3,c} \\ & \dot{S}_{2,c} = & S_{0,c} \oplus S_{1,c} \oplus (\{02\} \bullet S_{2,c}) \oplus (\{03\} \bullet S_{3,c}) \\ & \dot{S}_{3,c} = (\{03\} \bullet S_{0,c}) \oplus S_{1,c} \oplus S_{2,c} \oplus (\{02\} \bullet S_{3,c}) \end{split}$$

♦ AddRoundKey

2.2.4 AddRoundKey 函數

AddRoundKey 主要運算是將狀態矩陣(state)與每回合運算出來的子金鑰執行 互斥或閘的運算。每回合子金鑰產生是經由初始密鑰經過金鑰排程(key schedule) 所產生。 ● 解密主要包含 SubBytes、ShiftRows、MixColumns 及 AddRoundKey,四個步驟

AES 解密使用的回合子金鑰,與加密使用的回合子金鑰相同,只是順序相反。 AES 解密演算法步驟:執行第一個回合前,先將密文與回合子金鑰執行 AddRoundKey。 再經過(Nr-1)回合運算(round),每回合運用到四個函數:InvShiftRows、InvSubBytes、 AddRoundKey 及 InvMixColumns。最後一個回合省略 InvMixColumns,只經過 InvSubBytes、InvShiftRows 及 AddRoundKey 運算。

♦ InvSubBytes

2.3.1 InvSubBytes 函數

InvSubBytes 函數轉換可經由查 Inverse S-box 表格(如表 2.4)得到。

表 2.3 Inverse S-box 位元轉換對照表

	Y																
		0	1	2	3	4	5	6	7	8	9	a	b	C	d	e	f
	0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4e
	3	08	2e	al	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	cc	5d	65	b6	92
	5	6c	70	48	50	fd	ed	b9	da	5e	15	46	57	a7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f 7	e4	58	05	b8	b3	45	06
X	7	d0	2c	1e	8f	ca	3f	0f	02	cl	af	bd	03	01	13	8a	6b
	8	3a	91	11	41	4f	67	de	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f 9	37	e8	1c	75	df	6e
	a	47	fl	1a	71	1d	29	c5	89	6f	Ь7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	c6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	с	1f	dd	a8	33	88	07	c7	31	bl	12	10	59	27	80	ec	5f
	d	60	51	7f	a9	19	b5	4a	0d	2d	e5	7a	af	93	с9	9c	ef
	e	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3c	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

Inverse S-box 表格產生如下過程:

InvSubByte 函數轉換是將狀態矩陣(state)每一位元組(byte),經過下列兩個步驟完成:

- 1. 首先將狀態矩陣每一位元組(byte)乘以一個反轉換陣列,如下列數學公式 2-4。
- 2. 求出其乘法反元素。

♦ InvShiftRows

InvShiftRows 右旋轉函數是將狀態矩陣往右旋轉位移。第一列不做任何動作外,第二列向右旋轉位移一個位元組(byte),第三列向右旋轉位移兩個位元組(byte),第四列向右旋轉位移三個位元組(byte)。

♦ InvMixColumn

2.3.3 InvMixColumn 反混行運算

InvMixcolumn 反混行運算是將散態矩阵的每一行是被視為在GF(2^{8})中的多項式,乘上一固定多項式 $\alpha^{-1}(x)$ ={0b} x^{3} +{0d} x^{2} +{09}x +{0e}之後如果發生溢位則同餘(x^{4} +1)。其中 $\alpha^{-1}(x)$ 必需符合下列關係 $\alpha^{-1}(x)$ • $\alpha(x)$ =1,其中 $\alpha^{-1}(x)$ 與 2,2,3 節 $\alpha(x)$ 多項式互為乘法反元素。

可將其簡化為矩陣乘法,令 $s'(x) = a^{-1}(x) \otimes s(x)$

$$\begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix} = \begin{bmatrix} 0e & 0b & 0d & 09 \\ 09 & 0e & 0b & 0d \\ 0d & 09 & 0e & 0b \\ 0b & 0d & 0e & 09 \end{bmatrix} \begin{bmatrix} S_{0,c} \\ S_{1,c} \\ S_{2,c} \\ S_{3,c} \end{bmatrix}$$
 (2-5)

 $S_{0,c}^{'} = (\{0e\} \bullet S_{0,c}^{}) \oplus (\{0b\} \bullet S_{1,c}^{}) \oplus (\{0d\} \bullet S_{2,c}^{}) \oplus (\{09\} \bullet S_{3,c}^{})$

$$S'_{1,c} = (\{09\} \bullet S_{0,c}) \oplus (\{0e\} \bullet S_{1,c}) \oplus (\{0b\} \bullet S_{2,c}) \oplus (\{0d\} \bullet S_{3,c})$$

$$S_{2,c}^{'} \!=\! (\{0d\} \!\bullet S_{0,c}\,) \oplus (\{09\} \!\bullet \! S_{1,c}\,) \oplus (\{0e\} \!\bullet \! S_{2,c}) \oplus (\{0b\} \!\bullet \! S_{3,c}\,)$$

$$S_{3,c}^{'} = (\{0b\} \bullet S_{0,c}) \oplus (\{0d\} \bullet S_{1,c}) \oplus (\{09\} \bullet S_{2,c}) \oplus (\{0e\} \bullet S_{3,c})$$

CBC algorithm

上述四個步驟之加解密運算位於下方的 block cipher

加密

CBC algorithm 先將 plaintext block 與 iv 或上一次的 ciphertext block 作 XOR 後,再進行上述 AES 的加密步驟,產生 ciphertext block,並保存該次 ciphertext block 以作為下一次加密前作 XOR 的元素。

Cipher Block Chaining (CBC) mode encryption

解密

先將 ciphertext block 進行上述 AES 的解密步驟,並保存該次 ciphertext block 以作為下次解密後作 XOR 的元素,解密後與 iv 或上一次的 ciphertext block 作 XOR,產生 plaintext block。

Cipher Block Chaining (CBC) mode decryption

CTR algorithm

加密

CTR algorithm 先將 iv (nonce 和 counter 的組合, nonce 為隨機產生, counter 從 0 開始每次加 1)作為 input 進行上述加密步驟後,再與 plaintext block 作 XOR 得出 ciphertext block。

Counter (CTR) mode encryption

解密

先將 iv (nonce 和 counter 的組合, nonce 為隨機產生, counter 從 0 開始 每次加 1)作為 input 進行上述加密步驟後,再與 ciphertext block 作 XOR 得出 plaintext block。

B. Execute the program

(a) Enter the required data

需先得知欲做加密或解密、針對哪個 file 進行m/解密、欲使用的 key 及演算法(CBC or CTR mode)。

```
PS D:\文件\碩一上\課程\無線網路協定\HW\HW4\112523059_馬寧_HW4\src> ./main Enter aes_enc or aes_dec to encrypt or decrypt the file: aes_enc Enter plaintext file name to encrypt => plaintext.txt Enter the Ciphertext file name to write out the cipher => ciphertext.txt Enter the Decrypted file name to write out the decrypt => decrypted.txt Enter the key (length 16): abcdefghijklmnop Enter AES mode (Only CBC or CTR): CBC
```

(b) Result

(i) CBC mode plaintext.txt

ciphertext.txt

decrypted.txt

(ii) CTR mode

plaintext.txt

ciphertext.txt

decrypted.txt

資料來源:

AES Background Knowledge: https://ir.nctu.edu.tw/bitstream/11536/41079/3/751403.pdf

AES Code Reference: https://github.com/Yunyung/Cryptography-AES-implement-in-C/blob/master

CBC and CTR Encryption Information: https://ithelp.ithome.com.tw/m/articles/10249953

CBC and CTR Decryption Information: https://blog.csdn.net/Lv-Victor/article/details/50973330