GRAPH THEORY

Problems and their Applications

ROBLEM

TRAVELLING SALESPERSON PROBLEM

GRAPH COLORING

GRAPH MATCHING

SHORTEST PATH PROBLEM

MINIMUM SPANNING TREE PROBLEM

SPANNING TREE such that the sum of the weights of the edges is the SMALLEST possible.

KRUSKAL'S algorithm

• Start with a null graph T with vertices of G.

 Add currently cheapest edge from G to T that will not form a cycle in T.

• Repeat previous step until a spanning tree is obtained.

PRIM'S algorithm

• Start with a trivial graph T with a single arbitrary vertex from G.

Add the vertex y and edge e =
 (x,y) such that e is the cheapest edge connecting y to some vertex x already in T (and will not form a cycle)

 Repeat previous step until a spanning tree is obtained.

TRAVELLING SALESPERSON PROBLEM

Given a weighed graph, find a HAMILTONIAN CYCLE such that the sum of the weights of the edges is the SMALLEST possible.

BRUTE FORCE algorithm

Generate all possible
 Hamiltonian cycles

• Select the Hamiltonian cycle with the least cost.

GREDY algorithm Modified Kruskal's algorithm

• Start with a null graph T with vertices of G.

- Add currently cheapest edge from G to T that
 - o will not form a cycle in T
 - will not cause a vertex in T to have a degree of 3 or more.

Repeat previous step until# edges = # vertices.

SHORTEST PATH PROBLEM

Given a weighed (directed) graph, find the SHORTEST PATH from vertex u to v.

DIKSTRA'S algorithm FLOYD'S algorithm

 Find the shortest paths from a specified source vertex to every other vertices in the graph.

GRAPH COLORING

VERTEX COLORING

Color the vertices of a graph such that no two adjacent vertices have the same color.

GREEDY algorithm

- •Consider the vertices in a specific order v_1 , ... v_n .
- •Assign to v_i the smallest available color not used by v_i 's neighbors (add a new color if needed).

What is the minimum number of time slots needed to schedule 4 exams given the following:

CMSC 21: Annie, Armin

CMSC 57: Annie, Mikasa, Eren

MATH 27: Armin

CMSC 22: Annie, Armin, Eren, Jean

GRAPH MATCHING

Pair off as many vertices as possible, that is, find a MAXIMAL MATCHING for a given graph.

MATCHING

Set of edges where no two edges are adjacent

MAXIMAL MATCHING

Matching with the largest number of edges.

PERFECT MATCHING

A matching where every vertex in G is matched.

AUGMENTING PATHS method