§2.1 - Floating-Point Numbers

Definition #1 (Base-2) Let $x \in \mathbf{R}$.

 $(x)_{2}$

Then

is x's binary decimal expansion.

Definition #2 (Integer and Fractional Part) Let $x \in \mathbf{R}$ have the following decimal expansion $x = x_0.(x_1x_2x_3...)$

 $x = x_0.(x_1x_2x_3...)$ where $x_0 \in \mathbf{Z}$ and $x_k \in \{0, 1, 9\}$ for each k.

where $x_0 \in \mathbf{Z}$ and $x_k \in \{0, 1, \dots 9\}$ for each k. Then x_0 is the **integer part** of x and $x_1 x_2 x_3 \dots$ is the **fractional part** of x. Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$ have the following decimal expansion $x = x_0.(x_1x_2x_3...).$

Then $\tilde{x} = x_0^* \cdot (x_1^* x_2^* \dots x_n^*)$

Definition #3 (Rounding and Chopping)

is the *n*-digit **rounded** approximation of x. While

 $\hat{x} = x_0.(x_1x_2...x_n)$

is the n-digit **chopped** approximation of x.

$$e = \sum_{K=0}^{\infty} \frac{1}{K!} = 2.71828...$$

n = 2

$$\tilde{e} = 2.72 \quad \hat{s} \quad \hat{e} = 2.71.$$

$$13 = 2^3 + 2^2 + 2^0$$
, $(13)_2 = 1101.0$

Now

 $(0.2)_z = (1/5)_z = 0.001100110011... = 0.\overline{0011}$ has infinitely many binary digits but only one decimal digit.

We will avoid expansions ending in all 9's in base-10 or all 1's in base-2.

$$(1)_2 = 0.\overline{1}$$
 $(1)_{10} = 0.\overline{9}.$

To compute x_k^* in $\tilde{x} = x_0^* \cdot (x_1^* x_2^* \dots x_n^*)$

Remark

we will use the following rules for rounding to n decimal places:

• Round up if the (n+1)th decimal digit is greater than or equal to 5.

• Round down if the (n + 1)th decimal digit is less than 5

Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$.

If \tilde{x} and \hat{x} are the n digit rounded and shapped approximations of

Lemma #1

If \tilde{x} and \hat{x}	are the <i>n</i> -digit	rounded	and	chopped	approximations	of
x then						
	$ x - \tilde{x} \le 1/2$	$\times 10^{-n}$	and	$ x - \hat{x} <$	$< 10^{-n}$.	

Pf) Let
$$n=0$$
 and $x=x_0.x_1x_2...$

Then

$$X \in [X_0, X_0 + 1]$$
 and $\hat{X} = X_0 \in [X_0, X_0 + 1]$

thus

because

$$|x - \hat{x}| = \mathcal{L}([\hat{x}, x]) < \mathcal{L}([x_0, x_0 + 1]) = 1.$$

Now $\tilde{X} = X_0$ or $\tilde{X} = X_0 + 1$.

If $\tilde{x} = x_o$ then

$$X \in (X_0, X_0 + \frac{1}{2})$$

and therefore

While $\tilde{x} = x_0 + 1$ implies $x \in [x_0 + 1/2, x_0 + 1]$

or

If n>0 multiply by 10° and repeat the argument on

$$y = (x_0 x_1 \dots x_n) \cdot x_{n+1} \dots$$

Then

Definition #4 (Normalized Scientific Notation)

Let $x \in \mathbf{R}$ be nonzero.

 $x = \pm r \times 10^n$ where $r \in [1/10, 1)$ and $n \in \mathbf{Z}$ is the **normalized scientific notation** of x in base-10.

notation of x in base-10. In base-2, we have $x = \pm q \times 2^m$ where $q \in [1/2, 1)$ and $m \in \mathbf{Z}$.

e = 0.271828... × 10', shift right

 $('/5)_2 = 0.\overline{0011} = 0.\overline{100} \times 2^{-2}$, shift left Marc-32: left shift so we have "1.q" $('/5)_2 = 1.\overline{1001} \times 2^{-3}$

1.1001100110011001100 x 2⁻³

Here m = -3 so

e = m + 127 = 124

 $(124)_2 = (2^6 + 2^5 + 2^4 + 2^3 + 2^2)_2 = 0111110.$

5	e	P
0	0111110	1001100110011001100

 $x = 15 \approx .199999988079$ So 15 is not a machine number and $x_{-} = .19999988079$ is a machine number just to the left of x.

S	e	C
0	0111110	1001100110011001101

X₊ = .200000002980
is a machine number just to the right of x.
Choose the nearest machine number to
represent x:

f(x) = .200000002980

Remark

If $x \neq 0$ then some base-2 decimal is nonzero:

$$(x)_2 = 0.0001101\dots$$

so normalized form

$$(x)_2 = (.1101...) \times 2^{-3}.$$

but this nonzero entry is always 1!

We can exploit this if we are trying to store the number.

Sign - e | Riaged evnouent - e | Normalized manticea - f |

Definition #5 (Marc-32 Floating Point Number)

where $q = (1.f)_2$ and m = e - 127.

	•
1 bit 8 bits 23 bit	\mathbf{S}
	D

Let

$$x = (-1)^s q \times 2^m$$

Sign - s | Biased exponent - e | Normalized mantissa - f

Definition #6 (IEEE 64-bit Double Floating Point Number)

 $x = (-1)^s q \times 2^m$

where
$$q = (1.f)_2$$
 and $m = e - 1023$.

Definition #7 (Machine Number)
Let
$$x \in \mathbf{R}$$
.

 $x = \pm q \times 2^m$ for machine appropriate m and q then x is a **machine number**.

Lemma #2Let x be a machine number.

For Marc-32:

$$1.2 \times 10^{-38} \approx 2^{-126} \le x \le 2^{128} \approx 3.4 \times 10^{38}$$

64-bit:
$$2.2 \times 10^{-308} \approx 2^{-1022} < x < 2^{1024} \approx 1.8 \times 10^{308}$$

Definition #8 (Machine Epsilon) Let ϵ be a machine number.

The smallest ϵ such that

$$1 + \epsilon \neq 1$$

is the machine epsilon.

Remark

There are more machine numbers near 0 than near 100:

As |x| increases the smallest machine number ϵ_x such that

$$x + \epsilon_x \neq x$$

increases.

For Marc-32: $\epsilon = 2^{-23} \approx 1.2 \times 10^{-8}.$ So for 22 bit computations, we should expect 7.8 digits of secureous

Lemma #3 (Marc-32 Rounding Errors)

racy.

So for 32-bit computations, we should expect 7-8 digits of accuracy. For IEEE 64-bit:

For IEEE 64-bit: $\epsilon=2^{-52}\approx 2.2\times 10^{-16}.$ So for 64-bit computations, we should expect 15-16 digits of accu-

Question Can we trust that MATLAB has implemented machine 0 correctly?

Let $x \in \mathbb{R}$.

Then x_{-} and x_{+} are the **largest** and **smallest** machine numbers

Definition #9 (Nearby Machine Numbers)

such that $x_{-} \leq x \leq x_{+}.$ and $x^{*} = \text{fl}(x)$ is the **closest** machine number.

Lemma #4 Let $x \in \mathbf{R}$ be nonzero.

the Marc-32 we have

In	the	Ma

since x^* is either x_- or x_+ .

 $\left|\frac{x-x^*}{x}\right| \le 2^{-24}$

$$\left| \frac{x - x_{-}}{x} \right| \le 2^{-24}$$
 and $\left| \frac{x - x_{+}}{x} \right| \le 2^{-24}$

$$_{\mathrm{nd}}$$

Let $x \in \mathbf{R}$.

If

Definition #10

 $x = \pm q \times 2^m$ where m is too large for the machine then an **overflow** error has

occurred. If m is too small for the machine then an **underflow** error has occurred.

In MATLAB: Overflow computations are represented by $\pm Inf.$

Remark

Underflow computations are stored as 0.

Machine computations such as

Remark

While indeterminate computations,

will generate NaN or **Not a Number**.

1/0, $3/\sin(0)$, and -2/0

0/0, $\infty - \infty$, and ∞/∞ ,

will generate
$$\pm \infty$$
 or $\pm \text{Inf}$ and denote unbounded numbers. While indeterminate computations.

Question

Imagine we were computing

k=1

Will the order of the machine addition matter?

In 64 bit precision $2^{52} + 1 = 2^{52}$

so it is wise to sum numbers of the same size. To prevent loss of precision, sum from smallest to the largest terms.