$$2x_1 - x_2 - x_3 + 3x_4 = 0.$$

Extend $\{(0,2,1,1)\}$ to a basis of V.

Extend
$$\{(0,2,1,1)\}$$
 to a basis of V .

2nd 10w: 1/2-1/3-1/4-0=> 1/2=1/3+1/4

 $V = Span \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} \text{ and } drn \ V = 2.$

3. Let V denote the set of all solutions to the system of linear equations

Santo check: $\binom{2}{i} = \binom{i}{i} + \binom{-1}{i}$ So, $\binom{2}{i} + \binom{1}{i}$ works.

 $x_1 - x_2 + 2x_4 = 0$

As
$$3^{\text{rol}}$$
, ζ^{th} col's are non-pirot, let χ_3 , χ_{ζ_1} be orbitrary real #5.

1st now: $\chi_1 - \chi_3 + \chi_{\zeta_1} = 0 \Rightarrow \chi_1 = \chi_3 - \chi_{\zeta_1}$.

All topther: $\begin{pmatrix} X_1 \\ \vdots \\ X_d \end{pmatrix} = \begin{pmatrix} X_3 + X_{44} \\ X_3 + X_{44} \\ X_{5} \end{pmatrix}$

2. Compute the determinant of
$$A+tI$$
, where I is the 4×4 identity matrix, $A = \begin{pmatrix} 0 & 0 & 0 & a_0 \\ -1 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_0 \\ -1 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_0 \\ -1 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_0 \\ -1 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_0 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & -1 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_3 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & 0 & -1 & a_2 \end{pmatrix}$,

 $= \{\cdot(\{\xi_{1}, 0, \xi_{2}, \xi_{3}, \xi_{4}, 0\}) + 0\}$

$$\begin{aligned}
&\text{For det} \begin{pmatrix} t & \circ & \alpha_1 \\ -1 & t & \alpha_2 \\ 0 & -1 & 0_3 t t \end{pmatrix} & = t \cdot \det \begin{pmatrix} t & \alpha_2 \\ -1 & 0_3 t t \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t & \alpha_2 \\ -1 & 0_3 t t \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} -1 & t \\ 0 & -1 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_2 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_2 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_2 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_1 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_2 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_3 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_3 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_2 \end{pmatrix} + \alpha_3 \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha_3 t + \alpha_3 \end{pmatrix} \\
&= t \cdot \det \begin{pmatrix} t^2 + \alpha_3 t + \alpha$$

1. Let $A, B \in M_{n \times n}(\mathbb{R})$ be matrices such that AB = -BA. Prove that if n is odd, then either A or B is not invertible. When n is even, determine whether this is true. If so, give a proof. If not, provide a counterexample. Fact. (1) A is invertible if and only if dot A +0.

(2) $\det(c.A) = C^n \cdot \det(A)$ if $A: n \times n$. It $\det(AB) = \det(A) \cdot \det(B)$

Sol'n. As AB = -BA, det(AB) = det(-BA) = (-1) det(BA) det A · det B · det B · det A · b/c n · odd .

So, det A del B = 0 and so A OR B has det zero (=) A or B is not muertille

M=2 case: try to find conditions for a counterexample! Suppose AB=-BA=BA=BA=A.(AN-A)

 $B^{-1}\begin{pmatrix} 0 & -1 \end{pmatrix}B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = b(-A) = -b(A).$ = b(A) = b(A) = 0.

 $\beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ works.

2. Let $B \in M_{n \times n}(F)$ be fixed, and let $T_B : M_{n \times n}(F) \to M_{n \times n}(F)$ be the linear transformation

Let $B \in M_{n \times n}(F)$ be fixed, and let $T_B : M_{n \times n}(F) \to M_{n \times n}(F)$ be the linear defined by $T_B(A) = AB - BA$. Compute $\det([T_B]_\beta)$, where β is any basis of $M_{n \times n}(F)$.

By the left of the lef

If ker(TB) is not zero, then Let ([TT]p)=0. (4k TB:V-DV)

Solv. If To is not an ison, thendel([Ta]s)=0.

0 # Inxn (6/c Inxn B -B Inxn = B-B=0).

- 1. (True/False Jeopardy) Supply convincing reasoning for your answer. (a) T F For $c \in F$ and $A \in M_{n \times n}(F)$, we have $\det(cA) = c \det(A)$.
 - Let $A, B \in M_{n \times n}(F)$. Then $\det(A + B) = \det(A) + \det(B)$. Let V be a finite-dimensional vector space, and let $T:V\to V$ be a linear
 - transformation. If β, β' are two bases of V, then $\det([T]_{\beta}) = \det([T]_{\beta'})$. (d) T F Let $A \in M_{m \times n}(F)$. If m > n, then there exists some $b \in F^m$ such that Ax = b is inconsistent.
 - (MVerse (e) T F Let $A \in M_{m \times n}(F)$. If m < n, then there exists some $b \in F^m$ such that Ax = bhas a unique solution.
- O. TEALSE | b. Use 0 and 1 or B=?AFirst. B=A Let (2B)=2 Let (B)[Thre [T] p = "? [T]3"?
- d. A defines a thear map (R) -> R. A: F) + (Smaller to (arper) e. Az=b unique soln. What can you say about Ax = 0: Ax = 0 has a unique solh. > im A + FM. True. (b/c by dan. thm. thm. the A+rkA = n. =>rkA <n<m=dan.Fm

2. Let $A \in M_{m \times n}(\mathbb{R})$, and suppose m > n. We know that Ax = b does not always have a Math 54 Review solution for $b \in \mathbb{R}^m$. Prove that nonetheless, $A^tAx = A^tb$ always has a solution. Fun fact: At Ax=0, then v fact Ax=0. Why? O Note that, given $v=(v_1, \dots, v_m) \in \mathbb{R}^m$, v as a matrix multiplication column vector is simply $v_1^2 + \dots + v_m^2$.

②Now, suppose that $A^tAx=0$. Then, we can multiply x^t on the left to get $x^tA^tAx=x^t\cdot 0=0$. Putting v=Ax, we get $v^tv=0$ and this shows that v,=...= 22=0, so v=0 and Ax=0.

So what? Obviously, if $x \in \ker A$, then $Ax = 0 \Rightarrow A^EAx = 0$. Combining this with the above "fur fact". we get the fact of the property of the ker A = ker At A. Bul A: R" -> 1R" and At A: 1R" -> 1R".

Hence, by the dimension theorem, we get $\gamma k A = \gamma - dim ker A = \gamma k A^{\dagger}A = \gamma k A^{\dagger}A = \gamma k A^{\dagger}A$.

However, $\overline{im} A^{\xi}A \subseteq \overline{im} A^{\xi}$ deviately, so $rkA^{\xi}A \subseteq rkA^{\xi}$. In particular, $rkA \subseteq rkA^{\xi}$. Doing the same argument to A^{ξ} , we get $rkA^{\xi} \subseteq rkA^{\xi} \subseteq rkA$.

Therefore $rkA = rkA^{\xi} = rkA^{\xi}$, that is, $\overline{dim} \ \overline{im} A^{\xi}A = \overline{dim} \ \overline{im} A^{\xi}$.

Hence, \overline{m} AtA = \overline{m} At.