- (나) Mn = 0.15에서의 엔진 공급공기 표준측정장치 유량특성 시험결과
- ① 표준측정장치 덕트 내부의 공기유량 측정 및 계산 방법

Mn = 0.05에서 0.15까지의 조건에서 엔진 공급공기 표준측정장치 덕트 내부로 흐르는 공기 유량을 측정하기 위해서 설치되어 있는 전압력, 경계층, 전온도 레이크와 정압력 포트로 측정한 데이터를 이용하여 항우연에서 적용중인 계산 방법을 사용하였다^[3,1,3,3].

먼저 전압력 레이크와 경계층 레이크, 정압력 포트를 통해 측정한 프로브 각 지점의 전압력과 정압력을 이용하여 덕트 마하수를 구하게 된다. 전압력 레이크와 경계층 레이크의 프로브가 위치하는 대표 위치의 전체면적에 대한 비율을 이용하는 면적가증평균(area-weighted average)방법을 적용하여 평균 덕트 마하수를 구하게 된다. 이후 전온도 레이크를 이용하여 측정한 전온도를 통해 음속과 평균 공기유속을 구할 수 있다. 최종적으로 덕트 내부면적을 이용하여 공기유량을 계산하게 된다.

Table 3.1.3.9 기존경계층 레이크와 신규경계층 레이크의 프로브 위치 및 면적비

전압력 레이크 + 기존 경계층 레이크			전압력 레이크 + 신규 경계층 레이크		
프로브 명칭	프로브 위치(mm) (덕트 중심 =0)	면적비	프로브 명칭	프로브 위치(mm) (덕트 중심 =0)	면적비
경계층 9번	130.0	0.0301	경계층 5번	129.0	0.0449
경계층 8번	127.5	0.0369	전압력 7번	126.4	0.0381
전압력 7번	126.4	0.0160	경계층 4번	121.5	0.0697
경계층 7번	125.0	0.0202	경계층 3번	117.0	0.0616
경계층 6번	122.5	0.0355	전압력 6번	114.3	0.0358
경계층 5번	120.0	0.0348	경계층 2번	112.5	0.0234
경계층 4번	117.5	0.0341	경계층 1번	108.0	0.0569
경계층 3번	115.0	0.0334	전압력 5번	100.8	0.0863
전압력 6번	114.3	0.0092	전압력 4번	85.2	0.1665
경계층 2번	112.5	0.0234	전압력 3번	66.0	0.1666
경계층 1번	110.0	0.0319	전압력 2번	38.1	0.1667
전압력 5번	100.8	0.1113	전압력 1번	0	0.0833
전압력 4번	85.2	0.1665			
전압력 3번	66.0	0.1666			
전압력 2번	38.1	0.1667			
전압력 1번	0	0.0833			

② 엔진 공급공기 표준측정장치 유량특성 시험결과

Mn = 0.05에서 0.15까지의 조건에서 엔진 공급공기 표준측정장치의 유량특성을 평가하기 위해서 다채널 전/정압력, 전온도 데이터 획득 시스템을 이용하여 덕트 마하수를 측정하였다. 그림 3.1.3.15는 7 포인트의 전압력 레이크와 9 포인트의 기존 경계층 레이크가 덕트에 설치되었을 때 $Mn = 0.05 \sim 0.15$ 까지의 덕트 마하수 분포를 나타내고 있다. 마하수가 증가할 수록 표준측정장치 내부의 유속이 증가하는 것을 확인할 수 있고, 이에 따라 면적 가중 평균 방법으로 계산한 공기 유량 값도 1.1~kg에서 3.3~kg까지 증가하게 된다.