

Attachment 1. - SAR Test Plots

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 825 MHz; = 0.863 mho/m; $_r = 40.8$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Left touch 128/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.428 mW/g

Left touch 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.100 dB

Peak SAR (extrapolated) = 0.554 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.249 mW/g Maximum value of SAR (measured) = 0.393 mW/g

0 dB = 0.393 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.875 mho/m; $_r = 40.7$; = 1000 kg/m³

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Left touch 190/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.482 mW/g

Left touch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.201 dB

Peak SAR (extrapolated) = 0.620 W/kg

SAR(1 g) = 0.417 mW/g; SAR(10 g) = 0.279 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.439 mW/g

0 dB = 0.439 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 850 MHz; = 0.887 mho/m; $_r = 40.7$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Left touch 251/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.384 mW/g

Left touch 251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.0 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.505 W/kg

SAR(1 g) = 0.340 mW/g; SAR(10 g) = 0.227 mW/g Maximum value of SAR (measured) = 0.360 mW/g

0 dB = 0.360 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 825 MHz; = 0.863 mho/m; $_r = 40.8$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Right touch 128/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.413 mW/g

Right touch 128/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 0.552 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.255 mW/g Maximum value of SAR (measured) = 0.398 mW/g

0 dB = 0.398 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.875 mho/m; $_r = 40.7$; = 1000 kg/m³

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Right touch 190/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.445 mW/g

Right touch 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.6 V/m; Power Drift = -0.008 dB

Peak SAR (extrapolated) = 0.599 W/kg

SAR(1 g) = 0.406 mW/g; SAR(10 g) = 0.274 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.441 mW/g

0 dB = 0.441 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 850 MHz; = 0.887 mho/m; $_r = 40.7$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Right touch 251/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.391 mW/g

Right touch 251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.2 V/m; Power Drift = 0.064 dB

Peak SAR (extrapolated) = 0.528 W/kg

SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.243 mW/g Maximum value of SAR (measured) = 0.384 mW/g

0 dB = 0.384 mW/g

HCT-SAR07-0302 FCC ID: **UTABOOM** DATE: Mar.07, 2007 Report No.:

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5 Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.875 mho/m; $_r = 40.7$; = 1000 kg/m³

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2006-08-22
- Phantom: SAM 835/900 MHz; Type: SAM

Left tilt 190/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.203 mW/g

Left tilt 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.5 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 0.278 W/kg

SAR(1 g) = 0.170 mW/g; SAR(10 g) = 0.111 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.189 mW/g

0 dB = 0.189 mW/g

www.hct.co.kr

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.875 mho/m; $_r = 40.7$; = 1000 kg/m³

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2006-08-22
- Phantom: SAM 835/900 MHz; Type: SAM

Right tilt 190/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.237 mW/g

Right tilt 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.2 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.121 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.212 mW/g

0 dB = 0.212 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; = 1.39 mho/m; $_r = 39.5$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left touch 512/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.209 mW/g

Left touch 512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.0 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 0.323 W/kg

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.104 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

aximum value of SAR (measured) = 0.203 mW/g

0 dB = 0.203 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.42 mho/m; $_r = 39.4$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left touch 661/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.183 mW/g

Left touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.76 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.168 mW/g; SAR(10 g) = 0.092 mW/gMaximum value of SAR (measured) = 0.191 mW/g

0 dB = 0.191 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1910 MHz; = 1.45 mho/m; $_r = 39.3$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left touch 810/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.101 mW/g

Left touch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.76 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.093 mW/g; SAR(10 g) = 0.051 mW/gMaximum value of SAR (measured) = 0.105 mW/g

0 dB = 0.105 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; = 1.39 mho/m; $_r = 39.5$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 512/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.278 mW/g

Right touch 512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.7 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.387 W/kg

SAR(1 g) = 0.228 mW/g; SAR(10 g) = 0.120 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.258 mW/g

0 dB = 0.258 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.42 mho/m; $_r = 39.4$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 661/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.250 mW/g

Right touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.4 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 0.349 W/kg

SAR(1 g) = 0.206 mW/g; SAR(10 g) = 0.109 mW/gMaximum value of SAR (measured) = 0.233 mW/g

0 dB = 0.233 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1910 MHz; = 1.45 mho/m; $_r = 39.3$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 810/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.133 mW/g

Right touch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.92 V/m; Power Drift = 0.021 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.058 mW/gMaximum value of SAR (measured) = 0.120 mW/g

0 dB = 0.120 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.42 mho/m; $_r = 39.4$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Left tilt 661/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.231 mW/g

Left tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.02 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.357 W/kg

SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.111 mW/gMaximum value of SAR (measured) = 0.237 mW/g

0 dB = 0.237 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.42 mho/m; $_r = 39.4$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

Right tilt 661/Area Scan (51x101x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.237 mW/g

Right tilt 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.47 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.332 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.108 mW/g

Maximum value of SAR (measured) = 0.220 mW/g

0 dB = 0.220 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.99 mho/m; $_r = 53.4$; $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.42, 6.42, 6.42); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Body 190/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.166 mW/g

GSM850 Body 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.101 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.158 mW/g

0 dB = 0.158 mW/g

TEL: +82 31 639 8518 FAX: +82 31 639 8525

www.hct.co.kr

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

Option GPRS

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.99 mho/m; $_r = 53.4$; = 1000 kg/m³

Phantom section: Flat Section; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.42, 6.42, 6.42); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2006-08-22
- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Body 190/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.144 mW/g

GSM850 Body 190/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.190 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.128 mW/g; SAR(10 g) = 0.088 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.137 mW/g

0 dB = 0.137 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.55 mho/m; $_r = 52.1$; $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.63, 4.63, 4.63); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.126 mW/g

GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.95 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.071 mW/g Maximum value of SAR (measured) = 0.123 mW/g

0 dB = 0.123 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

Option GPRS

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 1880 MHz; = 1.55 mho/m; $_f = 52.1$; $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.63, 4.63, 4.63); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Body 661/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.118 mW/g

GSM1900 Body 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.51 V/m; Power Drift = 0.040 dB

Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.066 mW/g

Maximum value of SAR (measured) = 0.114 mW/g

0 dB = 0.114 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

DUT: BOOM; Type: Slide up; Serial: #1

Program Name: BOOM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.875 mho/m; $_{r} = 40.7$; $= 1000 \text{ kg/m}^{3}$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

Left touch 190/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.422 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.5
Ambient Temperature: 21.7

Test Date: Mar.05, 2007

DUT: BOOM (Body); Type: Slide down; Serial: #1

Program Name: BOOM

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 836.6 MHz; = 0.99 mho/m; _f = 53.4; = 1000 kg/m³

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.42, 6.42, 6.42); Calibrated: 2006-03-23

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22

- Phantom: SAM 835/900 MHz; Type: SAM

GSM850 Body 190/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.153 mW/g

HCT-SAR07-0302 FCC ID: **UTABOOM** DATE: Mar.07, 2007 Report No.:

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6 Ambient Temperature: 21.8

Mar.06, 2007 Test Date: DUT: BOOM; Type: Slide up; Serial: #1

Program Name: BOOM

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used (interpolated): f = 1850.2 MHz; = 1.39 mho/m; $_r = 39.5$; $= 1000 \text{ kg/m}^3$

Phantom section: Right Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22 - Phantom: SAM 1800/1900 MHz; Type: SAM

Right touch 512/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.222 mW/g

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

EUT Type: Tri-Band GSM Phone(GSM850/ DCS1800/ PCS1900)

GPRS Class 8 and GPRS mode class B(GPRS and GSM, but not simultaneously)

Liquid Temperature: 21.6
Ambient Temperature: 21.8

Test Date: Mar.06, 2007

DUT: BOOM (Body); Type: Slide down; Serial: #1

Program Name: BOOM

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; = 1.55 mho/m; $_r = 52.1$; = 1000 kg/m³

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(4.63, 4.63, 4.63); Calibrated: 2006-03-23

- Sensor-Surface: 0mm (Fix Surface)

- Electronics: DAE4 Sn614; Calibrated: 2006-08-22 - Phantom: SAM 1800/1900 MHz; Type: SAM

GSM1900 Body 661/Z Scan (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.121 mW/g

Attachment 2. – Dipole Validation Plots

■ Validation Data (835 MHz Head)

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

Input Power 1W (30dBm)

Liquid Temp: 21.5

Test Date: Mar.05, 2007

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; = 0.873 mho/m; $_r = 40.7$; $= 1000 \text{ kg/m}^3$

Phantom section: Left Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(6.85, 6.85, 6.85); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2006-08-22
- Phantom: SAM 835/900 MHz; Type: SAM

Validatoin 835 MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 10.4 mW/g

Validatoin 835 MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 113.0 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 14.3 W/kg

SAR(1 g) = 9.64 mW/g; SAR(10 g) = 6.31 mW/g

Maximum value of SAR (measured) = 10.4 mW/g

0 dB = 10.4 mW/g

■ Validation Data (1900 MHz Head)

Test Laboratory: HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD

Input Power 1W (30dBm)

Liquid Temp: 21.6

Test Date: Mar.06, 2007

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; = 1.44 mho/m; $_r = 39.3$; $= 1000 \text{ kg/m}^3$

Phantom section: Flat Section ; Measurement SW: DASY4, V4.7 Build 53

DASY4 Configuration:

- Probe: ET3DV6 - SN1609; ConvF(5.16, 5.16, 5.16); Calibrated: 2006-03-23

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn614; Calibrated: 2006-08-22
- Phantom: SAM 1800/1900 MHz; Type: SAM

Validation 1900MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 50.0 mW/g

Validation 1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 177.8 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 74.5 W/kg

SAR(1 g) = 41.1 mW/g; SAR(10 g) = 21.5 mW/g

Maximum value of SAR (measured) = 45.7 mW/g

0 dB = 45.7 mW/g

■ Dielectric Parameter (835 MHz Head)

Title BOOM

SubTitle GSM850(Head)
Test Date Mar.05, 2007

Frequency	e'	e''
800000000.0000	41.1088	18.8272
805000000.0000	41.0320	18.8560
810000000.0000	40.9304	18.8270
815000000.0000	40.9098	18.7768
820000000.0000	40.8526	18.8060
825000000.0000	40.8319	18.8093
830000000.0000	40.7388	18.7955
835000000.0000	40.7218	18.7874
840000000.0000	40.6967	18.8232
845000000.0000	40.6964	18.7584
850000000.0000	40.6549	18.7676
855000000.0000	40.5586	18.7612
860000000.0000	40.5621	18.7782
865000000.0000	40.5353	18.7222
870000000.0000	40.4634	18.7199
875000000.0000	40.4432	18.7535
880000000.0000	40.3606	18.6893
885000000.0000	40.2633	18.6752
890000000.0000	40.2125	18.6630
895000000.0000	40.1402	18.6423
900000000.0000	40.0248	18.6052

■ Dielectric Parameter (835 MHz Body)

Title BOOM

SubTitle GSM850(Body)
Test Date Mar.05, 2007

Frequency	e'	e''
800000000.0000	53.6924	21.4086
805000000.0000	53.6505	21.3991
810000000.0000	53.6232	21.3957
815000000.0000	53.5727	21.3557
820000000.0000	53.5121	21.3475
825000000.0000	53.4492	21.3293
830000000.0000	53.4257	21.3250
835000000.0000	53.3861	21.3043
840000000.0000	53.3264	21.2253
845000000.0000	53.3098	21.2625
850000000.0000	53.2956	21.2440
855000000.0000	53.2419	21.1750
860000000.0000	53.2137	21.1728
865000000.0000	53.1769	21.1737
870000000.0000	53.1234	21.1275
875000000.0000	53.1332	21.1058
880000000.0000	53.0819	21.0753
885000000.0000	53.0219	21.0749
890000000.0000	52.9718	21.0288
895000000.0000	52.9696	20.9962
900000000.0000	52.8841	21.0167

HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI,KYOUNKI-DO, 467-701,KOREA TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr

■ Dielectric Parameter (1900 MHz Head)

Title BOOM

SubTitle GSM1900(Head)
Test Date Mar.06, 2007

Frequency	e'	e''
1800000000.0000	39.7860	13.4166
1810000000.0000	39.7156	13.4246
1820000000.0000	39.7076	13.4432
1830000000.0000	39.6423	13.4456
1840000000.0000	39.5947	13.4796
1850000000.0000	39.5171	13.4873
1860000000.0000	39.4369	13.5031
1870000000.0000	39.4011	13.5304
188000000.0000	39.3901	13.5572
1890000000.0000	39.3452	13.5994
1900000000.0000	39.3171	13.6518
1910000000.0000	39.3194	13.6521
1920000000.0000	39.2552	13.6534
1930000000.0000	39.2257	13.6978
1940000000.0000	39.2008	13.7156
1950000000.0000	39.1362	13.7475
1960000000.0000	39.0552	13.7522
1970000000.0000	39.0154	13.7599
1980000000.0000	38.9484	13.8002
199000000.0000	38.9271	13.8195
2000000000.0000	38.8965	13.8537

HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI,KYOUNKI-DO, 467-701,KOREA TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr

■ Dielectric Parameter (1900 MHz Body)

Title BOOM

SubTitle GSM1900(Body)
Test Date Mar.06, 2007

Frequency	e'	e''
1800000000.0000	52.3679	14.4758
1810000000.000090.5085	52.2758	14.5186
1820000000.000090.2105	52.2557	14.5799
183000000.000089.9645	52.2002	14.6394
184000000.000089.7069	52.2001	14.6767
1850000000.000089.4492	52.1854	14.7447
1860000000.000089.2243	52.1615	14.7377
1870000000.000088.9154	52.1123	14.7821
1880000000.000088.6582	52.0773	14.8035
189000000.000088.3845	52.0279	14.7986
1900000000.000088.0787	51.9693	14.8419
1910000000.000087.8275	51.8622	14.8610
1920000000.000087.5336	51.8157	14.9054
1930000000.000087.2954	51.7726	14.9474
194000000.000087.0588	51.7514	14.9876
1950000000.000086.8323	51.7342	15.0066
1960000000.000086.5863	51.6943	15.0575
1970000000.000086.3708	51.6974	15.0868
1980000000.000086.1514	51.7216	15.1252
1990000000.000085.9538	51.6545	15.1523
2000000000.000085.7095	51.6337	85.4544

HYUNDAI CALIBRATION & CERTIFICATION TECHNOLOGIES CO., LTD. SAN 136-1, AMI-RI, BUBAL-EUP, ICHEON-SI,KYOUNKI-DO, 467-701,KOREA TEL: +82 31 639 8518 FAX: +82 31 639 8525 www.hct.co.kr

Attachment 3. – Probe Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CALIBRATION	CERTIFICAT	IE TO THE TOTAL PROPERTY.	
Object	ET3DV6 - SN:1	1609	
Calibration procedure(s)		and QA CAL-12.v4 cedure for dosimetric E-field probes	
Calibration date:	March 23, 2006		
Condition of the calibrated item	In Tolerance		
		tory facility: environment temperature (22 ± 3)°C an	d humidity < 70%.
Calibration Equipment used (M&	I E critical for calibration)	V2	
	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Primary Standards	Al Character	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration May-06
Primary Standards Power meter E4419B Power sensor E4412A	ID#		
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466)	May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID# GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	May-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466)	May-06 May-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499)	May-06 May-06 May-06 Aug-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	May-06 May-06 May-06 Aug-06 May-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500)	May-06 May-06 May-06 Aug-06 May-06 Aug-06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house)	May-06 May-06 May-06 Aug-06 May-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	May-06 May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 3-May-05 (METAS, No. 251-00466) 11-Aug-05 (METAS, No. 251-00499) 3-May-05 (METAS, No. 251-00467) 11-Aug-05 (METAS, No. 251-00500) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 2-Feb-06 (SPEAG, No. DAE4-654_Feb06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	May-06 May-06 May-06 Aug-06 Aug-06 Aug-06 Jan-07 Feb-07 Scheduled Check In house check: Nov-07 In house check: Nov 06

Certificate No: ET3-1609_Mar06

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization

representation of tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
representation of tissue simulating liquid

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1609_Mar06 Page 2 of 9

ET3DV6 SN:1609 March 23, 2006

Probe ET3DV6

SN:1609

Manufactured: July 27, 2001

Last calibrated: September 22, 2004 Recalibrated: March 23, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1609_Mar06 Page 3 of 9

HCT-SAR07-0302 **UTABOOM** Mar.07, 2007 Report No.: FCC ID: DATE:

ET3DV6 SN:1609

March 23, 2006

DASY - Parameters of Probe: ET3DV6 SN:1609

Sensitivity	in	Free	Space ^A
COLIDITIVITY			Opuou

Diode Compression^B

NormX	1.88 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.84 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	95 mV
NormZ	1.84 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.3	4.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.1

TSL 1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	6.2	3.1
SAR _{be} [%]	With Correction Algorithm	0.2	0.2

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1609_Mar06

Page 4 of 9

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter; uncertainty not required.

ET3DV6 SN:1609

March 23, 2006

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1609_Mar06

Page 5 of 9

ET3DV6 SN:1609 March 23, 2006

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1609_Mar06

Page 6 of 9

ET3DV6 SN:1609 March 23, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1609_Mar06

Page 7 of 9

ET3DV6 SN:1609 March 23, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	$0.87 \pm 5\%$	0.27	3.19	6.82	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.57	1.83	6.85	± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.59	1.81	6.53	± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.48	2.69	5.46	± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.45	5.16	± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.52	2.43	5.08	± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.60	2.30	4.50	± 11.8% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.24	4.02	7.32	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.47	2.06	6.42	± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.53	2.59	4.80	± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.70	2.19	4.63	± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.62	2.21	4.17	± 11.8% (k=2)
2450	± 50 / ± 100	Body	$52.7 \pm 5\%$	1.95 ± 5%	0.62	2.21	4.17	± 11.8

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1609_Mar06 Page 8 of 9

ET3DV6 SN:1609 March 23, 2006

Deviation from Isotropy in HSL

Error (0, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1609_Mar06

Page 9 of 9

Attachment 4. – Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client H-CT (Dymstec)

Certificate No: D835V2-441_Aug06

DALIBITATION C	ERTIFICATE		
Object	D835V2 - SN: 44	1	THE SHEET
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	August 14, 2006	- all the of the all (180)	man of Team I
Condition of the calibrated item	In Tolerance	Milliandre d'e- elenese	
Calibration Equipment used (M&)	TE critical for calibration)		
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r)	Cal Date (Calibrated by, Certificate No.) 04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591)	Scheduled Calibration Oct-06 Oct-06 Aug-07 Aug-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591)	Oct-06 Oct-06 Aug-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05)	Oct-06 Oct-06 Aug-07 Aug-07 Oct-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Oct-06 Oct-06 Aug-07 Aug-07 Oct-06 Dec-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID# MY41092317 MY41000675 US37390585 S4206 Name	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-07 Aug-07 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 in house check: Nov-07
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID# MY41092317 MY41000675 US37390585 S4206	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-07 Aug-07 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	ID# GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 1507 SN 601 ID# MY41092317 MY41000675 US37390585 S4206 Name	04-Oct-05 (METAS, No. 251-00516) 04-Oct-05 (METAS, No. 251-00516) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 28-Oct-05 (SPEAG, No. ET3-1507_Oct05) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Oct-06 Oct-06 Aug-07 Aug-07 Oct-06 Dec-06 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Nov-06

Certificate No: D835V2-441_Aug06

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-441_Aug06 Page 2 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 6.7 jΩ	
Return Loss	- 23.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.376 ns
Electrical Palet (and an action)	1.5751.5

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 09, 2001

Certificate No: D835V2-441_Aug06 Page 4 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.1 Ω - 6.7 jΩ	
Return Loss	- 23.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.376 ns
Electrical Palet (and an action)	1.5751.5

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 09, 2001

Certificate No: D835V2-441_Aug06

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 14.08.2006 13:00:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 441

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL900;

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.09, 6.09, 6.09); Calibrated: 28.10.2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA;;
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.067 dB

Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.53 mW/g

0 dB = 2.53mW/g

Certificate No: D835V2-441_Aug06

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-441_Aug06

Page 6 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client H-CT (Dymstec)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d032_Feb07

Object	D1900V2 - SN: 5	d032	
Calibration procedure(s)	QA CAL-05.v6		
	Calibration proce	dure for dipole validation kits	
Calibration date:	February 20, 200	7	
Condition of the publicated have	In Toloroon		
Condition of the calibrated item	In Tolerance		
		onal standards, which realize the physical units of	
The measurements and the unce	ertainties with confidence p	robability are given on the following pages and are	part of the certificate.
All calibrations have been condu-	cted in the closed laborates	y facility; environment temperature (22 ± 3)°C and	I humidity < 70%
rui collulaturis nave been condu	oted at the crosed apportage	y money, environment temperature (22 x 3) 'C and	maillulty > 1076.
Calibration Equipment used (M&	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
CARD HIGHER EL M4-4514			
	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783 SN: 5086 (20g)	네이어에게 가다가 하게 계획되었다면서 하다 하나 가게 하게 되었습니다.	
Power sensor HP 8481A Reference 20 dB Attenuator		03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator	SN: 5086 (20g)	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591)	Oct-07 Aug-07 Aug-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6	SN: 5086 (20g) SN: 5047.2 (10r)	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591)	Oct-07 Aug-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY4100675	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Nov-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY4100675	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Nov-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06)	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Oct-07 In house check: Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06) Function	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Oct-07 In house check: Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06) Function	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Oct-07 In house check: Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by:	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Mike Melli	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06) 18-Oct-01 (SPEAG, in house check Oct-06) Function Laboratory Technician	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Oct-07
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E4421B Network Analyzer HP 8753E Calibrated by:	SN: 5086 (20g) SN: 5047.2 (10r) SN: 1507 SN 601 ID # MY41092317 MY41000675 US37390585 S4206 Name Mike Melli	03-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No 217-00591) 10-Aug-06 (METAS, No 217-00591) 19-Oct-08 (SPEAG, No. ET3-1507_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Oct-06) 18-Oct-01 (SPEAG, in house check Oct-06) Function Laboratory Technician	Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Nov-07 In house check: Oct-07

Certificate No: D1900V2-5d032_Jan07

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d032 Jan07 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	9.55 mW / g
SAR normalized	normalized to 1W	38.2 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	37.2 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.03 mW / g
SAR normalized	normalized to 1W	20.1mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	19.8 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d032_Jan07

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 3.3 jΩ	
Return Loss	- 26.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.192 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	March 17, 2003		

Certificate No: D1900V2-5d032_Jan07

Page 4 of 6

DASY4 Validation Report for Head TSL

Date/Time: 20.02.2007 14:35:32

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d032

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 1900 MHz; $\sigma = 1.43 \text{ mho/m}$; $\epsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.3 V/m; Power Drift = 0.006 dB

Peak SAR (extrapolated) = 16.4 W/kg

SAR(1 g) = 9.55 mW/g; SAR(10 g) = 5.03 mW/g

Maximum value of SAR (measured) = 10.5 mW/g

0 dB = 10.5 mW/g

Certificate No: D1900V2-5d032_Jan07

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D1900V2-5d032_Jan07

Page 6 of 6