Acciones de \mathbb{C}^{\times} , subvariedades lagrangianas y fibrados muy estables

Miguel González (ICMAT)

Geometry and Topology for the Future III UCM

18 de Junio, 2025

Acciones de \mathbb{C}^{\times}

- X variedad sobre \mathbb{C} (quasiproyectiva, normal).
- Acción de C[×]:

$$g_{\lambda}: X \to X$$
,

para cada $\lambda \in \mathbb{C}^{\times}$, con $g_{\lambda} \circ g_{\beta} = g_{\lambda\beta}$, $g_1 = \operatorname{Id}_{X}$.

• Si $q \in X$ y existe $p = \lim_{\lambda \to 0} \lambda q$, entonces p es un punto fijo.

Definición

El **conjunto atractor** de $p \in X^{\mathbb{C}^{\times}}$ es:

$$W_p^+ := \{ q \in X \mid p = \lim_{\lambda \to 0} \lambda q \} \subseteq X$$

 Asumiremos que ese límite siempre existe: X es semiproyectiva.

$$X = \bigsqcup_{p \in X^{\mathbb{C}^{\times}}} W_p^+.$$

Descomposición de Białynicki-Birula

- Descomposición estudiada por A. Białynicki-Birula (1973, Annals of Mathematics).
- **Propiedad 1:** Las piezas W_p^+ son **espacios afines**, localmente cerradas y forman un fibrado sobre cada componente de $X^{\mathbb{C}^{\times}}$.
- Sea $p \in X^{s\mathbb{C}^{\times}}$ un punto fijo liso. Tenemos $dg_{\lambda}: T_pX \to T_pX$ y por tanto \mathbb{C}^{\times} actúa en el tangente:

$$T_pX:=\bigoplus_{k\in\mathbb{Z}}T_p^kX$$

y se tiene

$$T_p^+ X := \bigoplus_{k>0} T_p^k X \simeq W_p^+$$

Propiedad 2:

$$H_m(X,\mathbb{Z}) = \bigoplus_{Y \in \pi_0(X^{\mathbb{C}^{\times}})} H_{m-d_Y}(Y,\mathbb{Z}).$$

Geometría simpléctica

- Forma simpléctica $\omega \in \Omega^2(X^s)$.
- Supongamos que $g_{\lambda}^*\omega = \lambda\omega$.
- Si $p \in X^{s\mathbb{C}^{\times}}$ y $v_i \in T_p^i X$, $v_j \in T_p^j X$, entonces

$$\lambda\omega(v_i, v_j) = \omega(dg_{\lambda}v_i, dg_{\lambda}v_j) = \lambda^{i+j}\omega(v_i, v_j).$$

- $\omega(v_i, v_j) = 0$ a menos que i + j = 1. En particular $\omega|_{T_p^+ X} = 0$.
- A través de $T_p^+ X \simeq W_p^+$ (y contando dimensiones):

Proposición

La subvariedad $W_p^+ \subseteq X$ es lagrangiana.

Ejemplo

- Sea Z una variedad proyectiva lisa sobre \mathbb{C} .
- $X := T^*Z$ tiene la forma simpléctica $\omega = d\theta$ natural.
- También una acción de \mathbb{C}^{\times} , y $g_{\lambda}^*\omega = \lambda\omega$.
- $X^{\mathbb{C}^{\times}} \simeq Z$ (sección cero).
- Para $z \in Z$, $W_z^+ = T_z^* Z$.

Fibrados vectoriales

- Pensemos en $Z = \mathcal{N}(n, d)$ el **espacio de móduli de fibrados vectoriales estables** de rango n y grado d coprimos sobre una curva proyectiva lisa C.
- Por tanto $X = T^*\mathcal{N}(n, d)$.
- Si $E \to C$ es un fibrado vectorial estable, ¿qué es $T_E^* \mathcal{N}(n,d)$?
- $T_E \mathcal{N}(n, d) =$ **deformaciones** de E.
- E localmente trivial \implies **pegar** deformaciones triviales \implies dar un cociclo de endomorfismos.
- $T_E \mathcal{N}(n, d) = H^1(C, \operatorname{End}(E)).$
- $T_E^*\mathcal{N}(n,d) = H^1(C,\operatorname{End}(E))^* = H^0(C,\operatorname{End}(E)\otimes T^*C)$ (dualidad de Serre).

Fibrados de Higgs

- Podemos agrandar $T^*\mathcal{N}(n,d)$ considerando pares (E,φ) con $E \to C$ un fibrado vectorial y $\varphi \in H^0(C,\operatorname{End}(E) \otimes T^*C)$ (fibrados de Higgs).
- Nuevo espacio de móduli: $\mathcal{M}(n,d) \supseteq T^*\mathcal{N}(n,d)$.
- Mantiene la forma simpléctica y la acción de \mathbb{C}^{\times} . También es semiproyectivo.
- Incluso (n, d) arbitrarios y para G-fibrados con G un grupo semisimple complejo $\rightsquigarrow \mathcal{M}(G)$.

Mirror symmetry

• Las lagrangianas de $\mathcal{M}(n, d)$ y $\mathcal{M}(G)$ son especialmente relevantes. **Dualidad:**

- Lagrangianas ↔ haces hiperholomorfos
- ¿Qué pasa con $W^+_{(E,\varphi)}$?
- El estudio depende del $(E, \varphi) \in \mathcal{M}(G)^{s\mathbb{C}^{\times}}$.

Definición equivalente a (Hausel-Hitchin, 2022)

Un fibrado de Higgs $(E, \varphi) \in \mathcal{M}^{s\mathbb{C}^{\times}}$ es **muy estable** si $W_{(E,\varphi)}^+ \cap h^{-1}(a)$ es finito para todo $a \in \mathcal{A}(G)$.

¿Qué se sabe sobre fibrados de Higgs muy estables?

Teorema (Laumon, 1988), (Pal, 2023)

En el caso $\varphi=0$ (luego E estable) los fibrados muy estables son un abierto denso en $\mathcal{N}(n,d)\subseteq\mathcal{M}(n,d)^{s\mathbb{C}^\times}$. El complemento es un divisor.

Teorema (Hausel-Hitchin, 2022)

Clasificación en $\mathcal{M}(n,d)$ cuando φ es regular en términos de un divisor asociado. Densos en cada componente de este tipo.

Teorema (Peón-Nieto, 2024, 2025+), (Pauly–Peón-Nieto, 2025+)

Identificación de los fibrados muy estables restantes en $\mathcal{M}(n, d)$.

Teorema (G., 2025)

Clasificación en $\mathcal{M}(G)$ cuando φ es regular en términos de un divisor asociado y la teoría de representaciones de G. Densos en algunas componentes de este tipo, en otras no hay.

¡¡Muchas gracias!!