LAFDS Session 3,4&5 Homework

Name: Rahma Farag Yehia

Group: 2

Question1:

Question 1

For vectors to be linearly dependent

$$\begin{bmatrix} m & 1 & 0 \\ 4 & -1 & -1 \\ 0 & 8 & m \end{bmatrix}$$

$$\det = m \left(-1 \times m + 8 \right) - 4 \left(m \right)$$

$$= -m^2 + 8m - 4m = -m^2 + 4m = 0$$

$$m^2 - 4m = 0$$

$$m \left(m - 4 \right) = 0 \quad \boxed{m = 0 \text{ or } m = 4}$$

Question2:

		5	0 1				(1)	5	40	Puesto
		5	0		12-1	1	0	0	0	0 16201
	0	0	- 1		FFL	->	0	0	-1	0
	-1	0	-1	9	13+	11	0	5	-1	0
·										
	1	5	07		13-	1	0	Į.	57	
	٥	0	0	11-5	14	0	0	(
14×1/5	0	0	-1	r3*	71	0	0	-]		
	0	1	-1/5			0	1	-1/2	5	
	11					9				
T	9	0	0		[O	0	0		lineo	yly
4+ 13/6	0	0	0		0	0	0		-	endent
-513	0	0	1	A	1 0	1	0	1	1	

Question3:

Question4:

Question5:

_(Question 5
1-	[1 3 5] Not in 10w echelon form [2 3 0] [1 0 0]
	[(0 0 0 0 reduced row echelon Form 0 () 2 0
3 -	[2 6 0] Not in row echelon form [0 2 0] [0 0 2]
4 -	[0 0 2 3 Not in rowechelon Form [0 0 0 1 0 1 2 0]
5-	[1 1 0 1] row echelon form [0 0 1 0]
6-	0 0 0 0 0 0 0 0 not in row echelon 0 0 0 0 0 Form

Question6:

a-

- A STATE OF THE PARTY OF THE P								
a)	T.	11	1		r - 7	1 1 1		
	1;	4	-1	7	3			
	1	Z	0	3	2			
	[0							
	ΓΙ	4	-1	1	137			
	0		1	1	-1	r	-17	
	0	3	3	3	1			
				1 3				
	1	0	-5	1-3	17	1	1-4	
	0	333	1	-				
	0	0	0	0	4	1	3 -3	12
For the			[3]	it	is in	The	span	OF
سادف	mns	of F			1. 0	1	. 1.	+
, the	Colun	us o	FA	are	unear	y dep	enten	
						-		
For	1	11 +	1	37	14:	ot	to Th	e span
, For	the	Veel	2		18 15	101	1	-1
4-			1,	J	Λ			
X2 A	of	(all	mns	01	7			

Question 6	Question7
b) From part a	5- 1 84, 6 32 12
[2] Can be represented	as to the soll
3	
	The two basis
7 1 + 9	From porta
-3 1 + 5 3	- 120 01 12 1
10-18-00 1018	1/. F 0 0 0 0
5 37 it is not in the	span
-> 3 it is not in the real of 1	span expresented as linear
(1) Combinettion of (alumns of A
C J Committee of C	grant ary of 1.

Question7:

a-

Question	Question 6
a) [2 0 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
r3-3rg	1 0 -3 -4 13-6rz 1 0 -3 -4 0 1 2 3 0 1 2 3 0 6 7 8 0 0 -5 -10
(3/.5	$ \begin{bmatrix} 1 & 0 & -3 & & -4 & & \sqrt{2} - 2\sqrt{3} & & 1 & 0 & 0 & 2 \\ 0 & 1 & 2 & & 3 & & & & & & & & $
X ₁	$=2$, $x_2=-1$, $x_3=2$

	70 1	5 -47	1 4	3 -2
	1 1 4	3 -2 -	2 7	1 -2
				1 2 7
13-2r1	1 4 3	-2 ry-4r2	0 1	17 14
	0 -1 -5	2 /3+12.	00	0 2
		-3 1426	1	451

Question8:

1	= 2 -1 37		0 17
	101	> 2	-1 3
73	0 2 -1	0	2 -1
	1 1 4)		147
	1011		0 1 7
W2-281	0 -3-1	-> 0	1 3
r3-11	(102-1)	0	2 -1
AN ALTERS	3 0 1 3	10	-3 -1)
	1017		-1017
v- 20	0 1 3	r3/-7	0 13
r3-212 r4+3r2	0 0 -7		001
14757	608		(008)
	,		

Question9:

Questiono.
Question 9 of noites up
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$(6-8b) - \frac{17}{27}(6-12b) = 0$ $\frac{20}{9} - \frac{4}{9}b = 0 \rightarrow 20-4b = 0$ $[b=5]$

Question10:

Question 10					en en	Questio
			,		1	
det (A-I) =0		-2-7	0	1		
		-5	3-7	a	=0	
		4	-2	-1-)	-	
1			7			
at $\lambda = 0$	- 2	0 1 3 a	1 5		1	
	-5	3 Q	=0			
		-2 -1				
-2(-3+	2a) +	I (10-	12) =	=0		
6-1	1a -	2 = 6	0			
		Ta=1				
			1 国主			
at $\lambda = 3$	r-5	0	1		-	
	1	0	- 1		3/1	1 = 14-
		-2				
-5 (20			1			
		10=0				
			X_ I s			
at $\lambda = -3$	- 1	0 1				
den a	-5	6	1 =0			
	4	-2 2	2			
(12 + 2a)	1+(10 - 24)	= 0			2184
12+2						
		[a=1]				
						16.8
[0-1]						1-355
1021						

Question11:

Question II

$$\begin{bmatrix}
1 & -6 \\
2 & -6
\end{bmatrix}$$

O Find eigen values of
$$\begin{bmatrix}
1 & -6 \\
2 & -6
\end{bmatrix}$$

$$\begin{bmatrix}
1-\lambda & -6 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
(1-\lambda) & (-6-\lambda) & +12 = 0 \\
-6 & -\lambda & +6\lambda & +\lambda^2 +12 = 0 \\
\lambda^2 + 5\lambda & +6 = 0
\end{bmatrix}$$

$$\begin{bmatrix}
\lambda & 1 = -2 \\
2 & -6-\lambda
\end{bmatrix}$$
Seign Vectors for A one eigen vectors for AK

$$\begin{bmatrix}
1 & -\lambda & -6 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

$$\begin{bmatrix}
x & 1 & -2 \\
2 & -6-\lambda
\end{bmatrix}$$

 $A = CDC^{-1}$ $C = \begin{bmatrix} 2 & 3/2 \\ 1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} -2^{k} & 0 \\ 0 & \lambda_2 \end{bmatrix}$ $C^{-1} = \begin{bmatrix} 1 & -3/2 \\ -1 & 2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 - 3/2 \end{bmatrix}$ $C^{-2} = \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}$ $A^{k} = \begin{bmatrix} 2 & 3/2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2^{k} & 0 \\ 0 & -3^{k} \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -2 & 4 \end{bmatrix}$

Practice with code

Question1:

```
import numpy as np
import pandas as pd
A = np.array([[1,2,3],[4,5,6],[7,8,9]])
B = np.array([[1,2],[3,4],[5,6]])
print("A: ")
print(A)
print("B:")
print(B)
def isSqu(mat):
  if mat.shape[0]==mat.shape[1]:
    return "Square Matrix"
  else:
    return "NOT Square Matrix"
print("A: " ,isSqu(A))
print("B: " ,isSqu(B))
         In [1]: import numpy as np
                  import pandas as pd
         In [2]: A = np.array([[1,2,3],[4,5,6],[7,8,9]])
                  B = np.array([[1,2],[3,4],[5,6]])
                  print("A: ")
                  print(A)
                  print("B:")
                  print(B)
                  Α:
                  [[1 2 3]
                   [4 5 6]
                   [7 8 9]]
                  В:
                  [[1 2]
                   [3 4]
                   [5 6]]
         In [3]: def isSqu(mat):
                      if mat.shape[0]==mat.shape[1]:
                           return "Square Matrix"
                           return "NOT Square Matrix"
         In [4]: print("A: " ,isSqu(A))
print("B: " ,isSqu(B))
                  A: Square Matrix
```

B: NOT Square Matrix

Question2:

```
def props(mat):
  #use previous isSqu function
  sq = isSqu(mat)
  print(sq) #print is square or not
  rank = np.linalg.matrix_rank(mat) #calculate the rank
  print("The rank of the matrix is ",rank)
  #calculate the determinate if it is a square matrix
  if(isSqu(mat) == "Square Matrix"):
    print("The determinant of the matrix is ",np.linalg.det(mat))
  else:
    print("Not square matrix can't calculate determinant")
  #check if rank = number of rows
  if rank == mat.shape[0]:
    return 1
  else:
    return 0
print(A)
print(props(A))
print(B)
print(props(B))
```

```
In [10]: def props(mat):
             #use previous isSqu function
             sq = isSqu(mat)
             print(sq) #print is square or not
             rank = np.linalg.matrix rank(mat) #calculate the rank
             print("The rank of the matrix is ",rank)
             #calculate the determinate if it is a square matrix
             if(isSqu(mat) == "Square Matrix"):
                 print("The determinant of the matrix is ",np.linalg.det(mat))
                 print("Not square matrix can't calculate determinant")
             #check if rank = number of rows
             if rank == mat.shape[0]:
                 return 1
             else:
                 return 0
In [13]: print(A)
         props(A)
         [[1 2 3]
          [4 5 6]
          [7 8 9]]
         Square Matrix
         The rank of the matrix is 2
         The determinant of the matrix is -9.51619735392994e-16
Out[13]: 0
In [14]: print(B)
         props(B)
         [[1 2]
          [3 4]
          [5 6]]
         NOT Square Matrix
         The rank of the matrix is 2
         Not square matrix can't calculate determinant
Out[14]: 0
```

Question3:

System1:

```
"""let sunflowers -> S , Roses -> R , Daises -> D
1.50 \text{ S} + 5.75 \text{ R} + 2.6 \text{ D} = 589.5
   S + R + D = 200
        -R + D = 20
******
A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
X = np.array([['S'], ['R'], ['D']])
B = np.array([[589.5], [200], [20]], dtype='float64')
#solve Ax=B to get x
x = np.linalg.solve(A, B)
print(x)
x.dtype
print("A:")
print(A)
print(props(A))
print("*****")
print("B:")
print(B)
print(props(B))
print("*****")
print("x:")
print(x)
print(props(x))
print("*****")
 In [10]: A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
           X = np.array([['S'], ['R'], ['D']])
           B = np.array([[589.5], [200], [20]], dtype='float64')
 In [11]: #solve Ax=B to get x
           x = np.linalg.solve(A, B)
           x.dtype
 Out[11]: dtype('float64')
```

```
In [12]: print("A:")
         print(A)
         print(props(A))
         print("*****")
         print("B:")
         print(B)
         print(props(B))
         print("*****")
         print("x:")
         print(x)
         print(props(x))
         print("*****")
         Α:
         [[ 1.5
                  5.75 2.6 ]
          [ 1.
                  1.
                        1. ]
                        1. ]]
          [ 0.
                 -1.
         Square Matrix
         The rank of the matrix is 3
         The determinant of the matrix is -5.35
         *****
         В:
         [[589.5]
          [200.]
          [ 20. ]]
         NOT Square Matrix
         The rank of the matrix is 1
         Not square matrix can't calculate determinant
         *****
         х:
         [[80.]
          [50.]
          [70.]]
         NOT Square Matrix
         The rank of the matrix is 1
         Not square matrix can't calculate determinant
         0
         *****
```

System2:

```
"""let potatoes -> p , chicken -> c, oil-> o
#sold is positive, buy is negative
2p + 1c - 3o = 0 #zero profit
4p + 2c - 60 = 0
1p - 1c +1o = 0"""
A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
X = np.array([['p'],['c'],['o']])
B = np.array([[0],[0],[0]], dtype="float64")
#solve Ax=B to get x
x = np.linalg.solve(A, B)
x.dtype
print("A:")
print(A)
print(props(A))
print("*****")
print("B:")
print(B)
print(props(B))
  In [38]: A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
X = np.array([['p'],['c'],['o']])
B = np.array([[0],[0],[0]], dtype="float64")
  In [39]: \#solve\ Ax=B\ to\ get\ x
             x = np.linalg.solve(A, B)
             x.dtype
             LinAlgError
                                                              Traceback (most recent call last)
             <ipython-input-39-cc46d9e35350> in <module>
                   1 #solve Ax=B to get x
             ---> 2 x = np.linalg.solve(A, B)
                   3 x.dtype
             <__array_function__ internals> in solve(*args, **kwargs)
             ~/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py in solve(a, b)
391     signature = 'DD->D' if isComplexType(t) else 'dd->d'
392     extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
--> 393     r = gufunc(a, b, signature=signature, extobj=extobj)
                           return wrap(r.astype(result_t, copy=False))
             ~/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_singular(err, flag)
                   86
                   87 def _raise_linalgerror_singular(err, flag):
88     raise LinAlgError("Singular matrix")
                   90 def _raise_linalgerror_nonposdef(err, flag):
             LinAlgError: Singular matrix
```

Since row 1 and 2 in matrix A are dependent it gives Singular matrix error (det(A) = 0)

```
In [40]: print("A:")
         print(A)
         print(props(A))
         print("*****")
         print("B:")
         print(B)
         print(props(B))
         Α:
         [[ 2. 1. -3.]
         [ 4. 2. -6.]
         [ 1. -1. 1.]]
         Square Matrix
         The rank of the matrix is 2
         The determinant of the matrix is 0.0
         *****
         В:
         [[0.]
         [0.]
         [0.]]
         NOT Square Matrix
         The rank of the matrix is 0
         Not square matrix can't calculate determinant
```

Question 4:

```
def reducerow(C, pivotrow, targetrow, pivot):
  #check if pivot is not already 1 or zero since we cant divide by zero
  if (C[pivotrow][pivot] != 1) and (C[pivotrow][pivot] != 0):
     C[pivotrow] = C[pivotrow]/C[pivotrow][pivot]
  target_elem = C[targetrow][pivot]
  #check that the target element is not already 0
  if target_elem !=0:
     #subtract targetrow from element*pivotrow to make the element zero
     C[targetrow] = C[targetrow] - (target_elem*C[pivotrow])
C = np.array([[2,0,-6],[0,1,2],[3,6,-2]])
print("Before")
print(C)
reducerow(C, 0, 2, 0)
print("after")
print(C)
 In [50]: def reducerow(C, pivotrow, targetrow, pivot):
               #check if pivot is not already 1 or zero since we cant divide by zero
if (C[pivotrow][pivot] != 1) and (C[pivotrow][pivot] != 0):
                   C[pivotrow] = C[pivotrow]/C[pivotrow][pivot]
               target_elem = C[targetrow][pivot]
               #check that the target element is not already 0
               if target elem !=0:
                   #subtract targetrow from element*pivotrow to make the element zero
                   C[targetrow] = C[targetrow] - (target_elem*C[pivotrow])
 In [51]: C = np.array([[2,0,-6],[0,1,2],[3,6,-2]])
           print("Before")
           print(C)
           reducerow(C, 0, 2, 0)
           print("after")
           print(C)
           Before
           [[ 2 0 -6]
[ 0 1 2]
            [ 3 6 -2]]
           after
           [[ 1 0 -3]
            [0 1 2]
            [0 6 7]]
```

Question5:

```
def SolveLinearSystem(A,B):
  C = np.concatenate((A,B), axis = 1)
  C.dtype = "float64"
  #start with pivot 0
  pivot = 0
  for pivotrow in range(A.shape[0]):
    #if pivotelement = 0 swap rows with the first row that doesn't have a 0 in pivotelement index
    if C[pivotrow][pivot] == 0:
      temprow = C[pivotrow]
      nextrow = pivotrow+1
      while(nextrow < A.shape[0]):
         if(C[nextrow][pivot] !=0):
           C[pivotrow] = C[nextrow]
           C[nextrow] = temprow
           #swap done -> exit the loop
           break
         else:
           #check next row
           nextrow = nextrow + 1
    #the target rows are all rows except pivot row
    targetrows = list(range(A.shape[0]))
    del targetrows[pivotrow] # remove index of pivot row from list
    for targetrow in targetrows: #iterate over all target rows
       reducerow(C, pivotrow, targetrow, pivot) #reduce target row
    pivot = pivot+1 #increase the pivot
  print("After row reduction")
  print(C)
  #summation of column elements of A
  return np.sum(C[:,0:A.shape[1]])
#Test code
A = np.array([[2,0,-6],[0,1,2],[3,6,-2]], dtype = "float64")
print("A:")
print(A)
B = np.array([[-8],[3],[-4]], dtype= "float64")
print("B:")
print(B)
SolveLinearSystem(A,B)
```

```
In [130]: def SolveLinearSystem(A,B):
               C = np.concatenate((A,B), axis = 1)
               C.dtype = "float64"
               #start with pivot 0
               pivot = 0
               for pivotrow in range(A.shape[0]):
                   #if pivotelement = \theta swap rows with the first row that doesn't have a \theta in pivotelement index
                   if C[pivotrow][pivot] == 0:
                       temprow = C[pivotrow]
                       nextrow = pivotrow+1
                       while(nextrow < A.shape[0]):</pre>
                            if(C[nextrow][pivot] !=0):
                                C[pivotrow] = C[nextrow]
                                C[nextrow] = temprow
                                #swap done -> exit the loop
                                break
                           else:
                                #check next row
                                nextrow = nextrow + 1
                   #the target rows are all rows except pivot row
                   targetrows = list(range(A.shape[0]))
                   del targetrows[pivotrow] # remove index of pivot row from list
                   for targetrow in targetrows: #iterate over all target rows
                       reducerow(C, pivotrow, targetrow, pivot) #reduce target row
                   pivot = pivot+1 #increase the pivot
               print("After row reduction")
               print(C)
               #summation of column elements of A
               return np.sum(C[:,0:A.shape[1]])
           #Test code
           A = np.array([[2,0,-6],[0,1,2],[3,6,-2]], dtype = "float64")
           print("A:")
           print(A)
           B = np.array([[-8],[3],[-4]], dtype= "float64")
           print("B:")
           print(B)
           SolveLinearSystem(A,B)
           A:
          [[ 2. 0. -6.]
[ 0. 1. 2.]
[ 3. 6. -2.]]
           B:
           [[-8.]]
            [ 3.]
            [-4.]]
```

After row reduction [[1. 0. 0. 2.] [0. 1. 0. -1.] [-0. -0. 1. 2.]]

Out[130]: 3.0

Question6:

```
#Solve System 1
A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
B = np.array([[589.5], [200], [20]], dtype='float64')
x = np.linalg.solve(A, B) #check with built in function
print("Built in function solution")
print(x)
SolveLinearSystem(A,B)
```

```
#Solve System 2
A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
B = np.array([[0],[0],[0]], dtype="float64")
#x = np.linalg.solve(A, B) ->Singular matrix error
SolveLinearSystem(A,B)
```

```
In [132]: #Solve System 2
             A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64") \\ B = np.array([[0], [0], [0]], dtype= "float64") 
            #x = np.linalg.solve(A, B) ->Singular matrix error
            SolveLinearSystem(A,B)
            After row reduction
                                           -0.66666667 0.
                              Θ.
            [[ 1.
                                           -1.66666667 0.
             [ 0.
                              1.
             [ 0.
                                           Θ.
                                                           Θ.
                                                                       11
Out[132]: -0.333333333333333333
```

Question7:

For System1: Sum = 3 we were able to reduce A to the identity matrix form

The solution is: [80 50 70]

which is the last column of the joined matrix AB after row reduction

For System2: Sum < 3, This is because we couldn't reduce the matrix to the identity form as two rows are dependent on each other.

Currently there are infinite number of solutions, and we have a free variable

either we assume the last variable as an unknown variable and get the other two with respect to it or we get another equation that is not dependent on the equations we already have

if we assume x3 = k, we can get x1 = 0.6667x3 and x2 = 1.66667x3 where $x3 \to \text{oil price}$, $x1 \to \text{potatoes price}$, $x2 \to \text{chicken price}$

Question 8:

System 1:

```
In [22]: #System1
    A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
    B = np.array([[589.5], [200], [20]], dtype='float64')

x = np.linalg.solve(A, B) # Solves a full-rank system of linear equations ax = b.
print(x)

np.allclose(np.dot(A, x), B) # Returns True if two arrays are element-wise equal within atolerance.

[[80.]
[50.]
[70.]]
Out[22]: True
```

Same as my Solution

System2:

Singular matrix error

Question 9:

```
#System 1
A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1,1]], dtype='float64')

#to get inverse of A we put B as identity matrix
B = np.identity(3, dtype="float64")

SolveLinearSystem(A,B)
```

```
In [24]: #System 1
         A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
         #to get inverse of A we put B as identity matrix
         B = np.identity(3, dtype="float64")
         SolveLinearSystem(A,B)
         After row reduction
         [[ 1.
                       0.
                                   Θ.
                                              -0.37383178 1.56074766 -0.58878505]
          [-0.
                                   Θ.
                                              0.18691589 -0.28037383 -0.20560748]
                        1.
          [ 0.
                       Θ.
                                   1.
                                               0.18691589 -0.28037383 0.79439252]]
Out[24]: 3.0
```

```
#System 2
A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
#to get inverse of A we put B as identity matrix
B = np.identity(3, dtype="float64")
```

SolveLinearSystem(A,B)

```
In [139]: #System 2
          A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
          #to get inverse of A we put B as identity matrix
          B = np.identity(3, dtype="float64")
          SolveLinearSystem(A,B)
          After row reduction
                                    -0.66666667 0.33333333 0.
                         0.
                                                                         0.333333331
          [[ 1.
                                    -1.66666667 0.33333333 0.
                                                                         -0.66666667]
           [ 0.
                         1.
           [ 0.
                         Θ.
                                     Θ.
                                                 Θ.
                                                              Θ.
                                                                          Θ.
                                                                                    ]]
Out[139]: -0.333333333333333333
```

Question 10:

```
#System1
A = np.array([[1.5, 5.75, 2.6],[1, 1, 1], [0, -1, 1]], dtype='float64')
np.linalg.inv(A)
```

```
#System2
A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
np.linalg.inv(A)
```

```
In [142]: #System2
            A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
            np.linalg.inv(A)
                                                               Traceback (most recent call last)
            <ipython-input-142-e0ff62dc8d35> in <module</pre>
                   2 A = np.array([[2, 1, -3], [4, 2, -6], [1, -1, 1]], dtype= "float64")
            ----> 4 np.linalg.inv(A)
            <__array_function__ internals> in inv(*args, **kwargs)
            ~/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py in inv(a)
                           signature = 'D->D' if isComplexType(t) else 'd->d'
extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
                 543
                 544
                 545
                           return wrap(ainv.astype(result t, copy=False))
                 546
                 547
            ~/anaconda3/lib/python3.8/site-packages/numpy/linalg/linalg.py in _raise_linalgerror_singular(err, flag)
                  87 def _raise_linalgerror_singular(err, flag):
88     raise_LinAlgError("Singular matrix")
             ---> 88
                  90 def _raise_linalgerror_nonposdef(err, flag):
            LinAlgError: Singular matrix
```