2/2

-1/2

-1/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas) :
Caller	
Tom	
	□0 □1 □2 □3 □4 □5 □6 ■7 □8 □9
	□0 ■1 □2 □3 □4 □5 □6 □7 □8 □9
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.	
Q.2 Un mot est:	
un ensemble 🌘 un ensemble ordonne	é □ un ensemble fini ⊠ une suite finie
Q.3 Si L est un language récursivement énumérable alors L est un langage récursif.	
∑ faux @ vrai	
Q.4 Soit le langage $L = \{a, b\}^*$.	
	$f(L) \cap Pref(L) = \emptyset$ \square $Suff(L) \subseteq Pref(L)$ f(L) = Pref(L)
Q.5 Que vaut <i>Pref</i> ({ <i>ab</i> , <i>c</i> }):	
	$\square \{b, \varepsilon\} \qquad \square \{a, b, c\} \qquad \square \emptyset$
Q.6 Que vaut $(\{a\}\{b\}^*\{a\}^*) \cap (\{a\}^*\{b\}^*\{a\})$	
	$\{a\} \cup \{a\}\{b\}^*\{a\}$ $[a]\{b\}^* \cup \{b\}^*$ $[a]\{b\}^* \cup \{b\}^*$
Q.7 Pour toute expression rationnelle e , on a $\varepsilon e \equiv e$	$e\varepsilon\equiv e.$
🚆 vrai	☐ faux
Q.8 Pour toutes expressions rationnelles e, f , on a	$(ef)^*e \equiv e(fe)^*.$
vrai	☐ faux
Q.9 Un langage quelconque □ peut avoir une intersection non vide avec son complémentaire □ peut n'inclure aucun langage dénoté par une expression rationnelle □ contient toujours (⊇) un langage rationnel □ peut être indénombrable	
Q.10 Soit Σ un alphabet. Pour tout $A, L_1, L_2 \subseteq \Sigma^*$,	on a $A \cdot L_1 = A \cdot L_2 \implies L_1 = L_2$.
aux faux	□ vrai
Q.11 L'expression Perl '([-+]*[0-9A-F]+[-+/*])	*[-+]*[0-9A-F]+' n'engendre pas :
☐ 'DEADBEEF' ■ '(20+3)*3' [☐ '-+-1+-+-2' ☐ '0+1+2+3+4+5+7+8+9'

2/2

2/2

2/2

Q.12 Pour un langage rationnel donné il existe un unique automate fini non-déterministe à transitions spontanées qui reconnaît ce langage

Q.14

L'état 3 est
accessible
fini
co-accessible

Quel automate reconnaît le langage décrit par l'expression $((ba)^*b)^*$

☐ Aucune de ces réponses n'est correcte.

Q.15 $\xrightarrow{a} \xrightarrow{\varepsilon} \xrightarrow{b} \xrightarrow{\varepsilon} \xrightarrow{c}$

Quel est le résultat d'une élimination arrière des transitions spontanées?

Q.16 & Parmi les 3 automates suivants, lesquels sont équivalents?

2/2	 Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel Si un langage ne le vérifie pas, alors il n'est pas rationnel Si un langage le vérifie, alors il est rationnel Q.19 Si L₁ ⊆ L ⊆ L₂, alors L est rationnel si : 	
2/2	\square L_1, L_2 sont rationnels \square L_2 est rationnel \square L_1 est rationnel \square L_1 est rationnel	
2/2	 Quelle séquence d'algorithmes teste l'appartenance d'un mot au langage d'une expression rationnelle? Thompson, déterminisation, élimination des transitions spontanées, évaluation. Thompson, élimination des transitions spontanées, déterminisation, minimisation, évaluation. Thompson, déterminisation, Brzozowski-McCluskey. Thompson, déterminimisation, évaluation. 	
	Q.21 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$	
2/2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Q.22 & Quelle(s) opération(s) préserve(nt) la rationnalité?	
2/2	Transpose Sous – mot de Pref Suff de Fact Aucune de ces réponses n'est correcte.	
	Q.23 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.	
2/2	\square Rec $\not\subseteq$ Rat \square Rec \supseteq Rat \square Rec \supseteq Rat \square Rec \subseteq Rat	
	Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?	
0/2	 ☑ Intersection ☑ Complémentaire ☑ Différence ☑ Union ☑ Aucune de ces réponses n'est correcte. 	
	Q.25 Si L_1 , L_2 sont rationnels, alors:	
2/2		
	Q.26 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il	
2/2	☐ accepte un langage infini ☐ est déterministe ☐ a des transitions spontanées ☐ accepte le mot vide	
	Q.27 On peut tester si un automate déterministe reconnaît un langage non vide.	
2/2	 □ Non □ Oui □ Seulement si le langage n'est pas rationnel □ Cette question n'a pas de sens 	

+85/4/53+

Q.28 Quel mot reconnait le produit de ces automates?

 $(bab)^{333}$ $(bab)^{666666}$

 \Box $(bab)^{22}$ \Box $(bab)^{4444}$

Q.29 Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.

0/2

☐ faux en temps infini

□ vrai en temps constant□ faux en temps fini

vrai en temps fini

2/2

Q.30 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?

2/2

☐ Il n'existe pas.

□ 6

7

4

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

2/2

□ Il existe un DFA qui reconnaisse 𝒫 □ Il existe un ε-NFA qui reconnaisse 𝒫

 \mathcal{P} ne vérifie pas le lemme de pompage

☐ Il existe un NFA qui reconnaisse P

Q.32 🕏 Quels états peuvent être fusionnés sans changer le langage reconnu.

1/2

1 avec 2

☐ 2 avec 4

☐ 0 avec 1 et avec 2

☐ 1 avec 3

☐ Aucune de ces réponses n'est correcte.

Q.33

Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :

2/2

 \Box $(a+b+c)^*$

a,b

a*h*a

 $\Box a^* + b^* + c^*$

☐ (abc)*

Q.34 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de b

2/2

Q.35

2/2

0

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

- $(ab^+ + a + b^+)(a(a + b^+))^*$

Sur $\{a,b\}$, quel est le complémentaire de . Q.36

Fin de l'épreuve.

+85/6/51+