TEST THREE ANSWERS

1 Questions

1.1 Question One

Let G be the group generated by distinct symbols a, b and their symbolic inverses a^{-1}, b^{-1} . Let H be the commutator subgroup of G. Which diagram is generated by aH and bH?

We define a diagram of a group G with generators $\{g_i\}$ as a picture that consists of points representing distinct elements of G and lines connecting points if the two underlying elements x, y satisfy $xg_i = y$ for some generator g_i .

Line lengths can be re-scaled to make a prettier picture (if deemed necessary).

Answer: A 2D integer lattice

We note $aba^{-1}b^{-1} \in H$, thus abH = baH.

Every element in G/H has the form a^nb^mH for $n, m \in \mathbb{Z}$.

We can define a group homomorphism $\phi: G/H \to \mathbb{R}^2$ as $\phi(aH) = (1,0)$ and $\phi(bH) = (0,1)$.

The image of G/H in \mathbb{R}^2 under ϕ forms an integer lattice.

1.2 Question Two

Let $\mathbb{X} := \text{All subgroups of } \mathbb{Z}$.

Define a map $\alpha : \mathbb{Z} \times \mathbb{X} \to \mathbb{X}$ as $(g, H) \mapsto$ the smallest subgroup containing g and H. Is this a group action?

Answer: NO

Group actions must be compatible with the group operation.

Consider $\alpha(3, \alpha(5, 8\mathbb{Z})) = \alpha(3, \mathbb{Z}) = \mathbb{Z}$.

However, $\alpha(3+5,8\mathbb{Z})=8\mathbb{Z}$.

Thus α is not a group action.

1.3 Question Three

Let X :=

 $\{<(1,2,3,4,5)>,<(1,2,3,5,4)>,<(1,2,4,3,5)>,<(1,2,4,5,3)>,<(1,2,5,3,4)>,<(1,2,5,4,3)>\}$ be a set of cyclic groups H_i .

Define an action $\beta: S_5 \times \mathbb{X} \to \mathbb{X}$ as $(\sigma, H_i) \mapsto \sigma^{-1} H_i \sigma$. Recall $\sigma^{-1} H \sigma := \{\sigma^{-1} h \sigma | h \in H\}$.

What is the order of $\bigcap_{i=1}^{6} \operatorname{Stab}(H_i)$?

Answer: 1 We claim $\bigcap_{i=1}^{6} H_i$ is a normal subgroup.

Let h be an element in $\bigcap_{i=1}^{6} H_i$, then $h^{-1}H_ih = H_i$.

Let g be any element in S_5 , it suffices to show ghg^{-1} stabilizes all H_i .

Let
$$g^{-1}H_ig = H_j$$
.
Observe, $gh^{-1}g^{-1}H_ighg^{-1} = gh^{-1}H_jhg^{-1} = gH_jg^{-1} = H_i$.

Observe that the order of $\bigcap_{i=1}^{6} H_i$ is at most 20.

This can be computed with SageMath:

```
G = CyclicPermutationGroup(5)
g = G.gens()[0]
S = SymmetricGroup(5)

stab = []
for h in S:
   if PermutationGroup([h^-1*g*h]) == G:
       stab.append(h)
print(len(stab))
```

Out : '20'

Lemma: The only two normal subgroups of S_5 are A_5 and the trivial group. With the computed bound, we have $\bigcap_{i=1}^{6} H_i = \{e\}.$

1.4 Question Four

Let
$$\mathbb{X} := \left(\underbrace{S_5 \times S_5 \times \cdots \times S_5}_{\text{5 times}}\right)$$
.
Define $\mathbb{X}_{\tau} := \left\{ (\sigma_1, \sigma_2, \dots, \sigma_5) \in \mathbb{X} \middle| \sigma_1 \sigma_2 \dots \sigma_5 = \tau \right\}$ for each $\tau \in S_5$.

Define an action $\delta: (\mathbb{Z}/5\mathbb{Z}) \times \mathbb{X} \to \mathbb{X}$ as $(1, (\sigma_1, \sigma_2, \dots, \sigma_5)) \mapsto (\sigma_2, \sigma_3, \dots, \sigma_1)$. For how many values of τ is \mathbb{X}_{τ} invariant under the above action?

Answer: 1

Let τ be any non-identity element of S_5 .

There are non-trivial elements $\sigma_1, \sigma_2 \in S_5$ such that $\sigma_1 \sigma_2 = \tau$. Observe $(\sigma_1, e, e, e, \sigma_2) \in \mathbb{X}_{\tau}$.

We note that $(1, (\sigma_1, e, e, e, \sigma_2)) = (e, e, e, \sigma_2, \sigma_1)$ is not in \mathbb{X}_{τ} as $Z(S_5) = \{e\}$.

 \mathbb{X}_e is invariant under this action.

If $(\sigma_1, \sigma_2, \dots, \sigma_5) \in \mathbb{X}_e$, then $\sigma_1 \sigma_2 \dots \sigma_5 = e$. Observe $\sigma_2 \sigma_3 \dots \sigma_1 = \sigma_1^{-1}(\sigma_1 \sigma_2 \dots \sigma_5) \sigma_1 = \sigma_1^{-1} e \sigma_1 = e$. Thus $(\sigma_2, \sigma_3, \dots, \sigma_1) \in \mathbb{X}_e$.

1.5 Question Five

Let X be the set of all subgroups of S_6 .

Define a group action $\psi : Aut(S_6) \times \mathbb{X} \to \mathbb{X}$ as $(\phi, H) \mapsto \phi(H)$.

What is the order of $Stab(A_6)$?

Answer: 1440

Lemma: A_6 is the only subgroup of order 360 in S_5 .

Suppose there was another subgroup ${\cal H}$ of the same order.

H has an index of 2, thus H is a normal subgroup.

Since the only normal subgroups of S_6 are A_6 and $\{e\}$, H must be A_6 .

Every automorphism ϕ is a bijection, thus $\phi(H)$ has the same order as H.

Applying the above lemma, $Stab(A_6) = Aut(S_6)$.

We can compute the order of $Aut(S_6)$ by interfacing with GAP:

print(gap(''Size(AutomorphismGroup(SymmetricGroup(6)))''))

Out: '1440'

Note that there are 720 inner automorphisms but 1440 automorphisms in total.

Can you construct an automorphism that is not an inner automorphism?¹

Interestingly, S_6 and S_2 are the only symmetric groups with automorphisms that are not inner.

¹It is related to the action defined in question three.