

Sumário

1 Introdução

Explicar o banco de dados(correção do que fiz na analise 1)

2 Referencial Teórico

2.1 Análise Descritiva Univariada

2.2 Frequência Relativa

A frequência relativa é utilizada para a comparação entre classes de uma variável categórica com c categorias, ou para comparar uma mesma categoria em diferentes estudos.

A frequência relativa da categoria j é dada por:

$$f_j = \frac{n_j}{n}$$

Com:

- j = 1, ..., c
- $n_j = {
 m n\'umero}$ de observações da categoria j
- n= número total de observações

Geralmente, a frequência relativa é utilizada em porcentagem, dada por:

$$100 \times f_j$$

2.3 Média

A média é a soma das observações dividida pelo número total delas, dada pela fórmula:

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Com:

- i = 1, 2, ..., n
- n= número total de observações

2.4 Mediana

Sejam as n observações de um conjunto de dados $X=X_{(1)},X_{(2)},\dots,X_{(n)}$ de determinada variável ordenadas de forma crescente. A mediana do conjunto de dados X é o valor que deixa metade das observações abaixo dela e metade dos dados acima

Com isso, pode-se calcular a mediana da seguinte forma:

$$med(X) = egin{cases} X_{rac{n+1}{2}}, \text{para n impar} \\ \frac{X_{rac{n}{2}} + X_{rac{n}{2}+1}}{2}, \text{para n par} \end{cases}$$

2.5 Quartis

Os quartis são separatrizes que dividem o conjunto de dados em quatro partes iguais. O primeiro quartil (ou inferior) delimita os 25% menores valores, o segundo representa a mediana, e o terceiro delimita os 25% maiores valores. Inicialmente deve-se calcular a posição do quartil:

• Posição do primeiro quartil P_1 :

$$P_1 = \frac{n+1}{4}$$

• Posição da mediana (segundo quartil) P_2 :

$$P_2 = \frac{n+1}{2}$$

• Posição do terceiro quartil P_3 :

$$P_3 = \frac{3 \times (n+1)}{4}$$

Com n sendo o tamanho da amostra. Dessa forma, $X_{(P_i)}$ é o valor do i-ésimo quartil, onde $X_{(j)}$ representa a j-ésima observação dos dados ordenados.

Se o cálculo da posição resultar em uma fração, deve-se fazer a média entre o valor que está na posição do inteiro anterior e do seguinte ao da posição.

2.6 Variância

A variância é uma medida que avalia o quanto os dados estão dispersos em relação à média, em uma escala ao quadrado da escala dos dados.

2.6.1 Variância Populacional

Para uma população, a variância é dada por:

$$\sigma^2 = \frac{\sum\limits_{i=1}^{N} \left(X_i - \mu\right)^2}{N}$$

Com:

- $X_i=i$ -ésima observação da população
- $\mu=$ média populacional
- ${\cal N}=$ tamanho da população

2.6.2 Variância Amostral

Para uma amostra, a variância é dada por:

$$S^2 = \frac{\sum\limits_{i=1}^n \left(X_i - \bar{X}\right)^2}{n-1}$$

Com:

- $X_i=$ i-ésima observação da amostra
- $ar{X}=$ média amostral
- n = tamanho da amostra

2.7 Desvio Padrão

O desvio padrão é a raiz quadrada da variância. Ele avalia o quanto os dados estão dispersos em relação à média.

2.7.1 Desvio Padrão Populacional

Para uma população, o desvio padrão é dado por:

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}\left(X_{i} - \mu\right)^{2}}{N}}$$

Com:

• $X_i=$ i-ésima observação da população

- $\mu = {
 m m\'edia}$ populacional
- N= tamanho da população

2.7.2 Desvio Padrão Amostral

Para uma amostra, o desvio padrão é dado por:

$$S = \sqrt{\frac{\sum\limits_{i=1}^{n} \left(X_i - \bar{X}\right)^2}{n-1}}$$

Com:

- $X_i=$ i-ésima observação da amostra
- $ar{X}=$ média amostral
- n = tamanho da amostra

2.8 Coeficiente de Variação

O coeficiente de variação fornece a dispersão dos dados em relação à média. Quanto menor for o seu valor, mais homogêneos serão os dados. O coeficiente de variação é considerado baixo (apontando um conjunto de dados homogêneo) quando for menor ou igual a 25%. Ele é dado pela fórmula:

$$C_V = \frac{S}{\bar{X}} \times 100$$

Com:

- ullet S= desvio padrão amostral
- $\bar{X}=$ média amostral

2.9 Coeficiente de Assimetria

O coeficiente de assimetria quantifica a simetria dos dados. Um valor positivo indica que os dados estão concentrados à esquerda em sua função de distribuição, enquanto um valor negativo indica maior concentração à direita. A fórmula é:

$$C_{Assimetria} = \frac{1}{n} \times \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{S} \right)^3$$

Com: