MATH 307: Individual Homework 23

John Mays

05/05/21, Dr. Guo

Problem 1

$$A = \begin{pmatrix} -2 & 1 \\ -1 & 2 \end{pmatrix}, b = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$x_1 = \frac{\det(b|a_2)}{\det(A)} = \frac{(3)(2) - (1)(3)}{(-2)(2) - (1)(-1)} = \frac{3}{-3} = -1$$

$$x_2 = \frac{\det(a_1|b)}{\det(A)} = \frac{(-2)(3) - (3)(-1)}{(-2)(2) - (1)(-1)} = \frac{-3}{-3} = 1$$

Check:

$$a_1x = -2x_1 + x_2 = -2(-1) + (1) = 3$$

 $a_2x = -x_1 + 2x_2 = -(-1) + 2(1) = 3$

Therefore
$$x = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Problem 2

W.T.S: Ax = 0 has nontrivial solutions $\implies 0$ is an eigenvalue of A.

If there exist an x such that Ax = 0, then $\lambda x = 0$ is true. And since the corresponding x is nonzero, λ must be 0.

W.T.S: 0 is an eigenvalue of A. $\implies Ax = 0$ has nontrivial solutions.

Assume Ax = 0 does not have nontrivial solutions. If this is true, then $\lambda x = 0$ also has no solutions (if λ could be zero, that would be a solution.

Therefore Ax = 0 does not have nontrivial solutions $\implies \lambda \neq 0$.

Contrapositively, $\lambda = 0 \implies$ that Ax = 0 does have nontrivial solutions.

Therefore we can say that Ax = 0 has nontrivial solutions $\iff 0$ is an eigenvalue of A.

W.T.S: The determinant of $A = 0 \implies 0$ is an eigenvalue of A.

 $\det(A) = \lambda_1 \lambda_2 \dots \lambda_i \dots \lambda_n.$

If det(A) = 0, then one or more of the terms in the product must also be 0. Therefore $det(A) = 0 \implies 0$ is an eigenvalue of A.

W.T.S: 0 is an eigenvalue of $A \implies$ that the determinant of A = 0

 $\det(A) = \lambda_1 \lambda_2 \dots \lambda_i \dots \lambda_n.$

If any $\lambda_i = 0$, then $\det(A)$ must also be 0.

Therefore 0 is an eigenvalue of $A \implies \det(A) = 0$. Therefore we can now say The determinant of $A = 0 \iff 0$ is an eigen

Therefore we can now say The determinant of $A=0\iff 0$ is an eigenvalue of A

Combining with our first iff. claim, we can now say that: The determinant of $A = 0 \iff 0$ is an eigenvalue of $A \iff Ax = 0$ has nontrivial solutions.

Problem 3

From **Homework 22**, we have proved that full rank \implies the matrix is invertible. Since A is of full rank, A is invertible.

Therefore if we take the normal equation:

$$A^*Ax = A^*b \to (A^*A)^{-1}(A^*A)x = (A^*A)^{-1}A^*b \to x = (A^*A)^{-1}A^*b$$

we can conclude that x is unique for any given A and b because it is solely determined by A and b.