O. Señal Coseno Con Ka. Am = 1

- Datos generados en Ghu radio
 - · frecuencia del mensaje = 1 kHz
 - · Frecuencia de la portadora = 50 M HZ
 - $K_0 = 1$; $A_m = 1$; $A_c = 0.125$

-+ OSCI lOSCOPIO

- · Fm=1 KHZ
- · Ac = 24.8 mV
- $\mathcal{M} = \frac{\text{max}\left\{\Delta R(t)\right\}}{A_c} = \frac{20.9 \text{mV}}{24.8 \text{ mV}} = 0.83$

b. Señal Cuadrada Con Ka. Am >1

- Datos generados en Ghu radio
 - · Frecuencia del mensaje = 1 KHz
 - · Frecuencia de la portadora = 50 M HZ
 - $K_0 = 3.5$; Am = 0.5; $A_C = 0.125$

-+ OSCI lOSCOPIO

- Fm=1 KHZ
- · Ac = 26 mV
- $M = \frac{\text{max} \{ \Delta R(t) \}}{A_c} = \frac{65.6 \text{ mV}}{26.8 \text{ mV}} =$

C. Señal diente de Cierra Con Ka. Am >1

- Datos generados en Ghuradio
 - · Frecuencia del mensaje = 1 KHz
 - · frecuencia de la portadora = 50 M HZ
 - $K_0 = 0.3$; Am = 2.3; $A_C = 0.125$

-+ OSCIOSCOPIO

- · Fm=1 KHZ
- · Ac = 26 mV
- $M = \frac{max\{\Delta R(t)\}}{Ac} = \frac{45.2 \text{ mV}}{26 \text{ mV}} = 1.73$