THE STORY OF PHYSICS

Script by

Illustrations by

T. PADMANABHAN

KEITH FRANCIS

Redrawn by: Avinash Deshpande

The earliest civilisations used many engineering concepts....

but physics - a scientific method that attempts to explain nature based on a set of laws - probably did not exist till the time of the Greeks.

....who conducted experiments in harmony by plucking strings. When there was a simple ratio like 2:3 and 1:2 between the lengths a and b, the tune was pleasant

With more complicated ratios, the results were not harmonious

By Zeus! Pytho must be trying 419:420

These Pythogoreans are crazy

Zeno, a contemporary
of Pythogoras,
nearly proved
that motion is
impossible
(Zeno's paradox)

Around the same time his tutor Aristotle (384-322 BC) was attempting to build an empire of knowledge

Unfortunately, many of his ideas of physics were incorrect

Earth is the centre, water, air, fire and ether above it. Since bodies tend to....

He also thought that heavier objects fall faster than lighter ones

After the death of Alexander, his generals divided the empire. Egypt came under Ptolemy

Alexandria, his capital, became the centre of intellectual activity. Alexandria inspired many scholars like Euclid (300 BC)

Among them was the greatest of ancient physicists...

Hal that's a lot ٥f words! What about moving a ship?

* Book by Archimedes

Thank God! I don't want any of that again

The story goes that Archimedes actually pulled a sheep ashore with pulleys and levers

After Heiron, his grandson Heironymus became the king. During the 2nd Punic war (218 BC), seeing the success of the troops of Carthage, led by Hannibal, Heironymus broke his treaty with Rome and sided with Carthage. This led the Romans to lay seige on Syracuse

It is said that the war machines made by Archimedes kept the Roman General Marcellus at bay for more that two years

When the Romans finally took the city, Archimedes was killed by a Roman soldier. One of his inventions the water wheel is

By 30 BC, Egypt was a Roman province having lost much of its glory. Among the few more geniuses it produced was Hero* who made the first steam engine*

Another great Alexandrian was Ptolemy (127-151 AD) He also constructed the siphon and wrote books who believed the Universe was concentric with the on mechanics and catoptrics. His views on vision Earth at its centre. We now know he was wrong reflected the thinking of those days Light is emitted by the eye and is reflected by objects Ptolemy conducted an experiment and He also studied optics, especially the process of refraction carefully noted the angles x and y.... X 100 40 29 50 ... but failed to Refraction helps you to see the coin in (b) because arrive at the formula light bends on crossing the boundary of water connecting x and y After Ptolemy, Europe was in Ha! Ha! I turmoil. The Roman empire fell, found it leaving mutilated kingdoms. fourteen centuries The law later! sine x and sine y is a And no constant. sines, W. Snell It's now please (1591-1626) called as Snell's Law Don't jump in time! The Renaissance was not really a rebirth for science. Hey! Europe was dominated by religious zealots What's happening

aiminnia .

mmunicum manicum manic

While the science of mechanics was racing ahead, magnetism and optics were crawling along....

Perigrinus, the French engineer, probably conducted the first set of experiments with magnets.

His explanation for "north seeking" behaviour was, however, wrong!

That is where the matter rested until the time of William Gilbert (1544 - 1603)

He noticed that a magnetic needle shows a "dip" towards Earth when vertical motion is allowed

Another branch of physics wherein some development took place was Optics. Al Hazen (965-1039AD) led an eventful life....

Al Hazen studied lenses and the phenomenon of refraction

Above the mercury column was the

These ideas were taken further by

Pascal also founded the modern Theory of Probability which was extensively used in physics later

He realised that pressure applied on a liquid is transmitted undiminished

The latter half of the 17th century had an impressive starcast in European science...

These experiments brought Newton fame and honour (Cambridge professorship in 1669, FRS in 1672) and also life long enmities, for example with Hooke

Newton rejected Huygen's

Newton's' Principia' represented the climax of the scientific revolution started by Copernicus – a milestone in the history of mankind

In his
"Mathematical
Principles of
Natural
Philosophy,"
Newton
developed a
comprehensive
scheme for the
mechanical
universe

With tremendous intuition, Newton

Newton could now derive Kepler's laws of

In thermodynamics....

By the 1780's steam power was being used a lot, heralding the era of the Industrial Revolution....

Having disproved Lavoisier, Rumford proceeded to marry his widow. The marriage broke up soon with bitter words

At this time electricity was produced by rubbing some

Ampere guessed right about magnetism

Probably more important, he completed the first unification of electricity and magnetism....

As we said before, Newton thought of light as particles, thereby casting sharp shadows

Young showed that light undergoes interference and diffraction

.... and thus can have

FRESNEL

The nature of light was illuminated by another intellectual giant James Clerk Maxwell (1831 - 1879)

Meanwhile equations showed that oscillating charges radiate electro magnetic waves

Joining heat and mechanics into "thermodynamics" was the work of many. To begin with there was Sadi Carnot

The complete connection between heat and mechanics was established by the works of Maxwell and ...

Boltzmann explained that pressure was due to molecular motion...

Pressure

= (number of collisions / sec) x (momentum)

~ (nv) (mv)

Average velocity = v

....So that temperature became just a measure of random motion

To every degree of freedom of motion Boltzmann associated fixed energy

.... Which seemed to explain many observations not all!

The problems of classical physics led to a drastic revision of basic concepts, via relativity and the quantum theory. Relativistic revolution was the work of...

After five years in Zurich, he gets a job at Bern, only because of the influence of a friend Marcel Grossmann

Albert also believed that the laws of physics should not distinguish between state of rest and state of uniform motion

special

relativity

Using the correct geometry for curved space time Einstein worked out the consequences of his theory of gravity

While the relativistic revolution was in progress, an army of physicists was trying to understand the structure of matter To begin with

Two decades later, J.J. Thompson

With
systematic
experimentation
Roentgen
could arrive
at the
correct
solution

X - rays were investigated by A. H. Becquerel (1852 - 1908) the French physicist who was looking at the X - rays emitted by fluorescent material

This idea was actively pursued by the Curies

GAMMA

rays

There are three kinds of

After years of toil they isolated of powerful radioactive source - "radium"

Magnet

ALPHA rays

To understand how Bohr "changed the laws" we've to go back a few years.
Someone was already tampering with the laws!

with
one
bold
stroke
DeBroglie
eliminated
the
distance
between
wave
and
particle

From the sketchy idea of pilot wave to a full fledged wave mechanics was a complex transition. The main contributors were

If the nucleus did not have electrons how do we account for electrons in the beta decay? The answer, came from....

Meanwhile
Fermi was
using
neutrons to
probe the
atom
further.
He
bombarded
uranium with
neutrons

That
philosophy
was very
successful
in bringing
order out
of chaos.
The first
classifications
were....

Unfortunately, the tricks

didn't work with other

The
first
step
in
ordering
hadrons
were
taken
by
M. Gellmann
and
Y. Nee'man

The problem was reduced to studying QUARKS and LEPTONS. It was soon discovered that there are more of them

1. UP 2. DOWN 3. STRANGE 4. CHARM	ELECTRONS 1 MUON 2 TAU-ON 3
We know what is there?	Big deal. What about the forces?

LEPTONS

QUARKS

That was the last definitive progress in this story of physics. Several new attempts were made to extend our understanding further

