

Solutions d'installation - Vue d'ensemble

Localhost avec Minikube

Solution idéale pour le développement local et les tests, permettant d'exécuter un cluster Kubernetes à nœud unique sur votre machine.

- Configuration rapide et simple
- Faibles exigences en ressources
- Parfait pour l'apprentissage et le développement
- Non adapté aux charges de production

On-Premise

Déploiement de Kubernetes sur votre propre infrastructure, offrant un contrôle total sur la configuration et la sécurité.

- Contrôle total de l'infrastructure
- Personnalisation avancée
- Conformité aux exigences de sécurité internes
- Nécessite une expertise technique importante

Cloud Managed Services

Services Kubernetes gérés par les fournisseurs cloud (GKE, EKS, AKS), offrant simplicité d'utilisation et évolutivité.

- Mise en place rapide et facile
- Gestion du plan de contrôle automatisée
- Intégration avec les services cloud natifs
- Risque de dépendance à un fournisseur

Solutions d'installation - Comparaison détaillée

Critères	Localhost (Minikube)	On-Premise	Cloud Managed (GKE, EKS, AKS)
Facilité d'installation	Très simple	Complexe	Simple
Coût	Gratuit	Élevé (matériel + personnel)	Modéré (pay-as-you-go)
Évolutivité	Limitée	⊘ Élevée	Très élevée
Maintenance	Minimale	Importante	 Minimale (plan de contrôle géré)
Cas d'usage	Développement, tests, apprentissage	Production avec exigences spécifiques	Production standard, déploiement rapide
Expertise requise	G Basique	Avancée	Intermédiaire

Solutions d'installation - Comparaison détaillée

	Developer Experience	Admin Experience	Flexibility / Realism	Scalability	Isolation / Stability	Cost
Local Kubernetes Clusters	_	0	0		++	++
Individual Cloud- Based Clusters	0		++	0	+	
Self-Service Namespaces	+	+	-	++	-	0
Self-Service Virtual Clusters	++	++	+	++	0	0

Outils d'installation - Vue d'ensemble

Outil officiel de Kubernetes pour créer et gérer des clusters conformes aux bonnes pratiques. Conçu pour être un bloc de construction modulaire pour d'autres outils de niveau supérieur.

Permet de bootstrapper un cluster Kubernetes minimal mais conforme aux standards, que vous pouvez ensuite personnaliser selon vos besoins.

4

S Kubespray

Collection de playbooks Ansible pour déployer et gérer des clusters Kubernetes hautement disponibles sur différentes infrastructures.

Utilise kubeadm en arrière-plan mais ajoute une couche d'automatisation et de configuration avancée via Ansible, facilitant les déploiements complexes.

Kops

Kubernetes Operations (kops) est un outil spécialisé pour créer, détruire, mettre à niveau et maintenir des clusters Kubernetes hautement disponibles, principalement sur AWS.

Permet de gérer l'ensemble du cycle de vie du cluster, y compris la création de l'infrastructure sous-jacente et la configuration automatisée.

Caractéristiques principales

- Installation rapide et standardisée
- Support multi-plateformes
- Intégré à l'écosystème Kubernetes

Caractéristiques principales

- Déploiement multi-cloud et on-premise
- Onfiguration hautement personnalisable
- Support pour plusieurs plugins réseau

Caractéristiques principales

- Optimisé pour AWS (support limité pour GCP et autres)
- Automatisation de l'infrastructure complète
- Gestion du cycle de vie complet du cluster

Outils d'installation - Comparaison détaillée

Critères	kubeadm	Kubespray	Kops	
Niveau d'abstraction	Bas (commandes directes)	Moyen (playbooks Ansible)	Élevé (CLI déclarative)	
Plateformes supportées	Toutes (bare metal, VMs, cloud)	Toutes (multi-cloud, on-premise)	Principalement AWS, support limité GCP	
Gestion de l'infrastructure	× Non	Partielle	Complète	
Haute disponibilité	Configuration manuelle	Intégrée	Intégrée	
Courbe d'apprentissage	Moyenne		✓ Faible	
Cas d'usage idéal	Clusters simples, apprentissage	Déploiements complexes, multi-cloud	Production sur AWS	

Création d'un cluster Kubernetes

📒 Étapes générales

1 Préparation des nœuds

Configuration des machines, installation des prérequis, désactivation du swap, configuration du réseau.

2 Installation des composants Kubernetes

Installation de kubelet, kubeadm et kubectl sur tous les nœuds.

Initialisation du plan de contrôle

Création du nœud master et génération des tokens pour joindre les autres nœuds.

4 Configuration du réseau

Installation d'une solution réseau (CNI) comme Calico, Flannel ou Weave.

5 Ajout des nœuds worker

Connexion des nœuds worker au cluster en utilisant le token généré.

6 Vérification du cluster

Validation du bon fonctionnement du cluster et de ses composants.

Exemple avec kubeadm

Initialisation du nœud master

Installation du plugin réseau (Calico)

Ajout des nœuds worker

Configuration minimale requise

@ CPU: 2 cœurs minimum par nœud

RAM: 2 Go minimum par nœud

Stockage: 20 Go minimum d'espace disque

Réseau: Connectivité complète entre tous les nœuds

S ■ Control Note
■