Quadripôles

Exercice 1 : étude complète d'un quadripôle en tension

On considère le schéma d'un amplificateur donné ci-dessous :

La source de courant placée dans la partie droite du schéma est **une source de courant commandée en courant** : le courant qui la traverse (βi_b , où $\beta > 0$) est directement proportionnel au courant i_b placé dans la partie gauche du montage.

- 1. On cherche dans un premier temps à calculer le gain de ce montage :
 - (a) Simplifier l'association de résistances de l'étage de sortie.
 - (b) Effectuer une transformation en générateur équivalent de Thévenin en sortie.
 - (c) Calculer le gain en tension à vide du montage A_0 .
- 2. Nous allons maintenant calculer la résistance d'entrée du montage :
 - (a) Retracer le schéma en simplifiant l'association de résistances en entrée.
 - (b) En déduire la résistance d'entrée du montage R_e .
- 3. Enfin, calculer la résistance de sortie R_s de l'amplificateur en réutilisant judicieusement les questions précédentes

Pour les applications numériques des question suivantes, on prendra :

- $R_P = 27 \ k\Omega$, $R_C = 5 \ k\Omega$
- r= 2,5 $k\Omega$, $\rho=$ 100 $k\Omega$ et $\beta=$ 100
- 4. Calculer les valeurs numériques
 - (a) du gain en tension à vide,
 - (b) de la résistance d'entrée,
 - (c) de la résistance de sortie.
- 5. On branche en entrée un générateur non idéal de tension de f.e.m. v_g et de résistance interne $R_g = 50 \Omega$, et en sortie une charge $R_L = 32 \Omega$.
 - (a) Tracer le schéma du montage complet,
 - (b) Calculer en charge le rapport :

$$G_L = \frac{V_2}{v_q}$$

et comparer ce résultat au gain en tension à vide.

(c) Calculer la puissance dissipée par R_s et R_L . Conclure.

Exercice 2 : étude d'une deuxième configuration d'amplificateur

On considère le schéma d'un amplificateur donné ci-dessous :

- 1. On cherche dans un premier temps à calculer le gain de ce montage :
 - (a) Simplifier l'association de résistances de l'étage de sortie.
 - (b) Calculer V_2 en fonction de β , ρ et R_E .
 - (c) Calculer V_1 en fonction de i_b , r et V_2 .
 - (d) Calculer le rapport $A_0 = \frac{V_2}{V_1}$.
- 2. Nous allons maintenant calculer la résistance d'entrée du montage :
 - (a) Appliquer la loi des nœuds à l'entrée du quadripôle (nœud B).
 - (b) En déduire la résistance d'entrée du montage $R_e = \frac{V_1}{I_1}$.

Pour calculer la résistance de sortie R_s de cet amplificateur, il faut tenir compte du quadripôle précédent à V_1 du fait de la liaison physique (i.e. résistance r) entre l'étage d'entrée et de sortie. On branche en entrée un générateur non idéal de tension de f.e.m. v_g et de résistance interne R_g .

3. Calculer la résistance de sortie R_s lorsque la source de tension v_g est éteinte.

Pour les applications numériques des question suivantes, on prendra :

- $R_g = 50 \,\Omega$,
- $R_P = 27 k\Omega$, $R_E = 4.3 k\Omega$
- $r = 2.5 \ k\Omega$, $\rho = 100 \ k\Omega$ et $\beta = 100$
- 4. Calculer les valeurs numériques
 - (a) du gain en tension à vide A_0 ,
 - (b) de la résistance d'entrée R_e ,
 - (c) de la résistance de sortie R_s .
- 5. Tracer le schéma équivalent (quadripôle en tension) de l'amplificateur et brancher en sortie une charge $R_L=32~\Omega.$
- 6. Calculer le rapport

$$G_L = \frac{V_2}{v_q}$$

et comparer ce résultat au gain en tension à vide A_0 .

7. Calculer la puissance dissipée par R_s et R_L . Conclure.