Stepping outside the clinic: gait detection using wrist-worn sensors for remote arm swing analysis in Parkinson's disease

E. Post^{1,2}, T. M. van Laarhoven², Y. P. Raykov³, M. A. Little⁴, P. Kok⁵, P. Rodríguez-Sánchez⁵, T. M. Heskes², B. R. Bloem¹, L. J. W. Evers^{1,2}

¹ Center for Expertise for Parkinson and Movement Disorders, department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; ² Institute for Computing and Information Sciences, Radboud University, Nijmegen, the Netherlands; ³ University of Nottingham, United Kingdom; ⁴ University of Birmingham, United Kingdom; ⁵ Netherlands eScience Center, the Netherlands

Introduction

- Reduced arm swing as a proxy for hypokinetic gait is a candidate digital biomarker for PD progression, particularly due to the unobtrusive nature of wrist-worn sensors.
- However, arm swing studies thus far have been conducted in highly standardized environments, while arm swing varies substantially in free-living conditions¹ and other arm movements can be present during gait (e.g., carrying an object or having hands in the pocket).

Objectives

- 1. To reliably identify gait segments suitable for arm swing analysis in free-living
- 2. To extract clinically-relevant and sensitive arm swing parameters from predicted free-living arm swing gait segments.

Study design

- Sample size: 25 PD patients (with motor fluctuations and gait impairments) and 25 age-matched controls.
- Design: Unscripted free living in and around the house (≥ 1 hour per patient pre- and postmedication); wrist-worn IMU; manually annotated activities and arm movements during gait from videos.

Methods

Results

Discriminative ability – PD OFF MAS

Arm movements are diverse during gait

Arm swing quantification

Variation in range of motion across stratifications

Conclusions

- Free-living gait can reliably be detected using wrist-worn sensors, while variety in arm movements during gait can affect the ability to detect arm swing unfavorably.
- Clinically-relevant arm swing parameters of predicted arm swing segments are statistically different between PD and controls, as well as between medication stages.

References

- 1. Warmerdam et al., Arm swing responsiveness to dopaminergic medication in Parkinson's disease depends on tasks complexity. NPJ Parkinsons Dis. 2021 Oct 5;7(1):89.
- 2 Warmerdam et al., Quantification of arm swing during walking in healthy adults and Parkinson's disease patients: Wearable sensor-based algorithm development and validation. Sensors (Basel). 2020 Oct 21;20(20):5963.

Acknowledgements

This work was financially supported by the Michael J Fox Foundation (grant #MJFF-020425) and the Dutch Research Council (grant #ASDI.2020.060).

