CS 772 – FINAL PROJECT EVALUATION

Sneha Oram 23M2159 A Snegha 23M2160 K Hemanth 23M2164 A Shruthi 23M1074

05 May 2024

Problem Statement

Problem statement: Analysing the model's prediction in different setting using phrase level concepts with Local and Global interpretable layer.

Input: One sentence (text).

Output:

- 1. Classification Result
- 2. Top relevant phrases from input sample (Local).
- 3. Influential phrases from the training data for a given input sample (Global).

The fantastic actors elevated the movie predicted sentiment: positive

Word Attributions

Top relevant Influential training concepts

Explain fantastic actors (0.7) elevated (0.1)... fabulous acting (0.4) stunning (0.2) ...

Source: Rajagopal et al. 2021

Motivation

- Prior work in interpretability for neural text classification:
 - Post-hoc explanation methods: Explain predictions for previously trained models.
 - Inherently interpretable models: Built-in and optimized jointly with the end task.
- Interpret model decisions locally as a function of relevance of features (words) in input samples lacks reliability and faithfulness.
- Explaining the role of higher-level compositional concepts like **phrasal structures** remains an open challenge.

Literature Survey

- Dheeraj Rajagopal, Vidhisha Balachandran, Eduard Hovy, Yulia Tsvetkov. 2021.
 SELFEXPLAIN: A Self-Explaining Architecture for Neural Text Classifiers. EMNLP.
- Sofia Serrano and Noah A. Smith. 2019. <u>Is Attention Interpretable?</u>. ACL
- Rishabh Joshi, Vidhisha Balachandran, Emily Saldanha, Maria Glenski, Svitlana Volkova, and Yulia Tsvetkov. 2023. <u>Unsupervised Keyphrase</u> <u>Extraction via Interpretable Neural Networks.</u> ACL.
- Orevaoghene Ahia, Hila Gonen, Vidisha Balachandran, Yulia Tsevetkov, Noah A. Smith. (2023) have worked with Lexical based interpretability in offensive texts. <u>LEXPLAIN: Improving Model Explanations via Lexicon</u> <u>Supervision</u>. ACL.
- Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019. <u>Interpretable neural predictions with differentiable binary variables</u>. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2963–2977, Florence, Italy. Association for Computational Linguistics.

Data Handling (1/2)

Number of classes: 2 Domain: Sentiment Analysis https://huggingface.co/datasets/stanfor dnlp/sst2

Number of classes: 6
Domain: Questions Classification
https://huggingface.co/datasets/stanfordnlp/sst2

Number of classes: 28
Domain: Emotion Analysis
https://huggingface.co/datasets/stanfordnlp/sst2

Banking77

Number of classes: 77 Domain: Banking/Finance

Data Handling (2/2)

- Data preprocessing is done to remove special characters.
- GoEmotion is an imbalanced dataset. Data is skewed towards Class 27 (Neutral).
- In TREC database, Class 0
 (Abbreviations) has very low representations compared to other classes.

Dataset	Train	Dev	Test
SST-2	67350	872	1822
GoEmotion	13519	4225	3379
Banking77	8002	3080	2000
TREC	4360	500	1090

Data Split

Mathematical modelling of the problem

Interpretability in classifications tasks with two layers -

Local Interpretability Layer:

$$t_j = g(\mathbf{u}_j) - g(\mathbf{u}_S)$$

$$s_j = \text{softmax}(\mathbf{W}_v \times t_j + \mathbf{b}_v) <$$

Based on relevance score

Global Interpretability Layer:

$$q_k = \frac{\sum_{w \in q_k} e(w)}{len(q_k)} \in \mathbb{R}^D$$

$$d(\mathbf{x}, Q) = \frac{\mathbf{x} \cdot q}{\|\mathbf{x}\| \|q\|} \quad \forall q \in Q$$

Based on Maximum Inner Product Search (MIPS)

Architecture

Overall architecture of the proposed model

Experimental details

There are four folds of analysis:

1	Dataset	SST-2, GoEmotion (27) , Banking77 (77) , TREC (6)
2	Models	Bert, XLNet, Roberta, XLM-R
3	Setting	Full fine tuning, LoRa fine tuning, Quantized version
4	Model Size	Base, Medium, Large

• In the results, the LIL and GIL phrases in the four folds of analysis are evaluated.

Questions to be analysed

- 1. How different dataset type change interpretability?
- 2. How different model interpretability various for a dataset?
- 3. How different training setting affect the interpretability?
- 4. How model size affect interpretability?
- 5. Does SELFEXPLAIN's explanation help predict model behavior (Sufficiency)?
- 6. Are LIL layer concepts relevant?
- 7. How are LIL and GIL layers agreeing?

Results

1: Datasets

Dataset	(RoBERTa) Accuracy
SST-2	93.07%
GoEmotion	40%
Banking77	92.55%
TREC	97.18%

2: Models

Model	(TREC)	
Wiodei	Accuracy	
RoBERTa	97.18%	
XLM-R	97.5%	
XLNet	96.88%	
BERT	97.26%	

3: Settings

Setting	(RoBERTa/SST-2)	
Setting	Accuracy	
	02.070/	
Full fine-tuning	93.07%	
	00.440/	
LoRa fine-tuning	93.41%	
Quantized	90.3%	

4: Model Size

Model Size	(SST-2)	
	Accuracy	
BERT-Large	90.01%	
BERT-Medium	84.1%	
BERT-Base	50.23%	

Top-k	(XLMR-TREC)
(phrases)	Accuracy
k=2	97.5%
k=5	97.5%
k=10	97.29%

(LIL phrases)	(RoBERTa) Accuracy
TREC	88.3%

Analysis (1/4)

- In most of the cases LIL gave a good interpretability. If LIL have vague or no results, GIL is helping the model understand the sentiment of the model.
- Model's incorrect prediction are mainly because of attention in non-important phrases, which is proved by looking at LIL interpretability.
- In case of TREC-6, though importance need to be given to question word, model is attending other phrases. But GIL is interpreting relevant. Because the question word (such as "who," "what," "where," etc.) provides a general indication of the type of information being sought, but it's often the surrounding words and context that convey the specific intent or category of the question.
- TREC and Banking77 interpretation is better than SST-2 and GoEmotion Because later datasets are more challenging, class imbalanced and poses
 subtle information about a class.

Analysis (2/4)

- Bert, XLM R, Roberta have similar LIL and GIL interpreted phrases.
- Because Roberta is optimized version of Bert and XLMR is extended multilingual version of Roberta.
- XLNet have good GIL interpreted phrases compared to other models

Analysis (3/4)

Observation:

 LIL and GIL interpreted phrases are similar to each other. So having different training setting have very less effect on interpreted phrase and models' accuracy.

Example:

Sent: it 's a charming and often affecting journey. - 1 1

Fine-tuned - LIL: 'often affecting'

GIL: ['show-stoppingly', 'worldly-wise and very funny script']

Lora Fine-tuned- LIL: 'often affecting'

GIL: ['worldly-wise and very funny script', 'astoundingly']

Quantized version-LIL: 'often affecting', 'often'

GIL: ['worldly-wise and very funny script', 'astoundingly']

Analysis (4/4)

- Surprisingly both Bert-medium and Bert-large have same interpretation with little accuracy difference.
- As the model size increase, interpreted phrases quality is good.
- Also increase in model size increase interpreted phrase quality till one size and then it increase accuracy further.
- Bert-Base have poor LIL and GIL interpreted phrases, which resulted in poor accuracy.
- So bigger the model is better the interpreted phrases and improved accuracy.

Case Study (1/2)

Correct examples:

Sent: The mesmerizing performances of the leads keep the film grounded and keep the audience riveted . - 1 1

LIL: ('keep the film grounded'), ('of the leads'), ('the leads'), ('rive ted'), ('the film')

GIL: ['show-stoppingly', 'four star performance']

Incorrect examples:

Sent: You won't like roger, but you will quickly recognize him. - 0.1

LIL: [('recognize him'), ('ro ger'), ('will quickly recognize him')]

GIL: ['engrossing story', 'show-stoppingly']

Case Studies (2/2)

Sent : The film suffers from a lack of humor (something needed to balance out the violence) - 0 0

Bert-large : LIL: [('a lack of humor'), ('of humor'), ('balance out the violence'), ('the violence'), ('a lack')]

GIL: ['failing to compensate for the paper-thin characterizations and facile situations', ""the script 's bad ideas and awkwardness""]

Bert-medium : LIL: [('a lack of humor'), ('of humor'), ('balance out the violence'), ('the violence'), ('a lack')]

GIL: ['failing to compensate for the paper-thin characterizations and facile situations', ""the script 's bad ideas and awkwardness""]

Bert-base: LIL: [('the film'), ('a lack'), ('of humor'),('a lack of humor')]

GIL: ['lend some dignity to a dumb story', 'saw how bad this movie was', ""that's far too tragic to merit such superficial treatment"", 'in world cinema', 'sit through,']

Bert-Large correct and Bert-medium wrong

Sent: The heavy-handed film is almost laughable as a consequence .

Bert-medium: 1 0 :LIL: [('a consequence'), ('as a consequence'), ('almost laugh ##able')]

GIL: ['it rises in its courageousness, and comedic employment', ', it rises in its courageousness, and comedic employment']

Bert-large: 1 1 :LIL: [('as a consequence'), ('a consequence'), ('almost laugh ##able')]

GIL: ['is a truly, truly bad movie', 'is a truly, truly bad movie']

What is your baseline?

- Almost all the standard encoders are explored in the Self-Explain framework.
- The work is partly implementing domain adaptation, that involved tinkering in the code-base during the implementation.

Dataset/Model	Accuracy
SST-2/RoBERTa (w/o SELFEXPLAIN)	92.55%
SST-2/RoBERTa (SELFEXPLAIN)	93%

- The accuracy with and without Self-Explain is slightly different.
- The Self-Explain framework is leveraging LIL and GIL layers for the classification task.

Demo

http://10.129.6.206:8400/

Learnings

- On increasing the model size (base to large), the model's understanding ability and interpretability is improving.
- The settings in training (LoRa fine-tuning and Quantized fine-tuning) are slightly affecting the model accuracy.
- Even though the datasets are picked from different domains, the interpretability is not much affected.

BONUS

- To work with datasets with different domain, changes are done in the code-base.
- The performance and interpretability are evaluated with different fine-tuning settings.
- The accuracy with and without Self-Explain is slightly different.
- The work is partly implementing domain adaptation, so the code base is tinkered during the implementation.