Optimized Quantum Implementation of SEED

Yujin Oh, Kyungbae Jang, Yujin Yang and Hwajeong Seo

Introduction & Contribution Background **Proposed Method** Performance & Evaluation Conclusion

Introduction & Contribution

- Grover's algorithm reduce in the complexity of symmetric key cryptographic attacks to the square root.
 - → This raises increasing challenges in considering symmetric key cryptography as secure.

- Establish secure post-quantum cryptographic systems.
 - → There is a need for quantum **post-quantum security** evaluations of cryptographic algorithms.

- In this paper, we propose an optimized quantum circuits for SEED.
 - → We assess the **post-quantum security** strength of SEED in accordance with NIST criteria.

Introduction & Contribution

1. Quantum Circuit Implementation of SEED

→ We demonstrate the first implementation of a quantum circuit for SEED, which is the one of Korean cipher.

2. Low-Depth Implementation of SEED

→ In our quantum circuit implementation of SEED, we focus on optimizing Toffoli depth and full depth.

3. Post-quantum Security Assessment of SEED

- → We estimate the cost of Grover's key search using an our implemented quantum circuit
- → We compare the estimated cost of Grover's key search for SEED with the **security levels** defined by NIST.

SEED

- SEED is a block cipher of Feistel structure.
- Each round has a round function F.
- A 128-bit block is divided into 64-bit blocks.
 - The right 64-bit block (R0) serves as the input to the F function with 64-bit round key.
 - The output of F function is XORed to the left 64-bit block (L0).

Cipher	block size	key size	rounds	
SEED	128	128	16	

F function

- The input of F function is 64-bit block and 64-bit round key $RK_i \ (K_{i,0},K_{i,1})$
- The 64-bit block is **divided** into two 32-bit blocks (C, D)
 - Each block is XORed with the round key.
- The F function consists of XOR operations (⊕), modular
 additions (⊞), and G functions.

G function

- The 32-bit input block of the G function is **divided** into 8-bit blocks (X_{0-3})
- Each block becomes input for the S-boxes.
- The output values of the S-boxes are **ANDed** (&) with the constants m_{0-3} ,
- The results of these **AND** operations are XORed with each other to compute the final output (i.e., Z_{0-3}).

$$Y_3 = S_2(X_3), Y_2 = S_1(X_2), Y_1 = S_2(X_1), Y_0 = S_1(X_0)$$

$$Z_2 = (Y_0 \& m_2) \oplus (Y_1 \& m_3) \oplus (Y_2 \& m_0) \oplus (Y_3 \& m_1)$$

$$Z_1 = (Y_0 \& m_1) \oplus (Y_1 \& m_2) \oplus (Y_2 \& m_3) \oplus (Y_3 \& m_0)$$

$$Z_0 = (Y_0 \& m_0) \oplus (Y_1 \& m_1) \oplus (Y_2 \& m_2) \oplus (Y_3 \& m_3)$$

S-boxes

- It involves exponentiation, matrix-vector multiplication, and XORing a single constant.
- Specifically, two distinct S-boxes (S1 and S2) are employed, which are calculated as follows:

$$S_1(x) = A^{(1)} \cdot x^{247} \oplus 169$$
, $S_2(x) = A^{(2)} \cdot x^{251} \oplus 56$

• We use the primitive polynomial $\mathbb{F}_{2^8}I$ $x^8 + x^6 + x^2 + x + 1$

Key Schedule

The 128-bit key is divided into four blocks.

(A||B||C||D, where || denotes concatenation)

- Key constant values(KC_i) are utilized.
- Operations such as shift (>>, <<), modular addition,

modular subtraction (⊟), and G function are applied.

Background: Quantum gates

- Quantum gates commonly used for implementing quantum circuits of block ciphers
 - → This is not an exhaustive list of all possible gates that can be used.

Fig. 5: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli (right bottom) gates.

Toffoli gate decomposition (T- depth 4, total depth 8)

Background: Grover's key search

Key search using Grover's Algorithm

1. Prepare a k-qubit key in a superposition state using Hadamard gates.

$$H^{\otimes k} |0\rangle^{\otimes k} = |\psi\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) = \frac{1}{2^{k/2}} \sum_{x=0}^{2^k - 1} |x\rangle$$

2. This circuit encrypts a known plaintext(p) in a **superposition state** using a pre-prepared key, producing ciphertexts for every possible key value.

If the ciphertext matches the expected ciphertext, the sign of the desired key state to be recovered is negated.

$$f(x) = \begin{cases} 1 \text{ if } Enc_{key}(p) = c \\ 0 \text{ if } Enc_{key}(p) \neq c \end{cases}$$

$$U_f(|\psi\rangle |-\rangle) = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n - 1} (-1)^{f(x)} |x\rangle |-\rangle$$

3. The Diffusion Operator serves to **amplify the amplitude** of the target key state indicated by the oracle, identifying it by flipping the sign of said amplitude to negative.

Background: NIST criteria

- The NIST criteria for quantum attack complexity.
 - Level 1 $(2^{170} \rightarrow 2^{157})$
 - → attacks on the security definition must require resources comparable to AES-128 key search.
 - Level 3 $(2^{233} \rightarrow 2^{221})$
 - → attacks on the security definition must require resources comparable to AES-192 key search.
 - Level 5 $(2^{298} \rightarrow 2^{285})$
 - → attacks on the security definition must require resources comparable to AES-256 key search.

Implementation of S-box

- In quantum computers, the utilization of look-up table for implementing S-boxes is not appropriate.
 - → We employ quantum gates to implement the S-boxes based on Boolean expression
- Equations for S-boxes (primitive polynomials p(x) : $\mathbb{F}_{2^8}/x^8 + x^6 + x^2 + x + 1$)

$$S_1(x) = A^{(1)} \cdot x^{247} \oplus 169$$
 $x^{-1} \equiv x^{254} \mod p(x)$
 $S_2(x) = A^{(2)} \cdot x^{251} \oplus 56$ $(x^{-1})^8 \equiv x^{257} \mod p(x)$
 $(x^{-1})^4 \equiv x^{251} \mod p(x)$

• We use **Itoh-Tsujii algorithm** to compute x^{-1}

$$x^{-1} = x^{254} = ((x \cdot x^2) \cdot (x \cdot x^2)^4 \cdot (x \cdot x^2)^{16} \cdot x^{64})^2$$

→ Squaring and multiplication

Squaring in a S-box

- In squaring, modular reduction can be employed PLU factorization because it is a linear operation.
 - → Without allocating additional ancilla qubits (i.e., in-place), using only CNOT gates.

Fig. 6: Squaring in $\mathbb{F}_{2^8}/(x^8 + x^6 + x^5 + x + 1)$

- Multiplication in a S-box
 - We apply WISA'22 [Jang et al.] multiplication
 - →optimized with a **Toffoli depth of one** for any field size.

- WISA'22[Jang et al.] multiplication
 - Using the Karatsuba algorithm recursively and allocating additional ancilla qubits.
 - → All the AND operations become independent and the operations of all Toffoli gates in parallel.
 - → The allocated ancilla qubits can be **reused** through **reverse operations**.

Implementation of G function

- Each S-box requires 38 ancilla qubits (specifically for multiplication).
 - → Ancilla qubits can be initialized using reverse operations in WISA'22 multiplication, enabling their reuse.
- S-boxes are executed sequentially → increasing the depth.
 - → We optimize the depth by parallelizing four S-boxes.
 - → This is achieved by allocating a total of **152 (38 × 4)** ancilla qubits at first.

Implementation of Key Schedule

- Two 32-qubit subkeys $(K_{i,0}, K_{i,1})$ are generated.
- The implementation is **parallelized** by operating two proces ses **simultaneously**.
 - → We allocate two sets of 152 ancilla qubits(152 x 2)
 - → reduce the circuit depth
- We utilize the CDKM adder for addition in quantum.
 - →Only one ancilla qubit is needed
- We utilize the logical Swap that change the index of qubits.
 - → Instead of Swap gates

Implementation of Key Schedule

- For quantum addition, we allocate two pairs of qubits
 (32 × 2) to store the KeyConstant values
 (using on K_{i,0}, K_{i,1} respectively).
- Different KeyConstant values used in each round.
 - → allocate and store new qubits every time.
 - → Instead, we utilize **reverse operations**
 - → initialize and reuse the qubits.
 - → The reverse operation for the KeyConstant of quantum state involves only X gates.
 - → a trivial overhead on the circuit depth.

Performance & Evaluation

- Estimation of the quantum resources required for SEED
 - We focus on reducing the Toffoli depth and full depth. (Trade-off with qubits)
 - → For the **trade-off**, we report the **TD-M** and **FD-M** cost.

(TD-M : Toffoli Depth x qubit, FD-M : Full Depth x qubit)

NCT(NOT, CNOT, Toffoli) level

Table 1: Required quantum resources for SEED quantum circuit implementation

Cipher	#X	#CNOT	#Toffoli	Toffoli depth	#Qubit	Depth	TD- M cost
SEED	8116	409,520	41,392	321	41,496	11,837	13,320,216

Clifford + T level

Table 2: Required decomposed quantum resources for SEED quantum circuit implementation

Cipher	#Clifford	#T	T-depth	#Qubit	Full depth	FD- M cost
SEED	748,740	289,680	1,284	41,496	34,566	1,434,350,736

Performance & Evaluation

Grover's key search

- Grover's key search cost: the quantum resources x 2 x $\left[\frac{\pi}{4}\sqrt{2^k}\right]$
- The Grover's key search attack cost for SEED is 1.291 · 2¹⁶⁴
 - → SEED can be evaluated as achieving post-quantum security Level 1.

Table 3: Cost of the Grover's key search for SEED

Cipher	Total gates	Total depth	Cost (complexity)	#Qubit	TD- M cost	FD-M cost
SEED	$1.559 \cdot 2^{84}$	$1.657 \cdot 2^{79}$	$1.291 \cdot 2^{164}$	41,497	$1.246\cdot 2^{88}$	$1.049\cdot 2^{95}$

Conclusion

This paper presents the first implementation of a quantum circuit for SEED.

- We focus on optimizing Toffoli and full depths.
 - → Utilizing parallelization and optimized multiplication, squaring and an adder.

We analyze the cost of Grover's key search attack.

→ We confirm that SEED achieves post-quantum security Level 1.

Q&A