신용카드 사용자 연체 예측 AI

스터디 2조 고선욱 유상준

목차

- 1 주제 및 데이터 소개
- 2 EDA 및 데이터 탐색
- 3 데이터 전처리
 - 3-1 파생변수 생성
 - 3-2 Feature engineering

- 4 모델링
 - 4-1 분석 기법 결정
 - 4-2 데이터 분석
 - 4-3 성능을 높이려고 시도했던 과정들

5 느낀점, 한계점 및 마무리

1. 주제 및 데이터 소개

1.주제 및 데이터 소개

1.주제

신용카드 사용자 데이터를 보고 사용자의 대금 연체 정도를 예측하는 알고리즘 개발

2. 배경

신용카드사는 신용카드 신청자가 제출한 개인정보와 데이터를 활용해 신용 점수를 산정합니다. 신용카드사는 이 신용 점수를 활용해 신청자의 향후 채무 불이행과 신용카드 대급 연체 가능성을 예측합니다.

현재 많은 금융업계는 인공지능(AI)를 활용한 금융 서비스를 구현하고자 합니다. 사용자의 대금 연체 정도를 예측할 수 있는 인공지능 알고리즘을 개발해 금융업계에 제안할 수 있는 인사이트를 발굴하기 위함입니다.

1.주제 및 데이터 소개

데이터 소개 및 변수 설명

train.csv: train 데이터 : 신용카드 사용자들의 개인 신상정보

Credit 포함, train.shape : (26457, 20)

test.csv: test 데이터 : 신용카드 사용자들의 개인 신상정보

Credit 미포함, test.shape : (10000, 19)

•gender: 성별

•car: 차량 소유 여부

•reality: 부동산 소유 여부

•child_num: 자녀 수

•income_total: 연간 소득

•income_type: 소득 분류

•['Commercial associate', 'Working', 'State servant', 'Pensioner', 'Student']

•edu_type: 교육 수준

•['Higher education', 'Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

•family_type: 결혼 여부

•['Married', 'Civil marriage', 'Separated', 'Single / not married', 'Widow']

•house_type: 생활 방식

•['Municipal apartment', 'House / apartment', 'With parents', 'Co-op apartment', 'Rented apartment', 'Office apartment']

•DAYS BIRTH: 출생일

•데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 하루 전에 태어났음을 의미

•DAYS_EMPLOYED: 업무 시작일

- 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 하루 전부터 일을 시작함을 의미

- 양수 값은 고용되지 않은 상태를 의미함

•FLAG MOBIL: 핸드폰 소유 여부

•work_phone: 업무용 전화 소유 여부

•phone: 전화 소유 여부

•email: 이메일 소유 여부

•occyp_type: 직업 유형

•family_size: 가족 규모

•begin_month: 신용카드 발급 월

- 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 한 달 전에 신용카드를 발급함을 의미

•credit: 사용자의 신용카드 대금 연체를 기준으로 한 신용도

- 낮을 수록 높은 신용의 신용카드 사용자를 의미힘

1.주제 및 데이터소개

타겟 변수 설명

데이터의 분포를 '신용도'에 따라 확인해보자

우리가예측하고싶은것은개인의신용도이며 신용카드 신청자가 제출한 개인정보와 데이터를 활용해 신용 점수를 산정

```
▶ # 신용등급별 범주형 컬럼의 비율을 파이 차트로 시각화 하기 위한 함수
   def draw_cat_pie(column):
       f, ax = plt.subplots(1, 3, figsize=(30, 20))
       wedgeprops={'width': 0.7, 'edgecolor': 'w', 'linewidth': 5}
       colors = sns.color_palette('Set2')
       credit_0[column].value_counts().plot.pie(autopct='%.1f%%', ax=ax[0], textprops={'fontsize': 15},
                                                 startangle=90, counterclock=False,
                                                 colors=colors, shadow=True, wedgeprops=wedgeprops)
       ax[0].set_title('credit=0○ {} ratio'.format(column), size=20)
       ax[0].set_ylabel('')
       credit_1[column].value_counts().plot.pie(autopct='%.1f%%', ax=ax[1], textprops={'fontsize': 15},
                                                 startangle=90, counterclock=False,
                                                 colors=colors, shadow=True, wedgeprops=wedgeprops)
       ax[1].set_title('credit=12 {} ratio'.format(column), size=20)
       ax[1].set_ylabel('')
       credit_2[column].value_counts().plot.pie(autopct='%.1f%%', ax=ax[2], textprops={'fontsize': 15},
                                                 startangle=90, counterclock=False,
                                                 colors=colors, shadow=True, wedgeprops=wedgeprops)
       ax[2].set_title('credit=20 {} ratio'.format(column), size=20)
       ax[2].set_ylabel('')
       plt.show()
```

```
# 신중농급별 임수영 결임을 바 자트도 시작와 아기 위한 암수
 def draw_cat_bar(column):
  f, ax = plt.subplots(1, 3, figsize=(30, 8))
  sns.countplot(y = column,
                data = credit_0,
                ax = ax[0],
                palette='Set2',
                order = credit_0[column].value_counts().index)
  ax[0].tick_params(labelsize=15)
  ax[0].set_title('credit=0인 {} count'.format(column), size=20)
   ax[0].set_xlabel('count', size=15)
  ax[0].set_ylabel('')
   sns.countplot(y = column)
                data = credit_1,
                ax = ax[1].
                palette='Set2',
                order = credit_1[column].value_counts().index)
  ax[1].tick_params(labelsize=15)
   ax[1].set_title('credit=1인 {} count'.format(column), size=20)
  ax[1].set_xlabel('count', size=15)
  ax[1].set_ylabel('')
  sns.countplot(y = column)
                data = credit_2,
                ax = ax[2],
                palette='Set2',
                order = credit_2[column].value_counts().index)
  ax[2].tick params(labelsize=15)
  ax[2].set_title('credit=2인 {} count'.format(column), size=20)
  ax[2].set_xlabel('count', size=15)
  ax[2].set_ylabel('')
  plt.subplots_adjust(wspace=0.6, hspace=0.3)
  plt.show()
```

신용등급별성별분포

• 모든 신용등급에서 전체적으로 여성이 남성에 비해 약 2배 가량 더 많았다.

신용등급별차량소유여부분포

• 신용등급 여부와 상관없이 전체적으로 차량을 소유하지 않은 사람들이 차량을 소유한 사람보다 더 많았다

신용등급별부동산소유여부분포

• 부동산 소유 여부도 마찬가지로 신용등급 여부와 상관없이 전체적으로 부동산을 소유하지 않은 사람보다 소유한 사람이 더 많았다.

신용등급별소득분류분포

- Commercial associate는 상업 영업 사원으로 회사의 대표자를 의미한다는데 자세한 것은 추후 과정을 진행하면서 더 알아가보자.
- Pensioner은 연금 수령자이며, State servant는 주를 위해 일하는 사람으로 공무원으로 해석하면 될 것 같다.
 Working은 노동자, 즉 일반적인 회사원 혹은 근로자라고 봐야 될 것 같다.
- 신용등급별로 부포가 비슷하게 되어있으며 특이사항으로는 소득부류의 절반은 근로자이며 학생이 거의 존재하지 않는다.

신용등급 별 결혼여부 분포

• 마찬가지로 신용등급별로 분포가 비슷하게 나타났으며, 결혼한 가정이 절반 이상을 차지한다.

신용등급 별직업 유형 분포

신용등급별자녀수의분포

• 대체적으로 자녀가 없는 사람들이 많이 분포해있다.

신용등급 별 연간 소득의 분포

• 등급 간의 연간 소득의 분포의 차이가 거의 없었다.

신용등급 별 업무 시작일의 분포

• 값이 0이라는 것은 직업이 없는 사람을 의미하며, 대체적으로 무직인 사람들이 많이 분포하였으며, 등급 간의 유의미한 분포의 차이는 없었다.

신용등급별가족규모분포

- 앞서 보았던 자녀가 없는 사람들이 많이 존재했다는 것을 미루어 보았을 때, 가족 규모가 2명이 많이 분포한다는 것을 유추할 수 있으며 시각적으로도 확인할 수 있었다.
- 또한 앞에서 확인한 결혼한 사람들이 많았다는 것도 연관되었다는 사실을 알 수 있다.
- 등급 간의 유의미한 분포의 차이는 없었다.

신용등급 별 신용카드 발급 월 분포

• 3개의 신용등급 모두 10개월 이하로 카드발급을 사람들이 많이 분포한다는 것을 알 수 있다.

결측치 확인 및 처리

In [43]: train[train['occyp_type'].isnull()]['credit'].value_counts() # 등급별 직업유형의 값이 널값인 데이터의 분포 ▶ train.isnull().sum() executed in 14ms, finished 01:03:42 2021-12-02 executed in 14ms, finished 01:03:42 2021-12-02 2.0 5266 gender 0 1.0 1938 car 967 reality Name: credit, dtype: int64 child num income_total • train 데이터의 credit 비율과 occyp type 가 NaN인 비율이 비슷하여 drop을 시키려 하였으나 컬럼의 이름이 직업종류인 것을 볼 수 있다. • 추후 파생변수를 생성하는데 있어 필요할지도 몰라 일단 놔두었다. income_type edu_type family_type print("occyp_type's null values ratio: {}%".format(round(train['occyp_type'].isnull().sum() / len(train) * 100, 1))) house_type executed in 14ms, finished 01:03:42 2021-12-02 DAYS_BIRTH DAYS_EMPLOYED occyp_type's null values ratio: 30.9% FLAG MOBIL work_phone • 또한 그 비율이 30.9%로 적지 않기 때문에 어떻게 처리할지에 대해 생각해보자 phone email 0 In [47]: train = train.fillna({'occyp_type': 'No job or No info'}) 8171 occyp_type test = test.fillna({'occyp_type': 'No job or No info'}) family_size begin_month executed in 14ms, finished 01:03:42 2021-12-02 credit 0 • 컬럼의 이름이 직업유형인 것으로 보아 직업이 없거나 정보가 없는 것으로 유추해야 될 것 같다. dtype: int64

변수 간 상관관계 확인

- flag_mobil의 값이 없어 확인해봐야겠다.
- child_num과 family_size사이에는 상관도가 0.89로 매우 높아 다중공선성이 발생할 수 있을 것 같다.
- 이 두개의 컬럼을 각각 활용하는 것보다 위에서 언급했던 것처럼 파생변수를 만드는데 활용해야 될 것 같다.

필요없는컬럼제거-'FLAG_MOBIL'

```
train['FLAG_MOBIL'].value_counts()

executed in 15ms, finished 01:03:42 2021-12-02

1 26457
Name: FLAG_MOBIL, dtype: int64
```

• 데이터에 있는 모든 사람들이 핸드폰을 소유하고 있으므로, 필요없는 컬럼으로 간주해야겠다.

3.3.1 필요없는 컬럼 제거

```
train.drop('FLAG_MOBIL', axis=1, inplace=True)
test.drop('FLAG_MOBIL', axis=1, inplace=True)
executed in 14ms, finished 01:03:42 2021-12-02
```

3.데이터전처리

수치형 데이터 전처리 _ 컬럼 별 분포 확인

수치형 데이터 전처리 – 컬럼 별 이상치 확인

```
In [55]:
              numeric_vars = ['child_num', 'income_total', 'DAYS_BIRTH', 'DAYS_EMPLOYED', 'family_size', 'begin_month']
             executed in 14ms, finished 01:03:45 2021-12-02
          plt.figure(figsize = (20,16))
              for i, column in enumerate(numeric_vars):
                  plt.subplot(3,3,i+1)
                  sns.set_theme(style='whitegrid')
                  sns.boxplot(train[column])
              plt.show()
              executed in 552ms, finished 01:03:45 2021-12-02
                                                               0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
                0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
                                                                                                                -25000 -22500 -20000 -17500 -15000 -12500 -10000 -7500 DAYS_BIRTH
                                child_num
                  0 50000 100000 150000 200000 250000 300000 350000
                                                                            7.5 10.0 12.5 15.0 17.5 20.0
                                                                                                                                        -20
                             DAYS_EMPLOYED
                                                                                family_size
                                                                                                                               begin_month
```

```
df = train[column]
              quantile_25 = np.percentile(df.values, 25)
              quantile_75 = np.percentile(df.values, 75)
              iqr = quantile_75 - quantile_25
              iqr_weight = iqr * weight
              lowest_val = quantile_25 - iqr_weight
              highest_val = quantile_75 + iqr_weight
              outlier_index = df[(df < lowest_val) | (df > highest_val)].index
              print('{}의 outlier의 수 : '.format(column) , len(outlier_index))
              return outlier_index
          executed in 14ms, finished 01:03:45 2021-12-02
In [58]:
           outlier_col = ['child_num', 'income_total', 'DAYS_EMPLOYED', 'family_size']
           for item in outlier_col:
              get_outlier(df=train, column=item, weight=1.5)
          executed in 14ms, finished 01:03:45 2021-12-02
            child_num의 outlier의 수 : 369
            income_total의 outlier의 수 : 1129
            DAYS EMPLOYED의 outlier의 수 : 5726
            family_size의 outlier의 수 : 350
          • 이렇게 컬럼별 outlier의 개수가 나왔다.
          • 성능을 확인해가면서 이상치를 어떻게 처리할 것인지 계속해서 고려해야 될 것 같다.
```

수치형 데이터 전처리 – 'DAYS_EMPLOYED', 'DAYS_BIRTH', 'begin_month'

3.4.3 'DAYS EMPLOYED' 컬럼

- DAYS_EMPLOYED: 업무 시작일
 - 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 하루 전부터 일을 시작함을 의미
 - 양수 값은 고용되지 않은 상태를 의미하므로 0으로 처리한다

```
train['DAYS_EMPLOYED'] = train['DAYS_EMPLOYED'].map(lambda x: 0 if x > 0 else x)
test['DAYS_EMPLOYED'] = test['DAYS_EMPLOYED'].map(lambda x: 0 if x > 0 else x)
executed in 14ms, finished 01:03:45 2021-12-02
```

3.4.4 음수값이 존재하는 컬럼 양수로 변환 - 'DAYS_BIRTH', 'begin_month', 'DAYS_EMPLOYED'

3-1

파생 변수 생성

1. 수치형 데이터

2. 값확인 및 이상치 제거

3. 범주형 데이터

파생변수 생성 – 수치형 데이터

3.5 파생변수 생성 - 수치형 데이터

• 유의미하다고 생각되는 파생변수 리스트 -> 나중에 인사이트와도 연관성을 고려하여 선정함

3.5.1 'age' 변수 생성

- DAYS_BIRTH: 출생일
- 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 하루 전에 태어났음을 의미
- 값을 사용하기 어려운 범위이므로 나이 컬럼을 만들어 볼 수 있을 것 같다.

```
In [62]:
             train['DAYS_BIRTH'].describe()
            executed in 14ms, finished 01:03:45 2021-12-02
                        26457,000000
              count
                        15958.053899
              mean
              std
                         4201.589022
                        7705.000000
              min
              25%
                        12446.000000
              50%
                        15547.000000
              75%
                        19431.000000
              max
                        25152.000000
              Name: DAYS_BIRTH, dtype: float64
In [63]:
             train['age'] = train['DAYS_BIRTH'] // 365 + 1
             test['age'] = test['DAYS_BIRTH'] // 365 + 1
            executed in 14ms, finished 01:03:45 2021-12-02
```


• 앞서 EDA에서 확인했듯이 20~40대사이의 분포가 가장 많다.

파생변수 생성 – 수치형 데이터

3.5.2 일을 시작한 나이 - 'GET_JOB_AGE' 변수 추가

```
train['GET_JOB_AGE'] = (train['DAYS_BIRTH'] - train['DAYS_EMPLOYED']) // 365 + 1
    test['GET_JOB_AGE'] = (test['DAYS_BIRTH'] - test['DAYS_EMPLOYED']) // 365 + 1

    executed in 14ms, finished 01:03:45 2021-12-02

In [66]:
    plt.figure(figsize=(12,12))
    sns.countplot(y=train['GET_JOB_AGE']);
    executed in 358ms, finished 01:03:46 2021-12-02
```


• 보편적인 취업 나이인 20세 초반에서 20세 후반사이까지 가장 많이 분포한다.

3.5.3 날짜 단위 별 파생변수 생성 - 'days_employed_year', 'days_employed_month', 'days_employed_week', 'begin_year'

- DAYS_EMPLOYED: 업무 시작일
 - 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 하루 전부터 일을 시작함을 의미
- 양수 값은 고용되지 않은 상태를 의미함
- begin_month: 신용카드 발급 월
 - 데이터 수집 당시 (0)부터 역으로 셈, 즉, -1은 데이터 수집일 한 달 전에 신용카드를 발급함을 의미

```
In [67]:

# age생성과 마찬가지로

train['begin_year'] = train['begin_month'] // 12 + 1 # 카드 발급 연 단위를 월 단위가 12개월 안일 때를 1년 기준으로 잡을

train['DAYS_EMPLOYED_YEAR'] = train['DAYS_EMPLOYED'] // 365 + 1 # 교용 일수도 마찬가지로 반올림해줄

train['DAYS_EMPLOYED_MONTH'] = train['DAYS_EMPLOYED'] // 30 + 1

train['DAYS_EMPLOYED_WEEK'] = train['DAYS_EMPLOYED'] // 7 + 1

executed in 13ms, finished 01:03:46 2021-12-02

In [68]:

# age생성과 마찬가지로

test['begin_year'] = test['begin_month'] // 12 + 1 # 카드 발급 연 단위를 월 단위가 12개월 안일 때를 1년 기준으로 잡음

test['DAYS_EMPLOYED_YEAR'] = test['DAYS_EMPLOYED'] // 365 + 1 # 교용 일수도 마찬가지로 반올림해줄

test['DAYS_EMPLOYED_MONTH'] = test['DAYS_EMPLOYED'] // 30 + 1

test['DAYS_EMPLOYED_WEEK'] = test['DAYS_EMPLOYED'] // 7 + 1

executed in 14ms, finished 01:03:46 2021-12-02
```

파생변수 생성 – 수치형 데이터

3.5.4 'income total'은 현재 연차의 연간 소득을 의미, 내가 일한 기간에 대해 나누었을 때 평균 기간에 대한 소득을 구할 수 있음

```
train['INCOME_EMPLOYED_RATIO_DAY'] = train['income_total'] / train['DAYS_EMPLOYED'] # 일 기준
train['INCOME_EMPLOYED_RATIO_WEEK'] = train['income_total'] / train['DAYS_EMPLOYED_WEEK'] # 주 기준
train['INCOME_EMPLOYED_RATIO_MONTH'] = train['income_total'] / train['DAYS_EMPLOYED_MONTH'] # 월 기준
train['INCOME_EMPLOYED_RATIO_YEAR'] = train['income_total'] / train['DAYS_EMPLOYED_YEAR'] # 연 기준
executed in 14ms, finished 01:03:46 2021-12-02

In [70]:

test['INCOME_EMPLOYED_RATIO_DAY'] = test['income_total'] / test['DAYS_EMPLOYED'] # 일 기준
test['INCOME_EMPLOYED_RATIO_WEEK'] = test['income_total'] / test['DAYS_EMPLOYED_WEEK'] # 주 기준
test['INCOME_EMPLOYED_RATIO_MONTH'] = test['income_total'] / test['DAYS_EMPLOYED_MONTH'] # 월 기준
test['INCOME_EMPLOYED_RATIO_YEAR'] = test['income_total'] / test['DAYS_EMPLOYED_YEAR'] # 연 기준

executed in 14ms, finished 01:03:46 2021-12-02
```

3.5.5 가족수 - 자식수 -> 실질적으로 경제적 활동을 하는 사람 수

```
In [71]:

train['economical_people'] = train['family_size'] - train['child_num']

test['economical_people'] = test['family_size'] - test['child_num']

executed in 12ms, finished 01:03:46 2021-12-02
```

3.5.6 income을 가족 수 및 자식 수로 나눈 비율

- 가족 1명당 연간 소득이 소비되는 수치 확인 -> 부양 능력?이라고 해석해도 될듯하다.
- 자식 1명당 연간 소득이 소비되는 수치 확인 -> 교육비 지출 능력?

3.5.7 연간수입을 살아온 날에 대한 비율 -> 개인의 밥벌이 능력이라고 해석?

```
In [74]:

train['income_per_days_birth'] = train['income_total'] / train['DAYS_BIRTH'] # 일 단위
train['income_per_age'] = train['income_total'] / train['age'] # 연 단위

executed in 13ms, finished 01:03:46 2021-12-02

In [75]:

test['income_per_days_birth'] = test['income_total'] / test['DAYS_BIRTH'] # 일 단위
test['income_per_age'] = test['income_total'] / test['age'] # 연 단위

executed in 14ms, finished 01:03:46 2021-12-02
```

파생변수 생성 – 값 확인 및 이상치 제거

```
In [76]:

new_col = ['age', 'GET_JOB_AGE', 'begin_year', 'DAYS_EMPLOYED_YEAR', 'DAYS_EMPLOYED_MONTH', 'DAYS_EMPLOYED_WEEK',

'INCOME_EMPLOYED_RATIO_DAY', 'INCOME_EMPLOYED_RATIO_WEEK',

'INCOME_EMPLOYED_RATIO_MONTH', 'INCOME_EMPLOYED_RATIO_YEAR',

'INCOME_fam_RATIO', 'INCOME_child_num_RATIO', 'economical_people',

'income_per_days_birth', 'income_per_age']

train[new_col].head()

executed in 29ms, finished 01:03:46 2021-12-02
```

	age	GET_JOB_AGE	begin_year	DAYS_EMPLOYED_YEAR	DAYS_EMPLOYED_MONTH	DAYS_EMPLOYED_WEEK	INCOME_E
index							
0	39	26	1.0	13	157	673	43.002761
1	32	27	1.0	5	52	221	160.714286
2	53	41	2.0	13	148	634	101.488498
3	42	36	4.0	6	70	299	96.797323
4	42	36	3.0	6	71	301	74.821853

- INCOME_child_num_RATIO에서 inf 값들이 보인다
- 아마 자식이 없는 사람들이 대다수 분포했으므로 분모가 0으로 나누어져서 이런 결과가 나온 것 같다.

```
train.loc[train['INCOME_child_num_RATIO'] == np.inf, 'INCOME_child_num_RATIO'] = 0
test.loc[test['INCOME_child_num_RATIO'] == np.inf, 'INCOME_child_num_RATIO'] = 0
executed in 14ms, finished 01:03:46 2021-12-02
```

• 자식이 없으면 교육비 지출을 하지 않을 것으로 판단되어 0으로 대체

```
In [79]: 
train['INCOME_EMPLOYED_RATIO_DAY'].value_counts()

executed in 14ms, finished 01:03:46 2021-12-02
```

inf	4438
91.836735	39
72.862694	26
116.666667	24
100.000000	24
91.911765	1
26.020155	1
92.879257	1
12.556679	1
79.960513	1

Name: INCOME_EMPLOYED_RATIO_DAY, Length: 6181, dtype: int64

파생변수 생성 – 값확인 및 이상치 제거

int	4438
91.836735	39
72.862694	26
116.666667	24
100.000000	24
91.911765	1
26.020155	1
92.879257	1
12.556679	1
79.960513	1

Name: INCOME_EMPLOYED_RATIO_DAY, Length: 6181, dtype: int64

- 여기도 inf값이 많이 잡힌다
- 무직인 사람들, days_employed의 값이 0으로 대체되어졌던 것들이 분모로 사용된 것 같다. 다시 확인해보자.

train.loc[train['DAYS_EMPLOYED'] == 0,['occyp_type', 'age', 'income_total', 'DAYS_EMPLOYED']]
test.loc[test['DAYS_EMPLOYED'] == 0,['occyp_type', 'age', 'income_total', 'DAYS_EMPLOYED']]
executed in 14ms, finished 01:03:46 2021-12-02

	occyp_type	age	income_total	DAYS_EMPLOYED
index				
26457	No job or No info	61	112500.0	0
26464	No job or No info	56	141750.0	0
26467	No job or No info	58	90000.0	0
26470	No job or No info	59	90000.0	0
26471	No job or No info	63	202500.0	0
			•••	
36425	No job or No info	56	135000.0	0
36438	No job or No info	65	135000.0	0
36445	No job or No info	54	117000.0	0
36449	No job or No info	63	180000.0	0
36451	No job or No info	65	131400.0	0

1697 rows × 4 columns

- age와 같이 확인해보니 대부분 직장에서 은퇴한 나이대이다.
- 또한 현재 일을하고 있지 않아서 일한 일수에 대한 데이터가 반영되지 않았을 수 도 있다.
- 단순 유추해보았을 때 연간소득의 근원이 직접 일하면서 받는 돈이 아닌 다른 방식(연금)으로 지급되는 것 같다.
- 연간소득을 일한기간으로 나누어 기간 당 소득을 구하는게 목적이였으므로 이 경우에는 0으로 대체해주어야겠다

```
train.loc[train['INCOME_EMPLOYED_RATIO_DAY'] == np.inf, 'INCOME_EMPLOYED_RATIO_DAY'] = 0
test.loc[test['INCOME_EMPLOYED_RATIO_DAY'] == np.inf, 'INCOME_EMPLOYED_RATIO_DAY'] = 0
executed in 14ms, finished 01:03:46 2021-12-02
```

파생변수 생성 – 값 확인 및 이상치 제거

```
    gender index
    car reality
    child_num
    income_total
    income_type
    edu_type
    family_type
    house_type
    DAYS_BIRTH
    ...
    DAYS_EMPLOYED_WEEK
    INCOME

    5825
    M
    Y
    Y
    1
    450000.0
    Commercial associate
    Secondary special
    Single / not married
    House / apartment
    18173
    ...
    97
    663.71681

    14900
    M
    Y
    N
    2
    225000.0
    Working
    Secondary special
    Married
    House / apartment
    14776
    ...
    317
    101.71790

    16110
    F
    N
    Y
    1
    108000.0
    Working
    Secondary special
    Fingle / not married
    House / apartment
    12723
    ...
    162
    95.406360
```

```
train = train[train['economical_people'] >= 1]
test = test[test['economical_people'] >= 1]
train['economical_people'].value_counts()

executed in 14ms, finished 01:03:46 2021-12-02
```

```
2.0 20331
1.0 6120
Name: economical_people, dtype: int64
```

파생변수 생성 – 범주형 데이터

3.6 파생변수 생성 - 범주형 데이터

• 유의미하다고 생각되는 파생변수 리스트 -> 나중에 인사이트와도 연관성을 고려하여 선정함

3.6.1 자녀가 있는 가정 vs 없는 가정

- 데이터 출처가 중국
- 중국에선 자녀의 제한을 두는 법률이 존재
 - ex) 실제 자녀가 3명 이상임에도 법적으로 3명 이하로 신고했을 가능성이있다.
 - 그렇다면, 자녀의 수는 신뢰할만한 데이터가 아니다.
- 자녀가 있는데 없다고 거짓 신고할 가능성은 현저히 낮다는 가정하에, 자녀의 유무에 따른 차이가 있을까 싶어 파생변수를 만들었다.

```
train['child'] = 0
test['child'] = 0

executed in 14ms, finished 01:03:46 2021-12-02

train.loc[train.child_num >= 1,'child'] = 1
test.loc[test.child_num >= 1,'child'] = 1
train.child.value_counts()

executed in 14ms, finished 01:03:46 2021-12-02
```

0 18340 1 8111 Name: child, dtype: int64

파생변수 생성 – 범주형 데이터

3.6.2 맞벌이 부부 vs 외벌이 부부 컬럼 생성 (economical_people 이용)

- https://prism45.tistory.com/270
- 맞벌이 부부는 외벌이 부부보다 수입이 많기에 과소비가 많다는 근거가 있는 자료

```
# 맞벌이 부부 = 1, 외벌이 부부 = 0
train['dual_income'] = train['economical_people'] - 1
test['dual_income'] = test['economical_people'] - 1
executed in 14ms, finished 01:03:46 2021-12-02

In [88]:
train['dual_income'].value_counts()
executed in 14ms, finished 01:03:46 2021-12-02
```

1.0 20331 0.0 6120

Name: dual_income, dtype: int64

파생변수 생성 – 범주형 데이터

3.6.3 'age_range' 세대별 컬럼 생성 - 20대, 30대...60대

3-2

Feature engineering

1. Feature Scaling

2. Feature Encoding

Feature engineering – Scaling

3.7 수치형 데이터 feature scaling

• 추후 범주형 데이터 전처리와 스케일링의 편의성을 위해 컬럼을 확실하게 구분해놔야 할 것 같다.

train[numeric_vars].describe()

executed in 59ms, finished 22:26:49 2021-11-30

		income_total	economical_people	family_size	DAYS_BIRTH	child_num	DAYS_EMPLOYED
	count	2.645100e+04	26451.000000	26451.000000	26451.000000	26451.000000	26451.000000
click to	expand	output; double cli	ck to hide output	2.197119	15958.384976	0.428490	2198.712034
	std	1.018741e+05	0.421717	0.916643	4201.877382	0.747307	2370.361309
	min	2.700000e+04	1.000000	1.000000	7705.000000	0.000000	0.000000
	25%	1.215000e+05	2.000000	2.000000	12446.000000	0.000000	407.000000
	50%	1.575000e+05	2.000000	2.000000	15552.000000	0.000000	1539.000000
	75%	2.250000e+05	2.000000	3.000000	19431.000000	1.000000	3153.000000
	max	1.575000e+06	2.000000	20.000000	25152.000000	19.000000	15713.000000

- 8 rows × 21 columns
- 보다시피 수치형 컬럼별로 값들의 편차가 제각각이다
- 일단 값이 제일 큰 income total의 컬럼은 log scale을 통해 진행하고 분포를 보자.

Feature engineering – Scaling

3.7.1 'income_total'을 로그 변환 했을 때의 분포 확인

```
In [102]:
             import copy
             executed in 14ms, finished 22:26:49 2021-11-30
In [103]:
             train_copy = copy.deepcopy(train) # 수치형 변수는 스케일링을 수시로 바꿔서 지표를 확인해야 하므로 카피를 만들겠다.
             test_copy = copy.deepcopy(test)
             executed in 14ms, finished 22:26:49 2021-11-30
In [104]:
             amount_log = np.log1p(train_copy['income_total'])
             train_copy['income_total'] = amount_log
             executed in 14ms, finished 22:26:49 2021-11-30
          amount_log = np.log1p(test_copy['income_total'])
             test_copy['income_total'] = amount_log
             executed in 13ms, finished 22:26:49 2021-11-30
In [106]:
             sns.distplot(x=train_copy['income_total']);
             executed in 283ms, finished 22:26:49 2021-11-30
```


Feature engineering – Scaling

Feature engineering – Scaling

Kolmogorov-Smirnov test: 누적 확률분포를 이용하여 표본의 확률분포와 모집단의 확률분포 간의 유사성 확인

3.7.3 Kolmogorov-Smirnov 테스트를 통한 정규성 검증 In [113]: ► from scipy.stats import kstest result = kstest(train_copy['income_total'], 'norm') result executed in 13ms, finished 22:26:50 2021-11-30 KstestResult(statistic=1.0, pvalue=0.0) In [114]: result = []for col in train_copy[big_mean_cols].columns: value = kstest(train_copy[col], 'norm') result.append(value) result executed in 29ms, finished 22:26:50 2021-11-30 [KstestResult(statistic=0.9996381358446139, pvalue=0.0), KstestResult(statistic=0.9999991247057177, pvalue=0.0), KstestResult(statistic=0.9999999999999004, pvalue=0.0), KstestResult(statistic=1.0, pvalue=0.0), KstestResult(statistic=0.7558914042144173, pvalue=0.0)] • 값이 모두 0이 나온다...확실하게 수치형 변수를 모두 포함해서 StandardScaler를 적용해보자.

Feature engineering – Scaling

Feature engineering – Scaling

```
In [120]:
         ▶ result = {}
            for col in train_copy[numeric_vars].columns:
                 value = kstest(train_copy[col], 'norm')
                 result[col] = value.pvalue
            for k,v in result.items():
                 print('{col}의 p-value: {p_value}'.format(col=k, p_value=v))
            executed in 329ms, finished 22:26:56 2021-11-30
              income_total의 p-value: 4.81917375978407e-95
              economical_people의 p-value: 0.0
              family_size의 p-value: 0.0
              DAYS_BIRTH의 p-value: 4.970614086079955e-72
              child_num의 p-value: 0.0
              DAYS_EMPLOYED의 p-value: 0.0
              DAYS_EMPLOYED_WEEK의 p-value: 0.0
              DAYS_EMPLOYED_MONTH의 p-value: 0.0
              DAYS_EMPLOYED_YEAR의 p-value: 0.0
              begin_month의 p-value: 4.884307970977191e-154
              begin_year의 p-value: 0.0
              age의 p-value: 4.4320464974326124e-113
              GET_JOB_AGE의 p-value: 5.460388833246204e-239
              INCOME_EMPLOYED_RATIO_DAY의 p-value: 0.0
              INCOME_EMPLOYED_RATIO_WEEK의 p-value: 0.0
              INCOME_EMPLOYED_RATIO_MONTH의 p-value: 0.0
              INCOME_EMPLOYED_RATIO_YEAR의 p-value: 1.3361676332358522e-63
              INCOME_fam_RATIO의 p-value: 2.9171484608029973e-65
              INCOME_child_num_RATIO의 p-value: 0.0
              income_per_days_birth의 p-value: 2.1534313512663427e-266
              income_per_age의 p-value: 6.42232200855886e-282
```

- 기존부터 편향된 데이터가 존재하는 컬럼에 대해서는 수치가 변하지 않는 것 같다.
- 일단 여기까지 진행하고 모델링을 해봐야될 것 같다.

Feature engineering – Encoding

3.8 범주형 데이터 feature encoding

```
In [122]:
            train[cat_vars].info()
           executed in 29ms, finished 22:26:56 2021-11-30
             <class 'pandas.core.frame.DataFrame'>
             Int64Index: 26451 entries, 0 to 26456
             Data columns (total 8 columns):
              # Column Non-Null Count Dtype
             --- -----
                 gender 26451 non-null object
              1 car 26451 non-null object
2 reality 26451 non-null object
              3 income_type 26451 non-null object
              4 edu_type 26451 non-null object
              5 family_type 26451 non-null object
              6 house_type 26451 non-null object
              7 occyp_type 26451 non-null object
             dtypes: object(8)
             memory usage: 2.8+ MB
        train[cat_vars].head()
           executed in 14ms, finished 22:26:56 2021-11-30
```

	gender	car	reality	income_type	edu_type	family_type	house_type	occyp_type
index								
0	F	Ν	N	Commercial associate	Higher education	Married	Municipal apartment	No job or No info
1	F	Ν	Υ	Commercial associate	Secondary / secondary special	Civil marriage	House / apartment	Laborers
2	M	Υ	Υ	Working	Higher education	Married	House / apartment	Managers
3	F	Ν	Υ	Commercial associate	Secondary / secondary special	Married	House / apartment	Sales staff
4	F	Υ	Υ	State servant	Higher education	Married	House / apartment	Managers

• edu_type만 unique한 값들이 level이 있고 나머지 컬럼들은 그냥 각기 다른 동등한 level의 값들이다.

Feature engineering – Encoding

예측이 아닌 분류 계열의 ML알고리즘을 적용하기 때문에 One-hot encoding대신 label encoding을 진행

Feature engineering – Encoding

3.8.4 'edu_type'은 순위적 특성이 있으므로 mapping encoding을 통해 따로 스케일링 In [131]: Print('edu_type 종류 : ',list(train.edu_type.unique())) display(train[['edu_type']].head()) edu_order = { 'Lower secondary' : 0, # 중학교 미반 'Secondary / secondary special' : 1, #중학교 'Incomplete higher' : 2, # 고등학교 중퇴 'Higher education' : 3, # 고등학교 졸업 'Academic degree' : 4 # 학사 이상 } train.edu_type = train.edu_type.map(edu_order) display(train[['edu_type']].head()) executed in 29ms, finished 22:26:57 2021-11-30

edu_type 종류 : ['Higher education', 'Secondary / secondary special', 'Incomplete higher', 'Lower secondary', 'Academic degree']

	edu_type
index	
0	Higher education
1	Secondary / secondary special
2	Higher education
3	Secondary / secondary special
4	Higher education

	edu_type
index	
0	3
1	1
2	3
3	1
4	3

4. 모델링

4-1

분석 기법 결정

- 1. 데이터 활용 방안
 - 2. 목표

1.데이터 활용방안

문제점: Test data set에 label 인 "credit"변수가 존재하지 않는다.

- Y_test가 주어지지 않은 데이터
- 최초 주어진 train data 내부에서 자체 평가 데이터를 생성 (validation data)
 - train: validation = 8:2의 비율로 나누고, "val" 이라고 지칭

- Label 변수인 "Credit" 변수의 심각한 불균형
 - 0,1의 비율이 낮고, 2의 비율이 높음

주된 목표: "성능의 최대화"

- log loss를 최소화 하는 최적의 모델 탐색
 - 1. 모델 간 비교

- 2. oversampling 적극 활용
 - SMOTE 방법

- 3. 나누어진 train data를 k-fold로 나누어 cross validation 진행, 모델의 최적 하이퍼파라미터를 탐색.

" 4-2 GridSearch + 모델별 validation set 예측 성능 지표

- 1. RandomForest
 - 2. XGBoost
 - 3. LGBM
 - 4. CatBoost

4가지 모델의 하이퍼파라미터 최적화.

- GridSearchCV를 이용

<LGBM 예시>

1. RandomForest

Best Model: RandomForestClassifier(max_depth=20, n_estimators=400)

Accuracy, Confusion Matrix, Precision, Recall

<oversampling X>

	======	======	=======	
Validataion set 메	측 성능	평가		
prec	ision	recall	f1-score	support
0.0	0.49 0.67	0.16 0.39	0.24 0.49	644 1254
2.0	0.73	0.93	0.82	3393
accuracy macro avg weighted avg	0.63 0.68	0.49 0.71	0.71 0.52 0.67	5291 5291 5291
[[103 75 466] [41 487 726] [65 169 3159]]				
log_loss : 0.7194 accuracy_score :		24728 170856170	85	

<oversampling O>

=======================================			=======	=====		
Validataion set 예측 성능 평가						
pre	cision	recall	f1-score	support		
0.0	0.83	0.80	0.81	644		
1.0	0.86	0.87	0.87	1254		
2.0	0.93	0.93	0.93	3393		
accuracy			0.90	5291		
macro avg	0.87	0.87	0.87	5291		
weighted avg	0.90	0.90	0.90	5291		
[[516						
log_loss : 0.4333109052992005						
_			20			
accuracy_score :	0.30360	990360990	JD			

1. RandomForest

Best Model: RandomForestClassifier(max_depth=20, n_estimators=400)

Feature Importance

2. XGBoost

Best Model: XGBClassifier(learning_rate=0.2, max_depth=10, objective='multi:softprob')

Accuracy, Confusion Matrix, Precision, Recall

<oversampling X>

Validataion set 예측 성능 평가							
			f1-score	support			
0.0 1.0	0.56 0.69	0.16 0.39	0.25 0.50	644 1254			
2.0	0.73	0.95	0.82	3393			
accuracy			0.72	5291			
macro avg weighted avg	0.66 0.70	0.50 0.72	0.52 0.68	5291 5291			
[[106							
log_loss : 0.7194 accuracy_score :			87				

<oversampling O>

=====================================						
·	– –		f1-score	support		
0.0 1.0 2.0	0.86 0.89 0.85	0.60 0.69 0.97	0.70 0.77 0.90	644 1254 3393		
accuracy macro avg weighted avg	0.86 0.86	0.75 0.86	0,86 0,79 0,85	5291 5291 5291		
[[385 35 224] [25 862 367] [40 75 3278]]					
log_loss : 0.433 accuracy_score :			======= 53	=====		

2. XGBoost

Best Model: XGBClassifier(learning_rate=0.2, max_depth=10, objective='multi:softprob')

Feature Importance

3. LGBM

Best Model: LGBMClassifier(learning_rate=0.05, max_depth=20,

Accuracy, Confusion Matrix, Precision, Recall

<oversampling X>

	======		========	=====		
Validataion set 예측 성능 평가						
prec	ision	recall	f1-score	support		
0.0	0.57	0.13	0.21	644		
1.0	0.70	0.37	0.49	1254		
2.0	0.72	0.96	0.82	3393		
accuracy			0.72	5291		
macro avg	0.66	0.49	0.51	5291		
weighted avg	0.70	0.72	0.67	5291		
[[82 83 479]						
[29 470 755]						
[34 117 3242]]						
=======================================						
log_loss : 0.7170	34734868	37243				
accuracy_score :	0.71706	571706671	71			

<oversampling O>

=====================================						
	– –		f1-score	support		
0.0 1.0 2.0	0.86 0.89 0.90	0.71 0.81 0.96	0.78 0.85 0.93	644 1254 3393		
accuracy macro avg weighted avg	0.88 0.89	0.83 0.89	0.89 0.85 0.89	5291 5291 5291		
[[459 34 151] [34 1013 207] [41 92 3260]]						
log_loss : 0.3359 accuracy_score :		====== 238784 389434889	 43			

3. LGBM

Best Model: LGBMClassifier(learning_rate=0.05, max_depth=20,

Feature Importance

4. CatBoost

Best Model: Algorithm Choice

Accuracy, Confusion Matrix, Precision, Recall

<oversampling X>

=======================================	======	======	=======	=====		
Validataion set 메	측 성능	평가				
prec	ision	recall	f1-score	support		
0.0	0.60	0.05	0.09	644		
1.0	0.72	0.31	0.43	1254		
2.0	0.71	0.98	0.82	3393		
accuracy			0.71	5291		
macro avg	0.67	0.44	0.45	5291		
weighted avg	0.70	0.71	0.64	5291		
[[31 84 529]						
[13 383 858]						
[8 66 3319]]						
=======================================						
log_loss : 0.7503						
accuracy_score :	0.70553	770553770	56			

<oversampling O>

=======================================	======	=======	=======	=====	
Validataion set ଔ pred	– –		f1-score	support	
0.0 1.0 2.0	0.63 0.76 0.75	0.30 0.46 0.94	0.41 0.57 0.84	644 1254 3393	
accuracy macro avg weighted avg	0.71 0.74	0.57 0.75	0.75 0.61 0.72	5291 5291 5291	
[[196					
log_loss : 0.6634 accuracy_score :		====== 1 278 274806274	======================================		

4. CatBoost

Best Model: Algorithm Choice

Feature Importance

4가지 모델의 공통점 (Accuracy_results)

- 1. Oversampling을 했을 때, 0과 1 class의 예측성공 비율이 월등히 나아진다.
 - recall, precision ...

2. Oversampling을 했을 때, 모델 평가 지표로 정했던 log_loss가 낮아진다.

3. Oversampling을 했을 때, 전체 예측 Accuracy가 높아진다.

4가지 모델의 Feature Importance 해석

1. Begin Month, Begin Year 등 신용카드를 발급받은 시점이 중요 feature이다.

- 2. 만들어낸 파생변수가 상위 순위에 몇몇 보인다.
 - ex) 일을 시작한 나이, 실질적 경제활동 인원 수..

4-3

Optuna + 모델별 validation set 예측 성능 지표

- 1. RandomForest
 - 2. XGBoost
 - 3. LGBM
 - 4. CatBoost

0. Optuna

4가지 모델의 하이퍼파라미터 최적화.

- Optuna를 이용

<XGBoost 예시>

```
def objective_xgb(trial: Trial) -> float:
    params_xgb = {
        "random_state": 42,
        "learning_rate": trial.suggest_discrete_uniform('learning_rate', 0.01, 0.1, 0.01),
        "n_estimators": trial.suggest_int('n_estimators', 0, 1000),
        "objective": "multiclass",
        "metric": "multi_logloss",
        "reg_alpha": trial.suggest_float("reg_alpha", 1e-8, 3e-5),
        "reg_lambda": trial.suggest_float("reg_lambda", 1e-8, 9e-2),
        "max_depth": trial.suggest_int("max_depth", 1, 20),
        "colsample_bytree": trial.suggest_discrete_uniform('colsample_bytree', 0.5, 0.9, 0.1),
        "subsample": trial.suggest_discrete_uniform('subsample', 0.5, 0.9, 0.1),
    }
}
```

원하는 Parameter의 범위를 설정해 range(start,end,step)의 형식으로 입력 할 수 있다.

Best Score: 0.691593056951268 Best trial {'learning_rate': 0.02, 'n_estimators': 292, 'reg_alpha': 1.0997191680377813e-05, 'reg_lambda': 0.041046304018833 39, 'max_depth': 16, 'colsample_bytree': 0.5, 'subsample': 0.7}

1. RandomForest

< Optuna Parameters >

'n_estimators': 483,

'max_depth': 40,

'min_samples_split': 30,

'min_samples_leaf': 31

< Accuracy Results (Over Sampling)>

=====================================					
Validataion set 예측 성능 평가 precision recall f1-score support					
pre	CISTOII	recarr	ii-score	support	
0.0	0.49	0.44	0.47	644	
1.0	0.67	0.54	0.60	1254	
2.0	0.79	0.86	0.82	3393	
accuracy			0.73	5291	
macro avg	0.65	0.62	0.63	5291	
weighted avg	0.73	0.73	0.73	5291	
[[284 88 272]					
[64 682 508]					
[229 242 2922]]				
=======================================					
log_loss : 0.8151452758697733					

accuracy_score : 0.7348327348327348

1. RandomForest

< Feature Importance>

< Optuna Parameters >

'learning_rate': 0.02,

'n estimators': 292,

'max depth': 16,

'colsample bytree': 0.5,

'subsample': 0.7

< Accuracy Results (Over Sampling)>

=====================================					
I			f1-score	support	
0.0 1.0 2.0	0.78 0.85 0.77	0.32 0.48 0.97	0.45 0.61 0.86	644 1254 3393	
accuracy macro avg weighted avg	0.80 0.79	0.59 0.78	0.78 0.64 0.75	5291 5291 5291	
[[207 50 387] [23 606 625] [37 61 3295]]					
log_loss : 0.6129271461014243					

accuracy_score : 0.7764127764127764

< Feature Importance>

< Optuna Parameters >

'max depth': 20,

'num leaves': 214,

'colsample bytree': 0.5274034664069657,

'subsample': 0.42727747704497043,

'subsample freq': 2,

'min child samples': 34,

'max bin': 357

< Accuracy Results (Over Sampling)>

Validataion set 예측 성능 평가 precision recall f1-score support						
prec	151011	recarr	11-50016	Support		
0.0	0.72	0.18	0.29	644		
1.0	0.79	0.37	0.50	1254		
2.0	0.73	0.97	0.83	3393		
accuracy			0.73	5291		
macro avg	0.75	0.51	0.54	5291		
weighted avg	0.74	0.73	0.69	5291		
[[117 58 469] [19 462 773] [26 67 3300]]						
log_loss : 0.7069757067872396						

0.7331317331317331 accuracy_score :

< Feature Importance>

- 1. GridSearch를 했을 때 보다는, 0과 1 class 예측 성공률이 떨어진다.
 - recall, precision ..

2. GridSearch를 했을 때 보다, log_loss가 높아진다.

3. GridSearch 보다 정해주는 Parameters의 수가 많아 진다.

4. 실제 Test set으로 DACON 홈페이지에서 실행 결과, GridSearch보다 좋은 logloss를 보여주는 결과도 있었다

5. 결론

5-1

결론

1. 분석 결과 해석

분석결과해석

- 1. Begin Month, Begin Year 등 신용카드를 발급받은 시점이 중요 feature이다.
 - 신용도에 영향을 주는 변수는 시간 변수일 가능성이 크다
 - 머신러닝 모델 특성상, 단위 당 확률변화 등의 영향은 알 수 없다.

- 2. 만들어낸 파생변수가 모델에 잘 녹아 들어갔음을 확인했다.
 - Ex) 일을 시작한 나이, 실질적 경제활동 인원 수..

- 3. Oversampling이 불균형한 데이터를 보완해주었다. (validation set 한정)
 - 불균형한 라벨의 비율을 가진 데이터에서 예측 성능이 상당히 많이 향상되었다.

5-2

한계점

1. 시간적한계

2. 성능적한계

1. 성능적 한계

- y_test가 주어지지 않아서, DACON 사이트에 1일 3회 제출을 해 test_score를 확인 할 수 있 는 한계점이 존재하여 원하는 만큼의 test_score 확보에 실패한점이 아쉬웠다.

2. 시간적 한계

- GridSearch 혹은 Optuna로 하이퍼파라미터를 적합하는 시간소요가 커서, 여러 조합을 시도하지 못한 것이 아쉬웠다.

감사합니다:)