112-1 Discrete Mathematics Charpter 1-5~7

姓名:許嘉隆 學號:412770116

Chapter 1-5

4.

- a) There is a student in class has taken a computer science course at school.
- b) There is a student in class has taken all computer science courses at school.
- c) All students in class have taken a computer science course at school.
- d) There is a computer science course at school has taken by all students in class.
- e) All computer science courses at school have taken by a student in class.
- f) All students in class have taken all computer science courses at school.

6.

- a) Randy Goldberg is enrolled in class CS 252.
- c) Carol Sitea is enrolled all classes at school.
- e) There are two different people, and the second person has attended all the courses that the first person has attended.

10.

- a) $\forall x F(x, Fred)$
- b) $\forall x F(Evelyn, x)$
- c) $\forall x \exists y \ F(x, y)$
- d) $\neg \exists x \forall y F(x, y)$
- e) $\forall y \exists x F(x, y)$
- f) $\neg \exists x (F(x, Fred) \land F(x, Jerry))$
- g) $\exists y_1 \exists y_2 \Big[F(Nancy, y_1) \land F(Nancy, y_2) \land (y_1 \neq y_2) \land \forall y \Big(F(Nancy, y) \rightarrow (y = y_1) \lor (y = y_2) \Big) \Big]$
- h) $\exists y \Big[\forall x F(x, y) \land \forall z \Big(\forall x F(x, z) \rightarrow z = y \Big) \Big]$
- i) $\neg \exists x F(x, x)$
- j) $\exists x \exists y \left[F(x,y) \land (x \neq y) \land \forall z \left(F(x,z) \rightarrow z = y \right) \right]$

12.

- b) $\neg C(Rachel, Chelsea)$
- 16. Let P(s, c, m) = "Student s has class standing c and is majoring in m"
 - a) $\exists s \exists m P(s, junior, m) \implies True$

- b) $\forall s \exists c P(s, c, computer science) \implies False$
- c) $\exists s \exists c \exists m [P(s, c, m) \land (m \neq mathemastics) \land (c \neq junior)] \implies True$
- d) $\forall sP(s, sophomore, computer science) \implies False$
- e) $\exists m \forall c \exists s \ P(s,c,m) \implies False$

Chapter 1-6

6. Let r = "It rains", f = "It is foggy", s = "The sailing race will be held", <math>l = "The life saving demonstration" and t = "The trophy will be awarded".

$$\Longrightarrow Premise: \begin{cases} 1. & (\neg r \lor \neg f) \to (s \land l) \\ 2. & s \to t \\ 3. & \neg t \end{cases} Conclusion: r$$

Step		Reason
1.	$\neg t$	Premise 3
2.	$s \rightarrow t$	Premise 2
3.	$\neg S$	Modus tollens from (1) and (2)
4.	$(\neg r \vee \neg f) \to (s \wedge l)$	Premise 1
5.	$\neg(s \land l) \rightarrow \neg(\neg r \lor \neg f)$	Contrapositive of (4)
6.	$\neg s \lor \neg l \to r \land f$	De Morgan's law from (5)
7.	$r \wedge f$	Modus ponens from (2) and (6)
8.	r	Simplification from (7)

14.

a)

Let s(x) = "x is a student in this class"

r(x) = "x is one owns a red convertible"

t(x) = "x is one got a speeding ticket"

$$\implies Premise: \begin{cases} 1. & s(Linda) \land r(Linda) \\ 2. & \forall x \big(r(x) \to t(x) \big) \end{cases} \quad Conclusion: \exists x (s(x) \land t(x))$$

```
Step
                                                  Reason
                                                  Premise 1
        s(Linda) \wedge r(Linda)
  1.
  2.
        s(Linda)
                                                  Simplification from (1)
                                                  Simplification from (2)
  3.
       r(Linda)
       \forall x (r(x) \rightarrow t(x))
  4.
                                                  Premise 2
  5.
                         for some y
       r(y) \rightarrow t(y)
                                                  Universal instantiation from (4)
                                                  Modus ponens from (3) and (5)
  6.
                            for some y
       t(y)
       s(y) \wedge t(y)
                               for some y
                                                  Conjunction from (2) and (6)
  7.
  8.
        \exists x (s(x) \land t(x))
                                                  Existential generalization from (7)
b)
  Let r(x) = "x is one of the five roommates listed"
      d(x) = "x has taken a course in discrete mathematics"
      a(x) = "x can take a course in algorithms"
   \implies Premise: \begin{cases} 1. & \forall x (r(x) \to d(x)) \\ 2. & \forall x (d(x) \to a(x)) \end{cases}
                                                  Conclusion: \forall x (r(x) \rightarrow a(x))
                                                  Reason
Step
```

The step
$$f(x) = f(x)$$
 Reason

1. $\forall x (r(x) \rightarrow d(x))$ Premise 1

2. $r(y) \rightarrow d(y)$ for every y Universal instantiation from (1)

3. $\forall x (d(x) \rightarrow a(x))$ Premise 2

4. $d(y) \rightarrow a(y)$ for every y Universal instantiation from (3)

5. $r(y) \rightarrow a(y)$ for every y Hypothetical syllogism from (2) and (4)

6. $\forall x (r(x) \rightarrow a(x))$ Universal generalization from (5)

Let m(x) = "movie produced by x" w(x) = "x is a wonderful movie" t(x) = "x is the theme of the movie"

```
\implies Premise: \begin{cases} 1. \ \forall x \big( m(John \ Sayles) \rightarrow w(x) \big) \\ 2. \ m(John \ Sayles) \land t(coal \ miners) \end{cases}  Conclusion: \exists x (w(x) \land t(coal \ miners))
```

Step			Reason
1.	$m(John\ Sayles) \wedge t(coal\ miners)$		Premise 2
2.	m(John Sayles)		Simplification from (1)
3.	t(coal miners)		Simplification from (2)
4.	$\forall x \big(m(John \ Sayles) \rightarrow w(x) \big)$		Premise 1
5.	$m(John\ Sayles) \rightarrow w(y)$	for every y	Universal instantiation from (4)
6.	w(y)	for every y	Modus ponens from (2) and (5)
7.	$w(y) \wedge t(coal\ miners)$	for every y	Conjunction from (3) and (6)
8.	$\exists x(w(x) \land t(coal\ miners))$		Existential generalization from (7)

d)

Let
$$c(x) = "x \text{ is in this class"}$$
 $f(x) = "x \text{ has been to France"}$
 $l(x) = "x \text{ has visited the Louvre"}$
 $\Rightarrow Premise : \begin{cases} 1. & \exists x(c(x) \land f(x)) \\ 2. & \forall x (f(x) \rightarrow l(x)) \end{cases}$

Conclusion : $\exists x(c(x) \land l(x))$

Step			Reason
1.	$\exists x (c(x) \land f(x))$		Premise 1
2.	$c(y) \wedge f(y)$	for some y	Existential instantiation from (1)
3.	c(y)	for some y	Simplification from (2)
4.	f(y)	for some y	Simplification from (2)
5.	$\forall x \big(f(x) \to l(x) \big)$		Premise 2
6.	$f(y) \to l(y)$	for some y	Universal instantiation from (5)
7.	l(y)	for some y	Modus ponens from (4) and (6)
8.	$c(y) \wedge l(y)$	for some y	Conjunction from (3) and (7)
9.	$\exists x (c(x) \land l(x))$		Existential generalization from (8)

Chapter 1-7

28. Prove: If n is a positive integer, then n is even if and only if 7n + 4 if even.

We need to prove: $\begin{cases} 1. & n \text{ is even } \rightarrow 7n + 4 \text{ is even} \\ 2. & 7n + 4 \text{ is even } \rightarrow n \text{ is even} \end{cases}$

- 1. If n is even \implies let n = 2k, k = 1, 2, 3, ...then 7n + 4 = 7(2k) + 4 = 14k + 4 = 2(7k + 2) $\therefore 7n + 4$ is even
- 2. Suppose n is odd, then 7n + 4 is odd \implies let n = 2k + 1, k = 0, 1, 2, ...

then 7n + 4 = 7(2k + 1) + 4= 14k + 11= 2(7k + 5) + 1

 \therefore 7n + 4 is odd

- \therefore n is odd \rightarrow 7n + 4 is odd \Longrightarrow True
- \therefore 7n + 4 is even \rightarrow n is even \Longrightarrow True (Contrapositive)

By (1) and (2), n is even \leftrightarrow 7n + 4 is even