MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC-27001-2005 Certified)

WINTER-12 EXAMINATION

Model Answer

Q. No. 1 a) Attempt any **THREE** of the following:

(12)

i) Purpose of estimating and costing:

(any four points: $4 \times 1 = 04$)

- To ascertain necessary amount of money required by owner to complete the proposed work.
- To ascertain quantities of materials required in order to programme their timely procurement.
- To calculate the no. of different categories of workers required for work.
- To assess the requirements of tools, plants and equipments required for work.
- To fix up completion period from volume of works involved in the estimate.
- To draw up a construction schedule and programme and also to arrange the funds required according to the programming.
- To justify the investment from benefit-cost ratio.
- To invite tenders and prepare bills for payment.

ii) Different types of approximate estimates:

(any four: $4 \times \frac{1}{2} = 02$)

- Plinth area method
- Cubical content method
- Service unit method
- Typical bay method
- Approximate quantity method

The description of any one of the above method.

(02)

- iii) Factors to be considered while preparing detailed estimate.(any four points: 4 x 1=04)
 - Quantity of materials
 - Availability of materials
 - Transportation of materials
 - Location of site
 - Local labour charges.
- iv) **Revised Estimate:** A revised estimate is a detailed estimate for the revised quantities and rates of items of works originally provided in the estimate prepared and submitted for fresh technical sanction. It is required to be prepared for the following reasons: (any two points)

(06)

2/15

- When sanctioned estimate is likely to exceed by more than 5% either from the rates being found insufficient or from any cause whatsoever except important structural alterations.
- When the expenditure of work exceeds or is likely to exceed more than 10% of the administrative approval.
- When there are material deviations from the original proposal but not due to material deviation of a structural nature.
- When it is found that sanctioned estimate is more than actual requirement. (02)

Supplementary Estimate: While a work is in progress, some changes or additional works due to material deviation of a structural nature from the design originally approved may be thought necessary for the development of a project. An estimate is then prepared to include all such works. This is known as supplementary estimate. (02)

i) Approximate estimate of office premises = Total built up area
$$X \text{ Rate/m}^2$$

= 120×6500
= $Rs. 7, 80, 000$ /- (03)

Approximate estimate of workshop = Total built up area $X \text{ Rate/m}^2$

$$= 3 \times 32 \times 4000$$

= Rs. 3, 84,000/-

ii) **Unit quantity method:** By using this method, estimate can be prepared quickly and easily. This method requires record of unit quantity rate of similar structure in same locality with similar specification. The points to be considered are as price level variation, specifications required, location of site, no. of units in structure, foundation and soil condition. This method is used for preparing preliminary estimate. (03)

Total quantity method: With the help of detailed drawings, total quantity of various items is calculated. Items can be obtained by dividing whole structure in to different components. The total quantity of each item is multiplied with the rates of respective items which can be obtained from PWD district schedule of rates. (03)

Item	Description of Item	No	Length	В	Н	Quantity
No.						
1	Internal Plaster: wall	2	6		3.1	37.2
	wall	2	4.9		3.1	30.38
	ceiling	1	6	4.9		
	Gross quantity:					96.98 m^2

\sim	1 .	_
~	11	_
.)	, ,	.)

Deductions	D	1	1.0	2.0	2.0
	W	1	1.8	1.2	2.16
Total Deductions					4.16 m^2
Net Quantity internal plaster:	of				96.98-4.16=92.82 m ²

Gross quantity of plaster: 04 marks

Deductions: 02 marks

Net quantity of plaster: 02 marks

Q. No. 2 b): Work out

i)

Sr.	Description	No	Length	Quantity	Total
No.	-				Quantity
1	Steel reinforcement for Lintel	4	1.636	6.544m	6.544m
	i) Main bars 4-12¢:				i.e. 5.824 kg
	Length of straight bars: $1.2 + 0.3 - 2 x$				
	$0.04 + 2 \times 9 \times 12/1000$				
	* Anghar barge 2 10 d				
	ii) Anchor bars: 2-10¢ Length = 1.5 – 0.08+2 x 9 x 10/1000	2	1.6	3.2m	3.2m
	Length = 1.3 - 0.00+2 x 7 x 10/1000	2	1.0	3.2111	i.e. 0.992kg
	iii) Stirrups: 8¢@150 c/c				1.c. 0.55211g
	no. of stirrups = 11				
	length of one stirrup = $2(158 + 228)$	11	0.964	10.604m	10.604m
	$+2 \times 12 \times 8 = 964$ mm				i.e. 4.135 kg
2	Steel reinforcement for Chajja				
	i)Main bars 8¢@150 c/c				
	Length = $0.6 + 0.23 - 0.08 + 18 \text{ x}$				
	8/1000 = 0.894 m	1.1	0.004	0.024	0.024
	No. of bars $= 11$	11	0.894	9.834m	9.834m
	iii)Distribution steel: 8¢@100 c/c				i.e. 3.835 kg
	Length = $1.5 - 0.08 + 18 \times 8/1000$				
	= 1.564 m	9	1.564	14.076m	14.076m
	No. of bars = 9		1.00	2 1.0 / 0111	i.e. 5.489kg
	· · · ·				
	Total quantity of steel				20.275kg
	reinforcement for lintel and Chajja				_

Steel reinforcement for lintel: 02 marks Steel reinforcement for Chajja: 02 marks

Q. No. 2 b)ii) Quantity of concrete in lintel and Chajja

4/15

Item	Description of Item	No	Length	В	Н	Quantity
No.						
1	Lintel concrete	1	1.5	0.23	0.3	0.1035m^3
2	Chajja concrete	1	1.2	0.60	0.075	$0.054m^3$
	1 x 0.6 x 0.075 x 1.2					$0.027m^3$
	Total quantity for Lintel &					0.1845m^3
	chajja					

Concrete quantity for lintel: 02 marks Concrete quantity for lint: 02 marks

Q. No. 2 c)

Ite	Description of Item	No	Lengt	В	Н	Quantity
m			h			
No.						
1	Excavation for foundation					
	Long walls	3	4.93	1.2	1.65	29.28
		1	3.23	1.2	1.65	06.39
		1	4.43	1.2	1.65	08.77
	Short wall	2	2.203	1.2	1.65	8.71
		1	3.28	1.2	1.65	6.49
		1	3.03	1.2	1.65	5.99
		1	1.83	1.2	1.65	3.62
	Total Quantity of excavation					69.25m ³
2	UCR masonry in plinth and foundation					
	i)Step I: Long wall	3	4.63	0.9	0.4	5.00
		1	3.23	0.9	0.4	1.16
		1	4.13	0.9	0.4	1.48
	Short wall	2	2.33	0.9	0.4	1.67
		1	3.58	0.9	0.4	1.28
		1	3.33	0.9	0.4	1.19
		1	2.43	0.9	0.4	0.87
	ii)Step II: Long wall	3	4.18	0.45	1.05	5.92
	/	1	3.23	0.45	1.05	1.52
		1	3.68	0.45	1.05	1.73
		2	2.78	0.45	1.05	2.62

Total Qty. of UCR masonry					29.7 m ³
	1	3.35	0.45	1.05	1.58
	1	3.78	0.45	1.05	1.78
	1	4.03	0.45	1.05	1.90

5/15

Excavation quantity: 04 mark UCR quantity: 04 mark

Q. No. 3:

a) **Measurement Sheet-** It is prescribed form in which quantities of different items are Calculated and entered.

Item No.	Description of Item	No	Length	В	Н	Quantity

 $(1\frac{1}{2})$

Abstract Sheet- It is a prescribed form in which cost of each item of work is calculated and entered.

Item No.	Description of Item	Quantity	Unit	Rate	Amount

 $(1\frac{1}{2})$

Face Sheet- It is a page showing list of items and title of work of which estimating is to be done. (1)

- b) Any item of work is not to be missed while doing estimate.
 - To follow the logical sequence of work while executing the work.
 - It is useful for item wise planning of work
 - collection of material
 - management of labour
 - Time management

(4)

- c) i) meter-m
 - ii) square meter- sqm
 - iii) cubic meter- cum
 - iv) Lumsum

(one mark each point) (4)

d) Rules of deductions of openings for masonry-

No deductions -

i) for openings upto 0.1 sq.m

ii) For ends of joints, beams, lintels, posts, rafters, purlins, steps etc.

iii) Wall plates, Bedplates, bearing of slab, chajja's etc.

6/15

iv) The structures of other than masonry having thickness less than 10 cm and bearing more thanwall thickness.

Above 0.1 Sqm area of opening, deduction should be made as per actual size of opening.

(One mark each point) (4)

e) Refer fig. no.4 in Question Paper

Quantity of concrete in footing.

1) Base of footing

L	В	D	Quantity of concrete
1	1.2	1.5	0.180

(1)

2)
$$V = \frac{L}{6} [A_1 + A_2 + 4 A_m]$$

$$A_1 = 1x \ 1.2 = 1.2$$

$$A_2 = 0.23 \ x \ 0.3 = 0.069$$

$$A_m = \frac{1.2 + 0.069}{2}$$

$$V = \frac{L}{6} [A_1 + A_2 + 4 A_m]$$

$$V = \frac{0.2}{6} [1.2 + 0.069 + 4 \times 0.6345]$$

$$= 0.033 \times 3.807$$
$$= 0.1256 \tag{2}$$

Total quantity for 1 column =
$$0.3056 \text{ m}^3$$

Total quantity for 7 columns = 2.1392 m^3 (1)

Q. No 4 –

a) Attempt any THREE

(12)

7/15

i)

Schedule of Bar

Description of	Shape of Bar	No	Length	Total	Weight in	Weight in	Weight in
Bar	in bending	of	of	Length	kg of bar	kg of bars	kg of bars
		Bars	Bar		per meter	for one	for seven
					length	column	column
Mild steel bars	951	9	1.13	10.17	0.69	7.02	49.14
both ways in	95 2 - 2						
Column footing	98	8	1.33	10.64	0.69	7.34	51.38
	1-1-15x-1						
						14.36	100.52 kg
							Ü

For No. of bars – 1 Mark For total length- 1 Mark For quantity of steel- 1 Mark For schedule of bars- 1 Mark

ii) Rate analysis of P. C. C. (1:2:4)

Consider 10 m³ of P. C. C. (1:2:4) Volume of wet concrete =10 m³

Total dry volume of concrete = $1.52 \times 10 \text{ m}^3 = 15.2 \text{ m}^3$

Quantity of materials:

i) Aggregate quantity = $\frac{15.2}{1+2+4}$ X 4 = 8.8 m³

ii) Sand quantity
$$= \frac{15.2}{1+2+4} \times 2 = 4.4 \text{ m}^3$$
 8/15

iii) Quantity of cement =
$$\frac{15.2}{1+2+4}$$
 X 1= 2.2 m³

No of bags of cement =
$$\frac{2.2}{0.35}$$
 = 63 bags (1)

	Particulars	Quantity	Rate per	Amount in Rupees	Marks
I. N	Materials				
i	Coarse Aggregate	$8.8 \mathrm{m}^3$	700 per m ³	6160	(01)
ii	Sand	4.4m ³	1800 per m ³	7920	
iii	Cement	63 bags	230 per bag	14490	
				28570	
II.	Labour				
i	Head Mason	1/2	500 per day	250	
ii	Mason	2	400 per day	800	
iii	Male Mazdoor	12	250 per day	3000	
iv	Female Mazdoor	20	200 per day	4000	
V	Bhisti	4	250 per day	1000	(01)
vi	Sundries, T & P	Lumsum		1000	
			Rs	10050	

Total cost of material and labour = 28570 + 10050 = 38620 Rs

Add
$$1\frac{1}{2}$$
 % for water charges = 579 Rs

Add 10 % for water charges = 3862 Rs

Rate of PCC per 10 m^3 = 43061 Rs

Rate of PCC per 1 m^3 = 4306 Rs

Cost of 25 cum = 4306 x 25 = 107650 Rs.

iii) **Definition of Rate Analysis** – To determine the rate per unit of a particular item from the cost of quantities of materials, the labour charges and petty expenses and 10 % contractors profit (2)

Factors affecting rate analysis:

- Specification of work and material
- Quality of material
- Method of construction
- Labour charges
- Location of site (2)

iv) Computation of volume by mean area method

\sim	1	4	_
ч	,	Т	5
,	,	_	_

Chainage	Depth of filling	Area	Mean area	Length	Quantity =
		$(Bd+Sd_m^2)$			Mean area x Length
	m	m^2	m^2	m	m^3
50	1.5	19.5			
60	2	28	23.75	10	237.5
70	4	72	50	10	500
80	5	100	86	10	860
90	6.5	149.5	124.5	10	1247.5
					2845

Calculation of Depth – (1)

Calculation of Area- (1)

Calculation of Mean Area- (1)

Calculation of Quantity- (1)

Q. No 4 (b) Attempt any ONE

i) Rate analysis of one cubic meter of BBM (1:6)

No of bricks of size 20 x 10 x 10 cm per cum of brickwork is 500 Nos.

Consider 10 m³ of brickwork,

No of bricks required = $500 \times 10 = 5000 \text{ Nos}$,

Mortar required -

Dry volume of mortar required is 32 % of brickwork i.e. $10 \times 32/100 = 3.2 \text{ m}^3$

Volume of cement for 3.2 m³ mortar (1:6)

$$= 3.2 \text{ x } \frac{1}{7} = 0.45 \text{ m}^3$$

$$= (0.45/0.035) = 13 \text{ bags}$$

Volume of sand required for 1:6 mortar

$$= \frac{3.2}{7} \times 6$$
=2.7 m³ (1)

Particulars	Quantity	Rate per	Total Amount in Rs	Marks
Materials				
i) Bricks –Ist Class	5000 No	Rs 5000 /1000 No	25000	
ii)Cement	13 bags	Rs 230 / bag	2990	
iii) Sand	2.7 m^3	Rs $1800/ \text{ m}^3$	4860	
		Total I.	32850	(2)
II.Labours				
i) Head Mason	½ No	Rs 500 per day	250	
ii) Mason	10 Nos.	Rs 400 per day	4000	
iii)Male Mazdoor	7 Nos.	Rs. 200 per day	2000	
iv)Female Mazdoor	10 Nos.	Rs. 200 per day	2000	
v) Bhisti	2 Nos.	Rs. 200 per day	400	
vi)Sundries, T&p	L.S.		1000	(2)
		Total II.	9750	

10/15

Total of I and II (cost of material and labour) = 42600 Rs

Add
$$1\frac{1}{2}$$
 % for water charges = 639 Rs

Add 10 % for water charges = 4260 Rs

Rate of BBM per $10 \text{ m}^3 = 47499 \text{ Rs}$

Rate of BBM per 1 m^3 = 4750 Rs (1)

Q.4 b ii)

$$\frac{x}{0.5} = \frac{40 - x}{2}$$
 X= 8 m, B= 10 m, S=2

Chainage	Depth	Bd	Sd^2	Sectional Area	Mean Area	Length	$Q=A_m \times L$		_
	in m			$= Bd + Sd_m^2$	$A_{\rm m}$	m			11/15
							Embankment	Cutting	
							In Cum	In Cum	
160	0.6	6	0.72	6.72					
200	0.5	5	0.50	5.5	6.11	40	244.40		
208	0	0	0	0	2.75	8	22.0		
240	2.0	20	80	28	14	32		448	
280	3.2	32	20.48	52.48	40.2	40		1608	
320	4.1	41	33.62	74.62	63.55	40		2542	
360	4.8	48	46	94.00	84.31	40		3372	
400	5.4	54	58.32	112.32	103.16	40		4126.4	
						Total	266.4	12096.4	

Quantity in Embankment = 0266.40 Cum Quantity in Cutting =12096.40 Cum

Calculate F.L and depth- (2)

Calculate area- (2)

Calculate Quantities- (2)

Q.No. 5.

a)
$$D = 60 \text{mm} = 0.6 \text{m}$$
 $H = 4500 \text{mm} = 4.5 \text{m}$

Diameter of main steel = 12mm = 0.012m

Volume of main steel = Area of steel * Length of bar = $8*(\pi/4)*0.012*4.5 = 4.7*10^{-3}$ (01)

Volume of Links

Number of links = (Height of column \square Spacing) +1= (4500/125)+1 = 37 No's (01)

Diameter of Link = 6 mm = 0.006 m

Volume of Link = area of links* length of links

Length of link =
$$\pi(600-2*40) + (24*6) = 1.778m$$
 (01)

Volume of links = $37* \pi/4*(0.06)^2*1.778 = 1.859*10^{-3}$ cum

Weight of Links =
$$1.859*10^3*78.5 = 14.59$$
kg (02)

For unit (01)

Q.5.b) i) **R.C.C**. 1:2:4

Volume of concrete = 25 cum

Add 55% extra for voids wastage

Dry Volume =
$$25 + (25*55/100) = 38.75$$
cum (01)

Volume of cement or volume of one part of concrete = 38.75/7 = 5.5357cum (01)

Quantity of no; of cement bags =
$$5.5357/0.035 = 158.16 = 159$$
bags (01)
Quantity of fine aggregate = $2*5.5357 = 11.0714$

Quantity of coarse aggregate =
$$4*5.5357 = 22.1428$$
cum (01)

Q.5.b) ii) Plaster (1:6) Area of plaster = 100 m^2

Assume 12mm thick plaster. Volume of plaster =
$$100*0.012 = 1.2 \text{ m}^3$$
 (01)

Add 50% for voids & 10% for unevenness

Dry volume of mortar =
$$1.2(1.2*60/100) = 1.92$$
 cum (01)

One part of mortar =
$$1.92/7 = 0.2743$$
 cum (01)

No. of cement bags = 0.2743/0.035 = 7.8367 = 8 bags

Quantity of fine sand=
$$6*0.2743=1.6458$$
 cum (01)

Q.5.c)

Sr.no	Description	No	L(m)	B(m)	H(m)	Qty	Total	Marks
						(cum)	Qty (cum)	
1	Excavation	01	6.8	4.1	2.2	61.336	61.336	02
	B=3.3+0.4+0.4							
2	P.C.C.	01	6.8	4.1	0.2	5.5760	5.5760	02
3	B.B.M.							02
	Long Wall=6.4m	2	6.4	0.2	2.0	5.120		
4	Short Wall= 2.9m	2	2.9	0.2	2.0	2-320	7.44	02

O.6.a

- i) The measurement shall be taken in order of sequence length, breadth or width, & height or depth.
- ii) Dimensions shall be measured to the nearest to 0.01m
- iii) Area shall be worked out to the nearest 0.01m^2
- iv) Cubic contents shall be worked to the nearest to 0.01 m²
- v) The same work done under different conditions shall be measured separately stating the conditions the lift & lead wherever possible.

(any four) (01 mark to each 01*4)

Q.6.b)

- i) **Centage charges;-** when the engineering department takes up the work of other department a percentage amount of 10% to 15% of the estimated cost is charged to meet the expenses of establishment, designing, planning, supervision etc. & this percentage charge is known as centage charges. (02)
- ii) Contingencies: During the execution of works there will be some miscellaneous expenditure which cannot be classified under any subhead or any item. These are expenses of

miscellaneous character. To meet such expenses 3% to 5% of estimated cost is provided which is known as contingencies. (02) 13/15

Q.6.c)

Method of calculating earth for road

i) Mid sectional area method

Length or	Depth or	Mean	Area 0f	Area of	Length	Quantity	
chainage	height	depth	central	side	(L)	Bdm+Sd ²	
	(d)m	dm	rectangular portion (B*d)m	triangles Sdm ²		Embankment (+)ve	Cutting (-)ve

ii) Mean sectional area method

Length	Depth	Area 0f	Area	Total	Mean	Lengt	Quantity	
or	or	central	of	sectional	sectional	h	Bdm+Sd ²	
chainage	height	portion	sides	area	area	(L)		
	(d)m	(B*d)m	Sd^2	$(bd+Sd^2)$			Embankment	Cutting
							(+)ve	(-)ve

- iii) Prismoidal formula Q = (L/6)(A1+A2+4Am) Where Am- mid sectional area
- iv) Trapezoidal formula V = D/2*((A0+An)/2+A1+A2+A3+A4+----+An)

(01 mark each)

Q.6.d)

The area of cross section at both the ends & mid section is calculated by the following formula

$$Q = L/6*(A1+A2+4Am)$$
 (02)

Where A1 & A2 are the cross sections at ends & Am is the area at mid section

$$V = D/3*(A0+An+4(A1+A3+A5+----+An-1)+2(A2+A4+----+An-2)$$

In this case of Prismoidal formula it is necessary to have odd number of sectional areas. If there are even numbers of sections, the en strip should be calculated separately & the remaining strip should be calculated. (02)

Q.6.e)

i) Lead: - it is defined as the horizontal distance up to which a contractor will haul the material excavated & is included in the rates of excavation. This lead is 30m & called as normal or standard lead. (01)

(01)

Lift: - it is defined as the vertical distance travelled by material, normally lift is taken as 1.5m.

14/15

ii) Task work: - The capacity of doing work by a skilled labour in the form of work per day is known as task work.

The task varies according to nature size & location of work. As per the types & experience of labour output of work is varying from skilled to unskilled worker. (02)

15/15