Knowledge Graph Construction from Text

AAAI 2017

JAY PUJARA, SAMEER SINGH, BHAVANA DALVI

Tutorial Overview

Part 1: Knowledge Graphs

Part 4: Critical Analysis

Tutorial Outline

Knowledge Graph Primer

[Jay]

Knowledge Extraction from Text

NLP Fundamentals

[Sameer]

b. Information Extraction [Bhavana]

Coffee Break

- **Knowledge Graph Construction**
 - **Probabilistic Models**

[Jay]

Embedding Techniques

[Sameer]

4. Critical Overview and Conclusion [Bhavana]

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

PROBABILISTIC MODELS

EMBEDDING TECHNIQUES

Reminder: Basic problems

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Extracted knowledge is:

- ambiguous:
 - Ex: Beetles, beetles, Beatles
 - Ex: citizenOf, livedIn, bornIn

Extracted knowledge is:

ambiguous

- incomplete
 - Ex: missing relationships
 - Ex: missing labels
 - Ex: missing entities

Extracted knowledge is:

ambiguous

incomplete

- inconsistent
 - Ex: Cynthia Lennon, Yoko Ono
 - Ex: exclusive labels
 - Ex: domain-range constraints

Extracted knowledge is:

ambiguous

incomplete

inconsistent

Graph Construction approach

Graph construction cleans and completes extractions

Incorporate ontological constraints and relational patterns

Discover statistical relationships within knowledge graph

Knowledge Graph Construction

TOPICS:

PROBLEM SETTING

Probabilistic Models

EMBEDDING TECHNIQUES

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Graph Construction Probabilistic Models

TOPICS:

Overview

GRAPHICAL MODELS

RANDOM WALK METHODS

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

Reasoning difficult when extracted knowledge has errors

Beyond Pure Reasoning

Classical AI approach to knowledge: reasoning

Lbl(Socrates, Man) & Sub(Man, Mortal) -> Lbl(Socrates, Mortal)

- Reasoning difficult when extracted knowledge has errors
- Solution: probabilistic models

P(Lbl(Socrates, Mortal) | Lbl(Socrates, Man)=0.9)

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Graphical Models: Overview

Define joint probability distribution on knowledge graphs

Each candidate fact in the knowledge graph is a variable

• Statistical signals, ontological knowledge and rules parameterize the **dependencies** between variables

Find most likely knowledge graph by optimization/sampling

Knowledge Graph Identification

Define a graphical model to perform all three of these tasks simultaneously!

- Who are the entities (nodes) in the graph?
- What are their attributes and types (labels)?
- How are they related (edges)?

Knowledge Graph Identification

Probabilistic Models

Use dependencies between facts in KG

Probability defined jointly over facts

Statistical signals from text extractors and classifiers

- Statistical signals from text extractors and classifiers
 - P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
 - LevenshteinSimilarity(Beatles, Beetles) = 0.9

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Statistical signals from text extractors and classifiers

- Ontological knowledge about domain
 - Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
 - Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

Rules and patterns mined from data

Statistical signals from text extractors and classifiers

Ontological knowledge about domain

- Rules and patterns mined from data
 - R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
 - R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

- Statistical signals from text extractors and classifiers
 - P(R(John,Spouse,Yoko))=0.75; P(R(John,Spouse,Cynthia))=0.25
 - LevenshteinSimilarity(Beatles, Beetles) = 0.9
- Ontological knowledge about domain
 - Functional(Spouse) & R(A,Spouse,B) -> !R(A,Spouse,C)
 - Range(Spouse, Person) & R(A,Spouse,B) -> Type(B, Person)
- Rules and patterns mined from data
 - R(A, Spouse, B) & R(A, Lives, L) -> R(B, Lives, L)
 - R(A, Spouse, B) & R(A, Child, C) -> R(B, Child, C)

Example: The Fab Four

BEATLES

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, Album Artist, Abbey Road)

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, Album Artist, Abbey Road)

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, Album Artist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:

SameEnt(Fab Four, Beatles)

Uncertain Extractions:

- .5: Lbl(Fab Four, novel)
- .7: Lbl(Fab Four, musician)
- .9: Lbl(Beatles, musician)
- .8: Rel(Beatles, AlbumArtist, Abbey Road)

Ontology:

Dom(albumArtist, musician)
Mut(novel, musician)

Entity Resolution:

SameEnt(Fab Four, Beatles)

Probabilistic graphical model for KG

Defining graphical models

Many options for defining a graphical model

We focus on two approaches, MLNs and PSL, that use rules

MLNs treat facts as Boolean, use sampling for satisfaction

• PSL infers a "truth value" for each fact via optimization

Rules: Uncertain Extractions

label extraction using signal T

Predicate representing uncertain veight for signal T relation extraction using signal T (relations) $\mathbf{W_{CR-T}}: \ \mathbf{CANDREL}_T(E_1,E_2,R)$ $\mathbf{W_{CL-T}}: \ \mathbf{CANDLBL}_T(E,L)$ $\mathbf{Weight} \ \text{for signal T}$ Predicate representing uncertain veight for signal T

(labels)

Relation in Knowledge Graph $\Rightarrow \operatorname{REL}(E_1, E_2, R)$ $\Rightarrow \operatorname{LBL}(E, L)$ Label in Knowledge Graph

Rules: Entity Resolution

 $\mathbf{w_{EL}}: \mathrm{SAMEENT}(E_1, E_2) \wedge \mathrm{LBL}(E_1, L) \Rightarrow \mathrm{LBL}(E_2, L)$

 $\mathbf{w_{ER}}: \mathrm{SAMEENT}(E_1, E_2) \wedge \mathrm{Rel}(E_1, E, R) \Rightarrow \mathrm{Rel}(E_2, E, R)$

 $\mathbf{w_{ER}}: \mathrm{SAMEENT}(E_1, E_2) \wedge \mathrm{Rel}(E, E_1, R) \Rightarrow \mathrm{Rel}(E, E_2, R)$

SameEnt predicate captures confidence that entities are co-referent

 Creates an equivalence class of co-referent entities

Rules: Ontology

Inverse:

 $\mathbf{w_O}: \text{Inv}(R, S) \wedge \text{Rel}(E_1, E_2, R) \Rightarrow \text{Rel}(E_2, E_1, S)$

Selectional Preference:

 $\mathbf{w_O}: \mathrm{DOM}(R, L) \wedge \mathrm{Rel}(E_1, E_2, R) \Rightarrow \mathrm{Lel}(E_1, L)$

 $\mathbf{w_O}: \operatorname{RNG}(R, L) \wedge \operatorname{REL}(E_1, E_2, R) \Rightarrow \operatorname{LBL}(E_2, L)$

Subsumption:

 $\mathbf{w_O}: \mathrm{Sub}(L, P) \wedge \mathrm{Lbl}(E, L) \Rightarrow \mathrm{Lbl}(E, P)$

 $\mathbf{w_O}: RSUB(R, S) \land REL(E_1, E_2, R) \Rightarrow REL(E_1, E_2, S)$

Mutual Exclusion:

 $\mathbf{w_O}: \mathrm{Mut}(L_1, L_2) \wedge \mathrm{Lbl}(E, L_1) \Rightarrow \neg \mathrm{Lbl}(E, L_2)$

 $\mathbf{w_O}: \mathrm{RMut}(R,S) \wedge \mathrm{Rel}(E_1,E_2,R) \Rightarrow \neg \mathrm{Rel}(E_1,E_2,S)$

Rules to Distributions

Rules are grounded by substituting literals into formulas

 $\mathbf{w_{EL}}: SameEnt(Fab Four, Beatles) \land \\ Lbl(Beatles, musician) \Rightarrow Lbl(Fab Four, musician)$

Each ground rule has a weighted satisfaction derived from the formula's truth value

$$P(G|E) = \frac{1}{Z} \exp \stackrel{\circ}{e} - \stackrel{\circ}{a}_{\widehat{U}} w_{\widehat{U}} (G)^{\widehat{U}}$$

 The PSL program can be interpreted as a joint probability distribution over all variables in knowledge graph, conditioned on the extractions

Probability Distribution over KGs

$$P(G|E) = \frac{1}{Z} \exp_{\Theta}^{\circ} - \mathring{\partial}_{r \hat{l}} w_r j_r(G)^{\mathring{l}}$$

 ${
m CANDLBL}_T({ t FabFour},{ t novel})$

 \Rightarrow LBL(FabFour, novel)

 $M{\rm UT}({\tt novel}, {\tt musician})$

 \land LBL(Beatles, novel)

 $\Rightarrow \neg LBL(Beatles, musician)$

SAMEENT(Beatles, FabFour)

 \wedge LBL(Beatles, musician)

 \Rightarrow LBL(FabFour, musician)

 \Rightarrow LBL(FabFour, novel)

 $[\phi_2]$ CANDREL_{pat}(Beatles, AlbumArtist, AbbeyRoad)

 \Rightarrow REL(Beatles, AlbumArtist, AbbeyRoad)

 $[\phi_3]$ SAMEENT(Beatles, FabFour)

 $\wedge LBL(\texttt{Beatles}, \texttt{musician})$

 \Rightarrow LBL(FabFour, musician)

 $[\phi_4]$ Dom(AlbumArtist, musician)

 $\wedge Rel(Beatles, AlbumArtist, AbbeyRoad)$

 $\Rightarrow LBL(\texttt{Beatles}, \texttt{musician})$

 $[\phi_5]$ MuT(musician, novel)

 $\wedge LBL(FabFour, musican)$

 $\Rightarrow \neg LBL(\texttt{FabFour}, \texttt{novel})$

Graphical Models Experiments

Data: ~1.5M extractions, ~70K ontological relations, ~500 relation/label types

Task: Collectively construct a KG and evaluate on 25K target facts

Comparisons:

Extract Average confidences of extractors for each fact in the NELL candidates

Rules Default, rule-based heuristic strategy used by the NELL project MLN Jiang+, ICDM12 – estimates marginal probabilities with MC-SAT

PSL Pujara+, ISWC13 – convex optimization of continuous truth values with ADMM

Running Time: Inference completes in 10 seconds, values for 25K facts

	AUC	F1
Extract	.873	.828
Rules	.765	.673
MLN (Jiang, 12)	.899	.836
PSL (Pujara, 13)	.904	.853

Graphical Models: Pros/Cons

BENEFITS

 Define probability distribution over KGs

Easily specified via rules

 Fuse knowledge from many different sources

DRAWBACKS

 Requires optimization over all KG facts - overkill

- Dependent on rules from ontology/expert
- Require probabilistic semantics - unavailable

Graph Construction Probabilistic Models

TOPICS:

OVERVIEW

GRAPHICAL MODELS

RANDOM WALK METHODS

Random Walk Overview

Given: a query of an entity and relation

Starting at the entity, randomly walk the KG

Random walk ends when reaching an appropriate goal

• Learned parameters bias choices in the random walk

Output relative probabilities of goal states

Query: R(Lennon, PlaysInstrument, ?)

Query: R(Lennon, PlaysInstrument, ?)

Query Q: R(Lennon, PlaysInstrument, ?)

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<coworker,playsInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<coworker,playsInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<albumArtist,hasInstrument>)W_{\pi}$

Query Q: R(Lennon, PlaysInstrument, ?)

 $P(Q|\pi=<albumArtist,hasInstrument>)W_{\pi}$

Query: R(Lennon, PlaysInstrument, ?)

Recent Random Walk Methods

PRA: Path Ranking Algorithm

- Performs random walk of imperfect knowledge graph
- Estimates transition probabilities using KG
- For each relation, learns parameters for paths through the KG

ProPPR: ProbLog + Personalized PageRank

- Constructs proof graph
 - Nodes are partially-ground clauses with one or more facts
 - Edges are proof-transformations
- Parameters are learned for each ground entity and rule

PRA in a nutshell

Path Ranking Algorithm (PRA)

(Lao & Cohen, MLJ 2010)

$$score(s,t) = \sum_{\pi \in B} P(s \to t;\pi) \theta_{\pi}$$
 a weight

e.g. $\pi = \langle coworker, playsInstrument \rangle$

Random Walk Calculation

$$score(s,t) = \sum_{\pi \in B} P(s \to t; \pi) \theta_{\pi}$$

$$P(s \to t; \pi) = \sum_{z} P(s \to z; \pi') P(z \to t; r)$$

Pruning paths using labeled data

$$score(s,t) = \sum_{\pi \in B} P(s \to t; \pi) \theta_{\pi}$$

given training query set $\{(s_i, G_i)\}$

$$hits(f) = \sum_{i} I\left[\sum_{j \in G_i} f(s_i, t_j)\right] \ge h$$

$$accuracy(f) = \frac{1}{N} \sum_{i} \left[\frac{\sum_{j \in G_i} f(s_i, t_j)}{\sum_{j} f(s_i, t_j)} \right] \ge a$$

I(): the indicator function

N: total number of queries

Estimating θ via Logistic Regression

$$score(s,t) = \sum_{\pi \in B} P(s \to t; \pi) \overline{\theta_{\pi}}$$

for a relation *r*

generate positive and negative node pairs $\{(s_i, t_i)\}$

for each (s_i, t_i) generate (x_i, y_i) x_i is a vector of RW features of different paths π y_i is a binary label $r(s_i, t_i)$

estimate θ by L1/L2 regularized (elastic-net) logistic regression

ProPPR: ProbLog + PageRank

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,Coworker,) R(,PlaysInstrument,Y)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,Coworker,) R(,PlaysInstrument,Y)

BEATLES

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,,Coworker,,) R(,,PlaysInstrument,Y)

BEATLES

R(,Coworker,) R(,PlaysInstrument,)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

Query Q: R(Lennon, PlaysInstrument, ?)

R(X,PlaysInstrument,Y)

R(J,HasInstrument,K)

R(,,Coworker,,) R(,,PlaysInstrument,Y)

BEATLES

R(,AlbumArtist,AlbumArtist,R),HasInstrument,K)

R(,Coworker,) R(,PlaysInstrument,)

Query Q: R(Lennon, PlaysInstrument, ?)

Query: R(Lennon, PlaysInstrument, ?)

Two classes of Probabilistic Models

GRAPHICAL MODELS

- Possible facts in KG are variables
- Logical rules relate facts

- Probability

 satisfied
- Universally-quantified

RANDOM WALK METHODS

- Possible facts posed as queries
- Random walks of the KG constitute "proofs"
- Locally grounded