A Muslim School Advantage?

Evidence from a Natural Experiment

Said Hassan

Nuffield College, University of Oxford

Figure: School-aged children (5–15 yrs) by ethnic background in Denmark.

➤ Fastest growing minority in DK, SE, UK, DE, NL, FR

- ➤ Fastest growing minority in DK, SE, UK, DE, NL, FR
 (Pew Research Center, 2017)
- Socioeconomically disadvantaged (vs natives/Western immigrants)

(Heath et al., 2008; Alba et al., 2011; Dustmann et al., 2017)

- ➤ Fastest growing minority in DK, SE, UK, DE, NL, FR
 - Socioeconomically disadvantaged (vs natives/Western immigrants)
 (Heath et al., 2008; Alba et al., 2011; Dustmann et al., 2017)

(Heath et al., 2008; Alba et al., 2011; Dustmann et al., 2011

Concerns regarding "parallel societies" and social integration (Heath and Demireva, 2014; Hilbig and Riaz, 2022)

Figure: Test score gap: Muslim vs. non-Muslim students in **public schools**

Figure: Performance of Muslim kids in public vs Muslim schools

-- Muslim children in public schools

Selection? ... or positive effect?

➤ Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)

- -- Muslim children in Muslim schools
- Muslim children in public schools

- ➤ Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)
- Catholic school literature (.15 σ –.39 σ) (Coleman et al., 1981; Neal, 1997; Jeynes, 2002)

Muslim children in public schools

- ➤ Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)
- Catholic school literature (.15 σ -.39 σ) (Coleman et al., 1981; Neal, 1997; Jeynes, 2002)
- Religious schools in NL $(.10\sigma-.25\sigma)$ (Mazrekaj & Monden, 2021)

Muslim children in public schools

- ➤ Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)
- Catholic school literature (.15 σ -.39 σ) (Coleman et al., 1981; Neal, 1997; Jeynes, 2002)
- Religious schools in NL (.10 σ -.25 σ) (Mazrekaj & Monden, 2021)
- Minority schooling and HBCUs (Gershenson et al., 2022; Dee, 2004, 2005; Walker, 2001)

Muslim children in public schools

- ➤ Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)
- Catholic school literature (.15 σ -.39 σ) (Coleman et al., 1981; Neal, 1997; Jeynes, 2002)
- Religious schools in NL (.10 σ -.25 σ) (Mazrekaj & Monden, 2021)
- Minority schooling and HBCUs (Gershenson et al., 2022; Dee, 2004, 2005; Walker, 2001)
- Assimilation theories and oppositional cultures (Portes & Zhou, 1993; Fordham & Ogbu, 1986; Kruse & Kroneberg, 2019)

- Muslim children in Muslim schools
- Muslim children in public schools

- Ethnic enclave effects (Cutler & Glaeser, 1996; Damm, 2014; Martén et al., 2019)
- Catholic school literature (.15 σ –.39 σ) (Coleman et al., 1981; Neal, 1997; Jevnes. 2002)
- Religious schools in NL $(.10\sigma .25\sigma)$ (Mazrekai & Monden. 2021)
- Minority schooling and HBCUs (Gershenson et al., 2022; Dee, 2004, 2005; Walker, 2001)
- Assimilation theories and oppositional cultures (Portes & Zhou, 1993; Fordham & Ogbu, 1986; Kruse & Kroneberg, 2019)
- Discrimination/teacher bias (Bates et al., 2013)

Do Muslim schools improve the academic performance of Muslim children?

1. Natural experiment: Coup attempt in Turkey induced student flight in DK from Muslim \rightarrow public schools

- 1. Natural experiment: Coup attempt in Turkey induced student flight in DK from Muslim \rightarrow public schools
- 2. Large positive effects of Muslim school attendance

- 1. Natural experiment: Coup attempt in Turkey induced student flight in DK from Muslim \rightarrow public schools
- 2. Large positive effects of Muslim school attendance
- 3. Results driven by disruption?

- 1. Natural experiment: Coup attempt in Turkey induced student flight in DK from Muslim \rightarrow public schools
- 2. Large positive effects of Muslim school attendance
- 3. Results driven by disruption?
- 4. Mechanisms: (a) Ethnic homophily (b) Bias and discrimination

- 1. Natural experiment: Coup attempt in Turkey induced student flight in DK from Muslim \rightarrow public schools
- 2. Large positive effects of Muslim school attendance
- 3. Results driven by disruption?
- 4. Mechanisms: (a) Ethnic homophily (b) Bias and discrimination
- 5. Long term outcomes and social integration

Danish context

ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- \blacktriangleright Heavily subsidized (75–80% of costs)

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- ➤ Heavily subsidized (75–80% of costs)
- Strict national curriculum (1–2 weekly "diverging" subjects)

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- ➤ Heavily subsidized (75–80% of costs)
- Strict national curriculum (1–2 weekly "diverging" subjects)
- > 33 Muslim schools (50% Turkish)

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- ➤ Heavily subsidized (75–80% of costs)
- Strict national curriculum (1–2 weekly "diverging" subjects)
- > 33 Muslim schools (50% Turkish)
- ➤ 9 "Gülen-associated" schools
 - ► Compare muslim schools

Danish context

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- ightharpoonup Heavily subsidized (75–80% of costs)
- ➤ Strict national curriculum (1–2 weekly "diverging" subjects)
- 33 Muslim schools (50% Turkish)
- ➤ 9 "Gülen-associated" schools

 Compare muslim schools

Full population register data

Precise educational records/history

Danish context

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- \blacktriangleright Heavily subsidized (75–80% of costs)
- ➤ Strict national curriculum (1–2 weekly "diverging" subjects)
- > 33 Muslim schools (50% Turkish)
- ➤ 9 "Gülen-associated" schools

Full population register data

- ➤ Precise educational records/history
- Parental origin country

Danish context

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- \blacktriangleright Heavily subsidized (75–80% of costs)
- Strict national curriculum (1–2 weekly "diverging" subjects)
- 33 Muslim schools (50% Turkish)
- ➤ 9 "Gülen-associated" schools

 Compare muslim schools

Full population register data

- ➤ Precise educational records/history
- Parental origin country
- ➤ Test scores in grade 9 (but no panel data!)

Danish context

- ightharpoonup 150 year tradition of independent schools (uptake pprox 20% in 2018)
- ightharpoonup Heavily subsidized (75–80% of costs)
- Strict national curriculum (1–2 weekly "diverging" subjects)
- 33 Muslim schools (50% Turkish)
- ➤ 9 "Gülen-associated" schools
 Compare muslim schools

Full population register data

- ➤ Precise educational records/history
- Parental origin country
- Test scores in grade 9 (but no panel data!)
- > Reading and mathematics
 - · Main: written externally evaluated
 - Supplementary: teacher evaluated

Natural experiment

Natural experiment

- **TR:** 80,000 arrests; 160,000 layoffs
- **DK:** 3 out of 9 schools closed
- ➤ **DK**: > 500 school changes

Natural experiment

Natural experiment design

$$y_{it} = \rho D_i + x_i'\beta + \alpha_t + \varepsilon_{it}$$

$$y_{it} = \rho D_i + x_i'\beta + \alpha_t + \varepsilon_{it}$$

$$Treatment = \begin{cases} \text{Unaffected cohorts: finished school prior to coup attempt} \\ & (2014–2016) \\ & \text{Stayers: did not move following the coup attempt} \end{cases}$$

$$y_{it} = \rho D_i + x_i'\beta + \alpha_t + \varepsilon_{it}$$

$$Treatment = \begin{cases} Unaffected \ cohorts: \ finished \ school \ prior \ to \ coup \ attempt \\ \\ (2014–2016) \\ \\ Stayers: \ did \ not \ move \ following \ the \ coup \ attempt \end{cases}$$

 $\mathsf{Control} = \mathsf{Moved} \ \mathsf{from} \ \mathsf{G\"{u}len} \to \mathsf{Public} \ \mathsf{school} \ \mathsf{after} \ \mathsf{coup} \ \mathsf{attempt}$

$$y_{it} = \rho D_i + x_i'\beta + \alpha_t + \varepsilon_{it}$$

$$Treatment = \begin{cases} Unaffected \ cohorts: \ finished \ school \ prior \ to \ coup \ attempt \\ \\ (2014–2016) \\ \\ Stayers: \ did \ not \ move \ following \ the \ coup \ attempt \end{cases}$$

 $\mathsf{Control} = \mathsf{Moved} \ \mathsf{from} \ \mathsf{G\"{u}len} \to \mathsf{Public} \ \mathsf{school} \ \mathsf{after} \ \mathsf{coup} \ \mathsf{attempt}$

 $\rho = \mathsf{School} \ \mathsf{environment} \ \mathsf{effect} + \mathsf{disruption}$

$$y_{it} = \rho D_i + x_i' \beta + \alpha_t + \varepsilon_{it}$$

$$Treatment = \begin{cases} \text{Unaffected cohorts: finished school prior to coup attempt} \\ & (2014–2016) \\ \text{Stayers: did not move following the coup attempt} \end{cases}$$

 $\mathsf{Control} = \mathsf{Moved} \ \mathsf{from} \ \mathsf{G\"{u}len} \to \mathsf{Public} \ \mathsf{school} \ \mathsf{after} \ \mathsf{coup} \ \mathsf{attempt}$

ho = School environment effect + disruption

Stricter setups:

- ➤ Remove "stayers" Results without stayers
- ➤ Gülen school closures only vs control Closures
- ➤ Gülen → Other Muslim schools ◆ Other Muslim schools

Covariate balance

	Trea	itment	Control			
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
Female	0.563	(0.496)	0.488	(0.501)	0.075	0.086
Age	16.153	(0.653)	16.226	(0.501)	-0.073	0.182
Both parents born in DK	0.815	(0.388)	0.774	(0.420)	0.041	0.236
Birth weight (kg)	3.412	(0.548)	3.413	(0.645)	-0.001	0.978
Parents divorced	0.080	(0.271)	0.071	(0.258)	0.008	0.726
Parental education (years)	12.823	(2.605)	12.644	(2.549)	0.179	0.436
Parental income	71.059	(30.889)	73.088	(25.237)	-2.028	0.438
Parent unemployed	0.198	(0.399)	0.263	(0.442)	-0.066	0.070
Observations	552		168			

Covariate balance

	Treatment		Co	Control		
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
Female	0.563	(0.496)	0.488	(0.501)	0.075	0.086
Age	16.153	(0.653)	16.226	(0.501)	-0.073	0.182
Both parents born in DK	0.815	(0.388)	0.774	(0.420)	0.041	0.236
Birth weight (kg)	3.412	(0.548)	3.413	(0.645)	-0.001	0.978
Parents divorced	0.080	(0.271)	0.071	(0.258)	0.008	0.726
Parental education (years)	12.823	(2.605)	12.644	(2.549)	0.179	0.436
Parental income	71.059	(30.889)	73.088	(25.237)	-2.028	0.438
Parent unemployed	0.198	(0.399)	0.263	(0.442)	-0.066	0.070
Observations	552		168			

		Reading			Math	
	(1) OLS	(2) OLS	(3) IPTW	(4) OLS	(5) OLS	(6) IPTW
Muslim school	0.345** (0.115)	0.319** (0.103)	0.322** (0.123)	0.319** (0.110)	0.283** (0.094)	0.319** (0.112)
Constant	-0.250 (0.158)	-0.202 (0.151)	-0.520*** (0.116)	-0.388*** (0.107)	-0.137 (0.119)	-0.694*** (0.096)
Observations \mathbb{R}^2	660 0.056	660 0.175	660	644 0.060	644 0.137	644
Covariates	No	Yes	Yes [†]	No	Yes	Yes^{\dagger}

		Reading			Math	
	(1) OLS	(2) OLS	(3) IPTW	(4) OLS	(5) OLS	(6) IPTW
Muslim school	0.345** (0.115)	0.319** (0.103)	0.322** (0.123)	0.319** (0.110)	0.283** (0.094)	0.319** (0.112)
Constant	-0.250 (0.158)	-0.202 (0.151)	-0.520*** (0.116)	-0.388*** (0.107)	-0.137 (0.119)	-0.694*** (0.096)
Observations \mathbb{R}^2	660 0.056	660 0.175	660	644 0.060	644 0.137	644
Covariates	No	Yes	Yes [†]	No	Yes	Yes [†]

		Reading			Math	
	(1) OLS	(2) OLS	(3) IPTW	(4) OLS	(5) OLS	(6) IPTW
Muslim school	0.345**	0.319**	0.322**	0.319**	0.283**	0.319**
	(0.115)	(0.103)	(0.123)	(0.110)	(0.094)	(0.112)
Constant	-0.250	-0.202	_0.520***	-0.388***	-0.137	_0.694***
	(0.158)	(0.151)	(0.116)	(0.107)	(0.119)	(0.096)
Observations	660	660	660	644	644	644
R^2	0.056	0.175		0.060	0.137	
Covariates	No	Yes	Yes^\dagger	No	Yes	Yes^\dagger

Main findings: By time in public school

ightharpoonup Muslim school effect pprox 30% of a standard deviation

- \blacktriangleright Muslim school effect $\approx 30\%$ of a standard deviation
- ightharpoonup 1-year school learning estimates range from $^1/_4-^1/_3$ σ (Woessmann, 2016)

- \blacktriangleright Muslim school effect $\approx 30\%$ of a standard deviation
- ightharpoonup 1-year school learning estimates range from $^1/_4-^1/_3$ σ (Woessmann, 2016)
- How much is driven by disruption?

Dealing with disruption effects

- 1. Estimate benchmark disruption effects ($\approx 0.08\sigma$) \sim VA results
- 2. Transition between school types Transition analyses
- 3. Exploit variation in timing
- 4. School changes to non-Gülen Muslim schools
- 5. Parental stress following coup (event study)

Dealing with disruption effects

- 1. Estimate benchmark disruption effects ($\approx 0.08\sigma$) \sim VA results
- 2. Transition between school types Transition analyses
- 3. Exploit variation in timing
- 4. School changes to non-Gülen Muslim schools
- 5. Parental stress following coup (event study)

Disruption I

Disruption II: Gülen \rightarrow other Muslim schools

	Rea	ding	M	ath
	(1)	(2)	(3)	(4)
Movers	-0.184	-0.018	-0.088	0.065
	[-0.525, 0.156]	[-0.348, 0.312]	[-0.469, 0.292]	[-0.357, 0.488]
	(0.264)	(0.910)	(0.624)	(0.743)
Constant	0.095	0.108	-0.069	0.124
	[-0.211, 0.402]	[-0.210, 0.427]	[-0.148, 0.010]	[-0.009, 0.258]
	(0.514)	(0.476)	(0.080)	(0.066)
Observations	663	663	649	649
R^2	0.022	0.144	0.015	0.089
Covariates	No	Yes	No	Yes

Disruption III: Event studies of parental reactions

Figure: Event study: parents with children in Gülen vs non-Gülen Turkish Muslim schools

Disruption III: Event studies of parental reactions

Figure: Event study: parents with children in Gülen vs non-Gülen Turkish Muslim schools

Disruption III: Event studies of parental reactions

Figure: Event study: parents with children in Gülen vs non-Gülen Turkish Muslim schools

➤ Robust to alternative specifications

> Robust to alternative specifications

► Ethnicity definitions ► Percentile cutoffs

Not driven by SES

▶ Control for SES

Robust to alternative specifications

➤ **Not** driven by SES

► Control for SES

Aspirations play a role

▶ Aspiration results

Mechanism I: Ethnic similarity – School and teacher characteristics

	Low Ethnic Concentration		_	High Ethnic Concentration		st
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
School and peer characteristics						
Ethnic minority	0.274	(0.094)	0.603	(0.174)	-0.329	0.000
School GPA (std)	-0.130	(0.267)	-0.347	(0.248)	0.217	0.000
School cohort size	188.013	(50.768)	167.988	(56.120)	20.025	0.019
Paternal income	59.919	(9.740)	47.384	(6.937)	12.535	0.000
Maternal income	47.152	(4.703)	38.164	(4.241)	8.988	0.000
Paternal education	13.969	(0.920)	13.020	(0.500)	0.949	0.000
Maternal education	13.793	(1.003)	12.495	(0.910)	1.298	0.000
Teacher characteristics						
Ethnic minority	0.053	(0.050)	0.115	(0.076)	-0.062	0.000
Age	42.541	(2.716)	42.289	(1.702)	0.252	0.481
Certified	0.801	(0.093)	0.795	(0.087)	0.006	0.677
Experience (years)	12.678	(2.350)	12.566	(1.735)	0.111	0.733
Experience ≥ 3 years	0.887	(0.064)	0.879	(0.057)	0.008	0.390
Observations	-	77	3	33		

Mechanism I: Ethnic similarity – School and teacher characteristics

	Low Ethnic Concentration		High Ethnic Concentration		$t ext{-test}$	
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
School and peer characteristics						
Ethnic minority	0.274	(0.094)	0.603	(0.174)	-0.329	0.000
School GPA (std)	-0.130	(0.267)	-0.347	(0.248)	0.217	0.000
School cohort size	188.013	(50.768)	167.988	(56.120)	20.025	0.019
Paternal income	59.919	(9.740)	47.384	(6.937)	12.535	0.000
Maternal income	47.152	(4.703)	38.164	(4.241)	8.988	0.000
Paternal education	13.969	(0.920)	13.020	(0.500)	0.949	0.000
Maternal education	13.793	(1.003)	12.495	(0.910)	1.298	0.000
Teacher characteristics						
Ethnic minority	0.053	(0.050)	0.115	(0.076)	-0.062	0.000
Age	42.541	(2.716)	42.289	(1.702)	0.252	0.481
Certified	0.801	(0.093)	0.795	(0.087)	0.006	0.677
Experience (years)	12.678	(2.350)	12.566	(1.735)	0.111	0.733
Experience ≥ 3 years	0.887	(0.064)	0.879	(0.057)	0.008	0.390
Observations	-	77	3	33		

Mechanism I: Ethnic similarity – School and teacher characteristics

	Low Ethnic Concentration		High Ethnic Concentration		$t ext{-test}$	
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
School and peer characteristics						
Ethnic minority	0.274	(0.094)	0.603	(0.174)	-0.329	0.000
School GPA (std)	-0.130	(0.267)	-0.347	(0.248)	0.217	0.000
School cohort size	188.013	(50.768)	167.988	(56.120)	20.025	0.019
Paternal income	59.919	(9.740)	47.384	(6.937)	12.535	0.000
Maternal income	47.152	(4.703)	38.164	(4.241)	8.988	0.000
Paternal education	13.969	(0.920)	13.020	(0.500)	0.949	0.000
Maternal education	13.793	(1.003)	12.495	(0.910)	1.298	0.000
Teacher characteristics						
Ethnic minority	0.053	(0.050)	0.115	(0.076)	-0.062	0.000
Age	42.541	(2.716)	42.289	(1.702)	0.252	0.481
Certified	0.801	(0.093)	0.795	(0.087)	0.006	0.677
Experience (years)	12.678	(2.350)	12.566	(1.735)	0.111	0.733
Experience ≥ 3 years	0.887	(0.064)	0.879	(0.057)	0.008	0.390
Observations	-	77	3	33		

➤ Robust to different models, samples, measures

Conditional vs difference
Comparison groups

However, what happens if you ask teachers to evaluate students?

	De	Dep. var.: Teacher-evaluated student readiness for high school							
		Academic readiness		cial iness	Personal readiness				
	(1)	(2)	(3)	(4)	(5)	(6)			
Muslim student	-0.154***	-0.030***	-0.133***	-0.041***	-0.181***	-0.057***			
	(800.0)	(800.0)	(0.009)	(0.009)	(0.009)	(0.009)			
Constant	0.829***	0.784***	0.892***	0.832***	0.831***	0.746***			
	(0.003)	(0.003)	(0.003)	(0.004)	(0.003)	(0.005)			
Observations	94,992	94,992	73,830	73,830	73,830	73,830			
${\cal R}^2$ adj.	0.012	0.240	0.016	0.106	0.020	0.149			
Covariates	No	Yes	No	Yes	No	Yes			

Long-term outcomes and integration

Long-term outcomes and integration

		High school outcomes			benefits pient
	Admission (age 18)	Completion (age 20)	Standardized GPA	Ever	Weeks
	(1)	(2) (3)		(4)	(5)
Muslim school	0.113**	0.122*	0.355*	-0.048	-6.397
	(0.037)	(0.058)	(0.149)	(0.033)	(4.828)
Constant	-0.172***	-0.163	-1.175^{***}	0.029	3.024
	(0.048)	(0.082)	(0.185)	(0.038)	(3.930)
Observations	720	720	514	720	720
R^{2} adj.	0.078	0.118	0.125	0.041	0.019
Covariates	Yes	Yes	Yes	Yes	Yes

Conclusion

Muslim schools improve minority students' achievement and integration

Conclusion

Muslim schools improve minority students' achievement and integration

- ightharpoonup Driven by **ethnic homophily** \Rightarrow alienation in mainstream schools
- ➤ Not explained by grading bias
- ... but subtle biases persist

Conclusion

Muslim schools improve minority students' achievement and integration

- ightharpoonup Driven by **ethnic homophily** \Rightarrow alienation in mainstream schools
- Not explained by grading bias
- ... but subtle biases persist

Policy

- Assimilationist policies come with costs to important outcomes
- Limitation: no data on values, norms, etc.

saidhassan.net

Thank You!

Comparing movers to stayers

	Sta	yers	Movers			
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
Female	0.562	0.497	0.488	0.501	0.074	0.126
Age	16.121	0.748	16.226	0.501	-0.105	0.105
Both parents born in DK	0.776	0.418	0.774	0.420	0.002	0.958
Birth weight (kg)	3.407	0.553	3.413	0.645	-0.006	0.917
Parents divorced	0.094	0.292	0.071	0.258	0.022	0.411
Parental education (years)	12.962	2.629	12.644	2.549	0.318	0.209
Parental income	73.764	33.797	73.088	25.237	0.676	0.821
Parent unemployed	0.182	0.387	0.263	0.442	-0.081	0.040
Observations	299		168			

Disruption: Benchmark VA estimates Pack to robust

	Full sample		M	Muslim childre	n
(1)	(2)	(3)	(4)	(5)	(6)
-0.104*** (0.010)	-0.096*** (0.009)	-0.080*** (0.008)	-0.080*** (0.022)	-0.068** (0.021)	-0.063*** (0.019)
0.683*** (0.003)	0.615*** (0.003)	0.601*** (0.003)	0.544*** (0.006)	0.504*** (0.006)	0.493*** (0.006)
		0.381*** (0.008)			0.338*** (0.018)
0.001 (0.004)	1.721*** (0.057)	1.791*** (0.057)	-0.183*** (0.010)	2.086*** (0.149)	2.221*** (0.150)
373,576 0.431	373,575 0.496 Yes	373,575 0.510 Yes	35,076 0.365 No	35,076 0.421 Ves	35,076 0.437 Yes
	-0.104*** (0.010) 0.683*** (0.003) 0.001 (0.004) 373,576	(1) (2) -0.104*** -0.096*** (0.010) (0.009) 0.683*** 0.615*** (0.003) (0.003) 0.001 1.721*** (0.004) (0.057) 373,576 373,575 0.431 0.496	(1) (2) (3) -0.104*** -0.096*** -0.080*** (0.010) (0.009) (0.008) 0.683*** 0.615*** 0.601*** (0.003) (0.003) (0.003) 0.381*** (0.008) 0.001 1.721*** 1.791*** (0.004) (0.057) (0.057) 373,576 373,575 373,575 0.431 0.496 0.510	(1) (2) (3) (4) -0.104*** -0.096*** -0.080*** -0.080*** (0.010) (0.009) (0.008) (0.022) 0.683*** 0.615*** 0.601*** 0.544*** (0.003) (0.003) (0.003) (0.006) 0.381*** (0.008) 0.001 1.721*** 1.791*** -0.183*** (0.004) (0.057) (0.057) (0.010) 373,576 373,575 373,575 35,076 0.431 0.496 0.510 0.365	(1) (2) (3) (4) (5) -0.104**** -0.096**** -0.080**** -0.068*** (0.010) (0.009) (0.008) (0.022) (0.021) 0.683*** 0.615*** 0.601*** 0.544*** 0.504*** (0.003) (0.003) (0.006) (0.006) 0.381*** (0.008) 0.001 1.721*** 1.791*** -0.183*** 2.086*** (0.004) (0.057) (0.057) (0.010) (0.149) 373,576 373,575 373,575 35,076 35,076 0.431 0.496 0.510 0.365 0.421

Disruption: Transition analyses • Back to robust

	Fre	From public school			ate school	From Muslim school	
	To public (1)	To private (2)	To Muslim (3)	To private (4)	To public (5)	To Muslim (6)	To public (7)
Move	-0.166***	0.039	0.163*	-0.189***	-0.368***	0.043	
	(0.011)	(0.027)	(0.077)	(0.028)	(0.021)	(0.123)	(0.086)
Constant	-0.166***	-0.182***	-0.180***	0.101***	0.080***	-0.163	-0.153
	(0.007)	(0.006)	(0.006)	(0.016)	(0.016)	(0.124)	(0.112)
Obs. (total)	256,697	265,828	265,828	43,223	47,647	1,566	1,837
Obs. (movers)	33,827	9,072	113	2,132	4,476	45	269
${\mathbb R}^2$ adj.	0.189	0.185	0.185	0.142	0.158	0.064	0.113
Covariates	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Ethnic similarity - Alternative definitions • Back

	A. Main results: Any minority			tive measure: uslim	C. Alternative measure: Turkish		
	Reading (1)	O Math		Math (4)	Reading (5)	Math (6)	
Ethnic concentration							
Low (below median)	-0.441^{*}	-0.321*	-0.397*	-0.278	-0.452***	-0.339***	
	(0.171)	(0.150)	(0.165)	(0.144)	(0.118)	(0.099)	
High (above median)	-0.185	-0.240**	-0.224	-0.280**	-0.206	-0.236	
	(0.114)	(0.090)	(0.117)	(880.0)	(0.146)	(0.123)	
Observations	655	639	655	639	655	639	
R^2	0.168	0.128	0.166	0.127	0.168	0.128	
Covariates	Yes	Yes	Yes	Yes	Yes	Yes	

Ethnic similarity - Alternative pctile cutoffs • Back

		Reading			Math	
	(1)	(2)	(3)	(4)	(5)	(6)
Ethnic concentration						
Low ($< P_{25}$)	-0.509***			-0.321		
	(0.128)			(0.163)		
$High\ (\geq P_{25})$	-0.269*			-0.271**		
	(0.119)			(0.101)		
Low ($< P_{50}$)		-0.445*			-0.329*	
		(0.175)			(0.153)	
High $(\geq P_{50})$		-0.187			-0.235*	
		(0.112)			(0.089)	
Low ($< P_{75}$)			-0.334**			-0.296**
			(0.122)			(0.104)
High ($\geq P_{75}$)			-0.221			-0.222
			(0.190)			(0.139)
Observations	655	655	655	639	639	639
\mathbb{R}^2	0.166	0.168	0.164	0.127	0.128	0.127
Covariates	Yes	Yes	Yes	Yes	Yes	Yes

Ethnic similarity - Correlation between measures Pack

	Α.	All Scho	ools	B. Receiving Schools			
Variables	1.	2.	3.	1.	2.	3.	
1. % Muslim	1.000			1.000			
2. % Any non-western	0.962	1.000		0.980	1.000		
3. % Turkish	0.631	0.586	1.000	0.645	0.599	1.000	

Ethnic similarity - Control for SES •Back

		Reading Math				th		
	Main				Main			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Ethnic concentration								
Low	-0.441*	-0.444	-0.331	-0.459*	-0.321*	-0.573	-0.288	-0.329°
	(0.171)	(0.250)	(0.389)	(0.179)	(0.150)	(0.298)	(0.379)	(0.163)
High	-0.185	-0.185	-0.117	-0.192	-0.240**	-0.335**	-0.220	-0.193°
	(0.114)	(0.125)	(0.223)	(0.163)	(0.090)	(0.125)	(0.220)	(0.092)
School variables (aver	age in $t-$	1)						
Parental income		0.000				0.000		
		(0.000)				(0.000)		
Parental education			-0.049				-0.015	
			(0.126)				(0.129)	
School GPA				0.020				0.143
				(0.323)				(0.203)
Observations	655	655	655	637	639	639	639	621

Ethnic similarity - Aspirations Pack

	D	<i>ep. var.</i> : Educa	ational aspiratio	ons
	(1)	(2)	(3)	(4)
Minority student	0.006 (0.012)	0.097*** (0.018)	0.108*** (0.022)	0.075*** (0.020)
% Minority in school	, ,	, ,	0.000 (0.000)	, ,
$\label{eq:minority} \mbox{Minority student} \ \times \ \% \ \mbox{Minority in school}$			-0.001 (0.001)	0.000 (0.000)
Constant	0.794*** (0.005)	0.748*** (0.005)	0.741*** (0.007)	0.749*** (0.003)
Observations	46,988	44,105	36,212	36,209
\mathbb{R}^2 adj.	0.000	0.197	0.198	0.251
Covariates	No	Yes	Yes	Yes
School fixed effects	No	No	No	Yes

Grading bias: Conditional vs difference models •Back

 Evaluation vs exam ♦ Verhal vs written

▲ + School FE

Grading bias: Comparison groups •Back

Evaluation vs exam

Verbal vs written

+ Controls

▲ + School FE

Grading bias: Sample periods (receiving schools) • Back

Grading bias against/for Muslim students

- No controls
 + Controls
- ◆ Evaluation vs exam

 A Verbal vs written
- ▲ + School FE
- verbai vs written

Robustness: School closures only

► Back to main	o robust						
		Reading		Math			
	(1) OLS	(2) OLS	(3) IPTW	(4) OLS	(5) OLS	(6) IPTW	
Muslim school	0.458 (0.285)	0.601* (0.280)	0.226 (0.359)	0.379 (0.272)	0.657* (0.254)	0.123 (0.185)	
Constant	-0.226 (0.285)	-0.277 (0.330)	-0.587*** (0.113)	-0.517 (0.272)	-0.529* (0.260)	-0.671*** (0.103)	
Observations R^2	148 0.105	148 0.259	148 Ves [†]	148 0.064	148 0.201	148 Vas†	
-			148 Yes [†]			148 Yes [†]	

Robustness: Results without stayers

▶ Back to main	o robust							
		Reading			Math			
	(1) OLS	(2) OLS	(3) IPTW	(4) OLS	(5) OLS	(6) IPTW		
Muslim school	0.884*** (0.184)	0.923*** (0.181)	0.469*** (0.123)	0.868*** (0.099)	0.858*** (0.143)	0.465*** (0.119)		
Constant	-0.788*** (0.122)	-0.700*** (0.185)	-0.587*** (0.086)	-0.937*** (0.093)	-0.688*** (0.179)	-0.756*** (0.073)		
Observations R^2	379 0.089	379 0.202	379	379 0.090	379 0.150	379		
Covariates	No	Yes	Yes [†]	No	Yes	Yes [†]		

Robustness: Gülen vs other Muslim schools - test scores Pack

SES in low- and high-ethnic concentration schools

	Low E	thnic	High E	thnic		
	Mean	(SD)	Mean	(SD)	Difference	<i>p</i> -value
Ethnic minority	0.274	0.094	0.603	0.174	-0.329	0.000
School characteristics (peers)						
School cohort size	188.013	50.768	167.988	56.120	20.025	0.019
Maternal income	47.152	4.703	38.164	4.241	8.988	0.000
Maternal education	13.793	1.003	12.495	0.910	1.298	0.000
Teacher characteristics						
Ethnic minority	0.053	0.050	0.115	0.076	-0.062	0.000
Age	42.541	2.716	42.289	1.702	0.252	0.481
Certified	0.801	0.093	0.795	0.087	0.006	0.677
Experience (years)	12.678	2.350	12.566	1.735	0.111	0.733
Experience ≥ 3 years	0.887	0.064	0.879	0.057	0.008	0.390
Specialized (Reading)	0.436	0.075	0.420	0.082	0.016	0.204
Specialized (Mathematics)	0.241	0.064	0.251	0.069	-0.009	0.372
Observations	77		83			

