Chapter 1.2 凸集

21307099

liyj323@mail2.sysu.edu.cn

目录

1	凸集	法仿射集 凸锥	1
	1.1	仿射维数和相对内部	2
2	重要的例子		4
	2.1	超平面与半空间	4
	2.2	范数球	5
	2.3	球和椭球	5
	2.4	多面体与单纯形	5
	2.5	矩阵空间	6
3	保凸运算		6
	3.1	交集	6
	3.2	仿射函数	6
	3.3	线性分式及透视函数	7
4	凸逐	数	7
1 凸集 仿射集 凸锥			
		Definition 1. 凸集 Convex Set 过集合 C 内任意两点的线段都在 C 内,则称 C 为凸集:	

$$x1, x2 \in C \Rightarrow \theta_1 x_1 + \theta_2 x_2 \in C, \forall \theta_1 + \theta_2 = 1, \theta_1, \theta_2 \ge 0$$

Definition 2. 凸组合 Convex Combination

 $\theta_i \geq 0$ and $\sum_{i=1}^m \theta_i = 1$ 则 称 $\sum_{i=1}^m \theta_i x_i$ 为 x_1, \ldots, x_m 的一个凸组合

Definition 3. 仿射集 Affine Set

过集合 C 内任意两点的直线都在 C 内,则称 C 为仿射集:

$$x1, x2 \in C \Rightarrow \theta_1 x_1 + \theta_2 x_2 \in C, \forall \theta_1 + \theta_2 = 1$$

显然仿射集的要求更高, 因此任何仿射集都是凸集, 但凸集未必是仿射集

Definition 4. 仿射组合 Affine Combination

 $\sum_{i=1}^{m} \theta_i = 1$ 则 称 $\sum_{i=1}^{m} \theta_i x_i$ 为 x_1, \dots, x_m 的一个仿射组合

1.1 仿射维数和相对内部

Definition 5. 仿射维数

集合 C 的仿射维数为其仿射包的维数。

Definition 6. 相对内部

定义集合 C 的相对内部为 aff C 的内部, 记为 relint C 即

relint
$$C = \{x \in C | B(x,r) \cap \text{aff } C \subseteq C, \exists r > 0\}$$

Definition 7. 相对边界

定义集合 C 的相对边界为 clCrelintC

Definition 8. 凸锥 Convex Cone

 $\forall x \in C, \theta \ge 0$, 都有 $\theta x \in C$, 则称 C 为锥

若 C 为凸集,则称 C 为凸锥,即

$$x_1, x_2 \in C \Rightarrow \theta_1 x_1 + \theta_2 x_2 \in C, \forall \theta_1, \theta_2 \ge 0$$

Definition 9. 凸锥组合 Conic Combination

$$\theta_1 \dots \theta_m \ge 0$$

称

$$\sum_{i=1}^{m} \theta_i x_i$$

为 $x_1 \dots x_m \ge 0$ 的一个凸锥组合

Definition 10. 凸包 仿射包 凸锥包

集合 C 中任意元素的凸组合、仿射组合、凸锥组合称为 C 的凸包、仿射 包、凸锥包

2 重要的例子

2.1 超平面与半空间

超平面:

$$\{x \in \mathbb{R}^n | a^T x = b\}$$

或者

$$\{x \in \mathbb{R}^n | a^T(x - x_0) = 0\}$$

其中 x_0 是超平面上任意一点。超平面是凸集、仿射集,过原点时为凸锥

半空间:

$$\{x \in \mathbb{R}^n | a^T x \le b\}, a \ne 0$$

显然, 半空间是凸集, 但不是仿射集. 过原点时为凸锥

2.2 范数球

Definition 11. Norm Ball

$$\{x \in \mathbb{R}^n | \|x - x_c\|_p \le r\}$$

显然, 范数球是凸集且当 $r \neq 0$ 时不可能是仿射集和凸锥

2.3 球和椭球

Definition 12. 球

$$b(x_c, r) = \{x \mid ||x - x_c||_2 \le r\}$$
(1)

$$= \{x \mid \sqrt{(x - x_c)^T (x - x_c)} \le r\}$$
 (2)

Definition 13. 椭球

$$\mathcal{E} = \{ x \in \mathbb{R}^n | (x - x_c)^T P^{-1} (x - x_c) \le 1 \}$$

其中 $P = P^T \succ 0$, 半轴长度由 $\sqrt{\lambda_i}$ 给出

例如:

$$x^T \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}^{-1} x \le 1$$

则

$$\frac{1}{4}x_1^2 + x_2^2 \le 1$$

特征值为 4 和 1, 则半轴长为 2 和 1

2.4 多面体与单纯形

Definition 14. 多面体 polyhedron

$$P = \{x \mid a_i^T x \le b_i, \ i = 1 \dots m \ and \ c_j^T x = d_j, \ j = 1 \dots p\}$$

仿射集合、射线、线段和半空间都是多面体

Definition 15. 单纯形 simplex

 $v_0, v_1, \dots v_k$ 共 k+1 个点仿射无关(即 $v_1 - v_0, \dots v_k - k_0$ 线性无关),则 $C = \text{Conv}\{v_0, v_1, \dots v_k\}$

2.5 矩阵空间

Proposition 1.

1. 对称矩阵集 S^n 显然是凸锥、凸集、仿射集

2. 对称半正定矩阵集 S_+^n 是凸锥、凸集,不是仿射集(如 n=1 时为全体非负实数 \mathbb{R}_+)

3. 对称正定矩阵集 S_{++}^n 是凸集,不是凸锥、仿射集(如 n=1 时为全体正实数 R_{++})

对称半正定矩阵是凸锥

Prove:

$$\forall A, B \in S_+^n, \forall x \in \mathbb{R}^n, x^T A x \ge 0, x^T B x \ge 0 \tag{3}$$

$$\forall \theta_0, \theta_1 \ge 0, \qquad x^T (\theta_0 A + \theta_1 B) x \tag{4}$$

$$= \theta_0 x^T A x + \theta_1 x^T B x \tag{5}$$

$$\geq 0$$
 (6)

显然 θ_0, θ_1 可以同时 0,因此严格的 > 是不满足的,即<mark>对称正定矩阵集合不是凸锥</mark> (但显然是凸集,因为凸集中 $1^T \vec{\theta} = 1$,不能同时取 0)

3 保凸运算

3.1 交集

交集是保凸的。

每一个闭的凸集 S 都是半空间的交集(通常为无限多个)。事实上,一个闭凸集 S 是包含它的所有半空间的交集。(P32 原文: 一个闭集 S 是包含它的所有半空间的交集,但由交集的保凸性可知必须要是闭凸集)

3.2 仿射函数

仿射变换和逆仿射变换都是保凸的

Definition 16. 仿射变换 若 f(x)=AX+b, 其中 $A\in\mathbb{R}^{m\times n},b\in\mathbb{R}^m$ 则 称 $f:\mathbb{R}^n\to\mathbb{R}^m$ 是仿射的

- 若 $S \in \mathbb{R}^n$ 是凸集, $f: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射的, 则 S 在 f 下的映射 $f(S) = \{f(x) | x \in S\}$ 也是凸集
- 若 $C \in \mathbb{R}^m$ 是凸集, $g: \mathbb{R}^n \to \mathbb{R}^m$ 是仿射的, 则 C 在 g 下的逆映射 $g^{-1}(C) = \{x | g(x) \in C\}$ 也是凸集

- 3.3 线性分式及透视函数
- 4 凸函数