Simulación de la distribución de Poisson

Caso 1

El número de piezas que entran a un sistema sigue una distribución de Poisson con media de 2 piezas/hra. Simula el comportamiento de la llegada de las piezas al sistema. A partir de la distribución de probabilidad de la variable aleatoria de Poisson con media 2.

a) Encuentre la probabilidad de que lleguen las siguientes piezas

$$X \sim Poisson(\lambda) \Longrightarrow P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

X = x (piezas)	p(x) $p(x)$ acumulada	
0	0.13534	0.13534
1	0.27067	0.40601
2	0.27067	0.67668
3	0.18045	0.85712
4	0.09022	0.94735
5	0.03609	0.98344
6	0.01203	0.99547
7	0.00344	0.99890
8	0.00086	0.99976
9	0.00019	0.99995
10	0.00004	0.99999

b) Simule cuantas piezas llegan por hora en una jornada laboral

Hora	Número aleatorio	Piezas	
1	0.374540	1	
2	0.950714	5	
3	0.731994	3	
4	0.598658	2	
5	0.156019	1	
6	0.155995	1	
7	0.058084	0	
8	0.866176	4	

- c) <u>Un año laboral consiste en 300 días, realice 10000 simulaciones de un año laboral y conteste lo siguiente.</u>
 - Tasa promedio de llegada.

```
# Tasa promedio de llegada
big_simulation.mean()

    0.0s
1.9997654166666667
```

- Probabilidad de que lleguen.

```
freq_simulacion

v 0.0s

[324296, 650709, 649678, 432791, 215723, 87001, 28824, 8348, 2057, 464, 109]

p_simulacion = freq_simulacion / sum(freq_simulacion)

for p in p_simulacion:
    print(p)

v 0.0s

0.13512333333333335

0.27112875

0.27069916666666666

0.18032958333333332

0.08988458333333334

0.080857083333333333

0.0008570833333333333

0.0008570833333333333

0.0008570833333333333

4.541666666666667e-05
```

 Realice una comparación de las probabilidades obtenidas teóricamente con las experimentales

```
diff = (p_simulacion-probabilities)
    MAE = np.mean(np.divide(diff, probabilities)) * 100
    MSE = np.dot(diff, diff) / len(diff)
    RMSE = np.sqrt(MSE)

    print(f"MAE: {MAE}%")
    print(f"MSE: {MSE}")
    print(f"RMSE: {RMSE}")

    v    0.0s

MAE: -16.74716906716206%
    MSE: 3.908943942112518e-05
    RMSE: 0.0062521547822430934
```

d) <u>Grafique los resultados obtenidos.</u>

${\rm Caso}\ 2$

Durante un periodo en que una universidad recibe inscripciones por teléfono, llegan llamadas a una velocidad de una cada dos minutos. Para ello plantee un modelo de simulación y simule 10000 periodos.

a) ¿cuál es la probabilidad de que haya tres llamadas en cinco minutos?

$$X \sim Poisson(2.5) \Longrightarrow P(X = 3) = 0.214$$

b) ¿De que no haya llamadas en un lapso de cinco minutos?

$$X \sim Poisson(2.5) \Longrightarrow P(X=0) = 0.0843$$

Link al repositorio de trabajo