UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET

matf.png

Ivan Drecun

ALGORITMI ZA ISPITIVANJE IZOMORFIZMA GRAFOVA

master rad

Mentor:
dr Filip Marić, vanredni profesor Univerzitet u Beogradu, Matematički fakultet
Članovi komisije:
dr Miodrag ŽIVKOVIĆ, redovan profesor Univerzitet u Beogradu, Matematički fakultet
dr Vesna MARNIKOVIĆ, docent Univerzitet u Beogradu, Matematički fakultet
Datum odbrane:

 ${\bf Naslov}$ ${\bf master}$ rada: Algoritmi za ispitivanje izomorfizma grafova

 ${\bf Rezime: \ Apstrakt\ rada.}$

Ključne reči: ključne, reči

Sadržaj

1	$\mathbf{U}\mathbf{vod}$	1
2	Opšti algoritam	2
	2.1 Osnovni pojmovi	2
	2.2 Stablo pretrage	4
	2.3 Invarijanta stabla	6
	2.4 Odsecanje pretrage	8
3	Realizacija algoritma	10
4	Rezultati testiranja	11
5	Zaključak	12
Bi	ibliografija	13

Uvod

Opšti algoritam

U ovoj glavi predstavljeni su osnovni matematički pojmovi neophodni za dalje razumevanje konstrukcije opšteg algoritma za određivanje kanonske forme grafa. Uvedeni su pojmovi bojenja i obojenog grafa, nakon čega je prikazana konstrukcija stabla pretrage koja leži u osnovi algoritma. Nad stablom pogodno je definisana invarijanta koja omogućava određivanje grupe automorfizama grafa i kanonske forme. Na kraju su prikazani i mehanizmi odsecanja pretrage koji omogućavaju praktično izvršavanje algoritma u razumnom vremenu.

2.1 Osnovni pojmovi

Obojen graf

 $Graf\ G = (V, E)$ je uređeni par konačnog $skupa\ \check{c}vorova\ V$ i $skupa\ grana\ E \subseteq \binom{V}{2}$. U nastavku pretpostavljamo da je $V = \{1, 2, ..., n\}$ za neki prirodan broj n > 0. Označimo skup svih grafova sa n čvorova sa \mathcal{G}_n (nadalje \mathcal{G}).

Bojenje grafa G je surjekcija $\pi: V \to \{1, 2, ..., k\}$ za neki prirodan broj k > 0. Označimo skup svih bojenja grafa sa n čvorova sa Π_n (nadalje Π).

Broj k zovemo brojem boja i označavamo ga sa $|\pi|$. Čelija bojenja π boje c je skup svih čvorova te boje, odnosno $\pi^{-1}(c)$ za $c \in \{1, 2, ..., k\}$. Bojenje je diskretno ukoliko je $|\pi| = n$ i tada je π permutacija skupa V.

Bojenje π_1 je finije od bojenja π_2 (u oznaci $\pi_1 \leq \pi_2$) ukoliko za sve $v, w \in V$ važi implikacija $\pi_2(v) < \pi_2(w) \implies \pi_1(v) < \pi_1(w)$.

Obojen graf je uređeni par (G, π) gde je π jedno bojenje grafa G.

Dejstvo grupe

Neka je G grupa i S skup na kom je definisano dejstvo grupe G označeno sa s^g za $s \in S$ i $g \in G$. Orbita elementa s je skup $\Omega_s^G = \{s^g \mid g \in G\}$. Stabilizator elementa s je skup $\Sigma_s^G = \{g \in G \mid s^g = s\}$ koji čini jednu podgrupu od G.

Neka S_n označava simetričnu grupu stepena n. Na skupu čvorova V definisano je dejstvo grupe sa $v^g = g(v)$ za $v \in V$ i $g \in S_n$. Definiciju dejstva grupe permutacija možemo proširiti i na složenije strukture:

- $W^g = \{w^g \mid w \in W\}$ za skup $W \subseteq V$
- $w^g = (v_1^g, v_2^g, \dots, v_k^g)$ za uređenu k-torku w
- $G^g = (V, E')$ za graf G i $E' = \{e^g \mid e \in E\}$
- Ako je π bojenje, π^g je bojenje za koje važi $\pi^g(v^g) = \pi(v)$ odnosno $\pi^g = \pi g^{-1}$
- $(G,\pi)^g = (G^g,\pi^g)$ za obojen graf (G,π)

Izomorfizam

Obojeni grafovi (G_1, π_1) i (G_2, π_2) su *izomorfni* (u oznaci $(G_1, \pi_1) \cong (G_2, \pi_2)$) ukoliko postoji $g \in S_n$ tako da je $(G_1, \pi_1) = (G_2, \pi_2)^g$. Takvo g zovemo *izomorfizam*.

Automorfizam obojenog grafa (G,π) je izomorfizam tog grafa sa samim sobom, odnosno $g \in S_n$ za koje važi $(G,\pi) = (G,\pi)^g$. Skup automorfizama grafa (G,π) označavamo sa $Aut(G,\pi)$. Zajedno sa operacijom kompozicije preslikavanja skup $Aut(G,\pi)$ čini grupu automorfizama.

Kanonska forma

Neka je $f: \mathcal{G} \times \Pi \to S$ preslikavanje iz skupa svih obojenih grafova u proizvoljan skup S. Kažemo da je f funkcija invarijantna na imenovanje čvorova ukoliko za svaki obojen graf (G, π) i svaku permutaciju $g \in S_n$ važi $f(G^g, \pi^g) = f(G, \pi)$. Neformalno, to znači da vrednost funkcije f ne zavisi od konkretnog imenovanja čvorova grafa, već samo od njegove unutrašnje strukture.

Ako na skupu S postoji definisano dejstvo grupe S_n , kažemo da je f transformacija invarijantna na imenovanje čvorova ukoliko za svaki obojen graf (G, π) i svaku permutaciju $g \in S_n$ važi $f(G^g, \pi^g) = f(G, \pi)^g$.

Definicija. Kanonska forma je preslikavanje $\mathcal{C}: \mathcal{G} \times \Pi \to \mathcal{G} \times \Pi$ koje ispunjava sledeće uslove:

- (C1) Za svaki obojen graf (G,π) važi $C(G,\pi) \cong (G,\pi)$
- (C2) C je funkcija invarijantna na imenovanje čvorova

2.2 Stablo pretrage

Označimo sa V^* skup svih konačnih nizova elemenata skupa V. Ako je $\nu \in V^*$ sa $|\nu|$ označavamo dužinu niza ν . Ako je $\nu = (v_1, v_2, \dots, v_k) \in V^*$ i $w \in V$, onda $\nu || w$ označava niz $(v_1, v_2, \dots, v_k, w)$. Za $0 \le s \le k$ prefiks niza ν dužine s označavamo sa $[\nu]_s = (v_1, v_2, \dots, v_s)$. Uređenje \le na skupu V^* predstavlja leksikografski poredak.

Čvorovi stabla pretrage predstavljeni su nizovima elemenata skupa V, pri čemu korenu stabla odgovara prazan niz. U nastavku definišemo funkcije na osnovu kojih ćemo definisati pravila grananja u stablu.

Definicija. Funkcija profinjavanja je bilo koje preslikavanje $R: \mathcal{G} \times \Pi \times V^* \to \Pi$ koje za svaki obojen graf (G, π) i svako $\nu \in V^*$ zadovoljava sledeće uslove:

- (R1) $R(G, \pi, \nu) \leq \pi$
- (R2) Ako je $v \in \nu$, onda je $\{v\}$ ćelija bojenja $R(G, \pi, \nu)$
- (R3) Za svako $g \in S_n$ važi $R(G^g, \pi^g, \nu^g) = R(G, \pi, \nu)^g$

Definicija. Funkcija odabira ciljne ćelije je bilo koje preslikavanje $T: \mathcal{G} \times \Pi \times V^* \to \mathcal{P}(V)$ koje za svaki obojen graf (G, π) i svako $\nu \in V^*$ zadovoljava sledeće uslove:

- (T1) Ako je $R(G, \pi, \nu)$ diskretno, onda je $T(G, \pi, \nu) = \emptyset$
- (T2) Ako $R(G, \pi, \nu)$ nije diskretno, onda je $T(G, \pi, \nu)$ nejedinična ćelija od $R(G, \pi, \nu)$
- (T3) Za svako $g \in S_n$ važi $T(G^g, \pi^g, \nu^g) = T(G, \pi, \nu)^g$

Kako je graf fiksan, ove funkcije možemo smatrati funkcijama čvorova stabla. Funkcija profinjavanja obezbeđuje postojanje bojenja pridruženog svakom čvoru stabla (koje postaje finije kako se spuštamo niz stablo). Funkcija odabira ciljne ćelije nam omogućava da odaberemo skup čvorova grafa koji nam služi za konstrukciju dece tog čvora u stablu. Treći uslov u obe definicije govori da su u pitanju transformacije invarijantne na imenovanje čvorova.

Definicija. Stablo pretrage $\mathcal{T}(G,\pi)$ određeno je sledećim uslovima:

- $(\mathcal{T}1)$ Koren stabla $\mathcal{T}(G,\pi)$ je prazan niz ()
- $(\mathcal{T}2)$ Ako je ν čvor stabla $\mathcal{T}(G,\pi)$, njegova deca u stablu su $\{\nu \mid |w| \mid w \in T(G,\pi,\nu)\}$

Dejstvo grupe S_n na stablo definiše se slično kao za bilo koju drugu strukturu. Naredna lema pokazuje da je ovako definisano stablo invarijantno na imenovanje čvorova grafa.

Lema 1. Za svaki obojen graf (G, π) i svako $g \in S_n$ važi $\mathcal{T}(G^g, \pi^g) = \mathcal{T}(G, \pi)^g$.

Dokaz. Dokažimo da za svaki čvor ν stabla $\mathcal{T}(G,\pi)$ važi da je ν^g čvor stabla $\mathcal{T}(G^g,\pi^g)$. Dokaz izvodimo indukcijom po strukturi stabla.

Baza indukcije Prazan niz je koren stabla $\mathcal{T}(G^g, \pi^g)$, pa tvrđenje trivijalno važi.

Induktivni korak Pretpostavimo da tvrđenje važi za čvor ν . Neka je $\nu || w$ dete čvora ν za neko $w \in T(G, \pi, \nu)$. Tada je $(\nu || w)^g = \nu^g || w^g$, ali kako važi $w^g \in T(G, \pi, \nu)^g =_{(T_3)} T(G^g, \pi^g, \nu^g)$ to je $\nu^g || w^g$ dete čvora ν^g u stablu $\mathcal{T}(G^g, \pi^g)$.

Time smo dokazali da je stablo $\mathcal{T}(G,\pi)^g$ podstablo od $\mathcal{T}(G^g,\pi^g)$ ($\mathcal{T}(G,\pi)^g\subseteq \mathcal{T}(G^g,\pi^g)$). Prema prethodno dokazanom važi $\mathcal{T}(G^g,\pi^g)^{g^{-1}}\subseteq \mathcal{T}(G,\pi)$, pa primenom g na obe strane konačno dobijamo $\mathcal{T}(G^g,\pi^g)\subseteq \mathcal{T}(G,\pi)^g$.

Posledica 1. Neka je ν čvor stabla $\mathcal{T}(G,\pi)$ i neka $\mathcal{T}(G,\pi,\nu)$ označava njegovo podstablo sa korenom u ν . Ako je $g \in Aut(G,\pi)$, onda je ν^g čvor stabla $\mathcal{T}(G,\pi)$ i važi $\mathcal{T}(G,\pi,\nu^g) = \mathcal{T}(G,\pi,\nu)^g$.

Lema 2. Neka je ν čvor stabla $\mathcal{T}(G,\pi)$ i $\pi_{\nu} = R(G,\pi,\nu)$. Tada je $Aut(G,\pi_{\nu}) = \Sigma_{\nu}^{Aut(G,\pi)}$.

Dokaz. Na osnovu uslova (R2) bilo koji automorfizam obojenog grafa (G, π_{ν}) stabilizuje ν . Sa druge strane, neka $g \in Aut(G, \pi)$ stabilizuje ν . Tada po (R3) važi $\pi_{\nu}^{g} = R(G, \pi, \nu)^{g} = R(G, \pi, \nu) = \pi_{\nu}$, pa je $g \in Aut(G, \pi_{\nu})$.

2.3 Invarijanta stabla

Definicija. Invarijanta stabla je preslikavanje $\phi : \mathcal{G} \times \Pi \times V^* \to F$ za neki potpuno uređen skup F koje za sve obojene grafove (G, π) i različite čvorove $\nu_1, \nu_2 \in \mathcal{T}(G, \pi)$ ispunjava sledeće uslove:

- (ϕ 1) Ako su $\nu_1, \nu_2 \in \mathcal{T}(G, \pi)$ takvi da je $|\nu_1| = |\nu_2|$ i $\phi(G, \pi, \nu_1) < \phi(G, \phi_0, \nu_2)$, onda za sve $\omega_1 \in \mathcal{T}(G, \pi, \nu_1)$ i $\omega_2 \in \mathcal{T}(G, \pi, \nu_2)$ važi $\phi(G, \pi, \omega_1) < \phi(G, \pi, \omega_2)$
- $(\phi 2)$ Ako su $\nu_1, \nu_2 \in \mathcal{T}(G, \pi)$ takvi da su $\pi_1 = R(G, \pi, \nu_1)$ i $\pi_2 = R(G, \pi, \nu_2)$ diskretna bojenja, onda je $\phi(G, \pi, \nu_1) = \phi(G, \pi, \nu_2) \iff G^{\pi_1} = G^{\pi_2}$
- $(\phi 3)$ ϕ je funkcija invarijantna na imenovanje čvorova grafa

Listovi ν_1 i ν_2 su *ekvivalentni* ako i samo ako $\phi(G, \pi, \nu_1) = \phi(G, \pi, \nu_2)$.

U nastavku ćemo kroz dve teoreme prikazati značaj ovako definisane invarijante stabla. Označimo za proizvoljan čvor stabla ν njegovo bojenje dobijeno funkcijom profinjavanja sa $\pi_{\nu} = R(G, \pi, \nu)$.

Lema 3. Neka je $g \in Aut(G, \pi)$ i listovi ν_1 i ν_2 takvi da je $\nu_1^g = \nu_2$. Tada su ν_1 i ν_2 ekvivalentni i $g = \pi_{\nu_2}^{-1} \pi_{\nu_1}$.

Dokaz. Na osnovu svojstva (ϕ 3) invarijante stabla i činjenice da je g automorfizam sledi $\phi(G, \pi, \nu_1) =_{(\phi_3)} \phi(G^g, \pi^g, \nu_1^g) =_{g \in Aut(G, \pi)} \phi(G, \pi, \nu_1^g) = \phi(G, \pi, \nu_2)$, odnosno ν_1 i ν_2 su ekvivalentni. Dalje, važi $\pi_{\nu_2}^{-1}\pi_{\nu_1} = \pi_{\nu_1^g}^{-1}\pi_{\nu_1} =_{(R3)} (\pi_{\nu_1}^g)^{-1}\pi_{\nu_1} = (\pi_{\nu_1}g^{-1})^{-1}\pi_{\nu_1} = g\pi_{\nu_1}^{-1}\pi_{\nu_1} = g$.

Lema 4. Neka su α i β diskretna bojenja finija od bojenja π . Tada je $\pi^{\alpha} = \pi^{\beta}$.

Dokaz. Dokaz izvodimo nizom sitnih tvrđenja.

- 1. $id \leq \pi^{\alpha}$
 - Neka su x i y proizvoljni. Važi $\pi^{\alpha}(x) < \pi^{\alpha}(y) \iff \pi(\alpha^{-1}(x)) < \pi(\alpha^{-1}(y))$, pa kako je $\alpha \leq \pi$ sledi $\alpha(\alpha^{-1}(x)) < \alpha(\alpha^{-1}(y))$ odnosno x < y. Kontrapozicijom dobijamo i $x \leq y \implies \pi^{\alpha}(x) \leq \pi^{\alpha}(y)$.
- 2. $(\pi^{\alpha})^{-1}(c) = [n, m]$ za neko $n, m \in \mathbb{N}$ gde je $[n, m] = \{k \in \mathbb{N} \mid n \leq k \leq m\}$ Za svako x, y, z važi $x \leq y \leq z \implies \pi^{\alpha}(x) \leq \pi^{\alpha}(y) \leq \pi^{\alpha}(z)$, pa ako je $\pi^{\alpha}(x) = \pi^{\alpha}(z) = c$, onda je i $\pi^{\alpha}(y) = c$.

3. $\pi^{\alpha}(n+1) = \pi^{\alpha}(n)$ ili $\pi^{\alpha}(n+1) = \pi^{\alpha}(n) + 1$

Neka je $\pi^{\alpha}(n+1) \neq \pi^{\alpha}(n)$. Tada je $n+1 \geq n \implies \pi^{\alpha}(n+1) \geq \pi^{\alpha}(n)$, pa je $\pi^{\alpha}(n+1) > \pi^{\alpha}(n)$ jer su po pretpostavci različiti. Pretpostavimo da je $\pi^{\alpha}(n+1) > \pi^{\alpha}(n) + 1$. Tada postoji m takvo da je $\pi^{\alpha}(m) = \pi^{\alpha}(n) + 1$, ali iz $\pi^{\alpha}(n) < \pi^{\alpha}(m) < \pi^{\alpha}(n+1) \implies n < m < n+1$ sledi kontradikcija.

- 4. $|(\pi^{\alpha})^{-1}(c)| = |\pi^{-1}(c)|$ Važi da je $(\pi^{\alpha})^{-1}(c) = \{m \mid \pi^{\alpha}(m) = c\} = \{m^{\alpha} \mid \pi^{\alpha}(m^{\alpha}) = c\} = \{m^{\alpha} \mid \pi(m) = c\} = \pi^{-1}(c)^{\alpha}$. Odatle je $|(\pi^{\alpha})^{-1}(c)| = |\pi^{-1}(c)^{\alpha}| = |\pi^{-1}(c)|$.
- 5. $(\pi^{\alpha})^{-1}(c) = (\pi^{\beta})^{-1}(c)$

Dokaz izvodimo indukcijom po c.

Baza indukcije Kako je $1 \le x$ za sve x, onda iz $id \le \pi^{\alpha}$ sledi $\pi^{\alpha}(1) \le \pi^{\alpha}(x)$ za sve x pa je $\pi^{\alpha}(1) = 1$. Dalje, kako je $|(\pi^{\alpha})^{-1}(1)| = |\pi^{-1}(1)|$, mora važiti $(\pi^{\alpha})^{-1}(1) = [1, 1 + |\pi^{-1}(1)|]$. Analogno se pokazuje i za β .

Induktivni korak Neka je po induktivnoj pretpostavci $(\pi^{\alpha})^{-1}(c) = (\pi^{\alpha})^{-1}(c) = [n, m]$. Tada je $\pi^{\alpha}(m+1) \neq \pi^{\alpha}(m)$, pa je $\pi^{\alpha}(m+1) = \pi^{\alpha}(m)+1$ i m+1 je najmanje u $(\pi^{\alpha})^{-1}(c+1)$. Odatle važi $(\pi^{\alpha})^{-1}(c+1) = [m+1, m+|\pi^{-1}(c+1)|]$. Analogno se pokazuje i za β .

Teorema 1. Za svaki list ν važi $Aut(G, \pi) = \{\pi_{\omega}^{-1}\pi_{\nu} \mid \nu \ i \ \omega \ su \ ekvivalentni\}.$

Dokaz. Neka je $g \in Aut(G,\pi)$. Tada je po posledici 1 ν^g list stabla $\mathcal{T}(G,\pi)$. Po prethodno dokazanoj lemi 3 su ν i ν^g ekvivalentni i $g = \pi_{\nu^g}^{-1} \pi_{\nu}$ što je element skupa sa desne strane jednakosti. Sa druge strane, ako su ν i ω ekvivalentni, onda je $G^{\pi_{\nu}} = G^{\pi_{\omega}}$, pa je $\pi_{\omega}^{-1} \pi_{\nu} \in Aut(G,\pi)$.

Prethodna teorema pokazuje da je otkrivanjem svih čvorova ekvivalentnih jednom čvoru moguće odrediti grupu automorfizama datog grafa. Naravno, ovakav način određivanja grupe automorfizama nije veoma efikasan pošto se grupa generiše član po član. Ovo se može poboljšati odsecanjem pretrage o čemu će biti reči u narednom odeljku.

Definicija. Neka je ν^* list stabla $\mathcal{T}(G,\pi)$ u kom invarijanta $\phi(G,\pi,\nu)$ dostiže maksimum. Kanonska forma obojenog grafa (G,π) je funkcija $\mathcal{C}(G,\pi) = (G,\pi)^{\pi_{\nu^*}}$.

Primetimo da zbog uslova (ϕ 2) definicija ne zavisi od izbora lista ν *. Naredna teorema opravdava naziv i oznaku funkcije.

Teorema 2. Funkcija $C(G, \pi)$ je kanonska forma.

Dokaz. Dokazujemo da ovako definisana funkcija ispunjava uslove kanonske forme za svaki obojen graf (G, π) .

- (C1) Kako je $C(G,\pi)=(G,\pi)^{\pi_{\nu^*}}$ to je $C(G,\pi)\cong(G,\pi)$ za izomorfizam π_{ν^*} .
- (C2) Za svako $g \in S_n$ i svako $\nu \in \mathcal{T}(G,\pi)$ važi $\nu^g \in \mathcal{T}(G,\pi)^g = \mathcal{T}(G^g,\pi^g)$ kao i $\phi(G^g,\pi^g,\nu^g) = \phi(G,\pi,\nu)$, pa je ν^{*g} list u kom invarijanta stabla $\mathcal{T}(G^g,\pi^g)$ dostiže maksimalnu vrednost. Odatle sledi $\mathcal{C}(G^g,\pi^g) = (G^g,\pi^g)^{R(G^g,\pi^g,\nu^{*g})} = (G^g,\pi^g)^{\pi_{v^*}^g} = (G,\pi)^{\pi_{v^*}} = \mathcal{C}(G,\pi)$ pa je \mathcal{C} funkcija invarijantna na imenovanje čvorova.

2.4 Odsecanje pretrage

Stablo pretrage može biti veoma veliko, pa pretraga kompletnog stabla nije poželjna. To možemo rešiti uvođenjem tri različite operacije odsecanja.

- Neka su ν_1 i ν_2 različiti čvorovi stabla $\mathcal{T}(G,\pi)$ takvi da je $|\nu_1| = |\nu_2|$ i $\phi(G,\pi,\nu_1) > \phi(G,\pi,\nu_2)$. Operacija $P_A(\nu_1,\nu_2)$ podrazumeva odsecanje podstabla $\mathcal{T}(G,\pi,\nu_2)$.
- Neka su ν_1 i ν_2 različiti čvorovi stabla $\mathcal{T}(G,\pi)$ takvi da je $|\nu_1| = |\nu_2|$ i $\phi(G,\pi,\nu_1) \neq \phi(G,\pi,\nu_2)$. Operacija $P_B(\nu_1,\nu_2)$ podrazumeva odsecanje podstabla $\mathcal{T}(G,\pi,\nu_2)$.
- Neka su ν_1 i ν_2 različiti čvorovi stabla $\mathcal{T}(G,\pi)$ takvi da je $\nu_1 < \nu_2$ i $\nu_1^g = \nu_2$ za neko $g \in Aut(G,\pi)$. Operacija $P_C(\nu_1,g)$ podrazumeva odsecanje podstabla $\mathcal{T}(G,\pi,\nu_2)$.

Naredna teorema opravdava uvođenje ovih operacija odsecanja i pokazuje da one ne narušavaju rezultate teorema o određivanju grupe automorfizama i kanonske forme iz prethodnog odeljka.

Teorema 3. Neka je (G, π) obojen graf.

- 1. Neka je nad stablom $\mathcal{T}(G,\pi)$ izvršen proizvoljan niz operacija P_A i P_C . Tada u dobijenom stablu postoji bar jedan list ν takav da je $\phi(G,\pi,\nu) = \phi(G,\pi,\nu^*)$.
- Neka je ν₀ list stabla T(G,π) i neka je nad stablom izvršen proizvoljan niz operacija P_B(ν₁, ν₂) i P_C gde je |ν₂| > |ν₀| ili φ(G,π,ν₂) ≠ φ(G,π, [ν₀]_{|ν₂|}) i neka su g₁,..., g_k svi automorfizmi korišćeni u izvršenim operacijama P_C. Tada je grupa automorfizama Aut(G,π) generisana skupom {g₁,..., g_k}∪{g ∈ Aut(G,π) | ν₀^g nije uklonjen}.

Dokaz. Dokažimo za početak nekoliko pomoćnih tvrđenja.

Nijedna operacija P_A ne uklanja listove u kojima je vrednost invarijante maksimalna. Pretpostavimo suprotno. Neka je ν_1 list u kom invarijanta stabla dostiže maksimum i neka je ν_1' predak od ν_1 . Operacija $P_A(\nu_2', \nu_1')$ uklanja ν_1' ako je $\phi(G, \pi, \nu_1') < \phi(G, \pi, \nu_2')$, pa po svojstvu $(\phi 1)$ za proizvoljan list ν_2 u $\mathcal{T}(G, \pi, \nu_2')$ važi $\phi(G, \pi, \nu_1) < \phi(G, \pi, \nu_2)$, što je u kontradikciji sa pretpostavkom da je vrednost invarijante maksimalna u ν_1 .

Nijedna operacija P_B ne uklanja nijedan list ν ekvivalentan listu ν_0 (iz drugog dela teoreme). Iz pretpostavke teoreme nijedna operacija $P_B(\nu_1, \nu_2)$ ne uklanja čvor ν_2 takav da je $\phi(G, \pi, [\nu_0]_{|\nu_2|}) = \phi(G, \pi, \nu_2)$, pa samim tim ne uklanja nijedan čvor $[\nu]_s$ za $0 \le s \le |\nu|$.

Nijedna operacija P_C ne uklanja leksikografski najmanji među ekvivalentnim listovima. Štaviše, nijedna operacija P_C ne uklanja leksikografski najmanji list iz $\Omega^{< g_1, \dots, g_k>}_{\nu}$ za bilo koje ν . Neka je bez umanjenja opštosti ν leksikografski najmanji list u svojoj orbiti. Operacija $P_C(\omega, g)$ uklanja čvor ω^g ako je $\omega < \omega^g$, pa je $[\nu]_{|\omega|} \neq \omega^g$ pošto je ili $[\nu]_{|\omega|} < \omega$ ili su ω i $[\nu]_{|\omega|}$ iz različitih orbita.

- 1. Na osnovu dokazanih svojstava operacija P_A i P_C iz stabla se ne uklanja leksikografski najmanji list ν ekvivalentan listu ν^* .
- 2. Ako je $g \in Aut(G, \pi)$, onda na osnovu dokazanih svojstva operacija P_B i P_C važi da iz stabla nije uklonjen leksikografski najmanji list oblika ν_0^{hg} za neko $h \in \langle g_1, \ldots, g_k \rangle$, izborom $\omega = \nu_0^g$. Odatle sledi da je $hg \in \langle \{g_1, \ldots, g_k\} \cup \{g \in Aut(G, \pi) \mid \nu_0^g \text{ nije uklonjen}\} \rangle$, pa je i g element generisane grupe.

Realizacija algoritma

Rezultati testiranja

Zaključak

Bibliografija

- [1] Yuri Gurevich and Saharon Shelah. Expected computation time for Hamiltonian path problem. SIAM Journal on Computing, 16:486–502, 1987.
- [2] Petar Petrović and Mika Mikić. Naučni rad. In Miloje Milojević, editor, Konferencija iz matematike i računarstva, 2015.

Biografija autora

Biografija.