

(51) Internationale Patentklassifikation ⁶ : B60S 1/04	A2	(11) Internationale Veröffentlichungsnummer: WO 99/43520
		(43) Internationales Veröffentlichungsdatum: 2. September 1999 (02.09.99)

(21) Internationales Aktenzeichen: PCT/EP99/01174	(81) Bestimmungsstaaten: BR, JP, KR, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 23. Februar 1999 (23.02.99)	
(30) Prioritätsdaten: 198 08 441.2 27. Februar 1998 (27.02.98) DE	Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SANDER KG GMBH & CO. [DE/DE]; Reiersbacher Strasse 34, D-77871 Renchen-Ulm (DE).	
(72) Erfinder; und	
(75) Erfinder/Anmelder (<i>nur für US</i>): ZEIBIG, Uwe [DE/DE]; Martinstrasse 53, D-77855 Achern (DE).	
(74) Anwälte: SCHMITT, Hans usw.; Dreikönigstrasse 13, D-79102 Freiburg (DE).	

(54) Title: DRIVE DEVICE FOR WINDSHIELD WIPERS

(54) Bezeichnung: ANTRIEBSVORRICHTUNG FÜR SCHEIBENWISCHER

(57) Abstract

The invention relates to a drive device for windshield wipers which generally has a drive motor, a transmission linkage which serves as lever gearing, and the supporting tube (1) on whose both ends a holding device (2) is supported via a fixed connection, such as a clamped connection, a welded connection, a glued connection or the like. Said holding device has a sleeve bearing (4) for a shaft or axle of a windshield wiper arm, said shaft or axle being arranged perpendicular in relation to the longitudinal extension of the supporting tube (1). In addition, the holding device (2) is a deep-drawn one-piece part made of sheet metal in which the sleeve bearing (4) projects above the plane (E) of the deep-drawn sheet metal part on both sides. Specifically, the parts located on the side of the sleeve bearing (4), namely a connecting piece (5) and a fastening link (13) are somewhat distant from the middle area of the sleeve bearing (4) on both sides. To this end, an upward bent section (6) is arranged on the end of the sleeve bearing (4). The upward bent section transitions into a sleeve-shaped outer ring (7) which rotates on the outer side of the sleeve bearing (4). Both the connecting piece (5) and the fastening link (13), insofar as said link is required, are shaped on said outer ring.

(57) Zusammenfassung

Eine Antriebsvorrichtung für Scheibenwischer hat üblicherweise einen Antriebsmotor, ein als Hebelgetriebe dienendes Übertragungsgestänge und das Trägerrohr (1), welches an seinen beiden Enden jeweils über eine feste Verbindung, sei sie eine Klemmverbindung, eine Schweißverbindung, eine Klebeverbindung oder dergleichen, eine Halterung (2) mit Lagerhülse (4) für eine quer zur Längserstreckung des Trägerrohrs (1) angeordnete Welle oder Achse eines Scheibenwischerarmes trägt. Die Halterung (2) ist dabei ein aus Blech tiefgezogenes einstückiges Teil, bei welchem die Lagerhülse (4) über die Ebene (E) des tiefgezogenen Blechteiles beidseits übersteht, das heißt, die seitlich der Lagerhülse (4) befindlichen Teile, nämlich ein Anschlußstück (5) und eine Befestigungslasche (13) stehen etwa vom mittleren Bereich der Lagerhülse (4) beidseits ab. Dies wird dadurch erreicht, daß am Ende der Lagerhülse (4) eine Umstülpung (6) angeordnet ist, die in einen an der Außenseite der Lagerhülse (4) umlaufenden hülsenförmigen Außenring (7) übergeht, an welchen das Anschlußstück (5) einerseits und die Befestigungslasche (13) – sofern sie benötigt wird – andererseits angeformt sind.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Amenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		

Antriebsvorrichtung für Scheibenwischer

Die Erfindung betrifft eine Antriebsvorrichtung für Scheibenwischer, insbesondere Kraftfahrzeug-Scheibenwischer, mit einem
5 Antriebsmotor, einem als Hebelgetriebe dienenden Übertragungs-
gestänge und einem Trägerrohr, welches an seinen beiden Enden
jeweils über eine fixierte Steckverbindung eine Halterung mit
Lager für eine quer zur Längserstreckung des Trägerrohres
angeordnete Welle oder Achse eines Scheibenwischerarmes trägt,
10 wobei die Halterung einerseits eine Lagerhülse zur Aufnahme der
Welle oder Achse und andererseits ein Anschlußstück zum Verbinden
mit dem Trägerrohr aufweist.

Eine derartige Antriebsvorrichtung für zwei Scheibenwischer ist
15 aus DE 195 39 972 A1 bekannt. Die mit dem Trägerrohr über eine
Steckverbindung kuppelbaren Halterungen sind dabei in der Regel
teure Spritzgußteile, die außerdem noch eine Verpressung des
Trägerrohres mit ihrem Steckteil erforderlich machen.

20 Aus DE 44 09 957 A1 ist schon eine Antriebsvorrichtung für
Scheibenwischer bekannt, bei der kein Trägerrohr, sondern ein
balkenförmiger Träger aus einem Blechteil vorgesehen ist, an
dessen Ende die Halterung einstückig oder über eine Laschen-
25 verbindung befestigt sein kann. Die Halterung ist dabei aus Blech
geprägt.

Da ein Träger einer Antriebsvorrichtung für Scheibenwischer vor
allem unter winterlichen Witterungsbedingungen hohe Kräfte
aufnehmen muß, benötigt er eine entsprechende Abmessung, die
30 besonders groß ausfällt, wenn er nicht als Rohr gestaltet ist.
Die aus DE 44 09 957 A1 bekannte Lösung ergibt deshalb auch einen
entsprechend breiten Träger und eine entsprechend breite und
platzaufwendige Anschlußlasche, wenn die Halterung nicht in einem
Stück mit dem Träger gefertigt ist. Aber auch bei einstückiger

Ausbildung ergibt sich ein entsprechend großer Platzbedarf. Darauf hinaus ergibt sich eine entsprechend aufwendige Fertigung.

Aus DE-GM 88 12 550.5 ist eine Trägervorrichtung für Kraftfahrzeugscheibenwischer mit zwei Wischerarmen, also für eine eingangs genannte Antriebsvorrichtung bekannt, bei welcher die Lagerhülsen zur Aufnahme der Wellen oder Achsen als Buchsen ausgebildet sind, die an einem Trägerrohr angeschweißt werden, das im Bereich seiner endseitigen Befestigung gequetscht ist und Öffnungen für Befestigungsschrauben zum Verbinden mit der Karosserie aufweist. In diesem Falle ist das Trägerrohr also im wesentlichen einstückig mit seiner Befestigungsvorrichtung verbunden und in einem zusätzlichen Arbeitsgang müssen die Lagerhülsen angeschweißt werden, was nicht nur eine Berücksichtigung der beim Schweißen auftretenden Wärmespannungen verlangt, sondern auch eine hohe Genauigkeit erfordert, damit diese Lagerhülsen ihre Lagerfunktion ausüben können.

Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Antriebsvorrichtung für Scheibenwischer, zwei Scheibenwischer, der eingangs genannten Art zu schaffen, bei welcher der Vorteil der Verwendung eines Trägerrohres erhalten bleibt und die Verbindung zwischen Trägerrohr und Halterung einfach, platzsparend und vor allem in der Lage ist, hohe Kräfte zu übertragen. Dennoch soll die Herstellung insbesondere auch der Halterung preiswert sein. Gleichzeitig soll die Krafteinleitung von dem Trägerrohr in die Halterung beziehungsweise umgekehrt im Verlauf der Lagerhülse erfolgen.

Zur Lösung dieser Aufgabe ist die eingangs genannte Antriebsvorrichtung für Scheibenwischer dadurch gekennzeichnet, daß die Halterung ein aus Blech tiefgezogenes Teil ist, daß die Lagerhülse über die Ebene des tiefgezogenen Blechteiles beidseits übersteht und an einem Ende eine Umstülpung des sie bildenden Bleches in

dem Sinne aufweist, daß der Endbereich der Lagerhülse außenseitig von einem einstückig mit ihr verbundenen hülsenförmigen Außenring umschlossen ist und der Übergang von der Lagerhülse zu diesem Außenring im Längsschnitt eine Umbiegung um etwa 180° ist, und
5 daß das Anschlußstück mit dem durch die Umstülpung gebildeten Außenring einstückig verbunden und als mit seiner Mittelachse quer zum Verlauf und zur Achse der Lagerhülse angeordneter Kupplungsstutzen zum Zusammenstecken und Verbinden mit dem Trägerrohr ausgebildet ist.

10

Es wird also eine preiswert aus Blech im Tiefziehverfahren herstellbare Halterung vorgesehen, bei welcher durch eine Umstülpung nicht nur eine große Stabilität der Lagerhülse sondern auch die Verbindung mit dem Anschlußstück in einen Bereich relativ 15 zu der Lagerhülse gelangt, der zwischen deren Enden, zum Beispiel etwa im mittleren Bereich der Gesamtlänge dieser Lagerhülse liegen kann. Somit können die von dem Trägerrohr ausgehenden oder aufzunehmenden Kräfte über den mittleren Bereich der Lagerhülse und damit auch der von dieser gehaltenen Welle oder Achse 20 eingeleitet werden. Gleichzeitig ergibt sich eine, wie bereits erwähnt, preiswerte, zusätzlich wenig platzaufwendige Kupplung mit dem Trägerrohr, die weiterhin die Verwendung eines derartigen Trägerrohrs beliebiger Form und Herstellung ermöglicht, so daß dieses eine hohe Steifigkeit mit einem möglichst geringen 25 Platzaufwand verbinden kann.

Besonders zweckmäßig ist es, wenn der über die Umstülpung mit der Lagerhülse verbundene Außenring eine axiale Erstreckung hat, durch die der Kupplungsstutzen etwa im mittleren Bereich der Lagerhülse quer zu dieser abstehend angeordnet ist. Zwar ist in 30 jedem Falle durch die Umstülpung der Kupplungsstutzen im Bereich zwischen den Enden der Lagerhülse anbringbar, jedoch ist es besonders günstig, wenn dies im mittleren Bereich der Lagerhülse geschieht, wodurch die Kräfte zwischen Trägerrohr und Lagerhülse

bzw. von dieser aufgenommener Welle oder Achse gut eingeleitet werden können, ohne erhebliche Biege- oder Torsionskräfte zu verursachen.

5 Der Kupplungsstutzen kann aus wenigstens einer Blechzunge gebogen sein, insbesondere aus zwei vorzugsweise gleich großen, mit ihren Enden in Gebrauchsstellung einander zugewandten gebogenen Halbschalen bestehen, wobei am Ende der gebogenen Blechzunge(n) ein etwa parallel zur Mittelachse des Kupplungsstutzen verlaufender Schlitz offengelassen sein kann. Es könnte also entweder eine relativ große Blechzunge weitgehend mit einem etwa kreisförmigen Querschnitt gebogen werden, wobei dann der offene Schlitz nahe ihrer Ausgangsstellung zu liegen käme, oder bevorzugt könnten zwei etwa gleich große Blechzungen zu Halbschalen gebogen werden, so daß dann der zwischen ihnen freibleibende Schlitz oder die dort entstehende Fuge der Ausgangsstelle dieser beiden Blechzungen etwa gegenüberliegt. Der Schlitz hat dabei den Vorteil, diesem Kupplungsstutzen eine gewisse radiale Flexibilität und Elastizität zu geben, die beim Zusammenstecken mit dem Trägerrohr zu einer reibschlüssigen Verbindung oder wenigstens zu einer reibschlüssigen Vormontagestellung führt, wonach dann anschließend noch ein Verschweißen oder auch gleichzeitig mit dem Aufstecken ein Verkleben oder dergleichen gegenseitige Befestigung erfolgen kann.

25 Besonders günstig ist es, wenn der an dem Kupplungsstutzen offene Schlitz auf der der Umstülpung fernen Seite des Kupplungsstutzens insbesondere achsparallel verläuft und vorzugsweise beim Einsticken in das Trägerrohr eine im Inneren dieses Trägerrohres befindliche innenliegende Schweißnaht aufnimmt. Derartige Trägerrohre sind oft geschweißt, wobei dann im Inneren dieses Rohres die Schweißnaht stehenbleibt. Bei entsprechender Gestaltung der Abmessungen der Blechzungen zur Bildung des Kupplungsstutzens und in einem solchen Falle, in welchem dieser Kupplungsstutzen

in das Innere des Trägerrohres eingesteckt wird, kann die bei der Fertigung dieses Kupplungsstutzens von selbst entstehende Lücke zwischen deren beiden einander zugewandten Enden also in sinnvoller Weise dazu ausgenutzt werden, das Zusammenstecken trotz 5 der innenliegenden Schweißnaht in dem Trägerrohr zu ermöglichen. Die Schlitzweite muß nur so gewählt werden, daß auch bei einer elastischen Zusammendrückung des Kupplungsstutzens beim Einführen in das Trägerrohr der Abstand groß genug bleibt, um die Schweißnaht aufnehmen zu können. Dabei ergibt sich in vorteilhafter 10 Weise auch gleichzeitig eine drehfeste Kupplung.

Die den Kupplungsstutzen bildenden Blechzungen können sich im Bereich der Lagerhülse als U-förmige Schenkel fortsetzen, die einerseits mit der Umstülpung bzw. dem Außenring verbunden sind 15 und insbesondere andererseits an der Lagerhülse außenseitig mit Abstand vorbeiführen und eine Befestigungsstelle bilden oder eine Befestigungslasche einstückig zwischen sich aufweisen. In vielen Fällen hat die mit dem Trägerrohr zu verbindende jeweilige Halterung eine solche Befestigungsstelle oder Befestigungslasche, 20 womit die gesamte Antriebsvorrichtung verankert werden kann. Diese kann also in zweckmäßiger Weise ebenfalls in einem Stück aus Blech geformt werden, wobei die den Kupplungsstutzen bildenden Blechzungen in zweckmäßiger Weise als U-Schenkel bis zu dieser Befestigungslasche geführt sind und diese und damit die gesamte 25 Halterung aussteifen, so daß entsprechend hohe Befestigungskräfte übertragen werden können.

Die Steifigkeit der Halterung kann dabei auch im Bereich einer Befestigungslasche dadurch gesteigert sein, daß die die Befestigungslasche umgrenzenden U-Schenkel an deren Ende einstückig zusammengeführt und miteinander verbunden sind, also ineinanderübergehen und sich ununterbrochen fortsetzen. 30

Für eine möglichst direkt Übertragung von Kräften zwischen

Trägerrohr und mittlerem Bereich der Lagerhülse ist es günstig, wenn die Umstülpung mit einem derart engen Biegeradius geformt ist, daß der außenseitig an der Lagerhülse befindliche Außenring von der Lagerhülse keinen oder nur einen geringen Abstand hat.

- 5 Bei einem relativ großen Abstand einer Umstülpung könnten sich bei in Richtung des Trägerrohres und quer zu der Lagerhülse auftretenden Kräften zunächst elastische Verformungen ergeben, während durch die vorerwähnte Maßnahme ein solches elastisches Halten des Anschlusses des Trägerrohres an die Halterung vermieden werden kann.

- 10 Für eine direkte Krafteinleitung besonders günstig ist es, wenn der Außenring die Lagerhülse zumindest an seinem der Umstülpung abgewandten Endbereich berührt, gegebenenfalls dort mit der Lagerhülse fest verbunden ist und/oder wenigstens eine gegen die Lagerhülse gerichtete und an ihr anliegende Sicke aufweist, die dabei am gesamten Umfang umlaufen könnte, in erster Linie aber auf der dem Trägerrohr zugewandten Seite vorhanden sein sollte.

- 15 20 Da der Kupplungsstutzen an dem von der Umstülpung abgewandten Rand des Außenringes angeschlossen ist, werden auf diese Weise von ihm ausgehende oder auf ihn zu übertragende Kräfte direkt an dieser Berührungsstelle aufgenommen oder übertragen, so daß kein Umweg des Kraftflusses über die Umstülpung selbst erfolgt.
- 25 Entsprechend stabil und biegesteif ist die Halterung und damit die gesamte Tragkonstruktion dieser Antriebsvorrichtung mit ihrem Trägerrohr und den Halterungen sowie den in der Regel daran befindlichen Befestigungslaschen.

- 30 Eine konstruktiv und herstellungstechnisch günstige und gleichzeitig steife Ausbildung der Halterung ergibt sich, wenn sich an den Außenring an seinem der Umstülpung abgewandten Rand ein etwa napfförmiger Anschlußübergang mit einem Abstand zu der Lagerhülse einstückig anschließt, der sich in den Kupplungsstutzen

und/oder die Befestigungslasche fortsetzt. Dieser Anschlußübergang ermöglicht auch das Anordnen und Anbringen der schon erwähnten U-Schenkel, durch welche die aus Blech gefertige Halterung und der Kupplungsstutzen ausgesteift werden.

5

Der durch die Umstülpung an der Lagerhülse gebildete Außenring kann als Einstockteil zum Einsticken in eine Lageröffnung einer Karosserie dienen und außenseitig insbesondere zylindrisch sein. Somit ermöglicht die Umstülpung die Anbringung eines Steckbereiches an der Lagerhülse und erlaubt es, die gesamte Antriebsvorrichtung noch besser an der Karosserie eines Kraftfahrzeuges zu lagern, zu halten und auch zu positionieren, wobei durch diese Maßnahme die gesamte Antriebsvorrichtung auch näher an die mit den Scheibenwischern zu bearbeitende Scheibe herangebracht werden kann, nämlich um die axiale Länge des umgestülpten, den Steckbereich bildenden Außenring. Dies hat gleichzeitig den Vorteil, daß in dem Bereich unterhalb der mit den Scheibenwischern zu bestückenden Scheibe weniger Platz vor dieser Scheibe benötigt wird, wo häufig noch Lüftungseintritte oder dergleichen untergebracht werden müssen. Dabei hat die erfindungsgemäße Umstülpung den erheblichen Vorteil, daß sie eine Anpassung an die Platzverhältnisse bei unterschiedlichen Kraftfahrzeugtypen dadurch ermöglicht, daß sie größer oder kleiner, also mit einer größeren oder kleineren axialen Abmessung des Außenringes gewählt und gefertigt werden kann, um auf diese Weise den Abstand der Antriebsvorrichtung vor der jeweiligen Scheibe vorzuwählen oder vorherzubestimmen. Dennoch wird die Welle oder Achse für die Wischerarme zumindest über den größten Teil ihrer Länge von der aus Blech bestehenden Lagerhülse umfaßt, so daß auch die Lagerstellen innerhalb der Lagerhülse einen größtmöglichen Abstand zueinander haben können und ein großer Überstand der Welle oder Achse vermieden werden kann.

Der der Umstülpung abgewandte, radial nach außen umgebogene

Anschlußübergang des Außenringes kann einen axialen Anschlag beim Einsetzen in eine Karosserieöffnung oder dergleichen bilden und die Einstechtiefe begrenzen. Dieser insgesamt etwa napfförmige Anschlußübergang stellt somit nicht nur die Verbindung zwischen Außenring und Anschlußstück oder Kupplungsstutzeneinerseits sowie Befestigungslasche andererseits dar, sondern hat eine zusätzliche Funktion als die Einstechtiefe in eine Karosserie begrenzender Anschlag.

Der an dem Außenring einstückig angreifende oder angeschlossene Anschlag kann dabei über eine ringförmig angeordnete Biegung um etwa 90° mit dem Außenring einstückig verbunden sein und dieser Anschlag kann seinerseits über eine weitere Biegung um etwa 90° - gegebenenfalls auch insbesondere weniger - in den napfförmigen Anschlußübergang zur Halterung des Kupplungsstutzens und/oder der Befestigungslasche fortgesetzt sein. Dies führt insgesamt zu einer mit einem Trägerrohr kuppelbaren Halterung, die einstückig aus Blech besteht, dabei aber eine hohe Stabilität und Steifigkeit ergibt und eine platzsparende Anordnung und Befestigung erlaubt, so daß bei der Steifigkeit und der Festigkeit keinerlei Abstriche gemacht werden müssen, trotzdem aber dieses Blechteil preiswert gefertigt und einfach montiert werden kann.

Nachstehend ist ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher beschrieben. Es zeigt in schematisierter Darstellung:

Fig.1 einen Längsschnitt einer Halterung, die mittels eines einen Kupplungsstutzen bildenden Formanschlußstückes mit einem Trägerrohr einer Antriebsvorrichtung für Scheibenwischer verbunden ist, wobei über eine Umstülzung dieser Kupplungsstutzen etwa auf der Höhe des mittleren Bereiches einer Lagerhülse zur Aufnahme

einer Welle oder Achse eines Scheibenwischerarmes angeordnet ist,

Fig.2 eine Draufsicht der Halterung gemäß Fig.1 ohne das
5 Trägerrohr und ohne die sonstigen zu der Antriebsvorrichtung für Scheibenwischer gehörenden Teile sowie

Fig.3 einen Querschnitt der Halterung im Bereich der Lagerhülse gemäß der Schnittlinie III-III in Fig.1.
10

Von einer Antriebsvorrichtung für Scheibenwischer, insbesondere Kraftfahrzeug-Scheibenwischer ist in Fig.1 nur ein Ende eines Trägerrohres 1 und vor allem eine damit kuppelbare Halterung 2 dargestellt.

15 Nicht näher dargestellt sind der Antriebsmotor, ein als Hebelgetriebe dienendes Übertragungsgestänge und das andere Ende des Trägerrohres 1 mit einer spiegelsymmetrisch angeordneten Halterung 2, weil es sich dabei um übliche und bekannte Teile
20 und Anordnungen handelt.

Die Halterung 2 ist mit dem Trägerrohr 1 über eine fixierte Steckverbindung 3 verbunden und weist eine Lagerhülse 4 für eine nicht näher dargestellte übliche, quer zur Längserstreckung des Trägerrohres 1 angeordnete Welle oder Achse eines Scheibenwischerarmes auf. Außerdem weist die Halterung 2 ein noch näher zu beschreibendes Anschlußstück 5 zum Verbinden mit dem Trägerrohr 1 auf, womit die Steckverbindung 3 hergestellt werden kann.
25

30 Aus den Figuren und insbesondere Fig.1 und 3 ergibt sich deutlich, daß die Halterung 2 ein aus Blech tiefgezogenes Teil ist, also aus preiswertem Werkstoff hergestellt werden kann, trotzdem aber eine hohe Stabilität, Steifigkeit und auch Präzision hat. Dies wird vor allem auch dadurch erreicht, daß die Lagerhülse 4 über

10

die in Fig.1 angedeutete Ebene E des tiefgezogenen Blechteiles, also etwa die Ausgangslage des noch nicht tiefgezogenen Bleches, beidseits übersteht und an einem Ende eine Umstülpung 6 des sie bildenden Bleches in dem Sinne aufweist, daß dieser Endbereich der Lagerhülse 4 außenseitig von einem einstückig mit ihr verbundenen, ebenfalls hülsenförmigen Außenring 7 umschlossen ist. Man erkennt dies deutlich sowohl in Fig.1 als auch in Fig.3, wobei der besseren Deutlichkeit wegen zwischen der Lagerhülse 4 und diesem Außenring 7 ein Spalt freigelassen ist, der aber in Wirklichkeit ganz oder mindestens bereichsweise vermieden wird, um die Lagerhülse 4 in diesem Bereich doppelwandig zu machen und beim Auftreten von Querkräften elastische Relativbewegungen zu vermeiden.

Der Übergang von der Lagerhülse 4 zu dem Außenring 7 ist im Längsschnitt eine Umbiegung um etwa 180°. Das Anschlußstück 5 ist mit diesem durch die Umstülpung 6 gebildeten Außenring 7 gemäß Fig.1 und 2 einstückig verbunden und als mit seiner Mittelachse 8 quer zum Verlauf und zur Achse 9 der Lagerhülse 4 angeordneter Kupplungstutzen zum Zusammenstecken und Verbinden mit dem Trägerrohr 1 ausgebildet, wobei von dem Trägerrohr 1 in Fig.1 der Endbereich mit unterbrochenen Linien angedeutet ist.

Der durch die Umstülpung 6 mit der Lagerhülse 4 verbundene Außenring 7 hat dabei eine axiale Erstreckung oder Abmessung, durch die der von diesem Außenring 7 ausgehende Kupplungsstutzen etwa im mittleren Bereich der Lagerhülse 4 quer zu dieser abstehend angeordnet ist. Die Mittelachse 8 des Kupplungstutzens oder Anschlußstückes 5 schneidet dabei die Mittelachse 9 der Lagerhülse 4 im Ausführungsbeispiel etwas oberhalb der axialen Mitte dieser Lagerhülse 4. Je nach Wahl der axialen Abmessung des Außenringes 7 kann dies variiert werden.

Das Anschlußstück 5, welches den Kupplungsstutzen bildet, ist

im Ausführungsbeispiel aus zwei Blechzungen 10 gebogen, die dabei gleich groß sind und somit in Gebrauchsstellung einander zugewandte gebogene Halbschalen bilden, wobei am Ende dieser gebogenen Blechzungen 10 ein parallel zur Mittelachse 8 verlaufender Schlitz 11 offengelassen ist, der dem Anschlußstück 5 eine gewisse radiale Nachgiebigkeit - nach innen und nach außen - verleiht, so daß das Anschlußstück 5 in das Innere eines Trägerrohres 1 eingesteckt oder über das äußere eines solchen Trägerrohres 1 aufgesteckt werden könnte. Anhand der Fig.1 erkennt man, daß der an dem Kupplungsstutzen offene Schlitz 11 auf der Umstülpung 6 fernen oder abgewandten Seite des Kupplungsstückes achsparallel verläuft und bei einem Einsticken in das Trägerrohr 1 eine im Inneren dieses Trägerrohres 1 befindliche innenliegende Schweißnaht aufnehmen könnte. Ebenso könnte er auch eine außenliegende Schweißnaht in sich aufnehmen, wenn er auf das äußere des Trägerrohres 1 aufgesteckt würde und dieses eine solche außenliegende Schweißnaht hätte. Es wäre also unter Umständen möglich, aufgrund der Gestaltung der Halterung 2 und ihres Anschlußstückes 5 bei einem Trägerrohr 1 auf das Abschleifen einer außenliegenden Schweißnaht zu verzichten.

Bei gleichzeitiger Betrachtung aller drei Figuren erkennt man, daß die den Kupplungsstutzen bildenden Blechzungen 10 sich im Bereich der Lagerhülse 4 als U-Schenkel 12 fortsetzen, die einerseits mit der Umstülpung 6 und dem Außenring 7 verbunden sind und andererseits gemäß Fig.1 und 2 an der Lagerhülse 4 außenseitig und mit Abstand vorbeiführen und auf der dem Anschlußstück 5 abgewandten Seite der Lagerhülse 4 eine Befestigungsstelle bilden, wobei sie im Ausführungsbeispiel zwischen sich einstückig eine Befestigungslasche 13 aufweisen, die eine entsprechende Befestigungslochung 14 enthält. Die U-Schenkel 12 umgrenzen diese Befestigungslasche 13 und sind einstückig zusammengeführt und miteinander verbunden, gehen also ineinander über. Somit ist an der Befestigungslasche 13 ein

umlaufender hochstehender Schenkel oder Steg vorhanden, der diese zur Übertragung von Haltekräften wichtige Befestigungslasche 13 austeift und stabilisiert. Dabei tragen diese Schenkel 12 durch ihre einstückige Fortsetzung bis in das Anschlußstück 5 auch dazu bei, den Kraftfluß von dem Trägerrohr 1 zu der Befestigungslasche 13 und umgekehrt zu verbessern.

Die schon erwähnte und erläuterte Umstülpung 6 ist mit einem derart engen Biegeradius geformt, daß der außenseitig an der Lagerhülse 4 befindliche Außenring 7 von der Lagerhülse 4 entgegen der verdeutlichenden Darstellung in den Fig.1 und 3 keinen oder einen praktisch nicht merkbar geringen Abstand hat. Bei einem Kraftfluß von der Befestigungslasche 13 zu dem Anschlußstück 5 und umgekehrt wird auf diese Weise ein Umweg über den Außenring 7 und die Umstülpung 6 vermieden. Gegebenenfalls genügt es dabei, wenn der Außenring 7 die Lagerhülse 4 an seinem der Umstülpung 6 abgewandten Endbereich berührt oder sogar eventuell dort mit der Lagerhülse 4, zum Beispiel durch einen Schweißpunkt oder dergleichen, verbunden ist, wobei dies dadurch noch gefördert und unterstützt sein könnte, daß eine im Ausführungsbeispiel nicht vorgesehene, gegen die Lagerhülse 4 gerichtete und an ihr anliegende Sicke in den Außenring 7 eingeformt ist, die bevorzugt an seinem gesamten Umfang umlaufen könnte.

Vor allem in Fig.1 erkennt man, daß sich an den Außenring 7 an seinem der Umstülpung abgewandten Rand oder Ende ein etwa napfförmiger Anschlußübergang 15 mit einem Abstand zu der Lagerhülse 4 einstückig anschließt, der sich in den Kupplungsstützen bzw. das Anschlußstück 5 einerseits und die Befestigungslasche 13 andererseits fortsetzt und darüber hinaus auch zumindest an einem Teilbereich seines Umfanges die Stege oder U-Schenkel 12 trägt. Der durch die Umstülpung 6 an der Lagerhülse 4 gebildete Außenring 7 kann nämlich als Einstckteil zum Einsticken in eine Lageröffnung einer Karosserie eines Fahrzeuges dienen und ist

13

außenseitig zylindrisch. Der der Umstülpung 6 abgewandte, radial nach außen umgebogene Anschlußübergang 15 bildet dabei einen axialen Anschlag 16, der beim Einsetzen in eine Karosserieöffnung oder dergleichen die Einstechtiefe der Halterung 2 begrenzt. Somit erhält dieser Anschlußübergang 15 eine mehrfach Funktion, weil er einerseits die Verbindung der Lagerhülse 4 - über deren Außenring 7 - mit dem Anschlußstück 5 und der Befestigungslasche 13 herstellt und andererseits die Einstechtiefe beim Einsetzen in eine Karosserieöffnung begrenzt.

10

Der an dem Außenring 6 einstückig angreifende Anschlag 16 ist dabei über eine ringförmig umlaufende Biegung 17 um etwa 90° mit dem Außenring 7 einstückig verbunden und der Anschlag 16 ist seinerseits über eine entgegengesetzte Biegung 18 wiederum um etwa 90° in den napfförmigen Anschlußübergang 15 zur Halterung des Kupplungsstutzens und der Befestigungslasche 13 fortgesetzt, wobei auch der Übergang von diesem Anschlußübergang 15 zu diesen weiteren Teilen eine entsprechende Biegung 19 ist. Diese Formung des die Halterung 2 bildenden Blechteiles erkennt man besonders gut in Fig.1.

15

Insgesamt ergibt sich eine Halterung 2 für eine Antriebsvorrichtung für Scheibenwischer, die aus einem einzigen Blechteil gefertigt sein kann und dennoch eine hohe Stabilität und einen günstigen Kraftfluß aufweist.

20

Eine Antriebsvorrichtung für Scheibenwischer hat üblicherweise einen Antriebsmotor, ein als Hebelgetriebe dienendes Übertragungsgestänge und das Trägerrohr 1, welches an seinen beiden Enden jeweils über eine feste Verbindung, sei sie eine Klemmverbindung, eine Schweißverbindung, eine Klebeverbindung oder dergleichen, eine Halterung 2 mit Lagerhülse 4 für eine quer zur Längserstreckung des Trägerrohres 1 angeordnete Welle oder Achse eines

30

14

Scheibenwischerarmes trägt. Die Halterung 2 ist dabei ein aus Blech tiefgezogenes einstückiges Teil, bei welchem die Lagerhülse 4 über die Ebene E des tiefgezogenen Blechteiles beidseits übersteht, das heißt, die seitlich der Lagerhülse 4 befindlichen Teile, nämlich ein Anschlußstück 5 und eine Befestigungslasche 13 stehen etwa vom mittleren Bereich der Lagerhülse 4 beidseits ab. Dies wird dadurch erreicht, daß am Ende der Lagerhülse 4 eine Umstülpung 6 angeordnet ist, die in einen an der Außenseite der Lagerhülse 4 umlaufenden hülsenförmigen Außenring 7 übergeht, an welchen das Anschlußstück 5 einerseits und die Befestigungs- lasche 13 - sofern sie benötigt wird - andererseits angeformt sind.

15

A n s p r ü c h e

1. Antriebsvorrichtung für Scheibenwischer, insbesondere Kraftfahrzeug-Scheibenwischer, mit einem Antriebsmotor, einem als Hebelgetriebe dienenden Übertragungsgestänge und einem Trägerrohr (1), welches an seinen beiden Enden jeweils über eine fixierte Steckverbindung (3) eine Halterung (2) mit Lagerhülse (4) für eine quer zur Längserstreckung des Trägerrohrs (1) angeordnete Welle oder Achse eines Scheibenwischerarmes trägt, wobei die Halterung (2) einerseits die Lagerhülse (4) zur Aufnahme der Welle oder Achse und andererseits ein Anschlußstück (5) zum Verbinden mit dem Trägerrohr (1) aufweist, **dadurch gekennzeichnet**, daß die Halterung (1) ein aus Blech tiefgezogenes Teil ist, daß die Lagerhülse (4) über die Ebene (E) des tiefgezogenen Blechteiles beidseits übersteht und an einem Ende eine Umstülpung (6) des sie bildenden Bleches in dem Sinne aufweist, daß der Endbereich der Lagerhülse (4) außenseitig von einem einstückig mit ihr verbundenen hülsenförmigen Außenring (7) umschlossen ist und der Übergang von der Lagerhülse (4) zu diesem Außenring (7) im Längsschnitt eine Umbiegung um etwa 180° ist und daß das Anschlußstück (5) mit dem durch die Umstülpung (6) gebildeten Außenring (7) einstückig verbunden und als mit seiner Mittelachse (8) quer zum Verlauf und zur Achse (9) der Lagerhülse (4) angeordneter Kupplungsstutzen zum Zusammenstecken und Verbinden mit dem Trägerrohr (1) ausgebildet ist.
2. Antriebsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der über die Umstülpung (6) mit der Lagerhülse (4) verbundene Außenring (7) eine axiale Erstreckung hat, durch die der Kupplungsstutzen etwa im mittleren Bereich der Lagerhülse (4) quer zu dieser abstehend angeordnet ist.

3. Antriebsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kupplungsstutzen aus wenigstens einer Blechzunge (10) gebogen ist, insbesondere aus zwei vorzugsweise gleich großen, mit ihren Enden in Gebrauchsstellungeinanderzugewandten gebogenen Halbschalen besteht, wobei am Ende der gebogenen Blechzunge(n) (10) ein etwa parallel zur Mittelachse (8) des Kupplungstutzens verlaufender Schlitz (11) offen gelassen ist.
5
- 10 4. Antriebsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß der an dem Kupplungstutzen offene Schlitz (11) auf der Umstülpung (6) fernen Seite des Kupplungsstutzen insbesondere achsparallel verläuft und vorzugsweise beim Einsticken in das Trägerrohr (1) eine im Inneren dieses Trägerrohrs (1) befindliche innenliegende Schweißnaht aufnimmt.
15
- 20 5. Antriebsvorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die den Kupplungsstutzen bildenden Blechzungen (10) sich im Bereich der Lagerhülse als U-Schenkel (12) fortsetzen, die einerseits mit der Umstülpung bzw. dem Außenring verbunden sind und insbesondere andererseits an der Lagerhülse (4) außenseitig mit Abstand vorbeiführen und eine Befestigungsstelle bilden oder eine Befestigungslasche (13) einstückig zwischen sich aufweisen.
25
- 30 6. Antriebsvorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die die Befestigungslasche (13) umgrenzenden U-Schenkel (12) an deren Ende einstückig zusammengeführt und miteinander verbunden sind.
7. Antriebsvorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Umstülpung (6) mit einem derart engen Biegeradius geformt ist, daß der außenseitig an der

Lagerhülse (4) befindliche Außenring (7) von der Lagerhülse (4) keinen oder nur einen geringen Abstand hat.

8. Antriebsvorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Außenring (7) die Lagerhülse (4) zumindest an seinem der Umstülpung (6) abgewandten Endbereich berührt, ggf. dort mit der Lagerhülse (4) fest verbunden ist und/oder wenigstens eine gegen die Lagerhülse (4) gerichtete und an ihr anliegende Sicke aufweist.

10

9. Antriebsvorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sich an den Außenring (7) an seinem der Umstülpung (6) abgewandten Rand ein etwa napfförmiger Anschlußübergang (15) Ring mit einem Abstand zu der Lagerhülse (4) einstückig anschließt, der sich in den Kupplungstutzen und/oder die Befestigungslasche (13) fortsetzt.

15

10. Antriebsvorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der durch die Umstülpung (6) an der Lagerhülse (4) gebildete Außenring (7) als Einstektteil zum Einsticken in eine Lageröffnung einer Karosserie dient und außenseitig insbesondere zylindrisch ist.

20

25

11. Antriebsvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der der Umstülpung (6) abgewandte, radial nach außen umgebogene Anschlußübergang (15) des Außenringes einen axialen Anschlag (16) beim Einsetzen in eine Karosserieöffnung oder dergleichen bildet und die Einstekttiefe begrenzt.

30

12. Antriebsvorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der an dem Außenring (6) einstückig angreifende Anschlag (16) über eine ringförmig

angeordnete Biegung (17) um etwa 90° mit dem Außenring (7) einstückig verbunden ist und dieser Anschlag (16) seinerseits über eine Biegung (18) um etwa 90° in den napfförmigen Anschlußübergang (15) zur Halterung des Kupplungstutzens und/oder der Befestigungslasche (13) fortgesetzt ist.
5

PUB-NO: WO009943520A2
DOCUMENT-IDENTIFIER: WO 9943520 A2
TITLE: DRIVE DEVICE FOR WINDSHIELD WIPERS
PUBN-DATE: September 2, 1999

INVENTOR-INFORMATION:

NAME	COUNTRY
ZEIBIG, UWE	DE

ASSIGNEE-INFORMATION:

NAME	COUNTRY
SANDER KG GMBH & CO	DE
ZEIBIG UWE	DE

APPL-NO: EP09901174

APPL-DATE: February 23, 1999

PRIORITY-DATA: DE19808441A (February 27, 1998)

INT-CL (IPC): B60S001/04

EUR-CL (EPC): B60S001/04 , B60S001/34

ABSTRACT:

CHG DATE=19991002 STATUS=O>The invention relates to a drive device for windshield wipers which generally has a drive motor, a transmission

linkage which serves as lever gearing, and the supporting tube (1) on whose both ends a holding device (2) is supported via a fixed connection, such as a clamped connection, a welded connection, a glued connection or the like. Said holding device has a sleeve bearing (4) for a shaft or axle of a windshield wiper arm, said shaft or axle being arranged perpendicular in relation to the longitudinal extension of the supporting tube (1). In addition, the holding device (2) is a deep-drawn one-piece part made of sheet metal in which the sleeve bearing (4) projects above the plane (E) of the deep-drawn sheet metal part on both sides. Specifically, the parts located on the side of the sleeve bearing (4), namely a connecting piece (5) and a fastening link (13) are somewhat distant from the middle area of the sleeve bearing (4) on both sides. To this end, an upward bent section (6) is arranged on the end of the sleeve bearing (4), The upward bent section transitions into a sleeve-shaped outer ring (7) which rotates on the outer side of the sleeve bearing (4). Both the connecting piece (5) and the fastening link (13), insofar as said link is required, are shaped on said outer ring.