Hénon-like Maps and Renormalisation

Peter Hazard

Instituto do Mathematics e Éstatistica, Universidade de São Paulo

February 2010

We generalise the period doubling operator on the space of Hénon-like maps introduced by de Carvalho, Lyubich and Martens to those of arbitrary stationary combinatorics.

Hénon-like Maps

Let $\mathcal{H}_{\Omega}(\bar{\varepsilon})$ denote the space Hénon-like maps $F \in C^{\omega}(B, B)$ satisfying the following properties:

- F is an orientation preserving diffeomorphism onto its image;
- F is expressible as

$$F(x,y) = (f(x) - \varepsilon(x,y),x) \tag{1}$$

- $\blacksquare f: J \rightarrow J$ is a real-analytic unimodal map
- lacksquare: $B \to \mathbb{R}$ is real-analytic and non-zero
- $\blacksquare f$ and ϵ have holomorphic extensions to Ω_X and Ω respectively;
- $\|\varepsilon\|_{\Omega} \leq \bar{\varepsilon}$. We call ε an $\bar{\varepsilon}$ -thickening.

Let \mathcal{U} denote the space of unimodal maps on J. Let v be a unimodal permutation on $W = \{0, 1, \dots, p-1\}$.

Then there exists a subspace $\mathcal{U}_v \subset \mathcal{U}$ on which the *renormalisation operator* of type v, $\mathcal{R}_{\mathcal{U}} : \mathcal{U}_v \to \mathcal{U}$, is defined.

Theorem

For each v there exist $C, \bar{\varepsilon}_0 > 0$ and a polydisk $\Omega \subset \mathbb{C}$, such that: For any $\bar{\varepsilon} \in (0, \bar{\varepsilon}_0)$ there is a subspace $\mathcal{H}_{\Omega,v}(\bar{\varepsilon})$ of $\mathcal{H}_{\Omega}(\bar{\varepsilon})$ which contains \mathcal{U}_v and an operator

$$\mathcal{R}\colon \mathcal{H}_{\Omega,\upsilon}(ar{arepsilon}) o \mathcal{H}_{\Omega}(oldsymbol{C}ar{arepsilon}^{oldsymbol{p}})\subset \mathcal{H}_{\Omega}(ar{arepsilon})$$

which is a continuous extension of $\mathcal{R}_{\mathcal{U}}$.

The Renormalisation Operator

More precisely, given $F(x,y) = (\phi(x,y),x) \in \mathcal{H}_{\Omega}(\bar{\varepsilon})$ there is a map H(x,y), called the *horizontal diffeomorphism*, defined on a subdomain of Ω . Then F is *pre-renormalisable* if $G = HF^pH^{-1}$ has an invariant square symmetric about the diagonal $\{x = y\}$. Define the *renormalisation of F* by

$$\mathcal{R}F = IGI^{-1} = IHF^{p}H^{-1}I^{-1} = \Psi^{-1}F^{p}\Psi$$
 (2)

where I is a suitable affine map and $\Psi = H^{-1} \circ I^{-1}$ is a non-affine map called the *Scope Map*.

It is know that the unimodal renormalisation operator $\mathcal{R}_{\mathcal{U}}$ has a unique hyperbolic fixed point f_* with codim.-one stable manifold.

The Renormalisation Operator ctd.

Figure: A renormalisable Hénon-like map whose combinatorial type is period tripling. Here the dashed lines represent the image of the square *B* under the pre-renormalisation *G*.

Theorem

For each v there exists a $\bar{\varepsilon}_0 > 0$ such that for all $0 < \bar{\varepsilon} < \bar{\varepsilon}_0$

- the operator $\mathcal{R}:\mathcal{H}_{\Omega,\upsilon}(\bar{\varepsilon})\to\mathcal{H}_{\Omega}(\bar{\varepsilon})$ has a unique fixed point $F_*=(f_*,\pi_{\mathsf{x}})$ where f_* is the fixed point of $\mathcal{R}_{\mathcal{U}}$;
- $\blacksquare F_*$ is hyperbolic and has a codimension-one stable manifold.

Infinitely Renormalisable Maps

Let $\mathcal{I}_{\Omega,\upsilon}(\bar{\varepsilon})\subset\mathcal{H}_{\Omega}(\bar{\varepsilon})$ denote the space of infinitely renormalisable maps. Let

- $\blacksquare W^n$ denote the set of words **w** of length n,
- $\blacksquare W^*$ denote the set of words **w** of arbitrary finite length,
- $\blacksquare \overline{W}$ denote the set of words **w** of infinite length.

We endow both W^* and \bar{W} with the structure of a p-adic adding machine, denoted by $\mathbf{w} \mapsto \mathbf{1} + \mathbf{w}$.

Figure: Scope maps for a period-3 infinitely renormalisable Hénon-like map.

For $F \in \mathcal{I}_{\Omega}(\bar{\varepsilon})$ let $F_n = \mathcal{R}^n F$. Let $\Psi_n = \Psi(F_n)$ be called the *Scope Map of height n*. For $w \in W$, $\mathbf{w} = w_0 \dots w_{m-1} \in W^m$ let

- $\blacksquare \Psi_n^w = F_n^{\circ w} \circ \Psi_n;$
- $\Psi_n^{\mathbf{w}} = \Psi_n^{w_0} \circ \cdots \circ \Psi_{n+m}^{w_{m-1}};$
- $\blacksquare B_n^{\mathbf{w}} = \Psi_n^{\mathbf{w}}(B).$

The maps $\Psi_n^{\mathbf{w}}$ are called the **w**-Scope Maps at height n. The $B_n^{\mathbf{w}}$ are called the *canonical boxes of height* n and the collection \underline{B} of all canonical boxes is called the *canonical boxing*.

Universality, Non-Rigidity and Unbounded Geometry

Theorem (Invariant Cantor Set)

Let $F \in \mathcal{I}_{\Omega}(\bar{\varepsilon})$. Then there exists an F-invariant Cantor set $\mathcal{O} \subset B$ upon which F acts as the p-adic adding machine. Moreover, there exists a unique F-invariant measure μ whose support is the Cantor set \mathcal{O} .

For an $F \in \mathcal{I}_{\Omega,\upsilon}(\varepsilon)$ we now define the *Average Jacobian* to be

$$b(F) = \exp \int \log \operatorname{Jac}_{z} F d\mu(z) \tag{3}$$

For the Hénon maps $F(x, y) = (a - x^2 - by, x)$ this is just b.

Theorem (Universality)

Let $F \in \mathcal{I}_{\Omega,\upsilon}(\bar{\varepsilon})$. Then

$$F_n(x,y) = (f_n(x) - a(x)yb^{p^n}(1 + O(p^n)), x)$$
 (4)

where b is the average Jacobian of F, $f_n \in \mathcal{U}$ and $f_n \to f_*$ exponentially and $a \in C^{\omega}(I, \mathbb{R})$ and $0 < \rho < 1$ are universal.

This universal limiting behaviour also occurs in the unimodal theory. However, in contrast, we get the following.

Theorem (Non-Rigidity)

Let $F_0, F_1 \in \mathcal{I}_{\Omega}(\bar{\varepsilon})$ be two infinitely renormalisable Hénon-like maps. Let us denote

- their respective average Jacobians by b_0 , b_1 ;
- their respective Cantor sets by $\mathcal{O}_0, \mathcal{O}_1$.

Then any conjugation $\Gamma\colon \mathcal{O}_0\to\mathcal{O}_1$ sending τ_0 to τ_1 is at most \mathbf{C}^α where

$$\alpha \le \frac{1}{2} \left(1 + \frac{\log b_0}{\log b_1} \right) \tag{5}$$

The boxing $\underline{B} = \{B^{\mathbf{w}}\}_{\mathbf{w} \in W_p^*}$ has bounded geometry if there exist constants $0 < \kappa < 1 < C$, such that for all $\mathbf{w} \in W_p^*$ and $w, \tilde{w} \in W_p$,

$$C^{-1}\operatorname{dist}(B^{\mathbf{w}w},B^{\mathbf{w}\tilde{w}})<\operatorname{diam}(B^{\mathbf{w}w})< C\operatorname{dist}(B^{\mathbf{w}w},B^{\mathbf{w}\tilde{w}}),$$

$$\kappa \operatorname{diam}(B^{\mathbf{w}}) < \operatorname{diam}(B^{\mathbf{w}w}) < (1 - \kappa) \operatorname{diam}(B^{\mathbf{w}})$$

We will say that \mathcal{O} has bounded geometry if there exists a boxing $B^{\mathbf{w}}$ of \mathcal{O} with bounded geometry. Otherwise \mathcal{O} has unbounded geometry.

Theorem (Generic Unbounded Geometry)

Given a one-parameter family $F_b \in \mathcal{I}_{\Omega}(\bar{\varepsilon})$ such that $b(F_b) = b$ there exists $b_0 > 0$ and $S \subset (0, b_0]$, a dense G_δ set with full (relative) Lebesgue measure such that F_b has unbounded geometry whenever $b \in S$.