# Erythrocyte and Hemoglobin

# Erythrocyte

### Objectives

- Erythrocyte purpose
- Morphology of maturing stages
- Erythrocyte membrane composition and the cytoskeleton support structure
- Membrane composition changes affect erythrocyte shape
- Erythrocyte function biochemistry and energy production
- End of life processes

Erythrocytes (RBCs)

- Carries O<sub>2</sub> from lungs to tissues
- Carries CO<sub>2</sub> from tissues to lungs
- Anemia insufficient number of RBCs
  - Tissue hypoxia inadequate tissue oxygenation
- Erythrocytosis excess number of RBCs
  - No adverse effect on pulmonary gas exchange



### Life Cycle

- Immature
  - EPO is major cytokine regulating erythropoiesis
- Mature
  - Circulating life span of mature RBCs ~ 100–120 days
- Old
  - Senescent cells are destroyed by reticuloendothelial system macrophages
  - Occurs in spleen, liver, bone marrow

### RBC Maturation

- 1. Gradual decrease in cell size with progressive condensation of the nuclear chromatin
- 2. Cytoplasm in younger cells is deeply basophilic due to the abundance of ribosomes
- 3. Increase in hemoglobin (acidophilic) as the cell matures, cytoplasm appears pink or salmon color
- 4. Eventual expulsion of the pyknotic nucleus



### Pronormoblast (Rubriblast)

- ↑↑↑ N:C ratio
- Cytoplasm
  - − ↑↑↑ ribosomes (deep basophilia)
  - Gogli apparatus
- Nucleus
  - Fine chromatin (lacy)
  - -1-3 nucleoli



### Basophilic normoblast (Prorubricyte)

- ↑↑ N:C ratio
- Cytoplasm
  - → ↑↑ ribosomes (deep basophilia)
    - Lighter with maturity
  - Perinuclear halo (mitochondria)
- Nucleus
  - Coarse/fine chromatin (wheel spoke)
  - Nucleoli not obvious



### Polychromatic normoblast (Rubricyte)

- Decreasing N:C ratio
- Cytoplasm
  - Fewer ribosomes (gray-blue)
    - † hemoglobin
- Nucleus
  - Chromatin condensation
- Final mitotic stage





# Orthochromic normoblast (Metarubricyte)

- ↓ N:C ratio
- Cytoplasm
  - → ↑↑ hemoglobin (pink/salmon color)
- Nucleus
  - Chromatin heavily condensed
    - Pyknotic
  - Eccentric or partially extruded





### Reticulocyte

- Post extrusion, membrane remodels
- Cytoplasm
  - Bluish tinge
  - Polychromasia evaluation
- Supravital stains
  - Precipitates RNA and mitochondria
    - New methylene blue
    - Brilliant cresyl blue





## Erythrocyte

- Biconcave disc
- Lack organelles to synthesize new lipids and proteins
  - Membrane damaged RBCs culled or pitted by spleen



### Erythrocyte Membrane

- Balances exchange of bicarbonate and chloride ions
- Controlled permeability maintains osmotic equilibrium
- Cytoskeleton provides strength and flexibility
- Phospholipid bilayer-protein complex
  - − ~ 52% protein
  - − ~ 40% lipid
  - ~ 8% carbohydrate





### Protein Composition



- Integral proteins
  - Extracellular domain (exterior surface)
    - Responsible for zeta potential (negative surface)
      - Prevent RBCs sticking
  - Band 3
    - Major binding site for cytoplasmic membrane components
    - Transport channel for chloride-bicarbonate exchange



### Protein Composition

- Peripheral proteins
  - Includes enzymes and structural proteins (SPs)
  - Spectrin (SP)
    - Predominant skeletal protein
    - Functions like a spring
  - Ankyrin (SP)
    - Binds to Band 3
    - High-affinity binding site of spectrin to inner surface





### Lipid Composition

- ~95% of lipid content is equal amounts (1:1 occurrence)
  - Unesterfied cholesterol
  - Phospholipids (PLs)
- New lipids depend on exchange with plasma
- RBC shape change due to disruptions in distribution

### **Lipid Composition**



### Cytoskeleton



- Dynamic skeletal proteins

  - Allows deformability
- ~80% intracellular Ca<sup>++</sup> found associated with RBC membrane
  - Low intracellular concentration
  - [↑] reduces deformability
- Cytoskeleton + Membrane allows shape rebound

### Membrane Permeability

- Freely permeable to
  - Water, anions
- Nearly impermeable (ATP required)
  - Mono/divalent cations
    - $Na^+$ ,  $K^+$  /  $Ca^{++}$ ,  $Mg^{++}$
  - [Intracellular] ≠ [plasma]
- Glucose crosses via non-ATP transporter
  - Facilitated diffusion or passive transport

| Cation                        | Erythrocyte (mmol/L) | Plasma (mmol/L) |
|-------------------------------|----------------------|-----------------|
| Sodium (Na <sup>+</sup> )     | 5.4–7.0              | 135–145         |
| Potassium (K <sup>+</sup> )   | 98–106               | 3.6–5.0         |
| Calcium (Ca <sup>++</sup> )   | 0.0059-0.019         | 2.1–2.6         |
| Magnesium (Mg <sup>++</sup> ) | 3.06                 | 0.65–1.05       |



### Membrane Permeability

- Osmotic equilibrium maintained by
  - Selective (low) permeability to cations
  - Cation pumps
    - Na<sup>+</sup>/K<sup>+</sup> pump
      - 1 ATP = remove 3 Na $^+$ , uptake 2 K $^+$
      - — ↑ Ca<sup>++</sup> allows Na<sup>+</sup>/K<sup>+</sup> movement along gradients
    - Ca<sup>++</sup> pump
      - Maintains low intracellular concentration of Ca<sup>++</sup>
- Disruptions in permeability or pump failures?

### Intracellular Biochemistry



- Anaerobic glycolysis (no mitochondria)
- ~90-95% glucose metabolized by glycolytic pathway
  - Embden-Meyerhof pathway
    - ATP
- ~5-10% glucose metabolized by
  - Hexose Monophosphate Shunt
    - $HMP + G6PD \rightarrow NADPH$
    - Maintains stability of hemoglobin
    - Disruptions = Heinz bodies (denatured hemoglobin)

### Intracellular Biochemistry

- Methemoglobin Reductase Pathway
  - O<sub>2</sub> dissociates from heme iron
  - Methemoglobin produced = iron in (ferric) state Fe<sup>+++</sup>
  - Pathway + NADH maintains heme iron in reduced (ferrous)
    state Fe<sup>++</sup>
- Rapoport-Leubering Shunt
  - Controls production of 2,3-BPG
  - Decreases O<sub>2</sub> affinity > releases O<sub>2</sub>

### Erythrocyte Destruction

- Mostly from senescence
  - ~90% Extravascular
    - Within macrophages of spleen, bone marrow, liver
      - Recycles RBC components
  - ~10% Intravascular
    - Trauma during circulation results in lysis
    - Plasma proteins (haptoglobin, hemopexin) bind free hemoglobin
      - Transport to liver

# Hemoglobin

### Objectives

- Hemoglobin and its structure
- Heme and globin synthesis
  - Synthesis regulation
- O<sub>2</sub> and CO<sub>2</sub> transport
  - Oxygen dissociation curve
- Hemoglobin end of life processes
- Acquired nonfunctional hemoglobins

### Hemoglobin

- Transports O<sub>2</sub> from lungs to tissues
- Facilitates CO<sub>2</sub> from tissues to lungs
- 33% volume of RBC
  - ~90% of RBC dry weight
  - MCH = 28 34 pg
  - MCHC = 32 36 g/dL
- Total Hgb = 12 17 g/dL



### Hemoglobin Structure

- Four globular proteins
  - Two alpha-like
    - Alpha ( $\alpha$ ), zeta ( $\zeta$ )
  - Two non-alpha
    - Epsilon (ε), beta (β), delta (δ),
      gamma (γ)
- Four subunits of heme
  - Iron-chelated porphyrin ring



Heme Synthesis

Cytoplasm

Mitochondria

Cytoplasm

- Begins in mitochondria
  - Glycine + succinyl CoA => ALA
    - [iron] limits rate of ALA production
- Continues in cytoplasm
  - Eventual production of Coproporphyrinogen
- Renters and finishes in mitochondria
  - Protoporphyin IX chelates with iron => heme
- Heme enters cytoplasm to bind with a globin chain



# Globin Synthesis

- $\zeta$  and  $\epsilon$  found only in embryonic
- After birth,  $\alpha$  and  $\beta$ -chain production predominates
  - ~97% of adult hemoglobin
- Released from polyribosomes in cytoplasm
  - Heme falls into hydrophobic pocket
- Dimers form into tetrameric hemoglobin





### Hemoglobin Synthesis Regulation

- Normally equal production of  $\alpha$ -, non- $\alpha$ -subunits, and heme
- Regulators
  - Concentration of iron
  - Concentrations of enzymes in heme production
    - Some depend on presence iron
  - Activity rate of DNA to mRNA
    - ↑ heme inactivates translation inhibitor

### Hemoglobin Types



### Oxygen Transport

- Oxy (R)- vs Deoxy (T)- hemoglobin
- Amount of O<sub>2</sub> bound/released depends
  - PO<sub>2</sub>, PCO<sub>2</sub>, and Hgb affinity for O<sub>2</sub>
    - $P_{50} = PO_2$  when 50% Hgb saturated with  $O_2$ ,
      - Occurs at ~ 26 torr = 26 mm Hg
      - $\uparrow P_{50} \Rightarrow \downarrow O_2$  affinity
      - $-\downarrow P_{50} \Rightarrow \uparrow O_2$  affinity
      - Oxygen Dissociation Curve

### Oxygen Dissociation Curve



## Allosteric Property

- 2,3-BPG (2,3-DPG)
  - Binds to T (↓ affinity) DeoxyHgb in 1:1
  - 3<sup>rd</sup> O<sub>2</sub> expels 2,3-BPG
    - $\uparrow$  O<sub>2</sub> affinity



### CO<sub>2</sub> Transport

- CO<sub>2</sub> carried to lungs via
  - ~ 70% Formation of carbonic acid
  - − ~ 23% Bound to Hgb
    - Binds deoxyhgb, expired in lungs
  - − ~ 7% Dissolution into plasma

### Hemoglobin Destruction

- Extravascular
  - Most efficient and recycles RBC components
  - Iron
    - Stored as ferritin or hemosiderin in macrophages
    - Transported to BM via transferrin (80% of pool)
  - Globin
    - Broken down into amino acids
  - Heme cleaved to CO + biliverdin > bilirubin

### Hemoglobin Destruction

- Intravascular
  - Dissociates into dimers
    - Quickly binds to haptoglobin > liver
  - Acute hemolysis
    - Haptoglobin depleted
    - Globin dimers filtered by kidney
      - Reabsorbed in proximal tubules
        - » Hemosiderinuria

### Acquired Nonfunctional Hgbs

- Patients present with hypoxia and/or cyanosis
- Methemoglobin (no O<sub>2</sub> affinity)
  - Hgb iron in ferric state  $(Fe^{+++}) = MetHgb$
  - Blood appears chocolate brown
- Sulfhemoglobin
  - Sulfer atom binds to heme for life of RBC, no O<sub>2</sub> affinity
- Carboxyhemoglobin
  - Hgb 200x ↑ CO affinity compared to O<sub>2</sub>
  - Cherry red blood/skin

### References

- American Society for Clinical Laboratory Science. (2016). Hematology and Hemostasis Medical Laboratory Scientist Entry Level Curriculum. American Society for Clinical Laboratory Science.
- American Society for Clinical Pathology. (2021). Medical Laboratory Scientist, MLS(ASCP) Examination Content Guideline. American Society for Clinical Pathology.
- Greer, J. (2014). Wintrobe's clinical hematology (Thirteenth ed.). Philadelphia, Pennsylvania: Lippincott Williams & Wilkins.
- Kaushansky, Kenneth. (2016). Williams hematology (9th ed.). New York: McGraw Hill Education.
- McKenzie, S. B., & Williams, J. L. (2015). Clinical laboratory hematology (3rd ed.). Boston: Pearson.
- McPherson, R., & Pincus, M. (2017). Henry's clinical diagnosis and management by laboratory methods (23rd ed., ClinicalKey). St. Louis, Mo.: Elsevier.
- Rodak, B. F., & Carr, J. H. (2015). Clinical Hematology Atlas. Elsevier Health Sciences.