PolyChord: Next Generation Nested Sampling Sampling, Parameter Estimation and Bayesian Model Comparison

Will Handley wh260@cam.ac.uk

Supervisors: Anthony Lasenby & Mike Hobson Astrophysics Department Cavendish Laboratory University of Cambridge

December 11, 2015

Metropolis Hastings

Nested Sampling

PolyChord

Applications

▶ Data: *D*

▶ Data: *D*

► Model: *M*

▶ Data: *D*

► Model: *M*

Parameters: Θ

- ▶ Data: *D*
- ► Model: M
- Parameters: Θ
- ▶ Likelihood: $P(D|\Theta, M) = \mathcal{L}(\Theta)$

- ► Data: *D*
- ► Model: M
- Parameters: Θ
- ▶ Likelihood: $P(D|\Theta, M) = \mathcal{L}(\Theta)$
- ▶ Posterior: $P(\Theta|D, M) = \mathcal{P}(\Theta)$

- ▶ Data: *D*
- ► Model: M
- Parameters: Θ
- ▶ Likelihood: $P(D|\Theta, M) = \mathcal{L}(\Theta)$
- ▶ Posterior: $P(\Theta|D, M) = \mathcal{P}(\Theta)$
- Prior: $P(\Theta|M) = \pi(\Theta)$

- ▶ Data: *D*
- ► Model: M
- Parameters: Θ
- ▶ Likelihood: $P(D|\Theta, M) = \mathcal{L}(\Theta)$
- ▶ Posterior: $P(\Theta|D, M) = P(\Theta)$
- Prior: $P(\Theta|M) = \pi(\Theta)$
- ▶ Evidence: $P(D|M) = \mathcal{Z}$

Parameter estimation

Parameter estimation

What does the data tell us about the params Θ of our model M?

Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information $\pi(\Theta)$ in light of data D.

Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information $\pi(\Theta)$ in light of data D.

$$\pi(\Theta) = P(\Theta|M) \xrightarrow{D} P(\Theta|D, M) = \mathcal{P}(\Theta)$$

Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information $\pi(\Theta)$ in light of data D.

$$\pi(\Theta) = P(\Theta|M) \xrightarrow{D} P(\Theta|D, M) = \mathcal{P}(\Theta)$$

Solution: Use the likelihood \mathcal{L} via Bayes' theorem:

Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information $\pi(\Theta)$ in light of data D.

$$\pi(\Theta) = P(\Theta|M) \xrightarrow{D} P(\Theta|D, M) = \mathcal{P}(\Theta)$$

Solution: Use the likelihood \mathcal{L} via Bayes' theorem:

$$\mathrm{P}(\Theta|D,M) = \frac{\mathrm{P}(D|\Theta,M)\mathrm{P}(\Theta|M)}{\mathrm{P}(D|M)}$$

Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information $\pi(\Theta)$ in light of data D.

$$\pi(\Theta) = P(\Theta|M) \xrightarrow{D} P(\Theta|D, M) = \mathcal{P}(\Theta)$$

Solution: Use the likelihood \mathcal{L} via Bayes' theorem:

$$\mathrm{P}(\Theta|D,M) = \frac{\mathrm{P}(D|\Theta,M)\mathrm{P}(\Theta|M)}{\mathrm{P}(D|M)}$$

$$\mathsf{Posterior} \ = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Evidence}}$$

Model comparison

Bayes' theorem Model comparison

What does the data tell us about our model M_i in relation to other models $\{M_1, M_2, \cdots\}$?

Model comparison

What does the data tell us about our model M_i in relation to other models $\{M_1, M_2, \dots\}$?

$$P(M_i) \xrightarrow{D} P(M_i|D)$$

Bayes' theorem Model comparison

What does the data tell us about our model M_i in relation to other models $\{M_1, M_2, \dots\}$?

$$P(M_i) \xrightarrow{D} P(M_i|D)$$

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

Bayes' theorem Model comparison

What does the data tell us about our model M_i in relation to other models $\{M_1, M_2, \dots\}$?

$$P(M_i) \xrightarrow{D} P(M_i|D)$$

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(D|M_i) = \mathcal{Z}_i = \text{Evidence of } M_i$$

The challenge

The challenge

Parameter estimation: what does the data tell us about a model? (Computing posteriors)

The challenge

Parameter estimation: what does the data tell us about a model? (Computing posteriors)

Model comparison: what does the data tell us about all models? (Computing evidences)

The challenge

Parameter estimation: what does the data tell us about a model? (Computing posteriors)

Model comparison: what does the data tell us about all models? (Computing evidences)

Both of these are challenging things to compute.

The challenge

Parameter estimation: what does the data tell us about a model? (Computing posteriors)

Model comparison: what does the data tell us about all models? (Computing evidences)

Both of these are challenging things to compute.

 Markov-Chain Monte-Carlo (MCMC) can solve the first of these (kind of)

The challenge

Parameter estimation: what does the data tell us about a model? (Computing posteriors)

Model comparison: what does the data tell us about all models? (Computing evidences)

Both of these are challenging things to compute.

- Markov-Chain Monte-Carlo (MCMC) can solve the first of these (kind of)
- Nested sampling (NS) promises to solve both simultaneously.

Why is it difficult?

Why is it difficult?

1. In high dimensions, posterior \mathcal{P} occupies a vanishingly small region of the prior π .

Why is it difficult?

- 1. In high dimensions, posterior \mathcal{P} occupies a vanishingly small region of the prior π .
- 2. Worse, you don't know where this region is.

Why is it difficult?

- 1. In high dimensions, posterior \mathcal{P} occupies a vanishingly small region of the prior π .
- 2. Worse, you don't know where this region is.

Describing an N-dimensional posterior fully is impossible.

Why is it difficult?

- 1. In high dimensions, posterior \mathcal{P} occupies a vanishingly small region of the prior π .
- 2. Worse, you don't know where this region is.

- ▶ Describing an *N*-dimensional posterior fully is impossible.
- Project/marginalise into 2- or 3-dimensions at best

Why is it difficult?

- 1. In high dimensions, posterior \mathcal{P} occupies a vanishingly small region of the prior π .
- 2. Worse, you don't know where this region is.

- Describing an N-dimensional posterior fully is impossible.
- Project/marginalise into 2- or 3-dimensions at best
- Sampling the posterior is an excellent compression scheme.

Markov-Chain Monte-Carlo (MCMC)

Metropolis-Hastings, Gibbs, Hamiltonian...

Markov-Chain Monte-Carlo (MCMC)

Metropolis-Hastings, Gibbs, Hamiltonian...

► Turn the *N*-dimensional problem into a one-dimensional one.

- ► Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.

- ► Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...
 - 4. ... otherwise sometimes make step.

MCMC in action

MCMC in action

Burn in

Burn in

Tuning the proposal distribution

Tuning the proposal distribution

Multimodality

Multimodality

Phase transitions

The real reason...

The real reason...

The real reason...

$$\mathcal{Z} = P(D|M)$$

The real reason...

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

The real reason...

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \int \mathcal{L}(\Theta)\pi(\Theta)d\Theta$$

The real reason...

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \int \mathcal{L}(\Theta)\pi(\Theta)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

The real reason...

MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \int \mathcal{L}(\Theta)\pi(\Theta)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

MCMC fundamentally explores the posterior, and cannot average over the prior.

John Skilling's alternative to MCMC!

John Skilling's alternative to MCMC!

New procedure:

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate n samples from the prior π .

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate *n* samples from the prior π .

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new sample with higher likelihood

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate *n* samples from the prior π .

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new sample with higher likelihood

Requires one to be able to sample from the prior, subject to a *hard likelihood constraint*.

Graphical aid

lacktriangle

•

Why bother?

Why bother?

At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.

Why bother?

- At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

Why bother?

- At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.
- Nested sampling can be used to get evidences!

Calculating evidences

Calculating evidences

$$\mathcal{Z} = \int \mathcal{L}(heta)\pi(heta)d heta$$

Calculating evidences

► Transform to 1 dimensional integral

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

► *X* is the *prior volume*

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

X is the prior volume

$$X(\mathcal{L}) = \int_{\mathcal{L}(\theta) > \mathcal{L}} \pi(\theta) d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

X is the prior volume

$$X(\mathcal{L}) = \int_{\mathcal{L}(\theta) > \mathcal{L}} \pi(\theta) d\theta$$

▶ i.e. the fraction of the prior which the iso-likelihood contour £ encloses.

Nested Sampling

Nested Sampling Calculating evidences

Nested Sampling

Nested Sampling

Evidence error

lacktriangledown approximate compression: $\Delta \log X \sim -rac{1}{n}$

$$\Delta \log X \sim -rac{1}{n}$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$

$$\log X_i \sim -\frac{i}{n}$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$

$$\log X_i \sim -\frac{i}{n} \pm \frac{\sqrt{i}}{n}$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$

$$\log X_i \sim -\frac{i}{n} \pm \frac{\sqrt{i}}{n}$$

 \blacktriangleright # of steps to get to H:

$$i_H \sim nH$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$
 $\log X_i \sim -\frac{i}{n} \pm \frac{\sqrt{i}}{n}$

▶ # of steps to get to *H*:

$$i_H \sim nH$$

estimate of volume at H:

$$\log X_H \approx -H \pm \sqrt{\frac{H}{n}}$$

Evidence error

approximate compression:

$$\Delta \log X \sim -\frac{1}{n} \pm \frac{1}{n}$$

$$\log X_i \sim -\frac{i}{n} \pm \frac{\sqrt{i}}{n}$$

▶ # of steps to get to *H*:

$$i_H \sim nH$$

estimate of volume at H:

$$\log X_H \approx -H \pm \sqrt{\frac{H}{n}}$$

estimate of evidence error:

$$\log \mathcal{Z} \approx \sum w_i \mathcal{L}_i \pm \sqrt{\frac{H}{n}}$$

Nested sampling

Parameter estimation

Nested sampling

Parameter estimation

▶ NS can also be used to sample the posterior

Nested sampling

Parameter estimation

- ▶ NS can also be used to sample the posterior
- ► The set of dead points are posterior samples with an appropriate weighting factor

When NS succeeds

When NS suceeds

When NS succeeds

When NS suceeds

Sampling from a hard likelihood constraint

"It is not the purpose of this introductory paper to develop the technology of navigation within such a volume. We merely note that exploring a hard-edged likelihood-constrained domain should prove to be neither more nor less demanding than exploring a likelihood-weighted space."

— John Skilling

Sampling within an iso-likelihood contour

Previous attempts

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Requires gradients and tuning

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

► Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

Very promising

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

► Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

- Very promising
- Too many tuning parameters

▶ This procedure satisfies detailed balance.

- ► This procedure satisfies detailed balance.
- ▶ Works even if \mathcal{L}_0 contour is disjoint.

- ► This procedure satisfies detailed balance.
- ▶ Works even if \mathcal{L}_0 contour is disjoint.

- ► This procedure satisfies detailed balance.
- ▶ Works even if \mathcal{L}_0 contour is disjoint.
- Need N reasonably large $\sim \mathcal{O}(n_{\mathrm{dims}})$ so that x_N is de-correlated from x_1 .

Issues with Slice Sampling

1. Does not deal well with correlated distributions.

Issues with Slice Sampling

- 1. Does not deal well with correlated distributions.
- 2. Need to "tune" w parameter.

Correlated distributions

► We make an affine transformation to remove degeneracies, and "whiten" the space.

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation
- $\triangleright w = 1$ in this transformed space

▶ Parallelised up to number of live points with openMPI.

- ▶ Parallelised up to number of live points with openMPI.
- ▶ Novel method for identifying and evolving modes separately.

- Parallelised up to number of live points with openMPI.
- Novel method for identifying and evolving modes separately.
- Implemented in CosmoMC, as "CosmoChord", with fast-slow parameters.

Primordial power spectrum $\mathcal{P}_{\mathcal{R}}(k)$ reconstruction

► Temperature data TT+lowP

- ► Temperature data TT+lowP
- ► Foreground (14) & cosmological $(4 + 2 * N_{knots} 2)$ parameters

- Temperature data TT+lowP
- ► Foreground (14) & cosmological $(4 + 2 * N_{knots} 2)$ parameters
- ► Marginalised plots of $\mathcal{P}_{\mathcal{R}}(k)$

- Temperature data TT+lowP
- ► Foreground (14) & cosmological $(4 + 2 * N_{knots} 2)$ parameters
- ▶ Marginalised plots of $\mathcal{P}_{\mathcal{R}}(k)$

$$P(\mathcal{P}_{\mathcal{R}}|k, N_{\text{knots}}) = \int \delta(\mathcal{P}_{\mathcal{R}} - f(k; \theta)) \mathcal{P}(\theta) d\theta$$

0 internal knots

1 internal knots

Bayes Factors

Marginalised plot

Toy problem

Evidences

Evidences

▶ $\log Z$ ratio: -251:-156:-114:-117:-136

Evidences

- ▶ $\log Z$ ratio: -251:-156:-114:-117:-136
- ightharpoonup odds ratio: $10^{-60}:10^{-19}:1:0.04:10^{-10}$

PolyChord vs. MultiNest

Gaussian likelihood

PolyChord vs. MultiNest

Gaussian likelihood

The future of nested sampling

▶ We are at the beginning of a new era of sampling algorithms

- ▶ We are at the beginning of a new era of sampling algorithms
- Plenty of more work in to be done in exploring new versions of nested sampling

- We are at the beginning of a new era of sampling algorithms
- Plenty of more work in to be done in exploring new versions of nested sampling
- Nested sampling is just the beginning

- We are at the beginning of a new era of sampling algorithms
- Plenty of more work in to be done in exploring new versions of nested sampling
- Nested sampling is just the beginning
- ► arXiv:1506.00171

- We are at the beginning of a new era of sampling algorithms
- Plenty of more work in to be done in exploring new versions of nested sampling
- Nested sampling is just the beginning
- arXiv:1506.00171
- http://ccpforge.cse.rl.ac.uk/gf/project/polychord/