

RDS02U(UART)型 无人机单目标避障雷达应用手册

2022.08.02

北醒(北京)光子科技有限公司

Benewake (Beijing) Co., Ltd.

免责声明

欢迎选购本产品。

北醒(北京)光子科技有限公司官网 http://www.benewake.com/。

任何用户在使用本产品前,请仔细阅读本声明。一旦使用,即被视为对本声明内容的认可和接受。请严格遵守手册安装与使用该产品。如有不正当的使用,而造成的损害或损伤,北醒(北京)光子科技有限公司不承担相应的损失及赔偿责任。

历史版本

日期	版本	版本描述
2019. 08. 23	1.0	RDS02U 应用手册第一版本
2021. 02. 04	1.1	变更协议
2021. 06. 11	1.2	文档格式修正
2022. 08. 02	1.3	参数更新

目 录

1.	RDS02U 简介	,
2.	产品特征2	,
3.	产品参数3	,
4.	引脚定义4	:
5.	安装方法4	:
6.	快速使用指南5	,
7.	产品使用注意事项 6	,
8.	常见问题 (FAQ)6	,

1. RDS02U 简介

RDS02U 型避障雷达是一款轻巧的毫米波避障雷达传感器,测量精度高、体型小巧、灵敏度高、重量轻、易于集成、性能稳定。该产品通过向前方发射扇形的 77GHz 电磁波并处理回波信号,判断前方是否有障碍物,反馈障碍物与雷达的相对距离、速度、方位角等信息,引导无人机等雷达载体避开障碍物,确保其安全工作。

RDS02U型中距雷达具有以下特性:

- 收发天线采用 2 发 4 收 MIMO 阵列,方位视场范围 34 度,角度分辨和测角精度高;
- 工作频率为 77GHz~81GHz, 具有动目标敏感、距离测量精度高的优点;
- 有效探测距离 27m:
- 支持 UART 协议输出, 默认波特率 115200;
- 信号处理和控制单元采用单片 DSP+ARM 双核心架构,在内部高速数字信号处理器上运行雷达数据处理、目标检测和目标跟踪等算法。

2. 产品特征

图 1 RDS02U 尺寸图

3. 产品参数

表 1 RDS02U 主要参数列表

特 性	参 数	技术指标
	水平束波宽度	±17°
天线性能	垂直波束宽度	±3°
	最大 EIRP(dBm)	30
	测距范围(m)	1.5~27
雷达性能	测距精度(m)	优于 0.1
	距离分辨率(m)	0.18
	发射频率(GHz)	77~81
雷达属性	刷新率(Hz)	20
	调频带宽(GHz)	1.5
	工作电压(V)	8-24
	工作温度	-40°C~65°C
系统属性	功耗(W)	2
宋·5[[周] 注	防水等级	IP67
	数据接口	UART
	PCB尺寸(长、宽、高)(mm)	50*50*7.8
外观参数	尺寸	74×66×19.3mm
217/处/多数	重量	约 109.5g(包括连接线)

4. 引脚定义

RDS02U 传感器的接口引脚定义,如下表所示:

表 2 RDS02U 引脚接口定义

引脚	线束标识	线束颜色	线束定义
1	VCC	红色	电源正极
2	GND	黑色	电源负极
3	TX_CAN_H	绿色	TX
4	RX_CAN_L	白色	RX

5. 安装方法

RDS02U 型雷达安装步骤如下:

- 安装位置:雷达水平波束±17°、垂直波束±3°波束范围内不能有任何遮 挡物:
- 安装方向: 雷达收发天线位于雷达背面箭头处,安装时雷达后面箭头方向朝上,雷达正面朝无人机飞行方向;
- 安装角度:雷达安装时天线面(雷达正面)指向无人机正前方,根据无人机 飞行姿态向下的最大倾角,雷达向上倾斜安装,最佳安装倾角与飞机飞行过 程中的最大倾角与离地高度有关,一般安装倾角为12°;

假设飞行过程中无人机的倾角为 θ ,无人机的工作高度为H,最大预警距离为 R_{\max} ,则有如下表达式:

$$\frac{\mathrm{H}}{\sin\left(\theta+3\right)} > R_{\mathrm{max}}$$

推导后可得:

$$\theta < \arcsin\left(\frac{H}{R_{\text{max}}}\right) - 3$$

令 $\theta_0 = \arcsin\left(\frac{H}{R_{\text{max}}}\right) - 3$, θ_0 即雷达水平安装时能够接受的无人机最大倾角,

若无人机的倾角比 θ_0 大,则需要进行修正,即将雷达向上倾斜安装,安装角度为

 θ_{comp} , 即使之满足 θ - θ_{comp} < θ_0 。即安装角度:

$$\theta_{\text{comp}} > \theta - \theta_0$$

需要指出的是,平台的稳定性越好,雷达波束在俯仰向的波动越小,安装角度 $heta_{comp}$ 越小,雷达对前方障碍物的探测也越稳定。

图 2 RDS02U 安装示意图

6. 快速使用指南

RDS02U 传感器直接输出最近障碍物的 Y 坐标,如下图所示,障碍物 1 不在雷达波束范围内,雷达探测不到,障碍物 2、3、4 中,障碍物 2 离雷达的距离 Y2 最近,雷达最终输出的值为 Y2。

图 3 RDS02U 探测范围示意图

串口波特率 115200, 仅支持 3. 3V 电平, 数据刷新率 20Hz, 数据单位厘米(cm), 按客户需求发送指定的数据包格式,每一帧的数据包按客户的协议执行。RDS02U

的消息定义如下表 3 RDS02U 雷达帧消息定义。

表 3 RDS02U 雷达帧消息定义

功能	代码	字节数
帧起始符	5555H	2
地址码	ADD	1
错误码	ERR	1
功能码	FC	2
数据域长度	L	2
数据域	DATA	N
校验码	CRC	1
帧结束符	ААААН	2

帧是传送数据的基本单元,如表 2 所示。数据传输顺序为小端传输,先传送低字节,再传送高字节,具体可见协议手册。

7. 产品使用注意事项

- 雷达在运输、存储、工作和拿取的过程中需要充分做好静电防护工作,如出现雷达探测覆盖范围内无目标物体时,雷达持续输出无规律目标或者当电源电压及源电流等 DC 参数值处于正常范围时,无法得到输出信号的情况,雷达可能已经损坏。
- 安装时请保持雷达罩面干净,清理罩面需要用柔软的湿布擦拭,然后自然风干;
- 安装时请注意雷达形状,确保安装的雷达未变形,切勿挤压,磕碰,摔打;
- 安装时确保雷达为出厂件,切勿自行进行拆装;

8. 常见问题 (FAQ)

1) 雷达探测范围为多少? 为什么最小探测距离为 1.5m?

无人机避障探测范围为 1.5-27m, 考虑机翼的长度问题, 需要在无人机离障碍物距离>1.5m 时停下, 故最小探测距离为 1.5m。

2) 最佳安装角度不会算,有没有安装的参考角度?

根据上述安装角度建议及我司的测试效果,建议一般飞控向上倾斜 12°安装。

3) 雷达没有探测到障碍物时有没有数据输出?

雷达实时输出数据,当雷达没探测到障碍物或障碍物距离大于 30m 时,输出数据为 0,当雷达探测到障碍物时,输出为障碍物的实际距离。

若在安装过程中遇到无法解决的问题,请联系北醒(北京)光子科技有限公司客服人员,我们将竭诚为您服务!