APPROXIMATIONS TO THE LOOP SPACE OF FLAG MANIFOLDS

Simon Stoltze

Institut for Matematik Aarhus University

30. January, 2015

Definitions

Definition

$$X_{m,n} = \left\{ (v_1, \dots, v_n) \in (\mathbb{C}^m)^n \,\middle|\, \begin{array}{l} \text{Any m subsequent vectors in} \\ (e_1, \dots, e_m, v_1, \dots, v_n, e_1, \dots, e_m) \\ \text{are linearly independent.} \end{array} \right\}$$

 $T^n = (\mathbb{C}^*)^n$ acts by multiplication on the columns of $X_{m,n}$.

Definition

$$Y_{m,n} = X_{m,n}/T^n$$

$$X_{m,n}\cong Y_{m,n}\times (\mathbb{C}^*)^n$$

Definitions

Definition

$$X_{m,n} = \left\{ (v_1, \dots, v_n) \in (\mathbb{C}^m)^n \,\middle|\, \begin{array}{l} \text{Any } m \text{ subsequent vectors in} \\ (e_1, \dots, e_m, v_1, \dots, v_n, e_1, \dots, e_m) \\ \text{are linearly independent.} \end{array} \right\}$$

 $T^n = (\mathbb{C}^*)^n$ acts by multiplication on the columns of $X_{m,n}$.

Definition

$$Y_{m,n} = X_{m,n}/T^n$$

$$X_{m,n}\cong Y_{m,n}\times (\mathbb{C}^*)^n$$

Definitions

Definition

$$X_{m,n} = \left\{ (v_1, \dots, v_n) \in (\mathbb{C}^m)^n \,\middle|\, \begin{array}{l} \text{Any m subsequent vectors in} \\ (e_1, \dots, e_m, v_1, \dots, v_n, e_1, \dots, e_m) \\ \text{are linearly independent.} \end{array} \right\}$$

 $T^n = (\mathbb{C}^*)^n$ acts by multiplication on the columns of $X_{m,n}$.

Definition

$$Y_{m,n} = X_{m,n}/T^n$$

$$X_{m,n} \cong Y_{m,n} \times (\mathbb{C}^*)^n$$

Example

$$X_{3,3} = \left\{ \begin{pmatrix} a & b & g \\ c & d & h \\ e & f & i \end{pmatrix} \in \mathbb{C}^9 \,\middle|\, \begin{matrix} a \neq 0, ad - bc \neq 0, \\ adi + beh + cfg - deg - bci - afh \neq 0, \\ di - fh \neq 0, i \neq 0 \end{matrix} \right\}$$

$$Y_{3,3} \cong \left\{ egin{pmatrix} a & b & g \\ c & d & h \\ e & f & i \end{pmatrix} \in \mathbb{C}^9 \ | \ adi + beh + cfg - deg - bci - afh = 1, \\ di - fh = 1, i = 1 \end{cases} \right\}$$

Example

$$X_{3,3} = \left\{ \begin{pmatrix} a & b & g \\ c & d & h \\ e & f & i \end{pmatrix} \in \mathbb{C}^9 \,\middle|\, \begin{array}{c} a \neq 0, ad - bc \neq 0, \\ adi + beh + cfg - deg - bci - afh \neq 0, \\ di - fh \neq 0, i \neq 0 \end{array} \right\}$$

$$Y_{3,3} \cong \left\{ \begin{pmatrix} a & b & g \\ c & d & h \\ e & f & i \end{pmatrix} \in \mathbb{C}^9 \, \middle| \, \begin{array}{c} a \neq 0, \, ad - bc \neq 0, \\ adi + beh + cfg - deg - bci - afh = 1, \\ di - fh = 1, \, i = 1 \end{array} \right\}$$

Stabilization

Definition

The map

$$s: X_{m,n} \to X_{m,n+1}$$

$$(v_1, \dots, v_n) \mapsto (Lv_1, \dots, Lv_n, Le_1)$$

is injective and equivariant. The matrix is:

$$L = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 1 & \dots & \dots & 1 \end{pmatrix} \in \mathrm{GL}_m$$

The limit space

Definition

$$Y_{m,\infty} = \varinjlim_n Y_{m,n}$$

is the limit of

$$\ldots \xrightarrow{s} Y_{m,n} \xrightarrow{s} Y_{m,n+1} \xrightarrow{s} \ldots$$

The main theorem

Theorem

There is a collection of maps,

$$Y_{m,n} \to \Omega(\mathrm{SU}_m/T^{m-1}),$$

that fit together to form a map

$$f: Y_{m,\infty} \to \Omega(\mathrm{SU}_m/T^{m-1}).$$

This map is a (weak) homotopy equivalence.

Defining f

$$X_{m,n} \rightarrow P(GL_m)$$

$$f(v_1, \dots, v_n) = \left([e_1, e_2, e_3, \dots, e_m] \right.$$

$$\leadsto [d_1v_1, e_2, e_3, \dots, e_m]$$

$$\leadsto [d_1v_1, d_2v_2, e_3, \dots, e_m]$$

$$\leadsto \dots$$

$$\leadsto [\lambda_i e_i, \lambda_{i+1} e_{i+1}, \dots, \lambda_m e_m, \lambda_1 e_1, \dots, \lambda_{i-1} e_{i-1}]$$

Proof of theorem

$$\Omega(\mathrm{SU}_m/T^{m-1}) = \bigcup_{k=1}^{\infty} \Omega_k$$

$$\varphi_k : \Omega_k \to Y_{m,(2^k-1)m}$$

$$\gamma \mapsto \left[\gamma \left(\frac{1}{2^k} \right), \dots, \gamma \left(\frac{2^k-1}{2^k} \right) \right]$$

Proof of theorem

$$\Omega(\mathrm{SU}_m/T^{m-1}) = \bigcup_{k=1}^{\infty} \Omega_k$$

$$\varphi_k : \Omega_k \to Y_{m,(2^k-1)m}$$

$$\gamma \mapsto \left[\gamma\left(\frac{1}{2^k}\right), \dots, \gamma\left(\frac{2^k-1}{2^k}\right) \right]$$

Take a finite complex,

$$\sigma: W \to \Omega(\mathrm{SU}_m/T^{m-1})$$

 $\sigma(W)$ is compact, so it is contained in Ω_k for some k

$$\sigma \simeq f \circ \varphi_k \circ \sigma : W \to \Omega_k \to Y_{m,(2^k-1)m} \to \Omega_k$$

Take a finite complex,

$$\sigma: W \to \Omega(\mathrm{SU}_m/T^{m-1})$$

 $\sigma(W)$ is compact, so it is contained in Ω_k for some k.

$$\sigma \simeq f \circ \varphi_k \circ \sigma : W \to \Omega_k \to Y_{m,(2^k-1)m} \to \Omega$$

Take a finite complex,

$$\sigma: W \to \Omega(\mathrm{SU}_m/T^{m-1})$$

 $\sigma(W)$ is compact, so it is contained in Ω_k for some k.

$$\sigma \simeq f \circ \varphi_k \circ \sigma : W \to \Omega_k \to Y_{m,(2^k-1)m} \to \Omega$$

Take a finite complex,

$$\sigma: W \to \Omega(\mathrm{SU}_m/T^{m-1})$$

 $\sigma(W)$ is compact, so it is contained in Ω_k for some k.

$$\sigma \simeq f \circ \varphi_k \circ \sigma : W \to \Omega_k \to Y_{m,(2^k-1)m} \to \Omega$$

How do we get information from $Y_{m,n}$?

Definition

For $0 \le p \le m-1$, define

$$F_p = \{(v_1, \dots, v_n) \in X_{m,n} \mid v_n \text{ has at most } p \text{ zeroes.}\}$$

$$X_{m,n-1} \times (\mathbb{C}^*)^m \cong F_0 \subset F_1 \subset \cdots \subset F_{m-1} = X_{m,n}$$

How do we get information from $Y_{m,n}$?

Definition

For $0 \le p \le m-1$, define

$$F_p = \{(v_1, \dots, v_n) \in X_{m,n} \mid v_n \text{ has at most } p \text{ zeroes.}\}$$

$$X_{m,n-1} \times (\mathbb{C}^*)^m \cong F_0 \subset F_1 \subset \cdots \subset F_{m-1} = X_{m,n}$$

9
$$H^9(F_0) \longrightarrow H^{10}(F_1, F_0) \longrightarrow H^{11}(F_2, F_1)$$
8 $H^8(F_0) \longrightarrow H^9(F_1, F_0) \longrightarrow H^{10}(F_2, F_1)$
7 $H^7(F_0) \longrightarrow H^8(F_1, F_0) \longrightarrow H^9(F_2, F_1)$
6 $H^6(F_0) \longrightarrow H^7(F_1, F_0) \longrightarrow H^8(F_2, F_1)$
5 $H^5(F_0) \longrightarrow H^6(F_1, F_0) \longrightarrow H^7(F_2, F_1)$
4 $H^4(F_0) \longrightarrow H^5(F_1, F_0) \longrightarrow H^6(F_2, F_1)$
3 $H^3(F_0) \longrightarrow H^4(F_1, F_0) \longrightarrow H^5(F_2, F_1)$
2 $H^2(F_0) \longrightarrow H^3(F_1, F_0) \longrightarrow H^4(F_2, F_1)$
1 $H^1(F_0) \longrightarrow H^2(F_1, F_0) \longrightarrow H^3(F_2, F_1)$
0 $H^0(F_0) \longrightarrow H^1(F_1, F_0) \longrightarrow H^2(F_2, F_1)$
 $H^0(F_0) \longrightarrow H^1(F_1, F_0) \longrightarrow H^2(F_2, F_1)$

$$E_{1}^{p,q} = H^{p+q}(F_{p}, F_{p-1}) \cong \bigoplus_{\{v_{1}, \dots, v_{p}\}} H^{p+q} \left(X_{\{v_{1}, \dots, v_{p}\}} \times (D_{p}, D_{p} - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

The following slides show the computation for $X_{3,3}$:

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}) \cong \bigoplus_{\{v_1, \dots, v_p\}} H^{p+q} \left(X_{\{v_1, \dots, v_p\}} \times (D_p, D_p - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

The following slides show the computation for $X_{3,3}$.

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}) \cong \bigoplus_{\{v_1, \dots, v_p\}} H^{p+q} \left(X_{\{v_1, \dots, v_p\}} \times (D_p, D_p - 0) \right)$$

$$d_1: H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

The following slides show the computation for $X_{3,3}$.

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1}) \cong \bigoplus_{\{v_1, \dots, v_p\}} H^{p+q} \left(X_{\{v_1, \dots, v_p\}} \times (D_p, D_p - 0) \right)$$
$$d_1 : H^{p+q}(F_p, F_{p-1}) = E_1^{p,q} \to E_1^{p+1,q} = H^{p+q+1}(F_{p+1}, F_p)$$

The following slides show the computation for $X_{3,3}$.

E_1

9	\mathbb{Z}	0	0
8	\mathbb{Z}^7	\mathbb{Z}^2	0
7	\mathbb{Z}^{22}	\mathbb{Z}^{12}	\mathbb{Z}
6	\mathbb{Z}^{42}	\mathbb{Z}^{32}	\mathbb{Z}^4
5	\mathbb{Z}^{56}	\mathbb{Z}^{50}	\mathbb{Z}^7
4	\mathbb{Z}^{56}	\mathbb{Z}^{50}	\mathbb{Z}^7
3	\mathbb{Z}^{42}	\mathbb{Z}^{32}	\mathbb{Z}^4
2	\mathbb{Z}^{22}	\mathbb{Z}^{12}	\mathbb{Z}
1	\mathbb{Z}^7	\mathbb{Z}^2	0
0	\mathbb{Z}	0	0
q_{p}	0	1	2

$$E_1^{p,q} = H^{p+q}(F_p, F_{p-1})$$
 $d_1: E_1^{p,q} o E_1^{p+1,q}$

E_2

9	\mathbb{Z}	0	0
8	\mathbb{Z}^5	0	0
7	\mathbb{Z}^{11}	0	0
6	\mathbb{Z}^{15}	\mathbb{Z}	0
5	\mathbb{Z}^{16}	\mathbb{Z}^3	0
4	\mathbb{Z}^{16}	\mathbb{Z}^3	0
3	\mathbb{Z}^{15}	\mathbb{Z}	0
2	\mathbb{Z}^{11}	0	0
1	\mathbb{Z}^5	0	0
0	\mathbb{Z}	0	0
q_p	0	1	2

$$E_2^{p,q}=\ker d_1/\operatorname{im} d_1$$

$$d_2: E_2^{p,q} \to E_2^{p+2,q-1}$$

$$E_2 = E_{\infty}$$

9	\mathbb{Z}	0	0
8	\mathbb{Z}^5	0	0
7	\mathbb{Z}^{11}	0	0
6	\mathbb{Z}^{15}	\mathbb{Z}	0
5	\mathbb{Z}^{16}	\mathbb{Z}^3	0
4	\mathbb{Z}^{16}	\mathbb{Z}^3	0
3	\mathbb{Z}^{15}	\mathbb{Z}	0
2	\mathbb{Z}^{11}	0	0
1	\mathbb{Z}^5	0	0
0	\mathbb{Z}	0	0
q_p	0	1	2

$$E_r^{p,q} = \ker d_{r-1} / \operatorname{im} d_{r-1}$$
 $d_r : E_r^{p,q} \to E_2^{p+r,q-r+1}$

$H^*(X_{3,3})$

$$H^{q}(Y_{3,3}) = \begin{cases} \mathbb{Z} & q = 6 \\ \mathbb{Z}^{2} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \\ 0 & \text{otherwise} \end{cases} \qquad H^{q}(X_{3,3}) = \begin{cases} \mathbb{Z} & q = 9 \\ \mathbb{Z}^{5} & q = 8 \\ \mathbb{Z}^{12} & q = 7 \\ \mathbb{Z}^{18} & q = 6 \\ \mathbb{Z}^{19} & q = 5 \\ \mathbb{Z}^{17} & q = 4 \\ \mathbb{Z}^{15} & q = 3 \\ \mathbb{Z}^{11} & q = 2 \\ \mathbb{Z}^{5} & q = 1 \\ \mathbb{Z} & q = 0 \\ 0 & \text{otherwise} \end{cases}$$

Compare

$$H^{q}(Y_{3,3}) = \begin{cases} \mathbb{Z} & q = 6 \\ \mathbb{Z}^{2} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \end{cases} \qquad H^{q}(\Omega(SU_{3}/T^{2})) = \begin{cases} \vdots & q > 5 \\ \mathbb{Z}^{4} & q = 5 \\ \mathbb{Z}^{3} & q = 4 \\ \mathbb{Z}^{2} & q = 3 \\ \mathbb{Z}^{2} & q = 2 \\ \mathbb{Z}^{2} & q = 1 \\ \mathbb{Z} & q = 0 \end{cases}$$

- Show that $s: Y_{m,n} \to Y_{m,n+1}$ is:
 - Injective on homology.
 - Surjective on cohomology.
- Compute $\pi_1(Y_{m,n})$. We already know $H_1(Y_{m,n}) \cong \mathbb{Z}^{m-1}$
- Consider the space

$$Y'_{m,n} = \bigcup_{A \in \mathrm{GL}_m} Y_{m,n}(A,A)$$

See if this approximates the free loop space $L(SU_m/T^{m-1})$.

ullet Replace $\mathbb C$ by $\mathbb R$ or $\mathbb H$

- Show that $s: Y_{m,n} \to Y_{m,n+1}$ is:
 - · Injective on homology.
 - Surjective on cohomology.
- Compute $\pi_1(Y_{m,n})$. We already know $H_1(Y_{m,n}) \cong \mathbb{Z}^{m-1}$
- Consider the space

$$Y'_{m,n} = \bigcup_{A \in GL_m} Y_{m,n}(A,A)$$

See if this approximates the free loop space $L(SU_m/T^{m-1})$.

ullet Replace $\mathbb C$ by $\mathbb R$ or $\mathbb H$

- Show that $s: Y_{m,n} \to Y_{m,n+1}$ is:
 - · Injective on homology.
 - Surjective on cohomology.
- Compute $\pi_1(Y_{m,n})$. We already know $H_1(Y_{m,n}) \cong \mathbb{Z}^{m-1}$.
- Consider the space

$$Y'_{m,n} = \bigcup_{A \in \mathrm{GL}_m} Y_{m,n}(A,A)$$

See if this approximates the free loop space $L(SU_m/T^{m-1})$.

• Replace \mathbb{C} by \mathbb{R} or \mathbb{H} .

- Show that $s: Y_{m,n} \to Y_{m,n+1}$ is:
 - Injective on homology.
 - Surjective on cohomology.
- Compute $\pi_1(Y_{m,n})$. We already know $H_1(Y_{m,n}) \cong \mathbb{Z}^{m-1}$.
- Consider the space,

$$Y'_{m,n} = \bigcup_{A \in \operatorname{GL}_m} Y_{m,n}(A,A)$$

See if this approximates the free loop space $L(SU_m/T^{m-1})$.

ullet Replace $\mathbb C$ by $\mathbb R$ or $\mathbb H$

- Show that $s: Y_{m,n} \to Y_{m,n+1}$ is:
 - Injective on homology.
 - · Surjective on cohomology.
- Compute $\pi_1(Y_{m,n})$. We already know $H_1(Y_{m,n}) \cong \mathbb{Z}^{m-1}$.
- Consider the space,

$$Y'_{m,n} = \bigcup_{A \in \mathrm{GL}_m} Y_{m,n}(A,A)$$

See if this approximates the free loop space $L(SU_m/T^{m-1})$.

• Replace \mathbb{C} by \mathbb{R} or \mathbb{H} .