ISE 426 Optimization models and applications

Lecture 22 — November 20, 2014

- Nonlinear Programming (NLP)
- Least squares example
- Quadratic Programming

Reading:

▶ Winston&Venkataramanan, Ch. 12 up to §12.4; §12.10

Nonlinear Programming (NLP)

Consider the **continuous** case: no integer variables.

min
$$f(x)$$

 $g_i(x) \le 0 \quad \forall i = 1, 2 \dots, m$
 $h_j(x) = 0 \quad \forall j = 1, 2 \dots, p$
 $x \in \mathbb{R}^n$

This is convex when:

- $\blacktriangleright f(x)$ is convex
- ▶ all $g_i(x)$ are convex
- ▶ all $h_i(x)$ are convex and their opposite -h(x) is convex too
- ⇔ they are linear (aka affine):

$$h_i(x) = a_i^{\top} x - b_i$$

Unconstrained Optimization Problem

What is the main good news about convex optimization?

$$\min f(x) \quad x \in \mathbb{R}^n$$

If *f* is differentiable, then optimality condition:

$$\nabla f(x) = 0$$

If *f* is convex, then this condition is sufficient.

Optimization Problem

$$\min f(x)$$

$$g_i(x) \le 0, \quad i = 1, \dots, m$$

$$h_j(x) = 0, \quad j = 1, \dots, p$$

Lagrangian function

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{\nu} \nu_j h_j(x)$$

Dual function

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu)$$

 (λ, ν) is called dual feasible if $\lambda \ge 0$ and $g(\lambda, \nu) > -\infty$.

Dual Problem

Lagrangian function

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$

Dual function

$$d(\lambda,\nu) = \inf_{x} L(x,\lambda,\nu)$$

Want to find (λ, ν) such that $\operatorname{argmin}_{x} L(x, \lambda, \nu)$ is the solution to the original problem.

Lower bound: $d(\lambda, \nu) \le f(x)$ for any feasible (λ, ν) and x. Dual problem

$$\max \qquad d(\lambda, \nu)$$
$$\lambda > 0$$

Weak and Strong Duality

Let f^* be solution of the primal problem and d^* - solution of the dual problem.

- ▶ Weak duality: $d^* \le f^*$, always.
- ► Strong duality: If primal is convex then (usually) $d^* = f^*$.

Optimality conditions

Lagrangian function

$$L(x, \lambda, \nu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$

KKT (Karush-Kuhn-Tucker) optimality conditions: assume f_i and h_j are differentiable. If x^*, λ^*, ν^* are optimal with zero duality gap, then

$$g_i(x^*) \le 0, \ h_i(x^*) = 0$$

$$\begin{array}{l} \lambda_i \ge 0 \\ \nabla f(x^*) + \sum_i \lambda_i^* \nabla g_i(x^*) + \sum_j \nu_j^* \nabla h_j(x) * = 0 \\ \lambda_i^* g_i(x^*) = 0. \end{array}$$

For convex problems: if x^* , λ^* , ν^* satisfy KKT conditions above, then they are optimal.

Optimalty conditions

(Mixed-Integer) Nonlinear Programming (MINLP)

In the general form,

min
$$f(x)$$

 $g_i(x) \le 0 \quad \forall i = 1, 2 \dots, m$
 $h_j(x) = 0 \quad \forall j = 1, 2 \dots, p$
 $x_k \in \mathbb{Z} \quad \forall k \in K \subseteq \{1, 2 \dots, n\}$

A "convex" MINLP problem is such that relaxing integrality of all variables yields a convex (continuous) problem.

- ▶ Not really a convex problem, just an abuse of notation
- (integrality constraints make the problem nonconvex)
- ⇒ difficult, have to enumerate all local minima
 - ▶ However, relaxing integrality gives a convex problem
- ⇒ it is relatively easy to find a lower bound

Example: solve the following problem by Branch&Bound:

$$\min \quad (x - \frac{1}{3})^2 \\ x \in \mathbb{Z}$$

(Mixed-Integer) Nonlinear Programming (MINLP)

In the general form,

min
$$f(x)$$

 $g_i(x) \le 0 \quad \forall i = 1, 2 \dots, m$
 $h_j(x) = 0 \quad \forall j = 1, 2 \dots, p$
 $x_k \in \mathbb{Z} \quad \forall k \in K \subseteq \{1, 2 \dots, n\}$

A "nonconvex" NLP can model any problems considered so far including integer variables. How?

In theory NLP=MINLP, but in practice MINLPs are the hardest to solve.

- ▶ The type of nonconvexity is unknown and hard to explore.
- ⇒ do not know where local minima are.
 - ▶ Relaxing integrality does not give a convex problem.

Example: solve the following problem by Branch&Bound:

min
$$-(\frac{1}{3}x^3 + \frac{1}{4}x^2 - \frac{1}{2}x)$$

 $x \in \mathbb{Z}, x \in [-10, 10]$

Equality constrained convex quadratic programming

min
$$x^{\top}Qx + cx$$

 $a_1x = b_1$
 $a_2x = b_2$
 \vdots
 $a_mx = b_m$

where *Q* is a square psd matrix.

Positive (Semi)Definite Matrices

A square $n \times n$ matrix A is **Positive Definite** (PD) (denoted with $A \succ 0$) if, for any n-vector $x \neq 0$, the following holds:

$$x^{\top}Ax \ge 0$$

$$\sum_{i=1}^{n} \sum_{\substack{j=1\\j=1\\a_{11}x_1^2\\a_{21}x_2x_1\\a_{21}x_2x_1\\a_{22}x_2^2\\+\ldots\\+a_{2n}x_2x_n+}}^{n} a_{ij}x_ix_j =$$

$$a_{11}x_1^2 + a_{12}x_1^2 + \ldots + a_{1n}x_1x_n +$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}x_nx_1 + a_{n2}x_nx_1 + \ldots + a_{nn}x_n^2$$

$$> 0$$

Positive (Semi)Definite Matrices

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Semidefinite** (PSD) (denote it with $A \succeq 0$) if all principal minors of A are nonnegative.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Definite** (PD) (denote it with $A \succ 0$) if all leading principal minors of A are nonnegative.

A symmetric matrix $A \in R^{n \times n}$ is **Positive Semidefinite** (PSD) if and only if $A = BB^{\top}$ for some $B \in R^{n \times n}$.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Semidefinite** (PSD) if for all i = 1, ..., n $a_{ii} \ge \sum_{j=1, j \ne i}^{n} |a_{ij}|$.

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is **Positive Semidefinite** (PSD) if all its eigenvalues are nonnegative.

Application: Least squares approximation

Problem: Perform regression analysis on a set of experimental observations to identify a trend.

• A set of (n + 1)-dimensional points

$$a_1 = (a_{11}, a_{12} \dots, a_{1n}, b_1),$$

 $a_2 = (a_{21}, a_{22} \dots, a_{2n}, b_2),$
 \vdots
 $a_m = (a_{m1}, a_{m2} \dots, a_{mn}, b_m),$

are the result of the experiments

- i.e., each of them corresponds to a single observation and is a vector of numbers
- for instance, for each patient in a hospital, it is the vector of parameters: blood pressure, levels of cholesterol, etc.)

Application: Least squares approximation

- we think that these data are not random, but are connected to one another by a linear function
- ▶ i.e., there is a vector (p_1, p_2, \dots, p_n) and a scalar q such that

$$b_{1} = p_{1}a_{11} + p_{2}a_{12} + \dots + p_{n}a_{1n} + q$$

$$b_{2} = p_{1}a_{21} + p_{2}a_{22} + \dots + p_{n}a_{2n} + q$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$b_{m} = p_{1}a_{m1} + p_{2}a_{m2} + \dots + p_{n}a_{mn} + q$$

▶ ... but we don't know $p_1, p_2 \dots, p_n$ or q.

Application: Least squares approximation

We may just solve the linear system in the previous slide, but:

- there may be errors in the observation
- ▶ to add some robustness to the observation, usually $m \gg n$

Thus, if there are errors or noise in the observation, we look for a vector p and scalar q that minimizes the total error.

- Variables:
 - $p_i, i=1,2\ldots,n$
 - q
- Objective:

$$\sum_{i=1}^{m} (b_i - p_1 a_{i1} - p_2 a_{i2} \dots - p_n a_{in} - q)^2 = \sum_{i=1}^{m} (b_i - \sum_{j=1}^{n} (p_j a_{ij} + q))^2$$

 \Rightarrow a continuous (unconstrained) NLP problem.

Example

a_1	a_2	a_3	a_4	a_5	a_6
0.52	1.28	1.84	2.72	3.12	3.32
0.46	0.54	0.62	0.70	0.74	0.78
a_7	a_8	<i>a</i> ₉	a_{10}	a_{11}	<i>a</i> ₁₂
$\frac{a_7}{3.52}$	<i>a</i> ₈ 5.12	<i>a</i> ₉ 5.96	<i>a</i> ₁₀ 6.24	<i>a</i> ₁₁ 6.96	<i>a</i> ₁₂ 7.64

Are there p_1 and q satisfying:

$$0.46 = 0.52p_1 + q$$

$$0.54 = 1.28p_1 + q$$

$$\vdots$$

$$1.27 = 7.64p_1 + q$$

At least minimize total error:

min
$$(0.46 - 0.52p_1 - q)^2 +$$

+ $(0.54 - 1.28p_1 - q)^2$
+ \vdots
+ $(1.27 - 7.64p_1 - q)^2$

(I don't think so...)

Result

$$p = 0.113495, q = 0.39875.$$

Least squares - convex quadratic problem

We solve

min
$$\frac{1}{2} \sum (a_i^\top x - b_i)^2 = \frac{1}{2} ||Ax - b||^2 = \frac{1}{2} (Ax - b)^\top (Ax - b) = \frac{1}{2} x^\top A^\top Ax - b^\top Ax + \frac{1}{2} b^\top b$$
$$\frac{1}{2} x^\top Qx + c^\top x + const = f(x)$$

Q is positive semidefinite because $Q = A^{T}A$.

Convex unconstrained problem \Rightarrow every local minimum is a global minimum! To solve set derivative to zero:

$$\nabla f(x) = Qx + c = 0$$

$$x = -Q^{-1}c$$
 if $Q > 0$ — One solution!

If *Q* is singular - two cases:

- 1. Unbounded solution
- 2. Infinite number of solutions

Another example of convex quadratic problem

You are considering purchasing a stock over the next *n* days. You can buy it on any number of the days. Since you represent a large investor and purchase large amount of the stock each time, your purchases affect the price of the stock. If you purchase the y_i amount of the stock on day i then the price on that day goes up by θy_i on that day, by next day the effect of your purchase is dampened a bit and the price raised by $\frac{\theta}{2}y_i$, then the next day it is $\frac{\theta}{4}y_i$ and so on. If the starting price on day i is p_i derive the optimal purchasing schedule over the next 10 days is you need to purchase the total of Y.

Formulation via a convex QP

- ▶ Variables y_i the amount of stock purchased on day i.
- ▶ The price of the stock on day 1 is $\theta y_1 + p_1$.
- ► The price of the stock on day 2 is $\frac{\theta}{2}y_1 + \theta y_2 + p_2$.
- **.....**
- ▶ The price of the stock on day *i* is

$$\frac{\theta}{2^{i-1}}y_1 + \frac{\theta}{2^{i-2}}y_2 + \ldots + \theta y_i + p_i.$$

We need to solve

$$\min \quad \sum_{i=1}^{n} y_{i} (\sum_{j=1}^{i} \frac{\theta}{2^{i-j}} y_{j} + p_{i}) = \\ \frac{1}{2} y^{\top} Q y + p^{\top} y \\ \text{s.t.} \quad \sum_{i=1}^{n} y_{i} = Y$$

Formulation via a convex QP

$$\min_{\mathbf{s.t.}} \frac{\frac{1}{2}y^{\top}Qy + p^{\top}y}{\text{s.t.}} \sum_{i=1}^{n} y_i = Y$$

$$Q = \begin{pmatrix} 2\theta & \frac{\theta}{2} & \dots & \frac{\theta}{2^{n-1}} \\ \frac{\theta}{2} & 2\theta & \dots & \frac{\theta}{2^{n-2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\theta}{2^{n-1}} & \frac{\theta}{2^{n-2}} & \dots & 2\theta \end{pmatrix}$$

Q is positive definite because $Q_{ii} > \sum_{j \neq i} |Q_{ij}|$.

Convex quadratic problem ⇒ every local minimum is a global minimum!

Only equality constraint - can solve by solving a system of linear equations:

$$\left[\begin{array}{cc} Q & e \\ e^{\top} & 0 \end{array}\right] \left(\begin{array}{c} x \\ \lambda \end{array}\right) = \left(\begin{array}{c} -p \\ Y \end{array}\right)$$

If the matrix of the system is singular - two cases:

1. Unbounded solution

Conex Quadratic Programming (QP)

```
min x^{\top}Qx + cx

a_1x \ge b_1

a_2x \ge b_2

\vdots

a_mx \ge b_m
```

where *Q* is a square psd matrix.

Application: Markowitz porfolio selection

- n stocks
- ▶ Decision variables x_j , j = 1, ..., n represent number of shares of stock j to purchase.
- μ_i is mean of return of stock j (say after 1 year).
- σ_{jj} is variance of return of stock j (measures risk).
- σ_{ij} ($i \neq j$) is covariance of return on one share of stock i and one of stock j.
- ▶ These parameters must all be estimated in practice.

Markowitz model

min
$$V(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} x_i x_j$$

s.t.
$$\sum_{j=1}^{n} \mu_j x_j \ge L$$

$$\sum_{j=1}^{n} P_j x_j \le B$$

$$x_j \ge 0 \quad \forall j = 1, \dots, n$$

- ▶ *L* is minimum acceptable expected return.
- ▶ P_j is price per share of stock j (today).
- ▶ *B* is budget.

Robust Markowitz model

min
$$V(x) = \sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} x_i x_j$$

s.t.
$$\sum_{j=1}^n \mu_j x_j \ge L \quad \mu_i \text{ is not known}$$

$$\sum_{j=1}^n P_j x_j \le B$$

$$x_j \ge 0 \quad \forall j = 1, \dots, n$$

- ▶ *L* is minimum acceptable expected return.
- \blacktriangleright μ is not known, but has to be in some set M.
- ▶ How do we solve this?

Robust Markowitz model

$$\min \quad V(x) = \sum_{i=1}^n \sum_{j=1}^n \sigma_{ij} x_i x_j$$
 s.t.
$$\min_{\mu \in M} \sum_{j=1}^n \mu_j x_j \ge L$$

$$\sum_{j=1}^n P_j x_j \le B$$

$$x_j \ge 0 \quad \forall j = 1, \dots, n$$

- Optimize risk subject to minimum return requirement in the worst case.
- ► *M* can be a cubic set: $\{\mu : \mu_i^1 \le \mu_i \le \mu_i^2, \forall i = 1, \dots, n\}$.
- *M* can be a ball: $\{\mu : \|\mu \mu_0\| \le R\}$.

MINLP Markowitz model

Say a portfolio can only have k stocks.

min
$$V(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} x_i x_j$$
s.t.
$$\sum_{j=1}^{n} \mu_j x_j \ge L$$

$$\sum_{j=1}^{n} P_j x_j \le B$$

$$x_i \le B y_i$$

$$\sum_i y_i \le k$$

$$x_j \ge 0, \ y_i \in \{0, 1\} \quad \forall j = 1, \dots, n$$

A convex MINLP commonly used in financial models.

Convex quadratically constrained quadratic problems (QCQP)

QCQPs are problems of the form

$$\min \quad x^{\top} Q^0 x + a_0 x$$

$$x^{\top} Q^1 x + a_1 x \le b_1$$

$$x^{\top} Q^2 x + a_2 x \le b_2$$

$$\vdots$$

$$x^{\top} Q^m x + a_m x \le b_m$$

where Q_0 , Q_1 ..., Q_m are square psd matrices.

Convex quadratically constrained quadratic problems (QCQP)

QCQPs are problems of the form

$$\min \quad \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}^{0} x_{i} x_{j} + \sum_{j=1}^{n} a_{0j} x_{j} }{\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}^{1} x_{i} x_{j} + \sum_{j=1}^{n} a_{1j} x_{j} \leq b_{1} }$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}^{2} x_{i} x_{j} + \sum_{j=1}^{n} a_{2j} x_{j} \leq b_{2}$$

$$\vdots$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{ij}^{m} x_{i} x_{j} + \sum_{j=1}^{n} a_{mj} x_{j} \leq b_{m}$$

where Q_0 , Q_1 ..., Q_m are square psd matrices.