

Université Farhet Abbas – Sétif 1
Faculté de médecine
Département de médecine
Laboratoire de Physiologie Clinique

Physiologie de la médullo - surrénale

Dr. H.Bouchiha

Physiologie clinique explorations fonctionnelles métaboliques et Nutrition

I. Introduction:

• La médullosurrénale est souvent considérée comme l'équivalent d'un ganglion du système orthosympathique.

 L'unité fonctionnelle est la cellule chromaffine = cellule neuroendocrine

- La médullosurrénale secrète un groupe d'hormone = les catécholamines:
 - → 80% adrénaline
 - → 15% noradrénaline
 - → 5% dopamine.
- Elle contient deux types de cellules qui sécrètent l'un l'adrénaline, l'autre la noradrénaline

II. Métabolisme des catécholamines

A – Biosynthèse:

- Elle s'effectue à partir de la tyrosine qui est oxydée sous l'effet d'une tyrosinehydroxylase en dihydroxyphénylalanine ou DOPA; c'est l'étape limitante essentiel dans la synthèse des catécholamines.
- La DOPA est décarboxylée en Dopamine par la dopamine décarboxylase.
- La dopamine β hydroxylase transforme la dopamine en noradrénaline (NA) qui sera le terme ultime de la biosynthèse dans certaines cellules de la médullo-surrénale.
- Dans d'autres cellules, une enzyme supplémentaire, la N-méthyl-transférase, transforme la noradrénaline en adrénaline

B – Stockage:

Le stockage des catécholamines est assuré par des vésicules spécifiques, à corps dense, contenues dans les neurones et les cellules chromaffines de la médullosurrénale.

- Dans la médullosurrénale, 80 % des catécholamines stockées par les granules chromaffines sont représentées par l'adrénaline.
- Dans les vésicules synaptiques des neurones noradrénergiques périphériques et centraux stockent principalement la noradrénaline qui est le neuromédiateur.

C- Mécanisme de sécrétion:

La sécrétion des catécholamines dans le sang se fait par exocytose. Ce processus d'exocytose est déclenché essentiellement par la libération, dans la médullo-surrénale, du médiateur pré-ganglionnaire, l'acétylcholine.

Fonctionnement synaptique

Communication hormonale

D. Circulations des catécholamines dans le sang:

• Les concentrations plasmatiques des CA sont variables et dépendent de l'état physiologique de l'individu.

➤ Une partie des CA est liée aux protéines. Une autre partie est libre.

➤ La NA est 5 à 10 fois plus élevée que l'adrénaline dans le sang.

➤ La NA provient des terminaisons sympathiques.

➤Il existe une adrénalinémie physiologique basale de 2-3 mg/j dont l'origine est due à l'activité de la médullosurrénale.

III - Mécanisme d'action cellulaire des catécholamines

• L'adrénaline et la noradrénaline circulantes ont les mêmes effets sur les organes que la stimulation sympathique sauf que la durée d'action de ces hormones est 5 à 10 fois plus longue puisque les catécholamines sont dégradés lentement dans le sang.

• Ces hormones agissent par l'intermédiaire de récepteurs adrénergiques.

• Classification des récepteurs adrénergiques:

Les récepteurs adrénergiques sont des récepteurs membranaires couplés aux protéines G. On en distingue deux familles : Alpha et Bêta.

1 / Récepteurs adrénergiques α:

- vasoconstriction et élévation de la PA;
- contraction de l'utérus et de la vessie;
- augmentation de la libération de l'acétylcholine des muscles squelettiques.
- Récepteurs α1, agit par le système protéine G, phospholipase, de DAG et d'IP3.

> Récepteurs α2, à action protéine G, adénylate cyclase, l'AMPc.

2 / Récepteurs adrénergiques β

➤ Récepteurs Bêta-1 : situés au niveau du cœur et des reins.

➤ Récepteurs Bêta-2 : situés au niveau des fibres musculaires lisses du poumon et de l'utérus.

➤ Récepteurs Bêta-3 : présent sur les adipocytes, le colon et la vésicule, et impliqué dans le métabolisme lipidique

Les effets de l'activation des récepteurs β :

> Au niveau du cœur:

• Augmentation de la force de contraction cardiaque (effet inotrope+);

 Augmentation de la fréquence cardiaque (effet chronotrope +) d'où augmentation du débit cardiaque

Augmentation de l'excitabilité cardiaque (effet batmotrope +);

• Augmentation de la conductibilité cardiaque (effet dromotrope +).

- ➤ Au niveau des vaisseaux: vasodilatation .
- > Sur le système respiratoire: bronchodilatation .
- ➤ Sur les muscles lisses: une relaxation de l'utérus et de la vessie, relâchement des sphincters intestinaux.
- ➤ Sur les muscles squelettiques: augmentation de la glycogénolyse et inactivation de la glycogène-synthétase.

➤ Sur le tissu adipeux: augmentation de la lipolyse par activation de la lipase.

• Le mécanisme d'action, est un mécanisme de transduction mettant en jeu l'AMPc, second messager, responsable de tous les effets β des catécholamines par activation de la protéine kinase A (PKA).

Type de récepteur	Effet intracellulaire	Localisation	Effet
Alpha1	Activation de la phospholipase C	-Vaisseaux sanguins desservant les muqueuses ; la peau ; reins ; viscères	-Chronotrope + et Inotrope + (Augmente la fréquence et la force cardiaques) - Vasoconstriction - contraction des viscères - Mydriase
Alpha 2	Inhibition de l'adényl cyclase	-Membranes des terminaisons axonales adrénergiques	-Inhibition de libération de l'insuline
Bêta 1	Activation de l'adényl cyclase	- Coeur ; tissu adipeux -	-Chronotrope + et Inotrope + - Lipolyse
Bêta 2	Activation de l'adényl cyclase	-Reins; bronches; foie; vaisseaux sanguins du cœur et des muscles squelettiques et autres organes cibles du sympathique	-Sécrétion de rénine ; -Glycogénolyse , néoglycogénése -Vasodilation bronchodilatation); -Relâchement des muscles lisses; l'intestin tractus urinaire et myomètre

III - Effets physiologiques des catécholamines:

A. Action de l'adrénaline:

• Elle se manifeste à la fois par des effets sympathomimétiques et des effets métaboliques qui lui sont spécifiques:

***effets sympathomimétiques

Four le cœur, ces effets sont dus à une fixation sur des récepteurs β d'où tachycardie, augmentation de la puissance des systoles et augmentation du débit cardiaque.

- For les vaisseaux: l'action diffère selon les territoires. Elle s'explique par une répartition quantitative différente des récepteurs α et β du muscle lisse vasculaire, il y a redistribution vasculaire des aires cutanées et splanchniques vers les muscles et le cœur. Il n'y a donc pas de vasoconstriction généralisée.
- sur la musculature lisse: broncho-dilatation; inhibition du tonus et du péristaltisme intestinaux, avec spasme des sphincters; mydriase
- ➤ Splénocontraction.
- ➤ augmentation de la diurèse.
- rection directe sur le SNC, en particulier stimulation de l'hypothalamus avec sécrétion d'ACTH hypophysaire, réalisant un état de stress. L'injection d'adrénaline provoque un sentiment immédiat d'anxiété.

- *** effet sur le métabolisme (à des doses inférieures à celles nécessaires pour observer les effets précédents):
- ✓ Effet sur le métabolisme des glucides: ↑glycémie
- activation de la glycogénolyse, activation de la gluconéogenèse (action antagoniste de celle de l'insuline) et inhibition de la glycogénogénèse.
- Inhibe la sécrétion d'insuline, mais augmente la sécrétion de glucagon (adrénaline).
- ✓ Effet sur le métabolisme des lipides.
- Augmentation de la lipolyse (lipase hormono-sensible) et inhibition de la lipogenèse.

✓ L'effet global qui est essentiellement le fait des récepteurs Bêta est de stimuler la dégradation des substrats.

Par conséquence:

- une hyperglycémie,
- une hyperlactacidémie,
- une hyperlipidémie
- – une augmentation de la consommation d'oxygène (effet sympathomimétique avec accélération cardiaque).

B - Action de la noradrénaline:

- Elle se manifeste essentiellement sur l'appareil cardio-vasculaire (elle agit préférentiellement sur les récepteurs α). Elle est peu efficace sur le fonctionnement cardiaque. En revanche, elle provoque une vasoconstriction généralisée (à l'exception des coronaires), d'où l'HTA.
- ➤ Elle ne provoque pas de sentiment d'anxiété.

Les autres effets sont moins accusés, en particulier les effets métaboliques.

***Effets sur la sécrétion hormonale:

- Les CA régulent la sécrétion d'un certain nombre d'hormones:
- L'appareil juxta glomérulaire a une innervation sympathique abondante et soit l'adrénaline, soit la stimulation nerveuse rénale augmente la sécrétion de rénine.

• Diminuent de la sécrétion d'insuline (effet α) et augmentent de façon simultanée la sécrétion de glucagon (effet β).

• Les CA stimulent la synthèse et la libération des hormones thyroïdiennes.

Réponse au stress:

IV - Régulation de la biosynthèse des catécholamines

A - Régulation nerveuse:

• La stimulation des nerfs splanchniques entraîne une augmentation de la synthèse et de la sécrétion des catécholamines, liée à l'augmentation de synthèse des 3 enzymes de la biosynthèse: la tyrosine hydroxylase, la dopamine β hydroxylase et la phényléthanolamine N-méthyltransférase.

• La sécrétion basale d'adrénaline est augmentée par de nombreux stimuli physiologiques: hypoglycémie, exercice musculaire, froid, hypoxie, hypotension artérielle, hypercapnie, douleur; émotion; stress etc.

• Ces réponses sont bloquées par la dénervation de la médullosurrénale.

B - Régulation hormonale

• La suppression de la sécrétion endogène de gluco-corticoïdes entraîne une chute de la concentration de phényléthanolamine N-méthyltransférase. Cet effet est levé par l'administration de fortes doses de glococorticoïdes. Ces derniers stimulent donc la synthèse de l'enzyme à une concentration élevée.

C - Régulation locale

• L'activité de certaines enzymes de la biosynthèse est inhibée par certains intermédiaires ou produits des réactions de synthèse. C'est le cas de l'inhibition de la tyrosine hydroxylase par la noradrénaline.

Étape enzymatique de régulation

Etape régulée

Interconversion enz. actif ↔ enz. inactif

- activité ↑ par influx nerveux (phosphorylation dépendante de l'AMPc, de Ca²+ ou du DAG
- activité ↓ par DOPA et norAd → rétro contrôle

Etape spécifique

- des cellules chromaffines (médullo surrénale)
- de certains neurones (SNC, rétine)

Activité contrôlée par cortisol

V. Catabolisme des catécholamines et élimination

- Le catabolisme des catécholamines est catalysé par deux enzymes : la
- >monoamine oxydase (MAO)
- ➤ la catéchol-O-méthyl transférase (COMT).
- Les composés éliminés dans les urines sont les métanéphrines conjuguées à l'acide glucuronique (glucuronides), l'acide vanilmandélique (VMA) et l'acide homovanilique (HVA).

VI. Exploration du métabolisme des catécholamines

- Les métabolites les plus importants à doser sont l'adrénaline, la noradrénaline, la dopamine, les métanéphrines, HVA et VMA.
- ✓ Catécholamines ou métabolites plasmatiques
- Essentiellement reflet instantané de la sécrétion
- Circulent sous forme liée
- Demi vie plasmatique: ≈ 2 min
- ✓ Métabolites urinaires
- Reflet intégré de la sécrétion de la médullo surrénale par 24 h.

Prélèvement:

- Sang (plasma)= catécholamines
- Variations nycthémérales importantes des catécholamines,
- Impact de l'état nutritionnel, de l'activité physique et des conditions émotionnelles = respecter des conditions de prélèvement strictes.
- Un régime alimentaire excluant chocolat, bananes, agrumes et comprenant une consommation modérée de thé et de café dans les 48 heures précédant le prélèvement s'impose et Stop médicaments
- Prélèvement se fait en position couchée après un repos strict de 20 minutes et à jeun depuis plus de 10 h.

Urines

- Doivent être recueillies pendant 24 heures dans un bocal acidifiées par 10 ml d'une solution d'HCl
- Si possible 3 jours de suite.
- Les prélèvements doivent être acheminés le plus rapidement possible au laboratoire où ils seront conditionnés et éventuellement congelés si le dosage doit être différé ou transféré.

Stabilité

- Les catécholamines plasmatiques restent stables entre 3 et 5 heures après le prélèvement recueilli sur héparine à + 4°C.
- La congélation à 20°C permet de garder les catécholamines stables dans le plasma ou dans l'urine pendant au moins 3 semaines .

VII. Physiopathologie

- La pathologie médullosurrénalienne est dominée par le phéochromocytome; tumeurs issues des cellules Chromaffines, responsable d'une hypersécrétion d'une ou plusieurs catécholamines.
- Celui-ci doit être évoqué devant toute hypertension permanente ou paroxystique, s'accompagnant de sueurs, céphalée, palpitations et/ou troubles du rythme.
- Le diagnostic repose essentiellement sur le dosage urinaire des catécholamines et de leurs dérivés méthoxylés.