0.1. Prerequisites

- $I \subset R$ is an ideal if $\forall (a, b) \in \mathbb{R}^2, ab \in I \Longrightarrow a \in I \lor b \in I$.
- I is maximal if $I \neq R$ and there is no ideal $J \subset R$ such that $I \subset J$.
- $p \in \mathbb{Z}$ is prime iff $\langle p \rangle = \langle p \rangle_{\mathbb{Z}}$ is a prime ideal.
- For commutative ring R:
 - $I \subset R$ is prime ideal iff R/I is an integral domain.
 - I is maximal iff R/I is a field.
- Let R be PID and $a \in R$ irreducible. Then $\langle a \rangle = \langle a \rangle_R$ is maximal.
- **Theorem**: let F be field, $f(x) \in F[x]$ irreducible. Then $F[x]/\langle f(x) \rangle$ is a field and a vector space over F with basis $B = \{1, \overline{x}, ..., \overline{x}^{n-1}\}$ where $n = \deg(f)$. That is, every element in $F[x]/\langle f(x) \rangle$ can be uniquely written as a linear combination

$$a_0 + a_1 \overline{x} + \dots + a_{n-1} \overline{x}^{n-1}$$

1. Divisibility in rings

1.1. Every ED is a PID

- Definition: let R integral domain. $\varphi: R \{0\} \to \mathbb{N}_0$ is Euclidean function (norm) on R if:
 - $\forall x, y \in R \{0\}, \varphi(x) \le \varphi(xy)$.
 - $\forall x \in R, y \in R \{0\}, \exists q, r \in R : x = qy + r \text{ with either } r = 0 \text{ or } \varphi(r) < \varphi(y).$
- R is Euclidean domain (ED) if a Euclidean function is defined on it.
- Examples of EDs:
 - \mathbb{Z} with $\varphi(n) = |n|$.
 - F[x] for field F with $\varphi(f) = \deg(f)$.
- Lemma: $\mathbb{Z}\left[-\sqrt{2}\right]$ is an ED with Euclidean function with

$$\varphi\!\left(a+b\sqrt{-2}\right)=N\!\left(a+b\sqrt{-2}\right)\eqqcolon a^2+2b^2$$

• **Proposition**: every ED is a PID.

1.2. Every PID is a UFD

- **Definition**: Integral domain R is **unique factorisation domain (UFD)** if every non-zero non-unit in R can be written uniquely (up to order of factors and multiplication by units) as product of irreducible elements in R.
- Example: let $R = \{f(x) \in \mathbb{Q}[x] : f(0) \in \mathbb{Z}\}$. Its units are ± 1 . Any factorisation of $x \in R$ must be of the form f(x)g(x) where $\deg f = 1, \deg g = 0$, so x = (ax + b)c, $a \in \mathbb{Q}$, $b, c \in \mathbb{Z}$. We have bc = 0 and ac = 1 hence $x = \frac{x}{c} \cdot c$. So x irreducible if $c \neq \pm 1$. Also, any factorisation of $\frac{x}{c}$ in R is of the form $\frac{x}{c} = \frac{x}{cd} \cdot d$, $d \in \mathbb{Z}$, $d \neq 0$. Again, neither factor is a unit when $d \neq \pm 1$. So $x = \frac{x}{c} \cdot c = \frac{x}{cd} \cdot c \cdot c = \cdots$ can never be decomposed into irreducibles (the first factor is never irreducible).
- Lemma: let R be PID. Then every irreducible element is prime in R.
- **Theorem**: every PID is a UFD.
- **Example**: $\mathbb{Z}\left[\sqrt{-2}\right]$ so by the above theorem it is a UFD. Let $x, y \in \mathbb{Z}$ such that $y^2 + 2 = x^3$.

- y must be odd, since if $y = 2a, a \in \mathbb{Z}$ then $x = 2b, b \in \mathbb{Z}$ but then $2a^2 + 1 = 4b^3$.
- $y \pm \sqrt{-2}$ are relatively prime: if $a + b\sqrt{-2}$ divides both, then it divides their difference $2\sqrt{-2}$, so norm $a^2 + 2b^2 \mid N\left(2\sqrt{-2}\right) = 8$. Only possible case is $a = \pm 1, b = 0$ so $a + b\sqrt{-2}$ is unit. Other cases $a = 0, b = \pm 1, a = \pm 2, b = 0$ and $a = 0, b = \pm 2$ are impossible since y not even.
- If $a + b\sqrt{-2}$ is unit, $\exists x, y \in \mathbb{Z} : (a + b\sqrt{-2})(x + y\sqrt{-2}) = 1$. If $b \neq 0$ then $(-a^2 2b^2)y = 1 \Longrightarrow b = 0$: contradiction. If b = 0, $a = \pm 1$.

2. Finite field extensions

- **Definition**: let F, L fields. If $F \subseteq L$ and F and L share the same operations then F is a **subfield** of L and L is **field extension** of F (denoted L/F), and L is vector space over F with
 - $0 \in L$ (zero vector).
 - $u, v \in L \Longrightarrow u + v \in L$ (additivity).
 - $a \in F, u \in L \Longrightarrow au \in L$ (scalar multiplication).
- **Definition**: let L/F field extension. **Degree** of L over F is dimension of L as vector space over F:

$$[L:F] \coloneqq \dim_F(L)$$

If [L:F] finite, L/F is **finite field extension**.

- Example: $\mathbb{Q}\left(\sqrt{-2}\right) = \left\{a + b\sqrt{-2} : a, b \in \mathbb{Q}\right\}$ is isomorphic as a vector space to \mathbb{Q}^2 so is 2-dimensional vector space over \mathbb{Q} . Isomorphism is $a + b\sqrt{-2} \longleftrightarrow (a, b)$. Standard basis $\{e_1, e_2\}$ in \mathbb{Q}^2 corresponds to the basis $\left\{1, \sqrt{-2}\right\}$ in $\mathbb{Q}\left(\sqrt{-2}\right)$. $\left[\mathbb{Q}\left(\sqrt{-2}\right) : \mathbb{Q}\right] = 2$.
- **Example**: $[\mathbb{C} : \mathbb{R}] = 2$ (a basis is $\{1, i\}$). $[\mathbb{R} : \mathbb{Q}]$ is not finite, due to the existence of transcendental numbers (if α transcendental, then $\{1, \alpha, \alpha^2, ...\}$ is linearly independent).
- **Definition**: let L/F field extension. $\alpha \in L$ is **algebraic** over F if

$$\exists f(x) \in F[x]: f(\alpha) = 0$$

If all elements in L are algebraic, then L/F is algebraic field extension.

- **Example**: $i \in \mathbb{C}$ is algebraic over \mathbb{R} since i is root of $x^2 + 1$. \mathbb{C}/\mathbb{R} is algebraic since z = a + bi is root of $(x z)(x \overline{z})$.
- **Proposition**: if L/F is finite field extension then it is algebraic.
- **Definition**: let L/F field extension, $\alpha \in L$ algebraic. **Minimal polynomial** $p_{\alpha}(x) = p_{\alpha,F}(x)$ of α over F is the monic polynomial f of smallest degree such that $f(\alpha) = 0$.
- **Proposition**: $p_{\alpha}(x)$ is unique and irreducible. Also, if $f(x) \in F[x]$ is monic, irreducible and $f(\alpha) = 0$, then $f = p_{\alpha}$.
- Example:
 - $\bullet \quad p_{i,\mathbb{R}}(x)=p_{i,\mathbb{Q}}(x)=x^2+1,\, p_{i,\mathbb{Q}(i)}(x)=x-i.$
 - Let $\alpha = \sqrt[7]{5}$. $f(x) = x^7 5$ is minimal polynomial of α over \mathbb{Q} , as it is irreducible by Eisenstein's criterion with p = 5 and the above proposition.

• Let $\alpha=e^{2\pi i/p},\,p$ prime. α is algebraic as root of x^p-1 which isn't irreducible as $x^p - 1 = (x - 1)\Phi(x)$ where $\Phi(x) = (x^{p-1} + \dots + 1)$. $\Phi(\alpha) = 0$ since $\alpha \neq 1$, $\Phi(x)$ is monic and $\Phi(x+1) = ((x+1)^p - 1)/x$ irreducible by Eisenstein's criterion with p = p, hence $\Phi(x)$ irreducible. So $p_{\alpha}(x) = \Phi(x)$.

2.1. Fields generated by elements

• Definition: let L/F field extension, $\alpha \in L$. The field generated by α over F is the smallest subfield of L containing F and α :

$$F(\alpha) = \bigcap_{\substack{K \text{ field,} \\ F \subseteq K \subseteq L, \\ \alpha \in K}} K$$

Generally, $F(\alpha_1, ..., \alpha_n)$ is smallest field extension of F containing $\alpha_1, ..., \alpha_n$

- We have $F(\alpha_1,...,\alpha_n)=F(\alpha_1)\cdots(\alpha_n)$ (show $F(\alpha,\beta)\subseteq F(\alpha)(\beta)$ and $F(\alpha)(\beta) \subseteq F(\alpha,\beta)$ by minimality and use induction).
- Definition: $F[\alpha]=\{\sum_{i=0}^n a_i\alpha^i: a_i\in F, n\in\mathbb{N}\}=\{f(\alpha): f(x)\in F[x]\}.$
- Lemma: let L/F field extension, $\alpha \in L$ algebraic over F. Then $F[\alpha]$ is field, hence $F(\alpha) = F[\alpha].$
- Lemma: let α algebraic over F. Then $[F(\alpha):F]=\deg(p_{\alpha})$.
- **Definition**: let K/F and L/K field extensions, then $F \subseteq K \subseteq L$ are tower of fields.
- Tower theorem: let $F \subseteq K \subseteq L$ tower of fields. Then

$$[L:F] = [L:K] \cdot [K:F]$$

- Example: let $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Show $[L : \mathbb{Q}] = 4$. Let $K = \mathbb{Q}(\sqrt{2})$. Let $\sqrt{3} = a + b\sqrt{2}$, $a, b \in \mathbb{Q}$ so $3 = a^2 + 2b^2 + 2ab\sqrt{2}$. So $0 \in \{a, b\}$, otherwise $\sqrt{2} \in \mathbb{Q}$. But if a = 0, then $\sqrt{6} = 2b \in \mathbb{Q}$, if b = 0 then $\sqrt{3} = a \in \mathbb{Q}$: contradiction. So $x^2 - 3$ has no roots in K so is irreducible over K so $p_{\sqrt{3}.K}(x) = x^2 - 3$.
 - So [L:K]=2 so by the tower theorem, $[L:\mathbb{Q}]=[L:K]\cdot [K:\mathbb{Q}]=4.$

2.2. Norm and trace

• Let L/F finite field extension, n = [L:F]. For any $\alpha \in L$, there is F-linear map

$$\hat{\alpha}: L \to L, \quad x \to \alpha x$$

• With basis $\{\alpha_1,...,\alpha_n\}$ of L over F, then let $T_\alpha=T_{\alpha,L/F}\in M_n(F)$ be the corresponding matrix of the linear map α with respect to the basis $\{a_i\}$:

$$\begin{split} \hat{\alpha}(\alpha_1) &= \alpha \alpha_1 = a_{1,1} \alpha_1 + \dots + a_{1,n} \alpha_n, \\ &\vdots \\ \hat{\alpha}(\alpha_n) &= \alpha \alpha_n = a_{n,1} \alpha_1 + \dots + \alpha_{n,n} \alpha_n \end{split}$$

with $a_{i,j} \in F$, $T_{\alpha} = (a_{i,j})$, i.e.

$$\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = T_\alpha \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$

• **Definition**: **norm** of α is

$$N_{L/F}(\alpha) \coloneqq \det(T_{\alpha})$$

• **Definition**: **trace** of α is

$$\operatorname{tr}_{L/F}(\alpha) \coloneqq \operatorname{tr}(T_\alpha)$$

- Remark: norm and trace are independent of choice of basis so are well-defined (uniquely determined by α).
- Example: let $L = \mathbb{Q}(\sqrt{m}), m \in \mathbb{Z}$ non-square, let $\alpha = a + b\sqrt{m}, a, b \in \mathbb{Q}$. Fix basis $\{1, \sqrt{m}\}$. Now

$$\begin{split} \hat{\alpha}(1) &= \alpha \cdot 1 = a + b\sqrt{m}, \\ \hat{\alpha}\left(\sqrt{m}\right) &= \alpha\sqrt{m} = bm + a\sqrt{m}, \\ T_{\alpha} &= \begin{bmatrix} a & b \\ bm & a \end{bmatrix} \end{split}$$

So $N_{L/F}(\alpha) = a^2 - b^2 m$, $\operatorname{tr}_{L/F}(\alpha) = 2a$.

- Lemma: the map $L \to M_n(F)$ given by $\alpha \to T_\alpha$ is injective ring homomorphism. So if $f(x) \in F[x]$, $T_{f(\alpha)} = f(T_{\alpha})$ ($f(T_{\alpha})$ is a polynomial in T_{α} , not f applied to each entry).
- **Proposition**: let L/F finite field extension. $\forall \alpha, \beta \in L$,
 - $N_{L/F}(\alpha) = 0 \iff \alpha = 0.$

 - $$\begin{split} \bullet & \ N_{L/F}(\alpha\beta) = N_{L/F}(\alpha) N_{L/F}(\beta). \\ \bullet & \ \forall a \in F, N_{L/F}(a) = a^{[L:F]} \text{ and } \operatorname{tr}_{L/F}(a) = [L:F]\alpha. \end{split}$$
 - $\forall a, b \in F, \operatorname{tr}_{L/F}(a\alpha + b\beta) = a \operatorname{tr}_{L/F}(\alpha) + b \operatorname{tr}_{L/F}(\beta)$ (hence $\operatorname{tr}_{L/F}$ is F-linear map).

2.3. Characteristic polynomials

- Let $A \in M_n(F)$, then characteristic polynomial is $\chi_A(x) = \det(xI A) \in F[x]$ and is monic, $\deg(\chi_A) = n$. If $\chi_A(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ then $\det(A) = (-1)^n \det(0 - A) = (-1)^n \chi_A(0) = (-1)^n c_0$ and $\operatorname{tr}(A) = -c_{n-1}$, since if $\alpha_1,...,\alpha_n$ are eigenvalues of A (in some field extension of F), then $\operatorname{tr}(A) = \alpha_1 + \dots + \alpha_n, \, \chi_A(x) = (x - \alpha_1) \dots (x - \alpha_n) = x^n - (\alpha_1 + \dots \alpha_n) x^{n-1} + \dots$
- For finite field extension L/F, n = [L:F], $\alpha \in L$, characteristic polynomial $\chi_{\alpha}(x) = \chi_{\alpha,L/F}(x)$ is characteristic polynomial of T_{α} . So $N_{L/F}(\alpha) = (-1)^n c_0$, $\mathrm{tr}_{L/F}(\alpha)=-c_{n-1}.$ By the Cayley-Hamilton theorem, $\chi_{\alpha}(T_{\alpha})=0$ so $T_{\chi_{\alpha}(\alpha)} = \chi_{\alpha}(T_{\alpha}) = 0$. Since $\alpha \to T_{\alpha}$ is injective, $\chi_{\alpha}(\alpha) = 0$.
- Lemma: let L/F finite field extension, $\alpha \in L$ with $L = F(\alpha)$. Then $\chi_{\alpha}(x) = p_{\alpha}(x).$
- **Proposition**: consider tower $F \subseteq F(\alpha) \subseteq L$, let $m = [L : F(\alpha)]$. Then $\chi_{\alpha}(x) = p_{\alpha}(x)^{m}$.

• Corollary: let L/F, $\alpha \in L$ as above, $p_{\alpha}(x) = x^d + a_{d-1}x^{d-1} + \dots + a_0$, $a_i \in F$. Then

$$N_{L/F}(\alpha) = \left(-1\right)^{md} a_0^m, \quad \operatorname{tr}_{L/F}(\alpha) = -m a_{d-1}$$

3. Algebraic number fields and algebraic integers

3.1. Algebraic numbers

- **Definition**: $\alpha \in \mathbb{C}$ is **algebraic number** if algebraic over \mathbb{Q} .
- Definition: K is (algebraic) number field if $Q \subseteq K \subseteq \mathbb{C}$ and $[K : \mathbb{Q}] < \infty$.
- Every element of an algebraic number field is an algebraic number.
- Example: let $\theta = \sqrt{2} + \sqrt{3}$, then $\mathbb{Q}(\theta) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ but also $\theta^3 = 11\sqrt{2} + 9\sqrt{3}$ so

$$\sqrt{2} = \frac{\theta^3 - 9\theta}{2}, \quad \sqrt{3} = \frac{-\theta^3 + 11\theta}{2}$$

so $\mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\theta)$ hence $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\theta)$.

- Simple extension theorem: every number field K has form $K = \mathbb{Q}(\theta)$ for some $\theta \in K$.
- Set of all algebraic numbers (union of all number fields) is denoted $\overline{\mathbb{Q}}$ and is a field, since if $\alpha \neq 0$ algebraic over \mathbb{Q} , $[\mathbb{Q}(\alpha):\mathbb{Q}] = \deg(p_{\alpha}) < \infty$ so $\mathbb{Q}(\alpha)/\mathbb{Q}$ algebraic, so $-\alpha, \alpha^{-1} \in \mathbb{Q}(\alpha)$ algebraic, so $\alpha^{-1}, -\alpha \in \overline{\mathbb{Q}}$, and if $\alpha, \beta \in \overline{\mathbb{Q}}$ then $\mathbb{Q}(\alpha, \beta) = \mathbb{Q}(\alpha)(\beta)$ is finite extension of \mathbb{Q} by tower theorem so $\alpha + \beta$, $\alpha\beta \in \mathbb{Q}(\alpha, \beta)$ so are algebraic.
- $\left[\overline{\mathbb{Q}}:\mathbb{Q}\right] = \infty$ since if $\left[\overline{\mathbb{Q}}:\mathbb{Q}\right] = d \in \mathbb{N}$ then every algebraic number would have degree $\leq d$, but $\sqrt[d+1]{2}$ has degree d+1 since it is a root of $x^{d+1}-2$ which is irreducible by Eisenstein's criterion with p=2.
- **Definition**: let $\alpha \in \overline{\mathbb{Q}}$. **Conjugates** of α are roots of $p_{\alpha}(x)$ in \mathbb{C} .
- Example:
 - Conjugate of $a + bi \in \mathbb{Q}(i)$ is a bi.
 - Conjugate of $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ is $a b\sqrt{2}$.
 - Conjugates of θ do not always lie in $\mathbb{Q}(\theta)$, e.g. for $\theta = \sqrt[3]{2}$, $p_{\theta}(x) = x^3 2$ has two non-real roots not in $\mathbb{Q}(\theta) \subset \mathbb{R}$.
- Notation: when base field is \mathbb{Q} , N_K and tr_K denote $N_{K/\mathbb{Q}}$ and $\operatorname{tr}_{K/\mathbb{Q}}$.
- Lemma: let K/\mathbb{Q} number field, $\alpha \in K, \, \alpha_1, ..., \alpha_n$ conjugates of $\alpha.$ Then

$$N_K(\alpha) = (\alpha_1 \cdots \alpha_n)^{[K:\mathbb{Q}(\alpha)]}, \quad \operatorname{tr}_K(\alpha) = (\alpha_1 + \cdots + \alpha_n)[K:\mathbb{Q}(\alpha)]$$

3.2. Algebraic integers

- Definition: $\alpha \in \overline{\mathbb{Q}}$ is algebraic integer if it is root of a monic polynomial in $\mathbb{Z}[x]$. The set of algebraic integers is denoted $\overline{\mathbb{Z}}$. If K/\mathbb{Q} is number field, set of algebraic integers in K is denoted \mathcal{O}_K .
- Example: $i, (1 + \sqrt{3})/2 \in \mathbb{Z}$ since they are roots of $x^2 + 1$ and $x^2 x + 1$ respectively.
- **Theorem**: let $\alpha \in \overline{\mathbb{Q}}$. The following are equivalent:

- $\alpha \in \overline{\mathbb{Z}}$.
- $\begin{array}{ll} \bullet & p_{\alpha}(x) \in \mathbb{Z}[x]. \\ \bullet & \mathbb{Z}[\alpha] = \left\{\sum_{i=0}^{d-1} a_i \alpha^i : a_i \in \mathbb{Z}\right\} \text{ where } d = \deg(p_{\alpha}). \end{array}$
- There exists non-trivial finitely generated abelian additive subgroup $G \subset \mathbb{C}$ such that

$$\alpha G \subseteq G$$
 i.e. $\forall g \in G, \alpha g \in G$

(αg is complex multiplication).

• Remark:

- For third statement, generally we have $\mathbb{Z}[\alpha] = \{f(\alpha : f(x) \in \mathbb{Z}[x])\}$ and in this case, $\mathbb{Z}[\alpha] = \{ f(\alpha) : f(x) \in \mathbb{Z}[x], \deg(f) < d \}.$
- Fourth statement means that

$$G = \{a_1\gamma_1 + \dots + a_r\gamma_r : a_i \in \mathbb{Z}\} = \gamma_1\mathbb{Z} + \dots + \gamma_r\mathbb{Z} = \langle \gamma_1, ..., \gamma_r \rangle_{\mathbb{Z}}$$

G is typically $\mathbb{Z}[\alpha]$. E.g. if $\alpha = \sqrt{2}$, $\mathbb{Z}[\sqrt{2}]$ is generated by $1, \sqrt{2}$ and $\sqrt{2} \cdot \mathbb{Z}[\sqrt{2}] \subseteq \mathbb{Z}[\sqrt{2}].$

- Proposition: $\overline{\mathbb{Z}}$ is a ring. Also, for every number field $K,\,\mathcal{O}_K$ is a ring.
- Lemma: let $\alpha \in \overline{\mathbb{Z}}$. For every number field K with $\alpha \in K$,

$$N_K(\alpha) \in \mathbb{Z}, \quad \operatorname{tr}_K(\alpha) \in \mathbb{Z}$$

• Lemma: let K number field. Then

$$K = \left\{\frac{\alpha}{m} : \alpha \in \mathcal{O}_K, m \in \mathbb{Z}, m \neq 0\right\}$$

• Lemma: let $\alpha \in \overline{\mathbb{Z}}$, K number field, $\alpha \in K$. Then

$$\alpha \in \mathcal{O}_K^{\times} \Longleftrightarrow N_K(\alpha) = \pm 1.$$

3.3. Quadratic fields and their integers

- **Definition**: $d \in \mathbb{Z}$ is **squarefree** if $d \notin \{0,1\}$ and there is no prime p such that $p^2 \mid d$.
- **Definition**: $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field if d is squarefree. If d > 0 then it is real quadratic. If d < 0 it is imaginary quadratic.
- Proposition: let K/\mathbb{Q} have degree 2. Then $K = \mathbb{Q}(\sqrt{d})$ for some squarefree $d \in \mathbb{Z}$.
- Lemma: let $K = \mathbb{Q}(\sqrt{d}), d \equiv 1 \pmod{4}$. Then

$$\mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \left\{\frac{r+s\sqrt{d}}{2} : r, s \in \mathbb{Z}, r \equiv s \; (\text{mod } 2)\right\}$$

• Theorem: let $K = \mathbb{Q}(\sqrt{d})$ quadratic field, then

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \not\equiv 1 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \pmod{4} \end{cases}$$

4. Units in quadratic rings

- Notation: in this section, let $K = \mathbb{Q}(\sqrt{d})$ be quadratic number field, $d \in \mathbb{Z} \{0\}$, |d| is not a square. Let $\mathcal{O}_d=\mathcal{O}_K$. Let $a+b\sqrt{d}=a-b\sqrt{d}$. The map $x\to \overline{x}$ is a \mathbb{Q} automorphism from K to K.
- Definition: S is quadratic number ring of K if $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$.
- We have

$$\alpha \in S^{\times} \Longrightarrow \exists x \in S: \alpha x = 1 \Longrightarrow N_{K}(\alpha)N_{K}(x) = 1 \Longrightarrow N_{K}(\alpha) = \pm 1$$

and for $\alpha \in S - \mathbb{Z}$, since $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$ and so $[K : \mathbb{Q}(\alpha)] = 1$ by the Tower Theorem,

$$N_K(\alpha) = \pm 1 \Longrightarrow \alpha \overline{\alpha} = \pm 1 \Longrightarrow \alpha \in S^{\times}$$

- **Theorem**: to determine the group of units for imaginary quadratic fields:
 - For d < -1, $\mathbb{Z}[\sqrt{d}]^{\times} = \{\pm 1\}$.
 - $\mathcal{O}_{-1}^{\times} = \mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$

 - For $d \equiv 1 \pmod{4}$ and d < -3, $\mathbb{Z}[\frac{1+\sqrt{d}}{2}]^{\times} = \{\pm 1\}$. $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]^{\times} = \{\pm 1, \pm \omega, \pm \omega^2\}$ where $\omega = \frac{1+\sqrt{-3}}{2} = e^{\pi i/3}$.
- Main theorem: let d > 1, d non-square, S be quadratic number ring of $K = \mathbb{Q}(\sqrt{d})$ (i.e. $S = \mathcal{O}_d$ or $S = \mathbb{Z}[\sqrt{d}]$). Then
 - S has a smallest unit u > 1 (smaller than all units except 1).
 - $S^{\times} = \{ \pm u^r : r \in \mathbb{Z} \} = \langle -1, u \rangle$.
- **Definition**: the smallest unit u > 1 above is the **fundamental unit** of S (or of K, in the case $S = \mathcal{O}_d$).

4.1. Proof of the main theorem

• Remark: if $\alpha = a + b\sqrt{d}$ is unit in $\mathbb{Z}[\sqrt{d}]$, a, b > 0, then $N_K(\alpha) = \alpha \overline{\alpha} = \pm 1$, so

$$|\overline{\alpha}| = |a - b\sqrt{d}| = \frac{|N_K(\alpha)|}{|\alpha|} = \frac{1}{|\alpha|} < \frac{1}{b\sqrt{d}} < \frac{1}{b}$$

Define

$$A = \left\{\alpha = a + b\sqrt{d} : a, b \in \mathbb{N}_0, |\overline{\alpha}| < \frac{1}{b}\right\}$$

If α is a unit, then one of $\pm \alpha, \pm \overline{\alpha}$ has $a, b \geq 0$, so A is non-empty.

- Lemma: $|A| = \infty$.
- Lemma: if $\alpha \in A$, then $|N_K(\alpha)| < 1 + 2\sqrt{d}$.
- Lemma: $\exists \alpha=a+b\sqrt{d}, \alpha'=a'+b'\sqrt{d} \in A: \alpha>\alpha', \ |N_K(\alpha)|=|N_K(\alpha')|=:n$ and

$$\alpha \equiv \alpha' \; (\operatorname{mod} n), \quad b \equiv b' \; (\operatorname{mod} n)$$