What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.

Knowledge Discovery (KDD) Process

Data Mining in Business Intelligence

Data Mining: Confluence of Multiple Disciplines

Recommender System

- Product recommendation (Amazon, EBay)
- Search recommendation (Google, Bing)
- Video/music/post recommendation (Netflix, Pandora, Pinterst)
- Friend recommendation (Facebook, twitter)
- Job recommendation (linkln)

- collaborative filtering
- content-based filtering
- hybrid

Commerce, Profiling and Finance

- Planning and Forecasting
 - Dynamic pricing
 - Ads bidding
- Profiling
 - User profiling
 - Churn Prediction: knowing which users are going to stop using your platform in the future.
 - Product profiling
- Fintech
 - Stock market
 - Sentiment analysis

Urban Planning

- Energy and power
- Traffic prediction and management
 - Parking detection
 - Traffic control
- Transportation sharing system
 - Uber
 - Bike-sharing
- Pollution
 - Air quality prediction

Medicine and Healthcare

- Disease prediction
 - Computer Aided Detection
 - EHR
 - Risk prediction
 - Disease progression prediction
- Healthcare
 - Epidemic and outbreak prediction
 - Food safety
- Medicine study
 - Drug discovery and prediction
- Bioinformatics

Other Sciences and Applications

- Education
 - MOOC (massive open online course)
- Political science and Social science
 - Fake news
 - Crime and terrorist detection
 - Disaster detection
 - Opinion mining
 - Social influence
- Environmental Science
 - Climate

Pattern Discovery: Basic Concepts

■ What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

What are Patterns?

- What are patterns?
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets

Frequent item set

Frequent sequences

Frequent structures

What Is Pattern Discovery?

- Pattern discovery: Uncovering patterns from massive data sets
- It can answer questions such as:
 - What products were often purchased together?
 - What are the subsequent purchases after buying an iPad?

Pattern Discovery: Why Is It Important?

- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis
 - Many types of data: spatiotemporal, multimedia, time-series, and stream data

Basic Concepts: Transactional Database

- Transactional Database (TDB)
 - Each transaction is associated with an identifier, called a TID.
 - May also have counts associated with each item sold

Tid	Items bought	
1	Beer, Nuts, Diaper	
2	Beer, Coffee, Diaper	
3	Beer, Diaper, Eggs	
4	Nuts, Eggs, Milk	
5	Nuts, Coffee, Diaper, Eggs, Milk	

Basic Concepts: k-Itemsets and Their Supports

■ Itemset: A set of one or more items

$$I = \{ I_1, I_2, \cdots, I_m \}$$

k-itemset: An itemset containing k items:

$$X = \{x_1, ..., x_k\}$$

- Ex. {Beer, Nuts, Diaper} is a 3-itemset
- Absolute support (count)
 - sup{X} = occurrences of an itemset X
 - \square Ex. sup{Beer} = 3
 - \square Ex. sup{Diaper} = 4
 - Ex. sup{Beer, Diaper} = 3
 - \square Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
1	Beer, Nuts, Diaper	
2	Beer, Coffee, Diaper	
3	Beer, Diaper, Eggs	
4	Nuts, Eggs, Milk	
5	Nuts, Coffee, Diaper, Eggs, Milk	

- Relative support
 - □ $s\{X\}$ = The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - \Box Ex. s{Beer} = 3/5 = 60%
 - \Box Ex. s{Diaper} = 4/5 = 80%
 - \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a minsup threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold) for the given 5-transaction dataset

- All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%);Diaper: 4/5 (80%); Eggs: 3/5 (60%)
- All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
- All the frequent 3-itemsets?
 - None

Tid	Items bought	
1	Beer, Nuts, Diaper	
2	Beer, Coffee, Diaper	
3	Beer, Diaper, Eggs	
4	Nuts, Eggs, Milk	
5	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Compared with itemsets, association rules can be more telling
 - □ Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers

Note: $X \cup Y$: the union of two itemsets

■ The set contains both X and Y

Association Rules

- How do we compute the strength of an association rule $X \rightarrow Y$ (Both X and Y are itemsets)?
- We first compute the following two metrics, s and c.
 - \square Support of $X \cup Y$
 - \square Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
 - \Box Confidence of $X \rightarrow Y$
 - ☐ The *conditional probability* that a transaction containing X also contains *Y*:

$$c = \sup(X, Y) / \sup(X)$$

- \Box Ex. $c = \sup{\text{Diaper, Beer}}/\sup{\text{Diaper}} = \frac{34}{2} = 0.75$
- ☐ In pattern analysis, we are often interested in those rules that dominate the database, and these two metrics ensure the popularity and correlation of X and Y.

Tid	Items bought	
1	Beer, Nuts, Diaper	
2	Beer, Coffee, Diaper	
3	Beer, Diaper, Eggs	
4	Nuts, Eggs, Milk	
5	Nuts, Coffee, Diaper, Eggs, Milk	

Mining Frequent Itemsets and Association Rules

Association rule mining

- Given two thresholds: minsup, minconf
- ☐ Find all of the rules, $X \rightarrow Y$ (s, c) such that $s \ge minsup$ and $c \ge minconf$
- Let minsup = 50%
 - □ Freq. 1-itemsets: Beer: 3, Nuts: 3,□ Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
- Let *minconf* = 50%
 - \Box Beer \rightarrow Diaper (60%, 100%)
 - \Box Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought	
1	Beer, Nuts, Diaper	
2	Beer, Coffee, Diaper	
3	Beer, Diaper, Eggs	
4	Nuts, Eggs, Milk	
5	Nuts, Coffee, Diaper, Eggs, Milk	

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain (minsup = 2)?
 - \square TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Let's have a try

1-itemsets: $\{a_1\}$: 2, $\{a_2\}$: 2, ..., $\{a_{50}\}$: 2

2-itemsets: $\{a_1, a_2\}$: 2, ..., $\{a_1, a_{50}\}$: 2, $\{a_2, a_3\}$: 2 ..., ..., $\{a_{49}, a_{50}\}$: 2,

..., ..., ..., ...

49-itemsets: $\{a_1, a_2, ..., a_{49}\}$: 2, ..., $\{a_2, a_3, ..., a_{50}\}$: 2

50-itemset: {a₁, a₂, ..., a₅₀}: 2

The total number of frequent itemsets:

A too huge set for any one to compute or store!

$$\binom{50}{1} + \binom{50}{2} + \dots + \binom{50}{50} = 2^{50} - 1$$

Expressing Patterns in Compressed Form

- How to reduce the redundancy of the list of all the frequent itemsets?
- Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y > X, with the same support as X
 - \square Ex. TDB₁: T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}; T₃: {a₁, ..., a₁₀}
 - Suppose minsup = 2. How many closed patterns does TDB₁ contain?
 - Two: P_1 : "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{10} }: 3"

Expressing Patterns in Compressed Form: Closed Patterns

- Closed pattern is a lossless compression of frequent patterns
 - Lossless: no information loss
 - Reduces the # of patterns but does not lose the support information!
 - Given P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{10}\}$: 3";
 - You will still be able to say: "{a₂, ..., a₄₀}: 2", "{a₅, a₁}: 3"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}; T_3 : {a₁, ..., a₁₀}
 - □ Suppose minsup = 2. How many max-patterns does TDB₁ contain?
 - □ One: P: "{a₁, ..., a₅₀}: 2"

Expressing Patterns in Compressed Form: Max-Patterns

- Max-pattern is a lossy compression!
 - We only any subset of the max-pattern $P:\{a_1, ..., a_{50}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{10}\}$, ..., any more!
 - More compressed than closed pattern (that is smaller in size)

The Downward Closure Property of Frequent Patterns

- □ **Frequent** itemset: $\{a_1, ..., a_{50}\}$
 - □ Subsets are all **frequent**: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, ..., a_{49}\}$, ...
- Downward closure (Apriori): Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - If any subset of an itemset S is infrequent, then there is no chance for S to be frequent.
 A sharp knife for pruning!

Apriori: A Candidate Generation & Test Approach

- Outline of Apriori (level-wise, candidate generation and test)
 - Scan DB once to get frequent 1-itemset
 - Repeat
 - Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm—An Example

Database TDB

Tid

10

20

30

40

minsup = 2

 C_{I}

1st scan

sup
2
3
3
1
3

 $F_{l} \begin{tabular}{|c|c|c|c|} \hline F_{l} & $Itemset$ & sup \\ \hline & $\{A\}$ & 2 \\ \hline & $\{B\}$ & 3 \\ \hline & $\{C\}$ & 3 \\ \hline & $\{E\}$ & 3 \\ \hline \end{tabular}$

 $F_2 \begin{tabular}{c|ccc} \textbf{Itemset} & \textbf{sup} \\ & \{A,C\} & 2 \\ & \{B,C\} & 2 \\ & \{B,E\} & 3 \\ & \{C,E\} & 2 \\ \end{tabular}$

Items

A, C, D

B, C, E

A, B, C, E

B, E

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

2nd scan

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

 C_3 **Itemset** {B, C, E}

 3^{rd} scan

Itemset	sup
{B, C, E}	2

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k F_k: Frequent itemset of size k F_k: Frequent itemset of size k F_k:= {frequent items}; // frequent 1-itemset F_k:= {frequent items}; // when F_k is non-empty F_k:= candidates generated from F_k; // candidate generation F_k:= candidates generated from F_k: // candidate generation F_k:= k + 1 F_k:= k + 1 F_k: // return F_k: generated at each level
```

Candidate Generation (Pseudo-Code)

```
Suppose the items in F_{k-1} are listed in an order
                                                      self-join
                                                                       self-join
// Step 1: Joining
                                                 zabc zabd
                                                                 acd
                                                                                  bcd
                                                                          ace
   for each p in F_{k-1}
                                                      zabcd
       for each q in F_{k-1}
              if p.item_1 = q.item_1, ..., p.item_{k-2} = q.item_{k-2}, p.item_{k-1} < q.item_{k-1} 
                     c = \mathbf{join}(p, q)
// Step 2: pruning
                     if has_infrequent_subset(c, F_{k-1})
                             continue // prune
                      else add c to C_k
```

Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

Partitioning: Scan Database Only Twice

- Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database so that each partition can fit in main memory (why?)
 - Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - ☐ Find global frequent itemset candidates (those frequent in at least one partition)
 - Find the true frequency of those candidates, by scanning TDB; one more time

Why Mining Frequent Patterns by Pattern Growth?

- Apriori: A breadth-first search mining algorithm
 - ☐ First find the complete set of frequent k-itemsets
 - Then derive frequent (k+1)-itemset candidates
 - □ Scan DB again to find true frequent (k+1)-itemsets
- Are there depth-first search algorithm?
 - Yes