PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-338366

(43) Date of publication of application: 27.11.2002

(51)Int.Cl.

C04B 35/626 CO4B 35/565

H05B 3/14

(21)Application number: 2001-150844 (71)Applicant: TOKAI KONETSU KOGYO CO

LTD

(22) Date of filing:

21.05.2001

(72)Inventor: SHIMOYAMA NOBUYOSHI

(54) HIGH PURITY SILICON CARBIDE HEATING ELEMENT AND METHOD OF PRODUCING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a high purity silicon carbide heating element having non-staining property and useful as heaters of various devices used in the semiconductor field or the like, required to be strictly kept free from contamination, and a method of producing the same.

SOLUTION: The high purity silicon carbide heating element is formed from a silicon carbide sintered compact which is produced by mixing 60 to 80 wt.% high purity α-type silicon carbide powder A having an average particle diameter of ≤100 μm and containing Fe in an amount of ≤10 ppm, 10 to 20 wt.% high purity α-type silicon carbide powder B having an average particle diameter of ≤2 μm and containing Fe in an amount of ≤30 ppm, and 10 to 20 wt.% α-type silicon carbide powder C having an average particle diameter of ≤1 µm and containing Fe in an amount of ≤200 ppm to obtain a silicon carbide mixed powder, then adding water to the silicon carbide mixed powder, kneading, slip casting the resulting slurry to obtain a formed body, firing the formed body under a non-oxidizing atmosphere at 1,800 to 2,200°C, and subjecting the sintered compact to acid treatment to dissolve and remove impurities. It is preferable that the silicon carbide sintered compact contains Fe in an amount of ≤10 ppm, and has physical properties that the electrical specific resistance at room temperature is ≤ 0.1 Ω .cm and the density is ≥2.5 g/cm3.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開發号 特開2002-338366

(P2002-338366A)

				(43)公開日	平成14年11月	27 🗉 (2002, 11, 27)
(51) Int.CL'		裁別配号	FI			ラーマユード(参考)
C04B	35/626		H05B	3/14	C	3 K 0 9 2
	35/565		C 0 4 B	35/56	101P	4G001
H05B	3/14				101X	
					101Y	•
			審查請	東 文館水	資界項の数3	OL (全 5 頁)
(21)出顧母	?	特度2001 - 150344(P2001 - 150344)	(71) 出項。			
(22)出題日		平成13年5月21日(2001.5.21)		東京都新	曾区西新宿6丁	目14番1号
			(72) 発明	计 下山 电转	\$	
					曾区西新宿六丁 华式会社内	目14番1号 東海
			(74)代理.	A 100071853	•	
				弁理士 	高田 保夫 (外1名)
			FALA	(参考) 314092	PP20 Q809	
				40001	BA22 BA71 88	22 BB71 BC13
					BC52 BC54 BC	71 8001 8023
					BDD2 BE22	

(54) 【発明の名称】 高純度炭化珪素発熱体およびその製造方法

(57)【要約】

【課題】 汚染を織う半導体分野などで使用される各種 装置のヒータとして有用な、非汚染性の高純度炭化珪素 発熱体およびその製造方法を提供する。

【解决手段】 平均粒子径100 μm 以下、Fe含有量10pp m 以下の高純度α型炭化珪素粉末Aを60~80重量%、平 均粒子径2 μm 以下、Fe含有量30ppm 以下の高純度α型 炭化硅素粉末Βを10~20重量%、平均粒子径1 μm 以 下、Fe含有量200ppm以下のα型炭化硅素粉末Cを10~20 重量%の割合で混合した炭化珪素混合粉末に水を加えて 複錬し、調製したスラリーを鋳込み成形して得られた成 形体を非酸化性雰囲気中1809~2200°Cの温度で嬉成し、 次いで焼結体を餓処理して不純物を溶解除去して得られ た炭化珪素焼結体からなることを特徴とする高純度炭化 建素完熟体およびその製造方法。炭化珪素焼結体はFee含 有量が10ppm 以下、室温での電気比低抗が0.1 Ω cm以 下、密度が2.5g/cm/以上の物性を有していることが好ま Liks.

特闘2002-338366

(2)

【特許請求の範囲】

【請求項 1 】 平均粒子径 1 0 0 μm 以下、Fe含有量 10ppm 以下の高純度 a型炭化珪素粉末Aを60~80 重量%、平均粒子径2 mm 以下、Fe含有量30 ppm以 下の高純度α型炭化珪素粉末Bを10~20重量%、平 均粒子径1 um 以下、Fe含有量200 ppm 以下のα型 炭化珪素粉末Cを10~20重置%。の割合で混合した 炭化珪素混合粉末に水を加えて混印し、調製したスラリ ーを誇込み成形して得られた成形体を非酸化性雰囲気中 酸処理して不純物を溶解除去して得られた炭化珪素焼箱 体からなることを特徴とする高純度炭化珪素発熱体。

1

【請求項2】 炭化珪素焼結体が、Fe含有量10ppm 以下、室温における電気比低抗①、1Ωcm以下、密度 2. 5 g/cm' 以上の物性を有する、請求項1記載の高純 度炭化珪素発熱体。

【請求項3】 平均粒子径100 μm 以下、Fe含有量 10ppm 以下の高純度 α型炭化珪素粉末Aを60~80 重量%、平均粒子径2 mm 以下、Fe含有量30 ppm以 均粒子径1 μm 以下、Fe含有量200pm 以下のα型 炭化珪素粉末Cを10~20重置%。の割合で混合した 炭化珪素混合粉末に水を加えて混雑し、調製したスラリ ーを鑄込み成形して得られた成形体を非酸化性雰囲気中 1800~2200℃の温度で焼成し、次いで焼結体を 酸処理して不純物を溶解除去することを特徴とする高純 度炭化珪素発熱体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば汚染を織う 30 半導体分野などで使用される各種装置のヒータとして有 用な、非汚染性の高純度炭化珪素発熱体に関する。

[0002]

【従来の技術】炭化珪素焼結体は耐熱性、耐熱衝撃性、 耐蝕性、高温強度特性などに使れており、また抵抗値が 発熱体に適した値を有しているため、従来から高温用の 抵抗発熱体として広く使用されている。

【0003】炭化珪素焼結体はSIC粉末を原料とし て、競結助剤やパインダーを加えて混錬し、泥錬物を押 出し成形する方法やSIC粉末を水などの溶媒中に分散 40 させたスラリーを石膏型などの吸水性の材料で作製した 成形型に注入して成形する方法により作製した成形体を 焼結する再結晶化法、あるいは、SiC粉末と炭素の混 台粉末を成形し、成形体に高温で溶融した金屑Siを熱 処理して含複させ、炭素とSiの固組-液相反応により 生成したSICの二次粒子によりSiC粉末を結合させ る反応焼結法、などにより製造されている。

【0004】炭化珪素発熱体は、これらの方法により製 造したロッド状、パイプ状、シート状などの所望形状の 炭化珪素焼結体から形成されるが、反応焼結法により製 50 供することにある。

造される炭化珪素発熱体は成形体の形状が制約され、大 型、複雑形状の発熱体の製造が困難である。一方、再稿 晶化法による炭化珪素焼結体は組織の緻密性に欠ける難 点があり、発熱体として長期に亘って安定に使用するこ とができないという欠点がある。

【①①05】そこで、この欠点を解消するために、例え は特公昭59-23072号公銀には再結晶炭化珪素体 の表面にCVD法により、厚さ10μ以上の緻密質炭化 **註素膜を形成した炭化珪素発熱体が提案されている。ま** 1800~2200℃の温度で焼成し、次いで焼結体を 19 た、特闘平4-248285号公報には再結晶質の炭化 **珪素体を減圧系内に保持し、加熱しながらハロゲン化有** 機珪素化合物を間欠的に供給して還元熱分解反応させる パルスCV!法により組織空孔もよび表面に緻密なアモ ルファスS!Cを析出枕着させる炭化珪素発熱体の製造 方法が関示されている。

【0006】しかしながら、これらの発熱体は汚染を鏡 う半導体分野での使用を意図したものではないために、 炭化珪素発熱体自身に含まれる不純物。例えばFeなど の金属不純物含有量が多く、緻密質炭化珪素膜に角裂が 下の高純度α型炭化珪素粉末Βを10~20重量%、平 20 発生したり、剥離が生じたりした場合には不純物の摂散 により加熱装置内が汚染され、半導体製品に品質上のト ラブルを発生させる大きな問題がある。

[0007]

【発明が解決しようとする課題】そこで、本出願人は、 半導体製造用の各種ヒータとして好酒な、非汚染性の高 純度炭化珪素発熱体として、Fe含有量が10ppm以 下、宮温での電気比抵抗がり、10m以下の多孔質炭化 建素を母材とし、その表面にCVD法による厚さ60~ 200 µm の炭化珪素被膜が形成されてなる高純度炭化 - 珪素発熱体、および粒子径範囲が10 μm 以下の炭化珪 素粉末と水との混合スラリーを所定形状に成形し、成形 体を温度800~1300°CのHC1ガス中に所定時間 保持したのち非酸化性雰囲気下1800~2000℃の 温度で加熱焼成し、次いで競成体を酸処理して不純物を 溶解除去して得られたFe含有量が10ppm以下、室温 での電気比抵抗が(). 1Ωm以下の多孔質炭化珪素を母 材とし、その表面にCVD法により60~200 µmの 炭化珪素被膜を形成する高純度炭化珪素発熱体の製造方 法 (特闘平10)-287472号公報) を開発、提案し

【0008】しかしながら、CVD法 (CV i法) によ る炭化珪素被膜の形成は核膜生成能率が低いという難点 がある。そこで、本発明者は、非汚染性の高純度炭化珪 景亮熱体の開発について更に研究を進めた結果、接順生 成能率の低いCVD法による炭化珪素核膜を形成するこ となく、組織構造が緻密で、高純度の炭化珪素発熱体の 開発に成功した。すなわち、本発明の目的は、半導体分 野などで使用される各種装置のヒータとして有用な、非 汚染性の高純度炭化珪素発熱体およびその製造方法を提

9/1/2005

JP,2002-338366,A STANDARD ZOOM-UP ROTATION NO ROTATION PREVERSAL RELO

(3)

[00009]

【課題を解決するための手段】上記目的を達成するため の本発明による高純度炭化珪素発熱体は、平均粒子径1 (0) μm 以下、Fe含有量 10 ppm 以下の高純度 α型炭 化硅素粉末Aを60~80重置%、平均粒子径2μm 以 下、Fe含有量30 ppn以下の高純度α型炭化珪素粉末 Bを10~20重量%、平均粒子径1 μm 以下、Fe含 有量200 ppm以下のα型炭化珪素粉末Cを10~20 重量%、の割合で混合した炭化珪素混合粉末に水を加え て混錬し、調製したスラリーを鋳込み成形して得られた 10 成形体を非酸化性雰囲気中1800~2200°Cの温度 で嬉成し、次いで焼結体を散処理して不絶物を溶解除去 して得られた炭化珪素焼結体からなることを模成上の特 欲とする。

3

【0010】なお、炭化珪素焼結体は、Fe含有量が1 Oppm 以下、室温における電気比抵抗がO. 1Ωcm以 下、密度が2、5 g/cm' 以上の物性を有するものである ことが好ましい。

【①①11】また、本発明の高純度炭化珪素発熱体の製 ppm 以下の高純度 α型炭化珪素粉末Aを60~80重量 %、平均粒子径2 μm 以下、Fe含有量30 ppm以下の 高純度α型炭化硅素粉末Bを10~20重量%。平均粒 子径 1 μm 以下、F e 含有量 2 0 0 ppm 以下の α 型炭化 廷素粉末Cを10~20重量%、の割合で混合した炭化 珪素混合粉末に水を加えて混譲し、調製したスラリーを 鋳込み成形して得られた成形体を非酸化性雰囲気中18 00~2200°Cの温度で焼成し、次いで焼結体を酸処 理して不絶物を溶解除去することを構成上の特徴とす る.

[0012]

【発明の真施の形態】本発明の高純度炭化珪素発熱体 は、粒度調整した平均粒子径の異なる炭化珪素粉末を用 い。その金属不純物としてのFe含有量および混合割合 を特定範囲に調整した原料炭化珪素粉末を用いてスラリ ー化し、スラリーを鋳込み成形した成形体を焼成し、得 られた焼結体を酸処理して不純物を溶解除去して得られ た再結晶質の炭化珪素焼結体からなるものである。

【0013】すなわち、本発明の高純度炭化珪素発熱体 は、原料炭化硅素粉末として平均粒子径100μm以 下、Fe 含有量 1 0 ppm 以下の高純度 α型炭化珪素粉末 Aを60~80重置%、平均粒子径2 μm 以下、Fe含 有量30 ppn以下の高純度 α型炭化珪素粉末 Bを10~ 20重置%,平均粒子径1 μm 以下。Fe含有量200 ppm 以下のα型炭化硅素粉末Cを10~20重量%、の 割合で混合した炭化珪素混合粉末が用いられる。

【0014】とのような粒度特性の異なる炭化珪素粉末 を使用するのは、焼結体の密度を高位に保持するためで あり、例えば平均粒子径が100 µm を越えるものを使 用した場合には痕結体の密度を2.5 g/cm 以上に保持 50

することが困難となる。そこで、本発明は平均位子径が 100μm以下、2μm以下、および、1μm以下の3 種類の炭化珪素粉末を混合したものが用いられる。

【0015】一方、高純度 α型炭化珪素粉末は高価であ り、特に粒度が細かく、倒えば平均粒子径が1 μπ 以 下。 粒子径範囲が 6 μ π 以下の微細な高純度α型炭化珪 素粉末では極めて高価格となるため、製造コストが増大 し、不利になる。そこで、本発明は微細な原料炭化珪素 粉末として価格が安く、入手が容易な通常の市販品を使 用し、高価な高純度の型炭化珪素粉末には粒子径の大き な炭化珪素粉末が用いられる。

【① 0 1 6 】すなわち、高純度の型炭化珪素粉末とし て、平均粒子径100μm 以下、Fe含有置10ppm 以 下の炭化珪素粉末Aと平均粒子径2μm以下、Fe含有 置3 0 ppm 以下の炭化珪素粉末Bの2 種類の炭化珪素粉 末が用いられる。一方、微細な原料炭化珪素粉末として は、安価に入手可能な平均位子径1µm以下、Fe含有 置200pm 以下のα型炭化珪素粉末Cが用いられる。 なお、平均粒子径は好ましくは、高純度の型炭化珪素粉 造方法は、平均粒子径100μm 以下、Fe含有量10-20-末Aは80~100μm。 同Bは1~3μm であり、α 型炭化珪素粉末Cは微細な程、焼給体の密度向上に有利

> 【0017】 これらの炭化珪素粉末A. B. Cは. Aを 60~80重量%、Bを10~20重量%、Cを10~ 20重量%の割合で混合して作成した炭化珪素混合粉末 が原料として用いられる。このような混合割合に設定す るのは、原料炭化珪素粉末中のF e 含有量を低く抑える とともに焼結体の密度を高く維持するためである。

【①018】との炭化珪素混合粉末は水と混合されて、 36 充分に混痕してスラリー化する。スラリーの調製は、成 形型に往入し、貸込み成形に好ましい適宜な粘度となる ように炭化珪素混合粉末と水との質比が調節される。ス ラリーは、鋳込み成形により所塑形状に成形したのち、 成形体を不活性ガス、窒素ガスあるいは真空中などの非 酸化性雰囲気中1800~2200℃の温度に所定時 間、加熱保持して焼成される。焼成温度が1800℃未 満では焼結が充分に行われず、焼結体の強度が低くなり 発熱体として耐久性が不充分となり、一方焼成温度が2 200℃を越えると炭化珪素の分解が生じるためであ 49 る。

【0019】次いで、焼結体を適宜濃度のフッ酸、硝酸 あるいは塩酸などの溶液中に浸漬して、不純物が溶解除 去される。この酸処理によりFeをはじめとする各種金 屆不純物が溶解除去されて、高純度の炭化珪素焼結体か ちなる発熱体が得ちれる。

【0020】本発明の高純度炭化珪素発熱体は、その物 性としてFe含有量が10ppm以下、室温における電気 比抵抗が()、1Ωcm以下、密度が2、5 g/cm 以上の物 性を備えていることが好ましい。

【0021】半導体分野などの各種装置に使用される発

JP,2002-338366,A STANDARD OZOOM-UP ROTATION NO ROTATION PREVERSAL RELO

JP,2002-338366,A STANDARD OZOOM-UP ROTATION NO ROTATION PREVERSAL RELO

(4)

特開2002-338366

熱体には、高純度で、装置内を汚染しない非汚染性が必 要であり、特に金眉不純物による汚染は、半導体の製品 性能に重大な影響を与えることになる。そこで、炭化珪 素純結体の原料であるSiC粉末中に含まれる最も多い 金属不純物であるFe 不純物の含有量を低減化すること により、少なくとも炭化珪素焼給体中のFe含有量を1 Oppm 以下とすることが好ましい。Fe含有量が10pp n を越えると、発熱体として使用時に溶融、気化したF eによる装置内の汚染が問題となるためである。

【①022】また、本発明の高純度炭化珪素発熱体は、 発熱体としての必要な発熱特性を保持するために室温に おける電気比低抗が()、1Ωcm以下であり、また発熱体 としての耐久寿命を確保するためにその密度が2.5g/ or 以上であることが好ましい。

【0023】とのように本発明の高純度炭化珪素発熱体 は、平均粒子径およびFe含有質の異なる2種類の高純 度α型炭化珪素粉末A、Bと、微細なα型炭化珪素粉末 Cとを所定の割合で混合した炭化珪素混合粉末を原料と して、鋳込み成形し、成形体を焼成し、更に酸処理して 不純物を溶解除去して得られた炭化珪素焼結体から構成 20 されており、好ましくはFe含有量が10ppm以下、室 温における電気比抵抗が0.10㎝以下、密度が2.5 q/cm/以上の物性を備えており、半導体分野などで好適 に使用される非污染性の高純度炭化珪素発熱体およびそ の製造方法が提供される。

[0024]

【実施例】以下、本発明の実施例を比較例と対比して具 体的に説明する。

【0025】実施例1

度 a 型炭化珪素粉末 A を 7 () 重量%、平均粒子径 1.9 μm. Fe含有量26 cpm の市販の高純度α型炭化珪素 粉末Bを20重量%、平均粒子径0.7μm、Fe含有 登160 ppm の市販のα型炭化珪素粉末Cを10重置 %。の割合で混合した原料炭化珪素混合粉末100重量 部に純水20重量部を加えて、ボールミルで18時間渡 線してスラリーを調製した。このスラリーを石膏型に流 し込み、鋳込み成形したのち離型、乾燥して、外径20 mm. 内径10mm. 高さ200mmの円筒状成形体を作製し 加熱して焼成した。得られた焼結体をファ酸/硝酸の泥 酸溶液に18時間浸漬して酸処理したのち、純水で充分 に洗浄、乾燥して炭化珪素焼結体を製造した。

【0026】実施例2

平均粒子径96 μm 、 Fe含有量10 ppm の市販の高純 度 α 型炭化珪素粉末 A を 7 0 重置%。平均粒子径 1.9 um. Fe含有量26ppmの市販の高純度α型炭化珪素 粉末Bを10重量%、平均粒子径0. 7 μm 、Fe含有 置160 ppm の市販の a 型炭化珪素粉末Cを20重量 %、の割合で混合した原斜炭化珪素混合粉末を用いた他 50 して、衰1に示した。

は、全て実施側1と同じ方法によりスラリーの調製、鋳 込み成形、焼成、および骸処理を行って、炭化珪素焼給 体を製造した。

【0027】比較例!

平均粒子径96 μm 、Fe含有量10 ppm の市販の高純 度α型炭化硅素粉末Αを5()重置%。平均粒子径1.9 μm 、Fe含有量26 ppm の市販の高純度α型炭化珪素 粉末Bを50重量%、の割合で混合した原料炭化珪素混 合紛末を用いた他は、全て実施例1と同じ方法によりス 19 ラリーの調製、跨込み成形、焼成、および酸処理を行っ て、炭化珪素焼結体を製造した。

【0028】比較例2

平均粒子径96 μm 、 Fe 含有置10 ppm の市販の高純 度α型炭化硅素粉末Αを60重置%。平均粒子径1.9 um Fe含有量26ppmの市販の高純度α型炭化珪素 粉末Bを40重量%、の割合で混合した原料炭化珪素混 台紛末を用いた他は、全て実施例1と同じ方法によりス ラリーの調製、鑄込み成形、焼成、および酸処理を行っ て、炭化珪素焼結体を製造した。

【0029】比較例3

平均粒子径96 μm 、Fe含有置10 ppm の市販の高純 度 α 型炭化硅素粉末 Α を 7 () 重置%。平均粒子径 1.9 um. Fe含有量26ppmの市販の高純度α型炭化珪素 粉末Bを30重量%、の割合で混合した原料炭化珪素混 台紛末を用いた他は、全て実施例1と同じ方法によりス ラリーの調製、 鋳込み成形、焼成、および酸処理を行っ て、炭化珪素焼結体を製造した。

【0030】比較例4

平均粒子径96 μm 、 Fe 含有量10 ppm の市販の高純 平均粒子径96μm 、Fe含有量1リppm の市販の高純 30 度α型炭化珪素粉末Aを8リ重量%。平均粒子径1. 9 um . Fe含有量26 ppm の市販の高純度α型炭化珪素 粉末Bを20重量%、の割合で混合した原料炭化珪素混 台紛末を用いた他は、全て実施例1と同じ方法によりス ラリーの調製、貸込み成形、焼成、および酸処理を行っ て、炭化珪素焼結体を製造した。

【0031】比較例5

平均粒子径96 μm 、Fe含有量10 ppm の市販の高純 度α型炭化珪素粉末Αを70重置%。平均粒子径0.7 μm 、Fe含有量160ppmの市販のα型炭化珪素粉末 た。この成形体を窒素ガス雰囲気中2000℃の温度に 40 Cを30重置% の割合で混合した原料炭化连素混合粉 末を用いた他は、全て真能例1と同じ方法によりスラリ ーの調製、鋳込み成形、焼成、および酸処理を行って、 炭化珪素焼結体を製造した。

【0032】比較例6

酸処理を施さない他は、全て実施例1と同じ方法により 炭化珪素焼結体を製造した。

【0033】とのようにして製造した炭化珪素焼結体に ついて、Fe含有量、窒温における電気比抵抗。およ び、密度を測定した。得られた結果を、製造条件と対比 JP,2002-338366,A STANDARD ZOOM-UP ROTATION NO ROTATION PREVERSAL RELO

(5)

特闘2002-338366

[0034]

. . . •

* *【表1】

	原料炭化建菜混合 粉末 (食泉%)			酸処	炭化強素焼結体			
例No.	Øボ A‡l	B#2	C*3	理の有無	Fe含有 量(ppm)	電気比抵抗 (Ωcm)	密度 (g/cm²)	
突施例1 突施例2	7 0 7 0	2 0 1 0	1 0 2 0	有有	9 1 0	0. 045 0. 046	2. 53 2. 55	
比較例1 比較例2 比較例3 比較例4 比較例5 比較例6	50 60 70 80 70	5 0 4 0 3 0 2 0	30	有有有有有無	9 8 9 7 27 30	0. 042 0. 043 0. 043 0. 045 0. 048 0. 045	2. 27 2. 33 2. 38 2. 40 2. 56 2. 54	

表注:

- 町 平均粒子径96μm。 Fe含有量10ppm の高純度α型炭化珪素粉末
- 12 平均粒子径1. 9 μm、Fe含有量2 6 ppm の高純度 α型炭化珪素粉末
- #3 平均粒子径(). 7 μm、Fe含有量16 () ppm のα型炭化珪素粉末

【0035】表1の結果から、平均粒子径96μm、F e 含有量 1 0 ppm の高純度 α型炭化珪素粉末 A を 7 0 重 置%に、平均粒子径1.9 μm 、Fe含有量26 ppm の 高純度α型炭化珪素粉末Bを20重量%、平均粒子径 0. 7 μm 、Fe含有量160 ppm の α型炭化珪素粉末 Cを10重置%。あるいは、高純度α型炭化珪素粉末B を10宣置%。 a型炭化珪素粉末Cを20重置%。の割 台で混合した炭化珪素混合粉末を原料として用いてスラ 中で2000°Cの温度で焼成し、更に酸処理を施した実 施例1、2の炭化珪素焼結体はFe含有量、室温におけ る電気比抵抗、密度などの物性が高純度発熱体として好 ましい物性を備えていることが判る。

【0036】とれに対して、微細なα型炭化珪素粉末C を配合しない炭化珪素混合粉末を原料として用いた比較 例1~4では焼結体の密度が低く、また、高純度α型炭 化硅素粉末Bを配合せず、微細なα型炭化珪素粉末Cを 30重量%配合した炭化硅素混合粉末を原料として用い が多くなることが認められる。なお、実施例1と比較例

6との対比から、酸処理を施さない比較例6では原結体 のFe含有量が多くなることが認められる。

[0037]

【発明の効果】以上のとおり、平均粒子径100 μm 以 下、Fe含有量 1 0 ppm 以下の高純度 α型炭化硅素粉末 Aを60~80重置%、平均粒子径2 μm 以下、Fe含 有量30 ppm以下の高純度α型炭化珪素粉末Bを10~ 20重量%、平均粒子径1 µm以下、Fe含有量200p リーを調製し、跨込み成形した成形体を窒素ガス雰囲気 30 pm 以下のα型炭化珪素粉末Cを10~20重置%、の 割合で混合した炭化珪素混合粉末を原斜として用い、こ の原斜に水を加えて混譲し、調製したスラリーを貸込み 成形して得られた成形体を、非酸化性雰囲気中で180 0~2200°Cの温度で焼成し、次いで焼結体を酸処理 して不絶物を溶解除去して得られた炭化珪素焼結体から なる本発明の高純度炭化珪素発熱体およびその製造方法 によれば、例えば、Fe含有量が10ppm以下、室温に おける電気比極抗が0.1Ωcm以下、密度が2.5g/cm 1 以上の物性を有しており、例えば污染を織う半導体分 た比較例5 では原結体の密度は高くなるが、Fe含有量 40 野などで使用される各種装置の高純度炭化珪素染熱体を よびその製造方法として極めて有用である。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.