

DESIGN DE ESTRUTURAS AEROESPACIAIS

Daniel Afonso

Escola Superior Aveiro Norte, Universidade de Aveiro Centro de Tecnologia Mecânica e Automação (TEMA) dan@ua.pt www.ua.pt/pt/p/16609746

SUMÁRIO

Ligações em estruturas

- Tipologias de ligações
- Vantagens e desvantagens de tipos de ligação

Ligações rebitadas

- Princípio de funcionamento
- Tipos de componentes

Ligações aparafusadas

- Princípio de funcionamento
- Tipos de componentes

Ligações de painéis compósitos

• Componentes para ligações em materiais compósitos

Falha e dimensionamento de ligações

LIGAÇÕES ENTRE ESTRUTURAS

Tipologias e de ligação entre componentes

CLASSIFICAÇÃO DE LIGAÇÕES

Ligações desmontáveis

As peças ligadas podem ser desmontadas

- Utilizam parafusos, chavetas, etc.
 - Diretas se não utilizam elementos adicionais
 - Indiretas se utilizam elementos adicionais

CLASSIFICAÇÃO DE LIGAÇÕES

Ligações permanentes

As peças ligadas não podem ser separadas sem destruição

• Utilizam colagem, soldadura, rebites, etc.

LIGAÇÕES SOLDADAS

- Resistência da ligação
- Baixo peso de ligação
- Capacidade de vedação

- Materiais compatíveis são reduzidos
- Cargas térmicas afetam geometria de peças
- Ligações não permitem manutenção e inspeção não é simples
- Ligação permite propagação de falha de peças
- Elevado custo de ligação

LIGAÇÕES COLADAS

- Baixo peso de ligação
- Compatibilidade com muitos materiais
- Capacidade de vedação

- Suporta cargas baixas
- Capacidade de suportar carga não é uniforme
- Performance varia com o tempo

LIGAÇÕES APARAFUSADAS

- Suporte de forças em múltiplas direções
- Suporte de cargas elevadas
- Possibilidade de desmontagem e manutenção

- Maior custo nos componentes e fabrico da ligação
- Maior massa em elementos de ligação
- Maior possibilidade de corrosão
- Possibilidade de desaperto

LIGAÇÕES REBITADAS

- Estabilidade e confiabilidade da ligação
- Baixo peso da ligação
- Facilidade de montagem
- Facilidade de inspeção e possibilidade de substituição
- Baixo custo de ligação

- Necessidade de acesso à ligação em ambos os lados
- Só suportam esforço de corte
- Menor número de materiais do que ligações roscadas

PRINCIPIO DE FUNCIONAMENTO DE LIGAÇÕES REBITADAS

Corpo do rebite é inserido em furos alinhados de duas ou mais peças

Deformação plástica do corpo forma uma segunda cabeça

peças ligadas é suportado pelos rebites e atrito causado pela sua compressão

Número de rebites, afastamento e distribuição afetam a ligação

Esforço de corte entre duas

Riveter

Expansão radial do rebite provoca tensões residuais de compressão que reduzem a concentração de tensão em torno do furo

PRINCIPIO DE FUNCIONAMENTO DE LIGAÇÕES REBITADAS

LIGAÇÕES REBITADAS

TIPOS DE REBITES

PRINCIPIO DE FUNCIONAMENTO DE LIGAÇÕES APARAFUSADAS

Parafuso exerce uma força de compressão, evitar esforço de corte no corpo do parafuso

Força de compressão mantém 2 partes fixadas juntas

Esforço normal entre duas peças ligadas é suportado pela compressão exercida pelos parafusos

Esforço de corte entre duas peças ligadas é suportado pelo atrito causado pela compressão exercida pelos parafusos

LIGAÇÕES APARAFUSADAS

Furo com folga em relação ao diâmetro do parafuso Em alternativa, peça B Part "B" pode ter furo roscado **Machine Screw** Provoca a força de aperto **Hex Nut** Flat Washer Permite o aperto do parafuso Distribui a força de aperto por Part "A" (comprimento roscado igual ou **Lock Washer** uma área maior superior ao diâmetro da rosca)

TIPOS DE COMPONENTES EM LIGAÇÕES ROSCADAS

LIGAÇÕES DE COMPÓSITOS COM COMPONENTES DE FIXAÇÃO

Materiais compósitos são muito suscetíveis a dano em operações de furação

- Abertura de furos corta fibras que suportam os esforços
- Abertura de furos provoca concentração de tensões

Estruturas sandwich têm um núcleo que não suporta esforços

• Aplicação de componentes de fixação não pode contar com resistência de toda a estrutura, apenas das camadas experiores

LIGAÇÕES DE COMPÓSITOS COM COMPONENTES DE FIXAÇÃO

Insertos metálicos são utilizados em estruturas de material compósito para possibilitar a utilização de componentes de fixação

TRANSMISSÃO DE FORÇA EM LIGAÇÕES

FALHA DE LIGAÇÕES COM COMPONENTES DE LIGAÇÃO

DIMENSIONAMENTO DE COMPONENTES DE LIGAÇÃO

Definição do tipo de junta e processo de ligação

Definição do tipo e dimensão dos componentes de ligação

Seleção do material dos componentes de ligação

Determinação do número e distribuição de elementos de ligação

