Distributed Logistic Regression

Main References

Ameet Talwalkar and Henry Chai, ML with Large Datasets, CMU

Outline

- Empirical Risk Minimization
- Binary Classification
- Logistic Regression
- Regularized Logistic Regression
- Hyperparameter Tuning
- Multiclass Classification
- Multi-class Logistic Regression
- Distributed Logistic Regression

Empirical Risk Minimization – ERM

- ERM is a common framework for supervised learning
- Given:
 - some labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

with the hope that

$$E_{p(x,y)}[l(f(x),y)] \approx \frac{1}{n} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

Empirical Risk Minimization – ERM

- ERM is a common framework for supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n, x^{(i)} \in \mathbb{R}^{d+1}$
 - a loss function $l: Y \times Y \to R$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• Depending on the choice of F and l, this objective function may be convex (easy to optimize) or non-convex (hard)

Binary Classification

- Classification is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$, where $Y = \{0,1\}$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• Depending on the choice of F and l, this objective function may be convex (easy to optimize) or non-convex (hard)

Binary Classification with 0/1 Loss

- Classification is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l(y, y') = \delta(y \neq y')$, for $y, y' \in \{0,1\}$ $\delta(p) = \begin{cases} 1, & \text{if } p \text{ is true} \\ 0, & \text{if } p \text{ is } false \end{cases}$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• This loss function is difficult to optimize (non-convex)

A Probabilistic Approach to Binary Classification

- Suppose we have binary labels $y \in \{0,1\}$ and (d+1)-dimensional inputs $x = (1, x_1, x_2, \cdots, x_d)^T \in \mathbb{R}^{d+1}$
- Assume

$$P(Y = 1|x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} = \frac{e^{\theta^T x}}{1 + e^{\theta^T x}}$$

This implies two useful facts

$$P(Y = 0|x) = 1 - P(Y = 1|x) = \frac{1}{1 + e^{\theta^T x}}$$

$$\frac{P(Y = 1|x)}{P(Y = 0|x)} = e^{\theta^T x} \Rightarrow \log \frac{P(Y = 1|x)}{P(Y = 0|x)} = \theta^T x$$

Logistic Function

- Why use logistic function?
 - Differentiable everywhere
 - $\sigma: \mathbb{R} \to [0,1]$
 - The decision boundary is linear in x

$$y = \begin{cases} 1, & P(Y = 1|x) \ge 0.5 \\ 0, & otherwise \end{cases}$$

$$P(Y = 1|x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}} \ge \frac{1}{2}$$

$$\Rightarrow 2 \ge 1 + e^{-\theta^T x} \Rightarrow 1 \ge e^{-\theta^T x}$$

$$\Rightarrow 0 \ge -\theta^T x$$

$$\Rightarrow \theta^T x > 0$$

$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x} \in \{0, 1\}$$

Logistic Regression Decision Boundary

Logistic Regression – Maximum Likelihood (1)

- Goal: find the θ that maximizes the (conditional) probability of the training dataset $\prod_{i=1}^{n} P(y^{(i)}|x^{(i)},\theta)$
- This is equivalent to finding the θ that minimizes the negative log of this probability

$$L_{D}(\theta) = -\log\left(\prod_{i=1}^{n} P(y^{(i)}|x^{(i)},\theta)\right) = -\sum_{i=1}^{n} \log\left(P(y^{(i)}|x^{(i)},\theta)\right)$$

$$= -\sum_{i=1}^{n} \log\left(P(Y=1|x^{(i)},\theta)^{y^{(i)}}P(Y=0|x^{(i)},\theta)^{1-y^{(i)}}\right)$$

$$= -\sum_{i=1}^{n} \left(y^{(i)}\log(\sigma(\theta^{T}x^{(i)})) + (1-y^{(i)})\log(1-\sigma(\theta_{10}^{T}x^{(i)}))\right)$$

Logistic Regression – Maximum Likelihood (2)

- Classification is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l(y, y') = \delta(y \neq y')$, for $y, y' \in \{0,1\}$
 - a hypothesis class or set of functions F
- The goal is to find

$$\underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \left(y^{(i)} log(\sigma(\theta^{T} x^{(i)})) + (1 - y^{(i)}) log(1 - \sigma(\theta^{T} x^{(i)})) \right)$$

$$= \underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \left(y^{(i)} log\left(\frac{\sigma(\theta^{T} x^{(i)})}{1 - \sigma(\theta^{T} x^{(i)})} \right) + log(1 - \sigma(\theta^{T} x^{(i)})) \right)$$

$$= \underset{\theta}{\operatorname{argmin}} - \sum_{i=1}^{n} \left(y^{(i)} \theta^{T} x^{(i)} - log\left(1 + e^{\theta^{T} x^{(i)}} \right) \right)$$

11

Logistic Regression – Maximum Likelihood (3)

$$L_D(\theta) = -\sum_{i=1}^n \left(y^{(i)} \theta^T x^{(i)} - \log \left(1 + e^{\theta^T x^{(i)}} \right) \right)$$

$$\nabla_{\theta} L_{D}(\theta) = -\sum_{i=1}^{n} \left(y^{(i)} \nabla_{\theta} \left(\theta^{T} x^{(i)} \right) - \nabla_{\theta} \log \left(1 + e^{\theta^{T} x^{(i)}} \right) \right)$$

•

Note:
$$\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$$

$$=\sum_{i=1}^{n} \left(\sigma(\theta^T x^{(i)}) - y^{(i)}\right) x^{(i)}$$

Gradient Descent for Logistic Regression

- Dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
- 1. Initialize $\theta^{(0)} = 0$ (zero vector) and set t = 0
- 2. While not converged
 - Compute the gradient

$$\nabla_{\theta} L_D(\theta^{(t)}) = 2 \sum_{i=1}^n \left(\sigma \left(\theta^{(t)^T} x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

• Update the weights

$$\theta^{(t+1)} = \theta^{(t)} - \eta \sum_{i=1}^{n} \left(\sigma \left(\theta^{(t)^{T}} x^{(i)} \right) - y^{(i)} \right) x^{(i)}$$

- Increment t: t = t + 1
- Output $\theta^{(t)}$

Regularized Logisitic Regression

Logistic regression

$$L_D(\theta) = \sum_{i=1}^n \left(\sigma(\theta^T x^{(i)}) - y^{(i)}\right) x^{(i)}$$

Ridge logistic regression (L₂ regularization)

$$\underset{\theta}{\text{minimize}} \left(L_D(\theta) + \frac{\lambda}{2} \|\theta\|_2^2 \right)$$

Lasso logistic regression (L₁ regularization)

$$\underset{\theta}{\text{minimize}} \left(L_D(\theta) + \frac{\lambda}{2} \|\theta\|_1 \right)$$

• ElasticNet logistic regression ($L_1 + L_2$ regularization)

$$\underset{\theta}{\text{minimize}} \left(L_D(\theta) + \lambda \left(\alpha \|\theta\|_1 + \frac{1-\alpha}{2} \|\theta\|_2^2 \right) \right)$$

 λ and lpha are hyperparameters

Hyperparameter Tuning

- Suppose we want to compare multiple hyperparameter settings $\lambda_1, \lambda_2, \cdots, \lambda_k$
- For i = 1, 2, ..., k
 - Train a model on D_{train} using λ_i
- Evaluate each model on D_{val} and find the best hyperparameter setting, λ_{i^*}
- Compute the error of a model trained with λ_{i^*} on D_{test}

 D_{train}

 D_{val}

 D_{test}

Multi-class Classification

- Classification is a type of supervised learning
- Given:
 - a labelled training dataset $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$
 - a loss function $l: Y \times Y \to R$, where $Y = \{1, 2, \dots, k\}$
 - a hypothesis class or set of functions F
- The goal is to find

$$\hat{f} = \underset{f \in F}{\operatorname{argmin}} \sum_{i=1}^{n} l(f(x^{(i)}), y^{(i)})$$

• Depending on the choice of F and l, this objective function may be convex (easy to optimize) or non-convex (hard)

Multi-class Logistic Regression

- Suppose we have k classes $y \in \{1,2,\cdots,k\}$ and (d+1)-dimensional inputs $x = (1, x_1, x_2, \dots, x_d)^T \in \mathbb{R}^{d+1}$
- For each class i, we have a binary classifier with parameter $\theta^{(i)}$
- Then

$$P(Y = i | x) = \frac{e^{\theta^{(i)}^T x}}{\sum_{j=1}^k e^{\theta^{(j)}^T x}} = \frac{e^{\theta_0^{(i)} + \theta_1^{(i)} x_1 + \dots + \theta_d^{(i)} x_d}}{\sum_{j=1}^k e^{\theta_0^{(j)} + \theta_1^{(j)} x_1 + \dots + \theta_d^{(j)} x_d}}$$

Assign x to the class that maximizes the (conditional) probability

$$\underset{i}{\operatorname{argmax}} P(Y = i|x) = \underset{i}{\operatorname{argmax}} \theta^{(i)^{T}} x$$

 $\mathop{argmax}_{i} P(Y=i|x) = \mathop{argmax}_{i} \theta^{(i)^{T}} x$ • Multi-class logistic regression is also called multinomial logistic regression or softmax regression

Distributed Gradient Descent for Logistic Regression

M	Worker	$\begin{bmatrix} \leftarrow & {x^{(1)}}^T & \rightarrow \\ \leftarrow & {x^{(4)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & x^{(2)}^T & \rightarrow \\ \leftarrow & x^{(3)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & x^{(5)}^T & \rightarrow \\ \leftarrow & x^{(7)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	O(nd) distributed storage (total)
	Мар	$\left(\sigma\left(\theta^{(t)} x^{(i)}\right) - y^{(i)}\right) x^{(i)}$	$\left(\sigma\left(\theta^{(t)}^T x^{(i)}\right) - y^{(i)}\right) x^{(i)}$	$\left(\sigma\left(\theta^{(t)}^T x^{(i)}\right) - y^{(i)}\right) x^{(i)}$	O(nd) $O(d)$ distributed local work (total) storag
	Reduce	$\theta^{(t+1)} = \theta^{(t)}$	$-\eta \sum_{i=1}^{n} \left(\sigma \left(\theta^{(t)^{T}} x^{(i)} \right) \right)$	$-y^{(i)}\big)x^{(i)}$	$egin{array}{ccc} O(d) & O(d) & & & & & & & & & & & & & & & & & & &$

Reducer send the latest weight vector to worker

Communication Hierarchy

Perform parallel and in-memory computation whenever possible

Minimize network communication

- Need to tradeoff between parallelism and network communication
- Three types of objects that may need to be communicated
 - Data
 - Model
 - Intermediate objects
- Strategies
 - Keep large objects local
 - Reduce the number of iterations

Data Parallel: Compute pointwise gradients locally

Worker	$\begin{bmatrix} \leftarrow & {x^{(1)}}^T & \rightarrow \\ \leftarrow & {x^{(4)}}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(2)}^T & \rightarrow \\ \leftarrow & \chi^{(3)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	$\begin{bmatrix} \leftarrow & \chi^{(5)}^T & \rightarrow \\ \leftarrow & \chi^{(7)}^T & \rightarrow \\ \vdots & \vdots & \vdots \end{bmatrix}$	O(nd) distributed storage (total)
Мар	$\left(\sigma\left(\theta^{(t)}^T x^{(i)}\right) - y^{(i)}\right) x^{(i)}$	$\left(\sigma\left(\theta^{(t)} x^{(i)}\right) - y^{(i)}\right) x^{(i)}$	$\left(\sigma\left(\theta^{(t)^T}x^{(i)}\right) - y^{(i)}\right)x^{(i)}$	O(nd) $O(d)$ distributed local work (total) storage
Reduce	$\theta^{(t+1)} = \theta^{(t)}$	$egin{array}{ccc} O(d) & O(d) & & & & & & & & & & & & & & & & & & &$		

Reducer send the latest weight vector to worker

Model Parallel: Train each hyperparameter setting on different machine(s)

- Suppose we want to compare multiple hyperparameter settings $\lambda_1, \lambda_2, \cdots, \lambda_k$
- For i = 1, 2, ..., k
 - Train a model on D_{train} using λ_i
- Evaluate each model on D_{val} and find the best hyperparameter setting, λ_{i^*}
- Compute the error of a model trained with λ_{i^*} on D_{test}

 D_{train}

 D_{val}

Dtest

Summay

- 1. Computation and storage should be linear in *n* and *d*
 - For linear regression
 - When *d* is small, distribute matrix computation using outer products
 - When d is large, minimize squared error via distributed gradient descent
- 2. Perform parallel and in-memory computation whenever possible
- 3. Minimize network communication
 - Data vs model parallelism