作业 1:

【逻辑回归算法】

• 输入:

样本集
$$D = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}, x_i \in \mathbb{R}^n, y_i \in \{0,1\};$$

- 输出过程:
- 1: 初始化模型参数: $w \in \mathbb{R}^n$, $b \in \mathbb{R}$;

2: 建立逻辑回归模型:
$$P(x) = p(y = 1|x) = \frac{e^{w^T x + b}}{1 + e^{w^T x + b}}$$
; $P'(x) = p(y = 0|x) = \frac{1}{1 + e^{w^T x + b}}$

3:
$$\Leftrightarrow \beta = (w, b), x_i = (x_i, 1), \text{ } P(x) = p(y = 1|x; \beta) = \frac{e^{\beta^T x}}{1 + e^{\beta^T x}}; P'(x) = p(y = 0|x; \beta) = \frac{1}{1 + e^{\beta^T x}}$$

4: 计算负对数似然函数:

$$l(\beta) = \sum_{i=1}^{m} (-y_i \beta^T x_i + \ln(1 + e^{\beta^T x_i}))$$

- 5: 用某种优化算法计算参数β: β* = $argmin\ l(β)$
- 6: 计算 w^*, b^* : $(w^*, b^*) = \beta^*$
- 输出:

$$P(x) = p(y = 1|x) = \frac{e^{w^{*}T_{x+b^{*}}}}{1 + e^{w^{*}T_{x+b^{*}}}}$$
$$P'(x) = p(y = 0|x) = \frac{1}{1 + e^{w^{*}T_{x+b^{*}}}}$$

作业 3:

对于 LogisticRegression 类的参数的解释网上有很多,选取其中一个博客给大家参考,而我主要用通俗的不怎么严谨的语言来对参数进行补充说明,特别是大家有可能困惑的地方。

https://blog.csdn.net/jagbiam1000/article/details/79764012

(注: 下表中出现的 目标函数 = 需要被优化的函数)

参数名称	注释	备注
penalty	用于选择正则化项。	新目标函数=目标函数+正则化项
	参数值为'l1'时,表示正则化项为 l1	正则化项是防止模型过拟合的最
	正则化;参数值为'12'时,表示正则	为常用的手段之一。
	化项为 I2 正则化。	
dual	选择目标函数为原始形式还是其	何为对偶函数? 将原始函数等价
	对偶形式。	转换为一个新函数, 这个新函数我
		们称为对偶函数。对偶函数比原始
		函数更易于优化。
tol	优化算法停止的条件。	一般优化算法都是迭代算法,举个
		例子, 比如牛顿法, 假设我们现在
		要最小化一个函数,每迭代一次,
		更新一次变量值,函数的值都要减

	T	
		少一点,就这样一直迭代下去。那
		么应该什么时候停止呢,比如我们
		设 tol=0.001,就是当迭代前后的函
		数差值<=0.001 时就停止。
С	用来控制正则化项的强弱。	可以简单把 C 理解成正则化项的
	C越小,正则化越强。	系数的倒数。
fit_intercept	用来选择逻辑回归模型中是否含	b 即线性模型的常数项。如果不含
	有b。	有 b,即等价于 b=0
Intercept_scaling		在西瓜书算法中会有一个步骤, 令
		x= (x, 1),但是在具体的代码实现
		上是: x=(x, intercept_scaling)
		((x, 1)意思就是在向量 x 后加一
		个数值 1,形成一个新的向量)
class_weight	设置每个类别的权重。	在西瓜书3.6中介绍了类别不平衡
		的问题, 这个参数就是为了解决这
		个问题的。这个权重值我们可以事
		先自己计算好, 然后再赋值。也可
		以设置 class_weight 为 balanced,
		即让程序自动根据数据集计算出
		每个类别对应的权重值。
random_state	随机数种子。	在程序中,有很多变量的初始值都
		是随机产生的值,那么这个种子就
		是控制产生什么值。比如,为种子
		值为 20, 那么每次随机产生的值
		都是 20 这个种子对应的值。而且
		很多时候,数据集中每个样本的顺
		序需要进行打乱, 那么这个种子就
		是控制打乱后的顺序的。
solver	↓ │ 选择使用哪个优化算法进行优化。	对于一个目标函数,我们可以有很
301701		多优化算法供我们进行选择,因为
		不同的优化算法所擅长解决的问
		题是不同。
max_iter	 优化算法的迭代次数	前面参数中介绍了,我们可以用
Thax_itel		tol 参数来控制优化算法是否停
		止。还有就是,我们也可以用迭代
		次数来控制停止与否。
multi_class	用于选择多分类的策略	由西瓜书 3.5 可知,用二分类器去
111U1U_UIdSS	四」処理タル大門界町 	构造出一个多分类器,有很多可供
		选择的策略,比如 ovo,ovr, mvm。
		注意,从数学理论上来讲,我们可以为法山。
		以构造出一个多分类函数,但是在
		实践过程中,我们并不这样做,更
		一般的做法是用多个二分类器构
		造出一个多分类器。

verbose	主要用来控制是否 print 训练过程	
warm_start	是否热启动	什么叫热启动呢? 一般而言, 当我
		们定义一个机器学习模型时,就是
		定义其参数变量,所以要在一开始
		阶段,对变量进行随机地初始化。
		但是热启动的意思是, 我们不在随
		机地初始化, 而是把之前训练好的
		参数值赋值给变量进行初始化。
n_jobs	用 cpu 的几个核来跑程序	