

Grupo de Usuarios de R de Sevilla

Selección de variables en Machine Learning

Miguel Pavón Barrera

2 Abril 2019, 19 a 20:30 h

Sala TIC4, CRAI Reina Mercedes

http://bit.ly/SevillaRmeetup

INTRODUCCIÓN

- OBJETIVO
- PRINCIPALES MÉTODOS
- IMPLEMENTACIÓN EN R

CONJUNTO DE PRUEBAS

- DATASET TRAIN.CSV
- 200 000 OBSERVACIONES
- 200 VARIABLES PREDICTORAS
- PROBLEMA DE CLASIFICACIÓN
- AÑADIMOS 60 VARIABLES RANDOM
- PARTICIONAMOS EN TRAIN Y TEST

SCORE TEST: 0,9630

- DATASET TRAIN.CSV
- 1460 OBSERVACIONES
- 80 VARIABLES PREDICTORAS
- PROBLEMA DE REGRESIÓN
- AÑADIMOS 10 VARIABLES RANDOM

SCORE VAL: 0.1314 SCORE TRAIN: 0.0743

TIPOS DE VARIABLES

• RELEVANTES

• **REDUNDANTES**

• IRRELEVANTES

CLASIFICACIÓN MÉTODOS

• FILTER METHOD – METODOS FILTRO

• WRAPPER METHOD – METODOS ENVOLTURA

• EMBEDDED METHOD – MÉTODOS EMPOTRADOS

FILTER METHOD - CARACTERÍSTICAS

- NO SE BASAN EN ALGORITMOS DE MACHINE LEARNING
- MIDEN LA RELACIÓN ENTRE ATRIBUTOS Y VARIABLE RESPUESTA
- SIMPLES Y RÁPIDOS COMPUTACIONALMENTE
- INDEPENDIENTES DEL CLASIFICADOR

- NO DETECTAN ATRIBUTOS REDUNDANTES
- IGNORAN LA INTERACCIÓN ENTRE ATRIBUTOS

FILTER METHOD – PRINCIPALES TÉCNICAS

CORRELACIÓN

ANOVA

• CHI.CUADRADO

ENTROPY METHODS

Feature\Response	Continuous	Categorical
Continuous	Pearson's Correlation	LDA
Categorical	Anova	Chi-Square

FILTER METHOD – CORRELACIÓN LINEAL

Mide dependencia lineal entre predictores continuos.

Métodos Multivariantes:

- Método CFS (CorrelationbasedFeatureSelection)
- FCBF (FastCorrelation-BasedFilter)

Correlación

FILTER METHOD - ANOVA

- ESTADÍSTICO F
- REFLEJA EL GRADO DE PARECIDO EXISTENTE ENTRE LAS MEDIAS DE UNA VARIABLE CATEGÓRICA SOBRE UNA CONTINUA
- SI F>>1 ENTONCES HAY MAYOR EVIDENCIA
- SE NECESITA HIPÓTESIS PARA REALIZAR CONTRASTE

ESTADISTICO F - SANTANDER

ESTADISTICO F - HP

FILTER METHOD - ENTROPÍA

MEDIDA DE INCERTIDUMBRE DE UNA VARIABLE ALEATORIA

$$H(X) = -\sum_{i} P(x_i) \log P(x_i)$$

Entropía de X después de observar otra variable Y:

$$H(X \mid Y) = -\sum_{j} P(y_j) \sum_{i} P(x_i \mid y_j) \log P(x_i \mid y_j)$$

FILTER METHOD - ENTROPÍA

Details

information.gain IS

H(Class) + H(Attribute) - H(Class, Attribute)

gain.ratio iS

 $\frac{H(Class) + H(Attribute) - H(Class, Attribute)}{H(Attribute)}$

symmetrical.uncertainty iS

$$2\frac{H(Class) + H(Attribute) - H(Class, Attribute)}{H(Attribute) + H(Class)}$$

Vale

GAIN RATIO - SANTNADER

GAIN - HP

FILTER METHOD – IMPLEMENTACIÓN R

• LIBRERÍA MRL

```
generateFilterValuesData(
    task = ____,
    method = ____)
```

```
makeClassifTask(data, target)

makeMultilabelTask (data, target)

makeRegrTask(data, target)
```


÷	id	package	desc	
1	anova.test		ANOVA Test for binary and multiclass classification tasks	
2	auc		AUC filter for binary classification tasks	
3	carscore	care	CAR scores	
4	cforest.importance	party	Permutation importance of random forest fitted in package '	
5	chi.squared	FSelector	Chi-squared statistic of independence between feature and t	
6	gain.ratio	FSelector	Entropy-based gain ratio between feature and target	
7	information.gain	FSelector	Entropy-based information gain between feature and target	
8	kruskal.test		Kruskal Test for binary and multiclass classification tasks	
9	linear.correlation		Pearson correlation between feature and target	
10	mrmr	mRMRe	Minimum redundancy, maximum relevance filter	
11	oneR	FSelector	oneR association rule	
12	permutation.importance		Aggregated difference between feature permuted and unpe	
13	randomForest.importance	randomForest	Importance based on OOB-accuracy or node inpurity of ran	
14	randomForestSRC.rfsrc	randomForestS	Importance of random forests fitted in package 'randomFor	
15	randomForestSRC.var.select	randomForestS	Minimal depth of / variable hunting via method var.select on	
16	ranger.impurity	ranger	Variable importance based on ranger impurity importance	
17	ranger.permutation	ranger	Variable importance based on ranger permutation importan	
18	rank.correlation		Spearman's correlation between feature and target	
19	relief	FSelector	RELIEF algorithm	
20	symmetrical.uncertainty	FSelector	Entropy-based symmetrical uncertainty between feature and	
21	univariate.model.score		Resamples an mlr learner for each input feature individually	
22	variance		A simple variance filter	

EMBEDDED METHOD – CARACTERÍSTICAS

SE BASAN EN ALGORITMOS DE MACHINE LEARNING

ASIGNAN UN GRADO DE IMPORTANCIA A CADA VARIABLE

RELACIONADO CON LA INTERPRETABILIDAD DE LOS MODELOS

EMBEDDED – PRINCIPALES TÉCNICAS

- REGRESIÓN RIDGE
- REGRESIÓN LASSO
- SVM IMPORTANCE
- RANDOMFOREST IMPORTANCE
- XGBOOST IMPORTANCE
- LIGTHGBM IMPORTANCE
- ETC

EMBEDDED METHOD – REGRESIÓN LASSO

REGRESIÓN LINEAL CON RESTRICCIONES

- λ PARÁMETRO REGULARIZACIÓN/PENALIZACIÓN
- IDEA: variar λ y comparar la DEVIANCE

EMBEDDED METHOD – REGRESIÓN LASSO

```
glmnet(x, y,
         family = {'binomial', 'Gaussian', etc}
         alpha = 1
         standardize = {T,F}
         nlambda = { 100, 200 ... }
glmnet.cv()
```

LASSO PLOT

- Random Forest construye CART de forma paralela
- Cada árbol MINIMIZA función de IMPUREZA

Impurity	Task	Formula	Description
Gini impurity	Classification	$\sum\nolimits_{i=1}^{C} -f_i(1-f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Entropy	Classification	$\sum\nolimits_{i=1}^{C} -f_i \log(f_i)$	f_i is the frequency of label i at a node and C is the number of unique labels.
Variance / Mean Square Error (MSE)	Regression	$\frac{1}{N}\sum\nolimits_{i=1}^{N}(y_i-\mu)^2$	y_i is label for an instance, N is the number of instances and μ is the mean given by $\frac{1}{N}\sum_{i=1}^{N}y_i$

• OOB – Conjunto de Validación

- MEDIA DECREASE IMPURITY
 - Mide cuánta "información" aporta una variable
 - Gini Importance, Information Importance...
 - SESGADO para VARIABLES con ALTA CARDINALIDAD

PERMUTATION IMPORTANCE RF

IMPORTANCIA VARIABLE X = SCORE VALIDACION - SCORE VALIDACION PERMUTADO

- PERMUTATION IMPORTANCE
 - Descenso de validación al permutar variable
 - RF validación OOB
 - Mayor COSTE COMPUTACIONAL
 - SESGADO CORRELACIONADAS

RF PERMUTE IMPORTANCE - SANTANDER

RF PERMUTE IMPORTANCE - HP

RF IMPORTANCIA - IMPLEMENTACIÓN

generateFilterValuesData(task.train , method = {...})

	id	package	desc
1	cforest.importance	party	Permutation in
2	randomForest.importance	randomForest	Importance ba
3	randomForestSRC.rfsrc	randomForestSRC	Importance of
4	randomForestSRC.var.select	randomForestSRC	Minimal depth

EMBEDDED – XGBOOST IMP.

 XGB construye CART de forma secuencial

GAIN IMPORTANCE

FRECUENCY IMPORTANCE

COVER IMPORTANCE

XGB IMPORTANCIA - IMPLEMENTACIÓN

```
    xgb.importance( feature_names, xgb.model )
    xgb.ggplot.importance( xgb.importance , measure = {'Gain' , 'Cover', 'Frequency' )
```

XGB GAIN - SANTANDER

XGB GAIN - HP

WRAPPER METHOD - CARACTERÍSTICAS

- SE BASAN EN ALGORITMOS DE MACHINE LEARNING
- BUSCAN MEJOR SUBCONJUNTO OPTIMICE MODELO
- COMPUTACIONALMENTE COSTOSOS

OVERFITTING

WRAPPER METHOD - TÉCNICAS

- FORDWARD
- BACKWARD
- GENETIC
- BORUTA

WRAPPER METHOD - FORDWARD

WRAPPER METHOD - BACKWARD

RECURSIVE ELIMINATION

- CARET - rfe(x,y,control, sises, metric, params)

Algoritmo 1: Recursive Feature Elimination

- 1 Entrenar el modelo con todos los atributos;
- 2 Evaluar el rendimiento del modelo;
- 3 Ordenar los atributos de acuerdo a una medida de importancia;
- 4 foreach S_i (i = 1, 2, ...) do
- Retener los S_i atributos más importantes y eliminar los restantes;
- Entrenar el modelo usando los S_i atributos;
- Evaluar el rendimiento del modelo;
- Recalcular la medida de importancia de los atributos [Opcional];
- 9 end
- 10 Ordenar los valores S_i de acuerdo a su rendimiento;
- 11 A partir de la lista anterior, elegir un valor S_i apropiado;
- 12 Considerar el modelo correspondiente a los S_i atributos elegidos;

WRAPPER METHOD - GENETIC

Algoritmo 3: Algoritmo genético para selección de atributos

```
1 Elegir el criterio de parada, el tamaño de la población (m), el número de hijos de cada generación
   (GenSize) y la probabilidad de mutación (p_m);
2 Hacer p=Número de atributos;
```

3 Generar aleatoriamente un conjunto inicial de m cromosomas binarios, cada uno de longitud p;

4 repeat

```
foreach cromosoma do
         Entrenar un modelo y calcular el rendimiento del cromosoma;
     end
     foreach k = 1, ..., GenSize/2 do
         Seleccionar dos cromosomas basándose en su rendimiento;
 9
         Cruzamiento: seleccionar una posición aleatoria en el cromosoma e intercambiar los genes a
10
          partir de ese punto;
11
```

Mutación: Alterar aleatoriamente, con probabilidad p_m , los valores binarios de cada gen en cada cromosoma de la descendencia;

end 12

13 until se cumpla el criterio de parada;

WRAPPER METHOD – IMPLEMENTACIÓN R

selectFeatures(control, learner , task ,resampling , measures = list())

```
SelControlExhautive( max.features )
FeatSelControlSequential( method = { "sfs", "sbs" } , alpha = 0.02)
FeatSelControlRandom( )
FeatSelControlGA( )
```

```
makeResampleDesc( {'CV', `LOO`}, iters = 5, stratify = T)
```

makeClassifTask(data , task)

WRAPPER METHOD - BORUTA

• Zi << Z* Atributo i Eliminado

• **Z** >> **Z*** Atributo Importante

WRAPPER METHOD – BORUTA IMPLEMETACIÓN

```
Boruta( formula ,
data ,
pValue = 0.01,
mcAdj = TRUE,
maxRuns = 100, ___)
```

```
> boruta.trn
Boruta performed 14 iterations in 17.50179 hours.
No attributes deemed important.
No attributes deemed unimportant.
260 tentative attributes left: random_1, random_10, random_11, random_12, random_13 and 255 more;
> |
```

BORUTA - HOUSEPRICE

55 variables selec.

SCORE VAL: 0.1296 SCORE TRAIN: 0.0785

¿Y AHORA...?

ITERACIÓN i:

1. Seleccionamos p variables y creamos su sombra

2. Creamos modelo simple

FIN: Disponemos de un histórico

FEATURE	NUM ITERACIONES	Num Iteraciones no Importante	% No Importante	Media Diff MAX_SHADOW
random	10	10	100%	-0,04852
Var_81	30	0	0%	3,2455
Ramdom_2	12	10	83%	-0,0254
Noise	30	9	30%	0,05458

TOMAMOS DECISIÓN:

- Elegimos % no importante >> 50%
- Elegimos Media_DIFERENCIA > 0
- ... etc

IMPORTANCIA HP

EJEMPLO NUEVO – SANTANDER DATA

- CREAMOS VARIABLES RUIDO
 - VAR 81 REP
 - VAR 2 REP

- CREAMOS VARIABLES RANDOM
 - RANDOMs

GAIN XGBOOST ASIGNA BAJA IMPORTANCIA

Importancia

