18.100A: Complete Lecture Notes

Lecture 453

The Continuity of Sine and Cosine and the Many Discontinuities of Dirichlet's Function

Theorem 1

Let $S \subset \mathbb{R}$, $c \in S$, and $f: S \to \mathbb{R}$. Then,

- 1. if c is not a cluster point of f, then f is continuous at c.
- 2. if c is a cluster point of S, then f is continuous at c if and only if $\lim_{x\to c} f(x) = f(c)$.
- 3. f is continuous at c if and only if for every sequence $\{x_n\}$ of elements of S such that $x_n \to c$, we have $f(x_n) \to f(c)$.

Proof:

- 1. Let $\epsilon > 0$. Since c is not a cluster point of S, $\exists \delta_0 > 0$ such that $(c \delta_0, c + \delta_0) \cap S = \{c\}$. Choose $\delta = \delta_0$. If $x \in S$ and $|x c| < \delta \implies x = c \implies |f(x) f(c)| = 0 < \epsilon$. Therefore, f is continuous at c.
- 2. This part of the theorem is left as an exercise (or read the short proof in the book).
- 3. (\Longrightarrow) Suppose f is continuous at c. Let $\{x_n\}$ be a sequence such that $x_n \to c$. Let $\epsilon > 0$. Since f is continuous at c, $\exists \delta > 0$ such that if $x \in S$ and $|x c| < \delta$ then $|f(x) f(c)| < \epsilon$. Since $x_n \to c$, $\exists M_0 \in \mathbb{N}$ such that $\forall n \geq M_0$, $|x_n c| < \delta$. Choose $M = M_0$. Then, $\forall n \geq M$,

$$|x_n - c| < \delta \implies |f(x_n) - f(c)| < \epsilon.$$

Thus, $f(x_n) \to f(c)$.

(\Leftarrow) Suppose that for every sequence $\{x_n\}$ of elements of S such that $x_n \to c$, we have that $f(x_n) \to f(c)$. We will work towards a contradiction. Suppose f(x) is not continuous at c. Then, $\exists \epsilon_0$ such that $\forall \delta > 0$ $\exists x \in S$ such that $|x - c| < \delta$ and $|f(x) - f(c)| \ge \epsilon_0$.

Thus, $\forall n \in \mathbb{N}, \exists x_n \in S \text{ such that } |x_n - c| < \frac{1}{n} \text{ and }$

$$|f(x_n) - f(c)| \ge \epsilon_0.$$

Thus, by the Squeeze Theorem, $|x_n - c| \to 0 \implies x_n \to c$. Therefore,

$$0 = \lim_{n \to \infty} |f(x_n) - f(c)| \ge \epsilon_0$$

which is a contradiction.

Theorem 2

The functions $f(x) = \sin x$ and $g(x) = \cos x$ are continuous functions on \mathbb{R} .

Proof: From their definitions in terms of the unit circle, we have that $\sin^2(x) + \cos^2(x) = 1$. Also note the following:

- 1. $\forall x \in \mathbb{R}, |\sin x| \le 1 \text{ and } |\cos x| \le 1$
- 2. $\forall x \in \mathbb{R}, |\sin x| \le |x|$
- 3. The angle formulae:

$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b) \text{ and } \sin(a) - \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right).$$

We now show that $\sin x$ is continuous on \mathbb{R} . Let $\epsilon > 0$. Choose $\delta = \epsilon$. Then, if $|x - c| < \delta$, then

$$|\sin x - \sin c| = 2\left|\sin\frac{x-c}{2}\cos\frac{x+c}{2}\right| \le 2\left|\sin\frac{x-c}{2}\right| \le 2\frac{|x-c|}{2} = |x-c| < \delta = \epsilon.$$

Therefore, $\sin x$ is continuous on \mathbb{R} . We now show that $\cos x$ is continuous. Recall that $\forall x \in \mathbb{R}$, $\cos x = \sin(x + \pi/2)$. Let $c \in \mathbb{R}$ and let $\{x_n\}$ be a sequence such that $x_n \to c$. Then, $x_n + \pi/2 \to c + \pi/2$. Since $\sin x$ is continuous on \mathbb{R} ,

$$\lim_{n \to \infty} \cos x_n = \lim_{n \to \infty} \sin \left(x_n + \frac{\pi}{2} \right) = \sin \left(c + \frac{\pi}{2} \right) = \cos c.$$

Therefore, $\cos x$ is continuous on \mathbb{R} .

Theorem 3

Let f be a polynomial, in other words let f be of the form

$$f(x) = a_d x^d + \dots + a_1 x + a_0.$$

Then, f is continuous on all of \mathbb{R} .

Proof: Let $c \in \mathbb{R}$ and let $\{x_n\}$ be a sequence such that $x_n \to c$. Then, by the limit theorem for sequences,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (a_d x^d + \dots + a_1 x + a_0)$$

$$= a_d (\lim_{n \to \infty} x_n)^d + \dots + a_1 (\lim_{n \to \infty} x_n) + a_0$$

$$= a_d c^d + \dots + a_1 c + a_0$$

$$= f(c).$$

Thus, f is continuous at c for all $c \in \mathbb{R}$.

Theorem 4

If $f: S \to \mathbb{R}$, $g: S \to \mathbb{R}$ are continuous at $c \in S$, then

- 1. f + g is continuous at c,
- 2. $f \cdot g$ is continuous at c,
- 3. and if $\forall x \in S \ g(x) \neq 0$, then $\frac{f}{g}$ is continuous at c.

Proof: These proofs are left to the reader.

Theorem 5

Let $A, B \subset \mathbb{R}$, $f : B \to \mathbb{R}$, $g : A \to B$. Then, if g is continuous at c and f is continuous at g(c), then $f \circ g$ is continuous at c.

Proof: Suppose $x_n \to c$. Then, $g(x_n) \to g(c)$, and thus

$$f(g(x_n)) \to f(g(c)).$$

Example 6

These theorems allow us to say that some functions are continuous without a huge $\epsilon - \delta$ proof:

- i) $\frac{1}{x^2}$ is continuous on $(0, \infty)$. This follows as $g(x) = x^2$ is continuous on $(0, \infty)$ and thus $\frac{1}{g(x)} = 1/x^2$ is continuous on $(0, \infty)$.
- ii) $(\cos \frac{1}{x^2})^2$ is continuous on $(0, \infty)$. This follows as $\cos x$ is continuous on \mathbb{R} , and thus $g(x) = \cos(1/x^2)$ is continuous on $(0, \infty)$. Furthermore, since $f(x) = x^2$ is continuous on \mathbb{R} , $(f \circ g)(x) = (\cos 1/x^2)^2$ is continuous on $(0, \infty)$.

Question 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Does there exists a point $c \in \mathbb{R}$ such that f is continuous at c?

Theorem 8

The function

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

is not continuous on all of \mathbb{R} . This function is called the **Dirichlet function**.

Proof: We have two cases: $c \in \mathbb{Q}$ or $c \notin \mathbb{Q}$.

1. $c \in \mathbb{Q}$. For each $n \in \mathbb{N}$, $\exists x_n \notin \mathbb{Q}$ such that $c < x_n < c + 1/n$, and thus $x_n \to c$ but $f(x_n) = 1$ for all n so

$$1 = \lim_{n \to \infty} f(x_n) \neq f(c) = 0.$$

2. $c \notin \mathbb{Q}$. Similarly, for each $n \in \mathbb{N}$, $\exists x_n \in \mathbb{Q}$ such that $c < x_n < c + 1/n$, and thus $x_n \to c$ but $f(x_n) = 0$ for all n so

$$0 = \lim_{n \to \infty} f(x_n) \neq f(c) = 1.$$

MIT OpenCourseWare https://ocw.mit.edu

18.100A / 18.1001 Real Analysis Fall 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.