MEMS

LINUX KERNEL UNIVERCITY COURSE

MAXIM LIPCHANSKYI

FSM

FSM (Finite-state machine) - Конечный автомат — абстрактный автомат, число возможных внутренних состояний которого конечно.

Способы описания:

- ▶ Диаграмма состояний (граф переходов) графическое представление множества состояний и функции переходов
- ▶ Таблица переходов табличное представление (строки состояния, столбцы один допустимый входной символ, ячейки состояние, в которое должен перейти автомат, если в данном состоянии он считал данный входной символ)

MEMS

Тип датчика:9-ахіз

Ось измерения:Х, Ү, Z

Чувствительность: 0.061 mg/LSB, 0.122 mg/LSB, 0.244

mg/LSB

Ускорение:2 g, 4 g, 8 g, 16 g

Тип выхода:Digital

Тип интерфейса:SPI, I2C

Разрешение:16 bit

Рабочий ток источника питания: 1.9 mA

Напряжение питания - 1.9 - 3.6 VDC

Рабочая температура: -40 - +85 С

Особенности:Temperature Sensor

LGA-24L (3.5x3x1.0 mm)

(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ACCELERATIONS

(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
MAGNETIC FIELDS

(TOP VIEW)
DIRECTIONS OF THE
DETECTABLE
ANGULAR RATES

58	C7	92	136	В6	164	PB6	I/O	FT	-	I2C1_SCL/ TIM4_CH1 / CAN2_TX / DCMI_D5/USART1_TX/ EVENTOUT	-
62	C8	96	140	B4	168	PB9	I/O	FT	-	SPI2_NSS/ I2S2_WS / TIM4_CH4/ TIM11_CH1/ SDIO_D5 / DCMI_D7 / I2C1_SDA / CAN1_TX/ EVENTOUT	-

Конфигурация LSM9DS1

Accelerometer and gyroscope

 $CTRL_REG1_G [0x10] = 0x40$ $CTRL_REG5_XL [0x1F] = 0x38$ $CTRL_REG3_G [0x12] = 0x41$ $CTRL_REG6_XL [0x20] = 0x38$ $CTRL_REG4 [0x1E] = 0x38$ $CTRL_REG7_XL [0x21] = 0x00$

Конфигурация LSM9DS1

Magnetic sensor

 $CTRL_REG1_M [0x20] = 0x74$

 $CTRL_REG2_M [0x21] = 0x40$

 $CTRL_REG3_M [0x22] = 0x00$

 $CTRL_REG4_M [0x23] = 0x0C$

 $CTRL_REG5_M [0x24] = 0x00$

Конфигурация LSM9DS1

• Медианный фильтр

$$y_k = Me(x_{k-(n-1)/2}, ..., x_k, ..., x_{k+(n-1)/2}),$$

• Фильтр Калмана

Начальные значения \hat{x}_{k-1} и P_k^-

Предсказание

1. Предсказание состояния системы

$$\hat{x}_{k}^{-} = F\hat{x}_{k-1} + Bu_{k-1}$$

2. Предсказание ошибки ковариации

$$P_k^- = FP_{k-1}F^T + Q$$

Корректировка

1. Вычисление усиления Калмана (Kalman Gain)

$$K_k = P_k^- H^T (H P_k^- H^T + R)^{-1}$$

2. Обновление оценки с учетом измерения $z_{ar{k}}$

$$\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$$

3. Обновление ошибки ковариации

$$P_k = (I - K_k H) P_k^-$$

• Фильтр Маджвика

Фильтр массивов данных инерционно-магнитных датчиков для определения ориентации

• Фильтр Махони

• Определение угла поворота (инклинометр)

Одноосевой акселерометр

Рисунок 1: Одноосевой случай

$$A_s = g \cdot \sin(\alpha)$$

Двухосевой акселерометр

$$\tan(\alpha) = \frac{A_{x}}{A}$$

$$\alpha = \arctan(\frac{A_x}{A_y})$$

• Определение угла поворота (инклинометр)

Трехосевой акселерометр

$$\alpha = \arctan\left(\frac{A_x}{\sqrt{A_y^2 + A_z^2}}\right)$$

$$\beta = \arctan\left(\frac{A_y}{\sqrt{A_x^2 + A_z^2}}\right)$$

$$\gamma = \arctan\left(\frac{A_z}{\sqrt{A_x^2 + A_z^2}}\right)$$

Float pitch = atan2(-ax, sqrt(ay * ay + az * az));