A Short Technical Report towards - A8518 - Python for Data Analytics

Course End Project

Indian Elections Data Analysis

Submitted in the Partial Fulfillment of the Requirements for the Award of the Degree of

BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

Submitted

By

Poojitha 22881A1287 Sahithi Reddy 22881A12B0 Vineesha 22881A12A5 Ifra 22881A12B6

> Under the Esteemed Guidance of Ms.Ch .Dhanalaxmi Assistant Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

VARDHAMAN COLLEGE OF ENGINEERING

(AUTONOMOUS)

Affiliated to JNTUH, Approved by AICTE, Accredited by NAAC with A++ Grade, ISO 9001:2015 Certified Kacharam, Shamshabad, Hyderabad - 501218, Telangana, India.

2023-24

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of the task would be put incomplete without the mention of the people who made it possible, whose constant guidance and encouragement crown all the efforts with success.

We wish to express my deep sense of gratitude to **Ms. Ch DhanaLaxmi**, Assistant Professor, for her ableguidance and useful suggestions, which helped us in completing the design and implementation part of project in time.

We particularly thankful to **Dr.G Suryanaryana**, Associate Professor & Head, Department of information technology for his guidance, intense support and encouragement, which helped us to mold our project into a successful one.

We show gratitude to our honorable Principal **Dr. J.V.R. Ravindra**, for having provided all the facilities and support.

We avail this opportunity to express our deep sense of gratitude and heartful thanks to **Dr. TeegalaVijender Reddy**, Chairman and **Sri TeegalaUpender Reddy**, Secretary of VCE, for providing congenial atmosphere to complete this project successfully.

We also thank all the **Teaching and Non-Teaching** members of for their valuable support and generous advice. Finally, thanks to all our friends and family members for their continuous support and enthusiastic help.

VARDHAMAN COLLEGE OF ENGINEERING, HYDERABAD

An Autonomous Institute affiliated to JNTUH

Department of Information Technology

CERTIFICATE

This is to certify that the short technical report work entitled "Indian Election Data Analysis" carried out by Poojitha 22881A1287, Vineesha 22881A12A5, R.Sahithi 22881A12B0, Ifra 22881A12B6, A8518 - Python for Data Analytics course and submitted to the Department of Information technology, in partial fulfillment of the requirements for the award of degree of Bachelor of Technology in Information technology during the year 2023-24.

Name & Signature of the Instructor

Name & Signature of the HOD

Ms. Ch Dhanalaxmi **Assistant Professor**

Dr.G Suryanaryana

HOD, IT

Abstract

This project aims to analyze Indian election data to uncover patterns, trends, and insights that can inform future political strategies and decision-making. Utilizing various data analysis and visualization techniques, this study examines voter demographics, party performance, and election outcomes over multiple years. The project leverages Python and relevant libraries to process and analyze large datasets, ultimately presenting findings in a clear and accessible manner.

INTRODUCTION

1.1 Background

Elections in India are a significant democratic exercise that involves millions of voters and numerous political parties. Understanding the intricacies of election data can provide valuable insights into voter behavior, party performance, and election outcomes. This project focuses on analyzing election data from multiple past elections in India to identify trends and patterns.

1.2 Objectives

The primary objectives of this project are:

- To analyze historical election data from India.
- To identify patterns in voter turnout and party performance.
- ➤ To visualize election data to reveal insights.
- ➤ To develop predictive models for future election outcomes.

1.3 Scope

This project covers election data from the national level, focusing on the Lok Sabha (House of the People) elections. The analysis includes data from multiple election years, voter demographics, party-wise performance, and geographical voting patterns.

PROBLEM STATEMENT

2.1 Problem Definition

Understanding election data is complex due to the vast and varied nature of the datainvolved. This project addresses the following problems:

- Lack of consolidated and accessible election data.
- > Difficulty in identifying trends and patterns in voter behavior and election outcomes.
- ➤ Challenges in predicting future election results based on historical data.

2.2 Research Questions

The project seeks to answer the following questions:

- What are the trends in voter turnout over the years?
- How do demographic factors influence election outcomes?
- What are the key determinants of party performance?
- Can historical data be used to predict future election outcomes?

ARCHITECTURE

3.1 Data Collection

Data for this project is sourced from the Election Commission of India, which provides detailed election results, voter demographics, and party performance data.

3.2 Data Processing

The data processing pipeline includes:

- Data cleaning: Handling missing values and inconsistent data.
- Data transformation: Normalizing and structuring data for analysis.
- Feature extraction: Identifying key features relevant to the analysis.

3.3 Data Analysis and Visualization

Tools and techniques used for analysis:

Python libraries: pandas, numpy, matplotlib, seaborn, and scikit-

learn. Visualization tools: matplotlib, seaborn, and Plotly.

3.4 Predictive Modeling

Machine learning models are employed to predict future election outcomes. Techniques include:

- * Regression analysis for turnout prediction.
- Classification algorithms for predicting winning parties.

Election Sentiment Analysis by Analyzing Tweets

Steps to be followed:

- 1. Importing necessary libraries
- 2. Loading datasets
- 3. Data preprocessing
- 4. Exploratory Data Analysis
- 5. Sentiment Analysis

Dataset features:

created_at: Date and time of tweet posted

tweet_id: Tweet's unique ID

tweet: Full tweet text likes: Number of likes

retweet_count: Number of retweets

source: Utility used to post the tweet

user id: User ID of tweet creator

user_name: Username of tweet creator

user_screen_name: Screen name of tweet creator
user_description: Self-description by tweet creator

user_join_date: Join date of tweet creator

user_followers_count: Followers count on tweet creator user_location: Address was given on tweeter's profile

lat: Latitude parsed from user_location

long: Longitude parsed from user_location

city: City parsed from user_location

country: Country parsed from user_location

state: State parsed from user_location

state_code: State code parsed from user_location

collected_at: Date and time tweet data was mined from Twitter

Steps to be followed:

- 5. Importing necessary libraries
- 6. Loading datasets
- 7. Data preprocessing
- 8. Exploratory Data Analysis
- 9. Sentiment Analysis

Dataset features:

created_at: Date and time of tweet posted

tweet_id: Tweet's unique ID

tweet: Full tweet text

likes: Number of likes

retweet_count: Number of retweets

source: Utility used to post the tweet

user_id: User ID of tweet creator

user_name: Username of tweet creator

user_screen_name: Screen name of tweet creator

user_description: Self-description by tweet creator

user_join_date: Join date of tweet creator

user_followers_count: Followers count on tweet creator

user_location: Address was given on tweeter's profile

lat: Latitude parsed from user_location

long: Longitude parsed from user_location

city: City parsed from user_location

country: Country parsed from user_location

state: State parsed from user_location

state_code: State code parsed from user_location

collected_at: Date and time tweet data was mined from Twitter

SOURCE CODE WITH OUTPUT

import pandas as pd

raw_election_data = pd.read_csv('./indian-candidates-for-general-election-2019/LS_2.0.csv')

raw_election_data

OUTPUT:

0011	01.											1	1		ı		ı		
	STATE	CONSTITU ENCY	NAME	WINNE R	PART Y	SYMBO L	GENDE R	CRIMINAL\n CASES		CATEGO RY	EDUCATI ON	ASSETS	LIABILITIE S	GENERAL\n VOTES	POSTAL\nV OTES			TOTAL	TOTAL ELECTO RS
0	Telangana	ADILABAD	SOYAM BAPU RAO	1	BJF	Lotus	MALE	52	52.0	ST	12th Pass		Rs 2,31,450\n ~ 2 Lacs+	376892	482	377374	25.330684	35.468248	1489790
1	Telangana	ADILABAD	Godam Nagesh	0	TRS	Car	MALE	0	54.0	ST	Post Graduate	Rs 1,84,77,88 8\n ~ 1 Crore+	Rs 8,47,000\n ~ 8 Lacs+	318665	149	318814	21.399929	29.964370	1489790
2	Telangan a	ADILABAD	RATHC D RAME SH		INC	Hand	MALE	3	52.0	ST	12th Pass	Rs 3,64,91,0 00\n ~ 3 Crore+	1,53,00,0	314057	181	314238	21.092771	29.534285	148979 0
3	Telangan a	ADILABAD	NOTA	0	NOTA	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	13030	6	13036	0.875023	1.225214	148979 0
4	Uttar Pradesh		Satyap al Singh Baghel		BJF	Lotus	MALE	5	58.0	SC	Doctorat e		86,06,522		2416	646875	33.383823	56.464615	193769 0
	htra	YAVATMA L-WASHIM	Jayram Rathod		IND	SHIP	MALE	0	43.0	GENER AL		Rs 48,90,000 \n ~ 48 Lacs+	10,20,000		25	14686	0.766419	1.250060	191618 5

2263 rows × 19 columns

```
def convert(x):
  Extract the numeric value from the passed string and return it as float
  if str(x)[0] == 'R':
     this is to ensure only valid values (and not NaN values) are converted
    return float(str(x).split()[1].replace(",",""))
  return 0.0
# default 0
raw_election_data.ASSETS = raw_election_data.ASSETS.apply(convert)
raw_election_data.LIABILITIES = raw_election_data.LIABILITIES.apply(convert)
# convert the ASSETS and LIABILITIES to numeric data
# the above can also be done using lambda function
raw_election_data.sample(5)
# check if the applied operations were successful
raw_election_data.at[raw_election_data.EDUCATION == "Post Graduate\n", "EDUCATION"] = "Post Graduate"
raw_election_data.at[raw_election_data.EDUCATION == "Graduate Professional", "EDUCATION"] =
"Graduate\nProfessional"
raw_election_data.at[192, "WINNER"] = 1
raw_election_data.at[702, "WINNER"] = 1
raw_election_data.at[951, "WINNER"] = 1
raw election data.at[1132, "WINNER"] = 1
raw election data.at[172, "WINNER"] = 0
raw election data.columns
OUTPUT: Index(['STATE', 'CONSTITUENCY', 'NAME', 'WINNER', 'PARTY', 'SYMBOL', 'GENDER',
   'CRIMINAL\nCASES', 'AGE', 'CATEGORY', 'EDUCATION', 'ASSETS',
   'LIABILITIES', 'GENERAL\nVOTES', 'POSTAL\nVOTES', 'TOTAL\nVOTES',
   'OVER TOTAL ELECTORS \nIN CONSTITUENCY',
   'OVER TOTAL VOTES POLLED \nIN CONSTITUENCY', 'TOTAL ELECTORS'],
   dtype='object')
candidates_df = raw_election_data.drop(['SYMBOL', 'GENERAL\nVOTES', 'POSTAL\nVOTES',
           'OVER TOTAL ELECTORS \nIN CONSTITUENCY', 'OVER TOTAL VOTES POLLED \nIN CONSTITUENCY'],
axis=1)
# take out the unnecessary columns
candidates_df.rename(columns = {"CRIMINAL\nCASES": "CRIMINAL CASES", "TOTAL\nVOTES": "TOTAL VOTES"},
inplace = True)
candidates_df.sort_values(["STATE", "CONSTITUENCY"], inplace = True)
# rename some of the columns and sort the data with respect to State and Constituency columns
candidates_df.info()
OUTPUT:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 2263 entries, 105 to 2171
Data columns (total 14 columns):
   Column Non-Null Count Dtype
             -----
```

- 0 STATE 2263 non-null object
- 1 CONSTITUENCY 2263 non-null object
- 2 NAME 2263 non-null object
- 3 WINNER 2263 non-null int64
- 4 PARTY 2263 non-null object
- 5 GENDER 2018 non-null object
- 6 CRIMINAL CASES 2018 non-null object
- 7 AGE 2018 non-null float64
- 8 CATEGORY 2018 non-null object
- 9 EDUCATION 2018 non-null object
- 10 ASSETS 2263 non-null float64
- 11 LIABILITIES 2263 non-null float64
- 12 TOTAL VOTES 2263 non-null int64
- 13 TOTAL ELECTORS 2263 non-null int64

dtypes: float64(3), int64(3), object(8) memory usage: 265.2+ KB

candidates_df["CRIMINAL CASES"] = pd.to_numeric(candidates_df["CRIMINAL CASES"], errors =
'coerce').convert_dtypes()

candidates_df
OUTPUT:

WINNE R	PARTY	GENDER	CRIMINAL CASES		CATEGO RY	EDUCATI ON	ASSE TS		TOTAL VOTES	TOTAL ELECTORS				
105	n & Nicobar	ANDAMA N & NICOBAR ISLANDS	SHARMA	1	INC	MALE	0	52.0	GENERA L	Graduate\nProfessi onal				318471
106	n & Nicobar	ANDAMA N & NICOBAR ISLANDS	JOLLY	0	ВЈР	MALE	1	46.0	GENERA L	Graduate\nProfessi onal		4633914. 0	93901	318471
107	n & Nicobar				IND	MALE	0	61.0	GENERA L	Post Graduate	19916000. 0	1311000. 0	5341	318471
108	an &	NICOBA	MESHAC K	0	AAP	MALE	0	49.0	GENER AL	12th Pass	9988778 2.0		2839	31847 1
109	an &	AN & NICOBA	_	0	BSP	MALE	0	43.0	SC	Post Graduate	1250000. 0	240000. 0	2486	31847 1
2042	West Bengal		Lakshma n Chandra Seth		INC	MALE	5	73.0	SC	Doctorate	2045953. 0	0.0	1600 1	16946 46

Indian Elections Data Analysis

2168	West Bengal	ULUBER IA			AITC	FEMALE	0	57.0	GENER AL	Graduate	2835156 9.0		6949 45	
2169	West Bengal	ULUBER IA		0	BJP	MALE	2	56.0	GENER AL	Graduate	246933.0	0.0	4795 86	
2170	West Bengal		MAKSUD A KHATUN	0	CPI(M)	FEMALE	0	58.0	GENER AL	Doctorate	1257873 6.0	2876353 .0	8131 4	16149 88
2171	West Bengal	ULUBER IA	Shoma Ranisree Roy		INC	FEMALE	0	40.0	GENER AL	Post Graduate	5400000	0.0	2756 8	16149 88

2263 rows x 14 columns

candidates_personal_df = candidates_df[candidates_df.NAME != "NOTA"]
candidates_personal_df = candidates_personal_df.drop(["TOTAL VOTES", "TOTAL ELECTORS"], axis = 1)
candidates_personal_df
OUTPUT:

Indian Elections Data Analysis

STATE	CONSTITUENCY	NAME	WINNER	PARTY	GENDER	CRIMINAL	AGE	CATEGORY	EDUCATION	ASSETS	LIABILITIES	
STATE	CONSTITUENCY	NAME	WINNER	PARIT	GENDER	CASES	AGE	CATEGORY	EDUCATION	ASSETS	LIABILITIES	
105	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	KULDEEP RAI SHARMA	1	INC	MALE	0	52.0	GENERAL	Graduate\nProfessional	132233012.0	80450870.0
106	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	VISHAL JOLLY	0	ВЈР	MALE	1	46.0	GENERAL	Graduate\nProfessional	85140573.0	4633914.0
107	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	PARITOSH KUMAR HALDAR	0	IND	MALE	0	61.0	GENERAL	Post Graduate	19916000.0	1311000.0
108	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	SANJAY MESHACK	0	AAP	MALE	0	49.0	GENERAL	12th Pass	99887782.0	1791076.0
109	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	PRAKASH MINJ	0	BSP	MALE	0	43.0	SC	Post Graduate	1250000.0	240000.0
2042	West Bengal	TAMLUK	Lakshman Chandra Seth	0	INC	MALE	5	73.0	SC	Doctorate	2045953.0	0.0
2168	West Bengal	ULUBERIA	SAJDA AHMED	1	AITC	FEMALE	0	57.0	GENERAL	Graduate	28351569.0	5322615.0
2169	West Bengal	ULUBERIA	JOY BANERJEE	0	BJP	MALE	2	56.0	GENERAL	Graduate	246933.0	0.0
2170	West Bengal	ULUBERIA	MAKSUDA KHATUN	0	CPI(M)	FEMALE	0	58.0	GENERAL	Doctorate	12578736.0	2876353.0
2171	West Bengal	ULUBERIA	Shoma Ranisree Roy	0	INC	FEMALE	0	40.0	GENERAL	Post Graduate	5400000.0	0.0

2018 rows x 12 columns

candidates_personal_df.describe() # works on only numeric data

OUTPUT:

	WINNER	CRIMINAL CASES	AGE	ASSETS	LIABILITIES
count	2018.000000	1996.000000	2018.000000	2.018000e+03	2.018000e+03
mean	0.268583	1.469940	52.273538	1.315849e+08	1.973860e+07
std	0.443332	7.677432	11.869373	4.122697e+08	8.945292e+07
min	0.000000	0.000000	25.000000	0.000000e+00	0.000000e+00
25%	0.000000	0.000000	43.250000	6.272526e+06	0.000000e+00
50%	0.000000	0.000000	52.000000	2.404181e+07	9.039245e+05
75%	1.000000	1.000000	61.000000	9.152498e+07	6.097971e+06
max	1.000000	240.000000	86.000000	8.950179e+09	1.547511e+09

winners_df = candidates_df[candidates_df.WINNER == 1].sort_values(["STATE", "CONSTITUENCY"]).reset_index() # extract the list of winners

winners_df.drop(["index", "WINNER"], axis = 1, inplace = True)

winners_df

OUTPUT:

STAT E	CONSTITUENC	NAME	PARTY	GENDE R	CRIMINA L CASES	AG E	CATEGOR Y	EDUCATIO N	ASSETS	LIABILITIE S	TOTAL VOTES	TOTAL ELECTOR S	
О	Andaman & Nicobar Islands	ANDAMAN & NICOBAR ISLANDS	KULDEEP RAI SHARMA	INC	MALE	0	52.0	GENERAL	Graduate\nProfession al	132233012. 0	80450870. 0	95308	318471

Indian Elections Data Analysis

			,										
1	Andhra Pradesh	AMALAPURA M	CHINTA ANURADHA	YSRCP	FEMALE	0	46.0	SC	Graduate	85993362.0	2431407.0	485958	145955 6
2	Andhra Pradesh	ANAKAPALLI	Dr.Beesetti Venkata Satyavathi	YSRCP	FEMALE	0	52.0	GENERAL	Graduate\nProfession al	91526244.0	11139279. 0	586226	152136 3
3	Andhra Pradesh	ANANTAPUR	TALARI RANGAIAH	YSRCP	MALE	2	48.0	GENERAL	Doctorate	11773091.0	1135547.0	695208	166416 0
4	Andhra Pradesh	ARUKU	GODDETI. MADHAVI	YSRCP	FEMALE	0	26.0	ST	Graduate\nProfession al	141179.0	0.0	562190	145141 8
537	West Bengal	RAIGANJ	DEBASREE CHAUDHUR I	ВЈР	FEMALE	2	48.0	GENERAL	Post Graduate	6139123.0	823416.0	511652	160122 0
538	West Bengal	RANAGHAT	JAGANNAT H SARKAR	BJP	MALE	1	56.0	SC	Graduate\nProfession al	17622476.0	0.0	783253	176225 2
539	West Bengal	SRERAMPUR	KALYAN BANERJEE	AITC	MALE	0	62.0	GENERAL	Graduate\nProfession al	175968902. 0	5522403.0	637707	178547 2
540	West Bengal	TAMLUK	Adhikari Dibyendu	AITC	MALE	1	42.0	GENERAL	Graduate	37687867.0	8397501.0	724433	169464 6
541	West Bengal	ULUBERIA	SAJDA AHMED	AITC	FEMALE	0	57.0	GENERAL	Graduate	28351569.0	5322615.0	694945	161498 8

542 rows x 13 columns

```
print("Number of Parties which fielded at least 1 candidate: ", candidates_df.PARTY.unique().shape[0]-2)
# -2: 1 for independent candidates and 1 for NOTA
```

OUTPUT:

Number of Parties which fielded at least 1 candidate: 131

print("Number of Independent Candidates who contested the elections: ", candidates_df[candidates_df.PARTY == 'IND'].shape[0])

OUTPUT:

Number of Independent Candidates who contested the elections: 201

```
print("Number of Parties which won at least 1 seat: ", winners_df.PARTY.unique().shape[0] - 1)
# -1: for independent winners
```

OUTPUT:

Number of Parties which won at least 1 seat: 35

```
print("Number of Independent Winners: ", winners_df[winners_df.PARTY == 'IND'].shape[0])
```

OUTPUT:

Number of Independent Winners: 4

Exploratory Analysis and Visualization

```
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
sns.set_style('darkgrid')
matplotlib.rcParams['font.size'] = 14
matplotlib.rcParams['figure.figsize'] = (15, 10)
matplotlib.rcParams['figure.facecolor'] = '#00000000'
import numpy as np
```

Seat Share

```
all_party_seats = winners_df.PARTY.value_counts().sort_values(ascending = False) # frequen cy of each PARTY in the winner list all_party_seats
```

all_party_	seats
OUTPUT:	
BJP	303
INC	52
DMK	23
YSRCP	22
AITC	22
SHS	18
JD(U)	16
BJD	12
BSP	10
TRS	9
LJP	6
NCP	5
SP	5
CPI(M)	5

```
IND
            4
            3
IUML
JKN
            3
TDP
            3
            2
SAD
            2
AIMIM
            2
ADAL
SKM
           1
AISUP
            1
JMM
           1
AIADMK
           1
VCK
            1
AAP
            1
RLTP
            1
KEC(M)
            1
JD(S)
            1
NDPP
            1
MNF
            1
RSP
            1
NPF
            1
AIUDF
            1
NPEP
            1
Name: PARTY, dtype: int64
others = all_party_seats[all_party_seats<10].sum()
# simplifying the output for visualization purposes
seat_distribution = all_party_seats[all_party_seats>=10].append(pd.Series({"Others":others}))
seat_distribution
OUTPUT:
BIP
       303
INC
       52
DMK
         23
YSRCP
         22
AITC
        22
SHS
        18
JD(U)
        1;
BJD
       12
BSP
        10
Others 64
dtype: int64
```

Plot the distribution as a pie chart.

legend = seat_percent.index + " (" + seat_percent.values.astype(str) + "%) - " + seat_distribution.values.astype(str) # the legend would the percentage seat share of each party (& others)

plt.legend(legend, loc = "right", bbox_to_anchor = (1.6,0.5));

legend is placed outside the main chart accordingly

SEAT SHARE


```
plt.figure(figsize = (20,10))
plt.title("Age of Candidates Contested and Won", fontsize=20)
plt.xlabel("Age", fontsize=17)
plt.ylabel("Number of candidates", fontsize=17)
# put the basic labelling
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
# axes ticks size
sns.histplot(data = candidates\_personal\_df, x = 'AGE', bins = np.arange(20,100,5), color = 'indigo', alpha = 0.5)
sns.histplot(data = winners\_df, x = 'AGE', bins = np.arange(20,100,5), color = 'lightgreen', alpha = 1)
# two histograms plotted, Won over Contested to show the relative percentage
plt.legend(["Candidates Contested", "Candidates Won"], fontsize = 15)
# legend to the plot
plt.text(84.5, 238, "All Candidates:")
plt.figtext(0.77, 0.63, round(candidates_personal_df.describe().AGE[['mean', 'min', 'max']], 2).to_string())
plt.text(84.5,185, "Winning Candidates:")
plt.figtext(0.77, 0.5, round(winners_df.describe().AGE[['mean', 'min', 'max']], 2).to_string());
# basic stats printed
```


print("Youngest Member of the House:")
winners_df[(winners_df.AGE == 25)][["NAME", "PARTY", "STATE", "CONSTITUENCY"]].reset_index(drop = True)

OUTPUT:

Youngest Member of the House:

print("Oldest Member of the House:")
winners_df[(winners_df.AGE == 86)][["NAME", "PARTY", "STATE", "CONSTITUENCY"]].reset_index(drop = True)

OUTPUT:

Oldest Member of the House:

	NAME	PARTY	STATE	CONSTITUENCY
0	DR. SHAFIQUR REHMAN BARQ	SP	Uttar Pradesh	SAMBHAL

Seat Category

seat_category = winners_df.CATEGORY.value_counts()

winners_df has 1 constituency only 1 time, so analysing its CATEGORY column will give the correct result

OUTPUT:

pd.DataFrame(seat_category)

CATEGORY

GENERAL	400
sc	86
ST	56

Plot the distribution as a Pie chart:

```
sns.set_palette(sns.color_palette('Set2'))
plt.figure(figsize=(8,5))
plt.title("Distribution of Seats by Category", size=18, x = 0.52, y = 0.95)

plt.pie(seat_category, labels = seat_category.index, autopct = '%1.1f%%', startangle = 45);
# percentage of seats shown on the plot

Distribution of Seats by Category

GENERAL

73.8%

10.3%

ST

10.3%

SC
```

Gender

```
gender_group = candidates_personal_df.groupby(["GENDER", "WINNER"]).size()
gender_group = gender_group.unstack()
gender_group = gender_group[[1,0]]
# a2a from stack overflow

# gender with winning condition is extracted as a dataframe

sns.set_palette(sns.color_palette("icefire"))
# color palette set
gender_group.plot(kind = 'barh', figsize = (15,6), title = "Gender Comparison of Contesting and Winning Candidates")
# horizontal bar plot created with Pandas

plt.legend(["Won", "Lost"])
plt.xlabel("Number of Candidates")
plt.ylabel("Gender")
# legend and labels set
```

```
plt.figtext(0.738,0.53, "Contesting Candidates:\n" +
      round((candidates_personal_df.GENDER.value_counts(normalize=True)*100),2),to_string().replace("\n",
"%\n")+"%")
plt.figtext(0.738,0.33, "Winning Candidates:\n" +
      round((winners_df.GENDER.value_counts(normalize=True)*100),2).to_string().replace("\n", "%\n")+"%")
# Total candidates statistics (percentages) printed on the chart, with some applied String formatting to give the look
win_percent = round((winners_df.GENDER.value_counts()/candidates_personal_df.GENDER.value_counts())*100,2)
plt.figtext(0.395, 0.63, str(round(win_percent.MALE,2)) + "% candidates won")
plt.figtext(0.175, 0.25, str(round(win_percent.FEMALE,2))+ "% candidates won");
# percentage of winning, gender-wise printed on the chart
                            Gender Comparison of Contesting and Winning Candidates
    MALE
                                          26,36% candidates won
                                                                                  Contesting Candidates:
                                                                                  FEMALE 12.78%
Gender
                                                                                  Winning Candidates:
                                                                                  MALE
                                                                                         85.61%
                                                                                  FEMALE 14.39%
  FEMALE
               30.23% candidates won
                                                                                                 Won
                                                                                                 Lost
         0
                     200
                                   400
                                                600
                                                              800
                                                                           1000
                                                                                         1200
```

```
print("No. of male MPs: ", winners_df.GENDER.value_counts()["MALE"])
print("No. of female MPs: ", winners_df.GENDER.value_counts()["FEMALE"])
```

Number of Candidates

OUTPUT:

No. of male MPs: 464 No. of female MPs: 78 winners_df["EDUCATION"].unique()

OUTPUT:

array(['Graduate\nProfessional', 'Graduate', 'Doctorate', '8th Pass', 'Post Graduate', '12th Pass', '10th Pass', '0thers', '5th Pass', 'Illiterate', 'Literate'], dtype=object)

Plot the data as a Bar Chart.

```
plt.figure(figsize=(15,7))
plt.xticks(rotation = 60);
# plot detailing
plt.xlabel("Education Status", fontsize = 15)
plt.ylabel("No. of Candidates", fontsize = 15)
plt.title("EDUCATIONAL QUALIFICATIONS OF WINNERS", fontsize = 18)
# labels and title
sns.barplot(x = education.index, y = education.values);
# plotting the barplot
```


Plot the data as a horizontal bar chart, with the appropriate color grading.

```
plt.figure(figsize = (15,7))
palette = ['#f97d09', '#00bdfe', '#228b22', '#ff6634', '#0266b4', '#dc143c', '#24b44c',
                      'yellow', '#22409a', 'grey']
# color palette is customized to correspond to each party's colors
sns.barplot(x = crime.values, y = crime.index, palette = sns.set_palette(palette, 10))
# the data is plotted as a horizontal bar plot
plt.title("PARTIES WITH THE HIGHEST NUMBER OF WINNERS \nWITH A CRIMINAL RECORD", fontsize = 18)
plt.ylabel("Party", fontsize = 16, labelpad = 12)
plt.xlabel("No. of Candidates", fontsize = 16, labelpad = 12)
plt.tick_params(labelsize = 14) # increase label size
# plot detailing
plt.figtext(0.8, 0.66, "Total: " + str(crime.sum()), fontsize = 14.5)
plt.figtext(0.81, 0.61, "BJP: " + str(crime["BJP"]), fontsize = 14)
plt.figtext(0.81, 0.575, "INC: " + str(crime["INC"]), fontsize = 14)
plt.figtext(0.735, 0.48, str(round(crime.sum()/winners_df.shape[0]*100,2))+ "% of the winners\n have a criminal
record.",
       fontsize = 14.5, style = 'oblique');
# printing details on the graph
```


5.1 Data Insights

5.1 Data Insights

RESULTS

- ❖ Voter Turnout Trends: Analysis reveals a general increase in voter turnout over the years, with significant spikes during particular elections.
- ❖ Demographic Influence: Age, gender, and urban/rural divide have noticeable effects on voting patterns and outcomes.
- ❖ Party Performance: Historical data shows fluctuating fortunes for major parties, with regional parties gaining ground in certain states.

5.2 Predictive Model Performance

The predictive models demonstrated reasonable accuracy in forecasting election outcomes based on historical data. Key performance metrics include:

- Accuracy
- Precision
- Recall

5.3 Visualizations

Graphs and charts illustrating voter turnout, party performance over years, and demographic influences on voting patterns.

CONCLUSION

6.1 Summary

The analysis of Indian election data provided valuable insights into voter behavior, demographic influences, and party performance. The predictive models, though preliminary, showed promise in forecasting election results.

6.1 Future Work

Future work could involve:

- Incorporating more granular data at the constituency level.
- Enhancing predictive models with more sophisticated algorithms.
- Exploring the impact of social media and other external factors on election outcomes.

6.2 Final Thoughts

This project underscores the importance of data analysis in understanding and predicting electoral trends. By leveraging modern data science techniques, stakeholders can gain deeper insights and make more informed decisions.

REFERENCES

- 1. https://www.geeksforgeeks.org/data-analyst-projects.
- 2. 2019 Indian General Elections Data Analysis , sh007online, Jovian. About
- 3. realtime sentiment analysis of india elections 2019, https://github.com/v-adhithyan/india-elections
- 4. Results related to General Assembly (Lok Sabha) elections 2019 in India, https://github.com/pratapvardhan/Elections-India-2019.
- 5. Election System in India, https://www.geeksforgeeks.org