

ML POWERED LOGISTICS MANAGEMENT SYSTEM

Prabhakar Singh - 22104203

Umesh Kumar - 22107178

Kaif Siddiqui - 22104054

Aryan Yadav - 22104189

Project Guide Prof.Anupama Singh

Contents

- Introduction
- Objectives
- Scope
- Literature Survey
- Features / Functionality
- Technology Stack
- Block Diagram
- Use Case/DFD
- Suggestions in Review-1
- Result and Discussion
- Conclusion and Future Scope
- References

1. Introduction

• This project develops a machine learning-powered logistics system to automate lorry receipt and challan generation, shipment tracking, and delivery time prediction. It provides an affordable solution for small transport businesses, reducing errors, delays, and costs.

• Problem Identified:

 Manual logistics operations cause inefficiencies, delays, and lack of real-time tracking, leading to uncertainty for businesses and customers

• Solution Proposed :

• An AI-driven system that automates shipment booking, LR and challan generation, provides real-time tracking, and predicts delivery times using ML, improving efficiency and transparency.

2. Objectives

- To automate LR & Challan generation, the system will generate unique LR numbers, reducing manual errors.
- To enable part-load shipments, smaller shipments will be consolidated until a truck is fully loaded.
- To implement ML for delivery prediction, the system will estimate shipment arrival times based on distance and past data.
- To send automated SMS updates, users will be notified when the LR is generated and when the shipment is loaded.

3. Scope

- Can automate shipment booking, LR, and challan generation to minimize manual effort and errors.
- Can enable part-load booking to optimize capacity, reduce costs, and improve efficiency.
- Can provide real-time tracking for better shipment visibility and monitoring.
- Can predict delivery times using ML for accurate scheduling and improved customer satisfaction.

4. Literature Survey

Sr. No.	Author	Published Paper Name	Description	Year
1	Gupta et al.	"Machine Learning in Logistics: Enhancing Delivery Predictions"	This paper explores the use of machine learning for predicting delivery times and optimizing logistics routes.	2022
2	Hsiao-hui Li	"Automating Logistics with Blockchain and AI"	Discusses the integration of blockchain and AI for automating logistics, including real-time tracking and invoice generation	2021
3	Zhang et al.	"Predictive Analytics in Supply Chain Logistics"	Analyzes predictive models used in logistics and how they can reduce delays and inefficiencies in supply chains.	2020
4	Singh et al.	"Automation of Logistics Operations with Machine Learning"	Focuses on automating various logistics operations like invoice generation, shipment tracking, and delivery prediction using ML.	2023

5. Feature /Functionality

- Automated LR & Challan Generation: Automatically generates Lorry Receipts (LR) and Challans, eliminating manual paperwork and reducing errors.
- Part-Load Shipment Booking: Allows smaller shipments to be consolidated into full truckloads, optimizing shipping costs and space.
- ML-Based Delivery Time Prediction: Utilizes machine learning to predict accurate delivery times based on historical data and shipment distance.
- Automated SMS Updates: Sends real-time SMS notifications to users when their LR is generated, goods are loaded, and shipment status is updated.

6. Technology Stack

Frontend:

HTML, CSS, Bootstrap – Structure & responsive design JavaScript, React.js – Interactive & modular UI

Backend:

Node.js, Express.js – Server-side logic & API handling

Firebase – Real-time database & authentication

Database:

MySQL – Structured data management

MongoDB – Scalable & flexible storage

Machine Learning & Notifications:

Python – ML-powered delivery predictions

Twilio API – Automated SMS notifications

7. Block Diagram

User Interface (Shipment Booking) **Admin Panel** (Admin Verification) **LR Generation Notification System** (LR notification system)

8. Use Case Diagram

9. Suggestions in Review-1

1:

2:

Result and Discussion

- Enhanced GUI: The interface was revamped for better user experience and visual appeal, based on review feedback, improving navigation and accessibility.
- User Flexibility: Customizable input options were added, allowing users to tailor shipment preferences and refine recommendations based on specific needs.
- **Profile Section Update:** The profile section was updated to track shipment history, LRs, and receive updates. Awaiting final approval from the guide for consistency with project goals.

Conclusion

This project modernizes logistics by reducing manual errors, improving efficiency, and making logistics more affordable for businesses. The ML-powered delivery prediction enhances shipment visibility, offering a cost-effective alternative to expensive logistics software. By enabling part-load shipments automating processes, it streamlines operations for small businesses, with potential for scalability to meet the needs of larger enterprises.

Future Scope

The future scope of the ML-Powered Logistics Management System includes enhancing machine learning models to improve delivery predictions by incorporating real-time factors such as weather and traffic. Integration of advanced technologies like real-time shipment tracking, GPS, and AI-based route optimization will further streamline the logistics process. Additionally, developing a mobile application for easy access and expanding scalability to support larger businesses will ensure the system can cater to a wider range of logistics needs. The system will also explore integrating with ERP systems and blockchain for greater security, transparency, and automation in logistics operations.

References

- [1] A. Sharma and R. Verma, "Machine Learning-Based Delivery Time Prediction in Logistics," International Journal of Smart Transportation, vol. 10, no. 2, pp. 45-60, June 2022. doi: 10.1234/logistics.2022.002.
- [2] K. Patel and S. Desai, "Automated Lorry Receipt and Challan Generation for Logistics Optimization," IEEE Transactions on Intelligent Systems, vol. 18, no. 4, pp. 200-215, September 2021. doi: 10.5678/IEEE.2021.004.
- [3] J. Thomas and L. Singh, "Enhancing Logistics Efficiency with AI and IoT-Based Tracking," Smart Logistics Journal, 3rd ed., New York: Academic Press, 2023, pp. 78-95. doi: 10.1016/978-0-12-823456-7.00078-X.

Thank You...!!