

unit vector (magnitude of
unit vector con
Vector to 1
D= play
Go own distance in terms of
will rectors will be
1 will (ac - 502) = 1/2/1
1 km
Cost Function:
2 > Distance blu marginal
planes (we have to
maximize it)
. We will try to maximize
this distance by changing the
values of w and b.
Constraint such that
$8i = \begin{cases} -1 & w = 5 + 1 \\ -1 & w = 5 + 6 < -1 \end{cases}$
81= 7-1 WELL
Thic is Com
This is for all
correctly classified boints

For all correct boints
For a contracted 5.1
we are also write and function
der
Muscimbe Wall > Minimize IIwill
(map) 2
cost function of SVM (6 vc):
Minimise Wall + Ci & & > Hinge
Loss
. We have added these Hyperparameters
there is soft margin (in real scenarios)
whose points overlap and errors
exist.
Ci > How many points we can consider
or bear to be missclassified
(means how many errors are ignovable)
2 = Sammation of the distance of
incorrect data points from
the marginal plane

Example: let 10 datasal UD) We connot solve it using Zines SVO SO WE WILL apply Transformation Transformation => y= 2=>SVM Now dataset will become Kernel · Now we can apply linear suc with good accuracy > Types of SVM Kernel: 1 Polynomial Kanel 2) RBF Kernel 3 Sigmoid Kernel