Optimizasyon Nedir?

• TDK'ya göre optimizasyon:

"Bir şeyi en uygun hale getirmek ya da en iyi şekilde kullanmak" olarak tanımlanmıştır.

Wikipedia:

Matematikte, matematiksel programlama, eniyileme ya da optimizasyon terimi; bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tam sayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek işlemlerini ifade eder.

Optimizasyon Nedir?

• Britannica:

Matematiksel programlama olarak da bilinen optimizasyon, fizik, biyoloji, mühendislik, ekonomi ve işletme dahil olmak üzere birçok disiplinde nicel problemleri çözmek için kullanılan matematiksel ilkelerin ve yöntemlerin birleşimidir. kısıtları sağlayan optimum çözüm olarak da belirtebiliriz.

Dolayısı ile optimizasyon için, bir amaca ulaşacak en uygun veya en iyi yolun bulunması diyebiliriz. Daha teknik bir ifade ile, belirlenen bir amacı maksimize veya minimize etmek için belirli kısıtları sağlayan optimum çözüm olarak da belirtebiliriz.

Optimizasyon Nerelerde Kullanılır?

Optimize edilmek istenen tüm nümerik çıktılar için kullanılmaktadır. Özellikle iş dünyasının neredeyse %90'ı optimizasyon temelli çalışmalar yapmaktadır. Bu çalışmalara kısaca şu şekilde örnek verebiliriz;

- Farklı bileşenlerin karışımı ile bir ürün elde eden fabrikada, bu bileşenlerin en uygun oranlarda karışımlarından minimum maliyetle maksimum fayda elde etmeye çalışması,
- Filo bazlı çalışma yapan bir firmada, tedarik zinciri rotalarında belirli sürelerde yapılacak sefer sayılarının en ideal olana getirilerek, düşük yakıt maksimum fayda elde etmeye çalışması şeklinde birçok örnek verilebilir.

Optimizasyonda 3 bileşenin tanımlanması önemlidir. Bunlar; amaç fonksiyonu, karar değişkenleri ve kısıtlar. Dolayısı ile her ne kadar yazılımlar yardımı ile optimizasyon yapılıyor olsa bile en önemli adım model kurulmasıdır.

- 1. Amaç Fonksiyonu: Minimum ya da maksimumunu bulmaya çalıştığımız değişkenin/değişkenlerin sahip olduğu fonksiyondur.
- 2. Karar Değişkeni: Amaç fonksiyonunu maksimum veya minimum yapacak değişkenlerin alabildikleri durumsal değerleri gösterir.
- 3. Kısıtlar: amaç fonksiyonunu maksimum ya da minimum yapmak için uyulması gereken kısıtlamaları gösterir.

Örnek: Metalik maden üretimi yapan bir firmanın 3 farklı açık ocaktan, belirli tenör ve maliyetlerde tüvenan üretimi yaparak, bu tüvenanları beslemiş olduğu bir adet zenginleştirme tesisi bulunmaktadır. Tesise beslenen tüvenanların maliyetleri önem arzettiği için minimum besleme maliyetinde bir besleme karşımı elde etmek istemektedirler. Buna problem beslenen tüvenan cevherlere göre şu şekilde ifade edilmektedir;

- Her 3 açık ocaktan da besleme yapılmak zorundadır,
- Ocakların tüvenan tenörleri sırasıyla: Ocak1=%2, Ocak2=%5, Ocak3=%3.5,
- Ocakların tüvenan üretim maliyetleri sırası ile: Ocak1=2 \$/t, Ocak2=3.2 \$/t, Ocak3=%2.8 \$/t,
- Tesis beslemesi mevcut durumda; Ocak1=550 t, Ocak2=500 t, Ocak3=200 t,
- Tesise beslenen tüvenan cevher ortalaması %3 ve üzerinde olmalıdır,
- Tesise beslenen tonaj, 1100 tondan az ve 1250 tondan fazla olamaz,
- Ocak3'ten en az 100 ton tüvenan cevher karışımına katılması gereklidir,
- Bu şartlar altında bu 3 ocaktan yapılacak beslemenin minimum maliyeti verecek karışımı hangi miktarlarda olmalıdır?

Model Kurma:

Öncelikle karışık gibi görünen bu işlemi yapabilmek için model oluşturulması gereklidir. Buna göre işlemler daha basit olacak ve optimizasyon daha rahat kurulacaktır.

Model		Ocak 1	Ocak 2	Ocak 3	Mevcut	Optimizasyon Sonrası
Tenör	%	2.00	5.00	3.50	3.44	3.10
Besleme	t	550.00	500.00	200.00	1250.00	1250.00
Maliyet	\$/t	2.00	3.20	2.80	2.61	2.46

Amaçlanan Minimum Maliyet	\$/t	?			
		Ocak 1	Ocak 2	Ocak 3	Toplam
Karar: Optimum Besleme	t	0	0	0	0

Mevcut durumda ortalama besleme maliyeti:

Maliyet =
$$(550tx2.00\$/t + 500tx3.20\$/t + 200tx2.80\$/t)/1250t$$

Maliyet = $2.61 \ \text{/t}$

Maliyeti minimize etmek istediğimiz için amaç fonksiyonumuz bu olacaktır. Bu amaç fonksiyonunu gerçekleyecek olan ocaklardan yapılacak besleme miktarlarının da optimum şekilde ayarlanması da karar değişkenleri olacaktır.

Amaç Fonksiyonu:

Min. Maliyet = (Ocak1x2.00\$/t + Ocak2x3.20\$/t + Ocak3x2.80\$/t)/(Ocak1+Ocak2+Ocak3)

Karar Değişkenleri:

Ocak1, Ocak2, Ocak3

Kısıtlar

Ortalama Tenör $\geq 3.00\%$

 $1100 \text{ ton} \leq \text{Ortalama Besleme} \leq 1250 \text{ ton}$

Ocak3 Besleme ≥ 100 ton

Excel Çözücü ekranı görüntüsü

Gurobi Örnek

Açık Ocak Optimizasyon Örneği

Kaynak: Emilien Dupont

Başlıca Optimizasyon Algoritmaları

Günümüzde onlarca matematiksel optimizasyon algoritması bulunmaktadır. Her biri kullanıldıkları alan ve sektöre göre ayrı ayrı özellikler barındırmaktadır. Alpha-beta pruning'den simulated annealing algoritmasına kadar 60'ın üzerinde algoritma çeşidi literatürde listelenmişken, maden planlama ve tasarım noktasında optimizasyon içerisinde kullanılan belli başlı algoritmalar şu şekilde sıralanabilir:

- Dynamic Programming: örn. Maden dizaynı, nihai ocak sınırının bulunması
- Evolutionary computation > Genetic algorithms: örn. Cut-off grade optimizasyonu
- Evolutionary computation ► Swarm intelligence ► Particle swarm : örn. Açık ocak kapasitesi
- Grid Search: örn. optimal cut-off bulunması

Başlıca Optimizasyon Algoritmaları

- Harmony search: örn. Patlatma kaynaklı uçan kayaların yaklaşık kestirimi
- Linear programming (doğrusal programlama): örn. Açık ocak üretim planlaması
- Linear programming ► Dantzig-Wolfe Decomposition: Bu yaklaşımı Lagrangşan Relaxation ile kullanarak ocak üretimi üst sınırının bulunması gibi örnekler mevcuttur.
- Linear programming ► Integer linear programming (Tam sayılı doğrusal programlama): özellikle doğrudan blok planlama gibi işlemlerde.
- Linear programming ▶ Integer linear programming ▶ Branch and cut: örn. Maden üretim planlamasında.
- Linear programming ► Simplex algorithm: örn: blok üretim sırasının belirlenmesi.

Başlıca Optimizasyon Algoritmaları

- Local Search ► Tabu search: örn. Metal belirsizliğinde açık ocak maden üretim planlaması
- Nonlinear (Doğrusal olmayan) optimization algorithm: örn. Özellikle genetic algoritma ile cut-off veya üretim planlaması.
- Simulated annealing: örn. Diğer algoritmalar ile yeraltı su seviyesi tespiti.

Madencilikte ise optimizasyon, pit-to-port yani üretimden satışa kadar her alanda kullanılabilmektedir. Özellikle en yaygın hali ile açık ocak nihai sınırlarının belirlenmesinde, yeraltı-yerüstü optimum üretim planlama (scheduling), araç rota belirleme vs. konularında madencilik yazılımlarının tamamı optimizasyona sahiptir denilebilir. Bunun yanı sıra sadece açık ocak planlamasında değil, yeraltı planlaması, tesis tasarımları, delmepatlatma tasarımlarının belirlenmesi, ocak nakliye sisteminin optimize edilmesi gibi birçok konuda çalışmalar yapılmakta ve optimizasyonlar kullanılmaktadır.

Açık ocak optimizasyonu, belirli madencilik ve ekonomik kısıtlamalar kümesi altında, belirli bir maden yatağı için nihai maden ocağı veya optimum ocak sınırının belirlenmesidir.[1]

Ekipman, işçilik, malzeme ve tedarik ihtiyaçlarına birim maliyetlerin uygulanması ile sermaye ve operasyon maliyet kestirimleri hesaplandığında DCF teknikleri uygulanarak potansiyel kârlar test edilebilir. [2]

Açık ocak madeni planlamasına ilişkin mevcut uygulama jeolojik blok modeliyle başlar ve;

- 1. Modeldeki belirli bir bloğun üretilip, üretilmeyeceği,
- 2. Üretilecekse, ne zaman üretileceği,
- 3. Blok üretildikten sonra nasıl zenginleştirileceği adımlarını içerir. [3]

Madencilik optimizasyonlarında çoğunlukla kullanılan algoritmalar:

• Lerchs & Grossman algoritması:

Aslında LG (1965) tarafından grafik algoritma ile tasarlanan bir nihai ocak sınırını belirleyen bu algoritma zamanla LG algoritması olarak anılmıştır.

• Yüzen koniler/Hareketli Koniler (Floating/Moving Cones):

Yüzen koni, Pana (1965) tarafından sunulan sezgisel (heuristic) yöntemlerden biridir. Bu algoritmada, şev kısıtlamaları ile cevher blokları üzerinde yukarı doğru bir koni şablonu kurulur ve yukarıdan aşağıya doğru ilerletilir. Eğer koni içerisinde kalan blokların ekonomik değerleri toplamı pozitifse bu koni üretilir ve çıkarılır aksi halde bırakılır ve bir sonraki pozitif bloğa geçilir. Bu yöntemin de optimal sonuçları bulmada problemleri bulunmaktadır. Daha sonra Wright (1999) tarafından Floating Cone II olarak algoritma geliştirilmiştir.

Maksimum akış algoritması (Maximum Flow):

LG'nin kompleksliğini ortadan kaldırabilmek adına Giannini (1990) açık ocak dizayn problemlerine bu algoritmayı uygulamıştır.

• Ağ akış algoritması (Network Flow):

Giannini (1990), LG algoritmasının ve Dual Simplex Doğrusal Programlamanın eşdeğer olduğunu ve ağ akışının her iki algoritmadan daha verimli olduğunu göstermiştir.

• Koenigsberg Dinamik Programlama Algoritması:

Koenigsberg [1982] ve Wilke-Wright [1984] dinamik programlamayı 3 boyutlu açık ocak tasarımı problemlerini çözmek için uygulamayı basarmışlardır.

• Korobov Algoritması (1974):

Korobov algoritması, pozitif blokların bulunduğu bir üretim konisinde koni içerisinde bulunan pozitif blokların negatif veya sıfır değerlikli bloklara atanmasını sağlayan koni tabanlı bir algoritmadır (Dowd ve Onur, 1993).

- Sözde akış algoritması (Pseudo Flow)
- Simulated Annealing vs.
- Doğrudan Blok Planlama (Direct Block Scheduling).

Author(s)	Year	Optimisation technique	
Lerchs and Grossmann	1965	Dynamic programming	
Koenigsberg	1982	Dynamic programming	
Erarslan and Celebi	2001	Dynamic programming	
Lerchs and Grossmann	1965	Directed graph	
Zhao and Kim	1992	Directed graph	
Khalokakaie and Dowd	2000	Directed graph	
Giannini	1990	Maximum flow	
Hochbaum and Chen	2000	Maximum flow	
Pana	1965	Constructive heuristic	
Wright	1999	Constructive heuristic	
Achireko and Frimpong	1997;1998	Constructive heuristic	
Frimpong	2002	Constructive heuristic	
Sayadi et al.	2011	Constructive heuristic	

LG Algoritması

Lerchs ve Grossman (1965) açık ocak nihai sınırının belirlenmesinde 2 adet yöntem belirlemişlerdir:

- 1. 2 Boyutlu (veya düşey kesiti alınmış) bir blok modele (cevher ve pasa birlikte) uygulanacak olan "dinamik programlama" algoritması,
- 2. 3 boyutlu ocaklar için daha ayrıntılı bir "grafik" algoritması.

LG Algoritması

0	0	0	0	0	0
0	4	4	0	0	0
0	0	4	4	0	0
0	0	0	4	4	0

2-D KESİT VE BLOK TENÖR DEĞERLERİ

-8 -8 -8 -8 -8 19 19 -8 -8 -8 19 19 -8 -8 -8 19 19 -8

HESAPLANMIŞ BLOK EKONOMİK DEĞERLERİ

MC	3
PC	4
SP	250
SC	20
SG	46
MR	70
COG	2
X,Y,X	10X10X10
Dc	2.7
Dw	2.5

- Blok - Konomik De	geri _
1 2 3 4 5 6 1 0 0 0 0 0 0 2 0 4 4 0 0 0 3 0 0 4 4 0 0 4 0 0 0 4 4 0	1 Madencelik waliyeti : \$/\f 2 Proses Waliyeti : \$/\f 3. Satus Fiyati : \$/\f 4. Satus Waliyeti : \$/\f
Z A A A A A A A A A A A A A A A A A A A	5. Sates lenorii: % regagli 6. Wetalier jile Randuman: % 7. Esile Tenore: % verp g/l (Cut of Grade)
DA DA	8. Blok boyutu X,Y,Z:M 8. Cevher Yoğunluğu: t/ui ³ 10. Pasa Yoğunluğa: t/ui ³

MC	3	Bu 186, desi algoritualar bu notun xonusu de_
PC	4	gildir. Osellikle 186 temelli algorituraların ostak
SP	250	rolitasi da "cut-off grade" yani "esik tenbe/sinie
SC	20	tenor un optimizaryona migulanmasidir.
SG	46	1 0 0 0 0 0 0 O Denegin; daha Ence plobla.
MR	70	2 0 %1 %4 0 0 0 RIN igerisine %-4 yazmıs ol.
COG	2	3 0 0 %4 %4 0 0 dugumuz bloklardan bazila. 4 0 0 0 1/2 (1) 0 RINI %1 olaeak belirlesek
X,Y,X	10X10X10	ve pu ocaque eşik tenörü
Dc	2.7	- %1 ise, bu dueuman daha dree ceohesti olar
Dw	2.5	Isloklar spasa olazak deges/endikilecektik.

MC	3	1 2 3 4 5 6
PC	4	1 W W W W W W Aslenda bu noutado sunu
SP	250	2 w w /// w w w soyleyepitiriz; Ulustararası
SC	20	3 w w ///// w w xaynak/Rezerv Raporlama
SG	46	4 w w w // w w standartlaeinda Cveya yerli
MR	70	UMREK) REZERV; Kaynagin
COG	2	ekonik olarak ésletilebilik xismidir tanımıyla burab
X,Y,X	10X10X10	daha Ence ceuherci bloklar izerisinde olan (2,2) xe
Dc	2.7	(4,5) blobbari artik cevher izerisinden grkarilanis re

Dw

MC	3	
PC	4	pasa dépendermente alinnette. Hatta optimizas.
SP	250	yon soneasında belkide daha gülesek tentelü blok
SC	20	
30	20	lar bile bu muamelege mariez Kalaak vega
SG	46	ischin dizi/pianlama dizi burakilacak lander.
MR	70	Dolayiei ile Blok Fkonomik Degesi " başliği
WIIX	70	
COG	2	alfindo si Ralanan maliget basleklare bu sürege
~ ~ ~	10710710	en et kile fahtbelerdie.
X,Y,X	10X10X10	

Dw 2.5

2.7

Dc

MC	3	1 2 3 4 5 6
		1 w w w w w w Blok Pasa
PC	4	Figer blok masa plarak
SP	250	isaretlennisse, yani deka-
01	250	
SC	20	4 w w w ///// w pajin bir ademysa
		BED _{pasa} =-BTNMC(\$/{E})
SG	46	BT: Blok tong,
MR	70	MC: Madencitik Waliyeti
Will	,,	
COG	2	$BT = X \times Y \times Z \times Dw(ton)$
		X, Y, Z = Blok boyatlari (an)
X,Y,X	10X10X10	Dw = pasa yogunluğu Ct/m³
Dc	2.7	BEDpasa = BT (ton) xMC(\$/6)
<i>D</i> C	2.7	
Dw	2.5	BED pasa = \$

MC	3	Blok Ceutee 1 2 3 4 5 6
PC	4	Fger blok centerli ne 1 w w w w
SP	250	du du du du du du du du du du du du du d
SC	20	gönoleri/ealitir. BEDceuher=(BTx(Bt NRx(SP-SC)-(MC+PC)))
SG	46	Et: Blok tenorie (%) vega g/t nega ppm.
MR	70	R: Wetaluejik Randıman (%)
COG	2	SP: Cevher satus fiyatı (\$/t) SC: Satus waliyeti (\$/t)_ Satus-paearlama,
X,Y,X	10X10X10	Liman/Demizyolu nalisyesi, navlun, FOB, CIF vs maligetter.
Dc	2.7	MC: Madeneilik operasyon maligeti (\$/f)
Dw	2.5	PC: Proses maliyeti (\$/t)

MC	3	0	0	0	0	0	0	0
PC	4	0	-8	-8	-8	-8	-8	-8
SP	250	0	-16	11	11	-16	-16	-16
SC	20	0	-24	3	30	3	-24	-24
SG	46	0	-32	-5	22	22	-5	-32
MR	70	0	0	0	0	0	0	0
COG	2	0	-8	-8	-5	6	9	12
X,Y,X	10X10X10	0	-16	3	14	17	20	15
Dc	2.7	0	-24	-13	33	36	31	26
Dw	2.5	0	-32	-29	9	55	50	18

ÜST SATIR VE SOL SÜTUNA "O" EKLENMESİ VE AŞAĞIYA DOĞRU KÜMÜLATİF BLOK TOPLAMLARI

HER BLOĞUN SOLDAKİ KOMŞU 3 BLOKTAN EN YÜKSEK OLANLA TOPLANMASI

0	0	0	0	0	0	0
0	-8	-8	-5	6	9	12
0	-16	3	14	17	20	15
0	-24	-13	33	36	31	26
0	-32	-29	9	55	50	18

0	0	0	0	0	0
-8	8	-5	6	9	12
-16	3	14	17	20	15
-24	-13	33	36	31	26
-32	-29	9	55	50	18

MAX

EN SAĞDAN ÜSTTEN
BAŞLAYARAK SOLA DOĞRU
KOMŞU 3 BLOKTAN EN
YÜKSEK OLANA OCAĞIN
İLERLETİLMESİ

HER SEVİYEDEKİ BLOK EKONOMİK DEĞERLERİNİN TOPLANMASI

MAX. 4 BLOK ÜRETİM
KAPASİTESİNE GÖRE
ÜRETİM SIRASININ
OLUŞTURULMASI VE YILLIK
NPV TOPLAMLARI

1. YIL

LG Algoritması: Macrolu Excel LG 2-D Uygulaması

A	В	С		D	Е	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X Y	Z AA AB	AC AD A	AE AF	AG	АН	AI	AJ
1 0	0	0)	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0		Oca	k Tanımla)					
2 0	0	0)	0	0	0	0	0	0	9	9	7	0	0	0	0	0	0	0	0	0	0)		MC	Madencilik Maliyeti	\$/t	2.00
3 0	0	0)	0	0	0	7	0	0	11	5	11	. 11	0	0	0	0	0	0	0	0	0		Cevher Tanımla	Rasgele Cevher Tanımla	Seç ve Temizle		PC	Proses Maliyeti	\$/t	4.00
4 0	0	0)	0	0	0	0	10	0	0	5	8	11	11	0	0	0	0	0	0	0	0		Cevherli Alanı	Rasgele Cevheri	Hücreleri Orijinal)	SC	Satış Maliyeti	\$/t	20.00
5 0	0	0)	0	0	0	0	0	7	0	0	12	11	5	12	0	0	0	0	0	0	0		Yerleştir	Yerleştir	Boyutuna Getir		SP	Satış Fiyatı	\$/t	250.00
6	0	0)	0	0	0	0	0	7	9	0	0	11	5	9	0	0	0	0	0	0	0		L&G Adım	n-1: Dizi Oluştur]		SG	Satış Tenörü	%	46%
7 0	0	0)	0	0	0	0	0	8	7	0	0	0	9	10	0	0	0	0	0	0	0			Slok Ekonomik Değer	L&G Adım-2: Temizle		MR	Metalürjik Randıman	%	75%
8 0	0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					J	DR	İndirgeme Oranı	%	10%
9																								L&G Adım-	3: BED Kümülatif	L&G Adım-3: Temizle		COG	Cut-off	%	2%
10										BLOK I	EKONC	MİKE	DEĞERLE	Rİ										L&G Adım-4: S	Sol Komşulardan Seç	L&G Adım-4: Temizle		Xsize	Blok Boyutu X	m	1.00
11 -4	-4	-4	4	-4	-4	-4	-4	-4	-4	97	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4						Ysize	Blok Boyutu Y	m	1.00
12	-4	-4	4	-4	-4	-4	-4	-4	-4	86	86	62	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4						Zsize	Blok Boyutu Z	m	1.00
13	-4	-4	4	-4	-4	-4	62	-4	-4	109	40	109	9 109	-4	-4	-4	-4	-4	-4	-4	-4	-4						Dore	Yoğunluk Cevher	t/m3	2.70
14	-4	-4	4	-4	-4	-4	-4	97	-4	-4	40	74	109	109	-4	-4	-4	-4	-4	-4	-4	-4						Dwaste	Yoğunluk Pasa	t/m3	2.50
15	-4	-4	4	-4	-4	-4	-4	-4	62	-4	-4	120	109	40	120	-4	-4	-4	-4	-4	-4	-4								!:-: 0	
16	-4	-4	4	-4	-4	-4	-4	-4	62	86	-4	-4	109	40	86	-4	-4	-4	-4	-4	-4	-4						Var	sayılan Hesap Paramet	reierini Ça	agır
17		:	•	-4	-4	-4	-4	-4	74	62		-4		86	97	-4	-4	-4	-4	-4	-4	-4									
									7	7				7		·	7	7				7									

LG Algoritması: Macrolu Excel LG 2-D Uygulaması

21		BLOK EKONOMİK DEĞERLERİ KÜMÜLATİF TOPLAMLAR																					
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0	-4	-4	-4	-4	-4	-4	-4	-4	-4	97	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
24	0	-8	-8	-8	-8	-8	-8	-8	-8	-8	183	82	58	-8	-8	-8	-8	-8	-8	-8	-8	-8	-8
25	0	-12	-12	-12	-12	-12	-12	54	-12	-12	292	122	167	101	-12	-12	-12	-12	-12	-12	-12	-12	-12
26	0	-16	-16	-16	-16	-16	-16	50	85	-16	288	162	241	210	97	-16	-16	-16	-16	-16	-16	-16	-16
27	0	-20	-20	-20	-20	-20	-20	46	81	46	284	158	361	319	137	104	-20	-20	-20	-20	-20	-20	-20
28	0	-24	-24	-24	-24	-24	-24	42	77	108	370	154	357	428	177	190	-24	-24	-24	-24	-24	-24	-24
29	0	-28	-28	-28	-28	-28	-28	38	73	182	432	150	353	424	263	287	-28	-28	-28	-28	-28	-28	-28
30	0	-32	-32	-32	-32	-32	-32	34	69	178	428	146	349	420	259	283	-32	-32	-32	-32	-32	-32	-32
21																							

33							BLOK	DEĞEF	RLERÍN	N SOL	DAKİ N	IAKSİN	IUM KO	MŞUS	U İLE T	OPLAN	MASI							
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
35	0	-4	-4	-4	-4	-4	-4	-4	-4	30	127	294	485	637	816	1123	1398	1604	1737	1881	2033	2106	2102	Max:
36	0	-8	-12	-12	-12	-12	-12	-12	34	26	298	489	641	820	1127	1402	1608	1741	1885	2037	2110	2102	2098	
37	0	-12	-20	-24	-24	-24	-24	42	30	115	407	583	828	1135	1410	1616	1749	1893	2045	2118	2106	2098	2090	
38	0	-16	-28	-36	-40	-40	-40	26	127	111	461	661	1034	1422	1628	1761	1905	2057	2130	2114	2102	2090	2082	
39	0	-20	-36	-48	-56	-60	-60	6	107	173	499	793	1212	1531	1777	1921	2073	2146	2126	2110	2094	2082	2070	
40	0	-24	-44	-60	-72	-80	-84	-18	83	215	635	851	1208	1640	1817	2093	2166	2142	2122	2102	2086	2070	2058	
41	0	-28	-52	-72	-88	-100	-108	-46	55	265	697	847	1204	1632	1903	2190	2162	2138	2114	2094	2074	2058	2042	
42	0	-32	-60	-84	-104	-120	-132	-74	23	233	693	843	1196	1624	1891	2186	2158	2130	2106	2082	2062	2042	2026	

L&G Adım-5: Üst Satır Maximum Bul

L&G Adım-6: Ocak Nihai Sınırını Belirle

2106 Temizle

LG Algoritması: Macrolu Excel LG 2-D Uygulaması

 									AK NİI	IAİ SIN										
	-4	-4	-4	-4	-4	-4	-4	97	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	
		-4	-4	-4	-4	-4	-4	86	86	62	-4	-4	-4	-4	-4	-4	-4	-4		
			-4	-4	62	-4	-4	109	40	109	109	-4	-4	-4	-4	-4	-4			
				-4	-4	97	-4	-4	40	74	109	109	-4	-4	-4	-4				
					-4	-4	62	-4	-4	120	109	40	120	-4	-4					
						-4	62	86	-4		109	40	86	-4						
							74	62				86	97							

Şekil Ver

Ekonomik Değer Getir

OCAK EKONOMİK DEĞERİ

2106

Ś

Kaynaklar

- 1. Schofield, D and Denby, B, 1993. Genetic Algorithms: A New Approach to Pit Optimisation, in Proceedings Symposium on Application of Computers & Operations Research in Mineral Industry, pp 126-133 (Canadian Institute of Mining and Metallurgy: Montréal).
- 2. J B Leinart and O L Schumacher, 2010. The Role of Cost Estimating in Mine Planning and Equipment Selection, 2010, pp 69-80 MINE PLANNING AND EQUIPMENT SELECTION (MPES) CONFERENCE
- 3. Kadri Dağdelen, 2001. Open Pit Optimization Strategies for Improving Economics of Mining Projects Through Mine Planning, 17th International Mining Congress and Exhibition of Turkey- IMCET2001, 2001, pp 117-121.
- 4. Amin Alah Mousavi Nogholi, 2015. OPTIMISATION OF OPEN PIT MINE BLOCK SEQUENCING, Statistics and Operations Research Discipline Mathematical Sciences School Science and Engineering Faculty Queensland University of Technology, PhD Thesis.
- 5. Lerchs, H., & Grossmann, I. (1965). optimum design of open pit mines. Transaction on CIM, LX VIII, 17-24.

Kaynaklar

- 6. Pana, M. T. (1965). The simulation approach to open pit design. In Proceedings of the 5th APCOM (pp. 139-144). Tucson, AZ.
- 7. Wright, A. (1999). A simple algorithm for optimum pit limits design. In K. Dagdelen, C. Dardano, M. Francisco
- & J. Proud (Eds.), In Proceedings of the 28rd APCOM, (pp. 367-374). Golden, Colorado: Colorado School of Mines.
- 8. Giannini, L. (1990). Optimum design of open pit mines. PhD Dissertation, Curtin University of Technology, Perth.
- 9. Murat ÖZKAN, 2006. AÇIK OCAK İŞLETMELERİNDE OPTİMUM NİHAİ SINIRIN BELİRLENMESİ, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.
- 10. Dowd, P.A., 1994. Open Pit Optimization: Optimal Open Pit Design, Sect.A: Min. Industry, Trans. Instn. Min. Metall, 102, 573-583

Kaynaklar

- 11. Koenigsberg, E, 1982. The optimum contours of an open pit mine: An application of dynamic programming, The 17th Application Of Computers and Operations Research in the Mineral Industry Symposium, USA, 274-287.
- 12. https://en.wikipedia.org/wiki/Mathematical_optimization

13.

Sabrınız için teşekkürler...