Indian Institute of Technology Jodhpur MAL1010, Dec'21-Mar'22 Assginment Sheet 9

- 1. Let $F(x,y,z)=x^2+2xy-y^2+z^2$. Find the gradient of F at (1,-1,3) and the equations of the tangent plane and the normal line to the surface F(x, y, z) = 7 at (1, -1, 3). Ans: Tangent Plane: 0.(x-1) + 4(y+1) + 6(z-3) = 0Normal line: x = 1; 3y - 2z + 9 = 0.
- 2. Find $D_u f(2,2,1)$, where F(x,y,z) = 3x 5y + 2z, and \underline{u} is the unit vector in the direction of the outward normal to the surface $x^2 + y^2 + z^2 = 9$ at (2, 2, 1). Ans: -2/3
- 3. Show that the following functions have local minima at the indicated points.

 - (i) $f(x,y) = x^4 + y^4 + 4x 32y 7$, $(x_0, y_0) = (-1, 2)$. (ii) $f(x,y) = x^3 + 3x^2 2xy + 5y^2 4y^3$, $(x_0, y_0) = (0, 0)$.
- 4. Analyze the following functions for local maxima, local minima and saddle points.
 - (i) $f(x,y) = (x^2 y^2)e^{-(x^2+y^2)/2}$
 - (ii) $f(x,y) = x^3 3xy^2$
 - Ans: (i) (0,0) is a saddle point; $(\pm\sqrt{2},0)$ are local maxima; $(0,\pm\sqrt{2})$ are local minima.
 - (ii) (0,0) is a saddle point.
- 5. Find the absolute maxima and absolute minimum of $f(x,y) = (x^2 4x)\cos y$ for $1 \le x \le 3$ and $-\pi/4 \le y \le \pi/4$.
 - Ans: $f_{min} = -4$ at (2,0) and $f_{max} = -3/\sqrt{2}$ at $(3, \pm \pi/4)$.
- 6. Evaluate the minimum and maximum value of the function $f(x,y) = 2 x^2 2y^2$ subject to the condition $g(x,y) = x^2 + y^2 - 1$.
- 7. Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject the constraints x + 2y + 3z = 6 and x + 3y + 4z = 9. Ans: $f_{min} = 6$ at (-1, 2, 1)
- 8. Maximize the f(x, y, z) = xyz subject to the constraints x + y + z = 40 and x + y = z. Ans: $f_{max} = 2000$ at (10, 10, 20).

Additional Practice Problems:

- 9. The plane x=1 intersects the paraboloid $z=x^2+y^2$ in a parabola. Find the slope of the tangent to the parabola at (1,2,5). Ans: 4
- 10. Show that for the following function, partials exist at (0,0). But, f(x,y) is discontinuous at (0,0).

$$f(x,y) := \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

- 11. Find second order partial derivatives, if $f(x,y) = x \cos y + y e^x$.
- 12. Show that each function satisfies Laplace equation. (i) $f(x, y, z) = x^2 + y^2 2z^2$ (ii) $f(x, y) = e^{-2y} \cos 2x$. (two-dimensional Laplace equation is: $(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0)$.
- 13. Find the derivative of $f(x,y) = x^2 \sin 2y$ at the point $(1,\pi/2)$ in the direction of $\bar{v} = 3\bar{i} 4\bar{j}$.
- 14. Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at P = (1, 1, 0) in the direction of $\bar{v} = 2\bar{i} 3\bar{j} + 6\bar{k}$. In what directions does f change most rapidly at P, and what are the rates of change in these directions?
- 15. The surfaces $f(x, y, z) = x^2 + y^2 2 = 0$ and g(x, y, z) = x + z 4 = 0 meet in an ellipse E. Find the equation of the line tangent to E at the point $P_0(1, 1, 3)$.
- 16. Estimate how much the value of $f(x, y, z) = y \sin x + 2yz$ will change if the point P(x, y, z) moves 0.1 from $P_0(0, 1, 0)$ stright toward $P_1(2, 2, -2)$.