# Forecasting infectious-disease outbreaks The role of generation intervals

Jonathan Dushoff, McMaster University

U. Chicago, Oct 2018

#### Outline

#### Overview

Compartmental models

The  $r\mathcal{R}$  relationship Generation intervals

Generations through time

Other kinds of generation interva

Speed and strength

# Problem (present)

▶ I am fundamentally a math person . . .



What is the pattern of Pythagorean triples of integers  $a^2 + b^2 = c^2$ ?



Divide a square and a circle each into two complementary subsets that are pairwise similar



How many at-bats does it take to get a given batting average?

#### **Problem**

- ▶ I am fundamentally a math person
  - but I want to do work that is relevant to people

## Solution

Dynamical modeling is fun and useful

# Dynamical modeling connects scales



#### Measles reports from England and Wales



- Start with rules about how things change in short time steps
  - Usually based on individuals
- Calculate results over longer time periods
  - Usually about populations

## Fun and useful!



## New problem

- There is (or was a gulf) between dynamical and statistical modeling
  - Dynamics are needed to incorporate mechanism
  - Statistics are needed to incorporate uncertainty

# Ebola forecasting



#### Outline

Overview

#### Compartmental models

The rR relationship Generation intervals

Generations through time

Other kinds of generation interva

Speed and strength

# Compartmental models

Divide people into categories:



- ightharpoonup Susceptible ightarrow Infectious ightarrow Recovered
- Individuals recover independently
- Individuals are infected by infectious people

# Differential equation implementation



# Individual-based implementation



#### Lessons

- ► Tendency to oscillate
- ▶ Thresholds
- ► Exponential growth

# $\mathsf{Big}\;\mathcal{R}$

- R is the number of people who would be infected by an infectious individual in a fully susceptible population.
- $P = \beta/\gamma = \beta D = (cp)D$ 
  - c: Contact Rate
  - p: Probability of transmission (infectivity)
  - D: Average duration of infection
- lacktriangle A disease can invade a population if and only if  ${\cal R}>1$ .
- ▶ Often focus on initial period (may also say  $\mathcal{R}_0$ )

# $\mathsf{Big}\; \mathcal{R}$



# Homogeneous endemic curve





- ► Threshold value
- Sharp response to changes in factors underlying transmission
- Works sometimes
  - Sometimes predicts unrealistic sensitivity

## Yellow fever in Panama

#### endemic equilibrium





# Exponential growth

- Diseases have a tendency to grow exponentially at first
  - ▶ I infect three people, they each infect 3 people . . .
  - How fast does disease grow?
  - ► How quickly do we need to respond?

#### little r

- ▶ We measure epidemic *speed* using little *r*:
  - ► *Units*: [1/time]
  - ▶ Disease increases like *e*<sup>rt</sup>
- ▶ Time scale is C = 1/r
  - ▶ Ebola,  $C \approx 1$ month
  - ▶ HIV in SSA,  $C \approx 18$ month
- ▶ Often focus on initial period (may also say  $r_0$ )

# little r



#### Limitations

- Many conclusions from this framework make strong assumptions:
  - Spatial homogeneity: everywhere is the same
  - Individual homogeneity: everyone is the same
    - and everyone is everywhere
  - Temporal homogeneity:
    - It doesn't matter how long I've been infected, I'm either infected or not

#### Outline

Overview

Compartmental models

The  $r\mathcal{R}$  relationship Generation intervals

Generations through time

Other kinds of generation interval

Speed and strength

# The $r\mathcal{R}$ relationship

- We're very interested in the relationship between little r and  $\mathcal{R}$ .
- ▶ We might have good estimates of *r* only
  - e.g., West African Ebola outbreak, HIV in Africa
- ightharpoonup Or we might have good estimates of  $\mathcal R$  only
  - ► Measles, influenza

# Example: Post-death transmission and safe burial

- How much Ebola spread occurs before vs. after death
- Highly context dependent
  - Funeral practices, disease knowledge
- ► Weitz and Dushoff Scientific Reports 5:8751.



# Standard disease model



# Add a latent period



(i.e., a lag between infection and infectiousness)

# Add post-death transmission



# Add post-death transmission



# What happens if we account for burial transmission?

- ▶ We've made the disease transmitting process slower, so obviously Ebola is less dangerous than we thought
- We've added another source of transmission, so obviously Ebola is *more* dangerous than we thought
- ▶ What we learn depends on what we know!

## What do we know?



#### Outline

Overview

Compartmental models

The  $r\mathcal{R}$  relationship Generation intervals

Generations through time

Other kinds of generation interval

Speed and strength

#### Generation intervals

- ► The generation distribution measures the time between generations of the disease
  - Interval between "index" infection and resulting infection
- ► Generation intervals provide the link between  $\mathcal{R}$  and r

#### Approximate generation intervals



### Generations and ${\cal R}$



### Generations and ${\cal R}$



### Generations and $\mathcal{R}$





## Conditional effect of generation time

- ightharpoonup Given the reproductive number  ${\cal R}$ 
  - ▶ faster generation time *G* means higher *r*
  - More danger
- ► Given r
  - ▶ faster generation time G means smaller  $\mathcal{R}$
  - Less danger

## Linking framework

- ▶ Epidemic speed (r) is a product:
  - (something to do with) generation speed
  - × (something to do with) epidemic strength
- Epidemic strength is therefore (approximately) a quotient
  - Epidemic speed
  - ÷ (something to do with) generation speed

#### Filtered means

- ► There is a sensible way to define an "effective" generation time
- Preserve the exponential growth equation

$$\mathcal{R} = \exp(r\hat{G})$$

 $ightharpoonup \hat{G}$  is a "filtered mean" of the distribution g:

$$\exp(-r\hat{G}) = \langle \exp(-r\tau) \rangle_g.$$

► This is cool, but not easy to interpret (our estimates about the generation time change when *r* changes)

## **Approximations**





## Moment approximation





## Moment approximation





## Moment approximation





### Compound-interest interpretation

- ▶ Define  $\mathcal{R} \approx (1 + r\kappa \bar{G})^{1/\kappa} \equiv X(r\bar{G}; 1/\kappa)$
- ▶ X is the compound-interest approximation to the exponential
  - Linear when  $\kappa=1$  (i.e., when g is exponential)
  - Approaches exponential as  $\kappa o 0$
- ightharpoonup Key quantity is  $r\bar{G}$ : the relative length of the generation interval compared to the characteristic time scale of spread

### Qualitative response

- ▶ For a given value of  $\bar{G}$ , smaller values of  $\kappa$  mean:
  - less variation in generation interval
  - less compounding of growth
  - ightharpoonup greater  $\mathcal R$  required for a given r

#### Intuition

- ► Longer generation times mean less speed
  - ▶ ⇒ more strength, when speed is fixed
- What about more variation?
  - ► More action (both before and after the mean time)
  - But what happens early is more important in a growing system
- More variation means more speed
  - ▶ ⇒ less strength, when speed is fixed

## How well do approximations work

- Simulate realistic generation intervals for various diseases
- ► Compare approximate rR relationship with known exact relationship
  - ► Known because we are testing ourselves with simulated data

### Ebola distribution



#### Single-gamma approximation



### Ebola curve



Exponential growth rate (per generation)

### Measles curve



### Rabies curve



#### Generation intervals



- Sort of the poor relations of disease-modeling world
- Ad hoc methods
- Error often not propagated

### Summary

- ▶ Generation intervals are the missing link between r and R
- We need better methods for estimating them, and propagating uncertainty to other parts of the model
- Filtered means may help with intuition
- For many practical applications:
  - Estimating the mean generation interval is not enough
  - ▶ But estimating the mean and CV may be enough
  - ► A good basis for understanding and propagating uncertainty

#### Outline

Overview

Compartmental models

The  $r\mathcal{R}$  relationship

Generation intervals

Generations through time

Other kinds of generation interval

Speed and strength

### Generations through time

- Generation intervals can be estimated by:
  - Observing patients:
    - How long does it take to become infectious?
    - How long does it take to recover?
    - What is the time profile of infectiousness/activity?
  - Contact tracing
    - Who (probably) infected whom?
    - ▶ When did each become infected?
    - or ill (serial interval)?

#### Which is the real interval?

- Contact-tracing intervals look systematically different, depending on when you observe them.
- Observed in:
  - Real data, detailed simulations, simple model
- Also differ from intrinsic (infector centered) estimates

### Types of interval

#### Define:

- Intrinsic interval: How infectious is a patient at time τ after infection?
- Forward interval: When will the people infected today infect others?
- Backward interval: When did the people who infected people today themselves become infected?
- Censored interval: What do all the intervals observed up until a particular time look like?
  - Like backward intervals, if it's early in the epidemic

## Growing epidemics

- ► Generation intervals look *shorter* at the beginning of an epidemic
  - A disproportionate number of people are infectious right now
  - They haven't finished all of their transmitting
  - We are biased towards observing faster events





## What changes backward intervals?

- Who is likely to infect me depends on:
  - ► How infectious they are (intrinsic GI)
  - How many of them there are (changes in disease incidence)

### Backward intervals



Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

## What changes forward intervals?

- ▶ Who I am likely to infect depends on:
  - How infectious I am (intrinsic GI)
  - How many of them there are (changes in numbers of susceptibles)

#### Forward intervals



Champredon and Dushoff, 2015. DOI:10.1098/rspb.2015.2026

#### Conclusion

- Backward intervals change if the number of infectious individuals is changing as you look back
- Forward intervals change if the number of *susceptible* individuals is changing as you look forward
- Lack of care in defining generation intervals can lead to bias
  - In particular, censored intervals look too short, lead to underestimates of  $\mathcal{R}$ .

#### Outline

Overview

Compartmental models

The  $r\mathcal{R}$  relationship

Generation intervals

Generations through time

Other kinds of generation interval

Speed and strength

## Other kinds of generation interval



- Once you think carefully about generation intervals, they're everywhere
- Spatial heterogeneity
- Individual heterogeneity

### Generations in space

▶ How do local interactions affect realized generation intervals?

# Individual



### Surprising results

- $\triangleright$   $\mathcal{R}$  on networks generally *smaller* than values estimated using r.
  - ► Trapman et al., 2016. JRS Interface DOI:10.1098/rsif.2016.0288
- Because people don't question the intrinsic generation interval
  - Local interactions
  - wasted contacts
  - ▶ ⇒ shorter generation intervals
  - $\blacktriangleright \implies$  smaller estimates of  $\mathcal{R}$ .

#### Observed and estimated intervals



#### Outbreak estimation



#### Serial intervals

- Do serial intervals and generation intervals have the same distribution?
- ▶ It seems that they should: they describe generations of the same process
- In fact, they don't
  - Serial intervals can even be negative!
  - You might report to the clinic with flu before me, even though I infected you



#### Rabies

- ▶ If symptoms always start *before* infectiousness happens, then serial interval should equal generation interval:
  - ▶ incubation time + extra latent time + waiting time
  - extra latent time + waiting time + incubation time





#### Repeated biter incubation period



#### Outline

Overview

Compartmental models

The  $r\mathcal{R}$  relationship

Generation intervals

Generations through time

Other kinds of generation interval

Speed and strength

#### Can treatment stop the HIV epidemic?

- Modern treatments are well tolerated and highly effective
- ► Virus is undetectable, and transmission is negligible
- Can active testing and treatment stop the epidemic?



#### Are HIV generations fast or slow?

- ► Fast generations mean:
  - Testing and treating will help less
  - but lower epidemic strength



#### Eaton and Hallett

- Predicted effectiveness of test and treat intervention minimally sensitive to proportion of early transmission
- Fast transmission:
  - $\blacktriangleright$  low proportion prevented, but low  ${\cal R}$  estimate
- Slow transmission:
  - lacktriangle high proportion prevented, but high  ${\cal R}$  estimate
- ► Eaton JW, Hallett TB. Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16202-7.

# Epidemic strength (present)



### Strength of intervention



### Different interventions (present)



### Different interventions (present)



#### Epidemic speed



## Epidemic speed



### Speed of intervention



### Different interventions (present)



## The strength paradigm

- $ightharpoonup \mathcal{R} > 1$  is a threshold
- ▶ If we can reduce transmission by a constant *factor* of  $\theta > \mathcal{R}$ , disease can be controlled
- In general, we can define  $\theta$  as a (harmonic) mean of the reduction factor over the course of an infection
  - weighted by the *intrinsic* generation interval
- ▶ Epidemic is controlled if  $\theta > \mathcal{R}$

#### The speed paradigm

- ightharpoonup r > 0 is a threshold
- If we can reduce transmission at a constant *hazard rate* of  $\phi > r$ , disease can be controlled
- In general, we can define  $\phi$  as a (very weird) mean of the reduction factor over the course of an infection
  - weighted by the backward generation interval
- **E**pidemic is controlled if  $\phi > r$

# Measuring the intervention





#### HIV

- ▶ The importance of transmission speed to HIV control is easier to understand using the speed paradigm
  - We know the speed of invasion
    - $ightharpoonup \approx 0.7/\mathrm{yr}$
    - ► Characteristic scale  $\approx 1.4 \mathrm{yr}$
  - And can hypothesize the speed of intervention
    - Or aim to go fast enough

### Paradigms are complementary

- ► HIV
  - ▶ Information and current intervention are both "speed-like"
- Measles
  - ▶ Information (long-term) is strength-like
  - ▶ Intervention (vaccine) also strength-like
- Ebola vaccination
  - Information is speed-like
  - ▶ Pre-emptive vaccination is strength-like



#### **Thanks**

- Department
- ► Collaborators
- ► Funders: NSERC, CIHR

# Linking framework

- ► Epidemic speed (r) is a product:
  - ightharpoonup (something to do with) generation speed imes
  - ▶ (something to do with) epidemic strength
- In particular:
  - $ightharpoonup r pprox (1/\bar{G}) imes \ell(\mathcal{R}; \kappa_g)$
  - $\blacktriangleright$   $\ell$  is the inverse of X