Outline

- 1 Inference on the simple linear regression
- Random Vectors/Matrices
- Simple Linear Regression Model in Matrix Terms
- 4 Estimation of $E(Y_h)$
- Estimation vs. Prediction

Review

Recall the simple linear regression (SLR) model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \sim i.i.d. \ N(0, \sigma^2),$$

for all i = 1, ..., n.

• The least-squares (LS) estimates:

$$\beta_1 = \underline{\qquad}$$

$$\hat{\beta}_0 = \underline{\qquad}$$

$$\hat{\sigma}^2 = \underline{\qquad}$$

• What are the sampling distributions of $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$?

Sampling distribution of SLR estimation

Under a simple linear regression model,

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim \mathcal{MVN} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \sigma^2 \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} \\ \frac{-\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} & \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \end{bmatrix} \right).$$

Furthermore, let $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ be the residual mean square. Then

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2,$$

and is independent of $\hat{\beta}_0$ and $\hat{\beta}_1$.

We will prove the first part of the theorem, i.e., the sampling distribution of $(\hat{\beta}_0, \hat{\beta}_1)^T$.

Outline

- Inference on the simple linear regression
- 2 Random Vectors/Matrices
- Simple Linear Regression Model in Matrix Terms
- 4 Estimation of $E(Y_h)$
- Estimation vs. Prediction

Random Vector and Matrix

- A random vector or a random matrix contains
- SLR: The response variables Y_1, \ldots, Y_n can be written in the form of a random vector

$$\mathbf{Y}_{n\times 1} = \left[\begin{array}{c} Y_1 \\ \vdots \\ Y_n \end{array} \right]$$

Alternative notation: _____.

Expectation of Random Vector/Matrix

• The expectation of an $n \times 1$ random vector **Y** is

$$E(\mathbf{Y})_{n\times 1} = [E(Y_i): i = 1, \dots, n] = \begin{bmatrix} E(Y_1) \\ \vdots \\ E(Y_n) \end{bmatrix}$$

SLR: What is *E*(*Y*|*X*)?

• In general, the expectation of an $n_1 \times n_2$ random matrix \boldsymbol{Y} is

6/37

Variance-Covariance Matrix of Random Vector

 The variance-covariance matrix of an n × 1 random vector Y is

$$Var(\mathbf{Y}) = E[(\mathbf{Y} - E(\mathbf{Y}))(\mathbf{Y} - E(\mathbf{Y}))']$$
$$= [\underline{\hspace{1cm}}]$$

- Note: Var(Y) is symmetric. Why?
- SLR: What is *Var*(*Y*|*X*)? _____

Variance-Covariance Matrix of Random Vector

• The random errors $\varepsilon_1, \dots, \varepsilon_n$ can be written in the form of a random vector

$$\varepsilon_{n\times 1} = \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

• SLR: What is $E(\varepsilon)$?

• SLR: What is the variance-covariance matrix of ε ?

Multivariate Normal Distribution

• Let $Y_{n\times 1} = (Y_1, \dots, Y_n)'$ follow a multivariate normal distribution with mean

$$\boldsymbol{\mu}_{n\times 1}=(\mu_1,\ldots,\mu_n)'$$

and variance

$$\Sigma_{n\times n} = [\sigma_{ii'}^2 : i = 1, ..., n; i' = 1, ..., n].$$

We denote this by

$$m{Y} \sim \mathcal{MVN}(m{\mu}, m{\Sigma}).$$

The probability density function is

Preliminaries (Rencher and Schaalj, Chapter 4.4)

Properties of random vectors

For Y ($n \times 1$ random vector), A ($n \times n$ non-random matrix), and b ($n \times 1$ non-random vector), we have

$$E(\mathbf{AY} + \mathbf{b}) = \mathbf{A}E(\mathbf{Y}) + \mathbf{b}$$

 $Var(\mathbf{AY} + \mathbf{b}) = \mathbf{A}Var(\mathbf{Y})\mathbf{A}'$

Properties of Derivative

For θ ($p \times 1$ vector of parameters), \mathbf{c} ($p \times 1$ vector of variables), and \mathbf{c} ($p \times p$ symmetric matrix of variables), we have

$$\frac{\partial(\theta'\mathbf{c})}{\partial\theta} = \mathbf{c}$$

$$\frac{\partial(\theta'\mathbf{C}\theta)}{\partial\theta} = 2\mathbf{C}$$

Outline

- Inference on the simple linear regression
- 2 Random Vectors/Matrices
- Simple Linear Regression Model in Matrix Terms
- 4 Estimation of $E(Y_h)$
- Estimation vs. Prediction

Notation

- Let $\mathbf{Y}_{n \times 1} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$ denote the $n \times 1$ vector of response variables.
- Let $\mathbf{X}_{n \times 2} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}$ denote the $n \times 2$ design matrix of predictor variables.
- Let $\varepsilon_{n\times 1}=\left[\begin{array}{c} \varepsilon_1\\ \vdots\\ \varepsilon_n\end{array}\right]$ denote the $n\times 1$ vector of random errors.
- Let $eta_{2\times 1}=\left[egin{array}{c} eta_0 \\ eta_1 \end{array}
 ight]$ denote the 2 imes 1 vector of regression coefficients.

Simple Linear Regression in Matrix Terms

The simple linear regression model in matrix terms is

$$m{Y} = m{X}m{eta} + m{arepsilon},$$

where

$$\boldsymbol{\varepsilon} \sim \mathcal{MVN}(\boldsymbol{0}, \sigma^2 \boldsymbol{I}).$$

Equivalently, we have

$$\mathbf{Y} \sim \mathcal{MVN}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

Why?

Least Squares Method

Recall that the least squares method minimizes

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$$

In matrix terms,

$$Q(\beta) = (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$$

$$= \mathbf{Y}'\mathbf{Y} - \beta'\mathbf{X}'\mathbf{Y} - \mathbf{Y}'\mathbf{X}\beta + \beta'\mathbf{X}'\mathbf{X}\beta$$

$$= \mathbf{Y}'\mathbf{Y} - 2\beta'\mathbf{X}'\mathbf{Y} + \beta'\mathbf{X}'\mathbf{X}\beta$$

Normal Equations

Let

$$\left(\frac{\partial Q}{\partial \beta}\right)_{2\times 1} = \begin{bmatrix} \frac{\partial Q}{\partial \beta_0} \\ \frac{\partial Q}{\partial \beta_1} \end{bmatrix}.$$

• Differentiate Q with respect to β to obtain:

$$\frac{\partial Q}{\partial \beta} = -2\mathbf{X}'\mathbf{Y} + 2\mathbf{X}'\mathbf{X}\beta.$$

• Set the equation above to $\mathbf{0}_{2\times 1}$ and obtain a set of normal equations:

$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{Y}.$$

Estimated Regression Coefficients $\hat{\beta}$

- Let $\hat{\beta}_{2\times 1} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}$ denote the least squares estimate of β .
- ullet Thus the least squares estimate of eta is

$$\hat{\boldsymbol{\beta}} = \underbrace{(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'}_{\text{non-random}}\boldsymbol{Y}$$

assuming that the 2 \times 2 matrix $\textbf{\textit{X}}'\textbf{\textit{X}}$ is nonsingular and thus invertible.

- What is the distribution of Y based on SLR?
- What is the distribution of $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)'$?

Mean and Variance of $\hat{\beta}$

- Recall that $\hat{\beta} = \underbrace{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'}_{\text{non-random}}\mathbf{Y}$
- What is the expectation of $\hat{\beta}$?

• What is the variance-covariance matrix of $\hat{\beta}$?

That is,

$$\begin{bmatrix} Var(\hat{\beta}_{0}) & Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) \\ Cov(\hat{\beta}_{1}, \hat{\beta}_{0}) & Var(\hat{\beta}_{1}) \end{bmatrix} = \sigma^{2} \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^{2}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} & \frac{-\bar{X}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} \\ \frac{-\bar{X}}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} & \frac{1}{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2}} \end{bmatrix}$$

• What is the distribution of $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)'$?

We have proved the first part of the following theorem.

Sampling distribution of SLR estimators

Under a simple linear regression model,

$$\begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} \sim \mathcal{MVN} \left(\begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}, \sigma^2 \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} \\ \frac{-\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} & \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \end{bmatrix} \right).$$

Furthermore, let $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ be the residual mean square. Then

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2,$$

and is independent of $\hat{\beta}_0$ and $\hat{\beta}_1$.

 How to use the above result to perform the hypothesis testing?

$$H_0: \beta_1 = 0$$
, v.s. $H_A: \beta_1 \neq 0$

Sampling distribution of $\hat{\beta}_1$

We have known that

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right) \Longleftrightarrow \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}} \sim N(0, 1).$$

• But, we do not know σ^2 . A natural (unbiased) estimator of σ^2 is

and
$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$
 by previous theorem.

Consider the following test statistic:

• The denominator is also referred to as the estimated standard error of $\hat{\beta}_1$.

Hypothesis Testing for β_1

A test of interest is:

$$H_0: \beta_1 = 0$$
 vs. $H_A: \beta_1 \neq 0$.

• The test statistic is:

• Under the H_0 : $\beta_1 = 0$,

p-value =

Similar procedure for CI.

 In the wetland species richness example, the summary statistics are:

$$\bar{x} = 0.5210, \ \bar{y} = 7.9483, \ n = 58$$

 $\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = -10.7775, \ \sum_{i=1}^{n} (x_i - \bar{x})^2 = 2.3316$
 $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 479.03, \ \sum_{i=1}^{n} (y_i - \bar{y})^2 = 528.84$

The least squares estimated slope is:

The least squares estimated intercept is:

• The estimated error variance is:

• The estimated standard error of $\hat{\beta}_1$ is:

• Note that $t_{n-2,\alpha/2} = t_{56,0.025} = 2.003$. Thus, a 95% CI for β_1 is

Interpretation:

 To test whether there is a linear relationship between the number of species and the percent forest cover:

The observed test statistic is

$$t^* = rac{\hat{eta}_1}{\widehat{se}(\hat{eta}_1)} =$$

• Compared with T_{56} , the p-value is

Interpretation:

Recall:

Sampling distribution of SLR estimators

Under a simple linear regression model,

$$\left(\begin{array}{c} \hat{\beta}_0 \\ \hat{\beta}_1 \end{array} \right) \sim \mathcal{MVN} \left(\left(\begin{array}{c} \beta_0 \\ \beta_1 \end{array} \right), \sigma^2 \left[\begin{array}{cc} \frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum_{i=1}^n (X_i - \bar{X})^2} \\ -\bar{X} & \frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2} \end{array} \right] \right).$$

Furthermore, let $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ be the residual mean squared. Then

$$\frac{(n-2)\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2,$$

and is independent of $\hat{\beta}_0$ and $\hat{\beta}_1$.

- We have used the above results to perform the inference on β_1 .
- How to conduct the inference on β_0 ?

$$H_0: \beta_0 = 0$$
, v.s. $H_A: \beta_0 \neq 0$

Sampling distribution of $\hat{\beta}_0$

• What is the distribution of $\hat{\beta}_0$?

$$\hat{eta}_0 \sim N \left(eta_0, \underbrace{\sigma^2\left(rac{1}{n} + rac{ar{X}^2}{\sum_{i=1}^n (X_i - ar{X})^2}
ight)}_{ ext{sampling variance of } \hat{eta}_0}
ight).$$

- Cannot use Z-test, because we do not know σ^2 .
- Consider T-test.

• The CI and hypothesis testing for β_0 follow similarly.

• The estimated standard error of $\hat{\beta}_0$ is:

$$\widehat{se}(\hat{\beta}_0) \stackrel{\mathsf{def}}{=}$$

• A 95% CI for β_0 is

$$\hat{eta}_0 \pm t_{n-2,\alpha/2} \widehat{se}(\hat{eta}_0)$$

Interpretation:

 To test whether there is zero species of wetlands with zero forest cover around

$$H_0: \beta_0 = 0$$
 vs. $H_A: \beta_0 \neq 0$.

• The observed test statistic is

Interpretation:

Understanding the R output

Outline

- Inference on the simple linear regression
- 2 Random Vectors/Matrices
- Simple Linear Regression Model in Matrix Terms
- 4 Estimation of $E(Y_h)$
- Estimation vs. Prediction

Estimation of $E(Y_h)$

- X_h = the level of X for which we want to estimate the mean response.
- X_h could be observed or not, but should be within the range of {X_i}.
- $\mu_h = E(Y_h) = \beta_0 + \beta_1 X_h =$ the mean response at X_h .
- The estimate of μ_h is

$$\hat{\mu}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h.$$

• $\hat{\mu}_h \sim N(\mu_h, \sqrt{\operatorname{Var}(\hat{\mu}_h)})$. Why?

Estimation of $E(Y_h)$

• The variance of $\hat{\mu}_h$ is

• The estimated variance of $\hat{\mu}_h$ is

A useful test statistic is

• A (1 $-\alpha$) CI for μ_h is

• The estimated mean number of species at $x_h = 0.10$ is

• The estimated variance of $\hat{\mu}_h$ is

$$\widehat{\operatorname{Var}(\hat{\mu}_h)} =$$

• The 95% CI for the mean number of species at $X_h = 0.10$ is

Interpretation:

Outline

- Inference on the simple linear regression
- 2 Random Vectors/Matrices
- Simple Linear Regression Model in Matrix Terms
- 4 Estimation of $E(Y_h)$
- 5 Estimation vs. Prediction

- The fitted regression line is $\hat{y} = 10.357 4.622x$.
- The estimated error variance is $\hat{\sigma}^2 = \frac{479.03}{56} = 8.554$.
- Questions of interest:
 - What is the population mean number of species for a 10% forest cover around the wetland?
 - What is the number of species for a 10% forest cover around a wetland yet to be sampled?
- In both cases, the estimated/predicted value is:

$$\hat{y} = 10.357 - 4.622 \times 0.10 = 9.895.$$

Q: Which quantity has larger uncertainty?

Estimation vs. Prediction

Simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad \varepsilon_i \sim \text{iid } N(0, \sigma^2), \ i = 1, \dots, n.$$

- mean response at X = 0.1: $\beta_0 + \beta_1 \times 0.1$
- "new" response at X=0.1: $\beta_0+\beta_1\times 0.1+\varepsilon$
- sub-population vs. single observation

follow a Normal distribution with standard deviation σ .

For any fixed x, the responses y

36/37

Estimation vs. Prediction

Consider a simple model (with covariate **0**)

$$Y_i = \mu + \varepsilon_i, \quad \varepsilon_i \sim \mathrm{iid} \ N(0, \sigma^2).$$

1 Then, estimate μ by

$$\hat{\mu} = \bar{Y}$$

• What is $Var(\hat{\mu})$?

Also, predict a new observation Y by

$$\hat{Y}_{(\text{new})} = \bar{Y}$$

• What is the variance of the prediction error?