Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.16 CD 24/05/2025

CONTINUOUS INTERNAL EVALUATION - 2

Dept:AI/CD/CS		Sub:Sub:Discrete Mathematical Structures	S Code:BCS405A
Date:29/05/2025	Time: 3:00-4:30	Max Marks: 50	Elective:Y

Note: Answer any 2 full questions, choosing one full question from each part.

Q1	N	Questions	Mar ks	RBT	CO's
		PART A			
1	a	In how many ways one can arrange the letters of the word "CORRESPONDENTS" so that there are (i) no pair (ii) at least 2 pairs of Consecutive identical letters.	8	L2	CO4
	b	4 persons P_1,P_2,P_3,P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1,T_2,T_3,T_4 and T_4 is vacant. P_1 will not sit at T_1 or $T_2.P_2$ will not sit at T_2 . Pwill not sit at T_3 or T_4 . P_4 will not sit at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.	3	L3	CO4
	(State pigeon hole principle. Prove that if 30 dictionaries in a library contain a total of 61,327 pages then atleast one of the dictionaries must have atleast 2045 pages.		L2	CO3
		OR			
2	2	In how many ways, the 26 letters of the English alphabe be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?		L2	CO
		Solve the recurrence relation $a_{n-1} 6a_{n-1} 9a_{n-2} = 0$ for $n \ge 1$ with $a_0 = 5$, $a_1 = 12$.	2 10	L3	CO

(1	Draw the Hasse diagram representing the Positive divisor of 36.	7	L2	C				
PART B									
3	a	If G be a set of all non zero real numbers and let $a * b = ab/2$ then show that (G, *) is an abelian group.	10	L2	CO5				
	b	Define Klein-4 group and if $A = \{e, a, b, c\}$ then show that this is a Klein-4 group.	10	L2	COS				
		Prove that intersection of two subgroups of a group G is also a subgroup of G.	5	L2	CO5				
		OR							
4		State and prove Lagrange's theorem. Let G be a group with subgroup H and K. If $ G =660$ and $ K =66$ and $ $	10	L2	CO5				
	b	Prove that $(Z_4, +)$ is a cycle group. Find all its generators.	10	L2	CO5				
		If * is an operation on Z defined by $xy=x+y+1$, prove that $(Z, *)$ is an abelian group.	5	L2	CO5				

Prepared by: A

Akhila M L

S000): 205

HOD