Bayes Group New Year Colloquium

Learning Structured Sparsity in Deep Neural Networks

Ashuha Arseniy^{1,2}

Bayesian Research Group¹, MIPT²

ars-ashuha.ru/slides

December 27, 2016

Structured Sparsity Learning

Structured Sparsity Learning

$$E(\mathbf{W}) = E_D(\mathbf{W}) + \lambda R(\mathbf{W}) + \lambda_g \cdot \sum_{l=1}^{L} \sum_{g=1}^{G} ||\mathbf{w}_g^l||_2$$

▶ Penalizing unimportant filers and channels

$$E(\boldsymbol{W}) = E_D(\boldsymbol{W}) + \lambda_n \cdot \sum_{l=1}^{L} \left(\sum_{n_l=1}^{N_l} ||\boldsymbol{W}_{n_l,:,:,:}^{(l)}||_g \right) + \lambda_c \cdot \sum_{l=1}^{L} \left(\sum_{c_l=1}^{C_l} ||\boldsymbol{W}_{:,c_l,:,:}^{(l)}||_g \right).$$

 N_l num filters, C_l num channels in l-th layer

► Learning arbitrary shapes of filers

$$E(m{W}) = E_D(m{W}) + \lambda_s \cdot \sum_{l=1}^L \left(\sum_{c_l=1}^{C_l} \sum_{m_l=1}^{M_l} \sum_{k_l=1}^{K_l} ||m{W}_{:,c_l,m_l,k_l}^{(l)}||_g
ight).$$

Regularizing layer depth

$$E(\boldsymbol{W}) = E_D(\boldsymbol{W}) + \lambda_d \cdot \sum_{l=1}^{L} ||\boldsymbol{W}^{(l)}||_g$$

Experiments: LeNet and MLP on MNIST

▶ MLP sparse about 40%

MLP#	Error	Neuron # per layer §	FLOP per layer §
1 (baseline)	1.43%	784–500–300–10 469–294–166–10	100%-100%-100% 35.18%-32.54%-55.33%
3	1.53%	434–174–78–10	19.26%–9.05%–26.00%

^{281 280}

► LeNet

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet #	Error	Filter # §	Channel # §	FLOP §	Speedup §
1 (baseline)	0.9%	20—50	1—20	100%—100%	1.00×—1.00×
2	0.8%	5—19	1—4	25%—7.6%	1.64×—5.23×
3	1.0%	3—12	1—3	15%—3.6%	1.99×—7.44×

[§]In the order of conv1—conv2

Table 2: Results after learning filter shapes in LeNet

LeNet #	Error	Filter size §	Channel #	FLOP	Speedup
1 (baseline)	0.9%	25—500	1—20	100%—100%	1.00×—1.00×
4	0.8%	21—41	1—2	8.4%—8.2%	2.33×—6.93×
5	1.0%	7—14	1—1	1.4%-2.8%	5.19×—10.82×

[§] The sizes of filters after removing zero shape fibers, in the order of conv1—conv2

[§]In the order of input layer-hidden layer 1-hidden layer 2-output layer

Experiments: ConvNet and ResNet on CIFAR-10

ConvNet CIFAR10

Table 3: Learning row-wise and column-wise sparsity of *ConvNet* on CIFAR-10

ConvNet #	Error	Row sparsity §	Column sparsity §	Speedup §
1 (baseline)	17.9%	12.5%-0%-0%	0%-0%-0%	1.00×-1.00×-1.00×
2	17.9%	50.0%-28.1%-1.6%	0%-59.3%-35.1%	$1.43 \times -3.05 \times -1.57 \times$
3	16.9%	31.3%-0%-1.6%	0%-42.8%-9.8%	$1.25\times-2.01\times-1.18\times$

[§]in the order of conv1-conv2-conv3

Figure 5: Learned conv1 filters in ConvNet 1 (top), ConvNet 2 (middle) and ConvNet 3 (bottom)

ightharpoonup ResNet sparse about 40%

Figure 6: Error vs. layer number after depth regularization. # is the number of layers including the last fully-connected layer. ResNet+ is the ResNet in [5]. SSL-ResNet+ is the depth-regularized ResNet by SSL. 32×32 indicates the convolutional layers with an output map size of 32×32, etc.

Experiments: AlexNet on ImageNet

Bibliography

Tree-guided group lasso for multi-task regression with structured sparsity, ICML10