

IPv6-based Low-power Wireless Personal Area Networks

Towards an Open Framework for Home Automation Development

ACOMP 2015

Ho Chi Minh City, Vietnam

Pham Huu Dang Nhat

Department of Computer Engineering Ho Chi Minh City University of Technology 23 November 2015

Outline

Introduction

General purpose computing platforms

Current problems

System Architecture

- Control Center (CC)
- Host Board (HB)

- All data and control decisions are centralized \rightarrow CC.
- Each HB could hosts many end points (OS's threads).
- End point → any supported end device. (Hot plugging)
- Shell (CLI) via USART \rightarrow communicate with CC, HB.

Device Drivers Layer

- Adopt OOP & Inheritance model to achieve
 - Support many different kinds of end devices.
 - Runtime configuration
- Higher layers don't access directly to hardware. → reusability.
- C++ on Cortex-M microcontrollers.

Runtime Configuration

- Hot plugging new end device.
- Start running new end device using Shell commands.
 - What is the newly plugged in end device?
 - How does it work?
 - Where does it placed?
 - Which GPIOs?
 - Which ADC/TIM/... channels? etc.

Command	<u>Options</u>
senadc	-e [EP_id] -s [sensing condition]
	-p [port] -n [pin] -a [adc] -c [channel]
	-t [equations] -P [parameters]
	-f [noise filtering value]
	-u [alert under bound] -o [alert upper bound]

Scenarios

- Scenarios: default scenario, user scenarios.
- Supported conditions:
 - The value of a device is =, <, <=, >, >= to a threshold.
 - The value of a device was changed.
 - The value of a device was changed over a threshold.
 - In a specific time period.
 - In a specific time period every day.
- Supported action:
 - Adjust the value of an end-device.

Prototype

- Up to 25 rules for each scenarios, 3 inputs and 3 outputs for each rule.
- 28 end devices of 15 different types.
- Over 20 shell commands to manage network, scenarios, device configuration

Android Application

 Remotely control end devices, manage (create/delete/rename) multiple scenarios and zones (rooms).

Available Resource

- Source code: freely available on Github under LGPL
 v2.1 license at https://github.com/dangnhat/HA-project
- Demo video: available on Youtube at https://www.youtube.com/watch?v=3W_C0G6DxqU (title: "Home Automation System based on 6LoWPAN, RIOT-OS and BLE").

Analog sensor example

- $Y = F_n (F_{n-1} (... (F_1(X))))$
- Supported equation types:

$$-Y = a.X^b + c$$

$$-Y = \frac{1}{aX+b} + c$$

- Look-up table.
- Combination of these functions.

Analog sensor example

Figure 8. Schematic (left) and characteristic (right) of a photoresisitor

- Final output: L (lux)= $F_2(F_1(V_{adc}))$
- Rs = F₁(V_{adc}) = $\frac{3.3 * R1}{Vadc} R1(\Omega) = \frac{1}{0.303 * Vadc} 1 (k\Omega)$
- L = F_2 (Rs) = $10^{2.75} * Rs^{-1.25}$ (lux)
 - L: light intensity (lux)
 - Rs: photo-cell's resistor