Lógica computacional

Tema: Semántica de la Lógica Proposicional

Pilar Selene Linares Arévalo

Facultad de Ciencias Universidad Nacional Autónoma de México

febrero 2018

Material desarrollado bajo el proyecto UNAM-PAPIME PE102117.

Negación.

La **negación** de la fórmula P es la fórmula $\neg P$.

Negación.

La **negación** de la fórmula P es la fórmula $\neg P$.

Negación.

La **negación** de la fórmula P es la fórmula $\neg P$.

Corresponde en español a : No, no es cierto que, es falso que, etc.

Negación.

La negación de la fórmula P es la fórmula $\neg P$.

Corresponde en español a : No, no es cierto que, es falso que, etc.

Tabla de verdad:

Р	$\neg P$
0	1
1	0

Disyunción.

La disyunción de las fórmulas P, Q es la fórmula $P \vee Q$.

Disyunción.

La disyunción de las fórmulas P, Q es la fórmula $P \vee Q$.

Disyunción.

La disyunción de las fórmulas P, Q es la fórmula $P \vee Q$.

Corresponde en español a : o

Disyunción.

La disyunción de las fórmulas P, Q es la fórmula $P \vee Q$.

Corresponde en español a : o

Tabla de verdad:

Р	Q	$P \vee Q$
0	0	0
0	1	1
1	0	1
1	1	1

Disyunción.

La **conjunción** de las fórmulas P, Q es la fórmula $P \wedge Q$.

Disyunción.

La **conjunción** de las fórmulas P, Q es la fórmula $P \wedge Q$.

Disyunción.

La **conjunción** de las fórmulas P, Q es la fórmula $P \wedge Q$.

Corresponde en español a : y, pero

Disyunción.

La **conjunción** de las fórmulas P, Q es la fórmula $P \wedge Q$.

Corresponde en español a : y, pero

Tabla de verdad:

Р	Q	$P \wedge Q$
0	0	0
0	1	0
1	0	0
1	1	1

Implicación o condicional.

La **implicación** de las fórmulas P, Q es la fórmula $P \to Q$. Donde P es el *antecedente* y Q el *consecuente* de la implicación.

Implicación o condicional.

La **implicación** de las fórmulas P, Q es la fórmula $P \to Q$. Donde P es el *antecedente* y Q el *consecuente* de la implicación.

Implicación o condicional.

La **implicación** de las fórmulas P, Q es la fórmula $P \to Q$. Donde P es el *antecedente* y Q el *consecuente* de la implicación.

Corresponde en español a: si P entonces Q; P es condición suficiente para Q; Q, si P; P sólo si Q; Q es condición necesaria para P.

Implicación o condicional.

La **implicación** de las fórmulas P, Q es la fórmula $P \to Q$. Donde P es el *antecedente* y Q el *consecuente* de la implicación.

Corresponde en español a: si P entonces Q; P es condición suficiente para Q; Q, si P; P sólo si Q; Q es condición necesaria para P.

Tabla de verdad:

Р	Q	$P \rightarrow Q$
0	0	1
0	1	1
1	0	0
1	1	1

Equivalencia o bicondicional.

La **equivalencia** de las fórmulas P, Q es la fórmula $P \leftrightarrow Q$.

Equivalencia o bicondicional.

La **equivalencia** de las fórmulas P, Q es la fórmula $P \leftrightarrow Q$.

Equivalencia o bicondicional.

La **equivalencia** de las fórmulas P, Q es la fórmula $P \leftrightarrow Q$.

Corresponde en español a: P es equivalente a Q, P si y sólo si Q, P es condición necesaria y suficiente para Q.

Equivalencia o bicondicional.

La **equivalencia** de las fórmulas P, Q es la fórmula $P \leftrightarrow Q$.

Corresponde en español a: P es equivalente a Q, P si y sólo si Q, P es condición necesaria y suficiente para Q.

Tabla de verdad:

Р	Q	$P \leftrightarrow Q$
0	0	1
0	1	0
1	0	0
1	1	1

Estado o asignación de las variables

Un estado o asignación de las variables proposicionales es una función

$$\mathcal{I}: \textit{VarP} \rightarrow \{0,1\}$$

Estado o asignación de las variables

Un estado o asignación de las variables proposicionales es una función

$$\mathcal{I}: \textit{VarP} \rightarrow \{0,1\}$$

Estado o asignación de las variables

Un estado o asignación de las variables proposicionales es una función

$$\mathcal{I}: \textit{VarP} \rightarrow \{0,1\}$$

$$\mathcal{I}(r) = 1$$
 $\mathcal{I}(p) = 0$ $\mathcal{I}(t_{16}) = 1$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: VarP \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función $\mathcal{I}^*: PROP \to \{0,1\}$ tal que:

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: VarP \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función $\mathcal{I}^*: PROP \to \{0,1\}$ tal que:

 $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: VarP \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función \mathcal{I}^*

- $\mathcal{I}^*: PROP \rightarrow \{0,1\}$ tal que:
 - $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
 - $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: \mathit{VarP} \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función

- $\mathcal{I}^*: \textit{PROP} \rightarrow \{0,1\}$ tal que:
 - $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
 - $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$
 - $\mathcal{I}^*(\neg \varphi) = 1 \text{ syss } \mathcal{I}^*(\varphi) = 0.$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: \textit{VarP} \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función

 $\mathcal{I}^*: \textit{PROP} \rightarrow \{0,1\}$ tal que:

- $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
- $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$
- $\mathcal{I}^*(\neg \varphi) = 1 \text{ syss } \mathcal{I}^*(\varphi) = 0.$
- $\mathbf{I}^*(\varphi_1 \wedge \varphi_2) = 1 \text{ syss } \mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 1.$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: \textit{VarP} \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función

 $\mathcal{I}^*: \textit{PROP} \rightarrow \{0,1\}$ tal que:

- $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
- $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$
- $\mathcal{I}^*(\neg \varphi) = 1 \text{ syss } \mathcal{I}^*(\varphi) = 0.$
- $\mathcal{I}^*(\varphi_1 \wedge \varphi_2) = 1 \text{ syss } \mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 1.$

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: \textit{VarP} \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función

- $\mathcal{I}^*: \textit{PROP} \rightarrow \{0,1\}$ tal que:
 - $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
 - $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$
 - $\mathcal{I}^*(\neg \varphi) = 1 \text{ syss } \mathcal{I}^*(\varphi) = 0.$
 - $\mathcal{I}^*(\varphi_1 \wedge \varphi_2) = 1 \text{ syss } \mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 1.$
 - $\mathcal{I}^*(\varphi_1 \vee \varphi_2) = 0$ syss $\mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 0$.
 - $\mathcal{I}^*(\varphi_1 \to \varphi_2) = 0$ syss $\mathcal{I}^*(\varphi_1) = 1$ e $\mathcal{I}^*(\varphi_2) = 0$.

Función de Interpretación

Dado un estado de las variables $\mathcal{I}: \mathit{VarP} \to \{0,1\}$, definimos la **interpretación de las fórmulas** con respecto a \mathcal{I} como la función

 $\mathcal{I}^*: \textit{PROP} \rightarrow \{0,1\}$ tal que:

- $\mathcal{I}^*(p) = \mathcal{I}(p) \text{ con } p \in VarP.$
- $\mathcal{I}^*(\top) = 1 \text{ y } \mathcal{I}^*(\bot) = 0.$
- $\mathcal{I}^*(\neg \varphi) = 1 \text{ syss } \mathcal{I}^*(\varphi) = 0.$
- $\mathcal{I}^*(\varphi_1 \wedge \varphi_2) = 1 \text{ syss } \mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 1.$
- $\mathcal{I}^*(\varphi_1 \vee \varphi_2) = 0$ syss $\mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2) = 0$.
- $\mathcal{I}^*(\varphi_1 \to \varphi_2) = 0$ syss $\mathcal{I}^*(\varphi_1) = 1$ e $\mathcal{I}^*(\varphi_2) = 0$.
- $\mathcal{I}^*(\varphi_1 \leftrightarrow \varphi_2) = 1 \text{ syss } \mathcal{I}^*(\varphi_1) = \mathcal{I}^*(\varphi_2).$

Semántica

Lema de Coincidencia

Sean $\mathcal{I}_1, \mathcal{I}_2: PROP \to \{0,1\}$, dos estados que coinciden en las variables proposicionales de la fórmula φ , es decir, $\mathcal{I}_1(p) = \mathcal{I}_2(p)$ para toda $p \in \mathit{vars}(\varphi)$. Entonces

$$\mathcal{I}_1(\varphi) = \mathcal{I}_2(\varphi)$$

Semántica

Estado modificado o actualizado

Sean $\mathcal{I}: \mathit{varp} \to \{0,1\}$ un estado de las variables, p una variable proposicional y $v \in \{0,1\}$. Definimos la actualización de \mathcal{I} en p por v, denotado $\mathcal{I}_{\lceil p/v \rceil}$ como sigue:

$$\mathcal{I}_{\left[p/v\
ight]}(q) = \left\{egin{array}{ll} v & ext{si } q = p \ \ \ \mathcal{I}(q) & ext{si } q
eq p \end{array}
ight.$$

El estado $\mathcal{I}_{[p/v]}$ se conoce como un estado modificado o una actualización de φ .

Semántica

Lema de Sustitución

Sean $\mathcal I$ una interpretación, p una variable proposicional y ψ una fórmula tal que $\mathcal I(\psi)=\mathbf v$. Entonces

$$\mathcal{I}\big(\varphi[\mathbf{p}:=\psi\]\big)=\mathcal{I}_{[\mathbf{p}/\mathbf{v}\]}(\varphi)$$

Conceptos Semánticos básicos

¿Cuántas interpretaciones hacen verdadera a φ ?

¿Cuántas interpretaciones hacen verdadera a φ ?

■ Si $\mathcal{I}(\varphi) = 1$ para toda interpretación \mathcal{I} decimos que φ es una tautología o fórmula válida y escribimos $\models \varphi$.

¿Cuántas interpretaciones hacen verdadera a φ ?

- Si $\mathcal{I}(\varphi) = 1$ para toda interpretación \mathcal{I} decimos que φ es una tautología o fórmula válida y escribimos $\models \varphi$.
- Si $\mathcal{I}(\varphi)=1$ para **alguna interpretación** \mathcal{I} decimos que φ es **satisfacible**, que φ es verdadera en \mathcal{I} o que \mathcal{I} es **modelo** de φ y escribimos $\mathcal{I} \models \varphi$

¿Cuántas interpretaciones hacen verdadera a φ ?

- Si $\mathcal{I}(\varphi) = 1$ para toda interpretación \mathcal{I} decimos que φ es una tautología o fórmula válida y escribimos $\models \varphi$.
- Si $\mathcal{I}(\varphi) = 1$ para **alguna interpretación** \mathcal{I} decimos que φ es **satisfacible**, que φ es verdadera en \mathcal{I} o que \mathcal{I} es **modelo** de φ y escribimos $\mathcal{I} \models \varphi$
- $\begin{tabular}{ll} \blacksquare & {\rm Si} \ \mathcal{I}(\varphi) = 0 \ {\rm para} \ {\bf alguna} \ {\bf interpretación} \ \mathcal{I} \ {\rm decimos} \ {\rm que} \ \varphi \ {\rm es} \ {\bf falsa} \\ & {\bf o} \ {\bf insatisfacible} \ {\rm en} \ \mathcal{I} \ {\rm o} \ {\rm que} \ \mathcal{I} \ {\rm no} \ {\rm es} \ {\rm modelo} \ {\rm de} \ \varphi \ {\rm y} \ {\rm escribimos} \\ & \mathcal{I} \ {\mbox{$\not\models$}} \ \varphi \\ \end{tabular}$

¿Cuántas interpretaciones hacen verdadera a φ ?

- Si $\mathcal{I}(\varphi) = 1$ para toda interpretación \mathcal{I} decimos que φ es una tautología o fórmula válida y escribimos $\models \varphi$.
- Si $\mathcal{I}(\varphi)=1$ para **alguna interpretación** \mathcal{I} decimos que φ es **satisfacible**, que φ es verdadera en \mathcal{I} o que \mathcal{I} es **modelo** de φ y escribimos $\mathcal{I} \models \varphi$
- $\begin{tabular}{ll} \bf Si \ $\mathcal{I}(\varphi)=0$ para alguna interpretación \mathcal{I} decimos que φ es falsa o insatisfacible en \mathcal{I} o que \mathcal{I} no es modelo de φ y escribimos $\mathcal{I} \not\models \varphi$ \\ \end{tabular}$
- Si $\mathcal{I}(\varphi) = 0$ para **toda interpretación** \mathcal{I} decimos que φ es una **contradicción** o fórmula no satisfacible.

Similarmente si Γ es un conjunto de fórmulas decimos que:

Similarmente si Γ es un conjunto de fórmulas decimos que:

■ Γ es satisfacible si tiene un modelo, es decir, si existe una interpretación \mathcal{I} tal que $\mathcal{I}(\varphi)=1$ para toda $\varphi\in\Gamma$. Lo cual denotamos a veces, abusando de la notación, con $\mathcal{I}(\Gamma)=1$.

Similarmente si Γ es un conjunto de fórmulas decimos que:

- Γ es satisfacible si tiene un modelo, es decir, si existe una interpretación \mathcal{I} tal que $\mathcal{I}(\varphi)=1$ para toda $\varphi\in\Gamma$. Lo cual denotamos a veces, abusando de la notación, con $\mathcal{I}(\Gamma)=1$.
- Γ es insatisfacible o no satisfacible si no tiene un modelo, es decir, si no existe una interpretación $\mathcal I$ tal que $\mathcal I(\varphi)=1$ para toda $\varphi\in\Gamma$.

Propiedades

Propiedades

Sea Γ un conjunto de fórmulas, $\varphi \in \Gamma$, τ una tautología y χ una contradicción.

Si Γ es satisfacible entonces :

Propiedades

- Si Γ es satisfacible entonces :
 - $\Gamma \setminus \{\varphi\}$ es satisfacible.

Propiedades

- Si Γ es satisfacible entonces :
 - $\Gamma \setminus \{\varphi\}$ es satisfacible.
 - lacksquare $\Gamma \cup \{\tau\}$ es satisfacible.

Propiedades

- Si Γ es satisfacible entonces :
 - \blacksquare $\Gamma \setminus \{\varphi\}$ es satisfacible.
 - $\Gamma \cup \{\tau\}$ es satisfacible.
 - $\Gamma \cup \{\chi\}$ es insatisfacible.

Propiedades

- Si Γ es satisfacible entonces :
 - \blacksquare $\Gamma \setminus \{\varphi\}$ es satisfacible.
 - $\Gamma \cup \{\tau\}$ es satisfacible.
 - $\Gamma \cup \{\chi\}$ es insatisfacible.
- \blacksquare Si Γ es insatisfacible entonces :

Propiedades

- Si Γ es satisfacible entonces :
 - \blacksquare $\Gamma \setminus \{\varphi\}$ es satisfacible.
 - $\Gamma \cup \{\tau\}$ es satisfacible.
 - $\Gamma \cup \{\chi\}$ es insatisfacible.
- Si Γ es insatisfacible entonces :
 - $\Gamma \cup \{\psi\}$ es insatisfacible, para cualquier $\psi \in PROP$.

Propiedades

- Si Γ es satisfacible entonces :
 - lacksquare $\Gamma \backslash \{ \varphi \}$ es satisfacible.
 - $\Gamma \cup \{\tau\}$ es satisfacible.
 - $\Gamma \cup \{\chi\}$ es insatisfacible.
- Si Γ es insatisfacible entonces :
 - $\Gamma \cup \{\psi\}$ es insatisfacible, para cualquier $\psi \in PROP$.
 - $\Gamma \setminus \{\tau\}$ es insatisfacible.

Equivalencia de Fórmulas

Equivalencia

Dos fórmulas φ, ψ son **equivalentes** si $\mathcal{I}(\varphi) = \mathcal{I}(\psi)$ para toda interpretación \mathcal{I} . En tal caso escribimos

$$\varphi \equiv \psi$$

Equivalencia de Fórmulas

Equivalencia

Dos fórmulas φ, ψ son **equivalentes** si $\mathcal{I}(\varphi) = \mathcal{I}(\psi)$ para toda interpretación \mathcal{I} . En tal caso escribimos

$$\varphi \equiv \psi$$

Proposición:

Sean φ, ψ dos fórmulas. Entonces

$$\varphi \equiv \psi$$
 si y sólo si $\models \varphi \leftrightarrow \psi$

Equivalencia de Fórmulas

Regla de Leibniz

Sean φ, ψ, χ fórmulas y $p \in varP$

$$\frac{\varphi \equiv \psi}{\chi[\mathbf{p} := \varphi] \equiv \chi[\mathbf{p} := \psi]}$$

Consecuencia Lógica

Sean Γ un conjunto de fórmulas y φ una fórmula. Decimos que φ es **consecuencia lógica** de Γ si para toda interpretación $\mathcal I$ que sastisface a Γ , se tiene $\mathcal I(\varphi)=1$.

Consecuencia Lógica

Sean Γ un conjunto de fórmulas y φ una fórmula. Decimos que φ es **consecuencia lógica** de Γ si para toda interpretación $\mathcal I$ que sastisface a Γ , se tiene $\mathcal I(\varphi)=1$.

Consecuencia Lógica

Sean Γ un conjunto de fórmulas y φ una fórmula. Decimos que φ es **consecuencia lógica** de Γ si para toda interpretación $\mathcal I$ que sastisface a Γ , se tiene $\mathcal I(\varphi)=1$.

Es decir, si se cumple que siempre que $\mathcal I$ satisface a Γ entonces necesariamente $\mathcal I$ satisface a φ . En tal caso escribimos

$$\Gamma \models \varphi$$

La relación de consecuencia lógica cumple las siguientes propiedades:

■ Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.
- $\blacksquare \ \Gamma \models \varphi \to \psi \text{ syss } \Gamma \cup \{\varphi\} \models \psi.$
- Insatisfacibilidad implica trivialidad: Si Γ es insatisfacible entonces $\Gamma \models \varphi$ para toda $\varphi \in PROP$.

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.
- $\blacksquare \ \Gamma \models \varphi \to \psi \text{ syss } \Gamma \cup \{\varphi\} \models \psi.$
- Insatisfacibilidad implica trivialidad: Si Γ es insatisfacible entonces $\Gamma \models \varphi$ para toda $\varphi \in PROP$.
- Si $\Gamma \models \bot$ entonces Γ es insatisfacible.

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.
- $\blacksquare \ \Gamma \models \varphi \to \psi \text{ syss } \Gamma \cup \{\varphi\} \models \psi.$
- Insatisfacibilidad implica trivialidad: Si Γ es insatisfacible entonces $\Gamma \models \varphi$ para toda $\varphi \in PROP$.
- Si $\Gamma \models \bot$ entonces Γ es insatisfacible.
- $\blacksquare \varphi \equiv \psi \text{ syss } \varphi \models \psi \text{ y } \psi \models \varphi.$

- Si $\varphi \in \Gamma$ entonces $\Gamma \models \varphi$.
- Principio de refutación: $\Gamma \models \varphi$ syss $\Gamma \cup \{\neg \varphi\}$ es insatisfacible.
- $\blacksquare \ \Gamma \models \varphi \to \psi \text{ syss } \Gamma \cup \{\varphi\} \models \psi.$
- Insatisfacibilidad implica trivialidad: Si Γ es insatisfacible entonces $\Gamma \models \varphi$ para toda $\varphi \in PROP$.
- Si $\Gamma \models \bot$ entonces Γ es insatisfacible.
- $\blacksquare \varphi \equiv \psi \text{ syss } \varphi \models \psi \text{ y } \psi \models \varphi.$
- $\models \varphi$ (es decir si φ es tautología) syss $\varnothing \models \varphi$ (es decir φ es consecuencia lógica del conjunto vacío).

Correctud de argumentos lógicos

Un argumento con premisas $\varphi_1,...,\varphi_n$ y conclusión ψ es **lógicamente correcto** si la conclusión se sigue de las premisas, es decir, si $\{\varphi_1,...,\varphi_n\} \models \psi$.

Correctud de argumentos lógicos

Un argumento con premisas $\varphi_1,...,\varphi_n$ y conclusión ψ es **lógicamente correcto** si la conclusión se sigue de las premisas, es decir, si $\{\varphi_1,...,\varphi_n\} \models \psi$.

Correctud de argumentos lógicos

Un argumento con premisas $\varphi_1,...,\varphi_n$ y conclusión ψ es **lógicamente correcto** si la conclusión se sigue de las premisas, es decir, si $\{\varphi_1,...,\varphi_n\} \models \psi$.

Para mostrar la correctud del argumento lógico $\varphi_1,\ldots,\varphi_n/$: ψ mediante interpretaciones, se puede proceder de alguna de las siguientes formas:

■ **Método directo:** probar la consecuencia $\varphi_1, \ldots, \varphi_n \models \psi$.

Correctud de argumentos lógicos

Un argumento con premisas $\varphi_1,...,\varphi_n$ y conclusión ψ es **lógicamente correcto** si la conclusión se sigue de las premisas, es decir, si $\{\varphi_1,...,\varphi_n\} \models \psi$.

Para mostrar la correctud del argumento lógico $\varphi_1,\ldots,\varphi_n/$: ψ mediante interpretaciones, se puede proceder de alguna de las siguientes formas:

- **Método directo:** probar la consecuencia $\varphi_1, \ldots, \varphi_n \models \psi$.
- **Método indirecto (refutación):** probar que el conjunto $\{\varphi_1, \dots, \varphi_n, \neg \psi\}$ es insatisfacible.