Started on Saturday, 11 November 2023, 8:24 PM

State Finished

Completed on Saturday, 11 November 2023, 9:37 PM

Time taken 1 hour 13 mins

Grade 10.00 out of 10.00 (**100**%)

Question 1

Correct

Mark 1.00 out of 1.00

PDF of multivariate Gaussian is given as

Select one:

$$\bigcirc \quad \frac{1}{\sqrt{(2\pi)^{\eta}|\mathbf{R}|}} e^{-\frac{1}{2}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})^T\mathbf{R}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})}$$

$$\bigcirc \quad \frac{1}{\sqrt{(2\pi)^n |\mathbf{R}|}} e^{-\frac{1}{2} (\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}}) \mathbf{R} (\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})^T}$$

$$\bigcirc \quad \frac{1}{\sqrt{(2\pi)^n |\mathbf{R}^{-1}|}} e^{-\frac{1}{2} (\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})^T \mathbf{R}^{-1} (\overline{\mathbf{x}} - \overline{\boldsymbol{\mu}})}$$

Your answer is correct.

The correct answer is: $\frac{1}{\sqrt{(2\pi)^n|\mathbf{R}|}}e^{-\frac{1}{2}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})^T\mathbf{R}^{-1}(\overline{\mathbf{x}}-\overline{\boldsymbol{\mu}})}$

Question 2

Correct

Mark 1.00 out of 1.00

The LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, R)$, $\mathcal{N}(\overline{\mu}_1, R)$ reduces to choose \mathcal{H}_0 if

Select one:

$$\bigcirc \quad (\overline{\mu}_0 - \overline{\mu}_1)^T R \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \ge 0$$

$$\bigcirc \quad (\overline{\mu}_0 - \overline{\mu}_1)^T \left(\overline{\mathbf{x}} - \frac{1}{2} \left(\overline{\mu}_0 + \overline{\mu}_1 \right) \right) \ge \mathbf{0}$$

$$\bigcirc \quad (\overline{\mu}_0 - \overline{\mu}_1)^T R^{-1} \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \geq 0 \quad \checkmark$$

$$\bigcirc \quad (\overline{\mu}_0 + \overline{\mu}_1)^T R^{-1} \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 - \overline{\mu}_1) \right) \geq 0$$

Your answer is correct.

The correct answer is: $(\overline{\mu}_0 - \overline{\mu}_1)^T R^{-1} \left(\overline{x} - \frac{1}{2} (\overline{\mu}_0 + \overline{\mu}_1) \right) \geq 0$

Question 3

Correct

Mark 1.00 out of 1.00

Consider the LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$. The corresponding probability of error is

Select one:

$$\bigcirc Q(\sqrt{(\overline{\mu}_1 - \overline{\mu}_0)^T \mathbf{R}^{-1} (\overline{\mu}_1 - \overline{\mu}_0)})$$

$$\bigcirc Q\left(\frac{1}{2}(\overline{\mu}_1-\overline{\mu}_0)^T\mathbf{R}^{-1}(\overline{\mu}_1-\overline{\mu}_0)\right)$$

$$\bigcirc \quad Q\big((\overline{\mu}_1 - \overline{\mu}_0)^T R^{-1}(\overline{\mu}_1 - \overline{\mu}_0)\big)$$

Your answer is correct.

The correct answer is: $Q\left(\frac{1}{2}\sqrt{(\overline{\mu}_1-\overline{\mu}_0)^T\mathbf{R}^{-1}(\overline{\mu}_1-\overline{\mu}_0)}\right)$

Question 4

Correct

Mark 1.00 out of 1.00

The LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$ for $\mathbf{R} = \sigma^2 \mathbf{I}$ reduces to

Select one:

- The plane parallel to $\overline{\mu}_0$, $\overline{\mu}_1$
- Circle with diameter μ
 ₀, μ
 ₁
- Ellipsoid with semi major axis $\overline{\mu}_0$, $\overline{\mu}_1$
- The perpendicular bisector of $\overline{\mu}_0$, $\overline{\mu}_1$

Your answer is correct.

The correct answer is: The perpendicular bisector of $\overline{\mu}_0$, $\overline{\mu}_1$

Question **5**

Correct

Mark 1.00 out of 1.00

Determine the classifier for the Gaussian classification problem with the two classes C_0 , C_1 distributed as

$$\mathcal{C}_0 \sim N\left(\begin{bmatrix} -4 \\ -2 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{bmatrix}\right), \mathcal{C}_1 \sim N\left(\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{bmatrix}\right)$$

The LDA-based classifier chooses \mathcal{H}_0 if

Select one:

- $2x_1 4x_2 \ge 1$
- $4x_1 + 2x_2 \le 1$
- $\bigcirc -4x_1 2x_2 \ge 1$

Your answer is correct.

The correct answer is: $x_1 + 2x_2 \le 1$

Question 6

Correct

Mark 1.00 out of 1.00

Consider the classifier for the **Gaussian classification** problem with the two classes C_0 , C_1 distributed as

$$C_0 \sim N\left(\begin{bmatrix} -4 \\ -2 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{bmatrix}\right), C_1 \sim N\left(\begin{bmatrix} 2 \\ 4 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{8} \end{bmatrix}\right)$$

The probability of error is given as

Select one:

- $Q\left(\frac{1}{2}\sqrt{152}\right)$
- $Q(\sqrt{108})$
- $Q\left(\frac{1}{2}\sqrt{304}\right)$
- $Q\left(\frac{1}{2}\sqrt{216}\right)$

Your answer is correct.

The correct answer is: $Q(\sqrt{108})$

Question **7**

Correct

Mark 1.00 out of 1.00

Consider the LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, \mathbf{R})$, $\mathcal{N}(\overline{\mu}_1, \mathbf{R})$. The optimal signal $\overline{\mathbf{s}} = \overline{\mu}_0 - \overline{\mu}_1$ that minimizes the probability of error is given as

Select one:

- The eigenvector corresponding to the maximum eigenvalue of R
- The eigenvector corresponding to the minimum eigenvalue of R
- Any eigenvector of R
- Any unit-norm vector that does not lie in the null space of R

Your answer is correct.

The correct answer is: The eigenvector corresponding to the minimum eigenvalue of R

Question 8

Correct

Mark 1.00 out of 1.00

▼ Flag question

Consider the LDA-based classifier for the classification of two Gaussian classes $\mathcal{N}(\overline{\mu}_0, R)$, $\mathcal{N}(\overline{\mu}_1, R)$ with the covariance matrix

$$\mathbf{R} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 12 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

The optimal signal $\bar{s} = \overline{\mu}_0 - \overline{\mu}_1$ that minimizes the probability of error is given as

Select one:

- $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{3}{\sqrt{2}} \end{bmatrix}$

Your answer is correct.

The correct answer is: $\begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

Question 9

Correct

Mark 1.00 out of 1.00

For a given $SNR = \rho$, the average BER for detection of BPSK symbols over a fading wireless channel is given as

Select one:

- $\bigcirc \qquad \frac{1}{2} \left(1 \sqrt{\frac{2+\rho}{\rho}} \right)$
- $\bigcirc \quad \left(1 \sqrt{\frac{\rho}{2+\rho}}\right)$
- $\bigcirc \quad \frac{1}{2} \Big(1 \sqrt{\frac{\rho}{2}} \Big)$

Your answer is correct.

The correct answer is: $\frac{1}{2} \left(1 - \sqrt{\frac{\rho}{2+\rho}} \right)$

Question 10

Correct

Mark 1.00 out of 1.00

. Find BER of Wireless channel for SNR = 30 dB.

Select one:

- 0.5×10^{-7}
- 0.5×10^{-6}
- \circ 5 × 10⁻⁵
- 5 × 10⁻⁴
 ✓

Your answer is correct.

The correct answer is: 5×10^{-4}

Finish review