Physical query plans

Overview of this video

What is the purpose of a physical query plan?

A physical query plan adds information required to execute the optimised query plan

- Which algorithm to use for execution of operators?
 - Naïve selection or selection with an index?
 - Nested Block Join or Sort Join or Hash Join etc.?
- How to pass information from one operator to the other?
 - Write to disk, keep in memory, pipelining operators, etc.?
- Good order for computing joins, unions, etc.?
- Additional operations such as sorting

From Logical Plans To Physical Plans

Estimating the Cost of Execution

Here: number of disk access operations

Number of disk accesses influenced by many factors:

- Selection of algorithms for the individual operators
- Method for passing information
- Size of intermediate results

One of the most critical factors

Estimated from parameters of the database

- Important paramters:
 - Size of relations
 - Number of distinct items per attribute per relation
- Computed exactly from the database or are estimated ("statistics gathering")

Estimating Intermediate Result Sizes

One of the most challenging tasks of a DBMS

- Difficult even for nodes close to the leaves
- Cannot afford executing the query
- Rely on statistics gathered from data

Many different approaches

- Some easier than others
- With join size estimation, we enter active research...

Estimating the Size of a Selection

Estimate for the size of $\sigma_{A=a}(R)$:

Recall: |R| = number of tuples in R

 $|\mathbf{R}|$

number of distinct values in column A of relation R

Estimate for the # of blocks required to store $\sigma_{A=a}(R)$:

number of blocks for R

number of distinct values in column A of relation R

Good if values in column A of R occur equally often, but can be bad

Example

Assume:

- Stores contains 80 tuples, stored in 20 blocks
- There are exactly 4 distinct values for the city attribute of Stores

Estimate for size of $\sigma_{\text{city=Liv}}$ (Stores): 80/4 = 20 tuples

Estimate for number of blocks that are required to store $\sigma_{\text{city=Liv}}(\text{Stores})$: 20/4 = 5 blocks

Joins

Assume A is the only common attribute.

How to estimate $R \bowtie S$?

Simple estimate based on size of R & S and number of distinct values in common attributes

 $|R| \times |S|$

max. number of distinct values for A in R or S

As for selection, based on assumptions that might not always lead to good estimates

More sophisticated methods:

- Still a topic of active research
- See, e.g., SIGMOD/PODS/VLDB conferences

Other Issues

How to generate physical query plans?

- Explore all?
- More sensible approaches: top-down/bottom-up

Selection of a **suitable algorithm** for each operator

based on size of intermediate result

Selection of a good join order

also based on size of intermediate results

Example where join order matters

SELECT *

FROM Lecturers NATURAL JOIN Modules NATURAL JOIN Students WHERE Lecturers.name = Rasmus Ibsen-Jensen

Example where join order matters

SELECT * FROM Lecturers NATURAL JOIN Modules NATURAL JOIN Students WHERE Lecturers.name = Rasmus Ibsen-Jensen M $\sigma_{\mathsf{name}=\mathsf{Rasmus}}$ Ibsen-Jensen **Students** Modules Lecturers

Other Issues

How to generate physical query plans?

- Explore all?
- More sensible approaches: top-down/bottom-up

Selection of a **suitable algorithm** for each operator

based on size of intermediate result

Selection of a **good join order**

also based on size of intermediate results

How to **pass information** from one operator to another?

Passing Information

Materialisation: write intermediate results to disk

Pipelining ("stream-based processing")

- Passes the tuples of one operation directly to the next operation without using disk
- Extra buffer for each pair of adjacent operations to hold tuples passing from one relation to the other
- Example:
 - $\pi_{\text{title,year}}(\sigma_{\text{length}>=100 \text{ AND studio='Fox'}}(\text{Film}))$
 - With pipelining, the intermediate result of the selection will be written into a buffer in memory, from which the projection operator will read and process these tuples directly

From Logical to Physical Query Plan

Summary

In this part, we have seen how to go from a SQL query to how exactly we are going to solve it!

Specifically, in this video, we saw how to go from a optimised logical query plan to a physical ditto