Solving Sudoku: An Application of Handwritten Digit Classification

Agenda

- Overview
- MNIST digit database
- Algorithms
- Sudoku Puzzle Solver: DEMO
- Conclusions

Overview

- Motivation: why are we doing this?
 - Building puzzle solvers is more interesting than solving puzzles manually
 - Wrote a Sudoku solver some years ago; it needs
 - A GUI
 - Some automated input so you don't have to type in the puzzles
 - We need a classifier algorithm to read digits
- Approach: what are we doing?
 - Prototype and test (at least one) algorithm to recognize handwritten digits
 - Write a Windows GUI to
 - Implement algorithm
 - Apply algorithm to scanned Sudoku image(s) to instantiate puzzle data
 - Attempt to solve using existing Soduku solver algorithm

Modified NIST (MNIST) Digit Database

- Original MNIST database:
 - Each image: 28x28 pixels
 - 60K training samples, 10K test samples
 - http://yann.lecun.com/exdb/mnist/
- Abbreviated MNIST database:
 - http://cis.jhu.edu/~sachin/digit/digit.html
 - 10K training samples, 1K for each digit 0-9
 - Decomposed into easier file format

Random Sampling of MNIST

Algorithms Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Used in spam filtering:

$$P(IsSpam | SpamWords) = \frac{P(SpamWords | IsSpam)P(IsSpam)}{P(SpamWords)}$$

$$= \frac{P(SpamWords | IsSpam)P(IsSpam)}{P(SpamWords | IsSpam)P(IsSpam) + P(SpamWords | IsHam)P(Ham)}$$

Used in digit recognition:

$$P(Digit_i \mid Bitmap_x) = \frac{P(Bitmap_x \mid Digit_i)P(Digit_i)}{P(Bitmap_x)}$$

Bayes Rule for Digit Recognition: MAP Estimator

$$Digit = \arg\max_{i} P(Digit_i \mid Bitmap_x)$$

$$= \arg\max_{i} \frac{P(Bitmap_x \mid Digit_i) P(Digit_i)}{P(Bitmap_x)}$$

$$= \arg\max_{i} P(Bitmap_x \mid Digit_i)$$

Assume all digits

Find expression P(bitmap) for each possible digit!

Binary naïve Bayes

For digit i, probability of observing Bitmap_x

$$=P_i(x_0,x_1,x_2...,x_{783})$$

• "naïve": assume each pixel is independent

$$= P_i(x_0)P_i(x_1)P_i(x_2)...P_i(x_{783})$$

$$= \prod_{i=0}^{783} P_i(x_i)$$

- Where
 - $P_i(x_i) = p_{i,i}$ probability that pixel j of digit i is ON
 - $P_i(x_i) = (1 p_{i,j})$ probability that pixel j of digit i is OFF
 - $p_{i,j}$ is calculated by summing the pixel values of pixel j over all samples of digit i
- Avoid underflow: $= \sum_{i=0}^{783} \ln P_i(x_j)$

MATLAB: ~83% success

Gaussian naïve Bayes

- Similar, but: use pixel values (0-255), calculate Gaussian distribution for each pixel of each digit!
- mean $\mu_{i,i}$: average value of pixel j of digit i over all samples
- Variance $\sigma_{j,i}$: average value of (pixel_{j,i} $\mu_{j,i}$)² over all samples

$$P(Bitmap_x \mid Digit_i) = \prod \frac{1}{\sqrt{2\pi\sigma_{j,i}^{2}}} e^{-\frac{(x_{j,i}-\mu_{j,i})^{2}}{2\sigma_{j,i}^{2}}}$$

$$\ln P(Bitmap_x \mid Digit_i) = \sum \ln \frac{1}{\sqrt{2\pi\sigma_{j,i}^{2}}} e^{-\frac{(x_{j,i}-\mu_{j,i})^{2}}{2\sigma_{j,i}^{2}}} = \sum \left(\ln \frac{1}{\sqrt{2\pi\sigma_{j,i}^{2}}} - \frac{(x_{j,i}-\mu_{j,i})^{2}}{2\sigma_{j,i}^{2}}\right)$$

MATLAB: ~79% success

Other algorithms...

- Multivariate Gaussian
 - Each image is a vector of 784 pixels
 - 784-dimensional Gaussian
 - Mean is vector mean of 784 pixels
 - Calculate covariance matrix
- Neural net approaches

MATLAB: ~63% success
2.5 hrs to run
(PBKAC)

Sudoku Solver

- C++ implementation of Sudoku Puzzle Solver
- Architecture: three classes of objects
 - cell
 - gridset
 - row, column, or square of cells
 - grid
 - NxN cells aggregated into rows, columns, squares
 - Each cell...
 - EITHER has a value (1..N)
 - OR has a list of possible values
 - Belongs to a row, a column, and a squares
 - Each grid...
 - Is a set of N x N cells
 - Has N rows
 - Has N columns
 - Has N squares

Sudoku Solver

- Recursive Backtracking Algorithm
 - DETERMINISTIC SOLUTION:
 - For each unpopulated cell in the grid
 - define that cell's possible values, based on the values already present in the other cells contained in that cell's row, column, and square
 - For each row, column, and square
 - If there is a cell with a unique possible value (ie it does not exist in the other cells for that gridset), populate that cell with that value, and restart the algorithm
 - RECURSIVE ITERATION:
 - At this point: there are no cell values that can be deterministically be defined
 - For each unpopulated cell in the grid
 - Loop through its possible values:
 - Populate the cell with the possible value
 - Duplicate the whole grid
 - Recursively call this algorithm with the new grid
 - If NOT SUCCESS: continue loop
 - If loop ends without SUCCESS: exit
 - If NOT SUCCESS: grid is unsolveable

1	4	3	
3		1	4
2	3		
	1		3

1	4	3	2
3	2	1	4
2	3	4	1
4	1	2	3

Sudoku Solver

Conclusions

- 83% success on MNIST != good results
 - With (3) scanned puzzles
 - Penstroke thickness; scan quality; ...
- 80/20 Rule aka Pareto principle
 - 80% of the effects come from 20% of the causes
 - 80% of the development time comes from 20% of the features
- VB.NET is very slow; C++ DLL better
 - Recursive algorithm + garbage collection
 - VB.NET is "managed code"
- Questions? Comments?

