# **Image Processing Project**

**TEAM#: 9** 

# **Team Members:**

| 2021170147 | جورج مدحت نصيف عازر              |
|------------|----------------------------------|
| 2021170572 | مينا وني زاخر ارشله              |
| 2021170568 | مينا سليم فؤاد سليم              |
| 2021170476 | محمد عصام الدين فهمي محمد الرماح |
| 2021170371 | عمرو خالد ابو بكر سليمان عمر     |
| 2021170381 | فارس احمد دسوقي مرسي             |

# Data preparation process:

# • Includes functionalities for:

- Mapping RGB masks to class labels.
- o Data augmentation.
  - Get new images form the old images
- o Preprocessing training and validation datasets.
  - Resize images
  - Normalization for images

# Modules Used:

- o TensorFlow: For building models and data augmentation.
- o NumPy: For numerical computations.
- o PIL (Pillow): For image processing.
- os: For file path manipulation.

# Workflow:

- Define a color map for 8 classes.
- Convert RGB masks to class labels.
- Load and preprocess training and validation data.
- o Apply data augmentation to enhance the dataset.

# Overview of implemented models and modifications:

# Includes functionalities for:

- Defining and building a (U-Net, Light U-Net, Attention U-Net )model for image segmentation.
- Constructing encoder and decoder blocks with convolutional layers and skip connections.
- o Using a softmax activation for multi-class segmentation output.

### Workflow:

- Models
  - Model Architecture [U-net]:
    - **Encoder Blocks**: Feature extraction using stacked convolutional and max-pooling layers.
    - Bridge: A bottleneck layer for connecting encoder and decoder paths.
    - **Decoder Blocks**: Upsampling layers with skip connections for reconstructing the segmentation map.
  - Model Architecture [Light U-net]
    - Added Dropout layer
    - Reduced number of filters
  - Model Architecture [Attention U-net]
    - Added Attention Gates: Applied to select important features only.

# Output Layer:

 Use a Conv2D layer with 8 filters (for 8 classes) and softmax activation to produce the final segmentation mask.

# Results and analysis from all experiments:

# **U-Net:**

# **Evaluation Results:**

### Best Results:



# • 200 Epoch, Adam:

Pixel Accuracy: 0.7414

Mean IoU (Jaccard Index): 0.4934 Mean Dice Coefficient: 0.6255

Mean Precision: 0.6860

Mean Recall (Sensitivity): 0.6163 Adjusted Rand Index: 6000916.5919

Class 0: IoU: 0.4371, Dice: 0.6083, Precision: 0.5119, Recall: 0.7493 Class 1: IoU: 0.7137, Dice: 0.8329, Precision: 0.9534, Recall: 0.7395 Class 2: IoU: 0.6551, Dice: 0.7916, Precision: 0.8149, Recall: 0.7696

Class 3: IoU: 0.6503, Dice: 0.7881, Precision: 0.8093, Recall: 0.7680 Class 4: IoU: 0.5557, Dice: 0.7144, Precision: 0.6878, Recall: 0.7433 Class 5: IoU: 0.5444, Dice: 0.7050, Precision: 0.7557, Recall: 0.6607 Class 6: IoU: 0.3886, Dice: 0.5597, Precision: 0.6383, Recall: 0.4983 Class 7: IoU: 0.0021, Dice: 0.0041, Precision: 0.3163, Recall: 0.0021

# • 100 Epoch, Adam:

Pixel Accuracy: 0.7708

Mean IoU (Jaccard Index): 0.4904 Mean Dice Coefficient: 0.6195

Mean Precision: 0.6598

Mean Recall (Sensitivity): 0.6208 Adjusted Rand Index: 6449661.5667

Class 0: IoU: 0.4577, Dice: 0.6279, Precision: 0.6070, Recall: 0.6504 Class 1: IoU: 0.7951, Dice: 0.8858, Precision: 0.8828, Recall: 0.8889 Class 2: IoU: 0.6355, Dice: 0.7771, Precision: 0.8151, Recall: 0.7426 Class 3: IoU: 0.6441, Dice: 0.7835, Precision: 0.8218, Recall: 0.7486 Class 4: IoU: 0.5770, Dice: 0.7318, Precision: 0.6796, Recall: 0.7926 Class 5: IoU: 0.4821, Dice: 0.6506, Precision: 0.6043, Recall: 0.7045 Class 6: IoU: 0.3302, Dice: 0.4965, Precision: 0.5739, Recall: 0.4374 Class 7: IoU: 0.0012, Dice: 0.0025, Precision: 0.2941, Recall: 0.0012

# **Light U-Net:**

#### **Evaluation Results:**

# 1. 150 Epoch, Adam, Dropout: 0.3:

Pixel Accuracy: 0.4771

Mean IoU (Jaccard Index): 0.2020 Mean Dice Coefficient: 0.3121

Mean Precision: 0.4128

Mean Recall (Sensitivity): 0.3052 Adjusted Rand Index: 4037679.9163

Class 0: IoU: 0.2506, Dice: 0.4007, Precision: 0.3143, Recall: 0.5527 Class 1: IoU: 0.4587, Dice: 0.6289, Precision: 0.6449, Recall: 0.6137 Class 2: IoU: 0.2993, Dice: 0.4607, Precision: 0.4124, Recall: 0.5218 Class 3: IoU: 0.3241, Dice: 0.4895, Precision: 0.5694, Recall: 0.4293 Class 4: IoU: 0.1138, Dice: 0.2044, Precision: 0.4029, Recall: 0.1369 Class 5: IoU: 0.0822, Dice: 0.1520, Precision: 0.4156, Recall: 0.0930 Class 6: IoU: 0.0872, Dice: 0.1605, Precision: 0.5429, Recall: 0.0942 Class 7: IoU: 0.0000, Dice: 0.0000, Precision: 0.0000,

Recall: 0.0000

# 2. 150 Epoch, SGD, Dropout: 0.3:

Pixel Accuracy: 0.4541

Mean IoU (Jaccard Index): 0.1850 Mean Dice Coefficient: 0.3121

Mean Precision: 0.3528

Mean Recall (Sensitivity): 0.2652 Adjusted Rand Index: 4037679.9163

Class 0: IoU: 0.2506, Dice: 0.4007, Precision: 0.3143, Recall: 0.5527 Class 1: IoU: 0.4587, Dice: 0.6289, Precision: 0.6449, Recall: 0.6137 Class 2: IoU: 0.2993, Dice: 0.4607, Precision: 0.4124, Recall: 0.5218 Class 3: IoU: 0.3241, Dice: 0.4895, Precision: 0.5694, Recall: 0.4293 Class 4: IoU: 0.1138, Dice: 0.2044, Precision: 0.4029, Recall: 0.1369 Class 5: IoU: 0.0822, Dice: 0.1520, Precision: 0.4156, Recall: 0.0930 Class 6: IoU: 0.0872, Dice: 0.1605, Precision: 0.5429, Recall: 0.0942 Class 7: IoU: 0.0000, Dice: 0.0000, Precision: 0.0000,

Recall: 0.0000

# 3. 200 Epoch, Adam, Dropout: 0.4:

Pixel Accuracy: 0.5143

Mean IoU (Jaccard Index): 0.2016 Mean Dice Coefficient: 0.3030

Mean Precision: 0.4524

Mean Recall (Sensitivity): 0.2978 Adjusted Rand Index: 4555177.9723 Class 0: IoU: 0.2625, Dice: 0.4159, Precision: 0.3876, Recall: 0.4485 Class 1: IoU: 0.4958, Dice: 0.6629, Precision: 0.6246, Recall: 0.7062 Class 2: IoU: 0.2623, Dice: 0.4156, Precision: 0.4587, Recall: 0.3799 Class 3: IoU: 0.3386, Dice: 0.5059, Precision: 0.4829, Recall: 0.5313 Class 4: IoU: 0.2251, Dice: 0.3675, Precision: 0.5095, Recall: 0.2874 Class 5: IoU: 0.0232, Dice: 0.0453, Precision: 0.8573, Recall: 0.0233 Class 6: IoU: 0.0055, Dice: 0.0109, Precision: 0.2983, Recall: 0.0055 Class 7: IoU: 0.0000, Dice: 0.0000, Precision: 0.0000, Recall: 0.0000

# 4. 400 Epoch, Adam, Dropout: 0.4:

Pixel Accuracy: 0.6025

Mean IoU (Jaccard Index): 0.2848 Mean Dice Coefficient: 0.4079

Mean Precision: 0.4949

Mean Recall (Sensitivity): 0.3973 Adjusted Rand Index: 5101354.4057

Class 0: IoU: 0.3253, Dice: 0.4909, Precision: 0.4505, Recall: 0.5394 Class 1: IoU: 0.6050, Dice: 0.7539, Precision: 0.7338, Recall: 0.7750 Class 2: IoU: 0.4218, Dice: 0.5933, Precision: 0.5338, Recall: 0.6679 Class 3: IoU: 0.3928, Dice: 0.5641, Precision: 0.6333, Recall: 0.5085 Class 4: IoU: 0.3357, Dice: 0.5026, Precision: 0.5420, Recall: 0.4686 Class 5: IoU: 0.1217, Dice: 0.2170, Precision: 0.5115, Recall: 0.1377 Class 6: IoU: 0.0760, Dice: 0.1413, Precision: 0.5546, Recall: 0.0809 Class 7: IoU: 0.0000, Dice: 0.0000, Precision: 0.0000, Recall: 0.0000

# **Attention U-Net:**

#### **Evaluation Results:**

## 1. 50 Epochs

Pixel Accuracy: 0.6685

Mean IoU (Jaccard Index): 0.3609 Mean Dice Coefficient: 0.4832

Mean Precision: 0.6017

Mean Recall (Sensitivity): 0.4993 Adjusted Rand Index: 5314850.8046

Class 0: IoU: 0.3359, Dice: 0.5029, Precision: 0.4618, Recall: 0.5521 Class 1: IoU: 0.6153, Dice: 0.7618, Precision: 0.9270, Recall: 0.6466 Class 2: IoU: 0.5118, Dice: 0.6770, Precision: 0.5785, Recall: 0.8160 Class 3: IoU: 0.5817, Dice: 0.7355, Precision: 0.6735, Recall: 0.8101 Class 4: IoU: 0.5018, Dice: 0.6682, Precision: 0.6797, Recall: 0.6572 Class 5: IoU: 0.3276, Dice: 0.4935, Precision: 0.4886, Recall: 0.4986 Class 6: IoU: 0.0134, Dice: 0.0265, Precision: 0.8126, Recall: 0.0135 Class 7: IoU: 0.0001, Dice: 0.0002, Precision: 0.1923, Recall: 0.0001

# 2. 100 Epochs

Pixel Accuracy: 0.7423

Mean IoU (Jaccard Index): 0.4626 Mean Dice Coefficient: 0.5958

Mean Precision: 0.6463

Mean Recall (Sensitivity): 0.5851 Adjusted Rand Index: 6148320.1050

Class 0: IoU: 0.4334, Dice: 0.6048, Precision: 0.5730, Recall: 0.6402 Class 1: IoU: 0.7467, Dice: 0.8550, Precision: 0.9372, Recall: 0.7860 Class 2: IoU: 0.6263, Dice: 0.7702, Precision: 0.7726, Recall: 0.7678 Class 3: IoU: 0.6214, Dice: 0.7665, Precision: 0.6731, Recall: 0.8900 Class 4: IoU: 0.5089, Dice: 0.6746, Precision: 0.7625, Recall: 0.6048 Class 5: IoU: 0.4714, Dice: 0.6408, Precision: 0.6847, Recall: 0.6021 Class 6: IoU: 0.2914, Dice: 0.4513, Precision: 0.5394, Recall: 0.3879 Class 7: IoU: 0.0015, Dice: 0.0031, Precision: 0.2277, Recall: 0.0015

### 3. 200 Epochs

Evaluation Results: Pixel Accuracy: 0.7790

Mean IoU (Jaccard Index): 0.5095 Mean Dice Coefficient: 0.6388

Mean Precision: 0.6884

Mean Recall (Sensitivity): 0.6293

Adjusted Rand Index: 6581519.1772

Class 0: IoU: 0.4548, Dice: 0.6253, Precision: 0.6381, Recall: 0.6130 Class 1: IoU: 0.8117, Dice: 0.8961, Precision: 0.8853, Recall: 0.9071 Class 2: IoU: 0.6528, Dice: 0.7899, Precision: 0.8144, Recall: 0.7669 Class 3: IoU: 0.6639, Dice: 0.7980, Precision: 0.7729, Recall: 0.8248 Class 4: IoU: 0.5528, Dice: 0.7120, Precision: 0.7071, Recall: 0.7170 Class 5: IoU: 0.5343, Dice: 0.6965, Precision: 0.6767, Recall: 0.7174 Class 6: IoU: 0.3884, Dice: 0.5594, Precision: 0.6894, Recall: 0.4707 Class 7: IoU: 0.0169, Dice: 0.0332, Precision: 0.3229, Recall: 0.0175





True Mask



Predicted Mask



/1 — **0s** 20ms/step

# Conclusions and insights gained:

We found that the attention u-net with the 200 epochs gives the best results at a 77.9% and that's because the attention u-net select **relevant features** for each skip connection. This means only the most important features for the current task are passed forward,

follows the U-net with accuracy 77% at 200 epochs and comes last the light-u-net (modified u-net archi that we made) as it use less number of parameters than u-net and attention unet It comes last with 60% accuracy at 400 epoch.

# Code repository with clear documentation and instructions for reproducing the experiments:

# Repository link

- The first code block is the data preprocessing block.(should be run regardless of what archi will be executed)
- The second one is for the light-U-net(run if testing the light-u-net)
- The third is for the U-net(run for the normal U-net)
- Forth is for the Attention-U-net
- Then the fifth is for the model training
- Sixth and seventh are the evaluation blocks
- The last block for visualizing the results and comparing it with the actual results