计算机视觉

Computer Vision

Lecture 8: Homography and Image Alignment

张超

信息科学技术学院 智能科学系

Today

- Image Alignment
 - Fitting a 2D transformation
 - Affine, Homography
 - Computing an image mosaic
 - 2D image warping
 - Image Blending

Planar Projective transformations

a.k.a. Homographies

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} \qquad \begin{aligned} x' &= u/w \\ y' &= v/w \end{aligned}$$

"keystone" distortions

Finding the transformation

- How can we find the transformation between these images?
- How many corresponding points do we need to solve?

2D image transformations

Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg igg[m{R} igg m{t} igg]_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles + · · ·	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

Finding the transformation

```
Translation = 2 degrees of freedom

Similarity = 4 degrees of freedom

Affine = 6 degrees of freedom

Homography = 8 degrees of freedom
```

How many corresponding points do we need to solve?

- How to relate two images from the same camera center?
 - how to map a pixel from PP1 to PP2?
- Think of it as a 2D image warp from one image to another.
- A projective transform is a mapping between any two PPs with the same center of projection
 - rectangle should map to arbitrary quadrilateral
 - parallel lines aren't
 - but must preserve straight lines
- called Homography

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}$$

$$\mathbf{H}$$

$$\mathbf{p}$$

camera rotation

camera A

Analysing patterns and shapes

What is the shape of the b/w floor pattern? Homosraph)

The floor (enlarged)

Automatically rectified floor

Slide from Criminisi

Analysing patterns and shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide from Criminisi

Image mosaics

How do we build panorama?

We need to match (align) images

Matching with Features

Detect feature points in both images

Matching with Features

- Detect feature points in both images
- Find corresponding pairs

Aligning the Images

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Building panorama

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align images

Mosaics

Obtain a wider angle view by combining multiple images.

image from S. Seitz

How to stitch together a panorama (a.k.a. mosaic)?

Basic Procedure

- Take a sequence of images from the same position
 - Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren't we using it?

Source: Steve Seitz

Pinhole camera

 Pinhole camera is a simple model to approximate imaging process, perspective projection.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Mosaics

Obtain a wider angle view by combining multiple images.

image from S. Seitz

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Projecting images onto a common plane

mosaic PP

 Projective – mapping between any two projection planes with the same center of projection

represented as 3x3 matrix in homogenous

coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w, \\ \mathbf{p} \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \\ \mathbf{p} \end{bmatrix}$$

To apply a homography **H**

- Compute p' = Hp (regular matrix multiply)
- Convert p' from homogeneous to image coordinates (divide by w)

Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)

Image warping with homographies

Source: Steve Seitz

Image rectification

To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of H
- H is defined up to an arbitrary scale factor

Solving for homographies

$$\begin{bmatrix} w x_i' \\ w y_i' \\ w \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$
$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

 $y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$

$$\begin{bmatrix} x_{i} & y_{i} & 1 & 0 & 0 & 0 & -x'_{i}x_{i} & -x'_{i}y_{i} & -x'_{i} \\ 0 & 0 & 0 & x_{i} & y_{i} & 1 & -y'_{i}x_{i} & -y'_{i}y_{i} & -y'_{i} \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies

Defines a least squares problem:

minimize
$$\|\mathbf{A}\mathbf{h} - \mathbf{0}\|^2$$

- Since h is only defined up to scale, solve for unit vector h
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Fun with homographies

Original image

St.Petersburg photo by A. Tikhonov

Virtual camera rotations

Image Alignment Algorithm

Given images A and B

- 1. Compute image features for A and B
- 2. Match features between A and B
- 3. Compute homography between A and B using least squares on set of matches

What could go wrong?

RANSAC for Homography

RANSAC for Homography

RANSAC for Homography

Probabilistic model for verification

Image Warp

Image Warping

• Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute an xformed image g(x',y') = f(T(x,y))?

Forward Warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?

Forward Warping

- Send each pixel f(x,y) to its corresponding location x' = h(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (splatting)
 - Can still result in holes

Inverse Warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?

Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated (prefiltered) source image

Interpolation

Possible interpolation filters:

- nearest neighbor
- bilinear
- bicubic (interpolating)
- sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Blending

Blending

We've aligned the images – now what?

Blending

Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

• Doesn't always work...

Pyramid blending

Create a Laplacian pyramid, blend each level

• Burt, P. J. and Adelson, E. H., <u>A multiresolution spline with applications to image mosaics</u>, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:

http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumber=7531&prod=JNL&arnumber=310740&arSt=83&ared=87&arAuthor=Blinn%2C+J.F.

Encoding blend weights: $I(x,y) = (\alpha R, \alpha G, \alpha B, \alpha)$

color at p =
$$\frac{(\alpha_1 R_1, \ \alpha_1 G_1, \ \alpha_1 B_1) + (\alpha_2 R_2, \ \alpha_2 G_2, \ \alpha_2 B_2) + (\alpha_3 R_3, \ \alpha_3 G_3, \ \alpha_3 B_3)}{\alpha_1 + \alpha_2 + \alpha_3}$$

Implement this in two steps:

- 1. accumulate: add up the (α premultiplied) RGB α values at each pixel
- 2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha = 0$?

Poisson Image Editing

- For more info: Perez et al, SIGGRAPH 2003
 - http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Readings

- F & P 12.1.2 12.1.3
- Szeliski, CVAA:
 - Chapter 3.5: Image warping
 - Chapter 6.1: 2D and 3D Feature-based alignment
 - Chapter 9.1: Motion models
 - Chapter 9.2: Global alignment
 - Chapter 9.3: Compositing
- Recognizing Panoramas, Brown & Lowe, ICCV'2003
- Szeliski & Shum, SIGGRAPH'97