Práctico 9: Estructuras Incompletas. Gramáticas.

Ejercicio 1

Escriba los siguientes predicados sobre listas de diferencias.

Para las listas de diferencias utilice la representación mediante términos estructurados de la forma: X-Xr

I_Id (<i>L</i> , <i>LD</i>)	LD es una lista de diferencias equivalente a la lista L.
ld_l(<i>LD, L</i>)	L es la lista equivalente a la lista de diferencias LD.
append_ld(A,B,C)	C es la lista de diferencia equivalente a concatenar las listas de diferencias A y B.
inserta_ld(L1,X,L2)	L2 es la lista de diferencias resultante de insertar el elemento X al comienzo de la lista de diferencias L1.
insertz_ld <i>(L1,X,L2)</i>	L2 es la lista de diferencias resultante de insertar el elemento X al final de la lista de diferencias L1.
rotacion_ld(<i>L1, L2</i>)	L2 es la lista de diferencias que resulta de rotar un lugar a la izquierda, en forma circular, los elementos de la lista de diferencias L1. Ejemplo: rotacion_ld([a,b,c X]-X, [b,c,a Y]-Y)
reverse_ld <i>(L,R)</i>	R es la lista de diferencias que representa el inverso de la lista común L.
quicksort_ld <i>(L,S)</i>	S es la lista de diferencias ordenada que representa la lista común L ordenada utilizando el algoritmo quicksort.

Ejercicio 2 [prueba 2013]

Escriba el siguiente predicado en prolog. La solución no podrá invocarse recursivamente más de $\bf n$ veces, siendo $\bf n$ el largo de la lista original. Se sugiere utilizar listas de diferencias.

listaCapicua(+L, ?LCap) **LCap** es una lista capicúa con el doble de elementos de **L**, y se cumple que **L** es prefijo de **LCap**.

Ejemplos:

```
listaCapicua([a,b,c], [a,b,c,c,b,a]).
listaCapicua([a,b], [a,b,b,a]).
listaCapicua([a], [a,a]).
listaCapicua([], []).
```

Ejercicio 3

Escriba los siguientes predicados para árboles de enteros, representados mediante estructuras incompletas:

pre_orden(<i>A, L</i>)	L es una lista con los elementos del árbol binario A,
	obtenida al recorrerlo pre-orden.
in_orden(<i>A, L</i>)	L es una lista con los elementos del árbol binario A,
	obtenida al recorrerlo in-orden.
ins_abb(<i>A, E</i>)	El árbol binario de búsqueda A contiene al
	elemento E en la posición que le corresponde
	según su valor.

Ejercicio 4

Implemente los siguientes predicados sobre listas de diferencias en Prolog:

a) [prueba 2020]

 $largo_ld(+L,?N) \leftarrow N$ es el largo de los elementos de la lista de diferencias L, sin contar el resto variable. Por ejemplo:

```
largo_ld([a,b,c,d|LR]-LR,4).
largo_ld([c,d|LR]-LR,2).
```

b) [prueba 2021]

 $not_member_ld(+X,?L) \leftarrow X$ es un elemento que no está presente en la lista de diferencias L utilizada con la notación L-LR. Por ejemplo:

```
not_member_ld(6,[1,2,3,4|LR]-LR). \leftarrow Devuelve "true". not member_ld(4,[1,2,3,4|LR]-LR). \leftarrow Devuelve "false".
```

Ejercicio 5

Utilizando DCG, defina programas Prolog para reconocer los siguientes lenguajes:

- $L = \{a^* b^* c^* \}$
- $L = \{a^n b^n / n \ge 0\}$
- $L = \{ww^R / w \in \{a,b\}^*\}$
- $L = \{a^n b^n c^n / n \ge 0\}$
- $L = \{a^n b^m c^{n+m} / n, m \ge 0\}$
- $L = \{a^p b^m c^{p*m} / p, m \ge 0\}$

Ejercicio 6

a) Escriba una gramática en Prolog, usando la notación DCG, que permita reconocer frases como:

```
Los osos polares comen peces.
```

Los osos polares viven en la Antártida.

El investigador da alimento a los osos polares.

Los investigadores estudian el comportamiento de las aves.

b) Explique cómo haría para no permitir frases como:

Las investigador estudian el comportamiento de los aves.

c) Explique cómo haría para no permitir frases como:

Los osos polares comen la Antártida.

Ejercicio 7

- a) [prueba 2010] Defina una gramática DCG para el lenguaje sobre el alfabeto $\{a,b\}$ cuyas tiras son de la forma ww , $w \in \{a,b\}^*$
- b) [prueba 2012] Construya una gramática DCG que reconozca el lenguaje $L=\{y,w\in (a|b)^*/x=yww^Ry\}$.

Ejercicio 8

Defina programas Prolog para reconocer los siguientes lenguajes:

- Sentencias while, assign, expresiones aritméticas y lógicas de un lenguaje imperativo [suponga que la entrada es una lista de tokens]
- La sintaxis para definir gramáticas en Prolog [llamadas DCG: *Definite Clause Grammar*] usando una gramática en Prolog.

Ejercicio 9

Considere el siguiente programa Prolog:

Indique su comportamiento frente a cada una de las siguientes consultas:

```
a) ? indice([a,b,a], [x,y,a,b,a,b,a], I).
   a.1 - La respuesta es NO
   a.2 - La respuesta es I = [a,b]
   a.3 - La respuesta es I = 3; I = 5
   a.4 - La respuesta es I = 1; I = 2; I = 3
   a.5 - Ninguna de las anteriores
b) ? indice([a,b,a], [x,y,a,b,b], I).
   b.1 - La respuesta es NO
   b.2 - La respuesta es I = [a,b,b]
   b.3 - La respuesta es I = 3
   b.4 - La respuesta es I = 1; I = 2; I = 3
   b.5 - Ninguna de las anteriores
c) ? indice([], [a,b,x,a], I).
   c.1 - La respuesta es NO
   c.2 - La respuesta es I = [a,b]
   c.3 - La respuesta es I = [a,b,x,a]
   c.4 - La respuesta es I = 1; I = 4
   c.5 - Ninguna de las anteriores
d) ? indice ([X,Y,Z], [a,b,c,d], ).
   d.1 - La respuesta es NO
   d.2 - La respuesta es X = a, Y = b, Z = c; X = b, Y = c, Z = d
   d.3 - La respuesta es X = [a,b,c,d], Y = [], Z = []
   d.4 - La respuesta es | =1 ; | = 2 ; | = 3 ; | = 4
   d.5 - Ninguna de las anteriores
```