Machine Learning and Its applications (and beyond)

Hisashi Kashima

Department of Mathematical Informatics
The University of Tokyo

DEPARTMENT OF MATHEMATICAL INFORMATICS

What is Machine Learning?

Machine learning as a buzzword: Increasing popularity of machine learning

- After the IT revolution, "how to exploit data" is increasingly more important than "how to store data"
 - Companies are trying to position data analytics as foundations of competitiveness
- "Machine learning" as a buzzword
 - The rise of "big data" (another buzzword)
 - Data scientist is "the sexiest job in the 21st century"

What is machine learning?: Machine learning is a data analytics

- Originally a branch of artificial intelligence
 - Computer programs that "learns" from experience
 - Based on logical inference
- Rise of "statistical" machine learning
 - Successes in bioinformatics, natural language processing, and other business areas
 - Victory of IBM's Watson QA system

What can machine learning do?: Prediction and discovery

- Two categories of the use of machine learning:
 - Prediction (supervised learning)
 - "What will happen in future data?"
 - Given past data, predict about future data
 - Discovery (unsupervised learning)
 - "What is happening in data in hand?"
 - Given past data, find insights in them

Formulations of machine learning problems: Supervised and unsupervised

- Learning system as a function $f: x \to y$
 - $oldsymbol{x} \in \Re^D$: input as real vector
 - $y \in \{1, 2, ..., C\}$: discrete output
- We want $f \Rightarrow$ Learn from data
- Two machine learning problems:
 - 1. Supervised learning: have access to input and output pairs
 - $\{(\boldsymbol{x}^{(1)},y^{(1)}),(\boldsymbol{x}^{(2)},y^{(2)}),...,(\boldsymbol{x}^{(N)},y^{(N)})\}:N$ in/output pairs
 - 2. Unsupervised learning: have access only to input data
 - $\{ \boldsymbol{x}^{(1)}, \, \boldsymbol{x}^{(2)}, ..., \, \boldsymbol{x}^{(N)} \} : N \text{ inputs}$

An application of supervised learning: Sentiment analysis

- Classify the polarity of a given text
 - $y \in \{+, -\}$: Whether or not a blog post x favors a product
- x is defined by using words appearing in the text

Note: design of the feature vector is left to uses

Various applications of machine learning: From online shopping to system monitoring

- Marketing
 - Product recommendation
 - Sentiment analysis on Web
 - Advertisement optimization
- Finance
 - Credit risk management
 - Fraud detection
- Bio/healthcare
 - Medical diagnosis
 - Gene recognition

- Web
 - Web search
 - Spam detection
 - -SNS
- Multimedia
 - Voice recognition
 - Face/object recognition
- System monitoring
 - fault diagnosis
 - Intrusion detection

Recommender Systems

Recommender systems: Personalized information filter

 Amazon offers a list of products I am likely to buy (based on my purchase history)

Ubiquitous recommender systems: Recommender systems are present everywhere

- A major battlefield of machine learning algorithms
 - Netflix challenge (with \$100 million prize)
- Recommender systems are present everywhere:
 - Product recommendation in online shopping stores
 - Friend recommendation on SNSs
 - Information recommendation (news, music, ...)

A formulation of recommendation problem: Matrix completion

- A matrix with rows (customers) and columns (products)
 - Each element = review score
- Given observed parts of the matrix,
 predict the unknown parts (?)

Basic idea of recommendation algorithms: "Find people like you"

- GroupLens: an earliest algorithm (for news recommendation)
 - Inherited by MovieLens (for Movie recommendation)
- Find people similar to the target customer, and predict missing reviews with theirs

GroupLens:

Weighted prediction with correlations among customers

- Define customer similarity by correlation (of observed parts)
- Make prediction by weighted averaging with correlations:

Low-rank assumption for matrix completion: GroupLens implicitly assumes low-rank matrices

- Assumption of GroupLens algorithm:
 Each row is represented by a linear combination of the other rows (i.e. linearly dependent)
 - ⇒ The matrix is not full-rank (≒ low-rank)

Low-rank assumption helps matrix completion

Low-rank matrix factorization: Projection onto low-dimensional latent space

Low-rank matrix: product of two (thin) matrices

• Each row of $oldsymbol{U}$ and $oldsymbol{V}$ is an embedding of each customer (or product) onto low-dimensional latent space

Example of low-rank matrix decomposition: Singular value decomposition

Find a best low-rank approximation of a given matrix

minimize
$$||X - Y||_F^2$$
 s.t. rank $(Y) \le k$

Singular value decomposition (SVD)

-
$$X$$
 approx U X diagonal (singular values) wrt constraint: $U^{\top}U = I$ $V^{\top}V = I$

The largest k eigenvalues of $X^\top X$ best approximate

Strategies for matrices with missing values: EM algorithm, gradient descent, and trace norm

- SVD is not applicable to matrices with missing values
- For completion problem:
 - Direct application of SVD to a (somehow) filled matrix
 - Iterative applications: iterations of completion and decomposition
- For large scale data:
 Gradient descent using only observed parts
- Convex formulation: Trace norm constraint

Predicting more complex relations: Multinomial relations

- Matrices can represent only one kind of relations
 - Various kinds of relations (actions):
 Review scores, purchases, browsing product information, ...
 - Correlations among actions might help
- Multinomial relations:
 - (customer, product, action)-relation:
 (Alice, iPad, buy) represents "Alice bought an iPad."
 - (customer, product, time)-relation:
 (John, iPad, July 12th) represents "John bought an iPad on July 12th."

Multi-dimensional array: Representation of multinomial relations

- Multidimensional array: Representation of complex relations among multiple object
 - -Types of relations (actions, time, conditions, ...)
 - Relations among more than two objects

Hypergraph: allows variable number of objects involved in

relations

product

time

customer

Tensor decomposition:

Generalization of low-rank matrix decomposition

- Generalization of matrix decomposition to multidimensional arrays
 - A small core tensor and multiple factor matrices
- Increasingly popular in machine learning/data mining

Tensor decompositions: CP decomposition and Tucker decomposition

- CP decomposition: A natural extension of SVD (with a diagonal core)
- Tucker decomposition: A more compact model (with a dense core)

Applications of tensor decomposition: Tag recommendation, social network analysis, ...

- Personalized tag recommendation (user×webpage×tag)
 - predicts tags a user gives a webpage
- Social network analysis (user×user×time)
 - analyzes time-variant relationships
- Web link analysis (webpage×webpage×anchor text)
- Image analysis (image×person×angle×light×...)

Applications of tensor decomposition: Tag recommendation, social network analysis, ...

- Personalized tag recommendation (user×webpage×tag)
 - predicts tags a user gives a webpage

Steffen Rendle, Lars Schmidt-Thieme

ISMLL. University of Hildesheim

Anomaly Detection

Anomaly detection: Early warning for system failures reduces costs

- A failure of a large system can cause a huge loss
 - production line in factory
 - Infection of computer virus/intrusion to computer systems
- Early detection of failures from data collected from sensors

Difficulty in anomaly detection: Failures are often unknown

- Known failures are detected by using supervised learning:
 - 1. Construct a predictive model from past failure data
 - 2. Apply the model to system monitoring
- Serious failures are often new ones
 - → No past data are available
- There are many cases where supervised learning is not applicable

Change the strategy: Model the normal times, detect deviation from them

- Difficult to model anomalies → Model normal times
 - Data at normal times are abundant
- Observation of rare data is a precursor of failures

Clustering:

Model the normal times by grouping the data

- lacksquare Divide normal time data $\{m{x}^{(1)}, \, m{x}^{(2)}, ..., \, m{x}^{(N)}\}$ into K groups
 - -Group is represented by centers $\{\boldsymbol{\mu}^{(1)}, \boldsymbol{\mu}^{(2)}, ..., \boldsymbol{\mu}^{(K)}\}$
- data x is an "outlier" if it lies far from all of the centers
 - = system failures, illegal operations, instrument faults

Clustering:

Model the normal times by grouping the data

- lacksquare Divide normal time data $\{m{x}^{(1)}, \, m{x}^{(2)}, ..., \, m{x}^{(N)}\}$ into K groups
 - -Group is represented by centers $\{\boldsymbol{\mu}^{(1)}, \boldsymbol{\mu}^{(2)}, ..., \boldsymbol{\mu}^{(K)}\}$
- data x is an "outlier" if it lies far from all of the centers
 - = system failures, illegal operations, instrument faults

K-means algorithm: Iterative refinements of groups

- Repeat until convergence:
 - 1. Assign each data $m{x}^{(i)}$ to its nearest center $m{\mu}^{(k)}$

2. Update each center to the center of the assigned data

Sequential K-means:

Simultaneous estimation of clusters and outliers

- Data arrives in a streaming manner, and apply clustering and anomaly detection at the same time
 - 1. Assign each data $m{x}^{(t)}$ to its nearest center $m{\mu}^{(k)}$

Limitation of anomaly detection: Failures are unknown

- Anomalies are not defined in advance
 - → Details of failures are unknown
- Report to system administrators
 - → Investigations by administrators

Change detection: detects model changes

Future Direction

Can machines with big data go beyond humans?: Many instances. But, not always

- Computers overwhelming humans on many "intelligent" tasks:
 - e.g. the victory of IBM's QA system WATSON trained with big data
- Concerns about replacement of humans by computers:
 - -Luddite movement in the industrial revolution in 19th century

- With big data, do computer always defeat humans?
 - No, there are still many only human can do

ReCAPTCHA: Authentication with a "hidden" task

- A Turing test discriminating humans from computers
 - Authentication of an access by human to a Web site requires users to read and input given two words
 - Hard for computers, but easy for humans

ESP game:

A game with a "hidden" task

- A cooperative game played by two online players
- Players get points if two keywords given by them to a presented image coincide

"Hidden" tasks: Tasks hard for computers, but easy for humans

- ReCAPCHA: digitization of paper documents
 - The system does not know one of two presented words
 - Human helps digitization of paper documents
- ESP game: image tagging
 - Tags for images improves image search
 - Human helps tagging of images
 - "Game with a purpose (GWAP)"
 - Music tagging, protein folding, ...

Human computation: Cooperative Problem solving by machines and humans

- Human computation:
 - regards humans as computational resources
 - solves problems that computers can not solve
- Efficient cooperative problem solving
 - E.g. quicksort with humans
- Employment of human resources:
 - Gamification: Tasks implicitly embedded into games
 - Crowdsourcing (e.g. Mechanical Turk)

Law & Von Ahn (2012), Human Computation

Human computation in computer science: NLP, computer vision, HCl, web search, DB, ...

- Natural language processing: NL understanding, translation, ...
- Computer vision: image understanding, annotation, detection,...
- DB/IR: data generation/integration, evaluation, ...
- Machine learning: data collection

Research trend:

Exponential growth of human computation/crowdsourcing

Exponential growth of related research

#papers related to "human computation"

#papers related to "crowdsourcing"

X According to Google Scholar

- 2005: Amazon Mechanical Turk
- 2006: "human computation" "crowdsourcing"
- 2013: The first international conference on human computation and crowdsourcing HCOMP (Human Computation & Crowdsourcing)

Future of artificial intelligence research: Is human computation a compromise? or a new direction?

- Ask humans to do tasks computers can not do
 - Does it mean giving up "artificial intelligence"?
- → This might be a new research direction
- "Freestyle" chess tournament:A team of 2 amateurs and 3 programs won
 - -Computers + humans overwhelms best of each
- Not only being a compromise,
 this might be a new artificial intelligence

Summary: Machine learning and its applications (and beyond)

- Increasing popularity of machine learning:
 - supported by the rise of "big data" and "data scientists"
- Many applications:
 - Supervised machine learning: recommender systems
 - Matrix factorization/tensor decomposition
 - Unsupervised machine learning: Anomaly detection
 - Capture normal times (by clustering)
- Human computation: Collaborative problem solving by machines and humans