Chapter 12

Vectors and the Geometry of Space

12.1 Two and Three Dimensional Space

Definition 1. Let \mathbb{R} be the collection of real numbers, let \mathbb{R}^2 be the collection of all **ordered pairs** of real numbers, and let \mathbb{R}^3 be the collection of all **ordered triples** of real numbers.

 \mathbb{R} is known as the **real line**, \mathbb{R}^2 is known as the **real plane** or the xy-**plane**, and \mathbb{R}^3 is known as **real (3D) space** or xyz-**space**.

Definition 2. The **distance** between two points $P=(x_1,y_1)$ and $Q=(x_2,y_2)$ in \mathbb{R}^2 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The **distance** between two points $P = (x_1, y_1, z_1)$ and $Q = (x_2, y_2, z_2)$ in \mathbb{R}^3 is given by the formula

$$d(P,Q) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Problem 3. Plot and find the distance between the following pairs of points:

- (-2,6) and (3,-6)
- (0,0,0) and (4,2,4)
- (3,7,-2) and (-1,7,1)
- (8,2,1) and (4,-2,7)

Definition 4. Simple lines in \mathbb{R}^2 are given by the relations x=a, and y=b for real numbers a,b.

Simple planes in \mathbb{R}^3 are given by the relations $x=a,\,y=b,\,z=c$ for real numbers a,b,c.

Definition 5. A circle in \mathbb{R}^2 is the set of all points a fixed distance (called its **radius**) from a fixed point (called its **center**). For a center (a, b) and radius r, the equation for a circle is

$$(x-a)^2 + (y-b)^2 = r^2$$

A **sphere** in \mathbb{R}^3 is the set of all points a fixed distance (called its **radius**) from a fixed point (called its **center**). For a center (a, b, c) and radius r, the equation for a sphere is

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Question 6. Sketch the following curves and surfaces.

- x = 3 in the xy-plane and xyz-space.
- y = -1 in the xy-plane and xyz-space.
- z = 0 in xyz-space.
- $(x-2)^2 + (y+1)^2 = 9$ in the xy-plane.
- $x^2 + y^2 + z^2 = 4$ in xyz-space.
- $x^2 + (y-1)^2 + z^2 = 1$ in xyz-space.