Package 'GeoRange'

October 12, 2022

nal and latitudinal occurrence data. Measures included are minimum convex hull area, minimum spanning tree distance, longitudinal range, latitudinal range, maximum pairwise great cir-

Description Calculates and analyzes six measures of geographic range from a set of longitudi-

Title Calculating Geographic Range from Occurrence Data

cle distance, and number of X by X degree cells occupied.

Type Package

Version 0.1.0

License GPL-3

LazyData TRUE
Imports sp,proj4,raster,moments,stats,graphics,grDevices,velociraptr
RoxygenNote 6.0.1
NeedsCompilation no
Author James Boyle Developer [aut, cre]
Maintainer James Boyle Developer <jamesboy@buffalo.edu></jamesboy@buffalo.edu>
Repository CRAN
Date/Publication 2017-06-15 15:07:19 UTC
R topics documented: BivalvePBDB
CHullArea
CHullAreaEarth
CoordCollapse
CoordList_PBDB
deg2rad
EqualAreaRectangle
GCD
gcd_hf 9 gcd_vif 10 GeoCor 11
GeoPerformance_SkewCV

2	BivalvePBDB
---	-------------

BivalvePBD	В	Occur biolog												0-
Index														29
Randl	Rec		• •	 	 	•	 •	 ٠	 	•	 •	 	 	28
	HorseShoe													
	atrix													
	gHorseShoe .													
Plot_l	Rarefaction .			 	 				 			 	 	24
PlotM	IST			 	 				 			 	 	23
	onvexHull													
	SingleTaxon .													
	– MultiTaxa													
	Dist_FromMat													
_	Dist													
_	Rg													
	g													
	ShoeArea													
		-												
	arefaction_Mu arefaction_Sin													
	ange_MultiTa													
	N/14'T													10

Description

Occurrence data on bivalves from the Ypresian Data from the Paleobiology Database via the velociraptr package on May 17th, 2017

Usage

data(BivalvePBDB)

Format

A csv file

Examples

data(BivalvePBDB)

CellCount 3

Description

Calculates degree x degree cell counts of a specified size

Usage

```
CellCount(longs, lats, CellSize = 5, longBounds = c(-180, 180), latBounds = c(-90, 90))
```

Arguments

longs - Array of longitudinal occurrence values in decimal degrees
 lats - Array of latitudinal occurrence values in decimal degrees
 CellSize - Size of each cell in degree X degree
 longBounds - Array of longitudinal boundaries in decimal degrees
 latBounds - Array of latitudinal boundaries in decimal degrees

Value

Returns the number of cells occupied, specified cell size, and coordinate list

Note

This method uses grids cells constructed by equal degrees not area. So high latitude cells will have smaller areas than those at low latitude

```
\label{longs} $$\log <-c(22,55,-144)$$ lats<-c(-12,22,-12)$$ CellCount(longs,lats,CellSize=5,longBounds=c(-180,180),latBounds=c(-90,90))$
```

4 CHullAreaEarth

\mathbf{c}	ш.	ī	1	٨	re	_
(нι	ш	- 1	А	re	а

Performs Convex Hull area calculation

Description

Performs Convex Hull area calculation

Usage

```
CHullArea(longs, lats)
```

Arguments

1 array of longitudinal occurrence values in decimal degrees
 1 array of latitudinal occurrence values in decimal degrees

Details

Uses the cylindrical equal area projection in order to check if the minimum convex hull wraps around the prime meridian

Value

Returns area of a set of coordinates

Note

Relies on the 'sp' package for the Polygon and chull function

Examples

```
longs<-c(-12,23,55)
lats<-c(34,22,30)
CHullArea(longs,lats)</pre>
```

CHullAreaEarth

Performs convex hull area calculation from coordinate sets on the Earth's surface

Description

Performs convex hull area calculation from coordinate sets on the Earth's surface

Usage

```
CHullAreaEarth(longs, lats)
```

CoordCollapse 5

Arguments

Longitudinal coordinates of occurrences in decimal degrees
 Latitudinal coordinates of occurrences in decimal degrees

Details

Uses the cylindrical equal area projection in order to check if the minimum convex hull wraps around the prime meridian

Value

Returns the convex hull area is square kilometers

Note

Relies on the 'sp' package for the Polygon and chull function. Assumes latitude and longitude coordinates use the WGS84 datum

Examples

```
longs<-c(-133,-101,56)
lats<-c(33,12,-2)
CHullAreaEarth(longs,lats)</pre>
```

CoordCollapse

Removes duplicate geographic locations and binds coordinates into a single element

Description

Removes duplicate geographic locations and binds coordinates into a single element

Usage

```
CoordCollapse(longs, lats)
```

Arguments

Longitudinal coordinates of occurrences in decimal degrees
 Latitudinal coordinates of occurrences in decimal degrees

Value

Returns a 2-column array of coordinates without any duplicate locations

Note

Points are truncated to the hundredths place before checking for duplicates

6 CoordList_PBDB

Examples

```
longs<-c(34,133,-45)
lats<-c(-12,44,76)
CoordCollapse(longs,lats)</pre>
```

CoordList_PBDB

Creates an occurrence matrix of taxa by coordinates from the Paleobiology Database

Description

Creates an occurrence matrix of taxa by coordinates from the Paleobiology Database

Usage

```
CoordList_PBDB(pbdb_data)
```

Arguments

pbdb_data

- Matrix of occurrence records from the Paleobiology Database, see downloadPBDB function in velociraptr package

Details

Cuts out records for which there is no paleogeographic information known

Value

Returns a taxa by coordinates matrix of occurrences

See Also

See the velociraptr package for more details on downloading PBDB data

```
data(BivalvePBDB)
CoordList_PBDB(BivalvePBDB)
```

deg2rad 7

deg2rad

Converts degrees to radians

Description

Converts degrees to radians

Usage

```
deg2rad(deg)
```

Arguments

deg

- decimal degree to be converted to radians

Value

Returns the degree in radians

References

[1]Originally from http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

Examples

```
deg2rad(45)
```

EqualAreaRectangle

Create a rectangular shaped distribution with equal area to a given area

Description

Create a rectangular shaped distribution with equal area to a given area

Usage

```
EqualAreaRectangle(center = c(0, 0), TargetArea, error = 0.001)
```

Arguments

center

- Arrary containing the coordinates of the center of circular portion of the rectangle in decimal degree

TargetArea

- Area in square kilometers desired for the rectangle

error

- The tolerable proportion of error between the rectangular shape and the Tar-

getArea

8 GCD

Value

Returns a 2-dimensional array of decimal degree coordinates outlining a rectangular shaped distribution

Note

This returns 100 evenly spaced points along each corner of the rectangle, in addition to the corners themselves

Examples

```
Horse Shoe Test <-PtsAlg Horse Shoe (z=2000, spacing=1, end Angles=c(-90,90)) \\ Horse Shoe Pts <-Rand Horse Shoe (center=c(0,0), npts=100, Horse Shoe Shape=Horse Shoe Test) \\ Equal Area Rectangle (Target Area=as.numeric (Horse Shoe Pts $Total Area\_km2), error=0.001) \\
```

GCD

Calculates the maximum pairwise great circle distance from a set of decimal degree coordinates

Description

Calculates the maximum pairwise great circle distance from a set of decimal degree coordinates

Usage

```
GCD(longs, lats)
```

Arguments

longs

- Longitudinal coordinates of occurrences in decimal degrees

lats

- Latitudinal coordinates of occurrences in decimal degrees

Details

Because this function does not account for the possibility that a taxa may wrap around more than half the Earth the maximum value is half the circumference of the Earth, approximately 20,038 kilometers.

Value

Returns the maximum great circle distance in kilometers

Note

The great circle distance can be extracted from the result of a minium spanning tree calculation MSTDist() if available to avoid redundant calculations

gcd_hf

Examples

```
longs<-c(34,156,-78)
lats<-c(45,12,9)
GCD(longs,lats)</pre>
```

gcd_hf

Calculates the geodesic distance between two points specified by latitude and longitude using the Haversine formula

Description

Calculates the geodesic distance between two points specified by latitude and longitude using the Haversine formula

Usage

```
gcd_hf(long1, lat1, long2, lat2)
```

Arguments

long1 - Longitudinal value of first point in decimal degrees
 lat1 - Latitudinal value of first point in decimal degrees
 long2 - Longitudinal value of second point in decimal degrees
 lat2 - Latitudinal value of second point in decimal degrees

Details

The Haversine formula can be inaccurate depending on coordinates

Value

Returns the distance between two points on the Earth in kilometers

Note

The haversine method is inaccuarate and should only be used when the vicenty formula fails or over very small distances

References

[1] Adapted from http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

```
long1<-22
lat1<-44
long2<-52
lat2<-51
gcd_hf(long1,lat1,long2,lat2)</pre>
```

10 gcd_vif

gcd_vif	Calculates the geodesic distance between two points specified by latitude/longitude using Vincenty inverse formula for ellipsoids

Description

Calculates the geodesic distance between two points specified by latitude/longitude using Vincenty inverse formula for ellipsoids

Usage

```
gcd_vif(long1, lat1, long2, lat2)
```

Arguments

long1	- Longitudinal value of first point in decimal degrees
lat1	- Latitudinal value of first point in decimal degrees
long2	- Longitudinal value of second point in decimal degrees
lat2	- Latitudinal value of second point in decimal degrees

Value

Returns the distance between two points on the Earth in kilometers

References

[1] Adapted from http://www.r-bloggers.com/great-circle-distance-calculations-in-r/

```
long1<-22
lat1<-44
long2<-52
lat2<-51
gcd_vif(long1,lat1,long2,lat2)</pre>
```

GeoCor 11

GeoCor	Function to calculate the correlation coefficient for pairwise compar-
	isons between geographic range measures

Description

Function to calculate the correlation coefficient for pairwise comparisons between geographic range measures

Usage

```
GeoCor(GeoRange, Start = 1, method = "pearson")
```

Arguments

GeoRange	- A matrix of taxa by geographic range calculations, as from the GeoRange_MultiTaxa

function

Start - The column index value where geographic range measures to be compared

starts

method - The correlation method to be used. See the cor() function for available inputs

Value

Returns a sparse pairwsie matrix of correlation coefficients

Note

The correlation calculation uses the "pairwise.complete.obs" option from the cor function so that only complete pairs of observations are used, pairs containing an NA are ignored

See Also

See the velociraptr package for details of the downloadPBDB() function

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
testBivalve<-GeoRange_MultiTaxa(OccMatrix=BivalveMatrix,TaxaStart=3)
GeoCor(testBivalve,Start=1,method="kendall")
## End(Not run)</pre>
```

GeoPerformance_SkewCV Function to calculate the skewness and coefficient of variance for a set of geographic range calculations

Description

Function to calculate the skewness and coefficient of variance for a set of geographic range calculations

Usage

```
GeoPerformance_SkewCV(GeoRange)
```

Arguments

GeoRange

- Data matrix containing the geographic range calculations for a set of taxa, as from the GeoRange_MultiTaxa() function

Value

Returns a list of the skewness and coefficient of variance for each geographic range measure

Note

The coefficient of variance returned is standard deviation/mean

See Also

See the raster and moments packages for more details on the calculation of skewness and coefficient of variance

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
BivalveGeo<-GeoRange_MultiTaxa(OccMatrix=BivalveMatrix,TaxaStart=3)
GeoPerformance_SkewCV(BivalveGeo)
## End(Not run)</pre>
```

GeoRange_MultiTaxa 13

GeoRange_MultiTaxa	Function to tabulate number of occurrences/locations, six geographic range measures, minimum and maximum latitude and longitude for each taxon in a dataset

Description

Function to tabulate number of occurrences/locations, six geographic range measures, minimum and maximum latitude and longitude for each taxon in a dataset

Usage

```
GeoRange_MultiTaxa(OccMatrix, TaxaStart, LongPos = 1, LatPos = 2, CellSize = 5, longBounds = c(-180, 180), latBounds = c(-90, 90))
```

Arguments

OccMatrix	- A matrix where columns are taxon occurrences and also having at least longitude and latitude values
TaxaStart	- The column index value where taxon records start
LongPos	- The column index value of longitudinal coordinates in the OccMatrix
LatPos	- The column index value of latitudinal coordinates in the OccMatrix
CellSize	- The size of each cell in degree X degree
longBounds	- Array of longitudinal boundaries in decimal degrees
latBounds	- Array of latitudinal boundaries in decimal degrees

Value

Returns a matrix of taxa by geographic range measures, including number of observations, number of unique locations observed at, minimum spanning tree distance, minimum convex hull area, maximum pairwise great circle distance, latitudinal range, longitudinal range, and number of degree X degree cells occupied

Note

Calculates the number of observations, localities, minimum spanning tree distance, convex hull area, longitudinal range, latitudinal range, and cell count

See Also

See the velociraptr package for details of the downloadPBDB() function

Examples

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
GeoRange_MultiTaxa(OccMatrix=BivalveMatrix,TaxaStart=3)
## End(Not run)</pre>
```

 ${\tt GeoRarefaction_MultiTaxa}$

Calculates six geographic range measures at resampled a number of time from specified sample sizes

Description

Calculates six geographic range measures at resampled a number of time from specified sample sizes

Usage

```
GeoRarefaction_MultiTaxa(nLocCut = 3, OccMatrix, TaxaStart, LongPos = 1, LatPos = 2, iter = 10, CellSize = 5, longBounds = c(-180, 180), latBounds = c(-90, 90), steps = c(1, 50, 40, 30, 20, 10, 5), replacePts = FALSE)
```

Arguments

nLocCut	- The minimum number of locations a taxon must be seen at to have geographic range measures calculated
OccMatrix	- A matrix where columns are taxon occurrences and also having at least longitude and latitude values
TaxaStart	- The column index value where taxon records start
LongPos	- The column index value of longitudinal coordinates in the OccMatrix
LatPos	- The column index value of latitudinal coordinates in the OccMatrix
iter	- The number of times a taxon's locations are resampled at each step size
CellSize	- The size of each cell in degree X degree
longBounds	- Array of longitudinal boundaries in decimal degrees
latBounds	- Array of latitudinal boundaries in decimal degrees
steps	- Array of the values representing the number of points to be subsampled for each taxon
replacePts	- A logical value indicating whether points are allowed to be sampled more than once during each subsampling iteration

Details

The nLocCut parameter is the minimum number of distinct geographic locations a taxon must be observed at to have geographic range measures calcualted, if below retruns NA. The steps parameter typically begins with a 1 representing that all points should be used in calculations but this is not required. The replacePts parameter must be set to TRUE if any of the steps require a greater number of points to be sampled than there are actual locations for a taxon, otherwise the function will fail.

Value

Returns a vector where each element is a taxon with a list of each geographic range measure as a separate matrix of values. Measures include minimum spanning tree distance, minimum convex hull area, maxmimum pairwise great circle distance, latitudinal range, longitudinal range, and number of degree X degree cells occupied.

Note

If PEE values are to be calculated as a next step the steps parameter needs to have a value of 1 as its first value

See Also

See the velociraptr package for details of the downloadPBDB() function

Examples

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
GeoRarefaction_MultiTaxa(nLocCut=20,OccMatrix=BivalveMatrix,TaxaStart=3,replacePts=TRUE)
## End(Not run)</pre>
```

 ${\tt GeoRarefaction_SingleTaxon}$

Calculates six geographic range measures at specified sample sizes for a single taxon

Description

Calculates six geographic range measures at specified sample sizes for a single taxon

Usage

```
GeoRarefaction_SingleTaxon(TName = "Bird1", OccMatrix, LongPos = 1, LatPos = 2, iter = 10, CellSize = 5, longBounds = c(-180, 180), latBounds = c(-90, 90), steps = c(1, 50, 40, 30, 20, 10, 5), replacePts = FALSE)
```

Arguments

TName - The name of the taxon of interest, as labeled in OccMatrix, as a string

OccMatrix - A matrix where columns are taxon occurrences and also having at least longi-

tude and latitude values

LongPos - The column index value of longitudinal coordinates in the OccMatrix

LatPos - The column index value of latitudinal coordinates in the OccMatrix

iter - The number of times a taxon's locations are resampled at each step size

CellSize - The size of each cell in degree X degree

1 atBounds
 - Array of longitudinal boundaries in decimal degrees
 - Array of latitudinal boundaries in decimal degrees

steps - Array of the values representing the number of points to be subsampled for

each taxon

replacePts - A logical value indicating whether points are allowed to be sampled more than

once during each subsampling iteration

Details

The nLocCut parameter is the minimum number of distinct geographic locations a taxon must be observed at to have geographic range measures calcualted, if below retruns NA. The steps parameter typically begins with a 1 representing that all points should be used in calculations but this is not required. The replacePts parameter must be set to TRUE if any of the steps require a greater number of points be locations be sampled than are available for a taxon, otherwise the function will fail.

Value

Returns a list of each geographic range measure as a separate matrix of values. Measures include minimum spanning tree distance, minimum convex hull area, maximum pairwise great circle distance, latitudinal range, longitudinal range, and number of degree X degree cells occupied.

Note

If PEE values are to be calculated as a next step the steps parameter needs to have a value of 1 as its first value

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
GeoRarefaction_SingleTaxon(TName=names(BivalveMatrix)[3],OccMatrix=BivalveMatrix,replacePts=TRUE)
## End(Not run)</pre>
```

hello 17

hello

Prints Hello, world!

Description

Prints Hello, world!

Usage

hello()

Value

Prints 'Hello, world!

HorseShoeArea

Function to calcuate the area of a given horseshoe shape

Description

Function to calcuate the area of a given horseshoe shape

Usage

HorseShoeArea(HorseShoeShape)

Arguments

HorseShoeShape - Object containing the outline of a horseshoe shape, output from PtsAlgHorse-Shoe function

Value

Returns the area of the horseshoe shape with the circular and rectangular portions separated

Note

Currently forces use of a height 5/4 width and r2=2*r1 of origin (center)

References

[1] From http://mathforum.org/library/drmath/view/51816.html

```
\label{local-equation} HorseShoeTest<-PtsAlgHorseShoe(z=2000,spacing=1,endAngles=c(-90,90))\\ HorseShoeArea(HorseShoeTest)
```

18 LongRg

LatRg

Calculates the latitudinal range in degrees and kilometers

Description

Calculates the latitudinal range in degrees and kilometers

Usage

```
LatRg(lats)
```

Arguments

lats

- Latitudinal occurrences in decimal degrees

Value

Returns the outermost coordinates of the set, the latitudinal span in degrees and in kilometers

Examples

```
lats<-c(-23,56,-2,45,66)
LatRg(lats)
```

LongRg

Calculates the longitudinal range in degrees and kilometers, assuming a latitude of 45 degrees for all points by default. Accounts for the possibility of wrapping around the globe.

Description

Calculates the longitudinal range in degrees and kilometers, assuming a latitude of 45 degrees for all points by default. Accounts for the possibility of wrapping around the globe.

Usage

```
LongRg(longs, lats = 45)
```

Arguments

longs

- Longitudinal occurrences in decimal degrees

lats

- A single value representing the latitude to calculate longitudinal distance from

or a list of latitudinal coordinates in decimal degrees

MSTDist 19

Details

Calculates the longitudinal range as 360-largest longitudinal gap and accounts for the possbility that a taxon's range wraps around the prime meridian

Value

Returns the outermost coordinates of the set, the longitudinal span in degrees and in kilometers

Examples

```
longs<-c(133,76,-77,7,-80)
lats<-c(45)
LongRg(longs)</pre>
```

MSTDist

Calculates the minimum spanning tree distance, in kilometers, using Prim's Algorithm [1]

Description

Calculates the minimum spanning tree distance, in kilometers, using Prim's Algorithm [1]

Usage

```
MSTDist(longs, lats)
```

Arguments

Longitudinal occurrences in decimal degrees
 Latitudinal occurrences in decimal degrees

Details

Uses Prim's algorithm for finding the minimum spanning tree, time-consuming calculation as the number of locations increases past 1000

Value

Returns the minimum spanning tree distance in kilometers, the pairwise distance matrix of occurrences, the order points were connected in, and a 2-column array of coordinates

References

[1] Prim, R.C. 1957. Shortest Connection Networks and Some Generalizations. The Bell System Technical Journal 36:1389-1401.

20 MSTDist_FromMat

Examples

```
longs<-c(12,34,-55)
lats<-c(-41,3,56)
MSTDist(longs,lats)</pre>
```

MSTDist_FromMat

Calculates the minimum spanning tree distance, in kilometers, using Prim's Algorithm [1] and a previously calculated pairwsie distance matrix

Description

Calculates the minimum spanning tree distance, in kilometers, using Prim's Algorithm [1] and a previously calculated pairwsie distance matrix

Usage

```
MSTDist_FromMat(longs, lats, DistMat)
```

Arguments

Longitudinal occurrences in decimal degrees
 Latitudinal occurrences in decimal degrees

DistMat - Pairwsie distance matrix of coordinates, from the PWMatrix() function

Details

Uses Prim's algorithm for finding the minimum spanning tree

Value

Returns the minimum spanning tree distance in kilometers, the pairwise distance matrix of occurrences, the order points were connected in, and a 2-column array of coordinates

References

[1] Prim, R.C. 1957. Shortest Connection Networks and Some Generalizations. The Bell System Technical Journal 36:1389-1401.

```
MSTCalc<-MSTDist(longs=c(22,44,-12,67),lats=c(-77,56,22,56))
MSTDist_FromMat(MSTCalc$Longitude,MSTCalc$Latitude,MSTCalc$MST_DistMat)
```

PEE_MultiTaxa 21

PEE_MultiTaxa Function to compile the PBDB_PEE_SingleTaxon output for a list of taxa	t of
--	------

Description

Function to compile the PBDB_PEE_SingleTaxon output for a list of taxa

Usage

```
PEE_MultiTaxa(GeoRare_Multi)
```

Arguments

```
GeoRare_Multi - The list of geographic range measures calculated from the GeoRarefaction_MultiTaxa function
```

Value

Returns a vector list of six geographic range measures matrix with percent error of estimates [1] for each value

References

[1] Russell, M.P. & D.R. Lindberg. 1988. Real and Random Patterns Associated with Molluscan Spatial and Temporal Distributions. Paleobiology 14:322-330.

See Also

See the velociraptr package for details of the downloadPBDB() function

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
BivalveGeo<-GeoRarefaction_MultiTaxa(nLocCut=20,OccMatrix=BivalveMatrix,TaxaStart=3,replacePts=TRUE)
PEE_MultiTaxa(BivalveGeo)
## End(Not run)</pre>
```

22 PEE_SingleTaxon

PEE_SingleTaxon	Function to calculate PEE [1] matrices for all the geographic range measures

Description

Function to calculate PEE [1] matrices for all the geographic range measures

Usage

```
PEE_SingleTaxon(GeoRare, TName = "Brach 1")
```

Arguments

GeoRare - The list of geographic range measures calculated from the GeoRarefaction_SingleTaxon

or GeoRarefaction_MultiTaxa functions

TName - Name of the target taxon for analysis as a string

Value

Returns a list of six geographic range measures matrix with percent error of estimates for each value

References

[1] Russell, M.P. & D.R. Lindberg. 1988. Real and Random Patterns Associated with Molluscan Spatial and Temporal Distributions. Paleobiology 14:322-330.

See Also

See the velociraptr package for details of the downloadPBDB() function

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
BivalveGeo<-GeoRarefaction_MultiTaxa(nLocCut=50,OccMatrix=BivalveMatrix,TaxaStart=3,iter=20)
PEE_SingleTaxon(GeoRare=BivalveGeo,TName=names(BivalveGeo)[3])
## End(Not run)</pre>
```

PlotConvexHull 23

PlotConvexHull	Plots the minimum convex hull of a set of coordinates

Description

Plots the minimum convex hull of a set of coordinates

Usage

```
PlotConvexHull(xcoord, ycoord, lcolor = "blue")
```

Arguments

xcoord - Array of x-coordinates or longitudinal valuesycoord - Array of y-coordinates or latitudinal values

1 color - String or integer value indicating the color of the convex hull boundary lines

Value

Plots a minimum convex hull

Note

This function does not account for the possibility of points crossing the prime meridian and in cases where this occurs the convex hull shown will be incorrect

Examples

```
longs<-c(20,20,40,40)
lats<-c(-5,5,-5,5)
PlotConvexHull(xcoord=longs,ycoord=lats)</pre>
```

PlotMST

Plots the minimum spanning tree of a set of coordinates

Description

Plots the minimum spanning tree of a set of coordinates

Usage

```
PlotMST(MSTCalc, color = "black", symbol = 16, xlimit = "NA",
  ylimit = "NA")
```

24 Plot_Rarefaction

Arguments

MSTCalc	- Output from the MSTDist function
color	- Color of the lines connecting point
symbol	- Symbol value for the pch graphical parameter for plotting coordinates
xlimit	- Array of values denoting the x-axis limits
ylimit	- Array of values denoting the y-axis limits

Value

Plots a minimum spanning tree

Note

If the xlimit and ylimit parameters are left to their default values the axis ranges are based on the minimum and maximum values of the coordinates This function does not account for the possibility of points crossing the prime meridian and in cases where this occurs lines will cut across the entire plot

Examples

```
w < -MSTDist(longs = c(23,78,-23,56), lats = c(21,4,55,-3))
PlotMST(MSTCalc=w)
```

Plot_Rarefaction	Plots the measured value versus rarefied samples or percent error of
	estimates (PEE) of a rarefied samples for a geographic range measure

Description

Plots the measured value versus rarefied samples or percent error of estimates (PEE) of a rarefied samples for a geographic range measure

Usage

```
Plot_Rarefaction(Mes1_AllTaxa, Mes2_AllTaxa, symbol = 20, measure = 2,
   SampSize = 1, color = "black")
```

Arguments

Mes1_AllTaxa	- Vector list of measured values for multiple taxa, from the GeoRarefaction_MultiTaxa function, or PEE calculations for multiple taxa, from from PEE_MultiTaxa function
Mes2_AllTaxa	- Vector list of measured values for multiple taxa, output from GeoRarefaction_MultiTaxa function
symbol	- Symbol used for plotting, as per pch graphical parameter

PtsAlgHorseShoe 25

measure - Specifies which measure to be plotted, 2=MST 3=CH 4=GCD 5=LatRg 6=Lon-

gRg 7=CellCount

SampSize - Specifies the index value of the rarefaction sample size from the PEE_AllTaxa

parameter

color - Specifies the color of symbols being plotted

Details

For each taxon for a specific geographic range measure using 95 Measure paramter is the ordinal position of the measure of interest 2=MST,3=CH,4=GCD,5=LatRg,6=LongRg,7=CellCount Samp-Size parameter indicates the index column position of steps size, default is first column (all points)

Value

Returns a plot of measured geographic range values or PEE versus true value for a specific geographic range measure at varying sample sizes

Examples

```
## Not run:
data(BivalvePBDB)
BivalveMatrix<-CoordList_PBDB(BivalvePBDB)
BivalveGeo<-GeoRarefaction_MultiTaxa(nLocCut=20,OccMatrix=BivalveMatrix,TaxaStart=3,replacePts=TRUE)
BivalvePEE<-PEE_MultiTaxa(BivalveGeo)
Plot_Rarefaction(BivalvePEE,BivalveGeo,symbol=20,measure=2,SampSize=2)
## End(Not run)</pre>
```

PtsAlgHorseShoe

Function to find points along a horseshoe shape

Description

Function to find points along a horseshoe shape

Usage

```
PtsAlgHorseShoe(z, spacing = 1, endAngles = c(-90, 90))
```

Arguments

z - Distance in kilometers from the center of the horseshoe to its lower boundary

spacing - Degrees between successive point outlining the horseshoe shape

endAngles - Array of values denoting the degree of rotation for the circular part of the

horseshoe distribution

26 PWMatrix

Details

Currently forces use 0,0 as the center, a height 5/4 width, and r2=2*r1 of origin (center)

Value

Returns a 2-dimensional array of decimal degree coordinates outlining a horseshoe shape

Note

Currently only works when endAngles are multiples of -90,90; otherwise rectangle point positions are off

References

[1] From http://mathforum.org/library/drmath/view/51816.html

Examples

```
PtsAlgHorseShoe(z=2000,spacing=1,endAngles=c(-90,90))
```

PWMatrix

Creates a sparse pairwise distance matrix of a coordinate set

Description

Creates a sparse pairwise distance matrix of a coordinate set

Usage

```
PWMatrix(Coords)
```

Arguments

Coords

- Two-dimensional array of longitudinal and latitudinal coordinates output from CoordCollapse() function

Value

Returns a sparse pairwise distance matrix of great circle distances between pairs of points

```
longs<-runif(10,-22,33)
lats<-runif(10,-22,33)
Coords<-CoordCollapse(longs,lats)
PWMatrix(Coords)</pre>
```

RandHorseShoe 27

RandHorseShoe	Function to randomly generate points within a horseshoe-shape
RandHorseShoe	Function to randomly generate points within a horseshoe-shape

Description

Function to randomly generate points within a horseshoe-shape

Usage

```
RandHorseShoe(center = c(0, 0), npts = 100, HorseShoeShape, HRatio = 1.5, RadRatio = 0.5)
```

Arguments

guments		
	center	- Arrary containint the coordinates of the center of circular portion of the horseshoe in decimal degrees
	npts	- Integer value indicating the number of points to generate within the horseshoe shape
	HorseShoeShape	- Object containing the outline of a horseshoe shape, output from $PtsAlgHorse-Shoe function \\$
	HRatio	- The ratio of the lower rectangle portions of the horseshoe to the outer radius of the circular portion of the horseshoe $$
	RadRatio	- The ration of the of the outer to inner radius of the circular part of the horseshoe shape

Value

Returns a 2-dimensional array of decimal degree coordinates within the horseshoe shape and the total area of the shape

Note

HRatio Currently defaults to 3/2 per the PtsAlgHorseShoe() function RadRatio currently defaults to 1/2 per the PtsAlgHorseShoe() function Center currently defaults to c(0,0) as this is always the center of the PtsAlgHorseShoe() function currently Function currently does not take acount of the decreasing surface area moving toward the poles so points closer to the poles will be overrepresented relative to the actual surface area they represent

```
HorseShoeTest<-PtsAlgHorseShoe(z=2000,spacing=1,endAngles=c(-90,90))
RandHorseShoe(center=c(0,0),npts=100,HorseShoeShape=HorseShoeTest)</pre>
```

28 RandRec

RandRec	Function to randomly generate points within a given rectangular shaped distribution

Description

Function to randomly generate points within a given rectangular shaped distribution

Usage

```
RandRec(RecShape, npts = 100)
```

Arguments

RecShape - The outline of a rectangular distribution output from the EqualAreaRectangle()

function

npts - The number of randomly generated points within the rectangular shape

Value

Returns a 2-dimensional array of decimal degree coordinates within a rectangular shape

Note

Function currently does not take acount of the decreasing surface area moving toward the poles so points closer to the poles will be overrepresented relative to the actual surface area they represent

```
\label{local-continuous} HorseShoeTest <-PtsAlgHorseShoe(z=2000, spacing=1, endAngles=c(-90,90))\\ HorseShoePts <-RandHorseShoe(center=c(0,0), npts=100, HorseShoeShape=HorseShoeTest)\\ RecOutline <-EqualAreaRectangle(TargetArea=as.numeric(HorseShoePts$TotalArea_km2), error=0.001)\\ RandRec(RecShape=RecOutline, npts=100)\\
```

Index

```
* dataset
    BivalvePBDB, 2
BivalvePBDB, 2
CellCount, 3
CHullArea, 4
CHullAreaEarth, 4
CoordCollapse, 5
CoordList_PBDB, 6
deg2rad, 7
EqualAreaRectangle, 7
GCD, 8
gcd_hf, 9
gcd\_vif, 10
GeoCor, 11
{\tt GeoPerformance\_SkewCV}, 12
GeoRange_MultiTaxa, 13
{\tt GeoRarefaction\_MultiTaxa}, {\tt 14}
{\tt GeoRarefaction\_SingleTaxon}, 15
hello, 17
HorseShoeArea, 17
LatRg, 18
LongRg, 18
MSTDist, 19
{\tt MSTDist\_FromMat}, 20
PEE_MultiTaxa, 21
PEE_SingleTaxon, 22
Plot_Rarefaction, 24
PlotConvexHull, 23
PlotMST, 23
PtsAlgHorseShoe, 25
PWMatrix, 26
RandHorseShoe, 27
RandRec, 28
```