Python + Emacs in Scientific computing

Scipy 2013

2013-12-14 Sat

1 Mathematical operations in Python

1.1 Square root

1.41421356237

1.2 Logarithm

2.30258509299 1.0

• Example-1

1.3 Plots

\bullet Example-2

2 Data

2.1 Table: Student marks

Student	Maths	Physics	Mean
Bertrand	13	09	
Henri	15	14	
Arnold	17	13	
Sam	15	12	
\mathbf{Emmy}	20	11	
Roy	23	15	
Victor	11	15	
Robert	12	17	
Harper	16	10	
Mean			0

```
1: #
2: maths=[]
3: physics=[]
4: mean=[]
5: for i in marks[1:-1]:
6:    maths.append(i[1])
7:    physics.append(i[2])
8:    mean.append(i[3])
9:
10: import matplotlib.pyplot as plot
11: plot.plot(physics,maths)
12: plot.ylabel('Physics')
```


2.2 Table: VI characteristics of diode marks

V(volts)	I(mA)	V/I
0.21	0.21	٠
0.41	0.41	
0.61	0.61	
0.81	0.81	
1.09	1.09	
1.20	1.20	
- · - ·	±.=0	•

```
7:
8: import matplotlib.pyplot as plt
9: plt.plot(i,v)
10: plt.ylabel('I')
11: plt.xlabel('V')
12: plt.savefig('iv.png')
13:
14: return 'iv.png'
15: #
```

