RADIO TEST REPORT

Report No.: BST1706794950003Y-ER-2

For

Shenzhen Petwant Pet Products Co.,Ltd.

Product Name:	Remote Dog Training Collar
Model:	PT-302
Series Model:	N/A
FCC ID:	2AJGV-PT-302
Prepared By:	Shenzhen BST Technology Co., Ltd.
	Building No.23-24, Zhiheng Industrial Park, Guankouer Road, Nantou,Nanshan District,Shenzhen,Guangdong,China
Test Date:	June 10-30, 2017
Date of Report :	June 30, 2017
Test Result	pass
Report No.:	BST1706794950003Y-ER-2

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.4 TEST FACILITY	4 2
1.5 EUT SETUP AND TEST MODE.	5
1.6 Measurement Uncertainty	5
1.7 TEST EQUIPMENT LIST AND DETAILS	(
2. SUMMARY OF TEST RESULTS	
3. ANTENNA REQUIREMENT	8
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT.	
4. CONDUCTED EMISSIONS	
4.1 Test Procedure	g
4.2 BASIC TEST SETUP BLOCK DIAGRAM	
4.3 ENVIRONMENTAL CONDITIONS	
4.5 SUMMARY OF TEST RESULTS/PLOTS	10
4.6 CONDUCTED EMISSIONS TEST DATA	10
5. RADIATED EMISSIONS	13
5.1 STANDARD APPLICABLE	13
5.2 TEST PROCEDURE	
5.3 CORRECTED AMPLITUDE & MARGIN CALCULATION.	
5.4 ENVIRONMENTAL CONDITIONS	
6. 20DB BANDWIDTH	
6.1 STANDARD APPLICABLE	
6.1 STANDARD APPLICABLE	
6.2 Environmental Conditions	
6.3 SUMMARY OF TEST RESULTS/PLOTS	
7. TRANSMISSION TIME	19
7.1 STANDARD APPLICABLE	
7.2 TEST PROCEDURE	
7.3 ENVIRONMENTAL CONDITIONS	
7.4 SUMMARY OF TEST RESULTS/PLOTS	
8. DUTY CYCLE	
8.1 Standard Applicable 8.2 Test Procedure	
8.3 Environmental Conditions	
9. PULSE DESENSITIZATION CORRECTION FACTOR	
10 TEST BLOTO	2.5

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:. Shenzhen Petwant Pet Products Co.,Ltd.

Address of applicant:2/F,No. 64 Wugang Road, Xikeng Community,Henggang Street,Longgang District, Shenzhen

Report No.: BST1706794950003Y-ER-2

Manufacturer: Shenzhen Petwant Pet Products Co., Ltd.

Address of manufacturer:2/F,No. 64 Wugang Road, Xikeng Community,Henggang Street,Longgang District, Shenzhen

General Description of EUT	
Product Name:	Remote Dog Training Collar
Trade Name:	N/A
Model No.:	PT-302
Adding Model(s):	N/A
Rated Voltage:	DC 3.7V
Power Adapter Model:	
	·

Technical Characteristics of EUT	
Frequency Range:	433.92 MHz
Max. Field Strength:	96.2dBuV/m(@1m,peak,horizontal)
Data Rate:	N/A
Modulation:	ООК
Antenna Type:	Built-in antenna
Antenna Gain:	1DBI

1.2 Test Standards

The following report is prepared on behalf of the Shenzhen Petwant Pet Products Co.,Ltd. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Report No.: BST1706794950003Y-ER-2

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices, and ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

1.4 Test Facility

Shenzhen Asia Test Technology Co.,Ltd.

7 / F, Xinwei Building, Gushu Village, Xixiang Town, Baoan District, Shenzhen, China

FCC Registration No.: 348715; IC Registration No.: 12198A

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

1.5 EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Report No.: BST1706794950003Y-ER-2

Test Mode List				
Test Mode	Description	Remark		
TM1	Transmitting	With modulation		
TM2				
TM3				

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
/	/	/	/

1.6 Measurement Uncertainty

Measurement uncertainty				
Parameter	Conditions	Uncertainty		
Occupied Bandwidth	Conducted	±1.5%		
Conducted Spurious Emission	Conducted	±2.17dB		
Transmission Time	Conducted	<u>±</u> 5%		
Conducted Emissions	Conducted	± 2.88 dB		
Transmitter Spurious Emissions	Radiated	±5.1dB		

Report No.: BST1706794950003Y-ER-2

1.7 Test Equipment List and Details

No.	Description	Manufacturer	Model	Serial No.	Cal Date	Due Date
SEMT-1072	Spectrum Analyzer	Agilent	E4407B	MY41440400	2017-06-04	2018-06-03
SEMT-1031	Spectrum Analyzer	Rohde & Schwarz	FSP30	836079/035	2017-06-04	2018-06-03
SEMT-1007	EMI Test Receiver	Rohde & Schwarz	ESVB	825471/005	2017-06-04	2018-06-03
SEMT-1008	Amplifier	Agilent	8447F	3113A06717	2017-06-04	2018-06-03
SEMT-1043	Amplifier	C&D	PAP-1G18	2002	2017-06-04	2018-06-03
SEMT-1011	Broadband Antenna	Schwarz beck	VULB9163	9163-333	2017-06-04	2018-06-03
SEMT-1042	Horn Antenna	ETS	3117	00086197	2017-06-04	2018-06-03
SEMT-1121	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170582	2017-06-04	2018-06-03
SEMT-1069	Loop Antenna	Schwarz beck	FMZB 1516	9773	2017-06-04	2018-06-03
SEMT-1001	EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2017-06-04	2018-06-03
SEMT-1003	L.I.S.N	Schwarz beck	NSLK8126	8126-224	2017-06-04	2018-06-03
SEMT-1002	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2017-06-04	2018-06-03

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 15.203	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.209	Radiated Spurious Emissions	Compliant
§15.231(a)	Deactivation Testing	Compliant
§15.231(b)	Radiated Emissions	Compliant
§15.231(c)	20dB Bandwidth Testing	Compliant

Report No.: BST1706794950003Y-ER-2

3. Antenna Requirement

3.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: BST1706794950003Y-ER-2

3.2 Test Result

This product has a permanent antenna, fulfill the requirement of this section.

4. Conducted Emissions

4.1 Test Procedure

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

Report No.: BST1706794950003Y-ER-2

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

4.2 Basic Test Setup Block Diagram

4.3 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

4.4 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	. 150 kHz
Stop Frequency	.30 MHz
Sween Sneed	Auto

Page 9 on 26

Shenzhen BST Technology Co., Ltd.

Report No.: BST1706794950003Y-ER-2

Quasi-Peak Adapter Bandwidth 9 kHz

Quasi-Peak Adapter Mode Normal

4.5 Summary of Test Results/Plots

According to the data in section 4.7, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-12.74 dB at 1.462 MHz in the Neutral mode, Average detector, 0.15-30MHz

4.6 Conducted Emissions Test Data

Report No.: BST1706794950003Y-ER-2

Plot of Conducted Emissions Test Data

Test Specification: Line

Limit: FCC Part15 CE-Class B_QP

EUT: M/N: 发射器 Mode: Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.3180	30.40	10.16	40.56	59.76	-19.20	QP		
2	٠	0.3180	24.84	10.16	35.00	49.76	-14.76	AVG		
3	}	1.4700	18.55	9.93	28.48	46.00	-17.52	AVG		
4		1.5020	27.16	9.93	37.09	56.00	-18.91	QP		
5	y.	24.4900	13.86	11.26	25.12	60.00	-34.88	QP		
6		24.4900	7.95	11.26	19.21	50.00	-30.79	AVG		

Report No.: BST1706794950003Y-ER-2

Test Specification: Neutral

Limit: FCC Part15 CE-Class B_QP

EUT: M/N: 发射器 Mode: Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	0.3180	25.79	10.16	35.95	59.76	-23.81	QP		
	0.3180	18.99	10.16	29.15	49.76	-20.61	AVG		
•	1.4620	23.33	9.93	33.26	46.00	-12.74	AVG		
	1.4660	31.69	9.93	41.62	56.00	-14.38	QP		
	24.4900	10.95	11.26	22.21	60.00	-37.79	QP		
	24.4900	6.41	11.26	17.67	50.00	-32.33	AVG		
	•	MHz 0.3180 0.3180 * 1.4620	Mk. Freq. Level MHz dBuV 0.3180 25.79 0.3180 18.99 * 1.4620 23.33 1.4660 31.69 24.4900 10.95	Mk. Freq. Level Factor MHz dBuV dB 0.3180 25.79 10.16 0.3180 18.99 10.16 * 1.4620 23.33 9.93 1.4660 31.69 9.93 24.4900 10.95 11.26	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.3180 25.79 10.16 35.95 0.3180 18.99 10.16 29.15 * 1.4620 23.33 9.93 33.26 1.4660 31.69 9.93 41.62 24.4900 10.95 11.26 22.21	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.3180 25.79 10.16 35.95 59.76 0.3180 18.99 10.16 29.15 49.76 * 1.4620 23.33 9.93 33.26 46.00 1.4660 31.69 9.93 41.62 56.00 24.4900 10.95 11.26 22.21 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.3180 25.79 10.16 35.95 59.76 -23.81 QP 0.3180 18.99 10.16 29.15 49.76 -20.61 AVG * 1.4620 23.33 9.93 33.26 46.00 -12.74 AVG 1.4660 31.69 9.93 41.62 56.00 -14.38 QP 24.4900 10.95 11.26 22.21 60.00 -37.79 QP	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dB Detector Comment 0.3180 25.79 10.16 35.95 59.76 -23.81 QP 0.3180 18.99 10.16 29.15 49.76 -20.61 AVG * 1.4620 23.33 9.93 33.26 46.00 -12.74 AVG 1.4660 31.69 9.93 41.62 56.00 -14.38 QP 24.4900 10.95 11.26 22.21 60.00 -37.79 QP

5. Radiated Emissions

5.1 Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Report No.: BST1706794950003Y-ER-2

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

^{**} linear interpolations

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

Report No.: BST1706794950003Y-ER-2

5.2 Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.205 15.231(b) and FCC Part 15.209 Limit.

5.3 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Report No.: BST1706794950003Y-ER-2

Corr. Ampl. = Indicated Reading +Ant.Loss +Cab. Loss - Ampl.Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15C Limit

5.4 Environmental Conditions

Temperature:	21° C
Relative Humidity:	50%
ATM Pressure:	1011 mbar

5.5 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.231 standards, and had the worst margin of:

-4.40dB at 433.92 MHz in the Vertical polarization, AV Detector, 9 kHz to 5 GHz, 1 Meters

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Shenzhen BST Technology Co., Ltd.

Report No.: BST1706794950003Y-ER-2

Horizontal

	Below 1GHz								
Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
MHz	dBuV/m	Factor(Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
		dB)	(dB)						
433.9200	76.32	-2.19	/	74.13	80.83	-6.70	203	100	Ave
433.9200	/	/	-6.85	80.98	100.83	-19.85	203	100	peak
867.8400	35.16	4.63	/	39.79	60.83	-21.04	98	100	Ave
867.8400	/	/	-6.85	46.64	80.83	-34.19	98	100	peak
	Above 1GHz								
1301.760	44.59	-12.91	/	31.68	54.00	-22.32	125	150	Ave
1301.760	/	/	-6.85	42.79	74.00	-31.21	125	150	Peak
1735.680	44.25	-9.20	/	35.05	54.00	-18.95	56	150	Ave
1735.680	/	/	-6.85	41.90	74.00	-32.10	56	150	Peak

Vertical

Below 1GHz									
Frequency	Reading	Corr.	Duty cycle	Result	Limit	Margin	Deg.	Height	Remark
MHz	dBuV/m	Factor(Factor	dBuV/m	dBuV/m	(dB)	(°)	(cm)	
		dB)	(dB)						
433.9200	78.62	-2.19	/	76.43	80.83	-4.40	226	100	Ave
433.9200	/	/	-6.85	83.28	100.83	-17.55	226	100	peak
867.8400	37.46	4.63	/	42.09	60.83	-18.74	102	100	Ave
867.8400	/	/	-6.85	48.94	80.83	-31.89	102	100	peak
			Alt	ove 1GHz					
1301.760	46.89	-12.91	/	33.98	54.00	-20.02	136	150	Ave
1301.760	/	/	-6.85	40.83	74.00	-33.17	136	150	Peak
1735.680	46.55	-9.20	/	37.35	54.00	-16.65	50	150	Ave
1735.680	/	/	-6.85	44.2	74.00	-29.8	50	150	Peak

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 5^{th} Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz..

The fundamental frequency is 433.92MHz, so the fundamental and spurious emissions radiated limit base on the the operating frequency 433.92MHz.

Peak values (= Average value + |Duty Cycle Factor|)

6. 20dB Bandwidth

6.1 Standard Applicable

According to FCC Part 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: BST1706794950003Y-ER-2

6.1 Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.2 Environmental Conditions

Temperature:	21° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

6.3 Summary of Test Results/Plots

Test Fre		20dB Bandwidth kHz	Limit kHz	Result
433	.92	141.8	1084	Pass

Limit = Fudamental Frequency X 0.25% = 433.92 MHz X 0.25% = 1084 kHz

Please refer to the attached plots.

Shenzhen BST Technology Co., Ltd.

Report No.: BST1706794950003Y-ER-2

20dB Bandwidth Test Plot

Date: 27 JUN 2017 19:25:20

7. Transmission Time

7.1 Standard Applicable

According to FCC Part 15.231 (a), the transmitter shall be complied the following requirements:

1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Report No.: BST1706794950003Y-ER-2

- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

7.2 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

7.3 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

7.4 Summary of Test Results/Plots

Transmission Type	Test Frequency MHz	Transmission Time seconds	Limit s	Result
Manually	433.92	1.28	5	Pass

Please refer to the attached plots.

Shenzhen BST Technology Co., Ltd.

Report No.: BST1706794950003Y-ER-2

Transmission Time

Date: 27 JUN 2017 19:42:05

8. Duty Cycle

8.1 Standard Applicable

According to FCC Part 15.231 (b)(2) and 15.35 (c), For pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

Report No.: BST1706794950003Y-ER-2

8.2 Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 433.92MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

8.3 Environmental Conditions

Temperature:	20° C
Relative Humidity:	52%
ATM Pressure:	1011 mbar

8.4 Summary of Test Results

Type of Pulse	Width of Pulse	Quantity of Pulse	Transmission Time	Total Time (Ton)
	ms		ms	ms
Pulse 1 (Wide)	0.6957	13	9.0441	11.014
Pulse 2 (Narrow)	0.2609	11	2.8699	11.914

Test Period (T _p)	Total Time (Ton)	Duty Cycle	Duty Cycle Factor
ms	ms	%	dB
1000	26.217	45.44	-6.85

Please refer to the attached test plots

Date: 27 JUN 2017 19:32:15

Date: 27 JUN 2017 19:40:20

Date: 27 JUN 2017 19:38:58

9. Pulse Desensitization Correction Factor

(§15.35 Measurement detector functions and bandwidths.)

a. Part 15 of the FCC Rules provides for the operation of low power communication devices without an individual license (e.g., intrusion detectors, pulsed water tank level gauges, etc.), subject to certain requirements. Some of these devices use extremely narrow pulses to generate wideband emissions, which are measured to determine compliance with the rules. These measurements are typically performed with a receiver or spectrum analyzer. Depending on a number of factors (e.g., resolution bandwidth, pulsewidth, etc.), the spectrum analyzer may not always display the true peak value of the measured emission. This effect, called "pulse desensitization," relates to the capabilities of the measuring instrument. For the measurement and reporting of the true peak of pulsed emissions, it may be necessary to apply a "pulse desensitization correction factor" (PDCF) to the measured value, pursuant to 47 CFR 15.35(a).

Report No.: BST1706794950003Y-ER-2

If using spectrum analyzer to measure pulse signal, it have to make sure the RBW use is at least 2/PW.

•When RBW is less than 2/PW, you are able to measure the true peak level of the pulse signal. If this is the case, PDCF is required to compensate to determine true peak value.

Pulse desensitization:

PW =11914usec(0.36957* 10+ 0.2609*11),Period=45000usec, Level=A

RBW>2/PW=0.168K, 1/T=0.02K

NOTE: 2 / PW < RBW, first don't need

b. For the actual test, please refer to the ANSI C63.10, Annex C refer to section 5 for more detail

10 Test Photo

CE

Report No.: BST1706794950003Y-ER-2

RE

**** END OF REPORT ****