Log Likelihood Part 2

Once you computed the λ dictionary, it becomes straightforward to do inference:

$$\begin{aligned} & \text{doc:} \boxed{|\text{am}| \text{happy because }|\text{lam}| \text{learning.}} \\ & \sum_{i=1}^m log \frac{P(w_i|pos)}{P(w_i|neg)} = \sum_{i=1}^m \lambda(w_i) \end{aligned}$$

log likelihood =
$$0 + 0 + 2.2 + 0 + 0 + 0 + 1.1 = 3.3$$

word	Pos	Neg	λ	
	0.05	0.05	0]
am	0.04	0.04	0]
happy	0.09	0.01	2.2]
because	0.01	0.01	0	
learning	0.03	0.01	1.1]
NLP	0.02	0.02	0	
sad	0.01	0.09	-2.2	
not	0.02	0.03	-0.4	

As you can see above, since 3.3>0 , we will classify the document to be positive. If we got a negative number we would have classified it to the negative class.

Mark as completed

