I Questions de cours

- 1 Montrer que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ s'écrit de manière unique comme la somme d'une fonction paire et d'une fonction impaire.
 - 2 Montrer qu'un entier naturel n est pair, si et seulement si, n^2 est pair.
- 3 Montrer que $\sqrt{2}$ est irrationnel.

II Exercices d'applications du cours

Exercice 1:

Décrire $\mathcal{P}(E)$ lorsque $E = \{1, 2, 3\}.$

Exercice 2:

- 1 Démontrer que si a et b sont deux entiers relatifs tels $a + b\sqrt{2} = 0$ alors a = b = 0.
- 2 En déduire que si m, n, p, q sont des entiers relatifs, alors on a :

$$m + n\sqrt{2} = p + q\sqrt{2} \iff (m = p \text{ et } n = q)$$

Exercice 3:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant :

$$\forall n \in \mathbb{N}, \ u_{n+2} = 4u_{n+1} - 4u_n$$

Montrer qu'il existe un unique couple (a,b) de réels tel que pour tout entier naturel, $u_n = (an + b)2^n$.

Exercice 4:

Montrer que toute fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ s'écrit de manière unique comme somme d'une fonction constante et d'une fonction s'annulant en 0.

 $\underline{Exercice\ 5}$:

Pour $n\in\mathbb{N},$ on considère la propriété suivante :

$$P_n: 2^n > n^2$$

- 1 Montrer que pour $n \geq 3, P_n \Longrightarrow P_{n+1}$.
- 2 Pour quelles valeurs de n la propriété est-elle vraie ?

III Exercices d'approfondissement

Exercice 6:

Pour tout $h \in \mathbb{R}_+^*$, on pose $J_h =]-h; h[$. Montrer que :

$$\bigcap_{h \in \mathbb{R}_+^*} J_h = \{0\} \text{ et } \bigcup_{h \in \mathbb{R}_+^*} J_h = \mathbb{R}$$

Exercice 7:

Le but de cet exercice est de démontrer par contraposition la propriété suivante, pour $n \in \mathbb{N}^*$:

Si l'entier $(n^2 - 1)$ n'est pas divisible par 8, alors l'entier n est pair

- 1 Écrire la contraposée de la proposition ci-dessus.
- 2 En remarquant qu'un entier impair n s'écrit sous la forme n=4k+r avec $k \in \mathbb{N}$ et $r \in \{1; 3\}$ (à justifier), prouver la contraposée.
- 3 A-t-on démontré la propriété de l'énoncé?

Exercice 8:

Décrire $\mathcal{P}(\mathcal{P}(\{1\}))$.