Table 1: TABELLA VARIABILI ALEATORIE (Probabilità e Statistica - a.a. 2023-2024 - Matematica per l'Ingegneria)

Variabile Aleatoria	Densità	Media	Varianza	F. Caratteristica
Binomiale (n, p)	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k \in \{0, \dots, n\}$	du	np(1-p)	$\Phi_X(t) = ((1-p) + pe^{it})^n$
$\operatorname{Geometrica}(p)$	$p_X(k) = p(1-p)^{k-1}, \ k \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\Phi_X(t) = \frac{pe^{it}}{1 - (1 - p)e^{it}}$
$\operatorname{Pascal}(r,p)$	$p_X(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}, \ k \ge r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\Phi_X(t) = \left(\frac{pe^{it}}{1 - (1 - p)e^{it}}\right)^r$
${\rm Ipergeometrica}(N,K,n)$	Ipergeometrica (N,K,n) $p_X(k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, k \le K, 0 \le n-k \le N-K$	$n\frac{K}{N}$	$n^{\frac{K}{N}}(1-\frac{K}{N})^{\frac{N-n}{N-1}}$	
$\mathrm{Poisson}(\lambda)$	$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k \ge 0$	~	K	$\Phi_X(t) = \exp(\lambda(e^{it} - 1))$
$\operatorname{Uniforme}(a,b)$	$f_X(x) = \frac{1}{b-a} \mathbb{1}_{(a,b)}(x)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\Phi_X(t) = rac{e^{itb} - e^{ita}}{it(b-a)}$
Esponenziale(λ)	$f_X(x) = \lambda e^{-\lambda x} \mathbb{1}_{(0,+\infty)}(x)$	⊓ <	$\frac{1}{\lambda^2}$	$\Phi_X(t) = \frac{\lambda}{\lambda - it}$
$\mathrm{Gamma}(\alpha,\lambda)$	$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} \mathbb{I}_{(0, +\infty)}(x)$	Σ α	$\lambda \frac{\alpha}{2}$	$\Phi_X(t) = \left(\frac{\lambda}{\lambda - it}\right)^{lpha}$
$\mathrm{Beta}(lpha,eta)$	$f_X(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} \mathbb{I}_{(0,1)}(x)$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	
Normale $\mathcal{N}(\mu, \sigma^2)$	$f_X(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2	$\Phi_X(t) = \exp\left(it\mu - \frac{\sigma^2 t^2}{2}\right)$
Normale $\mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$	$f_{\mathbf{X}}(\mathbf{x}) = (2\pi)^{-\frac{d}{2}} (\det \mathbf{\Sigma})^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$	Ħ	Ø	$\Phi_{\mathbf{X}}(\mathbf{t}) = \exp\left(i\mathbf{t}^toldsymbol{\mu} - rac{1}{2}\mathbf{t}^toldsymbol{\Sigma}\mathbf{t}) ight)$
Multinomiale (n, \mathbf{p})	$p_{\mathbf{X}}(n_1n_N) = \frac{n!}{n_1!n_N!n_{N+1}!} p_1^{n_1}p_N^{n_N} p_{N+1}^{n_{N+1}},$			$\Phi_X(t) = \left((1 - \sum_{j=1}^N p_j) + \sum_{j=1}^N p_j e^{it_j} \right)^n$
	$n_{N+1} = n - \sum_{j=1}^{N} n_j, p_{N+1} = 1 - \sum_{j=1}^{N} p_j$			
	$n_1n_N \in \{0,, n\}, \sum_{j=1}^N n_j \le n,$			