(020001) 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.

- (1) 上海市控江中学 2022 年入学的全体高一年级新生;
- (2) 中国现有各省的名称;
- (3) 太阳、2、上海市;
- (4) 大于 10 且小于 15 的有理数;
- (5) 末位是 3 的自然数;
- (6) 影响力比较大的中国数学家;
- (7) 方程  $x^2 + x + 3 = 0$  的所有实数解;
- (8) 函数  $y = \frac{1}{x}$  图像上所有的点;
- (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
- (10) 不等式 3x 10 < 0 的所有正整数解;
- (11) 所有的平面四边形.

(020002) 用 "∈" 或 " ∉" 填空:

- $(1) -3_{--}N;$
- $(2) \ 3.14 _{\bf Q};$
- (3) 5\_\_\_**Z**;
- (4)  $\frac{1}{2}$ \_N;
- $(5) -2_{\mathbf{Q}};$

- (6)  $\pi$ \_R; (7)  $0.\dot{1}\dot{3}$ \_Q; (8)  $\frac{1}{\sqrt{2}-1} \sqrt{2}$ \_Z; (9)  $\frac{\pi}{2}$ \_Q; (10)  $\frac{1}{1-\frac{1}{1-\frac{1}{2}}}$ \_N;
- $(11) \ 0$ \_\_\_Ø;
- (12) 0\_\_\_**N**.

(020003) 对于一个确定的实数 x, 由 x, -x, |x|,  $-\sqrt{x^2}$  中的一个值或几个值组成的所有集合中, 元素的个数最 多有多少个?

(020004) 已知关于 x 的方程  $\sqrt{x^2+4x+a}=x+2$ ,若以该方程的所有解为元素组成的集合是无限集,求实数 a 满足的条件.

(020005) 用列举法表示下列集合:

- (1) 12 以内的素数组成的集合;
- (2) 绝对值小于 3 的所有整数的集合;
- (3)  $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
- (4)  $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$

- (5)  $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
- (6)  $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$

(020006) 用描述法表示下列集合:

- (1) 所有奇数组成的集合;
- (2) 被 3 除余数等于 2 的正整数的集合;
- (3) 不小于 10 的实数组成的集合;
- (4) 绝对值大于 4 的所有整数组成的集合;
- (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
- (6) 在直线 y = 2x + 1 上所有的点的坐标组成的集合.

(020007) 用区间表示下列集合:

- (1)  $\{x \mid -2 < x < 7\}$ ;
- $(2) \{x|-2 \le x \le 7\};$
- (3)  $\{x | -2 \le x < 7\};$
- (4) 不等式 2x < 5 的解集;
- (5) 不等式 -x < 5 的解集;
- (6) 非负实数集.

(020008) 用适当的方法表示下列集合:

- (1) 能被 10 整除的所有正整数组成的集合;
- (2) 能整除 10 的所有正整数组成的集合;
- (3) 方程  $x^2 + 2 = 0$  的实数解组成的集合;

(4) 方程组 
$$\begin{cases} 2x + y = 0, \\ x - y + 3 = 0 \end{cases}$$
 的所有解组成的集合;

(5) 两直线 y = 2x + 1 和 y = x - 2 的交点组成的集合.

(020009) 下面写法正确的有\_\_\_\_\_.

①  $\emptyset \in \{a\}; ② (0,1) \in \{0,1\}; ③ 1 \in \{(0,1)\}; ④ (0,1) \in \{(0,1)\}; ⑤ 0 \in \{0,1\}; ⑥ 0 \notin \{0,1\}.$ 

(020010) 集合  $\{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$  是指 ( ).

A. 第一象限内的所有点

B. 第三象限内的所有点

C. 第一象限和第三象限内的所有点

D. 不在第二象限、第四象限内的所有点

(020011) 若集合  $M = \{0, 2, 3, 7\}, P = \{x | x = ab, a, b \in M, a \neq b\}$ . 用列举法写出集合 P.

(020012) 已知集合  $A = 2, a^2, a,$  且  $1 \in A,$  求实数 a 的值.

(020013) 设集合  $M = \{a | a = x^2 - y^2, x, y \in \mathbf{Z}\}$ , 下列数中不属于 M 的为 ( ).

A. 3 B. 6 C. 9 D. 12

- (020014) 已知集合  $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\},$  若  $x_1, x_2 \in A$ , 证明:  $x_1x_2 \in A$ .
- (020015) 已知集合  $A = \{x | (k+1)x^2 + x k = 0\}$  中只有一个元素, 求实数 k 的值.
- (020016) 用符号 "⊂"、"=" 或 "⊃" 填空:
- (1)  $\{a\}$ \_\_\_\_\_ $\{a,b,c\}$ ;
- $(2) \{a, b, c\} _{a,c};$
- $(3) \ \{1,2\} \underline{\hspace{1.5cm}} \{x|x^2-3x+2=0\};$
- (4)  $A = \{x|x^2 2x + 1 = 0\}$ \_\_\_\_\_B =  $\{x|x^2 + 2x 3 = 0\}$ ;
- (5)  $A = \{1, 2\}$ \_\_\_\_\_B =  $\{x | x \neq 2 \text{ neg } b\}$ ;
- (6)  $A = \{(x,y)|xy > 0\}$ \_\_\_\_\_B =  $\{(x,y)|x > 0, y > 0\}.$
- (020017) 集合 {1,2,3} 的子集共有\_\_\_\_\_\_ 个.

- (020020) 下列写法正确的有\_\_\_\_\_.
- $\textcircled{1}\varnothing\subset\{0\};\ \textcircled{2}\varnothing=\varnothing;\ \textcircled{3}\varnothing\in\{0\};\ \textcircled{4}0\in\varnothing.$
- (020021) 下列各选项中, M 与 P 表示同一个集合的有\_\_\_\_\_.
- ①  $M = \{(1, -3)\}, P = \{(-3, 1)\};$  ②  $M = \{1, -3\}, P = \{-3, 1\};$  ③  $M = \emptyset, P = \{\emptyset\};$  ④  $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{(x, y)|y = x^2 + 1, x \in \mathbf{R}\}, P = \{t|t = y^2 + 1, y \in \mathbf{R}\};$
- **ⓑ**  $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{x|y = \sqrt{x 1}, x \in \mathbf{R}\}.$
- (020022) 下列说法正确的有\_\_\_\_\_.
- ①  $\dot{\mathbf{A}} = A \perp A \subseteq B$ ,  $\mathbf{M} = A \subseteq B$ ; ②  $\dot{\mathbf{A}} = A \subseteq B \perp A \subseteq C$ ,  $\mathbf{M} = A \subseteq C$ ; ③  $\dot{\mathbf{A}} = A \subseteq B \perp A \subseteq C$ ,  $\mathbf{M} = A \subseteq C$
- (020023) 设常数  $x, y \in \mathbb{R}$ , 已知集合  $A = \{x, y\}$ ,  $B = \{2x, x^2\}$ , 且 A = B, 求集合 A.
- (020024) 证明: 集合  $A = \{1, 2, 3\}$  是集合  $B = \{0, 1, 2, 3, 4, 5, 6\}$  的子集.
- (020025) 判断集合  $A = \{n | n = 2k 1, k \in \mathbb{Z}\}, B = \{n | n = 2m + 1, m \in \mathbb{Z}\}$  的关系, 并说明理由.
- (020026) 证明集合  $A = \{n|n = 2k-1, k \in \mathbb{N}\}$  不是集合  $B = \{n|n = 2m+1, m \in \mathbb{N}\}$  的子集, 且集合 A 真包含集合 B.
- (020027) 已知集  $B = \{0, 2, 4\}, C = \{0, 2, 6\},$  若集合 A 满足  $A \subseteq B, A \subseteq C$ , 写出所有满足条件的集合 A.
- (020028) 已知集合  $A = \{1\}, B = \{x | x \subseteq A\},$  用列举法表示集合 B. 并指出 A = B 的关系.
- (020029) 若集合  $A = \{2, a, a+3\}, B = \{2, 3, 5, 8\}, 且 B \supset A, 则 a 的值为$

| $(020030)$ 设常数 $a \in \mathbf{R}$ . 若集合 $A = (-\infty, 5)$ 与 $B = (-\infty, a]$ 满足 $A \subseteq B$ ,则 $a$ 的取值范围是                        |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| 证明: $1^{\circ}$ 当 $a$ 时, 任取 $x \in A$ , 则, 所以 $x \in B$ , 即 $A \subseteq B$ .                                                           |
| $2^{\circ}$ 当 $a$ ,时,取 $x_1 =$ ,则,所以 $x_1 \in A$ 且 $x_1 \notin B$ .                                                                     |
| 由 1°、2° 可得结论.                                                                                                                           |
| (020031) 设常数 $p \in \mathbf{R}$ , 已知 $A = \{x   x < -1$ 或 $x > 2\}$ , $B = \{x   4x + p = 0\}$ , 若 $B \subset A$ , 则 $p$ 的取值范围          |
| 是                                                                                                                                       |
| (020032) 已知集合 $A = \{1\}$ , 集合 $B = \{x x^2 - 2x + a = 0\}$ , 且 $A \subset B$ , 求实数 $a$ 的取值范围.                                          |
| (020033) 已知集合 $S = \{1,2\}$ , 集合 $T = \{x ax^2 - 3x + 2 = 0\}$ , 且 $S = T$ , 求实数 $a$ 的取值范围.                                             |
| (020034) 已知集合 $S = \{1,2\}$ , 集合 $T = \{x ax^2 - 3x + 2 = 0\}$ , 且 $S \supseteq T$ , 求实数 $a$ 的取值范围.                                     |
| (020035) 证明: 集合 $A = \{x x = 6n-1, \ n \in \mathbf{Z}\}$ 是 $B = \{x x = 3n+2, \ n \in \mathbf{Z}\}$ 的真子集.                               |
| (020036) 设常数 $a \in \mathbf{R}$ , 已知集合 $\{A = x x^2 - 1 = 0\}$ , 集合 $\{B = x (x-1)(x-a) = 0\}$ . (1) 若 $B \subset A$ , 求 $a$            |
| 值的集合;                                                                                                                                   |
| (2) 若 $B$ 不是 $A$ 的子集, 求 $a$ 值的集合.                                                                                                       |
| (020037) 已知集合 $A = \{x   0 < x < a\}, B = \{x   1 < x < 2\},$ 若 $B \subseteq A$ , 则实数 $a$ 的取值范围为                                        |
| (020038) 已知集合 $A = [-2, 5], B = [m + 1, 2m - 1],$ 满足 $B \subseteq A$ , 则实数 $m$ 的取值范围为                                                   |
| (020039) 已知非空集合 $P$ 满足: ① $P\subseteq\{1,2,3,4,5\};$ ② 若 $a\in P,$ 则 $6-a\in P,$ 符合上述要求的集合 $P$ 的                                        |
| 个数是                                                                                                                                     |
| $(020040)  已知集合  A = \{1, 1+d, 1+3d\},  集合  B = \{1, q, q^2\},  其中  d、q \in \mathbf{R},  且  d \neq 0.                                $  |
| (020041) 已知 $A = \{x   x = a + \sqrt{2}b, \ a, b \in \mathbf{N}\}, $ 若集合 $B = \{x   x = \sqrt{2}x_1, \ x_1 \in A\},$ 证明 $B \subset A$ . |
| (020042) 已知 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\},  求$ :                                                                              |
| $(1) A \cap B = \underline{\hspace{1cm}};$                                                                                              |
| $(2) A \cup B = \underline{\hspace{1cm}};$                                                                                              |
| $(3) A \cap \varnothing = \underline{\hspace{1cm}};$                                                                                    |
| $(4) A \cup \varnothing = \underline{\hspace{1cm}}.$                                                                                    |
| (020043) 已知任一集合 A, 则                                                                                                                    |
| $(1) A \cap A = \underline{\hspace{1cm}};$                                                                                              |
| $(2) A \cap \varnothing = \underline{\hspace{1cm}};$                                                                                    |
| $(3) A \cup A = \underline{\hspace{1cm}};$                                                                                              |
| $(4) A \cup \varnothing = \underline{\hspace{1cm}}.$                                                                                    |

 $(020044) \$ **已** $知 \ A = \{x|x^2-4=0\}, \ B = \{x|x^2+2x-8=0\}, \$ **则** $\ A \cap B = _____, \ A \cup B = _____.$ 

| (020045) 已知 $A = \{y y = x^2 - 4, x \in \mathbf{R}\}, B = \{y y = x^2 + 2x - 8, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}, A \cup B = \underline{\hspace{1cm}}.$                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (020046) 已知 $A = \{(x,y) y=x^2-4,\ x\in\mathbf{R}\},\ B=(x,y) y=x^2+x-6,\ x\in\mathbf{R},\ 则\ A\cap B=\underline{\hspace{1cm}},$ $A\cup B=\underline{\hspace{1cm}}.$                                                    |
| $(020047) 已知 A = \{x   存在 y \in \mathbf{R}, 使得 y = x + 1\}, B = \{x   存在 y \in \mathbf{R}, 使得 y = x\}, 则 A \cap B = \$                                                                                                  |
| (020048)                                                                                                                                                                                                                |
| (020049) 用 " $\subset$ "、" $\subseteq$ " 或 " $=$ " 填空: $A \cap B \underline{\hspace{1cm}} A, A \cap B \underline{\hspace{1cm}} B \cap A, \varnothing \underline{\hspace{1cm}} B \cap A.$                                |
| $(020050)$ 已知集合 $A = \{x x \leq 1\}$ , 集合 $B = \{x x \geq a\}$ , 且 $A \cup B = \mathbf{R}$ , 则 $a$ 的取值范围为                                                                                                               |
| <ul> <li>(020051) 设常数 a ∈ R. 已知集合 A = {x x² - 3x + 2 = 0, x ∈ R}, 集合 B = {x 2x² - x + 2a = 0, x ∈ R}.</li> <li>(1) 若 A ∪ B = B, 求 a 的值的集合;</li> <li>(2) 若 A ∩ B = B, 求 a 的值的集合.</li> </ul>                              |
| $(020052)    已知集合    A = (-\infty, -1) \cup (6, +\infty),  集合    B = (5 - a, 5 + a).  若    11 \in B,  则    A \cup B = $                                                                                                 |
| (020053) 已知集合 $P = \{x   -2 \le x \le 5\}$ , $Q = \{x   x > k+1$ 且 $x < 2k-1\}$ , 若 $P \cap Q = \emptyset$ , 求实数 $k$ 的取值范围.                                                                                             |
| (020054) 已知集合 $A=(x,y) x+y=0$ , 集合 $B=\{(x,y) y=x-2\}$ , 集合 $C=\{(x,y) y=x+b\}$ . 若 $(A\cup C)\cap (B\cup C)=C$ , 求实数 $b$ .                                                                                             |
| (020055) 设常数 $m \in \mathbf{R}$ . 若集合 $A = \{1,2,3\}$ , 集合 $B = \{m^2,3\}$ , 且 $A \cup B = \{1,2,3,m\}$ , 则 $m$ 的值 是                                                                                                    |
| (020056) 设常数 $a \in \mathbf{R}$ . 已知集合 $A = \{x   x \le 1\}$ , 集合 $B = \{x   x > a\}$ , 且 $A \cap B = \emptyset$ , 则 $a$ 的取值范围为                                                                                         |
| $(020057)$ 设全集 $U = \{x   x$ 是小于9的正整数 \}, $A = \{1, 2, 3\}, B = \{3, 4, 5, 6\}, 则 \overline{A} =; \overline{B} =; \overline{A} \cup \overline{B} =; \overline{A} \cup \overline{B} =; \overline{A} \cup \overline{B} =$ |
| (020058) 已知 $A = \{x   x < 2\}$ . ① 若 $U = \mathbf{R}$ , 则 $\overline{A} =;$ ② 若 $U = \{x   x \ge 0\}$ , 则 $\overline{A} =;$ ③ 若 $U = \mathbf{N}$ , 则 $\overline{A} =$                                                  |
| (020059) 已知全集 $U={\bf R},\ A=\{x -1< x<2\},\ 则\ \overline{A}=;\ \overline{\overline{A}}=;\ \overline{A}\cap U=;$                                                                                                        |

(020061) 设全集  $U = \mathbb{N}, A = \{x | x$ 为正奇数 $\}, B = \{x | x = 5$ 的倍数 $\}, 则 B \cap \overline{A} = \underline{\hspace{1cm}}$ 

(020062) 设常数  $a,b \in \mathbb{R}$ , 已知全集  $U = \{2,4,b\}$ ,  $B = \{a+1,2\}$ . 若  $\overline{B} = \{7\}$ , 则  $a = \underline{\hspace{1cm}}$ .

(020063) 设常数  $a \in \mathbb{R}$ , 已知全集  $U = \mathbb{R}$ , 集合  $A = \{x | -2 < x < 2\}$ , 集合  $B = \{x | x > a\}$ . 若  $A \cap \overline{B} = A$ , 则 a 的取值范围为\_\_\_\_\_\_.

(020064) 设常数  $a \in \mathbb{R}$ , 全集  $U = \mathbb{R}$ . 集合  $A = \{x | x < 2\}$ ,  $B = \{x | x > a\}$ . 若  $\overline{A} \subseteq B$ , 则 a 的取值范围为\_\_\_\_\_\_.

(020065) 用集合 A、B 的运算式表示图中的阴影部分:



(020066) 设全集为 U, 且  $M \subseteq N$ , 则\_\_\_\_\_\_(填入所有正确选项的序号).

 $\textcircled{1} \ M \cup N = N; \ \textcircled{2} \ M \cup N = M; \ \textcircled{3} \ \overline{N} \subseteq \overline{M} \ \textcircled{4} \ \overline{M} \subseteq \overline{N}; \ \textcircled{5} \ \overline{M} \cup \overline{N} = U; \ \textcircled{6} \ M \cap \overline{N} = \varnothing; \ \textcircled{7} \ \overline{M} \cap N = \varnothing.$ 

(020067) 已知全集  $U = A \cup B = \{x | 0 \le x \le 10, x \in \mathbb{N}\}, A \cap \overline{B} = \{1, 3, 5, 7\}.$  则集合 B = 1, 3, 5, 7.

(020068) 若全集  $U = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\}$ , 集合  $A = \{(x,y)|\frac{y}{x} = 1\}$ , 集合  $B = \{(x,y)|y \neq x\}$ , 则  $\overline{A \cup B} =$ \_\_\_\_\_\_.

(020069) 如图, 已知集合 U 为全集, 分别用集合 A、B、C 的运算式表示下列图中的阴影部分.



| (1) 正方形和四边形;;                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (2) 正方形是四边形吗?;                                                                                                                                                        |
| $(3) \ \pi > 3;;$                                                                                                                                                     |
| (4) 正方形好美!;                                                                                                                                                           |
| (5) $2x > 4;$ ;                                                                                                                                                       |
| (6) 968 能被 11 整除;                                                                                                                                                     |
| (020071) 判断下列命题的真假, 并在相应的括号内填入"真"或"假".                                                                                                                                |
| $(1) \ 2\sqrt{3} > 3\sqrt{2} \ \vec{u} \ 1 \le 1;;$                                                                                                                   |
| (2) $2\sqrt{3} > 3\sqrt{2}$ H. $1 \le 1;$ ;                                                                                                                           |
| (3) 如果 a、b 都是奇数, 那么 ab 也是奇数;;                                                                                                                                         |
| (4) {1} 是 {0,1,2} 的真子集;;                                                                                                                                              |
| (5) 1 是 {0,1,2} 的真子集;;                                                                                                                                                |
| (6) $              $                                                                                                                                                  |
| (7) 如果 $ a  < 2$ , 那么 $a < 2$ ;;                                                                                                                                      |
| (8) 对任意实数 $a, b,$ 方程 $(a+1)x + b = 0$ 的解为 $x = -\frac{b}{a+1};$ ;                                                                                                     |
| (9) 若命题 $\alpha$ 、 $\beta$ 、 $\gamma$ 满足 $\alpha \Rightarrow \beta$ , $\beta \Rightarrow \gamma$ , $\gamma \Rightarrow \alpha$ , 则 $\alpha \Leftrightarrow \gamma$ ;; |
| $(10)$ 若关于 $x$ 的方程 $ax^2+bx+c=0 (a\neq 0)$ 的两实数根之积是正数, 则 $ac>0;$ ;                                                                                                    |
| (11) 若某个整数不是偶数,则这个数不能被 4 整除;;                                                                                                                                         |
| (12) 合数一定是偶数;;                                                                                                                                                        |
| (13) 所有的偶数都是素数或合数;;                                                                                                                                                   |
| (14) 所有的偶数都是素数或所有的偶数都是合数;;                                                                                                                                            |
| (15) 如果 $A \subset B, B \supset C$ , 那么 $A = C$ ;;                                                                                                                    |
| (16) 空集是任何集合的真子集;;                                                                                                                                                    |
| (17) 若 $x \in \mathbf{R}$ , 则方程 $x^2 - x + 1 = 0$ 不成立;;                                                                                                               |
| (18) $\not = A \cap B \neq \emptyset, B \subset C, \ \not \cup A \cap C \neq \emptyset; \underline{\hspace{1cm}};$                                                    |
| (19) 存在一个三角形, 它的任意两边的平方和小于第三边的平方;;                                                                                                                                    |
| (20) 对于任意一个三角形, 存在一组两边的平方和不等于第三边的平方;                                                                                                                                  |
| $(020072)$ 在下列各题中,用符号 "⇒"" $\Leftarrow$ " " $\Leftrightarrow$ " 把 $\alpha$ 和 $\beta$ 联系起来:                                                                            |
| (1) $\alpha : a = 0, \ \beta : ab = 0; \ \alpha _{\_\_\_}\beta;$                                                                                                      |
| (2) $\alpha : x^2 = 4, \ \beta : x = 2; \ \alpha _ \beta;$                                                                                                            |
| (3) $\alpha$ : 实数 $x$ 适合 $x^2 - 5x + 6 = 0$ , $\beta$ : $x = 2$ ; $\alpha_{\underline{\beta}}$ ;                                                                      |
| (4) $\alpha: \sqrt{x^2} = x, \beta: x > 0; \alpha \beta;$                                                                                                             |
| (5) $\alpha$ : 实数 $x$ 适合 $\frac{x-3}{x+1} = -1$ , $\beta$ : $x = 1$ ; $\alpha_{}\beta$ ;                                                                              |
| $(6)$ $\alpha$ : $k$ 除以 $4$ 余 $1$ , $\beta$ : $k$ 除以 $2$ 余 $1$ ; $\alpha$ $\beta$ ;                                                                                   |

(020070) 判断下列语句是否为命题, 并在相应的横线上填入"是"或"否".

| $(7)\alpha: \{2\} \subset B \subseteq \{2,3,5\}, \ \beta: B = \{2,5\}; \ \alpha_{\_\_\_}\beta.$                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| (020073) 已知命题 "非空集合 $M$ 的元素都是集合 $P$ 的元素 "是假命题, 给出下列命题: ① $M$ 中的元素都是是 $P$ 的元素; ② $M$ 中有不属于 $P$ 的元素; ③ $M$ 中有 $P$ 的元素; ④ $M$ 中的元素不都是 $P$ 的元素. 其中真命题有   |
| $(020074)$ 已知 $\alpha:2\leq x<4,\ \beta:3m-1\leq x\leq -m,\ $ 且 $\alpha\Rightarrow\beta,$ 求实数 $m$ 的取值范围.                                             |
| $(020075)$ 已知 $a$ 是常数, 命题 $\alpha:-1 < a < 3, \beta$ : 关于 $x$ 的方程 $x+a=0 (x \in \mathbf{R})$ 没有正根, 若命题 $\alpha$ 、 $\beta$ 不且只有一个是真命题, 求实数 $a$ 的取值范围. |
| $\begin{array}{c} (020076) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                    |
| (020077) 如果 A 是 B 的必要条件, C 是 B 的充分条件, A 是 C 的充分条件, 那么 B、C 分别是 A 的<br>和条件.                                                                            |
| (020078) 写出使得 "x > 3" 成立的一个充分条件: 和一个必要条件:                                                                                                            |
| (020079) 一次函数 $y = kx + b$ 的图像经过第二、三、四象限的一个充要条件是                                                                                                     |
| $(020080)$ 关于 $x$ 的方程 $ax^2 = 0$ 至少有一个实数根的一个充要条件是                                                                                                    |
| (020081) 已知 $x, y \in \mathbf{R}$ , " $x^2 + y^2 > 0$ " 是 " $x \neq 0$ 或 $y \neq 0$ " 的 ( ).                                                         |
| A. 充分而不必要条件 B. 必要而不充分条件                                                                                                                              |
| C. 充要条件 D. 既不充分又不必要条件                                                                                                                                |

| (020082) 三个数 $a$ 、 $b$ 、 $c$ 不全为零的充要条件。                               | 是 ( ).                          |                                    |  |  |
|-----------------------------------------------------------------------|---------------------------------|------------------------------------|--|--|
| A. a, b, c 都不是零                                                       | B. a, b, c 中最多一个                | B. a, b, c 中最 <b>多一个</b> 零         |  |  |
| C. a, b, c 中只有一个是零                                                    | D. a, b, c 中至少有-                | 一个不是零                              |  |  |
| (020083) 证明: $x_1 > 2$ 且 $x_2 > 2$ 是 $x_1 + x_2 >$                    | $4$ 且 $x_1 \cdot x_2 > 4$ 的充分非必 | 要条件.                               |  |  |
| (020084) 有限集合 S 中元素的个数记作 card(S                                       | C) 汲 A B 郏見右阳佳人 4               | <b>公山</b>                          |  |  |
| ① $A \cap B = \emptyset$ 的一个充要条件是 $\operatorname{card}(A \cup B)$     |                                 | 日山 ドクリル 歴・                         |  |  |
| ② $A \subseteq B$ 的一个必要不充分条件是 $card(A \cup B)$                        |                                 |                                    |  |  |
| ③ $A$ 不是 $B$ 的子集的一个充分不必要条件是                                           |                                 |                                    |  |  |
| ④ $A = B$ 的一个充要条件是 $card(A) = card(B)$                                |                                 |                                    |  |  |
| 其中真命题的个数是().                                                          | - )-                            |                                    |  |  |
|                                                                       | C. 2                            | D 9                                |  |  |
| A. 0 B. 1                                                             | O. 2                            | D. 3                               |  |  |
| $(020085)$ 设 $\alpha, \beta$ 是方程 $x^2 - ax + b = 0$ 的两                | 个实数根. 试分析 $a > 2$ 且             | $b>1$ 是 "两个实数根 $\alpha, \beta$ 均大于 |  |  |
| 1"的什么条件? 并证明你的结论.                                                     |                                 |                                    |  |  |
| (020086) 设 $x, y \in \mathbf{R}$ , 求证: $ x + y  =  x  +  y $          | 成立的充要条件是 $xy \ge 0$ .           |                                    |  |  |
| (020087) 已知下列字母均为常实数, 写出下列陷                                           | <b>床述句的否定形式</b> ; (1) $x>0$     | ;;                                 |  |  |
| (2) $1 > x > 0;$ ;                                                    |                                 |                                    |  |  |
| (3) $x > 0$ H $y \le 1$ ;;                                            |                                 |                                    |  |  |
| $(4) \ x > 0 \ \mathbf{g} \ x \le -2;$ ;                              |                                 |                                    |  |  |
| $(5) x \neq y \mathbf{g} y \neq z; \underline{\hspace{1cm}};$         |                                 |                                    |  |  |
| (6) a,b,c,d 中至多有 2 个 0;                                               | ;                               |                                    |  |  |
| (7) a,b,c,d 中至少有 2 个 1;                                               | ;                               |                                    |  |  |
| (8) a,b,c,d 都大于 1;;                                                   |                                 |                                    |  |  |
| (9) a,b,c,d 不都大于 1;                                                   | _;                              |                                    |  |  |
| (10) a,b,c,d 都不大于 1;                                                  | _ <del>.</del>                  |                                    |  |  |
| (020088) 在横线上写出下列命题的否定形式, 羌                                           | 并判断命题真假, 在相应的位                  | 置中填入"真"或"假"                        |  |  |
| (1) π 是无理数;;                                                          | ;;                              |                                    |  |  |
| $(2) \ 2 + 1 = 4; \underline{\hspace{1cm}}; \underline{\hspace{1cm}}$ | ;;                              |                                    |  |  |
| (3) 任何实数是正数或负数;;                                                      | ;                               | ;                                  |  |  |
| (4) 任何实数是正数或任何实数是负数;; _                                               |                                 | ;;                                 |  |  |
| (5) 对一切实数 $x, x^3 + 1 = 0;$ ;                                         | ;;                              | ;                                  |  |  |
| (6) 存在实数 $x, x^3 + 1 = 0;$ ;                                          | ;                               | ;                                  |  |  |
| $(7)$ 对于任意实数 $k$ , 关于 $x$ 的方程 $x^2+x+k=0$                             | ) 都有实数根;;                       |                                    |  |  |

- (8) 任何三角形中至多有一个钝角; \_\_\_\_; \_\_\_\_\_; \_\_\_\_; \_\_\_\_;
- (9) 若 a > 1, b > 1, 则 ab > 1; \_\_\_\_\_; \_\_\_\_\_\_; \_\_\_\_\_\_;
- (10) 能被 2 整除的整数是质数; \_\_\_\_; \_\_\_\_\_; \_\_\_\_\_; \_\_\_\_\_;

(020089) 写出下列命题的否定形式.

- (1) 在平面上, 过定点 P 有且只有一条直线垂直于给定直线 l;
- (2) 任意两个有理数之间存在一个无理数:
- (3) 存在实数 a, 使得关于 x 的不等式  $x^2 + (a-2)x + a 1 \ge 0$  至少有一个正数解;
- (4) 存在实数 a, 使得关于 x 的不等式  $x^2 + (a-2)x + a 1 \ge 0$  恒成立;
- (5) 存在实数 a, 使得关于 x 的不等式  $x^2 + (a-2)x + a 1 \ge 0$  有解.
- (020090) 已知甲 ⇒ 乙, 下列说法一定正确的是 ( ).
- A. 甲不成立, 可推出乙成立

B. 甲不成立, 可推出乙不成立

C. 乙不成立, 可推出甲成立

D. 乙不成立, 可推出甲不成立

(020091)" $a \neq 1$  且  $b \neq 2$ " 是 " $a + b \neq 3$ " 的 ( ).

A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

- D. 既非充分又非必要条件
- (020092) 证明: 若 x + 2y + z > 0, 则 x, y, z 中至少有一个大于 0.
- (020093) 证明: 对于三个实数 a, b, c,若  $a \neq c,$ 则  $a \neq b$ 或  $b \neq c.$
- (020094)" $x \neq 3$  或  $x \neq 4$ " 是 " $x^2 7x + 12 \neq 0$ " 的 ( ).
- A. 充分非必要条件

B. 必要非充分条件

C. 充要条件

D. 既非充分又非必要条件

(020095) 证明: 若  $x^2 \neq y^2$ , 则  $x \neq y$  或  $x \neq -y$ .

(020096) 若  $a^3 + b^3 = 2$ , 证明:  $a + b \le 2$ .