Calculus - Chapter 26 - Exponential and Log Functions.

Definition:

ex is the inverse of In(x)

Properties:

- 1. ex>0 xx
 - 2. $\ln(e^{\alpha}) = \infty$
 - 3. eha = x
 - 4. ex is an increasing furction.

Assume usv, since u= ln(eu) and v = ln(eu), ln(eu) < ln(eu)
But as ln(a) is increasing, eu < ev

5. $D_{\alpha}(e^{\alpha}) = e^{\alpha}$

Let $y = e^{x}$, then $\ln y = x$ and implicit differentiation gives: $\frac{1}{y}y' = 1$: $y' = y = e^{x}$.

- 6. $\int e^{\alpha} = e^{\alpha} + c$
- 7. e° = 1
- 8. eutv = euev
- 9. eu-v = eu/ev
- 10. $\limsup_{x\to+\infty} e^x = +\infty$ and $\limsup_{x\to-\infty} e^x = 0$. Let u=-x, as $x\to\infty$, $u\to+\infty$ and $e^u\to+\infty$ Hence, $e^x=e^{-u}=\bot\to 0$.

11. Ine=1

Definition:

ex = lim = +00 (1 + (x/n))

Definition:

e = limn = +00 (1+1)^

Definition:

ax = exlna

$$\int a^{2x} dx = \frac{1}{\ln a} a^{2x} + \epsilon$$

Example:
$$\int 10^{2} dx = \frac{1}{\ln 10} 10^{2} + c$$

Definition: If
$$y = \log_a x$$
 then $a^y = x$, therefore $\ln(a^y) = \ln(x)$, $y \ln(a) = \ln(x)$
e.g. $y = \log_a x \Leftrightarrow ay = x$

$$\log_{\alpha}(\infty) = \ln(\infty)/\ln(\alpha)$$

$$\log_{\mathbf{E}}(\mathbf{x}) = \ln(\mathbf{x})/\ln(\mathbf{e}) = \ln(\mathbf{x})/1 = \ln(\mathbf{x}).$$