An introduction to Reinforcement Learning

26nd of April 2022

Philipp Schwartenbeck

Al Center, University of Tübingen

Recap: Basic setup of RL

Recap: What is reinforcement learning (RL)?

- RL is a computational approach to learning from interactions with the environment
 - Trial-and-error
 - Delayed reward
- Considers whole problem of goal-directed agent interacting with an uncertain environment
- Three main machine learning approaches
 - Supervised
 - Unsupervised
 - RL
- Very general account

Where are we?

Intro

Intro (cont)

Theories of Learning

- Psychology, behaviour
- Rescorla-Wagner Learning

Theories of Learning

- Neuroscience
- TD learning

Markov Decision Processes

Theories of control, action selection

Model-free and model-based RL Exploitation vs. Exploration

Some coding

- Role of different parameters
- Model-fitting
- If possible: parameter recovery, model comparison
- 'Advanced' topics and current applications
 - Planning, Dyna, replay
 - Clever ways of planning, tree-search etc
 - Deep RL
 - Other current fancy developments

Recap This seminar: components

- Most of this is first time material tell me if something doesn't work, open for suggestions
 - Especially for second half of the seminar
- Structure
 - Theory (key reference: <u>Sutton & Barto, 1998</u>)
 - Research (key papers)
 - Coding (Python)
- Missing May date (24th of May): coding
- Grading: essay
 - Tell me if you would like to have additional grading during the term (coding exercise/s, presentation)

Basics of (Reinforcement) Learning

Basic setup: how to agents learn to act?

Based on a reward signal, agents learn values of actions/states:

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R \mid s_0 = s]$$

Reward r_{t}

Values can be **learnt** (simplified!!):

$$V(s) \leftarrow V(s) + \alpha \cdot (r - V(s))$$

environment to make smarter decisions, e.g.:

Agents can learn a model of the

$$P(s_{t+1} = s | s_t = s, a_t = a)$$

State S_t

Action a_t

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Learning rate

Prediction error

(More) Examples

- Chess: what is...
 - The state?
 - An action?
 - A reward?
- How can values be learned over time?
- How could a model of the environment be useful?

Other relevant components:

- tree search
- position evaluation
- situation memory

Taken from Peter Dayan

(More) Examples

- Learn how to walk: what is...
 - The state?
 - An action?
 - A reward?
- How can values be learned over time?
- How could a model of the environment be useful?

Examples extended..

- Other examples (see Sutton & Barto, pp 4-5):
- Adaptive controller adjusts parameters of a petroleum refinery's operation in real time
 - Optimise yield/cost/quality trade-off
 - Objective: specified marginal costs
 - Without sticking strictly to pre-defined set points
- Mobile robot decides to search for trash to collect or find its way back to battery recharging station
 - Decision based on current charge level of battery and how quickly recharger has been found in the past.
- Prepare breakfast
 - Subgoals, hierarchies
 - Conditional behaviour
 - Sense/access bodily states

Key features of all these examples

- (Danger of repeating myself): Interaction between active decision-making agent and its environment
 - Agent seeks to achieve a goal
 - Uncertainty about its environment
- Take into account indirect, delayed consequences of actions
 - Requires foresight or planning
- Need to monitor environment frequently
- Judge progress toward goal based on what can be sensed directly
- Use experience to improve performance over time (online vs. offline learning)
 - Basis for adjusting behaviour to exploit specific features of the task

Key Elements: Policy

- Defines agent's way of behaving at a given time
 - Sufficiently determines behaviour
 - Often stochastic (determine probabilities for each action)

- Mapping from (perceived) states of environment to actions
 - Cf., stimulus-response rules or associations

- Can be simple or difficult
 - Lookup table vs. extensive search

Action is governed by a **policy**:

$$\pi(a,s) = P(a_t = a \mid s_t = s)$$

Key Elements: Reward signal

- = goal of a reinforcement learning problem
 - Single number from environment on each time-step

SOLE objective is to maximise the total reward over the long run

- Primary basis for altering the policy
 - If action is followed by low reward, then the policy may be changed

• Often: stochastic function of state of environment and actions taken

Key Elements: Value function

Based on a reward signal, agents learn values of actions/states:

• = what is good in the **long run**

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R \mid s_0 = s]$$

- Total amount of reward an agent can expect to accumulate over the future, starting from a given state
 - Long-term desirability of states
 - Taking into account states that are likely to follow and rewards available in those states

- A state might yield a low immediate reward but can still have a high value
 - Because regularly followed by other states that yield high rewards

Reward vs. Value

- Rewards = primary, values = secondary
 - Rewards are the basis for estimating value

Reward r_t

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R \mid s_0 = s]$$

• BUT action selection is based on value, not immediate reward - why?

- It is more difficult to determine value than reward
 - Methods for value estimation are a central problem in RL

Key Elements: Model of Environment

• Mimics behaviour of environment

Allows to predict how the environment will behave

Agents can learn a model of the environment to make smarter decisions, e.g.:

$$P(s_{t+1} = s | s_t = s, a_t = a)$$

- E.g.: given a state and action, model can predict the resultant next state and next reward
- Models are used for planning
 - Considering possible future situations before they are actually experienced
- Methods for solving reinforcement learning problems that use models and planning are called model-based methods
 - Simpler model-free methods are explicitly trial-and-error learners (opposite of planning)

What are the limits of RL?

- How do we define a state? Are all states perceivable?
- What about problems that cannot be solved via learning (e.g. inference)?
- Is reward enough to explain behaviour/cognition/brains?

History and Theories of (Reinforcement) Learning

"Three" historical branches of RL

- Association learning, prediction (early 1900s)
- Optimal control (1960 onward)
- Learning and control (1980 onward)

Association learning, prediction

- Key problem: trial and error learning
 - Origins in animal learning

- Goes back to "Law of effect" (Edward Thorndike, 1911)
 - "The greater the satisfaction or discomfort, the greater the strengthening or weakening of the bond [between an animal's response and a situation]"
 - Also: Ivan Pavlov, Clark Hull, B.F. Skinner, Marvin Minsky, ...
- See examples soon

History: Optimal Control

- Key problem: design controller to minimise/maximise a quantity
 - Based on value functions (e.g. dynamic programming)
- Not really learning
 - But incremental and iterative
- 1950s, Richard Bellman (Bellman equation)

- MDPs
 - Extension to 'partial observability': Leslie Kaelbling (1990s)
- More of this in a few weeks...

History: Learning and Control

- TD learning, Actor-critic architecture (Sutton & Barto, 1981, 1982)
- Chris Watkins 1989 (+ Peter Dayan 1992): integrate dynamic programming with online learning
 - Q learning
- Key idea: use experience and own value estimates!
 - One example: secondary reinforcement

History: Psychology

- Classical (Pavlovian) conditioning (roughly) in domain of algorithms for prediction
 - Algorithms for control: instrumental (operant) conditioning
 - You probably know all this...
- At least two interesting phenomena in classical conditioning from algorithmic perspective:
 - Higher-order conditioning

Temporal Difference (TD) Learning

Blocking

Rescorla-Wagner Learning

Basics of Learning: Blocking and Rescorla-Wagner Learning

Learn associative strength between a CS and US

$$V(\overline{\psi}) \leftarrow V(\overline{\psi}) + \alpha \cdot V(\overline{DDD} - \overline{\psi})$$

 $V(s) \leftarrow V(s) + \alpha \cdot (r - V(s))$

Introduce a second CS:

$$V(\bigcirc) \leftarrow V(\bigcirc) + \alpha \cdot V(\bigcirc) - \bigcirc) \qquad V(\bigcirc) = V(\bigcirc) + \bigcirc) := \bigvee + \bigcirc + \bigcirc$$

$$V(\bigcirc) = V(\bigcirc) := \bigvee(\bigcirc)$$

$$V(\sqrt[3]{+}) \leftarrow V(\sqrt[3]{+}) + \alpha \cdot V(\sqrt[3]{0} - (\sqrt[3]{+}))$$

What does the value of the sound CS look like at different stages of learning?

Coding: Python, Google Collab

https://github.com/schwartenbeckph/RL-Course/tree/main/2022_04_26

Basics of Learning: Higher order conditioning and TD learning (next time)

- Extends Rescorla-Wagner model
 - Address how within-trial and between-trial timing relationships among stimuli influence learning
 - How can higher-order conditioning arise?
- Real-time
 - t labels time steps within *or* between trials $V(s_t) \leftarrow V(s_t) + \alpha \cdot (r + \gamma \cdot V(s_{t+1}) V(s_t))$
 - Think of time between t and t+1 as a small time interval, say .01 second
- Solves:
 - Higher order conditioning
 - NO blocking if CS_2 is moved before previously learnt CS_1
 - A lot of other things..

Basics of Learning: Instrumental conditioning

- Learning depends on the consequences of behaviour
 - Delivery of reinforcing stimulus contingent on what animal does
- Is both associative and selective
 - Unlike supervised learning (only associative)
 - Important aspect of exploration
- Problem: rewards often sparse how to find the 'correct' actions?
 - Solution in lab experiments: **shaping** (*generalisability* of actions)
- Dealing with delayed reinforcement (cf. trace conditioning)
 - TD learning
 - Eligibility traces

Basics of Learning: Cognitive Maps

- Highlights the role of environment model two parts:
 - State-transition part encodes effect of actions on state changes
 - Reward model part encodes reward signals expected for state/state-action pair

Latent learning

Structure learning

Tolman 1948: Cognitive Maps in Rats and Men

'Multiple Systems' in RL

Model-based RL

- Build a forward model of the task and outcomes
- Search in the forward model
 - Optimal use of information
 - Computationally ruinous

Model-free RL

- learn values, which summarise future worth
 - computationally trivial
 - bootstrap-based; so statistically inefficient
- Learn both select according to uncertainty

'Multiple Systems' in RL

Action values estimates of highest return rat can expect

- For each action
- Taken from each (nonterminal) state

Environment model consisting of

- State-transition model
- Reward model (decision tree)

Model-free agent:

Change policy or action value for a state = move to state -> act from it (many times) -> experience consequences of actions

Model-based agent:

Change in reward model automatically leads to change in policy (through planning)

Key test to distinguish those two: **outcome-devaluation** (Also: two-step task - some other time)