Sequential Circuits Cheat Sheet (Theory Only)

1. Introduction to Sequential Circuits

Sequential Circuits → Digital circuits where output depends on **both present inputs and past states** (memory is involved).

Two main components:

- Combinational Logic (Logic Gates).
- Storage Elements (Latches, Flip-Flops).

Types of Sequential Circuits:

- Synchronous → Clock-controlled.
- **Asynchronous** → Output changes immediately with input.

2. Latches

Latches are basic memory elements that store 1-bit data.

They are level-triggered (change state based on input).

(A) SR Latch (Set-Reset Latch)

Inputs: S (Set) and R (Reset).

Outputs: Q and Q' (complement of Q).

Operation:

- $S = 1, R = 0 \rightarrow Q = 1$ (Set).
- S = 0, $R = 1 \rightarrow Q = 0$ (Reset).
- S = 0, $R = 0 \rightarrow No$ change (Previous State).
- S = 1, $R = 1 \rightarrow$ Invalid State.

SR Latch Truth Table:

S	R	Q (Next State)	Q'
0	0	No Change	-
0	1	0 (Reset)	1
1	0	1 (Set)	0
1	1	Invalid	-

(B) D Latch (Data Latch)

Eliminates the invalid state of the SR latch.

Single input (D) and Clock (C).

Operation:

- $D = 1 \rightarrow Q = 1$ (Set).
- $D = 0 \rightarrow O = 0$ (Reset).

Truth Table:

| D | Clock | Q (Next State) | ---|-----| 0 | 1 | 0 (Reset) | 1 | 1 | 1 (Set) | X | 0 | No Change

3. Flip-Flops

Flip-Flops are edge-triggered storage elements (change state only on the clock edge). Types of Flip-Flops:

Works like SR Latch but with a clock signal.

Truth Table:

S	R	Q (Next State)
0	0	No Change
0	1	0 (Reset)
1	0	1 (Set)
1	1	Invalid

(B) JK Flip-Flop

Improves RS Flip-Flop (No invalid state).

Truth Table:

J	K	Q (Next State)
0	0	No Change
0	1	0 (Reset)
1	0	1 (Set)
1	1	Toggle

Toggle condition (J=1, K=1) changes state every clock cycle.

(C) D Flip-Flop (Data Flip-Flop)

Stores one-bit data (Prevents glitches).

Truth Table:

D	Clock	Q (Next State)
0	↑	0 (Reset)
1	\uparrow	1 (Set)

(D) T Flip-Flop (Toggle Flip-Flop)

Toggles (Flips) output every clock pulse.

Truth Table:

T	Clock	Q (Next State)
0	\uparrow	No Change
1	\uparrow	Toggle

Used in Counters.

4. Excitation Table of Flip-Flops

Used to design sequential circuits (reverse engineering truth tables).

Flip-Flop	Current State (Q)	Next State (Q_{n+1})	Input Needed
RS	$0 \rightarrow 0$	No Change	S=0, R=0
RS	$0 \rightarrow 1$	Set	S=1, R=0

Current State (Q)	Next State (Q_{n+1})	Input Needed
$1 \rightarrow 0$	Reset	S=0, R=1
$0 \rightarrow 1$	Set	J=1, K=0
$1 \rightarrow 0$	Reset	J=0, K=1
Toggle	Toggle	J=1, K=1
$0 \rightarrow 1$	Load 1	D=1
Toggle	Flip State	T=1
	$1 \to 0$ $0 \to 1$ $1 \to 0$ Toggle $0 \to 1$	$1 \rightarrow 0$ Reset $0 \rightarrow 1$ Set $1 \rightarrow 0$ Reset Toggle Toggle $0 \rightarrow 1$ Load 1

5. Counters

Counters store and count values on clock pulses.

Types:

(A) Asynchronous Counters (Ripple Counters)

Each Flip-Flop toggles the next one. Slower due to propagation delay.

(B) Synchronous Counters

All Flip-Flops change at the same time (faster).

(C) MOD Counters

Counts up to n states (MOD-n counter).

Example: MOD-4 counter counts $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0$.

(D) Johnson Counter

Modified ring counter with feedback.

Generates 2n unique states using n Flip-Flops.

6. Shift Registers

Stores and shifts data in bit sequences.

Types of Shift Registers:

Type Function

SISO (Serial In Serial Out)

Shifts data one bit at a time

SIPO (Serial In Parallel Out)

PISO (Parallel In Serial Out)

Parallel input, Serial readout

PIPO (Parallel In Parallel Out)

Parallel input & Parallel output

Universal Shift Register Can perform all operations (SISO, SIPO, PISO,

PIPO)

7. Ripple Counter

A type of Asynchronous Counter where the flip-flop output acts as the clock for the next flip-flop. Example: 4-bit Ripple Counter (counts 0000 to 1111).

Comparison of Sequential Circuits

Feature	Latches	Flip-Flops	Counters	Shift Registers
Triggering	Level	Edge	Edge	Edge
Storage	1-bit	1-bit	Multiple bits	Multiple bits
Uses	Simple memory	Storage & Timing	Counting & Frequency Division	Data Transfer

Key Takeaways

Sequential Circuits have memory (store past states).

Latches (SR, D) store bits based on input levels.

Flip-Flops (RS, JK, D, T) are edge-triggered storage devices.

Counters (Async/Sync, MOD, Johnson) are used for counting events.

Shift Registers shift bits in multiple configurations.

This Sequential Circuits Cheat Sheet covers latches, flip-flops, excitation tables, counters, and shift registers. Let me know if you need further explanations!