NOIP 模拟赛

中文题目名称	跑步	网络	游走	移除
英文题目名称	run	net	walk	move
输入文件名	run.in	net.in	walk.in	move.in
输出文件名	run.out	net.out	walk.out	move.out
时间限制	1s	1s	2s	1s
空间限制	512M	512M	512M	512M
结果比较方式	全文比较	自定义校验器	全文比较	自定义校验器

编译选项:

C++	-lm -std=c++17 -O2
-----	--------------------

评测环境为 Ubuntu22.04 64 位,处理器: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz,内存 32GB,速度 2933MHz,编译器版本 11.2.0。

跑步 (run/1s/512M)

题目描述

 He_ren 每天沿玄武湖跑步。玄武湖可以抽象成一个 $n \times m$ 的矩阵,每个格子可能是空地,也可能是水。 He_ren 每天会选择一个空地格子作为起点,找一个以它为右下角且周长最大的空矩阵,然后沿着这个空矩阵的边界跑一圈,也就是说这一天的跑步里程等于空矩阵的周长。

若干天后, He_ren 已经以每个空地格子作为起点恰好一次,你需要统计出,对于每个 $i\in[1,n+m]$,有多少天的跑步里程恰好为 2i。

输入格式

第一行包含两个正整数 n, m,分别表示矩阵的行数和列数。

接下来 n 行,每行一个长度为 m 的字符串,每个字符为 n 或者 n ,分别表示空地格子和水格子。

输出格式

一行包含 n+m 个整数,第 i 个整数表示有多少天的跑步里程恰好为 2i。

样例输入#1

```
6 6
..#.##
.#...
#..#*.
...#..
#...
#...
```

样例输出#1

```
0 6 6 6 4 3 0 0 0 0 0
```

样例输入#2

```
6 6
#.#..#
.#..#.
#..#.

#..#.
#..#.
#..#.
```

样例输出#2

```
0 13 9 0 0 0 0 0 0 0 0
```

样例输入#3

```
5 6
#.#..#
.#..#
.#....
```

样例输出#3

0 7 5 3 3 3 2 1 0 0 0

数据范围与约定

对于全部数据, $1 \le n, m \le 5000$ 。

对于 20% 的数据: n, m ≤ 50。
对于 40% 的数据: n, m ≤ 500。
对于 80% 的数据: n, m ≤ 2000。

网络 (net/1s/512M)

题目描述

某国有 n 个城市,现在准备建立连接全国的广域网。经过考察,有 m 对城市之间可以直接建造光缆,但为了节约成本,只能建造其中的 n-1 条光缆来使全国连通,也就是选一棵生成树。另外,还需要最小化城市两两之间信息传递时间的最大值,定义两个城市之间的信息传递时间为树上路径的 **节点数**。

输入格式

第一行包含一个正整数 n,表示城市的数量。

接下来 n 行,每行包含一个长度为 n 的 01 串,用 (i,j) 表示第 i 行的第 j 个字符。(i,j)=1 说明城市 i,j 之间可以直接建造光缆,(i,j)=0 说明不能直接建造光缆,保证 (i,j)=(j,i) 并且 (i,i)=0。

输出格式

共 n-1 行,每行包含两个正整数 u,v,表示 u 和 v 之间直接建造光缆。

输出任意一组最优解即可。

样例输入#1

```
4
0100
1011
0101
0110
```

样例输出#1

```
1 2
2 3
2 4
```

样例输入#2

```
5
01001
10100
01010
00101
10010
```

样例输出#2

```
1 2
1 5
2 3
4 5
```

样例输入#3

样例输出#3

```
1 2
1 3
1 5
1 6
2 4
2 7
3 8
```

数据范围与约定

本题采用子任务捆绑和依赖。

对于全部数据 $1 \le n \le 2500$ 。

保证建造完所有可以直接建造的光缆后所有城市连通。

- 子任务 1 (20 分): $n \leq 6$ 。
- 子任务 $2(20 \, \text{分})$: $n \leq 50$, 依赖于子任务 1.
- 子任务 $3(20\,
 m G)$: $n \leq 500$, 保证最优解中信息传递时间的最大值为 **奇数**。
- 子任务 4(20 分): $n \le 500$, 依赖于子任务 23。
- 子任务 5 (20 分): 无特殊限制, 依赖于子任务 4。

游走 (walk/2s/512M)

题目描述

有n个黑衣 He_ren 和m个红衣 He_ren 在走廊上游走,走廊的长度为L,可以抽象成一个区间 [0,L]。每个 He_ren 的游走速度恒定,每一个单位时间移动一个单位长度,而方向可能是向左或向右。当两个 He_ren 相遇即游走到同一个点时,它们会同时反向并保持速度不变。当一个 He_ren 游走到走廊的尽头(坐标为0 和L 的位置)时,也会反向并保持速度不变。

有 q 个蒟蒻在一旁膜拜 He_ren ,第 i 个蒟蒻的观测区间为 $[l_i,r_i]$,保证这些观测区间两两不相交。你需要回答,从时刻 0 到时刻 T (包括 T) ,每个蒟蒻分别观测到以下事件各多少次:

- 两个黑衣 He_ren 相遇。
- 两个红衣 He ren 相遇。
- 一个黑衣 He_ren 和一个红衣 He_ren 相遇。

输入格式

第一行包含五个非负整数 n,m,q,L,T,分别表示黑衣 He_ren 数量、红衣 He_ren 数量、蒟蒻数量、走廊长度 和时间。

接下来 n 行,每行包含两个整数 x,p,分别表示第 i 个黑衣 ${\bf He_ren}$ 的位置和游走方向,p=1 表示向右游走,p=-1 表示向左游走。

接下来 m 行,每行包含两个整数 x, p,分别表示第 i 个红衣 He_ren 的位置和游走方向。

接下来 q 行,每行包含两个非负整数 l_i, r_i ,表示第 i 个蒟蒻的观测范围。

输出格式

共 q 行,第 i 行包含三个整数,分别表示第 i 个蒟蒻观测到的两个黑衣 ${\sf He_ren}$ 相遇、两个红衣 ${\sf He_ren}$ 相遇、一个黑衣 ${\sf He_ren}$ 和一个红衣 ${\sf He_ren}$ 相遇的次数。

样例输入

2 1 1 8 7 2 1

4 -1

7 1

3 6

样例输出

1 0 1

样例解释

T=1 时,第一个 ${
m He_ren}$ 和第二个 ${
m He_ren}$ 在位置 3 相遇。

T=1 时,第三个 He_ren 走到走廊尽头 L。

T=3.5 时,第二个 He_ren 和第三个 He_ren 在位置 5.5 相遇。

T=4 时,第一个 He_{ren} 走到走廊尽头 0。

T=6 时,第三个 ${f He_ren}$ 走到走廊尽头 L。

 $T=6.5\,\mathrm{fm}$,第一个 $\mathrm{He_ren}$ 和第二个 $\mathrm{He_ren}$ 相遇于位置 2.5 ,注意这不在观测范围内。

数据范围与约定

对于全部数据

 $n, m \geq 0, 2 \leq n + m \leq 10^6, 1 \leq q \leq 10, 2 \leq L \leq 10^8, 0 \leq T \leq 10^9, 0 < x < L, p \in \{1, -1\}, 0 \leq l_i < r_i \leq L$

输入数据保证:

- 开始时所有 He_ren 的位置两两不同。
- 所有 $[l_i, r_i]$ 两两不交。

测试点编号	n+m	其他	约定
1~2	~ 10	a < 2	$L \le 1000$
1~2	≤ 10	$q \leq 3$	$T \le 10^5$
3~4	≤ 100	ana — 0	$L \le 10^6$
5~6	< 1000	m = 0	
7~8	≤ 1000	q = 1	
9~10	~ 105	$l_1=0, r_1=L$	
11~12	$\leq 10^5$		
13~20			

移除 (move/1s/512M)

题目描述

在二维平面上,有n个 He_ren 平躺在上面,可以抽象成n条互不相交的线段,你的任务是通过如下的操作将所有 He_ren 移除:

• 选择一个 **He_ren**,按水平或者垂直方向将他移除(也就是平移到无穷远处),前提是移动过程中不被任何尚未移除的 **He_ren** 所阻碍。如果会被阻碍,那么这次移除就是非法的。

你需要解决两个问题:

- 1. 给定一个移除方案, 求出最早的一次非法移除。
- 2. 给出一个合法的移除方案。

两个问题各占一半的分数。

注意: 在线段移动时仅端点接触不会造成阻碍。

输入格式

第一行包含一个正整数 n, 表示 He_{ren} 的数量。

接下来 n 行,每行包含 4 个整数 a_i , b_i , c_i , d_i ,表示编号为 i 的 $\mathbf{He_ren}$ 所抽象成的线段的端点为 (a_i,b_i) 和 (c_i,d_i) 。

接下来 n 行,每行 2 个整数 p_i , q_i ,表示第 i 轮移动的 $\mathbf{He_ren}$ 编号为 p_i ,方向为 q_i 。其中 q_i 为一个 0 到 3 之间的整数,0 表示向左平移(即 x 轴负方向),1 表示向上平移(即 y 轴正方向),2 表示向右平移,3 表示向下平移。

输出格式

第一行包含一个正整数,表示最早出现非法移动的是哪一轮。

接下来n行,每行包含两个整数,内容同输入格式所述,描述一个合法的移除方案。

请确保输出格式正确,即使只解决了一个问题,也要输出完整,否则判作0分。

样例输入#1

```
4
0 0 1 2
2 2 4 1
4 0 3 -2
2 -2 0 -1
1 0
2 1
3 0
4 3
```

样例输出#1

```
3
1 0
2 1
3 2
4 3
```

样例解释 #1

样例输入#2

6 0 0 1 1

1 0 2 1

2 0 3 1 0 1 1 2

3 2 4 1

2 2 4 3

2 1

6 0

5 1

1 3

样例输出#2

4

2 1

3 2

4 1

1 3

样例解释 #2

数据范围与约定

对于全部数据 $1 \leq n \leq 10^5, |a_i|, |b_i|, |c_i|, |d_i| \leq 10^9$ 。

输入数据保证:

- 所有线段长度为正,两两之间没有公共点(包括端点),且不存在垂直或者水平的线段。
- p_1 到 p_n 恰好组成一个 1 到 n 的排列。
- 给定的移除方案中一定存在非法移动。
- n 轮均合法的移除方案总是存在的。

对于一个测试点:两个问题各占5分。

测试数据编号	n	其他约定		
1	=3	对任意 2≤ <i>i</i> ≤ <i>n</i>		
2	≤8	有 $b_{i-1} < d_{i-1} < b_i < d_i$	对任意 $1 \leq i \leq n$	
3	≤100	对任意 1≤ <i>i</i> ≤ <i>n</i>	有 q_i =1	
4	≤2000	$ 有a_i < c_i, d_i - b_i = 1 $	$ a_i $, $ b_i $, $ c_i $, $ d_i \leq 10^4$	
5	≤2000	/		
6	≤20000	/		
7	≤30000	/	对任意 $1 \leq i \leq n$	
8	≤50000	/	有 0≤q _i ≤3	
9	≤80000	/	$ a_i $, $ b_i $, $ c_i $, $ d_i \le 10^9$	
10	≤100000	/		