02-properties-of-cfl02-properties-of-cfl

Chiusura rispetto all'unione

Lemma

La classe dei linguaggi liberi è chiusa rispetto all'unione insiemistica \cup , quindi se L_1 e L_2 sono due linguaggi liberi allora $L_1 \cup L_2$ è in linguaggi libero.

Dimostrazione

Pongo L_1 e L_2 due linguaggi liberie le loro grammatiche $G_1=(V_1,T_1,S_1,P_1)$ e $G_2=(V_2,T_2,S_2,P_2).$

Poniamo allora V_2' il *name refreshing* di V_2 per evitare nomi uguali nei non terminali di V_1 . Possiamo allora costruire:

$$G_3 = (V_1 \cup V_2' \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2' \cup \{S \rightarrow S_1 | S_2'\})$$

dove:

- S è un nuovo simbolo non in $V_1 \cup V_2'$.
- S_2' è il refresh di S_2 .
- P_2' è il refresh delle produzioni di P_2 . Allora $L(G_3)$ è un linguaggio libero e $L(G_3) = L(G_1) \cup L(G_2)$.

Però perchè G_3 è libero?

Prendiamo le produzioni di $G_3 \in \{P_1 \cup P_2' \cup \{S \to S_1 | S_2'\}\}$, allora quelle in P_1 e P_2' hanno la stessa forma che avevano prima del refreshing dei nomi, $A \to \alpha$.

Di coneguenza le produzioni $S_3 o S_1$ e $S_3 o S_2'$ hanno la forma A o lpha.

Ci rimane da dimostrare perchè $L(G_3) = L(G_1) \cup L(G_2)$?

Poniamo $w \in L(G_3)$ che può esistere se e solo se $S \implies w$ oppure:

$$S \implies S_1 \implies {}^*w \qquad \text{oppure} \qquad S \implies S_2' \implies {}^*w$$

Quindi

$$w \in L(G_1)$$
 oppure $w \in L(G_2)$

Posso quindi concludere dicendo che:

$$w \in L(G_1) \cup L(G_2)$$

Esempio

$$G_1: egin{cases} S_1
ightarrow aA \ A
ightarrow a \end{cases}$$

$$G_2: egin{cases} S_2
ightarrow bA \ A
ightarrow b \end{cases}$$

Allora $L(G_1) = \{aa\} \ e \ L(G_2) = \{bb\}.$

Facendo il name refresh di G_2 , A diventa A', posso quindi creare l'unione delle grammatiche.

$$G_3: egin{cases} S
ightarrow S_1 | S_2 \ S_1
ightarrow aA \ S_2
ightarrow bA' \ A
ightarrow a \ A'
ightarrow b \end{cases}$$

Possiamo ora vedere che $L(G_3)=\{aa,\ bb\}=\{aa\}\cup\{bb\}=L(G_1)\cup L(G_2)$.

Chiusura rispetto alla concatenazione

Lemma

La classe dei linguaggi liberi è chiusa rispetto alla concatenazione, quindi se L_1 e L_2 sono linguaggi liberi allora $\{w_1w_2|w_1\in L_1\land w_2\in L_2\}$ è un linguaggio libero.

Dimostrazione

Siano L_1 e L_2 due linguaggi liberi, allora esistono due grammatiche $G_1=(V_1,T_1,S_1,P_1)$ e $G_2=(V_2,T_2,S_2,P_2)$ tali che $L_1=L(G_1)$ e $L_2=(G_2)$.

Senza perdere generalità possiamo affermare che non ci siano name clash tra i non terminali di G_1 e quelli di G_2 , se fosse necessario possiamo comunque fare un name refresh.

Sia allora $G_3=(V_1\cup V_2\cup \{S\},T_1\cup T_2,S,P_1\cup P_2\cup \{S\to S_1S_2\})$ con S un nuovo simbolo non in $V_1\cup V_2$.

Allora $L(G_3)$ è libero $L(G_3)=\{w_1w_2\mid w_1\in L(G_1)\wedge w_2\in L(G_2)\}.$

Pulire grammatiche libere

Teorema

Sia L un linguaggio *contex-free*, allora esiste una gramatica *context-free* tale che $L(G) = L \setminus \{\varepsilon\}$ e che rispetta le seguenti regole:

- Non esitono ε -produzioni quindi produzioni con la forma $A \to \varepsilon$.
- Non esistono produzioni d'unità $A \rightarrow B$.
- Non esistono non-terminali "inutili" ovvero non-terminali che non appaiono mai in alcune stringhe terminali.

Nota

Ogni produzione $A \to \beta$ in G è tale che o β è un singolo terminale oppure $|\beta| \ge 2$.

Eliminazione delle ε -produzioni

- Trovare tutti i non-terminali *nullable*, ovvero tali che $A\implies {}^*arepsilon$
 - Base: se $A \to \varepsilon$ è una produzione, allora A è *nullable*.
 - Iterazione: se $A \to Y_1 Y_2 \dots Y_n$ è una produzione e $Y_1 Y_2 \dots Y_n$ è *nullable* allora anche A lo è.
- Sostituire ogni produzione $A \to Y_1 Y_2 \dots Y_n$ con una serie di produzioni dove le combinazioni *nullable* di Y_i sono rimosse dal body della produzione.
- Eliminare le produzioni $A \to \varepsilon$.

Esempio

 $S \to ABC|abc$

A o aB|arepsilon

B o bA|C

C oarepsilon

Ora eseguo i passaggi per eliminare tutte le ε -produzioni:

- A e C sono annullabili per $A \to \varepsilon$ e $C \to \varepsilon$
- $B \ \$ è nullable per $B \to C$ visto che $C \ \$ è nullable
- S è nullable perchè in S o ABC A, B e C sono nullable

La grammatica così diventa:

S o abc|AB|A|B

A o aB|a

B o bA|b

Pumping lemma per cfl

Lemma

Sia ${\cal L}$ un linguaggio libero, allora:

- ullet $\exists p \in \mathbb{N}^+$
- $ullet \ \ orall z \in L \ ext{tale che} \ |z| > p$
- $\exists u, v, w, x, y$ tali che:
 - $ullet z = uvwxy \wedge ullet$
 - $ullet |vwx| \leq p \wedge ullet$
 - $ullet |vx|>0 \ \land$
 - $ullet \ \ orall i \in \mathbb{N} \ | \ uv^iwx^iy \in L$

Dimostrazione

Sia L un linguaggio libero, il lemma vale per p>0 e quindi per parole diverse da ε .

Consideriamo ora la grammatica nella forma ripulita G tale che L = L(G).

Così facendo nell'albero di derivazione ogni percorso dalla radice alle foglie attraversa tanti non-terminali quanti salti fa.

Poniamo p come la lunghezza della parola più lunga ottenibile dall'albero di derivazione che ha come altezza il numero di caratteri non-terminali della grammatica (quindi non ci sono non-terminali ripetuti).

Poniamo quindi $z \in L$ tale che |z| > p, allora esiste un albero di derivazione per z la cui altezza è strettamente maggiore del numero di non terminali.

Consideriamo ora il percoso più lungo da radice a foglie e la coppia dello stesso non terminale più in profondità lungo il percorso.

Con profondità della coppia intendiamo la profondità della seconda occorenza andando bottom-up.

Chiamiamo A_1 e A_2 la coppia di un terminale A, allora esieteranno due diversi sotto-alberi (ricordiamo che z=uvwxy).

Vedremo ora, graficamente, che $uv^0wx^0y\in L$ e $uv^1wx^1y\in L$, quindi $orall i\in \mathbb{N}\mid uv^iwx^iy\in L$.

Allora $\forall i \in \mathbb{N} \mid uv^iwx^iy \in L$, con $|vwx| \leq p$.

Dalla scelta della tupla (A_1, A_2) l'altezza del sotto-albero con radice A_2 è minore rispetto al numero di non-terminali, quindi la lunghezza è limitata superiormente da p.

|vx|>0 è dato dal fatto che la grammatica G è nella forma "ripulita" e se $A\implies {}^*\alpha A\beta$ allora almeno uno dei due simboli (α,β) deve fornirne uno ulteriore.

Applicazioni pumping lemma

Questo lemma viene usato per dimostrare che un linguaggio L **NON** è libero. Lo schema per la dimiostraione è il seguebte:

- Assumiamo che il linguaggio *L* sia libero.
- Dimostriamo che L infrange la tesi del lemma, quindi $\exists i \in \mathbb{N} \mid uv^iwx^iy \notin L$.
- Dimostriamo per contradizione che L non è libero.
 A livello operazionale si procede per step nella dimostrazione:
- 1. Scegliamo un qualsiasi numero naturale p.
- 2. Scegliamo una parola z più lunga di p e che appartenga al linguaggio.
- 3. Spacchettiamo ora z in uvwxy in modo tale che $|vwx| \le p \land |vx| > 0$.
- 4. Ora dobbiamo trovare un intero i tale che $uv^iwx^iy \notin L$.

Esempio 1

Data la grammatica G dobbiamo dimostrare che non è *context-free*.

$$G: egin{cases} S
ightarrow aSBc \mid abc \ cB
ightarrow Bc \ bB
ightarrow bb \end{cases}$$

Il linguaggio generato è $L(G) = \{a^n b^n c^n \mid n > 0\}$, supponiamolo libero.

Sia p un intero positivo scelto in modo arbitrario, allora $z=a^pb^pc^p$.

Per rispettare le condizioni del lemma vediamo z come z=uvwxy con $|vwx| \le p \land |vx| > 0$. Però notiamo che vx non può contenere sia a che c perchè l'ultima occorenza di a e la prima di c sono ad una distanza p+1, quindi per $k,j\in\mathbb{N}^+$:

$$vwx = a^k \mid a^k b^j \mid b^j \mid b^j c^k \mid c^k$$

Concludiamo che vwx non ha occorenze di a oppure non ha occorenze di c, per cui uv^0wx^0y non può avere la forma $a^nb^nc^n$ quindi $uv^0wx^0y \notin L$.

Per contradizione, grazie al pumping lemma, abbiamo dimostrato che L non è libero.

Esempio 2

Data la grammatica G dobbiamo dimostrare che non è *context-free*.

$$G: egin{cases} S
ightarrow CD \ C
ightarrow aCA \mid bCB \mid arepsilon \ AD
ightarrow aD \ BD
ightarrow bD \ Aa
ightarrow aA \ Ab
ightarrow bA \ Ba
ightarrow aB \ Bb
ightarrow bB \ D
ightarrow arepsilon \end{cases}$$

Dobbiamo per prima cosa trovare il linguaggio generato L (dioca \odot).

Dobbiamo aguzzare la vista e notare alcune particolarità.

D va solo in ε quindi la stringa può crescere solo verso la C.

Il delimitatore *D* che fa sviluppare i non-terminali alla sua sinistra.

Quando un terminale a o b è a destra del non-terminale B possiamo scambiare le posizioni di essi.

Tramite un po' di prove troviamo $L = \{ww \mid w \in \{a, b\}^*\}.$

Quindi è libero o meno?

Una buona scelta è prendere $z = a^p b^p a^p b^p$, per cui se decomponiamo

$$a^p = u, \ b^p = vwx, \ a^pb^p = y$$
 questa rispetta $|vwx| \le p$.

Ora poniamo l'indice i=0 per cui la parola diventa $w_1=a^pb^{p-x}a^pb^p$, con x la quantità mancante per via dell'indice.

Possiamo vedere che $w_1 \notin L$ per cui L non è un linguaggio libero.

Esempi noti

- $\{a^nb^nc^n \mid n>0\}$ non è libero
- $\{a^nb^nc^j\mid n,j>0\}$ è libero, concatenazione di due linguaggi $\{a^nb^n\mid n>0\}$ e $\{c^j\mid j>0\}$
- $\{a^jb^nc^n\mid j,n>0\}$ è libero, concatenazione di due linguaggi $\{a^j\mid j>0\}$ e $\{b^nc^n\mid n>0\}$

Pumping lemma per cfl variant

Note iniziali

Trasformiamo una grammatica G' in una grammatica in *Chomsky normal form* G, quindi avrà la forma.

$$G: egin{cases} A
ightarrow a \ A
ightarrow A_1 A_2 \ dots \end{cases}$$

Dimostrazione

Sia k il numero di non terminali in G e che essendo in *Chomsky nomrla form* l'albero di derivazione di L(G) sarà sempre un albero binario del tipo:

Pongo allora $p=2^{k+1}$ e $z\in L$ tale che $|z|\geq p$, allora l'albero di derivazione di z avrà almeno k+2 livelli.

Il percorso più lungo attraversa k+1 non terminali, quindi c'è almeno una coppia lungo il percorso.

Da qui si prosegue come nella dimostrazione del pumping lemma per cfl "normale".

Non chiusura rispetto all'intersezione

Lemma

La classe dei linguaggi liberi non è chiusa rispetto all'intersezione.

Dimostrazione

Per dimostrare la non chiusura basta trovare un esempio che la viola, eseguiamo questa dimostrazione in modo "empirico".

Prendiamo due linguaggi liberi:

$$L_1 = \{a^n b^n c^j \mid n, j > 0\}$$

$$L_2 = \{a^j b^n c^n \ | \ n, j > 0 \}$$

La loro intersezione sarà $L_3 = L_1 \cap L_2$:

$$L_3 = \{a^n b^n c^n \mid n > 0\}$$

Rifacendoci agli esempi noti visti in precedenza sappiamo che questo linguaggio non è libero, abbiamo quindi trovato un contro esempio per la chiusura rispetto all'interseione.