Total-Dose Radiation Effects Data for Semiconductor Devices

1985 Supplement

Keith E. Martin Michael K. Gauthier James R. Coss Armando R. V. Dantas William E. Price

(NASA-CR-176557) TOTAL-DOSE RADIATION REFECTS DATA FOR SEMICONDUCTOR DEVICES: 1985 SUPPLEMENT, VOLUME 1 (Jet Propulsion ab.) 132 p HC A07/MF A01 CSCL 20L

Unclas 6 05452

October 15, 1985

NASA

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Total-Dose Radiation Effects Data for Semiconductor Devices

1985 Supplement

Keith E. Martin Michael K. Gauthier James R. Coss Armando R. V. Dantas William E. Price

October 15, 1985

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology

ABSTRACT

This document provides steady-state, total-dose radiation test data, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume I provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume II provides total-dose radiation test data on integrated circuits.

Volume I of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume I, JPL Publication 81-66.

Volume II of the 1985 Supplement will be published at a later date.

INDEX OF DEVICE TYPES

VOLUME I

Device Type	Device Number	Vendora	Page	Device Number	Vendora	Page
Diodes	MZ4626	MOT	6-3	502048	SCN	6-7
Bipolar	2N918	мот	6-11	2N3019	мот	6-35
Transistors	2N1304	TIX	6-12	2N3350	MOT	6-36
	2N2222	MOT	6-16	2N3501	MOT	6-37
	2N2222	RAY	6-17	2N3637	MOT	6-40
	2N2369	MOT	6-18	2N3700	NSC	6-42
	2N2432	TIX	6-19	2N3799	TIX	6-45
	2N2484	MOT	6-21	2N3964	MOT	6-46
	2N2658	SOD	6-22	2N4150	SOD	6-47
	2N2907	MOT	6-23	2N4150	UTR	6-53
	2N2907	RAY	6-24	96EJ103	SOD	6-56
	2N2907	TIX	6-25	MQ2219	MOT	6-58
1	2N2920	MOT	6-27	SDT3323	SOD	6-59
	2N2920	RAY	6-30	SDT3423	SOD	6-61
	2N2920	TIX	6–31			
Field Effect	2N4338	SIL	6-64	IRF150	INR	6-75
Transistors	2N4391	SIL	6-65	J230	SIL	6-90
Transistors	2N4391	MOT	6-67	U401	SIL	6-92
	2N4867	SIL	6-72	U423	SIL	6-104
Optical Devices	TIL24	TIX	6-109			

^aSee Appendix A for Vendor Identification Code.

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

I.	INTR	RODUCTION	1-1
II.	DOCU	MENT USES AND LIMITATIONS	2-1
III.	GENE	RIC DEVICE TYPE INFORMATION	3-1
	Α.	DIODES	3-1
	В.	BIPOLAR TRANSISTORS	3-1
	C.	FIELD EFFECT TRANSISTORS (FETs)	3-2
	D.	OPTICAL DEVICES	3-2
IV.	RADIA	ATION SOURCES AND DOSIMETRY	4-1
	Α.	DYNAMITRON	4-1
	В.	COBALT-60 SOURCES	4-1
v.	TEST	SETUP AND PROCEDURES	5-1
	Α.	GENERAL REMARKS	5-1
	В.	TESTING WITH A MATRIX BOARD	5-1
	C.	TESTING WITHOUT A MATRIX BOARD	5-2
	D.	TESTING AT BREL	5–2
VI.	DATA	PRESENTATION	6-1
	Α.	GRAPH NOMENCLATURE	6-1
	В.	DIODES	6-2
	c.	BIPOLAR TRANSISTORS	6-9
	D.	FIELD EFFECT TRANSISTORS (FETs)	6-63
	Ε.	OPTICAL DEVICES	6-108

PRECEDING PAGE BLANK NOT FILMED

APPENDIXES

	Α.	VENDOR CODE IDENTIFICATION LIST	A-1
	В.	SEMICONDUCTOR DEVICE ELECTRICAL PARAMETER SYMBOLS AND ABBREVIATIONS	B-1
Figures			
	1.	Diagram of the Test Setup for Dynamitron Testing	5-2
	2.	Graph Format Description	6-2
<u>Table</u>			
	1.	Determination of Final h_{FE} , Given Initial h_{FEo} and Post-Irradiation $\Delta(1/h_{FE})$	6-10

SECTION I

INTRODUCTION

The data presented in this report describe the results of Total Ionizing Dose (TID) tests of semiconductor devices (Volume I) and integrated circuits (Volume II). The data were obtained by the Jet Propulsion Laboratory (JPL), under contract to NASA, in order to assure the "hardness" (radiation resistance) of components to be used in a variety of radiation environments. However, the data are applicable to any ionizing radiation environment. Two primary radiation sources were used: a Cobalt-60 gamma ray source and a 2.5 MeV electron Dynamitron. Irradiations of complex ICs were subcontracted to the Boeing Radiation Effects Lab (BREL), Seattle, Washington, where the necessary computerized test equipment was available, but the work was subject to JPL specifications and procedures. The data presented here (Volume I of the 1985 Supplement) are primarily in a graphic format for various device operating conditions as a function of dose. Some measure of the statistical variations of each device lot is provided by the tabulated standard deviations and a statement of sample size. Irradiations of different lots of a given device type are treated as separate tests.

In Volume II, the information on some integrated circuits is presented in tabular format. For more complex large-scale integration (LSI) devices, the data are given in a narrative form, which gives proper emphasis to the radiation-induced changes in measured parameters. Volume II of the 1985 Supplement will be published at a later date.

All data taken here substantially meet the specifications of MIL-STD-883, Method 1019.1 for environments where short-term annealing is not a relevant problem. Three or more radiation levels at room temperature were performed, with electrical parameter measurements typically taken within 20 minutes of the completion of an irradiation, and a worst-case bias for JPL's systems applications sustained during irradiation.

An additional publication is scheduled for release in late 1986. This publication will present design guidelines regarding Single Event Upset (SEU) phenomena in high-energy-particle radiation environments. The original Volume III published in 1981 will not be updated.

SECTION II

DOCUMENT USES AND LIMITATIONS

The purpose of this report is to provide test data for semiconductor devices exposed to a steady-state TID irradiation. As such, it offers a useful radiation response comparison of different devices that might be considered in the development (circuit design) of a radiation-hardened system. It also offers a quick method for assisting an engineer to determine the weak links in an existing system, and the maximum radiation tolerance of the system as a whole.

The data presented here cannot, in any way, be used as a substitute for a comprehensive testing program of the devices actually used in a given system, but is intended as a useful guideline for device selection. It will be clear on inspecting the data that there are large lot-to-lot, or wafer-to-wafer, variations in the sample response of a given device type. The difference in response from functionally identical devices fabricated by different manufacturers is, of course, much greater. There was no attempt to remove maverick (outlier) devices from the data plots; thus, some data plots may appear anomalous when compared to other plots for the same device type. Finally, there is always the likelihood that given manufacturers will make minor adjustments in their processing procedures that will result in major differences in device radiation response.

SECTION III

GENERIC DEVICE TYPE INFORMATION

Some generalized comments appropriate to each generic device type are provided in the following subsections, and a description of vendor identification codes is provided in Appendix A. The mean of the electrical parameters measured for each generic device type is given on the ordinate of the graphs, and a detailed description of these parameters is provided in Appendix B.

A. DIODES

Radiation tests of diodes have been very limited for space programs because of the inherent radiation hardness at the total dose level of 300 krad(Si) (Galileo Project specification). However, testing may be required for special high-precision applications or for higher total-dose environments where large (orders of magnitude) increases in the leakage current can be expected.

B. BIPOLAR TRANSISTORS

For convenience, the degradation in transistor gain (h_{FE}) is plotted as $\Delta(1/h_{FE}) = 1/h_{FE\varphi} - 1/h_{FE\varphi}$, where $h_{FE\varphi}$ is the value at the specified radiation level, and $h_{FE\varphi}$ is the initial value. Implicit in this approach is the assumption that the radiation behavior can be approximated by the well-known formula:

$$\Delta(1/h_{FE}) = K\phi$$

where φ is the dose (or fluence) and K is a damage constant that depends on the device and collector current, $\mathbf{I}_{\mathbb{C}}.$

C. FIELD EFFECT TRANSISTORS (FETs)

Junction-gate field effect transistors (JFETs) have a considerably higher tolerance to radiation-induced bulk damage than bipolar transistors because they are majority-carrier devices. Therefore, most tests were conducted using electron irradiations. Key parameters plotted as a function of dose include I_{GGS} , I_{DSS} , V_{GS} , transconductance, noise voltage, and I_{D} (off). (See Appendix B.)

D. OPTICAL DEVICES

The optical device type is an infrared-emitting diode (IR-LED). The emission efficiency of GaAs LEDs is greatly reduced by irradiation.

SECTION IV

RADIATION SOURCES AND DOSIMETRY

A. DYNAMITRON

The Dynamitron accelerators at JPL and BREL provide a 2.5-MeV beam with a beam-current range of 10^8 to 10^{10} electrons/cm²/sec. All tests described here were irradiated with exposure times between 5 and 45 minutes.

The test geometry for the two Dynamitrons is essentially the same in that the electron beam reaches the devices after passing through a 0.05-mm titanium window, copper and aluminum scattering foils, and 0.9 m of air. Each of these materials scatters the electrons slightly so the beam has a reasonable uniformity (<20%) over the device array under test. The device array is confined within a 25-cm-diameter circle perpendicular to the beam direction, and at the center of this circle is the aperture of a vacuum Faraday cup, which is used to control the electron-beam flux and fluence. The beam is centered on the Faraday cup with a quadrupole magnet prior to the installation of the test samples, and the Faraday cup output current fed into a current integrator, which is calibrated daily with a calibrated current source. The integrator is set to automatically shut off the electron beam when the desired fluence level is received by the Faraday cup.

B. COBALT-60 SOURCES

The Cobalt-60 gamma ray sources at JPL and BREL were both used. The gamma rays consisted primarily of 1.17 and 1.33 MeV photons with a consistent spectrum of lower-energy photons and secondary electrons arising from scattering and absorption. The gamma field was uniform within ± 10 percent in the area where parts were exposed, which was verified by thermoluminescent dosimetry (TLD), consisting of lithium fluoride/Teflon microrods. The main source

calibration was performed with Landsverk ion chambers of ±2 percent accuracy, traceable to the National Bureau of Standards, and monthly dose rate computations were performed to account for the Cobalt-60 decay. Exposure times with the Cobalt-60 sources were typically 5 to 20 minutes for each radiation level, but longer times (up to 4 hours) were required for high-dose applications because the maximum uniform dose rate available was 50 rads/second.

SECTION V

TEST SETUP AND PROCEDURES

A. GENERAL REMARKS

The test setup and procedures used to gather these data were developed in accordance with MIL-STD-883 specifications. All tests were done at $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$, using low noise power sources and instrumentation subject to periodic calibration. Some tests were performed in situ (without removing the test devices from the radiation area), whereas others required remote testing. In the latter event, a mobile bias fixture was used to maintain bias, except during the brief measurement period.

A detailed test plan was written for each test. This plan included device description, irradiation bias conditions, radiation levels, electrical parameters to be measured, and measurement conditions. The data were processed by both hand and computer, and the calculation of normal standard deviations was made after deletion of clearly erroneous data. Each graph has a log number and can be retrieved if required by specifying the log number to the Radiation Effects Group (Section 514) at JPL.

B. TESTING WITH A MATRIX BOARD

A matrix board switching system was built to be used as a master control panel and was set up outside the irradiation area. The matrix board interfaces the devices under test (DUT) to the power supplies and measurement equipment via a special 15-meter (50-foot), double-shielded cable (see Figure 1). A built-in potentiometer for each DUT can be used to control bias voltages and currents. The matrix board was designed with very high insulation resistance so that very low current measurements (10-50 pA) can be made. When not being tested <u>in situ</u>, devices are removed from the radiation area for measurements.

Figure 1. Diagram of the Test Setup for Dynamitron Testing

C. TESTING WITHOUT A MATRIX BOARD

For tests that are not in situ, the DUTs are removed from the site for approximately 20 minutes between each radiation level. A mobile bias (battery) is applied to the devices at all times except during parameter measurements. Remote measurements include tests at a Lorlin Impact 100 pulsed tester for some of the transistors, and readings from a Tektronix 178/577 curve tracer for testing some operational amplifiers. Occasionally, custom test circuits are used in the test to simulate the device application.

D. TESTING AT BREL

A number of ICs were tested for JPL by BREL personnel. Most of these tests were not in situ. Complex LSI devices such as A/D converters, memories, and microprocessors were irradiated with the BREL Dynamitron or Cobalt-60 sources and tested on a Tektronix 3260 computerized IC tester by test programs written by BREL to JPL's specifications.

SECTION VI

DATA PRESENTATION

A. GRAPH NOMENCLATURE

The data are presented in this section, and a sample graph, explaining the nomenclature, is shown in Figure 2. Each of the electrical parameter data plots is represented by a single line per graph except for bipolar transistor data, which use multiple lines to represent different collector currents. A table at the bottom of each graph lists the test conditions when applicable, and the normal standard deviations of each data point at each dose level.*

Date codes usually indicate when the device was packaged. For example, 8420 indicates the device was packaged in the twentieth week of 1984. If no date code is available, the space may be used for other identifying numbers such as wafer number or lot number.

^{*} The log-normal distribution actually provides a better fit to most radiation data than the normal distribution. Hence, caution should be exercised in estimating worst-case conditions based on the limited statistical data presented herein.

Figure 2. Graph Format Description

B. DIODES

Diode radiation tests have been very limited for space programs because of the inherent radiation hardness at the total worst-case dose levels [300 krad(S1)]. Testing may be required for special high-precision applications or for higher total-dose environments where large (orders of magnitude) increases in the leakage current can be expected.

AM AI NA M

MEAN VF (0.5 MA) VDC

TEST DATE 2-14-84 & 2-15-84

DEVICE TYPE SØ2048 (SCHOTTKY DIODE)

MFG SCN 10DEVICE(S)

(2) VF(0 5 MA) VDC vs DOSE	TABLE OF NORMAL STANDARD DEY	DOSE, rads(Si)	3E4 75E4 15E5 3E5 6E5	4 2E-3 4 6E-9 6E-9 4 SE-9 2 TE-9
(2) VF	TABL		3E	4 2

TABLE OF NORMAL STANDARD DEVIATIONS

DOSE, rads(Si)

75E4 15E5 3E5 6E5 12E6

3E4

2 TE-2 5 IE-2 6 EE-2 8 TE-2 1 3E-1 1 EE-1

INITIAL MEAN VALUE (IR MA) = 28E-1

VIATIONS

1 2E6

INITIAL MEAN VALUE VF(0 5 MA) VDC = 3 2E-1

(3) VF(2.0 MA) VDC vs DOSE

TABLE OF NORMAL STANDARD DEVIATIONS

DOSE, rads(Si)

3E4 7.5E4 15E5 3E5 6E5 1.2E6

3 2E-3 3 8E-3 4 5E-3 3 4E-3 2 1E-3 1 3E-3

INITIAL MEAN VALUE VF(2.0 MA) VDC = 38E-1

C. BIPOLAR TRANSISTORS

Transistor gain (h $_{FE}$) degradation is plotted as $\Delta(1/h_{FE})=1/h_{FE\phi}-1/h_{FEo}$, where $h_{FE\phi}$ is the value at the specified radiation level, and h_{FEo} is the initial value. This subject was discussed in Section III, paragraph B.

A method of determining the final h_{FE} , when the initial h_{FE} and post-irradiation $\Delta(1/h_{FE})$ are known, is shown in the following example for a 2N2222 device type at V_{CE} of 20 V at 300 krad(S1).

- 1. Scale the value of $\Delta(1/h_{FE})$ from the applicable graph for a 2N2222 transistor at the stated conditions. In this example, $\Delta(1/h_{FE})$ is determined to be 0.008.
- 2. Determine the minimum specified pre-irradiation h_{FE} for this device type. In this example, the initial specified minimum h_{FE} is 100. Then proceed as follows:

$$h_{FE}(final) = \frac{1}{\Delta(1/h_{FE}) + \frac{1}{h_{FEO}(initial)}}$$

$$h_{FE}(final) = \frac{1}{0.008 + \frac{1}{100}} = 55.6$$

Table 6-1 may also be used to determine the final h_{FE} . Locate the post-irradiation $\Delta(1/h_{FE})$ value in the left-hand column, and the initial h_{FE} on the top row. The column and row intersection is the final h_{FE} .

The data on leakage and saturation currents are plotted directly as a function of dose.

ORIGINAL PAGE IS DE POOR QUALITY

Table 1. Determination of Final $h_{\rm FE}$, Given Initial $h_{\rm FEo}$ and Post-Irradiation $\Delta(1/h_{\rm FE})$

													
	400	333 313 286	222	200 187 167	154	118	95 2 87 0		69 0	60 6 57 1	51 3 44 4 36 4		13 8 12 1 10 8 9 76
	350	294 278 256	204	185 170 156	115	112	91.7		47 1 62 9	59 2	50 1 43 7 35 8		13 7 12 1 10 8 9 72
	300	263 250 233	189	172 159 147	137	108 97 1	88 5		65 4	57 8 54 6	19 1 42 9 35 3		
	250	222 212 200	167	154 143 133	125	100	83 3		62 5 58 8	55,6 52 t	41 7 34 5		13 5 11 9 10 6 9.62
	200	102 175 167	143	133 125 118	= %	90 9 83 3	76 9		58 B 55 6	52 6 50 0	45 5 10 0 33 3		13 3 11 8 10 5 9.52
	170	156 152 145	127	113	101	84 0	71 9	. 6	55 9 52 9	50 3	43 7 38 6 32 4	0 8 0 8	,
	150	139 135 130	115	103 103 98 0	93 8 85 7	79 0	63 8	0 0	53 G 50 8	48 3	42 2 37 5 31 6	04.00	13 0 11.5 10 3 9.28
	140	132 128 124	9 3	104 99 0 94 3	90 1	76 3	66 2	. 22 -	52 4 49 8	47 4 45 3	41 5 36 9 31 2	1 8 7 8 6	13 0 11 5 10 3 9.34
	130	122 119 115	103	98 0 73 5 89 3	85 5	73 0 68 0	63 7	2 2 6	50 8 48 3	46 1	40 5 36 1 30 6	4000	0 4 7 6
	120	1114	, i so e	92 3 88 2 84 3	81 1	69 8	61 2	2 2	49 2	44 K	35.3 30.0	0 7 8 9	
l	110	104 102 99 0		86 2 82 6 79 4	76 3	66 2	58 5) 4 L	474	43 3	38 3 34 4 29.3	- 4 G W	
	100			76 9 74 1	71.4	62 5	55 6 52 6	0 0	45 5	41 7	37 0 33 3 28 6	200 6	
	95	90.9 89 3 87 0		76 9	69 0	60 6 57 1	54 1	າ ຜູ້ເ	44 4 4 4 4 4 6	19.2	36 4 32 8 28 2		
	90	1	1	73 5 70 9 68 5	66 2 62 1	58 5 55 2	52 4	2 T E	13 3	39 8	35 6 32 2 2 2 7 7		
	85			69 9 67 6 65 4	63 3	56 2	50 5	4 6 4	42 0	38 8 37 3	31.5		2 8 8 2
낊	80			66 7 64 5 62 5	60 6	54 1	48 8	. 4 0	40 8 39 2	37 7	33 9 30 8 26.7		7 8 9 6
ے	75	1		63 3 61 4 59 5	57 8 54 6	51 8	47 0 44 B		39 5	36 6 35 3	33 0 30 0 29.6		
	70			59 6 57 9 56 2	54 7	49 3	44 9	2 5	38 1 36 6	35 1	32 0 29 2 25 5		
	65			55 9 54 4 52 9	51 6 49 0	46 7	42 7	4 4	36 5	_	30 9 28 3 24.7		7 0 0 7
	09	58 1 57 5 56 6		52 2 50 8 49 5	48 4	44 1	40 5	2	34.9	32 6 31 6	27 3 24 0 24 0	E 9 0 0	S 5 8 5
	55	22 3.		48 3 47.2 46 1	45 1	41 3 39 7	38 2	. r. e	33 1		26 2 23 3		6. 6. 6. 6
	20	l .	45.5	44 4 43 5 42 6	41 7	38 5 37 0	35 7	. .	31 3	29 4 28 G	27 0 25 0 22 2 2	12 - 6 6	- 0 8 8
	45	l		39.7 38.9	38 2	35 5	33 1	31 1	29 2 28 4	27 6 26 9	25 5 23.7 21. 2	• 1	1 1
	40			36 4 35 7 35 1	34 5	32 3	30 3	7 0 1	3 0	25 6 25 0	23 8 22 2 20 02		10.5 9.52 8.70 8.00
	35	34 4 34 1 33 8		32 2 31 7 31 2	2 6	28 9 28 1		3 0	24 7	23 5 23 0	21 9 20.6 18 7	15 8 14 6 12.7	10.1 9.21 8.42 7 81
	30	29.6 29.4 29.2	28 3		· ·	4 8	24 2	23 1 22 6	22 1	21 1 20 7	19 9 18 8 17 2	9996	
	25	24 7 24 6 24 4	23 8	3 2	22 7	21 7	8 0 0	9 6	9.2	18 5	17 5 16 7 15 4	13 3 12 5 11 1	9.09 8.33 7.14
	20	80 - 90	7 1 2	19 0 18 9 18 7	18 5	8 17 9 6 17 5	17.2	16 7	16 1	15 6 15 4	14 3	11.8	8.33 7.69 7.14 6.67
	15	9 41 9 4 9 8 41	9 9	14 5 14 3 14 3	14 1	13 8 13 6	13 4	13 0 16 7 2	12 7	4 2	11.5	9 83 11.8 9 9.38 11.1 8 57 10.0	7 32 6 82 6.38 6.00
	12	11 9	11.7	11 6	11 5	2	10 0	10 7	10 T	10 1	10 0 9 67 9 23	8 48 9 7 7 50 8	6 52 6 12 5.77 5 45
	10	9 95 9 93 9 90	08 6	9 76 9 71 9.66		43	9 26	9 09	8 93		8 62 8 33 8 00 8 00	7 41 6 67 6	
]; ;;;	<u>4</u>)∇	0005	302	003		900	 	010		014	 	 	
ــــــــــــــــــــــــــــــــــــــ		L							تنا			1	

8000 9000. TABLE OF NORMAL STANDARD DEVIATIONS DOSE, kilorads(Si) 6000 9000 .000 .0003 △(1/h_{fE}) VS DUSE .0005 .0004 . 8888 ر ج ه 10.00 10.00 100.0 1000. lc (uA) CURVE A B O D

		_															, S						
12-1-82	$oxed{H}$		$\frac{1}{1}$	-							H	$\frac{1}{1}$					•			•	909	900	883
=				\downarrow		7			I		H	1		\ddagger				SUC		H ION	kilorads(Si)		.0088
A TOTAL	H	+	+	+	7	+	-		1	_	H	\dagger	_	+			7	electro	پېر	DEVIPTIONS	E, kilor 150	Ι.	!
TRANSISTOR ICES TEST DATE	H	_	7	7	\dashv		-		P			7	7	4			~ C -	MeV o	S DOSE	STANDARD	S	9	3 .0063
TRANS			\downarrow	\downarrow	\dashv		1					\pm	\dashv		Ç		• 10 ⁵	125	SA (3		75	.0251	.0073
2N13O4 TRA 6 DEVICES 0876			\downarrow	1	\dashv					9	\parallel	+	_				•	ads(S)	Δ(1/hrg)	NORMAL	A 3	0.0	0.0
177E. 24	H		+	7	7		F				H	1	7				7	DOSE, rads(Si) 25 MeV electrons	V	Ą	Ic (mA)	1	88
유 도 독	Н			\pm							Н	1					1.5 2	۵		TABLE		.	
DEVICE HFG. T REF: J						****	ļ	ļ	ļ							,,,,,	ğ				CURVE	α	80
•	2	•	'n	•	-		~		2		9 97	•	•		N .		2						
						(3	/ به	1)7	,	uo	9	1											

CE TYPE: 2N1304 TRANSISTOR NON TIX 6 DEVICES TEST DATE 12-1-62	JPL LOG 0874 DATE CODE												5 2 3 4 5 6 10 ⁵ 1.5 2 3 4 5 6 10 ⁶	DOSE, rads(Si) 25 MeV electrons	Δ(1/h _{FE}) VS DOSE	TABLE OF NORMAL STANDARD DEVIATIONS	VE 1c Va DOSE, kilorads(Si)	1000 10.0 0094 .0200 .0249	000	10:00 10:0 0018 0050 0051
DEVICE TYPE:	ቒ												"	SOO			CURVE 1c (mA)		B 1 000	ĺ
		0	o so	₹ 7		: •	uo	. el	1	e	 ~	: F)	D							

ORIGINAL PAGE IS OF POOR QUALITY

A(1/h_{FE}) VS DOSE

TRBLE OF WIRNAL STANDARD DEVIATIONS

CURVE i. Va. DOSE, kilorads(Si)

2 1,000 20 0 7047 7063 9076 7069

C 1,000 500 7054 7063 9076 7059

D 1,000 500 7059 7059 7051

E 1,000 20 0 7019 7025 7032 7030

F 20 00 20 0 7013 7017 7025 7033

DEVICE TYPE AY2222 NPN TRANSISTUR "FG MOT 3 DEVICES TEST DATE 6-16-84 REF JPL LOG 1069 OATE CODE SLID3A """ """ """ """ """ """ """	DOSE, rads(Si) 2 5 MeV electrons
O O O O O O O O O O O O O O O O O O O	

								_
	Ş	(15	600	0048	2053	6100	2013	1200
	STANDAPO DEVIATIONS	OOSE, kilorads(Si)	300	0900	9069	22,55	0020	2053
DOSE	PO DE	SE, ki	150	0041	9700	2016	2213	9019
3 18	STANDE	ă	75	9038	7044	2015	0013	9014
A(1/hre) VS DOSE	NORMAL	٧۾: –	(^)	20.0	800	200	20 02	20 02
4	TABLE OF NORMAL	٦,	(AB)	0001	1000	2000	1 000	2 2 2
	<u>1-</u>	CURVE		a)	ں	ດ	u	£L.

A(1/h_{FE}) VS DOSE

H.	BLE OF	TABLE OF NORMAL STANDARD DEVIGTIONS	STAND	AC CAF	VI9T:Or	S)
CURVE	Ic	٧ ح	Q	DOSE, kilorads(Si	orads(Si)	
	(AA)	(^)	75	150	300	900
В	. 1000	20 0	.0063	.0059	.0046	.0042
U	1000	200	7900	.0062	6700	.0044
۵	1 000	200	.002J	.0022	0020	0019
ш	1.000	20.02	9200	.0021	9039	0019
ш	20.02	20.0	.0004	.0004	.0004	.0004

OSE, raus(SI) 2.3 MeV electrons A(1/h_{FE}) VS DOSE

CURVE 1c (mA)						?
(m)		8	٥	DOSE, kilorads(Si	orads(Si)	
		(v)	75	150	300	900
A 2.000	100	0.0	0012	.0026	.0042	.0047
B 2.000	ā	0.0	.0034	9900.	6600.	.0126
C 10.00	a	400	.0011	.0022	.0032	9500.
0 55.00	O	400	.0022	.0039	. 2062	.0078

DC GAIN vs DOSE INITIAL MEAN DC GAIN VALUE = 46.5 @ 1.0 mA 60.2 @ 10.0 mA 71.7 @ 100 0 mA

P1CO 0014 1000 2000 TABLE OF NORMAL STANDARD DEVIATIONS 0012 .0032 . 0006 0014 DOSE, kilorads(Si) 2012 0000 **** 30003 **** 9000 150 .0008 2000 .0002 9992 20 02 20 0 500 500 . 1909 1 000 1 000 10 00] (၉၅) CURVE 000000

0003 .0003 2005 .0007 7000 TABLE OF NORMAL STANDARD DEVIATIONS 300 .0006 .0003 DOSE, kilorads(Si) 200 150 7000. .0002 2000 A(1/h_{fE}) VS DUSE 000 .000J .0002 .0007 1000 2000 .000 20.0 500 500 20 02 000 t .1000 1.000 ၂၀ (၅၅) CURVE **8000日**年

0137 0130 0029 .000

8 8 8 8 6 6 6 6

& 60 0

1000 1000 1000 1000 1000

CURVE

10-3

10-2

Mean

(1\h_{FE})

5 DEVICES

MFG: MOT

REF: JPL LOG 1071

100

TABLE OF NORMAL STANDARD DEVIATIONS

CURVE DOSE, Kilorads(Si)

75 150 300 600 1000

A 1.157 5.477 15.41 19.69 21.54

INITIAL MERN VALUE 1050 (NR) = 5.38X10⁻²

DOSE, rads(Si) 2.5 MeV electrons $\triangle (1/h_{f \in \mathbb{C}})$ VS DOSE

1. P.	BLE OF	TABLE OF NOPMAL	STAND	STANDARD DEVIATIONS	ינט נידרפני	Š.
CURVE	Ic	٧.	۵	DOSE, kilorads(Si)	orads(Si)	
	(mA)	(^)	75	150	300	900
0	1000	30.0	2005	S00C.	9000	3005
ں	1000	500	2006	9000.	6000	7000
o	1 000	500	0003	7000	.0004	0003
'n	1 000	30.0	2002	.0003	.0003	2000
u.	20.00	30.0	1000.	0001	0010	1000.

▽(114^E)

Mean

DC GAIN vs DOSE

INITIAL MEAN DC GAIN VALUE = 107 5 @ 1.0 mA

110.5 @ 100.0 mA

DC GAIN vs DOSE INITIAL MEAN DC GAIN VALUE = 72.2 @ 1.0 mA 83.8 @ 10.0 mA

91.8 @ 100.0 mA

D. FIELD EFFECT TRANSISTORS (FETs)

Junction-gate field effect transistors (JFETs) have a considerably higher tolerance to radiation-induced bulk damage than bipolar transistors since they are majority-carrier devices. Therefore, most tests were conducted using electron irradiation. Key parameters plotted as a function of dose include I_{GSS} , I_{DSS} , V_{GS} , transconductance, noise voltage, and I_{D} (off). (See Appendix B.)

TESTS
z
0
H
Н
4
н
a
4
œ

RADIATION TESTS

Total Dose LDSS (Leakage Current) Total Dose S/N AD01 S/N AD02 S/N AD03 S/N AD04 (Krads) S/N AD04 S	Total Dose S/N AD01	S S	S	S/N ADO4046 ohms .046 " .047 " .047 "
309.0 m 178.2 S/N AD03 S/N AD04 S/N AD	!	9	1 .045 1 .045 1 .045 1 .040 1 .	N/S N/S 040 046 040 046 040 040 040 040 040 040
778 uA .774 uA .28 NA .776 uA .777	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB * * *	1.045 1.064 1.044	. 046 ohn . 047 . 047
778 778 778 778 778 778 779 779 779 779	0,00		140	. 046 . 047 . 047
779 779 779 779 779 779 779 779 779 779	1 3 1 041	# 240. #	# ##O.	740. 740.
779 " 1784 " 779 " 1779 " 1 1787 1 1787 1 1787 1 1782 1 1782 1 120.0 " 1782.0 " 15.0 "	! ! -	# 1.045 F	# nto.	740.
.780 .790 .778 .778 .780 .780 .780				940.
.826 .871 .780 .780 .780 .790	-	# 770°	# tto.	
1.13		* ##0. "	1 .043	- 9#0
4.44 * 15.0 * 		# 1.043 #	1 .043	.045
20.0	-	. 043	1.042	. 045
1309.0 " 1782.0 " 12.3 "		* 1.043 *	. 042	. 045
	1 40 1.038	m .042 m	. 041	10.
1.14 MA 3.82 MA 90.0 "	1 50 1 .038	" .042 "	1.041	. 045
250.0 uA 15.4 " .80 MA	-	m .043 m	1.041	. ott.
22.8 MA 61.8 " .250 uA	1 150 .068	# 1.043 #	1.041	170.
1230.0 " 115.0 " 13.8 MA	1 300 1 .071	# 9to. #	.042 #	. 045

ORIGINAL PAGE IS OF POOR OUGLITY

ORIGINAL PAGE IS OF POOR QUALITY

E. OPTICAL DEVICES

Each optical device uses a Gallium Arsenide (GaAs) infrared-emitting diode (IR-LED). The emission efficiency of GaAs LEDs is greatly reduced by irradiation due to bulk damage.

TABLE OF NORMAL STANDARD DEVIATIONS TEST DATE 12-15-83 DOSE, rads(Si) 2.5 MeV electrons INITIAL MERN VALUE (RELATIVE OUTPUT) . ZE1 DATE CODE (2) ARELATIVE OUTPUT vs DOSE DOSE, rads(Si) DEVICE TYPE TIL-24 IR-LED MFG TIX 10DEVICE(S) 2 3€ 8 REF JPL LOG# 1023 3.361 핔 -13 -1 35 -1 25 -1 -1 1 -1 55 -1 -1.7 -18 TU9TU0 ∃VITAJ∃R △ TABLE OF NORMAL STANDARD DEVIATIONS TEST DATE 12/15/83 DOSE, rads(S_I) 2.5 MeV electrons 띪 INITIAL KEAN VALUE (RELATIVE CUTPUT) = 2E1 DATE CODE 3 4EB (1) RELATIVE OUTPUT vs DOSE 핕 DOSE, rads(Si) DEVICE TYPE TIL-24 IR-LED MFG TIX 10DEVICE(S) 2 6EB 떲 REF JPL LOG# 1023 ZE1 2 458 ם 8 17 98 18 55 र् ह 18 2 19 15 18 6 18 5 16 45 18 35 18 3 18 18 1 18 TU9TU0 3VITAJ3R

띪

2 Æ! Ħ

APPENDIX A

VENDOR CODE IDENTIFICATION LIST

VENDOR CODE IDENTIFICATION LIST

- INR International Rectifier Semiconductor, Inc.
- MOT Motorola, Inc., Semiconductor Products Division
- NSC National Semiconductor Corp.
- RAY Raytheon Company
- SCN Semicon, Inc.
- SIL Siliconix Devices, Inc.
- SOD Solitron Devices, Inc.
- TIX Texas Instruments, Inc.
- UTR Unitrode Corporation

APPENDIX B

SEMICONDUCTOR DEVICE ELECTRICAL PARAMETER
SYMBOLS AND ABBREVIATIONS

SEMICONDUCTOR DEVICE ELECTRICAL PARAMETER

SYMBOLS AND ABBREVIATIONS

VG	Gate voltage
gm	Transconductance (FET)
gm_1/gm_2	Transconductance ratio (FET)
h _{FE}	Common-emitter static forward current transfer ratio (gain)
ICBO	Collector cutoff current open emitter
ICEO	Collector cutoff current (dc) base open
ICER	Collector cutoff current (dc)
I _D (off)	Drain cutoff current (FET)
IDSS	Zero-gate-voltage drain current (FET)
$^{\mathrm{I}}\mathrm{DSS}_{1}^{\mathrm{/I}}\mathrm{DSS}_{2}$	Zero-gate-voltage drain current ratio (FET)
IGSS	Reverse gate current (FET)
IGSS ₁ /IGSS ₂	Reverse gate current ratio (FET)
I _R	Reverse leakage current, diode
NOISE	Noise voltage at specified frequency (Hz)
R _D (on)	Drain-source on-state resistance (FET)
R _{EC} (on)	Emitter-collector (on) resistance
V _{DS}	Drain-source voltage (FET)
V _{EC} (off)	Emitter-collector (offset) voltage
V _{GS}	Gate-source voltage (FET)
ΔV_{GS}	Radiation-induced change in gate-source voltage (FET)
v _F	Forward voltage, IR-LED
v_R	Keverse voltage, diode
v_{z}	Reference voltage, diode

B-2