MCS-242: APPLIED STATISTICAL METHODS COMPARISON OF SIMPLE AND MULTIPLE LOGISTIC REGRESSION

	Simple Logistic Regression	Multiple Logistic Regression		
Response Variable type	Binary Categorical Numerical	Binary Categorical Numerical		
Explanatory Variable(s) type	Binary Categorical Numerical	Binary Categorical Numerical		
Model Equation: Logit form	en (T-T) = Bo+BIX	en(1-17) = Bo+BIX, ++ BEXX		
Model Equation: Probability form	n= exp(Bo+B,x)	TT = exp(Bo+B1X1++ BeXe) 1+ exp(Bo+B1X1++BeXe)		
Description of model terms	T= prob. of success Bo= intercept of logit Bi= Slope " " form	Bi=Slope & xi		
Model Assumptions	-linearity between logit (en odds) + x -randomness of oldrome -independence of oldromes	-linearity between logit + xitablach xi		
Graphs used to test model assumptions	empirical logit plot:	empirical logit plots for each xi		
Estimated model equation	(ogitar) = Bo+Bix	logittin) = Bo+B, X,+,++BeXL		

h s	Simple Logistic Regression		Multiple Logistic Regressio	Multiple Logistic Regression	
Can you transform X?	Yes	No	Yes No	=	
Why would you do so?	If x ishows a non-linear relationship with the empirical logits that could be fixed thru train				
Interpretation of slope coefficient	the colds of star extended of succus	willis) the	the odds of success x;+1 are explain the odds of success for xi, hold other vars, constant.	fur delo ling	
	Wald test for	individual coef	ficient (eta_i):	1300	
hypotheses	Ho: BI=O Ha	B,≠0	Ho: Bi=D Ha: Bi ≠i	7	
test statistic	2=B1/SEB, ~NLO,1)		Z= Bi/SEBi NNO,		
CI for individual coefficient (β_i)	B, = 2* SEB,		Bi = Z* SEBi		
CI for odds ratio for 1-unit change in X	exp()		exp()		
	G-test (drop-in-devian				
hypotheses	Ho: modul is useful 18,20		Ho model is useful that	l Bi	
test statistic (and how to find on R)	G=null deviance -residual deviance		same		
distribution & degrees of freedom of test stat	~X;		~ X2 (k= #vars, in	mi	
	Nested dro	p-in-deviance te	est (LRT):		
hypotheses	1,		Ho: reduced model lk, v		
test statistic (and how to find on R)			G=resid. duriance redu -resid. duriana tul		
distribution & degrees of freedom of test stat			$\sim \chi^{a}_{\kappa_2}$		