Overview of the Generalized Linear Model

Shubham Gupta

July 3, 2019

1 Introduction

• We will apply the concepts of Bayesian analysis(inference, MCMC, etc) to a more complex family of models called **generalized linear models** which consists of models such as t-tests, analysis of variance(ANOVA). multiple regression, logistic regression, log-linear models, etc.

2 Types of Variables

- Two main types of variables: **Predictor** and **Predicted** variables.
- Likelihood function expresses probability of values for the **predicted** variable as a function of values of the **predictor** variable.
- Predictor variables are called **depdendant** variables.
- Predicted variables are called **independant** variables.

2.1 Scale types

- Main types are:
 - Metric
 - Ordinal
 - Nominal
 - Count

3 Linear combination of predictors

• GLM expresses influence of predictors as their weighted sum.

3.1 Linear function of a single metric predictor

• Linear functions preserver proportinality.

$$y = \beta_0 + \beta_1 x.$$

• This type of equation is called an **affine**.

3.2 Additive combination of metric predictors

• Add predictor variables for combined effect.

$$y = \beta_0 + \sum_{k=1}^K \beta_k x_k.$$

3.3 Non additive interaction of metric predictors

• Even if the interactions between two predictors are **not linear**, a new feature(like their product or sum) can help make the dataset linear.

3.4 Nominal Predictors

3.4.1 Linear model for a single nominal predictor

• Also called as **one hot encoding**. Split the nomial variables into multiple columns to model the problem.

$$y = \beta_0 + \beta_{[1]}x_{[1]} + \beta_{[2]}x_{[2]} + \dots$$

 $y = \beta_0 + \vec{\beta}.\vec{x}.$

3.4.2 Additive combination of nominal predictors

• Effect of multiple nominal predictors combinations can be represented by:

$$y = \beta_0 + \sum_n \beta_{1[j]} x_{1[j]} + \sum_n \beta_{2[k]} x_{2[k]} + \dots$$

3.4.3 Nonadditive interaction of nominal predictors

- \vec{x}_{1x2} refers to a particular combination of values from $\vec{x_1}$ and $\vec{x_2}$.
- Nonadditive interaction is represented by:

$$y = \beta_0 + \beta_{[1]}x_{[1]} + \beta_{[2]}x_{[2]} + \vec{\beta_{1x2}}.\vec{x_{1x2}}.$$

Table 15.1 For the generalized linear model: typical linear functions lin(x) of the predictor variables x, for various scale types of x

Scale type of predictor x					
Single group	Two groups	Metric		Nominal	
		Single predictor	Multiple predictors	Single factor	Multiple factors
$oldsymbol{eta}_0$	$\beta_{x=1}$ $\beta_{x=2}$	$\beta_0 + \beta_1 x$	$\beta_0 + \sum_k \beta_k x_k + \sum_{j,k} \beta_{j \times k} x_{j \times k} + \begin{bmatrix} \text{higher order} \\ \text{interactions} \end{bmatrix}$	$\beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x}$	$\begin{vmatrix} \beta_0 \\ + \sum_k \overrightarrow{\beta}_k \cdot \overrightarrow{x}_k \\ + \sum_{j,k} \overrightarrow{\beta}_{j \times k} \cdot \overrightarrow{x}_{j \times k} \\ + \begin{bmatrix} \text{higher order} \\ \text{interactions} \end{bmatrix} \end{vmatrix}$

The value lin(x) is mapped to the predicted data by functions shown in Table 15.2.

Figure 1: Typical linear functions