Section 1.5

Problems: 4abc, 5, 6ab, 10a

Problem 4

- a). We see that $f(x) = \frac{x}{x^2-1}$ has derivative $f'(x) = -\frac{1+2x^2}{(x^2-1)^2}$. And for all $x \in (-1,1)$ we see that f'(x) < 0. Consequently, f(x) doesn't "loop back" (for $a, b \in (-1,1)$, if a < b, then f(a) > f(b)), and hence it is injective. We will now show that it is surjective. We see $\lim_{x \to -1^+} f(x) = +\infty$ and $\lim_{x \to 1^-} f(x) = -\infty$, and invoking the intermediate value theorem, we can see that it has a range of $(-\infty, \infty)$, consequently surjective. We see the function $g(x) = \frac{x \frac{a-b}{2}}{(\frac{a-b}{2})}$ describes merely a shift along with a scaling from (a, b) to (-1, 1), thus it is bijective. And h(x) = f(g(x)) is a bejective function (composition of bijective functions is bejiective) which shows $(a, b) \sim (-\infty, \infty)$.
- b). We let $g(x) = \frac{2}{x-a+1} 1$ for $x \in (a, \infty)$. We will first show that the function is injective using contradiction. For $x_1 \neq x_2$, we assume $f(x_1) = f(x_2)$, we see

$$\frac{2}{x_1 - a + 1} - 1 = \frac{2}{x_2 - a + 1} - 1$$

$$\implies \frac{2}{x_1 - a + 1} = \frac{2}{x_2 - a + 1}$$

$$\implies x_1 = x_2$$

Consequently, g(x) is injective. We see that g(x) is continuous for $x \in (a, \infty)$, and $\lim_{x\to a^+} g(x) = 1$ and $\lim_{x\to\infty} g(x) = -1$. Thus, using the intermediate value, we know that x is surjective to the co-domain (-1,1). We know that the composition of two bijective functions is bijective, thus, we we define p(x) = g(h(x)) using h(x) from part a). Finally this shows that $(a, \infty) \sim \mathbb{R}$.

c).
$$f(x) = \begin{cases} \frac{1}{2} & x = 0\\ \frac{x}{2} & x = \frac{1}{2^n} \text{ for } n \in \mathbb{N}\\ x & \text{else} \end{cases}$$

We see that in the case when $f(x) = \frac{1}{2}$, the only solution is x = 0. For $f(x) = \frac{1}{2^n}$, where $n \in \mathbb{N}$, $n \geq 2$, the only solution is $x = \frac{1}{2^{n-1}}$. And for all $f(x) \neq \frac{1}{2^n}$ for some $n \in \mathbb{N}$, the only solution is x = x. Consequently, we have show that f(x) have exactly one solution for all $x \in (0,1)$, thus it is bijective, and so $[0,1) \sim (0,1)$.

Problem 5

- a). For every $x \in A$, f(x) = x is a bijiection from A to A. Consequently, $A \sim A$.
- b). Because $A \sim B$, we know that there exists a bijective function f(x) such that $f: A \to B$. And thus $f^{-1}(x)$ is also bijective and $f^{-1}: B \to A$. Consequently, $B \sim A$

c). Because $A \sim B$, we know that there exists a bijective function f(x) such that $f: A \to B$. From $B \sim C$, we know that there exists a bijective function g(x) such that $g: B \to C$. The composition of two bijective functions with the co-domain of the first equivalent to the domain of the second is also bijective. Thus the bijective function h(x) = f(g(x)) has $h: A \to C$. Consequently, we have $A \sim C$.

Problem 6

- a). $I_1 = (1, 2), I_2 = (2, 3), \text{ and } I_n = (n, n+1), \text{ for } n \in \mathbb{N}$
- b). We let M be an uncountable set, and let I_m for $m \in M$ to be the collection of uncountable disjoint intervals. Namely, $I_m = (a_m, b_m)$. From the theorem of the density of the rational number which was proven in chapter 1, we know that between any two $a, b \in \mathbb{R}$, there exists a $c \in \mathbb{Q}$ such that a < c < b, therefore it is surjective. The sole thing left to be established is the injectivity between $c \in \mathbb{Q}$ and (a_m, b_m) . We know that the interval is disjoint, thus the $c \in \mathbb{Q}$ cannot be an element of the other intervals, thus injectivity. We can thus rename this set as I_c for some $c \in \mathbb{Q}$.

Problem 10

a). Proof. We will use a proof by contradiction. Assume not, that is $C \subseteq [0,1]$ is uncountable and that for all $a \in (0,1)$, $C \cap [a,1]$ is countable. We see that $\frac{1}{n} \in (0,1)$ for all $n \geq 2$, $n \in \mathbb{N}$. Let $I_n = [\frac{1}{n}, 1]$, and let A_n be the set consisted of the elements of $C \cap I_n$. We know that

$$\bigcup_{n=2}^{\infty} C \cap I_n = C \ \bigcup_{n=2}^{\infty} I_n$$

is countable. We see $\lim_{n\to\infty}\frac{1}{n}=0$, thus $\bigcup_{n=2}^{\infty}I_n=(0,1]$ And so

$$A_n = \{C \cup (0, 1]\}$$

is countable. And we know that the union of two countable set is countable, thus

$$A_n \cup \{0\} = \{C \cup (0,1] \cup 0\} = C \cup [0,1] = C$$

is countable. Consequently, we have arrived at our contradiction because we know that C is uncountable, and thus our original statement is true. That is, if $C \subseteq [0,1]$ is uncountable, there exists $a \in (0,1)$, such that $C \cap [a,1]$ is countable.

Section 2.2

Problems: 1, 2b

Problem 1

 $a_n = (1, 1, 1, 1, 1, 1, \dots)$, we see that $|a_n - 0| < 2$. Because there exists $\epsilon > 0$ ($\epsilon = 2$ in this case) such that for all $N \in \mathbb{N}$, $n \ge N$, a_n verconges to 0, thus it is vercongent. We know that the sequence $a_n = (1, -1, 1, -1, \dots, (-1)^n)$ diverges, but we see that $|a_n - 0| < 2$, thus it also verconges to 0, consequently, this is an example of a divergent sequence that is vercongent.

Claim. A sequence a_n that verconges to a verconges to b for any $b \in \mathbb{R}$.

Proof. We know that b = a + c for some $c \in \mathbb{R}$. we see

$$|a_n - b| = |a_n - (a + c)| < |a_n - a| + |-c| = |a_n - a| + |c|$$

We know that $|a_n - a| < \epsilon_1$ for some $\epsilon_1 > 0$. Consequently, $|a_n - b| < \epsilon_1 + |c|$, for some $\epsilon_1 + |c| > 0$, a_n verconges to b.

We see that a sequence can verconge to two different values. This strange definition seems to describe the idea of bounded of a sequence that is shifted.

Problem 2

Proof. For all $\epsilon > 0$, we choose N such that $N > \frac{2}{\epsilon}$. For $n \geq N$, we see

$$n > \frac{2}{\epsilon}$$

$$\frac{2}{n} < \epsilon$$

$$\frac{2n^2}{n^3} < \epsilon$$

$$\frac{2n^2}{n^3 + 3} < \frac{2n^2}{n^3} < \epsilon$$

$$\left| \frac{2n^2}{n^3 + 3} - 0 \right| < \epsilon$$

$$a_{n \to \infty} = 0.$$

Consequently, we see that $\lim_{n\to\infty} = 0$.