

Problema Keidei

Fişier de intrare keidei.in Fişier de ieşire keidei.out

Ranuto-nak egy több napon át tartó edzésprogramja van, amely során meg szeretne tanulni egy új technikát: "11th Gate Super Convincing Chakra Dual-Core Rasengan". Objektív okok miatt előre szeretné tudni, hogy egy adott napon mit tartalmazhat az edzés (jön Kasura, hogy megnézze őt).

Adott egy N csomópontot tartalmazó fa, amelynek csomópont
jait 1-től N-ig sorszámozzuk. A fa gyökere az 1-gyes csomópont.

A gyökérből kiindulva be szeretnénk járni a fát. Minden csomópont esetén a közvetlen leszármazottakat tetszőleges sorrenben tekinthetjük.

Kétféle követelmény létezik, amelyet egy C számmal adunk meg:

- C = 1 esetén a bejárás típusa **preorder mélységi (DFS)**.
- C=2 esetén a bejárás típusa szélességi (BFS).

A bejárások pszeudokód algoritmusai az alábbiakban láthatók:

```
Algoritmus 1 Preorder mélységi bejárás (DFS)
```

```
p \leftarrow üres lista (a bejárás során a csomópontokat fogja tartalmazni)
eljárás DFS(fa, csomópont):
add hozzá csomópont a p végéhez
minden x közvetlen leszármazottra a csomópont
esetén:
DFS(fa, x)
DFS(fa, fa)
```

```
Algoritmus 2 Szélességi bejárás (BFS)
```

Melyik csomópontok lehetnek a K-ik pozíción valamely lehetséges bejárás esetén?

Bemeneti adatok

Az első sorban három szám található, C, N és K. A következő N-1 sor mindegyikében 2 szám található, A és B, amely azt jelenti, hogy a fában az A és B pontok között van él.

Kimeneti adatok

Írassátok ki **egy sorba egy-egy szóközzel elválasztva, növekvő sorrendbe** az összes olyan csomópontot, amelyek a K pozíción lehetnek, a C által meghatározott valamely bejárás esetén. **A csomópontok számát nem kell kiíratni.**

Restrictii

- $1 \le N \le 10000$.
- $1 \le K \le N$.

#	Punctaj	Restricţii
1	5	$C = 1, N \le 10$
2	5	$C=2,\ N\leq 10$
3	5	$C=1.\ {\rm A}$ fa teljes bináris fa, ahol $N\ 2^p-1$ alakú, és p nullától különböző természetes szám.
4	5	$C=2.\ {\rm A}$ fa teljes bináris fa, ahol $N\ 2^p-1$ alakú, és p nullától különböző természetes szám.
5	20	$C = 1, N \le 500$
6	20	$C = 2, N \le 500$
7	15	$C = 1, N \le 3500$
8	10	$C = 2, N \le 5000$
9	15	$C = 1, N \le 10000$

1. Példa		2. Példa		3. Példa	
keidei.in	keidei.out	keidei.in	keidei.out	keidei.in	keidei.out
1 8 5	2 5 6 8	1 17 15	3 10 11 12 13 14 16 17	2 8 5	4 5 7 8
1 2		1 2		1 2	
1 3		1 3		1 3	
1 4		1 4		2 4	
2 5		2 5		2 5	
2 6		3 6		2 7	
3 7		3 7		2 8	
5 8		4 8		3 6	
		5 9			
		5 10			
		8 11			
		8 12			
		8 13			
		8 14			
		9 15			
		10 16			
		10 17			

Magyarázatok

Az első példa esetén: Mivel bármely csomópont közvetlen leszármazottjait tetszőleges sorrendben tekinthetjük, feltételezhetjük, hogy a mélységi bejárásunk egy csomópont közvetlen leszármazottjait balról jobbra járja be, miután meghatároztuk a sorrendet.

Figura 1: Ha átrendezzük a kapott fát a fenti ábra szerint, a bejárás a következő eredményt fogja létrehozni: $1,3,7,4,\mathbf{2},5,8,6$.

Figura 2: Itt a bejárás 1, 3, 7, 2, 5, 8, 6, 4.

Figura 3: Itt a bejárás 1, 3, 7, 2, 6, 5, 8, 4.

Figura 4: Itt a bejárás 1, 4, 2, 5, 8, 6, 3, 7.

Ellenőrizhetünk tetszőleges más elrendezést annak garantálására, hogy a 2, 5, 6, 8 csomópontokon kívül egyetlen más csomópont sem lehet az 5-ös pozíción egy preorder mélységi bejárás esetén.

A harmadik példa esetén észrevehetjük, hogy bárhogyan rendeznénk el a fát, a bejárás esetén az első 3 csomópont 1,2,3, vagy 1,3,2. Ha a bejárásban 2 a 3-as előtt van, akkor a 6-os mindenképp a bejárás esetén az utolsó csomópont lesz. Ha a 3-as a 2-es előtt lenne, akkor 6 mindenképp a bejárás esetén a negyedik pozíción lesz. Tehát csak a 4,5,7,8 csomópontok lehetnek az 5-ös pozíción.