一阶谓词演算自然推演系统NC

王捍贫

北京大学信息科学技术学院软件研究所

复习

£生成的一阶语言:

个体变元 个体常元 谓词

● 符号库:

函数 量词 联结词 辅助符号

公式: 公式 自由与约束

推演系统Ng的构成

给定非逻辑符号集 \mathfrak{L} , $\mathbf{N}_{\mathfrak{L}}$ 的构成如下:

- 形式语言:
 - £生成的一阶语言
- 形式推理:
 - 形式公理: ∅
 - 形式规则: 15条
 - (1)-(10) 如N

增加前提律

思考题:

为什么把(+)作为规则,而不是象在命题演算那样作为原定理?

∀消去律

若 $\Gamma \vdash \forall x \alpha$, 且t对x在 α 中自由,

 $(\forall -)$

则 $\Gamma \vdash \alpha(x/t)$

直观含义:

若Γ能保证对任意的x, $\alpha(x)$ 都成立, 则Γ也能保证当 α 中的x"取值"为t的时候也成立。

注意:条件"t对x在 α 中自由"不可少。

∀引入律

$若\Gamma \vdash \alpha$, 且x不在 Γ 的任何公式中自由出现

 $(\forall +)$

则 $\Gamma \vdash \forall x \alpha$

直观含义:

若 $\Gamma(x)$ 能保证 $\alpha(x)$ 成立,但 Γ 没有对x作任何限制,则 Γ 也能保证对任意的x, $\alpha(x)$ 都成立。

注意:条件"x不在 Γ 的任何公式中自由出现"不可少.

∃消去律

若 Γ , $\alpha \vdash \beta$, 且x不在 $\Gamma \cup \{\beta\}$ 的任何公式中自由出现

 $(\exists -)$

则 Γ , $\exists x \alpha \vdash \beta$

直观含义:

若 Γ 和 $\alpha(x)$ 一起才能保证 $\beta(x)$ 成立,

但 Γ 和 β 的性质与x无关

则 Γ 和 $\exists x \alpha(x)$ 也能保证 $\beta(x)$ 也成立。

思考题: 条件" α 成立"和" $\exists x \alpha$ 成立"哪个更强?

注意:条件"x不在 $\Gamma \cup \{\beta\}$ 的任何公式中自由出现"不可少.

3引入律

若 $\Gamma \vdash \alpha(x/t)$, 且t对x在 α 中自由,

 $(\exists +)$

则 $\Gamma \vdash \exists x \alpha$

直观含义:

若Γ能保证当 α 中的x"取值"为t的时候成立,则Γ一定能保证有一个x使 α 成立。 (t是使得 $\exists x \alpha$ 成立的"证据".)

注意:条件"t对x在 α 中自由"不可少。

两个特例

注意到: $\alpha(x/x) = \alpha$, 且x对x在 α 中自由.

Ng的形式证明序列

若有限序列

$$\Gamma_1 \vdash \alpha_1, \ \Gamma_2 \vdash \alpha_2, \ \cdots, \ \Gamma_n \vdash \alpha_n$$

满足:

- (1) 每个 $\Gamma_i(i:1 \le i \le n)$ 都是 $N_{\mathfrak{L}}$ 的有限公式集。
- (2) 每个 $\Gamma_i \vdash \alpha_i$ (1 $\leq i \leq n$) 都是对此序列中它 之前的若干个 $\Gamma_j \vdash \alpha_j$ (1 $\leq j < i$) 应用 $\mathbf{N}_{\mathfrak{L}}$ 的 形式规则得到的.

则称此序列为 $N_{\mathcal{L}}$ 中的一个(形式)证明序列. 此时也称 α_n 可由 Γ_n 在 $N_{\mathcal{L}}$ 中形式推出, 记为 $\Gamma_n \vdash_{N_{\mathcal{L}}} \alpha_n$, 或 $\Gamma_n \vdash \alpha_n$.

注:和N中证明序列的定义几乎一样。

N的定理也是Ng的的定理

定理1

设 Σ 与 α 分别为N中有限公式集与公式,在 Σ U{ α }的公式中出现的命题变元符号都在 p_0 , p_1 ,···, p_n 中, α_0 , α_1 ,···, α_n 为 Ω 的公式,以 α_0 , α_1 ,···, α_n 同时分别替换 Σ U{ α }的公式中的 α_0 , α_1 ,···, α_n 得到 α_0 中的公式集 α '与公式 α '.

定理1的证明

证: $\mathbf{D} \mathbf{\Sigma} \vdash_{\mathbf{N}} \alpha$, 故存在**N**中证明序列:

$$\Sigma_1 \vdash \beta_1, \ \Sigma_2 \vdash \beta_2, \ \cdots, \ \Sigma_k \vdash \beta_k \ (= \Sigma \vdash \alpha)$$

设 Σ_1 U····U Σ_k U $\{\beta_1, \beta_2, \cdots, \beta_k\}$ 的公式中出现的命题变元符号都在 $p_0, \cdots, p_n, p_{n+1}, \cdots, p_{n+m}$ 中. 任选定 \mathfrak{L} 中的m个公式 $\alpha_{n+1}, \cdots, \alpha_{n+m}$,将

$$\Sigma_1, \Sigma_2, \cdots, \Sigma_k, \beta_1, \beta_2, \cdots, \beta_k$$

的公式中出现的 $p_0, \dots, p_n, p_{n+1}, \dots, p_{n+m}$ 同时分别替换为 $\alpha_0, \dots, \alpha_n, \alpha_{n+1}, \dots, \alpha_{n+m}$ 得到 $\Sigma'_1, \Sigma'_2, \dots, \Sigma'_k, \beta'_1, \beta'_2, \dots, \beta'_k$.

定理1的证明(续)

则

$$\Sigma_1' \vdash \beta_1', \ \Sigma_2' \vdash \beta_2', \ \cdots, \ \Sigma_k' \vdash \beta_K'$$

为 N_{Ω} 中的一个证明.

(因为N的形式规则在写法上同 $N_{\mathfrak{L}}$ 的形式规则相同. 也可归纳法进行严格证明.)

一个推论

定理2 对于 \mathfrak{L} 的有限公式集 Γ 与公式 $\alpha_1, \alpha_2, \cdots, \alpha_n$.

- 1. 若 $\Gamma \vdash_{\mathbf{N}_{\mathfrak{L}}} \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n},$ 且 $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \vdash_{\mathbf{N}_{\mathfrak{L}}} \alpha,$ 则 $\Gamma \vdash_{\mathbf{N}_{\mathfrak{L}}} \alpha.$

其证明和命题情形一样。

例6

$EX_{\mathcal{L}}$ 中写出下列公式的证明序列:

- 1. $\forall x(\alpha \to \beta) \mapsto \alpha \to \forall x\beta$, 若x不在 α 中自由出现.
- 3. $\forall x(\alpha \rightarrow \beta) \vdash \exists x\alpha \rightarrow \exists x\beta$,
- 4. $\forall x(\alpha \rightarrow \beta) \vdash \forall x\alpha \rightarrow \forall x\beta$,

例6(1)(⊢)的证明

1. $\forall x(\alpha \to \beta) \mapsto \alpha \to \forall x\beta$, 若x不在 α 中自由出现.

证: (⊢)

(1)
$$\forall x(\alpha \rightarrow \beta), \alpha \vdash \forall x(\alpha \rightarrow \beta)$$
 (\in)

(2)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \alpha \rightarrow \beta$$
 $(\forall -)$

(3)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \alpha$$
 (\in)

(4)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \beta$$
 $(\rightarrow -)$

(5)
$$\forall x(\alpha \rightarrow \beta), \alpha \vdash \forall x\beta$$
 (x 不在前提中自由出现) ($\forall +$)

(6)
$$\forall x(\alpha \rightarrow \beta) \vdash \alpha \rightarrow \forall x\beta$$
 $(\rightarrow +)$

例6(1)(⊣)的证明

1. $\forall x(\alpha \to \beta) \mapsto \alpha \to \forall x\beta$, 若x不在 α 中自由出现.

证: (┤)

$$(1) \quad \alpha \to \forall x\beta, \ \alpha \vdash \alpha \to \forall x\beta \qquad (\in)$$

$$(2) \quad \alpha \to \forall x\beta, \ \alpha \vdash \alpha \qquad (\in)$$

(3)
$$\alpha \rightarrow \forall x\beta, \ \alpha \vdash \forall x\beta \qquad (\rightarrow -)$$

$$(4) \quad \alpha \to \forall x \beta, \ \alpha \vdash \beta \qquad (\forall -)$$

$$(5) \quad \alpha \to \forall x \beta \vdash \alpha \to \beta \qquad (\to +)$$

(6)
$$\alpha \rightarrow \forall x \beta \vdash \forall x (\alpha \rightarrow \beta)$$

(x 不在前提中自由出现) ($\forall +$)

例6(2)(⊢)的证明

2. $\forall x(\alpha \rightarrow \beta) \mapsto \exists x\alpha \rightarrow \beta$, $\exists x \land x \land \alpha \land \beta = \beta \land \alpha \rightarrow \beta$.

证: (一)

(1)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \forall x(\alpha \rightarrow \beta)$$
 (\in)

(2)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \alpha \rightarrow \beta$$
 $(\forall -)$

(3)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \alpha$$
 (\in)

(4)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \beta$$
 $(\rightarrow -)$

(5)
$$\forall x(\alpha \to \beta)$$
, $\exists x\alpha \vdash \beta$
 $(x$ 不在 $\forall x(\alpha \to \beta)$ 及 β 中自由出现) ($\exists -$)

(6)
$$\forall x(\alpha \rightarrow \beta) \vdash \exists x\alpha \rightarrow \beta$$
 $(\rightarrow +)$

例6(1)(⊣)的证明

证: (┤)

$$(1) \quad \exists x \alpha \to \beta, \ \alpha \vdash \alpha \qquad (\in)$$

(2)
$$\exists x \alpha \rightarrow \beta, \ \alpha \vdash \exists x \alpha$$
 (3+)

$$(3) \quad \exists x \alpha \to \beta, \quad \alpha \vdash \exists x \alpha \to \beta \qquad (\in)$$

$$(4) \quad \exists x \alpha \rightarrow \beta, \ \alpha \vdash \beta \qquad (\rightarrow -)$$

$$(5) \quad \exists x \alpha \to \beta \vdash \alpha \to \beta \qquad (\to +)$$

(6)
$$\exists x \alpha \rightarrow \beta \vdash \forall x (\alpha \rightarrow \beta)$$
 (x 不在前提中自由出现) ($\forall +$)

例6(3)的证明

3.
$$\forall x(\alpha \rightarrow \beta) \vdash \exists x\alpha \rightarrow \exists x\beta$$

证:
$$(1) \quad \forall x(\alpha \rightarrow \beta), \quad \alpha \vdash \forall x(\alpha \rightarrow \beta) \quad (\in)$$

(2)
$$\forall x(\alpha \rightarrow \beta), \alpha \vdash \alpha \rightarrow \beta$$
 $(\forall -)$

(3)
$$\forall x(\alpha \rightarrow \beta), \alpha \vdash \alpha$$
 (\in)

(4)
$$\forall x(\alpha \rightarrow \beta), \alpha \vdash \beta$$
 $(\rightarrow -)$

(5)
$$\forall x(\alpha \rightarrow \beta), \ \alpha \vdash \exists x\beta$$
 (3+)

(6)
$$\forall x(\alpha \rightarrow \beta), \exists x\alpha \vdash \exists x\beta$$
 (3–)

(7)
$$\forall x(\alpha \rightarrow \beta) \vdash \exists x\alpha \rightarrow \exists x\beta \qquad (\rightarrow +)$$

例6(4)的证明

4.
$$\forall x(\alpha \rightarrow \beta) \vdash \forall x\alpha \rightarrow \forall x\beta$$

证: (1)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \forall x(\alpha \rightarrow \beta)$$
 (\in)

(2)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \alpha \rightarrow \beta$$
 $(\forall -)$

(3)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \forall \alpha$$
 (\in)

(4)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \alpha$$
 $(\forall -)$

(5)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \beta$$
 $(\rightarrow -)$

(6)
$$\forall x(\alpha \rightarrow \beta), \ \forall x\alpha \vdash \forall x\beta$$
 ($\forall +$)

(7)
$$\forall x(\alpha \rightarrow \beta) \vdash \forall x\alpha \rightarrow \forall x\beta \qquad (\rightarrow +)$$

作业

p.559(p.184)

14. (2),(4),(5)

谢谢

Nc与N的比较:

• 符号库: $N_{\mathfrak{L}}$ 比N多 $\left\{ \begin{array}{l} 非逻辑符号 \\ \land 体变元 + 量词 \end{array} \right.$

• 公式: $N_{\mathcal{L}}$ 比N多 $\left\{ \begin{array}{l} \overline{\phi}(\overline{\Lambda}, \mathbb{Z}) \\ \overline{\rho}(\overline{\Lambda}, \mathbb{Z}) \end{array} \right\}$

量词公式(自由与约束)

- 推理规则: Ng比N多 (∀+), (∀-), (∃+), (∃-)
- 证明序列:字面上两者的定义几乎一样 N的证明序列"也是" $N_{\mathfrak{L}}$ 的证明序列 (关于联结词的推理是一样的.) $N_{\mathfrak{L}}$ 侧重于关于量词的推理.

思考题: N的元定理都在Ng中成立吗?

例7

```
若y对x在\alpha中自由,且y不在\alpha中自由出现,则
1.\exists x\alpha \mapsto \exists y\alpha(x/y). 2.\forall x\alpha \mapsto \forall y\alpha(x/y).
分析:
y对x在\alpha中自由, 且y不在\alpha中自由出现,
则\alpha(x/y)(y/x) = \alpha.
                         自由 约束 约束
                   (\cdots x \cdots x \cdots y \cdots)
\alpha:
\alpha(x/y): (\cdots y \cdots x \cdots y \cdots)
\alpha(x/y)(y/x): (\cdots x \cdots x \cdots y \cdots)
```

例7的证明

若y对x在 α 中自由,且y不在 α 中自由出现,则 $1.\exists x\alpha \mapsto \exists y\alpha(x/y).$ $2.\forall x\alpha \mapsto \forall y\alpha(x/y).$ 证:只证1. (\vdash) (1) $\alpha \vdash \alpha$ (\in) (2) $\alpha \vdash \alpha(x/y)(y/x)$ (3) $\alpha \vdash \exists y \alpha(x/y)$ $(x \forall y \in \alpha(x/y)$ 中自由) $(\exists +)$ (4) $\exists x \alpha \vdash \exists y \alpha(x/y)$ $(x在\exists y\alpha(x/y)$ 中无自由出现) (∃-)

例7的证明(续)

若y对x在 α 中自由,且y不在 α 中自由出现,则 $1.\exists x\alpha \mapsto \exists y\alpha(x/y).$ $2.\forall x\alpha \mapsto \forall y\alpha(x/y).$

证: 只证1.

 (\dashv)

- (1) $\exists y \alpha(x/y) \vdash \exists x(\alpha(x/y)(y/x))$ (\vdash)
- (2) $\exists y \alpha(x/y) \vdash \exists x \alpha$

思考题:如果该例中的任何一个条件不成立,结论会如何?

例8

证明: $\forall xy\alpha \vdash \forall yx\alpha$

证: $(1) \quad \forall xy\alpha \vdash \forall xy\alpha \quad (\in)$

 $(2) \quad \forall xy\alpha \vdash \forall y\alpha \qquad (\forall -)$

 $(3) \quad \forall y \alpha \vdash \alpha \qquad (\forall -)$

 $(4) \quad \forall xy\alpha \vdash \alpha \qquad (Tr)$

 $(5) \quad \forall xy\alpha \vdash \forall x\alpha \qquad (\forall +)$

(6) $\forall xy\alpha \vdash \forall y\forall x\alpha \quad (\forall +)$

例9

证明: 1. $\forall x \alpha \vdash \neg \exists x \neg \alpha$

2. $\exists x \alpha \vdash \neg \forall x \neg \alpha$

证: 只证1.

 (\dashv)

$$(1) \quad \neg \alpha \vdash \neg \alpha \tag{(e)}$$

$$(2) \quad \neg \alpha \vdash \exists x \neg \alpha \qquad (\exists +)$$

(3)
$$\neg \alpha \rightarrow \exists x \neg \alpha \vdash \neg \exists x \neg \alpha \rightarrow \alpha$$
 (定理1)

$$(4) \neg \exists x \neg \alpha \vdash \alpha \qquad (定理2(2))$$

$$(5) \quad \neg \exists x \neg \alpha \vdash \forall x \alpha \qquad (\forall +)$$

例9(续)

证明: 1. $\forall x \alpha \mapsto \neg \exists x \neg \alpha$

2. $\exists x \alpha \vdash \neg \forall x \neg \alpha$

证: 再证1(⊢).

 (\vdash)

(1)
$$\forall x\alpha \vdash \forall x\alpha$$

(2) $\forall x\alpha \vdash \alpha$

(3) $\neg \alpha \vdash \neg \forall x \alpha$

 $(4) \quad \exists x \neg \alpha \vdash \neg \forall x \alpha$

(5) $\forall x \alpha \vdash \neg \exists x \neg \alpha$

 (\in)

 $(\forall -)$

(定理2(2))

 $(\exists -)$

(定理2(2))

例10

证明:

- 1. $\exists x(\alpha \to \beta) \mapsto \alpha \to \exists x\beta$ 若x不在 α 中自由出现.
- 2. $\exists x(\alpha \rightarrow \beta) \mapsto \forall x\alpha \rightarrow \beta$ 若x不在 β 中自由出现.

例10(1)(⊢)的证明

 $1.\exists x(\alpha \to \beta) \mapsto \alpha \to \exists x\beta$ 若x不在 α 中自由出现.

证: (上)

$$(1) \quad \alpha \to \beta, \quad \alpha \vdash \alpha \tag{(e)}$$

$$(2) \quad \alpha \to \beta, \quad \alpha \vdash \alpha \to \beta \tag{(e)}$$

$$(3) \quad \alpha \to \beta, \quad \alpha \vdash \beta \qquad (\to -)$$

$$(4) \quad \alpha \to \beta, \quad \alpha \vdash \exists x\beta \tag{\exists+}$$

$$(5) \quad \alpha \to \beta \vdash \alpha \to \exists x\beta \qquad (\to +)$$

例10(1)(⊣)的证明

 $1.\exists x(\alpha \rightarrow \beta) \mapsto \alpha \rightarrow \exists x\beta$ 若x不在 α 中自由出现.

证: (┤)

$$(1) \neg \forall x \neg (\alpha \rightarrow \beta) \vdash \exists x (\alpha \rightarrow \beta) \tag{例9}$$

$$(2) \neg \exists x(\alpha \to \beta) \vdash \forall x \neg (\alpha \to \beta) \qquad (定理2)$$

$$(3) \neg \exists x (\alpha \rightarrow \beta) \vdash \neg (\alpha \rightarrow \beta) \qquad (\forall -)(2)$$

$$(4) \beta \vdash \alpha \rightarrow \beta \tag{定理1}$$

$$(5) \neg (\alpha \rightarrow \beta) \vdash \neg \beta \qquad (定理2)$$

$$(6) \neg \alpha \vdash \alpha \rightarrow \beta \tag{定理1}$$

$$(7) \neg (\alpha \rightarrow \beta) \vdash \alpha \tag{定理2}$$

(8)
$$\neg \exists x (\alpha \rightarrow \beta) \vdash \neg \beta, \alpha$$
 $(Tr)(3,5,7)$

$$(9) \neg \exists x (\alpha \rightarrow \beta) \vdash \forall x \neg \beta \qquad (\forall +)(8)$$

例10(1)(⊣)的证明(续1)

$$1.\exists x(\alpha \to \beta) \mapsto \alpha \to \exists x\beta$$
 若x不在 α 中自由出现.

续证:

領证:
$$(10) \alpha \to \exists x\beta, \neg \exists x(\alpha \to \beta) \vdash \alpha \qquad (+)(8)$$

$$(11) \alpha \to \exists x\beta, \neg \exists x(\alpha \to \beta) \vdash \alpha \to \exists x\beta \qquad (\in)$$

$$(12) \alpha \to \exists x\beta, \neg \exists x(\alpha \to \beta) \vdash \exists x\beta \qquad (\to \neg)(10,11)$$

$$(13) \alpha \to \exists x\beta, \neg \exists x(\alpha \to \beta) \vdash \forall x \neg \beta \qquad (+)(9)$$

$$(14) \exists x\beta \vdash \neg \forall x \neg \beta \qquad (\bigcirc)$$

$$(15) \forall x \neg \beta \vdash \neg \exists x\beta \qquad (\bigcirc)$$

$$(15) \forall x \neg \beta \vdash \neg \exists x\beta \qquad (\bigcirc)$$

$$(16) \alpha \to \exists x\beta, \neg \exists x(\alpha \to \beta) \vdash \neg \exists x\beta \qquad (\neg \neg)(12,16)$$

$$(17) \alpha \to \exists x\beta \vdash \exists x(\alpha \to \beta) \qquad (\neg \neg)(12,16)$$

例10(1)(→)的证明(续2)

 $1.\exists x(\alpha \to \beta) \mapsto \alpha \to \exists x\beta$ 若x不在 α 中自由出现.

另续证:

$$(10) \exists x \beta \vdash \neg \forall x \neg \beta \tag{例9}$$

$$(11) \forall x \neg \beta \vdash \neg \exists x \beta \tag{定理2}$$

$$(12) \neg \exists x (\alpha \rightarrow \beta) \vdash \neg \exists x \beta \qquad (Tr)(9, 11)$$

(13)
$$\neg \exists x (\alpha \rightarrow \beta) \vdash \alpha \land \neg \exists x \beta$$
 (\(\dagger + \))(8, 12)

$$(14) \alpha \wedge \neg \exists x \beta \vdash \neg (\alpha \to \exists x \beta) \qquad (定理1)$$

(15)
$$\neg \exists x (\alpha \rightarrow \beta) \vdash \neg (\alpha \rightarrow \exists x \beta) (Tr)(13, 14)$$

(16)
$$\alpha \to \exists x \beta \vdash \exists x (\alpha \to \beta)$$
 (定理2)

注:该方向没用到条件"x不在 α 中自由出现"

例10(2)(⊢)的证明

2. $\exists x(\alpha \to \beta) \mapsto \forall x\alpha \to \beta$ 若x不在 β 中自由出现.

证: (⊢)

$$(1) \quad \alpha \to \beta, \ \forall x\alpha \vdash \forall x\alpha \qquad (\in)$$

$$(2) \quad \alpha \to \beta, \ \forall x\alpha \vdash \alpha \qquad (\forall -)$$

$$(3) \quad \alpha \to \beta, \ \forall x\alpha \vdash \alpha \to \beta \qquad (\in)$$

$$(4) \quad \alpha \to \beta, \ \forall x\alpha \vdash \beta \qquad (\to -)$$

(5)
$$\alpha \rightarrow \beta \vdash \forall x \alpha \rightarrow \beta$$
 $(\rightarrow +)$

(6)
$$\exists x(\alpha \to \beta) \vdash \forall x\alpha \to \beta$$

(x 不在 $\forall x\alpha \to \beta$ 中自由出现) ($\exists -$)

例10(2)(⊣)的证明

2. $\exists x(\alpha \rightarrow \beta) \mapsto \forall x\alpha \rightarrow \beta$ 若x不在 β 中自由出现.

证: (┤)

$$(1) \ \forall x \neg (\alpha \rightarrow \beta) \vdash \forall x \neg (\alpha \rightarrow \beta) \qquad (\in)$$

(2)
$$\forall x \neg (\alpha \rightarrow \beta) \vdash \neg (\alpha \rightarrow \beta)$$
 $(\forall -)(1)$

$$(3) \neg (\alpha \rightarrow \beta) \vdash \alpha \land \neg \beta \qquad (定理1)$$

$$(4) \alpha \wedge \neg \beta \vdash \alpha, \neg \beta \qquad (定理1)$$

(5)
$$\forall x \neg (\alpha \rightarrow \beta) \vdash \alpha, \ \neg \beta$$
 $(Tr)(2,3,4)$

(6)
$$\forall x \neg (\alpha \rightarrow \beta) \vdash \forall x \alpha$$
 $(\forall +)(5)$

$$(7) \forall x\alpha, \neg \beta \vdash \forall x\alpha \land \neg \beta \qquad (定理1)$$

例10(2)(→)的证明(续)

 $1.\exists x(\alpha \rightarrow \beta) \mapsto \alpha \rightarrow \exists x\beta$ 若x不在 α 中自由出现.

续证:

$$(8) \forall x\alpha \land \neg \beta \vdash \neg (\forall x\alpha \to \beta) \qquad (定理1)$$

(9)
$$\forall x \neg (\alpha \rightarrow \beta) \vdash \neg (\forall x \alpha \rightarrow \beta) \quad (Tr)(5,6,7,8)$$

$$(10) \forall x \alpha \to \beta \vdash \neg \forall x \neg (\alpha \to \beta) \qquad (定理2)$$

$$(11) \neg \forall x \neg (\alpha \rightarrow \beta) \vdash \exists x (\alpha \rightarrow \beta) \tag{例9}$$

(12)
$$\forall x \alpha \to \beta \vdash \exists x (\alpha \to \beta)$$
 (Tr)(10, 11)

注:该方向也没用到条件"x不在 α 中自由出现"

例11

证明:

1.
$$\forall x(\alpha \leftrightarrow \beta) \vdash \forall x\alpha \leftrightarrow \forall x\beta$$

2.
$$\forall x(\alpha \leftrightarrow \beta) \vdash \exists x\alpha \leftrightarrow \exists x\beta$$

例11(1)的证明

1.
$$\forall x(\alpha \leftrightarrow \beta) \vdash \forall x\alpha \leftrightarrow \forall x\beta$$

证:

$$(1) \ \forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \forall x(\alpha \leftrightarrow \beta)$$
 (\in\)

(2)
$$\forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \alpha \leftrightarrow \beta$$
 $(\forall -)(11)$

(3)
$$\forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \forall x\alpha$$
 (\in)

$$(4) \ \forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \alpha \qquad (\forall -)(3)$$

(5)
$$\forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \beta \ (\leftrightarrow -)(2,4)$$

(6)
$$\forall x(\alpha \leftrightarrow \beta), \ \forall x\alpha \vdash \forall x\beta$$
 $(\forall +)(5)$

$$(7) \forall x(\alpha \leftrightarrow \beta), \ \forall x\beta \vdash \forall x\alpha \qquad (同(6))$$

(8)
$$\forall x(\alpha \leftrightarrow \beta) \vdash \forall x\alpha \leftrightarrow \forall x\beta \qquad (\leftrightarrow +)(6,7)$$

例11(1)的证明

2.
$$\forall x(\alpha \leftrightarrow \beta) \vdash \exists x\alpha \leftrightarrow \exists x\beta$$

证:

$$(1) \ \forall x(\alpha \leftrightarrow \beta), \ \alpha \vdash \forall x(\alpha \leftrightarrow \beta)$$
 (\in\)

(2)
$$\forall x(\alpha \leftrightarrow \beta), \ \alpha \vdash \alpha \leftrightarrow \beta$$
 $(\forall -)(1)$

$$(3) \ \forall x(\alpha \leftrightarrow \beta), \ \alpha \vdash \alpha \tag{(e)}$$

(4)
$$\forall x(\alpha \leftrightarrow \beta), \ \alpha \vdash \beta \ (\leftrightarrow -)(2,3)$$

(5)
$$\forall x(\alpha \leftrightarrow \beta), \ \alpha \vdash \exists x\beta$$
 (3+)(4)

(6)
$$\forall x(\alpha \leftrightarrow \beta), \exists x\alpha \vdash \exists x\beta$$
 (3-)(5)

$$(7) \ \forall x(\alpha \leftrightarrow \beta), \ \exists x\beta \vdash \exists x\alpha \qquad (同(6))$$

(8)
$$\forall x(\alpha \leftrightarrow \beta) \vdash \exists x\alpha \leftrightarrow \exists x\beta \quad (\leftrightarrow +)(6,7)$$

例12

1.
$$\alpha \wedge \forall x \beta \mapsto \forall x (\alpha \wedge \beta)$$

2.
$$\alpha \wedge \exists x\beta \mapsto \exists x(\alpha \wedge \beta)$$

3.
$$\alpha \vee \forall x\beta \mapsto \forall x(\alpha \vee \beta)$$

4.
$$\alpha \vee \exists x\beta \vdash \exists x(\alpha \vee \beta)$$

只证明1和3.

例12(1)(⊢)的证明

1. $\alpha \land \forall x \beta \mapsto \forall x (\alpha \land \beta)$, 若x不在 α 中自由出现. 证: (\vdash)

$$(1) \ \alpha \wedge \forall x \beta \vdash \alpha \wedge \forall x \beta \tag{(e)}$$

$$(2) \alpha \wedge \forall x \beta \vdash \alpha \qquad (\wedge -)(1)$$

$$(3) \alpha \wedge \forall x \beta \vdash \forall x \beta \qquad (\wedge -)(1)$$

$$(4) \alpha \wedge \forall x \beta \vdash \beta \qquad (\forall -)(3)$$

例12(1)(⊣)的证明

1. $\alpha \land \forall x \beta \mapsto \forall x (\alpha \land \beta)$, 若x不在 α 中自由出现.

证: (爿)

$$(1) \ \forall x(\alpha \wedge \beta) \vdash \forall x(\alpha \wedge \beta) \qquad (\in)$$

(2)
$$\forall x(\alpha \wedge \beta) \vdash \alpha \wedge \beta$$
 $(\forall -)(1)$

$$(3) \ \forall x(\alpha \wedge \beta) \vdash \alpha \qquad (\wedge -)(2)$$

$$(4) \ \forall x(\alpha \wedge \beta) \vdash \beta \qquad (\wedge -)(2)$$

(5)
$$\forall x(\alpha \wedge \beta) \vdash \forall x\beta$$
 $(\forall +)(4)$

(6)
$$\forall x(\alpha \wedge \beta) \vdash \alpha \wedge \forall x\beta \quad (\wedge+)(3,5)$$

注:没有用到条件"x不在 α 中自由出现".

例12(3)(⊢)的证明

3. $\alpha \vee \forall x \beta \mapsto \forall x (\alpha \vee \beta)$, 若x不在 α 中自由出现. 证: (⊢) (1) $\alpha \vdash \alpha$ (\in) (2) $\alpha \vdash \alpha \lor \beta$ $(\vee +)(1)$ (3) $\alpha \vdash \forall x(\alpha \lor \beta)$ (x不在 α 中自由出现) $(\forall +)(2)$ (4) $\forall x\beta \vdash \forall x\beta$ (\in) $(\forall -)(4)$ (5) $\forall x\beta \vdash \beta$ (6) $\forall x\beta \vdash \alpha \lor \beta$ $(\vee +)(5)$ (7) $\forall x\beta \vdash \forall x(\alpha \vee \beta)$ $(\forall +)(6)$ (8) $\alpha \vee \forall x\beta \vdash \forall x(\alpha \vee \beta) \quad (\vee -)(3,6)$

例12(3)(⊣)的证明

3. $\alpha \vee \forall x \beta \mapsto \forall x (\alpha \vee \beta)$, 若x不在 α 中自由出现. 证: (┤) (1) $\forall x(\alpha \vee \beta), \neg \alpha \vdash \forall x(\alpha \vee \beta)$ (\in) (2) $\forall x(\alpha \vee \beta), \neg \alpha \vdash \alpha \vee \beta$ $(\forall -)(1)$ (3) $\alpha \vee \beta \vdash \neg \alpha \rightarrow \beta$ (命题内定理) (4) $\forall x(\alpha \vee \beta), \neg \alpha \vdash \neg \alpha \rightarrow \beta$ (Tr)(2,3)(5) $\forall x(\alpha \vee \beta), \neg \alpha \vdash \neg \alpha$ (\in) (6) $\forall x(\alpha \vee \beta), \neg \alpha \vdash \beta$ $(\to -)(4,5)$ (7) $\forall x (\alpha \vee \beta), \neg \alpha \vdash \forall x \beta$ $(\forall +)(6)$ (8) $\forall x(\alpha \vee \beta) \vdash \neg \alpha \rightarrow \forall x\beta$ $(\to +)(7)$

(9) $\neg \alpha \rightarrow \forall x\beta \vdash \alpha \lor \forall x\beta$

(10) $\forall x(\alpha \vee \beta) \vdash \alpha \vee \forall x\beta$

(命题内定理)

(Tr)(8,9)

作业

- p.559(p.184)
 - 6. 若y对x在 α 中自由,且y不在 α 中自由出现,则 $\forall x \alpha \mapsto \forall y \alpha(x/y)$.
 - 7.
 - 9. 证明例12的(2),(4)
 - 12. 证明: 若 Γ , $\alpha \vdash_{N_{\mathfrak{L}}} \beta$, 且x不在 Γ 的任何公式中自由出现,则 Γ , ∃ $x\alpha \vdash_{N_{\mathfrak{L}}} \exists x\beta$.
 - 13. 证明: 若 Γ , $\alpha \vdash_{N_{\mathfrak{L}}} \beta$, 且x不在 $\Gamma \cup \{\beta\}$ 的任何 公式中自由出现,则 Γ , ∃ $x\alpha \vdash_{N_{\mathfrak{L}}} \forall x\beta$.
 - 14. (2), (4), (5)

谢谢

Nc中的一些可证式子:

若x不在 α 中自由出现

$$\begin{cases} \forall x \alpha \to \beta \vdash \exists x (\alpha \to \beta) \\ \exists x \alpha \to \beta \vdash \forall x (\alpha \to \beta) \end{cases}$$

若x不在β中自由出现

$$\alpha \wedge \exists x \beta \mapsto \exists x (\alpha \wedge \beta)$$

$$\alpha \lor \forall x\beta \vdash \forall x(\alpha \lor \beta)$$

$$\alpha \vee \exists x \beta \mapsto \exists x (\alpha \vee \beta)$$

复习(续)

$N_{\mathfrak{L}}$ 中的一些可证式子:

$$\begin{cases} \neg \forall x \alpha \vdash \exists x \neg \alpha \\ \neg \exists x \alpha \vdash \forall x \neg \alpha \end{cases}$$

$$\exists x \alpha \mapsto \forall y \alpha(x/y)$$
 若 y 不在 α 中出现

思考题:
$$\forall x(\alpha \leftrightarrow \beta) \vdash \forall x\alpha \leftrightarrow \forall x\beta$$
?
$$\forall x(\alpha \leftrightarrow \beta) \vdash \exists x\alpha \leftrightarrow \exists x\beta$$
?
$$\exists x(\alpha \leftrightarrow \beta) \vdash \exists x\alpha \leftrightarrow \exists x\beta$$
?
$$\exists x(\alpha \leftrightarrow \beta) \vdash \forall x\alpha \leftrightarrow \forall x\beta$$
?

替换定理

定理3 设 α , β , γ 是 \mathfrak{L} 的公式, 满足 β $\mapsto \gamma$. α' 为将 α 中某些 β 换为 γ 得到的公式. 则 α \mapsto α' .

示意图:

 $\alpha: \quad \cdots \quad \beta \quad \cdots \quad \beta \quad \cdots \quad \beta \quad \cdots$

若 \mathfrak{L} 中的公式 $\alpha, \alpha', \beta, \beta'$ 满足 $\alpha \mapsto \alpha', \beta \mapsto \beta', 则:$

1.
$$\neg \alpha \vdash \neg \alpha'$$

2.
$$\alpha \vee \beta \vdash \alpha' \vee \beta'$$

4.
$$\alpha \rightarrow \beta \vdash \alpha' \rightarrow \beta'$$

6.
$$\forall x\alpha \mapsto \forall x\alpha'$$

3.
$$\alpha \wedge \beta \mapsto \alpha' \wedge \beta'$$

4.
$$\alpha \rightarrow \beta \vdash \alpha' \rightarrow \beta'$$
 5. $\alpha \leftrightarrow \beta \vdash \alpha' \leftrightarrow \beta'$

7.
$$\exists x \alpha \mapsto \exists x \alpha'$$

只证(7).

引理1(7)的证明

若 \mathfrak{L} 中的公式 $\alpha, \alpha', \beta, \beta'$ 满足 $\alpha \vdash \alpha', \beta \vdash \beta', 则:$

7.
$$\exists x\alpha \mapsto \exists x\alpha'$$

证: (1)
$$\alpha \vdash \alpha'$$

(2)
$$\emptyset \vdash \alpha \leftrightarrow \alpha'$$

(3)
$$\emptyset \vdash \forall x(\alpha \leftrightarrow \alpha')$$

$$(4) \ \forall x(\alpha \leftrightarrow \alpha') \vdash \exists x\alpha \leftrightarrow \exists x\alpha' \qquad (例11)$$

$$(5) \emptyset \vdash \exists x \alpha \leftrightarrow \exists x \alpha' \tag{Tr}$$

(6)
$$\exists x \alpha \vdash \exists x \alpha \leftrightarrow \exists x \alpha'$$
 (+)

(7)
$$\exists x\alpha \vdash \exists x\alpha$$

(8)
$$\exists x\alpha \vdash \exists x\alpha'$$

$$(9) \exists x \alpha' \vdash \exists x \alpha \qquad (同理(8))$$

(10)
$$\exists x\alpha \mapsto \exists x\alpha'$$

引理1(7)的证明(续)

若 \mathfrak{L} 中的公式 $\alpha, \alpha', \beta, \beta'$ 满足 $\alpha \vdash \alpha', \beta \vdash \beta', 则:$

7. $\exists x\alpha \mapsto \exists x\alpha'$

另证:
$$(1) \alpha \vdash \alpha'$$

(已知)

(2)
$$\alpha \vdash \exists x \alpha'$$
 $(\exists +)(1)$

(3)
$$\exists x \alpha \vdash \exists x \alpha'$$
 $(\exists -)(2)$

$$(4) \exists x \alpha' \vdash \exists x \alpha \qquad (同理(3))$$

(5)
$$\exists x \alpha \mapsto \exists x \alpha'$$

替换定理的证明

定理3 设 α , β , γ 是 \mathfrak{L} 的公式, 满足 $\beta \mapsto \gamma$.

 α' 为将 α 中某些 β 换为 γ 得到的公式.则 $\alpha \mapsto \alpha'$.

证:对 α 中出现的量词与联结词的个数d归纳证明.

(1) 当d = 0时, α 为原子公式,

则: $\alpha = \alpha'$, 或 $\alpha = \beta \, \exists \, \alpha' = \gamma$, 从而 $\alpha \, \vdash \alpha'$.

(2) 设 $d \le n$ 时命题成立. 考察d = n + 1时情形.

 α 必为下列形式之一: $\neg \alpha_1$, $\alpha_1 \lor \alpha_2$, $\alpha_1 \land \alpha_2$,

 $\alpha_1 \rightarrow \alpha_2$, $\alpha_1 \leftrightarrow \alpha_2$, $\exists x \alpha_1$, $\forall x \alpha_1$.

无论哪种形式, α_1 及 α_2 中量词和联结词的个数都 $\leq n$

替换定理的证明(续)

设对 α_1 与 α_2 中出现的某些 β 换为 γ 得到的公式分别为 α_1' 与 α_2' .

由归纳假设得: $\alpha_1 \vdash \alpha_2'$, $\alpha_2 \vdash \exists \alpha_2'$.

且 α' 分别为: $\neg \alpha'_1$, $\alpha'_1 \lor \alpha'_2$, $\alpha'_1 \land \alpha'_2$, $\alpha'_1 \rightarrow \alpha'_2$, $\alpha'_1 \leftrightarrow \alpha'_2$, $\exists x \alpha'_1$, $\forall x \alpha'_1$.

对它们分别应用引理1可得 $\alpha \mapsto \alpha'$.

归纳证毕.

替换定理的一个应用

$$\forall x(\alpha \wedge \beta) \vdash \alpha \wedge \forall x\beta$$

$$\forall x(\alpha \land \beta) \mapsto \alpha \land \forall x\beta$$

证: $(1) \alpha \land \beta \mapsto \neg (\alpha \rightarrow \neg \beta)$ (命题内定理)
 $(2) \forall x(\alpha \land \beta) \mapsto \forall x \neg (\alpha \rightarrow \neg \beta)$ 替換定理
 $(3) \neg \forall x(\alpha \land \beta) \mapsto \neg \forall x \neg (\alpha \rightarrow \neg \beta)$ (定理2)
 $(4) \neg \forall x \neg (\alpha \rightarrow \neg \beta) \mapsto \exists x(\alpha \rightarrow \neg \beta)$ (例9)
 $(5) \exists x(\alpha \rightarrow \neg \beta) \mapsto \alpha \rightarrow \exists x \neg \beta$ (例10)
 $(6) \neg \forall x(\alpha \land \beta) \mapsto \alpha \rightarrow \exists x \neg \beta$ (定理2)
 $(7) \forall x(\alpha \land \beta) \mapsto \neg (\alpha \rightarrow \exists x \neg \beta)$ (定理2)
 $(8) \neg (\alpha \rightarrow \exists x \neg \beta) \mapsto \alpha \land \neg \exists x \neg \beta$ (命题内定理)
 $(9) \forall x(\alpha \land \beta) \mapsto \alpha \land \neg \exists x \neg \beta$ (香题内定理)
 $(9) \forall x(\alpha \land \beta) \mapsto \alpha \land \neg \exists x \neg \beta$ (替换定理)

范式

定义10 \mathfrak{L} 的一个公式 α 如要具有如下形状:

$$Q_1v_1Q_2v_2\cdots Q_nv_n\beta$$

其中:

 Q_i 为量词 \forall 或 \exists (1 \leq i \leq n); v_i 为个体变元符号(1 \leq i \leq n); n为自然数(n可以= 0); β 中没有量词出现.

则称 α 为c的一个前束范式.

范式(存在)定理

定理4 对 \mathfrak{L} 任一个公式 α , 存在 \mathfrak{L} 的一个前束范式 α' , 使 $\alpha \mapsto \alpha'$.

也称此 α' 为 α 的一个前束范式.

下面先用例子来说明前束范式的求法.

例8

求下列各公式的前束范式.

1.
$$\neg (\forall x_2 \exists x_1 F_1^2(x_1, x_2))$$

2.
$$\forall x_1 F^1(x_1) \to \forall x_2 F^1(x_2)$$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

4.
$$(\forall x_1 F_1^2(x_1, x_2) \rightarrow \neg \exists x_2 F_2^1(x_2)) \rightarrow \forall x_1 \forall x_2 F_3^2(x_1, x_2)$$

5.
$$\forall x_1 F_1^2(x_1, x_2) \leftrightarrow \forall x_2 F_1^2(x_1, x_2)$$

例8(1)的解

1.
$$\neg (\forall x_2 \exists x_1 F_1^2(x_1, x_2))$$

$$\neg (\forall x_2 \exists x_1 F_1^2(x_1, x_2))$$

$$\mapsto \exists x_2(\neg \exists x_1 F_1^2(x_1, x_2))$$

$$\mapsto \exists x_2 \forall x_1 (\neg F_1^2(x_1, x_2))$$

例8(2)的解

2.
$$\forall x_1 F^1(x_1) \to \forall x_2 F^1(x_2)$$

$$\forall x_1 F^1(x_1) \rightarrow \forall x_2 F^1(x_2)$$

$$\vdash \vdash \forall x_2 (\forall x_1 F^1(x_1) \rightarrow F^1(x_2))$$

$$\vdash \vdash \forall x_2 \exists x_1 (F^1(x_1) \rightarrow F^1(x_2))$$

例8(2)的解

2.
$$\forall x_1 F^1(x_1) \to \forall x_2 F^1(x_2)$$

解:

$$\forall x_1 F^1(x_1) \rightarrow \forall x_2 F^1(x_2)$$

$$\mapsto \forall x_2(\forall x_1 F^1(x_1) \rightarrow F^1(x_2))$$

$$\mapsto \forall x_2 \exists x_1 (F^1(x_1) \rightarrow F^1(x_2))$$

另解:

$$\forall x_1 F^1(x_1) \rightarrow \forall x_2 F^1(x_2)$$

$$\mapsto \exists x_1(F^1(x_1) \rightarrow \forall x_2F^1(x_2))$$

$$\mapsto \exists x_1 \forall x_2 (F^1(x_1) \rightarrow F^1(x_2))$$

注: 范式不一定唯一

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

解:

$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

 $\mapsto \forall x_2 (\forall x_1 F_1^2(x_1, x_2) \rightarrow F^1(x_2))$
 $\mapsto \forall x_2 \exists x_1 (F_1^2(x_1, x_2) \rightarrow F^1(x_2))$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

$$\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 F^1(x_2)$$

$$\vdash \vdash \forall x_2 (\forall x_1 F_1^2(x_1, x_2) \to F^1(x_2))$$

$$\vdash \vdash \forall x_2 \exists x_1 (F_1^2(x_1, x_2) \to F^1(x_2))$$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

解:

$$\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 F^1(x_2)$$

$$\vdash \vdash \forall x_2 (\forall x_1 F_1^2(x_1, x_2) \to F^1(x_2))$$

$$\vdash \vdash \forall x_2 \exists x_1 (F_1^2(x_1, x_2) \to F^1(x_2))$$

$$\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 F^1(x_2)$$

$$\vdash \exists x_1 F_1^2(x_1, x_3) \to \forall x_2 F^1(x_2)$$

$$\vdash \exists x_2 (\forall x_1 F_1^2(x_1, x_3) \to F^1(x_2))$$

$$\vdash \exists x_2 \exists x_1 (F_1^2(x_1, x_3) \to F^1(x_2))$$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

所:
$$\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 F^1(x_2)$$

$$\mapsto \forall x_2 (\forall x_1 F_1^2(x_1, x_2) \to F^1(x_2))$$

$$\mapsto \forall x_2 \exists x_1 (F_1^2(x_1, x_2) \to F^1(x_2))$$
解:

$$\forall x_{1}F_{1}^{2}(x_{1}, x_{2}) \rightarrow \forall x_{2}F^{1}(x_{2})$$

$$\vdash \forall x_{1}F_{1}^{2}(x_{1}, x_{3}) \rightarrow \forall x_{2}F^{1}(x_{2})$$

$$\vdash \forall x_{2}(\forall x_{1}F_{1}^{2}(x_{1}, x_{3}) \rightarrow F^{1}(x_{2}))$$

$$\vdash \forall x_{2}\exists x_{1}(F_{1}^{2}(x_{1}, x_{3}) \rightarrow F^{1}(x_{2}))$$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

解: $\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$
 $\mapsto \forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_3 F^1(x_3)$
 $\mapsto \forall x_3 (\forall x_1 F_1^2(x_1, x_2) \rightarrow F^1(x_3))$
 $\mapsto \forall x_3 \exists x_1 (F_1^2(x_1, x_2) \rightarrow F^1(x_3))$

3.
$$\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$$

解: $\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$
 $\mapsto \forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_3 F^1(x_3)$
 $\mapsto \forall x_3 (\forall x_1 F_1^2(x_1, x_2) \rightarrow F^1(x_3))$
 $\mapsto \forall x_3 \exists x_1 (F_1^2(x_1, x_2) \rightarrow F^1(x_3))$
另解: $\forall x_1 F_1^2(x_1, x_2) \rightarrow \forall x_2 F^1(x_2)$
 $\mapsto \exists x_1 (F_1^2(x_1, x_2) \rightarrow \forall x_3 F^1(x_3))$
 $\mapsto \exists x_1 (F_1^2(x_1, x_2) \rightarrow \forall x_3 F^1(x_3))$

 $\exists x_1 \forall x_3 (F_1^2(x_1, x_2) \rightarrow F^1(x_3))$

例8(4)的解

4.
$$(\forall x_1 F_1^2(x_1, x_2) \to \neg \exists x_2 F_2^1(x_2)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$$

解:
 $(\forall x_1 F_1^2(x_1, x_2) \to \neg \exists x_2 F_2^1(x_2)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$
 $\vdash (\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 \neg F_2^1(x_2)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$
 $\vdash \exists x_1 (F_1^2(x_1, x_2) \to \forall x_2 \neg F_2^1(x_2)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$
 $\vdash \exists x_1 (F_1^2(x_1, x_2) \to \forall x_3 \neg F_2^1(x_3)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$
 $\vdash \exists x_1 \forall x_3 (F_1^2(x_1, x_2) \to \neg F_2^1(x_3)) \to \forall x_1 \forall x_2 F_3^2(x_1, x_2)$
 $\vdash \exists x_1 \forall x_3 (F_1^2(x_1, x_2) \to \neg F_2^1(x_3)) \to \forall x_4 \forall x_5 F_3^2(x_4, x_5)$
 $\vdash \forall x_1 \exists x_3 (F_1^2(x_1, x_2) \to \neg F_2^1(x_3)) \to \forall x_4 \forall x_5 F_3^2(x_4, x_5)$
 $\vdash \forall x_1 \exists x_3 \forall x_4 \forall x_5 ((F_1^2(x_1, x_2) \to \neg F_2^1(x_3)) \to F_3^2(x_4, x_5))$

例8(5)的解

5.
$$\forall x_1 F_1^2(x_1, x_2) \leftrightarrow \forall x_2 F_1^2(x_1, x_2)$$

解: $\forall x_1 F_1^2(x_1, x_2) \leftrightarrow \forall x_2 F_1^2(x_1, x_2)$
 $\mapsto (\forall x_1 F_1^2(x_1, x_2) \to \forall x_2 F_1^2(x_1, x_2)) \land (\forall x_2 F_1^2(x_1, x_2) \to \forall x_1 F_1^2(x_1, x_2))$
 $\mapsto (\forall x_3 F_1^2(x_3, x_2) \to \forall x_4 F_1^2(x_1, x_4)) \land (\forall x_5 F_1^2(x_1, x_5) \to \forall x_6 F_1^2(x_6, x_2))$
 $\mapsto \exists x_3 (F_1^2(x_3, x_2) \to \forall x_4 F_1^2(x_1, x_4)) \land \exists x_5 (F_1^2(x_1, x_5) \to \forall x_6 F_1^2(x_6, x_2))$
 $\mapsto \exists x_3 \forall x_4 (F_1^2(x_3, x_2) \to F_1^2(x_1, x_4)) \land \exists x_5 \forall x_6 (F_1^2(x_1, x_5) \to F_1^2(x_6, x_2))$
 $\mapsto \exists x_3 \forall x_4 \exists x_5 \forall x_6 ((F_1^2(x_3, x_2) \to F_1^2(x_1, x_4)) \land (F_1^2(x_1, x_5) \to F_1^2(x_6, x_2)))$

范式定理的证明

对 \mathfrak{L} 任一个公式 α ,存在 \mathfrak{L} 的前束范式 α' ,使 $\alpha \mapsto \alpha'$.

证:对 α 中所含的联结词与量词的个数d归纳证明.

- (1) 当d = 0时, α 为原子公式,从而 α 中没有量词,取 $\alpha' = \alpha$,则 $\alpha \mapsto \alpha'$
- (2) 设当 $d \le n$ 时命题成立,考察d = n + 1时情形. α 为下列几种情形之一:

 $\neg \alpha_1, \quad \alpha_1 \vee \alpha_2, \quad \alpha_1 \wedge \alpha_2, \quad \alpha_1 \rightarrow \alpha_2, \quad \alpha_1 \leftrightarrow \alpha_2,$ $\exists x \alpha_1, \quad \forall x \alpha_1.$

范式定理的证明(续1)

由归纳假设知:存在 \mathfrak{L} 的前束范式 α'_1, α'_2 ,使得 $\alpha_1 \vdash \alpha'_1, \alpha_2 \vdash \alpha'_2$.

设 α_1, α_2 分别为:

$$Q_1v_1Q_2v_2\cdots Q_mv_m\alpha_1''$$
 $Q_{m+1}v_{m+1}Q_{m+2}v_{m+2}\cdots Q_{m+n}v_{m+n}\alpha_2''$ 其中:

 Q_i 为 \forall 或 \exists , v_i 为个体变元符号($1 \le i \le m + n$). α''_1 与 α''_2 中没有量词出现.

范式定理的证明(续2)

(2.1) 当 α 为 $\neg \alpha_1$ 时, $\alpha \mapsto \neg Q_1v_1Q_2v_2\cdots Q_mv_m\alpha_1''$.

从而 $\alpha \mapsto Q_1^* v_1 Q_2^* v_2 \cdots Q_m^* v_m \neg \alpha_1''$.

其中:

$$Q_i^* = \begin{cases} \forall & \exists Q_i \end{pmatrix} \exists \\ \exists & \exists Q_i \end{cases}$$

则 $Q_1^*v_1Q_2^*v_2\cdots Q_m^*v_m\neg\alpha_1''$ 即为所求.

范式定理的证明(续3)

(2.2) 当 α 为 α 1 \vee α 2 时.

$$\alpha \mapsto (Q_{1}v_{1} \cdots Q_{m}v_{m}\alpha_{1}'') \vee (Q_{m+1}v_{m+1} \cdots Q_{m+n}v_{m+n}\alpha_{2}'') + (Q_{1}v_{1}' \cdots Q_{m}v_{m}'\alpha_{1}''(v_{m}/v_{m}') \cdots (v_{1}/v_{1}')) \vee (Q_{m+1}v_{m+1}' \cdots Q_{m+n}v_{m+n}' + \alpha_{2}''(v_{m+n}/v_{m+n}') \cdots (v_{m+1}/v_{m+1}'))$$

其中:

 $v'_1, v'_2, \dots, v'_{m+n}$ 为 \mathfrak{L} 中互不相同的个体变元符号,且不在 α'_1 及 α'_2 中出现.

范式定理的证明(续4)

从而由例12知:

$$\alpha \mapsto Q_{1}v'_{1} \cdots Q_{m}v'_{m}$$

$$Q_{m+1}v'_{m+1} \cdots Q_{m+n}v'_{m+n}$$

$$\left((\alpha''_{1}(v_{m}/v'_{m}) \cdots (v_{1}/v'_{1})) \vee \right.$$

$$\left. (\alpha''_{2}(v_{m+n}/v'_{m+n}) \cdots (v_{m+1}/v'_{m+1})) \right)$$

此即为所求的前束范式.

范式定理的证明(续4)

- (2.3) 当 α 为 α ₁ \wedge α ₂时,仿(2.2)可证.
- (2.4) 当 α 为 $\alpha_1 \rightarrow \alpha_2$ 时,利用例6与例10 仿上可证.
- 由(2.3)及(2.4)知存在前東范式 β 使: $\alpha \vdash \beta$.
- (2.6) 当 α 为 $\forall x\alpha_1$ 或 $\exists x\alpha_1$ 时,由引理1之(6,7)易证.

归纳证完, 命题成立.

谓词公式按前束范式的分类

定义11 设n是一个非0的自然数.

- (1) 若前東范式 α 的量词以全称量词开始,并且全称量词组与存在量词组有 n-1次交替,则称 α 为一个 Π_n 型前東范式,简称为 Π_n 型公式.
- (2) 若前東范式 α 的量词以存在量词开始,并且全称量词组与存在量词组有 n-1次交替,则称 α 为一个 Σn 型前東范式,简称为 Σn 型公式.

例如: $\forall x_1 \forall x_2 (F^1(x_1) \to F^1(x_2))$ 为 Π_1 型公式. $\exists x_3 \exists x_1 \forall x_1 \forall x_2 (F^1(x_1) \to F^1(x_2))$ 为 Σ_2 型公式.

Nc的内定理

定义12 设 α 为 $N_{\mathcal{L}}$ 的一个公式,

若 \emptyset ⊢_{N_ε} α ,则称 α 为N_ε的一个内定理,记为⊢_{N_ε} α .

易证: $\alpha_1, \alpha_2, \dots, \alpha_n \vdash_{\mathbf{N}_{\mathfrak{L}}} \alpha$ 当且仅当 $\vdash_{\mathbf{N}_{\mathfrak{L}}} \alpha_1 \to \alpha_2 \to \dots \to \alpha_n \to \alpha$ 当且仅当 $\vdash_{\mathbf{N}_{\mathfrak{L}}} (\alpha_1 \land \alpha_2 \land \dots \land \alpha_n) \to \alpha$

作业

```
p.560(p.185)
```

17. (1), (2), (3)

18. (1), (3)

19. (2),(3)

谢谢