Análisis y Diseño de Algoritmos.

Sesión 3. 29 de Agosto de 2017.

Maestría en Sistemas Computacionales.

¿Qué veremos hoy?

- Diseño y análisis de algoritmos de ordenamiento:
 - de complejidad cuasi-lineal
 - iterativos
- → ¿Cuáles son?
 - Shell (ya se vio)
 - Heapsort
 - Radix
- Ordenamiento por conteo: complejidad lineal

Heap Sort

- También llamado ordenamiento por montículos.
- Su complejidad temporal es N log N en los casos mejor, peor y promedio.
- Quicksort es con frecuencia más rápido, pero HeapSort es mejor en los casos críticos.
- El primer paso del algoritmo consiste en construir un montículo (heap) a partir del arreglo.
- El segundo paso (e iterativo) es eliminar el elemento más grande y sustituirlo por el que está colocado al final del montículo.

¿Qué es un montículo?

- Es un árbol binario con estas características:
 - 1. Cada nodo tiene un valor comparable tal que ningún nodo tiene un valor más grande que el de su padre.
 - 2. Está balanceado: cada nodo tiene 2 hijos, excepto los de los últimos dos niveles.
 - Está alineado a la izquierda: si un nodo sólo tiene un hijo, debe ser el izquierdo.

¿Qué es un montículo?

Alineado a la izquierda

Cumple propiedad 1

No alineado a la izquierda

No cumple propiedad 1

¿Por qué con montículos?

- El cumplimiento de la propiedad 1 nos facilitará realizar el ordenamiento en tiempo quasi-lineal.
- 2. El cumplimiento de las propiedades 2 y 3 nos permitirán tratar al arreglo recibido como árbol (sin necesidad de crear un árbol binario explícito).

 Correspondencia entre arreglo y árbol binario:
 - Nótese que no cumple con la propiedad 1.

Primer paso

- Convertir el arreglo en montículo:
 - 1. Comenzar en el 2º elemento: hijo izquierdo de la raíz.
 - 2. Obtener el índice del padre... ¿cuál es la fórmula?
 - 3. Si el elemento actual es mayor que su padre:
 - a) Intercambiarlos
 - b) Regresar al paso 3 hasta llegar a la raíz
 - 4. Regresar al paso 1 con el siguiente elemento.

587913

987513

Ejercicio:

- 1. Formar el montículo del siguiente arreglo [7, 8, 6, 5, 12, 25, 28]
- Formar el montículo a partir de un arreglo con los valores del 1 al 7

Segundo paso

- Eliminar iterativamente el elemento más grande y sustituirlo por el que está al final del montículo.
 - 1. El elemento más grande siempre está en la raíz.
 - 2. / Intercambiar el elemento de la raíz por el del final.
 - El elemento más grande ya quedó en su posición definitiva: esa posición ya no se visitará y el nuevo final del montículo es la posición anterior.
 - Se pierde la propiedad 1 de los montículos.

Segundo paso

- 3. Llevar la nueva raíz tan abajo como sea necesario hasta que se recupere la propiedad 1 de los montículos: pushdown.
 - g. Compararlo con el mayor de los hijos.
 - ¿Cuál es la fórmula para acceder a los dos hijos?
 - Si el hijo derecho no existe, el mayor será el hijo izquierdo.
 - No se puede dar que el hijo izquierdo no existe y el derecho sí.
 - b. Si es menor,
 - Intercambiarlos.
 - Regresar al paso 3.a hasta llegar a las hojas del montículo.

Segundo paso

4. Regresar al paso 2 tomando como último elemento del montículo, el anterior al elegido en la pasada anterior.

- Los pasos 1 y 2 llevan la misma lógica en el recorrido del arreglo, pero en sentido contrario: analizaremos uno y multiplicaremos por 2 el resultado.
- Nos interesa saber cuánto es lo más que puede tardar: peor caso.
 - El peor caso es cuando cada elemento actual tiene que recorrerse siempre hasta la raíz o hasta la hoja.
 - Tomaremos dos casos extremos y calcularemos promedio:
 - 1. El último nivel del árbol está lleno.
 - 2. El último nivel del árbol tiene una hoja.
- ¿Por qué sí podemos calcular promedio?
 - La longitud del recorrido de todos los nodos del mismo nivel es igual.

- 1. Él último nivel está lleno.
 - \sim N = 3, 7, 15, 31, 63, ... [N = 1 es un caso trivial, f(1) = 0]
 - # de niveles de un árbol binario de N elementos:
 - $\rightarrow \lfloor \log_2(N) \rfloor + 1$

f(N) = movimientos

N	f(N)		
3	2(1)		
7	4(2) + f(3)		
15	8(3) + f(7)		
31	16(4) + f(15)		
63	32(5) + f(31)		
N	$\frac{1}{2}(N + 1) (lg(N + 1) - 1) + f(\frac{1}{2} N)$		

N	f(N)	f(N) / N	Log (N + 1) - 2
3	2	0.66	0
7	10	1.42	1
15	34	2.26	2
31	98	3.16	3
63	258	4.09	4
127	642	5.05	5
255	1,538	6.03	6
511	3,586	7.01	7
N	$f(N) \approx N (lg(N+1)-2)$		

- 2. El último nivel tiene una hoja.
 - \sim N = 2, 4, 8, 16, 32, 64, ...
 - Estará en función del caso anterior.

N	f(N)	
2	1	
4	f(3) + 2	
8	f(7) + 3	
16	f(15) + 4	
32	f(31) + 5	
N	f(N-1) + lg(N)	

N	f(N)	f(N) / N	Log(N) - 2
2	1	0.5	-1
4	4	1	0
8	13	1.62	1
16	38	2.38	2
32	103	3.21	3
64	264	4.12	4
128	649	5.07	5
256	1546	6.04	6
512	3595	7.02	7
N	$f(N) \approx N (lg(N) - 2)$		

- Falta calcular el promedio de los dos resultados obtenidos, y luego multiplicar por dos debido a los dos pasos del algoritmo; por tanto, sólo hay que sumar los dos resultados:
 - 1. N(lg(N + 1) 2)
 - 2. N (lg N 2)
 - $\stackrel{\blacktriangleright}{\sim}$ N (lg(N + 1) + lg N − 4) ≈ 2N(lg N − 4) ∈ O(N lg N)
 - Tienden a ser iguales conforme N crece.
 - Esta ecuación representa el promedio de los peores casos.
 - Nota: este análisis no contempla comparaciones entre los hijos.
- Comprobar de manera práctica que un arreglo aleatorio efectúa menos del 60% de comparaciones, uno ordenado efectúa poco más del 100%, y uno invertido es el mejor caso de los 3 (N ≥ 106).

Radixsort

- El ordenamiento se basa en procesar los dígitos que componen cada número de forma individual
- Se hacen tantas pasadas como número de dígitos tenga el número más grande
 - Se crean 10 listas de tamaño variable
 - En la primer lista se guardarán todos aquellos que terminan en 0; la segunda lista los que terminan con 1, y así
 - En la siguiente pasada, se crean otras 10 listas
 - En la primer lista nueva se guardarán los números cuyo penúltimo dígito es 0, ..., siguiendo el orden que tenían en las 10 listas de la pasada anterior

Radixsort

- Lista = {5, 67, 58, 34, 25, 31, 19, 20, 9, 24, 26, 17, 10, 16, 52}
 - \blacksquare Lista₀ = {20,10}
 - \rightarrow Lista₂ ={52}
 - \blacksquare Lista₄ ={34, 24}
 - \rightarrow Lista₆ = {26, 16}
 - Lista₈ = {58}
 - \blacksquare Lista₀ = {05, 09}
 - Lista₂ ={20, 24, 25, 26}
 - \blacksquare Lista₄ ={}
 - Lista₆ = {67}
 - \blacksquare Lista₈ = {}

Lista₁ =
$$\{31\}$$

List
$$a_3 = \{\}$$

List
$$a_5 = \{5,25\}$$

Lista₇ =
$$\{67, 17\}$$

Lista₉ =
$$\{19, 9\}$$

Lista₁ =
$$\{10, 16, 17, 19\}$$

Lista₃ =
$$\{31, 34\}$$

List
$$a_5 = \{52, 58\}$$

Lista
$$_7 = \{\}$$

Lista
$$_9 = \{\}$$

http://cs.armstrong.edu/liang/animation/web/RadixSort.html

Ordenamiento por Conteo 1/3

- Veamos un caso especial:
 - Ordenar una lista de N enteros diferentes con valores de 0 a N-1:
 - \rightarrow 4, 3, 5, 1, 6, 0, 2 \Rightarrow 0, 1, 2, 3, 4, 5, 6
 - ¿Se puede lograr con una complejidad temporal menor a N lg N?
 - El valor estará en función de la posición: O(N).
- Otro caso especial (más interesante):
 - Ordenar una lista de N enteros con valores de 0 a M 1, M < N:
 - \rightarrow 3, 1, 3, 1, 2, 1, 0 \Rightarrow 0, 1, 1, 1, 2, 3, 3

Ordenamiento por Conteo 2/3

- La lista a ordenar es: 3, 1, 3, 1, 2, 1, 0 #0 #1 #2 #3
 - Contar ocurrencias de cada valor: conteos = {1, 3, 1, 2}
 - Acumular los conteos: Conteos = $\{1, 4, 5, 7\}$
 - Proceder de derecha a izquierda y escribir en una nueva lista:
 - [0] Conteos = $\{0, 4, 5, 7\}$. Lista' = $\{0, , , , , \}$.
 - [1] Conteos = $\{0, 3, 5, 7\}$. Lista' = $\{0, , 1, , , \}$.

 - [1] Conteos = $\{0, 2, 4, 7\}$. Lista' = $\{0, 1, 1, 2, , \}$.
 - [3] Conteos = $\{0, 2, 4, 6\}$. Lista' = $\{0, 1, 1, 2, 3\}$.
 - [1] Conteos = $\{0, 1, 4, 6\}$. Lista' = $\{0,1,1,1,2, ,3\}$.
 - [3] Conteos = $\{0, 1, 4, 5\}$. Lista' = $\{0,1,1,1,2,3,3\}$.

Ordenamiento por Conteo 3/3

- ¿Qué complejidad tiene el algoritmo?
 - Temporal
 - Espacial
- Este algoritmo funciona cuando las claves son números enteros
- ¿Y si fueran números reales o letras?
 - Mapear los valores a índices del arreglo en tiempo constante

Tarea

- ¿Qué quisieran hacer como proyecto de obtención de grado para el cual esta materia pueda ayudar?
 - Desde el punto de vista de las técnicas que se verán o líneas de investigación de interés.
 - O desde el punto de vista de la aplicación o problema que se desea resolver.
 - Procesar muchas restricciones, o mucha información, información no estructurada (audio, video, imágenes, texto), ej. Clasificar imágenes, buscar en videos o audio, grafos de datos, etc.
 - Leer proyectos propuestos.