Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Binomial Distribution

The binomial distribution is a discrete probability distribution where we can compute the probability of observing k successes, each with probability p, among n trials with the probability mass function

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Parameters

In this LearnR app, we will practice making graphs of the PMF (probability mass function) and cumulative probabilities for a binomial distribution.

Setting

In constructing a music playlist in YouTube, suppose that 63 percent of the songs had official music videos (and fan-made videos otherwise). Let us create a playlist of 10 songs. Fill in the parameters for $X \sim Bin(n,p)$ below.

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Binomial Distribution

The binomial distribution is a discrete probability distribution where we can compute the probability of observing k successes, each with probability p, among p trials with the probability mass function

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Probability Mass Function

Press Run Code to visualize the distribution, and then add code comments on the lines where there is an octothorpe (#) to describe what those lines of code do.

```
Start Over
                                                                              ▶ Run Code
Code
  1 kvals <- 0:n # creates a list of numbers from 0 to n
           <- dbinom(kvals, n, p)</pre>
           <- kvals == 7 # creates a list of booleans
  4 df
           <- data.frame(kvals, pmf, tf)</pre>
       ggplot(aes(x = kvals, y = pmf, fill = tf)) +
       geom_bar(stat = "identity") + # we will provide out own y values
       labs(title = "Probability Mass Function",
            subtitle = "k is exactly 7",
 10
            caption = "Math 32",
            x = "k"
 11
 12
            v = "probability") +
 13
       scale x continuous(breaks = 0:n,
 14
                           labels = as.character(0:n))
```

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Probability Mass Function

Previous Topic

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Binomial Distribution

The binomial distribution is a discrete probability distribution where we can compute the probability of observing k successes, each with probability p, among p trials with the probability mass function

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Cumulative Probability

Press Run Code to visualize the distribution, and then add code comments on the lines where there is an octothorpe (#) to describe what those lines of code do.

```
Start Over
                                                                             ▶ Run Code
Code
  1 kvals <- 0:n
           <- dbinom(kvals, n, p)</pre>
           <- kvals <= 5 # creates a list of booleans
  4 df
           <- data.frame(kvals, pmf, tf) # merge all the values from kvals, pmf, and tf
  5 df %>%
       ggplot(aes(x = kvals, y = pmf, fill = tf)) +
       geom bar(stat = "identity") +
       labs(title = "Cumulative Probability", # labels the graph
            subtitle = "k is at most 5",
 10
            caption = "Math 32",
            x = "k"
 11
 12
            y = "probability") +
 13
       scale x continuous(breaks = 0:n,
 14
                          labels = as.character(0:n))
```

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Cumulative Probability

Previous Topic

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Binomial Distribution

The binomial distribution is a discrete probability distribution where we can compute the probability of observing k successes, each with probability p, among n trials with the probability mass function

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

PMF Exercise

Use R code with ggplot to visualize the PMF for "What is the probability that there are exactly 6 songs with official music videos in a playlist of 10 songs?"

```
Start Over
                                                                              ▶ Run Code
Code
  1 kvals <- 0:n
  2 pmf <- dbinom(kvals, n, p)</pre>
           <- kvals == 6
  4 df
           <- data.frame(kvals, pmf, tf)</pre>
  5 df %>%
       ggplot(aes(x = kvals, y = pmf, fill = tf)) +
       geom_bar(stat = "identity") +
       labs(title = "Probability Mass Function",
  9
            subtitle = "k is exactly 6",
            caption = "Math 32",
 10
            x = "k"
 11
            y = "probability") +
 12
 13
      scale x continuous(breaks = 0:n,
 14
                           labels = as.character(0:n))
```

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Previous Topic

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Binomial Distribution

The binomial distribution is a discrete probability distribution where we can compute the probability of observing k successes, each with probability p, among n trials with the probability mass function

$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$

Cumulative Exercise

Use R code with ggplot to visualize the cumulative probability for "What is the probability that there are more than 6 songs with official music videos in a playlist of 10 songs?"

```
Start Over
                                                                                  ▶ Run Code
Code
   2 kvals <- 0:n
           <- dbinom(kvals, n, p)</pre>
            \leftarrow kvals \rightarrow 6
   5 df
            <- data.frame(kvals, pmf, tf)</pre>
  6 df %>%
        ggplot(aes(x = kvals, y = pmf, fill = tf)) +
        geom bar(stat = "identity") +
       labs(title = "Cumulative Probability",
 10
             subtitle = "k is more than 6",
             caption = "Math 32",
 11
 12
             x = "k"
             y = "probability") +
 13
 14
       scale x continuous(breaks = 0:n,
 15
                            labels = as.character(0:n))
 16
```

Math 32

Parameters

Probability Mass Function

Cumulative Probability

PMF Exercise

Cumulative Exercise

Submission

Start Over

Cumulative Probability

Previous Topic