Geometric Measure Theory

Problem Set 2 2.2 - Borel and Suslin Sets

Problem 1. (Borel families)

- (a) Show that the collection of all single-point sets in a set X generates the Borel family consisting of all sets that are either at most countable or have at most countable complements.
- (b) Show that the Borel family in (a) is strictly smaller than the collection of Borel sets of **R** endowed with the standard topology.
- (c) Let T be a rotation of \mathbf{R}^2 (endowed with the standard topology) about the origin. Show that $A \subset \mathbf{R}^2$ is a Borel set if and only if T(A) is a Borel set.

Problem 2. If ϕ measures X, explain why the class of all ϕ measurable sets is a Borel family.

Problem 3. (Support of a measure) Find an example of a measure ϕ over a space with a topology T such that the equation

$$\phi(X \sim \operatorname{spt} \phi) = 0$$

does not hold.

Problem 4. (Borel regularity)

- (a) Show that if ϕ is Borel regular and A is a Borel set, then $\phi \llcorner A$ is Borel regular.
- (b) If ϕ is any measure over a topological space X such that all Borel subsets of X are ϕ measurable, and if

$$\psi(A) := \inf \{ \phi(B) : A \subset B \text{ and } B \text{ is a Borel set} \}$$

whenever $A \subset X$, show that ψ is a Borel regular measure, and that $\psi \equiv \phi$ on the Borel sets of X.

Problem 5. (Theorem 2.2.4, Existence of nonmeasurable subsets) Let ϕ be a Borel regular measure over a complete, separable metric space X, $0 < \phi(A) < \infty$, and $\phi(\{x\}) = 0$ whenever $x \in A$.

- (a) Consider the class Γ of all closed subsets C of A for which $\phi(C) > 0$. Explain why $\operatorname{card}(C) = 2^{\aleph_0}$, and why $\operatorname{card}(\Gamma) \leq 2^{\aleph_0}$.
- (b) Then, prove it follows that there exists a well-ordering of Γ such that, for each $C \in \Gamma$, the set Γ_C of predecessors of C has cardinal less than 2^{\aleph_0} .
- (c) If A is γ measurable and $\gamma(A) < \infty$, then A is ϕ measurable.

Problem 6*. (Ulam Numbers)

- (a) Show that \aleph_0 is an Ulam number.
- (b) Show that the class of all Ulam numbers is an initial segment in the well ordered class of all cardinal numbers.
- (c) Show that if there exist any cardinal numbers which are not Ulam numbers, the smallest such number cannot be accessible.

Additional Exercises

Problem 7*. Define functions $\mu_1, \ldots \mu_6$ on $\mathbf{2}^X$ by

$$\mu_1(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ 1 & \text{if } A \text{ is nonempty,} \end{cases}$$

$$\mu_2(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ +\infty & \text{if } A \text{ is nonempty,} \end{cases}$$

$$\mu_3(A) = \begin{cases} 0 & \text{if } A \text{ is bounded,} \\ 1 & \text{if } A \text{ is unbounded,} \end{cases}$$

$$\mu_4(A) = \begin{cases} 0 & \text{if } A \text{ is bounded,} \\ 1 & \text{if } A \text{ is unbounded,} \end{cases}$$

$$\mu_5(A) = \begin{cases} 0 & \text{if } A \text{ is empty,} \\ 1 & \text{if } A \text{ is nonempty and bounded,} \\ +\infty & \text{if } A \text{ is unbounded} \end{cases}$$

$$\mu_6(A) = \begin{cases} 0 & \text{if } A \text{ is countable, and,} \\ +\infty & \text{if } A \text{ is uncountable,} \end{cases}$$

Which of the above functions define measures? For each one that defines a measure, what are the respective measurable subsets of \mathbf{R} ?

Problem 8. (The 1-Dimensional Lebesgue Measure) For each subset A of \mathbf{R} , define the **1-Dimensional Lebesgue Measure**

$$\mathcal{L}^1:\mathbf{2}^X\to [0,\infty]$$

by

$$\mathcal{L}^1(A) = \inf \sum_i (b_i - a_i)$$

where the infimum is taken over all collections $C_A = \{(a_i, b_i)\}$ of open intervals whose union $\bigcup_i (a_i, b_i)$ covers A. I.e., $A \subseteq \bigcup_i (a_i, b_i)$. Show that $\mathcal{L}^1(C) = 0$ for every countable subset C of \mathbf{R} .