COMP108 Data Structures and Algorithms

Dynamic Programming (Part II Assembly Line Scheduling)

Professor Prudence Wong

pwong@liverpool.ac.uk

2022-23

Assembly Line Scheduling

- ightharpoonup 2 assembly lines, each with n stations ($S_{i,j}$: line i station j)
- $ightharpoonup S_{1,j}$ and $S_{2,j}$ perform same task but time taken is different
- $ightharpoonup a_{i,j}$: assembly time at $S_{i,j}$
- $ightharpoonup t_{i,j}$: transfer time from $S_{i,j}$

Problem: To determine which stations to go in order to minimize the total time through the n stations

station chosen	$S_{1,1}$	$S_{1,2}$		$S_{2,3}$	$S_{2,4}$	
time required	5	5	4	3	7	= 24

station chosen	$S_{2,1}$		$S_{1,2}$		$S_{2,3}$		$S_{1,4}$	
time required	15	1	5	4	3	2	4	= 34

How to determine the best stations to go?

There are altogether 2^n choices of stations.

Should we try them all?

2'n possible paths, Q: can we reduce search space?

- ▶ We don't need to try all possible choices.
- We can make use of dynamic programming:

- We don't need to try all possible choices.
- We can make use of dynamic programming:
 - 1. If we know the fastest ways to get thro' station $S_{1,n}$ and $S_{2,n}$
 - ⇒ the faster of these two is overall fastest

- We don't need to try all possible choices.
- We can make use of dynamic programming:
 - 1. If we know the fastest ways to get thro' station $S_{1,n}$ and $S_{2,n}$ \implies the faster of these two is overall fastest
 - 2. Fastest ways to get thro' $S_{1,n}$? need to know fastest way to get thro' $S_{1,n-1}$ and $S_{2,n-1}$

- We don't need to try all possible choices.
- We can make use of dynamic programming:
 - 1. If we know the fastest ways to get thro' station $S_{1,n}$ and $S_{2,n}$ \implies the faster of these two is overall fastest
 - **2.** Fastest ways to get thro' $S_{1,n}$? need to know fastest way to get thro' $S_{1,n-1}$ and $S_{2,n-1}$
 - 3. Similarly for $S_{2,n}$

- We don't need to try all possible choices.
- We can make use of dynamic programming:
 - 1. If we know the fastest ways to get thro' station $S_{1,n}$ and $S_{2,n}$ \implies the faster of these two is overall fastest
 - 2. Fastest ways to get thro' $S_{1,n}$? need to know fastest way to get thro' $S_{1,n-1}$ and $S_{2,n-1}$
 - 3. Similarly for $S_{2,n}$
 - **4.** Generalsing, we want fastest way to get thro' $S_{1,j}$ and $S_{2,j}$, for all j.

What are the sub-problems?

- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{1,j}$
- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{2,j}$

What are the sub-problems?

- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{1,j}$
- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{2,j}$

Definitions:

- $ightharpoonup f_1[j]$: the fastest time to get thro' $S_{1,j}$
- **b** $f_2[j]$: the fastest time to get thro' $S_{2,j}$

What are the sub-problems?

- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{1,j}$
- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{2,j}$

Definitions:

- $ightharpoonup f_1[j]$: the fastest time to get thro' $S_{1,j}$
- **b** $f_2[j]$: the fastest time to get thro' $S_{2,j}$

The final solution equals to $\min\{f_1[n], f_2[n]\}$

What are the sub-problems?

- **P** given j, what is the fastest way to get thro' $S_{1,j}$
- ightharpoonup given j, what is the fastest way to get thro' $\mathcal{S}_{2,j}$

Definitions:

- $ightharpoonup f_1[j]$: the fastest time to get thro' $S_{1,j}$
- **b** $f_2[j]$: the fastest time to get thro' $S_{2,j}$

The final solution equals to $\min\{f_1[n], f_2[n]\}$

Task:

- ▶ Starting from $f_1[1]$ and $f_2[1]$, compute $f_1[j]$ and $f_2[j]$ incrementally
- ▶ i.e., $f_1[2]&f_2[2]$, $f_1[3]&f_2[3]$, ..., $f_1[n]&f_2[n]$

Q1: What is the fastest time to get thro' $S_{1,j}$

- ▶ the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{1,j}$

Q1: What is the fastest time to get thro' $S_{1,j}$

- ▶ the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{1,j}$

(i)
$$f_1[j-1] + a_{1,j}$$

Q1: What is the fastest time to get thro' $S_{1,j}$

- ▶ the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{1,j}$

(i)
$$f_1[j-1] + a_{1,j}$$
 (ii) $f_2[j-1] + t_{2,j-1} + a_{1,j}$

Q1: What is the fastest time to get thro' $S_{1,j}$

- ▶ the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{1,j}$

(i)
$$f_1[j-1] + a_{1,j}$$
 (ii) $f_2[j-1] + t_{2,j-1} + a_{1,j}$

$$\therefore f_1[j] = \min\{f_1[j-1] + a_{1,j}, \quad f_2[j-1] + t_{2,j-1} + a_{1,j}\}$$

Q1: What is the fastest time to get thro' $S_{1,j}$

- ▶ the fastest way thro' $S_{1,j-1}$, then directly to $S_{1,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{1,j}$

(i)
$$f_1[j-1] + a_{1,j}$$
 (ii) $f_2[j-1] + t_{2,j-1} + a_{1,j}$
 $\therefore f_1[j] = \min\{f_1[j-1] + a_{1,j}, \quad f_2[j-1] + t_{2,j-1} + a_{1,j}\}$
Boundary case: $f_1[1] = a_{1,1}$

Q1: What is the fastest time to get thro' $S_{2,j}$

- \blacktriangleright the fastest way thro' $S_{1,j-1}$, a transfer from line 2 to line 1, and then thro' $S_{2,j}$, or
- lacktriangle the fastest way thro' $S_{2,j-1}$, then directly to $S_{2,j}$

(i)
$$f_1[j-1] + t_{1,j-1} + a_{2,j}$$
 (ii) $f_2[j-1] + a_{2,j}$

$$\therefore f_2[j] = \min\{f_1[j-1] + t_{1,j-1} + a_{2,j}, \quad f_2[j-1] + a_{2,j}\}$$
Boundary case: $f_2[1] = a_{2,1}$

15/22

<i>j</i> 1	f ₁ [j]	f ₂ [j]
2		
3		
4		

$$\begin{split} & \text{fi}[j] = \begin{cases} \sigma_{1,1} & \text{if } j = 1 \\ \min\{f_1[j-1] + \sigma_{1,j}, f_2[j-1] + t_{2,j-1} + \sigma_{1,j}\} & \text{if } j > 1 \\ \sigma_{2,1}^* & \text{if } j = 1 \end{cases} \\ & \text{fin}\{\min\{f_1[j-1] + f_{1,j-1} + \sigma_{2,j}, f_2[j-1] + \sigma_{2,j}\} & \text{if } j > 1 \end{cases} \end{split}$$

$$\begin{array}{c|cccc}
j & f_1[j] & f_2[j] \\
1 & 5 & 15 \\
2 & 10 & 11 \\
3 & & & & \\
4 & & & & & \\
\end{array}$$

$$\begin{array}{c|cccc}
J & f_1[J] & f_2[J] \\
1 & 5 & 15 \\
2 & 10 & 11 \\
3 & 19 & 14 \\
4 & & & \\
\end{array}$$

Pseudo code

$$\begin{array}{l} f_{1}[1] \leftarrow a_{1,1} \\ f_{2}[1] \leftarrow a_{2,1} \\ \text{for } j \leftarrow 2 \text{ to } n \text{ do} \end{array} \\ \text{begin} \\ f_{1}[j] \leftarrow \min\{f_{1}[j-1] + a_{1,j}, f_{2}[j-1] + t_{2,j-1} + a_{1,j}\} \bigcirc () \\ f_{2}[j] \leftarrow \min\{f_{2}[j-1] + a_{2,j}, f_{1}[j-1] + t_{1,j-1} + a_{2,j}\} \bigcirc () \\ \text{end} \\ f^{*} \leftarrow \min\{f_{1}[n], f_{2}[n]\} \end{array}$$

19/22

Summary

Summary: Dynamic Programming for Assembly Line Scheduling

Next week: Revision Lecture

For note taking