3-18

(a)

eigen values of \hat{A} are $a_1=a_2=\sqrt{2}$ and $a_3=0$. Be cause of degeneracy eigen vectors of \hat{A} doesn't form a complete set automatically but by a little concentration we can find it's orthonormal eigen vectors which are:

$$|a_1 = \sqrt{2}\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, |a_2 = \sqrt{2}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, |a_3 = 0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

And respectively orthonormal eigen vectors of \hat{B} are:

$$|b_1=-1\rangle=\frac{1}{\sqrt{2}}\binom{0}{1}, |b_2=1\rangle=\binom{1}{0}, |b_3=1\rangle=\frac{1}{\sqrt{2}}\binom{0}{1}$$

If by measuring \hat{A} we get $\sqrt{2}$ system is either in two $|a_1\rangle$ or $|a_2\rangle$ states if \hat{B} acts on each one of them we get 1 as the answer thus in second measuring -1 never happens. So, the probability of (a) is zero.

(b)

If by measuring \hat{B} we get -1 then system is in $|b_1 = -1\rangle$ and acting \hat{A} on it yields zero so in second measuring $\sqrt{2}$ never happens. So, the probability of (b) is zero as well.

(c) the reason that (a) and (b) results are the same is that \hat{A} and \hat{B} are commutable and order of measuring is unimportant.

Mohammad Behtaj & Adel Sepehri

