COMP9334 Tai Hang Fu, z3418854, thfu013

COMP9334 Capacity Planning of Computer System and Network

Introduction

1. Background

The simulation is known as Fork-Join System, which is a simulation model of a multiple-server system.

2. Parameter used

We have assumed the following as to investigate the performance of the system:

The inter-arrival time $\{a(1),a(2)...a(k)\}$ of the **client requests**

For each a(k) = a(1)(k) + a(2)(k), where k = 1,2,3...; a(1)(k) is exponentially distributed with a mean arrival rate = 0.85 requests/s; a(2)(k) is uniformly distributed in the interval [0.05, 0.25]

The service time required by a **client requests**

Exponentially distributed with a mean service time: (n/10) s/ request where n is the number of servers selected

The service time required by each sub-task at each server

Independent

Independently distributed

Probability density function f(t(s)) of the service time t(s) at the server is according to the Pareto distribution:

$$f(t_s) = \begin{cases} 0 & \text{for } t_s < \frac{t_m}{n^{1.65}} \\ \frac{1}{n^{1.65k}} \frac{kt_m^k}{t_s^{k+1}} & \text{for } t_s \ge \frac{t_m}{n^{1.65}} \end{cases}$$
 (1)

where $t_m = 20\frac{k-1}{k} \approx 10.3846$, k = 2.08 and n is the number of servers chosen to serve the client request. Note that with the above probability density function, t_s can only take values in the range $\left[\frac{t_m}{n^{1.65}}, \infty\right)$.

m(number of Servers) = 10 n(number of Servers used) <= m

3. Goal

Simulates the system for different choices of n(number of server selected) and generate required probability distribution such that it gives the smallest mean response time.

Uses statistically sound method to compare systems and find out if one system is better than other.

Program Simulation

The program is written on Matlab and the statistic analysis is also on Matlab.

The simulation program takes number of servers used, number of clients requests as input and output the mean response time. include pre-processor that process clients request with inter-arrival time a(k) = a(1)(k) + a(2)(k) as mentioned above and it takes service time, (n/10) s/(n/10) s

Time to break and deliver sub tasks from pre-processor to the servers are neglected. Time to deliver task from servers to the joint point and the processing time on the joint point also neglected. It also takes the join point negligible time to assemble and deliver the final result.

COMPARISON AND ANALYSIS

It is important to do sound statistical analysis on the simulation results.

We are interested in the steady state value, so we avoid including the transient part of the data to compute the steady state value.

Under the n = 5(number of Servers used = 5), we used 20000 client requests to observe the response time (running **transient.m** on **save_arr**.mat)

Different values of w(e.g. 10,100..500), and seems that w=500 is able to get a pretty smooth graph applying **transient removal procedure** in Law and Kelton

By visual inspection(on the graph where $\mathbf{w} = \mathbf{500}$), we can observed the early part of the simulation displays nonsteady state while the later part of the simulation converges around the steady state value

From the graph above(w=500), we learn that the response time does not settle to a constant value. We want to do is removing the transient part, so at last we cut off the early 4000 requests (20000 tasks as the total client requests).

1.Mean Response Time for n(number of servers used) = 1:10 with Sample size = 15

After running 15 independent replications(started from 5 times, then gradually increased) for each possible number of servers used (n), we can get an approximate mean response time of the system

(All saved_rand_setting files, load_rng_setting.m, table_generate, interval.m have been used for the following graphs and table)

2. Table of all 15 Independent Replications records, Sample Mean of all Replications Mean Response Time and Sample Standard Deviation

Where n = number of servers used

	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	n = 8	n = 9	n = 10
1st Replic ation	23.5075 116	10.0200 6229	6.34513 3853	4.74431 8709	3.93937 2213	3.55696 0943	3.56307 9719	3.68824 2527	4.20895 6199	5.03938 9367
2nd Replic ation	24.2941 9409	10.1372 9996	6.37027 508	4.79564 3314	4.00094 8678	3.55911 3183	3.51416 5969	3.63867 767	4.18446 6646	5.01683 3593
3rd Replic ation	23.4294 53	10.0810 328	6.38151 5422	4.75264 1706	3.97869 7532	3.56545 7428	3.45361 1913	3.70427 0322	4.29584 8125	5.14375 099
4th Replic ation	23.2322 0987	10.0550 3487	6.33588 3456	4.82195 2219	3.94130 5627	3.54866 666	3.49745 6945	3.68396 497	4.15152 2762	5.31142 204
5th Replic ation	23.4891 7456	10.0618 4987	6.33433 7581	4.69642 6658	3.93117 766	3.57407 1849	3.50663 0028	3.72436 7949	4.02138 3987	5.23245 6863

6th Replic ation	23.8833 9956	10.0415 8489	6.38908 159	4.84586 6939	4.06958 5508	3.61568 2223	3.49870 6213	3.62901 9451	4.14139 6273	5.15728 0466
7th Replic ation	23.6727 9065	10.0904 1401	6.31394 947	4.86391 8763	4.02241 782	3.58314 8777	3.54219 3687	3.60051 1803	4.13372 8197	4.98014 901
8th Replic ation	23.5798 8976	10.0155 8867	6.26528 515	4.84698 6292	4.02202 7617	3.71042 0972	3.49922 5926	3.56276 4241	4.12045 4369	5.13549 9302
9th Replic ation	23.5449 4669	10.0844 8173	6.34826 0351	4.84538 4018	3.96266 4592	3.62462 6804	3.52662 2247	3.67872 6609	4.11830 0499	5.24788 6904
10th Replic ation	23.4530 8097	10.2548 058	6.34390 9884	4.80140 8346	3.94560 8587	3.60511 4283	3.48355 2166	3.66218 665	4.17367 4671	5.02085 8555
11th Replic ation	23.6001 297	10.0749 1464	6.38361 4542	4.80948 9297	4.02118 3707	3.60702 0998	3.60677 0777	3.68654 6031	4.15086 2784	5.14124 577
12th Replic ation	23.4746 1527	10.0342 8816	6.35390 9987	4.87555 2069	3.98057 3057	3.61909 7553	3.55949 7416	3.58636 6323	4.12573 4585	4.97685 7835
13th Replic ation	23.4891 7456	10.1802 3769	6.30180 5629	4.79990 226	3.96984 9705	3.60971 9569	3.53795 0144	3.65311 953	4.14027 3818	4.98016 6246
14th Replic ation	23.8833 9956	10.0766 0607	6.33693 404	4.76982 0186	4.01517 2202	3.64499 0681	3.51624 9613	3.62495 1751	4.14100 7822	4.87064 5203
15th Replic ation	23.6727 9065	10.0546 502	6.36719 3204	4.73930 1806	3.93762 9316	3.64987 1031	3.45027 3797	3.60326 1886	4.05208 807	5.25551 0799
Samp le Mean of All Mean Resp onse Time	23.613 78403	10.0841 9011	6.34473 9283	4.80057 4172	3.98254 7588	3.60493 0864	3.51706 5771	3.6484 65181	4.14397 992	5.1006 6353
Samp le Stan dard	0.2519 211022	0.06363 597159	0.03320 436979	0.05169 874182	0.04121 454065	0.04312 361418	0.04131 080119	0.0469 531377	0.06271 539057	0.1281 165562

Devia					
Devia					
tion					
uon					

By just looking at the graphs and table above,

we can observe the Mean response time start dramatically drops from n = 1, and the Mean Response Time starts getting stable when Number of servers used is about 5.

and starts slightly increase after Number of servers used = 8.

ANALYSIS OF DIFFERENT SYSTEM

Student's t-distribution (or simply the t-distribution) is a part of continuous probability distributions that arise when estimating the mean of a normally distributed population in situations where the sample size is small(*usually* <30) and population standard deviation is unknown.

As to compute the CI for all replications in all cases (n=1:10),

We repeat the experiment 15 times using different sets of random numbers <u>as mention before</u>. For each independent experiment recorded the response time and looked for the Confidence Interval.

Confidence interval is computed using the Sample Mean, Sample Standard Deviation from the tables, as well as the formula below with looking up t-distribution table.

Student t-distribution table

TABLE A.4 Quantiles of the t Distribution

				P				
n	0.6000	0.7000	0.8000	0.9000	0.9500	0.9750	0.9950	0.9995
1000	0.325	0.727	1.377	3.078	6.314	12.706	63.657	636.619
1	0.323	0.617	1.061	1.886	2.920	4.303	9,925	31.599
2		0.584	0.978	1.638	2.353	3.182	5.841	12.924
3	0.277	0.569	0.941	1.533	2.132	2.776	4.604	8.610
4	0.271	0.559	0.920	1.476	2.015	2.571	4.032	6.869
5 6 7	0.267	0.553	0.906	1.440	1.943	2.447	3.707	5.959
6	0.265	0.533	0.896	1.415	1.895	2.365	3.499	5.408
7	0.263	0.546	0.889	1.397	1.860	2.306	3.355	5.041
8	0.262	0.543	0.883	1.383	1.833	2.262	3.250	4.781
9	0.261	0.543	0.879	1.372	1.812	2.228	3.169	4.587
10	0.260	0.542	0.876	1.363	1.796	2.201	3.106	4.437
11	0.260		0.873	1.356	1.782	2.179	3.055	4.318
12	0.259	0.539	0.870	1.350	1.771	2.160	3.012	4,221
13	0.259	0.538	0.868	1.345	1.761	2.145	2.977	4.140
14	0.258	0.537	0.866	1.341	1.753	2.131	2.947	4.073
15	0.258	0.536	0.865	1.337	1.746	2.120	2.921	4.015
16	0.258	0.535		1.333	1.740	2.110	2.898	3.965
17	0.257	0.534	0.863	1.330	1.734	2.101	2.878	3.922
18	0.257	0.534		1.328	1.729	2.093	2.861	3.883
19	0.257	0.533	0.861	1.325	1.725	2.086	2.845	3.850
20	0.257	0.533	0.860	1.323	1.721	2.080	2.831	3.819
21	0.257	0.532	0.859	1.323	1.717	2.074	2.819	3.79
22	0.256	0.532	0.858	1.319	1.714	2.069	2.807	3.76
23	0.256	0.532	0.858	1.319	1.711	2.064	2,797	3.74
24	0.256	0.531	0.857	1.316	1.708	2.060	2.787	3.72
25	0.256	0.531	0.856	1.315	1.706	2.056	2.779	3.70
26	0.256	0.531	0.856		1.703	2.052	2.771	3.69
27	0.256	0.531	0.855	1.314	1.701	2.048	2.763	3.67
28	0.256	0.530	0.855	1.313	1.699	2.045	2.756	3.65
29	0.256	0.530	0.854	1.311	1.697	2.042	2.750	
30	0.256	0.530	0.854	1.310	1.671	2.000	2.660	
60	0.254	0.527	0.848	1.296		1.987	2.632	
90	0.254	0.526	0.846	1.291	1.662	1.980	2.617	
120	0.254	0.526	0.845	1.289	1.658	1.900	2,017	

Confidence Interval

$$\hat{T} = \frac{\sum_{i=1}^{n} T(i)}{n} \qquad \hat{S} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{T} - T(i))^{2}}{n-1}}$$
$$[\hat{T} - t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}, \hat{T} + t_{n-1,1-\frac{\alpha}{2}} \frac{\hat{S}}{\sqrt{n}}]$$

As number of replications = 15(Sample Size = 15) and we want 95% Confidence Interval, from the table above, we know that $t(n-1,1-alpha/2) = t(15-1,1-0.05/2) = t(14,0.975) \sim = 2.145$

	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	n = 8	n = 9	n = 10
Sampl										
е										
Mean										
of all										
replic	23.6137	10.0841	6.34473	4.80057	3.98254	3.60493	3.51706	3.64846	4.14397	5.10066
ations	8403	9011	9283	4172	7588	0864	5771	5181	992	353

Mean Resp onse Time										
Sampl										
е										
Stand										
ard										
Deviat	0.25192	0.06363	0.03320	0.05169	0.04121	0.04312	0.04131	0.04695	0.06271	0.12811
ion	11022	597159	436979	874182	454065	361418	080119	31377	539057	65562
Lowe r CI	23.469 37823	10.0477 128	6.32570 5928	4.77093 9504	3.95892 2657	3.58021 1616	3.49338 5661	3.6215 50781	4.10803 0307	5.0272 24768
Uppe r Cl	23.758 18983	10.1206 6742	6.36377 2637	4.83020 884	4.00617 2519	3.62965 0111	3.54074 588	3.6753 79581	4.17992 9533	5.1741 02291

From the table above:

When number of servers used = 1,

The 95% confidence interval =[23.46937823, 23.75818983]

When number of servers used = 2,

The 95% confidence interval =[10.0477128, 10.12066742]

When number of servers used = 3,

The 95% confidence interval =[6.325705928, 6.363772637]

When number of servers used = 4,

The 95% confidence interval =[4.770939504, 4.83020884]

When number of servers used = 5,

The 95% confidence interval =[3.958922657, 4.006172519]

When number of servers used = 6,

The 95% confidence interval =[3.580211616, 3.629650111]

When number of servers used = 7,

The 95% confidence interval =[3.493385661, 3.54074588]

When number of servers used = 8,

The 95% confidence interval =[3.621550781, 3.675379581]

When number of servers used = 9,

The 95% confidence interval =[4.108030307, 4.179929533]

When number of servers used = **10**, The 95% confidence interval =[*5.027224768*, *5.174102291*]

1. Approximate visual test on Confidence interval and Mean Response Time(generated by Cl_interval.m)

On the following Graphs, RED LINE represents the 95% Confidence Interval while the BLUE DOT within the red line represents the MEAN

Obviously, the CI of **System n=1**(with Mean= 23.61378403 and CI=[**23.46937823**, **23.75818983**]) DOES NOT Overlap any other Systems and The Mean and CI is much higher than all others(where n >1), thus we can conclude that we are confident that 95% of the chance True Mean of **System n=1** is much greater than any other Systems.

And thus **System n = 1** is worse than **all other Systems**.

Similarly, the CI of **System n=2**(Mean = 10.08419011, CI=[10.0477128, 10.12066742]) DOES NOT Overlap any other Systems and The Mean and CI is much higher than all others(where n >2), thus we can conclude that we are confident that 95% of the chance True Mean of **System n=2** is much greater than any other Systems with n>2.

And thus **System n = 2** is worse than all other **Systems with n>2**.

The CI of **System n=3**(Mean = 6.344739283, CI=[6.325705928, 6.363772637]) DOES NOT Overlap any other Systems and The Mean and CI is much higher than all others(where n >3), thus we can conclude that we are confident that 95% of the chance True Mean of **System n=3** is much greater than any other Systems with n>3.

And thus **System n = 3** is worse than all other **Systems with n>3**.

Now Let us compare **System n=4** with all others (except n=1, n=2, n=3 since they are obviously performs worse than any others as mention above),

By looking at the **Table** above and the **Graph(**using *interval.m*) below:

The Left Most is the Server n = 4, the Right Most is the Server n = 10, where all others between are system n = 5,6,7,8,9

Obviously, **System n=4** with Mean = 4.800574172, CI=[4.770939504, 4.83020884], whose CI DOES NOT Overlap with with any others' Mean and CI.

And from the graph, we can observe that the Mean and CI for **System n=4** is much higher than **System with n=5,6,7,8,9**, thus we can conclude that we are confident that 95% of the chance True Mean of **System n=4** is much **Greater** than any other **Systems with n=5,6,7,8,9**. And thus **System n = 4** is worse than all other **Systems with n=5,6,7,8,9**.

However, System n = 4 has Lower Mean and CI than System n = 5 (with Mean = 5.10066353, CI=[5.027224768, 5.174102291])and the CIs DO NOT Overlap as in the graph, thus we can

conclude that we are confident that 95% of the chance True Mean of **System n=4** lower than any **Systems n=10**.

And thus **System n = 4** is better than **Systems with n=10**.

And thus **System n = 4** is better than **Systems with n=10,1,2,3**(as mentioned before), but worse than **Systems with n=5,6,7,8,9**

While **Systems with n=10** is better than **System with n=1,2,3** but worse than **all other Systems**

Let us compare and look closer to **System with n = 5,6,7,8,9**:

Obviously, **System n=5** with Mean = 3.982547588, CI=[3.958922657, 4.006172519], whose CI DOES NOT Overlap with with any others' Mean and CI.

And from the graph, we can observe that the Mean and CI for **System n=5** is much higher than **System with n=6,7,8**, thus we can conclude that we are confident that 95% of the chance True Mean of **System n=5** is **much Greater** than any other **Systems with n=6,7,8**. And thus **System n = 5** is worse than all other **Systems with n=6,7,8**.

However, System n = 5 has Lower Mean and CI than System n = 9 (with Mean = 4.14397992, CI=[4.108030307, 4.179929533]) and the CIs DO NOT Overlap as in the graph, thus we can conclude that we are confident that 95% of the chance True Mean of System n = 5 Lower than any Systems n = 9.

And thus **System n = 5** is better than **Systems with n=9**.

And thus System n = 5 is better than Systems with n=9,1,2,3,4,10 (as mentioned before), but worse than Systems with n=6,7,8

While **Systems with n=9** is better than **System with n=1,2,3,4,10** but worse than **all other Systems**

Let us "ZOOM IN" to System n = 6,7,8, compare and look closer to System with n = 5,6,7,8,9:

The Mean and CI of System n=6,7,8 are respectively:

System n=6 with Mean = 3.604930864, CI=[3.580211616, 3.629650111]

System n=7 with Mean = 3.517065771, CI=[3.493385661, 3.54074588]

System n=8 with Mean = 3.648465181, CI=[3.621550781, 3.675379581]

Obviously, the CI of **System n=6** DOES NOT Overlap with **System n=7**.

And we can observe that the Mean and CI for **System n=6** is Greater than **System n=7**, thus we can conclude that we are confident that 95% of the chance True Mean of **System n=6** is **Greater** than any other **Systems n=7**.

And thus **System n = 6** is worse than **Systems n=7**.

Similarly, the CI of **System n=8** DOES NOT Overlap with **System n=7**.

And we can observe that the Mean and CI for **System n=8** is Greater than **System n=7**, thus we can conclude that we are confident that 95% of the chance True Mean of **System n=68** is **Greater** than any other **Systems n=7**

And thus **System n = 8** is worse than **Systems n=7** and **System = 7** is the best System among System n=6,7,8 and also among all other Systems.

However, we cannot tell whether **System n=6** is better than **System n=8** or vice versa since their Mean of any one is not in the CI of the others but their **CIs OVERLAP**.

System n=6 with Mean = 3.604930864, CI=[3.580211616, 3.629650111] System n=8 with Mean = 3.648465181, CI=[3.621550781, 3.675379581]

We need a *t-test* on **System n=6** and **System n=8** to tell which one perform better.

2. Compare System n =6 and System n =8 with Paired t-test

Here the table of 2 System with 15 independent replications after removing transient:

	n = 6	n = 8	System n=8 - System n=6
1st Replication	3.556960943	3.688242527	0.131281584
2nd Replication	3.559113183	3.63867767	0.079564487
3rd Replication	3.565457428	3.704270322	0.138812894
4th Replication	3.54866666	3.68396497	0.13529831
5th Replication	3.574071849	3.724367949	0.1502961
6th Replication	3.615682223	3.629019451	0.013337228
7th Replication	3.583148777	3.600511803	0.017363026
8th Replication	3.710420972	3.562764241	-0.147656731
9th Replication	3.624626804	3.678726609	0.054099805
10th Replication	3.605114283	3.66218665	0.057072367
11th Replication	3.607020998	3.686546031	0.079525033
12th Replication	3.619097553	3.586366323	-0.03273123
13th Replication	3.609719569	3.65311953	0.043399961
14th Replication	3.644990681	3.624951751	-0.02003893
15th Replication	3.649871031	3.603261886	-0.046609145
Sample Mean			0.04353431727

Sample		
Standard		0.082643547
Deviation		25

Let us compare these 2 Systems. The mean response time of **System n=8** minus mean response time of System n=6, over 15 independent replications, are shown on the third column on the table above.

The sample mean and sample standard deviation are, respectively, 0.04353431727 and 0.08264354725.

The **95% confidence interval** is $0.04353431727 \pm t(14,0.0975) * 0.08264354725/sqrt(15) = 0.04353431727 \pm$ **2.145*** 0.08264354725/sqrt(15) =**[-0.0022, 0.0893]**

<u>The interval</u> [-0.0022, 0.0893] <u>include a positive and a negative values</u>, thus we cannot conclude whether System n=8 is better or worse than System n=6.

3. Using common random numbers

Since we cannot conclude which Systems better, let construct a paired t test with Common Random Number Methods.

We use 15 different random number set to do 15 independent replications, each system process 20000 client requests and cut the transient(3000).(load the same rand_setting(rand_setting_6_1 to rand_setting_6_15), using common_random_number.m)

	System n=6	System n=8	System n=8 - System n=6
1st Replication	3.556960943	3.640387245	0.08342630232
2nd Replication	3.559113183	3.64221895	0.08310576683
3rd Replication	3.565457428	3.605087126	0.03962969807
4th Replication	3.54866666	3.750588368	0.2019217081
5th Replication	3.574071849	3.626898749	0.05282690056
6th Replication	3.615682223	3.600726714	-0.01495550943
7th Replication	3.583148777	3.750289443	0.1671406657
8th Replication	3.710420972	3.751130889	0.04070991704
9th Replication	3.624626804	3.663339157	0.03871235301

10th Replication	3.605114283	3.66370904	0.05859475752
11th Replication	3.607020998	3.691459937	0.08443893931
12th Replication	3.619097553	3.608136732	-0.0109608209
13th Replication	3.609719569	3.574348341	-0.03537122785
14th Replication	3.644990681	3.711683827	0.06669314617
15th Replication	3.649871031	3.731202582	0.08133155058
Sample Mean			0.06248294313
Sample Standard Deviation			0.06253642799

Let us compare these 2 Systems. The mean response time of **System n=8** minus mean response time of System n=6, over 15 independent replications, are shown on the third column on the table above.

The sample mean and sample standard deviation are, respectively, *0.06248294313* and *0.06253642799*.

The 95% confidence interval is $0.06248294313\pm t(14,0.0975)*0.06253642799/sqrt(15) = 0.06248294313\pm 2.145*0.06253642799/sqrt(15) = [0.0279, 0.0971]$

And finally, The interval [0.0279, 0.0971] can be conclude that System n=8 is worse than System n=6.

In other words, we are confident that there is 95% chance System n = 6 is better than System n = 8.

CONCLUSION

To sum up, at this stage, we can conclude that, we are confident that 95% chance **System= 7** is the **Best System** among all other Systems.

While System n = 6, System n = 8, System n = 7 perform quite closed to each other but System n = 6 is slightly better than System n = 8.

System n=1 is the **worst system**, following System n=2, System n=3, System n=10, System n=4, System n=9 System n=5 are respectively the 2rd worst, the 3rd worst... systems.

In this project, we simulated a queueing system with different n(number of servers used where $n \le m=10$) and then computed the transient graph as to decide the transients to be removed. Meanwhile, we attempted sound statistics to observe and analyze Mean Response Time of each system(after removed transients) with 15 independent replications with different random set(n=10 * 15 different random sets for each n=10*15=150 random sets).

We have also computed 95 % confidence interval for each systems and had an visual inspection on the graph produced to learn whether one system is better than others. At last we had paired t-test on different system but the results generated are not enough to make conclusion and thus we apply common random numbers and we finally obtains a conclusion.