

MEMLOCK: Memory Usage Guided Fuzzing

[ICSE'20]

张灵毓

Outline

1. Background

- Branch coverage guidance fuzzing (e.g. AFL)
- Memory consumption bugs

2. Approach

3. Evaluation

Background

Branch coverage guidance

Suppose already know:

(En, B1), (B1, B2), (B2, B4), (B4, B5), (B5, Ex)

Initial:

(En, B1): 00000000 (B1, B2): 00000000

(B2, B3): 00000000 (B2, B4): 00000000

(B4, B2): 00000000 (B3, B5): 00000000

(B4, B5): 00000000 (B5, Ex): 00000000

$$En \rightarrow B1 \rightarrow B2 \rightarrow B3 \rightarrow B5 \rightarrow Ex$$

Final:

(En, B1): 00000001 (B1, B2): 00000001

(B2, B3): 00000001 (B2, B4): 00000000

(B4, B2): 00000000 (B3, B5): 00000001

(B4, B5): 00000000 (B5, Ex): 00000001

New branches

Branch coverage guidance

Suppose already know:

(En, B1), (B1, B2), (B2, B4), (B4, B2), (B4, B5), (B5, Ex)

Initial:

(En, B1): 00000000 (B1, B2): 00000000

(B2, B3): 00000000 (B2, B4): 00000000

(B4, B2): 00000000 (B3, B5): 00000000

(B4, B5): 00000000 (B5, Ex): 00000000

$En \rightarrow B1 \rightarrow B2 \rightarrow B4 \rightarrow B2 \rightarrow B4 \rightarrow B5 \rightarrow Ex$

Final:

(En, B1): 00000001 (B1, B2): 00000001

(B2, B3): 00000000 (B2, B4): 00000010

(B4, B2): 00000001 (B3, B5): 00000000

(B4, B5): 00000001 (B5, Ex): 00000001

New bucket number

Bucket number calculation


```
1. static const u8 count class lookup8[256] = {
            = 0, // 0000000
    [0]
3. [1] = 1, //00000001
4. [2] = 2, //00000010
5. [3] = 4, //00000100
6. [4 \dots 7] = 8, //00001000
7. [8 \dots 15] = 16, //00010000
8. [16 \dots 31] = 32, //00100000
9. [32 \dots 127] = 64, // 01000000
10. [128 \dots 255] = 128 // 10000000
11.};
```

Memory consumption bugs


```
1 struct demangle_component *
   cplus_demangle_type (struct d_info *di) {
     // "peek" is a single character extracted from the input directly
     char peek = d_peek_char (di);
     switch (peek){
       case 'P':
         ret = d_make_comp (di,
10
           DEMANGLE_COMPONENT_POINTER,
           cplus_demangle_type (di), NULL);
         break:
13
       case 'C':
15
16
17
18 }
```

Condition for bug: tens of thousands of recursive depth.

Memory consumption bugs


```
1 class EXIV2API DataBuf {
2 public:
  // Constructor with an initial buffer size
    explicit DataBuf(long size): pData(new byte[size]), size(size) {}
 5
    byte* pData; // Pointer to the buffer
    size_t size; // The current size of the buffer
8 };
10 void Jp2Image::readMetadata() {
    while (io_->read((byte*)&subBox, sizeof(subBox)) ==
11

    sizeof(subBox) && subBox.length ) {
       subBox.length = getLong((byte*)&subBox.length, bigEndian);
12
      DataBuf data(subBox.length); // Allocation without checking
13
14
       io_->seek(position - sizeof(box) + box.length, BasicIo::beg);
15
16
17 }
```

Condition for bug: generate inputs with a large subBox.length.

Approach

Memory information guidance

Key insight: lead to more memory consumption.

	Stack (Function) Memory	Heap (Operation) Memory				
Instrumentation	Call/Return edge	Standard library				
Max mem consumption for input t (execute path p)	fm_t	om_t				
Max mem consumption	$fmmap[p] \leftarrow \max_{i \in I} fm_i$	$ommap[p] \leftarrow \max_{i \in I} om_i$				
Update condition	$fm_t > fmmap[p] \parallel om_t > ommap[p]$					

Dynamic seed updating

Evaluation

Q1-Memory crashes

Table 1: Unique Crashes Evaluation

Program	Version	rsion SLoC	Т	MemLock	AFL		AFLfa	st	PerfFu	zz	FairFu	ZZ	Angor	a	QSYM	I			
			Type	#Crashes	#Crashes	\hat{A}_{12}	#Crashes	\hat{A}_{12}											
mjs [53]	1.20.1	40k	UR	114	36	1.00	31	1.00	88	0.96	12	1.00	0	1.00	30	1.00			
cxxfilt [5]	2.31	1,757k	UR	448	373	1.00	304	1.00	401	0.88	39	1.00	0	1.00	327	1.00			
nm [5]	2.31	1,757k	UR	127	12	1.00	21	1.00	17	1.00	0	1.00	0	1.00	20	1.00			
nasm [54]	2.14.03	105k	UR	132	6	1.00	4	1.00	40	1.00	0	1.00	0	1.00	4	1.00			
flex [27]	2.6.4	27k	UR	61	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00	0	1.00			
yaml-cpp [80]	0.6.2	58k	UR	4	0	1.00	1	1.00	3	0.56	0	1.00	0	1.00	0	1.00			
libsass [43]	3.5.4	27k	UR	23	6	1.00	4	1.00	23	0.53	11	0.88	26	0.25	7	1.00			
yara [81]	3.5.0	45k	UR	156	34	1.00	33	1.00	65	0.94	13	1.00	0	1.00	31	1.00			
readelf [5]	2.28	1,844k	UA	273	104	1.00	110	1.00	54	1.00	181	0.88	0	1.00	114	1.00			
exiv2 [25]	0.26	84k	UA	10	11	0.14	11	0.20	6	0.90	15	0.00	13	0.16	8	0.52			
openjpeg [55]	2.3.0	243k	UA	16	8	0.80	5	1.00	0	1.00	7	0.46	0	1.00	5	0.80			
bento4 [4]	1.5.1	78k	UA	5	2	1.00	2	0.98	2	1.00	1	1.00	189	0.00	1	1.00			
bento4 [4]	1.5.1	/ OK	ML	145	78	1.00	72	1.00	61	1.00	125	1.00	290	0.00	74	1.00			
libming [42]	0.4.8	92k	UA	18	20	0.40	18	0.60	17	0.62	20	0.20	3	1.00	16	0.80			
110111111g [42]	0.4.0	72K	1	ML	721	ML	264	336	0.20	324	0.00	324	0.00	371	0.00	87	1.00	354	0.00
jasper [32]	2 0 14	2.0.14 44k	UA	3	2	0.84	3	0.56	0	1.00	3	0.56	2	1.00	2	0.92			
Jasper [32]	2.0.14		ML	210	234	0.08	235	0.08	35	1.00	216	0.40	820	0.00	212	0.46			
Total Unique Crashes (Improvement)		2009	1262 (+5	9.2%)	1178 (+70.5%)		1136 (+76.9%)		1014 (+98.1%)		1430 (+40.5%)		1205 (+66.7%)						

^{*} UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug, and ML means the memory leak. We highlight the \hat{A}_{12} values in the bold if its corresponding *Mann-Whitney U* test is significant.

Q2-Memory consumption vulnerability

Table 2: Time to expose real-world vulnerability

Description			MemLock	AFI	,	AFLfast PerfFuzz			ızz	FairFuzz		Angora		QSYM	
Program	Vulnerability	Type	Time(h)	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}	Time(h)	\hat{A}_{12}
	issue#58	UR	0.5	0.3	0.25	0.4	0.25	0.2	0.13	0.4	0.25	T/O	1.00	0.3	0.22
mjs	issue#106	UR	13.7	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00
	CVE-2018-9138	UR	0.3	7.2	1.00	10.1	1.00	0.5	0.81	T/O	1.00	T/O	1.00	3.3	1.00
	CVE-2018-9996	UR	T/O	16.5	0.00	T/O	0.50	T/O	0.50	T/O	0.50	T/O	0.50	T/O	0.50
cxxfilt	CVE-2018-17985	UR	0.2	1.1	1.00	4.5	1.00	0.2	0.63	1.9	1.00	T/O	1.00	1.4	1.00
	CVE-2018-18484	UR	0.2	1	1.00	4.5	1.00	0.2	0.63	8	1.00	T/O	1.00	1.4	1.00
	CVE-2018-18700	UR	0.2	1.2	1.00	4.6	1.00	0.3	0.75	12.6	1.00	T/O	1.00	1.4	1.00
	CVE-2018-12641	UR	2.6	19.1	1.00	12.6	1.00	12.2	0.88	T/O	1.00	T/O	1.00	12.8	0.88
	CVE-2018-17985	UR	10.4	18.2	0.81	11.9	0.56	T/O	1.00	T/O	1.00	T/O	1.00	13.3	0.63
	CVE-2018-18484	UR	9.9	16.4	0.84	17.1	0.84	T/O	1.00	T/O	1.00	T/O	1.00	14	0.75
nm	CVE-2018-18700	UR	9.6	14.9	0.63	17.8	0.88	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00
	CVE-2018-18701	UR	13.9	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00
	CVE-2019-9070	UR	18.4	15.6	0.56	13.9	0.44	T/O	1.00	T/O	1.00	T/O	1.00	15.8	0.56
	CVE-2019-9071	UR	12.4	T/O	0.88	14	0.69	T/O	0.88	T/O	0.88	T/O	1.00	T/O	0.88
	CVE-2019-6290	UR	0.9	T/O	1.00	19	1.00	9	1.00	T/O	1.00	T/O	1.00	17.6	1.00
nasm	CVE-2019-6291	UR	1.5	9	0.94	14	1.00	8.7	1.00	T/O	1.00	T/O	1.00	7.5	1.00
flex	CVE-2019-6293	UR	5.4	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00
	CVE-2019-6292	UR	0.4	T/O	1.00	18.4	1.00	0.9	0.81	T/O	1.00	T/O	1.00	T/O	1.00
yaml-cpp	CVE-2018-20573	UR	6.1	T/O	0.88	T/O	0.84	12.4	0.84	T/O	0.84	T/O	1.00	T/O	0.84
	CVE-2018-19837	UR	1.6	13.3	0.88	10.5	0.88	1.8	0.63	8.5	0.88	T/O	1.00	5	0.81
libsass	CVE-2018-20821	UR	0.1	5.7	1.00	6.5	1.00	0.1	0.50	9.5	1.00	T/O	1.00	7.4	1.00
	CVE-2018-20822	UR	15.6	14.3	0.50	19.5	0.56	14.6	0.47	11.3	0.56	0.92	0.00	10.5	0.44
yara	CVE-2017-9438	UR	0.2	0.9	1.00	4.3	1.00	0.61	0.91	5.3	1.00	T/O	1.00	0.8	1.00
readelf	CVE-2017-15996	UA	0.2	0.3	0.86	0.2	0.68	0.5	0.92	0.3	0.68	T/O	1.00	0.3	0.96
exiv2	CVE-2018-4868	UA	0.1	0.1	0.50	0.1	0.50	0.1	0.50	0.1	0.50	0.1	0.5	0.1	0.50
houted.	CVE-2018-20186	UA	0.4	0.4	0.50	0.4	0.50	0.4	0.50	0.4	0.50	0.1	0.00	0.4	0.50
bento4	CVE-2019-7698	UA	14.6	T/O	1.00	T/O	1.00	T/O	1.00	T/O	1.00	0.5	0.00	T/O	1.00
	CVE-2019-7581	UA	0.6	0.8	0.68	1.4	0.80	2	0.88	0.4	0.36	T/O	1.00	1.6	0.80
libming	CVE-2019-7582	UA	0.1	0.1	0.50	0.1	0.50	0.1	0.50	0.1	0.50	0.1	0.50	0.1	0.50
	issue#155	UA	1.4	1	0.30	1.3	0.36	1.4	0.40	1.2	0.42	T/O	1.00	1.6	0.64
	CVE-2019-6988	UA	7.8	15.1	0.86	11.1	0.84	T/O	1.00	T/O	1.00	T/O	1.00	15.3	0.81
openjpeg	CVE-2017-12982	UA	4.5	11.4	0.72	10	0.60	T/O	1.00	11.9	0.64	T/O	1.00	10	0.50
	CVE-2016-8886	UA	4.1	17	0.88	22.3	1.00	T/O	1.00	10.3	0.52	T/O	1.00	18.2	0.88
jasper	issue#207	UA	1.7	2.2	0.62	3.6	0.68	T/O	1.00	2.2	0.68	15.9	1.00	4	0.64
Average Time Usage (Improvement)		ement)	5.4	11.6 (2	2.15×)	11.6 (2	2.15×)	11.9 (2.20×)		14.5 (2.69×)		20.3 (3.76×)		11.2 (2.07×)	
	ulnerabilities (Imp	· .	33	26 (+2	26.9%)	28 (+1	17.9%)	20 (+6	55.0%)	17 (+9	94.1%)	6 (+45	50.0%)	25 (+32.0%)	

UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug. T/O means the fuzzer can't find this vulnerability throughout 24 hours across 5 repetitions. When we calculate the average time usage, we replace T/O with 24 hours. We highlight the \hat{A}_{12} in the bold if its corresponding Mann-Whitney U test is significant.

New vulnerabilities:

8 uncontrolled-recursion vulnerabilities

5 uncontrolled-memoryallocation

2 memory leak vulnerabilities

Q3-Memory leak evaluation

Table 3: Total Leak Bytes

Program	Type	Tool	leakge (Bytes)	Improve.	p-value	\hat{A}_{12}
		MemLock	52,709,574	-	-	-
	İ	AFL	151,862	+34609%	0.0061	1.00
		AFLfast	1,233,255	+4174%	0.0061	1.00
bento4	memory leak	PerfFuzz	105,984	+49633%	0.0061	1.00
		FairFuzz	1,910,466	+2659%	0.0061	1.00
		Angora	141,512	+37147%	0.0060	1.00
		QSYM	15,784,847	+234%	0.0061	1.00
		MemLock	176,320,785	-	-	-
	memory leak	AFL	4,869,594	+3521%	0.0061	1.00
		AFLfast	2,535,212	+6855%	0.0061	1.00
libming		PerfFuzz	47,044,964	+257%	0.0061	1.00
		FairFuzz	828,742	+21176%	0.0061	1.00
		Angora	4,698	+3753163%	0.0060	1.00
		QSYM	1,219,093	+14363%	0.0061	1.00
		MemLock	2,372,844,732	-	-	-
		AFL	56,018,839	+4136%	0.0061	1.00
		AFLfast	48,403,244	+4802%	0.0061	1.00
jsaper	memory leak	PerfFuzz	6,229,898	+37988%	0.0061	1.00
		FairFuzz	56,788,235	+4096%	0.0061	1.00
		Angora	191,907,941	+1136%	0.0105	0.98
		QSYM	38,244,568	+6104%	0.0061	1.00

Q4-Memory consumption evaluation

Figure 6: Seed distribution based on memory consumption. The larger the value on the right side is better.

Thanks