COMS30035, Machine learning: Sequential Data 3: EM for HMMs

Edwin Simpson

edwin.simpson@bristol.ac.uk

Department of Computer Science, SCEEM University of Bristol

November 3, 2020

Agenda

- Markov Models
- Hidden Markov Models
- EM for HMMs
- Linear Dynamical Systems
- Bayesian Timeseries Modelling with Gaussian Processes

Hidden Markov Models (HMMs)

- ▶ We want to use maximum likelihood to estimate the HMM parameters:
 - 1. A transition matrix
 - 2. π initial state probabilities
 - 3. ϕ parameters of the emission distributions
- We assume the unsupervised case where the sequence of states Z is not observed.
- $\blacktriangleright \ln p(\boldsymbol{X}|\boldsymbol{A},\pi,\phi) = \ln \sum_{\boldsymbol{Z}} \left\{ p(\boldsymbol{Z}|\boldsymbol{A},\pi) \prod_{n=1}^{N} p(\boldsymbol{x}_{n}|\phi,\boldsymbol{z}_{n}) \right\}$

Likelihood for an HMM

- As with GMMs, there is no closed-form solution to the MLE, so we turn to EM
- Unlike GMM, the likelihood doesn't factorise over the data points:
 - 1. $\ln p(\boldsymbol{X}|\boldsymbol{A},\pi,\phi) = \ln \sum_{\boldsymbol{Z}} \left\{ p(\boldsymbol{Z}|\boldsymbol{A},\pi) \prod_{n=1}^{N} p(\boldsymbol{x}_{n}|\phi,\boldsymbol{z}_{n}) \right\}$
 - 2. The distribution of z_n depends on z_{n-1} , which also depends on z_{n-2} ...
 - 3. Can't just sum over the values of z_n independently for each data point.
 - 4. So we have to sum over all K^N possible sequences Z!

Expectation Maximisation (EM)

- ► Goal: maximise the expected log likelihood, $Q(\theta^{old}, \theta) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\theta)$.
- 1. Initialise the parameters with a random guess: $\theta^{old} = \{A, \pi, \phi\}$.
- 2. **E-step**: use θ^{old} to compute expectations over Z required to compute $Q(\theta^{old}, \theta)$.
- 3. **M-step**: choose the values of $\theta = \{A, \pi, \phi\}$ that maximise $Q(\theta^{old}, \theta)$.
- 4. Set $\theta^{old} = \theta$.
- 5. Repeat steps 2-4 until convergence.

M step

Looking first at the M-step shows us how to optimise the parameters. From this we can see which expectation terms with respect to the latent states we require, which we will compute during the E-step.

- $A_j k = \sum_{n=2}^N \xi(z_{n-1,j}, z_n k) / \sum_{l=1}^K \sum_{n=2}^N \xi(z_{n-1,j}, z_{nl})$
- ϕ_k : parameters of posterior emission distributions, with observations weighted by responsibilities, $\gamma(z_{nk})$
 - ▶ If we have Gaussian emissions, the equations are the same as for GMM.
 - Discrete observations with value i:

$$\phi_{ki} = p(x_n = i | z_{nk} = 1) = \frac{\sum_{n=1}^{N} \gamma(z_{nk})[x_n = i]}{\sum_{n=1}^{N} \gamma(z_{nk})}$$
(1)

E step

- ▶ Responsibilities: $\gamma(z_{nk}) = \sum_{\mathbf{Z}} p(\mathbf{Z}) z_{nk}$
- ► State pairs: $\xi(z_{n-1,k},z_{nk}) = \sum_{\mathbf{Z}} p(\mathbf{Z})z_{n-1,k}z_{nk}$
- ▶ To compute these efficiently, we need the *forward-backward* algorithm.

Forward-backward Algorithm

- A specific example of the sum-product algorithm
- We want to compute:
 - ► Responsibilities: $\gamma(z_{nk}) = p(z_{nk}|\mathbf{A}, \boldsymbol{\pi}, \boldsymbol{\phi}) = \sum_{l=1}^{K} \xi(z_{n-1,l}, z_{nk})$
 - State pairs: $\xi(z_{n-1,l}, z_{nk}) = p(z_{n-1,l}, z_{nk} | \mathbf{A}, \pi, \phi)$
- Forward pass computes:

$$\mathbb{E}_{z_1,...,n-2}[p(z_{n-1,l}=1,z_{nk}=1|\boldsymbol{z}_1,...,\boldsymbol{z}_{n-2},\boldsymbol{x}_1,...,\boldsymbol{x}_n,\boldsymbol{A},\pi,\phi)]$$
 (2)

Backward pass computes:

$$\mathbb{E}_{z_1,...,n-2,z_{n+1},...,N}[\rho(z_{n-1,l}=1,z_{nk}=1|\mathbf{z}_1,...,\mathbf{z}_{n-2},\mathbf{z}_{n+1},...,\mathbf{z}_N,\mathbf{x}_1,...,\mathbf{x}_N,\mathbf{A},\pi,\phi)]$$
(3)

Forward-backward Algorithm

- Let's take the final output of the backward pass and break it down: $\mathbb{E}_{z_1,...,n-2,z_{n+1},...,N}p(\boldsymbol{z}_{n-1},\boldsymbol{z}_n|\boldsymbol{z}_1,...,\boldsymbol{z}_{n-2},\boldsymbol{z}_{n+1},...,\boldsymbol{z}_N,\boldsymbol{x}_1,...,\boldsymbol{x}_N,\boldsymbol{A},\boldsymbol{\pi},\phi)]$
- ▶ We can write it as separate terms for time-steps *before n*, the *current* time-step *n*, and time-steps *after n*.

$$\tilde{\xi}(z_{n-1,l}, z_{nk}) = p(\boldsymbol{x}_1, ..., \boldsymbol{x}_{n-1}, z_{n-1,l} = 1 | \boldsymbol{A}, \boldsymbol{\pi}, \boldsymbol{\phi}) \qquad \text{before}
p(z_{nk} = 1 | z_{n-1,l} = 1, \boldsymbol{A}) p(\boldsymbol{x}_n | z_{nk} = 1, \boldsymbol{\phi}) \qquad \text{current}
p(\boldsymbol{x}_{n+1}, ..., x_N | z_{nk} = 1, \boldsymbol{A}, \boldsymbol{\phi}) \qquad \text{after}
= \alpha(z_{n-1,l}) A_{kl} p(\boldsymbol{x}_n | z_{nk} = 1, \boldsymbol{\phi}) \beta(z_{nk}) \qquad (4)$$

 $\xi(z_{n-1,l}, z_{nk}) = \tilde{\xi}(z_{n-1,l}, z_{nk}) / \sum_{l=1}^{K} \sum_{k=1}^{K} \tilde{\xi}(z_{n-1,l}, z_{nk})$

Forward Pass

Compute and save the α terms for all states at all time-steps¹.

$$\alpha(z_{nk}) = p(\mathbf{x}_1, ..., \mathbf{x}_n, z_{nk} = 1 | \pi, \mathbf{A}, \phi)$$

$$= p(\mathbf{x}_n | z_{nk} = 1, \phi_k) \sum_{l=1}^K A_{lk} \alpha(z_{n-1,l})$$
(5)

- 1. Initialise $\alpha(z_{1k}) = \pi_k p(\mathbf{x}_1 | z_{1k} = 1, \phi_k)$ for all states k.
- 2. Compute $\alpha(z_{nk})$ for each n from 2 to N.
- 3. To avoid $\alpha(z_{nk})$ values becoming increasingly small, normalise over $\sum_{k=1}^{K} \alpha(z_{nk})$ at each iteration.

¹See Bishop (2006) Section 13.2.2 for full derivation of the algorithm.

Backward Pass

Compute and save the β terms for all states and all time-steps².

$$\beta(z_{nk}) = p(\mathbf{x}_{n+1}, ..., \mathbf{x}_{N} | z_{nk} = 1, \mathbf{A}, \phi)$$

$$= \sum_{l=1}^{K} A_{kl} p(\mathbf{x}_{n} | z_{n+1,l} = 1, \phi_{l}) \beta(z_{n+1,l})$$
(6)

- 1. Initialise $\beta(z_{Nk}) = 1$ for all states k.
- 2. Compute $\beta(z_{nk})$ for each n from N-1 to 1.
- 3. To avoid $\beta(z_{nk})$ values becoming too small after many iterations, normalise over $\sum_{k=1}^{K} \alpha(z_{n+1,k})$ at each iteration...

²See Bishop (2006) Section 13.2.2 for full derivation of the algorithm.

Putting It All Together...

- 1. Initialise the parameters with a random guess: $\theta^{old} = \{A, \pi, \phi\}$.
- **2. E-step** using θ^{old} :
 - 2.1 Run forward pass to compute $\alpha(z_{nk})$
 - 2.2 Run backward pass to compute $\beta(z_{nk})$
 - 2.3 Use $\alpha(z_{n-1,l})$ and $\beta(z_{nk})$ to compute $\xi(z_{n-1,l},z_{nk})$ and $\gamma(z_{nk})$.
- 3. **M-step** using $\xi(z_{n-1,l}, z_{nk})$ and $\gamma(z_{nk})$, update $\theta = \{\pi, \mathbf{A}, \phi\}$.
- 4. Set $\theta^{old} = \theta$.
- 5. Repeat steps 2-4 until convergence.

By summing inside each forward and backward computations, we now have an algorithm that is linear $(\mathcal{O}(N))$ rather than exponential $(\mathcal{O}(K^N))$ in the sequence length \mathfrak{S} .

Predicting the Next Observation

$$p(\mathbf{x}_{N+1}|\mathbf{x}_1,...,\mathbf{x}_N,\theta) = \sum_{l=1}^K \left\{ p(\mathbf{x}_{N+1}|z_{N+1,l},\phi_l) \sum_{k=1}^K \gamma(z_{nk}) A_{kl} \right\}$$

Viterbi Algorithm

- ▶ Given our estimated model parameters $\theta = \{\pi, \mathbf{A}, \phi\}$, how can we predict a sequence of hidden states \mathbf{Z} ?
- Most probable labels (given by the values of $\gamma(z_{nk})$) are not the same as the most probable sequence!
- We apply a max-sum algorithm called viterbi to "decode" the sequence with O(N) computational cost.

Viterbi Algorithm

- ► Forward pass: compute the probability of the most likely sequence that leads to each possible state at time *n*.
- ▶ Backward pass: starting with the most likely final state and recursing backwards, choose the previous state n − 1 that makes the chosen state at n most likely.

Viterbi Algorithm

- Forward pass:
 - 1. $\omega(\mathbf{z}_1) = \ln \pi + \ln p(\mathbf{x}|\mathbf{z}_1)$
 - 2. For n = 2 to N compute:

2.1
$$\omega(\mathbf{z}_n) = \max_{\mathbf{z}_{n-1}} \{ \omega(\mathbf{z}_{n-1}) + \ln p(\mathbf{z}_n | \mathbf{z}_{n-1}) \} + \ln p(\mathbf{x}_n | \mathbf{z}_n).$$

2.2
$$\psi(\mathbf{z}_n) = \underset{\mathbf{z}_{n-1}}{\operatorname{argmax}} \{ \omega(\mathbf{z}_{n-1}) + \ln p(\mathbf{z}_n | \mathbf{z}_{n-1}) \} + \ln p(\mathbf{x}_n | \mathbf{z}_n).$$

- 2.3 Passes messages from the start of the sequence to the end.
- Backward pass:
 - 1. Most likely final state: $\hat{z}_N = \underset{k=0}{\operatorname{argmax}} \psi(\mathbf{z}_N)_k$.
 - 2. For n = N 1 to 1: $\hat{z}_n = \psi(z_{n+1})_{\hat{z}_{n+1}}$.
- ► There are multiple paths leading to each possible state at each step *n*. We keep only the path with the highest probability, so we don't have to compute the likelihood of every complete path from 1 to *N*.

Summary

By computing sums and maximums at each timestep we can perform inference over an exponential number of sequences. We use the...

- Forward-backward algorithm, an instance of the more general sum-product algorithm to marginalise over sequences of hidden states.
- Viterbi algorithm, an instance of the more general max-sum algorithm to find the most likely sequence of hidden states.

Now do the quiz!

Please do the quiz for this lecture on Blackboard.

Next up: linear dynamical systems for modelling continuous states.