Sesión 3:

Ley de coulomb

Agustín de Coulomb 1785

Ley de Coulomb

La interacción eléctrica entre dos partículas cargadas se describe en función de las fuerzas que ejercen una sobre la otra.

La ley de Coulomb establece:

"La fuerza de atracción o repulsión de dos cargas puntuales es directamente proporcional al producto de sus cargas e inversamente proporcional al cuadrado de la distancia que las separa".

$$F_{12} = F_{21} = k_c \frac{|q_1||q_2|}{r^2}$$

donde:

F₁₂: módulo de la fuerza sobre la carga 1 debido a la carga 2

F₂₁: módulo de la fuerza sobre la carga 2 debido a la carga 1

q₁: magnitud de la carga 1

q₂: magnitud de la carga 2

r : distancia entre las cargas 1 y 2

K_c: constante de Coulomb

Ley de Coulomb

K_c: constante de Coulomb

$$K_c = 8,9875x10^9 \frac{N.m^2}{c^2}$$

también
$$K_c = \frac{1}{4\pi\varepsilon_0}$$

$$\varepsilon_0 = 8,8542x10^{-12} \frac{c^2}{N.m^2}$$

Es la permitividad del espacio libre

Valores de K (N m ² /C ²)	
Vacío	9.10 ⁹
Vidrio	1,29.10 ⁹
Glicerina	1,61.108
Agua	1,11.10 ⁸

La fuerza es una cantidad vectorial

La fuerza eléctrica ejercida sobre la carga $q_1\,$ debido a la carga $q_2\,_{,}$ se expresa de la siguiente forma:

$$\vec{F}_{12} = k_c \frac{|q_1||q_2|}{r^2} \hat{r}_{12}$$

 \hat{r}_{12} : es un vector unitario dirigido de $\mathbf{q}_1 \, a \, \mathbf{q}_2$

 \vec{F}_{12} = $-\vec{F}_{21}$ debido a que la Ley de Coulomb obedece a la tercera ley de Newton.

si q_1 y q_2 tienen el mismo signo \longrightarrow la fuerza es de <u>repulsión</u>.

si q₁ y q₂ tienen diferente signo | la fuerza es de atracción.

Principio de superposición

Se ha comprobado también experimentalmente que las fuerzas eléctricas se comportan de forma aditiva: "la fuerza eléctrica sobre una carga q, debida a un conjunto de cargas $q_{1,}$ $q_{2,}$ $q_{3,}$..., $q_{n,}$ es igual a la suma vectorial de las fuerzas F_i , que cada carga q_i ejerce separadamente sobre la carga q'

$$\vec{F} = \overrightarrow{F_1} + ... + \overrightarrow{F_n} = \sum_{i=1}^n \overrightarrow{F_i}$$

Ejemplos:

1. Dos cargas puntuales $q_1 = 4x10^{-6} C$ y $q_2 = -8x10^{-6} C$, están separadas 4 m, determinar la fuerza eléctrica con que se atraen.

Se tiene:

$$q_1 = 4x10^{-6} C$$
 $q_2 = -8x10^{-6} C$
 $r = 4m$

$$K_c = 9x10^9 \frac{N.m^2}{c^2}$$

 $\hat{r}_{12} = \vec{l}$ (vector unitario en la dirección del eje x)

Sabemos:

$$\vec{F}_{12} = k_c \frac{|q_1||q_2|}{r^2} \hat{r}_{12}$$

Solución

Reemplazando:

$$\vec{F}_{12} = 9x10^9 \frac{N.m^2}{c^2} \frac{(4x10^{-6} C)(8x10^{-6} C)}{(4m)^2} \vec{t}$$

$$\vec{F}_{12} = 18 \times 10^{-3} \vec{i}$$
 Newton

2. Una esfera de aluminio de 10^{-3} m de diámetro esta debajo de otro del mismo tamaño cargado positivamente de $2x10^{-11}C$, ambos están en el vacío.

Cuál será la carga negativa de la esfera que está debajo a 60 cm para que por atracción, por la de arriba se mantenga en equilibrio.

(densidad $Al = 2.7 \text{ gr/cm}^3$)

$$D = 10^{-3} m$$

 $d = 60cm = 0.6m$
 $Q = 2x10^{-11}C$
 $q = ?$

Volumen de la esfera:
$$v = \frac{\pi d^3}{6} = \frac{\pi (10^{-3})^3}{6} = 0.52 \times 10^{-9} m^3$$

Masa de la esfera:

sabemos
$$\rho = \frac{m}{v} \to m = v \rho_{Al}$$

$$m = 0.52x10^{-9} m^3 (2.7 \frac{gr}{cm^3}) \left[\frac{1kg}{1000gr} \cdot \frac{(100cm)^3}{1m^3} \right]$$

$$m = 1,404x10^{-9} kg.$$

Peso de la esfera:

$$w = mg = (1404x10^{-9}kg)(9.8m/s^2)$$

 $pero F = w = 13760x10^{-9} kgm/s^2 = 13760x10^{-9} N$

Sabemos que:

$$F = k \frac{Qq}{d^2} \to q = \frac{Fd^2}{kQ}$$

$$q = \frac{13760x10^{-9} N.(0.6m)^2}{9x10^9 \frac{Nm^2}{C^2}.2x10^{-11}C} = 0.2752x10^{-7}C$$