Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

25 de enero del 2021

Cálculo de Valores y Vectores Propios de $A \in \mathbb{K}(n, n)$

Consideremos las matrices

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{y} \quad B = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \end{bmatrix}.$$

Determine la forma canónica de Jordan de cada una de las matrices indicadas.

Consideremos la matriz

$$A = \left[\begin{array}{rrr} 1 & -2 & 1 \\ 0 & -1 & 0 \\ -1 & 1 & 3 \end{array} \right]$$

Determine la forma canónica de Jordan.

Calculemos los valores propios de *A*, es decir hallemos las raíes del polinomio característico asociadao

$$p_{A}(\lambda)=(\lambda+1)(\lambda-2)^{2},$$

cuyas las raíces son $\lambda_1=-1$ y $\lambda_2=\lambda_3=2$ (multiplicidad algebraica dos).

Ahora determinemos los vectores propios correspondientes a dichos valores propios

• $\lambda_1 = -1$, para ello debemos resolver el sistema $(A - \lambda_1 I)v^1 = \mathbf{0}$, entonces

$$(A+I)v^{1} = \begin{bmatrix} 2 & -2 & 1 \\ 0 & 0 & 0 \\ -1 & 1 & 4 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

donde se tiene que $v_2 = v_2$ y $v_3 = 0$, luego $v^1 = v_1(1, 1, 0)^t$ con $v_1 \neq 0$, entonces escogemos $v_1 = 1$.

• $\lambda_2 = 2$ (multiplicidad dos), en este caso resolvamos el sistema $(A - \lambda_2 I)v^2 = \mathbf{0}$, luego

$$(A-2I)v^2 = \left[\begin{array}{ccc} -1 & -2 & 1 \\ 0 & -3 & 0 \\ -1 & 1 & 1 \end{array} \right] \left[\begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right],$$

de dónde, se tiene $v_2 = 0$, y $v_3 = v_1$, por tanto tenemos el vector propio $v^2 = (1, 0, 1)^t$.

Ahora debemos encontrar otro vector w^2 no nulo tal que sea solución del sistema $(A - \lambda_2)w^2 = (A - 2I)w^2 = v^2$, entonces

$$\begin{bmatrix} -1 & -2 & 1 \\ 0 & -3 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

por tanto, nos esncontramos con $w_2=0$ y $-w_1+w_3=1$, en este caso podemos elegir $w_1=0$ y así $w_3=1$, luego el vector $w^2=(0,0,1)^t$ es lineamente indiependiente a $v^2=(1,0,1)^t$, de esta manera tenemos

$$P = \begin{bmatrix} v^1 & v^2 & w^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Por tanto, tenemos

$$P^{-1}AP = \begin{bmatrix} 0 & -1 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ 0 & -1 & 0 \\ -1 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} = J(A)$$

Halle la forma canónica de Jordan

$$A = \left[\begin{array}{ccccc} 1 & 2 & 3 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

Primero determinemos el polinomio característico

$$p_{A}=(\lambda-1)^{4}(\lambda-2)$$

cuyas raíces son $\lambda_1=1$ (multiplicidad cuatro) y $\lambda_2=2$.

Para $\lambda_2 = 2$

Al resolver el sistema $(A-2\mathrm{I})v^5=\mathbf{0}$, con $v^5=(v_1,v_2,v_3,v_4,v_5)^t$, nos encontramos con $v_1=14v_4$, $v_2=4v_4$, $v_3=2v_4$ con $v_4\in\mathbb{R}$ no nulo, y $v_5=0$ entonces el vector propio $v^5=(14,4,2,1,0)^t$ correspondiente. En este caso, debemos analizar $\mathcal{N}(E)$, donde $E=(A-1\mathrm{I})^4$, y como $\dim(E)\leq 4$, entonces debemos encontrar $v^4\in\mathcal{N}(E)$ tal que v^4 , en seguida debemos determinar los loss vectores v^3 , v^2 y v^1 como sigue

$$v^{3} = (A - I)v^{4} \implies v^{3} = (0, 0, 2, 0, 0)$$

 $v^{2} = (A - I)^{2}v^{4} \implies v^{2} = (6, 4, 0, 0, 0)$
 $v^{1} = (A - I)^{3}v^{4} \implies v^{1} = (8, 0, 0, 0, 0)$

por tanto

$$P = \begin{bmatrix} v^1 & v^2 & v^3 & v^4 & v^5 \end{bmatrix} = \begin{bmatrix} 8 & 6 & 0 & 0 & 14 \\ 0 & 4 & 0 & 0 & 4 \\ 0 & 0 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix}$$

Sabemos que si $A \in \mathbb{C}(n,n)$ es nilpotente de índice $k \in \mathbb{N}$, entonces $A^k = 0$ y $A^{k-1} \neq 0$. Recordar que $(1+a)(1-a+a^2-a^3+a^4-a^5+\cdots)=1$, si $1+a \neq 0$ entonces $(1+a)^{-1}=1-a+a^2-a^3+a^4-a^5+\cdots.$

Luego $(I + A)^{-1} = I - A + A^2 - A^3 + A^4 - A^5 + \cdots + A^{k-1}$ Si hacemos B = -A, tenemos un resultado similar.

Ejercicio

- 1. Sea la matriz $A = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$.
 - a) Pruebe que N = A 2I es nilpotente
 - b) Halle una base de Jordan de N, y luego de A

2. Sea la matriz
$$B = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$
.

- a) Calcule el polinomio característico de B.
- b) \not cuál es la dimendión de $\mathcal{N}(A-3I)$? \not Qué puede decir de $\mathcal{N}(A-2I)^2$?

