Économétrie L3 — Cheat Sheet (TD1→TD8)

Formules, règles de décision, pas-à-pas EViews

Pierre Beaucoral

2025-09-15

 $\mathbf{But}:$ Aide-mémoire compact (formules + procédures) couvrant les TD $1{\to}8:$ MCO, diagnostics (normalité, hétéroscédasticité, autocorrélation, stabilité), spécification (RESET), sélection de modèle (AIC/SC/HQC), endogénéité & variables instrumentales, tests associés, et un rappel Monte Carlo.

Rappels MCO (OLS)

Hypothèses (BLUE)

- Linéarité en paramètres ; échantillonnage i.i.d.
- Exogénéité : $Cov(X, \varepsilon) = 0$.
- Homoscedasticité : $Var(\varepsilon_i) = \sigma^2$.
- Indépendance sérielle : $Cov(\varepsilon_i, \varepsilon_j) = 0$ (séries t).
- Normalité (utile surtout **en petit** N pour l'inférence exacte t/F).

Conséquences

Sans normalité, OLS reste sans biais & convergent (sous exogénéité), mais \mathbf{t}/\mathbf{F} peuvent être mal calibrés (risque de 1 espèce \uparrow/\downarrow).

Interprétations usuelles

- y en log, x en niveau : $\beta_k \approx 100 \times \Delta\% y$ pour +1 unité de x_k (si $|\beta_k|$ petit).
- Muette D: effet $\% \approx 100 \times (\exp(\beta_D) 1)$.

Normalité (Jarque-Bera)

 ${\bf Statistique}:\,JB=N\left(\tfrac{\eta^2}{6}+\tfrac{(\nu-3)^2}{24}\right)\;\sim\;\chi^2(2)\;{\rm sous}\;H_0.$ Où skewness $\eta = 0$ et kurtosis $\nu = 3$ sous normalité.

Décision (5%): Rejeter H_0 si JB > 5.991 (ou p < 0.05).

À faire si rejet :

outliers, re-spécification (non-linéarités, interactions, logs), ET rapporter des SE robustes (White/HAC).

EViews: $View \rightarrow Residual\ Diagnostics \rightarrow Histogram-Normality\ (JB)$.

Hétéroscédasticité

Breusch-Pagan (BP)

Régression auxiliaire : $\hat{\varepsilon}_i^2 = \theta_0 + \theta' Z_i + \omega_i$. Statistique : $BP = N \times R^2 \sim \chi^2(K_z)$ (où $K_z = \text{nb de } Z$). **Décision**: Rejeter H_0 (variance constante) si BP > seuil.

White (générique)

Inclure Z, interactions et carrés $(Z, Z^2, Z_i Z_i)$.

Statistique : $W = N \times R^2 \sim \chi^2(K-1)$.

Version petits échantillons : **F-test** sur la régression auxiliaire.

EViews: $View \rightarrow Residual\ Diagnostics \rightarrow Heteroskedasticity\ Tests \rightarrow BP/White.$ **Correction**: Estimate \rightarrow Options \rightarrow Coefficient covariance = White (ou HAC).

Autocorrélation (séries temporelles)

Durbin-Watson (DW)

 $\begin{array}{l} DW = \sum_{t=2}^T (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2 \big/ \sum_{t=1}^T \hat{\varepsilon}_t^2 \approx 2(1-\hat{\rho}). \\ \text{Tableaux } D_L, D_U \rightarrow \text{zones} : \text{rejet (+), incertitude, acceptation, rejet (-).} \end{array}$

Limites : constante requise, pas de y_{t-1} comme régresseur, AR(1) seulement.

Breusch-Godfrey (BG)

$$\begin{split} & \text{R\'egression}: \, \hat{\varepsilon}_t = \rho_1 \hat{\varepsilon}_{t-1} + \dots + \rho_p \hat{\varepsilon}_{t-p} + Z_t' \theta + \omega_t. \\ & \text{Statistique}: \, BG = T \times R^2 \sim \chi^2(p). \end{split}$$

EViews: $View \rightarrow Residual\ Diagnostics \rightarrow Serial\ Correlation\ LM\ test.$

Correction: HAC (Newey-West) ou modéliser ARMA des erreurs / Cochrane-Orcutt.

Stabilité des coefficients

Chow (point de rupture connu)

Trois régressions (avant, après, complet).

 $\begin{array}{l} \text{Statistique}: \ CH = \frac{SCR_t - (SCR_1 + SCR_2)}{SCR_1 + SCR_2} \times \frac{N-2K}{K} \ \rightsquigarrow F(K,N-2K). \\ \textbf{Attention}: \ \text{hypothèse d'homoscedasticit\'e}. \end{array}$

Quandt-Andrews (point inconnu)

Calculer le test de Chow pour toutes ruptures admissibles, retenir la plus défavorable (QLR/sup-Wald).

EViews: $View \rightarrow Stability\ Diagnostics \rightarrow Quandt-Andrews\ Breakpoint\ Test.$

Pratique : trier les données selon la variable "candidate rupture" avant test.

Solutions si instabilité: sous-échantillons; muettes + interactions; exclusion outliers (avec prudence).

Spécification — Ramsey RESET

Comparer modèle restreint et modèle enrichi :

 H_0 : pas de terme manquant détectable vs H_1 : besoin de $\hat{y}^2, \hat{y}^3, \dots$ (ou x^2 , interactions).

Test **F** sur $(\delta_1, \delta_2, \dots) = 0$.

 $\mathbf{EViews}: View \rightarrow Stability/Specification \rightarrow Ramsey RESET$ (polynôme d'ordre 3–4 usuel).

Critères d'information (sélection)

- $$\begin{split} \bullet \quad &AIC = \ln(SCR/N) + \frac{2K}{N} \\ \bullet \quad &SC = \ln(SCR/N) + \frac{K \ln N}{N} \\ \bullet \quad &HQC = \ln(SCR/N) + \frac{2K \ln \ln N}{N} \end{split}$$

Règle: minimiser (à spécification économiquement sensée).

EViews: visibles dans le tableau d'estimation et $View \rightarrow Lag\ Length\ Criteria\ (VAR)$.

Endogénéité & Variables Instrumentales (VI)

Sources d'endogénéité

- Variable omise corrélée à X
- Causalité inverse $(Y \leftrightarrow X)$
- Erreur de mesure sur X (biais d'atténuation)

2SLS / DMC (principe)

- $\begin{array}{ll} 1 & \text{étape}:\, X=\pi_0+\pi_1Z+W'\pi+v\Rightarrow \hat{X}.\\ 2 & \text{étape}:\, Y=\beta_0+\beta_1\hat{X}+W'\gamma+u\; (\text{SE adaptés 2SLS}). \end{array}$

Conditions pour Z:

- Pertinence $(Cov(Z, X) \neq 0) \rightarrow F$ -stat 1 étape > 10 (règle pratique).
- Exogénéité exclue (Cov(Z, u) = 0).

EViews: Estimate \rightarrow Method: TSLS/IV; lister endogènes & instruments.

Tests associés

- Faiblesse des instruments : F 1 étape (règle >10).
- Sur-identification (si q > p): Sargan (homo) / Hansen-J (robuste) $\sim \chi^2(q-p)$.
- Nécessité d'instrumenter : Durbin-Wu-Hausman (DWH) : H_0 : OLS non biaisé ($\beta^{OLS} \approx \beta^{IV})$

 $\mathbf{EViews}:\ View o IV\ Diagnostics\ and\ Tests o Weak/Orthogonality/Endogeneity.$

Règles de décision — résumé express

- **JB** : rejeter si JB > 5.991 (5 %).
- BP/White: rejeter si $NR^2 > \text{seuil } \chi^2$; sinon SE robustes.
- **DW/BG**: autocorrélation si DW hors bande / $BG > \chi^2(p)$.
- $Chow/QA : rejet \rightarrow instabilité ; utiliser interactions/sous-échantillons.$
- **RESET**: rejet \rightarrow re-spécifier (non-linéarités, interactions, logs).
- 2SLS: vérifier F>10 (1 étape); Hansen-Jok; DWH indique si OLS biaisé.

EViews — mémo commandes & menus

- Estimation OLS: 1s y c X1 X2 ...
- $TSLS/IV : Quick \rightarrow Estimate Equation \rightarrow Method: TSLS$
 - Endogenous list : variables endogènes
 - Instrument list: instruments (ajouter contrôles exogènes)
- Normalité : View → Residual Diagnostics → Histogram-Normality
- **Hétéroscédasticité** : ... → *Heteroskedasticity Tests* → *BP* / *White*
- Autocorrélation : ... → Serial Correlation LM test (BG)
- Stabilité: View → Stability Diagnostics → Chow / Quandt-Andrews
- **RESET**: $View \rightarrow Specification\ Tests \rightarrow Ramsey\ RESET$
- SE robustes : Estimate \rightarrow Options \rightarrow Covariance Matrix: White/HAC

Monte Carlo — idée & usage

- **Principe**: simuler de multiples échantillons à partir d'un modèle fixé (paramètres "vrais"), estimer à chaque réplication, **observer** distribution empirique des estimateurs (biais, variance).
- Utilité: visualiser convergence (LLN), robustesse des tests, impact de la loi des erreurs.
- Exemple minimal (pseudo-code):
 - 1. Pour r=1..R: générer $(x_i,\varepsilon_i), \ y_i=\alpha+\beta x_i+\varepsilon_i,$ estimer $\hat{\beta}_r.$
 - 2. Inspecter moyenne/variance de $\{\hat{\beta}_r\}$.

Astuce exam : toujours vérifier $exogénéit\acute{e}$, regarder $r\acute{e}sidus$ (plots + tests), rapporter SE robustes si doute, et motiver les choix par **économie** + **diagnostics**.