MC9S12NE64 Device User Guide V01.04

Original Release Date: 25 MAR 2003 Revised: 07 Oct 2003

Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

©Motorola, Inc., 2003

Revision History

Version Number		Author	Description of Changes	
01.00	25.MAR.03		Original Version.	
01.01	01.MAY.03		Updated.	
01.02	08.MAY.03		Updated register table. Electrical section.	
01.03	27.MAY.03	Updated per initial SoCGuide review.		
01.04	07.OCT.03		Typo fixes, Updated electricals.	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and a registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

©Motorola, Inc., 2003

Table of Contents

Secti	ion 1 Introduction	
1.1	Overview	15
1.2	Features	15
1.3	Modes of Operation	17
1.4	Block Diagram	19
1.5	Device Memory Map	20
1.6	Detailed Register Map	22
1.7	Part ID Assignments	39
Secti	ion 2 Signal Description	
2.1	Device Pinout	39
2.2	Signal Properties Summary	42
2.3	Detailed Signal Descriptions	44
2.3.1	EXTAL, XTAL — Oscillator Pins	44
2.3.2	RESET — External Reset Pin	45
2.3.3	TEST — Test Pin	45
2.3.4	XFC — PLL Loop Filter Pin	45
2.3.5	BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin	45
2.3.6	PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins	45
2.3.7	PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins	
2.3.8	PE7 / NOACC — Port E I/O Pin 7	
2.3.9	PE6 / MODB / IPIPE1 — Port E I/O Pin 6	
2.3.10		
2.3.11		
2.3.12	•	
2.3.13		
2.3.14		
2.3.15	•	
2.3.16		
2.3.17		
2.3.18		
2.3.19		
2.3.20	PG7 / KWG7 — Port G I/O Pin 7	48

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

2.3.21	PG6 / MII_RXER / KWG6 — Port G I/O Pin 6
2.3.22	PG5 / MII_RXDV / KWG5 — Port G I/O Pin 5
2.3.23	PG4 / MII_RXCLK / KWG4 — Port G I/O Pin 4
2.3.24	PG3 / MII_RXD3 / KWG3 — Port G I/O Pin 3
2.3.25	PG2 / MII_RXD2 / KWG2 — Port G I/O Pin 2
2.3.26	PG1 / MII_RXD1 / KWG1 — Port G I/O Pin 1
2.3.27	PG0 / MII_RXD0 / KWG0 — Port G I/O Pin 0
2.3.28	PH6 / MII_TXER / KWH6 — Port H I/O Pin 6
2.3.29	PH5 / MII_TXEN / KWH5 — Port H I/O Pin 5
2.3.30	PH4 / MII_TXCLK / KWH4 — Port H I/O Pin 450
2.3.31	PH3 / MII_TXD3 / KWH3 — Port H I/O Pin 350
2.3.32	PH2 / MII_TXD2 / KWH2 — Port H I/O Pin 250
2.3.33	PH1 / MII_TXD1 / KWH1 — Port H I/O Pin 150
2.3.34	PH0 / MII_TXD0 / KWH0 — Port H I/O Pin 050
2.3.35	PJ7 / IIC_SCL / KWJ7 — Port J I/O Pin 7
2.3.36	PJ6 / IIC_SDA / KWJ6 — Port J I/O Pin 6
2.3.37	PJ3 / COL / KWJ3 — Port J I/O Pin 3
2.3.38	PJ2 / CRS / KWJ2 — Port J I/O Pin 2
2.3.39	PJ1 / MDIO / KWJ1 — Port J I/O Pin 1
2.3.40	PJ0 / MDC / KWJ0 — Port J I/O Pin 0
2.3.41	PL6 — Port L I/O Pin 6
2.3.42	PL5 — Port L I/O Pin 5
2.3.43	PL4 / COLLED — Port L I/O Pin 4
2.3.44	PL3 / DUPLED — Port L I/O Pin 3
2.3.45	PL2 / SPDLED — Port L I/O Pin 2
2.3.46	PL1 / LNKLED — Port L I/O Pin 1
2.3.47	PL0 / ACTLED — Port L I/O Pin 0
2.3.48	PS7 / SPI_SS — Port S I/O Pin 7
2.3.49	PS6 / SPI_SCK — Port S I/O Pin 6
2.3.50	PS5 / SPI_MOSI — Port S I/O Pin 5
2.3.51	PS4 / SPI_MISO — Port S I/O Pin 4
2.3.52	PS3 / SCI1_TXD — Port S I/O Pin 3
2.3.53	PS2 / SCI1_RXD — Port S I/O Pin 254
2.3.54	PS1 / SCI0_TXD — Port S I/O Pin 1
2.3.55	PS0 / SCI0_RXD — Port S I/O Pin 0
2.3.56	PT[7:4] / IOC1[7:4]— Port T I/O Pins [7:4]54

2.3.57	PHY_TXP - EPHY Twisted Pair Output +54
2.3.58	B PHY_TXN - EPHY Twisted Pair Output54
2.3.59	PHY_RXP - EPHY Twisted Pair Input +54
2.3.60	PHY_RXN - EPHY Twisted Pair Input
2.3.61	PHY_RBIAS - EPHY Bias Control Resistor
2.4	Power Supply Pins
2.4.1	VDDX1\2, VSSX1\2 — Power & Ground Pins for I/O & Internal Voltage Regulator55
2.4.2	VDDR — Power Pin for Internal Voltage Regulator55
2.4.3	VDD1, VDD2, VSS1, VSS2 — Core Power Pins55
2.4.4	VDDA, VSSA — Power Supply Pins for ATD and VREG55
2.4.5	PHY_VDDA, PHY_VSSA — Power Supply Pins for EPHY Analog55
2.4.6	PHY_VDDRX, PHY_VSSRX — Power Supply Pins for EPHY Receiver 55
2.4.7	PHY_VDDTX, PHY_VSSTX — Power Supply Pins for EPHY Transmitter 56
2.4.8	VRH, VRL — ATD Reference Voltage Input Pins
2.4.9	VDDPLL, VSSPLL — Power Supply Pins for PLL
	ion 3 System Clock Description ion 4 Modes of Operation
4.1	Overview
4.2	Chip Configuration Summary
4.3	Security
4.3.1	Securing the Microcontroller
4.3.2	Operation of the Secured Microcontroller
4.3.3	Unsecuring the Microcontroller59
4.4	Low Power Modes
4.4.1	Stop
4.4.2	D 1 0
	Pseudo Stop60
4.4.3	Wait60
_	·
4.4.4	Wait
4.4.4 Sect	Wait
4.4.4 Sect 5.1	Wait
4.4.3 4.4.4 Sect 5.1 5.2 5.2.1	Wait 60 Run 60 ion 5 Resets and Interrupts 60 Overview 60

Device User Guide — 9S12NE-FamilyDGV1/D V01.03
5.3.1 Reset Summary Table
5.3.2 Effects of Reset
Section 6 HCS12 Core Block Description
Section 7 Voltage Regulator (VREG) Block Description
7.1 VDDR (VREGEN)
Section 8 Recommended PCB Layout (Need to Update)
Section 9 Clock Reset Generator (CRG) Block Description
9.1 XCLKS
Section 10 Oscillator (OSC) Block Description
Section 11 Timer (TIM) Block Description
Section 12 Analog to Digital Converter (ATD) Block Description
Section 13 Serial Communications Interface (SCI) Block Description
Section 14 Serial Peripheral Interface (SPI) Block Description
Section 15 Inter IC Bus (IIC) Block Description
Section 16 Ethernet Media Access Controller (EMAC)
16.1 EMAC MII external pin configuration
16.2 EMAC internal PHY configuration
16.3 Low Power Operation
16.3.1 WAIT

Section 17 Ethernet Physical Transceiver (EPHY)

00011	Social Transcription (El 111)			
17.1	Low Power Operation	69		
17.1.1	WAIT	69		
17.1.2	STOP	69		

16.3.2

Section 18 Port Integration Module (PIM) Block Description

Section 19 Flash EEPROM 64K Block Description

Section 20 RAM 8K Block Description

Appendix A Electrical Characteristics

A.1	General71
A.1.1	Parameter Classification
A.1.2	Power Supply
A.1.3	Pins72
A.1.4	Current Injection73
A.1.5	Absolute Maximum Ratings
A.1.6	ESD Protection and Latch-up Immunity74
A.1.7	Operating Conditions
A.1.8	Power Dissipation and Thermal Characteristics76
A.1.9	I/O Characteristics
A.1.10	Supply Currents
Appe	endix B Electrical Specifications
B.1	Voltage Regulator Operating Characteristics
B.2	Chip Power-up and LVR graphical explanation
B.3	Output Loads
B.3.1	Resistive Loads
B.3.2	Capacitive Loads
B.4	Reset, Oscillator and PLL87
B.4.1	Startup
B.4.2	Oscillator
B.4.3	Phase Locked Loop
B.5	Flash NVM
B.5.1	NVM timing
B.5.2	NVM Reliability96
B.6	SPI Characteristics99
B.6.1	Master Mode
B.6.2	Slave Mode101
B.7	ATD Characteristics

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

B.7.1	ATD Operating Characteristics - 3.3V Range
B.7.2	Factors influencing accuracy
B.7.3	ATD accuracy - 3.3V Range
B.8	EMAC Characteristics
B.9	MII Timing
B.9.1	MII Receive Signal Timing (RXD[3:0], RXDV, RXER, RXCLK) 109
B.9.2	MII Transmit Signal Timing (TXD[3:0], TXEN, TXER, TXCLK)
B.9.3	MII Asynchronous Inputs Signal Timing (CRS, COL)
B.9.4	MII Management Timing (MDIO,MDC)111
B.10	EPHY Electrical Characteristics
B.10.	1 10Base-T Jab and Unjab Timing
B.11	Auto Negotiation114
B.11.	1 MII – 100Base-TX Transmit Timing Parameters
B.11.	2 MII – 10Base-T Receive Timing115
B.12	Electrical Specifications
App	endix C External Bus Timing
App	endix D Package Information
D.1	80-pin QFP package121
D.2	112-pin LQFP package

List of Figures

Figure 0-1	Order Part Number Coding	. 14
Figure 1-1	MC9S12NE-Family Block Diagram	. 19
Figure 1-2	MC9S12NE128 User Configurable Memory Map	. 21
Figure 1-3	MC9S12NE64 User Configurable Memory Map	. 22
Figure 2-1	Pin assignments 112 LQFP for MC9S12NE-Family	. 40
Figure 2-2	Pin assignments in 80 QFP for MC9S12NE-Family	. 41
Figure 3-1	Clock Connections	. 57
Figure 8-1	Recommended PCB Layout (112 LQFP)	. 65
Figure 8-2	Recommended PCB Layout (80 QFP)	. 66
Figure B-1	Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)	84
Figure B-2	Basic PLL functional diagram	90
Figure B-3	Jitter Definitions	92
Figure B-4	SPI Master Timing (CPHA=0)	99
Figure B-5	SPI Master Timing (CPHA=1)	100
Figure B-6	SPI Slave Timing (CPHA=0)	101
Figure B-7	SPI Slave Timing (CPHA=1)	102
Figure B-8	ATD Accuracy Definitions	108
Figure B-9	MII Receive Signal Timing Diagram	109
Figure B-10	MII Transmit Signal Timing Diagram	110
Figure B-11	MII Asynchronous Inputs Timing Diagram	111
Figure B-12	MII Serial Management Channel Timing Diagram	112
Figure B-13	10Base-T SQE (Heartbeat) Timing	113
Figure B-14	10Base-T SQE (Heartbeat) Timing	114
Figure B-15	A/N and Fast Link Pulse Timing	115
Figure B-16	Fast Link Pulse Timing	116
Figure B-17	AutoNegotiation Pulse Timing	116
Figure B-18	Fast Link Pulse Timing	117
Figure C-1	General External Bus Timing	119
Figure D-1	80-pin QFP Mechanical Dimensions (case no. 841B)	121

List of Tables

Table 0-1	Document References	. 13
Table 0-2	Package Option Summary	. 14
Table 0-3	Package Option Summary	. 14
Table 1-1	Device Register Map Overview	. 20
Table 1-2	Assigned Part ID Numbers	. 39
Table 1-3	Memory size registers	. 39
Table 2-1	Signal Properties	. 42
Table 2-2	MC9S12NE-Family Power and Ground Connection Summary	. 56
Table 4-1	Mode Selection	. 58
Table 5-1	Interrupt Vector Locations	. 61
Table 5-2	Reset Summary	. 62
Table 8-1	Recommended decoupling capacitor choice	. 64
Table A-1	Absolute Maximum Ratings	. 74
Table A-2	ESD and Latch-up Test Conditions	. 75
Table A-3	ESD and Latch-Up Protection Characteristics	. 75
Table A-4	Operating Conditions	. 76
Table A-5	Thermal Package Characteristics	. 78
Table A-6	Preliminary 3.3V I/O Characteristics	. 79
Table A-7	Supply Current Characteristics	. 81
Table 20-1	EPHY Twisted Pair Transmit pin Characteristics	. 82
Table 20-2	VREG_PHY - Operating Conditions	. 83
Table B-1	Voltage Regulator - Capacitive Loads	. 85
Table B-2	Startup Characteristics	. 87
Table B-3	Oscillator Characteristics	. 89
Table B-4	PLL Characteristics	. 93
Table B-5	NVM Timing Characteristics	. 96
Table B-6	NVM Reliability Characteristics	. 97
Table B-7	Measurement Conditions	. 99
Table B-8	SPI Master Mode Timing Characteristics	100
Table B-9	SPI Slave Mode Timing Characteristics	102
Table B-10	3.3V ATD Operating Characteristics	105
Table B-11	ATD Electrical Characteristics	106
Table B-12	3.3V ATD Conversion Performance	107

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

Table B-13	MII Receive Signal Timing
Table B-14	MII Transmit Signal Timing
Table B-15	MII Transmit Signal Timing
Table B-16	MII Management Signal Timing
Table B-17	10Base-T SQE (Heartbeat) Timing Parameters113
Table B-18	10Base-T Jab and Unjab Timing Parameters
Table B-19	MII – Auto Negotiation and Fast Link Pulse Timing Parameters
Table B-20	Auto Negotiation and Fast Link Pulse Timing
Table B-21	10BaseT Transceiver Characteristics
Table B-22	100BaseTX Transceiver Characteristics
Table C-1	Expanded Bus Timing Characteristics (3.3V Range)

Document References

The Device User Guide provides information about the MC9S12NE64 device made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy, all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

See **Table 0-1** for names and versions of the referenced documents throughout the Device User Guide.

Table 0-1 Document References

Block Guide	Acronym	Version	Document Order Number
Analog to Digital Converter: 10-Bit, 8 Channels	ATD_10B8C	V02	S12ATD10B8CV2/D
Background Debug Module	BDM	V04	S12BDMV4/D
Central Processor Unit	CPU	V02	S12CPUV2/D
Clock and Reset Generator	CRG	V04	S12CRGV4/D
Debug Module	DBG	V01	S12DBGV1/D
Ethernet Media Access Controller	EMAC	V01	S12EMACV1/D
Ethernet Physical Transceiver	EPHY	V01	S12EPHYV1/D
64Kbyte Flash EEPROM	FTS64K	V02	S12FTS64KV2/D
Inter IC Bus	IIC	V02	S12IICV2/D
Interrupt	INT	V01	S12INTV1/D
Multiplexed Expanded Bus Interface	MEBI	V03	S12MEBIV3/D
Module Mapping Control	MMC	V04	S12MMCV4/D
Oscillator	osc	V02	S12OSCV2/D
Port Integration Module	PIM_9NE64	V01	S12PIM9NE64V1/D
Serial Communications Interface	SCI	V03	S12SCIV3/D
Serial Peripheral Interface	SPI	V03	S12SPIV3/D
Timer: 16-Bit, 4 Channels	TIM_16B4C	V01	S12TIM16B4CV1/D
Voltage Regulator	VREG_PHY	V01	S12VREGPHYV1/D

Part Number

Table 0-2 lists the part number coding based on the package and temperature.

Table 0-2 Package Option Summary

Package	Device	Part Number	Mask Set	Temp. Options	Flash	RAM	I/O
80QFP	MC9S12NE128	MC9S12NE128	TBD	С	128K	12K	38
112LQFP	MC9S12NE128	MC9S12NE128	TBD	С	128K	128K	70
80QFP	MC9S12NE64	MC9S12NE64	0L19S	С	64K	8K	38
112LQFP	MC9S12NE64	MC9S12NE64	0L19S	С	64K	8K	70

Figure 0-1 provides an ordering number example.

Figure 0-1 Order Part Number Coding

Table 0-3 lists the part number coding based on the package and temperature.

Table 0-3 Package Option Summary

Part Number	Mask Set	Temp	Package	Speed	Description
MC9S12NE128CFU	TBD	-40°C, 85°C	80QFP	25MHz	
MC9S12NE128CPV	TBD	-40°C, 85°C	112LQFP	25MHz	
MC9S12NE64CFU	0L19S	-40°C, 85°C	80QFP	25MHz	
MC9S12NE64CPV	0L19S	-40°C, 85°C	112LQFP	25MHz	

Section 1 Introduction

1.1 Overview

The MC9S12NE-Family is a 112/80 pin low cost, low-end connectivity applications MCU family. The MC9S12NE-Family is comprised of standard on-chip peripherals including a 16-bit central processing unit (CPU12), 64K bytes of Flash EEPROM, 8K bytes of RAM, Ethernet Media Access Controller (EMAC) with integrated 10/100M Physical transceiver (EPHY), two asynchronous serial communications interface modules (SCI), a serial peripheral interface (SPI), one Inter IC Bus (IIC), a 4-channel 16-bit timer module (TIM), a 8-channel 10-bit analog-to-digital converter (ADC), up to 21 pins available as Keypad Wake-Up inputs (KWU) and two additional external asynchronous interrupts. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. Furthermore, an on-chip bandgap based voltage regulator (VREG) generates the internal digital supply voltage of 2.5V (VDD) from a 3.15V to 3.45V external supply range. The MC9S12NE-Family has full 16-bit data paths throughout. The 112 pin package version has a total of 70 I/O port pins and 10 input only pins available. The 80 pin package version has a total of 38 I/O port pins and 10 input only pins available.

1.2 Features

- 16-bit HCS12 CORE
 - HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii. Instruction queue
 - iv. Enhanced indexed addressing
 - MMC (memory map and interface)
 - INT (interrupt control)
 - BDM (background debug mode)
 - DBG12 (enhanced debug12 module, including breakpoints and change-of-flow trace buffer)
 - MEBI: Multiplexed Expansion Bus Interface (available only in 112 pin package version)
- Wake-up interrupt inputs
 - Up to 21-port bits available for wake up interrupt function with digital filtering
- Memory options
 - 64K Bytes of Flash EEPROM
 - 8K Bytes of RAM
- Analog-to-Digital Converter
 - One 8-channel module with 10-bit resolution.

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

- External conversion trigger capability
- Timer Module (TIM)
 - 4-Channel Timer
 - Each Channel Configurable as either Input Capture or Output Compare
 - Simple PWM Mode
 - Modulo Reset of Timer Counter
 - 16-Bit Pulse Accumulator
 - External Event Counting
 - Gated Time Accumulation
- Serial interfaces
 - Two asynchronous serial communications interface (SCI)
 - One synchronous serial peripheral interface (SPI)
 - One inter-IC bus (IIC)
- Ethernet Media Access Controller (EMAC)
 - IEEE 802.3u Medium-Independent Interface (MII)
 - IEEE 802.3x Full Duplex and Flow Control
 - MII Management Interface
 - Address Recognition
 - i. frames with broadcast address are always accepted or always rejected
 - ii. exact match for single 48-bit individual (unicast) address
 - iii. hash (64-bit hash) check of group (multicast) addresses
 - iv. promiscuous mode
 - Ethertype Filter
 - Loopback Mode
 - Two Receive and One Transmit FIFO Buffer Interfaces
- Ethernet 10/100M Transceiver (EPHY)
 - IEEE 802.3 Compliant
 - Digital Adaptive Equalization
 - Half and Full duplex
 - Auto-Negotiation Next Page Ability
 - Baseline Wander Correction
 - 125 Mhz Clock Generator and Timing Recovery
 - Integrated wave-shaping circuitry

- Loopback modes
- CRG (Clock Reset Generator Module)
 - Windowed COP watchdog
 - Real time interrupt
 - Clock monitor
 - Pierce oscillator
 - Phase-locked loop clock frequency multiplier
 - Limp home mode in absence of external clock
 - 25 MHz crystal oscillator reference clock
- Operating frequency
 - 50MHz equivalent to 25MHz Bus Speed for single chip
 - 32MHz equivalent to 16MHz Bus Speed in expanded bus modes
- Internal 2.5V Regulator
 - Supports an input voltage range from 3.3V +/- 5%
 - Low power mode capability
 - Includes low voltage reset (LVR) circuitry
- 80-Pin QFP or 112-Pin LQFP package
 - Up to 70 I/O lines with 3.3V input and drive capability (112 pin package)
 - Up to 2 dedicated 3.3V input only lines (IRQ, XIRQ)
 - 3.3V 8 A/D converter inputs and 3.3V input only lines
- Development support
 - Single-wire background debugTM mode (BDM)
 - On-chip hardware breakpoints
 - Enhanced DBG12 debug features

1.3 Modes of Operation

- Normal modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode¹
 - Normal Expanded Narrow Mode¹
 - Emulation Expanded Wide Mode¹

NOTES:

1. Expanded modes are only available in the 112 pin package version.

MOTOROLA

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

- Emulation Expanded Narrow Mode¹
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode¹ (Motorola use only)
 - Special Peripheral Mode¹ (Motorola use only)
- Each of the above modes of operation can be configured for three Low power submodes
 - Stop Mode
 - Pseudo Stop Mode
 - Wait Mode
- Secure operation, preventing the unauthorized read and write of the memory contents.

1.4 Block Diagram

VRH **←**VRH 64K, 128K Byte Flash EEPROM **VRL ←**VRL VDDA **←**VDDA 8K, 12K Byte RAM VSSA -VSSA AN0 -PAD0 TEST→ **Test Controller** Analog AN1 ←PAD1 AN2 **←**PAD2 VDDX1,2 → Digital **←**PAD3 AN3 Converter **⋖**−PAD4 VDDR→ AN4 Voltage Regulator AN5 **←**PAD5 VDD1,2← AN6 ←PAD6 VSS1,2 AN7 <--PAD7 Single-wire Background Debug Module Debugger IOC4 ←► PT4 BKGD◄→ **Breakpoints** DDRT **∢≻** PT5 IOC5 Timer F IOC6 <>> PT6 XFC < VDDPLL ← CPU12 IOC7 **←**PT7 VSSPLL ✓ Clock and Reset Serial Communication RXD PS0 EXTAL→ Periodic Interrupt Generator Interface 0 TXD **←≻** PS1 XTAL **⋖**− COP Watchdog Serial Communication RXD **←≻** PS2 **RESET ←→** Clock Monitor Interface 1 TXD **←≻**PS3 ᆸ MISO → PS4 PE0→ XIRQ Serial Peripheral MOSI **←≻** PS5 PE1—➤ ĪRQ Interface SCK **←≻** PS6 PE2<→ R/\overline{W} PE3∢≻ PTE SS <> PS7 **LSTRB** PE4∢≻ **ECLK** SDA KWJ6 ↔ PJ6 IIC PE5→ MODA SCL KWJ7 **←**►PJ7 PE6<→ MODB **←≻** PJ0 MDC KWJ0 **Expanded Bus** PE7→ NOACC **≺≻**PJ1 KWJ1 Interface MDIO PTJ PK0 <> XADDR14 CRS KWJ2 **←≻** PJ2 XADDR15 PK1 <> COL KWJ3 **←**PJ3 XADDR16 PK2 <> DDRE RXD0 KWG0 ← PG0 PK3∢≻ XADDR17 ш RXD1 KWG1 **←≻**PG1 PK4 <> □ XADDR18 RXD2 KWG2 **←≻**PG2 PK5 <> XADDR19 DDRG PTG RXD3 KWG3 4 **←**PG3 PK6 ↔ XCS Ethernet RXCLK KWG4 <+> **←**PG4 **ECS** PK7-**←**PG5 KWG5 **RXDV** Media **RXER** KWG6 **←≻**PG6 Access KWG7 ↔PG7 Controller (EMAC) TXD0 KWH0 Multiplexed Address/Data Bus TXD1 KWH1 **←**►PH1 TXD2 KWH2 **←**PH2 DDRH PTH **←≻**PH3 TXD3 KWH3 **DDRA DDRB** TXCLK KWH4 **≺≻**PH4 KWH5 **←**►PH5 **TXEN** PTA PTB **TXER** KWH6 <>PH6 PA7 4 PA6 4 PA6 4 PA6 4 PA4 4 PA3 4 PA2 4 PA0 4 ACTLED LNKLED ←► PL1 DDRL ADDR15 R ADDR14 R ADDR13 R ADDR12 R ADDR11 R SPDLED ←► PL2 ADDR10 ADDR9 ADDR8 ADDR3 ADDR2 ᆸ ADDR1 ADDR0 **←**► PL3 **ADDR6** ADDR4 DUPLED <→ 10/100Base-TX COLLED **←**► PL4 ←➤ PL5 Physical Transceiver ← PL6 Milliam Single Share Sha PHY_RBIAS (EPHY) ➤ PHY_VSSA → PHY_VDDA Multiplexed PATA6 DATA6 DATA7 DATA7 DATA1 PHY TXP◀ → PHY_VSSRX PHY_TXN

✓ → PHY_VDDRX PHY_RXP-→ PHY_VSSTX PHY_RXN-PHY_VDDTX

Figure 1-1 MC9S12NE-Family Block Diagram

1.5 Device Memory Map

Table 1-1 shows the device register map of the MC9S12NE-Family after reset. **Figure 1-3** and **Figure 1-3** illustrate the full device memory map with flash and RAM.

Table 1-1 Device Register Map Overview

Address	Module	Size
\$0000 - \$0017	CORE (Ports A, B, E, Modes, Inits, Test)	24
\$0018 - \$0019	Reserved	2
\$001A - \$001B	Device ID register (PARTID)	2
\$001C - \$001F	CORE (MEMSIZ, IRQ, HPRIO)	4
\$0020 - \$002F	CORE (DBG)	16
\$0030 - \$0033	CORE (PPAGE, Port K)	4
\$0034 - \$003F	Clock and Reset Generator (PLL, RTI, COP)	12
\$0040 - \$006F	Standard Timer 16-bit 4 channels (TIM)	48
\$0070 - \$007F	Reserved	16
\$0080 - \$009F	Analog to Digital Converter 10-bit 8 channels (ATD)	32
\$00A0 - \$00C7	Reserved	40
\$00C8 - \$00CF	Serial Communications Interface 0 (SCI0)	8
\$00D0 - \$00D7	Serial Communications Interface 1 (SCI1)	8
\$00D8 - \$00DF	Serial Peripheral Interface (SPI)	8
\$00E0 - \$00E7	Inter IC Bus (IIC)	8
\$00E8 - \$00FF	Reserved	24
\$0100- \$010F	Flash Control Register	16
\$0110 - \$011F	Reserved	16
\$0120 - \$0123	Ethernet Physical Interface (EPHY)	4
\$0124 - \$013F	Reserved	28
\$0140 - \$016F	Ethernet Media Access Controller (EMAC)	48
\$0170 - \$023F	Reserved	208
\$0240 - \$026F	Port Integration Module (PIM)	48
\$0270 - \$03FF	Reserved	400

Figure 1-2 MC9S12NE128 User Configurable Memory Map

The figure shows a useful map, which is not the map out of reset. After reset the map is:

\$0000 - \$03FF: Register Space \$0400 - \$1FFF: 12K RAM (1K RAM hidden behind Register Space)

Figure 1-3 MC9S12NE64 User Configurable Memory Map

The figure shows a useful map, which is not the map out of reset. After reset the map is:

\$0000 - \$03FF: Register Space

\$0400 - \$1FFF: 7K RAM (1K RAM hidden behind Register Space)

1.6 Detailed Register Map

The following tables show the detailed register map of the MC9S12NE64. For detailed information about register function please refer to the appropriate block guide.

\$0000 - \$000F

MEBI map 1 of 3 (Core User Guide)

Address	Name	1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Audiess	Name	Read:	DIL 1	DIL 0	סונט	DIL 4	DIL 3	DIL Z	DILI	DIL U
\$0000	PORTA	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read:	0	0	0	0	0	0	0	0
φ0004	iveseived	Write:								
\$0005	Reserved	Read:	0	0	0	0	0	0	0	0
φοσσσ	reserved	Write:								
\$0006	Reserved	Read:	0	0	0	0	0	0	0	0
φοσσσ	110001100	Write:								
\$0007	Reserved	Read:	0	0	0	0	0	0	0	0
4000.	. 10001100	Write:								
\$0008	PORTE	Read: Write:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read: Write:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read: Write:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Read: Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read: Write:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Read: Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
		Read:	0	0	0	0	0	0	0	
\$000E	EBICTL	Write:	J							ESTR
		Read:	0	0	0	0	0	0	0	0
\$000F	Reserved	Write:	-							

\$0010 - \$0014

MMC map 1 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	Read: Write:	RAM15	RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
\$0011	INITRG	Read: Write:	0	REG14	REG13	REG12	REG11	0	0	0
\$0012	INITEE	Read: Write:	EE15	EE14	EE13	EE12	EE11	0	0	EEON
\$0013	MISC	Read: Write:	0	0	0	0	EXSTR1	EXSTR0	ROMHM	ROMCTL
\$0014	MTST0	Read:	Bit 7	6	5	4	3	2	1	Bit 0
40011	2.10	Write:								

\$0015 - \$0016

INT map 1 of 2 (Core User Guide)

Address	ivame
\$0015	ITCR
\$0016	ITEST

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	WRINT	ADR3	ADR2	ADR1	ADR0
Write:				VVIXIINI	ADNO	ADNZ	ADKI	ADNO
Read: Write:	INTE	INTC	INTA	INT8	INT6	INT4	INT2	INT0

\$0017 - \$0017

MMC map 2 of 4 (Core User Guide)

Address	Name
\$0017	MTST ²

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	Bit 7	6	5	4	3	2	1	Bit 0
Write:								

\$0018 - \$0019

Reserved

Address	Name
\$0018 -	Dagamira
\$0019	Reserve

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$001A - \$001B

Miscellaneous Peripherals (Device User Guide)

Address	Name
\$001A	PARTIDH
\$001B	PARTIDI

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8
Write:								
Read:	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Write:								

\$001C - \$001D

MMC map 3 of 4 (Core User Guide, Device User Guide)

Address	Name
\$001C	MEMSIZ0

MEMSIZ1

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	reg_sw0	0	eep_sw1	eep_sw0	0	ram_sw2	ram_sw1	ram_sw0
Write:								
Read:	rom_sw1	rom_sw0	0	0	0	0	pag_sw1	pag_sw0
Write:								

\$001E - \$001E

\$001D

MEBI map 2 of 3 (Core User Guide)

Address	Name
\$001E	INTCR

	Bit /	BI
Read: Write:	IR()E	IRC

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
d: [IRQE	IRQEN	0	0	0	0	0	0
e:	INQL	INQLIN						

24

\$001F - \$001F

INT map 2 of 2 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001F	HPRIO	Read:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0
φυσιτ	пРКІО	Write:	F3EL/	PSELO	POELO	FSEL4	POELS	POELZ	POELI	

\$0020 - \$002F

DBG (including BKP) map 1 of 1 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0020	DBGC1 -	read write	DBGEN	ARM	TRGSEL	BEGIN	DBGBRK	0	CAPI	MOD
\$0021	DBGSC -	read write	AF	BF	CF	0		TF	RG	
\$0022	DBGTBH -	read write	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
\$0023	DBGTBL -	read write	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0024	DBGCNT -	read write	TBF	0			CN	NT		
\$0025	DBGCCX -	read write	PAG	SEL			EXT	CMP		
\$0026	DBGCCH	read write	Bit 15	14	13	12	11	10	9	Bit 8
\$0027	DBGCCL -	read write	Bit 7	6	5	4	3	2	1	Bit 0
\$0028	DBGC2 BKPCT0	read write	BKABEN	FULL	BDM	TAGAB	BKCEN	TAGC	RWCEN	RWC
\$0029	DBGC3 BKPCT1	read write	BKAMBH	BKAMBL	ВКВМВН	BKBMBL	RWAEN	RWA	RWBEN	RWB
\$002A	DBGCAX BKP0X	read write	PAG	SEL			EXT	CMP		
\$002B	DBGCAH BKP0H	read write	Bit 15	14	13	12	11	10	9	Bit 8
\$002C	DBGCAL BKP0L	read write	Bit 7	6	5	4	3	2	1	Bit 0
\$002D	DBGCBX BKP1X	read write	PAG	SEL			EXT	CMP		
\$002E	DBGCBH BKP1H	read write	Bit 15	14	13	12	11	10	9	Bit 8
\$002F	DBGCBL BKP1L	read write	Bit 7	6	5	4	3	2	1	Bit 0

\$0030 - \$0031

MMC map 4 of 4 (Core User Guide)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030	PPAGE	Read:	0	0	PIX5	PIX4	PIX3	PIX2	PIX1	PIX0
40000		Write:								
\$0031	Reserved	Read:	0	0	0	0	0	0	0	0
φυσι	iveseiven	Write:								

\$0032 - \$0033

MEBI map 3 of 3 (Core User Guide)

Address	Name	
ቀለሰንን	PORTK	Re
\$0032	PURIN	Wr
\$0033	DDRK	Re
φυυσσ	אטט	Wr

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read: Vrite:	ECS	xcs	XAB19	XAB18	XAB17	XAB16	XAB15	XAB14
Read: Vrite:	Bit 7	6	5	4	3	2	1	Bit 0

\$0034 - \$003F

CRG (Clock and Reset Generator)

Address	Name
\$0034	SYNR
\$0035	REFDV
\$0036	CTFLG TEST ONLY
\$0037	CRGFLG
\$0038	CRGINT
\$0039	CLKSEL
\$003A	PLLCTL
\$003B	RTICTL
\$003C	COPCTL
\$003D	FORBYP TEST ONLY
\$003E	CTCTL TEST ONLY
\$003F	ARMCOP

-								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
Write:			5110	01114	51110	51112	5111	31110
Read:	0	0	0	0	REFDV3	REFDV2	REFDV1	REFDV0
Write:					INLI DVO			
Read:	TOUT7	TOUT6	TOUT5	TOUT4	TOUT3	TOUT2	TOUT1	TOUT0
Write:								
Read:	RTIF	PROF	0	LOCKIF	LOCK	TRACK	SCMIF	SCM
Write:	IXIII	1101		LOOKII			OOM	
Read:	RTIE	0	0	LOCKIE	0	0	SCMIE	0
Write:	1111			LOOKIL			COMIL	
Read:	PLLSEL	PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
Write:	· LLOLL		0101111	110711711		O 117 (I	1(11)	001 11711
Read:	CME	PLLON	AUTO	ACQ	0	PRE	PCE	SCME
Write:		. 22011	7.010	7.00			. 02	
Read:	0	RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
Write:								
Read:	WCOP	RSBCK	0	0	0	CR2	CR1	CR0
Write:		- NODON						
Read:	RTIBYP	COPBYP	0	PLLBYP	0	0	FCM	0
Write:								
Read:	TCTL7	TCTL6	TCTL5	TCTL4	TCLT3	TCTL2	TCTL1	TCTL0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$006F

TIM (Timer 16 Bit 4 Channels)

Address	Name
\$0040	TIOS
\$0041	CFORC
\$0042	OC7M

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	IOS7	IOS6	IOS5	IOS4	0	0	0	0
Write:	1037	1030	1033	1034				
Read:	0	0	0	0	0	0	0	0
Write:	FOC7	FOC6	FOC5	FOC4				
Read:	OC7M7	OC7M6	OC7M5	OC7M4	0	0	0	0
Write:	OC/W/	UC/IVIO	OC/IVIS	OC7M4				

\$0040 - \$006F

TIM (Timer 16 Bit 4 Channels)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0043	OC7D	Read: Write:	OC7D7	OC7D6	OC7D5	OC7D4	0	0	0	0
\$0044	TCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
	()	Write:								
\$0045	TCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
ΨΟΟΤΟ	10111 (10)	Write:								
\$0046	TSCR1	Read: Write:	TEN	TSWAI	TSFRZ	TFFCA	0	0	0	0
\$0047	TTOV	Read: Write:	TOV7	TOV6	TOV5	TOV4	0	0	0	0
\$0048	TCTL1	Read: Write:	OM7	OL7	OM6	OL6	OM5	OL5	OM4	OL4
		Read:	0	0	0	0	0	0	0	0
\$0049	Reserved	Write:								
		Read:								
\$004A	TCTL3	Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	Reserved	Read:	0	0	0	0	0	0	0	0
ФUU4D	Reserved	Write:								
# 004 0	TIE	Read:	071	001	051	0.41	0	0	0	0
\$004C	TIE	Write:	C7I	C6I	C5I	C4I				
^		Read:		0	0	0				
\$004D	TSCR2	Write:	TOI				TCRE	PR2	PR1	PR0
		Read:					0	0	0	0
\$004E	TFLG1	Write:	C7F	C6F	C5F	C4F				
		Read:		0	0	0	0	0	0	0
\$004F	TFLG2	Write:	TOF	0	0	0	0	0	U	0
		Read:	0	0	0	0	0	0	0	0
\$0050	Reserved		U	U	U	U	U	U	U	U
		Write:		0	0	0	0	0	0	
\$0051	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:	•							
\$0052	Reserved	Read:	0	0	0	0	0	0	0	0
****		Write:								
\$0053	Reserved	Read:	0	0	0	0	0	0	0	0
φοσσσ	110001100	Write:								
\$0054	Reserved	Read:	0	0	0	0	0	0	0	0
ΨΟΟΟΤ	NOSCIVCU	Write:								
¢00EE	Decembed	Read:	0	0	0	0	0	0	0	0
\$0055	Reserved	Write:								
Ф0050	D	Read:	0	0	0	0	0	0	0	0
\$0056	Reserved	Write:								
***		Read:	0	0	0	0	0	0	0	0
\$0057	Reserved	Write:								
		Read:								
\$0058	TC4 (hi)	Write:	Bit 15	14	13	12	11	10	9	Bit 8
# 0050	TO4 (1-)	Read:	D'' =		_	,			,	D'/ 0
\$0059	TC4 (lo)	Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$006F

TIM (Timer 16 Bit 4 Channels)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$005A	TC5 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005B	TC5 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005C	TC6 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005D	TC6 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005E	TC7 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005F	TC7 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0060	PACTL	Read: Write:	0	PAEN	PAMOD	PEDGE	CLK1	CLK0	PAOVI	PAI
\$0061	PAFLG	Read: Write:	0	0	0	0	0	0	PAOVF	PAIF
\$0062	PACNT (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0063	PACNT (Io)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0064	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0065	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0066	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0067	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0068	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0069	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006A	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006B	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006C	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006D	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006E	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$006F	Reserved	Read: Write:	0	0	0	0	0	0	0	0

\$0070 - \$007F Reserved

\$0070	Pacarvad	Read:	0	0	0	0	0	0	0	0
- \$007F	Reserved	Write:								

\$0080 - \$009F ATD (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0080	ATDCTL0	Read:	0	0	0	0	0	0	0	0
		Write: Read:	0	0	0	0	0	0	0	0
\$0081	ATDCTL1	Write:								
\$0082	ATDCTL2	Read: Write:	ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0083	ATDCTL3	Read: Write:	0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0084	ATDCTL4	Read: Write:	SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0085	ATDCTL5	Read: Write:	DJM	DSGN	SCAN	MULT	0	CC	СВ	CA
\$0086	ATDSTAT0	Read: Write:	SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
\$0087	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0088	ATDTEST0	Read: Write:	0	0	0	0	0	0	0	0
\$0089	ATDTEST1	Read: Write:	0	0	0	0	0	0	0	SC
\$008A	ATDSTAT0	Read: Write:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
\$008B	ATDSTAT1	Read: Write:	CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
\$008C	ATDDIEN0	Read: Write:	IEN15	IEN14	IEN13	IEN12	IEN11	IEN10	IEN9	IEN8
\$008D	ATDDIEN1	Read: Write:	IEN7	IEN6	IEN5	IEN4	IEN3	IEN2	IEN1	IEN0
\$008E	PORTAD0	Read: Write:	PTAD15	PTAD14	PTAD13	PTAD12	PTAD11	PTAD10	PTAD9	PTAD8
\$008F	PORTAD1	Read: Write:	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
\$0090	ATDDR0H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8
\$0091	ATDDR0L	Read: Write:	Bit7	Bit6	0	0	0	0	0	0
\$0092	ATDDR1H	Read: Write:	Bit15	14	13	12	11	10	9	Bit8

\$0080 - \$009F

ATD (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0093	ATDDR1L	Read:	Bit7	Bit6	0	0	0	0	0	0
\$0093	AIDDKIL	Write:								
\$0094	ATDDR2H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψ003 4	AIDDINZII	Write:								
\$0095	ATDDR2L	Read:	Bit7	Bit6	0	0	0	0	0	0
ψυυσυ	AIDDINZE	Write:								
\$0096	ATDDR3H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψυυσυ	AIDDIOII	Write:								
\$0097	ATDDR3L	Read:	Bit7	Bit6	0	0	0	0	0	0
ψυση	AIDDINGE	Write:								
\$0098	ATDDR4H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψ0030 AIDDINHII	Write:									
\$0099	ATDDR4L	Read:	Bit7	Bit6	0	0	0	0	0	0
ψυσσσ	AIDDINAL	Write:								
\$009A	ATDDR5H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψοσολί	ALDBROTT	Write:								
\$009B	ATDDR5L	Read:	Bit7	Bit6	0	0	0	0	0	0
φοσοΒ	THEBROL	Write:								
\$009C	ATDDR6H	Read:	Bit15	14	13	12	11	10	9	Bit8
ψουσο	ALDBROTT	Write:								
\$009D	ATDDR6L	Read:	Bit7	Bit6	0	0	0	0	0	0
ΨΟΟΟΒ	ALDDITOL	Write:								
\$009E	ATDDR7H	Read:	Bit15	14	13	12	11	10	9	Bit8
₩ 0000 L	, ,, , , , , , , , , , , , , , , , , , ,	Write:								
\$009F	ATDDR7L	Read:	Bit7	Bit6	0	0	0	0	0	0
φοσοι	,	Write:								

\$00A0 - \$00C7

Reserved

\$00A0	Reserved	Read:	0	0	0	0	0	0	0	0
- \$00C7	iveseived	Write:								

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C8	SCIBDH	Read: Write:	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8
\$00C9	SCIBDL	Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
\$00CA	SCICR1	Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
\$00CB	SCICR2	Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK

\$00C8 - \$00CF

SCI0 (Asynchronous Serial Interface)

Address	Name
\$00CC	SCISR1
\$00CD	SCISR2
\$00CE	SCIDRH
\$00CF	SCIDRI

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
0	0	0	0	0	DDK12	TVDID	RAF
					DIVIO	אוטאו	
R8	ТО	0	0	0	0	0	0
	10						
R7	R6	R5	R4	R3	R2	R1	R0
T7	T6	T5	T4	T3	T2	T1	T0
	TDRE 0 R8 R7	TDRE TC 0 0 R8 T8 R7 R6	TDRE TC RDRF 0 0 0 R8 T8 0 R7 R6 R5	TDRE TC RDRF IDLE 0 0 0 0 R8 T8 0 0 R7 R6 R5 R4	TDRE TC RDRF IDLE OR 0 0 0 0 0 R8 T8 0 0 0 R7 R6 R5 R4 R3	TDRE TC RDRF IDLE OR NF 0 0 0 0 0 BRK13 R8 T8 0 0 0 0 R7 R6 R5 R4 R3 R2	TDRE TC RDRF IDLE OR NF FE 0 0 0 0 0 BRK13 TXDIR R8 T8 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1

\$00D0 - \$00D7

SCI1 (Asynchronous Serial Interface)

Address	Name
\$00D0	SCIBDH
\$00D1	SCIBDL
\$00D2	SCICR1
\$00D3	SCICR2
\$00D4	SCISR1
\$00D5	SCISR2
\$00D6	SCIDRH
\$00D7	SCIDRL

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read: Write:	IREN	TNP1	TNP0	SBR12	SBR11	SBR10	SBR9	SBR8
Read: Write:	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
Read: Write:	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
Read: Write:	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
Read:	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
Write:								
Read:	0	0	0	0	0	BRK13	TXDIR	RAF
Write:						DKKIS	אוטאו	
Read:	R8	то	0	0	0	0	0	0
Write:		T8						
Read:	R7	R6	R5	R4	R3	R2	R1	R0
Write:	T7	T6	T5	T4	T3	T2	T1	T0

\$00D8 - \$00DF

SPI (Serial Peripheral Interface)

Address	Name
\$00D8	SPICR1
\$00D9	SPICR2
\$00DA	SPIBR
\$00DB	SPISR
\$00DC	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read: Write:	SPIE	SPE	SPTIE	MSTR	CPOL	СРНА	SSOE	LSBFE
Read:	0	0	0	MODFEN	BIDIROE	0	SPISWAI	SPC0
Write:				INIODEEN	DIDINOL		SPISWAI	3500
Read:	0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0
Write:		SFFRZ	SFFRI	SFFRU		SFRZ	SEKT	SFRU
Read:	SPIF	0	SPTEF	MODF	0	0	0	0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:								

\$00D8 - \$00DF

SPI (Serial Peripheral Interface)

Address	Name
\$00DD	SPIDR
\$00DE	Reserved

Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read: Write:	Bit7	6	5	4	3	2	1	Bit0
Read:	0	0	0	0	0	0	0	0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:								

\$00E0 - \$00E7

\$00DF

IIC (Inter-IC Bus)

Address	Name
\$00E0	IBAD
\$00E1	IBFD
\$00E2	IBCR
\$00E3	IBSR
\$00E4	IBDR
\$00E5	Reserved
\$00E6	Reserved
\$00E7	Reserved

_								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	0
Write:	ADIN	ADIO	ADIO	ADIN	ADIO	ADINZ	ADICI	
Read:	IBC7	IBC6	IBC5	IBC4	IBC3	IBC2	IBC1	IBC0
Write:	1507	1500	1000	1501	100	1002	1501	1500
Read:	IBEN	IBIE	MS/SL	Tx/ Rx	TXAK	0	0	IBSWAI
Write:	IDEIN	IDIE	IVI3/3L	I X/KX	IAAN	RSTA		IDSWAI
Read:	TCF	IAAS	IBB	IBAL	0	SRW	IBIF	RXAK
Write:				IDAL			IDIF	
Read:	D7	D6	D5	D4	D3	D2	D1	D0
Write:	וט	D6	DS	D4	DS	DZ	וט	D0
Read:	0	0	0	0	0	0	0	0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:								

\$00E8 - \$00FF

Reserved

Address	Name
\$00E8- \$00FF	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$0100 - \$010F

Flash Control Register (fts64k)

Address	Name
\$0100	FCLKDIV
\$0101	FSEC
\$0102	Reserved for Factory Test

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
Write:		PKDIVO	FDIVO	FDIV4	רטועט	FDIVZ	FUIVI	FDIVU
Read:	KEYEN1	NV6	NV5	NV4	NV3	NV2	SEC1	SEC0
Write:								
Read:	0	0	0	0	0	0	0	0
Write:								

Bit 2

0

Bit 1

0

Bit 0

0

\$0100 - \$010F

Flash Control Register (fts64k)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
#0400	FONEO	Read:	ODEIE	0015		0	0	0	0	0
\$0103	FCNFG	Write:	CBEIE	CCIE	KEYACC					
\$0104	FPROT	Read:	FPOPEN	NV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
40.0.		Write:								
\$0105	FSTAT	Read:	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0
,		Write:			-				•	
\$0106	FCMD	Read:	0	CMDB6	CMDB5	0	0	CMDB2	0	CMDB0
*		Write:								
\$0107	Reserved for	Read:	0	0	0	0	0	0	0	0
φοιοι	Factory Test	Write:								
\$0108	Reserved for	Read:	0	0	0	0	0	0	0	0
Ф 0100	Factory Test	Write:								
#0400	Reserved for	Read:	0	0	0	0	0	0	0	0
\$0109	Factory Test	Write:								
ФО4 O A	Reserved for	Read:	0	0	0	0	0	0	0	0
\$010A	Factory Test	Write:								
¢040 D	Reserved for	Read:	0	0	0	0	0	0	0	0
\$010B	Factory Test	Write:								
¢040C	Reserved	Read:	0	0	0	0	0	0	0	0
\$010C	Reserved	Write:								
\$010D	Reserved	Read:	0	0	0	0	0	0	0	0
שטוטק	Reserved	Write:								
\$010E	Reserved	Read:	0	0	0	0	0	0	0	0
φυτυ⊏	Reserved	Write:								
Ф040 Г	Dogoryod	Read:	0	0	0	0	0	0	0	0
\$010F	Reserved	Write:								

\$0110 - \$011F

Reserved

6

Address	Name		Bit 7	Bit
\$0110	Reserved	Read:	0	0
- \$011F	Reserved	Write:		

\$0120 - \$0123

Ethernet Physical Transceiver (EPHY)

Bit 5

0

Bit 4

0

Bit 3

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0120	EPHYCTL0	Read: Write:	EPHYEN	ANDIS	DIS100	DIS10	LEDEN	EPHYWAI	0	EPHYIEN
\$0121	EPHYCTL1	Read:	TRIMEN	0	0	PHYADD4	PHYADD3	PHYADD2	PHYADD1	PHYADD0
Ψ0.2.		Write:								
¢0122	EPHYSR Read:	Read:	0	0	100DIS	10DIS	0	0	0	EPHYIF
\$0122 EPHY	EFITION	Write:								EPHTIF
\$0123	EPHYTST	Read:	SLPT1	SLPT0	AMPT1	AMPT0	BGT3	BGT2	BGT1	BGT0
φ0123	2	Write:		32. 70						

\$0124 - \$013F Reserved

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0124	Dogoryod	Read:	0	0	0	0	0	0	0	0
- \$013F	Reserved	Write:								

\$0140 - \$016F Ethernet Media Access Controller (EMAC)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$0140	NETCTL	Read: Write:	EMACE	0	0	ESWAI	EXTPHY	MLB	FDX	0		
\$0141	Reserved	Read: Write:	0	0	0	0	0	0	0	0		
\$0142	Reserved	Read: Write:	0	0	0	0	0	0	0	0		
\$0143	RXCTS	Read: Write:	RXACT	0	0	RFCE	0	PROM	CONMC	BCREJ		
\$0144	TXCTS	Read: Write:	TXACT	0	CSLF	PTRC	SSB	0	0 TCI	0 MD		
\$0145	ETCTL	Read: Write:	PET	0	0	EMW	IPV6	ARP	IPV4	IEEE		
\$0146	ETYPE	Read: Write:		ETYPE[15:8]								
\$0147	ETYPE	Read: Write:		ETYPE[7:0]								
\$0148	PTIME	Read: Write:		PTIME[15:8]								
\$0149	PTIME	Read: Write:		PTIME[7:0]								
\$014A	IEVENT	Read: Write:	RFCIF	0	BREIF	RXEIF	RXAOIF	RXBOIF	RXACIF	RXBCIF		
\$014B	IEVENT	Read: Write:	MMCIF	0	LCIF	ECIF	0	0	TXCIF	0		
\$0141C	IMASK	Read: Write:	RFCIE	0	BREIE	RXEIE	RXAOIE	RXBOIE	RXACIE	RXBCIE		
\$014D	IMASK	Read: Write:	MMCIE	0	LCIE	ECIE	0	0	TXCIE	0		
\$014E	SWRST	Read: Write:	MACRST	0	0	0	0	0	0	0		
\$014F	reserved	Read: Write:	0	0	0	0	0	0	0	0		
\$0150	MPADR	Read: Write:	0	0	0			PADDR				
\$0151	MRADR	Read: Write:	0	0	0	RADDR						
\$0152	MWDATA	Read: Write:				WDAT	A[15:8]					

\$0140 - \$016F

Ethernet Media Access Controller (EMAC)

Address	Name		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
\$0123	MWDATA	Read: Write:				WDAT	A[7:0]					
\$0154	MRDATA	Read:				RDATA	A[15:8]					
\$0155	MRDATA	Write: Read:				RDAT	A[7:0]					
φ0100	WINDATA	Write: Read:	0	0	BUSY	1						
\$0156	MCMST	Write:)P	BU31	NOPRE		MDCSEL				
\$0157	reserved	Read: Write:	0	0	0	0	0	0	0	0		
\$0158	BUFCFG	Read:	0		BUFMAP		0	N	и MAXFL[10:8	31		
		Write: Read:								-1		
\$0159	BUFCFG	Write:	•			MAXF						
\$015A	RXAEFP	Read: Write:	0	0	0	0	0	R	XAEFP[10:	8]		
\$015B	RXAEFP	Read: Write:				RXAEF	P[7:0]					
\$015C	RXBEFP	Read:	0	0	0	0	0	RXBEFP[10:8]				
		Write: Read:						IVADEI I [10.8]				
\$015D	RXBEFP	Write:				RXBEF						
\$015E	TXEFP	Read: Write:	0	0	0	0	0	-	ΓXEFP[10:8	3]		
\$015F	TXEFP	Read: Write:				TXEF	P[7:0]					
\$0160	MCHASH	Read: Write:				MCHASI	H[63:56]					
\$0161	MCHASH	Read: Write:				MCHASI	H[55:48]					
\$0162	MCHASH	Read: Write:				MCHASI	H[47:40]					
\$0163	MCHASH	Read: Write:				MCHASI	H[39:32]					
\$0164	MCHASH	Read: Write:				MCHASI	H[31:24]					
\$0165	MCHASH	Read: Write:				MCHASI	H[23:16]					
\$0166	MCHASH	Read: Write:				MCHAS	SH[15:8]					
\$0167	MCHASH	Read: Write:		MCHASH[63:56]								
\$0168	MACAD	Read: Write:		MACAD0[55:48]								
\$0169	MACAD	Read: Write:				MACAD	1[47:32]					

\$0140 - \$016F

Ethernet Media Access Controller (EMAC)

Address	Name	[Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
\$016A	MACAD	Read: Write:		MACAD2[31:24]									
\$016B	MACAD	Read: Write:		MACAD3[23:16]									
\$016C	MACAD	Read: Write:		MACAD4[15:8]									
\$016D	MACAD	Read: Write:				MACA	D5[7:0]						
\$016E	MISC	Read: Write:		INDEX		0	0		MISC[10:8]				
\$016F	MISC	Read: Write:	MISC[7:0]										

\$0170 - \$023F

Reserved

Address	Name
\$0170 - \$023F	Reserved

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

\$0240 - \$026F

PIM (Port Interface Module)

\$0240	PTT	Read:	0	0	0	0	PTT3	PTT2	PTT1	PTT0
Ψ0210		Write:					1 110	1 112		1110
\$0241	PTIT	Read:	0	0	0	0	PTIT3	PTIT2	PTIT1	PTIT0
Ψ02-1	1 111	Write:								
\$0242	\$0242 DDRT	Read:	0	0	0	0	DDRT3	DDRT2	DDRT1	DDRT0
φυ242 DDK1	Write:					פואטט	DUNIZ	וואטט	ואטט	
\$0243 RDRT	Read:	0	0	0	0	RDRT3	RDRT2	RDRT1	RDRT0	
Φ0243	KUKI	Write:					פואטא	KDK12	וואטא	KUKIU
\$0244	PERT	Read:	0	0	0	0	PERT3	PERT2	PERT1	PERT0
φ0244 FENT	FENI	Write:					PENIS	FERIZ	FENII	FERIO
\$0245	PPST	Read:	0	0	0	0	PPST3	PPST2	PPST1	PPST0
φ0243	FFSI	Write:					FFSIS	FFSIZ	11011	FF310
¢0246	Reserved	Read:	0	0	0	0	0	0	0	0
\$0246	Reserved	Write:								
\$0247	Reserved	Read:	0	0	0	0	0	0	0	0
φυ241	Reserved	Write:								
\$0248	PTS	Read:	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0
φυ240	FIS	Write:	F13 <i>1</i>	F130	F133	F134	F133	F132	FISI	F130
¢0240	PTIS	Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0
\$0249	FIIO	Write:								
<u></u>	DDRS	Read:	DDDC7	DDB66	DDDCF	DDDC4	DDBG3	DDBGg	DDDC1	DDBC0
\$024A	פאטט	Write:	DDRS7	DDRS6	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0

\$0240 - \$026F PIM (Port Interface Module)

\$024B	RDRS	Read: Write:	RDRS7	RDRS6	RDRS5	RDRS4	RDRS3	RDRS2	RDRS1	RDRS0
\$024C	PERS	Read: Write:	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0
\$024D	PPSS	Read: Write:	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0
\$024E	WOMS	Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
\$024F	Reserved	Read: Write:	0	0	0	0	0	0	0	0
\$0250	PTG	Read: Write:	PTG7	PTG6	PTG5	PTG4	PTG3	PTG2	PTG1	PTG0
\$0251	PTIG	Read: Write:	PTIG7	PTIG6	PTIG5	PTIG4	PTIG3	PTIG2	PTIG1	PTIG0
\$0252	DDRG	Read: Write:	DDRG7	DDRG6	DDRG5	DDRG4	DDRG3	DDRG2	DDRG1	DDRG0
\$0253	RDRG	Read: Write:	RDRG7	RDRG6	RDRG5	RDRG4	RDRG3	RDRG2	RDRG1	RDRG0
\$0254	PERG	Read: Write:	PERG7	PERG6	PERG5	PERG4	PERG3	PERG2	PERG1	PERG0
\$0255	PPSG	Read: Write:	PPSG7	PPSG6	PPSG5	PPSG4	PPSG3	PPSG2	PPSG1	PPSG0
\$0256	PIEG	Read: Write:	PIEG7	PIEG6	PIEG6	PIEG4	PIEG3	PIEG2	PIEG1	PIEG0
\$0257	PIFG	Read: Write:	PIFG7	PIFG6	PIFG5	PIFG4	PIFG3	PIFG2	PIFG1	PIFG0
\$0258	PTH	Read: Write:	0	PTH6	PTH5	PTH4	PTH3	PTH2	PTH1	PTH0
\$0259	PTIH	Read: Write:	0	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0
\$025A	DDRH	Read: Write:	0	DDRH6	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0
\$025B	RDRH	Read: Write:	0	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
\$025C	PERH	Read: Write:	0	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
\$025D	PPSH	Read: Write:	0	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
\$025E	PIEH	Read: Write:	0	PIEH6	PIEH6	PIEH4	PIEH3	PIEH2	PIEH1	PIEH0
\$025F	PIFH	Read: Write:	0	PIFH6	PIFH5	PIFH4	PIFH3	PIFH2	PIFH1	PIFH0
\$0260	PTJ	Read: Write:	PTJ7	PTJ6	0	0	PTJ3	PTJ2	PTJ1	PTJ0
\$0262	PTIJ	Read: Write:	PTIJ7	PTIJ6	0	0	PTIJ3	PTIJ2	PTIJ1	PTIJ0
\$0262	DDRJ	Read: Write:	DDRJ7	DDRJ6	0	0	DDRJ3	DDRJ2	DDRJ1	DDRJ0

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

\$0240 - \$026F

PIM (Port Interface Module)

		_								
\$0263	RDRJ	Read: Write:	RDRJ7	RDRJ6	0	0	RDRJ3	RDRJ2	RDRJ1	RDRJ0
		Read:			0	0				
\$0264	PERJ	Write:	PERJ7	PERJ6			PERJ3	PERJ2	PERJ1	PERJ0
ФООС Е	DDC I	Read:	DDC 17	DDC IC	0	0	DDC 10	DDC IO	DDC IA	DDC 10
\$0265	PPSJ	Write:	PPSJ7	PPSJ6			PPSJ3	PPSJ2	PPSJ1	PPSJ0
\$0266	PIEJ	Read:	PIEJ7	PIEJ6	0	0	PIEJ3	PIEJ2	PIEJ1	PIEJ0
ψυΖυυ	FILU	Write:	FIEJI	FIEJO			FIEJS	FILJZ	FIEJI	FIEJU
\$0267	PIFJ	Read:	PIFJ7	PIFJ6	0	0	PIFJ3	PIFJ2	PIFJ1	PIFJ0
φοσοι		Write:	1 11 07	1 11 00			1 11 00	1 11 02	1 11 0 1	1 11 00
\$0268	PTL	Read:	0	PTL6	PTL5	PTL4	PTL3	PTL2	PTL1	PTL0
Ψ0200	–	Write:							· · - ·	
\$0269	PTIL	Read:	0	PTIL6	PTIL5	PTIL4	PTIL3	PTIL2	PTIL1	PTIL0
ψυΖυσ	1 11L	Write:								
\$026A	DDRL	Read:	0	DDRL6	DDRL5	DDRL4	DDRL3	DDRL2	DDRL1	DDRL0
φυΖυΑ	DDKL	Write:		DUKLO	DDKLS	DDKL4	DDKL3	DDKLZ	DUKLI	DDKLU
¢∩acD	DDDI	Read:	0	DDDI 6	DDDI F	DDDI 4	מ ומחם	מ ומחם	DDDI 1	DDDI 0
\$026B	RDRL	Write:		RDRL6	RDRL5	RDRL4	RDRL3	RDRL2	RDRL1	RDRL0
\$026C	PERL	Read:	0	PERL6	PERL5	PERL4	PERL3	PERL2	PERL1	PERL0
φ020C	PERL	Write:		PERLO	PERLO	FERL4	PERLS	PERLZ	PERLI	PERLU
\$026D	PPSL	Read:	0	PPSL6	PPSL5	PPSL4	PPSL3	PPSL2	PPSL1	PPSL0
ψυΖυΔ	FFSL	Write:		FFSLO	FFSLS	FF3L4	FFSLS	FFSLZ	FFSLI	FFSLU
\$026E	WOML	Read:	0	WOML6	WOML5	WOML4	WOML3	WOML2	WOML1	WOML0
φυΖυΕ	VVOIVIL	Write:		VVOIVILO	VVOIVILO	VVOIVIL4	VVOIVILO	VVOIVILZ	VVOIVILI	VVOIVILO
\$026F	Reserved	Read:	0	0	0	0	0	0	0	0
ΦυΖυΓ	K6261 A60	Write:								

\$0270 - \$03FF

Reserved space

Address	Name
\$0270	Reserve
- \$3FF	Ve261 AG

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read:	0	0	0	0	0	0	0	0
Write:								

1.7 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset. The read-only value is a unique part ID for each revision of the chip. **Table 1-2 Assigned Part ID Numbers** shows the assigned part ID number.

Table 1-2 Assigned Part ID Numbers

Device	Mask Set Number	Part ID ¹
MC9S12NE128	TBD	\$8100
MC9S12NE-Family	0L19S	\$8200

NOTES:

1. The coding is as follows:

Bit 15-12: Major family identifier

Bit 11-8: Minor family identifier

Bit 7-4: Major mask set revision number including FAB transfers

Bit 3-0: Minor - non full - mask set revision

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-3** shows the read-only values of these registers. Refer to section Module Mapping and Control (MMC) of HCS12 Core User Guide for further details.

Table 1-3 Memory size registers

	Register name	Value
MC9S12NE128	MEMSIZ0	\$05
MC9S12NE128	MEMSIZ1	\$80
MC9S12NE-Family	MEMSIZ0	\$03
MC9S12NE-Family	MEMSIZ1	\$80

Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block User Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12NE-Family is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. Figure

2-1 and Figure 2-2 show the pin assignments.

Signals shown in **Bold** are not available on the 80 Pin Package

Figure 2-1 Pin assignments 112 LQFP for MC9S12NE-Family

Figure 2-2 Pin assignments in 80 QFP for MC9S12NE-Family

2.2 Signal Properties Summary

Table 2-1 Signal Properties

	Г		Table 2		Jnai Pro	per nes	
Pin Name Function	Pin Name	Pin Name	Power		nal Pull sistor	Description	Reset
1	Function 2	Function	Domain	CTRL	Reset	Description	State
		3			STATE		
EXTAL	_	_	VDDPLL	NA	NA	Oscillator pins	Input
XTAL	_	_	VDDPLL	NA	NA	Oscillator piris	Output
XFC	_	_	VDDPLL	NA	NA	PLL loop filter pin	
RESET	_		VDDX	None	None	External reset pin	Input
TEST	_	1	VDDX	None	None	Test only pin. Must be grounded.	Input
BKGD	MODC	TAGHI	VDDX	None	UP	Background debug; mode pin; tag signal high	Input
PE7	NOACC		VDDX	PUCR	UP	Port E I/O pin; access	Input
PE6	IPIPE1	MODB	VDDX	1	RESET ow: Down	Port E I/O pin; pipe status; mode selection	Input
PE5	IPIPE0	MODA	VDDX	1	RESET ow: Down	Port E I/O pin; pipe status; mode selection	Input
PE4	ECLK	_	VDDX	PUCR	UP	Port E I/O pin; bus clock output	Input
PE3	LSTRB	TAGLO	VDDX	PUCR	UP	Port E I/O pin; low strobe; tag signal low	Input
PE2	R/W		VDDX	PUCR	UP	Port E I/O pin; R/W in expanded modes	Input
PE1	ĪRQ		VDDX	PUCR	UP	Port E input; external interrupt pin	Input
PE0	XIRQ		VDDX	PUCR	UP	Port E input; non-maskable interrupt pin	Input
PA[7:0]	ADDR[15:8]/ DATA[15:8]	_	VDDX	PUCR	Disabled	Port A I/O pin; multiplexed address/data	Input
PB[7:0]	ADDR[7:0] / DATA[7:0]	_	VDDX	PUCR	Disabled	Port B I/O pin; multiplexed address/data	Input
PAD[7:0]	AN[7:0]		VDDA	None	None	Port AD Input Pins; ATD inputs	Input
PK[7]	ECS	ROMCTL	VDDX	PUCR	UP	Port K I/O Pin; Emulation Chip Select;	Input
PK[6]	XCS	1	VDDX	PUCR	UP	Port K I/O Pin; External Chip Select	Input
PK[5:0]	XADDR [19:14]	1	VDDX	PUCR	UP	Port K I/O Pins; Extended Addresses	Input
PG7	_	KWG7	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; Interrupt	Input
PG6	MII_RXER	KWG6	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Error; Interrupt	Input
PG5	MII_RXDV	KWG5	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Data Valid; Interrupt	Input
PG4	MII_RXCLK	KWG4	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Clock; Interrupt	Input
PG3	MII_RXD3	KWG3	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Data; Interrupt	Input
PG2	MII_RXD2	KWG2	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Data; Interrupt	Input

Pin Name	Pin Name	Pin Name	Power		nal Pull sistor		Reset
Function	Function 2	Function	Domain		Reset	Description	State
1		3		CTRL	STATE		
PG1	MII_RXD1	KWG1	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Data; Interrupt	Input
PG0	MII_RXD0	KWG0	VDDX	PERG/ PPSG	Disabled	Port G I/O Pin; EMAC MII Receive Data; Interrupt	Input
PH6	MII_TXER	KWH6	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Error; Interrupt	Input
PH5	MII_TXEN	KWH5	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Enable; Interrupt	Input
PH4	MII_TXCLK	KWH4	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Clock; Interrupt	Input
PH3	MII_TXD3	KWH3	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Data; Interrupt	Input
PH2	MII_TXD2	KWH2	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Data; Interrupt	Input
PH1	MII_TXD1	KWH1	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Data; Interrupt	Input
PH0	MII_TXD0	KWH0	VDDX	PERH/ PPSH	Disabled	Port H I/O Pin; EMAC MII Transmit Data; Interrupt	Input
PJ7	IIC_SCL	KWJ7	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; IIC SCL; Interrupt	Input
PJ6	IIC_SDA	KWJ6	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; IIC SDA; Interrupt	Input
PJ3	MII_COL	KWJ3	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; EMAC MII Collision; Interrupt	Input
PJ2	MII_CRS	KWJ2	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; EMAC MII Carrier Sense; Interrupt	Input
PJ1	MII_MDIO	KWJ1	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; EMAC MII Management Data I/O; Interrupt	Input
PJ0	MII_MDC	KWJ0	VDDX	PERJ/ PPSJ	Disabled	Port J I/O Pin; EMAC MII Management Data Clock; Interrupt	Input
PL6	_	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin	Input
PL5	_	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin	Input
PL4	COLLED	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin; EPHY Collision LED	Input
PL3	DUPLED	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin; EPHY Full Duplex LED	Input
PL2	SPDLED	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin; EPHY 100Mbps LED	Input
PL1	LNKLED	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin; EPHY Valid Link LED	Input
PL0	ACTLED	_	VDDX	PERL/ PPSL	Disabled	Port L I/O Pin; EPHY Transmit or Receive LED	Input
PS7	SPI_SS	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SPI SS signal	Input

Pin Name	Pin Name	Pin Name	Power		nal Pull sistor		Reset
Function	Function 2	Function	Domain	OTDI	Reset	Description	State
'		3		CTRL	STATE		
PS6	SPI_SCK	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SPI SCK signal	Input
PS5	SPI_MOSI	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SPI MOSI signal	Input
PS4	SPI_MISO	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SPI MISO signal	Input
PS3	SCI1_TXD	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SCI1 transmit signal	Input
PS2	SCI1_RXD	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SCI1 receive signal	Input
PS1	SCI0_TXD	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SCI0 transmit signal	Input
PS0	SCI0_RXD	_	VDDX	PERS/ PPSS	Disabled	Port S I/O Pin; SCI0 receive signal	Input
PT[7:4]	TIM_IOC[7:4]	_	VDDX	PERT/ PPST	Disabled	Port T I/O Pins; timer TIM input cap. output compare	Input
PHY_TXN	_	_	PHY_VDDTX	NA	NA	Twisted Pair Output -	Analog Output
PHY_TXP	_	_	PHY_VDDTX	NA	NA	Twisted Pair Output +	Analog Output
PHY_RXN	_	_	PHY_VDDRX	NA	NA	Twisted Pair Input -	Analog Input
PHY_RXP	_	_	PHY_VDDRX	NA	NA	Twisted Pair Input +	Analog Input
RBIAS	_	_	PHY_VSSA	NA	NA	Bias Control: 12.4K 1.0% external resistor	Analog Input

NOTE: Signals shown in bold are not available in the 80 pin package.

NOTE: If the port pins are not bonded out in the chosen package the user should initialize the registers to be inputs with enabled pull resistance to avoid excess current consumption. This applies to the following pins:

(80QFP): Port A[7:0], Port B[7:0], Port E[7,6,5,3,2], Port K[7:0]; Port G[7]; Port L[6:5]

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

EXTAL and XTAL are the external clock and crystal driver pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin

RESET is an active low bidirectional control signal that acts as an input to initialize the MCU to a known start-up state. It also acts as an open-drain output to indicate that an internal failure has been detected in either the clock monitor or COP watchdog circuit. External circuitry connected to the RESET pin should not include a large capacitance that would interfere with the ability of this signal to rise to a valid logic one within 32 ECLK cycles after the low drive is released. Upon detection of any reset, an internal circuit drives the RESET pin low and a clocked reset sequence controls when the MCU can begin normal processing. The RESET pin includes an internal pull up device.

2.3.3 TEST — Test Pin

The TEST pin is reserved for test and must be tied to ground in all applications.

2.3.4 XFC — PLL Loop Filter Pin

Dedicated pin used to create the PLL loop filter. See appendix **B.4.3.1** and the CRG Block Guide for more detailed information.

2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High & Mode Pin

The BKGD / TAGHI / MODC pin is used as a pseudo-open-drain pin for the background debug communication. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of RESET. In MCU expanded modes of operation, when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the instruction queue. This pin always has an internal pull up.

2.3.6 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins

PA[7:0] are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PA[7:0] pins are not available in the 80 pin package version.

2.3.7 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins

PB[7:0] are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. PB[7:0] pins are not available in the 80 pin package version.

2.3.8 PE7 / NOACC — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or free cycle. This signal will assert when the CPU is not using the bus.

2.3.9 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when RESET is low. PE6 is not available in the 80 pin package version.

2.3.10 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when RESET is low. PE5 is not available in the 80 pin package version.

2.3.11 PE4 / ECLK— Port E I/O Pin 4 / E-Clock Output

PE4 is a general purpose input or output pin. In Normal Single Chip mode PE4 is configured with an active pull-up while in reset and immediately out of reset. The pullup can be turned off by clearing PUPEE in the PUCR register. In all modes except Normal Single Chip Mode, the PE4 pin is initially configured as the output connection for the internal bus clock(ECLK). ECLK is used as a timing reference and to demultiplex the address and data in expanded modes. The ECLK frequency is equal to 1/2 the crystal frequency out of reset. The ECLK output function depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and the ESTR bit in the EBICTL register. All clocks, including the ECLK, are halted when the MCU is in STOP mode. It is possible to configure the MCU to interface to slow external memory. ECLK can be stretched for such accesses. The PE4 pin is initially configured as ECLK output with stretch in all expanded modes. Reference the MISC register (EXSTR[1:0] bits) for more information. In normal expanded narrow mode, the ECLK is available for use in external select decode logic or as a constant speed clock for use in the external application system.

2.3.12 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 / Low-Byte Strobe (LSTRB)

PE3 can be used as a general-purpose I/O in all modes and is an input with an active pull-up out of reset. The pullup can be turned off by clearing PUPEE in the PUCR register. PE3 can also be configured as a Low-Byte Strobe (LSTRB). The LSTRB signal is used in write operations, so external low byte writes will not be possible until this function is enabled. LSTRB can be enabled by setting the LSTRE bit in the PEAR register. In Expanded Wide and Emulation Narrow modes, and when BDM tagging is enabled, the LSTRB function is multiplexed with the TAGLO function. When enabled a logic zero on the TAGLO pin at the falling edge of ECLK will tag the low byte of an instruction word being read into the instruction queue. PE3 is not available in the 80 pin package version.

2.3.13 PE2 / R/W — Port E I/O Pin 2 / Read/Write

PE2 can be used as a general-purpose I/O in all modes and is configured as an input with an active pull-up out of reset. The pullup can be turned off by clearing PUPEE in the PUCR register. If the read/write function is required it should be enabled by setting the RDWE bit in the PEAR register. External writes

will not be possible until the read/write function is enabled. The PE2 pin is not available in the 80 pin package version.

2.3.14 PE1 / IRQ — Port E input Pin 1 / Maskable Interrupt Pin

PE1 is always an input and can always be read. The PE1 pin is also the \overline{IRQ} input used for requesting an asynchronous interrupt to the MCU. During reset, the I bit in the condition code register (CCR) is set and any \overline{IRQ} interrupt is masked until software enables it by clearing the I bit. The \overline{IRQ} is software programmable to either falling edge-sensitive triggering or level-sensitive triggering based on the setting of the IRQE bit in the IRQCR register. The \overline{IRQ} is always enabled and configured to level-sensitive triggering out of reset. It can be disabled by clearing IRQEN bit in the IRQCR register. There is an active pull-up on this pin while in reset and immediately out of reset. The pullup can be turned off by clearing PUPEE in the PUCR register.

2.3.15 PE0 / XIRQ — Port E input Pin 0 / Non Maskable Interrupt Pin

PE0 is always an input and can always be read. The PE0 pin is also the \overline{XIRQ} input for requesting a nonmaskable asynchronous interrupt to the MCU. During reset, the X bit in the condition code register (CCR) is set and any \overline{XIRQ} interrupt is masked until MCU software enables it by clearing the X bit. Because the \overline{XIRQ} input is level sensitive triggered, it can be connected to a multiple-source wired-OR network. There is an active pull-up on this pin while in reset and immediately out of reset. The pullup can be turned off by clearing PUPEE in the PUCR register.

2.3.16 PK7 / ECS / ROMCTL — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, when the EMK bit in the MODE register is set to 1, this pin is used as the emulation chip select output (ECS). In expanded modes the PK7 pin can be used to determine the reset state of the ROMCTL bit in the MISC register. At the rising edge of RESET, the state of the PK7 pin is latched to the ROMCTL bit. There is an active pull-up on this pin while in reset and immediately out of reset. The pullup can be turned off by clearing PUPKE in the PUCR register. Refer to the HCS12 V1.5 Core User Guide for further details. PK7 is not available in the 80 pin package version.

2.3.17 PK6 / XCS — Port K I/O Pin 6

PK6 is a general purpose input or output pin. During MCU expanded modes of operation, when the EMK bit in the MODE register is set to 1, this pin is used as an external chip select signal for most external accesses that are not selected by ECS. There is an active pull-up on this pin while in reset and immediately out of reset. The pullup can be turned off by clearing PUPKE in the PUCR register. Refer to section Multiplexed External Bus Interface (MEBI) of the HCS12 V1.5 Core User Guide for further details. PK6 is not available in the 80 pin package version.

2.3.18 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK[5:0] are general purpose input or output pins. In MCU expanded modes of operation, when the EMK bit in the MODE register is set to 1, PK[5:0] provide the expanded address XADDR[19:14] for the external bus. There are active pull-ups on PK[5:0] pins while in reset and immediately out of reset. The pullup can be turned off by clearing PUPKE in the PUCR register. Refer to section Multiplexed External Bus Interface (MEBI) of the HCS12 V1.5 Core User Guide for further details. PK[5:0] are not available in the 80 pin package version.

2.3.19 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0]

PAD[7:0] are the analog inputs for the analog to digital converter (ADC). They can also be configured as general purpose digital input. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the ATD_10B8C Block Guide for information about pin configurations.

2.3.20 PG7 / KWG7 — Port G I/O Pin 7

PG7 is a general purpose input or output pin. It can be configured to generate an interrupt(KWG7) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG7 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide for information about pin configurations.

2.3.21 PG6 / MII_RXER / KWG6 — Port G I/O Pin 6

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive error (MII_RXER) signal. It can be configured to generate an interrupt(KWG6) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG6 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.22 PG5 / MII_RXDV / KWG5 — Port G I/O Pin 5

PG5 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive data valid (MII_RXDV) signal. It can be configured to generate an interrupt(KWG5) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG5 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.23 PG4 / MII_RXCLK / KWG4 — Port G I/O Pin 4

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive clock (MII_RXCLK) signal. It can be configured to generate an interrupt(KWG4) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG4 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

(M) MOTOROLA

2.3.24 PG3 / MII_RXD3 / KWG3 — Port G I/O Pin 3

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive data (MII_RXD3) signal. It can be configured to generate an interrupt(KWG3) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG3 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.25 PG2 / MII_RXD2 / KWG2 — Port G I/O Pin 2

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive data (MII_RXD2) signal. It can be configured to generate an interrupt(KWG2) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG2 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.26 PG1 / MII_RXD1 / KWG1 — Port G I/O Pin 1

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive data (MII_RXD1) signal. It can be configured to generate an interrupt(KWG1) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG1 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.27 PG0 / MII_RXD0 / KWG0 — Port G I/O Pin 0

PG6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the receive data (MII_RXD0) signal. It can be configured to generate an interrupt(KWG0) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PG0 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.28 PH6 / MII_TXER / KWH6 — Port H I/O Pin 6

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit error (MII_TXER) signal. It can be configured to generate an interrupt(KWH6) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH6 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.29 PH5 / MII_TXEN / KWH5 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit Enabled (MII_TXEN) signal. It can be configured to generate an interrupt(KWH5) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH5 pin is configured

as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.30 PH4 / MII_TXCLK / KWH4 — Port H I/O Pin 4

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit Clock (MII_TXCLK) signal. It can be configured to generate an interrupt(KWH4) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH4 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.31 PH3 / MII TXD3 / KWH3 — Port H I/O Pin 3

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit data (MII_TXD3) signal. It can be configured to generate an interrupt(KWH3) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH3 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.32 PH2 / MII_TXD2 / KWH2 — Port H I/O Pin 2

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit data (MII_TXD2) signal. It can be configured to generate an interrupt(KWH2) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH2 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.33 PH1 / MII_TXD1 / KWH1 — Port H I/O Pin 1

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit data (MII_TXD1) signal. It can be configured to generate an interrupt(KWH1) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH1 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.34 PH0 / MII_TXD0 / KWH0 — Port H I/O Pin 0

PH6 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the transmit data (MII_TXD0) signal. It can be configured to generate an interrupt(KWH0) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PH0 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

MOTOROLA

2.3.35 PJ7 / IIC_SCL / KWJ7 — Port J I/O Pin 7

PJ6 is a general purpose input or output pin. When the IIC module is enabled it becomes the serial clock line (IIC_SCL) for the IIC module (IIC). It can be configured to generate an interrupt(KWJ7) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ7 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the IIC Block Guide for information about pin configurations.

2.3.36 PJ6 / IIC_SDA / KWJ6 — Port J I/O Pin 6

PJ6 is a general purpose input or output pin. When the IIC module is enabled it becomes the Serial Data Line (IIC_SDL) for the IIC module (IIC). It can be configured to generate an interrupt(KWJ6) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ6 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the IIC Block Guide for information about pin configurations.

2.3.37 PJ3 / COL / KWJ3 — Port J I/O Pin 3

PJ3 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the collision (MII_COL) signal. It can be configured to generate an interrupt(KWJ3) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ3 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.38 PJ2 / CRS / KWJ2 — Port J I/O Pin 2

PJ2 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the carrier sense (MII_CRS) signal. It can be configured to generate an interrupt(KWJ2) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ2 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.39 PJ1 / MDIO / KWJ1 — Port J I/O Pin 1

PJ1 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the Management Data I/O (MII_MDIO) signal. It can be configured to generate an interrupt(KWH1) causing the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ1 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.40 PJ0 / MDC / KWJ0 — Port J I/O Pin 0

PJ0 is a general purpose input or output pin. When the EMAC MII interface is enabled it becomes the management data clock(MII_MDC) signal. It can be configured to generate an interrupt(KWJ0) causing

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

the MCU to exit STOP or WAIT mode. While in reset and immediately out of reset the PJ0 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EMAC Block Guide for information about pin configurations.

2.3.41 PL6 — Port L I/O Pin 6

PL6 is a general purpose input or output pin. While in reset and immediately out of reset the PL6 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide for information about pin configurations.

2.3.42 PL5 — Port L I/O Pin 5

PL5 is a general purpose input or output pin. While in reset and immediately out of reset the PL5 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide for information about pin configurations.

2.3.43 PL4 / COLLED — Port L I/O Pin 4

PL4 is a general purpose input or output pin. When the internal Ethernet Physical Transceiver (EPHY) is enabled it becomes the collision status signal (COLLED). While in reset and immediately out of reset the PL4 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EPHY Block Guide for information about pin configurations.

2.3.44 PL3 / DUPLED — Port L I/O Pin 3

PL3 is a general purpose input or output pin. When the internal Ethernet Physical Transceiver (EPHY) is enabled it becomes the duplex status signal (DUPLED). While in reset and immediately out of reset the PL3 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EPHY Block Guide for information about pin configurations.

2.3.45 PL2 / SPDLED — Port L I/O Pin 2

PL2 is a general purpose input or output pin. When the internal Ethernet Physical Transceiver (EPHY) is enabled it becomes the speed status signal (SPDLED). While in reset and immediately out of reset the PL2 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EPHY Block Guide for information about pin configurations.

2.3.46 PL1 / LNKLED — Port L I/O Pin 1

PL1 is a general purpose input or output pin. When the internal Ethernet Physical Transceiver (EPHY) is enabled it becomes the link status signal (LNKLED). While in reset and immediately out of reset the PL1 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EPHY Block Guide for information about pin configurations.

(M) MOTOROLA

2.3.47 PL0 / ACTLED — Port L I/O Pin 0

PL0 is a general purpose input or output pin. When the internal Ethernet Physical Transceiver (EPHY) is enabled it becomes the active status signal (ACTLED). While in reset and immediately out of reset the PL0 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the EPHY Block Guide for information about pin configurations.

2.3.48 PS7 / SPI_SS — Port S I/O Pin 7

PS7 is a general purpose input or output. When the Serial Peripheral Interface (SPI) is enabled PS7 becomes the slave select pin \overline{SS} . While in reset and immediately out of reset the PS7 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SPI Block Guide for information about pin configurations.

2.3.49 PS6 / SPI_SCK — Port S I/O Pin 6

PS6 is a general purpose input or output pin. When the Serial Peripheral Interface (SPI) is enabled PS6 becomes the serial clock pin, SCK. While in reset and immediately out of reset the PS6 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SPI Block Guide for information about pin configurations.

2.3.50 PS5 / SPI_MOSI — Port S I/O Pin 5

PS5 is a general purpose input or output pin. When the Serial Peripheral Interface (SPI) is enabled PS5 is the master output (during master mode) or slave input (during slave mode) pin. While in reset and immediately out of reset the PS5 pin is configured as a high impedance input pin Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SPI Block Guide for information about pin configurations.

2.3.51 PS4 / SPI_MISO — Port S I/O Pin 4

PS4 is a general purpose input or output pin. When the Serial Peripheral Interface (SPI) is enabled PS4 is the master input (during master mode) or slave output (during slave mode) pin. While in reset and immediately out of reset the PS4 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SPI Block Guide for information about pin configurations.

2.3.52 PS3 / SCI1_TXD — Port S I/O Pin 3

PS3 is a general purpose input or output. When the Serial Communications Interface 1 (SCI1) transmitter is enabled the PS3 pin is configured as the transmit pin, TXD, of SCI1. While in reset and immediately out of reset the PS3 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SCI Block Guide for information about pin configurations.

2.3.53 PS2 / SCI1_RXD — Port S I/O Pin 2

PS2 is a general purpose input or output. When the Serial Communications Interface 1 (SCI1) receiver is enabled the PS2 pin is configured as the receive pin RXD of SCI1. While in reset and immediately out of reset the PS2 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SCI Block Guide for information about pin configurations.

2.3.54 PS1 / SCI0_TXD — Port S I/O Pin 1

PS1 is a general purpose input or output. When the Serial Communications Interface 0 (SCI0) transmitter is enabled the PS1 pin is configured as the transmit pin, TXD, of SCI0. While in reset and immediately out of reset the PS1 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SCI Block Guide for information about pin configurations.

2.3.55 PS0 / SCI0_RXD — Port S I/O Pin 0

PS0 is a general purpose input or output. When the Serial Communications Interface 0 (SCI0) receiver is enabled the PS0 pin is configured as the receive pin RXD0 of SCI0. While in reset and immediately out of reset the PS0 pin is configured as a high impedance input pin. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the SCI Block Guide for information about pin configurations.

2.3.56 PT[7:4] / IOC1[7:4]— Port T I/O Pins [7:4]

PT[7:4] are general purpose input or output pins. When the Timer system 1 (TIM1) is enabled they can also be configured as the TIM1 input capture or output compare pins IOC1[7-4]. While in reset and immediately out of reset the PT[7:4] pins are configured as a high impedance input pins. Consult the Port Integration Module (PIM) PIM_9NE64 Block Guide and the TIM_16B4C Block Guide for information about pin configurations.

2.3.57 PHY_TXP - EPHY Twisted Pair Output +

Ethernet twisted pair output pin. This pin is hi-z out of reset.

2.3.58 PHY_TXN - EPHY Twisted Pair Output -

Ethernet twisted pair output pin. This pin is hi-z out of reset.

2.3.59 PHY_RXP - EPHY Twisted Pair Input +

Ethernet twisted pair input pin. This pin is hi-z out of reset.

2.3.60 PHY_RXN - EPHY Twisted Pair Input -

Ethernet twisted pair input pin. This pin is hi-z out of reset.

(M) MOTOROLA

2.3.61 PHY_RBIAS - EPHY Bias Control Resistor

Connect a 12.4K(1.0%) external resistor, RBIAS, between PHY_RBIAS pin and PHY_VSSA. This resistor should be placed as close a possible to the chip pin. Stray capacitance should be kept to less than 10pF (>50pF may cause instability). No high speed signals should go in the region of RBIAS.

2.4 Power Supply Pins

2.4.1 VDDX1\2, VSSX1\2 — Power & Ground Pins for I/O & Internal Voltage Regulator

External power and ground for I/O drivers. Bypass requirements depend on how heavily the MCU pins are loaded.

2.4.2 VDDR — Power Pin for Internal Voltage Regulator

External power for internal voltage regulator.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Core Power Pins

Power is supplied to the MCU through VDD and VSS. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter.

2.4.5 PHY_VDDA, PHY_VSSA — Power Supply Pins for EPHY Analog

Power is supplied to the Ethernet Physical Transceiver(EPHY) PLLs through PHY_VDDA and PHY_VSSA. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.

2.4.6 PHY_VDDRX, PHY_VSSRX — Power Supply Pins for EPHY Receiver

Power is supplied to the Ethernet Physical Transceiver(EPHY) receiver through PHY_VDDRX and PHY_VSSRX. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.

2.4.7 PHY_VDDTX, PHY_VSSTX — Power Supply Pins for EPHY Transmitter

External power is supplied to the Ethernet Physical Transceiver(EPHY) transmitter through PHY_VDDTX and PHY_VSSTX. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VDDR is tied to ground.

2.4.8 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.9 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator. The internal voltage regulator is turned off, if VDDR is tied to ground.

Table 2-2 MC9S12NE-Family Power and Ground Connection Summary

Mnemonic	Nominal Voltage	Description	
VDDR	3.3 V	External power and ground, supply to internal voltage regulator. To disable voltage regulator attach VREGEN to VSSX.	
VDDX1 VDDX2	3.3 V	External power and ground, supply to pin drivers.	
VSSX	0 V		
VDDA	3.3 V	Operating voltage and ground for the analog-to-digital converter, the	
VSSA	0 V	reference for the internal voltage regulator and the digital-to-analog converters, allows the supply voltage to the A/D to be bypassed independently.	
VRH	3.3 V	Reference voltage high for the ATD converter.	
VRL	0 V	Reference voltage low for the ATD converter.	
PHY_VDDTX PHY_VDDRX PHY_VDDA	2.5 V	Internal power and ground generated by internal regulator for Internal Ethernet Physical Transceiver (EPHY). These also allow an external	
PHY_VSSTX PHY_VSSRX PHY_VSSA	0V	source to supply the EPHY voltages and bypass the internal voltage regulator.	
VDD1 VDD2	2.5 V	Internal power and ground generated by internal regulator. These also allow an external source to supply the core VDD/VSS voltages and	
VSS1 VSS2	0V	bypass the internal voltage regulator.	
VDDPLL	2.5 V	Provides operating voltage and ground for the Phased-Locked Loop.	
VSSPLL	0 V	This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.	

NOTE: All VSS pins must be connected together in the application. Because fast signal transitions place high, short-duration current demands on the power supply, use

(M) MOTOROLA

bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on MCU pin load.

Section 3 System Clock Description

The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules. **Figure 3-1** shows the clock connections from the CRG to all modules. Consult the CRG Block Guide for details on clock generation.

Figure 3-1 Clock Connections

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12NE64. Each mode has an associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset. The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

ROMON BKGD = PE6 =**PE5** = PP6 =**Mode Description** MODC **MODB MODA** ROMCTL Bit Special Single Chip, BDM allowed and ACTIVE. BDM is 0 0 0 Х allowed in all other modes but a serial command is required to make BDM active. 0 1 0 0 1 Emulation Expanded Narrow, BDM allowed 0 1 Χ 0 1 0 0 Special Test (Expanded Wide), BDM allowed 0 1 0 1 1 Emulation Expanded Wide, BDM allowed 1 0 1 0 Χ 0 1 Normal Single Chip, BDM allowed 0 0 1 0 1 Normal Expanded Narrow, BDM allowed 1 1 Peripheral; BDM allowed but bus operations would cause 1 0 Χ 1 1 bus conflicts (must not be used) 0 0 1 1 1 Normal Expanded Wide, BDM allowed 1 1

Table 4-1 Mode Selection

For further explanation on the modes refer to the Core User Guide.

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

• Protection of the contents of FLASH,

- Operation in single-chip mode,
- Operation from external memory with internal FLASH disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH, the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH will be disabled. BDM operations will be blocked.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH must be erased. This can be done through an external program in expanded mode.

Once the user has erased the FLASH, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks.

4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the HCS12 Core User Guide for information on resets and interrupts. System resets can be generated through external control of the \overline{RESET} pin, through the clock and reset generator module CRG or through the low voltage reset (LVR) generator of the voltage regulator module. Refer to the CRG and VREG User Guides for detailed information on reset generation.

(M) MOTOROLA

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFFE, \$FFFF	External Reset, Power On Reset or Low Voltage Reset (see CRG Flags Register to determine reset source)	None	None	-
\$FFFC, \$FFFD	Clock Monitor fail reset	None	COPCTL (CME, FCME)	_
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	_
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	_
\$FFF6, \$FFF7	SWI	None	None	_
\$FFF4, \$FFF5	XIRQ	X-Bit	None	_
\$FFF2, \$FFF3	IRQ	I-Bit	INTCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFE8 to \$FFEF	F	Reserved		
\$FFE6, \$FFE7	Standard Timer channel 4	I-Bit	T0IE (T0C4I)	\$E6
\$FFE4, \$FFE5	Standard Timer channel 5	I-Bit	T0IE (T0C5I)	\$E4
\$FFE2, \$FFE3	Standard Timer channel 6	I-Bit	T0IE (T0C6I)	\$E2
\$FFE0, \$FFE1	Standard Timer channel 7	I-Bit	T0IE (T0C7I)	\$E0
\$FFDE, \$FFDF	Standard Timer overflow	I-Bit	T0MSK2 (T0OI)	\$DE
\$FFDC, \$FFDD	Pulse accumulator overflow	I-Bit	PACTL0 (PAOVI0)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL0 (PAI0)	\$DA
\$FFD8, \$FFD9	SPI	I-Bit	SPCR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCI0	I-Bit	SC0CR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SC1CR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD	I-Bit	ATDCTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	F	Reserved		
\$FFCE, \$FFCF	Port J	I-Bit	PTJIF (PTJIE)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PTHIF (PTHIE)	\$CC
\$FFCA, \$FFCB	Port G	I-Bit	PTGIF (PTGIE)	\$CA
\$FFC8, \$FFC9	F	Reserved		
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	PLLCR (LOCKIE)	\$C6
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	PLLCR (SCMIE)	\$C4
\$FFC2, \$FFC3	F	Reserved		
\$FFC0, \$FFC1	IIC Bus	I-Bit	IBCR(IBIE)	\$C0

Table 5-1 Interrupt Vector Locations

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPRIO Value to Elevate
\$FFBA to \$FFBF	F	Reserved		
\$FFB8, \$FFB9	FLASH	I-Bit	FCNFG (CCIE, CBEIE)	\$B8
\$FFB6, \$FFB7	EPHY Interrupt	I-Bit	EPHYCTL0 (EPHYIE)	\$B6
\$FFB4, \$FFB5	EMAC Receive Buffer A Complete	I-Bit	IMASK(RXACIE)	\$B4
\$FFB2, \$FFB3	EMAC Receive Buffer B Complete	I-Bit	IMASK(RXBCIE)	\$B2
\$FFB0, \$FFB1	EMAC Frame Transmission Complete	I-Bit	IMASK(TXCIE)	\$B0
\$FFAE, \$FFAF	EMAC Receive Flow Control	I-Bit	IMASK (RFCIE)	\$AE
\$FFAC, \$FFAD	EMAC MII Management transfer Complete	I-Bit	IMASK(MMCIE)	\$AC
\$FFAA, \$FFAB	EMAC Receive error	I-Bit	IMASK (RXAIE)	\$AA
\$FFA8, \$FFA9	EMAC Receive Buffer A Overrun	I-Bit	IMASK(RXAOIE)	\$A8
\$FFA6, \$FFA7	EMAC Receive Buffer B Overrun	I-Bit	IMASK(RXBOIE)	\$A6
\$FFA4, \$FFA5	EMAC Babbling receive error	I-Bit	IMASK (BREIE)	\$A4
\$FFA2, \$FFA3	EMAC Late collision	I-Bit	IMASK(LCIE)	\$A2
\$FFA0, \$FFA1	EMAC Excessive collision	I-Bit	IMASK(ECIE)	\$A0
\$FF80 to \$FF9F	F	Reserved		

5.3 Resets

Resets are a subset of the interrupts featured in **Table 5-1**. The different sources capable of generating a system reset are summarized in **Table 5-2**.

5.3.1 Reset Summary Table

Table 5-2 Reset Summary

Reset	Priority	Source	Vector
Power-on Reset	1	CRG Module	\$FFFE, \$FFFF
External Reset	1	RESET pin	\$FFFE, \$FFFF
Low Voltage Reset	1	VREG Module	\$FFFE, \$FFFF
Clock Monitor Reset	2	CRG Module	\$FFFC, \$FFFD
COP Watchdog Reset	3	CRG Module	\$FFFA, \$FFFB

5.3.2 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block Guides for register reset states. Refer to the HCS12 Core User Guides for mode dependent pin configuration of port A, B and E out of reset.

Refer to the PIM Block Guide for reset configurations of all peripheral module ports.

Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.

Section 6 HCS12 Core Block Description

Consult the HCS12 Core User Guide for information about the HCS12 core modules, i.e. central processing unit (CPU), interrupt module (INT), module mapping control module (MMC), multiplexed external bus interface (MEBI), the Debug module (DBG), and background debug mode module (BDM).

Section 7 Voltage Regulator (VREG) Block Description

Consult the VREG Block Guide for information about the dual output linear voltage regulator. The VREG is part of the IPBus domain.

7.1 VDDR (VREGEN)

On the MC9S12NE-Family the VDDR pin is used to enable or disable the internal voltage 3.3V to 2.5V regulator. If this pin is tied low VDD1/2, VDDPLL, PHY_VDDRX, PHY_VDDTX, and PHY_VDDA must be supplied externally.

7.2 VDD1, VDD2, VSS1, VSS2

In both the 112 pin LQFP and the 80 pin QFP package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2 sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected together internally. VSS1 and VSS2 are connected together internally. This allows systems to employ better supply routing and further decoupling.

Section 8 Recommended PCB Layout (Need to Update)

The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as the MCU itself. The following rules must be observed:

- Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins (C1 C6).
- Central point of the ground star should be the VSSX pin.
- Use low ohmic low inductance connections between VSS1, VSS2 and VSSX.
- VSSPLL must be directly connected to VSSX.
- Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

- Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
- connection area to the MCU.
- Central power input should be fed in at the VDDA/VSSA pins.

Table 8-1 Recommended decoupling capacitor choice

Component	Purpose	Туре	Value	
C1	VDD1 filter cap	ceramic X7R	100 220nF	
C2	VDD2 filter cap	ceramic X7R	100 220nF	
C3	VDDA filter cap	ceramic X7R	100nF	
C4	VDDX2 filter cap	X7R/tantalum	>=100nF	
C5	VDDPLL filter cap	ceramic X7R	100nF	
C6	VDDX1 filter cap	X7R/tantalum	>=100nF	
C7	PHY_VDDA filter cap	ceramic X7R	100 220nF	
C8	PHY_VDDTX filter cap	ceramic X7R	100 220nF	
C9	PHY_VDDRX filter cap	ceramic X7R	100 220nF	
R1	RBIAS resistor	1.0%	12.4K	
C9	PLL loop filter cap			
C10	PLL loop filter cap			
R2	PLL loop filter res			
C11	OSC load cap	See PLL specification chapter		
C12	OSC load cap			
R3	OSC resistor			
R4	OSC resistor			
Q1	Quartz			

VSSA СЗ VDDA PHY_VSSTX PHY_VDDTX VDDX1 PHY_VDDA C8 PHY_VSSA VSSX1 □ PHY_RBIAS VDD2 VSS2 VDDX2 VDDPLL VSSPLL

Figure 8-1 Recommended PCB Layout (112 LQFP)

NOTE: Oscillator in Pierce mode.

Figure 8-2 Recommended PCB Layout (80 QFP)

NOTE: Oscillator in Pierce mode.

Section 9 Clock Reset Generator (CRG) Block Description

Consult the CRG Block Guide for information about the Clock and Reset Generator module. The CRG is part of the IPBus domain.

The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the VREG Block User Guide for voltage level specifications.

9.1 XCLKS

The \overline{XCLKS} input signal is not available on the MC9S12NE-Family. The signal is internally tied low to select the Pierce Oscillator or External clock configuration.

Section 10 Oscillator (OSC) Block Description

The Pierce Oscillator is available on the 9S12NE-Family devices. Consult the OSC Block User Guide for information about the Oscillator module.

Section 11 Timer (TIM) Block Description

Consult the TIM_16B4C Block Guide for information about the Timer module. The TIM is part of the IPBus domain.

Section 12 Analog to Digital Converter (ATD) Block Description

Consult the ATD_10B8C Block Guide for further information about the A/D Converter module. The ATD is part of the IPBus domain.

Section 13 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interface modules (SCI0, SCI1). Consult the SCI Block Guide for information about the Serial Communications Interface module. The SCI is part of the IPBus domain.

Section 14 Serial Peripheral Interface (SPI) Block Description

Consult the SPI Block Guide for information about the Serial Peripheral Interface module. The SPI is part of the IPBus domain.

Section 15 Inter IC Bus (IIC) Block Description

Consult the IIC Block Guide for information about the Inter IC Bus module. The IIC is part of the IPBus domain.

Section 16 Ethernet Media Access Controller (EMAC)

Consult the EMAC Block Guide for information about the Ethernet Media Access Controller module. The EMAC is part of the IPBus domain.

16.1 EMAC MII external pin configuration

When the EMAC is configured for and external Ethernet physical transceiver internal pull-ups and pull-downs are not automatically configured on the MII inputs. Any internal pull-up or pull-down resistors, which may be required, need to be configured by setting the appropriate pull control registers in the Port Integration Module (PIM). This implementation allows the use of external pull-up and pull-down resistors where desired. Consult the PIM_9NE64 Block Guide for information about the Port Integration Module.

16.2 EMAC internal PHY configuration

When the EXTPHY bit, in the EMAC NETCTL register, is set to one the EMAC is configured to work with the internal EPHY block. Please see **Section 17 Ethernet Physical Transceiver (EPHY)** for more information regarding the EPHY block.

(M) MOTOROLA

16.3 Low Power Operation

Special care must be taken when executing STOP and WAIT instructions while using the EMAC or undesired operation may result.

16.3.1 WAIT

Transmit and receive operations are not possible in WAIT mode if the CWAI bit is set in the CLKSEL register, since the clocks to the transmit and receive buffers are stopped. It is recommended that the EMAC ESWAI bit be set if WAIT mode is entered with the CWAI set.

16.3.2 STOP

During system low power Stop mode, the EMAC is immediately disabled. Any receive in progress is dropped and any PAUSE time-out is cleared. The user is required not to enter low power Stop mode when TXACT or BUSY are set.

Section 17 Ethernet Physical Transceiver (EPHY)

Consult the EPHY Block Guide for information about the Ethernet Physical Transceiver module. The EPHY is part of the IPBus domain. The EPHY also has MII register space which is not part of the MCU address space and not accessible via the IPBus. The MII registers can be accessed using the MDIO functions of the EMAC when the EMAC is configured for internal PHY operation.

The MII pins of the EPHY are not externally accessible. All communication and management of the EPHY must be done using the EMAC.

17.1 Low Power Operation

Special care must be taken when executing STOP and WAIT instructions while using the EPHY or undesired operation may result.

17.1.1 WAIT

Transmit and receive operations are not possible in WAIT mode if the CWAI bit is set in the CLKSEL register, since the clocks to the internal MII interface are stopped.

17.1.2 STOP

During system low power STOP mode, the EPHY is immediately reset and powered down. Upon exiting STOP mode the a start-up delay needs to be waited prior to initiating MDIO communications with the EPHY. See the **Section B.10 EPHY Electrical Characteristics**.

It is not possible to use an EPHY interrupt to wake the system from STOP mode.

Section 18 Port Integration Module (PIM) Block Description

Consult the PIM_9NE64 Block Guide for information about the Port Integration Module. The PIM is part of the IPBus domain.

Section 19 Flash EEPROM 64K Block Description

Consult the FTS64K Block Guide for information about the flash module.

Section 20 RAM 8K Block Description

This module supports single-cycle misaligned word accesses without wait states. The RAM is part of the HCS12 Bus domain.

In addition to operating as the CPU storage the, 8K or 12K system RAM also functions as the FIFO buffer when the EMAC module is enabled. When the EMAC is enabled the FIFO will occupy 0.375K to 4.5K of RAM with physical addresses starting at \$0000 and ending at \$017F up to \$11FF, depending on the setting of the BUFMAP bits in the EAMC FIFO Buffer Configuration register (BUFCFG). The relative RAM address, which are controlled by settings in the Internal RAM Position register (INTRM) must be tracked in software.

The FIFO operation of the RAM is independent of the CPU and allows same cycle read/write access from the CPU and the EMAC. There is no hardware blocking mechanism implemented to prevent the CPU from accessing the FIFO RAM space, so care must be taken that the CPU does not corrupt the RAM FIFO contents.

Appendix A Electrical Characteristics

A.1 General

NOTE: The electrical characteristics given in this section are preliminary and should be

used as a guide only. Values cannot be guaranteed by Motorola and are subject to

change without notice.

NOTE: The part is specified and tested over the 3.3V range.

This supplement contains the most accurate electrical information for the MC9S12NE-Family microcontroller available at the time of publication. The information should be considered **PRELIMINARY** and is subject to change.

This introduction is intended to give an overview on several common topics like power supply, current injection etc.

A.1.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate, under the "C" column heading.

P: Those parameters are guaranteed during production testing on each individual device.

C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors.

T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category.

D: Those parameters are derived mainly from simulations.

A.1.2 Power Supply

The MC9S12NE-Family utilizes several pins to supply power to the I/O ports, A/D converter, oscillator and PLL, the Ethernet Physical Transceiver (EPHY) as well as the digital core.

The VDDA, VSSA pair supplies the A/D converter and portions of the EPHY.

The VDDX1, VDDX2, VSSX1, VSSX2 pairs supply the I/O pins, and internal voltage regulator

The VDDR supplies the internal voltage regulator, and is the VREGEN signal.

VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic.

VDDPLL, VSSPLL supply the oscillator and the PLL.

VSS1 and VSS2 are internally connected by metal.

VDD1 and VDD2 are internally connected by metal.

PHY_VDDA, PHY_VSSA are power Supply Pins for EPHY Analog

PHY_VDDRX, PHY_VSSRX are power Supply Pins for EPHY Receiver

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

PHY_VDDTX, PHY_VSSTX are power Supply Pins for EPHY Transmitter VDDA, VDDX1, VDDX2 as well as VSSA, VSSX1, VSSX2 are connected by anti-parallel diodes for ESD protection.

NOTE: In the following context

VDD3 is used for either VDDA, VDDR, and VDDX1/VDDX2

VSS3 is used for either VSSA, VSSR, and VSSX1/VSSX2 unless otherwise noted. IDD3 denotes the sum of the currents flowing into the VDDA, VDDR, and

VDDX1/VDDX2 pins.

VDD is used for VDD1, VDD2, VDDPLL, PHY_VDDTX, PHY_VDDRX, and PHY_VDDA;

VSS is used for VSS1, VSS2, VSSPL, PHY_VSSTX, PHY_VSSRX, and PHY_VSSA. IDD is used for the sum of the currents flowing into VDD1, VDD2.

 I_{DDPHY} is used for the sum of currents flowing into PHY_VDDTX, PHY_VDDRX, and PHY_VDDA

V_{DDPHY} is used for PHY_VDDTX, PHY_VDDRX, and PHY_VDDA

 V_{DDTX} is used for twisted pair differential voltage present on the PHY_TXP and PHY_TXN pins

 I_{DDTX} is used for twisted pair differential current flowing into the PHY_TXP or PHY_TXN pins

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 3.3V I/O pins

Those I/O pins have a nominal level of 3.3V. This group of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs. The internal structure of these pins are identical, however some of the functionality may be disabled.

A.1.3.2 Analog Reference / Special function Analog

This group of pins is comprised of the VRH, VRL, TXN, TXP, RXN, RXP and RBIAS pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only, and should be tied to ground during normal operation.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD3} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD3}$) is greater than I_{DD3} , the injection current may flow out of VDD3 and could result in external power supply going out of regulation. Insure external VDD3 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS3} or V_{DD3}).

Table A-1 Absolute Maximum Ratings

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V _{DD3}	-0.3	4.5	V
2	Digital Logic Supply Voltage ¹	V _{DD}	-0.3	3.0	V
3	PLL Supply Voltage ⁽¹⁾	V _{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V _{IN}	-0.3	6.5	V
7	Analog Reference	$V_{RH,}V_{RL}$	-0.3	6.5	V
8	XFC, EXTAL, XTAL inputs	V _{ILV}	-0.3	3.0	V
9	TEST input	V _{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ²	I _D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ³	I _{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁴	I _{DT}	-0.25	0	mA
13	Operating Temperature Range (ambient)	T _A	- 40	85	°C
14	Operating Temperature Range (junction)	TJ	- 40	125	°C
15	Storage Temperature Range	T _{stg}	- 65	155	°C

NOTES:

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device

^{1.} The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source.

^{2.} All digital I/O pins are internally clamped to V_{SSX} and V_{DDX} , V_{DDR} or V_{SSA} and V_{DDA} .

^{3.} These pins are internally clamped to V_{SSPLL} and V_{DDPLL} 4. This pin is clamped low to V_{SSPLL} , but not clamped high. This pin must be tied low in applications.

specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table A-2 ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ohm
	Storage Capacitance	С	100	pF
Human Body	Number of Pulse per pin positive negative	-	- 3 3	
	Series Resistance	R1	0	Ohm
	Storage Capacitance	С	200	pF
Machine	Number of Pulse per pin positive negative	-	- 3 3	
Latch-up	Minimum input voltage limit		-2.5	V
Laterrup	Maximum input voltage limit		7.5	V

Table A-3 ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	2000	-	V
2	С	Machine Model (MM)	V _{MM}	200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	500	-	V
4	С	Latch-up Current at 125°C positive negative	I _{LAT}	+100 -100	-	mA
5	С	Latch-up Current at 27°C positive negative	I _{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This section describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Instead of specifying ambient temperature all parameters are specified for the more meaningful silicon junction temperature. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics.

Table A-4 Operating Conditions

Rating	Symbol	Min	Тур	Max	Unit
I/O and Regulator Supply Voltage	V _{DDX}	3.135	3.3	3.465	V
Analog Supply Voltage	V_{DDA}	3.135	3.3	3.465	V
Regulator Supply Voltage	V _{DDR}	3.135	3.3	3.465	V
Digital Logic Supply Voltage ¹	V _{DD}	2.375	2.5	2.625	V
PLL Supply Voltage ⁽¹⁾	V _{DDPLL}	2.375	2.5	2.625	V
Voltage Difference VDDX1/VSSX2 to VDDA	Δ_{VDDX}	-0.1	0	0.1	V
Voltage Difference VSSX/VSSX2 to VSSA	Δ_{VSSX}	-0.1	0	0.1	V
Oscillator ²	f _{osc}	0.5	-	25	MHz
Bus Frequency	f _{bus}	0.5	-	25	MHz
Operating Junction Temperature Range	T _J	-40	-	125	°C

NOTES:

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in ${}^{\circ}C$ can be obtained from:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{A} + (\mathsf{P}_\mathsf{D} \bullet \Theta_\mathsf{JA})$$

 $T_J = Junction Temperature, [°C]$

 $T_A = Ambient Temperature, [°C]$

 P_D = Total Chip Power Dissipation, [W]

 Θ_{JA} = Package Thermal Resistance, [°C/W]

The total power dissipation can be calculated from:

$$P_D = P_{INT} + P_{IO}$$

P_{INT} = Chip Internal Power Dissipation, [W]

^{1.} The device contains an internal voltage regulator to generate VDD1, VDD2, VDDPLL, PHY_VDDRX, PHY_VDDTX and PHY_VDDA supplies out of the V_{DDX} and V_{DDR} supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source.

^{2.} For the internal Ethernet Physical transceiver (EPHY) to operate properly a 25MHz oscillator is required.

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal Voltage Regulator disabled

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_{i}}^{2}$$

Which is the sum of all output currents on I/O ports associated with VDDX.

For R_{DSON} is valid:

$$R_{DSON} = \frac{V_{OL}}{I_{OL}}$$
; for outputs driven low

respectively

$$R_{DSON} = \frac{V_{DD3(5)} - V_{OH}}{I_{OH}}$$
; for outputs driven high

2. Internal voltage regulator enabled

$$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA} + I_{DDX} \cdot V_{DDX} + I_{DDTX} \cdot V_{DDTX}$$

 I_{DDX} is the current shown in **Table A-7** and not the overall current flowing into VDDX, which additionally contains the current flowing into the external loads with output high.

$$P_{IO} = \sum_{i} R_{DSON} \cdot I_{IO_i}^2$$

Which is the sum of all output currents on I/O ports associated with VDDX.

Table A-5 Thermal Package Characteristics¹

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Т	Thermal Resistance LQFP112, single sided PCB ²	θ_{JA}	-	-	54	°C/W
2	Т	Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³	θ_{JA}	_	_	41	°C/W
3	Т	Junction to Board LQFP112	θ_{JB}	_	-	31	°C/W
4	Т	Junction to Case LQFP112	θ _{JC}	_	-	11	°C/W
5	Т	Junction to Package Top LQFP112	Ψ_{JT}	_	-	2	°C/W
6	Т	Thermal Resistance QFP 80, single sided PCB	θ_{JA}	-	-	51	°C/W
7	Т	Thermal Resistance QFP 80, double sided PCB with 2 internal planes	θ_{JA}	_	_	41	°C/W
8	Т	Junction to Board QFP80	θ_{JB}	_	_	27	°C/W
9	Т	Junction to Case QFP80	θ _{JC}	_	-	14	°C/W
10	Т	Junction to Package Top QFP80	Ψ_{JT}	-	-	3	°C/W
6	Т	Thermal Resistance Epad TQFP 80, single sided PCB	θ_{JA}	-	-	48	°C/W
7	Т	Thermal Resistance Epad TQFP 80, double sided PCB with 2 internal planes	$\theta_{\sf JA}$	-	-	24	°C/W
8	Т	Junction to Board QFP80	$\theta_{\sf JB}$	-	_	10	°C/W
9	Т	Junction to Case QFP80 ⁴	$\theta_{\sf JC}$	-	-	0.7	°C/W
10	Т	Junction to Package Top QFP80	Ψ_{JT}		_	2	°C/W

NOTES:

- The values for thermal resistance are achieved by package simulations
 PC Board according to EIA/JEDEC Standard 51-3
 PC Board according to EIA/JEDEC Standard 51-7

- 4. Thermal resistance between the die and the exposed die pad.

A.1.9 I/O Characteristics

This section describes the characteristics of all 3.3V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.

Table A-6 Preliminary 3.3V I/O Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
4	Р	Input High Voltage	V _{IH}	0.65*V _{DD3}	-	-	V
1	Т	Input High Voltage	V _{IH}	-	-	VDD3 + 0.3	V
2	Р	Input Low Voltage	V _{IL}	-	-	0.35*V _{DD3}	V
	Т	Input Low Voltage	V _{IL}	VSS3 - 0.3	-	-	V
3	С	Input Hysteresis	V _{HYS}		250		mV
4	Р	Input Leakage Current (pins in high ohmic input mode) ¹ V _{in} = V _{DD5} or V _{SS5}	I _{in}	-2.5	-	2.5	μΑ
5	С	Output High Voltage (pins in output mode) Partial Drive I _{OH} = -0.75mA	V _{OH}	V _{DD3} – 0.4	-	-	V
6	Р	Output High Voltage (pins in output mode) Full Drive I _{OH} = -4.5mA	V _{OH}	V _{DD3} – 0.4	-	-	V
7	С	Output Low Voltage (pins in output mode) Partial Drive I _{OL} = +0.9mA	V _{OL}	-	-	0.4	V
8	Р	Output Low Voltage (pins in output mode) Full Drive I _{OL} = +5.5mA	V _{OL}	-	-	0.4	V
9	Р	Internal Pull Up Device Current, tested at V _{IL} Max.	I _{PUL}	-	-	-60	μА
10	С	Internal Pull Up Device Current, tested at V _{IH} Min.	I _{PUH}	-6	-	-	μΑ
11	Р	Internal Pull Down Device Current, tested at V _{IH} Min.	I _{PDH}	-	-	60	μΑ
12	С	Internal Pull Down Device Current, tested at V _{IL} Max.	I _{PDL}	6	-	-	μА
13	D	Input Capacitance	C _{in}		7	-	pF
14	Т	Injection current ² Single Pin limit Total Device Limit. Sum of all injected currents	I _{ICS}	-2.5 -25	-	2.5 25	mA
15	Р	Port G, H, and J Interrupt Input Pulse filtered ³	t _{PIGN}			3	μs
16	Р	Port G, H, and J Interrupt Input Pulse passed ⁽³⁾	t _{PVAL}	10			μS

NOTES:

^{1.} Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each 8 C to 12 C in the temperature range from 50 C to 125 C.

^{2.} Refer to **Section A.1.4 Current Injection**, for more details 3. Parameter only applies in STOP or Pseudo STOP mode.

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 25MHz oscillator.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Table A-7 Supply Current Characteristics

Nu m	С	Rating	Symbol	Min	Тур	Max	Unit
1	P C P C	Run supply currents Single Chip, Internal regulator enabled, EPHY disabled Single Chip, Internal regulator enabled, EPHY Auto Negotiate ¹ Single Chip, Internal regulator enabled, EPHY 100TX ¹ Single Chip, Internal regulator enabled, EPHY 10BT ¹	I _{DD3}			65 285 265 185	mA
2	C C P	Wait Supply current All modules enabled All modules but EPHY enabled only RTI enabled	I _{DDW}			270 40 5	mA
3	CPCCCP	Pseudo Stop Current (RTI and COP enabled) -40°C 27°C 70°C 85°C 105°C 125°C	I _{DDPS}		TBD 600 TBD TBD TBD 1000	750 5000	μΑ
4	00000	Pseudo Stop Current (RTI and COP disabled) -40°C 27°C 70°C 85°C 105°C 125°C	I _{DDPS}		TBD 160 TBD TBD TBD 700	400 5000	μΑ
5	CPCCCP	Stop Current -40°C 27°C 70°C 85°C 105°C 125°C	I _{DDS}		TBD 30 TBD 200 TBD 500	100	μΑ

NOTES:

^{1.} When Calculating power consumption the additional current sunk by the TXN and TXP pins needs to be taken into account. See **Table 20-1 EPHY Twisted Pair Transmit pin Characteristics** for currents and voltages to use in the power calculations.

Table 20-1 EPHY Twisted Pair Transmit pin Characteristics

	Num	С	Rating	Symbol	Min	Тур	Max	Unit
	1	С	Auto-Negotiate Transmiter current	I_{DDTX}			130	mA
I	2	С	Auto-Negotiate Transmiter voltage	V_{DDTX}			<i>VDD3</i> -1.1V	٧
I	3	С	10BaseT Mode Transmiter current	I_{DDTX}			130	mA
1	4	С	10BaseT Mode Transmiter voltage	V_{DDTX}			<i>VDD3</i> -1.1V	V
I	5	С	100BaseTx Mode Transmiter current	I_{DDTX}			45	mA
	6	С	100BaseTx Mode Transmiter voltage	V_{DDTX}			<i>VDD3</i> -0.95V	V

Appendix B Electrical Specifications

B.1 Voltage Regulator Operating Characteristics

This section describes the characteristics of the on chip voltage regulator (VREG_PHY).

Table 20-2 VREG_PHY - Operating Conditions

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	Р	Input Voltages	V _{VDDR,A,X}	3.135	_	3.465	V
2	Р	Regulator Current Reduced Power Mode Shutdown Mode	I _{REG}	_	20 12	50 40	μΑ μΑ
3	Р	Output Voltage Core Full Performance Mode Reduced Power Mode Shutdown Mode	V _{DD}	2.375 1.6 —	2.5 2.5 1	2.625 2.75 —	> > >
4	Р	Output Voltage PLL Full Performance Mode Reduced Power Mode ² Shutdown Mode	V _{DDPLL}	2.375 1.6 —	2.5 2.5 3	2.625 2.75 —	V V V
5	Р	Low Voltage Reset ⁴ Assert Level Deassert Level	V _{LVRA} V _{LVRD}	2.25 —	_	 2.55	V V
7	С	Power-on Reset ⁵ Assert Level Deassert Level	V _{PORA} V _{PORD}	0.97 —		 2.05	> >

NOTES:

- 1. High Impedance Output
- 2. Current IDDPLL = 3mA (Pierce Oscillator)
- 3. High Impedance Output
- 4. Monitors V_{DD} , active only in Full Performance Mode. V_{LVRA} and V_{PORD} must overlap
- 5. Monitors V_{DD}. Active in all modes.

NOTE: The electrical characteristics given in this section are preliminary and should be used as a guide only. Values in this section cannot be guaranteed by Motorola and are subject to change without notice.

B.2 Chip Power-up and LVR graphical explanation

Voltage regulator sub modules POR (power-on reset) and LVR (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is described in **Figure B-1**.

Figure B-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled)

B.3 Output Loads

B.3.1 Resistive Loads

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no external DC loads.

B.3.2 Capacitive Loads

The capacitive loads are specified in **Table B-1**. Ceramic capacitors with X7R dielectricum are required.

Table B-1 Voltage Regulator - Capacitive Loads

Num	Characteristic	Symbol	Min	Typical	Max	Unit
1	VDD external capacitive load	C _{DDext}	200	440	12000	nF
2	PHY_VDDTX external capacitive load	C _{DDPLLext}	90	220	5000	nF
2	PHY_VDDRX external capacitive load	C _{DDPLLext}	90	220	5000	nF
2	PHY_VDDA external capacitive load	C _{DDPLLext}	90	220	5000	nF
2	VDDPLL external capacitive load	C _{DDPLLext}	90	220	5000	nF

B.4 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL).

B.4.1 Startup

Table B-2 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.

Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1 Т POR release level V_{PORR} 2.07 ٧ 2 Т POR assert level V_{PORA} 0.97 V PW_{RSTL} 3 D Reset input pulse width, minimum input time 2 tosc 4 D 192 Startup from Reset 196 n_{RST} nosc Interrupt pulse width, IRQ edge-sensitive 5 D PW_{IRQ} 20 ns mode Wait recovery startup time 6 D t_{WRS} 14 t_{cyc} 7 Ρ V_{LVRR} ٧ LVR release level 2.25 8 LVR assert level V_{LVRA} 2.55 V

Table B-2 Startup Characteristics

B.4.1.1 POR

The release level V_{PORR} and the assert level V_{PORA} are derived from the V_{DD} Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

B.4.1.2 LVR

The release level V_{LVRR} and the assert level V_{LVRA} are derived from the V_{DD} Supply. They are also valid if the device is powered externally. After releasing the LVR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

B.4.1.3 SRAM Data Retention

Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set.

B.4.1.4 External Reset

When external reset is asserted for a time greater than PW_{RSTL} the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset.

B.4.1.5 Stop Recovery

Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.

B.4.1.6 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

B.4.2 Oscillator

The device features an internal Pierce oscillator. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up

time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency f_{CMFA} .

Table B-3 Oscillator Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1a	С	Crystal oscillator range (Colpitts) (NOT AVALIABLE)	fosc	0.5		16	MHz
1b	С	Crystal oscillator range (Pierce) 1,2	f _{OSC}	0.5		40	MHz
2	Р	Startup Current	iosc	100			μΑ
3	С	Oscillator start-up time (Colpitts)	t _{UPOSC}		8 ³	100 ⁴	ms
4	D	Clock Quality check time-out	tcqout	0.45		2.5	s
5	Р	Clock Monitor Failure Assert Frequency	f _{CMFA}	50	100	200	KHz
6	Р	External square wave input frequency ²	f _{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t _{EXTL}	9.5			ns
8	D	External square wave pulse width high	t _{EXTH}	9.5			ns
9	D	External square wave rise time	t _{EXTR}			1	ns
10	D	External square wave fall time	t _{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C _{IN}		7		pF
12	С	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V _{DCBIAS}		1.1		٧
		EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}	0.7*V _{DDPLL}			V
		EXTAL Pin Input High Voltage ⁴	V _{IH,EXTAL}			V _{DDPLL} + 0.3	V
		EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}			0.3*V _{DDPLL}	V
		EXTAL Pin Input Low Voltage ⁴	V _{IL,EXTAL}	V _{SSPLL} - 0.3			V
		EXTAL Pin Input Hysteresis ⁴	V _{HYS,EXTAL}		250		mV

NOTES:

- 1. Depending on the crystal a damping series resistor might be necessary
- 2. XCLKS =0 during reset
- 3. $f_{osc} = 4MHz$, C = 22pF.
- 4. Maximum value is for extreme cases using high Q, low frequency crystals

B.4.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

B.4.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure B-2 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table B-4**.

The grey boxes show the calculation for $f_{VCO} = 50 MHz$ and $f_{ref} = 1 MHz$. E.g., these frequencies are used for $f_{OSC} = 4 MHz$ and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

$$K_V = K_1 \cdot e^{\frac{(f_1 - f_{vco})}{K_1 \cdot 1V}} -100 \cdot e^{\frac{(60 - 50)}{-100}} = -90.48MHz/V$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_{V}$$
 = 316.7Hz/ Ω

i_{ch} is the current in tracking mode.

The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by <u>at least</u> a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response.

(M) MOTOROLA

$$f_{C} < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot \left(\zeta + \sqrt{1 + \zeta^{2}}\right)} \ \frac{\frac{1}{10} \rightarrow f_{C} < \frac{\text{Guide} - 9\text{S12NE-FamilyDGV1/D V01.03}}{f_{C} < 25\text{kHz}}$$

And finally the frequency relationship is defined as

$$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (synr + 1) = 50$$

With the above values the resistance can be calculated. The example is shown for a loop bandwidth $f_C=10kHz$:

$$R = \frac{2 \cdot \pi \cdot n \cdot f_{C}}{K_{\Phi}} = 2*\pi*50*10kHz/(316.7Hz/\Omega) = 9.9k\Omega = ~10k\Omega$$

The capacitance C_s can now be calculated as:

$$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9)$$
 = 5.19nF =~ 4.7nF

The capacitance C_p should be chosen in the range of:

$$C_s/20 \le C_p \le C_s/10$$
 $C_p = 470pF$

B.4.3.2 Jitter Information

The basic functionality of the PLL is shown in **Figure B-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure B-3**.

NOTE: This section is under construction

The basic functionality of the PLL is shown in **Figure B-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure B-3**.

Figure B-3 Jitter Definitions

The relative deviation of t_{nom} is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N).

Defining the jitter as:

$$J(N) = \max \left(\left| 1 - \frac{t_{max}(N)}{N \cdot t_{nom}} \right|, \left| 1 - \frac{t_{min}(N)}{N \cdot t_{nom}} \right| \right)$$

For N < 100, the following equation is a good fit for the maximum jitter:

$$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Table B-4 PLL Characteristics

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Self Clock Mode frequency	f _{SCM}	1		5.5	MHz
2	D	VCO locking range	f _{VCO}	8		50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	% ¹
4	D	Lock Detection	Δ _{Lock}	0		1.5	% ⁽¹⁾
5	D	Un-Lock Detection	Δ _{unl}	0.5		2.5	%(1)
6	D	Lock Detector transition from Tracking to Acquisition mode	$ \Delta_{unt} $	6		8	%(1)
7	С	PLLON Total Stabilization delay (Auto Mode) ²	t _{stab}		0.5		ms
8	D	PLLON Acquisition mode stabilization delay (2)	t _{acq}		0.3		ms
9	D	PLLON Tracking mode stabilization delay (2)	t _{al}		0.2		ms
10	D	Fitting parameter VCO loop gain	K ₁		-100		MHz/V
11	D	Fitting parameter VCO loop frequency	f ₁		60		MHz
12	D	Charge pump current acquisition mode	i _{ch}		38.5		μА
13	D	Charge pump current tracking mode	i _{ch}		3.5		μА
14	С	Jitter fit parameter 1 ⁽²⁾	J ₁			1.1	%
15	С	Jitter fit parameter 2 ⁽²⁾	j ₂			0.13	%

NOTES:

^{1. %} deviation from target frequency

^{2.} f_{REF} = 4MHz, f_{BUS} = 25MHz equivalent f_{VCO} = 50MHz: REFDV = #\$03, SYNR = #\$018, Cs = 4.7nF, Cp = 470pF, Rs = 10K Ω .

B.5 Flash NVM

B.5.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV register. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in **Table B-5** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

B.5.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f NVMOP and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

B.5.1.2 Burst Programming

Flash programming where up to 32 words in a row can be programmed consecutively using burst programming by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{\text{bwpgm}} = 4 \cdot \frac{1}{f_{\text{NVMOP}}} + 9 \cdot \frac{1}{f_{\text{bus}}}$$

The time to program a whole row is:

$$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$

Burst programming is more than 2 times faster than single word programming.

B.5.1.3 Sector Erase

Erasing a 512 byte Flash sectortakes:

$$t_{era} \approx 4000 \cdot \frac{1}{f_{NVMOP}}$$

The setup times can be ignored for this operation.

B.5.1.4 Mass Erase

Erasing a NVM block takes:

$$t_{mass} \approx 20000 \cdot \frac{1}{f_{NVMOP}}$$

The setup times can be ignored for this operation.

Table B-5 NVM Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted								
Num	С	Rating	Symbol	Min	Тур	Max	Unit	
1	D	External Oscillator Clock	f _{NVMOSC}	0.5		50 ¹	MHz	
2	D	Bus frequency for Programming or Erase Operations	f _{NVMBUS}	1			MHz	
3	D	Operating Frequency	f _{NVMOP}	150		200	kHz	
4	Р	Single Word Programming Time	t _{swpgm}	46 ²		74.5 ³	μs	
5	D	Flash Burst Programming consecutive word	t _{bwpgm}	20.4 ²		31 ³	μs	
6	D	Flash Burst Programming Time for 32 Words	t _{brpgm}	678.4 ²		1035.5 ³	μs	
7	Р	Sector Erase Time	t _{era}	20 ⁴		26.7 ³	ms	
8	Р	Mass Erase Time	t _{mass}	100 ⁴		133 ³	ms	
9	D	Blank Check Time Flash per block	t check	11 ⁵		32778 ⁶	t _{cyc}	

NOTES:

- 1. Restrictions for oscillator in crystal mode apply!
- 2. Minimum Programming times are achieved under maximum NVM operating frequency f _{NVMOP} and maximum bus frequency f _{bus}.
- 3. Maximum Erase and Programming times are achieved under particular combinations of f _{NVMOP} and bus frequency f bus . Refer to formulae in Sections A.3.1.1 A.3.1.4 for guidance.
- 4. Minimum Erase times are achieved under maximum NVM operating frequency f NVMOP .
- 5. Minimum time, if first word in the array is not blank
- 6. Maximum time to complete check on an erased block.

B.5.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.

The failure rates for data retention and program/erase cycling are specified at <2ppm defects over lifetime at the operating conditions noted.

A program/erase cycle is specified as two transitions of the cell value from erased \rightarrow programmed \rightarrow erased, $1 \rightarrow 0 \rightarrow 1$.

(M) MOTOROLA

NOTE: All values shown in **Table B-6** are target values and subject to further extensive characterization.

Table B-6 NVM Reliability Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Data Retention at an average junction temperature of $T_{Javg} = 85^{\circ}C$	t _{NVMRET}	15			Years
2	С	Data Retention at a junction temperature of $T_J = 140^{\circ}\text{C}$	t _{NVMRET}	10			Years
3	С	Flash number of Program/Erase cycles	n _{FLPE}	10,000			Cycles

B.6 SPI Characteristics

This section provides electrical parametrics and ratings for the SPI.

In **Table B-7** the measurement conditions are listed.

Table B-7 Measurement Conditions

Description	Value	Unit
Drive mode	full drive mode	_
Load capacitance C _{LOAD,} on all outputs	50	pF
Thresholds for delay measurement points	(20% / 80%) VDDX	V

B.6.1 Master Mode

In Figure B-4 the timing diagram for master mode with transmission format CPHA=0 is depicted.

Figure B-4 SPI Master Timing (CPHA=0)

In **Figure B-5** the timing diagram for master mode with transmission format CPHA=1 is depicted.

Figure B-5 SPI Master Timing (CPHA=1)

In **Table B-8** the timing characteristics for master mode are listed.

Table B-8 SPI Master Mode Timing Characteristics

Num	С	Characteristic	Symbol				Unit
Num		Gharacteristic	Symbol	Min	Тур	Max	Oille
1	Р	SCK Frequency	f _{sck}	1/2048	_	1/2	f _{bus}
1	Р	SCK Period	t _{sck}	2	_	2048	t _{bus}
2	D	Enable Lead Time	t _{lead}	_	1/2	_	t _{sck}
3	D	Enable Lag Time	t _{lag}	_	1/2	_	t _{sck}
4	D	Clock (SCK) High or Low Time	t _{wsck}	_	1/2	_	t _{sck}
5	D	Data Setup Time (Inputs)	t _{su}	8	_	_	ns
6	D	Data Hold Time (Inputs)	t _{hi}	8	_	_	ns
9	D	Data Valid after SCK Edge	t _{vsck}	_	_	30	ns
10	D	Data Valid after SS fall (CPHA=0)	t _{vss}	_	_	15	ns
11	D	Data Hold Time (Outputs)	t _{ho}	20	_	_	ns
12	D	Rise and Fall Time Inputs	t _{rfi}	_	_	8	ns
13	D	Rise and Fall Time Outputs	t _{rfo}	_	_	8	ns

B.6.2 Slave Mode

In **Figure B-6** the timing diagram for slave mode with transmission format CPHA=0 is depicted.

Figure B-6 SPI Slave Timing (CPHA=0)

In Figure B-7 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

Figure B-7 SPI Slave Timing (CPHA=1)

In **Table B-9** the timing characteristics for slave mode are listed.

Table B-9 SPI Slave Mode Timing Characteristics

Num	С	Characteristic	Symbol			Unit	
Num		Characteristic	Syllibol	Min	Тур	Max	Oille
1	Р	SCK Frequency	f _{sck}	DC	_	1/4	f _{bus}
1	Р	SCK Period	t _{sck}	4	_	∞	t _{bus}
2	D	Enable Lead Time	t _{lead}	4	_	_	t _{bus}
3	D	Enable Lag Time	t _{lag}	4	_	_	t _{bus}
4	D	Clock (SCK) High or Low Time	t _{wsck}	4	_	_	t _{bus}
5	D	Data Setup Time (Inputs)	t _{su}	8	_	_	ns
6	D	Data Hold Time (Inputs)	t _{hi}	8	_	_	ns
7	D	Slave Access Time (time to data active)	t _a	_	_	20	ns
8	D	Slave MISO Disable Time	t _{dis}	_	_	22	ns
9	D	Data Valid after SCK Edge	t _{vsck}	_	_	30 + t _{bus} ¹	ns
10	D	Data Valid after SS fall	t _{vss}	_	_	30 + t _{bus} ¹	ns
11	D	Data Hold Time (Outputs)	t _{ho}	20	_	_	ns
12	D	Rise and Fall Time Inputs	t _{rfi}	_	_	8	ns
13	D	Rise and Fall Time Outputs	t _{rfo}	_	_	8	ns

NOTES:

^{1.} t_{bus} added due to internal synchronization delay

B.7 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

B.7.1 ATD Operating Characteristics - 3.3V Range

The **Table B-10** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

VSSA \leq VRL \leq VIN \leq VRH \leq VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Table B-10 3.3V ATD Operating Characteristics

Condit	Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= V _{DDA} <= 3.3V+10%									
Num	С	Rating	Symbol	Min	Тур	Max	Unit			
1	D	Reference Potential Low High	V _{RL} V _{RH}	V _{SSA} V _{DDA} /2		V _{DDA} /2 V _{DDA}	V			
2	С	Differential Reference Voltage	$V_{RH}-V_{RL}$	3.0	3.3	3.6	V			
3	D	ATD Clock Frequency	f _{ATDCLK}	0.5		2.0	MHz			
4	D	ATD 10-Bit Conversion Period Clock Cycles ¹ Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV10} T _{CONV10}	14 7		28 14	Cycles μs			
5	D	ATD 8-Bit Conversion Period Clock Cycles ⁽¹⁾ Conv, Time at 2.0MHz ATD Clock f _{ATDCLK}	N _{CONV8} T _{CONV8}	12 6		26 13	Cycles μs			
6	D	Recovery Time (V _{DDA} =3.3 Volts)	t _{REC}			20	μs			
7	Р	Reference Supply current	I _{REF}			0.250	mA			

NOTES:

B.7.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

B.7.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

^{1.} The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks.

Device User Guide — 9S12NE-FamilyDGV1/D V01.03

specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance are allowed.

B.7.2.2 Source capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage \leq 1LSB, then the external filter capacitor, $C_f \geq$ 1024 * (C_{INS} - C_{INN}).

B.7.2.3 Current injection

There are two cases to consider.

- 1. A current is injected into the channel being converted. The channel being stressed has conversion values of \$3FF (\$FF in 8-bit mode) for analog inputs greater than VRH and \$000 for values less than VRL unless the current is higher than specified as disruptive conditions.
- 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance.
 - The additional input voltage error on the converted channel can be calculated as $V_{ERR} = K * R_S * I_{INJ}$, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel.

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	С	Max input Source Resistance	R _S	-	-	1	ΚΩ
2	Т	Total Input Capacitance Non Sampling Sampling	C _{INN} C _{INS}			10 15	pF
3	С	Disruptive Analog Input Current	I _{NA}	-2.5		2.5	mA
4	С	Coupling Ratio positive current injection	K _p			10 ⁻⁴	A/A
5	С	Coupling Ratio negative current injection	K _n			10 ⁻²	A/A

Table B-11 ATD Electrical Characteristics

B.7.3 ATD accuracy - 3.3V Range

Table B-12 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

(M) MOTOROLA

Table B-12 3.3V ATD Conversion Performance

Conditions are shown in Table A-4 unless otherwise noted

 $V_{REF} = V_{RH} - V_{RL} = 3.328V$. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV

 $f_{ATDCLK} = 2.0MHz$

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	10-Bit Resolution	LSB		3.25		mV
2	Р	10-Bit Differential Nonlinearity	DNL	-1.5		1.5	Counts
3	Р	10-Bit Integral Nonlinearity	INL	-3.5	±1.5	3.5	Counts
4	Р	10-Bit Absolute Error ¹	AE	-5	±2.5	5	Counts
5	С	10-Bit Absolute Error at f _{ATDCLK} = 4MHz	AE		±7.0		Counts
6	Р	8-Bit Resolution	LSB		13		mV
7	Р	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
8	Р	8-Bit Integral Nonlinearity	INL	-1.5	±1.0	1.5	Counts
9	Р	8-Bit Absolute Error ⁽¹⁾	AE	-2.0	±1.5	2.0	Counts

NOTES:

For the following definitions see also **Figure B-8**.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^{n} DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

^{1.} These values include the quantization error which is inherently 1/2 count for any A/D converter.

Figure B-8 ATD Accuracy Definitions

NOTE: Figure B-8 shows only definitions, for specification values refer to **Table B-12**.

(M) MOTOROLA

B.8 EMAC Characteristics

This section describes the characteristics of the Ethernet Media Access Controller (EMAC).

B.9 MII Timing

The following MII timing is based on IEEE Std 802.3.

B.9.1 MII Receive Signal Timing (RXD[3:0], RXDV, RXER, RXCLK)

NUM	Characteristic	MIN	MAX	UNIT
M1	RXD[3:0], RXDV, RXER setup to RXCLK rise	10	-	ns
M2	RXCLK rise to RXD[3:0], RXDV, RXER hold	10	-	ns
M3	RXCLK pulse width high	35%	65%	RXCLK period
M4	RXCLK pulse width low	35%	65%	RXCLK period

Table B-13 MII Receive Signal Timing

Figure B-9 MII Receive Signal Timing Diagram

B.9.2 MII Transmit Signal Timing (TXD[3:0], TXEN, TXER, TXCLK)

NUM	Characteristic	MIN	MAX	UNIT
M5	TXCLK rise to TXD[3:0], TXEN, TXER invalid	0	1	ns
M6	TXCLK rise to TXD[3:0], TXEN, TXER valid	-	25	ns
M7	TXCLK pulse width high	35%	65%	TXCLK period
M8	TXCLK pulse width low	35%	65%	TXCLK period

Table B-14 MII Transmit Signal Timing

Figure B-10 MII Transmit Signal Timing Diagram

B.9.3 MII Asynchronous Inputs Signal Timing (CRS, COL)

NUM	Characteristic	MIN	MAX	UNIT
M9	CRS, COL minimum pulse width	1.5	-	TXCLK period

Table B-15 MII Transmit Signal Timing

Figure B-11 MII Asynchronous Inputs Timing Diagram

B.9.4 MII Management Timing (MDIO,MDC)

NUM	Characteristic	MIN	MAX	UNIT
M10	MDC rise to MDIO (output) invalid	10	-	ns
M11	MDC rise to MDIO (output) valid	-	390	ns
M12	MDIO (input) setup to MDC rise	100	-	ns
M13	MDC rise to MDIO (input) hold	0	-	ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

Table B-16 MII Management Signal Timing

Figure B-12 MII Serial Management Channel Timing Diagram

B.10 EPHY Electrical Characteristics

Table B-17 10Base-T SQE (Heartbeat) Timing Parameters

Num	С	Parameter	Sym	Min	Тур	Max	Units
1	С	COL (SQE) Delay after TXEN off	t1		1.0		μs
2	С	COL (SQE) Pulse duration	t2		1.0		μs

Typical values are at 25C.

Figure B-13 10Base-T SQE (Heartbeat) Timing

| B.10.1 10Base-T Jab and Unjab Timing

Table B-18 10Base-T Jab and Unjab Timing Parameters

Num	С	Parameter	Sym	Min	Тур	Max	Units
1	С	Maximum Transmit time	t1		98		ms
2	С	Unjab time	t2		525		ms

.Typical values are at 25C.

¹ BT = Bit Time = 100ns

¹ BT = Bit Time = 100ns

Figure B-14 10Base-T SQE (Heartbeat) Timing

B.11 Auto Negotiation

B.11.1 MII – 100Base-TX Transmit Timing Parameters

Table B-19 MII – Auto Negotiation and Fast Link Pulse Timing Parameters

Num	С	Parameter	Sym	Min	Тур	Max	Units
1	С	Clock/Data pulse width	t1		100		ns
2	С	Clock pulse to Clock pulse	t2	111	125	139	μs
3	С	Clock pulse to Data pulse (Data = 1)	t3	55.5	62.5	69.5	μs
4	С	Pulses in a Burst	t4	17		33	#
5	С	FLP burst width	t5		2		ms
6	С	FLP burst to FLP burst	t6	8	16	24	ms

Typical values are at 25C.

These parameters are the minimum and maximum times as specified in section 24.6 of the IEEE 802.3u Standard

¹ BT = Bit Time = 100ns

Figure B-15 A/N and Fast Link Pulse Timing

B.11.2 MII – 10Base-T Receive Timing

Table B-20 Auto Negotiation and Fast Link Pulse Timing

Num	С	Parameter	Sym	Min	Тур	Max	Units
1	С	Transmit FLNP width		1.25	1.5	1.75	μs
2	С	Receive FLNP width		1	1.5	2	μs
3	С	Clock/Data pulse width	t1		100		ns
4	С	Clock FLNP to Clock FLNP	t2	111	125	139	μs
5	С	Clock FLNP to Data FLNP (Data = 1)	t3	55.5	62.5	69.5	μs
6	С	Pulses in a Burst	t4	17		33	#
7	С	FLNP burst width	t5		2		ms
8	С	FLNP burst to FLNP burst	t6	8	16	24	ms

Typical values are at 25C.

¹ BT = Bit Time = 100ns

Figure B-16 Fast Link Pulse Timing

Figure B-17 AutoNegotiation Pulse Timing

Figure B-18 Fast Link Pulse Timing

B.12 Electrical Specifications

I

Table B-21 10BaseT Transceiver Characteristics

Num	С	Parameter	Sym	Min	Тур	Max	Units	Test Conditions
1	С	Peak Differential Output Voltage	VOP	2.2	2.5	2.8	V	With specified transformer and line replaced by 100ohm (+/-1%) load
2	С	Transmit Timing Jitter	-	0	2	11	ns	Using line model specified in the IEEE 802.3
3	С	Receive dc Input Impedance	Zin	-	10	-	kΩ	0.0 < Vin < 3.3V
4	С	Receive Differential Squelch Level	Vsquelch	300	400	585	mV	3.3MHz sine wave input

Table B-22 100BaseTX Transceiver Characteristics

Num	С	Parameter	Sym	Min	Тур	Max	Units	Test Conditions
1	С	Transmit Peak Differential Output Voltage	VOP	0.95	1.00	1.05	V	With specified transformer and line replaced by 100ohm (+/-1%) load
2	С	Transmit Signal Amplitude Symmery	Vsym	98	100	102	%	With specified transformer and line replaced by 100ohm (+/-1%) load

Table B-22 100BaseTX Transceiver Characteristics

Num	С	Parameter	Sym	Min	Тур	Max	Units	Test Conditions
3	С	Transmit Rise/Fall Time	Trf	3	4	5	ns	With specified transformer and line replaced by 1000hm (+/-1%) load
4	С	Transmit Rise/Fall Time Symmetry	Trfs	-0.5	0	+0.5	ns	See IEEE 802.3 for details
5	С	Transmit Overshoot/UnderShoot	Vosh	-	2.5	5	%	
6	С	Transmit Jitter	-	0	.6	1.4	ns	
7	С	Receive Common Mode Voltage	Vcm	-	1.6	-	V	VDDRX=2.5V
8	С	Receiver Maximum Input Voltage	Vmax	-	-	4.7	V	VDDRX=2.5V. Internal circuits protected by divider in shutdown

I

I

Appendix C External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure C-1** with the actual timing values shown on table **Table C-1**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

(M) MOTOROLA

Table C-1 Expanded Bus Timing Characteristics (3.3V Range)

Conditions are VDDX=3.3V+/-5%, Junction Temperature -40°C to +125°C, C_{LOAD} = 50pF

Num	С	Rating	Symbol	Min	Тур	Max	Unit
1	Р	Frequency of operation (E-clock)	f _o	0		16.0	MHz
2	Р	Cycle time	t _{cyc}	62.5			ns
3	D	Pulse width, E low	PW _{EL}	30			ns
4	D	Pulse width, E high ¹	PW _{EH}	30			ns
5	D	Address delay time	t _{AD}			16	ns
6	D	Address valid time to E rise (PW _{EL} -t _{AD})	t _{AV}	16			ns
7	D	Muxed address hold time	t _{MAH}	2			ns
8	D	Address hold to data valid	t _{AHDS}	7			ns
9	D	Data hold to address	t _{DHA}	2			ns
10	D	Read data setup time	t _{DSR}	15			ns
11	D	Read data hold time	t _{DHR}	0			ns
12	D	Write data delay time	t _{DDW}			15	ns
13	D	Write data hold time	t _{DHW}	2			ns
14	D	Write data setup time ⁽¹⁾ (PW _{EH} -t _{DDW})	t _{DSW}	15			ns
15	D	Address access time ⁽¹⁾	t _{ACCA}	29			ns
16	D	E high access time ⁽¹⁾ (PW _{EH} -t _{DSR})	t _{ACCE}	15			ns
17	D	Read/write delay time	t _{RWD}			14	ns
18	D	Read/write valid time to E rise (PW _{EL} -t _{RWD})	t _{RWV}	16			ns
19	D	Read/write hold time	t _{RWH}	2			ns
20	D	Low strobe delay time	t _{LSD}			14	ns
21	D	Low strobe valid time to E rise (PW _{EL} -t _{LSD})	t _{LSV}	16			ns
22	D	Low strobe hold time	t _{LSH}	2			ns
23	D	NOACC strobe delay time	t _{NOD}			14	ns
24	D	NOACC valid time to E rise (PW _{EL} -t _{LSD})	t _{NOV}	16			ns
25	D	NOACC hold time	t _{NOH}	2			ns
26	D	IPIPO[1:0] delay time	t _{P0D}	2		14	ns
27	D	IPIPO[1:0] valid time to E rise (PW _{EL} -t _{P0D})	t _{POV}	16			ns
28	D	IPIPO[1:0] delay time ⁽¹⁾	t _{P1D}	2		25	ns
29	D	IPIPO[1:0] valid time to E fall	t _{P1V}	11			ns

NOTES:

^{1.} Affected by clock stretch: add N x t_{cyc} where N=0,1,2 or 3, depending on the number of clock stretches.

Appendix D Package Information

D.1 80-pin QFP package

Figure D-1 80-pin QFP Mechanical Dimensions (case no. 841B)

D.2 112-pin LQFP package

VIEW Y

SECTION J1-J1 ROTATED 90 ° COUNTERCLOCKWISE

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 DIMENSIONS IN MILLIMETERS.

- 2. DIMENSIONS IN MILLIMETERS.
 3. DATUMS I, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T.
 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T.
 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL NOT CAUSE THE D
 DIMENSION TO EXCEED 0.46.

	MILLIMETERS	
DIM	MIN	MAX
Α	20.000 BSC	
A1	10.000 BSC	
В	20.000 BSC	
B1	10.000 BSC	
С		1.600
C1	0.050	0.150
C2	1.350	1.450
D	0.270	0.370
Е	0.450	0.750
F	0.270	0.330
G	0.650 BSC	
J	0.090	0.170
K	0.500 REF	
P	0.325 BSC	
R1	0.100	0.200
R2	0.100	0.200
s	22.000 BSC	
S1	11.000 BSC	
٧	22.000 BSC	
V1	11.000 BSC	
Υ	0.250 REF	
Z	1.000 REF	
AA	0.090	0.160
θ	0°	8 °
θ1	3 °	7 °
θ2	11 °	13 °
θ3	11 °	13 °

Device User Guide End Sheet

FINAL PAGE OF 124 PAGES