Lecture 03 Transformations in 2D Short version

We will discuss transformation in 3D, and with full details, later in the course

About hw1 Aliasing and Anti-Aliasing

 This about an image where each pixels is fully black or fully white

What if we rotate the rectangle

• Some pixels are **partially** covered by the rectangle. Show they be rendered as black, white, or some shade of grey?

What if we rotate the rectangle

- IWe still need to assign a value to each pixel
- If we draw each partially covered pixel as black, we will obtain a very pixelated shape. This is an example of aliasing
- A possible solution is to render some pixels as gray. For example, based on the portion of its area which is covered. This
 technique is call antialiasing. Essentially, the color of a pixel might be determined using input from several neighboring pixels
- We will study much much more about it. Do not worry about it in hw1.
- In hw1, each rendered pixel has the (rgb) value of one (single) input pixel. No averaging or mixing.

Something to be careful about with hw1

Translations (shift) by (α, β)

- Adding a constant α to the x-coordinate of every point
- Adding a constant β to the y-coordinate of every point
- $(x, y) \rightarrow (x + \alpha, y + \beta)$

Scaling

- We can use two constants (s_x, s_y) for the x-axis and the y-axis. Then we shift each point (x,y) into the point $(s_x \cdot x, s_y \cdot y)$
- $\bullet(x,y)\to(s_x\cdot x,\ s_y\cdot y)$
- Example $(x, y) \rightarrow (x/2, y/2)$

Scaling

• Example: $(x, y) \rightarrow (0.5x, 2y)$

Shearing

• If we move each point (x,y) into the point $(x,y) \rightarrow (x+y,y)$

Shearing

• Vertical shearing shifts each column based on the x value.

Rotation

- Rotate counterclockwise by an angle ϕ about the origin.

$$(x, y) \rightarrow (x \cos \phi - y \sin \phi, x \sin \phi + y \cos \phi)$$
New x

