Short INDELS: genetic markers for adaptive divergence

Original aspects of the short INDELs paper:

- Divergent natural selection vs neutral processes
- Species with high diversity
- Systems with imperfect genomes can still contain useful functional information

INDEL-SNP comparisons:

- 1. Clustering of (different types) markers
- 2. Unfolded allele frequency spectra (uAFS)
- 3. Outlier sharing
- 4. Distributions of cline parameters

1. Clustering of (different types) markers

CZA CRAB

- INDELs and SNPs after filtering but before cline analysis
- Kept variants inside and outside inversions
 Unique INDELs = 20005
 Unique SNPs = 89770
- With map position and <u>inversions</u>
 Unique INDELs = 7206
 Unique SNPs = 34287
- Without map position
 Unique INDELs = 12796
 Unique SNPs = 55480

WAVE LEFT	CRAB	WAVE RIGHT	INDEL- SNP CORRELA TION
0.56	0.53	0.55	CZA
0.59	0.59	0.59	CZB
0.57	0.57	0.58	CZD

- CZA CRAB INDELs vs SNPs.
- CZA INDELs CRAB vs WAVE LEFT.

CZB SNPs WAVE LEFT vs WAVE RIGHT.

- Kept variants inside and outside inversions, present in at least N 3 individuals.
 When the sample size of a variant was higher than N 3, N 3 individuals/genotypes were randomly sampled.
- CZA CRAB INDELs vs SNPs.

Chi-square test statistic = 224.3352 Chi-square critical value at 0.05 with 130 df = 104.6622

Test statistic - critical value = 119.6729

- Kept variants inside and outside inversions, present in at least N 3 individuals of the population with the lowest N. When the sample size of a variant was higher than N 3, N 3 individuals/genotypes were randomly sampled.
- CZA INDELs CRAB vs WAVE LEFT.

Chi-square test statistic = 177.9672 Chi-square critical value at 0.05 with 116 df = 92.13376

Test statistic - critical value = 85.83344

- Kept variants inside and outside inversions, present in at least N 3 individuals of the population with the lowest N. When the sample size of a variant was higher than N 3, N 3 individuals/genotypes were randomly sampled.
- CZB SNPs WAVE LEFT vs WAVE RIGHT.

Chi-square test statistic = 94.57866 Chi-square critical value at 0.05 with 82 df = 62.13229

Test statistic - critical value = 32.44637

1. Clustering of (different types) markers

- INDELs and SNPs after filtering but before cline analysis
- Kept only variants outside inversions
 Unique INDELs = 18373
 Unique SNPs = 82087
- With map position and <u>no inversions</u>
 Unique INDELs = 5576
 Unique SNPs = 26604
- Without map position
 Unique INDELs = 12796
 Unique SNPs = 55480

WAVE LEFT	CRAB	WAVE RIGHT	INDEL-SNP CORRELATION
0.55	0.53	0.54	CZA
0.59	0.59	0.59	СΖВ
0.57	0.58	0.58	CZD

- Ancestral state was inferred from called genotypes:
 - 1. Reference allele = ancestral allele = ref_anc compressa is homo for the reference allele (0)
 - 2. Alternative allele = ancestral allele = alt_anc compressa is homo for the alternative allele (2)
 - 3. Unknown ancestry = het compressa is het (1)

	Fixed	Polymorphic	Ratio
INDELs	10511	20000	1.9
SNPs	43355	89745	2.1

Table 1. Count of INDELs and SNPs for each combination of possible allelic states given one outgroup (L. compressa) with two samples (NE and W). There are two combinations in which the allelic state is concordant in both samples (in green), eight in which the allelic state can only be retrieved from one sample (in yellow) and finally, five in which the allelic state cannot be inferred (in red).

NE_Lcomp	W_Lcomp	INDEL	SNP		
alt_anc	alt_anc	5305	27188		
alt_anc	het	528	3543		
alt_anc	NA	245	1097		
alt_anc	ref_anc	511	2195		
het	alt_anc	2231	12439		
het	het	1577	9691		
het	NA	151	627		
het	ref_anc	3120	17198		
NA	alt_anc	158	765		
NA	het	33	267		
NA	ref_anc	449	1831		
ref_anc	alt_anc	693	3292		
ref_anc	het	1422	7462		
ref_anc	NA	1003	3675		
ref_anc	ref_anc	38884	178715		

• Fixed + polymorphic

Island	Ecotype	N	INDELs	SNPs	ТОТ	Island	Ecotype	N-1	INDELs	SNPs	ТОТ
CZA	CRAB	69	7977	38304	46281	CZA	CRAB	68	9180	43755	52935
CZA	WAVE L	62	7836	37843	45679	CZA	WAVE L	61	9114	43474	52588
CZA	WAVE R	23	9352	44548	53900	CZA	WAVE R	22	10859	51438	62297
CZB	CRAB	64	9751	46233	55984	CZB	CRAB	63	11021	52120	63141
CZB	WAVE L	59	9394	44480	53874	CZB	WAVE L	58	10969	51690	62659
CZB	WAVE R	45	10311	48558	58869	CZB	WAVE R	44	11611	54820	66431
CZD	CRAB	67	9764	46659	56423	CZD	CRAB	66	11066	52425	63491
CZD	WAVE L	31	10864	51446	62310	CZD	WAVE L	30	12327	58256	70583
CZD	WAVE R	73	9732	46449	56181	CZD	WAVE R	72	10993	52283	63276

3. Outlier sharing

Variants after cline analysis (maf filter 0.1)

SNP

map position

