Formulae and Constants

Electrostatics							
$\vec{F}_e = k \frac{q_1 q_2}{r^2} \hat{r} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$	$\vec{E} = k \frac{q}{r^2} \hat{r} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}$	$\vec{F}_e = q\vec{E}$					
$U = k \frac{q_1 q_2}{r} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	$V = k \frac{q}{r} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	U = qV					
$\Phi_E = \oiint ec{E} \cdot dec{A} = \oiint$	$\vec{E} = -\frac{\partial V}{\partial x}\hat{\imath} - \frac{\partial V}{\partial y}\hat{\jmath} - \frac{\partial V}{\partial z}\hat{k}$						
$\Delta V = -\int_{a}^{b} \vec{E} \cdot \vec{dl}$	$W = -q\Delta V$	$C = \frac{\varepsilon_0 A}{d}$					
$C = \kappa C_0 = \kappa \varepsilon_0 \frac{A}{d} = \varepsilon \frac{A}{d}$	$U = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$	$u = \frac{1}{2} \varepsilon_0 E^2$					
	Electrodynamics						
$\Delta V_R = IR$	$P = IV = I^2 R = \frac{V^2}{R}$	$\vec{J} = \sum_{i} n_i q_i \vec{v}_i$					
$R = R_1 + R_2 + R_3 + \cdots$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$	$R = \frac{\rho L}{A}$					
$\Delta V_C = \frac{Q}{C}$	$C = C_1 + C_2 + C_3 + \cdots$	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$					
$\sum_{\text{junction}} i = 0$	$\sum_{\text{loop}} (\mathcal{E} + \Delta V_R + \Delta V_C) = 0$	au=RC					
Magnetostatics							
$\vec{F}_m = q\vec{v} \times \vec{B}$	$\Phi_B = \int ec{B} \cdot dec{A}$	$\vec{F} = I\vec{l} \times \vec{B}$					
$\vec{\mu} = I\vec{A}$	$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$					
$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$	$\vec{\tau} = \vec{\mu} \times \vec{B}$	$U = -\vec{\mu} \cdot \vec{B}$					
$nq = -\frac{J_x B_y}{E_z}$	$r = \frac{mv}{qB}$						
	Magnetodynamics						
$\mathcal{E} = -\frac{d\Phi_B}{dt}$	$\mathcal{E} = \int_{a}^{b} (\vec{v} \times \vec{B}) \cdot d\vec{l}$	$\mathcal{E}_2 = -N_2 \frac{d\Phi_{B2}}{dt}$					
$\mathcal{E}_2 = -M \frac{di_1}{dt}$	$M = \frac{N_2 \Phi_2}{i_1} = \frac{N_1 \Phi_1}{i_2}$ $U = \frac{1}{2} L I^2$	$\mathcal{E} = -L\frac{dI}{dt}$ $u = \frac{1}{2\mu_0}B^2$					
$L = \frac{N\Phi}{i}$ $\tau = \frac{L}{R}$	$U = \frac{1}{2}LI^2$	$u = \frac{1}{2\mu_0}B^2$					
$\tau = \frac{L}{R}$	$x = x_0 e^{-t/\tau}$	$x = x_0 \left(1 - e^{-t/\tau} \right)$					

Formulae and Constants (continued)

Fundamental Constants						
$k = 8.99 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$	$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$	$\mu_0 = 4\pi \cdot 10^{-7} \frac{\mathrm{Tm}}{\mathrm{A}}$				
$q_e = -1.602 \cdot 10^{-19} \text{C}$	$m_e = 9.11 \cdot 10^{-31} \text{kg}$	$m_p = 1.67 \cdot 10^{-27} \text{kg}$				

Kinematics and Dynamics						
$\sum \vec{F} = m\vec{a}$	$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	$v_x = v_{x0} + a_x t$	$v_{xf}^2 = v_{xi}^2 + 2a_x \Delta x$			

Mathematical Formulae & Prefixes						
milli $(m) = 10^{-3}$	micr	$ro(\mu) = 10^{-6}$	$= 10^{-6}$ nano $(n) = 1$		pico $(p) = 10^{-12}$	
$C = 2\pi r$		$A_{CIRCLE} = \pi r^2$		$A_{SPHERE} = 4\pi r^2$		
$V_{SPHERE} = \frac{4}{3}\pi r^3$		$A_{CYL} = 2\pi r L$		$V_{CYL} = \pi r^2 L$		
$ax^{2} + bx + c = 0 \rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$		$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right)$				
$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}$		$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a}$				
$\int \frac{dx}{(x^2 + a^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{x^2 + a^2}}$		$\int \frac{xdx}{(x^2 + a^2)^{3/2}} = -\frac{1}{\sqrt{x^2 + a^2}}$				
$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \dots \text{ if } x \ll 1, \text{ then } (1+x)^n \cong 1 + nx$						