Practical-3(B-6)

Problem Statement:

Beginning with an empty binary search tree. Construct binary search tree by inserting the values in the order given. After constructing a binary tree -

- i. Insert new node
- ii. Find number of nodes in longest path from root
- iii. Minimum data value found in the tree
- iv. Change a tree so that the roles of the left and right pointers are swapped at every node
- v. Search a value

Code:

```
#include<iostream>
using namespace std;
class node // Node declaration for BST.
  public:
  int data;
  node * left;
  node * right;
};
class BST
  public:
  node * root;
  int cnt;
  BST()
    root = NULL:
     cnt=0;
  }
  void insert();
  void inorder(node *temp);
  void smallest();
  void largest();
  int search(int key);
  void Mirror(node *r);
  int height(node *r);
};
void BST::insert()
{
```

```
node *new node, *temp;
int flag=0;
new node = new node(); // allocate the memory.
new_node->left = NULL;
new_node->right = NULL;
cout<<"Enter data : ";</pre>
cin>>new_node->data;
if(root == NULL)
{
  root = new_node;
}
else
  temp = root;
  while(flag ==0)
    if(new_node->data < temp->data)
       if(temp->left==NULL)
         temp->left = new_node;
         flag=1;
       }
       else
         temp= temp->left;
    else if(new_node->data > temp->data)
       if(temp->right == NULL)
         temp->right = new_node;
         flag = 1;
       }
       else
         temp = temp -> right;
```

```
else
         cout<<"\nData is already exist in the Tree";
         flag++;
void BST:: inorder(node * temp)
  if(temp != NULL)
    inorder(temp->left);
    cout<<" "<<temp->data;
    inorder(temp->right);
  }
void BST :: smallest()
  node *temp;
  temp = root;
  while(temp ->left !=NULL)
    temp = temp ->left;
  cout<<"\nSmallest node in the tree is : "<<temp->data;
void BST :: largest()
  node *temp;
  temp = root;
  while(temp ->right !=NULL)
  {
```

```
temp = temp ->right;
  cout<<"\nLargest5 node in the tree is : "<<temp->data;
int BST :: search(int key)
  node *temp;
  temp = root;
  while(1)
    if(key < temp->data)
       if(temp->left !=NULL)
         temp=temp->left;
       else
         return(0);
    else if(key > temp->data)
       if(temp->right != NULL)
         temp=temp->right;
       else
         return(0);
    else
       return(1);
```

```
void BST::Mirror(node *root)
  node *temp;
  if(root != NULL)
     temp = root->left;
    root->left = root->right;
     root->right = temp;
     Mirror(root->left);
     Mirror(root->right);
  }
int BST::height(node *r)
  int Left_Height,Right_Height;
  if(r == NULL)
    return(0);
  if(r->left == NULL && r->right == NULL)
    return(0);
   Left_Height = height(r->left);
  Right_Height = height(r->right);
  if(Left_Height > Right_Height)
     return(Left_Height +1);
  else
     return(Right_Height +1);
int main()
  int ch;
  BST B;
  node *test;
  node test2;
  test = new node();
  do\{
```

```
cout << "\n Menu";
cout << "\n1. Insert";
cout << "\n2. Inorder";
cout << "\n3. smallest number";
cout << "\n4. Largest number";
cout << "\n5. Search";
cout << "\n6. Mirror";
cout << "\n7. Height of the tree";
cout << "\n8. Exit";
cout<<"\nEnter your choice : ";</pre>
cin>>ch;
switch(ch)
  case 1 : //Insert operation.
     B.insert();
  break;
  case 2: //Inorder display.
     B.inorder(B.root);
     cout << "\nCnt = " << B.cnt;
  break;
  case 3: //smallest number in BST.
     B.smallest();
  break;
  case 4: //largest number in BST.
     B.largest();
  break;
  case 5: //Search a number in BST.
     int key;
     cout<<"Enter number to Search : ";</pre>
     cin>>key;
     if(B.search(key))
       cout << "number is found";
     }
     else
       cout << "number is not found";
     }
  break;
```

```
case 6: //Mirror image of BST
          cout<<"\nBefore Mirror Image :";</pre>
          B.inorder(B.root);
          B.Mirror(B.root);
          cout<<"\nAfter Mirror Image :";
          B.inorder(B.root);
       break;
       case 7: //Height of the BST.
          cout<<"Height of the BSt is " << B.height(B.root);</pre>
       break;
       case 8 : cout<<"----Exit----";
          break;
       default:
          cout<<"\nEnter correct choice ";</pre>
       break;
  }while(ch !=8);
  return(1);
OUTPUT:
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 1
Enter data: 8
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
```

8. Exit
Enter your choice: 1
Enter data : 4
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 1
Enter data: 9
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 1
Enter data: 3
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 2
3 4 8 9
Cnt = 4
Menu
1. Insert

2 Insulan
2. Inorder3. smallest number
4. Largest number5. Search
6. Mirror
7. Height of the tree 8. Exit
Enter your choice : 3 Smallest node in the tree is : 3
Menu
1. Insert
2. In order
3. smallest number
4. Largest number5. Search
6. Mirror
7. Height of the tree 8. Exit
Enter your choice: 4
Largest5 node in the tree is : 9 Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 5
Enter your choice: 5 Enter number to Search: 9
number is found
Menu
Menu 1 Insert
1. Insert
1. Insert 2. Inorder
 Insert Inorder smallest number
1. Insert 2. Inorder 3. smallest number 4. Largest number
 Insert Inorder smallest number Largest number Search
1. Insert 2. Inorder 3. smallest number 4. Largest number

7. Height of the tree
8. Exit
Enter your choice: 5
Enter number to Search: 2
number is not found
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 6
Before Mirror Image: 3 4 8 9
After Mirror Image: 9 8 4 3
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 7
Height of the BSt is 2
Menu
1. Insert
2. Inorder
3. smallest number
4. Largest number
5. Search
6. Mirror
7. Height of the tree
8. Exit
Enter your choice: 8
Exit