# Depth-First Search

**Idea**: Keep going forward as long as there are unseen nodes to be visited. Backtrack when stuck.



# Color Map & Predecessor

#### Just like in BFS:

 $\bullet$  color(v) == green: v is undiscovered and unprocessed

 $\bullet$  color(v) == red: v has been discovered but not processed

 $\bullet$  color(v) == **black**: v has been discovered and processed

pred(v): predecessor of v in the search.

## The DFS Algorithm

```
dfs(G):
```

```
foreach node v in G

color(v) = green

pred(v) = null
```

```
foreach node v in G

if color(v) == green

dfsVisit(G, v, color, pred)
```

return pred

```
dfsVisit(G, u, color, pred):

color(u) = red

foreach neighbor v of u
    if color(v) == green
        pred(v) = u
        dfsVisit(G, v, color, pred)
```

color(u) = black

# A DFS Example

time = 1 (time at which a node is visited)







### Recursive DFS Calls







```
dfs(G)
   dfsVisit(a)
      dfsVisit(b)
          dfsVisit(f)
             dfsVisit(e)
             dfsVisit(g)
      dfsVisit(c)
      dfsVisit(d)
   dfsVisit(h)
      dfsVisit(i)
   dfsVisit(j)
      dfsVisit(k)
          dfsVisit(l)
```

dfsVisit(*v*) explores *every unvisited* vertex reachable from *v* before it returns.

### Predecessor Table







| v       | а    | b | С | d | е | f | g | h    | i | j    | k | l |
|---------|------|---|---|---|---|---|---|------|---|------|---|---|
| pred(v) | null | а | а | а | f | b | f | null | h | null | j | k |

### Depth-First Search Forest



Edges that, during DFS, lead to an unexplored vertex form a *depth-first* search forest.

The DFS forest can be constructed from the predecessor table.

# DFS on a Directed Graph



#### The Green-Path Theorem

 $\bullet$  color(v) == **green**: v is undiscovered and unprocessed

DFS forest of a (directed or undirected) graph G:

Node v is a descendant of a node u if and only if at the time that the search discovers u, there is a path from u to v consisting *entirely* of **green** nodes.

v will be discovered after u and before DFS backtracks to u.



v is in the DFS subtree rooted at u.

# Running Time of DFS

 $\Theta(|V| + |E|)$  if we use an adjacency list or HashMap/HashSet.

- dfsVisit is called exactly once for each node.
  - $\downarrow$  |V| such calls in total.
  - $\Rightarrow$  Each call colors the node **red** and then **black**, which takes O(1) time.

 $\rightleftharpoons$  Each edge is examined O(1) time.

 $\Theta(|V|^2)$  if we use an adjacency matrix.

### Edge Classification – Undirected Graphs

- 1. Tree edges are those in the DFS forest.
- 2. Back edges go from a vertex to one of its ancestors.



This DFS forest consists of three DFS trees.

### Edge Classification – Directed Graphs

Besides tree edges and back edges, there are also

- 3. Forward edges go from a vertex to one of its descendants.
- 4. Cross edges: all other edges.



If all the edges were undirected, forward and cross edges would be either tree or back edges.

### How to Tell Them Apart?

Tree edges lead to green (new) nodes and form DFS trees.



Add every other *separately* to the DFS forest.

Back edges connect nodes in the same DFS tree.

**♦ back edge**: descendent → ancestor

### Forward Edge

Forward edges also connect nodes in the same DFS tree.

**♦ forward edge**: ancestor → descendent



### Cross Edge

#### Each **cross edge** is one of two cases:

♦ Its two vertices are in the same DFS tree but *not* related.



◆ They are in *different* DSF trees.

