Respiration essay in Hexachlamys edulis

Figure 1: A caption

Immature and mature ubajay fruits were selected and randomly distributed in 4 jars, 2 immature and 2 mature, then respiration was quantified from accumulated CO2 every 15 minutes for 150 minutes.

CO₂ acumulation

Descriptive table

##	# .	A tibble:	20 x 7					
##		Groups:	time_min	[10]				
##		-	_		carbon_ac_Mean	carbon ac sd	carbon ac min	carbon ac max
##		<fct></fct>	<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	15	I	2	42.5	4.97	39.0	46.1
##		15	M	2	39.6	1.86	38.3	40.9
##		30	I	2	62.2	5.13	58.5	65.8
##		30	M	2	59.4	2.79	57.4	61.4
##		45	I	2	75.2	5.23	71.5	78.9
##		45	M	2	76.6	0.110	76.6	76.7
##		60	I	2	94.9	5.39	91.1	98.7
##		60	М	2	99.0	4.66	95.7	102.
##	9	75	I	2	108.	5.50	104.	112.
##	10	75	М	2	116.	1.97	115.	118.
		90	I	2	124.	10.3	117.	132.
		90	М	2	136.	2.91	134.	138.
		105	I	2	137.	10.4	130.	145.
##	14	105	М	2	153.	0.221	153.	153.
##	15	120	I	2	157.	10.5	150.	164.
		120	M	2	176.	4.77	172.	179.
##	17	135	I	2	170.	10.6	163.	178.
##	18	135	M	2	190.	6.59	185.	194.
##	19	150	I	2	186.	15.4	176.	197.
##	20	150	M	2	213.	3.02	211.	215.

Correlations over time

Covariance matrix

```
30
                                                 105
##
          15
                      45
                            60
                                    75
                                           90
                                                        120
                                                                135
                                                                       150
## 15
       12.28 12.95
                    7.38
                          7.79
                                  2.21
                                         7.31
                                                1.73
                                                       2.14
                                                               2.50
                                                                      1.66
## 30
                                                3.25
                                                              6.22
                                                                      4.90
       12.95 13.93
                    7.77
                          9.75
                                 3.59
                                         9.42
                                                       5.23
        7.38
              7.77
                    9.77 11.46
                                13.46
                                        23.37
                                               25.37
                                                      27.07
                                                             27.76
                                                                     38.97
##
  60
        7.79
              9.75 11.46 22.55
                                24.26
                                        38.94
                                               40.66
                                                      51.74
                                                             56.09
                                                                     68.14
                                                      73.57
  75
        2.21
              3.59 13.46 24.26
                                34.14
                                        52.90
                                               62.77
                                                             77.63 102.21
        7.31 9.42 23.37 38.94
                                52.90
                                               97.35 112.92 118.82 157.38
##
  90
                                        83.40
              3.25 25.37 40.66
  105
        1.73
                                62.77
                                        97.35 119.47 134.76 140.36 191.45
        2.14 5.23 27.07 51.74
                               73.57 112.92 134.76 159.43 168.68 220.61
## 120
## 135
        2.50
             6.22 27.76 56.09 77.63 118.82 140.36 168.68 179.37 231.42
       1.66 4.90 38.97 68.14 102.21 157.38 191.45 220.61 231.42 309.86
## 150
```

Marginal model with first-order autoregressive structure

```
## gls(model = (carbon_ac) ~ time_min * matu + basal, data = resp2w,
## correlation = corAR1(form = ~1 | rep))
```

Assumptions


```
##
## Shapiro-Wilk normality test
##
## data: e
## W = 0.97616, p-value = 0.5498
```

Model coefficients

time_min60	time_min45	time_min30	(Intercept)	##
52.3334782	32.7084238	19.6250543	-1088.3098591	##
time_min120	time_min105	time_min90	time_min75	##
114.4981474	94.8730931	81.7897236	65.4168477	##
basal	matuM	time_min150	time_min135	##
43.2170578	24.0203019	143.9543928	127.5815169	##
me min75:matuM	time min60:matuM time	time min45:matuM	time min30:matuM	##

```
## 0.1712202 4.3272497 7.0553453 11.2113748

## time_min90:matuM time_min105:matuM time_min120:matuM time_min135:matuM

## 14.6347734 18.7908030 21.5188986 22.4853372

## time_min150:matuM

## 29.0983267
```

Anova

```
## Denom. DF: 19
##
                 {\tt numDF}
                         F-value p-value
                     1 12422.598 <.0001
## (Intercept)
## time_min
                        497.680 <.0001
                     9
## matu
                          23.524 0.0001
                     1
                        18.306 0.0004
## basal
                     1
## time_min:matu
                     9
                           4.645 0.0024
```

Simple effects

```
## $emmeans
## time min = 15:
## matu emmean SE df lower.CL upper.CL
          29.1 4 4.38
                         18.3
          53.1 4 4.26
                          42.2
## M
                                   63.9
##
## time_min = 30:
## matu emmean SE df lower.CL upper.CL
          48.7 4 4.37
                          37.9
                                   59.4
## I
## M
          72.9 4 4.38
                          62.1
                                   83.6
##
## time_min = 45:
## matu emmean SE df lower.CL upper.CL
          61.8 4 4.23
                          50.9
                                  72.6
          90.1 4 4.30
                          79.3
                                  100.9
## M
##
## time_min = 60:
## matu emmean SE df lower.CL upper.CL
## I
        81.4 4 4.35
                         70.6
                                  92.1
         112.5 4 4.37
                         101.7
## M
                                  123.2
##
## time_min = 75:
   matu emmean SE df lower.CL upper.CL
## I
          94.5 4 4.28
                          83.7
                                  105.3
## M
         129.7 4 4.31
                         118.9
                                  140.5
##
## time_min = 90:
  matu emmean SE df lower.CL upper.CL
##
         110.8 4 4.38
                         100.1
                                  121.6
## M
         149.5 4 4.26
                         138.7
                                  160.3
##
## time_min = 105:
## matu emmean SE
                  df lower.CL upper.CL
        123.9 4 4.37
                         113.2
## I
```

```
166.7 4 4.38
                       156.0
                                 177.5
##
## time min = 120:
## matu emmean SE df lower.CL upper.CL
        143.6 4 4.23
                         132.7
## M
         189.1 4 4.30
                         178.3
                                 199.9
##
## time_min = 135:
## matu emmean SE df lower.CL upper.CL
## I
         156.6 4 4.35
                         145.9
                                 167.4
## M
         203.1 4 4.37
                         192.4
                                 213.9
##
## time_min = 150:
## matu emmean SE df lower.CL upper.CL
        173.0 4 4.28
                         162.2
                                 183.8
         226.1 4 4.31
## M
                         215.3
                                 236.9
##
## Degrees-of-freedom method: satterthwaite
## Results are given on the ( (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## time_min = 15:
## contrast estimate SE df t.ratio p.value
## I - M
          -24.0 7.2 6.29 -3.337 0.0146
## time_min = 30:
## contrast estimate SE df t.ratio p.value
## I - M
              -24.2 7.2 6.30 -3.361 0.0141
##
## time_min = 45:
## contrast estimate SE df t.ratio p.value
## I - M
           -28.3 7.2 4.51 -3.938 0.0135
##
## time min = 60:
## contrast estimate SE df t.ratio p.value
## I - M
          -31.1 7.2 6.28 -4.317 0.0045
##
## time_min = 75:
## contrast estimate SE
                        df t.ratio p.value
## I - M
          -35.2 7.2 6.24 -4.895 0.0024
##
## time min = 90:
## contrast estimate SE df t.ratio p.value
## I - M
              -38.7 7.2 6.29 -5.371 0.0015
##
## time_min = 105:
## contrast estimate SE df t.ratio p.value
## I - M
           -42.8 7.2 6.30 -5.948 0.0008
##
## time_min = 120:
## contrast estimate SE df t.ratio p.value
## I - M
           -45.5 7.2 4.51 -6.327 0.0021
##
```

```
## time_min = 135:
    contrast estimate SE
                            df t.ratio p.value
                -46.5 7.2 6.28 -6.461 0.0005
##
##
##
  time_min = 150:
##
    contrast estimate SE
                            df t.ratio p.value
##
                -53.1 7.2 6.24 -7.380 0.0003
##
## Note: contrasts are still on the ( scale
## Degrees-of-freedom method: satterthwaite
```

Statistically significant differences were found in the $\rm CO2$ respiration rate in each time between immature and mature Hexachlamys edulis fruits.

Comparison chart

Fitted model plot

