

SIC MOSFET CoolSiC™ MOSFET 750 V G2

Built on Infineon's robust 2nd generation Silicon Carbide trench technology, the 750 V CoolSiC™ MOSFET delivers unparalleled performance, superior reliability, and great ease of use. It enables cost effective, highly efficient, and simplified designs to fulfill the ever-growing system and market needs.

TAME TO A STATE OF THE STATE OF

O-DPAK

Features

- Highly robust 750V technology, 100% avalanche tested
- Best-in-class R_{DS(on)} x Q_{fr}
- Excellent $R_{DS(on)} \times Q_{oss}$ and $R_{DS(on)} \times Q_{G}$
- Unique combination of low C_{rss}/C_{iss} and high $V_{GS(th)}$
- Infineon proprietary die attach technology
- Cutting edge TSC package with material group I
- Driver source pin available
- Best-in-class R_{DS(on)} in SMD device

Benefits

- Enhanced robustness and reliability for bus voltages beyond 500 V
- Superior efficiency in hard switching
- Higher switching frequency in soft switching topologies
- · Robustness against parasitic turn on for unipolar gate driving
- Best-in-class thermal dissipation
- Reduced switching losses through improved gate control

Potential applications

- Solid state relays and circuit breakers
- EV charging infrastructure
- Solar PV inverters and UPS
- · Energy storage and battery formation
- Telecom and Server SMPS

Product validation

Fully qualified according to JEDEC for Industrial Applications

Please note: The source and driver source pins are not exchangeable. Their exchange might lead to malfunction. When paralleling MOSFETs the placement of the gate resistor is generally recommended to be in series to the Driver Source instead of the Gate.

Table 1 Key performance parameters

Parameter	Value	Unit
$V_{\rm DSS}$ over full $T_{\rm j,range}$	750	V
$R_{\rm DS(on),typ}$	60	mΩ
R _{DS(on),max}	78	mΩ
$Q_{G,typ}$	20	nC
I _{D,pulse}	94	А
Q _{oss,typ} @ 500 V	42	nC
E _{oss,typ} @ 500 V	7.5	μЈ

Part number	Package	Marking	Related links
IMDQ75R060M2H	PG-HDSOP-22	75R060M2	see Appendix A

Public

CoolSiC™ MOSFET 750 V G2 IMDQ75R060M2H

Table of contents

Description	
Maximum ratings	
Thermal characteristics	
Operating range	
Electrical characteristics	
Electrical characteristics diagrams	
Test circuits	
Package outlines	
Appendix A	
Revision history	
Trademarks	20
Disclaimer	20

1 Maximum ratings

at $T_i = 25$ °C, unless otherwise specified.

Note: for optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

"Linear mode" operation is not recommended. For assessment of potential "linear mode" operation, please contact Infineon sales office.

Table 2 Maximum ratings

Parameter	Cymphal	Values			Linit	Nicke / Took com Philos
raiailietei	Symbol	Min.	Тур.	Max.	Onit	Note / Test condition
Continuous DC drain current 1)	I _{DDC}	-	-	30	А	T _c = 25°C
Continuous DC drain current	I _{DDC}	-	-	21	Α	$T_{\rm c} = 100$ °C
Peak drain current ²⁾	I _{DM}	-	-	94	Α	$T_{\rm c} = 25^{\circ} \text{C}, \ V_{\rm GS} = 18 \text{ V}$
Avalanche energy, single pulse	E_{AS}			86	m l	/ = 2.2 A // = E0 // coo table 11
Avalanche energy, repetitive	E _{AR}]		0.43	- mJ	$I_{\rm D}$ = 3.2 A, $V_{\rm DD}$ = 50 V; see table 11
Avalanche current, single pulse	I _{AS}	-	-	3.2	А	-
MOSFET dv/dt ruggedness	dv/dt	_	-	200	V/ns	V _{DS} = 0500 V
Gate source voltage (static) 3)	V_{GS}	-7	-	23	V	-
Gate source voltage (transient)	$V_{\rm GS}$	-11	-	25	V	t _p ≤ 500 ns, duty cycle ≤ 1%
Power dissipation	P _{tot}	-	-	128	W	$T_{\rm c}$ = 25°C
Storage temperature	$T_{\rm stg}$	55		150	°C	
Operating junction temperature	$T_{\rm j}$	-55	_	175		-
Extended operating junction temperature ⁴⁾	$T_{\rm j}$	-	-	200	°C	≤ 100 h in the application lifetime
Mounting torque	-	-	-	n.a	Ncm	-
Continuous reverse drain current 1)	,			30	Α	$V_{\rm GS} = 18 \text{V}, T_{\rm c} = 25 ^{\circ} \text{C}$
Continuous reverse drain current -/	$I_{\rm SDC}$	_	=	21	A	$V_{GS} = 0 \text{ V}, T_{c} = 25^{\circ}\text{C}$
Peak reverse drain current ²⁾				94	A	$T_{\rm c} = 25^{\circ} \text{C}, \ t_{\rm p} \le 250 \text{ ns}$
reak reverse drain current	I _{SM}			26		$T_{\rm c} = 25^{\circ}\text{C}$
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	$V_{\rm rms}$, $T_{\rm c} = 25$ °C, $t = 1$ min

¹⁾ Limited by $T_{j,max}$.

²⁾ Pulse width t_{pulse} limited by $T_{\text{j,max}}$.

The maximum gate-source voltage in the application design should be in accordance to IPC-9592B.

⁴⁾ Up to 7500 temperature cycles, where maximum delta *T* is limited to 100K.

2 Thermal characteristics

Table 3 Thermal characteristics

Danier et au	Symbol		Values		11	Note / Test condition
Parameter	Symbol	Min.	Тур.	Max.		
Thermal resistance, junction - case	$R_{th(j-c)}$	-	-	1.17	°C/W	Not subject to production test. Parameter verified by design/characterization according to JESD51-14.
Soldering temperature, reflow soldering allowed	$T_{\rm sold}$	-	-	260	°C	reflow MSL1

3 Operating range

Table 4 Operating range

Parameter	Symbol		Values		Linit	Note / Test condition
raiailietei	Syllibot	Min.	Тур.	Max.	Oilit	
Recommended turn-on voltage	$V_{\rm GS(on)}$		18		\/	
Recommended turn-off voltage	$V_{\rm GS(off)}$]-	0	_	V	-

4 Electrical characteristics

at T_i = 25°C, unless otherwise specified

Table 5 Static characteristics

Darameter	Symbol		Values			Note / Test condition	
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition	
Drain-source voltage ⁵⁾	$V_{\rm DSS}$	840	-	-	٧	$V_{\rm GS} = 0 \text{ V}, I_{\rm D} = 0.30 \text{ mA}$	
	1/	3.5	4.5	5.6	V	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 3.0 \text{ mA}, T_{\rm j} = 25^{\circ}\text{C}$	
Gate threshold voltage ⁶⁾	$V_{\rm GS(th)}$	-	3.3	-	v	$V_{\rm DS} = V_{\rm GS}$, $I_{\rm D} = 3.0$ mA, $T_{\rm j} = 175$ °C	
Zero gate voltage drain current	,		1	75	μΑ	$V_{\rm DS} = 750 \text{V}, \ V_{\rm GS} = 0 \text{V}, \ T_{\rm j} = 25 ^{\circ}\text{C}$	
Zero gate voltage drain current	I _{DSS}	-	10	-	μΑ	$V_{\rm DS} = 750 \rm V, \ V_{\rm GS} = 0 \rm V, \ T_{\rm j} = 175 ^{\circ}\rm C$	
Gate-source leakage current	I _{GSS}	-		1	μΑ	$V_{GS} = 23V$, $V_{DS} = 0 V$, $T_j = 25$ °C	
				-1	μΛ	$V_{GS} = -7V$, $V_{DS} = 0 V$, $T_j = 25$ °C	
Forward transconductance	g_{fs}	-	8.3	-	S	$I_{\rm D} = 13.8 \text{A}, V_{\rm DS} = 20 \text{V}$	
			81	-		$V_{\rm GS} = 15 \text{ V}, I_{\rm D} = 13.8 \text{ A}, T_{\rm j} = 25 ^{\circ}\text{C}$	
Drain-source on-state resistance	$R_{\mathrm{DS(on)}}$	-	60	78	mΩ	$V_{\rm GS} = 18 \text{ V}, I_{\rm D} = 13.8 \text{ A}, T_{\rm j} = 25 ^{\circ}\text{C}$	
			56	-		$V_{GS} = 20 \text{ V}, I_D = 13.8 \text{ A}, T_j = 25^{\circ}\text{C}$	
Drain-source on-state resistance ⁷⁾	$R_{\rm DS(on)}$	-	95	124	mΩ	$V_{\rm GS} = 18 \text{ V}, I_{\rm D} = 13.8 \text{ A}, T_{\rm j} = 150 ^{\circ}\text{C}$	
Drain-source on-state resistance	$R_{\rm DS(on)}$	-	108	-	mΩ	$V_{GS} = 18 \text{ V}, I_D = 13.8 \text{ A}, T_j = 175 ^{\circ}\text{C}$	
Internal gate resistance	$R_{G,int}$	-	4.5	-	Ω	f= 1 MHz	

⁵⁾ Provided as measure of robustness under abnormal operating conditions and not recommended for normal operation.

Table 6 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized. For layout recommendations please use provided application notes or contact Infineon sales office.

Davamatar	Symbol		Values			Note / Test condition
Parameter	Symbol	Min.	Тур.	Max.		Note / Test condition
Input capacitance	C _{iss}		716	-		
Reverse transfer capacitance	$C_{\rm rss}$	-	3.6	-	pF	$V_{GS} = 0 \text{ V}, V_{DS} = 500 \text{ V}, f = 250 \text{ kHz}$
Output capacitance 8)	Coss		49	64		
Output charge ⁸⁾	$Q_{ m oss}$	-	42	55	nC	calculation based on $C_{\rm oss}$
Effective output capacitance, energy related ⁹⁾	$C_{ m o(er)}$	-	60	-	pF	$V_{GS} = 0 \text{ V},$ $V_{DS} = 0500 \text{ V}$
Effective output capacitance, time related ¹⁰⁾	$C_{ m o(tr)}$	-	84	-	pF	$I_{\rm D}$ = constant, $V_{\rm GS}$ = 0 V, $V_{\rm DS}$ = 0500 V

Tested after pre-conditioning pulse at V_{GS} = +20 V. "Linear mode" operation is not recommended. For assessment of potential "linear mode" operation, please contact Infineon sales office.

⁷⁾ Specified by design, not subject to production test.

Table 6 Dynamic characteristics

External parasitic elements (PCB layout) influence switching behavior significantly. Stray inductances and coupling capacitances must be minimized. For layout recommendations please use provided application notes or contact Infineon sales office.

Parameter	Symbol	Values			Unit	Note / Test condition
	Syllibot	Min.	Тур.	Max.	Oilit	Note / Test condition
Turn-on delay time	$t_{\sf d(on)}$		6.6		ns	
Rise time	t _r		5.6		ns	
Turn-off delay time	$t_{\sf d(off)}$		12.6		ns	V- = 500 V V- = 0/18 V
Fall time	t_{f}	_	5.0	-	ns	$V_{\rm DD} = 500 \text{ V}, V_{\rm GS} = 0/18 \text{ V},$ $I_{\rm D} = 13.8 \text{ A}, R_{\rm G,ext} = 1.8 \Omega,$
Turn-ON switching losses ¹¹⁾	E _{on}		32			$L_{\text{stray}} = 15 \text{ nH}$; see table 10
Turn-OFF switching losses ¹¹⁾	E _{off}		13		μJ	
Total switching losses ¹¹⁾	E _{tot}		45		μJ	

⁸⁾ Maximum specification is defined by calculated six sigma upper confidence bound.

Table 7 Gate charge characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
raiailletei	Syllibot	Min.	Тур.	Max.	Oille	Note / Test condition
Plateau gate to source charge	$Q_{GS(pl)}$		5.1			C $V_{DD} = 500 \text{ V}, I_{D} = 13.8 \text{ A}, V_{GS} = 0 \text{ to } 18 \text{ V}$
Gate to drain charge	Q_{GD}		4.1	-	nC	
Total gate charge	Q_{G}		20			V _{GS} 0 to 10 v

Table 8 Reverse diode characteristics

Parameter	Symbol	Values			Linit	Note / Test condition
raiailletei	Syllibol	Min.	Тур.	Max.	Oille	Note / Test condition
Drain source reverse voltage	V		4.0	5.0	V	$V_{GS} = 0 \text{ V}, I_S = 13.8 \text{ A}, T_j = 25^{\circ}\text{C}$
Drain-source reverse voltage	$V_{\rm SD}$	-	3.7	-	V	$V_{GS} = 0 \text{ V}, I_S = 13.8 \text{ A}, T_j = 175^{\circ}\text{C}$
MOSFET forward recovery time	t_{fr}		5.4		ns	
MOSFET forward recovery charge ¹²⁾	Q_{fr}	_	44]_	nC	$V_{\rm DD} = 500 \text{V}, I_{\rm S} = 13.8 \text{A},$
MOSFET peak forward recovery current	I _{frm}		16		А	$di_s/dt = 4000 A/\mu s$; see table 9

⁹⁾ $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 500 V.

 $C_{\rm o(tr)}$ is a fixed capacitance that gives the same charging time as $C_{\rm oss}$ while $V_{\rm DS}$ is rising from 0 to 500 V.

MOSFET used in half-bridge configuration without external diode. Parameter verified by characterization according to IEC 60747-8.

5 Electrical characteristics diagrams

6 Test circuits

Table 9 Body diode characteristics

Table 10 Switching times

Table 11 Unclamped inductive load

7 Package outlines

Figure 1 Outline PG-HDSOP-22, dimensions in mm

Figure 2 Footprint drawing PG-HDSOP-22, dimensions in mm

All dimensions are in units mm
The drawing is in compliance with ISO 128-30, Projection Method 1 [-□□□]

Figure 3 Packaging variant PG-HDSOP-22, dimensions in mm

8 Appendix A

Table 12 Related links

- IFX CoolSiC CoolSiC™ MOSFET 750 V G2 Webpage
- IFX CoolSiC CoolSiC™ MOSFET 750 V G2 Application Note
- IFX CoolSiC CoolSiC™ MOSFET 750 V G2 Simulation Model
- IFX Design tools

Public

CoolSiC™ MOSFET 750 V G2 IMDQ75R060M2H

Revision history

IMDQ75R060M2H

Revision 2025-03-07, Rev. 2.0

Previous revisions

Revision	Date	Subjects (major changes since last revision)
2.0	2025-03-07	Release of final version

Public

CoolSiC™ MOSFET 750 V G2 IMDQ75R060M2H

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 München, Germany © 2025 Infineon Technologies AG All Rights Reserved.

Important notice

The products which may also include samples and may be comprised of hardware or software or both ("Product") are sold or provided and delivered by Infineon Technologies AG and its affiliates ("Infineon") subject to the terms and conditions of the frame supply contract or other written agreement(s) executed by a customer and Infineon or, in the absence of the foregoing, the applicable Sales Conditions of Infineon. General terms and conditions of a customer or deviations from applicable Sales Conditions of Infineon shall only be binding for Infineon if and to the extent Infineon has given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of non-infringement of third-party rights and implied warranties such as warranties of fitness for a specific use/purpose or merchantability.

Infineon shall not be responsible for any information with respect to samples, the application or customer's specific use of any Product or for any examples or typical values given in this document.

The data contained in this document is exclusively intended for technically qualified and skilled customer representatives. It is the responsibility of the customer to evaluate the suitability of the Product for the intended application and the customer's specific use and to verify all relevant technical data contained in this document in the intended application and the customer's specific use. The customer is responsible for properly designing, programming, and testing the functionality and safety of the intended application, as well as complying with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products may not be used in any application where a failure of the Product or any consequences of the use thereof can reasonably be expected to result in personal injury. However, the foregoing shall not prevent the customer from using any Product in such fields of use that Infineon has explicitly designed and sold it for, provided that the overall responsibility for the application lies with the customer.

If the Product includes security features:

Because no computing device can be absolutely secure, and despite security measures implemented in the Product, Infineon does not guarantee that the Product will be free from intrusion, data theft or loss, or other breaches ("Security Breaches"), and Infineon shall have no liability arising out of any Security Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual property laws and treaties of the United States, Germany, and other countries worldwide. All rights reserved. Therefore, you may use the software only as provided in the software license agreement accompanying the software. If no software license agreement applies, Infineon hereby grants you a personal, non-exclusive, non-transferable license (without the right to sublicense) under its intellectual property rights in the software (a) for software provided in source code form, to modify and reproduce the software solely for use with Infineon hardware products, only internally within your organization, and (b) to distribute the software in binary code form externally to end users, solely for use on Infineon hardware products. Any other use, reproduction, modification, translation, or compilation of the software is prohibited.

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www. infineon.com).