David M. Kroenke and David J. Auer Database Processing:

Fundamentals, Design, and Implementation

Chapter Three:

The Relational Model and Normalization

Chapter Objectives

- To be able to identify possible insertion, deletion, and update anomalies in a relation
- To be able to place a relation into BCNF normal form
- To understand the special importance of domain/key normal form
- · To be able to identify multivalued dependencies
- To be able to place a relation in fourth normal form

Chapter Premise

- We have received one or more tables of existing data.
- The data is to be stored in a new database.
- QUESTION: Should the data be stored as received, or should it be transformed for storage?

A Very Strange Table!

PRODUCT_BUYER

	BuyerName	SKU_Managed	CollegeMajor
1	Pete Hansen	100100	Business Administration
2	Pete Hansen	100200	Business Administration
3	Nancy Meyers	101100	Art
4	Nancy Meyers	101100	Info Systems
5	Nancy Meyers	101200	Art
6	Nancy Meyers	101200	Info Systems
7	Cindy Lo	201000	History
8	Cindy Lo	202000	History
9	Jenny Martin	301000	Business Administration
10	Jenny Martin	301000	English Literature
11	Jenny Martin	302000	Business Administration
12	Jenny Martin	302000	English Literature

To understand why this is a very strange table, consider how you would add the fact that Nancy Meyers is now managing SKU 101300!

Entity

- An entity is some identifiable thing that users want to track:
 - Customers
 - Computers
 - Sales

Alternative Terminology

- Although not all tables are relations, the terms *table* and *relation* are normally used interchangeably.
- The following sets of terms are equivalent:

Table	Column	Row
Relation	Attribute	Tuple
File	Field	Record

Database Integrity

- We have defined three constraints so far in our discussion:
 - The domain integrity constraint
 - The entity integrity constraint
 - The referential integrity constraint
- The purpose of these three constraints, taken as a whole, is to create database integrity, which means that the data in our database will be useful, meaningful data

The Domain Integrity Constraint

- The requirement that all of the values in a column are of the same kind is know as the domain integrity constraint.
- The term domain means a grouping of data that meets a specific type definition.
 - FirstName could have a domain of names such as Albert, Bruce, Cathy, David, Edith, and so forth.
 - All values of FirstName must come from the names in that domain.
- Columns in different relations may have the same name.

Functional Dependency Rules

- If $A \rightarrow (B, C)$, then $A \rightarrow B$ and $A \rightarrow C$.
 - This is the decomposition rule.
- If A \rightarrow B and A \rightarrow C, then A \rightarrow (B, C).
 - This is the union rule.
- However, if (A,B) → C, then neither A nor B determines C by itself.

Functional Dependencies in the SKU DATA Table

	SKU	SKU_Description	Department	Buyer
1	100100	Std. Scuba Tank, Yellow	Water Sports	Pete Hansen
2	100200	Std. Scuba Tank, Magenta	Water Sports	Pete Hansen
3	101100	Dive Mask, Small Clear	Water Sports	Nancy Meyers
4	101200	Dive Mask, Med Clear	Water Sports	Nancy Meyers
5	201000	Half-dome Tent	Camping	Cindy Lo
6	202000	Half-dome Tent Vestibule	Camping	Cindy Lo
7	301000	Light Fly Climbing Hamess	Climbing	Jerry Martin
8	302000	Locking Carabiner, Oval	Climbing	Jerry Martin

SKU → (SKU_Description, Department, Buyer)
SKU_Description → (SKU, Department, Buyer)
Buyer → Department

Functional Dependencies in the ORDER ITEM Table

	OrderNumber	SKU	Quantity	Price	ExtendedPrice
1	1000	201000	1	300.00	300.00
2	1000	202000	1	130.00	130.00
3	2000	101100	4	50.00	200.00
4	2000	101200	2	50.00	100.00
5	3000	100200	1	300.00	300.00
6	3000	101100	2	50.00	100.00
7	3000	101200	1	50.00	50.00

(OrderNumber, SKU) →

(Quantity, Price, ExtendedPrice) (Quantity, Price) → (ExtendedPrice)

What Makes Determinant Values Unique?

- A determinant is unique in a relation if and only if, it determines every other column in the relation.
- You cannot find the determinants of all functional dependencies simply by looking for unique values in one column:
 - Data set limitations
 - Must be logically a determinant

Candidate and Primary Keys

- A candidate key is a key that determines all of the other columns in a relation.
- A primary key is a candidate key selected as the primary means of identifying rows in a relation.
 - There is only one primary key per relation.
 - The primary key may be a composite key.
 - The ideal primary key is short, numeric, and never changes.

The Entity Integrity Constraint

- The requirement that, in order to function properly, the primary key must have unique data values for every row in the table is know as the entity integrity constraint.
- The phrase unique data values implies that this column is NOT NULL, and does not allow a NULL value in any row.

Foreign Keys

- A foreign key is the primary key of one relation that is placed in another relation to form a link between the relations.
 - A foreign key can be a single column or a composite key.
 - The term refers to the fact that key values are foreign to the relation in which they appear as foreign key values.

Foreign Keys

NOTE: The primary keys of the relations are <u>underlined</u> and any foreign keys are in *italics* in the relations below:

DEPARTMENT (<u>DepartmentName</u>, BudgetCode, ManagerName)

EMPLOYEE (<u>EmployeeNumber</u>, EmployeeLastName,

EmployeeFirstName, *DepartmentName*)

The Referential Integrity Constraint

 A referential integrity constraint is a statement that limits the values of the foreign key to those already existing as primary key values in the corresponding relation:

SKU in ORDER_ITEM must exist in SKU in SKU_DATA

Surrogate Keys

NOTE: The primary key of the relation is <u>underlined</u> below:

 RENTAL_PROPERTY without surrogate key:

RENTAL_PROPERTY (<u>Street</u>, <u>City</u>, <u>State/Province</u>, <u>Zip/PostalCode</u>, <u>Country</u>, Rental_Rate)

RENTAL PROPERTY with surrogate key:

RENTAL_PROPERTY (<u>PropertyID</u>, Street, City, State/Province, Zip/PostalCode, Country, Rental_Rate)

Foreign Key with a Referential Integrity Constraint

NOTE: The primary key of the relation is <u>underlined</u> and any foreign keys are in *italics* in the relations below:

SKU_DATA (SKU, SKU_Description, Department, Buyer)
ORDER_ITEM (OrderNumber, SKU, Quantity, Price,
ExtendedPrice)

Where ORDER_ITEM.SKU must exist in SKU_DATA.SKU

Modification Anomalies

 The EQUIPMENT_REPAIR table before and after an incorrect update operation on AcquisitionCost for EquipmentType = Drill Press:

- Deletion
- Insertion
 - Update
- Page 180

Data integrity

Types of Modification Anomalies

- Deletion anomaly
- Insertion anomaly
- Update anomaly
 - Notice that the EQUIPMENT_REPAIR table duplicates data. For example, the AcquisitionCost of the same item of equipment appears several times. Any table that duplicates data is susceptible to update anomalies. A table that has such inconsistencies is said to have data integrity problems.

Normal Forms

 Relations are categorized as a normal form based on which modification anomalies or other problems they are subject to:

Source of Anomaly	Normal Forms	Design Principles
Functional dependencies	1NF, 2NF, 3NF, BCNF	BCNF: Design tables so that every determinant is a candidate key.
Multivalued dependencies	4NF	4NF: Move each multivalued dependency to a table of its own.
Data constraints and oddities	5NF, DK/NF	DK/NF: Make every constraint a logical consequence of candidate keys and domains.

To Key, or Not to Key Here is the Answer!

- There are <u>various opinions</u> about whether or not a relation has to have a designated primary key to be in 1NF.
- In this book, we will define 1NF as a table that:
 - Meet the set of conditions for a relation, and
 - Has a defined primary key

Normal Forms

- 1NF—a table that qualifies as a relation is in 1NF.(p.182)
- 2NF—a relation is in 2NF if all of its nonkey attributes are dependent on all of the primary keys. (p.183)
- **3NF**—a relation is in 3NF if it is in 2NF and has no determinants except the primary key. (pp.183-185)
- Boyce-Codd Normal Form (BCNF)—a relation is in BCNF if every determinant is a candidate key.(pp.185-186)

"I swear to construct my tables so that all nonkey columns are dependent on the key, the whole key and nothing but the key, so help me Codd."

First Normal Form: 1NF

Characteristics of Relations Rows contain data about an entity. Columns contain data about attributes of the entities. All entries in a column are of the same kind. Each column has a unique name. Cells of the table hold a single value. The order of the columns is unimportant. The order of the rows is unimportant. No two rows may be identical.

- 1. satisfy the def. of relation
- 2. Has a primary key

Second Normal Form: 2NF

- 1. satisfy 1NF
- 2. all non-key attributes are determined by the entire primary key.
- → partial dependency

Third Normal Form: 3NF

- 1. satisfy 2NF
- 2. no non-key attributes determined by another non-key attribute
- → transitive dependency

Boyce-Codd Normal Form : BCNF

- 1. satisfy 3NF
- 2. every determinant is a candidate key
- →overlapping or not a candidate key Modification anomalies

1 100 Math Cauchy 2 200 Psychology Jung 3 300 Math Riemann 4 400 Math Cauchy 5 500 Psychology Perls 6 600 English Austin 7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy 10 800 Psychology Jung		StudentID	Major	AdvisorName
3 300 Math Riemann 4 400 Math Cauchy 5 500 Psychology Perls 6 600 English Austin 7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy	1		Math	Cauchy
4 400 Math Cauchy 5 500 Psychology Perls 6 600 English Austin 7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy	2	200	Psychology	Jung
5 500 Psychology Perls 6 600 English Austin 7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy	3	300	Math	Riemann
6 600 English Austin 7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy	4	400	Math	Cauchy
7 700 Psychology Perls 8 700 Math Riemann 9 800 Math Cauchy	5	500	Psychology	Perls
8 700 Math Riemann 9 800 Math Cauchy	6	600	English	Austin
9 800 Math Cauchy	7	700	Psychology	Perls
	8	700	Math	Riemann
10 800 Psychology Jung	9	800	Math	Cauchy
	10	800	Psychology	Jung
STUDENT_ADVISOR(<u>StudentID</u> , <u>Major</u> , AdvisorName) ? STUDENT_ADVISOR(<u>StudentID</u> , Major, <u>AdvisorName</u>)				

Eliminating Modification Anomalies from Functional Dependencies in Relations: Put All Relations into BCNF **Process for Putting a Relation into BCNF** 1. Identify every functional dependency. 2. Identify every candidate key. 3. If there is a functional dependency that has a determinant that is not a candidate key: A. Move the columns of that functional P.187 dependency into a new relation. B. Make the determinant of that functional dependency the primary key of the new relation. C. Leave a copy of the determinant as a foreign key in the original relation. D. Create a referential integrity constraint between the original relation and the new relation. 4. Repeat step 3 until every determinant of every relation is a candidate key. Note: In step 3, if there is more than one such functional dependency, start with the one with the most columns.

Putting a Relation into BCNF: CASE1 EQUIPMENT_REPAIR

	ltemNumber	Equipment Type	AcquisitionCost	RepairNumber	RepairDate	RepairCost
1	100	Drill Press	3500.00	2000	2015-05-05	375.00
2	200	Lathe	4750.00	2100	2015-05-07	255.00
3	100	Drill Press	3500.00	2200	2015-06-19	178.00
4	300	Mill	27300.00	2300	2015-06-19	1875.00
5	100	Drill Press	3500.00	2400	2015-07-05	0.00
6	100	Drill Press	3500.00	2500	2015-08-17	275.00

ITEM (<u>ItemNumber</u>, Type, AcquisitionCost)

REPAIR (RepairNumber, ItemNumber, RepairDate, RepairAmount)

Where REPAIR.ItemNumber must exist in ITEM.ItemNumber

ItemNumber → (Type, AcquisitionCost)

RepairNumber → (ItemNumber, Type, AcquisitionCost, RepairDate, RepairAmount)

Putting a Relation into BCNF: New Relations

EQUIPMENT_ITEM

	ItemNumber	Equipment Type	AcquisitionCost
1	100	Drill Press	3500.00
2	200	Lathe	4750.00
3	300	Mill	27300.00

REPAIR

	RepairNumber	ItemNumber	RepairDate	RepairCost
1	2000	100	2015-05-05	375.00
2	2100	200	2015-05-07	255.00
3	2200	100	2015-06-19	178.00
4	2300	300	2015-06-19	1875.00
5	2400	100	2015-07-05	0.00
6	2500	100	2015-08-17	275.00

Putting a Relation into BCNF: CASE2 SKU DATA Step-by-Step – 1NF

SKU_DATA

	SKU	SKU_Description	Department	Buyer
1	100100	Std. Scuba Tank, Yellow	Water Sports	Pete Hansen
2	100200	Std. Scuba Tank, Magenta	Water Sports	Pete Hansen
3	101100	Dive Mask, Small Clear	Water Sports	Nancy Meyers
4	101200	Dive Mask, Med Clear	Water Sports	Nancy Meyers
5	201000	Half-dome Tent	Camping	Cindy Lo
6	202000	Half-dome Tent Vestibule	Camping	Cindy Lo
7	301000	Light Fly Climbing Hamess	Climbing	Jerry Martin
8	302000	Locking carabiner, Oval	Climbing	Jerry Martin

SKU_DATA (SKU, SKU_Description, Department, Buyer)

1NF - Checking against the definition of 1NF, this relation is in 1NF.

Putting a Relation into BCNF: SKU DATA Step-by-Step – 2NF

SKU_DATA (SKU, SKU_Description, Department, Buyer)

SKU → (SKU_Description, Department, Buyer) SKU_Description → (SKU, Department, Buyer) Buyer → Department

- SKU and SKU_Description are candidate keys.
- A relation is in 2NF if and only if it is in 1NF and all non-key attributes are determined by the primary key.
- Since SKU is a single column primary key, all non-key attributes are determined by SKU, and the relation is in 2NF.

Putting a Relation into BCNF: SKU DATA Step-by-Step – 3NF

SKU_DATA (SKU, SKU_Description, Department, Buyer)

SKU → (SKU_Description, Department, Buyer) SKU_Description → (SKU, Department, Buyer) Buyer → Department

- SKU and SKU_Description are candidate keys.
- A relation is in 3NF if and only if it is in 2NF and there are no nonkey attributes determined by another non-key attribute.
- However, the term non-key attribute means an attribute that is neither (1) a candidate key itself, nor (2) part of a composite candidate key.
- Therefore, the only non key attribute is Buyer, and it is a determinant.
- Therefore, not in 3NF.

Putting a Relation into BCNF: SKU DATA Step-by-Step – 3NF

- Therefore, break out the Buyer
- → Department functional dependency.

SKU_DATA_2 (SKU, SKU_Description, Buyer)

BUYER (Buyer, Department)

Where SKU_DATA_2.Buyer must exist in BUYER.Buyer

- SKU_DATA_2 is in 3NF
- BUYER is in 3NF

Putting a Relation into BCNF: SKU_DATA Step-by-Step – BCNF

SKU_DATA_2 (<u>SKU</u>, SKU_Description, *Buyer*) BUYER (<u>Buyer</u>, Department)

Where SKU_DATA_2.Buyer must exist in BUYER.Buyer

SKU → (SKU_Description, Department, Buyer)
SKU_Description → (SKU, Department, Buyer)
Buyer → Department

- A relation is in BCNF if and only if it is in 3NF and every determinant is a candidate-key.
- In SKU_DATA_2, both determinants are determinant keys, so SKU_DATA_2 is in BCNF.
- In BUYER, the determinant is a determinant key, so BUYER is in BCNF.

Putting a Relation into BCNF: SKU_DATA Step-by-Step – New Relations

SKU_DATA_2

	SKU	SKU_Description	Buyer
1	100100	Std. Scuba Tank, Yellow	Pete Hansen
2	100200	Std. Scuba Tank, Magenta	Pete Hansen
3	101100	Dive Mask, Small Clear	Nancy Meyers
4	101200	Dive Mask, Med Clear	Nancy Meyers
5	201000	Half-dome Tent	Cindy Lo
6	202000	Half-dome Tent Vestibule	Cindy Lo
7	301000	Light Fly Climbing Hamess	Jerry Martin
8	302000	Locking Carabiner, Oval	Jerry Martin

BUYER

	Buyer	Department
1	Cindy Lo	Camping
2	Jerry Martin	Climbing
3	Nancy Meyers	Water Sports
4	Pete Hansen	Water Sports

Putting a Relation into BCNF: CASE2-2 SKU_DATA Straight-to-BCNF

SKU_DATA

8	302000	Locking carabiner, Oval	Climbing	Jerry Martin
7	301000	Light Fly Climbing Hamess	Climbing	Jerry Martin
6	202000	Half-dome Tent Vestibule	Camping	Cindy Lo
5	201000	Half-dome Tent	Camping	Cindy Lo
4	101200	Dive Mask, Med Clear	Water Sports	Nancy Meyers
3	101100	Dive Mask, Small Clear	Water Sports	Nancy Meyers
2	100200	Std. Scuba Tank, Magenta	Water Sports	Pete Hansen
1	100100	Std. Scuba Tank, Yellow	Water Sports	Pete Hansen
	SKU	SKU_Description	Department	Buyer

Putting a Relation into BCNF: SKU DATA Straight-to-BCNF

SKU_DATA (SKU, SKU_Description, Department, Buyer)

SKU → (SKU_Description, Department, Buyer)
SKU_Description → (SKU, Department, Buyer)
Buyer → Department

— Therefore, break out the Buyer → Department functional dependency.

SKU_DATA (<u>SKU</u>, SKU_Description, *Buyer*)

BUYER (Buyer, Department)

Where BUYER.Buyer must exist in SKU_DATA.Buyer

Example 3

	OrderNumber	SKU	Quantity	Price	ExtendedPrice
1	1000	201000	1	300.00	300.00
2	1000	202000	1	130.00	130.00
3	2000	101100	4	50.00	200.00
4	2000	101200	2	50.00	100.00
5	3000	100200	1	300.00	300.00
6	3000	101100	2	50.00	100.00
7	3000	101200	1	50.00	50.00

(OrderNumber, SKU) → (Quantity, Price, ExtendPrice)

(Quantity, Price) → ExtendedPrice

Putting a Relation into BCNF: New Relations

ORDER_ITEM_2

	OrderNumber	SKU	Quantity	Price
1	1000	201000	1	300.00
2	1000	202000	1	130.00
3	2000	101100	4	50.00
4	2000	101200	2	50.00
5	3000	100200	1	300.00
6	3000	101100	2	50.00
7	3000	101200	1	50.00

Copyright © 2016, by Pearson Education, Inc.,

Example 4

STUDENT_ACTIVITY

	StudentID	Student Name	Activity	ActivityFee	AmountPaid
1	100	Jones	Golf	65.00	65.00
2	100	Jones	Skiing	200.00	0.00
3	200	Davis	Skiing	200.00	0.00
4	200	Davis	Swimming	50.00	50.00
5	300	Garrett	Skiing	200.00	100.00
6	300	Garrett	Swimming	50.00	50.00
7	400	Jones	Golf	65.00	65.00
8	400	Jones	Swimming	50.00	50.00

Copyright © 2016, by Pearson Education, Inc.,

StudentID → StudentName Activity → ActivityFee

(StudentID, Activity) → AmountPaid

	Putting a Relation into BCNF: New Relations						1
DE	PARTMENT		1011		U_DATA_4		
	Department	DeptBudgetCode			SKU	SKU_Description	Buyer
1	Camping	BC-200		1	100100	Std. Scuba Tank, Yellow	Pete Hansen
2	Climbing	BC-300		2	100200	Std. Scuba Tank, Magenta	Pete Hansen
3	Water Sports	BC-100		3	101100	Dive Mask, Small Clear	Nancy Meyers
			4	101200	Dive Mask, Med Clear	Nancy Meyers	
BUYER_2 5 201000 Half-do			Half-dome Tent	Cindy Lo			
	Buyer	Department		6	202000	Half-dome Tent Vestibule	Cindy Lo
1	Cindy Lo	Camping		7	301000	Light Fly Climbing Hamess	Jerry Martin
2	Jerry Martin	Climbing		8	302000	Locking Carabiner, Oval	Jeny Martin
3	Nancy Meyers	Water Sports				_	
4	Pete Hansen	Water Sports					
Сору	Copyright © 2016, by Pearson Education, Inc.,						
							SE

Eliminating Anomalies from Multivalued Dependencies

- Multivalued dependencies are not a problem if they are in a separate relation, so:
 - Always put multivalued dependencies into their own relation.
 - This is known as Fourth Normal Form (4NF).

That Very Strange Table Again!

PRODUCT_BUYER

	BuyerName	SKU_Managed	CollegeMajor
1	Pete Hansen	100100	Business Administration
2	Pete Hansen	100200	Business Administration
3	Nancy Meyers	101100	Art
4	Nancy Meyers	101100	Info Systems
5	Nancy Meyers	101200	Art
6	Nancy Meyers	101200	Info Systems
7	Cindy Lo	201000	History
8	Cindy Lo	202000	History
9	Jenny Martin	301000	Business Administration
10	Jenny Martin	301000	English Literature
11	Jenny Martin	302000	Business Administration
12	Jenny Martin	302000	English Literature

Now we understand why this is a very strange table.

It has multivalued dependencies!

4NF

Use 4NF to resolve the multivalued dependencies!

PRODUCT_BUYER_SKU

	BuyerName	SKU_Managed
1	Cindy Lo	201000
2	Cindy Lo	202000
3	Jenny Martin	301000
4	Jenny Martin	302000
5	Nancy Meyers	101100
6	Nancy Meyers	101200
7	Pete Hansen	100100
8	Pete Hansen	100200

PRODUCT_BUYER_MAJOR

	BuyerName	CollegeMajor
1	Cindy Lo	History
2	Jenny Martin	Business Administration
3	Jenny Martin	English Literature
4	Nancy Meyers	Art
5	Nancy Meyers	Info Systems
6	Pete Hansen	Business Administration

David Kroenke and David Auer Database Processing

Fundamentals, Design, and Implementation (14th Edition, Global Edition)

End of Presentation: Chapter Three

