

BERT – Entendendo o estado da arte em NLP na prática

Paulo Finardi *Cientista de Dados, Itaú*

01 DEZ - 12:25

promo.thedevconf.com/future-aws

Core Tasks

Covered in Chapters 3–7

Text Classification

Information Extraction

Conversational Agent

Information Retrieval

Question Answering Systems

General Applications

Covered in Chapters 4–7

Spam Classification

Calendar Event Extraction

Personal Assistants

Search Engines

Jeopardy!

Industry Specific

Covered in Chapters 8–10

Social Media Analysis

Retail Catalog Extraction

Health Records Analysis

Financial Analysis

Legal Entity Extraction

Entender texto

"Eu vi um homem na montanha com um telescópio"

Eu vi um homem. O homem estava na montanha. Eu estava com o telescópio.

- Eu vi um homem. O homem estava na montanha. Eu estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. O homem estava com o telescópio.

- Eu vi um homem. O homem estava na montanha. Eu estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. O homem estava com o telescópio.
- Eu vi um homem. O homem estava na montanha. O homem estava com o telescópio.

- Eu vi um homem. O homem estava na montanha. Eu estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. O homem estava com o telescópio.
- Eu vi um homem. O homem estava na montanha. O homem estava com o telescópio.
- Eu vi um homem. Eu estava na montanha. Eu estava com o telescópio.

artigos, preposições...

{de, para a, e, em, ... etc}

Stemming é o processo de reduzir a inflexão das palavras às suas formas de raiz.

Lematização reduz as palavras flexionadas com garantia que a palavra raiz pertença ao idioma.

sentença: Quero um cartão adicional

Tokenização := [Quero] [um] (cartão] (adicional)

Como a máquina "lê" 👛 texto

Uma máquina consegue "ler" textos de duas formas:

- Representação esparsa (BoW / One hot encoding / TF-IDF)
- Representação densa (Embeddings)

Good price! Quality not bad! I'm happy I bought it.

Good price! Quality not bad! I'm happy I bought it.

 BoW	! 		 									 	 										
good	1	card	price	: qı	ualit	y :	bad	:	not	:	ı	am	it	b	ough	it: I	return	ha	рру	sac	k	wil	ı
1		0	1		1		1		1		1	1	1		1		0		1	0		0	

Good price! Quality not bad! I'm happy I bought it.

Bad quality! I'm sad! I bought it I will return it.

1	E	3	(١	/	٧	ı	

									-:-															
go	od	: (card	:	price	: q	uality	bad	:	not	:	ı	:	am	:	it	bought	return	happ	y :	sad	:	will	:
	1		0		1	-	1	1		1		1		1		1	1	0	1		0		0	
(0		0	-	0	-	1	1		0	:	1		1		1	1	1	0		1	:	1	

Bad quality! I'm sad! I bought it I will return it.

Price not good. Quality bad! I'm not happy I bought it.

BoW

go	od	card	price	q	uality	bad	not	ı	am	it	bo	ought	return	happ)y	sad	will
1		0	 1		1	1	 1	 1	1	 1		1	0	1		0	0
C)	0	0		1	1	0	1	1	1		1	1	0		1	1
1		0	1		1	1	 1	 1	1	1		1	0	1		0	 0

Bad quality! I'm sad! I bought it I will return it.

Price not good. Quality bad! I'm not happy I bought it.

BoW

g	ood	card	 price	q	quality	bad		not		ı	 am	 it	bough	t returr	happ	у	sad		will	
	1	0	1		1	1		1		1	1	1	1	0	1		0		0	
	0	0	0		1	1	:	0	:	1	1	1	1	1	0		1	:	1	
	1	0	1	:	1	1		1		1	1	1	1	0	1		0		0	

Bad quality! I'm sad! I bought it I will return it.

Price not good. Quality bad! I'm not happy I bought it.

١	2	3	C)	١	V	

good	card	price	quality	bad	not	ı	am	it	bought	return	happy	sad	will
1	0	1	1	1	1	1	1	1	1	0	1	0	0
0	0	0	1	1	0	1	1	1	1	1	0	1	1
1	0	1	1	1	1	1	1	1	1	0	1	0	0

One Hot Encoding

	good	 	card		price	qı	uality	bad	 not				am		it	bought	return	happy	sad	wil	11
-	1	: .	0	:	0	:	0	0	 0	.:	0	: .	0	. :	0	0	0	0	0	0	:
i	0		1		0		0	0	0		0		0		0	0	0	0	0	0	
-	0		0		1		0	0	0		0		0		0	0	0	0	0	0	

1 ...

Principais características da representação de texto esparsa

- Não retém informação sobre a gramática das sentenças nem sobre a ordem das palavras no texto.
- Se novas frases contiverem novas palavras, o tamanho do vocabulário e do vetor aumentará.
- É difícil de obter similaridade entre palavras/sentenças (grande quantidade de zeros).

- tf idf: Medida estatística que avalia a importância de uma palavra para um documento em uma coleção de documentos.
 - Motivação: tf-idf é um dos métodos mais utilizados em sistemas de busca e NLP clássicos.
 - Intuição: palavras que ocorrem muito (artigos, preposições) não são tão importante quanto as palavras menos frequentes.
 - Estima a importância de uma palavra pela frequência com que ela ocorre em um conjunto de documentos.

```
tf\text{-}idf[t,\ d] = tf[t,\ d] * idf[t,\ D] tf[t,\ d] = n\'umero\ de\ vezes\ que\ o\ termo\ t\ aparece\ no\ documento\ d. idf[t,\ D] = log(|D|/n_t), n_t: n\'umero\ de\ documentos\ onde\ t\ aparece\ na\ coleção\ D\text{-}documentos
```

tf - idf: Exemplo

Documentos D:

- a) Essa é a primeira sentença
- b) Aqui é a segunda sentença c) E, por fim a última frase

```
Essa é a segunda sentença
```

b) tf('a')=0.20, $idf('a')=0 \rightarrow tf-idf('a')=0$

Como a é um termo frequente em D, o tf-idf é menor do que a palavra segunda

prática-notebook

Representação Densa

Você sabe qual o significado da palavra tezgüino?

exemplo apresentado em: https://github.com/jacobeisenstein/qt-nlp-class/blob/master/notes/eisenstein-nlp-notes.pdf - cap 14

Observe a palavra tezgüino em diferentes contextos:

Uma garrafa de tezgüino está sobre a mesa.

- Uma garrafa de tezgüino está sobre a mesa.
- Todo mundo gosta de tezgüino.

- Uma garrafa de tezgüino está sobre a mesa.
- Todo mundo gosta de tezgüino.
 Você pode ficar bêbado com tezgüino.

- Uma garrafa de tezgüino está sobre a mesa.
- Todo mundo gosta de tezgüino.
 Você pode ficar bêbado com tezgüino.
- Tezgüino é feito de milho.

Observe a palavra tezgüino em diferentes contextos:

- Uma garrafa de tezgüino está sobre a mesa.
- Todo mundo gosta de tezgüino.
 Você pode ficar bêbado com tezgüino.
- Tezgüino é feito de milho.

Conseque entender o que é tezgüino?

Observe a palavra tezgüino em diferentes contextos:

- Uma garrafa de tezgüino está sobre a mesa.
- Todo mundo gosta de tezgüino.
- · Você pode ficar bêbado com tezgüino.
- Tezgüino é feito de milho.

Com o contexto, conseguimos identificar do que se refere a palavra tezgüino.

Tezgüino:= é uma bebida alcoólica feita a base de milho.

Como o cérebro faz isso?

Quais outras palavras se "encaixam" nos slots das perquntas 1 até 4?

1. Uma garrafa de ____ está sobre a mesa.

Quais outras palavras se "encaixam" nos slots das perquntas 1 até 4?

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.

Quais outras palavras se "encaixam" nos slots das perquntas 1 até 4?

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.
- 3. Você pode ficar bêbado com _____.

Quais outras palavras se "encaixam" nos slots das perquntas 1 até 4?

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.
- 3. Você pode ficar bêbado com _____.
- 4. ____ é feito de milho.

Inserindo contexto de forma manual...

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.
- 3. Você pode ficar bêbado com _____.
- 4. ____ é feito de milho.

	(1)	(2)	(3)	(4) — contextos
tezgüino	1	1	1	1
som	0	0	0	0
suco de laranja	1	1	0	0
vinho	1	1	1	0

Inserindo contexto de forma manual...

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.
- 3. Você pode ficar bêbado com _____.
- 4. ____ é feito de milho.

Inserindo contexto de forma manual...

- 1. Uma garrafa de ____ está sobre a mesa.
- 2. Todo mundo gosta de _____.
- 3. Você pode ficar bêbado com _____.
- 4. ____ é feito de milho.

Idéia principal: Precisamos colocar informações de contexto no vetor de palavra

de forma manual... igual fizemos no exemplo da palavra *tezgüino*

de forma automática: Com um modelo que insere contexto na palavra baseado nas palavras vizinhas: AKA Word2Vec

Intuição: Suponha que você precise se descrever em uma escala de 0 a 100 sobre:

I. Você É Feliz?

Intuição: Suponha que você precise se descrever em uma escala de 0 a 100 sobre:

I. Você É Feliz?

- I. Você É Feliz?
- 2. Se alimenta bem?

- I. Você É Feliz?
- 2. Se alimenta bem?

- I. Você É Feliz?
- 2. Se alimenta bem?
- 3. Gosta de acordar cedo?

- I. Você É Feliz?
- 2. Se alimenta bem?
- 3. Gosta de acordar cedo?

- I. Você É Feliz?
- 2. Se alimenta bem?
- 3. Gosta de acordar cedo?

Intuição: Suponha que você precise se descrever em uma escala de 0 a 100 sobre:

- I. Você É Feliz?
- 2. Se alimenta bem?
- 3. Gosta de acordar cedo?

Representação densa (*Embedding*) com 3 dimensões

0.09

-0.83

0.73

DataPrep Word2Vec

O número de vetores criados pelo Word2Vec é igual ao número de palavras do vocabulário. A redução de palavras semelhantes (inflexão), stopwords e lower_case geram melhores resultados:

- 1. Remoção de stop words (em ptbr: {de, para a, e, em, ... etc})
- 2. Texto para caixa baixa (lower_case)
- 3. Stemming ou Lematização

Redução de 5 (raw) para 3 (processed) vetores

Word2Vec: CBOW e Skip-gram

- O CBOW prevê uma palavra-alvo aproveitando todas as palavras em sua vizinhança.
- O Skip-gram, aprende a prever uma palavra com base em uma palavra vizinha.

Qual é o melhor Skip-gram ou CBOW?

De acordo com o artigo original, Mikolov et al., O *Skip-gram* funciona bem em pequenos conjuntos de dados e pode representar melhor palavras menos frequentes. No entanto, o *CBOW* treina mais rápido do que *Skip-gram* e pode representar melhor as palavras mais frequentes.

FastText e ELMo

FastText: ao invés de treinar o modelo word2vec com palavras, n-gramas (sub-palavras) são utilizados. Exemplo, para 3-grama da palavra carro:

['<ca', 'car', 'arr', 'rro', 'ro>']

e o word embedding da palavra carro sera a soma desses trigramas.

Dessa forma, uma palavra desconhecida, exemplo: carroça terá alguns n-gramas presentes em outras palavras conhecidas e a soma dos n-gramas darão a representação de carroça.

Embedding from Language Model ELMo: utiliza uma bi-LSTM para produzir embeddings contextuais, isto é, embeddings não possuem posição fixa. Exemplo:

sent: banco da praça e sent: app do banco

a palavra banco no wordzvec sempre terá a mesma representação densa, o que não acontece no ELMo (devido ao treinamento bi-LSTM).

adaptado de https://jalammar.github.io/illustrated-bert/

Os últimos Jedi Language Models

