

Complessità computazionale

Daniele Vigo
D.E.I. – Università di Bologna
daniele.vigo@unibo.it

rev. 1.1 – 2023

Indagine di Mercato

Mix di utenti da intervistare telefonicamente:

		Categoria							
	Α	В	С	D					
	150	110	120	100					
mattina	30%	10%	10%	10%	40%				
sera	30%	20%	30%	15%	5%				

Telefonate in 2 fasce orarie:

Mattina: 1 € per telefonata (almeno il 50%)

• Sera: 1.5 € per telefonata

minimizzare il costo complessivo delle telefonate

Modello matematico (PLI)

- x_1 : numero di telefonate alla mattina
- x₂: numero di telefonate alla sera

	min	<i>X</i> ₁	+	1.5 x_2		
A1:		$0.3 x_1$	+	$0.3 x_2$	≥ 15 0)
A2:		$0.1 x_1$	+	$0.2 x_2$	≥ 11 ()
B1:		$0.1 x_1$	+	$0.3 x_2$	≥ 12 0)
B2:		$0.1 x_1$	+ ($0.15 x_2$	≥ 100)
		<i>X</i> ₁	_	<i>X</i> ₂	≥ ()
		<i>X</i> ₁	,	<i>X</i> ₂	≥ (INTERE

STUD ORUM

Noleggio di macchinari

Un ente pubblico deve noleggiare dei macchinari

Mese	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno
Fabbisogno	9	5	7	9	10	5

Noleggi possibili per 3 periodi diversi:

• 1 mese: 400 €

• 2 mesi: 700 € (= 350 €/mese)

• 3 mesi: 900 € (= 300 €/mese)

• minimizzare il costo complessivo di noleggio

- Non basta sapere quanti macchinari noleggiare
 - quando (gennaio, febbraio, ...)
 - per quanto tempo (1,2 o 3 mesi)

GE1, GE2, GE3 = n. macch. affittati a Gennaio per 1, 2 e 3 mesi.

. . . .

GI1, GI2, GI3 = n. macch. affittati a Giugno per 1, 2 e 3 mesi.

Modello PLI

```
min 400 GE1 + 400 FE1 + ... + 400 GI1 + 700 GE2 + 700 FE2 + ... + 700 GI2 + 900 GE3 + 900 FE3 + ... + 900 GI3
```

GE1 + GE2 + GE3
$$\geq$$
 9
FE1 + FE2 + FE3 + GE2 + GE3 \geq 5
MA1 + MA2 + MA3 + FE2 + FE3 + GE3 \geq 7
AP1 + AP2 + AP3 + MA2 + MA3 + FE3 \geq 9
MG1 + MG2 + MG3 + AP2 + AP3 + MA3 \geq 10
GI1 + GI2 + GI3 + MG2 + MG3 + AP3 \geq 5
GE1, GE2, ..., GI2, GI3 \geq 0 INTERE

Costo fisso di produzione

- Problema di mix di produzione (tipo dieta)
- Contributo prodotto j alla funzione obiettivo:
 - 0, se non prodotto $(x_j = 0)$
 - $F_j + p_j x_j$ se prodotto $(x_j > 0)$

- F_i = costo fisso (macchinari)
- p_i = costo di produzione
- discontinuità nell'origine

Costo fisso di produzione (2)

$$y_j = \begin{cases} 1 & \sec x_j > 0 \\ 0 & \sec x_j = 0 \end{cases}$$

$$\min \sum_{j=1}^{n} F_{j} y_{j} + p_{j} x_{j} \quad \text{vincoli di tipo} \\ \log \operatorname{ico} (if \dots) \\ Ax \geq b \quad \operatorname{occorre legar} \\ x \geq 0 \quad \text{tra loro le } x \in \\ y \in \{0,1\} \quad \text{con vincoli}$$

- occorre legare tra loro le x e le y con vincoli

lineari

Costo fisso di produzione (3)

$$y_{j} = \begin{cases} 1 & \sec x_{j} > 0 \\ 0 & \sec x_{j} = 0 \end{cases} \qquad x_{j} \leq My_{j}$$
$$\cot M >> 1 \ (\cong +\infty)$$

• validità del vincolo:

• se
$$x_j > 0$$
 y_j deve essere =1 $(x_j \le +\infty)$

• se
$$x_j = 0$$
 y_j può essere = 0 o 1 ($0 \le 0$ o $+\infty$)

oppure

• se
$$y_i = 0$$
 x_i deve essere = 0 ($x_i \le 0$)

• se
$$y_j = 1$$
 x_j può essere = 0 o > 0 $(x_j \le +\infty)$

• il vincolo impone solo parte della relazione logica

Costo fisso di produzione (4)

$$\min \sum_{j=1}^{n} F_{j} y_{j} + p_{j} x_{j}$$

$$Ax \geq b$$

$$x_{j} \leq My_{j}$$

$$x \geq 0 \quad y \in \{0,1\}$$

- non è necessario imporre anche l'altra metà della relazione logica
- una soluzione con $x_j = 0$ ed $y_j = 1$ non può essere ottima (ne esiste una equivalente che costa meno)

Mix di pubblicità

- Budget di 150 K € per pubblicizzare una nuova iniziativa.
- Due possibili canali pubblicitari:
 - Giornali: 1 K€ per annuncio
 - TV: 10 K€ per annuncio
- Al massimo 30 annunci su giornali e 15 annunci su TV
- Il numero di utenti raggiunti dipende in modo non lineare dal numero di annunci inviati.
- massimizzare il numero totale di utenti raggiunti

Mix di pubblicità (2)

Giornali						
n. annunci	Nuovi utenti					
	per annuncio					
1-10	900					
11-20	600					
21-30	300					

$\overline{\text{TV}}$						
n. annunci	Nuovi utenti					
	per annuncio					
1-5	10000					
6-10	5000					
11-15	2000					

- si possono usare variabili binarie per indicare se le variabili decisionali sono nella 1^a, 2^a o 3^a fascia
- Vincoli di tipo logico come per il costo fisso

```
G1, G2, G3
T1, T2, T3
```

= n. annunci su giornali nelle 3 fasce

= n. annunci su TV nelle 3 fasce

$$G1 + G2 + G3 + 10 T1 + 10 T2 + 10 T3 \le 150$$

 $G1, G2, G3 \le 10$
 $T1, T2, T3 \le 5$
 $G1, G2, G3, T1, T2, T3 \ge 0, INTERE$

Turnazione del personale

personale richiesto per giorno della settimana:

Lu	Ma	Me	Gi	Ve	Sa	Do
22	18	13	14	15	18	25

- ogni persona
 - lavora 5 giorni consecutivi
 - i 2 giorni successivi sono di riposo
- minimizzare il numero di persone necessarie
- altri vincoli possibili in problemi reali:
 - turni diversi
 - preferenze

Modello matematico (PLI)

 x_1 : numero di persone che iniziano il turno Lun

 x_2 : numero di persone che iniziano il turno Mar ...

Turnazione personale: varianti

- Una volta stabiliti il numero di persone necessarie per turno, i turni vanno attribuiti alle persone
- Ogni persona esprime una preferenza per il turno (7=prima, 1=ultima scelta)
- Assegnare le persone ai turni massimizzando la preferenza espressa
- Idem tenendo conto dell'anzianità di servizio: punteggio di assegnazione=preferenza*anzianità

Assegnazione di incarichi

- n persone ed n incarichic_{ij} tempo/costo ass. incarico j alla pers. i
- determinare l'assegnamento delle persone agli incarichi di costo complessivo minimo
- Es. n=2

STUDIORUM

Assegnazione di incarichi (2)

•
$$n = 3$$
 lavoro

pers. 1 2 3
1 20 60 30
2 80 40 90
3 50 70 80

N. soluzioni =
$$n (n-1) (n-2) ... = n!$$

se $n = 20$ → $n! \cong 2.4 * 10^{18}$
enumerazione su PC (1 Gflop/sec.): 4.6K anni!

Variabili decisionali

$$x_{ij} = \begin{cases} 1 \text{ se la persona } i \text{ esegue l'incarico } j \\ 0 \text{ altrimenti} \end{cases}$$

	I	avor		V	ariab	ili	
pers.	1	2	3		1	2	3
1	20	60	30	1	0	0	1
2	80	40	90	2	0	1	0
3	50	70	80	3	1	0	0

Matrice di permutazione: un solo 1 ∀ riga e colonna

Modello matematico (PLI)

• Funzione obiettivo (min. costo) $\min \sum_{j=1,n} \sum_{j=1,n} c_{ij} x_{ij}$ $\sum_{j=1,n} c_{ij} x_{ij}$

Un solo lavoro per persona:

$$\sum_{j=1,n} x_{ij} = 1 \quad (i = 1, ..., n)$$

Una sola persona per lavoro:

$$\sum_{i=1,n} x_{ij} = 1 \qquad (j = 1, ..., n)$$
$$x_{ij} \in \{0, 1\} \qquad (i,j = 1, ..., n)$$

Assegnazione di incarichi (bis)

• Una compagnia desidera assegnare n = 14 impiegati ai suoi m = 10 uffici, che hanno una richiesta r_j

Ufficio	1	2	3	4	5	6	7	8	9	10
Richiesta	1	1	1	1	2	1	2	2	2	1

- Ogni impiegato ha espresso la propria preferenza p_{ij} per uno specifico ufficio (1=prima ...10=ultima)
- Assegnare gli impiegati agli uffici massimizzando la soddisfazione per l'ufficio ottenuto (= minimizzazione preferenze assegnate)

Modello matematico

Funzione obiettivo (min. preferenze assegnate)

$$\min \quad \sum_{i=1,n} \sum_{j=1,m} p_{ij} x_{ij}$$

• Un solo ufficio per impiegato:

$$\sum_{j=1,m} x_{ij} = 1 \quad (i = 1, ..., n)$$

• Il numero richiesto di impiegati per ufficio :

$$\sum_{i=1,n} x_{ij} = r_j \qquad (j = 1, ..., m)$$

$$x_{ij} \in \{0, 1\} \qquad (i,=1, ..., n;$$

$$j = 1, ..., m)$$

Riorganizzazione del personale

- Un'azienda prevede la necessità di migliorare nel breve periodo la preparazione del suo personale
- Tre categorie: inesperto, addestrato ed esperto

	Costo licenziamento	Costo assunzione	Assumibili per anno
Esperti	700€	250 €	500
Addestrati	500 €	150 €	800
Inesperti	350 €	100€	1200

Riorganizzazione del personale (2)

Costo di riaddestramento:

• inesperti ⇒ addestrati : 400 €

addestrati ⇒ esperti : 500 €

Stima impiegati necessari

	Attuale	Anno 1	Anno 2	Anno 3
Esperti	800	1200	1500	2000
Addestrati	1500	1500	2000	2500
Inesperti	2000	1600	1000	0

Riorganizzazione del personale (3)

- Determinare il piano di assunzioni, licenziamenti ed addestramenti per i prossimi tre anni.
- Obiettivi:
 - minimizzazione dei costi
 - minimizzazione dei licenziamenti

Localizzazione infrastrutture

- apertura centri CUP in una città divisa in 6 zone
- 1 sito per quartiere
- tempi di trasferimento tra i quartieri (in minuti):

	1	2	3	4	5	6
1	0	10	20	30	30	20
2	10	0	25	35	20	10
3	20	25	0	15	30	20
4	30	35	15	0	15	25
5	30	20	30	15	0	15
6	20	10	20	25	15	0

Localizzazione infrastrutture (2)

massimo tempo di trasferimento 15 minuti

	1	2	3	4	5	6
1	0	10	I	I		1
2	10	0	I	I	ı	10
3		I	0	15	ı	
4		1	15	0	15	
5		_		15	0	15
6	_	10	_	_	15	0

• minimizzare il numero di centri aperti

Modello matematico (PLI)

x_i : 1 se si attiva il sito nel quartiere i, 0 altrimenti

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

1: $x_1 + x_2$ ≥ 1
2: $x_1 + x_2$ $+ x_6 \geq 1$
3: $+ x_3 + x_4$ ≥ 1
4: $+ x_3 + x_4 + x_5$ ≥ 1
5: $+ x_4 + x_5 + x_6 \geq 1$
6: $+ x_2$ $+ x_5 + x_6 \geq 1$
 $x_1 \dots x_6 \geq 0$ INTERE

Problema del set covering (SCP)

- Matrice binaria A con m righe e n colonne:
 se A_{ij} =1 si dice che la colonna j "copre" la riga
 i
- C_j "costo" della colonna j (j=1,...,n)

 determinare un sottoinsieme di colonne avente costo minimo e tale che ogni riga sia coperta da <u>almeno</u> una colonna selezionata

$$x_j = \begin{cases} 1 & \text{se la colonna } j \text{ viene selezionata} \\ 0 & \text{altrimenti} \end{cases}$$

min

$$\sum_{j=1,n} C_j x_j$$

$$\sum_{j=1,n} A_{ij} x_j \ge 1 \qquad (i = 1, ..., m)$$
$$x_i \in \{0, 1\} \quad (j = 1, ..., n)$$

Variante: set partitioning (SPP)

 determinare un sottoinsieme di colonne avente costo minimo e tale che ogni riga sia coperta da <u>esattamente</u> una colonna selezionata.

$$\sum_{j=1,n} A_{ij} x_j = 1$$
 $(i = 1, ..., m)$

Problema dello zaino (KP01)

- Problema di selezione:
- n oggetti
- P_j profitto dell'oggetto j (j=1,...,n)
- W_j peso dell'oggetto j (j=1,...,n)
- 1 contenitore (zaino) di capacità K

 determinare un <u>sottoinsieme</u> di oggetti avente massimo profitto e peso complessivo non superiore alla capacità K dello zaino

Modello PLI

$$x_j = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore} \\ 0 & \text{altrimenti} \end{cases}$$

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq K$$

$$x_j \in \{0, 1\} \quad (j = 1, ..., n)$$

$$0 \le x_j \le 1$$
 INTERA $(j = 1, ..., n)$

STUDIORUM

Variante: KP-bounded

- Il generico oggetto j è disponibile in c_i esemplari
- può essere scelto c_i volte

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq K$$

$$x_j \in \{0, 1\} \quad (j = 1, ..., n)$$

$$0 \le x_j \le c_j \text{ INTERA } (j = 1, ..., n)$$

Variante: subset sum problem

- Il generico oggetto j ha profitto P_j e peso $W_j = P_{j.}$ dato un insieme di n numeri, selezionarne un sottoinsieme di somma massima e non eccedente una data soglia K
- Taglio di barre e minimizzazione scarto

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} P_j x_j \le K$$

$$x_i \in \{0, 1\} \quad (j = 1, ..., n)$$

oppure

$$0 \le x_j \le 1$$
 INTERA $(j = 1, ..., n)$

Problema KP multiplo (MKP01)

- *n* oggetti
- P_i profitto dell'oggetto j (j=1,...,n)
- W_j peso dell'oggetto j (j=1,...,n)
- m contenitori, ciascuno di capacità K_i (i=1,...,m)
- un oggetto può al più andare in un solo contenitore
- impaccare nei contenitori un <u>sottoinsieme</u> di oggetti avente massimo profitto in modo che la somma dei pesi degli oggetti inseriti in ogni contenitore non superi la corrispondente capacità K_i

$$x_{ij} = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore } i \\ 0 & \text{altrimenti} \end{cases}$$

- n oggetti
- W_j peso dell'oggetto j (j=1,...,n)
- n contenitori (bin), ciascuno di capacità K

 impaccare <u>tutti</u> gli oggetti nel minor numero possibile di contenitori in modo che la somma dei pesi degli oggetti inseriti in ogni contenitore non superi la capacità K

Modello PLI

$$x_{ij} = \begin{cases} 1 & \text{se l'oggetto } j \text{ viene inserito nel contenitore } i \\ 0 & \text{altrimenti} \end{cases}$$

$$y_i = \begin{cases} 1 & \text{se il contenitore } i \text{ viene utilizzato} \\ 0 & \text{altrimenti} \end{cases}$$

min
$$\sum_{i=1,n} y_i$$

$$\sum_{j=1,n} W_j x_{ij} \leq K y_i$$
 $(i = 1, ..., n)$

$$\sum_{i=1,n} x_{ij} = 1$$
 $(j = 1, ..., n)$
 $y_i \in \{0, 1\}$ $(i = 1, ..., n)$
 $x_{ij} \in \{0, 1\}$ $(i, j = 1, ..., n)$

Variante: Vector Packing (VPP)

• Il generico oggetto j ha un volume V_j ed ogni contenitore ha anche una capacità in volume T

impaccare <u>tutti</u> gli oggetti nel minor numero possibile di contenitori in modo da rispettare, in ogni contenitore, sia il vincolo di peso che quello di volume

$$\sum_{j=1,n} W_j x_{ij} \leq K_i y_i \quad (i = 1, ..., m)$$

$$\sum_{j=1,n} V_j x_{ij} \leq T_i y_i \quad (i = 1, ..., m)$$

In generale: ogni oggetto *j* ha *m* dimensioni...

Variante: Bin con capacità variabile

Il generico contenitore i ha capacità K_i (e costo C_i)

impaccare <u>tutti</u> gli oggetti in un insieme di contenitori di costo minimo in modo che la somma dei pesi degli oggetti inseriti in ogni contenitore i non superi la capacità K_i

Sequenziamento di lavorazioni

- n lavorazioni
- p_i tempo di processamento lavorazione j
- no preemption = una volta iniziata la lavorazione non può essere interrotta
- m macchine identiche
- una sola lavorazione alla volta per ogni macchina
- assegnare le lavorazioni alle macchine in modo tale che il tempo totale di processamento sia minimo

Sequenziamento di lavorazioni (2)

• n = 5, m = 2, $p_j = \{90, 50, 30, 40, 20\}$

Variabili decisionali

$$x_{ij} = \begin{cases} 1 & \text{se la macchina } i \text{ esegue lavorazione } j \\ 0 & \text{altrimenti} \end{cases}$$

z = massimo tempo di lavorazione (makespan)

Modello matematico (PL mista)

- Funzione obiettivo (min. makespan)
 min z
- definizione makespan:

$$\sum_{j=1,n} p_j x_{ij} \leq z \qquad (i=1,\ldots,m)$$

Ogni lavorazione su una sola macchina:

$$\sum_{i=1,m} x_{ij} = 1 (j = 1, ..., n)$$

$$x_{ij} \in \{0, 1\} (i, j = 1, ..., n)$$

$$z \geq 0$$