A Yoneda Speedrun

Pete Su

2021-10-30 (Updated 2023-10-02)

1. The Big Picture

The Yoneda Lemma is a basic and beloved result in category theory. Even though it is called a "lemma", a word usually used to describe a minor result that you prove on the way to the main event, the Yoneda lemma is a main event. It is a result that expresses one of the main goals of category theory: it characterizes universal facts about general abstract constructs.

Its statement is deceivingly simple [9]:

Let C be a locally small category. Let X be an object of C, and let $F: C \longrightarrow \mathbf{Sets}$ be a functor from C to the category \mathbf{Sets} . Then there is an invertible mapping

$$\operatorname{Hom}(\mathbf{C}(X,-),F) \cong FX$$

that associates each natural transformation $\alpha: \mathbf{C}(X, -) \Rightarrow F$ with the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

But as Sean Carroll famously wrote about general relativity, "..., these statements are incomprehensible unless you sling the lingo" [1].

I am going to do the following dumb thing: having stated a version of the lemma above I'm going to define only the parts of the category theory needed to explain what the lingo means. There are five or six layers of abstraction that I will try to explain. As for the larger meaning of the result itself, you are on your own.

In the spirit of video game speedruns [6], we will skip entire interesting areas of category theory in the name of getting to the end of our "game" as fast as possible. Clearly this will be no substitute for really learning the subject. Any of the references listed at the end will be a good place to start to better understand the whole game.

Note: I am not a mathematician or a category theory expert. I just wrote this down trying to figure out the language. So everything in this document is probably wrong.

2. Categories

Categories have a deliciously chewy multi-part definition.

Definition 1. A category C consists of:

- A collection of *objects* that we will denote with upper case letters X, Y, Z, ..., and so on. We call this collection Objects(\mathbf{C}). Traditionally people write just \mathbf{C} to mean Objects(\mathbf{C}) when the context makes clear what is going on.
- A collection of arrows denoted with lower case letters f, g, h, ..., and so on. Other names for arrows include mappings or functions or morphisms. We will call this collection Arrows(C).

The objects and arrows of a category satisfy the following conditions:

- Each arrow f connects one object $A \in \text{Objects}(\mathbf{C})$ to another object $B \in \text{Objects}(\mathbf{C})$ and we denote this by writing $f: A \longrightarrow B$. A is called the source (or domain) of f and B the target (or codomain). Source and target are somewhat more intuitive terms, but domain and codomain connect the language to functions in other areas of mathematics.
- For each pair of arrows $f: A \longrightarrow B$ and $g: B \longrightarrow C$ we can form a new arrow $g \circ f: A \longrightarrow C$ called the *composition* of f and g. This is also sometimes written gf.
- For each $A \in \text{Objects}(\mathbf{C})$ there is an arrow $1_A : A \longrightarrow A$, called the *identity* at A that maps A to itself. Sometimes this object is also written as id_A .

Finally, we have the last two rules:

- For any $f:A\longrightarrow B$ we have that $1_B\circ f$ and $f\circ 1_A$ are both equal to f.
- Given $f: A \longrightarrow B$, $g: B \longrightarrow C$, $h: C \longrightarrow D$ we have that $(h \circ g) \circ f = h \circ (g \circ f)$, or alternatively (hg)f = h(gf). What this also means is that we can always just write hgf if we want.

Given a category \mathbf{C} and objects A, B in \mathbf{C} we write $\operatorname{Arrows}_{\mathbf{C}}(A, B)$ to mean the collection of all arrows from A to B in \mathbf{C} if we are being maximally careful. In practice we will usually write $\operatorname{Arrows}(A, B)$ because the \mathbf{C} subscript is tedious and it's clear what category A and B come from. People also write $\operatorname{Hom}(A, B)$ or $\operatorname{Hom}_{\mathbf{C}}(A, B)$, or $\operatorname{hom}(A, B)$ or just $\mathbf{C}(A, B)$ to mean $\operatorname{Arrows}(A, B)$. Here "Hom" stands for homomorphism, which is a standard word for mappings that preserve some kind of structure. Category theory, and the Yoneda lemma, it turns out, is mostly about the arrows.

I have broken with well established tradition in mathematical writing and mostly spelled out names for clarity rather than engaging in the strange and random abbreviations that I see in most category theory texts. The general fear of readable names in the mathematical literature is fascinating to me, having spent most of my life trying to think up readable names in program source code. Life is too short to deal with names like ob, or **Htpy**, or **Matr**. Luckily, for this note the only specific category that we will run into is the straightforwardly named **Sets**, where the objects are sets and the arrows are mappings between sets.

Speaking of sets, in the definition of categories we were careful about not calling anything a *set*. This is because some categories involve collections of things that are too "large" to be called sets and not get into set theory trouble. Here are two more short definitions about this that we will need.

Definition 2. A category C is called *small* if Arrows(C) is a set.

Definition 3. A category \mathbb{C} is called *locally small* if $\operatorname{Arrows}_{\mathbb{C}}(A, B)$ is a set for every $A, B \in \mathbb{C}$.

For the rest of this note we will only deal with locally small categories, since in the setup for the lemma, we are given a category **C** that is locally small.

Finally, one more notion that we'll need later is the idea of an isomorphism.

Definition 4. An arrow $f: X \longrightarrow Y$ in a category \mathbb{C} is an *isomorphism* if there exists an arrow $g: Y \longrightarrow X$ such that $gf = 1_X$ and $fg = 1_Y$. We say that the objects X and Y are *isomorphic* to each other whenever there exists an isomorphism between them. If two objects in a category are isomorphic to each other we write $X \cong Y$.

Note that in the category **Sets** the isomorphisms are exactly the invertible mappings between sets. An invertible mapping is also called a *bijection* (because it's injective and surjective, you see), so you will see that word sometimes.

3. Functors

As we navigate our way from basic categories up to the statement of the lemma we will travel through multiple layers conceptual abstraction. At the base of this ladder are the categories which themselves are already an abstraction of the many ways that we express "mathematical structures". But we have much higher to climb. Functors are the first step up.

Functors are the *arrows between categories*. That is, if you were to define a category where the objects were all categories of some kind then the arrows would be functors.

Definition 5. Given two categories C and D a functor $F: C \longrightarrow D$ is defined by two sets of parallel rules. First:

- For each object $X \in \mathbf{C}$ we assign an object $F(X) \in \mathbf{D}$.
- For each arrow $f: X \longrightarrow Y$ in ${\bf C}$ we assign an arrow $F(f): F(X) \longrightarrow F(Y)$ in ${\bf D}$.

So F maps objects in \mathbf{C} to objects in \mathbf{D} and also arrows in \mathbf{C} to arrows in \mathbf{D} such that the sources and targets match up the right way. That is, the source of F(f) is F applied to the source of f, and the target of F(f) is F applied to the target of f. In addition the following must be true:

- If $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ are arrows in \mathbf{C} then $F(g \circ f) = F(g) \circ F(f)$ (or F(gf) = F(g)F(f)).
- For every $X \in \mathbf{C}$ it is the case that $F(1_X) = 1_{F(X)}$.

Thus, the mappings that make up a functor preserve all of the structure of the source category in its target, namely the sources and targets of arrows, composition, and the identities.

If $F: \mathbf{C} \longrightarrow \mathbf{D}$ is a functor from a category \mathbf{C} to another category \mathbf{D} , X and Y are objects in \mathbf{C} , and $f: X \longrightarrow Y$ is an arrow in \mathbf{C} we may write FX to mean F(X) and Ff to mean F(f). This is analogous to the more compact notation for composition of arrows above.

Functors can be notationally confusing because we are using one name to denote two mappings. So if $F: \mathbf{C} \longrightarrow \mathbf{D}$ and $X \in \mathbf{C}$ then F(X) is the functor applied to the object, which will be an object in \mathbf{D} . On the other hand, if $f: A \longrightarrow B$ is an arrow in \mathbf{C} then we also write $F(f) \in \mathbf{D}$ for the functor applied to the arrow. This makes sense but can be a little weird. Sometimes in proofs and calculations the notations will shift back and forth without enough context and can be disorienting.

4. Natural Transformations

Natural transformations are the next step up the ladder. If functors are arrows between categories, then natural transformations are arrows between functors.

Definition 6. Let \mathbb{C} and \mathbb{D} be categories, and let F and G be functors $\mathbb{C} \longrightarrow \mathbb{D}$. To define a *natural transformation* α from F to G, we assign to each object X of \mathbb{C} , an arrow $\alpha_X : FX \longrightarrow GX$ in \mathbb{D} , called the *component* of α at X.

In addition, for each arrow $f: X \longrightarrow Y$ of \mathbb{C} , the following diagram has to commute:

$$\begin{array}{ccc}
FX & \xrightarrow{Ff} & FY \\
\downarrow^{\alpha_X} & & \downarrow^{\alpha_Y} \\
GX & \xrightarrow{Gf} & GY
\end{array}$$

This is the first commutative diagram that I've tossed up. There is no magic here. The idea is that you get the same result no matter which way you travel through the diagram. So here $\alpha_Y \circ F$ and $G \circ \alpha_X$ must be equal.

We write natural transformations with double arrows, $\alpha : F \Rightarrow G$, to distinguish them in diagrams from functors (which are written with single arrows):

$$\mathbf{C} \xrightarrow{F} \mathbf{D}$$

You might wonder to yourself: what makes natural transformations "natural"? The answer appears to be related to the fact that you can construct them from only what is given to you in the categories at hand. The natural transformation takes the action of F on \mathbb{C} and lines it up exactly with the action of F on \mathbb{C} . No other assumptions or conditions are needed. In this sense they define a relationship between functors that is just sitting there in the world no matter what, and thus "natural". Another apt way of putting this is that natural transformations give a canonical way of moving between the images of two functors [3].

As with arrows, it will be useful to define what an isomorphism means in the context of natural transformations:

Definition 7. A natural isomorphism is a natural transformation $\alpha: F \Rightarrow G$ in which every component α_X is an isomorphism. In this case, the natural isomorphism may be depicted as $\alpha: F \cong G$.

5. Functor Categories

In the last two sections we have defined functors, and then the natural transformations. Given that functors and natural transformations look a lot like objects and arrows, the next obvious thing is to use them to make a new kind of category.

Definition 8. Let **C** and **D** be categories. The *functor category* from **C** to **D** is constructed as follows:

• The objects are functors $F: \mathbf{C} \longrightarrow \mathbf{D}$;

• The arrows are natural transformations $\alpha: F \Rightarrow G$.

Right now you should be wondering to yourself: "wait, does this definition actually work?" I have brazenly claimed without any justification that the it's OK to use the natural transformations as arrows. Luckily it's fairly clear that this works out if you just do everything component-wise. So if we have all of these things:

- Three functors, $F: \mathbf{C} \longrightarrow \mathbf{D}$ and $G: \mathbf{C} \longrightarrow \mathbf{D}$ and $H: \mathbf{C} \longrightarrow \mathbf{D}$.
- Two natural transformations $\alpha: F \Rightarrow G$ and $\beta: G \Rightarrow H$
- One object $X \in \mathbf{C}$.

Then you can define $(\beta \circ \alpha)(X) = \beta(X) \circ \alpha(X)$ and you get the right behavior. Similarly, the identity transformation 1_F can be defined component-wise: $(1_F)(X) = 1_{F(X)}$.

There are a lot of standard notations for the functor category, none of which I really like. The most popular seems to be $[\mathbf{C}, \mathbf{D}]$, but you also see $\mathbf{D}^{\mathbf{C}}$, and various abbreviations like $\operatorname{Fun}(\mathbf{C}, \mathbf{D})$ or $\operatorname{Func}(\mathbf{C}, \mathbf{D})$, or $\operatorname{Funct}(\mathbf{C}, \mathbf{D})$. I think we should just spell it out and use $\operatorname{Functors}(\mathbf{C}, \mathbf{D})$. So there.

Now we can define this notation:

Definition 9. Let \mathbb{C} and \mathbb{D} be categories, and let $F, G \in \text{Functors}(\mathbb{C}, \mathbb{D})$. Then we'll write Natural(F, G) for the set of all natural transformations from F to G, which in this context is the same as the arrows from F to G in the functor category.

You will also see people write $\operatorname{Hom}(F,G)$, $\operatorname{Hom}_{[\mathbf{C},\mathbf{D}]}(F,G)$, or $[\mathbf{C},\mathbf{D}](F,G)$ for this. Or, if **K** is a functor category then people will write $\operatorname{Hom}_{\mathbf{K}}(F,G)$ or $\mathbf{K}(F,G)$ for this.

6. Representing Functors

The next conceptual step that we need is a way to relate *functors* to *objects*. The following definition is a natural way to do this once you see how it works but is also probably the most confusing definition in these notes.

Definition 10. Given a locally small category \mathbf{C} and an object $X \in \mathbf{C}$ we define the functor

$$Arrows(X, -) : \mathbf{C} \longrightarrow \mathbf{Sets}$$

using the following assignments:

• A mapping from $\mathbb{C} \longrightarrow \mathbf{Sets}$ that assigns to each $A \in \mathrm{Objects}(\mathbb{C})$ the set $\mathrm{Arrows}(X,A)$

• A mapping from Arrows(\mathbf{C}) \longrightarrow Arrows(\mathbf{Sets}) that assigns to each arrow $f: A \longrightarrow B$ a mapping f_* defined by $f_*(g) = f \circ g$ where g is an arrow from X to A.

Here is a good picture of what is going on [9]:1

$$\begin{array}{ccc} \mathbf{C} & \xrightarrow{\operatorname{Arrows}(X,-)} & \mathbf{Sets} \\ A & \mapsto & \operatorname{Arrows}(X,A) \\ f \downarrow & \mapsto & \downarrow f_* \\ B & \mapsto & \operatorname{Arrows}(X,B) \end{array}$$

Check over this picture in your head, and note that there are *two* mappings, and two different kinds of placeholders: one for objects and one for arrows.

The notation Arrows(X, -) is a bit strange. The idea is that we have defined a mapping with two arguments, but then fixed the object X. Then we use the "-" symbol as a placeholder for the second argument. So Arrows(X, -) operates on all the other objects in \mathbb{C} , named by the dummy variable A. This is a bit of an abuse of notation since we are apparently using the symbol "Arrows" to mean two different things (one is a set, the other a functor). Oh well.

The mapping for the arrows works the same way. Given $A, B \in \mathbb{C}$ and an arrow $f: A \longrightarrow B$, it should be the case that $\operatorname{Arrows}(X, -)$ applied to f is an arrow that maps $\operatorname{Arrows}(X, A) \longrightarrow \operatorname{Arrows}(X, B)$. We will call this arrow f_* . If $g: X \longrightarrow A$ is in $\operatorname{Arrows}(X, A)$ then the value that we want for f_* at g is $f_*(g) = (f \circ g): X \longrightarrow B$. This mapping is called the *post-composition* map of f since we apply f after g. You also see it written as $f \circ -$. The *pre-composition* map is then f^* or $- \circ f$.

Other notations for this functor include $\operatorname{Hom}(X,-)$, $\operatorname{Hom}_{\mathbf{C}}(X,-)$, H^X , h^X , and just plain $\mathbf{C}(X,-)$. In my notation we should have written this as $\operatorname{Arrows}_{\mathbf{C}}(X,-)$, but I'm lazy. This kind of functor is also called a *hom-functor*.

Finally, we can give two more important definitions.

Definition 11. Given an object $X \in \mathbb{C}$ we call the functor Arrows(X, -) defined above the functor represented by X.

In addition, we can characterize another important relationship between objects and functors:

Definition 12. Let \mathbb{C} be a category. A functor $F: \mathbb{C} \longrightarrow \mathbf{Sets}$ is called *representable* if it is naturally isomorphic to the functor $\mathrm{Arrows}_{\mathbb{C}}(X,-): \mathbb{C} \longrightarrow \mathbf{Sets}$ for some object X of \mathbb{C} . In that case we call X the *representing object*.

¹Added this in 2023 because I did not notice it before. Sigh.

7. Opposites and Duals

Next we move a bit sideways. Duality in mathematics comes up in a lot of different ways. Covering it all is way beyond the scope of these notes. But the following definition is a basic part of category theory so it's worth including.

Definition 13. Let C be a category. Then we write C^{op} for the *opposite* or *dual* category of C, and define it as follows:

- The objects of C^{op} are the same as the objects of C.
- Arrows(\mathbf{C}^{op}) is defined by taking each arrow $f: A \longrightarrow B$ in Arrows(\mathbf{C}) and flipping its direction, so we put $f': B \longrightarrow A$ into Arrows(\mathbf{C}^{op}). In particular for $A, B \in \text{Objects}(\mathbf{C})$ we have $\text{Arrows}_{\mathbf{C}}(A, B) = \text{Arrows}_{\mathbf{C}^{\text{op}}}(B, A)$ (or $\mathbf{C}(A, B) = \mathbf{C}^{\text{op}}(B, A)$).
- Composition of arrows is the same, but with the arguments reversed.

The *principle of duality* then says, informally, that every categorical definition, theorem and proof has a dual, obtained by reversing all the arrows.

Duality also applies to functors.

Definition 14. Given categories C and D a *contravariant* functor from C to D is a functor $F: C^{op} \longrightarrow D$ where:

- We have an object $F(A) \in \text{Objects}(\mathbf{D})$ for each $A \in \text{Objects}(\mathbf{C})$.
- For each arrow $f: A \longrightarrow B \in Arrows(\mathbf{C})$ we have an arrow $F(f): FB \longrightarrow FA$ in $Arrows(\mathbf{D})$.

In addition:

- For any two arrows $f, g \in \text{Arrows}(\mathbf{C})$ where $g \circ f$ is defined we have $F(f) \circ F(g) = F(g \circ f)$.
- For each $A \in \text{Objects}(\mathbf{C})$ we have $1_{F(A)} = F(1_A)$

Note how the arrows and composition go backwards when they need to. With this terminology in mind, we call regular functors from $C \longrightarrow D$ covariant.

8. Yoneda Again

Now we have all the language we need to look at the statement of the lemma again. So, here is what we wrote down before, more verbosely, and in my notation.

Lemma 1 (Yoneda). Let **C** be a locally small category, $F : \mathbf{C} \longrightarrow \mathbf{Sets}$ a functor, and $X \in \mathrm{Objects}(\mathbf{C})$. We can define a mapping from Natural(Arrows $(X, -), F) \longrightarrow FX$ by assigning each transformation $\alpha : \mathrm{Arrows}(X, -) \Rightarrow F$ the value $\alpha_X(1_X) \in FX$. This mapping is invertible and is natural in both F and X.

So now we can break it down:

- In principle the natural transformations from $Arrows(X, -) \Rightarrow F$ could be a giant complicated thing.
- But actually it can only be as large as FX. The fact that this mapping is invertible implies that Natural(Arrows(X, -), F) and FX are isomorphic (that is, Natural(Arrows(X, -), F) $\cong FX$).
- In other words, every natural transformation from Arrows(X, -) to F is the same as an element of the set FX. In particular, all we need to know is how $\alpha_X(1_X)$ is defined to know how any of the natural transformations are defined.
- Which is pretty amazing.

To write this in the dual language, you just change Arrows(X, -) to Arrows(-, X), which switches the direction of all the arrows and the order of composition in the composition maps.

So with that, here are some other ways people write the result, and how their lingo translates to my notational scheme. As one last bit of terminology, in some of the definitions below the word *bijection* is used to mean an invertible mapping.

This statement is due to Tom Leinster [5], and uses the contravariant language.

Lemma 2 (Yoneda). Let C be a locally small category. Then

$$[\mathbf{C}^{\mathrm{op}}, \mathbf{Sets}](H_X, F) \cong F(X)$$

naturally in $X \in \mathbf{C}$ and $F \in [\mathbf{C}^{\mathrm{op}}, \mathbf{Sets}]$.

Here $[\mathbf{C}^{\text{op}}, \mathbf{Sets}]$ is the category of functors from \mathbf{C}^{op} to \mathbf{Sets} and H_X means $\operatorname{Arrows}(-, X)$. The notation $[\mathbf{C}^{\text{op}}, \mathbf{Sets}](H_X, F)$ denotes the arrows in the functor category $[\mathbf{C}^{\text{op}}, \mathbf{Sets}]$ between H_X and F, so it's the same as $\operatorname{Natural}(H_X, F)$.

Emily Riehl's [9] version is what I used at the top:

Lemma 3 (Yoneda). Let \mathbb{C} be a locally small category and $X \in \mathbb{C}$. Then for any functor $F : \mathbb{C} \longrightarrow \mathbf{Sets}$ there is a bijection

$$\operatorname{Hom}(\mathbf{C}(X, -), F) \cong FX$$

that associates each natural transformation $\alpha: \mathbf{C}(X, -) \Rightarrow F$ with the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

Here $\text{Hom}(\mathbf{C}(X, -), F)$ means Natural(Arrows(X, -), F). I think this is my favorite "standard" way of writing this.

Peter Smith [11] does this:

Lemma 4 (Yoneda). For any locally small category \mathbb{C} , object $X \in \mathbb{C}$, and functor $F : \mathbb{C} \longrightarrow \mathbf{Sets}$ we have $\mathrm{Nat}(\mathbb{C}(X, -), F) \cong FX$ both naturally in $X \in \mathbb{C}$ and $F \in [\mathbb{C}, \mathbf{Sets}]$.

He uses the $[C, \mathbf{Sets}]$ notation for the functor category, and "Nat" where we use "Natural".

Paolo Perrone [8] writes the dual version, and uses the standard term "presheaf" to mean a functor from C^{op} to **Sets**.

Lemma 5 (Yoneda). Let **C** be a category, let X be an object of **C**, and let $F: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ be a presheaf on **C**. Consider the map from

$$\operatorname{Hom}_{[\mathbf{C}^{\operatorname{op}},\mathbf{Sets}]}(\operatorname{Hom}_{\mathbf{C}}(-,X),F) \longrightarrow FX$$

assigning to a natural transformation $\alpha : \operatorname{Hom}_{\mathbf{C}}(-, X) \Rightarrow F$ the element $\alpha_X(\operatorname{id}_X) \in FX$, which is the value of the component α_X of α on the identity at X.

This assignment is a bijection, and it is natural both in X and in F.

Here he writes $\text{Hom}_{\mathbf{C}}$ for $\text{Arrows}_{\mathbf{C}}$ and $\text{Hom}_{[\mathbf{C}^{\text{op}},\mathbf{Sets}]}$ to mean the arrows in the functor category $[\mathbf{C}^{\text{op}},\mathbf{Sets}]$, which are the natural transformations.

Finally, Peter Johnstone [4] has my favorite, relatively concrete statement:

Lemma 6 (Yoneda). Let **C** be a locally small category, let X be an object of **C** and let $F: \mathbf{C} \longrightarrow \mathbf{Sets}$ be a functor. Then

- (i) there is a bijection between natural transformations $C(X, -) \Rightarrow F$ and the elements of FX; and
- (ii) the bijection in (i) is natural in both F and X.

9. One More Thing

Now your reward for having climbed all the way up this abstraction ladder with me is yet another abstraction!

Suppose we have \mathbb{C} and X as given in the statement of the lemma, and then we are given another object $Y \in \mathbb{C}$. We can apply the lemma by substituting Arrows(Y, -) for the functor F. Then

$$Natural(Arrows(X, -), Arrows(Y, -)) \cong Arrows(Y, -)(X) = Arrows(Y, X)$$

Note the order of the arguments! We can also write:

$$Arrows(X, Y) \cong Natural(Arrows(-, X), Arrows(-, Y))$$

Each of the functors Arrows(-, X) maps from $\mathbb{C}^{op} \longrightarrow \mathbf{Sets}$ because that's how we defined the represented functors. So now let's jump up one more level of abstraction. We define a functor that maps objects to the functors that they represent, and arrows to the natural transformations between those functors. Given an object $Y \in \mathbb{C}$ define the functor $Yo: \mathbb{C} \longrightarrow \mathrm{Functors}(\mathbb{C}^{op}, \mathbf{Sets})$ by

$$Yo(Y) = Arrows(-, Y) : \mathbf{C}^{op} \longrightarrow \mathbf{Sets}$$

and given an arrow $f: A \longrightarrow B$ with $A, B \in \mathbf{C}$ define

$$Yo(f) = f_* = (f \circ -) : Arrows(-, A) \Rightarrow Arrows(-, B)$$

This definition has the same "shape" as the one for represented functors, but we have abstracted over all the objects and arrows. Also note that we could have also defined this as $Yo: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathrm{Functors}(\mathbf{C}, \mathbf{Sets})$ using duality. All that changes is the order of the arguments in the functors.

The Yoneda lemma can now be used to prove that these mappings are invertible, so Yo is what is called an *embedding* of the category \mathbb{C} inside the functor category Functors(\mathbb{C}^{op} , \mathbf{Sets}). Thus Yo is called the Yoneda embedding, and you can read about the rest of the details in the references.

This construction tells us why people say things like, "Every object in a category can be understood by understanding the maps into (or out of) it." This statement can be made precise:

Corollary 7. Let C, X, and Y be given as above.

- X and Y are isomorphic if and only if for every object $A \in \mathbb{C}$, the sets $\operatorname{Arrows}(X,A)$ and $\operatorname{Arrows}(Y,A)$ are naturally isomorphic.
- X and Y are isomorphic if and only if the functors that they represent are naturally isomorphic. In particular, if X and Y represent the same functor then they must be isomorphic.

10. Final Thoughts

To close, a few final thoughts, and no more abstraction.

First, the modern internet is something of an endless treasure trove for the amateur category theory nerd. I have listed my favorite references at the end of this note, and it's amazing that you can download almost them all for free, and sometimes with source code! When trying to understand something that is as deep an abstraction stack as this result it is very useful to be able to look at it from many different points of view.² So, I am grateful for all of the sources.

Second, I wish I could have thought of a better notation for the represented functor than Arrows(X, -) with all that placeholder nonsense. I don't like how the placeholders can stand in for anything you want and how their meaning can shift and change in different contexts. But, even with those problems it's better than hiding the definition behind yet another layer of naming (e.g. H_X), which is the only other obvious choice.

Third, you might have found my use of Yo for the Yoneda embedding to be frivolous, and perhaps childish. And I would have agreed. But then I read in multiple sources that the Yoneda embedding is sometimes denoted by &, the hiragana kana for "Yo". Given this, how could I resist?

Finally, I need to shout out the excellent tutorial video by Emily Riehl that demonstrates how this result works the specific category of matrices [10]. The whole Yoneda picture suddenly became more clear while I was watching this talk the second time. Her book, *Category Theory in Context*, is also excellent [9]. Recommended.

²Which, of course, is very much in the spirit of the subject matter.

11. Cheat Sheet

C, C^{op} Categories and opposite categoies.

Objects Objects in a category category C. Often just written C.

 $Arrows(\mathbf{C})$ Arrows in a category.

 $Arrows_{\mathbf{C}}(X,Y)$ Arrows between two objects. Also written Arrows(X,Y) or

 $\operatorname{Hom}(X,Y)$ or $\operatorname{Hom}_{\mathbf{C}}(A,B)$ or just $\mathbf{C}(X,Y)$.

 $f: X \longrightarrow Y$ An arrow from X to Y.

 $g \circ f$, gf Composition of arrows.

 $X \cong Y$ Isomorphism.

 $F: \mathbf{C} \longrightarrow \mathbf{D}$ A functor from \mathbf{C} to \mathbf{D} .

 $\alpha: F \Rightarrow G$ Natural transformation.

Functors(\mathbf{C}, \mathbf{D}) Functor category between \mathbf{C} and \mathbf{D} . Also $[\mathbf{C}, \mathbf{D}]$ or $\mathbf{D}^{\mathbf{C}}$.

Natural(F,G) The collection of natural transformations from F to G. Also

written $[\mathbf{C}, \mathbf{D}](F, G)$, or $\mathrm{Nat}(F, G)$ or just $\mathrm{Hom}(F, G)$.

Arrows(X, -) The represented or "arrow" functor for X. Also called the

"hom" functor and written $\mathbf{C}(X,-),\ H^X,\ h^X,\ \mathrm{hom}_X,$ or

 $\operatorname{Hom}(X, -)$.

 $f \circ -, - \circ f$ Pre- and post-composition maps. Also written f_* and f^* .

You Young Embedding.

References

- [1] Sean Carroll, A No-Nonsense Introduction to General Relativity, 2001.
- [2] Eugenia Cheng, The Joy Of Abstraction, 2022.
- [3] Julia Goedecke, Category Theory Notes, 2013.
- [4] Peter Johnstone, Category Theory, notes written by David Mehrle, 2015.
- [5] Tom Leinster, Basic Category Theory, 2016.
- [6] LobosJr, Dark Souls 1 Speedrun, Personal Best, 2013.
- [7] Saunders Mac Lane, Categories for the Working Mathematician, Second Edition, Springer, 1978.
- [8] Paolo Perrone, Notes on Category Theory with examples from basic mathematics, 2019.
- [9] Emily Riehl, Category Theory in Context, Dover, 2016.
- [10] Emily Riehl, ACT 2020 Tutorial: The Yoneda lemma in the category of matrices.
- [11] Peter Smith, Category Theory: A Gentle Introduction, 2019.