Exercise Sheet 6 Linear Algebra (AAI)

Exercise 6.1 (H)

Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be linear and given by

$$F((1,0,0)^{\top}) = (1/\sqrt{2}, 1/\sqrt{2}, 0)^{\top},$$

$$F((0,1,0)^{\top}) = (-1/\sqrt{2}, 1/\sqrt{2}, 0)^{\top},$$

$$F((0,0,1)^{\top}) = (0,0,1)^{\top}.$$

- a) Determine $A \in \mathbb{R}^{3\times 3}$ such that F(x) = Ax for all $x \in \mathbb{R}^3$.
- b) Determine the dimension and a basis of $\ker F$ and $\operatorname{im} F$.
- c) Is F bijective? If so, determine the inverse map $F^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$ and $A^{-1} \in \mathbb{R}^{3 \times 3}$ such that $F^{-1}(x) = A^{-1}x$ for all $x \in \mathbb{R}^3$. What does F represent geometrically?

Exercise 6.2 (H)

Let $A \in \mathbb{R}^{3\times 3}$ be given by

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 9 \\ 7 & 8 & 15 \end{pmatrix}.$$

- a) Determine the dimension and a basis of ker F and im F for $F = \mathcal{F}_A$.
- b) Is F bijective? If so, determine the inverse map $F^{-1}: \mathbb{R}^3 \to \mathbb{R}^3$ and $A^{-1} \in \mathbb{R}^{3 \times 3}$ such that $F^{-1}(x) = A^{-1}x$ for all $x \in \mathbb{R}^3$.
- c) Determine $F^{-1}(\{b\})$ for $b = (-1, -4, -7)^{\top}$ and $b = (1, 0, 0)^{\top}$, i.e., find all $x \in \mathbb{R}^3$ such that Ax = b.

Exercise 6.3 (H)

Let V be a K-vector space and let $F: V \to V$ be linear. Show that

$$\ker F \cap \operatorname{im} F = \{0\} \iff \ker(F \circ F) = \ker F.$$

Hint: For " \Rightarrow " assume $\ker F \cap \operatorname{im} F = \{0\}$ and show both statements $\ker(F \circ F) \subseteq \ker F$ and $\ker(F \circ F) \supseteq \ker F$ separately. For " \Leftarrow " consider an arbitrary $x \in \ker F \cap \operatorname{im} F$ and deduce that x = 0.

Exercise 6.4 (H)

Let Π_2 be the \mathbb{R} -vector space of polynomial functions where the degree is at most 2, see Example II.4.13. Moreover, let $\mathcal{B} = (f_0, f_1, f_2)$ be given by

$$f_0(x) = 1,$$
 $f_1(x) = 1 + x,$ $f_2(x) = 1 + x + x^2$

for $x \in \mathbb{R}$.

- a) Show that \mathcal{B} is a basis of Π_2 .
- b) Let $v \in \Pi_2$ be given by $v(x) = 2x^2 + x 3$ for $x \in \mathbb{R}$. Determine the family of coordinates $\Phi_{\mathcal{B}}^{-1}(v) \in \mathbb{R}^3$ of v w.r.t. the basis \mathcal{B} . Hint: Express v in terms of \mathcal{B} .