שיעור 1 שדות

1.1 מספרים מרוכבים

))

הגדרה 1.1 מספר מרוכב

.זוג סדור z=(x,y) של מספרים ממשיים נקרא מספר מרוכב

אם y=0 נקבל זוג (x,0). נסמן (x,0). נגדיר את הפעולות הבאות בין מספרים מרוכבים:

הגדרה 1.2 פעולות בינאריות של מספרים מרוכבים

$$z_1=(x_2,y_2)$$
 , $z_1=(x_1,y_1)$ נניח

1) חיבור

$$z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$$

2) כפל

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2, x_1 y_2 + x_2 y_1)$$

קל לראות:

מתקיים
$$z_1=(x_1,y_1)$$
 לכל מספר ממשי $x=(x,0)$ מתקיים לכל גל מספר מספר אינ $x\cdot z_1=(x\cdot x_1,x\cdot y_1)$

מתקיים ($x_2,0$) ו- ($x_1,0$) מתקיים לכל (2

$$(x_1,0)\cdot(x_2,0)=(x_1x_2,0)=x_1x_2$$

i 1.3 הגדרה

נסמן

$$i = (0, 1)$$
.

היא i

$$i^2 = i \cdot i = (0,1) \cdot (0,1) = (0 \cdot 0 - 1 \cdot 1, \ 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1.$$

משפט 1.1 הצגה אלגברית שך מספר מרוכב

תןך שימוש במספר i כל מספר מרוכב z=(x,y) ניתן לרשום

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) \cdot (0, 1) = x + iy$$
.

נקרא הצגה אלגברית של מספר מרוכב. x+iy

 $x=\mathrm{Re}(z)$ מסמנים z מחלק הממשי של ב- ל- x

 $y = \operatorname{Im}(z)$ מסמנים z מחלק המדומה של

 $\dot{x}=-1$ -2 בהתחשב ב-קלות מספרים ולהכפיל מספרים לחבר לחבר מאפשרת x+iy

דוגמה 1.1

X

$$(x_1+iy_1)\cdot(x_2+iy_2)=x_1x_2+ix_1y_2+iy_1x_2-y_1y_2=(x_1x_2-y_1y_2)+i(x_1y_2+y_1x_2).$$

דוגמה 1.2

$$(3-5i) \cdot (2+3i) = 6+9i-10i+15=21-i$$
.

הגדרה 1.4 הצמוד

המספר הרוכב z=x+iy נקרא צוד למפר x-iy מסנים:

$$\bar{z} = x - iy$$
.

משפט 1.2

$$z \cdot \bar{z} = x^2 + y^2 .$$

z המספר הזה נקרא ה **הערך המוחלט** או **הגודל** של המספר מספר המרוכב

דוגמה 1.3

$$\frac{3+4i}{1-i} = \frac{(3+4i)(1+i)}{(1-i)(1+i)} = \frac{3+3i+4u-4}{2} = \frac{-1+7i}{2} = -\frac{1}{2} + \frac{7}{2}i$$

דוגמה 1.4

מצאו את המספר z המקיים את מצאו

$$\frac{1-iz}{1+iz} = -2i \ .$$

פתרון:

$$1 - iz = -2i(1 + iz) = 2z - 2i \quad \Rightarrow \quad z(2+i) = 1 + 2i$$

$$z = \frac{1+2i}{2+i} = \frac{(1+2i)(2-i)}{(2+i)(2-i)} = \frac{2-i+4i+2}{5} = \frac{4+3i}{5} = \frac{4}{5} + \frac{3}{5}i$$

 \mathbb{C} -קבוצת המספרים המרוכבים מסומנת

אפשר לראות בקלות ש- $\mathbb C$ יחד עם שתי הפעולות שהגדרנו בהגדרה 1.7 מקיימת את כל האקסיומות של שדה, כאשר

$$0 = (0, 0)$$

$$1 = (1, 0)$$

, $z=x+iy \neq 0$ ועבור

$$z^{-1} = \frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i \cdot \frac{y}{x^2+y^2} .$$

p קבוצת השאריות בחלוקה ב \mathbb{Z}_p 1.2

הגדרה 1.5 פונקציית שארית

p בחילוק ב- מוגדרת השארית אבור ב- רימות השארית הפארית השארית השארית אבור הפונקצית השארית k,p

דוגמה 1.5

- לכן 1 השארית של 3 בחילוק ב- 2 היא 1. לכן
- rem(3,2) = 1.
- לכן 3 היא השארית של 7 בחילוק ב- 4 היא השארית •
- rem(7,4) = 3.
 - \bullet השארית של 11 בחילוק ב- 8 היא 8. לכן

$$rem(11, 8) = 3$$
.

p-בחלוקה בחלוקה - \mathbb{Z}_p 1.6 הגדרה

נניח שp מספר האשוני. הקבוצה הסימנים p מספר מספר נניח נניח א

$$\{\overline{0},\overline{1},\overline{2},\ldots,\overline{p-1}\}$$
.

הקבוצה מוגדרת לפי התנאים הבאים:

- (1) כל איבר הוא מספר שלם וחיובי.
- . מספרים עם אותה השאריות בחילוק ב-p שווים זה לזה.
- ונגדיר $ar{k}$ ונגדיר ב- ב- ענסמן איבר לכל מספר לכל (3)

$$\bar{k} = \overline{\mathrm{rem}(k, p)} \ .$$

:לקבוצה \mathbb{Z}_3 יש איברים

$$\{\mathbb{Z}_3 = \bar{0}, \bar{1}, \bar{2}\}$$
.

$$\bar{0} = \overline{\text{rem}(0,3)} = \bar{0}$$

$$\bar{1} = \overline{\text{rem}(1,3)} = \bar{1}$$

$$\bar{2} = \overline{\text{rem}(2,3)} = \bar{2}$$

$$\bar{3} = \overline{\text{rem}(3,3)} = \bar{0}$$

$$\bar{4} = \overline{\text{rem}(4,3)} = \bar{1}$$

$$\bar{5} = \overline{\text{rem}(5,3)} = \bar{2}$$

$$\bar{6} = \overline{\text{rem}(6,3)} = \bar{0}$$

$$\bar{7} = \overline{\text{rem}(7,3)} = \bar{1}$$

$$\bar{8} = \overline{\operatorname{rem}(8,3)} = \bar{2}$$

:

$$\overline{122} = \overline{\text{rem}(122,3)} = \overline{2}$$

:

ובן הלאה.

הגדרה \mathbb{Z}_p איברי בינאריות של 1.7 איברי

 $ar a,ar b\in\mathbb Z_p$ לכל p. לכל ב- p מסםר השאריות השאריות לכל ג $\mathbb Z_p=\{ar 0,ar 1,\dots,\overline{p-1}\}$ לכל לכל מסםר האיות מסםר האיריות נגדיר את הפעולות חיבור וכפל כך:

1) חיבור

$$\bar{a} + \bar{b} = \overline{a + b}$$

2) כפל

$$\bar{a}\cdot\bar{b}=\overline{a\cdot b}\ .$$

דוגמה 1.7

את \mathbb{Z}_5 -את

$$.ar{2}+ar{4}$$
 (x

 $.ar{3}\cdotar{3}$ (2

$$.ar{2} + ar{4} = \overline{2 + 4} = ar{6} = ar{1}$$
 (x

$$.ar{3} \cdot ar{3} = \overline{3 \cdot 3} = ar{9} = ar{4}$$
 (2

את
$$\mathbb{Z}_{11}$$
 -את

$$.ar{3}\cdotar{7}$$
 (x

$$ar{.2}\cdotar{8}$$
 (2

פתרון:

$$.ar{3}\cdotar{7}=\overline{3\cdot7}=\overline{21}=\overline{10}$$
 (x

$$.ar{2}\cdotar{8}=\overline{16}=ar{5}$$
 (ع

דוגמה 1.9

$$\mathbb{Z}_3$$
 -בור של איברים ב \mathbb{Z}_3

לוח החיבור של איברים ב-
$$\mathbb{Z}_3$$
 -לוח החיבור של איברים ב- $\frac{+\mid \bar{0} \mid \bar{1} \mid \bar{2}}{\bar{0} \mid \bar{0} \mid \bar{1} \mid \bar{2}}$ $\bar{1} \mid \bar{1} \mid \bar{2} \mid \bar{0}$ $\bar{2} \mid \bar{2} \mid \bar{0} \mid \bar{1}$

$$\mathbb{Z}_3$$
 -לוח הכפל של איברים ב

$$\mathbb{Z}_3$$
 -לוח הכפל של איברים ב- $\frac{\cdot |\bar{0} - \bar{1} - \bar{2}|}{\bar{0} |\bar{0} - \bar{0} - \bar{0}|}$ $\frac{\bar{1}}{\bar{1}} |\bar{0} - \bar{1} - \bar{2}|$ $\bar{2}$ $\bar{0} |\bar{0} - \bar{2} - \bar{1}|$

דוגמה 1.10

\mathbb{Z}_5 לוח החיבור של איברים של

+	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\bar{0}$	Ō	$ \begin{array}{c} \bar{1} \\ \bar{2} \\ \bar{3} \\ \bar{4} \end{array} $	$\bar{2}$	$\bar{3}$	$\bar{4}$
$ar{1}$ $ar{2}$ $ar{3}$	$\bar{1}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$
$\bar{2}$	$\bar{2}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$
$\bar{3}$	$\bar{3}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$
$\bar{4}$	$\bar{4}$	$\bar{0}$	$\bar{1}$	$\bar{2}$	$\bar{3}$

\mathbb{Z}_5 לוח הכפל של איברים של

•	$\bar{0}$	Ī	$\bar{2}$	$\bar{3}$	$\bar{4}$
$\overline{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$
$\bar{1}$	$\bar{0}$	$\bar{1}$		$\overline{\overline{3}}$	$\bar{4}$
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{4}$	$ar{1} \ ar{4}$	$\bar{3}$
$ \begin{array}{c} \overline{0} \\ \overline{1} \\ \overline{2} \\ \overline{3} \\ \overline{4} \end{array} $	$\begin{bmatrix} \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \end{bmatrix}$	$ar{0}$ $ar{1}$ $ar{2}$ $ar{3}$ $ar{4}$	$\overline{1}$	$\bar{4}$	$ \begin{array}{c} \bar{4} \\ \bar{3} \\ \bar{2} \\ \bar{1} \end{array} $
$\bar{4}$	$\bar{0}$	$\bar{4}$	$\bar{\bar{3}}$	$\bar{2}$	Ī

 $rac{1}{7}\cdot 7=1$ כי $rac{1}{7}$ (או $rac{1}{7}$) כי 7=7 ההופכי של

: כלומר . $ar{1}$ מתקיים $ar{2}+ar{1}=ar{0}$ ולכן ולכן ל- \mathbb{Z}_3 מתקיים

$$-\bar{1}=\bar{2}.$$

 $-ar{2}=ar{1}$ באופן דומה, $ar{1}$ הוא הנגדי של

 $\bar{z}_{0}(\bar{z})^{-1}=\bar{z}$ כלומר בֿ, כלומר בֿ ולכן בֿ ולכן בֿ הוא תקיים בֿ $\bar{z}\cdot \bar{z}=\bar{z}$

\mathbb{Z}_p משפט 1.3 איבר ההופכי ואיבר הנגדי איבר החופכי

p -ב מספר ראשוני ותהי \mathbb{Z}_p הקבוצה השאריות מספר p יהי

א) איבר הנגדי

-כך ש $-a\in\mathbb{Z}_p$ לכל איבר $a\in\mathbb{Z}_p$ קיים איבר יחיד

$$a + (-a) = \bar{0} .$$

a נקרא האיבר הנגדי של -a

ב) איבר ההופכי

-כך ש $a^{-1}\in\mathbb{Z}_p$ שונה מאפס (כלומר $a
eq ar{0}$ קיים איבר יחיד $a\in\mathbb{Z}_p$ כך ש $a\in\mathbb{Z}_p$

$$a \cdot a^{-1} = \bar{1} .$$

 a^{-1} נקרא האיבר ההופכי של a^{-1}

דוגמה 1.11

 \mathbb{Z}_3 -ם $ar{1}$ של מצאו את האיבר הנגדי

פתרון:

נשים לב ש-

$$\bar{1} + \bar{2} = \bar{3} = \bar{0}$$

ולכן

$$-\bar{1}=\bar{2}.$$

דוגמה 1.12

 \mathbb{Z}_3 -ב $\bar{2}$ מצאו את האיבר הנגדי של

פתרון:

נשים לב ש-

$$\bar{2} + \bar{1} = \bar{3} = \bar{0}$$

ולכן

$$-\bar{2}=\bar{1}.$$

 \mathbb{Z}_3 -ם $\bar{3}$ של מצאו את האיבר הנגדי

פתרון:

נשים לב ש-

$$\bar{3} + \bar{0} = \bar{3} = \bar{0}$$

ולכן

$$-\bar{3}=\bar{3}.$$

דוגמה 1.14

 $: \mathbb{Z}_3$ איברים של איברים של

$$-\bar{1}=\bar{2}$$

$$-\bar{2}=\bar{1}$$

$$-\bar{3}=\bar{0}$$

$$-\bar{4}=\bar{2}$$

$$-\bar{5}=\bar{1}$$

$$-\bar{6} = \bar{0}$$

$$-\bar{7}=\bar{2}$$

$$-\bar{8}=\bar{1}$$

:

$$-\bar{5}9 = \bar{1} .$$

דוגמה 1.15

 \mathbb{Z}_3 -ב $ar{2}$ של מצאו את האיבר ההופכי

פתרון:

$$\bar{2} \cdot \bar{2} = \bar{4} = \bar{1}$$

$$ar{2}^{-1}=ar{2}$$
 . לכן

דוגמה 1.16

 \mathbb{Z}_3 -ב $ar{1}$ בי של ל

$$\bar{1} \cdot \bar{1} = \bar{1}$$

$$.ar{1}^{-1}=ar{1}$$
 לכן

 \mathbb{Z}_5 -ב $\bar{3}$ של מצאו את האיבר ההופכי

פתרון:

$$\bar{3} \cdot \bar{2} = \bar{6} = \bar{1}$$

$$.ar{3}^{-1}=ar{2}$$
 לכן

דוגמה 1.18

 \mathbb{Z}_5 -ם האיבר האיברים כל של כל החופכי את חשבו את חשבו

- $\bar{1}$ (x)
- $\bar{2}$ (2)
- $\bar{3}$ (x)
- $\bar{4}$ (T)

פתרון:

$$\bar{1} \cdot \bar{1} = \bar{1} \quad \Rightarrow \quad \bar{1}^{-1} = \bar{1}$$

$$\bar{2} \cdot \bar{3} = \bar{6} = \bar{1} \quad \Rightarrow \quad 2^{-1} = \bar{1}$$

$$\bar{3} \cdot \bar{2} = \bar{6} = \bar{1} \quad \Rightarrow \quad \bar{3}^{-1} = \bar{1}$$

$$\bar{4} \cdot \bar{4} = \overline{16} = \bar{1} \quad \Rightarrow \quad \bar{4}^{-1} = \bar{1}$$

דוגמה 1.19

 $: \mathbb{Z}_{11}$ -חשבו ב

$$\bar{3}\cdot\bar{7}$$
 (x)

$$\bar{2}\cdot \bar{8}$$
 (2)

$$-\bar{3}$$
 (x)

$$(\bar{3})^{-1}$$
 (T)

$$ar{3}\cdotar{7}=\overline{21}=\overline{10}$$
 (א)

$$\bar{2} \cdot \bar{8} = \overline{16} = \bar{5}$$
 (2)

$$\bar{3} + \bar{8} = \overline{11} = \bar{0} \quad \Rightarrow \quad -\bar{3} = \bar{8} \; .$$
 (3)

$$\bar{3} \cdot \bar{4} = \overline{12} = \bar{1} \quad \Rightarrow \quad (\bar{3})^{-1} = \bar{4} \; .$$
 (7)

משפט 1.4

עבור $\mathbb{Z}_p=\{ar{0},ar{1},\cdots\overline{p-1}\}$ יש הופכי. איבר השוני, לכל איבר השונה מאפס בקבוצה $p\in\mathbb{N}$

1.3 שדות

הגדרה 1.8 שדה

קבוצה, מוגדרות על הקבוצה, "-" ופעולת כפל "-" ופעולת הדו-מקומיות) מוגדרות על הקבוצה, שבה פעולת חיבור "+" ופעולת כפל הבית הדו-מקומיות) ווכל איבר בית הבאים מתקיימים. לכל איבר $a\in\mathbb{F}$ ולכל איבר איבר הבאים מתקיימים.

:סגורה תחת חיבור \mathbb{F} (1

$$a+b \in \mathbb{F}$$
.

:סגורה תחת כפל \mathbb{F} (2

$$a \cdot b \in \mathbb{F}$$
.

I: חוק החילוף (3

$$a+b=b+a$$

II: חוק החילוף (4

$$a \cdot b = b \cdot a$$

I: חוק הקיבוץ (5

$$(a+b) + c = a + (b+c)$$
.

II: חוק הקיבוץ (6

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

7) חוק הפילוג:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
.

8) קיום איבר ניוטרלי:

-קיים איבר \mathbb{F} כך ש

$$a+0=a$$
.

(האיבר ניוטרל לגבי כפל): (האיבר ניוטרל לגבי כפל):

-קיים איבר $1\in\mathbb{F}$ כך ש

$$a \cdot 1 = a$$
, $1 \cdot a = a$.

:קיום איבר נגדי (10

-לכל $(-a)\in\mathbb{F}$ כך איבר נגדי $a\in\mathbb{F}$ לכל

$$a + (-a) = 0.$$

:קיום איבר הופכי

לכל $a^{-1} \in \mathbb{F}$ כך שa
eq 0 קיים איבר $a \in \mathbb{F}$ לכל

$$a \cdot a^{-1} = 1$$
 , $a^{-1} \cdot a = 1$.

משפט 1.5

יהי \mathbb{F} שדה.

- . עבור $a\in\mathbb{F}$ האיבר הנגדי החיבורי , $a\in\mathbb{F}$
- עבור a^{-1} הוא יחיד. ($a \neq 0$), איבר ההפכי הכפלי ($a \neq 0$) עבור

דוגמה 1.20

- א) אדה. של מספרים ממשיים שדה. \mathbb{R}
- ב) אל מספרים מרובכים שדה. ${\mathbb C}$

דוגמה 1.21

. שדה \mathbb{N} שדה קבעו אם הקבוצה

פתרון:

ול... כדי להראות את די למצוא דוגמה נגדית לאחת התכונות.. \mathbb{N} נבחור $a=3\in\mathbb{N}$. הרי

$$-3 + 3 = 0$$

 $-3 \notin \mathbb{N}$ אבל

משפט 1.6

יהי $\mathbb F$ שדה יהיו לאיבר הניוטרלי האיבר הניוטרלי הכפלי ו- $a,b\in\mathbb F$ יהי שדה יהיו $\mathfrak F$

$$a \cdot 0 = 0$$
 (1

$$a \cdot (-1) = -a$$
 (2

$$.b=0$$
 אז $a \neq 0$ -ו $a \cdot b = 0$ אז (3

הוכחה: תרגיל בית!

.C מעל
$$\begin{cases} (1+i)z_1 + (1-i)z_2 = 3i \\ 3z_1 + (2-i)z_2 = 4 \end{cases}$$
מעל

פתרון:

$$\begin{pmatrix}
1+i & 1-i & | & 3i \\
3 & 2-i & | & 4
\end{pmatrix}
\xrightarrow{R_1 \to (1-i)R_1}
\begin{pmatrix}
2 & -2i & | & 3+3i \\
3 & 2-i & | & 4
\end{pmatrix}
\xrightarrow{R_2 \to 2R_2 - 3R_1}
\begin{pmatrix}
2 & -2i & | & 3+3i \\
0 & 4+4i & | & -1-9i
\end{pmatrix}$$

$$\xrightarrow{R_2 \to (4-4i)R_2}
\begin{pmatrix}
2 & -2i & | & 3+3i \\
0 & 32 & | & -40-32i
\end{pmatrix}
\xrightarrow{R_1 \to 16R_1 + iR_2}
\begin{pmatrix}
32 & 0 & | & 80+8i \\
0 & 32 & | & -40-32i
\end{pmatrix}$$

$$\xrightarrow{R_1 \to \frac{1}{32}R_1}
\begin{pmatrix}
1 & 0 & | & \frac{5}{2} + \frac{1}{4}i \\
0 & 1 & | & -\frac{5}{4} - i
\end{pmatrix}$$

פתרון:

$$z_1 = \frac{5}{2} + \frac{1}{4}i$$
, $z_2 = -\frac{5}{4} - i$

\mathbb{Z}_p מערכות לינאריות מעל 1.5

דוגמה 1.23

 \mathbb{Z}_3 פתור את המערכת הבאה מעל

$$x_1 + x_2 + x_3 = \overline{0}$$

$$x_1 - x_2 - x_3 = \overline{0}$$

$$x_1 + \overline{2}x_2 + x_3 = \overline{1}$$

פתרון:

המטריצה המורחבת היא

$$\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{1} & -\bar{1} & -\bar{1} & \bar{0} \\
\bar{1} & \bar{2} & \bar{1}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{1} & \bar{2} & \bar{2} & \bar{0} \\
\bar{1} & \bar{2} & \bar{1}
\end{pmatrix}$$

נבצע שיטת גאוס:

$$\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{1} & \bar{2} & \bar{2} & \bar{0} \\
\bar{1} & \bar{2} & \bar{1} & \bar{1}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_1}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & \bar{0} \\
\bar{1} & \bar{2} & \bar{1} & \bar{1}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_1}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & \bar{1}
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{0} & -\bar{1} & \bar{1}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{0} & \bar{2} & \bar{1}
\end{pmatrix}$$

נכפיל את השורה השלישית ב $ar{2}=1$: מכיוון לכן נבצע את הפעולה הבאה:

$$\begin{pmatrix} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{0} & \bar{2} & \bar{1} \end{pmatrix} \xrightarrow{R_3 \to \bar{2}R_3} \begin{pmatrix} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{0} & \bar{1} & \bar{2} \end{pmatrix}$$

עכשיו נאפס כל איבר מעל ה $ar{1}$ המוביל בעזרת הפעולות הבאות:

$$\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & | \bar{0} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}
\xrightarrow{R_2 \to R_2 - R_3}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | -\bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{1} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{1} & | -\bar{1} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{1} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{1} & | \bar{2} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{1} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_3}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & | \bar{0} \\
\bar{0} & \bar{1} & \bar{0} & | \bar{1} \\
\bar{0} & \bar{0} & \bar{1} & | \bar{2}
\end{pmatrix}$$

לכן למערכת יש פתרון יחיד:

$$(x_1, x_2, x_3) = (\bar{0}, \bar{1}, \bar{2}) .$$

דוגמה 1.24

 \mathbb{Z}_5 פתור את המערכת הבאה מעל

$$x_1 + x_2 + x_3 = \bar{0}$$
,
 $x_1 - x_2 - x_3 = \bar{1}$.

פתרון:

המטריצה המורחבת היא

$$\left(\begin{array}{cc|c} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{1} & -\bar{1} & -\bar{1} & \bar{1} \end{array}\right) = \left(\begin{array}{cc|c} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{1} & \bar{4} & \bar{4} & \bar{1} \end{array}\right) \ .$$

:שיטת גאוס

$$\left(\begin{array}{cc|c} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{1} & \bar{4} & \bar{4} & \bar{1} \end{array}\right) \xrightarrow{R_2 \to R_2 - R_1} \left(\begin{array}{cc|c} \bar{1} & \bar{1} & \bar{1} & \bar{0} \\ \bar{0} & \bar{3} & \bar{3} & \bar{1} \end{array}\right) .$$

נכפיל את השורה השלישית באיבר ההופכי של $ar{3}$ ב- \mathbb{Z}_5 . נגלה כי

$$\bar{3} \cdot \bar{2} = \bar{6} = \bar{1} \quad \Rightarrow \quad (\bar{3})^{-1} = \bar{2} ,$$

ולכן

$$\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{3} & \bar{3} & \bar{1}
\end{pmatrix}
\xrightarrow{R_3 \to \bar{2} \cdot R_3}
\begin{pmatrix}
\bar{1} & \bar{1} & \bar{1} & \bar{0} \\
\bar{0} & \bar{1} & \bar{1} & \bar{2}
\end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - R_2}
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & -\bar{2} \\
\bar{0} & \bar{1} & \bar{1} & \bar{2}
\end{pmatrix}
=
\begin{pmatrix}
\bar{1} & \bar{0} & \bar{0} & \bar{3} \\
\bar{0} & \bar{1} & \bar{1} & \bar{2}
\end{pmatrix}$$

המערכת המתאימה היא

$$x_1 = \bar{3} ,$$

$$x_2 + x_3 = \bar{2}$$

ולכן הפתרון הוא

$$x_1 = \bar{3} ,$$

$$x_2 = \bar{2} - x_3 .$$

כלומר,

$$(x_1, x_2, x_3) = (\bar{3}, \bar{2} - x_3, x_3), \quad x_3 \in \mathbb{Z}_5$$

נשים לב שלמערכת יש חמישה פתרונות:

$$x_3 = \bar{0} \Rightarrow (\bar{3}, \bar{2}, \bar{0})$$
 :1 פתרון $x_3 = \bar{1} \Rightarrow (\bar{3}, \bar{1}, \bar{1})$:2 פתרון $x_3 = \bar{2} \Rightarrow (\bar{3}, \bar{0}, \bar{2})$:3 פתרון $x_3 = \bar{3} \Rightarrow (\bar{3}, -\bar{1}, \bar{3}) = (\bar{3}, \bar{4}, \bar{3})$:4 פתרון $x_3 = \bar{4} \Rightarrow (\bar{3}, -\bar{2}, \bar{4}) = (\bar{3}, \bar{3}, \bar{3})$:5 פתרון :5

דוגמה 1.25

 \mathbb{Z}_7 פתור את המערכת הבאה מעל

$$x_1 + \bar{2}x_2 + \bar{4}x_3 = \bar{0} ,$$

$$\bar{2}x_1 - \bar{3}x_2 + x_3 = \bar{0} .$$

פתרון:

$$\begin{pmatrix}
\bar{1} & \bar{2} & \bar{4} & \bar{0} \\
\bar{2} & -\bar{3} & \bar{1} & \bar{0}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{2} & \bar{4} & \bar{0} \\
\bar{2} & \bar{4} & \bar{1} & \bar{0}
\end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{2} \cdot R_1} \begin{pmatrix}
\bar{1} & \bar{2} & \bar{4} & \bar{0} \\
\bar{0} & \bar{0} & -\bar{7} & \bar{0}
\end{pmatrix} = \begin{pmatrix}
\bar{1} & \bar{2} & \bar{4} & \bar{0} \\
\bar{0} & \bar{0} & \bar{0} & \bar{0}
\end{pmatrix}$$

המערכת המתאימה הינה

$$x_1 + \bar{2}x_2 + \bar{4}x_3 = \bar{0}$$
, $x_2, x_3 \in \mathbb{Z}_7$

והפתרון הוא

$$x_1 = -\bar{2}x_2 - \bar{4}x_3 = \bar{5}x_2 + \bar{3}x_3$$
, $x_2, x_3 \in \mathbb{Z}_7$.

כלומר

$$(x_1, x_2, x_3) = (\bar{5}x_2 + \bar{3}x_3, x_2, x_3), \quad x_2, x_3 \in \mathbb{Z}_7.$$

. נשים לב שלמערכת יש $7^2 = 49$ פתרונות

דוגמה 1.26

תנו דוגמה למערכת לינארית בעלת 27 פתרונות.

מערכת : 1 המערכת

$$\bar{0}x = \bar{0}$$
.

 \mathbb{Z}_{27} מעל

. מהווה פתרון של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של משוואה אחת במשתנה אחד, וכל איבר של מערכת של

: 2 מערכת

$$x + y + z + w = \bar{0}$$

 \mathbb{Z}_3 מעל

 3^3 הסבר: זוהי מערכת של משוואה אחת בארבעה משתנים. למערכת יש שלושה משתני חופשיים ולכן פתרונות.

דוגמה 1.27

 \mathbb{Z}_5 פתרו את המערכת הבאה מעל

$$x + \bar{3}y + \bar{2}z = \bar{1}$$
,
 $\bar{2}x + \bar{4}y + z = \bar{3}$,
 $\bar{3}x + \bar{3}z = \bar{2}$.

פתרון:

$$\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{2} & \bar{4} & \bar{1} & | & \bar{3} \\
\bar{3} & \bar{0} & \bar{3} & | & \bar{2}
\end{pmatrix}
\quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & -\bar{2} & -\bar{3} & | & \bar{1} \\
\bar{0} & -\bar{9} & -\bar{3} & | & -\bar{1}
\end{pmatrix}
\quad = \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{2} & | & \bar{4}
\end{pmatrix}$$

$$\xrightarrow{R_2 \to \bar{3}^{-1}R_2 = \bar{2}R_2}
\quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{3} & | & \bar{2}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{3} & | & \bar{2}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}
\bar{1} & \bar{3} & \bar{2} & | & \bar{1} \\
\bar{0} & \bar{1} & \bar{4} & | & \bar{2} \\
\bar{0} & \bar{0} & \bar{1} & | & \bar{4}
\end{pmatrix}$$

$$= \quad
\begin{pmatrix}$$

דוגמה 1.28

 \mathbb{Z}_5 פתרו את המערכת הבאה מעל

$$x + \bar{4}y + z = \bar{1} ,$$

$$\bar{3}x + \bar{2}y + \bar{3}z = \bar{2} ,$$

$$\bar{4}x + y + \bar{4}z = \bar{3} .$$

$$\begin{pmatrix} \bar{1} & \bar{4} & \bar{1} & | & \bar{1} \\ \bar{3} & \bar{2} & \bar{3} & | & \bar{2} \\ \bar{4} & \bar{1} & \bar{4} & | & \bar{3} \end{pmatrix} \xrightarrow{R_2 \to R_2 - \bar{3}R_1 \atop R_3 \to R_3 - \bar{4}R_1} \begin{pmatrix} \bar{1} & \bar{4} & \bar{1} & | & \bar{1} \\ \bar{0} & -\bar{10} & \bar{0} & | & -\bar{1} \\ \bar{0} & -\bar{15} & \bar{0} & | & -\bar{1} \end{pmatrix} = \begin{pmatrix} \bar{1} & \bar{4} & \bar{1} & | & \bar{1} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{4} \end{pmatrix}$$

קיבלנו שורת סתירה לכן למערכת אין פתרון.

דוגמה 1.29

 \mathbb{Z}_5 פתרו את המערכת הבאה מעל

$$\begin{split} \bar{2}x + \bar{3}y + \bar{4}z &= \bar{1} \ , \\ x + \bar{2}y + \bar{3}z &= \bar{0} \ , \\ \bar{3}x + \bar{2}z &= \bar{1} \ . \end{split}$$

פתרון:

$$\begin{pmatrix} \bar{2} & \bar{3} & \bar{4} & | & \bar{1} \\ \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{3} & \bar{0} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad \frac{R_1 \leftrightarrow R_2}{2} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{2} & \bar{3} & \bar{4} & | & \bar{1} \\ \bar{3} & \bar{0} & \bar{2} & | & \bar{1} \end{pmatrix} \qquad \frac{R_2 \to R_2 - \bar{2} \cdot R_1}{2} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{0} & -\bar{1} & -\bar{2} & | & \bar{1} \\ \bar{0} & -\bar{6} & -\bar{7} & | & \bar{1} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{0} & \bar{4} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{4} & \bar{3} & | & \bar{1} \end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{0} & \bar{4} & \bar{3} & | & \bar{1} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix} \qquad \xrightarrow{R_2 \to \bar{4}^{-1}R_2} \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{0} & \bar{1} & \bar{1} & \bar{2} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{2} & \bar{3} & | & \bar{0} \\ \bar{0} & \bar{1} & \bar{2} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - \bar{2}R_2} \qquad \begin{pmatrix} \bar{1} & \bar{0} & -\bar{1} & | -\bar{8} \\ \bar{0} & \bar{1} & \bar{2} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix} \qquad = \qquad \begin{pmatrix} \bar{1} & \bar{0} & \bar{4} & | & \bar{2} \\ \bar{0} & \bar{1} & \bar{2} & | & \bar{4} \\ \bar{0} & \bar{0} & \bar{0} & | & \bar{0} \end{pmatrix}$$

$$\Rightarrow \qquad x = -\bar{4}z + \bar{2} \qquad = z + \bar{2} \\ y = -\bar{2}z + \bar{4} \qquad = \bar{3}z + \bar{4} \end{pmatrix}$$

$$(x, y, z) = (z + \bar{2}, \bar{4} + \bar{3}z, z) \qquad , z \in \mathbb{Z}_5 \ .$$

ישנם 5 פתרונות.