Diagonalisation

Table des matières

1.	Déterminants.	1
	1.1. forme n-linéaires alternée.	1
	1.2. Déterminant d'une famille de E^n .	4
	1.3. Déterminant d'un endomorphisme.	5
	1.4. Déterminant d'une matrice carrée.	6
	1.5. Déterminant d'une matrice triangulaire par blocs.	8
	1.6. Développements d'un déterminant par rapport à une colonne.	8
	1.7. Formule de Cramer.	10
2.	Reduction d'endomorphisme.	11
	2.1. Rappels sur les équations linéaires.	11
	2.2. Décomposition d'un espace vectoriel en sous-espace vectoriels stables.	12
	2.3. Sous- espaces propres.	12
	2.4. Polynomes caractéristique.	13
3.	Diagonalisation.	14
4.	Polynômes d'endomorphismes.	16
5.	Applications aux suites récurrentes.	17

Chapitre 1

1. Déterminants.

1.1. forme n-linéaires alternée.

Définition 1.1.1 (forme n-linéaire): Soit E un espace vectoriel, et $\varphi: E^n \to \mathbb{R}$ une application. On dit que φ est une **forme n-linéaire** si φ est linéaire par rapport à chaque variable i.e, $\forall x_1, -, x_i, -, x_n, y_i \in E, \forall \alpha, \beta \in \mathbb{R},$

$$\varphi(x_1, -, x_{i-1}, \alpha x_i + \beta y_i, -, x_n) = \alpha \varphi(x_1, -, x_{i-1}, x_i, -, x_n) + \beta \varphi(x_1, -, x_{i-1}, y_i, -, x_n)$$

Exemples:

1. Montrons que $\varphi:\mathbb{R} imes\mathbb{R} o\mathbb{R};(x_1,x_2)\mapsto x_1x_2$ est 2-linéaire. Soit $\alpha,\beta\in\mathbb{R}.$ On a

$$(\alpha x_1 + \beta y_1) x_2 = \alpha(x_1 x_2) + \beta(y_1 y_2) \text{ et } x_1 (\alpha x_2 + \beta y_2) = \alpha(x_1 x_2) + \beta(x_1 y_2).$$

- 2. $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}; (u^{\rightarrow}, v^{\rightarrow}) \mapsto u^{\rightarrow} \times v^{\rightarrow}$ est 2-linéaire (et symétrique).
- 3. Le déterminant 2-2 est 2-linéaire.

Remarque: $\varphi(x_1, -, 0, -, x_n) = 0$.

Définition 1.1.2 (alternée): Soit φ une application n-linéaire. On dit que φ est **alternée** si

$$\forall i,j \in \{1,-,n\} \text{ avec } i \neq j, x_i = x_j \Rightarrow \varphi(x_1,-,x_n) = 0.$$

Proposition 1.1.1: Soit $f_1,-,f_n:E\to F$ n applications linéaires. Soit $\varphi:F^n\to\mathbb{R}$ n-linéaire. Alors

$$\varphi\circ (f_1,-,f_n):E^n\to \mathbb{R}; x_1,-,x_n\mapsto \varphi(f_1(x_1),-,f_n(x_n))$$

est n-linéaire.

Démonstration: Puisque les $f_1,-,f_n$ sont linéaires, et que φ est n-linéaire, il est évident que $\varphi\circ (f_1,-,f_n)$ est n-linéaire. \square

Définition 1.1.3 (antisymétrie): Soit φ une application n-linéaire. On dit que φ est **antisymétrique** si

$$\forall i, j \in [1, n] \text{ avec } i \neq j, \varphi \big(x_1, -, x_i, -, x_j, -, x_n \big) = -\varphi \big(x_1, -, x_j, -, x_i, -, x_n \big)$$

Proposition 1.1.2: Soit φ une application n-linéaire et alternée. On ne change pas la valeur de $\varphi(x_1,-,x_n)$ en ajoutant à un des vecteurs de la famille une combinaison linéaire des autres. i.e, $\forall i \in \{1,-,n\}, \forall a_1,-,a_{i-1},a_{i+1},-,a_n \in \mathbb{R},$

$$\varphi\Bigg(x_1,-,x_i+\sum_{j=1,j\neq i}^n\alpha_jx_j,-,x_n\Bigg)=\varphi(x_1,-,x_n)$$

Démonstration: Sans perte de généralité, on montre le cas où i=1.

$$\begin{split} \varphi\Bigg(x_1 + \sum_{j=2}^n \alpha_j x_j, -, x_n\Bigg) &= \varphi(x_1, -, x_n) + \sum_{j=2}^n \alpha_j \varphi\big(x_j, -, x_j, -, x_n\big) \\ &= \varphi(x_1, -, x_n) \end{split}$$

Car φ est alternée.

Proposition 1.1.3: Soit φ une application n-linéaire. φ est alternée si et seulement si φ est antisymétrique.

Démonstration:

 \Rightarrow Supposons que φ soit alternée. On pose $x_i=x_j$ Alors on a $\varphi\big(x_1,-,x_i,-,x_j,-,x_n\big)=0$

$$\begin{split} \varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) &= \varphi\big(x_1,-,x_i+x_j,-,x_j+x_i,-,x_n\big) \\ &= \varphi\big(x_1,-,x_i,-,x_j+x_i,-,x_n\big) + \varphi\big(x_1,-,x_j,-,x_j+x_i,-,x_n\big) \\ &= \varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) + \underline{\varphi(x_1,-,x_i,-,x_i,-,x_n)} \\ &\underline{+\varphi\big(x_1,-,x_j,-,x_j,-,x_n\big)} + \varphi\big(x_1,-,x_j,-,x_i,-,x_n\big) \quad \text{car } \varphi \text{ est altern\'ee.} \\ &= \varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) + \varphi\big(x_1,-,x_j,-,x_i,-,x_n\big) \end{split}$$

D'où

$$\begin{split} 0 &= \varphi \big(x_1, -, x_i, -, x_j, -, x_n \big) + \varphi \big(x_1, -, x_j, -, x_i, -, x_n \big) \\ \Leftrightarrow \varphi \big(x_1, -, x_i, -, x_j, -, x_n \big) &= -\varphi \big(x_1, -, x_j, -, x_i, -, x_n \big) \end{split}$$

Donc φ est antisymetrique.

 \Leftarrow Supposons que φ soit antisymétrique. Alors on a :

$$\varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) = -\varphi\big(x_1,-,x_j,-,x_i,-,x_n\big)$$

En particulier, en posant $x_i = x_i$ on a :

$$\begin{split} \varphi(x_1,-,x_i,-,x_i,-,x_n) &= -\varphi(x_1,-,x_i,-,x_i,-,x_n) \\ &\Leftrightarrow 2\varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \\ &\Leftrightarrow \varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \end{split}$$

Proposition 1.1.4: Soit φ une application n-linéaire et alternée. Si $(x_1,-,x_n)$ est une famille liée alors $\varphi(x_1,-,x_n)=0$

 $\begin{array}{l} \textit{D\'{e}monstration:} \ (x_1,-,x_n) \ \text{est li\'{e}e donc il existe} \ \alpha_1,-,\alpha_n \in \mathbb{R} \ \text{tel que} \ \alpha_1x_1+\ldots+\alpha_nx_n=0 \ \text{avec} \\ \alpha_i \neq 0 \ \text{cas} \ \alpha_1 \neq 0, x_1=-\frac{\alpha_2}{\alpha_1}x_2-\ldots-\frac{\alpha_n}{\alpha_1}x_n, \ \text{alors} \end{array}$

$$\begin{split} \varphi(x_1,-,x_n) &= \varphi\bigg(-\frac{\alpha_2}{\alpha_1}x_2 - \ldots - \frac{\alpha_n}{\alpha_1}x_n, x_2, -, x_n\bigg) \\ &= \text{TODO} = 0 \end{split}$$

Corollaire 1.1.1: Si $\dim(E) < n$ toutes les formes n-linéaires alternées sur E sont nulles.

Théorème 1.1.1: Si $\dim(E \ge n)$ alors il existe des formes n-linéaires alternées sur E non nulles.

De plus, si $\dim(E)=n$ deux formes n-linéaires alternées sur E φ_1 et φ_2 non nulles sont proportionnelles i.e, $\exists \lambda \in \mathbb{R}$ tel que $\forall x_1, -, x_n \in E, \varphi_2(x_1, -, x_n) = \lambda \varphi_1(x_1, -, x_n)$.

3

1.2. Déterminant d'une famille de E^n .

Lemme 1.2.1: Soit $m: E^2 \to \mathbb{R}$. Alors $a_m: E^2 \to \mathbb{R}$ définie par

$$a_m(x_1, x_2) = m(x_1, x_2) - m(x_2, x_1)$$

est bilinéaire antisymétrique.

Démonstration: Soit $x_1, x_2 \in E$. On montre l'antisymétrie.

$$\begin{split} a_m(x_1,x_2) &= m(x_1,x_2) - m(x_2,x_1) = -(m(x_2,x_1) - m(x_1,x_2)) \\ &= -a_m(x_2,x_1) \end{split}$$

La linéarité est évidente.

Théorème 1.2.1: Soit E un espace vectoriel de dimension n, et $B=(e_1,-,e_n)$ une base de E. Alors il existe une unique forme n-linéaire alternée: $\det_B:E^n\to\mathbb{R}$ telle que $\det_B(e_1,-,e_n)=1$.

Démonstration cas n=2: TODO VOIR MAXIME

Définition 1.2.1 (Déterminant): Soit E un espace vectoriel de dimension n, et $B=(e_1,-,e_n)$ une base de E. On appelle **déterminant** dans la base B la forme n-linéaire du Théorème précédent

Théorème 1.2.2: Soit E un espace vectoriel de dimension n, et B une base de E. Une famille $F=\{f_1,-,f_n\}$ de E est libre si et seulement si $\det_B(f_1,-,f_n)\neq 0$. Dans ce cas on a :

$$\forall x_1, -, x_n \in E, \det_B(x_1, -, x_n) = \det_B(F) \det_F(x_1, -, x_n).$$

Démonstration: Soit $F=(f_1,-,f_n)$ une famille, $B=(e_1,-,e_n).$

Si F est liée on a \det_B est n-linéaire alternée. Alors $\det_B(f_1,-,f_n)=0.$

Si F est libre alors F est une base donc $\exists \lambda \in \mathbb{R}$, $\det_B = \lambda \det_F$ voir (Théorème). En particulier,

$$\begin{split} \det_B(f_1,-,f_n) &= \lambda \det_F(f_1,-,f_n) \underset{\text{par definition}}{=} \lambda \cdot 1 \\ \text{Or} \qquad 1 &= \det_B(e_1,-,e_n) = \lambda \det_F(e_1,-,e_n) \text{ d'où } \lambda \neq 0 \end{split}$$

D'où $\det_B(f_1, -, f_n) \neq 0$.

1.3. Déterminant d'un endomorphisme.

Théorème 1.3.1: Soit E un espace vectoriel de dimension n et $f: E \to E$ un endomorphisme. Alors il existe un unique réel $\det(f)$ tel que pour toute application φ n-linéaire alternée, et pour tout $(x_1, -, x_n) \in E$,

$$\varphi(f(x_1),f(x_n))=\det(f)\varphi(x_1,-,x_n).$$

Remarque: En prenant $x_1, -, x_n = e_1, -, e_n$,

$$\det_B(f(B)) = \det F.$$

Démonstration: Existence: Soit φ une forme n-linéaire alternée non-nulle et

 $\psi: E^n \to \mathbb{R}; x_1, -, x_n \mapsto (f(x_1), -, f(x_n))$ qui est une forme n-linéaire alternée. Alors φ et ψ sont proportionnelles, i.e il existe $\lambda \in \mathbb{R}$ tel que $\psi = \lambda \varphi$ (Théorème).

Soit Φ une forme n-linéaire alternée quelconque, alors il existe $\alpha \in \mathbb{R}$ tel que $\Phi = \alpha \varphi$, et $\forall x_1, -, x_n \in E$,

$$\Phi(f(x_1), -, f(x_n)) = \alpha \varphi(f(x_1), -, f(x_n)) = \alpha \varphi(\psi(x_1, -, x_n))) = \lambda \Phi(x_1, -, x_n)$$

Définition 1.3.1: Soit E un espace vectoriel de dimension n et $f:E\to E$ un endomorphisme. On appelle **déterminant de** f le réel $\det(f)$ du Théorème précédent.

Proposition 1.3.1: Soit $f: E \to E$ et $g: E \to E$ deux endomorphismes. Alors,

$$\det(f \circ g) = \det(f) \det(g).$$

Démonstration: Soit $\varphi: E^n \to \mathbb{R}$ une application n-linéaire alternée, $x_1, -, x_n \in E$. On a:

$$\begin{split} \varphi(f\circ g(x_1),-,f\circ g(x_n)) &= \det(f)\varphi(g(x_1),-,g(x_n)) \text{ par definition de} \det(f). \\ &= \det(f)\det(g)\varphi(x_1,-,x_n) \text{ par definition de} \ \det(g) \end{split}$$

De plus:

$$\varphi(f\circ g(x_1),-,f\circ g(x_n))=\det(f\circ g)\varphi(x_1,-,x_n)$$

Par unicité de $\det(f\circ g), \det(f\circ g) = \det f \det(g).$

Proposition 1.3.2: Soit E et F deux espaces vectoriels, $f: E \to F$ un isomorphisme d'espace vectoriel, et B une base de E. Alors f(B) est une base de F et

$$\det_{f(B)} f(F) = \det_B F.$$

 $\label{eq:det_f} \textit{D\'emonstration} \colon \det_{f(B)} f \ \text{et } \det_{B} \text{ sont deux formes n-lin\'eaires altern\'ees sur } E \ \text{qui valent 1 sur } B \ \text{donc}$ elles sont \'egales.

Théorème 1.3.2: Soit $f: E \to E$ un endomorphisme. Alors, f est bijectif si et seulement si $\det(f) \neq 0$ et on a :

$$\det(f^{-1}) = \frac{1}{\det(f)}.$$

Démonstration: Soit B une base de E un espace vectoriel.

On rappelle f est bijectif $\Leftrightarrow f(B)$ est une base. $\Leftrightarrow \det_B f(B) \neq 0$. Si f est bijectif, $f \circ f^{-1} = \operatorname{id}_E$ donc $\det(f \circ f^{-1}) = \det(\operatorname{id}_E) = \det f \det f^{-1}$ or $\det(\operatorname{id}_E) = 1$ D'où $\det(f^{-1}) = \frac{1}{\det(f)}$.

1.4. Déterminant d'une matrice carrée.

Définition 1.4.1: Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. On appelle **déterminant de** A

$$\det(A) = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{n,n} \end{vmatrix} \coloneqq \det_{(e_1,-,e_n)}((a_{11},-,a_{n1}),-,(a_{1n},-,a_{nn}))$$

le déterminant dans la base canonique de \mathbb{R}^n des n vecteurs colonnes de A .

Théorème 1.4.1: Soit E un espace vectoriel de dimension finie, $f:E\to E$ un endomorphisme. Alors

$$\det f = \det M_{B,B}(f).$$

Où $M_{B,B}(f)$ est la matrice associée à f dans la base B.

Proposition 1.4.1: Soit $A, B \in M_{n \times n}(\mathbb{R}), \lambda \in \mathbb{R}$

- 1. det(AB) = det(A) det(B).
- 2. A inversible $\Leftrightarrow \det A \neq 0$. Si A est inversible alors $\det(A^{-1}) = \frac{1}{\det(A)}$.
- 3. $det(\lambda A) = \lambda^n det(A)$.

Démonstration:

1. Soit $f:E\to E,\,g:E\to E,\,A,B$ les matrices associées respectivement à f et g. Alors la matrice associée a $f\circ g$ est $M_{B,B}(f\circ g)=AB$. Ainsi,

$$\det(AB) = \det M(f \circ g) = \det(f \circ g) = \det f \det g = \det A \det B.$$

- 2. De même en considérant les endomorphismes associés.
- 3. Par n-linéarité.

Remarque (ATTENTION): $det(A + B) \neq det(A) + det(B)$

Théorème 1.4.2: Soit $A \in M_{n \times n}(\mathbb{R})$, E un espace vectoriel de dimension n, B une base de E, et $x_1, -, x_n$ tels que $x_i := a_{1i}e_1 + ... + a_{ni}e_n$. Alors

$$\det A = \det_B(x_1, -, x_n).$$

 $\label{eq:definition} \begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit } f : \mathbb{R}^n \to E; \text{ base canonique} \mapsto \text{base } \mathcal{B} = y_1, -, y_n \mapsto y_1 e_1 + \ldots + y_n e_n. \, f \text{ est bien un isomorphisme. On a} : f(a_{1i}, -, a_{ni}) = x_i. \, \text{D'après la proposition,} \end{array}$

$$\det_{f(C)} f(a_{1i}, -, a_{ni}) = \det_{C} (a_{1i}, -, a_{ni}) = \det A = \det_{B} (x_{1}, -, x_{n}).$$

Remarque: Le déterminant est indépendant de la base B choisie.

Définition 1.4.2 (transposée): Soit $A \in M_{p,q}(\mathbb{K})$ avec

$$A = \begin{pmatrix} a_{1,1}, -, a_{1,q} \\ |, -, | \\ a_{p,1}, -, a_{p,q} \end{pmatrix}$$

Alors la transposée est notée ${}^tA \in M_{p,q}(\mathbb{K})$ est la matrice

$${}^t A = \begin{pmatrix} a_{1,1}, -, a_{p,1} \\ |, -, | \\ a_{1,q}, -, a_{p,q} \end{pmatrix}.$$

Théorème 1.4.3 (Admis): Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice carrée. Alors :

$$\det^t A = \det A$$
.

Remarque: Conséquence directe: Toutes les propriétés des déterminants qui ont éténdues sur les colonnes sont aussi valables en opérant sur les lignes.

Proposition 1.4.2: Le déterminant est une forme n-linéaire alternée. Ainsi :

- 1. Il y a n-linéarité du déterminant par rapport aux vecteurs colonnes (ou lignes).
- 2. Soit $\alpha \in \mathbb{R}$.

$$\alpha \det(\cdot) = \det(\alpha C_i).$$

- 3. Si on échange deux colonnes, le déterminant est multiplié par −1.
- 4. $\det A \neq 0 \Leftrightarrow \operatorname{les} n$ vecteurs colonnes forment une famille libre

1.5. Déterminant d'une matrice triangulaire par blocs.

Théorème 1.5.1: Soit $A, B \in \operatorname{Mat}(\mathbb{R})$ des matrices carrées, M une matrice carrée de la forme $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Alors :

$$\det M = \det A \det B$$
.

Démonstration: Soit B, C des matrices de dimension n,

 $\varphi_{B,C}: \mathbb{R}^n \to \mathbb{R}; (c_1, -, c_n)_{\text{vecteurs colonnes}} \mapsto \begin{vmatrix} A & C \\ 0 & B \end{vmatrix}$. $\Phi_{B,C}$ est n-linéaire alternée donc

$$\forall A \in \operatorname{Mat}(\mathbb{R}), \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \varphi_{B,C}(c_1, -, c_n) = \lambda_{B,C} \det A.$$

En prenant $A=I_n,$ det $A=1c_1$... incompréhensible... En faisant des opérations sur les colonnes, $\lambda_B, C=\left|\begin{smallmatrix}I_n&0\\0&B\end{smallmatrix}\right|$

Théorème 1.5.2 (même généralisé): Soit M une matrice carrée de la forme

$$M = \begin{pmatrix} A_1 & * & \cdots & * \\ 0 & A_2 & * & \vdots \\ 0 & \cdots & 0 & A_k \end{pmatrix} \text{ avec } (A_i)_{i \in \{1, -, k\}} \in \text{Mat}_{n \times n}(\mathbb{R}). \text{ Alors}$$

$$\det M = \det A_1 \cdot \ldots \cdot \det A_k$$

Remarque (Cas particulier): Déterminant d'une matrice triangulaire (ou diagonale):

$$\begin{vmatrix} a_{11} & 0 & \cdots & \cdots \\ 0 & a_{22} & 0 & \cdots \\ 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22} \cdot \ldots \cdot a_{nn}$$

1.6. Développements d'un déterminant par rapport à une colonne.

Définition 1.6.1 (Déterminant mineur): Soit $A=\left(a_{ij}\right)_{i,j\in\{1,-,n\}}\in\operatorname{Mat}_{n\times n}(\mathbb{R}).$ On appelle **déterminant mineur** de A, relatif à a_{ij} , le determinant d'ordre n-1 obtenu en rayant dans A la i-ème ligne et la i-ème colonne. On le note Δ_{ij} .

Définition 1.6.2 (Cofacteur): Soit $A=\left(a_{ij}\right)_{i,j\in\{1,-,n\}}\in \operatorname{Mat}_{n\times n}(\mathbb{R})$. On appelle **cofacteur** de A relatif à a_{ij} ,

$$c(ij) = (-1)^{i+j} \Delta_{ij}.$$

Définition 1.6.3 (Comatrice): Soit $A = \left(a_{ij}\right)_{i,j\in\{1,-,n\}} \in \operatorname{Mat}_{n\times n}(\mathbb{R})$. On appelle **comatrice** de A la matrice des cofacteurs $\left(c_{ij}\right)_{i,j\in\{1,-,n\}}$. On la note com A.

Théorème 1.6.1: Développement par rapport à la j-ième colonne.

Soit
$$A = \left(a_{ij}\right)_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R}).$$

$$\det A = a_{1j}c_{1j} + \dots + a_{nj}c_{nj}$$

Remarque: On a toujours intéret à développer suivant la ligne ou la colonne avec le plus de 0.

Exemple: Développement d'un déterminant par rapport à la deuxième colonne.

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = -0 * \begin{vmatrix} 2 & -2 & 1 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} + 4 * \begin{vmatrix} 1 & 1 & 0 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} - (-3) * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ 1 & 5 & -3 \end{vmatrix} + 0 * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ -3 & 3 & 2 \end{vmatrix}.$$

Cette méthode reste très longue, on privilégira donc de faire d'abord en amont un pivot de Gauss sur la matrice afin d'intégrer le plus de 0 à la matrice: $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & -4 & 1 \\ -3 & -3 & 6 & 2 \\ 1 & 0 & 4 & 9 \end{bmatrix} D'où$

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = 1 * \begin{vmatrix} 4 & -4 & 1 \\ -3 & 6 & 2 \\ 0 & 4 & -3 \end{vmatrix} \stackrel{=}{C_2 + c_1} \begin{vmatrix} 4 & 0 & 1 \\ -3 & 3 & 2 \\ 0 & 4 & -3 \end{vmatrix} \stackrel{=}{C_1 - 4C_3} \begin{vmatrix} 0 & 0 & 1 \\ -11 & 3 & 2 \\ 12 & 4 & -3 \end{vmatrix} \stackrel{=}{\text{par dvlp}} 1 \begin{vmatrix} -11 & 3 \\ 12 & 4 \end{vmatrix}$$

$$=-11*4-3*12=-44-36=-80$$

Corollaire 1.6.1: Soit $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On a :

$$A^{t}(\text{com}A) = \det(A)I_{n} = {}^{t}(\text{com }A)A$$

En particulier, si A est inversible,

$$A^{-1} = \frac{{}^t(\text{com}A)}{\det A}$$

 $D\'{e}monstration$: $com(A)_{ij} = C_{ij}$ donc ${}^tcom(A)_{ij} = C_{ji}$. Les coefficients du produit matriciel A^t com(A) sont égaux à

$$\left(A\big({}^t\mathrm{com}\ A\big)\right)_{ij} = \sum_{k=1}^n a_{ik}\big({}^t\mathrm{com}\ A\big)_{kj} = \sum_{k=1}^n a_{ik}c_{jk} = \begin{cases} \det A\ \mathrm{si}\ i = j\\ 0 & \mathrm{si}\ i \neq j \end{cases}$$

Car le déterminant comporte deux fois les lignes $a_{11}, a_{1k}, a_{in}...$ On obtient l'autre formule en développant par rapport à une colonne.

Exemple:
$$A = \begin{pmatrix} a & b \\ a' & b' \end{pmatrix}$$
 Alors com $A = \begin{pmatrix} b' & -a' \\ -b & a \end{pmatrix}$.

$$\det(A) = ab' - ba'. \ A^{-1} = \frac{1}{ab' - ba'} \binom{b}{-a'} \text{ En d\'eduire si } ab' - ba' \neq 0.$$

$$\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$$
 admet comme unique solution

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} c \\ c' \end{pmatrix} = \frac{1}{ab' - ba'} \begin{pmatrix} b'c - c'b \\ -a'c + ac' \end{pmatrix} => x = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}} \text{ et } y = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}}$$

1.7. Formule de Cramer.

 $\begin{array}{l} \textbf{Th\'eor\`eme 1.7.1: Soit }(S) \text{ le syst\`eme de } n \text{ \'equations \`a } n \text{ inconnues: } \begin{cases} a_{11}x_1+\ldots+a_{1n}x_n=y_1\\ \ldots &=\ldots\\ a_{n1}x_1+\ldots+a_{nn}x_n=y_n \end{cases}$ Soit $A=\left(a_{ij}\right)_{i,j\in\{1,-,n\}}(S)$ admet une unique solution si et seuleument si $\det A\neq 0$. Dans ce con la colution and 1

$$x_k = \frac{1}{\det(A)} \begin{vmatrix} a_{11} & \cdots & a_{1,k-1} & y_1 & a_{1,k+1} & \cdots & a_{1n} \\ & \cdot & \cdot & \cdot & & \cdot \\ a_{n1} & \cdots & a_{n,k-1} & y_n & a_{n,k+1} & \cdots & a_{nn} \end{vmatrix}$$

La k-ième colonne est remplacée par le vecteur de second membre.

Chapitre 2

2. Reduction d'endomorphisme.

2.1. Rappels sur les équations linéaires.

Proposition 2.1.1: Soit E, F deux sous espaces vectoriels, $y \in F$ l'ensemble des solutions $x \in E$ de l'équation linéaire de second membre f(x) = y est vide si $y \notin \Im(f)$, est de la forme $x_0 + \ker(f)$, x_0 solution particulière si $y \in \Im(f)$.

Démonstration: Si l'ensemble des solutions $x \in E$ de f(x) = y n'est pas vide, il existe $x_0 \in E$ telle que $f(x_0) = y$. Soit $x \in E$. Alors x est solution de

$$f(x) = y \Leftrightarrow f(x) = f(x_0) \Leftrightarrow f(x - x_0) = 0 \Leftrightarrow x - x_0 \in \ker(f).$$

Définition 2.1.1: Soit E un espace vectoriel, $F_1, -, F_p$ des sous espaces vectoriels de E. On appelle **somme de Minkowski** l'ensemble des vecteurs de la forme $x_1 + ... + x_p$ avec $x_i \in F_i$ est un sous-espace vectoriel de E noté $F_1 + ... + F_p$.

Proposition 2.1.2: La somme de Minkowski est associative, commutative et 0 est l'unique élément neutre.

Définition 2.1.2: On dit que la somme $F_1+\ldots+F_p$ est **directe** si pour tout vecteur $x_1\in F_1,-,x_n\in F_n$ on a l'implication $x_1+\ldots+x_p=0\Rightarrow x_1=\ldots=x_p=0$. Dans ce cas on la note $F_1\oplus\ldots\oplus F_p$.

Proposition 2.1.3: La somme $F_1+\ldots+F_p$ est directe si pour tout vecteur x_1 « de » F_1,\ldots,x_n de F_n , l'ecriture $x_1+\ldots+x_n$ est unique

$$\begin{array}{ll} \textit{D\'{e}monstration} \colon \text{Supposons par absurde que } x_1+\ldots+x_n=y_1+\ldots+y_n \text{ avec } x_i,y_i \in F_i. \\ (x_1-y_1)+\ldots+(x_n-y_n)=0. \text{ Comme } F_1\oplus\ldots\oplus F_p, x_1-y_1=0,-,x_n-y_n=0 \end{array} \quad \Box$$

Proposition 2.1.4: Soit F_1 , F_2 des espaces vectoriels de dimension p et q, $B_1 = \left(e_1, -, e_p\right)$ et $B_2 = \left(e_{p+1}, -, e_{p+q}\right)$ des bases resepctives de F_1 et F_2 . Alors la réunion des bases est une base de la somme $F_1 + F_2$ si et seulement si la somme est directe. En particulier,

$$\dim(F_1\oplus F_2)=\dim(F_1)+\dim(F_2).$$

11

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Montrons que } (e_1,-,e_n) \text{ est une famille g\'{e}n\'{e}ratrice de la somme } F_1+F_2. \\ \text{Soit } y \in F_1+F_2 \Rightarrow \exists x_1 \in F_1, x_2 \in F_2, y=x_1+x_2. \text{ Comme } (e_1,-,e_n) \text{ engendre } F_1, \end{array}$

$$\exists \alpha_1, -, \alpha_p \in \mathbb{R}, x_1 = \sum_{i=0}^p \alpha_i e_i \ \text{ de même}, \ \exists \alpha_{p+1}, -, \alpha_{p+q} \in \mathbb{R}, x_1 = \sum_{i=p+1}^{p+q} \alpha_i e_i$$

2.2. Décomposition d'un espace vectoriel en sous-espace vectoriels stables.

Définition 2.2.1 (stable): Soit E un esapce vectoriel de dimension finie. Soit $u: E \to E$ une application linéaire. Soit F un sous espace vectoriel de E. On dit que F est stable par u si $u(F) \subset F$, i.e,

$$\forall x \in F, u(x) \in F.$$

Définition 2.2.2: Soit F un sous-espace vectoriel de E stable par u. La restriction de u à F, définie par: $u|_F: F \to E$ induit une application linéaire de F dans F que par abus de notation on notera $u|_F$.

VOIR COURS

2.3. Sous- espaces propres.

Définition 2.3.1 (Valeur propre): Soit E un espace vectoriel de dimension finie ou infini, $u: E \to E$, et $\lambda \in \mathbb{R}$. On dit que λ est une **valeur propre** de u s'il existe un vecteur x non nul de E tel que $u(x) = \lambda x$.

Définition 2.3.2: Soi λ une valeur propre de u. On appelle vecteur de u (associé a la valeur propre λ) tout vecteur x non nul de E tel que $u(x) = \lambda x$.

Proposition 2.3.1: Soi $\lambda \in \mathbb{R}$, λ est une valeur propre de u si et seulement si

$$\ker(u+\lambda\operatorname{id}_E)\neq\{0\}\Leftrightarrow (u-\lambda\operatorname{id}_E)\text{ n'est pas injectif.}$$

Démonstration: Soit $x \in E$.

$$u(x) = \lambda x \Leftrightarrow u(x) = \lambda \operatorname{id}_E(x) \Leftrightarrow u(x) - \lambda \operatorname{id}_E(x) = 0 \Leftrightarrow X \in \ker(u - \lambda \operatorname{id}_E)$$

Définition 2.3.3 (sous-espaces propres): Soit $u: E \to E$, et λ une valeur propre de u. On appelle sous-espace propre associé à la valeur propre λ le sous-espace vectoriel stable par u, $\ker(u - \lambda \operatorname{id}_E)$.

Théorème 2.3.1: Soit $\lambda_1, -, \lambda_p$ p valeurs propres distinctes de u. Alors

$$\ker(u-\lambda_1\operatorname{id}_E)\oplus\ldots\oplus\ker\bigl(u-\lambda_p\operatorname{id}_E\bigr).$$

Démonstration: Initialisation : p = 1. Il n'y a rien a démontrer.

Hérédité. Supposons la proposition vraie à un rang p-1 l'est-elle au rang p ?

Soit $x_i \in \ker(u - \lambda_i \operatorname{id}_E)$ tels que $\sum x_i = 0$. En appliquant u à cette équation, on obtient $\lambda_1 x_1 + \ldots + \lambda_p x_p = 0$.

$$\begin{cases} x_1+\ldots+x_p &= 0 \\ \lambda_1x_1+\ldots+\lambda_px_p &= 0 \end{cases} \underset{L_2-\lambda_pL_1}{\Leftrightarrow} \begin{cases} x_1+\ldots+x_p &= 0 \\ (\lambda_1-\lambda_p)x_1+\ldots+\lambda_{p-1}x_{p-1} &= 0 \end{cases}$$

Comme la somme est directe, on a $(\lambda_1-\lambda_p)x_1=...=(\lambda_p-1-\lambda_p)x_{p-1}=0$. Comme λ_i sont distincts, $x_1=...=x_{p-1}=0$, on obtient $x_p=0$. On a montré que la somme $\ker(u-\lambda_1\operatorname{id}_E)+...+\ker(u-\lambda_p\operatorname{id}_E)$ est directe. \square

Proposition 2.3.2: Soit E un espace vectoriel de dimension $n, u : E \to E$ une application linéaire et $\lambda \in \mathbb{R}$. λ est une valeur propre si et seulement si $\det(u - \lambda \operatorname{id}_E) = 0$.

2.4. Polynomes caractéristique.

Définition 2.4.1: On appelle polynôme caractéristique de u noté χ_u la fonction $\chi_u(X) := \det(X \operatorname{id}_E - u)$.

Proposition 2.4.1: Soit E un espace vectoriel de dimension n, et $u:E\to E$ une application linéaire. Le polynome caractéristique de u, χ_u est un polynome unitaire de la forme

$$\chi_u(X) = X^n - \operatorname{tr}(u) X^{n-1} + \ldots + (-1)^n \det(u).$$

avec tru := « somme des éléments sur la diagonale de la matrice »

 $\begin{aligned} \textit{Exemple} \colon & \text{Considérons } f : \mathbb{R}^4 \to \mathbb{R}^4; \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \mapsto \begin{pmatrix} 3x + y + z + t \\ x + 3y + z + t \\ x + y + 3z + t \\ x + y + z + 3t \end{pmatrix}. & \text{Soit } A \text{ la matrice associée à } f \text{dans la base} \\ & \text{canonique de } \mathbb{R}^4. & A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}. & \end{aligned}$

$$\chi_f(X) = \det(X \operatorname{id}_{\mathbb{R}^4} - f) = \det(XI_4 - A) = \det\left(X \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} - A\right) = \begin{vmatrix} X - 3 & -1 & -1 & -1 \\ -1 & X - 3 & -1 & -1 \\ -1 & -1 & X - 3 & -1 \\ -1 & -1 & X - 3 & -1 \end{vmatrix}$$

$$= \begin{pmatrix} X - 6 & -1 & -1 & -1 \\ X - 6 & X - 3 & -1 & -1 \\ X - 6 & -1 & X - 3 & -1 \\ X - 7 & -1 & X - 3 & -1 \\ X - 7 & -1 & X - 3 & -1 \\ X - 7 & -1 & X - 3 & -1 \\ X - 7 & -1 & X - 3 & -1 \\ X - 7 & -1 & X - 3 & -1 \\$$

Corollaire 2.4.1: Les racines du polynome caracteristique d'une application u sont exactement les valeurs propres de u.

Théorème 2.4.1: Soit E un espace vectoriel de dimension finie n, F un sous espace vectoriel de $E, u : E \to E$ une application linéaire. F est tel qu'il soit stable par u. Alors $\chi_{u|_F}$, le polynome caractéristique de $u|_F$ divise le polynome caractéristique de u, χ_u .

Définition 2.4.2: Soit $u: E \to E$, λ une valeur propre de u. On appelle multiplicité de la valeur propre sa multiplicité en tant que racine du polynome caractéristique de u.

Théorème 2.4.2: Soit $u: E \to E$, λ une valeur propre de u de multiplicité k. Alors

$$1 \le \dim \ker(u - \lambda \operatorname{id}_E) \le k.$$

Démonstration: Soit $F = \ker(u - \lambda \operatorname{id}_E)$ le sous-espace propre associé à al valeur propre λ , d sa dimension. Comme F n'est pas réduit à $\{0\}$, d>=1. F est stable par u.

Soit $x\in F$, alors $u(x)=\lambda x\in F$ car $x\in F$ et F est un sous-espace vectoriel. D'après le théorème préc&dent, $\chi_{u|_F}$ divise χ_u . Comme $u|_F$ est égale à $\lambda\operatorname{id}_F$,

$$\chi_{u_{|_F}}(X) = (X-\lambda)^d$$

Puisque $(X-\lambda)^d$ divise $\chi(X),\lambda$ est une racine de χ_X de multiplicité d, supérieure ou égale à d. $\ \square$

3. Diagonalisation.

Définition 3.1 (Diagonalisable): Soit E un espace vectoriel. On dit que E est diagonalisable si E est la somme (nécessairement directe) de tout ses sous-espaces propres.

Lemme 3.1: Soit E un espace vectoriel de dimension $n, u : E \to E$ une application linéaire, et $\lambda_1, -, \lambda_p$ les valeurs propres de u.

$$E = F_1 \oplus \cdots \oplus F_p \Leftrightarrow \sum_{i=1}^p \dim \ker (u - \lambda_i \operatorname{id}) = n.$$

Démonstration: Comme la somme des sous-espaces propres est directe, on a

$$\dim \bigl(\ker(u-\lambda_1\operatorname{id})\oplus\cdots\oplus\ker\bigl(u-\lambda_p\operatorname{id}\bigr)\bigr)=\sum_{i=1}^p\dim\ker(u-\lambda_i\operatorname{id}).$$

De plus, un sous-espace de E coincide avec E si et seulement si sa dimension est égale à celle de E. \square

Corollaire 3.1: Soit $u: E \to E$ une application linéaire. Si u admet n valeurs propres distinctes, $\lambda_1, -, \lambda_n$, alors u est diagonalisable.

Démonstration: Comme λ_i est une valeur propre, $\dim(u - \lambda \operatorname{id}) \geq 1$ donc

$$n \geq \sum_{i=1}^n \dim \ker (u - \lambda_i \operatorname{id}).$$

Ainsi, d'après le lemme, u est diagonalisable.

Théorème 3.1: Soit E un espace vectoriel, $u: E \to E$ uen application linéaire. Les propriétés suivantes sont équivalentes.

- 1. u est diagonalisable.
- 2. Il existe une base de E formée de vecteurs propres de u.
- 3. Il existe une base de E dans laquelle la matrice de u est diagonale.
- 4. Le polynôme caracteristique de u est scindée dans $\mathbb{K}[X]$ et pour toute valeur propre, la mulitplicité est égale à la dimension du sous-espace propre associé.

Démonstration:

* 1. \Rightarrow 2. Soit $\lambda_1, -, \lambda_p$ toutes les valeurs propres u, et $(B_i)_{i \in \{1, -, p\}}$ des bases respectives de $\ker(u - \lambda_i \operatorname{id})$. Supposons que u est diagonalisable. Alors

$$E = \sum_{i=1}^{p} \ker(u - \lambda_i).$$

Comme la réunion des bases B_i est une base B de E.

- * 2. \Rightarrow 3. Soit $B=(e_1,-,e_n)$ une base de E formée de vecteurs propres de u. Comme e_i est un vecteur propre de u, il existe $\alpha_i \in \mathbb{K}, u(e_i)=\alpha_i e_i$ donc la matrice de u dans cette base est la matrice diagonale : mat.
- * 3. \Rightarrow 4. Supposons qu'il existe une base $B=(e_1,-,e_n)$ de E telle que la matrice D de u dans B soit diagonale donc e_1 est un vecteur propre de u. Soit $\lambda_1,-,\lambda_p$ les éléments de la diagonale distincts deux à deux qui se retrouvent respectivement m_1 fois , ... , m_p fois En échengeant les éléments de la base, nous pouvons supposer que D est la matrice par blocs :

$$u = \begin{pmatrix} \lambda_1 I_{m_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{m_2} & \cdots & 0 \\ 0 & 0 & \cdots & \lambda_p & I_{m_p} \end{pmatrix}$$

i.e nous pouvons supposer que $e_1,-,e_{m_1}$ sont m_1 vecteurs propres associés à $\lambda_1.$ $e_{m_1+1},-,e_{m_1+m_2}$ sont m_2 vecteurs propres associés à $\lambda_2...$ etc En calculant le polynome caractéristique de D,

$$\chi_u(X) = \Pi_{i=1}^p (X - \lambda_i)^{m_i}$$

Donc $\chi_u(X)$ est scindé et a pour racines $\lambda_1,-,\lambda_p$ de multiplicité m_i . Soit $d_i=\dim\ker(u-\lambda_i\operatorname{id}_E)$. \square

Proposition 3.1: Soit E un espace vectoriel, $u:E\to E$ une application diagonalisable, $\lambda_1,-,\lambda_n$ les n valeurs propres de u (chacune étant écrite autant de fois que sa multiplicité). Alors :

$$\operatorname{tr} u = \sum_{i=1}^{n} \lambda_i \text{ et det } u = \prod_{i=1}^{n} \lambda_i.$$

 $D\acute{e}monstration$: Supposons que u soit diagonalisable. Alors il existe une base de E dans laquelle la matrice de u est diagonale.

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{n1} \end{pmatrix}, \chi_A(X) = \prod_{i=1}^n (X - a_{ii})$$

doc
n les a_{ii} sont les valeurs propres de u.

$$\operatorname{tr} u = \operatorname{tr} A = \sum_{i=1}^{n} a_{ii} \text{ et det } A = \prod_{i=1}^{n} a_{ii}.$$

Corollaire 3.2: Soit u un endomorphisme tel que $\chi_u(X)$ soit scindé. Alors

$$\operatorname{tr}(u) = \sum_{i=1}^n m_i \lambda_i \, \operatorname{et} \det(u) = \prod_{i=1}^n \lambda_i^{m_i}.$$

4. Polynômes d'endomorphismes.

Remarque (Notation): Soit E un espace vectoriel, $u:E\to E$ une application linéaire. Pour tout $p\in\mathbb{N}$, on note u^p la composée p fois de u.

Définition 4.1: Soit u une application linéaire et A sa matrice associée On appelle valeur de P en u, l'application linéaire de E dans E, $P(u) := \alpha_q u^q + \ldots + \alpha_1 u + \alpha_0 \operatorname{id}_E$. De même, on appelle valeur de P en A la matrice carrée $P(A) = \alpha_q A^q + \ldots + \alpha_1 A + \alpha_0$

Remarque: De manière générale, on peut remarquer que ces définitions ont un sens pour une \mathbb{K} — algèbre

Proposition 4.1: Soit E un esapce vectoriel de dimension n finie, B une base de E, $u: E \to E$, et A la matrice associée à u dans la base B. Alors A^p est la matrice de u^p dans la base B et P(A) est la matrice de P(u) dans la base B.

Démonstration: Considérons l'application $M:L(E)\to M_{n(\mathbb{R})}; u\mapsto A:=M(u)$ est un isomorphisme de \mathbb{K} —algèbre.

Théorème 4.1: Soient $D,N\in M_{n\times n}(\mathbb{R})$ 2 matrices qui commuttent entre elles. Alors la formule du binôme de Newton s'applique.

$$(D+N)^r = \sum_{k=0}^r \binom{r}{k} D^k N^{r-k}$$

5. Applications aux suites récurrentes.