Homework #01 Answers and Hints (MATH4052 Partial Differential Equations)

Xiaoyu Wei*

September 7, 2016

Problem 1. (Page 5, Q2(a)(b)). Which of the following operators are linear?

1.
$$\mathscr{L}u = u_x + xu_y$$

2.
$$\mathscr{L}u = u_x + uu_y$$

Solution. Checking with the definition of linear operators on Page. 2:

1.
$$\mathcal{L}(u+v) = (u_x + v_x) + x(u_y + v_y) = \mathcal{L}u + \mathcal{L}v.$$

 $\mathcal{L}(cu) = cu_x + cxu_y = c\mathcal{L}u.$

2.
$$\mathcal{L}(u+v) = (u_x + v_x) + (u+v)(u_y + v_y) \neq \mathcal{L}u + \mathcal{L}v$$
.

Therefore, the first one is linear, while the second one is not. \Box

Problem 2. (Page 5, Q3(c)(d)). For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.

1.
$$u_t - u_{xxt} + uu_x = 0$$

2.
$$u_{tt} - u_{xx} + x^2 = 0$$

Solution. For the first equation, $\mathcal{L}u = u_t - u_{xxt} + uu_x$ is a third order nonlinear operator since $\mathcal{L}(u+v) \neq \mathcal{L}u + \mathcal{L}v$; therefore, it is a 3rd-order nonlinear equation.

For the second one, $\mathcal{L}u = u_{tt} - u_{xx}$ is a second order linear operator since $\mathcal{L}(u+v) = \mathcal{L}u + \mathcal{L}v$ and $\mathcal{L}(cu) = c\mathcal{L}u$. Besides, the equation is in the form of $\mathcal{L}u = g(x)$ where $g(x) = x^2$; therefore, this equation is a 2nd-order linear inhomogeneous equation.

Problem 3. (Page 9, Q1). Solve the first-order equation $2u_t + 3u_x = 0$ with the auxiliary condition $u = \sin x$ when t = 0.

Solution. Denote space-time gradient $\nabla = \left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right)^T$, and the equation can be rewritten as

$$\mathbf{v} \cdot \nabla u = 0,$$

where $\mathbf{v} = (2,3)^T$ is a constant vector. This implies that u(t,x) is constant along \mathbf{v} . In other words, the value of u at point $(t,x)^T$ equals to that at $(t,x)^T + \lambda \mathbf{v}$ for arbitrary λ .

Now, take $\lambda = -t/2$ and we have

$$u(t,x) = u\left(0, x - \frac{3}{2}t\right) = \sin\left(x - \frac{3}{2}t\right).$$

Here we use the geometric method since the characteristics are easy to find.

^{*}For any issues, email me at xweiaf@connect.ust.hk