Markowi Mean-Variance Model

> Maximize the Sharpe Ratio Minimize the Variance

Risk Parity

Evaluations

Conclusion

The 'Smart' Construction of an Ideal Portfolio

Maoran Xu

Fudan University School of Data Science

14300180099@fudan.edu.cn

January 5, 2018

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio Minimize the Variance

Risk Parit

Evaluation

C I

- 1 Data Overview
- Markowiz Mean-Variance Model Maximize the Sharpe Ratio Minimize the Variance
- 3 Risk Parity
- 4 Evaluations
- **6** Conclusion

Maximize the Sharpe Ratio Minimize the

Risk Parit

Evaluations

Conclusion

Data Overview

How to choose 5 out of 10? How to balance the return and risk?

stock prices

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio Minimize the Variance

Risk Parity

Evaluations

Conclusion

Data Overview

Num	Asset	Mean Daily Return	SD
1	Apple	0.024%	$188\%^{2}$
2	Allstate Corp.	0.015%	$108.2\%^2$
3	Amazon	0.201 %	$211\%^2$
4	Boeing	0.043%	$140.9\%^{2}$
5	Bank of America	0.054%	$183.2\%^{2}$
6	Citi Group	0.031%	$178.1\%^2$
7	Google	0.091%	$168.6\%^{2}$
8	$\operatorname{GoldmanScah}$	0.048%	$146\%^{2}$
9	$_{ m IBM}$	0.015%	$124.5\%^{2}$
10	JP Morgan	0.071%	$142.9\%^2$
11	Risk Free Asset	0.089%	$3.7\%^{2}$
12	Market	0.019%	$83.7\%^{2}$

Risk Parit

Evaluations

C l

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio

- maximize the sharpe ratio with 10 stocks
- pick the 5 stocks with the highest weights
- use these 5 stocks to construct a max-sharpe-ratio portfolio, along with the risk-free asset.

Minimize the Variance

- minimize the variance with 10 stocks
- pick the 5 stocks with the highest weights
- use these 5 stocks to construct a min-variance portfolio, along with the risk-free asset.

Maoran Xu

Data Overvier

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio Minimize the Variance

Risk Parit

Evaluations

Conclusion

Markowiz Mean-Variance Model

	2				
Max Sharpe Ratio	10	3	5	4	7

Table: Indices of the largest 5 weights, according to the criteria.

Markowi Mean-

Model
Maximize the

Sharpe Ratio Minimize the Variance

Risk Parit

Evaluations

Conclusion

Maximize the Sharpe Ratio

Num 10	3	5	4	7
Weight 0.7	77 0.85	-0.43	-0.14	-0.05

Table: Weights of assets that maximize the sharpe ratio.

Maoran Xu

Data Overview

Markowii Mean-Variance

Maximize the Sharpe Ratio Minimize the Variance

Risk Parit

Evaluations

Conclusion

Minimize the Variance

Num	2	9	8	4	10
Weight	0.53	0.28	0.083	0.16	-0.049

Table: Weights of assets that minimize the variance.

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio Minimize the Variance

Risk Parity

Evaluations

Adjusting allocations of assets (leveraged or deleveraged) to the same risk level to achieve a higher Sharpe ratio and can be more resistant to market downturns.

Consider a portfolio of N assets where the weight of asset i is w_i . Denote the covariance matrix of the assets by Σ . The volatility of the portfolio is

$$\sigma_P = \sqrt{w' \Sigma w}$$

The marginal risk contribution of asset i is computed as

$$\sigma_i(w) = w_i \times \partial_{w_i} \sigma(w) = \frac{w_i(\Sigma w)_i}{\sqrt{w'\Sigma w}}$$

Data Overvia

Markowiz Mean-Variance Model

Maximize the Sharpe Ratio Minimize the Variance

Risk Parity

Evaluations

To equal risk contribution $\sigma_i(w) = \sigma_j(w)$ for all i, j, is equal to the minimization problem.

$$\min \sum_{i=1}^N \sum_{j=1}^N [w_i(\Sigma_i w_i) - w_j(\Sigma_j w_j)]^2$$

Num	2	9	4	7	8
Weight	0.26	0.21	0.19	0.17	0.17

Table: Weights of risk parity assets.

Maximize the

Evaluations

Evaluations

Time Series of Portfolios

Portfolio	Mean	SD	Sharpe Ratio	beta
Max Sharpe Ratio	0.19%	$192.4\%^2$	0.100	0.175
Min Variance	0.019%	$94.8\%^{2}$	0.020	0.479
Risk Parity	0.040%	$98.8\%^{2}$	0.040	0.525
Market	0.019%	$83.7\%^{2}$	0.021	1

Mean-Variance

Maximize the Sharpe Ratio Minimize the Variance

Risk Parit

Evaluations

Conclusion

The most efficient portfolio

The tangency portfolio gives the most efficient portfolio. However, the investor must face the high risk.

The safe portfolios

Risk parity and minimizing variance can controls risk. However, risk parity out performs the latter with higher return.

SmartPortfolio

Maoran Xu

Data Overview

Markowi

Variand

Maximize the Sharpe Ratio

Rick Parity

Evaluations

Conclusion

The End