

Higgs Boson Searches at CMS What Have We Found So Far?

Patrick Dunne

Outline

- A Higgs-like boson was discovered in 2012 at the LHC.
- How did we decide we'd discovered something?
- ► How do we answer the question: "Is it the Higgs?"

The Standard Model and the Higgs Boson

- Higgs boson is a consequence of the Higgs mechanism which gives mass to the weak vector bosons
- Higgs mechanism also gives rise to the fermion masses
- Standard Model couplings are well predicted

- ► To decide if we have found the Higgs boson we need to understand its properties
- ► This requires a combination of all the search channels
- ▶ The combination has three aims:

- To decide if we have found the Higgs boson we need to understand its properties
- ► This requires a combination of all the search channels
- ▶ The combination has three aims:
 - Setting exclusion limits on the SM Higgs Boson

- To decide if we have found the Higgs boson we need to understand its properties
- ▶ This requires a combination of all the search channels
- ▶ The combination has three aims:
 - Setting exclusion limits on the SM Higgs Boson
 - Characterising excesses over the background

- To decide if we have found the Higgs boson we need to understand its properties
- ► This requires a combination of all the search channels
- ▶ The combination has three aims:
 - Setting exclusion limits on the SM Higgs Boson
 - Characterising excesses over the background
 - Extracting signal model parameters from the data

Setting Exclusion Limits

- ► The CL_s statistic is used, which is the number of times more likely the signal hypothesis is than the background hypothesis.
- It is defined as:

$$CL_s = rac{P(q_{\mu} \geqslant q_{\mu}^{obs} | \mu \cdot s + b)}{P(q_{\mu} \geqslant q_{\mu}^{obs} | b)}$$

- lacktriangledown μ is a signal strength modifier
- ightharpoonup q_{μ} is a profile likelihood ratio defined as:

$$q_{\mu} = -2 \ln rac{\mathcal{L}(obs|\mu \cdot s + b, \hat{ heta}_{\mu})}{\mathcal{L}(obs|\hat{\mu} \cdot s + b, \hat{ heta})}.$$

2011 Exclusion

Discovery Exclusion

HCP Exclusion

Characterising Excesses

Higgs analyses use the p value, defined as:

$$p_0=P(q_0\leqslant q_0^{obs}|b),$$

- ightharpoonup q₀ is the profile likelihood from above with μ set to zero
- i.e. the p value is the probability of observing a background fluctuation as likely or less likely than that observed in the absence of signal.
- ▶ 1-p does not tell you P(signal)!

2011 Significance

Discovery Significance

HCP Significance

Signal Parameter Determination

- ▶ Most channels give their results in terms of σxBR
- We want model parameters so another, slightly different, profile likelihood ratio is used

$$q(a) = -2 \ln \frac{\mathcal{L}(obs|s(a) + b, \hat{\theta}_a)}{\mathcal{L}(obs|s(\hat{a}) + b, \hat{\theta})}$$

- \blacktriangleright a is the parameter of interest and hatted values are the values which maximise ${\cal L}$
- ▶ Basically a Δ log likelihood method so 1 σ etc. contours can be plotted.

Mass

Signal Strength

Couplings

What Next?

- ► Finish analysing the 2012 dataset
- Analyse parked data
- Determine spin and parity
- Better coupling determination

