CSE304 Week 8 In-Class Exercises

Name and Surname:		_
Student ID:		

Q1. Consider the following characteristic function:

$$v(\{1\}) = 100, \ v(\{2\}) = 125, \ v(\{3\}) = 50,$$

 $v(\{1,2\}) = 270, \ v(\{1,3\}) = 375, \ v(\{2,3\}) = 350 \ and \ v(\{1,2,3\}) = 500$

Compute the Shapley values for the agents 1, 2 and 3. Ans:

Probability	Order of arrival	1's marginal contribution	2's marginal contribution	3's marginal contribution
$\frac{1}{6}$	first 1 then 2 then 3: 123	v({1}) = 100	$v({1,2}) - v({1}) = 270 - 100$ = 170	$v({1,2,3}) - v({1,2}) = 500 - 270 = 230$
$\frac{1}{6}$	first 1 then 3 then 2:	v({1}) = 100	$v({1,2,3}) - v({1,3}) = 500 - 375 = 125$	$v({1,3}) - v({1}) = 375 - 100$ = 275
1/6	first 2 then 1 then 3: 213	$v({1,2}) - v({2}) = 270$ -125 = 145	v({2})=125	$v({1,2,3}) - v({1,2}) = 500 - 270 = 230$
$\frac{1}{6}$	first 2 then 3 then 1: 231	$v({1,2,3}) - v({2,3}) = 500 - 350 = 150$	v({2})=125	$v({2,3}) - v({2}) = 350 - 125$ = 225
1/6	first 3 then 1 then 2: 312	$v({1,3}) - v({3}) = 375$ -50 = 325	$v({1,2,3}) - v({1,3}) = 500 - 375 = 125$	v({3}) = 50
1/6	first 3 then 2 then 1: 321	$v({1,2,3}) - v({2,3}) = 500 - 350 = 150$	$v({2,3}) - v({3}) = 350 - 50 =$ 300	v({3}) = 50

Thus 1's expected marginal contribution is:
$$\frac{1}{6}(100+100+145+150+325+150) = \frac{970}{6}$$

2's expected marginal contribution is
$$\frac{1}{6}170 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}125 + \frac{1}{6}300 = \frac{970}{6}$$

3's expected marginal contribution is
$$\frac{1}{6}230 + \frac{1}{6}275 + \frac{1}{6}230 + \frac{1}{6}225 + \frac{1}{6}50 + \frac{1}{6}50 = \frac{1060}{6}$$

The sum, of course, is
$$\frac{3000}{6} = 500 = v(\{1,2,3\})$$

Q2. Consider the following game:

Three students share a taxi. Here are the costs for each individual journey:

- Player 1 Zhao: 6 (rmb)
- Player 2 Wang: 12 (rmb)
- Player 3 Xu: 42 (rmb)
- (a). Construct the characteristic function of the above game. Ans:

$$v(C) = \begin{cases} 6, & \text{if } C = \{1\} \\ 12, & \text{if } C = \{2\} \\ 42, & \text{if } C = \{3\} \\ 12, & \text{if } C = \{1, 2\} \\ 42, & \text{if } C = \{1, 3\} \\ 42, & \text{if } C = \{2, 3\} \\ 42, & \text{if } C = \{1, 2, 3\} \end{cases}$$

(b). Find a fair way of sharing taxi fare for Zhao, Wang and Xu. Ans:

First, we make the Shapley value calculation for the above taxi sharing game. We obtain $\phi(C) = (2, 5, 35)$. Thus the fair way of sharing the taxi fare is for Zhao to pay 2, Wang to pay 5 and Xu to pay 35.