PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-329734

(43) Date of publication of application: 30.11.1999

(51)Int.Cl.

H05B 33/14 C09K 11/06

H05B 33/22

(21)Application number: 10-139509

(71)Applicant: MITSUBISHI CHEMICAL CORP

(22)Date of filing:

21.05.1998

(72)Inventor: SATO YOSHIHARU

OGATA TOMOYUKI

(30)Priority

Priority number: 10 57888

Priority date: 10.03.1998

Priority country: JP

(54) ORGANIC ELECTROLUMINESCENCE ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a white organic electroluminescent element having high luminous efficiency and improved stability.

SOLUTION: This light emitting element comprises at least: a hole transport layer sandwiched between a positive electrode and a negative electrode, a light emitting layer, and a hole blocking layer on a substrate, wherein the light emitting layer contains an aromatic amine compound having a maximum fluorescence wavelength in a range of 400 to 500 nm, the ionization potential of the hole transport layer is larger than that of the light emitting layer by 0.1 eV or more, the ionization potential, of the hole blocking layer is larger than that of the light emitting layer by 0.2 eV or more, and at least the light emitting layer contains a fluorochrome whose maximum fluorescent wavelength is in a range of 550 to 650 nm.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] They are the organic electroluminescence devices which contain at least the electron hole transportation layer, luminous layer, and electron hole blocking layer which were pinched by an anode plate and cathode on the substrate. The aromatic amine compound which has fluorescence maximum wave length in the range this whose luminous layer is 400–500nm is contained. The ionization potential of an electron hole transportation layer is larger than the ionization potential of a luminous layer 0.1eV or more. Organic electroluminescence devices characterized by making the fluorochrome in the range whose fluorescence maximum wave length the ionization potential of an electron hole blocking layer is larger than the ionization potential of a luminous layer 0.2eV or more, and is 550–650nm at least at a luminous layer contain.

[Claim 2] Organic electroluminescence devices according to claim 1 characterized by said aromatic amine compound contained in a luminous layer being an aromatic amine compound expressed with the following general formula (I) or (II).

(X expresses among a formula the aromatic hydrocarbon radical or aromatic heterocycle radical of the bivalence which may have the substituent respectively, Ar1 thru/or Ar4 express the aromatic hydrocarbon radical or aromatic heterocycle radical which may have the substituent respectively independently respectively, and at least one is a fused aromatic ring radical in X and Ar1 thru/or Ar4)

$$Ar^{5}_{N} - Ar^{6}$$

$$Ar^{5}_{N} - Ar^{6}$$

$$Ar^{5}_{N} - Ar^{6}$$

$$Ar^{5}_{N} - Ar^{6}$$

(Y expresses among a formula the benzene ring permuted at least by the nitrogen atom or 1 and 3, and 5-, and Ar5 and Ar6 express respectively independently the aromatic hydrocarbon radical or aromatic heterocycle radical which may have the substituent respectively)

[Claim 3] Organic electroluminescence devices according to claim 1 or 2 characterized by being in the range whose amount of said fluorochrome contained in a luminous layer is $0.1-10\,\%$ of the weight.

[Claim 4] Organic electroluminescence devices according to claim 1 to 3 to which an electron

hole blocking layer is characterized by the thing of the styryl compound expressed with the metal complex expressed with the following general formula (III) or (IV), the triazole derivative containing at least one following structure expression (V), or the following general formula (VI) which consists of kinds at least.

[Formula 3]

$$\begin{array}{c|ccccc}
R^2 & R^1 \\
R^3 & N \\
R^4 & O \\
R^5 & R^6
\end{array}$$
(III)

the inside of a formula, R1, or R6 — respectively — becoming independent — a hydrogen atom and a halogen atom — An alkyl group, an aralkyl radical, an alkenyl radical, an allyl group, a cyano group, the amino group, An acyl group, an alkoxy carbonyl group, a carboxyl group, an alkoxy group, An alkyl sulfonyl group, alpha—halo alkyl group, a hydroxyl group, the amide group that may have the substituent, the aromatic heterocycle radical which may have the aromatic hydrocarbon radical or substituent which may have the substituent — expressing — M — aluminum atom or Ga atom — being shown — L — the following general formula (IIIa) — or (IIIb) (IIIc) One of radicals is expressed.

[Formula 4]

$$-O-Ar^{7}$$
 (IIIa) $-O-C-Ar^{8}$ (IIIb) $-O-Z-Ar^{10}$ (IIIc)

(Z expresses the atom of either Si, germanium or Sn among a formula, and Ar9 and Ar10 express respectively independently the aromatic hydrocarbon radical or aromatic heterocycle radical which may have the substituent respectively)

[Formula 5]
$$\begin{bmatrix}
R^2 & R^1 \\
R^3 & N \\
R^4 & O \\
R^5 & R^6
\end{bmatrix}_2$$

$$\begin{bmatrix}
R^1 & R^2 \\
N & R^3 \\
O & R^4
\end{bmatrix}_2$$
(IV)

the inside of a formula, R1, or R6 — respectively — becoming independent — a hydrogen atom and a halogen atom — An alkyl group, an aralkyl radical, an alkenyl radical, an allyl group, a cyano group, the amino group, An acyl group, an alkoxy carbonyl group, a carboxyl group, an alkoxy group, Expressing the aromatic heterocycle radical which may have the aromatic hydrocarbon radical or substituent which may have an alkyl sulfonyl group, alpha—halo alkyl group, the hydroxyl group, the amide group that may have the substituent, and the substituent, M shows aluminum atom or Ga atom.

[Formula 6]

[Formula 7]
$$Ar^{13}$$
 $C = CH - Ar^{12} - CH = C$
 Ar^{14}
 Ar^{16}
(VI)

(Ar12 expresses respectively the aromatic hydrocarbon radical or aromatic heterocycle radical

of the bivalence which may have the substituent among a formula, and Ar13 thru/or Ar16 express respectively independently the aromatic hydrocarbon radical or aromatic heterocycle radical which may have the substituent respectively)

[Claim 5] Organic electroluminescence devices according to claim 1 to 4 characterized by preparing an electron transport layer between an electron hole blocking layer and cathode. [Claim 6] Organic electroluminescence devices according to claim 1 to 5 to which thickness of an electron hole blocking layer is characterized by being in the range of 0.5–30nm. [Claim 7] Organic electroluminescence devices according to claim 1 to 6 characterized by forming an electron hole transportation layer with an aromatic amine compound.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to organic electroluminescence devices. It is related with the organic electroluminescence devices which doped the specific fluorochrome to the luminous layer containing specific aromatic amine in detail. Since the organic electroluminescence devices of this invention can attain white luminescence of high luminous efficiency and its stability is improving, the application to the light source which employed the description as a flat-panel display, or a multicolor display device or a field emitter efficiently is expected.

[0002]

[Description of the Prior Art] Although what doped Mn which is an emission center, and rare earth elements (Eu, Ce, Tb, Sm, etc.) is common to ZnS, CaS, SrS, etc. which are the II-VI group compound semiconductor of an inorganic material as an electroluminescence (EL) component of a thin film mold conventionally The EL element produced from the above-mentioned inorganic material has the high (- 200 V) trouble that the cost of difficulty (especially blue) and 4 circumference drive circuits has the high formation of the need (50-1000Hz) and 2 driver voltage 3 having 1 full color alternating current drive.

[0003] However, development of the EL element using an organic thin film came to be performed in recent years for amelioration of the above-mentioned trouble. In order to raise luminous efficiency especially, the class of electrode is optimized for the purpose of the improvement in effectiveness of the carrier impregnation from an electrode, and the extensive improvement of luminous efficiency is made as compared with the EL element using single crystals, such as the conventional anthracene, by development (Appl.Phys.Lett., 51 volumes, 913 pages, 1987) of the organic electroluminescence devices which prepared the electron hole transportation layer which consists of aromatic series diamine, and the luminous layer which consists of the aluminum complex of 8-hydroxyquinoline. Moreover, improvement in luminous efficiency, conversion of luminescence wavelength, etc. are performed by doping fluorochromes for laser, such as a coumarin, by using the aluminum complex of 8-hydroxyquinoline as a host ingredient, for example (J. Appl.Phys., 65 volumes, 3 610 page, 1989).

[0004] Besides the electroluminescence devices using the above low-molecular ingredients, as an ingredient of a luminous layer Pori (p-phenylenevinylene) (Nature, 347 volumes, 539 pages, 1990), Pori [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (others [/ Appl.Phys.Lett., 58 volumes, 1982 pages, and / 1991]), Development of the electroluminescence devices using polymeric materials, such as Pori (3-alkyl thiophene) (Jpn.J.Appl.Phys, 30 L 1938 pages, 1991), Development of the component (application physics, 61 volumes, 1044 pages, 1992) which mixed a low-molecular luminescent material and a low-molecular electronic transition ingredient to macromolecules, such as a polyvinyl carbazole, is also performed.

[Problem(s) to be Solved by the Invention] Two approaches are considered in order to produce multiple color or the display device which can be displayed full color using organic electroluminescence devices. One makes the organic electroluminescence devices which can

make a blue light emit light the excitation light source, and it is green and an approach using the fluorescence conversion by the red fluorescence ingredient (Proc.15th Int.Display Research Conference, 269 pages, 1995). Another is a method which combines the organic electroluminescence devices and the color filter in which white luminescence is possible (JP,7–142169,A).

[0006] In multiple-color-izing by the former blue luminescence and the combination of fluorescence conversion, and a full color-ized method, the engine performance of blue organic electroluminescence devices, especially the life at the time of a drive are problems. an old place — a blue light emitting device — being related — initial brightness 100 cd/m2 it is — Although the life of 8000 hours is reported () [Inorganic] and OrganicElectroluminescence/EL 96 Berlin.ed.R.H.Mauch and H.E.Gumlich, p.95, Wissenschaft und Technik Verlag Berlin, and the loss and practical use brightness 300 cd/m2 demanded by fluorescence conversion When it thinks, the life of the present condition is inadequate.

[0007] In the method which combines latter white organic electroluminescence devices and a latter color filter, the luminous efficiency of white luminescence was a problem (the collection of the 55th Japan Society of Applied Physics academic lecture meeting lecture drafts, -6,992 page of 19 p-H, the collection of the 1994; 56th Japan Society of Applied Physics academic lecture meeting lecture drafts, 28 p-V -7, 1028 pages, 1995). To white luminescence, in addition to the demand to multiple-color-izing and full-color-izing, the white luminescence itself is made into display light, or there are also needs used for back lights, such as a liquid crystal display, and it can be said that the repercussion effect is large. Therefore, the further amelioration examination is desired to white luminescence which should be said also by the base of a display device. [0008] In order to attain white luminescence, the method (JP,6-207170,A; this Taira No. 142169 [seven to] official report) which carries out the laminating of a blue luminous layer, a green luminous layer, and the red luminous layer was indicated until now, but the color gap by change of the white EL spectrum accompanying a drive, and in order that a recrystallization zone might straddle two or more layers, there was a trouble that luminous efficiency was low. When it be a polymer, since control of an impurity be difficult, luminous efficiency and drive stability of the present condition be far [in order to solve this point, it be possible to dope each fluorochrome of blue, green, and red in a luminous layer at coincidence, and white be easily obtain by mix the fluorochrome of each color in the phase of coating liquid adjustment in a spreading mold polymer, but (Appl.Phys.Lett., 64 volumes, 815 pages, 1994)] from practical use. Although it is possible to dope the fluorochrome of each color in a luminous layer host with the vacuum deposition method using low-molecular, since the evaporation rate of many sources of vacuum evaporationo is controlled to coincidence and the amount of dopes of each fluorochrome is adjusted to it, considering actual production, it must be said that it is very difficult.

[0009] As mentioned above, from the white light emitting device, the simplest possible lamination, for example, a luminous layer, is a monolayer, and its luminous efficiency is high, a color gap of white cannot occur easily, and, moreover, the stable property is searched for at the time of a drive. Luminous efficiency of this invention is high, and it aims at offering the white organic electroluminescence devices whose stability improved.

[0010]

[Problem(s) to be Solved by the Invention] As a result of inquiring wholeheartedly in view of this actual condition, by making the luminous layer containing specific aromatic amine dope a specific fluorochrome, and specifying the relative relation of the ionization potential of an electron hole transportation layer, a luminous layer, and an electron hole blocking layer, this invention persons find out that the above-mentioned technical problem can be solved, and came to complete this invention.

[0011]

[Means for Solving the Problem] Namely, the electron hole transportation layer in which the summary of this invention was pinched by an anode plate and cathode on the substrate, They are the organic electroluminescence devices which contain a luminous layer and an electron hole blocking layer at least. The aromatic amine compound which has fluorescence maximum wave length in the range this whose luminous layer is 400–500nm is contained. The ionization potential

of an electron hole transportation layer is larger than the ionization potential of a luminous layer 0.1eV or more. The ionization potential of an electron hole blocking layer is larger than the ionization potential of a luminous layer 0.2eV or more, and it is in the organic electroluminescence devices characterized by fluorescence maximum wave length making a luminous layer contain at least the fluorochrome in the range which is 550-650nm.

[Embodiment of the Invention] Hereafter, the organic electroluminescence devices of this invention are explained, referring to a drawing. the sectional view showing typically the example of structure of the general organic electroluminescence devices by which drawing 1 is used for this invention — it is — 1 — in an electron hole transportation layer and 5, a luminous layer and 6 express an electron hole blocking layer, and, as for a substrate and 2, 8 expresses [an anode plate and 4] cathode respectively. A substrate 1 serves as a base material of organic electroluminescence devices, and the plate of a quartz or glass, a metal plate, a metallic foil and plastic film, a sheet, etc. are used. The plate of transparent synthetic resin, such as a glass plate, and polyester, polymethacrylate, a polycarbonate, polysulfone, is especially desirable. To use a synthetic—resin substrate, it is necessary to care about gas barrier property. Since organic electroluminescence devices may deteriorate by the open air which passed the substrate when the gas barrier nature of a substrate is too small, it is not desirable. For this reason, the method of preparing precise silicon oxide etc. at least in one side of a synthetic—resin substrate, and securing gas barrier property is also one of the desirable approaches.

[0013] Although an anode plate 2 is formed on a substrate 1, an anode plate 2 plays the role of the hole injection to an electron hole transportation layer. This anode plate is usually constituted by conductive polymers, such as halogenation metals, such as metallic oxides, such as oxide of metals, such as aluminum, gold, silver, nickel, palladium, and platinum, an indium, and/or tin, and copper iodide, carbon black or Pori (3-methylthiophene), polypyrrole, and the poly aniline, etc. Formation of an anode plate 2 is usually performed by the sputtering method, a vacuum deposition method, etc. in many cases. Moreover, in the case of particles, such as metal particles, such as silver, and copper iodide, carbon black, a conductive metallic-oxide particle, conductive polymer impalpable powder, etc., it can distribute in a suitable binder resin solution, and an anode plate 2 can also be formed by applying on a substrate 1. Furthermore, a thin film can be formed on the direct substrate 1 by electrolytic polymerization, or on a substrate 1, in the case of a conductive polymer, a conductive polymer can be applied, and it can also form an anode plate 2 (Appl.Phys.Lett., 60 volumes, 2711 pages, 1992). By different matter, a laminating is carried out and an anode plate 2 can also be formed. The thickness of an anode plate 2 changes with transparency to need. When transparency is needed, it is desirable to usually make the permeability of the light into 80% or more preferably 60% or more, and 5-1000nm of thickness is usually about 10-500nm preferably in this case. When opaque and good, even when an anode plate 2 is the same as that of a substrate 1, it is good. Furthermore, it is also possible to carry out the laminating of the different electrical conducting material on the above-mentioned anode

[0014] The electron hole transportation layer 4 is formed on an anode plate 2. As conditions required of the ingredient of an electron hole transportation layer, the hole-injection effectiveness from an anode plate is high, and it is required to be the ingredient which can convey the poured-in electron hole efficiently. For that purpose, ionization potential is small, from the light of the light, transparency is high, hole mobility is large, it excels in stability further, and, moreover, it is required that it should be hard to generate the impurity used as a trap at the time of manufacture and use. When the application for a mounted display is considered in addition to the above-mentioned general demand, thermal resistance is further required of a component. Therefore, the ingredient which has the value of 85 degrees C or more as Tg is desirable.

[0015] The aromatic series diamine compound which connected the third class aromatic amine units, such as a 1 and 1-bis(4-G p-tolylamino phenyl) cyclohexane, as such an electron hole transportation ingredient, for example (JP,59-194393,A), The aromatic amine which two or more fused aromatic rings permuted by the nitrogen atom including two or more tertiary amines

represented with a 4 and 4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (JP,5-234681,A), The aromatic series triamine which has starburst structure with the derivative of triphenyl benzene (U.S. Pat. No. 4,923,774 specification), Aromatic series diamines, such as N, N'-diphenyl-N, and N'-bis(3-methylphenyl) biphenyl-4,4'-diamine (U.S. Pat. No. 4,764,625 specification), As the whole molecule, a triphenylamine derivative unsymmetrical in three dimensions (JP,4-129271,A), The compound which the aromatic series diamino radical permuted by the pyrenyl radical (JP,4-175395,A). The aromatic series diamine which connected the third class aromatic amine unit by ethylene (JP,4-264189,A), The aromatic series diamine which has styryl structure (JP,4-290851,A), What connected the aromatic series tertiary-amine unit by the thiophene radical (JP,4-304466,A), Starburst mold aromatic series triamine (JP,4-308688,A), A benzylphenyl compound (JP,4-364153,A), the thing which connected the tertiary amine by the fluorene radical (JP,5-25473,A), A triamine compound (JP,5-239455,A), a bis-dipyridyl amino biphenyl (JP,5-320634,A), N, N, and N-triphenylamine derivative (JP,6-1972,A), The aromatic series diamine which has phenoxazine structure (JP,7-138562,A), A diamino phenyl phenanthridine derivative (JP,7-252474,A), A silazane compound (U.S. Pat. No. 4,950,950 specification), a silanamine derivative (JP,6-49079,A), a phosphamine derivative (JP,6-25659,A), the Quinacridone compound, etc. are mentioned. These compounds may be used independently, and if needed, it may mix respectively and they may be used.

[0016] In addition to the above-mentioned compound, as an ingredient of an electron hole transportation layer, a polyvinyl carbazole and polysilane (Appl.Phys.Lett., 59 volumes, 2760 pages, 1991), Poly FOSUFAZEN (JP,5-310949,A), a polyamide (JP,5-310949,A), A polyvinyl triphenylamine (JP,7-53953,A), the macromolecule which has a triphenylamine frame (JP,4-133065,A), the macromolecule (Synthetic Metals -- 55-57 volumes) which connected the triphenylamine unit by the methylene group etc. Polymeric materials, such as polymethacrylate (J. Polym.Sci., Polym.Chem.Ed., 21 volumes, 969 pages, 1983) containing aromatic amine, will be mentioned in 4163 pages and 1993.

[0017] The electron hole transportation layer 4 is formed by carrying out the laminating of the above-mentioned electron hole transportation ingredient on said anode plate 2 with the applying method or a vacuum deposition method. In the case of the applying method, additives which do not become a hole trap according to a kind or two sorts or more, and the need about an electron hole transportation ingredient, such as binder resin and a spreading nature amelioration agent, are added, it dissolves, a spreading solution is prepared, and it applies on an anode plate 2 by approaches, such as a spin coat method, and it dries and the electron hole transportation layer 4 is formed. A polycarbonate, polyarylate, polyester, etc. are mentioned as binder resin. Since it will reduce hole mobility if binder resin has many additions, little direction is desirable and its 50 or less % of the weight is usually desirable.

[0018] After paying electron hole transportation ingredients to the crucible installed in the vacuum housing and exhausting the inside of a vacuum housing to about 10 – 4Pa with a suitable vacuum pump, in the case of vacuum evaporation technique, a crucible is heated, an electron hole transportation ingredient is evaporated in it, and the electron hole transportation layer 4 is made to form on the anode plate 2 on the substrate 1 which faced each other with the crucible and was placed. When forming the electron hole transportation layer 4, a low-battery drive can be enabled by doping the metal complex of aromatic carboxylic acid and/or a metal salt (JP,4–320484,A), a benzophenone derivative and a thio benzophenone derivative (JP,5–295361,A), and fullerene (JP,5–331458,A) by 10–3 – 10% of the weight of concentration, and making the electron hole as a free carrier generate as an acceptor further. 10–300nm of thickness of the electron hole transportation layer 4 is usually 30–100nm preferably. Thus, in order to form the thin film uniformly, generally a vacuum deposition method is used well.

[0019] In order to raise contact of an anode plate 2 and the electron hole transportation layer 4, as shown in drawing 3, it is possible to form the anode plate buffer layer 3. A thin film with it can be formed, stability, i.e., the melting point, and glass transition temperature are thermally high, and 100 degrees C or more are required as 300 degrees C or more and a glass transition temperature as the melting point. [the good contact to an anode plate and] [uniform as conditions required of the ingredient used for an anode plate buffer layer] Furthermore, it is

mentioned that ionization potential is low and the hole injection from an anode plate is easy and that hole mobility is large. Until now for this purpose A porphyrin derivative and a phthalocyanine compound (JP,63–295695,A), Starburst mold aromatic series triamine (JP,4–308688,A), A hydrazone compound (JP,4–320483,A), the aromatic series diamine derivative of an alkoxy permutation (JP,4–220995,A), A p–(9–anthryl)–N and N–G p–tolyl aniline (JP,3–111485,A), Poly thienylene vinylene and Polly p–phenylenevinylene (JP,4–145192,A), Organic compounds, such as the poly aniline (refer to Appl.Phys.Lett., 64 volumes, 1245 pages, and 1994), Metallic oxides (the 43rd applied–physics relation union lecture meeting, 27 a–SY–1996 [9 or]), such as spatter carbon film (JP,8–31573,A), and a banazin san ghost, ruthenium oxide, a molybdic–acid ghost, are reported.

[0020] A porphyrin compound or a phthalocyanine compound is mentioned as a compound often used as the above-mentioned anode plate buffer layer ingredient. These compounds may have the central metal and the thing of a non-metal is sufficient as them. As an example of these desirable compounds, it is :porphin [to which the following compounds are mentioned] 5, 10, and 15, 20-tetrapod phenyl-21H, and 23H-porphin 5, 10, and 15, 20-tetrapod phenyl-21H, and 23H-porphin cobalt (II).

- 5, 10, 15, 20-tetrapod phenyl-21H, and 23H-porphin copper (II)
- 5, 10, 15, 20-tetrapod phenyl-21H, and 23H-porphin zinc (II)
- 5, 10, 15, and 20-tetra-phenyl 21H and 23H-porphin vanadium (IV) Oxide 5, 10, and 15, 20-tetrapod (4-pyridyl) The 21H and 23H-porphins 29H and 31H a phthalocyanine -- copper -- (-- II --) -- a phthalocyanine -- zinc -- (-- II --) -- a phthalocyanine --

CHITANFUTAROSHIANIN — oxide — magnesium — a phthalocyanine — lead — a phthalocyanine — copper — (— II —) — four — four — ' — four — " — four — ' — tetraaza one — 29 — H — 31 — H — a phthalocyanine — [— 0021 —] Although thin film formation is possible also for the case of an anode plate buffer layer like an electron hole transportation layer, in the case of an inorganic substance, a spatter, electron beam vacuum

deposition, and a plasma-CVD method are used further. 3-100nm of thickness of the anode plate buffer layer 3 formed as mentioned above is usually 10-50nm preferably.

[0022] A luminous layer 5 is formed on the electron hole transportation layer 4. A luminous layer 5 is formed from the compound which carries out white luminescence by making the electron hole conveyed in inter-electrode [which was able to give electric field] by passing the electron hole transportation layer poured in from the anode plate 2, and the electron conveyed by passing the electron hole blocking layer 6 poured in from cathode 8 recombine efficiently. For that purpose, to be the compound which the impurity which combines both electron hole transportability and electronic transportability, hole mobility and electron mobility are large, is moreover further excellent in stability, and serves as a trap cannot generate easily at the time of manufacture and use is demanded.

[0023] In this invention, a luminous layer can enable efficient white luminescence, when the fluorescence maximum wave length in a distributed condition or a dilute-solution condition makes the fluorochrome in the range which is 550-650nm contain 0.1 to 10% of the weight to the above-mentioned host ingredient by using as a host ingredient the aromatic amine compound in the range whose fluorescence maximum wave length in a thin film condition is 400-500nm. This is explained using the CIE chromaticity−coordinate Fig. (JISZ8701) shown in drawing 4 . White luminescence is expressed in the field centering on the white point (x=y=1/3) shown by W in drawing. Luminescence of a blue host ingredient which has fluorescence maximum wave length in 400-500nm is located in the field of bluish green, blue, and purple-blue by drawing 4 . On the other hand, luminescence of the fluorochrome for doping whose fluorescence maximum wave length is 550-650nm corresponds to the field of the yellowish green in drawing, yellow, a sour orange, and red. For example, if the thing of b points is combined as dope coloring matter when using the thing of a points as a host ingredient of purple-blue color luminescence, the color expressed with ab line by additive mixture of colors will be attained, and luminescence of a white field will be obtained by adjusting the amount of dopes. Similarly, if the thing of d points is chosen as the thing of c points, and dope coloring matter as a blue host ingredient, cd line which crosses a white field broadly will be obtained, and the white light emitting device for which it

depends on doping concentration dependence gently will be attained. The same is said of ef line and ef line.

[0024] In this invention, a fluorescence aromatic amine compound is used as a blue host ingredient which fulfills the above-mentioned conditions. Although the attempt using an aromatic amine compound as a luminous layer of electron hole transportability is made also conventionally Do not prepare an electron hole transportation layer between anode plates, or (Jpn.J.Appl.Phys., 32 L 917 pages, 1993), The ionization potential of a luminous layer was not higher than the ionization potential of an electron hole transportation layer (Jpn.J.Appl.Phys., 35 volumes, 4819 pages, 1996), and only the blue light emitting device with low stability was obtained low [the luminous efficiency of a component] by writing. In this invention, in order to use the aromatic amine compound of electron hole transportability effectively as a luminous layer, it found out that it was suitable to use the fluorescence aromatic amine which has ionization potential smaller 0.1eV or more than the ionization potential of an electron hole transportation layer. Preventing quenching in the anode plate of the exciton by raising the electron hole concentration in the luminous layer at the time of component energization and the recombination within a luminous layer according to this component structure is attained by coincidence. [0025] As a luminous layer ingredient in the organic electroluminescence devices of this invention, as long as the relation of ionization potential with an electron hole transportation layer is filled, the further limit cannot be found in an aromatic amine compound, but when crystallization prevention of a luminous layer and thermal stability are taken into consideration, it is desirable to have a high glass transition temperature (Tg). It is useful to contain the third class nitrogen atom which has at least one fused aromatic ring radical as a substituent as an aromatic amine compound which has high Tg. It is still more desirable to be chosen out of the aromatic amine compound by which the aromatic amine contained in a luminous layer is expressed with the following general formula (I) or (II) from this.

[0026]

[0027] In said general formula (I) preferably X The benzene ring of the bivalence which may have the substituent respectively, a naphthalene ring, An anthracene ring, binaphthyl, a fluorene ring, a phenanthrene ring, a pyrene ring, An acridine ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, A bipyridyl ring and a biphenyl are shown. As said substituent A halogen atom; methyl group, alkyl group [of the carbon numbers 1–6, such as an ethyl group,]; — alkenyl radical [, such as a vinyl group,]; — a methoxycarbonyl group — The alkoxy carbonyl group of the carbon numbers 1–6, such as an ethoxycarbonyl radical; dialkylamino radicals, such as aryloxy group; diethylamino radicals, such as an alkoxy group; phenoxy group of the carbon numbers 1–6, such as a methoxy group and an ethoxy radical, and a benzyloxy radical, and a diisopropylamino radical, are shown. As said substituent, a methyl group, a phenyl group, and a methoxy group are mentioned especially preferably.

[0028] Ar1 Or Ar4 You may have the substituent respectively independently respectively preferably. A phenyl group, a biphenyl radical, a naphthyl group, an anthryl radical, a phenan tolyl group, A pyrenyl radical, a BIRIJIRU radical, a triazyl radical, a pyrazyl radical, a quinoxalyl radical, A thienyl group is shown. As said substituent Alkenyl radical; methoxycarbonyl groups of the carbon numbers 1–6, such as a halogen atom; methyl group and an ethyl group, such as an alkyl group; vinyl group, The alkoxy carbonyl group of the carbon numbers 1–6, such as an ethoxycarbonyl radical; dialkylamino radicals, such as aryloxy group; diethylamino radicals, such as an alkoxy group; phenoxy group of the carbon numbers 1–6, such as a methoxy group and an ethoxy radical, and a benzyloxy radical, and a diisopropylamino radical, are shown. As said substituent, a methyl group, a phenyl group, and a methoxy group are mentioned especially preferably.

[0029]

[Formula 9]
$$Ar^{5}_{N} - Ar^{6}$$

$$Ar^{8}$$

$$Ar^{8}$$

$$Ar^{8}$$

$$Ar^{5}$$

$$Ar^{8}$$

[0030] In said general formula (II), Y is chosen from the trivalent benzene ring permuted at least by the nitrogen atom or 1 and 3, and 5–. Ar5 And Ar6 You may have the substituent respectively independently respectively preferably. A phenyl group, a biphenyl radical, a naphthyl group, an anthryl radical, a phenan tolyl group, A pyrenyl radical, a pyridyl radical, a triazyl radical, a pyrazyl radical, a quinoxalyl radical, A thienyl group is shown. As said substituent Alkenyl radical; methoxycarbonyl groups of the carbon numbers 1–6, such as a halogen atom; methyl group and an ethyl group, such as an alkyl group; vinyl group, The alkoxy carbonyl group of the carbon numbers 1–6, such as an ethoxycarbonyl radical; dialkylamino radicals, such as aryloxy group; diethylamino radical; diisopropylamino radicals, such as an alkoxy group; phenoxy group of the carbon numbers 1–6, such as a methoxy group and an ethoxy radical, and a benzyloxy radical, are shown. As said substituent, a methyl group, a phenyl group, and a methoxy group are mentioned especially preferably.

[0031] In this invention, according to the molecular structure shown in said general formula (I) or general formula (II), Tg can be made into 85 degrees C or more, it is possible to give the amorphous thin film which is not easily crystallized by this heat-resistant improvement, and the counter diffusion of the molecule between an electron hole transportation layer, an electron transport layer, etc. can fully be controlled also under an elevated temperature 85 degrees C or more. Moreover, the luminous layer which can also make ionization potential smaller 0.1eV or more than that of an electron hole transportation layer, and has the fluorescence maximum to the wavelength field which is 400–500nm can be designed. Although the desirable example of an aromatic amine compound expressed with said general formula (I) and (II) is shown in Table 1 thru/or 5, it is not limited to these.

[0032]

[Table 1]

		Ar ¹	_Ar³ N		
表一1		ر Ar ²	–X—N Ar⁴		
番号	X	Ar'	Ar²	Ar³	Ar
(1-1)				$\rightarrow \bigcirc$	
(1-2)		-{>сн₃		-{СН₃	
(1-3)		\Diamond	g T		H ₃ C
(1-4)			→ CH ₃	-<>>	-СН₃
(1-5)	- ◇◇-	$\overline{\Diamond}$		$\rightarrow \bigcirc$	
(1-6)	-0-0-	—⟨СН₃		— СН3	
(1-7)		-€-осн₃		—OCH₃	

[0033] [Table 2]

г	11	T	т	r	1	· 1		
	Αr*	φ				8	\$	
	Ar³	P	P	\Diamond	СН3	P	P	P
2	Ar²	9	$\varphi \varphi$	\$	S			
表-2	Ar'	0	9	P	CH3	9	9	Ŷ
	×	H2 CH3	000	0	0		00	
•	華	(1-8)	(6-1)	(1-10)	(1-11)	(1-12)	(1-13)	(1-14)

[0034] [Table 3]

表—3	X Ar¹ Ar² Ar³ Ar⁴				Сн3 Сн3 Сн3 Сн3		H C CH3 CH3 CH3	
	×							
	番号	(1-15)	(1-16)	(1-17)	(1-18)	(1-19)	(1-20)	(1-21)

[0035] [Table 4]

	Ar	Ŷ	\Diamond		-СН3	Ŷ	CH ₃	Ç [*]
	Ar³			⇔	— О сн _з		-{} сн₃	⊖ GH ₃
- 4	Ar²	0	\Diamond		€ снз	\Diamond	← CH ₃	QH ₃
我—4	A۲۱	\rightarrow	0	CH3	€ сн³	\Q	CH _S	Ç F
	×					H ₃ C OH ₃	H ₃ C CH ₃	H ₃ C
	番号	(1-22)	(I-23)	(1-24)	(1-25)	(1-26)	(1-27)	(1-28)

[0036] [Table 5]

[0037] These compounds may be used independently, and if needed, it may mix respectively and they may be used. As a fluorochrome doped by the luminous layer by using said aromatic amine compound as a host ingredient, the fluorescence maximum wave length in a distributed condition or a dilute-solution condition should just be a fluorochrome in the range which is 550–650nm. A distributed condition or a dilute-solution condition means the density range to which concentration quenching of a fluorochrome does not happen, and is usually 10 or less % of the weight here. The naphthacene derivative which makes rubrene representation as coloring matter which has yellow fluorescence from yellowish green, for example (JP,4-335087,A), As a peri MIDON derivative (JP,4-320485,A) and an orange fluorochrome A benzothioxanthene derivative (JP,5-222362,A), DCM coloring matter (JP,63-264692,A), rhodamine coloring matter, etc. as a red fluorochrome Perylene pigments, such as an azabenzthioxanthene derivative (Japanese-Patent-Application-No. No. 88172 [nine to] specification), phenoxazone, DCJ coloring matter (Chem.Funct.Dyes, Proc.Int.Symp., 2nd1992, 536 pages), and RUMOGEN F red, etc. are mentioned. With doping the above-mentioned fluorochrome in 0.1 – 10% of the weight of a

density range into a blue host ingredient, desired white luminescence can be obtained by adding luminescence from dope coloring matter to luminescence from a host ingredient. [0038] It is also effective to dope further the fluorochrome which has fluorescence maximum wave length in the thin condition to 400–500nm, and to add it to it, in order to take white balance, and in order to raise luminous efficiency. As dope coloring matter used for this purpose, condensed multi-ring aromatic series rings (JP,5–198377,A), such as perylene, a coumarin derivative, a naphthalic acid imide derivative (JP,4–320486,A), an aromatic amine derivative (JP,8–199162,A), etc. are mentioned, for example. As for the rate which these dope coloring matter contains into a host ingredient, it is desirable that it is in 0.1 – 10% of the weight of the range. A 400–500 above–mentionednm fluorochrome may be doped by homogeneity in a luminous layer, and may be doped partially. As an approach of performing the above–mentioned doping with a vacuum deposition method, there are an approach by vapor codeposition and the approach of mixing the source of vacuum evaporation by predetermined concentration beforehand. In addition, if it is above–mentioned doping concentration within the limits, the ionization potential of a host ingredient will not change with doping.

[0039] Although it is doped by homogeneity in the direction of thickness of a luminous layer when each above—mentioned dopant is doped in a luminous layer, in the direction of thickness, there may be concentration distribution or it may be partially doped by the luminous layer. For example, it may dope only near the interface with an electron hole transportation layer, or you may dope near the electron hole blocking layer interface conversely. A luminous layer 5 is formed by carrying out a laminating on the electron hole transportation layer 4 with the applying method or a vacuum deposition method like the electron hole transportation layer 4. However, in the case of the applying method, it is necessary to use the solvent in which the electron hole transportation layer by which thin film formation has already been carried out is not dissolved. 5–300nm of thickness of a luminous layer 5 is usually 10–100nm preferably. Thus, in order to form the thin film uniformly, generally a vacuum deposition method is used well.

[0040] The electron hole blocking layer 6 is formed on a luminous layer 5. The electron hole blocking layer 6 is formed from the compound which can convey efficiently the role which prevents arriving the electron hole where it moves from a luminous layer at cathode, and the electron poured in from cathode in the direction of a luminous layer 5. Since electron mobility is high and hole mobility shuts up a low thing and an electron hole in a luminous layer efficiently as physical properties for which the ingredient which constitutes an electron hole blocking layer is asked, it is necessary to have the value of ionization potential larger 0.2eV or more than the ionization potential of a luminous layer. Since an electron hole transportation layer consists of ingredients without electronic transport capacity, an electron hole blocking layer shuts up an electron hole and an electron in a luminous layer, and has the function which raises luminous efficiency. As an electron hole blocking layer ingredient which fulfills such conditions, it is the mixed ligand complex expressed with the following general formulas (III), and [0041].

[Formula 10]

$$\begin{array}{c|ccccc}
R^2 & R^1 \\
R^3 & N & M-L \\
R^5 & R^6 & 2
\end{array}$$

[0042] the inside of a formula, R1, or R6 — respectively — becoming independent — a hydrogen atom and a halogen atom — An alkyl group, an aralkyl radical, an alkenyl radical, an allyl group, a cyano group, the amino group, An acyl group, an alkoxy carbonyl group, a carboxyl group, an alkoxy group, An alkyl sulfonyl group, alpha—halo alkyl group, a hydroxyl group, the amide group that may have the substituent, the general formula (IIIa) expressing the aromatic heterocycle radical which may have the aromatic hydrocarbon radical or substituent which may have the substituent, and M's showing aluminum atom or Ga atom, and showing L below — or (IIIb) (IIIc)

One of radicals is expressed.

[0043]

[Formula 11]

$$-0-Ar^{7}$$
 (IIIa) $-0-C-Ar^{8}$ (IIIb) $-0-Z-Ar^{10}$ (IIIc)

[0044] (Z expresses the atom of either Si, germanium or Sn among a formula, and Ar9 or Ar10 expresses respectively independently the aromatic hydrocarbon radical or aromatic heterocycle radical which may have the substituent respectively)

The dinuclear metal complex, [0045] which are expressed with the following general formulas (IV)

[Formula 12]
$$\begin{bmatrix}
R^2 & R^1 \\
R^3 & N \\
R^4 & O
\end{bmatrix}$$

$$\begin{bmatrix}
R^1 & R^2 \\
N & R^3 \\
O & R^4
\end{bmatrix}$$

$$\begin{bmatrix}
R^1 & R^2 \\
R^3 & R^3
\end{bmatrix}$$

$$\begin{bmatrix}
R^1 & R^2 \\
R^4 & R^5
\end{bmatrix}$$

$$\begin{bmatrix}
R^1 & R^2 \\
R^4 & R^5
\end{bmatrix}$$

[0046] the inside of a formula, R1, or R6 — respectively — becoming independent — a hydrogen atom and a halogen atom — An alkyl group, an aralkyl radical, an alkenyl radical, an allyl group, a cyano group, the amino group, An acyl group, an alkoxy carbonyl group, a carboxyl group, an alkoxy group, Expressing the aromatic heterocycle radical which may have the aromatic hydrocarbon radical or substituent which may have an alkyl sulfonyl group, alpha—halo alkyl group, the hydroxyl group, the amide group that may have the substituent, and the substituent, M shows aluminum atom or Ga atom.

The compound, [0047] which ***** at least 1, 2, and 4-triazole ring shown with the following structure expressions (IV)

[Formula 13]

[0048] The styryl compound shown by the following general formulas (V) is mentioned. [0049]

[Formula 14]

$$\begin{array}{c}
Ar^{13} & Ar^{15} \\
C = CH - Ar^{12} - CH = C \\
Ar^{14} & Ar^{16}
\end{array}$$
(VI)

[0050] (Ar12 expresses among a formula the aromatic hydrocarbon radical or aromatic heterocycle radical of the bivalence which may have the substituent respectively, and Ar13 thru/or Ar16 express respectively independently the aromatic hydrocarbon radical or aromatic hydrocarbon radical which may have the substituent respectively)

As an example of the mixed ligand complex shown by said general formula (III), bis(2-methyl-8-quinolinolato) (phenolate) aluminum, a screw (2-methyl-8-quinolinolato (alt.-crezolate) aluminum --) Bis(2-methyl-8-quinolinolate)(metha-crezolate)aluminum, Bis(2-methyl-8-quinolinolato) (para-crezolate)aluminum, Bis(2-methyl-8-quinolinolato) (ortho-phenylphenolate) aluminum, Bis (2-methyl-8-quinolinolato) (meta-phenylphenolate) aluminum, Bis(2-methyl-8-quinolinolato) (para-phenylphenolate) aluminum, Bis(2-methyl-8-quinolinolato) (2,3-dimethylphenolate) aluminum, Bis(2-methyl-8-quinolinolato) (3, 4-dimethyl phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (3, 5-dimethylphenolate) aluminum, Bis(2-methyl-8-quinolinolato) (3, 5-dimethylphenolate)

phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (3, 5-G tert-butyl phenolate) aluminum, Bis (2-methyl-8-quinolinolato) (2, 6-diphenyl phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (2, 4, 6-triphenyl phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (2, 4, 6-trimethyl phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (2, 3, 6-trimethyl phenolate) aluminum, Bis(2-methyl-8quinolinolato) (2, 3, 5, 6-tetramethyl phenolate) aluminum, Bis(2-methyl-8-quinolinolato) (1-NAFUTORATO) aluminum, Bis(2-methyl-8-quinolinolato) (2-NAFUTORATO) aluminum, Bis(2methyl-8-quinolinolato) (triphenyl SHIRANORATO) aluminum, Bis(2-methyl-8-quinolinolato) (triphenyl germanium NORATO) aluminum, Bis(2-methyl-8-quinolinolato) (tris (4, 4, - biphenyl) SHIRANORATO) aluminum, Bis(2, 4-dimethyl-8-quinolinolato) (ortho-phenylphenolate) aluminum, Bis(2, 4-dimethyl-8-quinolinolato) (para-phenylphenolate) aluminum, Bis(2, 4-dimethyl-8quinolinolato) (meta-phenylphenolate) aluminum, Bis(2, 4-dimethyl-8-quinolinolato) (3, 5dimethyl phenolate) aluminum, Bis(2, 4-dimethyl-8-quinolinolato) (3, 5-G tert-butyl phenolate) aluminum, Bis(2-methyl-4-ethyl-8-quinolinolato) (Para-crezolate) aluminum, Bis(2-methyl-4methoxy-8-quinolinolato) (para-phenylphenolate) aluminum, Bis(2-methyl-5-cyano-8quinolinolato) (alt.-crezolate) aluminum, Bis(2-methyl-6-trifluoromethyl-8-quinolinolato) (2-NAFUTORATO) aluminum, A bis(2-methyl-8-quinolinolato) (phenolate) gallium, a bis(2-methyl-8-quinolinolato) (alt.-crezolate) gallium, A bis(2-methyl-8-quinolinolato) (para-phenylphenolate) gallium, A bis(2-methyl-8-quinolinolato) (1-NAFUTORATO) gallium, A bis(2-methyl-8quinolinolato) (2-NAFUTORATO) gallium, a bis(2-methyl-8-quinolinolato) (triphenyl SHIRANORATO) gallium, a bis(2-methyl-8-quinolinolato) (tris (4 and 4-biphenyl) SHIRANORATO) gallium, etc. are mentioned. Bis(2-methyl-8-quinolinolato) (2-NAFUTORATO) aluminum and bis(2-methyl-8-quinolinolato) (triphenyl SHIRANORATO) aluminum are mentioned especially preferably.

[0051] As an example of a dinuclear metal complex expressed with said general formula (IV), bis (2-methyl-8-KINORATO) aluminum-mu-oxo-screw-(2-methyl-8-quinolinolato) aluminum, Bis(2, 4-dimethyl-8-quinolinolato) aluminum-mu-oxo-screw-(2, 4-dimethyl-8-quinolinolato) aluminum, Bis(4-ethyl-2-methyl-8-quinolinolato) aluminum-mu-oxo-screw-(4-ethyl-2-methyl-8-quinolinolato) aluminum, Bis(2-methyl-4-methoxy quinolinolato) aluminum-mu-oxo-screw-(2-methyl-4-methoxy quinolinolato) aluminum, Bis(5-cyano-2-methyl-8-quinolinolato) aluminum-mu-oxo-screw-(5-cyano-2-methyl-8-quinolinolato) aluminum, Bis(5-chloro-2-methyl-8-quinolinolato) aluminum, Bis(2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum-mu-oxo-screw-(2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum-mu-oxo-screw-(2-methyl-8-quinolinolato) aluminum is mentioned especially preferably. The example of a compound of ******(ing) at least 1, 2, and 4-triazole ring expressed

with said structure expression (V) is shown below.

[0052]

[Formula 15]

[0053] As an example of a styryl compound expressed with said general formula (VI), the distyrylbiphenyl derivative which shows a structure expression is listed, for example to below. [0054]

[Formula 16]

[0055] 0.3–100nm of thickness of the electron hole blocking layer 6 is usually 0.5–30nm preferably. Although an electron hole blocking layer can also be formed by the same approach as an electron hole transportation layer, a vacuum deposition method is usually used. It is possible to form an electron transport layer 7 between the electron hole blocking layer 6 and cathode 8 for the purpose of raising the luminous efficiency of a component further. An electron transport layer 7 is formed from the compound which can convey efficiently the electron poured in from cathode in inter–electrode [which was able to give electric field] in the direction of the electron hole blocking layer 6. It has the effectiveness which prevents the exciton generated by the recombination in a luminous layer diffusing an electron transport layer, and quenching being carried out in cathode 8. It is required for the electron injection effectiveness from cathode 8 to be the compound which can convey highly the electron which has high electron mobility and was poured in efficiently as an electronic transportability compound used for an electron transport layer 7.

[0056] As an ingredient which fulfills such conditions, metal complexes, such as an aluminum complex of 8-hydroxyquinoline (JP,59-194393,A), The metal complex of a 10-hydroxy benzo[h] quinoline (JP,6-322362,A), An oxadiazole derivative (JP,2-216791,A), a distyrylbiphenyl derivative (JP,3-231970,A), A silole derivative (JP,9-87616,A), 3, or a 5-hydroxy flavone metal complex (Appl.Phys.Lett., 71 volumes, 3338 pages, 1997), A benzoxazole metal complex (JP,6-336586,A), a benzothiazole metal complex (JP,9-279134,A), Tris benzimidazolyl benzene (U.S. Pat. No.

5,645,948 specification), A quinoxaline compound (JP,6-207169,A), a phenanthroline derivative (JP,5-331459,A), 2-t-butyl -9, 10-N, and N'-dicyano anthraquinone diimine (Phys.Stat.Sol. (a), 142 volumes, 489 pages, 1994), n mold hydrogenation amorphous carbonization silicon, n mold zinc sulfide, n mold zinc selenide, etc. are mentioned. 5-200nm of thickness of an electron transport layer 7 is usually 10-100nm preferably.

[0057] Cathode 8 plays the role which injects an electron into an electron transport layer 7. Although the ingredient used as cathode 8 can use the ingredient used for said anode plate 2, in order to perform electron injection efficiently, the low metal of a work function is desirable and suitable metals or those alloys, such as tin, magnesium, an indium, calcium, aluminum, and silver, are used. As an example, low work function alloy electrodes, such as a magnesium-silver alloy, a magnesium-indium alloy, and an aluminium-lithium alloy, are mentioned.

[0058] Furthermore, it is the effective approach of raising the effectiveness of a component to insert ultra—thin film (0.1–5nm), such as alkali metal compounds, such as LiF and Li2 O, and an alkaline earth halogenide, in the interface of cathode, a luminous layer, or an electron transport layer (Appl.Phys.Lett., 70 volumes, 152 pages, 1997;IEEE Trans.Electron.Devices, 44 volumes, 1245 pages, the 1997; Japanese—Patent—Application—No. No. 86662 [nine to] specification). The thickness of cathode 8 is usually the same as that of an anode plate 2. It increases the stability of a component that a work function carries out the laminating of the stable metal layer to atmospheric air further highly on this in order to protect the cathode which consists of a low work function metal. For this purpose, metals, such as copper, aluminum, silver, nickel, chromium, gold, and platinum, are used.

[0059] In addition, it is also possible to carry out a laminating to the order of cathode 8, an electron transport layer 7, a luminous layer 5, the electron hole transportation layer 4, and an anode plate 2 on structure contrary to drawing 1, i.e., a substrate, and at least one side is able to prepare the organic electroluminescence devices of this invention between two substrates with high transparency, as mentioned already. It is also possible similarly to carry out a laminating to structure contrary to said class configuration shown in drawing 2 and drawing 3. According to the organic electroluminescence devices of this invention, luminous efficiency is high, white luminescence excellent in stability is obtained, it functions as the back light light source it is not only useful as a display device of a direct viewing type, but, and it is also still more possible to produce a full color display device by combining with a color filter. [0060]

[Example] Next, although an example explains this invention still more concretely, this invention is not limited to the publication of the following examples, unless the summary is exceeded. After ultrasonic cleaning and pure water performed the example of reference 1 glass substrate by rinsing and isopropyl alcohol and the acetone performed desiccation, and UV / ozone washing with ultrasonic cleaning and desiccation nitrogen, it installed in the vacuum evaporation system, and it exhausted using the oil diffusion pump until the degree of vacuum in equipment was set to 2x10 to 6 or less Torrs. The instantiation compound (I-3) was put into ceramic crucible, and it vapor-deposited by heating at the tantalum wire heater around crucible. The temperature of the crucible at this time was controlled in 200-260 degrees C. The degree of vacuum at the time of vacuum evaporationo is 1.8x10-6Torr (about 2.3x10 to 4 Pa), and obtained the uniform and transparent film of 82nm of thickness with the evaporation rate of 0.3nm/second. When the ionization potential of this thin film sample was measured using the ultraviolet-rays electronic analysis apparatus (AC−1) by Riken Keiki Co., Ltd., the value of 5.06eV was shown. The maximum of the fluorescence wavelength which excited and measured this vacuum evaporationo film with the mercury lamp (wavelength 350nm) was 465nm, and was blue fluorescence. moreover -- the powder sample of an instantiation compound -- SEIKO electronic company make -- when differential-thermal-analysis measurement was carried out by DSC-20, Tg showed 93 degrees C and a high value. Similarly, the result of having measured ionization potential, fluorescence maximum wave length, and Tg about other instantiation compounds is shown in Table -6. [0061]

[Table 6]

委一 6						
化合物番号	イオン化 ポテンシャル [eV]	蛍光極大波長 [nm]	Tg [℃]			
I-3	5.06	465	93			
I-5	5.08	445	88			
I-10	5.00	450	146.			
I-27	5.09	470	142			
I-28	5.05	480	120			

[0062] It is the 4 and 4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (H-1) which replaces with an instantiation compound (I-3), and is shown below as an ingredient of an example of reference 2 electron-hole transportation layer The source of vacuum evaporationo, and [0063] [Formula 17]

[0064] It carried out and also the vacuum evaporation film was produced like the example 1 of reference. When the ionization potential of this thin film sample was measured, the value of 5.25eV was shown.

As an ingredient of an example of reference 3 electron-hole blocking layer, it replaced with the instantiation compound (I-3), and the bis(2-methyl-8-quinolinolato) (triphenyl SHIRANORATO) aluminum complex (HB-1) shown below was made into the source of vacuum evaporationo, and also the vacuum evaporationo film was produced like the example 1 of reference. [0065]

[0066] It was 5.51eV as a result of measuring the ionization potential of this thin film sample. The organic electroluminescence devices which have the structure shown in example 1 drawing 2 were produced by the following approaches. Patterning of what deposited 120nm of indium stannic-acid ghost (ITO) transparence electric conduction film on the glass substrate (150hms of sheet resistance [Geomatec make; electron beam membrane formation article;]) was carried out to the stripe of 2mm width of face using the usual photolithography technique and hydrochloric-acid etching, and the anode plate was formed. The ITO substrate which carried out pattern formation was dried by the nitrogen blow after washing in order of ultrasonic cleaning by the acetone, rinsing by pure water, and ultrasonic cleaning by isopropyl alcohol, finally ultraviolet-rays ozone washing was performed, and it installed in the vacuum evaporation system.

It exhausted using the oil diffusion pump equipped with the liquid nitrogen trap after the oil sealed rotary pump performed rough exhaust air of the above-mentioned equipment until the degree of vacuum in equipment became below 2x10-6Torr (about 2.7x10 to 4 Pa). [0067] The 4 and 4'-bis[N-(1-naphthyl)-N-phenylamino] biphenyl (H-1) was put into ceramic crucible, and it vapor-deposited by heating at the tantalum wire heater around crucible as an electron hole transportation layer ingredient. The temperature of the crucible at this time was controlled in 275-280 degrees C. The degree of vacuum at the time of vacuum evaporation is 1.1x10-6Torr (about 1.5x10 to 4 Pa), and obtained the electron hole transportation layer 4 of 60nm of thickness with the evaporation rate of 0.3nm/second. next, the rubrene (D-1) which uses an instantiation compound (I-10) as a host ingredient for a luminous layer 5, and shows a structure expression below — a dope fluorochrome — carrying out — duality — it vapor-deposited on the above-mentioned electron hole transportation layer 4 with coincidence vacuum deposition.

[0068]

[Formula 19]

[0069] The range of the crucible temperature of the instantiation compound at this time (I-10) is 320-330 degrees C, and the crucible temperature of rubrene was controlled by 200 degrees C. The degree of vacuum at the time of vacuum evaporationo was 1.1x10-6Torr (about 1.5x10 to 4 Pa), it was 0.2nm/second in evaporation rate of a host ingredient, and thickness was 30nm. It considers as the field which is not doped without opening the shutter of rubrene crucible, and was made for rubrene to become 0.4 % of the weight to a host ingredient in the field of the 15nm of the first thickness in the 15nm field of the second half at this time. Then, the bis(2-methyl-8-quinolinolato) (triphenyl SHIRANORATO) aluminum complex (HB-1) was vapor-deposited similarly on the above-mentioned luminous layer 5 as an ingredient of the electron hole blocking layer 6. The temperature of the crucible at this time was controlled in 180-190 degrees C. The degree of vacuum at the time of vacuum evaporationo was 8.0x10-7Torr (about 1.1x10 to 4 Pa), it was 0.5nm/second in evaporation rate, and thickness was 20nm. Furthermore, the 8-hydroxyquinoline complex (E-1) of the aluminum shown below as an ingredient of an electron transport layer 7 was vapor-deposited similarly on the above-mentioned electron hole blocking layer 6.

[0070]

[Formula 20]

[0071] The temperature of the crucible at this time was controlled in 300-310 degrees C. The degree of vacuum at the time of vacuum evaporation was 8.0x10-7Torr (about 1.1x10 to 4 Pa), it was 0.3nm/second in evaporation rate, and thickness was 25nm. The substrate temperature when carrying out vacuum deposition of the electron transport layer 7 was held from the above-

mentioned electron hole transportation layer 4 to the room temperature.

[0072] The component which performed the vacuum evaporationo to an electron transport layer 7 is once taken out from the inside of said vacuum evaporation system in atmospheric air here. As a mask for cathode vacuum evaporationo, the stripe-like shadow mask of 2mm width of face It was made to stick to a component so that it may intersect perpendicularly with the ITO stripe of an anode plate 2, and it exhausted until it installed in another vacuum evaporation system and the degree of vacuum in equipment became below 2x10-6Torr (about 2.7x10 to 4 Pa) like the organic layer. Magnesium fluoride (MgF2) was first formed on the electron transport layer 7 by 0.5nm thickness by evaporation rate [of 0.04nm/second], and degree of vacuum 5.0x10-6Torr (about 6.7x10 to 4 Pa), using a molybdenum boat as cathode 8. Next, aluminum was similarly heated by the molybdenum boat and the aluminum layer of 40nm of thickness was formed by evaporation rate [of 0.5nm/second], and degree of vacuum 1.2x10-5Torr (about 1.6x10 to 3 Pa). Furthermore, on it, in order to raise the conductivity of cathode, similarly, the molybdenum boat was used, copper was heated, the copper layer of 40nm of thickness was formed by evaporation rate [of 0.4nm/second], and degree of vacuum 1.2x10-5Torr (about 1.6x10 to 3 Pa), and cathode 8 was completed. The substrate temperature at the time of vacuum evaporationo of the above three-layer mold cathode 8 was held to the room temperature. [0073] The organic electroluminescence devices which have the luminescence area part of 2mmx2mm size as mentioned above were obtained. The luminescence property of this component is shown in Table -7. Setting to Table -7, luminescence brightness is 250 mA/cm2. The value in current density and luminous efficiency are 100 cd/m2. For a value, brightness / current, electrical potential differences are the inclination of a brightness-current density property 100 cd/m2 A value is shown respectively. A CIE chromaticity-coordinate value (JIS Z8701) is doubled and shown. EL spectrum is shown in drawing 5. The luminescent color was white. The preservation stability of the component which the remarkable rise of driver voltage is not seen, and after prolonged preservation does not have the fall of luminous efficiency or brightness, either, and was stabilized by this component was acquired. [0074]

[Table 7]

表一 7

	発光層	発光輝度 [cd/m²]	発光効率 [/ m/W] 輝度/電流		電圧 [V]	CIE 色度座標	
	材料	@250mA/cm ²	@100 cd/m ²	[cd/A]	@100 cd/m ²	х	У
実施例 1	(I-10)	9955	2.88	7.3	8	0.358	0.408
実施例 2	(1-27)	8480	1.66	4.8	9	0.317	0.346
実施例 3	(1-3)	3970	0.62	2.6	13	0.267	0.287
	(I-10)	3820	0.81	2.6	10	0.176	0.195
参考例 4	(I-27)	6890	1.69	4.3	8	0.202	0.301
	(1-3)	6420	1.34	3.8	9	0.220	0.359
比較例1	(1-27)	6590	1.51	2.4 -	5	0.412	0.514
比較例 2	(1-3)	2330	0.26	1.0	12	0.336	0.402
比較例 3	(HB-1)	1290	0.38	1.5	13	0.345	0.354

[0075] The instantiation compound (I-27) was used as the benzothioxanthene derivative (D-2) which shows a dope fluorochrome in the following structure expressions as a host ingredient of

example 2 luminous layer, and also it is [0076] like an example 1. [Formula 21]

[0077] It was alike, it carried out and the component was produced. The luminescence property of a component is shown in Table -7. EL spectrum is shown in drawing 6. The luminescent color was white.

It considered as the azabenzthioxanthene derivative (D-3) which shows a dope fluorochrome [in / for perylene / the field of 15nm of thickness by the side of an electron hole blocking layer] in the following structure expressions as a host ingredient of example 3 luminous layer as a dope fluorochrome [in / for an instantiation compound (I-3) / the field of 15nm of thickness by the side of an electron hole transportation layer], and also the component was produced like the example 1.

[0078]

[Formula 22]

[0079] The luminescence property of a component is shown in Table -7.

An electrical potential difference is changed for the component produced in the example 4 example 1, an intensity level is changed, an emission spectrum is measured, and the result of having searched for the chromaticity coordinate is shown in Table -8. Although the chromaticity-coordinate value was changed a little, it was extent in which all are white luminescence fields and no problem is practically.

[0080]

[Table 8]

表一8 CIE色度座標 電圧 [V] 輝度 [cd/m²] Х У 8 109 0.363 0.412 10 720 0.358 0.408 14 9955 0.345 0.393

[0081] Into the example of reference 4 luminous-layer ingredient, it used and an instantiation compound (I-10) and (I-27) (I-3) the others which are not doped to a luminous layer produced the component like the example 1. The luminescence property of these components is shown in Table -7. All were the luminescent color of blue and a bluish green color. The chromaticity-coordinate value calculated from the fluorescence spectrum in the solution of the dope coloring matter used in the chromaticity coordinate and examples 1-3 of the component which is not these-doped is shown in drawing 7.

[0082] An example of comparison 1 electron-hole blocking layer was not prepared, but thickness

of an electron transport layer was set to 45nm, and also the component was produced like the example 2. The luminescence property of this component is shown in Table -7. Blue luminescence was not obtained but yellowish green luminescence by which dope coloring matter joined luminescence from the 8-hydroxyquinoline complex of aluminum used as an electron transport layer was observed.

An example of comparison 2 electron-hole transportation layer was not prepared, but the thickness was set to 60nm by using a luminous layer ingredient as an instantiation compound (I-3), azabenzthioxanthene (D-3) was used as dope coloring matter, and also the component was produced like the example 1. The luminescence property of this component is shown in Table -7. Luminous efficiency was low although white luminescence was obtained.

[0083] Doped perylene and the benzothoxanthene (D-2) 1.0 or 0.4% of the weight respectively, and did not prepare an electron hole blocking layer, using said compound (HB-1) as an example of comparison 3 blue luminous layer host ingredient, (E-1) was used as an electron transport layer, and also the component was produced like the example 1. [45nm] The luminescence property of this component is shown in Table -7. Luminous efficiency was low although white luminescence was obtained.

[0084]

[Effect of the Invention] In order to make the luminous layer which consists of specific aromatic amine contain specific luminescence coloring matter according to the organic electroluminescence devices of this invention, the component whose stability could attain white luminescence of high luminous efficiency, and improved can be obtained. Therefore, as the object for mount as which the organic electroluminescence devices by this invention can consider the application to the light source (for example, the light source of a copying machine, the back light light source of a liquid crystal display or instruments) which employed the description as a flatpanel display (for example, the object for OA computers and a flat TV), or a multicolor display device or a field illuminant efficiently, the plotting board, an indicator, etc. to be, and high thermal resistance is required especially, and an outdoor—type display device, the technical value is large.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] The type section Fig. having shown an example of organic electroluminescence devices.

[Drawing 2] The type section Fig. having shown another example of organic electroluminescence devices.

[Drawing 3] The type section Fig. having shown another example of organic electroluminescence devices.

[Drawing 4] The CIE chromaticity-coordinate Fig. having shown the concept of additive mixture of colors.

[Drawing 5] The emission spectrum from the organic electroluminescence devices of an example 1.

[Drawing 6] The emission spectrum from the organic electroluminescence devices of an example 2.

[Drawing 7] The host who used for examples 1-3, and the CIE chromaticity-coordinate Fig. of luminescence from dope coloring matter.

[Description of Notations]

- 1 Substrate
- 2 Anode Plate
- 3 Anode Plate Buffer Layer
- 4 Electron Hole Transportation Layer
- 5 Luminous Layer
- 6 Electron Hole Blocking Layer
- 7 Electron Transport Layer
- 8 Cathode

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-329734

(43)公開日 平成11年(1999)11月30日

(51) Int.Cl. ⁶	識別記号	FΙ				
H05B 33/14		H05B 33	3/14		В	
C09K 11/06	6 2 0	C09K 11	1/06	620		
H 0 5 B 33/22		Н05В 33	3/22	:	В	
				ı	С	
		審查請求	未請求	請求項の数 7	OL	(全 22 頁)
(21)出願番号	特願平10-139509	(71)出願人	0000059	968 学株式会社		
(22)出願日	平成10年(1998) 5月21日	(72)発明者	東京都	千代田区丸の内 ¹ 佳晴	二丁目:	5番2号
(31)優先権主張番号	特願平10-57888		神奈川	県横浜市青葉区	島志田	叮1000番地
(32)優先日	平10(1998) 3月10日		三菱化	学株式会社横浜	能合研	究所内
(33)優先権主張国	日本(JP)	(72)発明者	緒方	朋行		
			神奈川	県横浜市青葉区	鳥志田	叮1000番地
			三菱化	学株式会社横浜	総合研究	究所内
		(74)代理人	弁理士	長谷川 曉司		

(54) 【発明の名称】 有機電界発光素子

(57)【要約】

【課題】 発光効率が高く、且つ安定性の向上した白色 有機電界発光素子の提供。

【解決手段】 基板上に、陽極及び陰極により挟持され た正孔輸送層、発光層及び正孔阻止層を少なくとも含む 有機電界発光素子であって、該発光層が400~500 nmの範囲に蛍光極大波長を有する芳香族アミン化合物 を含有し、正孔輸送層のイオン化ポテンシャルが発光層 のイオン化ポテンシャルより 0.1 e V以上大きく、正 孔阻止層のイオン化ポテンシャルが発光層のイオン化ポ テンシャルより O. 2 e V以上大きく、少なくとも発光 層に蛍光極大波長が550~650 n mの範囲にある蛍 光色素を含有させることを特徴とする有機電界発光素 子。

20

【特許請求の範囲】

【請求項1】 基板上に、陽極及び陰極により挟持された正孔輸送層、発光層及び正孔阻止層を少なくとも含む有機電界発光素子であって、該発光層が400~500nmの範囲に蛍光極大波長を有する芳香族アミン化合物を含有し、正孔輸送層のイオン化ポテンシャルが発光層のイオン化ポテンシャルより0.1 e V以上大きく、正孔阻止層のイオン化ポテンシャルが発光層のイオン化ポテンシャルより0.2 e V以上大きく、少なくとも発光層に蛍光極大波長が550~650nmの範囲にある蛍光色素を含有させることを特徴とする有機電界発光素子。

1

【請求項2】 発光層に含まれる前記芳香族アミン化合物が下記一般式(I)又は(II)で表わされる芳香族アミン化合物であることを特徴とする請求項1に記載の有機電界発光素子。

【化1】

(式中、Xは、各々置換基を有していてもよい二価の、 芳香族炭化水素基又は芳香族複素環基を表わし、A r ないしA r は、各々独立して、各々置換基を有してい てもよい、芳香族炭化水素基又は芳香族複素環基を表わ し、X及びA r ないしA r の中少なくとも一つは、 縮合芳香族環基である)

【化2】

(式中、ZはSi、Ge ZはSnのいずれかの原子を表 40% 環基を表わす) わし、Ar [®] 及びAr [®] は、各々独立して、各々置換基 【化 5】 を有していてもよい、芳香族炭化水素基又は芳香族複素※

 $\begin{bmatrix}
R^{2} & R^{1} \\
R^{3} & N \\
R^{4} & O
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
N & R^{3}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
N & R^{3}
\end{bmatrix}$ $\begin{bmatrix}
R^{4} & R^{5} \\
R^{5} & R^{6}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
R^{4} & R^{5}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
R^{3} & R^{5}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
R^{3} & R^{5}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
R^{3} & R^{5}
\end{bmatrix}$ $\begin{bmatrix}
R^{1} & R^{2} \\
R^{3} & R^{5}
\end{bmatrix}$

(式中、R」ないしR。は、各々独立して、水素原子、 基、アリル基、シアノ基、アミノ基、アシル基、アルコハロゲン原子、アルキル基、アラルキル基、アルケニル 50 キシカルボニル基、カルボキシル基、アルコキシ基、ア

* (式中、Yは窒素原子又は1,3,5-位に置換するベンゼン環を表わし、Ar[®] 及びAr[®] は、各々独立して、各々置換基を有していてもよい、芳香族炭化水素基又は芳香族複素環基を表わす)

【請求項3】 発光層に含まれる前記蛍光色素の量が 0.1~10重量%の範囲にあることを特徴とする請求 項1又は2に記載の有機電界発光素子。

【請求項4】 正孔阻止層が、下記一般式(III)若しくは(IV)で表わされる金属錯体、下記構造式(V)を少なくとも一個含むトリアゾール誘導体又は下記一般式(VI)で表わされるスチリル化合物の少なくとも一種で構成されることを特徴とする誘環原1ないしるのいずれ

(VI) で表わされるスチリル化合物の少なくとも一種で 構成されることを特徴とする請求項1ないし3のいずれ かに記載の有機電界発光素子。

 $\begin{bmatrix}
R^2 & R^1 \\
R^3 & N_- \\
R^4 & O
\end{bmatrix}_{2} M-L \qquad (III)$

(式中、R ないしR は、各々独立して、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、アリル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルスルホニル基、αーハロアルキル基、水酸基、置換基を有していてもよいアミド基、置換基を有していてもよい芳香族複素環基を表わし、MはΑ1原子又はGa原子を示し、Lは下記一般式(IIIa)、(IIIb)又は、(III 30 c)のいずれかの基を表わす)

【化4】

3

ルキルスルホニル基、αーハロアルキル基、水酸基、置 換基を有していてもよいアミド基、置換基を有していて もよい芳香族炭化水素基又は置換基を有していてもよい 芳香族複素環基を表わし、MはA1原子又はGa原子を 示す)

[
$$\{ \angle 7 \}$$
]
Ar¹³
 $C = CH - Ar^{12} - CH = C$
Ar¹⁶
(VI)

(式中、Ar¹² は、各々、置換基を有していてもよい二 価の、芳香族炭化水素基又は芳香族複素環基を表わし、 A r ¹³ ないしA r ¹⁶ は、各々独立して、各々置換基を有 していてもよい、芳香族炭化水素基又は芳香族複素環基

【請求項5】 正孔阻止層と陰極との間に電子輸送層を 設けたことを特徴とする請求項1ないし4のいずれかに 記載の有機電界発光素子。

【請求項6】 正孔阻止層の膜厚が、0.5~30nm の範囲にあることを特徴とする請求項1ないし5のいず れかに記載の有機電界発光素子。

【請求項7】 正孔輸送層が芳香族アミン化合物により 形成されることを特徴とする請求項1ないし6のいずれ かに記載の有機電界発光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、有機電界発光素子 に関する。詳しくは、特定の芳香族アミンを含有する発 光層に特定の蛍光色素をドープした有機電界発光素子に 関する。本発明の有機電界発光素子は、高い発光効率の 白色発光が達成でき、また安定性が向上しているので、 フラットパネル・ディスプレイやマルチカラー表示素 子、或いは面発光体としての特徴を生かした光源等への 応用が期待される。

[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と しては、無機材料のII~VI族化合物半導体であるZn S、CaS、SrS等に、発光中心であるMnや希土類 元素(Eu、Ce、Tb、Sm等)をドープしたものが 一般的であるが、上記の無機材料から作製したEL素子 は、

- 1)交流駆動が必要(50~1000Hz)、
- 2) 駆動電圧が高い(~200V)、
- 3)フルカラー化が困難(特に青色)、
- 4)周辺駆動回路のコストが高い、

という問題点を有している。

【0003】しかし、近年、上記問題点の改良のため、 有機薄膜を用いたEL素子の開発が行われるようになっ た。特に、発光効率を高めるため、電極からのキャリア 一注入の効率向上を目的として電極の種類の最適化を行 い、芳香族ジアミンから成る正孔輸送層と8-ヒドロキ シキノリンのアルミニウム錯体から成る発光層とを設け た有機電界発光素子の開発(Appl. Phys. Le tt., 51巻, 913頁, 1987年) により、従来 10 のアントラセン等の単結晶を用いた E L 素子と比較して 発光効率の大幅な改善がなされている。また、例えば、 8-ヒドロキシキノリンのアルミニウム錯体をホスト材 料として、クマリン等のレーザ用蛍光色素をドープする こと(J. Appl. Phys., 65巻, 3610 頁、1989年)により、発光効率の向上や発光波長の 変換等も行われている。

【0004】上記の様な低分子材料を用いた電界発光素 子の他にも、発光層の材料として、ポリ(p-フェニレ ンビニレン) (Nature, 347巻, 539頁, 1 990年)、ポリ〔2ーメトキシ-5-(2-エチルへ キシルオキシ)-1, 4-フェニレンビニレン] (Ap pl. Phys. Lett., 58巻, 1982頁, 1 991年 他)、ポリ(3-アルキルチオフェン)(J pn. J. Appl. Phys, 30巻, L1938 頁、1991年)等の高分子材料を用いた電界発光素子 の開発や、ポリビニルカルバゾール等の高分子に低分子 の発光材料と電子移動材料を混合した素子(応用物理, 61巻、1044頁、1992年)の開発も行われてい る。

30 [0005]

20

【発明が解決しようとする課題】有機電界発光素子を用 いて、多色又はフルカラー表示が可能な表示素子を作製 するためには、二つの方法が考えられている。一つは、 青色の光を発光させることのできる有機電界発光素子を 励起光源として、緑及び赤の蛍光材料による蛍光変換を 用いる方法である (Proc. 15th Int. Di splay Research Conferenc e, 269頁, 1995年)。もう一つは、白色発光が 可能な有機電界発光素子とカラーフィルターを組み合わ 40 せる方式である(特開平7-142169号公報)。 【0006】前者の青色発光と蛍光変換の組み合わせに

よる多色化、フルカラー化方式においては、青色有機電 界発光素子の性能、特に、駆動時の寿命が問題である。 これまでのところ、青色発光素子に関しては初期輝度1 00cd/m² で、8000時間の寿命が報告されてい るが (Inorganic and OrganicE lectroluminescence/EL 96 Berlin. ed. R. H. Mauch and H. E. Gumlich, p. 95, Wissensc

50 haft und Technik Verlag,

Berlin)、蛍光変換によるロスや要求される実用 輝度 $300cd/m^2$ を考えると、寿命が不十分なのが 現状である。

【0007】後者の白色有機電界発光素子とカラーフィルタを組み合わせる方式では、白色発光の発光効率が問題であった(第55回応用物理学会学術講演会講演予稿集、19p-H-6、992頁、1994年;第56回応用物理学会学術講演会講演予稿集、28p-V-7、1028頁、1995年)。白色発光に対しては、多色化、フルカラー化への要求以外に、白色発光そのものを表示光としたり、液晶ディスプレイ等のバックライトに使用するニーズもあり、その波及効果は大きいと言える。従って、表示素子の基本とでも言うべき白色発光に対しては、更なる改良検討が望まれている。

【0008】白色発光を達成するために、これまで、青 色発光層、緑色発光層及び赤色発光層を積層する方式 (特開平6-207170号公報;同平7-14216 9号公報)が開示されているが、駆動に伴う白色 ELス ペクトルの変化による色ずれや、再結晶ゾーンが複数の 層に跨がるために発光効率が低いという問題点があっ た。この点を解決するために、青、緑、赤の各蛍光色素 を発光層中に同時にドープすることが考えられ、塗布型 ポリマーでは塗布液調整の段階で各色の蛍光色素を混合 することにより容易に白色が得られるが (Appl. P hys. Lett., 64巻, 815頁, 1994 年)、ポリマーの場合、不純物の制御が困難なため発光 効率及び駆動安定性が実用には遠いのが現状である。低 分子を用いた真空蒸着法により各色の蛍光色素を発光層 ホスト中にドープすることは可能であるが、同時に多数 の蒸着源の蒸着速度を制御して各蛍光色素のドープ量を 調整するので、実際の生産を考えると非常に困難である と言わざるを得ない。

【0009】上述の様に、白色発光素子に対しては、出来るだけ単純な層構成、例えば、発光層は単層で、且つ、発光効率が高く、白色の色ずれが起きにくく、しかも、駆動時に安定な特性が求められている。本発明は、発光効率が高く、且つ安定性の向上した白色有機電界発光素子を提供することを目的とする。

[0010]

【発明が解決しようとする課題】本発明者らは、かかる 実状に鑑み鋭意検討した結果、特定の芳香族アミンを含 有する発光層に特定の蛍光色素をドープさせ、且つ正孔 輸送層、発光層及び正孔阻止層のイオン化ポテンシャル の相対関係を特定することにより上記課題を解決し得る ことを見い出し、本発明を完成するに至った。

[0011]

【課題を解決するための手段】即ち、本発明の要旨は、 ることが望ましく、この場合、厚みは、通常、 $5\sim10$ 基板上に、陽極及び陰極により挟持された正孔輸送層、 00nm、好ましくは $10\sim500$ nm程度である。不 発光層及び正孔阻止層を少なくとも含む有機電界発光素 透明でよい場合は陽極2は基板1と同一でもよい。ま 子であって、該発光層が $400\sim500$ nmの範囲に蛍 50 た、更には上記の陽極2の上に異なる導電材料を積層す

光極大波長を有する芳香族アミン化合物を含有し、正孔輸送層のイオン化ポテンシャルが発光層のイオン化ポテンシャルより 0.1eV以上大きく、正孔阻止層のイオン化ポテンシャルが発光層のイオン化ポテンシャルより 0.2eV以上大きく、少なくとも発光層に蛍光極大波長が $550\sim650$ nmの範囲にある蛍光色素を含有させることを特徴とする有機電界発光素子にある。

[0012]

【発明の実施の形態】以下、本発明の有機電界発光素子 について、図面を参照しながら説明する。図1は本発明 に用いられる一般的な有機電界発光素子の構造例を模式 的に示す断面図であり、1は基板、2は陽極、4は正孔 輸送層、5は発光層、6は正孔阻止層、8は陰極を各々 表わす。基板1は有機電界発光素子の支持体となるもの であり、石英やガラスの板、金属板や金属箔、プラスチ ックフィルムやシート等が用いられる。特にガラス板 や、ポリエステル、ポリメタクリレート、ポリカーボネ ート、ポリスルホン等の透明な合成樹脂の板が好まし い。合成樹脂基板を使用する場合にはガスバリア性に留 意する必要がある。基板のガスバリヤ性が小さすぎる と、基板を通過した外気により有機電界発光素子が劣化 することがあるので好ましくない。このため、合成樹脂 基板の少なくとも片面に緻密なシリコン酸化膜等を設け てガスバリア性を確保する方法も好ましい方法の一つで

【0013】基板1上には陽極2が設けられるが、陽極 2は正孔輸送層への正孔注入の役割を果たすものであ る。この陽極は、通常、アルミニウム、金、銀、ニッケ ル、パラジウム、白金等の金属、インジウム及び/又は スズの酸化物等の金属酸化物、ヨウ化銅等のハロゲン化 金属、カーボンブラック、或いは、ポリ(3-メチルチ オフェン)、ポリピロール、ポリアニリン等の導電性高 分子等により構成される。陽極2の形成は通常、スパッ タリング法、真空蒸着法等により行われることが多い。 また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボ ンブラック、導電性の金属酸化物微粒子、導電性高分子 微粉末等の場合には、適当なバインダー樹脂溶液に分散 し、基板 1 上に塗布することにより陽極 2 を形成するこ ともできる。更に、導電性高分子の場合は電解重合によ り直接基板 1 上に薄膜を形成したり、基板 1 上に導電性 高分子を塗布して陽極2を形成することもできる(Ap pl. Phys. Lett., 60巻, 2711頁, 1 992年)。陽極2は異なる物質で積層して形成するこ とも可能である。陽極2の厚みは、必要とする透明性に より異なる。透明性が必要とされる場合は、可視光の透 過率を、通常、60%以上、好ましくは80%以上とす ることが望ましく、この場合、厚みは、通常、5~10 00 nm、好ましくは10~500 nm程度である。不 透明でよい場合は陽極2は基板1と同一でもよい。ま

ることも可能である。

【0014】陽極2の上には正孔輸送層4が設けられる。正孔輸送層の材料に要求される条件としては、陽極からの正孔注入効率が高く、且つ、注入された正孔を効率よく輸送することができる材料であることが必要である。そのためには、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、しかも正孔移動度が大きく、更に安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが要求される。上記の一般的要求以外に、車載表示用の応用を考えた場合、素子には更に耐熱性が要求される。従って、Tgとして85℃以上の値を有する材料が望ましい。

7

【0015】このような正孔輸送材料としては、例え ば、1, 1-ビス(4-ジ-p-トリルアミノフェニ ル)シクロヘキサン等の第三級芳香族アミン単位を連結 した芳香族ジアミン化合物(特開昭59-194393 号公報)、4,4'-ビス [N-(1-ナフチル)-N フェニルアミノ〕ビフェニルで代表される二個以上の 第三級アミンを含み二個以上の縮合芳香族環が窒素原子 に置換した芳香族アミン(特開平5-234681号公 報)、トリフェニルベンゼンの誘導体でスターバースト 構造を有する芳香族トリアミン(米国特許第4,92 3, 774号明細書)、N, N'ージフェニルーN, N'-ビス(3-メチルフェニル)ビフェニルー4, 4′-ジアミン等の芳香族ジアミン(米国特許第4,7 64,625号明細書)、分子全体として立体的に非対 称なトリフェニルアミン誘導体(特開平4-12927 1号公報)、ピレニル基に芳香族ジアミノ基が複数個置 換した化合物(特開平4-175395号公報)、エチ レン基で第三級芳香族アミン単位を連結した芳香族ジア ミン(特開平4-264189号公報)、スチリル構造 を有する芳香族ジアミン(特開平4-290851号公 報)、チオフェン基で芳香族第三級アミン単位を連結し たもの(特開平4-304466号公報)、スターバー スト型芳香族トリアミン(特開平4-308688号公 報)、ベンジルフェニル化合物(特開平4-36415 3号公報)、フルオレン基で第三級アミンを連結したも の(特開平5-25473号公報)、トリアミン化合物 (特開平5-239455号公報)、ビスジピリジルア ミノビフェニル(特開平5-320634号公報)、 N, N, N-トリフェニルアミン誘導体(特開平6-1972号公報)、フェノキサジン構造を有する芳香族ジ アミン(特開平7-138562号公報)、ジアミノフ エニルフェナントリジン誘導体(特開平7-25247 4号公報)、シラザン化合物(米国特許第4,950, 950号明細書)、シラナミン誘導体(特開平6-49 079号公報)、ホスファミン誘導体(特開平6-25 659号公報)、キナクリドン化合物等が挙げられる。 これらの化合物は、単独で用いてもよいし、必要に応じ て、各々、混合して用いてもよい。

【0016】上記の化合物以外に、正孔輸送層の材料として、ポリビニルカルバゾールやポリシラン(Appl. Phys. Lett.,59巻,2760頁,1991年)、ポリフォスファゼン(特開平5-310949号公報)、ポリビニルトリフェニルアミン(特開平7-53953号公報)、トリフェニルアミン骨格を有する高分子(特開平4-133065号公報)、トリフェニルアミン単位をメチレン基等で連結した高分子(Synthetic Metals,55~57巻、4163頁,1993年)、芳香族アミンを含有するポリメタクリレート(J. Polym. Sci.,Polym. Chem. Ed.,21巻,969頁,1983年)等の高分

子材料が挙げられる。

【0017】上記の正孔輸送材料を塗布法或いは真空蒸 着法により前記陽極2上に積層することにより正孔輸送 層4を形成する。塗布法の場合は、正孔輸送材料を一種 又は二種以上と、必要により正孔のトラップにならない バインダー樹脂や塗布性改良剤等の添加剤とを添加し、 溶解して塗布溶液を調製し、スピンコート法等の方法に より陽極2上に塗布し、乾燥して正孔輸送層4を形成す る。バインダー樹脂としては、ポリカーボネート、ポリ アリレート、ポリエステル等が挙げられる。バインダー 樹脂は添加量が多いと正孔移動度を低下させるので、少 ない方が望ましく、通常、50重量%以下が好ましい。 【0018】真空蒸着法の場合には、正孔輸送材料を真 空容器内に設置されたルツボに入れ、真空容器内を適当 な真空ポンプで10⁴ Pa程度にまで排気した後、ルツ ボを加熱して、正孔輸送材料を蒸発させ、ルツボと向き 合って置かれた基板1上の陽極2上に正孔輸送層4を形 成させる。正孔輸送層4を形成する場合、更に、アクセ プターとして、芳香族カルボン酸の金属錯体及び/又は 金属塩(特開平4-320484号公報)、ベンゾフェ ノン誘導体及びチオベンゾフェノン誘導体(特開平5-295361号公報)、フラーレン類(特開平5-33 1458号公報) 等を10 3~10 重量%の濃度でドー プして、フリーキャリアとしての正孔を生成させること により、低電圧駆動を可能にすることができる。正孔輸 送層4の膜厚は、通常、10~300 nm、好ましくは 30~100 nmである。この様に薄い膜を一様に形成 するためには、一般に真空蒸着法がよく用いられる。 【0019】陽極2と正孔輸送層4のコンタクトを向上

【0019】陽極2と正孔輸送層4のコンタクトを向上させるために、図3に示す様に、陽極バッファ層3を設けることが考えられる。陽極バッファ層に用いられる材料に要求される条件としては、陽極とのコンタクトがよく均一な薄膜が形成でき、熱的に安定、即ち、融点及びガラス転移温度が高く、融点としては300℃以上、ガラス転移温度としては100℃以上が要求される。更に、イオン化ポテンシャルが低く陽極からの正孔注入が50容易なこと、正孔移動度が大きいことが挙げられる。こ

の目的のために、これまでにポルフィリン誘導体やフタ ロシアニン化合物(特開昭63-295695号公 報)、スターバースト型芳香族トリアミン(特開平4-308688号公報)、ヒドラゾン化合物(特開平4-320483号公報)、アルコキシ置換の芳香族ジアミ ン誘導体(特開平4-220995号公報)、p-(9 ーアントリル) -N, N-ジ-p-トリルアニリン(特 開平3-111485号公報)、ポリチエニレンビニレ ンやポリーp-フェニレンビニレン(特開平4-145 192号公報)、ポリアニリン (Appl. Phys. Lett...64巻. 1245頁. 1994年参照)等 の有機化合物や、スパッタ・カーボン膜(特開平8-3 1573号公報)や、バナジウム酸化物、ルテニウム酸 化物、モリブデン酸化物等の金属酸化物(第43回応用 物理学関係連合講演会, 27a-SY-9, 1996 年)が報告されている。

【0020】上記陽極バッファ層材料としてよく使用される化合物としては、ポルフィリン化合物又はフタロシアニン化合物が挙げられる。これらの化合物は中心金属を有していてもよいし、無金属のものでもよい。好ましいこれらの化合物の具体例としては、以下の化合物が挙げられる:

ポルフィン

5, 10, 15, 20ーテトラフェニルー 21H, 23Hーポルフィン 5, 10, 15, 20ーテトラフェニルー 21H, 23Hーポルフィンコ バルト(II)

5, 10, 15, 20ーテトラフェニルー 21H, 23Hーポルフィン銅(II)

5, 10, 15, 20-テトラフェニルー 21H, 23H-ポルフィン亜 鉛(II)

5, 10, 15, 20ーテトラフェニルー 21H, 23Hーポルフィンバナジウム (IV) オキシド

5, 10, 15, 20ーテトラ (4ーピリジル) — 21H, 23Hーポルフィン

29H, 31H ーフタロシアニン

銅(II) フタロシアニン

亜鉛(II)フタロシアニン

チタンフタロシアニンオキシド

マグネシウムフタロシアニン

鉛フタロシアニン

銅(II) 4, 4', 4", 4''' ーテトラアザー29H, 31H ーフタロシアニン

【0021】陽極バッファ層の場合も、正孔輸送層と同様にして薄膜形成可能であるが、無機物の場合には、更に、スパッタ法や電子ビーム蒸着法、プラズマCVD法が用いられる。以上の様にして形成される陽極バッファ層3の膜厚は、通常、3~100nm、好ましくは10~50nmである。

【0022】正孔輸送層4の上には発光層5が設けられ トンる。発光層5は、電界を与えられた電極間において、陽 50 る。

極2から注入された正孔輸送層を通過して輸送された正孔と、陰極8から注入された正孔阻止層6を通過して輸送された電子を効率よく再結合させることにより白色発光する化合物より形成される。そのためには、正孔輸送性と電子輸送性の両方を兼ね備え、しかも正孔移動度及び電子移動度が大きく、更に安定性に優れトラップとなる不純物が製造時や使用時に発生しにくい化合物であることが要求される。

10

【0023】本発明においては、発光層は、薄膜状態で の蛍光極大波長が400~500mmの範囲にある芳香 族アミン化合物をホスト材料として、分散状態又は希薄 溶液状態における蛍光極大波長が550~650nmの 範囲にある蛍光色素を、上記ホスト材料に対して0.1 ~10重量%含有させることにより、高効率の白色発光 を可能とすることができる。このことを図4に示すCI E色度座標図(JISZ8701)を用いて説明する。 白色発光は図中のWで示す白色点(x = v = 1/3)を 中心とする領域で表わされる。400~500 nmに蛍 光極大波長を有する青色ホスト材料の発光は、図4では 青緑、青、青紫の領域に位置する。一方、蛍光極大波長 が550~650 nmのドーピング用蛍光色素の発光 は、図中の黄緑、黄、橙、赤の領域に対応する。例え ば、青紫色発光のホスト材料としてa点のものを使う場 合、ドープ色素としてb点のものを組み合わせると、加 法混色によりab線で表わされる色が達成され、ドープ 量を調整することで白色領域の発光が得られる。同様 に、青色ホスト材料として c 点のものとドープ色素とし てd点のものを選べば、白色領域を幅広く横切るcd線 が得られ、ドーピング濃度依存に緩やかに依存する白色 30 発光素子が達成される。 e f 線、 e f ' 線についても同 様である。

【0024】本発明においては、上記の条件を満たす青 色ホスト材料として蛍光性芳香族アミン化合物を用い る。従来も、芳香族アミン化合物を正孔輸送性の発光層 として用いる試みはなされているが、正孔輸送層を陽極 との間に設けなかったり(Jpn. J. Appl. Ph ys., 32巻, L917頁, 1993年)、発光層の イオン化ポテンシャルが正孔輸送層のイオン化ポテンシ ャルより高かったり(Jpn. J. Appl. Phy s., 35巻, 4819頁, 1996年) したために、 素子の発光効率も低く、また、安定性の低い青色発光素 子しか得られていなかった。本発明においては、正孔輸 送性の芳香族アミン化合物を発光層として有効に用いる ために、正孔輸送層のイオン化ポテンシャルより 0.1 e V以上小さいイオン化ポテンシャルを有する蛍光性芳 香族アミンを用いることが好適であることを見出した。 この素子構造により、素子通電時の発光層における正孔 濃度を高めることと、発光層内での再結合によるエキシ トンの陽極での消光を防止することが同時に達成され

11

【0025】本発明の有機電界発光素子における発光層 材料として、正孔輸送層とのイオン化ポテンシャルの関 係を満たす限りにおいて芳香族アミン化合物に更なる制 限はないが、発光層の結晶化防止、熱安定性を考慮する と高いガラス転移温度(Tg)を有することが望まし い。高いTgを有する芳香族アミン化合物として、少な くとも一つの縮合芳香族環基を置換基として有する第三 級窒素原子を含有することが有用である。このことか ら、発光層に含まれる芳香族アミンが下記一般式(I) 又は(II)で表わされる芳香族アミン化合物から選ばれ 10 ることが更に好ましい。

[0026] 【化8】 **(l)**

【0027】前記一般式(I)において、好ましくは、 Xは、各々置換基を有していてもよい二価の、ベンゼン 環、ナフタレン環、アントラセン環、ビナフチル、フル 20 オレン環、フェナントレン環、ピレン環、アクリジン 環、フェナジン環、フェナントリジン環、フェナントロ リン環、ビピリジル環、ビフェニルを示し、前記置換基 としてはハロゲン原子;メチル基、エチル基等の炭素数 1~6のアルキル基;ビニル基等のアルケニル基;メト キシカルボニル基、エトキシカルボニル基等の炭素数1 ~6のアルコキシカルボニル基;メトキシ基、エトキシ 基等の炭素数1~6のアルコキシ基;フェノキシ基、ベ ンジルオキシ基等のアリールオキシ基;ジエチルアミノ 基、ジイソプロピルアミノ基等のジアルキルアミノ基を 30 示す。前記置換基としては、特に好ましくは、メチル 基、フェニル基、メトキシ基が挙げられる。

【0028】Ar' ないしAr' は、好ましくは、各々 独立して、各々置換基を有していてもよい、フェニル 基、ビフェニル基、ナフチル基、アントリル基、フェナ ントリル基、ピレニル基、ビリジル基、トリアジル基、 ピラジル基、キノキサリル基、チエニル基を示し、前記 置換基としてはハロゲン原子; メチル基、エチル基等の 炭素数1~6のアルキル基;ビニル基等のアルケニル 炭素数1~6のアルコキシカルボニル基;メトキシ基、 エトキシ基等の炭素数1~6のアルコキシ基;フェノキ シ基、ベンジルオキシ基等のアリールオキシ基;ジエチ ルアミノ基、ジイソプロピルアミノ基等のジアルキルア ミノ基を示す。前記置換基としては、特に好ましくは、 メチル基、フェニル基、メトキシ基が挙げられる。

12

[0029]

【化9】 (II)År5

【0030】前記一般式(II)において、Yは窒素原子 又は1,3,5一位に置換する三価のベンゼン環から選 ばれる。Ar⁵及びAr⁵は、好ましくは、各々独立し て、各々置換基を有していてもよい、フェニル基、ビフ ェニル基、ナフチル基、アントリル基、フェナントリル 基、ピレニル基、ピリジル基、トリアジル基、ピラジル 基、キノキサリル基、チエニル基を示し、前記置換基と してはハロゲン原子;メチル基、エチル基等の炭素数1 ~6のアルキル基;ビニル基等のアルケニル基;メトキ シカルボニル基、エトキシカルボニル基等の炭素数1~ 6のアルコキシカルボニル基;メトキシ基、エトキシ基 等の炭素数1~6のアルコキシ基;フェノキシ基、ベン ジルオキシ基等のアリールオキシ基;ジエチルアミノ 基;ジイソプロピルアミノ基等のジアルキルアミノ基を 示す。前記置換基としては、特に好ましくは、メチル 基、フェニル基、メトキシ基が挙げられる。

【0031】本発明においては、前記一般式(I)又は 一般式(II)に示す分子構造により、Tgを85℃以上 とすることができ、この耐熱性の向上により容易には結 晶化しない非晶質薄膜を与えることが可能であり、正孔 輸送層や電子輸送層等との間における分子の相互拡散を 85℃以上の高温下でも十分に抑制することが出来る。 また、イオン化ポテンシャルも正孔輸送層のそれより O. 1 e V以上小さくすることができ、また、400~ 500nmの波長領域に蛍光極大を有する発光層が設計 できる。前記一般式(I)及び(II)で表わされる芳香 基;メトキシカルボニル基、エトキシカルボニル基等の 40 族アミン化合物の好ましい具体例を表1ないし表5に示 すが、これらに限定されるものではない。

[0032]

【表1】

0)

表一1

13

Ar\1	Ar ³
NX	N
Ar ²	`Ar⁴
AIT	A.

番号	X	Ar'	Ar²	Ar³	Ar ⁴
(1-1)	-0-0-				
(1-2)		-{>сн₃		-{СН₃	
(1-3)	- ◇ - ◇-	\rightarrow	H ₃ C		H3C
(1-4)			→ CH ₃	\rightarrow	→ CH ₃
(1-5)		\rightarrow		-	
(1-6)	-0-0-	— СН₃		-€> СН3	
(1-7)	-0-0-	-€-ОСН 3		— ()→ OCH 3	8

[0033]

村開平11−32973 16

٦		1				·		
	Ar⁴	φ	(P)		9	8	B	
哦—2	Ar³	9	Q	\Diamond	СН3	Ŷ	P	9
	Ar²	9	$\varphi \varphi$	\$		9		
	Ar'	9	0	P	CH₃	P	9	9
	×	£ + £		000		0	4	00
•	奉	(1-8)	(6-1)	(1-10)	(1-11)	(1.12)	(1-13)	(1-14)

[0034]

【表3】

1		17	r			,		18
表一3	Ar				CH ₃			
	Ar³		8	N)	СН3		-Сн₃	00
	Ar²				€ сн3			
	Ar¹		8	χ [']	СН3	\(\)	← CH3	
	×							
	神	(1-15)	(1-16)	(1-17)	(1-18)	(1-19)	(1-20)	(1-21)

[0035]

【表4】

		19						20
,	Ar		\Leftrightarrow		- Сн₃	\Diamond	- СМ₃	Q.
表-4	Ar³		?	CH ₃	€ снз		CH ₃	OH3
	Aŗ²		\Leftrightarrow		- СН3		-СН3	CH ₃
	Ar.	P	\rangle	CH ₃	8но ⟨	Ŷ	Су сиз	CH3
	×			-{N-}		SE HE SE	H ₃ c	H ₃ C OH ₃
	番号	(1-22)	(1-23)	(1-24)	(1-25)	(1-26)	(1-27)	(1-28)

[0036]

【表5】

昭63-264692号公報)、ローダミン色素等が、赤色蛍光色素としては、アザベンゾチオキサンテン誘導40体(特願平9-88172号明細書)、フェノキサゾン、DCJ色素(Chem. Funct. Dyes, Proc. Int. Symp., 2nd 1992年,536頁)、ルモゲンFレッド等のペリレン顔料等が挙げられる。上記の蛍光色素を青色ホスト材料に0.1~10重量%の濃度範囲においてドープすることで、ホスト材料からの発光にドープ色素からの発光を加えることにより所望の白色発光を得ることができる。

ペリミドン誘導体(特開平4-320485号公報)、 【0038】白色のバランスを採るために、また、発光 登色蛍光色素としては、ベンゾチオキサンテン誘導体 効率を向上させるために、400~500nmに蛍光極 (特開平5-222362号公報)、DCM色素(特開 50 大波長を希薄状態で有する蛍光色素を更にドープして加 えることも有効である。この目的に用いられるドープ色 素としては、例えば、ペリレン等の縮合多環芳香族環 (特開平5-198377号公報)、クマリン誘導体、 ナフタル酸イミド誘導体(特開平4-320486号公 報)、芳香族アミン誘導体(特開平8-199162号 公報)等が挙げられる。これらのドープ色素が、ホスト 材料に含有される割合は0.1~10重量%の範囲にあ ることが好ましい。上記400~500nmの蛍光色素 は発光層中に均一にドープされてもよいし、部分的にド ープされてもよい。真空蒸着法で上記のドーピングを行 う方法としては、共蒸着による方法と蒸着源を予め所定 の濃度で混合しておく方法がある。尚、上記のドーピン グ濃度範囲内であれば、ホスト材料のイオン化ポテンシ ャルがドーピングにより変化することはない。

【0039】上記各ドーパントが発光層中にドープされ る場合、発光層の膜厚方向において均一にドープされる が、膜厚方向において濃度分布があったり、発光層に部 分的にドープされても構わない。例えば、正孔輸送層と の界面近傍にのみドープしたり、逆に、正孔阻止層界面 近傍にドープしてもよい。発光層5は、正孔輸送層4と 同様にして塗布法或いは真空蒸着法により正孔輸送層 4 上に積層することにより形成される。但し、塗布法の場 合には既に薄膜形成されている正孔輸送層を溶解させな い溶媒を使用する必要がある。発光層5の膜厚は、通 常、5~300nm、好ましくは10~100nmであ る。この様に薄い膜を一様に形成するためには、一般に 真空蒸着法がよく用いられる。

【0040】発光層5の上には正孔阻止層6が設けられ る。正孔阻止層6は、発光層から移動してくる正孔を陰 極に到達するのを阻止する役割と、陰極から注入された 30 電子を効率よく発光層5の方向に輸送することができる*

* 化合物より形成される。正孔阻止層を構成する材料に求 められる物性としては、電子移動度が高く正孔移動度が 低いこと、及び、正孔を効率的に発光層内に閉じこめる ために、発光層のイオン化ポテンシャルより 0.2 e V 以上大きいイオン化ポテンシャルの値を有する必要があ る。正孔輸送層は電子輸送能力を持たない材料で構成さ れることから、正孔阻止層は正孔と電子を発光層内に閉 じこめて、発光効率を向上させる機能を有する。このよ うな条件を満たす正孔阻止層材料としては、以下の一般 式(III)で表わされる混合配位子錯体、

24

[0041]【化10】 (III)

【0042】(式中、R'ないしR⁶は、各々独立し て、水素原子、ハロゲン原子、アルキル基、アラルキル 基、アルケニル基、アリル基、シアノ基、アミノ基、ア シル基、アルコキシカルボニル基、カルボキシル基、ア ルコキシ基、アルキルスルホニル基、α-ハロアルキル 基、水酸基、置換基を有していてもよいアミド基、置換 基を有していてもよい芳香族炭化水素基又は置換基を有 していてもよい芳香族複素環基を表わし、MはA1原子 又はGa原子を示し、Lは以下に示す一般式(IIIa)、 (IIIb) 又は (IIIc) のいずれかの基を表わす)

[0043] 【化11】

[0045]【化12】

$$-O-Ar^{7}$$
 (IIIa) $-O-C-Ar^{8}$ (IIIb) $-O-Z-Ar^{10}$ (IIIc)

【0044】(式中、ZはSi、Ge又はSnのいずれ かの原子を表わし、Ar[®] 又はAr[®] は、各々独立し て、各々置換基を有していてもよい、芳香族炭化水素基 又は芳香族複素環基を表わす)

【0046】(式中、R¹ ないしR⁶ は、各々独立し て、水素原子、ハロゲン原子、アルキル基、アラルキル 基、アルケニル基、アリル基、シアノ基、アミノ基、ア シル基、アルコキシカルボニル基、カルボキシル基、ア ルコキシ基、アルキルスルホニル基、 α -ハロアルキル 50 以下の構造式(IV)で示される1, 2, 4 - トリアゾー

基、水酸基、置換基を有していてもよいアミド基、置換 基を有していてもよい芳香族炭化水素基又は置換基を有 していてもよい芳香族複素環基を表わし、MはAl原子 又はGa原子を示す)

※以下の一般式(IV)で表わされる二核金属錯体、

25

ル環を少なくとも一個有する化合物、

[0047]【化13】

【0048】以下の一般式(V)で示されるスチリル化 合物が挙げられる。

[0049]

【化14】

$$Ar^{13}$$
 $C = CH - Ar^{12} - CH = C$
 Ar^{16}
(VI)

【0050】(式中、Ar¹²は、各々置換基を有してい てもよい二価の、芳香族炭化水素基又は芳香族複素環基 を表わし、A r ¹³ ないし A r ¹⁶ は、各々独立して、各々 置換基を有していてもよい、芳香族炭化水素基又は芳香 族炭化水素基を表わす)

前記一般式 (III)で示される混合配位子錯体の具体例と して、ビス(2-メチル-8-キノリノラト)(フェノ ラト)アルミニウム、ビス(2-メチル-8-キノリノ ラト(オルトークレゾラト)アルミニウム、ビス(2-メチルー8-キノリノラト) (メタークレゾラト) アル ミニウム、ビス(2-メチル-8-キノリノラト)(パ ラークレゾラト)アルミニウム、ビス(2-メチル-8 ーキノリノラト) (オルトーフェニルフェノラト) アル ミニウム、ビス(2-メチル-8-キノリノラト)(メ ターフェニルフェノラト)アルミニウム、ビス(2-メ チルー8-キノリノラト) (パラーフェニルフェノラ ト)アルミニウム、ビス(2-メチル-8-キノリノラ ト)(2,3-ジメチルフェノラト)アルミニウム、ビ ス(2ーメチルー8ーキノリノラト)(2,6ージメチ ルフェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト) (3, 4-ジメチルフェノラト) アルミ ニウム、ビス(2-メチル-8-キノリノラト)(3, 5-ジメチルフェノラト)アルミニウム、ビス(2-メ チル-8-キノリノラト) (3, 5-ジ-tert-ブ)チルフェノラト)アルミニウム、ビス(2-メチル-8 ーキノリノラト) (2.6-ジフェニルフェノラト) ア ルミニウム、ビス(2-メチル-8-キノリノラト) (2, 4, 6-トリフェニルフェノラト) アルミニウ ム、ビス(2ーメチルー8ーキノリノラト)(2, 4, 6-トリメチルフェノラト)アルミニウム、ビス(2-メチルー8-キノリノラト) (2, 3, 6-トリメチル フェノラト)アルミニウム、ビス(2-メチル-8-キ ノリノラト) (2, 3, 5, 6ーテトラメチルフェノラ ト) アルミニウム、ビス(2-メチル-8-キノリノラ ト) (1-ナフトラト) アルミニウム、ビス (2-メチ ルー8-キノリノラト) (2-ナフトラト) アルミニウ 50 アルミニウム、ビス(5-クロロー2-メチルー8-キ

ム、ビス(2-メチル-8-キノリノラト)(トリフェ ニルシラノラト)アルミニウム、ビス(2-メチル-8 ーキノリノラト) (トリフェニルゲルマノラト) アルミ ニウム、ビス(2-メチル-8-キノリノラト)(トリ ス(4, 4, ービフェニル)シラノラト)アルミニウ ム、ビス(2、4ージメチルー8ーキノリノラト)(オ ルトーフェニルフェノラト)アルミニウム、ビス(2, 4-ジメチル-8-キノリノラト) (パラーフェニルフ ェノラト)アルミニウム、ビス(2,4-ジメチル-8 10 ーキノリノラト) (メターフェニルフェノラト) アルミ ニウム、ビス(2,4-ジメチル-8-キノリノラト) (3, 5-ジメチルフェノラト) アルミニウム、ビス (2.4-ジメチル-8-キノリノラト)(3,5-ジ tertーブチルフェノラト)アルミニウム、ビス (2-メチル-4-エチル-8-キノリノラト) (パラ ークレゾラト)アルミニウム、ビス(2ーメチルー4ー メトキシー8ーキノリノラト) (パラーフェニルフェノ ラト)アルミニウム、ビス(2-メチル-5-シアノー 8-キノリノラト) (オルトークレゾラト) アルミニウ ム、ビス(2ーメチルー6ートリフルオロメチルー8ー キノリノラト) (2-ナフトラト) アルミニウム、ビス (2-メチル-8-キノリノラト) (フェノラト) ガリ ウム、ビス(2-メチル-8-キノリノラト)(オルト ークレゾラト)ガリウム、ビス(2ーメチルー8ーキノ リノラト) (パラーフェニルフェノラト) ガリウム、ビ ス(2-メチル-8-キノリノラト)(1-ナフトラ ト) ガリウム、ビス(2-メチル-8-キノリノラト) (2-ナフトラト) ガリウム、ビス(2-メチル-8-キノリノラト) (トリフェニルシラノラト) ガリウム、 30 ビス(2-メチル-8-キノリノラト)(トリス(4, 4-ビフェニル)シラノラト)ガリウム等が挙げられ る。特に好ましくは、ビス(2ーメチルー8ーキノリノ ラト) (2-ナフトラト) アルミニウム、ビス(2-メ チル-8-キノリノラト) (トリフェニルシラノラト) アルミニウムが挙げられる。

【0051】前記一般式(IV)で表わされる二核金属錯 体の具体例として、ビス(2-メチル-8-キノラト) アルミニウムーμーオキソービスー(2ーメチルー8ー キノリノラト)アルミニウム、ビス(2,4-ジメチル -8-キノリノラト) アルミニウム-μ-オキソービス - (2, 4-ジメチル-8-キノリノラト) アルミニウ ム、ビス(4-エチル-2-メチル-8-キノリノラ ト) アルミニウムーμーオキソービスー(4-エチルー 2-メチル-8-キノリノラト)アルミニウム、ビス (2-メチル-4-メトキシキノリノラト) アルミニウ ムーμーオキソービスー(2ーメチルー4ーメトキシキ ノリノラト)アルミニウム、ビス(5-シアノ-2-メ チルー8ーキノリノラト)アルミニウムーμーオキソー ビスー (5-シアノー2-メチルー8-キノリノラト)

ノリノラト)アルミニウムー μ ーオキソービスー(5ークロロー2ーメチルー8ーキノリノラト)アルミニウム、ビス(2ーメチルー5ートリフルオロメチルー8ーキノリノラト)アルミニウムー μ ーオキソービスー(2ーメチルー5ートリフルオロメチルー8ーキノリノラト)アルミニウム等が挙げられる。特に好ましくは、ビス(2ーメチルー8ーキノリノラト)アルミニウムー μ *

* - オキソービスー (2 - メチルー8 - キノリノラト) アルミニウムが挙げられる。前記構造式(V)で表わされる1,2,4-トリアゾール環を少なくとも一個有する化合物の具体例を以下に示す。

【0052】 【化15】

【0053】前記一般式(VI)で表わされるスチリル化合物の具体例としては、例えば以下に構造式を示すジスチリルビフェニル誘導体が挙げられる。

[0054]

【化16】

40

29 -CH

【0055】正孔阻止層6の膜厚は、通常、0.3~1 00nm、好ましくは0.5~30nmである。正孔阻 止層も正孔輸送層と同様の方法で形成することができる が、通常は真空蒸着法が用いられる。素子の発光効率を 更に向上させることを目的として、正孔阻止層6と陰極 8の間に電子輸送層7を設けることが考えられる。電子 輸送層7は、電界を与えられた電極間において陰極から 注入された電子を効率よく正孔阻止層6の方向に輸送す ることができる化合物より形成される。電子輸送層は、 発光層での再結合により生成するエキシトンが拡散して 陰極8で消光されるのを防ぐ効果を有する。電子輸送層 7に用いられる電子輸送性化合物としては、陰極8から の電子注入効率が高く、目つ、高い電子移動度を有し注 入された電子を効率よく輸送することができる化合物で あることが必要である。

【0056】このような条件を満たす材料としては、8 ーヒドロキシキノリンのアルミニウム錯体等の金属錯体 (特開昭59-194393号公報)、10-ヒドロキ シベンゾ [h] キノリンの金属錯体(特開平6-322

362号公報)、オキサジアゾール誘導体(特開平2-216791号公報)、ジスチリルビフェニル誘導体 (特開平3-231970号公報)、シロール誘導体 (特開平9-87616号公報)、3又は5-ヒドロキ シフラボン金属錯体 (Appl. Phys. Let t., 71巻, 3338頁, 1997年)、ベンズオキ サゾール金属錯体(特開平6-336586号公報)、 ベンゾチアゾール金属錯体(特開平9-279134号 公報)、トリスベンズイミダゾリルベンゼン(米国特許 10 第5,645,948号明細書)、キノキサリン化合物 (特開平6-207169号公報)、フェナントロリン 誘導体(特開平5-331459号公報)、2-t-ブ チル-9, 10-N, N'-ジシアノアントラキノンジ イミン (Phys. Stat. Sol. (a), 142 巻, 489頁, 1994年)、n型水素化非晶質炭化シ リコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられ る。電子輸送層7の膜厚は、通常、5~200nm、好 ましくは10~100nmである。

【0057】陰極8は、電子輸送層7に電子を注入する 20 役割を果たす。陰極8として用いられる材料は、前記陽 極2に使用される材料を用いることが可能であるが、効 率よく電子注入を行うには、仕事関数の低い金属が好ま しく、スズ、マグネシウム、インジウム、カルシウム、 アルミニウム、銀等の適当な金属又はそれらの合金が用 いられる。具体例としては、マグネシウムー銀合金、マ グネシウムーインジウム合金、アルミニウムーリチウム 合金等の低仕事関数合金電極が挙げられる。

【0058】更に、陰極と発光層又は電子輸送層の界面 にLiF、Li2 O等のアルカリ金属化合物やアルカリ 30 土類ハロゲン化物等の極薄膜(0.1~5 nm)を挿入 することは、素子の効率を向上させる有効な方法である (Appl. Phys. Lett., 70巻, 152 頁, 1997年; IEEE Trans. Electr on. Devices, 44巻, 1245頁, 1997 年;特願平9-86662号明細書)。陰極8の膜厚は 通常、陽極2と同様である。低仕事関数金属から成る陰 極を保護する目的で、この上に更に、仕事関数が高く大 気に対して安定な金属層を積層することは素子の安定性 を増す。この目的のために、銅、アルミニウム、銀、ニ ッケル、クロム、金、白金等の金属が使われる。

【0059】尚、図1とは逆の構造、即ち、基板上に陰 極8、電子輸送層7、発光層5、正孔輸送層4、陽極2 の順に積層することも可能であり、既述したように少な くとも一方が透明性の高い二枚の基板の間に本発明の有 機電界発光素子を設けることも可能である。同様に、図 2及び図3に示した前記各層構成とは逆の構造に積層す ることも可能である。本発明の有機電界発光素子によれ ば、発光効率の高く、安定性に優れた白色発光が得ら れ、直視型の表示素子として有用であるばかりでなく、 50 バックライト光源としても機能し、更には、カラーフィ

ルタと組み合わせることによりフルカラー表示素子を作 製することも可能である。

[0060]

【実施例】次に、本発明を実施例によって更に具体的に 説明するが、本発明はその要旨を越えない限り、以下の 実施例の記載に限定されるものではない。

参考例1

ガラス基板をアセトンで超音波洗浄、純水で水洗、イソ プロピルアルコールで超音波洗浄、乾燥窒素で乾燥、U V/オゾン洗浄を行った後、真空蒸着装置内に設置し て、装置内の真空度が2×10^f Torr以下になるま で油拡散ポンプを用いて排気した。例示化合物(I-3)をセラミック坩堝に入れ、坩堝の周囲のタンタル線 ヒーターで加熱して蒸着を行った。この時の坩堝の温度 は、200~260℃の範囲で制御した。蒸着時の真空*

*度は1.8×10⁻⁶ Torr (約2.3×10⁻⁴ Pa) で、蒸着速度0.3nm/秒で膜厚82nmの一様で透 明な膜を得た。この薄膜試料のイオン化ポテンシャルを 理研計器(株)製の紫外線電子分析装置(AC-1)を 用いて測定したところ、5.06eVの値を示した。こ の蒸着膜を水銀ランプ(波長 350 nm)で励起して 測定した蛍光波長の極大は465nmで、青色の蛍光で あった。また、例示化合物の粉末試料について、セイコ 一電子社製DSC-20により示差熱分析測定したとこ 10 ろTgは93℃と高い値を示した。同様にして、他の例 示化合物についてイオン化ポテンシャル、蛍光極大波 長、Tgを測定した結果を表-6に示す。

32

[0061]

【表6】

级 0							
化合物番号	イオン化 ポテンシャル [eV]	蛍光極大波長 [nm]	Tg [℃]				
I-3	5.06	465	93				
I-5	5.08	445	88				
I-10	5.00	450	146				
I-27	5.09	470	142				
I-28	5.05	480	120				

【0062】参考例2

正孔輸送層の材料としては、例示化合物(I-3)に代 30 えて、以下に示す4, 4′-ビス〔N-(1-ナフチ ル) -N-フェニルアミノ] ビフェニル (H-1) を蒸 着源と

【0064】した他は参考例1と同様にして蒸着膜を作 製した。この薄膜試料のイオン化ポテンシャルを測定し たところ、5.25eVの値を示した。

参考例3

正孔阻止層の材料として、例示化合物(I-3)に代え て、下記に示すビス(2-メチル-8-キノリノラト) (トリフェニルシラノラト) アルミニウム錯体(HB- 作製した。

[0065]

【0066】この薄膜試料のイオン化ポテンシャルを測 定した結果、5.51eVであった。

40 実施例1

図2に示す構造を有する有機電界発光素子を以下の方法 で作製した。ガラス基板上にインジウム・スズ酸化物 (ITO)透明導電膜を120nm堆積したもの(ジオ マテック社製;電子ビーム成膜品;シート抵抗15Ω) を通常のフォトリソグラフィ技術と塩酸エッチングを用 いて2mm幅のストライプにパターニングして陽極を形 成した。パターン形成したITO基板を、アセトンによ る超音波洗浄、純水による水洗、イソプロピルアルコー ルによる超音波洗浄の順で洗浄後、窒素ブローで乾燥さ 1)を蒸着源とした他は参考例1と同様にして蒸着膜を 50 せ、最後に紫外線オゾン洗浄を行って、真空蒸着装置内 *

に設置した。上記装置の粗排気を油回転ポンプにより行った後、装置内の真空度が 2×10^{-6} Torr (約2. 7×10^{-4} Pa)以下になるまで液体窒素トラップを備えた油拡散ポンプを用いて排気した。

33

【0067】正孔輸送層材料として、4, 4 ' —ビス [N-(1-t)7 + N — N-17 + N — N-17 + N — N-18 + N — N-19 + N0 — N1 — N2 — N3 — N4 — N4 — N5 — N8 — N8 — N9 — N9

[0068]

(D-1)

【0069】この時の例示化合物(I-10)の坩堝温 度は320~330℃の範囲で、ルブレンの坩堝温度は 200℃で制御した。蒸着時の真空度は1.1×10⁶ Torr (約1.5×10 Pa) で、ホスト材料の蒸 着速度0.2 n m/秒で、膜厚は30 n mであった。こ の時、最初の膜厚15nmの領域で、ルブレン坩堝のシ ャッタを開けずにドープしない領域とし、後半の15n mの領域ではルブレンがホスト材料に対して 0. 4 重量 %となるようにした。続いて、正孔阻止層6の材料とし て、ビス(2-メチル-8-キノリノラト)(トリフェ ニルシラノラト)アルミニウム錯体(HB-1)を上記 発光層5の上に同様にして蒸着を行った。この時の坩堝 の温度は180~190℃の範囲で制御した。蒸着時の 真空度は8. 0×10⁷ Torr (約1. 1×10⁴ P a)で、蒸着速度0.5nm/秒で、膜厚は20nmで あった。更に、電子輸送層7の材料として以下に示すア ルミニウムの8-ヒドロキシキノリン錯体(E-1)を 上記正孔阻止層6の上に同様にして蒸着を行った。

【0070】 【化20】

34

【0071】この時の坩堝の温度は $300\sim310$ ℃の範囲で制御した。蒸着時の真空度は 8.0×10^{7} Torr(約 1.1×10^{4} Pa)で、蒸着速度0.3nm/秒で、膜厚は25nmであった。上記の正孔輸送層4から電子輸送層7を真空蒸着する時の基板温度は室温に保持した。

【0072】ここで、電子輸送層7までの蒸着を行った 素子を一度前記真空蒸着装置内より大気中に取り出し て、陰極蒸着用のマスクとして2mm幅のストライプ状 シャドーマスクを、陽極2のITOストライプとは直交 するように素子に密着させて、別の真空蒸着装置内に設 置して有機層と同様にして装置内の真空度が2×10⁻⁶ Torr(約2.7×10⁴ Pa)以下になるまで排気 した。陰極8として、先ず、フッ化マグネシウム(Mg F₂)をモリブデンボートを用いて、蒸着速度0.04 nm/秒、真空度5.0×10⁻⁶ Torr (約6.7× 10⁴ Pa)で、0.5 nmの膜厚で電子輸送層7の上 に成膜した。次に、アルミニウムを同様にモリブデンボ ートにより加熱して、蒸着速度0.5 nm/秒、真空度 1. 2×10⁻⁵ Torr (約1. 6×10⁻³ Pa) で膜 厚40nmのアルミニウム層を形成した。更に、その上 に、陰極の導電性を高めるために銅を、同様にモリブデ ンボートを用いて加熱して、蒸着速度 0.4 nm/秒、 真空度1. 2×10⁻⁵ Torr(約1. 6×10⁻⁸ P a) で膜厚40nmの銅層を形成して陰極8を完成させ た。以上の三層型陰極8の蒸着時の基板温度は室温に保 持した。

【0073】以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。この素子の発光特性を表-7に示す。表-7において、発光輝度は250mA/cm²の電流密度での値、発光効率は100cd/m²での値、輝度/電流は輝度一電流密度特性の傾きを、電圧は100cd/m²での値を各々示す。CIE色度座標値(JIS Z8701)を合わせて示す。ELスペクトルを図5に示す。発光色は白色であった。この素子は長期間保存後も、駆動電圧の顕著な上昇は見られず、発光効率や輝度の低下もなく、安定した素子の保存安定性が得られた。

[0074]

【表7】

-		~,
70	-	•

	発光層	発光輝度 [cd/m²]	発光効率 [l m/W]	輝度/電流	電圧 [V]	CIE 色度座標	
	材料	@250mA/cm ²	@100 cd/m ²	[cd/A]	@100 cd/m ²	x	У
実施例 1	(I-10)	9955	2.88	7.3	8	0.358	0.408
実施例2	(1-27)	8480	1.66	. 4.8	9	0.317	0.346
実施例 3	(I-3)	3970	0.62	2.6	13	0.267	0.287
	(I-10)	3820	0.81	2.6	10	0.176	0.195
参考例4	(1-27)	6890	1.69	4.3	8	0.202	0.301
	(I-3)	6420	1.34	3.8	9	0.220	0.359
比較例 1	(1-27)	6590	1.51	2.4 -	5	0.412	0.514
比較例2	(1-3)	2330	0.26	1.0	12	0.336	0.402
比較例3	(HB-1)	1290	0.38	1.5	13	0.345	0.354

【0075】実施例2

発光層のホスト材料として例示化合物(I-27)を、ドープ蛍光色素を以下の構造式に示すベンゾチオキサンテン誘導体(D-2)とした他は実施例 1 と同様

[0076]

【化21】

【0077】にして素子を作製した。素子の発光特性を表-7に示す。ELスペクトルを図6に示す。発光色は白色であった。

実施例3

発光層のホスト材料として例示化合物(I-3)を、正 孔輸送層側の膜厚 15 n mの領域におけるドープ蛍光色 素としてペリレンを、正孔阻止層側の膜厚 15 n mの領 域におけるドープ蛍光色素を以下の構造式に示すアザベ ンゾチオキサンテン誘導体(D-3)とした他は実施例 1と同様にして素子を作製した。

[0078]

【化22】

【0079】素子の発光特性を表-7に示す。

実施例4

30

実施例 1 で作製した素子を、電圧を変えて輝度レベルを変化させて発光スペクトルを測定し、色度座標を求めた結果を表-8 に示す。色度座標値は若干変動するが、いずれも白色発光領域であり、実用上は問題のない程度であった。

[0080]

【表8】

38

表—8

電圧 [V]	輝度 [cd/m²]	CIE色度座標		
## [4]	74/32 [CG/III-]	х	У	
8	109	0.363	0.412	
10	720	0.358	0.408	
14	9955	0.345	0.393	

【0081】参考例4

発光層材料に例示化合物(I-10)、(I-27)及び(I-3)を用い、発光層にドープしない他は実施例 1 と同様にして素子を作製した。これらの素子の発光特性を表-7に示す。いずれも青色、青緑色の発光色であった。これらドープしない素子の色度座標と実施例 $1\sim3$ で用いたドープ色素の溶液での蛍光スペクトルから求めた色度座標値を図 7 に示す。

【0082】比較例1

正孔阻止層を設けず、電子輸送層の膜厚を45nmとした他は実施例2と同様に素子を作製した。この素子の発光特性を表-7に示す。青色発光は得られず、電子輸送層として用いたアルミニウムの8-ヒドロキシキノリン錯体からの発光にドープ色素が加わった黄緑色発光が観測された。

比較例2

正孔輸送層を設けず、発光層材料を例示化合物(I-3)として、その膜厚を60nmとし、ドープ色素としてアザベンゾチオキサンテン(D-3)を用いた他は実施例1と同様にして素子を作製した。この素子の発光特 30性を表-7に示す。白色発光は得られたものの発光効率は低かった。

【0083】比較例3

青色発光層ホスト材料として前記化合物(HB-1)を用い、ペリレンとベンゾチオキサンテン(D-2)を各々1.0、0.4 重量%ドープし、正孔阻止層を設けず電子輸送層として45nmo(E-1)を用いた他は実施例1と同様にして素子を作製した。この素子の発光特性を表-7に示す。白色発光は得られたものの発光効率は低かった。

[0084]

【発明の効果】本発明の有機電界発光素子によれば、特定の芳香族アミンからなる発光層に特定の発光色素を含

有させるために、高い発光効率の白色発光が達成でき、また安定性の向上した素子を得ることができる。従って、本発明による有機電界発光素子はフラットパネル・ディスプレイ(例えば〇Aコンピュータ用や壁掛けテレビ)やマルチカラー表示素子、或いは面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識等への応用が考えられ、特に、高耐熱性が要求される車載用、屋外用表示素子としては、その技術的価値は大き20 いものである。

【図面の簡単な説明】

- 【図1】有機電界発光素子の一例を示した模式断面図。
- 【図2】有機電界発光素子の別の例を示した模式断面図。
- 【図3】有機電界発光素子の別の例を示した模式断面図。
- 【図4】加法混色の概念を示したСІЕ色度座標図。
- 【図5】実施例1の有機電界発光素子からの発光スペクトル。
- 」【図6】実施例2の有機電界発光素子からの発光スペクトル。
 - 【図7】実施例 $1\sim3$ に用いたホスト及びドープ色素からの発光のC I E 色度座標図。

【符号の説明】

- 1 基板
- 2 陽極
- 3 陽極バッファ層
- 4 正孔輸送層
- 5 発光層
- 40 6 正孔阻止層
 - 7 電子輸送層
 - 8 陰極

【図7】

