Parallelization and runtime optimization

Algorithmic optimization and outsourcing

A great and simple example of algorithmic optimization is the naive matrix multiplication. *jupyter notebook for reference*

Matrix Multiplication

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \cdot \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} b_{12} \\ b_{22} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \end{bmatrix}$$

```
1 import numpy as np
      3 N = 100
      4 A, B, C = np.random.rand(N, N, 3).T
      1 %%timeit -r 10 -n 1
[2]:
      3 for i in range(N):
             for j in range(N):
                 for n in range(N):
                     C[i][j]+=A[i][n]*B[n][j]
     933 ms ± 101 ms per loop (mean ± std. dev. of 10 runs, 1 loop each)
      1 %%timeit -r 10 -n 1
[3]:
      3 for n in range(N):
             for i in range(N):
                for j in range(N):
                     C[i][j]+=A[i][n]*B[n][j]
     737 ms \pm 17.6 ms per loop (mean \pm std. dev. of 10 runs, 1 loop each)
      1 %%timeit -r 100 -n 1
      3 C = A @ B
     799 μs ± 238 μs per loop (mean ± std. dev. of 100 runs, 1 loop each)
```

Three depth levels of parallelization

CPU vs GPU

ALU	ALU					
Control Unit Cache	Control Unit Cache					
ALU	ALU					
Control Unit Control Unit						
Cache						
DRAM Controller, I/O						

				_					_
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
ALU	ALU	ALU	ALU		ALU	ALU	ALU	ALU	
	Cache								
	DRAM Controller, I/O								

CPU

GPU

Core parallelization concepts

- Daemon Processes/Threads -Background processes that terminate when the main program exits
- Locks/Mutexes: Ensure only one thread accesses a resource at a time.
- Semaphores Limit access to a resource to N threads.
- Barriers- Threads wait until all reach a certain point before proceeding.
- Deadlocks- two or more processes block forever, each holding a resource the other needs
- Race Conditions conditions of memory (rights) access between processes/threads
- Load Balancing


```
Example of a python deadlock:
   import threading
   lock1 = threading.Lock()
   lock2 = threading.Lock()
   def thread1():
       with lock1:
           with lock2: # Deadlock if thread2 holds lock2
               print("Thread1")
   def thread2():
       with lock2:
           with lock1: # Deadlock if thread1 holds lock1
               print("Thread2")
   t1 = threading.Thread(target=thread1)
   t2 = threading.Thread(target=thread2)
   t1.start(); t2.start()
```

Parallelization frameworks

multiprocessing threading

Time to look at some real code

Snippet that calls for each process *smooth transition to jupyter notebook*

```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
int main(int argc, char** argv) {
 int num_threads = 1;
 // Usage:
 if (argc < 2) {
     printf("Usage: exec param");
     return 1;
 else {
      // test that argument is integer
     num_threads = atoi(argv[1]);
  omp_set_num_threads(num_threads);
  #pragma omp parallel
     printf("Hello from threadnum = %d\n", omp_get_thread_num());
 return 0;
```

Neuromorphic Computing

Neuromorphic computing is a broad concepts that refers to anything that relates to the computation using either live neurons or architectures that mimic the neural structure of human brain. Today we'll take a look at the Loihi neuromorphic chip designed by Intel, its performance and use in video and signal processing tasks

Loihi architecture

Loihi novelty:

- Sparse network compression
- Core-to-core multicast
- Variable synaptic formats
- Population-based hierarchical connectivity

Figure 7. Loihi chip plot.

Mesh operation and synchronization

Figure 2. Mesh Operation: first box, initial idle state for time-step t (each square represents a core in the mesh containing multiple neurons); second box, neurons n_1 and n_2 in cores A and B fire and generate spike messages; third box, spikes from all other neurons firing on time-step t in cores A and B are distributed to their destination cores; and fourth box, each core advances its algorithmic time-step to t+1 as it handshakes with its neighbors through barrier synchronization messages.

Constraints

Loihi architecture can support arbitrary multigraph networks subject to the cores' resource constraints:

- The total number of neurons assigned to any core may not exceed 1,024 (N_cx)
- The total synaptic fan-in state mapped to any core must not exceed 128 KB (N_syn × 64b, subject to compression and list alignment considerations)
- The total number of core-to-core fan-out edges mapped to any given core must not exceed 4,096 (N_axout)
- The total number of distribution lists, associated by axon_id, in any core must not exceed 4,096 (N_axin)

The architecture of the neuromorphic cores

Figure 4. Core Top-Level Microarchitecture. The SYNAPSE unit processes all incoming spikes and reads out the associated synaptic weights from the memory. The DENDRITE unit updates the state variables u and v of all neurons in the core. The AXON unit generates spike messages for all fanout cores of each firing neuron. The LEARNING unit updates synaptic weights using the programmed learning rules at epoch boundaries.

Loihi 2. Novelty

List of the new features:

- Loihi 2 supports fully programmable neuron models with graded spikes
- 2. Support for three-factor learning rules

Table 1. Highlights of the Loihi 2 Instruction Set

OP CODES	DESCRIPTION
RMW, RDC read-modify-write, read-and-clear	Access neural state variables in the neuron's local memory space
MOV, SEL move, move if 'c' flag	Copy neuron variables and parameters between registers and the neuron's local memory space
AND, OR, SHL and, or, shift left	Bitwise operations
ADD, NEG, MIN add, negate, minimum	Basic arithmetic operations
MUL_SHR multiply shift right	Fixed precision multiplication
LT, GE, EQ less than, not equal, equals	Compare and write result to 'c' flag
SKP_C, JMP_C skip ops, jump to program address based on 'c' flag	Branching to navigate program
SPIKE, PROBE spike, send probe data	Generate spike or send probe data to processor

Loihi 2 at a Glance

Table 2 provides a comprehensive comparison of Loihi 2 features versus Loihi features.

Table 2. Comparison of Loihi to Loihi 2

Resources/Features	Loihi	Loihi 2		
Process	Intel 14nm	Intel 4		
Die Area	60 mm²	31 mm²		
Core Area	0.41 mm ²	0.21 mm ²		
Transistors	2.1 billion	2.3 billion		
Max # Neuron Cores/Chip	128	128		
Max # Processors/Chip	3	6		
Max # Neurons/Chip	128,000	1 million		
Max # Synapses/Chip	128 million	120 million		
Memory/Neuron Core	208 KB, fixed allocation	192 KB, flexible allocation		
Neuron Models	Generalized LIF	Fully programmable		
Neuron State Allocation	Fixed at 24 bytes per neuron	Variable from 0 to 4096 per neuron depending on neuron model requirements		
Connectivity Features	Basic compression features: Variety of sparse and dense synaptic compression formats Weight sharing of source neuron fanout lists	In addition to the Loihi 1 features: • Shared synapses for convolution • Synapses generated from seed • Presynaptic weight-scaling factors • Core fan-out list compression and sharing • Broadcast of spikes at destination chip		
Information Coding	Binary spike events	Graded spike events (up to 32-bit payload)		
Neuron State Monitoring (for development/debug)	Requires remote pause and query of neuron memory	Neurons can transmit their state on-the-fly		
Learning Architecture	Programmable rules applied to pre-, post-, and reward traces	Programmable rules applied to pre-, post-, and generalized "third-factor" traces		
Spike Input	Handled by embedded processors	Hardware acceleration for spike encoding and synchronization of Loihi with external data stream		
Spike Output	1,000 hardware-accelerated spike receivers per embedded processor	In addition to the Loihi 1 feature, hardware accelerated spike output per chip for reporting graded payload, timing, and source neuron		
External Loihi Interfaces	Proprietary asynchronous interface	Support for standard synchronous (SPI) and asynchronous (AER) protocols, GPIO, and 1000BASE-KX 2500BASE-KX, and 10GBase-KR Ethernet		
Multi-Chip Scaling	2D tile-able chip array Single inter-chip asynchronous protocol with fixed pin-count	3D tile-able chip array Range of inter-chip asynchronous protocols with variable pipelining and pin-counts optimized for different system configurations		
Timestep Synchronization	Handled by cores	Accelerated by NoC routers		

Resonate-and-Fire (RF)

model

$$rac{dz_k}{dt} = \left(-\gamma + i\omega_k
ight)z + a(t)$$

Discrete:

$$z_k[t] = \lambda e^{i\omega_k \Delta t} z[t-1] + a(t)$$

Figure: spiking patterns of 100-neuron system (top), original and recovered signals (bottom)

Spiking rule:

$$s[t] = \mathfrak{Re}\,z[t] \iff \mathfrak{Im}\,z[t] = 0 \;\; ext{and} \;\; |z| > heta$$

Given an input a(t), this system approximates its STFT:

$$z_k[0] = 0 \quad \Rightarrow \quad z_k[t] = \sum_{n=0}^t \lambda^n e^{in\omega_k \Delta t} \, a(t-n)$$

Estimating Optical Flow with RF

Input - spikes

- sparse event-based DVS data
- In the case of video frames, a separate graded spike is used to represent the intensity of each pixel.

Estimate energy from input.

f(x) – spatial filter

h(t) – temporal filter

Velocity

$$v_{\omega_x,\omega_t,\theta} = \begin{bmatrix} \frac{\omega_t}{\omega_x} \cos \theta, & \frac{\omega_t}{\omega_x} \sin \theta \end{bmatrix}$$

Optical flow

$$f = \frac{\sum_{\omega_x, \omega_t, \theta} v_{\omega_x, \omega_t, \theta} E_{\omega_x, \omega_t, \theta}}{\sum_{\omega_x, \omega_t, \theta} E_{\omega_x, \omega_t, \theta}}$$

Estimating Optical Flow with RF. Results

EV-FlowNet

TABLE I: Optical flow model parameters

Parameter	Units	Symbol	Count	Values
Receptive Field Size	pix	-	-	(64, 64)
Timestep Duration	sec	Δt	-	0.032
Spatial Frequency	rad/pix	ω_x	$n_x = 1$	$\omega_x = \frac{6\pi}{256}$
Temporal Frequency	rad/sec	ω_t	$n_t = 5$	$\omega_{t_k} = 4\pi k$
Orientations	rad	θ	$n_{\theta} = 4$	$\theta_k = \frac{k\pi}{n_{\theta}}$

TABLE II: Average Endpoint Error on MVSEC

	Indoor		Indoo	r	Indoor		
	Flying 1		Flying	2	Flying 3		
	AEE	% outlier	AEE	% outlier	AEE	% outlier	
EV-FlowNet _{2R}	1.03	2.2	1.72	15.1	1.53	11.9	
Ours _{DENSE}	0.91	0.35	1.28	5.83	1.04	2.88	
Oursspikes	0.83	0.68	1.22	5.42	0.97	2.65	

$$\mathsf{SLAYER} \quad E = rac{1}{2} \int_0^T ig(e^{(n_l)}(t)ig)^2 dt, \quad e^{(n_l)}(t) = ig(arepsilon * (s^{(n_l)} - \hat{s})ig)(t)$$

$$s_i^{(l)}(t) = \sum_f \delta\!ig(t-t_{i,f}^{(l)}ig)$$

$$a_i^{(l)}(t) = ig(arepsilon_d * s_i^{(l)}ig)(t)$$

$$u_{j}^{(l+1)}(t) = \sum_{i} W_{ji}^{(l)} \, a_{i}^{(l)}(t) + ig(
u st s_{j}^{(l+1)}ig)(t)$$

$$s_{j}^{(l+1)}(t)=f_{s}\!ig(u_{j}^{(l+1)}(t)ig)$$

$$abla_{W^{(l)}}E = \int^T \delta^{(l+1)}(t) \left[a^{(l)}(t)
ight]^{\! op}\!dt$$

$$e^{(l)}(t) = egin{cases} rac{\partial L(t)}{\partial a^{(n_l)}(t)} & l = n_l \ (W^{(l)})^ op \delta^{(l+1)}(t) & ext{otherwise} \end{cases}$$

$$ho^{(l)}(t) = lpha^{-1} \expigl(-eta | u^{(l)}(t) - artheta|igr) \ \delta^{(l)}(t) =
ho^{(l)}(t) \, igl(arepsilon_d \odot e^{(l)}igr)(t)$$

Since Intel Loihi 2 is suitable for RF networks and Sigma-Delta encapsulation:

Authors integrate these concepts into regular ANNs and **benchmark** Loihi 2 SNNs on <u>Video and Audio</u> tasks in terms of **Efficiency** and **Delay VS** NVidia Jetson and CPU

Video task setup:

Figure 2: Training the neural network.

MSE angle results(\downarrow): 0.035 for Loihi 2 vs 0.025 8-bit quant. ANN (NVidia Jetson Nano)

Audio denoising task setup:

Metric:

SI-SNR :=
$$10\log_{10} \frac{||s_{\text{target}}||^2}{||e_{\text{noise}}||^2}$$
,

where
$$s_{\text{target}} := \frac{\langle \hat{s}, s \rangle s}{||s||^2}$$
 and $e_{\text{noise}} := \hat{s} - s_{\text{target}}$

Audio data is temporal and dense, 16kHz sampling rate means 16k measurements per second!

SI-SNR results(\uparrow): 12.5 for Loihi 2 vs 11.89 ANN baseline (NVidia Jetson Nano)

			Algorithmic quality	Hardware inference cost per sample					
Network	Precision	Hardware		Energy (↓)		Latency (\$\dagger\$)	Throughput (†)	$EDP(\downarrow)$	Param count(\downarrow)
				Total (mJ)	Dynamic (mJ)	(ms)	(samples/s)	(µJs)	
			MSE (sq. rads) (↓)						
PilotNet SDNN	int8	Loihi 2 [†] (no IO)	0.035	0.09	0.05	1.21	7403.80	0.11	351, 187
PilotNet SDNN	int8	Loihi 2 [†] (IO limited)	0.035	1.26	0.07	65.41	137.60	82.54	351, 187
PilotNet ANN (batch=1)	fp32	Jetson Orin Nano GPU [‡]	0.024	21.94	10.12	5.77	173.19	126.69	351, 187
PilotNet ANN (batch=16)	fp32	Jetson Orin Nano GPU [‡]	0.024	6.14	3.72	18.88	847.26	115.90	351, 187
PilotNet ANN (batch=1)	int8	Jetson Orin Nano GPU [‡]	0.025	13.72	6.70	3.43	291.48	47.08	351, 187
PilotNet ANN (batch=16)	int8	Jetson Orin Nano GPU [‡]	0.025	5.31	2.89	18.88	847.26	100.30	351, 187
			SI-SNR (dB) (†)						
Intel NsSDNet*	int8	Loihi 2 †	12.50	28.74	3.48	32.04	1.00	920.97	526, 336
Microsoft NsNet2*	fp32	Jetson Orin Nano GPU [‡]	11.89	2143.35	95.35	20.02	1.00	42,909.90	2,681,000
			Correlation (†)						
RF STFT (5K events/s)	int24	Loihi 2 [†]	0.94	0.34	0.31	0.82	59.39	0.28	401
STFT (500KB/s)	fp32	Core i9 CPU§	0.98	539.62	-	0.43	113.56	232.02	-

Results for Intel Loihi 2:

- PilotNet Steering: up to 150x less Energy, 2.8x faster latency
- Noise suppression: up to 74x less Energy, better SI-SNR, 526k vs 2.68M params
- STFT: up to 1500x less Energy, 828x better EDP

Briefly about Quantum Computing

Hadamard
$$-H$$
 — $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Pauli- X — X —