Algorithms for Estimating Trends in Global Temperature Volatility

Arash Khodadadi and Daniel McDonald

Time-series of the temperature (in Kelvin) of three cities

Modeling trend in variance

- We have 52000 of these time-series
- They have different trends and periodic components
- The periodic component is not necessarily sinusoidal.
- We don't really care about the shape of the trend and the periodic terms. We just want to get rid of them!

These observations suggest a non-parametric approach.

Modeling trend in variance

- We need to model the trend in the variance of the time-series
- Data is spatio-temporal

Outline

- l_1 -trend filtering for removing trend and cyclic terms
- Extension to filtering the variance of a time-series
- Extension to filtering the variance of spatio-temporal data

Motivating example

$$y_t \sim N(0, exp(h_t))$$

Here, ht is a hidden (unobserved) state.

Penalized MLE estimation of variance leads to the following optimization problem:

$$\min_{\mathbf{h}} -l(\mathbf{h}, \mathbf{y}) + \lambda ||D\mathbf{h}||_1$$

$$-l(h, y) = \sum_{t} h_t + y_t^2 e^{-h_t}$$

- We solve this optimization problem using the primal-dual interior point method.
- The dual is:

$$\min_{\nu} f^*(-D^T \nu)$$
s.t. $||\nu||_{\infty} \le \lambda$

Here, $f^*(\cdot)$ is the conjugate of f and we have:

$$f^*(\mathbf{u}) = \sum_{t} (u_t - 1) \log \frac{y_t^2}{1 - u_t} + u_t - 1$$

L1 trend filtering on graph

So far we have only considered temporal data.

Spatio-temporal data:

- penalize differences in the variance of neighboring points
- In particular, for each add a row to such that and another row such that.
- This results in spatially piecewise constant variance.
- Graph LASSO at each time step

L1 trend filtering on graph

Optimization:

We need to solve the same optimization problem:

$$\min_{\nu} f^*(-D^T \nu)$$
s.t. $||\nu||_{\infty} \le \lambda$

Here, $f^*(\cdot)$ is the conjugate of f and we have:

$$f^*(\mathbf{u}) = \sum_t (u_t - 1) \log \frac{y_t^2}{1 - u_t} + u_t - 1$$

If the spatial grid is $n_r \times n_c$ and the time-series are of length T, then the size of D is:

$$number\ of\ rows = 3n_r n_c T - T n_c - 2n_r n_c$$

$$number\ of\ columns = n_r n_c T$$

L1 trend filtering on graph

Optimization:

If the spatial grid is $n_r \times n_c$ and the time-series are of length T, then the size of D is:

$$number\ of\ rows = 3n_rn_cT - Tn_c - 2n_rn_c$$

$$number\ of\ columns = n_rn_cT$$

Example: For the grid shown here $n_r = 32$, $n_c = 68$, T = 521 and so D is of size: 3,680,160×1,239,980 !!!

Consensus Alternative Direction Method of Multipliers (ADMM):

Consider the following optimization problem:

$$\min_{z} \sum f_i(z)$$

Now, define the *local variables* x_i such that $\sum f_i(z) = \sum f_i(x_i)$, then the above optimization is equivalent to:

$$\min_{\{x_1,\dots,x_N\}} \sum f_i(x_i)$$

$$s.\,t.\,:\,x_i-z_i=0\;\text{, }i=1,\dots,N$$

Consensus ADMM for L1 trend filtering on graph

$$\min_{\{x_1,...,x_N\}} \sum f_i(x_i)$$

s. t.: $x_i - z_i = 0$, $i = 1,..., N$

ADMM steps:

$$x_i^{k+1} := \underset{x_i}{\operatorname{argmin}} \left(f_i(x_i) + y_i^{kT} x_i + (\rho/2) ||x_i - \tilde{z}_i^k||_2^2 \right)$$
$$z_g^{k+1} := (1/k_g) \sum_{\mathcal{G}(i,j)=g} (x_i^{k+1})_j,$$
$$y_i^{k+1} := y_i^k + \rho(x_i^{k+1} - \tilde{z}_i^{k+1}),$$

Consensus ADMM for -trend filtering on graph

Each x-update step has the following form:

$$\min_{h} \sum_{i,j,t} h_{i,j,t} + y_{i,j,t} \cdot \exp(-h_{i,j,t}) + \lambda ||Dh||_1 + \frac{\rho}{2} ||h - \alpha||_2^2$$

The dual is:

$$\min_{\nu} f^*(-D^T \nu)$$
s.t. $||\nu||_{\infty} \le \lambda$

Where the conjugate function is obtained as follows:

$$f^*(u) = \max_{h} u^T h - h - [diag(y)]^2 e^{-h} - \frac{\rho}{2} ||h - \alpha||_2^2$$

This leads to solving equations in the form Lambert function

