EQUIVARIANT UNIRATIONALITY OF TORI IN SMALL DIMENSIONS

YURI TSCHINKEL AND ZHIJIA ZHANG

ABSTRACT. We study equivariant unirationality of actions of finite groups on tori of small dimensions.

1. Introduction

Rationality of tori over nonclosed fields is a well-established and active area of research, going back to the work of Serre, Voskresenskii, Endo, Miyata, Colliot-Thélène, Sansuc, Saltman, Kunyavskii (classification of rational tori in dimension 3), and to more recent contributions of Lemire and Hoshi-Yamasaki (stably rational classification in dimensions ≤ 5), see, e.g., [13] for a summary of results and extensive background material.

In pursuing analogies between birational geometry over nonclosed fields and equivariant birational geometry, i.e., birational geometry over the classifying stack BG, where G is a finite group, it is natural to consider algebraic tori in both contexts. While some of the invariants have a formally similar flavor, e.g., invariants of the geometric character lattice as a Galois, respectively, G-module, there are also striking differences. For example, a major open problem is to find examples of stably rational but nonrational tori over nonclosed fields. Over BG, there are examples already in dimension 2 [18, Section 9]. Furthermore, "rational" tori over BG need not have G-fixed points!

To make this dictionary more precise: in the equivariant setup, one studies regular, but not necessarily generically free, actions of finite groups G on smooth projective rational varieties X, over an algebraically closed field of characteristic zero. The following properties, the equivariant analogs of the notions of (stable) rationality and univariantly, have attracted attention:

• (L), (SL) lineariazability, respectively, stable linearizability: there exists a linear representation V of G and a G-equivariant birational map

$$\mathbb{P}(V) \dashrightarrow X, \quad \text{respectively,} \quad \mathbb{P}(V) \dashrightarrow X \times \mathbb{P}^m,$$

Date: September 22, 2025.

with trivial action on the \mathbb{P}^m -factor,

• (U) unirationality: there exists a linear representation V of G and a G-equivariant dominant rational map

$$\mathbb{P}(V) \dashrightarrow X$$
.

Property (U) is also known as *very versality* of the G-action. It was explored in the context of essential dimension in, e.g., [9]. It has been studied for del Pezzo surfaces in [8], and for toric varieties in [7, 15].

A necessary condition for both (SL) and (U) is

• (A): for every abelian subgroup $A \subseteq G$ one has $X^A \neq \emptyset$.

A necessary condition for (SL) is:

- (SP): the Picard group Pic(X) is a stably permutation G-module. A necessary condition for (U) is:
 - (T): the action lifts to the universal torsor, see [15, Section 5] and Section 2 for more details.

These conditions are equivariant stable birational invariants of smooth projective varieties. We have

$$(SL) \Rightarrow (U),$$

but the converse fails already for del Pezzo surfaces: there exist quartic del Pezzo surfaces satisfying (U) but failing (SP), and thus (SL). By [8, Theorem 1.4], Condition (A) is sufficient for (U), for regular, generically free actions on del Pezzo surfaces of degree ≥ 3 ; same holds for smooth quadric threefolds, or intersections of two quadrics in \mathbb{P}^5 , by [5]. In [15] it was shown that regular, not necessarily generically free, actions on toric varieties are unirational, if and only if (T) is satisfied. Using this, and [12, Proposition 12], we have, for G-actions on toric varieties arising from an injective homomorphism $G \hookrightarrow \operatorname{Aut}(T)$,

$$(\mathbf{U}) + (\mathbf{SP}) \Longleftrightarrow (\mathbf{SL}).$$

Our goal in this note is to obtain explicit, group-theoretic, criteria for stable linearizability and unirationality of actions of finite groups G on smooth projective equivariant compactifications of tori $T = \mathbb{G}_m^n$ in small dimensions. When n = 2, Condition (A) implies (U) and (SL) [8, 12]. Our main result is:

Theorem 1.1. Let $T = \mathbb{G}_m^3$, $G \subset \operatorname{Aut}(T)$ be a finite group, and X a smooth projective G- and T-equivariant compactification of T. Let

$$\pi^*: G \to \mathsf{GL}(N)$$

be the induced representation on the cocharacter lattice N of T. Assume that the G-action on X satisfies Condition (A). Then

• the G-action is (U) if and only if $\pi^*(G)$ does not contain, up to conjugation, the group

$$\left\langle \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \right\rangle \simeq C_2^2, \tag{1.1}$$

• the G-action is (SL) if and only if $\pi^*(G)$ does not contain, up to conjugation, the group in (1.1) or any of the groups

$$\left\langle \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\rangle \simeq C_2 \times C_4,$$

$$\left\langle \begin{pmatrix} 0 & 0 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right\rangle \simeq C_2^3.$$

In particular,

$$(A) + (SP) \iff (SL).$$

Here is the roadmap of the paper: In Section 2 we recall basic toric geometry and group cohomology. In Section 3 we provide details on equivariant geometry of toric surfaces. In Section 4 we recall the construction of equivariant smooth projective models of 3-dimensional tori, following [17]. In Section 5 we prove the main technical lemmas needed for Theorem 1.1. A particularly difficult case, with $\pi^*(G)$ given by (1.1), is outsourced to Section 6. In Section 7 we summarize the main steps of the proof of Theorem 1.1.

Acknowledgments: The first author was partially supported by NSF grant 2301983.

2. Generalities

We work over an algebraically closed field k of characteristic zero.

Automorphisms. Let $T = \mathbb{G}_m^n$ be an algebraic torus over k. The automorphisms of T admit a description via the exact sequence

$$1 \to T(k) \to \operatorname{Aut}(T) \xrightarrow{\pi} \operatorname{\mathsf{GL}}(M) \to 1,$$

where $M := \mathfrak{X}^*(T)$ is the character lattice of T, which is dual to the cocharacter lattice N. For any finite subgroup $G \subset \operatorname{Aut}(T)$, we have an exact sequence

$$1 \to G_T \to G \xrightarrow{\pi} \bar{G} \to 1, \quad G_T := T(k) \cap G.$$
 (2.1)

The cases where G fixes a point on T, without loss of generality $1 \in T$, were studied in the context of geometry over nonclosed fields in [17, 13].

By way of contrast, here we allow the more general actions considered in [12], where X is an equivariant compactification of a *torsor* under a G-torus, these can still be (stably) linearizable.

As a convention, the G-action is from the right throughout the paper. For example, choosing appropriate coordinates $\{t_1, t_2, t_3\}$ on $T = \mathbb{G}_m^3$, the matrices in (1.1) correspond to actions on T given by

$$(t_1, t_2, t_3) \mapsto (t_2, t_1, \frac{1}{t_1 t_2 t_3}), \quad (t_1, t_2, t_3) \mapsto (\frac{1}{t_1 t_2 t_3}, t_3, t_2).$$

Smooth projective models. To obtain a smooth, projective, G- and T-equivariant compactification X of T, it suffices to choose a $\pi^*(G)$ -invariant complete regular $fan \Sigma$ in the lattice of cocharacters N, see, e.g., [2, Section 1.3]. Indeed, the translation action by T(k) extends to any such compactification of T, by definition. Such a choice of X and Σ yields two exact sequences of G-modules

$$1 \to k^{\times} \to k(T)^{\times} \to M \to 0, \tag{2.2}$$

and

$$0 \to M \to PL \to Pic(X) \to 0,$$
 (2.3)

where PL is a free \mathbb{Z} -module with generators corresponding to 1-dimensional cones in Σ , or equivalently, irreducible components of $X \setminus T$.

Obstruction class. The Yoneda product of the extensions (2.2) and (2.3) yields a cohomology class

$$\beta(X,G) \in \operatorname{Ext}^2(\operatorname{Pic}(X),k^{\times}) \simeq \operatorname{H}^2(G,\operatorname{Pic}^{\vee} \otimes k^{\times}) \simeq \operatorname{H}^3(G,\operatorname{Pic}(X)^{\vee}).$$

Effectively, $\beta(X,G)$ can be computed as the image of

$$id_{Pic(X)} \in End(Pic(X))^G$$

under the composition of the following connecting homomorphisms, arising from tensoring (2.2) and (2.3) by $Pic(X)^{\vee}$:

$$\operatorname{End}(\operatorname{Pic}(X))^G \to \operatorname{H}^1(G,\operatorname{Pic}(X)^{\vee} \otimes \operatorname{M}) \to \operatorname{H}^2(G,\operatorname{Pic}(X)^{\vee} \otimes k^{\times}).$$
 (2.4)

As explained in [15, Section 5], if $Y \to X$ is a G-equivariant morphism then

$$\beta(Y,G) = 0 \quad \Rightarrow \quad \beta(X,G) = 0.$$
 (2.5)

For toric varieties, this is also a consequence of Theorem 2.4 below. By basic properties of cohomology, we observe:

Lemma 2.1. We have

$$\beta(X,G) = 0 \iff \beta(X,G_p) = 0 \text{ for all p-Sylow subgroups } G_p \subseteq G.$$

Proof. Since G is finite, for any G-module P, the sum of restriction homomorphisms gives an embedding

$$\mathrm{H}^2(G,\mathrm{P}) \to \oplus_p \mathrm{H}^2(G_p,\mathrm{P}),$$

where p runs over primes dividing |G|.

Bogomolov multiplier. As explained in [12, Section 3.6], functoriality implies that

$$X^G \neq \emptyset \quad \Rightarrow \quad \beta(X, G) = 0.$$
 (2.6)

Thus Condition (A) forces that

$$\beta(X,G) \in \mathcal{B}^3(G,\operatorname{Pic}(X)^{\vee}),\tag{2.7}$$

where for any G-module P and $n \in \mathbb{N}$, we put

$$B^{n}(G, P) := \bigcap_{A} Ker \left(H^{n}(G, P) \xrightarrow{res} H^{n}(A, P) \right),$$

the intersection over all abelian subgroups $A \subseteq G$; this is the generalization of the Bogomolov multiplier

$$B^2(G, k^{\times}),$$

where the G-action on k^{\times} is trivial, considered in [20, Section 2]. Note that while the vanishing of $\beta(X, G)$ is a stable birational invariant, the group $B^n(G, \operatorname{Pic}(X)^{\vee})$ is not, in general, as the following example shows.

Example 2.2. Let G be a group with a nontrivial Bogomolov multiplier. Let V be a faithful linear representation of G and $X = \mathbb{P}(\mathbf{1} \oplus V)$. Let \tilde{X} be the blowup of X in the G-fixed point. Then

$$\mathrm{B}^3(G,\mathrm{Pic}(\tilde{X})^\vee) \neq \mathrm{B}^3(G,\mathrm{Pic}(X)^\vee) \oplus \mathrm{B}^3(G,\mathbb{Z}).$$

We will need the following technical statement about generalized Bogomolov multipliers:

Lemma 2.3. Let $H \subset G$ be a normal subgroup with cyclic quotient $G/H = C_m$. Let P_0 be an H-module and $P = \bigoplus_{j=1}^m P_0$ the induced G-module. Then the restriction homomorphism

$$\mathrm{H}^2(G,\mathbf{P}) \to \mathrm{H}^2(H,\mathbf{P})$$

is injective. In particular, we have

$$B^2(H, P_0) = 0 \quad \Rightarrow \quad B^2(G, P) = 0.$$

Proof. The Hochschild–Serre spectral sequence yields:

$$0 \to \mathrm{H}^1(G/H, \mathbf{P}^H) \to \mathrm{H}^1(G, \mathbf{P}) \to \mathrm{H}^1(H, \mathbf{P})^{G/H} \to \mathrm{H}^2(G/H, \mathbf{P}^H) \to$$
$$\to \ker \left(\mathrm{H}^2(G, \mathbf{P}) \to \mathrm{H}^2(H, \mathbf{P})\right) \to \mathrm{H}^1(G/H, \mathrm{H}^1(H, \mathbf{P}))$$

We have

$$H^{2}(G/H, P^{H}) = H^{1}(G/H, H^{1}(H, P)) = 0.$$

Indeed, G/H-acts via cyclic permutations on the summands of P^H and $H^1(H, P)$; cohomology of cyclic groups acting via cyclic permutations vanishes in all degrees ≥ 1 . It follows that

$$\ker \left(\mathrm{H}^2(G, \mathbf{P}) \to \mathrm{H}^2(H, \mathbf{P}) \right) = 0.$$

Thus, a nonzero class $\alpha \in H^2(G, P)$ remains nonzero in

$$H^{2}(H, P) = \bigoplus_{i=1}^{m} H^{2}(H, P_{0}).$$

If $\alpha \in B^2(G, P)$, then the restriction of α to H lies in $B^2(H, P)$, contradicting the assumption that $B^2(H, P_0) = 0$.

Geometric applications. The following theorem characterizes unirationality of G-actions on toric varieties:

Theorem 2.4. [12, Section 4], [15, Section 5] Let X be a smooth projective T-equivariant compactification of a torus T, with an action of a finite group G arising from a homomorphism $\rho: G \to \operatorname{Aut}(T)$. Then

$$\beta(X,G) = 0 \iff (\mathbf{T}) \iff (\mathbf{U}).$$

A related result, concerning *versality* of generically free actions on toric varieties is [7, Theorem 3.2]: it is equivalent to the vanishing of $\beta(X,G)$, in our terminology. In particular, for such actions, versality is equivalent to *very versality* (i.e., unirationality), see [9] for further details regarding these notions. Here, we allow actions with nontrivial generic stabilizers, i.e., when the kernel of ρ is nontrivial.

A consequence of [12, Proposition 12] is:

Theorem 2.5. Let X be a smooth projective T-equivariant compactification of a torus T, with a regular action of a finite group G arising from an injective homomorphism $\rho: G \hookrightarrow \operatorname{Aut}(T)$. Then

$$\mathbf{(T)}+\mathbf{(SP)}\Longleftrightarrow\mathbf{(SL)}.$$

Note that

$$(\mathbf{A}) \not\Rightarrow (\mathbf{U}),$$

even for generically free actions on toric threefolds, see Section 4. In fact, not even for $X = \mathbb{P}^1$, if we allow generic stabilizers!

Example 2.6. Consider $X = \mathbb{P}^1$. If $G \subset \operatorname{Aut}(T)$, i.e.,

$$G \subset \mathbb{G}_m(k) \rtimes C_2$$

then G is either cyclic or dihedral. Actions of cyclic groups and of dihedral groups \mathfrak{D}_n of order 2n, with n odd, are unirational; actions of

 \mathfrak{D}_n , with n even, are not unirational, since they contain the subgroup C_2^2 which has no fixed points on \mathbb{P}^1 , i.e., failing Condition (A). In particular, for generically free actions we have (A) \Leftrightarrow (U).

For non-generically free G-actions on \mathbb{P}^1 , considered in [15, Example 2.2], Condition (**A**) does not suffice to characterize unirationality. By (2.7), such groups must have a nontrivial Bogomolov multiplier

$$B^2(G, k^{\times}) \simeq B^3(G, \mathbb{Z}).$$

For example, let G be the group of order 64, with GAP ID (64,149); this is the smallest group with nontrivial $B^2(G, k^{\times})$. There is a unique subgroup $H \simeq C_2 \times \mathfrak{Q}_8 \subset G$, with GAP ID (16,12), and $G/H \simeq C_2^2$. Consider a homomorphism $\rho: G \to \mathsf{PGL}_2(k)$ with kernel H and image C_2^2 . The resulting G-action on \mathbb{P}^1 is not generically free, but satisfies Condition (A) – no abelian subgroup of G surjects onto C_2^2 , via ρ . We compute as in (2.4) that

$$0 \neq \beta(\mathbb{P}^1, G) \in \mathrm{B}^2(G, k^\times) \subset \mathrm{H}^2(G, k^\times) = \mathrm{H}^2(G, \mathrm{Pic}(\mathbb{P}^1)^\vee \otimes k^\times).$$

Another way to see this is to observe the equality of commutator subgroups

$$[G,G] = [G,H],$$

which is impossible if the extension of G by k^{\times} associated with the class $\beta(\mathbb{P}^1, G)$ splits, see [15, Example 2.2]. Thus, **(U)** fails for this action.

Group cohomology. The computation of the obstruction class $\beta(X, G)$ relies on an explicit resolution of the group ring. We write down such resolutions for groups that will be relevant for the analysis of 3-dimensional toric varieties in Section 4. By convention, we work with right G-modules, i.e., the group G acts from the right.

• Let $G = \mathfrak{Q}_{2^n}$ be the generalized quaternion group of order 2^n , with a presentation

$$\mathfrak{Q}_{2^n} := \langle x, y | x^{2^{n-2}} = y^2, \ xyx = y \rangle,$$

and P a G-module. By [3, §XII.7], the cohomology groups $H^{i}(G, P)$, i = 0, 1, 2, 3, can be computed as the *i*-th cohomology of the complex

$$P \xrightarrow{\begin{pmatrix} 1-x & 1-y \end{pmatrix}} P^2 \xrightarrow{\begin{pmatrix} N_x & yx+1 \\ -1-y & x-1 \end{pmatrix}} P^2 \xrightarrow{\begin{pmatrix} 1-x \\ yx-1 \end{pmatrix}} P \xrightarrow{\sum_{g \in G} g} P \cdots$$
 (2.8)

where

$$N_x = 1 + x + x^2 + \dots + x^{(2^{n-2}-1)}$$

ullet Let $G=\mathfrak{D}_{2^{n-1}}$ be the dihedral group of order $2^n,$ with a presentation

$$\mathfrak{D}_{2^{n-1}} := \langle x, y | x^{2^{n-1}} = y^2 = yxyx = 1 \rangle,$$

and P a G-module. By [1, §IV.2], the cohomology groups $H^{i}(\mathfrak{D}_{n}, P)$, i = 0, 1, 2, can be computed as the *i*-th cohomology of

$$P \xrightarrow{(1-x \ 1-y)} P^{2} \xrightarrow{\begin{pmatrix} N_{x} \ 1+yx & 0 \\ 0 \ x-1 & 1+y \end{pmatrix}} P^{3} \xrightarrow{\begin{pmatrix} 1-x \ 1+y & 0 & 0 \\ 0 \ -N_{x} & 1-yx & 0 \\ 0 \ 0 & 1-x & 1-y \end{pmatrix}} P^{4} \cdots$$

$$(2.9)$$

where

$$N_x = 1 + x + x^2 + \dots + x^{(2^{n-1}-1)}$$
.

• Let $G = \mathfrak{SD}_{2^n}$ be the semidihedral group of order 2^n , with presentation

$$\mathfrak{SD}_{2^n} := \langle x, y | x^{2^{n-1}} = y^2 = 1, \ yxy = x^{2^{n-2} - 1} \rangle,$$

and P a G-module. Using the resolution constructed in [10], we can compute $H^i(G, P)$, i = 0, 1, 2, as the *i*-th cohomology of

$$P \xrightarrow{\begin{pmatrix} 1-x & 1-y \end{pmatrix}} P^2 \xrightarrow{\begin{pmatrix} L_2 & 0 \\ L_1 & 1+y \end{pmatrix}} P^2 \xrightarrow{\begin{pmatrix} -L_3 & 0 \\ L_4 & 1-y \end{pmatrix}} P^2 \cdots \qquad (2.10)$$

where

$$L_1 = x^{2^{n-3}+1} - 1, \quad L_2 = \sum_{r=0}^{2^{n-3}} x^r - \left(\sum_{r=0}^{2^{n-3}-2} x^r\right) \cdot y,$$

$$L_3 = (x^{2^{n-3}-1} - 1)(1+y), \quad L_4 = (x^{2^{n-3}+1} - 1)(x^{2^{n-3}-1} - 1).$$

3. Toric surfaces

In this section, we recall the classification of unirational and linearizable actions of subgroups $G \subset \operatorname{Aut}(T)$ on smooth projective toric surfaces $X \supset T$. The maximal finite subgroups of $\operatorname{\mathsf{GL}}_2(\mathbb{Z})$ are

$$\mathfrak{D}_4$$
 and \mathfrak{D}_6 .

The recipe of Section 2 shows that all actions as above can be realized as regular actions on $X = \mathbb{P}^1 \times \mathbb{P}^1$ and respectively, $X = dP_6$, the del Pezzo surface of degree 6.

Proposition 3.1. Let X be a smooth projective toric surface with an action of a finite group $G \subset \operatorname{Aut}(T)$. Then

$$(SL) \Longleftrightarrow (U) \Longleftrightarrow (A).$$

Proof. The right equivalence is proved in [8]. The left equivalence follows from the general result Theorem 2.5, i.e., [12, Proposition 12]: if the generically free G-action satisfies (**T**) and Pic(X) is a stably permutation G-module, then the action is stably linearizable. The stable permutation

property of the G-action on $\operatorname{Pic}(X)$ is clear for $X = \mathbb{P}^1 \times \mathbb{P}^1$; for X = dP6, see [12, Section 6].

It will be convenient to choose coordinates $\{t_1, t_2\}$ of $T = \mathbb{G}_m^2$. This determines a basis $\{m_1, m_2\}$ of the lattice M and $\{n_1, n_2\}$ of its dual N. Assume that in the basis $\{n_1, n_2\}$, the \mathfrak{D}_4 -action is generated by the involutions

$$\iota_1 := \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \iota_2 := \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \iota_3 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Consider the involutions in $T(k) \cap G$, in the coordinates $\{t_1, t_2\}$,

$$\tau_1 := (-1, -1), \quad \tau_2 := (-1, 1), \quad \tau_3 := (1, -1).$$

A classification of G yielding versal (and thus unirational) actions can be found in [7, Section 4.1]. Note that only 2 and 3-groups are relevant.

Proposition 3.2. Let $G \subset \operatorname{Aut}(T)$ be a finite subgroup acting on a smooth projective toric surface $X \supset T$. Then

- if G is a 3-group, then the G-action is unirational if and only if $\pi^*(G) = 1$ or $G_T = 1$.
- if G is a 2-group, then the G-action is unirational if and only if one of the following holds, up to conjugation,
 - $-\pi^*(G)=1 \text{ or } \langle \iota_3 \rangle,$
 - $-\pi^*(G) = \langle \iota_2 \rangle$ and $G_T \subset \{(1,t) : t \in \mathbb{G}_m(k)\} \subset T(k)$,
 - $-G_T=1$ otherwise.

Moreover, for actions of p-groups, unirationality implies linearizability.

Here, we recall the classification on linearizable G-actions on toric surfaces, with $G \subset \operatorname{Aut}(T)$, following [6] and [19]. Consider the case $\pi^*(G) \subseteq \mathfrak{D}_4$:

- If $\operatorname{rk}\operatorname{Pic}(X)^G=1$ then the *G*-action is linearizable if and only if $\pi^*(G)$ is conjugate to $\langle \iota_3\rangle\simeq C_2$ in $\operatorname{\mathsf{GL}}_3(\mathbb{Z})$.
- If $\operatorname{rk}\operatorname{Pic}(X)^G=2$ then the *G*-action is linearizable if and only if up to conjugation one of the following holds:

$$-\pi^*(G) = \langle \iota_2 \rangle$$
 and

$$G_T \subset \{(t_1, t_2) : t_1, t_2 \in \mathbb{G}_m(k), \text{ ord}(t_1) \text{ is odd}\}.$$

$$-\pi^*(G) = \langle \iota_1 \rangle$$
 or $\langle \iota_1, \iota_2 \rangle$ and $|G_T|$ is odd.

We turn to $\pi^*(G) \subseteq \mathfrak{D}_6$:

- If $\operatorname{rk}\operatorname{Pic}(X)^G=1$ then the G-action is linearizable if and only if $G_T=1$ and $G\simeq C_6$ or $G\simeq \mathfrak{S}_3$.
- If $\operatorname{rk}\operatorname{Pic}(X)^G = 2$ and $\pi^*(G) = C_3$ or \mathfrak{S}_3 , then the action is linearizable if and only if $3 \nmid |G_T|$; all other possibilities for $\pi^*(G)$ are realized as subgroups of \mathfrak{D}_4 , covered above.

4. Toric threefolds: smooth projective models

We start with the classification of actions and their realizations on smooth projective toric threefolds, following [17]. Let $G \subset \operatorname{Aut}(T)$ be a finite subgroup where $T = \mathbb{G}_m^3$. Recall from the exact sequence (2.1) that $\bar{G} = \pi(G)$ is a subgroup of $\operatorname{GL}_3(\mathbb{Z})$. There are two isomorphism classes of maximal finite subgroups of $\operatorname{GL}_3(\mathbb{Z})$:

$$C_2 \times \mathfrak{S}_4$$
 and $C_2 \times \mathfrak{D}_6$.

The first group gives three conjugacy classes in $\mathsf{GL}_3(\mathbb{Z})$, referred to as Case (C), (S), and (P), respectively. The other group gives one conjugacy class, called Case (F).

Case (C). Here, $X = (\mathbb{P}^1)^3$, with $\bar{G} \subset C_2 \times \mathfrak{S}_4$ and the action visible from the presentation

$$1 \to C_2^3 \to C_2 \times \mathfrak{S}_4 \to \mathfrak{S}_3 \to 1,$$

with \mathfrak{S}_3 permuting the factors and C_2 acting as an involution on the corresponding \mathbb{P}^1 .

Case (F). In this case, $X = \mathbb{P}^1 \times dP6$, and $\bar{G} \subset C_2 \times \mathfrak{D}_6$, with C_2 acting via the standard involution on \mathbb{P}^1 , and \mathfrak{D}_6 acting on dP6 as described in Section 3.

Case (P). In this case, X is the blowup of

$$\{u_1u_2u_3u_4=v_1v_2v_3v_4\}\subset \mathbb{P}^1_{u_1,v_1}\times \mathbb{P}^1_{u_2,v_2}\times \mathbb{P}^1_{u_3,v_3}\times \mathbb{P}^1_{u_4,v_4}$$

in its 6 singular points, and $\bar{G} \subset C_2 \times \mathfrak{S}_4$. The corresponding $\pi^*(G)$ -invariant fan Σ consists of 99 cones: 32 three-dimensional cones, 48 two-dimensional cones, 18 rays, and the origin. We have

$$\operatorname{Pic}(X) = \mathbb{Z}^{15}$$
.

Case (S). Here, X is the blowup of \mathbb{P}^3 in 4 points and the 6 lines through these points, with $\bar{G} = C_2 \times \mathfrak{S}_4$, acting via permutations on the 4 points and 6 lines, with C_2 corresponding to the Cremona involution on \mathbb{P}^3 , which is regular on X. A singular model is the intersection of two quadrics

$$\{y_1y_4 - y_2y_5 = y_1y_4 - y_3y_6\} \subset \mathbb{P}^5_{y_1,y_2,y_3,y_4,y_5}.$$

Blowing up its 6 singular points one obtains X, see [11, Section 9] for an extensive discussion of this geometry. The corresponding fan Σ consists

of 75 cones: 24 three-dimensional cones, 36 two-dimensional cones, 14 rays, and the origin. We have

$$\operatorname{Pic}(X) = \mathbb{Z}^{11}$$
.

By Lemma 2.1, to establish property (U) it suffices to consider p-Sylow subgroups of G, in our case, p = 3 or 2.

Models for 3-groups. The are two finite 3-subgroups of $\mathsf{GL}_3(\mathbb{Z})$, both isomorphic to C_3 . They are generated by

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \text{respectively,} \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

The corresponding model X can be chosen to be \mathbb{P}^3 and $\mathbb{P}^1 \times \mathbb{P}^2$ respectively.

Models for 2-groups. There are three conjugacy classes of $C_2 \times \mathfrak{S}_4$ in $\mathsf{GL}_3(\mathbb{Z})$, but only *two* conjugacy classes of their 2-Sylow subgroups, generated respectively by

$$\left\langle \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle \simeq C_2 \times \mathfrak{D}_4,$$

and

$$\left\langle \begin{pmatrix} 0 & 0 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & -1 \end{pmatrix} \right\rangle \simeq C_2 \times \mathfrak{D}_4.$$

The first group is realized on $X = (\mathbb{P}^1)^3$, and the other on either (S) or (P) model.

In the analysis below, we need a simpler smooth projective model when $\pi^*(G)$ is contained in the $\mathfrak{D}_4 \subset \mathsf{GL}_3(\mathbb{Z})$ generated by

$$\tau_1 := \begin{pmatrix} 1 & 0 & 0 \\ -1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tau_2 := \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}.$$

Let Σ be the fan in N generated by 6 rays with generators

$$v_1 = (-1, 0, -1), \quad v_2 = (0, -1, 0), \quad v_3 = (0, 0, 1),$$

 $v_4 = (1, 0, 0), \quad v_5 = (1, 1, 1), \quad v_6 = (1, 0, 1).$

and 8 cones

$$S_1 = \langle v_1, v_4, v_5 \rangle, S_2 = \langle v_1, v_3, v_5 \rangle, S_3 = \langle v_1, v_2, v_3 \rangle, S_4 = \langle v_1, v_2, v_4 \rangle,$$

$$S_5 = \langle v_4, v_5, v_6 \rangle, S_6 = \langle v_3, v_5, v_6 \rangle, S_7 = \langle v_2, v_3, v_6 \rangle, S_8 = \langle v_2, v_4, v_6 \rangle.$$

Then Σ is $\pi^*(G)$ -invariant and the toric variety $X = X(\Sigma)$ is the blowup of a cone over a smooth quadric surface at its vertex.

5. Toric threefolds: unirationality

Let $T = \mathbb{G}_m^3$ and $G \subset \operatorname{Aut}(T)$ be a finite group, acting on a smooth projective X, which is a G- and T-equivariant compactification of T. We recall the exact sequence

$$1 \to G_T \to G \xrightarrow{\pi} \bar{G} \to 1.$$

In this section, we classify unirational G-actions, in particular, these satisfy Condition (A).

Proposition 5.1. Let $G \subset \operatorname{Aut}(T)$ be 3-group such that the G-action on X satisfies Condition (A). Then it satisfies (U).

Proof. As explained above, the model X can be chosen to be either \mathbb{P}^3 or $\mathbb{P}^1 \times \mathbb{P}^2$. In the first case, the action is linear. When $X = \mathbb{P}^1 \times \mathbb{P}^2$, the G-action on $\operatorname{Pic}(X)$ is trivial and

$$\beta(X,G) \in \mathrm{H}^2(G,k^{\times}) \oplus \mathrm{H}^2(G,k^{\times});$$

by [15, Remark 5.5], obstruction to $\beta(X,G) = 0$ equals the Amitsur obstruction for each factor. We have an extension

$$1 \to G_T \to G \to C_3 \to 1$$
,

with G_T abelian; the Bogomolov multiplier $B^2(G, k^{\times}) = 0$, by, e.g., [16, Lemma 3.1]. Condition (A) implies that the G-action lifts to a linear action on each factor.

Proposition 5.2. Let $G \subset \operatorname{Aut}(T)$ be 2-group such that the G-action on X satisfies Condition (A). Then it satisfies (U) if and only if one of the following holds:

- $G_T = 1$, or
- $G_T \neq 1$ and $\pi^*(G)$ is not conjugated to

$$\mathfrak{K}_9 = \left\langle \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \right\rangle \simeq C_2^2. \tag{5.1}$$

Proof. The assertion follows from Lemmas 5.3, 5.4, 5.5, 5.7, 5.8, and 5.10.

The rest of this section is devoted to the proof of this proposition. There are 2 conjugacy classes of maximal 2-groups in $\mathsf{GL}_3(\mathbb{Z})$, both isomorphic to

$$C_2 \times \mathfrak{D}_4$$
.

The corresponding toric models are (C), and (S) or (P). We proceed with a case-by-case analysis of actions; altogether, we have to consider 36 conjugacy classes of finite subgroups $\pi^*(G) \subset \mathsf{GL}(N)$. We summarize:

- When $G_T = 1$: (U) holds, by Lemma 5.3.
- When $G_T \neq 1$ and $\pi^*(G)$ isomorphic to
 - $-C_2, C_4$: (U) holds, by Lemmas 5.5 and 5.7.
 - $-C_2^2$: see Lemma 5.8.
 - $-\mathfrak{D}_4$: see Lemma 5.9.
 - $-C_2^3$, $C_2 \times C_4$, $C_2 \times \mathfrak{D}_4$: all such actions fail Condition (A), by Lemma 5.4.

Lemma 5.3. Assume that $G \subset \operatorname{Aut}(T)$ is a 2-group with $G_T = 1$. Then

$$(A) \Longleftrightarrow (U).$$

Proof. When G is abelian, the claim follows from (2.6). It remains to consider the cases when $G = \mathfrak{D}_4$ or $C_2 \times \mathfrak{D}_4$. Via HAP, we have computed that for corresponding models X, i.e., (C) or (P), the generalized Bogomolov multiplier satisfies

$$B^2(G, Pic(X)^{\vee} \otimes k^{\times}) = 0.$$

Condition (A) implies that

$$\beta(X, G) \in B^2(G, Pic(X)^{\vee} \otimes k^{\times}),$$

and thus $\beta(X,G)=0$; it remains to apply Theorem 2.4.

Note that X may fail to have G-fixed points even when $G_T = 1$, see [4, Remark 5.2].

From now on, we assume that

- $G \subset \operatorname{Aut}(T)$ is a 2-group and
- \bullet $G_T \neq 1$.

Lemma 5.4. Assume that $\pi^*(G)$ contains

$$\eta := \operatorname{diag}(-1, -1, -1) \in \mathsf{GL}(N).$$

Then the G-action fails Condition (A).

Proof. Indeed, η can be realized as the diagonal involution on $(\mathbb{P}^1)^3$, and any translation by a 2-group will produce a C_2^2 action without fixed points.

After excluding groups containing η , it suffices to consider

$$\pi^*(G) = C_2, \quad C_4, \quad C_2^2, \quad \mathfrak{D}_4.$$

Lemma 5.5. Assume that $\pi^*(G) = C_2$. Then

$$(A) \Longleftrightarrow (U).$$

Proof. Apart from $\langle \eta \rangle$, there are 4 conjugacy classes of groups of order 2 in $\mathsf{GL}_3(\mathbb{Z})$, generated by

$$\iota_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ \iota_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \ \iota_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \iota_4 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

The first case is realized on $(\mathbb{P}^1)^3$ and the last three cases in $\mathbb{P}^2 \times \mathbb{P}^1$. By [15, Remark 5.2], unirationality is determined by unirationality of all of the \mathbb{P}^1 and \mathbb{P}^2 factors, which is equivalent to triviality of the Amitsur invariant, see Example 2.6.

Since G is an extension of the cyclic group C_2 by an abelian group G_T , the Bogomolov multiplier $B^2(G, k^{\times}) = 0$. Together with Condition (A) this implies that the Amitsur invariant for the action on each factor is trivial, and the G-action on X is unirational.

Remark 5.6. Alternatively, one can check that for $\pi^*(G) = C_2$, the G-action satisfies Condition (A) if and only if one of the following holds:

- $\pi^*(G) = \langle \iota_1 \rangle$, and $G_T \subset \{(t, 1, 1) : t \in \mathbb{G}_m(k)\} \subset T(k)$.
- $\pi^*(G) = \langle \iota_2 \rangle$, and $G_T \subset \{(t_1, t_2, 1) : t_1, t_2 \in \mathbb{G}_m(k)\} \subset T(k)$.
- $\pi^*(G) = \langle \iota_3 \rangle$, and G_T is any subgroup of T(k).
- $\pi^*(G) = \langle \iota_4 \rangle$, and $(t, t, -1) \notin G_T$ for any $t \in \mathbb{G}_m(k)$.

Using this description, we see that Condition (A) is also equivalent to $X^G \neq \emptyset$, in the first three cases.

Lemma 5.7. Assume that $\pi^*(G) = C_4$. Then

$$(\mathbf{A}) \Longleftrightarrow (\mathbf{U}).$$

Proof. There are 4 conjugacy classes of $C_4 \subset \mathsf{GL}_3(\mathbb{Z})$, generated by

$$\theta_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \theta_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \theta_3 = \begin{pmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \theta_4 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}.$$

The first two cases are realized on $\mathbb{P}^1 \times Q$, where $Q = \mathbb{P}^1 \times \mathbb{P}^1$. The third case on \mathbb{P}^3 . The fourth can be realized on either the **(P)** or **(S)** model.

Case θ_1 : Note that $\theta_1^2 = \iota_1$. Condition (A) implies that

$$G_T \subset \{(t,1,1) : t \in \mathbb{G}_m(k)\} \subset T(k)$$

and G fixes a point on $X = \mathbb{P}^1 \times Q$; therefore, the G-action satisfies (U).

Case θ_2 : We also have $\theta_2^2 = \iota_1$. Condition (A) implies that G_T contains $\iota = (-1, 1, 1) \in T(k)$.

However, for $g \in G$ such that $\pi^*(g) = \theta_2$, the abelian subgroup $\langle g, \iota \rangle$ of G does not fix points on X, contradiction.

Case θ_3 : Let $g \in G$ be such that $\pi^*(g) = \theta_3$. Up to conjugation by an element in T(k), we may assume that g acts on $\mathbb{P}^3_{y_1,y_2,y_3,y_4}$ via

$$(y_1, y_2, y_3, y_4) \mapsto (y_4, y_1, y_2, y_3).$$

One can check that for any 2-torsion element $\iota \in T(k)$, the group $\langle g, \iota \rangle$ contains an abelian subgroup with no fixed point on \mathbb{P}^3 , contradiction.

Case θ_4 : This element is contained in a \mathfrak{D}_4 , covered in Lemma 5.9.

Lemma 5.8. Assume that $\pi^*(G) = C_2^2$. Then

$$(\mathbf{A}) \Longleftrightarrow (\mathbf{U}),$$

unless $\pi^*(G)$ is conjugate to the group indicated in (5.1).

Proof. We have 9 conjugacy classes of C_2^2 in $\mathsf{GL}_3(\mathbb{Z})$ not containing η , denoted by

$$\mathfrak{K}_1,\ldots,\mathfrak{K}_9.$$

We study their realizations:

Cases \mathfrak{K}_1 and \mathfrak{K}_2 : Here, $X = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and

$$\mathfrak{K}_1 = \langle \operatorname{diag}(-1, -1, 1), \operatorname{diag}(-1, 1, -1) \rangle,$$

$$\mathfrak{K}_2 = \langle \operatorname{diag}(1, 1, -1), \operatorname{diag}(-1, 1, -1) \rangle.$$

Using Remark 5.6, we see that Condition (A) fails if $\pi^*(G) = \mathfrak{K}_1$. When $\pi^*(G) = \mathfrak{K}_2$, Condition (A) implies that

$$G_T \subset \{(1,t,1) : t \in \mathbb{G}_m(k)\} \subset T(k).$$

In this case, $X^G \neq \emptyset$ and (**U**) holds.

Cases \mathfrak{K}_3 , \mathfrak{K}_4 , and \mathfrak{K}_5 : Here, $X = \mathbb{P}^1 \times Q$, with G switching the factors in $Q = \mathbb{P}^1 \times \mathbb{P}^1$. The groups are

$$\mathfrak{K}_3 = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle, \quad \mathfrak{K}_4 = \left\langle \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle,$$

$$\mathfrak{K}_5 = \left\langle \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle.$$

When $\pi^*(G) = \mathfrak{K}_3$, Condition (A) implies that

$$G_T \subset \{(t_1, 1, t_2) : t_1, t_2 \in \mathbb{G}_m(k)\} \subset T(k).$$

When $\pi^*(G) = \mathfrak{K}_4$,

$$G_T \subset \{(1, t, 1) : t \in \mathbb{G}_m(k)\} \subset T(k).$$

In both cases, $X^G \neq \emptyset$ and thus (U). However, when $\pi^*(G) = \mathfrak{K}_5$, the subgroup generated by

$$(1,-1,1) \in G_T$$
, and a lift to G of $\begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

is an abelian group without fixed points.

Cases \mathfrak{K}_6 and \mathfrak{K}_7 : Here, $X = \mathbb{P}^3$, and

$$\mathfrak{K}_6 = \left\langle \begin{pmatrix} 0 & 0 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \right\rangle, \quad \mathfrak{K}_7 = \left\langle \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & -1 \end{pmatrix} \right\rangle.$$

When $\pi^*(G) = \mathfrak{K}_6$, then, up to conjugation, the G-action on $\mathbb{P}^3_{y_1,y_2,y_3,y_4}$ is given by G_T and a lift of \mathfrak{K}_6 generated by

$$g_1: (\mathbf{y}) \mapsto (y_3, ay_4, y_1, ay_2), \quad a \in \mathbb{G}_m(k),$$

 $g_2: (\mathbf{y}) \mapsto (y_4, b_1y_3, b_1y_2, b_2y_1), \quad b_1, b_2 \in \mathbb{G}_m(k).$

For $I \subset \{1, 2, 3, 4\}$, let s_I be the diagonal matrix changing the signs of $y_i, i \in I$. The abelian groups

$$\langle g_1, s_{\{1,2\}} \rangle, \quad \langle g_2, s_{\{1,3\}} \rangle, \quad \langle g_1 g_2, s_{\{1,4\}} \rangle$$

have no fixed points on \mathbb{P}^3 . On the other hand, we have that

$$(g_1g_2)^2 = diag(1, 1, b_2, b_2).$$

If $b_2 \neq 1$, then $s_{\{1,2\}} \in G_T$. If $b_2 = 1$, then

$$(s_{\{i\}}g_1g_2)^2 = s_{\{1,2\}} \in G_T,$$

for any i = 1, 2, 3, or 4 such that $s_{\{i\}} \in G_T$. Thus, in all cases, Condition (A) fails.

When $\pi^*(G) = \mathfrak{K}_7$, G is generated by G_T , and

$$g_3: (\mathbf{y}) \mapsto (c_1 y_1, c_2 y_2, y_4, y_3), \quad c_1, c_2 \in \mathbb{G}_m(k),$$

$$g_4: (\mathbf{y}) \mapsto (y_2, y_1, c_3 y_3, c_4 y_4), \quad c_3, c_4 \in \mathbb{G}_m(k).$$

Note that the abelian group generated by

$$\langle g_3g_4, \operatorname{diag}(1, -1, a_1, -a_1)\rangle,$$

does not fix any points on \mathbb{P}^3 , for any $a_1 \in \mathbb{G}_m(k)$.

If $c_1 \neq \pm c_2$ and $c_3 \neq \pm c_4$, then g_3 and g_4 generate one of

$$diag(1, -1, 1, -1)$$
 and $diag(1, -1, -1, 1)$,

and Condition (A) fails. Thus, we may assume that $c_1 = \pm c_2$ and all elements in G_T are of the form

$$\operatorname{diag}(1, \pm 1, a_3, a_4), \quad a_3, a_4 \in \mathbb{G}_m(k), \quad a_3 \neq -a_4.$$

If all elements in G_T are of the form diag $(1, 1, a_3, a_4)$, then $\langle G_T, g_4 \rangle$ is an abelian subgroup of G of index 2. It follows that the Bogomolov multiplier $B^2(G, k^{\times}) = 0$ and Condition (A) implies (U).

Now, we consider the case when G_T contains elements of the form

$$diag(1, -1, a_3, a_4).$$

Up to multiplying g_3 with such an element, we may assume that $c_1 = -c_2$. We divide the argument into the following subcases:

(1) When $c_1 = -c_2$, $c_3 = c_4$ and all elements in G_T are of the form

 $diag(1, \pm 1, a_3, a_3),$

then G fixes $[0:0:1:1] \in \mathbb{P}^3$.

- (2) When $c_1 = -c_2$ and $c_3 = -c_4$, then $\langle g_3, g_4 \rangle$ is an abelian group with no fixed points on \mathbb{P}^3 .
- (3) When $c_1 = -c_2$, $c_3 \neq \pm c_4$ and G_T contains an element

$$\varepsilon = \operatorname{diag}(1, \pm 1, a_3, a_4), \quad a_3, a_4 \in \mathbb{G}_m$$

where $\operatorname{ord}(\frac{a_3}{a_4}) \geq \operatorname{ord}(-\frac{c_4}{c_3}) = \operatorname{ord}(\frac{c_4}{c_3})$, then there exists $n \in \mathbb{Z}$ such that

$$\frac{a_3^n}{a_4^n} = -\frac{c_4}{c_3}$$
, i.e., $a_3^n c_3 = -a_4^n c_4$.

We are reduced to the previous case. In particular, the abelian group $\langle g_3, \varepsilon^n g_4 \rangle$ has no fixed points on \mathbb{P}^3 .

(4) When $c_1 = -c_2$, $c_3 \neq \pm c_4$ and G_T contains an element

$$\varepsilon = \operatorname{diag}(1, -1, a_3, a_4), \quad a_3, a_4 \in \mathbb{G}_m(k), \quad a_3 \neq \pm a_4$$

where $\operatorname{ord}(\frac{c_4}{c_3}) > \operatorname{ord}(\frac{a_3}{a_4}) = -\operatorname{ord}(\frac{a_3}{a_4})$, then there exists $n \in \mathbb{Z}$ such that

$$\frac{c_4^{2n}}{c_3^{2n}} = -\frac{a_3}{a_4},$$

and thus

$$\varepsilon \cdot g_4^{2n} = \text{diag}(1, -1, a_3 c_3^{2n}, -a_3 c_3^{2n}).$$

By the observation above, the abelian group $\langle g_3g_4, \varepsilon g_4^{2n}\rangle$ does not fix points on \mathbb{P}^3 .

Thus, Condition (A) implies (U) when $\pi^*(G) = \mathfrak{K}_7$.

Case \Re_8 : The group is given by

$$\mathfrak{K}_8 = \left\langle \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix} \right\rangle.$$

This is a subgroup contained in a \mathfrak{D}_4 , covered in Lemma 5.9.

Case \mathfrak{K}_9 : This is the exceptional case. The group is given by

$$\mathfrak{K}_9 = \left\langle \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \right\rangle.$$

In Section 6, we show that $\beta(X,G) \neq 0$ for all G with $\pi^*(G) = \mathfrak{K}_9$.

Lemma 5.9. Assume that $\pi^*(G) \subseteq \mathfrak{D}_4 = \langle \tau_1, \tau_2 \rangle$, where

$$\tau_1 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}.$$

Then

$$(\mathbf{A}) \Longleftrightarrow (\mathbf{U}).$$

Proof. We first assume that $\pi^*(G) = \langle \tau_1, \tau_2 \rangle$. As explained in Section 4, a simpler smooth projective model X in this case is the blowup of a quadric cone at its vertex. In particular, we have

$$Pic(X) = \mathbb{Z} \oplus P, \quad P = \mathbb{Z} \oplus \mathbb{Z}$$

with G acting trivially on the first summand, and switching two factors of the second summand P.

Let Σ be the fan of X given in Section 4. We note that $\pi^*(G)$ acts trivially on the 1-dimensional sublattice $N' \subset N$ spanned by the ray $v_1 = (-1, 0, -1)$. Let $\sigma \in \Sigma$ be the cone generated by v_5 . It corresponds to a G-invariant toric boundary divisor $D_{\sigma} \subset X$. On the other hand, the sublattice N' also gives rise to a quotient torus, cf. [14, Section 2.3]. In particular, we have

$$(N/N')^{\vee} = \sigma^{\perp} \cap M \simeq \mathbb{Z}^2.$$

For any cone $\sigma' \in \Sigma$ such that $\sigma' \supseteq \sigma$, put

$$\bar{\sigma}' := (\sigma' + \mathbb{R}\sigma)/\mathbb{R}\sigma \subset (N/N')_{\mathbb{R}}.$$

All such $\bar{\sigma}'$ form a new G-invariant fan Σ_{σ} . Let $X(\Sigma_{\sigma})$ be the toric variety associated with Σ_{σ} . One can check that $X(\Sigma_{\sigma}) = \mathbb{P}^1 \times \mathbb{P}^1$.

By [14, Section 2.3], $X(\Sigma_{\sigma})$ is G-isomorphic to D_{σ} , and there exists a G-equivariant rational map

$$\rho: X \dashrightarrow X(\Sigma_{\sigma}) \simeq D_{\sigma}.$$

Note that the G-action on D_{σ} is not necessarily generically free. The map ρ induces a homomorphism of G-lattices

$$\rho^* : \operatorname{Pic}(D_{\sigma}) \to \operatorname{Pic}(X).$$

This yields a commutative diagram of G-modules

where $PL(X) = \mathbb{Z}^6$ and $PL(D_{\sigma}) = \mathbb{Z}^4$. Following the diagram, one sees that the dual map

$$(\rho^*)^{\vee} : \operatorname{Pic}(X)^{\vee} \to \operatorname{Pic}(D_{\sigma})^{\vee}$$

can be identified with the canonical projection (note that Pic(X) is self-dual under the G-action)

$$P \oplus \mathbb{Z} \to P$$
.

Now assume that the G-action on X satisfies Condition (A). Let

$$\beta := \beta(X, G) \in H^2(G, \operatorname{Pic}(X)^{\vee} \otimes k^{\times}),$$

and H be the maximal subgroup of G such that $\pi^*(H) = \langle \tau_1, \tau_2^2 \rangle \simeq C_2^2$. We have that [G:H] = 2 and H acts trivially on P; in particular,

$$P = \operatorname{Ind}_H^G(\mathbb{Z})$$

is the G-module induced from the trivial H-module \mathbb{Z} . Consider the commutative diagram

$$H^{2}(G, (P \oplus \mathbb{Z}) \otimes k^{\times}) \xrightarrow{\operatorname{pr}_{1}} H^{2}(G, P \otimes k^{\times})$$

$$\downarrow^{\operatorname{res}_{1}} \qquad \qquad \downarrow^{\operatorname{res}_{2}}$$

$$H^{2}(H, (P \oplus \mathbb{Z}) \otimes k^{\times}) \xrightarrow{\operatorname{pr}_{2}} H^{2}(H, P \otimes k^{\times})$$

where res₁ and res₂ are the corresponding restriction homomorphisms, and pr₁ and pr₂ are projections induced by $(\rho^*)^{\vee}$. By functoriality,

$$\operatorname{pr}_1(\beta) = \beta(D_{\sigma}, G)$$

where $\beta(D_{\sigma}, G)$ is the class corresponding to the G-action on D_{σ} . Since $\pi^*(H) = C_2^2$ is conjugate to \mathfrak{K}_7 , by the proof of Lemma 5.8, Condition (A) implies that the H-action on X is (U), and thus

$$res_1(\beta) = 0$$
, $pr_2(res_1(\beta)) = 0$.

By Lemma 2.3, we know that res₂ is injective. It follows that

$$\operatorname{pr}_1(\beta) = 0$$

and thus the G-action on D_{σ} is (U). Now let

$$\varrho:X\to \bar X$$

be the contraction of the boundary divisor in X corresponding to the ray $v_6 = (1, 0, 1)$. Then $\bar{X} \subset \mathbb{P}^4$ is a cone over a smooth quadric surface, and ϱ is the blowup of its vertex. The strict transform $\rho_*(D_\sigma)$ is a G-equivariantly unirational surface in \bar{X} .

Finally, the same argument as in [5, Proposition 3.1] shows that the G-action on \bar{X} is (U): we have a G-equivariant dominant rational map

$$\varrho_*(D_\sigma) \times \mathbb{P}^4 \dashrightarrow \bar{X}$$

sending the pair of points $(q_1, q_2) \in \varrho_*(D_\sigma) \times \mathbb{P}^4$ to the second intersection point of X with the line passing through q_1 and q_2 . It follows that the G-action on X is also (U).

The same proof applies when $\pi^*(G)$ is a subgroup of $\mathfrak{D}_4 = \langle \tau_1, \tau_2 \rangle$ and G swaps the two factors of P. When G does not swap the two factors, $\pi^*(G)$ has been already covered by previous lemmas.

Lemma 5.10. Assume that $\pi^*(G) = \mathfrak{D}_4$. Then

$$(\mathbf{A}) \Longleftrightarrow (\mathbf{U}).$$

Proof. There are 8 conjugacy classes of \mathfrak{D}_4 in $\mathsf{GL}_3(\mathbb{Z})$: up to conjugation, two of them contain θ_2 ; two of them contain θ_3 ; among the rest, one contains \mathfrak{K}_1 and one contains \mathfrak{K}_6 . From the analysis above, we know that Condition (A) fails for these 6 classes.

One of the two remaining classes is covered by Lemma 5.9. In the other case, $\pi^*(G)$ is generated by

$$\iota_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 and $\theta_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

This is realized on $X = (\mathbb{P}^1)^3$, where

$$Pic(X) = \mathbb{Z} \oplus P, \quad P = \mathbb{Z} \oplus \mathbb{Z},$$

 ι_2 acts trivially on $\operatorname{Pic}(X)$ and θ_1 switches the two factors of P. Since $\pi^*(G)$ contains a subgroup conjugated in $\operatorname{\mathsf{GL}}_3(\mathbb{Z})$ to \mathfrak{K}_4 , we know that

$$G_T \subset \{(t,1,1) : t \in \mathbb{G}_m(k)\} \subset T(k).$$

Let H be the subgroup of G generated by G_T and lifts to G of ι_2 and θ_1^2 . It follows that H is abelian and [G:H]=2. Thus,

$$B^2(G, k^{\times}) = 0,$$

and Condition (A) implies that

$$\beta(X,G) \in \mathrm{B}^2(G,k^{\times} \otimes \mathrm{Pic}(X)) \simeq \mathrm{B}^2(G,k^{\times} \otimes \mathrm{P}).$$

Note that H acts trivially on $\operatorname{Pic}(X)$ and $P = \operatorname{Ind}_H^G(\mathbb{Z})$ for the trivial G-module \mathbb{Z} . Since H is abelian, we have that $\operatorname{B}^2(H, k^{\times} \otimes P) = 0$.

Lemma 2.3 shows that $B^2(G, k^* \otimes P) = 0$. Thus, we conclude that $\beta(X, G) = 0$.

6. The exceptional case \mathfrak{K}_9

This section is devoted to a proof of the following lemma, which completes the proof of Lemma 5.8.

Lemma 6.1. Assume that $G_T \neq 1$ and $\pi^*(G)$ contains a subgroup conjugated in $\mathsf{GL}_3(\mathbb{Z})$ to

$$\mathfrak{K}_9 = \left\langle \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \right\rangle.$$

Then the G-action on a smooth projective model X fails (U).

Proof. We may assume that $\pi^*(G) = \mathfrak{K}_9 \simeq C_2^2$, and no proper subgroup of G surjects to C_2^2 via π^* . Then G is generated by

$$\sigma_1:(t_1,t_2,t_3)\mapsto (b_1t_2,b_2t_1,\frac{b_3}{t_1t_2t_3}),\quad \sigma_2:(t_1,t_2,t_3)\mapsto (\frac{c_1}{t_1t_2t_3},c_2t_3,c_3t_2).$$

The torus part G_T is generated by

$$\sigma_1^2 = \operatorname{diag}(b_1 b_2, b_1 b_2, \frac{1}{b_1 b_2}), \quad \sigma_2^2 = \operatorname{diag}(\frac{1}{c_2 c_3}, c_2 c_3, c_2 c_3),$$

and

$$(\sigma_1 \sigma_2)^2 = \operatorname{diag}(\frac{c_1 c_3}{b_1 b_3}, \frac{b_1 b_3}{c_1 c_3}, \frac{c_1 c_3}{b_1 b_3}).$$

Since G is finite, we know that b_1b_2 , c_2c_3 and c_1c_3/b_1b_3 have finite orders. Up to a change of variables

$$t_1 \mapsto r_1 t_1, \quad t_2 \mapsto r_2 t_2, \quad t_3 \mapsto r_3 t_3,$$

where $r_1, r_2, r_3 \in k^{\times}$ are such that

$$r_1b_1 = r_2, \quad r_1r_2r_3^2b_3 = r_1^2r_2r_3c_1 = 1,$$

we may assume that $b_1 = b_3 = c_1 = 1$, and b_2, c_2, c_3 are roots of unity whose orders are powers of 2.

When the G-action satisfies Condition (**A**), we know that G_T is cyclic. Indeed, if G_T is not cyclic, then G contains one of the following subgroups which fail Condition (**A**):

$$\langle \sigma_1, \operatorname{diag}(1, 1, -1) \rangle$$
, $\langle \sigma_1, \operatorname{diag}(-1, -1, 1) \rangle$,
 $\langle \sigma_2, \operatorname{diag}(-1, 1, 1) \rangle$ $\langle \sigma_2, \operatorname{diag}(1, -1, -1) \rangle$,
 $\langle \sigma_1 \sigma_2, \operatorname{diag}(1, -1, 1) \rangle$ $\langle \sigma_1 \sigma_2, \operatorname{diag}(-1, 1, -1) \rangle$.

From this, we see that at least two of

$$\sigma_1^2$$
, σ_2^2 , $(\sigma_1\sigma_2)^2$

have order 1 or 2. Up to a permutation of coordinates, we may assume that the latter two have order 1 or 2. One can check that the G-action then satisfies Condition (A). Let $n \in \mathbb{Z}$ such that b_2 has order 2^{n-2} . There are three cases:

- (1) $c_2 = 1, c_3 = -1$: in this case $G \simeq \mathfrak{Q}_{2^n}$,
- (2) $c_2 = c_3 = 1$: in this case $G \simeq \mathfrak{D}_{2^{n-1}}$,
- (3) $c_2 = c_3 = -1$: in this case $G \simeq \mathfrak{SD}_{2^n}$.

In each case, we have $\sigma_1 = x$ and $\sigma_2 = y$, where x, y are the same as in the presentations of G, with generators and relations, given in Section 2. Using the resolutions (2.8), (2.9), and (2.10), we compute $\beta(X, G)$, as an element in $H^3(G, \operatorname{Pic}(X)^{\vee})$, following the recipe in Section 2.

We recall the presentation of Pic := Pic(X) on the smooth projective model (S), via the exact sequence

$$0 \to M \to PL \to Pic \to 0$$
,

where $PL = \mathbb{Z}^{14}$ is generated by the following 14 rays:

$$(-1,0,0), (-1,1,0), (0,-1,1), (0,0,-1), (0,0,1), (0,1,-1), (1,-1,0),$$

$$(1,0,0), (1,0,-1), (1,-1,1), (0,-1,0), (0,1,0), (-1,1,-1), (-1,0,1),$$

labeled by v_i , i = 1, ..., 14, in order. The character lattice M is embedded in PL as a submodule with basis

$$m_1 = -v_1 - v_2 + v_7 + v_8 + v_9 + v_{10} - v_{13} - v_{14},$$

$$m_2 = v_2 - v_3 + v_6 - v_7 - v_{10} - v_{11} + v_{12} + v_{13},$$

$$m_3 = v_3 - v_4 + v_5 - v_6 - v_9 + v_{10} - v_{13} + v_{14}.$$

Let $p_1 \ldots, p_{11}$ be a basis of Pic, and e_1, \ldots, e_{11} the corresponding dual basis of Pic^{\vee}, such that p_i can be lifted to PL by

$$p_i \mapsto v_{4+i}, \quad i = 1, 2, \dots, 9,$$
 (6.1)

$$p_{10} \mapsto (v_4 - v_5), \quad p_{11} \mapsto (-v_4 + v_5 - v_9 + v_{14}).$$

Observe that the resolutions (2.8), (2.9), and (2.10) start with the same first step. Indeed, the images of id_{Pic} in $H^1(G, M \otimes Pic^{\vee})$ are the same in all three cases of G. We first compute this intermediate class via

$$\operatorname{id}_{\operatorname{Pic}} \in \operatorname{Pic} \otimes \operatorname{Pic}^{\vee} \longleftarrow \operatorname{PL} \otimes \operatorname{Pic}^{\vee}$$

$$\downarrow (1-x \quad 1-y)$$

$$(\operatorname{PL} \otimes \operatorname{Pic}^{\vee})^{2} \longleftarrow (\operatorname{M} \otimes \operatorname{Pic}^{\vee})^{2} \longleftarrow (k(T)^{\times} \otimes \operatorname{Pic}^{\vee})^{2}$$

$$(6.2)$$

We choose a lift of id_{Pic} to $PL \otimes Pic^{\vee}$ given by (6.1). The resulting class in $(M \otimes Pic^{\vee})^2$ is

$$((-m_2 - m_3) \otimes e_3, \quad (m_2 + m_3) \otimes e_1 + m_2 \otimes e_2 + m_1 \otimes e_4 + + (-m_2 - m_3) \otimes e_{10} + (m_2 + m_3) \otimes e_{11}).$$
 (6.3)

This class represents the image of id_{Pic} in $H^1(G, M \otimes Pic^{\vee})$. We lift this class to $(M \otimes Pic^{\vee})^2$ via the set-theoretic map $M \to k(T)^{\times}$ given by

$$(a_1, a_2, a_3) \to t_1^{a_1} t_2^{a_2} t_3^{a_3}.$$

The next step of the computation depends on the isomorphism class of G. We proceed case-by-case.

For $G = \mathfrak{Q}_{2^n}$, we continue (6.2) via

$$(k(T)^{\times} \otimes \operatorname{Pic}^{\vee})^{2} \xrightarrow{\begin{pmatrix} N_{x} & yx+1 \\ -1-y & x-1 \end{pmatrix}} (k(T)^{\times} \otimes \operatorname{Pic}^{\vee})^{2}$$

$$(k^{\times} \otimes \operatorname{Pic}^{\vee})^{2}$$

$$(\mathbb{Q} \otimes \operatorname{Pic}^{\vee})^{2} \xrightarrow{\begin{pmatrix} 1-x \\ yx-1 \end{pmatrix}} \mathbb{Q} \otimes \operatorname{Pic}^{\vee}$$

$$\mathbb{Z} \otimes \operatorname{Pic}^{\vee}$$

The first two arrows come from the resolution (2.8). The rest of the diagram arises from the exact sequence

$$0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0.$$

Since G is a finite group, we may replace k^{\times} by \mathbb{Q}/\mathbb{Z} , via the map

$$\{x \in k^{\times} : \text{the order of } x \text{ is finite}\} \to \mathbb{Q}/\mathbb{Z}, \quad x \mapsto \frac{\log(x)}{2\pi i}.$$

The class $\beta(X,G) \in H^2(G,k^{\times} \otimes \operatorname{Pic}^{\vee})$ is represented by the image of (6.3) in $(k^{\times} \otimes \operatorname{Pic}^{\vee})^2$ via the diagram above. This image is

$$(-1 \otimes (e_1 + e_2 + e_4 + e_{10} + e_{11}) + (b_2^{-2^{n-3}}) \otimes e_3,$$

$$b_2 \otimes (e_4 + e_{10} - e_3 - e_{11}) + (-b_2^{-1}) \otimes e_1). \quad (6.4)$$

To determine whether or not this class vanishes, we map it further to $\mathrm{H}^3(G,\mathbb{Z}\otimes\mathrm{Pic}^\vee)$ using the sequence above. In particular, we choose a lift $k^\times\to\mathbb{Q}$ such that

$$-1 \mapsto \frac{1}{2}, \quad b_2 \mapsto \frac{\log(b_2)}{2\pi i}, \quad -b_2^{-1} \mapsto \frac{1}{2} - \frac{\log(b_2)}{2\pi i},$$

$$b_2^{-2^{n-3}} \mapsto -\frac{\log(b_2)}{2\pi i} \cdot 2^{n-3}, \quad \text{where} \quad 0 \le \frac{\log(b_2)}{2\pi i} < 1.$$

Using this choice, the image of (6.4) in $\mathbb{Z} \otimes \operatorname{Pic}^{\vee} = \operatorname{Pic}^{\vee}$, following the diagram above, is given by

$$\beta = (-1, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0),$$

under the basis e_1, \ldots, e_{11} . On the other hand, the image of

$$\nu: (\operatorname{Pic}^{\vee})^{2} \xrightarrow{\left(\begin{matrix} 1-x \\ yx-1 \end{matrix}\right)} \operatorname{Pic}^{\vee}$$

is the $\mathbb{Z}[G]$ -module generated by

$$(0,0,0,0,0,0,2,0,0,-2,0),\\(1,0,0,0,0,1,0,0,-2,1),\quad (0,1,0,0,0,0,1,-1,0,-1,1),\\(0,0,1,0,0,0,1,0,0,-2,1),\quad (0,0,0,1,0,0,1,-1,0,-1,1)\\(0,0,0,0,1,0,1,-1,0,-2,0),\quad (0,0,0,0,0,1,0,0,-1,0,0).$$

One can check that $\beta \notin \operatorname{im}(\nu)$. It follows that $\beta(X,G) \neq 0$.

Similarly, when $G = \mathfrak{D}_{2^{n-1}}$, using its resolution (2.9), we continue (6.2) via

$$(k(T)^{\times} \otimes \operatorname{Pic}^{\vee})^{2} \xrightarrow{\begin{pmatrix} N_{x} & 1 + yx & 0 \\ 0 & x - 1 & 1 + y \end{pmatrix}} (k(T)^{\times} \otimes \operatorname{Pic}^{\vee})^{3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The class $\beta(X,G)$ is represented in $(k^{\times} \otimes \operatorname{Pic}^{\vee})^3$ by

$$\left(b_2^{-2^{n-2}} \otimes e_3, \quad b_2 \otimes (e_4 + e_{10} - e_1 - e_3 - e_{11}), e\right),$$

where e is the identity element of $k^{\times} \otimes \operatorname{Pic}^{\vee}$. We choose a lift $k^{\times} \to \mathbb{Q}$ such that

$$b_2 \mapsto \frac{\log(b_2)}{2\pi i}, \quad b_2^{-2^{n-2}} \mapsto -\frac{\log(b_2)}{2\pi i} \cdot 2^{n-2},$$

where

$$0 \le \frac{\log(b_2)}{2\pi i} < 1.$$

With this choice, the image of $\beta(X, G)$ in $H^3(G, \operatorname{Pic}^{\vee})$ is represented in $(\operatorname{Pic}^{\vee})^4$ by

$$\beta = (\mathbf{0}, (0, -\frac{\log(b_2)}{2\pi i} \cdot 2^{n-2}, 0, -\frac{\log(b_2)}{2\pi i} \cdot 2^{n-2}, 0, 0, 0, 0, 0, 0, 0, 0, \mathbf{0}, \mathbf{0}, \mathbf{0}),$$

where $\mathbf{0}$ denotes the zero element in Pic^{\vee} . Note that

$$-\frac{\log(b_2)}{2\pi i} \cdot 2^{n-2}$$

is an odd integer since $\operatorname{ord}(b_2) = 2^{n-2}$. On the other hand, the intersection of the image of

$$\nu : (\operatorname{Pic}^{\vee})^{3} \xrightarrow{\begin{pmatrix} 1-x & y+1 & 0 & 0 \\ 0 & -N_{x} & 1-yx & 0 \\ 0 & 0 & 1-x & 1-y \end{pmatrix}} (\operatorname{Pic}^{\vee})^{4}$$

with the subspace $\langle \mathbf{0} \rangle \times \langle \mathbf{0} \rangle \times \mathrm{Pic}^{\vee} \times \langle \mathbf{0} \rangle$ is generated by the following elements in Pic^{\vee} :

$$(1,0,1,0,0,0,0,0,0,0,0), (0,1,0,1,1,0,1,1,0,0,0),$$

$$(0,0,0,0,2,0,2,2,0,0,0), (0,0,0,0,0,2,0,0,2,0,0).$$

One can check that $\beta \notin \operatorname{im}(\nu)$ and thus $\beta(X,G) \neq 0$.

Finally, for $G = \mathfrak{SD}_{2^n}$, using its resolution (2.10), we continue (6.2) via

The class $\beta(X,G)$ is represented in $(k^{\times} \otimes \operatorname{Pic}^{\vee})^2$ by

$$(b_2^{2^{n-4}-1}\otimes e_1+b_2^{2^{n-4}}\otimes e_2+b_2^{2^{n-4}+1}\otimes (e_4-e_3)+b_2(e_{10}-e_{11}),\quad -1\otimes e_2).$$

We choose a lift of $k^{\times} \to \mathbb{Q}$ such that

$$-1 \mapsto \frac{1}{2}, \quad b_2^r \mapsto \frac{\log(b_2)}{2\pi i} \cdot r, \quad \forall r \in \mathbb{Z},$$

where

$$0 \le \log(b_2) < 2\pi i.$$

Under this lift, the image of $\beta(X, G)$ in $H^3(G, \operatorname{Pic}^{\vee})$ is represented in $(\operatorname{Pic}^{\vee})^2$ by

$$\beta = ((0, 1, 0, -1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)).$$

We find that β is not in the image of

$$\nu : (\operatorname{Pic}^{\vee})^{2} \xrightarrow{\begin{pmatrix} -L_{3} & 0 \\ L_{4} & 1 - y \end{pmatrix}} (\operatorname{Pic}^{\vee})^{2}.$$

Indeed, one can check that β is not in the intersection $\operatorname{im}(\nu) \cap (\operatorname{Pic}^{\vee} \times \mathbf{0})$, which is the $\mathbb{Z}[G]$ -module generated by

$$((1, 1, -1, -1, 1, 0, 1, -1, 0, -2, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)),$$

 $((0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)).$

We conclude that $\beta(X,G) \neq 0$. This completes the proof of Lemma 6.1.

Example 6.2. Let $G = \mathfrak{D}_4$ be generated by

$$(t_1, t_2, t_3) \mapsto (t_2, -t_1, \frac{1}{t_1 t_2 t_3}), \quad (t_1, t_2, t_3) \mapsto (\frac{1}{t_1 t_2 t_3}, t_3, t_2).$$

Here, $G_T = \langle (-1, -1, -1) \rangle \simeq C_2$ and $\pi^*(G) = \mathfrak{K}_9$. The G-action satisfies (\mathbf{A}) – the two noncyclic $\mathfrak{K}_4 \subset \mathfrak{D}_4$ map to C_2 via π , and fix points on the smooth model $(\mathbb{P}^1)^3$. However, $\beta(X, G)$ does not vanish, and the G-action fails (\mathbf{U}) .

Remark 6.3. Using the analysis in Section 5, one can check that when $\pi^*(G)$ strictly contains \mathfrak{K}_9 , the G-action fails Condition (A).

7. Stable Linearizability

In this section, we prove Theorem 1.1, i.e., a criterion for unirationality and stable linearizability of generically free G-actions on toric threefolds. We assume the necessary Condition (A).

Step 1. By Theorem 2.4, for smooth projective toric varieties X, unirationality of the G-action is equivalent to the vanishing of the class

$$\beta(X,G) \in \mathrm{H}^2(G,\mathrm{Pic}(X)^{\vee} \otimes k^{\times}) = \mathrm{H}^3(G,\mathrm{Pic}(X)^{\vee}).$$

By Lemma 2.1, this class vanishes if and only if it vanishes upon restriction to every p-Sylow subgroup of G.

- Step 2. When $p \neq 2, 3$, the p-Sylow subgroup of $G \subset \operatorname{Aut}(T)$ is a subgroup of translations $T(k) \subset \operatorname{Aut}(T)$, see (2.1). Since it has fixed points in the boundary $X \setminus T$, the action is unirational, by (2.6).
- Step 3. For p = 3, Proposition 5.1 implies that unirationality is equivalent to Condition (A).
- Step 4. For p = 2, Proposition 5.2 characterizes unirationality, as stated in Theorem 1.1. Note that a G-action with $\pi^*(G)$ as in (1.1) fails Condition (SP).
- Step 5. Stable linearizability of the action is governed by Theorem 2.5: assuming unirationality, (SL) follows from the stable permutation property of Pic(X), as a G-module. This property only depends on the image $\pi^*(G)$ in GL(N). The corresponding actions have been analyzed in [17]: the G-action on Pic(X) fails (SP) if and only if $\pi^*(G)$ contains one of the three 2-groups indicated in Theorem 1.1.

References

- [1] A. Adem and R. J. Milgram. Cohomology of finite groups, volume 309 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.
- [2] V. V. Batyrev and Yu. Tschinkel. Rational points of bounded height on compactifications of anisotropic tori. *Internat. Math. Res. Notices*, (12):591–635, 1995.
- [3] H. Cartan and S. Eilenberg. *Homological algebra*. Princeton University Press, Princeton, NJ, 1956.
- [4] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant geometry of the Segre cubic and the Burkhardt quartic. *Selecta Math.* (N.S.), 31(1):Paper No. 7, 36, 2025.
- [5] I. Cheltsov, Yu. Tschinkel, and Zh. Zhang. Equivariant unirationality of Fano threefolds, 2025. arXiv:2502.19598.
- [6] I. V. Dolgachev and V. A. Iskovskikh. Finite subgroups of the plane Cremona group. In *Algebra*, arithmetic, and geometry. In honor of Yu. I. Manin on the occasion of his 70th birthday. Vol. I, pages 443–548. Boston, MA: Birkhäuser, 2009.
- [7] A. Duncan. Finite groups of essential dimension 2. Comment. Math. Helv., 88(3):555–585, 2013.
- [8] A. Duncan. Equivariant unirationality of del Pezzo surfaces of degree 3 and 4. Eur. J. Math., 2(4):897–916, 2016.
- [9] A. Duncan and Z. Reichstein. Versality of algebraic group actions and rational points on twisted varieties. *J. Algebr. Geom.*, 24(3):499–530, 2015.
- [10] A. I. Generalov. Hochschild cohomology for the integer group ring of the semidihedral group. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 388:119–151, 310–311, 2011.

- [11] B. Hassett and Yu. Tschinkel. Rationality of complete intersections of two quadrics over nonclosed fields. *Enseign. Math.*, 67(1-2):1–44, 2021. With an appendix by Jean-Louis Colliot-Thélène.
- [12] B. Hassett and Yu. Tschinkel. Torsors and stable equivariant birational geometry. Nagoya Math. J., 250:275–297, 2023.
- [13] A. Hoshi and A. Yamasaki. Rationality problem for algebraic tori. Mem. Amer. Math. Soc., 248(1176):v+215, 2017.
- [14] A. Kresch and Yu. Tschinkel. Equivariant Burnside groups and toric varieties. Rend. Circ. Mat. Palermo (2), 72(5):3013–3039, 2023.
- [15] A. Kresch and Yu. Tschinkel. Equivariant unirationality of toric varieties, 2025. preprint.
- [16] A. Kresch and Yu. Tschinkel. Unramified Brauer group of quotient spaces by finite groups. J. Algebra, 664:75–100, 2025.
- [17] B. È. Kunyavskiĭ. Three-dimensional algebraic tori. In *Investigations in number theory (Russian)*, pages 90–111. Saratov. Gos. Univ., Saratov, 1987. Translated in Selecta Math. Soviet. **9** (1990), no. 1, 1–21.
- [18] N. Lemire, V. L. Popov, and Z. Reichstein. Cayley groups. J. Amer. Math. Soc., 19(4):921–967, 2006.
- [19] A. Pinardin, A. Sarikyan, and E. Yasinsky. Linearization problem for finite subgroups of the plane Cremona group, 2024. arXiv:2412.12022.
- [20] Yu. Tschinkel and Zh. Zhang. Cohomological obstructions to equivariant unirationality, 2025. arXiv:2504.10204.

COURANT INSTITUTE, 251 MERCER STREET, NEW YORK, NY 10012, USA *Email address*: tschinkel@cims.nyu.edu

Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA

COURANT INSTITUTE, 251 MERCER STREET, NEW YORK, NY 10012, USA *Email address*: zz1753@nyu.edu