

AD-A181 487

AN EVALUATION OF A JOINT REPLENISHMENT INVENTORY MODEL  
WITH RANDOM DEMANDS(U) NAVAL POSTGRADUATE SCHOOL  
MONTEREY CA W B KIM MAR 87

2/1

UNCLASSIFIED

F/G 15/5

NL





MICROCOPY RESOLUTION TEST CHART  
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A181 487

NAVAL POSTGRADUATE SCHOOL  
Monterey, California

DTIC FILE COPY

(2)



DTIC  
ELECTED  
JUN 23 1987  
S D

# THESIS

AN EVALUATION  
OF  
A JOINT REPLENISHMENT INVENTORY MODEL  
WITH RANDOM DEMANDS

by

Kim, Won Bong

March 1987

Thesis Advisor

Francis R. Richards

Approved for public release; distribution is unlimited.

AD-A 181 487

## REPORT DOCUMENTATION PAGE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                                                                                                                    |                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1a REPORT SECURITY CLASSIFICATION<br><b>UNCLASSIFIED</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1d RESTRICTIVE MARKINGS                                                                                                            |                           |
| 2a SECURITY CLASSIFICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 3 DISTRIBUTION/AVAILABILITY OF REPORT<br>Approved for public release;<br>Distribution is unlimited                                 |                           |
| 2d DECLASSIFICATION/DOWNGRADING SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                                                                    |                           |
| 4 PERFORMING ORGANIZATION REPORT NUMBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | 5 MONITORING ORGANIZATION REPORT NUMBER(S)                                                                                         |                           |
| 6a NAME OF PERFORMING ORGANIZATION<br>Naval Postgraduate School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6b OFFICE SYMBOL<br>(If applicable)<br>55 | 7a NAME OF MONITORING ORGANIZATION<br>Naval Postgraduate School                                                                    |                           |
| 6c ADDRESS (City, State, and ZIP Code)<br>Monterey, California 93943-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 7b ADDRESS (City, State, and ZIP Code)<br>Monterey, California 93943-5000                                                          |                           |
| 8a NAME OF FUNDING/SPONSORING<br>ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8b OFFICE SYMBOL<br>(If applicable)       | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER                                                                                     |                           |
| 8c ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 10 SOURCE OF FUNDING NUMBERS                                                                                                       |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | PROGRAM<br>ELEMENT NO                                                                                                              | PROJECT<br>NO             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | TASK<br>NO                                                                                                                         | WORK UNIT<br>ACCESSION NO |
| 11 TITLE (Include Security Classification)<br>AN EVALUATION OF A JOINT REPLENISHMENT INVENTORY MODEL WITH RANDOM DEMANDS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                    |                           |
| 12 PERSONAL AUTHOR(S)<br>KIM, Won Bong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                                                                                                                    |                           |
| 13a TYPE OF REPORT<br>Master's Thesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13b TIME COVERED<br>FROM _____ TO _____   | 14 DATE OF REPORT (Year, Month, Day)<br>1987 March                                                                                 | 15 PAGE COUNT<br>71       |
| 16 SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                                                                                                    |                           |
| 17 COSATI CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)<br>Inventory, Joint Replenishment, Random Demands |                           |
| FIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GROUP                                     | SUB-GROUP                                                                                                                          |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                                                                                                                    |                           |
| 19 ABSTRACT (Continue on reverse if necessary and identify by block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                                                                    |                           |
| <p>This paper considers a joint replenishment inventory problem with a continuous-review (<math>S_i</math>, <math>c_i</math>, <math>s_i</math>) policy for the backorder case with Poisson demands and constant procurement lead times.</p> <p>Whenever item <math>i</math>'s inventory level hits <math>s_i</math> (reorder point) or lower it triggers an order so as to raise item <math>i</math>'s level to <math>S_i</math> (order up point). At the same time any other item <math>j</math> with inventory level at-or-below its can-order point <math>c_j</math> is included in the replenishment.</p> <p>A Poisson demand model with a queueing description of the system's operation is analysed, and comparisions are conducted for joint versus individual orders in the case of multi-item problems, where joint replenishment of several items may reduce setup costs.</p> |                                           |                                                                                                                                    |                           |
| 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 21 ABSTRACT SECURITY CLASSIFICATION                                                                                                |                           |
| 22a NAME OF RESPONSIBLE INDIVIDUAL<br>Francis R. Richards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 22b TELEPHONE (Include Area Code)<br>408-646-2543                                                                                  | 22c OFFICE SYMBOL<br>55Rh |

Approved for public release; distribution is unlimited.

An Evaluation  
of  
A Joint Replenishment Inventory Model with Random Demands

by

Kim, Won Bong  
Lieutenant Commander, Republic of Korea Navy  
B.S., R.O.K. Naval Academy, 1975

Submitted in partial fulfillment of the  
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL  
March 1987

Author:

*W. Bong*  
Kim, Won Bong

Approved by:

*F.R. Richards*

Francis R. Richards, Thesis Advisor

*J. D. Esary*

James D. Esary, Second Reader

*Peter Purdue*

Peter Purdue, Chairman,  
Department of Operations Research

*Kneale T. Marshall*

Kneale T. Marshall,  
Dean of Information and Policy Sciences

## ABSTRACT

This paper considers a joint replenishment inventory problem with a continuous-review ( $S_i, c_i, s_i$ ) policy for the backorder case with Poisson demands and constant procurement lead times.

Whenever item  $i$ 's inventory level hits  $s_i$  (reorder point) or lower it triggers an order so as to raise item  $i$ 's level to  $S_i$  (order up point). At the same time any other item  $j$  with inventory level at-or-below its can-order point  $c_j^{\text{sub}}$  is included in the replenishment.

A Poisson demand model with a queueing description of the system's operation is analysed, and comparisions are conducted for joint versus individual orders in the case of multi-item problems, where joint replenishment of several items may reduce setup costs.

(Keywords: These is mathematical models,  
computer programs.)

|                    |                         |                                     |
|--------------------|-------------------------|-------------------------------------|
| Accession For      |                         |                                     |
| NTIS               | CRA&I                   | <input checked="" type="checkbox"/> |
| DTIC               | TAB                     | <input type="checkbox"/>            |
| Unannounced        |                         | <input type="checkbox"/>            |
| Justification      |                         |                                     |
| By _____           |                         |                                     |
| Distribution/      |                         |                                     |
| Availability Codes |                         |                                     |
| Dist               | Avail and/or<br>Special |                                     |
| A-1                |                         |                                     |



## TABLE OF CONTENTS

|      |                                                                                                                                 |    |
|------|---------------------------------------------------------------------------------------------------------------------------------|----|
| I.   | INTRODUCTION .....                                                                                                              | 8  |
| A.   | DESCRIPTION OF THE PROBLEM .....                                                                                                | 8  |
| B.   | SCOPE .....                                                                                                                     | 9  |
| II.  | GENERAL FORMULATION OF THE MODEL .....                                                                                          | 10 |
| A.   | ASSUMPTIONS AND NOTATIONS .....                                                                                                 | 10 |
| 1.   | Assumptions .....                                                                                                               | 10 |
| 2.   | Basic Notation .....                                                                                                            | 10 |
| B.   | INVENTORY THEORY BACKGROUND .....                                                                                               | 11 |
| 1.   | Economic Order Quantity Model .....                                                                                             | 11 |
| 2.   | Exact Model for the Backorders case with Poisson Demands and Constant Lead Times .....                                          | 12 |
| 3.   | Approximate Form with Known Backorder Cost .....                                                                                | 12 |
| 4.   | Some Useful Formulas for Obtaining the Imputed Backorder Cost / Reorder Point /Safety Quantity in Fixed Order Size System ..... | 13 |
| C.   | MATHEMATICAL STATEMENT OF THE DECISION PROBLEM FOR THE JOINT REPLENISHMENT MODEL .....                                          | 16 |
| 1.   | Cost Equation .....                                                                                                             | 16 |
| 2.   | Service Level Constraint .....                                                                                                  | 16 |
| D.   | INDIVIDUAL ORDER POLICY .....                                                                                                   | 17 |
| 1.   | Applied Solution Procedure .....                                                                                                | 18 |
| 2.   | Numerical Examples .....                                                                                                        | 19 |
| E.   | JOINT ORDER POLICY .....                                                                                                        | 20 |
| 1.   | Introduction .....                                                                                                              | 20 |
| 2.   | General Concepts for Obtaining the Values of Control Parameters .....                                                           | 21 |
| III. | DEVELOPMENT OF THE MODEL .....                                                                                                  | 22 |
| A.   | SOLUTION PROCEDURE .....                                                                                                        | 22 |
| 1.   | Algorithm .....                                                                                                                 | 22 |

|                                                              |           |
|--------------------------------------------------------------|-----------|
| 2. Flowchart .....                                           | 24        |
| <b>IV. SIMULATION STUDY .....</b>                            | <b>25</b> |
| A. ASSUMPTIONS FOR THE SIMULATION STUDY .....                | 25        |
| B. MODEL INPUTS .....                                        | 25        |
| C. MODEL OUTPUTS .....                                       | 26        |
| D. STRUCTURE OF THE PROGRAM .....                            | 26        |
| 1. Algorithm .....                                           | 26        |
| 2. Flowchart .....                                           | 28        |
| <b>V. EVALUATION OF THE MODEL .....</b>                      | <b>29</b> |
| A. PERFORMANCE ANALYSIS .....                                | 29        |
| 1. Basic Examples Tested .....                               | 29        |
| 2. Model Results .....                                       | 29        |
| 3. Simulation Results .....                                  | 30        |
| <b>VI. CONCLUSIONS AND RECOMMENDATIONS .....</b>             | <b>37</b> |
| A. CONCLUSIONS .....                                         | 37        |
| B. RECOMMENDATIONS .....                                     | 37        |
| <b>APPENDIX A: "PARA":PROGRAM TO SELECT PARAMETERS .....</b> | <b>38</b> |
| <b>APPENDIX B: "SIM":PROGRAM TO TEST THE MODEL .....</b>     | <b>51</b> |
| <b>LIST OF REFERENCES .....</b>                              | <b>69</b> |
| <b>INITIAL DISTRIBUTION LIST .....</b>                       | <b>70</b> |

## LIST OF TABLES

|                                                                  |    |
|------------------------------------------------------------------|----|
| 1. INPUT DATA .....                                              | 19 |
| 2. INDEPENDENT ORDER POLICY: SERVICE LEVEL 95% ( $P_1$ ) .....   | 20 |
| 3. INDEPENDENT ORDER POLICY: SERVICE LEVEL 99% ( $P_2$ ) .....   | 20 |
| 4. ITEM CHARACTERISTICS .....                                    | 29 |
| 5. PARAMETERS AND COSTS .....                                    | 30 |
| 6. COMPARISON OF TWO METHODS .....                               | 31 |
| 7. COST SAVINGS BY JOINT REPLENISHMENT: WHEN $L = 1$ MONTH ..... | 34 |
| 8. COST SAVINGS BY JOINT REPLENISHMENT: WHEN $L = 3$ MONTH ..... | 35 |
| 9. COST SAVINGS BY JOINT REPLENISHMENT: WHEN $L = 6$ MONTH ..... | 36 |

## **LIST OF FIGURES**

|            |                                                                          |           |
|------------|--------------------------------------------------------------------------|-----------|
| <b>3.1</b> | <b>Determination of coordinated pair (S,c) .....</b>                     | <b>24</b> |
| <b>4.1</b> | <b>Simulation Flowchart .....</b>                                        | <b>28</b> |
| <b>5.1</b> | <b>Stock on Hand – Independent Control and Joint Replenishment .....</b> | <b>33</b> |

## I. INTRODUCTION

### A. DESCRIPTION OF THE PROBLEM

The purpose in constructing a mathematical model of an inventory system is to use it as an aid in developing a suitable operating doctrine for the system. The criterion most frequently used for selecting the operating doctrine is that of profit maximization or cost minimization. In some cases the task of determining the optimal operating doctrine is so difficult that it is either impossible or uneconomical to determine the optimal doctrine, and instead, one optimizes with respect to some subset of operating doctrines. Occasionally, the mathematical model may be so complicated that it is extremely difficult to do anything analytically. In such situations, simulations are used to study various operating doctrines.

We are concerned with finding optimal ordering policies for a multi-item inventory system in which the inventory position is under continuous review. In this thesis, the times at which demands occur are assumed to be generated by independent Poisson processes with intensities  $\lambda_i$  (annual demand rate for item i). We assume that all shortages are backordered and will be satisfied from the next shipment.

We assume that a holding cost of  $H_i$  per unit time is charged for each unit of item i in inventory. When an order is placed, a setup cost for an independent replenishment of item i is assumed to be  $C_i = A + a_i$ , where A is a fixed cost and  $a_i$  is a cost which depends on the item ordered. The cost of a joint replenishment of both item i and j is  $A + a_i + a_j$ . For instance, if item i triggers a replenishment, the setup cost of  $A + a_i$  is applied to item i, and  $a_j$  to the jointly replenished item j.

This type of cost structure is particularly appropriate when a group of items is ordered from the same supplier, or if a group of items uses the same means of transportation, and transportation costs do not increase proportionally when the quantity transported is increased. Thus, when a replenishment is made, there is a major fixed cost independent of the number of items involved and a variable cost that depends upon the number of items [Ref. 1: pp. 278-83].

Because of this cost structure, it is clear that there may be an opportunity to reduce total variable costs if one takes advantage of joint replenishment.

## B. SCOPE

Our interest in this problem stems from the "random joint order policy" proposed by Balintfy [Ref. 2], and from an  $(S,c,s)$  policy treated by Silver [Ref. 3]. For the backorder case with Poisson demands and constant lead times, and the specified customer service levels, we will compare the individual order policy versus joint order policy.

However, for selecting the control parameters of  $(S,c,s)$  in Joint Order Policy, we have considered slightly different procedures suggested by Schack and Silver [Ref. 4], and Silver [Ref. 3].

Two programs were written in order to conduct the simulation experiments. The first program determines the control parameters of each item in the group for both independent and joint replenishment policies. A second program evaluates the model. Detailed user instructions and the program itself are contained in Appendix A and B, while examples of their use are presented in Chapter II.

The individual order policy is demonstrated only for the purpose of comparison. For the sake of simplicity, we compare the joint order policy to the individual order policy where the classical lot size formula is used for each item.

## II. GENERAL FORMULATION OF THE MODEL

### A. ASSUMPTIONS AND NOTATIONS

#### 1. Assumptions

We are dealing with a group of items where the cost of replenishing two or more items at the same time is less than the total cost of replenishing the same number in separate individual replenishments. The assumptions of the model are:

1. There is fixed cost  $A$  associated with each replenishment, and variable cost  $a_i$  associated with each item involved in the replenishment.
2. Demands for item  $i$  are Poisson distributed with parameter  $\lambda_i$ .
3. There are no quantity discounts.
4. Inventory holding costs are proportional to the average dollar value of inventory.
5. Service level is defined in one of two ways: probability of no shortage per replenishment cycle, and fraction of demand to be satisfied directly from the shelf.

#### 2. Basic Notation

We use the following notation:

$A$  : fixed cost per replenishment. (independent of the number of items and units involved)

$a_i$  : fixed cost for including item  $i$  in a replenishment.

$C_i$  : ordering cost per order: ( $C_i = A + a_i$ )

$EC_i$ : expected relevant annual inventory cost for item  $i$ .

$P_1$  : desired customer service level, measured in terms of the probability of no shortage per replenishment cycle.

$P_2$  : desired customer service level, measured in terms of the fraction of demand satisfied directly from stock on hand.

$L$  : replenishment lead time in years.

$r$  : inventory holding cost rate.

$v_i$  : standard unit price of item  $i$ .

$s_i$  : reorder or must-order point of item  $i$ .

$c_i$  : can-order point of item  $i$ .

$S_i$  : order-up-to point of item  $i$ .

$Q_i$  : order quantity of item  $i$ .

$\lambda_i$  : Poisson demand rate for item  $i$ , in pieces per year.

$I_i$  : average on hand inventory level of item  $i$ .

$n$  : number of items in the replenishment group.

$N_i$  : expected number of replenishments which involve item  $i$  per year.

$NT_i$  : expected number of replenishments triggered by item  $i$  per year.

Other notation will be introduced as they needed.

## B. INVENTORY THEORY BACKGROUND

Before considering the coordinated control problem it might be helpful to briefly discuss the related single item models whose solution will be a key element in determining the parameters of the  $(S, c, s)$  control system.

### 1. Economic Order Quantity Model

The E.O.Q. model is based on the assumption that the entire lot is added to stock at one time, and that the stock will be withdrawn at a constant rate, and no stockouts are permitted.

$$\text{Total annual variable cost} = \text{Ordering cost} + \text{Holding cost}$$

$$EC_i = \lambda_i C_i / Q_i + H_i Q_i / 2 \quad (2.1)$$

The annual order cost is obtained by multiplying the number of orders per year ( $\lambda_i/Q_i$ ) by the cost of placing an order ( $C_i$ ).

The average annual holding cost for item  $i$  is the average inventory ( $Q_i/2$ ) times the annual unit holding cost ( $H_i = v_i r$ ).

To obtain the minimum cost lot size (E.O.Q.), take the first derivative of total annual cost with respect to  $Q_i$  and set it equal to zero. Solving this for  $Q_i$ , we get the E.O.Q. formula:

$$Q_i^* = \sqrt{[2C_i\lambda_i / H_i]} \quad (2.2)$$

Once the economic order quantity is known, the expected number of orders placed during the year,  $n$ , can be determined:

$$n_i = \lambda_i / Q_i^*$$

## 2. Exact Model for the Backorders case with Poisson Demands and Constant Lead Times

If demands are random, the probability of stockouts exists, and we must include a stockout cost in the expression for expected annual variable costs. This expression is given in [Ref. 5: eqn. (4-61)] to be

$$EC_i = \lambda_i C_i / Q_i + H_i (Q_i / 2 + 1/2 + s_i - M_i) + \varphi_i E(Q_i, s_i) \quad (2.3)$$

$$+ (\tau_i + H_i) B(Q_i, s_i)$$

where

$\varphi_i$  : the cost of backorder per unit quantity of backorder.

$\tau_i$  : the cost of backorder which is proportional to the length of backorder time.

$M_i$  : expected lead time demand for item i in pieces,  $M_i = \lambda_i L$ .

$H_i$  : holding cost of item i.

$E(Q_i, s_i)$  : expected number of backorders incurred per year for item i.

$B(Q_i, s_i)$  : the steady state expected number of backorders for item i.

It is not easy to derive the optimal  $Q_i$  and  $s_i$  by use of the above exact expression for  $EC_i$ . Fortunately, it turns out in practice that it is seldom necessary to use the exact formulation, except for the case when it costs very little to incur backorders. The approximation discussed in the next section has been shown to give good results when backorders are infrequent.

## 3. Approximate Form with Known Backorder Cost

The average annual variable cost equation can be approximated as follows [Ref. 6: pp. 59 - 62]:

$$EC_i = \lambda_i C_i / Q_i + H_i (Q_i / 2 + s_i - M_i) + \varphi_i (\lambda_i / Q_i) E(M_i > s_i) \quad (2.4)$$

where

$\varphi_i$  : the cost of backorder per unit quantity of backorder.

$E(M_i > s_i)$  : the expected number of backorders at the end of cycle.

To minimize  $EC_i$ , take the partial derivative of the  $EC_i$  with respect to  $Q_i$  and  $s_i$  and set these equal to zero.

$$dEC_i/dQ_i = -\lambda_i C_i / Q_i^2 + H_i / 2 + \varphi_i \lambda_i E(M_i > s_i) / Q_i^2 = 0 \quad (2.5)$$

$$\frac{dEC_i}{ds_i} = H_i + (\varphi_i \lambda_i / Q_i) dE(M_i > s_i) / ds_i = 0 \quad (2.6)$$

The first equation(2.5) yields the optimal  $Q_i$  for a given reorder point  $s_i$ :

$$Q_i^* = \sqrt{[2\lambda_i(C_i + \varphi_i E(M_i > s_i) / H_i)]} \quad (2.7)$$

The second equation(2.6) yields :

$$dE(M_i > s_i) / ds_i = - \sum P_r(M_i) \quad (2.8)$$

where

$E(M_i > s_i)$  : the expected number of backorders at the end of cycle.

$\sum P_r(M_i)$  : complementary cumulative distribution.

This is the complementary cumulative distribution of the Poisson random variable, X, evaluated at  $s_i$ . Therefore, solving the second equation for  $s_i$  in terms of  $Q_i$  gives the maximum allowable probability of a shortage during a lead time :

$$F'(s_i) = (H_i Q_i) / (\varphi_i \lambda_i) \quad (2.9)$$

To find the optimal pair  $(Q_i, s_i)$  that minimize  $EC_i$ , iterative procedures can be applied, such as described in [Ref. 6: p. 61]. However, we do not apply this kind of procedure to find out the values of control parameters in  $(S, c, s)$  policy, because the order size in the  $(S, c, s)$  policy is not fixed.

In  $(S, c, s)$  policy, the order size is determined as an order-up-to point minus a reorder point for the item which triggers the replenishment action. Order sizes for jointly replenishable items are order-up-to points minus on-hand levels which are less than or equal to can-buy points but more than reorder points.

#### 4. Some Useful Formulas for Obtaining the Imputed Backorder Cost / Reorder Point /Safety Quantity in Fixed Order Size System

In any practical situation, it is very difficult to determine accurately backorder costs. They can include such factors as loss of customers' goodwill(i.e., in the future, he may take his business elsewhere), or in the military supply system, the cost of having some first line weapon system inoperative because of lack of parts. Other contributions to shortage cost can be somewhat easier to measure. However, these are usually small part of the total backorder costs [Ref. 5: p.18].

We shall assume here that there is a backorder cost associated with each unit backordered.

A complete cost minimization analysis of the optimal values of the model parameters can be made only if a cost can be assigned to each shortage. As an alternative to specifying the shortage cost, one can examine a given inventory policy and obtain the imputed cost of shortage within it [Ref. 7: p. 338]. Rather than explicitly costing backorders, we will specify a service level constraint and determine the imputed stockout cost.

Whenever an organization uses a service level to establish a reorder point, it effectually establishes a stockout cost. Associated with a given service level is an imputed or implicit stockout cost. It is a simple matter to determine the imputed stockout cost for a given service level from the probability of a stockout [Ref. 8: p. 162].

*a. Probability of no Shortages per Replenishment Cycle*

A service level based on the frequency of service -per order interval or replenishment cycle will indicate the probability of not running out of stock during the replenishment. This approach does not concern itself with how large the shortage is, but only with how often it can occur during the lead time (replenishment cycle). It is defined as the fraction of the replenishment cycles without depletion of stock:

$$\text{Service level fraction per cycle} = 1 - \frac{\text{number of order periods with a stockout}}{\text{total number of order periods}}$$
$$= 1 - P_r(M_i > s_i)$$

$$P_r(M_i > s_i) = P_r(s_i)$$
$$= 1 - (\text{service level fraction per cycle})$$

The term  $P_r(s_i)$  is the stockout level fraction per order cycle or the probability of at least one stockout while awaiting a supplier's delivery. It is also a measure of the fraction of lead time periods during which the demand will exceed the reorder point. The magnitude of the stockout is ignored with this approach.

The following formula is developed to compute the imputed backorder cost:

$$P_r(s_i) = (H_i Q_i) / (b_i \lambda_i) \quad (2.10)$$

where

$P_r(s_i)$ : probability of stockout for item i.

$H_i$  : holding cost of item i, ( $H_i = v_i r$ ).

$b_i$  : imputed backorder cost of item i.

To obtain the appropriate stockout cost, solve eqn.(2.10) for  $b_i$ . An example will illustrate the procedure in a later section.

*b. Fraction of Demands Satisfied Directly from the Shelf*

The fraction of units demanded and immediately filled from the shelf can be defined as the ratio: (number of units supplied)/(total number of units demanded) which is equal to  $\{1 - [(number of units short)/(total number of units demanded)]\}$ .

The above relationships must be measured over some fixed time period such as the order interval.

For example, to obtain the stockout level fraction for units demanded:

$$\text{Stockout level fraction for units} = \frac{E(M_i > s_i)}{\text{quantity demanded during a cycle}}$$

$$E(M_i > s_i) / Q_i = (H_i Q_i) / (b_i \lambda_i) \quad (2.11)$$

where

$E(M_i > s_i)$ : expected number of backorders for item i during the cycle.

$H_i$  : holding cost of item i. ( $H_i = v_i r$ ).

$b_i$  : imputed backorder cost for item i.

*c. Safety Stock*

With backorders, there is no loss of sales since the customer waits for the arrival of the next order if stock is not available. The expected safety stock is defined as:

$$\text{Safety stock} = \sum (s - M) P_r(M) \quad (2.12)$$

$$= s \sum P_r(M) - \sum M P_r(M) = s - E(M)$$

where

$E(M)$  : the expected lead time demand.

The number of backorders per lead time = 0, if  $M < s$ .

=  $M - s$ , if  $M > s$ .

So, the safety stock is simply the reorder point minus the average lead time demand. The reorder point is determined so that the customer service objective is satisfied.

### C. MATHEMATICAL STATEMENT OF THE DECISION PROBLEM FOR THE JOINT REPLENISHMENT MODEL

#### 1. Cost Equation

The basic cost equation in the joint replenishment model is as follow [Ref. 3]:

$$EC_i = I_i v_i r + NT_i A + N_i a_i \quad (2.13)$$

The first term represents the inventory holding costs and the other two represent the set up charges allocated to item i. The total expected costs per year of the group of items are given by

$$EC = \sum EC_i = \sum (I_i v_i r + NT_i A + N_i a_i) \quad (2.14)$$

#### 2. Service Level Constraint

The service constraint takes one of two forms depending upon the measure of service used.

##### (1) Probability of no shortage per replenishment cycle

This is simply the probability that demand for item i during the lead time will exceed the reorder point.

$$P_r(s) = P_r(M_i > s_i) = \sum P_r(M_i) \quad (2.15)$$

where

$P_r(s)$ : probability of stock out.

$M_i$  : lead time demand for item i.

##### (2) Fraction of demand satisfied directly from the shelf

The expected stockout quantity during the lead time is given by

$$E(M > s_i) = \sum (M_i - s_i) P_r(M_i) \quad (2.16)$$

where

$E(M_i > s_i)$  : expected number of stock out for item i in pieces  
during the lead time

$M_i$  : lead time demand for item i

A backorder occurs if and only if the lead time demand (which is Poisson with parameter  $M_i$ ) is greater than the inventory level of the item when the order is placed.

#### D. INDIVIDUAL ORDER POLICY

Under the individual order policy, there is a fixed order quantity for item i that is ordered every time the reorder point is reached.

Safety stock is needed to protect against stockouts between the time the reorder point is reached and the order received. As presented in [Ref. 3], the individual order policy (called independent control) is a special case of the joint replenishment policy ( $S, c, s$ ) where  $c_i = s_i$ . In this case item i is ordered only when the inventory position hits its reorder point, and the order quantity is always of size  $Q_i = S_i - s_i$ . No other items will be included in the replenishment, hence a set up cost of  $A + a_i$  is incurred with each replenishment.

As mentioned in the introduction, the main focus of this thesis is to compare joint replenishment with independent control to determine the cost savings that can be achieved.

Let us first consider independent control. Then,  $c_i = s_i$ , and the optimization problem is:

$$\text{Minimize } EC_i = (S_i - s_i + 1)/2 + (s_i \cdot \lambda_i L)v_i r \quad (2.17)$$

$$+ (A + a_i)\lambda_i / (S_i - s_i)$$

subject to

$$P_r(X \leq s_i | \lambda_i L) \geq P_1 \quad (2.18)$$

or

$$1 - E(X > s_i | \lambda_i L) \cdot Q_i \geq P_2 \quad (2.19)$$

where,  $X$  is the lead time demand with a Poisson distribution having mean  $\lambda_i L$ .

The left hand side of eqn.(2.18):  $P_r(X \leq s_i | \lambda_i L)$  is the probability of no shortage per replenishment cycle.

In the left hand side of eqn.(2.19), the term  $E(X > s_i)/Q_i$  is the stockout fraction of units demanded. Therefore  $1 - E(X > s_i)/Q_i$  is the fraction of demand satisfied directly from the shelf.

The exact solution to this problem requires that the pair  $(S_i, s_i)$  which minimize eqn.(2.17) subject to either eqn.(2.18) or eqn.(2.19) be found for each item  $i$ . However, it has been observed by many researchers (see: for example Silver and Wilson [Ref. 9]) that a much simpler sequential approach does almost as well from the standpoint of minimizing costs. This sequential approximation approach is what we describe.

### 1. Applied Solution Procedure

Step1 : Let  $Q_i = S_i - s_i$ . Find the value of  $Q_i$  which minimizes  $EC_i$  ignoring the service level constraint. Then given this value of  $S_i - s_i$ , the constraint is used to find the lowest allowable value of  $s_i$ . This first step leads to the usual EOQ expression  $Q_i = S_i - s_i = \sqrt{[2(A + a_i)\lambda_i / H_i]}$ .

Step2 : Determine the reorder points.

(1) For the service measure, probability of no shortage per replenishment cycle, find the smallest value of  $s_i$ , which satisfies the condition of eqn.(2.18):

$$P_r(X \leq s_i | \lambda_i L) \geq P_1$$

(2) For the service measure, fraction of demands satisfied directly from the shelf, find the smallest value of  $s_i$ , which satisfies the following inequality:

$$\lambda_i L - s_i - \lambda_i L P_r(X \leq s_i - 1 | \lambda_i L) + s_i P_r(X \leq s_i | \lambda_i L) \leq Q_i(1 - P_2)$$

Step3 : Set  $S_i = s_i + Q_i$ .

Step4 : Compute the average annual variable costs.

$EC_i = (S_i - s_i + 1)/2 + (s_i - \lambda_i L)v_i r + (A + a_i)\lambda_i / (S_i - s_i)$  using the values  $s_i$  and  $S_i$  estimated from Steps 2 and 3. A computer program for solving for these parameters is provided in Appendix A.

Note that we can now obtain imputed stockout costs.

Step5 : Compute the imputed stockout cost

(1) For the service measure, probability of no shortage per replenishment cycle:  
 Use eqn.(2.10):  $P_r(s_i) = (H_i Q_i) / (b_i \lambda_i)$  and solve for  $b_i$ ,  $b_i = H_i Q_i / (1 - P_r(s_i)) \lambda_i$ .

(2) For the service measure, fraction of demands satisfied directly from the shelf, it is necessary to solve for  $E(M > s_i)$  and find the associated  $P_r(s_i)$  before using eqn.(2.11). It can be done alternatively by finding the complementary cumulative distribution of the lead time demand, introduced by eqn. (2.8). Then eqn.(2.11) yields  $b_i = H_i Q_i / [\sum P_r(M_i)] / \lambda_i$ .

## 2. Numerical Examples

Repeated from Silver's example in his paper [Ref. 3].

**Example 1.** Service Level = Probability of no shortage per replenishment cycle.

Consider the following example involving four items:

$$A = \$50$$

$$a_i = \$10 \text{ for } i = 1, 2, 3, 4$$

$$r = 0.2 \text{ $S : S / yr.}$$

$$L = 1 \text{ month (i.e. } 1/12 \text{ year)}$$

TABLE I  
INPUT DATA

| item<br>(i) | $\lambda_i$<br>(pieces/yr) | $v_i$<br>(\$/piece) | $P_r(s_i)$<br>(desired service level) |
|-------------|----------------------------|---------------------|---------------------------------------|
| 1           | 290                        | 6.90                | 0.95                                  |
| 2           | 41                         | 1.20                | 0.95                                  |
| 3           | 77                         | 3.90                | 0.95                                  |
| 4           | 122                        | 2.30                | 0.95                                  |

Use of eqn. (2.15), (2.17), (2.18) gives the results shown in Table 2.

**Example 2.** Service Level = Fraction of demand satisfied directly from the shelf.

Consider the same data as example 1, but with a new the measure of service level. Suppose the specified fraction of demands to be satisfied directly is 0.99. The results shown in Table 3.

**TABLE 2**  
**INDEPENDENT ORDER POLICY: SERVICE LEVEL 95% ( $P_1$ )**

| Item | LT demand | EOQ (integer) | Reorder | TVC(S)  | S/O cost |
|------|-----------|---------------|---------|---------|----------|
| 1    | 24.167    | 158.800 (159) | 33      | 232.024 | 15.113   |
| 2    | 3.417     | 143.178 (143) | 7       | 35.343  | 16.762   |
| 3    | 6.417     | 108.840 (109) | 11      | 88.860  | 22.051   |
| 4    | 10.167    | 178.399 (178) | 16      | 84.977  | 13.453   |

TOTAL : 441.203

**TABLE 3**  
**INDEPENDENT ORDER POLICY: SERVICE LEVEL 99% ( $P_2$ )**

| Item | LT demand | EOQ (integer) | Reorder | TVC(S)  | S/O cost |
|------|-----------|---------------|---------|---------|----------|
| 1    | 24.167    | 158.800 (159) | 25      | 220.984 | 1.983    |
| 2    | 3.417     | 143.178 (143) | 3       | 34.383  | 1.882    |
| 3    | 6.417     | 108.840 (109) | 7       | 85.740  | 3.499    |
| 4    | 10.167    | 178.399 (178) | 10      | 82.217  | 1.536    |

TOTAL : 423.323

## E. JOINT ORDER POLICY

### 1. Introduction

Let us now consider the possibility of joint replenishments. As discussed earlier, we can reduce ordering setup costs by combining the orders of several items whenever an order is placed. This may result in increased holding costs but the savings in ordering costs may be greater than the increase in holding costs resulting in a net decrease in total costs. Further, it is likely that the occurrence of stockouts will be reduced since we will frequently reorders some items before the inventory levels hit the normal reorder points for those items.

We do not seek to determine the "optimal" joint replenishment policy. Rather, we restrict attention to a simple, intuitively appealing, policy and seek to find the optimal values of parameters for the selected policy. The policy we consider is the  $(S, c, s)$ , "can buy, must buy" policy which requires an order to be placed for item  $i$  up to the level  $S_i$  any time the inventory position for item  $i$  reaches or falls below  $s_i$ . In addition, however, we order any other item  $i$  whose inventory position is below the can buy point  $c_i$ , we always order up to the level  $S_i$ .

## 2. General Concepts for Obtaining the Values of Control Parameters

Suppose a single item  $i$ , is in a group of coordinated items and assume initially that the replenishment lead time is zero. The assumption of unit sized Poisson demands together with a zero lead time implies that  $s_i = 0$ .

Now item  $i$ , from time to time, will be faced with the opportunity of a replenishment at the reduced setup cost of only " $a_i$ ". Such an event is caused by another item triggering a replenishment. Occasionally item  $i$  will trigger an order when its inventory hits the zero level. Under such circumstances we would like to determine the  $(S, c)$  pair which minimizes the expected costs per unit time.

Silver shows that the opportunities to replenish at the reduced cost occur probabilistically according to a Poisson process with a rate  $\mu$  per year, where  $\mu$  is the expected number of orders triggered per year by all other items in the group.

Let  $NT_i$  be the number of orders triggered per year by item  $i$ . Then  $\mu_j$  is given by  $\mu_j = \sum NT_i$ , where the summation is taken over all  $i \neq j$ .

For example, if there are four items in the group and we are considering item 2, we would have  $\mu_2 = NT_1 + NT_3 + NT_4$ .

It is very difficult to determine the value of  $\mu_i$  algebraically. We will consider some heuristic methods to approximate this.

Silver [Ref. 3: eqn. 13] determines that the relevant cost equation (the subscripts  $i$  have been suppressed) is given by:

$$EC_i = \{S - c + p(1 - p^c) / (1 - p)\}^{-1} \{(S - c)(S + c + 1) vr / 2 + p[c - p(1 - p^c) / (1 - p)] vr / (1 - p) + \lambda p^c A + \lambda a\} \quad (2.20)$$

where

$$p = \lambda / (\lambda + \mu)$$

The algorithm suggested by Silver in [Ref. 3] is a simultaneous optimization procedure to minimize eqn. (2.17) with respect to  $S_i, c_i, s_i$ . The procedure is iterative.

Solution procedures to determine the control parameters of the  $(S, c, s)$  policy are explained in the next chapter.

### III. DEVELOPMENT OF THE MODEL

In this chapter we consider the general joint replenishment problem with positive leadtimes. We obtain values of the parameters  $s_i$ ,  $c_i$ , and  $S_i$  using an iterative procedure recommended in [Ref. 3]. Silver [Ref. 10] derives the following expression for the total expected costs per year for item  $i$  (we suppress the item subscript for simplification of notation):

$$EC_i = \{S - c + p(1 - p^c) / (1 - p)\}^{-1} \{ (S - c)(S + c + 1) vr / 2 \quad (3.1)$$

$$+ p[c - p(1 - p^c)/(1 - p)]vr/(1 - p) + \lambda p^c A + \lambda a\}$$

where

$$p = \lambda / (\lambda + \mu)$$

$p$  is the probability that a particular occurrence is either a demand or an opportunity to replenish at reduced cost.

#### A. SOLUTION PROCEDURE

We recommend as a solution procedure a somewhat modified version of the procedure suggested by Silver.

##### 1. Algorithm

###### Step 1 : Initialization

Use the values computed by the independent control to initialize. Let  $k = 1$ , where  $k$  = index of iteration.

$$c_{min} = 0.$$

$$c_{max} = Q^*$$

$$EC(k) = EC(\text{determined from the independent control})$$

$$N(k) = \lambda / Q^*$$

$$\mu_j(k) = \sum N_i, \text{ where all } i \neq j, \text{ and } i, j = 1, \dots, n$$

$$p(k) = \lambda / (\lambda + \mu)$$

$$c(k) = 0$$

$$S(k) = Q^*$$

**Step 2 : Let  $k = k + 1$**

$$c(k) = c(k-1) + (c_{\max} - c_{\min}) / 2, \text{ if } EC(k) < EC(k-1)$$

$$c(k) = c(k-1) - (c_{\max} - c_{\min}) / 2, \text{ if } EC(k) > EC(k-1)$$

$$S(k) = c(k) \cdot p(1 - p^c)/(1 - p) + \sqrt{\{2 \lambda (a + A \lambda^c)/vr + 2 c \lambda^{c+1}/(1 - p) - p(1 - p^c)(1 + p^{c+1})/(1 - p)^2\}}$$

$$EC(k) = \{p(1 - p^c)/(1 - p)\}^{-1} \{p [c - p(1 - p^c)/(1 - p)]vr / (1 - p) + \lambda p^c A + \lambda a\}$$

**Step 3 : Test for convergence of  $c$  and  $S$ .**

Round the  $c$  and  $S$  values to the nearest integer.

If  $c(k) = c(k-1)$  and  $S(k) = S(k-1)$ , go to Step 4, else go to Step 2. And, repeat until  $S$  and  $c$  converge.

**Step 4 : Repeat Steps 1, 2 and 3 for  $i = 1, 2, \dots, n$ .**

**Step 5 : Let  $N_i = \lambda p^c / \{S - c + p(1 - p^c)/(1 - p)\}$ .**

$p$  values are from the previous iteration and  $S$  and  $c$  values are from step 4.

**Step 6 : Repeat steps 1-5 until  $|c(k) - c(k-1)| < \delta$  and  $|S(k) - S(k-1)| < \delta$ .**

**Step 7 : Now determine the must-buy points,  $s_i$ , for  $i = 1, \dots, n$  from the service constraints.**

(a) For Service Measure 1: probability ( $P_1$ ) of no shortage per cycle, find the smallest value  $s$  such that

$$(1/p)P_r(X \leq s + c|\lambda L) - P_r(X = s + 1|\lambda L) \\ - p^{s+1} \sum P_r(X = x_0|\lambda L) (1/p)^{x_0} \geq P_1/p^c$$

(b) For Service Measure 2: fraction ( $P_2$ ) of demand to be satisfied directly from shelf, find the smallest value  $s$  such that

$$p^c \{ \lambda L - s \lambda L P_r(X \leq s - 1 | \lambda L) + s P_r(X \leq s | \lambda L) \} \\ + (1 - p)^{c+s} \sum p^{-w_0} \{ \lambda L - w_0 - \lambda L P_r(w_0 - 1 | \lambda L) \\ + w_0 P_r(X \leq w_0) \} \\ \leq \{S - c + p(1 - p^c)/(1 - p)\} (1 - P_2)$$

**Step 8 : Recompute the values  $S_i$  and  $c_i$ .**

$$S_i = S + s_i$$

$$c_i = c + s_i$$

Stop

## 2. Flowchart



Figure 3.1 Determination of coordinated pair (S,c).

## IV. SIMULATION STUDY

In order to determine how costs of ordering, holding, shortage, etc. are affected by joint replenishment, a simulation model was developed. The purpose of the simulation study was to test the cost savings by comparing the costs for the two inventory policies, independent and joint replenishment. The simulation was written in FORTRAN77.

### A. ASSUMPTIONS FOR THE SIMULATION STUDY

1. Poisson demands (exponential interarrival times).
2. Items demanded one at a time.
3. Constant lead times (independent of the size of the order and the number of items in a replenishment).
4. For the joint replenishment case, place an order whenever any item hits its must-buy point  $s_j$  and order up to  $S_j$ . Also, include item  $j \neq i$  if the inventory position for item  $j$  is below the can-buy point  $c_j$ . Order up to  $S_j$ .
5. For the independent control, order up to level  $S_i$  whenever the stock on hand for item  $i$  reaches  $s_i$ .
6. For a given item, there is never more than a single order outstanding in the joint replenishment case.

### B. MODEL INPUTS

1. Number of items.
2. Demand rate  $\lambda_i$  for each item.
3. Holding cost rate  $v_i$  for each item.
4. Lead time (in months) L.
5. Type of service level constraint (Type1, or Type2)
6. Service level required.
7. Unit price  $UP_i$ .
8. Group ordering cost A.
9. Individual ordering cost  $a_j$ .
10. Stockout cost rate per unit stockout (percentage of unit price).
11. Time weighted stockout cost (percentage of unit price).
12.  $S_i$ ,  $c_i$ ,  $s_i$  for each item.
13. Model options (Independent control or Joint Replenishment, etc.)
14. Limits of simulation period, NSIM.

### **C. MODEL OUTPUTS**

1. Achieved service level for each item.
2. Number of orders (independent and joint).
3. Total ordering cost for each item.
4. Total holding cost for each item.
5. Total unit years of backorders.
6. Total number of backorders.
7. Total unit years of stock held.
8. Total stockout cost (fixed and time weighted) for each item.
9. Total annual costs for each item.
10. Total annual variable costs for all items.
11. Standard deviation of total annual variable costs.
12. A complete audit trail of all orders placed (optional).

### **D. STRUCTURE OF THE PROGRAM**

#### **I. Algorithm**

Step 1 : Read input data, process options and initialize variables.

Step 2 : Determine the earliest event time and type of event.

Let  $TDA_i$  be the time of the next demand for item i and  $TOA_i$  be the next time of the for item of an order for item i.

Set the master clock time, CT, to the minimum of  $\{TDA_i, TOA_i\}$ .

If the event type is a demand for item i then generate another demand time for that item.

If the event type is an order arrival then increment the on hand inventory for all items included in the order.

Step 3 : Determine if an order is required.

If the onhand level is less than or equal to the reorder point for that item and there are no outstanding orders for that item, place an order. If the ordering policy is independent, go to step 5.

Step 4 : Test for joint replenishments.

If the onhand level is less than or equal to the can order point for another item j in the replenishment set, place joint replenishment for the items to the level  $S_j$ .

**Step 5 : Determine if the simulation is complete.**

**If  $CT \geq NSIM$  stop, else go to step 2.**

The program collects detailed statistics at each event time for unit years of stock held, number of stockouts, unit years of stockouts, number of orders, number of units ordered, and number of demands for each item.

At the conclusion of the simulation additional summary statistics are computed for achieved service levels and costs.

## 2. Flowchart



Figure 4.1 Simulation Flowchart.

## V. EVALUATION OF THE MODEL

### A. PERFORMANCE ANALYSIS

#### 1. Basic Examples Tested

Table 4 shows the data used for the evaluation of the joint replenishment model. Several combinations (96 cases) of service level, service measure, and lead times were considered. The data include the test set considered in Silver's paper [Ref. 3].

TABLE 4  
ITEM CHARACTERISTICS

| group number | A (S) | a (S) | number of items | i  | ITEM DATA               |                 |
|--------------|-------|-------|-----------------|----|-------------------------|-----------------|
|              |       |       |                 |    | $\lambda_i$ (piece/yr.) | $v_i$ (S/piece) |
| 1            | 50    | 10    | 4               | 1  | 290.000                 | 6.90            |
|              |       |       |                 | 2  | 41.000                  | 1.20            |
|              |       |       |                 | 3  | 77.000                  | 3.90            |
|              |       |       |                 | 4  | 122.000                 | 2.30            |
| 2            | 125   | 80    | 10              | 1  | 40.630                  | 0.45            |
|              |       |       |                 | 2  | 4.090                   | 36.41           |
|              |       |       |                 | 3  | 34.680                  | 42.17           |
|              |       |       |                 | 4  | 4.240                   | 4.46            |
|              |       |       |                 | 5  | 4.240                   | 4.46            |
|              |       |       |                 | 6  | 4.090                   | 36.41           |
|              |       |       |                 | 7  | 4.240                   | 4.46            |
|              |       |       |                 | 8  | 28.780                  | 3.92            |
|              |       |       |                 | 9  | 4.090                   | 36.41           |
|              |       |       |                 | 10 | 4.090                   | 36.41           |
| 3            | 50    | 5     | 4               | 1  | 290.000                 | 6.90            |
|              |       |       |                 | 2  | 41.000                  | 1.20            |
|              |       |       |                 | 3  | 77.000                  | 3.90            |
|              |       |       |                 | 4  | 122.000                 | 2.30            |
| 4            | 50    | 5     | 8               | 1  | 290.000                 | 6.90            |
|              |       |       |                 | 2  | 41.000                  | 1.20            |
|              |       |       |                 | 3  | 77.000                  | 3.90            |
|              |       |       |                 | 4  | 122.000                 | 2.30            |
|              |       |       |                 | 5  | 50.000                  | 1.20            |
|              |       |       |                 | 6  | 154.000                 | 3.90            |
|              |       |       |                 | 7  | 87.000                  | 2.30            |
|              |       |       |                 | 8  | 25.000                  | 1.20            |

#### 2. Model Results

##### a. Convergence of Parameter Values and Costs

Table 5 shows the results of each iteration from Silver's model for joint replenishment. Observe that five iterations were required for convergence. This

example considers service measure type 2 with a specified level 0.99. The lead time is one month.

TABLE 5  
PARAMETERS AND COSTS

| Item | Iter. | p      | C  | S   | EC       |
|------|-------|--------|----|-----|----------|
| 1    | 1     | 0.9942 | 79 | 146 | 201.8498 |
|      | 2     | 0.9972 | 84 | 152 | 210.4767 |
|      | 3     | 0.9973 | 84 | 152 | 210.5555 |
|      | 4     | 0.9974 | 87 | 152 | 210.8846 |
|      | 5     | 0.9973 | 87 | 152 | 210.8239 |
| 2    | 1     | 0.9272 | 31 | 90  | 21.7035  |
|      | 2     | 0.9499 | 36 | 97  | 23.4369  |
|      | 3     | 0.9464 | 36 | 96  | 23.1011  |
|      | 4     | 0.9469 | 36 | 96  | 23.1429  |
|      | 5     | 0.9467 | 36 | 96  | 23.1271  |
| 3    | 1     | 0.9650 | 27 | 85  | 66.6963  |
|      | 2     | 0.9768 | 48 | 89  | 70.0377  |
|      | 3     | 0.9741 | 43 | 88  | 68.8164  |
|      | 4     | 0.9744 | 43 | 88  | 68.9584  |
|      | 5     | 0.9744 | 43 | 88  | 68.9309  |
| 4    | 1     | 0.9774 | 45 | 138 | 63.6090  |
|      | 2     | 0.9850 | 71 | 145 | 66.8895  |
|      | 3     | 0.9835 | 70 | 143 | 65.8678  |
|      | 4     | 0.9835 | 70 | 143 | 65.9083  |
|      | 5     | 0.9835 | 70 | 143 | 65.8689  |

#### b. Cost Savings: Joint Replenishment VS. Independent Control

Table 6 shows the cost savings achieved by the joint replenishment policy for both the modified Silver's method and our heuristic method.

The comparisions are provided for two cases:

1. Service measure 1,  $P_1 = 0.95$
2. Service measure 2,  $P_2 = 0.99$

Observe that both the heuristic method and Silver's method achieve cost savings greater than 13 % by using joint replenishment, and the heuristic method results in greater cost savings than does Silver's method.

#### 3. Simulation Results

Figure 5.1 shows the time history of stock on hand for items 1 to 4 generated by one simulation. The upper graph represents individual control and the lower graph represents joint replenishment.

TABLE 6  
COMPARISON OF TWO METHODS

| 1. modified Silver's method : $P_1 = 0.95$ , $L = 1$ month |        |    |     |          |          |         |         |
|------------------------------------------------------------|--------|----|-----|----------|----------|---------|---------|
| item                                                       | p      | s  | C   | S        | EC(JP)   | EC(IP)  | Save(%) |
| 1                                                          | 0.9973 | 32 | 119 | 184      | 221.6339 | 232.024 | 4.48    |
| 2                                                          | 0.9467 | 4  | 40  | 100      | 23.2671  | 35.343  | 34.17   |
| 3                                                          | 0.9744 | 9  | 52  | 97       | 70.9459  | 88.860  | 20.16   |
| 4                                                          | 0.9835 | 13 | 83  | 156      | 67.1722  | 84.977  | 20.95   |
| total cost                                                 |        |    |     | 383.0190 | 441.203  | 13.19   |         |
| 2. heuristic method : $P_1 = 0.95$ , $L = 1$ month         |        |    |     |          |          |         |         |
| item                                                       | p      | s  | C   | S        | EC(JP)   | EC(IP)  | Save(%) |
| 1                                                          | 0.9942 | 31 | 110 | 177      | 211.2798 | 232.024 | 8.94    |
| 2                                                          | 0.9272 | 3  | 34  | 93       | 21.6035  | 35.343  | 38.87   |
| 3                                                          | 0.9650 | 9  | 36  | 94       | 68.7113  | 88.860  | 22.67   |
| 4                                                          | 0.9774 | 14 | 59  | 152      | 65.3723  | 84.977  | 23.07   |
| total cost                                                 |        |    |     | 351.8467 | 441.203  | 16.83   |         |
| 3. modified Silver's method : $P_2 = 0.99$ , $L = 1$ month |        |    |     |          |          |         |         |
| item                                                       | p      | s  | C   | S        | EC(JP)   | EC(IP)  | Save(%) |
| 1                                                          | 0.9973 | 25 | 112 | 177      | 211.9739 | 220.984 | 4.08    |
| 2                                                          | 0.9467 | -1 | 35  | 95       | 22.0671  | 34.383  | 35.82   |
| 3                                                          | 0.9744 | 5  | 48  | 93       | 67.8259  | 85.740  | 20.89   |
| 4                                                          | 0.9835 | 7  | 77  | 150      | 64.4122  | 82.217  | 21.56   |
| total cost                                                 |        |    |     | 366.2788 | 423.323  | 13.48   |         |
| 4. heuristic method : $P_2 = 0.99$ , $L = 1$ month         |        |    |     |          |          |         |         |
| item                                                       | p      | s  | C   | S        | EC(JP)   | EC(IP)  | Save(%) |
| 1                                                          | 0.9942 | 25 | 104 | 171      | 202.9998 | 220.984 | 8.14    |
| 2                                                          | 0.9272 | -1 | 30  | 89       | 20.6435  | 34.383  | 39.96   |
| 3                                                          | 0.9650 | 5  | 32  | 90       | 65.5912  | 85.740  | 23.50   |
| 4                                                          | 0.9774 | 8  | 53  | 146      | 62.6123  | 82.217  | 23.85   |
| total cost                                                 |        |    |     | 351.8467 | 423.323  | 16.88   |         |

The simulation results for several combinations of leadtime, service measure and service level are represented in Tables 7, 8, 9.

When lead time is less than 1 month, the heuristic method yields more savings in total cost and also satisfies the required service level. But, as the lead time becomes larger, it sometimes fails to meet the required service level, although it does continue to generate greater cost savings than Silver's method with the cost parameters examined in this thesis. Both methods generate substantial savings over independent control. In short lead times, both methods tend to overprotect against stockouts. They generally produce service levels in excess of what is required.

One explanation for the better performance of the joint replenishment models for the short lead time examples is the fact that a key step in the joint replenishment algorithm for determining the  $S$ ,  $c$ ,  $s$  parameters assumes that lead time is zero. Adjustments are then made to those values to account for the nonzero lead times but, apparently those adjustments are not adequate. Additional work is required to examine this issue and to explore other methods of adjustment.

We should keep in mind the fact that the model satisfies all requirements in the experiment does not mean that it is a correct model -- merely that it is a plausible one which has not been found inadequate by the data or experiment.



Figure 5.1 Stock on Hand – Independent Control and Joint Replenishment.

TABLE 7  
COST SAVINGS BY JOINT REPLENISHMENT: WHEN L = 1 MONTH

| 1. PARAMETERS FROM MODIFIED SILVER'S METHOD |              |                               |         |         |        |                                        |       |                               |     |
|---------------------------------------------|--------------|-------------------------------|---------|---------|--------|----------------------------------------|-------|-------------------------------|-----|
| Group number                                | req. SVL (%) | AVG. Total Variable Costs(\$) |         |         |        | Cost Savings(%) by Joint Replenishment |       | AVG. SVL (%) achieved by SIM. |     |
|                                             |              | INDEPENDENT                   |         | JOINT   |        | MODEL                                  | SIM   | MODEL                         | SIM |
|                                             |              | MODEL                         | SIM     | MODEL   | SIM    | MODEL                                  | SIM   | MODEL                         | SIM |
| 1                                           | P1=95        | 441.20                        | 443.04  | 383.02  | 361.48 | 13.19                                  | 18.41 | 99.49                         |     |
|                                             | P1=99        | 448.06                        | 445.77  | 392.74  | 368.70 | 12.35                                  | 17.29 | 99.74                         |     |
|                                             | P2=95        | 403.20                        | 414.71  | 343.31  | 341.12 | 14.86                                  | 17.75 | 97.91                         |     |
|                                             | P2=99        | 423.32                        | 431.00  | 366.28  | 348.38 | 13.48                                  | 19.17 | 99.71                         |     |
| 2                                           | P1=95        | 1111.43                       | 1073.85 | 998.32  | 953.78 | 10.18                                  | 11.22 | 99.27                         |     |
|                                             | P1=99        | 1153.33                       | 1107.24 | 1037.70 | 956.40 | 10.03                                  | 13.62 | 100.00                        |     |
|                                             | P2=95        | 1032.91                       | 1029.70 | 878.37  | 888.82 | 14.96                                  | 13.68 | 97.70                         |     |
|                                             | P2=99        | 1088.91                       | 1066.90 | 971.82  | 926.96 | 10.75                                  | 13.12 | 99.64                         |     |
| 3                                           | P1=95        | 423.30                        | 422.05  | 356.89  | 345.93 | 15.69                                  | 18.04 | 99.76                         |     |
|                                             | P1=99        | 430.16                        | 425.74  | 365.83  | 354.15 | 14.95                                  | 16.82 | 100.00                        |     |
|                                             | P2=95        | 386.08                        | 396.72  | 315.71  | 315.35 | 18.23                                  | 20.51 | 98.44                         |     |
|                                             | P2=99        | 406.80                        | 409.84  | 340.01  | 333.05 | 16.42                                  | 18.74 | 99.76                         |     |
| 4                                           | P1=95        | 676.10                        | 677.55  | 513.14  | 490.92 | 24.10                                  | 27.54 | 99.21                         |     |
|                                             | P1=99        | 686.94                        | 683.89  | 528.48  | 508.80 | 23.07                                  | 25.60 | 99.80                         |     |
|                                             | P2=95        | 620.56                        | 627.49  | 458.34  | 433.05 | 26.14                                  | 30.99 | 99.01                         |     |
|                                             | P2=99        | 650.70                        | 650.80  | 490.60  | 459.33 | 24.60                                  | 29.42 | 99.83                         |     |
| 2. PARAMETERS FROM HEURISTIC METHOD         |              |                               |         |         |        |                                        |       |                               |     |
| 1                                           | P1=95        | 441.20                        | 443.04  | 366.97  | 365.30 | 16.83                                  | 17.55 | 96.51                         |     |
|                                             | P1=99        | 448.06                        | 445.77  | 376.93  | 368.73 | 15.88                                  | 17.28 | 99.04                         |     |
|                                             | P2=95        | 403.20                        | 414.71  | 329.23  | 329.36 | 18.35                                  | 20.58 | 97.34                         |     |
|                                             | P2=99        | 423.32                        | 431.02  | 351.85  | 347.15 | 16.88                                  | 19.46 | 99.46                         |     |
| 2                                           | P1=95        | 1111.43                       | 1073.85 | 949.18  | 960.01 | 14.60                                  | 10.60 | 97.43                         |     |
|                                             | P1=99        | 1153.33                       | 1107.24 | 999.68  | 979.11 | 13.32                                  | 11.57 | 99.44                         |     |
|                                             | P2=95        | 1032.91                       | 1029.70 | 849.28  | 845.07 | 17.78                                  | 17.93 | 97.54                         |     |
|                                             | P2=99        | 1088.91                       | 1066.90 | 903.69  | 893.75 | 17.01                                  | 16.23 | 99.08                         |     |
| 3                                           | P1=95        | 423.30                        | 422.05  | 332.99  | 342.74 | 21.33                                  | 18.79 | 98.60                         |     |
|                                             | P1=99        | 430.16                        | 425.74  | 343.17  | 350.13 | 20.22                                  | 17.76 | 99.77                         |     |
|                                             | P2=95        | 386.08                        | 396.72  | 296.95  | 314.70 | 23.09                                  | 20.67 | 98.01                         |     |
|                                             | P2=99        | 406.80                        | 409.84  | 319.11  | 328.97 | 21.56                                  | 19.76 | 99.64                         |     |
| 4                                           | P1=95        | 676.10                        | 677.55  | 447.50  | 455.68 | 33.81                                  | 32.75 | 97.19                         |     |
|                                             | P1=99        | 686.94                        | 683.89  | 463.88  | 471.45 | 32.47                                  | 31.06 | 99.51                         |     |
|                                             | P2=95        | 620.56                        | 627.49  | 392.74  | 394.17 | 36.71                                  | 37.18 | 97.54                         |     |
|                                             | P2=99        | 650.70                        | 650.80  | 426.24  | 420.22 | 34.50                                  | 35.43 | 99.29                         |     |

**TABLE 8**  
**COST SAVINGS BY JOINT REPLENISHMENT: WHEN L = 3 MONTH**

| 1. PARAMETERS FROM MODIFIED SILVER'S METHOD |              |                                |         |         |         |                                        |       |                               |
|---------------------------------------------|--------------|--------------------------------|---------|---------|---------|----------------------------------------|-------|-------------------------------|
| Group number                                | req. SVL (%) | AVG. Total Variable Costs (\$) |         |         |         | Cost Savings(%) by Joint Replenishment |       | AVG. SVL (%) achieved by SIM. |
|                                             |              | INDEPENDENT                    |         | JOINT   |         | MODEL                                  | SIM   |                               |
|                                             |              | MODEL                          | SIM     | MODEL   | SIM     | MODEL                                  | SIM   |                               |
| 1                                           | P1=95        | 453.70                         | 451.55  | 394.04  | 368.34  | 13.15                                  | 18.43 | 98.97                         |
|                                             | P1=99        | 466.64                         | 464.38  | 408.46  | 383.34  | 12.47                                  | 17.45 | 99.74                         |
| 2                                           | P2=95        | 404.20                         | 407.47  | 340.27  | 331.60  | 15.82                                  | 18.62 | 96.91                         |
|                                             | P2=99        | 431.48                         | 433.39  | 373.06  | 350.99  | 13.54                                  | 19.01 | 99.59                         |
| 3                                           | P1=95        | 1173.94                        | 1135.01 | 1019.79 | 938.40  | 13.13                                  | 17.32 | 98.83                         |
|                                             | P1=99        | 1224.36                        | 1177.53 | 1078.73 | 994.54  | 11.89                                  | 15.54 | 99.33                         |
| 4                                           | P2=95        | 1047.78                        | 1054.40 | 893.13  | 855.98  | 14.76                                  | 18.82 | 98.34                         |
|                                             | P2=99        | 1109.34                        | 1097.29 | 992.50  | 917.02  | 10.53                                  | 16.42 | 99.78                         |
| 1                                           | P1=95        | 435.80                         | 439.10  | 365.75  | 358.36  | 16.07                                  | 18.39 | 96.73                         |
|                                             | P1=99        | 448.74                         | 446.89  | 382.33  | 371.04  | 14.80                                  | 16.97 | 99.51                         |
| 2                                           | P2=95        | 386.76                         | 390.60  | 314.71  | 309.32  | 18.63                                  | 20.81 | 97.88                         |
|                                             | P2=99        | 413.82                         | 410.99  | 347.03  | 337.40  | 16.14                                  | 17.91 | 99.57                         |
| 3                                           | P1=95        | 694.66                         | 690.92  | 525.31  | 491.81  | 24.38                                  | 28.82 | 99.32                         |
|                                             | P1=99        | 713.84                         | 711.89  | 549.89  | 516.17  | 22.97                                  | 27.49 | 99.80                         |
| 4                                           | P2=95        | 619.70                         | 623.99  | 446.77  | 418.44  | 27.91                                  | 32.94 | 98.70                         |
|                                             | P2=99        | 660.82                         | 660.38  | 498.85  | 467.03  | 24.51                                  | 29.28 | 99.84                         |
| 2. PARAMETERS FROM HEURISTIC METHOD         |              |                                |         |         |         |                                        |       |                               |
| 1                                           | P1=95        | 453.70                         | 451.55  | 377.98  | 363.73  | 16.69                                  | 19.45 | 97.35                         |
|                                             | P1=99        | 466.64                         | 464.38  | 392.64  | 378.46  | 15.86                                  | 18.50 | 99.76                         |
| 2                                           | P2=95        | 404.20                         | 407.47  | 326.78  | 318.15  | 19.15                                  | 21.92 | 96.75                         |
|                                             | P2=99        | 431.48                         | 433.39  | 357.32  | 346.98  | 17.19                                  | 19.94 | 99.44                         |
| 3                                           | P1=95        | 1173.94                        | 1135.01 | 978.83  | 966.47  | 16.62                                  | 14.85 | *93.78                        |
|                                             | P1=99        | 1224.36                        | 1177.53 | 1041.41 | 1015.42 | 14.94                                  | 13.77 | 99.17                         |
| 4                                           | P2=95        | 1047.78                        | 1054.40 | 854.13  | 860.07  | 18.48                                  | 18.43 | 97.94                         |
|                                             | P2=99        | 1109.34                        | 1097.29 | 950.04  | 923.59  | 14.36                                  | 15.83 | 99.44                         |
| 1                                           | P1=95        | 435.80                         | 439.10  | 340.91  | 344.09  | 21.77                                  | 21.64 | 99.30                         |
|                                             | P1=99        | 448.74                         | 446.89  | 358.43  | 360.88  | 20.13                                  | 19.25 | 99.77                         |
| 2                                           | P2=95        | 386.76                         | 390.60  | 291.57  | 301.49  | 24.61                                  | 22.82 | 97.70                         |
|                                             | P2=99        | 413.82                         | 410.99  | 324.41  | 327.00  | 21.61                                  | 20.44 | 99.74                         |
| 3                                           | P1=95        | 694.66                         | 690.92  | 456.20  | 447.29  | 34.33                                  | 35.26 | 95.34                         |
|                                             | P1=99        | 713.84                         | 711.89  | 483.56  | 474.04  | 32.26                                  | 33.41 | 98.97                         |
| 4                                           | P2=95        | 619.70                         | 623.99  | 381.62  | 400.09  | 38.42                                  | 35.88 | 95.55                         |
|                                             | P2=99        | 660.82                         | 660.38  | 432.52  | 425.76  | 34.55                                  | 35.53 | 99.10                         |

TABLE 9  
COST SAVINGS BY JOINT REPLENISHMENT: WHEN L = 6 MONTH

| 1. PARAMETERS FROM MODIFIED SILVER'S METHOD |              |                                |         |         |         |                                        |       |                               |     |
|---------------------------------------------|--------------|--------------------------------|---------|---------|---------|----------------------------------------|-------|-------------------------------|-----|
| Group number                                | req. SVL (%) | AVG. Total Variable Costs (\$) |         |         |         | Cost Savings(%) by Joint Replenishment |       | AVG. SVL (%) achieved by SIM. |     |
|                                             |              | INDEPENDENT                    |         | JOINT   |         | MODEL                                  | SIM   | MODEL                         | SIM |
|                                             |              | MODEL                          | SIM     | MODEL   | SIM     | MODEL                                  | SIM   | MODEL                         | SIM |
| 1                                           | P1=95        | 465.47                         | 461.92  | 404.32  | 374.87  | 13.14                                  | 18.85 | 97.53                         |     |
|                                             | P1=99        | 485.50                         | 482.24  | 425.84  | 396.24  | 12.29                                  | 17.83 | 99.24                         |     |
|                                             | P2=95        | 406.25                         | 407.04  | 343.22  | 320.37  | 15.51                                  | 21.29 | 96.23                         |     |
|                                             | P2=99        | 441.41                         | 440.34  | 381.50  | 354.81  | 13.57                                  | 19.42 | 99.34                         |     |
| 2                                           | P1=95        | 1217.73                        | 1174.03 | 1068.46 | 983.25  | 12.26                                  | 16.25 | 97.90                         |     |
|                                             | P1=99        | 1285.89                        | 1240.05 | 1131.83 | 1045.79 | 11.98                                  | 15.67 | 99.33                         |     |
|                                             | P2=95        | 1046.00                        | 1056.59 | 897.43  | 851.39  | 14.20                                  | 19.42 | 98.07                         |     |
|                                             | P2=99        | 1161.47                        | 1132.14 | 1014.36 | 933.91  | 12.67                                  | 17.51 | 99.77                         |     |
| 3                                           | P1=95        | 447.56                         | 442.91  | 375.58  | 359.91  | 16.08                                  | 18.74 | 94.80                         |     |
|                                             | P1=99        | 467.60                         | 464.06  | 397.10  | 380.81  | 15.08                                  | 17.94 | 99.14                         |     |
|                                             | P2=95        | 390.96                         | 392.25  | 317.44  | 310.39  | 18.81                                  | 20.87 | 97.19                         |     |
|                                             | P2=99        | 423.50                         | 418.99  | 355.48  | 342.46  | 16.06                                  | 18.27 | 99.29                         |     |
| 4                                           | P1=95        | 712.21                         | 711.50  | 536.58  | 505.25  | 24.66                                  | 28.99 | 96.47                         |     |
|                                             | P1=99        | 740.67                         | 737.77  | 571.58  | 529.95  | 22.83                                  | 28.17 | 99.04                         |     |
|                                             | P2=95        | 624.71                         | 629.18  | 447.04  | 411.24  | 28.44                                  | 34.64 | 97.19                         |     |
|                                             | P2=99        | 674.81                         | 674.72  | 507.72  | 465.69  | 24.76                                  | 30.98 | 99.44                         |     |
| 2. PARAMETERS FROM HEURISTIC METHOD         |              |                                |         |         |         |                                        |       |                               |     |
| 1                                           | P1=95        | 465.47                         | 461.92  | 387.43  | 379.63  | 16.77                                  | 17.82 | *92.64                        |     |
|                                             | P1=99        | 485.50                         | 482.24  | 409.79  | 401.59  | 15.60                                  | 16.72 | 98.74                         |     |
|                                             | P2=95        | 406.25                         | 407.04  | 328.41  | 328.97  | 19.16                                  | 19.18 | 95.33                         |     |
|                                             | P2=99        | 441.41                         | 440.34  | 366.23  | 363.02  | 17.03                                  | 17.56 | 99.08                         |     |
| 2                                           | P1=95        | 1217.73                        | 1174.03 | 1030.96 | 991.45  | 15.34                                  | 15.55 | 98.92                         |     |
|                                             | P1=99        | 1285.89                        | 1240.05 | 1090.96 | 1049.95 | 15.16                                  | 15.33 | 100.00                        |     |
|                                             | P2=95        | 1046.00                        | 1056.59 | 848.43  | 878.96  | 18.89                                  | 16.81 | 96.53                         |     |
|                                             | P2=99        | 1161.47                        | 1132.14 | 962.32  | 940.00  | 17.15                                  | 16.97 | 99.34                         |     |
| 3                                           | P1=95        | 447.56                         | 442.91  | 351.19  | 341.63  | 21.53                                  | 22.87 | *91.90                        |     |
|                                             | P1=99        | 467.60                         | 464.06  | 372.95  | 362.02  | 20.24                                  | 21.99 | *90.14                        |     |
|                                             | P2=95        | 390.96                         | 392.25  | 292.41  | 298.23  | 25.21                                  | 23.97 | 95.57                         |     |
|                                             | P2=99        | 423.50                         | 418.99  | 331.47  | 330.47  | 21.73                                  | 21.13 | 98.48                         |     |
| 4                                           | P1=95        | 712.21                         | 711.50  | 466.69  | 532.09  | 34.47                                  | 25.21 | *86.62                        |     |
|                                             | P1=99        | 740.67                         | 737.77  | 503.17  | 559.74  | 32.07                                  | 24.13 | *94.34                        |     |
|                                             | P2=95        | 624.71                         | 629.18  | 381.93  | 404.55  | 38.36                                  | 35.70 | *92.36                        |     |
|                                             | P2=99        | 674.81                         | 674.72  | 442.41  | 452.60  | 34.44                                  | 32.92 | *97.70                        |     |

## VI. CONCLUSIONS AND RECOMMENDATIONS

### A. CONCLUSIONS

For each of several test combinations, we determined the independent and coordinated control parameter values and the associated expected costs. We simulated several years of operations with the derived joint replenishment ordering parameters to evaluate the effectiveness of the models as compared to independent control models. We also use the simulation to compare a simple heuristic joint replenishment model. With the simulation we were able to accumulate costs (ordering, holding and stockout) and effectiveness as measured by two service levels.

In summary, the following statements can be made:

1. Coordinated control results in total costs significantly lower than under independent control. The average cost savings are about 18.7%.
2. Coordinated control provides better service than independent control. In a few cases, the actual service for an individual item is slightly lower than required; when this occurs, the item involved is the one that triggers the majority of the replenishments in the group.
3. Cost savings of coordinated control increases as the ratio  $a/A$  decreases.
4. Cost savings improve as the number of items in replenishment set increases: the more items there are in the group, the more beneficial coordinated replenishment becomes.
5. For a given service measure and lead time, the cost savings increase as the desired service level decreases.

### B. RECOMMENDATIONS

The procedure to determine the parameters for coordinated control requires only the data for independent control. We observe that the joint replenishment models perform best for shorter lead times. This is probably the result of the fact that the joint replenishment algorithms initially assume zero lead times and then adjust the derived parameters heuristically to account for nonzero lead times. This adjustment procedure may be inadequate. Additional work is needed to consider other adjustment methods.

## APPENDIX A

### "PARA":PROGRAM TO SELECT PARAMETERS

```

C      ** VARIABLE DEFINITION **
=====
C DM   : ANNUAL DEMAND
C MR  : REORDER POINT
C S/S1 : ORDER - UP POINT
C C/C1 : CAN ORDER POINT
C IPC  : OPTIMAL PAIR OF C
C IPS  : OPTIMAL PAIR OF S
C Q    : ECONOMIC ORDER QUANTITY
C ECI  : AVERAGE ANNUAL TOTAL VARIABLE COST(INDEPENDENT ORDER)
C EC/EC1 : AVERAGE ANNUAL TOTAL VARIABLE COST(JOINT ORDER)
C TLM  : LEAD TIME(IN MONTH)
C TLT  : LEAD TIME(IN YEARS)
C TL   : AVERAGE LEAD TIME(IN YEAR)
C DLT  : LEAD TIME DEMAND
C NIT  : NO. OF TOTAL ITEM IN THE GROUP
C TN   : NO. OF TRIGGERING AN ORDER BY ITEM I IN THE GROUP
C R / RHO : OPPORTUNITY TO REPLENISH AT REDUCED COST
C F    : HOLDING COST RATE TO PROCUREMENT COST
C UP   : UNIT PRICE
C OCI  : INDIVIDUAL ORDERING COST
C OCG  : GROUP ORDERING COST
C SVL  : SERVICE LEVEL
C SCU  : IMPUTED UNIT STOCKOUT COST GIVEN SVL.
C PSO  : MAX. ALLOWABLE ROBABILITY OF STOCK OUT
C STON : EXPECTED NUMBER OF STOCKOUT DURING A ORDER CYCLE
C
C -----
C & DIMENSION ITM(100), DM(100), UP(100), H(100), OCI(100), ECI(100), Q(100),
C & C(100), TN(100), S(100), IS(100), R(100), U(100), EC(100), MR(100),
C & IO(100), DLT(100), SCU(100), IC(100), RHO(50,100), EC1(50,100),
C & CI(50,100), SI(50,100), IC1(50,100), IS1(50,100), IPC(100), IPS(100),
C & MRI(100), TL(100)
C
C * DATA INITIALIZATION
C   STN=0.
C   TVC=0.
C
C * READ PROCESS OPTIONS
C
C   CALL OPTION(ID,LT,KEY,LTT,SVL,MSRCH)
C   READ(ID,110)NIT,OCG,F
C   TLT=LT/12.
C   DO 11 I=1,NIT
C     READ(ID,111)ITM(I),DM(I),UP(I),OCI(I)
C     H(I)=UP(I)*F
C     IF(LTT.EQ.1)TL(I)=TLT
C     IF(LTT.EQ.2)THEN
C       CALL LEAD(TLT,TLY)
C       TL(I)=TLY
C     END IF
C   CONTINUE
C
C   11
C   * PRINT SELECTED OPTIONS
C
C   WRITE(7,100)KEY,SVL,LTT,ID,MSRCH
C
C   * CALCULATE E.O.Q
C
C   DO 1 I =1,NIT
C     DLT(I)=DM(I)*TL(I)

```

```

OC=OCG+OCI(I)
Q(I)=SORT(2*DM(I)*OC/H(I))
IQ(I)=INT(Q(I)+.5)

* COMPUTE REORDER POINT: IND. ORDER POLICY

KEY = 1 : PROB.OF NO SHORTAGE PER REPLENISHMENT CYCLE
KEY = 2 : FRACTION OF DEMAND TO BE SATISFIED DIRECTLY FROM SHELF

CALL POISON(KEY,DLT(I),Q(I),SVL,MX,M,MAX,CCDF1)
    MR1(I)=M
    IF(KEY.EQ.1)THEN
        SCU(I)=H(I)*Q(I)/((1.- SVL)*DM(I))
    END IF
    IF(KEY.EQ.2)THEN
        SCU(I)=H(I)*Q(I)/(CCDF1*DM(I))
    END IF
    ECI(I)=H(I)*((Q(I)+1.)/2.+ (MR1(I)-DLT(I)))+OC*(DM(I)/Q(I))
    WRITE(7,501)ITM(I),DLT(I),TL(I),Q(I),IQ(I),MR1(I),ECI(I),SCU(I)
    TVC=TVC+ECI(I)
    TN(I)=DM(I)/Q(I)
    STN=STN+TN(I)
    CONTINUE
1      C
        WRITE(7,502)TVC
        C
        * DETERMINE THE PARAMETERS FOR JOINT ORDER POLICY
        (REORDER / CAN ORDER / ORDER-UP POINT)
        C
        DO 2 I=1,NIT
2      U(I)=STN-TN(I)
        DO 3 I=1,NIT
3      R(I)=DM(I)/(DM(I)+U(I))

        * SEARCH LOOP FOR DETERMINING A PAIR (S,C) : ITEM BY ITEM
        C
        II=1
        SEC=0.
        SEC1=0.
41      DO 4 I=1,NIT
            RHO(I,II)=R(I)
            K=1
            CMIN=0.
            CMAX=Q(I)
            C(K)=0.
            S(K)=Q(I)
            EC(K)=EC(I)
            TEST=10.***10
            ICASE=1
            LOOP=0
5      K=K+1
            IF(ICASE.EQ.1)THEN
                C(K)=C(K-1)+(CMAX-CMIN)/2
            END IF
            IF(ICASE.EQ.2)THEN
                C(K)=C(K-1)-(CMAX-CMIN)/2
            END IF
            S(K) = C(K)-R(I)*(1-R(I)**C(K))/(1-R(I))+SORT(2*DM(I)*(OCI(I)
&           +OCG*R(I)**C(K))/H(I)+2*C(K)*R(I)**(C(K)+1)/(1-R(I))
&           -R(I)*(1-R(I)**C(K))*(1+R(I)**(C(K)+1))/(1-R(I))**2)
&           EC(K)=(1./((S(K)-C(K)+R(I)*(1.-R(I)**C(K))/(1.-R(I)))
&           *((S(K)-C(K))*(S(K)+C(K)+1)*H(I)/2+R(I)*(C(K)-R(I)*(1.-R(I)**C(K))
&           /(1.-R(I)))*H(I)/(1.-R(I))+DM(I)*R(I)**C(K)*OCG+DM(I)*OCI(I)))
            IS(K)=INT(S(K)+.5)
            IC_K=INT(C(K)+.5)
            IF(C(K).EQ.C(K-1).AND.S(K).EQ.S(K-1))GO TO 5
            IF(EC(K).GT.(0.9995*EC(K-1)).AND.EC(K).LE.EC(K-1)) GO TO 6
            IF(EC(K).LT.EC(K-1)) THEN
                IF(C(K).GT.C(K-1))THEN

```

```

      CMIN=C(K)
      ICASE=1
      GO TO 5
    ELSE
      CMAX=C(K)
      ICASE=2
      GO TO 5
    END IF
  ELSE
    IF(C(K).LE.C(K-1))THEN
      CMIN=C(K)
      ICASE=1
      GO TO 5
    ELSE
      CMAX=C(K)
      ICASE=2
      GO TO 5
    END IF
  END IF
6   IF(LOOP.EQ.0)THEN
    CMIN=0
    CMAX=C(2)
    ICASE=2
    LOOP=1
    GO TO 5
  END IF
C   * FIND OUT THE PAIR (S,C), MINIMIZES EC
C   DO 7 J=1,K
    IF(EC(J).LE.TEST)THEN
      TEST=EC(J)
      EC1(I,II)=EC(J)
      C1(I,II)=C(J)
      S1(I,II)=S(J)
    END IF
7   CONTINUE
C   IC1(I,II)=INT(C1(I,II)+.5)
  IS1(I,II)=INT(S1(I,II)+.5)
  SEC1=SEC1+EC1(I,II)
4   CONTINUE
  SHAVE=(TVC-SEC1)/TVC
C   WRITE(7,507)II
  DO 20 I=1,NIT
    WRITE(7,508)I,RHO(I,II),IC1(I,II),IS1(I,II),EC1(I,II)
20   CONTINUE
    WRITE(7,509)SEC1,SHAVE
C   IF(MSRCH.EQ.2) GO TO 42
C   * COMPUTATIONS NEEDED ONLY FOR S. METHOD 1
C   IF(II.GE.2)THEN
  DO 21 I=1,NIT
    IF(C1(I,II).EQ.C1(I,II-1).AND.S1(I,II).EQ.S1(I,II-1)) GO TO 42
  END IF
    IF(II.GE.2)THEN
  DO 22 I=1,NIT
    IF(II.GT.NIT.OR.EC1(I,II).GT.(0.9995*EC1(I,II-1))
    & .AND.EC1(I,II).LE.EC1(I,II-1)) GO TO 42
  END IF
    IF (II.GE.7) GO TO 42
  DO 23 I=1,NIT
    TN(I) = DM(I) * R(I)**C1(I,II) / ( S1(I,II) - C1(I,II) + R(I)
    & *(1 - R(I)**C1(I,II)) / (1 - R(I)))
23   CONTINUE
    SUM=0.

```

```

24 DO 24 I=1,NIT
      SUM=SUM+TM(I)
25 DO 25 I=1,NIT
      U(I)=SUM-TM(I)
26 DO 26 I=1,NIT
      R(I)=DM(I)/(DM(I)+U(I))
      II=II+1
      SEC1=0.
      GO TO 41
C
42 WRITE(7,503)
DO 27 I=1,NIT
C(I)=C1(I,II)
S(I)=S1(I,II)
IPC(I)=INT(C(I)+.5)
IPS(I)=INT(S(I)+.5)
27 WRITE(7,504)I,IPC(I),IPS(I)
WRITE(7,200)
C
C * COMPUTE REORDER POINT:JOINT ORDER POLICY
C
DO 28 I=1,NIT
R(I)=RHO(I,II)
IF(KEY.EQ.1)THEN
  CALL MUST1(R(I),C(I),DLT(I),SVL,MBUY)
  MR(I)=MBUY
  C(I)=C(I)+MR(I)
  S(I)=S(I)+MR(I)
  IC(I)=INT(C(I)+.5)
  IS(I)=INT(S(I)+.5)
  EC(I)=EC1(I,II)+(MR(I)-DLT(I))*H(I)
END IF
IF(KEY.EQ.2)THEN
  CALL MUST2(R(I),C(I),S(I),DLT(I),SVL,MBUY)
  MR(I)=MBUY
  C(I)=C(I)+MR(I)
  S(I)=S(I)+MR(I)
  IC(I)=INT(C(I)+.5)
  IS(I)=INT(S(I)+.5)
  EC(I)=EC1(I,II)+(MR(I)-DLT(I))*H(I)
END IF
28 WRITE(7,505)I,R(I),MR(I),IC(I),IS(I),EC(I)
SEC=SEC+EC(I)
SHAVE=(TVC-SEC)/TVC
WRITE(7,506)SEC,SHAVE
STOP
C
100 FORMAT(1X,/,** SELECTED OPTIONS : ',/,1X,'(* KEY =',I2,2X,'* SVL.
& =',F4.2,2X,'* LEAD TIME TYPE =',I2,2X,'* DATA=',I2,
& 2X,'* S.METHOD=',I2,1X,'')'//,'* KEY= 1 : SVL. BY PROB. OF NO SHOR
& TAGE PER REPLENISHMENT CYCLE',//,'* 2 : SVL. BY FRACT. OF DEM
^ TO BE SATISFIED DIRECTLY FROM SHELF',//,'* LTT= 1 : CONSTANT
& LEADTIME 2 : RANDOM (UNIFORM W/ MEAN)'//,'* DATA=1 : DATA
& 1 2 : DATA2 3 : DATA3 4 : DATA4',//,'* SEARCH METHOD =1 :
& MODIFIED SILVER METHOD 2 : HEURISTIC'
& //,.20X,'*** INDEPENDENT ORDER POLICY ***'
& //,1X,'ITEM' 3X,'LT DEMAND(LT.)' 2X,'EOQ(N-INT.)',2X,'(INTEGER)'
,& 2X,'REORDER' 2X,'EXP. TVC(S)',2X,'S/O COST')
110 FORMAT(I3,2X,F6.2,2X,F4.2)
111 FORMAT(I3,2X,F7.3,3X,F5.2,2X,F5.2)
200 FORMAT(//,20X,'*** JOINT ORDER POLICY ***',/ ,2X,'ITEM' 5X,'RHO'
&,8X,'REORDER' 5X,'CANBUY' 5X,'ORDERUP' 5X,'EXPECTED COST')
501 FORMAT(1X,I3,4X,F7.3,'(',F5.3,')',3X,F8.3,6X,I4,7X,I3,4X,F9.3,3X,
83)
502 FORMAT(31X,'SUM OF AVG. ANNUAL TVC($)=',F9.3)
503 FORMAT(''//,15X,'** OPTIMAL PAIR (C,S) **',/,/
& 16X,'ITEM' ,7X,'OPT. C',7X,'OPT. S')
504 FORMAT(16X,I3,9X,I4,9X,I4)
505 FORMAT(2X,I3,4X,F6.4,7X,I4,9X,I4,7X,I4,7X,F10.4)

```

```

506  FORMAT(45X,'TOTAL COST =',F10.4,('F6.4,'))
507  FORMAT(' //,3X,* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT'
& /,15X,'(WHEN LEADTIME = 0)',/15X,* AT ITERATION ',I2,,,
& I6,I7,ITEM',4X,'RHO',4X,'OPT.C',2X,'OPT.S',3X,'EXP.COST')
508  FORMAT(2X,I2,3X,F6.4,4X,I3,4X,I3,4X,F8.4)
509  FORMAT(23X,'TOTAL =',F9.4,('F6.4,'))
END

C      SUBROUTINE POISON (KEY,DLT,Q,SVL,MX,M,MAX,CCDF1)
C
PSO=1-SVL
IF(KEY.EQ.1) THEN
  CALL SERV1(DLT,PSO,MAX,M)
RETURN
END IF
IF(KEY.EQ.2) THEN
  CALL SERV2(Q,DLT,PSO,MAX,M,CCDF1)
RETURN
END IF
END

C      SUBROUTINE MAXD(DLT,MAX)
C
DIMENSION PMF(750)
I=1
PMF(1)=EXP(-DLT)
CDF=PMF(1)
GO TO 2
1  PMF(I)=(DLT/(I-1))*PMF(I-1)
CDF=CDF+PMF(I)
2  IF(CDF.GE.0.9995) GO TO 3
I=I+1
GO TO 1
3  MAX = I+1
RETURN
END

C      SUBROUTINE SERV1(DLT,PSO,MAX,M)
C
DIMENSION PMF(200),CDF(200),CCDF(200)
PMF(1)=EXP(-DLT)
CDF(1)=PMF(1)
CCDF(1)=1-CDF(1)
CALL MAXD(DLT,MAX)
DO 1 I=2,MAX+1
  PMF(I)=(DLT/(I-1))*PMF(I-1)
  CDF(I)=CDF(I-1)+PMF(I)
  CCDF(I)=1-CDF(I)
1  DO 2 I=1,MAX+1
  2  IF(PSO.LT.CCDF(I).AND.PSO.GT.CCDF(I+1))GO TO 3
M=I
RETURN
END

C      SUBROUTINE SERV2(Q,DLT,PSO,MAX,M,CCDF1)
C
DIMENSION PMF(200),CDF(200),CCDF(200)
STON=Q*PSO
PMF(1)=EXP(-DLT)
CDF(1)=PMF(1)
CCDF(1)=1.-CDF(1)
CALL MAXD(DLT,MAX)
DO 1 I=2,MAX+1
  PMF(I)=(DLT/(I-1))*PMF(I-1)
  CDF(I)=CDF(I-1)+PMF(I)
  CCDF(I)=1-CDF(I)
1  CONTINUE
I=0
2  IF(I.EQ.0)THEN

```

```

PST=DLT
ELSE
  PST=DLT-I-DLT*CDF(I)+I*CDF(I+1)
END IF
IF(PST.LT.STON) THEN
  M=I
  CCDF1=CCDF(M+1)
ELSE
  I=I+1
  GO TO 2
END IF
RETURN
END

C
SUBROUTINE LEAD(TLT,ILY)

C
CALL LRND(719325,U,1,1,0)
ILY=2*TLT*U
RETURN
END

C
SUBROUTINE MUST1(R,C,DLT,SVL,MBUY)

DIMENSION PMF(400),CDF(400)
IC=INT(C+.5)
RC=(1./R)**IC
RHS=SVL/(R**IC)
PMF(1)=EXP(-DLT)
IF(PMF(1).LT.1.0E-70) PMF(1)=0.
CDF(1)=PMF(1)
DO 1 I=2,400
  PMF(I)=(DLT/(I-1))*PMF(I-1)
  IF(PMF(I).LT.1.0E-70) PMF(I)=0.
  CDF(I)=CDF(I-1)+PMF(I)
1 CONTINUE
JS=-2
SUM=0.
KF=JS+2
KL=JS+IC
DO 2 IX=KF,KL
  SUM=SUM+PMF(IX+1)*((1/R)**IX)
TEST=RC*CDF(KL+1)-PMF(JS+2)-(R**JS+1)*SUM
IF(TEST.GE.RHS) THEN
  MBUY=JS
ELSE
  JS=JS+1
  GO TO 3
END IF
RETURN
END

C
SUBROUTINE MUST2(R,C,S,DLT,SVL,MBUY)

DIMENSION PMF(400),CDF(400)
IC=INT(C+.5)
RHS=(S-C+R*(1-R**C)/(1-R))*(1-SVL)
PMF(1)=EXP(-DLT)
IF(PMF(1).LT.1.0E-70) PMF(1)=0.
CDF(1)=PMF(1)
DO 1 I=2,400
  PMF(I)=(DLT/(I-1))*PMF(I-1)
  IF(PMF(I).LT.1.0E-70) PMF(I)=0.
  CDF(I)=CDF(I-1)+PMF(I)
1 CONTINUE
JS=-1
SUM=0.
DO 2 IW=JS+1,JS+IC
  IF(IW.LT.1) THEN

```

```

VCDF=0.
IF( IW.EQ.0)VCDF1=CDF(1)
ELSE
  VCDF=CDF(IW)
  VCDF1=CDF(IW+1)
END IF
2  SUM = SUM+(1/R**IW)*(DLT-IW-DLT*VCDF+IW*VCDF1)
IF(JS.LT.1) THEN
  VCDF=0.
  IF( JS.EQ.0)VCDF1=CDF(1)
ELSE
  VCDF=CDF(JS)
  VCDF1=CDF(JS+1)
END IF
TEST=R**C*(DLT-JS-DLT*VCDF+JS*VCDF1)+(1-R)*R***(C+JS)*SUM
IF(TEST.LE.RHS) THEN
  MBUY=JS
ELSE
  JS=JS+1
  GO TO 3
END IF
RETURN
END

C
SUBROUTINE OPTION (ID,LT,KEY,LTT,SVL,MSRCH)
C
  WRITE(6,50)
  READ(5,51) ID
  WRITE(6,53)
  READ(5,51) KEY
  WRITE(6,55)
  READ(5,57) SVL
  WRITE(6,52)
  READ(5,51) LT
  WRITE(6,54)
  READ(5,51) LTT
  WRITE(6,56)
  READ(5,51) MSRCH
  RETURN
C
50  FORMAT('1' , * ENTER OPTION FOR DATA FILE ( 1- 4 ) ! ',/,'
      &DATA1 2 = DATA2 3 =DATA3 4 = DATA4')
51  FORMAT(1I1)
52  FORMAT('1' , * ENTER THE LEADTIME IN MONTH ! ',/,5X, '1 = 1 MONTH
      &',/,'5X,'3 = 3 MONTH',/,'5X,'6 = 6 MONTH')
53  FORMAT('1' , * ENTER OPTION FOR THE METHOD OF SVL. MEASURE ! ',/
      & '1 = PROB. OF NO SHORTAGE PER REPLENISHMENT CYCLE ! ',/,'4X, '2
      &= FRACTION OF DEMAND TO BE SATISFIED DIRECTLY FROM SHELF')
54  FORMAT('1' , * ENTER THE LEADTIME TYPE ! ',/,5X, '1 = CONSTANT
      &',/,'5X,'2 = RANDOM (UNIFORM W/ MEAN)')
55  FORMAT('1' , * ENTER THE DESIRED SERVICE LEVEL ! ',/,'4X, '(SHOULD
      &BE IN THE FORM OF "F4.2" : EX. ; 0.90 OR 0.99 .ETC.))
56  FORMAT('1' , * ENTER OPTION FOR SEARCH METHOD (i-2)! ',/,'
      &MODIFIED SILVER METHOD 2 = HEURISTIC')
57  FORMAT(F4.2)
END

```

-----  
1. INPUT FORMAT  
-----

|     |         |      |       |  |
|-----|---------|------|-------|--|
| 004 | 050.00  | 0.20 |       |  |
| 1   | 290.000 | 6.90 | 10.00 |  |
| 2   | 41.000  | 1.20 | 10.00 |  |
| 3   | 77.000  | 3.90 | 10.00 |  |
| 4   | 122.000 | 2.30 | 10.00 |  |

-----  
2. EXEC PROGRAM  
-----

```
&TRACE OFF
&FN = PARA
&FNO = &CONCAT OF &FN OUTPUT
&TYPE Do you need to compile your program? (Y)
&READ VAR &R_COMPILE
&IF &R_COMPILE NE Y &GOTO -RUN
-H FORTVS &FN
&IF &RC EQ 0 &GOTO -RUN
&TYPE Your program did not compile; check for errors.
&TYPE Do you wish to view the program LISTING file? (Y)
&READ VAR &RESP1
&IF &RESP1 EQ Y BROWSE &FN LISTING A
&TYPE Do you wish to XEDIT the program file? (Y)
&READ VAR &RESP1
&IF &RESP1 NE Y &EXIT 1
&COMMAND XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP2
&IF &RESP2 EQ Y &GOTO -H
&EXIT 1
-RUN
FILEDEF 01 DISK &FN DATA1 A1
FILEDEF 02 DISK &FN DATA2 A1
FILEDEF 03 DISK &FN DATA3 A1
FILEDEF 04 DISK &FN DATA4 A1
FILEDEF 07 DISK &FN OUTPUT A1 (LRECL 133
LOAD &FN (START
&IF &RC EQ 0 &SKIP 9
&TYPE Your program did not run correctly; check for errors.
&TYPE Do you wish to XEDIT the program file? (Y)
&READ VAR &RESP3
&IF &RESP3 NE Y &EXIT 2
&COMMAND XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP4
&IF &RESP4 EQ Y &GOTO -H
&EXIT 2
&TYPE YOUR OUTPUT IS IN THE FILE &FN OUTPUT A
&TYPE Do you wish to BROWSE your output? (Y)
&READ VAR &RESP
&IF &RESP EQ Y &COMMAND BROWSE &FN OUTPUT A
&TYPE Print your output file? (Y)
&READ VAR &RESP7
&IF &RESP7 EQ Y &COMMAND PRINT &FN OUTPUT A
-REDO
&TYPE Do you wish to XEDIT the program file? (Y/N)
&READ VAR &RESP5
&IF &RESP5 EQ Y XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP6
&RESP56 = &CONCAT OF &RESP5 &RESP6
&IF &RESP56 EQ YY &GOTO -H
&IF &RESP6 EQ Y &GOTO -RUN
&EXIT
```

-----  
3. RUN EXAMPLE  
-----

```
para
Do you need to compile your program ? (Y)
Y
VS FORTRAN COMPILER ENTERED. 11:58:02
**MAIN** END OF COMPIRATION 1 ******
**POISON** END OF COMPIRATION 2 *****
**MAXD** END OF COMPIRATION 3 *****
**SERV1** END OF COMPIRATION 4 *****
**SERV2** END OF COMPIRATION 5 *****
**LEAD** END OF COMPIRATION 6 *****
**MUST1** END OF COMPIRATION 7 *****
**MUST2** END OF COMPIRATION 8 *****
**OPTION** END OF COMPIRATION 9 *****
VS FORTRAN COMPILER EXITED. 11:58:10
```

EXECUTION BEGINS...

```
* ENTER OPTION FOR DATA FILE ( 1- 4 ) !
1 = DATA1 2 = DATA2 3 =DATA3 4 = DATA4
1

* ENTER THE LEADTIME IN MONTH !
1 = 1 MONTH
3 = 3 MONTH
6 = 6 MONTH
1

* ENTER OPTION FOR THE METHOD OF SVL. MEASURE !
1 = PROB. OF NO SHORTAGE PER REPLENISHMENT CYCLE
2 = FRACTION OF DEMAND TO BE SATISFIED DIRECTLY FROM SHELF
2

* ENTER THE LEADTIME TYPE !
1 = CONSTANT
2 = RANDOM (UNIFORM W/ MEAN)
1

* ENTER THE DESIRED SERVICE LEVEL !
(SHOULD BE IN THE FORM OF "F4.2" : EX. ; 0.90 OR 0.99 ...ETC.)
0.99

* ENTER OPTION FOR SEARCH METHOD (1-2) !
1 = MODIFIED SILVER METHOD 2 = HEURISTIC
1
YOUR OUTPUT IS IN THE FILE PARA OUTPUT A
Do you wish to BROWSE your output? (Y)
Y
Print your output file? (Y)
N
Do you wish to XEDIT the program file? (Y/N)
N
Do you wish to run the program again? (Y)
N
R; T=1.47/2.39 11:58:39
```

4. OUTPUT 1 ( P2 = 0.99 )

\*\* SELECTED OPTIONS :  
 (\* KEY = 2 \* SVL. = 0.99 \* LEAD TIME TYPE = 1 \* DATA= 1 \* S.METHOD= 1 )

\* KEY= 1 : SVL. BY PROB. OF NO SHORTAGE PER REPLENISHMENT CYCLE  
 2 : SVL. BY FRACT. OF DEMAND TO BE SATISFIED DIRECTLY FROM SHELF  
 \* LTT= 1 : CONSTANT LEADTIME 2 : RANDOM (UNIFORM W/ MEAN)  
 \* DATA=1 : DATA1 2 : DATA2 3 : DATA3 4 : DATA4  
 \* SEARCH METHOD =1 : MODIFIED SILVER METHOD 2 : HEURISTIC

\*\*\* INDEPENDENT ORDER POLICY \*\*\*

| ITEM | LT DEMAND(LT.) | EOQ(N-INT.) | (INTEGER) | REORDER | EXP.                        | TVC(\$) | S/O COST |
|------|----------------|-------------|-----------|---------|-----------------------------|---------|----------|
| 1    | 24.167(0.083)  | 158.800     | 159       | 25      | 220.984                     |         | 1.983    |
| 2    | 3.417(0.083)   | 143.178     | 143       | 3       | 34.383                      |         | 1.882    |
| 3    | 6.417(0.083)   | 108.840     | 109       | 7       | 85.740                      |         | 3.499    |
| 4    | 10.167(0.083)  | 178.399     | 178       | 10      | 82.217                      |         | 1.536    |
|      |                |             |           |         | SUM OF AVG. ANNUAL TVC(\$)= | 423.323 |          |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 1

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9942 | 79    | 146   | 201.8498                 |
| 2    | 0.9272 | 31    | 90    | 21.7035                  |
| 3    | 0.9650 | 27    | 85    | 66.6963                  |
| 4    | 0.9774 | 45    | 138   | 63.6090                  |
|      |        |       |       | TOTAL = 353.8584(0.1641) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 2

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9972 | 84    | 152   | 210.4767                 |
| 2    | 0.9499 | 36    | 97    | 23.4369                  |
| 3    | 0.9768 | 48    | 89    | 70.0377                  |
| 4    | 0.9850 | 71    | 145   | 66.8895                  |
|      |        |       |       | TOTAL = 370.8406(0.1240) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 3

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9973 | 84    | 152   | 210.5555                 |
| 2    | 0.9464 | 36    | 96    | 23.1011                  |
| 3    | 0.9741 | 43    | 88    | 68.8164                  |
| 4    | 0.9835 | 70    | 143   | 65.8678                  |
|      |        |       |       | TOTAL = 368.3406(0.1299) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 4

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9974 | 87    | 152   | 210.8846                 |
| 2    | 0.9469 | 36    | 96    | 23.1429                  |
| 3    | 0.9744 | 43    | 88    | 68.9584                  |
| 4    | 0.9835 | 70    | 143   | 65.9083                  |
|      |        |       |       | TOTAL = 368.8940(0.1286) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 5

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST |
|------|--------|-------|-------|----------|
| 1    | 0.9973 | 87    | 152   | 210.8239 |
| 2    | 0.9467 | 36    | 96    | 23.1271  |
| 3    | 0.9744 | 43    | 88    | 68.9309  |
| 4    | 0.9835 | 70    | 143   | 65.8689  |

TOTAL = 368.7505(0.1289)

\*\* OPTIMAL PAIR (C,S) \*\*

| ITEM | OPT. C | OPT. S |
|------|--------|--------|
| 1    | 87     | 152    |
| 2    | 36     | 96     |
| 3    | 43     | 88     |
| 4    | 70     | 143    |

\*\*\* JOINT ORDER POLICY \*\*\*

| ITEM | RHO    | REORDER | CANBUY | ORDERUP | EXPECTED COST |
|------|--------|---------|--------|---------|---------------|
| 1    | 0.9973 | 25      | 112    | 177     | 211.9739      |
| 2    | 0.9467 | -1      | 35     | 95      | 22.0671       |
| 3    | 0.9744 | 5       | 48     | 93      | 67.8259       |
| 4    | 0.9835 | 7       | 77     | 150     | 64.4122       |

TOTAL COST = 366.2788(0.1348)

-----  
**5. OUTPUT 2 (P1 = 0.95 )**  
-----

\*\* SELECTED OPTIONS :  
(\* KEY = 1 \* SVL. = 0.95 \* LEAD TIME TYPE = 1 \* DATA= 1 \* S.METHOD= 1 )  
\* KEY= 1 : SVL. BY PROB. OF NO SHORTAGE PER REPLENISHMENT CYCLE  
2 : SVL. BY FRACT. OF DEMAND TO BE SATISFIED DIRECTLY FROM SHELF  
\* LTT= 1 : CONSTANT LEADTIME 2 : RANDOM (UNIFORM W/ MEAN)  
\* DATA=1 : DATA1 2 : DATA2 3 : DATA3 4 : DATA4  
\* SEARCH METHOD =1 : MODIFIED SILVER METHOD 2 : HEURISTIC

\*\*\* INDEPENDENT ORDER POLICY \*\*\*

| ITEM | LT DEMAND(LT.) | EOQ(N-INT.) | (INTEGER) | REORDER                     | EXP.    | TVC(\$) | S/O COST |
|------|----------------|-------------|-----------|-----------------------------|---------|---------|----------|
| 1    | 24.167(0.083)  | 158.800     | 159       | 33                          | 232.024 | 15.113  |          |
| 2    | 3.417(0.083)   | 143.178     | 143       | 7                           | 35.343  | 16.762  |          |
| 3    | 6.417(0.083)   | 108.840     | 109       | 11                          | 88.860  | 22.051  |          |
| 4    | 10.167(0.083)  | 178.399     | 178       | 16                          | 84.977  | 13.453  |          |
|      |                |             |           | SUM OF AVG. ANNUAL TVC(\$)= | 441.203 |         |          |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
(WHEN LEADTIME = 0)

\* AT ITERATION : 1

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9942 | 79    | 146   | 201.8498                 |
| 2    | 0.9272 | 31    | 90    | 21.7035                  |
| 3    | 0.9650 | 27    | 85    | 66.6963                  |
| 4    | 0.9774 | 45    | 138   | 63.6090                  |
|      |        |       |       | TOTAL = 353.8584(0.1980) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
(WHEN LEADTIME = 0)

\* AT ITERATION : 2

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9972 | 84    | 152   | 210.4767                 |
| 2    | 0.9499 | 36    | 97    | 23.4369                  |
| 3    | 0.9768 | 48    | 89    | 70.0377                  |
| 4    | 0.9850 | 71    | 145   | 66.8895                  |
|      |        |       |       | TOTAL = 370.8406(0.1595) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
(WHEN LEADTIME = 0)

\* AT ITERATION : 3

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9973 | 84    | 152   | 210.5555                 |
| 2    | 0.9464 | 36    | 96    | 23.1011                  |
| 3    | 0.9741 | 43    | 88    | 68.8164                  |
| 4    | 0.9835 | 70    | 143   | 65.8678                  |
|      |        |       |       | TOTAL = 368.3406(0.1651) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
(WHEN LEADTIME = 0)

\* AT ITERATION : 4

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9974 | 87    | 152   | 210.8846                 |
| 2    | 0.9469 | 36    | 96    | 23.1429                  |
| 3    | 0.9744 | 43    | 88    | 68.9584                  |
| 4    | 0.9835 | 70    | 143   | 65.9083                  |
|      |        |       |       | TOTAL = 368.8940(0.1639) |

\* PARAMETERS & EX.COSTS FOR JOINT REPLENISHMENT  
 (WHEN LEADTIME = 0)

\* AT ITERATION : 5

| ITEM | RHO    | OPT.C | OPT.S | EXP.COST                 |
|------|--------|-------|-------|--------------------------|
| 1    | 0.9973 | 87    | 152   | 210.8239                 |
| 2    | 0.9467 | 36    | 96    | 23.1271                  |
| 3    | 0.9744 | 43    | 88    | 68.9309                  |
| 4    | 0.9835 | 70    | 143   | 65.8689                  |
|      |        |       |       | TOTAL = 368.7505(0.1642) |

\*\* OPTIMAL PAIR (C,S) \*\*

| ITEM | OPT. C | OPT. S |
|------|--------|--------|
| 1    | 87     | 152    |
| 2    | 36     | 96     |
| 3    | 43     | 88     |
| 4    | 70     | 143    |

\*\*\* JOINT ORDER POLICY \*\*\*

| ITEM | RHO    | REORDER | CANBUY | ORDERUP | EXPECTED COST                 |
|------|--------|---------|--------|---------|-------------------------------|
| 1    | 0.9973 | 32      | 119    | 184     | 221.6339                      |
| 2    | 0.9467 | 4       | 40     | 100     | 23.2671                       |
| 3    | 0.9744 | 9       | 52     | 97      | 70.9459                       |
| 4    | 0.9835 | 13      | 83     | 156     | 67.1722                       |
|      |        |         |        |         | TOTAL COST = 383.0190(0.1319) |

## APPENDIX B

### "SIM":PROGRAM TO TEST THE MODEL

#### VARIABLE DEFINITIONS

---

KEY = OPTIONS FOR ORDER POLICY  
 ISTA = OPTIONS FOR START INVENTORY LEVEL  
 IPRINT= OPTIONS FOR PRINTOUT  
 NIT = NO.OF ITEMS IN THE GROUP TO BE EVALUATED  
 NSIM = SIMULATION PERIOD  
 SIMT = SIMULATION INTERVAL TIME (1YEAR)

---

DM = ANNUAL DEMAND RATE  
 ME = ORDER-UP POINT  
 IEO = ECONOMIC ORDER QUANTITY(INTEGER)  
 MC = CAN ORDER POINT (CAN BUY)  
 MR = REORDER POINT(M1=IND.:M2=JOINT)  
 TDA = TIME OF DEMAND OCCURRING TIME  
 TOA = ORDER QTY. ARRIVAL TIME  
 M = INDEX OF EVENT FOR DEMAND OCCURED ITEM  
 IA = INDEX OF EVENT FOR OREDR QTY. ARRIVED ITEM  
 IET = INDEX OF EVENT TYPE  
 CT = MASTER CLOCK TIME IN YRS(THE EARLIEST EVENT OCCURING TIME)  
 DA = TIME INTERVAL BETWEEN 2 SUCCESSIVE DEMANDS  
 ARV = UNIFORM RANDOM VARIABLE FOR LEADTIME WITH MEAN "ULT"  
 ULT = EXPECTED LEADTIME  
 IO = ORDER QTY.  
 IT = INDEX FOR REPLENISH TRIGGER ITEM  
 JT = INDEX FOR JOINT REPLENISHED ITEM  
 IOH = ONHAND INVENTORY  
 IOHS = START LEVEL  
 UOH = UNIT YEARS ONHAND QTY  
 UBO = UNIT YEARS BACKORDER QTY  
 NBO = NO. OF BACKORDERS (QTY.)  
 NTBQ = TOTAL NUMBER OF BACKORDERS  
 BOT = BACKORDER TIME  
 TBOT = TOTAL BACKORDER TIME  
 NOD = TOATL NUMBER OF ORDERS FOR EACH ITEM  
 NDM = TOTAL NUMBER OF DEMANDS FOR EACH ITEM  
 NTDM = TOTAL NUMBER OF DEMANDS DURING TMAX  
 NJTO = NUMBER OF JOINT REPLENISHMENTS

---

UP = UNIT PRICE  
 F = HOLDING COST RATE  
 HC = HOLDING COST  
 OC = ORDER & REVIEW COST  
 OCI = INDIVIDUAL ORDERING COST  
 OCG = JOINT (GROUP) ORDERING COST  
 SCU = BACKORDER COST PER BACKORDER UNIT  
 SCT = BACKORDER COST (TIME DEPENDENT FACTOR)  
 TVC = AVG. ANNUAL TOTAL VARIABLE COSTS

---

DIMENSION ISEED(10),DM(10),MR(10),MC(10),ME(10),IOH(10),ASVL(10),  
 &TDA(100),IT(10,100),JT(10,100),IO(100),DA(100),TOA(100),IEO(10),  
 &H(10),OCI(10),UP(10),SCU(10),SCT(10),F(10),NJTO(100),OCT(100),  
 &UOH(10,100),AUOH(100),UBO(10,100),AUBO(100),NOD(10,100),RB(10,100),  
 &,ANOD(100),NDM(10,100),ANDM(100),NBO(10,100),NTBQ(10,100),KBT(10),  
 &BOT(10,100),TBOT(10,100),FRC(10,100),FRO(10,100),SVL(10,100),  
 &AFRO(100),OC(10,100),AOC(100),COST(10,100),TCOST(100),NTOD(100),  
 &HCOST(10,100),SCOST(10,100),SCTU(10,100),SCTT(10,100),NTDM(100),  
 &AHCOST(100),ASCTU(100),ASCTT(100),ABOT(10),ABOQ(100),ACOST(100);

```

&THCOST(100),TSCTU(100),TSCTT(100),CCTT(100),M1(10),M2(10),
&TUOH(100),TUBO(100),TFRT(10),TFRQ(100),NTDMS(100),NTODS(100),
&ANB(10)
      COMMON ICASE,ISEED,DM,DA,ARV,ULT,I,ISTP,MR,ME,KEY,IEQ

```

```

C   ----- DATA INITIALIZATION -----
C

```

```

SIMT    = 1.
TMAX    = 0.
IC      = 0
ISD     = 293715
CT      = 0.
DT      = 0.
AT      = 0.
K       = 1
N       = 0
TVC     = 0.
NTJTO   = 0
TANDM   = 0.
TANOD   = 0.
TAOC    = 0.
TCST    = 0.
STV     = 0.
ANJ     = 0.

```

```

C   ----- READ PROCESS OPTIONS -----
C

```

```

CALL OPTION(ID,RATE1,RATE2,KEY,LTOPT,NSIM,ISTA,IP)

```

```

C   ----- READ INPUT DATA -----
C

```

```

READ(ID,101)NIT,OCG,ISV,MSV,LT
ULT=LT/12.
DO 401 I=1,NIT
READ(ID,100)DM(I),M1(I),M2(I),MC(I),ME(I),IEQ(I),OCI(I),UP(I),F(I)
IF(KEY.EQ.1)MR(I)=M1(I)
IF(KEY.EQ.2)MR(I)=M2(I)
SCU(I)=RATE1*UP(I)
SCT(I)=RATE2*UP(I)
H(I)=UP(I)*F(I)

```

```

401  CONTINUE

```

```

C
WRITE(7,198)ID,KEY,NSIM,ISTA,IP,LTOPT,MSV,ISV,ULT,LT
C

```

```

DO 1 I=1,NIT
ISEED(I)=ISD+I**3
KBT(I) = 0
ANB(I) = 0.
TFRT(I) = 0.
ABOT(I) = 0.
ASVL(I) = 0.
TOA(I) = 10.**10
TDA(I) = 0.

```

```

1  DO 2 I=1,NIT

```

```

DO 2 J=1,100
DA(J)      = 0.
IQ(J)      = 0.
SVL(I,J)   = 0.
UOH(I,J)   = 0.
TUOH(J)    = 0.
AUOH(J)    = 0.
COST(I,J)  = 0.
TCOST(J)   = 0.
ACOST(J)   = 0.
UBO(I,J)   = 0.
TUBO(J)    = 0.
AUBO(J)    = 0.
NOD(I,J)   = 0.
NTOD(J)    = 0

```

```

NTODS(J)      = 0
ANCD(J)      = 0.
NDM(I,J)      = 0
NTDM(J)       = 0
NTDMS(J)      = 0
ANDM(J)       = 0.
NBO(I,J)      = 0
NTBO(I,J)     = 0
BOT(I,J)      = 0.
TBOT(I,J)     = 0.
ABOO(J)       = 0.
FRO(I,J)      = 0.
FRC(I,J)      = 0.
TFRO(J)       = 0.
AFRO(J)       = 0.
OC(I,J)       = 0.
OCT(J)        = 0.
OCTT(J)       = 0.
AOC(J)        = 0.
NJTO(J)       = 0
HCOST(I,J)    = 0.
THCOST(J)     = 0.
AHCOST(J)     = 0.
SCOST(I,J)    = 0.
SCTU(I,J)     = 0.
TSCTU(J)      = 0.
ASCTU(J)      = 0.
SCTT(I,J)     = 0.
TSCTT(J)      = 0.
ASCCTT(J)     = 0.
KB(I,J)       = 0
IT(I,J)       = 0
JT(I,J)       = 0
2   DO 3 I=1,NIT
     IF(ISTA.EQ.1.AND.KEY.EQ.1)THEN
       IOH(I) = IEQ(I)
     END IF
     IF(ISTA.EQ.1.AND.KEY.EQ.2) THEN
       IOH(I) = ME(I)
     END IF
     IF(ISTA.EQ.2) THEN
       CALL START
       IOH(I)=ISTP
     END IF
3   CONTINUE
C   ---- PRINTOUT INPUT DATA ----
C   DO 4 I=1,NIT
4   WRITE(7,199) I,DM(I),IEQ(I),MR(I),MC(I),ME(I),IOH(I),ULT
     WRITE(7,97)
     DO 5 I=1,NIT
       WRITE(7,98) I,UP(I),F(I),H(I),OCG,OCI(I),SCU(I),SCT(I)
       IC = IC + 1
       IF (IC.GE. 65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
         IC = 0
         WRITE(7,200)
       END IF
5   CONTINUE .
C   ---- START SIMULATION ----
C
C   IF (IP.EQ.1.OR.IP.EQ.2)THEN
     WRITE(7,200)
   END IF
C   DO 777 ITER=1,NSIM
     IF (ITER.GT.1.AND.IP.EQ.1.OR.ITER.GT.1.AND.IP.EQ.2) THEN

```

```

IC = 0
WRITE(7,200)
END IF
TMAX=TMAX+SIMT
C
20 IF(CT.GT.TMAX) GO TO 77
    N = N+1
    JOINT = 0
C
C ----- DETERMINE THE INITIAL DEMAND OCCURANCE TIMES FOR EACH ITEM -----
C
IF(N.LE.1) THEN
    DO 6 I=1,NIT
        ICASE=I
        CALL DEMAND
        TDA(I)=DA(ICASE)
        UOH(I,ITER)=UOH(I,ITER)+IOH(I)*DA(ICASE)
6
C ----- DETERMINE THE EARLIEST EVENT -----
C (DEMAND OCCURED / ORDER PLACED / ORDERED QTY. ARRIVED)
C
IF(TDA(1).LE.TDA(2)) THEN
    TD=TDA(1)
ELSE
    TD=TDA(2)
END IF
DO 7 I=1,NIT
IF(TDA(I).LE.TD) THEN
    TD=TDA(I)
    M=I
END IF
CONTINUE
7
C
IET=0
CT=TDA(M)
IOH(M)=IOH(M)-1
IF(MSV.EQ.1.AND.IOH(M).EQ.-1) KB(M,ITER)=KB(M,ITER)+1
NDM(M,ITER)=NDM(M,ITER)+1
C
C ----- SET NEXT DEMAND OCCURING TIME FOR THE ITEM :'M' -----
C
ICASE=M
CALL DEMAND
TDA(M)=CT+DA(ICASE)
GO TO 90
END IF
C
IF(TDA(1).LE.TDA(2)) THEN
    TD=TDA(1)
ELSE
    TD=TDA(2)
END IF
DO 8 I=1,NIT
IF(TDA(I).LE.TD) THEN
    TD=TDA(I)
    M=I
END IF
CONTINUE
8
C
IF(TOA(1).LE.TOA(2)) THEN
    TA=TOA(1)
ELSE
    TA=TOA(2)
END IF
DO 9 I=1,NIT
IF(TOA(I).LE.TA) THEN
    TA=TOA(I)
    IA=I
END IF

```

```

9      CONTINUE
C
IF(TA.LE.TD)THEN
  GO TO 93
ELSE
  IET=0
  CT=TD
  ICASE=M
  CALL DEMAND
  TDA(M)=CT+DA(ICASE)
  IOH(M)=IOH(M)-1
  IF(MSV.EQ.1.AND.IOH(M).EQ.-1) KB(M,ITER)=KB(M,ITER)+1
  NDM(M,ITER)=NDM(M,ITER)+1
END IF

C
C ---- DETERMINE SHOULD ORDER ----
C
90  IF(IOH(M).GT.MR(M))THEN
    UOH(M,ITER)=UOH(M,ITER)+IOH(M)*DA(M)
    IF(IP.EQ.1)THEN
      WRITE(7,501)CT,IET,M,UOH(M,ITER),(IOH(I),I=1,4)
    END IF
    IF(IP.EQ.2)THEN
      WRITE(7,601)CT,IET,M,UOH(M,ITER),IOH(M)
    END IF
    IC = IC + 1
    IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
      IC = 0
      WRITE(7,200)
    END IF
    GO TO 20
  END IF

C
IF(K.EQ.1)THEN
  IET=1
  K=K+1
  IT(M,K)=M
  IF(IOH(M).LT.0) THEN
    NBO(M,ITER)=-IOH(M)
    IF(KEY.EQ.1) IO(M) = IEQ(M)+NBO(M,ITER)
    IF(KEY.EQ.2) IO(M) = ME(M)+NBO(M,ITER)
    IF(LTOPT.EQ.1)TOA(M) = CT + ULT
    IF(LTOPT.EQ.2)THEN
      CALL ARRIVE
      TOA(M)=CT+ARV
    END IF
    BOT(M,ITER)=TOA(M) - CT
    IF(NBQ(M,ITER).EQ.1)TBOT(M,ITER)=TBOT(M,ITER)+BOT(M,ITER)
    UBO(M,ITER)=UBO(M,ITER)+BOT(M,ITER)
    IF(IP.EQ.1)THEN
      WRITE(7,502)CT,IET,M,NBO(M,ITER),BOT(M,ITER),UBO(M,ITER),
      &           IO(M),TOA(M),(IOH(I),I=1,4)
    END IF
    IF(IP.EQ.2)THEN
      WRITE(7,602)CT,IET,M,NBO(M,ITER),BOT(M,ITER),UBO(M,ITER),
      &           IO(M),TOA(M),IOH(M)
    END IF
    IC = IC + 1
    IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
      IC = 0
      WRITE(7,200)
    END IF
  ELSE
    IF(KEY.EQ.1) IO(M) = IEQ(M)
    IF(KEY.EQ.2) IO(M)=ME(M)-IOH(M)
    IF(LTOPT.EQ.1)TOA(M)=CT+ULT
    IF(LTOPT.EQ.2)THEN
      CALL ARRIVE
      TOA(M)=CT+ARV
    END IF
  END IF

```

```

        END IF
        IF(IP.EQ.1)THEN
          WRITE(7,503)CT,IET,M,IQ(M),TOA(M),(IOH(I),I=1,4)
        END IF
        IF(IP.EQ.2)THEN
          WRITE(7,603)CT,IET,M,IQ(M),TOA(M),IOH(M)
        END IF
        IC = IC + 1
        IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
          IC = 0
          WRITE(7,200)
        END IF
      END IF
      NOD(M,ITER) = NOD(M,ITER)+1
      OC(M,ITER) = OC(M,ITER)+OCG+OCI(M)

C     IF(KEY.EQ.1)GO TO 20
C     IF(KEY.EQ.2)GO TO 92
C   END IF
C
C   ---- DON'T ORDER UNTIL PREVIOUS ORDER ARRIVES ---
C
      IF(M.EQ.IT(M,K))THEN
        IET=0
        IF(IOH(M).LT.0) THEN
          NBO(M,ITER)=-IOH(M)
          BOT(M,ITER)=TOA(M)-CT
          IF(NBO(M,ITER).EQ.1)TBOT(M,ITER)=TBOT(M,ITER)+BOT(M,ITER)
          UBO(M,ITER)=UBO(M,ITER)+BOT(M,ITER)
          IF(IP.EQ.1)THEN
            WRITE(7,504)CT,IET,M,NBO(M,ITER),BOT(M,ITER),UBO(M,ITER),
&                               (IOH(I),I=1,4)
          END IF
          IF(IP.EQ.2)THEN
            WRITE(7,604)CT,IET,M,NBO(M,ITER),BOT(M,ITER),UBO(M,ITER),IOH(M)
          END IF
          IC = IC + 1
          IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
            IC = 0
            WRITE(7,200)
          END IF
        ELSE
          UOH(M,ITER)=UOH(M,ITER)+IOH(M)*DA(M)
          IF(IP.EQ.1)THEN
            WRITE(7,501)CT,IET,M,UOH(M,ITER),(IOH(I),I=1,4)
          END IF
          IF(IP.EQ.2)THEN
            WRITE(7,601)CT,IET,M,UOH(M,ITER),IOH(M)
          END IF
          IC = IC + 1
          IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
            IC = 0
            WRITE(7,200)
          END IF
        END IF
        GO TO 20
      ELSE
        DO 10 J=1,K
        10  IF(IQ(IT(M,J)).GT.0.OR.IQ(JT(M,J)).GT.0)GO TO 92
          IET=1
          K=K+1
          IT(M,K)=M
          IF(IOH(M).LT.0)THEN
            NBO(M,ITER) = -IOH(M)
            IF(KEY.EQ.1)IQ(M) = IEQ(M)+NBO(M,ITER)
            IF(KEY.EQ.2)IQ(M) = ME(M)+NBO(M,ITER)
            IF(LTOPT.EQ.1)TOA(M) = CT + ULT
            IF(LTOPT.EQ.2) THEN

```

```

        CALL ARRIVE
        TOA(M)=CT+ARV
    END IF
    BOT(M,ITER) = TOA(M) - CT
    IF(NBQ(M,ITER).EQ.1)TBOT(M,ITER)=TBOT(M,ITER)+BOT(M,ITER)
    UBO(M,ITER)=UBO(M,ITER)+BOT(M,ITER)
    IF(IP.EQ.1)THEN
        WRITE(7,502)CT,IET,M,NBQ(M,ITER),BOT(M,ITER),UBO(M,ITER),
&           IQ(M),TOA(M),(IOH(I),I=1,4)
    END IF
    IF(IP.EQ.2)THEN
        WRITE(7,602)CT,IET,M,NBQ(M,ITER),BOT(M,ITER),UBO(M,ITER),
&           IQ(M),TOA(M),IOH(M)
    END IF
    IC = IC + 1
    IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
        IC = 0
        WRITE(7,200)
    END IF
    ELSE
        IF(KEY.EQ.1)IO(M)=IEQ(M)
        IF(KEY.EQ.2)IQ(M)=ME(M)-IOH(M)
        IF(LTOPT.EQ.1)TOA(M)=CT+ULT
        IF(LTOPT.EQ.2)THEN
            CALL ARRIVE
            TOA(M)=CT+ARV
        END IF
        IF(IP.EQ.1)THEN
            WRITE(7,503)CT,IET,M,IQ(M),TOA(M),(IOH(I),I=1,4)
        END IF
        IF(IP.EQ.2)THEN
            WRITE(7,603)CT,IET,M,IQ(M),TOA(M),IOH(M)
        END IF
        IC = IC + 1
        IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
            IC = 0
            WRITE(7,200)
        END IF
        END IF
        NOD(M,ITER) = NOD(M,ITER)+1
        OC(M,ITER) = OC(M,ITER)+OCG+OCI(M)
    END IF
    IF(KEY.EQ.1)GO TO 20
C     ---- DETERMINE THE JOINTLY REPLENISHABLE ITEM ----
C
91    DO 11 I=1,NIT
    IF (IOH(I).GT.MR(I).AND.IOH(I).LE.MC(I).AND.IQ(I).EQ.0)THEN
        JT(I,K) = I
        IQ(I) = ME(I)-IOH(I)
        IF(LTOPT.EQ.1)TOA(I)=CT+ULT
        IF(LTOPT.EQ.2)THEN
            CALL ARRIVE
            TOA(I)=CT+ARV
        END IF
        NOD(I,ITER)= NOD(I,ITER)+1
        OC(I,ITER) = OC(I,ITER)+OCI(I)
        JOINT = 1
        IF(IP.EQ.1.OR.IP.EQ.2)THEN
        WRITE(7,506)I,IQ(I),TOA(I)
        END IF
        IC = IC + 1
        IF (IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2) THEN
            IC = 0
            WRITE(7,200)
        END IF
    END IF
    CONTINUE
11    NJTO(ITER) = NJTO(ITER) +JOINT

```

```

92      GO TO 20
      IF( IOH(M).LT.0 ) THEN
        NBO(M,ITER)=-IOH(M)
        UBO(M,ITER)=UBO(M,ITER)+BOT(M,ITER)
        BOT(M,ITER)=TOA(M)-CT
        IF( NBQ(M,ITER).EQ.1 ) TBOT(M,ITER)=TBOT(M,ITER)+BOT(M,ITER)
        IF( IP.EQ.1 ) THEN
          WRITE(7,504) CT,IET,M,NBQ(M,ITER),BOT(M,ITER),UBO(M,ITER),
          & (IOH(I),I=1,4)
        END IF
        IF( IP.EQ.2 ) THEN
          WRITE(7,604) CT,IET,M,NBQ(M,ITER),BOT(M,ITER),UBO(M,ITER),IOH(M)
        END IF
        IC = IC + 1
        IF ( IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2 ) THEN
          IC = 0
          WRITE(7,200)
        END IF
      ELSE
        UOH(M,ITER)=UOH(M,ITER)+IOH(M)*DA(M)
        IF( IP.EQ.1 ) THEN
          WRITE(7,501) CT,IET,M,UOH(M,ITER),(IOH(I),I=1,4)
        END IF
        IF( IP.EQ.2 ) THEN
          WRITE(7,601) CT,IET,M,UOH(M,ITER),IOH(M)
        END IF
        IC = IC + 1
        IF ( IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2 ) THEN
          IC = 0
          WRITE(7,200)
        END IF
      END IF
      GO TO 20.
C
C ----- SET NEW ON HAND LEVEL FOR THE ITEM : 'IA' -----
C
93      CT=TA
      IET=2
      IOH(IA)=IOH(IA)+IQ(IA)
      DO 12 I=1,K
        IF( IA.EQ.IT(IA,I) ) THEN
          IT(IA,I)=0
          IQ(IA)=0
          NTBO(IA,ITER)=NTBQ(IA,ITER)+NBQ(IA,ITER)
          BOT(IA,ITER)=0.
          NBO(IA,ITER)=0
          TOA(IA)=10.**10
        END IF
        IF( IA.EQ.JT(IA,I) ) THEN
          JT(IA,K)=0
          IQ(IA)=0
          NTBO(IA,ITER)=NTBQ(IA,ITER)+NBQ(IA,ITER)
          BOT(IA,ITER)=0.
          NBO(IA,ITER)=0
          TOA(IA)=10.**10
        END IF
      CONTINUE
      12    IF( IP.EQ.1 ) THEN
            WRITE(7,500) CT,IET,IA,(IOH(I),I=1,4)
          END IF
          IF( IP.EQ.2 ) THEN
            WRITE(7,600) CT,IET,IA,IOH(IA)
          END IF
          IC = IC + 1
          IF ( IC.GE.65.AND.IP.EQ.1.OR.IC.GE.65.AND.IP.EQ.2 ) THEN
            IC = 0
            WRITE(7,200)
          END IF
      GO TO 20

```

```

C      ---- COMPUTE INTER-SUMMARY (ANNUAL) ----
C
77    IF(IP.NE.4)THEN
      WRITE(7,300)ITER
      END IF
      DO 15 I=1,NIT
      NNDM(ITER)=NTDM(ITER)+NDM(I,ITER)
      NTOD(ITER)=NTOD(ITER)+NOD(I,ITER)
      OCT(ITER)=OCT(ITER)+OC(I,ITER)
      IF(MSV.EQ.1)THEN
        IF(KB(I,ITER).GT.0)THEN
          FRC(I,ITER)=KB(I,ITER)*1.0/NOD(I,ITER)
        ELSE
          FRC(I,ITER)=0.
        END IF
        SVL(I,ITER)=(1.-FRC(I,ITER))*100.
      ELSE
        IF(NTBO(I,ITER).GT.0)THEN
          FRQ(I,ITER)=NTBO(I,ITER)*1.0/NDM(I,ITER)
        ELSE
          FRQ(I,ITER)=0.
        END IF
        SVL(I,ITER)=(1.-FRQ(I,ITER))*100.
      END IF
15    CONTINUE
      IF(IP.NE.4)THEN
      DO 16 I=1,NIT
        WRITE(7,507)I,NDM(I,ITER),NOD(I,ITER),UOH(I,ITER),UBO(I,ITER),
        &NTBO(I,ITER),TBOT(I,ITER),SVL(I,ITER),IOH(I)
16    CONTINUE
      WRITE(7,508)NTDM(ITER) ,NTOD(ITER)
      WRITE(7,509)NJTO(ITER)
      END IF
C      ---- COMPUTE COSTS ----
C
      DO 17 I=1,NIT
      HCOST(I,ITER)=UOH(I,ITER)*H(I)
      SCTT(I,ITER)=UBO(I,ITER)*(SCT(I)+H(I))
      SCTU(I,ITER)=NTBO(I,ITER)*SCU(I)
      SCOST(I,ITER)=SCTU(I,ITER)+SCTT(I,ITER)
      COST(I,ITER)=HCOST(I,ITER)+SCOST(I,ITER)+OC(I,ITER)
      TCOST(ITER)=TCOST(ITER)+COST(I,ITER)
17    IF(IP.NE.4)THEN
      WRITE(7,514)
      DO 18 I=1,NIT
18    WRITE(7,515) I,HCOST(I,ITER),SCTU(I,ITER),SCTT(I,ITER),
      &OC(I,ITER),COST(I,ITER)
      WRITE(7,516)OCT(ITER),TCOST(ITER)
      END IF
      DO 19 I=1,NIT
19    KBT(I)=KBT(I)+KB(I,ITER)
777  CONTINUE
C      ---- COMPUTE FINAL-RESULTS (MEAN AND STD. DEVIATIONS) ----
C
      WRITE(7,510)NSIM
      DO 21 I=1,NIT
      DO 21 J=1,ITER-1
      NTDMS(I)=NTDMS(I)+NDM(I,J)
      NTODS(I)=NTODS(I)+NOD(I,J)
      TUOH(I)=TUOH(I)+UOH(I,J)
      TUBO(I)=TUBO(I)+UBO(I,J)
      TFRT(I)=TFRT(I)+TBOT(I,J)
      TFRO(I)=TFRO(I)+NTBO(I,J)*1.0
      OCTT(I)=OCTT(I)+OC(I,J)
      THCOST(I)=THCOST(I)+HCOST(I,J)
      TSCTT(I)=TSCTT(I)+SCTT(I,J)

```

```

21    TSCTU(I)=TSCTU(I)+SCTU(I,J)
      DO 22 I=1,NIT
      ANDM(I)=NTDMS(I)/TMAX
      ANOD(I)=NTODS(I)/TMAX
      AUOH(I)=TUOH(I)/TMAX
      AUBO(I)=TUBO(I)/TMAX
      ABOT(I)=TFRT(I)/TMAX
      ABOQ(I)=TFRO(I)/TMAX
      ANB(I)=KBT(I)*1.0/NTODS(I)
      AFRO(I)=TFRO(I)/NTDMS(I)
      IF(MSV.EQ.1) ASVL(I)=(1.-ANB(I))*100.
      IF(MSV.EQ.2) ASVL(I)=(1.-AFRO(I))*100.
      AOC(I)=OCTT(I)/TMAX
      AHCOSt(I)=THCOST(I)/TMAX
      ASCTU(I)=TSCTU(I)/TMAX
      ASCTT(I)=TSCTT(I)/TMAX
      ACOST(I)=AHCOSt(I)+ASCTU(I)+ASCTT(I)+AOC(I)
22    TVC=TVC+ACOST(I)
      DO 23 I=1,ITER-1
23    NTJTO=NTJTO+NJTO(I)
      IF(NTJTO.GT.0)ANJ = NTJTO/TMAX
      DO 24 I=1,ITER-1
24    STV=STV+(TCOST(I)-TVC)**2
      STDVC=SORT(STV/(ITER-2))
      DO 25 I=1,NIT
25    WRITE(7,511)I,ANDM(I),ANOD(I),AUOH(I),AUBO(I),ABOQ(I),ABOT(I),
      &           ASVL(I)
      DO 26 I=1,NIT
      TANDM=TANDM+ANDM(I)
      TANOD=TANOD+ANOD(I)
      TAOC=TAOC+AOC(I)
26    CONTINUE
      WRITE(7,512)TANDM,TANOD
      WRITE(7,513)ANJ
      WRITE(7,517)
      DO 27 I=1,NIT
27    WRITE(7,515) I,AHCOSt(I),ASCTU(I),ASCTT(I),AOC(I),ACOST(I)
      WRITE(7,516)TAOC,TVC
      WRITE(7,518)STDVC
      STOP
97    FORMAT(2X,' / / / / * INPUT DATA FOR COSTS: ',//,' ITEM',2X,'UNIT
      & PRICE',2X,'H.RATE',2X,'H.COST',3X,' ORDER COST',9X,'B/O COST',
      &/,36X,'GROUP',6X,'IND.',4X,'QTY.',5X,'TIME')
98    FORMAT(2X,I2,4X,7(F6.2,3X))
100   FORMAT(F7.3,2X,5(I3,2X),3(F6.2,2X))
101   FORMAT(I3,3X,F6.2,3X,I2,3X,2(I1,3X))
198   FORMAT(/,5X,'* INPUT DATA : ',/,3X,'* USED DATA FILE NO. ='
      &,I3,/,12X,'* ORDER POLICY OPTION =',I3,/,12X,'* SIMIMULATION LIMIT
      &(YRS) =',I3,/,12X,'* START LEVEL OPTION =',I3,/,12X,'* PRINTOUT
      &OPTION =',I3,/,12X,'* LEAD TIME TYPE =',I3,/,12X,/,7X,'* ORDER
      &POLICY OPTIONS',/,10X,'1 : INDIVIDUAL ORDER POLICY',/,10X,'2 : JO
      &INT ORDER POLICY',/,7X,'* START LEVEL OPTIONS',/,10X,'1 : REGULA
      &R (IND. POLICY W/ E.O.Q ; JOINT POLICY W/ ORDER-UP QTY:)',/,10X,
      &2 : RANDOM (REORDER POINT + 1; ORDER-UP POINT)',/,7X,'* PRINTOUT
      &OPTIONS',/,10X,'1 : PRINT ALL ITEM',/,10X,'2 : PRINT ONLY EVENT
      &ITEM',/,10X,'3 : PRINT ONLY SUMMARY',/,10X,'4 : PRINT ONLY FINAL R
      &EULT',/,7X,'* LEAD TIME TYPES',/,10X,'1 : COSTANT LEADTIME',/
      &10X,'2 : RANDOM LEADTIME (UNIFORM W/ MEAN)',/,6X,'* SERVICE LEVEL
      & : P,I1,'=I3,1X,'%',5X,'* AVG. LEAD TIME : ',F6.3,' YRS.',',(
      &I2,' MON.)',/,3X,'ITEM',3X,'YR DEMAND',4X,'EOQ',6X,'MUST BUY',
      &3X,'CAN BUY',3X,'ORD. UP QTY',3X,'START LEVEL',3X,'EXP. LT.')
199   FORMAT(3X,I2,6X,F7.3,5X,4(I3,8X),3X,I3,7X,F7.3)
200   FORMAT('1',/,35X,'* SIMULATION RESULTS **',/,20X,'(EVENT TYPE
      &/,0 : DEMAND OCCURED 1 : ORDER PLACED 2 : ORDER QTY ARRIVED)
      &/,5X,'EVENT',4X,'ITEM #',2X,'BACK ORDER',3X,'UNIT YRS(QTY)',4X,
      &ON ORDER',10X,'ON HAND',9X,'JOINT REPLENISHMENT',/,1X,'TIME',2X,
      &'*TYPE',10X,'QTY.',2X,'TIME',3X,'ON HAND',2X,'B/O.S.',3X,'QTY.',2X,
      &'AR/T.',4X,'1',4X,'2',4X,'3',4X,'4',2X,'ITEM#',2X,'OD. QTY.',2X,'0
      &D.AR/T.')

```

```

300 FORMAT('1' //,20X,'*** INTER - SUMMARY (ANNUAL) ***' //,20X,
&'AT THE YEAR ',2X,I3//,3X,'ITEM #' ,3X,'# DEMANDS' ,3X,'# ORDERS'
&,10X,'UNIT YEAR ',7X,'BACKORDER' ,8X,'SERVICE' ,6X,'F/ OH' //,40X,
&'ON HAND' ,3X,'B/O' ,2X,'QTY.' ,3X,'TIME' ,5X,'LEVEL(%)')
500 FORMAT(' ',F6.4,2X,I2,3X,I2,48X,4(I4,1X))
600 FORMAT(' ',F6.4,2X,I2,3X,I2,54X,I4)
501 FORMAT(' ',F6.4,2X,I2,3X,I2,18X,F8.2,22X,4(I4,1X))
601 FORMAT(' ',F6.4,2X,I2,3X,I2,18X,F8.2,28X,I4)
502 FORMAT(' ',F6.4,2X,I2,3X,I2,5X,I3,3X,F6.3,11X,F6.2,3X,I3,1X,
& F6.3,1X,4(I4,1X))
602 FORMAT(' ',F6.4,2X,I2,3X,I2,5X,I3,3X,F6.3,11X,F6.2,3X,I3,1X,
& F6.3,7X,I4)
503 FORMAT(' ',F6.4,2X,I2,3X,I2,37X,I3,1X,F6.3,1X,4(I4,1X))
603 FORMAT(' ',F6.4,2X,I2,3X,I2,37X,I3,1X,F6.3,7X,I4)
504 FORMAT(' ',F6.4,2X,I2,3X,I2,5X,I3,3X,F6.3,11X,F6.2,14X,4(I4,1X))
604 FORMAT(' ',F6.3,2X,I2,3X,I2,5X,I3,3X,F6.3,11X,F6.2,20X,I4)
506 FORMAT(86X,I2,6X,I3,5X,F6.3)
507 FORMAT(5X,I2,9X,I4,7X,I3,9X,F9.4,2X,F6.3,2X,I3,3X,F6.3,5X,F6.2,
& 9X,I4)
508 FORMAT(1X,'TOTAL =' ,7X,I5,5X,I5)
509 FORMAT(1X,'TOTAL NUMBER OF JOINT REPLENISHMENT =' ,I5)
510 FORMAT('1' //,20X,'** FINAL RESULTS (AVG.) : ' ,10X,'DURING' ,I3,2X,
&'YEARS ***' //,3X,'ITEM #' ,3X,'# DEMANDS' ,3X,'# ORDERS' ,9X,'AVG
& . UNIT YEAR' ,4X,'AVG. B/O' ,5X,'SERVICE' //,40X,
&'ON HAND' ,3X,'B/O.S' ,4X,'QTY.' ,2X,'TIME' ,3X,'LEVEL' ,1,(1,1,1))
511 FORMAT(5X,I2,6X,F6.2,5X,F6.2,10X,F7.3,1X,F7.3,1X,F6.2,2X,F7.3,
&2X,F6.2)
512 FORMAT(1X,'TOTAL AVG.= ' ,F7.2,5X,F6.2)
513 FORMAT(1X,'AVG. NUMBER OF JOINT REPLENISHMENT = ' ,F6.3)
514 FORMAT(1X,/,10X,'* COMPUTED ANNUAL COSTS ($)' //,2X,
&'ITEM' ,3X,'HOLDING' ,9X,'BACKORDER' ,9X,'ORDER' ,6X,'TOTAL' //,22X,'QT
&Y.' ,7X,'TIME')
515 FORMAT(2X,I2,5X,5(F7.3,4X))
516 FORMAT(1X,/,33X,'TOTAL =' ,2(F8.3,3X))
517 FORMAT(1X,/,10X,'* COMPUTED AVG. ANNUAL COSTS ($)' //,2X,
&'ITEM' ,3X,'HOLDING' ,9X,'BACKORDER' ,9X,'ORDER' ,6X,'TOTAL' //,22X,'QT
&Y.' ,7X,'TIME')
518 FORMAT(1X,/,33X,'STAND. DEVIATION = ' ,F8.3)
END

```

C

#### SUBROUTINE DEMAND

C

```

DIMENSION ISEED(10),DM(10),DA(100),MR(10),ME(10),IEQ(10)
COMMON ICASE,ISEED,DM,DA,ARV,ULT,I,ISTP,MR,ME,KEY,IEQ
CALL LRND (ISEED(ICASE),U,1,1,0)
    DA(ICASE)=-(1./DM(ICASE))* ALOG(U)
RETURN
END

```

C

C

#### SUBROUTINE ARRIVE

C

```

DIMENSION ISEED(10),DM(10),DA(100),MR(10),ME(10),IEQ(10)
COMMON ICASE,ISEED,DM,DA,ARV,ULT,I,ISTP,MR,ME,KEY,IEQ
CALL LRND (ISEED(I),U,1,1,0)
ARV= 2.*ULT*U
RETURN
END

```

C

C

#### SUBROUTINE START

C

```

DIMENSION ISEED(10),DM(10),DA(100),MR(10),ME(10),IEQ(10)
COMMON ICASE,ISEED,DM,DA,ARV,ULT,I,ISTP,MR,ME,KEY,IEQ
IF(KEY.EQ.1) THEN
    CALL LRND (ISEED(I),U,1,1,0)
    IS= (IEQ(I)-(MR(I)+1))*U
    ISTP= IS+MR(I)+1
    RETURN

```

```

END IF
IF(KEY.EQ.2) THEN
  CALL LRND(ISEED(I),U,1,1,0)
  IS= (ME(I)-(MR(I)+1))*U
  ISTP= IS+MR(I)+1
  RETURN
END IF
END

C
SUBROUTINE OPTION(ID,RATE1,RATE2,KEY,LTOPT,NSIM,ISTA,IP)

  WRITE(6,35)
  READ(5,34) ID
  WRITE(6,39)
  READ(5,40) RATE1,RATE2
  WRITE(6,31)
  READ(5,34) KEY
  WRITE(6,37)
  READ(5,34) LTOPT
  WRITE(6,36)
  READ(5,30) NSIM
  WRITE(6,32)
  READ(5,34) ISTA
  WRITE(6,33)
  READ(5,34) IP

  RETURN
30  FORMAT(I2)
31  FORMAT('1', * ENTER OPTION FOR ORDER POLICY (1 - 2) ! ! /,5X, '
  &1 = INDIVIDUAL ORDER POLICY ! ! /,5X,'2 = JOINT ORDER POLICY' )
32  FORMAT('1', * ENTER OPTION FOR START LEVEL (1 - 2) ! ! /,5X, '1
  &= REGULAR (IND.ORDER POLICY : E.O.Q / JOINT ORDER POLICY : ORDER U
  &P QTY.) ! ! /,5X,'2 = RANDOM BETWEEN (MUST ORDER LEVEL+1) AND (ORDER
  &UP LEVEL)' )
33  FORMAT('1', * ENTER OPTION FOR PRINTOUT(1 - 4) ! ! /,5X, '1 = PRI
  &NT ALL ITEM ! ! /,5X,'2 = PRINT ONLY EVENT ITEM ! ! ,5X, '3 = PRINT ONL
  &Y SUMMARY ! ! ,5X, '4 = PRINT ONLY FINAL RESULT' )
34  FORMAT(I1)
35  FORMAT('1', * ENTER OPTION FOR DATA FILE (1 - 4) ! ! /
  &5X, '1 = DATA1 ! ! ,3X,'2 = DATA2 ! ! ,3X,'3 = DATA3 ! ! ,3X,'4 = DATA4 ! )
36  FORMAT('1', * ENTER SIMULATION LIMIT YEARS ! ! /,5X, '01 = SIMU
  &LATION LIMIT IS 1 YEAR ! ! /,5X, '02 = SIMULATION LIMIT IS 2 YEARS'
  & ! ! ,7X, '99 = SIMULATION LIMIT IS 99 YEARS')
37  FORMAT('1', * ENTER THE TYPE OF LEADTIME(1 - 2) ! ! /,5X, '1 = CON
  &STANT LEADTIME ! ! ,5X,'2 = RANDOM (UNIFORM WITH MEAN) )
39  FORMAT('1', * ENTER RATE OF STOCKOUT COST TO UNIT PRICE ! ! /,5X
  & '1.25 0.91 = STOCKOUT COST PER UNIT IS 125% OF UNIT PRICE ! ! ,17X,
  & 'STOCKOUT COST PER TIME IS 91% OF UNIT PRICE' )
40  FORMAT(2(F4.2,1X))
END

```

-----  
1. DATA FORMAT ( P2 = 0.99, for items in group 1 )  
-----

|         |        |     |     |     |     |        |        |        |  |
|---------|--------|-----|-----|-----|-----|--------|--------|--------|--|
| 004     | 050.00 | 99  | 2   | 1   |     |        |        |        |  |
| 290.000 | 025    | 025 | 112 | 177 | 159 | 010.00 | 006.90 | 000.20 |  |
| 041.000 | 003    | -1  | 035 | 095 | 143 | 010.00 | 001.20 | 000.20 |  |
| 077.000 | 007    | 005 | 048 | 093 | 109 | 010.00 | 003.90 | 000.20 |  |
| 122.000 | 010    | 007 | 077 | 150 | 178 | 010.00 | 002.30 | 000.20 |  |

-----  
2. EXEC PROGRAM  
-----

```
&TRACE OFF
&FN = SIM
&FNO = &CONCAT OF &FN OUTPUT
&TYPE Do you need to compile your program ? (Y)
&READ VAR &R COMPILE
&IF &R COMPILE NE Y &GOTO -RUN
-H FORTVS &FN
&IF &RC EQ 0 &GOTO -RUN
&TYPE Your program did not compile; check for errors.
&TYPE Do you wish to view the program LISTING file? (Y)
&READ VAR &RESP1
&IF &RESP1 EQ Y BROWSE &FN LISTING A
&TYPE Do you wish to XEDIT the program file? (Y)
&READ VAR &RESP1
&IF &RESP1 NE Y &EXIT 1
&COMMAND XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP2
&IF &RESP2 EQ Y &GOTO -H
&EXIT 1
-RUN
FILEDEF 01 DISK &FN DATA1 A1
FILEDEF 02 DISK &FN DATA2 A1
FILEDEF 03 DISK &FN DATA3 A1
FILEDEF 04 DISK &FN DATA4 A1
FILEDEF 07 DISK &FN OUTPUT A1 (LRECL 133
LOAD &FN (START
&IF &RC EQ 0 &SKIP 9
&TYPE Your program did not run correctly; check for errors.
&TYPE Do you wish to XEDIT the program file? (Y)
&READ VAR &RESP3
&IF &RESP3 NE Y &EXIT 2
&COMMAND XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP4
&IF &RESP4 EQ Y &GOTO -H
&EXIT 2
&TYPE YOUR OUTPUT IS IN THE FILE &FN OUTPUT A
&TYPE Do you wish to BROWSE your output? (Y)
&READ VAR &RESP
&IF &RESP EQ Y &COMMAND BROWSE &FN OUTPUT A
&TYPE Print your output file? (Y)
&READ VAR &RESP7
&IF &RESP7 EQ Y &COMMAND PRINT &FN OUTPUT A
-REDO
&TYPE Do you wish to XEDIT the program file? (Y/N)
&READ VAR &RESP5
&IF &RESP5 EQ Y XEDIT &FN FORTRAN A
&TYPE Do you wish to run the program again? (Y)
&READ VAR &RESP6
&RESP56 = &CONCAT OF &RESP5 &RESP6
&IF &RESP56 EQ YY &GOTO -H
&IF &RESP6 EQ Y &GOTO -RUN
&EXIT
```

-----  
3. RUN EXAMPLE  
-----

sim  
Do you need to compile your program ? (Y)  
Y VS FORTRAN COMPILER ENTERED. 12:11:11  
\*\*MAIN\*\* END OF COMPIRATION 1 \*\*\*\*\*  
\*\*DEMAND\*\* END OF COMPIRATION 2 \*\*\*\*\*  
\*\*ARRIVE\*\* END OF COMPIRATION 3 \*\*\*\*\*  
\*\*START\*\* END OF COMPIRATION 4 \*\*\*\*\*  
\*\*OPTION\*\* END OF COMPIRATION 5 \*\*\*\*\*  
VS FORTRAN COMPILER EXITED. 12:11:23

EXECUTION BEGINS...

\* ENTER OPTION FOR DATA FILE (1 - 4) !  
1 = DATA1 2 = DATA2 3 = DATA3 4 = DATA4  
1  
\* ENTER RATE OF STOCKOUT COST TO UNIT PRICE !  
1.25 0.91 = STOCKOUT COST PER UNIT IS 125% OF UNIT PRICE  
STOCKOUT COST PER TIME IS 91% OF UNIT PRICE  
0.40 0.01  
\* ENTER OPTION FOR ORDER POLICY (1 - 2) !  
1 = INDIVIDUAL ORDER POLICY  
2 = JOINT ORDER POLICY  
1  
\* ENTER THE TYPE OF LEADTIME(1 - 2) !  
1 = CONSTANT LEADTIME  
2 = RANDOM (UNIFORM WITH MEAN)  
1  
\* ENTER SIMULATION LIMIT YEARS !  
01 = SIMULATION LIMIT IS 1 YEAR  
02 = SIMULATION LIMIT IS 2 YEARS  
99 = SIMULATION LIMIT IS 99 YEARS  
50  
\* ENTER OPTION FOR START LEVEL (1 - 2) !  
1 = REGULAR(IND.ORDER POLICY: E.O.Q / JOINT ORDER POLICY: OD.UP QTY.)  
2 = RANDOM BETWEEN (MUST ORDER LEVEL+1) AND (ORDER UP LEVEL)  
2  
\* ENTER OPTION FOR PRINTOUT(1 - 4) !  
1 = PRINT ALL ITEM  
2 = PRINT ONLY EVENT ITEM  
3 = PRINT ONLY SUMMARY  
4 = PRINT ONLY FINAL RESULT  
4  
YOUR OUTPUT IS IN THE FILE SIM OUTPUT A  
Do you wish to BROWSE your output? (Y)  
Y Print your output file? (Y)  
N Do you wish to XEDIT the program file? (Y/N)  
N Do you wish to run the program again? (Y)  
N R; T=4.63/5.82 12:11:54

-----  
4. OUTPUT 1 (individual order policy)  
-----

\*\* INPUT DATA :

\* USED DATA FILE NO. = 1  
\* ORDER POLICY OPTION = 1  
\* SIMIMULATION LIMIT(YRS) = 50  
\* START LEVEL OPTION = 2  
\* PRINTOUT OPTION = 4  
\* LEAD TIME TYPE = 1

\* ORDER POLICY OPTIONS

1 : INDIVIDUAL ORDER POLICY  
2 : JOINT ORDER POLICY

\* START LEVEL OPTIONS

1 : REGULAR (IND. POLICY - E.O.Q ; JOINT POLICY - OD.UP QTY.)  
2 : RANDOM (REORDER POINT + 1; ORDER-UP POINT)

\* PRINTOUT OPTIONS

1 : PRINT ALL ITEM  
2 : PRINT ONLY EVENT ITEM  
3 : PRINT ONLY SUMMARY  
4 : PRINT ONLY FINAL RESULT

\* LEAD TIME TYPES

1 : COSTANT LEADTIME  
2 : RANDOM LEADTIME (UNIFORM W/ MEAN)

\* SERVICE LEVEL: P2= 99 % \* AVG. LEAD TIME: 0.083 YRS.( 1 MON.)

| ITEM | YR DEMAND | EOQ | MUST BUY | CAN BUY | ORD. UP | START | EXP. LT. |
|------|-----------|-----|----------|---------|---------|-------|----------|
| 1    | 290.000   | 159 | 25       | 112     | 177     | 65    | 0.083    |
| 2    | 41.000    | 143 | 3        | 35      | 95      | 45    | 0.083    |
| 3    | 77.000    | 109 | 7        | 48      | 93      | 38    | 0.083    |
| 4    | 122.000   | 178 | 10       | 77      | 150     | 60    | 0.083    |

\* INPUT DATA FOR COSTS:

| ITEM | UNIT PRICE | H.RATE | H.COST | ORDER GROUP | COST IND. | B/O COST QTY. | TIME |
|------|------------|--------|--------|-------------|-----------|---------------|------|
| 1    | 6.90       | 0.20   | 1.38   | 50.00       | 10.00     | 2.76          | 0.07 |
| 2    | 1.20       | 0.20   | 0.24   | 50.00       | 10.00     | 0.48          | 0.01 |
| 3    | 3.90       | 0.20   | 0.78   | 50.00       | 10.00     | 1.56          | 0.04 |
| 4    | 2.30       | 0.20   | 0.46   | 50.00       | 10.00     | 0.92          | 0.02 |

\*\* FINAL RESULTS (AVG.) : DURING 50 YEARS \*\*\*

| ITEM #                 | # DEMANDS | # ORDERS | AVG. UNIT ON HAND | YEAR B/O.S | AVG. QTY. | B/O TIME | SERVICE LEVEL(%) |
|------------------------|-----------|----------|-------------------|------------|-----------|----------|------------------|
| 1                      | 292.24    | 1.84     | 79.151            | 0.025      | 2.92      | 0.009    | 99.00            |
| 2                      | 41.58     | 0.30     | 69.217            | 0.008      | 0.34      | 0.006    | 99.18            |
| 3                      | 77.00     | 0.72     | 54.064            | 0.004      | 0.46      | 0.003    | 99.40            |
| 4                      | 120.50    | 0.68     | 88.760            | 0.014      | 0.84      | 0.006    | 99.30            |
| TOT AVG.,              | 531.32    | 3.54     |                   |            |           |          |                  |
| AVG. NO. OF JOINT REP, | 0.000     |          |                   |            |           |          |                  |

\* COMPUTED AVG. ANNUAL COSTS (\$)

| ITEM | HOLDING | BACKORDER<br>QTY. | TIME  | ORDER              | TOTAL   |
|------|---------|-------------------|-------|--------------------|---------|
| 1    | 109.228 | 8.059             | 0.036 | 110.400            | 227.723 |
| 2    | 16.612  | 0.163             | 0.002 | 18.000             | 34.777  |
| 3    | 42.170  | 0.718             | 0.003 | 43.200             | 86.090  |
| 4    | 40.830  | 0.773             | 0.007 | 40.800             | 82.409  |
|      |         |                   |       | TOTAL = 212.400    | 430.999 |
|      |         |                   |       | STAND. DEVIATION = | 51.942  |

-----  
5. OUTPUT 2 (joint order policy)  
-----

\*\* INPUT DATA :

\* USED DATA FILE NO. = 1  
\* ORDER POLICY OPTION = 2  
\* SIMULATION LIMIT(YRS) = 50  
\* START LEVEL OPTION = 2  
\* PRINTOUT OPTION = 4  
\* LEAD TIME TYPE = 1

\* ORDER POLICY OPTIONS

1 : INDIVIDUAL ORDER POLICY  
2 : JOINT ORDER POLICY

\* START LEVEL OPTIONS

1 : REGULAR (IND. POLICY - E.O.Q ; JOINT POLICY - OD. UP QTY.)  
2 : RANDOM (REORDER POINT + 1; ORDER-UP POINT)

\* PRINTOUT OPTIONS

1 : PRINT ALL ITEM  
2 : PRINT ONLY EVENT ITEM  
3 : PRINT ONLY SUMMARY  
4 : PRINT ONLY FINAL RESULT

\* LEAD TIME TYPES

1 : COSTANT LEADTIME  
2 : RANDOM LEADTIME (UNIFORM W/ MEAN)

\* SERVICE LEVEL: P2= 99 % \* AVG. LEAD TIME: 0.083 YRS.( 1 MON.)

| ITEM | YR DEMAND | E00 | MUST BUY | CAN BUY | ORD. UP | START | EXP. LT. |
|------|-----------|-----|----------|---------|---------|-------|----------|
| 1    | 290.000   | 159 | 25       | 112     | 177     | 71    | 0.083    |
| 2    | 41.000    | 143 | -1       | 35      | 95      | 28    | 0.083    |
| 3    | 77.000    | 109 | 5        | 48      | 93      | 32    | 0.083    |
| 4    | 122.000   | 178 | 7        | 77      | 150     | 50    | 0.083    |

\* INPUT DATA FOR COSTS:

| ITEM | UNIT PRICE | H.RATE | H.COST | ORDER COST  | B/O COST  |
|------|------------|--------|--------|-------------|-----------|
|      |            |        |        | GROUP IND.  | QTY. TIME |
| 1    | 6.90       | 0.20   | 1.38   | 50.00 10.00 | 2.76 0.07 |
| 2    | 1.20       | 0.20   | 0.24   | 50.00 10.00 | 0.48 0.01 |
| 3    | 3.90       | 0.20   | 0.78   | 50.00 10.00 | 1.56 0.04 |
| 4    | 2.30       | 0.20   | 0.46   | 50.00 10.00 | 0.92 0.02 |

\*\* FINAL RESULTS (AVG.) : DURING 50 YEARS \*\*\*

| ITEM #                 | # DEMANDS | # ORDERS | AVG. UNIT YEAR | AVG. B/O   | SERVICE      |
|------------------------|-----------|----------|----------------|------------|--------------|
|                        |           | ON HAND  | B/O.S          | QTY. TIME  | LEVEL(%)     |
| 1                      | 292.24    | 1.94     | 75.843         | 0.021 2.56 | 0.007 99.12  |
| 2                      | 41.58     | 0.60     | 56.035         | 0.000 0.00 | 0.000 100.00 |
| 3                      | 77.00     | 1.18     | 51.541         | 0.001 0.04 | 0.001 99.95  |
| 4                      | 120.50    | 1.06     | 80.055         | 0.003 0.30 | 0.001 99.75  |
| TOT AVG.,              | 531.32    | 4.78     |                |            |              |
| AVG. NO. OF JOINT REP, | 1.620     |          |                |            |              |

\* COMPUTED AVG. ANNUAL COSTS (\$)

| ITEM | HOLDING | BACKORDER<br>OTY. | TIME               | ORDER   | TOTAL   |
|------|---------|-------------------|--------------------|---------|---------|
| 1    | 104.663 | 7.066             | 0.030              | 113.400 | 225.159 |
| 2    | 13.448  | 0.000             | 0.000              | 6.000   | 19.448  |
| 3    | 40.202  | 0.062             | 0.001              | 12.800  | 53.065  |
| 4    | 36.825  | 0.276             | 0.001              | 13.600  | 50.703  |
|      |         |                   | TOTAL =            | 145.800 | 348.375 |
|      |         |                   | STAND. DEVIATION = |         | 21.055  |

## LIST OF REFERENCES

1. Ignall, Edward, "Optimal Continuous review Policies for Two Product Inventory Systems with Joint setup costs." *Management Science* Vol. 15, NO. 5, 1969.
2. Baltify, Joseph L., "On a Basic Class of Multi-Item Inventory Problems." *Management Science* Vol. 10, NO. 2, 1964.
3. Silver, Edward A., "A control System for Coordinated Inventory Replenishment." *Int. J. Prod. Res.* Vol. 12, NO. 6, 1974.
4. Schaack, J. P., and Silver, Edward A., "A Procedure, Inventory Simulation, for Selecting the Control Variables of an (S,c,s) Joint Ordering Strategy." *Infor* Vol. 10, NO. 2, June 1972.
5. Hadley, G. and Whitin, T. M., *Analysis of Inventory Systems*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
6. Johnson, Lynwood A. and Montgomery Douglas C., *Operations Research in Production Planning, Scheduling, and Inventory Control*, John Wiley & Sons, 1975.
7. Buchan, J., and Koenigsberg, E., *Scientific Inventory Management*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963.
8. Tersine, Richard J., *Principles of Inventory and Materials Management*, North-Holland, 1982.
9. Silver, Edward A., and Wilson, T. G., "Cost Penalties of Simplified Procedures for Selecting Reorder Points and Order Quantities." *Proceedings of 15th Annual International Conference of the American Production and Inventory Control Society* 219, 1972.
10. Silver, Edward A., "Three Ways of Obtaining The Average Cost Expression in a Problem Related to Joint Replenishment Inventory Control." *Nav. Res. Logist. Q.*, Vol. 20, 1972.
11. Taylor, Howard M. and Karlin, Samuel, *An Introduction to Stochastic Modeling*, Academic Press, Inc., 1984.
12. Graves, Stephen C., "The Application of Queueing Theory to Continious perishable Inventory Systems." *Management Science* Vol. 28, NO. 4, 1982.
13. Morgan, Byron J. T., *Elements of Simulation*, Chapman and Hall, 1984.

## INITIAL DISTRIBUTION LIST

|                                                                                                                                                  | No. Copies |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1. Defense Technical Information Center<br>Cameron Station<br>Alexandria, Virginia 22304-6145                                                    | 2          |
| 2. Library, Code 0142<br>Naval Postgraduate School<br>Monterey, California 93943-5002                                                            | 2          |
| 3. Professor Francis R. Richards, Code 55Rh<br>Department of Operations Research<br>Naval Postgraduate School<br>Monterey, California 93943-5000 | 1          |
| 4. Professor James D. Esary Code 55Ey<br>Department of Operations Research<br>Naval Postgraduate School<br>Monterey, California 93943-5000       | 1          |
| 5. Professor Peter Purdue, Code 55<br>Department of Operations Research<br>Naval Postgraduate School<br>Monterey, California 93943-5000          | 1          |
| 6. ADCNO for Education & Training Division<br>P.O.Box 201-17<br>Youngdeongpo Gu Singil 7 Dong<br>Seoul Korea                                     | 2          |
| 7. Choi, seok c.<br>1103 Sonoma Ave. APT. #3<br>Seaside, California 93955                                                                        | 1          |
| 8. Professor Baek, Jong Hyun<br>Sin-Soo Dong 1<br>So-Gang university<br>121 Ma-Po Gu,<br>Seoul Korea                                             | 2          |
| 9. Kim, Won Bong<br>Sin-Rim 11 Dong 746-43<br>Gun-Young APT. Ga Dong 409 Ho<br>152 Young-Dung-Po Gu,<br>Seoul Korea                              | 12         |



A hand-drawn sketch of the word "Dotic". The letters are formed by simple outlines. The 'D' is a large circle with a vertical stroke through it. The 'o' is a smaller circle. The 't' is a vertical line with a diagonal cross. The 'i' has a single vertical line with a small crossbar near the top. The 'c' is a large, rounded oval.