1/8
ANTENNA PERFORMANCE
8x8 ARRAY

FIG. 1

FIG. 3

ABOVE: DETAIL OF SYNC DETECT AND DEMOD UNITS (BLOCK 5 IN FIG. 2)

FIG. 4

BELOW: DETAIL OF CHANNEL PROCESSORS (BLOCK 9 IN FIG. 2)

FIG. 5

--DEPENDING ON CHANNEL (SEE FIG. 2)

FIG. 6

STEP	WHERE	ACTION	SIGNAL PROCESS
1	AUDIO PROCESSOR	DIGITIZE AUDIO SOURCE	SAMPLING TO 22.05-kHz AUDIO @ NYQUIST RATE (44.1- kHz RATE)
2	AUDIO PROCESSOR	DIGITIZE AUDIO SOURCE	QUANTIZATION: 16 BITS PER SAMPLE (65,536 LEVELS)
3	AUDIO PROCESSOR	COMPRESS AUDIO	MPEG-4 ADVANCED AUDIO CODING (AAC) (INCORPORATES HUFFMAN CODING, UNEQUAL ERROR PROTECTION (UEP)) 24-kbps PER HIGH QUALITY (4.2 ON SCALE OF 5) MUSIC CHANNEL
4	AUDIO PROCESSOR	(BASE-BAND)	USE ADAPTIVE TRANSFORM FREQUENCY DOMAIN CODING, FLOATING POINT TO EMPHASIZE PRIMARY AUDIO COMPONENTS > BLOCKED PACKETS
5	AUDIO PROCESSOR	ADD SPEECH CHANNELS	NARROWBAND CODE EXCITED LINEAR PREDICTION (CELP) CODING: 6 TO 8- kbps PER CHANNEL (3 TO 4 CHANNELS IN LIEU OF ONE MUSIC CHANNEL)
6	AUDIO PROCESSOR	ADD NON- AUDIO DIGITAL CHANNELS	VARIABLE SIZE CHANNELS (RATES) CARRYING BROADCAST DIGITAL DATA
7	AUDIO PROCESSOR	ADD RECEIVER CONTROL CHANNEL	24- kbps CHANNEL ALLOCATED PER TRANSPONDER FOR CONTROL INFORMATION
8	UPLINK PROCESSOR	CHANNEL CODING	FORWARD ERROR CORRECTION (FEC); RECURSIVE, SYSTEMATIC, CONVOLUTIONAL (RSC) TURBO CODE, RATE 1/4, LENGTH 15, DESIGN FOR 10-5 BER, PARALLEL CONCATENATED CONVOLUTIONAL CODES (PCCC)
9	UPLINK PROCESSOR	CHANNEL CODING	USE PUNCTURED CONVOLUTIONAL CODING TO PERMIT EQUAL ERROR PROTECTION (EEP) & UNEQUAL ERROR PROTECTION (UEP)
10	UPLINK PROCESSOR	CHANNEL CODING	UPLINK BLOCK LENGTH DYNAMICALLY ADAPTED
11	UPLINK PROCESSOR	SIGNAL SPREADING	DIRECT SEQUENCE SPREAD SPECTRUM CODE DIVISION MULTIPLE ACCESS (DSSS CDMA) - SPREAD EACH CHANNEL TO 36-MHz

(TABLE CONTINUED ON NEXT SHEET)

FIG. 7A

STEP	WHERE	ACTION	SIGNAL PROCESS
12	UPLINK	CHANNEL	COMBINE WITH OTHER CHANNELS - NUMBER
	PROCESSOR	COMBINING	OF CHANNELS DETERMINED BY SAT EIRP,
			USER ANTENNA SIZE
13	UPLINK	MODULATE	MODULATE UPLINK CARRIER – BINARY PHASE
	PROCESSOR	UPLINK	SHIFT KEY (BPSK)
14	UPLINK	ADD SYNC	ADD PILOT TONE (CENTER FREQ)
	PROCESSOR	TONE	
15	UPLINK	UPLINK	TRANSMIT TO SPACECRAFT
	TRANSMITTER		OD A CEODA ET TRANSPONDER TURNAROUND
16	S/C TRANS-	RECEIVE,	SPACECRAFT TRANSPONDER TURNAROUND
	PONDER	TURN-	
4=	0/0 704110	AROUND	37 – 42 dBw EIRP
17	S/C TRANS-	RE-TRANSMIT	37 - 42 dbw EIRP
10-	PONDER	DECENT	RECEIVER ANTENNA RECEIVE PILOT TONE,
18	RECEIVER	RECEIVE SIGNAL	PHASE ANTENNA
<u> </u>	ANTENNA RECEIVER	DETECT,	DETECT SIGNAL PHASE, SYNCHRONIZE
19	ANTENNA	SYNCHRO-	RECEIVER CLOCK, ACTIVE CARRIER TRACKING
	ANTENNA		(CRITICAL STEP)
	1	SIGNAL	(Oranione orein)
20	RECEIVER	DOWN-	DOWNCONVERT SIGNAL TO
-	ANTENNA	CONVERT	70 MHz IF
21	RECEIVER	BIT	SYNCHRONIZE BIT STREAM TO
		SYNCHRO-	ENABLE SIGNAL DETECTION
		NIZATION	AND DECODING
22	RECEIVER	DECODE	MAXIMUM A POSTERIORI ALGORITHM (MAP)
		SIGNAL	DECODING
23	RECEIVER	DECODE	DETECT DESIRED CHANNEL—SPECIFIC CDMA
		SIGNAL	CODE
24	RECEIVER	DECODE	USE BACKWARD ADAPTIVE BIT ALLOCATION
		SIGNAL	
25	RECEIVER	DECODE	RECONSTRUCT COMPRESSED AUDIO SIGNAL
		SIGNAL	
26	RECEIVER	DECOM-	EXPAND TO UNCOMPRESSED AUDIO
		PRESS	
27	RECEIVER	D – A CON-	DIGITAL TO ANALOGUE CONVERSION
		VERSION	Land Di Aven di Overni
28	RECEIVER	PLAYBACK	FEED PLAYBACK SYSTEM
29	RECEIVER	ANCILLARY	VERIFY AUTHORIZATION TO RECEIVE DESIRED
		FUNCTIONS	CHANNEL

(TABLE CONCLUDED ON NEXT SHEET)

FIG. 7B

STEP	WHERE	ACTION	SIGNAL PROCESS
30	RECEIVER	ANCILLARY FUNCTIONS	IDENTIFY INTELLECTUAL PROPERTY RIGHTS
31	RECEIVER	ANCILLARY FUNCTIONS	STRIP AND DISPLAY ANCILLARY CHANNEL INFORMATION
32	RECEIVER	ANCILLARY FUNCTIONS	DETERMINE IF WARNING CHANNEL SHOULD PRE-EMPT

(END OF TABLE)

FIG. 7C