COMPUTER VISION 2018 - 2019 > OPTICAL FLOW

UTRECHT UNIVERSITY RONALD POPPF

OUTLINE

Optical flow

- Lucas-Kanade
- Horn-Schunck
- Deepflow

Applications of optical flow

- Optical flow tracking
- Histograms of oriented flow

OPTICAL FLOW

OPTICAL FLOW

The process of estimating the motion field (the trajectory of points) from time-varying image intensity (video)

Or: mapping pixels from one frame to another

OPTICAL FLOW²

For each pixel, we want to know its location in the next frame

Can be described as a vector:

- Length (amount of movement)
- Direction of movement

Can be color-coded

OPTICAL FLOW³

Example: motion in video (Brox et al., PAMI 2011)

http://lmb.informatik.uni-freiburg.de/people/brox/demos.html

OPTICAL FLOW⁴

Example: motion in video (Brox et al., PAMI 2011)

http://lmb.informatik.uni-freiburg.de/people/brox/demos.html

OPTICAL FLOW⁵

Example: motion in video (Brox et al., PAMI 2011)

http://lmb.informatik.uni-freiburg.de/people/brox/demos.html

OPTICAL FLOW⁶

Optical flow is due to:

- Object motion
- Camera motion
- Variations in intensity

APPLICATIONS

Tracking

Estimate depth from flow

- Background subtraction
- Object detection

Image stabilization
Activity recognition

left leg kicking

ball moving up

leg retraction

ball coming down

BASIC IDEA

For now, we assume two subsequent frames in a video

Basic idea:

- For each pixel, determine where it is in the next frame
- We call this dense optical flow

Can be done based on differential technique:

- Lucas-Kanade
- Horn-Schunck

Can be done based on matching patches: Deepflow

DIFFERENTIAL TECHNIQUE

ASSUMPTION

Formally:

- (x, y, t) is a pixel (x, y) at time t
- *I*(*x*, *y*, *t*) the pixel value (intensity)

When analyzing image motion, we use an important assumption based on object appearance:

- The intensity of the pixel under motion does not change
- Brightness constancy assumption (BCA)
- I(x + dx, y + dy, t + dt) = I(x, y, t)

ASSUMPTION²

An image is a 2D projection of a 3D scene!

The intensity-constant assumption is typically true for:

- Short-time movement
- Movement paralel to the image plane (in-plane or 2D motion)

But less so for:

- Out-of-plane movement (out-of-plane rotation)
- At "depth borders"
- Occlusions

Discontinuities at the boundaries!

ASSUMPTION³

Example video: Garden sequence

http://persci.mit.edu/demos/jwang/garden-layer/orig-seq.html

ASSUMPTION⁴

FORMULATION

Consider a pixel (x,y) at time t with intensity I(x, y, t)

At t+dt, the pixel has moved with (dx,dy): (x+dx, y+dy, t+dt)

- We use u and v to denote dx/dt and dy/dt
- Vector (u,v) is the apparent 2D motion of the pixel (optical flow)
- We are interested in finding the (u,v) for each pixel

To find the optical flow for an image, we need to find the most likely values of (u,v) for each pixel

FORMULATION²

Question: what are the (u,v) vectors to go from:

- Frame 1 to frame 2
 - Answer: (2, 0)
- Frame 2 to frame 3
 - Answer: (1, 1)

FORMULATION³

Example: J(x,y) = I(x + u(x, y), y + v(x, y))

- I(1, 3) = 9
- $\mathbf{u}(1, 3) = 3, \mathbf{v}(1, 3) = 0$
- J(1, 3) = I(1 + u(1, 3), 3 + v(1, 3)) = I(4, 3) = 12

1	2	3	4
5	6	7	8
9	10	11	12
15	16	13	14

5	6	7	8
1	2	3	4
12	11	10	9
13	14	15	16

0	0	0	0
0	0	0	0
3	1	-1	-3
2	2	-2	-2

1	1	1	1
-1	-1	-1	-1
0	0	0	0
0	0	0	0

Ι

u

FORMULATION⁴

Intensity-assumption: I(x, y, t) = I(x + dx, y + dy, t + dt)

For a constant intensity (pixel does not change value):

•
$$\frac{dI}{dt} = \frac{dI(x,y,t)}{dt} = 0$$

We will use Taylor series expansion:

- $I(x + \Delta) = I(x) + \Delta I'(x) + \frac{1}{2}\Delta^2 I''(x) + \frac{1}{3}\Delta^3 I'''(x) \dots$
- Same for y and t

FORMULATION⁵

With Taylor expansion (only 1st derivative), this becomes:

•
$$I(x + dx, y + dy + t + dt) = I(x, y, t) + \frac{\partial Idx}{\partial x} + \frac{\partial Idy}{\partial y} + \frac{\partial Idt}{\partial t}$$

Linearized BCA

And its derivative to t:
$$\frac{\partial Idx}{\partial xdt} + \frac{\partial Idy}{\partial vdt} + \frac{\partial I}{\partial t} = 0$$

Substituting with u and v:

•
$$u = \frac{dx}{dt}, v = \frac{dy}{dt}$$

•
$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

FORMULATION⁶

Again:
$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

For convenience, we write:

- $f_x = \frac{\partial I}{\partial x}$, $f_y = \frac{\partial I}{\partial y}$ and $f_t = \frac{\partial I}{\partial t}$
- So: $f_x u + f_y v = -f_t$
- f_x and f_y can be measured from the image → they are the gradients in xand y-direction!
- Apply derivative masks to first and second frame:

•
$$x: \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $y: \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$, $t(1^{st}): \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$, $(2^{nd}) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (Roberts)

ERROR FUNCTION

We have to estimate (u,v) for each pixel

How to know what a good estimate is?

Remember the intensity-constancy assumption:

Pixels are not supposed to change in intensity

The "cost" of moving a pixel to a new location:

•
$$Err(u, v) = (f_x u + f_y v + f_t)^2$$

ISSUE

For each pixel, we have equation $f_x u + f_y v = -f_t$

Optical flow:

- u and v need to be estimated
- Two unknowns, one equation → problem!

ISSUE²

ISSUE³

ISSUE⁴

ISSUE⁵

ISSUE⁶

ISSUE⁷

ISSUE⁸

ISSUE⁹

ISSUE¹⁰

ISSUE¹¹

Within the view, we cannot determine the true movement

ISSUE¹²

ISSUE¹³

Animations!

http://web.mit.edu/persci/demos/Motion&Form/demos/two-squares/two-squares.html

ISSUE¹³

So we need more equations to estimate the optical flow (u,v) for each pixel

- Aperture problem when f_x and/or f_y are zero (even areas/edges) because of $f_x u + f_y v = -f_t$
- So we need contrast in both horizontal and vertical direction
- Ideally, we include a corner to be sure about the estimate

Two options:

- Look at motion in small region: Lucas-Kanade
- Introduce additional constraints: Horn-Schunck

LUCAS-KANADE

LUCAS-KANADE

Basic idea:

- Assume that neighboring pixels have same optical flow
- Consider a small window around a pixel
- More equations with the same two unknowns → solvable!

Formally:

• For each pixel *i* in window *W*, we have: $f_{x_i}u + f_{y_i}v = -f_{t_i}$

• Written in matrix form:
$$\begin{bmatrix} f_{x_1} & f_{y_1} \\ \vdots & \vdots \\ f_{x_n} & f_{y_n} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -f_{t_1} \\ \vdots \\ -f_{t_n} \end{bmatrix}$$

• n: the number of pixels in the window (e.g., $W=5x5 \rightarrow n=25$)

LUCAS-KANADE²

So we have a series of equations:

$$\bullet \begin{bmatrix} f_{x_1} & f_{y_1} \\ \vdots & \vdots \\ f_{x_n} & f_{y_n} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -f_{t_i} \\ \vdots \\ -f_{t_i} \end{bmatrix}$$

Over-complete system!

Recall our error term:

- $Err(u, v) = (f_x u + f_y v + f_t)^2$
- Adapted for windows: $Err(u, v) = \sum_{i} (f_{x_i}u + f_{y_i}v + f_{t_i})^2$
- We want to find optical flow (u,v) for which the sum of pixel intensity differences is smallest \rightarrow minimize the error

LUCAS-KANADE³

We want to minimize this error:

- $Err(u, v) = \sum_{i} (f_{x_i}u + f_{y_i}v + f_{t_i})^2$
- Typical solution: solve for u and v separately by setting their partial derivatives to zero
- Use chain rule $(\frac{dx^2}{dx} = 2x, \frac{df^2}{dx} = 2f * \frac{df}{dx})$:
- $\frac{\partial Err(u,v)}{\partial u} = \sum_{i} 2(f_{x_i}u + f_{y_i}v + f_{t_i})f_{x_i} = 0$ and
- $\frac{\partial Err(u,v)}{\partial v} = \sum_{i} 2(f_{x_i}u + f_{y_i}v + f_{t_i})f_{y_i} = 0$
- The 2 term can be dropped (it is a constant)

LUCAS-KANADE⁴

We can write:

- $\sum_{i} (f_{x_i} u + f_{y_i} v + f_{t_i}) f_{y_i} = 0$

As:

- $\sum_{i} f_{x_i} f_{y_i} u + \sum_{i} f_{y_i}^2 v = -\sum_{i} f_{y_i} f_{t_i}$

And in matrix form:

$$\begin{bmatrix} \sum_{i} f_{x_{i}}^{2} & \sum_{i} f_{x_{i}} f_{y_{i}} \\ \sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{y_{i}}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$

LUCAS-KANADE⁵

With the same analogy as:

- $AA^{-1} = A^{-1}A = I$
- We can pre-multiply both sides of:

•
$$\begin{bmatrix} \sum_{i} f_{x_{i}}^{2} & \sum_{i} f_{x_{i}} f_{y_{i}} \\ \sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{y_{i}}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$
 with the inverse:

•
$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \sum_{i} f_{x_{i}}^{2} & \sum_{i} f_{x_{i}} f_{y_{i}} \\ \sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{y_{i}}^{2} \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$
, which gives us:

•
$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\sum_{i} f_{x_{i}}^{2} \sum_{i} f_{y_{i}}^{2} - (\sum_{i} f_{x_{i}} f_{y_{i}})^{2}} \begin{bmatrix} \sum_{i} f_{y_{i}}^{2} & -\sum_{i} f_{x_{i}} f_{y_{i}} \\ -\sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{x_{i}}^{2} \end{bmatrix} \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$

LUCAS-KANADE⁶

From:

•
$$\begin{bmatrix} u \\ v \end{bmatrix} = \frac{1}{\sum_{i} f_{x_{i}}^{2} \sum_{i} f_{y_{i}}^{2} - \left(\sum_{i} f_{x_{i}} f_{y_{i}}\right)^{2}} \begin{bmatrix} \sum_{i} f_{y_{i}}^{2} & -\sum_{i} f_{x_{i}} f_{y_{i}} \\ -\sum_{i} f_{x_{i}} f_{y_{i}} & \sum_{i} f_{x_{i}}^{2} \end{bmatrix} \begin{bmatrix} -\sum_{i} f_{x_{i}} f_{t_{i}} \\ -\sum_{i} f_{y_{i}} f_{t_{i}} \end{bmatrix}$$

Eventually, we can calculate the optical flow in both the u and v direction:

•
$$u = \frac{-\sum_{i} f_{y_{i}}^{2} \sum_{i} f_{x_{i}} f_{t} + \sum_{i} f_{x_{i}} f_{y_{i}} \sum_{i} f_{y_{i}} f_{t_{i}}}{\sum_{i} f_{x_{i}}^{2} \sum_{i} f_{y_{i}}^{2} - (\sum_{i} f_{x_{i}} f_{y_{i}})^{2}}$$

•
$$v = \frac{\sum_{i} f_{x_{i}} f_{t} \sum_{i} f_{x_{i}} f_{y_{i}} - \sum_{i} f_{x_{i}}^{2} \sum_{i} f_{y_{i}} f_{t_{i}}}{\sum_{i} f_{x_{i}}^{2} \sum_{i} f_{y_{i}}^{2} - (\sum_{i} f_{x_{i}} f_{y_{i}})^{2}}$$

LUCAS-KANADE⁷

We could also calculate this directly:

$$\bullet \begin{bmatrix} f_{x_1} & f_{y_1} \\ \vdots & \vdots \\ f_{x_n} & f_{y_n} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} -f_{t_i} \\ \vdots \\ -f_{t_i} \end{bmatrix}$$

•
$$\mathbf{B}[u \quad v]^T = \mathbf{C}$$
, with $\mathbf{B} = \begin{bmatrix} f_{x_1} & f_{y_1} \\ \vdots & \vdots \\ f_{x_n} & f_{y_n} \end{bmatrix}$ and $\mathbf{C} = \begin{bmatrix} -f_{t_i} \\ \vdots \\ -f_{t_i} \end{bmatrix}$

- $[u \quad v]^T = (\boldsymbol{B}^T \boldsymbol{B})^{-1} \boldsymbol{B}^T \boldsymbol{C}$
- $(B^TB)^{-1}$ is the pseudo-inverse

Reworking the right-hand-side will result in the same equations

LUCAS-KANADE⁸

Lucas-Kanade in practice uses small windows:

- 3x3 or 5x5
- Cannot cope with larger movements (outside the window)

For example:

- With a 5x5 window, u and v cannot be larger than 2 in any direction
- When the movement is larger, the results are unstable → the best optical flow estimate is out of reach

Solution:

Use pyramids (recall SIFT lecture)

LUCAS-KANADE⁹

LUCAS-KANADE¹⁰

Without pyramids: unstable results with larger motion

LUCAS-KANADE¹¹

Application of pyramids: resolution is much lower

LUCAS-KANADE¹²

With pyramids: stable results with larger motion

LUCAS-KANADE¹³

Some of the properties of Lucas-Kanade:

- Depends on image gradients (f_x and f_y)
- For uniform colors $\rightarrow f_x = f_y = 0$, optical flow is not defined
- Fast!

Usually applied for each pixel: dense optical flow estimation

Can also be applied only around corners (similar to SIFT) → sparse result

Noise has large effect on gradient, so also on optical flow estimation

Can be reduced by applying a Gaussian filter

QUESTIONS?

HORN-SCHUNCK

HORN-SCHUNCK

Instead of using a window of pixels, Horn-Schunck optical flow estimation uses a smoothness constraint:

• Smaller values of *u* and *v* are favored over larger ones

HORN-SCHUNCK²

Original error function:

• $Err(u, v) = (f_x u + f_y v + f_t)^2$

Error function in Horn-Schunck:

- $Err(u,v) = \iint (f_x u + f_y v + f_t)^2 + \lambda ((\nabla u)^2 + (\nabla v)^2) dx dy$
- With ∇ the del operator: $\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots \frac{\partial}{\partial x_n}\right)$ (vector of partial derivatives to each variable)

HORN-SCHUNCK³

Horn-Schunck error function:

•
$$Err(u,v) = \iint (f_x u + f_y v + f_t)^2 + \lambda ((\nabla u)^2 + (\nabla v)^2) dx dy$$
Intensity assumption Smoothness term
Weighting factor

Again, we want to minimize (u, v) to have the lowest error

We are searching for (u, v) that:

- · Follows the intensity assumption, and
- Minimizes the estimated motion
- Global estimation (hence the integrals)

HORN-SCHUNCK⁴

Properties of Horn-Schunck optical flow:

- Smooth flow (no "jumps") owing to the smoothness constraints
- Global information, so larger motion possible
- Slow because of iterative nature → also might get stuck in local minimum
- Still: problems at the boundaries \rightarrow but this an intrisically hard issue

DEEPFLOW

Weinzaepel et al., ICCV 2013 / Revaud, IJCV 2016

Introduces matching stage to deal with large displacements

Recall Lucas-Kanade:

- 1. Assumes that motion is similar in small neighborhoods
- 2. Pyramid-approach to deal with large displacements

Recall Horn-Schunck:

- 1. Employs a smoothness term
- 2. Globally optimal estimation (approximated)

DEEPFLOW²

Deepflow introduces a matching stage

- First roughly determine the displacement of patches
- Then determine pixel-level flow with smoothness constraint

DEEPFLOW³

Matching shares ideas from SIFT:

Encode a region in the input image using 4x4 cells with HOG

Allow each region to move a bit in the second image

Classic approach:

Rigid matching of HoG or SIFT descriptors

Deep Matching:

Allow each subpatch to move:

- independently
- in a limited range depending on its size

DEEPFLOW⁴

We can convolve the second image with a kernel based on each region

- Produces a response map
- High scores indicate high similarity

Regions can look a lot like other regions

- Especially with repeated textures (bricks, etc.)
- Processing at multiple scales (downsampling) similar rationale as pyramids

DEEPFLOW⁵

Multiscale convolution creates a pyramid of response maps

 Determine the optimal displacement as a function of the responses at various scales

Favor coarser scales

DEEPFLOW⁶

Last step is to combine various sources of information:

- Deformation from the matching
- Data term (gradient information)
- Smoothness term

DEEPFLOW⁷

Relation to other topics:

- Coarse-to-fine strategy using pyramid (cf. SIFT)
- Encoding of local regions (cf. SIFT)
- Convolutions
- Deepflow is NOT a deep learning method (no learning but subsequent convolution operations)

APPLICATIONS OF OPTICAL FLOW

OPTICAL FLOW TRACKING

Given an estimate of the movement of a pixel, we can track it

Kanade-Lucas-Tomasi (KLT) is a well-known tracker

KLT TRACKING

KLT (Kanade-Lucas-Tomasi) tracking works by estimating the optical flow from frame to frame at certain points:

- Typically, Harris corners are used
- Found on corners with strong gradient
- Comparable to interest points (remember from SIFT)

KLT tracking is straightforward for translations of single points, more difficult for:

- More complex transformations (rotations, affine)
- Multiple points (e.g. a region of points belonging to the same object)

KLT TRACKING

Circles are tracked points (movement vectors are multiplied)

http://www.youtube.com/watch?v=E86NLzNbuL8

HISTOGRAMS OF ORIENTED FLOW

We can calculate optical flow within a bounding box

Often, specific movement in parts of the region is meaningful

We can use the histogram of oriented gradients (HOG) concept

- Optical flow has a magnitude and orientation
- Bin flow instead of gradients

QUESTIONS?

ASSIGNMENT

ASSIGNMENT

Assignment 3:

- Deadline is Sunday March 10, 23:00
- No more help sessions for this assignment
- Use Slack and contact Breixo with questions

NEXT LECTURE

Next lecture: Training, classification, detection

• Thursday March 7, 11:00-12:45, RUPPERT-042