

Fonction continue

I. Notion de continuité d'une fonction.

_		1.1		, ,		
Ρr	opri	étés	: (ad	lmi	ise)

- Les fonctions usuelles (affines, carré, inverse, racine carrée, valeur absolue) sont continues
 - sur tout intervalle inclus dans leur ensemble de définition.
- Toute fonction construite algébriquement (par somme, produit, inverse ou composée) à partir de fonctions usuelles est continue sur tout intervalle de son ensemble de définition.
- 3. On convient qu'une flèche oblique dans un tableau de variation traduit la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.
- 4. Une fonction dérivable sur un intervalle est continue sur cet intervalle.

REMARQUE:

Attention, la réciproque de cette dernière propriété est fausse. Par exemple, la fonction valeur absolue $x\mapsto |x|$ est continue en 0 mais non dérivable en 0.

Méthode : interpréter graphiquement la continuité d'une fonction. Par convention, une fonction est continue là où elle est tracée. S'il n'y a pas continuité en x_0 :

- 1. le symbole bille rouge indique le point de la courbe de coordonnées (x_0 ; f (x_0));
- 2. le symbole bille rose vide indique un point qui n'appartient pas à la courbe mais dont l'ordonnée est égale à la limite à gauche ou à droite en x_0 .

EXERCICE D'APPLICATION:

Déterminer graphiquement les intervalles sur lesquels f est continue.

1) Soit la fonction partie entière $f: x \mapsto |x|$.

2) Soit la fonction f représentée ci-dessous.

II. Théorème des valeurs intermédiaires.

Théorème : cas général.

Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b. Si f est continue sur [a; b], alors pour tout réel k compris entre f (a) et f (b), il existe au moins un réel c appartenant à [a; b] tel que f (c) = k.

REMARQUE:

f prend au moins une fois toute valeur intermédiaire entre f (a) et f (b). Autrement dit, l'équation f (x) = k a au moins une solution dans [a; b] et, sur [a; b], la courbe représentative de f coupe la droite d'équation y = k en un point au moins.

EXEMPLE:

Soit f la fonction définie sur [0 ; 6] par $f\left(x\right)=\frac{x^3}{4}-\frac{9}{4}x^2+6x-3$

On dresse le tableau de variation de f . f admet pour minimum -3 et pour maximum 6. f est continue sur [0; 6].

x	0	2	4	6
f	-3	* ² \	1	6

Donc, d'après le théorème des valeurs intermédiaires, f prend toutes les valeurs de [-3; 6]. En particulier, l'équation f (x) = 0 a au moins une solution dans [0; 6].

Théorème : cas d'une fonction strictement monotone.

Soit f une fonction définie sur un intervalle I contenant deux réels a et b tels que a < b.

Si f est continue et strictement monotone sur [a;b], alors pour tout réel k compris entre f (a) et f (b), il existe un unique réel c appartenant à [a;b] tel que f (c)=k.