PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Komputer

Program Studi Teknik Informatika

Oleh:

Reinardus Aji Haristu 155314090

PROGRAM STUDI TEKNIK INFORMATIKA

JURUSAN TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA

2019

PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND SKRIPSI

Diajukan untuk Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Komputer

Program Studi Teknik Informatika

Oleh:

Reinardus Aji Haristu 155314090

PROGRAM STUDI TEKNIK INFORMATIKA
JURUSAN TEKNIK INFORMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2019

IMPLEMENTATION OF RANDOM FOREST ALGORITHM TO PREDICT WIN RATIO OF "PLAYER UNKNOWN BATTLEGROUND" PLAYER

FINAL PROJECT

Present as Partial Fullfillment of the Requirements
to Obtain the *Sarjana Komputer* Degree
in Informatics Engineering Study Program

By:
Reinardus Aji Haristu
155314090

INFORMATICS ENGINEERING STUDY PROGRAM
DEPARTMENT OF INFORMATICS ENGINEERING
FACULTY OF SCIENCE AND TECHNOLOGY
SANATA DHARMA UNIVERSITY
YOGYAKARTA

2019

HALAMAN PERSETUJUAN

SKRIPSI

PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND

Oleh: Reinardus Aji Haristu 155314090 **BID** Telah Disetujui Oleh: Dosen Pembimbing, 25 Juli

P.H. Prima Rosa, S.Si., M.Sc.

HALAMAN PENGESAHAN

SKRIPSI

PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND

Dipersiapkan dan ditulis oleh:

REINARDUS AJI HARISTU

NIM: 155314090

Pada tanggal 10 Juli 2019

Dan dinyatakan memenuhi syarat

Susunan Panitia Penguji

Nama Lengkap

Ketua

Sekretaris

Anggota

Robertus Adi Nugroho, S.T., M.Eng.

Puspaningtyas Sanjoyo Adi, S.T., M.T.

P.H. Prima Rosa, S.Si., M.Sc.

Tanda Tangan

Damapl.

Yogyakarta, 26 Juli 2019

Fakultas Sains dan Teknologi

Universitas Sanata Dharma

Dekan

Sudi Mungkasi, S.Si, M.Math.Sc., Ph.D

HALAMAN PERSEMBAHAN

"Hidup itu seperti pergelaran wayang, dimana kamu menjadi dalang atas naskah semesta yang dituliskan oleh Tuhan mu"

£1

(Sujiwo Tedjo)

Karya ini kupersembahkan kepada:

Tuhan Yesus Kristus

Bunda Maria

Keluarga

Sahabat

PERNYATAAN KEASLIAN KARYA

Saya menyatakan dengan sesungguhnya bahwa skripsi yang saya tulis ini tidak memuat karya atau bagian karya orang lain, kecuali yang telah saya sebutkan dalam kutipan daftar pustaka, sebagaimana layaknya karya ilmiah.

ABSTRAK

Game online yang sedang naik daun sebagai salah satu e-sport adalah Player Unknown Battleground. Untuk memenangkan game tersebut dibutuhkan strategi yang tepat. Dalam tugas akhir ini diuraikan penelitian tentang strategi bermain yang efektif pada game Player Unknown Battleground dengan melakukan penambangan data terhadap data statistik pemain yang diambil dari website kaggle. Dari data tersebut akan dibuat model untuk memprediksi win ratio dari setiap pemain menggunakan metode Random Forest.

Percobaan prediksi win ratio dengan metode Random Forest menghasilkan akurasi tertinggi sebesar 88,19%. Hasil tersebut didapatkan dengan menggunakan dataset statistik Pemain Player Unknown Battleground tanpa membuang data outlier dan data tidak ternormalisasi dengan jumlah tree sebanyak 70. Dari model yang berhasil dibuat, atribut yang paling berpengaruh dalam melakukan klasifikasi adalah atribut solo_KillDeathRatio.

Kata Kunci – Penambangan Data, Klasifikasi, Algoritma Random Forest, Player Unknown Battleground, PUBG

ABSTRACT

PUBG online game is one of the rising e-sport. To win the game, the right strategy is needed. In this final assignment, a study of effective playing strategies on Unknown Battleground game is carried out by mining player statistical data taken from the website kaggle. From the data, a model was be created to predict the win ratio of each player using the Random Forest method.

The prediction of win ratio using the Random Forest method produces the highest accuracy of 88,19%. This results were obtained by using the Battleground Player Player statistics dataset without remaining outliers and without normalization and with a number of trees as much as 70. From the model that was successfully made, the most important attribute in classification is the solo_KillDeathRatio.

Key Word – Data Mining, Classification, Random Forest Algorithm, Player Unknown Battleground, PUBG

LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPERLUAN KEPENTINGAN AKADEMIS

Yang bertanda tangan di bawah ini, saya mahasiswa Universitas Sanata Dharma :

Nama: Reinardus Aji Haristu

NIM : 155314090

Demi pengembangan ilmu pengetahuan, saya memberikan kepada Perpustakaan Universitas Sanata Dharma karya ilmiah saya yang berjudul:

PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND

Beserta perangkat yang diperlukan (bila ada). Dengan demikian saya memberikan kepada Perpustakaan Universitas Sanata Dharma hak untuk menyimpan, mengalihkan dalam bentuk media lain, mengelola di internet atau media lain untuk kepentingan akademis tanpa perlu meminta ijin dari saya maupun memberikan royalti kepada saya selama tetap mencantumkan nama saya sebagai penulis.

Demikian pernyataan ini saya buat dengan sebenarnya

Dibuat di Yogyakarta

Pada tanggal 26 Juli 2019

Yang menyatakan,

Reinardus Aji Haristu

KATA PENGANTAR

Puji Syukur penulis haturkan kepada Tuhan Yesus Kristus atas rahmat-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul "PENERAPAN METODE RANDOM FOREST UNTUK PREDIKSI WIN RATIO PEMAIN PLAYER UNKNOWN BATTLEGROUND".

Dalam penyelesaian Tugas Akhir ini, penulis mendapatkan banyak dukungan, doa dan motivasi dari berbagai pihak, untuk itu penulis mengucapkan terimakasih kepada:

- 1. Tuhan Yesus Kristus yang selalu memberikan kekuatan dan kehidupan yang baru setiap harinya
- 2. Ibu P.H. Prima Rosa, S.Si., M.Sc. selaku Dosen pembimbing yang selalu sabar dalam membimbing dan mengarahkan selama penyusunan tugas akhir.
- 3. Bapak Drs. Johanes Eka Priyatma, M.Sc., Ph.D. selaku Rektor Universitas Sanata Dharma Yogyakarta.
- 4. Bapak Sudi Mungkasi, S.Si, M.Math.Sc., Ph.D selaku Dekan Fakultas Sains dan Teknologi Univertitas Sanata Dharma.
- 5. Ibu Dr. Anastasia Rita Widiarti selaku Ketua Program Studi Teknik Informatika Fakultas Sains dan Teknologi Univertitas Sanata Dharma.
- 6. Orang tua, Vincentius Haryono dan Cicilia Suharni yang selalu ada mendukung penulis setiap saat.
- 7. Maria Damayanti yang selalu ada untuk menemani penulis dalam menyusun tugas akhir ini dan memberikan banyak saran kepada penulis.
- 8. Seluruh teman-teman TI 2015 tanpa terkecuali yang sudah membantu dan mendukung dalam pembuatan tugas akhir ini.
- 9. Seluruh pihak yang sudah mendukung secara langsung maupun tidak langsung, maaf apabila tidak dapat menyebutkan satu per satu.

Penulis berharap penulisan ini menjadi pengetahuan baru yang berguna dan bermanfaat bagi para pembaca. Penulis menyadari bahwa penulisan tugas akhir ini masih sangat banyak kekurangan. Untuk itu, penulis sangat berharap saran dan kritik untuk perbaikan di masa yang akan datang.

DAFTAR ISI

HALAMAN PERSETUJUAN	iii
HALAMAN PENGESAHAN	iv
HALAMAN PERSEMBAHAN	V
PERNYATAAN KEASLIAN KARYA	
ABSTRAK	vii
ABSTRACT	viii
LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA IL	MIAHix
KATA PENGANTAR	x
DAFTAR ISI	xii
DAFTAR GAMBAR	xvi
DAFTAR TABEL BAB I PENDAHULUAN	xviii
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	4
1.3. Tujuan	 .4
1.4. Batasan Masalah	4
1.5. Sistematika Penulisan	5
BAB II TINJAUAN PUSTAKA	6
2.1. Penambangan Data (<i>Data Mining</i>)	6
2.2. Metode Random Forest	8
2.3. Classification And Regression Tree (CART)	12
2.4. Evaluasi Kerja	14

2.4.1.	K-Fold Cross Validation	14
2.4.2.	Confusion Matrix	15
BAB III MI	ETODOLOGI PENELITIAN	17
3.1. Ba	han Penelitian/Data	17
3.2. Per	alatan Penelitian	21
3.3. Tal	hap-Tahap <mark>Penelitian</mark>	21
3.1.1.	Pengumpulan Data	
3.1.2.	Penelitian Pustaka	22
3.1.3.	Knowledge Discovery in Database (KDD)	22
3.1.4.	Pengembangan Perangkat Lunak	23
3.1.5.	Analisis dan Pembuatan Laporan	25
BAB IV PE	EMROSESAN AWAL DAN PERANCANGAN SISTEM	26
4.1. Per	mrosesan Awal	
4.1.1.	Seleksi data (Data Selection)	26
4.1.2.	Transformasi data (Data Transformation)	
4.2. Per	ancangan Perangkat Lunak	31
4.2.1.	Analisis Kebutuhan Perangkat Lunak	31
4.2.2.	Diagram Use Case	33
4.2.3.	Narasi Use Case	33
4.2.4.	Diagram Kelas Analisis.	33
4.2.5.	Diagram Kelas UML	35
4.2.6.	Perancangan Struktur Data	36
4.2.7.	Algoritma per Metode	37
4.2.8.	Perancangan Antarmuka	43

BAB V IMPLE	EMENTASI DAN ANALISIS HASIL	45
5.1. Impler	mentasi Perangkat Lunak	45
5.1.1. In	nplementasi Kelas Model	45
5.1.1. In	nplementasi Kelas Control	45
5.1.2. In	nplementasi Kelas View	46
5.2. Analis	is Hasil	46
5.2.1. Pe	enguj <mark>ian Perangkat Lunak</mark>	46
5.2.1.1.	Prosedur Pengujian dan Kasus Uji	46
5.2.1.2.	Evaluasi Pengujian	46
5.2.2. Pe Lunak 47	engujian Perbanding <mark>an Hasi</mark> l Hitung Manual dengan Hasil Perangk 7	at
5.2.2.1.	Penghitungan Perangkat Lunak	47
5.2.2.2.	Penghitungan Manual	51
5.2.2.3.	Evaluasi Pengujian	51
5.2.3. Pe	engujian Perangkat Lunak Dengan Menggunakan <i>Dataset</i>	54
5.2.3.1.	Pengujian Dataset statistik Pemain Player Unknown Battlegrou	nd
dengan o	outlier dan data tidak ternormalisasi.	54
5.2.3.2.	Pengujian Dataset statistik Pemain Player Unknown Battlegrou	nd
dengan o	outlier dan data ternormalisasi	55
5.2.3.3.	Pengujian Dataset statistik Pemain Player Unknown Battlegrou	
tanpa <i>ou</i>	tlier dan data tidak ternormalisasi	
5.2.3.4.	Pengujian Dataset statistik Pemain Player Unknown Battlegrou	
•	tlier dan data ternormalisasi.	
5.2.3.5.	Evaluasi Hasil Pengujian	
BAR VI DENII	TTTD	62

6.1.	Kesimpulan	62
6.2.	Saran	62
DAFT	AR PUSTAKA	63
LAMP	IRAN I: NARASI <i>USE CASE</i>	66
LAMP	IRAN II: PROSEDUR PEN <mark>GUJIAN</mark> DAN KASUS UJI	72
LAMP	IRAN III: HITUN <mark>G MANUAL PENAMBAN</mark> GAN DATA	77

DAFTAR GAMBAR

Gambar 2. 1 Dataset	10
Gambar 2. 2 Random Dataset untuk tree 1	10
Gambar 2. 3 Random Dataset untuk tree 2	10
Gambar 2. 4 Random Dataset untuk tree 3	10
Gambar 3. 1 Skema penelitian	22
Gambar 4. 1 Hasil Klustering <i>Tools</i> Weka Untuk Atribut solo_WinRatio	30
Gambar 4. 2 Hasil Klustering <i>Tools</i> Weka Untuk Atribut solo_RoundsPlayed	30
Gambar 4. 3 Hasil Klustering <i>Tools</i> Weka Untuk Atribut solo_WinRatio Setelah	
Menghilangkan Kluster 0 atribut solo_RoundsPlayed	30
Gambar 4. 4 Diagram Flowchart	
Gambar 4. 5 Contoh Hasil Visualisasi Tree	
Gambar 4. 6 Diagram Use Case	33
Gambar 4. 7 Diagram Model Kelas Analisis	34
Gambar 4. 8 Diagram Kelas UML	35
Gambar 4. 9 Desain Halaman Awal	43
Gambar 4. 10 Desain Halaman Preprocessing	43
Gambar 4. 11 Desain Halaman Initialization	44
Gambar 4. 12 Desain Halaman Single Data Test	44
Gambar 5. 1 Preprocessing Penghitungan Perangkat Lunak	47
Gambar 5. 2 Hasil Akurasi Penghitungan Sistem	48
Gambar 5. 3 Hasil Pembentukan <i>Tree</i> 1 Pada Model 1 Oleh Sistem	48

Gambar 5. 4 Hasil Pembentukan <i>Tree</i> 2 Pada Model 1 Oleh Sistem
Gambar 5. 5 Hasil Pembentukan <i>Tree</i> 1 Pada Model 2 Oleh Sistem
Gambar 5. 6 Hasil Pembentukan <i>Tree</i> 2 Pada Model 2 Oleh Sistem
Gambar 5. 7 Hasil Sampling Dataset Untuk Tree 1 Pada Model 1 Oleh Sistem49
Gambar 5. 8 Hasil Sampling Dataset Untuk Tree 2 Pada Model 1 Oleh Sistem 50
Gambar 5. 9 Hasil Sampling Dataset Untuk <i>Tree</i> 1 Pada Model 2 Oleh Sistem50
Gambar 5. 10 Hasil Sampling Dataset Untuk Tree 2 Pada Model 2 Oleh Sistem 50
Gambar 5. 11 Hasil pengujian dataset statistik pemain Player Unknown Battleground
Gambar 5. 12 Hasil pengujian dataset statistik pemain Player Unknown Battleground
dengan outlier dan data ternormalisasi
Gambar 5. 13 Hasil pengujian dataset statistik pemain Player Unknown Battleground
tanpa outlier dan data tidak ternormalisasi
Gambar 5. 14 Hasil pengujian dataset statistik pemain Player Unknown Battleground
tanpa outlier dan data ternormalisasi
Gambar 5. 15 Korelasi atribut solo_ KillDeathRatio dengan win ratio61
Gambar 6. 1 Hasil Akhir Tree 1 Pada Model 1 Penghitungan Manual
Gambar 6. 2 Hasil Akhir <i>Tree</i> 2 Pada Model 1 Penghitungan Manual
Gambar 6. 3 Hasil Akhir <i>Tree</i> 1 Pada Model 2 Penghitungan Manual
Gambar 6 4 Hasil Akhir Tree 2 Pada Model 2 Penghitungan Manual 121

DAFTAR TABEL

Tabel 2. 1 Matrik Klasifikasi untuk Model dua kelas
Tabel 3. 1 Penjelasan Atribut dan Contoh Data Statistik Pemain PUBG17
Tabel 4. 1 Daftar atribut yang dihapus
Tabel 4. 2 Tabel Atribut Data Statistik Pemain Player Unknown Battleground Yang
Akan Digunakan
Tabel 5. 1 Implementasi kelas <i>model</i>
Tabel 5. 2 Implementasi kelas control
Tabel 5. 3 Implementasi kelas <i>view</i>
Tabel 5. 4 Perbandingan <i>Tree</i> Hasil Sistem dan Perhitungan Manual
Tabel 5. 5 Pengujian dataset statistik Pemain Player Unknown Battleground
Tabel 5. 6 Pengujian dataset statistik Pemain Player Unknown Battleground dengan
outlier dan data ternormalisasi
Tabel 5. 7 Pengujian dataset statistik Pemain Player Unknown Battleground tanpa
outlier dan data tidak ternormalisasi
Tabel 5. 8 Pengujian dataset statistik Pemain Player Unknown Battleground dengan
outlier dan data ternormalisasi
Tabel 6. 1 Narasi <i>Use Case</i> Input <i>Dataset</i>
Tabel 6. 2 Narasi Use Case Seleksi Atribut
Tabel 6. 3 Narasi Use Case Inisialisasi Model
Tabel 6. 4 Narasi Use Case Proses Klasifikasi Dengan Metode Random Forest 69
Tabel 6. 5 Narasi Use Case Lihat Model <i>Tree</i>

Tabel 6. 6 Narasi Use Case Uji Data Tunggal	71
Tabel 6. 7 Prosedur Pengujian dan Kasus Uji	72
Tabel 6. 8 Dataset yang digunakan untuk membangun model	77
Tabel 6. 9 Pembagian Data Training dan Data Testing Setiap Model	78
Tabel 6. 10 Random dataset untuk membangun tree 1 pada model 1	78
Tabel 6. 11 Random dataset untuk membangun tree 2 pada model 1	89
Tabel 6. 12 Random dataset untuk membangun tree 1 pada model 2	97
Tabel 6. 13 Random dataset untuk membangun tree 2 pada model 2	. 108
Tabel 6. 14 Hasil Klasifikasi Data Testing Model 1	.120
Tabel 6. 15 Evaluasi Hasil Model 1	.120
Tabel 6. 16 Hasil Klasifikasi Data Testing Model 2	. 122
Tabel 6. 17 Evaluasi Hasil Model 1	. 122

BAB I PENDAHULUAN

1.1. Latar Belakang

Perkembangan teknologi di zaman sekarang ini sudah maju sangat pesat. Berbagai inovasi dan terobosan dibidang teknologi diciptakan. Komputer tidak lagi digunakan untuk menghitung (compute). Dalam dunia multimedia, komputer diperlukan untuk pembuatan film dengan animasi yang khusus seperti efek-efek khusus. Kemajuan teknologi sudah tidak bisa dibendung lagi, berbagai inovasi pun diciptakan dibidang hiburan. Game adalah salah satu inovasi yang tercipta dari perkembangan teknologi.

Saat ini selain *game offline*, sudah muncul berbagai *game online*, yaitu game yang dimainkan secara daring (*online*). Game ini muncul dengan berbagai aliran (*genre*). Banyak orang yang memandang kemunculan *game* sebagai efek negatif dari perkembangan teknologi. Salah satu contohnya adalah posisi tubuh yang kerap kali tidak benar dalam bermain game membuat seseorang mengalami gangguan pertumbuhan (anonim, 2013). Namun juga tidak sedikit yang menganggap kehadiran *game* membawa efek positif dalam dunia teknologi sekarang ini. Jika video *game* digunakan secara baik maka akan menghasilkan efek yang baik pula. Contohnya *game* dapat menurunkan tingkat stress pada diri seseorang (anonim, 2013). Bahkan saat ini *game* sudah bukan lagi hiburan untuk membuang waktu, melainkan sudah berubah menjadi industri baru yang potensial untuk menghasilkan pendapatan yang menggiurkan (Jannah, 2018).

E-sport merupakan permainan video *game* yang kompetitif. *E-sport* memiliki kepanjangan *electronic sport*, yang berarti adalah olahraga elektronik dalam hal ini adalah video *game*. Jika dilihat dua sampai tiga tahun kebelakang e-sport tidak begitu terkenal, namun saat ini *e-sport* begitu banyak dilirik oleh berbagai pihak, dari televisi sampai perusahaan-perusahaan yang bahkan tidak dalam bidang *e-sport*. Posisi *e-sport* sama halnya seperti catur yang sudah

termasuk dalam kategori olahraga dan sudah ada perlombaannya di berbagai olimpiade (Restika, 2018). Saat ini ada beberapa aliran (*genre*) *e-sport* yang terkenal, diantaranya adalah MOBA (*Multiplayer Online Battle Arena*), FPS (*First Person Shooter*), Fighting (*Street Fighter*), *Real Time Strategy Games* (Budi, 2018). Sudah banyak kompetisi yang diadakan untuk pertandingan *e-sport* dengan hadiah yang tidak sedikit.

Salah satu kompetisi yang terbaru adalah turnamen *e-sport* Asia Tenggara yang diselenggarakan oleh pemerintah Indonesia dengan total hadiah mencapai Rp1,4 M dan dilaksanakan di Jakarta pada tanggal 17 Oktober sampai 21 Oktober 2018. Game yang dipertandingkan antara lain adalah Mobile Legend, Arena Of Valor (AOV), Playerunknown's Battleground, Point Blank dan DOTA 2. Jika dilihat dari penyelenggara dan dari nominal hadiah yang diperebutkan, maka *e-sport* tidak bisa dipandang rendah. Potensi industri dalam bidang tersebut memang ada dan sudah terlihat.

Salah satu game yang termasuk dalam golongan *e-sport* yang sedang naik daun yaitu *Player Unknown Battleground* atau yang sering disebut dengan PUBG. Game ini termasuk dalam genre permainan FPS (*First Person Shooter*) namun juga dilengkapi dengan mode *Third Person*. Permainan ini memiliki beberapa mode bermain berdasar kategori keanggotaan yaitu solo (sendirian/tanpa tim), *duo* (tim beranggotakan dua orang) dan *squad* (tim beranggotakan empat orang).

Konsep permainan *Player Unknown Battleground* menggunakan konsep *survival*, dimana pemain yang bertahan hidup terakhir maka yang akan menang. Selama pertandingan pemain diminta untuk mencari segala senjata dan perlengkapan yang dibutuhkan untuk bertahan hidup pada suatu pulau. Dalam permainan ini ada istilah *win ratio* yaitu nilai persentase yang menunjukan rasio seberapa besar ia menang selama ia bermain dari awal ia mendaftarkan akun sampai terakhir ia bermain.

Tidak mudah untuk bertahan hidup dan menjadi yang terakhir dalam pertandingan game tersebut. Terkadang butuh strategi yang matang untuk

memenangkan pertandingan. Selama ini belum ada penelitian terkait pencarian strategi terbaik dalam bermain game ini. Dalam penelitian ini penulis akan menganalisis rekaman data statistik dari berbagai pemain dengan tujuan untuk mencari strategi terbaik dalam bermain game PUBG.

Ada beberapa penelitian yang sudah dilakukan dengan menggunakan metode *Random Forest*. Salah satunya adalah yang dilakukan oleh Nidhomiddin dan Otok (2015). Dalam penelitiannya mereka melakukan klasifikasi penderita HIV/AIDS menggunakan metode *Random Forest* dan *Multivariate Adaptive Regression Spline* (MARS) *binary response*. Hasil yang didapat adalah mengetahui variabel yang paling berpengaruh untuk menentukan status HIV/AIDS yaitu usia, jenis pekerjaan, pernah ditahan karena kasus NAPZA, status nikah dan selalu pakai jarum steril. Akurasi yang didapatkan ketika menggunakan metode MARS sebesar 80,28%. Sedangkan ketika menggunakan metode *Random Forest* diperoleh akurasi terbaik yaitu 97,80%. Penulis tersebut juga mencoba gabungan antara metode MARS dan *Random Forest*, dan memperoleh hasil akurasi sebesar 91,00%.

Penelitian lain adalah yang dilakukan oleh Nugroho dan Emiliyawati (2017). Dalam penelitiannya mereka melakukan klasifikasi tingkat penerimaan konsumen terhadap mobil menggunakan metode *Random Forest*. Dari hasil penelitian, mereka mendapatkan bahwa variabel yang mempengaruhi tingkat penerimaan konsumen terdiri dari harga pembelian, biaya perawatan, jumlah pintu, kapasitas penumpang, ukuran bagasi dan taksiran keselamatan penumpang.

Berdasar latar belakang tersebut, dalam tugas akhir ini penulis akan menggunakan metode *Random Forest* untuk memprediksi *win ratio* terhadap data statistik pemain *game Player Unknown Battleground* dengan menggunakan metode *Random Forest*. Dengan demikian diharapkan dapat dihasilkan model untuk memprediksi *win ratio*. Model tersebut memiliki beberapa *tree* yang setiap *node* merupakan atribut yang dipilih karena

kemampuannya yang baik untuk mengklasifikasi. Atribut yang dijadikan *Node* pada *tree* dapat dipertimbangkan sebagai strategi dalam bermain *game* PUBG.

1.2. Rumusan Masalah

- a) Bagaimana menerapkan metode *Random* Forest untuk memprediksi nilai win ratio dengan baik?
- b) Atribut (feature) apa yang paling berpengaruh dalam memprediksi nilai win ratio?
- c) Berapa akurasi prediksi terbaik yang dihasilkan oleh metode Random

 Forest terhadap data statistik pemain game Player Unknown

 Battleground?

1.3. Tujuan

- a) Menerapkan metode Random Forest untuk memprediksi nilai win ratio.
- b) Mengetahui atribut (feature) yang paling berpengaruh dalam memprediksi nilai win ratio yang tinggi.
- c) Menguji akurasi prediksi yang dihasilkan oleh metode Random Forest terhadap data statistik pemain game Player Unknown Battleground

1.4. Batasan Masalah

Dalam penelitian ini, masalah yang dibatasi adalah:

- a) Merancang model dengan menggunakan metode *Random Forest* untuk prediksi nilai win ratio setiap pemain *Player Unknown Battleground*.
- b) Data statistik pemain yang digunakan hanya data dengan mode solo (sendirian/tanpa tim) yang terdiri dari 87.898 baris data dan 52 kolom (atribut). Data tersebut diperoleh dari website Kaggle, yang merupakan salah satu website yang menyediakan data public.
- c) Metode yang digunakan adalah *Random* Forest.

1.5. Sistematika Penulisan

Berikut adalah metodologi penelitian dan langkah-langkah yang digunakan dalam pelaksanaan penelitian ini:

- a) BAB I Pendahuluan
 - Dalam bab ini diuraikan tentang latar belakang masalah, rumusan masalah, tujuan dan sistematika penulisan.
- b) BAB II Tinjauan Pustaka
 Pada bab ini diuraikan landasan teori dan masalah yang berhubungan
 dengan metode data mining khususnya metode *Random Forest* dengan
 penelitian terkait.
- BAB III Metodologi penelitian
 Dalam bab ini akan dijelaskan data dan rencana langkah-langkah yang akan dilakukan dalam melakukan penelitian ini.
- d) BAB IV Analisis dan Desain

 Pada bab ini akan dijelaskan bagaimana proses penerapan/implementasi
 dan analisis dari penerapan metode *Random Forest* untuk mencari
 strategi yang baik dalam bermain PUBG. Juga memaparkan desain
 model yang akan digunakan dalam penelitian ini.
- e) BAB V Implementasi dan Analisis Hasil

 Pada bab ini akan diuraikan hasil implementasi dari desain yang sudah

 dirancang dan analisis dari hasil yang didapatkan.
- f) BAB VI Penutup

 Pada bab ini akan diuraikan kesimpulan dari hasil percobaan-percobaan yang sudah dilakukan dan juga terdapat saran dari penulis untuk pengembangan dari penelitian ini.
- g) Daftar Pustaka Berisi tentang daftar referensi dan buku-buku yang digunakan dalam melakukan penelitian ini.

BAB II TINJAUAN PUSTAKA

2.1. Penambangan Data (Data Mining)

Definisi dari penambangan data menurut Han dan Kamber (2012) yaitu "Sebuah penggalian (*mining*) suatu pengetahuan (*knowledge*) dari sekumpulan data yang besar/banyak". Beberapa orang mengistilahkan *data mining* dengan sebutan lain yaitu *Knowledge Discovery from Data* (KDD). Menurut Han dan Kamber (2012) dalam proses pencarian suatu *knowledge* ada beberapa langkah yang diperlukan, yaitu:

1) Data cleaning

Pada langkah ini yang dilakukan adalah menghilangkan noise dari data dan data-data yang tidak konsisten.

2) Data integration

Melakukan kombinasi atau penyatuan data jika memiliki lebih dari satu sumber data.

3) Data selection

Pemilihan data yang sesuai dan relevan dengan tujuan analisis dari database.

4) Data transformation

Perubahan/transformasi data ke dalam bentuk yang sesuai untuk dilakukan mining dengan cara melakukan operasi penjumlahan atau agregasi.

5) Data mining

Proses penting dimana dilakukan penerapan sebuah metode intelijen untuk mencari pola data.

6) Pattern evaluation

Mengidentifikasi pola yang merepresentasikan sebuah knowledge berdasarkan beberapa ukuran menarik (interestingness measure).

7) Knowledge presentation

Langkah penggunaan teknik visualisasi dan representasi sebuah knowledge yang didapat untuk menyajikan knowledge tersebut ke user.

Secara umum *data mining* dapat diklasifikasi menjadi dua kategori yaitu *descriptive* dan *predictive* (Han, 2012):

- 1) Descriptive berperan dalam melakukan perincian yang bersifat umum dari data yang terdapat dari database, biasa digunakan dalam merepresentasikan data.
- 2) *Predictive* berperan dalam memprediksi data yang terdapat dalam database.

Dalam data mining ada beberapa pendekatan yang digunakan untuk mengambil informasi dari sekumpulan data (Han, 2012), yaitu:

- Supervised learning (pembelajaran dengan diawasi)
 Semua data diberi label dan algoritma belajar untuk memprediksi keluaran dari data masukan.
- Unsupervised learning (pembelajaran tanpa diawasi)
 Semua data tidak diberi label dan algoritma belajar ke struktur yang melekat dari data input.
- 3) Semi-supervised learning (pembelajaran semi diawasi)

 Beberapa data diberi label tetapi sebagian besar tidak diberi label dan campuran teknik yang Supervised learning dan Unsupervised learning dapat digunakan.

2.2. Metode Random Forest

Random Forest merupakan sebuah metode ensemble. Metode ensemble merupakan cara untuk meningkatkan akurasi metode klasifikasi dengan cara mengkombinasikan metode klasifikasi (Han, 2012). Random Forest diawali dengan teknik dasar data mining yaitu decision tree. Pada decision tree input dimasukan pada bagian atas (root) kemudian turun kebagian bawah (leaf) untuk menentukan data tersebut termasuk kelas apa. Random forest adalah pengklasifikasi yang terdiri dari kumpulan pengklasifikasi pohon terstruktur dimana masing-masing pohon melemparkan unit suara untuk kelas paling populer di input x (Breiman, 2001). Dengan kata lain Random Forest terdiri dari sekumpulan decision tree (pohon keputusan), dimana kumpulan decision tree tersebut digunakan untuk mengklasifikasi data ke suatu kelas.

Random forest merupakan metode klasifikasi yang supervised. Sesuai dengan namanya, metode ini menciptakan sebuah hutan (forest) dengan sejumlah pohon (tree). Secara umum, semakin banyak pohon (tree) pada sebuah hutan (forest) maka semakin kuat juga hutan tersebut terlihat. Pada kasus yang sama, semakin banyak tree, maka semakin besar pula akurasi yang didapatkan (Polamuri, 2017).

Decision Tree akan menggunakan information gain dan gini index untuk perhitungan dalam menentukan root node dan rule. Sama halnya dengan Random Forest yang akan menggunakan information gain dan gini index untuk perhitungan dalam membangun tree (Han, 2012), hanya saja Random Forest akan membangun lebih dari satu tree. Masing-masing tree dibangun menggunakan set data dengan atribut yang diambil secara acak dari data training. Dengan kata lain setiap tree akan bergantung pada nilai dari sampel vektor yang independen dengan distribusi yang sama pada setiap tree (Han, 2012). Selama proses klasifikasi setiap tree akan memberikan voting kelas yang paling populer (Han, 2012).

Cara kerja dari *Random Forest* dapat digambarkan dengan kasus nyata dalam kehidupan nyata yang dianalogikan seperti kasus berikut ini (Polamuri, 2017). Seorang mahasiswa ingin berlibur ke suatu tempat tapi ia tidak tahu ingin berlibur kemana. Mahasiswa tersebut memutuskan untuk bertanya pada satu orang sahabatnya. Kemudian sahabatnya tersebut memberikan beberapa pertanyaan untuk memutuskan rekomendasi tempat yang cocok untuk mahasiswa tersebut. Sejauh ini kasus tersebut menggambarkan metode Tree. dimana seorang sahabat dari mahasiswa Decision tersebut menggambarkan tree yang dibangun untuk memutuskan rekomendasi tempat. Kemudian mahasiswa tersebut memutuskan lagi untuk bertanya ke teman yang lain dengan jumlah yang banyak dan setiap orang mengajukan pertanyaanpertanyaan yang acak, setiap teman tentu akan memberikan rekomendasi yang berbeda dan juga ada yang sama. Lalu mahasiswa tersebut akan memutuskan untuk pergi ke tempat yang paling banyak direkomendasikan dari temantemannya. Inilah yang menggambarkan proses dan cara kerja metode Random Forest, dimana akan membentuk tree yang banyak untuk memutuskan suatu keputusan, lalu keputusan akhir akan ditentukan oleh hasil keputusan terbanyak dari tree yang telah di bangun. Konsep voting seperti ini disebut dengan majority voting.

Setelah menggunakan analogi kasus kehidupan nyata, berikut ini adalah contoh kasus lain. Gambar 2.1 menggambarkan sebuah *dataset* yang akan dilakukan klasifikasi menggunakan metode *Random Forest*. Kemudian dari *dataset* tersebut dibagi menjadi tiga bagian secara acak (*random*) yang digambarkan pada gambar 2.2, gambar 2.3 dan gambar 2.4. Dari masingmasing data yang telah dibagi secara acak tersebut akan dibangun *tree*, maka jumlah *tree* yang terbangun adalah tiga. Dari ketiga *tree* tersebutlah yang akan digunakan untuk memutuskan suatu data akan diklasifikasi ke suatu kelas tertentu menggunakan konsep *majority voting*.

```
f11 f12 f13 f14 f15 t1
f21 f22 f23 f24 f25 t2
f31 f32 f33 f34 f35 t3
: : : : : :
fm1 fm2 fm3 fm4 fm5 tm
```

Gambar 2. 1 Dataset

sumber: dataaspirant.com

```
f11 f12 f13 f14 f15 t1
f81 f82 f83 f84 f85 t8
f71 f72 f73 f74 f75 t7
: : : : : :
fm1 fm2 fm3 fm4 fm5 tm
```

Gambar 2. 2 Random Dataset untuk tree 1

sumber: dataaspirant.com

toren Giorian

```
f11 f12 f13 f14 f15 t1
f31 f32 f33 f34 f35 t3
f41 f42 f43 f44 f45 t4
: : : : : :
fm1 fm2 fm3 fm4 fm5 tm
```

Gambar 2. 3 Random Dataset untuk tree 2

sumber: dataaspirant.com

```
f31 f32 f12 f34 f15 t1
f61 f62 f63 f64 f65 t6
f91 f92 f73 f94 f95 t9
: : : : : :
fm1 fm2 fm3 fm4 fm5 tm
```

Gambar 2. 4 Random Dataset untuk tree 3

sumber: dataaspirant.com

Berikut ini adalah algoritma dari metode *random forest*. Algoritma dibagi menjadi dua bagian, bagian pertama adalah pembuatan "n" pohon (*tree*) untuk membentuk hutan (*forest*) yang acak (*random*). Bagian kedua adalah algoritma untuk melakukan prediksi dari *Random Forest* yang sudah dibuat (Han, 2012).

Input:

- D, dataset yang terdiri dari d baris
- k, angka dari jumlah tree

Langkah-langkah metode *Random Forest* (Bagian 1):

- 1. Buat data sampel data *Di* dengan mengambil acak dari *dataset D* dengan pengembalian (replacement)
- 2. Gunakan sampel data Di untuk membangun tree ke i (i = 1, 2, ... k)
- Ulangi langkah satu dan dua sebanyak k

Metode Random Forest diawali dengan pemilihan "k" sampel dataset Di yang diambil secara acak dengan pengembalian (replacement). Langkah selanjutnya adalah menggunakan dataset Di untuk membangun decision tree ke-i. Dalam membangun tree ke-i, metodologi CART dapat digunakan. Metodologi CART menggunakan information gain dalam menentukan setiap node pada tree. Perhitungan information gain dapat dihitung menggunakan rumus 2.1.

Pseudocode untuk proses prediksi data test (Bagian 2):

- 1) Ambil *data test* dan gunakan rule dari setiap *tree* untuk memprediksi keluaran klasifikasi dari data tersebut, simpan hasil yang didapat
- 2) Hitung suara (vote) untuk setiap target yang diprediksi dari setiap tree

 Pertimbangkan target prediksi yang terpilih dengan memilih target kelas yang paling banyak diprediksi sebagai hasil prediksi akhir dari metode random forest

Untuk memprediksi kelas target dari *data test* menggunakan *random forest*, masukan data test melalui aturan-aturan (*rule*) yang sudah dibuat menggunakan *tree*. Hasil prediksi setiap *tree* bisa saja ada yang berbeda dan ada yang sama, maka prediksi akhir akan dipilih berdasar prediksi kelas yang terbanyak diprediksi. Misalkan dari 100 *tree*, 80 *tree* memprediksi target adalah kelas A dan sisanya adalah kelas B, maka prediksi akhir yang dipilih adalah kelas A konsep pemilihan dengan suara terbanyak yaitu hasil prediksi dari semua *tree* dinamakan *majority voting*.

2.3. Classification And Regression Tree (CART)

Pembangunan tree dalam metode Random Forest menggunakan metodologi yang sama yang digunakan oleh Classification And Regression Tree (CART) (Han, 2012). CART menggunakan information gain untuk mengukur pemilihan atribut yang akan digunakan pada setiap node sebuah tree. Katakanlah N adalah node yang akan digunakan untuk memisahkan setiap kelas dengan menggunakan atribut dari dataset D. Atribut dengan information gain yang tertinggi akan digunakan untuk memisahkan (split) node N. Penghitungan nilai information gain dapat dicari menggunakan rumus sebagai berikut:

$$Gain(A) = Info(D) - Info_A(D)....(2.1)$$

Dimana nilai Info(D) dapat dicari menggunakan rumus 2.2 dan $Info_A(D)$ dicari menggunakan rumus 2.3 dibawah ini:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)....(2.2)$$

Keterangan:

m : jumlah kelas target

 p_i : probabilitas munculnya kelas ke i pada partisi D

$$Info_A(D) = \sum_{j=1}^{v} \frac{|Dj|}{|D|} \times Info(D_j). \tag{2.3}$$

Keterangan:

v : jumlah partisi

D_i : total partisi ke j

D: jumlah tuple/baris pada semua partisi

Untuk menghitung *information gain* dari atribut yang memiliki nilai kontinu (numerik), maka harus ditentukan nilai pembelah (*split-point*) terbaik untuk mengelompokan nilai dari atribut tersebut. Untuk mencari *split-point* terbaik maka data dari atribut tersebut harus diurutkan terlebih dahulu. Nilai tengah antara setiap pasangan nilai yang berdekatan dianggap sebagai kemungkinan yang bisa dijadikan *split-point* (Han, 2012). Jika sebuah atribut A adalah atribut yang memiliki nilai kontinu, maka semua nilai A diurutkan, lalu langkah selanjutnya adalah mencari titik tengahnya, maka kemungkinan jumlah partisi adalah dua dengan v = 2 (j = 1 dan 2) pada persamaan 2.3.

2.4. Evaluasi Kerja

Sesudah hasil prediksi didapatkan dengan menggunakan pemodelan yang sudah dibangun. Maka proses selanjutnya adalah melakukan evaluasi kinerja pemodelan tersebut untuk mengetahui seberapa akurat prediksi yang didapatkan . Berikut adalah teknik untuk melakukan evaluasi kinerja (Han 2006):

2.4.1. K-Fold Cross Validation

Metode *Cross Validation* merupakan salah satu metode untuk mengevaluasi algoritma *learning* dengan membagi data menjadi dua segmen yaitu. Segmen pertama digunakan untuk pembelajaran (*learning*) pelatihan (*training*) model, segmen kedua digunakan untuk validasi model. Ciri khas dari *Cross Validation* adalah set *training* dan validasi harus disilangkan (cross-over) dalam putaran berturut-turut sehingga setiap titik data memiliki peluang untuk divalidasi. Dasar dari *Cross Validation* adalah *K-Fold Cross Validation* (Refaeilzadeh, 2008).

Dalam *K-Fold Cross Validation*, langkah pertama kali adalah data akan dipartisi ke dalam segmen atau *fold* yang sama atau identik (nyaris sama). Berikutnya adalah iterasi ke k dari *training* dan validasi dilakukan sedemikian rupa sehingga dalam setiap iterasi *fold* data yang berbeda dimunculkan (*held-out*) untuk validasi, sementara sisa *fold* k-1 digunakan untuk *training*. Pada gambar 2.1 menggambarkan contoh dengan k = 3. Bagian yang gelap menggambarkan data untuk *training* sedangkan bagian terang menggambarkan data untuk validasi (*testing*). Dalam *data mining* maupun *machine learning* 10-*fold cross-validation* (k=10) merupakan yang paling umum atau sering digunakan (Refaeilzadeh, 2008).

Gambar 2.5 Prosedur 3-Fold Validation

Terdapat dua kemungkinan tujuan yang bisa didapatkan dari Cross Validation, yaitu:

- Untuk mengestimasi performa suatu pemodelan yang menggunakan metode untuk pembelajaran (*learned*) suatu data.
 Dengan kata lain untuk mengukur generalisasi metode.
- Untuk membandingkan performa dari dua atau lebih metode yang berbeda dan menemukan metode yang terbaik untuk suatu data, atau untuk membandingkan performa dari dua atau lebih variasi parameter yang digunakan dalam pemodelan.

2.4.2. Confusion Matrix

Confusion matrix digunakan untuk melihat seberapa baik atau seberapa besar akurasi yang dihasilkan dari model klasifikasi yang sudah dibuat untuk memprediksi atau mengklasifikasi kelas dari data testing. Rincian hasil klasifikasi berupa prediksi kelas ditampilkan di atas dan kelas yang aktual di bawah kiri, lihat Tabel 2.1.

Tabel 2. 1 Matrik Klasifikasi untuk Model dua kelas

	Kelas Prediksi		
		Kelas=Positif	Kelas=Negatif
Kelas aktual	Kelas=Positif	TP (True Positive)	FN (False Negative)
N. P.	Kelas=Negatif	FP (False Positive)	TN (True Negative)

Nilai akurasi dapat dihitung dengan menggunakan rumus (2.5) yang didefinisikan seperti berikut:

$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}...(2.5)$$

dimana:

TP : Jumlah kelas positif yang diklasifikasi sebagai positif

FP : Jumlah kelas negatif yang diklasifikasi sebagai positif

TN : Jumlah kelas negatif yang diklasifikasi sebagai negatif

FN: Jumlah kelas negatif yang diklasifikasi sebagai negatif

BAB III METODOLOGI PENELITIAN

3.1. Bahan Penelitian/Data

Data yang digunakan dalam penelitian ini adalah data statistik pemain *Player Unknown Battleground* yang didapatkan dari *website* Kaggle. Data tersebut memiliki 87.898 *record* (baris) dan 152 atribut (kolom) dengan gabungan mode permainan *solo*, *duo* dan *squad*. Data ini diunggah oleh Justin Moore pada tahun 2017 dengan ekstensi .csv. Pada tabel 3.1 berikut adalah penjelasan dari masing-masing atribut beserta contoh data dengan mode solo sejumlah 52 atribut. Sebagai catatan untuk mempermudah penulisan tabel maka nama atribut diletakan di sebelah kiri tabel.

Tabel 3. 1 Penjelasan Atribut dan Contoh Data Statistik Pemain PUBG

No	Nama Atribut	Keterangan	Contoh Data	Record/ Row (Baris data ke)
1	player_name	Nama pemilik akun	Blackwalk	2
2	tracker_id	Id tracker pemilik akun	8199	2
3	solo_WinRatio	Rasio kemenangan	18,18	2
4	solo_killD <mark>eathRatio</mark>	Ratio jumlah korban	4,41	2
5	solo_TimeSurvived	total waktu bertahan hidup dalam satuan detik	33014,86	2
6	solo_RoundsPlayed	Total ronde bermain	33	2
7	solo_Wins	Total kemenangan	6	2

8	solo_WinTop10Ratio	Rasio kemenangan posisi pertama dan kemenangan 10 besar	0,36	2
9	solo_Top10s	Total kemenangan 10 besar	11	2
10	solo_Top10Ratio	Rasio kemenangan dalam 10 besar	33,3	2
11	solo_Losses	Jumlah kekalahan	27	2
12	solo_Rating	Rating yang dimiliki terakhir kali	1884,53	2
13	solo_BestRating	Rating terbaik selama bermain	1860,74	2
14	solo_DamagePg	Jumlah <i>damage</i> yang diciptakan per ronde	393,04	2
15	solo_HeadshotKillsPg	Jumlah <i>head shot</i> yang diciptakan per ronde	1,27	2
16	solo_HealsPg	Jumlah poin <i>heal</i> (penyembuhan) per ronde	1,82	2
17	solo_KillsPg	Jumlah korban per ronde	3,61	2
18	solo_MoveDistancePg	Jarak yang ditempuh per ronde	5021,41	2
19	solo_RoadKillsPg	Rata-rata korban yang dibunuh menggunakan kendaraan	0,06	2

20	solo_TeamKillsPg	Jumlah anggota tim yang dibunuh per ronde	0	2
21	solo_TimeSurvivedPg	Waktu bertahan hidup per ronde dalam satuan detik	1000,45	2
22	solo_Top10sPg	Rata-rata kemenangan di sepuluh besar	0,33	2
23	solo_Kills	Jumlah korban	119	2
24	solo_Assists	Jumlah bantuan	2	2
25	solo_Suicides	Jumlah kejadian bunuh diri (mati tanpa diserang musuh)	0	2
26	solo_TeamKills	Jumlah anggota tim yang dibunuh	0	2
27	solo_HeadshotKills	Jumlah <i>head shot</i> (tembakan tepat kepala)	42	2
29	solo_HeadshotKillRatio	Rasio <i>head shot</i> (tembakan tepat kepala)	0,35	2
30	solo_VehicleDestroys	Jumlah penghancuran kendaraan	3	2
31	solo_RoadKills	Jumlah korban yang dibunuh menggunakan kendaraan	2	2
32	solo_DailyKills	Jumlah korban harian (rata- rata korban dalam satu hari)	18	2

33	solo_WeeklyKills	Jumlah korban minggu (ratarata korban dalam satu minggu)	18	2
34	solo_RoundMostKills	Jumlah korban terbanyak dalam satu rounde	13	2
35	solo_MaxKillStreaks	Jumlah korban terbanyak yang diciptakan berturut-turut	3	2
36	solo_Days	Jumlah hari bermain	10	2
37	solo_LongestTimeSurvived	Waktu terlama bertahan hidup	1987,94	2
38	solo_MostSurvivalTime	Waktu terlama bertahan hidup	1987,94	2
39	solo_AvgSurvivalTime	Rata-rata waktu bertahan hidup	1221,32	2
40	solo_WinPoints	Jumlah poin kemenangan	3812	2
41	solo_WalkDistance	Jumlah jarak yang sudah ditempuh dengan jalan kaki	47868,77	2
42	solo_RideDistance+AP1	Jumlah jarak yang sudah ditempuh dengan kendaraan	117837,7	2
43	solo_MoveDistance	Jumlah jarak pergerakan yang sudah ditempuh	165706,5	2
44	solo_AvgWalkDistance	Rata-rata jarak yang sudah ditempuh dengan jalan kaki	2017,38	2
45	solo_AvgRideDistance	Rata-rata jarak yang sudah ditempuh dengan kendaraan	5188,69	2

46	solo_LongestKill	Jarak korban terjauh	351,95	2
47	solo_Heals	Jumlah poin heal (penyembuhan)	60	2
48	solo_Boosts	Total energi yang digunakan	88	2
49	solo_DamageDealt	Jumlah poin damage (kerusakan) yang diterima	12970,39	2
50	solo_Revives	Jumlah kejadian penyelamatan teman satu tim	0	2
51	solo_WeaponAcquired	Senjata yang di dapatkan	0	2
52	solo_DBNOs All	Singkatan dari 'Down But No Out' yang merupakan kejadian dimana <i>Health Points</i> (HP) habis namun tetap hidup	Walsh	2

3.2. Peralatan Penelitian

Adapun peralatan yang digunakan pada penelitian ini adalah Laptop Asus dengan spesifikasi processor Intel(R) Pentium(R) CPU B980 2,40GHz, RAM 4GB dan Harddisk 500GB. Aplikasi yang digunakan dalam penelitian ini untuk pembuatan model adalah aplikasi Netbeans yang merupakan *Integrated Development Environment* (IDE) yang berbasis bahasa *java*.

3.3. Tahap-Tahap Penelitian

Secara singkat langkah-langkah dalam penelitian ini digambarkan pada skema penelitian yang digambarkan pada Gambar 3.1. Penjelasan lebih detail akan dijelaskan pada 3.1.1 sampai 3.1.5.

Gambar 3. 1 Skema penelitian

3.1.1. Pengumpulan Data

Tahap awal dalam penelitian ini adalah pengumpulan data. Pengumpulan data yang dilakukan dalam penelitian ini dengan cara mengunduh data dari website Kaggle.com.

3.1.2. Penelitian Pustaka

Studi literatur dilakukan oleh penulis untuk mendapatkan referensi yang berkaitan dengan teori yang dapat mendukung penelitian ini. Literatur yang didapatkan berasal dari buku dan karya ilmiah.

3.1.3. Knowledge Discovery in Database (KDD)

Dengan mengacu proses KDD menurut Han (2006), berikut ini adalah proses KDD yang dilakukan pada penelitian ini:

a) Data selection

Proses *data selection* merupakan proses pemilihan atau penghapusan data atau atribut yang tidak digunakan pada *dataset*. Pada tahap ini penulis melakukan secara manual menggunakan aplikasi microsoft excel.

b) Data transformation

Proses *data transformation* merupakan proses perubahan data kedalam bentuk yang berbeda dari bentuk sebelumnya untuk mendukung proses penggalian informasi data (*data mining*). Pada tahap ini penulis juga melakukan secara manual menggunakan aplikasi microsoft excel.

c) Data mining

Proses data mining adalah proses penggalian informasi dari data yang ada. Penggalian informasi pada penelitian ini berupa klasifikasi. Dalam penelitian ini proses klasifikasi akan dilakukan menggunakan metode *Random Forest* untuk data statistik pemain PUBG.

d) Pattern evaluation dan Knowledge presentation

Untuk proses mengidentifikasi pola yang tepat yang merupakan hasil dari proses data mining (Pattern evaluation) dan proses penyajian hasil dari data mining kepada user (Knowledge presentation) dilakukan setelah sistem selesai dibangun dan proses penambangan data selesai dilakukan. Dalam proses ini penulis melakukan evaluasi dari hasil penambangan data yang didapat dari perangkat lunak yang telah dibangun dan menjelaskan hasil evaluasi tersebut agar informasi yang didapat dapar dengan mudah diterima oleh pihak-pihak yang membutuhkan.

3.1.4. Pengembangan Perangkat Lunak

Penulis melakukan pengembangan perangkat lunak sebagai alat untuk mengolah *dataset* yang dimiliki penulis untuk mendapatkan informasi (*knowledge*) yang berguna. Metode yang digunakan oleh penulis adalah metode *waterfall*. Metode tersebut adalah salah satu

metode yang sangat sering digunakan oleh para pengembang perangkat lunak. Pengerjaan sistem secara *linear* diberlakukan dalam metode ini. Dimana jika tahap pertama belum selesai maka tahap kedua belum bisa dilakukan. Secara garis besar metode *waterfall* memiliki langkah-langkah sebagai berikut:

1) Analisis

Pada langkah ini yang dilakukan adalah melakukan analisis kebutuhan-kebutuhan sistem. Pengumpulan data dapat berupa sebuah penelitian, wawancara atau studi literatur.

2) Desain

Pada tahap ini merupakan proses penerjemahan kebutuhan-kebutuhan yang sudah didapatkan pada tahap sebelumnya ke sebuah perancangan perangkat lunak yang dapat diperkirakan sebelum masuk ke tahap implementasi. Pada tahap ini menghasilkan dokumen yang disebut *software requirement*. Dokumen tersebutlah yang akan digunakan oleh programmer untuk membangun atau mengimplementasi sistemnya.

3) Implementasi

Tahap ini merupakan tahap penerapan desain ke dalam bahasa pemrograman. Dalam tahap ini programmer akan mengubah proses transaksi yang diinginkan *user* ke dalam sistem yang akan dibuat

4) Pengujian Perangkat Lunak

Tahap selanjutnya adalah tahap pengujian terhadap perangkat lunak yang sudah di bangun. Model pengujian yang dilakukan oleh penulis adalah pengujian *black box* dan pengujian membandingkan hasil perhitungan manual dengan hasil yang diperoleh oleh perangkat lunak. Tujuannya adalah untuk memeriksa

apakah ada kesalahan-kesalahan yang terdapat pada perangkat lunka tersebut agar dapat diperbaiki.

3.1.5. Analisis dan Pembuatan Laporan

Dalam tahap ini dilakukan analisa kinerja terhadap model atau metode *Random Forest* yang sudah diimplementasikan ke dalam sebuah perangkat lunak. Hasil dari analisa tersebut akan dicatat dalam laporan tugas akhir.

BAB IV PEMROSESAN AWAL DAN PERANCANGAN SISTEM

4.1. Pemrosesan Awal

4.1.1. Seleksi data (*Data Selection*)

Dalam tahap seleksi data akan dilakukan pemilihkan atribut yang relevan untuk digunakan dalam penelitian. Atribut yang tidak digunakan atau tidak relevan akan dihapus. Atribut yang akan dihapus dari data statistik Pemain *Player Unknown Battleground* adalah atribut yang tidak independen. Berikut ini adalah daftar atribut yang dihapus beserta alasannya yang ditunjukan pada tabel 4.1. Dengan demikian didapatkan atribut yang akan digunakan pada tabel 4.2. Sebagai catatan, atribut solo_RoundsPlayed akan disimpan untuk pengujian perangkat lunak menggunakan *dataset*.

Tabel 4. 1 Daftar atribut yang dihapus

No	Nama Atribut	Alasan <mark>Penghapus</mark> an	
1	player_name	Memiliki nilai unik (berbeda pada setiap baris data)	
2	tracker_id	Memiliki nilai unik (berbeda pada setiap baris data)	
3	solo_RoundsPlayed	Digunakan untuk menghitung atribut solo_WinRatio	
4	solo_Wins	Digunakan untuk menghitung atribut solo_WinRatio	
5	solo_TimeSurvived	Digunakan untuk menghitung atribut solo_TimeSurvivedPg	
6	solo_Top10s	Digunakan untuk menghitung atribut solo_WinTop10Ratio	
7	solo_Kills	Digunakan untuk menghitung atribut solo_killDeathRatio	

8	solo_Assists	Tidak memiliki nilai untuk permainan mode solo	
9	solo_TeamKills	Tidak memiliki arti untuk permainan mode solo	
10	solo_TeamKillsPg	Tidak memiliki arti untuk permainan mode solo	
11	solo_HeadshotKills	Digunakan untuk menghitung atribut solo_HeadshotKillsPg	
12	solo_RoadKills	Digunakan untuk menghitung atribut solo_RoadKillsPg	
13	solo_Days	Digunakan untuk menghitung atribut solo_DailyKills	
14	solo_MostSurvivalTime	Memiliki nilai yang sama dengan atribut solo_LongestTimeSurvived	
15	solo_WalkDistance	Digunakan untuk menghitung atribut solo_AvgWalkDistance	
16	solo_MoveDistance	Digunakan untuk menghitung atribut	
17	solo_RideDistance+AP1	Digunakan untuk menghitung atribut solo_AvgRideDistance	
18	solo_Revives	Tidak memiliki arti untuk permainan mode solo (menyelamatkan teman satu tim)	
19	solo_WeaponAcquired	Me <mark>miliki nilai no</mark> l untuk s <mark>emua bari</mark> s data	
20	solo_Assists	Tidak memiliki arti untuk permainan mode solo (membantu teman satu tim)	
21	solo_DBNOs	Memiliki nilai nol untuk semua baris data	
22	Solo_WinTop10Ratio	Menggunakan atribut solo_WinRatio (atribut label/kelas) untuk menghitung nilai	

Tabel 4. 2 Tabel Atribut Data Statistik Pemain *Player Unknown Battleground* Yang Akan Digunakan

No	Nama Atribut	Keterangan
1	solo_WinRatio	Rasio kemenangan
2	solo_killDeathRatio	Ratio jumlah korban
3	solo_Top10Ratio	Rasio kemenangan dalam 10 besar
4	solo_Losses	Jumlah kekalahan
5	solo_Rating	Rating yang dimiliki terakhir kali
6	solo_BestRating	Rating terbaik selama bermain
7	solo_DamagePg	Jumlah damage yang diciptakan per ronde
8	solo_HeadshotKillsPg	Jumlah head shot yang diciptakan per ronde
9	solo_HealsPg	Jumlah poin heal (penyembuhan) per ronde
10	solo_KillsPg	Jumlah korban per ronde
11	solo_MoveDistancePg	Jarak yang ditempuh per ronde
12	solo_RoadKillsPg	Rata-rata korban yang <mark>dibunuh menggun</mark> akan kendaraan
13	solo_TimeSurvivedPg	Waktu bertahan hidup per ronde
14	solo_Top10sPg	Rata-rata kemenangan di sepuluh besar
15	solo_Suicides	Jumlah kejadian bunuh diri (mati tanpa diserang musuh)
16	solo_HeadshotKillRatio	Rasio <i>head shot</i> (korban tepat kepala)
17	solo_VehicleDestroys	Jumlah penghancuran kendaraan
18	solo_DailyKills	Jumlah korban harian (rata-rata korban dalam satu hari)
19	solo_WeeklyKills	Jumlah korban minggu (rata-rata korban dalam satu minggu)

20	solo_MaxKillStreaks	Jumlah korban terbanyak yang diciptakan berturut-turut	
21	solo_LongestTimeSurvived	Waktu terlama bertahan hidup	
22	solo_AvgSurvivalTime	Rata-rata waktu bertahan hidup	
23	solo_WinPoints	Jumlah poin kemenangan terakhir	
24	solo_AvgWalkDistance	Rata-rata jarak yang sudah ditempuh dengan jalan kaki	
25	solo_AvgRideDistance	Rata-rata jarak yang sudah ditempuh dengan kendaraan	
26	solo_LongestKill	Jarak korban terjauh	
27	solo_Heals	Jumlah poin heal (penyembuhan)	
28	solo_Boosts	Total energi yang digunakan	
29	solo_DamageDealt	Jumlah poin damage (kerusakan) yang diterima	
30	solo_RoundMostKills	Jumlah korban terb <mark>anyak dalam satu ronde</mark>	

4.1.2. Transformasi data (Data Transformation)

Ada beberapa transformasi data yang dilakukan penulis pada *dataset* statistik Pemain *Player Unknown Battleground*. Transformasi yang pertama adalah merubah nilai atribut solo_WinRatio dari nilai yang kontinu menjadi kategorial dengan cara mengelompokan nilai tersebut menjadi tiga kelompok. Dalam mengelompokan nilai atribut solo_WinRatio, penulis menggunakan *tools* Weka versi 3.8. Metode yang penulis pilih adalah metode simple k means dengan hasil nilai centroid akhir atribut solo_WinRatio yang ditunjukan pada gambar 4.1.

Selain atribut solo_WinRatio, atribut solo_RoundsPlayed juga akan dikelompokan (*clustering*) menjadi 3 kelompok yang menggambarkan tipe pemain yaitu pemula, normal, profesional. Cara pengelompokannya pun sama

seperti mengelompokan atribut solo_WinRatio, yaitu menggunakan *tools* Weka versi 3.8 dengan metode simple k means. Hasil nilai akhir centroid atribut solo_RoundsPlayed ditunjukan pada gambar 4.2. Pada gambar 4.3 merupakan hasil klustering untuk atribut solo_WinRatio setelah menghilangkan kelompok pemain dengan kluster 0 (pemula) berdasar atribut solo_RoundsPlayed (gambar 4.2.

Final cluster centroids:		Cluster#		
Attribute	Full Data (87898.0)	0 (38085.0)	1 (10199.0)	(39614.0)
solo_WinRatio	5.0175	2.663	19.1609	3.6398
Gambar 4. 1 Hasil Klusteri	ng Tools We	eka Untuk A	tribut solo_V	VinRatio
	th			
Final cluster centroids:	120	Cluster#		
Attribute	Full Data	0	1	2
PARELUTY	(87898.0)	(38225.0)	(10254.0)	(39419.0)
solo RoundsPlayed	79.2753	38.2316	10.8726	136.8694
Gambar 4. 2 Hasil Klustering	Tools Weka	Untuk Atri	but solo_Ro	<mark>und</mark> sPlayed
Final cluster centroids:		20.00		
Final cluster centroids:	Full Data	Cluster# 0	(B)	2
	Full Data (58366.0)		1 (24153.0)	_

Gambar 4. 3 Hasil Klustering *Tools* Weka Untuk Atribut solo_WinRatio Setelah Menghilangkan Kluster 0 atribut solo_RoundsPlayed

Transformasi yang kedua adalah dengan menormalisasi seluruh nilai atribut kedalam *range*/jarak yang sama yaitu nol sampai satu. Proses normalisasi dilakukan dengan menggunakan metode *min-max normalization*,

adapun rumus yang digunakan dalam metode tersebut dideskripsikan pada rumus 4.1 berikut:

$$v' = \frac{v - min_A}{max_A - min_A} \left(new_{max_A} - new_{min_A} \right) + new_{min_A}. \tag{4.1}$$

Keterangan:

v : nilai sebelum ternormalisasi

v': nilai setelah ternormalisasi

min_A : nilai minimal dari atribut A

 max_A : nilai maksimal dari atribut A

 new_{min_A} : nilai minimal terbaru dari atribut A

 new_{max_A} : nilai maksimal terbaru dari atribut A

4.2. Perancangan Perangkat Lunak

4.2.1. Analisis Kebutuhan Perangkat Lunak

4.2.1.1. *Input* Sistem

Sistem ini membutuhkan beberapa masukan (*input*) sebelum masuk pada proses klasifikasi. Masukan yang dibutuhkan yaitu:

- a. File yang berekstensi .csv
- b. Jumlah tree
- c. Jumlah k-fold

4.2.1.2. Proses Sistem

Adapun proses pada sistem yang dibangun ini memiliki beberapa tahapan untuk membangun model klasifikasi *random forest*. Tahapan-tahapan tersebut digambarkan pada gambar 4.4.

4.2.1.3. *Output* Sistem

Keluaran dari sistem ini berupa model klasifikasi *random* forest yang terdiri dari beberapa *tree* yang divisualisasikan sedemikan rupa agar dapat mudah dibaca oleh pengguna. Contoh hasil visualisasi *tree* dapat dilihat pada gambar 4.5.

Gambar 4. 5 Contoh Hasil Visualisasi Tree

4.2.2. Diagram *Use Case*

Diagram *Use Case* untuk sistem ini digambarkan pada gambar 4.6 berikut ini:

Gambar 4. 6 Diagram Use Case

4.2.3. Narasi Use Case

Dari diagram *use case* diatas, deskripsi dari setiap *use case* dijelaskan pada narasi *use case* yang terdapat pada lampiran I.

4.2.4. Diagram Kelas Analisis

Gambar 4.7 berikut ini adalah diagram kelas analisis yang menggambarkan keterkaitan antar halaman *interface* dengan obyek kelas entitas:

4.2.5. Diagram Kelas UML

Berdasarkan desain model kelas analisis pada gambar 4.7, maka diperoleh desain kelas UML yang ditunjukan pada gambar 4.8.

Gambar 4. 8 Diagram Kelas UML

4.2.6. Perancangan Struktur Data

Dalam pembangunan sistem ini penulis menerapkan struktur data arraylist dan hashmap.

4.2.6.1. Arraylist

Dalam sistem ini, struktur data *arraylist* digunakan sebagai kontainer penyimpanan kumpulan data *record*. Hal tersebut dikarenakan struktur arraylist yang dinamis yang memungkinkan kita menambah atau mengurangi panjang kontainer tersebut agar dapat memanfaatkan *space* memori secara efektif. Selain itu arraylist juga digunakan dalam menyimpan objek *tree* dari setiap model *random forest* yang dibangun.

4.2.6.2. Hashmap

Dalam pembentukan *tree* dibutuhkan objek node dimana setiap node pada *tree* ada yang memiliki node child (node anak) kecuali jika node tersebut adalah node leaf (node ujung). Dalam melakukan penyimpanan objek node child sistem ini menggunakan struktur data hashmap yang dapat menyimpan sejumlah objek (node child) secara dinamis dengan key tertentu.

4.2.7. Algoritma per Metode

4.2.7.1. Kelas Model RandomForest

Ay

a) Metode randomForestRunner

Input

- 1. ArrayList<Record> TrainingSet
- 2. ArrayList<Record> TestingSet
- 3. int **TreeNum**

Proses

- 1. Lakukan perulangan sebanyak TreeNum
 - a. Buat training subset dari setiap array

 TrainingSet dengan menggunakan

 metode trainingSubsetWithReplacement
 - b. Bangun tree untuk dataset subset
 - c. Tambahkan *tree* ke atribut array **Forest** bertipe Arraylist<*Tree*>
- 2. Lakukan klasifikasi data dari array **Testingset** dengan menggunakan metode **classify**
- 3. Hitung persentase benar dari hasil klasifikasi, simpan hasil kedalam variabel persentageCorrect bertipe double
- 4. Return persentageCorrect

Output

1. double persentageCorrect

b) Metode classify

Input :

1. Record **testData**

Proses

- Inisialisasi variabel **poll** bertipe
 HashMap<Double, Integer>
- Lakukan perulangan sebanyak jumlah Array
 Forest dengan i dimulai dari 0 (langkah voting)
 - a. Masukan objek Forest ke i pada objek

 Tree bernama T
 - b. Lakukan klasifikasi record testData
 pada tree T, menggunakan metode
 classify pada kelas Tree
 - c. Simpan hasil klasifikasi pada variabel

 vote bertipe double
 - d. Jika Hashmap poll belum miliki nilai dengan key=vote maka masukan nilai baru ke hasmap poll dengan key=vote dan value=1
 - e. Jika sebaliknya, Hashmap **poll** sudah miliki nilai dengan key=vote maka tambahkan value dengan 1 pada map yang memiliki key=vote
- 3. Inisialisasi variabel **maxVote** = -1 bertipe int
- 4. Inisialisasi variabel **voteResult** = -1.0 bertipe double
- Lakukan perulangan sebanyak key yang dimiliki hashmap poll menggunakan foreach dengan element labelKelas bertipe Double
 - a. Inisialisasi variabel vote bertipe int

- b. Isi nilai vote dengan value dari map yang memiliki key labelKelas
- c. Jika nilai vote lebih dari maxVote,
 maka jadikan nilai labelKelas menjadi
 nilai voteResult dan jadikan juga nilai
 vote menjadi nilai maxVote
- 6. Return voteResult

Output

1. double voteResult

Metode trainingSubsetWithReplacement

Input

1. ArrayList<Record> data

Proses

- 1. Buat objek subset bertipe arraylist int
- 2. Lakuan sampling random dengan pengembalian dari array data dengan hanya mengambil indeks dari array data tersebut
- 3. Masukan hasil sampling ke arraylist subset
- 4. Jadikan subset sebagai return

Output

1. ArrayList<Integer> subset

4.2.7.2. **Kelas CrossValidation**

Metode kFoldCrossValidation a)

Input

1. ArrayList<Record> data

Proses

- 1. Inisialisasi arraylist FoldData bertipe arrayList Record
- 2. Tentukan jumlah arraylist FoldData dengan membagi panjang array data dengan fold
- 3. Bagi array data sejumlah fold, masukan setiap bagian kedalam array FoldData
- 5. Return FoldData

Output

ArrayList<ArrayList<Record>> FoldData

4.2.7.3. Kelas Tree

Metode buildDecisionTree a)

Input

- 1. ArrayList<Record> data
- 2. int atributTarget
- 3. ArrayList<Integer> ListAtribut

Proses

- 1. Hitung nilai majority setiap kelas target masukan ke variabel nilaiMajority
- 2. Jika ukuran **data** atau **ListAtribut** nol
 - a. Return objek Node dengan id = atributTarget, value = nilaiMajority, namaAttribute = nama **atributTarget**
- 3. Jika semua elemen dari nilaiAtributTarget sama

- a. Return objek Node dengan id =atributTarget, value = nilaiMajority,namaAttribute = nama atributTarget
- 4. Selain itu
 - a. Cari atribut terbaik untuk split data
 - b. Jadikan atribut terbaik sebagainodeBestAtribute dengan tipe Node
 - c. Urutkan array data menggunakan objek
 MergeSort
 - d. Simpan subsetBesar dan subsetKecil dari hasil split nilai nodeBestAttribute
 - e. Buat subtree untuk masing-masing subsetBesar dan subsetKecil
 - f. Jadikan subtree subsetBesar sebagai child dari nodeBestAttribute, dengan key map=0
 - g. Jadikan subtree subsetKecil sebagai child dari nodeBestAttribute, dengan key map=1
 - h. Return nodeBestAttribute

Output

- 1. Node nodeBestAttribute
- b) Metode classify

Input

1. Record dataPoint

Proses

- 1. Inisialisasi variabel current bertipe Node
- 2. Isi nilai **current** dengan atribut **rootNode**

- 3. Lakukan perulangan selama nilai current tidak null:
 - a. Jika current adalah leaf maka returnvalue dari current
 - b. Jika tidak maka update nilai currentchild yang memenuhi nilai atribut daridataPoint
- 4. Jika ukuran data atau ListAtribut nol
 - a. Return objek Node dengan id =atributTarget, value = nilaiMajority,namaAttribute = nama atributTarget

Output

1. double value

4.2.8. Perancangan Antarmuka

Gambar 4.9 sampai gambar 4.12 menujukan perancangan antarmuka sistem.

4.2.8.1. Halaman Awal

Gambar 4. 10 Desain Halaman Preprocessing

4.2.8.3. Halaman Initialization

Gambar 4. 11 Desain Halaman Initialization

4.2.8.4. Halaman Single Data Test

Gambar 4. 12 Desain Halaman Single Data Test

BAB V IMPLEMENTASI DAN ANALISIS HASIL

5.1. Implementasi Perangkat Lunak

5.1.1. Implementasi Kelas *Model*

Tabel 5. 1 Implementasi kelas model

No	Nama Kelas	Nama <i>File</i> Fisik	Nama File Executeable
1	Attribute	Attribute.java	Attribute.class
2	Record	Record.java	Record.class
3	TableModelData	TableModelData.java	TableModelData.class
4	Node	Node.java	Node.class
5	Tree	Tree.java	Tree.class
6	RandomForest	RandomForest.java	RandomForest.class

5.1.1. Implementasi Kelas Control

Tabel 5. 2 Implementasi kelas control

No	Use Case	Nama File Fisik	Nama File Executeable
1	CrossValidation	CrossValidation.java	Cross Validation.class
2	Proses Klasifikasi Dengan Metode <i>Random Forest</i>	CsvReader.java	CsvReader.class
3	Proses Klasifikasi Dengan Metode Random Forest	MergeSort.java	MergeSort.class

5.1.2. Implementasi Kelas *View*

Tabel 5. 3 Implementasi kelas *view*

No	Use Case	Nama <i>File</i> Fisik	Nama File Executeable	
1	Input Dataset	MainFrame.java	MainFrame.class	
2	Seleksi Atribut	MainFrame.java	MainFrame.class	
3	Inisialisasi Model	MainFrame.java	MainFrame.class	
4	Proses Klasifikasi Dengan	MainFrame.java	MainFrame.class	
	Metode Random Forest	SANA		
5	Lihat Model Tree	MainFrame.java	MainFrame.class	
6	Uji Data Tunggal	MainFrame.java	MainFrame.class	

5.2. Analisis Hasil

5.2.1. Pengujian Perangkat Lunak

5.2.1.1. Prosedur Pengujian dan Kasus Uji

Penulis melakukan prosedur pengujian beserta kasus uji yang dapat dilihat pada lampiran II. Prosedur beserta hasil pengujian terdapat pada tabel 6.7.

5.2.1.2. Evaluasi Pengujian

Dari semua hasil pengujian yang terlampir pada lampiran II menunjukan bahwa perangkat lunak dapat berjalan dengan baik sesuai dengan perancangan yang sudah dibuat. Hal tersebut didukung dari hasil pengujian fungsi-fungsi yang ada berjalan sesuai yang diharapkan. Selain itu perangkat lunak ini juga mampu mengatasi kesalahan-kesalahan yang dilakukan *user* dengan menampilkan pesan kesalahan. Hal tersebut sangat baik dikarenakan dengan adanya pesan-pesan kesalahan maka *user* mudah mengerti

kesalahan apa yang sudah dilakukan sehingga dapat menghindari kesalahan yang sama di masa yang akan datang.

5.2.2. Pengujian Perbandingan Hasil Hitung Manual dengan Hasil Perangkat Lunak

5.2.2.1. Penghitungan Perangkat Lunak

Pada Proses pengujian perhitungan menggunakan perangkat lunak dengan data statistik Pemain *Player Unknown Battleground* yang diambil secara acak. Proses pembangunan model *Random Forest* menggunakan perangkat lunak dengan memasukan *file* csv yang berisi 12 data yang diambil secara acak dari data statistik Pemain *Player Unknown Battleground*. Atribut yang digunakan adalah solo_KillDeathRatio, solo_DamagePg, solo_HeadshotKillsPg, solo_MoveDistancePg dan solo_TimeSurvivedPg seperti yang ditunjukan pada gambar 5.1.

Gambar 5. 1 Preprocessing Penghitungan Perangkat Lunak

Inisialisasi pengujian menggunakan jumlah *fold* 2 dan jumlah *tree* 2. Dengan inisialisasi tersebut maka akan menghasilkan 2 model dengan 2 *tree* pada masing masing model tersebut. Akurasi yang didapatkan oleh sistem adalah sebesar 33,33% yang dapat dilihat pada gambar 5.2. Hasil pembentukan *tree* oleh sistem dapat dilihat pada gambar 5.3 sampai 5.6. Untuk hasil sampling yang dilakukan oleh sistem yang akan digunakan untuk membangun *tree* dapat dilihat pada gambar 5.7 sampai 5.10.

Gambar 5. 2 Hasil Akurasi Penghitungan Sistem

Gambar 5. 3 Hasil Pembentukan Tree 1 Pada Model 1 Oleh Sistem

Gambar 5. 4 Hasil Pembentukan *Tree* 2 Pada Model 1 Oleh Sistem

Gambar 5. 6 Hasil Pembentukan Tree 2 Pada Model 2 Oleh Sistem

			A CANADA CONTRACTOR OF THE CON			
No	solo_Win	solo_Kill	solo_Da	solo_Hea	solo_Mov	solo_Tim
1	0.0	1.83	193.0	0.38	1358.2	920.77
2	0.0	1.02	124.03	0.14	2731.76	999.58
3	2.0	2.01	225.11	0.44	3039.84	1004.96
4	1.0	1.23	151.25	0.18	3653.76	1048.71
5	1.0	1.08	123.32	0.22	3701.09	1077.55
6	1.0	1.08	123.32	0.22	3701.09	1077.55
4 5	1.0 1.0	1.23 1.08	151.25 123.32	0.18 0.22	3653.76 3701.09	1048.71 1077.55

Gambar 5. 7 Hasil Sampling Dataset Untuk Tree 1 Pada Model 1 Oleh Sistem

No	solo_Win	solo_Kill	solo_Da	solo_Hea	solo_Mov	solo_Tim
1	0.0	1.02	124.03	0.14	2731.76	999.58
2	1.0	1.23	151.25	0.18	3653.76	1048.71
3	1.0	1.23	151.25	0.18	3653.76	1048.71
4	0.0	1.83	193.0	0.38	1358.2	920.77
5	0.0	1.83	193.0	0.38	1358.2	920.77
6	2.0	2.1	217.86	0.5	4970.75	1353.75

Gambar 5. 8 Hasil Sampling Dataset Untuk Tree 2 Pada Model 1 Oleh Sistem

No	solo_Win	solo_Kill	solo_Da	solo_Hea	solo_Mov	solo_Tim
1	2.0	1.06	125.64	0.21	3312.12	1062.95
2	2.0	1.06	125.64	0.21	3312.12	1062.95
3 /	1.0	1.05	129.18	0.25	2863.96	867.6
4	1.0	1.05	129.18	0.25	2863.96	867.6
5	0.0	1.53	189.73	0.34	2170.23	819.47
6	1.0	2.14	241.63	0.58	2178.41	804.51

Gambar 5. 9 Hasil Sampling Dataset Untuk Tree 1 Pada Model 2 Oleh Sistem

No	solo_Win.	solo_Kill	solo_Da	solo_Hea	solo_Mov	solo_Tim
1	0.0	1.04	129.73	0.23	2737.54	970.17
2	0.0	1.04	129.73	0.23	2737.54	970.17
3	2.0	1.06	125.64	0.21	3312.12	1062.95
4	2.0	2.03	210.54	0.59	3986.74	1171.84
5	2.0	2.03	210.54	0.59	3986.74	1171.84
6	1.0	2.14	241.63	0.58	2178.41	804.51

Gambar 5. 10 Hasil Sampling Dataset Untuk Tree 2 Pada Model 2 Oleh Sistem

5.2.2.2. Penghitungan Manual

Pada proses pengujian penghitungan manual *Random Forest* menggunakan data yang sama dengan pengujian penghitungan perangkat lunak yaitu data statistik Pemain *Player Unknown Battleground*. Proses penghitungan manual manggunakan *Microsoft Excel*.

Untuk penghitungan manual pembangunan model *Random Forest* menggunakan data yang berhasil diambil secara acak oleh perangkat lunak dengan mengakses menu *show data* pada halaman *initialization*. Dataset tersebut dapat dilihat pada gambar 5.7 sampai 5.10. Pada pengujian perangkat lunak menggunakan jumlah *fold* 2 dan *tree* sejumlah 2, maka dalam perhitungan manual akan menggunakan 4 *dataset* untuk membuat 4 *tree* dengan 2 *tree* untuk setiap model *random forest* pada kedua model. Proses perhitungan manual beserta dengan hasilnya dapat dilihat pada lampiran III.

5.2.2.3. Evaluasi Pengujian

Hasil perhitungan manual dengan perhitungan perangkat lunak tidak memiliki perbedaan, baik itu dilihat dari model *tree* yang sudah dibangun maupun hasil akurasi final yang didapatkan. Perbandingan bentuk *tree* yang dihasilkan oleh sistem dan penghitungan manual dapat dilihat pada tabel 5.4. Untuk hasil akurasi final yang diperoleh dari penghitungan sistem sebesar 25% dan penghitungan manual juga sebesar 25%. Dengan begitu dapat disimpulkan bahwa perangkat lunak sudah berjalan dengan sangat baik dan sesuai dengan yang diharapkan.

Hasil Sistem Model Tree Hasil Penghitungan Manual – solo MoveDistancePg: Root Model Test 1 Tree 1 Model Tree — (<3653,76) Node: solo_KillDeathRatio solo MoveDistancePg: Root -- (<1.83) Node: solo_WinRatio leaf: 0 -(<3653.76) Node: solo_KillDeathRatio (>=1.83) Node: solo_KillDeathRatio Tree 1 --- (<1.83) Node: solo_WinRatio leaf: 0.0 (<2.01) Node: solo_WinRatio leaf: 0 -(>=1.83) Node: solo_KillDeathRatio -(<2.01) Node: solo_WinRatio leaf: 0.0 └─ (>=2.01) Node: solo WinRatio leaf: 2 -(>=2.01) Node: solo_WinRatio leaf: 2.0 Model - (>=3653,76) Node: solo WinRatio leaf: 1 (>=3653.76) Node: solo_WinRatio leaf: 1.0 - solo KillDeathRatio: Root Model Tree Model Test 1 Tree 2 — (<1.83) Node: solo_KillDeathRatio</p> -solo_KillDeathRatio: Root -(<1,23) Node: solo_WinRatio leaf: 0 Tree 2 -(<1.83) Node: solo_KillDeathRatio</p> \(\sim_(\rightarrow=1,23)\) Node: \(\sim_0\sum_0\) WinRatio leaf: 1 —(<1.23) Node: solo_WinRatio leaf: 0.0</p> (>=1,83) Node: solo WinRatio leaf: 0 --- (>=1.23) Node: solo WinRatio leaf: 1.0 (>=1.83) Node: solo WinRatio leaf: 0.0 - solo DamagePg: Root Model Tree Model Test 2 Tree 1 <mark>— (<129,18) Node: s</mark>olo_WinRatio leaf: 2 - (>=129,18) Node: solo_KillDeathRatio -solo_DamagePg: Root Model — (<129.18) Node: solo_WinRatio leaf: 2.0</p> — (<1.53) Node: solo_WinRatio leaf: 2</p> Tree 1 -(>=129.18) Node: solo KillDeathRatio (>=1.53) Node: solo_KillDeathRatio -(<1.53) Node: solo_WinRatio leaf: 1.0 (<2,14) Node: solo_WinRatio leaf: 0</p> -(>=1.53) Node: solo_KillDeathRatio ----(<2.14) Node: solo_WinRatio leaf: 0.0 (>=2,14) Node: solo WinRatio leaf: 1 -(>=2.14) Node: solo_WinRatio leaf: 1.0

Tabel 5. 4 Perbandingan *Tree* Hasil Sistem dan Perhitungan Manual

5.2.3. Pengujian Perangkat Lunak Dengan Menggunakan Dataset

Pada pengujian perangkat lunak menggunakan *dataset* akan membandingkan hasil akurasi yang dihasilkan dari *dataset* berikut ini:

- 1. Dataset statistik Pemain Player Unknown Battleground dengan outlier dan data tidak ternormalisasi.
- 2. Dataset statistik Pemain Player Unknown Battleground dengan outlier dan data ternormalisasi.
- 3. Dataset statistik Pemain Player Unknown Battleground tanpa outlier dan data tidak ternormalisasi.
- 4. Dataset statistik Pemain Player Unknown Battleground tanpa outlier dan data ternormalisasi.

Pada pengujian ini akan dilakukan pengujian klasifikasi data statistik Pemain *Player Unknown Battleground* dengan jumlah *fold* 3 dan kombinasi jumlah *tree* yang berbeda-beda dimulai dari 10 sampai 90 dengan interval 10. Dari pengujian ini akan dilihat hasil akurasi dari masing-masing pengujian.

5.2.3.1. Pengujian *Dataset* statistik Pemain *Player Unknown*Battleground dengan outlier dan data tidak ternormalisasi.

Dataset statistik Pemain Player Unknown Battleground dengan outlier dan data tidak ternormalisasi memiliki 87.898 baris data dan 30 atribut. Tabel pengujian dataset statistik Pemain Player Unknown Battleground tanpa outlier dapat dilihat di tabel 5.5.

Tabel 5. 5 Pengujian dataset statistik Pemain *Player Unknown Battleground* dengan outlier dan data tidak ternormalisasi

No.	Jumlah	Akurasi		
NO.	Tree	(%)		
1	10	86,11		
2	20	87,14		
3	30	87,55		
4	40	87,85		
5	50	87,85		
6	60	87,86		
7	70	88,19		
8	80	87,81		

5.2.3.2. Pengujian *Dataset* statistik Pemain *Player Unknown*Battleground dengan outlier dan data ternormalisasi.

Dataset statistik Pemain Player Unknown Battleground dengan outlier dan data ternormalisasi memiliki 87.898 baris data dan 30 atribut. Tabel pengujian Dataset statistik Pemain Player Unknown Battleground dengan outlier dan data ternormalisasi dapat dilihat di tabel 5.6.

Tabel 5. 6 Pengujian *dataset* statistik Pemain *Player Unknown Battleground* dengan outlier dan data ternormalisasi

No.	Jumlah	Akurasi	
110.	Tree	(%)	
1	10	84,14	
2	20	85,25	
3	30	85,60	
4	40	85,94	
5	50	85,70	
6	60	86,08	
7	70	86,00	
8	80	86,08	

5.2.3.3. Pengujian *Dataset* statistik Pemain *Player Unknown*Battleground tanpa outlier dan data tidak ternormalisasi.

Dataset statistik Pemain Player Unknown Battleground tanpa outlier dan data tidak ternormalisasi memiliki 58.366 baris data dan 30 atribut. Tabel pengujian dataset statistik Pemain Player Unknown Battleground tanpa outlier dan data tidak ternormalisasi dapat dilihat di tabel 5.7.

Tabel 5. 7 Pengujian *dataset* statistik Pemain *Player Unknown Battleground* tanpa *outlier* dan data tidak ternormalisasi

No.	Jumlah	Akurasi
110.	Tree	(%)
1	10	74,55
2	20	76,32
3	30	77,09
4	40	77,68
5	50	77,62
6	60	77,88
7	70	77,90
8	80	78,19

5.2.3.4. Pengujian *Dataset* statistik Pemain *Player Unknown*Battleground tanpa outlier dan data ternormalisasi.

Dataset statistik Pemain Player Unknown Battleground tanpa outlier dan data ternormalisasi memiliki 58.366 baris data dan 30 atribut. Tabel pengujian dataset statistik Pemain Player Unknown Battleground dengan outlier dan data ternormalisasi dapat dilihat di tabel 5.8.

Tabel 5. 8 Pengujian dataset statistik Pemain Player Unknown Battleground dengan outlier dan data ternormalisasi

No.	Jumlah	Akurasi	
	Tree	(%)	
1	10	74,77	
2	20	76,53	
3	30	76,86	
4	40	77,67	
- 5	50	77,67	
6	60	77,78	
7	70	77,94	
8	80	78,18	

5.2.3.5. Evaluasi Hasil Pengujian

Dari hasil pengujian ke empat dataset tersebut terdapat kesamaan pola pada pengujian keempat *dataset* tersebut yaitu akurasi yang cenderung bertambah ketika jumlah *tree* semakin besar. Pola tersebut dapat mudah di lihat pada grafik yang digambarkan pada gambar 5.11 sampai 5.14. Hal tersebut menunjukan bahwa semakin banyak jumlah *tree* yang digunakan dalam membangun model maka akurasi cenderung meningkat.

Gambar 5. 11 Hasil pengujian dataset statistik pemain *Player Unknown Battleground* dengan outlier dan data tidak ternormalisasi

Gambar 5. 12 Hasil pengujian dataset statistik pemain *Player Unknown Battleground* dengan outlier dan data ternormalisasi

Gambar 5. 13 Hasil pengujian dataset statistik pemain *Player Unknown Battleground* tanpa outlier dan data tidak ternormalisasi

Gambar 5. 14 Hasil pengujian dataset statistik pemain *Player Unknown Battleground* tanpa outlier dan data ternormalisasi

Dari hasil pengujian keempat dataset tersebut didapatkan akurasi tertinggi yaitu 88,19%. Akurasi tersebut didapat dari hasil klasifikasi *dataset* statistik Pemain *Player Unknown Battleground* dengan outlier dan data tidak ternormalisasi dengan jumlah *tree* sebanyak 70. Jika dilihat model yang dibuat untuk mendapatkan hasil tertinggi tersebut, atribut yang sering digunakan sebagai *root node* maupun node lain adalah atribut solo_KillDeathRatio. Bahkah atribut tersebut digunakan sebagai *root node* di seluruh *tree* (sebanyak 70 *tree*). Artinya atribut tersebut sangat berperan besar dalam memprediksi atau mengklasifikasi *win ratio*.

Dengan memanfaatkan tools Weka, penulis mencoba untuk melihat bagaimana korelasi atribut tersebut dengan *win ratio*. Jika dilihat dari sclater plot gambar 5.15, ada cukup banyak nilai solo_KillDeathRatio yang tinggi yang menunjukan win ratio tinggi (kluster 2) artinya jika nilai split diletakan pada tengah atribut solo_KillDeathRatio maka ada cukup banyak data yang memiliki win ratio tinggi (kluster 2) yang terdapat pada salah satu subset. Hal tersebutlah yang menyebabkan atribut ini selalu memiliki nilai *information gain* tinggi dari pada atribut lain.

BAB VI

PENUTUP

6.1. Kesimpulan

Hasil penelitian penerapan metode *random forest* untuk prediksi *win ratio* pemain *player unknown battleground* ini menghasilkan kesimpulan sebagai berikut:

- 1) Metode *random forest* dapat digunakan untuk melakukan prediksi/klasifikasi *win ratio* pemain *player unknown battleground* dengan baik. Semakin banyak jumlah *tree* yang digunakan maka semakin baik pula akurasi yang didapat.
- 2) Atribut yang paling berpengaruh dalam menentukan klasifikasi *win ratio* pemain *player unknown battleground* adalah solo KillDeathRatio.
- 3) Akurasi prediksi terbaik yang dihasilkan oleh metode Random Forest terhadap data statistik pemain game Player Unknown Battleground adalah 88,19%.

6.2. Saran

Penelitian penerapan metode *random forest* untuk prediksi *win ratio* pemain player unknown battleground ini memberikan saran untuk pengembangan penelitian yang akan datang, yaitu:

- 1) Perangkat lunak dapat menyimpan atau mengekspor model yang berhasil dibangun oleh perangkat lunak
- 2) Perangkat lunak dapat menampilkan semua rule yang memiliki *leaf* suatu label.
- Perangkat lunak dapat melakukan transformasi/normalisasi data dengan sendiri
- 4) Penelitian menggunakan *dataset* yang berbeda

DAFTAR PUSTAKA

- Anonim. 2013. Ini Plus Minusnya Bermain Game Digital Bagi Anak. di https://health.detik.com/ulasan-khas/d-2418829/ini-plus-minusnya-bermain-game-digital-bagi-anak (di akses November)
- Breiman Leo. 2001. Machine Learning. Berkeley: University of California
- Han, Jiawei. 2012. Data Mining Concepts and Techniques Third Edition. USA: Elsevier
- Jannah, Selfie Miftahul.2018. Bukan Cuma Main Game, Esport Mulai Jadi Industri Masa Depan di https://finance.detik.com/berita-ekonomi-bisnis/d-4316768/bukan-cuma-main-game-esport-mulai-jadi-industri-masa-depan (di akses November)
- Jati, Anggoro Suryo.2018. *UniPin Bikin Kompetisi eSports Berhadiah Rp 1,4 Miliar* di https://inet.detik.com/games-news/d-4162385/unipin-bikin-kompetisi-esports-berhadiah-rp-14-miliar (di akses November)
- Nidhomiddin & Otok.2015.RANDOM FOREST DAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) BINARY RESPONSE UNTUK KLASIFIKASI PENDERITA HIV/AIDS DI SURABAYA.Bandung:Institut Teknologi Sepuluh November Surabaya.
- Nugroho.2017.Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest di https://www.researchgate.net/publication/320413581_Sistem_Klasifikasi_Variabel_Tingkat_Penerimaan_Konsumen_Terhadap_Mobil_Menggunakan_Metode_Random_Forest (diakses November)
- Polamuri, Saimadhu. How Random Forest Algorithm Works In Machine Learning https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing
- Refaeilzadeh, Payam.2008. Cross Validation di http://leitang.net/papers/ency-cross-validation.pdf (diakses November)
- Restika, Ria.2018. *Apa Itu Esports?* di https://esportsnesia.com/penting/apa-itu-esports/ (di akses November)

LAMPIRAN I: NARASI USE CASE

1. Narasi Use Case Input Dataset

Tabel 6. 1 Narasi *Use Case* Input *Dataset*

	Input Dataset				
Nama Use	Input Dataset				
Case					
ID Use	1				
Case	JG SAN				
Aktor	User	77			
Deskripsi	Use case ini merupakan proses	memasukan <i>dataset</i> dari file .csv			
6	ke dalam sistem				
Kondisi	User telah masuk ke dalam sist	em dan berada di halaman			
Awal	preprocessing				
Kondisi	Data ditampilkan dalam tabel d	lata pad <mark>a halaman <i>p</i>reprocessin</mark> g			
Akhir	Imminum Alam				
Typical	Aksi Aktor	Reaksi Sistem			
Course	1) Klik tombol "Cari" untuk				
7/3	memasukan file yang				
02	berekstensi .csv	E 50			
	LCD	2) Menampilkan dialog			
	OLPUSTA	pencarian file			
	3) Memilih <i>file</i> yang akan	11-			
1	digunakan sebagai dataset				
		4) Menampilkan data dari <i>file</i>			
		yang dipilih ke tabel data			
		pada halaman Preprocessing			
Alternate	-	-			
Course					

2. Narasi *Use Case* Seleksi Atribut

Tabel 6. 2 Narasi Use Case Seleksi Atribut

Seleksi Atribut					
Nama Use Case	Seleksi Atribut				
ID Use Case	2				
Aktor	User				
Deskripsi	Use case ini merupakan prose	s pemilihan atribut dari data			
	yang sudah dimasukan				
Kondisi Awal	User telah masuk ke dalam sis	stem dan berada di halaman			
	preprocessing dan data yang s	<mark>udah dimasukan ta</mark> mpil di			
	halaman preprocessing				
Kondisi Akhir	Pemilihan atribut yang akan d	i klasifikasi selesai. Data			
15	yang dipilih ditampilkan di ha	laman preprocessing			
Typical Course	Aksi Aktor	Reaksi Sistem			
	1) Memilih satu persatu				
	atribut yang akan				
2 /	dibuang dari <i>dataset</i> lalu				
	klik buang	3			
		2) Menampilkan dataset			
11 6	D	pada tabel data di			
	Phierak	h <mark>alaman <i>Prepr</i>ocessing</mark>			
	LAST STATE	dengan menghilangkan			
	ALKIN	atribut yang dipilih oleh			
1	user				
Alternate Course	Aksi Aktor	Reaksi Sistem			
	1) Memilih semua atribut				
	yang akan dibunag				
	dengan menahan tombol				
	Ctrl lalu klik buang				

	2)	Menampilkan dataset
		pada tabel data di
		halaman Preprocessing
		dengan menghilangkan
		atribut yang dipilih oleh
		user

3. Narasi *Use Case* Inisialisasi Model

Tabel 6. 3 Narasi Use Case Inisialisasi Model

	Inisialisasi Model	3			
Nama Use Case	Inisialisasi Model	7			
ID Use Case	3	7			
Aktor	User	7			
Deskripsi	Use case ini merupakan prose sebelum model di bentuk	es melakukan inisialiasi model			
Kondisi Awal	User telah masuk ke dalam si halaman initialization	stem dan berada pada			
Kondisi Akhir	Field jumlah tree dan jumlah	K-Fold sudah terisi			
Typical Course	Aksi Aktor	Reaksi Sistem			
	1) Mengisi field "Jumlah Tree" dan "Jumlah K- Fold"				
		2) Menampilkan "Jumlah			
		Tree" dan "Jumlah K-			
		Fold"			
Alternate Course	-	-			

4. Narasi Use Case Proses Klasifikasi Dengan Metode Random Forest

Tabel 6. 4 Narasi Use Case Proses Klasifikasi Dengan Metode Random Forest

Proses Klasifikasi Dengan Metode Random Forest					
Nama Use Case	Proses Klasifikasi Dengan metode Random Forest				
ID Use Case	4	4			
Aktor	User				
Deskripsi	Use case ini merupakan prose	s klasifikasi dari data yang			
	sudah dipilih dan sudah disele	eksi			
Kondisi Awal	User sudah masuk dalam siste	<mark>em dan berada di hal</mark> aman			
6	initialization				
Kondisi Akhir	Sistem menampilkan hasil akurasi dan model tree yang				
111	berhasil dibangun				
Typical Course	Aksi Aktor	Reaksi Sistem			
> /	1) Klik tombol "Run	77			
	Algorithm"				
	2) Me <mark>nampilkan hasil</mark>				
7/3	akurasi dan model tree				
OR do	yang berhasil dibangun				
Alternate Course	Sp				

5. Narasi *Use Case* Lihat Model *Tree*

Tabel 6. 5 Narasi Use Case Lihat Model Tree

Lihat Model Tree				
Nama Use Case	Lihat Model Tree			
ID Use Case	5			
Aktor	User	24		
Deskripsi	Use Case ini merupakan prose	es bagaimana user dapat		
	melihat model tree yang suda	h berhasil dibentuk		
9	menggunakan metode randon	n forest		
Kondisi Awal	Proses klasifikasi dengan met	ode random forest sudah		
<u>III</u>	berhasil dijalankan			
Kondisi Akhir	Model tree ditampilkan			
Typical Course	Aksi Aktor	Reaksi Sistem		
9. /	1) Memilih model	" 7 //		
	klasifikasi pada "combo			
12.	box" model	1		
(3,4	b	2) Menampilkan daftar		
	Physical	model <i>tree</i> yang dimiliki		
	USIA	oleh model yang dipilih		
	~ AUK!	user		
1	3) Memilih model <i>tree</i> pada			
	"combo box" tree			
		4) Menampilkan model <i>tree</i>		
		yang dipilih oleh user		
Alternate Course	-	-		

6. Narasi *Use Case* Uji Data Tunggal

Tabel 6. 6 Narasi Use Case Uji Data Tunggal

Uji Data Tunggal					
Nama Use Case	Uji Data Tunggal				
ID Use Case	6				
Aktor	User				
Deskripsi	Use case ini merupakan proses pengujian data tunggal menggunakan data atribut yang dimasukan oleh user				
Kondisi Awal	Proses klasifikasi menggunakan metode random forest sudah berhasil di jalankan dan user berada pada halaman "Single Data Test"				
Kondisi Akhir	Sistem menampilkan hasil klasi	ifik <mark>asi dari data dengan n</mark> ilai			
2 4	atribut yang sudah dimasukan c	oleh u <mark>ser</mark>			
Typical Course	Reaksi Sistem				
BY	Memasukan semua nilai atribut yang dibutuhkan pada <i>field</i> yang tersedia, lalu klik "Enter"				
	2) Menampilkan hasil klasifikasi pada halaman Single Data Test				
Alternate Course	-	-			

LAMPIRAN II: PROSEDUR PENGUJIAN DAN KASUS UJI

Tabel 6. 7 Prosedur Pengujian dan Kasus Uji

Use Case	Deskripsi	Presedur <mark>Pengujian</mark>	Masukan	Keluaran yang diharapkan	Hasil yang didapat	Catatan Proses Pengembangan
Input Dataset	Pengujian memasukan data dari <i>file</i> bertipe .csv	Jalankan sistem Pilih menu Preprocessing tekan tombol cari	fileTest.csv	Data pada fileTest.csv ditampilkan kedalam tabel data	Data pada fileTest.csv ditampilkan kedalam tabel data	Tidak diperbaiki
	Pengujian memasukan data dari <i>file</i> selain bertipe .csv	3) Pilih file yang akan digunakan4) Klik tombol "OK"	fileTest.xls	Muncul pesan error tipe file yang dimasukan tidak sesuai	Muncul pesan error tipe file yang dimasukan tidak sesuai	Tidak diperbaiki
Seleksi Atribut	Pengujian menghapus atribut dengan memilih satu persatu atribut	 Tabel data pada halaman preprocessing sudah terisi data Klik salah satu atribut yang ingin dihapus Klik tombol "Buang" 	Atribut yang dipilih: solo_killDeathRat io	Atribut solo_killDeathRat io berpindah dari list atribut yang digunakan ke list atribut yang dibuang	Atribut solo_killDeathR atio berpindah dari list atribut yang digunakan ke list atribut yang dibuang	Tidak diperbaiki
	Pengujian menghapus atribut dengan	1) Tabel data pada halaman	Atribut yang dipilih:	Atribut solo_killDeathRat io, solo_Losses,	Atribut solo_killDeathR atio,	Tidak diperbaiki

	memilih lebih		preprocessing sudah	solo_killDeathRat	solo_WinTop10R	solo_Losses,	
	dari satu atribut		terisi data	io, solo_Losses,	atio berpindah	solo_WinTop10	
	sekaligus	2)	Klik lebih dari satu	solo_WinTop10R	dari list atribut	Ratio berpindah	
			atribut yang ingin	atio	yang digunakan	dari list atribut	
			dihapus <mark>dengan</mark>	SAN	ke list atribut	yang digunakan	
		7	menahan tombol		yang dibuang	ke list atribut	
			"Ctrl"	180	1	yang dibuang	
		3)	Klik tombol "Buang"	12.31			
		1)	List atribut yang	(a)	Atribut	Atribut	
	Pengujian	77	dibuang sudah berisi	Atribut yang	solo_killDeathRat	solo_killDeathR	
	membatalkan	2)	Klik atribut yang	dipilih untuk	io berpindah dari	atio berpindah	
	pemilihan	J	ingin batakan dari	dibatalkan:	list atribut yang	dari list atribut	Tidak diperbaiki
	1		penghapusan	solo_killDeathRat	dibuang ke list	yang dibuang ke	
	atribut	3)	Klik tombol	io	atribut <mark>yang</mark>	list atribut yang	
			"Simpan"	ett Other	digunak <mark>an</mark>	digunakan digunakan	
		1)	Proses preprocessing				
	Pengujian	2)	sudah dilakukan Masuk menu	Masukan angka	field "jumlah	field "jumlah <i>Tree</i> " terisi	
	memasukan		"Initializatiom"	50 pada field	Tree" terisi angka	angka 50 dan	
Inisialisasi	jumlah <i>tree</i> d <mark>an</mark>	3)	Inputksn angka pada	"jumlah <i>Tree</i> "	50 dan field	field "Jumlah	Tidak diperbaiki
Model	jumlah <i>k-fold</i>	,	field "jumlah k-	dan 3 pada field	"Jumlah K-Fold"	K-Fold" terisi	
Wiodei	dengan angka	N	fold"dan "jumlah	"Jumlah K-Fold"	terisi angka 3	angka 3	
	,		tree"	10KE	/	-8	
	Pengujian	1)	Proses preprocessing	Masukan angka	field "jumlah	field "jumlah	T: 4.1. 41 4 11. 1
	memasukan		sudah dilakukan	"a" pada field	Tree" tidak terisi	Tree" tidak	Tidak diperbaiki

	jumlah <i>tree</i> dan	2)	Masuk menu	"jumlah <i>Tree</i> "	apapun dan field	terisi apapun	
	jumlah <i>k-fold</i>		"Initializatiom"	dan "b" pada field	"Jumlah K-Fold"	dan field	
	dengan bukan	3)	Inputksn huruf pada	"Jumlah K-Fold"	tidak terisi apapun	"Jumlah K-	
	angka		<i>field</i> "juml <mark>ah k-</mark>		juga	Fold" tidak	
			fold"da <mark>n "jumlah</mark>			terisi apapun	
		5	tree"			juga	
_		1)	Proses preprocessing				
			sudah dilakukan		. 3		
	Penguji <mark>an</mark>	2)	Masuk menu	Masukan angka			
	proses	7	"Initializatiom"	ų.	Proses klasifikasi	Proses	
	klasifikasi	3)	Inputksn nilai pada	50 pada field "iumlah Tras"		klasifikasi	Tidalı dinambaili
	deng <mark>an mengis</mark> i	i <i>field</i> "jumlah k-	"jumlah <i>Tree</i> "	berjalan		Tidak diperbaiki	
D	jumlah <i>k-fold</i>		fold"dan "jumlah	dan 3 pada field "Jumlah K-Fold"	//	berjalan	
Proses	dan <i>tr<mark>ee</mark></i>		tree"			77	
Klasifikasi	4	4)	Klik tombol "Run	ear Binch	Xm.		
Dengan Metode		4	Algorithm"				
Random	777	1)	Proses preprocessing			776	
Forest	Danguijan	Ŧ	sudah dilakukan		A .*		
rorest	Pengujian	2)	Masuk menu	Vacanalaan Cald	87	13	
	proses		"Initializatiom"	Kosongkan field	Muncul pesan	Muncul pesan	
	klasifikasi	3)	Kosongkan field	"jumlah k-	error masukan	error masukan	Tidak diperbaiki
	dengan tanpa	1	"jumlah k-fold"dan	fold"dan "jumlah	tidak sesuai	tidak sesuai	
	mengisi jumlah k-fold dan tree		"jumlah <i>tree</i> "	tree"	- //	7	
		4)	Klik tombol "Run				
			Algorithm"				

Lihat Model <i>Tree</i>	Pengujian penampilan model <i>tree</i>	 1) 2) 3) 4) 	Proses klasifikasi sudah dilakukan Model tree sudah ditampilkan Klik "Combo Box" Model, pilih model Klik "Combo Box" Tree, pilih tree	Pilih Model 1 dan tree 2	Tampil model tree pada model 1	Tampil model tree pada model 1	Tidak diperbaiki
Uji Data Tunggal	Pengujian uji data tunggal dengan nilai atribut berupa angka	1)2)3)4)5)	Proses klasifikasi sudah dilakukan Model tree sudah ditampilkan Klik menu "Single Data Test" Masukan nilai berupa angka pada field atribut yang tersedia Klik "Enter"	Masukan nilai berupa angka pada field atribut yang tersedia	Semua field atribut dapat terisi sesuai dengan nilai yang di masukan	Semua field atribut dapat terisi sesuai dengan nilai yang di masukan	Tidak diperbaiki
	Pengujian uji data tunggal dengan nilai atribut berupa bukan angka	1)	Proses klasifikasi sudah dilakukan Model <i>tree</i> sudah ditampilkan	Masukan nilai berupa huruf pada field atribut yang tersedia	Semua field atribut tidak terisi apapun	Semua field atribut tidak terisi apapun	Tidak diperbaiki

LAMPIRAN III: HITUNG MANUAL PENAMBANGAN DATA

Dalam perhitungan manual ini menggunakan dataset yang sama seperti yang digunakan perhitungan sistem. Dataset tersebut dapat dilihat pada tabel 6.8 serta pembagian foldnya. Untuk pembagian data testing dan data training pada setiap model dapat dilihat pada tabel 6.9.

Tabel 6. 8 Dataset yang digunakan untuk membangun model

	solo_WinRati	solo_KillDeath	solo_DamagePg	solo_HeadshotKills	solo_MoveDistanc	solo_TimeSurvived
	0	Ratio	6	Pg	ePg	Pg
	1	1,23	151,25	0,18	3653,76	1048,71
	0	1,83	193	0,38	1358,2	920,77
Fold 1	2	2,01	225,11	0,44	3039,84	1004,96
Fold 1	2	2,1	217,86	0,5	4970,75	1353,75
	0	1,02	124,03	0,14	27 31,76	999,58
	1	1,08	123,32	0,22	3701,09	1077,55
	0	1,04	129,73	0,23	2737,54	970,17
	1	1,05	129,18	0,25	2863,96	867,6
Fold 2	2	2,03	210,54	0,59	3986,74	1171,84
roid 2	0	1,53	189,73	0,34	2170,23	819,47
	1	2,14	241,63	0,58	2178,41	804,51
	2	1,06	125,64	0,21	3312,12	1062,95

Tabel 6. 9 Pembagian Data Training dan Data Testing Setiap Model

	Training	Fold 1		
Model 1			Akurasi:	
	Tes <mark>ting</mark>	Fold 2	A/A IL	Akurasi Final:
Model 2	Training	Fold 2	Akurasi:	Akurasi i iliai.
	Testing	Fold 1	AKUI dSI.	

A. Pembentukan tree model 1

Model 1 menggunakan fold 1 sebagai data training. Berikut adalah proses pembentukan tree pada model 1:

a. Tree 1

Random dataset untuk membangun tree 1 dapat dilihat pada tabel 6.10.

Tabel 6. 10 Random dataset untuk membangun tree 1 pada model 1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,83	193	0,38	1358,2	920,77
1	0	1,02	124,03	0,14	2731,76	999,58
2	2	2,01	225,11	0,44	3039,84	1004,96
3	1	1,23	151,25	0,18	3653,76	1048,71
4	1	1,08	123,32	0,22	3701,09	1077,55
5	1	1,08	123,32	0,22	3701,09	1077,55

Berikut adalah langkah-langkah membangun tree 1:

Menentukan node 1
 Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain		
Total	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6	2	3	1	1,459148			
solo_KillD	eathRatio		(a			_			
	<1,23	3	1	2	0	0	0,666667		
	>=1,23	3	1	1	1	1,584963	-		
- 11							-		
solo_Dam	agePg	, 4	NA.	YOU.	4.		7		
	<151,25	3	AU 1	2	0	0	0,666667		
	>=151,25	3	neen 1	dilant	1	1,584963	7		
		Burn	A. A. CILL	Quive t	amili		3 //		
solo_Head	l <mark>shotKills</mark> P	g			11		C //		
	<0,22	3	1	2	0	0	<mark>0,666</mark> 667		
	>=0,22	3	1	1	1	1,584963			
	· An	<u> </u>				No.			
solo_Mov	<mark>e Distance F</mark>	^o g			- 60	_0			
	<3653,76	3	2	0	1	0	1,459148		
	>=3653,76	3	0	3	0	0	/ /		
A COLUMN TO THE PARTY OF THE PA									
solo_Time	SurvivedP	g	142	146		//			
	<1048,71	3	2	0	1	0	1,459148		
	>=1048,71	3	0	3	0	0			

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

*) Untuk mencari nilai split pada kolom partisi. Cukup mengambil indeks data (kolom i) ke-x. Dimana x adalah hasil pembagian jumlah kasus dibagi 2. Dengan kondisi data sudah diurutkan terlebih dahulu berdasar atribut yang akan dicari nilai splitnya

2. Menentukan node 1.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,83	193	0,38	1358,2	920,77
1	0	1,02	124,03	0,14	2731,76	999,58
2	2	2,01	225,11	0,44	3039,84	1004,96

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain
Total		3	2	0	1	0,918296	
solo_KillD	eathRatio	/ = 1	KS.	TO AL	4		1
	<1,83	1	1	3000	0	0	0,251629
	>=1,83	2	Office 1	A AN	1	1	7
\ =		Between	viil	Chinet	COUNTY /		
solo_Dam	agePg					7	
	<193	1	1		0	0	<mark>0,25162</mark> 9
	>=193	2	1	-	1	1	
	/b) 4	<u> </u>			-	FIN M	
solo_Head	lshotKillsP	g			- (2)	, a	
	<0,38	1	1	- 4	0	0	<mark>0,2</mark> 51629
	>=0,38	2	1		1	1	//
	/	\sim	1		15	//	
solo_Mov	e Distance P)g	LOC	14.			
	<2731,76	1	1	Α.	0	0	0,251629
	>=2731,76	2	1		1	1	

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

3. Menentukan node 1.1.1

	i	solo_WinRatio	solo_KillDeathRatio	solo	_DamagePg	solo	_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
(0	0	1,83		193		0,38	1358,2	920,77

Attribut yang dipilih untuk dijadikan node: label kelas 0

Hasil *tree* sementara:

*) Setiap kali data tersisa satu maka atribut kelas akan dijadikan leaf node dengan nilai kelas yang tersisa

4. Menentukan node 1.1.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,83	193	0,38	1358,2	920,77
1	2	2,01	225,11	0,44	3039,84	1004,96

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0.5	1	2	Entropy	Gain
Total		2	1	0	1	1	
solo_KillD	eathRatio						
	<2,01	1	72 1	SO at	0	0	1
	>=2,01	1	0	No.	1	0	
		I banii	Other	di nri	\\		
solo_Dam	agePg	Berne		Aur.	$\alpha m M$		
N 7	<225,11	1	1		0	0	1
	>=225,11	1	0		1	0	1
11						- W	
solo_Head	dshotKillsP	g			-	/CT -	
	<0,44	1	1	_	0	0	1
	>=0,44	1	0	- 4	1	0	//
			416	411	20	* /	
solo_Mov	e Distance F)g	1	270		//	
	<3039,84	1	_ 1		0	0	1
	>=3 <mark>039,84</mark>	1	0	5	1	0	

solo_TimeSurvivedPg								
	<1004,96		1	1	-	0	0	1
	>=1004,96	7	1	0		1	0	

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

5. Menentukan node 1.1.2.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,83	193	0,38	1358,2	920,77

Attribut yang dipilih untuk dijadikan node: Label kelas 0

6. Menentukan node 1.1.2.2

	solo_WinRa	tio	solo_KillDeathRatio	solo	_DamagePg	solo_	_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
(2	2,01		225,11		0,44	3039,84	1004,96

Attribut yang dipilih untuk dijadikan node: Label kelas 2

Hasil *tree* sementara:

7. Menentukan node 1.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	1	1,23	151,25	0,18	3653,76	1048,71
1	1	1,08	123,32	0,22	3701,09	1077,55
2	1	1,08	123,32	0,22	3701,09	1077,55

Attribut yang dipilih untuk dijadikan node: Label kelas 1

Hasil akhir *tree*:

*) Setiap kali data yang tersisa memiliki nilai atribut kelas yang sama, maka atribut kelas dijadikan leaf node dengan nilai kelas tersebut.

b. Tree 2

Random dataset untuk membangun tree 2 dapat dilihat pada tabel 6.11

Tabel 6. 11 Random dataset untuk membangun *tree* 2 pada model 1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,02	124,03	0,14	2731,76	999,58
1	1	1,23	151,25	0,18	3653,76	1048,71
2	1	1,23	151,25	0,18	3653,76	1048,71
3	0	1,83	193	0,38	1358,2	920,77
4	0	1,83	193	0,38	1358,2	920,77
5	2	2,1	217,86	0,5	4970,75	1353,75

Berikut adalah langkah-langkah membangun tree 2:

1. Menentukan node 1

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain	
Total 🥌		6	3	2	1	1,459148		
solo_KillD	eathRatio		~ 1			_	X	
7	<1,83	3	1	2	0	0	1,459148	
-	>=1,83	3	2	0	1	0	/	
175			V.			1		
solo_Dam	agePg 🥏	612	70	3 1		3		
	<193	3	1	2	0	0	<mark>1,45</mark> 9148	
	>=193	3	2	0	1	0		
	112	SCHOOL O	of Oak	ne tall			-//	
solo_Head	<mark>dsh</mark> ot Kills P	g	ميل				// /	
150	<0,38	3	1	2	0	0	1,459148	
	>=0,38	3	0	1	2	0		
· >					A .	N		
solo_Mov	e Distance P	eg eg				//		
N.	<3653,76	3	3	0	0	0	1,459148	
	>=3653,76	3	0	2	1	0		
solo_Time	SurvivedP	g	ПK	100		//		
1	<1048,71	3	3	0	0	0	1,459148	
	>=1048,71	3	0	2	1	0		

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

2. Menentukan node 1.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,02	124,03	0,14	2731,76	999,58
1	1	1,23	151,25	0,18	3653,76	1048,71
2	1	1,23	151,25	0,18	3653,76	1048,71

Hasil perhitungan information gain setiap atribut:

Atribut Partisi Total kasus 0 1 2 Entropy Gain Total 3 1 2 0 0,918296 solo_KillDeathRatio								
solo_KillDeathRatio <1,23	Atribut	Partisi		0	1	2	Entropy	Gain
Color Colo	Total		3	1	2	0	0,918296	
Solo_DamagePg	solo_KillD	eathRatio		161		7 .		
solo_DamagePg <151,25	//	<1,23	1	1	0	- (0	0,918296
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		>=1,23	2	0	2	\ -	0	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c				G /			<u> </u>	
>=151,25 2 0 2 0 solo_HeadshotKillsPg 0,18 1 1 0 0,918296 >=0,18 2 0 2 0 0,918296 solo_MoveDistancePg 0 0,918296 >=3653,76 1 1 0 0 0,918296 solo_TimeSurvivedPg 0 0,918296 0 0 0,918296	solo_Dam	agePg	-	-0			U.	- 77
solo_HeadshotKillsPg <0,18	15	<151,25	1	1	0	-	0	<mark>0,9182</mark> 96
<0,18	m	>=151,25	2	0	2	-	0	
<0,18			tit)	T 29	oi F		n	
>=0,18 2 0 2 - 0 solo_MoveDistancePg 0 0,918296 <3653,76	solo_Head	<mark>dshotK</mark> illsP	g	30	· ·			
solo_MoveDistancePg 0,918296 <3653,76		<0,18	$t_{HL}U\Gamma 1$	h 161	0		0	<mark>0,9</mark> 18296
<3653,76		>= <mark>0</mark> ,18	2	0	2	-	0	
<3653,76	4	L		V			M.	
>=3653,76 2 0 2 - 0 solo_TimeSurvivedPg <1048,71 1 1 0 - 0 0,918296	solo_Mov	<mark>e Distance F</mark>)g	-0-			50	
solo_TimeSurvivedPg 0 0,918296	1	<3653,76	1	1	0		0	0,918296
<1048,71	12	>=3653,76	2	0	2	- (2) E	0	
<1048,71		1.20				D'A	7 /	
	solo_Time	SurvivedP	g		W P	7	//	
>=1048,71 2 0 2 - 0		<1048,71	1	1	0		0	0,918296
		>=1048,71	2	0	2	_	0	

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

3. Menentukan node 1.1.1

i	solo_WinRatio	sol <mark>o_KillD</mark> eathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,02	124,03	0,14	2731,76	999,58

Attribut yang dipilih untuk dijadikan node: Label kelas 0

Hasil *tree* sementara:

4. Menentukan node 1.1.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
1	1	1,23	151,25	0,18	3653,76	1048,71
2	1	1,23	151,25	0,18	3653,76	1048,71

Attribut yang dipilih untuk dijadikan node: Label kelas 1

Hasil *tree* sementara:

5. Menentukan node 1.2

i	solo_WinRatio	solo_KillD <mark>eathRatio</mark>	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,83	193	0,38	1358,2	920,77
1	0	1,83	193	0,38	1358,2	920,77
2	2	2,1	217,86	0,5	4970,75	1353,75

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain
Total	1	3	2	0	1	0,918296	
solo_KillE	DeathRatio		KI		70		
	<1,83	0	0	-	0	0	0
	>=1,83	3	2	-	1	0,918296	
73						<u> </u>	7
solo_Dam	iage Pg		VY			7	
Ш	<193	0	0		0	0	0
	>=193	3	2	ei l	1	0,918296	
		Patricia	- 1			7.	
solo_Hea	<mark>dshot</mark> Kills P	g	ել 🔀	ortan		~	//
7	<0,3 8	0	0	-	0	0	0
4	>=0,38	3	2	-	1	0,918296	7
			7			ΛC	
solo_Mov	e Distance F)g			4	7 1	
(A	<1358,2	0	0	-	0	0	0
1	>=1358,2	3	2		1	0,918296	
	TA		CT	W			
solo_Time	SurvivedP	g	1211	2	7		
	<920,77	0	0	-	0	0	0
	>=920,77	3	2	_	1	0,918296	

Hasil *tree* sementara:

*) Jika ada atribut yang terpilih menghasilkan 1 partisi saja, maka nilai kelas label yang mendominasi dijadikan leaf node. Dalam contoh kasus ini adalah atribut solo_KillDeathRatio dipilih untuk dijadikan node, namun atribut tersebut menghasilkan salah satu partisi bernilai nol yaitu partisi <1,83 maka nilai kelas label 0 (yang mendominasi) dipilih untuk dijadikan leaf node

B. Pembentukan *tree* model 2

Model 2 menggunakan fold 2 sebagai data training. Berikut adalah proses pembentukan *tree* pada model 2:

a. Tree 1

Random dataset untuk membangun tree 1 dapat dilihat pada tabel 6.12.

Tabel 6. 12 Random dataset untuk membangun tree 1 pada model 2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	2	1,06	125,64	0,21	3312,12	1062,95
1	2	1,06	125,64	0,21	3312,12	1062,95
2	1	1,05	129,18	0,25	2863,96	867,6
3	1	1,05	129,18	0,25	2863,96	867,6
4	0	1,53	189,73	0,34	2170,23	819,47
5	1	2,14	241,63	0,58	2178,41	804,51

Berikut adalah langkah-langkah membangun tree 1:

1. Menentukan node 1

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total	0	1	2	Entropy	Gain
V	<u> </u>	kasus	W		<u>` </u>		
Total		6) \ \1	3	2	1,459148	
solo_KillD	eathRatio		a /			_	The same of
\sim	<1,06	2	0	2	0	0	<mark>0,4591</mark> 48
7	>=1,06	4	1	1	2	1,5	//
177			V			Jan 1	
solo_Dam	age Pg	PES	7			-	
	<129,18	ALU ₂	0	0	2	0	1,459148
	>=129,18	ruine4	_ @1	3	0	0	
	112	Crean c	ar Ach	A LIGHT			//
solo_Head	<mark>lsho</mark> tKillsP	g	سلح				///
1	<0,25	2	0	0	2	0	1,459148
	>=0,25	4	1	3	0	0	
· /					<u> </u>	6	
solo_Mov	eDistance P	g 'g			7	7 /	
N	<2863,96	2	1	1	0	0	1,459148
	>=2863,96	4	0	2	2	0	
	7	\sim	1911	MC		///	
solo Time	SurvivedP	g	PK	13		//	
	<867,6	2	1	1	0	0	1,459148
	>=867,6	4	0	2	2	0	

Attribut yang dipilih untuk dijadikan node: solo_DamagePg
Hasil *tree* sementara:

2. Menentukan node 1.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	2	1,06	125,64	0,21	3312,12	1062,95
1	2	1,06	125,64	0,21	3312,12	1062,95

Attribut yang dipilih untuk dijadikan node: Label kelas 2

Hasil *tree* sementara:

3. Menentukan node 1.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	1	1,05	129,18	0,25	2863,96	867,6
1	1	1,05	129,18	0,25	2863,96	867,6
2	0	1,53	189,73	0,34	2170,23	819,47
3	1	2,14	241,63	0,58	2178,41	804,51

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	-0	1	2	Entropy	Gain
Total		4	1	3	0	0,811278	
solo_KillD	eathRatio	200	74	41			
	<1,53	2	0	2		0	0,561278
-	>=1,53	2	1	1		0,5	//
7/4	1						///
solo_Dam	<mark>ag</mark> ePg					Z	
	<189,73	2	0	2	-	0	0,561278
120	>=189,73	2	1	1	1	0,5	
	174				1	2 //	
solo_Head	dshotKillsP	g		- 41 PA	$\times \omega$		
	<0,34	2	0	2	7	0	0,561278
	>=0,34	2	1	1	-	0,5	
		7 7	EK	377		//	
solo_Mov	e Distance F	^o g					
	<2863,96	2	1	1	-	0,5	0,561278
	>=2863,96	2	0	2	-	0	

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

4. Menentukan node 1.2.1

i	solo_WinRatio	solo_KillD <mark>eathR</mark> atio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	1	1,05	129,18	0,25	2863,96	867,6
1	1	1,05	129,18	0,25	2863,96	867,6

Hasil *tree* sementara:

└── solo_DamagePg: Root

├── (<129,18) Node: solo_WinRatio leaf: 2

└── (>=129,18) Node: solo_KillDeathRatio

├── (<1.53) Node: solo_WinRatio leaf: 2

└── (>=1.53)

5. Menentukan node 1.2.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,53	189,73	0,34	2170,23	819,47
1	1	2,14	241,63	0,58	2178,41	804,51

Hasil perhitungan information gain setiap atribut:

				The state of the s			
Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain
Total	= $/$	2	1		0	1	
solo_KillD	eathRatio		161				
7 .	<2,14	1	1	0	- ()	0	1
	>=2,14	1	0	1	- 7	0	
(n)			61/			A	111
solo_Dam	agePg		- 0			0	- 777
-	<241,63	1	1	0	-	0	1
m	>=241,63	1	0	1	-	0	
	- //	4II	1 78	oi I		n	
solo_Head	<mark>dshotK</mark> illsP	g	30	A. 1		_	
	<0,58	tail001	h (61	0	1	0	1
	>= <mark>0,</mark> 58	1	0	1		0	
-	L		V				
solo_Mov	<mark>eDistance F</mark>)g	-0-			1	
1	<2170,23	1	1	0	-	0	1
12.	>=2170,23	1	0	1	- 400 1	0	
1 0	P. AV				D'A	2 //	
solo_Time	SurvivedP	g		IL P			
	<804,51	1	0	1		0	1
	>=804,51	1	1	0	-	0	
	-						

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

6. Menentukan node 1.2.2.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,53	189,73	0,34	2170,23	819,47

Hasil *tree* sementara:

7. Menentukan node 1.2.2.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	1	2,14	241,63	0,58	2178,41	804,51

Hasil akhir *tree* 2:

b. Tree 2

Random dataset untuk membangun tree 2 dapat dilihat pada tabel 6.13.

Tabel 6. 13 Random dataset untuk membangun tree 2 pada model 2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	1	2,14	241,63	0,58	2178,41	804,51
1	0	1,04	129,73	0,23	27 37,54	970,17
2	0	1,04	129,73	0,23	2737,54	970,17
3	2	1,06	125,64	0,21	3312,12	1062,95
4	2	2,03	210,54	0,59	3986,74	1171,84
5	2	2,03	210,54	0,59	3986,74	1171,84

Berikut adalah langkah-langkah membangun tree 2:

1. Menentukan node 1

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain
Total 📥		6	2	1	3	1,459148	
solo_KillD	eathRatio		a /			_	
- ~/4	<2,03	2	2	0	0	0	1,459148
	>=2,03	4	0	1	3	0	
777			V.			1	
solo_Dam	agePg 🥏	602	70	45		7	
	<210,54	2	1	0	1	0	<mark>0,4</mark> 59148
	>= <mark>21</mark> 0,54	4	<u> </u>	hear 1	2	1,5	
	112	ECHAPA- C	rat Out	AT TOTAL			///
solo_Head	<mark>lsho</mark> tKillsP	g	ميلج				///
15	<0,58	2	1	0	1	0	0,459148
	>=0,58	4	1	1	2	1,5	
1					<u> </u>		
solo_Mov	eDistance P	g			1	> //	
N	<3312,12	2	1	-1 D1	0	0	1,459148
	>=3312,12	4	1	0	3	0	
A COLUMN TO THE PARTY OF THE PA							
solo_ <mark>Time</mark>	SurvivedP	g	PK	100		10	
1	<1062,95	2	1	1	0	0	1,459148
	>=1062,95	4	1	0	3	0	

Attribut yang dipilih untuk dijadikan node: solo_KillDeathRatio

Hasil *tree* sementara:

└── solo_KillDeathRatio: Root ├── (<2,03) └── (>=2,03)

2. Menentukan node 1.1

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,04	129,73	0,23	2737,54	970,17
1	0	1,04	129,73	0,23	2737,54	970,17
2	2	1,06	125,64	0,21	3312,12	1062,95

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	0	1	2	Entropy	Gain
Total	= $/$	3	2	0	1	0,918296	
solo_KillD	eathRatio		, de		A		
7 3	<1,04	1	1	-	0	0	0,251629
	>=1,04	2	1	-	1	1	
- O			61			A	
solo_Dam	agePg		- 0				7
7	<129,73	1	0	-	1	0	0,918296
16	>=129,73	2	2	-	0	0	
		£ΙΆ	T 29	oi T			
solo_Head	<mark>dshotK</mark> illsP	g	34	4.			
	<0,25	0	0	Service Com	0	0	<mark>0,9</mark> 18296
	>= <mark>0</mark> ,25	1	1	- voint	0	0	//
4	丛		J			XX.	
solo_Mov	<mark>e D</mark> istance F	g g				2	7
1	<2737,54	1	1	-	0	0	0,584963
1	>=2737,54	2	1	-	1	0,5	
\ O	. L. X				D'A 5	7 /	
solo_Time	SurvivedP	g		W D	250		
	<970,17	2	1	7	1	0	0,918296
	>=970,17	2	1		1	0	

Attribut yang dipilih untuk dijadikan node: solo_DamagePg

Hasil *tree* sementara:

3. Menentukan node 1.1.1

i	solo_WinRatio	sol <mark>o_KillD</mark> eathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	0	1,04	129,73	0,23	2737,54	970,17
1	0	1,04	129,73	0, 2 3	2737,54	970,17

Hasil *tree* sementara:

4. Menentukan node 1.1.2

i	solo_WinRatio	sol <mark>o_KillDe</mark> athR <mark>atio</mark>	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	2	1,06	125,64	0,21	3312,12	1062,95

Hasil perhitungan information gain setiap atribut:

Hasil *tree* sementara:

└── solo_KillDeathRatio: Root

├── (<2,03) Node: solo_DamagePg

├── (<129,18) Node: solo_WinRatio leaf: 0

└── (>=129,18) Node: solo_WinRatio leaf: 2

└── (>=2,03)

5. Menentukan node 1.2

i	solo_WinRatio	sol <mark>o_KillDeathRatio</mark>	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
2	1	2,14	241,63	0,58	2178,41	804,51
0	2	2,03	210,54	0,59	3986,74	1171,84
1	2	2,03	210,54	0,59	3986,74	1171,84

Hasil perhitungan information gain setiap atribut:

Atribut	Partisi	Total kasus	O	1	2	Entropy	Gain
Total	= $$	3	0	1	2	0,918296	
solo_KillD	eathRatio		160	7	N .		
7 3	<2,03	1	NV	0	1	0	0,251629
- 1	>=2,03	2	7,7	1	1	1	
- Un			6/			A	
solo_Dam	agePg		-,				
K	<210,54	1		0	1	0	<mark>0,25</mark> 1629
m	>=210,54	2		1	1	1	
_		TI'A	T xa	oi T			
solo_Head	dshot Kills P	g	34	V .		_	
/	<0,59	miore	na (Sili	1	0	0	0,918296
-	>=0,59	2	5	0	2	0	
74			V			X.	///
solo_Mov	<mark>eD</mark> istance P	g	-0-			25	-
1	<3986,74	1	-	1	0	0	0,918296
1	>=3986,74	2	-	0	2	0	
	. Lay				200	7	
solo_Time	SurvivedP	g		W D	2		
	<1171,84	1		1	0	0	0,918296
	>=1171,84	0		0	0	0	

Attribut yang dipilih untuk dijadikan node: solo_HeadshotKillsPg

Hasil *tree* sementara:

	i	solo_WinRatio	solo_K <mark>illDea</mark> thRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
(0	1	2,14	241,63	0,58	2178,41	804,51

Hasil *tree* sementara:

7. Menentukan node 1.2.2

i	solo_WinRatio	solo_KillDeathRatio	solo_DamagePg	solo_HeadshotKillsPg	solo_MoveDistancePg	solo_TimeSurvivedPg
0	2	2,03	210,54	0,59	3986,74	1171,84
1	2	2,03	210,54	0,59	3986,74	1171,84

Hasil akhir *tree* 2: — solo_KillDeathRatio: Root — (<2,03) Node: solo_DamagePg --- (<129,18) Node: solo_WinRatio leaf: 0 (>=129,18) Node: solo_WinRatio leaf: 2 - (>=2,03) Node: solo_HeadshotKillsPg — (<0,59) Node: solo_WinRatio leaf: 1 - (>=0,59) Node: solo_WinRatio leaf: 2

C. Pengujian Data Testing

a. Model 1

Model 1 menggunakan fold 2 sebagai data testing. Hasil klasifikasi data testing model 1 dapat dilihat pada tabel 6. Untuk *tree* 1 dan 2 dapat dilihat pada gambar 6. dan 6..

Gambar 6. 1 Hasil Akhir *Tree* 1 Pada Model 1 Penghitungan Manual

Gambar 6. 2 Hasil Akhir Tree 2 Pada Model 1 Penghitungan Manual

Tabel 6. 14 Hasil Klasifikasi Data Testing Model 1

solo_Win	solo_KillDeat	solo_Damage	solo_Headshot	solo_Move	solo_Time	Vo	ting	Hasil
Ratio	hRatio	Pg	KillsPg	DistancePg	SurvivedPg	Tree 1	Tree 2	voting
0	1,04	129,73	0,23	2737,54	970,17	0	0	0
1	1,05	129,18	0,25	2863,96	867,6	0	0	0
2	2,03	210,54	0,59	3986,74	1171,84	1	0	1
0	1,53	189,73	0,34	2170,23	819,47	0	1	0
1	2,14	241,63	0,58	2178,41	804,51	2	0	2
2	1,06	125,64	0,21	3312,12	1062,95	0	0	0

Tabel 6. 15 Evaluasi Hasil Model 1

	Kelas Prediksi								
	J. (1,04 - 1 - 1	Kelas=0	Kelas=1	Kelas=2					
Kelas	Kelas=0	2	0	0					
Aktual	Kelas=1	1	0	23					
40	Kelas=2	IST	1	0					

Untuk memperoleh ak<mark>urasi model 1 maka dapat menggunakan rumus (2.5),</mark> berikut adalah hasil perhitungannya:

$$Akurasi = \frac{(2+0+0)}{(2+0+0)+(1+0+1)+(1+1+0)} \times 100 = 33,33$$

b. Model 2

Model 2 menggunakan fold 1 sebagai data testing. Hasil klasifikasi data testing model 2 dapat dilihat pada tabel 6.

Gambar 6. 3 Hasil Akhir Tree 1 Pada Model 2 Penghitungan Manual

```
Solo_KillDeathRatio: Root

├── (<2,03) Node: solo_DamagePg

├── (<129,18) Node: solo_WinRatio leaf: 0

└── (>=129,18) Node: solo_WinRatio leaf: 2

└── (>=2,03) Node: solo_HeadshotKillsPg

├── (<0,59) Node: solo_WinRatio leaf: 1

└── (>=0,59) Node: solo_WinRatio leaf: 2
```

Gambar 6. 4 Hasil Akhir Tree 2 Pada Model 2 Penghitungan Manual

Tabel 6. 16 Hasil Klasifikasi Data Testing Model 2

solo_Win	solo_KillDeath	solo_Damage	solo_Headshot	solo_Move	solo_Time	Vot	ing	Hasil
Ratio	Ratio	Pg	KillsPg	DistancePg	SurvivedPg	Tree 1	Tree 2	voting
1	1,23	151,25	0,18	3653,76	1048,71	2	2	2
0	1,83	193	0,38	1358,2	920,77	0	2	0
2	2,01	225,11	0,44	3039,84	1004,96	0	2	0
2	2,1	217,86	0,5	4970,75	1353,75	0	1	0
0	1,02	124,03	0,14	2731,76	999,58	2	0	2
1	1,08	123,32	0,22	3701,09	1077,55	2	0	2

Tabel 6. 17 Evaluasi Hasil Model 1

	Kelas Prediksi								
Ľ	0.44	Kelas=0	Kelas=1	Kelas=2					
Kelas	Kelas=0	7	0	1					
Aktual	Kelas=1	0	0	2					
+0	Kelas=2	2	0	0					

Untuk memperoleh akurasi model 2 maka dapat menggunakan rumus (2.5), berikut adalah hasil perhitungannya:

$$Akurasi = \frac{(1+0+0)}{(1+0+1)+(0+0+2)+(2+0+0)} \times 100 = 16,67$$

D. Akurasi Final

Untuk mendapatkan akurasi final maka diambil rata-rata akurasi yang didapat pada setiap model, dalam kasus ini ada dua model. Berikut adalah perhitungan akurasi final:

$$Akurasi = \frac{33,33 + 16,67}{2} = 25$$

Dari hasil penghitungan di atas diperoleh akurasi final sebesar 25%.

