武汉大学计算机学院2013-2014学年第一学期 2011级《编译原理》参考答案

-, (1)

$$\operatorname{start} \to 0 \stackrel{\varepsilon}{\to} 1 \stackrel{a}{\to} 1 \stackrel{a}{\to} 1 \stackrel{a}{\to} 1 \stackrel{b}{\to} 4 \stackrel{b}{\to} 3 \stackrel{\varepsilon}{\to} 4$$

(2)

 $A=\{\,0,1,3,4\,\},\,B=\{\,1,2,3,4,5\,\},\,C=\{\,3,4\,\},\,D=\{\,1,3,4\,\}.$ 状态转换图为:

(3) 最小DFA如下所示:

- (4) 零个或多个连续的a连接零个或多个连续的b.
- (5) $r = a^*b^*$.
- 二、(1) 最左推导如下:

$$\begin{array}{cccc} I & \underset{lm}{\Longrightarrow} & \{L\} \\ & \underset{lm}{\Longrightarrow} & \{L,L\} \\ & \underset{lm}{\Longrightarrow} & \{I,L\} \\ & \underset{lm}{\Longrightarrow} & \{\{L\},L\} \\ & \underset{lm}{\Longrightarrow} & \{\{L\},L\} \\ & \underset{lm}{\Longrightarrow} & \{\{n\},I\} \\ & \underset{lm}{\Longrightarrow} & \{\{n\},n\} \end{array}$$

(2) 消除左递归后的文法如下:

$$\begin{array}{ccc} I & \rightarrow & \{L\} \mid n \\ L & \rightarrow & IL' \\ L' & \rightarrow & , & LL' \mid \varepsilon \end{array}$$

- $\begin{array}{ll} (3) \ \operatorname{First}(I) = \operatorname{First}(L) = \{\, \{, n\,\}; \ \operatorname{First}(L') == \, \{\, \texttt{,}, \varepsilon\,\}. \\ \operatorname{Follow}(I) = \{\, \}, \texttt{,}, \$\,\}; \ \operatorname{Follow}(L) = \operatorname{Follow}(L') = \{\, \}, \texttt{,}\,\}. \end{array}$
- (4) LL(1)分析表如下所示:

	,	n	{	}	\$
I		$I \rightarrow n$	$I \to \{L\}$		
L	y	$L \rightarrow IL'$	$L \to IL'$		
L'	$L' \to$, $LL', L \to \varepsilon$			$L' \to \varepsilon$	

(5) 语句"{{n},n}"的分析过程如下所示:

	剩余串	分析栈	分析动作
	$\{\{n\}, n\}$ \$	I\$	$I \to \{L\}$
	$\{\{n\}, n\}$ \$	$\{L\}$ \$	match-advance
Ì	$\{n\},n\}$ \$	<i>L</i> }\$	$L \rightarrow IL'$
	$\{n\},n\}$ \$	IL' }\$	$I \to \{L\}$
	$\{n\},n\}$ \$	$\{L\}L'\}$ \$	match-advance
	n , n }\$	L } L' }\$	$L \rightarrow IL'$
	n , n }	IL' } L' }\$	$I \rightarrow n$
	n , n }	nL' } L' }\$	match-advance
	},n}\$	L' } L' }\$	$L' \to \varepsilon$
	},n}\$	}L'}\$	match-advance
	,n}\$	L'}\$	$L' \rightarrow LL'$
	,n}\$, LL' } $\$$	match-advance
	n}\$	LL' }\$	$L \to IL'$
	n}\$	$IL'L'$ }\$	$L \rightarrow IL'$
	n }\$	$IL'L'$ }\$	$I \rightarrow n$
	<i>n</i> }\$	$nL'L'$ }\$	match-advance
	}\$	$L'L'$ }\$	$L' \to \varepsilon$
	}\$	L'}\$	$L' \to \varepsilon$
	}\$	}\$	match-avdance
	\$	\$	分析成功

三、(1) 语句" $\{n,n,n\}$ "的两颗不同的语法树为:

语法树1:

语法树2:

(2) 无二义文法:

$$\begin{array}{ccc} I & \rightarrow & \{L\} \mid n \\ L & \rightarrow & L, I \mid I \end{array}$$

四、(1) 状态 I_3 的LR(0)项目集为

$$\begin{split} & \overline{\{\,I \to \{\, \bullet \, L\}\,\}} \\ = & \{I \to \{\, \bullet \, L\}, L \to \bullet L, L, L \to \bullet I, I \to \bullet \{L\}, I \to \bullet n\} \end{split}$$

- (2) $\{*(n|\varepsilon).$
- (3) SLR分析表如下所示:

	action		goto				
状态	n	,	{	}	\$	I	L
0	s2		s3			1	
1					acc		
2		r2		r2	r2		
3	s2		s3			4	5
4		r4		r4	/		
5		s6		s7			
6	s2		s3			4	8
7	A	r1		r1	r1		
8	r3			r3			1

(4) 语句" $\{n,n,n\}$ "的分析过程如下所示:

剩余串	分析栈	分析动作
$\{n,n,n\}$ \$	0	shift
n,n,n }	0{3	shift
,n,n}\$	$0{3n2}$	reduce $I \to n$
,n,n}\$	$0{3I4}$	reduce $L \to I$
,n,n}\$	$0{3L5}$	shift
n,n	$0{\{}3L{5}{,}6$	shift
,n}\$	$0\{3L5,6n2$	reduce $I \to n$
,n}\$	$0{3L5,6I4}$	reduce $L \to L$
,n}\$	$0{3L5,6L8}$	reduce $L \to L, L$
,n}\$	$0{3L5}$	shift
n}\$	$0{3L5,6}$	shift
}\$	$0\{3L5,6n2$	reduce $I \to n$
}\$	$0{3L5,6I4}$	reduce $L \to I$
}\$	$0{3L5,6L8}$	reduce $L \to L, L$

	}\$	$0{3L5}$	shift
ĺ	\$	$0{3L5}7$	reduce $I \to \{L\}$
Ī	\$	0I1	分析成功

五、(1)

产生式	语义规则		
$I' \to MI$	I.level = 0, I.limit = 1		
$M \to \varepsilon$	count = 0		
$I \to \{LN\}$	if count % getsize(I .level) $\neq 0$ then		
	error("the left brace is not in right pos")		
	if $getsize(I.level) == 1$ then		
	error("the brace level is more than array dim")		
	L.level = $I.$ level + 1		
	$L.\text{limit} = \mathtt{getsize}(I.\text{level}) + \text{count}$		
	$N.\text{limit} = \mathtt{getsize}(I.\text{level}) + \text{count}$		
$I \rightarrow n$	if I .level == 0 then		
	error("initializer is not in braces")		
	if count $\geq I$.limit then		
	error("the array up bound exceeds")		
	emit(getname() + "[" + 4 * count + "] = " + n.val)		
\	count = count + 1		
$N \to \varepsilon$	while count $< N$.limit		
2	emit(getname() + "[" + 4 * count + "] = " + 0)		
	count = count + 1		
$L \to L_1, L_2$	L_1 .level = L .level, L_2 .level = L .level		
	$L_1.\text{limit} = L.\text{limit}, L_2.\text{limit} = L.\text{limit}$		
$L \to I$	I.level = L.level, I.limit = L.limit		

六、

七、实参反向压栈,即函数main()中调用printf时,首先将最后一个实参count压栈,这时其值为0. 再调用fac(5),并将函数调用的结果120压栈. 这时虽然count修改为6,但是栈中所传的实参还是0.