Suggested Solutions for

Written Exam, May 29, 2019

PROBLEM 1

Question 1.1

The constraints are satisfied by the following timed automaton:

Question 1.2

- (a) No. L_0 does not have to be left, ever.
- (b) **Yes.** May stay in L_0 for any amount of time.
- (c) No. Cannot both be at L_1 and at L_0 or L_2 at the same instant. .
- (d) Yes. All paths will start in L_0 for at least 6 time units.
- (e) In any path, infinitely often F holds.
- (f) Yes. Locations L_1 and L_2 must eventually be left, leading to L_0 .

PROBLEM 2

Question 2.1

(a) A[] A imply x <= 2 $\,$ OR $\,$ true --> B

(b) E<> A and x > 2

(c) E <> x > 4

Question 2.2

(a) $(A, x = 0 \land y = 0)$ and $(B, x = 1.5 \land y = 0)$

(b)
$$(A, x = 1 \land y = 1) \xrightarrow{0.5} (A, x = 1.5 \land y = 1.5) \longrightarrow (B, x = 1.5 \land y = 0)$$

Question 2.3

(a)

- (b) There are 9 point regions, 6 half-lines, 16 line segments, 8 bounded areas and 5 unbounded areas. In total, 44 clock regions.
- (c) With 2 locations and 44 clock regions, the maximum number of states of the region automaton would be $2 \times 44 = 88$ states.

$$\text{(d)} \ \ (A,[0\leq x\leq 1,y=x]) \overset{time}{\longrightarrow} (A,[x=y=1]) \overset{discrete}{\longrightarrow} (B,[x=1,y=0])$$

PROBLEM 3

Question 3.1

(a) Individual and total loads (utilization):

	T	C	U
а	8	4	50 %
b	12	3	25~%
С	25	5	20~%
Total			95~%

(b) For N=3 the Liu-Layland criterion is 78 %. Hence schedulability cannot be guaranteed.

[For this exam, the Bini criterion was not used. According to this, the product of $1 + U_i$ should not exceed 2. For the given tasks, the product becomes $(1.5 \times 1.25 \times 1.2) = 2.25$. Hence the task set cannot be guaranteed by this criterion either.

Finally, we note that none of the periods are harmonic and hence a the notion of *task* families is of no relevance.]

Question 3.2

For the given tasks, rate monotonic priority assignment yields the order a. b, and c. The response times are then found using the iterative formula:

$$R_i^{k+1} = C_i + \sum_{j \in hp(i)} \left\lceil \frac{R_i^k}{T_j} \right\rceil C_j$$

as presented in the following scheme

Hence, $R_a = 4$, $R_b = 7$, and $R_c = 23$.

Question 3.3

(a) The system may be illustrated by:

where the numbers on the connections indicate the maximum use of the given resource by the given task.

From this we conclude that $B_{\mathbf{C}} = 0$ as the lowest priority task can never be blocked by any lower priority task.

Also $B_{\mathsf{b}} = 0$ as task b does not share any resources with lower priority tasks (here task c).

(b) The worst case blocking time suffering from priority inversion can occur in the following scenario where tasks a and b are released just when task c has acquired the resource M_2 :

(c) By applying standard priority inheritance, the computation time C_{b} cannot any longer prolonge the time task a is waiting for M_2 which is then only 2. However, now task a may additionally be blocked on M_1 adding 1 to the blocking time so that $B_{\mathsf{a}} = 3$ with priority inheritance.

As the response time $R_a = 4 + 3 = 7$ is now within the deadline and as the other response times are unaffected, the scheduling is now feasible.