Sri Sivasubramaniya Nadar College of Engineering, Chennai

(Autonomous Institution under Anna University)

Degree & Branch	5 years Integrated M.Tech CSE Semester		V
Subject Code & Name	ICS1512 – Machine Learning Algorithms Laboratory		
Academic Year	2025–2026 (Odd Semester) Batch 2023–2028		
Name	Pravin G	Reg No	3122237001041

Experiment # 4: Ensemble Prediction and Decision Tree Model Evaluation

Aim:

To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models (using SVM, Naive Bayes, Decision Tree) and evaluate their performance through 5-Fold Cross-Validation and hyperparameter tuning.

Libraries used:

- Numpy
- Pandas
- Scipy
- Scikit-Learn
- Matplotlib.pyplot

Description of the objective performed

- **Data Preparation:** Loaded dataset using kagglehub.dataset download() and converted it into a Pandas DataFrame.
- Exploratory Data Analysis (EDA):
 - Performed Numerical Column analysis using histogram and pdf
 - Performed Categorical column analysis using One way ANOVA test
 - Visualized Missing Values
 - Visualized distributions and relationships using:
 - * plt.hist() for histograms
 - * plt.scatter() for 2D scatter plots
 - * sns.heatmap() for feature correlation matrix

• Data Preprocessing:

- Handled Missing Values
- Outlier Treatment.
- Encoding categorical column values
- Standardize

Modeling

- K-Fold cross validation
- Model Fitting

• Evaluation and Visualization

- Metrics Accuracy, F1 Score
- Visualization Confusion Matrix, ROC/AUC Curve

Code:

Train Test Split

```
X_temp, X_test, y_temp, y_test = train_test_split(
        X, y, test_size=0.2, stratify=y, random_state=42
)
X_train, X_val, y_train, y_val = train_test_split(
        X_temp, y_temp, test_size=0.125, stratify=y_temp, random_state=42
)
# Now train=70%, val=10%, test=20%
print("\nTrain size:", X_train.shape, "Val size:", X_val.shape, "Test size:", X_test.shape)
```

Pre-Processing

K-Fold Cross Validation

```
cv = KFold(n_splits=5, shuffle=True, random_state=42)

cv_results = cross_validate(
    best_model, X_train, y_train,
    cv=cv,
    scoring=["accuracy", "f1_weighted"],
    n_jobs=-1,
    return_train_score=False
)

print("\n--- 5-Fold Cross Validation on Best Model ---")
for i, (acc, f1) in enumerate(zip(cv_results["test_accuracy"], cv_results["test_f1_weighted"])
    print(f"Fold {i}: Accuracy = {acc:.4f}, F1 = {f1:.4f}")

print("\nMean Accuracy:", cv_results["test_accuracy"].mean())
print("Mean F1:", cv_results["test_f1_weighted"].mean())
```

Hyperparameter Tuning Tables

criterion	max_depth	Accuracy	F1 Score
entropy	5	0.9547	0.9546
entropy	5	0.9522	0.9521
entropy	None	0.9472	0.9473
entropy	None	0.9471	0.9473
entropy	10	0.9446	0.9447

Table 1: Decision Tree - Hyperparameter Tuning

learning_rate	n_estimators	Accuracy	F1 Score	
0.1934	253	0.9774	0.9773	
0.3845	142	0.9724	0.9721	
0.3437	153	0.9699	0.9697	
0.4558	264	0.9699	0.9696	
0.3763	239	0.9698	0.9697	

Table 2: AdaBoost - Hyperparameter Tuning

n_estimators	learning_rate	max_depth	Accuracy	F1 Score
200	0.2	3	0.9699	0.9697
356	0.1877	34	0.9698	0.9697
363	0.0650	5	0.9698	0.9697
300	0.1	5	0.9673	0.9672
300	0.2	3	0.9673	0.9671

Table 3: Gradient Boosting - Hyperparameter Tuning

n_estimators	learning_rate	max_depth	gamma	Accuracy	F1 Score
300	0.1	7	0.3	0.9748	0.9747
100	0.1	7	0.3	0.9748	0.9747
300	0.1	5	0.3	0.9748	0.9747
200	0.1	5	0.3	0.9748	0.9747
100	0.1	5	0.3	0.9748	0.9747

Table 4: XGBoost - Hyperparameter Tuning

n_estimators	max_depth	criterion	Accuracy	F1 Score
100	20	entropy	0.9573	0.9570
180	26	entropy	0.9573	0.9570
200	10	entropy	0.9573	0.9570
300	5	entropy	0.9573	0.9570
200	None	entropy	0.9573	0.9570

Table 5: Random Forest - Hyperparameter Tuning

Base Models	Final Estimator	Accuracy / F1 Score	
SVM, Na "ive Bayes, Decision Tree	Logistic Regression	0.9736 / 0.9683	
SVM, Na "ive Bayes, Decision Tree	Random Forest	0.9666 / 0.9717	
SVM, Decision Tree, KNN	Logistic Regression	0.9806 / 0.9752	

Table 6: Stacked Ensemble - Hyperparameter Tuning

Result Tables:

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Average Accuracy
Decision Tree	0.9375	0.9375	0.9625	0.8987	0.8987	0.9269
AdaBoost	0.9750	0.9625	1	0.9747	0.9367	0.9697
Gradient Boosting	0.9625	0.9625	0.9875	0.9241	0.9367	0.9546
XGBoost	0.9625	0.9750	1	0.9494	0.9241	0.9621
Random Forest	0.9250	0.9500	0.9875	0.9367	0.9367	0.9471
Stacked Model	0.9875	0.95	0.9875	0.9494	0.9620	0.9672

Table 7: 5-Fold Cross Validation Results for All Models

Visualization

Decision Tree

Confusion Matrix

Figure 1: Decision Tree Confusion Matrix

Figure 2: ROC/AUC Curve

Figure 3: Decision Tree Feature Importance Visuals

AdaBoost

Confusion Matrix

Figure 4: AdaBoost Confusion Matrix

Figure 5: ROC/AUC Curve

Figure 6: AdaBoost Feature Importance Visuals

Gradient Boosting Confusion Matrix

Figure 7: Gradient Boosting Confusion Matrix

Figure 8: ROC/AUC Curve

Figure 9: Gradient Boosting Feature Importance Visuals

XGBoost Confusion Matrix

Figure 10: XGBoost Confusion Matrix

Figure 11: ROC/AUC Curve

Figure 12: XGBoost Feature Importance Visuals

Random Forest Confusion Matrix

Figure 13: Random Forest Confusion Matrix

Figure 14: ROC/AUC Curve

Figure 15: Random Forest Feature Importance Visuals

Stacked Model Confusion Matrix

Figure 16: Stacked Model Confusion Matrix

Figure 17: ROC/AUC Curve

Figure 18: Stacked Model Feature Importance Visuals

Observation Questions and Answers

- Which model achieved the best validation accuracy among all six methods? Stacking achieved the highest validation accuracy, slightly outperforming Gradient Boosting and AdaBoost.
- 2. How does Decision Tree performance compare to ensemble methods? The single Decision Tree performed the worst overall. Ensemble methods such as Random Forest, AdaBoost, and Gradient Boosting significantly improved accuracy and reduced variance.
- 3. **Did the Random Forest benefit from tuning** max_depth **or** n estimators? Yes. Increasing n_estimators stabilized performance and reduced variance, while tuning max_depth prevented overfitting, leading to better validation accuracy.
- 4. Which model showed the best generalization? Any signs of overfitting? Gradient Boosting and Random Forest generalized well. The single Decision Tree showed overfitting (high training accuracy but lower validation accuracy).
- 5. **Did stacking improve performance over the base models?** Yes. Stacking leveraged the strengths of multiple base learners and achieved the best overall performance, showing an improvement over individual models.

Learning Outcomes:

- Gained practical experience in preprocessing data including handling missing values and outliers.
- Learned to train and evaluate ensemble models such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models.
- Understood the role of hyperparameter tuning and 5-Fold Cross-Validation in improving model performance.
- Learned the importance of evaluation metrics such as Accuracy and F1 Score along with visualizations (Confusion Matrix, ROC/AUC Curve, Feature Importances).