TEST CHI - QUADRO & ANOVA

Tre monete differenti, A, B e C, vengono lanciate per testare con significatività $\alpha = 0.1$ l'ipotesi H_0 che le monete siano statisticamente uguali. I risultati sono i seguenti:

A	В	С
88	93	110
112	107	90

Svolgere il test.

Svolgimento.

	A	В	C	тот
T	88	93	110	291
C	112	107	90	309
тот	200	200	200	600

Supponiamo H_0 vero, allora le tre monete hanno la stessa probabilità di ottenere testa; il che è equivalente a lanciare una moneta 600 volte.

Quindi
$$\mathbb{P}(\mathbf{T} \mid H_0) = q_{1,j} = \frac{291}{600}$$
 con $j = 1, 2, 3$, mentre $\mathbb{P}(\mathbf{C} \mid H_0) = q_{2,j} = \frac{309}{600}$ con $j = 1, 2, 3$.
 $N_{1,K} = \# \{ \text{teste per la moneta K} \}$ $N_{2,K} = \# \{ \text{croci per la moneta K} \}$

Dobbiamo considerare un test del Chi-Quadro con (3-1)(2-1)=2 gradi di libertà, quindi la regione di rifiuto è

$$C = \left\{ \underline{X} \mid \chi_2^2 \ge \chi_{2,\alpha}^2 = \chi_{2,0.1}^2 = 4.605 \right\}$$

$$\sum_{i=1}^2 \sum_{j=1}^3 \frac{(N_{i,j} - nq_{i,j})^2}{nq_{i,j}} =$$

$$= \frac{(88 - 97)^2 + (93 - 97)^2 + (110 - 97)^2}{97} + \frac{(112 - 103)^2 + (107 - 103)^2 + (90 - 103)^2}{103} = 5.325 > 4.605$$

Siccome $\sum_{i=1}^2 \sum_{j=1}^3 \frac{(N_{i,j}-nq_{i,j})^2}{nq_{i,j}} \sim \chi_2^2$ rifiutiamo H_0 con significatività 0.1.

Si vogliono provare tre differenti approcci per ridurre la pressione arteriosa in pazienti con pressione alta. I pazienti vengono divisi in tre gruppi. Al primo gruppo viene somministrato un farmaco, il secondo gruppo svolge esercizi fisici e il terzo gruppo segue una dieta. Dopo quattro settimane il cambiamento di pressione viene misurato per ogni paziente con i seguenti risultati:

Gruppo 1	Gruppo 2	Gruppo 3
9	0	4
10	2	5
12	7	6
13	6	9
15	12	10

Assumendo che la risposta per ciascun gruppo sia normale con uguale varianza: Testare con $\alpha=5\%$ l'ipotesi che la media della risposta ai diversi trattamenti sia uguale.

Svolgimento.

Usiamo il test ANOVA, con m = #campioni = 3 e $n = taglia \ campioni = 5$.

Sia $D = \frac{\frac{\chi^2_{m-1}}{m-1}}{\frac{\chi^2_{nm-m}}{nm-m}} \sim F(m-1, nm-m)$, cioè consideriamo una distribuzione di Fisher con parametri (2, 12).

La regione di rifiuto è data da

$$C = {\underline{X} \mid F(2, 12) > F_{\alpha}(2, 12) = 3.89}$$

Andiamo a calcolare il valore numerico del problema:

$$SSw = \sum_{j=1}^{3} \sum_{i=1}^{5} (X_{ij} - \bar{X}_{j})^{2} \sim \chi_{nm-m}^{2}$$

dove:

- $\bullet~X_{ij}$ è il valore assunto dalla j-esima osservazione dell' i-esimo campione
- \bar{X}_j è la media campionaria relativa al j-esimo campione. Il valore numerico di SS_w è dato da

$$SSw = 136.8 \Rightarrow \frac{SS_w}{nm - m} = \frac{136.8}{12} = 11.4$$

$$SS_b = n \sum_{j=1}^{3} (\bar{X}_j - \bar{X})^2 \sim \chi_{m-1}^2$$

dove \bar{X} indica la media campionaria totale, cio
è $\frac{\sum_{j=1}^3\sum_{i=1}^5X_{ij}}{nm}$

$$SS_b = 113.2 \Rightarrow \frac{SS_b}{m-1} = \frac{113.2}{2} = 56.6$$

Quindi

$$D = \frac{56.6}{11.4} = 4.96 > 3.89 \Rightarrow \ {\rm rifiutiamo} \ H_0 \ {\rm con \ significativit\`a} \ \alpha = 5\%$$