Security Encryption Scheme

An *encryption scheme* consists of a set $\{E_e:e\in K\}$ and a corresponding set $\{D_d:d\in K\}$ of encrypting and decrypting functions, respectively.

For each $e \in K$, there is a unique key $d \in K$ where $D_d = E_e^{-1}$.

An encryption scheme is also called a cipher.

It should be clear that every e is actually a representative of some bijection from M to C. In this task, you have to count the number of such bijections and, hence, the number of keys that produce different encryption functions.

Assume that |M|=|C|=n which is given as the input.

Constraints

 $1 \le n \le 10$

Input Format

The input consists of a single positive integer n.

Output Format

Output a single positive integer, the number of bijections.

Sample Input

3

Sample Output

6

Explanation

Let us assume that $M = \{1, 2, 3\}$ and $C = \{3, 2, 1\}$.

We can have encryption schemes where 1 can be mapped to 3 or 2 or 1, 2 can be mapped to the remaining two, and 1 can be mapped to the unmapped one.

This accounts for 3 * 2 * 1 = 6 such encryption functions.