INF 1022 – P1 de Anal. Sintáticos e Léxicos – 2021.1 Prof Edward Hermann Haeusler

Resolva as questões abaixo.

	neso	nva as questoes abaixo.					
1.	Apr	resente expressões regulares que descrevam as linguagens abaixo:					
	(a)	Linguagem das palavras sobre $\{a,b,c\}$ tal que entre duas ocorrências de a existe pelo menos uma ocorrência de b .					
	(b)	Linguagem das palavras sobre $\{a,b,c,d\}$ onde o primeiro símbolo na palavra não ocorre no meio da mesma e o último símbolo é diferente do primeiro.					
	(c)	Linguagem das palavras sobre $\{a,b,c\}$ que têm exatamente 3 ocorrências de a , ou não têm nenhuma ocorrência de c , ou se iniciadas em abc terminam em bca .					
2.		utômato a seguir representa a linguagem das palavras sobre $\{a,b\}$ nas quais há quantidade ímpar de a ar de b .					
	(a)	Ele é determinístico? Justifique.					
	(b)	Como você pode alterá-lo para que ele aceite a linguagem das palavras nas quais há quantidade ímpar de a ou par de b , para o mesmo alfabeto?					
	(c)	(c) Com base na sua resposta anterior, atribua um <i>significado</i> a cada estado desse autômato. Em outra palavras: quando estamos em um dos estados do autômato, o que garantimos sobre o que já foi la da palavra recebida de entrada? Dica: faça alguns testes com palavras de entrada para pegar en intuição.					
		$\rightarrow q_1$ q_2					
		q_4 q_3					
		a					
		· · · · · · · · · · · · · · · · · · ·					

3.	Em aula vimos em detalhes dois métodos para a conversão de Autômatos Finitos para ERs: o método de
	sistemas de equações (baseado no lema de Arden) e o método recursivo. Monte o sistema de equações para
	o autômato do enunciado anterior (não é necessário resolvê-las), e argumente:

(a) Como seriam realizadas as etapas seguintes desse processo.

1	(1-)	O	C		:		1: 1 _		
(D)	Como	ninciona	о тегодо	recursivo	ananao	abucado	a esse	autômato.

4. Seja o Autômato Finito abaixo que aceita a linguagem L sobre o alfabeto $\Sigma = \{a, b, c\}$. Apresente um Autômato Finito Determinístico que aceite a linguagem $\overline{L} = \Sigma^* - L$. Dica: primeiro torne-o determinístico.

5. Considere o autômato \mathcal{A} abaixo:

Apresente um Autômato Finito (determinístico ou não) equivalente a \mathcal{A} e sem transições ϵ . Justifique sua resposta.

6. Seja o AFD $A=\langle\{q_0,q_1,q_2,q_3\},\{a,b,c\},\delta,q_0,\{q_1,q_2\}\rangle,$ onde δ :

Argumente porque nenhum estado possui equivalente (a não ser a si mesmo) no autômato, isto é, o autômato é mínimo.

7. Considere os pares de linguagens (expressas por ER) em cada linha da tabela abaixo.

0*1(01*0+10*1)*	(0+101*01)*1
(0+1)*000(0+1)*	(1*00 + 1*01(0+1)*00)0(0+1)*
1(0+10*1)*	1(0+10*1)*(0+10*1)*
$(10^* + 1000)^*$	$(10^* + 1010)^*$

Em cada linha da tabela, no campo central, preencha com:

- \subsetneq , caso a primeira linguagem seja menos expressiva que a segunda (portanto, um subconjunto),
- \supsetneq , caso a segunda linguagem seja menos expressiva que a primeira (portanto, um subconjunto),
- =, caso sejam a mesma linguagem, ou
- ×, caso sejam linguagens diferentes, e uma não seja subconjunto da outra.

Justifique sua resposta, exibindo contra-exemplos onde houver diferença entre as linguagens, ou argumentando, no caso de igualdade.

8. Mostre que a linguagem $\{(^n)^n : n \geq 0\}$ (uma versão simples de balanceamento de parênteses) não é regular via lema do bombeamento. Caso ela fosse uma linguagem que atendesse ao lema, o que poderia ser dito sobre ela?