MAD211 - Estatística para Administração

Amostragem e Distribuições Amostrais

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 15

Estimação pontual

Distribuições amostrais

Métodos de amostragem

▶ População: conjunto de todos os elementos de interesse no estudo.

- ▶ População: conjunto de todos os elementos de interesse no estudo.
- ► Amostra: subconjunto da população

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Por que utilizar uma amostra?

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Por que utilizar uma amostra?

Coletar informação da população toda é caro

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Por que utilizar uma amostra?

- Coletar informação da população toda é caro
- Coletar informação da população toda é inviável

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Por que utilizar uma amostra?

- Coletar informação da população toda é caro
- Coletar informação da população toda é inviável

Característica numéricas da população (média, proporção, desvio padrão, etc) são chamados de **parâmetros**

Um dos propósitos da inferência estatística é estimar e testar hipóteses a respeito dos parâmetros populacionais utilizando a informação contida na amostra

Por que utilizar uma amostra?

- Coletar informação da população toda é caro
- Coletar informação da população toda é inviável

Os resultados da amostra apresentam apenas uma estimativa do verdadeiro (e desconhecido) valor do parâmetro. **Com métodos apropriados de amostragem, obteremos "boas" estimativas**

Amostragem aleatória simples é um dos métodos de amostragem mais comums

¹Existem amostras aleatórias com e sem reposição

Amostragem aleatória simples é um dos métodos de amostragem mais comums

Definição

Uma amostra aleatória simples (a.a) de tamanho n de uma população de tamanho N é uma amostra selecionada de forma independente e sem reposição de tal maneira que cada elemento na amostra tenha a mesma probabilidade de ser escolhido.

¹Existem amostras aleatórias com e sem reposição

Amostragem aleatória simples é um dos métodos de amostragem mais comums

Definição

Uma amostra aleatória simples (a.a) de tamanho n de uma população de tamanho N é uma amostra selecionada de forma independente e sem reposição de tal maneira que cada elemento na amostra tenha a mesma probabilidade de ser escolhido.

Antigamente se utilizaba uma Tabela de número aleatórios

¹Existem amostras aleatórias com e sem reposição

Amostragem aleatória simples é um dos métodos de amostragem mais comums

Definição

Uma amostra aleatória simples (a.a) de tamanho n de uma população de tamanho N é uma amostra selecionada de forma independente e sem reposição de tal maneira que cada elemento na amostra tenha a mesma probabilidade de ser escolhido.

- Antigamente se utilizaba uma Tabela de número aleatórios
- ▶ Hoje em dia qualquer programa calcula números (pseudo) aleatorios

¹Existem amostras aleatórias com e sem reposição

► No R:

sample(x, n)

em que x é um vetor com o ID dos elementos da população e n é o tamano da amostra.

► No R:

sample(x, n)

em que x é um vetor com o ID dos elementos da população e n é o tamano da amostra.

► No R.

```
sample(x, n)
```

em que x é um vetor com o ID dos elementos da população e n é o tamano da amostra.

Exemplo

```
IDs <- 1:1000
n <- 10
sample(IDs,n)</pre>
```

```
## [1] 561 799 501 521 223 836 52 75 479 310
```

Quantas amostras aleatórias simples de tamanho n podem ser selecionadas de uma população cm N elementos?

Quantas amostras aleatórias simples de tamanho n podem ser selecionadas de uma população cm N elementos?

$$\binom{N}{n} = \frac{N!}{n!(N-n)!}$$

A diretoria do CCJE gostaria conhecer a opinião dos alunos da FACC sobre o ensino remoto no 2020.2. Por motivos logísticos e financeiros, saber a opinião de todos os alunos é inviável. Por esse motivo, a diretoria do CCJE pede ajuda aos alunos de MAD211 para selecionar uma amostra de 400 alunos. Como seria feita a amostragem?

A diretoria do CCJE gostaria conhecer a opinião dos alunos da FACC sobre o ensino remoto no 2020.2. Por motivos logísticos e financeiros, saber a opinião de todos os alunos é inviável. Por esse motivo, a diretoria do CCJE pede ajuda aos alunos de MAD211 para selecionar uma amostra de 400 alunos. Como seria feita a amostragem?

Usar os ID dos alunos (por exemplo, o número de matricula)

A diretoria do CCJE gostaria conhecer a opinião dos alunos da FACC sobre o ensino remoto no 2020.2. Por motivos logísticos e financeiros, saber a opinião de todos os alunos é inviável. Por esse motivo, a diretoria do CCJE pede ajuda aos alunos de MAD211 para selecionar uma amostra de 400 alunos. Como seria feita a amostragem?

- Usar os ID dos alunos (por exemplo, o número de matricula)
- Usar sample(matriculas_alunos, n = 400)

A diretoria do CCJE gostaria conhecer a opinião dos alunos da FACC sobre o ensino remoto no 2020.2. Por motivos logísticos e financeiros, saber a opinião de todos os alunos é inviável. Por esse motivo, a diretoria do CCJE pede ajuda aos alunos de MAD211 para selecionar uma amostra de 400 alunos. Como seria feita a amostragem?

- Usar os ID dos alunos (por exemplo, o número de matricula)
- ► Usar sample(matriculas_alunos, n = 400)
- Entrevistar os 400 alunos selecionados.

► Frequentemente estamos interessados em conhecer o valor de algumas caracteristicas (parâmetros) da população

- ► Frequentemente estamos interessados em conhecer o valor de algumas caracteristicas (parâmetros) da população
- Como dificilmente temos informação da população toda, o que é feito é calcular a caracteristoca correspondente à amostra, denominada estatística amostral.

- ► Frequentemente estamos interessados em conhecer o valor de algumas caracteristicas (parâmetros) da população
- Como dificilmente temos informação da população toda, o que é feito é calcular a caracteristoca correspondente à amostra, denominada estatística amostral.

- ► Frequentemente estamos interessados em conhecer o valor de algumas caracteristicas (parâmetros) da população
- Como dificilmente temos informação da população toda, o que é feito é calcular a caracteristoca correspondente à amostra, denominada estatística amostral.

Estatística

Uma estatística é uma característica da amostra, ou seja, uma estatística T é uma função de X_1, X_2, \ldots, X_n

- ► Frequentemente estamos interessados em conhecer o valor de algumas caracteristicas (parâmetros) da população
- Como dificilmente temos informação da população toda, o que é feito é calcular a caracteristoca correspondente à amostra, denominada estatística amostral.

Estatística

Uma estatística é uma característica da amostra, ou seja, uma estatística T é uma função de X_1, X_2, \ldots, X_n

Parâmetro

Um parâmetro é uma medida usada para descrever uma caracaterística da população

Na prática, estimaremos a característica de interesse (parâmetro) utilizando dados da nossa amostra.

Exemplos

Na prática, estimaremos a característica de interesse (parâmetro) utilizando dados da nossa amostra.

Exemplos

▶ Saber a opinião dos alunos da FACC sobre o ensino remoto no 2020.2

Na prática, estimaremos a característica de interesse (parâmetro) utilizando dados da nossa amostra.

Exemplos

- ▶ Saber a opinião dos alunos da FACC sobre o ensino remoto no 2020.2
- Saber o salário de todos os professores universitários de instituições publicas no Brasil

Na prática, estimaremos a característica de interesse (parâmetro) utilizando dados da nossa amostra.

Exemplos

- Saber a opinião dos alunos da FACC sobre o ensino remoto no 2020.2
- Saber o salário de todos os professores universitários de instituições publicas no Brasil
- ► Saber a intenção de voto de todos os brasileiros (com idade para votar)

Exemplo

Suponha que os salários dos 10000 professores das universidades publicas está no conjunto de dados salarios

Exemplo

Suponha que os salários dos 10000 professores das universidades publicas está no conjunto de dados salarios

Cuja média é 7500.39 e variância é 1545.78

Exemplo

Suponha que os salários dos 10000 professores das universidades publicas está no conjunto de dados salarios

Cuja média é 7500.39 e variância é 1545.78

Vamos supor que o sistema tem organizado os professores segundo salário (de menor a maior)

Exemplo

Suponha que os salários dos 10000 professores das universidades publicas está no conjunto de dados salarios

Cuja média é 7500.39 e variância é 1545.78

Vamos supor que o sistema tem organizado os professores segundo salário (de menor a maior)

salarios <- sort(salarios)</pre>

Exemplo

Suponha que os salários dos 10000 professores das universidades publicas está no conjunto de dados salarios

Cuja média é 7500.39 e variância é 1545.78

Vamos supor que o sistema tem organizado os professores segundo salário (de menor a maior)

```
salarios <- sort(salarios)</pre>
```

vamos a selecionar uma amostra de tamanho 100 e calcular o salário médio e a variância

```
amostra1 <- head(salarios,100) #100 primeiros registros na base
amostra2 <- tail(salarios,100) #100 últimos registros na base
amostra3 <- sample(salarios,100) # a.a de tamanho 100
```

```
amostra1 <- head(salarios,100) #100 primeiros registros na base
amostra2 <- tail(salarios,100) #100 últimos registros na base
amostra3 <- sample(salarios,100) # a.a de tamanho 100
```

Qual amostra você acha nos dara "boas" estimativas? por quê?

```
amostra1 <- head(salarios, 100) #100 primeiros registros na base
amostra2 <- tail(salarios, 100) #100 últimos registros na base
amostra3 <- sample(salarios, 100) # a.a de tamanho 100
Qual amostra você acha nos dara "boas" estimativas? por quê?
\mu = 7500.39 \text{ e } \sigma^2 = 1545.78
c(mean(amostra1), mean(amostra2), mean(amostra3))
## [1] 7396.095 7603.633 7494.107
c(var(amostra1), var(amostra2), var(amostra3))
## [1] 128.5797 188.2172 1764.6905
```

E se quisermos saber a proporção de professores que ganham mais de 7500 reais?

```
sum(salarios > 7500)/length(salarios) #prop. populacional
```

[1] 0.5007

E se quisermos saber a proporção de professores que ganham mais de 7500 reais?

```
sum(salarios > 7500)/length(salarios) #prop. populacional
## [1] 0.5007
sum(amostra1 > 7500)/length(amostra1)
## [1] 0
sum(amostra2 > 7500)/length(amostra2)
## [1] 1
sum(amostra3 > 7500)/length(amostra3)
## [1] 0.46
```

lacktriangle A média amostral é um estimador da média populacional μ

- lacktriangle A média amostral é um estimador da média populacional μ
- ightharpoonup A variância amostral é um estimador da variância populacional σ^2

- lacktriangle A média amostral é um estimador da média populacional μ
- ightharpoonup A variância amostral é um estimador da variância populacional σ^2
- ▶ A proporção da amostra é um estimador da proporção populacional p

No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas. . . .

- No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas. . . .
- ▶ E se tivessemos escolhido outra amostra?

- No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas. . . .
- ▶ E se tivessemos escolhido outra amostra?

- No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas....
- ▶ E se tivessemos escolhido outra amostra?

```
c(mean(sample(salarios,100)), mean(sample(salarios,100)),
  mean(sample(salarios,100)), mean(sample(salarios,100)))
```

```
## [1] 7496.898 7493.770 7500.751 7491.826
```

- No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas. . . .
- ▶ E se tivessemos escolhido outra amostra?

```
c(mean(sample(salarios,100)), mean(sample(salarios,100)),
  mean(sample(salarios,100)), mean(sample(salarios,100)))
```

```
## [1] 7496.898 7493.770 7500.751 7491.826
```

ightharpoonup Cada amostra levará a valores diferentes de \bar{x}

- No exemplo anterior, temos que $\mu=7500.39$ e (para a amostra3) $\bar{x}=7494.11$ mas. . . .
- ▶ E se tivessemos escolhido outra amostra?

```
c(mean(sample(salarios,100)), mean(sample(salarios,100)),
  mean(sample(salarios,100)), mean(sample(salarios,100)))
```

```
## [1] 7496.898 7493.770 7500.751 7491.826
```

- ightharpoonup Cada amostra levará a valores diferentes de \bar{x}
- Se considerarmos, digamos 2000 amostras, qual é a distribuição amostral de \bar{x} ?

$$\sum_{i=1}^{n} X_{i}$$

A estimador $\bar{X} = \frac{\displaystyle\sum_{i=1}^{n} X_{i}}{n}$ é uma variável aleatória, e como variável aleatória tem um valor médio (valor esperado), um desvio padrão e uma distribuição de probabilidade.

$$\sum_{i=1}^{n} X_{i}$$

- A estimador $\bar{X} = \frac{\sum\limits_{i=1}^{n} X_{i}}{n}$ é uma variável aleatória, e como variável aleatória tem um valor médio (valor esperado), um desvio padrão e uma distribuição de probabilidade.
- ► A distribuição de probabilidade da média amostral é chamada de distribuição amostral da média.

- A estimador $\bar{X} = \frac{\sum_{i} X_{i}}{n}$ é uma variável aleatória, e como variável aleatória tem um valor médio (valor esperado), um desvio padrão e uma distribuição de probabilidade.
- ► A distribuição de probabilidade da média amostral é chamada de distribuição amostral da média.
- Conhecer a distribuição amostral de alguma estatística (média, proporão, variância, etc), bem como suas propriedades, nos possibilitará fazer afirmações a respeito de quão próximas de, por exemplo, quão próximas a média da amostra está da média populacional (ou a variância amostral da variância populacional ou a proporção amostral da proporção populacional, etc)

Sejam X_1, \ldots, X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2

Sejam X_1,\ldots,X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \underbrace{\mathbb{E}(X_1 + \dots + X_n)}_{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)} = \frac{1}{n} n\mu = \mu$$

Sejam X_1, \ldots, X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \underbrace{\mathbb{E}(X_1 + \dots + X_n)}_{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)} = \frac{1}{n} n\mu = \mu$$

 Quando o valor esperado de um estimador pontual é igual ao parâmetro, dizemos que o estimador é não viesado.

Sejam X_1,\ldots,X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \underbrace{\mathbb{E}(X_1 + \dots + X_n)}_{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)} = \frac{1}{n} n\mu = \mu$$

- Quando o valor esperado de um estimador pontual é igual ao parâmetro, dizemos que o estimador é não viesado.
- ▶ A média amostral é um estimador não viesado da média populacional.

Sejam X_1, \ldots, X_n uma amostra aleatória de uma distribuição com média μ e variância σ^2

$$\mathbb{E}(\bar{X}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n} \underbrace{\mathbb{E}(X_1 + \dots + X_n)}_{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)} = \frac{1}{n} n\mu = \mu$$

- Quando o valor esperado de um estimador pontual é igual ao parâmetro, dizemos que o estimador é não viesado.
- ▶ A média amostral é um estimador não viesado da média populacional.

$$\mathbb{V}(\bar{X}) = \mathbb{V}\left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \frac{1}{n^2} \underbrace{\mathbb{V}(X_1 + \dots + X_n)}_{\mathbb{V}(X_1) + \dots + \mathbb{V}(X_n)} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

▶ No exemplo dos salários, vimos que a distribuição da média amostral tinha a forma de uma distribuição normal.

- ▶ No exemplo dos salários, vimos que a distribuição da média amostral tinha a forma de uma distribuição normal.
- ► Será que isso é uma coincidência?

- ▶ No exemplo dos salários, vimos que a distribuição da média amostral tinha a forma de uma distribuição normal.
- ► Será que isso é uma coincidência?

- No exemplo dos salários, vimos que a distribuição da média amostral tinha a forma de uma distribuição normal.
- ► Será que isso é uma coincidência?

Resultado

Se
$$X_1, X_2, \dots, X_n \sim \mathcal{N}(\mu, \sigma)$$
, então

$$\bar{X} \sim N(\mu, \sigma/\sqrt{n})$$

Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n (para n grande) v.as **independentes** e **identicamente distribuidas** com $E(X_1) = \mu$ e $V(X_1) = \sigma^2 < \infty$. Então,

$$rac{(ar{X}_n - \mu)}{\sigma/\sqrt{n}} \sim_{\mathit{aprox}} \mathit{N}(0,1) \quad \equiv \quad rac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \sim_{\mathit{aprox}} \mathit{N}(0,1)$$

Teorema Central do Limite

Sejam X_1, X_2, \ldots, X_n (para n grande) v.as **independentes** e **identicamente distribuidas** com $E(X_1) = \mu$ e $V(X_1) = \sigma^2 < \infty$. Então,

$$\frac{(\bar{X}_n - \mu)}{\sigma/\sqrt{n}} \sim_{aprox} N(0,1) \equiv \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \sim_{aprox} N(0,1)$$

Vamos ver o TCL (Teorema Central do Limite) através de simulações?

Por que precisamos da distribuição da média amostral?

ightharpoonup Quando calculamos \bar{x} não podemos esperar que esse valor seja exatamente igual a μ

Por que precisamos da distribuição da média amostral?

- \blacktriangleright Quando calculamos \bar{x} não podemos esperar que esse valor seja exatamente igual a μ
- Mas conhecer a distribuição da média amostral nos fornece informações probabilisticas da diferença entre a média amostral e a média da população.

1. Seja X o número ligações semanais de telemarketing recebidas por clientes de uma operadores de celular (X tem média de 7 e desvio padrão de 3). Os clientes, cansados de receberem tantas ligações, resolvem processar a empresa. A empressa nega este fato mas aceita escolher uma amostra de 100 pessoas e se, em média, o número de ligações semanais for maior do que 9, eles darão aos clientes uma indenização pelos transtornos. Qual é a probabilidade de, em média, os 100 usuários receberem mais do que 9 ligações semanais?

- 1. Seja X o número ligações semanais de telemarketing recebidas por clientes de uma operadores de celular (X tem média de 7 e desvio padrão de 3). Os clientes, cansados de receberem tantas ligações, resolvem processar a empresa. A empressa nega este fato mas aceita escolher uma amostra de 100 pessoas e se, em média, o número de ligações semanais for maior do que 9, eles darão aos clientes uma indenização pelos transtornos. Qual é a probabilidade de, em média, os 100 usuários receberem mais do que 9 ligações semanais?
- $X \text{ tem } \mu = 7 \text{ e } \sigma = 3$

1. Seja X o número ligações semanais de telemarketing recebidas por clientes de uma operadores de celular (X tem média de 7 e desvio padrão de 3). Os clientes, cansados de receberem tantas ligações, resolvem processar a empresa. A empressa nega este fato mas aceita escolher uma amostra de 100 pessoas e se, em média, o número de ligações semanais for maior do que 9, eles darão aos clientes uma indenização pelos transtornos. Qual é a probabilidade de, em média, os 100 usuários receberem mais do que 9 ligações semanais?

- $X \text{ tem } \mu = 7 \text{ e } \sigma = 3$
- ► Pelo TCL

$$rac{ar{X}-\mu}{\sigma/\sqrt{100}}=\sim {\it N}(0,1)$$

- 1. Seja X o número ligações semanais de telemarketing recebidas por clientes de uma operadores de celular (X tem média de 7 e desvio padrão de 3). Os clientes, cansados de receberem tantas ligações, resolvem processar a empresa. A empressa nega este fato mas aceita escolher uma amostra de 100 pessoas e se, em média, o número de ligações semanais for maior do que 9, eles darão aos clientes uma indenização pelos transtornos. Qual é a probabilidade de, em média, os 100 usuários receberem mais do que 9 ligações semanais?
- X tem $\mu = 7$ e $\sigma = 3$
- ► Pelo TCL

$$rac{ar{X}-\mu}{\sigma/\sqrt{100}}=\sim {\it N}(0,1)$$

• Queremos: $P(\bar{X} > 9)$

temos que:
$$X$$
 tem $\mu=7$ e $\sigma=3$ e $\frac{\bar{X}-\mu}{\sigma/\sqrt{100}}=\sim N(0,1)$

temos que:
$$X$$
 tem $\mu=7$ e $\sigma=3$ e $\frac{X-\mu}{\sigma/\sqrt{100}}=\sim N(0,1)$

$$P(\bar{X} > 9) = P(\bar{X} - 7 > 9 - 7) = P(\underbrace{\frac{\bar{X} - 7}{3/\sqrt{100}}}_{\sim N(0,1)} > \underbrace{\frac{9 - 7}{3/\sqrt{100}}}_{6.666667})$$

temos que: X tem $\mu=7$ e $\sigma=3$ e $\frac{\bar{X}-\mu}{\sigma/\sqrt{100}}=\sim N(0,1)$

$$P(\bar{X} > 9) = P(\bar{X} - 7 > 9 - 7) = P(\underbrace{\frac{\bar{X} - 7}{3/\sqrt{100}}}_{\sim N(0,1)} > \underbrace{\frac{9 - 7}{3/\sqrt{100}}}_{6.666667})$$

$$P(Z > 6.666667) = 1 - P(Z \le 6.666667)$$

temos que:
$$X$$
 tem $\mu=7$ e $\sigma=3$ e $\dfrac{\bar{X}-\mu}{\sigma/\sqrt{100}}=\sim {\it N}(0,1)$

$$P(\bar{X} > 9) = P(\bar{X} - 7 > 9 - 7) = P(\underbrace{\frac{\bar{X} - 7}{3/\sqrt{100}}}_{\sim N(0,1)} > \underbrace{\frac{9 - 7}{3/\sqrt{100}}}_{6.666667})$$

$$P(Z > 6.666667) = 1 - P(Z \le 6.666667)$$

1-pnorm(6.666667)

2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?

- 2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- \triangleright X_i : lado superior da moeda no i-ésimo lançamento (1: cara, 0:coroa)

- 2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- \triangleright X_i : lado superior da moeda no i-ésimo lançamento (1: cara, 0:coroa)
- $ightharpoonup X_i \sim bernoulli(p=0.5)$

- 2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- ▶ X_i : lado superior da moeda no i-ésimo lançamento (1: cara, 0:coroa)
- $ightharpoonup X_i \sim bernoulli(p = 0.5)$
- $E(X_1) = p = 0.5$

- 2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- ▶ X_i : lado superior da moeda no i-ésimo lançamento (1: cara, 0:coroa)
- $ightharpoonup X_i \sim bernoulli(p = 0.5)$
- $E(X_1) = p = 0.5$
- $V(X_1) = pq = 0.25$

- 2. Suponha que uma moeda honesta é lançada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- \triangleright X_i : lado superior da moeda no i-ésimo lançamento (1: cara, 0:coroa)
- $ightharpoonup X_i \sim bernoulli(p = 0.5)$
- $E(X_1) = p = 0.5$
- $V(X_1) = pq = 0.25$
- $TCL: \frac{X_1 + \cdots + X_n n\mu}{\sigma \sqrt{n}} \sim_{aprox} N(0,1)$

- 2. Suponha que uma moeda honesta é lancada 900 vezes. Qual a probabilidade de obter mais de 495 caras?
- ► X_i: lado superior da moeda no i-ésimo lancamento (1: cara, 0:coroa)
- $\rightarrow X_i \sim bernoulli(p = 0.5)$
- $E(X_1) = p = 0.5$
- $V(X_1) = pq = 0.25$

$$V(X_1) = pq = 0.25$$

$$TCL: \frac{X_1 + \dots + X_n - n\mu}{\sigma \sqrt{n}} \sim_{aprox} N(0, 1)$$

$$P(\sum_{i=1}^n X_i > 495) = P(\underbrace{\frac{\sum_{i=1}^n X_i - 900 \times 0.5}{\sqrt{0.25} \times \sqrt{900}}}_{Z}) > \underbrace{\frac{495 - 900 \times 0.5}{\sqrt{0.25} \times \sqrt{900}}}_{3})$$

```
1-pnorm(3)
```

[1] 0.001349898

1-pnorm(3)

[1] 0.001349898

Mas poderiamos também ter obtido a resposta utilizando diretamente a distribuição binomial ($Y \sim Binom(n = 900, p = 0.5)$)

1-pnorm(3)

[1] 0.001349898

Mas poderiamos também ter obtido a resposta utilizando diretamente a distribuição binomial ($Y \sim Binom(n = 900, p = 0.5)$)

$$P(Y > 495) = 1 - P(Y \le 495)$$

1-pnorm(3)

[1] 0.001349898

Mas poderiamos também ter obtido a resposta utilizando diretamente a distribuição binomial ($Y \sim Binom(n = 900, p = 0.5)$)

$$P(Y > 495) = 1 - P(Y \le 495)$$

$$1-pbinom(495, 900, prob = 0.5)$$

[1] 0.001200108

1-pnorm(3)

[1] 0.001349898

Mas poderiamos também ter obtido a resposta utilizando diretamente a distribuição binomial ($Y \sim Binom(n = 900, p = 0.5)$)

$$P(Y > 495) = 1 - P(Y \le 495)$$

$$1-pbinom(495, 900, prob = 0.5)$$

[1] 0.001200108

A diferença nas respostas é devido a que o TCL é uma aproximação

3. Uma amostra aleatório de tamanho n=120 é extraida de uma distribuição uniforme no intevalo [0,1] ($U_{[0,1]}$). Qual é a probabilidade de que $P(|\bar{X}-1/2| \le 0.1)$?

- 3. Uma amostra aleatório de tamanho n=120 é extraida de uma distribuição uniforme no intevalo [0,1] ($U_{[0,1]}$). Qual é a probabilidade de que $P(|\bar{X}-1/2|\leq 0.1)$?
- lacksquare A média da distribuição $U_{[a,b]}$ é $\frac{a+b}{2}$, no nosso caso: $\frac{0+1}{2}=1/2$

- 3. Uma amostra aleatório de tamanho n=120 é extraida de uma distribuição uniforme no intevalo [0,1] ($U_{[0,1]}$). Qual é a probabilidade de que $P(|\bar{X}-1/2|\leq 0.1)$?
- ightharpoonup A média da distribuição $U_{[a,b]}$ é $\frac{a+b}{2}$, no nosso caso: $\frac{0+1}{2}=1/2$
- A variáncia da distribuição $U_{[a,b]}$ é $\frac{(b-a)^2}{12}$, no nosso caso: 1/12

- 3. Uma amostra aleatório de tamanho n=120 é extraida de uma distribuição uniforme no intevalo [0,1] ($U_{[0,1]}$). Qual é a probabilidade de que $P(|\bar{X}-1/2|\leq 0.1)$?
- A média da distribuição $U_{[a,b]}$ é $\frac{a+b}{2}$, no nosso caso: $\frac{0+1}{2}=1/2$
- A variáncia da distribuição $U_{[a,b]}$ é $\frac{(b-a)^2}{12}$, no nosso caso: 1/12
- Aplicando o TCL:

$$rac{(ar{X}-\mu)}{\sigma/\sqrt{n}}=rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{\mathit{approx}} \mathit{N}(0,1)$$

- 3. Uma amostra aleatório de tamanho n=120 é extraida de uma distribuição uniforme no intevalo [0,1] ($U_{[0,1]}$). Qual é a probabilidade de que $P(|\bar{X}-1/2|\leq 0.1)$?
- A média da distribuição $U_{[a,b]}$ é $\frac{a+b}{2}$, no nosso caso: $\frac{0+1}{2}=1/2$
- A variáncia da distribuição $U_{[a,b]}$ é $\frac{(b-a)^2}{12}$, no nosso caso: 1/12
- Aplicando o TCL:

$$rac{(ar{X}-\mu)}{\sigma/\sqrt{n}} = rac{\sqrt{120}(ar{X}-1/2)}{1/12} \sim_{ extit{approx}} extit{N}(0,1)$$

• Queremos: $P(|\bar{X} - 1/2| \le 0.1)$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{approx} extsf{N}(0,1)$$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{approx} extsf{N}(0,1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(-0.1 \le \bar{X} - 1/2 \le 0.1)$$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{approx} extsf{N}(0,1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(-0.1 \le \bar{X} - 1/2 \le 0.1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\frac{-0.1}{1/12} \le \frac{\bar{X} - 1/2}{1/12} \le \frac{0.1}{1/12})$$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{approx} extsf{N}(0,1)$$

$$P(|\bar{X}-1/2| \le 0.1) = P(-0.1 \le \bar{X}-1/2 \le 0.1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\frac{-0.1}{1/12} \le \frac{\bar{X} - 1/2}{1/12} \le \frac{0.1}{1/12})$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\underbrace{\sqrt{120} \frac{-0.1}{1/12}}_{-13.14534} \le \underbrace{\sqrt{120} \frac{\bar{X} - 1/2}{1/12}}_{Z} \le \underbrace{\sqrt{120} \frac{0.1}{1/12}}_{13.14534})$$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{approx} extsf{N}(0,1)$$

$$P(|\bar{X}-1/2| \le 0.1) = P(-0.1 \le \bar{X}-1/2 \le 0.1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\frac{-0.1}{1/12} \le \frac{\bar{X} - 1/2}{1/12} \le \frac{0.1}{1/12})$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\underbrace{\sqrt{120} \frac{-0.1}{1/12}}_{-13.14534} \le \underbrace{\sqrt{120} \frac{\bar{X} - 1/2}{1/12}}_{Z} \le \underbrace{\sqrt{120} \frac{0.1}{1/12}}_{13.14534})$$

$$rac{\sqrt{120}(ar{X}-1/2)}{1/12}\sim_{\mathit{approx}} \mathit{N}(0,1)$$

$$P(|\bar{X}-1/2| \le 0.1) = P(-0.1 \le \bar{X}-1/2 \le 0.1)$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\frac{-0.1}{1/12} \le \frac{\bar{X} - 1/2}{1/12} \le \frac{0.1}{1/12})$$

$$P(|\bar{X} - 1/2| \le 0.1) = P(\underbrace{\sqrt{120} \frac{-0.1}{1/12}}_{-13.14534} \le \underbrace{\sqrt{120} \frac{\bar{X} - 1/2}{1/12}}_{Z} \le \underbrace{\sqrt{120} \frac{0.1}{1/12}}_{13.14534})$$

[1] 1

Até agora discutimos a amostragem aleatória simples e discutimos propriedades de \bar{X} e \bar{p} quandos se usa esta forma de amostragem.

- Até agora discutimos a amostragem aleatória simples e discutimos propriedades de \bar{X} e \bar{p} quandos se usa esta forma de amostragem.
- ► Contudo, não é o único método de amostragem

- Até agora discutimos a amostragem aleatória simples e discutimos propriedades de \bar{X} e \bar{p} quandos se usa esta forma de amostragem.
- ► Contudo, não é o único método de amostragem
- Discutiremos brevemente outros métodos de amostragem.

Amostragem estratificada

► Os elementos da população sñao divididos em grupos chamados de estratos de forma que cada elemento pertence unicamente a um estrato

Amostragem estratificada

- ► Os elementos da população sñao divididos em grupos chamados de estratos de forma que cada elemento pertence unicamente a um estrato
- Selecionamos uma amostra aleatoria de cada um dos estratos

Amostragem estratificada

- ➤ Os elementos da população sñao divididos em grupos chamados de estratos de forma que cada elemento pertence unicamente a um estrato
- Selecionamos uma amostra aleatoria de cada um dos estratos
- Quanto mais homogeneos os estratos, melhor a nossa amostra

Amostragem por conglomerados

▶ Dividimos a população em conglomerados (grupos) em que cada elementos pertence unicamente a um conglomerado.

- ▶ Dividimos a população em conglomerados (grupos) em que cada elementos pertence unicamente a um conglomerado.
- ▶ Seleccionamos uma amostra aleatoria dos conglomerados

- ▶ Dividimos a população em conglomerados (grupos) em que cada elementos pertence unicamente a um conglomerado.
- ▶ Seleccionamos uma amostra aleatoria dos conglomerados
- ► Todos os elementos contidos nos conglomerados selecionados formam parte da nossa amostra

- ▶ Dividimos a população em conglomerados (grupos) em que cada elementos pertence unicamente a um conglomerado.
- Seleccionamos uma amostra aleatoria dos conglomerados
- ► Todos os elementos contidos nos conglomerados selecionados formam parte da nossa amostra
- Quanto mais heterogeneo sejam os conglomerados, melhor a nossa amostra

- ▶ Dividimos a população em conglomerados (grupos) em que cada elementos pertence unicamente a um conglomerado.
- Seleccionamos uma amostra aleatoria dos conglomerados
- ► Todos os elementos contidos nos conglomerados selecionados formam parte da nossa amostra
- Quanto mais heterogeneo sejam os conglomerados, melhor a nossa amostra
- Ex. amostrar quarteirões

Amostragem sistemática

 Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo

- Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo
- Ex: clientes de uma determinada loja fisica

- Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo
- Ex: clientes de uma determinada loja fisica
- Uma alternativa é utilizar amostragem sistemática

- Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo
- Ex: clientes de uma determinada loja fisica
- Uma alternativa é utilizar amostragem sistemática
- ▶ Consiste em amostrar elementos a cada k elementos

- Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo
- Ex: clientes de uma determinada loja fisica
- Uma alternativa é utilizar amostragem sistemática
- ▶ Consiste em amostrar elementos a cada k elementos
- Ex: amostrar o primeiro cliente que entra na loja, o cliente 1 + k, 1 + 2k, ... 1 + nk até completarnos nossa amostra.

- Muitas vezes, selecionar uma amostra aleatória simples pode não ser viavel ou consumir muito tempo
- Ex: clientes de uma determinada loja fisica
- Uma alternativa é utilizar amostragem sistemática
- ▶ Consiste em amostrar elementos a cada k elementos
- Ex: amostrar o primeiro cliente que entra na loja, o cliente 1 + k, 1 + 2k, ... 1 + nk até completarnos nossa amostra.
- Se tivermos o tamanho total de populção N e quisermos uma amostra de tamanho n, escolhemos elemento de k = N/n em k. Ex: k, 2k, ..., nk

Amostragem por conveniência

► Amostragem não-probabilistica

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência
- ► Ex: ao se fazer uma pesquisa na universidade, podemos selecionar estudantes voluntários (simplesmente por eles estarem disponíveis)

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência
- ► Ex: ao se fazer uma pesquisa na universidade, podemos selecionar estudantes voluntários (simplesmente por eles estarem disponíveis)

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência
- ► Ex: ao se fazer uma pesquisa na universidade, podemos selecionar estudantes voluntários (simplesmente por eles estarem disponíveis)

Amostragem de julganento

Amostragem não-probabilistica

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência
- ► Ex: ao se fazer uma pesquisa na universidade, podemos selecionar estudantes voluntários (simplesmente por eles estarem disponíveis)

Amostragem de julganento

- Amostragem não-probabilistica
- ▶ A pessoa que conhece profundamente o tema do estudo escolhe os elemento que julga seram mais importates da população

Amostragem por conveniência

- Amostragem não-probabilistica
- A amostra é identificada por conveniência
- ► Ex: ao se fazer uma pesquisa na universidade, podemos selecionar estudantes voluntários (simplesmente por eles estarem disponíveis)

Amostragem de julganento

- Amostragem não-probabilistica
- ► A pessoa que conhece profundamente o tema do estudo escolhe os elemento que julga seram mais importates da população
- Ex: um reporter escolher alguns deputados para darem sua opinião sobre algum fato.

Leituras recomendadas

- Anderson, D. R; Sweeney, D. J.; e Williams, T. A. (2008). Estatística Aplicada à Administração e Economia. 2ed. Cengage Learning. Cap 7
- ► Morettin, P.A; e Bussab, W. de O. (2004). *Estatística Básica*. 5ed, Saraiva. **Cap 10**