Q1. Let (L, \preceq) be a complete lattice and let $f: L \longrightarrow L$ be an order-preserving function. Prove that if $X = \{x \in L \mid f(x) = x\}$, then (X, \preceq) is a complete lattice. In assignment 2 you showed that $([0,1], \leq)$ (the unit interval with the usual order) is a complete lattice. Define an order-preserving function $f: [0,1] \longrightarrow [0,1]$ such that the set of fixed points of f endowed with the usual order (\leq) on \mathbb{R} is a linear order with exactly 4 elements. (3+2 marks)

Q2. Without using Cantor's Pairing Function, prove that $\mathbb{N} \times \mathbb{N}$ is countable. Use the Schröder-Bernstein Theorem to show that $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$. (2 marks)

Q3. For all $n \in \mathbb{N}$, use [n] to denote the set $\{0, \ldots, n-1\}$, i.e. the set of predecessors of n in \mathbb{N} with the usual ordering. Define

$$S = \{ f \mid (\exists n \in \mathbb{N}) (f \text{ is a function with dom } f = [n] \text{ and ran } f \subseteq \mathbb{N}) \}$$

- (i) Use the fact that every natural number has a unique factorisation into primes to show that S is countable. Is $|S| = |\mathbb{N}|$?
- (ii) Define $\preceq_1 \subseteq S \times S$ by: $f \preceq_1 g$ where $f : [n] \longrightarrow \mathbb{N}$ and $g : [m] \longrightarrow \mathbb{N}$, and $A = [n] \cap [m]$ if and only if

$$(\exists i \in A)(f(i) < g(i) \land (\forall j < i)(f(j) = g(j))) \text{ or } (\forall i \in A)(f(i) = g(i)) \land ([n] \subseteq [m]),$$

where \leq and < are the usual orders on \mathbb{N} . Is (S, \leq_1) a partial order? Is (S, \leq_1) a linear order? Is (S, \leq_1) chain complete? Is (S, \leq_1) a lattice? Is (S, \leq_1) a well-order? Prove your answers.

(iii) Define $\leq_2 \subseteq S \times S$ by: $f \leq_2 g$ where $f : [n] \longrightarrow \mathbb{N}$ and $g : [m] \longrightarrow \mathbb{N}$ if and only if $[n] \subseteq [m]$ and $(\forall i \in [n])(f(i) \leq g(i))$

Is (S, \leq_2) a partial order? Is (S, \leq_2) chain complete? Is (S, \leq_2) a lattice? Is (S, \leq_2) a linear order? Prove your answers.

(3+2+2 marks)

Q4. Give an explicit formula that defines a bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$. You do not have to prove that this formula works! (1 mark)

Q5. Define

$$X = \{ R \in \mathcal{P}(\mathbb{N} \times \mathbb{N}) \mid R \text{ is a function} \}.$$

- (i) Is (X, \subseteq) a partial order? Is (X, \subseteq) chain complete? Is (X, \subseteq) a lattice? Is (X, \subseteq) a linear order? Prove your answers.
- (ii) Define $\Phi_1: X \longrightarrow X$ such that Φ_1 takes input $f \in X$ and returns $g: \text{dom } f \longrightarrow \mathbb{N}$ such that for all $n \in \text{dom } f$, g(n) = f(n) + 1. Is $\Phi_1: (X, \subseteq) \longrightarrow (X, \subseteq)$ order-preserving? Does $\Phi_1: X \longrightarrow X$ have a fixed point? Prove your answers.
- (iii) Define $\Phi_2: X \longrightarrow X$ such that Φ_2 takes input $f \in X$ and returns $g: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n \in \text{dom } f$, then g(n) = f(n) + 1 and if $n \notin \text{dom } f$, then g(n) = 0. Is $\Phi_2: (X, \subseteq) \longrightarrow (X, \subseteq)$ order-preserving? Does $\Phi_2: X \longrightarrow X$ have a fixed point? Prove your answers.

- (iv) Define $\Phi_3: X \longrightarrow X$ such that Φ_3 takes input $f \in X$ and returns $g: \mathbb{N} \longrightarrow \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n \in \text{dom } f$, then g(n+1) = f(n) + 1 and if $n \notin \text{dom } f$, then g(n+1) = 0. Is $\Phi_3: (X, \subseteq) \longrightarrow (X, \subseteq)$ order-preserving? Does $\Phi_3: X \longrightarrow X$ have a fixed point? Prove your answers.
- (v) Is X countable? Prove your answer.

(2+2+2+2+2 marks)

Q6. Every nonzero rational number has a unique representation in the form $\frac{(-1)^k a}{b}$ where $k \in \{0,1\}$ and $a,b \in \mathbb{N}$ with $a,b \neq 0$ and the greatest common divisor of a and b is 1. Use this to show that \mathbb{Q} is countable. Prove that $|\mathbb{Q}| = |\mathbb{N}|$. (3 marks)

Q7. Let $\pi(x,y)$ be Cantor's pairing function. Find $x,y\in\mathbb{N}$ such that $\pi(x,y)=223$. You may do this question however you wish. (1 mark)