අධායන පොදු සහතික පතු (උසස් පෙළ)

සංයුක්ත ගණිතය විෂය නිර්දේශය (පසු විමසුම් කළ)

2012 වර්ෂයේ සිට පැවැත්වෙන අ.පො.ස (උසස් පෙළ) විභාගය සඳහා

ගණිත දෙපාර්තමේන්තුව විදාහ හා තාක්ෂණ පීඨය ජාතික අධ්‍යාපන ආයතනය

පටුන

		පිටුව
1.0	හැඳින්වීම	1
2.0	විෂය නිර්දේශයේ අරමුණු	2
3.0	විෂය නිර්දේශය පාසල් වාර වශයෙන් බෙදා ගැනීමට යෝජිත සැලැස්ම	3
4.0	විෂය නිර්දේශය	7
5.0	ඉගැන්වීමේ කුමෝපාය	51
6.0	පාසල් පුතිපත්ති හා වැඩසටහන්	52
7.0	තක්ෂේරුව හා ඇගයීම	53
8.0	අංකනය	54

1.0 හැඳින්වීම

නව ලොවට ගැළපෙන නිර්මාණශීලී දරු පරපුරක් බිහි කිරීම අධාාපනයේ පරමාර්ථය යි. මේ සඳහා පාසල් විෂයමාලාව නිරතුරුව සංවර්ධනය විය යුතු අතර කාලීන අවශාතා අනුව විෂය නිර්දේශය ද සංශෝධනය විය යුතු බව අධාාපනඥයින්ගේ මතය යි.

මේ අනුව අ.පො.ස (උ.පෙළ) සඳහා වර්ෂ 1998 දී හඳුන්වා දී කිුිිියාත්මක කරන ලද අධාාපන පුතිසංස්කරණවලින් පසු වර්ෂ 2009 දී නිපුණතා පාදක විෂය නිර්දේශයක් හඳුන්වා දීමට තී්රණය විය. මෙතෙක් පැවති සන්ධාරගත විෂය නිර්දේශය මගින් ඉගෙනුම්- ඉගැන්වීම් ඇගයීම් කිුිිියාවලියේ දී නිශ්චිත නිපුණතා හෝ නිපුණතා මට්ටම් හෝ පුමාණවත් ලෙස හඳුන්වා දීමක් සිදු වී නොමැතිවීම ද මෙම නව පුතිසංස්කරණ ඇතිකරලීමට හේතු සාධක වූ කරුණු අතර පුධාන ස්ථානයක් ගනු ලබයි. මෙතෙක් කියාත්මක වූ සන්ධාරගත විෂයමාලාව නිපුණතා පාදක විෂයමාලාවක් වශයෙන් වෙනස් කරමින් වර්ෂ 2009 සිට කියාත්මක කිරීමට සැලසුම් කර තිබේ. එසේ ම වර්ෂ 2007 දී ඇරඹි නව අධාාපන • පුතිසංස්කරණ කියාවලියේ දී මුලින් ම 6 වන සහ 10 වන ශේණීවල ගණිතය විෂය සඳහා නිපුණතා පාදක විෂය නිර්දේශ හඳුන්වා දෙනු ලැබීය. අනතුරු ව එම කියාවලිය ම අනුගමනය කරමින් 7 වන, 11 වන ශේණි සඳහා ද නිපුණතා පාදක විෂය නිර්දේශ හඳුන්වා දෙනු ලැබූ අතර වර්ෂය 2009 දී 8 වන හා 12 වන ශේණීය සඳහා ද නිපුණතා පාදක විෂය නිර්දේශ හඳුන්වා දෙන ලදී. ඒ අනුව 10 වන සහ 11 වන ශේණී ගණිතය විෂය නිපුණතා පාදක ව උගත් ශිෂායින් • අ.පො.ස(උ.පෙළ) සංයුක්ත ගණිතය විෂය ද නිපුණතා පාදක විෂයමාලාවකට අනුකූල ව ඉගෙනීමේ අවස්ථාව ලැබුණි.

නව විෂයමාලා පුතිසංස්කරණය යටතේ 6 වන සිට 11 වන ශේණීය දක්වා තිපුණතා පාදක ගණිතය විෂයමාලාව හදාරා අ.පො.ස(උ.පෙළ) යටතේ 12 වන ශේණීයට ඇතුළත් වන සිසුන් 12 වන සහ 13 වන ශේණීවල සංයුක්ත ගණිතය විෂය ඉගෙන ගැනීමෙන් පසු ළඟා කර ගත යුතු දක්ෂතා මත පදනම් ව ඔවුන්ට ලබාදිය යුතු හැකියා, කුසලතා, යහගුණ හා සමාජමය අත්දැකීම් පදනම් වූ ජීවන පුරුදු සමූහය නිපුණතා සමූහයක් ලෙස හඳුනාගෙන ඒවා ඒ ඒ ශේණීයට ගැළපෙන අයුරින් පෙළ ගැස්වීමක් කර ඇත. එම නිපුණතා සියල්ල ම 13 වන ශේණීය

තෙක් සංයුක්ත ගණිතය විෂය හදාරා අවසන් කරන සිසුන් ළඟා කර ගනිති යි අපේක්ෂා කෙරේ. මෙම නිපුණතා වෙත සිසුන් ළඟා කරවීම, නිපුණතා මට්ටම් ඔස්සේ සිදු කළ යුතු අතර එම නිපුණතා මට්ටම් අදාළ එක් එක් නිපුණතාව යටතේ සඳහන් කර ඇත. සිසුන් මෙම නිපුණතා මට්ටම් කරා ළඟා කරවීම සඳහා සකස් කරන ලද විෂය අන්තර්ගතය ද එම විෂය අන්තර්ගතය මත පදනම් ව ඉගෙනීම, ඉගැන්වීම හා තක්සේරුව යන කිුිියාවලිය කිුිිිිිිිිිිිිිිිිි කර ඇත.

නව විෂය නිර්දේශය හඳුන්වා දීමට හේතු කාරක වූ මූලික කරුණු හැරුණු කොට මීට පෙර සංයුක්ත ගණිතය විෂය හඳුන්වාදීමට හේතු කාරක වූ පහත දැක්වෙන කරුණු ද එපරිදි ම මෙම නව පුතිසංස්කරණ සඳහා ද වලංගු වේ.

- අ.පො.ස (සා.පෙළ) ගණිතයත් අ.පො.ස (උ.පෙළ) ගණිතයත් අතර ඇති පරතරය අඩු කිරීම.
- ඉංජිනේරු සහ භෞතීය විදහාව පාඨමාලා හැදෑරීමට අතාවශා ගණිත දැනුම ලබාදීම.
- තාක්ෂණික සහ වෙනත් තෘතීයික තලයේ පාඨමාලා හැදෑරීමට අතාවශා ගණිත දැනුම ලබාදීම.
- වාණිජාය වැනි අංශවල ද මධාව ශේණීයේ රැකියා නියුක්ති සඳහා අතාවශා ගණිත දැනුම ලබාදීම.
- සිසුන්ට ඔවුන්ගේ මානසික මට්ටමට ගැළපෙන විවිධ නිපුණතා ලබාගැනීම හා ඒවා ජිවිත කාලය තුළ ම සංවර්ධනය කර ගැනීමට මඟ පෙන්වීම.

අ.පො.ස (උ.පෙළ) ගණිතය නව විෂය නිර්දේශය 2009 සිට කියාත්මක වූ අතර ඒ පිළිබඳ ව පසු විපරමක් ජාතික මට්ටමේ සමීක්ෂණයක් ලෙස 2011 වර්ෂයේ දී සිදු කරන ලදී. මේ සඳහා විශ්වවිදහාල කථිකාචාර්යවරු, විෂය පුවීණයෝ සහ ජාතික අධාාපන ආයතනයේ විෂයමාලා කමිටු සාමාජිකයෝ සහභාගි වූහ.

මෙහි දී අතාවරණය වූ කරුණු අනුව පසු විපරම් කළ සංයුක්ත ගණිතය විෂය තිර්දේශය ඉදිරිපත් කර ඇත.

2.0 විෂය නිර්දේශයේ අරමුණු

- (i) ගණිතය වැඩිදුර අධෳයනය කිරීම සඳහා සිසුන්ට පදනමක් සකස් කර දීම.
- (ii) ගණිත කියා මාර්ග හා ගැටලු විසඳීම සඳහා උපාය දක්ෂතාව පිළිබඳ පළපුරුද්දක් සිසුන්ට ලබා දීම.
- (iii) ගණිත තර්කනය පිළිබඳ ශිෂා අවබෝධය වැඩි දියුණු කිරීම.
- (iv) ගණිතය කෙරෙහි ඇල්ම උත්තේජනය කිරීම හා වැඩි දියුණු කිරීම.

සංයුක්ත ගණිතය ඉගෙනීමේ අරමුණු ඉටුවන ආකාරයට මෙම විෂය තිර්දේශයේ විෂය සත්ධාරය සකස් කර ඇත. ගණිතය හුදෙක් දැනුමට පමණක් සීමා නොකොට පුායෝගික ජීවිතයේ දී අවශා කුසලතා ලබාදීමට ද, යහගුණ වර්ධනය කරලීමට ද විෂය නිර්දේශයෙන් අපේක්ෂිත ය. නිපුණතා පාදකව සකස් කර ඇති මෙම විෂය නිර්දේශය මගින් ඉගෙනුම් ඉගැන්වීම් සොයා බැලීම් කිුියාවලිය කිුියාත්මක කිරීමේ දී,

- සිසුන්ට අර්ථාන්විත අනාවරණ (Meaningful Discovery) ඉගෙනුම් අවස්ථා සකිය කිරීම මගින් ඉගෙනීම වඩාත් ශිෂා කේන්දීය කර ගැනීම.
- සිසුනට ඔවුන්ගේ මට්ටමට ගැළපෙන විවිධ නිපුණතා ලබා ගැනීම සඳහා මග පෙන්වීම.
- ඉගෙනුම්, ඉගැන්වීම් හා සොයා බැලීම් අරමුණු වඩාත් පැහැදිලි කර ගැනීම.
- ගුරුවරයාගේ ඉලක්ක වඩාත් සුවිශේෂි කර ගැනීම.

- එක් එක් නිපුණතා මට්ටම් කරා සිසුන් ළඟා වී ඇති පුමාණය ගුරුවරයාට හඳුනාගත හැකි හෙයින් අවශා පුතිපෝෂණය හා ඉදිරි පෝෂණ කටයුතු සංවිධානය පහසු කිරීම.
- ගුරුවරයාට ගතානුගතික ඉගැන්වීම් කුමවලින් බැහැර වෙමින් පරිණාමන භූමිකාවට පිවිසීම අපේක්ෂා කෙර්.

මෙම සංයුක්ත ගණිතය විෂය නිර්දේශය පන්ති කාමරය තුළ කිුයාත්මක කිරීමේ දී තවදුරටත් කාලීන අවශාතා ලෙස සලකා දී ඇති මාතෘකා යටතේ විවිධ සංසිද්ධි සම්බන්ධ කර ගනිමින් ඉගැන්වීමේ කුමොපායන් නිර්මාණය කර ගත යුතු ය

ඉගෙනුම් -ඉගැන්වීම් සොයා බැලීම් කිුයාවලියේ දි එක් එක් නිපුණතා මට්ටම් සඳහා කිුිියාකාරකම් සංවිධානය කර ගැනීමට ඉඩ සලස්වා ඇති බැවින් සිසුන් ළඟා කර ගන්නා නිපුණතා මට්ටම් තක්සේරු කිරීමටත් ඔවුන් පිළිබඳ ව ඇගයීමක් කිරීමටත් ගුරුවරුන්ට පහසු වනු ඇත.

3.0 විෂය නිර්දේශය පාසල් වාර වශයෙන් බෙදා ගැනීමට යෝජිත සැලැස්ම

12 ශේණිය

නිපුණතා මට්ටම්	මාතෘකාව	කාලච්ඡේද ගණන	
පළමුවන වාරය			
සංයුක්ත ගණිතය I			
1.1, 1.2	තාත්ත්වික සංඛග	04	
2.1, 2.2	ශුත	08	
15	ලෙස කෝණ මිනුම්	03	
26.1, 26.2, 26.3	සෘජුකෝණාසු කාටිසීය අක්ෂ පද්ධතිය	05	
16.1, 16.2, 16.3	වෘත්ත ශුිත	12	
18	සයින් සූතුය, කෝසයින් සූතුය	04	
4.1, 4.2, 4.3	බහුපද ශුිත	08	
17.1, 17.2, 17.3, 17.4	තිුකෝණමිතික සර්වසාමා	12	
5	පරිමේය ශිුත	05	
6.1	දර්ශක හා ලසුගණක නියම	04	
22.1, 22.2, 22.3, 22.4, 22.5, 22.6	සීමා	18	
සංයුක්ත ගණිතය II			
1.1, 1.2, 1.3, 1.4	ලෙදශික	11	
2.1, 2.2, 2.3	අංශුවක් මත කිුිිිිිිිිි කරන ඒකතල බල පද්ධති	16	

නිපුණතා මට්ටම්	මාතෘකාව	කාලච්ඡේද ගණන
සංයුක්ත ගණිතය - I		
11.1, 11.2	අසමානතා පිළිබඳ මූලික පුතිඵල සහ සරල වීජීය ශුිත ඇතුළත් අසමානතා ගැටලු විසඳීම	08
.1, 3.2	වර්ගජ ශිුත සහ වර්ගජ සමීකරණ	30
1	සාතීය ශුතය	03
19	තිුකෝණමිතික සමීකරණ විසඳීම	04
20	පුතිලෝම තිුකෝණමිතික ශිුත	06
සංයුක්ත ගණිතය II		
2.4, 2.5, 2.6, 2.7	දෘඪ වස්තුවක් මත කිුයා කරන ඒකතල බල පද්ධති	28
3.1, 3.2, 3.3	සරල රේඛාවක් ඔස්සේ සිදුවන චලිතය	25
ත්වන වාරය -		
සංයුක්ත ගණිතය I		
23.1, 23.2, 23.3, 23.4, 23.5, 23.6	වසුත්පත්ත	23
24.1, 24.2, 24.3, 24.4, 24.5 9	ව <u>ා</u> යුත්පන්න සහ එහි භාවිත ගණිත අභායුහනය	17 05
	ගණායා අග්යුග්යාය	03
සංයුක්ත ගණිතය II 3.4, 3.5, 3.6, 3.7	සාලේක්ෂ චලිතය	28
3.8	පුක්ෂිප්ත	08
3.9	චලිතය පිළිබඳ නිව්ටන් නියම	15
.8	සර්ෂණය	10
2.9	සන්ධි කළ දඬු	10
2.10	රාමු සැකිළි	10

13 ලෝණිය

නිපුණතාව	නිපුණතා මට්ටම	කාලච්ඡේද ගණන
පළමුවන වාරය		
සංයුක්ත ගණිතය I		
11.3 27.1, 27.2, 27.3, 27.4, 27.5 28.1, 28.2, 28.3, 28.4, 28.5, 28.6, 28.7	මාපාංක ඇතුළත් අසමානතා සරල රේඛාව වෘත්තය	06 21 25
සංයුක්ත ගණිතය II		
3.10, 3.11 3.12, 3.13 3.14, 3.15	කාර්යය, ශක්තිය හා ජවය ආවේගය සහ සරල ගමාතාව වෘත්තය චලිතය	15 23 20
දෙවන වාරය		
සංයුක්ත ගණිතය I		
25.1, 25.2, 25.3, 25.4, 25.5, 25.6, 25.7, 25.8 8.1, 8.2, 8.3 21.1, 21.2, 21.3, 21.4	අනුකලනය සංකරණ හා සංයෝජන ශ්රණී	29 15 19

නිපුණතා මට්ටම්	මාතෘකාව	කාලච්ඡේද ගණන
සංයුක්ත ගණිතය II		
4.1, 4.2, 4.3, 4.4, 4.5 2.11, 2.12, 2.13, 2.14, 2.15	සම්භාවිතාව ස්කන්ධ කේන්දුය	28 18
තුන්වන වාරය		
සංයුක්ත ගණිතය I		
10.1, 10.2 14.1, 14.2, 14.3, 14.4, 14.5 12.1, 12.2, 12.3, 12.4 13.1	ද්විපද පුමේයය සංකීර්ණ සංඛහා නහාස නිශ්චායක	12 14 10 04
සංයුක්ත ගණිතය II		
3.16, 3.17, 3.18 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	සරල අනුවර්ති චලිතය සංඛාානය	18 29

4.0 විෂය නිර්දේශය සංයුක්ත ගණිතය I

	නිපුණතාව	නිපුණතා මට්ටම		අන්තර්ගතය	කාලච්ඡේද ගණන
1.	තාත්ත්වික සංඛාහ පද්ධතිය විශ්ලේෂණය කරයි.	1.1 තාත්ත්වික සංඛාහ කුලකය වර්ගීකරණය කරයි.		සංඛාහ පද්ධතියේ ඓතිහාසික විකාශය සංඛාහ සඳහා කුලක අංකන $\Box,\Box,\Box^+,\Box_0^+,\Box,\Box^+\Box_0^+,\Box_0^+$ පුාන්තර තාත්ත්වික සංඛාහවක ජාහාමිතික නිරූපණය	02
		1.2 තාත්ත්වික සංඛාහ සන්නිවේදනය සඳහා කරණි හෝ දශම භාවිත කරයි.	•	තාත්ත්වික සංඛ්‍යාවක දශමය නිරූපණය • කරණි ඇතුළත් පුකාශන	02
2.	ඒක විචලෳ ශිුත විශ්ලේෂණය කරයි.	2.1 ශිුත පිළිබඳ විමර්ශනයක යෙදෙයි.	•	 ශිත පිළිබඳ පුතිභාමය අදහස සහ අංකනය නියතය, විචලාය, පරාමිතිය විචලා දෙකක් අතර සම්බන්ධය දැක්වෙන පුකාශන ශිතයක අර්ථ දැක්වීම, වසම, සහවසම, පුතිබිම්බය, පරාසය සහ නීතිය ශිතීය අංකනය ඒක විචලා ශිත 	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	2.2 විශේෂිත ශිුත පිළිබඳ විමර්ශනයක යෙදෙයි.	ශිූත නියත ශිූතය ජකක ශිූතය මාපාංක ශිූතය කඩමනින් ශිූත පුතිලෝම ශිූතය ශිූතයක පුස්තාරය	05
3. වර්ගජ ශිූත විශ්ලේෂණය කරයි.	3.1 වර්ගජ ශිුතයක ලක්ෂණ විමර්ශනය කරයි.	 ඒකජ ශිුත වර්ගජ ශිුත ඒක විචලා වර්ගජ ශිුත වර්ග පූරණය විවේචකය 	15
	3.2 වර්ගජ සමීකරණයක මූල විවරණය	 වර්ගජ ශි්තයක ලක්ෂණ වැඩිතම අගය/ අඩුතම අගය ශූතාය පැවතීම හෝ තොපැවතීම a,b,c∈□ සහ a≠ 0 සඳහා y = ax + bx + c හි පුස්තාරය 	15
	කරයි.	 වර්ගජ සමීකරණයක මූල මූලවල ස්වභාවය මූලවල එකතුව සහ ගුණිතය මූලවල සමමිතික පුකාශන මූල වශයෙන් ඇති සමීකරණ 	15

	නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
4.	බහුපද වීජය හසුරුවයි.	4.1 ඒක විචලා බහුපද විමර්ශනය කරයි.	ඒක විචලා බහුපද ශිුතමාතුය, නායක පදය සහ නායක සංගුණකය	01
		4.2 බහුපද ආශිුත ගණිත කර්මවල යෙදෙයි.	 බහුපද ශිතවල මූලික ගණිත කර්ම ආකලනය වහාකලනය ගුණනය බෙදීම දීර්ඝ බෙදීම ඒකජ පුකාශනයකින් සංශ්ලේෂණ බෙදීම 	02
		4.3 ගැටලු විසඳීම සඳහා ශේෂ පුමේයය, සාධක පුමේයය හා එහි විලෝමය භාවිත කරයි.	 බෙදුම් ඇල්ගොරිතමය ශේෂ ප්‍රමේයය සාධක ප්‍රමේයය සහ විලෝමය බහුපද සමීකරණ විසඳීම (මාතුය 4 දක්වා) 	05
5.	පරිමේය ශුිත භින්න භාගවලට වෙන් කරයි.		 පරිමේය ශි්ත නියම සහ විෂම පරිමේය ශි්ත නියම පරිමේය ප්‍රකාශනවල භින්න භාග හරයේ ප්‍රභින්න ඒකජ සාධක ඇති විට හරයේ ප්‍රනරාවර්තන ඒකජ සාධක ඇති විට හරයේ වර්ගජ සාධක ඇති විට (නියත 4ක් දක්වා) 	05

	නිපුණතාව	නිපුණතා මට්ටම		අන්තර්ගතය	කාලච්ඡේද ගණන
6.	දර්ශක සහ ලසුගණක නියම හසුරුවයි.	6.1 ගැටලු විසඳීම සඳහා දර්ශක නියම හා ලසුගණක නියම භාවිත කරයි.	•	දර්ශක නියම • ලසුගණක නීති • පාදය මාරු කිරීම	04
7.	සාතීය ශිතය සහ එහි පුතිලෝම ශිතය අන්වේෂණය කරයි.		•	e^{x} වල අර්ථය $\frac{d}{dx}(e^{x}) = e^{x}$ බව e^{x} හි පුස්තාරය ලසුගණක ශිතය ෙස $\ln x$ නොහොත් $\log_{e}x(x>0)$ ලසුගණක ශිතය අර්ථ දැක්වීම. එහි වසම සහ පරාසය $\ln x$ හි ලක්ෂණ (ලසුගණක නියම පිළිපදින බව) $\ln x$ හි පුස්තාරය $a>0$ සඳහා $e^{x\ln a}$ ලෙස a^{x} අර්ථ දැක්වීම	03
8.	තේරීම් සහ පිළියෙල කිරීම් සඳහා ගණිතමය ආකෘති ලෙස සංකරණ සහ සංයෝජන භාවිත කරයි.	8.1 ගණන් කිරීම සඳහා විවිධ කුම භාවිත කරයි.	•	ගණන් කිරීමේ මූලධර්මය පිළිබඳ කුම ශිල්ප • රුක් සටහන් • කුමාරෝපිත n , සාමානා ආකාරය සහ සහානුයාත ආකාරය	02

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	8.2 ගණිත ගැටලු විසඳීම සඳහා ශිල්පීය කුමයක් ලෙස සංකරණ භාවිත කරයි.	සංකරණ අර්ථ දැක්වීම එකිනෙකට වෙනස් දුවා <i>n</i> අතුරින් වරකට <i>r</i>	06
		බැගින් ගත් විට සංකරණ ගණන "p, අංකනය සහ "p, සඳහා සූතුය සියල්ල ම එකිනෙකට සමාන නොවූ n දුවා සියල්ල ම එකවර ගත් විට සංකරණ n දුවා අතර සමාන දුවා කාණ්ඩ ඇති විට n දුවා සියල්ලේ සංකරණ පුනරාවර්තනයට අවකාශ ඇති විට වෙනස් දුවා n අතුරින් වරකට r බැගින් වූ සංකරණ චකීය සංකරණ (එකිනෙකට වෙනස් දුවා සියල්ල ම එකවර ගත් විට)	
	8.3 ගණිත ගැටලු විසඳීම සඳහා ශිල්පීය කුමයක් ලෙස සංයෝජන භාවිත කරයි.	 සංගෝජන අර්ථ දැක්වීම සංකරණයක් හා සංයෝජනයක් අතර වෙනස එකිනෙකට වෙනස් දුවා n අතුරින් වරකට r (0 < r ≤ n) බැගින් වූ සංයෝජන ***C_r අංකනය සහ **C_r සූතුය **p_r = r! **C_r, **C_r = **C_{n-r} ************************************	07

	නිපුණතාව	නිපුණතා මට්ටම		අන්තර්ගතය	කාලච්ඡේද ගණන
9.	ධන නිඛිලයක් මත රඳා පවතින ගණිතමය පුතිඵල සාධනය සඳහා ගණිත අභායුහන මූලධර්මය සාධන පුවිධියක් ලෙස යොදා ගනියි.		•	ගණිත අභපුහත කුමය • මූල ධර්මය • සරල යෙදුම්	05
10.	ධන තිබිල දර්ශක සඳහා වූ ද්විපද පුසාරණය විවරණය කරයි.	10.1 ද්විපද පුසාරණයේ මූලික ලක්ෂණ ගවේෂණය කරයි.	•	ධන නිඛිලමය දර්ශක සඳහා ද්විපද පුමේයය පුමේයය සාධනය, සංයෝජන භාවිතයෙන් සාධනය සහ ගණිතමය අහපුහන කුමය මගින් ද්විපද සංගුණක, පුසාරණයේ සංගුණක ද්විපද පුසාරණයේ ලක්ෂණ පුසාරණයේ පද ගණන සහ පොදු පදය ද්විපද පුසාරණයේ භාවිත	06
		10.2ද්විපද පුසාරණයේ පද හා සංගුණක අතර සම්බන්ධය විමර්ශනය කරයි.	•		06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
11. තාත්ත්වික සංඛාහ පිළිබඳ අසමානතාවල විසඳුම් සෙවීම සඳහා පුමේයය භාවිත කරයි.	11.1 අසමානතා පිළිබඳ මූලික පුතිඵල වනුත්පන්න කරයි.	 සංඛ්‍යා අසමානතා තාත්ත්වික සංඛ්‍යා රේඛාව මත අසමානතා නිරූපණය පාත්තර අංකනය මගින් අසමානතා දැක්වීම ත්‍රධාකරණ නීතිය අසමානතාවල මූලික පතිඵල 	04
	11.2 අසමානතා විගුහ කරයි.	 සරල වීජිය ශුිතීය අසමානතා ඒකජ, වර්ගජ සහ පරිමේය ශුිතවල අසමානතා හැසිරවීම. වීජිය ව සහ පුස්තාරික ව ඉහත අසමානතාවල විසඳුම් සෙවීම 	04
	11.3 ශුිතවල මාපාංක ඇතුළත් අසමානතා ගැටලු විසඳයි.	 මාපාංක සහිත අසමානතා තාත්ත්වික සංඛ්‍යාවක මාපාංකය සහ එහි නිරපේක්ෂ අගය මාපාංක සහිත සරල අසමානතා හැසිරවීම. වීජීය ව හා ප්‍රස්තාරික ව ඉහත අසමානතාවල විසඳුම් සෙවීම. 	06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
12. වීජිය පද්ධතියක් ලෙස නාහස හසුරුවයි.	12.1 නහාස සම්බන්ධ මූලික සිද්ධාන්ත විස්තර කරයි.	 අර්ථ දැක්වීම සහ අංකනය ලේළි, තීර සහ අවයව ගණය ලේළි නහාසය, තීර නහාසය, සමචතුරසු නහාසය නහාස දෙකක සමානතාව නහාස අාකලනය අාකලනය සඳහා සංරූපහතාව ශනහ නහාසය අාකල නීති සංවෘත බව, නහාදේශහ බව, සංඝටන බව ሊ අදිශයක් විට \(\frac{1}{2}\) A හි අර්ථය ආකලනය මත අදිශ ගුණිතය විඝටනය වන බව නහාස ගුණනය ගැළපුම ගුණන නීති, සංවෘත බව, නහාදේශහ නොවන බව, සංඝටනය වන බව, විඝටනය වන බව (ඉහත නියමවල සාධනය අනවශහ යි.) සමචතුරසු නහාස 	02

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	12.2සමචතුරසු නහාසවල, විශේෂ අවස්ථා පැහැදිලි කරයි.	 තත්සාමා නාාසය විකර්ණ නාාසය සමමිතික නාාසය කුටික සමමිතික නාාසය තිුකෝණ නාාසය (උඩත්/ යටත් තිුකෝණික) 	01
	12.3 නාහසයක පුතිලෝමය සහ පෙරඑම විස්තර කරයි.	 නහාසයක පෙරළුම අර්ථ දැක්වීම සහ අංකනය නහාසයක පුතිලෝමය 2 x 2 නහාසයක 3 x 3 නහාසයක විශේෂ අවස්ථා 	04
	12.4සමගාමී සමීකරණවල විසඳුම් සෙවීමට නහාස භාවිත කරයි.	 නාාස භාවිතයෙන් විචලා දෙකකින් යුත් ඒකජ සමීකරණ යුගලයක් විසඳීම සමීකරණවල පුස්තාර අපරිමිත විසඳුම් සංඛාාවක් පැවතීම අනනා විසඳුමක් පැවතීම විසඳුමක් නොපැවතීම 	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
13. ගැටලු විසඳීම සඳහා ගණිතමය ආකෘතියක් ලෙස නිශ්චායක හසුරුවයි.	13.1 නිශ්චායකයක ගුණ විවරණය කරයි.	• 2 x 2 නිශ්චායකය අර්ථ දැක්වීම එහි ගුණ සහ අගය සෙවීම	02
14. සංකීර්ණ සංඛත පද්ධතිය විශ්ලේෂණය කරයි.	14.1 සංඛාහ පද්ධතිය විස්තීරණය කරයි.	 අතාත්ත්වික ඒකකය සහ අතාත්ත්වික සංඛ්‍යා සංකීර්ණ සංඛ්‍යා හැඳින්වීම සංකීර්ණ සංඛ්‍යාවක තාත්ත්වික හා අතාත්ත්වික කොටස් සංකීර්ණ සංඛ්‍යා දෙකක සමානතාව 	02
	14.2 සංකීර්ණ සංඛතා පිළිබඳ වීජය විවරණය කරයි.	• සංකීර්ණ සංඛාා පිළිබඳ ගණිත කර්ම	02
	14.3 ආර්ගන්ඩ් සටහන ඇසුරින් ආකලනය ජහාමිතික ව විවරණය කරයි.	 ආර්ගන්ඩ් සටහන හැඳින්වීම සංකීර්ණ සංඛ්‍යාවක ජනාමිතික නිරූපණය (ආර්ගන්ඩ් සටහන) \$\lambda \in \boxed{\Pi}\$ විට, \$\lambda Z\$, \$\overline{Z}\$ හි ජනාමිතික නිරූපණය \$\lambda \mu \in \boxed{\Pi}\$ + \$\mu \in \boxed{\Pi}\$ විට \$\frac{\lambda Z_1 + \mu Z_2}{\lambda + \mu}\$ සංකීර්ණ සංඛ්‍යාවක ජනාමිතික නිරූපණය 	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	14.4 ආර්ගන්ඩ් සටහන ඇසුරෙන් ගුණිතය සහ ලබ්ධිය ජහාමිතික ව විවරණය කරයි.	• (Z_1+Z_2) , (Z_1-Z_2) හි ජනාමිතික නිරූපණය • $ Z_1 - Z_2 \le Z_1+Z_2 \le Z_1 + Z_2 $ හි ජනාමිතික නිරූපණය • සංකීර්ණ සංඛනාවක මාපාංකය සහ විස්තාරය • Z_1Z_2 , $\frac{Z_1}{Z_2}$ හි මාපාංකය හා විස්තාරය • Z_1Z_2 තා $\frac{Z_1}{Z_2}$ $(Z_2 \ne 0$ විට) හි ජනාමිතික නිරූපණය • iZ සහ iZ සඳහා නිර්මාණය Z_1	05
	14.5 විචලා ලක්ෂායක පථයේ සංකීර්ණ සමීකරණය විවරණය කරයි.	• $\frac{Z_1}{Z_2}$ හුදෙක් අතාත්ත්වික වීමට ජාාමිතික අවශාතා $ Z =k;\ k\in \mathbb{D}^+$ • $ Z-Z_0 =k,\ k\in \mathbb{D}^+$ • $Arg(Z)=\alpha,\ \alpha\in \mathbb{D}$ • $Arg(Z-Z_0)=\alpha,\ \alpha\in \mathbb{D}$ • සරල රේඛාවක සහ වෘත්තයක සමීකරණයට තුලා කාටිසීය සමීකරණය	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
15 කෝණ මිනුම ආශිුත සම්බන්ධතා වාුත්පන්න කර ගැටලු විසඳයි.		• කෝණ මිනුම • කෝණය හැඳින්වීම සහ ලකුණු සම්මුතිය • අංශකය සහ රේඩියනය • වෘත්ත චාපයක දිග $\mathbf{s}=r\theta$ • කේන්දික බණ්ඩයක වර්ගඵලය $\mathbf{A}=\frac{1}{2}r^2\theta$	03
16. වෘත්ත ශුිත විවරණය කරයි.	16.1 වෘත්ත ශුිත වීජීය ව විස්තර කරයි.	 වෘත්ත ශිුත (තිුකෝණමිතික ශිුත) ඕනෑම කෝණයක් සඳහා වෘත්ත ශිුත හය අර්ථ දැක්වීම, වසම සහ පරාසය 	03
	16.2 $\frac{\pi}{2}$ හි ඔත්තේ ගුණාකාර සහ π හි නිඛිල ගුණාකාරවලින් θ පුමාණයකින් වෙනස් වන කෝණවල තිකෝණමිතික අනුපාත, θ හි තිකෝණමිතික අනුපාතවලින් වායුත්පන්න කරයි.	• $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ සහ $\frac{\pi}{2}$ ආදී කෝණ සඳහා වෘත්ත ශුිතවල අගය (තුිකෝණමිතික අනුපාත ඇසුරින් ඇසුරින් θ , $(\frac{\pi}{2} \pm \theta)$, $(\pi \pm \theta)$, $(\frac{3\pi}{2} \pm \theta)$, $(2\pi \pm \theta)$ ආදි කෝණවල තුිකෝණමිතික අනුපාත	04

නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
16.3 වෘත්ත ශිතවල හැසිරීම පුස්තාර ඇසුරින් විස්තර කරයි.	 වෘත්ත ශිතවල පුස්තාර සහ ආවර්ත ගුණ (sin, cos, tan වෘත්ත ශිතවල පුස්තාර ඇඳීම අපේක්ෂිත ය.) sin θ = sin α cos θ = cos α tan θ = tan α සඳහා සාධාරණ විසඳුම් 	05
17.1 තිකෝණමිතික පුකාශන සුළු කිරීම සඳහා පයිතගරස් සර්වසාමාංය භාවිත කරයි.	• පයිතගරස් සර්වසාමාය	04
17.2අාකලන සූතු භාවිතයෙන් තිුකෝණමිතික ගැටලු විසඳයි.	• තිුකෝණමිතික ආකලන සූතු	02
17.3 ගුණ න සූතු භාවිතයෙන් තුිකෝණමිතික ගැටලු විසඳයි.	• තිකෝණමිතික ගුණන සූතු	03
17.4ද්විත්ව කෝණ, තුිත්ව කෝණ සහ අර්ධ කෝණ භාවිතයෙන් තුිකෝණමිතික ගැටලු විසඳයි.	• ද්විත්ව කෝණ, තිුත්ව කෝණ සහ අර්ධ කෝණ සඳහා වූ සූතු වහුත්පන්නය	03
	16.3 වෘත්ත ශිතවල හැසිරීම පුස්තාර ඇසුරින් විස්තර කරයි. 17.1 තිකෝණමිතික පුකාශන සුළු කිරීම සඳහා පයිතගරස් සර්වසාමාය භාවිත කරයි. 17.2 ආකලන සූතු භාවිතයෙන් තිකෝණමිතික ගැටලු විසඳයි. 17.3 ගුණන සූතු භාවිතයෙන් තිකෝණමිතික ගැටලු විසඳයි. 17.4 ද්විත්ව කෝණ, තිත්ව කෝණ සහ අර්ධ කෝණ භාවිතයෙන් තිකෝණමිතික	16.3 වෘත්ත ශිතවල හැසිරීම පුස්තාර පොත්ත ශිතවල පුස්තාර සහ ආවර්ත ගුණ (sin, cos, tan වෘත්ත ශිතවල පුස්තාර සහ ආවර්ත ගුණ (sin, cos, tan වෘත්ත ශිතවල පුස්තාර ඇඳීම අපේක්ෂිත ය.) • sin θ = sin α cos θ = cos α tan θ = tan α texpo සාධාරණ විසඳුම් 17.1 තිකෝණමිනික පුකාශන සුළු කිරීම සඳහා පයිතගරස් සර්වසාමාය භාවිත කරයි. 17.2 ආකලන සූතු භාවිතයෙන් නිකෝණමිනික අාකලන සූතු තිකෝණමිනික ගැටලු විසඳයි. 17.3 ගුණන සූතු භාවිතයෙන් නිකෝණමිනික ගුණන සූතු තිකෝණමිනික ගැටලු විසඳයි. 17.4 ද්වීත්ව කෝණ, තිත්ව කෝණ සහ අර්ධ කෝණ භාවිතයෙන් තිකෝණමිනික

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
18. ති්කෝණමිතික ගැටලු විසඳීම සඳහා සයිත් සූතුය සහ කෝසයිත් සූතුය යොදා ගතියි.		සයින් සූතුය කෝසයින් සූතුය	04
19. සර්වසාමාය භාවිතයෙන් තිුකෝණමිතික සමීකරණ විසඳයි.		• සර්වසාමා භාවිතයෙන් විසඳිය හැකි සමීකරණ	04
20. පුතිලෝම තිකෝණමිතික ශිත භාවිතයෙන් ගැටලු විසඳයි.		• පුතිලෝම තිුකෝණමිතික ශිුත • අර්ථ දැක්වීම	06
21. ශේණී ආකලනය කර එහි පුතිඵල විවරණය කරයි.	21.1 මූලික ශුේණි විස්තර කරයි.	ශ්‍රේණිසමාන්තර ශ්‍රේණි සහ ගුණෝත්තර ශ්‍රේණි	04
	21.2 සමා-ගුණෝත්තර ශේණී විවරණය කරයි.	• සමා ගුණෝත්තර ශුේණි	02
	22.3 ධන නිඛිල ගුණිත පද සහිත ශේණි ආකලනය කරයි.	$igl \sum r, \ \sum r^2, \ \sum r^3$ සහ ඒවායේ යෙදීම්	03

නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
21.4 විවිධ කුම භාවිතයෙන් ශේණි ආකලනය කරයි.	 ශ්‍රණ් ආකලනය අන්තර කුමය, භින්න භාග කුමය අනුකුම අභිසාරිතාව පිළිබඳ සංකල්පය පද අනන්තයක ඓකාය 	10
22.1 ශුිතයක සීමාව විවරණය කරයි.	• සීමා පිළිබඳ පුතිභාමය අදහස	02
22.2 සීමා පිළිබඳ පුමේය භාවිතයෙන් ගැටලු විසඳයි	සීමා පිළිබඳ පුමේයඑකතුවක, අන්තරයක, ගුණිතයක, ලබ්ධියක සීමා	03
$\lim_{x \to a} \left(\frac{x^{n} - a^{n}}{x - a} \right) = na^{n-1} \text{god} a$	යන්න සාධනය සහ භාවිත	03
භාවිත කරයි. $22.4 \ \text{ගැටලු විසඳීමට}$ $\lim_{x \to o} \left(\frac{\sin x}{x} \right) = 1 \text{පුමේයය භාවිත}$ කරයි.	• සැන්ඩ්විච් පුමේයය $\lim_{x\to 0} \left(\frac{\sin x}{x}\right) = 1 \ \text{සාධනය සහ එහි භාවිත}$	03
	21.4 විවිධ කුම භාවිතයෙන් ශේණී ආකලනය කරයි. 22.1 ශිතයක සීමාව විවරණය කරයි. 22.2 සීමා පිළිබඳ පුමේය භාවිතයෙන් ගැටලු විසඳයි 22.3 ගැටලු විසඳීම සඳහා \[\lim_{n \to \alpha} \left(\frac{x^n - a^n}{x - a} \right) = na^{n-1} \] පුමේයය භාවිත කරයි. 22.4 ගැටලු විසඳීමට \[\lim_{n \to \alpha} \left(\frac{\sin x}{x} \right) = 1 \] පුමේයය භාවිත	21.4 විවිධ කුම භාවිතයෙන් ශ්රීණි ආකලනය සරයි. • ශ්රීණි ආකලනය කරයි. • ශ්රීණි ආකලනය සන්තර කුමය, හින්න භාග කුමය • අනුකුම • අහිසාරිතාව පිළිබඳ සංකල්පය • පද අනන්තයක ඓකාය 22.1 ශ්රීතයක සීමාව විවරණය කරයි. 22.2 සීමා පිළිබඳ පුම්පය භාවිතයෙන් ගැටලු විසඳිම සඳහා $\lim_{x \to a} \left(\frac{x^x - a^x}{x - a} \right) = na^{x-1} පුමේයය භාවිත සරයි. 22.4 ගැටලු විසඳීමට සඳහා \lim_{x \to a} \left(\frac{\sin x}{x} \right) = 1 පුමේයය භාවිත • \lim_{x \to a} \left(\frac{\sin x}{x} \right) = 1 පුමේයය භාවිත • \lim_{x \to a} \left(\frac{\sin x}{x} \right) = 1 colored සහ භාවිත$

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	22.5 අනන්තයේ දී සීමා සොයයි.	$\bullet \lim_{\kappa \to \infty} \left(\frac{1}{\kappa} \right) = 0$	04
	22.6 අනන්ත සීමා විවරණය කරයි.	 x→±∞ විට පරිමේය ශි්තයක සීමාව අනන්ත සීමා (තිරස් සහ සිරස් ස්පර්ශෝන්මුඛ පිළිබඳ සඳහනක් ද සහිත ව) 	03
23. සුදුසු කුම භාවිතයෙන් විවිධ ශුිත අවකලනය කරයි.	23.1 ශිුතයක අවකලනයෙහි අදහස පැහැදිලි කරයි.	ශි්තයක වහුත්පන්නය	04
	23.2 x [*] සහ මූලික තිුකෝණමිතික ශිුතවල වාුත්පන්නය පුමුලධර්ම මගින් නිර්ණය කරයි.	 පුමුලධර්ම මගින් අවකලනය x*; මෙහි x යනු නිඛිලයකි. මූලික තිුකෝණමිතික ශිුත 	05
	23.3 අවකලනය පිළිබඳ පුමේයය පුකාශ කොට භාවිත කරයි.	• අවකලනය පිළිබඳ පුමේය • දාම නීතිය	05

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	23.4 පුතිලෝම තිුකෝණමිතික ශිුත, e^x , $\ln x$ අඩංගු ශිුත අවකලනය කරයි.	 වායුත්පන්න සෙවීම පුතිලෝම තිකෝණමිතික ශිත ද^xසහ ln x අඩංගු ශිත 	03
	23.5 අධානාත ශුිත සහ පරාමිතික ශුිත අවකලනය කරයි.	අධානෘත ශිුතපරාමිතික ශිුත	03
	23.6 ඉහළ ගණයේ ව <u>හු</u> ත්පත්ත ලබා ගනියි.	අනුයාත අවකලනයඉහළ ගණයේ වහුත්පන්න	03
24. වහුත්පන්න භාවිතයෙන් ශුිතයක හැසිරීම	24.1 වෙනස්වීමේ ශීඝුතාවක් ලෙස ශූිතයක වහුත්පන්නය අර්ථකථනය කරයි.	• වෙනස්වීමේ ශීසුතාව	03
විශ්ලේෂණය කරයි.	24.2 ස්පර්ශක හා අභිලම්බවල අනුකුමණ, වහුත්පත්තය සමඟ ඇති සම්බන්ධය අනාවරණය කරයි.	• ස්පර්ශක සහ අභිලම්බ	03
	24.3 හැරුම් ලක්ෂාය වාුත්පන්න ඇසුරින්, විමර්ශනය කරයි.	උපරිම ලක්ෂායඅවම ලක්ෂායනතිවර්තන ලක්ෂාය	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	24.4 වහුත්පත්ත භාවිතයෙන් වකු අනුරේඛනය කරයි.	• වකු අනුරේඛනය (තිරස් සහ සිරස් ස්පර්ශෝන්මුඛ ඇතුළත් ව)	03
	24.5 පුායෝගික අවස්ථා සඳහා ව <u>ූ</u> ුත්පන්න යොදා ගනියි.	• පුායෝගික ගැටලු	05
25. දෙන ලද අවස්ථා සඳහා සුදුසු කුම භාවිතයෙන් ශිූත	25.1 ශිතයක පුතිවහුත්පන්නය පිළිබඳ අදහස ඇසුරින් අනුකලන පුතිඵල අපෝහනය කරයි.	• වායුත්පත්නයේ පුතිලෝම කියාවලිය (ශිුතයක පුතිවායුත්පත්නය) ලෙස අනුකලනය	03
අනුකලනය කරයි.	25.2 ගැටලු විසඳීම සඳහා අනුකලනය පිළිබඳ නීති භාවිත කරයි.	• අනුකලනය පිළිබඳ නීති	03
	25.3 කලනයේ මූලික පුමේයය භාවිතයෙන් නිශ්චිත අනුකලනයක මූලික ලක්ෂණ විමර්ශනය කරයි.	 කලනය පිළිබඳ මූලික පුමේයය නිශ්චිත අනුකලනය සහ එහි ගුණ නිශ්චිත අනුකලනයේ ප්‍රතිභාමය අදහස නිශ්චිත අනුකල ඇගයීමේ දී භාවිත වන ප්‍රතිඵල 	02
	25.4 උචිත කුම තෝරා ගනිමින් පරිමේය ශුිත අනුකලනය කරයි.	 අනුකලනයේ පුවිධි. I හරයේ අවකලන සංගුණකය ලවයේ ඇති විට භින්න භාග භාවිතය 	05

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	25.5 තිකෝණමිතික සර්වසාමා භාවිතයෙන් සම්මත ආකාරවලට ඌනනය කර තිුකෝණමිතික පුකාශන අනුකලනය කරයි.	අනුකලනයේ පුවිධි. II	03
	25.6 අනුකලනය සඳහා විචලා පරිවර්තන කුමය භාවිත කරයි.	• ආදේශය මගින් අනුකලනය	04
	25.7 කොටස් වශයෙන් අනුකලන කුමය භාවිතයෙන් ගැටලු විසඳයි.	• කොටස් වශයෙන් අනුකලනය	05
	25.8 අනුකලන භාවිතයෙන් වකු මගින් මායිම් වූ පුදේශයක වර්ගඵලය නිර්ණය කරයි.	 අනුකලනයේ භාවිත වකුයක් යට වර්ගඵලය වකු දෙකක් අතර වර්ගඵලය 	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
26. ඍජුකෝණාසු කාටිසීය අක්ෂ පද්ධතිය සහ ඒ අනුබද්ධ සරල	26.1 කාටිසීය ඛණ්ඩාංක තලයේ පිහිටි ලක්ෂා දෙකක් අතර දුර සොයයි.	 සෘජුකෝණාසු කාටිසීය බණ්ඩාංක සෘජුකෝණාසු කාටිසීය පද්ධතිය ලක්ෂා දෙකක් අතර දුර 	01
ජනාමිතික පුතිඵල සුදුසු ලෙස භාවිත කරයි.	26.2 ලක්ෂා දෙකක් යා කරන සරල රේඛා ඛණ්ඩය දෙන ලද අනුපාතයකට බෙදන ලක්ෂායේ ඛණ්ඩාංක සොයයි.	 දී ඇති ලක්ෂා දෙකක් යා කරන සරල රේඛා ඛණ්ඩය දෙන ලද අනුපාතයකට අභාන්තර ව බෙදෙන ලක්ෂායේ ඛණ්ඩාංක. දී ඇති ලක්ෂා දෙකක් යා කරන සරල රේඛා ඛණ්ඩය දෙන ලද අනුපාතයකට බාහිර ව බෙදෙන ලක්ෂායේ ඛණ්ඩාංක. 	03
	26.3 සරල රේඛා ඛණ්ඩවලින් මායිම් වූ තල රූපවල වර්ගඵල සොයයි.	• තිුකෝණයක වර්ගඵලය	01
27. කාටිසීය ඛණ්ඩාංක ඇසුරෙන් සරල රේඛාව විවරණය කරයි.	27.1 සරල රේඛාවක සමීකරණය වහුත්පන්න කරයි.	 සරල රේඛාව ආනතිය අනුකුමණය x සහ y අක්ෂ මත අන්තඃඛණ්ඩ සරල රේඛාවක සමීකරණයේ විවිධ ආකාර 	01

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	27.2 දෙන ලද සරල රේඛා දෙකක ඡේදන ලක්ෂාය හරහා යන ඕනෑම සරල රේඛාවක සමීකරණය වාුුත්පන්න කරයි.	 සරල රේඛා දෙකක ඡේදන ලක්ෂ‍‍‍‍‍‍යය ඡේදනය වන සරල රේඛා දෙකක ඡේදන ලක්ෂ‍‍‍‍‍‍යය හරහා යන සරල රේඛාවක සමීකරණය විවරණය කිරීම 	02
	27.3 දෙන ලද සරල රේඛාවකට සාපේක්ෂ ව ලක්ෂා දෙකක පිහිටීම සොයයි.	• දෙන ලද ලක්ෂා දෙකක් දෙන ලද රේඛාවක එක ම පැත්තේ හෝ පුතිවිරුද්ධ පැතිවල පිහිටීම සඳහා අවශාතාව	02
	27.4 සරල රේඛා දෙකක් අතර කෝණය සොයයි.	සරල රේඛා දෙකක් අතර කෝණය සමාන්තර සහ ලම්බ රේඛාවල අනුකුමණ අතර සම්බන්ධය	02
	27.5දෙන ලද ලක්ෂායක සිට දෙන ලද සරල රේඛාවකට ඇති ලම්බ දුර ඇසුරෙන් සරල රේඛාවක් හා සම්බන්ධ විශේෂිත පුතිඵල වුහුත්පන්න කරයි.	 ලක්ෂායක සිට සරල රේඛාවකට ඇති ලම්බ දුර සරල රේඛාවක් අනුබද්ධයෙන් ලක්ෂායක පුතිබිම්බය. 	10

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
28. වෘත්තයක කාටිසීය සමීකරණය විවරණය කරයි.	28.1 වෘත්තයක කාටිසීය සමීකරණය සොයයි.	• මුල ලක්ෂාය කේන්දය වූ සහ දී ඇති අරය සහිත වෘත්තයක සමීකරණය	04
	28.2 වෘත්තයක් අනුබද්ධයෙන් ලක්ෂායක පිහිටීම විස්තර කරයි.	• වෘත්තයක් අනුබද්ධයෙන් ලක්ෂායක පිහිටීම	01
	28.3 වෘත්තයක් අනුබද්ධයෙන් සරල රේඛාවක පිහිටීම විස්තර කරයි.	 සරල රේඛාවක් සහ වෘත්තයක් ඡේදනය වීමට, ස්පර්ශ වීමට, ඡේදනය නොවීමට අවශාතාව වෘත්තය මත ලක්ෂායක දී ස්පර්ශකයේ සමීකරණය 	03
	28.4 බාහිර ලක්ෂායක සිට වෘත්තයකට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාාය විවරණය කරයි.	 බාහිර ලක්ෂායක සිට වෘත්තයකට ඇඳි ස්පර්ශකයේ දිග සහ එහි සමීකරණය ස්පර්ශ ජාහයේ සමීකරණය 	04
	$28.5 \ s + \lambda u = 0$ සමීකරණය විවරණය කරයි.	සරල රේඛාවක සහ වෘත්තයක ඡේදන ලක්ෂා හරහා යන වෘත්තයක සමීකරණය	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	28.6 වෘත්ත දෙකක පිහිටීම විවරණය කරයි.	 වෘත්ත දෙකක පිහිටීම වෘත්ත දෙක ඡේදනය වීම වෘත්ත දෙක ඡේදනය නොවීම වෘත්ත දෙක බාහිර ව ස්පර්ශ වීම වෘත්ත දෙක අභාගන්තර ව ස්පර්ශ වීම එක් වෘත්තයක් ඇතුළත අනෙක් වෘත්තය පිහිටීම ඡේදනය වන වෘත්ත දෙකක් අතර කෝණය පොදු ස්පර්ශක 	10
	28.7 $s+\lambda s'=0$ සමීකරණය විවරණය කරයි.	 වෘත්ත දෙකක ඡේදන ලක්ෂාය හරහා යන වෘත්තයක සමීකරණය පොදු ජාහායේ සමීකරණය 	02

සංයුක්ත ගණිතය II

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
1 මෙදශික වීජය හසුරුවයි.	1.1 මෛදශික විමර්ශනය කරයි.	 අදිශ රාශි සහ අදිශ හැඳින්වීම දෛශික රාශි හා දෛශික හැඳින්වීම දෛශිකයක විශාලත්වය හා දිශාව හැඳින්වීම දෛශික අංකනය දෛශිකයක වීජය හා ජපාමිතික අංකනය අභිශුනා දෛශිකය දෛශිකයක විශාලත්වයේ (මාපාංකය) හි අංකනය දෛශික දෙකක සමානතාව දෛශික එකතු කිරීම (ආකලනය) පිළිබඳ තිකෝණ නියමය දෛශිකයක් අදිශයකින් ගුණ කිරීම දෛශික දෙකක අන්තරය එකතුවක් ලෙස දැක්වීම ඒකක දෛශිකය සමාන්තර දෛශික දෛශික තුනක් හෝ වැඩි ගණනක ආකලනය දෛශිකයක් ඕනෑම දිශා දෙකකට විභේදනය සහ එකිනෙකට ලම්බ දිශා දෙකක් ඔස්සේ විභේදනය 	03

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	1.2 නාහය ඇසුරින් ඉදෙශික වීජීය පද්ධතියක් ඉගාඩනගයි.	• ලෛදශික නීති	01
	1.3 ගැටලු විසඳීම සඳහා ශිල්පීය කුමයක් ලෙස පිහිටුම් දෛශික උපයෝගී කර ගනියි.		03
	1.4 ලෛශික මත අදිශ ගුණිතය විවරණය කරයි.	• වෛදශික දෙකක් අතර අදිශ ගුණිතයේ හා දෛශික ගුණිතයේ අර්ථ දැක්වීම • අදිශ ගුණිතයේ ලක්ෂණ • කිශ්ලතා හෙදෙශික දෙකක් ලම්බ වීමට අවශාතාව • $(\underline{a} \cdot i)$ මගින් i , දිශාව ඔස්සේ a හි සංරචකය ලැබෙන බව • අදිශ ගුණිතය සම්බන්ධ නියම • නාාදේශා නාාය, $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{a}$ • විසටන නාාය, $\underline{a} \cdot (\underline{b} + \underline{c}) = \underline{a} \cdot \underline{b} + \underline{a} \cdot \underline{c}$ (ලෙදශික භාවිතයෙන් ජාාමිතික පුතිඵල සාධනය අපේක්ෂා නො කෙරේ. දෙශික ගුණිතය හෝ එහි භාවිත සම්බන්ධ ගැටලු විභාගයේ දී පරීක්ෂා නො කෙරේ. අනුපාත පුමේයය අපේක්ෂා නොකෙරේ. තිමාන දෙශික සම්බන්ධ ගැටලු විසඳීම අපේක්ෂා නො කෙරේ.)	
 සමතුලිතතාව ඇති නැති තත්ත්ව අර්ථවත් ජිවිතයට යොදා ගැනීම සඳහා ඒකතල බල පද්ධති විවරණය කරයි. 		 අංශුව පිළිබඳ සංකල්පය බලය පිළිබඳ සංකල්පය බලයේ මාන සහ ඒකක (නිරපේක්ෂ සහ ගුරුත්වාකර්ෂණ ඒකක) බල පුභේද 	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	2.2 ඒකතල බල පද්ධතියක් මගින් අංශුවක් මත ඇති වන කිුයාව විගුහ කරයි.	 සම්පුයුක්තය බල දෙකක සම්පුයුක්තය බල සමාන්තරාසු නියමය බල දෙකක සමතුලිතතාව බලයක විහේදනය දෙන ලද දිශා දෙකකට එකිනෙකට ලම්බ දිශා දෙකකට ඒකතල බල පද්ධතියක් එකිනෙකට ලම්බ දිශා දෙකකට වූ බල දෙකකට ඌනනය ඒකතල බල පද්ධතියක් සම්පුයුක්තය බල විභේදන කුමය සමතුලිත වීම සඳහා අවශාතා දෙශික ඓකාය = 0 හෝ X= 0 සහ Y= 0 බල බහු අසුය සම්පූර්ණ කිරීම 	06
	2.3 ඒකතල බල තුනක කිුිිිියාව යටතේ අංශුවක සමතුලිතතාව විගුහ කරයි.	 ඕනෑම බල දෙකක සම්පුයුක්තය තුන්වන බලයට විශාලත්වයෙන් සමාන හා දිශාවෙන් පුතිවිරුද්ධ වීම බල තුිකෝණ නියමය හා එහි විලෝමය (සාධනය ද සහිත ව) ලාමී පුමේයය 	06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	2.4 දෘඪ වස්තුවක් මත බලවල ඵලය විගුහ කරයි.	 දෘඪ වස්තුවක් මත කියා කරන බල දෘඪ වස්තුව හැඳින්වීම බල සම්පේෂාතා මූලධර්මය බලයක උත්තාරණය සහ භුමණ ඵලය පැහැදිලි කිරීම ලක්ෂායක් වටා බලයක සූර්ණය අර්ථ දැක්වීම සූර්ණයේ භෞතික අර්ථය ලක්ෂායක් වටා බලයක සූර්ණයේ විශාලත්වය සහ බමනත සූර්ණයේ මාන සහ ඒකක සූර්ණයක ජාාමිතික අර්ථකථනය ඒකතල බල පද්ධතියක තලයේ වූ ලක්ෂායක් වටා බලවල සූර්ණවල වීජිය ඓකාය බල සූර්ණය පිළිබඳ සාධාරණ මූලධර්මය 	04
	2.5 දෘඪ වස්තුවක් මත කිුයාකරන බල දෙකක ඵලය විගුහ කරයි.	 බල දෙකක සම්පුයුක්තය බල දෙක සමාන්තර නොවන විට බල දෙක සමාන්තර හා සජාතීය වන විට බල දෙක සමාන්තර හා විජාතීය වන විට බල දෙකක සමතුලිතතාව බල යුග්මයක සූර්ණය අර්ථ දැක්වීම බල යුග්මයක විශාලත්වය සහ බමනත බල යුග්මයක සූර්ණය, සූර්ණය ගනු ලබන ලක්ෂායෙන් ස්වායත්ත බව 	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		ඒකතල යුග්ම දෙකක තුලානාවබල යුග්ම දෙකක සමතුලිතතාවඒකතල බල යුග්මවල සංයුතිය	
	2.6 ඒකතල බල පද්ධතියක් විශ්ලේෂණය කරයි.	 යුග්මයක් සහ එම යුග්මයේ තලයේ කියා කරන බලයක් එම තලයේ කියා කරන මුල් බලයට විශාලත්වයෙන් සහ දිශාවෙන් සමාන තනි බලයකට ඌනනය කිරීම. තනි බලයක් දී ඇති ලක්ෂායක දී කියා කරන ඒ සමාන බලයකට හා යුග්මයකට විස්තීර්ණය කිරීම. ඒකතල බල පද්ධතියක් එහි ම තලයේ අභිමත ලක්ෂායක දී කියා කරන R = (x,y) බලයකට හා G යුග්මයකට ඌනනය කිරීම. ඒකතල බල පද්ධතියක සම්පුයුක්තයේ විශාලත්වය, දිශාව සහ කියා රේඛාවේ පිහිටීම ඒකතල බල පද්ධතියක් (i) තනි බලයකට ඌනනය වීමට අවශාතාව R ≠ 0 (X ≠ 0 හෝ Y ≠ 0) (ii) යුග්මයකට ඌනණය වීමට අවශාතාව R = 0(X = 0 සහ Y = 0) G ≠ 0 (iii) සමතුලිත වීමට අවශාතාව X = 0, Y = 0 සහ G = 0 	10

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	2.7 වාත්තික අවස්ථාවක් ලෙස දෘඪ වස්තුවක් මත කිුිිිිිිිිි කරන ඒකතල බල තුනක සමතුලිතතාව විගුහ කරයි.	 දෘඪ වස්තුවක් බල තුනක් යටතේ සමතුලිත වීම සඳහා අනිවාර්ය අවශාතාව, බල තුනෙහි කියා රේඛා ඒක ලක්ෂා වීම හෝ බල තුන එකිනෙකට සමාන්තර වීම බල තිකෝණ නියමය සහ එහි විලෝමය ලාමී පුමේයය කොට් පුමේයය ජාාමිතික ගුණ එකිනෙකට ලම්බ දිශා දෙකකට බල විභේදනය යන කුම භාවිතය 	10
		 සර්ෂණ බලය සහ එහි ස්වභාවය සුමට හා රළු පෘෂ්ඨ හැඳින්වීම සර්ෂණයේ වාසි සහ අවාසි සීමාකාරී සර්ෂණ බලය සර්ෂණ නියම සර්ෂණ සංගුණකය අර්ථ දැක්වීම සර්ෂණ කෝණය 	10
	2.9 සුමට සන්ධිවල ඇති වන පුතිකිුයාවන්හි තොරතුරු නිර්ණය කිරීම සඳහා ඒකතල බලපද්ධති පිළිබඳ මූලධර්ම යොදා ගනියි.	 සරල සන්ධි වර්ග සුචල සන්ධියක සහ දෘඪ සන්ධියක වෙනස සුමට සන්ධියක දී දඬු මත කිුිිිිිිිිි කරන බල 	10

නිපු ණ තාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	2.10 සුමට ව සන්ධි කළ සැහැල්ලු දඬු සහිත රාමු සැකිල්ලක දඬුවල පුතාෘබල නිශ්චය කරයි.	 සැහැල්ලු දඬු සහිත රාමු සැකිලි හැඳින්වීම සැකිල්ලේ එක් එක් සන්ධියේ සමතුලිතතාව සඳහා අවශාතා බෝ අංකනය පුතාාබල සටහන 	10
	2.11 අර්ථ දැක්වීම භාවිතයෙන් සමමිතික ඒකාකාර වස්තුවල ස්කන්ධ කේන්දය නිර්ණය කිරීම සඳහා විවිධ ශිල්පීය කුම යොදා ගනියි.	 ස්කන්ධ කේන්දයේ අර්ථ දැක්වීම රේඛාවක් වටා සමමිතික තල වස්තුවක ස්කන්ධ කේන්දය ඒකාකාර සිහින් දණ්ඩක ඒකාකාර සාජුකෝණාසු ආස්තරයක ඒකාකාර වෘත්තාකාර වළලලක ඒකාකාර වෘත්තාකාර තැටියක තලයක් වටා සමමිතික වස්තුවක ස්කන්ධ කේන්දය ඒකාකාර කුහර (හෝ සන) සිලින්ඩරයක ඒකාකාර කුහර (හෝ සන) ගෝලයක තල ආස්තරයක සෑම අංශු මාතුයක ම ස්කන්ධයන් එකම රේඛාවේ වන පරිදි බෙදා වෙන් කළ හැකි විට වස්තුවේ ස්කන්ධ කේන්දය එම රේඛාව මත ම ඇති බව භාවිතයෙන් ඒකාකාර තිුකෝණාකාර ආස්තරයක ඒකාකාර සමාන්තරාසු ආස්තරයක ස්කන්ධ කේන්දය 	04
	2.12අර්ථ දැක්වීම සහ අනුකලනය භාවිතයෙන් සරල ජාාමිතික වස්තුවල ස්කන්ධ කේන්දුය සොයයි.	• සන්තතික, සමමිතික, ඒකාකාර වස්තුන්ගේ ස්කන්ධ කේන්දුය	06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		 අංශු මාතුවලට බෙදීමෙන් ඒකාකාර වෘත්ත චාපය ඒකාකාර කේන්දික ඛණ්ඩය ඒකාකාර සමමිතික වස්තුවල ස්කන්ධ කේන්දය සෙවීම ඒකාකාර කුහර (හෝ සන) කේතුව ඒකාකාර කුහර (හෝ සන) අර්ධ ගෝලය 	
	2.13 ස්කන්ධ කේන්දුය හා ගුරුත්ව කේන්දය සමපාත වීම යන්න උපකල්පනය කර සංයුක්ත වස්තුවල හා ශේෂ වස්තුවල ස්කන්ධ කේන්දුය (ගුරුත්වකේන්දුය) සොයයි.	 ගුරුත්ව කේන්දුය හඳුන්වා දීම ගුරුත්ව කේන්දුයේ හා ස්කන්ධ කේන්දුයේ සමපාත බව සමමිතික සංයුක්ත වස්තුවල ස්කන්ධ කේන්දුය (ගුරුත්ව කේන්දුය) සමමිතික ශේෂ වස්තුවල ස්කන්ධ කේන්දුය (ගුරුත්ව කේන්දුය) 	04
	2.14 වස්තුවක සමතුලිතතාවයේ ස්ථායිතාව විස්තීරණය කරයි.	එල්ලෙන වස්තු තලයක් මත නිසල ව ඇති වස්තුවල සමතුලිතතාවයේ ස්ථායිතා	04
3. චලිතය පිළිබඳ නිව්ටෝනියානු ආකෘතිය යොදා ගනිමින් තලයක සිදුවන ස්වභාවික චලිත අවස්ථා සංජානනය කරයි.	3.1 සරල රේඛාවක් ඔස්සේ සිදුවන චලිතය පිළිබඳ ගැටලු විසඳීම් සඳහා පුස්තාර උපයෝගි කර ගනියි.	 දුර, එහි මාන සහ ඒකක වේගය, එහි මාන සහ ඒකක මධානක වේගය, ක්ෂණික වේගය, ඒකාකාර වේගය පිහිටුම් ඛණ්ඩාංක 	10

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	3.2 සරල රේඛාවක් ඔස්සේ සිදුවන චලිත පිළිබඳ පුගතික සමීකරණ උපයෝගි කර ගනියි.	 විස්ථාපනය, එහි මාන සහ ඒකක පුවේගය, පුවේගයේ මාන සහ ඒකක මධානක පුවේගය, ක්ෂණික පුවේගය හා ඒකාකාර පුවේගය විස්ථාපන කාල ප්‍රස්තාර පිහිටීම් දෙකක් අතර මධානක ප්‍රවේගය ලක්ෂායක දී ක්ෂණික ප්‍රවේගය ත්වරණය අර්ථ දැක්වීම මධානක ත්වරණය, ක්ෂණික ත්වරණය, ඒකාකාර ත්වරණය සහ මන්දනය ත්වරණයේ මාන සහ ඒකක ප්‍රවේග - කාල ප්‍රස්තාර ඕනෑ ම මොහොතක ප්‍රස්තාරයේ, අනුකුමණය = ක්ෂණික ත්වරණය ඕනෑම කාල ප්‍රාත්තරයක් තුළ කාල අක්ෂය සහ ප්‍රස්තාරය අතර වර්ගඵලය = එම කාල ප්‍රාත්තරය තුළ දී විස්ථාපනය විවිධ අවස්ථා සඳහා ප්‍රවේග කාල ප්‍රස්තාර නියත ත්වරණ සූතු වුහුත්පන්නය අර්ථ දැක්වීම භාවිතයෙන් පුවේග කාල ප්‍රස්තාර භාවිතයෙන් පුවේග කාල ප්‍රස්තාර භාවිතයෙන් පුවේග කාල ප්‍රස්තාර භාවිතයෙන් $v = u + at$, $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ $s = \frac{(u + v)}{2}t$ 	08
		$s = \frac{1}{2}t$	

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		නියත ගුරුත්වජ ත්වරණය යටතේ සිරස් චලිතයපුස්තාර භාවිතය සහ පුගතික සමීකරණ භාවිතය	
	3.3 සරල රේඛාවක් මත චලනය වන වස්තු අතර සාපේක්ෂ චලිතය විමර්ශනය කරයි.		07
	3.4 තලයක් මත අංශුවක චලිතය විගුහ කරයි.	 තලයක් මත චලනය වන ලක්ෂායක කාටිසීය ඛණ්ඩාංක සහ ධුැවක ඛණ්ඩාංක අතර සම්බන්ධය මූල ලක්ෂායට අනුබද්ධ ව චලනය වන අංශුවක පිහිටුම් දෙශිකය සහ විස්ථාපන දෙශිකය දී ඇති කාල ප්‍රාන්තරයක් තුළ දී මධ්‍රාක ප්‍රවේගය හා ක්ෂණික ප්‍රවේගය අංශුවක කෝණික ප්‍රවේගය දී ඇති කාල ප්‍රාන්තරයක් තුළ දී මධ්‍රාක ත්වරණය, ක්ෂණික ත්වරණය සහ කෝණික ත්වරණය කාලයේ ශිතයක් ලෙස පිහිටුම් දෙශිකය දී ඇති විට ප්‍රවේගය සහ ත්වරණය සෙවීම 	06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	3.5 තලයක් මත එක් අංශුවකට සාපේක්ෂ ව තවත් අංශුවක චලිතය නිර්ණය කරයි.		06
	3.6 එදිනෙදා ජීවිතයේ අදාළ ගැටලු අවස්ථා විසඳීම සඳහා සාපේක්ෂ චලිතය පිළිබඳ මූලධර්ම භාවිත කරයි.	කාලය	10
	3.7 සාපේක්ෂ චලිත ගැටලු විසඳීම සඳහා දෛශික කුම යොදා ගනියි.	 අංශුවක් චලනය වන රේඛාවක දෛශික සමීකරණය දෛශික භාවිතයෙන් එක් අංශුවකට සාපේක්ෂ ව තවත් අංශුවක පිහිටුම සහ පුවේගය ඕනෑම මොහොතක අංශු අතර දුර, අවම දුර හා ඒ සඳහා ගතවන කාලය 	06

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		 අංශු දෙකක් ගැටීමට අවශාතාව අංශු දෙකක් ගැටීමට ගතවන කාලය අංශු දෙකක් ගැටෙන ලක්ෂායේ පිහිටුම් දෛශිකය අංශුවක, තවත් අංශු දෙකකට සාපේක්ෂ චලිතය දන්නා විට එම අංශුවේ සැබෑ චලිතය සෙවීම. 	
	3.8 සිරස් තලයක සිදුවන පුක්ෂිප්තයක චලිතය විවරණය කරයි.	 ආරම්භක පිහිටීම සහ ආරම්භක පුවේගය දී ඇති විට t කාලයකට පසු (i) පුවේගයේ (ii) විස්ථාපනයේ තිරස් සහ සිරස් සංරචක උපරිම උස පියාසර කාලය තිරස් පරාසය එකම තිරස් පරාසය ලබාදෙන පුක්ෂේපණ කෝණ දෙකක් ඇති බව උපරිම තිරස් පරාසය පුක්ෂිප්තයේ ගමන් මාර්ගයේ සමීකරණය 	08
	3.9 අවස්ථිති රාමුවකට සාපේක්ෂ ව සිදුවන චලිත පැහැදිලි කිරීම සඳහා නිව්ටන්ගේ නියම උපයෝගී කර ගනියි.	l	15

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		 බලය මැනීම පිළිබඳ නිරපේක්ෂ ඒකක සහ ගුරුත්වාකර්ෂණ ඒකකය චලිතය පිළිබඳ නිව්ටන්ගේ තුන්වන නියමය නිව්ටන්ගේ නියමවල භාවිත (නියත බල යටතේ පමණි) ගැටී ඇති හෝ වස්තු සහ ලුහු අවිතනා තන්තුවලින් සම්බන්ධ ව ඇති හෝ වස්තුවල චලිතය 	
	3.10 යාන්තික ශක්තිය විවරණය කරයි.	 කාර්යය පිළිබඳ අදහස නියත බලයකින් කෙරෙන කාර්යය අර්ථ දැක්වීම කාර්යයේ මාන සහ ඒකක ශක්තිය පිළිබඳ අදහස ශක්තිය අර්ථ දැක්වීම මාන සහ ඒකක යාන්තික ශක්තියේ පුභේද ලෙස චාලක ශක්තිය චාලක ශක්තිය අර්ථ දැක්වීම චාලක ශක්තිය සඳහා ප්‍රකාශනය චාලක ශක්තිය සඳහා කාර්යය - ශක්ති සමීකරණය උත්සර්ජක සහ සංස්ථිතික බල යාන්තික ශක්ති ප්‍රභේදයක් ලෙස විභව ශක්තිය විභව ශක්තිය අර්ථ දැක්වීම ගුරුත්වාකර්ෂණ විභව ශක්තිය අර්ථ දැක්වීම විභව ශක්තිය සඳහා ප්‍රකාශනය විභව ශක්තිය සඳහා ප්‍රකාශනය විභව ශක්තිය සඳහා කාර්යය ශක්ති සමීකරණය 	08

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		 ඇදි තන්තුවක විභව ශක්ති සඳහා පුකාශනය බලයක් මගින් වස්තුවක් මත ගුරුත්වයට විරුද්ධ ව කරන ලද කාර්යය විභව ශක්තියට සමාන බව ගුරුත්වාකර්ෂණ බලයට විරුද්ධ ව කරන ලද කාර්යය එය ගමන් කළ පථයෙන් ස්වායත්ත බව යාන්තුික ශක්ති සංස්ථිති මූලධර්මය හා එහි යෙදීම් 	
	3.11 අදාළ අවස්ථා සඳහා ජවගය් උපගයෝගීතාව විමසමින් ගැටලු විසඳයි.		07
	3.12 ආවේගී කිුිිියාවක එලය විවරණය කරයි.	 නියත බලයක ආවේගය බලයේ සහ කාලයේ ගුණිතයක් ලෙස ද, ගමානාවයේ වෙනසක් ලෙස ද අර්ථ දැක්වීම සහ එම අර්ථ දැක්වීම් එකිනෙකට තුලා බව ආවේගයේ මාන සහ ඒකක ආවේගය දෛශිකයක් ලෙස අර්ථකථනය රේඛීය ගමානා සංස්ථිති මූලධර්මය ආවේගී කුියාවක් නිසා සිදුවන චාලක ශක්ති හානිය 	08

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	3.13 සරල පුතාසේථ ගැටුම් විවරණය කිරීමට නිව්ටන්ගේ පුතාාගති නියමය භාවිත කරයි.	_	15
	3.14 තිරස් වෘත්තයක චලිත අවස්ථාව එලදායි ව යොදා ගැනීමට අදාළ මූලධර්ම විමර්ශනය කරයි.		10

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	3.15 සිරස් වෘත්ත චලිතයක හැසිරීම කෙරෙහි බලපාන සාධකයක් ලෙස ආරම්භක වේගය සැලකිල්ලට ගනියි.	යෙ දී ම	
	3.16 සරල අනුවර්තී චලිතය විශ්ලේෂණය කරයි.	 සරල අනුවර්තී චලිතය අර්ථ දැක්වීම සහ එහි කේන්දුය ලාක්ෂණික සමීකරණය සහ එහි සාධාරණ විසඳුම පුවේගය, විස්ථාපනයේ ශිතයක් ලෙස විස්තාරය සහ ආවර්ත කාලය විස්ථාපනය, කාලයේ ශිතයක් ලෙස සරල අනුවර්තී චලිතය ඒකාකාර වෘත්තාකාර චලිතය මඟින් විවරණය කාලය සෙවීම. 	
	3.17 තිරස් රේඛාවක් ඔස්සේ සිදුවන සරල අනුවර්තී චලිතයේ ස්වභාවය එහි ලක්ෂණ ඇසුරෙන් විස්තර කරයි.		

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	3.18 සිරස් රේඛාවක් ඔස්සේ සිදුවන සරල අනුවර්තී චලිතයේ ස්වභාවය එහි ලක්ෂණ ඇසුරෙන් විගුහ කරයි.	 පුත‍‍‍‍‍යස්ථ බල හා එහි ම බර යටතේ වූ අංශුවක සිරස් රේඛාවක් මත සරල අනුවර්තී චලිතය සරල අනුවර්තී චලිතය සහ ගුරුත්වය යටතේ නිදැල්ලේ චලිතය යන දෙකෙහි සංයුතිය 	06
4. අහඹු සිද්ධිය විගුහ කිරීමට ගණිත ආකෘති යොදා ගනියි.	4.1 සසම්භාවී පරීක්ෂණයක සිද්ධි විවරණය කරයි.	 සම්භාවිතාව පිළිබඳ ප්‍රතිභාමය අදහස සසම්භාවී පරීක්ෂණය අර්ථ දැක්වීම නියැදි අවකාශය හා නියැදි ලක්ෂා අර්ථ දැක්වීම පරිමිත නියැදි අවකාශය අපරිමිත නියැදි අවකාශය සිද්ධි අර්ථ දැක්වීම සරල සිද්ධි අහිශූනා සිද්ධි නිසැක සිද්ධි අනුපූරක සිද්ධි සංයුක්ත සිද්ධි සිද්ධි දෙකක මේලය සිද්ධි දෙකක ජේදනය අනාහනා වශයෙන් බහිෂ්කාර සිද්ධි නිරවශේෂ සිද්ධි සම්භවා සිද්ධි සිද්ධි අවකාශය 	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	4.2 අහඹු සිදුවීම් පිළිබඳ ගැටලු විසඳීම සඳහා සම්භාවිතාව පිළිබඳ ආකෘති යොදා ගතියි.	_	
	4.3 දෙන ලද තත්ත්වවලට යටත් ව අහඹු සිද්ධියක සම්භාවිතාව නිර්ණය කිරීම සඳහා අසම්භවා සම්භාවිතා සංකල්ප උපයෝගී කර ගනියි.	1	08

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
		$ullet$ සම්භාවිතාව පිළිබඳ ගුණන නීතිය $P(\mathbb{A}_1) \! > \! 0$ නම් $P(\mathbb{A}_1 \cap \mathbb{A}_2) = P(\mathbb{A}_1)$. $P(\mathbb{A}_2/\mathbb{A}_1)$	
	4.4 අහඹු සිද්ධි දෙකක හෝ වැඩි ගණනක ස්වායත්තතාව නිර්ණය කිරීම සඳහා සම්භාවිතා ආකෘතිය යොදා ගනියි.		06
	4.5 අවස්ථානුකූල ව බේයස් පුමේයය භාවිත කරයි.	• නියැදි අවකාශය විභාගනය $ \bullet \text{ මුළු සම්භාවිතාව පිළිබඳ පුමේයය සාධනය සහිත ව } \\ P(A) = \sum_{i=1}^{n} P(A/B_i).P(B_i) \\ \bullet \text{ බේයස් පුමේයය සාධනය සහිත ව } $	06
5. තීරණ ගැනීමේ කුසලතාව වර්ධනය කර ගැනීම සඳහා විදහාත්මක ආකෘති යොදා ගතියි.	5.1 සංඛ්‍යානයේ ස්වභාවය හඳුන්වයි.	 සංඛ්‍යාතය යනු කුමක් ද? සංඛ්‍යාතයේ ස්වභාවය විස්තරාත්මක සංඛ්‍යානය අනුමිතික සංඛ්‍යානය සම්භාවිතාව සහ ව්‍යාප්ති න්‍යාය 	01

නිපුණතාව	නිපුණතා මට්ටම අන්තර්ගතය	කාලච්ඡේද ගණන	
	5.2 තොරතුරු ලබා ගැනීම සඳහා දත්ත හසුරුවයි.	 දත්ත සහ තොරතුරු පරීක්ෂණ සහ දත්ත දත්තවල පුභේද විවික්ත දත්ත සහ සන්තතික දත්ත තොරතුරු දත්ත සහ තොරතුරු අතර වෙසෙසියාව 	01
	5.3 දත්ත සහ තොරතුරු වර්ගීකරණය කරයි.	 දත්ත වර්ගීකරණය දත්ත වර්ගීකරණය, දේවල් පිළියෙල කිරීමේ කිුයාවලියක් ලෙස දත්ත වර්ගීකරණයේ අරමුණු වර්ගීකරණයේ පදනම 	01
	5.4 දත්ත සහ තොරතුරු වගු ගත කරයි.	 දත්ත ඉදිරිපත් කිරීමේ ශිල්පීය කුම වගුගත කිරීමේ ශිල්පීය කුම සංඛාන වගුවක් ගොඩ නැගීම අසමූහිත සංඛාන වනාප්තිය සමූහිත සංඛාන වනාප්තිය 	01
	5.5 දත්ත සහ තොරතුරු රූපික ව දක්වයි.	තීර පුස්තාරවට පුස්තාරජාල රේඛයරේඛා පුස්තාරකොටු කෙඳි සටහන	04

නිපුණතාව	නිපුණතා මට්ටම	අන්තර්ගතය	කාලච්ඡේද ගණන
	5.6 කේන්දික පුවණතා මිනුමක් ලෙස මධානපය විගුහ කරයි.	සංඛ්‍යාත ව්‍යාප්තියක සමාන්තර මධ්‍යන්‍යයභරිත මධ්‍යන්‍යය	03
	5.7 කේන්දික පිහිටුම් මිනුම් අගයන් ඇසුරින් සංඛානත වනාප්තිය විවරණය කරයි.		04
	5.8 සංඛාහන වහාප්තියක් පිළිබඳ තීරණවලට එළඹීම සඳහා උචිත කේන්දික පුවණතා මිනුම් භාවිත කරයි.	• කේන්දික පුවණතා මිනුම්වල සාපේක්ෂ වැදගත්කම	04
	5.9 අපකිරණ මිනුම් භාවිතයෙන් සංඛාහත වාහාප්තියක විසිරීම විවරණය කරයි.	 විසිරීම පිළිබඳ මිනුම් විසිරීම පිළිබඳ මිනුම්වල වැදගත්කම විසිරීම පිළිබඳ පුවිධි පරාසය අර්ධ අන්තශ් චතුර්ථක පරාසය මධානා අපගමනය විචලතාව සම්මත අපගමනය සංයුක්ත දත්තවල මධානාය සංයුක්ත දත්තවල විචලතාවය Z ලකුණ 	08
	5.10 කුටිකතා මිනුම් ඇසුරින් වහාප්තියක හැඩය නිර්ණය කරයි.	කුටිකතා මිනුම්කාල් පියර්සන්ගේ කුටිකතා මිනුම්	02

5.0 ඉගැන්වීමේ කුමෝපාය

මෙම වැඩ මාලාවෙන් බලාපොරොත්තු වන පුතිඵලය ලබා ගැනීමේ කාර්යය පහසු කිරීම සඳහා සිසුන්ට ඉගැන්වීමේ විවිධ උපකුම යොදා ගත යුතු ය. සිසුන්ට ඔවුන්ගේ ගණිතමය විනැවුම වැඩි දියුණු කර ගැනීමට නම්, උදාහරණයක් ලෙස ඔවුන්ට, විවරණ, විසඳුම්, හේතු දැක්වීම ආදිය පිළිබඳ ව අනෙක් සිසුන් සමඟ සහ ගුරුභවතුන් සමඟ සාකච්ඡා කිරීමට අවස්ථා තිබිය යුතු ය. එසේ ම ඔවුන්ගේ අදහස් හුවමාරු කර ගැනීම ලිඛිත දෙයට පමණක් සීමා නොකොට වාචික ව ද රූප සටහන් භාවිතයෙන් ද සංඛාාත්මක ව ද සංකේත සහ වචන ආශිුත පුකාශ මගින් ද ඉදිරිපත් කිරීමට උනන්දු කරවිය යුතු ය.

සිසුනු කුම සමූහයකින් ඉගෙනුම ලබති. පුධාන වශයෙන් ශුවා, දෘශා සහ චල වින්දන ඇසුරෙන් ඉගෙනීම ලබන ඔවුනු ඇතැම් විට ඉන්දිය කිහිපයක් ම ඒ සඳහා යොදා ගනිති. ඉගෙනීමේ ආකාර පරාසය විවිධ සාධක මත නමා බවට පත් වේ. ඒ නිසා සුදුසු ම ඉගැන්වීමේ උපකුම තෝරා ගැනීමේ දී ඒ එක එකක් පිළිබඳ ව විමසිලිමත් විය යුතු ය. සිසුන් ගණිතය ඉගෙන ගන්නා ආකාර මත ඔවුන්ගේ සංස්කෘතික හා සමාජීය පසුබිම අර්ථවත් බලපෑමක් කරන බව පර්යේෂණවල දී පෙනී ගොස් තිබේ. මෙම වෙනස්කම් හඳුනාගෙන, සියලු ම සිසුන්ට තමාගේ ගණිත දැනුම සහ හැකියා වර්ධනය කර ගැනීමට සමාන අවස්ථා ලැබෙන ආකාරයට ඉගැන්වීමේ උපකුම යොදා ගත යුතු ය.

පත්තියකට සමස්තයක් ලෙස ඉගැන්වීමේ දී ලොකු කණ්ඩායමක් තුළ ඉගෙනීම සිදු විය හැකි අතර, කුඩා කණ්ඩායම් සිටින අවස්ථාවල සිසුන් එකිනෙකා අතර අනෙහානා ලෙස අදහස් හුවමාරු කර ගත හැකි ය. එසේ ම තනි තනි ව හෝ ගුරුවරයා සමඟ හෝ අදහස් හුවමාරු කර ගත හැකි ය. මේ සැම කිුයා පිළිවෙළක් ම ගණිත පත්ති කාමරය තුළ පැවතිය හැකි ය.

6.0 පාසල් පුතිපත්ති සහ වැඩසටහන්

සිසුන්ට අනුකූල ලෙස හා අර්ථාන්විත ලෙස ගණිතය ඉගෙන ගැනීමට නම් දැනුම සහ කුසලතා පමණක් වර්ධනය වන ආකාරයට පන්ති කාමර වැඩසටහන් පදනම් විය යුතු නොවේ. විනැවුම, සබැඳිය, තර්කනය සහ ගැටලු විසඳීම ආදී ක්ෂේතුවලින් ද ඒවා පෝෂණය විය යුතු වේ. මෙහි අගට සඳහන් කළ අරමුනු හතර තුළින් ළමයින්ගේ චින්තනයත් චර්යා කියාවලියත් සුරක්ෂිත ව වර්ධනය වනු ඇත.

මේ සඳහා සාමානා පන්ති කාමර ඉගැන්වීමට අමතර ව පහත සඳහන් කෙරෙන විෂයානුබද්ධ කියාකාරකම් තුළින් ද සෑම ශිෂයයාට ම ඉගෙනීමේ කියාවලියට සම්බන්ධ වීමට ඉඩ සැලසෙනු ඇත.

- සිසු අධායන කව
- ගණිත සමාජ
- ගණිත කඳවුරු
- තරඟ (දේශීය හා විදේශීය)
- පුස්තකාල භාවිතය
- පන්තිකාමර බිත්ති පුවත්
- ගණිතාගාර
- කාර්ය කාමර
- ගණිත ඉතිහාසයේ දත්ත රැස්කිරීම්
- බහු මාධා භාවිතය
- වහාපෘති

ලබා ගත හැකි පහසුකම් යොදා ගනිමින් ඉහත සඳහන් කිුයාකාරකම් සංවිධානය කිරීම ගණිත ගුරුවරයාගේ වගකීම ය. එසේ ම එම කිුයාකාරකම් සංවිධානය කිරීමේ දී සිසුන්ට සහ ගුරුවරයාට අදාළ වෙනත් ආයතන හා පුද්ගලයන්ගේ උපකාරය ද ලබා ගත හැකි ය.

විධිමත් පසුබිමක් සහිත ව මෙම කියාකාරකම් සංවිධානය කිරීම සඳහා එක් එක් පාසල, ගණිත විෂයයට අදාළ ලෙස ස්වකීය පුතිපත්ති විකසනය කර ගැනීම අතාවශා ය. එක් එක් පාසල මගින් විකසනය කර ගන්නා තම පාසල් පුතිපත්තිවල කොටසක් මෙය වන්නේ ය. ගණිතය සඳහා මෙම පුතිපත්ති විකසනය කර ගැනීමේ දී පාසලේ භෞතික පරිසරය හා වටපිටාව, පිළිබඳවත් පාසල් සිසුන්ගේ සහ පාසල අවට පුජාවගේ අවශාතා සහ චින්තන පිළිබඳවත් පාසලට සම්පත් ලබාගත හැකි ආයතන හා සේවා ලබා ගත හැකි සම්පත් පුද්ගලයින් පිළිබඳවත් සලකා බැලිය යුතු ය.

පාසලේ පුතිපත්ති නිෂ්ටා ළඟා කර ගැනීම සඳහා විවිධ කිුයාකාරකම් ඇතුළත් වාර්ෂික වැඩසටහන් පාසල විසින් සංවිධානය කර ගත යුතු ය. නියමිත වසරක් සඳහා කළ යුතු වැඩසටහන් තීරණය කිරීමේ දී පුමුඛත්වය පිළිබඳවත් සාධානා පිළිබඳවත් සාධානාව පිළිබඳවත් සම්පත් සංරෝධක පිළිබඳවත් විමසිලිමත් විය යුතු ය. කෙසේ වෙතත් විවිධ සිසුන්ගේ ඇල්ම සහ අභියෝගානා වර්ධනය කිරීම සඳහා සමත් වන ආකාරයේ කිුයාකාරකම් පෙළක් සංවිධානය කිරීමට පාසලට හැකිවනවා ඇත.

7.0 තක්සේරුව හා ඇගයීම

පාසල පදනම් කරගත් ඇගයීම් වැඩපිළිවෙල යටතේ එක් එක් වාරය සඳහා නියමිත නිපුණතා හා නිපුණතා මට්ටම් ආවරණය වන පරිදි ඉගෙනුම් ඉගැන්වීම් ඇගයීම් උපකරණ නිර්මාණාත්මකව පිළියෙල කොට කිුයාත්මක කිරීම අපේක්ෂිත ය.

13 වන ශේණිය අවසානයේ දී ජාතික මට්ටමේ ඇගයීම වන අ.පො.ස. (උසස් පෙළ) විභාගය සඳහා මෙම විෂය නිර්දේශය නිර්දේශිතය.

මෙම විෂය නිර්දේශය පදනම් කරගෙන ශීී ලංකා විභාග දෙපාර්තමේන්තුව මගින් පවත්වනු ලබන ජාතික මට්ටමේ විභාගය පළමුවරට 2011 වර්ෂයේ දී පැවැත්විණි.

මෙම විභාගයේ පුශ්න පතුවල ආකෘතිය හා ස්වභාවය පිළිබඳ අවශා විස්තර විභාග දෙපාර්තමේන්තුව මගින් සපයා ඇත.

8.0 අංකනය

පහත දැක්වෙන ගණිතමය අංකනය භාවිත කරනු ලැබේ.

1. කුලක අංකනය

- € අවයවයක් වෙයි
- ∉ අවයවයක් නොවෙයි
- $\{x_1,x_2,...\}$ $x_1,x_2,...$ අවයව සහිත කුලකය
- $\{x:...\}$... වන පරිදි සියලු ම x කුලකය
- $n(\mathbb{A})$ \mathbb{A} කුලකයෙහි අවයව සංඛාාව
- ϕ අභිශූතා කුලකය/හිස් කුලකය
- *E* සර්වතු කුලකය
- \mathbb{A}^{-1} \mathbb{A} කුලකයෙහි අනුපූරකය
- \square ධන නිඛල කුලකය සහ ශූනාය $\{0,1,2,...\}$
- \mathbb{Z} නිඛල කුලකය $\{0,\pm 1,\pm 2,\pm 3...\}$
- \mathbb{Z}^+ ධන නිඛිල කුලකය $\{1,2,3,...\}$
- 🛮 පරිමේය සංඛාන කුලකය
- \square $^+$ ධන පරිමේය සංඛාා කුලකය $\left\{x\in \square:x>0\right\}$
- $\square \ _0^+$ ධන පරිමේය සංඛාහ කුලකය සහ ශුනා $\left\{ x \in \square : x \geq 0 \right\}$
- \square තාත්ත්වික සංඛාා කුලකය $\{x \in \square : x > 0\}$
- ∏ + ධන තාත්ත්වික සංඛාන කුලකය
- \square_0^+ ධන තාත්ත්වික සංඛාා කුලකය සහ ශුනාය $\{x\in \square: x\geq 0\}$
- ⊓ " තාත්ත්වික ౫ යුණු

- 🛮 සංකීර්ණ සංඛාා කුලකය
- ⊆ හි උපකුලකයක්
- ⊂ හි නියම උපකුලකයකි
- ⊈ හි උපකුලකයක් නොවේ.
- ⊄ හි නියම උපකුලකයක් නොවේ.
- ∪ මේලය
- ∩ ජේදනය
- ig[a,big] $ig(x\in\square:a\le x\le big)$ සංවෘත පුාන්තරය
- $\left(a,b
 ight] \quad \left\{x \in \square : a < x \leq b
 ight\}$ පුාන්තරය
- $\begin{bmatrix} a,b \end{pmatrix}$ $\{x \in \square : a \le x < b\}$ පුාත්තරය
- $\left(a,b
 ight) \quad \left\{x \in \square : a < x < b
 ight\}$ විවෘත පුාන්තරය
- $y \mathbf{R} x$ \mathbf{R} සම්බන්ධයෙන් y යන්න xට සම්බන්ධ වෙයි
- $y \sqcup x$ y තුලා වේ xට, ඇතැම් තුලානා සම්බන්ධ සඳහා

2. මිශු සංකේත

- = සම
- ≠ නොසම
- ≡ සර්වසම වේ හෝ අංගසම වේ
- 🛪 අාසන්න වශයෙන් සම වේ
- 🗴 සමානුපාතික

3. ගණිත කර්ම

$$a+b$$
 a ධන b a සාංණ b $a \times b, ab, a.b$ a වරක් b $a \times b, \frac{a}{b}$ a ඉවදීම b $a:b$ a අනු b අනුපාතය $\sum_{1=i}^{n}a_{i}$ $a_{1}+a_{2}+...+a_{n}$

x හි වෘද්ධියක්

 δx

$$\frac{dy}{dx}$$

xවිෂයයෙන් ${\mathcal Y}$ හි වසුත්පන්නය

$$\frac{d^n y}{dx^n}$$

x විෂයයෙන් f(x) හි nවැනි වහුත්පන්නය

 $f^1(x), f^{11}(x), ..., f^{(n)}(x)$ x විෂයයෙන් f(x) හි පළමුවැනි, දෙවැනි... n වැනි වයුත්පන්නය

∫ ydx

 χ විෂයයෙන් ${\mathcal Y}$ හි අනිශ්චිත අනුකලය

 $\int_{a}^{b} y dx$

x විෂයයෙන් $\mathcal Y$ හි නිශ්චිත අනුකලය x හි a හා b

අගයන් අතර

* (xහි α හා b අගයන් අතර x විෂයයෙන් \mathcal{Y} හි නිශ්චිත අනුකලය)

 x,\ddot{x}

කාලය විෂයයෙන් පළමුවැනි, දෙවැනි.... වහුත්පන්න

* විකල්ප ලෙස මෙයින් එකක් තෝරා ගත යුතු යි.

5. සාතීය සහ ලසුගණක ශිුත

e පුකෘති ලඝුගණකවල පාදය

 e^x , exp x x හි ඝාතීය ශිතය

 $\log_a x$ a පාදයට x හි ලඝුගණකය

 $\ln x$ x පුකෘති ලසුගණකය

 $\lg x$ 10 පාදයට x හි ලඝුගණකය

6. වෘත්ත ශුිත

$$\begin{cases} \sin^{-1},\cos^{-1},\tan^{-1} \\ \cos ec^{-1},\sec^{-1},\cot^{-1} \end{cases}$$
 පුතිලෝම වෘත්ත ශීූත

7. සංකීර්ණ සංඛන

$$i$$
 -1 හි වර්ග මූලය $z = x + iy$

$$z$$
 සංකීර්ණ සංඛාහවක් $= r(\cos \theta + i \sin \theta), r \in \square_0^ = re^{i \theta}, r \in \square_0^-$

$$\operatorname{Re} Z$$
 වී හි තාත්ත්වික කොටස, $\operatorname{Re}(x+iy)=x$

$$\operatorname{Im} Z$$
 Z හි අතාත්ත්වික කොටස, $\operatorname{Im}(x+iy)=y$

$$|Z|$$
 Z හි මාපාංකය $\frac{|x+iy| = \sqrt{x^2 + y^2}}{|r(\cos\theta + i\sin\theta)| = r}$

$$\operatorname{arg} \mathbf{Z}$$
 වී විස්තාරය $\operatorname{arg} \big[r(\cos \theta + i \sin \theta) \big] = \theta$

ArgZ Z හි විස්තාරය
$$\operatorname{Arg} \left[r(\cos \theta + i \sin \theta) \right] = \theta;$$
 $-\pi < \theta < \pi$

$$\overline{Z}$$
 Z හි සංකීර්ණ පුතිබද්ධය $\overline{x+iy}=x-iy$

8. නනස

M	\mathbf{M}	නාහසය
M^{-1}	\mathbf{M}	සමචතුරසු නහාසයේ පුතිලෝමය
$\mathbf{M}^{\mathtt{T}}$	Μ	නාාසයේ පෙරළුම

සමචතුරසු නහාසයේ නිශ්චායකය

9. දෙශික

 $\det M$

<u>a</u>	$oldsymbol{lpha}$ ඉදෙශිකය
$\overline{\mathtt{AB}}$	AB දීෂ්ට රේඛා ඛණ්ඩය මඟින් විශාලත්වය හා
	දිශාව නිරූපණය කරන දෛශිකය
a	ලෛශිකයේ දිශාව ඇති ඒකක ලෛශිකය
<u>i</u> , <u>j</u> , <u>k</u>	කාටිසියානු ඛණ්ඩාංක අක්ෂවල දිශාවනට ඇති ඒකක
	<u>ෙ</u> දෙශික
<u> a </u>	$oldsymbol{lpha}$ හි විශාලත්වය
AB	AB හි විශාලත්වය
$a \cdot b$	lpha සහ b හි අදිශ ගුණිතය
$a \times b$	lpha සහ b හි ඉදෙශික ගුණිතය
[a,b,c]	lpha , b සහ c හි අදිශ තිුත්ව ගුණිතය
	$[a, b, c] = a \times b \cdot c$

10. සම්භාවිතාව හා සංඛහනය

A,B,C	අාදිය සිද්ධි
$\mathtt{A} \cup \mathtt{B}$	A සහ B සිද්ධිවල මේලය
$\mathbb{A} \cap \mathbb{B}$	A සහ B සිද්ධිවල ඡේදනය
P(A/B)	A සිද්ධියෙහි සම්භාවිතාව
A'	${f A}$ සිද්ධියෙහි අනුපූරකය, ' ${f A}$ නොවෙයි' යන
	සිද්ධිය
P(A/B)	${ m B}$ සිද්ධිය දී ඇති විට ${ m A}$ සිද්ධියෙහි සම්භාවිතාව
X,Y,R	සසම්භාවී විචලා
x, y, r	X,Y,R ආදී සසම්භාවී විචලාවල අගයන්
$x_1, x_2,$	නිරීක්ෂණ (නිරික්සුම්)
f_1, f_2, \dots	$x_1,x_2,$ නිරීක්ෂණ ඇති වීමේ සංඛානත
P(x)	විවික්ත සසම්භාවී විචලා වන $oldsymbol{\chi}$ හි සම්භාවිතා
	ශුිතය වන P (X=x) හි අගය
$\mathbb{P}_{\!1},\mathbb{P}_{\!2},\ldots$	විවික්ත සසම්භාවී විචලාය වන ${ m X}$ හි
	$x_1,x_2,$ යන අගයවල සම්භාවිතා
f(x).g(x)	සන්තත සසම්භාවී විචලාාය වන ${f X}$ හි සම්භාවිතා
	ඝනත්ව ශුිතයේ අගය
F(x).G(x)	සසම්භාවී (අහඹු) විචලෳය වන 🐰 හි (සමුච්චිත)
	වාාප්ත ශුිතය වන $p(x \le x)$ හි අගය
E(X)	සසම්භාවී (අහඹු) විචලෳය වන $oldsymbol{x}$ ඇවෙක්සුම
$\mathbb{E}[g(x)]$	හි ඇවෙක්සුම
var(x)	සසම්භාවී (අහඹු) විචලෳය වන x හි විචලතාව

G(t)නිඛිල අගයන් ගන්නා සසම්භාවී (අහඹු) විචලායක් සඳහා සම්භාවිත ජනන ශුිතයේ අගය B(n, p)ද්විපද වාාප්තිය, n සහ $\mathcal P$ පරාමිති පුමත වහාප්තිය, මධායනාය μ සහ σ^2 විචලතාව $N(\mu, \sigma^2)$ μ ජනගහන මධානාය σ^2 ජනගහන විචලානාව ජනගහන සම්මත අපගමනය σ නියැදි මධානාය \overline{x} නියැදියකින් වන ජනගහන විචලතාවෙහි අනභිනත (නොනැඹුරු) නිමානය $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$ N(0,1) වහාප්තිය සහිත පුමාණිකෘත පුමත φ විචලාය පිළිබඳ සම්භාවිතා ඝනත්ව ශිූතය