Chapter 8

Trust-region methods

Trust-region method

Problem. Let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a \mathbb{C}^1 function. To solve

$$\min_{x\in\mathbb{R}^n}f(x)$$

it is necessary to find out points (vectors) x^* such that $\nabla f(x^*) = 0$.

Strategy (Trust-region methods). The strategy is to start at a given vector $x_0 \in D$ and construct a sequence $\{x_k\}_{k\geq 0}$ where x_{k+1} is the exact solution of the problem

$$\min_{p \in \mathbb{R}^n} m_k(p) = f(x_k) + \nabla f(x_k) p + \frac{1}{2} p^T B_k p \quad \text{s.t. } ||p|| \le r_k \quad (1)$$

with B_k being some symmetric matrix. The disc Δ_k centred at x_k and having radius r_k is called the trust-region.

Trust-region method

Remark. If we use Taylor expansion at $x = x_k$, up to order two, we have that

$$f(x) \approx m_k(p) := f(x_k) + (\nabla f(x_k))^T p + \frac{1}{2} p^T Hf(x_k) p.$$

So, using $B_k = Hf(x_k)$ is a natural choice and the method is then called Newton trust-region method.

Lemma. Consider the above notation. If B_k is positive definite and $||B_k^{-1} \nabla f(x_k)|| \le r_k$ then the solution of (1) is given by

$$p_k = -B_k^{-1} \nabla f(x_k).$$

(The unconstrained minimum of the quadratic map)

Trust-region strategy/algorithm

Problem. Choosing the r_k .

Definition. Suppose we are in x_k . Suppose we are considering $r_k > 0$ to move forward. Let us define the following index

$$\rho_k := \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)}$$

where p_k is the solution of (1). The numerator is called actual reduction and the denominator is called predicted reduction.

Trust-region strategy/algorithm

Strategy.

- (a) If $\rho_k < 0$ we reject the iteration $x_{k+1} = x_k$ and we decrease the trust region $r_k/2$ (since $m_k(0) \ge m_k(p_k)$).
- (b) If $\rho_k \approx 1$ we accept the iteration $x_{k+1} = x_k + p_k$ and expand the trust region $2r_k$ (since $f \approx m_k$ in Δ_k)
 - We (pre)-fix a bound for the size of r_k and pre-(fix) a bound $(\mu = 1/4)$ to decide (a) and (b).

Solving (1)

Problem. To simplify notation we drop the k and x.

$$\min_{p \in \mathbb{R}^n} m(p) = f + (\nabla f)^T p + \frac{1}{2} p^T B p \quad \text{s.t. } ||p|| \le r \qquad (2)$$

Theorem. The vector p^* solves (4) if and only if p^* is feasible and there is a scalar $\lambda \geq 0$ such that the following is satisfied.

$$(B + \lambda \text{ Id}) p^* = -\nabla f(x),$$

$$\lambda (r - ||p^*||) = 0,$$

$$(B + \lambda \text{ Id}) \text{ is positive semidefinite.}$$
(3)

The Cauchy point (a way to approximate p^*)

Definition. The Cauchy point (for the step k of the process) is

$$p_k^C := \tau_k \hat{p}_k$$

where

(a)
$$\hat{p}_k := \arg\min_{p \in \mathbb{R}^n} f(x_k) + (\nabla f(x_k))^T p \quad \text{s.t } ||p|| \le r_k$$

(b)
$$\tau_k := \arg\min_{\tau>0} m_k \left(\tau_k \hat{p}_k\right) \quad \text{s.t } ||\tau \hat{p}_k|| \leq r_k$$

The Cauchy point (close formula)

Excercise. According to the definition (a) above we obtain

$$\hat{p}_{k} = -\frac{r_{k}}{\left|\left|\nabla f\left(x_{k}\right)\right.\right|} \nabla f\left(x_{k}\right).$$

Excercise (More challenging). According to the definition (b) above we obtain

$$\tau_{k} = \begin{cases} 1 & \text{if} \left(\nabla f\left(x_{k}\right)\right)^{T} B \nabla f\left(x_{k}\right) \leq 0\\ \min\{1, \hat{\tau}_{k}\} & \text{otherwise} \end{cases}$$

with

$$\hat{\tau}_k := \left| \left| \nabla f \left(x_k \right) \right| \right|^3 \frac{1}{r_k \left(\nabla f \left(x_k \right) \right)^T B_k \nabla f \left(x_k \right)}.$$

The Cauchy point: Illustration

Excercise. Draw (illustrate) the case $\tau_k = 1$.

Remark. A trust region method will be globally convergent if its steps p_k , $k \ge 0$, give a reduction in the model m_k that is at least δ -proportional ($\delta > 0$) to the one given by the Cauchy step.

Remark. Doing (just) Cauchy point at each step (is fine... but) is just implementing the steepest descent method with a particular choice of the step length.

Remark. It seems we might do better by considering methods for which the matrix B_k is more relevant in the choice of the optimal of the subproblem (1).

Remark. Assume B is positive definite. We drop the dependence on k and x.

$$\min_{p \in \mathbb{R}^n} m(p) = f + (\nabla f)^T p + \frac{1}{2} p^T B p \quad \text{s.t. } ||p|| \le r \qquad (4)$$

Remark 1. Let $p = -B^{-1} \nabla f$ the unconstrained minimizer of m(p) (B is positive definite). If it is feasible (that is, $||p|| \le r$) then the solution of (4) is precisely $p_B = -B^{-1} \nabla f$.

Remark 2. If r is small (at least comparable to p_B) then the might neglect the quadratic term (since (4) includes the restriction ||p|| < r). Hence $p^*(r) := -\left(\frac{r}{||\nabla f||}\right) \nabla f$. Of course this is a steepest descent method with a particular step-value.

Doglegs method. For small values of r we take the steepest descent method, that is, we follow $-\nabla f$ (the second order terms are not relevant). We do this up to

$$\alpha_0 = -\left(\frac{||\nabla f||^2}{\left(\nabla f\right)^T B \ \nabla f}\right) \qquad (p_0 := \alpha_0 \ \nabla f).$$

(The value α_0 correspond to the minimum of m(p) in the descent direction).

Doglegs method. The dogleg method chooses p to minimize the model function m(p) along the following path (instead of doing so through the exact path). See the figure above.

$$p(\tau) = \begin{cases} \tau p_0 & \text{if } 0 \le \tau \le 1\\ p_0 + (\tau - 1)(p_B - p_0) & \text{if } 1 \le \tau \le 2 \end{cases}$$

Lemma. Let B positive definite. Then, the real valued function $||p(\tau)||$ is increasing and $m(p(\tau))$ is a decreasing function.

Corollary. The path $p(\tau)$ crosses ||p|| = r exactly once if $||p_B|| \ge r$ and never otherwise. Moreover the dogleg point p is p_B if $||p_B|| \le r$ and the solution of $||p_0 + (\tau - 1)(p_B - p_0)|| = r^2$ otherwise.

Lemma. Let B positive definite. Then, the real valued function $||p(\tau)||$ is increasing and $m(p(\tau))$ is a decreasing function.

Proof. First we consider $\tau \in [0,1]$. Clearly $||p(\tau)|| = \tau ||p_0||$ is an increasing function of τ . Moreover we have that

$$\frac{d}{d\tau}m(p(\tau)) = (\tau - 1)\left(\frac{||\nabla f||^4}{\left(\nabla f\right)^TB\nabla f}\right) < 0,$$

so $m(p(\tau))$ is a decreasing function of τ .

Second we consider $\tau \in [1,2]$. Define

$$h_1(\alpha) = \frac{1}{2} ||p(1+\alpha)||^2$$
 and $h_2(\alpha) = m(p(1+\alpha))$

with $\alpha \in [0,1]$. Then the proof follows by showing that $h_1'(\alpha) \geq 0$ and $h_2'(\alpha) \leq 0$. We left the (non-trivial) details for the reader.

Fact. The global convergence of the trust-region methods (see above) depends on the approximate solution obtaining at least as much decrease in the model function m(p) as the Cauchy point does (or a fixed positive fraction of it).

Proposition (decrease of the Cauchy point) The Cauchy point $p_k^C := \tau_k \hat{p}_k$ (the definitions of τ_k and \hat{p}_k where given above) satisfies

$$m_k(0) - m(p_k^C) \ge \frac{1}{2} ||\nabla f(x_k)|| \min \left(r_k, \frac{||\nabla f(x_k)||}{||B_k||}\right).$$
 (5)

Proof. We drop the dependence on k and x. Remember that

$$\hat{p} = -\frac{r}{||\nabla f||} \nabla f.$$

and

$$au = egin{cases} 1 & ext{if} & \left(
abla f
ight)^{ au} B \
abla f \leq 0 \ ext{min} \left\{ 1, \hat{ au}
ight\} & ext{otherwise} \end{cases}$$

with

$$\hat{\tau} := ||\nabla f||^3 \frac{r}{\left(\nabla f\right)^T B \ \nabla f}.$$

Proof. We split the proofs in cases.

Case $(\nabla f)^T B \nabla f \leq 0$. We have

$$m(p^{C})-m(0)=m\left(-\frac{r\nabla f}{||\nabla f||}\right)-f=-r||\nabla f||+\frac{r^{2}}{2||\nabla f||^{2}}(\nabla f)^{T}B|\nabla f\leq -r||\nabla f||.$$

Case $(\nabla f)^T B \nabla f > 0$ and $||\nabla f||^3 \le r (\nabla f)^T B \nabla f$.

$$m(\rho^{C} := \hat{\tau}\hat{\rho}) - m(0) = -\frac{||\nabla f||^{4}}{(\nabla f)^{T}B |\nabla f|} + \frac{||\nabla f||^{4}}{2((\nabla f)^{T}B |\nabla f|)^{2}} = -\frac{||\nabla f||^{4}}{2((\nabla f)^{T}B |\nabla f|)}$$

$$\leq -\frac{||\nabla f||^{4}}{2||B||||\nabla f||^{2}} = -\frac{||\nabla f||^{2}}{2||B||}$$
(6)

Case $(\nabla f)^T B \nabla f > 0$ and $||\nabla f||^3 > r(\nabla f)^T B \nabla f$.

Theorem Let p_k be any vector such that $||p_k|| < r$. Assume also that

$$m_k(0) - m(p_k) \ge c_2 \left(m_k(0) - m(p_k^C) \right).$$

The p_k satisfies (5) with $c_1 = c_2/2$. In particular, if $p_k = p_k^*$ is the exact solution of (1), then it satisfies (5) with $c_1 = 1/2$.

Proof. Exercise.