1 System Theory

1.1 Nonlinear Systems

tim: Put here linearization formulae

1.2 Linear Systems

$$\begin{split} \dot{x}(t) &= A^{c}x(t) + B^{c}u(t) \\ y(t) &= C^{c}x(t) + D^{c}u(t) \\ x(t) &= e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}Bu(\tau)d\tau \\ e^{A^{c}t} &= \sum_{n=0}^{\infty} \frac{(A^{c}t)^{n}}{n!} \\ x_{k+N} &= A^{N}x_{k} + \sum_{i=0}^{N-1} A^{i}Bu_{k+N-1-i} \end{split}$$

1.3 Lyapunov Stability

we define a system to be stable in the sense of Lyapunov, if it stays in any arbitrarily small neighborhood of the origin when it is disturbed slightly

Lyapunov stable if for every $\epsilon > 0$ there exists a $\delta(\epsilon)$ such that

$$\operatorname{norm} x(0) < \delta(\epsilon) \to \operatorname{norm} x(k) < \epsilon, \forall k > 0$$

asymptotically stable in $\Omega \subseteq \mathbb{R}^n$ if it is Lyapunov stable and attractive $\lim_{k \to \infty} x(k) = 0, \forall x(0) \in \Omega$.

Lyapunov Function $V: \mathbb{R}^n \to \mathbb{R}$ must be continuous at the origin, finite $\forall x \in \Omega$ and:

$$V(0) = 0 \text{ and } V(x) > 0, \forall x \in \Omega \setminus \{0\}$$
$$V(g(x)) - V(x) < -\alpha(x), \forall x \in \Omega \setminus \{0\}$$

where $\alpha : \mathbb{R}^n \to \mathbb{R}$ is continuous positive definite, equilibrium at x = 0 and $\Omega \subset \mathbb{R}^n$ closed and bounded set containing the origin.

Lyapunov Theorem If a system admits Lyapunov function V(x), then x=0 is asymptotically stable in Ω (sufficient but not necessary) If additionally $\|x\| \to \infty \Rightarrow V(x) \to \infty$, then x=0 is globally asymptotically stable.

To check if $V(x) = x^T \boldsymbol{P} x$ is valid Lyapunov function of system $x_{k+1} = \boldsymbol{A} x_k$ check if $(\boldsymbol{A} \boldsymbol{P} \boldsymbol{A} - \boldsymbol{P})$ has neg. eigen values. In other words: Iff eigenvalues of A inside unit circle (i.e. stable) then $\exists unique \ \boldsymbol{P} > 0$ that solves $\boldsymbol{A}_{cl}^T \boldsymbol{P} \boldsymbol{A}_{cl} - \boldsymbol{P} = -\boldsymbol{Q}, \ \boldsymbol{Q} > 0$ and $V(x) = x^T \boldsymbol{P} x$ is a lyapunov function.

1.4 Discretization

Euler:
$$A = I + T_s A^c$$
, $B = T_s B^c$, $C = C^c$, $D = D^c$

$$x_{k+1} = x_k + T_s g^c(x_k, u_k) = g(x_k, u_k)$$

$$y_k = h^c(x_k, u_k) = h(x_k, u_k)$$

Exact: (assume constant u(t) during T_s)

$$A = e^{A^c T_s}, \ B = \int_0^{T_s} e^{A^c (T_s - \tau')} B^c d\tau$$
$$B = (A^c)^{-1} (A - I) B^c, \text{ if } A^c \text{ invertible}$$

1.5 Controllability (reachability) and observability

$$C = [B \ AB \dots A^{n-1}B]$$

$$O = [C^T \ (CA)^T \dots (CA^{n-1})^T]$$

2 Unconstrained Control

2.1 Block Approach (used also for \bar{w} substition)

$$\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} I \\ A \\ \vdots \\ A^N \end{bmatrix} x(0) + \begin{bmatrix} 0 & 0 & \dots & 0 \\ B & 0 & \dots & 0 \\ AB & B & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ A^{N-1}B & \dots & AB & B \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N_1} \end{bmatrix}$$

$$x = S^{x} \cdot x(0) + S^{u} \cdot u \quad \text{size}(S^{x}) = [n_{\text{states}} \cdot (N+1), N]$$

$$\text{size}(S^{u}) = [n_{\text{states}} \cdot (N+1), n_{\text{states}}]$$

$$\bar{Q} = \text{diag}(Q, \dots, Q, P) \quad \text{size}(\bar{Q}) = [n_{\text{states}} \cdot (N+1), n_{\text{states}} \cdot (N+1)]$$

$$\bar{R} = \text{diag}(R, \dots, R) \quad \text{size}(\bar{R}) = [n_{\text{input}} \cdot N, n_{\text{input}} \cdot N]$$

$$H = S^{uT} \bar{Q} S^{u} + R \quad F = S^{xT} \bar{Q} S^{u}$$

$$Y = S^{xT} \bar{Q} S^{x}$$

Optimal cost and control

$$J^{*}(x_{0}) = -x_{0}^{T} F H F^{T} x_{0} + x_{0}^{T} Y x_{0}$$
$$u^{*}(x_{0}) = -H^{-1} F^{T} x_{0} = -\left(S^{uT} \bar{Q} S^{u} + R\right)^{-1} S^{uT} \bar{Q} S^{x} x_{0}$$

2.2 Recursive Approach

$$J_k^*(x_k) = \min_{u_k} I(x_k, u_k) + J_{k+1}(x_{k+1})$$

Is a feedback controller as opposed to the Batch Approach. For LQR solve via Riccati Difference Equation (RDE).

$$F_k = -(B^T P_{k+1} B + R)^{-1} B^T P_{k+1} A$$

$$P_k = A^T P_{k+1} A + Q - A^T P_{k+1} B (B^T P_{k+1} B + R)^{-1} B^T P_{k+1} A$$

$$u_k^* = \mathbf{F}_k \ x_k \qquad J_k^*(x_k) = x_k^T \mathbf{P}_k \ x_k \qquad \mathbf{P}_N = \mathbf{P}$$

For unconstrained Infinite Horizon Problem, substituting $P_{\infty} = P_k = P_{k+1}$ into RDE gives DARE. Uniquely solvable, iff (A,B) stabilizable and (A,G) detectable, where $GG^T = Q$. Follows from closed-loop system $x_{k+1} = (A + BF_k)x_k$

3 (Convex) Optimization

General Problem $\min_{x \in \text{dom}(f)} f(x)$ s. t. $g_i(x) \leq 0$ and $h_j(x) = 0$.

Norm $f(x): \mathbb{R}^n \to \mathbb{R}$

$$f(x) = 0 \Rightarrow x = 0, \qquad f(x) \ge 0$$

$$f(\alpha \cdot x) = |\alpha| \cdot f(x) \qquad \text{for scalar } \alpha$$

$$f(x+y) \le f(x) + f(y) \qquad \forall x, y \in \mathbb{R}^n$$

3.1 Convexity

Convex set \mathcal{X} iff $\forall \lambda \in [0,1] \forall x,y \in \mathcal{X} \ \lambda x + (1-\lambda)y \in \mathcal{X}$. Intersection preserves convexity, union does not.

Affine set $\mathcal{X} = \{x \in \mathbb{R}^n | \mathbf{A}x = b\}$ for some \mathbf{A}, b

Subspace is affine set through origin, i.e. b = 0, aka Nullspace of A.

Hyperplane $\mathcal{X} = \{x \in \mathbb{R}^n | a^T x = b\}$ for some a, b.

Halfspace $\mathcal{X} = \{x \in \mathbb{R}^n | a^T x \leq b\}$ for some a, b.

Polyhedron $\mathcal{P} = \{x | a_i^T x \leq b_i, i = 1, \dots, n\} = \{x | \mathbf{A}x \leq b\}$

Cone \mathcal{X} if for all $x \in \mathcal{X}$, and for all $\theta > 0$, $\theta x \in \mathcal{X}$.

Ellipsoid $\mathcal{E} = \{x | (x - x_c)^T \mathbf{A}^{-1} (x - x_c) \le 1\}, x_c \text{ center point.}$

Convex function $f: \operatorname{dom}(f) \to \mathbb{R}$ is convex iff $\operatorname{dom}(f)$ is convex and $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y), \forall \lambda \in (0, 1), \forall x, y \in \operatorname{dom}(f)$.

Norm ball is convex (for all norms).

Level set L_a of a function f for value a is the set of all $x \in \text{dom}(f)$ for which f(x) = a: $L_a = \{x | x \in \text{dom}(f), f(x) = a\}$.

Sublevel set C_a is defined by $C_a = \{x | x \in \text{dom}(f), f(x) \le a\}.$

3.2 Linear Programming (LP)

Problem statement $\min c^T x$ such that $Gx \leq h$ and Ax = b.

Norm
$$l_{\infty} \quad \min_{x} \|x\|_{\infty} = \min_{x \in \mathbb{R}^n} \left[\max\{x, \dots, x_n, -x_1, \dots, -x_n\} \right]$$
:
$$\min_{x,t} t \quad \text{subject to} \quad x_i \leq t, -x_i \leq t, \qquad \mathbf{\textit{F}} x \leq g$$

$$\iff \min_{x,t} t \quad \text{subject to} \quad -\mathbf{1} t \leq x \leq \mathbf{1} t, \qquad \mathbf{\textit{F}}_x \leq g.$$

Norm
$$l_1 \quad \min_x \|x\|_1 = \min_x \left[\sum_{i=1}^m \max\{x_i, -x_i\}\right]$$
:
$$\min_t t_1 + \dots + t_m \quad \text{subject to} \quad x_i \le t_i, -x_i \le t_i, \quad \mathbf{\textit{F}} x \le g$$

$$\iff \min_t \mathbf{1}^T t \quad \text{subject to} \quad -t \le x \le t, \quad \mathbf{\textit{F}}_x \le g.$$

Note that for dim x=1, l_1 and l_{∞} are the same. Note also that t is scalar for norm l_{∞} and a vector in norm l_1 .

Piecewise Affine

$$\min_{x} \left[\max_{i=1,\dots,m} \{ c_i^T x + d_i \} \right] \quad \text{s.t. } \mathbf{G} x \le h$$

$$\iff \min_{x,t} t \quad \text{s.t. } c_i^T x + d_i \le t, \mathbf{G} x \le h$$

3.3 Duality

Lagrangian Dual Function

$$\begin{split} L(x,\lambda,\nu) &= f(x) + \sum_{i=1}^m \lambda_i g_i(x) + \sum_{i=1}^p \nu_i h_i(x) \\ d(\lambda,\nu) &= \inf_{x \in \mathcal{X}} L(x,\lambda,\nu) \quad \text{i.e. } \nabla_x L(x,\lambda,\nu) = 0 \end{split}$$

Dual Problem (always convex) $\max_{\lambda,\nu} d(\lambda,\nu)$ s. t. $\lambda \geq 0$. Optimal value is lower bound for primal: $d^* \leq p^*$.

If primal convex, Slater condition (strict feasibility) implies strong duality: $\{x \mid Ax = b, f_i(x) < 0, \} \neq \emptyset \Rightarrow d^* = p^*$

Karush-Kuhn-Tucker (KKT) Conditions are necessary for optimality (and sufficient if primal convex).

Primal Feasability
$$f_i(x^*) \leq 0 \qquad i = 1, \dots, m$$

$$h_i(x^*) = 0 \qquad i = 1, \dots, p$$
 Dual Feasability
$$\lambda^* \geq 0$$
 Complementary slackness
$$\lambda_i^* \cdot f_i(x^*) = 0 \qquad i = 1, \dots, m$$
 Stationarity
$$\nabla_x L(x^*, \lambda^*, \nu^*) = 0$$

Dual of LP

$$\min_{x} c^{T} x \quad \text{s.t. } \boldsymbol{A} x = b, \boldsymbol{C} x \leq e$$

$$\iff \max_{\lambda, \nu} -b^{T} \nu - e^{T} \lambda \quad \text{s.t. } A^{T} \nu + C^{T} \lambda + c = 0, \lambda \geq 0$$

Dual of QP

$$\min_{x} \frac{1}{2} x^{T} \mathbf{Q} x + c^{T} x \quad \text{s.t. } \mathbf{C} x \le e$$

$$\iff \min_{\lambda, \nu} \frac{1}{2} \lambda^{T} \mathbf{C} \mathbf{Q}^{-1} \mathbf{C}^{T} \lambda + (\mathbf{C} \mathbf{Q}^{-1} c + e)^{T} \lambda + \frac{1}{2} c^{T} \mathbf{Q}^{-1} c$$

$$\text{s.t. } \mathbf{Q} x + \nu + c^{T} \lambda = 0, \lambda \ge 0$$

4 Constrained Finite Time Optimal Control (CFTOC)

4.1 MPC with linear cost

$$J(x_0, u) = \|Px_N\|_p + \sum_{i=0}^{N-1} \|Qx_i\|_p + \|Ru_i\|_p.$$

tim: Insert here slide 45, lect 4 $l_a l \infty$??

tim: what is n, k, m?

$$\min_{z} \epsilon_{0}^{x} + \dots + \epsilon_{N}^{x} + \epsilon_{0}^{u} + \dots + \epsilon_{N-1}^{u}$$
s.t.
$$-I_{n} \epsilon_{i}^{x} \leq \pm Q \left[\mathbf{A}^{i} x_{0} + \sum_{j=0}^{i-1} \mathbf{A}^{j} \mathbf{B} u_{i-1-j} \right]$$

$$-I_{k} \epsilon_{N}^{x} \leq \pm P \left[\mathbf{A}^{N} x_{0} + \sum_{j=0}^{N-1} \mathbf{A}^{j} \mathbf{B} u_{N-1-j} \right]$$

$$-I_{m} \epsilon_{N}^{u} \leq \pm \mathbf{R} u_{i}$$

$$x_{i} = \mathbf{A}^{i} x_{0} + \sum_{j=0}^{i-1} \mathbf{A}^{j} \mathbf{B} u_{i-1-j} \in \mathcal{X}$$

$$x_{N} = \mathbf{A}^{N} x_{0} + \sum_{j=1}^{N-1} \mathbf{A}^{j} \mathbf{B} u_{N-1-j} \in \mathcal{X}$$

$$u_{i} \in \mathcal{U}$$

Bring into LP form:

$$\begin{aligned} & \min_{z} \, c^T z \quad \text{s.t. } \bar{\boldsymbol{G}} z \leq \bar{\boldsymbol{w}} + \bar{\boldsymbol{s}} x(k) \\ & c = \begin{bmatrix} 1 & \dots & 1 & 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} \\ & z = \begin{bmatrix} \epsilon_0^x & \dots & \epsilon_N^x & \epsilon_0^u & \dots & \epsilon_{N-1}^u \end{bmatrix} \\ & \bar{\boldsymbol{G}} = \begin{bmatrix} \boldsymbol{G}_{\epsilon} & ?? \\ 0 & ?? \end{bmatrix}, \quad \bar{\boldsymbol{w}} = \begin{bmatrix} w_{\epsilon} \\ w \end{bmatrix} \\ & \bar{\boldsymbol{s}} = \begin{bmatrix} s_{\epsilon} \\ s \end{bmatrix} \end{aligned}$$

4.2 QP with substitution (see also Batch approach)

$$J^*(x_k) = \min_{u} \begin{bmatrix} u^T & x_k^T \end{bmatrix} \begin{bmatrix} \boldsymbol{H} & \boldsymbol{F}^T \\ \boldsymbol{F} & \boldsymbol{Y} \end{bmatrix} \begin{bmatrix} u \\ x_k \end{bmatrix}$$
s. t. $\boldsymbol{G} \ u \le w + \boldsymbol{E} \ x_k$

Latter gives three sets (same for without substitution)

$$\mathcal{X} = \{x | A_x \ x \le b_x\}$$

$$\mathcal{U} = \{u | A_u \ u \le b_u\}$$

$$\mathcal{X}_f = \{x | A_f \ x \le b_f\}$$

State equations are in cost matrix, usually

$$A_{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, b_{x} = \begin{bmatrix} b_{\text{max}} \\ -b_{\text{min}} \end{bmatrix}$$

$$G = \begin{bmatrix} A_{u} & 0 & \cdots & 0 \\ 0 & A_{u} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{u} \\ 0 & 0 & \cdots & 0 \\ A_{x}B & 0 & \cdots & 0 \\ A_{x}AB & A_{x}B & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{x}A^{N-2}B & A_{x}A^{N-3}B & \cdots & 0 \end{bmatrix} \quad E = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_{x} \\ -A_{x}A \\ -A_{x}A^{2} \\ \vdots \\ -A_{x}A^{N-1} \end{bmatrix} \quad W = \begin{bmatrix} b_{u} \\ b_{u} \\ \vdots \\ b_{u} \\ b_{x} \\ b_{x} \\ b_{x} \\ \vdots \\ b_{x} \end{bmatrix}$$

4.3 QP without substitution

 $\bar{H} = \operatorname{diag}(Q, \ldots, Q, P, R, \ldots, R)$

State equations represented in equality constraints (k fixed, usually k = 0).

$$J^*(x_k) = \min_{z} \begin{bmatrix} z^T & x_k^T \end{bmatrix} \begin{bmatrix} \bar{\boldsymbol{H}} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{Q} \end{bmatrix} \begin{bmatrix} z \\ x_k \end{bmatrix}$$
s.t. $\boldsymbol{G} \ z \le w + \boldsymbol{E} \ x_k$
$$\boldsymbol{G}_{\text{eq}} \ z = \boldsymbol{E}_{\text{eq}} \ x_k, \quad \text{system dynamics}$$

$$z = \begin{bmatrix} x_1 \\ x_N \\ u_0 \\ \vdots \\ u_{N-1} \end{bmatrix} \qquad G_{eq} = \begin{bmatrix} I & & & -B \\ -A & I & & -B \\ & -A & I \end{bmatrix} \qquad E_{eq} = \begin{bmatrix} A \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$w = \begin{bmatrix} b_x \\ \vdots \\ b_f \\ b_u \\ \vdots \\ b_u \end{bmatrix} \qquad G = \begin{bmatrix} A_x & & & & \\ & A_x & & & \\ & & A_x \end{bmatrix} \qquad E = \begin{bmatrix} -A^T_x \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

4.4 Invariance

Def.: $x(k) \in O \Rightarrow x(k+1) \in O \forall k$.

$$\operatorname{pre}(S) := \{x | g(x) \in S\} \qquad = \{x | Ax \in S\}$$

Max invariant set calculation: $\Omega_{i+1} \leftarrow \operatorname{pre}(\Omega_i) \cap \Omega_i$, terminating when $\Omega_{i+1} = \Omega_i$.

tim: We need more here, pos. inv. set, max. pos.inv O_{∞}

4.5 Stability and Feasability

Main Idea: Choose \mathcal{X}_f and \boldsymbol{P} to mimic infinite horizon. LQR control law $\kappa(x) = \boldsymbol{F}_{\infty} x$ from solving DARE. Set terminal weight $\boldsymbol{P} = \boldsymbol{P}_{\infty}$, terminal set \mathcal{X}_f as maximal invariant set:

$$x_{k+1} = \mathbf{A}x_k + \mathbf{B}\mathbf{F}_{\infty} \ x_k \in \mathcal{X}_f \quad \forall x_k \in \mathcal{X}_f \text{ terminal set invariant}$$

 $\mathcal{X}_f \subseteq \mathcal{X}, \quad \mathbf{F}_{\infty} \ x_k \in \mathcal{U} \quad \forall x_k \in \mathcal{X}_f \text{ constrainst satisfied}$

We get: 1. Positive stage cost function, 2. invariant terminal set by construction, 3. Terminal cost is Lyapunov function with

$$x_{k+1}^T \mathbf{P} x_{k+1} - x_k^T \mathbf{P} x_k = -x_k^T (\mathbf{Q} + \mathbf{F}_{\infty}^T \mathbf{R} \mathbf{F}_{\infty}) x_k$$

Extension to non-linear (time-invariant) MPC possible since terminal set and cost do not rely on linearity.

5.1 MPC for tracking

Target steady-state conditions $x_s = Ax_s + Bu_s$ and $y_s = Cx_s = r$ and constraints give:

$$\min_{x_s,u_s} u_s^T \boldsymbol{R} u_s \text{ subj. to } \begin{bmatrix} \boldsymbol{I} - \boldsymbol{A} & -\boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{0} \\ r \end{bmatrix}, x_s \in \mathcal{X}, u_s \in \mathcal{U}$$

Usually assume x_s, u_s unique and feasible. If no solution exists, compute closest steady-state $\min(\mathbf{C}x_s - r)^T \mathbf{Q}(\mathbf{C}x_s - r)$ s. t. $x_s = \mathbf{A}x_s + \mathbf{B}u_s$.

MPC problem to drive $y \to r$ is:

$$\min_{u} \lVert y_{N} - Cx_{s} \rVert_{P_{y}}^{2} + \sum_{i=0}^{N-1} \lVert y_{i} - Cx_{s} \rVert_{Q_{y}}^{2} + \lVert u_{i} - u_{s} \rVert_{R}^{2}$$

5.2 Delta formulation

Reference r, $\Delta x_k = x_k - x_s$, $\Delta u_k = u_k - u_s$:

$$\min V_f(\Delta x_N) + \sum_{i=0}^{N-1} \Delta x_i^T \mathbf{Q} \Delta x_i + \Delta u_i^T \mathbf{R} \Delta u_i$$

s.t.
$$\Delta x_0 = \Delta x_k$$

$$\Delta x_{k+1} = \mathbf{A} \Delta x_k + \mathbf{B} \Delta u_k$$

$$\boldsymbol{H}_x x \leq k_x \Rightarrow \boldsymbol{H}_x \Delta x \leq k_x - \boldsymbol{H}_x x_s$$

$$H_u u \le k_u \Rightarrow H_u \Delta u \le k_u - H_u u_s$$

 $\Delta x_N \in \mathcal{X}_f$ adjusted accordingly, shift (and scaled)

$$x_s \oplus \mathcal{X}_f \subseteq \mathcal{X}$$

$$\mathbf{K}\Delta x + u_s \in \mathcal{U}$$

Control given by $u_0^* = \Delta u_0^* + u_s$.

5.3 Offset free tracking

$$\begin{aligned} x_{k+1} &= \boldsymbol{A} x_k + \boldsymbol{B} u_k + \boldsymbol{B}_d d_k \\ d_{k+1} &= d_k \\ y_k &= \boldsymbol{C} x_k + \boldsymbol{C}_d d_k \end{aligned}$$

$$\begin{bmatrix} \boldsymbol{I} - \boldsymbol{A} & -\boldsymbol{B} \\ \boldsymbol{C} & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} \boldsymbol{B}_d \hat{d} \\ r - \boldsymbol{C}_d \hat{d} \end{bmatrix}$$

Choice of B_d , C_d requires that (A, C) is observable and $\begin{bmatrix} A - I & B_d \end{bmatrix}$, and A = C

$$\begin{bmatrix} \boldsymbol{A} - \boldsymbol{I} & \boldsymbol{B}_d \\ \boldsymbol{C} & \boldsymbol{C}_d \end{bmatrix} \text{ has full } (n_x + n_d) \text{ column frank (i.e. } \det \neq 0).$$

Intuition: for fixed y_s at steady-state, d_s is uniquely determined. If plant has no integrator we can choose $\mathbf{B}_d = \mathbf{0}$ since $\det(\mathbf{A} - \mathbf{I}) \neq 0$.

$$\begin{bmatrix} \hat{x}_{k+1} \\ \hat{d}_{k+1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B}_d \\ \boldsymbol{0} & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \hat{x}_k \\ \hat{d}_k \end{bmatrix} + \begin{bmatrix} \boldsymbol{B} \\ \boldsymbol{0} \end{bmatrix} u_k + \begin{bmatrix} \boldsymbol{L}_x \\ \boldsymbol{L}_d \end{bmatrix} \left(-y_k^m + \boldsymbol{C}\hat{x}_k + \boldsymbol{C}_d\hat{d}_k \right)$$

where y_k^m measured output; choose $\begin{bmatrix} L_x \\ L_d \end{bmatrix}$ s.t. error dynamics stable and converge to zero.

tim: Target condition here

If 1) number of dist. = number of outputs, 2) target steady-state problem feasible and no constraints active at steady-state, 3) closed-loop system converges, then target achieved without offset.

5.4 Soft-constraints via slack variables

$$\min_{x} f(z) + l_{\epsilon}(\epsilon)$$
 s.t. $g(z) \le \epsilon, \epsilon \ge 0$

Requirement: Softened problem has same minimiser as original problem if feasible.

Quadratic error function $l_{\epsilon}(\epsilon) = v\epsilon + w\epsilon^2$, w > 0 gives smoothness, choose $v > \lambda^* \ge 0$ for exact penalty (above requirement fulfilled).

Move Blocking main idea to set a number of inputs as the same, $u_2 = u_3 = \cdots = u_N$, to reduce computational burden, at the slight cost of sub-optimality.

6 Robust MPC

Enforcing terminal constraints by robust invariance:

$$x \in O^{\mathcal{W}} \Rightarrow g(x, w) \in \Omega^{W} \ \forall w \in \mathcal{W}$$

$$\operatorname{pre}^{\mathcal{W}}(\Omega) = \{x | g(x, w) \in \Omega \ \forall w \in \mathcal{W}\}$$

Enforcing sequential constraints for uncertain system ϕ :

$$\phi_i(x_0, u, w) = \left\{ x_i + \sum_{j=0}^{i-1} \mathbf{A}^j w_j \middle| w \in \mathcal{W}^i \right\} \subseteq \mathcal{X}$$
$$\phi_N(x_0, u, w) \in \mathcal{X}_f \quad \text{as well}$$

The uncertain system evolves with the summation of all the disturbances up to time *i*, hence we have to restrict the open-loop (determine control before disturbance is measured):

$$A_x x \leq b_x \text{ becomes } A_x x_i + A_x \sum_{j=0}^{i-1} A^j w_k \leq b_x :$$

$$x_i \in \mathcal{X} \ominus \left(\mathcal{W} \oplus A \mathcal{W} \oplus \cdots \oplus A^{i-1} \mathcal{W} \right)$$

$$= \left(\bigoplus_{j=0}^{i-1} A^j \mathcal{W} \right) = \begin{bmatrix} A^0 & \cdots & A^{i-1} \end{bmatrix} \mathcal{W}^i$$

For example: Robust invariant set calculation of $x_{k+1} = 0.5x_k + w_k$ under $-10 \le x \le 10$ and $-1 \le w \le 1$.

$$\Omega_0 = [-10, 10]$$

$$\operatorname{pre}^{\mathcal{W}}(\Omega_0) = \{x | -10 \le 0.5x + w \le 10 \text{ for } -1 \le w \le 1\}$$

$$= \{x | -20 - 2w \le x \le 20 + 2w \text{ for } -1 \le w \le 1\}$$

$$= \{x | -18 \le x \le 18\}$$

$$\Omega_1 = [-10, 10] \cap [-18, 18] = [-10, 10] = \mathcal{O}_{\infty}^{\mathcal{W}}$$

For example: Terminal set calculation of $x_{k+1}=w_k,\,-1\leq w\leq 1,$ N= 2:

$$\mathcal{X}_f^{\mathcal{W}} = \mathcal{X}_f \ominus \left(\bigoplus_{j=0}^1 \mathbf{A}^j \mathcal{W} \right) = \mathcal{X}_f \ominus 2\mathcal{W} = [-10, 10] \ominus [-2, 2] = [-8, 8]$$

Tube-MPC We want nominal system $z_k = Az_k + Bv_k$ with "tracking" controller $u_k = K(x_k - z_k) + v_k$ i.e. closed-loop, K found

Step 1: Compute the minimal robust invariant set $\mathcal{E}=\bigoplus_{j=1}^\infty A^j_{cl}\mathcal{W}$. Step 2: Shrink Constraints:

$$\begin{aligned} \{z_i\} \oplus \mathcal{E} \subseteq \mathcal{X} & \Rightarrow \{z_i\} \in \mathcal{X} \ominus \mathcal{E} \\ u_i \in \mathbf{K}\mathcal{E} \oplus \{v_i\} \subset \mathbf{U} & \Rightarrow \{v_i\} \in \mathcal{U} \ominus \mathbf{K}\mathcal{E} \\ z_n \in \mathcal{X}_f \ominus \mathcal{E} & \end{aligned}$$

Also check that the set \mathcal{X}_f is invariant for the nominal system with tightened constraints: $(A+BK)\mathcal{X}_f\subseteq\mathcal{X}_f$, and that it satisfies the constraints: $\mathcal{X}_f\subseteq\mathcal{X}\ominus\mathcal{E}$ and $K\mathcal{X}_f\subseteq\mathcal{U}\ominus K\mathcal{E}$.

7 Explicit MPC

 $z^*(x_k)$ is continuous and polyhedral piecewise affine over feasible set.

7.1 Quadratic Cost

 $J^*(x_k)$ is continuous, convex and polyhedral piecewise quadratic. Using the formulation with substitution,

$$\begin{split} J(x_k) &= \min \, z^T H z - x_k^T (Y - F H^{-1} F^T) x_k \\ \text{s.t.} \quad Gz &\leq w + S x_k \\ z(x_k) &= U + H^{-1} F^T x_k \\ S &= E + G H^{-1} F^T \\ U^* &= z^* (x_k) - H^{-1} F^T x_k \end{split}$$

The first solution gives $u^*(x_k) = \kappa(x_k)$, which is continuous and piecewise affine on polyhedra $\kappa(x) = F_i x + g_i$.

7.2 $1/\infty$ -norm

 $J^*(x_k)$ is continuous, convex and polyhedral piecewise affine. Optimal solution: $u_0^* = \begin{bmatrix} 0 & \dots & 0 & I_m & 0 & \dots & 0 \end{bmatrix} z^*(x_k)$, and is in the same form as the QP case above.

8 Hybrid MPC

8.1 Piecewise Affine (PWA) Systems

Affine dynamics and output for each region:

$$\begin{cases} x_{k+1} &= A^i x_k + B^i u_k + f^i \\ y_k &= C^i x_k + D^i u_k + g_i \end{cases} \text{ if } x_t \in \mathcal{X}_j$$

Polyhedral partition of the (x, u)-space:

$$\{\mathcal{X}_i\}_{i=1}^s = \{x, u | H_j x + J_j u \le K_j\}$$

8.2 Mixed Logical Dynamical Hybrid Model (MLD)

Idea: associate boolean to binary: $p_j \iff \delta_i = 1, \neg p_j \iff \delta_i = 0.$

8.2.1 Translate logic rules to Linear Integer Inequalities

AND	$p_1 \wedge p_2$	$\delta_1 \ge 1, \delta_1 \ge 1$ also $\delta_1 + \delta_2 \ge 2$
OR	$p_1 \vee p_2$	$\delta_1 + \delta_2 \ge 1$
NOT	$\neg p_1$	$1 - \delta_1 \ge 1$ also $\delta_1 = 0$
XOR	$p_1 + p_2$	$\delta_1 + \delta_2 = 1$
IMPLY	$p_1 o p_2$	$\delta_1 - \delta_2 \le 0$
IFF	$p_1 \leftrightarrow p_2$	$\delta_1 - \delta_2 = 0$
ASSIGNMENT	$p_3 \leftrightarrow p_1 \wedge p_2$	$\delta_1 + (1 - \delta_3) \ge 1,$
		$\delta_2 + (1 - \delta_3) \ge 1,$
		$(1 - \delta_1) + (1 - \delta_2) + \delta_3 \ge 1$
CNF-Clause	$\neg p_1 \lor \neg p_2 \lor p_3$	$\delta_1 + \delta_2 + \delta_3 \le 1$

Logic Equality Rules

$$\neg (A \land B) = \neg A \lor \neg B$$
$$A \land (B \lor C) = (A \land B) \lor (A \land C)$$
$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

8.2.2 Translate continuous and logical components into Linear Mixed-Integer Relations

Event generator: $\delta_e(k) = f_{EG}(x_c(k), u_c(k), t)$. Consider: $p \Leftrightarrow a^T x \leq b, \mathcal{X} = \{x | a^T x - b \in [m, M]\}$. Translated to linear inequalities: $m\delta < a^T x - b \leq M(1 - \delta)$, where [m, M] are lower and upper bounds.

Representing Switched Affine Dynamics as "IF-THEN-ELSE" relations

IF p THEN $z_k = a_1^T x_k + b_1$ else $z_k = a_2^T x_k + b_2 \Leftrightarrow$

$$(m_2 - M_1)\delta + z_k \le a_2^T x_k + b_2 \le -(m_1 - M_2)\delta + z_k$$

$$(m_1 - M_2)(1 - \delta) + z_k \le a_1^T x_k + b_1 \le -(m_1 - M_2)(1 - \delta) + z_k$$

This results in a linear MLD model

$$\begin{aligned} x_{k+1} &= Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k \\ y_k &= Cx_k + D_1 u_k + D_2 \delta_k + D_3 z_k \\ E_2 \delta_k + E_3 z_k &\leq E_4 x_k + E_1 u_k + E_5 \end{aligned}$$

where the last equation describes the relationship between the continuous and integer variables. Physical constraints on cont.

variables:
$$\{\mathcal{C}\} = \left\{ \begin{bmatrix} x_c \\ u_c \end{bmatrix} \in \mathcal{R}^{n_c + m_c} | Fx_c + Gu_c \le H \right\}$$

8.3 CFTOC for Hybrid Systems

$$J^*(x) = \min_{U} l_N(x_N) + \sum_{k=0}^{N-1} l(x_k, u_k, \delta_k, z_k)$$
s.t $x_{k+1} = Ax_k + B_1 u_k + B_2 \delta_k + B_3 z_k$

$$E_2 \delta_k + E_3 z_k \le E_4 x_k + E_1 u_k + E_5$$

$$x_N \in \mathcal{X}_f, x_0 = x(0)$$

8.4 MILP/QP

$$\begin{aligned} & \text{min} & c_c z_c + c_b z_b + d & \text{OR} & zHz + qz + d \\ & \text{s.t.} & G_c z_c + G_b z_b \leq W \\ & z_c \in R^{s_c}, z_b \in \{0,1\}^{s_b} \end{aligned}$$

Branch and bound method can be used to efficiently solve the problem. Explict solution is a time varying fb law for both problems: $u_k^*(x_k) = F_k^j x_k + G_k^j$ if $x_k \in \mathcal{R}_k^j$.

9 Numerical Optimization - Iterative Methods

9.1 Gradient descent

$$x_{i+1} = x_i - h_i \nabla f(x_i)$$
 with step-size $h_i = \frac{1}{L}$ for L-smooth $f(x)$:

$$\exists L : \|\nabla f(x) - \nabla f(y)\| \le L\|x - y\| \ \forall x, y, \in \mathbb{R}^n$$

$$\iff \nabla f \text{ is Lipschitz continuous}$$

 \iff f can be upperbounded by a quadratic function:

$$f(x) \le f(y) + \nabla f(y)^T (x - y) + 0.5L ||x - y||^2 \, \forall x, y \in \mathbb{R}^n$$

9.2 Newton's Method

$$x_{i+1} = x_i - h_i \Delta x_{nt} := x_i - h_i (\nabla^2 f(x_i))^{-1} \nabla f(x_i)$$

Line search problem: choose $h_i > 0$ s.t. $f(x_i + h_i \Delta x_{nt}) \leq f(x_i)$. Either compute exact and best h_i using $h_i^* = \operatorname{argmin} x_i - h_i \Delta x_{nt}$. Or use the backtracking search method:

initialise
$$h_i = 1$$
;

while

For given equality constraint $\mathbf{A}x = b$ solve:

$$\begin{bmatrix} \nabla^2 f(x_i) & \mathbf{A}^T \\ \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \delta x \\ \lambda \end{bmatrix} = \begin{bmatrix} -\nabla f(x_i) \\ \mathbf{0} \end{bmatrix}$$

9.3 Constrained optimization

 $g_i(x) \leq 0$ with

Gradient method $x_{i+1} = \pi_Q(x_i - h_i \nabla f(x_i))$ where π_Q is a projection $\pi_q = \arg\min_x \frac{1}{2} ||x - y||_2^2$. Projection can be solved directly if simple enough, else solve the dual.

9.4 Interior-Point methods

Assumptions $f(x^*) < \infty$, $\tilde{x} \in \text{dom}(f)$.

Barrier method $\min f(x) + \kappa \phi(x)$. Approximate ϕ using diff'able log barrier(instead of indicator function):

$$\phi(x) = \sum_{i=1}^{m} I_{-}(g_{i}(x)) = -\sum_{i=1}^{m} \log(-g_{i}(x))$$

$$\lim_{\kappa \to 0} x^{*}(\kappa) = x^{*}$$

Analytic center: $\arg \min_{x} \phi(x)$, central path $\{x^*(\kappa) | \kappa > 0\}$.

Path following method

- 1. Centering $x^*(\kappa) = \arg\min_x f(x) + \kappa \phi(x)$ with newton's method:
- 1.1. $\Delta x_{\rm nt} = \left[\nabla^2 f(x) + \kappa \nabla^2 \phi(x)\right]^{-1} (-\nabla f(x) \kappa \nabla \phi(x)).$
- 1.2. Line search:

retain feasability: $\operatorname{argmax}_{h>0} \{h|g_i(x+h\Delta x)<0\}$ Find $h^* = \operatorname{argmin}_{h\in[0,h_{\max}]} \{f(x+h\Delta x) + \kappa\phi(x+h\Delta x)\}$

- 2. Update step $x_i = x^*(\kappa_i)$
- 3. Stop if $m\kappa_i < \epsilon$
- 4. Decrease $\kappa_{i+1} = \kappa_i/\mu$, $\mu > 1$.

Centering step with equality constraints

$$\begin{bmatrix} \nabla^2 f(x) + \kappa \nabla^2 \phi(x) & c^T \\ c & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ \nu \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + \kappa \nabla \phi(x) \\ 0 \end{bmatrix}$$

Relaxed KKT

$$Cx^* = d \qquad g_i(x^*) + s_i^* = 0$$

$$\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla g_i(x^*) + c^T \nu = 0 \qquad \lambda_i^* = \kappa \frac{\partial \phi}{\partial g_i} = -\frac{\kappa}{g_i}$$

$$\lambda_i^* g_i(x^*) = -\kappa \qquad \lambda_i^*, s_i^* \ge 0$$

Primal Dual Search Direction Computation

$$\begin{bmatrix} H(x,\lambda) & c^T & G(x)^T & 0 \\ c & 0 & 0 & 0 \\ G(x) & 0 & 0 & I \\ 0 & 0 & S & \mathbf{\Lambda} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta u \\ \Delta \lambda \\ \Delta s \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + c^T \nu + G(x)^T \lambda \\ cx - d \\ g(x) + s \\ s\lambda - \nu \end{bmatrix}$$

 $S = \operatorname{diag}(s_1, \ldots, s_m), \Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$ and ν is a vector for choosing centering parameters.