ANÁLISE DE ALGORITMOS

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Análise de algoritmos

Principais perspectivas (não-subjetivas):

- Eficiência temporal (complexidade temporal)
- Eficiência espacial (complexidade espacial)

Eficiência: uma função a partir do tamanho da entrada

■ Entradas maiores ⇒ maior tempo de execução

Exemplos:

- Ordenar uma lista: tamanho da lista
- Multiplicação de matrizes: tamanho das matrizes | qtd. elementos
- Corretor ortográfico: qtd. caracteres | qtd. palavras

Métrica de medição

Medição baseada em tempo

- Infraestrutura computacional
- Qualidade do compilador

C(n) = qtd. de execução da operação básica

- Ordenação: comparação valores
- Multiplicação de matrizes: multiplicação

Seja *c_{op}* o tempo de execução da operação básica

 \blacksquare $T(n) \approx c_{op}C(n)$

Métrica de medição

Exemplo:

$$C(n) = \frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \approx \frac{1}{2}n^2$$

$$\frac{T(2n)}{T(n)} pprox \frac{c_{op}C(2n)}{c_{op}C(n)} = \frac{\frac{1}{2}(2n)^2}{\frac{1}{2}n^2} = 4$$

Ordem de crescimento

Ordem de crescimento

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
$\frac{10}{10^2}$	3.3 6.6	10^{1} 10^{2}	$3.3 \cdot 10^1$ $6.6 \cdot 10^2$	10^2 10^4	10^3 10^6	$10^3 \\ 1.3 \cdot 10^{30}$	$3.6 \cdot 10^6 9.3 \cdot 10^{157}$
10^3 10^4	10 13	10^3 10^4	$1.0 \cdot 10^4$ $1.3 \cdot 10^5$	10^6 10^8	10^9 10^{12}		
10^5 10^6	17 20	10^5 10^6	$1.7 \cdot 10^6 2.0 \cdot 10^7$	$10^{10} \\ 10^{12}$	$10^{15} \\ 10^{18}$		

Considerando: 10¹² (1 trilhão) operações por segundo

 $\blacksquare \ 2^{100} \ \text{operações} \approx 4 \cdot 10^{10} \ \text{anos}$

Algoritmo: SequentialSearch(A[0..n-1], K)

- 1 $i \leftarrow 0$;
- while $i < n \land A[i] \neq K$ do
- $i \leftarrow i + 1;$
- 4 if i < n then return i;
- 5 else return −1;

Operação básica: quantidade de verificações $A[i] \neq K$:

- $C_{worst}(n) = n$
- lacksquare $C_{best}(n) = 1$

Procurar outro algoritmo se $C_{best}(n)$ não for aceitável

Assumindo:

- $p(0 \le p \le 1)$ probabilidade de encontrar valor
- probabilidade igual para todo i

$$C_{avg}(n) = (1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}) + n \cdot (1 - p)$$

$$= \frac{p}{n}(1 + 2 + \dots + i + \dots + n) + n(1 - p)$$

$$= \frac{p}{n}\frac{n(n+1)}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

Assumindo:

- $p(0 \le p \le 1)$ probabilidade de encontrar valor
- probabilidade igual para todo i

$$C_{avg}(n) = (1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}) + n \cdot (1 - p)$$

$$= \frac{p}{n}(1 + 2 + \dots + i + \dots + n) + n(1 - p)$$

$$= \frac{p}{n}\frac{n(n+1)}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

Calcular $C_{avq}(n)$ é normalmente mais difícil

■ Em alguns algoritmos, $C_{avg} \ll C_{worst}$

Assumindo:

- $p(0 \le p \le 1)$ probabilidade de encontrar valor
- probabilidade igual para todo i

$$C_{avg}(n) = (1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}) + n \cdot (1 - p)$$

$$= \frac{p}{n}(1 + 2 + \dots + i + \dots + n) + n(1 - p)$$

$$= \frac{p}{n}\frac{n(n+1)}{2} + n(1 - p)$$

$$= \frac{p(n+1)}{2} + n(1 - p)$$

Calcular $C_{avq}(n)$ é normalmente mais difícil

■ Em alguns algoritmos, $C_{avg} \ll C_{worst}$

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Análise assintótica

Parar comparar odens de crescimento:

O (big oh), Ω (big omega), Θ (big theta)

Considerando:

- t(n) e g(n) funções não-negativas definidas sobre N
- t(n) = tempo de execução do algoritmo (i.e., C(n))
- \blacksquare g(n) = função para comparar eficiência

Informalmente:

- O(g(n)) = funções com ordem de crescimento \leq a g(n)
- $\Omega(g(n))$ = funções com ordem de crescimento \geq a g(n)
- $\Theta(g(n))$ = funções com ordem de crescimento = a g(n)

Análise assintótica

Exemplos (considerando $n \to \infty$):

- \blacksquare $n \in O(n^2)$
- $100n + 5 \in O(n^2)$
- $\blacksquare \ \frac{1}{2}n(n-1) \in O(n^2)$
- \blacksquare $n^3 \notin O(n^2)$
- \blacksquare $n^3 \in \Omega(n^2)$
- $\blacksquare 100n + 5 \notin \Omega(n^2)$
- $100n + 5 \notin \Theta(n^2)$
- $100n + 5 \in \Theta(n)$

Análise assintótica²

Definição O(n):

■ $t(n) \in O(g(n))$ se existem c positivo e $n_0 \ge 0$ tal que $t(n) \le cg(n)$ para todo $n \ge n_0$

$$o(n)$$
 = para todo c

Exemplo: 100n + 5 <

$$100n + 5 \le 100n + 5n$$

(para todo $n \ge 1$) = $105n$
Logo, $100n + 5 \in O(n)$

Análise assintótica³

Definição $\Omega(n)$:

■ $t(n) \in \Omega(g(n))$ se existem c positivo e $n_0 \ge 0$ tal que $t(n) \ge cg(n)$ para todo $n > n_0$

$$\omega(n)$$
 = para todo c

Exemplo:

$$n^3 \ge n^2$$
 (para todo $n \ge 0$)
Logo, $n^3 \in \Omega(n^2)$

Análise assintótica⁴

Definição $\Theta(n)$:

■ $t(n) \in \Theta(g(n))$ se existem c_1 e c_2 positivos e $n_0 > 0$ tal que $c_2g(n) \leq t(n) \leq c_1g(n)$ para todo $n > n_0$

Exemplo:

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \le \frac{1}{2}n^2$$
 (para todo $n > 0$)

$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \ge \frac{1}{2}n^2 - \frac{1}{2}n\frac{1}{2}n = \frac{1}{4}n^2$$
(para todo $n \ge 2$)

Logo,
$$\frac{1}{2}n(n-1) \in \Theta(n^2)$$

Análise assintótica

Teorema

■ se $t_1(n) \in O(g_1(n)) \land t_2(n) \in O(g_2(n))$, então $t_1(n) + t_2(n) \in O(max(g_1(n), g_2(n)))$

Implicação prática:

A eficiência de um algoritmo é determinada pela parte com maior ordem de crescimento.

Análise assintótica⁵

Análise assintótica⁶

Data Structure	Time Complexity								Space Complexit
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	0(1)	O(n)	O(n)	O(n)	0(1)	0(n)	0(n)	0(n)	0(n)
Stack	Θ(n)	Θ(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Queue	Θ(n)	O(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Singly-Linked List	Θ(n)	O(n)	Θ(1)	0(1)	O(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	O(n)	0(n)	0(1)	0(1)	0(n)	0(n)	0(1)	0(1)	O(n)
Skip List	Θ(log(n))	0(log(n))	0(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	0(1)	Θ(1)	0(1)	N/A	0(n)	0(n)	0(n)	O(n)
Binary Search Tree	Θ(log(n))	O(log(n))	0(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	O(n)
Cartesian Tree	N/A	O(log(n))	Θ(log(n))	Θ(log(n))	N/A	0(n)	0(n)	0(n)	O(n)
B-Tree	Θ(log(n))	0(log(n))	0(log(n))	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	O(log(n))	0(n)
Red-Black Tree	Θ(log(n))	0(log(n))	0(log(n))	Θ(log(n))	O(log(n))	O(log(n))	0(log(n))	O(log(n))	0(n)
Splay Tree	N/A	Θ(log(n))	Θ(log(n))	Θ(log(n))	N/A	O(log(n))	0(log(n))	O(log(n))	0(n)
AVL Tree	Θ(log(n))	O(log(n))	Θ(log(n))	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)
KD Tree	Θ(log(n))	0(log(n))	0(log(n))	0(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)

Análise assintótica: comparando via limite

$$\lim_{n \to \infty} \frac{t(n)}{g(n)} = \begin{cases} 0 & \text{ordem de } t(n) \text{ \'e menor do que ordem de } g(n) \\ c & \text{ordem de } t(n) \text{ \'e igual a ordem de } g(n) \\ \infty & \text{ordem de } t(n) \text{ \'e maior do que ordem de } g(n) \end{cases}$$

Exemplo:

$$\lim_{n \to \infty} \frac{\frac{1}{2}n(n-1)}{n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 - n}{n^2} = \frac{1}{2} \lim_{n \to \infty} (1 - \frac{1}{n}) = \frac{1}{2}$$

logo,
$$O(\frac{1}{2}n(n-1)) = O(n^2)$$
.

Análise assintótica: principais classes

1 constante

log n logarítmica

n linear

n log n linear-rítmica

*n*² quadrática

*n*³ cúbica

2ⁿ exponencial

n! fatorial

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Funções não-recursivas

Procedimento geral:

- Decidir parâmetro(s) indicando tamanho da(s) entrada(s)
- Identificar operação básica do algoritmo
- 3 Verificar se C(n) depende só de n
 - Análise do pior caso
 - Análise do melhor caso
 - Análise do caso médio
- 4 Definir somatário para C(n)
- 5 Estabelecer ordem de crescimento

Algoritmo: UniqueElements(A[0..n-1])

- for $i \leftarrow 0$ to n-2 do
 for $j \leftarrow i+1$ to n-1 do
 if A[i] = A[j] then return false;
- 4 return true;

Parâmetro do tamanho da entrada: n

Operação básica: comparação C

C(n) não depende só de n

10/03/2019

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$= \sum_{i=0}^{n-2} ((n-1) - (i+1) + 1)$$

$$= \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

$$= (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2}$$

$$= \frac{(n-1)n}{2}$$

$$\approx \frac{1}{2} n^2 \in \Theta(n^2)$$

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

$$= \sum_{i=0}^{n-2} ((n-1) - (i+1) + 1)$$

$$= \sum_{i=0}^{n-2} (n-1-i)$$

$$= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

$$= (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2}$$

$$= (n-1)^2 - \frac{(n-2)(n-1)}{2}$$

$$= \frac{(n-1)n}{2}$$

$$\approx \frac{1}{2} n^2 \in \Theta(n^2)$$

Nem sempre dá para definir C(n) como um somatório

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Funções recursivas

Procedimento geral:

- Decidir parâmetro(s) indicando tamanho da(s) entrada(s)
- Identificar operação básica do algoritmo
- 3 Verificar se C(n) depende só de n
 - Análise do pior caso
 - Análise do melhor caso
 - Análise do caso médio
- 4 Definir relação de recorrência e condições iniciais para C(n)
- 5 Estabelecer ordem de crescimento

Algoritmo: F(n)

- if n = 0 then return 1;
- else return F(n-1) * n;

Parâmetro do tamanho da entrada: n

Operação básica: multiplicação M

- Assumindo que M é constante para quaisquer dois números
- Assumindo que a multiplicação "domina" a adição

M(n) depende só de n

Relação de recorrência:

■
$$M(n) = M(n-1) + 1$$
, para $n > 0$

$$M(0) = 0$$

Exemplo: método de backward substitutions

$$M(n) = M(n-1) + 1$$

$$= (M(n-2) + 1) + 1 = M(n-2) + 2$$

$$= (M(n-3) + 1) + 2 = M(n-3) + 3$$

$$= \cdots$$

$$= M(n-i) + i$$

$$= \cdots$$

$$= M(n-n) + n$$

$$= M(0) + n$$

$$= 0 + n$$

$$= n \in \Theta(n)$$

Gustavo Carvalho

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Análise amortizada

Amortizar (diluir) o custo no tempo (sequência de chamadas)

- Nem toda execução de uma operação terá o mesmo custo
- Calcular $C_{amort}(n) = \frac{C(n)}{n}$

Exemplo: append em arrays dinâmicos

- Se o array não está cheio, inserir valor no final
- Se o array está cheio,
 - Criar um array com o dobro da capacidade
 - Copiar os valores antigos
 - Inserir valor no final

Análise amortizada

Exemplo: append em arrays dinâmicos

append	tam. antigo	tam. atual	qtd. cópias
1	1	-	-
2	1	2	1
3	2	4	2
4	4	-	-
5	4	8	4
6	8	-	-
7	8	-	-
8	8	-	-
9	8	16	8

Análise amortizada

Exemplo: append em arrays dinâmicos

Quantidade de operações de cópia para 9 inserções:

1+2+4+8

De forma geral, $2^n + 1$ inserções:

$$1 + 2 + 2^2 + 2^3 + \dots + 2^n = 2^{n+1} - 1$$

Custo total (inserções + cópias) para $2^n + 1$ (método da agregação):

$$(2^{n+1}-1)+(2^n+1)=3\cdot 2^n$$

Amortizando (para $n \to \infty$):

■
$$\lim_{n\to\infty} \frac{3\cdot 2^n}{2^n+1} = 3$$
, $\log C_{amort}(n) \in O(1)$

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Análise empírica

Procedimento geral:

- Entender o propósito do experimento
- Definir métrica de medição (contagem vs. tempo)
- Definir as características das entradas
- Implementar o algoritmo
- Gerar entradas
- 6 Executar o algoritmo e coletar dados
- 7 Analisar os dados obtidos

Análise empírica

Análise empírica

Análise assintótica

- + Independência de entradas específicas
- Aplicabilidade limitada

Análise empírica

- + Aplicabilidade ilimitada
- Dependência das entradas
- Dependência da infraestrutura computacional

Agenda

- 1 Análise de algoritmos
- 2 Análise assintótica
- 3 Analisando funções não-recursivas
- 4 Analisando funções recursivas
- 5 Análise amortizada
- 6 Análise empírica
- 7 Bibliografia

Bibliografia + leitura recomendada

Capítulo 2 (pp. 41–95). Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3a edição. Pearson. 2011.

ANÁLISE DE ALGORITMOS

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

