

Who We Are

Our Goal

Maggie Chen
Workshop Co-Director

Julia Ye
Workshop Co-Director

Melanie Davie
Co-President, Community

Plus our team of mentors:

Anahita Dhru Juan Pablo Escorcia Vyom Kapadia Yu Xin Li Gurpreet Mukker Reihaneh Teimouri to share our knowledge of the many interdisciplinary topics involved in neurotechnology and in the creation of a brain-computer interface

brain-computer interfaces have immense potential as therapeutic tools, and our project teams at NeurotechUofT collaborate year-round to produce innovative applications

Schedule

Week 1	Intro to Neuroscience	Week 6	Intro to Machine Learning
Week 2	Intro to Python	Week 7	Event-Related Potentials
Week 3	Graphing & Filtering EEG Data	Week 8	Intro to React
Week 4	Signal Processing	Week 9	Intro to MuseJs
Week 5	Oscillatory Processes in EEG	Week 10	Real-time Analysis & Cloud

Main Resource: GitHub

Bookmark → github.com/neurotechuoft/workshops

Overview

Basic Neuroanatomy

How are functions organized in the brain?

Synapses & Signalling

How does communication work in the brain?

Electroencephalogram (EEG)

How do we monitor communication in the brain?

Basic Neuroanatomy

Frontal Lobe

Information processing, decision making

Temporal Lobe

Hearing + sensory aspects of speech and memory

Motor Cortex

Motor intention, coordination

Parietal Lobe

Sensation, perception, sensory integration (visual)

Occipital Lobe

The main visual processing centre

Somatosensory Cortex

Temperature, pain, vibration, proprioception, fine touch

Frontal Lobe

Prefrontal cortex

- Processes intellectual & emotional information
- Facilitates judgement & decision making

Motor cortex

- Primary motor cortex
 - Integrates signals from diff brain regions to modulate motor function
- Premotor area & supplemental motor cortex
 - Assist in organizing movements & actions
- Frontal eye fields
 - Voluntary control of horizontal eye movements

Broca's area

- Produces motor component of speech
 - Verbal fluency, phonological processing, grammar processing, attention during speech

Temporal Lobe

- Primary auditory area
 - Receives auditory information
- Secondary auditory area
 - Further processes auditory information
 - Receives impulses from primary auditory area and thalamus
- Middle temporal gyrus
 - Perception of movement within visual field
- Fusiform face area
 - Facial recognition

Parietal Lobe

- Primary somatosensory cortex (postcentral gyrus)
 - Receives sensory information from all sensory receptors related to:
 - temperature, pain, vibration, proprioception, fine touch
- Superior parietal lobule
 - Contributes to sensorimotor integration
- Inferior parietal lobule
 - Contributes to auditory & language functions

Occipital Lobe

- Primary visual cortex
 - Visual perception
- Visual association cortex
 - Interprets visual images
- Overall associations:
 - Colour determination, facial recognition, depth perception, visuospatial processing, role in memory formation

Brodmann Areas

Neuromodulation and White Matter Tracts

The Neuron

The Action Potential

Action Potential Propagation

The Synapse & Postsynaptic Potential

depolarization more likely to fire action potential

Electroencephalography (EEG)

What we record: post-synaptic excitation (of dendrites) from hundreds of thousands of neurons firing in synchrony

• less neurons or less synchrony → more flatline EEG

EEG Data GND (P10) P9)

What are we looking for in EEG data?

Oscillatory processes

- Neurons fire together at different frequencies
 - Different frequencies indicate different cognitive processes

Event-related or evoked potentials

 Automatic voltage responses to specific stimuli (like seeing a face, doing mental math)

VOLTAGE (a/d u)

P300 EVOKED POTENTIAL

in specific locations & at specific times

EEG Frequencies

Waves	Frequency bands (Hz)	Behaviour Trait	Signal Waveform
Delta	0.3 – 4	Deep sleep	85 02 04 03 04 15
Theta	4 – 8	Deep Meditation	
Alpha	8 – 13	Eyes closed, awake	
Beta	13 – 30	Eyes opened, thinking	MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
Gamma	30 and above	Unifying consciousness	may Many My My May May May May May May May May

Exercise

Select a random electrode from the 10-10 EEG system

Pick An Electrode

Neurolmage 46 (2009) 64-72

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ynimg

Automated cortical projection of EEG sensors: Anatomical correlation via the international 10-10 system

L. Koessler ^{a,b}, L. Maillard ^b, A. Benhadid ^a, J.P. Vignal ^b, J. Felblinger ^a, H. Vespignani ^b, M. Braun ^{a,c,d,*}

Find its associated Brodmann Area

Find That Region

Labels	Macro-anatomical variabilities	Main macro-anatomical structures	Main BA	Cytoarchitectonic (Brodmann) variabilities
Fp1	GFS (65%) GFM (35%)	Superior frontal G	10	10 (100%)
Fpz	GFd (66%) SI (17%) GFM (17%)	Medialis frontal G	10	10 (100%)
Fp2	GFS (75%) GFM (25%)	Superior frontal G	10	10 (100%)
AF7	GFM (100%)	Middle frontal G	10	10 (75%), 46 (25%)
AF3	GFS (56%) GFM (44%)	Superior frontal G	9	9 (75%), 10 (19%), 8 (6%)
AFz	GFS (75%) GFd (19%) SI (6%)	Superior frontal G	9	9 (62,5%), 6 (12,5%), 8 (19%), 10 (6%)
AF4	GFS (75%) GFM (25%)	Superior frontal G	9	9 (69%), 10 (25%), 8 (6%)
AF8	GFM (81%) GFS (13%) GFI (6%)	Middle frontal G	10	10 (81%), 49 (19%)
F7	GFI (100%)	Inferior frontal G	45	45 (56%), 47 (38%), 46 (6%)
F5	GFM (88%) GTS (6%) GFI (6%)	Middle frontal G	46	46 (50%), 9 (38%), 45 (6%), 22 (6%)
F3	GM (75%) GFS (25%)	Middle frontal G	8	8 (75%), 6 (19%), 46 (6%)
F1	GFS (88%) GFM (12%)	Superior frontal G	6	6 (63%), 8 (31%), 9 (6%)
Fz	GFS (81%) SI (19%)	Superior frontal G	6	6 (81,5%), 8 (12,5%), 9 (6%)
F2	GFS (75%) GFM (25%)	Superior frontal G	6	6 (69%), 8 (31%)
F4	GFM (63%) GFS (31%) GPREC (6%)	Middle frontal G	8	8 (69%), 6 (6%), 9 (25%)
F6	GFM (75%) GFI (25%)	Middle frontal G	9	9 (43,5%), 46 (37,5%), 45 (19%)
F8	GFI (88%) GFM (12%)	Middle frontal G	45/47	45 (37,5%), 47 (37,5%), 46 (25%)
FT7	GTS (82%) GTM (12%) GFI (6%)	Superior temporal	22	22 (75,5%), 21 (12,5%), 38 (6%), 44 (6%)
FC5	GPREC (63%) GFI (37%)	Precentral G	6	6 (63%), 9 (25%), 44 (6%), 45 (6%)
FC3	GFM (63%) GPREC (37%)	Middle frontal G	6	6 (75%), 4 (12,5%), 8 (12,5%)
FC1	GFS (88%) GFM (12%)	Superior frontal G	6	6 (100%)
FCz	SI (50%) GFS (31%) GFM (19%)	Interhemispheric sulcus	6	6 (100%)
FC2	GFS (56%) GFd (38%) GPREC (6%)	Superior frontal G	6	6 (100%)
FC4	GFM (75%) GPREC (19%) GPSTC (6%)	Middle frontal G	6	6 (82%), 123 (6%), 8 (6%), 9 (6%)
FC6	GPREC (63%) GFI (25%) GFM (6%) GPSTC (6%)	Precentral G	6	6 (56,5%), 9 (19,5%), 43 (6%), 44 (6%), 45 (6%), 8 (6%)
FT8	GTS (81%) GTM (13%) GPREC (6%)	Superior temporal G	22	22 (75%), 21 (13%), 38 (6%), 44 (6%)
T7	GTM (69%) GTS (19%) GPSTC (12%)	Middle temporal G	21	21 (81,5%), 22 (12,5%), 43 (6%)
C5	GPSTC (69%) LPI (25%) GPREC (6%)	Postcentral G	123	123 (44%), 40 (37,5%), 43 (12,5%), 6 (6%)
C3	GPSTC (69%) GPREC (19%) LPI (12%)	Postcentral G	21	21 (62,5%), 22 (25%), 20 (6,5), 42 (6%)
C1	GPREC (63%) GPSTC (25%) GFS (13%)	Precentral G	4/6	4 (37,5%), 6 (37,5%), 123 (25%)
Cz	SI (81%) GFS (6%) GFM (6%) LPARAC (6%)	Interhemispheric scissure	4	4 (62,5%), 6 (37,5%)
C2	GPREC (63%) GPSTC (25%) GFS (13%)	Precentral G	123	123 (56,5%), 40 (25,5%), 4 (12,5%), 6 (6%)
C4	GPSTC (81%) GPREC (13%) LPI (6%)	Postcentral G	123	123 (81,5%), 6 (12,5), 40 (6%)
C6	GPSTC (50%) LPI (25%) GPREC (25%)	Postcentral G	123/40	123 (25%), 40 (25%), 4 (12,5%), 6 (12,5%),
TO.	CTM (FCO) CTC (DOO) CTM (CO)	W.I.B.		43 (12,5%), 2 (12,5%)
T8 TP7	GTM (56%) GTS (38%) GTI (6%)	Middle temporal G	4	4 (50%), 123 (25%), 6 (25%)
	GTM (82%) GTI (12%) GTS (6%)	Middle temporal G	21	21 (50%), 37 (25%), 22 (19%), 20 (6%)
CP5	GTS (5%) GSM (24%) GTM (13%) LPI (13%)	Superior temporal G	22	22 (44%), 40 (37,5%), 39 (12,5%), 21 (6%)
CP3	LPI (75%) GPSTC (13%) LPS (6%) GA (6%)	Inferior parietal L	40	40 (82%), 123 (6%), 5 (6%), 39 (6%)
CP1	LPS (50%) GPSTC (50%)	Postcentral G-Superior parietal L	7	7 (62,5%), 5 (31,5%), 123 (6)
CPz CP2	GPSTC (44%) SI (38%) PC (18%)	Postcentral G Postcentral G	7 5	7 (56%), 5 (19%), 123 (12,5%), 4 (12,5%)
	GPSTC (56%) LPS (44%)			5 (62,5%, 7 (25%), 123 (12,5%)
CP4	LPI (88%) GPSTC (12%)	Inferior parietal L	40	40 (77,5%), 123 (12,5%)
CP6 TP8	GSM (38%) GTS (38%) LPI (24%)	Superior temporal G-GSM	40	40 (62,5%0), 22 (37,5%)
	GTM (56%) GTI (31%) GTS (13%)	Middle temporal G	21	21 (62,5%), 22 (12,5%), 20 (12,5%), 37 (12,5%)
P7	GOM (38%) GTM (25%) GTI (25%) GTS (6%) GF (6%)	Middle occipital G	37	37 (44%), 19 (38%), 39 (18%)
P5	GTM (56%) GA (13%) GOM (13%) GSM (6%)	Middle temporal G	39	39 (62,5%), 19 (19%), 37 (12,5%), 40 (6%)
P3	GTS (6%) LPI (6%)	Inferior accietal I	39	20 (27.5%) 7 (25%) 10 (25%) 40 (12.5%)
	LPI (38%) PC (25%) GA (19%) LPS (12%) GTM (6%)	Inferior parietal L		39 (37,5%), 7 (25%), 19 (25%), 40 (12,5%)
P1	PC (50%) LPS (44%) GPSTC (6%)	Precuneus	7	7 (87,5%), 19 (12,5%)
Pz	PC (62%) LPS (19%) SI (19%)	Precuneus	7	7 (88%), 5 (6%), 19 (6%)
P2	PC (63%) LPS (31%) GPSTC (6%)	Precuneus	7	7 (81,5%), 19 (12,5%), 5 (6%)
P4	LPI (31%) GA (31%) LPS (19%) PC (13%) GOS (6%)	Inferior parietal L	39	39 (31%), 7 (25%), 40 (25%), 19 (19%)
P6	GTM (69%) GA (13%) LPI (6%) GTS (6%) GOM (6%)	Middle temporal G	39	39 (75,5%), 19 (12,5%), 40 (6%), 37 (6%)
P8	GTI (44%) GOM (31%) GTM (19%) GTS (6%)	Inferior temporal G	19	19 (56%), 37 (19%), 20 (12,5), 39 (12,5%)
PO7	GOM (63%) GOI (31%) GA (6%)	Middle occipital G	19	19 (62,5%), 18 (31%), 39 (6,5%)
PO3	GOM (50%) PC (18%) C (13%) GOS (13%) GTM (6%)	Middle occipital G	19	19 (75,5%), 7 (6%), 39 (6%), 18 (12,5%)
POZ	C (69%) PC (25%) LPS (6%)	Cuneus	19	19 (56%), 18 (25%), 7 (19%)
PO4	GOM (38%) GOS (19%) GTM (19%) C (12%) LPS (6%) PC (6%)	Middle occipital G	19	19 (69%), 39 (12,5%), 18 (12,5%), 7 (6%)
PO8	GOM (44%) GOI (44%) GOS (6%) GTM (6%)	Middle occipital G	19	19 (69%), 18 (31%)
01	GOM (38%) C (19%) GL (19%) GOI (19%) PC (5%)	Middle occipital G	18	18 (81%), 19 (19%)
Oz	C (98%) GL (5%) GOM (6%)	Cuneus	18	18 (62,5), 17 (31%), 19 (6,5%)
02	C (38%) GOM (31%) GL (25%) GOI (6%)	Cuneus	18	18 (81%), 19 (19%)

⁸ DNSERM US47, Nancy University, France
⁸ Meurology Department, University Hospital, Mancy, France
⁹ Neuroradiology Department, University Hospital, Nancy, France
⁴ Anatomy Department, Nancy University, France

Exercise

Select a random electrode from the 10-10 EEG system

Find its associated Brodmann Area Do some research to find your BA's function(s)

Pick An Electrode

What's The Function?

Note: <u>kenhub.com</u> is a great place to start

Exercise

Select a random electrode from the 10-10 EEG system

Find its associated Brodmann Area Do some research to find your BA's function(s)

Share your discovery with your group!

Pick An Electrode

Find That Region

What's The Function?

Share It

see you next week!

