Recursion Concepts & Ans...

Motivation (भाषण)

शक वार मेरे आय मेहबत करके ती देखी,

. मचा सकते हैं. हमलीगा

codestory with MIK

Facebook] > code storywith MIK

(Twitter) + CS with MIK

Company - Google

Companies

47. Permutations II

♥ Topics

Medium

Given a collection of numbers, nums, that might contain duplicates return all possible unique permutations in any order.

Example: nums =
$$[1, 1, 2]$$

Output = $\{(1,1,2), (1,2,1), (2,1,1)\}$

Why solving it with same method as "Permutations-I" will give MRONG result

Recall approach-1 9 Permutations-I

$$n = 3 \qquad (1, 2, 3) \qquad (1) \qquad (1, 2, 3) \qquad (2) \qquad (1, 2, 3) \qquad (3) \qquad (1, 2, 3) \qquad (1, 2, 3) \qquad (2, 1) \qquad (1, 2, 3) \qquad (2, 2) \qquad (1, 2, 3) \qquad (2, 2) \qquad (1, 2, 3) \qquad (2, 2) \qquad (2, 2, 3) \qquad (2$$

12,1,3}, 12,3,1}

Approach-1

$$(1 \to 1, 2 \to 1) (1)$$

$$(1 \to 1, 2 \to 1) (1)$$

$$(1 \to 2, 2 \to 0) (2)$$

(1>0, 2>1)(1,1)(1>1, 2>0)(1,2) $(1 \rightarrow 1, 2 \rightarrow 0)(21)$ $(1 \rightarrow 0, 2 \rightarrow 0)$ (1,1,2) $(1 \rightarrow 0, 2 \rightarrow 0)$ (1,2,1)(1>0, 2>0) (2,1,1)(1,2,3) n 0(n! *n) O(n) >> Auxiliary space O(n) > Recursin stack space

APPMoach-2

Why solving it with same method as "Permutations-I" will give MRONG result

Recall Approach-2 9 Permutations-I

$$(idx = 0) / (1)$$

Coveet Approach-2 for Permat-Il

$$idx=0$$
 (1,1,2) $\{1,2\}$ $idx=1$ (2,1,1) $\{1\}$

