

Geschäftsprozess-Management

Prof. Dr.-Ing. Andreas Ittner

Email: <u>ittner@hs-mittweida.de</u>

WWW: www.andreas-ittner.de

Tel.: +49(0)3727-58-1288

Mob.: +49(0)177-5555-347

Gliederung (vorläufig)

- Motivation
- Prozesse und Prozess-Management
 - Geschäftsprozesse, Workflow-Prozesse
 - Prozessdesign, Prozessverbesserungen
- Prozess-Modellierung
 - Zweck, Modellierungselemente und –sprachen
 - Petri-Netze, EPKs, BPMN, ...
- Prozess-Analyse
 - Struktur-, Verhaltens-, Erreichbarkeits- und Performance-Analysen
 - Simulation
- Workflow-Management-Systeme
 - Historie, Infrastruktur, Implementierungen, Standards

Prozessmodellierung

Gliederung:

- 1. Einführung in die Modellierung,
- 2. Geschäftsprozess-Modellierung
- 3. Grundregeln der Modellierung mit Petrinetzen,
- 4. Petrinetze formal,
- 5. High-level Petrinetze,
- 6. Grundregeln der EPK-Modellierung,
- 7. Verknüpfungsoperatoren bei EPK,
- 8. Erweiterte EPK und ARIS,
- 9. EPK vs. Petrinetze,
- 10.BPMN.

Was sind Petrinetze?

- Ursprung: Dissertationsschrift
 "Kommunikation mit Automaten" von Carl Adam Petri (1962),
- Seither: mehr als 10.000 Arbeiten auf dem Gebiet,
- bis 1985: hauptsächlich von Theoretikern benutzt,
- seit Mitte der 80er Jahre: vermehrter Einsatz in praktischen Anwendungen,
- Gründe:
 - Einführung der High-Level-Netze,
 - Entwurf von Werkzeugen.
- Petri Nets World: http://www.informatik.uni-hamburg.de/TGI/PetriNets/
- Petrinetz-Applet:
 http://wwwis.win.tue.nl/~wvdaalst/workflowcourse/pn_applet/pn_applet.htm

Warum Petrinetze?

- dienen zur Modellierung, Analyse, Simulation von dynamischen Systemen mit nebenläufigen und nichtdeterministischen Systemen,
- erlauben die Beschreibung von Kontroll- und Datenfluss.

Gründe

- graphischer Formalismus,
- formale Syntax und Semantik,
- explizite Darstellung von Zuständen,
- herstellerunabhängig,
- viele Analyseverfahren und –werkzeuge.

Ein Petrinetz (gerichteter, bipartiter Graph) besteht aus

- Stellen (passive Komponenten),
- Transitionen (aktive Komponenten), oder
- Verbindungen/Kanten zwischen Stellen und Transitionen,
- Marken in Stellen (Ablaufmechanismus)

- Stellen (haben eine Kapazität*)
 - Bedingungen, Medien,
 - Materialbehälter, Datenspeicher,
 - Puffer, Nachrichtenkanäle, ...
- Transitionen
 - Ereignisse, Aktionen, Handlungen,
 - Transporte, Transformationen,
 - Anweisungen, Programme, ...
- Verbindungen/Kanten
 - Vor- und Nachbedingungen von Aktivitäten,
 - Start und Ziel von Transporten,
 - Eingabe und Ausgabe von Programmen, ...

^{*} haben Stellen die Kapazität 1, sprechen wir von einem Bedingungs-/Ereignis-Netz

- Marken
 - Zustände einer Bedingung, Gültigkeit von Bedingungen,
 - Füllungsgrad von Speichern,
 - Daten auf Datenträgern,
 - Nachrichten in Puffern, ...
- Markierungen
 - lokale Zustände,
 - Gesamtzustände.

- Eine Bedingung ist entweder
 - erfüllt (●) oder

- nicht erfüllt
- Ein Ereignis hat
 - Vorbedingungen $(\bigcirc \rightarrow \Box)$ und
 - Nachbedingungen (□→○)

Das Verhalten

- Ein Ereignis ist aktiviert, wenn
 - alle Vorbedingungen erfüllt und
 - alle Nachbedingungen nicht erfüllt sind.
- Ein Ereignisse tritt ein ("schaltet")*, d.h.
 - alle Vorbedingungen werden auf nicht erfüllt und
 - alle Nachbedingungen auf erfüllt gesetzt.

^{*} Oft spricht man auch davon, dass eine Transition "feuert".

Schaltbare Ereignisse in einem Bedingungs-/Ereignis-Netz?

3. Geschäftsprozess- und Workflow-Management

Kurze Erinnerung: Routing von Fällen:

- A, B, C, D Aufgaben
- sequentiell

parallel

alternativ

iterativ

Sequentielles Routing "Erst A, dann B"

Paralleles Routing "A und B nebenläufig"

Auswahl (I) "A oder B"

> Implizite Auswahl: hängt von A und B ab (d.h. die genaue Verzweigung steckt implizit in den Transitionen)

Konflikt

(2 Transitionen benötigen dieselbe(n) Marke(n))

Auswahl (II) Modellierung expliziter Auswahl:

Explizite Auswahl hängt nicht von A und B ab.

oder

Beispiel: Lebenszyklus

Beispiel: Ein Händler, zwei ununterscheidbare Käufer

Beispiel: Ein Händler, zwei (individuelle) Käufer

Prozessmodellierung mit Petrinetzen

Struktur von Petrinetzen

- Ein Petrinetz ist ein Tripel N = (S,T,F) mit
 - S (Stellen), T (Transitionen) sind endliche Mengen,
 - S \cap T = \emptyset , (Stellen und Transitionen sind disjunkt),
 - S ∪T ≠ Ø, (Vereinigung von Stellen und Transitionen ist nicht leer),
 - F⊆ (SxT) ∪ (TxS) ist eine binäre (Fluss-)Relation über S∪T.
- Alle Stellen und Transitionen eines Netzes heißen Netzelemente.

Ein Beispiel (Erzeuger/Verbraucher)

Ein Beispiel (Erzeuger/Verbraucher)

Ein Beispiel (modifizierter Erzeuger/Verbraucher)

Struktur von Petrinetzen

- Vorbereich eines Elements x: Menge aller Eingangs-Knoten (bzw. Input-Knoten) von x, d.h.
 - $x = \{ y \mid (y,x) \in F \}.$
- **Nachbereich** eines Elements x: Menge aller Ausgangs-Knoten (bzw. Output-Knoten) von x, d.h.

$$x \bullet = \{ y \mid (x,y) \in F \}.$$

Verzweigungen

- Ein Knoten heißt **vorwärtsverzweigt**, falls |x •| > 1.
- Vorwärtsverzweigte Stellen modellieren Alternativen (Konflikte)

Verzweigungen

- Ein Knoten heißt **rückwärtsverzweigt**, falls |• x| > 1.
- Rückwärtsverzweigte Transitionen modellieren Synchronisation.

Definition: Teilnetz

- Ein Netz N' = (S',T',F') heißt **Teilnetz** des Netzes N = (S,T,F), wenn
 - S' ⊆ S und
 - T' ⊆ T und
 - $F' = F \cap ((S' \times T') \cup (T' \times S')).$

Definition: Rand

Der Rand eines Teilnetzes N´ (bzgl. des Netzes N) sind diejenigen seiner Knoten, die über Kanten mit dem Restnetz verbunden sind. Er ist also definiert durch: Rand (N´,N) = {x ∈ S´ ∪ T´ | (x• ∪ •x) \ (S´ ∪ T´) ≠ ∅ } (Vor- und Nachbereich von x sind hierbei bzgl. N verstehen)

Definition: Rand

- Ein Teil-Netz N´heißt
 - stellenberandet, wenn sein Rand nur Stellen enthält, d.h. Rand(N´,N) ⊆ S´,
 - transitionsberandet, wenn sein Rand nur Transitionen enthält, d.h. Rand(N´,N)
 ⊆ T´.
- Ein stellenberandetes Teilnetz lässt sich durch eine Stelle, ein Transitionsberandetes durch eine Transition ersetzen.

- Beispiel:
 - stellenberandet
 - transitionsberandet

Definition: Markierung

- Die Belegung der Stellen heißt Markierung und ist der Zustand des Petri-Netzes.
- Eine Markierung m eines Netzes N=(S,T,F) ist eine Abbildung m: S → IN.
- Eine Markierung m aktiviert eine Transition t ∈ T, wenn m(s)>0 für alle s ∈ • t.
- Kontroll-Frage: In welchem Fall ist die Transition aktiviert?

Definition: Markiertes Petrinetz

- Ein Netz N mit Markierung m ist ein markiertes Petrinetz.
- Ein markiertes Petrinetz ist also ein 4-Tupel (S,T,F,m).
- Falls t∈ N unter m aktiviert ist, kann t schalten. Dies führt zu einer
 Folgemarkierung m', definiert durch

$$m(s)\;,\qquad \qquad \text{falls } s\not\in \, \bullet \, t \,\, \text{und } s\not\in t \,\, \bullet \,\, \\ m(s)-1\;,\qquad \qquad \text{falls } s\not\in \, \bullet \, t \,\, \text{und } s\not\in t \,\, \bullet \,\, \\ m(s)+1\;,\qquad \qquad \text{falls } s\not\in \, \bullet \, t \,\, \text{und } s\not\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\not\in \, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{falls } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s\in t \,\, \bullet \,\, \\ m(s)\;,\qquad \qquad \text{fall } s\in \,\, \bullet \,\, t \,\, \text{und } s$$

Schreibweise: $m \rightarrow^t m'$.

Definition: Schaltfolge

- Sei m eine Markierung eines Petrinetzes N. Falls $m \rightarrow^{t1} m_1, m_1 \rightarrow^{t2} m_2, ..., m_{n-1} \rightarrow^{tn} m_n$ Schaltvorgänge sind, ist SF = t1, t2, ..., tn eine Schaltfolge von m nach m_n : $(m \rightarrow^{SF} m_n)$
- Die leere Sequenz ε ist die Schaltfolge ε : m → m für jede Markierung m.

Definition: Erreichbarkeit

- Wir schreiben m →* m' und nennen m' von m erreichbar, wenn m →^{SF} m' für irgendeine Schaltfolge SF gilt.
- [m> bezeichnet die Menge aller von m erreichbaren Markierungen.
- Das Verhalten eines markierten Petrinetzes wird beschrieben durch die Menge seiner Schaltfolgen.
- Eine kompaktere Repräsentation liefert der Markierungsgraph.
- Eine Markierung eines Petrinetzes heißt erreichbar, falls es eine Schaltfolge der Transitionen gibt, welche die Startmarkierung in diese Markierung überführt.