Introduction to Modular Forms

Alek Westover

April 19, 2024

1 Definitions

Throughout the note we use z^* to denote the complex conjugate of a complex number z.

Let H denote the upper half-plane of \mathbb{C} , i.e., the set of complex numbers with strictly positive imaginary part. Let $SL_2(\mathbb{R})$ denote the group of 2×2 real matrices with determinant 1. We make $SL_2(\mathbb{R})$ act on $\tilde{\mathbb{C}}$ as follows: For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R}), z \in \tilde{\mathbb{C}}$ we define:

$$gz = \frac{az+b}{cz+d}.$$

Proposition 1.1.

$$\operatorname{Im}(gz) = \frac{1}{|cz+d|^2} \operatorname{Im}(z).$$

Proof. Multiplying and dividing by $cz^* + d$ gives

$$gz = (az + b)(cz^* + d)\frac{1}{|cz + d|^2}.$$

Thus,

$$\operatorname{Im}(gz) = ad\operatorname{Im}(z) + bc\operatorname{Im}(z^*) \frac{1}{|zc+d|^2} = (ad - bc)\operatorname{Im}(z) \frac{1}{|zc+d|^2}.$$

Recalling that ad - bc = 1 we conclude the desired formula.

This implies that H is **stable** under the action of $SL_2(\mathbb{R})$. Observe that $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ is the identity map. Define $PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/\{\{-1,1\}\}$. One can now show that $PSL_2(\mathbb{R})$ acts **faithfully** on H; i.e., there is a unique matrix in $PSL_2(\mathbb{R})$ which is the identity action on H.

Define $SL_2(\mathbb{Z})$ as the subgroup of $SL_2(\mathbb{R})$ consisting of matrices with integer coefficients and define $PSL_2(\mathbb{Z})$ to be the image of $SL_2(\mathbb{Z})$ in $PSL_2(\mathbb{R})$. $PSL_2(\mathbb{Z})$ is called the **modular group**. We will refer to the modular group by G for the remainder of this note.

2 The Fundamental Domain of the Modular Group

We now develop some basic facts about the modular group. Let $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in G$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in G$. S is the map which does Sz = -1/z, i.e., first draw the radius from the origin to your point and "invert" the point about the unit circle (modify the radius as $r \mapsto 1/r$) and then reflect the angle around the imaginary axis. S satisfies $S^2 = \text{id}$. T is the map which does Tz = z + 1, i.e., translating the real part by one unit. One can show via a straightforward computation that $(ST)^3 = \text{id}$.

Let $D \subseteq H$ be the set of points z with $|z| \ge 1$ and $|\text{Re}(z)| \le 1/2$. This is called the **fundamental domain** for the action of G on the half plane H for reasons which will be clear shortly. Let G' denote the subgroup of G generated by S, T (in fact we will later show G' = G).

Theorem 2.1. For every $z \in H$ there exists $g \in G'$ such that $gz \in D$.

Proof. Fix $z \in H$. Consider the lattice which is the \mathbb{Z} -span of z,1. Because $z \in H$ this lattice is non-degenerate, i.e., its fundamental parallelpiped has non-zero area. Thus, the number of points of the lattice in any ball around the origin is finite. In particular this implies, using Proposition 1.1 that $\max_{g \in G'} \operatorname{Im}(gz)$ is well-defined.

Let $g \in G'$ maximize Im(gz). Choose $n \in \mathbb{Z}$ such that $|\text{Re}(T^ngz)| \le 1/2$. We claim that $z' = T^ngz \in D$. Suppose not. Then we must have |z'| < 1. This implies that

$$\operatorname{Im}(T^n g z) = \operatorname{Im}(g z) < 1.$$

But then Im(Sz') > Im(z'). This implies that

$$\operatorname{Im}(ST^n gz) > \operatorname{Im}(T^n gz) = \operatorname{Im}(gz).$$

But this is a contradiction as g was chosen to maximize Im(gz) over all $g \in G'$ and $ST^n \in G'$. Hence we must actually have $z' \in D$ as desired.

Now we consider the elements of D modulo the action of G. We show that the only distinct elements of D which are congruent lie on the boundary. More specifically we have:

Proposition 2.2. Suppose that $z, z' \in D$ with $z \neq z'$ have z' = gz for some $g \in G$. Then either $\text{Re}(z) = \pm 1/2$ and $z' = z \pm 1$ or |z| = 1 and z' = -1/z.

In particular, for all $z \in D \setminus \{i, e^{2\pi i/3}, e^{2\pi i/6}\}$ the only $g \in G$ which fixes z is the identity matrix id. The element i is fixed by exactly S, id. The element $e^{2\pi i/3}$ is fixed by exactly id, ST, $(ST)^2$. The element $e^{\pi i/3}$ is fixed by exactly id, TS, TS.

Proof. Fix $z, z' \in D$, $z \neq z', g \in G$ with z' = gz. Because $z, gz \in D$ and $g, g^{-1} \in G$ we may assume without loss of generality that $\text{Im}(gz) \geq \text{Im}(z)$, i.e., that $|zc + d| \leq 1$. Considering the lattice $z\mathbb{Z} + 1\mathbb{Z}$ we observe that if $|c| \geq 2$ then |zc + d| > 1.

Figure 1: The lattice $z\mathbb{Z} + 1\mathbb{Z}$

Thus, it suffices to consider the cases c = 0, 1, -1.

Case c=0: Then $d=\pm 1$. To achieve ad-bc=1 we must have a=d. Thus, $gz=\pm z+b$. Subcase: b=0. Then we have $gz=\pm z$. Because $gz,z\in D$ we actually must have gz=z, which we were

assuming did not happen; thus this case does not exist. **Subcase:** $b = \pm 1$. Then (looking at the picture) we see that z must have $\text{Re}(z) = \pm 1/2$. As $g \neq \text{id}$ we then have that the points z, z' have real parts 1/2 and -1/2 and gz is either z + 1/2 or z - 1/2 appropriately.

Summarizing, in the case c=0 we found that $gz \in D$ is only possible here if $\text{Re}(z)=\pm 1/2$, and in this case g does not fix z, rather g must satisfy $gz=z\pm 1$.

Case c=1 To make $|z+d| \le 1$ we must have (by inspection of the picture) that |z|=1. Furthermore we usually must have d=0, unless $z=e^{2\pi i/6}$ in which case d=0,-1 are both allowable, or if $z=e^{2\pi i/3}$ in which case d=0,1 are both allowable.

Subcase: d = 0. To make ad - bc = 1 we then set b = -c. Thus, our map becomes is

$$z \mapsto (az - c)/(cz) = a - 1/z \in D.$$

Then -1/z is simply the reflection of z around the imaginary axis, and in particular $-1/z \in D$. If we take a-1/z for any z with a non-zero, |z|=1 and $|\operatorname{Re}(z)|<1/2$ then it will still land outside of D. For any z with |z|=1 we have z=-1/z if and only if z=i; in particular, S stabilizes i. If |z|=1, $\operatorname{Re}(z)=1/2$ then we are dealing with $z=e^{2\pi i/6}$. In this case $a-1/z \in D$ if and only if $a \in \{0,1\}$. The transformation $z\mapsto 1-1/z$ fixes $e^{2\pi i/6}$ while $z\mapsto -1/z$ does not. If |z|=1, $\operatorname{Re}(z)=-1/2$ then we are dealing with $z=e^{2\pi i/3}$. In this case $a-1/z \in D$ if and only if $a \in \{0,-1\}$. The transformation $z\mapsto -1-1/z$ fixes $e^{2\pi i/3}$ while $z\mapsto -1/z$ does not.

Summarizing the subcase of d=0 we have found that if gz=z for g of this form then we must have |z|=1 and gz=-1/z unless $z\in\left\{e^{2\pi i/3},e^{2\pi i/6}\right\}$. In particular, the only z with |z|=1, $|\operatorname{Re}(z)|<1/2$ stabilized by a non-identity g is z=i, which is stabilized by g=S. Finally, we have found that in this case for $z=e^{2\pi i/3},e^{2\pi i/6}$ we have that $(ST)^2$ stabilizes $e^{2\pi i/3}$ and that $(TS)^2$ stabilizes $e^{2\pi i/6}$, but no other transformations of the form considered in this case stablize these points. Further, if $gz\in D$ is distinct from z then it must also be that gz=-1/z for these points.

Subcase $d \neq 0$

Subsubcase $z = e^{2\pi i/3}, d = 1$. We have the map

$$z \mapsto \frac{az+b}{z+1}$$
.

We must have a - b = 1. Simplifying we have:

$$az = a + e^{2\pi i/3}.$$

Thus we must have a = 0, b = -1 or a = 1, b = 0.

Subsubcase $z = e^{2\pi i/6}, d = -1$. This computation is similar to the subsubcase $z = e^{2\pi i/3}, d = 1$ and is omitted.

Sumarizing our analysis of $e^{2\pi i/3}$, $e^{2\pi i/6}$ we have observed that if $g(e^{2\pi i/3}) \neq e^{2\pi i/3}$ then it must be the case that $g(e^{2\pi i/3}) = e^{2\pi i/6}$. We have also observed that, in terms of transformations of the form considered in this case the only transformation that fixes $e^{2\pi i/3}$ is ST. We have made symmetric observations about $e^{2\pi i/6}$.

Case c = -1 Recall that g is only defined modulo $\{-1, 1\}$. Thus, we can just trade this case for the case c = 1.

We have exhaustively considered all cases, so we conclude the theorem.

An immediate corollary is:

Corollary 2.3. The canonical map $D \to H/G$ is surjective and its restriction to the interior of D is injective.

Finally we show:

Theorem 2.4. G = G'.

Proof. Fix $g \in G$. Consider 2i, an arbitrary point in the interior of D. By Theorem 2.1 there exists $g' \in G'$ such that g'(g(2i)) lies in D. Because g'(g(2i)), 2i are equivalent modulo G and both lie in the interior of D Proposition 2.2 implies that g'(g(2i)) = 2i. So we have $g'g = \operatorname{id}$ and thus $g \in G'$. Thus, G' = G.