Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

Generalized linear models

Main points McElreath Ch 9

- Exponential family (some)
 - Exponential, Gamma, Normal, Poisson, Binomial
- Link functions (some)
 - identity, log, logit

Most common models

Normal

Identity link

$$\mu_i = \beta_0 + \beta_1 x_i$$

Poisson

Log link

$$y_i \sim \text{Poisson}(\mu_i)$$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i$$

Binomial

Logit link

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$
 $y_i \sim \text{Poisson}(\mu_i)$ $y_i \sim \text{Binomial}(\mu_i, n)$

$$\log(\mu_i) = \beta_0 + \beta_1 x_i \qquad \log\left(\frac{\mu_i}{1 - \mu_i}\right) = \beta_0 + \beta_1 x_i$$

Inverse link functions:

$$\mu_i = \eta_i$$

$$\mu_i = e^{\eta_i}$$

$$\mu_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$

Dataset to analyze

What will the data-generating model be? Ignore pairs for now

Scientific questions:

How different is species richness between habitats?

How does species richness vary with latitude?

Is this relationship different between habitats?

Dataset to analyze

Inverse link function

Model matrix

 $\eta_i = \beta_0 + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$

Data			Design	matrix	model.r	matrix(fit)
habitat	latitude	richness	intercept	forest	latitude	forest:latitude
forest	42	16	1	1	42	42
forest	42.56	10	1	1	42.56	42.56
forest	43.33	7	1	1	43.33	43.33
forest	44.76	6	1	1	44.76	44.76
bog	42.17	8	1	0	42.17	0
bog	42.57	4	1	0	42.57	0
bog	44.06	3	1	0	44.06	0
bog	44.95	5	√ 1	y 0	44.95	0

 $\eta_i = \beta_0 intercept_i + \beta_1 forest_i + \beta_2 latitude_i + \beta_3 forest_i \times latitude_i$