船舶原理(B类)(2) "船舶推进"课程设计任务书

已知某集装箱船主要参数为:设计水线长 215 米,垂线间长 210 米,型宽 32 米,设计吃水 12.7 米,排水体积 54000 立方米,方型系数 0.655。船体有效功率曲线如下表所列:

航速(节)	压载 (千瓦)	满载 (千瓦)	超满载(千瓦)	
19	7617	9648	11436	
19. 5	8198	10378	12308	
20	8950	11320	13436	
20. 5	9786	12369	14689	
21	10668	13475	16014	
21.5	11605	14651	17420	
22	12657	15970	18999	
22.5	13929	17563	20907	
23	15574	19623	23374	
23. 5	17794	22403	26706	
24	20840	26214	31276	
24. 5	25010	31429	37531	
25	30648	38481	45988	

主机最大持续功率 MCR=33000 千瓦, 额定转速 102 转/分。轴系效率 η_S =0.98。 采用单桨推进,桨轴距基线高度 4.7 米,毂径 d_h =1.4 米,螺旋桨材料为 Cu3 镍铝青铜。

伴流分数 w=0.25, 推力减额分数 t=0.16, 相对旋转效率 η_R =1.0。

要求:

- 1)按满载工况、主机功率 P_s =0.85MCR、螺旋桨转速 102 转/分,设计 MAU 型五叶右旋桨 1 只。
- 2) 附件 1"设计资料"中的回归数据,编制敞水性征曲线计算程序(不限编程语言,EXCEL亦可),并根据敞水性征曲线进行设计。不得使用《船舶原理》 教材提供的敞水曲线图或设计图谱。
- 3)提交《螺旋桨设计计算书》一份(A4 打印,订书机装订),内容包括:设计条件、最大航速设计、空泡校核(采用柏利尔空泡限界线图)、强度校核、螺距修正、系柱特性计算、航行特性计算、螺旋桨重量及惯性矩计算、设计要素总结、螺旋桨型值表(根据《船舶原理》下册第三篇表 8-6 "MAU 型叶切面尺寸表"计算各半径桨叶剖面的型值,单位 mm)。最大航速设计所需的敞水性征曲线计算源程序(或 EXCEL 表格)应作为附录与《螺旋桨设计计算书》一并装订。
- 4) 用 AutoCAD 绘制螺旋桨总图(包括伸张轮廓、正投影、侧投影)一份, 绘制方法参见《船舶原理》下册第三篇第 8-6 节, 桨毂及轴孔尺寸根据第 8-6 节 相关经验式设计,总图上画出桨毂外形轮廓和轴孔即可。总图用 A3 纸打印,与《螺旋桨设计计算书》一并装订。

本课程设计需于 2018 年 5 月 15 日 (周二) 前完成,请班长收齐 后提交到木兰楼 B615 室。联系电话: 34205641。

附件1 设计资料

1) 有效功率曲线的回归式(对应第1页表格数据)

$$P_E = C_0 + C_1 V_s + C_2 V_s^2 + C_3 V_s^3 + C_4 V_s^4$$
 (千瓦), V_s : 节

	C_0	C_1	C_2	C_3	C_4
压载	5.82329E6	-1.12816E6	81927.6702	-2642.77266	31.99959
满载	7.28287E6	-1.41085E6	102451.99935	-3304.68079	40.01248
超满载	8.7346E6	-1.69215E6	122883.80611	-3963.87495	47.99561

2) MAU 型五叶桨敞水性征曲线回归公式及系数

$$K_{T} = \sum_{k=1}^{16} a_{k} \left(\frac{A_{E}}{A_{0}} \right)^{r_{k}} \left(\frac{P}{D} \right)^{s_{k}} J^{t_{k}} ; \quad 10K_{Q} = \sum_{k=1}^{23} b_{k} \left(\frac{A_{E}}{A_{0}} \right)^{u_{k}} \left(\frac{P}{D} \right)^{v_{k}} J^{w_{k}}$$

k	a_k	r_k	\boldsymbol{s}_k	t_k	b_k	u_k	v_k	w_k
1	.05367018	0	0	0	09251390	0	0	0
2	3023566	0	0	1	1229000	0	2	0
3	.4333625	0	1	0	.3050697	0	1	1
4	1065471	1	0	2	2935303	0	0	2
5	6582904	3	2	0	3991474	1	2	0
6	.1189101	1	1	3	-1.022050	1	1	1
7	0004408557	0	6	0	.01022833	0	7	0
8	03317857	1	1	4	.003521100	3	1	0
9	1.151124	2	2	0	.002552059	0	5	2
10	.1960773	3	0	0	.2143532	3	0	1
11	09747062	1	3	0	.0007131110	0	4	4
12	.2036384	0	1	1	.2078488	1	1	2
13	2566153	1	1	1	.6397058	0	1	0
14	1370242	0	0	2	.0009404846	0	7	1
15	2874294	2	0	0	02930044	1	0	1
16	2851609	1	2	0	07807623	0	0	4
17					3025523	3	2	2
18					.1855105	1	1	3
19					6724210	2	2	1
20					2087142	3	4	0
21					.9400654	1	3	0
22					.9316346	3	2	1
23					04348397	0	6	0

3) 柏利尔空泡限界线图

附件 2 基于敞水曲线的"最大航速设计"参考步骤

假定若干个盘面比(范围 0.5~0.8),对每一个盘面比进行以下计算:

- 1) 假定若干直径(范围 7.5m~8.5m);
- 2) 对每个直径,假定若干航速(范围21节~25节);
- 3)对每个直径与航速的组合,用回归公式计算设计进速系数下不同螺距(范围 0.4~1.6)螺旋桨的推力、扭矩,通过插值(或二分法)确定满足设计功率要求(即:螺旋桨要求的扭矩与设计功率与转速下的收到转矩平衡)的螺距及相应的有效推力与敞水效率;
- 4)对每个直径,根据阻力曲线及不同航速下的有效推力值,通过插值(或二分法)确定有效推力与阻力平衡的航速,以及对应的螺距和敞水效率;
- 5)根据航速(或敞水效率)与直径的关系,确定最大航速(或最高敞水效率)对应的直径,该直径即为所假定盘面比下的最佳直径。