Testul 1

Problema 1. Fie k un număr întreg, $k \geq 2$. Determinați numerele naturale nenule n_1 , n_2, \ldots, n_k , care îndeplinesc simultan următoarele condiții:

$$n_2 \mid 2^{n_1} - 1$$
, $n_3 \mid 2^{n_2} - 1$, ..., $n_k \mid 2^{n_{k-1}} - 1$, $n_1 \mid 2^{n_k} - 1$.

Problema 2. Fie ABC un triunghi ascuţitunghic şi fie D, E, F picioarele înălţimilor din A, B, respectiv C. Dreptele BC şi EF se intersectează în punctul P, iar paralela prin D la dreapta EF intersectează drepta AC, respectiv AB, în punctul Q, respectiv R. Arătaţi că cercul PQR trece prin mijlocul laturii BC.

Problema 3. Fie a, b, c numere naturale nenule, astfel încât a < b < c, şi fie $f: \mathbb{N}^* \to \mathbb{N}^*$ funcția definită prin f(n) = n - a, dacă n > c, şi f(n) = f(f(n+b)), dacă $n \le c$. Determinați numărul de puncte fixe ale lui f.

Problema 4. Fie m şi n două numere naturale nenule şi fie A_1, \ldots, A_m mulțimi de numere naturale nenule, astfel încât:

- (1) A_i şi A_j sunt disjuncte, oricare ar fi indicii distincți i şi j;
- (2) $|A_i| = n, i = 1, \ldots, m;$
- (3) Oricare ar fi indicele i, niciun element din A_i nu este divizibil cu niciun element din A_{i+1} , unde indicii sunt considerați modulo m.

Determinați numărul maxim de perechi ordonate (a, b), unde a și b sunt elemente din A_i -uri diferite și b este divizibil cu a.

Problema 1. Fie k un număr întreg, $k \geq 2$. Determinați numerele naturale nenule n_1 , n_2, \ldots, n_k , care îndeplinesc simultan următoarele condiții:

$$n_2 \mid 2^{n_1} - 1$$
, $n_3 \mid 2^{n_2} - 1$, ..., $n_k \mid 2^{n_{k-1}} - 1$, $n_1 \mid 2^{n_k} - 1$.

Soluție. Vom arăta că singurele numere care îndeplinesc condițiile din enunț sunt $n_1 = n_2 = \cdots = n_k = 1$.

Pentru fiecare număr natural r>1, notăm cu m(r) cel mai mic factor prim al lui r. Arătăm că, dacă s și t sunt numere naturale strict mai mari decât 1, astfel încât $s\mid 2^t-1$, atunci m(t)< m(s). Fie p=m(s). Cum p este impar, rezultă că $p\mid 2^{p-1}-1$. Cum $p\mid 2^t-1$, rezultă că $p\mid 2^{\gcd(t,p-1)}-1$. Dacă $\gcd(t,p-1)=1$, rezultă că p=1— contradicție. Deci $\gcd(t,p-1)>1$. Prin urmare, t are un factor prim mai mic sau egal cu p-1, deci m(t)< p=m(s).

Presupunând că $n_1>1$, rezultă $n_k>1$, $n_{k-1}>1$, . . . , $n_2>1$, deci $m(n_1)< m(n_2)<\cdots< m(n_k)< m(n_1)$ — contradicție. Prin urmare, $n_1=1$, de unde, $n_2=1$, apoi $n_3=1$, . . . și, în fine, $n_k=1$.

Problema 2. Fie ABC un triunghi ascuţitunghic şi fie D, E, F picioarele înălţimilor din A, B, respectiv C. Dreptele BC şi EF se intersectează în punctul P, iar paralela prin D la dreapta EF intersectează drepta AC, respectiv AB, în punctul Q, respectiv R. Arătaţi că cercul PQR trece prin mijlocul laturii BC.

Soluție. Fără a restrânge generalitatea, putem presupune că AB > AC. Fie M mijlocul laturii BC. Este suficient să arătăm că $DM \cdot DP = DQ \cdot DR$.

Întrucât dreptele BC şi EF sunt antiparalele, iar dreptele EF şi QR sunt paralele, $DB \cdot DC = DQ \cdot DR$, deci este suficient să arătăm că $DB \cdot DC = DM \cdot DP$, i. e., $BM^2 = DM \cdot MP$, deoarece DB = BM + DM, DC = CM - DM = BM - DM şi DP = MP - DM. Întrucât DM = MP - DP, aceasta revine la $BM^2 = MP^2 - DP \cdot MP$, i. e., $DP \cdot MP = MP^2 - BM^2$. Întrucât punctele D, E, F, M sunt concilcice, $PD \cdot PM = PE \cdot PF$. Punctele B, C,

E, F sunt şi ele conciclice, deci $PE \cdot PF = PB \cdot PC$ şi, prin urmare, $DP \cdot MP = PB \cdot PC = (BM + MP)(MP - CM) = (MP + BM)(MP - BM) = MP^2 - BM^2$.

Problema 3. Fie a, b, c numere naturale nenule, astfel încât a < b < c, şi fie $f: \mathbb{N}^* \to \mathbb{N}^*$ funcția definită prin f(n) = n - a, dacă n > c, şi f(n) = f(f(n+b)), dacă $n \le c$. Determinați numărul de puncte fixe ale lui f.

Soluţie. Arătăm recursiv că f(n) = f(n+b-a), pentru $0 < n \le c$.

Dacă $c - b < n \le c$, atunci n + b > c, deci f(n) = f(f(n + b)) = f(n + b - a).

Dacă $n \le c - b$, atunci $n + b - a < n + b \le c$, deci f(n + b - a) = f(n + 2b - a).

Dacă $c-2b < n \le c-b$, atunci $c-b < n+b \le c$, deci f(n) = f(f(n+b)) = f(f(n+2b-a)) = f(n+b-a).

Presupunem că f(n) = f(n+b-a), pentru $c-kb < n \le c-(k-1)b$. Fie n, astfel încât $c-(k+1)b < n \le c-kb$. Cum $c-kb < n+b \le c-(k-1)b$, rezultă f(n) = f(f(n+b)) = f(f(n+2b-a)) = f(n+b-a). Cum există un număr natural nenul m, astfel încât c-mb < 0, afirmația este demonstrată.

Fie $n \le c$ şi fie $p = \lfloor (c-n)/(b-a) \rfloor$. Cum $n + p(b-a) \le c$ şi n + (p+1)(b-a) > c, rezultă că $f(n) = f(n+b-a) = \cdots = f(n+p(b-a)) = f(n+(p+1)(b-a)) = n + (p+1)(b-a) + a$.

Atunci f(n) = n dacă şi numai dacă $n \le c$ şi n + (p+1)(b-a) + a = n, adică, dacă şi numai dacă (p+1)(b-a) = a.

Deci, dacă a nu este divizibil cu b-a, atunci f nu are puncte fixe. Dacă a este divizibil cu b-a, atunci n este punct fix al lui f dacă şi numai dacă $\lfloor (c-n)/(b-a) \rfloor + 1 = a/(b-a)$, adică, dacă şi numai dacă $c-a < n \le c-2a+b$, caz în care f are exact b-a puncte fixe.

Problema 4. Fie m și n două numere naturale nenule și fie A_1, \ldots, A_m mulțimi de numere naturale nenule, astfel încât:

- (1) A_i și A_j sunt disjuncte, oricare ar fi indicii distincți i și j;
- (2) $|A_i| = n, i = 1, \ldots, m;$
- (3) Oricare ar fi indicele i, niciun element din A_i nu este divizibil cu niciun element din A_{i+1} , unde indicii sunt considerați modulo m.

Determinați numărul maxim de perechi ordonate (a, b), unde a și b sunt elemente din A_i -uri diferite și b este divizibil cu a.

Soluție. Maximumul cerut este $\binom{m-1}{2}n^2$ și este atins, de exemplu, pentru

$$A_k = \{a^{(k-1)n+1}, a^{(k-1)n+2}, \dots, a^{kn}\}, \quad k = 1, \dots, m-1, \quad \text{si} \quad A_m = \{b, b^2, \dots, b^n\},$$

unde a și b sunt numere naturale coprime, mai mari sau egale cu 2.

Numim pereche $bun\check{a}$ o pereche (a,b) care are proprietățile cerute. Pentru fiecare m-tuplet (a_1,\ldots,a_m) , unde $a_k\in A_k,\ k=1,\ldots,m$, fie $k(a_1,\ldots,a_m)$ numărul de perechi bune de forma (a_i,a_j) . Vom arăta prin inducție după m că $k(a_1,\ldots,a_m)\leq {m-1\choose 2}$. Prin urmare, numărul de perechi bune, în care fiecare pereche bună este numărată de exact n^{m-2} ori, este cel mult ${m-1\choose 2}n^m$, de unde, concluzia.

Cazul m=3 se verifcă imediat. Pentru $m \geq 4$, fixăm un m-tuplet (a_1,\ldots,a_m) , $a_k \in A_k$, $k=1,\ldots,m$; fără să restrângem generalitatea, putem presupune că a_1 este cea mai mare componentă a sa. Atunci (m-1)-tupletul (a_1,\ldots,a_{m-1}) satisface ipoteza de inducție: a_2 nu divide a_1, a_3 nu divide pe a_2, \ldots, a_{m-1} nu divide pe a_{m-2} și a_1 nu divide pe a_{m-1} .

Vom arăta că numărul perechilor bune în care apare a_m este cel mult m-2. Pentru fiecare $k=1,\ldots,m-1$, cel mult una dintre perechile $(a_k,a_m),\ (a_m,a_k)$ este bună. Dacă există un k pentru care niciuna dintre aceste perechi nu este bună, atunci numărul perechilor bune în care apare a_m este cel mult m-2. În caz contrar, cum perechile (a_m,a_k) şi $(a_{k+1},a_m),$ $k=1,\ldots,m-2$, nu sunt simultan bune, iar perechea (a_1,a_m) nu este bună, rezultă că toate perechile $(a_m,a_k),\ k=1,\ldots,m-1$, sunt bune, în contradicție cu faptul că a_m nu divide a_{m-1} .

Deci
$$k(a_1, ..., a_m) \le k(a_1, ..., a_{m-1}) + m - 2 \le {m-2 \choose 2} + m - 2 = {m-1 \choose 2}.$$