CN Lab 14 – Subnetting (Minimize IP Wastage)

Name: Muhammad Rehan

Roll No: 22P-9106 Section: BSE-6A

1 Requirements

Team	Hosts required	+2 overhead			Prefix	Usable hosts
Front-end	20	2	22	32	/27	30
Back-end	12	2	14	16	/28	14
Management	4	2	6	8	/29	6

2 Subnet Allocation (VLSM)

Working largest → smallest inside the parent 192.168.10.0/24:

Team	Network ID	Prefix	Netmask	Usable range	Gateway	Broadcast
Front-end	192.168.10.0	/27	255.255.255.224	.130	192.168.10.1	.31
Back-end	192.168.10.32	/28	255.255.255.240	.33 <i>–</i> .46	192.168.10.33	.47
Management	192.168.10.48	/29	255.255.255.248	.49 <i>–</i> .54	192.168.10.49	.55

Addresses .56 – .255 remain unassigned if we need to increase it in the future.

3 Efficiency Check

• Total usable host IPs = 30 + 14 + 6 = **50**

• Addresses consumed = 32 + 16 + 8 = 56

Waste = 6 (≈94 % utilisation)

4.1 Address-Block "Ruler"

192.168.10.0/24 - subnet start offsets

What it shows is that a visual ruler of the /24 where each coloured band is one subnet so the numbers are starting byte offsets (0-255).

4.2 Prefix-Tree View

What it shows is that the VLSM carving process as a binary tree so the /24 splits, then the remaining chunk splits again until all requested subnets are allocated so in the end each leaf node is colour-highlighted with team and capacity.

5 Method we used for the solution

- 1. Add two addresses to each host requirement.
- 2. Round each total **up to the next power of two**.
- 3. Convert size \rightarrow prefix: $/ = 32 \log_2(\text{size})$.
- 4. Sort by size descending.
- 5. Carve subnets sequentially from low end of the parent block, aligning on multiples of their size.
- 6. Document network ID, mask, gateway, broadcast, usable range.
- 7. Leave the remainder free for growth.