DOUČKO Z MATEMATIKY

TEORIE A DEFINICE
MATEMATIKA 4MM101/4MM106

ALŽBĚTA KAŠPAROVÁ AUTORKA MATERIÁLŮ

MNOŽINY, LOGIKA

MNOŽINA

Množinu chápeme jako souhrn objektů určitých vlastností. Těmito objekty říkáme **prvky** (elementy, body).

Zápisem $x \in A$ označujeme prvek, který patří do množiny A. (čteme – x je prvkem množiny A).

Prázdná množina = množina, která neobsahuje žádný prvek.

VÝROK

Výrok je tvrzení, o kterém má smysl říci, zda je pravdivé nebo nepravdivé. Pravdivý výrok má hodnotu 1, nepravdivý má hodnotu 0.

NEGACE, KONJUNKCE, DISJUNKCE, EKVIVALENCE, IMPLIKACE (POUZE 4MM106)

- **Negaci** označujeme symbolem $\neg \alpha$
- **Konjunkce** výroků α , β označujeme $\alpha \land \beta$
- **Disjunkci** výroků α , β označujeme $\alpha \lor \beta$
- Implikaci výroků α , β označujeme $\alpha \Rightarrow \beta$ (čteme: Jestliže platí α , pak platí β)
- **Ekvivalenci** výroků α , β označujeme $\alpha \Leftrightarrow \beta$ (čteme: α platí právě tehdy, když platí β)

Tabulky, které ukazují, kdy jsou uvedené výroky pravdivé či nepravdivé v závislosti na pravdivosti výroků:

α	$\neg \alpha$
0	1
1	0

α	β	α∧β	αVβ	$\alpha \Rightarrow \beta$	$\alpha \Leftrightarrow \beta$
0	0	0	0	1	1
0	1	1	0	1	0
1	0	1	0	0	0
1	1	1	1	1	1

TAUTOLOGIE (POUZE 4MM106)

Výroky, které jsou vždy pravdivé (bez ohledu na pravdivost vstupujících výroků) se nazývá **tautologie.**

PODMNOŽINA

Jestliže každý prvek množiny A je zároveň prvkem množiny B, říkáme, že množina A je podmnožinou množiny B. Zapisujeme symbolem $A \subset B$ (\subset je tzv. inkluze)

SJEDNOCENÍ, PRŮNIK, ROZDÍL, DISJUNKTIVNÍ MNOŽINA

- **Sjednocení** množin A,B je množina $A \cup B = \{x; x \in A \lor x \in B\}$
- **Průnik** množin A,B je množina $A \cap B = \{x; x \in A \land x \in B\}$
- **Sjednocení** množin A,B je množina $A \cup B = \{x; x \in A \lor x \in B\}$
- **Rozdíl** množin A,B je množina $A B = \{x; x \in A \lor x \notin B\}$
- Množiny A,B jsou **disjunktivní**, jestliže nemají žádný společné prvek.

ZOBRAZENÍ MNOŽINY A DO MNOŽINY B

Podmnožinou f kartézského součinu A x B se nazývá **zobrazení množiny A do množiny B**, jestliže ke každému x z množiny A existuje právě jedno y z množiny B takové, že $[x,y] \in f$. Zobrazení f množiny A do množiny B značíme symbolem $f:A \to B$

DEFINIČNÍ OBOR A OBOR HODNOT

- Množina A je definiční obor zobrazení f, značí se D(f)
- Množina $\{f(x); x \in A\}$ je **obor** zobrazení f, značí se H(f)

REÁLNÁ FUNKCE

Zobrazení f libovolné množiny A do množiny reálných čísel (tj. $f:A \to R$) se nazývá **reálná funkce.**

REÁLNÁ FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

Zobrazení f podmnožiny reálných čísel do množiny reálných čísel (tj. $f: A \to R$, $kde A \subset R$) se nazývá **reálná funkce jedné reálné proměnné**.

Zatímco f budeme značit funkci, tak f(x) budeme značit **funkční hodnotu funkce f v bodě x**.

REÁLNÁ POSLOUPNOST

Zobrazení množiny přirozených čísel do množiny reálných čísel (tj. $a: N \to R$) se nazývá **reálná posloupnost**.

REÁLNÉ FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

Zobrazení $f: A \to R$, kde $A \subset R$, tj. zobrazení podmnožiny reálných čísel do množiny reálných čísel se nazývá **reálná funkce jedné reálné proměnné**.

ROSTOUCÍ, KLESAJÍCÍ, NEROSTOUCÍ, NEKLESAJÍCÍ, PROSTÁ, OMEZENÁ SHORA A OMEZENÁ FUNKCE

Funkce f je na množině $M \in D(f)$:

- (1) **rostoucí**, jestliže pro libovolné dva body $x_1, x_2 \in M$ takové, že $x_1 < x_2$ platí $f(x_1) < f(x_2)$
- (2) **klesající**, jestliže pro libovolné dva body $x_1, x_2 \in M$ takové, že $x_1 < x_2$ platí $f(x_1) > f(x_2)$
- (3) **nerostoucí**, jestliže pro libovolné dva body $x_1, x_2 \in M$ takové, že $x_1 < x_2$ platí $f(x_1) \ge f(x_2)$
- (4) **neklesající**, jestliže pro libovolné dva body $x_1, x_2 \in M$ takové, že $x_1 < x_2$ platí $f(x_1) \le f(x_2)$
- (5) **prostá,** jestliže pro libovolné dva body $x_1, x_2 \in M$ takové, že $x_1 \neq x_2$ platí $f(x_1) \neq f(x_2)$
- (6) omezená shora (resp. zdola), existuje-li reálná konstanta K tak, že pro všechna $x \in M$ je $f(x) \le K$ (resp. $f(x) \ge K$)
- (7) **omezená**, existuje-li reálná konstanta K tak, že pro každé $x \in M$ je $|f(x)| \le K$

Pozn. Rostoucí, klesající, nerostoucí a neklesající funkce jsou tzv. monotónní.

SUDÁ, LICHÁ, PERIODICKÁ FUNKCE

Funkce f je na množině $M \subset D(f)$:

- (1) **sudá**, jestliže pro každé $x \in M$ je $-x \in M$ a platí f(-x) = f(x)
- (2) **lichá**, jestliže pro každé $x \in M$ je $-x \in M$ a platí f(-x) = -f(x)
- (3) **periodická**, jestli existuje kladné číslo p takové, že pro každé $x \in M$ je $x \pm p \in M$ a platí f(x + p) = f(x). Číslo p se nazývá perioda funkce f.

Pozn. Sudé funkce jsou souměrné podle osy y, liché funkce jsou souměrné podle počátku.

SOUČET, ROZDÍL, SOUČIN A PODÍL FUNKCÍ, SLOŽENÁ FUNKCE

Nechť f a g jsou reálné funkce jedné reálné proměnné.

- (1) Funkce f + g definovaná předpisem (f + g)(x) = f(x) + g(x) se nazývá **součet funkcí f a g**
- (2) Funkce f g definovaná předpisem (f g)(x) = f(x) g(x) se nazývá **rozdíl funkcí f a g**
- (3) Funkce f. g definovaná předpisem (f . g)(x) = f(x). g(x) se nazývá součin funkcí f a g.
- (4) Funkce $\frac{f}{g}$ definovaná předpisem $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$ se nazývá **podíl funkcí f a g**
- (5) Funkci f[g] definovaná předpisem f[g](x) = f(g(x)) říkáme **složená funkce** z vnější funkce f a vnitřní funkce g (superpozice funkcí f a g)

INVERZNÍ FUNKCE

Pokud je funkce f prostá v D(f), pak k ní existuje **inverzní funkce** f^{-1} definovaná vztahem

$$y = f(x) \Leftrightarrow x = f^{-1}(y)$$

Platí:

- (1) $D(f^{-1}) = H(f), H(f^{-1}) = D(f)$
- (2) Grafy funkcí f a \mathbf{f}^{-1} jsou symetrické podle přímky y=x

DEFINICE FUNKCE ARCSINX

Inverzní funkce k funkci sinus na intervalu $<-\frac{\pi}{2},\frac{\pi}{2}>$ se nazývá **arkussinus**, značí se arcsin.

- Definiční obor funkce: D(f) = <-1.1>
- Obor hodnot funkce: $H(f) = <-\frac{\pi}{2}, \frac{\pi}{2}>$
- Graf funkce

DEFINICE FUNKCE ARCCOSX

Inverzní funkce k funkci cosinus na intervalu $< 0, \pi >$ se nazývá **arkuskosinus**, značí se arccos.

• Definiční obor funkce:

$$D(f) = <-1,1>$$

• Obor hodnot funkce:

$$H(f)=<0,\pi>$$

• Graf funkce

DEFINICE FUNKCE ARCTG X

Inverzní funkce k funkci tangens na intervalu $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ se nazývá **arkustangens**, značí se arctg.

- Definiční obor funkce: D(f) = R
- Obor hodnot funkce: $H(f) = (-\frac{\pi}{2}, \frac{\pi}{2})$
- Graf funkce

DEFINICE FUNKCE ARCCOTG X

Inverzní funkce k funkci kotangens na intervalu $(0,\pi)$ se nazývá **arkuskotangens**, značí se arccotg.

• Definiční obor funkce:

$$D(f) = R$$

• Obor hodnot funkce:

$$H(f) = (0, \pi)$$

• Graf funkce

Poznámka: Funkce arcsinx, arccosx, arctgx a arccotgx se nazývají cyklometrické funkce.

ZÁKLADNÍ FUNKCE

Funkce $c, x, \sqrt[n]{x}, e^x$, lnx, goniometrické a cyklometrické funkce jsou tzn. **základní funkce**

ELEMENTÁRNÍ FUNKCE

Funkce, které vzniknou ze základních funkcí sčítáním, odčítáním, násobením, dělením a skládáním se nazývají **elementární funkce**.

MATICOVÁ ALGEBRA

VEKTOR

Vektory chápeme jako uspořádané n-tice reálných čísel, které budeme zapisovat ve tvaru $(a_1, ..., a_n)$

ROVNOST VEKTORŮ

Vektory $a = (a_1, ..., a_n)$, $b = (b_1, ..., b_n)$ z V_n jsou si rovny, jestliže jsou **si rovny** odpovídající souřadnice těchto vektorů, tj.

$$(a_1, ..., a_n) = (b_1, ..., b_n) \Leftrightarrow a_i = b_i (i = 1, ...n)$$

SOUČET VEKTORŮ

Součet vektorů $a=(a_1,\ldots,a_n),\,b=(b_1,\ldots,b_n)$ definujeme vztahem

$$a + b = (a_1 + b_1, ..., a_n + b_n)$$

REÁLNÝ NÁSOBEK VEKTORU

Reálný násobek vektoru $a = (a_1, ..., a_n)$ definujeme vztahem

$$ca=(ca_1,\dots,ca_n)$$

LINEÁRNÍ KOMBINACE VEKTORŮ

Říkáme, že vektor x je **lineární kombinací** vektoru x_1, \dots, x_r , jestliže existují reálná čísla c_1, \dots, c_r taková, že platí

$$x = c_1 x_1 + \dots + c_r x_r.$$

Čísla $c_1, ..., c_r$ se nazývají **koeficienty lineární kombinace**. Lineární kombinace vektorů, ve kterou všechny koeficienty rovny nule, se nazývá **triviální**.

SKALÁRNÍ SOUČIN

Skalární součin vektorů $x=(x_1,\dots,x_n),\ y=(y_1,\dots,y_n)$ je reálné číslo, které je definováno vztahem

$$xy = x_1. y_1 + \dots + x_n. y_n.$$

Vektory a,b jsou tzv. ortogonální (kolmé), protože jejich skalární součin je roven 0.

LINEÁRNÍ ZÁVISLOST A NEZÁVISLOST VEKTORŮ

Vektory x_1, \ldots, x_r se nazývají **lineárně závislé**, jestliže existuje jejich netriviální lineární kombinace, která je rovna nulovému vektoru, tj. jestliže existují reálná čísla c_1, \ldots, c_r z nichž alespoň jedno je různé od nuly, taková, že $c_1x_1 + \ldots + c_r$ $x_r = o$. V opačném případě jsou nezávislé.

NUTNÁ A POSTAČUJÍCÍ PODMÍNKA LINEÁRNÍ ZÁVISLOSTI VEKTORŮ

Vektory x_1, \dots, x_r jsou lineárně závislé tehdy a jen tehdy, když alespoň jeden z nich je lineární kombinací ostatních.

MATICE

Uspořádané schéma reálných čísel
$$\begin{pmatrix} a_{11} & a_{12} \dots & a_{1n} \\ a_{21} & a_{22} \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{mn} \end{pmatrix}$$
 se nazývá **matice typu m x n**.

ROVNOST MATIC

Matice A, B typu m x n jsou **si rovny** (značíme A = B), jestliže pro všechny i=1,...,m a j=1,...n je $a_{ij}=b_{ij}$

NULOVÁ MATICE

Matice O typu m x n, pro jejíž prvky platí $a_{ij}=0$ $(i=1,\ldots,m), j=1,\ldots,n)$ se nazývá **nulová matice**.

ČTVERCOVÁ MATICE

Matice typu n x n se nazývá **čtvercová matice** řádu n.

JEDNOTKOVÁ MATICE

Čtvercová matice J řádu n, pro jejíž prvky platí $j_{ik}=1$ pro i=k, $j_{ik}=0$ pro $i\neq k$ (i=1,...,n); k=1,...,n) se nazývá **jednotková matice řádu n**.

HODNOST MATICE

Maximální počet lineárně nezávislých řádku matice A se nazývá hodnost matice.

Pozn. Hodnost matice A budeme značit h(A). Hodnost nulové matice h(O) = 0. Jestliže A se nerovná O, pak $h(A) \in N$, přičemž platí: Je-li A matice typu m x n, pak

$$h(A) \leq min\{m,n\}$$

TROJÚHELNÍKOVÁ MATICE

Matice A typu m x n se nazývá **trojúhelníková,** když $m \le n$ a pro $i=1,\ldots,m$ je $a_{ii} \ne 0$ a $a_{ij}=0$ pro j < i.

Pozn. Trojúhelníková matice má na hlavní diagonále nenulové prvky a pod hlavní diagonálou samé nuly.

VĚTA O HODNOSTI TROJÚHELNÍKOVÉ MATICE

Je-li A^Δ trojúhelníková matice typu m x n, pak její hodnost je rovna počtu řádků matice A^Δ , $tj.\,h(A^\Delta)=m$

VĚTA O ELEMENTÁRNÍCH ŘÁDKOVÝCH ÚPRAVÁCH MATICE

Hodnost matice se nezmění, pokud v ní uděláme následující tzv. **elementární řádkové úpravy**:

- (1) Zaměníme pořadí řádků matice
- (2) Vynásobíme libovolný řádek matice nenulovým reálným číslem
- (3) Přičteme k libovolnému řádku matice lineární kombinaci ostatních
- (4) Vynecháme řádek matice, který je lineární kombinací ostatních.

TRANSPONOVANÁ MATICE A JEJÍ HODNOST

Matice A´, která vznikne z A tak, že zaměníme řádky za sloupce, přičemž zachováme jejich pořadí, se nazývá matice **transponovaná k matici A**.

Věta: Jestliže v matici A zaměníme pořadí sloupců, pak takto vzniklá matice má s maticí A stejnou hodnost.

VĚTA O HODNOSTI TRANSPONOVANÉ MATICE

Jsou – li A a A 'navzájem transponované matice, pak hodnost matice A je rovna hodnosti matice A', tj. h (a)=h (A').

SOUSTAVA LINEÁRNÍCH ROVNIC

Mějme soustavu m lineárních rovnic o n neznámých x_1, \dots, x_n

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

Koeficienty u neznámých a_{ij} $(i=1,\ldots,m;\ j=1,\ldots,n)$ a pravé strany rovnic b_1,\ldots,b_m jsou daná reálná čísla.

MATICE SOUSTAVY

Matici, jejíž prvky tvoří koeficienty u neznámých, tj. matici

$$A = \begin{pmatrix} a_{11}, & a_{12}, \dots & , a_{1n} \\ a_{21}, & a_{22}, \dots & , a_{2n} \\ \dots & \dots & \dots \\ a_{m1}, & a_{m2}, & , a_{mn} \end{pmatrix}$$

Se nazývá **matice soustavy** (S)

ROZŠÍŘENÁ MATICE SOUSTAVY

Přidáme-li k matici soustavy navíc sloupec pravých stran rovnice soustavy, dostaneme matici

$$A = \begin{pmatrix} a_{11}, & a_{12}, \dots & , a_{1n} \\ a_{21}, & a_{22}, \dots & , a_{2n} \\ \dots & \dots & \dots \\ a_{m1}, & a_{m2}, & , a_{mn} \\ \end{pmatrix} b_1 b_2 \dots b_m$$

Které říkáme rozšířená matice soustavy(S).

FROBENIOVA PODMÍNKA

Soustava lineárních rovnic (S) má řešení tehdy a jen tedy, když hodnost matice soustavy je rovna hodnosti rozšířené matice soustavy.

VĚTA O POČTU ŘEŠENÍ SOUSTAVY

Předpokládejme, že soustava lineárních rovnic (S) má řešení, h je hodnost matice soustavy a n je počet neznámých. Potom platí:

- (a) Jestliže h=n, pak má soustava (S) právě jedno řešení
- (b) Jestliže h<n, pak má soustava (S) **nekonečně mnoho řešení**, přičemž za n-h neznámých lze volit libovolná reálná čísla a ostatní neznámé jsou určeny jednoznačně.

PARTIKULÁRNÍ ŘEŠENÍ SOUSTAVY

Dosadíme-li za volitelné neznámé konkrétní reálná čísla, dostaneme jedno řešení soustavy, které se nazývá **partikulární řešení soustavy**.

ZÁKLADNÍ ŘEŠENÍ SOUSTAVY

Partikulární řešení soustavy, ve kterém jsou volitelné neznámé rovny nule, se nazývá **základní** řešení soustavy.

VĚTA O EKVIVALENTNÍCH SOUSTAVÁCH LINEÁRNÍCH ROVNIC

Jestliže v rozšířené matici soustavy (S) uděláme jakékoli elementární řádkové úpravy, dostaneme matici, které odpovídá ekvivalentní soustava lineárních rovnic.

GAUSSOVA A JORDANOVA METODA

Gaussova eliminační metoda – převedeme soustavu rovnici na trojúhelníkový tvar

Jordanova eliminační metoda:

- 1. Rozšířenou matici soustavy převedeme na trojúhelníkový tvar
- 2. V trojúhelníkové matici odspodu nulujeme prvky nad hlavní diagonálou
- 3. Na hlavní diagonále takto upravené matice vytvoříme jedničky
- 4. Výsledné matici přiřadíme ekvivalentní soustavu, kterou snadno vyřešíme.

Pozn. Pokud máme řešit soustavu lineárních rovnic pomocí Jordánovy metody a vyjde nekonečně mnoho řešení, pak za volitelné neznámé dáme nuly a získáme tzn. Bazické proměnné.

HOMOGENNÍ SOUSTAVA

V homogenní soustavě jsou všechny pravé strany rovnic rovny nule, tudíž soustava má tvar

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

Pozn. Homogenní soustava má vždy řešení.

VĚTA O POČTU ŘEŠENÍ HOMOGENNÍ SOUSTAVY

Homogenní že soustava lineárních rovnic (Z) má vždy řešení. Označíme-li h hodnost matice soustavy a n je počet neznámých, potom platí:

- (a) Jestliže h=n, pak má homogenní soustava **jediné řešení** x=(0,...,0).
- (b) Jestliže h<n, pak má homogenní soustava **nekonečně mnoho řešení**, přičemž za n-h neznámých lze volit libovolná reálná čísla a ostatní neznámé jsou určeny jednoznačně.

SOUČET MATIC

Nechť A, B jsou matice typu m x n. Matice X typu m x n, pro jejíž prvky platí $x_{ij}=a_{ij}+b_{ij}$ $(i=1,\ldots,m;j=1,\ldots;n)$ se nazývá **součet matic A, B** a značí se A+B.

REÁLNÝ NÁSOBEK MATICE

Nechť A je matice typu m x n, c je reálné číslo. Matice X typu m x n, pro jejíž prvky platí $x_{ij} = ca_{ij}$ (i = 1, ..., m; j = 1, ...; n) se nazývá **reálný násobek matice A** a značí se cA.

SOUČIN MATIC

Nechť A je matice typu m x n, B je matice typu n x p. Matice X typu m x p, pro jejíž prvky $x_{ij} (i=1,...,m;j=1,...;n)$ platí $x_{ij} = skalární součin i - tého řádku matice A a j - teho sloupce matice B. se nazývá$ **součin matic**A,B a značí se AB.

Pozn. Násobení matic není komutativní, tj. existují matice A, B takové, že $AB \neq BA$.

VĚTA O ASOCIATIVITĚ NÁSOBENÍ MATIC

Pro každé tři matice A typu m x n, B typu n x p a C typu p x q platí

$$A(BC) = (AB)C$$

VĚTA O DISTRIBUTIVITĚ MATICOVÝCH OPERACÍ

(a) Pro každé tři matice A typu m x n, B typu n x p a C typu n x p platí

$$A(B+C) = AB + AC$$

(b) Pro každé tři matice A typu m x n, B typu n x p a C typu n x p platí

$$(B+C)A = BA + CA$$

REGULÁRNÍ A SINGULÁRNÍ MATICE

Matice A se nazývá **regulární,** jestliže je čtvercová a má lineárně nezávislé řádky. Čtvercová matice, jejíž řádky jsou lineárně závislé, se nazývá **singulární**.

INVERZNÍ MATICE

Nechť A je čtvercová matice. Matice X, pro kterou platí AX = J se nazývá **inverzní matice k matici A**.

VĚTA O EXISTENCI A JEDNOZNAČNOSTI INVERZNÍ MATICE

Inverzní matice k matici A existuje tehdy a jen tedy, když A je regulární. Je-li A regulární matice, pak inverzní matice k matici A je určena jednoznačně.

VĚTA O NAVZÁJEM INVERZNÍCH MATICÍCH

Je-li A regulární matice, pak matice k ní inverzní A^{-1} je opět regulární a platí $(A^{-1})^{-1} = A$.

MATICOVÉ ROVNICE

- Jestliže A je regulární matice řádu n, B je libovolná matice typu n x p, pak maticové rovnice AX=B má právě jedno řešení $X=A^{-1}B$.
- Jestliže A je regulární matice řádu n, B je libovolná matice typu n x p, pak maticové rovnice XA=B má právě jedno řešení $X=BA^{-1}$.

VĚTA O MATICOVÉM ŘEŠENÍ SOUSTAVY

Jestliže matice A je regulární, pak soustava lineárních rovnic Ax=b má právě jedno řešení $m{x} = m{A^{-1}b}$.

DETERMINANT

Determinant je reálné číslo, které je jednoznačně přiřazeno každé čtvercové matici. Determinant čtvercové matice A řádu n budeme značit det A nebo zapisovat ve tvaru

$$\begin{vmatrix} a_{11}, & a_{12}, \dots, a_{1n} \\ a_{21}, & a_{22}, \dots, a_{2n} \\ \dots & \dots & \dots \\ a_{n1}, & a_{n2}, & a_{nn} \end{vmatrix}$$

DETERMINANT PRVNÍHO ŘÁDU

Determinant prvního řádu je definován vztahem $|a_{11}| = a_{11}$

DEFINICE DETERMINANTU 2. A 3. ŘÁDU

Determinant druhého řádu – Je definován vztahem $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} * a_{22} - a_{12} * a_{21}$

Pozn. Od součinu prvků na hlavní diagonále odečteme součin prvků na vedlejší diagonále

Determinant třetího řádu – Je definován vztahem
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} * a_{22} * a_{33} + a_{33}$$

$$a_{12} * a_{23} * a_{31} + a_{21} * a_{32} * a_{13} - (a_{13} * a_{22} * a_{31} + a_{12} * a_{21} * a_{33} + a_{23} * a_{32} * a_{11})$$

VÝPOČET DETERMINANTŮ VYŠŠÍCH ŘÁDŮ

Determinant čtvrtého a vyššího řádu se dají počítat rozvojem nebo převodem na trojúhelníkový tvar matice.

VĚTA O ROZVOJI DETERMINANTU

Jestliže A je čtvercová matice řádu n, pak pro i=1,...,n platí:

$$\det A = (-1)^{i+1} a_{i1} M_{i1} + (-1)^{i+2} a_{i2} M_{i2} + \dots + (-1)^{i+n} a_{in} M_{in}, kde M_{ij} je$$

subdeterminant, který vznikne z determinant matice A po vynechání i-tého řádku a j-tého sloupce.

VĚTA O DETERMINANTU TRANSPONOVANÉ MATICE

Jsou-li A a A'navzájem transponované čtvercové matice, pak det A = det A'.

VĚTA O ŘADOVÝCH ÚPRAVÁCH DETERMINANTU

Pro řadové úpravy determinantu platí:

- (a) Násobíme- li libovolnou řadu determinantu číslem c, potom se číslem c násobí celý determinant.
- (b) Vyměníme li navzájem v determinantu dvě rovnoběžné řady, pak determinant změní znaménko.
- (c) Přičteme-li k některé řadě determinantu libovolnou lineární kombinaci řad s ní rovnoběžných, pak se hodnota determinantu nezmění.

VĚTA O DETERMINANTU TROJÚHELNÍKOVÉ MATICE

Je-li čtvercová matice A trojúhelníková, pak její determinant je roven součinu prvků na hlavní diagonále.

VĚTA O DETERMINANTU REGULÁRNÍ MATICE

Čtvercová matice A je regulární tehdy a jen tehdy, když její determinant je různý od nuly.

Pozn. Matice A je singulární tehdy a jen tehdy, když její determinant je roven nule.

CRAMEROVO PRAVIDLO

Mějme soustavu n lineárních rovnic o n neznámých $x_1, ..., x_n$ Jestliže matice soustavy A je regulární, pak má soustava právě jedno řešení, které se dá zapsat ve tvaru

$$x_j = \frac{\det A_j}{\det A} \quad (j = 1, \dots, n),$$

 $kde\ A_j$ je matice, která vznikne z matice soustavy A po náhradě j-tého sloupce sloupcem pravých stran rovnic soustavy.

CHARAKTERISTICKÁ (VLASTNÍ) ČÍSLA MATICE

Nechť A je čtvercová matice. Komplexní číslo λ vyhovující rovnici

$$det(A - \lambda J) = 0$$

se nazývá **charakteristické (vlastní) číslo** matice A. Rovnice $det(A - \lambda J) = 0$ se nazývá **charakteristická rovnice** matice A.

VĚTA O CHARAKTERISTICKÝCH ČÍSLECH SYMETRICKÉ MATICE

Je-li A čtvercová symetrická matice, pak všechna její charakteristická čísla jsou reálná.

LIMITY

REÁLNÁ POSLOUPNOST

Zobrazení množiny přirozených čísel do množiny reálných čísel (tj. $a: N \to R$) se nazývá **reálná posloupnost**.

ZOBECNĚNÁ REÁLNÁ ČÍSLA

Množina $R^* = R \cup \{-\infty, +\infty\}$ se nazývá **rozšířená číselná osa**, prvky množiny R^* se nazývají **zobecněná reálná čísla**, prvky $\pm \infty$ jsou tzv. nevlastní body.

Definujeme na množině zobecněných reálných čísel R^*

ROSTOUCÍ, KLESAJÍCÍ, NEROSTOUCÍ A NEKLESAJÍCÍ POSLOUPNOST

Nechť (a_n) je reálná posloupnost.

- (a) Říkáme, že posloupnost (a_n) je **rostoucí,** jestliže $a_n < a_{n+1}$ pro všechna $n \in N$
- (b) Říkáme, že posloupnost (a_n) je **klesající**, jestliže $a_n > a_{n+1}$ pro všechna $n \in N$
- (c) Říkáme, že posloupnost (a_n) je **neklesající,** jestliže $a_n \leq a_{n+1}$ pro všechna $n \in N$
- (d) Říkáme, že posloupnost (a_n) je **nerostoucí,** jestliže $a_n \ge a_{n+1}$ pro všechna $n \in N$

DEFINOVANÉ VÝRAZY

Na množině zobecněných reálných čísel R* definujeme

(a)
$$-\infty < a < +\infty$$
 pro každé $a \in R$

(b)
$$a + \infty = +\infty + a = \infty$$
 pro každé $a > -\infty$

(c)
$$a - \infty = -\infty + a = -\infty$$
 pro každé $a < +\infty$

(d)
$$a.(\pm \infty) = (\pm \infty).a$$

•
$$\pm \infty$$
 pro $a > 0$

•
$$\mp \infty$$
 pro $a < 0$

(e)
$$\frac{a}{+\infty} = 0$$
 pro každé $a \in R$

NEDEFINOVANÉ VÝRAZY

Nedefinované výrazy:

$$\bullet$$
 $\infty - \infty$

$$\bullet$$
 $\frac{\pm \infty}{\pm \infty}$

•
$$\frac{a}{0}$$
, $kde \ a \in R^*$

OKOLÍ BODU

- (a) Otevřený interval $(a-\varepsilon,a+\varepsilon)$, kde $\varepsilon>0$, se nazývá okolí bodu $a\in R$
- (b) Interval $(\lambda, +\infty)$, $kde \lambda \in R$, se nazývá **okolí bodu** $+\infty$
- (c) Interval $(-\infty, \lambda)$, $kde \ \lambda \in R$, se nazývá **okolí bodu** $-\infty$

POSLOUPNOST

Zobrazení množiny přirozených čísel N do množiny reálných čísel R se nazývá **reálná posloupnost**.

VYBRANÁ POSLOUPNOST

Nechť (k_n) je rostoucí posloupnost přirozených čísel (indexů). Pak posloupnost (a_{k_n}) se nazývá **vybraná posloupnost** z posloupnosti (a_n) .

LIMITA POSLOUPNOSTI

Říkáme, že posloupnost (a_n) má limitu $a \in R^*$, jestliže v každém okolí bodu a leží všechny členy posloupnosti a_n od jistého indexu n_0 počínaje.

Obrázek 1: Limita posloupnosti lim 1/n=0

Pozn.

- Pokud $a \in R$, říkáme, že posloupnost (a_n) má vlastní limitu
- Pokud $a = \pm \infty$, říkáme, že posloupnost (a_n) má **nevlastní limitu**

VĚTA O JEDNOZNAČNOSTI LIMITY

Každá posloupnost má nejvýše jednu limitu.

+ veta

lim typ

0/0

VĚTA O LIMITĚ KONSTANTNÍ

Je-li (a_n) konstatní posloupnost, tj. $a_n=a$ pro $n\in N$, pak existuje $\lim_{n o\infty}a_n$ a platí

$$\lim_{n\to\infty}a_n=a$$

VĚTA O LIMITĚ VYBRANÉ POSLOUPNOSTI

Jestliže posloupnost (a_n) má limitu, pak každé posloupnost z ní vybraná má tutéž limitu.

VĚTA O LIMITĚ ARITMETICKÝCH OPERACÍ

Nechť (a_n) a (b_n) jsou reálné posloupnosti. Pak platí

(a)
$$\lim(a_n \pm b_n) = \lim a_n \pm \lim b_n$$

(b)
$$\lim(a_n * b_n) = \lim a_n * \lim b_n$$

(c)
$$\lim \frac{a_n}{b_n} = \frac{\lim a_n}{\lim b_n}$$

Pokud existují $\lim a_n$, $\lim b_n$ a operace na pravé straně vztahů jsou definovány.

VĚTA O LIMITĚ SEVŘENÉ POSLOUPNOSTI

Nechť (a_n) , (b_n) , (c_n) jsou reálné posloupnosti. Jestliže od jistého indexu n_0 počínaje $a_n \le b_n \le c_n$ a lim $a_n = \lim c_n$ pak existuje lim b_n a platí lim $b_n = \lim a_n = \lim c_n$.

SPOJITOST FUNKCE

Nechť funkce f je definována v okolí bodu c. Říkáme, že **funkce f je spojitá** v bodě c, jestliže pro každou posloupnost (x_n) obsaženou v D(f) platé: když $x_n \to c$, pak $f(x_n) \to f(c)$

JEDNOSTRANNÁ SPOJITOST

Pokud definici spojitosti omezime jen na posloupnost (x_n) , které konvergují k bodu c zprava $(x_n \ge c \ pro \ n \in N)$, resp. zleva $(x_n \le c \ pro \ n \in N)$, definuje tzv. **jednostrannou spojitost funkce**.

VĚTA O VZTAHU JEDNOSTRANNÉ A OBOUSTRANNÉ SPOJITOSTI

Funkce f je spojitá v bodě c, právě když je v bodě c spojitá zleva i zprava.

SPOJITOST V INTERVALU J

Říkáme, že funkce f je **spojitá v intervalu** J, jestliže je spojitá ve všech vnitřních bodech intervalu J a v krajních bodech (pokud patří do intervalu) je spojitá zprava, resp. zleva.

SPOJITOST ELEMENTÁRNÍCH FUNKCÍ

Každá elementární funkce je spojitá v libovolném intervalu, na kterém je definována.

WEIERSTRASSOVA VĚTA

Funkce spojitá v uzavřeném intervalu <a,b> má v tomto intervalu maximum i minimum.

BOLZANOVA VĚTA

Je-li funkce f spojitá v intervalu $\langle a,b \rangle$ a f(a)*f(b)<0, pak existuje $c \in (a,b)$ takové, že f(c)=0.

Obrázek 2: Bolzanova věta

PRSTENCOVÉ OKOLÍ BODU C

Okolí bodu $c \in R^*$, ve kterém vynecháme bod c, se nazývá prstencové okolí bodu c.

LIMITA FUNKCE

Nechť funkce f je definována v prstencovém okolí bodu $c \in R^*$. Říkáme, že **funkce f má v bodě v bodě c limitu** $a \in R^*$, jestliže pro každou posloupnost (x_n) obsaženou v D(f)-c platí: když $x_n \to c$, pak $f(x_n) \to a$.

JEDNOSTRANNÉ LIMITY FUNKCE F V BODĚ

Analogicky jako jednostrannou spojitost definujeme jednostranné limity funkce. Limitu funkce f v bodě c zprava (resp. zleva) značíme $\lim_{x\to c+} f(x)$ resp. $\lim_{x\to c-} f(x)$.

VĚTA O VZTAHU JEDNOSTRANNÝCH LIMIT A OBOUSTRANNÉ LIMITY

Limita funkce f v bodě $c \in R$ existuje právě když existují obě jednostranné limity funkce f v bodě c a jsou si rovny. Pak platí $z \lim_{x \to c} f(x) = \lim_{x \to c+} f(x)$ resp. $\lim_{x \to c-} f(x)$.

VĚTA O VZTAHU SPOJITOSTI A LIMITY FUNKCE

Funkce f j v bodě c spojitá právě když $\lim_{x \to c} f(x) = f(c)$.

VĚTA O JEDNOZNAČNOSTI LIMITY FUNKCE

Funkce f má v bodě c nejvýše jednu limitu.

VĚTA O LIMITĚ SLOŽENÉ FUNKCE

Nechť f[g] je **složená funkce** z vnější funkce f a vnitřní g. Jestliže $\lim_{x \to c} g(x) = d$ a vnější funkce f má v bodě d limitu, pak $\lim_{x \to f} f(g(x)) = \lim_{y \to d} f(y)$,pokud existuje levá strana.

VĚTA O LIMITĚ ARITMETICKÝCH OPERACÍ FUNKCE

Nechť f a g jsou funkce jedné proměnné. Pak platí

(a)
$$\lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$$

(b)
$$\lim_{x \to c} (f(x).g(x)) = \lim_{x \to c} f(x).\lim_{x \to c} g(x)$$

(c)
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

Pokud existují $\lim_{x\to c} f(x)$, $\lim_{x\to c} g(x)$ a operace na pravé straně vztahů jsou definovány.

VĚTA O LIMITĚ SEVŘENÉ FUNKCE

Nechť f, g a h jsou funkce jedné proměnné, $c \in R^*$. Jestliže v prstencovém okolí bodu c je

$$f(x) \le g(x) \le h(x)$$
 a $\lim_{x \to c} f(x) = \lim_{x \to c} h(x)$

Pak existuje $\lim_{x \to c} g(x)$ a platí

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x)$$

VĚTA O LIMITĚ FUNKCE TYPU A/0

Jestliže $\lim_{x\to c} f(x)$ je typu " $\frac{a}{0}$ ", kde $a\neq 0$ a funkce f je v prstencovém okolí bodu c kladná (resp. záporná), pak $\lim_{x\to c} f(x) = +\infty$, resp. $\lim_{x\to c} f(x) = -\infty$.

Pozn. Toto tvrzení platí i pro jednostranné limity, pro které se především používá. Symbolicky $\frac{a}{a}=\pm\infty$

DERIVACE

DERIVACE FUNKCE V BODĚ

Nechť funkce f je definována v okolí bodu c. Číslo f'(c), definované vztahem $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ se nazývá **derivace funkce f v bodě c**.h

GEOMETRICKÁ INTERPRETACE DERIVACE

JEDNOSTRANNÉ DERIVACE FUNKCE F V BODĚ C

Pomocí jednostranných limit definujeme analogicky jednostranné derivace funkce f v bodě c. Značíme $f'_+(c)$, $resp. f'_-(c)$ a nazýváme derivací funkce f v bodě c zprava, resp. zleva. Máme tedy $f'_+(c) = \lim_{h \to 0+} \frac{f(c+h) - f(c)}{h}$, $resp. f'_-(c) = \lim_{h \to 0-} \frac{f(c+h) - f(c)}{h}$

VĚTA O VZTAHU JEDNOSTRANNÉ A OBOUSTRANNÉ DERIVACE

Derivace funkce f v bodě c existuje právě když existují obě jednostranné derivace funkce f v bodě c a jsou si rovny. Pak platí $f'(c) = f'_{+}(c) = f'_{-}(c)$.

DERIVACE FUNKCE F

Funkce f', definovaná předpisem $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ se nazývá **derivace funkce f**.

VĚTA O VZTAHU DERIVACE A SPOJITOSTI FUNKCE

Má-li funkce f v bodě c derivaci, pak je v bodě c spojitá.

VĚTA O DERIVACI OPERACÍ A SUPERPOZICE (SLOŽENÉ FUNKCE)

Platí:

(a)
$$(f \pm g)' = f' \pm g'$$

(b)
$$(f.g)' = f'g + fg'$$

(c)
$$(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

(d)
$$(f[g])' = f'[g].g'$$

Pokud existuje pravá strana vztahů.

DRUHÁ DERIVACE

Funkce f'' definovaná vztahem f''=(f')' se nazývá **druhá derivace funkce f.**

L'HOSPITALOVO PRAVIDLO

Jestliže limita podílu funkce $\lim_{x\to c}\frac{f(x)}{g(x)}$ je typu " $\frac{0}{0}$ " nebo " $\frac{\pm\infty}{\pm\infty}$ ", pak

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

pokud limita na pravé straně vztahu existuje.

VZTAH LIMITY FUNKCE A LIMITY POSLOUPNOSTI

Protože reálná posloupnosti je speciální příklad reálné funkce jedné reálné proměnné, platí: Jestliže existuje $\lim_{x\to\infty} f(x)$, pak existuje i limita posloupnosti (f(n)) a platí

$$\lim_{x\to\infty} f(x) = \lim_{n\to\infty} f(n).$$

EXTRÉMY FUNKCE

Nechť M je podmnožina definičního oboru funkce f. Jestliže pro všechna $x \in M$ platí $f(x) \le f(c)$, resp. $f(x) \ge f(x)$, říkáme, že funkce f má v bodě c **maximum (resp. minimum)** na množině M. Maximum a minimum jsou tzv. extrémy funkce.

LOKÁLNÍ A ABSOLUTNÍ EXTRÉM

Pokud množina M je jen okolí bodu C, hovoříme o tzv. **lokálních extrémech funkce**. Když M = D(f), má funkce f v bodě c absolutní extrém.

NUTNÁ PODMÍNKA PRO LOKÁLNÍ EXTRÉM

Má-li funkce f ve vnitřním bodě $c \in D(f)$ lokální extrém, pak f'(c) = 0 nebo f'(c) neexistuje.

POSTAČUJÍCÍ PODMÍNKA PRO LOKÁLNÍ EXTRÉM

Nechť c je vnitřní bod D(f), ve kterém f'(c) = 0. Jestliže f''(c) > 0 (resp. f''(c) < 0) pak funkce f má v bodě c lokální minimum (resp. lokální maximum).

EXTRÉMY NA UZAVŘENÉM INTERVALU

K hledání extrémů spojité funkce na uzavřeném intervalu používáme dvě věty – Weierstrassovu větu a nutnou podmínku pro lokální extrém.

VĚTA O VÝZNAMU 1. DERIVACE PRO PRŮBĚH FUNKCE

Nechť f je spojitá funkce v intervalu J. Jestliže

$$f'(x) > 0$$
, resp. $f'(x) < 0$ ve vnitřních bodech $x \in I$,

pak funkce f je **rostoucí (resp. klesající)** v intervalu J.

VĚTA O VÝZNAMU 2. DERIVACE PRO PRŮBĚH FUNKCE

Nechť f je spojitá funkce v intervalu J. Jestliže

$$f''(x) > 0$$
, $resp. f''(x) < 0$ ve vnitřních bodech $x \in J$,

pak funkce f je **konvexní (resp. konkávní)** v intervalu J.

Obrázek 3: Graf konvexní funkce

Obrázek 4: Graf konkávní funkce

INFLEXE

Nechť funkce f má v bodě c derivaci. Jestliže se funkce v bodě c mění z konkávní na konvexní nebo naopak, říkáme, že má v bodě c inflexi. Bodu c pak říkáme **inflexní bod** funkce f.

PRŮBĚH FUNKCE

Zjišťujeme:

- (a) Definiční obor funkce
- (b) Spojitost funkce v definičním oboru
- (c) Sudost, lichost, periodičnost funkce
- (d) Nulové body funkce a intervaly, ve které je kladná, resp. záporná
- (e) Intervaly, ve kterých je funkce rostoucí, resp. klesající a lokální extrém
- (f) Intervaly, ve kterých je funkce konvexní, resp. konkávní a inflexní body
- (g) Limity v krajních bodech definičního oboru

TAYLORŮV POLYNOM (POUZE 4MM106)

Nechť funkce f má v bodě a derivace až do řádu n-tého ($n \in N$). Polynom T_n daný vztahem

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Se nazývá Taylorův polynom funkce f v bodě a.

VĚTA O LAGRANGEOVĚ TVARU ZBYTKU (POUZE 4MM106)

Má-li funkce f v okolí bodu a derivaci řádu n+1, potom existuje číslo c mezi body a a x takové, že

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

Pozn. Lagrangeův tvar zbytku má stejný tvar jako další člen Taylorova polynomu s tím, že derivace je v bodě c (nikoli v bodě a).

INTEGRÁLY

PRIMITIVNÍ FUNKCE

Funkce F, pro kterou platí

F'(x) = f(x) pro všechna $x \in J$, se nazývá **primitivní funkce k funkci f** v intervalu J.

Primitivní funkce k funkci f v intervalu J může, ale nemusí existovat. Jednoduchou postačující podmínkou existence primitivní funkce je spojitost funkce.

Jestliže f je elementární funkce a interval $J \in D(f)$, pak k funkci f v intervalu J existuje primitivní funkce.

POSTAČUJÍCÍ PODMÍNKA EXISTENCE PRIMITIVNÍ FUNKCE

Jestliže je funkce f spojitá v intervalu J, pak k ní v tomto intervalu existuje primitivní funkce.

MNOŽINA PRIMITIVNÍCH FUNKCÍ

Pokud primitivní funkce k funkci f (x) existuje, tak je jich nekonečně mnoho řešení a všechny se lidí aditivní konstantou (integrační konstanta).

Jestliže F je primitivní funkce k funkci f v intervalu J, pak také každá funkce G=F+c, kde $c \in R$, je primitivní funkce k funkci f v intervalu J.

NEURČITÝ INTEGRÁL

Libovolnou primitivní funkci k funkci f v intervalu J budeme značit

 $\int f$, resp. $\int f(x)dx$ a říkat jí neurčitý integrál funkce f.

Pozn. dx značí, že funkci f integrujeme podle x.

VĚTA O INTEGRACI SOUČTU FUNKCÍ A REÁLNÉHO NÁSOBKU FUNKCE

Jestliže existují integrály $\int f \ a \int g \ v$ intervalu J a $k \in R$, pak při vhodné volbě integračních konstant je

$$\int (f+g) = \int f + \int g \, a \int kf = k \int f$$

VĚTA O INTEGRACI PER PARTES

Jestliže existují derivace f 'a g ' a integrál $\int f$ ' g v intervalu J, pak při vhodné volbě integračních konstant je

$$\int f * g' = f * g - \int f' * g$$

VĚTA O INTEGRACI SUBSTITUCÍ

Jsou-li f, g funkce a f[g] jejich superpozice, pak při vhodné volbě integračních konstant platí

$$\int f[g] * g' = (\int f)[g]$$
 pokud tyto integrály existují.

NEWTONŮV URČITÝ INTEGRÁL A JEHO GEOMETRICKÁ INTERPRETACE

Nechť k funkci f existuje v intervalu <a,b> primitivní funkce F. Reálné číslo $\int_a^b f$, $resp. \int_a^b f(x) dx$, definované vztahem

$$\int_a^b f(x)dx = F(b) - F(a)$$
, se nazývá **Newtonův určitý integrál funkce f od a do b**.

GEOMETRICKÁ INTERPRETACE URČITÉHO INTEGRÁLU

Je-li funkce f v intervalu <a,b> spojitá a nezáporná, pak určitý integrál $\int_a^b f$ je roven obsahu plochy omezené grafem funkce f, osou x a přímkami x=a, x=b

Obrázek 5: Geometrická interpretace určitého integrálu

Pozn. Jestliže funkce f je v intervalu <a,b> záporná (resp. nekladná), pak obsah plochy omezené grafem funkce f, osou x a přímkami x=a, x=b je $\int_a^b -f = -\int_a^b f$

Určitý integrál $\int_a^b f$ je reálné číslo. Toto číslo nezávisí na volbě primitivní funkce, neboť platí: Jestliže v definici určitého integrálu použijeme místo primitivní funkce funkce G=F+c dostaneme:

$$\int_{a}^{b} f(x)dx = G(b) - G(a) = [F(b) + c] - [F(a) + c] = F(b) - F(a)$$

VĚTA O EXISTENCI URČITÉHO INTEGRÁLU

Pokud k funkci f existuje na intervalu <a,b> primitivní funkce, tak existuje určitý integrál.

VĚTA O ADITIVITĚ URČITÉHO INTEGRÁLU

Jestliže existuje integrál $\int_a^b f \ a \ c \in (a,b)$,pak platí $\int_a^b f = \int_a^c f + \int_c^b f$

Pozn:

- (a) Z geometrické interpretace určitého integrálu plyne, že **pro sudou funkci** f je $\int_0^a f = \int_{-a}^0 f$. Odtud podle věty o aditivitě určitého integrálu platí: Je-li funkce f sudá a existuje integrál $\int_{-a}^a f$, pak $\int_{-a}^a f = 2 \int_0^a f$
- (b) Z geometrické interpretace určitého integrálu plyne, že **pro lichou funkci** f je $\int_0^a f = -\int_{-a}^0 f$. Odtud podle věty o aditivitě určitého integrálu platí: Je-li funkce f lichá a existuje integrál $\int_{-a}^a f$, pak $\int_{-a}^a f = 0$

NEVLASTNÍ INTEGRÁL

Nechť funkce f není v bodě a definována (resp. $a=-\infty$) a v intervalu (a,b> k ní existuje primitivní funkce. Integrál $\int_a^b f$, resp. $\int_{-\infty}^b f$, definovaný vztahem

$$\int_{a}^{b} f = \lim_{c \to a+} \int_{c}^{b} f, resp. \int_{-\infty}^{b} f = \lim_{c \to -\infty} \int_{c}^{b} f,$$

se nazývá **nevlastní integrál funkce f vlivem dolní meze**.

Pozn. Nevlastní integrál f vlivem horní meze (funkce f není v bodě b definována, resp. $b=\infty$)

vztahem
$$\int_a^b f = \lim_{c \to b^-} \int_a^c f$$
 , $resp. \int_a^\infty f = \lim_{c \to \infty} \int_a^c f$,

FUNKCE DVOU PROMĚNNÝCH

REÁLNÁ FUNKCE DVOU REÁLNÝCH PROMĚNNÝCH

Zobrazení $f: A \to R$, kde $A \subset R^2$, tj. zobrazení podmnožiny R^2 do množiny reálných čísel, se nazývá **reálná funkce dvou reálných proměnných.**

OKOLÍ BODU V ROVINĚ

Nechť $A = [a_1, a_2] \in \mathbb{R}^2$. Kartézský součin otevřených intervalu

$$(a_1 - \varepsilon, a_1 + \varepsilon) x (a_2 - \varepsilon, a_2 + \varepsilon), kde \varepsilon > 0$$

se nazývá **okolí bodu A**.

VNITŘNÍ A HRANIČNÍ BODY

Nechť $M \subset R^2$. Bod $A \in R^2$ se nazývá

- (a) Vnitřní bod množiny M, jestliže existuje jeho okolí, které je podmnožinou M
- (b) **Hraniční bod** množiny M, jestliže v každém jeho okolí je bod, který patří i nepatří do množiny M.

MNOŽINA OTEVŘENÁ, UZAVŘENÁ, OMEZENÁ, KOMPAKTNÍ

Nechť $M \subset R^2$. Množina M se nazývá

- (a) Otevřená, jestliže neobsahuje žádný hraniční bod
- (b) **Uzavřená**, jestliže obsahuje všechny své hraniční body
- (c) **Omezená**, jestliže je podmnožinou okolí nějakého bodu.
- (d) Kompaktní, jestliže je uzavřená a omezená.

ELEMENTÁRNÍ FUNKCE DVOU PROMĚNNÝCH

Všechny funkce v kapitole Funkce dvou proměnných jsou elementární. Platí pro ně stejné věty, jako pro elementární funkce jedné proměnné.

VĚTA O SPOJITOSTI ELEMENTÁRNÍ FUNKCE DVOU PROMĚNNÝCH

Každá elementární funkce dvou proměnných je spojitá ve svém definičním oboru.

ZOBECNĚNÁ WEIERSTRASSOVA VĚTA

Funkce (dvou proměnných) spojitá v neprázdné kompaktní množině má na této množině maximum a minimum.

Důležitá pro vyšetřování extrémů funkce dvou proměnných (zaručuje existenci extrémů).

PARCIÁLNÍ DERIVACE

Nechť f je funkce dvou proměnných. Funkce dvou proměnných $\partial_x f$,resp. $\partial_y f$ definovaná předpisem $\partial_x f(x,y) = f_1(x)$, $resp. \partial_y f(x,y) = f_2(y)$ se nazývají **parciální derivace funkce f podle x (resp. y**). Funkce f_1 (resp. f_2) je zúžení funkce f na funkce jedné proměnné x (resp. y).

ZÚŽENÍ FUNKCE

Jestliže ve funkci dvou proměnných zvolíme jednu proměnnou pevně (dáme za ni nějaké číslo = konstantu), dostaneme funkci jedné proměnné, které říkáme zúžení funkce.

PARCIÁLNÍ DERIVACE FUNKCE DVOU PROMĚNNÝCH V BODĚ

Nechť f je funkce dvou proměnných, $C = [c_1, c_2]$ je vnitřní bod D(f) a f_1 $(resp. f_2)$ je zúžení funkce f definované předpisem $f_1(x) = f(x, c_2), resp. f_2(y) = f(c_2, y)$. Číslo $\partial_x f(C), resp. \partial_y f(C)$, definované vztahem

$$\partial_x f(C) = f_1'(c_1), resp. \partial_y f(C) = f_2'(c_2)$$

se nazývá parciální derivace funkce f podle x (resp. y) v bodě C.

DRUHÉ PARCIÁLNÍ DERIVACE

Nechť f je funkce dvou proměnných. Funkce dvou proměnných $\partial_{xx}f$, $\partial_{xy}f$, $\partial_{yx}f$, $\partial_{yx}f$, $\partial_{yy}f$ definované vztahy $\partial_{xx}f = \partial_x(\partial_x f)$, $\partial_{xy}f = \partial_y f(\partial_x f)$, $\partial_{yx}f = \partial_x f\left(\partial_y f\right)$, $\partial_{yy}f = \partial_y f(\partial_y f)$ se nazývají **druhé parciální derivace funkce f**.

Pozn. Smíšené druhé parciální derivace $\partial_{xy}f$ a $\partial_{yx}f$ jsou stejné. To obecně neplatí, ale pokud jsou všechny druhé parciální derivace funkce f spojité, pak $\partial_{xy}f=\partial_{yx}f$

DERIVACE FUNKCE F V BODĚ C

Nechť f je funkce dvou proměnných, C=[c1,c2] je vnitřní bod D(f), f'© definovaný vztahem

$$f'(c) = (\partial_x f(C), \partial_y f(c))$$

se nazývá derivace funkce f v bodě C.

LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH

Nechť M je podmnožina definičního oboru funkce dvou proměnných f. Jestliže pro všechna $X = [x,y] \in M$ platí $f(X) \leq f(C)$, resp. $f(X) \geq f(C)$, říkáme, že funkce f má v bodě $C = [c_1,c_2]$ maximum (resp. minimum) na množině M. Maximum a minimum funkce jsou tzv. extrémy funkce.

Pozn. Pokud množina M je jen okolí bodu C, hovoříme o tzv. **lokálních extrémech funkce**. Když M = D(f), má funkce f v bodě C absolutní extrém.

NUTNÁ PODMÍNKA PRO LOKÁLNÍ EXTRÉM FUNKCE DVOU PROMĚNNÝCH

Má-li funkce dvou proměnných ve vnitřním bodě $C \in D(f)$ lokální extrém a existuje derivace f'(C), pak f'(C) = (0,0)

POSTAČUJÍCÍ PODMÍNKA PRO LOKÁLNÍ EXTRÉM FUNKCE DVOU PROMĚNNÝCH

Nechť C je vnitřní bod D(f), ve kterém f'(C) = (0,0) a funkce dvou proměnných f má v okolí bodu C spojité druhé parciální derivace. Označme

$$D_1 = \partial_{xx} f(C), \quad D_2 = \begin{vmatrix} \partial_{xx} f(C) & \partial_{xy} f(C) \\ \partial_{yx} f(C) & \partial_{yy} f(C) \end{vmatrix}$$

- (a) Jestliže D₂>0 a D₁>0, pak funkce f má v bodě C **lokální minimum**.
- (b) Jestliže D₂>0 a D₁<0, pak funkce f má v bodě C **lokální maximum**.
- (c) Jestliže D₂<0, pak funkce f **nemá v bodě C lokální extrém**.

VÁZANÉ EXTRÉMY PRO FUNKCE DVOU PROMĚNNÝCH

Nechť f a g jsou funkce dvou proměnných, $M = \{[x,y] \in D(f), g(x,y) = 0\}$. Extrémy funkce f v množině M se nazývají **vázané extrémy**, rovnici g(x,y) = 0 říkáme vazební podmínka.

NUTNÁ PODMÍNKA PRO VÁZANÝ EXTRÉM

Má- li funkce dvou proměnných f při vazební podmínce g(x,y)=0 v bodě C vázaný extrém a funkce f, g mají v okolí bodu C spojité parciální derivace, pak $\begin{vmatrix} \partial_x f(C) & \partial_y f(C) \\ \partial_x g(C) & \partial_y f(C) \end{vmatrix} = 0$.

Pozn. Determinant v předchozí větě se nazývá Jacobiho determinant funkcí f,q.

METODA LAGRANGEOVÝCH MULTIPLIKÁTORŮ (PRO DVĚ PROMĚNNÉ)

Použití především u funkce tří a více proměnných v situacích, kdy se nedá použít dosazovací metoda ani Jacobián.

Nechť f a g_1, \ldots, g_k jsou funkce r proměnných, k<r. Vázané extrémy funkce f při vazebních podmínkách $g_1(x_1, \ldots, x_r) = 0, \ldots, g_r(x_1, \ldots, x_r) = 0$ můžeme najít pomocí metody Lagrangeových multiplikátorů následujícím způsobem:

- (1) Vytvoříme Lagrangeovu funkci, která je definovaná vztahem $L(x_1, \dots, x_r' = f(x_1, \dots, x_r) + \lambda_1 g_1(x_1, \dots, x_r) + \dots + \lambda_k g_k(x_1, \dots, x_r), \, kde \, lambdy \,$ jsou tzv. Lagrangeovy multiplikátory.
- (2) Podezřelé body z vázaného extrému funkce f najdeme řešením soustavy

$$\partial_1 L(x_1, \dots, x_r) = 0$$

$$\partial_r L(x_1, \dots, x_r) = 0$$

$$g_1(x_1, \dots, x_r) = 0$$

$$g_k(x_1, \dots, x_r) = 0$$

Kde $\partial_i L$ je parciální derivace Lagrangeovy funkce podle $x_i (i = 1, ..., r)$

(3) Pokud je množina bodů vyhovující vazebním podmínkám kompaktní, dokončíme řešení pomocí zobecněné Weierstrassovy věty, jinak můžeme použít odpovídající postačující podmínku.

VÝPOČET ABSOLUTNÍCH EXTRÉMŮ SPOJITÉ FUNKCE NA KOMPAKTNÍ MNOŽINĚ S VNITŘNÍMI BODY

Extrémy spojité funkce na neprázdné kompaktní množině existují podle zobecněné Weierstrassovy věty. Postup je následující:

- (a) Najdeme podezřelé body z extrému uvnitř množiny (nutná podmínka pro lokální extrém funkce dvou proměnných)
- (b) Najdeme podezřelé body z extrému na hranici množiny (dosazovací metoda, nutná podmínka pro vázaný extrém, metoda Lagrangeových multiplikátorů)
- (c) Vypočteme funkční hodnoty ve všech podezřelých bodech a vybereme z nich největší a nejmenší.

DIFERENCIÁLNÍ ROVNICE

DIFERENCIÁLNÍ ROVNICE N-TÉHO ŘÁDU

Rovnice pro neznámou funkci y jedné reálné proměnné x, ve které se vyskytují také její derivace $y', y'', ..., y^{(n)}$ se nazývá **diferenciální rovnice n-tého řádu**.

OBECNÉ A PARTIKULÁRNÍ ŘEŠENÍ

Obecné řešení = všechna řešení diferenciální rovnice

Partikulární řešení = konkrétní řešení vzhledem k počáteční podmínce

POČÁTEČNÍ PODMÍNKY

Z vět o obecném řešení lineární diferenciální rovnice a zkrácené lineární diferenciální rovnice plyne, že (Ln) má nekonečně mnoho řešení. Pro rovnice tohoto typu platí: Jestliže k lineární diferenciální rovnici n-tého řádu přidáme tzv. **počátečních podmínek**, pak řešení této rovnice je jednoznačné.

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE N-TÉHO ŘÁDU S KONSTATNNÍMI KOEFICIENTY

Nechť $p_1, ..., p_n$ jsou reálná čísla, q je spojitá funkce v otevřeném intervalu J. Rovnice

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_{n-1} y' + p_n y = q(x)$$

se nazývá lineární diferenciální rovnice n-tého řádu s konstantními koeficienty.

Rovnice $y^{(n)}+p_1y^{(n-1)}+\cdots+p_{n-1}y'+p_ny=0$ je tzv. **zkrácená lineární diferenciální** rovnice (Zn)

VĚTA O OBECNÉM ŘEŠENÍ LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE

Obecné řešení lineární diferenciální rovnice je součet partikulárního řešení této rovnice a obecného řešení odpovídající rovnici zkrácené.

Pozn. Můžeme ji psát jako Obecné řešení (Ln) = partikulární řešení (Ln) + obecné řešení (Zn)

VĚTA O OBECNÉM ŘEŠENÍ ZKRÁCENÉ LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE

Obecné řešení zkrácené lineární rovnice n-tého řádu (Zn) je lineární kombinace lineárně nezávislých řešení této rovnice.

ZKRÁCENÁ LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE PRVNÍHO ŘÁDU

Zkrácená lineární diferenciální rovnice prvního řádu má tvar y'+py=0, $tj.\ y'=-py$. Řešením rovnice lze najít ve tvaru $y=e^{\lambda x}$, $kde\ \lambda$ je konstanta. Po dosazení do rovnice $y'=\lambda.e^{\lambda x}$ dostaneme $e^{\lambda x}(\lambda+p)=0$. Odtus $\lambda+p=0$. Tato rovnice se **nazývá charakteristická** rovnice diferenciální rovnice. Rovnice má jediné řešení $\lambda=-p$, takže $y=e^{-px}$. Řešením je tedy $y=c.e^{-px}$.

Pozn. Na kurzu jsme pro tento tvar měli vzoreček $y=c.e^{\lambda x}$. Je to stejné, protože z rovnice $\lambda+p=0 \to \lambda=-p$.

ZKRÁCENÁ LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE DRUHÉHO ŘÁDU

Zkrácená lineární diferenciální rovnice druhého řádu má tvar $y'' + p_1 y' + p_2 y = 0$, tj. y' = -py. Řešením rovnice lze najít ve tvaru $y = e^{\lambda x}$, $kde \lambda$ je komplexní konstanta. Máme $y' = \lambda . e^{\lambda x}$, $y'' = \lambda^2 . e^{\lambda x}$. Po dosazení do rovnice dostaneme $e^{\lambda x}$. $(\lambda^2 + p_1 \lambda + p_2) = 0$. Odtud $\lambda^2 + p_1 \lambda + p_2 = 0$. To je charakteristická rovnice diferenciální rovnice. Rovnice je kvadratická, protože budeme rozlišovat 3 typy:

(a) **Diskriminant charakteristické rovnice D>0** – Rovnice má dva reálné kořeny λ_1, λ_2 , takže máme funkce $y_1 = e^{\lambda_1 x}, y_2 = e^{\lambda_2 x}$.

- o Lema: Má- li charakteristická rovnice diferenciální rovnice dva reálné kořeny λ_1,λ_2 , pak obecné řešení diferenciální rovnice je $y=c_1e^{\lambda_1x}+c_2e^{\lambda_2x}$, kde c_1,c_2 jsou reálná čísla.
- (b) **Diskriminant charakteristické rovnice** D=0 Diskriminant má jeden reálný dvojnásobný kořen $\lambda_{1,2}=\lambda$, takže funkce $y_1=e^{\lambda x}$ je řešením rovnice. Dosazením do rovnice dostaneme další řešení $y_2=xe^{\lambda x}$.
 - o Lema: Má- li charakteristická rovnice diferenciální rovnice jeden reálný dvojnásobní kořen λ , pak obecné řešení diferenciální rovnice je $y=c_1e^{\lambda x}+c_2xe^{\lambda x}$, kde c_1,c_2 jsou reálná čísla.
- (c) **Diskriminant charakteristické rovnice D<0** Rovnice má dva komplexně sdružené kořeny $\lambda_{1,2}=a\pm bi$. Dosazením dokážeme, že funkce $y_1=e^{ax}cosbx$, $y_2=e^{ax}sinbx$ jsou řešením rovnice.
 - o Má- li charakteristická rovnice diferenciální rovnice dva komplexně sdružené kořeny $a \pm ib$, pak obecné řešení diferenciální rovnice je $y = e^{ax} cosbx + e^{ax} sinbx$, kde c_1 , c_2 jsou reálná čísla.

ŘEŠENÍ ROVNICE S KONSTANTNÍMI KOEFCIENTY

K nalezení obecného řešení lineární diferenciální rovnice s konstantními koeficienty potřebujeme kromě zkráceného řešení ještě najít partikulární řešení rovnice.

• Lema: Má-li pravá strana lineární rovnice s konstantními koeficienty tvar $q(x)=e^{\rho x}$. Pm(x), $kde\ \rho \in R$ a Pm je polynom stupně m, pak partikulární řešení se dá najít ve tvaru $y=e^{\rho x}$. x^r . $(a_m x^m+\cdots+a_1 x+a_0)$ kde r je násobnost čísla ρ jako kořene příslušné charakteristické rovnice.

ZDROJE

Klůfa, J. (2016). Matematika pro Vysokou školu ekonomickou. Praha: Ekopress

