R Commands for Linear Regression

R Commands [Linear Regression]

File: slr.csv and mtcars.csv

Sr No	Purpose	Command
1	Import file slr.csv	
2	Plot scatter diagram	> plot(slr\$Advt, slr\$Sales,)
3	Find correlation	> cor(slr\$Advt, slr\$5ales) [1] 0.9491666
4	Build regression model and find summary	> mod = lm(slr\$Sales~slr\$Advt) > summary(mod)
5	Find predicted values	> predict(mod)
6	Insert predicted values in data file	<pre>> pred = predict(mod) > slr\$predicted = NA > slr\$predicted = pred</pre>
7	Find error terms	> slr\$error = mod\$residuals
8	Install package 'car' for finding Durbin Watson Statistics	> library(car) > dwt(mod)
9	Add best fit line in scatter plot	<pre>> plot(slr\$Advt, slr\$Sales, abline(lm(slr\$Sales~slr\$Advt), col = "red"))</pre>
10	Check assumption 1: Linearity	<pre>> plot(slr\$Advt, slr\$error, xlab="Advertisement", ylab = "Residuals", main = "Linearity")</pre>
11	Check assumption 1: Constant Error Variance	<pre>> plot(slr\$predicted, slr\$error, xlab="Predicted", ylab = "Residuals", main = "Constant Error Variance") > plot(slr\$observation.no, slr\$error, xlab="observation")</pre>
12	Check assumption 3: Independence of Error	<pre>> plot(slr\$observation.no, slr\$error, xlab="observation No", ylab = "Residuals", main = "Independence of Error")</pre>
13	Check assumption 4: Normality	<pre>> hist(slr\$error, xlab = "Residuals", main = "Histogram of Residuals", col="yellow")</pre>

R Commands for Linear Regression

14	Save predicted values and error terms	> slr1<-slr
	in a new file slr1	> head(slr1)
		Observation.no Advt Sales predicted error
		1 1 92 930 902.3965 27.60349
		2 2 94 900 940.5374 -40.53740
		3 3 97 1020 997.7487 22.25127
		4 4 98 990 1016.8192 -26.81917
		5 5 100 1100 1054.9601 45.03994
		6 6 102 1050 1093.1009 -43.10094
		<pre>> write.csv(slr1,"C:/Users/inurture1/Desktop/slr1.csv")</pre>
15	Multiple Regression	> mtcars <- read.csv("C:/Users/inurture1/Desktop/mtcars.csv")
	Import mtcars.csv	> View(mtcars)
	Install package 'car' then call 'car'	> install.packages("car")
		> library(car)
16	Build multiple regression model	> fit<- lm(mpg~ disp+hp+wt+drat, data = mtcars)
		> fit
17	Find summary	> summary(fit)
18	Find variance inflation factor	> vif(fit)
		disp hp wt drat
19	Find vif>5	8.209402 2.894373 5.096601 2.279547 > vif(fit)>5
13	FIIIU VII/3	disp hp wt drat
		TRUE FALSE TRUE FALSE