

STA 5106 Computational Methods in Statistics I

Department of Statistics
Florida State University

Class 11 October 1, 2019

About Homework

- independently finish your own (but discussion is allowed).
- include all Matlab (and Python) code
- label each figure
- provide detailed procedure, not just the final result

About Python

- This class focuses on computational methods and we illustrate their practical use with Matlab. Python is optional.
- I give Python example code, which provides most information for the homework.
- Students who want to program well should learn more by themselves.
- Tons of tutorials can be found online: e.g.
 - https://docs.python.org/3/tutorial/index.html
 - https://www.youtube.com/watch?v=HBxCHonP6Ro&list=PL6gx4Cwl9DG AcbMi1sH6oAMk4JHw91mC_

3.7 Expectation Maximization (EM) Algorithm

Likelihood Maximization

- So far we have looked at maximizing likelihood for parameter θ given an observation $x (= \{x_1, ..., x_n\})$ and a likelihood function $f(x|\theta)$.
- In such cases it is assumed that the maximizer exists and the techniques described earlier can solve of it.
- However, in some problems the full observation may not be provided and that makes the maximization a difficult problem.
- Let the data vector x be made up of two components $x = \{x_o, x_m\}$ where x_o denotes the observed part of x and x_m stands for the missing part.

Likelihood Maximization

• Assume that given the full data x, it is possible to solve for the maximum likelihood estimate of θ but goal now is to solve for the maximizer:

$$\hat{\theta} = \arg\max_{\theta} f(x_o \mid \theta)$$

• Expectation Maximization (EM) algorithm is beneficial mostly where $f(x|\theta)$ is easier to maximize compared to maximizing $f(x_o|\theta)$.

Example 4 (Mixture of Gaussians)

Let *Y* be a real-valued random variable such that $Y = Y^{(j)}$ with probability α_i , where

$$Y^{(j)} \sim N(\mu_j, \sigma_j^2)$$
 and $\sum_i \alpha_j = 1$.

The goal is to use independent observations of Y, say Y_1 , Y_2 , . . . , Y_n , to estimate the parameters α_i , μ_i , σ_i^2 , for all j.

To simplify this discussion let the number of densities in the mixture be two, and *Y* becomes a mixture of two Gaussian random variables.

We seek a maximum likelihood estimate of the unknowns

$$\theta = (\mu_1, \sigma_1^2, \alpha_1, \mu_2, \sigma_2^2, \alpha_2)$$

• The likelihood function is given by:

$$f(Y \mid \theta) = \prod_{i=1}^{n} f(Y_i \mid \theta) = \prod_{i=1}^{n} [\alpha_1 f_1(Y_i \mid \mu_1, \sigma_1^2) + \alpha_2 f_2(Y_i \mid \mu_2, \sigma_2^2)]$$

where f_1 and f_2 are the two normal density functions with appropriate parameters.

• The log-likelihood function is given by:

$$\log f(Y \mid \theta) = \sum_{i=1}^{n} \log[\alpha_{1} f_{1}(Y_{i} \mid \mu_{1}, \sigma_{1}^{2}) + \alpha_{2} f_{2}(Y_{i} \mid \mu_{2}, \sigma_{2}^{2})]$$

• Solving for $\hat{\theta} = \arg \max_{\theta} \log f(Y | \theta)$ is difficult because of the summation inside the log function.

- Consider a different situation: in addition to Y_i 's one also observes a label l_i that equals one if $Y_i \sim f_1$ and two if $Y_i \sim f_2$.
- In other words, l_i tells us what density Y_i came from. Form a larger observation (Y, l), where $l = (l_1, l_2, \ldots, l_n)$, and derive the log-likelihood function:

$$\begin{split} \log f(Y, l \mid \theta) &= \sum_{i=1}^{n} \log f(Y_{i}, l_{i} \mid \theta) \\ &= \sum_{i=1}^{n} \log[f(Y_{i} \mid l_{i}, \theta) P(l_{i} \mid \theta)] \\ &= \sum_{i:l_{i}=1} \log[\alpha_{1} f_{1}(Y_{i} \mid \mu_{1}, \sigma_{1}^{2})] + \sum_{i:l_{i}=2} \log[\alpha_{2} f_{2}(Y_{i} \mid \mu_{2}, \sigma_{2}^{2})] \end{split}$$

- Now, the data breaks into two groups: one from f_1 and the other from f_2 .
- This example illustrates a situation where the log-likelihood function for the observed data $\log(f(Y|\theta))$ is rather difficult to maximize, while the same function for a complete data, assuming additional data in form of the labels l, is much easier to maximize.
- The EM algorithm is applied in such situations where the additional data, called the missing data, is not available but could have greatly simplified the optimization problem.

- Our goal is to construct a sequence $\{\theta_k\}$ such that: (i) $f(x_o|\theta_{k+1})$ $\geq f(x_o|\theta_k)$, and (ii) with some additional conditions this sequence converges to the estimator $\hat{\theta}$.
- Rearrange the equation: $f(x|\theta) = f(x_0|\theta) f(x_m|x_0, \theta)$ to write:

$$f(x_o \mid \theta) = \frac{f(x \mid \theta)}{f(x_m \mid x_o, \theta)}$$

Taking log on both sides, we get

$$\log f(x_o \mid \theta) = \log f(x \mid \theta) - \log f(x_m \mid x_o, \theta)$$

Next, take expectation on both sides with respect to the density function $f(x_m|x_o, \theta_k)$, for some θ_k .

- Given x_o , the left hand side is a constant and remains same.
- Then $\log f(x_o \mid \theta)$ $= E[\log f(x \mid \theta) \mid \theta_{\iota}, x_{o}] - E[\log f(x_{m} \mid \theta, x_{o}) \mid \theta_{\iota}, x_{o}]$ $=Q(\theta | \theta_{k}, x_{0}) - H(\theta | \theta_{k}, x_{0})$ where Q and H are defined by above equations.
- Considering the second term first, we focus on the difference:

$$H(\theta | \theta_{k}, x_{o}) - H(\theta_{k} | \theta_{k}, x_{o})$$

$$= E[\log f(x_{m} | \theta, x_{o}) | \theta_{k}, x_{o}] - E[\log f(x_{m} | \theta_{k}, x_{o}) | \theta_{k}, x_{o}]$$

$$= E[\log \frac{f(x_{m} | \theta, x_{o})}{f(x_{m} | \theta_{k}, x_{o})} | \theta_{k}, x_{o}]$$

$$\leq \log E\left[\frac{f(x_{m}|\theta, x_{o})}{f(x_{m}|\theta_{k}, x_{o})} | \theta_{k}, x_{o}\right]$$

$$= \log\left[\int \frac{f(x_{m}|\theta, x_{o})}{f(x_{m}|\theta_{k}, x_{o})} f(x_{m}|\theta_{k}, x_{o}) dx_{m}\right] = 0$$

- The inequality comes from the Jensen's inequality which says that $E[\log(Y)] \leq \log(E[Y])$ since log is a concave function.
- This implies that $H(\theta|\theta_k, x_0) \le H(\theta_k|\theta_k, x_0)$ for any θ .

Therefore,

$$\begin{split} & \log f(x_{o} \mid \theta_{k+1}) - \log f(x_{o} \mid \theta_{k}) \\ & = [Q(\theta_{k+1} \mid \theta_{k}, x_{o}) - H(\theta_{k+1} \mid \theta_{k}, x_{o})] - [Q(\theta_{k} \mid \theta_{k}, x_{o}) - H(\theta_{k} \mid \theta_{k}, x_{o})] \\ & = [Q(\theta_{k+1} \mid \theta_{k}, x_{o}) - Q(\theta_{k} \mid \theta_{k}, x_{o})] - [H(\theta_{k+1} \mid \theta_{k}, x_{o}) - H(\theta_{k} \mid \theta_{k}, x_{o})] \end{split}$$

We set

$$\theta_{k+1} = \arg\max_{\theta} Q(\theta \mid \theta_k, x_o)$$

• Then, the first term by definition is non-negative, and we have already shown that the second term is non-positive. Together, these two conditions imply that

$$\log f(x_o \mid \theta_{k+1}) \ge \log f(x_o \mid \theta_k)$$

Algorithm

Algorithm 30 (EM Algorithm)

Choose an initial value for θ_0 and set k = 0.

1. Expectation Step: Compute

$$Q(\theta \mid \theta_k, x_o) = E[\log f(x_o, x_m \mid \theta) \mid \theta_k, x_o].$$

2. Maximization Step: Set

$$\theta_{k+1} = \arg\max_{\theta} Q(\theta \mid \theta_k, x_o).$$

3. Check convergence. If not converged, set k = k + 1 and go to Step 1.