Tutorial #3

CS2800: Design and Analysis of Algorithms

Yadu Vasudev yadu@cse.iitm.ac.in IIT Madras

Problem: Search for an element x in an $n \times n$ array A whose rows and columns are sorted in the increasing order

Problem: Search for an element x in an $n \times n$ array A whose rows and columns are sorted in the increasing order

Method 1: Linear search on the array

• Time complexity: $O(n^2)$

1

Problem: Search for an element x in an $n \times n$ array A whose rows and columns are sorted in the increasing order

Method 1: Linear search on the array

• Time complexity: $O(n^2)$

Method 2: Binary search one row at a time

• Time complexity: $O(n \log n)$

1

Problem: Search for an element x in an $n \times n$ array A whose rows and columns are sorted in the increasing order

- Method 1: Linear search on the array
 - Time complexity: $O(n^2)$

Method 2: Binary search one row at a time

- Time complexity: O(n log n)
- **Method 3**: Compare A[n, 1] and x
 - If x = A[n, 1], we have found the element
 - If x < A[n, 1], then x < A[n, i] for all i and we can discard the last row
 - If x > A[n, 1], then x > A[i, 1] for all i and we can discard the first column

Observation: After each query, we have reduced our search space by one row or one column. So total running time is O(n)

Problem: An inversion in an array A is a pair (i,j) such that i < j and A[i] > A[j]

Problem: An inversion in an array A is a pair (i,j) such that i < j and A[i] > A[j]

• Exercise: Show that the number of swaps performed by Bubble-sort is equal to the number of inversions

Problem: An inversion in an array A is a pair (i,j) such that i < j and A[i] > A[j]

- Exercise: Show that the number of swaps performed by Bubble-sort is equal to the number of inversions
- A simple algorithm: For each element, count all the inversions it is part of running time of $O(n^2)$

Problem: An inversion in an array A is a pair (i, j) such that i < j and A[i] > A[j]

- $A[1] \le A[2] \le A[3] \le ... \le A[n/2]$
- $A[n/2 + 1] \le A[n/2 + 2] \le ... \le A[n]$

Problem: An inversion in an array A is a pair (i,j) such that i < j and A[i] > A[j]

- $A[1] \le A[2] \le A[3] \le ... \le A[n/2]$
- $A[n/2 + 1] \le A[n/2 + 2] \le ... \le A[n]$

Claim

- If A[i] > A[n/2 + j], then all the pairs (k, n/2 + j) such that $i \le k \le n/2$ are inversions
- If A[i] < A[n/2 + j], then there are no inversions of the form (i, k) for $n/2 + j \le k \le n$

Problem: An inversion in an array A is a pair (i,j) such that i < j and A[i] > A[j]

- $A[1] \le A[2] \le A[3] \le ... \le A[n/2]$
- $A[n/2 + 1] \le A[n/2 + 2] \le ... \le A[n]$

Claim

- If A[i] > A[n/2 + j], then all the pairs (k, n/2 + j) such that $i \le k \le n/2$ are inversions
- If A[i] < A[n/2 + j], then there are no inversions of the form (i, k) for $n/2 + j \le k \le n$

Algorithm idea: Merge the sorted arrays A[1, 2, ..., n/2] and A[n/2 + 1, ..., n] while counting the number of inversions using the claim above

• Running time: T(n) = 2T(n/2) + O(n)

Problem 3: Closest pair in other metrics

Problem: How does the algorithm for closest pair change when the distance metric changes? Specifically, consider the following metrics:

- L_1 metric: $d_1((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|$
- L_{∞} metric: $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\}$

3

Problem 3: Closest pair in other metrics

Problem: How does the algorithm for closest pair change when the distance metric changes? Specifically, consider the following metrics:

- L_1 metric: $d_1((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|$
- L_{∞} metric: $d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 x_2|, |y_1 y_2|\}$

The basic algorithmic idea works for all the metrics. The only thing that changes is the number of points within the $2\delta \times 2\delta$ square that has to be considered during the conquer-phase of the algorithm.

Exercise: For each of the metrics, find the number of points that can lie in a $2\delta \times 2\delta$ square.

Takeaway: Constants change, asymptotics will remain the same

Problem 4: Alternate algorithm for closest pair

Problem: Consider the following algorithm

- Choose the leftmost point *p* according to *x*-coordinate.
- Recursively find the closest pair and the distance of the remaining n - 1 points
- For the point p, look at the position of p in the sorted order using binary search, and search within its neighborhood

Running time: $T(n) = T(n-1) + O(\log n)$

Problem 5: Minkowski sum

Problem: Two sets A and B of n integers each. A + B is defined as $\{x + y \mid x \in A, y \in B\}$. Find |A + B|.

Problem 5: Minkowski sum

Problem: Two sets A and B of n integers each. A + B is defined as $\{x + y \mid x \in A, y \in B\}$. Find |A + B|.

Method 1:

- Compute x + y for each $x \in A$ and $y \in B$ (at most n^2 of them)
- Sort this set. Traverse the sorted list, counting elements and avoiding repetition

Running time: $O(n^2 \log n)$

Problem 5: Minkowski sum

Problem: Two sets A and B of n integers each. A + B is defined as $\{x + y \mid x \in A, y \in B\}$. Find |A + B|.

Method 2:

- Construct a characteristic vector $S_A[-M, ..., M]$ where $S_A[i] = 1$ iff $i \in A$. Similarly $S_B[-M, ..., M]$
- Verify that $S_A * S_B[i]$ is non-zero iff $\exists x \in A$ and $y \in B$ such that x + y = i
- Now read the array $S_A * S_B$ and count the number of non-zero values

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 1:

 For each number i, find the individual bits and invert them requires log n operations/number

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 1:

- For each number i, find the individual bits and invert them requires log n operations/number
- Operations on the numbers like addition and multiplication are O(1) - can you use them instead of bit-operations

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 1:

- For each number i, find the individual bits and invert them requires log n operations/number
- Operations on the numbers like addition and multiplication are O(1) - can you use them instead of bit-operations

Running time: $O(n \log n)$

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 2: Understand the recursive structure of the permutation

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n-1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 2: Understand the recursive structure of the permutation

$$n = 4$$
: $(0, 1, 2, 3) \rightarrow (0, 2, 1, 3)$
 $n = 8$: $(0, 1, 2, 3, 4, 5, 6, 7) \rightarrow (0, 4, 2, 6, 1, 5, 3, 7)$

Can you generalize the statement and prove it?

Problem: The bit reversal permutation π of 1, 2, ..., n is the permutation where $\pi(i)$ is the integer obtained by reversing the bit-representation of i. Given A[0, 1, ..., n – 1], compute $A[\pi(0), \pi(1), ..., \pi(n-1)]$.

Method 2: Understand the recursive structure of the permutation

$$n = 4: (0, 1, 2, 3) \rightarrow (0, 2, 1, 3)$$

$$n = 8: (0, 1, 2, 3, 4, 5, 6, 7) \rightarrow (0, 4, 2, 6, 1, 5, 3, 7)$$

Can you generalize the statement and prove it?

Claim: Let π be the bit reversal permutation on the set $S = \{0, 1, ..., n-1\}$. Consider the set $S' = \{0, 1, ..., 2n-1\}$. The bit reversal permutation π' on S' is given by

$$\pi'(i) = \begin{cases} 2\pi(i) & \text{if } i \le n-1, \\ 2\pi(i-n)+1 & \text{if } i \ge n \end{cases}$$