An Analysis of Smart Voting in Liquid Democracy

Giannis Tyrovolas

 $March\ 17,\ 2022$

Contents

1	Preliminaries	2
	1.1 Ballots	2
	1.2 Unravellings	2
2	Complexity Results	5
	2.1 Function classes strictly larger than LIQUID	5
	2.2 For function classes equal to LIQUID	11
3	Axiomatisation	12
4	Proposals	15

1 Preliminaries

1.1 Ballots

An election consists of a finite set of voters, voting on a finite set of issues. For each issue there is a finite set of alternatives. A special alternative is the *abstention* represented by *. Finally, there is an aggregation function that decides what the result of the election is. Formally:

Definition 1.1 (Election). An election consists of a tuple $\langle N, D, r \rangle$ where $N = \{1, ..., n\}$ is a finite non-empty set of voters. The set D is a finite set with $|D| \geq 1$. The function $r: D^n \longrightarrow D$ is a resolute aggregation function that inputs the votes of every voter and outputs the outcome of the election.

Throughout this work we will focus on binary issues. That is because most of our hardness results hold for binary issues and we can easily extend them to n-ary issues. Therefore, unless otherwise stated we will consider $D = \{0, 1\}$.

The model we will consider allows each voter to submit a smart ballot. A smart ballot is a preference list of smart votes. Each smart vote is a function whose domain is a subset of N. A special requirement is that the final preference in the preference list is a direct vote on an alternative in D. Formally:

Definition 1.2 (Smart Ballots). A smart ballot of an agent a is an ordering $((S^0, F^0) > ... > (S^{k-1}, F^{k-1}) > d)$ where $k \geq 0$. Each S^h for $h \leq k$ is a subset of N and $F^h: D^{S^h} \longrightarrow D$ is a resolute non-trivial aggregation function. We also have that $d \in D$.

Further when relevant we will consider F^k to be the constant function with output d. Now, in most cases the sets S^h are implicit and we will drop any mention of them. That is supported by the fact that we will treat two functions F, G as identical if they are extensionally equal. Additionally we will disallow a voter to delegate to themselves. This is formalised by the following definition:

Definition 1.3 (Valid Smart Ballot). A valid smart ballot of an agent a is a smart ballot B_a such that for all $0 \le s < t \le k$ F^s is not equivalent to F^t . Additionally for all $0 \ge t \ge k$, $a \notin S_t$.

We collect the n smart ballots into a smart profile **B**.

Throughout this work it will be meaningful to restrict the functions agents can delegate from. The most notable classes of functions we will consider are:

- Direct delegations to voter v denoted by $LIQUID = \{id_v \mid v \in N\}$.
- Boolean functions in conjunctive normal form denoted by BOOL.

1.2 Unravellings

Now that we have defined each agent's preferences we need to formalise how to make sense of these preferences. To do so, we use *unravelling procedures* to determine each agent's vote.

Definition 1.4 (Unravelling Procedure). An unravelling procedure is any computable function \mathcal{U} where $\mathbf{B} \mapsto^{\mathcal{U}} \mathbf{d}$ with $\mathbf{d} \in D^n$.

Now, every agent would like to know which preference level was used to compute their vote. To do so we introduce the notion of a certificate:

Definition 1.5 (Certificate). A certificate $\mathbf{c} \in \mathbb{N}^n$ for a profile **B** is a vector where for each $a \in N$ such that $B_a = (B_a^0 > \ldots > B_a^{k_a})$, the entry $c_a \in [0, k_a]$ corresponds to the preference level for agent a.

Until now we have not actually used the agents' preferences. So, we need to introduce the concept of a consistent certificate. Consistent certificates are certificates where the vote of each agent is determined by the votes of other agents using the functions in their smart ballots. Formally:

Definition 1.6 (Consistent certificate). For a profile **B**, a certificate **c** is *consistent* if there is an ordering $\sigma: N \longrightarrow N$ of agents which starting from vector $\mathbf{X}^0 = \{\Delta\}^n$ with placeholder values Δ for all agents, iteratively constructs an outcome vector of direct votes $\mathbf{X} \in D^n$ as follows for $\sigma(a) = z \in [1, n]$:

$$X_a^z = F_a^{\mathbf{c}_a}(\mathbf{X}^{z-1} \upharpoonright_{S_a^{\mathbf{c}_a}}).$$

Where X_a represents agent a's entry in **X**. The restriction of vector **X** in S, written as **X** \upharpoonright_S , is a vector indexed by S where for each $s \in S$, $(\mathbf{X} \upharpoonright_S)_s = X_s$.

Now what allows the computation of F on a partial input is the concept of a necessary winner. A necessary winner occurs when the available input of F is enough to decide the output of F. For example, Maj(1,1,a) will always resolve to 1 regardless of agent a's vote. So, in this case the necessary winner is 1.

Now, we are only interested in consistent certificates as these are the ones that respect the agents' votes. We will denote the set of consistent certificates of a profile \mathbf{B} as $C(\mathbf{B})$.

It is good that there is only one way to unravel consistent certificates. The following proposition is proven in Grandi et al.

Proposition 1.7. If a consistent certificate \mathbf{c} can be given by two orderings σ and σ' of the agents, then the orderings yield the same outcome $X_{\mathbf{c}} \in D^n$.

Consequently, when we refer to consistent certificates we do not need to specify the votes of each agent. Now that we have settled the framework it's time to consider some "good" certificates. There is a very natural "cost" in this scenario and that is using a lot of the later preferences of each agent. So, we can set two very natural ways of minimising this cost. We can attempt to minimise the sum of the cost or in a more egalitarian setting attempt to minimise the maximum of the cost. Formally:

Definition 1.8 (MinSum). For a given profile **B**, the MINSUM unravelling procedure is defined as:

$$MinSum(\mathbf{B}) = \left\{ X_{\mathbf{c}} \mid \arg\min_{\mathbf{c} \in C(\mathbf{B})} \sum_{i=1}^{n} c_i \right\}$$

Definition 1.9 (MinMax). For a given profile **B**, the MinMax unravelling procedure is defined as:

$$\operatorname{MinMax}(\mathbf{B}) = \left\{ X_{\mathbf{c}} \mid \arg \min_{\mathbf{c} \in C(\mathbf{B})} \max(\mathbf{c}) \right\}$$

A natural extension of MINMAX is that of MINMAXSUM that selects from the MINMAX certificates the ones with minimum sum. Formally:

Definition 1.10 (MinMaxSum). For a given profile **B**, the MinMaxSum unravelling procedure s defined as:

$$MINMAXSUM(\mathbf{B}) = \left\{ X_{\mathbf{c}} \mid \arg\min_{\mathbf{c} \in minC(\mathbf{B})} \sum_{i=1}^{n} c_i \right\}$$

where $minC(\mathbf{B})$ is the set of consistent certificates that minimise the maximum c_i .

Figure 1: Setting up the variables voters

2 Complexity Results

2.1 Function classes strictly larger than LIQUID

Definition 2.1 (BOUNDEDMINSUM). Let BOUNDEDMINSUM $_{\mathcal{F}}$ be the decision problem with input a target constant M and a smart profile \mathbf{B} which uses functions in the class \mathcal{F} . The YES instances are those with a consistent certificate \mathbf{c} with $\sum_i c_i \leq M$.

Definition 2.2 (BOUNDEDMINMAX). Let BOUNDEDMINMAX_F be the decision problem with input a target constant M and a smart profile \mathbf{B} which uses functions in the class \mathcal{F} . The YES instances are those with a consistent certificate \mathbf{c} with $\max(\mathbf{c}) \leq M$.

Definition 2.3 (BOUNDEDMINMAXSUM). Let BOUNDEDMINMAXSUM \mathcal{F} be the decision problem with input target constants M, S and a smart profile \mathbf{B} which uses functions in the class \mathcal{F} . The YES instances are those with a consistent certificate \mathbf{c} with $\max(\mathbf{c}) \leq M$ and $\sum_i c_i \leq S$.

Let \vee the binary logical OR and \wedge the binary logical AND. Then:

Proposition 2.4 (Hardness of BOUNDEDMINSUM). Suppose $LIQUID \cup \{\lor, \land\} \subseteq \mathcal{F}$ and that every voter is allowed only 1 non-constant delegation. Then BOUNDEDMINSUM \mathcal{F} is NP-hard.

Proof. We reduce from the NP-hard problem of 3-SAT. Let $\varphi = \bigwedge_{i=1}^k t_i$ a 3-SAT instance on boolean variables x_1, \ldots, x_n with $t_i = l_a \vee l_b \vee l_c$ where l_a, l_b, l_c correspond to literals of variables x_a, x_b, x_c or their negations.

We first define constant voter <u>zero</u>, that always votes for 0. So that $B_{zero} = (0)$.

For each variable x_i we construct a voter x_i with voting profile $B_{x_i} = (\underline{\text{zero}} > 1)$. These are drawn in Figure 1 We denote the first preferences as full lines and second preferences as dashed lines.

We then construct gadgets for each term t_h . These gadgets will have the property that they incur no additional cost if t_h is satisfied and a cost of at least one if t_h is not satisfied. We prove this for the four different structures of a term t_h .

Case $x_i \vee x_j \vee x_k$: We construct fresh voters t_h , a, b, and c with smart profiles:

$$B_a = (t_h > 0)$$

$$B_b = (x_i \lor a > 0)$$

$$B_c = (x_j \lor b > 0)$$

$$B_{t_h} = (x_k \lor c > 0).$$

Now, we analyse when first preferences of the additional voters can be resolved without producing cycles. If $x_i = 1$ then $x_i \lor a = 1$ and b resolves to vote 1 using the first preference. Hence, $b \lor x_j = 1$ and c resolves to 1 using first preference. Similarly, t_h resolves to 1 and then a resolves to 1 using only first preferences. Similarly, if $x_j = 1$ or $x_k = 1$, agents c and t_h respectively will resolve to 1 and so all fresh agents will resolve their votes using only first preferences.

Now, suppose $x_i = x_j = x_k = 0$. Suppose there is an ordering $\sigma \colon N \longrightarrow \{1, \dots, m\}$ that gives rise to a consistent certificate using only the first preferences of agents a, b, c, t_h . Then, $\sigma(t_h) < \sigma(a)$ as a needs t_h to be resolved. Further, $\sigma(c) < \sigma(t_h)$ as $x_k = 0$ and so c determines the clause $x_k \lor c$. Similarly, $\sigma(b) < \sigma(c)$ and $\sigma(a) < \sigma(b)$. This leads to the contradiction that $\sigma(a) < \sigma(a)$. Therefore, no such ordering exists and if $x_i = x_j = x_k = 0$, one of the fresh voters a, b, c, t_h will need to incur a cost of at least 1.

Case $\overline{x_i} \vee x_j \vee x_k$: We construct additional voters t_h , a, b and c, with smart profiles:

$$B_a = (t_h > 0)$$

$$B_b = (x_i \land a > 0)$$

$$B_c = (x_j \lor b > 0)$$

$$B_{t_h} = (x_k \lor c > 0).$$

This is demonstrated by Figure 2a.

Now, we analyse when first preferences of the additional voters can be resolved without producing cycles. If $x_k = 1$ then t_h can resolve to 1 and so will a. As x_i and a are set to a value b can resolve its first preference. As x_j and b are set, c can resolve its first delegation as well. Similarly if $x_j = 1$ then c is immediately resolved to 1 and so t_h is resolved. Hence a and then b can be resolved. Similarly, if $x_i = 0$ $x_i \wedge a = 0$ and so b resolves to 0 and all additional voters are resolved.

Now, suppose $x_i = 1, x_j = 0, x_k = 0$. Then t_h cannot immediately resolve the logical OR as it is dependent on the vote of c, similarly c is waiting for b to decide, and b is waiting for a. But a is waiting for t_h to decide. There is no way to resolve this cycle and so one of the additional voters we've introduced will have to vote for their second preference. This will incur an additional cost of at least 1.

Case $\overline{x_i} \vee \overline{x_j} \vee x_k$: The proof is symmetrical for this case. We need to switch some ANDs to ORs and vice versa but other than that it is identical. For completeness we show the resulting gadget in Figure 2b. This is the result of a smart profile of:

Figure 2: Gadgets for MINSUM

$$B_a = (t_h > 0)$$

$$B_b = (x_k \lor a > 0)$$

$$B_c = (x_j \land b > 0)$$

$$B_{t_h} = (x_i \land c > 0)$$

Case $\overline{x_i} \vee \overline{x_j} \vee \overline{x_k}$: The proof is symmetrical to the case of $x_i \vee x_j \vee x_k$. We only need to switch \vee to \wedge . This is achieved by the following smart ballot:

$$B_a = (t_h > 0)$$

$$B_b = (x_i \land a > 0)$$

$$B_c = (x_j \land b > 0)$$

$$B_{t_h} = (x_k \land c > 0).$$

Now suppose that for each term we construct n+1 such gadgets for each term. Then if every term is satisfied by some assignment of the variables x_1, x_2, \ldots, x_n then the total cost incurred will be at most n. That is because the fresh voters incur no additional cost but each voter x_i can incur a cost of at most 1. If a term is not satisfied then at least n+1 gadgets will incur a cost of at least 1 so that the cost is at least n+1. Hence we have reduced the satisfiability of any 3-SAT instance φ to querying if there is a certificate \mathbf{c} for the above election with $\sum_i c_i \leq n$. Thus BOUNDEDMINSUM $_{\mathcal{F}}$ is NP-hard.

Corollary 2.5 (Inapproximability of BoundedMinSum). A constant factor approximation of BoundedMinSum_{\mathcal{F}} is NP-hard.

Proof. We can adapt the above proof to prove that BOUNDEDMINSUM is not constant-factor approximable. Following our construction above we can incur a cost of k for when the expression φ is not satisfiable by simply creating k gadgets for each term. So for a MINSUM outcome $\mathbf{c} : \sum_i \mathbf{c}_i \leq n$ if and only if φ is satisfiable and $\sum_i c_i \geq k$ if and only if φ is not satisfiable. So, any constant factor approximator would solve 3-SAT, thus proving hardness.

Proposition 2.6 (Hardness of BOUNDEDMINMAX). Suppose $LIQUID \cup \{\lor, \land\} \subseteq \mathcal{F}$. Then BOUNDEDMINMAX is NP-hard even if the maximum size of a smart ballot is 3.

Proof. We follow a similar construction as above. We reduce from the NP-hard problem 3-SAT. Suppose φ is an instance of 3-SAT as above on k terms and n variables. We again introduce constant voter $\underline{\text{zero}}$ with smart ballot $B_{\underline{\text{zero}}} = (0)$. For each variable x_i we create a voter x_i with smart ballot $B_{x_i} = (\underline{\text{zero}} > 1)$. For each term t_h we create gadgets with the property that if t_h is satisfied the gadget uses only the first two preference levels. If t_h is not satisfied, the gadget uses the third preference level. We prove this for the following four cases.

Case $t_h = x_i \vee x_j \vee x_k$: For each term we construct additional voters a, a', b, b', c, c', t_h . With voting profiles:

$$B_{a} = (a' > t_{h} > 0)$$

$$B_{a'} = (a > t_{h} > 0)$$

$$B_{b} = (b' > x_{i} \lor a > 0)$$

$$B_{b'} = (b > x_{i} \lor a > 0)$$

$$B_{c} = (c' > x_{j} \lor b > 0)$$

$$B_{c'} = (c > x_{j} \lor b > 0)$$

$$B_{t_{h}} = (t'_{h} > x_{k} \lor c > 0)$$

$$B_{t'_{h}} = (t_{h} > x_{k} \lor c > 0).$$

Now, we claim that if t_h is satisfied then this component can be resolved with at most the second preference being used. If $x_k = 1$ then we can resolved t_h, t'_h to 1 using their second preferences. Hence, we can then resolve agents in order (a, a', b, b', c, c') using the agents second preference. Similarly if $x_j = 1$ we can resolve in order $(c, c', t_h, t'_h, a, a, b, b')$ using only the agents first two preferences. Similarly, for $x_i = 1$.

Now consider the case where $x_i = x_j = x_k = 0$. Let $\sigma \colon N \longrightarrow \{1, \dots, m\}$ be an ordering of the m agents from which a consistent certificate arises. Suppose, this only uses the agents' first two preferences. As the fresh agents a, b, c, t_h are identical with the primed versions a', b', c', t'_h , without loss of generality every unprimed agent appears before their primed counterpart so for instance $\sigma(t_h) < \sigma(t'_h)$. Then, $\sigma(c) < \sigma(t_h)$ as $x_k \lor c$ cannot be resolved with $x_k = 0$. Similarly, $\sigma(b) < \sigma(c)$ and $\sigma(a) < \sigma(b)$ but $\sigma(t_h) < \sigma(a)$. This leads to the contradiction $\sigma(t_h) < \sigma(t_h)$. Hence, if t_h is not satisfied one of the fresh agents will use their third preferences and if t_h is satisfied all fresh agents will use only their first two preferences.

Case $t_h = \overline{x_i} \vee x_j \vee x_k$: For each term we construct additional voters a, a', b, b', c, c', t_h . With

Figure 3: Gadgets for MINMAX

voting profiles:

$$B_{a} = (a' > t_{h} > 0)$$

$$B_{a'} = (a > t_{h} > 0)$$

$$B_{b} = (b' > x_{i} \land a > 0)$$

$$B_{b'} = (b > x_{i} \land a > 0)$$

$$B_{c} = (c' > x_{j} \lor b > 0)$$

$$B_{c'} = (c > x_{j} \lor b > 0)$$

$$B_{t_{h}} = (t'_{h} > c \lor x_{k} > 0)$$

$$B_{t'_{h}} = (t_{h} > c \lor x_{k} > 0).$$

We present this smart ballot in the much easier to parse Figure 3a where filled lines indicate first preferences and dashed lines indicate second preferences:

Now, we claim that if t_h is satisfied then this component can be resolved with at most the second preference being used. If $x_k = 1$ then we can resolved t_h, t'_h to 1 using their second preferences. Hence, we can then resolve agents in order (a, a', b, b', c, c'). Similarly if $x_j = 1$ we can resolve in order $(c, c', t_h, t'_h, a, a, b, b')$ using only the agents first two preferences. Now, if $x_i = 0$ the same argument holds as the logical AND is resolved to 0.

Now consider the case where $x_i = 1, x_j = 0$ and $x_k = 0$. Let $\sigma \colon N \longrightarrow \{1, \dots, m\}$ be an ordering of the m agents from which a consistent certificate arises. Suppose, this only uses the agents' first two preferences. As the fresh agents a, b, c, t_h are identical with the primed versions a', b', c', t'_h , without loss of generality every unprimed agent appears before their primed counterpart so for instance $\sigma(t_h) < \sigma(t'_h)$. Then, $\sigma(c) < \sigma(t_h)$ as $x_k \lor c$ cannot be resolved with $x_k = 0$. Similarly, $\sigma(b) < \sigma(c)$. Again, $\sigma(a) < \sigma(b)$ as $x_i \land a = a$ as $x_i = 1$. But $\sigma(t_h) < \sigma(a)$. This leads to the contradiction $\sigma(t_h) < \sigma(t_h)$. Hence, if t_h is not satisfied one of the fresh agents will use their third preferences and if t_h is satisfied all fresh agents will use only their first two preferences.

Case $\overline{x_i} \vee \overline{x_j} \vee x_k$: This case is symmetrical to the above. We only need to permute the agents and replace the logical ANDs with ORs and vice versa. For completeness the smart voting profiles are:

$$B_{a} = (a' > t_{h} > 0)$$

$$B_{a'} = (a > t_{h} > 0)$$

$$B_{b} = (b' > x_{k} \lor a > 0)$$

$$B_{b'} = (b > x_{k} \lor a > 0)$$

$$B_{c} = (c' > x_{j} \land b > 0)$$

$$B_{c'} = (c > x_{j} \land b > 0)$$

$$B_{t_{h}} = (t'_{h} > c \land x_{i} > 0)$$

$$B_{t'_{h}} = (t_{h} > c \land x_{i} > 0)$$

Case $\overline{x_i} \vee \overline{x_j} \vee \overline{x_k}$: The proof is symmetrical to the case $x_i \vee x_j \vee x_k$. The smart ballot used reverses \vee to \wedge . This is accomplished by the following smart profile:

$$B_{a} = (a' > t_{h} > 0)$$

$$B_{a'} = (a > t_{h} > 0)$$

$$B_{b} = (b' > x_{i} \land a > 0)$$

$$B_{b'} = (b > x_{i} \land a > 0)$$

$$B_{c} = (c' > x_{j} \land b > 0)$$

$$B_{c'} = (c > x_{j} \land b > 0)$$

$$B_{t_{h}} = (t'_{h} > x_{k} \land c > 0)$$

$$B_{t'_{h}} = (t_{h} > x_{k} \land c > 0).$$

So, if and only if φ is satisfiable then there exists a consistent certificate \mathbf{c} with $\max(\mathbf{c}) \leq 2$. So we have reduced any 3-SAT instance to an instance of BOUNDEDMINMAX_F, proving that BOUNDEDMINMAX_F is NP-hard.

Proposition 2.7 (BOUNDEDMINMAX is not approximable). If $LIQUID \cup \{\lor, \land\} \subseteq \mathcal{F}$ then a non-trivial approximation of BOUNDEDMINMAX_F is NP-hard.

Proof. This result can be proven by modifying the above proof. Instead of constructing a cycle of size 2 for voters a, b, c, t_h we construct a cycle of size k+1. So every voter a, b, c, t_h can be thought of as a voter v with $B_v = (v' > u > 0)$. Then we construct voters v_1, \ldots, v_k and set $B_v = (v_1 > v_2 > \ldots > v_k > u > 0)$ and for $v_i, B_{v_i} = (v > v_1 > \ldots > v_{i-1} > v_{i+1} > \ldots > v_k > u > 0)$. Now, since the maximum size of the smart ballots is k+2 then clearly for the Minmax certificate \mathbf{c} , max $\mathbf{c} \leq k+2$. But suppose that an algorithm was able to decide if there was \mathbf{c} with max $\mathbf{c} \leq k+1$. Then this algorithm would be able to determine if the original instance is satisfied. So, it would solve 3-SAT.

Corollary 2.8 (Hardness of BOUNDEDMINMAXSUM). If $LIQUID \cup \{\lor, \land\} \subseteq \mathcal{F}$ then BOUNDED-MINMAXSUM \mathcal{F} is NP-hard.

Proof. Every instance of BOUNDEDMINMAX is an instance of BOUNDEDMINMAXSUM. For target maximum M and smart profile \mathbf{B} a MINMAX query, we can consider a MINMAXSUM query with target maximum M, target sum S and smart profile \mathbf{B} . Simply set S to be the sum of all preference levels, i.e. $S = \sum_{a \in N} k_a$. Then the sum requirement of MINMAXSUM is trivially satisfied and so we have reduced BOUNDEDMINMAX to BOUNDEDMINMAXSUM.

2.2 For function classes equal to LIQUID

Proposition 2.9. Suppose that r is monotone and $D = \{0, 1\}$. Then for any outcome $d \in D$ there is an algorithm that determines if there is a MINMAX certificate such that the election resolves in favour of d.

3 Axiomatisation

We introduce the axiom of cast participation. This axiom states that: voters preferring outcome d benefit from voting directly for d. This axiom is introduced in Kotsialou et al for binary issues and in Grandi et al for binary issues with abstentions. We use the definition for binary issues with abstentions i.e. $D = \{0, 1, *\}$. We denote that agent a prefers outcome d to e as $d >_a 1 - d$. As in Grandi et al. we infer that if agent a votes directly for outcome $d \in \{0, 1\}$ then agent a prefers d over any other outcome. Formally if $B_a = (d)$ then $d >_a 1 - d$ and $d >_a *$. Now, an issue we face is that irresolute unravelling procedures might return multiple outcomes. For example, MINSUM can return outcomes for 0 and for 1. So, we need to assign preferences over sets of outcomes rather than just for single outcomes. For the binary case with abstentions we posit that any reasonable preference over sets will satisfy that if a prefers d over 1 - d then:

$$\{1-d\} < \{1-d,*\} < \{*\} \sim \{1-d,d\} \sim \{1-d,*,d\} < \{*,d\} < \{d\}.$$

We write $S_1 \sim S_2$ if we do not make any assumptions about the relative ordering of S_1 and S_2 . Then we can formalise cast-participation for irresolute procedures:

Definition 3.1 (Cast-Participation for irresolute procedures). A resolute voting rule r and a irresolute unravelling procedure \mathcal{U} satisfy cast-participation if for all valid smart profiles \mathbf{B} and agents $a \in N$ such that $B_a \in D \setminus \{*\}$ we have that for all $B'_a \neq B_a$:

$$r(\mathcal{U}(\mathbf{B})) \ge_a r(\mathcal{U}(\mathbf{B}_{-a}, B_a'))$$

Where \mathbf{B}_{-a}, B'_a denotes replacing B_a with B'_a .

Cast participation can be thought of disallowing tactical voting. Unfortunately it does not always hold. We first prove the cases of non-monotone r and non-monotone delegating functions. To do so we first define monotonicity as follows:

Definition 3.2 (Monotonicity). Let $\mathbf{u}, \mathbf{v} \in D^n$, then $\mathbf{u} \leq_d \mathbf{v}$ if $u_i = d$ implies that $v_i = d$. Then function $f \colon D^n \longrightarrow D$ is monotone if for all $\mathbf{u} \in D^n$, $f(\mathbf{u}) = d$ implies that for all $\mathbf{v} \in D^n$ with $\mathbf{u} \leq_d \mathbf{v}$, $f(\mathbf{v}) = d$.

We now prove a series of negative results for cast participation.

Lemma 3.3. Suppose that for the voting rule r is not monotone. Additionally the counterexample to monotonicity is not caused by flipping a * to a 0 or 1. That is there exists $\mathbf{u} = (u_1, \ldots, u_{i-1}, d, u_{i+1}, \ldots, u_n)$ with $d \neq *$ and $\mathbf{u}' = (u_1, \ldots, u_{i-1}, e, u_{i+1}, \ldots, u_n)$ with $d \neq e$ but $r(\mathbf{u}) = e$ and $r(\mathbf{u}') \neq e$. Then cast participation doesn't hold.

Proof. Consider the smart profile where for each agent a, $B_a = (u_a)$. In particular voter i prefers d to e. We are allowed to deduce this because i does not vote for an abstention. But, by setting a smart ballot of $B_i = (e)$ then $r(\mathbf{u}') = d$, which violates cast-participation.

We consider that reasonable unravelling procedures will not needlessly violate their agents first preferences. We formally say that \mathcal{U} respects first preferences if whenever $\mathbf{c} = (1, 1, ..., 1)$ is a consistent certificate, \mathcal{U} returns an outcome with certificate \mathbf{c} . Note that Minmax, Minsum and MinmaxSum respect first preferences as well as any Pareto optimal unravelling procedure.

Lemma 3.4. Suppose r is a monotone rule, \mathcal{U} respects first preferences. Suppose additionally, that for some n there exists a "deciding" subset of voters S with $|S| \leq n - k$ such that if every voter in S votes for 0, r votes for 0 and if every voter in S votes for 1, r votes for 1. Then cast-participation doesn't hold.

Proof. Let S as defined above. Let $f:\{0,1\}^k \longrightarrow \{0,1\}$ and f not monotone. Suppose $\mathbf{u} < \mathbf{u}'$ with only $\mathbf{u}_i \neq \mathbf{u}_i$ and $f(\mathbf{u}) > f(\mathbf{u}')$. Then, enumerate voters v_1, \ldots, v_k not in S and let $B_{v_i} = (u_i)$. For all other agents a set $B_a = (f(v_1, \ldots, v_k) > d)$ for some arbitrary d. Then the first preferences of the voters do not introduce cycles. As \mathcal{U} respects first preferences it picks an outcome where every agent votes for their first preference. So r resolves to vote for 1 as all voters in S vote for 1. Now if v_i were to switch their vote from 0 to 1 everyone in S would vote for 0 and so r would resolve to 0. This breaks cast participation for voter v_i .

Lemma 3.5. Let r be a rule such that for $n \geq 5$ voters if n-2 voters vote for d then r assigns d. Then there are examples that unravelling with MINMAX violates cast-participation for any n. This result holds even if we only allow agents to vote using LIQUID.

Proof. Let $N = \{v, v', a, u_1, \dots, u_{n-3}\}$ and r as described. Then, let $B_v = (0), B_{v'} = (v > 0), B_a = (1), B_{u_i} = (a > 0)$. Then MINMAX would simply assign each individual to first preferences and the majority votes for 1. So the outcome set is $\{1\}$.

But, if $B_v = (v' > 0)$ then a cycle is formed and so necessarily, MINMAX will have to use some second preferences. Hence setting v, u_1, \ldots, u_{n-3} to their second preference would be a valid solution. So every voter except a vote for 0, so that r resolves to 0. Note that we can still assign first preference to all voters except than v so that $(2, 1, \ldots, 1)$ is a consistent certificate and would result to the majority again voting for 1. So the set of outcomes is $\{0,1\}$ which is better than $\{1\}$ for agent a.

We can further prove that MinSum doesn't satisfy cast-participation. In the case where abstentions are allowed we denote Maj(0,*) = 0, Maj(1,*) = 1 and Maj(0,1) = *.

Lemma 3.6. Let \mathcal{U} respect first preferences, r such that if a strict majority votes for outcome d then r supports outcome d. Then if voters are allowed to delegate to even majorities, cast-participation doesn't hold for MINSUM.

Proof. Let $N = \{a, b, c, d, e\}$. Let $B_a = (1), B_b = (0), B_c = (Maj(a, b) > 1), B_d = B_e = (c > 1)$. So that agent a prefers outcome 1. Then we can resolve this smart profile by assigning everyone to first preferences. Then r resolves to *. So the set of outcomes is $\{*\}$.

Now if $B'_a = (c > d > 1)$ then the unique result of MINSUM is c votes for 1. Further, a, d, e delegate to c using first preferences and vote for 1 as well. This results in a strict majority for 1. So the set of outcomes is $\{1\}$ which is preferred to $\{*\}$.

Note, that in the above case Maj is a monotone rule. So, it is not the case that monotone rules guarantee cast participation.

4 Proposals