Machine Learning, 2021 Spring Homework 2

Due on 23:59 MAR 28, 2021

Problem 1

Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if f is both convex and concave. [2pts]

$\forall \lambda \in (0,1), xy \in \mathbb{R}^n: f(xx+uxy) = a^T(xx+uxy) + b$	
= X(a ^T xtb)+(1-X)(a ^T yt	b)
(b)f(k1)t(x)t(x)t(x) (b)f(k1)t(x)t(x)t(x) · · · (b)f(k1)t(x)t(x) · · · (b)f(k1)t(x)t(x)t(x)t(x)t(x)t(x)t(x)t(x)t(x)t(x	both convex and concave
$E''f: R^n \rightarrow R $ is both convex and concave	
YAETOI], X, YEIR": f(AX+CLA)Y)=Af(X)+(LA)f((4)
let g(x)=f(x)-f(0), g isalso convex and concave	
Y NETO, T, My GIRM: g(XX+(1-X)y) = 2g(X)+(1-X)g(y), g	(0) = (
lemmal: YXEIR, YXETO, teo): g(XX)=Xg(XX	lemma2: VX,yeIR ⁿ , g(xty)=g(xty)y
Pf: 1° Let 4 =0, YXEIR", XETON]: g(XX)=Xg(X)	Pf: g(=(1xx)+=(0y))===g(2x)+==g(0y), Vx, y=1R
2° Let y=0, Yar12°, 26(1+00), g(5(20x))=59(20x)	Basedon Lemmal, zg(nx)=gux), zg(ny)=g(y)
g (XX) = Ag(X)	. '. YxyeIR^: g(xty)=g(x)tg(y)
: 1°2°=> YXEIR", YXETOHOO): g(XX)=Xg(X)	
Based on Lemmal and Lemma2:	
YX,40 /Rn:goxy = g(x)+g(y)	
g(xx+c-xx))=0=g(xx)+g(-xx), Yxe(0,tx), xe)	2°
g (-xx)=-g(xx)=-xg(x)	
·-g(xx) = 2g(x), Y2E(-20,0]	
.'- { Yayelr, Yelr, g(XX)= ya(X)	
[Yayeir ⁿ : g(xty)=g(x)tg(y)	
gislinear function	

Problem 2

Suppose A and B are both convex sets, prove that $C = A \cap B$ is also convex. [1pts]

Problem 3

Suppose your algorithm for solving the problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} f(\boldsymbol{x}) \tag{1}$$

takes iteration:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{p}^k \tag{2}$$

where $p^k = H^k \nabla f(x^k)$. What kind of H^k can guarantee that p^k is a descent direction? [2pts]

3. the definition of clescent direction:
$$delR^n$$
 such that $20t(x)$, $d>20$
Let $H^k > 0$, $< 9t(x)^k$, $P^k > = 9t(x)^l + k^l + 9t(x)^k > 0$ $\forall x^k \in R^n$
... H^k be negative definite can guarantee p^k be a descent direction

Problem 4

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. For a given $\mathbf{x} \in \mathbb{R}^n$, show that moving along $-\nabla f(\mathbf{x}) \neq 0$ with sufficiently small stepsize causes decrease on f, that is,

$$f(x - \alpha \nabla f(x)) < f(x) \tag{3}$$

for sufficiently small $\alpha > 0$. [2pts]

4.
$$f(x) = f(x) - \frac{\partial f(x)}{\partial x} = f(x) - \frac{\partial f(x)}{\partial x} = 0$$

$$f(x) = \frac{$$

Problem 5

Use gradient descent to solve the underdetermined linear system:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 \tag{4}$$

with stepsize chosen as exact line search, initial point $x^0 = 0$ and maximum iteration 1000. Plot:

- 1. The objective value against the iteration. (Use log scale for y-axis)
- 2. The ℓ_2 norm of gradient against the iteration. (Use log scale for y-axis)
- 3. The stepsize against the iteration.

The data $\mathbf{A} \in \mathbb{R}^{500 \times 1000}, \mathbf{b} \in \mathbb{R}^{500 \times 1}$ is attached in <u>data/A.csv</u> and <u>data/b.csv</u> with comma-separated (delimiter=','). [Hint: what is the solution to the exact <u>line search</u> for quadratic function?][3pts]

S.
$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2}||Ax - b||_2^2$$
 $\inf(x) = A^*(Ax - b)$, $x^{\mu + 1} = x^{\mu} - \lambda \cot(x)$

$$f(x) = \sqrt{(Ax - b)}, x^{\mu + 1} = x^{\mu} - \lambda \cot(x)$$

$$f(x) = \sqrt{(Ax - b)}, x^{\mu + 1} = x^{\mu} - \lambda \cot(x)$$

$$= \frac{1}{2}[A(x - b)] A^*(x) - b^*(x) - b^*($$

