MATH 633(HOMEWORK 7)

HIDENORI SHINOHARA

Exercise. (1) Suppose f is locally bijective. Let $p \in U$. Then f is bijective in some open set U' satisfying $p \in U' \subset U$. This implies f is injective on U'. By Proposition 1.1, $f' \neq 0$ on U'. In other words, f' is nonzero on U.

Exercise. (10) Let $\sigma(z) = -i(z+1)/(z-1)$. Then σ sends the unit disk to the upper half-plane with ∞ since $\sigma(a+bi) = (-2b-(a^2+b^2-1)i)/((a-1)^2+b^2)$. On the other hand, $\sigma^{-1}: z \mapsto (z-i)/(z+i)$ sends the upper half plane with ∞ to the unit disk because $|a+(b-1)i| \le |a+(b+1)i|$ if $b \ge 0$. Therefore, σ is a bijection between the unit disk and $H \cup \{\infty\}$. $F \circ \sigma$ sends the unit disk to the unit disk, and $F(\sigma(0)) = 0$. By Lemma 2.1, $|(F \circ \sigma)(w)| \le |w|$ for every $w \in D$. Then for every $z \in \mathbb{H}$, $\sigma^{-1}(z) \in D$. Then $|F(z)| = |(F \circ \sigma)(\sigma^{-1}(z))| \le |\sigma^{-1}(z)| = |(z-i)/(z+i)|$, which is the desired result.

Exercise. (12(a)) Let $a \neq b$ be two fixed points. Let $\sigma(z) = (z - a)/(1 - \overline{a}z)$. Then σ sends a to 0 and maps D to D bijectively. Let $g = \sigma \circ f \circ \sigma^{-1}$. g has two fixed points, 0 and $\sigma(b)$. By applying Lemma 2.1, g is a rotation. However, g fixes $\sigma(b) \neq 0$, so g must be the identity map. Then f must be the identity.

Exercise. (12(b)) The map $\sigma: z \mapsto (z-i)/(z+i)$ maps the upper half-plane to the unit disk bijectively. Then $\sigma \circ f \circ \sigma^{-1}$ where f(z) = z+1 is a holomorphic bijection on f that has no fixed point because f has no fixed point.

Exercise. (16(a)) The composition of mobius transformations corresponds to the multiplication of the corresponding matrices. Thus it suffices to calculate

Thus the answer is the mobius transformation associated to the last matrix.

Exercise. (16(b)) Let $\alpha = a + bi$.

$$\begin{bmatrix} -1 & i \\ 1 & i \end{bmatrix}^{-1} \begin{bmatrix} -1 & \alpha \\ -\overline{\alpha} & 1 \end{bmatrix} \begin{bmatrix} -1 & i \\ 1 & i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \overline{\alpha} - \alpha & -i(\alpha + \overline{\alpha} - 2) \\ -i(\alpha + \overline{\alpha} + 2) & \alpha - \overline{\alpha} \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} b & a - 1 \\ a + 1 & -b \end{bmatrix}.$$

After multiplying $1/(1-a^2-b^2)$ to every term, we obtain a matrix associated to the desired mobius transformation.

Exercise. (16(c)) Let $\alpha = g(0)$. Then ψ_{α} is an automorphism of the unit disk that sends α to 0. Then $\psi_{\alpha} \circ g$ is an automorphism of the unit disk that fixes 0. By applying Lemma 2.1 to $\psi_{\alpha} \circ g$ and its inverse, we obtain that $|\psi_{\alpha} \circ g| \leq 1$ and $|(\psi_{\alpha} \circ g)^{-1}| \leq 1$. Thus $|\psi_{\alpha} \circ g| = 1$. Therefore, $\psi_{\alpha} \circ g$ is a rotation by Lemma 2.1. By (a), $h = f^{-1} \circ \psi_{\alpha} \circ g \circ f$ is a Mobius transformation associated to a real matrix with determinant 1. Then $f^{-1} \circ g \circ f = f^{-1} \circ \psi_{\alpha}^{-1} \circ f \circ h$. By Part (b), $f^{-1} \circ \psi_{\alpha}^{-1} \circ f$ is a Mobius transformation associated to a real matrix with determinant 1 because $\psi_{\alpha}^{-1} = \psi_{\alpha}$. Since the composition of two Mobius transformations corresponds to the product of the two associated matrices, the composition corresponds to a real matrix whose determinant is 1.