

De intervalos de confianza a dócima de hipótesis

Recordemos

 Usamos esta relación para derivar nuestras estimaciones por intervalo, basados en el TLC:

$$P\left(-z_{\alpha/2} < \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} < z_{\alpha/2}\right) \approx 1 - \alpha$$

- ullet es el parámetro de la población
- $\hat{\theta}$ es un estimador insesgado de θ , obtenido desde una muestra (estadístico muestral)
- Hablamos de " $100 \cdot (1 \alpha)$ % de confianza"

Complemento

- Pero ahora pensemos en el complemento:
 - La probabilidad de que este estadístico normalizado esté fuera de estos rango es α

$$P\left(\frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} \le -z_{\alpha/2}\right) + P\left(z_{\alpha/2} \le \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}}\right) \approx \alpha$$

- Pero como es usual, no conocemos la población y, por lo tanto, desconocemos θ
- Usaremos entonces un valor hipotético para θ
- Con esta mirada, el lenguaje se torna a probar hipótesis

Lenguaje

- Si sospechamos un valor poblacional $\theta = \theta_0$, podemos plantear dos hipótesis:
 - H. nula (H_0): representa el *status quo*, i.e. mantenemos nuestra sospecha que $\theta = \theta_0$ (sin efecto, sin diferencia)
 - H. alternativa (H₁ o H_A): representa una aseveración contradictoria a H₀ (cambio, efecto)
 - Concepto: H₀ será rechazada en favor de H_A solamente si la evidencia muestral sugiere que H₀ es falsa
 - Conclusiones posibles: rechazar H₀ o no rechazar H₀

Lenguaje

- Rechazar o no rechazar, ¡he ahí el dilema!
 - Se dice: decidir, contrastar, docimar, probar dos hipótesis
 - Concepto: rechazar si el estimador muestral presenta un valor improbable si H₀ fuera verdadera
 - estos "valores improbables" definen la región de rechazo o región crítica
 - la regla entonces es: ${f rechazar}$ ${f H_0}$ si el valor de $\hat{ heta}$ cae en la región crítica
 - notemos que la probabilidad de observar un valor estadístico improbable no es cero: podemos cometer errores

Lenguaje

- Rechazar o no rechazar, ¡he ahí el dilema!
 - De hecho dos tipos de posibles decisiones incorrectas:
 - error de tipo I, cuando el procedimiento lleva a rechazar H₀
 siendo que en realidad es verdadera
 - error de tipo II, cuando el procedimiento lleva a no rechazar H₀
 siendo que en realidad es falsa
 - los otros dos casos son decisiones correctas
 - se puede asociar probabilidades a cada tipo de error, calculadas desde la distribución muestral (para n y θ fijos)
 - denotadas α y β para tipos I y II respectivamente
 - normalmente α y β se contraponen

Significación

- Rechazar o no rechazar, ¡he ahí el dilema!
 - ¿Esta probabilidad α tiene algo que ver con el "100·(1 α)% de confianza"?
 - sí... y no
 - aquí α ~ nivel de significación: máxima probabilidad aceptable de rechazar una hipótesis nula verdadera
 - una cota superior para α ~ probabilidad de un error tipo I dadas una población y una muestra
 - se prefieren valores bajos como 0.1, 0.05 y 0.01 (90%, 95% o 99% de confianza), a costa de un aumento en β
 - es un estándar de evidencia: entre más pequeña, mayor es la evidencia requerida para rechazar H₀

Significación

- Rechazar o no rechazar, ¡he ahí el dilema!
 - Antes de los computadores...
 - se usaban regiones de rechazo conocidas para unos cuantos valores de niveles de significación α (en tablas)
 - Actualmente se prefieren los valores p:
 - probabilidad de cometer un error tipo I si el valor observado del estadístico de prueba se usa como límite para la región crítica
 - menos afectado por pequeñas variaciones en el estadístico
 - se compara directamente con α
 - se puede reportar el p-valor solamente, y la decisión puede hacerla una persona distinta (y a posteriori)

Contraste de hipótesis

- En resumen, el procedimiento es:
 - 1) Definir H₀, H₁ y α
 - 2) Definir un estadístico de prueba y la región crítica para H₀
 - 3) Obtener una muestra y calcular el estadístico muestral
 - 4) Obtener el p-valor asociado al estadístico
 - 5) Si el p-valor $< \alpha$, se rechaza H_0
 - 6) Interpretar la decisión

Textos usados

Los conceptos expuestos aquí desde los siguientes textos, donde pueden encontrarse más detalles:

Jay L. Devore (2011). Probability and Statistics for Engineering and the Sciences; 8th Edition, Duxbury Press.

Rudolf J. Freund, William J. Wilson, Donna L. Mohr (2010). Statistical Methods; 3rd Edition, Academic Press.

David M. Diez, Christopher D. Barr, Mine Çetinkaya-Rundel (2015). OpenIntro Statistics; 3rd Edition. Disponible en www.openintro.org.