Лабораторная работа №3

Тема: ОПРЕДЕЛЕНИЕ КАРОТИНА В КОРМАХ,КАЧЕСТВА СИЛОСА И СЕНАЖА. АНАЛИЗ КОМБИКОРМА.

Наименование работы. Ознакомление с методиками определения состава веществ корма

<u>Цель</u>. Ознакомиться с методиками определения состава веществ корма.

Приобретаемые умения и навыки.

Литература. 1. Менькин В.К. Кормление животных. Москва «КолосС»2004 стр 43-49.

Оборудование. Инструкционные карты, учебники, методические пособия.

Место проведения. Лаборатория.

ОПРЕДЕЛЕНИЕ КАРОТИНА

Содержание каротина (провитамина A) в кормах - важнейший показатель качества сена, сенажа, силоса, травяной муки и резки и других кормов. Каротин (желтый пигмент) синтезируется в растениях, его образование тесно связано с синтезом хлорофилла. Методика определения каротина широко используется в производственной лабораторной практике.

В природе каротин встречается в виде трех изомеров - а, р, у. Наибольшей биологической активностью обладает р-каротин, так как из одной его молекулы образуются две молекулы витамина А, ос- и Y-каротин образуют только одну молекулу витамина. Витамин А принимает участие в окислительно-восстановительных процессах, связан с белковым, углеводным и липидным обменом, влияет на рост молодых животных, регулирует обмен эпителиальной ткани, влияет на устойчивость животных к заболеваниям.

Содержание каротина в растениях различно. Много каротина содержится в зеленом- корме на ранних стадиях вегетации. Источником каротина могут быть правильно заготовленные облиственное сено, сенаж, силос, заложенные в хранилища в короткие сроки с соблюдением технологии заготовки; травяная мука и резка, морковь и другие корма. Незначительное количество или нет каротина в концентрированных кормах, свекле, картофеле. Каротин и сопутствующие каротиноиды подвержены окислению, быстро разрушаются при длительной сушке и хранении кормов. Окисление каротина кислородом воздуха ускоряется под действием света, тепла и металлов. Для замедления разрушения каротина при заготовке, например, травяной муки применяют антиоксиданты - сантонин, дилудин и др.

По биологической активности 1 мг р-каротина соответствует 1667 МЕ витамина А. При пересчете каротина в витамин А учитывают, что 1 мг каротина для жвачных эквивалентен 400 МЕ, для свиней -500 МЕ витамина А; 1 мкг каротина для птицы эквивалентен 1 МЕ витамина А.

В зоотехническом анализе для определения каротина применяют метод Попандопуло и ускоренный метод Мурри, агрохимические лаборатории используют методику Циреля.

УСКОРЕННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ КАРОТИНА

Принцип метода. Химический метод определения каротина в кормах основан на его извлечении растворителями - бензином, серным и петролейным эфирами и др. Каротин при этом дает желтую окраску. Поскольку в бензине растворяются и другие сопутствующие пигменты (хлорофилл, ксантофилл и др.), то их отделяют от каротина с помощью адсорбентов. Степень окраски испытуемого раствора сравнивают со

СОСТАВЛЕНИЕ ЗАКЛЮЧЕНИЯ О КАЧЕСТВЕ КОРМА

Проанализировав корм на содержание питательных веществ, предусмотренных схемой зоотехнического анализа, составляют заключение об их химическом составе и качестве в соответствии с требованиями действующего ГОСТа. Запись ведут в виде таблицы (см. приложение 1).

Результаты анализа сопоставляют с литературными данными, соответствующими той области, где расположено хозяйство, с требованиями действующего ГОСТа, кроме того, сравнивают полученные данные с данными прошлых лет, анализируют изменение химического состава кормов по годам, сопоставляют содержание питательных веществ в кормах с количеством вносимых удобрений.

Перечисленные корма относят к определенному классу по всем показателям анализа; сенаж, например, по запаху, цвету, содержанию сухого вещества, %, содержанию в сухом веществе, %: сырого протеина, сырой клетчатки, сырой золы, легкорастворимых углеводов, масляной кислоты, каротина, мг/кг. Если один из показателей не подходит к данному классу, то корм переводят на класс ниже.

На практике для установления классности корма иногда используют один-два главных показателя анализа (например, для силосованного корма каротин и содержание органических кислот - молочной и масляной). Однако при этом снижаются требования к качеству заготовленного корма в соответствии с требованием ГОСТа.

Сотрудники лаборатории обязаны направлять в хозяйства все показатели анализа кормов, а не отдельные данные.

Составление рационов для животных из кормов с известным химическим составом способствует повышению продуктивности животных.

ОПРЕДЕЛЕНИЕ КАЧЕСТВА СИЛОСА

Согласно стандарту качество силоса определяют по цвету, запаху, структуре, содержанию сухого вещества, сырого протеина, каротина, сырой золы, концентрации водородных ионов (рН), молочной и масляной кислот.

В производственных условиях качество силоса оценивают по внешнему виду - цвету, запаху и структуре засилосованных растений. В лаборатории, кроме внешних признаков доброкачественности силоса, определяют влажность, активную кислотность (рН), содержание аммиака, молочной, уксусной и масляной кислот, каротина, сырого протеина и других питательных веществ (в зависимости от возможности лаборатории).

Цвет. Доброкачественный силос в зависимости от вида силосуемых растений имеет различную окраску: желтовато-зеленую, оливковую, желтую, серовато-зеленую, коричнево-зеленую. При перегревании в процессе созревания (свыше 55 °C),силосная масса приобретает бурую окраску. Цвет силоса плохого качества черно-зеленый, темно-бурый или черный.

Запах. Силос хорошего качества (I и II классов) имеет приятный фруктовый запах или запах квашеных овощей. При разогревании до температуры 45-55 °C силосная масса приобретает запах меда, а при повышении температуры до 65-70 "С - свежеиспеченного ржаного хлеба. У силоса плохого качества запах едкий аммиачный или навозный. Запах селедки, редьки, прогорклого масла свидетельствует о недоброкачественности корм.

Структура. В хорошем силосе сохраняются части листьев, цветов, стеблей. Плохой силос имеет консистенцию

мажущейся массы с неприятным запахом, темного цвета.

Концентрация водородных ионов (pH). Величина pH - важный показатель качества силоса. В соответствии с ГОСТом кукурузный силос I класса должен иметь pH 4,0-4,3; II класса 3,9-4,3, III класса 3,8-4,5. Испорченный силос имеет pH 6,0-7,0, поскольку в нем содержится большое количество аммиака.

Для определения концентрации водородных ионов измельчают небольшое количество силоса, помещают в стакан и заливают кипяченой дистиллированной водой комнатной температуры. Содержимое стакана перемешивают и настаивают 15-20 мин, затем фильтруют. Концентрацию водородных ионов в экстракте силоса определяют прибором - рН-метром или специальной индикаторной бумагой.

При определении величины рН (по Михину) берут 2 см³ экстракта силоса и помещают его в фарфоровую чашку, туда же приливают 2- 3 капли индикатора (смесь равных объемов растворов бромтимолблау и метилрота). В зависимости от качества силоса цвет индикатора изменяется. Если цвет индикатора красный, то значение рН составляет 4,2 и ниже, красно-оранжевый - 4,2-4,6, оранжевый - 4,6-5,1, желтый -5,1-6,1, желто-зеленый - 6,1-6,4, зеленый - 6,4-7,2, зелено-синий -

7 2-7.K.

ОПРЕДЕЛЕНИЕ КАЧЕСТВА СЕНАЖА

Сенаж - консервированный зеленый корм, приготовленный из трав, провяленных до влажности 50-55%. В провяленной зеленой массе при пониженном содержании воды в анаэробных условиях микробы не могут интенсивно развиваться, следовательно, в сенаже накапливается значительно меньше органических кислот. Консервирование растительной массы обусловлено физиологической сухостью среды.

При определении качества сенажа необходимо придерживаться требований стандарта к качеству (табл. 25). Качество сенажа по ГОСТ 23637-79 оценивают по запаху и цвету. Лабораторными анализами определяют содержание воды, количества сухого вещества, количество сырого протеина, сырой клетчатки, сырой золы, легкорастворимых углеводов, каротина и содержание органических кислот.

Перечисленные- методы исследования описаны в соответствующих разделах данного учебного иособия. Полученные результаты исследований сопоставляют с данными, приведенными в таблице 25. После сопоставления данных устанавливают класс сенажа. Если по нескольким показателям сенаж не соответствует классу стандарта, то его переводят в более низкий класс.

К неклассному относят сенаж бурого и темно-коричневого цвета, с сильным запахом меда или свежеиспеченного ржаного хлеба, по другим показателям соответствующий требованиям настоящего стандарта.

Контрольные вопросы я задания. 1. По каким показателям оценивают качество силоса и сенажа? 2. Каковы требования ГОСТов к классам качества силоса и сенажа? 3. Как определяют органические кислоты силоса?

АНАЛИЗ КОМБИКОРМОВ

Комбикорма - готовые кормовые смеси, состоящие из нескольких компонентов, подобранных по научно

обоснованным рецептам для разных видов животных. В состав комбикормов входят в основном размолотые зерновые злаковые и бобовые культуры, жмыхи, шроты, корма животного происхождения, травяная мука, кормовой жир, минеральные и витаминные добавки и др. В комбикормах недостающее количество питательных веществ одних кормов пополняется питательными веществами других кормов, в итоге получается кормовая смесь, которая может удовлетворить потребность животных в питательных веществах.

Высокое качество комбикормов и соответствие их питательности требованиям ГОСТа - одно из основных условий эффективного скармливания их сельскохозяйственным животным. Высокая влажность комбикормов изза развития микрофлоры повышает их кислотность. Следует иметь в виду, что комбикорма при перевозке самосортируются. Часто минеральные вещества, в том числе поваренная соль, оседают и концентрируются в отдельных местах. При скармливании неразме-шанного комбикорма свиньям и птице возможно их отравление.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ПОВАРЕННОЙ СОЛИ В КОМБИКОРМАХ ПО ФОЛЬГАРДУ

Принцип метода. Данный метод заключается в осаждении белковых веществ раствором азотной кислоты и титровании хлоридов в кислой вытяжке.

Реактивы и оборудование. Серебро азотнокислое; кислота азотная х.ч. (плотностью 1,4 г/см³); 10%-ный раствор калия хромовокислого; квасцы железоаммонийные; 0,05 н. раствор натрия хлористого х.ч.; 0,05 н. раствор аммония роданистого; весы аналитические; весы тех-нохимические; колбы мерные вместимостью 100, 200, 1000 см³; колба коническая на 250 см³; бюретка на 25 см³; пипетки мерные на 20, 50 см³; промывалка.

Подготовка к анализу. Приготовление 10 %-ного раствора азотной кислоты. Наливают 110 см³ азотной кислоты в мерную колбу на 1000 см³, помешивая, доливают дистиллированной водой до метки