Learning and Strongly Truthful Multi-Task Peer Prediction

A Variational Approach

Grant Schoenebeck, University of Michigan

Fang-Yi Yu, Harvard University

Elicit Information from Crowds

- Subjective
 - Are you happy?
 - Do you like the restaurant?
- Private
 - What is your commute time?

Cannot verify!

Data from strategic agents

Information elicitation

Setting of information elicitation

Setting of information elicitation

A mechanism is truthful if truth telling maximizes the rewards of the both.

Multi-task information elicitation

Each day's signals are sampled from $P_{X,Y}$ a joint distribution on $\mathcal{X} \times \mathcal{Y}$

A mechanism is (strongly) truthful if $\mathbb{E}[M_A(x,y)] > \mathbb{E}[M_A(\widehat{x},\widehat{y})]$ and $\mathbb{E}[M_B(x,y)] > \mathbb{E}[M_B(\widehat{x},\widehat{y})]$ for any nontruthful θ_A or θ_B

Goal of information elicitation

• Truthful > any nontruthful $\mathbb{E}[M_A(x,y)] > \mathbb{E}[M_A(\widehat{x},\widehat{y})] \text{ and }$ $\mathbb{E}[M_B(x,y)] > \mathbb{E}[M_B(\widehat{x},\widehat{y})]$

Goal of information elicitation

- Truthful > any nontruthful
- No verification
 - Private: What is your commute time?
 - Subjective: Do you like the restaurant?
- No knowledge about P_{XY}

Contributions

Propose pairing mechanisms

- 1. Elicit truthful reports from strategic agents even for general signal spaces, $\mathcal X$ and $\mathcal Y$
- 2. Generalize previous mechanisms
- Connect information elicitation mechanism design to learning

Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- Connection to previous mechanisms

Three observations

- 1. Correlated signals P_{XY}
- 2. Strategy = data processing

$$Y \xrightarrow{P_{X|Y}} X \xrightarrow{\theta_A} \widehat{X}$$

3. Data processing ineq. for mutual information $I(X;Y) = \mathbb{E}_{P_{XY}} \left[\ln \frac{P_{XY}}{P_X P_Y} \right]$ $I(Y;X) \geq I(Y;\hat{X})$

Mechanism to learning

Approx. mutual information is approx. truthful

$$M_{\mathrm{info}}(\boldsymbol{x},\boldsymbol{y}) \approx I(X;Y) \geq I(\widehat{X};\widehat{Y}) \approx M_{\mathrm{info}}(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}})$$

Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- Connection to previous mechanisms

Challenge for learning from strategic agents

Approx. truthful

$$M_{\rm info}(\boldsymbol{x},\boldsymbol{y}) \approx I(X;Y) \geq I(\widehat{X};\widehat{Y}) \approx M_{\rm info}(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}})$$

Challenge for learning from strategic agents

Approx. truthful

$$M_{\rm info}(\boldsymbol{x}, \boldsymbol{y}) \approx I(X; Y) \geq I(\widehat{X}; \widehat{Y}) \approx M_{\rm info}(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}})$$

requires uniform estimate error bound for all strategies

Challenge for learning from strategic agents

Approx. truthful

$$M_{\rm info}(\boldsymbol{x}, \boldsymbol{y}) \approx I(X; Y) \geq I(\widehat{X}; \widehat{Y}) \approx M_{\rm info}(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}})$$

requires uniform estimate error bound for all strategies

- Strategic agents
- Large signal space $X \times Y$

Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- Connection to previous mechanisms

Pairing Mechanism

Suppose we have a scoring function $K: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ mapping a pair of reports to a score. The pairing mechanism M_{pair}^K

- 1. Samples a pair on a common task, (x_b, y_b) ,
- 2. Samples a pair on distinct tasks, (x_p, y_q) , and
- 3. Pays Alice and Bob

$$K(x_b, y_b) - \exp K(x_p, y_q) + 1$$

x_1	x_2	•••	x_b	•••	$ x_p $		x_q	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	 x_m
y_1	y_2	•••	y_b	•••	y_p	•••	y_q	•••	•••	•••	•••		•••	•••	:	•••	•••	 $ y_m $

Tasks for payment

Connection of mutual information

- Given K, the expected payment is $\mathbb{E}[K(x_b, y_b) \exp K(x_p, y_q)] + 1$ = $\mathbb{E}_{P_{XY}}[K(X, Y)] - \mathbb{E}_{P_X P_Y}[\exp(K(X, Y))] + 1$
- Variational presentation of mutual information $I(X;Y) = \mathbb{E}_{P_{XY}} \left[-\ln \frac{P_X P_Y}{P_{XY}} \right]$ $= \sup_{L: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}} \mathbb{E}_{P_{XY}} [L(X,Y)] \mathbb{E}_{P_X P_Y} \left[\exp \left(L(X,Y) \right) \right] + 1$ and maximum happens at $L = K^* = \ln \left(\frac{P_{XY}}{P_X P_Y} \right)$

Agent's Manipulation

$$M_{pair}^{\widehat{K}}(\widehat{\boldsymbol{x}},\widehat{\boldsymbol{y}}) = \mathbb{E}\left[\widehat{K}(\widehat{x}_b,\widehat{y}_b) - \exp\left(\widehat{K}(\widehat{x}_p,\widehat{y}_q)\right)\right] + 1 \le I(\widehat{X};\widehat{Y}) \le I(X;Y)$$

- Maximum happens only if both
 - $-\widehat{K} = K^*$
 - truthful report
- Approx. truthful only requires error bound at the truthful strategy

Pairing Mechanism

Given a scoring function $K: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, the pairing mechanism M_{pair}^K

- 1. Sample a pair on a common task, (x_b, y_b) .
- 2. Sample a pair on distinct tasks, (x_p, y_q) .
- 3. Pay Alice and Bob

$$K(x_b, y_b) - \exp K(x_p, y_q) + 1$$

x_1	x_2	•••	x_b	 x_p	 x_q	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	 x_m
y_1	y_2		y_b	 y_p	 y_q											 y_m

Tasks for payment

Pairing Mechanism (conti.)

- 1. Estimate ideal scoring rule K^* from tasks for learning.
- 2. Sample a pair on a common task, (x_b, y_b) .
- 3. Sample a pair on distinct tasks, (x_p, y_q) .
- 4. Pay Alice and Bob

$$K(x_b, y_b) - \exp K(x_p, y_q) + 1$$

x_1	x_2	•••	x_b	 x_p	•••	x_q	•••	•••	•••	 	•••	 	 •••	 x_m
y_1	y_2		y_b	 y_p		y_q				 	:	 	 	 y_m

Tasks for payment

Tasks for learning

Pairing mechanism (conti.): $K^* = \log \frac{P_{XY}}{P_X P_Y}$

- Plug-in estimator
- Optimization $K^* = \operatorname{argmax}_K \left\{ \mathbb{E}_{P_{X,Y}}[K(x,y)] \mathbb{E}_{P_X P_Y}[\exp K(x,y)] \right\}$
 - Empirical risk minimization
 - Standard optimization
 - Deep neural network...

Variational method for strategic learning

Challenges of strategic learning

$$M_{\rm info}(\boldsymbol{x}, \boldsymbol{y}) \approx I(X; Y) \geq I(\widehat{X}; \widehat{Y})$$

 $\approx M_{\rm info}(\widehat{\boldsymbol{x}}, \widehat{\boldsymbol{y}})$

requires uniform error bound

- 1. Strategy spaces are large
- 2. Agents are strategic

Variational representation

$$I(X;Y) = \sup_{L} \mathbb{E}_{P_{XY}}[L] - \mathbb{E}_{P_{X}P_{Y}}[e^{L}] + 1$$

becomes learning ideal scoring rules K^*

- Sufficient to bound the error at the truthful strategy
- 2. Agents want to help us to learn.

Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- Connection to previous mechanisms

Related Works in Multi-task Peer Prediction

- Mutual information framework
 - Binary positive correlated signals [Dasgupta, Ghosh 2013]
 - Correlated agreement mechanism [Shnyder et al 2016; Agarwal et al 2017]
 - Co-training mechanism [Kong, Schoenebeck 2018]
 - Mutual information framework [Kong, Schoenebeck 2019]
- Others
 - Determinant mechanism [Kong 2020]
 - Surrogate scoring rule mechanism [Chen et al 2020]

Mutual information framework

Contributions

If $P_{X,Y}$ is stochastic relevant, our pairing mechanism can elicit agents to report truthfully.

- ullet General signal spaces, ${\mathcal X}$ and ${\mathcal Y}$
- Mechanism design to learning reduction

Special cases $\Phi(a) = |a - 1|$

Total variational distance

$$-\Phi(a) = |a - 1|$$

 $-\Phi^*(b) = b$ if $|b| ≤ 1; ∞$, o.w.
 $-\Phi'(a) = sign(a - 1)$

- Pairing mechanism
 - Payment

$$K(\hat{x}_b, \hat{y}_b) - K(\hat{x}_p, \hat{y}_q)$$

 $-\Phi$ -ideal scoring function

$$\Phi'\left(\frac{dP_{XY}}{dP_XP_Y}\right) = \operatorname{sign}(P_{XY} > P_XP_Y)$$

Special cases $\Phi(a) = |a - 1|$

CA mechanism

- Total variational distance
 - $-\Phi(a) = |a-1|$
 - Φ*(b) = b if |b| ≤ 1; ∞, o.w.
 - $-\Phi'(a) = sign(a-1)$
- Pairing mechanism
 - Payment

$$K(\widehat{x}_b, \widehat{y}_b) - K(\widehat{x}_p, \widehat{y}_q)$$

Φ-ideal scoring function

$$\Phi'\left(\frac{dP_{XY}}{dP_XP_Y}\right) = \text{sign}(P_{XY} > P_XP_Y)$$

Dasgupta Ghosh

Binary and positive correlated signals.

For all
$$z = 0.1$$

$$P_{XY}(z,z) > P_X(z)P_Y(z)$$

- Pairing mechanism
 - Payment $2\big(\mathbf{1}[\widehat{x}_b = \widehat{y}_b] \mathbf{1}\big[\widehat{x}_p = \widehat{y}_q\big]\big)$
 - $K^{*}(x, y) = sign(P_{XY}(x, y) > P_{X}(x)P_{Y}(y)) = 2 \cdot 1[x = y] 1$

Comparisons of Peer Prediction mechanisms

- Pairing mechanism pays an approximation of mutual information
- CA mechanism is the pairing mechanism with

$$\Phi(a) = |a - 1|$$

Comparisons of Peer Prediction mechanisms

- Pairing mechanism pays an approximation of mutual information
- CA mechanism is the pairing mechanism with

$$\Phi(a) = |a - 1|$$

Co-training mechanism

$$\frac{dP_{XY}}{dP_X P_Y} = \sum_{w} \frac{P(W|X)P(W|Y)}{P(W)}_{K^* = \Phi'\left(\frac{dP_{XY}}{dP_X P_Y}\right)}$$

