Лабораторная работа 4.4.1 Амплитудная дифракционная решетка

Гляудялис Гинтарас Б02-104

21 февраля 2023 г.

Цели работы: знакомство с работой и настройкой гониометра Γ 5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

1 Теоретическая часть

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

2 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Г5. Принципиальная схема экспериментальной установки приведена на рис. 1.

Рис. 1: Схема установки

3 Экспериментальная часть

3.1 Экспериментальные данные

Измерим угловые координаты спектральных линий ртути в m=1 порядкеsemithicksemithick, рассчитаем углы дифракции φ_m . Результаты измерений и вычислений занесем в таблицу 1.

Таблица 1: Эксп. данные (m=1)

m=1	Синий	Голубой	Зеленый	Желтый (1)	Желтый (2)	Красный
φ	12°33′40″	14°12′19″	15°48′27″	16°43′5″	16°47′41″	18°6′49″
$\sin \varphi$	0.219	0.246	0.274	0.288	0.291	0.313
λ , HM	435.8	491.6	546.1	577.0	579.1	623.4
m=2	Синий	Голубой	Зеленый	Желтый (1)	Желтый (2)	_
$\frac{m=2}{\varphi}$	Синий 25°44′37″	Голубой 29°19′37″	Зеленый 32°56′6″	Желтый (1) 35°2′36″	Желтый (2) 35°11′37″	-
				\ /	\ /	- - -

Для оценки угловой дисперсии решётки определим разности угловых координат линий жёлтого дублета во всех видимых порядках ($\Delta \lambda = 21 \text{Å}$):

Таблина 2:

2000111140 21								
m	$\Delta \varphi$, 10^{-3} рад	$D_{\rm exp}, 10^{-5} \ {\rm pag/\AA}$	$D_{ m teor}, 10^{-5} { m pag/\AA}$					
1	2.91	13.9	5.0					
2	2.67	12.7	10.0					

3.2 Обработка результатов

Построим график зависимости $\lambda(\sin\varphi_m)$ для 1 и 2 порядков:

Рис. 2:

Определим по углу наклона графика период решётки d:

$$d_1 = 2.0 \pm 0.3$$
 мкм, $d_2 = 2.02 \pm 0.02$ мкм

3.3 Разрешающая способность

Используя формулы

$$\delta\lambda\approx\frac{d\varphi}{D},\ R\approx\frac{\lambda}{\delta\lambda},\ N\approx\frac{R}{m},\ l\approx Nd$$

для порядков m = 1, 2, получаем

Таблица 3:

rasiinga 3.						
m	$\delta \lambda$, Å	R	N	l, mm		
1	21.0	274.7	275	0.55		
2	19.2	300.5	150	0.3		

4 Выводы

Таким образом, мы исследовали спектральные линии ртути, определили шаг решётки, её угловую дисперсию, а также её эффективный размер. Полученные результаты близки к теоретическим вычислениям, за исключением первого порядка.