PATENT SPECIFICATION

965,667

NO. 348

Date of Application and filing Complete Specification: December 20, 1960. No. 43735/60 Application made in France (No. 813898) on December 21, 1959, Complete Specification Published: August 6, 1964. © Crown Copyright 1964,

Index at Acceptance:—B7 D (2A2A, 2A2D, 2A4A3, 2A5A1, 2C). International Classification:—B 62 d.

COMPLETE SPECIFICATION

DRAWINGS ATTACHED

Improvements in or relating to Vehicle Suspension Systems

We, Annue Robert Maror, a French Crizen, of 39 rue d'Alembert à Villeneuve St-Georges, Seine, France and PNEUMATIQUES CAGUICEGUC MANUFACTURE & PLASTIQUES 5 KLEEER COLOMBES (formerly PNEUMATIQUES & CAOUTCEOUC MANURACTURE KLEEER COLOMBES), a French Body Corporate of Place Valmy, Colombes, Seine, France, do bereby declare the invention for which we 10 pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: The present invention relates to vehicle

15 suspension systems, particularly for automobiles, and has as an object, improvements therein.

Vehicle suspensions art continuousiv evolving and being developed because any 20 suspension must take into account the weight and dimensions of the vehicle, its load capacity, the power of its engine and of its braking system, the kind of steering and also the general state of the roads. 25 Due to the many facets of the problem, there have been proposed a large number of solutions which are all more or less the product of a compromise between differing desiderata. By and large the suspension systems currently used are of the mechanical type with or without supplementary stabilising or damping devices which can be pneu-matic, mechanical or hydraulic; some susspecifically pncu-Whatever the pension systems are 35 matic or hydraulic. solution used, even the best of suspension systems still have serious drawbacks, particularly when cornering, when the vehicle rolls towards the outside of the 40 corner, and this is uncomfortable for the passengers and can lead to serious accidents. Automobile vehicles have been fitted for a long time with so-called "independently

sprung" whoels: this makes a contribution towards the improvement of the comfort and road holding and can be adapted to all road holding and can be anapted to an types of suspension whether by torsion bars, semi-elliptic springs and wish bones (triangulated lever), swinging half axles and helical springs, or ficating axles, the body being fixed upon an axle beam or other transverse member carrying said suspension members. But, with or without damping devices, all these systems suffered from at least some of the above-mentiond draw- 55 backs.

The analysis of the displacement of a vehice along a curve shows that, even when fitted with the best known suspensions. during cornering and even more clearly when 60 it is travelling at high speed, it undergoes It is traveling at ingn speed, it undergoes the action of centrifugal force, which tends to displace it in the opposite direction to that of the curve, and it also undergoes the force of inertia which tends to make it 65 pursue its original path. It is known that centrifugal force and inertia are proportional to the weight of the vehicle, to its speed and to the radius of curvature of the speed and to the radius of curvature of the bend.

It is a specific object of the present invention to provide a vehicle-suspension system which minimises these drawbacks, but which may be fitted without difficulty to conventional vehicles, and allows shock 75 absorbers to be dispensed with if desired, but which nevertheless can be made at a cost not exceeding that of conventional suspensions.

The invention consists in a vehicle sus- 80 pension system in which each wheel of one or more pairs of wheels is connected to an axle beam or other transverse member. extending between the or each pair of wheels, by links one of which is pivoted 85 to a lever privoted to the transverse memFII

2

sorber 12.

ber; and in which each of said one links or said levers is also connected to the associated transverse member by resident means and the vehicle body is pivoted to 5 and carried by the levers.

Each lever may be pivoted to the associated transverse member at a point between the pivots connecting the lever to the said one link and the vehicle body.

Each resilient means may comprise a

lo Each resilient means may comprise a helical spring, which may be pivotally connected to the transverse member and to the said one link and he stretched and comprised between these pivotal connections.

15 Aitematively, each resilient means may comprise a torsion bar mounted on the associated transverse member substantially parallel to the pivot aris of the associated lever on said transverse member. In this lever on said transverse member. In this case, each tersion bar may be connected to the associated lever by two further levers which are pivotally interconnected and one of which is pivoted to the lever whilst the other is eachly fixed to the torsion bar.

25 When the resilient means are at rest, their stress axes may be symmetrically disposed with respect to the longitudinal plane of symmetry of the vehicle, i.e., these axes are inclined at the same angle on both sides 30 of the lenginginal axis of the vehicle. This ragio is determined by the shape and dimensions of the links, also the lengths of the levers, taken between the pivots connecting each lever to the associated link and 35 transverse member, and finally by the travel allowed for the resilient means.

Flytraulic, pneumatic or other types of shock-absorber may be used with the suspession system according to the invention, these stock-absorbers being arranged separately or in combination with the resilient means referred to above.

resilient means referred to above.

In order that the invention may be more clearly understood, reference will now be assessed to the accompanying drawings which show two specific embodiments thereof by way of example and in which:—

Figure 1 shows a front elevation of a first embodiment.

50 Figure 2 shows a front elevation of the position taken up by the device in Figure 1 when correctors.

I when cornering.
Figures 3 and 4 show front elevations, corresponding respectively to Figures 1 and 55 2, of a modification in which the flexible members are torsion bars, and

Figure 5 shows a section on a large scale along the line V-V of Figure 4.

along the line V-V of Figure 4.

Referring to the embodiment shown in 60 Figures 1 and 2, the front wheels 1 and 2 of an antomobile vehicle, having a body

represented schematically at 3, are connected respectively to opposite ends of an axie beam or other transverse member 6 extending between the wheels by links in

the foun of lower hearing rods 4, 4, and upper bearing rods 5, 5, articulated in any desired fashion to the corresponding wheel. The lower bearing rods 4, 4, are articulated at their other each, at 4 to the transverse 76 member 6. Towards each end of the transverse member 6 there is articulated an angled lever 7, 7, The body 3 is pivoted to one end of each lever at 8, 8, whilst the other end of each lever is articulated at 75 kg, 10, to the adjacent upper bearing rods 5, 5, 5, 8 tweet the said bearing rods 5, 5, and the transverse member 6 are monnted so that they pivot at their ends, two helical springs 11, 11, each of which 80 are provided with a hydraulic shock ab-

The assembly is preferably exactly the same for the rear wheels of the vehicle.

When the vehicle fitted as described is following a straight line, the suspension members occupy the positions shown in Figure 1. When the vehicle is entering a curve to the right, the lever 7, is pushed back towards the left of the drawings; thus the spring 11, is compressed, i.e. it shortens, between the bearing rod 5, and the transverse member 6, and also the wheel 1 inclines towards the right. At the same time the lever 7, spetches the spring 11, between the lever 7, spetches the spring 12, both 12, between the lever 12, and 13, between the check of the wheel 1. If the wheels, in sloping in fact goip the ground, thus avoiding any tendency to skid.

Referring now to Figures 3, 4 and 5, the body 3 is pivoted at 13, 13, 10, to lever 110.

Referring now to Figures 3, 4 and 5, the body 3 is pivoted at 13, 13, to levers 110 14, 14, which are articulated at 15, 15, to the upper bearing rod 5, 5, and at intermediate points 16, 16, to the transverse member 6. Two levers 17, 17, are articulated at one end to the pivot 13, 13, and at their other ends at 18, 18, to the adjacent ends of levers 21, 21, The other ends 19, 19, of the latter are connected to the transverse member 6 by means of torsion bars 20, and 20, to which the levers 21, 21, are rigidly fixed and which are coaxial with the articulations of the lower bearing rods 4. 4.

4, 4, The action of the embodiment illustrated in Figures 3, 4 and 5 is the same as that 125 of Figures 1 and 2.

Thus it may be seen that the suspension system according to the present invention has as its practical effect, by the use of centrifical forces and of inertia, the hardening 120

3

of the suspension springs in the opposite direction to the direction of the bend and at the same time has the effect of inclining the wheels in the direction of the bends. I has it offers the advantage which has been sought for a long time, but not yet obtained in such a simple way, of almost entirely eliminating the risks of turning over or skidding due to undesirable reactions in the known flexible suspensions when corners are taken at great speed. Thus it allows faster comering with more safety and

comfort without losing the vehicle's comfortable "feel" when travelling in a straight ine or over bad roads. Finally it can be adapted without particular difficulty to vehicles which are already in service or to

vehicles under construction.
WHAT WE CLAIM IS:-

A vehicle suspension system in which each wheel of one or more pairs of wheels is connected to an axle beam or other transverse member, extending between the or each pair of wheels, by links, one of which is pivoted to a lever pivoted to the transverse member, and in which each of said one links or said levers is also connected.

verse member, and in which each of said one links or said levers is also connected to the associated transverse member by resilient means and the vehicle body is 30 pivoted to and carried by the levers.

2. A system as claimed in claim 1, in which each lever is pivoted to the associated transverse member at a point between the pivots connecting the lever to the said one 35 link and the valuable body.

3. A system as claimed in claim 1 or 2 in which each resilient means comprises a haired spring.

4. A system as claimed in claim 1 or 2, in which each resilient means comprises 40 a tersion bar mounted on the associated transverse member substantially parallel to the pivot axis of the associated lever on said transverse member.

5. A system as claimed in claim 4, in 45 which each torsion bar is connected to the associated lever by two further levers which are pivotally interconnected and one of which is pivoted to the lever whilst the other is rigidly fixed to the torsion bar.

50

6. A system as claimed in any one of the preceding claims, in which when the restrict means are at rest, their stress ares are symmetrically disposed with respect to the longitudinal plane of symmetry of the 55 vehicle.

7. A vehicle suspension system constructed and adapted to operate substantially as hereinbefore described with reference to Figures 1 and 2 of the accompany 60 mg drawings

ing drawings.

8. A vehicle suspension system constructed and adapted to operate substantially as hereinbefore described with reference to Figures 3, 4 and 5 of the 65 accompanying drawings.

BARON & WARREN,

16. Kensington Square, London, W.S. Chartered Patent Agents.

Berwick-upon-Tweed; Printed for Her Majerry's Stationery Office by The Tweeddale Press Ltd.--1964
Published at The Patent Office, 25 Southampton Buildings, London, W.C.2 from which copies may
be obtained.

965,667 2 SHEETS

COMPLETE SPECIFICATION

This drawing is a reproduction of the Original on a reduced scale.

SHEETS 1 & 2

