$\Lambda Y \Sigma H$

α) Είναι:
$$\overrightarrow{AB}$$
 = $(x_B - x_A, y_B - y_A)$ = $(0 + 2, 8 - 3)$ = $(2, 5)$.

Eπίσης:
$$\overrightarrow{\Gamma\Delta}$$
 = $(x_{\Delta} - x_{\Gamma}, y_{\Delta} - y_{\Gamma})$ = $(10 - 5, 5 - 3)$ = $(5, 2)$.

Oπότε:
$$\overrightarrow{AB} \cdot \overrightarrow{\Gamma \Delta} = (2, 5) \cdot (5, 2) = 2 \cdot 5 + 5 \cdot 2 = 10 + 10 = 20$$
.

β) Αν ω είναι η γωνία που σχηματίζει το διάνυσμα \vec{u} με τον άξονα x'x, τότε εφω= $\lambda_{\vec{u}}$ όπου $\lambda_{\vec{u}}$ είναι ο συντελεστής διεύθυνσης του διανύσματος \vec{u} .

Eίναι:
$$\vec{u} = \overrightarrow{AB} + \overrightarrow{\Gamma\Delta} = (2, 5) + (5, 2) = (7, 7)$$
, άρα εφω = $\lambda_{\vec{u}} = \frac{y_{\vec{u}}}{x_{\vec{u}}} = \frac{7}{7} = 1$.

Αφού το διάνυσμα \vec{u} έχει θετικές συντεταγμένες, θα βρίσκεται στο $\mathbf{1}^{\text{o}}$ τεταρτημόριο.

Έτσι από τις σχέσεις εφω = 1 και
$$0 \le \omega < \pi/2$$
, προκύπτει ότι $\omega = \frac{\pi}{4}$