A Tutorial on Dual Decomposition

Yujia Li

University of Toronto

MAP Inference for MRFs

Energy minimization

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

MAP Inference for MRFs

Energy minimization

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

► Example - unary + pairwise factors

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j})$$

MAP Inference for MRFs

Energy minimization

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

► Example - unary + pairwise + higher order factors

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j}) + \sum_{f} \theta_{f}(x_{f})$$

Decomposition Methods for Optimization

Decomposable problem:

$$\min_{x,y} \ f(x) + g(y) = \min_x f(x) + \min_y g(y)$$

Two subproblems can be solved independently (in parallel).

Decomposition Methods for Optimization

► Decomposable problem:

$$\min_{x,y} \ f(x) + g(y) = \min_{x} f(x) + \min_{y} g(y)$$

Two subproblems can be solved independently (in parallel).

▶ Nondecomposable problem with complicating variable:

$$\min_{x,y,z} f(x,z) + g(y,z)$$

Fixing z, the problem is decomposable:

$$\min_{x,y}\ f(x,z) + g(y,z) = \min_x f(x,z) + \min_y g(y,z)$$

Fixing z, the problem is decomposable:

$$\min_{x,y}\ f(x,z) + g(y,z) = \min_x f(x,z) + \min_y g(y,z)$$

Algorithm:

- 1. Solve two subproblems (in parallel) for the current z.
- 2. Update z, e.g. take a gradient descent step if z is continuous.

Fixing z, the problem is decomposable:

$$\min_{x,y}\ f(x,z) + g(y,z) = \min_x f(x,z) + \min_y g(y,z)$$

Algorithm:

- 1. Solve two subproblems (in parallel) for the current z.
- 2. Update z, e.g. take a gradient descent step if z is continuous.

Let $x^* = \operatorname{argmin}_x f(x,z), \ y^* = \operatorname{argmin}_y g(y,z)$ Then gradient at z:

$$\frac{\partial f(x^*, z)}{\partial z} + \frac{\partial g(y^*, z)}{\partial z}$$

When z is discrete and can take values from only a small set:

- 1. For each z
 - Solve the two subproblems and compute objective
- 2. Choose the z with the minimum objective

When z is discrete and can take values from only a small set:

- 1. For each z
 - Solve the two subproblems and compute objective
- 2. Choose the z with the minimum objective

Problems:

- ▶ When z is discrete, gradients not available
- ▶ When dimensionality of z is high, enumerating all z is expensive.

Equivalent formulation of the original problem:

$$\min_{x,y,z} f(x,z) + g(y,z) \qquad \Longleftrightarrow \qquad \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2)$$
s.t. $z_1 = z_2$

Equivalent formulation of the original problem:

$$\min_{x,y,z} f(x,z) + g(y,z) \iff \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2)$$
s.t. $z_1 = z_2$

Lagrangian

$$L(x, y, z_1, z_2, \lambda) = f(x, z_1) + g(y, z_2) + \lambda(z_1 - z_2)$$

Equivalent formulation of the original problem:

$$\min_{x,y,z} f(x,z) + g(y,z) \qquad \iff \qquad \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2)$$
s.t. $z_1 = z_2$

Lagrangian

$$L(x, y, z_1, z_2, \lambda) = f(x, z_1) + g(y, z_2) + \lambda(z_1 - z_2)$$

Lagrangian dual function

$$D(\lambda) = \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2) + \lambda(z_1 - z_2)$$

Equivalent formulation of the original problem:

$$\min_{x,y,z} f(x,z) + g(y,z) \iff \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2)
\text{s.t. } z_1 = z_2$$

Lagrangian

$$L(x, y, z_1, z_2, \lambda) = f(x, z_1) + g(y, z_2) + \lambda(z_1 - z_2)$$

Lagrangian dual function

$$D(\lambda) = \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2) + \lambda(z_1 - z_2)$$

= $\min_{x,z_1} [f(x,z_1) + \lambda z_1] + \min_{y,z_2} [g(y,z_2) - \lambda z_2]$

Equivalent formulation of the original problem:

$$\min_{x,y,z} f(x,z) + g(y,z) \qquad \iff \qquad \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2)
\text{s.t. } z_1 = z_2$$

Lagrangian

$$L(x, y, z_1, z_2, \lambda) = f(x, z_1) + g(y, z_2) + \lambda(z_1 - z_2)$$

Lagrangian dual function

$$\begin{split} D(\lambda) &= \min_{x,y,z_1,z_2} f(x,z_1) + g(y,z_2) + \lambda(z_1 - z_2) \\ &= \min_{x,z_1} \left[f(x,z_1) + \lambda z_1 \right] + \min_{y,z_2} \left[g(y,z_2) - \lambda z_2 \right] \\ &= \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right] \end{split}$$

Lagrangian Dual Function

Denote $p^* = \min_{x,y,z} f(x,z) + g(y,z)$ as the primal optimal objective value, then

$$D(\lambda) = \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right]$$

$$\leq \min_{x,y,z} \left[f(x,z) + \lambda z + g(y,z) - \lambda z \right]$$

Lagrangian Dual Function

Denote $p^* = \min_{x,y,z} f(x,z) + g(y,z)$ as the primal optimal objective value, then

$$\begin{split} D(\lambda) &= & \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right] \\ &\leq & \min_{x,y,z} \left[f(x,z) + \lambda z + g(y,z) - \lambda z \right] \\ &= & \min_{x,y,z} \left[f(x,z) + g(y,z) \right] \\ &= & p^* \end{split}$$

Lagrangian Dual Function

Denote $p^* = \min_{x,y,z} f(x,z) + g(y,z)$ as the primal optimal objective value, then

$$D(\lambda) = \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right]$$

$$\leq \min_{x,y,z} \left[f(x,z) + \lambda z + g(y,z) - \lambda z \right]$$

$$= \min_{x,y,z} \left[f(x,z) + g(y,z) \right]$$

$$= p^*$$

 $D(\lambda)$ is a lower bound for p^* for any λ .

Solving the Dual Problem

Dual problem finds the tightest lower bound for p^* .

$$\max_{\lambda} D(\lambda) = \max_{\lambda} \left\{ \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right] \right\}$$

Solving the Dual Problem

Dual problem finds the tightest lower bound for p^* .

$$\max_{\lambda} D(\lambda) = \max_{\lambda} \left\{ \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right] \right\}$$

Algorithm

- 1. Solve the subproblems for the current λ
- 2. Update λ , e.g. take a gradient ascent step

Solving the Dual Problem

Dual problem finds the tightest lower bound for p^* .

$$\max_{\lambda} D(\lambda) = \max_{\lambda} \left\{ \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right] \right\}$$

Algorithm

- 1. Solve the subproblems for the current λ
- 2. Update λ , e.g. take a gradient ascent step

Let
$$(x^*,z_1^*)= \operatorname{argmin}_{x,z} f(x,z) + \lambda z$$
 and $(y^*,z_2^*)= \operatorname{argmin}_{y,z} g(y,z) - \lambda z$, then

$$\frac{\partial D}{\partial \lambda} = z_1^* - z_2^*$$

The Gradient Ascent Algorithm

Remember that

$$D(\lambda) = \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right]$$

and

$$\frac{\partial D}{\partial \lambda} = z_1^* - z_2^*$$

Taking a gradient step,

$$\Delta_f = z_1^* z - z_2^* z$$
 $z_1^* \nearrow$, $z_2^* \searrow$
 $\Delta_g = z_2^* z - z_1^* z$ $z_2^* \nearrow$, $z_1^* \searrow$

Each gradient step makes the two subproblems agree more on z.

The Gradient Ascent Algorithm

When
$$\frac{\partial D}{\partial \lambda}=0 \Leftrightarrow z_1^*=z_2^*$$
, we found the optimal $z^*=z_1^*=z_2^*$,

The Gradient Ascent Algorithm

When $\frac{\partial D}{\partial \lambda}=0\Leftrightarrow z_1^*=z_2^*$, we found the optimal $z^*=z_1^*=z_2^*$, because

$$D(\lambda) = \min_{x,z} [f(x,z) + \lambda z] + \min_{y,z} [g(y,z) - \lambda z]$$

= $[f(x^*, z_1^*) + \lambda z_1^*] + [g(y^*, z_2^*) - \lambda z_2^*]$
= $f(x^*, z^*) + g(y^*, z^*)$

and
$$D(\lambda) \le p^* \le f(x^*, z^*) + g(y^*, z^*)$$
.

Dual Decomposition Compared to Primal Decomposition

Good

- λ is continuous
- Unconstrained optimization
- ▶ $D(\lambda)$ is always concave, as

$$D(\lambda) = \min_{x,z} \left[f(x,z) + \lambda z \right] + \min_{y,z} \left[g(y,z) - \lambda z \right]$$

is a minimum of linear functions of λ .

Bad

- Nontrivial to recover the optimal primal assignment (x^*, y^*, z^*) if $z_1^* \neq z_2^*$.
- ▶ Duality gap: sometimes (or usually) $D(\lambda^*) < p^*$ even for dual optimal λ^*

Primal problem:

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

▶ $x_i \in \{0,1\}^K$, 1-of-K encoding $x_i = k \Leftrightarrow x_{ik} = 1, x_{ik'} = 0$, $k' \neq k$.

Primal problem:

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

- ▶ $x_i \in \{0,1\}^K$, 1-of-K encoding $x_i = k \Leftrightarrow x_{ik} = 1, x_{ik'} = 0$, $k' \neq k$.
- ▶ Introduce one copy of x_f for each factor f

$$\min_{\mathbf{x}, \{x^f\}_f} \qquad \sum_i \theta_i(x_i) + \sum_f \theta_f(x^f)$$
s.t.
$$x_i^f = x_i, \quad \forall f, i$$

Primal problem:

$$\min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

- ▶ $x_i \in \{0,1\}^K$, 1-of-K encoding $x_i = k \Leftrightarrow x_{ik} = 1, x_{ik'} = 0$, $k' \neq k$.
- ▶ Introduce one copy of x_f for each factor f

$$\min_{\mathbf{x}, \{x^f\}_f} \qquad \sum_i \theta_i(x_i) + \sum_f \theta_f(x^f)$$
s.t.
$$x_i^f = x_i, \quad \forall f, i$$

Lagrange multipliers $\lambda_i^f \in \mathbb{R}^K$ for each f, i

Lagrangian dual:

$$L(\mathbf{x}, \{x^f\}, \lambda) = \sum_{i} \theta_i(x_i) + \sum_{f} \theta_f(x^f) + \sum_{i} \sum_{f} \lambda_i^{f \top} (x_i^f - x_i)$$

Lagrangian dual:

$$L(\mathbf{x}, \{x^f\}, \lambda) = \sum_{i} \theta_i(x_i) + \sum_{f} \theta_f(x^f) + \sum_{i} \sum_{f} \lambda_i^{f \top} (x_i^f - x_i)$$

Denote
$$\lambda_i^f(x_i) = \lambda_i^{f \top} x_i$$

Lagrangian dual:

$$L(\mathbf{x}, \{x^f\}, \lambda) = \sum_i \theta_i(x_i) + \sum_f \theta_f(x^f) + \sum_i \sum_f \lambda_i^{f \top} (x_i^f - x_i)$$

Denote $\lambda_i^f(x_i) = \lambda_i^{f \top} x_i$

$$L(\mathbf{x}, \{x^f\}, \lambda) = \sum_{i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \sum_{f} \left[\theta_f(x^f) + \sum_{i \in f} \lambda_i^f(x_i^f) \right]$$

Dual function:

$$D(\lambda) = \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x^{f}} \left[\theta_{f}(x^{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}^{f}) \right]$$
$$= \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x_{f}} \left[\theta_{f}(x_{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}) \right]$$

Dual function:

$$D(\lambda) = \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x^{f}} \left[\theta_{f}(x^{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}^{f}) \right]$$

$$= \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x_{f}} \left[\theta_{f}(x_{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}) \right]$$

$$\leq \min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

$$= p^{*}$$

Dual function:

$$D(\lambda) = \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x^{f}} \left[\theta_{f}(x^{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}^{f}) \right]$$

$$= \min_{\mathbf{x}} \sum_{i} \left[\theta_{i}(x_{i}) - \sum_{f \in \mathcal{N}(i)} \lambda_{i}^{f}(x_{i}) \right] + \sum_{f} \min_{x_{f}} \left[\theta_{f}(x_{f}) + \sum_{i \in f} \lambda_{i}^{f}(x_{i}) \right]$$

$$\leq \min_{\mathbf{x}} \sum_{i} \theta_{i}(x_{i}) + \sum_{f} \theta_{f}(x_{f})$$

$$= p^{*}$$

Dual problem:

$$\max_{\lambda} D(\lambda)$$

Dual Decomposition for MRF-MAP

Algorithm:

- 1. Solve subproblems
 - $ightharpoonup \min_{x_i} \theta_i(x_i) \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i)$ for all i.
 - $ightharpoonup \min_{x_f} \theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i)$ for all f.
- 2. Update $\lambda_i^f(x_i)$ for all f, i, x_i , e.g. take a gradient step

Dual Decomposition for MRF-MAP

Algorithm:

- 1. Solve subproblems
 - $ightharpoonup \min_{x_i} \theta_i(x_i) \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i)$ for all i.
 - $ightharpoonup \min_{x_f} \theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i)$ for all f.
- 2. Update $\lambda_i^f(x_i)$ for all f, i, x_i , e.g. take a gradient step

Denote
$$x_i^* = \operatorname{argmin}_{x_i} \theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i)$$

$$x^{f*} = \operatorname{argmin}_{x_f} \theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i), \text{ then}$$

$$\frac{\partial D}{\partial \lambda_i^f(x_i)} = -\mathbf{I}[x_i = x_i^*] + \mathbf{I}[x_i = x_i^{f*}]$$

Decode Optimal x^* from Dual Solution

▶ The simplest method:

$$x_i^* = \underset{x_i}{\operatorname{argmin}} \quad \theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i)$$

- ▶ A better solution: take the best **x*** over all iterations of the algorithm.
- Problem dependent, more structured methods may work better.

Example: Segmentation with Cardinality Potential

- ▶ Binary segmentation: $x_i \in \{0, 1\}$.
- ▶ Model: pairwise CRF + Cardinality Potential

$$E(\mathbf{x}) = \sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j}) + \theta_{c}(\mathbf{x})$$

Pairwise potential

$$\theta_{ij}(x_i, x_j) = p \mathbf{I}[x_i \neq x_j]$$

Cardinality potential

$$\theta_c(\mathbf{x}) = \theta_c \left(\sum_i x_i \right)$$

Two Subproblems

Pairwise CRF

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j})$$

Efficient exact inference using graph cuts.

Two Subproblems

Pairwise CRF

$$\sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j})$$

Efficient exact inference using graph cuts.

► Cardinality + unary

$$\sum_{i} \theta_{i}(x_{i}) + \theta_{c} \left(\sum_{i} x_{i} \right)$$

$$= \sum_{i} [\theta_{i}(1) - \theta_{i}(0)]x_{i} + \sum_{i} \theta_{i}(0) + \theta_{c} \left(\sum_{i} x_{i} \right)$$

$$= \sum_{i} \theta'_{i}x_{i} + \theta_{c} \left(\sum_{i} x_{i} \right) + C$$

Exact inference by sorting θ_i 's in $O(N \log N)$ time.

Dual problem

Break $E(\mathbf{x})$ into two parts

$$E(\mathbf{x}) = \left[\gamma \sum_{i} \theta_i(x_i) + \sum_{(i,j)} \theta_{ij}(x_i, x_j) \right] + \left[(1 - \gamma) \sum_{i} \theta_i(x_i) + \theta_c \left(\sum_{i} x_i \right) \right]$$

Dual problem

Break $E(\mathbf{x})$ into two parts

$$E(\mathbf{x}) = \left[\gamma \sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j}) \right] + \left[(1 - \gamma) \sum_{i} \theta_{i}(x_{i}) + \theta_{c} \left(\sum_{i} x_{i} \right) \right]$$

Dual function

$$D(\lambda) = \min_{\mathbf{x}} \left\{ \sum_{i} \left[\gamma \theta_i(x_i) - \lambda_i(x_i) \right] + \sum_{(i,j)} \theta_{ij}(x_i, x_j) \right\} + \min_{\mathbf{x}} \left\{ \sum_{i} \left[(1 - \gamma)\theta_i(x_i) + \lambda_i(x_i) \right] + \theta_c \left(\sum_{i} x_i \right) \right\}$$

Dual problem

Break $E(\mathbf{x})$ into two parts

$$E(\mathbf{x}) = \left[\gamma \sum_{i} \theta_{i}(x_{i}) + \sum_{(i,j)} \theta_{ij}(x_{i}, x_{j}) \right] + \left[(1 - \gamma) \sum_{i} \theta_{i}(x_{i}) + \theta_{c} \left(\sum_{i} x_{i} \right) \right]$$

Dual function

$$D(\lambda) = \min_{\mathbf{x}} \left\{ \sum_{i} \left[\gamma \theta_i(x_i) - \lambda_i(x_i) \right] + \sum_{(i,j)} \theta_{ij}(x_i, x_j) \right\} + \min_{\mathbf{x}} \left\{ \sum_{i} \left[(1 - \gamma)\theta_i(x_i) + \lambda_i(x_i) \right] + \theta_c \left(\sum_{i} x_i \right) \right\}$$

Gradient

$$\frac{\partial D}{\partial \lambda_i(x_i)} = -\mathbf{I}[x_i = x_i^{\text{CRF}}] + \mathbf{I}[x_i = x_i^{\text{Card}}]$$

Results

Decode primal solution \mathbf{x}^* for a given λ

- lacktriangle I simply take $\mathbf{x}^{\mathrm{CRF}}$ as the primal solution.
- ▶ Output the \mathbf{x}^{CRF} with the best $E(\mathbf{x})$ over all iterations as the final result.

Show demo.

Other Methods for Solving the Dual Problem

The dual problem

$$\max_{\lambda} \left\{ \sum_{i} \min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \sum_{f} \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right] \right\}$$

can also be optimized by other methods.

Other Methods for Solving the Dual Problem

The dual problem

$$\max_{\lambda} \left\{ \sum_{i} \min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \sum_{f} \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right] \right\}$$

can also be optimized by other methods.

Coordinate ascent: optimize a set of λ_i^f 's and hold the others fixed

- ▶ Usually the small set of λ_i^f 's can be solved to optimum
- ▶ Allows big moves maybe faster than gradient ascent
- Parameter free no need for learning rates

Optimize λ_i^f for a specific f and i, hold all others fixed.

Optimize λ_i^f for a specific f and i, hold all others fixed. Relevant parts in the dual

$$\min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right]$$

Optimize λ_i^f for a specific f and i, hold all others fixed. Relevant parts in the dual

$$\min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right]$$

Useful notation

$$\theta_i^{-f}(x_i) = \theta_i(x_i) - \sum_{f' \neq f} \lambda_i^{f'}(x_i), \qquad m_i^f(x_i) = \min_{x_{f \setminus i}} \left[\theta_f(x_f) + \sum_{i' \neq i} \lambda_{i'}^f(x_{i'}) \right]$$

Optimize λ_i^f for a specific f and i, hold all others fixed. Relevant parts in the dual

$$\min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right]$$

Useful notation

$$\theta_i^{-f}(x_i) = \theta_i(x_i) - \sum_{f' \neq f} \lambda_i^{f'}(x_i), \qquad m_i^f(x_i) = \min_{x_{f \setminus i}} \left[\theta_f(x_f) + \sum_{i' \neq i} \lambda_{i'}^f(x_{i'}) \right]$$

Then the objective becomes

$$\min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \neq i'} \lambda_{i'}^f(x_{i'}) + \lambda_i^f(x_i) \right]$$
$$= \min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) \right] + \min_{x_i} \left[m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

For any λ_i^f , the dual objective

$$\min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) \right] + \min_{x_i} \left[m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

$$\leq \min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) + m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

$$= \min_{x_i} \left[\theta_i^{-f}(x_i) + m_i^f(x_i) \right]$$

For any λ_i^f , the dual objective

$$\min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) \right] + \min_{x_i} \left[m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

$$\leq \min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) + m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

$$= \min_{x_i} \left[\theta_i^{-f}(x_i) + m_i^f(x_i) \right]$$

Choose
$$\lambda_i^f(x_i) = \frac{1}{2} \left[\theta_i^{-f}(x_i) - m_i^f(x_i) \right]$$
, then

$$\min_{x_i} \left[\theta_i^{-f}(x_i) - \lambda_i^f(x_i) \right] + \min_{x_i} \left[m_i^f(x_i) + \lambda_i^f(x_i) \right]$$

$$= \frac{1}{2} \min_{x_i} \left[\theta_i^{-f}(x_i) + m_i^f(x_i) \right] + \frac{1}{2} \min_{x_i} \left[\theta_i^{-f}(x_i) + m_i^f(x_i) \right]$$

$$= \min_{x_i} \left[\theta_i^{-f}(x_i) + m_i^f(x_i) \right]$$

$$\lambda_{i}^{f}(x_{i}) = \frac{1}{2}\theta_{i}^{-f}(x_{i}) - \frac{1}{2}m_{i}^{f}(x_{i})$$

$$= \frac{1}{2}\left[\theta_{i}(x_{i}) - \sum_{f' \neq f} \lambda_{i}^{f'}(x_{i})\right] - \frac{1}{2}\left\{\min_{x_{f \setminus i}}\left[\theta_{f}(x_{f}) + \sum_{i' \neq i} \lambda_{i'}^{f}(x_{i}')\right]\right\}$$

is optimal.

Algorithm:

- 1. Loop until convergence:
 - ▶ For each f, i, update λ_i^f as above

One problem:

▶ Need to compute $m_i^f(x_i) = \min_{x_{f \setminus i}} \left[\theta_f(x_f) + \sum_{i' \neq i} \lambda_{i'}^f(x_i') \right]$ for all f and i, can be expensive

Max-Product Linear Programming

Optimize $\{\lambda_i^f\}_{i\in f}$ for a specific f.

Max-Product Linear Programming

Optimize $\{\lambda_i^f\}_{i\in f}$ for a specific f. Relevant parts in dual function

$$\sum_{i} \min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right]$$

Max-Product Linear Programming

Optimize $\{\lambda_i^f\}_{i\in f}$ for a specific f. Relevant parts in dual function

$$\sum_{i} \min_{x_i} \left[\theta_i(x_i) - \sum_{f \in \mathcal{N}(i)} \lambda_i^f(x_i) \right] + \min_{x_f} \left[\theta_f(x_f) + \sum_{i \in f} \lambda_i^f(x_i) \right]$$

Similarly we can show the following λ_i^f is optimal

$$\lambda_i^f(x_i) = \left(1 - \frac{1}{|f|}\right)\theta_i^{-f}(x_i) - \frac{1}{|f|}m_i^f(x_i)$$

MPLP is usually faster than MSD.

Connection to LP Relaxation

MRF-MAP

LP formulation

$$\min_{\mathbf{x}} \sum_{i} \theta_i(x_i) + \sum_{f} \theta_f(x_f) \qquad \min_{\mu_i, \mu_f} \sum_{i} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{f} \sum_{x_f} \theta_f(x_f) \mu_f(x_f)$$

such that μ_i and μ_f are marginals over x_i and x_f for some distribution $\mu(\mathbf{x})$.

- ▶ These two are equivalent: the optimal μ^* will put all the mass on \mathbf{x}^* , i.e. $\mu^*(\mathbf{x}^*) = 1$.
- lacktriangle Problem about LP: too much constraints needed for μ_i and μ_f

Connection to LP Relaxation

Relaxed LP formulation

$$\min_{\mu_i, \mu_f} \sum_{i} \sum_{x_i} \theta_i(x_i) \mu_i(x_i) + \sum_{f} \sum_{x_f} \theta_f(x_f) \mu_f(x_f)$$
s.t.
$$\sum_{x_i} \mu_i(x_i) = 1, \quad \forall i$$

$$\sum_{x_f} \mu_f(x_f) = 1, \quad \forall f$$

$$\sum_{x_{f \setminus i}} \mu_f(x_f) = \mu_i(x_i), \quad \forall f, i, x_i$$

Result: Lagrangian dual of this LP relaxation is the same as the dual function used in dual decomposition.

Connection to LP Relaxation

One interesting result about gradient ascent algorithm

▶ Define $\mu_i^t(x_i) = \mathbf{I}[x_i = x_i^t]$, $\mu_f^t(x_f) = \mathbf{I}[x_f = x_f^t]$, where x_i^t and x_f^t are optimal solutions for the subproblems, and

$$\bar{\mu}_i(x_i) = \frac{1}{T} \sum_{t=1}^T \mu_i^t(x_i)$$

$$\bar{\mu}_f(x_f) = \frac{1}{T} \sum_{t=1}^T \mu_f^t(x_f)$$

▶ Then $\bar{\mu}_i(x_i)$ and $\bar{\mu}_f(x_f)$ converge to a solution of the LP relaxation as $T \to \infty$.

Conclusion

- Dual decomposition is a very general technique for optimization
- Plug-and-play if we use gradient ascent for the dual problem can be immediately applied to a wide variety of models
- ▶ Decoding x* from the dual depends on problem structure, trial and error process to figure out best method
- Coordinate ascent methods may speed things up

- Boyd, S., Xiao, L., Mutapcic, A., and Mattingley, J. Notes on decomposition methods.

 Lecture Notes for EE364B, Stanford University, 2008.
- Komodakis, Nikos, Paragios, Nikos, and Tziritas, Georgios. Mrf optimization via dual decomposition: Message-passing revisited.
 - In The 11th International Conference on Computer Vision, 2007.
- Komodakis, Nikos, Paragios, Nikos, and Tziritas, Georgios. Mrf energy minimization and beyond via dual decomposition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(3):531–552, 2011.
- Rush, Alexander M and Collins, Michael. A tutorial on dual decomposition and lagrangian relaxation for inference in natural language processing. Journal of Artificial Intelligence Research, 45:305–362, 2012.
- Sontag, D., Globerson, A., and Jaakkola, T.

Introduction to dual decomposition for inference.

Optimization for Machine Learning, 1:219-254, 2011.

Other stuff

Strong Duality

A nice guarantee (but usually not very useful for MRF-MAP problems):

▶ If the primal problem $\min_{x,y,z} f(x,z) + g(y,z)$ is convex and feasible, then $D(\lambda^*) = p^*$ for dual optimal λ^* , i.e. duality gap is 0.