AA 2015-2016 - Metodi del Calcolo Scientifico - Progetto 2

Compressione di immagini con la DCT

Lo scopo di questo progetto è di studiare una estensione della compressione jpeg introducendo, rispetto allo standard, la possibilità di utilizzare blocchetti di $8N \times 8N$ pixel con N scelto dall'utente invece che semplicemente 8×8 .

Il progetto consiste nella scrittura di un software che esegua i seguenti task:

- Creare una semplice interfaccia grafica in modo che l'utente possa:
 - scegliare un'immagine .bmp in toni di grigio;
 - assegnare un intero N (la dimensione dei blocchetti sui quali opererà la DCT2 sarà $8N \times 8N$) e la qualità della compressione quality, numero intero variabile tra 1 e 100.
- Se le dimensioni dell'immagine non sono multipli di 8N, completare l'immagine nel modo seguente:
 - completamento righe: duplicare verso destra l'ultimo pixel di ogni riga finché non si raggiunga un multiplo di 8N come lunghezza;
 - completamento colonne: duplicare verso il basso l'ultimo pixel di ogni colonna finché non si raggiunga un multiplo di 8N come lunghezza;
 - completamento in basso a destra: duplicare l'ultimo pixel in basso a destra in modo da riformare una immagine rettangolare.
- Dividere l'immagine risultante in blocchetti di dimensione $8N \times 8N$;
- applicare la DCT2 a ciascuno dei blocchetti $8N \times 8N$;
- quantizzare ciascun blocchetto $8N \times 8N$ così ottenuto con la matrice QN di quantizzazione $8N \times 8N$ calcolata nel modo seguente:
 - utilizzando il parametro quality fornito dall'utente determinare il fattore qf come spiegato nel paragrafo 9 delle note sul jpeg;
 - ricavare la matrice Q1 di quantizzazione 8×8 nel modo usuale come

Q1=round(qf*Q)

dove Q è la matrice di quantizzazione standard 8×8 (v. note sul jpeg) e round() esegue l'arrotondamento all'interno più vicino;

– trasformare poi la matrice Q1 di dimensioni 8×8 così ottenuta in una matrice QN di dimensioni $8N \times 8N$ semplicemente sostituendo ciascun coefficiente $Q1_{ij}$, $i=1,\ldots,8$, $j=1,\ldots,8$ della matrice Q1 con una matrice $N \times N$ composta da elementi tutti uguali a $Q1_{ij}$, come esemplificato nella figura qui sotto per N=2:

- "quantizzare ciascun blocchetto $8N \times 8N$ " significa:
 - * dividerlo (termine a termine) per la matrice QN;
 - * arrotondare all'intero più vicino;
 - * rimoltiplicare (sempre termine a termine) per la matrice QN.
- applicare la DCT2 inversa;
- mettere a zero i valori negativi e a 255 quelli maggiori di 255 in modo da avere una immagine bmp accettabile;
- rimettere insieme tutti i blocchetti ottenendo così l'immagine trasformata con la compressione jpeg;
- visualizzare sullo schermo affiancate:
 - l'immagine originale (compresi gli eventuali pixel aggiunti per renderla di dimensioni multiple di 8N)
 - l'immagine ottenuta dalla compressione jpeg

mostrando anche i parametri quality e N inseriti dall'utente.

NOTE:

- il software dovrà essere open-source (per esempio MATLAB è escluso);
- bisogna usare solo librerie ottimizzate per la DCT e per la DFT e documentarle nella relazione (niente algoritmi fatti in casa);
- se il software permette solo il calcolo della DCT monodimensionale si può ricavare la DCT2 operando prima per righe e poi per colonne come spiegato a lezione;
- prestare molta attenzione a come viene scalata la DCT2 (o la DCT). Infatti non sempre si usa lo scaling per il jpeg utilizzato in classe. Come caso test dovete verificare che il seguente blocchetto 8 × 8:

231	32	233	161	24	71	140	245
247	40	248	245	124	204	36	107
234	202	245	167	9	217	239	173
193	190	100	167	43	180	8	70
11	24	210	177	81	243	8	112
97	195	203	47	125	114	165	181
193	70	174	167	41	30	127	245
87	149	57	192	65	129	178	228

venga trasformato in questo modo dalla DCT2 da voi implementata:

```
1.95e+02 -1.01e+02
1.11e+03
            4.40e+01
                       7.59e+01
                                -1.38e+02
                                             3.50e+00
                                                         1.22e+02
7.71e+01
            1.14e+02
                     -2.18e+01
                                  4.13e+01
                                             8.77e+00
                                                        9.90e+01
                                                                    1.38e+02
                                                                               1.09e+01
4.48e+01
          -6.27e+01
                       1.11e+02 -7.63e+01
                                             1.24e+02
                                                        9.55e+01 -3.98e+01
                                                                               5.85e+01
-6.99e+01
          -4.02e+01
                      -2.34e+01
                                 -7.67e+01
                                             2.66e+01
                                                       -3.68e+01
                                                                    6.61e+01
                                                                               1.25e+02
-1.09e+02
          -4.33e+01
                      -5.55e+01
                                  8.17e+00
                                             3.02e+01
                                                       -2.86e+01
                                                                    2.44e+00
                                                                             -9.41e+01
-5.38e+00
           5.66e+01
                       1.73e+02
                                -3.54e+01
                                             3.23e+01
                                                        3.34e+01
                                                                   -5.81e+01
                                                                               1.90e+01
7.88e+01
          -6.45e+01
                       1.18e+02
                                 -1.50e+01
                                            -1.37e+02
                                                       -3.06e+01
                                                                  -1.05e+02
                                                                               3.98e+01
1.97e+01
          -7.81e+01
                       9.72e-01
                                 -7.23e+01
                                            -2.15e+01
                                                        8.13e+01
                                                                    6.37e+01
                                                                               5.90e+00
```

Dovete inoltre controllare che la prima riga del blocchetto 8×8 sopra:

231 32 233 161 24 71 140 245

venga trasformata dalla DCT1 da voi implementata in

4.01e+02 6.60e+00 1.09e+02 -1.12e+02 6.54e+01 1.21e+02 1.16e+02 2.88e+01

- Nella relazione riportate il codice e notizie sulla libreria utilizzata per le trasformate;
- all'esame portate un computer in modo che possiamo far girare il vostro programma su immagini (e parametri) scelti da me;
- vi ricordo che ogni studente del gruppo che ha svolto la relazione è responsabile di tutto il lavoro svolto.

La relazione mi dovrà essere consegnata almeno 3 giorni (lavorativi) prima dell'esame via email al indirizzo lourenco.beirao@unimib.it

E' possibile (e apprezzato) lavorare in gruppo purché i gruppi siano composti al massimo di 3 studenti.