

Grundlagen der Programmierung

Ressourcen:

Zeit und Platz ♦ Asymptotik ♦ Brute Force

- 1. Identifizieren des Problems
- 2. Formulieren des Problems
- 3. Entwurf des Algorithmus
- 4. Implementierung des Algorithmus
- 5. Anwendung des Algorithmus

→ Problemlösung

Entwurf des Algorithmus

Wie werden die Eingabedaten in die Ausgabedaten überführt? (Folge von Anweisungen)

- Korrekt? (für alle Eingabedaten)
- Terminiert? (für alle Eingabedaten)
- Effizient? (für alle Eingabedaten)

Universitate Portion

Effizienz - Motivation

- Es existieren immer mehrere Algorithmen für dasselbe Problem. → Welchen benutzen?
- **Effizienz** beachten → Wie viele Ressourcen werden benötigt?
 - Zeit (z.B. Antwortzeiten)
 - Platz (Speicherplatz)
 - → Stackframes beanspruchen Speicherplatz
 - Energie, Anzahl der Anweisungen, ...
- Kann von der Implementierung abhängen (z.B. Datentypen)

Rolle der Datenrepräsentation - Beispiel

Name: Komplementärgraph

Eingabe: ungerichteter Graph G=(V,E) als Adjazenzmatrix A

Ausgabe: Komplementärgraph von G als Adjazenzmatrix

Probieren Sie, diese Aufgabe zu lösen, wenn G durch die Mengen seiner Knoten und Kanten gegeben ist ...

→ Bei der Implementierung Datentypen beachten!

gib A aus

Jniversital Political

Zeitkomplexität

- Kann von verwendeten Datentypen abhängen
- Kann von Hardware, Netzwerk, aktueller Belastung etc. abhängen
 - → Zeitmessung gibt wenig Aufschluss über Algorithmus!
 - → Wie also messen?!
- Definition der Zeitkomplexität unabhängig von
 - Hardware
 - Situation während der Programmausführung
 - Besonderheiten einer bestimmten Programmiersprache

Universitate Paragram

Zeitkomplexität

- Hängt von der Größe der Eingabe ab
 - Lesen der gesamten Eingabe
 - Laufzeit des Algorithmus wächst i.A. mit Eingabegröße
 - Beispiel: Durchsuchen einer Liste L abhängig von len (L)
- Zuordnung der Anzahl der auszuführenden Operationen zu jeder Eingabegröße
- Zeitkomplexität ist Funktion
 - t: Eingabegröße → Anzahl von Operationen

Jniversita,

Eingabegröße messen

- Liste: Länge der Liste
 - ggf. Größe der gespeicherten Werte berücksichtigen
- Zahl x:
 - Zahl x oder
 - Anzahl der Bits zur Repräsentation von x: [log₂x] + 1
- **Graph** mit *n* Knoten und *m* Kanten: *m* + *n*
 - ggf. nur *n* oder nur *m*
- Besonderheiten des Algorithmus berücksichtigen

Universita,

Operationen zählen

- "elementare" Operationen (Was ist elementar?)
 - z.B. arithmetische oder boolesche Operation, Vergleich,
 Zugriff auf Listenelement, Funktionsaufruf, return, ...

Annahme:

- "elementare" Operationen <u>unabhängig von Eingabegröße</u>
- einheitliche, feste Zeit zur Ausführung der Operation (auch wenn wenig realistisch)
- kann durch Verfeinerung realistischer/exakter werden
- Annahme gerechtfertigt, solange einheitlich gezählt wird (Erinnerung: Es geht um den <u>Vergleich</u> von Algorithmen)

Universitate Postedami

Auswahl der Eingabedaten

- Es gibt verschiedene Eingaben derselben Größe.
- Drei mögliche Szenarien:

1. Best Case

Wähle für jede Eingabegröße eine Eingabe, die zu den wenigsten Schritten führt.

2. Worst Case

Wähle für jede Eingabegröße eine Eingabe, die zu den meisten Schritten führt.

3. Average Case

Durchschnitt über alle Eingaben derselben Größe

1. Beispiel: Durchschnitt

Eingabe: Liste *L* mit Zahlen

Ausgabe: arithmetisches Mittel der Listenelemente

1.....
$$k \leftarrow 0$$
2..... $n \leftarrow |L|$
n mal für $i \leftarrow 1$ bis n
3 $k \leftarrow k + L[i]$
2..... $k \leftarrow k / n$
1.... gib k aus

2. Beispiel: Komplementärgraph

Name: Komplementärgraph

Eingabe: ungerichteter Graph G=(V,E) als Adjazenzmatrix A

Ausgabe: Komplementärgraph von G als Adjazenzmatrix

```
n mal..... für i \leftarrow 1 bis |V|
n mal..... für j \leftarrow 1 bis |V|
3 ...... A[i,j] \leftarrow 1 - A[i,j]
1 ..... gib A aus
```

Eingabegröße:
$$|V|+|E|=n+m$$

$$t(n,m) = 1 + n \cdot n \cdot 3 = 1 + 3n^2$$
 (grob)

Auch hier:

3. Beispiel: Abstand von Knoten

Name: Abstand von Knoten (Brute Force)

Eingabe: ungerichteter, schlingenfreier Graph G = (V, E),

 $u, v \in V, u \neq v$

Ausgabe: D(u,v)

für $k \leftarrow 1$ bis |V| - 1 falls Pfad der Länge k von u nach v existiert gib k aus

→ <u>Verfeinerung</u>: Algorithmus, der für zwei Knoten u und v und eine positive ganze Zahl k feststellt, ob ein Pfad der Länge k von u nach v existiert

Erinnerung: Algorithmische Idee (BF)

- 1. Idee für k = 1: $\{u,v\} \in E$?
- 2. Idee für *k* = 2:

3. Idee für beliebiges k:

Probieren aller <u>Teilmengen</u> von V der Größe k − 1

und aller <u>Anordnungen</u> von deren Elementen

Abstand: Brute Force Algorithmus

```
k \leftarrow 1
solange k < |V|
          u_0 \leftarrow u
          u_k \leftarrow v
          für jede Teilmenge V' \subseteq V mit k-1 Elementen
                     für jede Permutation u_1, u_2, ..., u_{k-1} ihrer Elemente
                                istPfad \leftarrow 1
                                für i ← 0 bis k – 1
                                           falls \{u_i, u_{i+1}\} \notin E
                                                     istPfad \leftarrow 0
                                falls istPfad = 1
                                          gib k aus
                                           STOP
          k \leftarrow k + 1
gib ∞ aus
```

Vorüberlegungen Brute Force Effizienz

Name: Abstand von Knoten (Brute Force)

Eingabe: ungerichteter, schlingenfreier Graph G = (V, E),

 $u, v \in V, u \neq v$

Ausgabe: D(u,v)

Eingabegröße: *n* Knoten und *m* Kanten

Repräsentation: als Adjazenzmatrix

Worst Case: wenn u und v nicht verbunden ($D(u,v) = \infty$)

Abstand: Brute Force Algorithmus

Zeitkomplexität (worst case) im Vergleich

n	6 + 3 <i>n</i>	6 + 5 <i>n</i>	$1+3n^2$	BF Alg.	
2	12	16	13	10	
5	21	31	76	812	
10	36	56	301	> 50.000.000	
100	306	506	30.001	> 10 ¹⁶⁰	

- Entscheidend ist, wie schnell die Anzahl der Operation bei wachsender Eingabegröße anwächst.
- Vergleich mit Standardfunktionen (linear, quadratisch, ...)

Universitate Paradami

Wachstum des BF Algorithmus

- Algorithmus untersucht für jedes k von 1 bis n
 jede Teilmenge V' ⊆ V mit k 1 Elementen
 - \rightarrow untersucht 2^{n-1} Teilmengen
 - \rightarrow untere Schranke: 2^{n-1} Operationen (exponentielle Fkt.)

$$2^{99} > 10^{29}$$

$$2^{999} > 10^{300}$$

- typisches Vorgehen:
 Suchen Standardfunktion, die das Wachstum von t(n) von unten begrenzt.
 - → Aussage über Praktikabilität des Algorithmus

Rechenzeiten

Annahme: Prozessor mit 100 GFLOPS

n	5	10	50	100
$t(n)=n^2$	0,00000025 s	0,000001 s	0,000025 s	0,0001 s
$t(n)=n^5$	0,00003125 s	0,001 s	3,125 s	ca. 2 min
$t(n)=2^n$	0,00000032 s	0,00001024 s	ca. 130 Tage	ca. 10 ¹⁵ Jahre
$t(n) = n^n$	0,00003125 s	ca. 2 min	> 10 ⁶⁹ Jahre	

- Man kann von kleinen Eingabewerten absehen.
- Man kann von konstanten Faktoren absehen. (wichtig ist nur die Qualität linear, quadratisch, kubisch, ..., exponentiell, ...)

Wachstum von Funktionen

Konstante Faktoren

"verschieben" nur den Punkt, ab dem die schneller wachsende Funktion größere Werte besitzt.

Beispiel:

$$f(n) = 1000 n$$
$$g(n) = n^2$$

$$\rightarrow$$
 ab $n \ge 1000$ gilt $g(n) \ge f(n)$

Vergleich von Funktionen

Solversita,

Vergleich von Funktionen

- f wächst asymptotisch höchstens so schnell wie g, wenn es zwei Konstanten $n_0 \ge 0$ und c > 0 gibt, so dass $f(n) \le c \cdot g(n)$ für alle $n \ge n_0$ gilt. $f(n) \in O(g(n))$
 - Für den Vergleich zweier Algorithmen: Algorithmus mit t(n) = f(n) ist (asymptotisch) mindestens so effizient wie Algorithmus mit t(n) = g(n)
 - Für Abschätzungen durch Standardfunktionen: $1000 n \in O(n^2)$ $f(n) \in O(g(n)) \rightarrow g$ ist obere Schranke von f

Solversita,

Vergleich von Funktionen

- f wächst asymptotisch mindestens so schnell wie g, wenn es zwei Konstanten $n_0 \ge 0$ und c > 0 gibt, so dass $f(n) \ge c \cdot g(n)$ für alle $n \ge n_0$ gilt. $f(n) \in \Omega(g(n))$
- g wächst asymptotisch genau so schnell wie f, wenn $f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$. $f(n) \in \theta(g(n))$
- $f \in O(g) g$ obere Schranke von f $f \in \Omega(g) - g$ untere Schranke von f $f \in \theta(g) - g$ wächst (asymptotisch) wie f

Beispiel: BF Algorithmus: $t(n) \in \Omega(2^n)$ (\rightarrow ineffizient)

Vergleich von Funktionen

Joiversita,

Bestimmen von Vergleichsrelationen

- Suchen Schranken, die möglichst "eng" sind
- Nachweis von Relationen:

$$f(n) = 800 + 23n + 3n^2$$

 $f(n) \in O(n^2)$

$$800 + 23n + 3n^2 \le 800n^2 + 23n^2 + 3n^2 = 826n^2$$

$$\boxed{n \ge 1}$$

Mit
$$n_0 = 1$$
, $c = 826$, $g(n) = n^2$ gilt also $f(n) \in O(g(n))$.

Bestimmen von Vergleichsrelationen

$$f(n) = 800 + 23n + 3n^2$$

 $f(n) \in \Omega(n^2)$

$$800 + 23n + 3n^2 \ge n^2$$

Mit
$$n_0 = 0$$
, $c = 1$, $g(n) = n^2$ gilt also $f(n) \in \Omega(g(n))$.

Somit gilt
$$f(n) \in \Theta(g(n))$$
.