ECE 340: Semiconductor Electronics

Chapter 8: Optoelectronic devices

Wenjuan Zhu

Outline

- → Current and voltage in an illuminated junction
 - Optoelectronic devices
 - Solar Cell
 - Photodetector
 - Light-Emitting Diodes
 - Semiconductor Lasers

Recap: Light Illumination

• If $h\nu \geq E_g$, photon can be absorbed, and EHP is generated

• Generation rate g_{op} is defined as the number of EHP generated per unit volume per unit time . (unit: EHPs/cm³/s)

Light generated current

Current due to optically generated carrier by the junction is

$$I_{op} = q \times g_{op} \times (generation\ volume)$$

$$I_{op} = qAg_{op}(L_p + L_n + W)$$

Total current

The total reverse current with illumination

$$I = I_{th} \left(e^{qV/kT} - 1 \right) - I_{op}$$

Short-circuit current (V=0):

$$I_{sc} = -I_{op}$$

Open circuit voltage (I=0):

$$V_{oc} = \frac{kT}{q} ln \left(\frac{I_{op}}{I_{th}} + 1 \right)$$

$$g_3 > g_2 > g_1$$

More detail on open circuit voltage

$$V_{oc} = \frac{kT}{q} ln \left(\frac{I_{op}}{I_{th}} + 1 \right)$$

where
$$I_{th} = I_0 = qA\left(\frac{D_p}{L_p}p_n + \frac{D_n}{L_n}n_p\right)$$
 $I_{op} = qAg_{op}(L_p + L_n + W)$

• For symmetric junction $p_n = n_{p,\tau} \tau_p = \tau_n$. Define $g_{th} = p_n/\tau_n$, neglecting generation within W:

$$V_{oc} = \frac{kT}{q} ln \frac{g_{op}}{g_{th}}$$
 for $g_{op} \gg g_{th}$

Photovoltaic effect and open circuit voltage

- Photovoltaic effect: appearance of a forward voltage across an illuminated junction.
- Open circuit voltage V_{oc} must less than built-in potential V_0 , since the contact potential is the maximum forward bias that can appear across a junction

Operation of an illuminated junction

Figure 8.3

Operation of an illuminated junction in the various quadrants of its I-V characteristic; in (a) and (b), power is delivered to the device by the external circuit; in (c) the device delivers power to the load.

Outline

- Current and voltage in an illuminated junction
- Optoelectronic devices

- ⇒ Solar Cell
 - Photodetector
 - Light-Emitting Diodes
 - Semiconductor Lasers

Solar Cell

- Convert solar energy to electric energy
- Operate in 4th quadrant

Solar cell figure-of-merit

 Maximum power delivered to a the solar cell occurs when VI_r is I_r maximum:

$$P_m = I_m V_m$$

Fill factor:

$$FF = \frac{I_m V_m}{I_{sc} V_{oc}}$$

 Efficiency: ratio of generated electrical energy to the incident solar energy on the solar cell

cident solar energy of
$$\eta = \frac{P_m}{P_{in}} = \frac{I_{sc}V_{oc}FF}{P_{in}}$$

Voc

 V_m

Solar structure and design

- Heavy doping increase Voc but decrease carrier lifetime
- Series resistance must be small
- Anti-reflection coating to maximize light into semiconductor and minimize surface recombination
- Thin fingers distributed over surface to minimize shadowing while keeping series resistance small
- Top layer need to be thin, so that junction is near the surface. (why?)

Outline

- Current and voltage in an illuminated junction
- Optoelectronic devices
 - Solar Cell

- → Photodetector
 - Light-Emitting Diodes
 - Semiconductor Lasers

Photodetector

- Convert light to electric signal.
- Operate in reverse bias, 3rd quadrant.
- The current is Independent of voltage and proportional to the optical generation rate
- Carrier diffusion is slow, but drift is fast, absorption in the depletion region is preferred "depletion layer photodiode"
- There is also a design trade-off between sensitivity and speed –if the depletion width is very wide, sensitivity is better, but the bandwidth is reduced.

Figure of merit for photodetector

 External quantum efficiency: the ratio of number of carriers collected to number of photon impinging on the detector:

$$\eta = \frac{J_{op}/q}{P_{op}/h\nu}$$

Maximum response frequency

$$f_{max} \approx \frac{1}{transit\ time} \approx \frac{1}{W/V_{sat}} = \frac{V_{sat}}{W}$$

p-i-n diode

$$I = I_{th} \left(e^{qV_{kT}} - 1 \right) - I_{op}$$

$$I_{op} = qAg_{op}\left(L_p + L_n + W\right)$$

To improve PIN bandwidth,

we need to reduce the photogeneration in the diffuson layers L_n and L_p and optimize W.

$$I_{op} = qAg_{op}(W) = qA\frac{\delta n}{\tau}W = q\eta\left(\frac{P_{abs}}{hv}\right)$$

$$\eta = \frac{I_{op} / q}{P_{abs} / hv} = \frac{I_{op} / q}{P_{inc} (1 - e^{-\alpha \ell}) / hv}$$

$$I_{p} = qA\delta nv_{d} = q\eta \left(\frac{P_{abs}}{hv}\right) \left(\frac{\tau v_{d}}{W}\right) = I_{op} \left(\frac{\tau}{t_{r}}\right)$$

Drift is fast, diffusion is slow

 $g_3 > g_2 > g_1$

Homojunction and Heterostructure PINs

Avalanche Photodiodes

An electron or a hole with high energy in "I" layer can break chemical or ionic bonds in crystal to create an EHP

- An avalanche photodiode (APD) is operated under a reverse-bias voltage that is sufficient to enable avalanche multiplication
- An electron or a hole with high energy in the "i" layer can break chemical or ionic bonds in crystal to create an EHP
- The multiplication results in internal current gain

$$Gain \equiv \frac{\left(I_{p} - I_{d}\right)_{V_{op}}}{\left(I_{p} - I_{d}\right)_{V_{low}}}$$

Bandgap match with incident light wavelength

- If $h\nu < E_g$ no light absorption
- If $h\nu \gg E_g$, light will be absorbed very near the surface. In addition, extra kinetic energy is wasted on heat, so it is most efficient, when $h\nu$ is slightly larger than E_g

Bandgap vs lattice constant

Adjust bandgap by alloy composition

- Note, we can vary alloy composition (e.g. In_xGa_{1-x}As) and get different bandgap and lattice constants
- Getting same lattice constant as the substrate (GaAs or InP) is important to minimize lattice defects in a device.
- Generally, assume lattice constant

 (a) and band gap (E_G) vary
 linearly with alloy fraction (x)

Outline

- Current and voltage in an illuminated junction
- Optoelectronic devices
 - Solar Cell
 - Photodetector

- □ Light-Emitting Diodes
 - Semiconductor Lasers

Light-emitting diode

- Forward bias pn junction
- Minority & majority carriers recombine and emit light
- Operate in 1st quadrant
- Emitted light energy

$$h\nu_{out} = E_g$$

1st quadrant

Direct and indirect band gap

Direct band gap

Indirect band gap

- Direct band gap: minimum in the conduction band and maximum of valence band occurs at the **same** k value. Indirect band gap: minimum in the conduction band and maximum of valence band occurs at the **different** k value
- For light emission, the material need to be direct band gap.

Fiber communication

Figure 8.12

Two examples of multimode fibers: (a) a step index having a core with a slightly larger refractive index **n**; (b) a graded index having, in this case, a parabolic grading of **n** in the core. The figure illustrates the cross section (left) of the fiber, its index-of-refraction profile (center), and typical mode patterns (right).

Fiber communication wavelength

Figure~8.13 Typical plot of attenuation coefficient α vs. wavelength λ for a fused silica optical fiber. Peaks are due primarily to OH^- impurities.

$$I(x) = I_0 e^{-\alpha x}$$

 Optical fiber communications → why use wavelengths of 1.3 or 1.55 µm? Minimum attenuation

Outline

- Current and voltage in an illuminated junction
- Optoelectronic devices
 - Solar Cell
 - Photodetector
 - Light-Emitting Diodes

⇒ Semiconductor Lasers

Laser

LASER: Light Amplification through Stimulated Emission of Radiation

3 EHP-Photon Processes:

- Spontaneous Emission: Random transition from E₂ to E₁
- <u>Absorption</u>: Transition from E₁ to E₂ caused by interaction with and annihilation of a photon
- <u>Stimulated Emission</u>: Transition caused by presence of photon field
 - Stimulated photons have the same energy and phase as the stimulating photon field (monochromatic, coherent)

Two stage system

manon) n₂

lation) n_1 reen the levels From Boltzmann Statistics,

at Thermal Equilibrium:

$$\frac{n_2}{n_1} = e^{-(E_2 - E_1)/kT} = e^{-h\nu_{12}/kT}$$

so in thermal equilibrium $n_2 \ll n_1$

Spontaneous Emission

The rate of spontaneous emission is proportional only to the number of electrons in the upper state:

Spontaneous decay time constant: $\tau_{spon} = (A_{21})^{-1}$

Stimulated emission

The rate of stimulated emission is proportional to the number of electrons in upper level and the energy density.

$$R_{stim} = \frac{dn_1}{dt} = -\frac{dn_2}{dt} = B_{21}n_2\rho(\nu_{12})$$
Rate of Electron population in the upper level Energy density of the stimulating field

Steady state condition

In steady state, the emission rates must balance the absorption rate:

$$\left. \frac{dn_2}{dt} \right|_{abs} + \left. \frac{dn_2}{dt} \right|_{spon} + \left. \frac{dn_2}{dt} \right|_{stim} = 0$$
 or $B_{12}n_1\rho(\nu_{12}) = A_{12}n_2 + B_{21}n_2\rho(\nu_{12})$
Absorption spontaneous stimulated emission emission

Condition for lasing

1.
$$\frac{Stimulated\ emission\ rate}{Spontanous\ emission\ rate} = \frac{B_{21}n_2\rho(\nu_{12})}{A_{12}n_2}$$

A large photon field energy density enhances the stimulated emission rate →use optical resonant cavity

2.
$$\frac{Stimulated\ emission\ rate}{absorption\ rate} = \frac{B_{21}n_2\rho(\nu_{12})}{B_{12}n_1\rho(\nu_{12})} = \frac{B_{21}n_2}{B_{12}n_1}$$

For stimulated emission to exceed absorption, n2>n1, --> need population inversion (negative temperature)

Resonance cavity

The length of the cavity for stimulated emission must be:

$$L = \frac{m\lambda}{2} = \frac{m\lambda_0}{2n}$$

 λ : Photon wavelength within the laser material

 λ_0 : output light wavelength in the atmosphere

n: index of refraction of the laser material

Population inversion in semiconductor laser

If p-n junction is formed between degenerate materials, when the forward bias is large enough, a condition of population inversion results.

$$n = N_c e^{-(E_c - F_n)/kT} = n_i e^{-(F_n - E_i)/kT}$$

$$p = N_v e^{-(F_p - E_v)/kT} = n_i e^{-(E_i - F_p)/kT}$$

Lasing condition (population inversion):

$$F_n - F_p > h\nu$$

For band-edge transitions:

$$F_n - F_p > E_g$$

Ex: **Photodiode Design.** Consider a p-i-n photodiode (see Fig. 8-7), with "i" region made of $\ln_x Ga_{1-x} As$ (see Fig. 1-13). Design stoichiometry "x" and thickness of the "i" region (W_i) to enable response at 1.3 µm wavelength, up to 20 GHz signals. Assume fields are sufficiently high to reach $v_{sat} \approx 10^7$ cm/s in the "i" region. Name at least one design constraint on the "p" and "n" regions of this photodiode. You may assume the lattice constant and band gap of $\ln_x Ga_{1-x} As$ vary linearly with composition "x".

Ex: **Photodiode Design.** Consider a p-i-n photodiode (see Fig. 8-7), with "i" region made of $In_xGa_{1-x}As$ (see Fig. 1-13). Design stoichiometry "x" and thickness of the "i" region (W_i) to enable response at 1.3 µm wavelength, up to 20 GHz signals. Assume fields are sufficiently high to reach $v_{sat} \approx 10^7$ cm/s in the "i" region. Name at least one design constraint on the "p" and "n" regions of this photodiode. You may assume the lattice constant and band gap of $In_xGa_{1-x}As$ vary linearly with composition "x".

