

Fall Semester 2019-20

Continuous Assessment Test - II

Programme Name & Branch: B. Tech.

Course Name & Code: Calculus for Engineers (MAT1011)

Slot: B1+TB1

Exam Duration: 90 minutes

Maximum Marks: 50

Answer All the Questions		
S. No.	Question	Course Outcome
	Use Convolution theorem to find the inverse Laplace transform of	(CO)
1.	$\frac{1}{s(s^2+2s+1)} \tag{5m}$	2
	(a) Is the function $f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}; (x, y) \neq (0, 0) \\ 4; (x, y) = (0, 0) \end{cases}$ continuous at origin? Redefine if necessary to make it continuous at $(0, 0)$ (5m)	, ,
2.	(b) Find the rate at which the area of a rectangle is increasing at a given instant when the sides of the rectangle are 4 ft and 3 ft and are increasing at the rate of 1.5 ft/sec and 0.5 ft/sec respectively. (5m)	3
	(c) If $u = x + 2y^2 - z^3$, $v = 2x^2yz$, $w = 2z^2 - xy$, then find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at the point $(1, -1, 0)$	3
23.	Find the Taylor's series expansion of $\sqrt{1+x+y^2}$ in powers of $(x-1)$ and $(y-0)$ $(10m)$	3
Ø	Find the minimum distance from the origin to the plane $x+2y+3z=14$ using Lagrange's method of undetermined multipliers (10m)	4
ß.	Change the order of integration $\int_{0}^{1} \int_{x}^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dx dy \text{ and hence}$ evaluate (10m)	4

201N TIT QUESTION PAPERS ON TELEGRAM

SPARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN