After-class assignment 3

Solution:

Since no current flows into either input terminal.

 $V^{\dagger} = Vin$

Since there is no voltage difference

between the two input terminal.

 $Vout = V = V^{\dagger} = Vin$

Therefore Vout = Vin

Solution:

Apply KCL to node α , $0 = \frac{V_1}{R} + \frac{V_{\text{out}} - V_{\text{o}}}{R}$

Apply KCL to node b.

1 = 0 + Vb

Since Va = Vb

Vout = Va - Vi

Vout = Vb - Vi

Vout = V2 - V1

7.1

11. The current i is related to

the voltage across the capacitor $i = C \frac{dv}{dt} = 5 mF \times \frac{d}{dt}(-20)$ $= 5 mF \times 0$ = 0 A2. $i_2 = C \frac{dv}{dt} = 5 mF \times (-10e^{-5t})$ $= -50e^{-5t}(mA)$

7.3 $W_{C}(t) = \frac{1}{2}CV^{2}$ $= \frac{1}{2} \times 1000 \, \mu f \times (1.5 \cos 10^{5}t)^{2}$ $= 1.125 \times 10^{-3} \, \cos^{2}(10^{5}t)$ $W_{t=50 \, \mu s} = 1.125 \times 10^{-3} \, \cos^{2}(10^{5} \times 50 \times 10^{5})$ $= 1.125 \times 10^{-3} \cos^{2}(10^{5} \times 5 \times 10^{-6} \times \frac{180^{5}}{10^{5}})$ $= 1.125 \times 10^{-3} \, (0.080 \, 10^{5}k)$ $= 90.52 \, \mu J$

Hence, the energy stored in the capacitor at tisous is fassus

7. 5

(a)
$$V = L \frac{di}{dt} = 3 \frac{di}{dt}$$
 $V_{max} = 3 \times 10^{3} V = 3 kV$
 $V_{min} = 3 \times (-10^{3}) V = -3 kV$

(b) $V = L \frac{di}{dt} = 3 \frac{di}{dt}$
 $V_{max} = 3 \times \frac{1}{12 \times 10^{5}} = 250000 V = 250 kV$
 $V_{min} = 3 \times \frac{1}{6 k \times 10^{5}} = -46875 V \approx -46.88 kV$

(c) $V = L \frac{di}{dt} = 3 \frac{di}{dt}$
 $V_{max} = 3 \times 1 = 3 V$
 $V_{min} = 3 \times (-\frac{1}{12 \times 10^{-4}}) = -3 \times 10^{4} V = -3 GV$

Solution:

Since capacitors Ci.Ci.Ci are in series.

$$Ceq_1 = \frac{1}{c_1 + c_2 + c_3}$$

$$= \frac{1}{1 + c_3 + c_3} = \frac{10}{17} \text{ uf}$$

Since capacitors C4, Cequare
in parallel.

Cequ= C4 + Cequ= (12 + \frac{10}{17}) UF

Rewrite the diagram.

Since Cs. C6. Ceq. and

Cr. Cs are in Series,

Ceq3 = $\frac{1}{c_5} + \frac{1}{c_6} + \frac{1}{c_{q_1}}$ = $\frac{228}{1639} \approx 0.26 \mu F$ Ceq4 = $\frac{35}{63} \approx 2.92 \mu F$ Rewrite the diagram.

Since Ceq; and Ceq; ore in parallel. Ceq = Ceq; + Ceq; = 0.26 + 2.92 = 3.18 MF			