과제 가이드라인

- 1. 본인 프로젝트와 관련 있고, 중요하다고 생각하는 논문 1편 선정
 - 국외, 국내, 학위 논문 등 종류는 상관 없음
 - 비교적 인용 횟수가 높은 논문 선정
 - 지난 주에 배운 논문 검색 방법 활용
- 2. 해당 논문을 정독함
- 3. 논문 내용에 대해 수업 시간에 배운 구성 요소별 내용이 적절하게 배치 되어있는지를 확인함
 - 제시한 표 양식 작성
- 4. 해당 논문의 구성 및 구조에 대한 적절성 평가
- 5. 작성된 ppt를 e-class에 업로드

1. 제목: 캠퍼스 자율주행을 위한 주행가능 공간 검출 및 차량 제어

2. 초록

핵심 결과	StixelNet과 비교하여 제안한 알고리즘이 수행 속도 및 주행가능 영역에 대한 IOU가 높았으며, 실제 자율주행 인지 알고리즘으로 적용
동기(기존 문제)	단순하고 부드러운 경로의 스탠리 방법을 사용하였을 때, 주행오차가 직진구간에서 0.231m 곡선 구간에서 0.526m로 작게 측정 되었지만 실제 캠퍼스는 경로의 복잡성이 있어 부드러운 움직임을 보이지 않음
나의 방법	단안 카메라 1대와 GNSS를 이용한 알고리즘 구현 및 딥러닝 기반의 이미지 분할 모델 사용
논문의 결과	더 복잡하고 투박한 경로에 대해서 안정적인 제어를 수행할 수 있도록 하고, 캠퍼스 자율주행을 위해 주행 데이터를 추가 획득 및 학습하여 최적화
일반적 응용	차량의 헤딩에 따라 영향을 받지 않는 방법의 국부 경로 생성 알고리즘을 사용해 문제가 되는 부분을 해결할 수 있는 연구

3. 서론

분야 소개	캠퍼스 내에서 자율주행을 하기 위한 연구
기존 문제	객체가 검출 되었을 때 정지 후 새로운 경로를 만들게 되는데, 정지를 하는 도중 차량의 헤딩 방향이 진행 방향과 반대가 되었을 때, 생성되는 경로가 진행방향과 반대가 되는 문제점
논문의 목적	주행가능 검출 알고리즘을 이용하여 주행 가능공간을 검출하고, 장애물이 검출 되었을 때 A* 알고리즘을 이용하여 구부 경로를 생성하고 생성된 경로와 취득 경로를 추종
나의 방법	단안 카메라 1대와 GNSS를 이용하여 간략하게 알고리즘 구현, 주행 가능 검출을 위해서 딥러닝 기반의 이미지 분할 모델 사용
결과	안정적인 제어를 수행할 수 있도록 하고 캠퍼스 자율주행을 위해서 주행 데이터를 추가 획득 및 학습 하여 최적화 뿐만 아니라 차량의 헤딩에 따라 영향을 받지 않는 방법의 국부 경로 생성 알고리즘 연구

4. 본론

(풀고자 하는) 문제의 가정	차량제어는 인지된 결과를 이용하여 차량이 출발점부터 도착점까지 안전하게 운행하도록 함
(풀고자 하는) 문제 정의	교내 자율주행 배달 서비스를 구현하기 위해 카메라와 GNSS 단 2개의 센서를 이용하여 간략한 자율주행 자동차 구현 방법 제안
방법론	1. 주행가능 검출 : 카메라 캘리브레이션, Stixel을 이용한 검출, 검출 알고리즘
	2. 국부경로계획 : 경로계획, 전역 경로, 국부경로계획
	3. 차량 제어 : 차량내부정보, 차량모델, 횡방향제어
	4. 실험 : 플랫폼, 알고리즘 흐름도, 결과 도출

5. 실험 결과

실험 환경	1) 장애물이 없을 때 GNSS를 통해서 취득한 경로와 경로를 추종하면서 주행했을 때 생기는 오차를 측정 2) GNSS를 통해 취득한 전역 경로를 추종하면서 주행하나 장애물이 검출 되었을 때, 회피 경로를 생성 하고 생성된 경로에 따라서 움직이는지를 확인
결과 소개	 직진 구간을 주행할 때와 곡선 구간을 진행할 때 각각 오차를 구함 (차량이 직선 구간을 지날 때 오차는 0.231m, 곡선구간에서는 0.526m 측정) 장애물을 검출했을 때 회피 주행 경로와 실제 주행 경로를 확인하고 안정적인 주행을 할 수 있는 것을 확인하고 싶었으나 객관적인 지표로 나타 낼 수 있는 것을 찾지 못하여 향후 추가 연구 필요
결과 해석	객체가 검출 되었을 때 정지 후 새로운 경로를 만들게 되는데, 정지를 하는 도중 차량의 헤딩 방향이 진행방향과 반대가 되었을 때, 생성되는 경로가 진행방향과 반대가 되는 문제점이 있다. 그리고 곡선구간에서 장애물이 검출 되었을 때 진입 시의 헤딩 방향을 이용하기 때문에 새롭게 생성된 경로에도 문제점이 있다. 차량의 헤딩에 따라 영향을 받지 않는 방법의 국부 경로 생성 알고리즘을 사용하여 문제가 되는 부분을 해결할 수 있도록 추가 연구를 진행할 예정이다.

6. 결론

개별적 결과	1) 자율주행가능 검출 : 카메라 캘리브레이션, Stixel을 이용한 검출, 검출 알고리즘
	2) 국부경로계획 : 경로계획, 전역 경로, 국부경로계획
	3) 차량제어 : 차량내부정보, 차량모델, 횡방향제어
	4) 실험 : 플랫폼, 알고리즘 흐름도, 결과 도출
학문적 의의	주행가능 검출에 대한 기존 연구는 크게 전통적인 방법과 최근의 딥러닝 기반의 방법으로 나뉜다.
	전통적인 방법에는 확률 기반의 모델을 이용한 방법과 센서의 기반의 모델을 이용한 방법 2가지로 나뉜다.
	딥러닝을 이용한 방법은 영역 분할 정보 뿐만 아니라 주행하고 있는 도로에 대한 회귀 정보와 차량까지
	함께 검출한다. 자율주행 자동차가 안전하게 주행할 수 있기 위해서는 인지, 판단, 제어 3가지 알고리즘이
	필요하다. 본 연구를 통해 알고리즘의 병합 내용을 확인 할 수 있다.
응용 분야	
	카메라 센서를 주행가능 검출 알고리즘을 통해서 자율주행 차량이 움직일 수 있는 영역을 검출하고,
	그에 따른 제어를 통해 차량이 안전하게 주행 할 수 있게 하고 알고리즘을 국부경로계획에 사용하여
	장애물을 안전하게 회피 주행 할 수 있도록 한다.
	INDUSTRIAL AI RESEARCH CENT