INTRODUCTION TO DEEP LEARNING

Winter School at UPC TelecomBCN Barcelona. 22-30 January 2018.

Instructors

aws@educate

Organizers

Supporters

GitHub Education

+ info: https://telecombcn-dl.github.io/2018-idl/

Day 3 Lecture 3

Gated Units

Marta R. Costa-jussà

marta.ruiz@upc.edu

Ramón y Cajal Researcher Universitat Politecnica de Catalunya Technical University of Catalonia

Decay of information through time

Standard RNN

https://www.nextbigfuture.com/2016/03/recurrent-neural-nets.html

Long-Short Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Three **gates** are governed by *sigmoid* units (btw [0,1]) define the control of in & out information..

Forget Gate

Forget Gate:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$
Concatenate

Forget Gate: Example

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LANGUAGE MODELING

Joan es un chico activo y Anna es una chica calmada

Forget about "male" gender

Input Gate

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

New contribution to cell state

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$
Classic neuron

Input Gate: Example

Input Gate Layer

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

LANGUAGE MODELING

Joan es un chico activo y Anna es una chica calmada Input about "female" gender

Update Cell State

Update Cell State (memory):

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Output Gate

Output Gate Layer

$$o_t = \sigma\left(W_o\left[h_{t-1}, x_t\right] + b_o\right)$$

Output to next layer

$$h_t = o_t * \tanh(C_t)$$

Output Gate: Example

Figure: Cristopher Olah, "Understanding LSTM Networks" (2015) / Slide: Alberto Montes

LSTM: parameters

An LSTM cell is defined by two groups of neurons plus the cell state (memory unit):

Gated Recurrent Unit (GRU)

Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. <u>"Learning phrase representations using RNN encoder-decoder for</u>

Visual Comparison FNN, Vanilla RNNs and LSTMs

Image src http://blog.echen.me/2017/05/30/exploring-lstms/

Vanilla RNNs

Image src http://blog.echen.me/2017/05/30/exploring-lstms/

LSTMs

Image src http://blog.echen.me/2017/05/30/exploring-lstms/

Other RNN extensions

Bidirectional RNNs

Image src: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Deep RNNs

Image src: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

Still ISSUES with RNNs??

Thanks! Q&A?