USM Numérica

Libraría Pandas

Objetivos

- 1. Conocer los principales comandos de la librería pandas
- 2. Utilizar pandas para limpieza y manipulación de datos.

Sobre el autor

Sebastián Flores

ICM UTFSM

sebastian.flores@usm.cl

Sobre la presentación

Contenido creada en ipython notebook (jupyter)

Versión en Slides gracias a RISE de Damián Avila

Software:

- python 2.7 o python 3.1
- pandas 0.16.1

Opcional:

- numpy 1.9.2
- matplotlib 1.3.1

Aprender haciendo

Consideraremos el siguiente archivo data.csv que contiene datos incompletos:

```
In [132]:
            %%bash
            cat data/data.csv
            diametro; altura; volumen; tipo de arbol
            11.2;75;19.9;Cherrie Tree
            11.3;79;24.2;Cherry Tree
            11.4;76;21.0;Cherry Tree
            11.4;76;21.4; Apple Tree
            13.7;71;25.7;Cherry Tree
            13.8;64;24.9;Cherry Tree
            14.0;78;34.5;Cherrie Tree
            14.2;80;31.7;Cherry Tree
            ;74;36.3;Apple Tree
            16.0;72;38.3;Cherry Tree
            16.3;77;42.6;Cherry Tree
            17.3;81;55.4;Apple Tree
            17.5;;55.7;Cherry Tree
            17.9;80;58.3;Cherry Tree
            18.0;80;51.5;Cherry Tree
            18.0;;51.0;
            20.6;;;Cherry Tree
```

1.- ¿Porqué utilizar pandas?

Razón oficial: Porque en numpy no es posible mezclar tipos de datos, lo cual complica cargar, usar, limpiar y guardar datos mixtos.

Razón personal: Porque habían cosas que en R eran más fáciles pero no pythonísticas. La librería pandas es un excelente compromiso.

```
In [133]:
           import numpy as np
            df = np.loadtxt("data/data.csv", delimiter=";", dtype=str)
           print( df )
            [['diametro' 'altura' 'volumen' 'tipo de arbol']
             ['11.2' '75' '19.9' 'Cherrie Tree']
             ['11.3' '79' '24.2' 'Cherry Tree']
             ['11.4' '76' '21.0' 'Cherry Tree']
             ['11.4' '76' '21.4' 'Apple Tree']
             ['13.7' '71' '25.7' 'Cherry Tree']
             ['13.8' '64' '24.9' 'Cherry Tree']
             ['14.0' '78' '34.5' 'Cherrie Tree']
             ['14.2' '80' '31.7' 'Cherry Tree']
             ['' '74' '36.3' 'Apple Tree']
             ['16.0' '72' '38.3' 'Cherry Tree']
             ['16.3' '77' '42.6' 'Cherry Tree']
             ['17.3' '81' '55.4' 'Apple Tree']
             ['17.5' '' '55.7' 'Cherry Tree']
             ['17.9' '80' '58.3' 'Cherry Tree']
             ['18.0' '80' '51.5' 'Cherry Tree']
             ['18.0' '' '51.0' '']
             ['20.6' '' '' 'Cherry Tree']]
```

```
import pandas as pd
df = pd.read_csv("data/data.csv", sep=";")
print( df )
#df
```

	diametro	altura	volumen	tipo_de_a	arbol
0	11.2	75.0	19.9	Cherrie	Tree
1	11.3	79.0	24.2	Cherry	Tree
2	11.4	76.0	21.0	Cherry	Tree
3	11.4	76.0	21.4	Apple	Tree
4	13.7	71.0	25.7	Cherry	Tree
5	13.8	64.0	24.9	Cherry	Tree
6	14.0	78.0	34.5	Cherrie	Tree
7	14.2	80.0	31.7	Cherry	Tree
8	NaN	74.0	36.3	Apple	Tree
9	16.0	72.0	38.3	Cherry	Tree
10	16.3	77.0	42.6	Cherry	Tree
11	17.3	81.0	55.4	Apple	Tree
12	17.5	NaN	55.7	Cherry	Tree
13	17.9	80.0	58.3	Cherry	Tree
14	18.0	80.0	51.5	Cherry	Tree
15	18.0	NaN	51.0		NaN
16	20.6	NaN	NaN	Cherry	Tree

```
In [135]:
             inch2m = 0.0254
             feet2m = 0.3048
             df.diametro = df.diametro * inch2m
             df.altura = df.altura * feet2m
             df.volumen = df.volumen * (feet2m**3)
             df.tipo_de_arbol = "Cherry Tree"
             df
```

Out[135]:

		diametro	altura	volumen	tipo_de_arbol
	0	0.28448	22.8600	0.563505	Cherry Tree
	1	0.28702	24.0792	0.685268	Cherry Tree
	2	0.28956	23.1648	0.594654	Cherry Tree
	3	0.28956	23.1648	0.605981	Cherry Tree
	4	0.34798	21.6408	0.727743	Cherry Tree
Ī	5	0.35052	19.5072	0.705089	Cherry Tree
	6	0.35560	23.7744	0.976931	Cherry Tree
	7	0.36068	24.3840	0.897644	Cherry Tree
	8	NaN	22.5552	1.027902	Cherry Tree
	9	0.40640	21.9456	1.084535	Cherry Tree
	10	0.41402	23.4696	1.206298	Cherry Tree
	11	0.43942	24.6888	1.568753	Cherry Tree
	12	0.44450	NaN	1.577248	Cherry Tree
	13	0.45466	24.3840	1.650872	Cherry Tree
	14	0.45720	24.3840	1.458318	Cherry Tree
	15	0.45720	NaN	1.444159	Cherry Tree
	16	0.52324	NaN	NaN	Cherry Tree

```
In [136]:
            print( df.columns )
            Index(['diametro', 'altura', 'volumen', 'tipo de arbol'], dtype='object')
In [137]:
            print( df.index )
            RangeIndex(start=0, stop=17, step=1)
In [138]:
            print( df["altura"]*2 )
            0
                   45.7200
                   48.1584
            1
            2
                   46.3296
                   46.3296
            3
                   43.2816
            5
                   39.0144
            6
                   47.5488
                   48.7680
            8
                   45.1104
            9
                  43.8912
            10
                  46.9392
            11
                  49.3776
            12
                       NaN
            13
                 48.7680
            14
                   48.7680
            15
                       NaN
            16
                       NaN
            Name: altura, dtype: float64
In [139]:
            print( df["diametro"]**2 * df["altura"] / df.volumen )
```

0	3.283082
1	2.894717
2	3.266190
3	3.205140
4	3.600840
5	3.399197
6	3.077295
7	3.533824
8	NaN
9	3.342037
10	3.334985
11	3.038820
12	NaN
13	3.053269
14	3.495146
15	NaN
16	NaN
dtype:	float64

2. Lo básico de pandas

- Pandas imita los dataframes de R, pero en python. Todo lo que no tiene sentido es porque se parece demasiado a R.
- Pandas permite tener datos como en tablas de excel: datos en una columna pueden ser mixtos.
- La idea central es que la indexación es "a medida": las columnas y las filas (index)
 pueden ser enteros o floats, pero también pueden ser strings. Depende de lo que tenga
 sentido.
- Los elementos básicos de pandas son:
 - Series: Conjunto de valores con indexación variable.
 - DataFrames: Conjunto de Series.

2.1 Series

Una serie es un conveniente conjunto de datos, como una columna de datos de excel, pero con indexación más genérica.

```
pd.Series(self, data=None, index=None, dtype=None, name=None, copy=False,
            fastpath=False)
In [140]:
            import pandas as pd
            s1 = pd.Series([False, 1, 2., "3", 4 + 0j])
            print( s1 )
                False
            0
            1
                      1
                  2.0
                  (4+0j)
            dtype: object
In [141]:
            # Casting a otros tipos
            print( list(s1) )
            print( set(s1) )
            print( np.array(s1) )
            [False, 1, 2.0, '3', (4+0j)]
            {False, 1, 2.0, (4+0j), '3'}
             [False 1 2.0 '3' (4+0j)]
```

```
In [142]:
             # Ejemplo de operatoria
             s0 = pd.Series(range(6), index=range(6))
             s1 = pd.Series([1,2,3], index=[1,2,3])
             s2 = pd.Series([4,5,6], index=[4,5,6])
             s3 = pd.Series([10,10,10], index=[1,4,6])
In [143]:
             print( s0 )
             0
                   0
             1
                   1
             2
                   3
                   4
             5
                   5
             dtype: int64
In [144]:
             print( s0 + s1 )
             0
                   NaN
                   2.0
                   4.0
             3
                   6.0
             4
                   NaN
             5
                   NaN
             dtype: float64
In [145]:
             print( s0 + s1 + s2 )
             0
                  NaN
             1
                  NaN
```

- 2 NaN
- 3 NaN
- 4 NaN
- 5 NaN
- 6 NaN

dtype: float64

```
In [146]: print( s0.add(s1, fill_value=0) )

0     0.0
1     2.0
2     4.0
3     6.0
4     4.0
5     5.0
dtype: float64
```

2.2 DataFrames

Un Dataframe es una colección de Series con una indexación común. Como una planilla de excel.

		col1	col2	col3
Out[147]:	0	1	1.0	uno
	1	2	2.0	dos
	2	3	3.0	tres
	3	4	4.0	cuatro

3.1 Obteniendo datos

- 1. Archivo csv
- 2. Archivo json
- 3. **Archivo de excel**: convertir a csv cuidadosamente (elegir un separador apropiado, no comentar strings).

```
In [148]: # csv
    df = pd.read_csv("data/data.csv", sep=";")
    df
```

Out[148]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [149]:
```

df = pd.read_json("data/data.json")
df

Out[149]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

4.- Inspeccionando datos

- 1. Accesando las columnas
- 2. shape
- 3. head, tail, describe
- 4. histogram
- 5. pd.scatter_matrix
- 6. count_values

```
In [150]:
            df = pd.read_csv("data/data.csv", sep=";")
            df.columns
            Index(['diametro', 'altura', 'volumen', 'tipo_de_arbol'], dtype='object')
Out[150]:
In [151]:
            df['altura']
Out[151]:
                  75.0
            0
                  79.0
            1
                  76.0
            2
            3
                  76.0
                  71.0
                  64.0
            5
                  78.0
            7
                  80.0
                  74.0
            8
            9
                  72.0
                  77.0
            10
            11
                  81.0
            12
                  NaN
            13
                  80.0
            14
                  80.0
            15
                   NaN
            16
                   NaN
            Name: altura, dtype: float64
```

In [152]: df.shape

Out[152]: (17, 4)

In [153]:

df.head()

Out[153]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree

In [154]:

df.tail()

Out[154]:

	diametro	altura	volumen	tipo_de_arbol
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

In [155]: df.describe()

Out[155]:

	diametro	altura	volumen
count	16.000000	14.000000	16.000000
mean	15.162500	75.928571	37.025000
std	2.948418	4.615430	13.773816
min	11.200000	64.000000	19.900000
25%	13.125000	74.250000	24.725000
50%	15.100000	76.500000	35.400000
75%	17.600000	79.750000	51.125000
max	20.600000	81.000000	58.300000

In [156]:

df.describe(include="all")

Out[156]:

	diametro	altura	volumen	tipo_de_arbol
count	16.000000	14.000000	16.000000	16
unique	NaN	NaN	NaN	3
top	NaN	NaN	NaN	Cherry Tree
freq	NaN	NaN	NaN	11
mean	15.162500	75.928571	37.025000	NaN
std	2.948418	4.615430	13.773816	NaN
min	11.200000	64.000000	19.900000	NaN
25%	13.125000	74.250000	24.725000	NaN
50%	15.100000	76.500000	35.400000	NaN
75%	17.600000	79.750000	51.125000	NaN
max	20.600000	81.000000	58.300000	NaN

```
In [157]:
    from matplotlib import pyplot as plt
    df.hist(figsize=(10,10), layout=(3,1))
    #df.hist(figsize=(8,8), layout=(3,1), by="tipo_de_arbol")
    plt.show()
```



```
In [158]:
    from matplotlib import pyplot as plt
    pd.plotting.scatter_matrix(df, figsize=(10,10), range_padding=0.2)
    plt.show()
```



```
In [159]: df.tipo_de_arbol.value_counts()
Out[159]: Cherry Tree 11
```

Out[159]: Cherry Tree 11
Apple Tree 3

Cherrie Tree 2

Name: tipo_de_arbol, dtype: int64

5.- Manipulando DataFrames

- 1. Agregando columnas
- 2. Borrando columnas
- 3. Agregando filas
- 4. Borrando filas
- 5. Mask
- 6. Grouping
- 7. Imputación de datos
- 8. Apply
- 9. Merge (a la SQL)
- 10. Accesamiento

5.1 Agregando columnas

```
In [160]:
    df = pd.read_csv("data/data.csv", sep=";")
    df["radio"] = .5 * df.diametro
    df
```

Out[160]:

	diametro	altura	volumen	tipo_de_arbol	radio
0	11.2	75.0	19.9	Cherrie Tree	5.60
1	11.3	79.0	24.2	Cherry Tree	5.65
2	11.4	76.0	21.0	Cherry Tree	5.70
3	11.4	76.0	21.4	Apple Tree	5.70
4	13.7	71.0	25.7	Cherry Tree	6.85
5	13.8	64.0	24.9	Cherry Tree	6.90
6	14.0	78.0	34.5	Cherrie Tree	7.00
7	14.2	80.0	31.7	Cherry Tree	7.10
8	NaN	74.0	36.3	Apple Tree	NaN
9	16.0	72.0	38.3	Cherry Tree	8.00
10	16.3	77.0	42.6	Cherry Tree	8.15
11	17.3	81.0	55.4	Apple Tree	8.65
12	17.5	NaN	55.7	Cherry Tree	8.75
13	17.9	80.0	58.3	Cherry Tree	8.95
14	18.0	80.0	51.5	Cherry Tree	9.00
15	18.0	NaN	51.0	NaN	9.00
16	20.6	NaN	NaN	Cherry Tree	10.30

```
In [161]:
    df.area = np.pi * df.radio **2
    df.columns

<ipython-input-161-79432ada6081>:1: UserWarning: Pandas doesn't allow colu
    mns to be created via a new attribute name - see https://pandas.pydata.or
    g/pandas-docs/stable/indexing.html#attribute-access
    df.area = np.pi * df.radio **2
```

Out[161]:

='object')

Index(['diametro', 'altura', 'volumen', 'tipo de arbol', 'radio'], dtype

5.2 Renombrando columnas

5.3 Borrando columnas

```
In [165]:
                df = pd.read csv("data/data.csv", sep=";")
                print( df.columns )
                 Index(['diametro', 'altura', 'volumen', 'tipo de arbol'], dtype='object')
In [166]:
                df = df[["tipo de arbol", "volumen", "diametro"]]
                df
                   tipo_de_arbol volumen diametro
Out[166]:
                     Cherrie Tree
                                    19.9
                                             11.2
                     Cherry Tree
                                             11.3
                                    24.2
                     Cherry Tree
                                    21.0
                                             11.4
                 3
                     Apple Tree
                                    21.4
                                             11.4
                     Cherry Tree
                                   25.7
                                             13.7
                     Cherry Tree
                                    24.9
                                             13.8
                     Cherrie Tree
                                   34.5
                                             14.0
                     Cherry Tree
                                             14.2
                                    31.7
                     Apple Tree
                                   36.3
                                             NaN
                     Cherry Tree
                                    38.3
                                             16.0
                     Cherry Tree
                                   42.6
                                             16.3
                10
                      Apple Tree
                                             17.3
                11
                                    55.4
                     Cherry Tree
                                   55.7
                                             17.5
                12
                     Cherry Tree
                13
                                    58.3
                                             17.9
                14
                     Cherry Tree
                                    51.5
                                             18.0
                                             18.0
                15
                           NaN
                                    51.0
                     Cherry Tree
                16
                                    NaN
                                             20.6
```

```
In [167]: df = df.drop("tipo_de_arbol", axis=1)
    df
```

```
volumen diametro
Out[167]: ____
                          19.9
                                    11.2
                          24.2
                                    11.3
                                    11.4
                          21.0
                  3
                          21.4
                                    11.4
                  4
                          25.7
                                    13.7
                  5
                                    13.8
                         24.9
                                    14.0
                   6
                         34.5
                  7
                                    14.2
                          31.7
                  8
                                    NaN
                         36.3
                  9
                         38.3
                                    16.0
                  10
                                    16.3
                         42.6
                  11
                                    17.3
                          55.4
                  12
                                    17.5
                          55.7
                  13
                          58.3
                                    17.9
                                    18.0
                  14
                          51.5
                  15
                                    18.0
                          51.0
                  16
                                    20.6
                          NaN
```

```
In [168]:
```

df.drop("diametro", axis=1, inplace=True)
df

Out[168]:

 0 19.9 1 24.2 2 21.0 3 21.4 4 25.7 5 24.9 6 34.5 7 31.7 8 36.3
 2 21.0 3 21.4 4 25.7 5 24.9 6 34.5 7 31.7
3 21.4 4 25.7 5 24.9 6 34.5 7 31.7
4 25.7 5 24.9 6 34.5 7 31.7
5 24.96 34.57 31.7
6 34.5 7 31.7
7 31.7
8 363
30.3
9 38.3
10 42.6
11 55.4

	volumen
12	55.7
13	58.3
14	51.5
15	51.0
16	NaN

5.4 Agregando filas (indices)

```
In [169]: df = pd.read_csv("data/data.csv", sep=";")
    print( df.index )
    df
```

RangeIndex(start=0, stop=17, step=1)

Out[169]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [170]: df = df.reindex( range(20) )
    df
```

Out[170]:

	diametro	aitura	volumen	tipo_de_arboi
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree

	diametro	altura	volumen	tipo_de_arbol
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree
17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN

In [171]:

Usando loc para acceder con notación de indices tradicional
df.loc[20, :] = [10, 20, 30, "CT"]
df

Out[171]: -

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree

	diametro	altura	volumen	tipo_de_arbol
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree
17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	10.0	20.0	30.0	СТ

5.5 Renombrando filas (índices)

```
In [172]:
            df = pd.read csv("data/data.csv", sep=";")
            print(df.index)
            RangeIndex(start=0, stop=17, step=1)
In [173]:
            df.index = df.index + 10
            print(df.index)
            RangeIndex(start=10, stop=27, step=1)
In [174]:
            df.index = ["i %d"%idx for idx in df.index]
            print(df.index)
            Index(['i_10', 'i_11', 'i_12', 'i_13', 'i_14', 'i_15', 'i_16', 'i_17', 'i_
            18',
                    'i_19', 'i_20', 'i_21', 'i_22', 'i_23', 'i_24', 'i_25', 'i_26'],
                   dtype='object')
```

5.6 Borrando indices

print(df.index)

df

```
In [175]:
          print(df.index)
          print(df)
          Index(['i 10', 'i 11', 'i 12', 'i 13', 'i 14', 'i 15', 'i 16', 'i 17', 'i
          18',
                 'i 19', 'i 20', 'i 21', 'i 22', 'i 23', 'i 24', 'i 25', 'i 26'],
               dtype='object')
               diametro altura volumen tipo de arbol
          i 10
                   11.2
                          75.0
                                  19.9 Cherrie Tree
          i 11
                   11.3 79.0
                                  24.2 Cherry Tree
                                  21.0 Cherry Tree
          i 12
                   11.4 76.0
          i 13
                   11.4 76.0
                                  21.4 Apple Tree
          i 14
                   13.7 71.0
                                  25.7 Cherry Tree
                         64.0
          i 15
                   13.8
                                  24.9
                                         Cherry Tree
                   14.0 78.0
          i 16
                                  34.5 Cherrie Tree
          i 17
                   14.2
                         80.0
                                         Cherry Tree
                                  31.7
          i 18
                   NaN 74.0
                                  36.3 Apple Tree
          i 19
                   16.0 72.0
                                  38.3
                                         Cherry Tree
          i 20
                   16.3 77.0
                                  42.6
                                         Cherry Tree
          i 21
                   17.3
                         81.0
                                  55.4 Apple Tree
                   17.5
                                  55.7
          i 22
                         NaN
                                         Cherry Tree
          i 23
                   17.9
                         80.0
                                  58.3
                                         Cherry Tree
          i 24
                   18.0
                          80.0
                                  51.5
                                         Cherry Tree
                                   51.0
          i 25
                   18.0
                         NaN
                                                NaN
          i 26
                   20.6
                                   NaN
                                         Cherry Tree
                           NaN
In [176]:
          df = df.drop(["i 11","i 13","i 19"], axis=0)
```

Out[176]:

	diametro	altura	volumen	tipo_de_arbol
i_10	11.2	75.0	19.9	Cherrie Tree
i_12	11.4	76.0	21.0	Cherry Tree
i_14	13.7	71.0	25.7	Cherry Tree
i_15	13.8	64.0	24.9	Cherry Tree
i_16	14.0	78.0	34.5	Cherrie Tree
i_17	14.2	80.0	31.7	Cherry Tree
i_18	NaN	74.0	36.3	Apple Tree
i_20	16.3	77.0	42.6	Cherry Tree
i_21	17.3	81.0	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80.0	58.3	Cherry Tree
i_24	18.0	80.0	51.5	Cherry Tree
i_25	18.0	NaN	51.0	NaN
i_26	20.6	NaN	NaN	Cherry Tree

```
In [177]:
```

df.drop(["i_24","i_25","i_26"], axis=0, inplace=True)
df

Out[177]:

	diametro	altura	volumen	tipo_de_arbol
i_10	11.2	75.0	19.9	Cherrie Tree
i_12	11.4	76.0	21.0	Cherry Tree
i_14	13.7	71.0	25.7	Cherry Tree
i_15	13.8	64.0	24.9	Cherry Tree
i_16	14.0	78.0	34.5	Cherrie Tree
i_17	14.2	80.0	31.7	Cherry Tree
i_18	NaN	74.0	36.3	Apple Tree
i_20	16.3	77.0	42.6	Cherry Tree
i_21	17.3	81.0	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80.0	58.3	Cherry Tree

In [178]:

df = df[-5:]
df

Out[178]:

	diametro	altura	volumen	tipo_de_arbol
i_18	NaN	74.0	36.3	Apple Tree
i_20	16.3	77.0	42.6	Cherry Tree
i_21	17.3	81.0	55.4	Apple Tree
i_22	17.5	NaN	55.7	Cherry Tree
i_23	17.9	80.0	58.3	Cherry Tree

Observación

```
# seleccionar la columna col
# regresa una serie
df[col]
# seleccionar las columnas col1, col2, ..., coln
# regresa dataframe
df[[col1,col2,.., coln]]
# selecciona solo el indice inicio
# regresa un dataframe
df[inicio:(inicio+1)]
# selecciona los indices en notacion
#regresa un dataframe
df[inicio:fin:salto]
# seleccion mixta
# regresa un dataframe
df.loc[inicio:fin:salto, col1:col2]
```

5.7 Masking

```
In [179]:
               df = pd.read csv("data/data.csv", sep=";")
               vol mean = df.volumen.mean()
               vol std = df.volumen.std()
In [180]:
               mask 1 = df.altura < 80</pre>
               mask 2 = df.volumen <= vol mean + vol std</pre>
                df1 = df[ mask 1 & mask 2 ]
                df1
                   diametro altura volumen tipo_de_arbol
Out[180]:
                       11.2
                            75.0
                                     19.9
                                           Cherrie Tree
                            79.0
                                     24.2
                       11.3
                                           Cherry Tree
                2
                            76.0
                                     21.0
                       11.4
                                           Cherry Tree
                3
                             76.0
                                     21.4
                                            Apple Tree
                       11.4
                                     25.7
                       13.7
                             71.0
                                            Cherry Tree
                5
                       13.8
                            64.0
                                     24.9
                                           Cherry Tree
                6
                             78.0
                                     34.5
                                           Cherrie Tree
                      14.0
                             74.0
                                     36.3
                                            Apple Tree
                      NaN
                                     38.3
                             72.0
                                           Cherry Tree
                       16.0
                                     42.6
               10
                       16.3
                             77.0
                                           Cherry Tree
In [181]:
               # Si se hace dinamicamente, utilizar suficientes parentesis
                #df2 = df[ ((vol mean - vol std) <= df.volumen) & (df.volumen <= (vol mean + vol std) ) ]
                df2 = df[ (df.volumen >=(vol mean - vol std)) & (df.volumen <= (vol mean + vol std) ) ]</pre>
                df2
```

 Out [181] :
 diametro altura volumen
 tipo_de_arbol

 1
 11.3
 79.0
 24.2
 Cherry Tree

 4
 13.7
 71.0
 25.7
 Cherry Tree

 5
 13.8
 64.0
 24.9
 Cherry Tree

	diametro	altura	volumen	tipo_de_arbol
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree

```
In [182]: # A veces para simplificar numpy ayuda
   mask_1 = df.volumen >= (vol_mean - vol_std)
   mask_2 = df.volumen <= (vol_mean + vol_std)
   mask = np.logical_and(mask_1, mask_2)
   df3 = df[np.logical_not(mask)]
   df3</pre>
```

Out[182]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

5.8.- Grouping

```
In [183]:
           df = pd.read csv("data/data.csv", sep=";")
           df.columns
Out[183]: Index(['diametro', 'altura', 'volumen', 'tipo de arbol'], dtype='object')
In [184]:
           g = df.groupby("tipo de arbol")
           print( g )
           <pandas.core.groupby.generic.DataFrameGroupBy object at 0x125c3a5e0>
In [185]:
           print( g.count() )
                          diametro altura volumen
           tipo de arbol
           Apple Tree
           Cherrie Tree
           Cherry Tree
                                                10
In [186]:
           print( g.sum() ) # .mean(), .std()
                          diametro altura volumen
           tipo de arbol
                           28.7 231.0 113.1
           Apple Tree
           Cherrie Tree
                         25.2 153.0 54.4
           Cherry Tree 170.7 679.0
                                             373.9
In [187]:
           # Ejemplo real
```

```
df[["tipo_de_arbol","diametro", "altura"]].groupby("tipo_de_arbol").mean()
```

Out[187]:

	diametro	aitura
tipo_de_arbol		
Apple Tree	14.350000	77.000000
Cherrie Tree	12.600000	76.500000
Cherry Tree	15.518182	75.444444

5.9.- Imputación de datos

In [188]:

Antes de imputar datos, siempre explorar
df.describe(include="all")

Out[188]:

	diametro	altura	volumen	tipo_de_arbol
count	16.000000	14.000000	16.000000	16
unique	NaN	NaN	NaN	3
top	NaN	NaN	NaN	Cherry Tree
freq	NaN	NaN	NaN	11
mean	15.162500	75.928571	37.025000	NaN
std	2.948418	4.615430	13.773816	NaN
min	11.200000	64.000000	19.900000	NaN
25%	13.125000	74.250000	24.725000	NaN
50%	15.100000	76.500000	35.400000	NaN
75%	17.600000	79.750000	51.125000	NaN
max	20.600000	81.000000	58.300000	NaN

```
In [189]:
```

```
# Imputación manual de datos (incorrecto)
df["tipo_de_arbol"][df.tipo_de_arbol=="Cherrie Tree"] = "Cherry Tree"
df
```

<ipython-input-189-f7d8d8ebc30b>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copydf["tipo_de_arbol"][df.tipo_de_arbol=="Cherrie Tree"] = "Cherry Tree"

Out[189]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherry Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	9 16.0 72.0		38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [190]:
```

```
# Imputación manual de datos
df = pd.read_csv("data/data.csv", sep=";")
index_mask = (df.tipo_de_arbol=="Cherrie Tree")
df.loc[index_mask, "tipo_de_arbol"] = "Cherry Tree" # .loc es esencial
df
```

Out[190]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherry Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

```
In [191]: # Imputación de datos: llenar NaNs con promedio
    df = pd.read_csv("data/data.csv", sep=";")
    df1 = df.fillna(df.mean())
    df1
```

Out[191]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2000	75.000000	19.900	Cherrie Tree
1	11.3000	79.000000	24.200	Cherry Tree
2	11.4000	76.000000	21.000	Cherry Tree
3	11.4000	76.000000	21.400	Apple Tree
4	13.7000	71.000000	25.700	Cherry Tree
5	13.8000	64.000000	24.900	Cherry Tree
6	14.0000	78.000000	34.500	Cherrie Tree
7	14.2000	80.000000	31.700	Cherry Tree
8	15.1625	74.000000	36.300	Apple Tree
9	16.0000	72.000000	38.300	Cherry Tree
10	16.3000	77.000000	42.600	Cherry Tree
11	17.3000	81.000000	55.400	Apple Tree
12	17.5000	75.928571	55.700	Cherry Tree
13	17.9000	80.000000	58.300	Cherry Tree
14	18.0000	80.000000	51.500	Cherry Tree
15	18.0000	75.928571	51.000	NaN
16	20.6000	75.928571	37.025	Cherry Tree

```
In [192]:
```

Imputación de datos: llenar NaNs con valor
df2 = df.fillna(0)
df2

Out[192]:

diametro	altura	volumen	tipo_de_arbol
11.2	75.0	19.9	Cherrie Tree
11.3	79.0	24.2	Cherry Tree
11.4	76.0	21.0	Cherry Tree
11.4	76.0	21.4	Apple Tree
13.7	71.0	25.7	Cherry Tree
13.8	64.0	24.9	Cherry Tree
14.0	78.0	34.5	Cherrie Tree
14.2	80.0	31.7	Cherry Tree
0.0	74.0	36.3	Apple Tree
16.0	72.0	38.3	Cherry Tree
16.3	77.0	42.6	Cherry Tree
17.3	81.0	55.4	Apple Tree
17.5	0.0	55.7	Cherry Tree
17.9	80.0	58.3	Cherry Tree
18.0	80.0	51.5	Cherry Tree
18.0	0.0	51.0	0
20.6	0.0	0.0	Cherry Tree
	11.2 11.3 11.4 11.4 13.7 13.8 14.0 14.2 0.0 16.0 16.3 17.3 17.5 17.9 18.0	11.2 75.0 11.3 79.0 11.4 76.0 13.7 71.0 13.8 64.0 14.0 78.0 14.2 80.0 0.0 74.0 16.0 72.0 17.3 81.0 17.5 0.0 18.0 80.0 18.0 0.0	11.2 75.0 19.9 11.3 79.0 24.2 11.4 76.0 21.0 11.4 76.0 21.4 13.7 71.0 25.7 13.8 64.0 24.9 14.0 78.0 34.5 14.2 80.0 31.7 0.0 74.0 36.3 16.0 72.0 38.3 16.3 77.0 42.6 17.3 81.0 55.4 17.5 0.0 55.7 17.9 80.0 58.3 18.0 80.0 51.5 18.0 0.0 51.0

In [193]:

Imputación de datos: desechar filas con NaN
df3 = df.dropna()

df3

Out[193]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree

5.10 Apply

```
In [194]:
            df = pd.read csv("data/data.csv", sep=";")
            df1 = df.diametro.apply(lambda x: x*2)
            df1
Out[194]:
                   22.4
            0
                   22.6
            1
             2
                   22.8
                   22.8
             3
                   27.4
             4
                   27.6
             5
                   28.0
             6
                   28.4
            8
                   NaN
            9
                   32.0
            10
                   32.6
                  34.6
            11
            12
                  35.0
            13
                  35.8
            14
                  36.0
            15
                   36.0
            16
                   41.2
            Name: diametro, dtype: float64
```

```
In [195]:
            # Aplicación incorrecta
            df2 = df["tipo de arbol"].apply(str.upper) # Error
            df2
            TypeError
                                                        Traceback (most recent call las
            t)
            <ipython-input-195-1f598baa0fd5> in <module>
                  1 # Aplicación incorrecta
            ---> 2 df2 = df["tipo de arbol"].apply(str.upper) # Error
                  3 df2
            /miniconda3/envs/meetup/lib/python3.9/site-packages/pandas/core/series.py
             in apply(self, func, convert dtype, args, **kwds)
               4136
                                 else:
               4137
                                     values = self.astype(object). values
            -> 4138
                                     mapped = lib.map infer(values, f, convert=convert
            dtype)
               4139
               4140
                            if len(mapped) and isinstance(mapped[0], Series):
            pandas/ libs/lib.pyx in pandas. libs.lib.map infer()
            TypeError: descriptor 'upper' for 'str' objects doesn't apply to a 'float'
            object
In [196]:
            # Aplicación correcta
            df2 = df["tipo de arbol"].apply(lambda s: str(s).upper() )
            df2
```

```
Out[196]: 1
                  CHERRY TREE
             CHERRY TREE
                 APPLE TREE
                  CHERRY TREE
           4
           5
                  CHERRY TREE
           6
                CHERRIE TREE
           7
                  CHERRY TREE
           8
                  APPLE TREE
           9
                  CHERRY TREE
                  CHERRY TREE
           10
           11
                 APPLE TREE
                  CHERRY TREE
           12
           13
                  CHERRY TREE
           14
                  CHERRY TREE
           15
                          NAN
           16
                  CHERRY TREE
           Name: tipo_de_arbol, dtype: object
```

```
In [197]: # Error (o no?)
    df3 = df.apply(lambda x: x*2)
    df3
```

Out[197]:

	diametro	altura	volumen	tipo_de_arbol
0	22.4	150.0	39.8	Cherrie TreeCherrie Tree
1	22.6	158.0	48.4	Cherry TreeCherry Tree
2	22.8	152.0	42.0	Cherry TreeCherry Tree
3	22.8	152.0	42.8	Apple TreeApple Tree
4	27.4	142.0	51.4	Cherry TreeCherry Tree
5	27.6	128.0	49.8	Cherry TreeCherry Tree
6	28.0	156.0	69.0	Cherrie TreeCherrie Tree
7	28.4	160.0	63.4	Cherry TreeCherry Tree
8	NaN	148.0	72.6	Apple TreeApple Tree
9	32.0	144.0	76.6	Cherry TreeCherry Tree
10	32.6	154.0	85.2	Cherry TreeCherry Tree
11	34.6	162.0	110.8	Apple TreeApple Tree
12	35.0	NaN	111.4	Cherry TreeCherry Tree
13	35.8	160.0	116.6	Cherry TreeCherry Tree
14	36.0	160.0	103.0	Cherry TreeCherry Tree
15	36.0	NaN	102.0	NaN
16	41.2	NaN	NaN	Cherry TreeCherry Tree

Atajo

Para usar las operaciones de string en una columna de strings, es posible utilizar la siguiente notación para ahorrar espacio.

```
In [198]:
            df.tipo de arbol.str.upper()
Out[198]:
                  CHERRIE TREE
                    CHERRY TREE
            1
                    CHERRY TREE
            2
            3
                     APPLE TREE
            4
                    CHERRY TREE
            5
                    CHERRY TREE
            6
                   CHERRIE TREE
            7
                    CHERRY TREE
                     APPLE TREE
            8
            9
                    CHERRY TREE
            10
                    CHERRY TREE
            11
                     APPLE TREE
            12
                    CHERRY TREE
            13
                    CHERRY TREE
            14
                    CHERRY TREE
            15
                            NaN
            16
                    CHERRY TREE
            Name: tipo de arbol, dtype: object
```

```
In [199]:
            df.tipo_de_arbol.str.len()
Out[199]:
            0
                   12.0
            1
                   11.0
            2
                   11.0
                   10.0
            3
                   11.0
            4
            5
                   11.0
            6
                   12.0
                   11.0
            8
                   10.0
            9
                   11.0
            10
                  11.0
            11
                  10.0
            12
                  11.0
            13
                  11.0
            14
                   11.0
            15
                   NaN
            16
                   11.0
            Name: tipo_de_arbol, dtype: float64
```

```
In [200]:
            df.tipo_de_arbol.str[3:-3]
Out[200]:
                 rrie T
            0
            1
                   rry T
                   rry T
            3
                    le T
                   rry T
            5
                   rry T
            6
                  rrie T
            7
                   rry T
            8
                    le T
            9
                   rry T
            10
                   rry T
            11
                   le T
            12
                   rry T
            13
                   rry T
            14
                   rry T
            15
                     NaN
            16
                   rry T
            Name: tipo_de_arbol, dtype: object
```

5.11 Merge

```
In [201]: df1 = pd.read_csv("data/data.csv", sep=";")
    df1
```

Out[201]:

	diametro	altura	volumen	tipo_de_arbol
0	11.2	75.0	19.9	Cherrie Tree
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
3	11.4	76.0	21.4	Apple Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
6	14.0	78.0	34.5	Cherrie Tree
7	14.2	80.0	31.7	Cherry Tree
8	NaN	74.0	36.3	Apple Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
11	17.3	81.0	55.4	Apple Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
15	18.0	NaN	51.0	NaN
16	20.6	NaN	NaN	Cherry Tree

0 1 5 0 0 0 5		tipo_de_arbol	fruto	precio_pesos_por_kg
Out[202]:	0	Cherry Tree	guinda	500.0
	1	Apple Tree	manzana	2000.0
	2	Pear Tree	pera	NaN

In [203]:

df3 = df1.merge(df2, how="left", on="tipo_de_arbol")
df3

Out[203]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.2	75.0	19.9	Cherrie Tree	NaN	NaN
1	11.3	79.0	24.2	Cherry Tree	guinda	500.0
2	11.4	76.0	21.0	Cherry Tree	guinda	500.0
3	11.4	76.0	21.4	Apple Tree	manzana	2000.0
4	13.7	71.0	25.7	Cherry Tree	guinda	500.0
5	13.8	64.0	24.9	Cherry Tree	guinda	500.0
6	14.0	78.0	34.5	Cherrie Tree	NaN	NaN
7	14.2	80.0	31.7	Cherry Tree	guinda	500.0
8	NaN	74.0	36.3	Apple Tree	manzana	2000.0
9	16.0	72.0	38.3	Cherry Tree	guinda	500.0
10	16.3	77.0	42.6	Cherry Tree	guinda	500.0
11	17.3	81.0	55.4	Apple Tree	manzana	2000.0
12	17.5	NaN	55.7	Cherry Tree	guinda	500.0
13	17.9	80.0	58.3	Cherry Tree	guinda	500.0
14	18.0	80.0	51.5	Cherry Tree	guinda	500.0
15	18.0	NaN	51.0	NaN	NaN	NaN
16	20.6	NaN	NaN	Cherry Tree	guinda	500.0

In [204]:

df3 = df1.merge(df2, how="right", on="tipo_de_arbol")
df3

Out[204]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.3	79.0	24.2	Cherry Tree	guinda	500.0
1	11.4	76.0	21.0	Cherry Tree	guinda	500.0
2	13.7	71.0	25.7	Cherry Tree	guinda	500.0
3	13.8	64.0	24.9	Cherry Tree	guinda	500.0
4	14.2	80.0	31.7	Cherry Tree	guinda	500.0
5	16.0	72.0	38.3	Cherry Tree	guinda	500.0
6	16.3	77.0	42.6	Cherry Tree	guinda	500.0
7	17.5	NaN	55.7	Cherry Tree	guinda	500.0
8	17.9	80.0	58.3	Cherry Tree	guinda	500.0
9	18.0	80.0	51.5	Cherry Tree	guinda	500.0
10	20.6	NaN	NaN	Cherry Tree	guinda	500.0
11	11.4	76.0	21.4	Apple Tree	manzana	2000.0
12	NaN	74.0	36.3	Apple Tree	manzana	2000.0
13	17.3	81.0	55.4	Apple Tree	manzana	2000.0
14	NaN	NaN	NaN	Pear Tree	pera	NaN

```
In [205]:
```

df3 = df1.merge(df2, how="inner", on="tipo_de_arbol")
df3

Out[205]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.3	79.0	24.2	Cherry Tree	guinda	500.0
1	11.4	76.0	21.0	Cherry Tree	guinda	500.0
2	13.7	71.0	25.7	Cherry Tree	guinda	500.0
3	13.8	64.0	24.9	Cherry Tree	guinda	500.0
4	14.2	80.0	31.7	Cherry Tree	guinda	500.0
5	16.0	72.0	38.3	Cherry Tree	guinda	500.0
6	16.3	77.0	42.6	Cherry Tree	guinda	500.0
7	17.5	NaN	55.7	Cherry Tree	guinda	500.0
8	17.9	80.0	58.3	Cherry Tree	guinda	500.0
9	18.0	80.0	51.5	Cherry Tree	guinda	500.0
10	20.6	NaN	NaN	Cherry Tree	guinda	500.0
11	11.4	76.0	21.4	Apple Tree	manzana	2000.0
12	NaN	74.0	36.3	Apple Tree	manzana	2000.0
13	17.3	81.0	55.4	Apple Tree	manzana	2000.0

In [206]:

df3 = df1.merge(df2, how="outer", on="tipo_de_arbol")
df3

Out[206]:

	diametro	altura	volumen	tipo_de_arbol	fruto	precio_pesos_por_kg
0	11.2	75.0	19.9	Cherrie Tree	NaN	NaN
1	14.0	78.0	34.5	Cherrie Tree	NaN	NaN
2	11.3	79.0	24.2	Cherry Tree	guinda	500.0
3	11.4	76.0	21.0	Cherry Tree	guinda	500.0
4	13.7	71.0	25.7	Cherry Tree	guinda	500.0
5	13.8	64.0	24.9	Cherry Tree	guinda	500.0
6	14.2	80.0	31.7	Cherry Tree	guinda	500.0
7	16.0	72.0	38.3	Cherry Tree	guinda	500.0
8	16.3	77.0	42.6	Cherry Tree	guinda	500.0
9	17.5	NaN	55.7	Cherry Tree	guinda	500.0
10	17.9	80.0	58.3	Cherry Tree	guinda	500.0
11	18.0	80.0	51.5	Cherry Tree	guinda	500.0
12	20.6	NaN	NaN	Cherry Tree	guinda	500.0
13	11.4	76.0	21.4	Apple Tree	manzana	2000.0
14	NaN	74.0	36.3	Apple Tree	manzana	2000.0
15	17.3	81.0	55.4	Apple Tree	manzana	2000.0
16	18.0	NaN	51.0	NaN	NaN	NaN
17	NaN	NaN	NaN	Pear Tree	pera	NaN

Guardando datos

- 1. **csv**
- 2. json
- 3. excel

Lo más importante es tener cuidado de cómo se guardan los nombres de las columnas (header), y el indice (index).

Depende de la utilización, pero mi recomendación es guardar el header explícitamente y guardar el index como una columna.

```
In [207]: # guardar un csv

df = pd.read_csv("data/data.csv", sep=";")

df = df[df.tipo_de_arbol=="Cherry Tree"]

df.to_csv("data/output.csv", sep="|", index=True) # header=True by default

df
```

Out[207]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [208]:
```

Leer el csv anterior
df2 = pd.read_csv("data/output.csv", sep="|", index_col=0) # get index from first column
df2

Out[208]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [209]:
```

%%bash cat data/output.csv

```
|diametro|altura|volumen|tipo_de_arbol
1|11.3|79.0|24.2|Cherry Tree
2|11.4|76.0|21.0|Cherry Tree
4|13.7|71.0|25.7|Cherry Tree
5|13.8|64.0|24.9|Cherry Tree
7|14.2|80.0|31.7|Cherry Tree
9|16.0|72.0|38.3|Cherry Tree
10|16.3|77.0|42.6|Cherry Tree
12|17.5||55.7|Cherry Tree
13|17.9|80.0|58.3|Cherry Tree
14|18.0|80.0|51.5|Cherry Tree
16|20.6|||Cherry Tree
```

```
In [210]: # guardar un json
    df = pd.read_csv("data/data.csv", sep=";")
    df = df[df.tipo_de_arbol=="Cherry Tree"]
    df.to_json("data/output.json")
    df
```

Out[210]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [211]: # Leyendo el json anterior
    df2 = pd.read_json("data/output.json")
    df2
```

Out[211]:

	diametro	altura	volumen	tipo_de_arbol
1	11.3	79.0	24.2	Cherry Tree
2	11.4	76.0	21.0	Cherry Tree
4	13.7	71.0	25.7	Cherry Tree
5	13.8	64.0	24.9	Cherry Tree
7	14.2	80.0	31.7	Cherry Tree
9	16.0	72.0	38.3	Cherry Tree
10	16.3	77.0	42.6	Cherry Tree
12	17.5	NaN	55.7	Cherry Tree
13	17.9	80.0	58.3	Cherry Tree
14	18.0	80.0	51.5	Cherry Tree
16	20.6	NaN	NaN	Cherry Tree

```
In [212]:
```

%%bash
cat data/output.json

```
{"diametro":{"1":11.3,"2":11.4,"4":13.7,"5":13.8,"7":14.2,"9":16.0,"10":16.3,"12":17.5,"13":17.9,"14":18.0,"16":20.6},"altura":{"1":79.0,"2":76.0,"4":71.0,"5":64.0,"7":80.0,"9":72.0,"10":77.0,"12":null,"13":80.0,"14":80.0,"16":null},"volumen":{"1":24.2,"2":21.0,"4":25.7,"5":24.9,"7":31.7,"9":38.3,"10":42.6,"12":55.7,"13":58.3,"14":51.5,"16":null},"tipo_de_arbol":{"1":"Cherry Tree","2":"Cherry Tree","4":"Cherry Tree","5":"Cherry Tree","7":"Cherry Tree","10":"Cherry Tree","12":"Cherry Tree","13":"Cherry Tree","14":"Cherry Tree","16":"Cherry Tree")}
```

Desafío para la casa

Descargar algún archivo de interés:

- Abrir el archivo.
- Explorar los datos
- Visualizar los datos
- Completar los datos incompletos
- Guardar el archivo

