Reasoning About Bounds In Weighted Transition Systems Ouant A 2017

September 18, 2017

Mikkel Hansen, Kim Guldstrand Larsen, Radu Mardare, Mathias Ruggaard Pedersen and Bingtian Xue {mhan, kgl, mardare, mrp, bingt}@cs.aau.dk

Department of Computer Science
Aalborg University
Denmark

Introduction Background

Cyber-Physical Systems operate in environments that are inherently unpredictable and imprecise.

Observation

- When modeling physical phenomena, their quantitative nature is most often captured by means of observations and measurements.
- ► The accuracy of these measurements is highly dependent on the methods/equipment used to obtain them as well as the environment in which they are obtained.

Observation

- When modeling physical phenomena, their quantitative nature is most often captured by means of observations and measurements.
- ► The accuracy of these measurements is highly dependent on the methods/equipment used to obtain them as well as the environment in which they are obtained.

Example

Consider measuring some physical phenomena with a piece of equipment that is known to be accurate within one unit.

Example

Consider measuring some physical phenomena with a piece of equipment that is known to be accurate within one unit.

We may obtain a reading of x and thus conclude that the actual value is somewhere in the interval [x-1;x+1].

Example

Consider measuring some physical phenomena with a piece of equipment that is known to be accurate within one unit.

We may obtain a reading of x and thus conclude that the actual value is somewhere in the interval [x-1;x+1].

Problem

What quantity should we use in our model?

Problem

What quantity should we use in our model?

Solution 1: Naive Approach

Use the concrete value x regardless of the possible inaccuracy of the measurement.

Solution 2: Abstractions

Realize the inherent uncertainty in the quantitative measures and try to abstract it away in the models.

In our example, a natural solution could be to use the interval [x-1;x+1] as a quantitative measure.

The model then describes how the system can or may be implemented.

Our Approach

We abstract away the intermediate transitions in [x - 1; x + 1],

Our Approach

We abstract away the intermediate transitions in [x - 1; x + 1],

and instead reason only about the lower/upper bounds on transition weights.

Introduction Contribution

Our Contribution

► Reasoning about min and max transitions, including bisimulation.

Introduction Contribution

Our Contribution

- ► Reasoning about min and max transitions, including bisimulation.
- Modal logic that is invariant under bisimulation.

Introduction Contribution

Our Contribution

- ► Reasoning about min and max transitions, including bisimulation.
- Modal logic that is invariant under bisimulation.
- Finite model property and satisfiability checking algorithm.

Introduction Contribution

Our Contribution

- Reasoning about min and max transitions, including bisimulation.
- Modal logic that is invariant under bisimulation.
- Finite model property and satisfiability checking algorithm.
- Complete axiomatization for the logic.

Model

Weighted Transition Systems

Definition: Weighted Transition System

A weighted transition system (WTS) is a tuple $\mathcal{M}=(\mathcal{S},\rightarrow,\ell)$, where

- ► S is a non-empty set of *states*,
- ▶ $\rightarrow \subseteq S \times \mathcal{R}_{>0} \times S$ is the *transition relation*, and
- $\ell: S \to 2^{AP}$ is a *labeling function* mapping to each state a set of atomic propositions.

Model

Example: Robot Vacuum Cleaner

Example: A model of a robot vacuum cleaner

3 states: waiting, cleaning and charging.

The time it takes to move between states is given by the transition weights.

Model Image Sets

Definition: Image Set

For arbitrary WTS $\mathcal{M} = (S, \rightarrow, \ell)$ the function

$$heta: \mathcal{S} o (\mathbf{2}^{\mathcal{S}} o \mathbf{2}^{\mathcal{R}_{\geq 0}})$$

is defined for any state $s \in S$ and any set of states $T \subseteq S$ as

$$\theta = \left\{ x \in \mathcal{R}_{\geq 0} \mid \exists t \in T \text{ such that } s \stackrel{x}{\rightarrow} t \right\}$$

We refer to $\theta(s)(T)$ as the *image* from s to T or simply an *image set*.

$$\theta^{-}(s)(T) = \inf \theta(s)(T)$$
 and $\theta^{+}(s)(T) = \sup \theta(s)(T)$

Model

Example: Robot Vacuum Cleaner

Example: A model of a robot vacuum cleaner

$$\theta(s_1)(\{s_2\}) = \{0\}$$

 $\theta^-(s_1)(\{s_2\}) = 0$

$$\theta(s_2)(\{s_1\}) = \{5, 10, 15\}$$

 $\theta^-(s_2)(\{s_1\}) = 5$

$$\theta^+(s_1)(\{s_2\})=0$$

$$\theta^+(s_2)(\{s_1\}) = 15$$

Model Bisimulation

Definition: Weighted Bisimilarity \sim_W

Given a WTS $\mathcal{M}=(S,\to,\ell)$, a binary relation \mathcal{R} on S is called a *weighted bisimulation relation* if and only if $s\mathcal{R}t$ implies (Atomic Harmony) $\ell(s)=\ell(t)$,

(Zig) $s \xrightarrow{x} s'$ implies $t \xrightarrow{x} t'$ such that $s' \mathcal{R} t'$, and

(Zag) $t \xrightarrow{x} t'$ implies $s \xrightarrow{x} s'$ such that $s' \mathcal{R} t'$.

$$\mathcal{R} = \begin{cases} (s_1, t_1), & (t_1, s_1), \\ (s_2, t_2), & (t_2, s_2), \\ (s_3, t_2), & (t_2, s_3), \\ (s_2, s_3), & (s_3, s_2) \end{cases}$$
 is a bisimulation relation

Model Bisimulation

Definition: Generalized Weighted Bisimilarity \sim

Given a WTS $\mathcal{M}=(S,\to,\ell)$, an equivalence relation \mathcal{R} on S is called a *generalized weighted bisimulation* iff $s\mathcal{R}t$ implies (Atomic Harmony) $\ell(s)=\ell(t)$,

(Lower Bound) $\theta^{-}(s)(T) = \theta^{-}(t)(T)$, and

(Upper Bound) $\theta^{+}(s)(T) = \theta^{+}(t)(T)$

for any \mathcal{R} -equivalence class $T \in \mathcal{S}/\mathcal{R}$.

Model Bisimulation

Theorem: Relation between \sim and \sim_W

Generalized weighted bisimilarity is coarser than weighted bisimilarity, i.e.

$$\sim_W \subsetneq \sim$$

Logic Syntax and Semantics

Definition: Syntax of \mathcal{L}

$$\mathcal{L}: \quad \varphi, \psi ::= \mathbf{p} \mid \neg \varphi \mid \varphi \wedge \psi \mid \mathbf{L}_r \varphi \mid \mathbf{M}_r \varphi$$

Definition: L_r and M_r Semantics

$$\mathcal{M}, \mathbf{s} \models L_r \varphi \quad \text{iff} \quad \theta^-\left(\mathbf{s}\right)\left(\llbracket\varphi\rrbracket\right) \geq r$$

$$\mathcal{M}, \mathbf{s} \models M_r \varphi \quad \text{iff} \quad \theta^+\left(\mathbf{s}\right)\left(\llbracket\varphi\rrbracket\right) \leq r$$

where $\llbracket \varphi \rrbracket = \{ t \in \mathcal{S} \mid \mathcal{M}, t \models \varphi \}.$

Logic Syntax and Semantics

Definition: L_r and M_r Semantics

$$\mathcal{M}, s \models L_r \varphi \quad \text{iff} \quad \theta^-(s)(\llbracket \varphi \rrbracket) \geq r$$

$$\mathcal{M}, s \models M_r \varphi \quad \text{iff} \quad \theta^+(s)(\llbracket \varphi \rrbracket) \leq r$$

where $\llbracket \varphi \rrbracket = \{ t \in \mathcal{S} \mid \mathcal{M}, t \models \varphi \}.$

Logic Syntax and Semantics

It is possible that $L_r\varphi$ and $M_r\varphi$ are both satisfied at the same time.

This also holds for their negation, $\neg L_r \varphi$ and $\neg M_r \varphi$.

Logic Bisimulation Invariance

Theorem: Bisimulation Invariance

For any image-finite WTS $\mathcal{M}=(\mathcal{S},\to,\ell)$ and states $s,t\in\mathcal{S}$ it holds that

$$s \sim t$$
 iff $[\forall \varphi \in \mathcal{L}. \ \mathcal{M}, s \models \varphi \text{ iff } \mathcal{M}, t \models \varphi]$

Metatheory


```
(A1): \vdash \neg L_0 \bot
(A2): \vdash L_{r+q}\varphi \rightarrow L_r\varphi
                                                                                                             if q > 0
(A2'): \vdash M_r \varphi \rightarrow M_{r+q} \varphi
                                                                                                             if q > 0
(A3): \vdash L_r \varphi \wedge L_q \psi \rightarrow L_{\min\{r,q\}}(\varphi \vee \psi)
(A3'): \vdash M_r \varphi \wedge M_q \psi \rightarrow M_{\max\{r,q\}}(\varphi \vee \psi)
(A4): \vdash L_r(\varphi \lor \psi) \to L_r \varphi \lor L_r \psi
(A5): \vdash \neg L_0 \psi \rightarrow (L_r \varphi \rightarrow L_r (\varphi \lor \psi))
(A5'): \vdash \neg L_0 \psi \rightarrow (M_r \varphi \rightarrow M_r (\varphi \lor \psi))
(A6): \vdash L_{r+q}\varphi \rightarrow \neg M_r\varphi
                                                                                                             if q > 0
(A7): \vdash M_r \varphi \rightarrow L_0 \varphi
(R1): \vdash \varphi \rightarrow \psi \implies \vdash ((L_r\psi) \land (L_0\varphi)) \rightarrow L_r\varphi
(R1'): \vdash \varphi \rightarrow \psi \implies \vdash ((M_r \psi) \land (L_0 \varphi)) \rightarrow M_r \varphi
(R2): \vdash \varphi \rightarrow \psi \implies \vdash L_0\varphi \rightarrow L_0\psi
```

Metatheory


```
(A1): \vdash \neg L_0 \bot
(A2): \vdash L_{r+q}\varphi \rightarrow L_r\varphi
                                                                                                             if q>0
                                                                                                             if a > 0
(A2'): \vdash M_r \varphi \rightarrow M_{r+q} \varphi
(A3): \vdash L_r \varphi \wedge L_q \psi \rightarrow L_{\min\{r,q\}} (\varphi \vee \psi)
(A3'): \vdash M_r \varphi \land M_q \psi \rightarrow M_{\max\{r,q\}} (\varphi \lor \psi)
(A4): \vdash L_r(\varphi \lor \psi) \to L_r \varphi \lor L_r \psi
(A5): \vdash \neg L_0 \psi \rightarrow (L_r \varphi \rightarrow L_r (\varphi \lor \psi))
(A5'): \vdash \neg L_0 \psi \rightarrow (M_r \varphi \rightarrow M_r (\varphi \lor \psi))
(A6): \vdash L_{r+\sigma}\varphi \rightarrow \neg M_r\varphi
                                                                                                             if a > 0
(A7): \vdash M_r \varphi \rightarrow L_0 \varphi
(R1): \vdash \varphi \rightarrow \psi \implies \vdash ((L_r\psi) \land (L_0\varphi)) \rightarrow L_r\varphi
(R1'): \vdash \varphi \rightarrow \psi \implies \vdash ((M_r \psi) \land (L_0 \varphi)) \rightarrow M_r \varphi
(R2): \vdash \varphi \rightarrow \psi \implies \vdash L_0\varphi \rightarrow L_0\psi
```

Metatheory A2 and A2'

(A2)
$$\vdash L_{r+s}\varphi \to L_r\varphi, \ s>0$$
 (A2') $\vdash M_t\varphi \to M_{t+q}\varphi, \ q>0$

Metatheory

(A3)
$$\vdash L_r \varphi \wedge L_q \psi \rightarrow L_{\min\{r,q\}} (\varphi \vee \psi)$$

Metatheory A3'

(A3')
$$\vdash M_r \varphi \land M_q \psi \rightarrow M_{\max\{r,q\}} (\varphi \lor \psi)$$

Metatheory

(A8)
$$\vdash L_{r+q}\varphi \rightarrow \neg M_r\varphi, q > 0$$

Metatheory R1 and R1'

(R1)
$$\vdash \varphi \rightarrow \psi \implies ((L_r \psi) \land (L_0 \varphi)) \rightarrow L_r \varphi$$

(R1')
$$\vdash \varphi \rightarrow \psi \implies ((M_s\psi) \land (L_0\varphi)) \rightarrow M_s\varphi$$

Metatheory Soundness

Lemma: Soundness

 $-\varphi$ implies $\models \varphi$

Metatheory

Finite Model Construction

Starting from a *consistent* formula $\varphi \in \mathcal{L}$, we do the following based on φ

- 1 Construct a finite subset $\mathcal{L}[\varphi]$ of \mathcal{L}
- 2 Construct a model \mathcal{M}_{φ} where:
 - lacktriangle States are the maximal consistent sets (ultrafilters) of $\mathcal{L}[\varphi]$
 - ▶ Transitions are given by the formulae in these sets, i.e. $L_r \varphi \in u$ implies $u \xrightarrow{x} \llbracket \varphi \rrbracket$ where $x \geq r$.

Then, \mathcal{M}_{φ} is a model for φ .

Metatheory Finite Model Property

Lemma: Truth Lemma

If $\varphi \in \mathcal{L}$ is a consistent formula, then for formulae all $\psi \in \mathcal{L}[\varphi]$ and ultrafilters $u \subseteq \mathcal{L}[\varphi]$ we have

$$\mathcal{M}_{\varphi}, u \models \psi \quad \text{iff} \quad \psi \in u$$

Lemma: Finite Model Property

For any consistent formula $\varphi \in \mathcal{L}$, there exists a finite WTS $\mathcal{M} = (S, \rightarrow, \ell)$ and a state $s \in S$ such that

$$\mathcal{M}, \mathbf{s} \models \varphi$$

Metatheory Completeness

Theorem: Completeness

For any formula $\varphi \in \mathcal{L}$ it holds that

$$\models \varphi$$
 implies $\vdash \varphi$

Concluding Remarks

We have proposed abstracting away individual transition weights in a WTS by introducing the notion of an *image set*.

We have proposed a modal logic that reasons about the minimum and maximum weights on transitions and shown that it has the finite model property.

We have presented a procedure for determining the satisfiability of formulae in our logic (not covered in this talk).

We have proposed an axiomatization for our logic and shown that is is complete.

Open Problems

Open Problems Strong Completeness

There is a stronger notion of completeness, often called *strong completeness*, which asserts that $\Phi \models \varphi$ implies $\Phi \vdash \varphi$ for any set of formulae $\Phi \subseteq \mathcal{L}$.

Completeness is a special case of strong completeness where $\Phi = \emptyset$.

In the case of compact logics, strong completeness follows directly from completeness. However, our logic is non-compact.

$$\Phi = \{ L_q \varphi \mid q < r \} \cup \{ \neg L_r \varphi \}$$

Open Problems Temporal Specification

Many interesting properties of CPSs such as *liveness* and *deadlock freeness* cannot be expressed in modal logic.

We would like to explore temporal specification languages such as *CTL* or *LTL*.

