11 by weight of thermoplastic components, 12 and wherein a basis weight of said mat falls within the range of 68 to 339 13 gm/square meters, and wherein the reinforcement fibers are selected from the group consisting of carbon; glass; para-amid; ceramics; metals; high temperature 14 thermoplastics; thermosets; liquid crystal polymer fibers; ultra high molecular 15 16 weight polyethylene and natural or synthetic spider web. 37. (Currently Amended) A mat comprising 1 a plurality of discontinuous reinforcement fibers having at least a 90% 2 machining direction orientation; 3 and 4 a thermoplastic component selected from the group consisting of 5 polyethylene, polypropylene, polyethylene terephthalate (PET), polyamides, 6 polyethylene naphthalate (PEN), polyetheretherketone (PEEK) and 7 8 polyetherketoneketone (PEKK), wherein concentration of reinforcement fiber components to thermoplastic 9 components is in a range of 60-70% by weight of reinforcement fibers to 40-30% 10 by weight of thermoplastic components, 11 12 wherein a basis weight of said mat falls within the range of 68 to 339 gm/square meters, and wherein the reinforcement fibers are selected from the group 13 consisting of carbon; glass; para-amid; ceramics; metals; high temperature 14 thermoplastics; thermosets; liquid crystal polymer fibers; ultra high molecular 15 weight polyethylene and natural or synthetic spider web. 16 38. (Previously Cancelled) 39. (Currently Cancelled, without prejudice or disclaimer). 1 40. (Currently Amended) A product comprising a plurality of mats, each of said mats comprising 2 a plurality of discontinuous reinforcement fibers having at least a 90% 3

a thermoplastic component selected from the group consisting of

4

5

wetlay orientation, and

6	polyethylene, polypropylene, polyethylene terephthalate (PET), polyamides,
7	polyethylene naphthalate (PEN), polyetheretherketone (PEEK) and
8	polyetherketoneketone (PEKK),
9	wherein concentration of reinforcement fiber components to thermoplastic
10	components is in a range of 60-70% by weight of reinforcement fibers to 40-30%
11	by weight of thermoplastic components,
12	and wherein a basis weight of each of said mats falls within the range of 68 to 339
13	gm/square meters, and wherein the reinforcement fibers are selected from the
14	group consisting of carbon; glass; para-amid; ceramics; metals; high-temperature
15	thermoplastics; thermosets; liquid crystal polymer fibers; ultra high molecular
16	weight polyethylene and natural or synthetic spider web.

1 2

3

5 6

- 41. (Original) The product of claim 40 wherein at least one of said mats has been heated in an oven, compression molded, hot stamped, continuously formed in a belt press, continuously shape-formed by hot roller pressing, continuously shaped by reciprocal stamping, formed through pultrusion, or continuously manufactured to form structural rods, ropes and cables.
- 42. (Original) The product of claim 40, wherein each of said mats have
 different fiber components and fiber orientations.
 - 43. (Currently Cancelled, Withdrawn per Examiner, as non-elected)
- 1 44. (Original) A mat according to claim 36, wherein the reinforcement 2 fibers are polyacrylonitrile (PAN) carbon.
 - 45. (Original) A mat according to claim 36, wherein the reinforcement fibers are pitch carbon.
 - 46. (New) The mat of claim 36, wherein the reinforcement fibers have fiber lengths in a range of about 0.6 cm to 6.35 cm.

1	47. (New) The mat of claim 46, wherein the reinforcement fibers have
2	fiber lengths in a range of 1.9 cm to 3.2 cm.
1	. 48. (New) The mat of claim 36, wherein the reinforcement fibers adhere
2	to the thermoplastic component.
-	. to the thorntoplastic component.
1	49. (New) The mat of claim 36, wherein the reinforcement fibers are all
2	made of one material and have at least substantially the same length and diameter.
1	50. (New) The mat of claim 36, wherein the reinforcement fibers are made
2	of a a mixture of materials, and have different lengths, diameters and
3	compositions.
1	51. (New) The mat of claim 36, wherein the thermoplastic component is
2	selected from the group consisting of fibers, granular particles and flat platelets.
1	52. (New) The mat of claim 36, wherein the thermoplastic component
2	includes fibers with lengths in a range of 0.6 cm to 1.9 cm.
1	53. (New) The mat of claim 36, wherein the thermoplastic component is
2	drawn fibers or undrawn fibers.
1	54. (New) The mat of claim 36, wherein the thermoplastic component is
2	made of the same material and of substantially same size members.
	55. (New) The mat of claim 36, wherein the thermoplastic component is
2	made of a mixture of materials, of different sizes and melting points.
-	Trans of a minimal of minimal of antique and min mermio bound.
1	56. (New) The mat of claim 36, further comprising an additional material
2	selected from the group consisting of fillers, antioxidants, coloring agents,
3	electrically-conductive materials, electrically-insulating materials, thermally-
4	conductive materials, thermally-insulating materials, adhesion aids, melt flow
5	modifiers, cross-linking agents, chemically-reactive materials, biologically-