

Model Development Phase Template

Date	20 July 2024
Team ID	SWTID1721319573
Project Title	Blueberry Yield Prediction
Maximum Marks	6 Marks

Model Selection Report

In the forthcoming Model Selection Report, various models will be outlined, detailing their descriptions, hyperparameters, and performance metrics, including Accuracy or F1 Score. This comprehensive report will provide insights into the chosen models and their effectiveness.

Model Selection Report:

Model	Description	Hyperparameters	Performance Metric (e.g., Accuracy, F1 Score)
Linear Regression	Linear Regression is a simple model that assumes a linear relationship between the independent variables and the dependent variable.	<pre># Linear Regression reg = LinearRegression(fit_intercept=True) reg.fit(X_train, y_train) pred_linear = reg.predict(X_test)</pre>	Linear Regression: MAE: 97.318 MSE: 16219.955 RMSE: 127.358 R-Square: 0.992 Accuracy: 99.18%
Random Forest Regressor	Random Forest is an ensemble learning method that constructs multiple decision trees during training and outputs the mean prediction	Pandom Forest Regressor _reg : Rendom/ovestRegressor(_satimators:100, max_depth:10, min_samples_split:2, random_state=42) _reg fit(_reg_ovedict((_test))	Random Forest Regressor: MAE: 117.197 MSE: 22845.764 RMSE: 151.148 R-Square: 0.988 Accuracy: 98.84%

	of the individual trees.		
Decision Tree Regressor	Decision Tree Regressor creates a model in the form of a tree structure, where each node represents a decision based on the features, and the leaves represent the predicted values.	# Decision Tree Regressor dt_reg = DecisionTreeRegressor(max_depth~8, min_samples_split~5, random_state~42) dt_reg fit(_reaf)treat	Decision Tree Regressor: MAE: 148.381 MSE: 38588.977 RMSE: 196.441 R-Square: 0.980 Accuracy: 98.05%
XGBoost Regressor	XGBoost is an advanced gradient boosting method that optimizes the performance of boosting algorithms and is known for its accuracy and efficiency.	r_NSBoot Sepressor or(_astinator=180, lawning_rate=0.1, ma_depth=0, subsepla=0.8, random_state=41) mag_rag_fit(_treato_y_rasio) pred_upb = upb_rag_oredict(U_best)	XGBoost Regressor: MAE: 106.537 MSE: 17901.843 RMSE: 133.798 R-Square: 0.991 Accuracy: 99.09%