Càlcul en una variable Grau en Matemàtiques UPC

1 Introducció al càlcul i motivació

1.1 Tangents

Tangent d'una corba y = f(x) en un punt x_0 , com a límit de secants. El pendent de la recta tangent és el límit de les pendents de les secants. Al valor límit l'anomenem derivada de f(x) en el punt x_0 .

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}.$$

Sigui $y_0 = f(x_0)$. La **recta tangent** en el punt x_0 ve donada per

$$y = y_0 + f'(x_0)(x - x_0).$$

Si la corba té "cantonades", la tangent no està ben definida. La funció f(x)=|x| no té derivada en el punt 0.

Exemple: si $f(x) = x^2$,

$$f'(x_0) = \lim_{\delta x \to 0} \frac{(x_0 + \delta x)^2 - x_0^2}{\delta x} = \lim_{\delta x \to 0} \frac{2x_0 \delta x + (\delta x)^2}{\delta x} = 2x_0.$$

La recta tangent és $y = x_0^2 + 2x_0(x - x_0)$.

Altres exemples:

- Si $f(x) = x^n$, llavors $f'(x) = nx^{n-1}$.
- Si f(x) = 1/x, llavors $f'(x) = -1/x^2$.
- Si $f(x) = \sqrt{x}$, llavors $f'(x) = -\frac{1}{2\sqrt{x}}$.

Tangents a un cercle. El cercle de radi 1 ve donat per l'equació $x^2 + y^2 = 1$. En el primer quadrant tenim $y = \sqrt{1 - x^2}$. Calculant la derivada d'aquesta funció obtenim que la tangent al punt (x, y) és -x/y.

1.2 Velocitat i acceleració

Sigui x(t) la distància recorreguda per un mòbil durant l'interval de temps t. La velocitat mitjana a l'instant t_0 és $x(t_0)/t_0$. La **velocitat instantània** a t_0 s'obté com a límit de velocitats mitjanes i propoorciona una altra interpretació de la derivada:

$$x'(t) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x}.$$

L'acceleració és la derivada de la velocitat.

1.3 Arees i integrals

L'àrea d'un polígon es pot calcular exactament a partir de la fòrmula de l'àrea d'un rectangle. Com calculem l'àrea de figures corbes?

Càlcul de l'àrea sota la paràbola $y = x^2$. Aproximació

$$\frac{1}{n^3}(1^2 + \dots + (n-1)^2) < \int_0^1 x^2 dx < \frac{1}{n^3}(1^2 + \dots + n^2) = \frac{n(n+1)(2n+1)}{6n^3}$$

Prenent el límit quan n tendeix a infinit, obtenim $\int_0^1 x^2 dx = 1/3$. En general, si f és creixent,

$$\delta\Big[f(a)+f(a+\delta)+\cdots f(b-\delta)\Big]<\int_a^b f(x)dx<\delta\Big[f(a+\delta)+f(a+2\delta)+\cdots f(b)\Big],\quad \delta=\frac{b-a}{n}.$$

1.4 Densitat i centre de masses

La densitat d'una barra (suposem que és lineal, és a dir, de dimensió 1) és la massa dividit per la longitud. La densitat puntual $\rho(x)$ s'obté com a límit de densitats, com una derivada. Si la barra ocupa l'interval [0, L], la massa total és $M = \int_0^L \rho(x) dx$. El **centre de masses** és

$$\overline{x} = \frac{1}{M} \int_{0}^{L} x \rho(x).$$

Si sostenim la barra pel punt \overline{x} , llavors la barra estarà en equilibri.

1.5 Relació entre derivades i integrals

Doanada una funció f(x), definim

$$F(x) = \int_0^x f(t)dt.$$

Teorema fonamental del càlcul. Amb la notació anterior, F'(x) = f(x).

Tenim que el quocient d'increments és

$$\frac{F(x_0 + \delta) - F(x_0)}{\delta} = \frac{\int_{x_0}^{x_0 + \delta} f(t)dt}{\delta}$$

Interpretem aquest quocient com el "valor mitjà" de f(t) en l'interval $[x_0, x_0 + \delta]$. És raonable suposar que aquest valor s'assoleix en un punt intermedi $c \in [f(x_0), f(x_0 + \delta)]$ i per tant $\int_{x_0}^{x_0 + \delta} f(t) dt = c\delta$. Cal fer notar que c no és una constant, sinó que varia amb δ . Llavors

$$F'(x_0) = \lim_{\delta \to 0} \frac{F(x_0 + \delta) - F(x_0)}{\delta} = \lim_{\delta \to 0} \frac{\int_{x_0}^{x_0 + \delta} f(t)dt}{\delta} = \lim_{\delta x \to 0} c$$

Per "continuïat", $\lim_{\delta \to 0} c = f(x_0)$.

Antiderivades. Tornem a calcular l'àrea sota la paràbola mitjançant el terorema fonamental del càlcul. Si $F(x) = x^3/3$, llavors $F'(x) = x^2$, i per tant

$$\int_0^1 x^2 dx = F(1) = 1/3.$$

Si F'(x) = f(x) diem que F és una antiderivada (o primitiva) de fRegla de Barrow. Si F és una primitiva de f, llavors

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Àrea del cercle. Veurem que una primitiva de $f(x)=\sqrt{1-x^2}$ és $F(x)=\frac{1}{2}\arcsin(x)+\frac{x}{2}\sqrt{1-x^2}$. Per tant

$$\int_0^1 \sqrt{1 - x^2} dx = F(1) - F(0) = \frac{1}{2}\arcsin(1) = \frac{\pi}{4}.$$

L'àrea del cercle de radi unitat és doncs $4\frac{\pi}{4} = \pi$.

Calcular derivades és senzill, de fet es pot dissenyar un algorisme que calculi la derivada de qualsevol funció coneguda. En canvi, calcular primitives requereix enginy.

1.6 Càlcul i teoria la probabilitat

Considerem un experiment aleatori, com ara tirar un dard a un tauler de radi 1. Fem la hipòtesi que el dard cau en un punt aleatori del tauler de forma uniforme. Això vol dir que si dues regions A i B del tauler tenen la mateixa àrea, la probabilitat de caure a A o B és la mteixa. Sigui X la distància al centre (és diu que X és una **variable aleatòria**), que pot prendre valors entre 0 i 1.

La funció de distribució de X és

$$F(x) = \text{Probabilitat que } X \leq x.$$

En el nostre cas, $F(x) = \frac{\pi x^2}{\pi} = x^2$., per $0 \le x \le 1$. Tenim que F és creixent i F(1) = 1.

La funció de densitat f és la derivada de la funció de distribució:

$$f(x) = F'(x) = 2x.$$

És totalment anàleg a la densitat d'una barra que hem vist abans. La "probabilitat total", que és igual a 1, es reparteix com una densitat:

$$\int_0^1 f(x)dx = 1.$$

La densitat gaussiana és la familiar "campana de Gauss". La funció de densitat és proporcional a $f(x) = e^{-x^2/2}$. La constant de propocionalitat és $1/\sqrt{2\pi}$, ja que es pot provar (és un resultat avançat) que

$$\int_{-\infty}^{+\infty} e^{-x^2/2} dx = \sqrt{2\pi}.$$

La funció de distribució de la densitat gaussiana és

$$F(x) = \int_{-\infty}^{x} e^{-t^2/2} dt.$$

i s'anomena funció d'error. És una funció important en estadística.

2 Successions i sèries

Una successió és una aplicació que a cada enter positiu n li assigna un valor a(n). Enlloc de a(n) escrivim a_n i representem la successió com

$$a_1, a_2, a_3 \dots$$

Sovint tenim una fòrmula que defineix a_n , però no sempre. Per exemple, la famosa funció aritmètica $\pi(n)$, igual al nombre de primers que no superen n. Les successions es poden sumar i multiplicar terme a terme., i dividir sempre que denominador no s'anul·li.

2.1 Límits de successions

Diem que la successió (a_n) té com a límit L, si els termes a_n s'acosten tan com volguem a L quan n és prou gran. La formalització d'aquest concepte és:

Definició. La successió (a_n) té com a **límit** L si, per tot $\epsilon > 0$ existeix un índex N (que depén de ϵ), tal que

$$|a_n - L| < \epsilon$$
, per tot $n \ge N$.

Diem que (a_n) és una successió **convergent** i escrivim $a_n \to L$. Propietats bàsiques:

- 1. Si una successió és convergent, el límit és únic.
- 2. Tota successió convergent és fitada.
- 3. Siguin $a_n \to a$ i $b_n \to b$. Llavors
 - (a) $a_n + b_n \to a + b i a_n b_n \to ab$.
 - (b) Si $b_n \neq 0$ per tot n i $b \neq 0$, llavors $a_n/b_n \rightarrow a/b$.
 - (c) Si $a_n \leq b_n$ per tot n, llavors $a \leq b$.

Lema del sàndvitx. Si $a_n \le b_n \le c_n$ i a_n i c_n tenen el mateix límit L, llavors $b_n \to L$.

Successions creixent fitades. Un cop tinguem l'axioma del suprem, provarem que tota successió creixent $a_1 \leq a_2 \leq a_3 \leq \dots$ fitada superiorment (existeix M tal que $a_n \leq M$ per tot n) és convergent.

El nombre e. La successió $\left(1+\frac{1}{n}\right)^n$ és creixent i fitada, i per tant convergent. Definim el nombre e com el seu límit:

$$\left(1 + \frac{1}{n}\right)^n \to e \approx 2.718281828.$$

Diem que $a_n \to \infty$ si els nombres a_n es fan arbitràriament grans. Més precisament, si per tot C > 0 eixisteix N (que depén de C), tal que

$$|a_n| > C \text{ si } n \geq N.$$

Exemples:

- 1. $n^a \to \infty$ si a > 0.
- 2. $c^n \to \infty$ si c > 1.

2.2 Càlcul de límits

$$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \cdot \infty, 1^{\infty} \infty, 0^0$$

2.3 Ordres d'infinit

$$\log\log n \ll \log n \ll \sqrt{n} \ll \frac{n}{\log n} \ll n \ll n^2 \ll n^{\log n} \ll e^n \ll n! \ll n^n \ll 2^{n^2} \ll 2^{2^n}$$

2.4 Sèries

La sèrie $\sum_{n\geq 1} a_n$ és la successió de les sumes parcials

$$a_1, a_1 + a_2, \dots, a_1 + \dots + a_n, \dots$$

Diem que la sèrie és convergent si ho és la successió de les sumes parcials. En aquest cas, diem que el límit és la **suma** de la sèrie, i el representem pel mateix símbol $\sum_{n\geq 1} a_n$.

L'exemple bàsic és la sèrie geomètrica $\sum_{n\geq 0}c^n$. És convergent si |c|<1 i llavors la seva suma és

$$\sum_{n>0} c^n = \frac{1}{1-c}.$$

Si $\sum a_n$ és convergent, llavors $a_n \to 0$. El recíproc no és cert en general.

La sèrie harmònica $\sum_{n\geq 1} \frac{1}{n}$ no és convergent. Les sumes parcials $1+\frac{1}{2}+\cdots+\frac{1}{n}$ es poden fer arbitràriament grans.

En canvi, la sèrie harmònica alternant $\sum_{n\geq 1} (-1)^{n+1} \frac{1}{n}$ és convergent i la seva suma és ln 2.

2.5 Sèries de termes no negatius

A partir d'ara ens restringim a sèries amb termes **no negatius**, és a dir, suposem $a_n \geq 0$. Tenim els criteirs següents de convergència de sèries amb termes no negatius.

- Sumes parcials fitades. La sèrie $\sum_{n\geq 1} a_n$ és convergent si, i només si, la successió de sumes parcials $a_1+\cdots+a_n$ és fitada.
- Criteri de comparació. Suposem que $a_n \leq c \cdot b_n$ per $n \geq N$. Llavors, si $\sum b_n$ és convergent, també ho és $\sum a_n$. Recíprocament, si $\sum a_n$ és divergent també ho és $\sum b_n$.
- Criteri de l'arrel. Suposem que $\sqrt[n]{a_n} \to a$. Si a < 1, la sèrie $\sum a_n$ és convergent. Si a > 1, és divergent.
- Criteri del quocient. Suposem que $\frac{a_{n+1}}{a_n} \to a$. Si a < 1, la sèrie $\sum a_n$ és convergent. Si a > 1, és divergent.

Un exemple de sèrie alternada convergent. $\sum_{n\geq 1} (-1)^{n+1} \frac{1}{n}$ és convergent (de fet, la suma val ln 2). També ho és $\sum_{n\geq 0} (-1)^n \frac{1}{2n+1} = \frac{\pi}{4}$.

3 Axiomes i propietats dels nombres reals

La prova de diversos teoremes bàsics del càlcul requereix algunes propietats més avançades del conjunts del nombres reals. Comencem amb diverses definicions bàsiques.

Sigui A un conjunt de nombres reals. Una fita superior de A és un nombre M tal que $x \leq M$ per tot $x \in A$. Una fita inferior es defineix demanant que $x \geq M$.

Si A té una fita superior diem que està fitat superiorment, i si té una fita inferior diem que està fitat inferiorment.

Suposem que A està fitat superiorment. El **suprem** és el mínim de totes les fites superiors de A, i el denotem com sup A. Si $s = \sup A$ tenim que

$$x \leq M$$
 per tot $x \in A \implies s \leq M$.

El fet que tot conjunt fitat superiorment té un suprem, ho acceptem com un axioma.

Axioma del suprem. Tot conjunt de nombres reals fitat superiorment té un suprem.

L'ínfim d'un conjunt A fitat inferiorment és el màxim de les fites inferiors i l'escrivim inf A. De l'axioma dels suprem es dedueix que tot conjunt fitat inferiorment té un ínfim.

El suprem i l'ínfim són únics.

Convergència monòtona. Una successió creixent i fitada superiorment és convergent.

Bolzano-Weirstrass. Tota successió fitada té una subsuccessió convergent.

3.1 Límit superior i inferior

Sigui (a_n) una successió fitada. Definim $\limsup a_n$ com el límit dels suprems de les cues de la successió a_n . Formalment:

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} (\sup_{m \ge n} a_n).$$

Donat que $(\sup_{m\geq n}a_n)$ és una successió decreixent i fitada inferiorment, el seu límit existeix. Anàlogament, definim

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} (\inf_{m \ge n} a_n).$$

Propietats:

- $\inf_n a_n \le \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n \le \sup_n a_n$.
- $\limsup_{n\to\infty} (-a_n) = -\liminf_{n\to\infty} a_n$.
- $a_n \to a \iff \liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n = a$.

Caracterització. Tenim que $a = \limsup_{n \to \infty} a_n$ si, per tot $\epsilon > 0$,

- El conjunt $\{n \geq 1 : a_n > a + \epsilon\}$ és finit. Altrament, a és el nombre més petit tal que tot nombre més gran que a és una fita superior dels a_n per n prou gran.
- El conjunt $\{n \geq 1 : a_n > a \epsilon\}$ és infinit. Altrament, tot nombre més petit que a és una fita inferior dels a_n per n poru gran.

Caraterització en termes de subsuccessions.

```
\limsup_{n\to\infty} a_n = \sup\{x \in \mathbb{R} \colon x \text{ \'es l\'imit d'una subsuccessi\'o de } (a_n)\}.
```

Límits infinits. Si admetem $\pm \infty$ com a límits superior i inferior, llavors $\limsup_{n\to\infty} a_n$ i $\liminf_{n\to\infty} a_n$ sempre existeixen.

3.2 Successions de Cauchy

Una succesió (a_n) és **de Cauchy** si per tot ϵ existeix N (depenent de ϵ), tal que

$$|a_m - a_n| < \epsilon$$
.

Tota successió convergent és de Cauchy. La propietat recíproca és pren sovint com axioma alternatiu a l'axioma del suprem.

Completitud dels nombres reals. Tota successió de Cauchy és convergent.

Les successions de Cauchy permeten provar que una successió és convergent sense determinar el seu límit.

4 Límits i funcions continues

Donat un nombre real a, un **entorn obert** de a és un interval de la forma $(a - \delta, a + \delta)$. Donat $A \subseteq \mathbb{R}$ i $a \in A$, direm que a és un punt interior de A si hi ha un entorn de a totalment contingut a A.

4.1 Limits

Sigui $A \subseteq \mathbb{R}$ i a un punt interior de A. El **límit** de f en a és igual a c si:

Pert tot
$$\epsilon > 0$$
 existeix $\delta > 0$ (que depén de ϵ) tal que: si $|x - a| < \delta$, llavors $|f(x) - c| < \epsilon$.

Ho escrivim $c = \lim_{x \to a} f(x)$.

Límits de funcions i successions. Són equivalents:

- 1. $c = \lim_{x \to a} f(x)$
- 2. Donada qualsevol successió $a_n \to a$, tenim que $f(a_n) \to c$.

Propietats bàsiques. Suposem $c = \lim_{x \to a} i d = \lim_{x \to a}$. Llavors

- 1. $c + d = \lim_{x \to a} f(x) + g(x)$
- 2. $cd = \lim_{x \to a} f(x)g(x)$
- 3. Si $g(x) \neq 0$ en un entorn de a, llavors $\frac{c}{d} = \lim_{x \to a} \frac{f(x)}{g(x)}$.

Lema del sàndvitx per límits de funcions. Suposem $f(x) \leq g(x) \leq h(x)$ per tot x en un entorn de a i $c = \lim_{x \to a} f(x) = \lim_{x \to a} h(x)$. Llavors $c = \lim_{x \to a} g(x)$.

Punts d'acumulació. Donat $A \subseteq \mathbb{R}$ i $a \in A$, diem que a és un **punt d'acumulació** de A si és límit de punt s de A: $a = \lim a_n$, on els a_n són de A. De forma equivalent, si per tot ϵ hi ha infinits punts x de A tals que $|x - a| < \epsilon$.

4.2 Funcions continues

Càlcul de límits.

Una funció $f:A\to\mathbb{R}$ és **continua** si per tot punt interior $a\in A$ tenim

$$\lim_{x \to a} = f(a), \quad \text{per tot } a \in A.$$

Propietats bàsqiues. Si f i g són continues també ho són f+g, fg. També ho és $g \circ f$ allà on estigui definida.

Si a més $g(x) \neq 0$ per tot x, també ho és f/g.

Discontinuitats evitables.

Límits laterals i continuïtat lateral.

4.3 Teoremes bàsics de funcions continues

Bolzano. Si $f: [a,b] \to \mathbb{R}$ és continua i f(a)f(b) < 0 (és a dir, són no nuls i de signe oposat), llavors existeix $c \in [a,b]$ tal que f(c) = 0.

Valor intermedi. Si $f: [a,b] \to \mathbb{R}$ és continua i d és un nombre entre f(a) i f(b) (pot ser $f(a) \le f(b)$ o $f(a) \ge f(b)$), llavors existeix $c \in [a,b]$ tal que f(c) = d.

Weierstrass. Si $f:[a,b] \to \mathbb{R}$ és continua, llavors f és fitada i assoleix un màxim M i un mínim m a l'interval [a,b]. Encara més, la imatge de l'interval [a,b] és l'interval [m,M].

4.4 Continuïtat uniforme

Diem que $f\colon [a,b]\to \mathbb{R}$ és uniformement continua si per tot $\epsilon>0$ existeix $\delta>0$ tal que

$$|x-y| < \delta \implies |f(x) - f(y)| < \epsilon$$
, per tot $x, y \in A$.

Tota funció uniformement continua és continua, però no recíprocament. [Exemple: f(x)] = 1/x definida en un interval obert (0, a).

El resultat bàsic és: Si $f\colon [a,b]\to \mathbb{R}$ és continua, llavors és uniformement continua.