Neural Similarity Measurement Strategies in Speaker Diarization Task

Nikita Kuzmin

Lomonosov Moscow State University

November 17, 2020

Introduction

Speaker diarization solves "who spoke when" problem. Typical pipeline is presented below:

Metrics

Typical diarization metrics:

$$JER = \frac{1}{N} \sum_{ref} JER_{ref}$$

- TOTAL is the total reference speaker time; that is, the sum of the durations of all reference speaker segments;
- FA is the total system speaker time not attributed to a reference speaker;
- MISS is the total reference speaker time not attributed to a system speaker;
- ERROR is the total reference speaker time attributed to the wrong speaker.

Typical Datasets

- NIST SRE 2000 CALLHOME contains 500 utterances in total, in 6 languages: English, Chinese, Japanese, Arabic, German, and Spanish. The number of speakers in the recordings, ranges from 2 to 7 speakers;
- DIHARD (dev and eval) contains recordings from different domains (child language, clinical, courtroom, etc...);

Input condition	Set	Duration (hours)	# Recordings
single channel	dev	23.81	192
single chamici	eval	22.49	194
multichannel	dev	262.41	105
municianici	eval	31.24	12

 AMI and ICSI (meetings) - contain about 170 hours in total.
Audios are recorded in 16k sample rate, and the average duration is around 40 minutes.

Traditional Approaches

We need to compute similarity matrix $S \in \mathbb{R}^{n \times n}$, $\{S\}_{ij} = sim(e_i, e_j)$, where $e_i, e_j \in \mathbb{R}^d$ - i-th and j-th embeddings respectively; $sim(\cdot, \cdot)$ - similarity function. Examples of sim(x, y):

- Cosine (works well with metric learning);
- PLDA;
- Minkowski.

LSTM based vector-to-sequence scoring

Problem: Cosine, PLDA works in a pair-wise and independent

maner \Rightarrow ignore positional correlation.

Solution: Use LSTM based vector-to-sequence scoring:

Problems of Solution:

- If n is too large? Memory problem;
- 2 LSTM model forgets about previous embeddings;
- Inference stage is too slow.

If n is too large?

Self-Attention based vector-to-sequence scoring

Solution of 2nd LSTM problem

Is something strange on the left picture?

Self-Attention based vector-to-sequence scoring

How self-attention mechanism works in speaker diarization:

Self-Attention based vector-to-sequence scoring

Problem:

Inference stage even slower, than inference with LSTM.

Self-Attention based sequence-to-sequence scoring

Problem: Self-Attention based vector-to-sequence (v2s) scroing beats SotA in DIHARD II challenge, but inference takes a lot of time;

Authors proposed Self-Attention based sequence-to-sequence (s2s) scoring method

Self-Attention based sequence-to-sequence scoring

Problem: Self-Attention based vector-to-sequence (v2s) scroing beats SotA in DIHARD II challenge, but inference takes a lot of time;

Authors proposed Self-Attention based sequence-to-sequence (s2s) scoring method

Embeddings

How to get embeddings x_i ?

From models trained on Speaker Verification task (for example - from ResNet embedder):

	full-length	1.5s * 1	1.5s * N
EER(%)	1.51	6.74	1.98

1.5s * N – case with averaging multiple 1.5s speaker embeddings for each full-length utterance.

Results

Datasets:

- For training embedder model: VoxCeleb1, 2 dev;
- For training scoring models: AMI, ICSI public meeting corpora (+ DIHARD II DEV set);
- For evaluation: DIHARD II DEV and EVAL sets.

Model	+VB	Dev		Eval		Eval + adaptation		Time cost (Eval)
		DER(%)	JER(%)	DER(%)	JER(%)	DER(%)	JER(%)	
LSTM	×	19.65	49.60	20.57	50.25	19.72	46.49	67 min
	\checkmark	19.48	49.21	19.98	49.42	19.26	45.91	-
Att-v2s	×	19.07	47.43	20.15	47.84	18.98	43.20	148 min
	\checkmark	18.76	46.77	19.46	47.01	18.44	42.52	-
Att-s2s	×	19.39	48.42	21.46	48.71	21.45	43.19	24 s
	\checkmark	19.16	47.99	20.78	47.92	20.12	41.73	-
PLDA	×	23.48	57.17	-	-	23.73	56.84	51 s
DIHARD II winner system [27]					18.42	44.58		
DIHARD II official baseline [28]						25.99	59.51	

Results

Thank you for your attention!