Index

Car-Parrinello method 72 ab initio 259, 260, 261, 266, 272-275, central cell correction 306, 322,324, 333 279, 282 charge localization 252 Ab Initio Modelling PROgram. charge state 131, 315, 318-320 see AIMPRO charge transition level 113, 114, 118-125, acceptor 183-185, 188-196 129-132, 140, 144-146, 253 AIMPRO (Ab Initio Modelling chemical potential 4, 9, 214, 220-223, 237 PROgram) 285, 286, 289, 290, 292 co-doping 229, 232-235 alignment 118, 120, 122, 248, 256 coherence time 342 alignment potential 172, 174, 364, 366 compensation 83 aluminium 260, 261, 279, 280, 282 concentration 1-4 amorphous silica 201, 210 configuration coordinate diagram 194, 195 amorphous states 205, 207 constant pressure approach 260-262, anharmonic excitations 259, 278-282 264-266, 279, 281 convergence 116 correlated materials 104, 108 backflow 19, 22, 25, 26, 28, 29 band alignment 34, 219-220 d states 7, 8, 10–13 band edges/band extrema, valence band maximum (VBM)/conduction band dangling bond 129 minimum (CBM) 119, 123, 124 deep defect 305, 306, 312, 319, 320, band gap 79, 80, 82-85, 88-93, 98-108, 324, 335 deep level, -state 183, 189, 195, 196, 115, 307, 313, 318, 319 band gap underestimate 362, 367 207-209 band offsets 33, 48, 49, 118, 128 defect energy levels 33 band structure 79, 80, 82-85, 89-91, 93, defect formation energies 54, 86, 92, 168-171, 178, 359, 360, 371 214, 224 band-gap problem 6-13, 112, 120, 121 defect localized state 193 defect 79, 81, 82-89, 91, 92, 201, 207-209 barrier (Energy-) 194, 195, 197 benzene 69 density functional 183, 185 Bethe-Salpeter equation (BSE) 353, 362, 372 density functional theory (DFT) 17, 33, 34, BiFeO₃ 83, 92, 93 37-41, 48-52, 55-57, 79, 97-100, 155, bipolar doping 213, 214 259, 281, 301, 305-307, 329, 330, 332, bloch (wave) function 306, 312, 313, 321, 330 341, 346 density of states (DOS) 310, 312, 319, 325 diamond 342, 343, 345, 351, 353-356 calculation 79, 80, 84, 85, 88, 89, 91-93 dielectric constant 249 carbon (diamond) 23, 24 diffusion 1, 4, 12, 131

Advanced Calculations for Defects in Materials: Electronic Structure Methods, First Edition.

Edited by Audrius Alkauskas, Peter Deák, Jörg Neugebauer, Alfredo Pasquarello, and Chris G. Van de Walle.

© 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

•	Diffusion Monte Carlo (DMC) 17	gap level 141, 143–148, 150
	Dirac's equation 308, 309 disordered tetrahedral networks 201	Generalized Koopman's Theorem 371 generalized-gradient approximation
	divacancy 342, 344, 345, 346, 353-356	(GGA) 17, 18
	doping asymmetry 213	graphitic systems 105
	doping limit rule 214, 218, 219	Green's Function 2, 305, 306, 311–317,
	doping 83	320, 324, 327, 328, 330, 333, 334, 359,
	Dyson's equation 311, 312, 314, 324, 326, 327, 332	360, 365–368, 374 group IV semiconductors 149
	320, 327, 332	group theory 342, 344, 353, 354
	e	GW 12, 24, 128, 141, 143, 146, 152, 165,
	effective mass approximation (EMA) 306,	168, 169–171, 178
	319–324, 330, 336, 363	GW appoximation 34, 36–38, 40,
	EL2 317, 319	61–64, 202, 204, 362
	electrically detected magnetic resonance (EDMR) 328	GW method 352
	electron nuclear double resonance	h
	(ENDOR) 319, 322, 324–326	Hafnium oxide 121 Hartree-Fock method 184
	electron paramagnetic resonance (EPR) 178, 320, 322, 333, 334	H-assisted doping 223–224
	electronic excitations 266, 269, 270	heat capacity 279, 280
	electronic properties 33	HfO ₂ 83, 91, 92
	electronic structure 83, 107, 201, 202,	hole-state potential 184, 188–190
	204–206, 209	HSE (Heyd, Scuseria, and Ernzerhof)
	electrostatic interactions 241, 247, 255 energy levels of neutral atom 227	hybrid functional 97–108, 149, 156, 158, 159, 160, 162
	entropy of defect formation 281, 282	hybrid 362, 367–374
	exchange-correlation 37, 38, 52	hybrid density-functional 216
	exchange-correlation functional 259–261,	hybrid functional(s) 9-11, 13, 18, 29, 80,
	279	112, 114, 125, 133, 134, 142, 144–146,
	excitation energy 140	148, 165, 167, 178, 184, 185, 187,
	exciton binding energy 352–355 excitonic 373, 375	189–193, 341, 350, 352, 354 hybrid scheme 215
	expansion coefficient 279, 280	hyperfine interaction 342
	f	i
	filter diagonalisation 292, 299	imaginary time step 20, 28
	finite size corrections 172, 173, 176, 178	impurities 155, 161, 162
	finite size effects 29, 363, 366	impurity-band 232, 234, 236
	fixed-node approximation 19, 22, 25, 26	interface properties 33–57
	formation energies (defect formation	inverse participation ratio 76 ionization potential 69–70
	energies) 2–6, 8–12, 113, 122, 249, 259, 261, 279, 282	ionization potential 69–70
	free energy 259–270, 272–279, 281, 282	j
	free energy Born-Oppenheimer	Jahn-Teller distortion 355
	approximation 266–269	Janak's theorem 185, 186
	functional 359, 362, 368–374	Jastrow factor 19
	g	k
	GaAs 196, 313, 315	Kohn-Luttinger oscillation 328, 336
	GaN 195–197	Kohn-Sham formalism of density functional
	gap correction to levels 143	theory (KSDFT) 285, 286, 288,
	gap correction to total energy 143 gap error 139–141, 143–146, 151, 152	292, 301 Koopman's theorem 187, 216
	gap (1101 137-141, 143-140, 131, 132	Koopman's dicorent 10/, 210

Koopman's Condition 185-188, 191, 193, 196 periodic boundary conditions 97 KSDFT (Kohn-Sham-formalism of density perturbed host state 194 functional theory) 285, 292, 299, 301 phase stability 105, 106 photoluminescence 342 ı point defects 17, 18, 72, 155, 156, 158, 159, large-scale calculations 299, 301 161, 259-261, 277, 278 lattice relaxation 306, 313, 314, 317, polaron 183, 188-190 319, 326, 327 potential alignment 248, 256 LDA+U 6-9, 165-180 projector-augmented wave (PAW) 34 linear elasticity theory 328-330, 332 pseudopotential 19, 22-26, 28, 313-315, linear muffin-tin orbital (LMTO) 313-315, 320, 322-327 pseudopotential locality approximation 28 323, 324 local density approximation (LDA) 155, 165, 307, 313, 361 local field effects 204, 209 quantum bit 342, 356 local moment counter charge 366 quantum communication 342 local spin density approximation (LSDA) Quantum Monte Carlo (QMC) 18, 19 17, 18, 23, 25, 27, 305, 307, 308, 310, quantum-espresso 68 quasiharmonic approximation 271, 273 325, 330 quasiparticle 62, 362, 367, 370, localization (electron- or hole-) 194, 197 localized states 121 372, 375 quasiparticle corrections 34 magnesium oxide 23, 25 magnetic field 306, 308 Random Phase Approximation (RPA) 63 magnetic ordering 107 rare earths 106 magnetization density 307, 309, 310, relative energy of different 312, 314-316, 318, 320-322, 325, configurations 144 331, 335 relativistic 308, 309 Makov and Payne correction 216, 242 resonances 147, 148, 152 Makov Payne quadrupole correction 364 many-body perturbation theory (MBPT) 34-38, 61 sawtooth 249 Mg-acceptor 195 Schottky defect 23, 25 modified pseudopotentials 12, 13 scissor operator 142, 143 molecular doping 220, 222-223, 237 screened exchange 100, 103, 104, 134, molecular dynamics 272, 274, 277 369, 371 molecular dynamic (MD) silmulation screened hybrids 100, 103, 104 333, 334 screening 243 Mott insulators 106 self-interaction 184, 186 self-interaction error 361, 362, 370 self-interstitial 18, 23, 25 neutralizing background 246 self-trapped polaron 370 neutron transmutation 332, 334 semiconductor devices (or electronic nitrogen-vacancy center (NV center) devices) 131 342, 351 shallow defect 363, 366, 367, 374 shallow donors 306, 322, 324, 333, 334, 336 optical gaps 100-102 shallow level, -state 183, 189, 195, 196 optimal polarizability basis 61-68 SiC 306, 313, 319, 320, 322, 332-336 oxidation 131 silica 70, 201, 202, 210 oxygen vacancy 165, 173, 174, silicon (Si) 121, 130, 306, 310, 313, 179, 180 322, 325, 328, 331-336

silicon carbide 342, 344, 353 silicon nitride (vitreous) 72-77 silicon oxide/silicon dioxide (SiO2) 120, 131 silicon(bulk) 18, 25, 26, 28, 70, 105, 106 solid state calculations 97 Space-Time method (STM) 63 spin-orbit interaction 309 Stokes shift 346, 347, 353, 355 supercell 183, 184, 189 supercell correction 246 supercell geometry 2, 5 supercell-size convergence 3 surfactant 220, 224-226, 237 symmetry and occupation of defect levels 217

t

thermodynamic integration 272–277 thermodynamics 262, 266, 271–277 time-dependent density functional theory (TD-DFT) 346–351 TiO₂ 10, 11 transition energy level 213–215, 229 transition levels 3–5, 7–12

и

universal approaches 232 UP-TILD method 275, 276

ν

vacancy 4, 8–11, 23–25, 251 vacancy concentration 281, 282 vertex corrections 51–54 voronoi cell/tesselation 314, 316–318, 324

и

Wannier's functions 64–67 wave function 250, 252 wide band gap oxides 92, 93

Z

zero-variance extrapolation 29 zinc oxide (ZnO) 4, 6–12, 79, 83–90, 124, 165, 167–171, 173, 176, 177, 183–185, 188–191, 193–196, 213–214, 220–237 ZnTe 196