

Direcção Pedagógica

Departamento de Admissão à Universidade (DAU)

Disciplina:FISICA		Nº Questões:	55
Duração:	120 minutos	Alternativas por questão:	5
Ano:	2016		

INSTRUÇÕES

- 1. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim , se a resposta escolhida for A
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica.

10.	Um objecto de massa 5,0kg movimentando-se a uma velocidade de módulo 10m/s, choca-se frontalmente com um segundo objecto						
	de massa 20,0kg, parado. O primeiro objecto, após o choque, recua com uma velocidade de módulo igual a 2,0m/s. Desprezando-						
	se o atrito, determine o módulo da velocidade do segundo, após o choque:						
11	A. 2,0 m/s B. 3,0 m/s C. 4,0 m/s D. 6,0 m/s E. 8,0 m/s						
11.	Uma partícula de massa m_1 que desliza numa superfície sem atrito com a velocidade v_1 , colide com outra partícula em repouso de massa m_2 . Após a colisão, as duas partículas deslizam juntas com uma velocidade, três (3) vezes menor que v_1 . A relação entre as						
	massas m ₁ e m ₂ das duas partículas é:						
	A. $m_2 = 2m_1$ B. $m_1 = 2m_2$ C. $m_2 = 3m_1$ D. $m_1 = 3m_2$ E. $m_2 = 4m_1$						
12.	Um corpo de massa 10 kg é lançado com velocidade inicial 10 m/s, e move-se ao longo de uma superfície áspera até se imobilizar						
	totalmente. Qual é o trabalho realizado pela força de atrito para imobilizar esse corpo? A. -500 J B. 300 J C. 100 J D. -100 J E. 1 J						
13.	Uma carga de 2×10^{-7} C encontra-se isolada, no vácuo, distante 6,0 cm de um ponto P. Qual a proposição correcta?						
	A. O vector campo eléctrico no ponto P está voltado para a carga						
	B. O campo eléctrico no ponto P é nulo porque não há nenhuma carga eléctrica em P						
	C. O potencial eléctrico no ponto P é positivo e vale 3.10 ⁴ V.						
	 D. O potencial eléctrico no ponto P é negativo e vale -5.10⁴ V E. O potencial eléctrico no ponto P é positivo e vale 3.10⁴ V 						
14.							
	(x a se ² x 2 (a ²) respectivemente nos pontos M a N. O compo aláctrico						
	resultante no ponto P, em N/C, tem intensidade de:						
	A. 3.10^6 B. $3,6.10^6$ C. 4.10^6						
	D. 4,5.10 ⁶ E. 5,4.10 ⁶						
15.	Uma carga eléctrica puntiforme $\mathbf{Q} = 4\mu\mathbf{C}$ vai de um ponto X a um ponto Y situados numa região de campo eléctrico onde o						
	potencial $V_x = 800V$ e $V_v = 1200V$. Em Joules, o módulo do trabalho realizado pela força eléctrica, sobre a carga Q, no percurso						
	indicado é:						
	A. $1,6 \cdot 10^{-3}$ B. $1,6 \cdot 10^{3}$ C. $16 \cdot 10^{-3}$ D. $2,6 \cdot 10^{-3}$ E. $4,6 \cdot 10^{-3}$ Duas cargas pontuais $+q = -q$ são mantidas, em equilíbrio, nos vértices do rectângulo de lados $a=3$ m e						
16.	Duas cargas pontuais +q e –q são mantidas, em equilíbrio, nos vértices do rectângulo de lados a=3 m e b = 4 m, conforme a figura. Nas condições indicadas, pode-se afirmar que:						
	A. $V_A = V_B$ B. $V_A = 2V_B$ C. $V_A > V_B$ D. $V_A < V_B$ E. $V_B = 2V_A$						
	$\mathbf{A.} A B \mathbf{B.} A = B \mathbf{C.} A B \mathbf{D.} A B \mathbf{E.} B = A \mathbf{E.} E.$						
	+q ²						
17.	No circuito representado na figura, a razão entre as intensidades de corrente eléctrica I_2 e I_3 nos						
	resistores R_2 e R_3 , vale:						
	A. 0,25 B. 0,5 C. 1 D. 4 E. 5 $R_3 = 40\Omega$ I_3 $R_4 = 20\Omega$						
18.	Uma partícula carregada negativamente penetra com velocidade $v = 2 \cdot 10^3$ m/s no ponto X de						
	um dampo magnético uniforme, descrevendo a trajectória semicircular XY da figura. Sendo						
	o módulo de sua carga eléctrica igual a 5 μC/e/sua massa igual a 10 g/qual é, em Teslas, a intensidade do vector indução magnética que fez a partícula descrever a trajectoria indicada?						
	A. $4 \cdot 10^8$ B. $2 \cdot 10^5$ C. $4 \cdot 10^4$ D. $2 \cdot 10^3$ E. $2 \cdot 10^2$						
19.	Um condutor recto de 5m de comprimento é percorrido por uma corrente de 20 A é está mergulhado num campo magnético						
	constante de intensidade $0, 6\cdot 10^4 \text{T}$, que faz um ângulo de 30° com o condutor. A força magnética que actua sobre o condutor é de:						
20.	Misturam-se 8 g de água a temperatura de 100° C com 12 g de água a temperatura de 40°C. Qual será, em °C, a temperatura final						
	da mistura, se o calor específico da água é 1 cal/g°C? A. 42 B. 48 C. 60 D. 64 E. 70						
21.							
	água aumenta de 40°C para 50°C em 2 minutos, sendo o calor específico da água 1 cal/g°C, pode se concluir que a massa da água						
	aquecida, em gramas, é						
	A. 500 B. 600 C. 700 D. 800 E. 900						
22.	O esquema apresenta alguns valores de frequências e os comprimentos de onda da região visível do						
	espectro eletromagnético. O quociente y/x é igual a:						
	A. 5/4 B. 6/7 C. 4/3 D. 7/6 E. 3/2 5,6 Verde x						
	5,8 5,0 Alaranjado 6,0						
	4,8 Vermelho y						
23.	A temperatura na superfície de uma certa estrela é de cerca de 6000K, a constante de Wien é aproximada a 3.10 ⁻³ m.K. Qual é o						
43.	comprimento de onda máximo da radiação emitida por essa estrela?						
	A. 50 μm B. 20 μm C. 5 μm D. 0,5 μm E. 0,8 μm						

24.	Complete a frase: As ondas electromagnéticas com frequência acima da dos raios X recebem o nome de: A. ondas longas. B. micro-ondas. C. raios gama. D. raios catódicos. E. radiação visível
25.	O gráfico de figure mostre e intensidade de rediseño tármico de
23.	cinco corpos negros 1,2,3, 4 e 5, em função do comprimento de onda λ.
	Assim, pode-se dizer que o corpo mais quente tem a temperatura:
	T ₃ 400
	$\frac{5}{3}$ 400 $\left[\frac{T_3}{T_3} \right]$
	A. T_1 B. T_2 C. T_3 D. T_4 E. T_5
	$\mathbf{D.} \ \mathbf{T_4} \qquad \qquad \mathbf{E.} \ \mathbf{T_5}$
	λ [nm]
26.	Para duas estrelas A e B, a razão λ_B/λ_A entre os seus comprimentos de onda máximos é $0,2$. Pode-se afirmar deste modo , que:
	Tata data solicita in 2, a razao in 3, a raz
	A. $T_B = T_A$ B. $T_B = 2T_A$ C. $T_B = 3T_A$ D. $T_B = 4T_A$ E. $T_B = 5T_A$
27.	Dois feixes de luz monocromáticos 1 e 2, têm comprimentos de onda λ_1 e λ_2 , respectivamente. Sendo $\lambda_1 = \lambda_2/4\lambda_1$, a relação das
	energias E ₁ e E ₂ dos fotões dos feixes &
	energias E_1 e E_2 dos fotões dos dois feixes E_2 = 0.50 E_1 E_2 = E_2 = E_2 E_3 E_4 E_5 E_4 = E_2 = E_4 E_5 E_5 E_5 E_5 E_4 E_5
28.	A velocidade das ondas electromagnéticas no vácuo é de 3. 10 ⁸ m/s. Calcule, em Hz, qual a frequência dos raios X, sabendo que
	sua onda possui comprimento de 0.1 Å . (c = 300000km/s)
20	A. 1.10 ¹⁹ B. 2.10 ¹⁹ C. 3.10 ¹⁹ D. 4.10 ¹⁹ E. 5.10 ¹⁹ Uma superfície de sódio é iluminada por uma radiação de comprimento de onda 300nm. A função trabalho do sódio é 2,46 eV.
29.	
	Qual é, em eV, a energia cinética dos fotoelectrões emitidos? $(h = 4,14.10^{-15} \text{eV.s})$
	A. 1,68 B. 1,78 C. 1,88 D. 1,98 E. 2,08 A função trabalho do zinco é de 4,3 eV. Qual é, em Hz, o valor da frequência mínima da radiação incidente, para que ocorra o
30.	
	fotoefeito no zinco? $(h = 4,14.10^{-15} \text{eV.s})$
	A. $4,5.10^{15}$ B. $3,01.10^{15}$ C. $1,04.10^{15}$ D. $0,92.10^{15}$ E. $0,52.10^{15}$
31.	O efeito fotoelétrico consiste na emissão de
	A. neutrões quando uma onda electromagnética incide em certas superfícies metálicas.
	B. neutrões quando uma onda mecânica incide em certas superfícies metálicas.
	C. electrões quando uma onda electromagnética incide em certas superfícies metálicas.
	 C. electrões quando uma onda electromagnética incide em certas superfícies metálicas. D. electrões quando uma onda mecânica incide em certas superfícies metálicas
	D. electrões quando uma onda mecânica incide em certas superfícies metálicas
32.	 D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas
32.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das
32.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda?
32.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V
32.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda?
	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V
32.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s)
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31
	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10¹⁴Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4,31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E ₃ → E ₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão C. Desintegração gama
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Po→ 206Pb + 4 He + 5,305MeV Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3μg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s)
33.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama P. Fusão R. Fissão Numa reacção nuclear há uma perda de massa de 3µg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³
33. 34. 35.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama P. Fusão R. Fissão Numa reacção nuclear há uma perda de massa de 3µg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³
33. 34. 35.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4,31 Qual é , em 10¹⁴Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Po→ 206Pb + ⁴ He + 5,305MeV Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3µg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10¹0 B. 27·10² C. 27·10⁵ D. 27·10⁴ E. 27·10³ Na reacção ²³⁵ ⁄ ₂₃ ⁄ ₄ + ¹ ₀ → ⁹⁵ ⁄ ₄ ⁄ ₂ ⁄ ₂ ⁄ ₃ + ¹³⁹ ⁄ ₅ ⁄ ₇ C + a(¹ ₀ n) + b(⁰ ⁄ ₁ e) + Q, os coeficientes a e b , valem respectivamente:
33. 34. 35.	D. electrões quando uma onda mecânica încide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3μg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção ²³⁵ / ₂₂ A+ ¹ ₀ n→ ²⁵ / ₄₂ B+ ¹³⁰ / ₅₇ C + a(¹ ₀ n) + b(⁰ ₁ e) + Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7
33. 34. 35.	D. electrões quando uma onda mecânica încide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Po → 206Pb + 4 He + 5,305MeV Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama E. Fissão Numa reacção nuclear há uma perda de massa de 3µg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção 235A+1₀n→455B+139C+a(₀n)+b(₀n)+b(₀n)+Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7 A energia de ligação de um átomo, sendo o defeito de massa Δm=0,020 u.m.a, em Mev, é aproximadamente de: (1 u.m.a = 931)
33. 34. 35.	D. electrões quando uma onda mecânica încide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é , em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3μg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção ²³⁵ / ₂₂ A+ ¹ ₀ n→ ²⁵ / ₄₂ B+ ¹³⁰ / ₅₇ C + a(¹ ₀ n) + b(⁰ ₁ e) + Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7
33. 34. 35.	D. electrões quando uma onda mecânica încide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4.31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E3 → E2)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 Dada a seguinte reacção de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3μg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção ²³⁵ / ₉₂ A+ ₀ n→ ⁴² / ₄₂ B+ ¹³⁰ / ₅₇ C + a(₀ n) + b(₋₁ o e) + Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7 A energia de ligação de um átomo, sendo o defeito de massa Δm=0,020 u.m.a, em Mev, é aproximadamente de: (1 u.m.a = 931 Mev)
33. 34. 35. 37.	D. electrões quando uma onda mecânica încide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura corcesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4,31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 D. 1,6 E. 0,6 A. Desintegração de desintegração: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3μg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ³ C. 2·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção ²³⁵ / ₂₄ A- ¹ ₀ π→ ³² / ₄₂ B+ ⁵⁷ / ₅₇ C + a(¹ ₀ π) + b(⁰ ₁ e) + Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7 A energia de ligação de um átomo, sendo o defeito de massa Δm=0,020 u.m.a, em Mev, é aproximadamente de: (1 u.m.a = 931 Mev) A. 14,6 B. 15,6 C. 16,6 D. 17,6 E. 18,6 A figura representa a actividade de da masosta radioativa em função do tempo, em dias, é necessário para que a actividade da amosta radioativa em função do tempo, Quanto tempo, em dias, é necessário para que a actividade da amosta radioativa em função do tempo, Quanto tempo, em dias, é necessário para que a actividade da amosta radioativa em função do tempo. Quanto tempo, em dias, é necessário para que a actividade da amosta radioativa em função do tempo. Quanto tempo, em dias, é necessário para que a actividade da amosta radioativa em função do tempo. Quanto tempo, em dias, é necessário para que a catividade da massa fugue reduzida a 6.25 Bq?
33. 34. 35. 37.	D. electrões quando uma onda mecânica incide em certas superfícies metálicas E. protões quando uma onda electromagnética incide em certas superfícies metálicas O diagrama ao lado mostra os níveis de energia (n) de um electrão em certo átomo. A qual das transições mostradas na figura coreesponde menor comprimento de onda? A. I B. II C. III D. IV E. V Qual é, em eV, a energia de um fotão de comprimento de onda de 700 nm? emissão de (h = 4,14.10 ⁻¹⁵ eV.s), (c = 300000km/s) A. 0,89 B. 1,77 C. 2,11 D. 3,41 E. 4,31 Qual é, em 10 ¹⁴ Hz, a frequência da radiação correspondente à transição indicada na figura (E₃ → E₂)? (h = 4,14.10 ⁻¹⁵ eV.s) A. 4,6 B. 3,6 C. 2,6 D. 1,6 E. 0,6 B. D. 1,6 E. 0,6 A. Desintegração de desintegração: Podemos afirmar que a reacção apresentada é correspondente a: A. Desintegração Alfa B. Desintegração Beta C. Desintegração gama D. Fusão D. Fusão E. Fissão Numa reacção nuclear há uma perda de massa de 3µg. Qual é, em Joules, a quantidade de energia libertada neste processo? (c = 300000km/s) A. 27·10 ¹⁰ B. 27·10 ⁷ C. 27·10 ⁵ D. 27·10 ⁴ E. 27·10 ³ Na reacção 2 ²³⁵ / ₉₂ A+₀n→2 ⁹⁵ / ₉₂ B+3 ⁵⁷ / ₁₅ C + a(₀n) + b(₀-0 e) + Q, os coeficientes a e b, valem respectivamente: A. 7 e 2 B. 7 e 3 C. 2 e 3 D. 3 e 2 E. 2 e 7 A energia de ligação de um átomo, sendo o defeito de massa Am=0,020 u.m.a, em Mev, é aproximadamente de: (1 u.m.a = 931 Mev) A. 14,6 B. 15,6 C. 16,6 D. 17,6 E. 18,6 A figura representa a actividade de uma amostra radioativa em função do tempo. Quanto tempo, em

40.	É preparada uma amostra de bisr	nuto radioativo que	tem uma meia-vida	de 5 dias. Após 20 dias,	a percentagem de bismuto que
	ainda resta, na amostra, é de:	12.5.0/	C 25.0/	D 50.0/	TE 75.0/
		·	C. 25 %	D. 50 %	E. 75 %
41.	Na reacção de fissão ${}^{235}_{92}X + {}^{1}_{0}n -$			a 'x' representa um:	
40			C. Electrão	D. Trítio	E. Deutério
42.	A água de massa específica ρ =	= 10 ³ kg/m ³ , escoa a	través de um tubo ho	rizontal representado na	Λ
	figura. No ponto 1, a pressão ma	anométrica vale 4kF	a e a velocidade é de	2 m/s.Qual é, em KPa a	
	pressão manométrica no ponto 2	2, onde a velocidade	e é de 3m/s?		V
	A 4 B 3	5 C 2.5	5 D 15	E 10	
43.	A. 4 B. 3,4 Uma torneira de água enche um	tanque, cuja capacio	dade é 12000 litros en	n 40min. Qual é, em dm ³	⁸ /s, a vazão da água na torneira?
	A. 30 B. Por um tubo de 10 cm de diâmetr	20	C. 10	D. 5	E. 2
44.	Por um tubo de 10 cm de diâmetr A. $0.25/\pi$ B			velocidade de escoamento ${\bf D.}~~10/\pi$	o da água, em m/s , é de: \mathbf{E} . $100/\pi$
15	Um gás perfeito contido num rec	•			
45.	pressão passou para 2000 Pa. Ass			a, somea ama dansforma	ição isocorica. For essa via sua
	A. 400K	3. 320K	C. 240K	D. 160K	E. 100K
46.	Ao receber uma quantidade de ca	-	_		energia interna do sistema antes
	de receber calor era $U = 100J$, q	ual será , em Joules	, esta energia após rec	cebimento?	
	A. 50 J	3. 100 I	C. 138 I	D. 273 J	E. 546 J
47.		eal executa o ciclo H	$I \rightarrow J \rightarrow L \rightarrow M \rightarrow H$, rep	resentado na figura. Qua	al P(10 ⁵ Pa) †
	é, em Joules, o trabalho realizad	lo pelo gás nesse cio	102		2 + H J
	A. 1.10^2 B. 2.10^2	C. 3.10^2	D. 4.10^2	E. 5.10^2	I i i i i i i i i i i i i i i i i i i i
					3 5 V(l)
48.	Numa transformação isobárica, u interna do gás nessa transformaçã		oalho de 350 J, quand	do recebe do meio exteri	no 750 J. A variação de energia
	9	. 250	C. 300	D. 350	E. 400
	I .				
49.	Um MHS é descrito pela função	$x = 7\cos(4\pi cc \text{ (SI)}.$	Qual é a amplitude e	o período do moviment	0?
49.	A. 7 e 1 B	. π e 4π	C. 7 e 0.5	D. $2\pi e \pi$	E. 2 e 1
49. 50.	A. 7 e 1 B Uma partícula descreve movimen	. π e 4π to harmónico simpl	C. 7 e 0,5 es de período 4,0 s e a	D. $2\pi e \pi$	E. 2 e 1
	A. 7 e 1 B Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm	. π e 4π to harmónico simpl n atinge-se no instar	C. 7 e 0,5 es de período 4,0 s e ante:	D. $2\pi e \pi$ amplitude 10 cm. Em t=0	E. 2 e 1 Os a partícula passa pela origem
50.	A. 7 e 1 Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. 1/2 s B	 π e 4π to harmónico simple a atinge-se no instar 1/3 s 	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s
50.	A. 7 e 1 Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. 1/2 s Uma partícula descreve movimen velocidade deste movimento no in	 π e 4π to harmónico simple a atinge-se no instar 1/3 s to harmónico simple atinge harmónico simple 	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t)$ (SI). Qua	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s
50.	A. 7 e 1 Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. 1/2 s B Uma partícula descreve movimen velocidade deste movimento no in A. 3 π^2 B.	π e 4π to harmónico simple n atinge-se no instar 1/3 s to harmónico simple nstante t=1 s? 3 π	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t)$ (SI). Qua D. π^2	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ ²
50.	A. $7 e 1$ B Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloce	to harmónico simple a tinge-se no instante. 1/3 s to harmónico simple a tro harmónico simp	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em o	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ ²
50.	A. $7 e 1$ B Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu	to harmónico simple a tinge-se no instart. 1/3 s to harmónico simple a tinge to com massa 0,25 leal é, em unidades S	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola II, a constante da mol	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t) \text{ (SI). Quate}$ D. π^2 a. Quando colocado em ca?	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ ² oscilação, observa-se que repete
50.	A. $7 e 1$ B Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco o seu movimento a cada 2,5 s. Qu A. $0.2\pi^2$ B. Um ponto material realiza um	to harmónico simple a tinge-se no instante. $1/3$ s ato harmónico simple entre tente tent	es de período 4,0 s e ante: C. $1/4$ s les segundo equação C. -3π kg, ligado a uma mola I, a constante da mol C. $0, 6\pi^2$	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0,16\pi^2$	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ² oscilação, observa-se que repete E. 0,32π²
50. 51.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Quanto A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da ample	$π$ e $4π$ Ito harmónico simple a atinge-se no instante. $1/3$ s Ito harmónico simple a stante t=1 s? $3π$ To com massa 0.25 a la é, em unidades S $0.4π^2$ MHS de acordo co itude e do período?	C. $7 e 0.5$ es de período $4.0 s e s$ ente: C. $1/4 s$ les segundo equação C. -3π kg, ligado a uma mola L, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t)$ (SI). Qua D. π^2 a. Quando colocado em α a? D. $0,16\pi^2$ são, respectivamente, er	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ² oscilação, observa-se que repete E. 0,32π²
50. 51.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0.2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia A. $9 e 6$	to harmónico simple a atinge-se no instante. $1/3$ s atto harmónico simple a tro harmónico simple a stante $t=1$ s? 3π at co com massa $0,25$ and 6 , em unidades S $0,4\pi^2$ MHS de acordo co atiude e do período? B. 2π e 2	C. $7 e 0.5$ es de período $4.0 s e s$ ente: C. $1/4 s$ les segundo equação C. -3π kg, ligado a uma mola L, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0,16\pi^2$	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ² oscilação, observa-se que repete E. 0,32π² n v(ms) 3π 3π 3π
50. 51.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Quanto A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da ample	$π$ e $4π$ Ito harmónico simple a atinge-se no instante. $1/3$ s Ito harmónico simple a stante t=1 s? $3π$ To com massa 0.25 a la é, em unidades S $0.4π^2$ MHS de acordo co itude e do período?	C. $7 e 0.5$ es de período $4.0 s e s$ ente: C. $1/4 s$ les segundo equação C. -3π kg, ligado a uma mola L, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t)$ (SI). Qua D. π^2 a. Quando colocado em α a? D. $0,16\pi^2$ são, respectivamente, er	E. $2 e 1$ Os a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ oscilação, observa-se que repete E. $0.32\pi^2$ n $v(m/s)$
50. 51.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0.2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia A. $9 e 6$	to harmónico simple a atinge-se no instante. $1/3$ s atto harmónico simple a tro harmónico simple a stante $t=1$ s? 3π at co com massa $0,25$ and 6 , em unidades S $0,4\pi^2$ MHS de acordo co atiude e do período? B. 2π e 2	C. $7 e 0.5$ es de período $4.0 s e s$ ente: C. $1/4 s$ les segundo equação C. -3π kg, ligado a uma mola L, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t)$ (SI). Qua D. π^2 a. Quando colocado em α a? D. $0,16\pi^2$ são, respectivamente, er	E. 2 e 1 O s a partícula passa pela origem E. 1/6 s al é, em m/s, o valor da Eπ² oscilação, observa-se que repete E. 0,32π² n v(ms) 3π 3π 3π
50. 51.	A. $7 e 1$ B Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0.2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia. A. $9 e 6$ D. $2\pi e 2\pi$	to harmónico simple a tinge-se no instante. $1/3$ s atto harmónico simple instante $t=1$ s? 3π to com massa 0.25 la lé, em unidades S $0.4\pi^2$ MHS de acordo contude e do período? B. 2π e 2 E. π e 2	es de período 4,0 s e ante: C. $1/4$ s les segundo equação C. -3π kg, ligado a uma mola I, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er	E. $2 e 1$ O s a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ m $v(ms)$ $\frac{1}{3\pi}$ \frac
50. 51. 52.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3\pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia. A. $9 e 6$ D. $2\pi e 2\pi$ Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das	to harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem attante t=1 s? 3π atto com massa 0,25 mal é, em unidades S $0,4\pi^2$ MHS de acordo control de de do período? B. 2π e 2 E. π e 2 erticalmente de acordo oscilações?	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 \text{ e } 2$	E. $2 e 1$ Os a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ oscilação, observa-se que repete E. $0.32\pi^2$ m $v(ms)$ $\frac{1}{3\pi}$
50. 51. 52.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3 \pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0.2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplio A. $9 e 6$ D. $2\pi e 2\pi$ Uma pêndulo de mola oscila ve	to harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem attante t=1 s? 3π atto com massa 0,25 mal é, em unidades S $0,4\pi^2$ MHS de acordo control de de do período? B. 2π e 2 E. π e 2 erticalmente de acordo oscilações?	es de período 4,0 s e ante: C. $1/4$ s les segundo equação C. -3π kg, ligado a uma mola I, a constante da mol C. $0, 6\pi^2$ om o gráfico. Quais	D. $2\pi e \pi$ amplitude 10 cm. Em t=0 D. $1/5 s$ $x(t) = 3sen(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er	E. $2 e 1$ O s a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ m $v(ms)$ $\frac{1}{3\pi}$ \frac
50. 51. 52.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3\pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia. A. $9 e 6$ D. $2\pi e 2\pi$ Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das	to harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem attante t=1 s? 3π atto com massa 0,25 mal é, em unidades S $0,4\pi^2$ MHS de acordo control de de do período? B. 2π e 2 E. π e 2 erticalmente de acordo oscilações?	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 \text{ e } 2$	E. $2 e 1$ O s a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ n $v(ms)$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$
50. 51. 52.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3\pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia. A. $9 e 6$ D. $2\pi e 2\pi$ Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das	to harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem attante t=1 s? 3π atto com massa 0,25 mal é, em unidades S $0,4\pi^2$ MHS de acordo control de de do período? B. 2π e 2 E. π e 2 erticalmente de acordo oscilações?	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 \text{ e } 2$	E. $2 e 1$ O s a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ n $v(ms)$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$
50. 51. 52.	A. $7 e 1$ Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. $1/2 s$ B Uma partícula descreve movimen velocidade deste movimento no in A. $3\pi^2$ B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. $0,2\pi^2$ B. Um ponto material realiza um unidades SI, os valores da amplia. A. $9 e 6$ D. $2\pi e 2\pi$ Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das	to harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem atinge-se no instante. $1/3$ s atto harmónico simplem attante t=1 s? 3π atto com massa 0,25 mal é, em unidades S $0,4\pi^2$ MHS de acordo control de de do período? B. 2π e 2 E. π e 2 erticalmente de acordo oscilações?	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais	amplitude 10 cm. Em t=0 D. $1/5 \text{ s}$ $x(t) = 3\text{sen}(\pi t) \text{ (SI). Qua}$ D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 \text{ e } 2$	E. $2 e 1$ O s a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ n $v(ms)$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$ $\frac{3\pi}{6}$
50. 51. 52. 53.	A. 7 e 1 Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. 1/2 s Uma partícula descreve movimen velocidade deste movimento no in A. 3 π² B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. 0,2π² B. Um ponto material realiza um unidades SI, os valores da amplia. A. 9 e 6 D. 2π e 2π Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das A. π B. 2π	to harmónico simple a atinge-se no instant. $1/3$ s atto harmónico simple instante $t=1$ s? 3π co com massa $0,25$ hal é, em unidades S $0,4\pi^2$ MHS de acordo co itude e do período? B. 2π e 2 E. π e 2 erticalmente de acordo co oscilações? C. 3π	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais do com o gráfico rep D. 4π	amplitude 10 cm. Em t=0 D. $1/5$ s $x(t) = 3sen(\pi t)$ (SI). Qua D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 e 2$ Dresentado na figura E. 5π	E. $2 e 1$ Os a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ n $v(ms)$ $\frac{1}{3\pi}$ 1
50. 51. 52.	A. 7 e 1 Uma partícula descreve movimen para cima, o desvio igual a 5,0 cm A. 1/2 s Uma partícula descreve movimen velocidade deste movimento no in A. 3 π² B. Um oscilador consiste de um bloco seu movimento a cada 2,5 s. Qu A. 0,2π² B. Um ponto material realiza um unidades SI, os valores da amplio A. 9 e 6 D. 2π e 2π Uma pêndulo de mola oscila ve Qual é, em rad/s, a pulsação das A. π B. 2π	to harmónico simple a tinge-se no instant. 1/3 s ato harmónico simple instante t=1 s? 3 π to com massa 0,25 la lé, em unidades S 0,4π² MHS de acordo co itude e do período? B. 2π e 2 E. π e 2 erticalmente de acordo co	C. 7 e 0,5 es de período 4,0 s e ante: C. 1/4 s les segundo equação C3 π kg, ligado a uma mola I, a constante da mol C. 0, 6π² om o gráfico. Quais do com o gráfico rep D. 4π	amplitude 10 cm. Em t=0 D. $1/5$ s $x(t) = 3sen(\pi t)$ (SI). Qua D. π^2 a. Quando colocado em ca? D. $0.16\pi^2$ são, respectivamente, er c. $2 e 2$ Dresentado na figura E. 5π	E. $2 e 1$ Os a partícula passa pela origem E. $1/6 s$ al é, em m/s, o valor da E. $-\pi^2$ Oscilação, observa-se que repete E. $0.32\pi^2$ n $v(ms)$ $\frac{1}{3\pi}$ 1