# Graph Neural Networks 3D Deep Learning



Intelligent Visual Computing
Evangelos Kalogerakis

#### 3D Deep Learning approaches

The Multi-View approach

The Voxel approach

The Point approach

The Graph approach

#### Meshes as Graph

Using the shape representation (mesh) directly



#### Point clouds as graphs

Connect each point to its K-nearest neighbors or all points within a Euclidean ball



#### Scenes as a Graph

Represent scene (an arrangement of shapes) as a graph



#### Setup for graph nets

#### Input:

```
{Vertices V, Edges E} X = \{x_i\} are per-vertex raw representations Y = \{y_{i,j}\} are per-edge raw representations (optional)
```

#### Output:

- a) Learned node/edge representations these can be used for node/edge tasks (e.g., node/edge classification)
- **b**) Learned global graph representation -- this can be used for graph recognition tasks (e.g., classify a graph)

Infer node representations (embeddings) based on neighborhoods.



Infer node representations (embeddings) based on neighborhoods. Nodes aggregate information (messages) from their neighbors.



The result of aggregation is a new representations for each node. (think again the process is a forward pass over layers)



The resulting representations can be in turn aggregated again to produce new node representations.



... which can in turn used in further aggregations, node updates and so on....



What are these "aggregation functions"?



One idea: average messages, then NN



#### Simplest approach

Initialization:  $\mathbf{h}_{A}^{(0)} = \mathbf{x}_{A}$ 



#### Simplest approach

#### *Updates*:







#### How to train?

Classification (binary):

$$P(C=1 \mid \mathbf{h}_{A}^{(k)}) = \sigma(\mathbf{W}_{C}\mathbf{h}_{A}^{(k)})$$



here)

#### Important for generalization to new graphs

Aggregation function should be the same for all nodes in the same layer (otherwise it would be specific to each particular node)



#### (Whole) Graph Classification

A graph representation can be extracted by pooling all node representations ... then can be passed through a classifier



First, connect each point to its K-nearest neighbors



Dynamic Graph CNN for Learning on Point Clouds, Wang et al, TOG 2019

Each point has an input raw representation  $x_i$  (3D point position)



Dynamic Graph CNN for Learning on Point Clouds, Wang et al, TOG 2019

Compute for each edge a feature representation (EdgeConv):

$$\mathbf{e}_{A,v}^{(1)} = \text{ReLU}(MLP(\mathbf{x}_A, \mathbf{x}_v - \mathbf{x}_A))$$



Dynamic Graph CNN for Learning on Point Clouds, Wang et al, TOG 2019

Aggregate edge representations using max pooling on edges

$$\mathbf{h}_{A}^{(1)} = \max_{v \in Nb(A)} \mathbf{e}_{A,v}^{(1)}$$



Dynamic Graph CNN for Learning on Point Clouds, Wang et al, TOG 2019

#### DGCNN - second layer

First, connect each point to its K-nearest neighbors based on the node **feature representation of the first layer**(this magne pays paid bare for each pada)



#### DGCNN - second layer

Compute for each edge a feature representation (EdgeConv):

$$\mathbf{e}_{A,v}^{(2)} = \text{ReLU}(MLP(\mathbf{h}_A^{(1)}, \mathbf{h}_v^{(1)} - \mathbf{h}_A^{(1)}))$$



#### DGCNN - second layer

Aggregate edge representations using max pooling on edges

$$\mathbf{h}_{A}^{(2)} = \max_{v \in Nb(A)} \mathbf{e}_{A,v}^{(2)}$$



Dynamic Graph CNN for Learning on Point Clouds, Wang et al, TOG 2019

#### DGCNN - next layers

Same procedure for updating nearest neighbors in feature space, computing edge representations, then max pooling...



#### **DGCNN** architecture



#### Classification results

|                                          | Mean<br>Class Accuracy | Overall<br>Accuracy |  |  |
|------------------------------------------|------------------------|---------------------|--|--|
| 3DShapeNets [Wu et al. 2015]             | 77.3                   | 84.7                |  |  |
| VoxNet [Maturana and Scherer 2015]       | 83.0                   | 85.9                |  |  |
| Subvolume [Qi et al. 2016]               | 86.0                   | 89.2                |  |  |
| VRN (SINGLE VIEW) [BROCK ET AL. 2016]    | 88.98                  | -                   |  |  |
| VRN (MULTIPLE VIEWS) [BROCK ET AL. 2016] | 91.33                  | -                   |  |  |
| ECC [Simonovsky and Komodakis 2017]      | 83.2                   | 87.4                |  |  |
| POINTNET [QI ET AL. 2017B]               | 86.0                   | 89.2                |  |  |
| POINTNET++ [QI ET AL. 2017c]             | -                      | 90.7                |  |  |
| Kd-net [Klokov and Lempitsky 2017]       | -                      | 90.6                |  |  |
| POINTCNN [LI ET AL. 2018A]               | 88.1                   | 92.2                |  |  |
| PCNN [Atzmon et al. 2018]                | -                      | 92.3                |  |  |
| Ours (baseline)                          | 88.9                   | 91.7                |  |  |
| Ours                                     | 90.2                   | 92.9                |  |  |
| Ours (2048 points)                       | 90.7                   | 93.5                |  |  |

Table 2. Classification results on ModelNet40.

#### Segmentation results

See also: DeepGCNs: Can GCNs Go as Deep as CNNs?

https://sites.google.com/view/deep-gcns

|                 | MEAN | ARBO | BAG   | CAP  | CAR  | CHAIR | BAR<br>PHONB | GÜITAR | KNIFB | LAMP | LAPTOP | MOTOR | MÜĞ  | PISTOL | ROCKBT | SKATB<br>BOARD | TABLB |
|-----------------|------|------|-------|------|------|-------|--------------|--------|-------|------|--------|-------|------|--------|--------|----------------|-------|
| # SHAPBS        |      | 2690 | 76    | 55   | 898  | 3758  | 69           | 787    | 392   | 1547 | 451    | 202   | 184  | 283    | 66     | 152            | 5271  |
| РоінтИвт        | 83.7 | 83.4 | 78.7  | 82.5 | 74.9 | 89.6  | 73.0         | 91.5   | 85.9  | 80.8 | 95.3   | 65.2  | 93.0 | 81.2   | 57.9   | 72.8           | 80.6  |
| PointNet++      | 85.1 | 82.4 | 79.0  | 87.7 | 77.3 | 90.8  | 71.8         | 91.0   | 85.9  | 83.7 | 95.3   | 71.6  | 94.1 | 81.3   | 58.7   | 76.4           | 82.6  |
| Kd-Net          | 82.3 | 80.1 | 74.6  | 74.3 | 70.3 | 88.6  | 73.5         | 90.2   | 87.2  | 81.0 | 94.9   | 57.4  | 86.7 | 78.1   | 51.8   | 69.9           | 80.3  |
| LocalFbaturbNbt | 84.3 | 86.1 | 73.0  | 54.9 | 77.4 | 88.8  | 55.0         | 90.6   | 86.5  | 75.2 | 96.1   | 57.3  | 91.7 | 83.1   | 53.9   | 72.5           | 83.8  |
| PCNN            | 85.1 | 82.4 | 80.1  | 85.5 | 79.5 | 90.8  | 73.2         | 91.3   | 86.0  | 85.0 | 95.7   | 73.2  | 94.8 | 83.3   | 51.0   | 75.0           | 81.8  |
| POINTCNN        | 86.1 | 84.1 | 86.45 | 86.0 | 80.8 | 90.6  | 79.7         | 92.3   | 88.4  | 85.3 | 96.1   | 77.2  | 95.3 | 84.2   | 64.2   | 80.0           | 83.0  |
| Ours            | 85.2 | 84.0 | 83.4  | 86.7 | 77.8 | 90.6  | 74.7         | 91.2   | 87.5  | 82.8 | 95.7   | 66.3  | 94.9 | 81.1   | 63.5   | 74.5           | 82.6  |

Table 6. Part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.



## A mesh GNN for Character Rigging



Input 3D model

## Goal: Automatic Rigging



## Goal: Automatic Rigging



#### Joint Prediction Module



#### Joint Prediction Module



#### Joint Prediction Module



#### GMEdgeNet graph convolution

#### **Edge features computed as in DGCNN:**

$$\mathbf{e} = \text{ReLU}(MLP(\mathbf{x}_{vertex}, \mathbf{x}_{vertex} - \mathbf{x}_{neighbor}))$$



## **Qualitative Results**



## **Qualitative Results**



## Graph-based 3D Deep Learning Advantages

Well-suited to analyze graphs

(graphs: meshes, shape and scene abstractions based on their objects and parts)

Effective in encoding local graph neighborhoods

## Graph-based 3D Deep Learning Disadvantages

- Robustness to irregular and non-uniform sampling (existing networks are not that robust, require training with augmentation on different graph connectivity)
- Performance is not that good compared to sparse tensor nets/octrees/transformers for 3D point clouds of scenes/shapes
- When graph edges are not available (point clouds), they are derived from ad hoc heuristics