

Class: Machine Learning

Support Vector Machines – part 3

Instructor: Matteo Leonetti

Learning outcomes

Derive the dual formulation of a constrained optimisation problem

Substitution

minimise:
$$\frac{1}{2} \| \mathbf{w} \|^2$$

Subject to the constraints: $t_i(\mathbf{w}^T \Phi(\mathbf{x}_i) + \mathbf{w}_0) \ge 1$

This way we would have a higher dimensional problem, which is also more difficult to solve.

Is there a better formulation?

Duality Theory

Example - unconstrained

$$\nabla_x f(x) = 2x = 0 \Rightarrow x = 0$$

Example - constrained

 $\min x^2$

s.t.
$$x=2$$

The Lagrangian

x**2 + y*(x-2)

$$L(x,\lambda)=x^2+\lambda(x-2)$$

$$\min_{x} \max_{\lambda} x^2 + \lambda(x-2)$$

$$\begin{cases} \nabla_{x} f(x, \lambda) = 2x + \lambda = 0 \\ \nabla_{\lambda} f(x, \lambda) = x - 2 = 0 \end{cases}$$

$$x=2$$
 $\lambda = -4$

The Lagrangian - sliced

$$L(x,-4)=x^2-4(x-2)$$

$$L(2,\lambda)=4$$

Lagrange Multipliers

By looking at the gradients, can you tell when a point is a local minimum for the constrained problem?

Lagrange Multipliers

When the gradients are parallel! $-\nabla_x f(x) = \lambda \nabla_x h(x)$

$$-\nabla_{\mathbf{x}}f(\mathbf{x}) = \lambda \nabla_{\mathbf{x}}h(\mathbf{x})$$

Lagrange Multipliers

When the gradients are parallel! $-\nabla_x f(x) = \lambda \nabla_x h(x)$

This is achieved by: $\nabla_{x}L(x,\lambda)=0$

since:

$$\nabla_{x}L(x,\lambda) = \nabla_{x}f(x) + \lambda \nabla_{x}h(x) = 0$$

Lagrange multipliers

min
$$f(x)$$

Subject to

$$h_i(\mathbf{x}) = 0 \quad \forall i = 1, ..., m$$

It is possible to form a function such that its stationary points are optimal solutions to the original problem:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

$$\nabla_{x}L(x,\lambda) = \nabla_{x}f(x) + \lambda \nabla_{x}h(x) = 0$$

Ensures that the gradients are parallel

$$\nabla_{\lambda}L(\mathbf{x}, \boldsymbol{\lambda}) = h(\mathbf{x}) = 0$$

Ensures that the solution satisfies the constraints

How many variables lambda did I add?

The Dual Problem

$$L(x,\lambda)=x^2+\lambda(x-2)$$

$$\nabla_{x} f(x,\lambda) = 2x + \lambda = 0$$

$$x = -\frac{1}{2}\lambda$$

Substitute x:

$$q(\lambda) = (-\frac{1}{2}\lambda)^{2} + \lambda(-\frac{1}{2}\lambda - 2) = \frac{1}{4}\lambda^{2} - \frac{1}{2}\lambda^{2} - 2\lambda$$
$$= -\frac{1}{4}\lambda^{2} - 2\lambda$$

$$\nabla_{\lambda} q = -\frac{1}{2}\lambda - 2 = 0$$
 $\lambda = -4$

The Dual Problem

$$\min_{\text{s.t. } x=2} f(x) = x^2$$

$$L(x,\lambda)=x^2+\lambda(x-2)$$

$$\max q(\lambda) = -\frac{1}{4}\lambda^2 - 2\lambda$$

$$f(2)=q(-4)=4$$

Duality

Inequality Constraints

Minimum inside the constraint

Minimum on the border

Karush-Kuhn-Tucker conditions

Extend lagrangian multipliers to inequality constraints

$$\min f(\vec{x})$$

Subject to

$$h_i(\vec{x}) \leq 0 \quad \forall i = 1, ..., n$$

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_{i} h_{i}(\mathbf{x})$$

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}) = 0$$
 What else?

Complementary Slackness

min
$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x})$$

s.t. $h_i(\mathbf{x}) \le 0$

For Inactive constraints:

 $\lambda_i = 0$

 $\lambda_j h_j(\mathbf{x}) = 0$

For active constraints

KKT Multipliers

With inequality constraints, not only the gradients must be parallel, but also?

KKT Multipliers

With inequality constraints, not only the gradients must be parallel, but the antigradient must have the same direction as the gradient of the constraint!

$$-\nabla_{x} f(x) = \lambda \nabla_{x} h(x) \qquad \lambda \ge 0$$

KKT Multipliers

Otherwise, I could improve in the direction of the gradient, while satisfying the constraint

$$-\nabla_{x} f(x) = \lambda \nabla_{x} h(x) \qquad \lambda \ge 0$$

KKT Conditions

 $\min f(x)$

min
$$f(x)$$

Subject to

min
$$f(x)$$

Subject to

$$h_i(\mathbf{x}) = 0 \quad \forall i = 1, ..., m$$

$$h_i(\mathbf{x}) \leq 0 \quad \forall i = 1, ..., m$$

Corresponding system of equations

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

$$\nabla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}) = 0$$

$$\nabla_{\lambda}L(\mathbf{x},\boldsymbol{\lambda})=0$$

$$\nabla_{x}L(x,\lambda)=0$$

$$\lambda_i g_i(\mathbf{x}) = 0 \quad \forall i = 1, ..., n$$

$$\lambda_i \ge 0 \quad \forall i = 1, ..., n$$

Example

Lagrangian:
$$L(x, \lambda) = x^2 + \lambda_1(-x-3) + \lambda_2(x+2)$$

s.t.
$$\lambda_1, \lambda_2 \ge 0$$

 $\lambda_1(-x-3) = 0$
 $\lambda_2(x+2) = 0$

Stationary point for the Lagrangian

Lagrangian:
$$L(x, \lambda) = x^2 + \lambda_1(-x-3) + \lambda_2(x+2)$$
 s.t. $\lambda_1, \lambda_2 \ge 0$

$$\begin{cases} \nabla_x L(x, \lambda) = 2x - \lambda_1 + \lambda_2 = 0 \\ \lambda_1(-x - 3) = 0 \\ \lambda_2(x + 2) = 0 \end{cases}$$

Let's assume that the first constraint, -x - 3, is active and x = -3

It would violate the constraint on λ_1

Stationary point for the Lagrangian

Lagrangian:
$$L(x, \lambda) = x^2 + \lambda_1(-x-3) + \lambda_2(x+2)$$
 s.t.
$$\lambda_1, \lambda_2 \ge 0 \qquad x+2 \le 0 \\ -x-3 \le 0$$

$$\begin{cases} \nabla_x L(x, \lambda) = 2x - \lambda_1 + \lambda_2 = 0 \\ \lambda_1(-x - 3) = 0 \\ \lambda_2(x + 2) = 0 \end{cases}$$

Let's now assume that the second constraint is active and x = -2

$$\begin{array}{c}
x = -2 \\
\downarrow \\
\lambda_1(2-3) = 0 \\
\downarrow \\
-4 - 0 + \lambda_2 = 0
\end{array}$$

$$\lambda_1 = 0 \\
\downarrow \\
\lambda_2 = 4$$

$$\lambda_1 = 0$$

$$\lambda_2 = 4$$
OK!

$$x = -2$$

$$\lambda_1 = 0$$

$$\lambda_2 = 4$$

This is a stationary point of the Lagrangian AND the solution of the original constrained problem

Dual Problem

Lagrangian:
$$L(x, \lambda) = x^2 + \lambda_1(-x-3) + \lambda_2(x+2)$$

s.t. $\lambda_1, \lambda_2 \ge 0$

Let's build the dual formulation!

$$\nabla_x L(x, \lambda) = 2x - \lambda_1 + \lambda_2 = 0$$
 $\chi = \frac{\lambda_1 - \lambda_2}{2}$

$$\begin{split} q(\lambda) &= (\frac{\lambda_1 - \lambda_2}{2})^2 + \lambda_1 (-\frac{\lambda_1 - \lambda_2}{2} - 3) + \lambda_2 (\frac{\lambda_1 - \lambda_2}{2} + 2) \\ &= \frac{1}{4} (\lambda_1^2 + \lambda_2^2 - 2\lambda_1 \lambda_2) - \frac{1}{2} \lambda_1^2 + \frac{1}{2} \lambda_1 \lambda_2 - 3\lambda_1 - \frac{1}{2} \lambda_2^2 + \frac{1}{2} \lambda_1 \lambda_2 + 2\lambda_2 \\ &= -\frac{1}{4} \lambda_1^2 - \frac{1}{4} \lambda_2^2 - 3\lambda_1 + 2\lambda_2 + \frac{1}{2} \lambda_1 \lambda_2 \end{split}$$

Dual Problem

$$q(\lambda) = -\frac{1}{4}\lambda_1^2 - \frac{1}{4}\lambda_2^2 - 3\lambda_1 + 2\lambda_2 + \frac{1}{2}\lambda_1\lambda_2$$

s.t.: $\lambda_1, \lambda_2 \ge 0$

-(0.25)*x**2 -(0.25)*y**2 + 0.5*x*y -3*x + 2*y

Why did we do all this, again?

Substitution

What is the dual formulation of this?

minimise:
$$\frac{1}{2} \| \mathbf{w} \|^2$$

Subject to the constraints:
$$t_i(\mathbf{w}^T \Phi(\mathbf{x}_i) + \mathbf{w}_0) \ge 1$$