Feedback Motion Planning

Дискретное планирование

1. Набор состояний
$$x$$
 $x \in X$

- 2. Набор действий u $u \in U$
- 3. Transition function:

$$\tilde{x} = f(x, u)$$

- 4. Начальное состояние \mathcal{X}_{init}
- 5. Конечное состояние X_G

$$u_1, u_1, \dots, u_n : x_{init} \rightarrow x_G$$

Оптимальный путь длины К

Cost functional:

$$L(\pi_K) = \sum_{k=1}^{K} l(x_k, u_k) + l_F(x_F)$$

The final term $l_F(x_F)$ is out side of the sum and is defined as $l_F(x_F) = 0$ if $x_F \in X_G$, and $l_F(x_F) = \infty$ otherwise.

Оптимальный путь длины К

Обозначим $G^*(x_k)$ оптимальный путь от x_k до x_F , который представляет собой последние F-k ребер оптимального пути от x_I до x_G

$$G_k^*(x_k) = \min_{u_k, \dots, u_K} \left\{ \sum_{i=k}^K l(x_i, u_i) + l_F(x_F) \right\}$$
(1)

Тогда для $G^*(x_k)$ выполняется рекуррентное соотношение

$$G_k^*(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$$
 (2)

где
$$x_{k+1} = f(x_k, u_k)$$

Оптимальный путь длины К

$$G_k^*(x_k) = \min_{u_k} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$$

где
$$x_{k+1} = f(x_k, u_k)$$

Построение оптимального пути от вершины {a} до вершины {d}:

	\boldsymbol{a}	b	c	d	e
G_5^*	8	∞	∞	0	∞
G_4^*	8	4	1	8	8
G_3^*	6	2	8	2	8
G_2^*	4	6	3	8	8
G_1^*	6	4	5	4	∞

Forward value iteration

Обозначим С*(x_k) оптимальный путь от x_1 до x_k , который представляет собой первые (k-1) ребер оптимального пути от x_I до x_G ($l_I(x_I) = 0$ и $l_I(x) = \infty$ для $x = x_I$):

$$C_k^*(x_k) = \min_{u_1, \dots, u_{k-1}} \left\{ l_I(x_1) + \sum_{i=1}^{k-1} l(x_i, u_i) \right\}$$

Тогда для $C^*(x_k)$ выполняется рекуррентное соотношение:

$$C_k^*(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^*(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\}$$

где
$$x_{k-1} = f^{-1}(x_k, u_k^{-1})$$
 $u_{k-1} \in U(x_{k-1})$

Forward value iteration

$$C_k^*(x_k) = \min_{u_k^{-1} \in U^{-1}(x_k)} \left\{ C_{k-1}^*(x_{k-1}) + l(x_{k-1}, u_{k-1}) \right\}$$

	a	b	c	d	e
C_1^*	0	∞	∞	∞	∞
C_2^*	2	2	∞	8	8
C_3^*	4	4	3	6	8
C_4^*	4	6	5	4	7
C_5^*	6	6	5	6	5

Время работы $O(|V| \times |E|)$

Bellman–Ford algorithm

$$\begin{array}{l} \texttt{for} \ v \in V \\ \quad \texttt{for} \ i \leftarrow 0 \ \texttt{to} \ |V|-1 \\ \quad \texttt{do} \ A_{vi} \leftarrow +\infty \\ A_{s0} \leftarrow 0 \\ \quad \texttt{for} \ i \leftarrow 1 \ \texttt{to} \ |V|-1 \\ \quad \texttt{do} \ \texttt{for} \ (u,v) \in E \\ \quad \texttt{if} \ A_{vi} > A_{u,i-1} + w(u,v) \\ \quad \texttt{then} \ A_{vi} \leftarrow A_{u,i-1} + w(u,v) \\ P_{vi} \leftarrow u \end{array}$$

Навигационные функции

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi}{\partial x_1} & \frac{\partial \phi}{\partial x_2} & \cdots & \frac{\partial \phi}{\partial x_n} \end{bmatrix}$$

Feedback plan:

$$\pi(x) = -\nabla \phi|_x$$

Fig1. Potential function φ

В случае предварительного вычисления ф, позволяет быстро строить траекторию из любой начальной точки.

Оптимальные навигационные функции

Расстояние между узлами решетки задается функцией:

$$x_{k+1} = f(x_k, u_k)$$

Store G* only over a finite set of sample points and use interpolation to obtain its value at all other points.

Значения в узлах для оптимальной навигационной функции:

$$G_k^*(x_k) = \min_{u_k \in U(x_k)} \left\{ l(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$$

(процесс построения G^* в узлах сетки начинается от X_G)

Оптимальные навигационные функции

Linear interpolation:

$$G_{k+1}^*(x) \approx \alpha_1 \alpha_2 G_{k+1}^*(s(i_1, i_2)) +$$

$$\alpha_1(1 - \alpha_2) G_{k+1}^*(s(i_1, i_2 + 1)) +$$

$$(1 - \alpha_1)\alpha_2 G_{k+1}^*(s(i_1 + 1, i_2)) +$$

$$(1 - \alpha_1)(1 - \alpha_2) G_{k+1}^*(s(i_1 + 1, i_2 + 1))$$

Feedback Planning Under Differential Constraints

- 1. Let X be any C-space or **Phase space** X_I , X_G
- 2. Differential constraints $\dot{x} = f(x, u)$
- 3. An unbounded time interval, $T = [0, \infty)$
- 4. A feedback plan is defined as a function $\pi: X_{free} \to U$. For a given state $x \in X_{free}$, an action $\pi(x)$ is produced. Composing π with f yields a velocity in $T_x(X)$ given by $\dot{x} = f(x, u)$ Therefore, π defines a vector field on X_{free} .

Cost functional:

$$L(\tilde{x}_{t_F}, \tilde{u}_{t_F}) = \int_0^{t_F} l(x(t), u(t)) dt + l_F(x(t_F))$$

Feedback Planning Under Differential Constraints

Рекуррентное соотношение для вычисления G* в узлах сетки в фазовом пространстве:

$$G_k^*(x_k) = \min_{u_k \in U_d} \left\{ l_d(x_k, u_k) + G_{k+1}^*(x_{k+1}) \right\}$$

(процесс построения G^* в узлах сетки начинается от X_G)