Lecture 16 Worksheet (ECON211), AY 2025-26 [Date: 28 Aug 2025]

1. If $f(x)=\sqrt{x}$ and $g(x)=x^3+4x+2$, then find $(f^{-1})'(2)$ and $(g^{-1})'(7)$ using the formula:

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

2. Let $f(x)=x^2$ and $g(x)=x^3-3x$. Indicate whether f(x) and g(x) are increasing or decreasing functions. Also, determine whether these functions are convex or concave.

3. Find and class	ify the stationary poin	ts for the following	\mathbf{q} functions: \mathbf{a}) $-\mathbf{a}$	$x^3 + 3x + 1$, and b	b) $x^4 - 6x^2 + 5$.	
4. The weekly m $50 + 2q$. Set up	narket demand for Ruin the profit function and	nmytrip's product l determine the pr	is determined to l ofit-maximizing q	be $p = 100 - 2q$. uantity for Ruinm	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	arket demand for <i>Ruin</i> the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	be $p = 100 - 2q$. uantity for Ruinm	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for <i>Ruin</i> the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	be $p=100-2q$. uantity for Ruinm	. The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	arket demand for <i>Rui</i> n the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	be $p=100-2q$. uantity for Ruinm	. The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	be $p=100-2q$. wantity for Ruinm	The total cost is TC	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	the $p=100-2q$ wantity for Ruinm	The total cost is TC	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin the profit function and	nmytrip's product	is determined to l ofit-maximizing q	the $p=100-2q$. We untity for Ruinm.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin the profit function and	nmytrip's product I determine the pr	is determined to l ofit-maximizing q	the $p=100-2q$. The value of $p=100-2q$. The value of $p=100-2q$.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	arket demand for Ruin the profit function and	nmytrip's product I determine the pr	is determined to b	the $p=100-2q$. The unitary for Ruinm.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	arket demand for Ruin	nmytrip's product	is determined to b	the $p=100-2q$. The value of $p=100-2q$. The value of $p=100-2q$.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin	nmytrip's product	is determined to b	the $p=100-2q$. The value of $p=100-2q$. The value of $p=100-2q$.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin	nmytrip's product	is determined to b	the $p=100-2q$. The value of $p=100-2q$. The value of $p=100-2q$.	The total cost is TC ytrip.	C(q) =
4. The weekly m $50 + 2q$. Set up	earket demand for Ruin	nmytrip's product	is determined to b	the $p=100-2q$. The value of $p=100-2q$. The value of $p=100-2q$.	The total cost is TC ytrip.	C(q) =