

FACULTAD DE CIENCIAS BÁSICAS Computación Científica Química II

<u>Identificación y análisis cualita</u> Agosto 20,		
Profesor: Carlo	os Jiménez	
Estudiante:	Documento:	
Ingrese a https://next-gen.materialsproject.org/ y realice la abordar con ello los puntos 2 a 6.	ogin con su correo o cuenta de su prefere	ncia, para
1) (20%) Una vez en el Home de Materials Project, dar o desplegar y dar click en <i>Symmetry</i> . Seleccionar el sistema seleccionar un sistema de su interés, cuyo ID es mp Hermann-Mauguin (H-M) es: Contraste el grup en.wikipedia.org/wiki/Space group, de utilidad como guía mismo procedimiento con los demás sistemas cristalinos, completar la siguiente tabla. Para cada sistema, descargue el respectivo archivo .CIF.	cristalino triclínico. De las opciones que apa , con grupo espacial: que en no o espacial mostrado, con el que se encuentra en la asignación de las redes de Bravais.	recen allí, otación de en <u>https://</u> Realice el

Tabla 1.

Red de Bravais	mp-ID	Fórmula	Grupo espacial	Notación H-M	H-M en Wikipedia
					-

- 2) (10%) En un Notebook, utilice herramientas del ASE para visualizar uno de los sistemas cúbicos del punto anterior (2). Muestre las líneas de código según corresponda.
 - a) Explique las diferencias entre la celda unitaria y la celda primivitiva.
 - b) Para cada uno de los átomos en la celda primitiva del sistema respectivo, indique su respectiva contribucción fraccionaria a la celda.

- **3)** (30%) En un Notebook, cree y visualize <u>cada red de Bravais</u> del punto (2), usando herramientas del ASE. Muestre las líneas de código según corresponda.
 - a) Muestre la celda unitaria e indique cuántos átomos de cada tipo tiene. Incluya esquemas (imágenes) y/o texto según lo crea conveniente. Luego, replique la celda unitaria en (x,y,z) con tres tamaños distintos: (5x6x7), (10x20x30) y (100x200x300). Para cada caso, mida las distancias (en unidad Å) entre átomos extremos de la celda. Para que se pueda "observar" un cristal, idealmente se debe tener un tamaño cercano a 1 μ m (micrómetro). Para el caso del tamaño (100x200x300), ¿el sistema podría observarse? Sino, establezca un posible tamaño de supercelda (x,y,z) que conlleve a un tamaño cercano a 1 μ m (tenga cuidado con su computador). ¿Qué se puede concluir de este ejercicio respecto al uso de modelos y "la realidad"?
 - **b)** Identifique los parámetros de celda a, b, c (en unidad Å) y los ángulos α , β , γ (en °). Realice los esquemas que considere pertinentes para indicar dónde se encuentra cada parámetro de celda y ángulos. Identifique el catión (+) y anión (-) en cada sistema y observe la ubicación de estos al interior de la celda (vértices, aristas, caras, etc.). Respecto a la ubicación observa alguna tendencia o generalidad?

Tabla 2.

Red de Bravais	mp-ID	a, b, c, α, β, γ	Volumen celda (ų)	Iones

- **4) (25%)** Use solo los sistemas cristalinos cúbicos, hexagonal y ortorrómbicos, incluyendo las respectivas redes de Bravais y la información obtenida en las tablas 1 y 2. Explique las notaciones respectivas de Hermann-Mauguin. Utilice los esquemas/figuras que considere adecuados y acompañe su explicación de texto según corresponda para brindar claridad.
- **5) (15%)** Elija la mitad de los sistemas cristalinos de la Tabla 1, consulte qué aplicaciones tiene o podría tener ese material.