Building Classification Models with scikit-learn

UNDERSTANDING CLASSIFICATION AS A MACHINE LEARNING PROBLEM

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Logistic regression for classification

Evaluating classification models

Accuracy, precision, and recall

ROC curves

Binary, multi-label, and multi-class classification

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Basic understanding of the ML workflow

High school math

Prerequisite Courses

Building Your First scikit-learn Solution

Course Outline

Understanding the classification problem

Building a simple ML classifier

Choosing and implementing classification technique

Hyperparameter tuning for classification

Classifying images

Classification and Classifiers

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Types of Machine Learning Problems

Classification

Regression

Clustering

Dimensionality reduction

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Whales: Fish or Mammals?

ML-based Classifier

Training

Feed in a large corpus of data classified correctly

Prediction

Use it to classify new instances which it has not seen before

Training the ML-based Classifier

"Traditional" ML-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

Corpus

Naive Bayes, Support Vector Machines, Decision Trees

ML-based Classifier

Logistic Regression: Intuition

Two Approaches to Deadlines

Start 5 minutes before deadlineGood luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Starting a Year in Advance

Probability of meeting the deadline

100%

Probability of getting other important work done

Starting Five Minutes in Advance

Probability of meeting the deadline

0%

Probability of getting other important work done

100%

The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Probability of meeting deadline

(1 year,100%)

Start 1 year before deadline

Start 5 minutes before deadline

(5 mins,0%)

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Logistic Regression helps find how probabilities are changed by actions

Working Smart with Logistic Regression

Time to deadline

Working Smart with Logistic Regression

Time to deadline

Start too late, and you'll definitely miss

Working Smart with Logistic Regression

Time to deadline

Start too early, and you'll definitely make it

Working Smart with Logistic Regression

Time to deadline

Working smart is knowing when to start

Logistic Regression S-curves

y: hit or miss? (0 or 1?)

x: start time before deadline

p(y): probability of y = 1

Logistic Regression S-curves

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

Logistic Regression S-curves

S-curves are widely studied, well understood

Logistic regression uses S-curve to estimate probabilities

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

Finding the best fit line through these points

Finding the best fit S-curve through these points

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Cross Entropy: Loss Function

Linear Regression Cost Function Regression Line: y = A + Bx

The mean square error measures how far the line is from the actual points

Cross entropy measures how well the estimated probabilities match actual labels

Intuition: Low Cross Entropy

Intuition: Low Cross Entropy

The labels of the two series are in-synch

Intuition: High Cross Entropy

Intuition: High Cross Entropy

The labels of the two series are out-of-synch

Accuracy, Precision, Recall

Compare predicted and actual labels

More matches = higher accuracy

High accuracy is good, but...

An algorithm might have high accuracy but still be a poor machine learning model

Its predictions are useless

All-is-well Binary Classifier

Here, accuracy for rare cancer may be 99.9999%, but...

Some labels maybe much more common/rare than others

Such a dataset is said to be skewed

Accuracy is a poor evaluation metric here

Confusion Matrix

		Carcted Labers	
۸ م ل اد ما		Cancer	No Cancer
Actual	Cancer	10 instances	4 instances
	No Cancer	5 instances	1000 instances

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer	No Cancer
10	4
5	1000

True Positive

True Positive

False Positive

False Positive

True Negative

True Negative

False Negative

False Negative

Confusion Matrix

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Actual Label

Cancer

No Cancer

Accuracy = 99.12%

Classifier gets it right 99.12% of the time

But...

Accuracy

Predicted Labels

People on chemotherapy, radiation when not required

Accuracy

Predicted Labels

Cancer not detected, no treatment prescribed

Accuracy is not a good metric to evaluate whether this model performs well

Predicted Labels

Actual Label

Cancer

No Cancer

Predicted Labels

Precision = Accuracy when classifier flags cancer

Predicted Labels

Precision = 66.67%

1 in 3 cancer diagnoses is incorrect

Predicted Labels

Actual Label

Cancer

No Cancer

Cancer	No Cancer	
10	4	FN
5	1000	TN

Predicted Labels

Recall = Accuracy when cancer actually present

Predicted Labels

A ctual Labol	Cancer	No Cancer	
Actual Label Cancer	10 TP	4	
No Cancer	FP 5	TN 1000	
Recall	$= \frac{TP}{TP + FN}$	$=\frac{10}{14}=71.42\%$	

Recall = 71.42%

2 in 7 cancer cases missed

Evaluating Classifiers

ML-based Binary Classifier

ML-based Binary Classifier

Applying Logistic Regression

Whales: Fish or Mammals?

Choosing Decision Threshold

Choosing Decision Threshold

If probability < P_{threshold}, it's a mammal

Applying Logistic Regression

If probability > Pthreshold, it's a fish

"Always Positive"

 $P_{threshold} = 0$

Recall = 100%

Precision = 14/1019 = 13.7%

Classifier not conservative enough

Precision vs. "Conservativeness"

"Always Negative"

Pthreshold = 1

Recall = 0%

Precision = Infinite

Classifier too conservative

Recall vs. "Conservativeness"

Precision-Recall Tradeoff

Precision-Recall Tradeoff

False Positive Rate

False Positive Rate

False Positive Rate

ROC Curve

ROC of Perfect Classifier

False Positive Rate

ROC of Random Classifier

False Positive Rate

Types of Classification

Types of Classification Tasks

Binary

"Yes/No", "True/False", "Up/Down"

Output is binary categorical variable

Multilabel

("True", "Female"), ("False", "Female")

Output is tuple of multiple binary variables (not disjoint)

Multiclass

Digit classification

Output variable takes 1 of N (>2) values

Multioutput

("Sunday", "January")

Multiclass + multilabel

Multilabel

Some algorithms are inherently multilabel

- Naive Bayes

Multilabel

Many classification algorithms are inherently binary

- Logistic regression
- Support Vector Machines

Inherently binary classifiers can be generalised for multilabel classification

One vs. All

One-versus-all

Classifying digits 0-9

Train 10 binary classifiers

- O-detector, 1-detector...
- Predicted label = output of detector with highest score

One vs. One

One-versus-one

Train 45 binary classifiers

- One detector for each pair of digits
- For N labels, need N(N-1)/2 classifiers
- Predicted label = output of digit that wins most duels

Summary

Logistic regression for classification

Evaluating classification models

Accuracy, precision, and recall

ROC curves

Binary, multi-label, and multi-class classification