Clasificador de Setas.

Modelado Machine Learning categórico o de reconocimiento de imágen.

Hugo Martín-Santos Alumno Bootcamp Data Science The Bridge

Lasarte-Oria/Madrid 01/XII/2023

Plan de ataque

- Obtención de Data.
- Análisis de Data.
- Diseño de modelado.
- Entrenamiento de modelos.
- Desarrollo APP.

Illustrations by Pixeltrue on icons8

Problema de Clasificación multicategórico

Retos a tener en cuenta

.

103030303030303

.

.

La presencia de múltiples columnas con data categórica en el DataFrame planteará el reto de cómo afrontar el correcto tratamiento y pre-procesamiento.

O1 Análisis//////////

Valoración de parámetros.

Descartes y primeros

tratamientos.

03 OneHotEncoding

Paso final. Pérdida de legibilidad, pero adecuación necesaria al problema de ML.

02

Expansión de

categorías

La multi-categoría se aborda creando filas por cada combinación existente.

04 Mod

Modelado

Trabajo de hiperparametrización y planteamiento de modelos múltiples.

Columnas categóricas binarias, adecuadas para el aprendizaje ML

Original

		1001001													
	name	cap-diameter	cap-shape	cap-surface	cap-color	gill-color	stem-height	stem-width	stem-surface	stem-color	veil-color	has-ring	ring-type	habitat	season
0	Fly Agaric	[10, 20]	[x, f]	[g, h]	[e, o]	[w]	[15, 20]	[15, 20]	[y]	[w]	[w]	[t]	[g, p]	[d]	[u, a, w]
1	Panther Cap	[5, 10]	[p, x]	[g]	[n]	[w]	[6, 10]	[10, 20]	[y]	[w]	[w]	[t]	[p]	[d]	[u, a]
2	False Panther Cap	[10, 15]	[x, f]	NaN	[g, n]	[w]	[10, 12]	[10, 20]	NaN	[w]	[w]	[t]	[e, g]	[d]	[u, a]
3	The Blusher	[5, 15]	[x, f]	NaN	[n]	[w]	[7, 15]	[10, 25]	NaN	[w]	[w]	[t]	[g]	[d]	[u, a]
4	Death Cap	[5, 12]	[x, f]	[h]	[r]	[w]	[10, 12]	[10, 20]	NaN	[w]	[w]	[t]	[g, p]	[d]	[u, a]
5	False Death Cap	[4, 9]	[x]	NaN	[w, y]	[w]	[5, 7]	[10, 15]	NaN	[w, y]	[y, w]	[t]	[g]	[d]	[u, a]
6	Destroying Angel	[5, 10]	[b]	[t]	[w]	[w]	[10, 15]	[10, 15]	[y]	[w]	[w]	[t]	[l, e]	[d]	[u, a]
7	Tawny Grisette	[4, 8]	[c, x]	[h, t]	[n]	[w]	[10, 15]	[10, 15]	[s]	[w, n]	[w]	[f]	[f]	[d]	[u, a]
8	Parasol Mushroom	[10, 25]	[p, f]	[y]	[w, n]	[w]	[15, 35]	[15, 25]	NaN	[n]	NaN	[t]	[m]	[m, d]	[u, a]
9	Shaggy Parasol	[12, 18]	[x]	[e, y]	[n]	[w]	[8, 12]	[15, 20]	NaN	[w]	NaN	[t]	NaN	[g, d]	[u, a]

.

.

.

.

.

Trabajada

	name	cap- diameter	stem- height	stem- width	has- ring	cap- shape_b	cap- shape_c	cap- shape_f	cap- shape_o	cap- shape_p	habitat_h	habitat_l	habitat_m	habitat_p	habitat_u	habitat_w	season_a	season_s	season_u	season_w	
0	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	
1	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
2	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
3	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	
4	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
5	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
6	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	
7	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
8	Fly Agaric	15.0	17.5	17.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	
															í	1,000,000,000					

Reconocimiento de imágenes Red Neuronal Convolucional

.

Retos a tener en cuenta

.

0.000

.

El preprocesamiento de imágenes y el diseño de una estructura del modelo apta para su procesamiento será vital para conseguir el éxito.

Procesamiento de imágenes

Cantidad de imágenes por target.

.

.

. . . .

.

.

Este desequilibrio en la representación de ciertas categorías habrá que tratarlo para evitar el overfitting/under sampling.

Diseño de Estructura neuronal modelo tensorflow Keras

Capas Red Neuronal

```
layers = [
    keras.layers.Conv2D(128, (3,3), activation='relu', input shape=(48,48,3)),
    keras.layers.MaxPooling2D(pool size=(2,2)),
    keras.lavers.Dropout(0.1).
    keras.layers.Conv2D(64, (3,3), activation='relu'),
    keras.layers.MaxPooling2D(pool size=(2,2)),
    keras.layers.Dropout(0.1),
    keras.layers.Conv2D(64, (3,3), activation='relu'),
    keras.layers.MaxPooling2D(pool size=(2,2)),
    keras.layers.Dropout(0.1),
    keras.layers.Flatten(),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(32, activation='relu'),
    keras.layers.Dropout(0.1),
    keras.layers.Dense(13, activation='sigmoid')
cnn model = keras.Sequential(layers)
cnn model.compile(optimizer = 'adam',
            loss = 'categorical crossentropy',
            metrics = ['accuracy'])
```

.

.

.

.

.

Sumario estructura

```
Model: "sequential 3"
 Laver (type)
                                                  Param #
                          Output Shape
______
 conv2d 7 (Conv2D)
                          (None, 46, 46, 128)
 max pooling2d 7 (MaxPoolin (None, 23, 23, 128)
 g2D)
 dropout (Dropout)
                          (None, 23, 23, 128)
 conv2d 8 (Conv2D)
                          (None, 21, 21, 64)
                                                  73792
 max pooling2d 8 (MaxPoolin (None, 10, 10, 64)
 g2D)
 dropout 1 (Dropout)
                          (None, 10, 10, 64)
 conv2d 9 (Conv2D)
                          (None, 8, 8, 32)
                                                  18464
 max pooling2d 9 (MaxPoolin (None, 4, 4, 32)
 g2D)
 dropout 2 (Dropout)
                          (None, 4, 4, 32)
Total params: 163181 (637.43 KB)
Trainable params: 163181 (637.43 KB)
Non-trainable params: 0 (0.00 Byte)
```

.

Matriz de confusión Test nunca antes visto por el modelo

1.0

1.0

.

.

Ciertas categorías no terminan de ser bien asimiladas por el modelo. Quedaría profundizar en el porqué de los casos particularmente malos.

En general el modelo se comporta según lo esperado.