

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

FPGA alapú rendszerek fejlesztése 7. gyakorlat – Saját periféria illesztése

Raikovich Tamás

Folyadékszint érzékelő periféria

BME-MIT

Folyadékszint érzékelő periféria

- A tartályból 8 darab folyadék érzékelő szenzor
 - Folyadékszint értéke: 0 8
 - Hibajelzés: ha a legfelső aktív szenzor alatt 0 érték kerül beolvasásra
- Megszakításkérés:
 - A tartály éppen megtelt (folyadékszint: 7 → 8)
 - A tartály éppen kiürült (folyadékszint: 1 → 0)
 - Hiba történt

Periféria illesztési feladat

- A periféria típusa alapján az igények felmérése
 - Regiszterek száma és elérése (írható, olvasható)
 - Parancs regiszter, státusz regiszter
 - Üzemmód regiszter, adatregiszter
 - Megszakítás engedélyező és flag regiszterek, stb.
 - Esetleg FIFO vagy kisebb memória blokk
- A címtartomány használatának megtervezése
 - Általában 2^N bájt méretű címtartomány
 - Regiszterek és memória blokkok elhelyezése

BME-MIT

Folyadékszint érzékelő periféria

- Folyadékszint regiszter
 - Folyadékszint és a hibajelzés
- Megszakítás engedélyező regiszter
- Megszakítás flag regiszter: 1 beírása törli a biteket
- 3 regiszter → 16 bájtos címtartomány (4 x 32 bit)

Folyadékszint	reg.
BÁZIS+0x00	

Megszakítás eng. reg. BÁZIS+0x04

Megszakítás flag reg. BÁZIS+0x08

31. bit	30. bit	4. bit	3. bit	2. bit	1. bit	0. bit
Error			LVL3	LVL2	LVL1	LVL0
R	R		R	R	R	R
31. bit			3. bit	2. bit	1. bit	0. bit
0			0	ERROR	EMPTY	FULL
	R		- 700	R/W	R/W	R/W
31. bit			3. bit	2. bit	1. bit	0. bit
0			0	ERROR	EMPTY	FULL
	R			R/W1C	R/W1C	R/W1C

BME-MIT

Periféria illesztési feladat

Periféria egyedi busz interfész megvalósítással

Írási állapotgép

Regiszterek

wr_addr: N bit

wr_data: 32 bit

byte_en: 4 bit

BME-MIT

Busz protokolltól független írási interfész:

- 2^N bájtos címtartomány, 2^M bájtos memória (M ≤ N)
- AXI4-Lite busz interfész → 32 bites adatok
- wr_addr[N-1:2]: írási cím (wr_addr[1:0] nem használt)
- wr_en: írási adatátvitel jelzése
 - Egyedi írás engedélyező jelek előállítása
 - Regiszter: reg_wr[i] = wr_en & (wr_addr[N-1:2]==(ADDRESS1 >> 2)) & ...
 - Memória: mem_wr[j] = wr_en & (wr_addr[N-1:M]==(ADDRESS2 >> M))
- byte_en[3:0]: bájt engedélyező jelek
 - Vizsgálandó a 8, 16 vagy 32 bites regiszter írás eldöntéséhez
 - A memória rendelkezik bájt engedélyező bemenettel
- wr_data[31:0]: írási adat
- wr_ack: írás nyugtázása (opcionális várakozás)

Olvasási állapotgép

Regiszterek

rd_addr: N bit

• RDATA: 32 bit

BME-MIT

Busz protokolltól független olvasási interfész:

- 2^N bájtos címtartomány, 2^M bájtos memória (M ≤ N)
- AXI4-Lite busz interfész → 32 bites adatok
- rd_addr[N-1:2]: olvasási cím (rd_addr[1:0] nem használt)
- rd_en: olvasási adatátvitel jelzése
 - Egyedi olvasás engedélyező jelek előállítása
 - Regiszter: reg_rd[i] = rd_en & (rd_addr[N-1:2] == (ADDRESS1 >> 2))
 - Memória: mem_rd[j] = rd_en & (rd_addr[N-1:M] == (ADDRESS2 >> M))
 - A kimeneti multiplexer vezérléséhez
 - Kell még, ha az olvasás állapotváltozást okoz (pl. FIFO, bit törlés, stb.)
- rd_data[31:0]: olvasási adat
- rd_ack: olvasás nyugtázása (opcionális várakozás)

