yc4384_Yangyang_Chen_HW9

yc4384 Yangyang Chen

2024-04-13

1.

$$H(t)=\int_{0}^{t}h(t)dt=\int_{0}^{\infty}\frac{2t}{(1+t^{2})}dt=\log(1+t^{2})|_{0}^{\infty}=\log(1+t^{2})$$

Survival function:

$$S(t) = exp(-H(t)) = \frac{1}{1+t^2}$$

pdf of t:

$$f(t) = h(t) \times S(t) = \frac{2t}{1+t^2} \times \frac{1}{1+t^2} = \frac{2t}{(1+t^2)^2}$$

2.

For the following data 1, 2, 2, 4+, 5+, 6, 7+, 8+, 9+, 10+, where + denotes a right censored observation. Write out the data table and calculate the following by hand.

(a) Find the Kaplan-Meier estimate of the survival function;

t_i	n_i	d_i	c_i	λ_i	S(t)
1	10	1	0	$\frac{1}{10}$	$1 \times \left(1 - \frac{1}{10}\right) = 0.9$
2	9	2	0	$\begin{array}{ c c c }\hline 10 \\ \frac{2}{9} \\ 0 \\ \hline 7 \\ \end{array}$	$0.9 \times \left(1 - \frac{2}{10}\right) = 0.9$
4	7	0	1	$\frac{0}{7}$	$0.778 \times \left(1 - \frac{0}{7}\right) = 0.778$
5	6	0	1	$\frac{0}{6}$	$0.778 \times \left(1 - \frac{0}{6}\right) = 0.778$
6	5	1	0	$\frac{1}{5}$	$0.778 \times \left(1 - \frac{1}{5}\right) = 0.622$
7	4	0	1	$\frac{0}{4}$	$0.622 \times \left(1 - \frac{0}{4}\right) = 0.622$
8	3	0	1	$\frac{0}{3}$	$0.622 \times (1 - \frac{6}{3}) = 0.622$
9	2	0	1	$\begin{bmatrix} \frac{4}{0} \\ \frac{0}{3} \\ \frac{0}{2} \\ 0 \end{bmatrix}$	$0.622 \times (1 - \frac{0}{2}) = 0.622$
10	1	0	1	$\frac{\overline{0}}{1}$	$0.622 \times \left(1 - \frac{0}{1}\right) = 0.622$

- (b) Find the Nelson-Aalen estimate of the cumulative hazard function;
- (c) Find the Fleming-Harrington estimate of the survival function.