7. Задачи на графах

7.1 Циклы. Эйлеровы и гамильтоновы графы

Напоминание:

замкнутая цепь называется **циклом**; замкнутая простая цепь (все вершины которой различны) называется **простым циклом**.

Простой цикл не может содержать ребро более одного раза → цикл рассматривается как множество ребер.

Эквивалентное определение:

простым называется цикл, никакое собственное подмножество которого циклом не является.

Эйлеровы графы

Если граф имеет цикл (не обязательно простой), содержащий все ребра этого графа по одному разу, то такой цикл называется эйлеровым циклом, а граф называется эйлеровым графом.

Если граф имеет цепь (не обязательно простую), содержащую все рёбра этого графа, то такая цепь называется **эйлеровой цепью**, а граф называется **полуэйлеровым графом**.

Замечания.

- Эйлеров цикл содержит не только все рёбра (по одному разу), но и все вершины графа (возможно, по нескольку раз).
- Ясно, что эйлеровым может быть только связный граф.

Теорема (Эйлер, 1736 г.).

Если граф **G** связен и нетривиален, то следующие утверждения эквивалентны.

- **■** *G* эйлеров граф.
- Каждая вершина G имеет чётную степень.
- Множество рёбер *G* можно разбить на простые циклы.

Из теоремы вытекает эффективный способ проверки существования эйлерова цикла в графе:

достаточно проверить, все ли вершины имеют чётные степени (что нетрудно при любом представлении графа)

Решение задачи о кенигсбергских мостах

Вопрос сводится к следующему:

является ли граф G эйлеровым (т. е. содержит ли он эйлеров цикл)?

$$d(A) = 5,$$
 $d(B) = 3,$
 $d(C) = 3,$
 $d(D) = 3.$

По теореме Эйлера граф *G* не является эйлеровым (не содержит эйлеровой цепи).

Теорема.

Связный граф **G** является полуэйлеровым тогда и только тогда, когда **G** содержит не более двух вершин нечетной степени.

В таком графе имеется цепь (возможно, незамкнутая), проходящая ровно один раз через каждое ребро

Если известно, что граф является эйлеровым, то существует алгоритм построения эйлерова цикла в этом графе.

См., например:

Ф.А. Новиков «Дискретная математика для программистов».

Гамильтоновы графы

Если граф имеет простой цикл, содержащий все вершины этого графа по одному разу, то такой цикл называется *гамильтоновым циклом*, а граф называется *гамильтоновым графом*.

Гамильтонов цикл <u>не обязательно</u> содержит все рёбра графа.

Ясно, что гамильтоновым может быть только связный граф.

Название гамильтонова цикла произошло от задачи «Кругосветное путешествие», придуманной У. Гамильтоном в XIX в.: нужно обойти все вершины графа

(в исходной формулировке вершины были помечены названиями столиц различных стран) по одному разу и вернуться в исходную точку.

Простые формулировки необходимых и достаточных условий гамильтоновости графа неизвестны.

Известны некоторые достаточные условия. Далее рассматривается одно из них.

Обозначим:

 $\delta(G(V, E))$ – минимальная степень вершины графа G(V, E),

$$\delta(G(V,E)) \stackrel{\mathsf{def}}{=} \min_{v \in V} d(v).$$

Теорема.

Если $\delta(G)$ ≥ n/2, то граф G является гамильтоновым.

Задача коммивояжера

Имеется **п** городов, расстояния между которыми известны.

Коммивояжёр должен посетить все **п** городов по одному разу, вернувшись в тот, с которого начал.

Требуется найти такой маршрут движения, при котором суммарное пройденное расстояние будет минимальным.

В терминах теории графов задача коммивояжёра – это задача отыскания кратчайшего гамильтонова цикла в нагруженном полном графе.

Она может быть решена путем полного перебора всех возможных перестановок вершин полного графа с вычислением для каждой перестановки длины маршрута и выбором кратчайшего из них.

<u>Но</u>: число всех перестановок равно **n!**, и даже для сравнительно небольших значений **n** полный перебор практически неосуществим.

Известны различные алгоритмы решения этой задачи (например, применение методов линейного программирования).

7.2 Планарность графов

Укладка графа

Говорят, что граф *G обладает укладкой* на некоторой поверхности, если существует изоморфный ему граф *G'*, вершинами которого являются точки этой поверхности, а ребра пересекаются только в вершинах (инцидентных обоим ребрам). Кривые, представляющие ребра *G'*, «не имеют лишних пересечений»

В таком случае граф G' называется yкладкой графа G.

Плоские и планарные графы

Граф называется **планарным**, если он обладает укладкой на плоскости.

Возможные укладки планарных графов на плоскости называются **плоскими графами**.

Область, ограниченная ребрами в плоском графе, называется **гранью**.

Число граней плоского графа G обозначается f(G).

Пример.

Планарный граф K_4 и его укладка на плоскости. Число граней равно 4.

Формула Эйлера

Для графов, уложенных на некоторой поверхности, справедливо определённое соотношение между числом вершин, рёбер и граней.

Теорема (формула Эйлера, 1752 г.).

Для связного планарного (\boldsymbol{n} , \boldsymbol{m})-графа справедливо следующее соотношение:

$$n - m + f = 2$$
.

Следствие 1.

Если **G** – связный планарный (**n**, **m**)-граф (**n** > 3), то

$$m \le 3n - 6$$
.

Следствие 2.

Графы K_5 и $K_{3,3}$ не планарны.

Ясно, что любой граф с числом вершин *n* ≤ 4 является планарным;

при $\mathbf{n} = 5$ планарным является любой граф, кроме $\mathbf{K_5}$;

при $n \le 6$ планарным является всякий двудольный граф, кроме $K_{3,3}$.

Операции включения и исключения вершин степени 2

Будем говорить, что граф G' получен из графа G **включением вершины степени 2**, если в графе G одно из ребер e = (u, v) заменено на два новых ребра:

$$e_1 = (u, w) \text{ } u \text{ } e_2 = (w, v),$$

где **w** – новая вершина степени 2, а остальные вершины и ребра остались без изменения.

<u>Замечание</u>.

В приведенном определении не исключается случай u = v.

Эта операция в литературе называется также *подразбиением ребра*

Пример.

Операция, обратная операции включения вершины степени 2, называется *исключением вершины степени* 2.

В литературе используются также термины надразбиение, стягивание

Гомеоморфные графы

Граф G_1 называется *гомеоморфным* графу G_2 , если G_1 можно получить из G_2 с помощью конечного числа операций включения и исключения вершин степени 2.

Замечание.

Отношение «быть гомеоморфными» является отношением эквивалентности на множестве графов.

Критерий Понтрягина-Куратовского

Теорема (Понтрягин, Куратовский).

Граф планарен тогда и только тогда, когда он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

В общем случае при использовании метода полного перебора согласно критерию Понтрягина-Куратовского требуется выполнить

 $m{C}_n^6$ проверок на отыскание подграфа $m{K_{3,3}}$ и $m{C}_n^5$ проверок на отыскание подграфа $m{K_5}$.

Если такие подграфы не будут найдены, то данный граф является планарным, и можно найти его плоское представление.

Пример.

Рассмотрим граф G:

Для проверки всех подграфов с 6 вершинами достаточно рассмотреть подграфы, полученные из \boldsymbol{G} путем удаления двух вершин.

Всего $C_8^6 = C_8^2 = 28$ проверок.

Удалим вершины v_1 и v_2 :

Получен планарный подграф.

Удалим вершины v_1 и v_3 :

Получен планарный подграф. И т. д.

Все 28 проверок приводят к планарным подграфам.

Поэтому нет необходимости выполнять проверки по отысканию подграфа K_5 .

G' – плоский граф, изоморфный графу G.

