MTH 342 Homework 2

Philip Warton

January 27, 2020

1.

Let U, V be subspaces of vector space W.

a.)

Show U + V is a subspace of W.

Proof. We must begin by showing $U + V \subseteq W$, and then show closure under vector addition, closure under scalar multiplication, and the presence of the additive identity $\mathbf{0}$.

Let $u \in U$ and $v \in V$, chosen arbitrarily. Since $U \subseteq W$ and $u \in U$, we have $u \in W$. Similarly, we can say $v \in W$. Because W is a vector space, we know that W is closed under vector addition, and therefore with $u, v \in W$, and therefore $u + v \in W$. Now we have $U + V \subseteq W$.

Let $x, y \in U + V$. By definition of U + V we know $\exists u_1, u_2 \in U, \ \exists v_1, v_2 \in V : x = u_1 + v_1 \text{ and } y = u_2 + v_2$. We can write

$$x + y = (u_1 + v_1) + (u_2 + v_2)$$

$$= u_1 + v_1 + u_2 + v_2$$

$$= u_1 + u_2 + v_1 + v_2$$
(by associative addition in W)
$$= (u_1 + u_2) + (v_1 + v_2)$$

Withh $u_1, u_2 \in U$, and U being a vector space, we know that $(u_1 + u_2) \in U$. Similarly, we know $(v_1 + v_2) \in V$. Hence, we have x + y is the sum of a vector in U and a vector in V, and U + V is closed under vector addition.

Next, we must show closure under scalar multiplication. Let c be a scalar in the field F. Let t be a vector in U+V. By the definition of U+V, we know $\exists u \in U, \ \exists v \in V: t=u+v$. Multiplying t by our scalar c we get

$$\begin{split} c(t) &= c(u+v) \\ &= c(u) + c(v) \end{split} \qquad \text{(by distributive scaling in } W)$$

Since U is a vector space and therefore closed under scalar multiplication, and $u \in U$, we know $c(u) \in U$. Similarly, we know that $c(v) \in V$. Thus, c(t) can be expressed as the sum of a vector in U with a vector in V, and U + V is closed under scalar multiplication.

Finally, we need the additive identity, $\mathbf{0}_{U+V} \in U+V$. Suppose $u, \mathbf{0}_U \in U$. Since $u \in U \subseteq W$, $u \in W$. With $u \in W$ and $u + \mathbf{0}_U = u$, we know that $\mathbf{0}_U = \mathbf{0}_W$ by the uniqueness of the additive identity in W. Using the same methods it can be shown that $\mathbf{0}_V = \mathbf{0}_W = \mathbf{0}_U$. Since $\mathbf{0}_U + \mathbf{0}_V = \mathbf{0}_W$ is the sum of a vector in U and a vector in V, we have $\mathbf{0}_W \in U+V$. $\mathbf{0}_W$ is the additive identity for all vectors in W including any subset of W.

b.)

Let $w \in W \setminus V$. Show $w + v \notin V \ \forall v \in V$.

Proof. Suppose by contradiction that $w+v\in V$. Let $u\in V: u=v+w$. By the existence of an additive inverse we have v+(-v)=0. Therefore we can write

$$u = v + w$$

$$u + (-v) = v + w + (-v)$$

$$= v + (-v) + w$$

$$= (v + (-v)) + w$$

$$= \mathbf{0} + w$$

$$= w$$

Since both $u, (-v) \in V$, we know $u + (-v) = w \in V$. Therfore $w \notin W \setminus V$ (contradiction). Thus $w + v \notin V$.

c.)

Show that $U \cup V$ is a subspace of W if and only if either $U \subset V$ or $V \subset U$.

Proof. We must show that the implication holds in both directions.

" \Rightarrow " Assume that $U \cup V$ is a subspace of W. We want to show that $U \subset V$ or $V \subset U$. Pick $u \in U$ and $v \in V$ arbitrarily. We have $u, v \in U \cup V$, and since we assume $U \cup V$ to be a vector space, we know $u + v \in U \cup V$. Therefore it must be the case that either $u + v \in U$ or $u + v \in V$. If $u + v \in U$, then we have $v \in V \Longrightarrow v \in U$, and $V \subset U$. In the other case, it can similarly be shown that $U \subset V$. This shows that the forwards implication holds.

" \Leftarrow " Assume that either $U \subset V$ or $V \subset U$. If $U \subset V$ then $U \cup V = V$ and is therefore a subspace of W. The same holds if $V \subset U$. Thus the implication holds in the backwards direction.

d.)

Show that U + V is a direct sum if and only if $U \cap V = \{0\}$.

Proof. To show the double implication we must show that the implication holds going both forwards and backwards.

"\(\Rightarrow\)" Assume U+V is a direct sum, and therefore $x\in U+V$ has one unique pair of u,v where $u\in U$ and $v\in V$ such that x=u+v. Suppose $y\in U$ and $y\in V$. Since $y\in U$ and U is a subspace we also have $-y\in U$. With $-y\in U$ and $y\in V$ we know that $y+(-y)\in U+V$. Since every vector has one unique set of parts, $\mathbf{0_U}\in U, \mathbf{0_V}\in V$, and $\mathbf{0}\in U+V$, it must be the case that $y+(-y)=\mathbf{0_V}+\mathbf{0_U}\Rightarrow y=\mathbf{0}$. Therefore, any vector $y\in U\cap V$ is equal to $\mathbf{0}$, thus $U\cap V=\{\mathbf{0}\}$.

"\(\infty\)" Assume $U \cap V = \{\mathbf{0}\}$. There are three cases for vectors in U + V. Either $t \in U \setminus V$, $t \in V \setminus U$, or $t \notin U \cup V$. Suppose we take a vector $u \in U$. To write this as a vector in U + V we must write it as $u + \mathbf{0}$, and thus there is only one solution. Now choose a vector $v \in V$, and it must be written as $\mathbf{0} + v$. Finally let $w \in U + V$ where $w \notin U \cup V$. Suppose w can be written as $u_1 + v_1$ or as $u_2 + v_2$ where $u_1, u_2 \in U$ and $v_1, v_2 \in V$. This gives us $u_1 + v_1 = u_2 + v_2$. By reordering this can be written as $u_1 - u_2 = v_2 - v_1$ Since $u_1 - u_2 \in U$ and $v_2 - v_1 \in V$, we can write $u_1 - u_2 = v_2 - v_1 \in U \cap V$. With $U \cap V = \{\mathbf{0}\}$ this means that $u_1 = u_2$ and $v_1 = v_2$ and therefore $w \in U + V$ has a unique solution.

2.

Let A be the set of vectors
$$A = \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\x\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\x\\x^2\\x^2\\0 \end{bmatrix}, \begin{bmatrix} 1\\x\\x^2\\x^3 \end{bmatrix} \right\}$$

Proof. We want to show that this is a basis for polynomial space $P_3(F)$. To do this we must show that span(A) $P_3(F)$ and that A is linearly independent. Pick 4 constants arbitrarily $c_1, c_2, c_3, c_4 \in F$ where F is our field. Any linear combination of the basis can be written as:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & x & x & x \\ 0 & 0 & x^2 & x^2 \\ 0 & 0 & 0 & x^3 \end{bmatrix} \times \begin{bmatrix} c_1 \\ c2 \\ c3 \\ c4 \end{bmatrix} = (c_1 + c_2 + c_3 + c_4) + x(c_2 + c_3 + c_4) + x^2(c_3 + c_4) + x^3(c_4)$$

We can say that this set of of vectors spans $P_3(F)$ if we show that each of the standard basis vectors of $P_3(F)$ can

be written as a linear combination of A. For the vector $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ we can write $c_1 = 1$ and $c_2, c_3, c_4 = 0$. For the vector $\begin{bmatrix} 0 \\ x \\ 0 \\ 0 \end{bmatrix}$ we can write $c_1 = -1, c_2 = 1, c_3 = 0, c_4 = 0$. Now for the vector $\begin{bmatrix} 0 \\ 0 \\ x^2 \\ 0 \end{bmatrix}$ we write $c_1 = 0, c_2 = -1, c_3 = 1, c_4 = 0$.

Finally for $\begin{bmatrix} 0 \\ 0 \\ 0 \\ x^3 \end{bmatrix}$ we have $c_1=0, c_2=0, c_3=-1, c_4=1$. Since we can write all the standard basis vectors of $P_3(F)$

as linear combinations of vectors in A, we have $\operatorname{span}(A) = P_3(F)$. To demonstrate linear independence, we wish to

show
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & x & x & x \\ 0 & 0 & x^2 & x^2 \\ 0 & 0 & 0 & x^3 \end{bmatrix} \times \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \mathbf{0} \Rightarrow c_1, c_2, c_3, c_4 = 0. \text{ Suppose } x = -1, \text{ we get }$$

$$(c_1 + c_2 + c_3 + c_4) + (-1)(c_2 + c_3 + c_4) + (1)(c_3 + c_4) + (-1)(c_4) = 0$$

$$(c_1 + c_2 + c_3 + c_4 - c_2 - c_3 - c_4) + (c_3 + c_4 - c_4) = 0$$

$$(c_1) + (c_3) = 0$$

$$\Rightarrow c_1 = -c_2$$

Now if we choose x = 0 we get $(c_1 + c_2 + c_3 + c_4) = 0$, and since we have show that $c_1 = -c_3$ this can be written as $c_2 + c_4 = 0$, therefore $c_2 = -c_4$. Now suppose x = 1, this tells us

$$c_1 + 2c_2 + 3c_3 + 4c_4 = 0$$

$$c_1 + 2c_2 + 3(-c_1) + 4(-c_2) = 0$$

$$-2c_1 - 4c_2 = 0$$

By replacing c_3 and c_4 we get the following:

$$c_1 + 2c_2 + 3(-c_1) + 4(-c_2) = 0$$
$$-2c_1 - 2c_2 = 0$$
$$c_1 = c_2$$

If we have $c_1 = c_2 = -c_3 = -c_4$ then they must all be equal to zero for the previous equations to hold. Replace all coefficients with c_1 or $-c_1$ and observe $c_1 + 2c_1 - 3c_1 - 4c_1 = -4c_1 = 0 \Rightarrow c_1 = 0$.

3.

Let U and V be vector spaces over a field F. Let $f: U \to V$ be a linear map.

a.)

Let $u_1, u_2, ..., u_k \in U$. Show that if $f(u_1), f(u_2), ..., f(u_k)$ are linearly independent, then their inverse images are also linearly independent.

Proof. Let $f(u_1), f(u_2), ..., f(u_k)$ be a set of independent vectors. By contradiction, suppose $u_1, u_2, ..., u_k$ are linearly dependent. Then there exist scalars $c_1, c_2, ..., c_k$ not all equal to 0 such that $c_1u_1 + c_2u_2 + ... + c_ku_k = \mathbf{0}$. By taking the transform of this vector we get the following:

$$f(c_1u_1 + c_2u_2 + \dots + c_ku_k) = f(\mathbf{0})$$

$$f(c_1u_1 + c_2u_2 + \dots + c_ku_k) = \mathbf{0}$$

$$f(c_1u_1) + f(c_2u_2) + \dots + f(c_ku_k) = \mathbf{0}$$

$$c_1(f(u_1)) + c_2(f(u_2)) + \dots + c_k(f(u_k)) = \mathbf{0}$$

This having non-trivial solutions would imply that $f(u_1), f(u_2), ..., f(u_k)$ are not linearly independent (contradiction). Therefore $u_1, u_2, ..., u_k$ are linearly independent.

b.)

The function f is monomorphic if and only if $f = \{0\}$.

Proof. Let us show that the implication holds in both directions.

" \Rightarrow " Assume f is monomorphic. Choose a vector $n \in U$ where $n \in \text{null}(f)$. If we take the image of n we get f(n) = 0 by definition of null space. By taking the image of $0 \in U$ we get f(0) = 0. Since f is a monomorphism we have $f(n) = f(0) \Rightarrow n = 0$. With n = 0 for any $n \in \text{null}(U)$, we have shown that $\text{null}(f) = \{0\}$.

"\(\infty\)" Let us prove the contrapositive of this implication. Suppose f is not monomorphic, we want to show that $\operatorname{null}(f) \neq \{\mathbf{0}\}$. Since f is not monomorphic, then there exists $x,y \in U$ such that f(x) = f(y) and $x \neq y$. We can write that $x - y \neq \mathbf{0}$, and then we have a non-zero vector, x - y, where f(x - y) = f(x) - f(y) = 0. Therefore $x - y \neq \mathbf{0} \in \operatorname{null}(f)$.

c.)

Suppose f is monomorphic. We want to show that linear independence is preserved under the transformation.

Proof. Let X be a set of linearly independet vectors where $X = \{x_1, x_2, ..., x_k\}$. We can write $c_1x_1 + c_2x_2 + ... + c_kx_k = \mathbf{0} \Rightarrow c_1, c_2, ..., c_k = 0$. Since we have $\mathbf{0} = c_1x_1 + c_2x_2 + ... + c_kx_k$ we know that $f(\mathbf{0}) = f(c_1x_1 + c_2x_2 + ... + c_kx_k)$. With the zero vector being preserved under linear transformations, we can say $\mathbf{0} = f(c_1x_1 + c_2x_2 + ... + c_kx_k)$. We can rewrite this as follows:

$$\mathbf{0} = f(c_1x_1 + c_2x_2 + \dots + c_kx_k)$$

= $f(c_1x_1) + f(c_2x_2) + \dots + f(c_kx_k)$
= $c_1f(x_1) + c_2f(x_2) + \dots + c_kf(x_k)$

Since this final statement is equivalent to $c_1x_1 + c_2x_2 + ... + c_kx_k = 0$, both imply that $c_1, c_2, ..., c_k = 0$.

4.

Suppose we have a vector space V over a field F and a linear transform $f:V\to F$. Let $v\in V\setminus \operatorname{null}(f)$. We can show that $V=\operatorname{null}(f)+\operatorname{span}\{v\}$ and is a direct sum.

This is a direct sum.

Proof. Since $\operatorname{null}(f)$ is a vector space and $v \notin \operatorname{null}(f)$, we know that $cv \notin \operatorname{null}(f)$ for any $c \in F$ where $c \neq 0$. Therefore, $\operatorname{null}(f) \cap \operatorname{span}\{v\} = \{\mathbf{0}\}$, and thus the sum is direct (by the property proven in $\boxed{\operatorname{1d.}}$).