UFCG/CCT/UNIDADE ACADÊMICA DE MATEMÁTICA PERÍODO: 2022.2 DISCIPLINA: ÁLGEBRA LINEAR TURNO: TARDE ALUNO(A):_______ TURMA:_____

Segunda Avaliação - 11/05/2023

IMPORTANTE: Não retire o grampo a prova. Não é permitido o uso de calculadora. Desligue e guarde qualquer aparelho eletrônico.

- 1 $(3,0~{\rm pontos})$ Classifique as afirmações abaixo como VERDADEIRAS ou FALSA. Justifique a sua resposta.
 - a) () O conjunto $W = \left\{ \begin{bmatrix} 1 & a \\ a & b \end{bmatrix}; a, b \in \mathbb{R} \right\}$ é um subespaço vetorial de $M_2(\mathbb{R})$.
 - b) () O conjunto $\beta = \{(1,0,2), (0,-1,4), (1,-1,6)\}$ é linearmente independente.
 - c) () O vetor v=(2,5,6) pertence ao subespaço vetorial de \mathbb{R}^3 gerado pelos vetores $v_1=(1,1,0)$ e $v_2=(0,1,2)$.
 - d) () O conjunto $\beta = \{(1,1),(2,-1)\}$ é uma base de \mathbb{R}^2 .
- 2 (2,0 pontos) Mostre que o o conjunto

$$W = \{(x, y, z) \in \mathbb{R}^3; 2x + y - z = 0\}$$

é um subespaço vetorial de \mathbb{R}^3 .

3 - (1,0 ponto) Determine uma base para o subespaço vetorial de $M_2(\mathbb{R})$ dada por

$$W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; b = a + c \in d = c \right\}.$$

- 4 (2,0 pontos) Sejam $\beta = \{(1,-1),(2,0)\}$ e $\beta' = \{(1,-2),(-1,3)\}$ bases de \mathbb{R}^2 .
 - a) Determine $[I]^{\beta'}_{\beta}$.
 - b) Encontre $[v]_{\beta'}$ onde $[v]_{\beta} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$
- 5 (2,0 pontos) Determine a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que T(0,1,1)=(2,1), T(1,1,-1)=(0,2) e T(1,0,-1)=(1,-1).

Boa Prova