Math 212 Homework 6

Your name goes here

Due April 10, 2019

List of collaborators:

For Theorem P, prove one of parts 1–2, and one of parts 3–4. You will need to chase elements.

Theorem P. Let I be an index set and let $\mathcal{F} = \{T_i\}_{i \in I}$ be a family of sets in a universal set U. Let $X \subseteq U$. Then:

1.
$$\left(\bigcap_{i\in I} T_i\right)^c = \bigcup_{i\in I} T_i^c$$

$$2. \left(\bigcup_{i \in I} T_i\right)^c = \bigcap_{i \in I} T_i^c$$

3.
$$X \cap \left(\bigcup_{i \in I} T_i\right) = \bigcup_{i \in I} (X \cap T_i)$$

4.
$$X \cup \left(\bigcap_{i \in I} T_i\right) = \bigcap_{i \in I} (X \cup T_i)$$

Proof.

For Theorem Q, after you have proved that \mathcal{R} is an equivalence relation, you need to state what the equivalence (relation) classes are, describe them in more familiar terms, and prove that you have found them all.

Theorem Q. The relation \mathcal{R} defined on \mathbb{Z} by $(m,n) \in \mathcal{R}$ if and only if m+n is even is an equivalence relation. The relation classes are ______.

For Theorem R, we make the following definition.

Definition. Let S be a set and \mathcal{R} a relation on S. We say that \mathcal{R} is a partial ordering on S if it is reflexive, transitive, and anti-symmetric: if $x, y \in S$ and both $(x, y) \in \mathcal{R}$ and $(y, x) \in \mathcal{R}$, then x = y. Furthermore, we say that two elements $x, y \in S$ are comparable under \mathcal{R} if either $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$. If any two elements of S are comparable under \mathcal{R} , we say \mathcal{R} is a total ordering.

Theorem R.	The relation	\subseteq on the set	$\mathcal{P}(\mathbb{Z})$ is a j	partial ordering	that is not a t	otal ordering.
Proof.						