Computer Networks and Distributed Systems Data Link Layer

Dr Fidelis Perkonigg

February 22, 2018

Overview

- Overview of Data Link Layer
 - How do we transfer data over a non-ideal (noisy, data loss) physical channel?
 - How do we divide data into chunks for the physical layer?
 - How do we control access to a physical channel?
- Data Framing
- Medium Access Control
 - In wired networks
 - In wireless networks
- Repeaters, Hubs, Bridges/Switches

Data Link Layer

- Arranges data into bit stream for sending over physical link
 - Defines communication between two physically connected network nodes
 - Must cope with different physical layer technologies

Two sub-layers:

- Logical Link Control (LLC)
 - Low-level flow and error control for single hop
- Media Access Control (MAC)
 - Framing, addressing and channel access

Data Link Layer Services

- Unacknowledged connectionless service
 - Independent frames with no logical connection
 - No recovery from loss but fast
 - Common in LANs using reliable channels
- Acknowledged connectionless service
 - Each frame is acknowledged
 - Good for unreliable channels such as wireless
 - Out of order delivery possible
- Acknowledged connection-oriented service
 - Connection established before data is sent
 - Each frame numbered and guaranteed to be delivered exactly once and in order
 - Provides reliable bit stream
- Provide error detection and correction
 - Physical layer may introduce errors by adding, removing, or modifying bits

LLC - Error Detection and Correction

Detection

- Add 1 parity bit to data (e.g. 8 bits)
 - Makes total number of 1s odd (or even)
 - Detects all single (and odd numbered) bit errors, misses even bit errors
- Cyclic Redundancy Check (CRC)
 - Hash-based checksum (often implemented in H/W)

Correction

- Error correcting codes aka. Forward Error Correction (FEC)
 - Add more redundancy resulting in greater capacity to detect and correct bursts of errors
 - E.g. repetition of data or more complex functions
- Detection vs correction
 - fast or slow channels?
 - error-prone channels?

Data Framing

- Need to group bits into separate smaller messages
 - Costs less to retransmit if error detected
 - Smaller chance of collisions
 - This means more overhead
- Need to add meta data to control protocol
 - Addressing, length, frame type, CRC, ...

Framing Methods

- Insert gaps
 - But timing hard to guarantee
- Count bytes
 - Include length field to delimit data
 5 H E L L O 7 ...
 - Any issues with this approach?
 - Synchronisation issues if the field length has been changed due to a transmission error

Framing Methods

- Use start and end flags
 - Special signal at start and end of frame (FLAG)
 - Search for flag if receiver loses track

 FLAG Frame FLAG FLAG Frame ...
 - Any issues with this?
 - What if FLAG is part of the data?
- Uses byte stuffing
 - Identify data with same bit pattern as the flag

Ethernet and IEEE 802.3

- Ethernet originally developed by Xerox
- Became open standard (IEEE 802.3)
- Two standards: IEEE 802.3 and Ethernet
 - Only small differences
 - Terms used interchangeably in common use
- Uses Manchester encoding
- Operates over various physical media
- Data link layer is separate to physical layer
- But physical layer affects parameters of Ethernet

IEEE 802.3 - Frame Format

- SFD: start of frame delimiter
- DA: destination address
- SA: source address
- FCS: Frame Check Sequence
- Ethernet standard slightly different
 - Does not have SFD field
 - Replaces Length with Type field

IEEE 802.3 - Frame Fields

- Preamble
 - 7-byte alternating 0s and 1s to establish synchronisation
 - Framing then by timing, spaces between frames plus counting from length field
- SFD (start of frame delimiter)
 - 10101011 indicates start of frame
 - Allows receiver to miss part of preamble without missing the start of the next field

IEEE 802.3 - Frame Fields

- Destination address
 - 16 or 48 bits (depending on implementation)
 - Host(s) intended to receive
 - Single host (unicast)
 - Group address (multicast)
 - Global address (broadcast)
- Source address
 - 16 or 48 bit address of sender

Ethernet Addresses

- Usually, Ethernet addresses are 48 bits
- Written as 6 pairs of hex digits (e.g. 00:11:85:7A:BC:E4)
- Medium Access Control (MAC) address
- Octets are received from left to right and least significant bit is received first for every octet (for IEEE 802.3)
- first 3 octets: vendor code (assigned by IEEE)
- last 3 octets: network card specific unique code set by vendor
- second bit of first octet: 0: global address; 1: local address (rest of vendor code is 0)
- first bit of first octet: 0: unicast addr; 1: multicast

IEEE 802.3 - Frame Fields

- Type (Ethernet only)
 - Identifies higher level protocol
- Length (IEEE 802.3 only)
 - Bytes in this frame (optional)
- Data
 - Includes higher layer headers
 - Maximum transmission unit (MTU) of 1500 bytes
- Most hardware can find out if it is type or length (type values are >1500)

IEEE 802.3 - Frame Fields

- Pad
 - 0-46 bytes to ensure frame is long enough to enable collision detection
- FCS (Frame Check Sequence)
 - Enables error detection
 - CRC, based on all fields except preamble, SFD and FCS

Medium Access Control (MAC)

- How do we allocate communications channels?
 - Contention
 - Fairness
 - Access latency
- Physical channel supports multiplexing scheme
- Static allocation vs. dynamic allocation

Static Allocation

- Recall: TDM, FDM and CDMA
 - Static ways for stations to access fixed part of medium
- Properties
 - Guaranteed, allocated bandwidth
 - Bounded latency to transmit
- Challenges
 - In many computer networks most stations do not want to transmit at once
 - Do not want to waste bandwidth on silent stations
 - Alternative is to allocate dynamically

Dynamic Allocation

- Medium can be used on demand
- Single transmitter on medium is simpler electronically
- Challenges:
 - Need to ensure fair access to medium
 - Would like bounded delay to transmit
 - How to avoid collisions?

Propagation Delay

- Finite time for signal to go from one node to another: delay = distance/speed (where $speed \approx 2 * 10^8 m/s$)
- Nodes will receive signal at different times
 - Depends on distance from sender
 - Need to keep this in mind when managing who transmits when

Medium Access Control: ALOHA

- Developed at University of Hawaii
- Send whenever data ready to go
- Central station broadcasts data back so that sender can check if a collision occurred
- Garbled data as a sign that collision occurred
 - If collision occurs, wait random time and try again
- Not very efficient: 18% theoretical maximum channel utilisation

Slotted ALOHA

- Divide time into slots
 - Start time of frames is synchronised
 - Probability of collisions is reduced
- Cannot assume synchronised clocks between stations
 - Master station sends short signal at start of each time frame
- Successful transmission 37% of the time

Improved Multiple Access

- ALOHA has a simple problem:
 - No-one listens before they start to send
 - Leads to lots of collisions
- Carrier Sense Multiple Access (CSMA)
 - When ready to send, listen
 - 2 If channel busy, wait until idle
 - When channel idle, send whole frame
 - If collision, wait random time and start listening again

CSMA with Collision Detection

- What if 2 hosts transmit at the same time?
 - Two overlapping signals interfere; needs to be spotted as early as possible
- Collision Detection (CD)
 - 1 Listen to channel while sending
 - If collision, abort signal immediately
 - Wait random time and try again
- Properties
 - Does not waste channel sending broken frames
 - Gives unbounded time to access network
 - Designed for fair access

IEEE 802.3 - Collision Detection (CD)

- Ensure sender still sending when collision noise arrives
 - Must send for twice the propagation delay
- 802.3 allows for 2.5 km max LAN (with repeaters)
 - Specifies minimum frame length that takes at least $50 \mu s$ to propagate (includes 4 repeaters)
 - Assuming 100 ns transmission delay for sending 1 bit (10 Mbps link), this means at least 500 bits, which is rounded up to 512 (safety), hence the pad

Data Frame Format

- (7+1+2+2+2+46+4)*8 = 512 bits
- Takes $51.2\mu s$ on a 10 Mbps link
- Time to detect collision over longest network while still transmitting

IEEE 802.3 - Retry Timing

- Must avoid repeated collisions
 - At n^{th} retry, wait between 0 and 2^{n-1} slot times (51.2 μs)
 - Do this up to a maximum of 1023 slot times
 - Give up on 16th collision
- Properties
 - Low delay if frames of 2 hosts collide
 - Reasonable delay if frames of many hosts collide

IEEE 802.3 - Inter-frame Gap

- $9.6\mu s$ interval between successive frames of the same host
- Allows other hosts to use medium
- Initial frame can be transmitted immediately

CSMA/CD Summary

- Equal access and no priorities
- Unbounded access time; especially long times at heavy loads due to exponential back-off
- IEEE 802.3/Ethernet use this

Token Passing

- Arrange more orderly sharing of medium
 - Uses permission token
 - Access to medium signalled by passing token around
- Avoids collisions through strict control
 - But need to handle token control
 - Differentiate between tokens and data
 - Must handle token loss
- IEEE 802.5 Token Ring
 - Ring topology where data and token is passed around in one direction
 - When station needs to send data, it takes free token and sends data frame
 - Destination copies passing data
 - Sender removes frame on return and passes free token on
- Nice idea but complex in practice and rarely used

Summary: MAC in Wired LANs

- ALOHA
 - Contention based service
 - Low performance but simple, equal access
- CSMA/CD
 - Tries to avoid collisions, will detect collisions
 - Probabilistic/unbounded access time, equal access
- Token Passing
 - Avoids collisions
 - Bounded access time, access hierarchy but complex

MAC in Wireless LANs

- Centralised Medium Access Control
 - Good where data is time-sensitive or high priority
 - Suffers limits of centralisation
- Distributed Medium Access Control
 - Good for ad-hoc peers with bursty traffic
- Main challenges with distributed MAC
 - Collisions cannot be detected while sending data
 - No guarantee that all nodes can transmit frames to or receive frames from each other

Challenges

- Signals from A and C collide (at B) but A and C cannot hear each other to avoid the collision
- Hidden terminal problem

- B and C falsely conclude that they cannot send at the same time
- Exposed terminal problem

Collision Avoidance

- Idea: sender and receiver initially exchange short frames other stations can overhear
- RTS (Ready to Send) request the channel
- CTS (Clear To Send) response to RTS frame

- Other stations (A, D) hear exchange (RTS and/or CTS)
- Stations infer for how long the channel will be busy (RTS and CTS frames include the size)
- ACK (Acknowledgement) sent on receipt of frame (provides efficient collision recovery)
- Repeated failures to transmit result in greater back-off time

CSMA with Collision Avoidance

- Station with frame to transmit senses medium and waits until it is idle
- When idle, wait for back-off time
- If still idle, transmit data
- If busy, wait until idle and then wait for back-off time
- Back-off time is adjusted exponentially and influenced by IFS (see next slide) and overheard RTS/CTS frames
- Distributed Coordination Function (DCF) as stations act independently
- Collisions are costly as the entire frame is transmitted

Inter Frame Spaces (IFS)

- Back-off times based on IFS
- Similar to IEEE 802.3 Inter-frame Gaps
- Help manage prioritising stations and data streams (e.g. VoIP)
- Urgent actions use shorter IFS (e.g. ACK, CTS)

IEEE 802.11 - WLAN

- Set of standards that governs wireless transmissions (physical layer, MAC layer)
- Basic Service Set (BSS)
 - Smallest building block with stations sharing medium using the same MAC protocol, aka cell
 - Access point and number of stations (laptops, mobile phones, etc.)
 - BSSes can overlap
- Extended Service Set (ESS)
 - Two or more BSSes, connected by distribution system
 - Appears as single logical LAN to higher levels

IEEE 802.11

- Operate in 2.4 and 5 GHz ISM frequency bands
- Industrial Scientific and Medical (ISM) unlicensed band
 - Regulates power usage to avoid interference (max. 1W and typical 50mW)
 - Many other applications: Bluetooth, microwave ovens, garage door openers, surveillance systems, ...
- Rate adaptation (higher rate if signal is clear)

IEEE 802.11 - Standards

- 802.11b
 - Up to 11 Mbps; 2.4 GHz band
 - QPSK¹ and CDMA
- 802.11a
 - Up to 54 Mbps; 5 GHz band
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - Reach is 7 times shorter compared to 2.4 GHz band
- 802.11g
 - Up to 54 Mbps; also uses OFDM but in the 2.4 GHz band
 - Better distance compared to 802.11a
- 802.11n
 - Up to 600 Mbps; operates on 2.4 GHz and 5 GHz band
 - Increase number of channels and reduce framing overhead (group frames together)
 - 4 antennas for 4 simultaneous streams
 - Uses Multiple Input Multiple Output (MIMO), to exploit multipath propagation

¹quadrature phase-shift keying

IEEE 802.11 Summary

- Challenges of medium access control
- CSMA/CA but no CD
- Inter-frame spacing provides priority system using CSMA
- Various standards (802.11a/b/g/n)

Repeaters and Hubs

Repeaters:

- Makes two wires appear as one
- Amplifies electrical signal
- Improves signal propagation distance
- Ethernet (10 Mbps) up to 4 repeaters: 2.5 km max length

Hubs:

- Electronically join all input ports
- All ports at same speed
- Do not amplify electrical signal

Both:

- Operate at physical layer
- Transparent to higher layers
- No checking/generating of checksums
- Add to propagation delays (important to CSMA/CD)

Bridge/Switch

- Operate on Data Link Layer (layer 2) and do not interpret higher layer information
- Conditional forwarding, which only forwards frames based on MAC addresses
- Bridges are used to join LANs together to make a larger LAN
- Traffic isolation

Separating Collision Domains

- Shared medium requires CSMA/CD to arbitrate
- Collisions can be problem on busy network
- Hosts in separate collision domains do not compete for media
- Switches form ends of collision domains (vs. hubs and repeaters)

Bridge/Switch

- Extending physical limits
- Different speeds on different ports
- Interconnect devices that use different standards and protocols
- Separation of administration
- Idea of store and forward results in higher delay
- Ethernet calls it Ethernet Switch and these days they are also used to connect individual machines to LANs

Segmentation with Switches

- Transparent operation
 - Hosts and routers are oblivious to their presence in the network
- Keeps mapping of MAC addresses and ports in table (e.g. hash table)
- Relays frames based on table
 - If destination MAC on same port as source, do not forward
 - If port for destination MAC is known, only forward to that port
 - Otherwise use flooding (i.e. send to all ports except source port)
- Used in Ethernet

- Backwards learning
 - Listen to traffic and build address/port tables
 - Based on source and destination MAC addresses in the header
 - Purges entries that are a few minutes old to keep table up-to-date
- Loops in topology
 - Make determining location of source impossible
 - . E.g. two switches that are connected by two links
- Use Spanning Tree
 - Switches agree on loop-free topology
- Network layer protocol often handles loops
 - Packets may have limited lifetime

- Adds transmission and processing delays
- Store-and-Forward
 - Store the entire frame and verify CRC before forwarding frame
- Cut-Through
 - Forward frame after reading destination MAC and without performing a CRC check

- Organisational changes happen regularly and require rewiring
- VLANs give a way to rewire in software
- 802.1Q: extends the header and adds a VLAN identifier
- Requires VLAN-aware switches (not backwards compatible)
- VLANs need to be configured on the switches (i.e. port/VLAN tables)