Chapter 15. Greedy Algorithms

Joon Soo Yoo

May 22, 2025

Assignment

- ► Read §15.1
- ► Problems
 - ► §15.1 5

Chapter 15: Greedy Algorithms

- Chapter 15.1: An Activity-Selection Problem
- Chapter 15.2: Elements of the Greedy Strategy
- Chapter 15.3: Huffman Codes
 Chapter 15.4: Offline Caching

Chapter 15: Greedy Algorithms

(Pl ... On

Greedy algorithms solve optimization problems by making locally optimal choices.

These choices are made without considering future consequences in detail.

- Often simpler and more efficient than dynamic programming.
- Greedy algorithms work for a wide range of problems:
 - Activity selection
 - Huffman coding
 - Offline caching
 - Minimum spanning tree, Dijkstra's algorithm
- Greedy choice doesn't always guarantee global optimality—but in some problems, it does.

1=2 ··· n-1+1

m [:][]

c n) c l) m

Greedy Algorithm vs Dynamic Programming

Dynamic Programming:

- Explores all subproblems and stores their results.
- ▶ Bottom-up or memoized top-down.

Greedy Algorithm:

- Makes a single "best-looking" choice at each step.
- Top-down: make a choice, then solve the remaining subproblem.
- This chapter shows when and why greedy algorithms yield optimal solutions.

15.1 An Activity-Selection Problem

- ▶ **Goal:** Select a maximum-size set of compatible activities.
- Each activity a; has:
 - ► Start time *s_i*
 - ightharpoonup Finish time f_i
 - ▶ Interval $[s_i, f_i)$

Activities a_i and a_j are compatible if: $s_i > f_i$ or $s_i > f_j$

$$s_i \geq f_j$$
 or $s_j \geq f_i$

Only one activity can use the resource at a time.

Activity-Selection Problem Example

Suppose we are given a set of n activities: $S = \{a_1, a_2, \dots, a_n\}$ $S = \{a_1, a_2, \dots, a_n\}$

Assume activities are sorted by finish time:

$$f_1 \le f_2 \le \dots \le f_n \tag{15.1}$$

Goal: Select the largest subset of mutually compatible activities.

Figure: Activity Data Table

	ω 1	1 14						ha ay				
i	/1	2	3	4	5,	6,	7	8	9	10	11]
Si	1	3	0	5	B	12	6	7	8	2	12	
fį	4	5	6	7	9	9	10	1/1	12	1/4	16	
	V	X	X									

- Each a; represents an activity with a start and finish time.
- ▶ The table is sorted by increasing finish time.
- Example compatible subsets:

Optimal Substructure of the Activity-Selection Problem

- ▶ Let S_{ij} be the set of activities that:
 - Start after a_i finishes
 - ► Finish before a_j starts

- (-) ā)
- Let A_{ij} be a maximum set of mutually compatible activities in S_{ii} .
- ▶ Suppose A_{ij} includes some activity a_k .

Dividing the Problem Around a_k

- ▶ If $a_k \in A_{ij}$, then:
 - $A_{ik} = A_{ij} \cap S_{ik}$: activities before a_k
 - $ightharpoonup A_{kj} = A_{ij} \cap S_{kj}$: activities after a_k
- ► Then:

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

► So the size of the optimal solution:

$$|A_{ij}| = |A_{ik}| + 1 + |A_{kj}|$$

Claim: Optimal Substructure in Activity Selection

Claim

If A_{ij} is an optimal (maximum-size) subset of compatible activities in S_{ij} and includes some activity a_k , then the subsets:

- ▶ $A_{ik} \subseteq S_{ik}$ (activities before a_k)
- ▶ $A_{kj} \subseteq S_{kj}$ (activities after a_k)

must also be optimal for their respective subproblems.

Proof: Cut-and-Paste Argument

- Assume $A_{ij} \neq A_{ik} \cup \{a_k\} \cup A_{kj}$ is optimal A_{sk}
- Suppose, for contradiction, a better solution A_{ki} exists:

$$|A'_{kj}| > |A_{kj}|$$

Construct a new solution:

$$A'_{ij} = A_{ik} \cup \{a_k\} \cup A'_{kj}$$

► Then:

$$|A'_{ij}| = |A_{ik}| + 1 + |A'_{kj}| > |A_{ik}| + 1 + |A_{kj}| = |A_{ij}|$$

- ► Contradiction! So A'_{ki} cannot exist.
- ▶ Therefore, A_{kj} must be optimal. Same logic applies to A_{ik} .

Conclusion: Optimal Substructure Holds

From the cut-and-paste argument, we have shown:

Optimal Substructure $\in (P)$

If A_{ii} is optimal, then:

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$$

where A_{ik} and A_{ki} are also optimal.

- This property enables both:
 - A recursive (or DP) solution, and
 - A greedy solution, which we explore next.

Dynamic Programming Recurrence

- ▶ Let c[i,j] be the size of an optimal solution for S_{ij} .
- If we know a_k is in the solution: $\begin{vmatrix} a_{ij} \\ c[i,j] = c[i,k] + c[k,j] + 1
 \end{vmatrix}$
- But we don't know which $a_k \in S_{ij}$ to choose, so:

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max\{c[i,k] + c[k,j] + 1 \mid a_k \in S_{ij}\} \end{cases} \text{ otherwise}$$

Observations

- You can implement this recurrence using:
 - Recursive algorithm with memoization
 - Bottom-up dynamic programming with table-filling
- But... there is a simpler and more efficient approach:

Greedy Choice

A single carefully chosen activity can reduce the problem to one smaller subproblem.

Let's explore this next.

Why Greedy is Different from Dynamic Programming

- In dynamic programming, you:
 - ightharpoonup Consider all activities a_k in S_{ij} .
 - ▶ Solve all subproblems S_{ik} and S_{kj} for each a_k .
 - ▶ Then decide which a_k gives the best result.
- In the greedy approach, you:
 - ightharpoonup Directly choose the activity that finishes earliest (e.g., a_1).
 - Immediately add it to your solution.
 - Then solve only one subproblem: activities starting after a₁.

Greedy Choice Strategy

Since the activities are sorted by finish time:

$$f_1 \leq f_2 \leq \cdots \leq f_n$$

the greedy choice is the first activity a_1 .

▶ If multiple activities finish at the same earliest time, choose any one.

► Key insight: The first activity to finish is part of some optimal

solution.

Reducing the Problem After Greedy Choice

ightharpoonup Once a_1 is selected, we only need to consider:

$$S_1 = \{a_i \in S \mid s_i \geq f_1\}$$

- ▶ Why not consider activities finishing before a_1 ?
 - ightharpoonup Because f_1 is the earliest finish time.
 - No activity ends before s₁.
- ▶ The remaining task: solve the subproblem S_1 .

(

Greedy Choice and Optimal Substructure

- ▶ We've already shown the problem has **optimal substructure**.
- ▶ If a_1 is part of the optimal solution, then:

- Key question: Is this greedy strategy always valid?
- Answer: Yes shown via Theorem 15.1.

Theorem 15.1: Greedy Choice is Safe

Statement

Let S_k be any nonempty subproblem. Let a_m be the activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof Sketch of Theorem 15.1

- Let A_k be a maximum-size compatible subset of S_k .
- ▶ Let $a_i \in A_k$ be the activity with the earliest finish time.
- If $a_j = a_m$, we're done. /
- \triangleright Otherwise, replace a_i with a_m to form:

$$\bigwedge_{j} \neq \bigwedge_{k} = (A_{k} \setminus \{a_{j}\}) \cup \{a_{m}\}$$

 \triangleright A'_k is still compatible, same size as A_k , and includes a_m .

Implications of Theorem 15.1

- ▶ You don't need dynamic programming.
- ► Greedy algorithm:
 - Repeatedly select the earliest finishing activity.
 - Discard overlapping activities.
- Each selected activity's finish time increases strictly.
- ▶ Only one pass needed (in sorted order) \rightarrow **Efficient**.

Top-Down Design of Greedy Algorithms

- Unlike DP, greedy algorithms use a top-down approach.
- ▶ Make a choice \rightarrow reduce to a subproblem \rightarrow repeat.
- Dynamic programming works bottom-up: solve subproblems first.
- Greedy algorithms are often simpler, faster, and easier to implement.

A Recursive Greedy Algorithm

- ► Instead of solving all subproblems (as in DP), we use a top-down greedy approach.
- ► The procedure RECURSIVE-ACTIVITY-SELECTOR:
 - ► Takes start times s [] and finish times f [] as input arrays.
 - Assumes activities are sorted by finish time: $f_1 \le f_2 \le \cdots \le f_n$.
 - Uses a fictitious activity a_0 with $f_0 = 0$.
- ► Initial call:

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n)

RECURSIVE-ACTIVITY-SELECTOR Pseudocode

```
SKAI SELL 1
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
   m = k + 1
   while m \le n and s[m] < f[k] // find the first activity in S_k to finish
       m=m+1
  if m \leq n
       return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)
   else return Ø
```

How the Recursive Greedy Algorithm Works

- ► At each call:
 - Start with activity a_k
 - Find next activity a_m such that $s[m] \ge f[k]$
- Add a_m to the result set.
- Recur on subproblem S_m (activities starting after a_m).
- Stop when no further compatible activities remain.

Efficiency:

► Each activity is examined once $\rightarrow \Theta(n)$ time (if sorted).

RECURSIVE-ACTIVITY-SELECTOR Pseudocode

From Recursive to Iterative Greedy Algorithm

- The recursive solution is almost tail recursive?
 - Recursive call is the last action in each case.
 - Many compilers can convert this to iteration automatically.
- It's straightforward to manually convert it to an iterative form.
- The iterative version uses a loop to simulate recursion and builds the result incrementally.

GREEDY-ACTIVITY-SELECTOR Pseudocode

Question?