AJAY KUMAR GARG ENGINEERING COLLEGE, GHAZIABAD Department of Applied Sciences & Humanities

Sessional Test-2

Program: B.Tech

Session: 2024-25 Subject: Engineering Mathematics-I

Max. Marks: 50

Semester: I

Section: S-1 to S-9 & S-11 to S-20

Subject Code: BAS-103

Time: 2 Hours

OBE Remarks:

Q.No	1	2	3	4	5	6	7	8	9	10	11	12
CO No.	CO2	CO2	CO3	CO3	CO3	CO2	CO2	CO2	CO3	CO3	CO2	CO3
Bloom's Level* (L1 to L6)	Li	L2	L3	L1	L3	L4	L4	L5	L5	L6	L5	L5
Weightage CO2: 26.5						Weightage CO3: 23.5						

^{*}Bloom's Level: L1: Remember, L2: Understand, L3: Apply, L4: Analyze, L5: Evaluate, L6: Create

Note: Answer all the sections.

Section-A

(2*5=10)

- 1. Find the n^{th} derivative of $y = x^2 sinx$.
- 2. If u = f(r, s, t), where $r = \frac{x}{y}$, $s = \frac{y}{z}$, $t = \frac{z}{x}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
- 3. If u = x(1 y), v = xy, find $\frac{\partial(x,y)}{\partial(u,v)}$.
- 4. State the Taylor's Theorem for two variables.
- 5. Expand $e^x \log (1 + y)$ in the powers of x and y up to terms of first degree.

Section-B

(5*5=25)

- 6. If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$; $xy \neq 0$ prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 y^2}{x^2 + y^2}$.
- 7. If u = f(r) where $r^2 = x^2 + y^2$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.
- 8. If $u = \sec^{-1}\left(\frac{x^3 y^3}{x + y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\cot u$. Also evaluate $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x \partial y} + y^2\frac{\partial^2 u}{\partial y^2}$.
- 9. Expand $f(x, y) = y^x$ about (1, 1) upto third degree terms and hence evaluate (1.02)^{1.03}.
- 10. Find the relation between u, v, w for the values u = x + 2y + z; v = x 2y + 3z; $w = 2xy zx + 4yz 2z^2$.

Section-C

(7.5*2=15)

- 11. If $y = \sin(a\sin^{-1}x)$, find $(y_n)_0$
- 12. If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$, then Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

Faculty Sign

∀ HoD Sign