REDES NEURONALES 2021

Práctico 1

Nota:

- El práctico debe entregarse con un informe escrito en formato pdf que no contenga el código de programación. Si desean pueden enviar las notebook pero por separado.
- La parte numérica puede resolverse programando en el lenguaje que mejor manejen o usando programas disponibles.
- El práctico no puede tener más de cuatro (4) páginas.

Considere el modelo Integrate-and-Fire para la evolución temporal del potencial de membrana $V_m(t)$ entre el interior y el exterior de una neurona genérica, tal cual lo vimos en las clases teóricas.

Primera parte: sin activación del mecanismo de disparo

Considere solo la ecuación diferencial del modelo, sin activar el mecanismo de disparo:

$$\frac{dV_m(t)}{dt} = \frac{1}{\tau_m} (E_L - V_m(t) + R_m I_e(t)), \tag{1}$$

donde

- $\bullet \ \tau_m = 10\,ms$ es el tiempo característico de la membrana,
- $E_L = -65 \, mV$ es el potencial en reposo,
- $R_m = 10M\Omega$ es la resistencia
- $I_e(t)$ es una corriente eléctrica externa.
- A) Considere el caso en que $I_e = 0$. Haga un estudio geométrico de la dinámica de la ecuación (1) indicando la dinámica para tiempos largos $(t \to \infty)$.
- B) Considere el caso en que $I_e = 2nA$. Haga un estudio geométrico de la dinámica de la ecuación 1 indicando la dinámica para tiempos largos $(t \to \infty)$.
- C) Resuelva analíticamente la ecuación diferencial (1) (sin incorporar el mecanismo de disparo) para un valor arbitrario y constante $I_e(t) = I$.
- **D)** Grafique la solución exacta para $0 \, ms \le t \le 200 \, ms$ con los valores de los parámetros indicados arriba y $I_e = 2 \, nA$ y $V(0) = E_L = -65 \, mV$.
- E) Use el método de Runge-Kutta de cuarto orden para resolver el problema de valor inicial

$$\frac{dV_m(t)}{dt} = \frac{1}{\tau_m} (E_L - V_m(t) + R_m I_e(t)), \qquad V(t=0) = E_L \qquad 0 \, ms \le t \le 200 \, ms$$
 (2)

con paso h=0.05ms, $I_e=2\,nA$ y sin activar el mecanismo de disparo. Grafique en un mismo gráfico la solución exacta que ya calculó en el punto D) y la aproximación numérica. Use los valores de los parámetros definidos arriba.

Segunda parte: con activación del mecanismo de disparo

F) Considere el problema de valor inicial

$$\frac{dV_m(t)}{dt} = \frac{1}{\tau_m} (E_L - V_m(t) + R_m I_e(t)), \qquad 0ms \le t \le 200ms \quad h = 0.05ms.$$
 (3)

donde h es el paso de integración, $V(t=0)=-65\,mV$, $I_e=2\,nA$ y los restantes parámetros toman los valores ya definidos. Incorpore ahora el mecanismo de disparo. Para ello, si $V_m(t)$ ultrapasa cierto valor umbral V_{um} , se debe restituir el valor de $V_m(t)$ a E_L :

$$V_m(\tau) \to E_L$$
.

donde τ indica entonces el tiempo de disparo. Grafique la aproximación numérica de $V_m(t)$ para $0 \, ms \le t \le 200 \, ms$ y un potencial umbral de $V_{um} = -50 \, mV$.

G) Repita el punto F) con

$$I_e(t) = I_0 \cos(t/30), \qquad I_0 = 2.5nA,$$

para $0 \, ms \leq t \leq 200 \, ms$,

- **H)** Manteniendo el mecanismo de disparo, calcule analíticamente la frecuencia de disparo para los valores del punto anterior en función de la corriente externa I_e (constante). Compare este resultado con el obtenido mediante simulaciones numéricas.
- I) Repita el punto F) pero ahora con una corriente externa dependiente del tiempo t de la forma:

$$I_e(t) = 0.35 \left(\cos \left(\frac{t}{3} \right) + \sin \left(\frac{t}{5} \right) + \cos \left(\frac{t}{7} \right) + \sin \left(\frac{t}{11} \right) + \cos \left(\frac{t}{13} \right) \right)^2 nA \tag{4}$$