Theory and Practice of Humanoid Walking Control

2022 Fall semester

Homework # 5

Problem 5 Compliant control using disturbance observer

* The first supporting foot is the left foot.

First DSP and last DSP time in one step \rightarrow t double1 (0.15 sec), t double2 (0.15 sec)

The total number of steps to reach the target point. (It is automatically calculated when you click the start walking button.) → total step num

Current number of steps → current step num

Initial X, Y, Z CoM position w.r.t the support foot \rightarrow com support init (0), com support init (1), com support init (2)

Real pelvis position w.r.t the supporting foot frame \rightarrow pelv support current .translation()(n), n = 0, 1, 2 (X, Y, Z respectively.)

Initial pelvis height w.r.t the supporting foot frame \rightarrow pelv support start .translation()(2)

Real CoM position w.r.t the supporting foot frame \rightarrow com support current (n), n = 0, 1, 2 (X, Y, Z respectively.)

Foot step position w.r.t the current support foot frame

 \rightarrow foot step support frame (n,0), foot step support frame (n,1)

 \rightarrow The first element n of the variable means sequence, and the second elements 0 and 1 mean the positions of X

Measured joint angle → current_motor_q_leg_ (Vector12d)

$$\begin{array}{l} \Rightarrow \text{ current_motor_q_leg_(Vector12d)} \\ \\ H(z) & \geq h[n] \ \bar{z}^n \ \land \ X(z) & \leq x[n] \bar{z}^n \\ \text{fof dis(nthe timen } \Rightarrow f(z) \ (s \Rightarrow z) \ & \text{sihovs oidel impulse} \\ \text{for } x[n] & \leq x[n] \ \chi \ (z) & \leq x[n] \ \bar{z}^n \ = \ \chi(z) \ \bar{z}^n = 1 \\ \\ \text{M[n]} & \chi(z) & \leq x[n] \ \bar{z}^n$$

ex
$$X(n) = \left(\frac{1}{\theta}\right)^n M[n]$$

$$X(z) = \sum_{n=0}^{\infty} \left(\frac{1}{\theta}\right)^n z^{-n} = \frac{1}{1 - \frac{1}{\theta}z^2}$$
Series should converge.

San, (al <1)

work for all n, nut-all 2. Convergence region =0work for all n, nut-all 2. Convergence region

If $Y(z) = X_{(z)} + X_{2(z)}$, $z \in both$ convergence regions $Y(z) = X_{(z)} + X_{2(z)}$ $Y(z) = \sum_{n=-\infty}^{\infty} Y(n)z^{-n}$ $Y(z) = \sum_{n=-\infty}^{\infty} Y(n)z^{-n}$ $Y(z) = \sum_{n=-\infty}^{\infty} Y(n)z^{-n}$ $Y(z) = \sum_{n=-\infty}^{\infty} Y(z)$