Day 2, Part 4: Exploratory Data Analysis & Data Visualization

Introduction to Python

Tom Paskhalis

RECSM Summer School 2023

Exploratory data analysis

- "Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone--as the first step." (Tukey, 1977)
- Exploratory data analysis (EDA) is the first and often most important step in research
- Study's feasibility, scope and framing would usually depend on its results
- Specific details of EDA depend upon the type and quality of data available

Measurement scales

TABLE 1

Scale	Basic Empirical Operations	Mathematical Group Structure	Permissible Statistics (invariantive)
Nominal	Determination of equality	Permutation group $x' = f(x)$ $f(x)$ means any one-to-one substitution	Number of cases Mode Contingency correlation
ORDINAL	Determination of greater or less	Isotonic group $x' = f(x)$ $f(x)$ means any monotonic increasing function	Median Percentiles
INTERVAL	Determination of equality of intervals or differences	General linear group $x' = ax + b$. Mean Standard deviation Rank-order correlation Product-moment correlation
RATIO	Determination of equality of ratios	Similarity group $x' = ax$	Coefficient of variation

Source: Stevens (1946)

Measurement scales in Pandas

- The 4 measurement scales defined by Stevens (1946) can be roughly represented in pandas as follows:
- Interval and ratio -> numeric
- Nominal and ordinal -> categorical

```
In [1]: import pandas as pd
```

```
In [1]: import pandas as pd
In [2]:
        # This time let's skip the 2nd row, which contains questions
         kaggle2021 = pd.read csv('../data/kaggle survey 2021 responses.csv', sk
         kaggle2021.head(n = 1)
        /tmp/ipykernel 282529/2302513793.py:2: DtypeWarning: Columns (19)
        5,201) have mixed types. Specify dtype option on import or set l
        ow memory=False.
          kaggle2021 = pd.read csv('../data/kaggle survey 2021 response
        s.csv', skiprows = [1])
                Time
Out[2]:
                from
              Start to
                      Q1
                           Q2
                                 Q3
                                            Q4
                                                  Q5
                                                        Q6 Q7 Part 1 Q7 Part 2
               Finish
            (seconds)
                                                       5-10
                      50-
                                      Bachelor's
                 910
                                                Other
                                                                               R
         0
                          Man India
                                                                Python
                                         degree
                                                      years
        1 rows × 369 columns
```

```
In [1]: import pandas as pd
In [2]:
        # This time let's skip the 2nd row, which contains questions
        kaggle2021 = pd.read csv('../data/kaggle survey 2021 responses.csv', sk
        kaggle2021.head(n = 1)
        /tmp/ipykernel 282529/2302513793.py:2: DtypeWarning: Columns (19)
        5,201) have mixed types. Specify dtype option on import or set l
        ow memory=False.
          kaggle2021 = pd.read csv('../data/kaggle survey 2021 response
        s.csv', skiprows = [1])
                Time
Out[2]:
                from
              Start to
                      Q1
                           Q2
                                 Q3
                                           Q4
                                                  Q5
                                                        Q6 Q7 Part 1 Q7 Part 2
               Finish
            (seconds)
                                                       5-10
                      50-
                                     Bachelor's
                 910
         0
                          Man India
                                                Other
                                                               Python
                                                                              R
                                        degree
                                                      vears
        1 rows × 369 columns
In [3]: # We will load the questions as a separate dataset
        kaggle2021 qs = pd.read csv('../data/kaggle survey 2021 responses.csv
```

	kaggle2021_qs									
Out[3]:		Time from Start to Finish (seconds)	Q1	Q2	Q3	Q4	Q5	Q6	Q7_Part_1	
	0	Duration (in seconds)	What is your age (# years)?	What is your gender? - Selected Choice	In which country do you currently reside?	What is the highest level of formal education	Select the title most similar to your current	For how many years have you been writing code	Wha programminç languages do you use on a reg	

1 rows × 369 columns

Summarizing numeric variables

DataFrame methods in pandas can automatically handle (exclude) missing data
 (NaN)

Summarizing numeric variables

DataFrame methods in pandas can automatically handle (exclude) missing data
 (NaN)

n [4]:	kaggle	2021.describe	() # DataFra	ame.describe	e() provides	an range of	summa
ut[4]:		Time from Start to Finish (seconds)	Q7_Part_12	Q9_Part_12	Q10_Part_16	Q12_Part_5	Q14_
	count	2.597300e+04	0.0	0.0	0.0	0.0	
	mean	1.105466e+04	NaN	NaN	NaN	NaN	
	std	1.014716e+05	NaN	NaN	NaN	NaN	
	min	1.200000e+02	NaN	NaN	NaN	NaN	
	25%	4.430000e+02	NaN	NaN	NaN	NaN	
	50%	6.560000e+02	NaN	NaN	NaN	NaN	
	75%	1.038000e+03	NaN	NaN	NaN	NaN	
	max	2.488653e+06	NaN	NaN	NaN	NaN	

8 rows × 31 columns

```
In [5]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appl
Out[5]: 11054.66492126439
```

```
In [5]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appl
Out[5]: 11054.66492126439
In [6]: kaggle2021.iloc[:,0].median() # Median
Out[6]: 656.0
```

```
In [5]: kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appl
Out[5]: 11054.66492126439
In [6]: kaggle2021.iloc[:,0].median() # Median
Out[6]: 656.0
In [7]: kaggle2021.iloc[:,0].std() # Standard deviation
Out[7]: 101471.6221245172
```

```
In [5]:
        kaggle2021.iloc[:,0].mean() # Rather than using describe(), we can appl
Out[5]:
         11054.66492126439
In [6]:
        kaggle2021.iloc[:,0].median() # Median
Out[6]:
        656.0
In [7]:
        kaggle2021.iloc[:,0].std() # Standard deviation
Out[7]:
         101471.6221245172
In [8]:
        import statistics ## We don't have to rely only on methods provided by
        statistics.stdev(kaggle2021.iloc[:,0])
Out[8]:
         101471.6221245172
```

Summarizing categorical variables

Summarizing categorical variables

In [9]:	kaggle2021.describe(include = 'all') # Adding include = 'all' tells par								
Out[9]:		Time from Start to Finish (seconds)	Q1	Q2	Q3	Q4	Q5	Q6	Q7_Part_
	count	2.597300e+04	25973	25973	25973	25973	25973	25973	2186
	unique	NaN	11	5	66	7	15	7	
	top	NaN	25-29	Man	India	Master's degree	Student	1-3 years	Pythc
	freq	NaN	4931	20598	7434	10132	6804	7874	2186
	mean	1.105466e+04	NaN	NaN	NaN	NaN	NaN	NaN	Na
	std	1.014716e+05	NaN	NaN	NaN	NaN	NaN	NaN	Na
	min	1.200000e+02	NaN	NaN	NaN	NaN	NaN	NaN	Na
	25%	4.430000e+02	NaN	NaN	NaN	NaN	NaN	NaN	Na
	50%	6.560000e+02	NaN	NaN	NaN	NaN	NaN	NaN	Na
	75%	1.038000e+03	NaN	NaN	NaN	NaN	NaN	NaN	Na
	max	2.488653e+06	NaN	NaN	NaN	NaN	NaN	NaN	Na

¹¹ rows × 369 columns

```
In [10]:
         kaggle2021.iloc[:,2].mode() # Mode, most frequent value
Out[10]:
               Man
          Name: Q2, dtype: object
In [11]:
         kaggle2021.iloc[:,2].value_counts() # Counts of unique values
Out[11]:
          02
                                      20598
          Man
          Woman
                                       4890
          Prefer not to say
                                        355
                                         88
          Nonbinary
          Prefer to self-describe
                                         42
          Name: count, dtype: int64
```

```
In [10]:
         kaggle2021.iloc[:,2].mode() # Mode, most frequent value
Out[10]:
               Man
          Name: Q2, dtype: object
In [11]:
         kaggle2021.iloc[:,2].value_counts() # Counts of unique values
Out[11]:
          02
          Man
                                      20598
          Woman
                                       4890
          Prefer not to say
                                        355
          Nonbinary
                                         88
          Prefer to self-describe
                                         42
          Name: count, dtype: int64
In [12]:
         kaggle2021.iloc[:,2].value counts(normalize = True) # We can further no
Out[12]:
          02
          Man
                                      0.793054
                                      0.188272
          Woman
          Prefer not to say
                                      0.013668
          Nonbinary
                                      0.003388
          Prefer to self-describe
                                      0.001617
          Name: proportion, dtype: float64
```

Summary of descriptive statistics methods

Method	Numeric	Categorical	Description
count	yes	yes	Number of non-NA observations
value_counts	yes	yes	Number of unique observations by value
describe	yes	yes	Set of summary statistics for Series/DataFrame
min, max	yes	yes (caution)	Minimum and maximum values
quantile	yes	no	Sample quantile ranging from 0 to 1
sum	yes	yes (caution)	Sum of values
prod	yes	no	Product of values
mean	yes	no	Mean
median	yes	no	Median (50% quantile)
var	yes	no	Sample variance
std	yes	no	Sample standard deviation
skew	yes	no	Sample skewness (third moment)
kurt	yes	no	Sample kurtosis (fourth moment)

Crosstabulation

- When working with survey data it is often useful to perform simple crosstabulations
- Crosstabulation (or *crosstab* for short) is a computation of group frequencies
- It is usually used for working with categorical variables that have a limited number of categories
- In pandas pd.crosstab() method is a special case of pd.pivot_table()

Crosstabulation in pandas

Crosstabulation in pandas

In [13]: # Calculate crosstabulation between 'Age group' (Q1) and 'Gender' (Q2) pd.crosstab(kaggle2021['Q1'], kaggle2021['Q2']) Man Nonbinary Prefer not to say Prefer to self-describe Woman Q2 Out[13]: **Q1** 18-21 22-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-69 70+

Margins in crosstab

Margins in crosstab

In [14]: # It is often useful to see the proportions/percentages rather than rav
pd.crosstab(kaggle2021['Q1'], kaggle2021['Q2'], normalize = 'columns')

Out[14]:

Q2	Man	Nonbinary	Prefer not to say	Prefer to self- describe	Woman
Q1					
18- 21	0.179435	0.181818	0.169014	0.285714	0.228425
22- 24	0.176862	0.147727	0.185915	0.214286	0.196933
25- 29	0.187348	0.136364	0.171831	0.119048	0.203272
30- 34	0.134236	0.193182	0.095775	0.166667	0.126380
35- 39	0.096757	0.079545	0.118310	0.166667	0.093047
40- 44	0.074619	0.045455	0.087324	0.023810	0.064826
45- 49	0.056850	0.045455	0.067606	0.023810	0.035787
					- 10

Q2	Man	Man Nonbinary Prefer not to say		Prefer to self- describe	Woman
Q1					
Cros	stabul	ationin	pandas with	0.000000	0.027812
piν	ot_t	able	0.019718	0.000000	0.014724
60- 69	0.024468	0.045455	0.028169	0.000000	0.007157
70+	0.005340	0.045455	0.016901	0.000000	0.001636

Crosstabulation in pandas with pivot_table

In [15]: # For `values` variable we use `Q3`, but any other would work equally v $pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q2', values = 'Q3', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q2', values = 'Q3', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q2', values = 'Q3', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q2', values = 'Q3', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q2', values = 'Q3', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q1', values = 'Q1', values = 'Q1', pd.pivot_table(kaggle2021, index = 'Q1', columns = 'Q1', values = '$ Man Nonbinary Prefer not to say Prefer to self-describe Woman Out[15]: **Q1** 18-21 22-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-69 70+

Data visualization

Source: Tufte (2001), based on Marey (1885)

Data visualization in Python

- As with dealing with data, Python has no in-built, 'base' plotting functionality
- matplotlib has become the one of standard solutions
- It is often used in combination with pandas
- Other popular alternative include seaborn and plotnine
- Also pandas itself has some limited plotting facilities

plotnine - ggplot for Python

- plotnine implements Grammar of Graphics data visualisation scheme (Wilkinson, 2005)
- It mimics the syntax of a well-known R library ggplot2 syntax (Wickham, 2010)
- In doing so, it makes the code (almost) seamlessly portable between the two languages

Grammar of graphics

- Grammar of Graphics is a powerful conceptualization of plotting
- Graphs are broken into multiple layers
- Layers can be recycled across multiple plots

Structure of ggplot calls in **plotnine**

• Creation of ggplot objects in plotline has the following structure:

```
ggplot(data = <DATA>) +\
  <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))
```

• If the *mappings* are re-used across geometric objects (e.g. scatterplot and line):

```
ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) +\
      <GEOM_FUNCTION>() +\
      <GEOM_FUNCTION>()
```

Creating a ggplot in **plotnine**

Creating a ggplot in **plotnine**

```
In [16]: from plotnine import *
```

Creating a ggplot in **plotnine**

```
In [16]: from plotnine import *
In [17]: q1_plot = ggplot(data = kaggle2021) + geom_bar(aes(x = 'Q1')) # Basic q1_plot
```


Out[17]: <Figure Size: (640×480) >

Compare to base pandas

Compare to base pandas

Compare to base pandas

Compare to matplotlib

Compare to matplotlib

In [20]: import matplotlib.pyplot as plt

Compare to matplotlib

Prettifying ggplot in **plotnine**

Prettifying ggplot in **plotnine**

```
In [22]: # Here we change default axes' labels and then apply B&W theme
ql_plot_pretty = ql_plot +\
    labs(x = 'Age group', y = 'respondents') +\
    theme_bw()
ql_plot_pretty
```


Writing plots out in **plotnine**

- Output format is automatically determined from write-out file extension
- Commonly used formats are PDF, PNG and EPS

Writing plots out in plotnine

- Output format is automatically determined from write-out file extension
- Commonly used formats are PDF, PNG and EPS

```
In [23]: q1_plot_pretty.save('../temp/q1_plot_pretty.pdf')

/opt/spyder/spyder-env/lib/python3.10/site-packages/plotnine/ggp
lot.py:587: PlotnineWarning: Saving 6.4 x 4.8 in image.
/opt/spyder/spyder-env/lib/python3.10/site-packages/plotnine/ggp
lot.py:588: PlotnineWarning: Filename: ../temp/q1_plot_pretty.pd
f
```

Additional visualization materials

Books:

- Hieran, Kiely. 2019. Data Visualization: A Practical Introduction. Princeton, NJ:
 Princeton University Press
- Tufte, Edward. 2001. *The Visual Display of Quantitative Information*. 2nd ed. Cheshire, CT: Graphics Press

Online:

- Plotnine: Grammar of Graphics for Python
- Plotnine Documentation
- Ggplot2 Documentation

Next

- Linear regression
- Communicating results