Correlation and Regression

Adejumo Ridwan Suleiman

Correlation

What is Correlation?

- Measures the strength and direction of relationship between two variables.
- Does not imply causation.
- Change in a variable influences another variable

Types of Correlation

- Pearson Correlation ()
- Spearman Rank Correlation ()
- Kendall's Tau Correlation
- Point-Biserial Correlation

Pearson and Spearman

Feature	Pearson Correlation	Spearman Correlation
Type of relationship	Linear	Monotonic (increasing or decreasing)
Data Type	Interval or ratio, normally distributed	Ordinal, interval, or ratio; non-normal distribution is fine
Outlier Sensitivity	Sensitive to outliers	Less sensitive to outliers

Measurement of Correlation

- Ranges from -1 to +1
 - +1 indicates a perfect positive correlation
 - -1 indicates a perfect negative correlation
 - 0 indicates no correlation

Measurement of correlation

Correlation Coefficient	Interpretation
-1	Very strong negative correlation
Between -1 and <= -0.6	Strong negative correlation
Between > -0.6 and <= -0.4	Moderate negative correlation
Between > -0.4 and < 0	Weak negative correlation

Measurement of correlation

Correlation Coefficient	Interpretation
0	No correlation
Between 0 and < 0.4	Weak positive correlation
Between >= 0.4 and < 0.6	Moderate positive correlation
Between >= 0.6 and < 1	Strong positive correlation
1	Very strong positive correlation

Visualizing Correlation

Examples

- Correlation between hypertension and heart disease is 0.7.
- Correlation between obesity and lung cancer is **0.2**.

Regression

What is regression?

- Understand relationships between variables and make predictions.
- Modelling the relationship between one or more independent variable and an outcome variable.
- Estimate how changes in predictors impact the dependent variable.

Simple Linear Regression

- Only one independent variable and one dependent variable.
- Simple Linear Regression equation is given as:

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

Where

- - dependent variable
- $\frac{y}{z}$ independent variable
- ullet the intercept, representing the expected value of when
- ullet the slope, representing the change in for a unit change in
- $^{\beta_1}$ the error term capturing the difference between predicted x . and actual values of

y.

Multiple Linear Regression

- Extends SLR by allowing more than one independent variable.
- The multiple linear regression equation is given as:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_n$$

Where

- the dependent variable
- \bullet the independent variables
- x_1 the intercept
- The coefficients representing the effect of each independent variable on y.
- : The error term

 ϵ

Assumptions of Multiple Linear Regression

- Linearity of the relationship
- Independence of Errors
- Homoscedasticity of variance (Constant Variance of Errors)
- Normality of Errors
- No perfect of multicollinearity

Interpretation of MLR

Coefficients

- Represent the change in the dependent variable for a oneunit change in the corresponding predictor variable.
- The sign indicates direction of the relationship.

 $\overset{
ho_0}{\bullet}$ Represent expected value of when all predictor variables are zero. X_1,X_2

Coefficient of determination

- $\ensuremath{R^2}$ Measures variation in the dependent variable accounted by independent variables.
- Ranges between to
 - : perfect fit

 $\dot{R}^2 = 1$: explains none of the variability

 $= R^2 = 0$ explains that **75**% of the variation in the dependent R^{2} ariable is explained by the model.

Logistic Regression

What is logistic regression?

- Unlike regression that predicts continuous outcome
- Logistic regression is designed for categorical outcomes
- Example
 - What are the predictors of heart disease(yes/no)

Assumptions of Logistic Regression

- Binary outcome
- Linear relationship
- Independence of observations
- Absence of Multicollinearity

Coefficients

- Each coefficient represents the effect of a predictor on the log odds of the outcome.
- Log odds is the

Log-Odds and Odds

- Logistic regression doesn't predict probabilities directly, it first predicts log odds.
- Log odds is transformation of probabilities that makes the relationship between features and the outcome roughly linear.
- Odds is the ratio of probability of an event happening versus not happening.
- Coefficients are converted to log-odds by taking their exponential.

Interpreting Effect of a Predictor

- A feature effect is interpreted through the log-odds.
- If odds ratio > 1: outcome increases by 1
- If odds ratio < 1: outcome decreases by 1
- If **odds ratio** = **1**: Feature has no effect on the odds of the outcome.