Credit Loan Default Detection

Team 6A

Deep Patel, Raymond Ruan, Vincent Lee, Wenchi Tseng

Data Description

Dataset Description

- "Credit_Risk_Analysis", from Kaggle
- 12 Columns x 32,582 Rows

Our Goal

- Predict the likelihood of the applicant's default
- Help lenders make informed lending decisions

- ID: Unique identifier for each loan applicant.
- Age: Age of the loan applicant.
- Income: Income of the loan applicant.
- Home: Home ownership status (Own, Mortgage, Rent).
- Emp_Length: Employment length in years.
- Intent: Purpose of the loan (e.g., education, home improvement).
- Amount: Loan amount applied for.
- · Rate: Interest rate on the loan.
- Status: Loan approval status (Fully Paid, Charged Off, Current).
- Percent_Income: Loan amount as a percentage of income.
- Default: Whether the applicant has defaulted on a loan previously (Yes, No).
- Cred_Length: Length of the applicant's credit history.

∾ Id =	# Age =	# Income =	▲ Home =	# Emp_length =	△ Intent =	# Amount =	# Rate =	# Status =	# Percent_income =
person				,					
0 32.8k	20 144	4000 6.00m	RENT 50% MORTGAGE 41% Other (2691) 8%	0 123	EDUCATION 20% MEDICAL 19% Other (20057) 62%	500 35.0k	5.42 23.2	0 1	0 0.83
0	22	59000	RENT	123	PERSONAL	35000	16.02	1	0.59
1	21	9600	OWN	5	EDUCATION	1000	11.14	0	0.1
2	25	9600	MORTGAGE	1	MEDICAL	5500	12.87	1	0.57

Essential Data Preparation and Training Data

Essential Data Preparation

Replace missing value with mean

```
#We use SimpleImputer to fill in the missing values with mean
from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='mean')
df_imputed = pd.DataFrame(imputer.fit_transform(df_encoded), columns=df_encoded.columns)
```

Transform category into numerical values

```
# We choose to use OneHotEncoder to transform our variables
from sklearn.preprocessing import OneHotEncoder

df_encoded = pd.get_dummies(df, columns=["Home", "Intent"], drop_first=True)
df_encoded['Default'] = [1 if i == "Y" else 0 for i in df['Default']]
```

Split and Clean Data

- Test size = 20%; Training size = 80%
- Random_state = 42

```
#Split data into x (features) and y (target)
X = df_cleaned.drop(columns=['Default'])
y = df_cleaned['Default']

# Create training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st
```

Drop irrelevant values

```
# Id column does not provide any useful information so we drop it
# df_cleaned will be our initial model dataset from this point
df_cleaned = df_imputed.drop(["Id"], axis=1)
```

Multinomial Naive Bayes - Benchmark

Why Naive Bayes?

- 1. Straightforward interpretation
- 2. Computational efficiency in training data
- 3. Categorical features in our dataset

Our dataset:

Id	Age	Income	Home	Emp_length	Intent	Amount	Rate	Status	Percent_income	Default
0	22	59000	RENT	123.0	PERSONAL	35000	16.02	1	0.59	Υ
1	21	9600	OWN	5.0	EDUCATION	1000	11.14	0	0.10	N
2	25	9600	MORTGAGE	1.0	MEDICAL	5500	12.87	1	0.57	N
3	23	65500	RENT	4.0	MEDICAL	35000	15.23	1	0.53	N
4	24	54400	RENT	8.0	MEDICAL	35000	14.27	1	0.55	Υ

Accuracy of Benchmark Model ≈ 0.523

Not Default = 5322; Default = 1195

Multinomial Naive Bayes After Pre-Processing

Cross-Validation & Parameters Optimization

Feature Selection- Wrapper Method

```
# Selected Features
from sklearn.feature_selection import SequentialFeatureSelector
fsSvm = SequentialFeatureSelector(nb_model, scoring='recall', n_features_to_select=4)
fsSvm.fit(X_train, y_train)

selectedFeatureIndices = fsSvm.get_support(indices=True)
selectedFeatureColNames = X_train.columns[selectedFeatureIndices]
print("Selected Features(Forward selection):")
list(selectedFeatureColNames)

Selected Features(Forward selection):
['Age', 'Income', 'Amount', 'Rate']
Accuracy = 0.5237

['Age', 'Income', 'Amount', 'Rate']
```

Scaling and SMOTE

Step1.

Use SMOTE to balance class distribution

```
# Introduce new resampled training data
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
```

Step2.

Scale the data to ensure equal weight

```
# Standardization
scaler = StandardScaler()
X_resampled_scaled = scaler.fit_transform(X_resampled)
X_test_scaled = scaler.transform(X_test)
```

Classification Report:

	precision	recall	f1-score	support
0.0 1.0	0.86 0.33	0.80 0.44	0.83 0.38	5322 1195
accuracy macro avg weighted avg	0.60 0.77	0.62 0.73	0.73 0.60 0.75	6517 6517 6517

Accuracy: 0.7334663188583704

Increase by 0.2!

Logistic Regression - Benchmark

```
Classification Report
 # Classification report
 print(f"Classification Report:\n{classification_report(y_test, logreg_pred)}")
 print(f"Accuracy: {accuracy_score(y_test, logreg_pred)}")
 Classification Report:
                             recall f1-score
                precision
                                                support
          0.0
                     0.83
                               0.98
                                         0.90
                                                   5322
          1.0
                     0.52
                               0.10
                                         0.16
                                                   1195
                                         0.82
                                                   6517
     accuracy
                    0.67
                              0.54
                                         0.53
                                                   6517
    macro avg
                                                   6517
 weighted avg
                     0.77
                               0.82
                                         0.76
 Accuracy: 0.8178609789780574
```

Accuracy of Benchmark Model ≈ 0.817

Model Initialization: The logistic regression model is initialized with the solver='liblinear' and random_state= 42

Confusion Matrix

These metrics serve as vital indicators of the logistic regression model's efficacy in our binary classification task, facilitating a comprehensive evaluation of its performance.

Logistic Regression After Pre-Processing

```
[ ] # Utilize lasso (l1) regularization and the C parameters
new_logreg_model = LogisticRegressio (penalty='l1', C=1, olver='liblinear', random_state=42)
```

Pre-processing:

Scaling, LASSO, and C Parameter

• Benchmark Comparison:

Decreased our accuracy by 0.04

Accuracy of Updated Model ≈ 0.784

Classificatio	on Report: precision	recall	f1-score	support			
0.0 1.0	0.94 0.45	0.78 0.79	0.86 0.57	5322 1195			
accuracy macro avg weighted avg	0.70 0.85	0.79 0.78	0.78 0.72 0.80	6517 6517 6517			
Accuracy: 0.7845634494399264							

Random Forest - Benchmark

```
    Building the model

[ ] # Fitting our Random Forest model on our training data
    rf_model = RandomForestClassifier(random_state=42)
    rf_model.fit(X_train, y_train)

# Getting our prediction
    rf_pred = rf_model.predict(X_test)
```

```
Classification Report:
                         recall f1-score
             precision
                                           support
                  0.87
                           0.92
                                     0.89
        0.0
                                              5322
                  0.52
                           0.39
                                     0.45
                                              1195
        1.0
                                     0.82
                                              6517
    accuracy
                  0.70
                           0.65
   macro avg
                                              6517
                                     0.81
weighted avg
                  0.81
                           0.82
                                              6517
Accuracy: 0.8229246585852386
                                            Accuracy = 0.8229
```

(2) <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x28562d5d0>
- 4500
- 4000
- 3500
- 3000
- 2500
- 2000
- 1500
- 1000
- 500

Predicted label

Why Random Forest

1. Creation of Decisions Tree

2. Robustness to Overfitting

3. Handling Loan Default Prediction

4. Improved Accuracy

Random Forest After Pre-Processing

```
param_grid = {
    'n_estimators': [50, 100, 150, 200, 250, 300],
    'max_depth': [5, 10, 15, 20, 25, 30],
    'min_samples_split': [2, 5, 0],
    'min_samples_leaf': [1, 2, 4]
}|

# Initialize GridSearchCV
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), param_grid=param_grid, cv=5, n_jobs=-
# Fit GridSearchCV
grid_search.fit(X_train_scaled, y_train)

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X test_scaled = scaler.fransform(X_test)
Best Parameters: {'max_depth': 15, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200}
```


Import module from imblearn.ensemble import BalancedRandomForestClassifier # Fit our balanced rf model on training data brfc = BalancedRandomForestClassifier(random_state=42) brfc.fit(X_train, y_train) # Our prediction brfc_pred = brfc.predict(X_test)

1. Balanced Random Forest Classifier

XGBoost - Benchmark

Building the model

```
# Fitting our model on our initial training data
xgb_model = xgb.XGBClassifier(random_state=42)
xgb_model.fit(X_train, y_train)

# Getting our predication
xgb_pred = xgb_model.predict(X_test)
```

Classification Report: recall f1-score precision support 0.87 0.0 0.92 0.90 5322 1.0 0.53 0.41 0.46 1195 0.82 6517 accuracy 0.68 6517 0.70 0.66 macro avg weighted avg 0.81 0.82 0.82 6517 Accuracy: 0.8241522172778886

Why XGBoost?

 Recent ensemble model developed in 2014 to improve the traditional
 Gradient Boosting model

Known for its fast performance and consistent accuracy

Uses decision trees as base learner

Accuracy of Benchmark Model ≈ 0.824

XGBoost After Pre-Processing

SMOTE, Standardizing, "Scale_Pos_Weight"

Addresses class imbalance and outliers

```
# Introduce new resampled training data
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# Scale the data, including test data after resampling it to see if it further improves the model
scaler = StandardScaler()
X_resampled_scaled = scaler.fit_transform(X_resampled)
X_test_scaled = scaler.transform(X_test)

# Implementing our new model on the resampled and scaled data
new_xgb_model = xgb.XGBClassifier(scale_pos_weight=3, random_state=42)
new_xgb_model.fit(X_resampled_scaled, y_resampled)

# Getting our new prediction
new_xgb_pred = new_xgb_model.predict(X_test_scaled)
```


SMOTE, Standardizing, Predictability Threshold

- y_probs controls balance of FN & FP predictions
 - Higher value = more conservative in positive predictions

```
y_probs = new_xgb_model.predict_proba(X_test_scaled)[:, 1]

# Adjust the threshold
adj_xgb_pred = (y_probs > 0.57).astype(int)
```


Accuracy ≈ 0.826 (improved by 0.002)

Accuracy ≈ 0.831 (improved by 0.007)

Visualization of Model Performances

Before Pre-Processing

After Pre-Processing

Takeaways

Importance of Data Preprocessing

2 Impact of Model Selection

3 Preprocessing Method Selection

Parameter Tuning Significance

6 Overall Accuracy ≠ Good Model

Classification Report:									
		precision	recall	f1-score	support				
	0.0 1.0	0.82 0.00	1.00 0.00	0.90 0.00	5322 1195				
	uracy o avg	0.41 0.67	0.50 0.82	0.82 0.45 0.73	6517 6517 6517				

Classification Report:								
		precision	recall	f1-score	support			
	0.0 1.0	0.87 0.53	0.92 0.41	0.90 0.46	5322 1195			
	curacy o avg	0.70 0.81	0.66 0.82	0.82 0.68 0.82	6517 6517 6517			

Both models have the same overall accuracy but consider the precision score for each class.

Thank You