25/10/23 OLS tries to find the best linear combination X: 1B= X(B)+X2B OLS estimator. (coefficient) BERT is the solution to: min h\S(zi-xiB)2 BER We usually specify 025 by equations. Ji= XiBtE unobserved term. Suppose this is your data: We can consider: Height Male. Taipei D Height = Bo tB, Male & Si = min n \(\frac{1}{N}\) \(\frac{1}\N\) \(\frac{1}{N}\) \(\frac{1}\N\) \(\frac{1 170 @ Height = Po + P, Male + B2 Taigent + Ex O = min In S (yi. Po-F, Male - B. Topei)2 180 These are specifications of estimators, not the specification of the DGP (Data Generating 165

Two main applications of OLS Predict on:
given new observation, Xn+1: How to predict? (gn+1= xn+1 B) 3) estimate marginal effect: if xi 1 by 1 unit how much does y change? (Ans: Bj) yo = Xai + Bi + Xi2 B2 + · · · + XipBp + Ei Ex. CLTV prediction Customer Life Time Value. RFM framework. Recency: When was the bast time this customer make a transaction? Frequency: how frequent a constoner make its transaction. Monetary: avg. sales per trans. We can predict CLTV by. CLTV i: B+ B, Ri+B. Fi+B Mi+Er

Ex. Cmarketing mix)
Sales t: Sale at Jay t.
July 1 Sold to Buy I
IGIT: advertisement spending (on IGI) at day t
FBt: (onFB) (. '.
Google &: Can Grouple) .
Regress:
Salesti B.+B, IG++B.FB++B. Groughet +Et.
You should spend more on platform on higher B.
OLS estimator:
= some sorts of sample mean.
= some sorts of sample mean.
= some sorts of sample mean. This can be generalized.
This can be generalized.
This can be generalized. E[Y X]
This can be generalized.
This can be generalized. E[Y X]
This can be generalized. E[Y X] = $\int_{-\infty}^{\infty} yf(y x) dy$ Where $f(y x)$ is the Conditional pdf.
This can be generalized. E[Y X] = 500 yf(y X) Jy
This can be generalized. E[Y X] = \int_{\infty}^{\infty} \footnote{f(y x)} dy. Where \int_{\infty}^{\infty x} \int is the Conditional pdf. E[Height Male=1] Rmrk: Its useful to think of
This can be generalized. E[Y X] = \int_{\infty}^{\infty} \forall f(y x) dy. Where \(f(y x) \) is the Conditional pdf. E[Height Male=1] \text{Rmrk: Its useful to think of} \[\int \text{Average height male.} \text{T} \] \[\text{E[Y X=X]} = \int(X) \]
This can be generalized. E[Y X] = \int_{\infty}^{\infty} \footnote{f(y x)} dy. Where \int_{\infty}^{\infty x} \int is the Conditional pdf. E[Height Male=1] Rmrk: Its useful to think of

Note that ELYIX] 15 a transformation of X, ELYIX] is also a R. U. P.S. & E[Y|X=x] is constant. E[Y|X] is R.V.Proposition (Law of Iterated expertion) E[Y]=E[E[Y|X]] = its an accounting equation (恆等立) is itself a RV., its expectation is ELYIXI = 5 Male's average.

L Female's average. Quiz 2 . min Elly-c) , what is C#=? Ans: Y or E[Y] CER Recall Quiz 1: min fillyi-a)2 aer d=Ji 任何國際都可以完設發 Proofi E[(Y-c)27 =E((Y-EY+EY-c))27 = F [(Y-EY)2+2(Y-EY)(EY-c)+(EY-c)27 = E(LY-EY)]+ 2E(CY-EY)(EY-)] + E(CEY-c)2] (EY-c)2(E(Y-EY]) = E((Y-EY)2]+(EY-G)2 EY-EY=0 > E[LY-EY]] = Var(Y) E[[Y-c]] ≥ Var(Y) for any CE/R

and equality holds when C=EY ⇒ C*=EY

Prop. Conditional Mean! is the best predictor. Let g(:) be a function on $X \rightarrow f$, that $x \mapsto g(x)$ Lyou can think of $g(\cdot)$ as a predictor of y based on x) Consider a prediction Than, gex) = ECYIX:X] is the solution. min EC(Y-g(X))²], So, conditional mean is the best predictor (under prediction error. The proof is similar to min EL(Y-c)2]

CER Objective function on ECLY-g(X)] After showing mil. term = 0 = E[(Y-E(Y|X)+E(Y|X)-g(X))2] E[(Y-g(x))]] = E((Y-E(YIX)) +DE((Y-ELYIX) E(YIX)-g(X)] = E[(Y-g*(x))2]+E[(g*(x)-g(x))] +E{ E(Y(X) -g(x))2] > E{(Y-g*(x))2] > The mid. term. = E [(Y-E(Y|X))²] E[2(Y-3*(x))(g*(x)-g(x))] Let g*(x)= E(Y|x) Note: We've shown the for any g(.). E [(Y-g(x))] > 2E[E[(Y-g*(x))(g*(x)-g(x))|X] > E((YE(Y|X)))] = E[(g*(x)g(x))(E[Y-g*(x)/x]) lower bound. O : E(Y-g*(x)|X] = E(Y)X] - g*(X) and lower bound is = D a trained when y(x)= E[Y|x] 9*(X)= E[11×]. So conditional E is the best gredictor.

In the proof : for any g(.) 沒事的影影輕舟已經後空翻 E((Y-g(x)))] = E((Y-E(Y/X))] + E((E(Y/X)-9(X)))] and $E((Y-g(x))^2] > E((Y-E(Y|x))^2]$ g*(x): F(Y/X) Remarle: ELYIXI is best for In-loss E[(Y-g(x))], but not necessarily for other loss fundam. e.g. min E[17-j(x)]. Remark 2: While we know ECYIXI, we still need to example ECYIXI. E((Y-g(x))2]=E((Y-E(YK))2]+E((g(x)-E(YX))2] min 1/2(yi - xi'p)2 P while n > 20 2 fr Σ(yi- x'β) = E[(yi-x'β)] by L.L.N. Replacing g(x) to x'B min E[(yi-xi'B)2] = minE[(E(YIX)-XB)] Since E(y-g(x))2] = E(y-E(YM))2] + E[(E(Y|x)-XB)] A So OLS is equivalently min E[(E(YIX)-XB)²] i.e. OLS is the best linear approximation of E[YIX].

Rer	nark'	even	if t	the relati	Fionsh'y	o i s	not	Caus	al, U	he re	gressio	n on	松:	still
ſ	ise fu	1 for	tredicti	·aιΛ.										
	('	re only	y hece	in. I conclative ediction	`)									
				Cansality		we L	iant ·	to pre	sict					
	effe	et e	of in	tervention.										
Fai Pai	lure	to	iden t	itication	n=4 (Can't	i Jentí:	fy	/Si	Finto	1)			
He	eigh C	Fe	male	Male	'			J	0-11		_,			
1	7º		0	D		The	regre	Sion:						
/	/fo		0	0				B ₁ Fem						
	163)	1		if a	11 fe	male ale	are	born	in Tai	per bei		
/	57		1	-			W					٠١٦		
						cl		(,	Situo	ition,	2)			
eg.	, }				n=3									
7)	χ,	Xz	Xz	Xt	_ Υ	eg.=	y 2 = 3	χ1+β	2X2 + F	3X2 f/	B4 X4	t E	
_1		1	0	D	0									4)2
(1)		0	1	0	0	al		/yi-β; =>(β;*						
2	f	0	D		0		3	(B*	, β [*]	, β,	β̃ ₄) ΄	P4 Cany	in be Valu	L.
												U		

Observational equivalence"
State 1: Host 1 is popular. but Hast 2 is not.
State D: Hast D is marked hat Hart I is not
State 2: Host 2 is gooder but Host 1 is not.
D. f. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dal 17 host 10-2 always partner up in 10 show
But it host 18-2 always partner up in TV show you can't distinguish whether State 1 or 2 is true since they are
"observationally equivalent".
other example:
S1: Height = Pot 5 Male +3 Taipei+ Ei
C), Light B+2 Male + STaired + 65
S2: Height= Bo + 3 Male + STaiper + Ex
If All males are from Taipei, you can't distinguish state 18-2.
you can't distinguish state 182.
End of the Lecture.!!