Advanced Topics in Artificial Intelligence: EE6180

Indian Institute of Technology Madras

Instructor: Abhishek Sinha

October 19, 2020

Mid-Term Exam.

- The mid-term paper will be due on October 28, 2020 in the class.
- Each problem carries 10 points.
- No collaboration among the students allowed. Any two or more identical or nearly-identical solutions will automatically receive zero points each.
 - 1. (Gaussian Complexity of ℓ_0 -"balls") Sparsity plays an important role in many classes of high-dimensional statistical models. In this problem, we will compute the Gaussian complexity of an s-sparse ℓ_0 -ball intersected with a unit ℓ_2 -ball. Consider the set

$$T^{d}(s) = \{ \theta \in \mathbb{R}^{d} : ||\theta_{0}|| \le s, ||\theta||_{2} \le 1. \}$$

corresponding to all s-sparse vectors contained within the Euclidean unit ball. Recall that the Gaussian Complexity of a set $V \subset \mathbb{R}^d$ is defined as

$$\mathcal{G}(V) = \mathbb{E}\big[\max_{\boldsymbol{v} \in V} \boldsymbol{v}^T \boldsymbol{w}\big],$$

where $w_i \sim_{\text{i.i.d.}} \mathcal{N}(0,1), \forall i$

In this problem, we prove that the Gaussian complexity of $T^d(s)$ is upper bounded as

$$\mathcal{G}(T^d(s)) \le \sqrt{s} + \sqrt{2s \ln\left(\frac{ed}{s}\right)}.$$
 (1)

- (a) First show that $\mathcal{G}(T^d(s)) \leq \mathbb{E}\left[\max_{|S|=s}||w_S||_2\right]$, where $w_S \in \mathbb{R}^{|S|}$ denotes the subvector of (w_1, w_2, \dots, w_d) indexed by the subset $S \subseteq \{1, 2, \dots, d\}$.
- (b) Next show that for any fixed subset S of cardinality s:

$$\mathbb{P}[||w_S||_2 \ge \sqrt{s} + \delta] \le e^{-\delta^2/2}.$$

- (c) Use the preceding parts to establish the bound (1).
- 2. (Hedge with Many Good Experts) Consider running the Hedge algorithm (with learning rate $\eta > 0$) in the standard expert's setting as discussed in the class. Show that for all $T \geq 1$ and any L > 0,

$$\hat{L}_T^{\text{Hedge}} \leq L + \frac{1}{\eta} \ln \frac{N}{N_L} + \eta T,$$

where $N_L = |1 \le i \le N : L_{i,T} \le L|$.

3. (Arbitrarily Small Training Error) Let $\mathcal{Z} = \{(x_i, f(x_i)), 1 \leq i \leq N\}$ be a set of N training samples, where $\mathcal{X} = \{x_i, 1 \leq i \leq N\}$ is the set of N corresponding feature vectors and $f: \mathcal{X} \to \{\pm 1\}$ is some unknown target function. Suppose that we have a hypothesis class $\mathcal{H} \subseteq \{h: \mathcal{X} \to \{\pm 1\}\}$, such that for any distribution μ on \mathcal{X} , there exists an $h \in \mathcal{H}$, such that the classification error (w.r.t. μ) is at most $\frac{1}{2} - \gamma$, for some $\gamma > 0$, *i.e.*,

$$\mathbb{P}_{x \sim \mu}(h(x) \neq f(x)) \le \frac{1}{2} - \gamma.$$

Let $WM_n(\mathcal{H})$ be the class of weighted majority vote functions consisting of n hypotheses, i.e.,

$$\mathtt{WM}_n(\mathcal{H}) = \{w(x) = \mathtt{sign}(\sum_{i=1}^n \alpha_i h_i(x)).$$

where $x \in \mathcal{X}, h_i \in \mathcal{H}, \alpha_i \geq 0, \sum_i \alpha_i = 1$. Prove that there exists a hypothesis in the class $WM_T(\mathcal{H})$ with $T = O(\frac{1}{\gamma^2}\log(\frac{1}{\epsilon}))$, which misclassifies at most an ϵ fraction of the training set \mathcal{Z} .

HINT: Recall the reduction of Boosting to Online Learning as discussed in the class. Use Hedge as your particular online learning algorithm. Result from Problem 2 could be useful.

4. (Group Testing Lower Bounds) In the ongoing COVID-19 pandemic, when the testing kits are short in supply, Group Testing is an effective method to carry out a large number of tests with a limited number of kits. Check out the following expository article to understand how Group Testing is being carried out in India and other parts of the world: https://www.nature.com/articles/d41586-020-02053-6.

The above article describes four possible methods of detecting COVID-19 via Group Testing. In this problem, we investigate the fundamental limits of all such testing procedures.

Formally, our goal is to figure out which of the k locations in an n-dimensional binary vector b are non-zero. One can query some subset of the dimensions, i.e., a query vector ϕ is binary with 1's in the dimensions you want to query. The outcome of the query is binary and equals $\vee_i \phi_i b_i$, which is 1 iff at least one of the queried dimensions is 1 in the noiseless case and flipped independently with probability $q \leq 0.5$ in the noisy case. Show that¹,

- (a) in the noiseless case, any group testing algorithm requires at least $(1-\epsilon)k\log(n/k)-1$ queries to have probability of error at most ϵ .
- (b) in the noisy case with noise probability $q \in [0, 1/2)$, any group testing algorithm requires at least $\frac{(1-\epsilon)k\log(n/k)-1}{1-h(q)}$ queries to have probability of error at most ϵ , where h(q) is the usual binary entropy function.

¹The base of all logarithms in this problem is 2.