Toward Better Informed Decision-Making: The Impacts of a Mass Media Campaign on Women's Outcomes in Occupied Japan

Yoko Okuyama*

Yale University

November, 2019

Job market paper. Please download the latest version here.

Abstract

Lack of access to information undermines our optimal decision-making. It is, however, an empirical question whether targeted information campaigns toward less-informed populations change their decision-making. This question is particularly salient to gender issues as past research shows that women are often disadvantaged in information acquisition. In this paper, I shed light on women's radio programs that were aired in Japan under the US-led occupation (1945-1952) and brought new information to Japanese women. Exploiting local variation in radio signal driven by soil conditions as an instrumental variable, I identify and estimate the causal impacts of exposure to women's radio programs on female political participation, labor market participation, marriage, and fertility decisions. I find that, in areas where women were more exposed to women's radio programs, women turn out more and female candidates gain more votes in the first election after World War II. Moreover, information provision through women's radio programs significantly contributes to the fertility decline and therefore has an important implication for the nation's demographic landscape. Female labor force participation and marriage remain the same, suggesting that the declining fertility is neither due to women's greater aspiration for their career nor to decline in marriage. My results are not driven by a pre-existing correlation between radio signal and women's behavior before the US occupation. My findings provide evidence that a targeted information campaign can affect recipients' behavior. They also lend support to the contemporary initiatives by the UN, NGOs, and NPOs to use mass media to reach out to women who have limited access to information.

^{*37} Hill House Avenue, Department of Economics, Yale University, New Haven, Connecticut 06511. E-mail: yoko.okuyama@yale.edu. I am very grateful to my advisors Ebonya Washington, Joseph Altonji, and Costas Meghir for their guidance and support. I also thank Jason Abaluck, Jaime Arellano-Bover, Barbara Biasi, Cormac O'Dea, Fabian Drixler, Olle Folke, John Eric Humphries, Ilse Lindenlaub, Rohini Pande, Johanna Rickne, David Schönholzer, Luke Stein, John Tang, and seminar participants at the Labor/Public prospectus workshop and Summer graduate workshop at Yale University. In addition, I would like to thank Haruko Nakamura at the Yale East Asia Library for providing access to prefectural yearbooks, Miriam Olivares at the Yale Center for Science and Social Science for ArcGIS support, the StatLab and the Digital Humanity Lab at Yale University Library for their consultative support on map digitization, Kazuo Kishimoto for sharing with me the digitized Population Census data, and Ayumi Sudo for excellent research assistance. Lastly, I acknowledge funding from Cowles Foundation for digitizing historical materials. All mistakes are my own.

1 Introduction

Can a targeted mass media campaign be used to lead women toward better-informed decisions? Evidence suggests that women are often disadvantaged in information acquisition compared to men ¹. Policy makers have been viewing targeted mass media campaigns towards women as a potent policy lever to enable them to make informed decisions and address gender inequality. However, little is known about the causal impacts of targeted mass media intervention on women's outcomes. This is what the present study sheds light on.

In this study, I leverage nationwide women's radio programs aired in Occupied Japan (1945-1952) and examine the causal impacts of these programs on women's decision-making, specifically, on their political participation, labor market participation, and family formation. Occupied Japan, or Japan during the US-led occupation, provides us a unique context to examine the causal impacts of a mass media campaign targeting women for at least two reasons. First, women's radio programs in Occupied Japan are quasi-experimental in nature; Japanese women were exposed to new information that occupying authorities brought externally. In contrast, women's radio programs in other countries often emerged hand-in-hand with the women's rights movement. Therefore, it would be more challenging to separate the causal impact of the radio campaign from that of the overarching women's rights movement ². Second, I gain access to archival resources on the contents of women's radio programs, the geographical reach of radio, as well as women's outcomes. Such records exist because

¹For example, Beaman and Dillon (2018) conducted an experiment to provide information on a new agricultural technology to a central node of a social network; they showed that women are socially less connected and therefore, receive less information, which results in gender inequality in agricultural outputs.

²We can trace the idea of women's radio programs to the heyday of radio: for example, BBC Radio 4's Woman's Hour in the UK (from October 7,1946 onwards), Radio Donna by Radio CittäFutura in Rome (from March 1976 onwards), Womankind by Pacifica Radio in New York (1969), and Hemmafru byter yrke (The Housewife Switches Jobs) by Swedish Radio P1 in Sweden (from October 7, 1965 to December 9, 1965).

women's legal and social status were considered a barometer for the success of the American occupation and were therefore, documented in detail.

From the beginning of the occupation, the authorities aired daily women's radio programs in order to better inform Japanese women. As revealed through my study of the archives and historians' accounts, these women's programs were multifaceted. The programs covered a wide range of topics, including politics, gender equality, marriage, labor law, birth spacing, and health, thereby providing a whole bundle of new information to Japanese women. Moreover, a series of Listeners surveys revealed that women's radio programs received high listenership with most female listeners finding them to be informative. Therefore, in this study, I investigate how the differential exposure to women's radio programs affected women's decision-making on electoral turnout, labor market participation, marriage, and fertility.

To carry out my empirical analysis, I digitized various historical records and constructed a unique district-level panel dataset. A primary challenge is to hand-collect data on some women's outcomes, such as electoral turnout, marriage, and birth rate, by going through local newspapers and local governments' yearbooks. Although the resulting sample does not cover the entire nation, the districts in my sample are comparable, in terms of observable characteristics, with districts that were excluded.

My main analysis utilizes district-level variations in the radio listenership to investigate whether differential exposure to women's radio programs causally affects a district's female turnout and labor market participation as well as marriage and fertility. I use the radio

subscription rate at the district level as a proxy for listenership. The key empirical challenge to identifying the causal effect is that the radio subscription rate is likely to be endogenous to women's outcomes. To address this endogeneity concern, I exploit quasi-random variations in radio reception quality during the daytime hours, measured by the ground wave field strength. While field strength increases the likelihood of subscribing to radio, it varies based on geographical conditions even after controlling for distance to the nearest transmitter and transmitter fixed effects.

Using the conditional field strength as an instrumental variable, I find that greater exposure to women's programs significantly increases women's political participation, both as voters and representatives, in the first election in which women could vote. Indeed, a standard deviation increase in exposure to women's radio programs increases women's electoral turnout by 2.5 percentage points, closing the gender gap in turnout by 35 percent. The same increase in exposure also raises a female candidate's vote share by 1.3 percentage points, which far exceeds the median win-loss margin of 0.23. Moreover, radio exposure contributes to a decline in the birthrate between 1949 and 1960; a one standard deviation increase in radio exposure contributes to the annual birthrate declining by 1.84 per 1,000 population, compared to the prewar baseline birthrate of 30.8 per 1,000 population. On the other hand, I do not find any significant impacts on women's labor market participation nor marriage. My findings on labor market participation, marriage, and fertility together suggest that the declining fertility is neither due to women's greater career aspirations nor to a decline in marriages.

I argue that my findings are not driven by a direct association between the conditional field strength and outcome variables. In theory, a concern may be that, for example, the soil

type may be correlated with other local factors that influence human fertility. Such a direct association between the field strength and my study outcomes would undermine the exclusivity of the instrumental variable. I argue, however, that such a concern is unfounded because I find no correlation between the instrumental variable and pre-intervention outcomes.

What are potential mechanisms through which women's radio programs substantially affect women's political participation in 1946 and fertility rate from 1949 to 1955? I suggest that the impact on political participation arises primarily through an informational channel. Women's radio programs provided women with information on how elections work; they would, otherwise, not have been exposed to such information. Better-informed women resulted in better female turnout. On the other hand, the multifaceted nature of women's radio programs could have affected fertility through multiple channels. First and foremost, women's radio programs provide information on the health benefit of birth spacing and thus, affected fertility through an informational channel. Second, they provide information on childbearing and therefore, may have influenced women's preferences regarding quality of children. Third, earlier impacts of women's radio programs on women's political participation may have altered the socioeconomic environment, and further affected fertility decisions. Although it is beyond the scope of my study to disentangle these different channels, my findings open a new avenue of future research.

My findings contribute to four strands of literature, namely, on the political impacts of mass media, impacts of commercial entertainment TV content on fertility, various so-cioeconomic impacts of radio broadcasting, and interventions targeting women other than information campaigns. First, a rich body of literature has examined the causal impact of

mass media on electoral turnout and election outcomes. As Dellavigna and Gentzkow (2010) as well as Strömberg (2015) review, mass media can increase electoral turnout; conversely, it can decrease turnout if it substitutes for other information sources that are more relevant to electoral turnout. My study strengthens their case by showing a substantial positive impact of radio on women's electoral turnout in a setting with a scarcity of other media outlets (TV or newspapers).

Second, existing literature has shown that entertainment content on TV can decrease fertility in a context in which fertility decline is desired to alleviate poverty and improve children's well-being (Jensen and Oster (2009) on cable TV introduced in rural India, La Ferrara, Chong and Duryea (2012) on TV novela in Brazil, and Kearney and Levine (2015) on the MTV show *16 and Pregnant*). My study complements the literature by examining a different type of mass media from commercial entertainment TV content, specifically, public, educational radio programs. Despite differences in media outlet types, I find that women's radio programs also contribute to fertility decline, highlighting the role of information dissemination in fertility change.

Third, my paper contributes to a growing body of literature examining the impacts of radio broadcasting on various socioeconomic outcomes, such as political knowledge (Strömberg (2004)), price convergence (Svensson and Yanagizawa (2009)), mass-killing (Yanagizawa-Drott (2014)), emergence of a dictatorial regime (Adena, Enikolopov, Petrova, Santarosa and Zhuravskaya (2015)), registance (Gagliarducci, Onorato, Sobbrio and Tabellini (2017)), and immigrants' assimilation (Russo (2019)). In terms of an identification strategy, my study is closest to Strömberg (2004) which also exploits features of AM radio wave propagation.

Fourth, a growing body of economic literature has examined the impacts of public policies targeting women and shown that targeted policies can deliver better outcomes for women as well as for children, and can even lead to economic growth (see Doepke, Tertilt and Voena (2012) and Duflo (2012) for review). Such policies take various forms, including legal rights such as land ownership (Field (2003)) and voting rights (Lott and Kenny (1999), Miller (2008)); targeted provision of financial means, including conditional cash transfer (Benhassine, Devoto, Duflo, Dupas and Pouliquen (2015), Lundberg, Pollak and Wales (1997)), and agricultural investment (Udry (1996)); reserving leadership positions, including gender quota in politics (Beaman, Chattopadhyay, Duflo, Pande and Topalova (2009), Duflo and Chattopadhyay (2004)) and corporate boards (Bertrand, Black, Jensen and Lleras-Muney (2019))); and access to contraception (Ashraf, Field and Lee (2014)). My study is the first to provide causal evidence that targeted mass media intervention toward women can also have substantial effects on women's outcomes.

While results should be extrapolated with caution, my historical analysis carries important implications for contemporary efforts to provide women with more information. I call for caution in drawing direct policy implications from my findings because Japan under the Allied Occupation was unique in at least two dimensions. First, the Allies started women's radio programs in their broader effort to raise the legal and social status of Japanese women. While other policies, many of which were nationwide legal reforms, do not interfere with the internal validity of my findings, such legal changes need to be considered when generalizing my results outside of Occupied Japan. Second, in the aftermath of World War II, Japanese citizens may have questioned their prewar values and beliefs, and thus may have been more ready to embrace new information. With these caveats in mind, my results provide evidence

that information can change women's behavior and lend support to the contemporary initiatives by UN, NGOs, and NPOs to use mass media to reach out to women who have limited access to information.

The remainder of the paper is organized as follows. Section 2 provides a brief background of the women's radio programs in Occupied Japan and highlights key features that are critical to my empirical analysis. Section 3 explains the model, identification, and estimation strategy. Since data collection and digitization are also the key steps of this project, Section 4 discusses them in detail. Next, Section 5 discusses the results and addresses potential threats to my identification strategy. Finally, Section 6 concludes.

2 Contextual background: women's radio program in Occupied Japan

This section provides three pieces of historical background that are essential for my study. Section 2.1 highlights the fact that women's radio programs were one of the first things that the Allies did in their effort to raise women's social status. Section 2.2 explains the preexisting radio broadcasting infrastructure, which speaks to my identification strategy. Section 2.3 summarizes the content of women's radio program, which in turn leads me to examine women's political participation, labor market participation, and family formation as relevant behaviors.

2.1 The Allies' efforts to raise women's status in Occupied Japan

After World War II, Japan was occupied by the Allied Powers from September 2, 1945 to April 28, 1952. Although officially called "Allied Occupation," it was mostly an American undertaking with contributions from Australia, India, New Zealand, and the United Kingdom, and therefore often called the "American Occupation". General Douglas MacArthur oversaw the occupation as the Supreme Commander for the Allied Powers. The acronym SCAP was soon used to refer not only the commander himself, but to the offices of occupation set up under him to guide Japan to demilitarize and democratize the nation.

When General MacArthur set up five major reforms on October 11, 1945, later known as the Five Major Reform Directives, one of them turned out to be raising the legal and social status of Japanese women ³. The idea behind it was that SCAP arguably attributed the prewar militant political system to the patriarchal Japanese social system (Kobayashi (2004)). The idea of raising women's status was placed at the core of the occupation policies as a major pathway for peacebuilding. Thereby Japanese women gained several legal rights during the Allied Occupation, including rights to vote, run for office, and go to college under the Allied Occupation⁴.

Raising women's status under the Allied Occupation was considered not only radical in relation to the status quo in Japanese society in 1945, but also more liberal compared to Western society. This is mainly due to the fact that the postwar Japanese Constitution, en-

³The other four reforms were to abolish the secret police, to encourage the formation of labor unions, to liberalize education system, and to democratize the economy. Source: Diplomatic Records A' 1.0.0.2-3-4 "Conference Abstracts and Memoranda between the Supreme Commander for the Allied Powers and his Staff and the Prime Minister and other ministers of Japan" <GAI-1, Reel No. A'-0055>

⁴Uemura (2007) provides a detailed historical analysis of raising women's status during the Allied Occupation

acted in 1947, guarantee the equal rights of men and women not only in the public domain but also in marriage and family life. In fact, in the new Japanese Constitution, Article 14 reads "All people are equal under the law and there shall be no discrimination in political, economic or social relations because of race, creed, sex, social status or family origin" while Article 24 states that "marriage shall be based on the mutual consent of both sexes and it shall be maintained through mutual co-operation with the equal rights of husband and wife as a basis; With regard to choice of spouse, property rights, inheritance, choice of domicile and other matters pertaining to marriage and the family, laws shall be enacted from the standpoint of individual dignity and the essential equality of the sexes." As Pharr (1987) argues, there were no other countries except for Communist countries such as the USSR and Poland that guaranteed equal rights between sexes in domestic life. Pharr (1987) calls it "the US experiment with women's rights in Japan."

In the significant effort to raise women's status, one of the first things that the Allied Forces did was to start women's radio programs ⁵. In fact, as early as October 1, 1945, just one month after the Allies started to occupy Japan, the government-sponsored radio station began to air educational programs targeting women. The women's programs aimed "to raise political, social, and cultural standards of ordinary women and the breaking away from feudalism", and "in order to select qualified female leaders, [the women's radio programs introduced] not only anti-militarists who remained silent during the war but also many unknown progressive, young women." (Japan Broadcasting Corporation Yearbook (1947); translated by the author).

⁵Table 5 in Appendix A provides more detailed time line of SCAP's policy toward emancipation Japanese women.

The important takeaway from this subsection is that women's radio programs started in the unique context of the Allies' broader efforts to raise women's legal and social status. Thereby I call for caution in drawing policy implications from my findings that I present in Section 5. As I explain in Section 3, however, my analysis relies on cross-sectional variation in exposure to women's radio programs but not the timing. Leveraging cross-sectional variation allows me to ensure the internal validity of my results. Otherwise, different timing may also reflect a different legal environment that women were facing.

2.2 Radio reception and use in Occupied Japan

Next, I explain the preexisting radio broadcasting infrastructure that existed before the Allies' arrival, which allowed GHQ/SCAP to introduce women's radio programs in the very early stage of the occupation period. Not only was the program on air, but it was also well received by female listeners, as I uncover from listeners' surveys.

On the onset of the Allied occupation, there were 53 radio transmitters and 39 amplifiers across the nation, all of which were connected and operated by a single state-sponsored radio station, Japan Broadcasting Corporation or JBC for short. The JBC has a primary channel, channel 1 (*daiichi hoso* in Japanese) which aired various programs throughout the day, and a secondary channel, channel 2 (*daini hoso*) which was utilized only for part of the day. Until 1952, there was no private radio broadcasting. In effect, a radio holder faced a binary choice: either to listen to JBC's programs, or not to listen to any programs at all. Such a binary choice set turns out to be critical for my empirical analysis: I do not need to consider the listener's selection into different radio stations at the same time window.

Importantly for my analysis, the JBC kept records on the number of households subscribing to radio as well as the total number of households in all municipalities. This is because the JBC mandated all radio holders to register and pay subscription fees. I should note that fee was not expensive and thus I do not worry that the fee may have excluded low-income families from acquiring radio. In fact, the mandated annual fee in 1950 was 35 yen, which was 2.5 times of the price of one serving of Soba noodles, Japanese staples ⁶. I digitize the JBC record to calculate the radio subscription rate, which I later use as an independent variable in my empirical analysis.

During the Allied occupation, the JBC operated under the close supervision of the GHQ/SCAP Civil Information and Education Section Radio Unit (later also called Radio Branch and hereafter the Radio Unit). Radio broadcast content was censored in advance by the Radio Unit ⁷. The Radio Unit also conducted modern listeners surveys (Mayo (1988), Luther and Boyd (1997), Smulyan (2002)). In effect, the Radio Unit had a large say over what kind of contents were on air and therefore played a key role in disseminating information to meet the GHQ's purposes.

JBC started airing the flagship women's program "Women's Hour (*Fujin no jikan*)" as early as October 1st in 1945, just about a month after the Allies started occupying Japan. The program was carefully designed to draw as many women as possible. A time slot allotted to the women's program was the lunch break when women used to listen to war-time women's

⁶See Table 7 in Appendix A on annual radio subscription fee from 1925 to 1955. Data are drawn from Okabe 2018 Okabe (2018)

⁷The head of the production team for women's programs, Fuji Egami recalls "All women's programs, including introductory announcements, were to be submitted to the Civil Information and Education Section ten days before the broadcast. Translators kept typing all the time. All dramas, stories, lectures, interviews, debates and even round tables were stenographed, rewritten into Japanese, then translated into English. It took more than two weeks to broadcast programs after they were recorded. It was impossible to deliver timely information" (Egami (1955), translated in English by the author.)

program during World War II; a director of the production team, as well as moderators, were women to be friendly to female listeners; music was played here and there for a pause so that listeners could maintain concentration (Japan Broadcasting Corporation (NHK), 1947, 1950)

As JBC's Listeners survey reveals, women's programs were indeed well received. In 1947 survey, more than 70 percent of women with a radio subscription said that they currently listen to or used to listen to the women's program. Not only did they listen to the women's program, but more than 60 percent of them answered that they had gained new knowledge through the program. This survey demonstrates that reassures that women's programs conveyed new information to women as GHQ/SCAP intended.

As time went by and the JBC's production capacity increased, JBC added more time slots for women's programs. By the end of 1950, the weekly airtime that JBC allocated to women's program had quadrupled compared to its onset in October 1945 ⁸. This fact underscores the fact that GHQ/SCAP maintained and strengthened their efforts on raising women's status throughout the occupation. As the airtime expands, the content covered by the women's programs expanded as I will show in detail in the next subsection.

Before diving into the radio content analysis, I should also note that my analysis primarily focuses on the occupation period (1945-1952) although JBC continued airing women's program until 1963. I restrict my attention mainly to the occupation period because, at the end of the occupation period, private radio broadcasting, as well as TV broadcasting started, giving more choices to potential listeners. Competition among different mass media outlets

⁸See Figure A.7 in Appendix A. NHK Yearbook (Japan Broadcasting Corporation (NHK) 1947, 1949) and GHQ/SCAP CIE Weekly Report (Radio Education Branch, 1946 - 1950).

may have fundamentally changed the nature of media content as well as complicated the listeners' decision process on which information they acquire and why. Though this transition in the broadcasting market opens up a new avenue of research, it's beyond the scope of my current analysis.

2.3 Contents of women's programs

What kind of information did the women's programs try to disseminate? Answering this question is key to determine which women's outcome I should look at. Therefore I turn to the Weekly Radio Reports (from January 1946 to December 1950), which document daily radio content. I classify them into several topics, and see how the composition of topics changed over the course of the Allied occupation.

The Weekly Radio Report was reported every week, with one section dedicated to the featured programs of the week. The following are examples of content descriptions.

Women's Hour (26 July 1947, from 13:00 to 14:00)

"Marriage and Pregnancy", a straightforward talk on the importance of honest information on sex for adolescent boys and girls and young married people, was presented with simple good taste by Dr. Fusao Hori"

Women's Hour (11 November 1948, from 13:00 to 14:00)

"Mrs. Ohara, interviewer for the Tokyo Domestic Court, Prof. Kawashima of

Tokyo University, and Mrs. Fujioka, editor of "Consumer's Co-Op Magazine", discussed the problem of inheritance of all property by the eldest son as it was formerly observed before the Civil Code was revised. Even though the law now provides that the wife and younger children will share an inheritance equally with the first son, many people cling to the old way of doing things"

Two things should be noted in the above examples: first, academics, policymakers, and corporate leaders spoke on the show to provide specialized knowledge. Second, as we notice from honorifics, both men and women are invited as speakers. In fact, by counting the number of honorifics Mrs, Miss, and Mr that appeared in the Weekly Report from January 1946 to December 1950, I find that the share of female speakers was 49.9 percent: women's radio programs provided an equal playing field for men and women on air.

To further understand the topic composition of the women's radio programs in a more systematic manner, I classify the daily contents of women's programs using Latent Dirichlet allocation, and show the year-by-year topic composition⁹ (Figure 1). I find that, women's programs were primarily about politics and elections in 1946, which is consistent with what Okahara (2007) uncovers in her case study. Interestingly, the content covered by the women's programs became more diverse over the years: they covered women's organizations, content catered to young women and girls' interests, child development, new labor and welfare laws, and information on food and health.

The fact that program content became diverse overtime motivates me to explore

⁹For a detailed explanation, see Appendix A Figure A.8

Figure 1: Topic compositions of women's radio over the course of the Allied Occupation. Contents descriptions are drawn from GHQ/SCAP CIE Weekly Report (Radio Education Branch, 1946 - 1950) and classified using Latent Dirichlet allocation.

whether exposure to women's radio programs can affect not only political behaviors but also other women's outcomes, particularly labor market participation, marriage rate, and fertility rate. Based on the words and phrases that appear in the radio content, I hypothesize the following 10. First, women's electoral turnout increases in response to larger exposure to the women's radio, which "urged" women to vote in the 1946 general election. Second, women's labor market participation increases in response to greater exposure to women's radio, which talked about women's careers and labor laws that protect women's rights in the workplace. Third, the annual marriage rate decreases, at least in the short run, in response to larger exposure to the women's radio programs, which emphasized women's freedom to choose their own marriage partners. Fourth, the annual birth rate decreases in response to greater exposure to women's radio programs, which discussed the benefit of birth spacing for women's health. Table 8 summarizes the association between topics within the women's radio programs and women's outcomes that I examine in this paper.

¹⁰Table 8 in Appendix A summarizes the association between topics within the women's radio programs and women's outcomes that I examine in this paper.

3 Model, identification, and estimation

Based on the content analysis, I hypothesize and test that exposure to women's radio programs can affect women's decision-making on political participation, labor market participation, marriage, and fertility. To identify the causal effects of radio exposure, I instrument for the exposure to the radio using quasi-random variation in AM radio reception induced by geographical conditions and perform an IV analysis.

3.1 Model

I assume a linear causal model between exposure to women's radio programs and the outcomes of interests. What I wish to identify here is a causal parameter β_1 below, which captures the impact of the exposure on each outcome.

Outcome_{j,t} =
$$\beta_0 + \beta_1$$
radio exposure_{j,1946} + $\gamma x'_{j,t} + u_{j,t}$ (1)

where j indicates a district. $x_{j,t}$ is a vector of district characteristics, which I explain in detail in the next subsection.

Though I describe how I measure each variable in detail in Section 4, I forewarn that I proxy radio exposure by the district-level radio subscription rate, defined as the share of households subscribing to radio, which has both advantages and shortcomings. On the one hand, the subscription rate captures the actual listener rate better than signal strength or cable introduction, which potentially overstate the radio listenership but are nonetheless used as

a main explanatory variable by most of the existing papers on mass media. To this end, I take advantage of the radio receiver license system in Japan, which provides me with data on district-level radio subscription rates. Having the actual radio subscription turns out to be especially critical in my study because the average radio subscription rate is only 36.7 percent, while the radio signal covers almost the entire nation however weak it is. On the other hand, one may worry that the radio subscription captures the impact of radio listenership in general but not necessarily the exposure to women's programs. To address this concern, I draw on evidence that men's and women's ratings were statistically indistinguishable for all programs except for women's programs (Figure A.9 in Appendix A). Moreover whenever possible, I perform regressions for both men and women separately and compare their impacts. Under the assumptions that (i) there is no gender difference in the impact of radio exposure and (ii) men's and women's ratings are the same across districts, the gender-differential impact of the radio subscription rate captures the impact of women's radio programs on women's outcomes. However, we could instead assume that women react more to new information than men, due to preexisting gender informational inequality. Under this alternative assumption, the impact of the radio subscription rate can indeed confound women's radio programs and other radio programs. I still argue that the primary impact most likely comes from the women's radio programs because women's programs but not other programs provide relevant information on female election candidates, labor laws relevant to women, freedom of choosing marriage partner, the health benefit of birth spacing, and so forth. It's beyond the scope of my research to ask how impacts would change if such information were conveyed within general programs that are not specifically targeting women. It is an interesting open question of how the effects of information vary when conveyed in and out of gendered spaces.

3.2 Identification strategy

The key empirical challenge to identifying the causal effect β_1 is that radio exposure, proxied by the radio subscription rate as above, might be endogenous to women's outcomes through women's unobserved characteristics. Such a concern arises when radio subscriptions are correlated with subscribers' unobserved characteristics such as attitude toward the American occupation, openness to new ideas, willingness to acquire new information, potentials for local economic growth, local culture or religion. For example, women with greater interests in politics may subscribe to radio to obtain information on politics. Such a positive correlation between the subscription and unobserved characteristics overstates the causal effect β_1 .

To address the endogeneity issue, I leverage quasi-random variation in radio reception quality during the daytime hours, which is as good as random to potential subscribers but increases their likelihood of radio subscription. The metric of the radio reception I use is the ground wave field strength (hereafter field strength), which depends on the horizontal distance from a nearby transmitter, output power of the transmitter, the wavelength, and the ground conductivity between the transmitter and the receiver. The ground conductivity measures how fast the AM radio wave can propagate through a given soil type and depends on the moisture and salt contents of the soil. The key idea is as follows. On the one hand, the distance to nearby transmitter, output power, or wavelength may be based on strategic considerations¹¹, the ground conductivity is as good as random to potential subscribers. Therefore,

¹¹For example, radio transmitters may have been strategically placed in the area with higher political aspirations, higher aspiration for freedom of marriage, higher demand for birth control, higher potential supply of female labor force, and so forth. Although such a concern might be unwarranted given the historical background of radio, as I described in Section 2, these unobserved characteristics of women may indirectly relate to transmitter locations through urbanness, and therefore it is still important to control for the distance.

after controlling for the distance and transmitter fixed effects, the local variation in the field strength can serve as an instrumental variable for the radio subscription rate¹².

Furthermore, I also control for other district characteristics: I include industry composition, measured by the labor share in 10 industries (agriculture, forestry, fishery, mining, construction, manufacturing, wholesale and retail, finance and real estate, information and transportation, and service; the omitted category is public service), in order to address the concern that the soil may reflect how fertile the land is and correlate with the economic potentials of a given area. I also include the number of households, the number of households per square km, and a city indicator to control for the urbanness. Moreover, I control for the fact that a district was subject to bombing during World War II to take into account that bombings may have affected citizens' attitudes toward the American Occupation and their radio programs. Finally, prefecture fixed effects control for any inter-prefectural public policy differences¹³. Figure 2 shows the residualized field strength after controlling for the distance, transmitter fixed effects, and all the other control variables. Notice that areas with high residualized field strength, in dark blue, and areas with low residualized field strength, in dark red, are adjacent to each other. It is reassuring that there is no systematic pattern.

With the IV in hand, I estimate the causal impact of radio exposure on each outcome of interest via two-stage least squares and compute robust standard errors¹⁴.

 $E[\text{Field strength} \times u|\text{transmitter fe, distance}, \mathbf{x}] = 0$

E[Field strength \times Radio exposure|transmitter fe, distance, \mathbf{x}] $\neq 0$

¹²Formally, our conditional exogeneity condition and the relevance conditions take the form

¹³A prefecture is the first level of jurisdiction and administrative division in Japan and is overseen by an elected governor, legislature and administrative bureaucracy.

¹⁴In Appendix C, I also discuss another specification where instrumental variables are discretized into decile bins to address a potentially non-linear relationship between field strength and radio subscription. Main results are robust.s

Figure 2: Residualized field strength

4 Data

I hand-collect data on election turnout, labor market participation, marriage, and fertility, as well as the geographical reach of the radio from various historical resources. All variables are observed at the district (*shi* and gun) level¹⁵ unless stated otherwise. Using these variables, I construct a unique, district-level panel dataset. Table 6 in Appendix A summarizes all the data sources.

4.1 Radio exposure, field strength, and distance to a nearby transmitter

As I have mentioned in Section 3.1, I proxy the degree of exposure to women's radio programs by the radio subscription rate, which is defined as the share of households subscribing to radio in 1946. I draw the radio subscription rate from the 1946 yearbook

¹⁵There are around 700 districts in the late 1940's. The average population size is 54,000 in 1950.

published by the Japan Broadcasting Corporation, which recorded the number of households subscribing to radio as well as the total number of households at the village level. In 1946, the village level subscription rate ranges from less than 10 percent to over 80 percent, with an average of 37.7 percent. Figure 3a shows how radio subscription varies in the nation. The map is colored based on the decile bins: from areas with low subscription rate in yellow to areas with high subscription rate in dark blue.

I draw data on the AM wave field strength, which serves as the instrumental variable for radio exposure, from the map that the Japan Broadcasting Corporation published in 1949. As far as I know, this is the first map of the field strength published after World War II. I digitize the map (Figure 3b) and compute the district level average field strength to construct the instrumental variable.

Finally, I compute the distance from each district to the nearest radio transmitter by utilizing the information on latitude and longitude of radio transmitters taken from the Japan Broadcasting Service 1947 yearbook as well as data on administrative boundaries¹⁶.

4.2 Election turnout

I draw data on electoral turnout by sex in the 22nd House of Representative Election held on April 10th 1946, the first election after women's suffrage. I collected them from local editions of three national newspapers as well as prefectural newspapers, that reported district level turnout by sex between April 12 and April 14,1945¹⁷. My final dataset contains

¹⁶I use shape files on administrative boundaries provided by Maruyama Lab, Tsukuba University, Japan.

¹⁷The three national news papers are Yomiuri, Asahi, and Mainichi.

Figure 3

26 prefectures, which covers 56.7 percent of all the eligible voters across the nation in 1946 election.

Although turnout is available for only a subset of the nation, the average turnout in my sample is statistically indistinguishable from the nationally aggregated turnout by sex¹⁸: In my sample, women's average turnout rate is 0.64 with a standard deviation of 0.08 while the national average is 0.67. One the other hand, men's average turnout rate is 0.76 with a standard deviation of 0.09 in my sample, while the national average is 0.78. The gender difference of 0.13 is statistically significant. Moreover in Table 9 in Appendix A, I show that districts in my sample and out of my sample are observably similar.

Additionally, I digitize votes that female candidates obtained by district as well as total votes cast in each district to compute the vote share of female candidates. In the 1946 general election, 79 females ran for office, accounting for 3 percent of all candidates. The

¹⁸Tabulated statistics on electoral turnouts by sex are drawn from Japan Ministry of Internal Affairs and Communications and complied by the National Women's Education Center National Women's Education Center (n.d.)

average vote share is 0.08 with a minimum of 0 and a maximum of 0.58.

4.3 Labor market participation

I compute women's labor force participation at the district level by using the 1950 Population Census: I divide the number of women aged 14 or above who participate in the labor force by the total number of women who are in the respective age group¹⁹. Using the same data source, I also compute women's labor force participation at district level by excluding women in family business, most of whom are farmers' wives at the time. Moreover, 1950 Population Census also provides a labor share of industries which I use as control variables.

For sensitivity tests, I also compute women's labor force participation at the district level by using the 1940 Population Census: because age breakdown of population is not available at the district level and therefore cannot use the number of women in the age most relevant to the labor force, I divide the number of women in the labor force by the total number of females ²⁰.

¹⁹The total number of women in the work force is drawn from Table 8 and the total number of women is drawn from Table 4 of the 1950 Japan Population Census digitized by Kishimoto Lab (Takita, Ogasawara and Kishimoto (2012))

²⁰The total number of women in the work force is drawn from Table 2-1 and the total number of women is drawn from Table 1-1 of the 1930 Japan Population Census digitized by Kishimoto Lab, Tsukuba University, Japan.

4.4 Annual marriage rate and birth rate

I draw the annual marriage rate, defined as the number of marriages per 1,000 population, and the annual birth rate, defined similarly as the number of births per 1,000 population, from prefecture yearbooks between 1949 and 1960 in five prefectures (Iwate, Chiba, Mie, Nara, and Tokushima prefectures). These are the only five prefectures that provide the necessary information to my best knowledge. I digitize these prefecture yearbooks and spatially merge them across years using municipality boundaries ²¹. I also digitize the 1935 vital statistics to obtain prewar annual marriage and birth rates. As Figure A.12 in Appendix A shows, the average annual marriage and birth rates in my sample resemble the national averages. Moreover in Table 10 in Appendix A, I show that districts in my sample and out of my sample are similar in terms of prewar birth and marriage rates, as well as residualized field strength and the share of agricultural labor. Districts in my sample are less densely populated and have a slightly different industrial composition than those out of the sample. Therefore it calls for a caution to extrapolate my findings to the entire nation.

4.5 World War II damage

In order to proxy the degree of war damage, I draw data on district-level total casualties during World War II from *Overall Report of Damage Sustained by the Nation During*

²¹When analyzing marriage and birth rates, I use a municipality as a unit of observation instead of using a district, which is a collection of municipalities. I make this choice in order to deal with major municipality mergers and consolidations, which make it difficult to maintain the same district boundaries over the period of my study. In fact, the number of municipality significantly declined from 9,868 (in October 1953) to 3,975 (in September 1956) due to municipality mergers and consolidations (http://www.soumu.go.jp/gapei/gapei2.html). Therefore, I apply municipality boundaries in 1960 to data in 1935 as well as in years between 1949 and 1960, and merge all of them to create a municipality-level panel dataset. This procedure requires me to exclude municipalities that were split although such cases are very rare.

the Pacific War published by Economic Stabilization Agency, Planning Department, Office of the Secretary General (1949) and digitized by Japan Air Raid Org. Casualties, which were estimated in May 1948, includes casualty due to air raid bombings (in many places such as Tokyo and Yokohama), atomic bombings (in Hiroshima and Nagasaki) and naval artillery (in some coastal cities such as Kamaishi, Muroran and Hamamatsu). Since the report presents district-level casualties only for cities with significant number of casualty, I further create a dummy variable which takes one if the war casualties are above median.

5 Findings

This section presents the main results concerning the effects of exposure to women's radio programs on political participation (section 5.1), labor market participation (section 5.2), and family formation (section 5.3).

5.1 Political participation

First, I find that exposure to women's radio programs yields positive impacts on women's political participation. Table 1 shows results from regressions of the form of equation 1 with three different outcomes: women's turnout (Columns 1, 2, and 3), men's turnout (Columns 4 and 5), and the female share out of those who cast ballots (Column 6). For each outcome, I present OLS and TSLS estimates. The key independent variable (the radio subscription rate) is in standard deviation units. Looking at OLS estimates first, the radio subscription has a strong positive association with women's turnout (Column 1) but not with

men's turnout (Column 4). These associations turn out to be causal: Column 2 demonstrates that a one standard deviation increase in radio subscriptions increases women's electoral turnout by 2.45 percentage points. The magnitude of the TSLS estimate is slightly smaller than the OLS estimate (Column 1), suggesting a small positive bias in the OLS estimate. In other words, there may be a positive association between women's unobserved characteristics and their radio subscription. Compared to Column 2, Column 3 includes additional control variables: city indicator and industrial compositions in 1950. Notice that these control variables do not affect the estimate of the causal effect of women's radio programs. Since these variables are measured in 1950 which is later than the electoral turnouts were observed and moreover including these variable does not change the coefficient on the radio subscription rate, I prefer the specification as in Column 2 than Column 3. One the other hand, Column 5 presents the TSLS estimate regressing men's turnout on the radio subscription. Similar to the OLS estimate, TSLS estimate is not statistically distinguishable from zero. The difference between women's turnout (Column 2) and men's turnout (Column 5) suggests that the radio subscription has impacts only on women through the provision of women's radio programs. In addition, Column 6 shows the impact on the female share among voters, defined by the share of women out of men and women who cast ballots, and confirms that the radio exposure increases the female share by 1.6 percentage points. Later in this section, I further ask if the increase in the female share among voters induced by radio increases female candidate's vote share.

The magnitude is not only statistically significant but also politically significant: it accounts for 30 percent of the standard deviation of women's turnout. A back-of-the-envelope calculation, assuming that the impact is homogenous at any level of radio subscription rate,

Table 1: OLS and TSLS results
The impact of the radio subscription in 1946 on turnout in the first postwar election

	Women's turnout Mean 0.66 Std.dev. 0.08			Men's turnout Mean 0.79 Std.dev. 0.06		Turnout female share Mean 0.37 Std.dev. 0.06
	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	TSLS	TSLS	OLS	TSLS	TSLS
Radio subscription						
in std.dev. unit	0.0289***	0.0245**	0.0248^{*}	0.00231	0.0106	0.0157**
	(0.00519)	(0.00999)	(0.0142)	(0.00482)	(0.00769)	(0.00612)
R^2	0.707	0.707	0.740	0.620	0.615	0.726
Distance control	decile bins	decile bins	decile bins	decile bins	decile bins	decile bins
N.of HH, HH density	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Transmitter FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
City indicator			\checkmark			
Industrial composition			\checkmark			
Male to female ratio						\checkmark
Observations	346	346	346	336	336	288

¹ Standard errors are in parentheses.

suggests that the radio exposure overall reduced the gender disparity in turnouts by 4.8 percentage point ²². This accounts for almost one-third of the gender gap. Moreover, the persuasion rate based on Dellavigna and Gentzkow (2010) is 46.4 percent, larger than other papers on voter persuasions²³.

A question that follows is whether women's greater turnout in the election translates

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

² In Columns (4) and (5), the sample size is reduced in men's regression because only women's (but not men's) turnout was reported in one prefecture (Miyazaki prefecture).

³ In Column (6), the sample size further decreases because data on the number of qualified eligible voters are available for districts with at least one female candidate. In Saitama, Aichi 2nd, and Yamaguchi prefectures did not have any female candidate. The male-to-female ratio is defined as the number of eligible male voters per one female eligible voter.

²²To calculate the overall impact, I assume that the impact of radio subscription is homogenous at any level of radio subscription rate. By setting the radio subscription to be zero, I compute the level of women's turnout that would have occurred in the absence of radio in each district and then aggregate them to the national level. I compare such counter-factual turnout with the observed turnout of 0.64 to get at the overall impact.

²³There are at least two potential reasons why the persuasion rate here is larger than what we have seen in the past literature. First, recall that the 1946 general election was the first election after women gained their right to vote. They had never voted before. Thus the estimated effect may capture both the persuasion effect and an educational effect. Radio would have been primary mean to inform women about voting. Second, to compute the persuasion rate, we need to assume homogeneous impacts of radio. But the impact of radio exposure may be heterogeneous and it may be larger for marginal voters. If this is the case, the persuasion rate that I computed may overstate the true persuasive effect.

into greater women's representation at the Diet ²⁴. To see this, Table 2 presents the impacts of the radio exposure (Column 2) as well as the female turnout share (Column 4) on the female candidate's vote share, each of which is instrumented by the field strength. As Column 2 shows that the greater radio exposure increases a female candidate's vote share by 1.3 percentage points. The direct impact of female turnout is also positive although the estimate is noisier (Column 4): A one percentage point increase in female turnout share increases female candidate's vote share by 1.29 percentage point.

Was the impact large enough to push female candidates to win? To put the 1.29 % figure into perspective, I calculated a win-loss margin, defined as the difference in vote shares of the lowest-ranked winner and the runner up in each electoral district. It turned out that the 1946 election was quite competitive: the minimum win-loss margin was 0.005 percentage point, the median win-loss margin was 0.23 percentage points, and the maximum win-loss margin was 2.19 percentage points ²⁵. Therefore, I conclude that the impact of a one standard deviation increase in radio exposure on the female vote share, 1.3 percentage point, is above the median win-loss margin and thus sizable.

Taken all together, I conclude that the women's radio programs successfully amplify women's voices in the political sphere: the women's programs effectively induce more women to vote, which in turn translates into a greater vote share for female candidates. The findings also echo what the GHQ/SCAP Radio Unit wrote in their weekly radio report: the

 $^{^{24}}$ In the 1946 general election, 2770 candidates run for office and 79 (2.8 %) were women. Out of 46 prefectures, 40 prefectures had at least one female candidates and the share of female candidates ranged from 0.01 to 0.09 with the median of 0.03. As Figure A.11 shows, I find no systematic relationship between the radio subscription rate and the female candidacy.

²⁵In order to calculate the win-loss margin, I draw the total number of men and women who cast ballots from the government's official report. Moreover, I draw data on vote counts of winners and runner-ups from *the Mainichi*, one of the major newspapers, published on April 13, 1946. Because the vote counts were not finalized in five electoral districts (Hokkaido 2nd district, Tokyo 2nd district, Chiba, Nagasaki, and Kagoshima), I calculated win-loss margins with and without these five districts. The distribution of win-loss margin is robust.

Table 2: OLS and TSLS results
The impact of greater exposure to women's radio on the vote share of a female candidate

	Vote share of female candidate Mean 0.08 Std.dev. 0.08					
	(1) OLS	(2) TSLS	(3) OLS	(4) TSLS		
Radio subscription (std.dev)	0.00308 (0.00193)	0.0133** (0.00655)				
Female share turnout (p.p.)			0.00143** (0.000670)	0.0129 (0.00887)		
R ² Control variables Observations	0.538 √ 958	0.531 √ 958	0.622 √ 465	0.415 √ 465		

 $^{^{1}}$ * p < 0.1, *** p < 0.05, **** p < 0.01. Standard errors are clustered at the level of electoral districts and shown in parentheses. In the 1946 general election, there were 52 multi-member districts, whose boundaries align with prefecture boundaries except for Hokkaido, Tokyo, Niigata, Aichi, Osaka, Hyogo and Fukuoka prefectures, each of which was split into two. Appendix B explains in details how the electoral system works in the 1946 election.

women's programs "undoubtedly contributed in a large measure to the fact that 65 percent of the eligible women voters went to the polls" ²⁶.

² The sample size is larger than the dataset on women's turnout analysis because (i) I have data on all female candidates (whereas the data on turnout had missing values) and (ii) some electoral districts had multiple female candidates.

³ I compute the dependent variable, the vote share of a female candidate, by dividing the number of votes a female candidate received by the number of voters who casted votes in the district

⁴ All columns include dummies for the deciles of the distance to the nearest transmitter, transmitter fixed effects, the number of households, the number of households per square kilometers, an indicator for whether a district was bombed during World War II, and the male to female ratio defined as the number of eligible male voters per one eligible female voter. In all columns, I also control for the candidate's characteristics (party dummies, the age of a candidate, an indicator for whether a candidate was a women's suffrage activist, and an indicator for whether a candidate worked before running for office) and electoral district characteristics (the total number of candidates, dummies for the number of female candidates, the number of seats, the number of votes per voter).

²⁶Weekly radio report, SCAP Civil Information and Education Section

5.2 Labor market participation

If radio exposure effectively encourages women to participate in politics, what about labor market participation? I examine the causal impact of radio subscription on women's labor force participation, by adding two control variables to the main Equation (1);

Women's LFP_{j,1950} =
$$\beta_0 + \beta_1$$
radio exposure_{j,1946} + ι_t
+ γ_1 Women's LFP_{j,1930} + γ_2 Male-to-female ratio_{j,1950}
+ $f(\text{distance to a nearby transmitter}_{j,1946}) + \nu_{\text{transmitter}}(j)$
+ κ_t industries'_{j,1950} + π_{h1} N of HH_j + $\pi_{h2}\frac{\text{N of HH}_j}{\text{SqKM}_j}$ + $\delta_{\text{prefecture}}(j)$
+ $I_{j=\text{city}} + \psi_{\text{bombed}(j)} + u_{j,t}$ (2)

The additional variables are "Women's LFP $_{j,1930}$ " and "Male-to-female ratio $_{j,1950}$ ". Women's LFP $_{j,1930}$ indicates women's labor force participation in 1930, controlling for preexisting across-district variation in women's labor force participation. Male-to-female ratio $_{j,1950}$ measures the sex ratio, defined by the number of men per one woman at the age of 15 and above. The inclusion of the sex ratio as a determinant of women's labor force participation is motivated by the existing literature that examines the impact of wartime male casualties on

women's labor market participation after the war (Rose (2018)) on the US after World War II and Boenke and Gay (2019) on France after World War I.

Table 3 presents results from regressions of the form of equation 2 with three different outcomes: female labor force participation rate (Columns 1 for OLS and Column 2 for TSLS), the female labor force participation rate excluding family employees (Column 3), and the women's share out of all the labor force (Column 4). I exclude family employees from the definition of women's labor participation in Column 3 in order to isolate the impact of radio on salaried employees. The women's share out of all the labor force in Column 4 highlights the composition of the labor force rather than the level of the labor force. The radio subscription rate is in standard deviation units. In no case is the impact of the radio subscription distinguishable from zero.

5.3 Family formation

Lastly, I turn to the impact of exposure to women's radio programs on decision-making on family formation, namely marriage and fertility. Because marriage and childbirth are infrequent decisions, I use a panel dataset of 10 years to capture any lagged impact.

Table 3: The impact of the radio subscription in 1946 on labor force participation

	(1) Women's LFP Mean 0.521 Std.dev. 0.134	(2) Women's LFP excld. family emp Mean 0.283,Std.dev. 0.06	(3) Female share in LF mean: 0.398 sd. 0.065
Radio subscription			
in std.dev. unit	-0.00923 (0.00736)	-0.00994 (0.00708)	-0.00263 (0.00357)
Women's LFP in 1930	0.373*** (0.0293)	0.206*** (0.0282)	0.170*** (0.0142)
Male to female ratio	-0.297*** (0.0385)	-0.572*** (0.0371)	-0.433*** (0.0187)
Distance control	decile bins	decile bins	decile bins
N.of HH, HH density	\checkmark	✓	\checkmark
Transmitter FE	\checkmark	✓	\checkmark
Prefecture FE	\checkmark	✓	\checkmark
Prewar LF participation	✓	\checkmark	\checkmark
Industrial composition	\checkmark	✓	\checkmark
Observations	674	674	674

Standard errors are clustered at an electoral district (which in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

LFP stands for labor force participation. LF stands for labor force.

³ The male to female ratio is defined as the number of women aged 15 and above per man in the same age

group. 4 1930 Population Census provides the data on latest women's labor force participation in the prewar period.

Accordingly, I modify the main model (1) as follows

Crude
$$\operatorname{rate}_{j,t} = \beta_0 + \beta_{1t}\operatorname{radio} \operatorname{exposure}_{j,1946} + \iota_t$$

$$+ \gamma_1\operatorname{Crude} \operatorname{rate}_{j,1935} + \gamma_2\operatorname{Male-to-female} \operatorname{ratio}_{j,1950}$$

$$+ f(\operatorname{distance} \text{ to a nearby transmitter}_{j,1946}) + \nu_{\operatorname{transmitter}(j)}$$

$$+ \kappa_t \operatorname{industries}'_{j,1950} + \pi_{h1}\operatorname{N} \text{ of } \operatorname{HH}_j + \pi_{h2} \frac{\operatorname{N} \text{ of } \operatorname{HH}_j}{\operatorname{SqKM}_j} + \delta_{\operatorname{prefecture}(j)}$$

$$+ I_{j=\operatorname{city}} + \psi_{\operatorname{bombed}(j)} + u_{j,t} \tag{3}$$

where crude rate refers to either the number of marriages or births per 1,000 population in a specified year. I allow the impact of radio exposure (β_{1t}) to vary across time. I add four control variables to the main model (1). First, Crude rate_{j,1935} controls for the baseline marriage or birth rate prior to the US occupation to make sure that any preexisting marriage and fertility patterns do not drive my results. Keeping the baseline rate constant is important also because, as the baseline rate is higher, there is more room for a decline (or vice versa). Second, I also include the postwar male to female radio (Male-to-female ratio $_{j,1950}$) as a determinant of marriage and fertility rate. The idea of the sex ratio determining marriage-market outcomes dates back to Becker (1973), and a growing body of empirical literature exploits the war-induced variation in the male to female ratio and shows its causal impacts on marriage and fertility²⁷. Third, year fixed effect ι_t takes into account the nationwide trend in mar-

²⁷Abramitzky, Delavande and Vasconcelos (2011) in the post World War I France, Kvasnicka and Bethmann (2012) in the German state of Bavaria during and after World War II, Brainerd (2017) in the post World War II Soviet Union and Ogasawara and Komura (2018) in the post World War II Japan.

Figure 4: The impact on the annual marriage rate

riage and fertility rate. Last but not least, I allow coefficients on the industrial composition (**industries** $_{j,1950}$, a vector of labor shares of 10 out of 11 industries in 1950) to vary across time to capture industry-specific time trends. Industry-specific time trends accommodate the fact that postwar birth-control first emerged among wives of coal miners and factory workers (Tama (2006), Ogino (2008), Takagi (2012)). Other control variables remain the same as the main model (1).

Figure 4 plots the TSLS coefficients $(\hat{\beta}_{1t})$ for the marriage rate from regressions of the form of equation 3. I do not find any significant effect of the radio intervention on marriage rates. On the other hand, Figure 5 plots the TSLS coefficients $(\hat{\beta}_{1t})$ for birth rate. I find negative impacts up until the 10th year (1955) from the onset of the women's radio programs, and then the impact starts to fade out over time. In other words, in areas where women are more exposed to the women's radio programs, they decrease their fertility around 1.84 per 1,000 on average. Note that changes are not driven by changes in marital behavior.

Figure 5: The impact on the annual crude birth rate

Putting the result into context, the time period that I study saw a substantial decline in birth rate as Appendix A Figure A.15 shows. The back-of-the-envelope calculation shows that the radio intervention contributes of 4.5 per 1,000 population out of an overall decline of 13.5 per 1,000 from prewar to 1960 ²⁸.

How can the impact be so substantial? I examine two possibilities: first, the high baseline birthrate prior to the US occupation may leave large room for change. In fact, prior to the US occupation, the annual birthrate was at the level of around 30 per 1,000 population, or 4.8 children per married woman (Appendix A Figure A.14). To test this hypothesis, I split my sample into two groups, districts with the baseline birthrate higher or lower than the median of 32.77 per 1,000 population in 1935, rerun the regression (3), and see if the impact of the exposure to women's radio programs is higher in the high birth-rate districts.

²⁸I draw data from the National Institute of Population and Social Security Research. The prewar average birth rate is 30.8 per 1,000 population annually, which is the average between 1932 and 1937 (plus and minus two years of the base year 1935). The average birthrate at the end of the sample period is 17.3 per 1,000 population, which is the average between 1957 and 1962 (plus and minus two years of 1960).

The difference is, however, statistically indistinguishable (Appendix A Figure A.16) and not in favor of my first hypothesis.

I also consider an alternative interpretation: the multifaceted nature of women's radio programs caused the large impact through multiple channels. By the multifaceted nature, I mean that the women's radio programs covered various topics, including politics, marriage, children, health and labor market. As I summarize in a diagram (Figure 6), there are at least three ways through which the women's programs can cause the fertility decline. First, women can update their belief on the health benefit of birth spacing and consequently change their fertility decisions. Second, women can change their preference over the quality of children versus quantity of children in response to new information on childrearing. Third, recall my earlier finding that radio exposure increases women's political participation in Section 5.1. Past literature has also shown that greater women's political participation can lead to more public spending on women's and children's issues ²⁹ and therefore can cause changes in the socioeconomic environment surrounding childrearing. Taken all together, the multifaceted nature of women's radio programs can cause a larger impact on fertility compared to a situation where an information campaign focuses only on the health benefit of the birth spacing. Decomposing these channels is beyond the scope of my paper although it would be an interesting avenue of future research.

²⁹Duflo and Chattopadhyay (2004), Lott and Kenny (1999), Miller (2008), Aidt and Dallal (2008)

Figure 6: Potential channels through which the women's radio programs can contribute to the birth rate decline.

5.4 Addressing potential threats for the instrumental variable

In this section, I discuss potential mechanisms through which my instrumental variable may violate the conditional exogeneity assumption. Then I provide a series of tests to show that they are not first-order concerns in this context.

One may be concerned that the soil type, which provides local variation in the field strength, directly determines the outcomes that I am interested in. Such concern arises if soil types happen to indicate agricultural productivity, which then directly determines the optimal labor input. For another example, suppose the soil type happen to capture environmental factor for human fertility, which then directly determines the birth rate. In either case, the direct association between the outcomes and the field strength would undermine the exclusion restriction of the IV.

Table 4

	(1)	(2)	(3)	(4)
	Birth rate 1935	Marriage rate 1935	LFP 1940 (men and women)	LFP 1940 (women)
	Mean 32.70 Std.dev. 4.28	Mean 8.50 Std.dev. 1.30	Mean 0.45 Std.dev. 0.05	Mean 0.37 Std.dev. 0.10
Field strength				
in std.dev.	-0.293	-0.0321	0.000218	-0.00509
	(0.180)	(0.0846)	(0.00220)	(0.00384)
R^2	0.848	0.634	0.854	0.902
Distance control	decile bins	decile bins	decile bins	decile bins
N.of HH, HH density	\checkmark	\checkmark	\checkmark	\checkmark
Transmitter FE	\checkmark	\checkmark	\checkmark	\checkmark
Prefecture FE	\checkmark	\checkmark	\checkmark	\checkmark
City indicator	\checkmark	\checkmark	\checkmark	\checkmark
Industrial composition	\checkmark	\checkmark	\checkmark	\checkmark
Male to female ratio	\checkmark	\checkmark	\checkmark	\checkmark
Observations	771	771	651	651

Standard errors are in parentheses.

To address the above concerns, I regress the pre-intervention outcomes on the field strength and full set of control variables. As Table 4 shows, the outcome variables are not associated with filed strength, in the absence of the radio intervention³⁰.

^{*} p < 0.10, ** p < 0.05, *** p < 0.01.

¹ In column 1, the birth rate is defined as the annual number of birth in 1935 per 1,000 population. Similarly in column 2, the marriage rate is the annual number of birth in 1935 per 1,000 population. I draw the number of births and marriages from the 1935 vital statistics (*Shi-cho-son betsu zinko dotai tokei: showa 10 nen*), which I have digitized for this project.

² In columns 3 and 4, LFP stands for the labor force participation rate, which is a share of respective population who work out of all the population (but not the working-age population). I draw the number of men and women working from Table 2-1 of the Japan Population Census 1940 while I draw the number of total population from Table 1-1 of the same census.

³ I spatially merge data in different years using year-by-year municipality boundaries, in order to take into account municipality mergers. The match rate was lower for the year of 1935, which results in a smaller sample size in columns 1 and 2.

³⁰Figure A.17 graphically shows that there is no association between the field strength and marriage or fertility rate in 1935.

6 Conclusion

This paper examines the impact of women's radio programs on women's outcomes, namely electoral turnout, labor force participation, marriage, and fertility in Occupied Japan (from 1945 to 1952). I find that greater exposure to women's programs significantly increases women's political participation, both as voters and representatives. A one standard deviation increase in exposure to women's radio programs increases women's electoral turnout by 2.5 percentage points, closing the gender gap in turnout by 35 percent. The same increase in exposure also raises the vote share of a female candidate by 1.3 percentage points, a figure that is much greater than the median win-loss margin of 0.23. Moreover, radio exposure contributes to the birthrate decline: a one standard deviation increase in radio exposure contributes to the annual birthrate decline by 1.84 per 1,000 population off of a prewar baseline birthrate of 30.8 per 1,000 population. On the other hand, I do not find any significant impacts on women's labor market participation nor marriage.

I suggest that the impact on political participation arises primarily through the informational channel. Women's radio programs provide information on how elections work to women, who otherwise would not have been exposed to such information. As a result, better-informed women turned out more. One the other hand, the multifaceted nature of women's radio programs can affect fertility through multiple channels: first, women's radio programs provide information on the health benefit of birth spacing and thus affect fertility through informational channel. Second, women's programs provide information on child bearing and therefore they may change women's preference over quality of children. Third, earlier impacts of women's radio programs on women's political participation may change

the socioeconomic environment, and further affect fertility decisions. Although it is beyond the scope of my study to disentangle different channels, it would be an interesting avenue of future research.

My findings open new avenues of economic research. First, it is still an open question if the intervention during the American occupation has had a long-term effect and triggered a virtuous cycle toward gender equality in Japanese society. Second, Occupied Japan's case limits my ability to investigate what would have happened if both men and women, or only men, were exposed to women's radio contents. This limitation, however, provide motivation for field experiments to understand the nature of targeted information interventions further. Third, my findings also call for a theoretical framework, which incorporates gender disparity in information access and gender disparity in behavioral outcomes.

While there is much work to be done, my results provide evidence that information can change women's behavior and lend support to the contemporary initiatives by UN, NGOs, and NPOs to use mass media to reach out to women who have limited access to information.

References

- **Abramitzky, Ran, Adeline Delavande, and Luis Vasconcelos**, "Marrying Up: The Role of Sex Ratio in Assortative Matching," *American Economic Journal: Applied Economics*, 2011, *3* (3), 124–157.
- Adena, Maja, Ruben Enikolopov, Maria Petrova, Veronica Santarosa, and Ekaterina Zhuravskaya, "Radio and the Rise of the Nazis in Prewar Germany," *The Quarterly Journal of Economics*, 2015, pp. 1885–1939.
- **Aidt, Toke S and Bianca Dallal**, "Female voting power: the contribution of women's suffrage to the growth of social spending in Western Europe (1869-1960)," *Public Choice*, 2008, pp. 391–408.
- **Ashraf, Nava, Erica Field, and Jean Lee**, "Household Bargaining and Excess Fertility: An Experimental Study in Zambia," *American Economic Review*, 2014, 104 (7), 2210–2237.
- **Beaman, Lori and Andrew Dillon**, "Diffusion of agricultural information within social networks: Evidence on gender inequalities from Mali," *Journal of Development Economics*, jul 2018, *133*, 147–161.
- _____, Raghabendra Chattopadhyay, Esther Duflo, Rohini Pande, and Petia Topalova, "Powerful Women: Does Exposure Reduce Bias?," *Quarterly Journal of Economics*, nov 2009, 124 (4), 1497–1540.
- Becker, Gary S, "A Theory of Marriage: Part I," Journal of Political Economy, 1973, 81 (4), 813–846.
- Benhassine, Najy, Florencia Devoto, Esther Duflo, Pascaline Dupas, and Victor Pouliquen, "Turning a Shove into a Nudge? A "Labeled Cash Transfer" for Education," *American Economic Journal: Economic Policy*, 2015, 7 (3), 86–125.
- **Bertrand, Marianne, Sandra E Black, Sissel Jensen, and Adriana Lleras-Muney**, "Breaking the Glass Ceiling? The Effect of Board Quotas on Female Labour Market Outcomes in Norway," *Review of Economic Studies*, 2019.
- Boenke, Jorn and Victor Gay, "The missing men," Retrieved from SSRN (April 2019), 2019, pp. 79–102.
- **Brainerd, Elizabeth**, "The Lasting Effect of Sex Ratio Imbalance on Marriage and Family: Evidence from World War II in Russia," *The review of Economics and Statistics*, 2017.
- **Dellavigna, Stefano and Matthew Gentzkow**, "Persuasion: Empirical Evidence," *Annual Review of Economics*, 2010.
- **Doepke, Matthias, Michèle Tertilt, and Alessandra Voena**, "The Economics and Politics of Women's Rights," *Annual Review of Economics*, 2012.
- **Duflo, Esther**, "Women Empowerment and Economic Development," *Journal of Economic Literature*, 2012, 50 (4), 1051–1079.
- **and Raghabendra Chattopadhyay**, "Women as Policy Makers: Evidence from a Randomized Policy Experiment in India," *Econometrica*, 2004, 72 (5), 1409–1443.
- **Economic Stabilization Agency, Planning Department, Office of the Secretary General**, "Overall Report of Damage Sustained by the Nation During the Pacific War," Technical Report 1949.

- Egami, Fuji, "Fujin no Jikan no Ju Nen (Ten Years of Women's Hour)," Fujin Koron, aug 1955, pp. p.164–165.
- **Field, Erica**, "Fertility Responses to Urban Land Titling Programs: The Roles of Ownership Security and the Distribution of Household Assets," 2003.
- **Gagliarducci, Stefano, Massimiliano Gaetano Onorato, Francesco Sobbrio, and Guido Tabellini**, "War of the Waves: Radio and Resistance During World War II," *Ssrn*, 2017, *12746*.
- **Japan Broadcasting Corporation (NHK)**, "Radio Yearbook (Radio Nen Kan)," Technical Report, Tokyo 1947.
- **Jensen, Robert and Emily Oster**, "The Power of TV: Cable Television and Women's Status in India," Technical Report 3 2009.
- **Kearney, Melissa S and Phillip B Levine,** "Media Influences on Social Outcomes: The Impact of MTV's 16 and Pregnant on Teen Childbearing," *American Economic Review*, 2015, 105 (12), 3597–3632.
- Kobayashi, Yoshie, A Path Toward Gender Equality: State Feminism in Japan, Routledge, 2004.
- **Kvasnicka, Michael and Dirk Bethmann**, "World War II, Missing Men, and Out-of-Wedlock Childbearing," *The Economic Journal*, 2012, *123* (567), 162–194.
- **La Ferrara, Eliana, Alberto Chong, and Suzanne Duryea**, "Soap Operas and Fertility: Evidence from Brazil," *American Economic Journal: Applied Economics*, 2012, 2012 (4), 1–31.
- **Lott, John R and Lawrence W Kenny**, "Did Women's Suffrage Change the Size and Scope of Government?," *Journal of Political Economy*, 1999, 107 (6).
- **Lundberg, Shelly J, Robert A Pollak, and Terence J Wales**, "Do Husbands and Wives Pool Their Resources? Evidence from the United Kingdom Child Benefit," *The Journal of Human Resources*, 1997.
- **Luther, Catherine A. and Douglas A. Boyd**, "American Occupation Control over Broadcasting in Japan, from 1945 to 1952," *Journal of Communication*, 1997, 47 (2), 39–59.
- **Mayo, J. Marlene**, "The War of Words Continues: American Radio Guidance in Occupied Japan," in "The Occupation of Japan: Arts and Culture" 1988.
- **Miller, Grant**, "Women's Suffrage, Political Responsiveness, and Child Survival in American History," *The Quarterly Journal of Economics*, 2008.
- National Women's Education Center, "Gender Statistics Database."
- **Ogasawara, Kota and Mizuki Komura**, "Consequences of War: Japan's Demographic Transition and the Marriage Market," 2018.
- Ogino, Miho, Kazoku Keikaku e no Michi: Kindai Nihon no Seishoku o Meguru Seiji, Iwanami Shoten, 2008.
- Okabe, Tadanobu, The 50 years of Japanese Radio 1925-75, Matsumoto, Japan: Japan Radio Museum, 2018.
- **Okahara, Miyako**, America senryoki no minshuka seisaku 2007.
- **Pharr, Susan**, "The Politics of Women's Rights," in "Policy and Planning During the Allied Occupation of Japan," University Press of Hawaii, 1987, chapter 8.

- **Rose, Evan K**, "The Rise and Fall of Female Labor Force Participation During World War II in the United States," *The Journal of Economic History*, 2018.
- **Russo, Gianluca**, "Mass Media and Cultural Homogenization: Broadcasting the American Dream on the Radio," 2019.
- **Smulyan, Susan**, "Now It Can Be Told: the Influence of the United States Occupation on Japanese Radio," in "Radio Reader: Essays in the Cultural History of Radio," Routledge, 2002, chapter 14.
- **Strömberg, David**, "Radio's Impact on Public Spending," *Quarterly Journal of Economics*, 2004, 119 (1), 189–221.
- **Strömberg, David**, "Media Coverage and Political Accountability," in "Handbook of Media Economics" 2015, pp. 595–622.
- **Svensson, Jakob and David Yanagizawa**, "Getting prices right: The impact of the market information service in Uganda," *Journal of the European Economic Association*, 2009, 7 (2-3), 435–445.
- **Takagi, Masahi**, "Sengo Shoki Nihon ni okeru Jutai Chosetsu Shido," *Fukuoka University Review of Literature & Humanities*, 2012, 44.
- **Takita, D., Y. Ogasawara, and K. Kishimoto**, "Kokusei Chousa (1950 Nen) Shikuchousonbetsu Deeta Beesu Sakusei ni Tsuite," Technical Report, Tsukuba University 2012.
- Tama, Yasuko, Kindai Kazoku to Body Politics, Sekai Shiso Sha, 2006.
- Udry, Christopher, "Gender, Agricultural Production, and the Theory of the," Technical Report 5 1996.
- Uemura, Chikako, Josei kaiho o meguru senryo seisaku, Tokyo: Sosho jenda bunseki, 2007.
- Yanagizawa-Drott, David, "Propaganda and Conflict: Evidence from the Rwandan Genocide," 2014.

A Supplemental figures and tables

Figure A.7: Airtime allocated to women's programs. Above programs were categorized as "Women's program" by the Japan Broadcasting Corporation. Source: NHK Yearbook (1947, 1949) and GHQ/SCAP CIE Weekly Report (Radio Education Branch, 1946 - 1950).

Table 5: Time line for policies aiming to raise women's status under Allied Occupation

October 1, 1945	The flagship women's radio program "Women's Hour" was on air for the first time
December 17, 1945	Women were granted voting rights in national elections.
April 10, 1946	House of Representative General Election. Women voted for the first time.
November 3, 1946	New Japanese Constitution was enacted.
1947	Women's and Minor's Bureau was established withing the Ministry of Labor.
1948	Women were allowed to go to college.

Table 6: Data sources

Data source	Variable	
Japan Broadcasting Corporation Statistic Report 1946	Post-war radio subscription rate N. of households in 1946	
A map on medium wave field strength 1949	Field strength	
Latitudes and longitudes of transmitters obtained from Japan Broadcasting Corporation Yearbook 1947 District boundaries year by year provided by Maruyama Lab, Tsukuba University	Distance to a nearby transmitter	
Prefecture Annual Statistics Book (annually from 1949 to 1960)	Postwar crude birth rate	
The Annual Vital Statistics Report in 1935	Prewar marriage rate and birth rate	
Population Census 1940	Prewar labor force participation	
Population Census 1950	Postwar labor force participation Industrial composition	
News papers	Turnout in the 1946 election by sex	
The 22nd House of Representatives election results A list of female candidates provided by Ito (2008)	Female candidate's vote share	
Overall Report of Damage Sustained by the Nation During the Pacific War	District-level total casualty during the World War II	

Table 7: Radio subscription fees

	Radio subscription fee (monthly)	TV subscription fee (monthly)	Starting teacher salaries (monthly)	Japanese soba noodle unit price
1925	1.00		45.00	0.10
1930	0.75		45.00	0.10
1933	0.75		55.00	0.10
1937	0.50		55.00	0.13
1941	0.50		55.00	0.16
1946	2.50		400.00	-
1948	35.00		2000.00	-
1950	35.00		5000.00	15.00
1954	67.00	300.00	7800.00	30.00
1955	67.00	300.00	7800.00	30.00

Source: Okabe (2018 Okabe (2018)) "The 50 Years of Japanese Radio 1925-1975" The Japan Radio Museum.

In real terms radio subscription fees had been declining before the World War II. Table 7 shows the monthly radio subscription fee (in Japanese Yen) from 1925 to 1955 along with the monthly salary for first-year teachers and a unit price for Japanese soba noodles. While inflation accelerated, the Japan Broadcasting Service decreased the monthly fee and made radio more accessible for a wide income-range of Japanese: the fee was 1 Japanese yen compared to 45 yen of starting teacher salaries in 1925. in 1941, however, the fee halved while the teacher salaries moderately grew. After the World War II, the inflation outpaced the increase in nominal subscription fee, and thus the subscription fee further drops in real terms. Therefore, we would less worry that subscription fees deterred low income Japanese from listening to the radio.

Figure A.8: Word clouds characterizing each of seven topics in women's radio programs.

Latent Dirichlet Allocation (LDA) is an unsupervised machine learning technique for topic modeling. It considers each document as a predetermined number of topics in a certain proportion, and each topic as a collection of keywords in a certain proportion. A goal of LDA is to estimate a word distribution within each topic, then a topic distribution within each document by maximum likelihood. In other words, LDA tries to find a topic model which fits best to the corpus within a collection of documents that we are analyzing. In my study, a document corresponds to a daily content of women's radio programs, two of which I have quoted earlier. On the one hand, each topic gets a probability distribution over words. Figure A.8 in Appendix A shows word clouds for each of nice topics: each word cloud shows the top-30 most frequently used words in each topic. The relative size of a word corresponds to its assigned probability, i.e., a larger words gets higher weight within the topic. Based on the word clouds, I assign labels to the topics: politics, women's organization, young women & girls, children & mothers, labor & welfare, food & health, and interviews. On the other hand, each document (i.e., a daily content description) gets a probability distribution over seven topics as in Figure 1. Then, for further simplicity, I assign each document one topic with the highest probability. Thereby I obtain a mapping from a collection of documents to seven topics. The choice of seven groups was made as follows: in a model with a larger number of topics than seven, some topics appear to be too specific. On the other hand, in a model with a smaller number of topics than seven, some topics turn out to be too general and need to be split in order to be interpretable. My main takeaways are, however, robust to the number of topics.

Table 8: Topics within the women's radio programs, associated phrases, and women's outcomes

Topics	Outcomes to examine	Key words and expected impact
Politics Women's organization	Turnout in the 1946 general election	+ "urge to vote"
Children and mothers	Fertility (1949-1960)	- "birth control" "[birth] spacing"
Young women and girls	Marriage (1949-1960)	- "seeking marriage by their own choice" "marriage vs. career"
Labor and welfare	Labor force participation (1950)	+ "new labor law" "interesting careers"

Figure A.9: Channel 1 program ratings during the daytime hours. Rating is defined as a percentage of male and female radio holders who actively listened to the radio in a given time slot. The figure shows the average rating from Monday to Friday in survey week. Dark pink represents times slots allocated to women's programs, which were aired daily. One the other hand, grey, pale blue, and pale pink indicate news & weather forecast, music, and educational programs respectively. Men's rating is no larger than women's rating for any time slot. Women's rating is especially higher than men's for women's programs: gender rating gap is 23.6 percentage points from 9:15 to 9:30, and 29.6 percentage points from 1 pm to 2 pm. Source: Radio Listeners Survey - Report of the 3rd Regular Survey, Part 1-4 (November 1948))

(a) Prefectures for which data on 1946 turnout available. Data on electoral turnouts by sex in each district are available for 26 prefectures.

(b) A map of prefectures where at least one female candidate run for office

Figure A.10

Figure A.11: (a) Geographical variable in the number of female candidates in the 1946 general election . (b) The relationship between the radio subscription rate and the number of female candidates running for office in the 1946 general election. Each dot represents a prefecture. Five prefectures (Saitama, Shiga, Nara, Shimane, Yamaguchi, and Kagoshima) did not have any female candidate and therefore are omitted in from the figure. Conditional on having at least female candidate, there is no significant relationship between female candidacy and the radio subscription rate.

Figure A.12: Annual marriage and birth: comparing the national average and the average in my sample

Figure A.13: Radio and TV subscriptions

Figure A.14: Average number of children per married woman. Data are drawn from Census and Vital Statistics and complied by the National Insutitute of Population and Social Security Research. Okinawa prefecture is not included during 1947-1970. Female population include foreign citizens who were living in Japan until 1940 but only Japanese citizens in 1941 and onward.

Figure A.15: The number of births per 1,000 population in Japan from 1880 to 2015

Figure A.16: Heterogenous impacts of the radio exposure on birth rates. The radio exposure is in standard deviation unit. Regressions include the full set of control variables presented in the equation (3). The sample is split into two groups, based on the baseline birth rate compared to its median.

Figure A.17: Association between the residualized field strength and residualized annual marriage and birth

Table 9: Observable characteristics of my sample to examine electoral turnout

	(1)	(2)	(3)	(4)
	All	My sample	Out of my sample	Diff.
	mean/[std.dev.]	mean/[std.dev.]	mean/[std.dev.]	diff/(std.err.)
Radio subscription rate	0.378	0.383	0.373	0.010
	[0.126]	[0.121]	[0.130]	(0.01)
Residualized field strength	-0.000	-0.018	0.018	-0.036
	[1.226]	[1.249]	[1.205]	(0.09)
Distance from a nearby transmitter (km)	32.606	33.326	31.938	1.388
	[21.667]	[22.947]	[20.418]	(1.61)
N. of households (in 1,000)	1.929	2.025	1.846	0.179
	[1.981]	[1.928]	[2.025]	(0.14)
N. of hh (in 1000) per SqKM	88.763	121.094	57.249	63.845***
	[254.356]	[326.421]	[148.554]	(19.21)
Labor share: Agriculture	0.369	0.394	0.351	0.043***
	[0.225]	[0.222]	[0.225]	(0.02)
Labor share: Forestry	0.017	0.015	0.019	-0.003*
	[0.026]	[0.024]	[0.027]	(0.00)
Labor share: Fishery	0.024	0.023	0.025	-0.002
	[0.045]	[0.041]	[0.048]	(0.00)
Labor share: Mining	0.019	0.015	0.023	-0.008*
	[0.072]	[0.045]	[0.087]	(0.00)
Labor share: Construction	0.057	0.057	0.056	0.001
	[0.020]	[0.020]	[0.020]	(0.00)
Labor share: Manufacturing	0.170	0.159	0.178	-0.020***
	[0.110]	[0.102]	[0.115]	(0.01)
Labor share: Whole sale and retail	0.129	0.129	0.129	-0.000
	[0.071]	[0.068]	[0.073]	(0.00)
Labor share: Finance	0.011	0.011	0.011	-0.000
	[0.010]	[0.010]	[0.010]	(0.00)
Labor share: Transportation	0.066	0.059	0.070	-0.011***
	[0.035]	[0.027]	[0.040]	(0.00)
Labor share: Service	0.091	0.092	0.090	0.001
	[0.034]	[0.036]	[0.032]	(0.00)
Heavy damage in WWII	1.214	1.286	1.162	0.124***
	[0.411]	[0.453]	[0.369]	(0.03)
Observations	873	367	506	873

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. Standard deviations are in square brackets. Standard errors are in parentheses.

Table 10: Observable characteristics of my sample to examine marriage and fertility

	(1)	(2)	(3)	(4)
	All	My sample	Out of my sample	Diff.
	mean/[std.dev.]	mean/[std.dev.]	mean/[std.dev.]	diff/(std.err.)
Radio subscription rate	0.350	0.329	0.353	-0.023***
	[0.158]	[0.135]	[0.161]	(0.01)
Residualized field strength	0.000	-0.000	0.000	-0.000
	[1.495]	[1.552]	[1.489]	(0.09)
Male to female ratio at reproductive age in 1950	0.924	0.916	0.925	-0.008**
	[0.087]	[0.069]	[0.089]	(0.00)
N. birth per 1000 population	34.353	34.379	34.350	0.029
in 1935	[4.916]	[4.919]	[4.916]	(0.29)
N. marriage per 1000 population in 1935	8.881	8.789	8.892	-0.103
	[1.693]	[1.634]	[1.699]	(0.10)
Distance from a nearby transmitter (km)	28.991	42.090	27.442	14.648***
	[16.468]	[21.764]	[14.989]	(1.23)
N. of households (in 1,000)	0.388	0.353	0.393	-0.039
	[0.619]	[0.425]	[0.638]	(0.03)
N. of hh (in 1000) per SqKM	38.354	29.415	39.411	-9.996***
	[103.302]	[43.061]	[108.189]	(3.12)
Labor share: Agriculture	0.526	0.530	0.526	0.004
	[0.186]	[0.188]	[0.186]	(0.01)
Labor share: Forestry	0.033	0.036	0.033	0.003
	[0.061]	[0.073]	[0.059]	(0.00)
Labor share: Fishery	0.023	0.037	0.021	0.015***
	[0.063]	[0.078]	[0.061]	(0.00)
Labor share: Mining	0.021	0.009	0.023	-0.014***
	[0.090]	[0.049]	[0.094]	(0.00)
Labor share: Construction	0.047	0.043	0.047	-0.004***
	[0.023]	[0.019]	[0.024]	(0.00)
Labor share: Manufacturing	0.106	0.101	0.106	-0.006
	[0.083]	[0.075]	[0.084]	(0.00)
Labor share: Whole sale and retail	0.085	0.089	0.084	0.005*
	[0.045]	[0.047]	[0.045]	(0.00)
Labor share: Finance	0.006	0.005	0.006	-0.001**
	[0.005]	[0.005]	[0.005]	(0.00)
Labor share: Transportation	0.048	0.047	0.048	-0.001
	[0.031]	[0.027]	[0.032]	(0.00)
Labor share: Service	0.070	0.071	0.070	0.000
	[0.026]	[0.023]	[0.027]	(0.00)
Observations	3148	333	2815	3148

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. Standard deviations are in square brackets. Standard errors are in parentheses.

B Background on the 1946 general election

This section explains in details how the electoral system worked in the 1946 general election. The limited voting, as it was called, resembles multi-seat plurality voting because it also uses multi-seat districts. A key difference between the limited voting and the multi-seat plurality voting is that, in the limited voting, a voter casts multiple ballots, but the number of ballots per voter is *limited* strictly less than the number of seats. In the 1946 general election in Japan, in particular, a voter casted two ballots in a district with less than or equal 10 seats whereas they voted three ballots in a district with more than 10 seats. Though the limited voting system is less common and less understood theoretically, it is often advocated as a way to better reflect the voices of both majority and minority groups, and considered as a desirable electoral system as the very first election that women participated in. But the status-quo majority (right-wing male politicians) less favors the limited voting and, in 1947, the Diet agreed to reform the electoral system again and employ the multi-seat plurality. Therefore, the the 1946 general election was the first and last one to employ the limited voting. In fact, in 1946, as many as 39 women were elected with winning probability of 49.4 percent, which was much higher than that of men (15.8 percent). The initial success of female candidates, however, was followed by a long stagnation, and 39 had remained as a record high until 2009.

I construct a dataset of 958 female candidate and district pairs and run the following regression. To identify the parameter of interest, β_1 , I instrument the radio subscription by the ground wave field strength. Table 2 Column (2) presents the result.

$$\begin{split} s_{i(p),j(d)} &= \beta_0 + \beta_1 \text{radio subscription}_{d(j)} \\ &+ \underbrace{\phi_d}_{\text{electoral district FE}} + \underbrace{\gamma x_d'}_{\text{electoral district characteristics}} \\ &+ \underbrace{\iota c_{i(p)}}_{\text{candidate characteristics}} \\ &+ f(\text{distance to a nearby transmitter}_{j,1946}) + \nu_{\text{transmitter}(j)} \\ &+ \pi_{h1} \text{N of HH}_j + \pi_{h2} \frac{\text{N of HH}_j}{\text{SqKM}_j} + \psi_{\text{bombed}(j)} + u_{i(p),j(d)} \end{split}$$

where $s_{i(p),j(d)}$ is a candidate i's vote share in an administrative district j which belongs to an electoral district d. The exposure to the women's radio programs is again measured by the radio subscription rate, which is the share of households subscribing to radio in a district j. The set of electoral district characteristics is meant to control for a competitiveness in each district and include the number of seats, the number of candidates, the female candidates, the number of votes per voter (either two or three), and the male to female ratio of eligible voters. The set of candidate characteristics include her age, partisanship, whether or not to have an occupation before election, and whether or not engaged in women's suffrage movement in the prewar period. Unlike the regression of women's turnout, I do not include prefecture fixed effects, because they are highly collinear

with electoral district fixed effects. In fact, in the 1946 general election in Japan, there were 52 multi-member districts, whose boundaries align with prefecture boundaries except for Hokkaido, Tokyo, Niigata, Aichi, Osaka, Hyogo and Fukuoka prefectures, each of which was split into two. Finally, standard errors are clustered at an electoral district level.

C Binned IV

Figure C.18: Plotting the radio subscription rate against the field strength

Motivated by a non-linear relationship between the radio subscription and the field strength (C.18), this section presents results from IV regressions with binned instrumental variables. By binned instrumental variable, I mean that I create indicator variables for each decline bin of the field strength, and use them as instrumental variables.

Table 11, Table 12, and Table 13 show results for electoral turnout, female candidates' vote share, and labor force participation respectively. Figure C.19a and Figure C.19b present results for marriage rate and fertility rates. Results are similar to what the main specification (1) yields. There are, however, two exceptions: first, the impact of women's turnout on the female candidate's vote share is now statistically significantly positive (Column 4 of Table 12). This is likely because flexibly fitting instrumental variable yields a stronger first stage. Second, the impacts on the birth rate (Figure C.19b) has become more persistent.

Table 11

	\	Women's turnout Mean 0.66 Std.dev. 0.08		Men's turnout Mean 0.79 Std.dev. 0.06		Turnout female share Mean 0.37 Std.dev. 0.06
	(1) OLS	(2) TSLS	(3) TSLS	(4) OLS	(5) TSLS	(6) TSLS
Radio subscription						
in std.dev. unit	0.0289*** (0.00519)	0.0247*** (0.00861)	0.0248** (0.0111)	0.00231 (0.00482)	0.0114 (0.00791)	0.0136** (0.00581)
R^2	0.707	0.707	0.740	0.620	0.613	0.727
Distance control	decile bins	decile bins	decile bins	decile bins	decile bins	decile bins
N.of HH, HH density	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Transmitter FE	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓
Prefecture FE	✓	✓	✓	✓	✓	✓
City indicator	✓		✓			
Industrial composition	✓		✓			
Male to female ratio						✓
Observations	346	346	346	336	336	288

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. Standard deviations are in square brackets. Standard errors are in parentheses.

Table 12

	Female vote share Mean .077 Std.dev08			
	(1) OLS	(2) TSLS	(3) OLS	(4) TSLS
Radio subscription (std.dev)	0.00308 (0.00193)	0.0114* (0.00591)		
Female share turnout (p.p.)			0.00143** (0.000670)	0.00890** (0.00380)
R^2	0.538	0.533	0.622	0.534
Distance control	decile bins	decile bins	decile bins	decile bins
Electoral district FE	✓	✓	✓	\checkmark
Electoral disrict controls	✓	\checkmark	\checkmark	✓
Transmitter FE	✓	✓	✓	\checkmark
N.of HH and HH density	✓	✓	✓	\checkmark
War casualty	✓	✓	✓	\checkmark
Candidate controls Candidate FE	✓	✓	✓	\checkmark
Std.error clustered	Yes	Yes	Yes	Yes
Observations	958	958	465	465

^{*} p < 0.10, ** p < 0.05, *** p < 0.01. Standard deviations are in square brackets. Standard errors are in parentheses.

Table 13

	(1) Women's LFP Mean 0.521 Std.dev. 0.134	(2) Women's LFP excld. family emp Mean 0.283,Std.dev. 0.06	(3) Female share in LH mean: 0.398 sd. 0.065
Radio subscription			
in std.dev. unit	-0.00987 (0.00617)	-0.00479 (0.00591)	-0.00143 (0.00300)
Women's LFP in 1930	0.374*** (0.0291)	0.205*** (0.0279)	0.169*** (0.0141)
Male to female ratio	-0.293*** (0.0379)	-0.579*** (0.0363)	-0.433*** (0.0184)
Distance control	decile bins	decile bins	decile bins
N.of HH, HH density	\checkmark	✓	✓
Transmitter FE	\checkmark	✓	✓
Prefecture FE	✓	✓	✓
Prewar LF participation	✓	✓	✓
Industrial composition	✓	✓	✓
Observations	678	678	678

^{*} p<0.10, ** p<0.05, *** p<0.01. Standard deviations are in square brackets. Standard errors are in parentheses.

Figure C.19: Annual marriage and birth: comparing the national average and the average in my sample