Pauta de Corrección

Primer Certamen Introducción a la Informática Teórica

2 de junio de 2012

1. Tenemos:

- (a) Podemos representar $\mathcal{L}_a = \mathcal{L}_{a1} \cdot \mathcal{L}_{a2}$, donde $\mathcal{L}_{a1} = \{a^i b^j c^{i+j+2} : 1 \le i, j \le 10\}$ (finito, y por lo tanto regular) y \mathcal{L}_{a2} es el lenguaje representado por la expresión regular c^* . Como ambos son regulares, su concatenación es regular.
- (b) Podemos representar $\mathcal{L}_b = (\mathcal{L}_{b1} \cup \mathcal{L}_{b2}) \cap \overline{\mathcal{L}_{b3}}$, donde:

 \mathcal{L}_{b1} : Strings que contienen abc, representados por la expresión regular $(a \mid b \mid c)^*abc(a \mid b \mid c)^*$

 \mathcal{L}_{b2} : Strings que contienen cba, representados por la expresión regular $(a \mid b \mid c)^*cba(a \mid b \mid c)^*$

 \mathcal{L}_{b3} : Strings con aabbcc, representados por la expresión regular $(a \mid b \mid c)^*aabbcc(a \mid b \mid c)^*$

Como los lenguajes regulares son cerrados respecto de unión, intersección y complemento, \mathcal{L}_b es regular.

(c) No es regular, lo que demostramos por contradicción. Supongamos que \mathcal{L}_c es regular, entonces es aplicable el lema de bombeo. Sea N la constante del lema, elegimos $\sigma = a^{p^2}$ tal que $p^2 \ge N$, donde p es primo. Con esto $\sigma \in \mathcal{L}_c$. Por el lema, podemos escribir $\sigma = \alpha\beta\gamma$, con $\beta \ne \epsilon$ tal que $\alpha\beta^k\gamma \in \mathcal{L}_c$ para todo $k \ge 0$. Como

$$|\alpha \beta^k \gamma| = p^2 + (k-1)|\beta|$$

si elegimos $k = p^2 + 1$ esto es

$$|\alpha\beta^{p^2+1}\gamma| = p^2 + p^2|\beta|$$
$$= p^2(1+|\beta|)$$

Como $|\beta| \ge 1$ esta última expresión tiene al menos tres factores primos, y el string no pertenece al lenguaje \mathcal{L}_c .

Puntajes

Total			30
a)		8	
Descomposición en partes regulares	6		
Conclusión	2		
b)		10	
Descomposición en partes regulares	8		
Conclusión	2		
c)		14	
Planteo de contradicción	4		
Elección de σ	3		
Bombear	3		
Contradicción	4		

2. Por turno:

(a) Un NFA para este lenguaje es el de la figura 1. Un DFA es un poco más complejo, véase la figura 2.

Figure 1: Un NFA para el lenguaje de la pregunta 2

Figure 2: Un DFA para el lenguaje de la pregunta 2

(b) Una expresión regular es:

$$(a | b | c)^* a (a | b | c) b (a | b | c)^*$$

Puntajes

Total20a) Autómata10b) Expresión regular10

3. Dados DFAs M_1 para \mathcal{L}_1 y M_2 para \mathcal{L}_2 , construimos un DFA que escencialmente da un paso en M_1 y en M_2 alternadamente.

Formalmente, sean $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ tal que $\mathcal{L}_1 = \mathcal{L}(M_1)$ y $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ tal que $\mathcal{L}_2 = \mathcal{L}(M_2)$. Definimos $M = (Q, \Sigma, \delta, q, F)$ donde:

$$Q=Q_1 \times Q_2 \times \{1,2\}$$
 (el tercer componente indica de quién es el turno)
$$q=(q_1,q_2,1)$$

$$F=F_1 \times F_2 \times \{1\}$$

Definimos la función δ para todo $a \in \Sigma$, $q' \in Q_1$, $q'' \in Q_2$, $t \in \{1,2\}$ mediante:

$$\delta((q', q'', t), a) = \begin{cases} (\delta_1(q', a), q'', 2) & \text{si } t = 1\\ (q', \delta_2(q'', a), 1) & \text{si } t = 2 \end{cases}$$

El autómata M parte en el turno de M_1 , da alternadamente pasos de M_1 y M_2 , y acepta sólo si M_1 aceptó en su última movida, M_2 aceptó y el turno es de M_1 (la movida final fue de M_2).

Otra opción es construir un lenguaje a partir de \mathcal{L}_1 compuesto por los símbolos de los string de \mathcal{L}_1 en las posiciones impares y símbolos arbitrarios en las pares, y otro a partir de \mathcal{L}_2 con símbolos de strings de \mathcal{L}_2 en las posiciones pares y símbolos arbitrarios en las impares. La intersección entre ambos elige símbolos de un string $\sigma_1 \in \mathcal{L}_1$ para las posiciones impares y símbolos de un string $\sigma_2 \in \mathcal{L}_2$ para las posiciones impares, además que fuerza que σ_1 y σ_2 tengan el mismo largo.

Para ello definimos substituciones para todo $a \in \Sigma$, identificando Σ con el respectivo lenguaje de strings de largo uno:

$$s_1(a) = a\Sigma$$
$$s_2(a) = \Sigma a$$

Entonces SHUFFLE($\mathcal{L}_1, \mathcal{L}_2$) = $s_1(\mathcal{L}_1) \cap s_2(\mathcal{L}_2)$; como todos los lenguajes de partida son regulares y las operaciones involucradas preservan regularidad, SHUFFLE($\mathcal{L}_1, \mathcal{L}_2$) es regular.

Puntajes

Total25Idea de la construcción10Construcción formal15

4. Por la forma de las producciones, vemos que:

$$S \Rightarrow ab$$

$$S \Rightarrow aSb$$

$$\Rightarrow aaSbb$$

$$\vdots$$

$$\Rightarrow a^{n-1}Sb^{n-1}$$

$$\Rightarrow a^{n}b^{n}$$

Formalmente, es una demostración por inducción. Primero demostramos que $S \Rightarrow^* a^n Sb^n$ para $n \in \mathbb{N}$.

Base: Como $S \rightarrow aSb$, es $S \Rightarrow aSb$, el caso n = 1.

Inducción: Suponiendo que $S \Rightarrow^* a^n Sb^n$, aplicando la producción $S \to aSb$ obtenemos $S \Rightarrow^* a^{n+1} Sb^{n+1}$.

Por inducción vale lo aseverado.

Con ésto, demostramos que $S\Rightarrow^* a^nb^n$: Si n=1, tenemos la producción $S\to ab$; para n>1 tenemos que $S\Rightarrow a^{n-1}Sb^{n-1}\Rightarrow a^nb^n$. No hay caminos de producción alternativos, es exactamente $\mathcal{L}(G)=\{a^nb^n\colon n\geq 1\}$.

Puntajes

Total 15
Producción
$$S \rightarrow aSb$$
 genera $a^{n-1}Sb^{n-1}$ 8
Producción $S \rightarrow ab$ da ab ó remata a^nb^n 7

- 5. El primer símbolo de lo que nos va quedando por generar dirige la construcción de la derivación de extrema izquierda; dada ésta está determinado el árbol de derivación, y de él se extrae la derivación de extrema derecha sin dificultad.
 - (a) La derivación de extrema izquierda, indicando la producción empleada en cada paso, es:

$S \Rightarrow aB$	$S \rightarrow aB$
$\Rightarrow aaBB$	$B \to aBB$
$\Rightarrow aaaBBB$	$B \to aBB$
$\Rightarrow aaabBB$	$B \rightarrow b$
$\Rightarrow aaabbB$	$B \to aBB$
$\Rightarrow aaabbaBB$	$B \rightarrow b$
$\Rightarrow aaabbabB$	$B \rightarrow b$
$\Rightarrow aaabbabb$	

(b) La derivación de extrema derecha resulta del árbol de derivación:

$$S \Rightarrow aB$$

$$\Rightarrow aaBB$$

$$\Rightarrow aaBaBB$$

$$\Rightarrow aaBaBB$$

$$\Rightarrow aaBaBb$$

$$\Rightarrow aaBabb$$

$$\Rightarrow aaBabb$$

$$\Rightarrow aaaBbabb$$

$$\Rightarrow aaaBbabb$$

$$\Rightarrow aaabbabb$$

$$\Rightarrow aaabbabb$$

(c) El árbol de derivación es el indicado en la figura 3.

Figure 3: Árbol de derivación para la pregunta 5

Puntajes

Total		20
a) Derivación de extrema izquierda	6	
b) Derivación de extrema derecha	6	
c) Árbol de derivación	8	