Package 'survcompare'

October 5, 2024

Title Nested Cross-Validation to Compare Cox-PH, Cox-Lasso, Survival Random Forests

Version 0.2.0

Date 2024-10-02

Description Performs repeated nested cross-validation for Cox Proportionate Hazards, Cox Lasso, Survival Random Forest, and their ensemble. Returns internally validated concordance index, time-dependent area under the curve, Brier score, calibration slope, and statistical testing of non-linear ensemble outperforming the baseline Cox model. In this, it helps researchers to quantify the gain of using a more complex survival model, or justify its redundancy. Equally, it shows the performance value of the non-linear and interaction terms, and may highlight the need of further feature transformation. Further details can be found in Shamsutdinova, Stamate, Roberts, & Stahl (2022) `Combining Cox Model and Tree-Based Algorithms to Boost Performance and Preserve Interpretability for Health Outcomes' doi:10.1007/978-3-031-08337-2_15, where the method is described as Ensemble 1.

Date/Publication 2024-10-05 17:00:01 UTC

2 linear_beta

Contents

ar_beta Auxiliary function for simulatedata functions	
	2
surv_validate	20
&	
-	
_1	
-	
<u> </u>	
•	
<u> </u>	
•	
•	
· ·	
	,
= V1 1 =	
linear_beta	
_	ml_hyperparams_srf print.survcompare print.survensemble_cv simulate_crossterms simulate_linear simulate_nonlinear summary.survcompare sumrary.survcompare survcompare. survcompare2 survcoxlasso_train survcox_cv survcox_predict survcox_train survival_prob_km survsrfens_cv survsrfens_predict survsrfens_train survsrfstack_cv survsrfstack_cv survsrfstack_predict survsrf_cv survsrf_tune survsrf_tune_single surv_validate

Description

Auxiliary function for simulatedata functions

Usage

linear_beta(df)

Arguments

df data

ml_hyperparams_srf 3

Description

Internal function for getting grid of hyperparameters for random or grid search of size = max_grid_size

Usage

```
ml_hyperparams_srf(
  mlparams = list(),
  p = 10,
  max_grid_size = 10,
  dftune_size = 1000,
  randomseed = NaN
)
```

Arguments

mlparams list of params

p number of predictors to detine mtry options

max_grid_size grid size for tuning

dftune_size size of the tuning data to define nodesize options

randomseed randomseed to select the tuning grid

print.survcompare Print

Print survcompare object

Description

Print survcompare object

Usage

```
## S3 method for class 'survcompare' print(x, ...)
```

Arguments

x output object of the survcompare function... additional arguments to be passed

Value

X

4 simulate_crossterms

```
print.survensemble_cv Prints trained survensemble object
```

Description

Prints trained survensemble object Prints survensemble_cv object

Usage

```
## S3 method for class 'survensemble_cv'
print(x, ...)
## S3 method for class 'survensemble_cv'
print(x, ...)
```

Arguments

x survensemble_cv object... additional arguments to be passed

Value

X

X

simulate_crossterms

Simulated sample with survival outcomes with non-linear and cross-term dependencies

Description

Simulated sample with exponentially or Weibull distributed time-to-event; log-hazard depends non-linearly on risk factors, and includes cross-terms.

```
simulate_crossterms(
  N = 300,
  observe_time = 10,
  percentcensored = 0.75,
  randomseed = NULL,
  lambda = 0.1,
  distr = "Exp",
  rho_w = 1,
  drop_out = 0.3
)
```

simulate_linear 5

Arguments

N sample size, 300 by default

observe_time study's observation time, 10 by default

percentcensored

expected number of non-events by observe_time, 0.75 by default (i.e. event rate

is 0.25)

randomseed random seed for replication

lambda baseline hazard rate, 0.1 by default

distr time-to-event distribution, "Exp" for exponential (default), "W" for Weibull

rho_w shape parameter for Weibull distribution, 0.3 by default

drop_out expected rate of drop out before observe_time, 0.3 by default

Value

```
data frame; "time" and "event" columns describe survival outcome; predictors are "age", "sex", "hyp", "bmi"
```

Examples

```
mydata <- simulate_crossterms()
head(mydata)</pre>
```

simulate_linear

Simulated sample with survival outcomes with linear dependencies

Description

Simulated sample with exponentially or Weibull distributed time-to-event; log-hazard (lambda parameter) depends linearly on risk factors.

```
simulate_linear(
  N = 300,
  observe_time = 10,
  percentcensored = 0.75,
  randomseed = NULL,
  lambda = 0.1,
  distr = "Exp",
  rho_w = 1,
  drop_out = 0.3
)
```

6 simulate_nonlinear

Arguments

N sample size, 300 by default

observe_time study's observation time, 10 by default

percentcensored

expected number of non-events by observe_time, 0.75 by default (i.e. event rate

is 0.25)

randomseed random seed for replication

lambda baseline hazard rate, 0.1 by default

distr time-to-event distribution, "Exp" for exponential (default), "W" for Weibull

rho_w shape parameter for Weibull distribution, 0.3 by default

drop_out expected rate of drop out before observe_time, 0.3 by default

Value

```
data frame; "time" and "event" columns describe survival outcome; predictors are "age", "sex", "hyp", "bmi"
```

Examples

```
mydata <- simulate_linear()
head(mydata)</pre>
```

simulate_nonlinear

Simulated sample with survival outcomes with non-linear dependencies

Description

Simulated sample with exponentially or Weibull distributed time-to-event; log-hazard (lambda parameter) depends non-linearly on risk factors.

```
simulate_nonlinear(
  N = 300,
  observe_time = 10,
  percentcensored = 0.75,
  randomseed = NULL,
  lambda = 0.1,
  distr = "Exp",
  rho_w = 1,
  drop_out = 0.3
)
```

summary.survcompare 7

Arguments

N sample size, 300 by default

observe_time study's observation time, 10 by default

percentcensored

expected number of non-events by observe_time, 0.75 by default (i.e. event rate

is 0.25)

randomseed random seed for replication

lambda baseline hazard rate, 0.1 by default

distr time-to-event distribution, "Exp" for exponential (default), "W" for Weibull

rho_w shape parameter for Weibull distribution, 0.3 by default

drop_out expected rate of drop out before observe_time, 0.3 by default

Value

```
data frame; "time" and "event" columns describe survival outcome; predictors are "age", "sex", "hyp", "bmi"
```

Examples

```
mydata <- simulate_nonlinear()
head(mydata)</pre>
```

summary.survcompare

Summary of survcompare results

Description

Summary of survcompare results

Usage

```
## S3 method for class 'survcompare'
summary(object, ...)
```

Arguments

object output object of the survcompare function

... additional arguments to be passed

8 survcompare

```
summary.survensemble_cv
```

Prints summary of a trained survensemble_cv object

Description

Prints summary of a trained survensemble_cv object Prints a summary of survensemble_cv object

Usage

```
## $3 method for class 'survensemble_cv'
summary(object, ...)
## $3 method for class 'survensemble_cv'
summary(object, ...)
```

Arguments

```
object survensemble_cv object
... additional arguments to be passed
```

Value

object object

survcompare

Cross-validates and compares Cox Proportionate Hazards and Survival Random Forest models

Description

The function performs a repeated nested cross-validation for

- 1. Cox-PH (survival package, survival::coxph) or Cox-Lasso (glmnet package, glmnet::cox.fit)
- 2. Survival Random Forest (randomForestSRC::rfsrc), or its ensemble with the Cox model (if use_ensemble =TRUE)

The same random seed for the train/test splits are used for all models to aid fair comparison; and the performance metrics are computed for the tree models including Harrel's c-index, time-dependent AUC-ROC, time-dependent Brier Score, and calibration slope. The statistical significance of the performance differences between Cox-PH and Cox-SRF Ensemble is tested and reported.

The function is designed to help with the model selection by quantifying the loss of predictive performance (if any) if Cox-PH is used instead of a more complex model such as SRF which can

survcompare 9

capture non-linear and interaction terms, as well as non-proportionate hazards. The difference in performance of the Ensembled Cox and SRF and the baseline Cox-PH can be viewed as quantification of the non-linear and cross-terms contribution to the predictive power of the supplied predictors.

The function is a wrapper for survcompare2(), for comparison of the CoxPH and SRF models, and an alternative way to do the same analysis is to run survcox_cv() and survsrf_cv(), then using survcompare2()

Cross-validates and compares Cox Proportionate Hazards and Survival Random Forest models

Usage

```
survcompare(
 df_train,
 predict_factors,
  fixed_time = NaN,
  randomseed = NaN,
  useCoxLasso = FALSE,
  outer_cv = 3,
  inner_cv = 3,
  tuningparams = list(),
  return_models = FALSE,
  repeat_cv = 2,
 ml = "SRF",
 use_ensemble = FALSE,
 max_grid_size = 10,
 suppresswarn = TRUE
)
```

Arguments

df_train	training data, a data frame with "time" and "event" columns to define the survival outcome	
predict_factors		
	list of column names to be used as predictors	
fixed_time	prediction time of interest. If NULL, 0.90th quantile of event times is used	
randomseed	random seed for replication	
useCoxLasso	TRUE / FALSE, for whether to use regularized version of the Cox model, FALSE is default	
outer_cv	k in k-fold CV	
inner_cv	k in k-fold CV for internal CV to tune survival random forest hyper-parameters	
tuningparams	list of tuning parameters for random forest: 1) NULL for using a default tuning grid, or 2) a list("mtry"= $c()$, "nodedepth" = $c()$, "nodesize" = $c()$)	
return_models	TRUE/FALSE to return the trained models; default is FALSE, only performance is returned	
repeat_cv	if NULL, runs once, otherwise repeats several times with different random split for CV, reports average of all	

10 survcompare2

ml this is currently for Survival Random Forest only ("SRF")

use_ensemble TRUE/FALSE for whether to train SRF on its own, apart from the CoxPH->SRF

ensemble. Default is FALSE as there is not much information in SRF itself

compared to the ensembled version.

max_grid_size number of random grid searches for model tuning

suppresswarn TRUE/FALSE, TRUE by default

Value

outcome - cross-validation results for CoxPH, SRF, and an object containing the comparison results

Author(s)

Diana Shamsutdinova <diana.shamsutdinova.github@gmail.com>

Examples

```
df <-simulate_nonlinear(100)
predictors <- names(df)[1:4]
srf_params <- list("mtry" = c(2), "nodedepth"=c(25), "nodesize" =c(15))
mysurvcomp <- survcompare(df, predictors, tuningparams = srf_params, max_grid_size = 1)
summary(mysurvcomp)</pre>
```

survcompare2 Compares two cross-validated models using surv___cv functions of this package.

Description

#' The two arguments are two cross-validated models, base and alternative, e.g., Cox Proportionate Hazards Model (or Cox LASSO), and Survival Random Forest, or DeepHit (if installed from GitHub, not in CRAN version). Please see examples below.

Both cross-validations should be done with the same random seed, number of repetitions (repeat_cv), outer_cv and inner_cv to ensure the models are compared on the same train/test splits.

Harrel's c-index,time-dependent AUC-ROC, time-dependent Brier Score, and calibration slopes are reported. The statistical significance of the performance differences is tested for the C-indeces.

The function is designed to help with the model selection by quantifying the loss of predictive performance (if any) if "alternative" is used instead of "base."

```
survcompare2(base, alternative)
```

survcoxlasso_train 11

Arguments

base an object of type "survensemble_cv", for example, outcomes of survcox_cv,

survsrf_cv, survsrfens_cv, survsrfstack_cv

alternative an object of type "survensemble_cv", to compare to "base"

Value

outcome = list(data frame with performance results, fitted Cox models, fitted DeespSurv)

Examples

```
df <-simulate_nonlinear(100)
params <- names(df)[1:4]
cv1 <- survcox_cv(df, params, randomseed = 42, repeat_cv =1)
cv2 <- survsrf_cv(df, params, randomseed = 42, repeat_cv = 1)
survcompare2(cv1, cv2)</pre>
```

survcoxlasso_train

Trains CoxLasso, using cv.glmnet(s="lambda.min")

Description

Trains CoxLasso, using cv.glmnet(s="lambda.min")

Usage

```
survcoxlasso_train(
   df_train,
   predict.factors,
   inner_cv = 5,
   fixed_time = NaN,
   retrain_cox = FALSE,
   verbose = FALSE
)
```

Arguments

df_train data frame with the data, "time" and "event" should describe survival outcome predict.factors

list of the column names to be used as predictors

inner_cv k in k-fold CV for lambda tuning fixed_time not used here, for internal use

retrain_cox whether to re-train coxph on non-zero predictors; FALSE by default

verbose TRUE/FALSE prints warnings if no predictors in Lasso

12 survcox_cv

Value

fitted CoxPH object with coefficient of CoxLasso or re-trained CoxPH with non-zero CoxLasso if retrain_cox = FALSE or TRUE

survcox_cv

Cross-validates Cox or CoxLasso model

Description

Cross-validates Cox or CoxLasso model

Usage

```
survcox_cv(
   df,
   predict.factors,
   fixed_time = NaN,
   outer_cv = 3,
   repeat_cv = 2,
   randomseed = NaN,
   return_models = FALSE,
   inner_cv = 3,
   useCoxLasso = FALSE,
   suppresswarn = TRUE
)
```

Arguments

df data frame with the data, "time" and "event" for survival outcome predict.factors

list of predictor names

fixed_time at which performance metrics are computed

outer_cv k in k-fold CV, default 3

repeat_cv if NULL, runs once, otherwise repeats CV

randomseed random seed

return_models TRUE/FALSE, if TRUE returns all CV objects

 $inner_cv \hspace{1cm} k \ in \ the \ inner \ loop \ of \ k-fold \ CV, \ default \ is \ 3; \ only \ used \ if \ CoxLasso \ is \ TRUE$

useCoxLasso TRUE/FALSE, FALSE by default suppresswarn TRUE/FALSE, TRUE by default

Value

list of outputs

survcox_predict 13

Examples

```
df <- simulate_nonlinear()
coxph_cv <- survcox_cv(df, names(df)[1:4])
summary(coxph_cv)</pre>
```

survcox_predict

Computes event probabilities from a trained cox model

Description

Computes event probabilities from a trained cox model

Usage

```
survcox_predict(trained_model, newdata, fixed_time, interpolation = "constant")
```

Arguments

trained_model pre-trained cox model of coxph class
newdata data to compute event probabilities for
fixed_time at which event probabilities are computed

interpolation "constant" by default, can also be "linear", for between times interpolation for

hazard rates

Value

returns matrix(nrow = length(newdata), ncol = length(fixed_time))

survcox_train

Trains CoxPH using survival package, or trains CoxLasso (cv.glmnet, lambda.min), and then re-trains survival:coxph on non-zero predictors

Description

Trains CoxPH using survival package, or trains CoxLasso (cv.glmnet, lambda.min), and then retrains survival:coxph on non-zero predictors

```
survcox_train(
   df_train,
   predict.factors,
   fixed_time = NaN,
   useCoxLasso = FALSE,
   retrain_cox = FALSE,
   inner_cv = 5
)
```

14 survival_prob_km

Arguments

df_train data, "time" and "event" should describe survival outcome

predict.factors

list of the column names to be used as predictors

fixed_time target time, NaN by default; needed here only to re-align with other methods

useCoxLasso TRUE or FALSE

retrain_cox if useCoxLasso is TRUE, whether to re-train coxph on non-zero predictors,

FALSE by default

inner_cv k in k-fold CV for training lambda for Cox Lasso, only used for useCoxLasso =

TRUE

Value

fitted CoxPH or CoxLasso model

survival_prob_km Calculates survival probability estimated by Kaplan-Meier survival

curve Uses polynomial extrapolation in survival function space, using

poly(n=3)

Description

Calculates survival probability estimated by Kaplan-Meier survival curve Uses polynomial extrapolation in survival function space, using poly(n=3)

Usage

```
survival_prob_km(df_km_train, times, estimate_censoring = FALSE)
```

Arguments

df_km_train event probabilities (!not survival)
times times at which survival is estimated

estimate_censoring

FALSE by default, if TRUE, event and censoring is reversed (for IPCW calcu-

lations)

Value

vector of survival probabilities for time_point

survsrfens_cv 15

survsrfens_cv

Cross-validates predictive performance for SRF Ensemble

Description

Cross-validates predictive performance for SRF Ensemble

Usage

```
survsrfens_cv(
   df,
   predict.factors,
   fixed_time = NaN,
   outer_cv = 3,
   inner_cv = 3,
   repeat_cv = 2,
   randomseed = NaN,
   return_models = FALSE,
   useCoxLasso = FALSE,
   tuningparams = list(),
   max_grid_size = 10,
   verbose = FALSE,
   suppresswarn = TRUE
)
```

Arguments

df data frame with the data, "time" and "event" for survival outcome predict.factors list of predictor names fixed_time at which performance metrics are computed number of folds in outer CV, default 3 outer_cv number of folds for model tuning CV, default 3 inner_cv number of CV repeats, if NaN, runs once repeat_cv randomseed random seed TRUE/FALSE, if TRUE returns all trained models return_models useCoxLasso TRUE/FALSE, default is FALSE if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()), tuningparams otherwise a wide default grid is used max_grid_size number of random grid searches for model tuning verbose FALSE(default)/TRUE TRUE/FALSE, TRUE by default suppresswarn

16 survsrfens_predict

Value

list of outputs

Examples

```
df <- simulate_nonlinear()
ens_cv <- survsrfens_cv(df, names(df)[1:4])
summary(ens_cv)</pre>
```

survsrfens_predict

Predicts event probability by a trained sequential ensemble of Survival Random Forest and CoxPH

Description

Predicts event probability by a trained sequential ensemble of Survival Random Forest and CoxPH

Usage

```
survsrfens_predict(trained_model, newdata, fixed_time, extrapsurvival = TRUE)
```

Arguments

trained_model a trained model, output of survsrfens_train()

newdata new data for which predictions are made

fixed_time time of interest, for which event probabilities are computed

extrapsurvival if probabilities are extrapolated beyond trained times (constant)

Value

vector of predicted event probabilities

survsrfens_train 17

survsrfens_train Fits an ensemble of Cox-PH and Survival Random Forest (SRF) with internal CV to tune SRF hyperparameters.

Description

Details: the function trains Cox model, then adds its out-of-the-box predictions to Survival Random Forest as an additional predictor to mimic stacking procedure used in Machine Learning and reduce over-fitting. #' Cox model is fitted to .9 data to predict the rest .1 for each 1/10s fold; these out-of-the-bag predictions are passed on to SRF

Usage

```
survsrfens_train(
  df_train,
  predict.factors,
  fixed_time = NaN,
  inner_cv = 3,
  randomseed = NaN,
  tuningparams = list(),
  useCoxLasso = FALSE,
  max_grid_size = 10,
  var_importance_calc = FALSE,
  verbose = FALSE
```

Arguments

df_train data, "time" and "event" should describe survival outcome predict.factors list of predictor names time at which performance is maximized fixed_time inner_cv number of cross-validation folds for hyperparameters' tuning randomseed random seed to control tuning including data splits if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()), tuningparams otherwise a wide default grid is used useCoxLasso if CoxLasso is used (TRUE) or not (FALSE, default) number of random grid searches for model tuning max_grid_size var_importance_calc if variable importance is computed FALSE (default)/TRUE verbose

Value

trained object of class survsrf_ens

18 survsrfstack_cv

survsrfstack_cv Cross-validates stacked ensemble of the CoxPH and Survival Random Forest models

Description

Cross-validates stacked ensemble of the CoxPH and Survival Random Forest models

Usage

```
survsrfstack_cv(
   df,
   predict.factors,
   fixed_time = NaN,
   outer_cv = 3,
   inner_cv = 3,
   repeat_cv = 2,
   randomseed = NaN,
   return_models = FALSE,
   useCoxLasso = FALSE,
   tuningparams = list(),
   max_grid_size = 10,
   verbose = FALSE,
   suppresswarn = TRUE
)
```

Arguments

data, "time" and "event" should describe survival outcome df predict.factors list of predictor names fixed_time time at which performance is maximized number of cross-validation folds for model validation outer_cv number of cross-validation folds for hyperparameters' tuning inner_cv number of CV repeats, if NaN, runs once repeat_cv randomseed random seed to control tuning including data splits return_models TRUE/FALSE, if TRUE returns all CV objects useCoxLasso if CoxLasso is used (TRUE) or not (FALSE, default) tuningparams if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()), otherwise a wide default grid is used number of random grid searches for model tuning max_grid_size FALSE(default)/TRUE verbose TRUE/FALSE, TRUE by default suppresswarn

survsrfstack_predict 19

Description

Predicts event probability by a trained stacked ensemble of Survival Random Forest and CoxPH

Usage

```
survsrfstack_predict(
   trained_object,
   newdata,
   fixed_time,
   predict.factors,
   extrapsurvival = TRUE
)
```

Arguments

```
trained_object a trained model, output of survsrfstack_train()

newdata new data for which predictions are made

fixed_time time of interest, for which event probabilities are computed

predict.factors

list of predictor names

extrapsurvival if probabilities are extrapolated beyond trained times (constant)
```

Value

vector of predicted event probabilities

Description

Trains the stacked ensemble of the CoxPH and Survival Random Forest

20 survsrfstack_train

Usage

```
survsrfstack_train(
  df_train,
  predict.factors,
  fixed_time = NaN,
  inner_cv = 3,
  randomseed = NaN,
  useCoxLasso = FALSE,
  tuningparams = list(),
  max_grid_size = 10,
  verbose = FALSE
)
```

Arguments

```
df_train
                  data, "time" and "event" should describe survival outcome
predict.factors
                  list of predictor names
fixed_time
                  time at which performance is maximized
                  number of cross-validation folds for hyperparameters' tuning
inner_cv
randomseed
                  random seed to control tuning including data splits
useCoxLasso
                  if CoxLasso is used (TRUE) or not (FALSE, default)
tuningparams
                  if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()),
                  otherwise a wide default grid is used
                  number of random grid searches for model tuning
max_grid_size
verbose
                  FALSE(default)/TRUE
```

Value

```
output = list(bestparams, allstats, model)
```

Examples

```
d <-simulate_nonlinear(100)
p<- names(d)[1:4]
tuningparams = list(
  "mtry" = c(5,10,15),
  "nodedepth" = c(5,10,15,20),
  "nodesize" = c(20,30,50)
)
m_srf<- survsrf_train(d,p,tuningparams=tuningparams)</pre>
```

survsrf_cv 21

survsrf_cv

Cross-validates Survival Random Forest

Description

Cross-validates Survival Random Forest

Usage

```
survsrf_cv(
   df,
   predict.factors,
   fixed_time = NaN,
   outer_cv = 3,
   inner_cv = 3,
   repeat_cv = 2,
   randomseed = NaN,
   return_models = FALSE,
   tuningparams = list(),
   max_grid_size = 10,
   verbose = FALSE,
   suppresswarn = TRUE
)
```

Arguments

df data, "time" and "event" should describe survival outcome predict.factors
list of predictor names
fixed_time time at which performance is maximized
outer_cv number of cross-validation folds for model validation

inner_cv number of cross-validation folds for hyperparameters' tuning

repeat_cv number of CV repeats, if NaN, runs once

randomseed random seed to control tuning including data splits

return_models if all models are stored and returned

tuningparams if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()),

otherwise a wide default grid is used

max_grid_size number of random grid searches for model tuning

verbose FALSE(default)/TRUE

suppresswarn TRUE/FALSE, TRUE by default

Value

list of outputs

22 survsrf_train

Examples

```
df <- simulate_nonlinear()
srf_cv <- survsrf_cv(df, names(df)[1:4])
summary(srf_cv)</pre>
```

survsrf_predict

Predicts event probability by a trained Survival Random Forest

Description

Predicts event probability by a trained Survival Random Forest

Usage

```
survsrf_predict(trained_model, newdata, fixed_time, extrapsurvival = TRUE)
```

Arguments

 $trained_model \quad a \ trained \ SRF \ model, \ output \ of \ survsrf_train(), \ or \ randomForestSRC::rfsrc()$

newdata new data for which predictions are made

fixed_time time of interest for which event probabilities are computed

extrapsurvival if probabilities are extrapolated beyond trained times (using probability of the

lastest available time). Can be helpful for cross-validation of small data, where random split may cause the time of interest being outside of the training set.

Value

vector of predicted event probabilities

survsrf_train Fits randomForestSRC, with tuning by mtry, nodedepth, and nodesize. Underlying model is by Ishwaran et al(2008) https://www.randomforestsrc.org/articles/survival.html Ishwaran

H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests.

The Annals of Applied Statistics. 2008;2:841–60.

Description

Fits randomForestSRC, with tuning by mtry, nodedepth, and nodesize. Underlying model is by Ishwaran et al(2008) https://www.randomforestsrc.org/articles/survival.html Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. The Annals of Applied Statistics. 2008;2:841–60.

survsrf_train 23

Usage

```
survsrf_train(
  df_train,
  predict.factors,
  fixed_time = NaN,
  tuningparams = list(),
  max_grid_size = 10,
  inner_cv = 3,
  randomseed = NaN,
  verbose = TRUE
)
```

Arguments

```
df_train data, "time" and "event" should describe survival outcome

predict.factors

list of predictor names

fixed_time time at which performance is maximized

tuningparams if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()),
    otherwise a wide default grid is used

max_grid_size number of random grid searches for model tuning

inner_cv number of cross-validation folds for hyperparameters' tuning

randomseed random seed to control tuning including data splits
```

Value

verbose

```
output = list(bestparams, allstats, model)
```

Examples

```
d <-simulate_nonlinear(100)
p<- names(d)[1:4]
tuningparams = list(
  "mtry" = c(5,10,15),
  "nodedepth" = c(5,10,15,20),
  "nodesize" = c(20,30,50)
)
m_srf<- survsrf_train(d,p,tuningparams=tuningparams)</pre>
```

TRUE/FALSE, FALSE by default

24 survsrf_tune

survsrf_tune

A repeated 3-fold CV over a hyperparameters grid

Description

A repeated 3-fold CV over a hyperparameters grid

Usage

```
survsrf_tune(
  df_tune,
  predict.factors,
  repeat_tune = 1,
  fixed_time = NaN,
  tuningparams = list(),
  max_grid_size = 10,
  inner_cv = 3,
  randomseed = NaN
)
```

Arguments

df_tune data
predict.factors

list of predictor names

repeat_tune number of repeats

fixed_time not used here, but for some models the time for which performance is optimized

tuningparams if given, list of hyperparameters, list(mtry=c(), nodedepth=c(),nodesize=c()),

otherwise a wide default grid is used

max_grid_size number of random grid searches for model tuning

inner_cv number of cross-validation folds for hyperparameter tuning

randomseed to choose random subgroup of hyperparams

Value

```
output=list(cindex_ordered, bestparams)
```

survsrf_tune_single 25

survsrf_tune_single

Internal function for survsrf_tune(), performs 1 CV

Description

Internal function for survsrf_tune(), performs 1 CV

Usage

```
survsrf_tune_single(
  df_tune,
  predict.factors,
  fixed_time = NaN,
  grid_hyperparams = c(),
  inner_cv = 3,
  randomseed = NaN,
  progressbar = FALSE
)
```

Arguments

list of predictor names

fixed_time predictions for which time are computed for c-index

grid_hyperparams

hyperparameters grid (or a default will be used)

inner_cv number of folds for each CV

randomseed randomseed

progressbar FALSE(default)/TRUE

Value

output=list(grid, cindex, cindex_mean)

surv_brierscore

Calculates time-dependent Brier Score

Description

Calculates time-dependent Brier Scores for a vector of times. Calculations are similar to that in: https://scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.metrics.brier_score.html#sksurv.metrics.brier_score https://github.com/sebp/scikit-survival/blob/v0.19.0.post1/sksurv/metrics.py#L524-L644 The function uses IPCW (inverse probability of censoring weights), computed using the Kaplan-Meier survival function, where events are censored events from train data

26 surv_validate

Usage

```
surv_brierscore(
  y_predicted_newdata,
  df_brier_train,
  df_newdata,
  time_point,
  weighted = TRUE
)
```

Arguments

```
y_predicted_newdata
computed event probabilities (! not survival probabilities)

df_brier_train train data

df_newdata test data for which brier score is computed

time_point times at which BS calculated

weighted TRUE/FALSE for IPWC to use or not
```

Value

vector of time-dependent Brier Scores for all time_point

surv_validate

Computes performance statistics for a survival data given the predicted event probabilities

Description

Computes performance statistics for a survival data given the predicted event probabilities

```
surv_validate(
  y_predict,
  predict_time,
  df_train,
  df_test,
  weighted = TRUE,
  alpha = "logit"
)
```

surv_validate 27

Arguments

y_predict probabilities of event by predict_time (matrix=observations x times)

predict_time times for which event probabilities are given

df_train train data, data frame
df_test test data, data frame
weighted TRUE/FALSE, for IPWC

alpha calibration alpha as mean difference in probabilities, or in log-odds (from logis-

tic regression, default)

Value

data.frame(T, AUCROC, Brier Score, Scaled Brier Score, C_score, Calib slope, Calib alpha)

Index

```
linear_beta, 2
ml_hyperparams_srf, 3
print.survcompare, 3
print.survensemble_cv, 4
simulate_crossterms, 4
simulate_linear, 5
simulate_nonlinear, 6
summary.survcompare, 7
summary.survensemble_cv, 8
surv_brierscore, 25
surv_validate, 26
survcompare, 8
survcompare2, 10
survcox_cv, 12
survcox_predict, 13
survcox_train, 13
survcoxlasso_train, 11
survival_prob_km, 14
survsrf_cv, 21
survsrf_predict, 22
survsrf_train, 22
survsrf_tune, 24
survsrf_tune_single, 25
survsrfens_cv, 15
survsrfens_predict, 16
survsrfens_train, 17
survsrfstack_cv, 18
survsrfstack_predict, 19
survsrfstack\_train, 19
```