République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2021 Session Normale Epreuve de MATHEMATIOUES

Série : Sciences de la Nature Coefficient : 6 Durée : 4h

Exercice 1: (3 points)

On considère la suite (u_n) définie par $u_0 = 0$, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} - \frac{2}{9}u_n$.

Soient $v_n = u_{n+1} - \frac{1}{3}u_n$ et $S_n = v_0 + v_1 + \dots + v_n$.

Pour chacune des six questions suivantes, une seule des réponses proposées est correcte.

N°	Questions	Réponse A	Réponse B	Réponse C 14 9	
1	La valeur de u ₃ est	$\frac{17}{9}$	$\frac{16}{9}$		
2	La suite (u _n) est	Croissante	Décroissante	Non monotone	
3	La suite (v _n) est	Arithmétique	Géométrique	Ni arithmétique, ni géométrique	
4	Le terme général de (v _n) est	$2 \times \left(\frac{2}{3}\right)^n$	$2+\frac{2n}{3}$	$2-\left(\frac{2}{3}\right)^n$	
5	La valeur de S _n est	$6-4\times\left(\frac{2}{3}\right)^n$	$\frac{(n+1)(n+6)}{3}$	$2n-1+2\left(\frac{2}{3}\right)^n$	
6	La suite (v _n)	Converge vers	Converge vers	Diverge	

Recopier sur la feuille de réponse et compléter le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2: (5 points)

Pour tout nombre complexe z, on pose: $P(z) = z^3 - (1+4i)z^2 - 3z - 1 - 8i$.

- 1° a) Calculer P(-i).
 b) Déterminer les complexes a et b tels que ∀z ∈ C : P(z) = (z+i)(z² + az + b).
 0,5pt
 0,5pt
- c) Résoudre, dans l'ensemble des nombres complexes \mathbb{C} , l'équation P(z) = 0.
- 2° Dans le plan complexe muni d'un repère orthonormé (O,\vec{u},\vec{v}) , on considère les points A,B
- et C d'affixes respectives : $z_A = -i$; $z_B = -1 + 2i$ et $z_C = 2 + 3i$.
- a) Placer les points A, B et C dans le repère (0, \vec{u}, \vec{v}). Déterminer la nature du triangle ABC. 0.75pt
- b) Placer le point D d'affixe $z_D = 3$ et préciser la nature du quadrilatère ABCD.
- 3° Pour tout nombre complexe $z \neq 2+3i$, on pose $f(z) = \frac{z+i}{z-2-3i}$
- a) Déterminer et construire l'ensemble Γ_1 des points M d'affixe z tels que |f(z)| = 1 0,5 pt
- b) Déterminer et construire l'ensemble Γ_2 des points M d'affixe z tels que

$$\arg[f(z)] = \frac{\pi}{2}[\pi]$$

- c) Justifier que les ensembles Γ_1 et Γ_2 passent par les points B et D. 0,25pt
- 4° Pour tout entier $n \in \mathbb{N}$, on pose $z_n = (z_B i)^n$. Soit M_n le point d'affixe z_n et $d_n = |z_n|$
- a) Déterminer les valeurs de n pour lesquelles M_n appartient à l'axe des abscisses. 0,25pt
- b) Montrer que (d_n) est une suite géométrique et en déduire que $OM_n = (\sqrt{2})^n$ 0,5pt
- c) Exprimer en fonction de n la valeur de la somme $L_n = OM_1 + OM_2 + ... + OM_n$, où $n \in \mathbb{N}^*$. 0,25pt

0,5pt

Exercice 3: (5,5 points)

Soit f la fonction numérique définie sur \mathbb{R} par $f(x) = 1 + (x+2)e^{-x}$ et soit (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$, d'unité graphique 1cm.

- 1° a) Montrer que $\lim_{x \to -\infty} f(x) = -\infty$ puis calculer et interpréter graphiquement $\lim_{x \to -\infty} \frac{f(x)}{x}$. 0,75pt
- b) Justifier que $f(x) = 1 + \frac{x}{e^x} + \frac{2}{e^x}$ puis calculer interpréter graphiquement $\lim_{x \to +\infty} f(x)$.
- 2° Calculer f'(x), où f' est la fonction dérivée de f. Dresser le tableau de variation de f. 0,75pt
- 3° Montrer que l'équation f(x)=0 admet une unique solution α . Justifier que $-2,2<\alpha<-2$
- 4° a) Montrer que I(0;3) est un point d'inflexion pour la courbe (C). Ecrire une équation de la tangente T à (C) en ce point.
- b) Construire la courbe (C) et sa tangente T dans le repère $(0; \vec{i}, \vec{j})$.
- 5° Soit S l'aire, en cm², de la partie du plan fermée par la courbe (C) et les axes de coordonnées.
- a) Montrer que $S = \int_{\alpha}^{0} f(x) dx$.
- b) Vérifier que $\forall x \in \mathbb{R}$, f(x) = 1 + h'(x), où $h(x) = -(x+3)e^{-x}$. En déduire une primitive de f sur \mathbb{R} .
- c) Justifier que $e^{-\alpha} = \frac{-1}{\alpha + 2}$ et en déduire que $S = \frac{-(\alpha + 3)^2}{\alpha + 2}$.

Exercice 4: (6,5 points)

Soit f la fonction définie sur l'intervalle $I =]0, +\infty[$ par $f(x) = x - 2 + 2\left(\frac{\ln x}{x}\right)$, et soit Γ sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1° On considère la fonction g définie sur I par $g(x) = x^2 + 2 2 \ln x$
- a) Calculer g'(x) pour tout $x \in I$ et étudier son signe sur cet intervalle.

 0,5pt
- b) Calculer g(1), puis en déduire que g est positive sur I. 0,5pt
- 2° a) Montrer que $\lim_{x\to 0^+} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$. Interpréter graphiquement. 0,75pt
- b) Montrer que la droite Δ d'équation y = x 2 est asymptote à Γ et étudier leur position relative.
- 3° a) Montrer que $\forall x > 0$, $f'(x) = \frac{g(x)}{x^2}$ (g étant la fonction définie en 1°).
- b) En déduire le signe de f' puis dresser le tableau de variation de la fonction f . 0,5pt
- c) Montrer que la courbe Γ coupe l'axe des abscisses en un seul point A d'abscisse β . Vérifier que 1,47 < β < 1,48
- 4° a) Déterminer une équation de la tangente T à Γ au point d'abscisse e . 0,5pt
- b) Construire la courbe Γ , l'asymptote Δ ainsi que la tangente Γ dans le même repère $(0; \vec{i}, \vec{j})$
- c) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $(m+2)x = 2 \ln x$.
- 5° a) Montrer que f réalise une bijection de I dans un intervalle J à déterminer. 0,5pt
- b) Vérifier que $f^{-1}(-1) = 1$ et calculer $(f^{-1})'(-1)$, où f^{-1} est la réciproque de f. 0,5pt
- c) Construire la courbe (Γ') de f^{-1} dans le même repère $(0, \vec{i}, \vec{j})$.

Fin.

0,5pt

0,5pt