ICML 2009 Tutorial
Survey of Boosting
from an Optimization Perspective

Part I: Entropy Regularized LPBoost

Part II: Boosting from an Optimization Perspective

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research

- Introduction to Boosting
- What is Boosting?
- 3 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- **5** Conclusion and Open Problems

Outline

- Introduction to Boosting
- What is Boosting?
- 3 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- © Conclusion and Open Problems

Setup for Boosting

[Giants of field: Schapire, Freund]

- examples: 11 apples
- +1 if artificial
 - 1 if natural
- goal: classification

Setup for Boosting

- \bullet +1/-1 examples
- weight $d_n \approx \text{size}$

separable

Weak hypotheses

- weak hypotheses: decision stumps on two features one can't do it
- goal: find convex combination of weak hypotheses that classifies all

Boosting: 1st iteration

First hypothesis:

- error: $\frac{1}{11}$
- edge: $\frac{9}{11}$

low error = high edge

edge = 1 - 2 error

Update after 1st

Misclassified examples

increased weights

After update

 edge of hypothesis decreased

Before 2nd iteration

Boosting: 2nd hypothesis

Pick hypotheses with high (weighted) edge

Update after 2nd

After update

 edges of all past hypotheses should be small

3rd hypothesis

Update after 3rd

4th hypothesis

Update after 4th

Final convex combination of all hypotheses

Decision: $\sum_{t=1}^{T} w_t h^t(\mathbf{x}) \geq 0$?

Positive total weight - Negative total weight

- Maintain distribution on $N \pm 1$ labeled examples
- At iteration t = 1, ..., T:
 - Receive "weak" hypothesis h^t of high edge
 - Update \mathbf{d}^{t-1} to \mathbf{d}^t more weights on "hard" examples
- Output convex combination of the weak hypotheses $\sum_{t=1}^{T} w_t h^t(x)$

Two sets of weights:

- distribution **d** on examples
- distribution w on hypotheses

Data representation

	$y_n h^t(x_n) := u_n^t$
perfect	+1
opposite	-1
neutral	0

examples x_n	labels y_n	$h^1(x_n)$	u^1
	-1	-1	1
	-1	-1	1
=	-1	-1	1
	-1	1	-1
	1	1	1
	1	1	1
	1	1	1
	1	-1	-1

Edge of a hypothesis h^t for a distribution **d** on the examples

Margin of example n for current hypothesis weighting \mathbf{w}

Edge of a hypothesis h^t for a distribution **d** on the examples

Margin of example n for current hypothesis weighting \mathbf{w}

AdaBoost

Initialize
$$t = 0$$
 and $d_n^0 = \frac{1}{N}$
For $t = 1, ..., T$

- ullet Get h_t whose edge w.r.t current distribution is $1-2\epsilon_t$
- Set $w_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- Update distribution as follows

$$d_n^t = \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t u_{n'}^t)}$$

Final hypothesis: $\operatorname{sgn}\left(\sum_{t=1}^{T} w_t h_t(\cdot)\right)$

Objectives

Edge

- Edges of past hypotheses should be small after update
- Minimize maximum edge of past hypotheses

Margin

• Choose convex combination of weak hypotheses that maximizes the minimum margin

	Which margin?	
SVM	2-norm (weights on examples)	
Boosting	1-norm (weights on base hypotheses)	

Connection between objectives?

Edge vs. margin

min max edge = max min margin

$$\min_{\mathbf{d} \in \mathcal{S}^N} \max_{q=1,2,\dots,t-1} \underbrace{\mathbf{u}^q \cdot \mathbf{d}}_{\text{edge of hypothesis q}} = \max_{\mathbf{w} \in \mathcal{S}^{t-1}} \min_{n=1,2,\dots,N} \underbrace{\sum_{q=1}^{t-1} u_n^q w_q}_{\text{margin of example } n}$$

Linear Programming duality

Boosting as zero-sum-game

[FS97]

Rock, Paper, Scissors game

Single row is pure strategy of row player and **d** is mixed strategy

Single column is pure strategy of column player and w is mixed strategy

Row player minimizes Column player maximizes

payoff =
$$\mathbf{d}^{\mathsf{T}} \mathbf{U} \mathbf{w}$$

= $\sum_{i,j} d_i U_{i,j} \mathbf{w}_j$

Optimum strategy

Min-max theorem:

Connection to Boosting?

- Rows are the examples
- Columns \mathbf{u}^q encode weak hypothesis h^q
- Row sum: margin of example
- Column sum: edge of weak hypothesis
- Value of game:

min max edge = max min margin

Van Neumann's Minimax Theorem

Edges/margins

value of game 0

New column added: boosting

Value of game **increases** from 0 to .11

Row added: on-line learning

Value of game decreases from 0 to -.11

Boosting: maximize margin incrementally

w_1^1	w_{1}^{2}	w_{2}^{2}		w_1^3	W_2^3	W_{3}^{3}
$d_1^1 = 0$	$d_1^2 = 0$	-1	d_1^3	0	-1	1
d_2^1 1	$d_2^2 = 1$	0	d_2^3	1	0	-1
d_3^1 -1	d_3^2 -1	1	d_3^3	3 -1	. 1	0
iteration 1	iteratio	n 2		iter	ration 3	₹

- In each iteration solve optimization problem to update d
- Column player / oracle provides new hypothesis
- Boosting is column generation method in d domain and coordinate descent in w domain

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 Entropy Regularized LPBoost
- Overview of Boosting algorithms
- 5 Conclusion and Open Problems

Boosting = greedy method for increasing margin

Converges to optimum margin w.r.t. all hypotheses

Want small number of iterations

Assumption on next weak hypothesis

For current weighting of examples, oracle returns hypothesis of edge $\geq g$

Goal

- For given ϵ , produce convex combination of weak hypotheses with soft margin $\geq g \epsilon$
- Number of iterations $O(\frac{\log N}{\epsilon^2})$

Recall min max thm

$$\begin{array}{ll} \min \limits_{\mathbf{d} \in \mathcal{S}^N} \max \limits_{q=1,2,\dots,t} \underbrace{\mathbf{u}^q \cdot \mathbf{d}}_{\text{edge of hypothesis q}} \\ = \max \limits_{\mathbf{w} \in \mathcal{S}^t} \min \limits_{n=1,2,\dots,N} \underbrace{\left(\sum_{q=1}^t u_n^q \ w_q\right)}_{\text{margin of example } n} \end{array}$$

Visualizing the margin

Min max thm - inseparable case

Slack variables in \mathbf{w} domain = capping in \mathbf{d} domain

$$\begin{aligned} & \underset{\mathbf{d} \in \mathcal{S}^N, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}}{\min} & \underset{q=1,2,\ldots,t}{\max} \underbrace{\mathbf{u}^q \cdot \mathbf{d}}_{\text{edge of hypothesis q}} \\ &= & \underset{\mathbf{w} \in \mathcal{S}^t, \boldsymbol{\psi} \geq \mathbf{0}}{\max} & \underset{n=1,2,\ldots,N}{\min} \underbrace{\left(\sum_{q=1}^t u_n^q \ w_q + \psi_n\right)}_{\text{soft margin of example } n} - \frac{1}{\nu} \sum_{n=1}^N \psi_n \end{aligned}$$

Visualizing the soft margin

LPBoost

Choose distribution that minimizes the maximum edge of current hypotheses by solving:

$$\underbrace{\min_{\sum_{n} d_{n}=1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q=1,2,\dots,t} \mathbf{u}^{q} \cdot \mathbf{d}}_{P_{IP}^{t}}$$

All weight is put on examples with minimum soft margin

Outline

- Introduction to Boosting
- 2 What is Boosting?
- Second Second
- Overview of Boosting algorithms
- 5 Conclusion and Open Problems

Entropy Regularized LPBoost

$$\min_{\sum_{n} d_{n} = 1, \mathbf{d} \leq \frac{1}{\nu} \mathbf{1}} \max_{q = 1, 2, \dots, t} \mathbf{u}^{q} \cdot \mathbf{d} + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^{0})$$

•

$$\mathbf{d}_n = rac{\mathsf{exp}^{-\eta \; \mathsf{soft} \; \mathsf{margin} \; \mathsf{of} \; \mathsf{example} \; r}{7}$$

"soft min"

• Form of weights first in ν -Arc algorithm

[RSS+00]

- Regularization in d domain makes problem strongly convex
- Gradient of dual Lipschitz continuous in **w** [e.g. HL93,RW97]

The effect of entropy regularization

Different distribution on the examples

LPBoost: lots of zeros / brittle

ERLPBoost: smoother

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 Entropy Regularized LPBoost
- 4 Overview of Boosting algorithms
- 6 Conclusion and Open Problems

[FS97]

$$d_n^t := \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t u_{n'}^t)},$$

where w_t s.t. $\sum_{n'} d_{n'}^{t-1} \exp(-w u_{n'}^t)$ is minimized

i.e.
$$\frac{\partial \sum_{n'} d_{n'}^{t-1} \exp(-w u_{n'}^{t})}{\partial w} \Big|_{w=w_t} = \sum_{n} u_n^t \frac{d_n^{t-1} \exp(-w_t u_n^t)}{\sum_{n'} d_{n'}^{t-1} \exp(-w_t^t u_{n'}^t)} = \mathbf{u}^t \cdot \mathbf{d}^t = 0$$

- Easy to implement
- Adjusts distribution so that edge of last hypothesis is zero
- Gets within half of the optimal hard margin but only in the limit

[RSD07]

Corrective versus totally corrective

Processing last hypothesis versus all past hypotheses

Corrective	Totally Corrective
AdaBoost	LPBoost
LogitBoost	TotalBoost
AdaBoost*	SoftBoost
SS,Colt08	ERLPBoost

From AdaBoost to FRI PBoost

AdaBoost

(as interpreted in [KW99,La99])

Primal:

Dual:

$$\begin{aligned} & \underset{\mathbf{d}}{\min} & & \Delta(\mathbf{d}, \mathbf{d}^{t-1}) & & \underset{\mathbf{w}}{\max} & -ln \sum \\ & \text{s.t.} & & \mathbf{d} \cdot \mathbf{u}^t = 0, \ \|\mathbf{d}\|_1 = 1 & & \text{s.t.} & \mathbf{w} \geq 0 \end{aligned}$$

$$\max_{\mathbf{w}} -\ln \sum_{n} d_{n}^{t-1} \exp(-\eta u_{n}^{t} w_{t})$$

Achieves half of optimum hard margin in the limit

AdaBoost*

Dual:

[RW05]

Primal:

 $\min_{\mathbf{d}} \ \Delta(\mathbf{d}, \mathbf{d}^{t-1})$

s.t.
$$\mathbf{d} \cdot \mathbf{u}^t \leq \gamma_t$$
, $\|\mathbf{d}\|_1 = 1$

$$\max_{\mathbf{w}} -\ln \sum_{n} d_{n}^{t-1} \exp(-\eta u_{n}^{t} w_{t}) \\ -\gamma_{t} ||\mathbf{w}||_{1}$$

s.t. $\mathbf{w} > 0$

where edge bound γ_t is adjusted downward by a heuristic

Good iteration bound for reaching optimum hard margin

Overview of Boosting algorithms

$$\begin{array}{ll} \min\limits_{\mathbf{d}} & \Delta(\mathbf{d}, \mathbf{d}^0) \\ \text{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \\ & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma_t, \\ & 1 < q < t \end{array}$$

$$\min_{\mathbf{w}, \boldsymbol{\psi}} \quad -\ln \sum_{n} \mathbf{d}_{n}^{0} \exp(-\eta \sum_{q=1}^{t} u_{n}^{q} w_{q} - \eta \psi_{n}) - \frac{1}{\nu} \|\boldsymbol{\psi}\|_{1} - \gamma_{t} \|\mathbf{w}\|_{1}$$
s.t.
$$\mathbf{w} \geq 0, \ \boldsymbol{\psi} \geq 0$$

where edge bound γ_t is adjusted downward by a heuristic

Good iteration bound for reaching soft margin

ERLPBoost

SoftBoost

Primal:

Primal:

Dual:

Dual:

$$\begin{aligned} & \min_{\mathbf{d}, \gamma} & \gamma + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0) \\ & \text{s.t.} & & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \\ & & \mathbf{d} \cdot \mathbf{u}^q \leq \gamma, \\ & & 1 < q < t \end{aligned}$$

$$\min_{\mathbf{w}, \psi} \quad -\frac{1}{\eta} \ln \sum_{n} \mathbf{d}_{n}^{0} \exp(-\eta \sum_{q=1}^{L} u_{n}^{q} w_{q} - \eta \psi_{n}) - \frac{1}{\nu} \|\psi\|_{1}$$
s.t. $\mathbf{w} > 0$. $\|\mathbf{w}\|_{1} = 1$. $\psi > 0$

where for the iteration bound η is fixed to $\max(\frac{2}{\epsilon} \ln \frac{N}{n}, \frac{1}{2})$

Good iteration bound for reaching soft margin Warmuth (UCSC)

[WGR07]

[WGV08]

Corrective ERLPBoost

[SS08]

Primal:

$$\begin{array}{ll} \min_{\mathbf{d}} & \sum_{q=1}^t w_q(\mathbf{u}^q \cdot \mathbf{d}) + \frac{1}{\eta} \Delta(\mathbf{d}, \mathbf{d}^0) \\ \mathrm{s.t.} & \|\mathbf{d}\|_1 = 1, \ \mathbf{d} \leq \frac{1}{\nu} \mathbf{1} \end{array}$$

Dual:

$$\begin{aligned} & \min_{\boldsymbol{\psi}} & & -\frac{1}{\eta} \ln \sum_{n} \mathbf{d}_{n}^{0} \exp(-\eta \sum_{q=1}^{t} u_{n}^{q} w_{q} - \eta \psi_{n}) - \frac{1}{\nu} \|\boldsymbol{\psi}\|_{1} \\ & \text{s.t.} & & \boldsymbol{\psi} \geq 0 \end{aligned}$$

where for the iteration bound η is fixed to $\max(\frac{2}{\epsilon} \ln \frac{N}{\nu}, \frac{1}{2})$ Good iteration bound for reaching soft margin

Iteration bounds

Corrective	Totally Corrective
AdaBoost	LPBoost
LogitBoost	TotalBoost
AdaBoost*	SoftBoost
SS, Colt08	ERLPBoost

- Strong oracle: returns hypothesis with maximum edge
- Weak oracle: returns hypothesis with edge $\geq g$
- In $O(\frac{\log \frac{N}{\nu}}{\epsilon^2})$ iterations within ϵ of maximum soft margin for strong oracle or within ϵ of g for weak oracle
- Ditto for hard margin case
- In $O(\frac{\log N}{g^2})$ iterations consistency with weak oracle

		W_1	W_2	W_3	W_4	W_5	margin
		0	0	0	0	0	
d_1	.125	+1	95	93	91	99	_
d_2	.125	+1	95	93	91	99	_
d_3	.125	+1	95	93	91	99	_
d_4	.125	+1	95	93	91	99	_
d_5	.125	98	+1	93	91	+.99	_
d_6	.125	97	96	+1	91	+.99	_
d_7	.125	97	95	94	+1	+.99	_
d_8	.125	97	95	93	92	+.99	_
edge		.0137	7075	6900	6725	.0000	
value	-1						

		$ w_1 $	W_2	W_3	W_4	W_5	margin
		1	0	0	0	0	
d_1	0	+1	95	93	91	99	1
d_2	0	+1	95	93	91	99	1
d_3	0	+1	95	93	91	99	1
d_4	0	+1	95	93	91	99	1
d_5	1	98	+1	93	91	+.99	98
d_6	0	97	96	+1	91	+.99	97
d_7	0	97	95	94	+1	+.99	97
d_8	0	97	95	93	92	+.99	97
edge		98	1	93	91	.99	
value	-1	98					

		w_1	W_2	W_3	W_4	W_5	margin
		0	1	0	0	0	
d_1	0	+1	95	93	91	99	95
d_2	0	+1	95	93	91	99	95
d_3	0	+1	95	93	91	99	95
d_4	0	+1	95	93	91	99	95
d_5	0	98	+1	93	91	+.99	1
d_6	1	97	96	+1	91	+.99	96
d_7	0	97	95	94	+1	+.99	95
d_8	0	97	95	93	92	+.99	95
edge		97	96	1	91	.99	
value	-1	98	96				

		w_1	W_2	W_3	W_4	W_5	margin
		0	0	1	0	0	
d_1	0	+1	95	93	91	99	93
d_2	0	+1	95	93	91	99	93
d_3	0	+1	95	93	91	99	93
d_4	0	+1	95	93	91	99	93
d_5	0	98	+1	93	91	+.99	93
d_6	0	97	96	+1	91	+.99	1
d_7	1	97	95	94	+1	+.99	94
d_8	0	97	95	93	92	+.99	93
edge		97	95	94	1	.99	
value	-1	98	96	94			

		w_1	W_2	W_3	W_4	W_5	margin
		0	0	0	1	0	
d_1	0	+1	95	93	91	99	91
d_2	0	+1	95	93	91	99	91
d_3	0	+1	95	93	91	99	91
d_4	0	+1	95	93	91	99	91
d_5	0	98	+1	93	91	+.99	91
d_6	0	97	96	+1	91	+.99	91
d_7	0	97	95	94	+1	+.99	1
d_8	1	97	95	93	92	+.99	92
edge		97	95	94	92	.99	
value	-1	98	96	94	92		

		w_1	W_2	W_3	W_4	W_5	margin
		.5	.0026	0	0	.4975	
$\overline{d_1}$.497	+1	95	93	91	99	.0051
d_2	0	+1	95	93	91	99	.0051
d_3	0	+1	95	93	91	99	.0051
d_4	0	+1	95	93	91	99	.0051
d_5	0	98	+1	93	91	+.99	.0051
d_6	.490	97	96	+1	91	+.99	.0051
d_7	0	97	95	94	+1	+.99	.0051
d_8	.013	97	95	93	92	+.99	.0051
edge		.0051	.0051	.9055	.9100	.0051	
value	-1	98	96	94	92	.0051	

No ties!

LPBoost may return bad final hypothesis

How good is the master hypothesis returned by LPBoost compared to the best possible convex combination of hypotheses?

Any linearly separable dataset can be reduced to a dataset on which LPBoost misclassifies all examples by

- adding a bad example
- adding a bad hypothesis

Adding a bad example

		w_1	W_2	W_3	W_4	W_5	margin
		.5	.0026	0	0	.4975	
d_1	0	+1	95	93	91	99	.0051
d_2	0	+1	95	93	91	99	.0051
d_3	0	+1	95	93	91	99	.0051
d_4	0	+1	95	93	91	99	.0051
d_5	0	98	+1	93	91	+.99	.0051
d_6	0	97	96	+1	91	+.99	.0051
d_7	0	97	95	94	+1	+.99	.0051
d_8	0	97	95	93	92	+.99	.0051
d_9	1	03	03	03	03	03	03
edge		03	03	03	03	03	
value	-1	98	96	94	92	03	

		$ w_1 $	W_2	W_3	W_4	W_5	W_6	margin
		0	0	0	0	0	1	
d_1	0	+1	95	93	91	99	01	.0051
d_2	0	+1	95	93	91	99	01	.0051
d_3	0	+1	95	93	91	99	01	.0051
d_4	0	+1	95	93	91	99	01	.0051
d_5	0	98	+1	93	91	+.99	01	.0051
d_6	0	97	96	+1	91	+.99	01	.0051
d_7	0	97	95	94	+1	+.99	01	.0051
d_8	0	97	95	93	92	+.99	01	.0051
d_9	1	03	03	03	03	03	02	.0051
edge		03	03	03	03	03	02	
value	-1	98	96	94	92	03		

		$ w_1 $	W_2	W_3	W_4	W_5	W_6	margin
		0	0	0	0	0	1	
d_1	0	+1	95	93	91	99	01	01
d_2	0	+1	95	93	91	99	01	01
d_3	0	+1	95	93	91	99	01	01
d_4	0	+1	95	93	91	99	01	01
d_5	0	98	+1	93	91	+.99	01	01
d_6	0	97	96	+1	91	+.99	01	01
d_7	0	97	95	94	+1	+.99	01	01
d_8	0	97	95	93	92	+.99	01	01
d_9	1	03	03	03	03	03	02	02
edge		03	03	03	03	03	02	
value	-1	98	96	94	92	03	02	

		$ w_1 $	W_2	W_3	W_4	W_5	W_6	margin
		0	0	0	0	0	1	
d_1	0	+1	95	93	91	99	01	01
d_2	0	+1	95	93	91	99	01	01
d_3	0	+1	95	93	91	99	01	01
d_4	0	+1	95	93	91	99	01	01
d_5	0	98	+1	93	91	+.99	01	01
d_6	0	97	96	+1	91	+.99	01	01
d_7	0	97	95	94	+1	+.99	01	01
d_8	0	97	95	93	92	+.99	01	01
d_9	1	03	03	03	03	03	02	02
edge		03	03	03	03	03	02	
value	-1	98	96	94	92	03	02	

		$ w_1 $	W_2	W_3	W_4	W_5	W_6	margin
		.5	0	0	0	.5	0	
d_1	0	+1	95	93	91	99	01	+.005
d_2	0	+1	95	93	91	99	01	+.005
d_3	0	+1	95	93	91	99	01	+.005
d_4	0	+1	95	93	91	99	01	+.005
d_5	0	98	+1	93	91	+.99	01	+.005
d_6	0	97	96	+1	91	+.99	01	+.01
d_7	0	97	95	94	+1	+.99	01	+.01
d_8	0	97	95	93	92	+.99	01	+.01
d_9	1	03	03	03	03	03	02	03

Synopsis

- LPBoost often unstable
- For safety, add relative entropy regularization
- Corrective algs
 - Sometimes easy to code
 - Fast per iteration
- Totally corrective algs
 - Smaller number of iterations
 - Faster overall time when ϵ small
- Weak versus strong oracle makes a big difference in practice

$$O(\frac{\log N}{\epsilon^2})$$
 iteration bounds

Good

- Bound is major design tool
- Any reasonable Boosting algorithm should have this bound

Bad

$$\begin{array}{c|c} & \frac{\ln N}{\epsilon^2} \geq N \\ \hline \bullet \text{ Bound is weak} & \epsilon = .01 & N \leq 1.2 \ 10^5 \\ \epsilon = .001 & N \leq 1.7 \ 10^7 \end{array}$$

• Why are totally corrective algorithms much better in practice?

Lower bounds on the number of iterations

- Majority of $\Omega(\frac{\log N}{g^2})$ hypotheses for achieving consistency with weak oracle of guarantee g [Fr95]
- Easy: $\Omega(\frac{1}{\epsilon^2})$ iteration bound for getting within ϵ of hard margin with strong oracle
- Harder: $\Omega(\frac{\log N}{\epsilon^2})$ iteration bound for stron oracle [Ne83?]

Outline

- Introduction to Boosting
- 2 What is Boosting?
- 3 Entropy Regularized LPBoost
- 4 Overview of Boosting algorithms
- 5 Conclusion and Open Problems

Conclusion

- Adding relative entropy regularization of LPBoost leads to good boosting alg.
- Boosting is instantiation of MaxEnt and MinxEnt principles
 [Jaines 57,Kullback 59]
- Relative entropy regularization smoothes one-norm regularization

Open

• When hypotheses have one-sided error then $O(\frac{\log N}{\epsilon})$ iterations suffice [As0

[As00,HW03]

- Does ERLPBoost have $O(\frac{\log N}{\epsilon})$ bound when hypotheses one-sided?
- Replace geometric optimizers by entropic ones
- Compare ours with Freund's algorithms that don't just cap, but forget examples

Acknowledgment

- Rob Schapire and Yoav Freund for pioneering Boosting
- Gunnar Rätsch for bringing in optimization
- Karen Glocer for helping with figures and plots