Semestrale zur Vorlesung "Experimentalphysik II" Sommersemester 2003 Prof. Dr. M. Stutzmann

Aufgabe 1 (10 Punkte)

Die Abbildung zeigt das pV-Diagramm des Kreisprozesses des Otto-Motors. Das kalte Kraftstoff-Luft-Gemisch wird angesaugt und adiabatisch verdichtet (1-2). Bei der anschließenden schnellen Verbrennung (2-3) steigen Druck und Temperatur bei konstantem Volumen (isochore Zustandsänderung). Das heiße Abgas expandiert adiabatisch unter Arbeitsabgabe (3-4) und wird schließlich durch Öffnen des Auslassventils isochor unter Abkühlung ausgestoßen (4-1).

- a) Berechnen Sie die aufgenommene und abgegebene Wärmemenge und leiten Sie den Wirkungsgrad η her!
- b) Bei der adiabatischen Expansion oder Kompression eines idealen Gases ist $TV^{\gamma-1}$ konstant (Adiabatengleichung). Leiten Sie her, dass

$$\eta = 1 - \left(\frac{V_2}{V_1}\right)^{\gamma - 1}.$$

c) Berechnen Sie für einen Verdichtungsfaktor V_1/V_2 =6 und γ =1,3 den Wirkungsgrad des Ottomotors.

Aufgabe 2 (10 Punkte)

Ein Plattenkondensator mit dem Plattenabstand y_0 und der Plattenfläche A ist mit einem Dielektrikum gefüllt, dessen relative Dielektrizitätskonstante

$$\varepsilon_r(y) = a + \frac{b}{y_0} y$$
 mit $0 \le y \le y_0$

vom Abstand y zu einer der Platten abhängt. Hierbei sind a und b Konstanten. Weiterhin sei der Kondensator mit der Ladung Q aufgeladen.

- a) Berechnen Sie die elektrische Feldstärke E(v).
- b) Skizzieren Sie den Verlauf der dielektrischen Verschiebung D(y) und der elektrischen Feldstärke E(y) in Abhängigkeit von y.
- c) Welche Spannung U fällt über dem Kondensator ab?
- d) Wie groß ist die Kapazität C des Kondensators?

Aufgabe 3 (3 Punkte)

Betrachten Sie zwei planparallele, metallische Platten der Fläche A im Vakuum. Die Platten seien genau senkrecht zur Erdbeschleunigung \vec{g} positioniert. Zwischen die Platten werde nun ein punktförmiges Öltröpfchen mit der Masse m und der Ladung q gebracht (q sei positiv). Für welche Ladung q auf den Platten schwebt das Öltröpfchen kräftefrei im Schwerefeld der Erde?

Aufgabe 4 (6 Punkte)

Gegeben ist die rechteckige Stromschleife mit den Abmessungen $a=11\,\mathrm{cm}$ und $b=14\,\mathrm{cm}$ (s. Skizze). Der Winkel Θ zwischen Schleife und y-Achse beträgt $\Theta=30^\circ$ und es fließt ein Strom $I=1\,\mathrm{A}$ durch die Schleife.

- a) Berechnen Sie das magnetische Dipolmoment \vec{p}_m der Stromschleife (Betrag und Richtung!).
- b) Wie groß ist die potentielle Energie der Schleife in einem Magnetfeld B = 1T, wenn \vec{B} entlang der x-Achse angelegt wird? Wie groß ist das Drehmoment auf die Schleife und in welche Richtung wirkt es?

Aufgabe 5 (3 Punkte)

Betrachten Sie eine kugelförmige Ladungsverteilung mit der Gesamtladung Q im Ursprung. Die Ladungsdichte $\rho = \rho_0 \exp(-r)/r^2$ soll dabei exponentiell bis zum Rand der Ladungsverteilung bei r = R abnehmen. Geben Sie das elektrische Feld $|\vec{E}(r)|$ und das elektrostatische Potential $\Phi(r)$ dieser Ladungsverteilung im Fernfeld (d.h. für Abstände r >> R) an.

Aufgabe 6 (10 Punkte)

Gegeben sei ein Widerstand R, eine Kapazität C und eine Induktivität L in der in der Skizze gezeigten Anordnung.

- a) Berechnen Sie den komplexen Wechselstromwiderstand Z der Schaltung.
- b) Berechnen Sie das Verhältnis von Aus- zu Eingangsspannung $U_{\it out}/U_{\it in}$ als Funktion der Frequenz f der Eingangsspannung.
- c) Skizzieren Sie den Betrag $\left|U_{out}/U_{in}\right|$ als Funktion der Frequenz f.

Aufgabe 7 (5 Punkte)

Ein gerader Draht werde von einem Gleichstrom I durchflossen.

- a) Skizzieren Sie die entsprechenden elektrischen und magnetischen Felder \vec{E} und \vec{H} und den zugehörigen Poyntingvektor \vec{S} .
- b) Schätzen Sie die durch die Oberfläche des Drahtes dissipierte elektrische (Ohmsche) Leistung ab und vergleichen Sie sie mit dem Betrag des Poyntingvektors $|\bar{S}|$.