Turning Effects of Forces

Question Paper

Level	O Level
Subject	Physics
Exam Board	Cambridge International Examinations
Unit	Newtonian Mechanics
Topic	Turning Effect of Forces
Booklet	Question Paper

Time Allowed: 49 minutes

Score: /41

Percentage: /100

Grade Boundaries:

A uniform horizontal beam, pivoted at its right-hand end, is in equilibrium. A force of 60 N acts vertically upwards on the beam as shown.

What is the weight of the beam?

- **A** 36 N
- **B** 40 N
- **C** 90 N
- **D** 100 N
- 2 Four table lamps are shown along with the position M of the centre of mass in each case.

Which lamp is the most stable?

³ A uniform plank is pivoted at its mid-point. Two weights are added to the plank, one weight on each side of the pivot in the positions shown.

A vertical force is applied at point X to balance the plank.

What is the size and direction of this force?

	size/N	direction
Α	2.0	downwards
В	2.0	upwards
С	4.0	downwards
D	4.0	upwards

4 A uniform beam is pivoted at its centre. Two weights are placed on the beam in the positions shown and the beam is balanced by an upward force *F*.

What is the size of F?

- **A** 6N
- **B** 12 N
- **C** 30 N
- **D** 60 N

5 The total weight of the load and the wheelbarrow shown is 600 N.

What is the size of force *F* needed just to lift the loaded wheelbarrow?

- **A** 350 N
- **B** 430 N
- **C** 600 N
- **D** 840 N

6 A beam of length 40 cm is pivoted at one end.

The weight of the beam is 4.0 N and acts at a point 20 cm from the pivot. A 2.0 N weight hangs 10 cm from the pivot.

An upward force U is needed to keep the beam horizontal.

What is the size of *U*?

- **A** 0.5 N
- **B** 1.5 N
- **C** 2.5 N
- **D** 6.0 N

7	A	car is designed to be stable.	
	To	achieve good stability, where is the centre of mass of the car?	
	Α	above the front wheels	
	В	above the rear wheels	
	С	as high in the car as possible	
	D	as low in the car as possible	
8		nan uses clay to make a pot. He wants the pot to be as stable as possible when placed on a t surface.	
	Which two features of the pot must the man consider?		
	Α	the area of the base and the height of the centre of gravity	
	В	the density of the clay and the area of the base	
	С	the density of the clay and the height of the centre of gravity	
	D	the weight and the height of the centre of gravity	
9	Wh	at affects the stability of an object?	
	A	only its base area and the location of its centre of mass	
	В	only its weight and its base area	
	С	only the location of its centre of mass	
	D	only its weight	

10 Which chair is the **least** stable if the child moves?

11 A piece of uniform card is suspended freely from a horizontal pin.

Which point is its centre of mass?

12 Two stretched springs X and Y are attached to one end of a metre rule as shown. A weight W is hung from the other end. A pivot is at the centre of the rule.

The weight W is moved towards the pivot.

How does the extension of each spring change?

	spring X	spring Y
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

13 A beam pivoted at one end has a force of 5.0 N acting vertically upwards on it as shown. The beam is in equilibrium.

What is the weight of the beam?

- **A** 2.0 N
- **B** 3.0 N
- **C** 3.3 N
- **D** 5.0 N

 $_{14}$ Four objects of equal mass rest on a table. The centre of mass of each object is labelled G.

Which object is the least stable?

15 The diagram shows a uniform balanced beam, pivoted about its centre.

What is the value of force P?

- **A** 5N
- **B** 7N
- **C** 10 N
- **D** 13 N

16 The diagram shows four shapes, cut from the same piece of card.

Which shape has its centre of mass nearest to the base line?

17 Masses *X* and *Y* are placed on opposite sides of the centre of a uniform metre rule, which is pivoted at its centre.

Which combination of masses and distances balances the rule?

	mass/g		distance /cm	
	X	Y	p	s
Α	200	200	5	10
В	200	300	10	15
С	400	300	12	16
D	500	200	15	30

18 A student balances a non-uniform object on a pivot. To do this, a weight is suspended near the left-hand end of the object.

Where is the centre of mass of the object?

19 An object Y is in a fixed position on a rod. A weight X is moved and the position of a pivot is adjusted until the rod balances on the pivot, as shown.

The experiment is repeated in a region where the gravitational field strength is lower.

What is done to keep the rod balanced?

	pivot	X
Α	move left	no movement
В	move right	move left
С	no movement	move right
D	no movement	no movement

20 Four solid uniform cones have equal weight. They are placed on a bench as shown in the scale diagram.

Which cone is the most stable?

21 A uniform beam is balanced at its midpoint. An object is placed on the beam, as shown.

Which force will rebalance the beam?

- A 30 N acting upwards, 60 cm to the left of the midpoint
- **B** 30 N acting upwards, 60 cm to the right of the midpoint
- C 45 N acting downwards, 45 cm to the right of the midpoint
- **D** 90 N acting downwards, 20 cm to the left of the midpoint
- 22 A student finds the centre of mass of a triangular lamina PQR.

He drills a small hole at Q. He suspends the lamina from a pin through the hole at Q so that the lamina swings freely. He then hangs a plumb-line from the pin at Q, as shown. He marks the position of the plumb-line on the lamina.

To determine the location of the centre of mass, the student then repeats the experiment but with one change.

What is the change?

- A He suspends the lamina from the hole at Q, with R on the left and P on the right.
- **B** He suspends the lamina from a pin through a hole at R.
- **C** He uses a heavier weight on the plumb-line.
- **D** He uses a longer plumb-line.
- 23 A metal cone with a circular base is placed on a flat surface.

The stability of the cone depends on

- **A** its weight only.
- **B** the diameter of its base and the position of its centre of mass.
- **C** the diameter of its base only.
- **D** the position of its centre of mass only.
- 24 Coal is burned as fuel to heat water in a boiler, producing steam. The steam drives a turbine, which is connected to an electric generator.

In which order do the major energy transformations take place?

- **A** chemical energy \rightarrow heat energy \rightarrow electrical energy \rightarrow kinetic energy
- **B** chemical energy \rightarrow heat energy \rightarrow kinetic energy \rightarrow electrical energy
- **C** heat energy \rightarrow chemical energy \rightarrow electrical energy \rightarrow kinetic energy
- **D** heat energy \rightarrow chemical energy \rightarrow kinetic energy \rightarrow electrical energy

25 A wooden trapdoor is hinged along one side and, when closed, is supported on the other side by a ledge.

When the trapdoor is closed, the ledge exerts an upward force of 15 N on the trapdoor. The gravitational field strength is $10\,\text{N/kg}$.

What is the mass of the trapdoor?

- **A** 1.5 kg
- **B** 3.0 kg
- **C** 30 kg
- **D** 150 kg
- 26 A uniform metre rule is balanced by a 4N weight as shown in the diagram.

What is the weight *W* of the metre rule?

- **A** 1N
- **B** 4N
- **C** 16N
- **D** 40 N

Two blocks are placed on a beam which balances on a pivot at its centre. The weight of the beam is negligible.

Which diagram shows the forces acting on the beam? (The length of each arrow represents the size of a force.)

The stability of a bus is tested by tilting it on a ramp. The diagram shows a bus that is just about to topple over.

Where is the centre of mass of the bus?

29 A flat lamina is freely suspended from point P.

The weight of the lamina is 2.0 N and the centre of mass is at C.

The lamina is displaced to the position shown.

What is the moment that will cause the lamina to swing?

- A 0.60 N m clockwise
- B 0.80 N m anticlockwise
- C 1.0 N m clockwise
- **D** 1.0 N m anticlockwise
- 30 A piece of uniform card is suspended freely from a horizontal pin.

At which of the points shown is its centre of gravity?

31 Forces are applied to a uniform beam pivoted at its centre.

Which beam is balanced?

32 The diagram shows a boy of weight 500 N sitting on a see-saw. He sits 2.0 m from the pivot.

- What is the force *F* needed to balance the see-saw?
- **A** 250 N
- **B** 750 N
- 1000 N
- 3000 N
- 33 If a nut and bolt are difficult to undo, it may be easier to turn the nut by using a longer spanner.
 - This is because the longer spanner gives
 - a larger turning moment.
 - В a smaller turning moment.
 - C less friction.
 - D more friction.
- 34 How much energy would be released if $1\times10^{-20}\,\text{kg}$ of matter was entirely converted to energy? (The speed of light is $3\times10^8\,\text{m/s.}$)
- **A** $3 \times 10^{-12} \, \text{J}$ **B** $9 \times 10^{-7} \, \text{J}$ **C** $4.5 \times 10^{-4} \, \text{J}$ **D** $9 \times 10^{-4} \, \text{J}$

35 The diagram shows a wheelbarrow and its load, which have a total weight of 150 N. This is supported by a vertical force F at the ends of the handles.

What is the value of *F*?

- **A** 75 N
- **B** 150 N
- C 225 N
- **D** 300 N
- 36 The diagrams show the cross-sections of different glasses.

Which one is the least stable when filled with a liquid?

A tractor is being used on rough ground.

What is the safest position for its centre of mass?

38 A horizontal pole is attached to the side of a building. There is a pivot **P** at the wall and a chain is connected from the end of the pole to a point higher up the wall.

There is a tension force *F* in the chain.

What is the moment of the force *F* about the pivot **P**?

- A Fxd
- $\mathbf{B} F \mathbf{x} h$
- **C** *F* x *l*
- D Fxs

39 A load is to be moved using a wheelbarrow. The total mass of the load and wheelbarrow is 60 kg. The gravitational field strength is 10 N/kg.

What is the size of force *F* needed just to lift the loaded wheelbarrow?

- **A** 350 N
- **B** 430 N
- **C** 600 N
- **D** 840 N

40 A girl uses paper-clips to balance a toy bird on her finger as shown.

What is the effect of the paper-clips?

- **A** They help to raise the centre of mass above her finger.
- **B** They help to raise the centre of mass to her finger.
- **C** They help to lower the centre of mass below her finger.
- **D** They do not affect the centre of mass but increase the weight.

41 A driver's foot presses with a steady force of 20 N on a pedal in a car as shown.

What is the force *F* pulling on the piston?

- **A** 2.5 N
- **B** 10 N
- **C** 100 N
- **D** 160 N