INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ – IFCE **CÁLCULO I – 2015-1**

Limites de funções exponenciais: f: R \rightarrow R, tal que $f(x) = a^x$, com a > 0 e $a \ne 1$.

- 1. $f(x) = a^x$ assume somente valores positivos
- 2. se a > 1, $f(x) = a^x$ é crescente e consequentemente :

 - a) se a > 1 e x > 0, tem-se $a^x > 1$ b) se a > 1 e x < 0, tem-se $0 < a^x < 1$
- 3. se 0 < a < 1, $f(x) = a^x$ é decrescente e consequentemente :
 - a) se 0 < a < 1 e x > 0, tem-se $0 < a^x < 1$ b) se 0 < a < 1 e x < 0, tem-se $a^x > 1$

A função $f: R \to R$, $f(x) = a^x$, com a > 0 e $a \ne 1$ é contínua em R, i. é, $\lim_{X \to X_0} a^X = a^{X_0}$.

Teorema:

a) Se
$$a > 1$$
, tem-se $\lim_{x \to +\infty} a^x = +\infty$ e $\lim_{x \to -\infty} a^x = 0$

b)Se
$$0 < a < 1$$
, tem-se $\lim_{X \to +\infty} a^X = 0$ e $\lim_{X \to -\infty} a^X = +\infty$

a)
$$\lim_{x \to 1} 2^{\frac{x^3 - 1}{x - 1}} = 8$$
 b) $\lim_{x \to \frac{\pi}{3}} 3^{1 - \sqrt{3} \operatorname{sen} x} = \frac{\sqrt{3}}{3}$ c) $\lim_{x \to 0} 5^{\frac{x - \operatorname{sen} 3x}{x}} = \frac{1}{25}$ d) $\lim_{x \to +\infty} 3^{\frac{1 - x^2}{1 - x}} = +\infty$

e)
$$\lim_{x \to -\infty} 5 \frac{1-x}{1-x^2} = 1$$
 f) $\lim_{x \to \frac{\pi}{2}^+} (0,7)^{tgx} = +\infty$

g)Determine o limite de g(x) quando x se aproxima do valor indicado:

$$\lim_{x \to 0^{+}} (4g(x))^{1/3} = 2 \quad \text{R. } \lim_{x \to 0^{+}} g(x) = 2$$

Limites de funções logarítmicas: f: $R_+^* \to R$, tal que $f(x) = \log_a x$, com a > 0 e $a \ne 1$.

Teorema:

a) Se
$$a > 1$$
, tem-se
$$\lim_{x \to +\infty} \log_a x = +\infty \qquad e \qquad \lim_{x \to 0^+} \log_a x = -\infty$$

b)Se
$$0 < a < 1$$
, tem-se $\lim_{x \to +\infty} \log_a x = -\infty$ e $\lim_{x \to 0^+} \log_a x = +\infty$

1)
$$\lim_{x\to 2} \log_{\frac{2}{3}} \frac{x^3 - 8}{x^3 - 2x^2 + 4x - 8} = -1$$
 2) $\lim_{x\to \infty} \log_{2} \cos x = 0$ 3) $\lim_{x\to -\infty} \log_{5} \frac{1}{|x|} = +\infty$ 4) $\lim_{x\to -\infty} \log_{3} \frac{x^2 + 1}{x^2 - 1} = 0$

5)
$$\lim_{x \to 3^{+}} \ln(t-3) = -\infty$$
 6) $\lim_{x \to -\infty} \log \frac{1}{x^{\frac{1}{2}}} = +\infty$ 7) $\lim_{x \to \frac{\pi}{2}} \log_{3}(tgx) = +\infty$

O número "e": f:
$$\mathbb{N}^* \to \mathbb{R}$$
, dada por $f(x) = \left(1 + \frac{1}{x}\right)^x$, prova-se que $\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e$,

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{x+k} = e$$
, $k \in \mathbb{R}$ b) $\lim_{x \to +\infty} \left(1 + \frac{1}{x+k} \right)^{x+k} = e$, $k \in \mathbb{R}$ c) $\lim_{x \to 0} = (1+x)^{\frac{1}{x}} = e$

4. Se
$$\lim_{x \to x_0} f(x) = \pm \infty$$
 então $\lim_{x \to x_0} = \left(1 + \frac{1}{f(x)}\right)^{f(x)} = e$

5. Se
$$\lim_{x \to x_0} u(x) = L$$
 e $\lim_{x \to x_0} v(x) = \pm \infty$ então $\lim_{x \to x_0} = \left(1 + \frac{u(x)}{v(x)}\right)^{v(x)} = e$

Teorema: sendo
$$a > 0$$
 $\lim_{h \to 0} \frac{a^h - 1}{h} = \log_e^a$

Calcule:a)
$$\lim_{x \to \infty} \left(1 - \frac{2}{x} \right)^x = e^{-2}$$
 b) $\lim_{x \to +\infty} \left(1 - \frac{1}{x} \right)^{3x} = e^{-3}$ c) $\lim_{x \to -\infty} \left(\frac{2x - 1}{2x + 1} \right)^x = e^{-1}$ d) $\lim_{x \to 0} (1 + \frac{4}{x})^{x+3}$

e)
$$\lim_{x\to 0} (1+2x)^{\frac{1}{x}} = e^2$$
 f) $\lim_{x\to 0} (1+\cos x)^{\frac{1}{\cos x}} = 2$ g) $\lim_{x\to \infty} (1-\frac{5}{x})^x = e^{-5}$ i) $\lim_{x\to 0} (1+3tg^2x)^{\cot g^2x} = e^3$

j)
$$\lim_{x \to 0} \frac{e^{-3x} - 1}{x} = -3$$
 k) $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$ l) $\lim_{x \to \infty} n(\sqrt[n]{a} - 1), (a > 0) = \ln a$ m) $\lim_{x \to 0} \frac{1 - e^{-x}}{senx} = 1$

n)
$$\lim_{x \to +\infty} \left(\frac{x+1}{x-1} \right)^x = e^2 \quad \text{o)} \lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^x = e^2 \quad \text{p)} \lim_{x \to 0} (1 + \sin x)^{\frac{1}{x}} = e \quad \text{q)} \lim_{x \to +\infty} \left(\frac{x}{x-1} \right)^{2x+3} = e^2$$

r)
$$\lim_{x\to 0} \frac{e^{-x} - 1}{x} = -1$$
 s) $\lim_{x\to 0} \frac{\log(1+10x)}{x} = 10\log e$ t) $\lim_{x\to -\infty} \frac{\ln(1+e^x)}{e^x} = 1$ u) $\lim_{x\to -\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}} = -1$

Teorema do anulamento ou de Bolzano: "Se f for contínua no intervalo fechado [a ; b] e se f(a) e f(b) tiverem sinais contrários, então existirá pelo menos um \mathbf{c} em [a ; b] tal que $f(\mathbf{c}) = 0$.

Teorema do Valor Intermediário: Se f for contínua num intervalo fechado [a,b] e se k é um número entre f(a) e f(b), inclusive, então, existe no mínimo um ponto c, $c \in (a,b)$ tal que f(c) = k.

Consequência do teorema acima: Se f for contínua em [a,b] e f(a) e f(b) são não nulos e de sinais contrários, então existe, no mínimo, um ponto c, $c \in (a,b)$ tal que f(c) = 0. Ou seja, y = f(x) tem pelo menos uma raiz real entre a e b.

Tal conseqüência do TVI é especialmente útil quando não é possível achar a raiz exatamente usando álgebra e temos que nos satisfazer com uma aproximação decimal da raiz através da identificação de um pequeno intervalo no qual existe no mínimo uma raiz real.

1. Use o Teorema do Valor Intermediário para mostrar que existe pelo menos um valor de x com $0 \le x \le 1$ Solução da equação $x^5 + 4x^2 - x - 3 = 0$.

- 2. Prove que a equação $x^3 4x + 2 = 0$ admite três raízes reais distintas. [-3; -2]; [0; 1]; [1; 2]
- 3 .Uma esfera de raio desconhecido x consiste de um centro esférico e um revestimento de 1cm de espessura(ver figura anexa). Dado que o volume do revestimento e o volume do centro esférico são os mesmos, aproxime o raio da esfera com uma precisão em três casas decimais. Resp. x = 4,847 cm

4) Existe um número que é exatamente um a mais que seu cubo? Resp.: existe