Топология I, листочек 2

1. Докажите, что отрезок (a, b) гомеоморфен прямой \mathbb{R} . Для этого построим гомеоморфизм, но сначала докажем пару утверждений.

Утверждение 1: Непрерывность отображений метрических пространств эквивалентна непрерывности отображений соответственных топологических пространств.

Доказательство: Пусть Y и X – метрические пространства, с соответственными топологиями.

 \Rightarrow : Пусть $f: X \to Y$ – непрерывно с метрической точки зрения. То есть $\forall x \in X, \forall \varepsilon > 0, \exists \delta$ такое что $\rho(x,y) < \delta \Rightarrow \rho(f(x),f(y)) < \varepsilon$. Пусть $U \subseteq Y$ открыто и $x \in f^{-1}[U]$. Тогда точка f(x) лежит в U вместе с некоторым шаром $\mathcal{B}_Y(f(x),\varepsilon)$ с центром f(x) и радиусом ε . И так как из непрерывности имеет место следствие $\rho(x,y) < \delta(\varepsilon) \Rightarrow \rho(f(x),f(y)) < \varepsilon$, то $\mathcal{B}_X(x,\varepsilon) \subseteq f^{-1}[\mathcal{B}_Y(f(x),\varepsilon)] \subseteq f^{-1}[U]$, это означает что в прообразе U вместе с каждой точкой f(x) лежит некий шар с центром в ней, а значит прообраз открыт. Тогда прообраз любого открытого множества открыт и f – непрерывен с топологической точки зрения.

 \Leftarrow : Пусть прообраз каждого открытого открыт, тогда прообраз $\mathcal{B}_Y(f(x),\varepsilon)$ открыт, а значит для x существует $\delta(\varepsilon)$, такой что $\mathcal{B}_Y(x,\delta(\varepsilon))\subseteq f^{-1}[B(f(x),\varepsilon)]$, что означает метрическую непрерывность f.

Утверждение 2: Композиция гомеоморфизмов - гомеоморфизм.

Доказательство: Пусть X, Y, Z – гомеоморфные топологические пространства и $f: X \to Y$, $g: Y \to Z$ – гомеоморфизмы. Тогда для открытого U из Z ($g \circ f$) $^{-1}[U] = f^{-1} \circ g^{-1}[U] = f^{-1}[g^{-1}[U]]$ его прообраз открыт. Аналогично образ открытого V из X тоже открыт, а значит $g \circ f$ – гомеоморфизм.

Тогда $f: x \mapsto x/(1-x^2)$ - гомеоморфизм $(-1,1) \to \mathbb{R}$ и $g: x \mapsto \frac{b-a}{2}x + \frac{b+a}{2}$ – гомеоморфизм $(-1,1) \to (a,b)$. А значит $f \circ g^{-1} \in \mathrm{Iso}((a,b),\mathbb{R})$. Тогда прообраз любого открытого множества при отображении $f \times g$ открыт, а значит оно непрерывно.

2. Пусть $f,g:X\to Y$ – непрерывные отображения топологических пространств. Предположим, что Y – хаусдорфово. Докажите, что множество $\mathcal{C}=\{x\in X|f(x)=g(x)\}$ замкнуто в X.

Утверждение 3: Произведение хаусдорфовых пространств само хаусдорфово.

Доказательство: Пусть X и Y – два хаусдорфовых пространства. Пусть $(x,y), (x',y') \in X \times Y$ две разные точки, и пусть без потери общности первая координата в них различается. Тогда по хаусдорфовости X и Y существуют открытые множества $U_x, U_y, U_{x'}, U_{y'}$, что $i \in U_i$ и при этом $U_x \cap U_{x'} = \emptyset$. Тогда если положить $U = U_x \times U_y$ и $V = U_{x'} \times U_{y'}$, то они будут открытыми в пространстве $X \times Y$, причем $U \cap V = \emptyset$. Тогда для любых 2 различных точек $X \times Y$ найдутся их непересекающиеся окрестности, а значит $X \times Y$ хаусдорфово.

Утверждение 4: Диагональ квадрата хаусдорфово пространства замкнута.

Доказательство: Пусть Y – хаусдорфово пространство, и $\Delta = \{(y,y)|y\in Y\}$ – диагональ квадрата Y^2 . Пусть $(x,y)\in \Delta^c$ – точка его дополнения. Тогда $x\neq y$, и существуют непересекающиеся окрестности U_x , U_y этих точек, а значит $U_x\times U_y\cap \Delta=\emptyset$. Тогда обозначим окрестность пары (x,y) $U_{x,y}=U_x\times U_y$. Тогда будет иметь место следующее соотношение

$$\Delta^c = \bigcup_{(x,y)\in\Delta^c} U_{x,y},$$

а значит Δ^c – открыто, а Δ – замкнуто.

Утверждение 5: Пусть $f: X \to Y$, $g: X' \to Y'$ - непрерывные отображения топологических пространств, тогда отображение $f \times g: (x,y) \mapsto (f(x),g(y))$ непрерывно. В случае если X=X', то отображение $(f,g): x \mapsto (f(x),g(x))$ тоже непрерывно.

Доказательство: Пусть $U\subseteq Y\times Y'$ открытое множество, тогда $U=\bigcup\{V_i\times V_i'|i\in I\}$, где V_i и V_i' открытые множества соответственных топологических пространств. Это значит, что $(f\times g)^{-1}[U]=\bigcup\{f^{-1}[V_i]\times g^{-1}[V_i']|i\in I\}$, что является объединением произведений отрытых множеств, а значит открыто. Теперь пусть X=X'. Тогда $(f,g)^{-1}[U]=\bigcup\{f^{-1}[V_i]\cap Y_i'\}$

 $g^{-1}[V_i']|i\in I\}$ – очевидно открыто. А значит прообраз открытого при (f,g) всегда открыт, значит (f,g) непрерывно.

Заметим, что $\mathcal{C} = (f,g)^{-1}[\Delta]$ прообраз замкнутого множества при непрерывном отображении, а значит само \mathcal{C} замкнуто.

Докажите, что если $f: X \to X$ – непрерывное отображение хаусдорфова пространства X на себя, то множество неподвижных точек $C = \{x \in X | f(x) = x\}$ замкнуто в X.

Здесь $g = \mathrm{id}_x$ – непрерывно, а значит по предыдущему заданию $\mathcal C$ замкнуто.

3. Пусть τ_1 и τ_2 – топологии на множестве X, причем $\tau_1 \subseteq \tau_2$. Предположим, что (X, τ_2) компактно. Докажите, что (X, τ_1) тоже компактно.

Пусть $(U_i)_{i\in I}, U_i\in \tau_1$ – покрытие пространства X. Так как $U_i\in \tau_2$, то это ещё и покрытие в топологии τ_2 . А значит оно содержит конечное подпокрытие, а значит (X,τ_1) - компактное пространство.

- 4. Приведите пример топологий τ_1 и τ_2 на множестве X таких что, $\tau_1 \not\subseteq \tau_2$ и $\tau_2 \not\subseteq \tau_1$. Если множество X содержит как минимум 2 различных элемента a и b, то топологии $\{\emptyset, \{a\}, X\}$ и $\{\emptyset, \{b\}, X\}$ удовлетворяют условию. В противном случае топология единственна.
- 5. Докажите, что компактное хаусдорфово пространство регулярно (для любой точки и для любого замкнутого множества, не содержащего эту точку, существуют непересекающиеся открытые окрестности). Докажите, что оно нормально (любые два непересекающихся замкнутых множества имеют непересекающиеся открытые окрестности).

Пусть $x \in X$ – точка и $F \subseteq X \setminus \{x\}$ – замкнутое множество. Тогда по хаусдорфовости для каждого $f \in F$ найдется непересекающаяся пара окрестностей U_f и V_f , где $x \in U_f$ и $f \in V_f$. Тогда $(F^c) \sqcup (V_f)_{f \in F}$ – покрытие X. Тогда по компактности можно выбрать конечное подпокрытие $(F^c) \sqcup (V_f)_{f \in F}$. Тогда $\bigcap \{U_i | i \in J\}$ будет окрестностью точки x и $\bigcup \{V_i | i \in J\}$ будет окресностью множества F. Эти окрестности пересекаются по пустому множеству, а значит пространство X регулярно.

Пусть теперь F_1 , F_2 - два непересекающихся замкнутых множества. Тогда для каждого $f \in F_1$ по регулярности найдется неперескающаяся пара окрестностей $U_f \ni f$ и $V_f \supset F_2$. Тогда $(F_1^c) \sqcup (U_f)_{f \in F_1}$ покрытие X и в нем по компактности можно выделить конечное подпокрытие $(F1^c) \sqcup (U_f)_{f \in J}$. Тогда $\cup \{U_f|f \in J\}$ – открытая окрестность F_1 , а $\cap \{V_f|f \in J\}$ – открытая окрестность F_2 , причем они не пересекаются, а значит пространства X нормально.

- 6. Пусть X,Y,Z топологические пространства. Докажите, что отображение $f:Z \to X \times Y$ непрерывно тогда и только тогда, когда композиции с естественными проекциями $\operatorname{pr}_1 \circ f:Z \to X$ и $\operatorname{pr}_2 \circ f:Z \to Y$ непрерывны.
 - \Rightarrow : Пусть f непрерывно. Проекции в данном случае непрерывны, так как они стрелки категории топологических пространств. Тогда композиция непрерывных отображений непрерывна.
- 7. Пусть отображения топологических пространств $f: X_1 \to X_2$ и $g: Y_1 \to Y_2$ непрерывны. Определите естественное отображение $f \times g: X_1 \times X_2 \to Y_1 \times Y_2$ и покажите, что оно непрерывно. Утверждение 5
- 8. Определим график Γ_f непрерывного отображения топологических пространств $f: X \to Y$ следующим образом: $X \times Y \supseteq \Gamma_f = \{(x,y)|y=f(x)\}$. Докажите, что ограничение естественной проекции pr_1 индуцирует гомеоморфизм $X \simeq \Gamma_f$.

Вспомним, что у отображений из каждой точки выходит ровно одна стрелка, а значит каждая такая стрелка однозначно определяется своим началом. Тогда ограничение проекции как раз и имеет смысл этого однозначного определения, тогда ограничение биективно. Причем любое отображения при индуцировании остается непрерывным. Проверим, что обратное ему тоже непрерывно. Пусть $U \subset \Gamma_f$ – открыто. Это значит, что $U = \Gamma_f \cap \bigcup \{U_i \times V_i\}$. Тогда если вспомнить, что проекция графика биективна, то $\operatorname{pr}_1[U] = X \cap \bigcup \{U_i\}$, что открыто, так как является объединением открытых.

9. Докажите, что топология на топологическом пространстве X дискретна тогда и только тогда, когда диагональ $\Delta = \{(x,x)|x \in X\} \subseteq X \times X$ открыта в $X \times X$.

- \Rightarrow : X дискретна, а значит $\{x\}$ открыто в X, тогда $\{(x,x)\}$ в $X \times X$. Тогда $\Delta = \bigcup \{\{(x,x)\} | x \in X\}$ открыто в X.
- \Leftarrow : Пусть Δ открыты в $X \times X$. Тогда для любого $x \in X$ отображение $(x, id) : a \mapsto (x, a)$ непрерывно (утверждение 5) и $(x, id)^{-1}[\Delta] = \{c\}$ открыто в X.
- 10. Докажите, что топологическое пространство X хаусдорфово тогда и только тогда, когда диагональ $\Delta \subseteq X \times X$ замкнута в $X \times X$.
 - ⇒: Утверждение 4.
 - \Leftarrow : Если Δ замкнута, то Δ^c открыта в $X \times X$ и $\Delta^c = \bigcup \{U_i \times V_i\}$. Тогда пусть $a,b \in X$ две разные точки. Из того, что $(a,b) \in \Delta^c$ следует, что существует индекс i, что $(a,b) \in U_i \times V_i \subseteq \Delta^c$. Причем U_i и V_i открыты, а их пересечение пусто, и они являются окрестностями a и b. Это верно для любых различных и b, а значит X хаусдорфово.