SURJECTIVE FACTORIZATION OF HOLOMORPHIC MAPPINGS

MANUEL GONZÁLEZ AND JOAQUÍN M. GUTIÉRREZ

ABSTRACT. We characterize the holomorphic mappings f between complex Banach spaces that may be written in the form $f = T \circ g$, where g is another holomorphic mapping and T belongs to a closed surjective operator ideal.

1. Introduction and preliminary results

In recent years many authors [1, 2, 7, 9, 10, 15, 19, 20] have studied conditions on a holomorphic mapping f between complex Banach spaces so that it may be written in the form either $f = g \circ T$ or $f = T \circ g$, where g is another holomorphic mapping and T a (linear bounded) operator belonging to certain classes of operators.

A rather thorough study of the factorization of the form $f = g \circ T$, where T is in a closed injective operator ideal, was carried out by the authors in [10]. In the present paper we analyze the case $f = T \circ g$.

If $f = T \circ g$, with T in the ideal of compact operators, and g is holomorphic on a Banach space E then, since g is locally bounded, f will be "locally compact" in the sense that every $x \in E$ has a neighbourhood V_x such that $f(V_x)$ is relatively compact. It is proved in [2] that the converse also holds: every locally compact holomorphic mapping f can be written in the form $f = T \circ g$, with T a compact operator. Similar results were given in [20] for the ideal of weakly compact operators, in [15] for the Rosenthal operators, and in [19] for the Asplund operators. We extend this type of factorization to every closed surjective operator ideal.

Throughout, E, F and G will denote complex Banach spaces, and \mathbb{N} will be the set of natural numbers. We use B_E for the closed unit ball of E, and B(x,r) for the open ball of radius r centered at x. If $A \subset E$, then $\overline{\Gamma}(A)$ denotes the absolutely convex, closed hull of A, and if f is a mapping on E, then

$$||f||_A := \sup\{|f(x)| : x \in A\}.$$

We denote by $\mathcal{L}(E,F)$ the space of all operators from E into F, endowed with the usual operator norm. A mapping $P:E\to F$ is a k-homogeneous (continuous) polynomial if there is a k-linear continuous mapping $A:E\times \overset{(k)}{\dots}\times E\to F$ such that $P(x)=A(x,\dots,x)$ for all $x\in E$. The space of all such polynomials is denoted by

file sfhm.tex.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 46G20; Secondary: 47D50.

Key words and phrases. factorization; holomorphic mapping between Banach spaces; operator ideal.

The first named author was supported in part by DGICYT Grant PB 97–0349 (Spain).

The second named author was supported in part by DGICYT Grant PB 96–0607 (Spain).

 $\mathcal{P}({}^k\!E,F)$. A mapping $f:E\to F$ is holomorphic if, for each $x\in E$, there are r>0 and a sequence (P_k) with $P_k\in\mathcal{P}({}^k\!E,F)$ such that

$$f(y) = \sum_{k=0}^{\infty} P_k(y - x)$$

uniformly for ||y - x|| < r. We use the notation

$$P_k = \frac{1}{k!} d^k f(x),$$

while $\mathcal{H}(E,F)$ stands for the space of all holomorphic mappings from E into F.

We say that a subset $A \subset E$ is *circled* if for every $x \in A$ and complex λ with $|\lambda| = 1$, we have $\lambda x \in A$.

For a general introduction to polynomials and holomorphic mappings, the reader is referred to [5, 16, 17]. The definition and general properties of operator ideals may be seen in [18].

An operator ideal \mathcal{U} is said to be *injective* [18, 4.6.9] if, given an operator $T \in \mathcal{L}(E,F)$ and an injective isomorphism $i: F \to G$, we have that $T \in \mathcal{U}$ whenever $iT \in \mathcal{U}$. The ideal \mathcal{U} is *surjective* [18, 4.7.9] if, given $T \in \mathcal{L}(E,F)$ and a surjective operator $q: G \to E$, we have that $T \in \mathcal{U}$ whenever $Tq \in \mathcal{U}$. We say that \mathcal{U} is *closed* [18, 4.2.4] if for all E and E, the space $\mathcal{U}(E,F) := \{T \in \mathcal{L}(E,F) : T \in \mathcal{U}\}$ is closed in $\mathcal{L}(E,F)$.

Given an operator $T \in \mathcal{L}(E, F)$, a procedure is described in [4] to construct a Banach space Y and operators $k \in \mathcal{L}(E, Y)$ and $j \in \mathcal{L}(Y, F)$ so that T = jk. We shall refer to this construction as the DFJP factorization. It is shown in [12, Propositions 1.6 and 1.7] (see also [8, Proposition 2.2] for simple statement and proof) that given an operator $T \in \mathcal{L}(E, F)$ and a closed operator ideal \mathcal{U} ,

- (a) if \mathcal{U} is injective and $T \in \mathcal{U}$, then $k \in \mathcal{U}$;
- (b) if \mathcal{U} is surjective and $T \in \mathcal{U}$, then $j \in \mathcal{U}$.

We say that \mathcal{U} is factorizable if, for every $T \in \mathcal{U}(E, F)$, there are a Banach space Y and operators $k \in \mathcal{L}(E, Y)$ and $j \in \mathcal{L}(Y, F)$ so that T = jk and the identity I_Y of the space Y belongs to \mathcal{U} .

We now give a list of closed operator ideals which are injective, surjective or factorizable. We recall the definition of the most commonly used, and give a reference for the others.

An operator $T \in \mathcal{L}(E, F)$ is (weakly) compact if $T(B_E)$ is a relatively (weakly) compact subset of F; T is (weakly) completely continuous if it takes weak Cauchy sequences in E into (weakly) convergent sequences in F; T is Rosenthal if every sequence in $T(B_E)$ has a weak Cauchy subsequence; T is unconditionally converging if it takes weakly unconditionally Cauchy series in E into unconditionally convergent series in F.

Closed operator ideals	Injective	Surjective	Factorizable
compact operators	\mathbf{Yes}	Yes	No
weakly compact	Yes	Yes	Yes
Rosenthal	Yes	Yes	Yes
completely continuous	Yes	No	No
weakly completely continuous	Yes	No	No
unconditionally converging	Yes	No	No
Banach-Saks [13, §3]	Yes	Yes	Yes
weakly Banach-Saks [13, §3]	Yes	No	No
strictly singular [18, 1.9]	Yes	No	No
separable range	Yes	Yes	Yes
strictly cosingular [18, 1.10]	No	Yes	No
limited [3]	No	Yes	No
Grothendieck [6]	No	Yes	No
decomposing (Asplund) [18, 24.4]	Yes	Yes	Yes
Radon-Nikodým [18, 24.2]	Yes	No	No
absolutely continuous [14, §3]	Yes	No	No

The results on this list may be found in [18] and the other references given, for the injective and surjective case. The factorizable case may be seen in [12].

If \mathcal{U} is an operator ideal, the *dual ideal* \mathcal{U}^d is the ideal of all operators T such that the adjoint T^* belongs to \mathcal{U} . Easily, we have:

 \mathcal{U} is closed injective $\implies \mathcal{U}^d$ is closed surjective \mathcal{U} is closed surjective $\implies \mathcal{U}^d$ is closed injective

The list above might therefore be completed with some more dual ideals.

Moreover, to each $T \in \mathcal{L}(E, F)$ we can associate an operator $T^q : E^{**}/E \to F^{**}/F$ given by $T^q(x^{**} + E) = T^{**}(x^{**}) + F$. Let $\mathcal{U}^q := \{T \in \mathcal{L}(E, F) : T^q \in \mathcal{U}\}$. Then, if \mathcal{U} is injective (resp. surjective, closed), so is \mathcal{U}^q [8, Theorem 1.6].

REMARK 1. There is another notion of factorizable operator ideal which may be used. We say that \mathcal{U} is DFJP factorizable [8, Definition 2.3] if, for every $T \in \mathcal{U}$, the identity of the intermediate space in the DFJP factorization of T belongs to \mathcal{U} . Clearly, every DFJP factorizable operator ideal is factorizable. The following example shows that the converse is not true. Let \mathcal{A} be the ideal of all the operators that factor through a subspace of c_0 . Clearly, \mathcal{A} is factorizable. Consider the operator $T: \ell_2 \to \ell_2$ given by $T((x_n)) := (x_n/n)$. We have $T \in \mathcal{A}$. The intermediate space in the DFJP factorization is an infinite dimensional reflexive space. Clearly, the identity map on it does not belong to \mathcal{A} .

All the factorizable ideals on the table above are DFJP factorizable [8]. Note also that, if \mathcal{U} is DFJP factorizable, then so are \mathcal{U}^d and \mathcal{U}^q [8].

2. Surjective factorization

In this Section, we study the factorizations in the form $T \circ g$, with $T \in \mathcal{U}$, where \mathcal{U} is a closed surjective operator ideal.

Lemma 2. [13, Proposition 2.9] Given a closed surjective operator ideal \mathcal{U} , let $S \in \mathcal{L}(E, F)$ and suppose that for every $\epsilon > 0$ there are a Banach space D_{ϵ} and an operator $T_{\epsilon} \in \mathcal{U}(D_{\epsilon}, F)$ such that

$$S(B_E) \subseteq T_{\epsilon}(B_{D_{\epsilon}}) + \epsilon B_F$$
.

Then, $S \in \mathcal{U}$.

We denote by $\mathcal{C}_{\mathcal{U}}(E)$ the collection of all $A \subset E$ so that $A \subseteq T(B_Z)$ for some Banach space Z and some operator $T \in \mathcal{U}(Z, E)$ (see [21]).

The following probably well-known properties of $\mathcal{C}_{\mathcal{U}}$ will be needed:

Proposition 3. Let \mathcal{U} be a closed surjective operator ideal. Then:

- (a) If $A \in \mathcal{C}_{\mathcal{U}}(E)$ and $B \subset A$, then $B \in \mathcal{C}_{\mathcal{U}}(E)$;
- (b) if $A_1, \ldots, A_n \in \mathcal{C}_{\mathcal{U}}(E)$, then $\bigcup_{i=1}^n A_i \in \mathcal{C}_{\mathcal{U}}(E)$ and $\sum_{i=1}^n A_i \in \mathcal{C}_{\mathcal{U}}(E)$;
- (c) if $A \subset E$ is bounded and, for every $\epsilon > 0$, there is a set $A_{\epsilon} \in \mathcal{C}_{\mathcal{U}}(E)$ such that $A \subseteq A_{\epsilon} + \epsilon B_{E}$, then $A \in \mathcal{C}_{\mathcal{U}}(E)$.
 - (d) if $A \in \mathcal{C}_{\mathcal{U}}(E)$, then $\bar{\Gamma}(A) \in \mathcal{C}_{\mathcal{U}}(E)$;

PROOF. (a) is trivial and (b) is easy. Both are true without any assumption on the operator ideal \mathcal{U} .

(c) For $A \subset E$ bounded, consider the operator

$$T: \ell_1(A) \longrightarrow E$$
 given by $T((\lambda_x)_{x \in A}) = \sum_{x \in A} \lambda_x x.$

Given $\epsilon > 0$, there is $A_{\epsilon} \in \mathcal{C}_{\mathcal{U}}(E)$ such that $A \subseteq A_{\epsilon} + \epsilon B_{E}$. Therefore,

$$A \subseteq T(B_{\ell_1(A)}) \subseteq \bar{\Gamma}(A) \subseteq \Gamma(A) + \epsilon B_E \subseteq \Gamma(A_{\epsilon}) + 2\epsilon B_E.$$

Clearly, $\Gamma(A_{\epsilon}) \in \mathcal{C}_{\mathcal{U}}(E)$. Hence, $T \in \mathcal{U}$ (by Lemma 2), and $A \in \mathcal{C}_{\mathcal{U}}(E)$.

(d) If $A \in \mathcal{C}_{\mathcal{U}}(E)$, there is a space Z and $T \in \mathcal{U}(Z, E)$ such that $A \subseteq T(B_Z)$. Therefore, for all $\epsilon > 0$,

$$\bar{\Gamma}(A) \subseteq \overline{T(B_Z)} \subseteq T(B_Z) + \epsilon B_E.$$

Now, it is enough to apply part (c).

We shall denote by $\mathcal{H}_{\mathcal{U}}(E, F)$ the space of all $f \in \mathcal{H}(E, F)$ such that each $x \in E$ has a neighbourhood V_x with $f(V_x) \in \mathcal{C}_{\mathcal{U}}(F)$. Easily, a polynomial $P \in \mathcal{P}({}^k\!E, F)$ belongs to $\mathcal{H}_{\mathcal{U}}(E, F)$ if and only if $P(B_E) \in \mathcal{C}_{\mathcal{U}}(F)$. The set of all such polynomials will be denoted by $\mathcal{P}_{\mathcal{U}}({}^k\!E, F)$.

The following result is an easy consequence of the Hahn-Banach theorem and the Cauchy inequality

Lemma 4. [20, Lemma 3.1] Given $f \in \mathcal{H}(E, F)$, a circled subset $U \subset E$, and $x \in E$, we have

$$\frac{1}{k!} d^k f(x)(U) \subseteq \bar{\Gamma}(f(x+U))$$

for every $k \in \mathbb{N}$.

Proposition 5. Let \mathcal{U} be a closed surjective operator ideal, and $f \in \mathcal{H}(E,F)$. The following assertions are equivalent:

- (a) $f \in \mathcal{H}_{\mathcal{U}}(E, F)$;
- (b) there is a zero neighbourhood $V \subset E$ such that $f(V) \in \mathcal{C}_{\mathcal{U}}(F)$;
- (c) for every $k \in \mathbb{N}$ and every $x \in E$, we have that $d^k f(x) \in \mathcal{P}_{\mathcal{U}}({}^k E, F)$;
- (d) for every $k \in \mathbb{N}$, we have that $d^k f(0) \in \mathcal{P}_{\mathcal{U}}({}^k E, F)$.

PROOF. (a) \Rightarrow (c) and (b) \Rightarrow (d) follow from Lemma 4.

(d) \Rightarrow (a) Let $x \in E$. There is $\epsilon > 0$ such that

$$f(y) = \sum_{k=0}^{\infty} \frac{1}{k!} d^{k} f(0)(y)$$

uniformly for $y \in B(x, \epsilon)$ [17, §7, Proposition 1]. By Proposition 3(b), for each $m \in \mathbb{N}$, we have

$$\left\{ \sum_{k=0}^{m} \frac{1}{k!} d^k f(0)(y) : y \in B(x, \epsilon) \right\} \in \mathcal{C}_{\mathcal{U}}(F).$$

Using the uniform convergence on $B(x, \epsilon)$, and Proposition 3(c), we conclude that $f(B(x, \epsilon)) \in \mathcal{C}_{\mathcal{U}}(F)$.

(a)
$$\Rightarrow$$
 (b) and (c) \Rightarrow (d) are trivial.

If A is a closed convex balanced, bounded subset of F, F_A will denote the Banach space obtained by taking the linear span of A with the norm given by its Minkowski functional.

Theorem 6. Let \mathcal{U} be a closed surjective operator ideal, and $f \in \mathcal{H}(E, F)$. The following assertions are equivalent:

- (a) $f \in \mathcal{H}_{\mathcal{U}}(E,F)$;
- (b) there is a closed convex, balanced subset $K \in \mathcal{C}_{\mathcal{U}}(F)$ such that f is a holomorphic mapping from E into F_K ;
- (c) there is a Banach space G, a mapping $g \in \mathcal{H}(E,G)$ and an operator $T \in \mathcal{U}(G,F)$ such that $f = T \circ g$.

PROOF. (a) \Rightarrow (b) follows the ideas in the proof of [2, Proposition 3.5] and [20, Theorem 3.7].

For each $m \in \mathbb{N}$ and $x \in E$, define

$$A_m(x) := \left\{ \lambda y : y \in B\left(x, \frac{1}{m}\right) \text{ and } |\lambda| \le 1 \right\}$$

and

$$U_m:=\bigcup\left\{B\left(x,\frac{1}{m}\right):\|x\|\leq m\text{ and }\|f\|_{A_m(x)}\leq m\right\}\,.$$

For each $x \in E$ there is a neighbourhood of the compact set $\{\lambda x : |\lambda| \leq 1\}$ on which f is bounded. Hence, there is $m \in \mathbb{N}$ so that $||f||_{A_m(x)} \leq m$, which shows that $E = \bigcup_{m=1}^{\infty} U_m$.

Let W_m be the balanced hull of U_m . Since the sets $A_m(x)$ are balanced, we have $|f(x)| \leq m$ for all $x \in W_m$. Let $V_m := 2^{-1}W_m$. We have $E = \bigcup_{m=1}^{\infty} V_m$ and hence

(1)
$$f(E) = \bigcup_{m=1}^{\infty} f(V_m).$$

For each $k, m \in \mathbb{N}$, define

$$K_{mk} := \bar{\Gamma}\left(\frac{1}{k!} d^k f(0)(W_m)\right) \in \mathcal{C}_{\mathcal{U}}(F).$$

By Proposition 3, we obtain that the set

$$K_m := \left\{ \sum_{k=0}^{\infty} 2^{-k} z_k : z_k \in K_{mk} \right\}$$

belongs to $C_{\mathcal{U}}(F)$. Easily, $f(V_m) \subseteq K_m$. Hence $f(V_m) \in C_{\mathcal{U}}(F)$ for all $m \in \mathbb{N}$. By Proposition 3, we can select numbers $\beta_m > 0$ with $\sum \beta_m < \infty$ so that

$$K := \bar{\Gamma} \left(\bigcup_{m=1}^{\infty} \beta_m f(V_m) \right) \in \mathcal{C}_{\mathcal{U}}(F).$$

It follows from (1) that f maps E into F_K .

It remains to show that $f \in \mathcal{H}(E, F_K)$. Let $x \in E$. Easily, there are $\epsilon > 0$ and $r \in \mathbb{N}$ such that $f(B(x, 2\epsilon)) \subseteq rK$. By Lemma 4,

(2)
$$\frac{1}{k!} d^k f(x) \left(B(0, 2\epsilon) \right) \subseteq rK$$

for all $k \in \mathbb{N}$. Now, for each $n \in \mathbb{N}$ and $a \in B(0, \epsilon)$, we have

$$f(x+a) - \sum_{k=0}^{n} \frac{1}{k!} d^{k} f(x)(a) = 2^{-n} \sum_{k=n+1}^{\infty} 2^{n-k} \frac{1}{k!} d^{k} f(x)(2a).$$

Since K is convex and closed, we get from (2) that

$$\sum_{k=n+1}^{\infty} 2^{n-k} \frac{1}{k!} d^k f(x)(2a) \in rK.$$

Hence,

$$f(x+a) - \sum_{k=0}^{n} \frac{1}{k!} d^k f(x)(a) \in 2^{-n} r K$$

and so, the F_K -norm of the left hand side is less than or equal to $2^{-n}r$, for all $a \in B(0, \epsilon)$. Thus, f is holomorphic.

- (b) \Rightarrow (c). It is enough to note that, by Lemma 2, the natural inclusion $F_K \to F$ belongs to \mathcal{U} .
- (c) \Rightarrow (a). Each $x \in E$ has a neighbourhood V_x such that $g(V_x)$ is bounded in G. Hence, $f(V_x) = T(g(V_x)) \in \mathcal{C}_{\mathcal{U}}(F)$.

Theorem 7. Let \mathcal{U} be a closed surjective, factorizable operator ideal and take a mapping $f \in \mathcal{H}(E,F)$. Then $f \in \mathcal{H}_{\mathcal{U}}(E,F)$ if and only if there are a Banach space G, a mapping $g \in \mathcal{H}(E,G)$ and $T \in \mathcal{U}(G,F)$ such that $I_G \in \mathcal{U}$ and $f = T \circ g$.

REMARK 8. Theorem 7 implies that, if \mathcal{U} is the ideal of weakly compact (resp. Rosenthal, Banach-Saks or Asplund) operators and $f \in \mathcal{H}_{\mathcal{U}}(E, F)$, then f factors through a Banach space G which is reflexive (resp. contains a copy of ℓ_1 , has the Banach-Saks property or is Asplund).

Moreover, if $\mathcal{U} = \{T : T^q \text{ has separable range}\}$, then G is isomorphic to $G_1 \times G_2$, with G_1^{**} separable and G_2 reflexive [22]. If $\mathcal{U} = \{T : T^* \text{ is Rosenthal}\}$, then G contains no copy of ℓ_1 and no quotient isomorphic to c_0 [11].

References

- [1] R. M. Aron and P. Galindo, Weakly compact multilinear mappings, *Proc. Edinburgh Math. Soc.* 40 (1997), 181–192.
- [2] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, *J. Funct. Anal.* **21** (1976), 7–30.
- [3] J. Bourgain and J. Diestel, Limited operators and strict cosingularity, *Math. Nachr.* **119** (1984), 55–58.
- [4] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
- [5] S. Dineen, Complex Analysis in Locally Convex Spaces, Math. Studies 57, North-Holland, Amsterdam 1981.
- [6] P. Domański, M. Lindström and G. Schlüchtermann, Grothendieck operators on tensor products, Proc. Amer. Math. Soc. 125 (1997), 2285–2291.
- [7] S. Geiss, Ein Faktorisierungssatz für multilineare Funktionale, Math. Nachr. 134 (1987), 149– 159.
- [8] M. González, Dual results of factorization for operators, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 3–11.
- [9] M. González and J. M. Gutiérrez, Factorization of weakly continuous holomorphic mappings, *Studia Math.* **118** (1996), 117–133.
- [10] M. González and J. M. Gutiérrez, Injective factorization of holomorphic mappings, Proc. Amer. Math. Soc. 127 (1999), 1715–1721.
- [11] M. González and V. M. Onieva, Lifting results for sequences in Banach spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), 117–121.
- [12] S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397–411.
- [13] H. Jarchow, Weakly compact operators on C(K) and C^* -algebras, in: H. Hogbe-Nlend (ed.), Functional Analysis and its Applications, World Sci., Singapore 1988, 263–299.
- [14] H. Jarchow and U. Matter, On weakly compact operators on C(K)-spaces, in: N. Kalton and E. Saab (eds.), Banach Spaces (Proc., Missouri 1984), Lecture Notes in Math. 1166, Springer, Berlin 1985, 80–88.
- [15] M. Lindström, On compact and bounding holomorphic mappings, Proc. Amer. Math. Soc. 105 (1989), 356–361.
- [16] J. Mujica, Complex Analysis in Banach Spaces, Math. Studies 120, North-Holland, Amsterdam 1986.
- [17] L. Nachbin, Topology on Spaces of Holomorphic Mappings, Ergeb. Math. Grenzgeb. 47, Springer, Berlin 1969.
- [18] A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, Amsterdam 1980.

- [19] N. Robertson, Asplund operators and holomorphic maps, *Manuscripta Math.* **75** (1992), 25–34.
- [20] R. A. Ryan, Weakly compact holomorphic mappings on Banach spaces, *Pacific J. Math.* **131** (1988), 179–190.
- [21] I. Stephani, Generating systems of sets and quotients of surjective operator ideals, *Math. Nachr.* **99** (1980), 13–27.
- $[22]\,$ M. Valdivia, On a class of Banach spaces, $Studia\ Math.\ {\bf 60}\ (1977),\,11–13.$

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CANTABRIA, 39071 SANTANDER (SPAIN)

 $E ext{-}mail\ address: gonzalem@ccaix3.unican.es}$

DEPARTAMENTO DE MATEMÁTICA APLICADA, ETS DE INGENIEROS INDUSTRIALES, UNIVERSIDAD POLITÉCNICA DE MADRID, C. JOSÉ GUTIÉRREZ ABASCAL 2, 28006 MADRID (SPAIN) E-mail address: jgutierrez@etsii.upm.es