Emerging Properties in Self-Supervised Vision Transformers

https://arxiv.org/pdf/2104.14294.pdf

https://github.com/facebookresearch/dino

DINO

KEY WORDS:

- 1. No labels, No supervision
- 2. self-supervised self-distillation
- 3. Achieving 80.1% top-1 on ImageNet

DINO

Key points:

- 1. 数据no label
- 2. 学生模型教师模型输入的数据不同
- 3. 教师模型不是预训练模型
- 4. 教师模型不通过梯度更新而是通过 ema方式更新
- 5. 教师模型侧多出centering

结构

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

```
gs, gt: student and teacher networks
 C: center (K)
 tps, tpt: student and teacher temperatures
# 1, m: network and center momentum rates
gt.params = gs.params
for x in loader: # load a minibatch x with n samples
    x1, x2 = augment(x), augment(x) # random views
    s1, s2 = gs(x1), gs(x2) # student output n-by-K
    t1, t2 = qt(x1), qt(x2) # teacher output n-by-K
    loss = H(t1, s2)/2 + H(t2, s1)/2
    loss.backward() # back-propagate
    # student, teacher and center updates
    update(gs) # SGD
    qt.params = 1*qt.params + (1-1)*qs.params
    C = m*C + (1-m)*cat([t1, t2]).mean(dim=0)
def H(t, s):
    t = t.detach() # stop gradient
    s = softmax(s / tps, dim=1)
    t = softmax((t - C) / tpt, dim=1) # center + sharpen
    return - (t * log(s)).sum(dim=1).mean()
```

- 1. 数据增强方式: 随机裁剪出大图与小图、 水平翻转、颜色变化、高斯模糊
- 2. 学生模型输入全部图像,教师模型输入大图,鼓励local-to-global

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)},$$

$$\min_{\theta_s} \sum_{x \in \{x_1^g, x_2^g\}} \sum_{\substack{x' \in V \\ x' \neq x}} H(P_t(x), P_s(x')).$$

$$H(a;b) = -a \log b.$$

- 4. 学生模型参数更新
- 5. 教师模型参数通过学生模型ema更新 $\theta_t \leftarrow \lambda \theta_t + (1 \lambda)\theta_s$
- 6. 更新centering

Avoiding collapse

Our framework can be stabilized with multiple normalizations, it can also work with only a centering and sharpening of the momentum teacher outputs to avoid model collapse. centering prevents one dimension to dominate but encourages collapse to the uniform distribution, while the sharpening has the opposite effect.

$$c \leftarrow mc + (1 - m)\frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i),$$

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)},$$

$$\frac{\tau_t}{k\text{-NN top-1}}$$
 0 0.02 0.04 0.06 0.08 0.04 → 0.07 69.7 69.6 68.7 0.1 69.7

消融实验

Method	Arch.	Param.	im/s	Linear	k-NN
Supervised	RN50	23	1237	79.3	79.3
SCLR [12]	RN50	23	1237	69.1	60.7
MoCov2 [15]	RN50	23	1237	71.1	61.9
InfoMin [67]	RN50	23	1237	73.0	65.3
BarlowT [81]	RN50	23	1237	73.2	66.0
OBoW [27]	RN50	23	1237	73.8	61.9
BYOL [30]	RN50	23	1237	74.4	64.8
DCv2 [10]	RN50	23	1237	75.2	67.1
SwAV [10]	RN50	23	1237	75.3	65.7
DINO	RN50	23	1237	75.3	67.5
Supervised	ViT-S	21	1007	79.8	79.8
BYOL* [30]	ViT-S	21	1007	71.4	66.6
MoCov2* [15]	ViT-S	21	1007	72.7	64.4
SwAV* [10]	ViT-S	21	1007	73.5	66.3
DINO	ViT-S	21	1007	77.0	74.5

Comparison across architectures						
SCLR [12]	RN50w4	375	117	76.8	69.3	
SwAV [10]	RN50w2	93	384	77.3	67.3	
BYOL [30]	RN50w2	93	384	77.4	_	
DINO	ViT-B/16	85	312	78.2	76.1	
SwAV [10]	RN50w5	586	76	78.5	67.1	
BYOL [30]	RN50w4	375	117	78.6	_	
BYOL [30]	RN200w2	250	123	79.6	73.9	
DINO	ViT-S/8	21	180	79.7	78.3	
SCLRv2 [13]	RN152w3+SK	794	46	79.8	73.1	
DINO	ViT-B/8	85	63	80.1	77.4	

- 1. 相同的主干RN50下,DINO优于其他非监督学习模型
- 2. 不同主干下, vit更胜一筹
- 3. 相同主干vit下,patch size越小精度越高

测试

Supervised

DINO

	Random	Supervised	DINO	
ViT-S/16	22.0	27.3	45.9	
ViT-S/8	21.8	23.7	44.7	

测试

测试

