第九章 重积分

第一节 重积分的概念与性质

习题 9-1

1. 设有一平面薄板(不计其厚度),占有xOy面上的闭区域D,薄板上分布有面密度为 $\mu = \mu(x,y)$ 的电荷,且 $\mu(x,y)$ 在D上连续,试用二重积分表达该板上的全部电荷Q.

 \mathbf{m} 薄板上的全部电荷等于电荷的面密度 $\mu = \mu(x, y)$ 在闭区域 D 上的二重积分,即

$$Q = \iint_D \mu(x, y) d\sigma.$$

2. 设平面闭区域 $D = \{(x, y) | x^2 + y^2 \le R^2 \}$, 试利用二重积分的几何意义求

$$\iint_{D} \sqrt{R^2 - x^2 - y^2} d\sigma.$$

 \mathbf{R} 由二重积分的几何意义知, $\iint_{D} \sqrt{R^2 - x^2 - y^2} d\sigma$ 表示以 D 为底,顶为曲面

 $z = \sqrt{R^2 - x^2 - y^2}$ (即以坐标原点为球心, R 为半径的球面位于 xOy 面上方的部分)的 曲顶柱体的体积,即以坐标原点为球心,R 为半径的球体积的 $\frac{1}{2}$,故

$$\iint_{D} \sqrt{R^2 - x^2 - y^2} \, d\sigma = \frac{2}{3} \pi R^3.$$

3. 比较下列各组积分的大小:

(1)
$$\iint_{D} \ln(x+y) d\sigma = \iint_{D} [\ln(x+y)]^{2} d\sigma, \quad \text{\sharp \downarrow $$ $D = \{(x,y) | 0 \le x \le 1, 3 \le y \le 5\}$;}$$

坐标面围成的四面体.

解 (1) 因为积分区域 D 位于 $\{(x,y)|x+y\geq e\}$ 内,故在 D 上有 $\ln(x+y)\geq 1$,

从而
$$[\ln(x+y)]^2 \ge \ln(x+y)$$
,因此 $\iint_D [\ln(x+y)]^2 d\sigma \ge \iint_D \ln(x+y)d\sigma$.

(2) 积分区域 $\Omega = \{(x, y, z) | x + y + z \le 1, x \ge 0, y \ge 0, z \ge 0\}$, 故在 Ω 内, x + y + z

$$\geq (x+y+z)^2$$
, $\lim_{\Omega} (x+y+z) dv \geq \iiint_{\Omega} (x+y+z)^2 dv$.

4. 估计下列积分的值:

(1)
$$I = \iint_D e^{x+y} d\sigma$$
, 其中 D 为矩形域: $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$;

(2)
$$I = \iint_{D} (4x^2 + y^2 + 9) d\sigma$$
, $\sharp = D = \{(x, y) | x^2 + y^2 \le 4\}$;

(3)
$$I = \iint_{D} \frac{1}{\ln(4+x+y)} d\sigma$$
, $\sharp \oplus D = \{(x,y) | 0 \le x \le 4, 0 \le y \le 8\}$;

(4)
$$I = \iint_D \sqrt{4 + xy} d\sigma$$
, $\sharp + D = \{(x, y) | 0 \le x \le 2, 0 \le y \le 2\}$.

解 (1) 因为 $0 \le x + y \le 2$, 所以 $1 \le e^{x+y} \le e^2$, 故

$$\iint_{D} 1 d\sigma \le \iint_{D} e^{x+y} d\sigma \le \iint_{D} e^{2} d\sigma,$$

即 $1 \le I \le e^2.$

(2) 因为
$$0 \le x^2 + y^2 \le 4$$
,所以 $9 \le 4x^2 + y^2 + 9 \le 4(x^2 + y^2) + 9 \le 25$,故

$$\iint_{D} 9d\sigma \le \iint_{D} (4x^{2} + y^{2} + 9)d\sigma \le \iint_{D} 25d\sigma,$$

即
$$9\pi \cdot 2^2 \le \iint_D (4x^2 + y^2 + 9) d\sigma \le 25\pi \cdot 2^2$$
,

故 $36\pi \le I \le 100\pi$

(3) 因为
$$4 \le 4 + x + y \le 16$$
,所以 $\frac{1}{4 \ln 2} \le \frac{1}{\ln(4 + x + y)} \le \frac{1}{2 \ln 2}$,故

$$\frac{1}{4\ln 2} \cdot 32 \le \iint_{D} \frac{1}{\ln(4+x+y)} d\sigma \le \frac{1}{2\ln 2} \cdot 32,$$

即
$$\frac{8}{\ln 2} \le I \le \frac{16}{\ln 2} \ .$$

(4) 因为 $2 \le \sqrt{4 + xy} \le 2\sqrt{2}$,所以

$$\iint_{D} 2d\sigma \leq \iint_{D} \sqrt{4 + xy} d\sigma \leq \iint_{D} 2\sqrt{2}d\sigma ,$$

即
$$2 \cdot 2^2 \le \iint_D \sqrt{4 + xy} d\sigma \le 2\sqrt{2} \cdot 2^2,$$
 故
$$8 \le I \le 8\sqrt{2}.$$