AON

Met Office Hackathon 2022

Aon Projects

28th April 2022

Real-time event return periods

Background

- Aon are brokers for primary insurers (who you and I insure with) and reinsurers. We use historical events to estimate the risk of a given hazard, to calculate the risk to the insurance industry.
- We use catastrophe models, provided by risk modelling companies, to provide that estimate of the risk.
- During an event we provide an estimate of how severe the event may be, to guide our clients as to what their financial loss may be.
- Calculating the likely return period of a current event allows us to estimate how severe it may be, and thus what the loss
 may be to the insurance sector.
- The estimation of the return period is going to be dependent on the reference period used, and how observation and forecast data is used.

Challenge

Real-time event return periods

- Use observation and forecast data, can the return period for an event be calculated?
- How can the uncertainty associated with the following be communicated:
 - Forecast lead-time/uncertainty
 - Base period chosen
- Is there a role for global climate model data in improving the return period estimation?
- Event definitions TBC by Aon.
- Regions of interest:
- UK
- Europe
- Global

Point of Contact: Adrian Champion, Chris Webber

Drivers of uncertainty in future loss projections

Background

The risk of an event can be expressed as:

- All components of this equation will change in future:
 - The hazard may change due to climate change.
 - The exposure will change, naturally but also potentially also due to climate change.
- The vulnerability will change as we improve our understanding.
- Using climate models we can get an estimation of the change in the hazard, however is the uncertainty in the hazard projection a larger component to the future risk uncertainty, or uncertainty in changes in the exposure?

Challenge

Drivers of uncertainty in future loss projections

- In a future climate scenario, what is the bigger uncertainty in the changes in risk the uncertainty in the hazard or the uncertainty in the exposure?
- As an industry we currently keep the exposure constant, modifying only the hazard to account for climate change.
- Aon will provide a stochastically generated current and future projection hazard dataset, along with a current Europe-wide exposure dataset. The challenge will be to modify the exposure dataset in line with different climate change projections.
- Aon will run both the current and future projections through a catastrophe model.
- Will climate change drive further exposure change as habitable zones become unhabitable, and vice versa?
 - Which locations will change from unhabitable to habitable?
 - What hazards affect these regions?
 - Can we link these changes in exposure to the SSPs?

Driving Factors in Urban Land Change Models

Table 2. List of predictor variables in the reviewed LCM articles *.

Classification		** Driving Factors	Count	Classification		Driving Factors	Count
	Topography (14)	slope elevation distance to water surface distance to river aspect soil type	121 50 37 35 17	Built Environment (53) Socio-Economy (25)	Land Use (13)	distance to town centers likelihood to change land use suitability availability of irrigation facility density of crop land density of developed lands	13 11 3 1 1
Natural Environment (32)		soil quality erosion soil pH soil permeability	8 6 5 3		Development (4)	distance to infra (water/sewer) available land cost of land use change recent development	8 8 2 2
		altitude silt content soil depth terrain	2 2 2 1		Job (12)	distance to agriculture distance to commercial distance to business distance to industrial	21 17 8 7
	Amenity (4)	distance to forest distance to coastline distance to green spaces distance to natural scenery	20 14 6 4			distance to farm job location agricultural production distance to economic corridors	6 3 2 2
	Climate (4)	precipitation temperature hours of sunshine moisture	10 8 4 1			employment no. industrial production density of oil and gas wells unemployment rate	2 2 1 1
	Risk (7)	flood risk (floodplain) distance to wetland/salt marsh seismicity	7 5 3		Service (3)	distance to institution distance to hospital distance to convention	14 3 1
		distance to dike distance to tsunami affected area flood retention areas	1 1 1		Housing (3)	floor space entropy index housing density floor space dissimilarity index	2 2 1
		water contamination	1		Population (9)	population density	42
	Ecology (3)	vegetation/env. value tree type endangered species	3 2 1			population race household number	14 2 1

Driving Factors in Urban Land Change Models

Table 2. Cont.

Classification		** Driving Factors	Count	Classification		Driving Factors	Count
	Transportation (18)	distance to major roads distance to highways distance to railways distance to national/express highways distance to airport/harbor	135 24 20 13 12	Socio-Economy (25)	Population (9)	housing growth rate job density job housing balance literacy urban population density	1 1 1 1
Built Environment (53)		distance to railway station distance to minor roads distance to subway station distance to road junction distance to county roads distance to motorway exits	11 8 7 6 5		Plan (6)	land use plan/policy distance to city boundary distance to historic sites county boundary state boundary	13 8 4 3 1
		distance to bus station distance to provincial roads road density distance to metro station distance to tollgate distance to bus route transportation noise	4 4 3 2 1		Economy (10)	GDP property/land value income employment rate poverty rent industrialization rate	17 12 5 3 2 2
	Land Use (13)	distance to settlement distance to urban center (CBD) land use (land cover)	74 52 49			investment investment on agri. research per capita foreign direct investment	1 1 1
		distance to residential distance to (big) city distance to open land/recreation distance to district centers	35 25 15 13	Othe	ers (3)	easting parameter northing parameter crime	5 5 1
		Total D	riving Facto	or (113)			1,215

^{*} Drivers in SLEUTH model are counted as four (e.g., slope, land use, urban, and transportation) because hillshade and exclusion layers do not influence prediction results. Stochastic and duplicated neighborhood drivers are excluded in count. ** Drivers include factors affecting urban land uses (e.g., residential, commercial, industrial).

Further reading

Point of Contact: Gizem Mestav Sarica (Mornings only), Alex Alabaster

Suggested reading:

- Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data, https://doi.org/10.1016/j.scitotenv.2015.08.068
- Integrating Climate and Socioeconomic Pathways to Calculate the Future Cost of Catastrophes, https://doi.org/10.5194/egusphere-egu2020-3058
- A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models, https://doi.org/10.3390/land9080246

10

Contacts

Central Model Evaluation - London

Alex Alabaster

Head of Model Evaluation

Silvia Bertelli

Graduate Trainee

Mutahar Chalmers

Senior Catastrophe Research Analyst

Dr Adrian Champion

Senior Catastrophe Research Analyst

Dr Rubini Mahalingam

Senior Catastrophe Research Analyst

Dr Barbara Orellana

Senior Catastrophe Research Analyst

Dr Gizem Mestav Sarica

Senior Catastrophe Research Analyst

Dr Chris Webber

Senior Catastrophe Research Analyst

11

Thank You

