EAE1223: ECONOMETRIA III

Aula 3 - Decomposições descritivas de séries de tempo

Luis A. F. Alvarez

18 de março de 2024

Decomposição aditiva de uma série de tempo

- Podemos considerar o seguinte modelo para uma série de tempo X_t , $t \in \mathcal{T}$:

$$X_t = T_t + C_t + S_t + U_t \tag{1}$$

onde

- 1. T_t é a tendência de X. Movimento de longo prazo da série.
- 2. C_t é o ciclo de X. Movimento oscilatório em torno da tendência de frequência, em geral, desconhecida.
- 3. S_t é a sazonalidade de X. Movimento oscilatório de periodicidade bem-definida.
 - Vendas no comércio costumam apresentar alta nos meses de maio e dezembro.
- 4. U_t é o componente idiossincrático da série X em t. Captura fenômenos específicos a t e não explicados pelos demais componentes.

Decomposição multiplicativa de uma série

- Podemos considerar o seguinte modelo para uma série de tempo X_t , $t \in \mathcal{T}$:

$$X_t = T_t \cdot C_t \cdot S_t \cdot U_t \tag{2}$$

onde os componentes são definidos como no modelo aditivo.

- Um modelo multiplicativo implica um modelo aditivo em log.

$$\log(X_t) = \tau_t + c_t + s_t + u_t \tag{3}$$

- Estimação é feita trabalhando com modelo aditivo em log.
- Observe que, no modelo multiplicativo, a tendência afeta a escala das variáveis.
 - Em particular, esperamos que, no modelo multiplicativo, a variância de $\Delta X_t = X_t X_{t-1}$ mude bastante com o tempo.
 - Escolha entre modelo aditivo ou multiplicativo pode ser feita observando um gráfico de $\Delta X_t = X_t X_{t-1}$.

Modelo aditivo (nível e primeira diferença)

Modelo multiplicativo (nível e primeira diferença)

AJUSTE SAZONAL

- Remoção do componente sazonal clássica faz uso de médias móveis.
- Suponha que a série tem movimentos sazonais bem definidos a cada h períodos, onde h é número ímpar (e.g. sazonalidade semanal numa série diária). Podemos construir a média móvel centrada em t como:

$$\tilde{X}_t = \frac{1}{h} \sum_{s=t-(h-1)/2}^{t+(h-1)/2} X_s \tag{4}$$

- O fator de correção sazonal para $s=1,\ldots,h$ é dado por:

$$\hat{\delta}_s = \frac{1}{\lfloor (T-s)/h \rfloor + 1} \sum_{t=s, s+h, s+2h} (X_t - \tilde{X}_t)$$
 (5)

- E o fator recentrado é:

$$\tilde{\delta}_s = \hat{\delta}_s - \frac{1}{h} \sum_{i=1}^h \hat{\delta}_i \tag{6}$$

AJUSTE SAZONAL (CONT.)

- Fatores podem ser usado para obter séries corrigidas da sazonalidade, subtraindo-se de cada observação o $\tilde{\delta}_s$ correspondente.
- Se h é par, calculamos \tilde{X}_t combinando duas médias não centradas:

$$\tilde{X}_t = 0.5 \times \frac{1}{h} \sum_{s=t-(h-2)/2-1}^{t+(h-2)/2} X_t + 0.5 \times \frac{1}{h} \sum_{s=t-(h-2)/2-1}^{t+(h-2)/2+1} X_t$$

EXEMPLO: TAXA DE DESEMPREGO MENSAL NO BRASIL

FIGURA: Taxa de desemprego original (preto) e com ajuste via médias móveis centradas (azul)

X13 ARIMA-SEATS

- Metodologia de ajuste sazonal desenvolvida pelo US Census Bureau.
- Padrão ouro para ajustes sazonais.
 - Combina metodologia de médias móveis com a possibilidade de inclusão de efeitos-calendário (por padrão, modelo controla por dias úteis do mês e alguns feriados móveis; passível de alteração), detecção automática de *outliers*, *backfitting* para completamento da série de tempo e seleção automática de modelo aditivo ou multiplicativo.
- No R, acessível via pacote seasonal.
- Disponível para séries mensais e trimestrais.
 - Para séries diárias, há potencialmente mais de uma fonte de sazonalidade em diferentes frequências, o que requer abordagem diferentes (por exemplo, Livera, Hyndman e Snyder, 2011).

EXEMPLO: TAXA DE DESEMPREGO MENSAL NO BRASIL (CONT.)

FIGURA: Taxa de desemprego original (preto) e com ajuste via X13 (vermelho)

SEPARANDO O CICLO DA TENDÊNCIA

- Dada uma série de tempo cujo componente sazonal já foi extraído, como separar o componente cíclico da tendência?
- Uma abordagem bastante comum consiste em utilizar um filtro HP. Formalmente, dada uma série $\{y_t\}_{t=1}^T$, estimamos a tendência $\{\mu_t\}_{t=1}^T$ resolvendo:

$$\min_{\mu_1,\mu_2,\dots\mu_T} \frac{1}{T} \sum_{t=1}^{I} (y_t - \mu_t)^2 + \frac{\lambda}{T} \sum_{t=2}^{I-1} [(\mu_{t+1} - \mu_t) - (\mu_t - \mu_{t-1})]^2$$
 (7)

para uma penalização $\lambda > 0$.

- λ controla o grau de suavidade da tendência estimada (quanto maior λ , mais suavizado):
 - 1. Se $\lambda = 0$, $\hat{\mu}_t = y_t$, i.e. a tendência estimada é a própria série.
 - 2. Se $\lambda \to \infty$, $\hat{\mu}_t \to \hat{a} + \hat{b}t$, i.e. a tendência torna-se linear (igual à regressão de y_t num intercepto e numa tendência linear).
- Regra de bolso é usar $\lambda=1600$ para dados trimestrais, $\lambda=6,25$ para dados anuais e $\lambda=129600$ para dados mensais (Ravn e Uhlig, 2002).

EXEMPLO: TAXA DE DESEMPREGO MENSAL NO BRASIL (CONT.)

FIGURA: Taxa de desemprego com ajuste via X13 (vermelho) e tendência extraída via filtro HP (azul)

FILTRO HP E INSTABILIDADE NA PONTA

- Note que, à medida que mais dados são divulgados, os valores da tendência podem mudar.
- Esse fenômeno é especialmente acentuado nas observações mais recentes, em que a contribuição de novas observações é especialmente acentuada.
 - A esse fenômeno damos o nome de instabilidade na ponta: observações futuras podem fazer nossa estimativa do ciclo mudar radicalmente.

Instabilidade de ponta: ilustração

FIGURA: Desemprego mensal (ajustado via X13) até janeiro/2024

ALTERNATIVAS AO FILTRO HP: HAMILTON (2018)

- A instabilidade de ponta, combinada a outras debilidades do filtro HP, leva Hamilton (2018) a sugerir uma outra medida de ciclo.
- Sua sugestão é calcular o ciclo como o resíduo $\hat{\nu}_t$ da regressão:

$$y_{t+h} = \alpha + \beta_1 y_t + \beta_2 y_{t-1} + \beta_3 y_{t-2} + \beta_4 y_{t-3} + \nu_{t+h}$$

onde h é tomado de forma de que a distância entre t e t+h seja de **dois** anos.

- h = 8 em dados trimestrais, h = 24 em dados mensais.
- Medida captura o erro que se comete em projetar o que ocorre em *t*, com base no que ocorreu há dois anos.
- Ideia é que esse erro capturaria fatores cíclicos.

APLICAÇÃO DE HAMILTON (2018) AOS DADOS DE DESEMPREGO

Decomposição de Beveridge-Nelson

- A decomposição de Hamilton é bastante similar a um procedimento, sugerido por Beveridge e Nelson (1981), para se separar a tendência estocástica da parte estacionária de um processo I(1).
- Decomposição de Beveridge-Nelson toma a parte estacionária de um processo I(1) como:

$$\nu_t^{\mathsf{BN}} = y_t - \lim_{s \to \infty} \mathbb{E}[y_{t+s}|y_t, y_{t-1}, \ldots]$$

i.e. a diferença entre y_t e uma projeção de longo prazo, feita com base em toda o histórico de y até t.

 Se processo também apresenta tendência determinística a₀t em nível, fazemos:

$$\nu_t^{\mathsf{BN}} = y_t - \lim_{s \to \infty} (\mathbb{E}[y_{t+s}|y_t, y_{t-1}, \ldots] - a_0 s)$$

- Decomposição pode ser estimada ajustando um modelo preditivo para Δy_t , e computando projeções fora da amostra para um horizonte longo, observando que $y_{t+s} = y_t + \Delta y_{t+1} + \dots \Delta y_{t+s}$.

Bibliografia I

Beveridge, Stephen e Charles R. Nelson (1981). "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the 'business cycle'". Em: *Journal of Monetary Economics* 7.2, pp. 151–174. ISSN: 0304-3932. DOI:

https://doi.org/10.1016/0304-3932(81)90040-4. URL: https://www.sciencedirect.com/science/article/pii/0304393281900404.

Bibliografia II

Exponential Smoothing". Em: Journal of the American Statistical Association 106.496, pp. 1513-1527. DOI: 10.1198/jasa.2011.tm09771.eprint: https://doi.org/10.1198/jasa.2011.tm09771. URL: https://doi.org/10.1198/jasa.2011.tm09771. Ravn, Morten O. e Harald Uhlig (mai. de 2002). "On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations". Em: The Review of Economics and Statistics 84.2, pp. 371–376. ISSN: 0034-6535. DOI: 10.1162/003465302317411604. eprint: https://direct.mit.edu/rest/articlepdf/84/2/371/1613390/003465302317411604.pdf. URL: https://doi.org/10.1162/003465302317411604.

Livera, Alysha M. De, Rob J. Hyndman e Ralph D. Snyder (2011). "Forecasting Time Series With Complex Seasonal Patterns Using