CSCE 212: Intro to Computer Architecture Project 1

Part A (40%): Create a MIPS assembly code that reads four positive integers \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d} as input parameters. The code shall execute in MARS to prompt the user to enter four positive integers represented in decimal, each separated by the **Enter** key. The program shall calculate $\mathbf{f} = (\mathbf{a}^{\mathbf{x}} + \mathbf{b}^{\mathbf{y}})$ and $\mathbf{g} = (\mathbf{c}^{\mathbf{z}} + \mathbf{d}^{\mathbf{w}})$ using your own self-written multiplication code, in which \mathbf{x} , \mathbf{y} , \mathbf{z} , and \mathbf{w} are the first, second, third, and fourth leftmost non-zero digits of your Student ID. Here are some samples for better clarification:

Student ID	Corresponding f and g expressions
R12345678	$f=(a^1+b^2)$ and $g=(c^3+d^4)$
G87654321	$f = (a^8 + b^7)$ and $g = (c^6 + d^5)$
D02040608	$f=(a^2+b^4)$ and $g=(c^6+d^8)$

The program should output **f** in decimal and binary, using **syscall** routines for each output.

Part B (20%): Create a MIPS assembly code, which calculates the below expressions:

$$h = f/g;$$

Hint: Given a positive integer X, and a positive integer Y where X > Y, the division X/Y is computed such that unique integers Q and R satisfy X = (Y * Q + R) where $0 \le R < Y$. The value Q is called the quotient and R is called the remainder. Some examples are:

$$\{X = 7, Y = 2\}$$
 then $7 = 2 * 3 + 1$ so Q=3 and R=1
 $\{X = 8, Y = 4\}$ then $8 = 4 * 2 + 0$ so Q=2 and R=0
 $\{X = 13, Y = 5\}$ then $13 = 5 * 2 + 3$ so Q=2 and R=3

IMPORTANT NOTE 1: You are not allowed to use any of these instructions: { mul, mul.d,
mul.s, mulo, mulou, mult, multu, mulu, div, divu, rem, sll, sllv,
sra, srav, srl, srlv}

- Exponents (or Powers) are required to be realized only by using loops and **add** instruction.
- Quotient and Remainder should be calculated only by using loops and sub instruction.

IMPORTANT NOTE 1: You are **NOT** allowed to use functions and subroutines.

Sample Output:

ID	ID = "Print your student ID Here, e.g. R02040608"		
En	ter	4	integers for a,b,c,d respectively:
4			
3			
2			
1			
f_	ten	=	97
f	two	=	00000000000000000000001100001
g_	ten	=	65
g	two	=	000000000000000000000000000000000000000
$\mathbf{h}_{_}$	quotient = 1		
h	n remainder = 32		

Project 1 Report (40%)

Project Report submission: 100 points total as follows:

- **Professional preparation: [10 points total]** as follows:
 - i.e. Typed document with text of the paragraphs in Times New Roman 11 pt font, clear and grammatically well-formed explanations, cover sheet provided, page numbering and document heading numbering (1.0, 2.0, 3.0, etc to identify the required sections listed below).
- **Report Content:** [90 points total] as follows having the following numbered section headings:
 - **1.0 Project Description:** project name and description including program inputs and outputs. [10 points]
 - **2.0 Program Design:** description of how your code operates, and a flowchart with sufficient explanation about the program design. [10 points for description and 10 points for high quality flowchart]
 - **3.0 Symbol Table:** a 2-column Table describing all Registers used and their specific Purpose in the code, where each register is listed on a separate row and identified by register name \$t0,\$s0, etc., as well as any Labels used and their purpose on separate rows. [10 points for register table and 10 points for label table]
 - **4.0 Learning Coverage:** provide a list of at least 5 technical topics learned from this project. [10 points]
 - **5.0 Test Plan:** provide details in sentences identifying the inputs chosen to test the program and why these were selected, and justification why they provide adequate test coverage. [15 points]
 - **6.0 Test Results:** provide screen shot(s) of at least 3 proper MIPS code executions in MARS for your Test Plan inputs. [15 points]