# **Algorithmic Representation**

The following will be covered:

- Using pseudocode and flowchart to show program flow
- Standard flowchart symbols
- Using a combination of control structures, namely
  - Selection
  - Iteration
  - Sequence
- Using decision tables to explore the actions of combinations of different input
   conditions Up to three conditions
- Use modular design to decompose a problem into smaller problems

The above is extracted from the 2021 H2 Computing Syllabus ☑.

#### **Control structures**

Flow of control in a program is implemented with three basic types of control structures:

- Sequence
  - The default flow. One line after another.
- Selection
  - Used for decisions/branching.
  - Examples: if, if/else, switch
- Iteration
  - Used for looping
  - Examples: while, for

### **Pseudocode**

Pseudocode, is an artificial and informal language that describes the steps in an algorithm. There is no standard way of writing pseudocode, but **consistency** with the use of your syntax is key.

- Common keywords: IF, WHILE, INPUT, ELSE, FOR.
- It is to be noted that every control statement should be enclosed
   correspondingly, such as IF with ENDIF

An example of pseudocode will be:

```
FUNCTION functionname(parameters)

WHILE condition DO

FOR iteration bounds DO

IF condition THEN

CALL subprocedure1

ELSE

sequence 2

ENDIF

ENDFOR

ENDWHILE

ENDFUNCTION
```

### **Flowchart**

Flowcharts use special shapes to represent different types of actions or steps in a process.





Flowchart symbols must be strictly followed

## **Decision Table**

A decision table is a tabular representation of inputs versus test conditions.

An example of a decision table:

| Conditions                   | R1 | R2 | R3 |
|------------------------------|----|----|----|
| Withdrawal Amount <= Balance | Т  | F  | F  |
| Credit granted               | -  | Т  | F  |
| Actions                      |    |    |    |
| Withdrawal granted           | Т  | Т  | F  |