

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؟
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؟
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من ثلاثة تمارين ومسألة ، مستقلة فيما بينها ، وتتوزع حسب المجالات كما يلي :

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	حساب الاحتمالات	التمرين الثالث
11 نقطة	دراسة دالة عددية و حساب التكامل والمتتاليات العددية	المسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيرى

NS 22

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

التمرين الأول: (3ن)

0.5

0.5

0.5

B(-4,1,0) و A(2,1,0) النقطتين $(0,\vec{i},\vec{j},\vec{k})$ و ونعتبر، في الفضاء المنسوب إلى معلم متعامد ممنظم مباشر

- المستوى المار من النقطة A و $\vec{u}=\vec{i}+\vec{j}-\vec{k}$ و المستوى المار من النقطة عليه (P) ليكن (P) المستوى x+y-z-3=0 بين أن
 - \overrightarrow{MA} . $\overrightarrow{MB}=0$ التكن (S) مجموعة النقط M من الفضاء التي تحقق العلاقة $\Omega(-1,1,0)$ و شعاعها $\Omega(-1,1,0)$ و شعاعها $\Omega(-1,1,0)$
- (C) أـ احسب مسافة النقطة Ω عن المستوى (P) ثم استنتج أن (P) يقطع Ω وفق دائرة Ω 0.5
 - H(0,2,-1) هو النقطة (C) هو النقطة (O) هو النقطة
 - OHB ثم استنتج مساحة المثلث $\overrightarrow{OH} \wedge \overrightarrow{OB} = \overrightarrow{i} + 4 \overrightarrow{j} + 8 \overrightarrow{k}$ ثم استنتج مساحة المثلث 0.75 التمرين الثانى : (3 ن)

 $a=2+\sqrt{2}+i\sqrt{2}$ بحيث a بحيث العدد العقدي . a

- $2\sqrt{2+\sqrt{2}}$ هو a بين أن معيار العدد العقدي (1
- $a=2\left(1+\cos\frac{\pi}{4}\right)+2i\sin\frac{\pi}{4}$ نحقق من أن (2 0.25
- $1+\cos 2\theta=2\cos^2 \theta$ بین أن $\cos^2 \theta$ میث $\cos^2 \theta$ میث ، حیث $\cos^2 \theta$ مین أن ، $\cos^2 \theta$
- $(\sin 2\theta = 2\cos \theta \sin \theta)$ نذکر أن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$ بين أن $a = 4\cos^2\frac{\pi}{8} + 4i\cos\frac{\pi}{8}\sin\frac{\pi}{8}$
- $a^4 = \left(2\sqrt{2+\sqrt{2}}\right)^4 i$ مو شكل مثلثي للعدد a في شكل مثلثي للعدد a في أن $a = \left(2\sqrt{2+\sqrt{2}}\right)^4 i$ هو شكل مثلثي للعدد a في أن $a = \left(2\sqrt{2+\sqrt{2}}\right)^4 i$ هو شكل مثلثي للعدد a في أن a

النقطتين Ω و A اللتين لحقاهما A اللتين المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر المستوى العقدي المنسوب إلى المتعامد معلم متعامد معلم متعامد معلم المتعامد المتع

 $\frac{\pi}{2}$ على التوالي هما ω و α على التوالي هما ω و ω على التوالي هما ω و زاويته ω على التوالي التوا

- 2i هو R بين أن اللحق b للنقطة B صورة النقطة A بالدوران B
 - $\left|z-2i\right|=2$ حدد مجموعة النقط M ذات اللحق عبد مجموعة (2

التمرين الثالث: (3ن)

يحتوي صندوق U_1 على 7 كرات : أربع كرات حمراء و ثلاث كرات خضراء (لا يمكن التمييز بينها باللمس) و يحتوي صندوق U_2 على U_3 كرات : ثلاث كرات حمراء و كرتان خضراوان (لا يمكن التمييز بينها باللمس)

 U_2 الصندوق

 $U_{\scriptscriptstyle 1}$ الصندوق

- U_1 نعتبر التجربة التالية : نسحب عشوائيا و في آن واحد ثلاث كرات من الصندوق I ليكن I الحصول على كرة حمراء واحدة و كرتين خضراوين ". و I الحصول على ثلاث كرات من نفس اللون ".
 - $p(B) = \frac{1}{7}$ و $p(A) = \frac{12}{35}$ بين أن
- U_2 نعتبر التجربة التالية : نسحب عشوائيا و في آن واحد كرتين من U_1 ثم نسحب عشوائيا كرة واحدة من (II) ليكن C الحدث : "الحصول على ثلاث كرات حمراء ".

$$p(C) = \frac{6}{35}$$
 بین أن

NS 22

الامتحان الوطنى الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: الرياضيات - شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها

المسألة: (11 ن)

0.5

0.5

0.25

0.5

0.5

0.25

0.5

0.75

0.75

$$f(x) = \frac{1}{x(1-\ln x)}$$
 : بحيث f للمتغير الحقيقي f بحيث بحيث f

و ليكن $\left(C_{f}
ight)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم و الوحدة $\left(C_{f}
ight)$ و ليكن

$$(f$$
 الدالة D_f) $D_f=\left[0,e
ight[\cup]e,+\infty
ight[$ بين أن $D_f=\left[0,e
ight[\cup]e,+\infty
ight]$ بين أن $D_f=\left[0,e
ight[\cup]e,+\infty
ight[\cup]e,+\infty
ight]$

.
$$\lim_{x\to e} f(x)$$
 و أول هندسيا النتيجتين المتوصل إليهما $\lim_{x\to e} f(x)$

. ب- احسب
$$f(x)$$
 بنتج أن المنحنى C_f يقبل مقاربا بجوار $f(x)$ يتم تحديده

$$(x(1-\ln x)=x-x\ln x)$$
 ج- بین أن $(x-1)=x-x\ln x$ ثم أول هندسیا النتیجة و لحساب $(x(1-\ln x)=x-x\ln x)$ ثم أول هندسیا النتیجة و لحساب $(x(1-\ln x)=x-x\ln x)$

$$D_f$$
 نکل $f'(x) = \frac{\ln x}{x^2 (1 - \ln x)^2}$ نکل (3 0.75)

$$]e,+\infty[$$
 و $[1,e[$ على كل من المجالين $[0,1]$ و تزايدية على كل من المجالين $[0,+\infty[$ و تناقصية على المجال $[0,+\infty[$

$$D_f$$
 على على جـ ضع جدول تغيرات الدالة f على

ب- نعطى جدول القيم التالى:

$$g(x)=1-x^2\left(1-\ln x\right)$$
: ينكن و الدالة العددية المعرفة على المجال $g(x)=1-x^2\left(1-\ln x\right)$ بنكن و الدالة العددية المعرفة على المجال

و ليكن
$$(C_g)$$
 المنحنى الممثل للدالة g في معلم متعامد ممنظم وانظر الشكل)

			,	· • •
х	2,1	2,2	2,3	2,4
g(x)	-0,14	-0,02	0,12	0,28

2,2<lpha<2,3 بين أن المعادلة (E) تقبل حلا lpha بحيث

$$D_f$$
 نکل $f(x) - x = \frac{g(x)}{x(1-\ln x)}$ کا ایک کا ایک کا کا (2

ب- بین أن المستقیم
$$(\Delta)$$
 الذي معادلته $y=x$ يقطع المنحنى α و α النقطتین اللتین أفصو لاهما α و α

$$[1,\alpha]$$
 الكل $f(x)-x\leq 0$ و بين أن $f(x)-x\leq 0$ المجال $[1,\alpha]$ على المجال g على المجال g الكل g من g من g الكل على من g 0.5

$$\left(C_{f}
ight)$$
 و المنحنى (Δ) المستقيم (Δ) المستقيم (Δ) المستقيم (Δ) المختى (3 Δ

(
$$D_f$$
 نكل x من $\frac{1}{x(1-\ln x)} = \frac{\frac{1}{x}}{1-\ln x}$: لاحظ أن $\frac{1}{x(1-\ln x)} dx = \ln 2$ نكل $\frac{1}{x(1-\ln x)} dx = \ln 2$ 10.75

ب- احسب ، ب
$$cm^2$$
 ، مساحة حيز المستوى المحصور بين المنحنى C_f و المستقيم (Δ) و المستقيمين $x=\sqrt{e}$ و $x=1$ اللذين معادلتاهما $x=\sqrt{e}$ و $x=1$

$$IN$$
 نعتبر المتتالية العددية $\left(u_{n}\right)$ المعرفة بما يلي $u_{n+1}=f\left(u_{n}\right)$ و $u_{0}=2$: المعرفة بما يلي (III

$$IN$$
 بين بالترجع أن $u_n \leq \alpha$ الكل n من $1 \leq u_n \leq \alpha$

(ورد المتالية
$$(u_n)$$
 المتالية (u_n) عناقصية (يمكن استعمال نتيجة السؤال (u_n) ج-) ج- (2 المتالية المتالية (u_n) ج- (2 المتالية المتالية المتالية (u_n) عناقصية (u_n) ج- (u_n)

. استنتج أن المتتالية
$$(u_n)$$
 متقاربة و حدد نهايتها (3

تصحيح التمرين الأول

$$(P)$$
 متجهة منظمية للمستوى \vec{u} $(1,1,-1)$ لدينا : $(1).x + (1).y + (-1).z + d = 0$ يشكل : (P) تكتب على شكل : (P) تكتب على شكل : (P) تكتب على أن (P) تكتب على أن (P) تكتب على أن (P) قبل : (P) قبل : (P) قبل : (P) أي : (P) مي : (P) هي : (P)

2) طريقة 1:

$$\overrightarrow{MA}.\overrightarrow{MB}=0$$
 بما أن (S) هي مجموعة النقط M من الفضاء التي تحقق العلاقة و (S) هي الفلكة التي أحد أقطارها (S)

$$x_{\Omega}=rac{(2)+(-4)}{2}=-1$$
 $y_{\Omega}=rac{1+1}{2}=1$: يو منه Ω مركز الفلكة (S) هو منتصف القطعة $z_{\Omega}=rac{0+0}{2}=0$

$$(S)$$
 هي مركز الفلكة $\Omega(-1,1,0)$ اي

.
$$(S)$$
 هي مركز الفلكة $\Omega(-1,1,0)$ هي مركز الفلكة $\Omega(-1,1,0)$ هي مركز الفلكة $R = \frac{AB}{2} = \frac{\sqrt{(-4-2)^2 + (1-1)^2 + (0-0)^2}}{2} = \frac{\sqrt{36}}{2} = \frac{6}{2} = 3$ و شعاعها R هو : $R = \frac{AB}{2} = \frac{\sqrt{36}}{2} = \frac{6}{2} = 3$

$$M(x,y,z)$$
 نقطة من الفضاء $M(x,y,z)$

(4

ب- H مركز الدائرة (C) هي المسقط العمودي للنقطة Ω على المستوى (P) أي هي نقطة تقاطع المستقيم (C) المار من Ω و العمودي على المستوى (P)

$$(\Delta) \perp (P)$$
 و (P) لاينا : لاينا

$$\Omegaig(-1,1,0ig)$$
و لدينا (Δ) و لدينا متجهة موجهة للمستقيم ولم متجهة موجهة للمستقيم $ec{u}$

$$\begin{cases} x = (-1) + t \ (1) = -1 + t \end{cases}$$
 إذن تمثيل بار امتري للمستقيم (Δ) هو (Δ) هو (Δ) المتري للمستقيم (Δ) المتري للمستقيم (Δ) المتري المستقيم (Δ) المتري المتري المستقيم (Δ) المتري ال

$$\begin{cases} x=-1+t \ y=1+t \ z=-t \end{cases}$$
و بالتالي مثلوث إحداثيات H هو حل للنظمة $t\in\mathbb{R}$) : هو حل $t\in\mathbb{R}$

$$(C)$$
 و منه $H\left(0,2,-1
ight)$ هي مركز الدائرة $x=-1+1=0$ اي $z=-1$ $z=-1$

 $\overrightarrow{OB}\left(-4,1,0
ight)$ و $\overrightarrow{OH}\left(0,2,-1
ight)$ دينا \checkmark

$$\overrightarrow{OH} \wedge \overrightarrow{OB} = \begin{vmatrix} 2 & 1 \\ -1 & 0 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & -4 \\ -1 & 0 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & -4 \\ 2 & 1 \end{vmatrix} \vec{k} = \vec{i} + 4\vec{j} + 8\vec{k}$$

• OHB مساحة المثلث

$$S_{(OHB)} = \frac{1}{2} \|\overrightarrow{OH} \wedge \overrightarrow{OB}\| = \frac{1}{2} \times \sqrt{(1)^2 + (4)^2 + (8)^2} = \frac{\sqrt{81}}{2} = \frac{9}{2}$$

تصحيح التمرين الثانى

٠I

(1

$$|a| = \sqrt{(2+\sqrt{2})^2 + (\sqrt{2})^2}$$

$$= \sqrt{4+4\sqrt{2}+2+2}$$

$$= \sqrt{8+4\sqrt{2}}$$

$$= \sqrt{4(2+\sqrt{2})}$$

$$= 2\sqrt{2+\sqrt{2}}$$

$$a = 2 + \sqrt{2} + i\sqrt{2}$$

$$a = 2\left(1 + \frac{\sqrt{2}}{2}\right) + 2i\left(\frac{\sqrt{2}}{2}\right)$$

$$a = 2\left(1 + \cos\left(\frac{\pi}{4}\right)\right) + 2i\sin\left(\frac{\pi}{4}\right)$$

hetaا أ- ليكن (3

$$\cos^{2}(\theta) = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2}$$

$$= \frac{e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}}{4}$$

$$= \frac{1}{2}\left(\frac{e^{2i\theta} + 1 + e^{-2i\theta}}{2}\right)$$

$$= \frac{1}{2}\left(\frac{e^{2i\theta} + e^{-2i\theta}}{2} + 1\right) = \frac{1}{2}\left(\cos(2\theta) + 1\right)$$

$$\mathbb{R} \quad \text{if } \theta \quad \text{if } 1 + \cos(2\theta) = 2\cos^{2}(\theta) : \theta \text{ if } 1 = 1 \text{ for } 1 = 1 \text{ for$$

ب-

$$a = 2\left(1 + \cos\left(\frac{\pi}{4}\right)\right) + i \cdot 2\sin\left(\frac{\pi}{4}\right)$$

$$= 2\left(1 + \cos\left(2 \cdot \frac{\pi}{8}\right)\right) + i \cdot 2\sin\left(2 \cdot \frac{\pi}{8}\right)$$

$$= 2 \times 2\cos^2\left(\frac{\pi}{8}\right) + i \cdot 2 \times 2\cos\left(\frac{\pi}{8}\right)\sin\left(\frac{\pi}{8}\right)$$

$$= 4\cos^2\left(\frac{\pi}{8}\right) + i \cdot 4\cos\left(\frac{\pi}{8}\right)\sin\left(\frac{\pi}{8}\right)$$

$$a=4\cos\left(\frac{\pi}{8}\right).\left(\cos\left(\frac{\pi}{8}\right)+i\sin\left(\frac{\pi}{8}\right)\right)$$

$$a=|a|.\left(\cos\left(\frac{\pi}{8}\right)+i\sin\left(\frac{\pi}{8}\right)\right):$$

$$a=2\sqrt{2+\sqrt{2}}.\left(\cos\left(\frac{\pi}{8}\right)+i\sin\left(\frac{\pi}{8}\right)\right):$$
افن:

حسب علاقة مو افر

·II

$$rac{\pi}{2}$$
 الدينا $\Omega(\omega)$ مورة R بالدوران R الذي مركزه $B(b)$ و زاويته B (B) الدينا $B(\omega)$ و زاويته $B(\omega)$ بالدوران $B(\omega)$ الذي $B(\omega)$ الذي $B(\omega)$ مورة $B(\omega)$ بالدوران $B(\omega)$ بالدوران $B(\omega)$ مركزه $B(\omega)$ و زاويته $B(\omega)$ الذي $B(\omega)$ الذي $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ الدينا $B(\omega)$ مركزه $B(\omega)$ مركزه $B(\omega)$ مركزه $B(\omega)$ و زاويته $B(\omega)$ و زاويته $B(\omega)$

2 إذن مجموعة النقط M هي الدائرة التي مركزها B و شعاعها

تصحيح التمرين الثالث

ليكن $\Omega_{_1}$ كون إمكانيات هذه التجربة

$$card \Omega_1 = C_7^3 = 35$$
: لدينا

الحدث : " الحصول على كرة حمراء واحدة و كرتين خضراوين " A

$$cardA = C_4^1 \times C_3^2 = 4 \times 3 = 12$$
: Levil

$$p(A) = \frac{cardA}{card\Omega_1} = \frac{12}{35}$$
 : إذن

" الحصول على ثلاث كرات من نفس اللون B

$$cardB = C_4^3 + C_3^3 = 4 + 1 = 5$$
 : لدينا

$$p(B) = \frac{cardB}{card \Omega_1} = \frac{5}{35} = \frac{1}{7} : \frac{1}{7}$$

" U_2 التجربة " نسحب عشوائيا و في آن واحد كرتين من U_1 ثم نسحب عشوائيا كرة واحدة من U_2 " ليكن Ω كون إمكانيات هذه التجربة

$$card \Omega = C_7^2 \times 5 = 21 \times 5 = 105$$
: لدينا

. " الحصول على ثلاث كرات حمراء
$$C$$

$$cardC = C_4^2 \times 3 = 6 \times 3 = 18$$
: لدينا

$$p(C) = \frac{cardC}{card\Omega} = \frac{18}{105} = \frac{6}{35}$$
 إذن

تصحيح المسألة

-أ (2

$$D_{f} = \left\{ x \in \mathbb{R} / x \left(1 - \ln x \right) \neq 0, x > 0 \right\}$$

$$D_{f} = \left\{ x \in \mathbb{R} / x \neq 0, \left(1 - \ln x \right) \neq 0, x > 0 \right\}$$

$$D_{f} = \left\{ x \in \mathbb{R} / x \neq 0, \ln x \neq 1, x > 0 \right\}$$

$$D_{f} = \left\{ x \in \mathbb{R} / x \neq e, x > 0 \right\}$$

$$= \left[0, e \right[\cup e, +\infty \right[$$

$$\begin{array}{c|cccc}
x & 0 & e & +\infty \\
\hline
1-lnx & + & 0 & -
\end{array}$$

$$\lim_{\substack{x \to e \\ x > e}} f(x) = \lim_{\substack{x \to e \\ x > e}} \frac{1}{x(1 - \ln x)} = -\infty :$$

$$\lim_{\substack{x \to e \\ x > e}} x = e$$

$$\lim_{\substack{x \to e \\ x > e}} 1 - \ln x = 0^{-}$$

$$\lim_{x \to e} 1 - \ln x = 0^{-}$$

$$\lim_{\substack{x \to e \\ x < e}} f(x) = \lim_{\substack{x \to e \\ x < e}} \frac{1}{x(1 - \ln x)} = +\infty :$$
لينا \checkmark

$$\begin{cases} \lim_{\substack{x \to e \\ x < e}} = e \\ \lim_{\substack{x \to e \\ x < e}} 1 - \ln x = 0^{+} \end{cases}$$

التأويل الهندسي :
$$x=e \text{ with additive } \begin{cases} \lim_{\substack{x\to e\\x\neq e}} f\left(x\right)=+\infty\\ \lim_{\substack{x\to e\\x\neq e}} f\left(x\right)=-\infty \end{cases}$$
 لاينا :
$$\lim_{\substack{x\to e\\x\neq e}} f\left(x\right)=\lim_{\substack{x\to e\\x\neq e}} \frac{1}{x\left(1-\ln x\right)}=0 \qquad :$$
 بحوار $\lim_{x\to +\infty} x=+\infty$
$$\lim_{\substack{x\to +\infty\\x\to +\infty}} 1-\ln x=-\infty$$
 + $\lim_{\substack{x\to +\infty\\x\to +\infty}} 1$ بحوار $\lim_{\substack{x\to e\\x\to +\infty}} x=+\infty$ بحوار $\lim_{\substack{x\to e\\x\to +\infty}} 1$ بحال $\lim_{\substack{x\to e\\x\to +\infty}} x=+\infty$ بحوار $\lim_{\substack{x\to e\\x\to +\infty}} 1$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x(1 - \ln x)} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x - x \ln x} = +\infty$$

$$\begin{cases} \lim_{\substack{x \to 0 \\ x > 0}} x = 0^+ \\ \lim_{\substack{x \to 0 \\ x \to 0}} -x \ln x = 0^+ \end{cases}$$

التأويل الهندسي :

$$x=0$$
 بما أن $x=0$ بما أن $\lim_{\substack{x\to 0\\x>0}} f\left(x\right)=+\infty$ يقبل مقارب عمو دي معادلته

: $x \in D_f$ اُ- ليكن (3

$$f'(x) = \left(\frac{1}{x(1-\ln x)}\right)'$$

$$f'(x) = \frac{-(x(1-\ln x))'}{(x(1-\ln x))^2}$$

$$f'(x) = \frac{-((x)'(1-\ln x)+x(1-\ln x)')}{x^2(1-\ln x)^2}$$

$$f'(x) = \frac{-(1-\ln x-1)}{x^2(1-\ln x)^2}$$

$$f'(x) = \frac{\ln x}{x^2(1-\ln x)^2}$$

$$D_f$$
 من x لکل $f'(x) = \frac{\ln x}{x^2 (1 - \ln x)^2}$: $x \in D_f$ بادن $x \in D_f$

$$f'(x) = 0 \Leftrightarrow \ln x = 0 \Leftrightarrow x = 1$$

$$\ln x$$
 الدينا $f'(x)$ الدينا $x^2(1-\ln x)^2>0$ الدينا

و منه
$$f$$
 تناقصية $f'(x) \le 0$ إذن $f(x) \le 0$ و منه $f'(x) \le 0$

و منه
$$f$$
 و منه f و منه f و المجالين f و المجالين f و المجالين f و منه f تزايدية f

f : f جدول تغیرات

x	0	1	(÷ +∞
f'(x)		$-\phi$	+	+
f(x)	$+\infty$	<u></u>	+∞	$-\infty$

. أ - مبيانيا عدد حلول المعادلة (E) هو حلين لأن عدد نقط تقاطع (C_f) مع محور الأفاصيل هو نقطتين (1)

$$[2,2;2,3]$$
 متصلة على المجال g

$$\begin{cases} g(2,2) = -0.02 \\ g(2,3) = 0.12 \end{cases} \Rightarrow g(2,2) \times g(2,3) < 0 \quad \checkmark$$

2,2<lpha<2,3 : بحيث lpha بحيث : المعادلة (E) أقبل حلا lpha بحيث

: $x \in D_f$ أ- ليكن (2

$$f(x)-x = \frac{1}{x(1-\ln x)}-x$$
$$= \frac{1-x^2(1-\ln x)}{x(1-\ln x)}$$
$$= \frac{g(x)}{x(1-\ln x)}$$

$$D_f$$
 من x لکل $f(x)-x=\frac{g(x)}{x(1-\ln x)}$: إذن

$$f(x) = x \iff f(x) - x = 0$$
$$\Leftrightarrow g(x) = 0$$
$$\Leftrightarrow x = 1 - k = \alpha$$

lpha أ أ يقطع $(C_{_f})$ في النقطتين اللتين أفصو لاهما ا

ج-
$$[1,lpha]$$
 على المجال \checkmark

$$[1,lpha]$$
 لكل $g\left(x
ight) \leq 0$ لكل من المجال الدينا $\left(C_{g}
ight)$ لكل يوجد تحت محور الأفاصيل

x	1		α
g(x)	0	_	0
x(1-ln(x))		+	
f(x)— x	0	_	0

$$\int_{1}^{\sqrt{e}} \frac{1}{x(1-\ln x)} dx = \int_{1}^{\sqrt{e}} \frac{\frac{1}{x}}{1-\ln x} dx$$
$$= -\int_{1}^{\sqrt{e}} \frac{(1-\ln x)'}{1-\ln x} dx$$
$$= -\left[\ln\left|1-\ln(x)\right|\right]_{1}^{\sqrt{e}}$$
$$= -\left(\ln\left(\frac{1}{2}\right) - 0\right)$$
$$= \ln 2$$

ب-

$$A = \int_{1}^{\sqrt{e}} \left| f\left(x\right) - x \left| dx \right| \left| \vec{i} \right| \right| \times \left| \vec{j} \right|$$

$$= \int_{1}^{\sqrt{e}} \left(x - f\left(x\right) \right) dx \times 2cm \times 2cm$$

$$= \int_{1}^{\sqrt{e}} \frac{-g\left(x\right)}{x\left(1 - \ln x\right)} dx \times 4cm^{2}$$

$$= \int_{1}^{\sqrt{e}} \frac{x^{2}\left(1 - \ln x\right) - 1}{x\left(1 - \ln x\right)} dx \times 4cm^{2}$$

$$= \int_{1}^{\sqrt{e}} \left(x - \frac{1}{x\left(1 - \ln x\right)} dx \right) \times 4cm^{2}$$

$$= \left(\int_{1}^{\sqrt{e}} x dx - \int_{1}^{\sqrt{e}} \frac{1}{x\left(1 - \ln x\right)} dx \right) \times 4cm^{2}$$

$$= \left(\left[\frac{x^{2}}{2} \right]_{1}^{\sqrt{e}} - \ln 2 \right) \times 4cm^{2}$$

$$= \left(\frac{e - 1}{2} - \ln 2 \right) \times 4cm^{2}$$

$$= \left(2e - 2 - 4\ln 2 \right) cm^{2}$$

يا الحديد (1
$$n=0$$
) الحديث $1 \le u_0 \le \alpha$) الحديث $1 \le u_0 \le \alpha$

$$n \in \mathbb{N}$$
 ليكن \checkmark

$$1 \le u_n \le \alpha$$
: نفترض أن

$$1 \le u_{n+1} \le \alpha$$
 : و نبين أن

$$1 \le u_n \le \alpha$$
 لدينا حسب الإفتراض

$$[1,lpha]$$
 و لدينا الدالة f تزايدية على المجال

$$f(1) \le f(u_n) \le f(\alpha)$$
 : إذن

$$1 \le u_{n+1} \le \alpha$$
 : و منه

$$N$$
 نستنتج أن $1 \le u_n \le \alpha$: نستنتج أن \checkmark

$$[1,lpha]$$
 من x لكل $f(x)-x\leq 0$: البينا ج- لدينا (2 (۱۱) كل

$$\mathbb{N}$$
 من n ککل $1 \le u_n \le \alpha$ و بما أن

$$N$$
 من n لکل $f\left(u_{n}\right)-u_{n}\leq0$: فإن

$$N$$
 من $u_{n+1} - u_n \le 0$ اذن :

و بالتالي المتتالية
$$(u_n)$$
 تناقصية

(3

بما أن
$$(u_n)$$
 تناقصية و مصغورة فإن (u_n) متقاربة \checkmark

$$\begin{cases} u_0 = 2 \in [1, \alpha] \\ u_{n+1} = f(u_n) \end{cases}$$
: Light \checkmark

$$[1,lpha]$$
 الدالة f متصلة على المجال •

$$f([1,\alpha]) = [f(1),f(\alpha)] = [1,\alpha]$$

متقاربة
$$(u_n)$$
 •

$$f(x) = x$$
 إذن نهاية المتتالية (u_n) هي حل المعادلة

$$f(x) = x \Leftrightarrow x = 1$$
لدينا : α

$$N$$
 من $u_n \leq u_0$ كال $u_n \leq u_0$ تناقصية فإن $u_n \leq u_0$

$$\mathbb{N}$$
 من n لكل $u_n \leq 2$

$$N$$
 و منه n کل $\lim_{n\to +\infty} u_n \leq 2$ و منه

$$\lim_{n\to+\infty}u_n=1$$
 : و بالتالي