M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at $M\overline{a}$ noa Chapter 4

Section 4.4: Laurent Series

Open and closed Annular Regions

Let $0 \le R_1 < R_2 \le \infty$ and $z_0 \in \mathbb{C}$.

 \bigcirc The open annular region is the set

$$A_{R_1,R_2}(z_0) := \{z \, : \, R_1 < |z-z_0| < R_2\}.$$

2 The closed annular region is the set

$$\overline{A}_{R_1,R_2}(z_0) := \{z : R_1 \le |z - z_0| \le R_2\}.$$

(a) Open Annular Region

(b) Closed Annular Region

Theorem 4.4.1

Suppose that f is analytic on the annular region $A_{R_1,R_2}(z_0)$ with $0 \le R_1 < R_2 \le \infty$. Then f has a unique **Laurent series representation**:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{a_{-n}}{(z - z_0)^n}, \quad R_1 < |z - z_0| < R_2$$

where

- 1 the series converges absolutely $\forall z \in A_{R_1,R_2}(z_0)$.
- ② the series converges uniformly on every $\overline{A}_{\rho_1,\rho_2}(z_0)$ for $R_1 < \rho_1 < \rho_2 < R_2$
- (3) the **Laurent coefficients** a_n , $n \in \mathbb{Z}$, are given by the following formula:

$$a_n = \frac{1}{2\pi i} \int_{C_R(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw$$

where $R_1 < R < R_2$.

Let $R_1 < \rho_1 < \rho_2 < R_2$ and a $z \in \mathbb{C}$ such that $\rho_1 \leq |z - z_0| \leq \rho_2$. We will show that the Laurent series converges absolutely and uniformly on $A_{\rho_1,\rho_2}(z_0)$ using the *M*-test.

Let r_1 , r_2 be chosen so that $R_1 < r_1 < \rho_1 < \rho_2 < r_2 < R_2$.

Let $\rho > 0$ such that $B_{\rho}(\overline{z}) \subset A_{\rho_1,\rho_2}(z_0)$.

The function $w \mapsto \frac{f(w)}{w-z}$ is analytic on the region $A_{r_1,r_2}(z_0) \setminus \overline{B_{\rho}(z)}$. Then, according to Cauchy's Formula, we get

$$\frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{w-z} dw = \frac{1}{2\pi i} \int_{C_{\rho}(z)} \frac{f(w)}{w-z} dw + \frac{1}{2\pi i} \int_{C_{r_1}(z_0)} \frac{f(w)}{w-z} dw.$$

Because f is analytic on $B_o(z)$, the path integral on $C_o(z)$ is equal to f(z), so that

$$\frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{w-z} dw = f(z) + \frac{1}{2\pi i} \int_{C_{r_1}(z_0)} \frac{f(w)}{w-z} dw$$

so that

$$f(z) = \frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{w - z} dw - \frac{1}{2\pi i} \int_{C_{r_1}(z_0)} \frac{f(w)}{w - z} dw.$$

Notice that for $w \in C_{r_2}(z_0)$ and $\rho_1 \le |z - z_0| \le \rho_2$, we have

$$\frac{|z-z_0|}{|w-z_0|} \le \frac{\rho_2}{r_2} < 1$$

and

$$\frac{1}{w-z} = \frac{1}{w-z_0 - (z-z_0)} = \frac{\frac{1}{w-z_0}}{1 - \frac{z-z_0}{w-z_0}} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$

The series converges uniformly for $w \in C_{r_2}(z_0)$ by the M-test because

$$\frac{|z-z_0|^n}{|w-z_0|^{n+1}} \le \frac{1}{r_2} \left(\frac{\rho_2}{r_2}\right)^n.$$

Therefore, we get

$$\frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{w-z} dw = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{(w-z_0)^{n+1}} \right) (z-z_0)^n.$$

Notice also that, for $w \in C_{r_1}(z_0)$ and $\rho_1 \le |z - z_0| \le \rho_2$, we have

$$\frac{|w-z_0|}{|z-z_0|} \le \frac{r_1}{\rho_1} < 1$$

and

$$\frac{1}{w-z} = \frac{1}{w-z_0 - (z-z_0)} = -\frac{\frac{1}{z-z_0}}{1 - \frac{w-z_0}{z-z_0}} = -\sum_{n=0}^{\infty} \frac{(w-z_0)^n}{(z-z_0)^{n+1}}.$$

Again, the series converges uniformly for $w \in C_{r_1}(z_0)$ by the M-test:

$$\frac{|w-z_0|^n}{|z-z_0|^{n+1}} \le \frac{1}{r_1} \left(\frac{r_1}{\rho_1}\right)^n.$$

Therefore, we get

$$\frac{1}{2\pi i} \int_{C_n(z_0)} \frac{f(w)}{w-z} dw = -\sum_{n=0}^{\infty} \Big(\frac{1}{2\pi i} \int_{C_n(z_0)} \frac{f(w)}{(w-z_0)^{-n}} \Big) (z-z_0)^{-n-1}.$$

Therefore, for $\rho_1 \leq |z - z_0| \leq \rho_2$, we get

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C_{r_2}(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} \right) (z - z_0)^n$$

$$+ \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{C_{r_1}(z_0)} \frac{f(w)}{(w - z_0)^{-n}} \right) (z - z_0)^{-n-1}$$

Now, we may choose $R_1 < R < R_2$ and using Cauchy's Theorem, we get

$$a_n := \int_{C_{r_2}(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw = \int_{C_R(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw \quad (n \ge 0)$$

and

$$a_{-m} := \int_{C_{R}(z_{0})} \frac{f(w)}{(w-z_{0})^{-m+1}} dw = \int_{C_{R}(z_{0})} \frac{f(w)}{(w-z_{0})^{-m+1}} dw \quad (m \ge 1).$$

Consequences: If f is analytic on $B_{R_2}(z_0)$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

where

- 1 the series converges absolutely for any $z \in B_{R_2}(z_0)$.
- ② the series converges uniformly on $\overline{B_{\rho_2}}(z_0)$ for any $\rho_2 < R_2$.
- (3) the coefficient a_n , for $n \ge 0$, can be written as

$$a_n = \frac{1}{2\pi i} \int_{C_R(z_0)} \frac{f(w)}{(w - z_0)^{n+1}} dw = \frac{f^{(n)}(z_0)}{n!}$$

where $0 < R < R_2$.

Exponential Function. Recall that

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C}.$$

- ① We have $\frac{|z|^n}{n!} \leq \frac{R^n}{n!}$, for any $|z| \leq R$.
- ② By Weierstrass *M*-test, the series converges uniformly on any closed disk.
- ③ We define the **radius of convergence** of the power series as the largest radius R on which the power series converges. In the case above, $R = \infty$.

Geometric Series as a Function. Recall that

$$\frac{1}{1-z}=\sum_{n=0}^{\infty}z^n,\quad z\in B_1(0).$$

- ① We have $|z|^n \le R^n$, for any $|z| \le R < 1$.
- ② By Weierstrass *M*-test, the series converges uniformly on any closed disk.
- ③ In the case above, R = 1.

Logarithmic Function. Recall that uniformly in $z \in \overline{B_R}(0)$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad \Rightarrow \quad \int_{[0,z]} \frac{1}{1-w} dw = \sum_{n=0}^{\infty} \int_{[0,z]} w^n dw$$
$$\Rightarrow \quad -\log(1-z) = \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}$$

Hence,

$$Log(1-z) = -\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1} \quad (|z| < 1).$$

- ① We have $\frac{|z|^{n+1}}{n+1} \le R^n$, for any $|z| \le R < 1$.
- ② By Weierstrass *M*-test, the series converges uniformly on any closed disk.
- ③ In the case above, R = 1.

Example. Consider

$$f(z) = \frac{3}{(1+z)(2-z)}$$

and $z_0 = 0$.

① The function is analytic on $\mathbb{C}\setminus\{-1,2\}$. So there are three regions to analyze: $B_1(0)$, $A_{1,2}(0)$, and $A_{1,\infty}(0)$.

(2) We will use partial fraction decomposition:

$$f(z) = \frac{1}{1+z} + \frac{1}{2-z}.$$

In the unit disk. We have

$$\frac{1}{1+z} = \frac{1}{1-(-z)} = \sum_{n=0}^{\infty} (-1)^n z^n$$

and

$$\frac{1}{2-z} = -\frac{1}{2} \frac{1}{1-\frac{z}{2}} = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} = \sum_{n=0}^{\infty} \left(-\frac{z^n}{2^{n+1}} \right).$$

Therefore

$$f(z) = \sum_{n=0}^{\infty} \left((-1)^n - \frac{1}{2^{n+1}} \right) z^n.$$

This is actually a power series centered at $z_0 = 0$. We have

- $a_n = (-1)^n \frac{1}{2^{n+1}}$ for $n \ge 0$.
- $a_n = 0$ for n < 0.

In the second annular region. Since |z| > 1, we now have

$$\frac{1}{1-z} = -\frac{1}{z} \left(\frac{1}{1-1/z} \right) = \sum_{n=0}^{\infty} \left(-\frac{1}{z^{n+1}} \right).$$

Since |z| < 2, we have

$$\frac{1}{2-z} = \sum_{n=0}^{\infty} \left(-\frac{z^n}{2^{n+1}}\right).$$

Therefore,

$$f(z) = \sum_{n=0}^{\infty} \left(-\frac{z^n}{2^{n+1}} \right) + \sum_{n=0}^{\infty} \left(-\frac{1}{z^{n+1}} \right).$$

This is the Laurent series representation of f in $A_{1,2}(0)$. We have

- $a_n = -\frac{1}{2^{n+1}}$ for $n \ge 0$.
- $a_n = -1$ for n < 0.

In the third annular region. Since |z| > 2, we have

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} \left(-\frac{1}{z^{n+1}} \right)$$

and

$$\frac{1}{2-z} = -\frac{1}{z} \left(\frac{1}{1-2/z} \right) = -\frac{1}{z} \sum_{n=0}^{\infty} \frac{2^n}{z^n} = \sum_{n=0}^{\infty} \left(-\frac{2^n}{z^{n+1}} \right).$$

Therefore,

$$f(z) = \sum_{n=0}^{\infty} (-1 - 2^n) \frac{1}{z^{n+1}}.$$

This is the Laurent series representation of f in $A_{2,\infty}(0)$. We have

$$a_n = 0$$
 for any $n \ge 0$.

$$a_n = -1 - 2^{-n}$$
 for any $n < 0$.