

École Polytechnique

Influence Maximization via Representation Learning

George Panagopoulos¹, Fragkiskos Malliaros², Michalis Vazirgiannis¹

¹LIX, École Polytechnique, France, ²CentraleSupélec and Inria Saclay

Introduction to the Problem

Typical Influence Maximization:

- Relies on diffusion simulation models.
- Influence probabilities are set at random.
- Faces scalability issues.
- Estimated influence spread can wildly diverge from realistic spread [1].

Influence Learning Models:

- Assume influence independence, overlooking the effects of network assortativity [2].
- Ignore higher order influence between nodes.
- Are based on propagation network which has high computational cost [3].

Contribution:

- Analysis of influencer activity for efficient node-context creation.
- Multi-task neural network architecture to compute influencer embeddings.
- 3 An algorithm to perform influence maximization using the learnt representations.

II. Learning INFluencer vECTORs (INFECTOR)

Embed at the same hidden layer a node's:

- likelihood to influence another node.
- aptitude to create lengthy cascades.

S is updated alternately by both inputs.

- S and T form the diffusion probabilities between two nodes.
- |S| captures the nodes' cascade size.

Table: The layers of INFECTOR

I. Influence Analysis on Sina Weibo

Influencers create or copy more?

- Rank initiators in the test set based on success metrics.
- Successful influencers are more prone to start than participate in train cascades → Derive only the context of the cascade initiator.

Does copying time play a role?

- Average copying time in train cascades for every level of DNI in the test set.
- Influencers tend to initiate fast cascades. → Sample context based on the inverse of copying time.

*11 months of retweet cascades as "train", 1 month as "test".

III. Influence Maximization with INFECTOR

1. Predict diffusion probabilities:

$$D = \begin{bmatrix} \varphi_t \Big((ST)_{[1,1:N]} \Big) \\ \vdots \\ \varphi_t \Big((ST)_{[I,1:N]} \Big) \end{bmatrix},$$

2. Reduce the number of candidate seeds by keeping the top P% based on their expected influence spread.

$$\Lambda_{u} = \left\lceil N rac{||\mathcal{S}_{u}||_{2}}{\sum_{u' \in \mathcal{I}} ||\mathcal{S}_{u'}||_{2}}
ight
ceil$$

3. IM by weighted bipartite matching.

4. Influence spread is the seed's edge weight because there are no higher order paths.

$$\sigma'(s) = \sum_{j}^{\Lambda_s} \hat{D}_{s,j},$$

5. Optimize $\sigma'(S)$ in greedy manner and remove the node added in each iteration¹. $\sigma'(S)$ is submodular \to retains theoretical guarantees.

* Diffusion probabilities capture higher order correlations that other IM techniques fail to.

IV. Results

Methods

- Top nodes based on k-cores decomposition.
- Top nodes based on the average size of their train cascades.
- IMM: SOTA classic influence maximization algorithm [3].
- IMINFECTOR with 5 epochs, 0.1 learning rate, P=40 for Digg and 10 for the rest [4].

Evaluation

- Precision: How many of the predicted seeds initiate test cascades.
- DNI: Total number of nodes influenced by the predicted seeds in the test cascades.

Data

- Static Directed Network + Diffusion cascades.
- 80-20% train and test split on cascades based on time precedence.

	Sina Weibo	Digg	MAG
Nodes	1,170,689	279,631	1,436,158
Edges	225,877,808	2,251,166	20,456,480
Cascades	115,686	3,553	181,020
Avg Cascade size	847	148	29

Table: Summary of the datasets used.

IV. Conclusion & Future Work

Conclusion

- Diffusion cascades should be taken into account for realistic influence maximization.
- Representation learning can be used to bridge influence learning and maximization.

Future Work

- Use complementary representations derived from Graph Neural Networks.
- Combine learnt representations from diffusion logs with online influence maximization.
- Compare with diffusion-based techniques and more metrics from network science.

Code and Instructions: https://github.com/GiorgosPanagopoulos/IMINFECTOR

IV. References

- [1] Aral, Sinan, and Paramveer S. Dhillon. "Social influence maximization under empirical influence models." Nature human behaviour 2.6 (2018): 375.
- [2] Aral, Sinan, and Dylan Walker. "Identifying influential and susceptible members of social networks." Science 337.6092 (2012): 337-341.
 [3] Feng. Shanshan, et al. "Inf2vec: Latent Representation Model for Social
- [3] Feng, Shanshan, et al. "Inf2vec: Latent Representation Model for Social Influence Embedding." ICDE, 2018.
- [4] Tang, Youze, Yanchen Shi, and Xiaokui Xiao. "Influence maximization in near-linear time: A martingale approach." SIGMOD, 2015.
- [5] Panagopoulos, George, Michalis Vazirgiannis, and Fragkiskos D. Malliaros. "Influence Maximization via Representation Learning." arXiv preprint arXiv:1904.08804 (2019)