Decision strategy

• Adopting the maximum likelihood criterion, we can partition the signal space in zone of decisions, where zone $Z^{(l)}$ is the set of points that are closer to the symbol $a^{(l)}$ than to any other symbol

$$Z^{(i)} = \{x | d(x, a^{(i)}) < d(x, a^{(j)}), j \neq i, j = 1, ..., M\}$$

The decision threshold are in the midpoints of the segment connecting any two adjacent symbols. For example, for M=4 the thresholds are in -2,0 and 2.

PAM error probability

- Even if the maximum likelihood decision strategy is optimal, the receiver still make errors due to the presence of noise.
- · The error probability is averaged over all the symbol of the constellation

$$P_{e} = \lim_{N^{(s)} \to \infty} \frac{N_{e}^{(s)}}{N^{(s)}} = \frac{1}{M} \sum_{i=0}^{M-1} P(e|a^{(i)})$$

where $N_e^{(s)}$ is the number of symbol errors and $N^{(s)}$ is the number of transmitted symbols.

• The probability of error $P(e|a^{(i)})$ is the probability that, having transmitted $a^{(i)}$, the decision variable x(m) does not fall in the decision region $Z^{(i)}$.

PAM error probability

• To compute $P(e|a^{(i)})$ we assume that the transmitted symbol is $a_m=a^{(i)}$, so that it is $x(m)=a^{(i)}+n(m)$ and the probability of error is $P(e|a^{(i)})=Pr\{x(m)\notin Z^{(i)}|a_m=a^{(i)}\}$

x(m) <0

PAM error probability

$$n(m) \in \mathcal{N}(1, 6^2)$$

$$\mathcal{H}(m) = 1 + n(m)$$

PAM error probability: Q-function

• The Q-function computes the integral of the tail of a Gaussian distribution.

_) n (m)

• The probability that $x \in \mathcal{N}(m, \sigma^2)$ is smaller than t_1 or larger than t_2 are

- ullet In our case, m is the symbol $a^{(i)}$ and t_1 or t_2 are the detection thresholds.
- The main properties of the Q-function are $Q(-\infty) = 1, Q(\infty) = 0, Q(0) = 0.5, Q(-x) = 1 - Q(x).$

PAM error probability

2-PAM

$$P_e^{(2-PAM)} = \frac{1}{2} \left(Q\left(\frac{d(-1,0)}{\sigma}\right) + Q\left(\frac{d(1,0)}{\sigma}\right) \right) = Q\left(\frac{1}{\sigma}\right)$$

$$\begin{split} P_e^{(4-PAM)} &= \frac{1}{4} \left(Q\left(\frac{d(-3,-2)}{\sigma}\right) + Q\left(\frac{d(-1,-2)}{\sigma}\right) + Q\left(\frac{d(-1,0)}{\sigma}\right) \right. \\ & Q\left(\frac{d(1,0)}{\sigma}\right) + Q\left(\frac{d(1,2)}{\sigma}\right) + Q\left(\frac{d(3,2)}{\sigma}\right) \right) = \frac{3}{2} Q\left(\frac{1}{\sigma}\right) \end{split}$$

2-PAM

Mela=1)

PAM symbol error probability

• It is often useful to express the P_e in terms of E_s/N_0 .

• 2-PAM:
$$E_S = \frac{2^2 - 1}{6} = \frac{1}{2} \Rightarrow 2E_S = 1$$
 and $\sigma^2 = N_0$, and $\frac{1}{\sigma} = \sqrt{\frac{1}{\sigma^2}} = \sqrt{\frac{2E_S}{N_0}}$.

$$P_e^{(2-PAM)} = Q\left(\sqrt{\frac{2E_s}{N_0}}\right)$$

• 4-PAM:
$$E_S = \frac{4^2-1}{6} = \frac{5}{2} \Longrightarrow \frac{2}{5} E_S = 1$$
, and $\frac{1}{\sigma} = \sqrt{\frac{1}{\sigma^2}} = \sqrt{\frac{2E_S}{5N_0}}$.
$$P_e^{(4-PAM)} = \frac{3}{2} Q \left(\sqrt{\frac{2E_S}{5N_0}} \right)$$

PAM bit error probability

- To have a fair comparison, the modulation performance are expressed in terms of bit error probability $P_e^{(b)}$ as function of E_b/N_0 .
 The energy E_b per bit is computed as the energy per symbol divided by the number of bits per symbol

$$E_b = \frac{E_s}{\log_2 M}$$

- Although one symbol carries log₂ M bits, it is reasonable to assume that in a well-designed system (Gray mapping and medium-high SNR) a symbol error causes only one-bit errors.

• If
$$N^{(b)}$$
 and $N^{(b)}_e$ are the number of transmitted bits and the number of bit errors, the bit error probability is computed as
$$P^{(b)}_e = \lim_{N^{(b)} \to \infty} \frac{N^{(b)}_e}{N^{(b)}} \approx \lim_{N^{(s)} \to \infty} \frac{N^{(s)}_e}{\log_2 M} \frac{1}{N^{(s)}} = \frac{1}{\log_2 M} \lim_{N^{(s)} \to \infty} \frac{N^{(s)}_e}{N^{(s)}} = \frac{1}{\log_2 M} P_e.$$

With gray encoding, odracent PAM symbols map sequence of lots that are different of only one position For example a possible Glady

that are different of louly one position for example a possible apoly encoding strategy for a 4-PAM is

00 01 11 10

PAM bit error probability

• 2-PAM:
$$M=2$$
, $m=1$ bit per symbol $\Rightarrow P_e^{(b)}=P_e$, $E_b=E_s$
$$P_e^{(2-PAM),b}=Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

• 4-PAM:
$$M = 4$$
, $m = 2$ bit per symbol $\Rightarrow P_e^{(b)} = \frac{1}{2}P_e$, $E_b = \frac{1}{2}E_s$
$$P_e^{(4-PAM),b} = \frac{3}{4}Q\left(\sqrt{\frac{4E_b}{5N_0}}\right)$$

$$P_{e}^{Z-PAH,b} = \mathcal{R}\left(\underbrace{V_{2}E_{b}}_{N_{0}}\right)$$

$$P_{e}^{A-PAH,b} = \mathcal{R}\left(\underbrace{V_{3}E_{b}}_{N_{0}}\right)$$

$$\mathcal{R}\left(\underbrace{V_{3}E_{b}}_{N_{0}}\right)$$

$$V_{3} \cdot \mathcal{R}\left(\underbrace{V_{3}E_{b}}_{N_{0}}\right)$$

2 <u>Fb</u> <u>4. Eb => gradogro > 2x (3dB)</u>

Digital communications Quadrature modulations (QAM)

Quadrature modulations

• In analog modulations, QAM is obtained by transmitting two orthogonal DSB signals $m_I(t), m_Q(t)$ and the complex envelope is

$$\tilde{s}_{QAM}(t) = m_I(t) + jm_Q(t)$$

- Quadrature PAM is obtained exactly in the same manner by transmitting two PAM signals in quadrature $m_I(t) = \sum_i a_i g_T(t-iT)$ and $m_Q(t) = \sum_i b_i g_T(t-iT)$, with $\underline{a_i}$, b_i PAM symbols.
- The QAM signal is

$$s_{QAM}(t) = \sum_{i} (\underline{a_i + jb_i}) g_T(t - iT) = \sum_{i} c_i g_T(t - iT)$$

and the QAM complex symbols take the form $c_i = a_i + jb_i$.

