Global Exercise - 15 - extra

Tuan Vo

04th February 2022

1 How the convexity property of f(u) guarantees both $C_{j+1/2} \ge 0$ and $D_{j-1/2} \ge 0$ at the same time

(Continued from Example 10 · GE15 · 02nd February 2022)

In order to show the scheme has TVD property, according to Theorem II.23 (*Harten* [1980]) from the lecture note, the following three conditions

$$C_{j+1/2} \ge 0,$$

$$D_{j-1/2} \ge 0,$$

$$C_{j+1/2} + D_{j-1/2} \le 1,$$

must hold. Herein, the first two conditions $C_{j+1/2} \ge 0$, $D_{j-1/2} \ge 0$ can be shown by using convexity of flux function f. We now examine $C_{j+1/2}$. The analysis is as follows

1. Case 1: According to Fig. 1 and Fig. 2, if $(f'(u_L) \ge 0 \land f'(u_R) \ge 0) \lor (f'(u_L) \ge 0 \ge f'(u_R) \land [f]/[u] > 0)$ then

$$C_{j+1/2} = 0 \quad \checkmark$$

which satisfies $C_{j+1/2} \ge 0$.

2. Case 2.1: According to Fig. 3, if $f'(u_L) \leq 0 \wedge f'(u_R) \leq 0$ (*) then

$$C_{j+1/2} = -\lambda \frac{f(u_R) - f(u_L)}{u_R - u_L} = -\lambda \alpha.$$

- f(u) convex with (\star) leads to f(u) decreasing at both u_L and u_R
 - \rightarrow If $u_L > u_R$ then $\alpha < 0$. Hence, $C_{j+1/2} > 0$ \checkmark
 - \rightarrow If $u_L < u_R$ then $\alpha < 0$. Hence, $C_{j+1/2} > 0$
- f(u) concave with (\star) leads to f(u) decreasing at both u_L and u_R
 - \rightarrow If $u_L > u_R$ then $\alpha < 0$. Hence, $C_{j+1/2} > 0$ \checkmark
 - \rightarrow If $u_L < u_R$ then $\alpha < 0$. Hence, $C_{j+1/2} > 0$ \checkmark
- 3. Case 2.2: According to Fig. 4, if $(f'(u_L) \ge 0 \ge f'(u_R)) \land ([f]/[u] < 0)$ (**) then

$$C_{j+1/2} = -\lambda \frac{f(u_R) - f(u_L)}{u_R - u_L} = -\lambda \alpha.$$

Figure 1: Case 1.1: Convexity and concavity for $u_L < u_R$ and $u_L > u_R$, where the condition $f'(u_L) \ge 0 \land f'(u_R) \ge 0$ holds.

- f(u) convex with the first condition in $(\star\star)$ leads to f(u) decreasing at u_R and increasing at u_L . Hence, it must be $u_L > u_R$, which implies a shock. Besides, the second condition [f]/[u] < 0 implies also an existence of shock, which is moving to the left in this case.
 - \rightarrow If $u_L > u_R$ and $f(u_L) > f(u_R)$ then $\alpha > 0$. Hence, $C_{j+1/2} < 0 \notin M$ If $u_L > u_R$ and $f(u_L) < f(u_R)$ then $\alpha < 0$. Hence, $C_{j+1/2} > 0$

Therefore, the convexity of f(u) gives us the possibility of $C_{j+1/2} > 0$.

- f(u) concave with the first condition in $(\star\star)$ leads to f(u) decreasing at u_R and increasing at u_L . Hence, it must be $u_L < u_R$, which does not imply a shock, but rather a rarefaction solution. Besides, the second condition [f]/[u] < 0 implies an existence of shock, which is moving to the left in this case. This is a **contradiction** for the case of f(u) concave. Therefore, the concavity of f(u) does not lead us to the possibility of $C_{j+1/2} > 0$.
- 4. Case 3: According to Fig. 5, if $f'(u_L) < 0 < f'(u_R) \ (\star \star \star)$ then

$$C_{j+1/2} = -\lambda \frac{f(u_s) - f(u_L)}{u_R - u_L} = -\lambda \alpha.$$

Figure 2: Case 1.2: Convexity and concavity for $u_L < u_R$ and $u_L > u_R$, where the condition $f'(u_L) \ge 0 \ge f'(u_R) \wedge [f]/[u] > 0$ holds.

- f(u) convex with the condition $(\star \star \star)$ leads to f(u) decreasing at u_L and increasing at u_R . Hence, it must be $u_R > u_L$, which also implies a rarefaction. Therefore, we obtain $u_s \in [u_L, u_R]$ which leads to $f(u_s) < f(u_{R,L})$. As a consequence, $\alpha < 0$. Finally, the convexity of f(u) do lead us to the possibility of $C_{j+1/2} > 0$.
- f(u) concave with the condition $(\star \star \star)$ leads to f(u) decreasing at u_L and increasing at u_R . Hence, it must be $u_R < u_L$, which also implies a shock. Therefore, we obtain $u_s \in [u_R, u_l]$ which leads to $f(u_s) > f(u_{R,L})$. As a consequence, $\alpha < 0$. Finally, the convexity of f(u) do lead us also to the possibility of $C_{j+1/2} > 0$.

Therefore, by combining case 1, case 2.1, case 2.2, and case 3 altogether, we recognize that only the convexity of f does lead us to the possibility of $C_{j+1/2} > 0$, while the concavity of f has failed at case 2.2

In case of $D_{j-1/2}$ the argument will be proceeded the same as for case $C_{j+1/2}$, meaning that the convexity of f does lead us to the possibility of $D_{j-1/2} > 0$, while the concavity is not so.

Figure 3: Case 2.1: Convexity and concavity for $u_L < u_R$ and $u_L > u_R$, where the condition $f'(u_L) \le 0 \land f'(u_R) \le 0$ holds.

Figure 4: Case 2.2: Convexity and concavity for $u_L < u_R$ and $u_L > u_R$, where the condition $f'(u_L) \ge 0 \ge f'(u_R) \wedge [f]/[u] < 0$ holds.

Convex: $u_L < u_R$

Concave: $u_L > u_R$

Figure 5: Case 3: Convexity and concavity for $u_L < u_R$ and $u_L > u_R$, where the condition $f'(u_L) < 0 < f'(u_R)$ holds.