Def: Pour a EZ, on pose pgcd (a, 0) = |a| ppcm (a, 0) = 0 Théorème de Bezont: Soient a, b e Z. Alors il existe u, v e Z tq ua + vb = pgcd(a,6) Rque: L'algarithme d'Euclide étendu (voire la démanstration) permet de calculer efficacement un couple (u,v) E Z² tq ua + ab = pgc b(a,b) Demanstration: - Onite à remplacer u par -u et/ou o par -u, on peut supposer a, b > 0. - Auitte à échanger a et b, on peut supposer que a > b- Ecuivans la division euclidienne Si 1=0, alors b divise a of on a Pgcol (a, b) = b = 0.a + 1.b

Ce peoclessus doit s'arrêter à 2/k = 0 pour un steictement déceaussante d'entiers > 0. Exemple 21: Cansidérans a=21 et b=15 Calculans: pged (21, 15) par l'algo Euclidienne: 21 = 1.15 +6 (1) Le dernier reste son rulle est 3 Danc pgcd(21,15) = 3 Cherebans voe EZ tg u. 21+0.15=3 5 = 15 - 2.6(i) 15 - 2 x (21 - 1.15) = (-2) 21 + 3.15

Prop22: Soiend a, b E Z Alars a et b sant plemiers entre eux si et seulement si il existe u, v E Z tg ua + v.b = 1 Demanstration: "=>" &i a et b sant premiers entre eux, an a paçod (a, b) = 1. Danc ; l existe u, v E Z pou le Phéareme de Bézoct " (= ") of = pgcd (a,b) divise a et b. Mais day Il divise auxi ua + vb = 1Pane d = 1 et pgcd(a, 5) = 1L! Ce peop n'est pas vlaie si na +06=d paur un d>1! Lemme 23: Sairent a, b E 2 et sait c un diviseur Commun de a et 6. Alors C divise pagd (a,5)! Rque: Par def de pged (a, b), an on 1c) < pgcd(a, b) d'affirmation du leure est plus forte!

Demonstration	da Lemme:	Par le	Méarine de Bézont,
il existe	$u, v \in \mathbb{Z}$	ty ua +	vb = pgcd(a,b) re aussi
Si c di	vise a et	b, il divi	e aussi
UG	8 + 0-10 =	pgcd (a,s)
Lemme 24	: Soiemb a,	b, c € Z.	Alars
pgcd (c	2a,cb) = (c)	· pgcd(a,b)	
Jémansteati av	: Exercice	! /	
Lemme	de Gans (=	Lamere 25)	: Soient a, b EZ
et C E #	un devisent	du produit	as. Seef
premier avec	a, alars c	divise b	
Demanteati an	: On suppa	se pacd(a,	(c)=1
Alors pe	e Le Théaren	ro de Béza	ut et existe
u	$, v \in \mathbb{Z}$	to ue +1	c = 1
	des deux c		
	2b + vcb		1 00 - 1
C divise		Churse Ma	S. Clavreinert
	divise uab	1 ocb = E	S. V

			a, b e2 et
alors p di	vise a ou p	. Si p divisi divise b (re le produit ab, rer les 2!)
Dem: Suppa	vaus que p n	e divise pas	a. Il faut wonther
que p di	ivise b. Com est premier c	rule p est pre	miers et ne divise le leume de Gaus
	Soient a, 6		es an a
pgcd (o	a, b) ppcm(a, l	s) = lab/	entre oux, an a
ppc	$m(a_1b) = ab $		
de a et	6		innlfiple commun
	$a' = \frac{a}{d}$ et b' sout p		0.15
Commer v	n est multiple	commun de	a et b, il existe
	et n = 66	. O a = a'0	1 of b=b)

Jone m = Ka = Ka'd n = lb = lb'dEn divisant par d, an teaure que ka'= lb' Camone à et b' sont premiers entre eur, par le leune de Gauss, a' doit diviser l Dissons l= q. à pau un qE Z Danc le multiple commun n est forcément de la farme n = lb'd = qa'b'dn= lb'd = qa'b'd

pour un q & Ze. Clairement le plus petit entier

pasitif de cette forme est

| a'b'd = | ab | = | ball b)

| a'b'd = | ab | = | poper (asb) Rque: la deur montre que si un est un multiple commun de a et 6 alars un est un [multiple] de ppccon (a, 6) (et pas seulement (un) > ppcon (a,6)) 6. Réareure fandamental de l'avillurétique Théoretre fand de l'aithunétique (= Thon 30): Sait P1 = 2, P3 = 3, P3 = 5, P4, \$5, ---La liste complète des nambres promiers (distincts 2à2)

