- 3 (a) State the principle of moments.
 - (b) In a bicycle shop, two wheels hang from a horizontal uniform rod AC, as shown in Fig. 3.1.

Fig. 3.1 (not to scale)

The rod has weight 19N and is freely hinged to a wall at end A. The other end C of the rod is attached by a vertical elastic cord to the ceiling. The centre of gravity of the rod is at point B. The weight of each wheel is *W* and the tension in the cord is 22N.

(i) By taking moments about end A, show that the weight W of each wheel is 14 N.

(ii) Determine the magnitude and the direction of the force acting on the rod at end A.

[2]

(c) The unstretched length of the cord in (b) is 0.25 m. The variation with length *L* of the tension *F* in the cord is shown in Fig. 3.2.

Fig. 3.2

(i)	State and explain whether Fig. 3.2 suggests that the cord obeys Hooke's law.	

(ii) Calculate the spring constant *k* of the cord.

$$k = \dots N m^{-1}$$
 [2]

(iii) On Fig. 3.2, shade the area that represents the work done to extend the cord when the tension is increased from F = 0 to F = 40 N. [1]

[Total: 11]