Intro to Electronics

Conventional Flow Notation

Electric charge moves from the positive (surplus) side of the battery to the negative (deficiency) side.

How it's notated

Electron Flow Notation

Electron charge moves from the negative (surplus) side of the battery to the positive (deficiency) side.

How it actually is

Electrons

AC/DC

Direct current for lower voltages and running circuit boards

Alternating for higher power: appliances, tube amps, etc.

Some circuits use a rectifier circuit to change AC to DC

Ohm's Law

```
V = I*R
voltage = current * resistance
voltage = volts
current = amperes (amps)
resistance = ohms
```

Voltage is the pressure from an electrical circuit's power source that pushes charged electrons (current) through a conducting loop

https://www.fluke.com/enus/learn/blog/electrical/what-is-voltage

Conductors & Insulators

Some Electronics Parts

(... are polarized, some are not)

Some Schematic Symbols

Schematics, In General

Tells you what is connected to what But how to lay out the circuit on your breadboard is up to you

Series and Parallel

Resistors: Series sums

Capacitors: Parallel sums

Otherwise, it's:

https://learn.sparkfun.com/tutorials/capacitors/capacitors-in-seriesparallel

Arduino: Digital I/O

Buttons and on/off signals

Arduino LED Wiring

Arduino Button Wiring

Analog I/O and PWM

Serial read and mapping

Pulse Width Modulation

LED (PWM) and Knob (Analog)

Best practice to connect grounds to ground rail instead of to each other

Better Wiring, Pin 13 not PWM

Create 3 pins to read middle pin

Light-dependent Resistor (Analog)