8.1 DH

특성쟁이 방변 > 그래도 <u>퇴</u>덕화 문제 - 원제 배용 회소화 / 원체 아독 회대화 > 원택 필요

옥실쟁이 방법 (Greedy method) - 각 개별 선택에 따른 계산배에 단기 7년에서 최선이 되도록 선택 6 한번 정한 이후에 변경 X

또 문제에서 최적하를 찾는 없다" > 몇 문제에서는 최적인을 보답

8.2 Prim의 회소 스페싱트리 알고류

연결 가능지 우랑 그래도 에서의 회소 스페싱트리 나 연결 되어 있지 않은 그래도에서 각 연결 성분의 회소 스페싱트리를 갖는 용제와 됨일 나 연결 시간 내에 찾아진

G= (V, E, W)

회소 스페닝 트리 정의와 메레
 (정의 8.1> 회소 스페닝 트리

무향연결 그래도 G=(U, 티의 스페닝 트리는 무향 트리로 G의 또는 정접을 도함하는 G의 부그래도.

가동지 그래도 G=(U, E, W) 에서 부그래도의 가동자는 부그라도에 숙한 가동자의 합
가동지 그래도에서 회소 스페닝 트리 (M:n:mum Sponning Tree: MST)는 가동지가 회소인 스페닝 트리

되소 스케싱 트리를 구해야 라는 상황이 많음 □ 그래프의 모든 정접을 지나는 효율적인 경로 갖기 → 라우링 방고라도 등에서 중요.

가동지 그래프는 두 개 이상의 퇴소 스페닝 트리를 가진 수 있음 (여러 개가 가능하단 소리)

· 알고라들의 개요.

연결되어 있는 무향 트리 ~ 어떤 당점이라도 루트가 될 수 있을 → 한 당점으로부터 에지 케워나가기

⇒ 표된 탐색 기법인 깊이 워선 탐색이나 너비 워선 탐색 사도 ~ 이게 되장하지 않을 (기본 탐색만으로 될 가)

자면스러운 아이디어 ~ 욕심정이 방법 ~ 탁은 단기 바용을 모두 합하면 전체 비용이 작을 가라고 생각 > 단기적으로 회서 비용 계속 선택

현재의 트리에 에지를 추가하여 캐워나가는 방법 사용 → 현재의 트리에 끝접 하나가 불어 있는 에지 등에 가능치가 회소인 에지 선택

① 트리 图: 昭阳 胜 트메 新 图

② 주변 덩틴 : 트리에는 속하지 않고, 트리에 속한 덩딘과 인접한 덩틴

③ 미확인 정정: 나머지 또 정점

알고리돔에서의 핵심 단계: 두번 정원에서 정원과 에지의 선택 는 여기서 호텔은 에지의 선택 〈알고리돔 개요〉

Prime MST (G, n)

모든 정당을 미확인으로 조기화

이게 화소 스페닝 토리를 만들 수 있을까?

인약이 정접 S른 출발 정점으로 선택 S를 트리 정점으로 본류 S에 인접한 모든 정접을 두번 정점으로 지병류 두번 정점이 존재하는 닭안

> 트리 정접 나와 두번 정점 V 사이에 최소 가동자를 가진 에지 선덱 이를 드리 정접으로 다쁘류. 에지 난이를 트리에 취가 V에 인접한 모든 비율인 당접을 두번 정점으로 붉류

• 회소 스메닝 트리 성질

회소 스패님 트리 > 어러 개 가질수 위을 → 하나를 다른 것으로 단계별로 전환이 가능

(점의 8.2) 회소 스페닝 트리 성질

연결된 가능지 그래도 G=(v, E, w)에서 T가 G의 스페닝 트리. T에 포함되지 않은 않아의에지 uv에 대해, uv를 T에 추가하면 T에 사이를 하나가 생성되고, uv가 그 사이글에서 최대 가능히 에지. 이 때 트리 T가 최소 스페닝 트리 (MST) 성공을 가된다.

무향 트리 ~ 사이를 보

1.8 阿亚

연형된 가톨리 그래트 G=(U, E, W) 에서 T, T2 또가 MST 성질을 가낸다면 T., T2의 홈 가톨라는 같다.

(정리 8.2)

면 및 가득지 그래프 G= (V, E, W)에서 트리 T가 회소 스메닝 트리인 필요 를 모던 T가 MST 성공을 갖는 것

• 선생료 편 웹 관하기

알고리등이 루프를 돌면서 두번 당당이 새로 생각되고 있고 다음에 선택한 에지의 당당이 변환수도 있은
6. 트리 당당과 두번 당당 간의 또도 에지 고려한 달라는 않음

→ 각 두번 당당에 대해서 트리로부터 들어오는 에지 등 가동자가 최소인 것만 관리하면 닭→ 흰 에지 (cand:date edge)

우선슨위 큐 ADT 이용한 알고리E

Prim MST (G, n)

원원 큐 마가 비에있도 화화 원의 臺발 정도 S 선택 그번의 흰 에다를 (-1, s, s)으로 두고 : Insert [PP, s, o) 을 호를 While (PP가 비어있지 않은 원건)

U= getm:n(pq) deletem:n(pq)
U의 확보에서로 트리에 추가
updateFr:nge(pq, G, U)

UpdateFringe(PF, G, U)

Uol 인접한 또 정도 Worl 대해서 NetWat = W (v, w)라고 두고 if (w가 미화인 정접이면)

ITU 辛姓氏 (U, W, netwot)라고 ECT.
:nsert (Pq, W, netwot)

else: f (netwot & was fringe wat old)

고전의 후보에서를 [u, w, netwotl라고 수정 dechase key (Pq, w, netwot)

(2) BG가 고려는 되지만 후보로 AG 고බ는 X

(4) AF는 서로 현 IF로 교례

일고려들의 전 자로 구도: 인데스가 정된 반한 배별 Status, fringe Wat, Parent
Status: 정점의 분류 [미확인, 두번, 트리 정로운 나타내는 상수 존재] → 너비 우선 탑색이서의 색깔과 동일
나 FIFO 큐 대신에 우선 순위 큐에 기반을 둔 탑색 → 최선 위선 탑색 (Lest-first Search)

(알고래E 8.1> Pt:m 로소 스메닝 트리

Input: 무함 가동리 그래프 G=(v,E,W), 정접의 4 n, 출발정접 S

Output: 회소 스페닝 트라를 내향 트리로 더장한 배열 Partent

Partent(v)와 V사이의 가동자를 담은 배열 ft.nge Wet

두의: 배열 Status[1], ---, Status(n)은 정점의 현재 탑색 상태를 나타낼

Void PrimMST [G, int n, int s, int L] pahent, float[] fringewgt]

int[] Status = new int Ln+17

Minpa pq = Create(n, Status, Pahent, fringewgt)

inset (Pq, s, -1, 0)

while (is Empty (Pq) == false)

int v = get Min(Pq)whelete Min(Pq)

update Fringe (Pq, G, v)

return

// 리스트 adj Info에 있는 정점으로 가는 더 나온 연결이 유는 더 알아보고 만약 그렇다면 Jechansekey 실행

기 새로운 던질 위해 정접 삽입

Void update Fringe (MinPa Pq, Edgelist adjunto, int v)

Edgelist temAdi

tem Ad; = adilnto

While (tem Ad) + Mull)

Edgelnfo wlnfo = fitst (temAdi)

int w = wlnfo.to (head)

float netwest = wlnfo.weight

if (Pq. status(w) = unseen)

insert (Pq., w, v, netwest)

else if (Pq. status(w) = frnge)

if (netwest (get Ptiotity (Pq., w))

dechease key (Pq., w, v, netwest)

hemAdi = hest (hemAdi)

return

8.3 단일 소스 최단점로

두 도시 간의 최적 경로 찾기 ~ 직항이 나온가 밝혀낸지 나온가? 두어진 두 퇴접방 S,는 사이의 최소 가중치 경로를 찾는 문제 나 취약의 경우에 S와 6로부터 도달 방란 또는 당던 사이에 최소 가증 경로를 찾는 것보다 어려울 나 이 문제가 바로 단일 소스 최단 경로 문제 (Single—Source Shortest Path Problem)

주어진 소스로 부터 다른 모든 당점까지 가들지 그래프나 무향 그래프에서 최소 가능치 경로 찾는 용제 고려 경로의 가능치 : 경로 상에 있는 에지들의 가들지 않 (가돌차가 거리일 때, 최단 경로) 라고 표현)

• 화생의 성질

본학 정복의 방법으로 풀 수 있을까? → 멀리었는 두 정된 사이의 최단 경로에서 그 보다는 가까운 거리에 있는 정된 간의 최단 경로로 이용한 수 있을까?

〈蚯蚓 8.5〉 \$12 智 始

가능히 그래프 G에서 X에서 Z까지의 회단경로가 X에서 가까지 경로 P라 Y에서 Z까지의 경로 Q로 건입되어 있으면 P는 X에서 Y까지의 회단경로이고, Q는 Y에서 Z까지 회단경로이다

· Dijkstha의 회단 智 알ः語

〈정의 8.3〉

가증치 그래프 G = (v, E, w) 에서 k개의 에지 $Xv_1, v_1v_2, \cdots, v_{k+1}y$ 로 이루어진 경로를 P라고 할때, P의 가증차는 W(P)로 나타내고, 가증치 $W(Xv_1), W(v_1v_2), \cdots, W(v_{k+1}y)$ 의 할이다. 만약 X=y 이면 이를 X에서 y까지의 공백 경로라 하고, Z 가증치는 아이다. 만약 X와 y 사이의 어떤 경로도 가증치가 W(P)보다 작지 않으면 P를 되는 경로 (shothest Path) 혹은 되소 가증치 경로 라고 부른다

화소 스페닝 트리와는 다른 ~ 최소 스페닝 트라는 트리 전체의 가증치가 최소 나 단일 소스는 S에서 일으의 반까지 최소

Diskstra 알고려운 S에서 다른 정답까지의 최단 경로 S로부터 거리가 증가하는 손으로 탐색 L 한 정된 S에서 시작하여 새로운 정답으로, 나가는 에지 선택해서 가지 뻗음 ⇒ 최단 경로 트리

Dijkstha 알고리즘 : 욕심쟁이 방식 (Sould 가장 가까운 것들 선택)

 트리 당명

 주변 당정
 으로 상류

 미호인 당정

가는 아이 얼굴에 이지 보고를 추가하면 되어 모든 나에 대하는 $d(s,v) + \omega(vz)$ 가 되소가 되는 에지 모의 한 에지 : 지금까지 만들어진 모든 나에 대하는 $d(s,v) + \omega(vz)$ 가 되소가 되는 에지

人에제〉회단湖里리 키위기

원래 그래도 조기 트리: A만 존재 J(A,A) = 0 (2) 등간단계

J(A,B) + W(B,C) = 6 J(A,A) + W(A,G) = 5 一 다음 단계에서 AG 선택 J(A,A) + W(A,F) = 9

6 A와 B와 연결된 또 당당은 두번 당당이 된 BG는 후보 에서가 아닌에 두의!

(3) 중산단체

d(A,C) + w(C,D) = 8 d(A,A) + w(A,F) = 9 $d(A,G) + w(G,I) = 7 \rightarrow C+B C+MC GI C+BI$ d(A,G) + w(G,H) = 10

(4) GI 선택

(5) PLOINEM AFE IFE IT

Dijkstha sizele silitasi Fis

diskstrasssp(G, n)

또 성당을 미확인 정점으로 초개화
정해된 소스 S로부터 트리를 시타

d(s,s) = 0 으로 정의

S에 인접한 또는 성당을 두번 성당으로 자본류
두번 성당이 존재하는 동안,

트리딩딩 t의 주변덩딩 v 수이에 d(s,t) + w(tv)가 회소인 에지 선택 V를 트리딩딩으로 재료를, 에지 tv 트리에 투가 d(s,v) = d(s,t) + w(tv) V에 인딩한 모든 미화인 닷물을 두번 덩덩으로 재료를

→ 현에지 /2에 대해 d(4,7) + W(YZ)는 밴복사용된 수 있으니 따로 저장

(원리 8.6)

 $G = (V, E, \omega)$ 가 가듯히 그래트, $V' \subseteq U$, $S \in V'$ 각 $Y \in V'$ 에 대해 J(S, Y)는 G에서 S로부터 Y까지의 최단거리라고 가정 만약 V'에 숙한 정된 Y와 U - U'에 숙한 당된 Z를 있는 모든 에지를 들에서 $J(S, Y) + \omega(YZ)$ 가 회소인 에지를 YZ라 하면 S부터 Y까지의 최단 경로에 YZ를 붙여 만든 경로는 S부터 Z까지의 최단 경로

〈周리 8.7〉

가능치가 음이 아닌 유형 가능치 그래프 G와 소스 S가 주어질 때, Dijkstra의 알고리즘은 S메서 臺발하여 S로부터 도달 가능한 또 정접까지의 회단 거리를 계산한다.

· 78

Primal 발교하는과 같이 원선위큐 ADT 사용가능

(알고라는 8.2) Dijkstra 단일 쇼 최단 경로

input: G= (V,E,W), n=IVI, S(IL)

output: 회단 경로를 내함 트리로 되당한 배열 Partent, S부터 U까지 회단경로 배열 fringe Wat

```
Void Shortest Paths (G, int n, int s, int() parent, float() fringewort)
          int ( ) status = new int(n+1)
           MinPa pq - cheate(n, status, parent, fringelyst)
            inself (Pg s, -1, 0)
            while ( isempty (P9) = false)
                   int V = 9et M:n (P91)
                   delete Min 1997)
                   update Fringe (pq, G, V)
            tetutn
       1 G(OIN)
IPLE adjinfo 에 더 나온 연결이 왔지 얼마보고 만약 고렇다면 dechasekey 설렘
           Void update Fringe (MinPa Pg., adilato, v)
                   float my Dist = pq. fringe Wgt(u)
                     temAdj = VOI oTINE
                     while (tem Ads + Mull)
                           winfo = fitst (temAdi)
                           int w= winto to
                           newdist = mydist + wlnfo. Wot
                           : f(Pg. status(w) = unseen)
```

insert (Pg, w, v, newdist) else if (pq. status (w) = fringe) if (newdist & get Phiotity (Pq. W)) declease key (Pg., W., V., Newdist) temAdi = test(temAdi)

tetutn

8.4 khuskal의 최소 스페닝 트리 알고리돔
그래프 G의 최소 스페닝 트리 ⇒ Phim 알고리돔
Lp khuskal의 알고리돔은 Phim 보다 더 Breedy 한 방병

한고라들

khushal MST (G, n)

R = E 기 R은 날아있는 에디
F = Ø 기 F는 포리스트 에디
While(Rol 공립합이 아닐 때)
R로부터 가장 가벼운 에디 W 제거
if I UW가 F에서 사이클을 만들지 않으면)
UW를 F에 추가

hetum F

〈정의 8.4〉 스페닝 트리 컬렉션

G=(V,E,W)인 무향 그래도. G의 스페닝 트리 컬렉션은 트리의 집합으로서 육의 현결 성별 하나에 하나씩 존대. 각 트리는 그것이 속한 연결성별의 스페닝 트리 회소 스페닝 트리 컬렉션은 추막이 회소.

F가 임의의 포리스트 (사이클이 없는 무함고래트) e= WW가 F에 속하지 않는 에지 e와 F에 속한 에지들로 이루어진 사이클이 존재할 필요. 플로건은 V와 W가 F의 같은 연결생

(SIZELE 8.3 > Khushal As AMB EE

input: G= (U,E, W) n= IVI, m=IEI

주의! 알고리돔의 Sets는 동치관계 트에 대응

Khushal MST (G, n, F)

int Count

가능지를 위한 송위로 하여 G의 에서로 최소 위한 송위 큐 생성
G의 각 당당이 하나의 당한이 되도록 Union-Find 7도 Sets 로기화
F= Ø

While (is Empty (P9) = false) uwedge = getM:n(P91) delete Min (P9) int uset = find (sets, uwadge from) int wset = find (sets, vwedge to) if (uset # wset) uwedge를 F에 투가 union (sets, uset, wset)

tetutn.

나 에다들 하나씩 검사하는 방법