Chaper 6 - Confidence Intervals

Daxiang Na (那达翔)

2022-10-06

Contents

1	CLT and Sampling Distribution	1
2	Margin of Error and Sample Size	1
3	Normal Distribution Curve with ggplot 正态分布曲线	2
1	T distribution T 公本	•

Q1: For sampling distribution, it can have sampling size n and sampling time m, what determines if it follows CLT? n or m? If we sample for 1 time and 100 times, each time with same size n, does that makes a difference?

1 CLT and Sampling Distribution

2 Margin of Error and Sample Size

Estimated sample size needed when confidence interval (CI) is given:

$$n = \left\lceil \frac{z_{\alpha/2}^2 \cdot \sigma^2}{m^2} \right\rceil$$

3 Normal Distribution Curve with ggplot 正态分布曲线

4 T distribution T 分布

When σ^2 is also unknown, we substitute the sample variance s^2 and use the t distribution instead of the normal distribution.

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

t distribution curve with ggplot, T 分布曲线

This t-statistic has a t distribution with n-1 degrees of freedom

p-values for t-tests

- We calculate our p-value as follows, for each of the three types of tests (t-tests):
- One-sided, lower-tailed hypothesis ($H_1: \mu < \mu_0$):
 - pt(t,df)
- One-sided, upper-tailed hypothesis ($H_1: \mu > \mu_0$):
 - 1-pt(t,df)
- Two-sided hypothesis ($H_1: \mu \neq \mu_0$):
 - If $z \le 0$: 2*pt(t,df)
 - If z > 0: 2*(1-pt(t,df))