GREEDY ALGORITHM

Prof. Zheng Zhang

Harbin Institute of Technology, Shenzhen

GREEDY ALGORITHMS

- Similar to dynamic programming.
- Used for optimization problems.
- Optimization problems typically go through **a** sequence of steps, with a set of choices at each step.
- For many optimization problems, using dynamic programming to determine the best choices is **overkill**.
- Greedy Algorithm: Simpler, more efficient.

OUTLINE

- Activity-Selection Problem
- Basic Elements of the GA
 - Knapsack Problem
- Data Compression (Huffman) Codes

FIRST EXAMPLE: ACTIVITY SELECTION

- How to make an arrangement to have the more activities?
- > **S1.** Shortest activity first
 - **□** Swimming, Driving
- > S2. First starting activity first
 - Horseback Riding, Driving
- > S3. First finishing activity first
 - **■** Swimming, Rock Climbing, Surfing

AN ACTIVITY-SELECTION PROBLEM

• *n activities* require

exclusive use of a common resource.

Example: scheduling the use of a classroom.

- > Set of activities $S = \{a_1, a_2, \dots, a_n\}.$
- \triangleright a_i needs resource during period $[s_i, f_i]$, which is a half-open interval, where s_i is start time and f_i is finish time.
- > Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities.
- > Other objectives: Maximize income rental fees, ...

AN ACTIVITY-SELECTION PROBLEM

- *n activities* require *exclusive* use of a common resource.
 - > Set of activities $S = \{a_1, a_2, \dots, a_n\}$
 - $\rightarrow a_i$ needs resource during period $[s_i, f_i]$
- Example: *S* sorted by finish time:

S_i	1	2	4	1	5	8	9	11	13
f_i	3	5	7	8	9	10	11	14	16
1	-		1					į	
			-	a ₅				İ	
			a ₄					į	
		a ₂				a ₇	7		ag
974	a ₁	† †	a ₃	1	a ₆			a ₈	7

Maximum-size mutually

compatible set:

$${a_1, a_3, a_6, a_8}.$$

Not unique: also

$${a_2, a_5, a_7, a_9}.$$

Space of subproblems

• $S_{ij} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$ = activities that start after a_i finishes & finish before a_i starts

- Activities in S_{ij} are compatible with
 - \triangleright all activities that finish by f_i
 - \triangleright all activities that start no earlier than s_i
- To represent the entire problem, add fictitious activities:
 - $a_0 = [-\infty, 0); \qquad a_{n+1} = [\infty, \infty+1]''$
 - ▶ We don't care about -∞ in a_0 or "∞+1" in a_{n+1} .
- Then $S = S_{0,n+1}$. Range for S_{ij} is $0 \le i, j \le n+1$.

OPTIMAL SUBSTRUCTURE OF ACTIVITY

SELECTION

Space of subproblems

- $S_{ij} = \{a_k \in S : f_i \le s_k < f_k \le s_j \}$
- Assume that activities are sorted by monotonically increasing finish time:

$$f_0 \le f_1 \le f_2 \le \cdots \le f_n < f_{n+1} \text{ (if } i \le j, \text{ then } f_i \le f_i \text{)}$$
 (1)

• If $f_0 \le f_1 \le f_2 \le \cdots \le f_n < f_{n+1}$ (if $i \le j$, then $f_i \le f_j$)

Then $i \ge j \implies S_{ij} = \emptyset$.

Proof

If there exists $a_k \in S_{ij}$, then

$$f_i \le s_k < f_k \le s_j < f_j \Rightarrow f_i < f_j$$
.

But $i \ge j \Rightarrow f_i \ge f_j$. Contradiction.

So only need to worry about

$$S_{ij}$$
 with $0 \le i < j \le n + 1$.

All other S_{ii} are \emptyset .

- Suppose that a solution to S_{ii} includes a_k :
 - Have 2 sub-prob
 - \square S_{ik} (start after a_i finishes, finish before a_k starts)
 - \square S_{kj} (start after a_k finishes, finish before a_j starts)
- Solution to S_{ij} = (solution to S_{ik}) \cup { a_k } \cup (solution to S_{kj}) Since a_k is in neither of the subproblems, and the subproblems are disjoint:
 - | solution to $S \mid = \mid$ solution to $S_{ik} \mid +1+\mid$ solution to $S_{kj} \mid$.

- Optimal substructure
 - If an optimal solution to S_{ij} includes a_k , then the solutions to S_{ik} and S_{kj} used within this solution must be optimal as well.
 - > We can use usual cut-and-paste argument to solve it.
- Let A_{ij} = optimal solution to S_{ij} , we have

$$A_{ij} = A_{ik} \cup \{a_k\} \cup A_{ki}, \qquad (2)$$

Assuming: S_{ii} is nonempty and we know a_k .

A RECURSIVE SOLUTION

• Let $c[i, j] = \text{size of maximum-size subset of mutually compatible activities in } S_{ij}$.

$$i \ge j \Rightarrow S_{ij} = \emptyset \Rightarrow c[i, j] = 0.$$

- If $S_{ij} \neq \emptyset$, suppose that a_k is used in a maximum-size subsets of mutually S_{ij} . **Then**, we have c[i, j] = c[i, k] + 1 + c[k, j].
- But of course we don't know which k to use, and so

$$c[i,j] = \begin{cases} 0, & \text{if } S_{ij} = \emptyset \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{c[i,k] + c[k,j] + 1\}, & \text{if } S_{ij} \neq \emptyset \end{cases}$$
(3)

Why this range of k?

Because $S_{ij} = \{a_k \in S: f_i \le s_k < f_k \le s_j\} \implies a_k \text{ can't be } a_i \text{ or } a_j.$

$$c[i,j] = \begin{cases} 0, & \text{if } S_{ij} = \emptyset \\ \max\{c[i,k] + c[k,j] + 1\}, & \text{if } S_{ij} \neq \emptyset \\ \sum_{\substack{i < k < j \\ a_k \in S_{ii}}} (3) \end{cases}$$

- It may be easy to design an algorithm to the problem based on recurrence (16.3).
 - Direct recursion algorithm (complexity?)
 - > Dynamic programming algorithm (complexity?)
- Can we simplify our solution?

• Can we simplify our solution?

□ Theorem 1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{ f_k : a_k \in S_{ij} \}$. Then,

- 1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ii} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

■ Theorem 1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{f_k : a_k \in S_{ij}\}$. Then,

- 1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ii} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

Proof 2: Suppose there is some $a_l \in S_{im}$.

Then
$$f_i < s_l < f_l \le s_m < f_m \Rightarrow f_l < f_m$$

Then $a_l \in S_{ij}$ and it has an earlier finish time than f_m , which contradicts our choice of a_m .

Therefore, there is no
$$a_l \in S_{im} \Rightarrow S_{im} = \emptyset$$
.

Theorem 1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{f_k : a_k \in S_{ij} \}$. Then,

1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ij} .

Proof 1:

- Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ij} .
- Order activities in A_{ij} in monotonically **increasing** order of **the finish time**. Let a_k be the first activity in A_{ij} .

□ Theorem 1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{f_k : a_k \in S_{ii}\}$. Then,

1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ij} .

Proof 1:

- If $a_k = a_m$, done (a_m is used in a maximum-size subset).
- □ Otherwise, construct $B_{ij} = A_{ij} \{a_k\} \cup \{a_m\}$ (replace a_k by a_m). Activities in B_{ij} are disjoint.
 - Activities in A_{ij} are disjoint, and a_k is the first activity in A_{ij} to finish.
 - $f_m \le f_k \Rightarrow a_m$ doesn't overlap anything else in B_{ii} .
- □ Since $|B_{ij}| = |A_{ij}|$ and A_{ij} is a maximum-size subset, so is B_{ij} .

CONVERTING A DP SOLUTION TO A

GREEDY SOLUTION

$$c[i,j] = \begin{cases} 0, & \text{if } S_{ij} = \emptyset \\ \max_{\substack{i < k < j \\ a_k \in S_{ii}}} \{c[i,k] + c[k,j] + 1\}, & \text{if } S_{ij} \neq \emptyset \end{cases}$$
(3)

□ Theorem 16.1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{f_k : a_k \in S_{ij} \}$. Then,

- 1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ij} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

• This theorem is great:

	before theorem	after theorem
# of sub-prob in optimal solution	$2 (S_{ik}, S_{kj})$	1
# of choices to consider	O(j-i-1) $(i < k < j)$	1

□ Theorem 1

Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = min \{f_k : a_k \in S_{ij} \}$. Then,

- 1. a_m is *used* in some maximum-size subset of mutually compatible activities of S_{ij} .
- 2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.
- Now we can solve a problem S_{ij} in a top-down fashion
 - Choose $a_m \in S_{ij}$ with earliest finish time: **the greedy choice**. It leaves as much opportunity as possible for the remaining activities to be scheduled.
 - \triangleright Then solve S_{mj} .

- What are the subproblems?
 - ➤ Original problem is $S_{0.n+1}$ [$a_0 = [-\infty, 0); a_{n+1} = [\infty, \infty+1]$]
 - > Suppose our first choice is a_{ml} (in fact, it is a_l)
 - \triangleright Then next subproblem is $S_{m1,n+1}$
 - > Suppose next choice is a_{m2} (it must be a_2 ?)
 - \Rightarrow Next subproblem is $S_{m2,n+1}$

- What are the subproblems?
 - ➤ Original problem is $S_{0,n+1}$ [$a_0 = [-\infty, 0); a_{n+1} = [\infty, \infty+1]$]
 - > Suppose our first choice is a_{m1} (in fact, it is a_1)
 - \triangleright Then next subproblem is $S_{m1,n+1}$
 - > Suppose next choice is a_{m2} (it must be a_2 ?)
 - \Rightarrow Next subproblem is $S_{m2,n+1}$
 - > And so on
- Each subproblem is $S_{mi,n+1}$.
- The subproblems chosen have finish times that increase.
- **Therefore**, we can consider each activity just once, in monotonically increasing order of finish time.

- Original problem is $S_{0,n+1}$
- Each subproblem is $S_{mi, n+1}$
- Assumes activites already sorted by monotonically increasing finish time. (If not, then sort in $O(n \lg n)$ time.) Return an optimal solution for $S_{i,n+1}$:


```
REC-ACTIVITY-SELECTOR(s, f, i, n)
```

- 1 $m \leftarrow i+1$
- 2 while $m \le n$ and $s_m < f_i$ // Find first activity a_m in $S_{i,n+1}$.
- 3 do $m \leftarrow m+1$
- 4 if $m \le n$
- 5 then return $\{a_m\} \cup REC\text{-}ACTIVITY\text{-}SELECTOR(s, f, m, n)$
- 6 else return \emptyset

```
REC-ACTIVITY-SELECTOR(s, f, i, n)
1 m ← i+1
2 while m ≤ n and s<sub>m</sub>< f<sub>i</sub> // Find first activity a<sub>m</sub> in S<sub>i,n+1</sub>.
3 do m ← m+1
4 if m ≤ n
5 then return {a<sub>m</sub>} ∪ REC-ACTIVITY-SELECTOR(s, f, m, n)
6 else return Ø
```

• *Initial call:* REC-ACTIVITY-SELECTOR(s, f, $\mathbf{0}$, n).

- *Idea*: The while loop checks a_{i+1} , a_{i+2} , ..., a_n until it finds an activity a_m that is compatible with a_i (need $s_m \ge f_i$).
 - If the loop terminates because a_m is found $(m \le n)$, then recursively solve $S_{m,n+1}$, and return this solution along with a_m .
 - If the loop never finds a compatible a_m (m > n), then just return empty set.

```
REC-ACTIVITY-SELECTOR(s, f, i, n)
1 m ← i+1
2 while m ≤ n and sm < fi  // Find first activity in Si,n+1.
3 do m ← m+1
4 if m ≤ n
5 then return {am} ∪ REC-ACTIVITY-SELECTOR(s, f, m, n)
6 else return Ø</pre>
```

• Time: $\Theta(n)$ — each activity examined exactly once.

$$T(n) = m_1 + T(n - m_1) = m_1 + m_2 + T(n - m_1 - m_2)$$

 $= m_1 + m_2 + m_3 + T(n - m_1 - m_2 - m_3) = ...$
 $= \sum m_k + T(n - \sum m_k)$
Because: $n - \sum m_k = 1$, then $\sum m_k = n - 1$, $\sum m_k + T(1) = \Theta(n)$

Initial call: REC-ACTIVITY-SELECTOR(s, f, 0, n).

Idea: The while loop checks a_{i+1} , a_{i+2} ,..., a_n until it finds an activity a_m that is compatible with a_i (needs $s_m \ge f_i$).

- If the loop terminates because a_m is found $(m \le n)$, then recursively solve $S_{m,n+1}$, and return this solution along with a_m .
- If the loop never finds a compatible a_m (m > n), then just return empty set.

AN ITERATIVE GREEDY ALGORITHM

- REC-ACTIVITY-SELECTOR is almost "tail recursive".
- We easily can convert the recursive procedure to an iterative one.
- Some compilers perform this task automatically.

```
GREEDY-ACTIVITY-SELECTOR(s, f, n)

1 A \leftarrow \{a_i\}

2 i \leftarrow 1

3 \text{ for } m \leftarrow 2 \text{ to } n

4 \text{ do if } s_m \geq f_i

5 \text{ then } A \leftarrow A \cup \{a_m\}

6 \text{ } i \leftarrow m \text{ } /\!/ a_i \text{ is most recent addition to } A

7 \text{ return } A
```

REVIEW

- Greedy Algorithm Idea:
 - When we have a choice to make, make the one that looks best *right now*.
 - Make a *locally optimal* choice in hope of getting a *globally optimal solution*.
- Greedy Algorithm: Simpler, more efficient.

OUTLINE

- Activity-selection problem
- Basic elements of the GA
 - Knapsack problem
- o Data compression (Huffman) codes

- The choice that seems best at the moment is chosen.
- What did we do for activity selection?
 - 1. Determine the optimal substructure.
 - 2. Develop a recursive solution.
 - 3. Prove that at any stage of recursion, one of the optimal choices is the greedy choice.
 - 4. Show that all but one of the subproblems resulting from the greedy choice are empty.
 - 5. Develop a recursive greedy algorithm.
 - 6. Convert it to an iterative algorithm.

- These steps looked like dynamic programming.
- Typically, we streamline these steps.
- Develop the substructure with an eye toward
 - Making the greedy choice.
 - > Leaving just one subproblem.
- For activity selection, we showed that the greedy choice implied that in S_{ij} , only i varied and j was fixed at n+1.
- So, we could have started out with a greedy algorithm in mind:
 - ▶ Define $S_i = \{a_k \in S : f_i \leq s_k\}$, and show the greedy choice:

The first
$$a_m$$
 to finish in S_i

Combined with optimal solution to S_m

An optimal solution to S_i .

- Typical streamlined steps
 - 1. Cast the optimization problem as one form
 - Make a choice and only one subproblem is left to solve.
 - 2. Prove that there's always an optimal solution to the original optimization that makes the greedy choice, so that the greedy choice is always **safe**.
 - 3. Demonstrate optimal substructure
 - Having made the greedy choice.
 - > What remains is a subproblem with the property:

An optimal solution to the subproblem

The greedy choice we have made

⇒ Optimal solution to the original problem.

- No general way to tell if a greedy algorithm is optimal, but two key ingredients are
 - 1. Greedy-choice property
 - 2. Optimal substructure

GREEDY-CHOICE PROPERTY

- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Dynamic Programming
 - > Make a choice at each step.
 - Choice depends on knowing optimal solutions to subproblems.
 Solve subproblems first.
 - > Solve *bottom-up*.
- Greedy Algorithm
 - Make a choice at each step.
 - > Make the choice *before* solving the subproblems.
 - > Solve *top-down*.

GREEDY-CHOICE PROPERTY

- We must prove that a greedy choice at each step yields a globally optimal solution.
 - Difficulty! Cleverness may be required!
- Typically, Theorem 16.1, shows that the solution (A_{ij}) can be modified to use the greedy choice (a_m) , resulting in one *similar* but *smaller* subproblem (A_{mi}) .
- We can get efficiency gains from greedy-choice property. (For example, in activity-selection, sorted the activities in monotonically increasing order of finish times, needed to examine each activity just once.)
 - > Preprocess input to put it into greedy order.
 - > An appropriate data structure (often a priority queue).

OPTIMAL SUBSTRUCTURE

- Optimal Substructure: an optimal solution to the problem contains within it optimal solutions to subproblems.
- Just show that optimal solution to subproblem and greedy choice ⇒ optimal solution to problem.

- 0-1 knapsack problem
 - \triangleright *n* items
 - \triangleright Item *i* is worth \$v_i\$, weights w_i
 - \triangleright Find a most valuable subset of items with total weights $\le W$.
 - > Have to either take an item *or* not take it can't take part of it.
- Fractional knapsack problem
 - ➤ Like the 0-1 knapsack problem, but can take fraction of an item.

- 0-1 knapsack problem
- Fractional knapsack problem
- Both have optimal substructure property.
 - ▶ 0-1 : choose the most valuable load j that weighs $w_j \le W$, remove j, choose the most valuable load i that weighs $w_i \le W w_j$
 - Fractional: choose a weight w from item j (part of j), then remove the part, the remaining load is the most valuable load weighing at most W-w that the thief can take from the n-1 original items plus w_j -w pounds from item j.
- However, the fractional problem has the greedy-choice property, and the 0-1 problem does not.

- Fractional knapsack problem has the greedy-choice property.
- To solve the fractional problem, rank decreasingly items by v_i/w_i .
- Let $v_i/w_i \ge v_{i+1}/w_{i+1}$ for all i.
- Time: $O(nlg \ n)$ to sort, O(n) to greedy choice thereafter.

```
FRACTIONAL-KNAPSACK(v, w, W)

1 load \leftarrow 0

2 i \leftarrow 1

3 while load < W and i \le n

4 do if w_i \le W - load

5 then take all of item i

6 else take W-load of w_i from item i

7 add what was taken to load

8 i \leftarrow i + 1
```

- 0-1 knapsack problem has not –
 the greedy-choice property
- W = 50.
- Greedy solution:
 - > Take items 1 and 2
 - ➤ Value = 160, Weight = 30
 - 20 pounds of capacity leftover.

i	1	2	3
v_i	60	100	120
w_i	10	20	30
v_i/w_i	6	5	4

- Optimal solution
 - > Take items 2 and 3
 - > value=220, weight=50
- No leftover capacity.

knapsack problem

0-1knapsack problem

Fractional knapsack problem

OUTLINE

- Activity-selection problem
- Basic elements of the GA
 Knapsack problem
- o Data compression (Huffman) codes

- Huffman codes: widely used and very effective technique for compressing data.
 - > savings of 20% to 90%
- Consider the data being compressed to be a sequence of characters
 - Abaaaabbbdcffeaaeaeec
- Huffman's greedy algorithm
 - Uses a table of the **frequencies** of occurrence of the characters to build up an optimal way of representing each character as a binary string.

• Wish to store compactly 100,000-character data file

Only six different characters (a-f) appear. The frequency table is shown as:

	а	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length Codeword	000	001	010	011	100	101
Variable-length Codeword	0	101	100	111	1101	1100

- Many ways (encodes) to represent such a file of information.
- Binary character code (or code for short): each character is represented by a unique binary string.
 - > *Fixed-length code*: if use 3-bit codeword, the file can be encoded in 300,000 bits. Can we do better?

• 100,000-character data file

	а	b	\boldsymbol{c}	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length Codeword	000	001	010	011	100	101
Variable-length Codeword	0	101	100	111	1101	1100

- *Binary character code* (or *code* for short)
 - ➤ Variable-length code: by giving frequent characters short codewords and infrequent characters long codewords, here the 1-bit string 0 represents a, and the 4-bit string 1100 represents f.

$$(45\cdot1 + 13\cdot3 + 12\cdot3 + 16\cdot3 + 9\cdot4 + 5\cdot4) \cdot 1,000 = 224,000 \text{ bits}$$

• 100,000-character data file

	а	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- binary character code (or code for short)
 - > Fixed-length code: 300,000 bits
 - Variable-length code: 224,000 bits, a savings of approximately
 25%. In fact, this is an optimal character code for this file.

PREFIX CODES

• Prefix codes (prefix-free codes): no codeword is a prefix of some other codeword.

	а	b	c	d	e	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Encoding is always simple for any binary character code
 - > Concatenate the codewords representing each character.
 - For example, "abc", with the variable-length prefix code as 0.101.100 = 0101100, where we use '.' to denote concatenation.
- Prefix codes simplify decoding.

Prefix Codes

• Prefix codes (prefix-free codes): no codeword is a prefix of some other codeword.

	а	b	С	d	e	f
Variable-length codeword	0	101	100	111	1101	1100

- Encoding is always simple for any binary character code.
- Prefix codes simplify decoding
 - > Since no codeword is a **prefix** of any other, the codeword that begins an encoded file is unambiguous.
 - > We can simply identify the initial codeword, translate it back to the original character, and repeat the decoding process on the remainder of the encoded file.
 - **Exam**: 001011101 uniquely as 0·0·101·1101, which decodes to "aabe".

- The cost of the tree T
 - \triangleright For each **character** c in the alphabet C
 - \triangleright Let the **attribute** f(c) denote the <u>frequency</u> of c in the file
 - Let $d_T(c)$ denote **the depth** of c's leaf in the tree.
 - > The **number of bits** required to encode a file is thus:

minimize
$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c)$$

- How to build a optimal coding tree?
 - > Input: alphabet $C = \{c_1, c_2,, c_n\}$ frequency table $\mathbf{F} = \{f(c_1), f(c_2), ..., f(c_n)\}$
 - \triangleright Output: a code tree with minimal B(T)

Greedy algorithm:

The two nodes with the lowest frequency are iteratively selected to generate a subtree until a tree is formed.

CORRECTNESS OF HUFFMAN'S ALGORITHM

- Correctness of Huffman's algorithm
 - To prove that the greedy algorithm HUFFMAN is correct, we need to prove
 - > Optimal-substructure property: if the tree constructed by merging two nodes is optimal it must have been constructed from an optimal tree for the subproblem.
 - ➤ **Greedy choice property**: there exists an optimal prefix code where two characters having the lowest frequencies in *C* are encoded with **equal length strings** that differ only in the last bit, as they are leaf nodes.

OPTIMAL SUBSTRUCTURE

■ Lemma 1

- Let T be an optimized prefix tree of the alphabet C, $\forall c \in C$, f(c) is the frequency of **occurrence of** c in the file.
- Let x and y be any two adjacent **leaf** nodes in T, and z be their **parent** node, then z is a character with its frequency f(z) = f(x) + f(y).
- $T' = T \{x,y\}$ is the **optimized** prefix encoding tree of alphabet of $C' = C \{x,y\} \cup \{z\}$.


```
Proof B(T) = B(T') + f(x) + f(y).
(1) \forall v \in C - \{x,y\}, d_T(v) = d_{T'}(v), f(v)d_T(v) = f(v)d_{T'}(v).
(2) Because d_T(x) = d_T(y) = d_{T'}(z)+1, and then
        f(x)d_T(x) + f(y)d_T(y)
      = (f(x)+f(y))(d_{T'}(z)+1)
      = (f(x)+f(y)) d_{T'}(z) + (f(x)+f(y))
Because f(x) + f(y) = f(z),
         f(x)d_T(x) + f(y)d_T(y) = f(z)d_{T'}(z) + (f(x)+f(y)).
     So B(T) = B(T') + f(x) + f(y).
```

We now prove the lemma by contradiction.

- > Suppose that T' does not represent an optimal prefix code for C'.
- Then there exists another optimal tree T" such that B(T'') < B(T').
- \triangleright Because z is character of C', so it is a leaf of tree T".
- Adding nodes x and y to T'', as child nodes of z, then we get a prefix coding tree of C, T''':

Proof of Lemma 1

• The cost of T'':

$$B(T''') = \dots + (f(x)+f(y)) (d_{T''}(z)+1)$$

$$= \dots + f(z)d_{T''}(z) + (f(x)+f(y)) (d_{T''}(z)=d_{T'}(z))$$

$$= B(T'') + f(x)+f(y) < B(T')+f(x)+f(y) = B(T)$$

- Yielding a contradiction to the assumption that *T* represents an optimal prefix code for *C*.
- Thus, T' must represent an optimal prefix code for the alphabet C'.

THE GREEDY-CHOICE

Lemma 2

Let C be an alphabet in which each character $c \in C$ has frequency f(x).

Let x and y be two characters in C having the lowest frequencies.

Then there exists an optimal prefix code for *C* in which the codewords for *x* and *y* have the same length and differ only in the last bit.

Greedy Choice Property

- Taking the tree *T* represent an optimal prefix code tree of *C*. Let *b* and *c* be two characters that are sibling leaves of maximum depth in *T*.
- Without loss of generality, we assume that $f(b) \le f(c)$ and $f(x) \le f(y)$.
- Since f(x) and f(y) are the two lowest leaf frequencies, in order, and f(b), f(c) are two arbitrary frequencies, in order, we have $f(x) \le f(b)$ and $f(y) \le f(c)$.
- We exchange the positions in T of b and
 x to produce a tree T':

Proof that tree T" is an optimal prefix code tree:

$$B(T) - B(T')$$

$$= \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c)$$

$$= f(x) d_T(x) + f(b) d_T(b) - f(x) d_{T'}(x) - f(b) d_{T'}(b)$$

$$= f(x) d_T(x) + f(b) d_T(b) - f(x) d_T(b) - f(b) d_T(x)$$

$$= (f(b) - f(x)) (d_T(b) - d_T(x)).$$

$$\therefore f(b) \ge f(x), d_T(b) \ge d_T(x) \text{ (because } b \text{ is a leaf of maximum depth in T)}$$

$$\therefore B(T) - B(T') \ge 0 \Rightarrow B(T) \ge B(T')$$

Similarly
$$B(T') \ge B(T'')$$
. So $B(T) \ge B(T'')$.

Since *T* is optimal, we have $B(T) \leq B(T'')$, which implies B(T'') = B(T).

Thus, *T"* is an optimal tree in which *x* and *y* appear as sibling leaves of maximum depth, from which the lemma follows.

CORRECTNESS OF HUFFMAN'S ALGORITHM

□ Theorem 2

Procedure HUFFMAN produces an optimal prefix code.

Proof

Since Lemma 1 and Lemma 2 are valid, and Huffman algorithm performs local optimization selection according to the rules determined by **greedy selectivity** of Lemma 2, Huffman algorithm generates an optimized prefix coding tree.