1 PGFplots graph samples

1.1 from https://tex.stackexchange.com/questions/9386/difference-between-right-of-and-right-of-in-pgf-tikz website.

 $1.2 \quad from \ https://tex.stackexchange.com/questions/354401/how-to-draw-a-vector-diagram-with-tikz-datavisualization$

1.3 from https://www.overleaf.com/learn/latex/Pgfplots_package

Empty line in file causes graph break

Figure 1: Plot

- $1.4 \quad from \ https://stackoverflow.com/questions/36386656/how-to-plot-in-latex-withgruplot$
- $1.5 \quad from \ https://tex.stackexchange.com/questions/136288/pgfplots-how-to-fill-area-under-a-curve-in-a-3d-plot-similar-to-closed$ cycle-in

 $from\ https://tex.stackexchange.com/questions/311161/pgfplots-shift-the-entire-axis-environment-to-the-right$

$1.6 \quad from \ https://tex.stackexchange.com/questions/16232/how-to-plot-fx-sinx-kx-cosx-and-ux-x\%C2\%B2-with-tikz$

 $1.9 \quad from \ https://tex.stackexchange.com/questions/361915/tikz-or-pgfplots-plotting-a-trigonometric-function-cos-sin-tan$

$1.10 \quad \text{https://newbedev.com/plotting-function-2-with-pole-at-00-smoothly}$

In polar coordinates,

$$x = r \cos \varphi$$
 and $y = r \sin \varphi$,

such that

$$\frac{xy}{x^2 + y^2} = \frac{r^2 \cos \varphi \, \sin \varphi}{r^2} = \cos \varphi \, \sin \varphi$$

with $\varphi = \arctan(y/x)$. So we can replace

$$\frac{x\,y}{x^2+y^2} \to \sin(2\arctan(y/x))/2 \; .$$

1.11 Line Plots

1.13 Quiver Plots

1.14 Stacked Plots

1.15 Area Plots

1.16 Scatter Plots

1.17 3d plots

1.18 3d scatter plots

-1

-2

-4

-3

-2

-1

0.2

1.19 Contour Plots

Separating z from Color Value

1.20 Parameterized Plots

1.21 Specialty graphs and settings

(0,0) 5

-6

-4

2

6

4

0

 $\overline{-2}$

The picture shows the estimations \bullet which are subjected to noise. It appears the model —— fits the data appropriately. Finally, $-\bullet$ — is only here to get three examples.

This is a picture, here another one. Aligning top edge of graphs:

Attention: If you intend to use hours and minutes, you should always provide the date ZERO to maintain adequate precision!

1.22 Statistics

