

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE CÓMPUTO

CARRERA: INGENIERÍA EN SISTEMAS COMPUTACIONALES

UNIDAD DE APRENDIZAJE: INGENIERIA DE SOFTWARE

PROFESOR: AVILÉS HURTADO GABRIEL

> EQUIPO: ERROR CAPA 8

> > PRÁCTICA:

PLAN DE PROYECTO CON BASE EN LOS FUNDAMENTOS DE INGENIERÍA DE SOFTWARE

INTEGRANTES:

SANDOVAL GARIBAY SALVADOR 2022630151
REDONDO GONZÁLEZ OMAR 2022630670
HERNÁNDEZ GUTIÉRREZ GERARDO 2021630013
AYALA CHACÓN DAVID 2022630495

FECHA DE ENTREGA: 9/03/25

6CV3

Requerimientos del Sistema de Alerta y Visualización de Sismos

1. Introducción

1.1 Propósito

El sistema tiene como objetivo identificar y monitorear zonas de ocurrencia de eventos sísmicos en México mediante técnicas de trilateración, utilizando datos del Servicio Sismológico Nacional (SSN) y bases de datos complementarias. La información será modelada mediante grafos de conocimiento y visualizada sobre un mapa interactivo de México.

1.2 Alcance

Este sistema permitirá a usuarios y especialistas monitorear, analizar y visualizar eventos sísmicos en tiempo real, facilitando la toma de decisiones en situaciones de emergencia y contribuyendo a la investigación sismológica en México.

2. Requerimientos Funcionales

2.1 Adquisición y Procesamiento de Datos

RF-01: El sistema debe importar datos sísmicos del SSN en tiempo real mediante API o archivos CSV.

RF-02: El sistema debe filtrar y clasificar sismos según su magnitud, profundidad y ubicación geográfica.

RF-03: El sistema debe implementar algoritmos de trilateración utilizando datos del SSN para determinar ubicaciones precisas de epicentros.

RF-04: El sistema debe actualizar automáticamente su base de datos cuando se detecten nuevos eventos sísmicos.

2.2 Modelado de Datos y Grafos de Conocimiento

RF-05: El sistema debe generar y mantener grafos de conocimiento con nodos para entidades clave (ubicación, magnitud, profundidad, fecha).

RF-06: El sistema debe establecer relaciones entre nodos para representar zonas de impacto, réplicas y epicentros.

RF-07: El sistema debe almacenar los grafos en bases de datos orientadas a grafos para optimizar su gestión y consulta.

RF-08: El sistema debe permitir consultas complejas sobre los grafos para analizar patrones y tendencias.

2.3 Visualización Geoespacial

- **RF-09**: El sistema debe presentar la información sísmica en un mapa interactivo de México utilizando APIs geoespaciales (Google Maps, OpenStreetMap u otras).
- **RF-10**: El sistema debe superponer los grafos de conocimiento sobre el mapa para visualizar conexiones entre eventos sísmicos.
- **RF-11**: El sistema debe representar la magnitud y profundidad de los sismos mediante elementos visuales diferenciados (colores, tamaños).
- **RF-12**: El sistema debe permitir filtrar la visualización por rangos de tiempo, magnitud y región geográfica.

2.4 Análisis y Predicción

- **RF-13**: El sistema debe realizar análisis del comportamiento histórico de sismos, especialmente en la costa del Pacífico.
- **RF-14**: El sistema debe implementar algoritmos de inferencia probabilística para estimar la probabilidad de eventos futuros.
- RF-15: El sistema debe generar reportes periódicos sobre actividad sísmica por región.
- **RF-16**: El sistema debe alertar sobre patrones inusuales que sugieran mayor actividad sísmica.

2.5 Sistema de Alertas

- **RF-17**: El sistema debe generar alertas cuando se detecten sismos de magnitud significativa.
- **RF-18**: El sistema debe permitir configurar umbrales de alerta personalizados según región, magnitud y profundidad.
- **RF-19**: El sistema debe distribuir alertas por múltiples canales (aplicación, correo electrónico, SMS).
- **RF-20**: El sistema debe estimar tiempos de llegada de ondas sísmicas a diferentes poblaciones.

3. Requerimientos No Funcionales

3.1 Usabilidad

RNF-01: La interfaz de usuario debe ser moderna, responsiva y accesible en dispositivos móviles y de escritorio.

RNF-02: El sistema debe ofrecer controles intuitivos para explorar el mapa y realizar análisis (zoom, arrastre, selección).

RNF-03: El sistema debe proporcionar un panel de información detallada sobre nodos y relaciones seleccionados.

RNF-04: El sistema debe incluir opciones de accesibilidad como aumento de tamaño de texto y esquemas de color alternativos.

RNF-05: El sistema debe ofrecer un tutorial interactivo para nuevos usuarios.

3.2 Confiabilidad

RNF-06: El sistema debe realizar actualizaciones periódicas automáticas de la base de datos de sismos.

RNF-07: El sistema debe contar con mecanismos de respaldo y restauración de datos en caso de fallos.

RNF-08: El sistema debe generar informes detallados de fallas en el procesamiento o visualización de datos.

RNF-09: El sistema debe enviar notificaciones automáticas al administrador cuando se detecten fallas críticas.

RNF-10: El sistema debe garantizar un tiempo de actividad del 99.9%.

3.3 Rendimiento

RNF-11: El sistema debe procesar un conjunto de 10,000 eventos sísmicos en menos de 30 segundos.

RNF-12: El sistema debe generar grafos de conocimiento para hasta 1,000 eventos en menos de 15 segundos.

RNF-13: El sistema debe utilizar indexación para búsquedas rápidas en grafos grandes.

RNF-14: El sistema debe minimizar el tiempo de carga del mapa y gráficos interactivos (menos de 3 segundos en conexiones estándar).

RNF-15: El sistema debe mantener una respuesta fluida incluso al visualizar grandes cantidades de datos sísmicos.

3.4 Soporte

- **RNF-16**: El sistema debe integrarse con las bases de datos del SSN y sistemas de grafos existentes.
- RNF-17: El sistema debe permitir la exportación de datos en formatos JSON y CSV.
- **RNF-18**: El sistema debe estar acompañado de documentación técnica detallada para desarrolladores.
- **RNF-19**: El sistema debe contar con manuales de usuario para administradores y analistas.
- **RNF-20**: El sistema debe incluir un mecanismo para gestionar tickets de soporte para reportar errores o solicitar mejoras.

3.5 Extensibilidad

- **RNF-21**: El sistema debe permitir la incorporación de algoritmos de aprendizaje automático para mejorar la predicción de sismos.
- **RNF-22**: El sistema debe implementar métricas de confiabilidad en las predicciones realizadas.
- **RNF-23:** El sistema debe estar preparado para integración con sensores loT y estaciones sísmicas para actualización en tiempo real.
- **RNF-24**: El sistema debe cumplir con normativas de protección de datos personales conforme a leyes locales y GDPR.
- **RNF-25**: El sistema debe ofrecer soporte multilenguaje, inicialmente para español e inglés.

4. Requisitos de Hardware y Software

4.1 Hardware

Servidores con capacidad para procesamiento en tiempo real de datos de múltiples fuentes

Almacenamiento suficiente para datos históricos (mínimo 2TB)

Conexión a internet de alta velocidad (mínimo 100 Mbps)

Sistemas de respaldo de energía

4.2 Software

Sistema operativo: Linux (distribución de servidor recomendada: Ubuntu Server LTS)

Base de datos orientada a grafos (Neo4j, ArangoDB)

Base de datos relacional para datos complementarios (PostgreSQL)

Framework de visualización web (D3.js, Leaflet o similar)

API de mapas (Google Maps, OpenStreetMap)

Lenguajes de programación recomendados: Python (backend), JavaScript (frontend)

5. Casos de Uso Principales

5.1 Monitoreo en Tiempo Real

El usuario accede al sistema para visualizar la actividad sísmica actual en México, pudiendo filtrar por magnitud mínima y región de interés.

5.2 Análisis Histórico

El usuario selecciona un período de tiempo y una región para analizar patrones históricos de actividad sísmica, visualizando grafos de conocimiento superpuestos en el mapa.

5.3 Configuración de Alertas

El usuario configura parámetros personalizados para recibir alertas sobre eventos sísmicos en regiones específicas que superen ciertos umbrales de magnitud.

5.4 Generación de Reportes

El analista genera reportes detallados sobre actividad sísmica en períodos específicos para uso en investigación o planeación de protección civil.

5.5 Predicción de Actividad

El especialista utiliza las herramientas de inferencia probabilística para estimar la posibilidad de actividad sísmica en regiones específicas durante los próximos días o semanas.

6. Cronograma Estimado

Fase 1: Diseño y Arquitectura (2 meses)

Especificación detallada de requisitos

Diseño de arquitectura del sistema

Diseño de base de datos y modelo de grafos

Prototipos de interfaz de usuario

Fase 2: Desarrollo Core (4 meses)

Implementación de adquisición y procesamiento de datos

Desarrollo de algoritmos de trilateración

Implementación de base de datos de grafos

Desarrollo de visualización básica en mapa

Fase 3: Funcionalidades Avanzadas (3 meses)

Implementación de análisis histórico

Desarrollo de algoritmos de predicción

Sistema de alertas

Integración completa de componentes

Fase 4: Pruebas y Optimización (2 meses)

Pruebas de rendimiento y carga

Optimización de consultas y visualización

Pruebas de usabilidad

Corrección de errores

Fase 5: Implementación y Capacitación (1 mes)

Despliegue del sistema

Capacitación a usuarios y administradores

Documentación final

Soporte inicial

7. Consideraciones Adicionales

7.1 Seguridad

El sistema debe implementar protocolos de seguridad para proteger la integridad de los datos y prevenir accesos no autorizados.

7.2 Escalabilidad

La arquitectura debe permitir escalabilidad horizontal para manejar incrementos en el volumen de datos y usuarios.

7.3 Mantenimiento

Se debe establecer un plan de mantenimiento periódico para actualizar componentes, optimizar bases de datos y revisar algoritmos de predicción.

7.4 Ética y Responsabilidad

El sistema debe comunicar claramente los márgenes de error en las predicciones para evitar alarmas injustificadas o falsa sensación de seguridad.

Propósito: Este sistema tiene como propósito identificar zonas de ocurrencia de eventos sísmicos en México mediante trilateración, utilizando datos del Servicio Sismológico Nacional (SSN) y bases de datos complementarias. El sistema generará grafos de conocimiento para modelar entidades y relaciones clave, visualizándolos sobre un mapa de México.

Funcionales (F)

- 1. Procesamiento de datos sísmicos:
 - o Importar datos desde el SSN en tiempo real mediante API o archivo CSV.
 - Filtrar y clasificar sismos según magnitud, profundidad y ubicación geográfica.
 - Realizar cálculos de trilateración considerando datos provenientes del SSN.
- 2. Generación y almacenamiento de grafos de conocimiento:
 - Crear nodos para entidades clave (ubicación, magnitud, profundidad, fecha).
 - o Establecer relaciones entre nodos (zona de impacto, réplicas, epicentro).
 - Utilizar bases de datos orientadas a grafos.
- 3. Visualización:
 - Mostrar la información en un mapa interactivo de México con ayuda de alguna API gratuita, Google Maps API o alguna tecnología similar.
 - Superponer grafos en el mapa para explorar conexiones entre eventos sísmicos.
- 4. Análisis histórico y predicción:
 - Realizar análisis del comportamiento histórico de sismos en la costa del Pacífico.
 - Implementar algoritmos de inferencia probabilística para predecir eventos futuros.

Usabilidad (U)

- 1. Interfaz de usuario:
 - o Diseño moderno, responsivo y accesible en dispositivos móviles.
 - o Opciones intuitivas para explorar el mapa y realizar análisis.
- 2. Visualización interactiva:
 - o Permitir zoom, arrastre y selección de áreas específicas en el mapa.
 - o Mostrar detalles de los nodos y relaciones en un panel de información.
- 3. Accesibilidad:
 - Opciones para aumentar el tamaño del texto.
 - Tutorial interactivo para primeros usuarios.
- 4. Carga de datos:
 - Validación automática del formato y consistencia de los datos cargados.
- 5. Manual del usuario:
 - Incluir capturas de pantalla y ejemplos detallados para usar cada funcionalidad.

Confiabilidad (R)

- 1. Respaldo de datos:
 - Actualizaciones periódicas automáticas de la base de datos de sismos y grafos en base a los datos del SSN.
 - Restauración de datos en caso de fallos.
- 2. Gestión de errores:
 - o Informes detallados de fallas en el procesamiento o visualización de datos.
 - Notificaciones automáticas al administrador del sistema.
- 3. Disponibilidad:
 - o Garantizar un tiempo de actividad del 99.9%.

Rendimiento (P)

- 1. Velocidad de procesamiento:
 - Procesar un conjunto de 10,000 eventos sísmicos en menos de 30 segundos.
 - Generar grafos de conocimiento para hasta 1,000 eventos en menos de 15 segundos.
- 2. Optimización:
 - o Utilizar indexación para búsquedas rápidas en grafos grandes.
 - Minimizar el tiempo de carga del mapa y gráficos interactivos.

Soporte (S)

- 1. Compatibilidad:
 - o Integración con bases de datos del SSN y sistemas de grafos.
 - Exportación de datos en formatos JSON y CSV.
- 2. Documentación técnica:
 - o Guías detalladas para desarrolladores sobre configuración y despliegue.
 - Manual de usuario para administradores y analistas.
- 3. Actualizaciones:
 - Mejoras periódicas para incorporar nuevas funcionalidades y optimizaciones.
- 4. Sistema de soporte:
 - Gestión de tickets para reportar errores o solicitar mejoras.

Extensiones (+)

- 1. Análisis avanzado:
 - o Uso de aprendizaje automático para mejorar la predicción de sismos.
 - o Implementar métricas de confiabilidad en las predicciones.
- 2. Integración con sensores IoT:
 - o Conexión con estaciones sísmicas para actualizar datos en tiempo real.
- 3. Cumplimiento normativo:
 - Protección de datos personales conforme a leyes locales y GDPR.
- 4. Multilenguaje:
 - Soporte para español e inglés.

Guías técnicas de la aplicación

Guía de Conexión de Base de Datos PostgreSQL con Swagger en Quarkus

1. Configuración Actual

El sistema está configurado con los siguientes componentes:

1.1 Archivo application.properties

```
mp.openapi.extensions.smallrye.info.title=Sismos
mp.openapi.extensions.smallrye.info.description=API Rest que implementa los
endpoints de el sistema sismos
quarkus.swagger-ui.display-operation-id=true
quarkus.swagger-ui.theme=original
quarkus.swagger-ui.always-include=true
quarkus.http.cors=true
quarkus.http.cors.origins=http://localhost:3000
quarkus.http.cors.methods=GET,POST,PUT,DELETE,OPTIONS
quarkus.http.cors.headers=Accept,Authorization,Content-Type
quarkus.datasource.db-kind=postgresql
quarkus.datasource.username=postgres
quarkus.datasource.password=postgres
quarkus.datasource.jdbc.url=jdbc:postgresql://postgres_sismos:5432/sismos
quarkus.http.access-log.enabled=true
quarkus.hibernate-orm.packages=mx.com.escom.sismos.external.jpa.model
```

1.2 Esquema de Base de Datos

El esquema SQL incluye:

- Extensiones PostGIS para funcionalidades geoespaciales
- Extensión UUID para generación de identificadores únicos
- Una tabla registros sismos con datos geoespaciales

2. Conexión entre Quarkus y PostgreSQL

2.1 Componentes involucrados

En la arquitectura, los componentes principales son:

- 1. Quarkus: Framework que ejecuta tu aplicación
- 2. SmallRye OpenAPI/Swagger: Genera la documentación y UI para tu API
- 3. PostgreSQL con PostGIS: Tu base de datos con extensiones geoespaciales
- **4.** Hibernate ORM: Mapeo objeto-relacional configurado para tu paquete mx.com.escom.sismos.external.jpa.model

Endpoints

Para el caso de los endpoints puede entrar en la url http://localhost:9090/q/swagger-ui/#/, al entrar debera de ver el unico endpoint, al hacer click podra interactuar con este.

