Database Systems, Even 2020-21

Normalization

Canonical Cover

- Suppose that we have a set of functional dependencies F on a relation schema
- Whenever a user performs an update on the relation, the database system must ensure that the update does not violate any functional dependencies; that is, all the functional dependencies in *F* are satisfied in the new database state
- If an update violates any functional dependencies in the set F, the system must roll back the update
- We can reduce the effort spent in checking for violations by testing a simplified set of functional dependencies that has the same closure as the given set
- This simplified set is termed the canonical cover
- To define canonical cover, we must first define extraneous attributes
 - An attribute of a functional dependency in F is extraneous if we can remove it without changing F⁺

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - E.g.: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of a functional dependency may be redundant
 - o E.g. on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - o In the forward: (1) A \rightarrow CD \Rightarrow A \rightarrow C and A \rightarrow D; (2) A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C; A⁺ = ABCD
 - o In the reverse: (1) A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C; (2) A \rightarrow C, A \rightarrow D \Rightarrow A \rightarrow CD; **A**⁺ = **ABCD**
 - o E.g. on LHS: $\{A \to B, B \to C, AC \to D\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - $\text{o} \quad \textit{In the forward:} \ (1) \ \mathsf{A} \to \mathsf{B}, \ \mathsf{B} \to \mathsf{C} \Rightarrow \mathsf{A} \to \mathsf{C} \Rightarrow \mathsf{A} \to \mathsf{AC} \ \mathsf{and} \ \mathsf{A} \to \mathsf{D}; \ (2) \ \mathsf{A} \to \mathsf{AC}, \ \mathsf{AC} \to \mathsf{D} \Rightarrow \mathsf{A} \to \mathsf{D};$

 $A^+ = ABCD$

- In the reverse: (1) $A \rightarrow D \Rightarrow AC \rightarrow D$; $AC^+ = ABCD$
- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Removing an attribute from the left side of a functional dependency could make it a stronger constraint
 - For example, if we have AB \rightarrow C and remove B, we get the possibly stronger result A \rightarrow C
 - It may be stronger because A → C logically implies AB → C, but AB → C does not, on its own, logically imply A → C
- But, depending on what our set F of functional dependencies happens to be, we may be able to remove B from AB → C safely
 - For example, suppose that F = {AB → C, A → D, D → C}
 - Then we can show that F logically implies A \rightarrow C, making extraneous in AB \rightarrow C

Extraneous Attributes

- Removing an attribute from the right side of a functional dependency could make it a weaker constraint
 - For example, if we have AB \rightarrow CD and remove C, we get the possibly weaker result AB \rightarrow D
 - It may be weaker because using just AB \rightarrow D, we can no longer infer AB \rightarrow C
- But, depending on what our set F of functional dependencies happens to be, we may be able to remove C from AB → CD safely
 - For example, suppose that $F = \{AB \rightarrow CD, A \rightarrow C\}$
- Then we can show that even after replacing AB \rightarrow CD by AB \rightarrow D, we can still infer AB \rightarrow C and thus AB \rightarrow CD

Extraneous Attributes

- An attribute of a functional dependency in F is extraneous if we can remove it without changing F⁺
- Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F
 - Remove from the left side: Attribute A is extraneous in α if
 - \circ $A \in \alpha$ and
 - o F logically implies $(F \{\alpha \to \beta\}) \cup \{(\alpha A) \to \beta\}$
 - Remove from the right side: Attribute A is extraneous in β if
 - \circ $A \in \beta$ and
 - The set of functional dependencies $(F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\}$ logically implies F

Note: Implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one

Testing if an Attribute is Extraneous

- Let R be a relation schema and let F be a set of functional dependencies that hold on R
- Consider an attribute in the functional dependency $\alpha \rightarrow \beta$
- To test if attribute $A \in \beta$ is extraneous in β
 - Compute α^+ using only the dependencies in the set F':

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}\$$

- Check that α^+ contains A; if it does, A is extraneous in β
- To test if attribute $A \in \alpha$ is extraneous in α
 - Let $\gamma = \alpha \{A\}$. Check if $\gamma \to \beta$ can be inferred from F
 - Compute γ⁺ using the dependencies in F
 - o If γ^+ includes all attributes in β then, A is extraneous in α

Testing if an Attribute is Extraneous

- Let $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$
- To check if C is extraneous in $AB \rightarrow CD$, we:
 - Compute the attribute closure of AB under $F = \{AB \rightarrow D, A \rightarrow E, E \rightarrow C\}$
 - The closure is ABCDE, which includes CD
 - This implies that C is extraneous

Canonical Cover

A **canonical cover** for F is a set of dependencies F_c such that

- F logically implies all dependencies in F_c , and
- F_c logically implies all dependencies in F, and
- No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique
- That is, there are no two dependencies in F_c such that
 - $\alpha_1 \rightarrow \beta_1$ and $\alpha_2 \rightarrow \beta_2$ such that
 - $-\alpha_1 = \alpha_2$

Canonical Cover

To compute a canonical cover for F:

repeat

Use the union rule to replace any dependencies in F of the form

$$\alpha_1 \rightarrow \beta_1$$
 and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1$ β_2

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β

/* Note: test for extraneous attributes done using F_c not F */

If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until (F_c not change)

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Example: Computing a Canonical Cover

- R = (A, B, C) $F = \{A \rightarrow BC$ $B \rightarrow C$ $A \rightarrow B$ $AB \rightarrow C\}$
- Combine $A \to BC$ and $A \to B$ into $A \to BC$
 - Set is now $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A is extraneous in $AB \rightarrow C$
 - Check if the result of deleting A from AB → C
 is implied by the other dependencies
 - Yes: In fact, $B \rightarrow C$ is already present!
 - Set is now $\{A \rightarrow BC, B \rightarrow C\}$

- C is extraneous in $A \rightarrow BC$
- Check if A → C is logically implied by A → B and the other dependencies
 - Yes: Using transitivity on $A \rightarrow B$ and $B \rightarrow C$
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Equivalence of Sets of Functional Dependencies

- Let F and G are two functional dependency sets
 - These two sets are equivalent if F⁺ = G⁺
 - Equivalence means that every functional dependency in F can be inferred from G and every functional dependency in G can be inferred from F
- Let F and G are two functional dependency sets
 - F covers G: All the functional dependency of G are logically the members of functional dependency set F⇒ $G \subseteq F$
 - Govers F: All the functional dependency of F are logically the members of functional dependency set $G \Rightarrow F \subseteq G$

Condition	Cases			
F covers G	True	True	False	False
G covers F	True	False	True	False
Result	F = G	$G \subset F$	F⊂G	No comparison

Lossless Decomposition

- For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R
 - $r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$
- A decomposition of R into R_1 and R_2 is lossless decomposition if at least one of the following dependencies is in F^+ :

$$R_1 \cap R_2 \to R_1$$
$$R_1 \cap R_2 \to R_2$$

- The above functional dependencies are a sufficient condition for lossless join decomposition
- The dependencies are a necessary condition only if all constraints are functional dependencies
- To identify whether a decomposition is lossless or lossy, it must satisfy the following conditions:
 - $R_1 \cup R_2 = R$
 - $-R_1 \cap R_2 \neq \emptyset$ and
 - $R_1 \cap R_2 \to R_1$
 - $R_1 \cap R_2 \to R_2$

Lossless Decomposition

- Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)
- Having dependencies: S# → Sname, S# → City, (S#, P#) → Qty
- Decompose as: Supplier(S#, Sname, City, Qty), Parts(P#, Qty)
- Take Natural Join to reconstruct: Supplier ⋈ Parts
 - We get extra tuples! Join is lossy!
 - Common attribute Qty is not a superkey in Supplier or in Parts
 - Doesn't preserve (S#, P#) → Qty

S#	Sname	City	P#	Qty
3	Smith	London	301	20
5	Nick	NY	500	50
2	Steve	Boston	20	10
5	Nick	NY	400	40
5	Nick	NY	301	10

S#	Sname	City	Qty
3	Smith	London	20
5	Nick	NY	50
2	Steve	Boston	10
5	Nick	NY	40
5	Nick	NY	10

P#	Qty
301	20
500	50
20	10
400	40
301	10

S#	Sname	City	P#	Qty
3	Smith	London	301	20
5	Nick	NY	500	50
5	Nick	NY	20	10
2	Steve	Boston	20	10
5	Nick	NY	400	40
5	Nick	NY	301	10
2	Steve	Boston	301	10

Lossless Decomposition

- Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)
- Having dependencies: S# → Sname, S# → City, (S#, P#) → Qty
- Decompose as: Supplier(S#, Sname, City), Parts(S#, P#, Qty)
- Take Natural Join to reconstruct: Supplier ⋈ Parts
 - We get back the original relation! Join is lossless!
 - Common attribute S# is the superkey in Supplier
 - Preserve all the dependencies

S#	Sname	City	P#	Qty
3	Smith	London	301	20
5	Nick	NY	500	50
2	Steve	Boston	20	10
5	Nick	NY	400	40
5	Nick	NY	301	10

S#	Sname	City
3	Smith	London
5	Nick	NY
2	Steve	Boston
5	Nick	NY
5	Nick	NY

S#	P#	Qty
3	301	20
5	500	50
2	20	10
5	400	40
5	301	10

S#	Sname	City	P#	Qty
3	Smith	London	301	20
5	Nick	NY	500	50
2	Steve	Boston	20	10
5	Nick	NY	400	40
5	Nick	NY	301	10

Dependency Preservation

- Let F_i be the set of dependencies F^+ that include only attributes in R_i
- A decomposition is **dependency preserving**, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$
- If is not, then checking updates for violation of functional dependencies may require computing joins, which is expensive
- Using the above definition, testing for dependency preservation take exponential time
- Not that if a decomposition is NOT dependency preserving then checking updates for violation of functional dependencies may require computing joins, which is expensive
- Let R be the original relational schema having set of FD F
- Let R_1 and R_2 having the FD set F_1 and F_2 respectively, are the decomposed subrelation of R
- The decomposition of R is said to be preserving if:
 - $-F_1 \cup F_2 \equiv F$ (decomposition reserving dependencies)
 - If $F_1 \cup F_2 \subset F$ (decomposition NOT preserving dependencies) and
 - $F_1 \cup F_2 \supset F$ (this is not possible)

Dependency Preservation

- Let F be the set of dependencies on schema R and let R_1 , R_2 , ..., R_n be a decomposition of R
- The restriction of F to R_i is the set F_i of all functional dependencies in F+that include **only** attributes of R_i
- Since all functional dependencies in a restriction involve attributes of only one relation schema, it is possible to test such a dependency for satisfaction by checking only one relation
- Note that the definition of restriction uses all dependencies in F⁺, not just those in F
- The set of restrictions F_1 , F_2 , ..., F_n is the set of functional dependencies that can be checked efficiently

Testing for Dependency Preservation

- To check if a dependency $\alpha \to \beta$ is preserved in a decomposition of R into $R_1, R_2, ..., R_n$, we apply the following test (with attribute closure done with respect to F)
 - $result = \alpha$ repeat for each R_i in the decomposition $t = (result \cap R_i)^+ \cap R_i$ $result = result \cup t$ until (result does not change)
 - If *result* contains all attributes in β, then the functional dependency $\alpha \rightarrow \beta$ is preserved
- We apply the test on all dependencies in F to check if a decomposition is dependency preserving
- This procedure takes polynomial time, instead of the exponential time required to compute F^+ and $(F_1 \cup F_2 \cup ... \cup F_n)^+$

Example

- R = (A, B, C, D, E, F)
 F = {A → BCD, A → EF, BC → AD, BC → E, BC → F, B → F, D → E}
 D = {ABCD, BF, DE}
- On projections:

ABCD (R1)	BF(R2)	DE(R3)
$A \rightarrow BCD$	D . E	D . E
$BC \rightarrow AD$	$B \rightarrow F$	$D \rightarrow E$

- Need to check for: $A \rightarrow BCD$, $A \rightarrow EF$, $BC \rightarrow AD$, $BC \rightarrow E$, $BC \rightarrow F$, $B \rightarrow F$, $D \rightarrow E$
- (BC)+/ F_1 = ABCD, (ABCD)+/ F_2 = ABCDF, (ABCDF)+/ F_3 = ABCDEF, Preserves **BC** \rightarrow **E**, **BC** \rightarrow **F**
- (A)+/ F_1 = ABCD, (ABCD)+/ F_2 = ABCDF, (ABCDF)+/ F_3 = ABCDEF, Preserves $A \rightarrow EF$

Example

- $R = (A, B, C, D, E, F); F = \{A \rightarrow BCD, A \rightarrow EF, BC \rightarrow AD, BC \rightarrow E, BC \rightarrow F, B \rightarrow F, D \rightarrow E\}$
- On projections:

ABCD (R1)	BF(R2)	DE(R3)	
$A \rightarrow B, A \rightarrow C, A \rightarrow D$	D \ E	D . E	
$BC \rightarrow A, BC \rightarrow D$	$B \rightarrow F$	$D \rightarrow E$	

Infer reverse FDs:

- B+/F = BF: $A \rightarrow B$ can not be inferred
- $C^+/F = C: C \rightarrow A$ can not be inferred
- D+/F = DE: D \rightarrow A and D \rightarrow BC can not be inferred
- A⁺/F = ABCDEF: A \rightarrow BC can be inferred, but it is equal to A \rightarrow B and A \rightarrow C
- $F^+/F = F: F \rightarrow B$ can not be inferred
- $E^+/F = E: E \rightarrow B$ can not be inferred
- Need to check for: A → BCD, A → EF, BC → AD, BC → E, BC → F, B → F, D → E
- (BC)+/F = ABCDEF, Preserves $BC \rightarrow E$, $BC \rightarrow F$
- (A)+/F = ABCDEF, Preserves $A \rightarrow EF$

Normalization

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in