

COPIE INTERNE 25/08/2025

Dr AOUATTAH TARIK RUE REPER-VREVEN 107

Prescripteur: Dr AOUATTAH TARIK

1020 BRUXELLES

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale
Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris

Pr Jean-Christophe Noël Dr Anne-Laure Trépant Dr Marie Van Eycken Pr Laurine Verset

Consultant (e) s
Dr Sarah Bouri
Dr Xavier Catteau
Dr Roland de Wind
Dr Marie-Lucie Racu
Dr Valérie Segers
Dr Anne Theunis
Dr Marie-Paule Van Craynest

T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

Secrétariat Médical

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25CU000386 EXAMEN : 25EM00106

Prélevé le 06/01/2025 à 06/01/2025

Reçu le 09/01/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 168 GENES IMPLIQUÉS DANS LES TUMEURS SOLIDES ET HÉMATOLOGIQUES

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I: Renseignement anatomopathologiques:

N° du prélèvement : 25CU000386

Date du prélèvement : 06/01/2025

Origine du prélèvement : CurePath

Type de prélèvement : Adénocarcinome pancréatique

Pourcentage de cellules tumorales : 20%

Commentaires: /

II : Méthode:

La partie technique, hormis l'extraction de l'ADN, est effectuée par le laboratoire BrightCore de la VUB. L'extraction d'ADN est réalisée à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.

Analyse par le laboratoire BrightCore : validée et accréditée selon la norme NBN EN ISO15189 (141-MED) effectuée à l'aide du kit Kappa Hyper Prep pour la préparation des librairies et de la technologie SeqCap pour la capture. Le Séquençage est réalisé sur le séquenceur NovaSeq 6000 (Illumina).

L'ensemble des exons pour les 168 gènes suivants sont analysés :

ABL1, ACVR1, AKT1, ALK, APC, AR, ARAF, ARID1A, ASXL1, ATM, ATR, ATRX, AXIN1, BAP1, BARD1, BCL2, BCL6, BCOR, BRAF, BRCA1, BRCA2, BRIP1, BTK, CALR, CARD11, CBL, CCND1, CD79B, CDH1, CDK12, CDKN2A, CDKN2B, CDKN2C, CEBPA, CHEK1, CHEK2, CIC, CRBN, CREBBP, CSF3R, CTNNB1, CUL4B, CXCR4, CYLD, DAXX, DDR2, DICER1, DIS3, DNMT3A, EGFR, EGR1, EIF1AX, EP300, EPCAM, ERBB2, ERBB3, ERBB4, ESR1, ETV6, EZH2, FAM175A, FAM46C, FANCA, FANCL, FAU, FBXW7, FGFR1, FGFR2, FGFR3, FLT3, FOXL2, FOXO1, FUBP1, GNA11, GNAQ, GNAS, H3F3A, H3F3B, HIST1H1E, HIST1H3B, HIST1H3C, HRAS, IDH1, IDH2, IKZF1, IRF4, JAK2, JAK3, KIT, KMT2A, KMT2D, KRAS, LTB, MAP2K1, MAP2K2, MEF2B, MEN1, MET, MLH1, MPL, MRE11, MSH2, MYD88, MYOD1, MTOR, MUTYH, NBN, NF1, NOTCH1, NOTCH2, NOTCH3, NPM1, NRAS, NTRK1, NTRK2, NTRK3, NUTM1, PALB2, PAX8, PDGFRA, PDGFRB, PIK3CA, PIK3R1, PMS2, POLD1, POLE, PPM1D, PRKAR1A, PTEN, PTPN11, RAD50, RAD51B, RAD51C, RAD51D, RAD54L, RASAL1, RB1, RET, RHOA, RICTOR, ROS1, RUNX1, SETBP1, SF3B1, SMAD4, SMARCA4, SMARCB1, SMO, SRSF2, STAG2, STAT3, STK11, TERT(+promoteur), TET2, TNFAIP3, TNFRSF14, TP53, TRAF3, TSC1, TSC2, U2AF1, VAV1, VHL, WT1, XRCC2 et ZRSR2.

Interprétation:

Ce test permet de détecter des mutations ponctuelles et des courtes insertions/délétions lorsque la fréquence allélique est d'au moins 5% et la profondeur moyenne de séquençage est supérieure à 1500X. Le statut mutationnel des cellules tumorales étant parfois hétérogène, un test négatif ne peut pas exclure avec certitude la présence d'une mutation. Quand la quantité d'ADN amplifié n'est pas suffisante ou la qualité est suboptimale, certaines mutations peuvent ne pas être détectées. La présence ou l'absence d'une mutation est rapportée uniquement si l'analyse est contributive suivant les critères d'acceptation. Ce test n'est pas adapté pour la mise en évidence de mutation germinale. La classification des variants est basée sur les connaissances actuelles de la littérature et sur les recommandations belges en vigueur. Cette classification serait susceptible de changer au cours du temps. La technique utilisée ne permet pas de mettre en évidence les grands réarrangements et les « copy number variations» (CNV).

III: Résultats:

Couverture moyenne: 1896X

Qualité du séquençage : Suboptimale malgré un coverage moyen >1500X

Variants détectés :

La qualité du séquençage étant suboptimale (malgré un coverage supérieur à 1500X), seuls les variants avec une fréquence allélique >10% sont rapportés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Nomenclature HGVS ADN	Nomenclature HGVS Protéine	Fréquence allélique	Couverture				
Impact clinique potentiel								
KRAS	NM_004985.3:c.35G>T	p.Gly12Val (G12V)	52%	1881				
Impact of	clinique indéterminé							
TP53	NM_000546.5:c.375+2T>C	N/A (site d'épissage)	37%	1233				
FGFR3	NM_001163213.1:c.667C>T	p.Arg223Cys (R223C)	29%	742				

Variants de significations biologique et clinique indéterminées :

Gène	Nomenclature HGVS ADN	Nomenclature HGVS Protéine	Fréquence allélique	Couverture
CIC	NM_015125.3:c.1558C>T	NP_055940.3:p.Pro520Ser	59%	1976

IV: Discussion:

Les mutations du gène KRAS sont observées dans 75 à 90% des cancers pancréatiques. Leur impact clinique est indéterminé.

Les mutations du gène TP53 sont fréquentes dans les cancers pancréatiques. Leur impact clinique est indéterminé.

Le gène FGFR3 code pour un recepteur tyrosine kinase qui présente des altérations moléculaires telles que mutation, réarrangement ou amplification dans différents cancers, le plus fréquemment dans les cancers urothéliaux. Alors que la FDA a approuvé le pan-FGFR inhibiteur erdafitinib pour le traitement des patients présentant un carcinome urothélial métastatique avec certaines mutations de FGFR3 (R248C, S249C, Y373C, G370C), leur utilitié clinique pour les patients avec un autre type de cancer ou une autre mutation est indéterminé. L'impact clinique de ce variant est indéterminé.

https://www.ncbi.nlm.nih.gov/clinvar www.oncokb.org

V : CONCLUSION : (THMA le 21/01/2025)

La qualité du séquençage étant suboptimale (malgré un coverage supérieur à 1500X), seuls les variants avec une fréquence allélique >10% sont rapportés.

Absence de variant détecté dans les gènes BRCA1, BRCA2 et GNAS.

Présence du variant pathogénique G12V du gène KRAS.

Présence du variant présumé pathogénique c.375+2T>C du gène TP53.

Présence du variant présumé pathogénique R223C du gène FGFR3.

Présence d'un variant de signification biologique et clinique indéterminée dans le gène CIC.

Ces résultats sont à interpréter avec prudence en raison de la mauvaise qualité suboptimale du séquençage (nombreux artéfacts de séquençage).

VI: Annexe:

Le tableau suivant décrit les exons considérés comme non-contributifs, c'est à dire dont moins de 90% des nucléotides sont couverts au moins 500X.

	Exons non		Exons non		Exons non
Gène - NM de référence	contributifs	Gène - NM de référence	contributifs	Gène - NM de référence	contributifs
ABL1-NM_007313		ERBB4-NM_005235		NRAS-NM_002524	_
ABRAXAS1-NM_139076		ESR1-NM_000125		NTRK1-NM_002529	1
ACVR1-NM_001111067		ETV6-NM_001987		NTRK2-NM_006180	
AKT1-NM_005163		EZH2-NM_004456		NTRK3-NM_001012338	
ALK-NM_004304		FANCA-NM_000135		NUTM1-NM_001284292	
APC-NM_000038		FANCL-NM_018062		PALB2-NM_024675	
ARAF-NM_001654		FAU-NM_001997		PAX8-NM_003466	
ARID1A-NM_006015	1	FBXW7-NM_033632		PDGFRA-NM_006206	
AR-NM_000044		FGFR1-NM_023110		PDGFRB-NM_002609	
ASXL1-NM_015338		FGFR2-NM_022970	_	PIK3CA-NM_006218	
ATM-NM_000051		FGFR3-NM_001163213	2	PIK3R1-NM_181523	
ATR-NM_001184		FLT3-NM_004119	_	PMS2-NM_000535	
ATRX-NM_000489		FOXL2-NM_023067	1	POLD1-NM_002691	
AXIN1-NM_003502		FOXO1-NM_002015	2	POLE-NM_006231	
BAP1-NM_004656		FUBP1-NM_003902	2	PPM1D-NM_003620	
BARD1-NM_000465		GNA11-NM_002067		PRKAR1A-NM_002734	
BCL2-NM_000633	1	GNAQ-NM_002072		PTEN-NM_000314	
BCL6-NM_001706		GNAS-NM_080425		PTPN11-NM_002834	
BCOR-NM_001123385		H3F3A-NM_002107		RAD50-NM_005732	
BRAF-NM_004333		H3F3B-NM_005324		RAD51B-NM_133510	
BRCA1-NM_007294		HIST1H1E-NM_005321		RAD51C-NM_058216	
BRCA2-NM_000059		HIST1H3B-NM_003537		RAD51D-NM_002878	
BRIP1-NM_032043		HIST1H3C-NM_003531		RAD54L-NM_003579	
BTK-NM_000061		HRAS-NM_005343		RASAL1-NM_001301202	
CALR-NM_004343		IDH1-NM_005896		RB1-NM_000321	1
CARD11-NM_032415		IDH2-NM_002168		RET-NM_020975	
CBL-NM_005188		IKZF1-NM_006060		RHOA-NM_001664	
CCND1-NM_053056		IRF4-NM_002460		RICTOR-NM_152756	
CD79B-NM_000626		JAK2-NM_004972		ROS1-NM_002944	
CDH1-NM_004360		JAK3-NM_000215		RUNX1-NM_001754	
CDK12-NM_016507		KIT-INTRON		SETBP1-NM_015559	6
CDKN2A-NM_000077	1	KIT-NM_000222		SF3B1-NM_012433	
CDKN2B-NM_004936		KMT2A-NM_001197104	1	SMAD4-NM_005359	
CDKN2C-NM_078626		KMT2D-NM_003482	42	SMARCA4-NM_003072	6
CEBPA-NM_004364	1	KRAS-NM_004985		SMARCB1-NM_003073	
CHEK1-NM_001114122		LTB-NM_002341		SMO-NM_005631	1
CHEK2-NM_007194		MAP2K1-NM_002755		SRSF2-NM_003016	
CIC-NM_001304815		MAP2K2-NM_030662	1	STAG2-NM_001042750	
CRBN-NM_016302		MEF2B-NM_001145785		STAT3-NM_139276	
CREBBP-NM_004380		MEN1-NM_000244		STK11-NM_000455	
CSF3R-NM_156039		MET-NM_001127500		TENT5C-NM_017709	
CTNNB1-NM_001904		MLH1-NM_000249		TERT-INTRON	Promoteur
CUL4B-NM_001079872		MPL-NM_005373		TERT-NM_198253	1
CXCR4-NM_003467		MRE11-NM_005591		TET2-NM_001127208	
CYLD-NM_015247		MSH2-NM_000251		TNFAIP3-NM_001270508	
DAXX-NM_001141969		MSH6-NM_000179		TNFRSF14-NM_003820	
DDR2-NM_006182		MTOR-NM_004958		TP53-NM_000546	
DICER1-NM_177438		MUTYH-NM_001048174		TRAF3-NM_145725	
DIS3-NM_014953		MYD88-NM_001172567		TSC1-NM_000368	
DNMT3A-NM_175629		MYOD1-NM_002478		TSC2-NM_000548	
EGFR-NM_005228		NBN-NM_002485		U2AF1-NM_006758	
EGR1-NM_001964		NF1-NM_001042492		VAV1-NM_005428	
EIF1AX-NM_001412		NF2-NM_000268		VHL-NM_000551	
EP300-NM_001429		NOTCH1-NM_017617	1	WT1-NM_024426	1
EPCAM-NM_002354		NOTCH2-NM_024408		XRCC2-NM_005431	
ERBB2-NM_004448		NOTCH3-NM_000435	1,24	ZRSR2-NM_005089	
ERBB3-NM_001982		NPM1-NM_002520			
LIGDD 1111_001702	<u> </u>	1.11111 1111_002320			

Suite de l'examen N° **25EM00106** concernant le patient

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUR.

https://www.hubruxelles.be/sites/default/files/2024-03-04_demande%20analyse%20anapath%20cytologie%20v3.pdf https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11%20Demande%20de%20biologie%20mol%C3%A9culaire-IPD%20v1.doc

Dr N D'HAENE

Dr BUTORANO GLORIA