Nowcasting Firms' Operating Activities from Satellite Data on Thermal Infrared Radiation

Yuan Xue, Bohui Zhang, Xiaofeng Zhao (JFQA,2025 Forthcming)

石宛青

(武汉大学金融系)

2025年10月26日

Question

- Can satellite data on TIR predict firm's operating activities?
 - Is TIR responsive to firms' real operating activities?
 - Can TIR predict firms' operating performance?
 - Can TIR predict firms' stock return?

Why interesting?

- **Industrial production** directly drives firm performance; is foundation for economic growth, employment; attract attention from policymakers, investors.
- Existing indicators have limitations::
 - Low timeliness: financial reports provide infrequent "after-the-fact" snapshots.
 - Managerial distortion (Chen et al. ,2020)
 - Most alternative data studies focus on the consumer side (e.g., transactions, foot traffic, social media) capture the "selling stage" rather than "product-stage". (Zhu 2019; Blankespoor et al. 2022)
- Real-time, objective, product-stage signal: firm production consumes energy → generates **thermal signals** detectable by satellites.

Contribution

- contributes to literature on measure of firms' operating activities
 - prior:
 - finance typically focus on selling activities (Huang, 2018);
 - infrequent, aggregated disclosures prone to manipulation (Chen et al. ,2020).
 - extend:introducing a direct, real-time.operate-stage measure——TIR.
- contributes to literature on satellite data in economics and finance
 - prior:
 - use remote sensing to track macro trends (Geddes et al., 2016)
 - visible firm-level cues like parking lot traffic (Katona et al., 2025)
 - extend: captures invisible thermal infrared emissions at the factory level

Hypothesis

performance, controlling for current stock performance.

• H1: Corporate TIR is positively related to firms' future operating

• H2: Corporate TIR is positively related to firms' future stock returns, controlling for current stock performance.

Design-data

- TIR: NASA's Landsat 8 and 9 satellites, 2013.2, 8 days, 30m
- sample: all manufacturing firms listed on China(SH,SZ),2014Q2-2022Q4
- Measuring corporate TIR
 - 1 Identify the factory
 - Registered addresses of listed companies and their subsidiaries
 - Use Google Maps to locate and identify types: (i) factory; (ii) office building; (iii) mixed-use (factory + office). Keep types 1 and 3.
 - Mark the factory area outlines (4 corner points A, B, C, D, and the center point)

Design-data

- Measuring corporate TIR
 - 1 Identify the factory
 - 2 Compute factory TIR
 - subtract the natural TIR from the observed TIR
 - $AR_{f,t} = FR_{f,t} BR_{f,t}$
 - adjusted TIR(AR), Observed factory TIR (FR).bare lands (BR.devoid of human inhabitants and production activities)

Design-data

- Measuring corporate TIR
 - 1 Identify the factory
 - 2 Compute factory TIR
 - 3 Construct corporate TIR
 - $AR_{i,q} = \sum_{f=1}^{F} W_f \cdot AR_{f,q}$
 - W_f : factory f's initial investment/firm's total investment across all factories (IW) or is equal to 1/F (EW)
 - $DAR_{i,q} = \frac{AR_{i,q} AR_{i,q-4}}{|AR_{i,q-4}|}$
- Firm performance
 - future operating:sales growth $(SG_{i,q})$, cost of goods sold $(COGS_{i,q})$, capital expenditures $(Capx_{i,q})$, firms' profit margins $(OperatingMargin_{i,q})$
 - stock performance($Ret_{i,q}$)
- control variables
 - current stock return
 - Firm Control: $Size_{i,q}$, $Leverage_{i,q}$, $Loss_{i,q}$, $BM_{i,q}$, $Tangibility_{i,q}$, $Plants_{i,q}$
 - Region Control: $Temp_{i,q}$, $Humid_{i,q}$, $Preci_{i,q}$, $Sunshine_{i,q}$, $GDPGrowth_{i,q}$, $GDP/Cap_{i,q}$

Design-Summary statistics

• final sample:61,346 observations, involving 2,959 listed firms and 28,236 unique factories

Variable	Unit	N	Mean	STD	P25	P50	P75
1	2	3	5	6	7	8	9
Outcome/TIR variables:							
$AR_{f,q}$	Kelvin	119,904	3.23	3.15	0.90	2.77	5.13
$DAR_{f,q}$	decimal	95,110	0.35	2.42	-0.30	0.01	0.43
Treatment variable:							
$COVID19_{f,q}$	decimal	119,904	1.04	1.88	0.00	0.00	1.39
Control variables:							
$Ret_{f,q}$	%	119,904	7.43	23.22	-8.23	2.31	17.73
$Size_{f,q}$	decimal	119,904	23.06	1.18	22.17	22.85	23.77
Leverage _{f,q}	decimal	119,904	0.45	0.17	0.33	0.46	0.58
$Loss_{f,q}$	dummy	119,904	0.14	0.35	0.00	0.00	0.00
$BM_{f,q}$	decimal	119,904	0.72	0.51	0.39	0.61	0.91
$Tangibility_{f,q}$	decimal	119,904	0.23	0.12	0.14	0.22	0.31
Plants _{f,q}	integer	119,904	40.38	52.32	12.00	22.00	45.00
Temperature _{f,q}	$^{\circ}\mathrm{C}$	119,904	16.05	8.47	9.44	18.45	22.07
Humidity _{f,q}	%	119,904	71.60	11.01	66.06	75.50	78.94
Precipitation _{f,q}	mm	119,904	3.21	2.49	1.09	2.64	4.97
Sunshine _{f,q}	hours	119,904	5.31	1.78	4.09	5.05	6.51
$GDPGrowth_{f,q}$	%	119,904	6.38	8.03	2.79	5.92	11.44
GDP/Capita _{f,q}	ten thousand yuan	119,904	9.91	4.24	6.78	9.35	13.50

Panel C: Adjusted TIR in the park area before and after the shutdown

Before shutdown

After shutdown

Dependent variable	A	$DAR_{f,q}$		
<u>-</u>	1	2	3	4
COVID19 _{f,q}	-0.078**	-0.086***	-0.054***	-0.057**
	(0.03)	(0.02)	(0.01)	(0.02)
$Ret_{f,q}$		0.001		0.001
		(0.00)		(0.00)
$Size_{f,q}$		-0.023		-0.041
		(0.03)		(0.06)
$Leverage_{f,q}$		-0.087		0.244
		(0.27)		(0.29)
$Loss_{f,q}$		-0.025		-0.098**
		(0.02)		(0.03)
$BM_{f,q}$		-0.007		-0.027
		(0.06)		(0.05)
$Tangibility_{f,q}$		-0.391**		0.803*
		(0.13)		(0.39)
Plants _{f,q}		0.001		0.001
		(0.00)		(0.00)
$Temperature_{f,q}$		0.001		0.011

Dependent variable	$SG_{i,q+1}$				
TIR variable		veighted TIR		t-weighted TIR	
TIK Variable	$DAR_{i,q}$	$=DARe_{i,q}$	$DAR_{i,q} = DARw_{i,q}$		
	1	2	3	4	
$DAR_{i,q}$	0.292**	0.314***	0.272**	0.281**	
	(0.12)	(0.11)	(0.11)	(0.10)	
$Ret_{l,q}$		0.143***		0.143***	
		(0.03)		(0.03)	
$Size_{i,q}$		11.636***		11.631***	
		(1.72)		(1.72)	
$Leverage_{l,q}$		32.001***		31.992***	
		(5.97)		(5.97)	
$Loss_{i,q}$		-11.825***		-11.825***	
		(1.09)		(1.09)	
$BM_{i,q}$		9.055***		9.041***	
		(2.42)		(2.42)	
$Tangibility_{l,q}$		-17.362*		-17.353*	
		(8.68)		(8.68)	
Plants _{i,q}		-0.118		-0.118	
•		(0.08)		(0.08)	
$Temperature_{i,q}$		-0.185		-0.185	
		(0.13)		(0.13)	
1emperaure _{i,q}					

Panel A. Costs of goods sold					
Dependent variable	$COGS_{l,q+1}$				
TIR variable	Equally we	eighted TIR	Investment-weighted TIF		
THE VARIABLE	$DAR_{i,q} = DARe_{i,q}$		$DAR_{i,q} = DARw_{i,q}$		
	1	2	3	4	
$DAR_{i,q}$	0.200*	0.218**	0.209**	0.213**	
	(0.10)	(0.09)	(0.10)	(0.09)	
Control	No	Yes	No	Yes	
Firm fixed effects	Yes	Yes	Yes	Yes	
Year-quarter fixed effects	Yes	Yes	Yes	Yes	
Observations	61,337	61,337	61,337	61,337	
R-squared	0.190	0.207	0.190	0.207	

Dependent variable		$Capx_{l,q+l}$				
TIR variable	Equally we	eighted TIR	Investment-v	weighted TIR		
TIK Variable	$DAR_{l,q} =$	$DAR_{l,q} = DARe_{l,q}$		$DARw_{t,q}$		
	1	2	3	4		
$DAR_{i,q}$	0.005**	0.005**	0.005**	0.005*		
	(0.00)	(0.00)	(0.00)	(0.00)		
Control	No	Yes	No	Yes		
Firm fixed effects	Yes	Yes	Yes	Yes		
Year-quarter fixed effects	Yes	Yes	Yes	Yes		
Observations	59,666	59,666	59,666	59,666		
				4 L F 4 L F A E F 4		

Panel A. Raw returns						
Dependent variable	$Ret_{l,q+1}$					
TIR variable		Equally weighted TIR $DAR_{l,q} = DARe_{l,q}$		-weighted TIR = DARw _{i,q}		
	1	2	3	4		
$DAR_{i,q}$	0.131**	0.111**	0.128**	0.101**		
	(0.05)	(0.04)	(0.05)	(0.04)		
$Ret_{l,q}$, ,	-0.049***	, ,	-0.049***		
**		(0.02)		(0.02)		
$Size_{l,q}$		-1.420		-1.421		
73		(1.16)		(1.16)		
$Leverage_{l,q}$		2.392*		2.391*		
3 9		(1.19)		(1.19)		
$Loss_{l,q}$		-3.843***		-3.840***		
79		(0.52)		(0.52)		
$BM_{i,q}$		1.374**		1.377**		
73		(0.53)		(0.53)		
Tangibility _{i.a}		1.035		1.014		
5 3 44		(2.25)		(2.26)		
Plants _{i.a}		0.008		0.008		
		(0.01)		(0.01)		
Temperature _{i.a}		-0.009		-0.010		
		(0.05)		(0.05)		
		. ,				

Donal A Darry naturma

Panel A. Equally weighted TIR

1 2 5	Excess	FF3	Carhart4	FF5
Portfolio	1	2	3	4
Low DAR	1.963	1.082	1.014	1.093
2	2.028	1.206	1.150	1.193
3	2.170	1.369	1.266	1.325
4	2.272	1.446	1.368	1.406
High <i>DAR</i>	2.366	1.476	1.383	1.548
High – Low	0.403**	0.394**	0.369*	0.455**
.,	(0.19)	(0.19)	(0.19)	(0.19)

Panal D. Investment weighted TIP

	(0.20)	(0.20)	(0.20)	(0.20)
High – Low	0.427**	0.395**	0.372*	0.447**
High <i>DAR</i>	2.356	1.462	1.371	1.522
4	2.295	1.455	1.359	1.426
3	2.250	1.440	1.353	1.425
2	1.995	1.184	1.138	1.148
Low DAR	1.928	1.067	0.999	1.075
Portfolio	1	2	3	4
	Excess	FF3	Carhart4	FF5

Result-Additional analysis

- Do sophisticated investors use TIR in trading?No
 - DAR——short sell,DAR——intuitional ownership,DAR——foreign invest
- 2 Do TIR-sale growth relation influenced by firms' energy efficiency? Yes
 - DAR×energy efficient industry—sale growth, DAR×TEP—sale growth, DAR×SOE—sale growth
- 3 Do investors incorporate TIR information before earnings announcements? No
 - DAR——CAR
- 4 Is TIR's predictive power linked to on-site information access difficulty? Yes
 - DAR×site visit——CAR, DAR×high speed rail——CAR
- **5** Is TIR's predictive power linked to firm information transparency? Yes
 - DAR×earnings management——CAR

Idea

- 进一步?
 - TIR 预测企业信用风险、供应链风险
- 卫星数据的金融应用?
 - TIR 识别财务造假
 - TIR 作为能源消耗变量,结合产能,替代 CO2 等构造企业绿色指标
 - 多源遥感融合: TIR 只反映热能消耗,未反映生态状态。TIR 结合与 NDVI (植被指数)等是否能同时刻画"产出强度 + 环境影响"?探索其对收益、碳排、环境政策冲击的反应。
- 预测企业生产经营的其他另类数据?
 - 环境传感器与空气质量数据
 - 交通物流数据

Appendix-Summary statistics

NI

Maan

CTD

D25

D50

D75

Linit

Panel B: The firm-level analysis Variable

variable	Unit	IN	Mean	sid	P25	P50	P/3
1	2	3	5	6	7	8	9
Outcome variables:							
$SG_{l,q+1}$	%	61,346	18.75	53.43	-7.22	9.82	30.98
$COGS_{i,q+1}$	%	61,337	18.21	47.18	-5.73	10.18	30.26
$Employment_{i,y}$	%	17,702	7.38	30.13	-4.56	2.07	12.02
$Operating Margin_{l,q+1}$	%	61,346	5.51	26.43	1.53	6.99	14.24
$Ret_{i,q+1}$	%	60,639	4.00	24.01	-11.30	-0.33	14.59
$ARet_{i,q+1}$	%	60,639	-3.07	17.42	-13.64	-4.82	5.79
$CAR(-1, 1)_{l, q+1}$	%	45,162	-0.24	4.96	-3.13	-0.41	2.38
$DSHO_{t,q}$	decimal	19,822	-0.05	2.46	-0.23	-0.00	0.19
$DIO_{i,q}$	%	61,346	-0.60	6.97	-3.65	-0.55	1.86
TIR variables:							
$DARe_{l,q}$	decimal	61,346	0.32	1.85	-0.21	0.03	0.34
$DARw_{i,q}$	decimal	61,346	0.32	1.87	-0.21	0.03	0.35
$DAReL8_{i,q}$	decimal	61,175	0.31	1.89	-0.22	0.02	0.35
$DARwL8_{i,q}$	decimal	61,175	0.32	1.89	-0.22	0.02	0.35
$DAReTI_{i,q}$	decimal	61,232	0.30	1.76	-0.20	0.03	0.34
$DARwTI_{i,q}$	decimal	61,232	0.31	1.81	-0.20	0.03	0.34
$DAReS_{i,q}$	decimal	56,957	0.35	1.99	-0.21	0.03	0.36
$DARwS_{i,q}$	decimal	56,957	0.36	2.09	-0.21	0.03	0.36
$DAReH_{i,q}$	decimal	55,282	0.35	2.72	-0.31	0.02	0.46
DAReOig Nowcasting Firm	operdecimal ctivi	51,231g	+ 0.37 T	3.30	T-0.34	0,01,	_d0,51di

Appendix-Result-Q2-employment,margin

Panel C. Employment					
Dependent variable	$Employment_{l,v}$				
TIR variable	Equally we	eighted TIR	Investment-weighted TIR		
The variable	$DAR_{i,q} = DARe_{i,q}$		$DAR_{i,q} = DARw_{i,q}$		
	1	2	3	4	
$DAR_{i,q}$	1.292**	1.222**	1.095**	1.037**	
	(0.50)	(0.45)	(0.47)	(0.43)	
Control	No	Yes	No	Yes	
Firm fixed effects	Yes	Yes	Yes	Yes	
Year fixed effects	Yes	Yes	Yes	Yes	
Observations	17,702	17,702	17,702	17,702	
R-squared	0.215	0.253	0.214	0.253	

Panel D. Operating margin					
Dependent variable	OperatingMargin _{i,q+1}				
TIR variable	Equally weighted TIR		Investment-weighted TIR		
	$DAR_{i,q} = DARe_{i,q}$		$DAR_{l,q} = DARw_{l,q}$		
	1	2	3	4	
$DAR_{i,q}$	0.053	0.053*	0.063*	0.061**	
	(0.03)	(0.03)	(0.03)	(0.03)	

Appendix-Result-Q3-Abnormal returns

 \bullet minus the returns of the 5 \times 5 market value and book-to-market (Size/BM) matched portfolio

Panel B. Abnormal returns			4D ·		
Dependent variable			$ARet_{l,q+1}$		
TIR variable	Equally v	veighted TIR	Investment	-weighted TIR	
TIK variable	$DAR_{l,q}$	$=DARe_{l,q}$	$DAR_{l,q}$	$=DARw_{l,q}$	
	1	2	3	4	
$DAR_{i,q}$	0.098**	0.111***	0.101**	0.110***	
	(0.05)	(0.04)	(0.04)	(0.03)	
$Ret_{l,q}$. ,	-0.057***	, ,	-0.057***	
		(0.01)		(0.01)	
$Size_{i,q}$		0.075		0.074	
		(0.29)		(0.29)	
$Leverage_{l,q}$		2.780***		2.778***	
		(0.85)		(0.85)	
Lossia		-3.989***		-3.986***	
		(0.54)		(0.54)	
$BM_{i,q}$		-0.740		-0.739	
-		(1.62)		(1.62)	
$Tangibility_{i,q}$		1.906		1.885	
		(1.84)		(1.84)	
Plants _{i,a}		0.019*		0.019*	

Daniel D. Alemania - 1 - 1 - 1

Appendix-Result-TIR and sophisticated investors

• firm's net short position change in quarter q (DSHO_{i,q})

Panel A. Short-selling activities Dependent variable	$DSHO_{i,a}$					
TIR variable	Equally weighted TIR $DAR_{l,q} = DARe_{l,q}$		Investment-weighted TIR $DAR_{i,q} = DARw_{i,q}$			
	1	2	3	4		
$DAR_{i,q}$	-0.006 (0.01)	-0.007 (0.01)	-0.012 (0.01)	-0.013 (0.01)		
$Ret_{i,q}$	()	0.004**	()	0.004**		
$Size_{i,q}$		(0.00) -0.043		(0.00) -0.043		
$Leverage_{t,q}$		(0.09) -0.100		(0.09) -0.097		
$Loss_{i,q}$		(0.26) 0.030		(0.26) 0.029		
		(0.06)		(0.06)		
$BM_{l,q}$		-0.078 (0.08)		-0.078 (0.08)		
$Tangibility_{l,q}$		0.250		0.249		
Plants _{i,q}		(0.58) -0.004***		(0.58) -0.004***		
		(0.00)		(0.00)		
Temperature	rating Activitio	0.002	Data on Therr	nal Infrared Bac	diati	

Appendix-Result-TIR and sophisticated investors

• firm's intuitional ownership change in quarter q $(DIO_{i,q})$,

Develop Teachers!

Panel B. Institutional ownership						
Dependent variable	$DIO_{t,q}$					
TID visuishle	Equally	weighted TIR	Investmen	Investment-weighted TIF		
TIR variable	$DAR_{i,q} = DARe_{i,q}$		$DAR_{i,q}$	$DAR_{i,q} = DARw_{i,q}$		
	1	2	3	4		
$DAR_{i,q}$	0.028	0.032*	0.027	0.029		
•	(0.02)	(0.02)	(0.02)	(0.02)		
$Ret_{l,q}$		0.039***		0.039***		
		(0.00)		(0.00)		
$Size_{l,q}$		2.089***		2.089***		
		(0.21)		(0.21)		
$Leverage_{i,q}$		0.437		0.436		
		(0.69)		(0.69)		
$Loss_{i,q}$		-0.387***		-0.387***		
		(0.10)		(0.10)		
$BM_{i,q}$		1.757***		1.756***		
		(0.33)		(0.33)		
Tangibility _{i,q}		0.794		0.795		
		(1.09)		(1.09)		
Plants _{i,q}		-0.009		-0.009		
		(0.01)		(0.01)		
$Temperature_{i,q}$		0.001		0.001		
-						

Dependent variable

SG. ...

Appendix-Result-The effect of energy efficiency and productivity

Dependent variable	$SG_{l,q+1}$					
	1	2	3	4	5	6
$DARw_{i,q} \times Energy_{i,q}$	1.104*	1.035*				
	(0.60)	(0.59)				
$Energy_{i,q}$	1.541	1.126				
W 14	(2.41)	(2.41)				
$DARw_{i,q} \times TFP_{i,q}$			1.120**	0.975*		
			(0.52)	(0.49)		
$TFP_{i,q}$			10.278***	9.022***		
•			(1.39)	(1.37)		
$DARw_{i,q} \times SOE_{i,q}$					-0.479*	-0.497*
					(0.26)	(0.26)
$SOE_{t,q}$					-10.938***	-8.202***
-					(2.66)	(2.81)
$DARw_{i,q}$	0.157	0.173	0.179	0.202*	0.410***	0.424***
	(0.11)	(0.11)	(0.11)	(0.11)	(0.14)	(0.14)
Control	No	Yes	No	Yes	No	Yes
Firm fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Year-quarter fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Observations	61,346	61,346	60,220	60,220	61,346	61,346
R-squared	0.185	0.202	0.189	0.206	0.185	0.203

