## EE4011 RF IC Design Summer 2008 Question 1(a)

Small-signal model of MOSFET ignoring gate resistance and considering  $C_{GS}$  as the only important capacitance.



$$h_{21} = \frac{i_2}{i_1}\Big|_{v_2=0} = \frac{g_m v_1}{j\varpi C_{GS} v_1} = \frac{g_m}{j\varpi C_{GS}} \Rightarrow |h_{21}| = \frac{g_m}{2\pi f C_{GS}}$$

The cut-off frequency is when  $|h_{21}|$  drops to 1:

$$|h_{21}| = 1 \Rightarrow f = f_T = \frac{g_m}{2\pi C_{GS}}$$

The elements of the model are:

$$I_{DS} = \frac{1}{2} \frac{W}{L} \mu C_{OX} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$$

$$g_m = \frac{dI_{DS}}{dV_{GS}} = \frac{W}{L} \mu C_{OX} (V_{GS} - V_{TH}) (1 + \lambda V_{DS})$$

$$g_{dS} = \frac{dI_{DS}}{dV_{DS}} = \frac{1}{2} \frac{W}{L} \mu C_{OX} (V_{GS} - V_{TH})^2 (\lambda)$$

$$C_{GS} \approx \frac{2}{3} WLC_{OX}$$

## EE4011 RF IC Design Summer 2008 Question 1(b)

$$\begin{split} C_{OX} &= \frac{\mathcal{E}_0 \mathcal{E}_r}{T_{OX}} = \frac{8.854 \times 10^{-12} \times 3.9}{4 \times 10^{-9}} = 0.0086 \, F \, / \, m^2 \\ k &= \frac{W}{L} \, \mu C_{OX} = \frac{20}{0.25} \times 350 \times 10^{-4} \times 0.0086 = 0.0242 \, A / V^2 \\ g_m &= k \big( V_{GS} - V_{TH} \big) \big( 1 + \lambda V_{DS} \big) = 0.0242 \times \big( 2.5 - 0.6 \big) \times \big( 1 + 0.15 \times 2 \big) = 0.0597 \, A / V \\ g_{dS} &= \frac{1}{2} \, k \big( V_{GS} - V_{TH} \big)^2 \big( \lambda \big) = \frac{1}{2} \times 0.0242 \times \big( 2.5 - 0.6 \big)^2 \times 0.15 = 0.0065 \, A / V \\ C_{GS} &\approx \frac{2}{3} \, WLC_{OX} = \frac{2}{3} \times 20 \times 10^{-6} \times 0.25 \times 10^{-6} \times 0.0086 = 28.8 \times 10^{-15} \, F \end{split}$$

(i) 
$$f_T = \frac{g_m}{2\pi C_{GS}} = 330GHz \qquad 2 \text{ marks}$$

(This is unrealistic in practice for this geometry transistor but the model here is very simplistic)

(ii) Using the definitions of the y-parameters and setting f=1GHz:

$$y_{11} = \frac{i_1}{v_1} \bigg|_{v_2=0} \qquad y_{21} = \frac{i_2}{v_1} \bigg|_{v_2=0} \qquad y_{12} = \frac{i_1}{v_2} \bigg|_{v_1=0} \qquad y_{22} = \frac{i_2}{v_2} \bigg|_{v_1=0}$$

$$y_{11} = j\omega C_{GS} = 1.8 \times 10^{-4} \angle 90^{\circ}$$

$$y_{12} = 0$$

$$y_{21} = g_m = 0.0597 \angle 0^{\circ}$$

$$y_{22} = g_{DS} = 0.0065 \angle 0^{\circ}$$
8 marks

## EE4011 RF IC Design Summer 2008 Question 2(a)



$$y_{11} = \frac{i_1}{v_1}\Big|_{v_2=0}$$
  $y_{21} = \frac{i_2}{v_1}\Big|_{v_2=0}$   $y_{12} = \frac{i_1}{v_2}\Big|_{v_1=0}$   $y_{22} = \frac{i_2}{v_2}\Big|_{v_1=0}$ 

Applying the y-parameter definitions to the above circuit and performing the circuit analysis under the appropriate conditions gives:

$$y_{11} = \frac{1}{r_{\pi}} + j\omega(c_{\pi} + c_{\mu})$$

$$y_{12} = -j\omega c_{\mu}$$

$$y_{21} = g_{m} - j\omega c_{\mu}$$

$$y_{22} = \frac{1}{r_{o}} + j\omega(c_{s} + c_{\mu})$$

## EE4011 RF IC Design Summer 2008 Question 2(a) continued

The expressions on the previous page have to be manipulated to express the circuit element values in terms of the y-parameters. The final result of this manipulation is as follows:

$$g_{m} = \operatorname{Re}(y_{21}) = 0.1S$$

$$r_{\pi} = \frac{1}{\operatorname{Re}(y_{11})} = 400\Omega$$

$$r_{o} = \frac{1}{\operatorname{Re}(y_{22})} = 2k\Omega$$

$$c_{\mu} = \frac{-\operatorname{Im}(y_{12})}{2\pi f} = 1pF$$

$$c_{\pi} = \frac{\operatorname{Im}(y_{11})}{2\pi f} - c_{\mu} = 5pF$$

$$c_{s} = \frac{\operatorname{Im}(y_{22})}{2\pi f} - c_{\mu} = 2pF$$

16 marks

Question 2(b)

$$f_T = \frac{g_m}{2\pi(c_\pi + c_\mu)} = 2.65GHz$$

# EE4011 RF IC Design Summer 2008 Question 3(a)

$$y(t) = \left[\alpha_{1}A_{1} + \frac{3}{4}\alpha_{3}A_{1}^{3} + \frac{3}{2}\alpha_{3}A_{1}A_{2}^{2}\right]\cos(\varpi_{1}t)$$

$$+ \left[\alpha_{1}A_{2} + \frac{3}{4}\alpha_{3}A_{2}^{3} + \frac{3}{2}\alpha_{3}A_{1}^{2}A_{2}\right]\cos(\varpi_{2}t)$$

$$+ \frac{1}{4}\alpha_{3}A_{1}^{3}\cos3\varpi_{1}t + \frac{1}{4}\alpha_{3}A_{2}^{3}\cos3\varpi_{2}t$$

$$+ \frac{3}{4}\alpha_{3}A_{1}^{2}A_{2}\cos(2\varpi_{1} + \varpi_{2})t + \frac{3}{4}\alpha_{3}A_{1}^{2}A_{2}\cos(2\varpi_{1} - \varpi_{2})t$$

$$+ \frac{3}{4}\alpha_{3}A_{1}A_{2}^{2}\cos(2\varpi_{2} + \varpi_{1})t + \frac{3}{4}\alpha_{3}A_{1}A_{2}^{2}\cos(2\varpi_{2} - \varpi_{1})t$$

#### (i) P1dB

P1dB is defined for a single frequency input so  $A_2$  can be set to 0 in the above formula and then just looking at the o/p component at the fundamental frequency:

$$y_1(t) = \left(\alpha_1 A + \frac{3\alpha_3 A^3}{4}\right) \cos(\varpi t) = A_{OUT} \cos(\varpi t)$$

The voltage gain of the circuit considering the fundamental is:

$$G_{V} = \frac{y_{1}(t)}{x(t)} = \frac{A_{OUT}\cos(\varpi t)}{A\cos(\varpi t)} = \frac{\alpha_{1}A + \frac{3\alpha_{3}A^{3}}{4}}{A} = \alpha_{1} + \frac{3\alpha_{3}A^{2}}{4}$$

Converting to dB:

$$G_{dB} = 20\log_{10}(G_V) = 20\log_{10}\left(\alpha_1 + \frac{3\alpha_3 A^2}{4}\right)$$

For small A (amplitude) the  $A^2$  term is very small and the gain is the "ideal gain" for small input amplitudes:

$$G_{dB,small} = 20\log_{10}(\alpha_1)$$

## EE4011 RF IC Design Summer 2008 Question 3(a)(i) continued

The power gain in dB is:

$$G_{dB} = 20\log_{10}(G_V) = 20\log_{10}\left(\alpha_1 + \frac{3\alpha_3 A^2}{4}\right)$$

For a compressive gain stage  $\alpha_3$  has the opposite sign to  $\alpha_1$  i.e. if  $\alpha_1 > 0$  then  $\alpha_3 < 0$ 

For small input signals (small A) the power gain is approximately:

$$G_{dB,small} = 20\log_{10}(\alpha_1)$$

At the 1dB point the gain is 1dB smaller than this ideal value i.e.

$$G_{dB,P1dB} = G_{dB,small} - 1 = 20\log_{10}(\alpha_1) - 1$$

The amplitude A corresponding to P1dB can be found by equating the last expression to the first expression:

$$G_{dB} = G_{dB,P1dB} \Rightarrow 20 \log_{10} \left( \alpha_1 + \frac{3\alpha_3 A^2}{4} \right) = 20 \log_{10} \left( \alpha_1 \right) - 1$$

$$20 \log_{10} \left( \alpha_1 + \frac{3\alpha_3 A^2}{4} \right) = 20 \log_{10} \left( \alpha_1 \right) - 1$$

$$\Rightarrow 20 \log_{10} \left( \alpha_1 + \frac{3\alpha_3 A^2}{4} \right) - 20 \log_{10} \left( \alpha_1 \right) = -1$$
Note  $\alpha_1$  and  $\alpha_2$  have opposite signs so:
$$\Rightarrow \log_{10} \left( \left( \alpha_1 + \frac{3\alpha_3 A^2}{4} \right) / \alpha_1 \right) = -0.05$$

$$\Rightarrow 1 + \frac{3\alpha_3 A^2}{4\alpha_1} = 10^{-0.05}$$

$$\Rightarrow A^2 = \left( 10^{-0.05} - 1 \right) \frac{4}{3} \frac{\alpha_1}{\alpha_3} = -0.145 \frac{\alpha_1}{\alpha_3} = 0.145 \frac{\alpha_1}{\alpha_3}$$

$$\Rightarrow A = \sqrt{0.145 \frac{\alpha_1}{\alpha_1}}$$

EE4011 RF IC Design Summer 2008 Question 3(a) continued

(ii) IIP3

Again, taking the case of  $A_1=A_2=A$ , and considering the outputs at the fundamental frequencies to be the desired outputs, the amplitudes of the desired signals are:

$$A_{SIG} = \left| \alpha_1 A + \frac{3}{4} \alpha_3 A^3 + \frac{3}{2} \alpha_3 A^3 \right| = \left| \alpha_1 A + \frac{9}{4} \alpha_3 A^3 \right|$$
$$\approx \left| \alpha_1 \right| A \quad \text{if} \quad \alpha_1 >> \frac{9}{4} \alpha_3 A^2$$

In this case the unwanted 3<sup>rd</sup>-order inter-modulation (IM) signals are given by:

$$A_{IM3} = \frac{3}{4} |\alpha_3| A^3$$

As A increases the IM3 outputs will eventually will reach the same level as the desired signal output. This condition is called the "third-order IM intercept point", IP3. The input amplitude corresponding to this condition is A=AIP3 and at this amplitude:

$$A_{SIG} = A_{IM3} \Rightarrow |\alpha_1| A_{IP3} = \frac{3}{4} |\alpha_3| A_{IP3}^3 \Rightarrow A_{IP3} = \sqrt{\frac{4}{3} \frac{|\alpha_1|}{|\alpha_3|}}$$

5 marks

(b)

$$\left|\alpha_{1}\right| = \frac{300}{2} = 150 \quad \left|\alpha_{3}\right| = \frac{4 \times 2 \times 10^{-9}}{\left(2 \times 10^{-3}\right)^{3}} = 1 \Rightarrow A_{IP3} = \sqrt{\frac{3}{4} \frac{\left|\alpha_{1}\right|}{\left|\alpha_{3}\right|}} = \sqrt{\frac{3}{4} \frac{150}{1}} = 10.6V$$

# EE4011 RF IC Design Summer 2008 Question 3(c)



By applying two signals with input power  $(P_{in})$  and measuring the associated output power at the signal frequency  $(P_{sig,out})$  and at the IM3 frequencies  $(P_{IM3,out})$  it is apparent from the graph that:

$$P_{IIP3} = P_{in} + \frac{P_{sig,out} - P_{IM3,out}}{2}$$

## EE4011 RF IC Design Summer 2008 Question 4

(a)

- (i) The operating power gain (also just called the power gain) is the ratio of the power delivered to the load to the power delivered to the network by the source.
- (ii) The transducer power gain is the ratio of the power delivered to the load to the power *available* from the source.
- (iii) The available power gain is the ratio of the power *available* from the network to the power *available* from the source.

3 marks

(b) Operating power gain of the amplifier

$$b_{s} \qquad 1 \qquad a_{1} \qquad s_{21} \qquad b_{2}$$

$$\Gamma_{s} \qquad S_{11} \qquad S_{22} \qquad \Gamma_{L}$$

$$a_{2} = \Gamma_{L}b_{2} \qquad b_{1} \qquad S_{12} \qquad a_{2}$$

$$b_{2} = s_{21}a_{1} + s_{22}a_{2} = s_{21}a_{1} + s_{22}\Gamma_{L}b_{2} \Rightarrow b_{2} = \frac{s_{21}a_{1}}{1 - s_{22}\Gamma_{L}} \Rightarrow a_{2} = \frac{s_{21}\Gamma_{L}a_{1}}{1 - s_{22}\Gamma_{L}}$$

$$b_{1} = s_{11}a_{1} + s_{12}a_{2} = s_{11}a_{1} + \frac{s_{12}s_{21}\Gamma_{L}a_{1}}{1 - s_{22}\Gamma_{L}} = \frac{(s_{11} - s_{11}s_{22}\Gamma_{L} + s_{12}s_{21}\Gamma_{L})a_{1}}{1 - s_{22}\Gamma_{L}}$$

$$a_{1} = b_{s} + \Gamma_{s}b_{1} = b_{s} + \frac{(s_{11} - s_{11}s_{22}\Gamma_{L} + s_{12}s_{21}\Gamma_{L})\Gamma_{s}a_{1}}{1 - s_{22}\Gamma_{L}}$$

$$\Rightarrow a_{1} = \frac{(1 - s_{22}\Gamma_{L})b_{s}}{1 - s_{11}\Gamma_{s} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{s}\Gamma_{L} - s_{12}s_{21}\Gamma_{s}\Gamma_{L}}$$

$$= \frac{(1 - s_{22}\Gamma_{L})b_{s}}{1 - s_{11}\Gamma_{s} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{s}\Gamma_{L} - s_{12}s_{21}\Gamma_{s}\Gamma_{L}}$$

#### EE4011 RF IC Design Summer 2008

Question 4(b) continued

$$a_{1} = \frac{(1 - s_{22}\Gamma_{L})b_{s}}{1 - s_{11}\Gamma_{S} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{S}\Gamma_{L} - s_{12}s_{21}\Gamma_{S}\Gamma_{L}}$$

$$b_{1} = \frac{(s_{11} - s_{11}s_{22}\Gamma_{L} + s_{12}s_{21}\Gamma_{L})a_{1}}{1 - s_{22}\Gamma_{L}}$$

$$= \frac{(s_{11} - s_{11}s_{22}\Gamma_{L} + s_{12}s_{21}\Gamma_{L})b_{s}}{1 - s_{11}\Gamma_{S} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{S}\Gamma_{L} - s_{12}s_{21}\Gamma_{S}\Gamma_{L}}$$

$$a_{2} = \frac{s_{21}\Gamma_{L}a_{1}}{1 - s_{22}\Gamma_{L}} = \frac{s_{21}\Gamma_{L}b_{s}}{1 - s_{11}\Gamma_{S} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{S}\Gamma_{L} - s_{12}s_{21}\Gamma_{S}\Gamma_{L}}$$

$$b_{2} = \frac{s_{21}a_{1}}{1 - s_{22}\Gamma_{L}} = \frac{s_{21}b_{s}}{1 - s_{11}\Gamma_{S} - s_{22}\Gamma_{L} + s_{11}s_{22}\Gamma_{S}\Gamma_{L} - s_{12}s_{21}\Gamma_{S}\Gamma_{L}}$$

$$G_{P} = \frac{P_{OUT}}{P_{IN}} = \frac{\frac{1}{2}|b_{2}|^{2} - \frac{1}{2}|a_{2}|^{2}}{\frac{1}{2}|a_{1}|^{2} - \frac{1}{2}|b_{1}|^{2}} = \frac{|b_{2}|^{2} - |a_{2}|^{2}}{|a_{1}|^{2} - |b_{1}|^{2}}$$

$$= \frac{|s_{21}|^{2} - |s_{21}\Gamma_{L}|^{2}}{|1 - s_{22}\Gamma_{L}|^{2} - |s_{11}(1 - s_{22}\Gamma_{L}) + s_{12}s_{21}\Gamma_{L}|^{2}}$$

$$= \frac{|s_{21}|^{2}(1 - |\Gamma_{L}|^{2})}{|1 - s_{22}\Gamma_{L}|^{2} - |s_{11}(1 - s_{22}\Gamma_{L}) + s_{12}s_{21}\Gamma_{L}|^{2}}$$

$$= \frac{|s_{21}|^{2}(1 - |\Gamma_{L}|^{2})}{|1 - s_{22}\Gamma_{L}|^{2} - |s_{11}(1 - s_{22}\Gamma_{L}) + s_{12}s_{21}\Gamma_{L}|^{2}}$$

$$= \frac{|s_{21}|^{2}(1 - |\Gamma_{L}|^{2})}{|1 - s_{22}\Gamma_{L}|^{2} - |s_{11}(1 - s_{21}\Gamma_{L})^{2}} \quad where \quad \Delta = s_{11}s_{22} - s_{12}s_{21}$$

14 marks

(c) If 
$$\Gamma_L = 0$$

$$G_P = \frac{P_{OUT}}{P_{IN}} = \frac{\left|s_{21}\right|^2}{1 - \left|s_{11}\right|^2} = \frac{\left|3.434\right|^2}{1 - \left|0.836\right|^2} = 46.2$$

## EE4011 RF IC Design Summer 2008 Question 5

- (a) Design Procedure for Low Noise Amplifier (LNA)
  - 1. Select transistor based on s-parameters, noise figure, power level, process technology, etc
  - 2. Check the stability stability factor K, input/output stability circles
  - 3. Check gain gain circles
  - 4. Check noise noise circles
  - 5. Design input and output matching networks (and DC biasing)
  - 6. Re-iterate if necessary

5 marks

(b) Transistor with the following s-parameters at 3GHz.

$$s_{11} = 0.38 \angle -169^{\circ}$$
  $s_{12} = 0$   $s_{21} = 1.33 \angle -39^{\circ}$   $s_{22} = 0.95 \angle -66^{\circ}$ 

$$G_{TU,\text{max}} = \frac{1}{1 - |s_{11}|^2} |s_{21}|^2 \frac{1}{1 - |s_{22}|^2}$$

$$= \frac{1}{1 - |0.38|^2} |1.33|^2 \frac{1}{1 - |0.95|^2}$$

$$= 1.169 \times 1.769 \times 10.256 = 21.2 \quad \text{ratio}$$

$$= 0.68 dB + 2.48 dB + 10.11 dB = 13.27 dB$$

## EE4011 RF IC Design Summer 2008 Question 5 continued

(c) Design for source gain = 0.3dB, load gain = 4dB

Identifying the gain circle to give a source gain of 0.3dB

$$G_{S,dB} = 10\log_{10}(G_S) \Rightarrow G_S = 10^{\frac{G_{S,dB}}{10}} = 10^{\frac{0.3}{10}} = 1.0715$$

$$\Rightarrow g_s = \frac{G_S}{G_{S,\text{max}}} = \frac{1.0715}{1.169} = 0.92$$

$$|C_S| = \frac{g_s |s_{11}|}{1 - |s_{11}|^2 (1 - g_s)} = \frac{0.92 \times |0.38|}{1 - |0.38|^2 (1 - 0.92)} = 0.35$$

$$R_S = \frac{\sqrt{1 - g_s (1 - |s_{11}|^2)}}{1 - |s_{11}|^2 (1 - g_s)} = \frac{\sqrt{1 - 0.92 (1 - |0.38|^2)}}{1 - |0.38|^2 (1 - 0.92)} = 0.25$$

The centre of the 0.3dB source gain circle is a distance 0.35 along the line joining the origin and the point  $s_{11}^*$  and its radius is 0.25

Identifying the gain circle to give a load gain of 4dB

$$G_{L,dB} = 10\log_{10}(G_L) \Rightarrow G_L = 10^{\frac{G_{L,dB}}{10}} = 10^{\frac{4}{10}} = 2.512$$

$$\Rightarrow g_L = \frac{G_L}{G_{L,\text{max}}} = \frac{2.512}{10.256} = 0.245$$

$$|C_L| = \frac{g_L|s_{22}|}{1 - |s_{22}|^2(1 - g_L)} = \frac{0.245 \times |0.95|}{1 - |0.95|^2(1 - 0.245)} = 0.73$$

$$R_L = \frac{\sqrt{1 - g_L}(1 - |s_{22}|^2)}{1 - |s_{22}|^2(1 - g_L)} = \frac{\sqrt{1 - 0.245}(1 - |0.95|^2)}{1 - |0.95|^2(1 - 0.245)} = 0.27$$

The centre of the 4dB load gain circle is a distance 0.73 along the line joining the origin and the point  $s_{22}^*$  and its radius is 0.27

| EXAMINATION NUMBER | GUESTION NUMBER     | DATE |
|--------------------|---------------------|------|
|                    |                     |      |
|                    | EE4011 RF IC Design |      |

#### NORMALIZED IMPEDANCE AND ADMITTANCE COORDINATES



EE4011 Summer 2008 Q5 (C)

### EE4011 RF IC Design Summer 2008 Question 5(c) continued

Input Matching Element Values – need to get from origin to source gain circle

Moving from  $Z_0$  ( $\Gamma$ =0) to point A:

Clockwise on conductance circle – shunt capacitor

susceptance at 
$$Z_0$$
:  $b = 0$   
susceptance at A:  $b = 1.0$   $C = \frac{|\Delta b|}{2\pi f Z_0} = \frac{|1.0|}{2\pi \times 3 \times 10^9 \times 50} = 1.06 pF$ 

Moving from A to B:

Clockwise on resistance circle – series inductor

reactance at A: 
$$x = -0.5$$
 reactance at B:  $x = -0.22$   $L = \frac{Z_0 |\Delta x|}{2\pi f} = \frac{50 \times |0.28|}{2\pi \times 3 \times 10^9} = 0.74 nH$ 

Output Matching Element Values – need to get from origin to load gain circle

Moving from  $Z_0$  ( $\Gamma$ =0) to point C:

Anti-clockwise on resistance circle – series capacitor

reactance at  $Z_0$ : x = 0 reactance at C: x = -1.5

$$C = \frac{1}{2\pi f |\Delta x| Z_0} = \frac{1}{2\pi \times 3 \times 10^9 \times |-1.5| \times 50} = 0.71 pF$$

Moving from C to D:

Anti-clockwise on conductance circle – shunt inductor

susceptance at C: b = 0.46 susceptance at D: b = -0.38

$$L = \frac{Z_0}{2\pi f |\Delta b|} = \frac{50}{2\pi \times 3 \times 10^9 \times |-0.84|} = 3.16nH$$

# EE4011 RF IC Design Summer 2008 Question 5(c) continued



12 marks

### EE4011 RF IC Design Summer 2008 Question 6(a) Switch-based mixer



The LO signal controls the switch. For alternate half-cycles the switch is on so connecting the RF signal to the o/p or off so grounding the output. This is equivalent to multiplying the RF signal by a square wave at the LO frequency.

$$\begin{aligned} v_{out}(t) &= v_{RF}(t) \left[ \frac{1}{2} + \frac{2}{\pi} \sin(\varpi_{LO}t) + \frac{2}{3\pi} \sin(3\varpi_{LO}t) + \frac{2}{5\pi} \sin(5\varpi_{LO}t) + \cdots \right] \\ &= V_{RF} \cos(\varpi_{RF}t) \left[ \frac{1}{2} + \frac{2}{\pi} \sin(\varpi_{LO}t) + \frac{2}{3\pi} \sin(3\varpi_{LO}t) + \frac{2}{5\pi} \sin(5\varpi_{LO}t) + \cdots \right] \\ &= \frac{1}{2} V_{RF} \cos(\varpi_{RF}t) + \frac{2}{\pi} V_{RF} \cos(\varpi_{RF}t) \sin(\varpi_{LO}t) + \frac{2}{3\pi} V_{RF} \cos(\varpi_{RF}t) \sin(3\varpi_{LO}t) \\ &+ \frac{2}{5\pi} V_{RF} \cos(\varpi_{RF}t) \sin(5\varpi_{LO}t) + \cdots \end{aligned}$$

Using 
$$\cos A \sin B = \frac{1}{2} \left( \sin(A+B) - \sin(A-B) \right)$$
 gives 
$$v_{out}(t) = \frac{1}{2} V_{RF} \cos(\varpi_{RF}t) + \frac{V_{RF}}{\pi} \left[ \sin\left((\varpi_{RF} + \varpi_{LO})t\right) - \sin\left((\varpi_{RF} - \varpi_{LO})t\right) \right] + \frac{V_{RF}}{3\pi} \left[ \sin\left((\varpi_{RF} + 3\varpi_{LO})t\right) - \sin\left((\varpi_{RF} - 3\varpi_{LO})t\right) \right] + \frac{V_{RF}}{5\pi} \left[ \sin\left((\varpi_{RF} + 5\varpi_{LO})t\right) - \sin\left((\varpi_{RF} - 5\varpi_{LO})t\right) \right] + \cdots$$

## EE4011 RF IC Design Summer 2008 Question 6(a) continued

The formula just derived indicates spectral components at:

$$\boldsymbol{\varpi}_{RF}, \boldsymbol{\varpi}_{RF} \pm \boldsymbol{\varpi}_{LO}, \boldsymbol{\varpi}_{RF} \pm 3\boldsymbol{\varpi}_{LO}, \boldsymbol{\varpi}_{RF} \pm 5\boldsymbol{\varpi}_{LO}, etc$$

Voltage conversion gain of mixer:

$$v_{RF}(t)$$
  $v_{out}(t)$   $v_{out}(t)$ 

$$v_{out}(t) = \frac{1}{2}V_{RF}\cos(\varpi_{RF}t) + \frac{V_{RF}}{\pi}\left[\sin\left((\varpi_{RF} + \varpi_{LO})t\right) - \sin\left((\varpi_{RF} - \varpi_{LO})t\right)\right] + \cdots$$
amplitude of desired IF signal

The voltage conversion gain (CG) is the ratio of the amplitudes of output IF signal and the input RF signal i.e.

$$A_{CG} = \frac{V_{IF}}{V_{RF}} = \frac{V_{RF}}{\pi} \frac{1}{V_{RF}} = \frac{1}{\pi}$$
  $A_{CG,dB} = 20 \log_{10} \left(\frac{1}{\pi}\right) \approx -10 dB$ 

## EE4011 RF IC Design Summer 2008 Question 6(b)

#### A Gilbert Cell Double Balanced Mixer



4 marks

#### Question 6(c) - 3 possible operating modes

- (i) If both  $V_{RF}$  and  $V_{LO}$  are low-amplitude signals, then the circuit performs as a true analogue multiplier.
- (ii) If  $V_{RF}$  is a low-amplitude signal and  $V_{LO}$  has a large amplitude, then the circuit operated as a frequency mixer.
- (iii) If both  $V_{RF}$  and  $V_{LO}$  are large-amplitude signals, then the circuit acts as a phase detector.

# EE4011 RF IC Design Summer 2008 Question 7

#### 7(a) Type 1 PLL with integer feedback



4 marks

#### 7(b) Closed loop transfer function

$$H(s)\Big|_{OPEN} = \frac{\varphi_{OUT}(s)}{\varphi_{IN}(s)}\Big|_{OPEN} = K_{PD} \cdot \frac{1}{1 + \frac{s}{\omega_{LPF}}} \cdot \frac{K_{VCO}}{s} = \frac{K_{PD}K_{VCO}}{s + \frac{s^2}{\omega_{LPF}}}$$

$$\varphi_{OUT}(s) = H(s)\left(\varphi_{IN}(s) - \frac{\varphi_{OUT}(s)}{M}\right)$$

$$\Rightarrow \varphi_{OUT}(s)\left(1 + \frac{H(s)}{M}\right) = H(s)\varphi_{IN}(s)$$

$$\Rightarrow \frac{\varphi_{OUT}(s)}{\varphi_{IN}(s)} = \frac{H(s)}{1 + \frac{H(s)}{M}} = \frac{1}{\frac{1}{H(s)} + \frac{1}{M}}$$

## EE4011 RF IC Design Summer 2008 Question 7(b) continued

$$\frac{\varphi_{OUT}(s)}{\varphi_{IN}(s)} = \frac{1}{\frac{1}{H(s)} + \frac{1}{M}} = \frac{1}{\frac{s^2}{K_{PD}K_{VCO}}} + \frac{1}{M}$$

$$= \frac{K_{PD}K_{VCO}}{s + \frac{s^2}{\omega_{LPF}} + \frac{K_{PD}K_{VCO}}{M}}$$

$$= \frac{K_{PD}K_{VCO}\omega_{LPF}}{s^2 + \omega_{LPF}s + \frac{K_{PD}K_{VCO}\omega_{LPF}}{M}}$$

$$\frac{K_{PD}K_{VCO}\omega_{LPF}}{s^2 + \omega_{LPF}s + \frac{K_{PD}K_{VCO}\omega_{LPF}}{M}} \equiv \frac{K_{PD}K_{VCO}\omega_{LPF}}{s^2 + 2\varsigma \omega_n s + \omega_n^2}$$
$$\Rightarrow \omega_n = \sqrt{\frac{K_{PD}K_{VCO}\omega_{LPF}}{M}}$$

$$\Rightarrow 2\varsigma \,\omega_n = \omega_{LPF} \Rightarrow \varsigma = \frac{1}{2} \frac{\omega_{LPF}}{\omega_n} = \frac{1}{2} \sqrt{\frac{M\omega_{LPF}}{K_{PD}K_{VCO}}}$$

## EE4011 RF IC Design Summer 2008 Question 7(c)

(i) For an integer feedback the reference frequency must be equal to the desired step size i.e. 200kHz in this case

2 marks

(ii) Range of divider values

$$M = \frac{935}{0.2} = 4675$$
 to  $M = \frac{960}{0.2} = 4800$ 

2 marks

(iii) Cut-off frequency of LPF

A rule of thumb to ensure good stability is to set the low-pass filter cut-off frequency to 10% of the reference frequency i.e. 20kHz.

2 marks

(iv) PLL gain constant (use average M value)

$$\varsigma = \frac{1}{2} \sqrt{\frac{M\omega_{LPF}}{K_{PD}K_{VCO}}} \Rightarrow K_{PD}K_{VCO} = \frac{M\omega_{LPF}}{4\varsigma^2}$$

$$K_{PD}K_{VCO} = \frac{M\omega_{LPF}}{4\varsigma^2} = \frac{4737.5 \times 2\pi \times 20000}{4 \times 0.707^2} = 2.98 \times 10^8$$