

0/37

Constraintprogrammierung

Eine Einführung

Niko Paltzer

Proseminar Programmiersysteme WS 03/04 Betreuer: Gert Smolka

 1963: Das Constraint-Konzept wird in dem interaktiven Zeichen-Programm SKETCHPAD von I. Sutherland benutzt.

- 1963: Das Constraint-Konzept wird in dem interaktiven Zeichen-Programm SKETCHPAD von I. Sutherland benutzt.
- 70er: Verschiedene Algorithmen für die Lösung eines constraint satisfaction problem (CSP) werden in der KI-Forschung entwickelt. (z.B. Erkennung von dreidimensionalen Objekten: WALTZ, 1975)

- 1963: Das Constraint-Konzept wird in dem interaktiven Zeichen-Programm SKETCHPAD von I. Sutherland benutzt.
- 70er: Verschiedene Algorithmen für die Lösung eines constraint satisfaction problem (CSP) werden in der KI-Forschung entwickelt. (z.B. Erkennung von dreidimensionalen Objekten: WALTZ, 1975)
- 80er: Erste Programmiersprachen für Constraintprogrammierung werden entwickelt. (um 1985: CHIP, Prolog II)

- 1963: Das Constraint-Konzept wird in dem interaktiven Zeichen-Programm SKETCHPAD von I. Sutherland benutzt.
- 70er: Verschiedene Algorithmen für die Lösung eines constraint satisfaction problem (CSP) werden in der KI-Forschung entwickelt. (z.B. Erkennung von dreidimensionalen Objekten: WALTZ, 1975)
- 80er: Erste Programmiersprachen für Constraintprogrammierung werden entwickelt. (um 1985: CHIP, Prolog II)
- 90er: Kombination von Forschungsergebnissen aus den Gebieten KI, Computer Algebra und Mathematische Logik (ab 1990: ILOG Solver, ab 1991: Oz)

Send More Money

Finden Sie eine eindeutige Ziffernbelegung für die Buchstaben S, E, N, D, M, O, R, Y, so dass folgende Gleichung erfüllt ist (führende Nullen sind nicht erlaubt):

$$S ext{ } E ext{ } N ext{ } D ext{ } + ext{ } M ext{ } O ext{ } R ext{ } E ext{ } = ext{ } M ext{ } O ext{ } N ext{ } E ext{ } Y$$

Send More Money

Finden Sie eine eindeutige Ziffernbelegung für die Buchstaben S, E, N, D, M, O, R, Y, so dass folgende Gleichung erfüllt ist (führende Nullen sind nicht erlaubt):

$$S ext{ } E ext{ } N ext{ } D ext{ } + ext{ } M ext{ } O ext{ } R ext{ } E ext{ } = ext{ } M ext{ } O ext{ } N ext{ } E ext{ } Y$$

$$9 \quad 5 \quad 6 \quad 7 \quad + \quad 1 \quad 0 \quad 8 \quad 5 \quad = \quad 1 \quad 0 \quad 6 \quad 5 \quad 2$$

Safe

Knacken Sie den Safe! Der Code besteht aus einer Sequenz von 9 verschiedenen Ziffern $C_i \neq 0$ für die gilt:

$$C_4 - C_6 = C_7$$

$$C_1 * C_2 * C_3 = C_8 + C_9$$

$$C_2 + C_3 + C_6 < C_8$$

$$C_9 < C_8$$

$$C_1 \neq 1, \dots, C_9 \neq 9$$

Safe

Knacken Sie den Safe! Der Code besteht aus einer Sequenz von 9 verschiedenen Ziffern $C_i \neq 0$ für die gilt:

$$C_4 - C_6 = C_7$$

$$C_1 * C_2 * C_3 = C_8 + C_9$$

$$C_2 + C_3 + C_6 < C_8$$

$$C_9 < C_8$$

$$C_1 \neq 1, \dots, C_9 \neq 9$$

$$C_1 = 4$$
, $C_2 = 3$, $C_3 = 1$
 $C_4 = 8$, $C_5 = 9$, $C_6 = 2$
 $C_7 = 6$, $C_8 = 7$, $C_9 = 5$

Map-Colouring

Gegeben eine Landkarte, färben Sie die Länder so ein, dass zwei benachbarte Länder unterschiedliche Farben haben und benutzten Sie dabei möglichst wenige verschiedene Farben.

Map-Colouring

Gegeben eine Landkarte, färben Sie die Länder so ein, dass zwei benachbarte Länder unterschiedliche Farben haben und benutzten Sie dabei möglichst wenige verschiedene Farben.

Supermarkt

Sie haben im Supermarkt vier Artikel erstanden und dafür 7,11 € bezahlt. Erstaunt stellen Sie fest, dass das Produkt der Einzelpreise ebenfalls 7,11 € beträgt. Was kostet jeder der vier Artikel?

Supermarkt

Sie haben im Supermarkt vier Artikel erstanden und dafür 7,11 € bezahlt. Erstaunt stellen Sie fest, dass das Produkt der Einzelpreise ebenfalls 7,11 € beträgt. Was kostet jeder der vier Artikel?

1,20€

1,25€

1,50€

Damen-Problem

Platzieren Sie 8 Damen auf einem Schachbrett, ohne dass sie sich gegenseitig bedrohen.

Damen-Problem

Platzieren Sie 8 Damen auf einem Schachbrett, ohne dass sie sich gegenseitig bedrohen.

Weitere Anwendungen

Abgesehen von logischen Spielereien:

- Ablaufplanung
- Turnierplanung
- Personalplanung
- Zuschnittprobleme
- Sprachverarbeitung

Variablenspeicher

8/37

Der Variablenspeicher enthält eine Menge von Variablen ...

Variablenspeicher

9/37

$$x \in \{1,2,3\}$$
 $y \in \{2,3\}$ $z \in \{1,2,3,4\}$

Der Variablenspeicher enthält eine Menge von Variablen und deren endliche Bereiche (*finite domains*).

Propagierer

10/37

$$x^2 = z$$

Hinzu kommen Constraints . . .

Propagierer

Hinzu kommen Constraints . . .

... die von Propagierern realisiert werden.

Konfiguration

12/37

Zusammen ergibt es eine Konfiguration (space) des CSP.

13/37

Der linke Propagierer beginnt . . .

... und engt den Bereich von x ein.

Der rechte Propagierer . . .

Der rechte Propagierer . . .

 \dots kann den Bereich von z einengen.

Stabilität

Die Konfiguration ist jetzt *stabil*, aber wir haben noch keine eindeutige Lösung gefunden.

Distribution

18/37

Also nehmen wir die Konfiguration ...

Distribution

...kopieren sie zwei Mal ...

Distribution

- ...kopieren sie zwei Mal ...
- ... und machen eine Fallunterscheidung.

Denn es gilt $A \Leftrightarrow (A \land C) \lor (A \land \neg C)$.

Suchbaum

21/37

Wenn wir so fortfahren erhalten wir folgenden Suchbaum:

Die grünen Karos markieren eine gefundene Lösung.

Distributions-Strategien

Bei den folgenden Standart-Strategien werden die Variablen als geordnete Sequenz betrachtet.

naive distribution

Distribution über die erste noch nicht determinisierte Variable der Sequenz

first-fail distribution

Distribution über die erste Variable, die noch nicht determinisiert ist und deren *domain* am kleinsten ist

Distributions-Strategien

Die Standart-Möglichkeiten der Distribution über einer Variablen x sind:

- \bullet x = l, wobei l der kleinste mögliche Wert für x ist
- \bullet x = u, wobei l der größte mögliche Wert für x ist
- \bullet x=m, wobei m ungefähr der mittlere Wert für x ist
- $x \le m$, wobei m ebenfalls ungefähr in der Mitte der *domain* von x liegt (der mögliche Bereich für x wird geteilt)

Fragestellungen

Im Zusammenhang mit CSPs sind mehrere Fragestellungen möglich:

- Gibt es (mindestens) eine Lösung?
- Wie viele Lösungen gibt es?
- Wie sehen die Lösungen aus?
- Was ist die optimale Lösung?

Um Antworten auf diese Fragen zu bekommen, verwendet man unterschiedliche Suchmaschinen.

Realisierung in Alice

25/37

Constraints

Realisierung in Alice

25/37

Constraints

Fallunterscheider

Realisierung in Alice

Realisierung in Alice

Realisierung in Alice

Realisierung in Alice

stellt Alice zur Verfügung

Constraints in Alice

Variablen haben den Typ FD.fd.

- <

27/37

Initialisierung von Variablen z.B. mit:

```
FD.range : int * int -> FD.fd
FD.rangeVec : int * (int * int) -> FD.fd vector
```

Propagierer werden z.B. erzeugt mit:

```
FD.equal : FD.fd * FD.fd -> unit
FD.plus : FD.fd * FD.fd * FD.fd -> unit
FD.distinct : FD.fd vector -> unit
```


Fallunterscheider in Alice

Fallunterscheider können angelegt werden mit:

```
FD.distribute :
     FD.dist_mode * FD.fd vector -> unit
```

Zu FD.dist_mode gehören z.B.

- FD.NAIVE Für die erste, nicht determinisierte Variable x mit einem Bereich $\{l,\ldots,u\}$ werden die Fälle x=l und $x\neq l$ unterschieden.
- FD.FIRSTFAIL
 Wie FD.NAIVE, nur wird die erste Variable mit dem kleinsten Bereich ausgewählt.

Suchmaschinen in Alice

Es werden verschiedene Suchmaschinen zur Verfügung gestellt, z.B.

```
Search.searchOne : (unit -> 'a) -> 'a option
und
```

Search.searchAll: (unit -> 'a) -> 'a list

Sie finden für ein Skript die Lösung bzw. alle Lösungen, falls diese existieren.

Modellierung

30/37

Variablen

$$x \in \{1, 2, 3\}$$
 $y \in \{2, 3\}$ $z \in \{1, 2, 3, 4\}$

Constraints

$$x < y$$
 $x^2 = z$

Fallunterscheider

First-Fail-Distribution nach dem kleinsten Wert

Skript

```
fun example () =
   let
      val x = FD.range(1, 3)
      val y = FD.range(2, 3)
      val z = FD.range (1, 4)
      val v = \#[x, y, z]
   in
      FD.less(x, y);
                               x < y
      FD. times (x, x, z); x * x = z
      FD.distribute (FD.FIRSTFAIL, v);
      V
   end
```


Parametrisierung

Die Lösung von parametrisierten Problemen gestaltet sich intuitiv:

- Erstellung eines parametrisierten Skriptes für eine Problem-Gruppe
- Instanzieren des einzelnen Problems durch Übergabe der Parameter

Als Beispiel betrachten wir eine abgewandelte Form des Damen-Problems, das *n-Damen-Problem*.

n-Damen-Problem: Modellierung

33/37

Variablen

Eine Variable für jede Reihe des Spielbretts:

$$R_0, \dots, R_{n-1} \in \{0, \dots, n-1\}$$

Constraints

. . .

Fallunterscheider

First-Fail-Distribution nach dem kleinsten Wert

n-Damen-Problem: Modellierung

34/37

Constraints

Nur eine Dame pro Spalte: $\forall i, j : R_i \neq R_j$

Nur eine Dame pro Diagonale:

$$\forall i, j : R_i + i \neq R_j + j$$

$$\forall i, j : R_i - i \neq R_j - j$$

n-Damen-Problem: Werkzeug

35/37

Um dieses Modell umsetzen zu können benötigen wir eine neue Art von Propagierer:

FD.distinctOffset : (FD.fd * int) vector -> unit

~ =	fd_0	fd ₁	fd_2	•••	fd_{n-1}
<i>v</i> –	\mathbf{i}_0	\mathbf{i}_1	\mathbf{i}_2	• • •	i n-1

distinctOffset v =

distinct
$$(fd_0 + i_0, fd_1 + i_1, fd_2 + i_2, ..., fd_{n-1} + i_{n-1})$$

n-Damen-Problem: Skript

```
fun nQueens n () =
   let
      val v = FD.rangeVec (n, (0, n-1))
      val v1 = Vector.mapi (fn (i,x)=>(x, i)) v
      val v2 = Vector.mapi (fn (i,x)=>(x,^i)) v
   in
      FD.distinct v;
                           R_i \neq R_i
      FD.distinctOffset v1; R_i + i \neq R_j + j
      FD.distinctOffset v2; R_i - i \neq R_j - j
      FD.distribute(FD.FIRSTFAIL, v);
      V
   end
```


Literatur

- [Apt03] Krzysztof R. Apt. *Principles of Constraint Programming*. Cambridge University Press, 2003.
- [Sch00] Christian Schulte. *Programming Constraint Services*. Dissertation, 2000.
- [SS03] Christian Schulte and Gert Smolka. Finite Domain Constraint Programming in Oz. A Tutorial.

 www.mozart-oz.org/documentation/fdt/,
 2003.
- [Tea03] The Alice Team. *The Alice System, Online Manual.* www.ps.uni-sb.de/alice/, 2003.

