Signals and Systems Using MATLAB

Luis F. Chaparro

Chapter 7 - Sampling Theory

What is in this chapter?

- ⁺ Uniform sampling
 - *Band-limited signals and Nyquist condition
 - * Signal reconstruction
- Practical aspects of sampling

3

Uniform Sampling

Ideal Impulse Sampling

Sampling x(t) at uniform times $\{nT_s\}$ gives a sampled signal

$$x_s(t) = \sum_n x(nT_s)\delta(t - nT_s)$$

or a sequence of samples $\{x(nT_s)\}$ Sampling is equivalent to modulating the sampling signal

$$\delta_{T_s}(t) = \sum_s \delta(t - nT_s)$$

periodic of period T_s (the sampling period) with x(t). If $X(\Omega) = \mathcal{F}[x(t)]$ then

$$\begin{aligned} X_s(\Omega) &= \mathcal{F}[x_s(t)] \\ &= \frac{1}{T_s} \sum_k X(\Omega - k\Omega_s) \\ &= \sum_s x(nT_s)e^{-j\Omega T_s n}, \qquad \Omega_s = \frac{2\pi}{T_s} \end{aligned}$$

Band-limited signal

 $\overline{x(t)}$ is band-limited if it has low-pass spectrum of finite support, i.e.,

$$X(\Omega) = 0 \ |\Omega| > \Omega_{max}$$

 Ω_{max} maximum frequency in x(t)

Nyquist sampling rate

Choose Ω_s so that the spectrum of the sampled signal consists of shifted non-overlapping versions of $(1/Ts)X(\Omega)$ or $\Omega_s \geq 2\Omega_{max}$

(a) Spectrum of band-limited signal, (b) spectrum of sampled signal when satisfying the Nyquist sampling rate, (c) spectrum of sampled signal with aliasing (superposition of spectra, shown in dashed lines, gives a constant shown by continuous line).

5

Example Is $x(t)=2\cos(2\pi t+\pi/4)$, $-\infty < t < \infty$ band limited? For $T_s=0.4$, $\overline{0.5}$ and 1 sec/sample is Nyquist sampling rate satisfied?

x(t) only has frequency $2\pi,$ so it is band limited with $\Omega_{max}=2\pi$ (rad/sec) For any $T_s,$ sampled signal:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x(nT_s)\delta(t-nT_s) \qquad T_s \text{ sec/sample}$$

$$x(nT_s) = x(t)|_{t=nT_s}$$

- $T_s=0.4$ sec/sample, sampling frequency (rad/sec) $\Omega_s=2\pi/T_s=5\pi>2\Omega_{max}=4\pi$, Nyquist sampling rate condition satisfied, 3 samples per period (no loss of information no aliasing)
- $T_s=0.5$ sec/sample, sampling frequency (rad/sec) $\Omega_s=2\pi/T_s=4\pi=2\Omega_{max}$, barely satisfying the Nyquist sampling rate, 2 samples per period
- $T_s=1$ sec/sample, sampling frequency (rad/sec) $\Omega_s=2\pi/T_s=2\pi<2\Omega_{max}$, Nyquist sampling rate condition is not satisfied (loss of information aliasing)

Example Is $x_1(t) = u(t+0.5) - u(t-0.5)$ band-limited? If not, determine an approximate maximum frequency

 $x_1(t) = u(t+0.5) - u(t-0.5)$ can be sampled with $T_s << 1, \, {\rm e.g.}, \, T_s = 0.01$ sec/sample giving

discrete–time signal $x_1(nT_s)=1,\ 0\leq nT_s=0.01n\leq 1$ or $0\leq n\leq 100$

But, $x_1(t)$ is not band-limited

$$X_1(\Omega) = \frac{e^{j0.5\Omega} - e^{-j0.5\Omega}}{j\Omega} = \frac{\sin(0.5\Omega)}{0.5\Omega} \ \ \text{has no maximum frequency}$$

Parseval's energy relation

$$\begin{split} E_{x_1} &= 1 & \text{ the area under } x_1^2(t) \\ \text{find} & \Omega_M & \text{ such that } & .99E_{x_1} \text{ in } \left[-\Omega_M, \Omega_M \right] \\ 0.99 &= \frac{1}{2\pi} \int_{-\Omega_M}^{\Omega_M} \left[\frac{\sin(0.5\Omega)}{0.5\Omega} \right]^2 d\Omega \end{split}$$

Using MATLAB $\Omega_M=20\pi$ so $T_s<\pi/\Omega_M=0.05$ sec/sample

7

Reconstruction of Original Signal

The Nyquist-Shannon Sampling Theorem

If a low-pass continuous-time signal x(t) is band-limited (i.e., it has a spectrum $X(\Omega)$ such that $X(\Omega) = 0$ for $|\Omega| > \Omega_{max}$, where Ω_{max} is the maximum frequency in x(t)) we then have:

• x(t) is uniquely determined by its samples $x(nT_s) = x(t)|_{t=nT_s}$, $n = 0, \pm 1, \pm 2, \cdots$, provided that the sampling frequency Ω_s (rad/sec) is such that

 $\Omega_s \ge 2\Omega_{max}$ Nyquist sampling rate condition

or equivalently if the sampling rate f_s (samples/sec) or the sampling period T_s (sec/sample) are given by

$$f_s = \frac{1}{T_o} \ge \frac{\Omega_{max}}{\pi}$$

• When the Nyquist sampling rate condition is satisfied, the original signal x(t) can be reconstructed by passing the sampled signal $x_s(t)$ through an ideal low-pass filter with the following frequency response:

$$H(\Omega) = \left\{ \begin{array}{ll} T_s & \frac{-\Omega_s}{2} < \Omega < \frac{\Omega_s}{2} \\ 0 & elsewhere \end{array} \right.$$

The reconstructed signal is given by the following sinc interpolation from the samples

$$x_r(t) = \sum_n x(nT_s) \frac{\sin(\pi(t - nT_s)/T_s)}{\pi(t - nT_s)/T_s}.$$

,

Antialiasing filtering

- Anti-aliasing filtering: If signal is not band-limited, pass it through an ideal low-pass filter to get band-limited output (max frequency = cutoff
- Ouput of anti-alising filter is smoothed version of the original signal high frequencies of the signal have been removed
- In applications, cut-off frequency of the antialiasing filter set according to prior knowledge, e.g.,
 - sampling speech: frequency band [100, 5000] Hz provides understandable speech in phone conversations \Rightarrow cut-off frequency 5KHz, $f_s =$ $10,000~\mathrm{samples/sec}$
 - sampling music: frequency band [0, 22,000] Hz provides music with good fidelity \Rightarrow cut-off 22 KHz, $f_s=44,000~\mathrm{samples/sec}$

Signal Reconstruction

If x(t) band-limited, $X(\Omega)$ with maximum frequency Ω_{max} , if $\Omega_s > 2\Omega_{max}$, $X_s(\Omega)$ is superposition of shifted versions of the spectrum $X(\Omega)$, multiplied by $1/T_s$, with no overlaps $\Rightarrow x(t)$ can be recovered from $x_s(t)$ by low-pass filtering

Ideal low-pass analog filter $H_{lp}(\Omega) = \begin{cases} T_s & -\Omega_s/2 < \Omega < \Omega_s/2 \\ 0 & \text{elsewhere} \end{cases}$ Filter output $X_r(\Omega) = \begin{cases} X(\Omega) & -\Omega_s/2 < \Omega < \Omega_s/2 \text{ where } \Omega_s/2 = \Omega_{max} \\ 0 & \text{elsewhere} \end{cases}$

coincides with $X(\Omega)$ so x(t) is recovered

$$H_{lp}(s)$$
 ideal LPF

$$H_{lp}(s)$$
 ideal LFF
$$h_{lp}(t) = \frac{T_s}{2\pi} \int_{-\Omega_s/2}^{\Omega_s/2} e^{j\Omega t} d\Omega = \frac{\sin(\pi t/T_s)}{\pi t/T_s}$$
reconstructed signal

$$x_r(t) = [x_s * h_{lp}](t) = \int_{-\infty}^{\infty} x_s(\tau) h_{lp}(t - \tau) d\tau = \sum_n x(nT_s) \frac{\sin(\pi(t - nT_s)/T_s)}{\pi(t - nT_s)/T_s}$$

 $x_r(t)$ an interpolation in terms of time-shifted sinc signals with amplitudes the samples $\{x(nT_s)\}$

Example Sample following sinusoids $T_s = 2\pi/\Omega_s$

$$\begin{aligned} x_1(t) &= \cos(\Omega_0 t) &- \infty \leq t \leq \infty \\ x_2(t) &= \cos((\Omega_0 + \Omega_s)t) &- \infty \leq t \leq \infty \end{aligned}$$

$$x_1(nT_s) = \cos(\Omega_0 nT_s) - \infty \le n \le \infty$$

$$x_2(nT_s) = \cos((\Omega_0 + \Omega_s)nT_s) - \infty \le n \le \infty$$

but since $\Omega_s T_s = 2\pi$ the sinusoid $x_2(nT_s)$ can be written

$$x_2(nT_s) = \cos((\Omega_0 T_s + 2\pi)n) = \cos(\Omega_0 T_s n) = x_1(nT_s)$$

11

 $x_1(t) = \cos(t)$ $x_2(t) = \cos((7+1)t)$

 $\Omega_s = 7 > 2\Omega_0 = 2$

 $\Omega_s = 7 > 2(\Omega_0 + \Omega_s) = 2 * 8 = 16$

Sampling Simulation with MATLAB

Problems

- Representation of analog signals: use two sampling rates: one under study, f_s , one to simulate the analog signal, $f_{sim} >> f_s$
- \bullet Computation of the analog Fourier transform of x(t): approximate it with fast Fourier transform (FFT) multiplied by the sampling period

Sampling a sinusoid $x(t)=\cos(2\pi f_0 t),~f_0=1,000,$ using simulation sampling frequency $f_{sim}=20,000$ samples/sec

No aliasing sampling — sample x(t) with $f_s=6,000>2f_0=2,000, |X(\Omega)|$ corresponds to x(t), while $|Y(\Omega)|$ is first period of the spectrum of the sampled signal (spectrum of the sampled signal is periodic of period $\Omega_s=2\pi f_s$)

Practical Aspects of Sampling

- \bullet Analog to digital and digital to analog conversions are done by A/D and D/A converters
- Difference with ideal versions
 - pulses rather than impulses
 - quantization and coding

Sample and Hold

15

$$Y_s(\Omega) = X_s(\Omega)H(j\Omega) = \left[\frac{1}{T_s} \sum_k X(\Omega - k\Omega_s)\right] \frac{\sin(\Delta\Omega/2)}{\Omega/2} e^{-j\Omega\Delta/2}$$

spectrum of ideally weight due to sampled signal zero-order hold system

Quantization and Coding

- \bullet Quantizer: amplitude discretization of the the sampled signal $x_s(t)$
- \bullet Coder: distinct binary code for each level of quantizer

Consider

$$x(nT_s) = x(t)|_{t=nT_S}$$

Input $x(nT_s)$, output $\hat{x}(nT_s)$

4-level quantizer: $k\Delta \le x(nT_s) < (k+1)\Delta \implies \hat{x}(nT_s) = k\Delta \qquad k = -2, -1, 0, 1$

Quantization

$$\begin{array}{cccc} -2\Delta \leq x(nT_s) < -\Delta & \Rightarrow & \hat{x}(nT_s) = -2\Delta \\ -\Delta \leq x(nT_s) < 0 & \Rightarrow & \hat{x}(nT_s) = -\Delta \\ 0 \leq x(nT_s) < \Delta & \Rightarrow & \hat{x}(nT_s) = 0 \\ \Delta \leq x(nT_s) < 2\Delta & \Rightarrow & \hat{x}(nT_s) = \Delta \end{array}$$

Coding

$$\begin{split} \hat{x}(nT_s) &= -2\Delta & \Rightarrow & 10 \\ \hat{x}(nT_s) &= -\Delta & \Rightarrow & 11 \\ \hat{x}(nT_s) &= 0\Delta & \Rightarrow & 00 \\ \hat{x}(nT_s) &= \Delta & \Rightarrow & 01 \end{split}$$

Quantization error $\varepsilon(nT_s) = x(nT_s) - \hat{x}(nT_s)$ $\hat{x}(nT_s) \le x(nT_s) \le \hat{x}(nT_s) + \Delta$ subtracting $\hat{x}(nT_s) \Rightarrow 0 \le \varepsilon(nT_s)$

To decrease $\varepsilon(nT_s)$ reduce quantization step Δ or increase number of bits

What have we accomplished?

- *How to convert an analog signal into discrete-time and digital
 - signal signal sampling
- * Reconstruction of analog signals from sampled signals
- * Zero-order hold sampling and quantization

Where do we go from here?

- * Theory of discrete-time signals and systems
- * Z-transform and connection with Laplace
- Discrete-time Fourier analysis
- * Application to control and communications