Lógica

Mauro Polenta Mora

Ejercicio 6

Consigna

Considere el alfabeto $\sum = \{a, b, c\}$, y los lenguajes Γ y Δ definidos inductivamente con las siguientes reglas:

```
I \varepsilon \in \Gamma I \varepsilon \in \Delta II Si \alpha \in \Gamma Si \alpha \in \Delta, entonces b\alpha bc \in \Delta III Si \alpha \in \Delta, entonces b\alpha ba \in \Delta
```

Figure 1: consigna

- (a) Encuentre palabras de \sum^* que no pertenezcan a $\Gamma.$ Análogo para $\Delta.$
- (b) Muestre que Γ no está incluído en Δ y que Δ tampoco está incluído en Γ .

Para probar que un lenguaje no está incluído en otro debe proporcionar una palabra que pertenezca al primer lenguaje y no pertenezca al segundo, con las justificaciones que correspondan.

Resolución

- (a) Veamos 3 palabras que no pertenecen a cada lenguaje:
 - Palabras $w \notin \Gamma$:
 - -bbc
 - ababccb
 - -abcb
 - Palabras $w \notin \Delta$:
 - -a
 - -babc
 - -baba
- (b) Veamos que Γ no está incluido en Δ utilizando la sugerencia dada:

La palabra w = bbc no pertenece a Γ , ya que facilmente se observa que todas las palabras a excepción de los elementos base terminan en b; pero w si pertenece a Δ , podemos definirla usando la segunda regla con $\alpha = \varepsilon$

Ahora veamos que Δ no está incluido en Γ :

La palabra w=bcb no pertenece a Δ , ya que facilmente se observa a partir de las reglas que ninguna palabra del conjunto termina en b; pero w si pertenece a Γ , podemos definirla usando la tercer regla con $\alpha=\beta=\varepsilon$

Esto demuestra que:

$$\Gamma \not\subseteq \Delta \ y \ \Delta \not\subseteq \Gamma$$