Table of z-Transforms

Time Function, $f(t)$	Laplace Transform, $F(s)$	z-Transform, $F(z)$	Modified z-Transform, $F(z, m)$
u(t)	1 s	$\frac{1}{1-z^{-1}}$	$\frac{z^{-1}}{1-z^{-1}}$
<i>t</i> .	$\frac{1}{s^2}$	$\frac{Tz^{-1}}{(1-z^{-1})^2}$	$\frac{mTz^{-1}}{1-z^{-1}} + \frac{Tz^{-2}}{(1-z^{-1})^2}$
t ²	$\frac{2!}{s^3}$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$	$T^{2}\left[\frac{m^{2}z^{-1}}{1-z^{-1}}+\frac{(2m+1)z^{-2}}{(1-z^{-1})^{2}}+\frac{2z^{-3}}{(1-z^{-1})^{3}}\right]$
tn-1	$\frac{(n-1)!}{s^n}$	$\lim_{a\to 0} (-1)^{n-1} \frac{\partial^{n-1}}{\partial a^{n-1}} \left(\frac{1}{1 - e^{-aT}z^{-1}} \right)$	$\lim_{a\to 0} (-1)^{n-1} \frac{\partial^{n-1}}{\partial a^{n-1}} \left(\frac{e^{-amT}z^{-1}}{1 - e^{-aT}z^{-1}} \right)$
e ^{-at}	$\frac{1}{s+a}$	$\frac{1}{1 - e^{-aT}z^{-1}}$	$\frac{e^{-amT_{z^{-1}}}}{1 - e^{-aT_{z^{-1}}}}$
$\frac{1}{b-a} \left(e^{-at} - e^{-bt} \right)$	$\frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a} \left(\frac{1}{1-e^{-aT}z^{-1}} - \frac{1}{1-e^{-bT}z^{-1}} \right)$	$\frac{z^{-1}}{b-a} \left(\frac{e^{-amT}}{1-e^{-aT}z^{-1}} - \frac{e^{-bmT}}{1-e^{-bT}z^{-1}} \right)$
$\frac{1}{a} (u(t) - e^{-at})$	$\frac{1}{s(s+a)}$	$\frac{1}{a} \frac{(1 - e^{-aT})z^{-1}}{(1 - z^{-1})(1 - e^{-aT}z^{-1})}$	$\frac{z^{-1}}{a} \left(\frac{1}{1 - z^{-1}} - \frac{e^{-amT}}{1 - e^{-aT}z^{-1}} \right)$
$\frac{1}{a}\left(t-\frac{1-e^{-at}}{a}\right)$	$\frac{1}{s^2 (s+a)}$	$\frac{1}{a} \left[\frac{Tz^{-1}}{(1-z^{-1})^2} - \frac{(1-e^{-aT})z^{-1}}{a(1-z^{-1})(1-e^{-aT}z^{-1})} \right]$	$\frac{z^{-1}}{a} \left[\frac{T z^{-1}}{(1-z^{-1})^2} + \frac{amT-1}{a(1-z^{-1})} + \frac{e^{-amT}}{a(1-e^{-aT}z^{-1})} \right]$

$\frac{(a-b)}{a^2}u(t) + \frac{b}{a}t + \frac{1}{a}\left(\frac{b}{a}-1\right)e^{-at}$	$\frac{s+b}{s^2(s+a)}$	$\frac{z^{-1}}{a} \left[\frac{bT}{(1-z^{-1})^2} + \frac{(a-b)(1-e^{-aT})}{a(1-z^{-1})(1-e^{-aT}z^{-1})} \right]$	$\frac{z^{-1}}{a} \left[\frac{bTz^{-1}}{(1-z^{-1})^2} + \left(bmT + 1 - \frac{b}{a} \right) \frac{1}{1-z^{-1}} + \frac{b-a}{a} \frac{e^{-amT}}{1-e^{-aT}z^{-1}} \right]$
$\frac{1}{ab} \left(u(t) + \frac{b}{a-b} e^{-at} - \frac{a}{a-b} e^{-bt} \right)$	$\frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab} \left[\frac{1}{1-z^{-1}} + \frac{b}{(a-b)(1-e^{-aT}z^{-1})} - \frac{a}{(a-b)(1-e^{-bT}z^{-1})} \right]$	$\frac{z^{-1}}{ab} \left[\frac{1}{1-z^{-1}} + \frac{be^{-amT}}{(a-b)(1-e^{-aT}z^{-1})} - \frac{ae^{-bmT}}{(a-b)(1-e^{-bT}z^{-1})} \right]$
te -at	$\frac{1}{(s+a)^2}$	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$	$\frac{Te^{-amT}z^{-1}\left[m+(1-m)e^{-aT}z^{-1}\right]}{(1-e^{-aT}z^{-1})^2}$
sin at	$\frac{a}{s^2 + a^2}$	$\frac{z^{-1} \sin aT}{1 - 2z^{-1} \cos aT + z^{-2}}$	$\frac{z^{-1} \sin amT + z^{-2} \sin (1 - m)aT}{1 - 2z^{-1} \cos aT + z^{-2}}$
$\frac{1}{b}e^{-at}\sin bt$	$\frac{1}{(s+a)^2+b^2}$	$\frac{1}{b} \frac{z^{-1} e^{-aT} \sin bT}{1 - 2z^{-1} e^{-aT} \cos bT + e^{-2aT} z^{-2}}$	$\frac{z^{-1}e^{-amT}}{b} \frac{\sin bmT + z^{-1}e^{-aT}\sin (1-m)bT}{1 - 2z^{-1}e^{-aT}\cos bT + e^{-2aT}z^{-2}}$
e ^{-at} cos bt	$\frac{s+a}{(s+a)^2+b^2}$	$\frac{1 - z^{-1} e^{-aT} \cos bT}{1 - 2z^{-1} e^{-aT} \cos bT + e^{-2aT} z^{-2}}$	$\frac{e^{-amT}z^{-1}\left[\cos bmT + z^{-1}e^{-aT}\sin (1-m)bT\right]}{1 - 2z^{-1}e^{-aT}\cos bT + e^{-2aT}z^{-2}}$
cos at	$\frac{s}{s^2 + a^2}$	$\frac{1-z^{-1}\cos aT}{1-2z^{-1}\cos aT+z^{-2}}$	$\frac{z^{-1} \cos amT - z^{-2} \cos (1 - m) aT}{1 - 2z^{-1} \cos aT + z^{-2}}$

For a more extensive table see B. C. Kuo, Analysis and Synthesis of Sampled-Data Control Systems, Prentice-Hall, Inc. Englewood Cliffs, N.J., 1963.)