《数字逻辑》

(第4章习题答案)

厦门大学信息学院软件工程系 曾文华 2024年10月21日

课程内容

• 全书共9章:

第1章 基本知识

第2章 逻辑代数基础

第3章 集成门电路与触发器

第4章 组合逻辑电路

第5章 同步时序逻辑电路

第6章 异步时序逻辑电路

第7章 中规模通用集成电路及其应用

第8章 可编程逻辑器件

第9章 综合应用举例

第4章 组合逻辑电路

- 4.1 组合逻辑电路分析
- 4.2 组合逻辑电路设计
- 4.3 组合逻辑电路的险象

- 4.1
- 4.3
- 4.4
- 4.5
- 4.8
- 4.9
- 4.10
- 4.12

4.1 分析图 4.27 所示的组合逻辑电路,说明电路功能,并画出其简化逻辑电路图。

图 4.27 组合逻辑电路

– 在Logisim上画出该电路,并得到真值表。

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

- 根据真值表,可知该电路为"判断ABC是否一致"的电路。如果A=B=C=0(或A=B=C=1),则
 F=1;否则,F=0。
- 根据真值表,可以得到该电路的简化逻辑公式: F = /A·/B·/C + A·B·C。其<mark>简化逻辑电路</mark>如下:

4.2 分析图 4.28 所示的组合逻辑电路:(1) 指出在哪些输入取值下,输出 F 的值为 1; (2) 改用异或门实现该电路的逻辑功能。

图 4.28 组合逻辑电路

– 在Logisim上画出该电路,并得到真值表。

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- (1)根据真值表,可知该电路在ABC=000、011、101、110的取值下,F=1。
- (2)根据真值表,得到: F= /A·/B·/C + /A·B·C + A·/B·C + A·B·/C = /A·(/B·/C+/B·/C) + A·(/B·C + B·/C) = /A·/(B⊕C) + A·(B⊕C) = /(A⊕B⊕C)= /A⊕/B⊕/C。异或门实现的逻辑电路如下:

4.3 分析图 4.29 所示组合逻辑电路,列出真值表,说明该 电路的逻辑功能。

图 4.29 组合逻辑电路

- 在Logisim上画出该电路,并得到真值表。由真值表可知,该电路为将"4位二进制码转换为典型格雷码"的电路。

图 4.29 组合逻辑电路

表 1.4 与 4 位二进制码对应的典型格雷码

十进制数	4 位二进制码	典型格雷码	十进制数	4 位二进制码	典型格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

Α	В	С	D	w	X	Υ	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

4.4 设计一个组合逻辑电路,该电路输入端接收两个 2 位二进制数 A=A₂A₁,B=B₂B₁。当 A>B 时,输出 Z=1,否则 Z=0。

- 首先给出输出Z与输入 A_2 、 A_1 、 B_2 、 B_1 的真值表。
- 根据真值表,可以画出卡诺图;由卡诺图,得到该电路的逻辑公式:
 - $F = A_2 \cdot / B_2 + A_2 \cdot A_1 \cdot / B_1 + / A_2 \cdot A_1 \cdot / B_2 \cdot / B_1$
- 根据逻辑公式,画出组合逻辑电路图。

۱>	В	Z=1			A<=B	Z	=0
	A ₂	A ₁	B ₂	B ₁		Z	
	0	0	0	0		0	
	0	0	0	1		0	
	0	0	1	0		0	
	0	0	1	1		0	
	0	1	0	0		1	
	0	1	0	1		0	
	0	1	1	0		0	
	0	1	1	1		0	
	1	0	0	0		1	
	1	0	0	1		1	
	1	0	1	0		0	
	1	0	1	1		0	
	1	1	0	0		1	
	1	1	0	1		1	
	1	1	1	0		1	
	1	1	1	1		0	

4.5 设计一个代码转换电路,将1位十进制数的余3码转换成2421码。

- 用ABCD定义余3码(输入),用WXYZ定义2421码(输出)。根据第1章的表1.3,得到输入与输出的真值表。

表 1.3 常用的 3 种 BCD 码

十进制字符	8421 码	2421 码	余3码
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

- 根据真值表,首先得到W的卡诺图。
- 由卡诺图,得到W的逻辑公式:
- $W = A + /B \cdot /C + /B \cdot /D$

	不) H—J					2 7 21 H-3			
Α	В	С	D			W	Х	Υ	Z	
0	0	1	1	3		0	0	0	0	
0	1	0	0	4		0	0	0	1	
0	1	0	1	5		0	0	1	0	
0	1	1	0	6		0	0	1	1	
0	1	1	1	7		0	1	0	0	
1	0	0	0	8		1	0	1	1	
1	0	0	1	9		1	1	0	0	
1	0	1	0	10		1	1	0	1	
1	0	1	1	11		1	1	1	0	
1	1	0	0	12		1	1	1	1	

2421码

全3码

- 根据真值表,得到**X**的卡诺图。
- 由卡诺图,得到X的逻辑公式:
- X = A·B + A·D + A·C + B·C·D
- 根据真值表,得到Y的卡诺图。
- 由卡诺图,得到Y的逻辑公式:
- $Y = A \cdot /C \cdot /D + B \cdot /C \cdot D + A \cdot C \cdot D + B \cdot C \cdot /D$
- 根据真值表,得到z的卡诺图。
- 由卡诺图,得到Z的逻辑公式:
- Z = B·/D + A·/D

余3码	
-----	--

2421码

Α	В	С	D		W	Х	Υ	Z
0	0	1	1	3	0	0	0	0
0	1	0	0	4	0	0	0	1
0	1	0	1	5	0	0	1	0
0	1	1	0	6	0	0	1	1
0	1	1	1	7	0	1	0	0
1	0	0	0	8	1	0	1	1
1	0	0	1	9	1	1	0	0
1	0	1	0	10	1	1	0	1
1	0	1	1	11	1	1	1	0
1	1	0	0	12	1	1	1	1

- 由逻辑公式,得到逻辑电路:

- $W = A + /B \cdot /C + /B \cdot /D$
- $X = A \cdot B + A \cdot D + A \cdot C + B \cdot C \cdot D$
- $Y = A \cdot /C \cdot /D + B \cdot /C \cdot D + A \cdot C \cdot D + B \cdot C \cdot /D$
- $Z = B \cdot / D + A \cdot / D$

4.6 假定 X=AB 代表一个 2 位二进制数,试设计满足如 下要求的逻辑电路(Y也用二进制数表示):

(1)
$$Y = X^2$$
 (2) $Y = X^3$

(2)
$$Y = X^3$$

- **(1)**
 - 因为X=AB=0~3,因此Y=X²=0~9,Y需要用4位二进制数表示(Y3Y2Y1Y0)。
 - · 可以得到X与Y的真值表。
 - 根据真值表,首先得到Y3的卡诺图。由卡诺图,得到Y3的逻辑公式:
 - Y3 = A·B
 - 根据真值表,首先得到Y2的卡诺图。由卡诺图,得到Y2的逻辑公式:
 - Y2 = A·/B
 - 根据真值表,首先得到Y1的卡诺图。由卡诺图,得到Y1的逻辑公式:
 - Y1 = 0
 - 根据真值表,首先得到Y3的卡诺图。由卡诺图,得到Y0的逻辑公式:
 - Y0 = B

Α	В		Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	0
0	1	1	0	0	0	1	1
1	0	2	0	1	0	0	4
1	1	3	1	0	0	1	9

- 由逻辑公式,得到逻辑电路:
 - Y3 = A·B
 - Y2= A·/B
 - Y1 = 0
 - Y0 = B

- (2)

- 因为X=AB=0~3,因此Y=X³=0~27,Y需要用5位二进制数表示(Y4Y3Y2Y1Y0)。
- · 可以得到X与Y的真值表。
- 根据真值表,首先得到Y4的卡诺图。由卡诺图,得到Y4的逻辑公式:
- Y4 = A·B
- 根据真值表,首先得到Y3的卡诺图。由卡诺图,得到Y3的逻辑公式:
- Y3 = A
- 根据真值表,首先得到Y2的卡诺图。由卡诺图,得到Y2的逻辑公式:
- Y2 = 0
- · 根据真值表,首先得到Y1的卡诺图。由卡诺图,得到Y1的逻辑公式:
- Y1 = A·B
- 根据真值表,首先得到Y3的卡诺图。由卡诺图,得到Y0的逻辑公式:
- Y0 = B

Α	В		Y4	Y3	Y2	Y1	Y0	
0	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	1	1
1	0	2	0	1	0	0	0	8
1	1	3	1	1	0	1	1	27

- 由逻辑公式,得到逻辑电路:

- Y4 = A·B
- Y3 = A
- Y2= 0
- Y1 = A·B
- Y0 = B

4.7 用与非门设计一个组合逻辑电路,该电路输入为1位十进制数的2421码,当输入的数字为素数时,输出F为1,否则F为0。

- 十进制数与2421码(用A、B、C、D表示)的关系见表1.3。0~9的素数(质数)有4个,分别是: 2、3、5、7。根据表1.3可以得到输出F与输入A、B、C、D的真值表。
- 根据真值表,可以画出卡诺图;由卡诺图,得到该电路的逻辑公式:
 - F = A·/B + /A·C + A·/C·D 或者 F = A·/B + /B·C + A·/C·D

表 1.3 常用的 3 种 BCD 码

十进制字符	8421 码	2421 码	余 3 码
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

序号	Α	В	С	D	十进制字符	F
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	1
3	0	0	1	1	3	1
4	0	1	0	0	4	0
5	0	1	0	1	X	d
6	0	1	1	0	X	d
7	0	1	1	1	X	d
8	1	0	0	0	X	d
9	1	0	0	1	X	d
10	1	0	1	0	X	d
11	1	0	1	1	5	1
12	1	1	0	0	6	0
13	1	1	0	1	7	1
14	1	1	1	0	8	0
15	1	1	1	1	9	0

- 由逻辑公式,得到逻辑电路:

• $F = A \cdot /B + /A \cdot C + A \cdot /C \cdot D$

或者 F=A·/B+/B·C+A·/C·D

4.8 设计一个"四舍五入"电路。该电路输入为 1 位十进制数的 8421 码,当其值大于或等于 5 时,输出 F 的值为 1,否则 F 的值为 0。

- 用A、B、C、D表示1位十进制数的8421码,可以得到输出F与输入A、B、C、D的真值表。
- 根据真值表,可以画出卡诺图;由卡诺图,得到该电路的逻辑公式: F = A + B·C + B·D;由逻辑公式画出电路。

序号	Α	В	С	D	十 进 制 数	F
0	0	0	0	0	0	0
1	0	0	0	1	1	0
2	0	0	1	0	2	0
3	0	0	1	1	3	0
4	0	1	0	0	4	0
5	0	1	0	1	5	1
6	0	1	1	0	6	1
7	0	1	1	1	7	1
8	1	0	0	0	8	1
9	1	0	0	1	9	1
10	1	0	1	0	Х	d
11	1	0	1	1	X	d
12	1	1	0	0	Х	d
13	1	1	0	1	X	d
14	1	1	1	0	Х	d
15	1	1	1	1	X	d

4.9 设计一个检测电路,检测 4 位二进制码中 1 的个数是否为偶数。若为偶数个 1,则输出为 1,否则输出为 0。

- 用A、B、C、D表示4位二进制数,可以得到输出F与输入A、B、C、D的真值表。
- 根据真值表,可以画出卡诺图;由卡诺图(无法简化),得到该电路的逻辑公式:F= /A·/B·/C·/D + /A·/B·C·D + /A·B·/C·D + /A·B·/C·D + A·/B·/C·/D + A·/B·/

序号	Α	В	С	D	F
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

4.10 设计一个加/减法器,该电路在 M 控制下进行加、减运算。当 M=0 时,实现全加器功能;当 M=1 时,实现全减器功能。

答:

- 用M、A_i、B_i、C_{i-1}表示全加器/全减器的输入,S_i、C_i表示全加器/全减器的输出。可以得到输出与输入的真值表。根据真值表,可以画出卡诺图;由卡诺图,得到该电路的逻辑公式:
 - $S_i = B \cdot / C \cdot / D + B \cdot C \cdot D + / B \cdot / C \cdot D + / B \cdot C \cdot / D = B \cdot / (C \oplus D) + / B \cdot (C \oplus D) = B \oplus C \oplus D = A_i \oplus B_i \oplus C_{i-1}$
 - $C_i = C \cdot D + A \cdot B \cdot D + A \cdot B \cdot C + A \cdot B \cdot D + A \cdot B \cdot C = C \cdot D + (A \cdot B + A \cdot B) \cdot (C + D) = C \cdot D + (A \oplus B) \cdot (C + D) = B_i \cdot C_{i-1} + (M \oplus A_i) \cdot (B_i + C_{i-1}) = C \cdot D + (A \oplus B) \cdot (C + D) = C \cdot D + (A \oplus B) \cdot (C +$

Α	В	С	D			
М	Ai	Bi	Ci-1	Si	Ci	
0	0	0	0	0	0	
0	0	0	1	1	0	
0	0	1	0	1	0	
0	0	1	1	0	1	加
0	1	0	0	1	0	加法
0	1	0	1	0	1	
0	1	1	0	0	1	
0	1	1	1	1	1	
1	0	0	0	0	0	
1	0	0	1	1	1	
1	0	1	0	1	1	
1	0	1	1	0	1	减
1	1	0	0	1	0	减法
1	1	0	1	0	0	
1	1	1	0	0	0	
1	1	1	1	1	1	

- 由逻辑公式,得到逻辑电路:
 - $S_i = A_i \oplus B_i \oplus C_{i-1}$
 - $C_i = B_i \cdot C_{i-1} + (M \oplus A_i) \cdot (B_i + C_{i-1})$

4.11 在输入不提供反变量的情况下,用与非门组成实现下列函数的最简电路。

(1)
$$F = A\bar{B} + \bar{A}C + B\bar{C}$$
 (2) $F = A\bar{B}\bar{C} + BC\bar{D} + A\bar{C}\bar{D} + \bar{B}CD$

- **-** (1)
 - $F = A \cdot / B + / A \cdot C + B \cdot / C = A \cdot / B + / A \cdot C + B \cdot / C + / B \cdot C + A \cdot / C + / A \cdot B = A \cdot (/B + / C) + B \cdot (/A + / C) + C \cdot (/A + / B) = A \cdot / (B \cdot C) + B \cdot / (A \cdot C) + C \cdot / (A \cdot B)$
 - 因为: A·/B = A·/(A·B) 证明: A·/(A·B) = A·(/A+/B) = A·/B
 - 因此: F = A·/(A·B·C) + B·/(B·A·C) + C·/(C·A·B)
 - 因为: A·S + B·S + C·S = /(/(A·S) · /(B·S) · /(C·S))
 - 因此: F = /(/(A·/(A·B·C)) · /(B·/(B·A·C)) · /(C·/(C·A·B)))

$F=A\cdot/B + /A\cdot C + B\cdot/C$

$F=A\cdot/B+/A\cdot C+B\cdot/C+/B\cdot C+A\cdot/C+/A\cdot B$

 $F = /(/(A\cdot/(A\cdot B\cdot C))\cdot/(B\cdot/(B\cdot A\cdot C))\cdot/(C\cdot/(C\cdot A\cdot B)))$

- **-** (2)
 - $F = A \cdot /B \cdot /C + B \cdot C \cdot /D + A \cdot /C \cdot /D + /B \cdot C \cdot D$
 - $F = A \cdot /C \cdot (/B + /D) + B \cdot C \cdot /D + /B \cdot C \cdot D$
 - $F = A \cdot /C \cdot /(B \cdot D) + B \cdot C \cdot /D + B \cdot C \cdot /B + /B \cdot C \cdot D + /D \cdot C \cdot D$
 - $F = A \cdot / C \cdot / (BD) + B \cdot C \cdot (/B + /D) + C \cdot D \cdot (/B + /D)$
 - $F = A \cdot /C \cdot /(BD) + B \cdot C \cdot /(B \cdot D) + C \cdot D \cdot /(B \cdot D)$
 - $F = /((/(B \cdot D) \cdot A \cdot /C) \cdot (/(B \cdot D) \cdot B \cdot C) \cdot (/(B \cdot D) \cdot C \cdot D))$
 - $F = /(/(/(B \cdot D) \cdot A \cdot /(C \cdot C)) \cdot /(/(B \cdot D) \cdot B \cdot C) \cdot /(/(B \cdot D) \cdot C \cdot D))$

4.12 下列函数描述的电路是否可能产生险象?在什么情况下产生险象?若产生险象,试用增加冗余项的方法消除。

(1)
$$F_1 = AB + A\overline{C} + \overline{C}D$$
 (2) $F_2 = AB + \overline{A}CD + BC$ (3) $F_3 = (A + \overline{B})(\overline{A} + \overline{C})$

- 答:
- (1)
 - $F1 = A \cdot B + A \cdot / C + / C \cdot D$
 - ①采用代数法判断该逻辑电路是否会产生险象:因为逻辑函数中没有A、/A,或者B、/B,或者C、/C,或者D、/D,因此该逻辑电路不会产生险象。
 - ②采用卡诺图法判断该逻辑电路是否会产生险象:该逻辑函数的卡诺图如下,可见,卡诺图中没有相切的卡诺圈,因此该逻辑电路不会产生险象。

- 答:
- (2)
 - $F2 = A \cdot B + /A \cdot C \cdot D + B \cdot C$
 - ①采用代数法判断该逻辑电路是否会产生险象:该逻辑函数中有A、/A,因此该逻辑电路有可能会产生险象。但是,经过考察,该电路不会产生险象:
 - BCD=000时,F2=0
 - BCD=001时,F2=0
 - BCD=010时,F2=0
 - BCD=011时,F2=/A
 - BCD=100时,F2=A
 - BCD=101时,F2=A
 - BCD=110时,F2=A+1=1
 - BCD=111时,F2=A+/A+1=1
 - ②采用卡诺图法判断该逻辑电路是否会产生险象:该逻辑函数的卡诺图如下,可见,卡诺图中没有相切的卡诺圈,因此该逻辑电路不会产生险象。

- 答:
- (3)
 - F3 = (A+/B)·(/A+/C)
 - ①采用代数法判断该逻辑电路是否会产生险象:该逻辑函数中有A、/A,因此该逻辑电路有可能会产生险象。但是,经过考察,该电路在BC=11时会产生险象:
 - BC=00时,F3=(A+1)·(/A+1)=1
 - BC=01时,F3=(A+1)·/A=/A
 - BC=10时, F3=A· (/A+1)=A
 - BC=11时,F3=A·/A
 - ②采用卡诺图法判断该逻辑电路是否会产生险象: F3 = (A+/B)·(/A+/C) = A·/C+/A·/B+/B·/C,该逻辑函数的卡诺图如下,可见,卡诺图中存在相切的卡诺圈,因此该逻辑电路会产生险象。
 - 增加冗余项消除险象: F3 = A·/C+/A·/B+/B·/C + /A·/B·/C = (A+/B)·(/A+/C)·(/B+/C)

Thanks