2.3 Moment Generating Function

What is a Moment?

The r^{th} moment of a random variable, X, is $E[X^r]$.

Also called: moment about the origin, raw moment

The r^{th} central moment of a random variable, X, is the expected value of the rth power of the deviation of a random variable from its mean: $E[(X - \mu_X)^r]$

Moments

Moment	Real World	Statistics
Oth	Total mass	Total Probability
1st	Center of Mass	Expected Value
2nd	Rotational Inertia (torque required for desired angular acceleration)	Variance (2 nd central moment)
3rd		Skewness (3 rd standardized moment)
4th		Kurtosis (4 th standardized moment)

Moment Generating Function

Definition 2.3-1

Let X be a random variable of the discrete type with pmf f(x) and space S. If there is a positive number h such that

$$E(e^{tX}) = \sum_{x \in S} e^{tx} f(x)$$

exists and is finite for -h < t < h, then the function defined by

$$M(t) = E(e^{tX})$$

is called the **moment-generating function of** X (or of the distribution of X). This function is often abbreviated as mgf.

Moment Generating Function

Suppose the sample space of X is $S = \{x_1, x_2, x_3,...\}$ What is an expression for mgf?

$$M(t) = e^{tx_1}f(x_1) + e^{tx_2}f(x_2) + e^{tx_3}f(x_3) + ...$$

The coefficient of each e^{tx_i} is the probability, $f(x_i) = P(X = x_i)$

Simple mgf example

Example 2.3-5

If X has the mgf

$$M(t) = e^t \left(\frac{3}{6}\right) + e^{2t} \left(\frac{2}{6}\right) + e^{3t} \left(\frac{1}{6}\right), \qquad -\infty < t < \infty,$$

then the support of X is $S = \{1, 2, 3\}$ and the associated probabilities are

$$P(X = 1) = \frac{3}{6}$$
, $P(X = 2) = \frac{2}{6}$, $P(X = 3) = \frac{1}{6}$.

Or, we could write $f(x) = \frac{4-x}{6}$, x = 1,2,3.

More Properties of MGFs

- 1. If two random variables have the same MGF, then they have the same distribution. i.e. if X and Y are random variables that have the same MGF: $M_X(t) = M_Y(t)$, then X and Y have the exact same distribution (pmf, cdf, etc)
- 2. For two independent random variables, X and Y, the MGF of their sum is the product of their MGFs:

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$
 (works for more than 2 as well)

More Properties of MGFs

3. The nth derivative of $M_X(t)$ evaluated at t=0 is equal to the nth moment, $E[X^n]$.

Examples

Moment Generating Function

1 Let $X \sim Binom(n, p)$. The mgf is:

$$M_{x}(t) = E[e^{tX}] = \sum_{x=0}^{n} e^{tx} \binom{n}{x} p^{x} (1-p)^{n-x}$$
$$= \sum_{x=0}^{n} \binom{n}{x} (pe^{t})^{x} (1-p)^{n-x} = [pe^{t} + (1-p)]^{n}$$

Computing the first two moments using the mgf:

$$\begin{aligned} M'(t) &= n[pe^t + (1-p)]^{n-1}pe^t. \\ M''(t) &= n(n-1)[pe^t + (1-p)]^{n-2}p^2e^{2t} + n[pe^t + (1-p)]^{n-1}pe^t. \\ E[X] &= M'(0) = np \\ E[X^2] &= M''(0) = n(n-1)p^2 + np \\ Var[X] &= E[X^2] - (E[X])^2 = n(n-1)p^2 + np - (np)^2 \\ &= np - np^2 = np(1-p) \end{aligned}$$

2 Example: known distributions

Suppose a random variable X has moment generating function: $M(t) = (\frac{2}{3} + \frac{1}{3}e^t)^{10}$

What is the pmf of X?

$$f(x) = \binom{10}{x} \left(\frac{1}{3}\right)^x \left(\frac{2}{3}\right)^{10-x}$$

Say we have 3 random variables, W, X, Y \sim Bernoulli(p) Let Z be the sum of all three: Z = W + X + Y. Show that Z \sim Binom(n,p)

Note: The mgf of a Bernoulli random variable is $M(t) = (1 - p + pe^t)$

Q: Can you do the same for $\sum Geometric = NB$ at home?