Deep learning, Neural Nets for images

Попов Владимир Шаповал Егор Леонович Роман

Санкт-Петербург 2022 г.

Свёрточная нейронная сеть

Definition

Изображение — тензор $M\in\mathbb{R}^{m imes n imes d}$, m — ширина изображения, n — длина. Чаще всего d=3 (3 канала — Red, Green, Blue).

Пусть $X \in \mathbb{R}^{m \times n \times d}$ — случайная величина "изображение". Задачи:

- ullet Классификация $f:X o\{1,\ldots,K\}$, K число классов
- ullet Сегментация f:X o Y, $Y\in [0,1]^{m imes n}$, $Y_{ij}=\mathsf{P}(X_{ij}\in\mathsf{segment})$

Свёртка изображений

Definition

Рассмотрим $M \in \mathbb{R}^{m \times n}$ — изображение по одному из каналов, $K \in \mathbb{R}^{k \times l}$ — ядро, свёрткой изображения относительно отображения $h: \mathbb{R}^{m \times n} \times \mathbb{R}^{k \times l} \to \mathbb{R}$ называется функция *, рассмотрим $h(\mathbf{X},\mathbf{Y}) = \sum\limits_{a=1}^k \sum\limits_{i=1}^l X_{ij}Y_{ij},$ $(M*K)(i,j) = \sum\limits_{a=1}^k \sum\limits_{b=1}^l M_{i+a,j+b}K_{ab}.$ $(M*K) \in \mathbb{R}^{(m-k+1) \times (n-l+1)}$

Можем заполнить как-нибудь края чтобы результат свёртки имел размерность $m \times n$ (padding).

Свёртка наглядно

Свёрточный слой

Сверточный слой CNN задаётся следующими параметрами:

- ullet Размер фильтра k imes l imes r, $k \leq m$, $l \leq n$, $r \leq d$.
- Способ заполнения краёв (padding), например можно заполнить нулями, равносильно окаймлением изображения чёрной рамкой. Есть другие способы: max, reflect, replicate.
- ullet Размер заполнения краёв $P \in \mathbb{R}^d$.
- Величина сдвига ядра (stride) $S \in R^3$. При S = (1,1,1) получаем операцию, похожую на операцию вложения в SSA.

На выходе получаем тензор размерности $m_1 imes n_1 imes d_1$, после этого применяем к полученным элементам функцию активации.

Pooling слой

Pooling операцию можно понимать как свёртку с S=(k,l,d). Основная цель pooling — уменьшение размерности изображения. Часто используют max-pooling, иногда применяют sum-pooling, average-pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Свёрточная нейронная сеть

В зависимости от постановки задачи после применения свёрточных и pooling слоёв и применения функций активации могут следовать полносвязные или свёрточные слои.

Backpropogation

В случае отсутствия max-pooling слоёв применим алгоритм обратного распространения ошибки. Если присутствуют max-pooling слои, то градиенты пробрасываются в ту клетку, на которой достигается максимум, остальные градиенты равны нулю.

В примере ненулевые градиенты будут в точках (2,2),(2,4),(3,1),(4,4).

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Augumentation

Definition

Аугументация (Augumentation) — увеличение объёма тренировочной выборки с помощью различных афинных преобразований изображений: зеркальное отражение, поворот, сдвиг, изменение масштаба.

Используется для борьбы с переобучением.

Inception

Проблема: непонятно какой размер ядра на каждом слое будет давать минимальную ошибку

Решение: Рассмотрим разные комбинации свёрток и pooling слоёв, а затем сконкатенируем их

Dropout (только для полносвязанных сетей)

Definition

Dropout — отключение (зануление) случайных нейронов во время обучения нейросети. Параметр p — доля отключаемых нейронов. Оставшимся ненулевым нейронам присваиваем вес, равный $\frac{1}{1-p}$.

Цель: борьба с переобучением

Практические проблемы

Проблемы:

- Необходимость разметки данных для обучения
- Большое количество параметром, следовательно долгое обучение, даже на GPU

Решения:

- Использование размеченных библиотек изображений: Imagenet (14М изображений, 1000 категорий), OpenImages (9М изображений, 60К меток, 20К категория)
- Использование предобученной модели (Alexnet, vgg net, Resnet)

GAN — Порождающие состязательные сети

- Увеличение разрешения изображений.
- Преобразование текста в изображение.
- Раскрашивание изображений.
- Генерация большего количества данных и заполнение пробелов в них.

GAN. Генератор

Цель генератора: Сгенерировать такие данные, чтобы дискриминатор не отличил их от реальных. Цель дискриминатора: Определить, входные данные реальны, или были сгенерированы искусственно.

Рис.: Генератор

Постановка задачи

- ullet $X\in\mathbb{R}$ Набор данных;
- ullet p_g Вероятностное распределение генератора;
- ullet $p_z(z)$ Априорная вероятность шума;
- $G(z,\gamma_g)$ Генератор, где G многослойный перцептроном с параметром γ_g ;
- $D(z,\gamma_d)$ Дискриминатор, который на выход подает вероятность того, что x пришло из тренировочных данных, а не p_g .

Задача:

$$\underset{G}{\operatorname{minmax}}V\left(D,G\right) = \underset{x \sim p_{data}}{\mathbb{E}}\left[\log D(x)\right] + \underset{z \sim p_{z}}{\mathbb{E}}\left[\log\left(1 - D\left(G(z)\right)\right)\right]$$

Алгоритм обучения

- f 0 Получаем мини-батч $z_1,...,z_m$ из распределения p_z ,
- $oldsymbol{oldsymbol{arepsilon}}$ Получаем мини-батч $x_1,...,x_m$ из распределения p_{data}
- Обновляем дискриминатор в сторону возрастания его градиента

$$d_w \leftarrow \nabla_{\gamma_d} \frac{1}{m} \sum_{t=1}^m \left[\log D(x_t) \right] + \left[\log \left(1 - D \left(G(z_t) \right) \right) \right]$$

- lacktriangledown Повторяем шаги 1-3 k раз.
- ullet Получаем мини-батч $z_1,...,z_m$ из распределения p_z
- Обновляем генератор в сторону убывания его градиента

$$g_w \leftarrow \nabla_{\gamma_d} \frac{1}{m} \sum_{t=1}^{m} \left[\log \left(1 - D\left(G(z_t) \right) \right) \right]$$

Проблемы обучения GAN

- Генератор выдает ограниченное количество разных образцов.
- Параметры модели дестабилизируются и не сходятся.
- Дискриминатор становится слишком сильным, а градиент генератора исчезает и обучение не происходит.
- Выявление корреляции в признаках, не связанных (слабо связанных) в реальном мире.
- Высокая чувствительность к гиперпараметрам.

CGAN

y — Дополнительное условие для генератора и дискриминатора (Метка класса, изображение или данные из других моделей)

$$\underset{G}{\operatorname{minmax}}V\left(D,G\right) = \underset{x \sim p_{data}}{\mathbb{E}}\left[\log D(x|y)\right] + \underset{z \sim p_{z}}{\mathbb{E}}\left[\log \left(1 - D\left(G(z|y)\right)\right)\right]$$

StackGAN, Stage-I

- Conditioning Augmentation $\mathcal{N}\left(\mu(\phi_t), \Sigma(\phi_t)\right)$, где t текстовое описание, а ϕ_t векторное представление
- ullet Регуляризация: $r=D_{KL}\left(\mathcal{N}\left(\mu(\phi_t),\Sigma(\phi_t)\right)||\mathcal{N}\left(0,I
 ight)
 ight)$
- ullet Тренировка дискриминатора D_0 и генератора G_0 :

$$L_{D_0} = \mathbb{E}_{(I_0, t) \sim p_{data}} \left[\log D_0 (I_0, \phi_t) \right] + E_{z \sim t, t \sim p_{data}} \left[\log (1 - D_0 (G_0(z, \hat{c_0}), \phi_t)) \right]$$

 $L_{G_0} = \mathbb{E}_{z \sim t, t \sim p_{data}} \left[\log \left(1 - D_0 \left(G_0(z, \hat{c_0}), \phi_t \right) \right) \right] + \lambda r,$ где реальное изображение I_0 и описание текста t берутся из реального распределения данных $p_{data}, \ z$ — шумовой вектор.

StackGAN, Stage-II

$$L_D = \mathbb{E}_{(I,t) \sim p_{data}}[\log D(I,\phi_t)] + \mathbb{E}_{s_0 \sim p_{C_0}, t \sim p_{data}}[\log(1 - D(G(s_0,\hat{c}),\phi_t))]$$

 $L_G = \mathbb{E}_{s_0 \sim p_{C_0}, t \sim p_{data}} \left[\log \left(1 - D \left(G(s_0, \hat{c}), \phi_t \right) \right) \right] + \lambda r,$ где $s_0 = G_0 \left(z, \hat{c_0} \right)$ — результат работы генератора Stage-I GAN.

LAPGAN

- Пусть $d(\cdot)$ операция сжатия изображения размера $j \times j$ так, что новое изображение d(I) имеет размеры $j/2 \times j/2$
- ullet $u(\cdot)$ операция расширения такая, что u(I) имеет размеры 2j imes 2j.

Тогда пирамида гауссианов имеет вид $\mathcal{G}(I)=[I_0,I_1,\ldots,I_k]$, где $I_0=I$, и I_k представляет собой k раз выполненное применение $d(\cdot)$.

Коэффициенты h_k на каждом уровне пирамиды:

$$h_k = \mathcal{L}_k(I) = \mathcal{G}_k(I) - u(\mathcal{G}_{k+1}(I)) = I_k - u(I_{k+1})$$

Unpooling

Coxpaняем позиции, где достигается максимум и используем их в unpooling cnoe.

Segnet

Vanilla Unet

