CS 6501 Natural Language Processing

Conditional Random Fields

Yangfeng Ji

September 26, 2019

Department of Computer Science University of Virginia

Overview

- 1. Conditional Random Fields
- 2. Inference
- 3. Parameter Estimation
- 4. Applications of Sequence Labeling

Conditional Random Fields

Logistic Regression

A direct application of logistic regression:

$$p(y|x) = \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}^{\top}} \exp(\theta^{\top} f(x, y'))}$$
(1)

Huge \mathcal{Y}^T causes the problems on

• decoding $\operatorname{argmax}_{y' \in \mathcal{Y}^T} p(y'|x)$

Logistic Regression

A direct application of logistic regression:

$$p(y|x) = \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}^{T}} \exp(\theta^{\top} f(x, y'))}$$
partition function Z

Huge \mathcal{Y}^T causes the problems on

- decoding $\operatorname{argmax}_{y' \in \mathcal{Y}^T} p(y'|x)$
- computing the partition function with $|\mathcal{Y}^T| = K^T$ possible values

Conditional Random Fields

Graphical Model:

- Conditional independence
- Undirected graph
- ► Factorization over cliques

Decomposition of f(x, y)

Based on the dependency between x and y, the feature function can be factorized as

$$f(x,y) = \sum_{i=1}^{T} \underbrace{f_i(x_i, y_i, y_{i-1})}_{\text{local feature function}}$$
(2)

where

- ▶ i: the position to be tagged
- ▶ $y_i \in \mathcal{Y}$: POS tag at position i
- ▶ $y_{i-1} \in \mathcal{Y}$: POS tag at position i-1
- \triangleright x_i : observation (word) at position i
- $f_i(x_i, y_i, y_{i-1})$ captures the dependency of (y_{i-1}, y_i) and (x_i, y_i)

Local Feature Function: Example

standard features

[Lafferty et al., 2001]

Local Feature Function: Example

- standard features
- whether a spelling begins with upper case letter,
 - ► IBM, Virginia: PROPER NOUN

[Lafferty et al., 2001]

Local Feature Function: Example

- standard features
- whether a spelling begins with upper case letter,
 - ► IBM, Virginia: PROPER NOUN
- whether it ends in one of the following suffixes:
 - ► -ies e.g., parties: PROPER NOUN, PLURAL
 - -ly e.g., extremely, loudly: ADVERB
 - ► -ing e.g.,: verb, gerund or present participle
 - **...**

[Lafferty et al., 2001]

Graphical Model Representation

Conditional Random Fields:

Graphical Model Representation

Conditional Random Fields:

Hidden Markov Models:

Inference

$$f(x,y) = \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$
 (3)

$$f(x, y) = \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

$$\underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} p(y|x) = \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}^T} \exp(\theta^{\top} f(x, y'))}$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \exp(\theta^{\top} f(x, y))$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \exp(\theta^{\top} f(x, y))$$

$$f(x, y) = \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

$$\operatorname{argmax} p(y|x) = \operatorname{argmax} \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}^T} \exp(\theta^{\top} f(x, y'))}$$

$$= \operatorname{argmax} \exp(\theta^{\top} f(x, y))$$

$$= \operatorname{argmax} \theta^{\top} f(x, y)$$

$$= \operatorname{argmax} \theta^{\top} f(x, y)$$

$$f(x, y) = \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

$$\operatorname{argmax} p(y|x) = \operatorname{argmax} \frac{\exp(\theta^{\top} f(x, y))}{\sum_{y' \in \mathcal{Y}^T} \exp(\theta^{\top} f(x, y'))}$$

$$= \operatorname{argmax} \exp(\theta^{\top} f(x, y))$$

$$= \operatorname{argmax} \theta^{\top} f(x, y)$$

$$= \operatorname{argmax} \theta^{\top} f(x, y)$$

$$= \operatorname{argmax} \theta^{\top} \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

$$= \operatorname{argmax} \theta^{\top} \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

With this local feature function:

$$f(x, y) = \sum_{i=1}^{T} f_i(x_i, y_i, y_{i-1})$$

$$\underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} p(y|x) = \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \frac{\exp(\theta^\top f(x, y))}{\sum_{y' \in \mathcal{Y}^T} \exp(\theta^\top f(x, y'))}$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \exp(\theta^\top f(x, y))$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \theta^\top f(x, y)$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \theta^\top \sum_{i=1}^T f_i(x_i, y_i, y_{i-1})$$

$$= \underset{y \in \mathcal{Y}^T}{\operatorname{argmax}} \sum_{i=1}^T \theta^\top f_i(x_i, y_i, y_{i-1})$$

(3)

Factorization

Factorize $\theta^{\top} f(x, y)$ with respect to timestep *i*

$$\sum_{i=1}^{T} \boldsymbol{\theta}^{\top} f_{i}(x_{i}, y_{i}, y_{i-1}) = \underbrace{\sum_{j \leq i-1} \boldsymbol{\theta}^{\top} f_{j}(x_{j}, y_{j}, y_{j-1})}_{\text{past}} + \underbrace{\boldsymbol{\theta}^{\top} f_{i}(x_{i}, y_{i}, y_{i-1})}_{\text{present}} + \underbrace{\sum_{k \geq i+1} \boldsymbol{\theta}^{\top} f_{k}(x_{k}, y_{k}, y_{k-1})}_{\text{future}}$$
(4)

Viterbi Algorithm

$$s_i(k, k') = \boldsymbol{\theta}^{\top} f_i(x_i, y_{i-1} = k', y_i = k)$$

Algorithm 11 The Viterbi algorithm. Each $s_m(k,k')$ is a local score for tag $y_m=k$ and $y_{m-1}=k'$.

```
\begin{array}{l} \text{for } k \in \{0, \dots K\} \text{ do} \\ v_1(k) = s_1(k, \lozenge) \\ \text{for } m \in \{2, \dots, M\} \text{ do} \\ \text{ for } k \in \{0, \dots, K\} \text{ do} \\ v_m(k) = \max_{k'} s_m(k, k') + v_{m-1}(k') \\ b_m(k) = \operatorname{argmax}_{k'} s_m(k, k') + v_{m-1}(k') \\ y_M = \operatorname{argmax}_k s_{M+1}(\blacklozenge, k) + v_M(k) \\ \text{ for } m \in \{M-1, \dots 1\} \text{ do} \\ y_m = b_m(y_{m+1}) \\ \text{ return } y_{1:M} \end{array}
```

[Eisenstein, 2018]

Parameter Estimation

Parameter Estimation: Logistic regression

When label y is still a random variable

$$p(y|x;\theta) = \frac{\exp(\theta^{\top} f(x,y))}{\sum_{y' \in \mathcal{Y}} \exp(\theta^{\top} f(x,y'))}$$
 (5)

the derivative with respect θ

$$\frac{\partial \log p(y|x;\theta)}{\partial \theta} = f(x,y) - \mathbb{E}_{Y|X}[f(x,y)]$$
 (6)

where

$$\mathbb{E}_{Y|X}[f(x,y)] = \sum_{y \in \mathcal{Y}} \left\{ p(y|x)f(x,y) \right\} \tag{7}$$

Parameter Estimation: CRFs

When label y is a sequence

$$\frac{\partial \log p(y|x;\theta)}{\partial \theta} = f(x,y) - \mathbb{E}_{Y|X}[f(x,y)] \tag{8}$$

where

$$\mathbb{E}_{Y|X}[f(x,y)] = \sum_{\boldsymbol{y} \in \mathcal{Y}^T} \left\{ p(\boldsymbol{y}|\boldsymbol{x}) f(\boldsymbol{x},\boldsymbol{y}) \right\}$$
(9)

and

$$f(x,y) = \sum_{i=1}^{T} f_i(x, y_{i-1}, y_i)$$
 (10)

Expectation

$$\begin{split} \mathbb{E}_{Y|X}[f(x,y)] &= \sum_{y \in \mathcal{Y}^{T}} \left\{ p(y \mid x) f(x,y) \right\} \\ &= \sum_{y \in \mathcal{Y}^{T}} \left\{ p(y \mid x) \sum_{i=1}^{T} f_{i}(x_{i}, y_{i-1}, y_{i}) \right\} \\ &= \sum_{y \in \mathcal{Y}^{T}} \sum_{i=1}^{T} \left\{ p(y \mid x) f_{i}(x_{i}, y_{i-1}, y_{i}) \right\} \\ &= \sum_{i=1}^{T} \sum_{y \in \mathcal{Y}^{T}} \left\{ p(y \mid x) f_{i}(x_{i}, y_{i-1}, y_{i}) \right\} \\ &= \sum_{i=1}^{T} \sum_{y_{i-1} \in \mathcal{Y}: y_{i} \in \mathcal{Y}} \left\{ p(y_{i-1}, y_{i} \mid x) f_{i}(x, y_{i-1}, y_{i}) \right\} \end{split}$$

Applications of Sequence Label-

ing

Applications

- ▶ Part-of-Speech taggins [Eisenstein, 2018, section 8.1]
- ► Named entity recognition (NER) [Eisenstein, 2018, section 8.3]
- Dialogue act identification [Eisenstein, 2018, section 8.6]

Parts of Speech

- "Open classes"
 - Nouns
 - Verbs
 - Adjectives
 - Adverbs
 - Numbers
- "Closed classes"
 - ► Modal verbs (e.g., can, should)
 - Prepositions (e.g., on, to)
 - ► Particles (e.g., off, up)
 - ▶ Determiners (e.g., the, some)
 - Pronouns (e.g., she, they)
 - ► Conjunctions (e.g., and, or)

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

45 taggs, about 40 pages of guidelines [Marcus et al., 1993]

Why We Need POS?

- Disambiguation
 - ► they_{PRP} can_{MD} fish_{VB}

Why We Need POS?

- Disambiguation
 - ► they_{PRP} can_{MD} fish_{VB}
- Basic component for syntactic parsing

Why We Need POS?

- Disambiguation
 - ► they_{PRP} can_{MD} fish_{VB}
- Basic component for syntactic parsing

- Word prediction in speech recognition
 - Personal pronouns (I, you, he) are likely to be followed by verbs

Applications

- ✓ Part-of-Speech taggins [Eisenstein, 2018, section 8.1]
- ► Named entity recognition (NER) [Eisenstein, 2018, section 8.3]
- Dialogue act identification [Eisenstein, 2018, section 8.6]

Example

Atlantis touched down at Kennedy Space Center

Example

Example

 $[Atlantis]_{MSIC}$ touched down at $[Kennedy Space Center]_{LOC}$

Tag set

- B: beginning
- ► I: inside
- O: outside

Category

- Person
- Location
- Organization
- Msic

Example

 $[Atlantis]_{MSIC}$ touched down at $[Kennedy Space Center]_{LOC}$

Tag set

- ▶ B: beginning
- ► I: inside
- O: outside

Category

- Person
- Location
- Organization
- Msic

BIO Annotation

Another Type of NER

For understanding scientific articles and academic papers

Computer Science:

This paper addresses the task of [named entity recognition]_{Task}, using [conditional random fields]_{Process}. Our method is evlauated on the [ConLL NER Corpus]_{Material}.

Physics:

[Local field effects] Process on spontaneous emission rates within [nanostructure photonics material]_{Material} for example are familiar, and have been well used.

Material Science:

The [Kelvin probe force microscopy technique] $_{\mathrm{Process}}$ allows [detection of local EWF] $_{\mathrm{Task}}$ between an [atomic force microscopy] $_{\mathrm{Material}}$ and [metal surface] $_{\mathrm{Material}}$.

Applications

- ✓ Part-of-Speech taggins [Eisenstein, 2018, section 8.1]
- ✓ Named entity recognition (NER) [Eisenstein, 2018, section 8.3]
- Dialogue act identification [Eisenstein, 2018, section 8.6]

Dialog Act Identification

Dialogue acts are labels over utterances in a dialogue, corresponding roughly to the speaker's intention.

Speaker	Dialogue Act	Utterance
A	YES-NO-QUESTION	So do you go college right now?
A	ABANDONED	Are yo-
В	YES-ANSWER	Yeah,
В	STATEMENT	It's my last year [laughter].
A	DECLARATIVE-QUESTION	You're a, so you're a senior now.
В	YES-ANSWER	Yeah,
В	STATEMENT	I'm working on my projects trying to graduate [laughter]
A	APPRECIATION	Oh, good for you.
В	BACKCHANNEL	Yeah.

- Sequence labeling over utterances
- ► For better understanding a conversation

Reference

Eisenstein, J. (2018).

Natural Language Processing.

MIT Press

Lafferty, J., McCallum, A., and Pereira, F. (2001).

Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *ICML*.

Luan, Y., Ostendorf, M., and Hajishirzi, H. (2017).

Scientific information extraction with semi-supervised neural tagging.

arXiv preprint arXiv:1708.06075.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993).

Building a large annotated corpus of english: The penn treebank.

Computational linguistics, 19(2):313-330.

Smith, N. A. (2017).

Natural language processing: Lecture notes.