Equations for Competitive Markets

Linear Demand: $q_d = a - bp$ **Linear Supply**: $q_S = x + yp$

Log-linear demand: $\ln(q_d) = \ln(a) + \varepsilon_d \ln p$ **Log-Linear Supply**: $\ln(q_s) = \ln(x) + \varepsilon_s \ln p$

Total Surplus=Consumer Surplus+Producer Surplus; Revenue=Producer Surplus + Variable Cost

Total Cost=Fixed Cost + Variable Cost; Profit=Revenue-Total Cost=Producer Surplus-Fixed Cost

Quantity Tax (tax per unit): $p_d = p_S + t$; Value Tax (tax on percentage spent): $p_d = (1 + t)p_S$

Price Elasticity of Demand: $\varepsilon_d = \frac{\partial \ln(D)}{\partial \ln(p)} = \frac{\partial D}{\partial p} \frac{p}{D}$; If $|\varepsilon| > 1$ then curve is elastic

 $\textbf{Tax Incidence Formula: } p_{S}(t) = p^{*} - \frac{t|D'|}{S' + |D'|}; p_{d} = p^{*} + \frac{tS'}{S' + |D'|}; \text{If } \varepsilon_{d} \text{ is constant: } \frac{\partial p_{d}}{\partial t} = \frac{\varepsilon_{S}}{|\varepsilon_{J}| + \varepsilon_{S}}$

Equations for Consumer Choice and Demand

Marginal Utility: $MU_i = \frac{\partial u}{\partial x_i}$; Marginal Rate of Substitution: $MRS_{ij} = \frac{\frac{\partial u}{\partial x_j}}{\frac{\partial u}{\partial x_i}}$ and at interior optimum $= \frac{p_i}{p_j}$

Perfect Substitutes: $u(x_1,x_2)=x_1+cx_2$; Cobb-Douglas: $u(x_1,x_2)=\ln(x_1)+c\ln(x_2)$

CES Utility: $u(x_1, x_2) = \frac{1}{\rho} \ln(x_1^{\rho} + x_2^{\rho}); \rho \in (-\infty, 1];$ **Quasilinear**: $u(x_0, x_1) = x_0 + g(x_1)$

Dual Problem; Hicksian Demand: $h_i^*(\mathbf{p},u_0): \min_{x} \mathbf{p} \cdot \mathbf{x} s.t. u(\mathbf{x}) \geq u_0$

Roy's Identity: $x_i^*(\mathbf{p},m) = -\frac{\partial v}{\partial p_i}/\frac{\partial v}{\partial m}$; Shepard's Lemma: $h_i^*(\mathbf{p},u) = \frac{\partial e(\mathbf{p},u)}{\partial p_i}$

 $\textbf{Slutsky Equation:} \ \, \frac{\partial x_i(\mathbf{p},m)}{\partial p_i} = \frac{\partial h_i(\mathbf{p},v(\mathbf{p},m))}{\partial p_i} - \frac{\partial x_i^*}{\partial m} x_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ s_i = \frac{p_i x_i}{m} s_i^*(\mathbf{p},m); \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon_m; \\ \textbf{(Elasticity Form):} \ \, \varepsilon_i = \varepsilon_i^h - s_i \varepsilon$

Demand Elasticity for product i, homogeneous of degree 0: $\varepsilon_{im} + \varepsilon_{ii} + \sum_{j \neq i} \varepsilon_{ij} = 0$

Equations for Cost and Technology

Technical Rate of Substitution: $TRS_{ij} = -\frac{\frac{\partial f}{\partial x_j}}{\frac{\partial f}{\partial y}} = -\frac{mp_i}{mp_j}$; MC: $MC(y) = \frac{\partial c}{\partial y} = \frac{\partial c_{\mathcal{V}}}{\partial y}$ MC to VC: $\int MC = VC$

Factor Prices: $\mathbf{w} = (w_1, w_2, ..., w_n)$; Production Function: $y = f(x_1, y_2)$ **Cost Function** with two factors: $c(\mathbf{w}, y) = w_1 x_1^*(w_1, w_2, y) + w_2 x_2^*(w_1, w_2, y)$

 $\min_{x_1, x_2 \ge 0} w_1 x_1 + w_2 x_2 \text{ s.t. } y = f(x_1, x_2)$

Shepard's Lemma conditional factor demand: $x_i^*(\mathbf{w},y) = \frac{\partial c(\mathbf{w},y)}{\partial w_i}$

Learning Curve: The typical specification is for $Y_t = \Sigma_{s < t} y_s$, AC falls proportionately, $\ln AC_t = AC_0 - b \ln Y_t$

Equations for Competitive Firms

 $\textbf{SR Profit Maximization:} \ \max_{y,x_{\mathcal{U}} \geq 0} \pi = \max_{y \geq 0} [\max_{x_{\mathcal{U}} \geq 0} R(y) - w_{\mathcal{U}} x_{\mathcal{U}} - w_f x_f \text{ s.t. } y = f(x_{\mathcal{U}},\bar{x}_f)] = \max_{y \geq 0} [R(y) - c(y)]$

Revenue if firm is competitive: $R(y) = py = pf(x_{\mathcal{U}}, \bar{x}_f)$ FOC of unconditional factor demand: $p\frac{\partial f(x_{\mathcal{U}}, \bar{x}_f)}{\partial x_{\mathcal{U}}} = w_{\mathcal{U}}$ Hotelling's Lemma, Supply: $y^*(p, \mathbf{w}) = \frac{\partial \pi(p, \mathbf{w})}{\partial p}$; unconditional factor demands: $x_i(p, \mathbf{w}) = -\frac{\partial \pi(p, \mathbf{w})}{\partial w_i}$

Shutdown Condition (Competitive Firms): $-F > py - c_{\mathcal{V}}(y) - F \implies AVC = \frac{c_{\mathcal{V}}(y)}{y} > p$

Equations for Monopolies

FOC for a monopolist: p(y) + p'(y)y = c'(y) which can be rewritten as $p = \frac{1}{1+\frac{1}{2}}MC$; valid if $\varepsilon < -1$

Passing Along Costs: $\frac{\partial p}{\partial c} = \frac{1}{2 + u v''(u)/p'(y)}$

Price Discrimination

Third Degree: Monopolist's Problem: max
$$p_1(x_1)x_1-cx_1+p_2(x_2)x_2-cx_2$$
 $FOC_{x1}: c=p_1(x_1)[1-\frac{1}{|\epsilon_1|}]$ Markup factor: $M_i=\frac{1}{1-\frac{1}{\epsilon_i}}=\frac{|\epsilon_i|}{|\epsilon_i|-1}$

Quasilinear utility: max $u_i(x) + y$ s.t. px + y = m; FOC (inverse demand curve): $p = u_i'(x)$

Decision Theory

P(A|C)P(C) + P(A|D)P(D)

Bayes Theorem:
$$p(s|m) = \frac{p(m|s)p(s)}{p(m)} = \frac{p(m|s)p(s)}{\sum_t p(m|t)p(t)}$$
. If s is a binary variable, $p(s|m) = \frac{p(m|s)p(s)}{p(m|s)p(s) + p(m|\neg s)p(\neg s)}$.

$$\frac{p(s|m)}{p(t|m)} = \left[\frac{p(m|s)}{p(m|t)}\right] \left[\frac{p(s)}{p(t)}\right]$$
. Can also take logs to get linear expression.

Cournot

Given
$$D(Y) = a - bY$$
, $BR_i(Y_{-i}) = \operatorname*{argmax}_{y_i} \pi_i = P(\sum_{i=1}^n y_i)y_i - c(y_i) \implies P(\sum_{i=1}^n y_i) + P'(\sum_{i=1}^n y_i)y_i - MC_i(y_i) = 0$ To solve for the Nash equilbrium, we want to find where the Best Response functions intersect. $\Rightarrow NE_{Cournot}: Y^* = N$

 $\frac{N}{(N+1)b}(a-c) \implies y_i^* = \frac{Y^*}{N} = \frac{a-c}{(N+1)b}$

Stackelberg

For
$$D(Y) = a - bY$$
, $BR_L = \underset{\mathcal{Y}_L}{\operatorname{argmax}} \pi_L(y_L, BR_F(y_L)) = D(y_L + BR_F)y_L - cy_L$

Intertemporal Preference

Given
$$U(c_0,c_1)$$
, we have $\frac{\partial_0 U}{\partial_1 U}=\frac{\frac{\partial U}{\partial c_0}}{\frac{\partial U}{\partial c_1}}=MRS_{01}=1+MRTP$

Given Initial Endowment $E=(e_0,e_1)$ and intertemp prod function y=f(x), the PPF is $\{(q_0,q_1):q_0=e_0-x\leq 0,q_1=e_1+f(x)\leq 0\}$

ROI=
$$f(x) - x$$
; AROI= $\frac{f(x)}{x} - 1$; MROI= $f'(x) - 1$
Present Value: $PV_r(C) = c_0 + \frac{c_1}{1+r}$

Agent Optim: $\max_x w = PV(Q) = q_0 + \frac{q_1}{1+r} = e_0 - x + \frac{e_1 + f(x)}{1+r}$ FOC: $1 + r = f'(x) = 1 + MROI \implies r = MROI$ Optimal individual borrowing, consumption and lending: $\max_{c_0, c_1 \leq 0} U(c_0, c_1)$ s.t. $PV_r(Q) = PV_r(C) = w$, given $a_0 = c_0 + b$ and $c_0 = c_0 + b$ and

given
$$c_0 = q_0 + b$$
 and $c_1 = q_1 - (1+r)b \Rightarrow \max_b U(q_0 + b, q_1 - (1+r)b)$

Fisher's Equation: $k \approx r + \pi$ (obtained from $1 + k = (1 + r)(1 + \pi)$)

Present Value of discrete cash stream $X = (x_0, x_1, ..., x_t)$:

$$PV_k(X) = \sum_{t=0}^T \frac{X_t}{(1+k)^t}$$

Present Value of continuous cash stream:

$$PV_k(X) = \int_{t=0}^{t} x_t e^{-kt} dt$$

General formula for interest rates and asset yields: $k_a = r^* + \pi^e + RP_a \pm T_a$ T_a : Transaction Costs RP_a : Risk Premium