\mathbf{A}

FIGURE 3

*,p<0.05 versus 10µM DOX alone

t,p<0.05 versus equimolar VEGF 120

WO 2005/072417

VEGF 205: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI

VEGF 188: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI
VEGF 164: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI
VEGF 144: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI
VEGF 120: MNFLLSWVHWTLALLLYLHHAKWSQAAPTTEGEQKSHEVI
VEGF 205: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 188: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 164: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 164: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 120: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 120: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 120: KFMDVYQRSYCRPIETLVDIFQEYPDEIEYIFKPSCVPLM
VEGF 164: KCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS
VEGF 164: RCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS
VEGF 164: RCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS
VEGF 164: RCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS
VEGF 120: RCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS
VEGF 120: RCAGCCNDEALECVPTSESNITMQIMRIKPHQSQHIGEMS

VEGF 205: FLQHSRCECRPKKDRTKPEKKSVRGKGKGQKRKRKKSRFK
VEGF 188: FLQHSRCECRPKKDRTKPEKKSVRGKGKGQKRKRKKSRFK
VEGF 164: FLQHSRCECRPKKDRTKPENGEERCSERRKHERMODPOING
VEGF 144: FLQHSRCECRPKKDRTKPEKKSVRGKGKGQKRKRKKSRFK
VEGF 120: FLQHSRCECRPKKDRTKPE

VEGF 205: S W S V Y Y @ A A A V VEGF 188: S W S V HCEPC SER RIKHIDE V O DP QUECK ESCKNEDSRCKAR OF VEGF 164: KESTCKNEDSRCKAR OF BELINER THE REPORT OF VEGF 144: S W S V

VEGF 188: ELNERTICRODK PRR

						ATC	MC	Hara.	CE3	Gire.	TOP	TES	GEG.	@XC	ALC:	AGE.	CAG	CER	THE	42
						M	N	P	L	L	S	W	V	H	W	T	L	A	L	14
ene L	Che L	DIG Y	CIC: L	eag H	CAT H	GEG A	AAG) K	ŒĠ. W	%GC S	©R© Q	GGR A	GCA A	CCC P	ACG T	ACA T	GAA E	GGA G	gag E	CAG Q	102 34
	TCC S	CAT H	GAA E	GTG V	_		TTC F	atg M	_	GTC V			CGA R		TAC Y	TGC C	CGT R	CCG P	ATT I	
			GTG V		ATC I			gag e		CCC P	GAC D	GAG B		gag B	TAC Y	ATC I	TTC P	AAG K	CCG P	222 74
TCC S		GTG V	CCG P	CTG L				GCA A				aac N	GAT D		GCC A	CTG L	GAG B	TGC C	GTG V	282 94
CCC P			gag e		AAC N		ACC T	ATG M	CAG Q				ATC I			CAC H	CAA Q	AGC S	CAG Q	342 114
CAC H	ATA I	GGA G	GAG E					CAG Q			AGA R			TGC C	AGA R	CCA P	AAG K		GAC D	402 134
AGA R	ACA T	aag K	CCA P	GAA E	AAA K		TCA S	GTT V		GGA G	aag K	GGA G		GGT G	CAA Q	AAA K	CGA R		CGC R	462 154
aag K	AAA K	TCC S	CGG R	TTT F	AAA K	TCC s	TGG W	AGC S	GT <u>G</u> V	TAC Y	GTT V	GGT G	GCC A	GCT A	GCT A	GTC V	TAA	TTC	CTT	522 174

FIGURE 8

FIGURE 9

% Wound Closure (based on Peak Area) 20hrs post wounding

- * Different from No VEGF (p < 0.05)

 ** Different from No VEGF (p < 0.01)

 *** Different from No VEGF (p < 0.001)
 †† Different from VEGF 120 (p < 0.05)
 †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Area)

20hrs post wounding

- * Different from No VEGF (p < 0.05)
 *** Different from No VEGF (p < 0.001)
 †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Height) 20 hrs post wounding

- Different from No VEGF (p < 0.05)
 Different from No VEGF (p < 0.01)
 Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

% Wound Closure (based on Peak Height) 20 hrs post wounding

- Different from No VEGF (p < 0.01)
- †† Different from VEGF 120 (p < 0.01)

One-Way ANOVA with Newman Keuls multiple comparison test

WO 2005/072417

FIGURE 11

FIGURE 13