PROBABILITY: PROBLEM SET 2

ZEHAO WANG

Update: August 25, 2021

1.4.1.

Show that if $f \ge 0$ and $\int f d\mu = 0$, then f = 0 a.e.

1.4.2.

Let $f \ge 0$ and $E_{n,m} = \{x : m/2^n \le f(x) < (m+1)/2^n\}$. As $n \uparrow \infty$,

$$\sum \sum_{m=1}^{\infty} \frac{m}{2^n} \mu(E_{n,m}) \uparrow \int f \, \mathbf{d}\mu$$

1.4.3.

Let g be an integrable function on \mathbf{R} and $\epsilon > 0$.

- (i) Use the definition of the integral to conclude there is a simple function $\varphi = \sum_k b_k 1_{A_k}$ with $\int |g \varphi| dx < \epsilon$.
- (ii) Use Exercise A.2.1 to approximate the A_k by finite unions of intervals to get a step function

$$q = \sum_{j=1}^{k} c_j 1_{(a_{j-1}, a_j)}$$

with $a_0 < a_1 < \ldots < a_k$, so that $\int |\varphi - q| < \epsilon$.

- (iii) Round the corners of q to get a continuous function r so that $\int |q-r| dx < \epsilon$.
- (iv) To make a continuous function replace each $c_j 1_{(a_{j-1},a_j)}$ by a function that is 0 $(a_{j-1},a_j)^c$, c_j on $[a_{j-1}+\delta-j,a_j-\delta_j]$, and linear otherwise. If the δ_j are small enough and we let $r(x)=\sum_{j=1}^k r_j(x)$, then

$$\int |q(x) - r(x)| \, \mathbf{d}\mu = \sum_{j=1}^k \delta_j c_j < \epsilon.$$

1.4.4.

Prove the Riemann-Lebesgue lemma. If g is integrable, then

$$\lim_{n \to \infty} \int g(x) \cos nx \, \mathbf{d}x = 0,$$

Hint: If q is a step function, this is easy. Now use the previous exercise.

1.5.2.

Show that if μ is a probability measure, then

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p.$$

1.5.7.

Let $f \geq 0$.

- (i) Show that $\int f \wedge n \, d\mu \uparrow \int f \, d\mu$ as $n \to \infty$.
- (ii) Use (i) to conclude that if g is integrable and $\epsilon>0$, then we can pick $\delta>0$ so that $\mu(A)<\delta$ implies $\int_A |g|\,\mathrm{d}\mu<\epsilon$.

1.6.1.

Suppose φ is strictly convex, i.e., > holds for $\lambda \in (0,1)$. Show that, under the assumptions of Theorem 1.6.2, $\varphi(EX) = E\varphi(X)$ implies X = EX a.s.

1.6.2.

Suppose $\varphi: \mathbf{R}^n \to \mathbf{R}$ is convex. Imitate the proof of Theorem 1.5.1 to show

$$E\varphi(X_1,\ldots,X_n) \geq \varphi(EX_1,\ldots,EX_n)$$

provided $E |\varphi(X_1, \dots, X_n)| < \infty$ and $E |X_i| < \infty$ for all i

1.6.3.

Chebyshev's inequality is and is not sharp.

- (i) Show that Theorem 1.6.4 is sharp by showing that if $0 < b \le a$ are fixed there is an X with $EX^2 = b^2$ for which $P(|X| \ge a) = b^2/a^2$.
- (ii) Show that Theorem 1.6.4 is not sharp by showing that if X has $0 < EX^2 < \infty$, then

$$\lim_{a \to \infty} a^2 P(|X| \ge a) / EX^2 = 0.$$

1.6.9.

Inclusion-exclusion formula. Let $A_1, A_2, \dots A_n$ be events and $A = \bigcup_{i=1}^n A_i$. Prove that $1_A = 1 - \prod_{i=1}^n (1 - 1_{A_i})$. Expand out the right-hand side, then take expected value to conclude

$$P(\cup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(\cap_{i=1}^{n} A_i).$$

1.6.10.

Bonferroni inequalities. Let $A_1, A_2, \dots A_n$ be events and $A = \bigcup_{i=1}^n A_i$. Show that $1_A \le \sum_{i=1}^n 1_{A_i}$, etc. and then take expected values to conclude

$$P(\cup_{i=1}^{n} A_{i}) \leq \sum_{i=1}^{n} P(A_{i})$$

$$P(\cup_{i=1}^{n} A_{i}) \geq \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j})$$

$$P(\cup_{i=1}^{n} A_{i}) \leq \sum_{i=1}^{n} P(A_{i}) - \sum_{i < j} P(A_{i} \cap A_{j}) + \sum_{i < j < k} P(A_{i} \cap A_{j} \cap A_{k})$$

In general, if we stop the inclusion-exclusion formula after an even (odd) number of sums, we get a(n) lower (upper) bound.

1.6.11.

If $E|X|^k < \infty$, then for $0 < j < k, E|X|^j < \infty$, and furthermore

$$E|X|^j \le \left(E|X|^k\right)^{j/k}.$$