SEQUENCE LISTING

<110>	THE REGENTS OF THE UNIVERSITY OF CALIFORNIA GILL, Gordon N. YEO, Michel LIN, Patrick S. DARMUS, Michael E.	
<120>	PHOSPHATASE REGULATION OF NUCLEIC ACID TRANSCRIPTION	
<130>	00015-041US1	
<140> <141>	US/10/552,298 2005-09-30	
<150> <151>	US 60/459,786 2003-04-01	
<160>	68	
<170>	PatentIn version 3.5	
<210> <211> <212> <213>	1 783 DNA Homo sapiens	
<400>	1	60
	aget eggeegteat taeteagate ageaaggagg aggetegggg eeegetgegg	
ggcaaa	ggtg accagaagte agcagettee cagaageeee gaageegggg cateeteeae	120
tcactc	ttet getgtgtetg cegggatgat ggggaggeee tgeetgetea eageggggeg	180
cccctg	cttg tggaggagaa tggcgccatc cctaagaccc cagtccaata cctgctccct	240
gaggee	aagg cccaggacte agacaagate tgcgtggtca tcgacctgga cgagaccctg	300
gtgcaca	aget cetteaagee agtgaacaae geggaettea teateeetgt ggagattgat	360
ggggtg	gtee accaggteta egtgttgaag egteeteatg tggatgagtt eetgeagega	420
atgggc	gage tetttgaatg tgtgetgtte actgetagee tegecaagta egeagaceea	480
gtaget	gace tgetggacaa atggggggee tteegggeee ggetgttteg agagteetge	540
gtcttc	cace gggggaacta egtgaaggac etgageeggt tgggtegaga eetgeggegg	600
gtgctca	atcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg	660
gtggcci	togt ggtttgacaa catgagtgac acagagetec acgacetect eccettette	720
gagcaa	ctea geogtgtgga egacgtgtae teagtgetea ggeageeaeg geeagggage	780
tag		783
<210> <211> <212>	2 260 PRT Homo sapiens	
<400>	2	

Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arq 1.0 Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys 25 Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg 40 Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val 55 Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro 70 75 Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp Leu 90 85 Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp 100 105 Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr Val 115 120 Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu 130 135 140 Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro 150 155 Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe 165 170 Arq Glu Ser Cys Val Phe His Arq Gly Asn Tyr Val Lys Asp Leu Ser 185 180 190 Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro 195 200 205 Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp 210 215 220 Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe 225 230 235 Glu Gln Leu Ser Arg Val Asp Asp Val Tvr Ser Val Leu Arg Gln Pro 250 Arg Pro Gly Ser 260 <210> 3 <211> 852 <212> DNA <213> Homo sapiens atggaacacg gctccatcat cacccaggcg cggagggaag acgccctggt gctcaccaag caaggeetgg tetecaagte etetectaag aageetegtg gacgtaacat etteaaggee cttttctgct gttttcgcgc ccagcatgtt ggccagtcaa gttcctccac tgagctcgct qcqtataaqq aqqaaqcaaa caccattqct aaqtcqqatc tqctccaqtq tctccaqtac caqttctacc agatcccagg gacctgcctg ctcccagagg tgacagagga agatcaagga

2

aggatetgtg tggteattga eetegatgaa accettgtge atageteett taageeaate

aacaatgctg acttcatagt gcctatagag attgagggga ccactcacca ggtgtatgtg

ctcaagaggc cttatgtgga tgagttcctg agacgcatgg gggaactctt tgaatgtgtt
ctcttcactg ccagcctggc caagtatgcc gaccctgtga cagacctgct ggaccggtgt

ggggtgttcc gggcccgcct attccgtgag tcttgcgtgt tccaccaggg ctgctacgtc

60 120

180

240

300

360

420 480

540

aaggac	ctca	gccg	cctg	gg g	aggga	acct	g ag	aaag	accc	tca	tcct	gga	caact	tegeet	66	50
gcttct	taca	tatt	ccac	ee e	gagaa	atgc	a gt	geet	gtgc	agt	cctg	gtt	tgate	gacatg	72	20
gcagac	actg	agtt	gctg	aa c	ctgat	tccc	a at	cttt	gagg	agc:	tgag	cgg i	agca	gaggac	7.8	30
gtctac	acca	geet	tggg	gc a	gctg	eggg	e cc	etta	geet	gcc	etge	ttc (caago	cgacgg	84	10
ccatcc <210> <211> <212> <213>	cagt 4 283 PRT Homo		iens												8.5	52
Met Gl		G1 v	Ser	Tla	Tle	Thr	Gln	Δla	Ara	Ara	Glu	Aen	Δla	T.e.11		
1			5					10				_	15			
Val Le		20					25					30				
Arg Gl	35					40					45					
His Va 50	1 Gly	Gln	Ser	Ser	Ser 55	Ser	Thr	Glu	Leu	Ala 60	Ala	Tyr	Lys	Glu		
Glu Al 65	a Asn	Thr	Ile	Ala 70	Lys	Ser	Asp	Leu	Leu 75	Gln	Cys	Leu	Gln	Tyr 80		
Gln Ph	e Tyr	Gln	Ile 85	Pro	Gly	Thr	Cys	Leu 90	Leu	Pro	Glu	Val	Thr 95	Glu		
Glu As	p Gln	Gly 100		Ile	Cys	Val	Val 105		Asp	Leu	Asp	Glu 110		Leu		
Val Hi			Phe	Lys	Pro			Asn	Ala	Asp			Val	Pro		
Ile Gl		Glu	Gly	Thr	Thr 135	120 His	Gln	Val	Tyr	Val	125 Leu	Lys	Arg	Pro		
Tyr Va		Glu	Phe			Arg	Met	Gly			Phe	Glu	Cys			
145 Leu Ph	e Thr	Ala		150 Leu	Ala	Lys	Tyr		155 Asp	Pro	Val	Thr		160 Leu		
Leu As	p Arg		165 Gly	Va1	Phe	Arg		170 Arg	Leu	Phe	Arg		175 Ser	Cys		
Val Ph		180 Gln	Gly	Cys	Tyr		185 Lys	Asp	Leu	Ser		190 Leu	Gly	Arg		
Asp Le	195 u Arg	Lys	Thr	Leu	Ile	200 Leu	Asp	Asn	Ser	Pro	205 Ala	Ser	Tyr	Ile		
21 Phe Hi		Glu	Asn	Ala	215 Val	Pro	Val	Gln	Ser	220 Trp	Phe	Asp	Asp	Met		
225 Ala As				230					235					240		
Gly Al	-		245					250					255			
-		260					265			MIG	MIG	270	FIO	Leu		
Ala Cy	275	Ala	ser	гля	Arg	280	Pro	ser	GIN							
<210> <211>	5 798															
<212>	DNA															
<213>	Homo	sap	iens													
<400>	5															
atggac	ggcc	cggc	catc	at c	accca	aggt	g ac	caac	ccca	agg	agga	cga (gggc	eggttg	6	50
ceggge	gegg	gcga	gaaa	ge e	tecca	agtgo	c aa	egte	agct	taa	agaa	gca (gagga	agccgc	12	20

agcatectta geteettett etgetgette egtgattaca atgtggagge ecetecace ageagececa gtgtgettee gecactggtg gaggagaatg gtgggettea gaagcacea getaagtace teettecaga ggtgacggtg ettgactatg gaaagaaatg tgtggteatt gatttagtag aacasttggt geacagtteg tttaagceta ttagtaatge tgatttatt gtteeggttg aaategatgg aactatacat eaggtgatatg tgetgaageg gecacatgtg gaegagttee teeagagagt ggggeagett tttgaatgtg tgetetttae tgecagettg gecaagtatg eagacectgt ggetgacete etagaceget ggggtggt eegggeegg eteteteaga aateatgtg ttteategt gggaactaeg tgaaggacet gagtegeett gggegggage tgageaagt gateattgtt gaeaattee etgeeteata eatetteeat eetgagaatg eagtgeetgt geagteetg ttegatgaca tgaeggaee ggagetgetg gageetetate eettettag gggeeggaag egggagetg geagteetg geagteetg eggggaggae aggtgaea egggaggaeg egggagetg eggeetgag eggaggagea eggtgtaea eagtgtaeag eagtgtaea

agactctgca ataggtag <210> 6

<211> 6

<212> PRT

<213> Homo sapiens

<400> 6

Met Asp Glv Pro Ala Ile Ile Thr Gln Val Thr Asn Pro Lvs Glu Asp Glu Gly Arg Leu Pro Gly Ala Gly Glu Lys Ala Ser Gln Cys Asn Val Ser Leu Lys Lys Gln Arg Ser Arg Ser Ile Leu Ser Ser Phe Phe Cys Cys Phe Arg Asp Tyr Asn Val Glu Ala Pro Pro Pro Ser Ser Pro Ser Val Leu Pro Pro Leu Val Glu Glu Asn Gly Gly Leu Gln Lys Pro Pro Ala Lys Tyr Leu Leu Pro Glu Val Thr Val Leu Asp Tyr Gly Lys Lys Cys Val Val Ile Asp Leu Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Ile Ser Asn Ala Asp Phe Ile Val Pro Val Glu Ile Asp Gly Thr Ile His Gln Val Tyr Val Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Gln Leu Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro Val Ala Asp Leu Leu Asp Arg Trp Gly Val Phe Arg Ala Arg Leu Phe Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser Arg Leu Gly Arg Glu Leu Ser Lys Val Ile Ile Val Asp Asn Ser Pro Ala Ser Tyr Ile Phe His Pro Glu Asn Ala Val Pro Val Gln Ser Trp Phe Asp Asp Met Thr Asp Thr Glu Leu Leu

Asp Leu Ile Pro Phe Phe Glu Gly Leu Ser Arg Glu Asp Asp Val Tyr 245 250 Ser Met Leu His Arg Leu Cys Asn Arg 260 265 <210> 7 <211> 642 <212> DNA <213> Homo sapiens <400> 7 atgatgggga ggcctgcct gctcacagcg gggcgcccct gcttgtggag gagaatggcg 60 ccatcectaa ggcagacece agtecaatae etgeteeetg aggccaagge ccaggactea 120 gacaagatct gcgtggtcat cgacctggac gagaccctgg tgcacagctc cttcaagcca 180 240 gtgaacaacg cggacttcat catecetgtg gagattgatg gggtggteca ccaggtetac qtqttqaaqc qtcctcacqt qqatqaqttc ctqcaqcqaa tqqqcqaqct ctttqaatqt 300 gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa 360 tggggggcct tccgggcccg gctgtttcga gagtcctgcg tcttccaccg ggggaactac 420 gtgaaggacc tgagccggtt gggtcgagac ctgcggcggg tgctcatcct ggacaattca 480 cetgeeteet atgtetteea tecagacaat getgtacegg tggeetegtg gtttgacaae atgagtgaca cagageteca egacetecte ecettetteg ageaacteag cegtgtggac 600 gacgtgtact cagtgctcag gcagccacgg ccagggagct ag 642 <210> 8 <211> 213 <212> PRT <213> Homo sapiens <400> 8 Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tvr Leu Leu 25 Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Asp 40 Leu Asp Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala 50 55 60 Asp Phe Ile Ile Pro Val Glu Ile Asp Gly Val Val His Gln Val Tyr 70 75 80 Val Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu 85 90 Leu Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu 120 Phe Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu 140 Ser Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser 150 160 Pro Ala Ser Tyr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser 165 170 Tro Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe

180 185 Phe Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln 195 200 205 Pro Arg Pro Gly Ser 210 <210> 9 <211> 783 <212> DNA <213> Drosophila <400> 9 atggacaget eggeegteat tacteagate ageaaggagg aggetegggg eeegetgegg 60 ggcaaaggtg accagaagtc agcagcttcc cagaagcccc gaagccgggg catcctccac 120 teactettet getgtgtetg cegggatgat ggggaggeec tgcctgetea cagegggggg 180 240 ccctqcttq tqqaqqaqaa tqqcqccatc cctaaqaccc caqtccaata cctqctccct 300 gaggccaagg cccaggactc agacaagatc tgcgtggtca tcgarctgaa cgagaccctg gtgcacagct ccttcaagcc agtgaacaac gcggacttca tcatccctgt ggagattgat 360 ggggtggtcc accaggtcta cgtgttgaag cgtcctcatg tggatgagtt cctgcagcga 420 atgggcgage tetttgaatg tgtgctgtte actgctagee tegecaagta egeagaceea 480 qtaqctqacc tqctqqacaa atqqqqqqcc ttccqqqccc qqctqtttcq aqaqtcctqc 540 qtcttccacc qqqqqaacta cqtqaaqqac ctqaqccqqt tqqqtcqaqa cctqcqqcqq gtgctcatcc tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtaccg 660 gtggcctcgt ggtttgacaa catgagtgac acagagetec acgacetect eccettette 720 gageaactca geogtgtgga egaegtgtae teagtgetea ggeageeacg geoagggage 780 tag 783 <210> 10 <211> 260 <212> PRT <213> Drosophila <400> 10 Met Asp Ser Ser Ala Val Ile Thr Gln Ile Ser Lys Glu Glu Ala Arg

10 Gly Pro Leu Arg Gly Lys Gly Asp Gln Lys Ser Ala Ala Ser Gln Lys 20 25 Pro Arg Ser Arg Gly Ile Leu His Ser Leu Phe Cys Cys Val Cys Arg 40 Asp Asp Gly Glu Ala Leu Pro Ala His Ser Gly Ala Pro Leu Leu Val Glu Glu Asn Gly Ala Ile Pro Lys Thr Pro Val Gln Tyr Leu Leu Pro 70 75 Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu Leu 85 90 Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala Asp 100 105 Phe Ile Ile Pro Val Glu Ile Asp Glv Val Val His Gln Val Tvr Val 115 120 125

Leu Lys Arg Pro His Val Asp Glu Phe Leu Gln Arg Met Gly Glu Leu Phe Glu Cys Val Leu Phe Thr Ala Ser Leu Ala Lys Tyr Ala Asp Pro 150 155 Val Ala Asp Leu Leu Asp Lys Trp Gly Ala Phe Arg Ala Arg Leu Phe 170 Arg Glu Ser Cys Val Phe His Arg Gly Asn Tyr Val Lys Asp Leu Ser 185 180 Arg Leu Gly Arg Asp Leu Arg Arg Val Leu Ile Leu Asp Asn Ser Pro 195 200 Ala Ser Tvr Val Phe His Pro Asp Asn Ala Val Pro Val Ala Ser Trp 215 220 Phe Asp Asn Met Ser Asp Thr Glu Leu His Asp Leu Leu Pro Phe Phe 230 235 Glu Gln Leu Ser Arg Val Asp Asp Val Tyr Ser Val Leu Arg Gln Pro 245 250 Arg Pro Gly Ser <210> 11 <211> 642 <212> DNA <213> Drosophila <400> 11 atgatgggga ggccctgcct gctcacagcg gggcgcccct gcttgtggag gagaatggcg 60 ccatccctaa qqcaqacccc aqtccaatac ctqctccctq aqqccaaqqc ccaqqactca qacaaqatct qcqtqqtcat cqarctqaac qaqaccctqq tqcacaqctc cttcaaqcca 180 gtgaacaacg cggacttcat catccctgtg gagattgatg gggtggtcca ccaggtctac 240 gtgttgaage gteeteaegt ggatgagtte etgeagegaa tgggegaget etttgaatgt 300 gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa 360 420 tggggggcct tccgggcccg gctgtttcga gagtcctgcg tcttccaccg ggggaactac qtqaaqqacc tqaqccqqtt qqqtcqaqac ctqcqqcqqq tqctcatcct qqacaattca 480 cetgeeteet atgtetteea teeagacaat getgtaeegg tggeetegtg gtttgacaae 540 atgagtgaca cagageteca egacetecte ecettetteg ageaacteag cegtgtggac 600 gacgtgtact cagtgctcag gcagccacgg ccagggagct ag 642 <210> 12 <211> 213 <212> PRT <213> Drosophila <400> 12 Met Met Gly Arg Pro Cys Leu Leu Thr Ala Gly Arg Pro Cys Leu Trp 15 Arg Arg Met Ala Pro Ser Leu Arg Gln Thr Pro Val Gln Tyr Leu Leu Pro Glu Ala Lys Ala Gln Asp Ser Asp Lys Ile Cys Val Val Ile Glu 40 Leu Asn Glu Thr Leu Val His Ser Ser Phe Lys Pro Val Asn Asn Ala

50 55 60
Asp Phe Ile Ile Pro Val Glu Ile Asp Glv Val Val His Gln Val Tvr

65					70					75					80	
	Leu	Lys	Arg			Val	Asp	Glu			Gln	Arg	Met			
Leu	Phe	G1u	Cys	85 Val	Leu	Phe	Thr		90 Ser	Leu	Ala	Lys		95 Ala	Asp	
Pro	Val		100 Asp	Leu	Leu	Asp		105 Trp	Gly	Ala	Phe		110 Ala	Arg	Leu	
Phe		115 Glu	Ser	Cys	Val		120 His	Arg	Gly	Asn		125 Val	Lys	Asp	Leu	
Ser	130 Arg	Leu	Gly	Arg	Asp	135 Leu	Arg	Arg	Val	Leu	140 Ile	Leu	Asp	Asn	Ser	
145					150					155					160	
Pro	ALA	ser	Tyr	165	Pne	HIS	PIO	Asp	170	Ala	vaı	Pro	vaı	175	ser	
Trp	Phe	Asp	Asn 180	Met	Ser	Asp	Thr	Glu 185	Leu	His	Asp	Leu	Leu 190	Pro	Phe	
Phe	Glu	Gln 195	Leu	Ser	Arg	Val	Asp 200		Val	Tyr	Ser	Val 205		Arg	Gln	
Pro	Arg 210		Gly	Ser			200					200				
<21)> :	13														
<21		7020 NA														
<21	-		ophi:	La												
<40)> :	13														
ctg	gage	gcg (gcag	gaaco	ec g	gece	gcc	g gc	etec	cagt	ccg	ccta	jcc (gege	eggtee	60
cag	aagt	ggc (gaaa	geege	ca g	ccga	gtcc	a gg	tcac	gccg	aag	ccgt.	.gc	cctti	ttaagg	120
ggg	agcc	tg a	aaac	ggcg	cc to	gggti	cca	t gti	ttgc	atcc	gcc.	tege	ggg i	aagga	aaactc	180
cat	gttg	aa d	caaa	gttt	ec t	ccgc	gccc	c ct	cct	ccc	ctc	ccc	eta (gaac	ctggct	240
ccc	ctcc	cct (ccgga	agcto	eg e	gggg	atcc	c to	cctc	ccac	ccc	taca	ctc	cccc	ccgcgc	300
ccc	gatt	ccg (gece	cage	cg g	gggg	gagge	c cg	ggcg	cccg	ggc	caga	gtc	egge	eggage	360
gga	gcgc	gcc (egge	cccat	g g	acago	ctcg	g cc	gtca	ttac	tca	gate	agc i	aagga	aggagg	420
ctc	gggg	ecc o	gctg	gggg	gc a	aaggi	tacc	g gg	gctg	eggg	gage	gggg	ecg i	aagc	cggggc	480
gcc	gtgg	gag o	gaga	gaag	gg g	ccgg	gate	t tc	cca	gggg	agc	egec	jcc (geeg	cccgg	540
gcg	geeg	ect :	taget	gtg	cc c	gaago	etec	c ago	ccg	agag	gga	gcag	gga (gaga	gtttga	600
act	caga	gga (ggcto	caga	ga c	gegg	ggcg	g gg	ectg	gege	ctt	tggg	gcg (etect	tgtccg	660
ctc	gagg	ga (ggaaa	actga	ag g	cagga	aata	g aga	aggg	aact	cct	tcgg	ggg .	tttc	ctggca	720
ggc	attg	egt (ggtg	catg	gg c	gece	ccc	a cca	attg	gege	caa	tggg	gct (gtga	gatggg	780
gga	gctg	agg a	aggg	egeet	a t	gggc	cacco	gct	tgag	actc	cgc	cca	ccc i	ccca	cccca	840
ccc	cccc	ggg (etge	ggtc	eg g	tagg	gtct	t gg	gagge	gggc	gcc	gagg	.ga (cagca	aggctg	900
ggg	agge	tg (gagg	gatci	c c	egeca	aaca	c ac	agct	acgt	tcc	ccac	aaa (cttc	gcgtca	960
cgc	gtgg	igg (cgcc	gacco	cc c	tegga	aggc	a ca	gaga	ggac	ggc	cggc	act	tccaa	agagtc	1020
gct	tggc	jcc (cgcg	ggga	ga g	tcgt	gcgc	c tag	gtgg	gcac	gca	ccac	ccc (gcaaa	agcctc	1080

qccqccccqa cqaqqctqcq tcccccaqcq tqqctqqqcc qqqqtqqqqq qqtctqtctt 1140 1200 etectitice cogtgtggac etcaggatet ggacgetgee eccaggtetg eccaeceteg cctgggtctg gctgccccgg aactgagggc aaggtggaaa ggctagttgc agggggccgg 1260 aggggggtgg ggtgggaggg gtatctgtca atcaggctgc tgggctccag gtcggaggtc 1380 tgggcggggc agggcaaaca gatggccact ggacactggc cccaggccgc gggactgcac ccctgcctct gggcccagcc gcagtgagga cttcgtaccc acgggggtgg agaggatgga 1440 gggagggcag gggtggactg ccctgggtcc caggccctgg ctgtcctgag caggggtgct 1500 1560 caggtaaggt ggggtcagga ggcaccgcaa tggggctgat cagcagcagt catggagget 1620 gtgagaggca gggagagagc accccaggac ctccttctcc aggccacgca ctccctatgt gggcgcctta atacctgcta gacctatttg tctgggagct gcaggagcct tggagttgat 1680 tgtggagece tgacagggge gtttcagaga aagtcaggag etgeettegt gtgtetggat 1740 1800 gaaggggcca cggcaagatc ctcctggccc aggggttcac acctgggcac acatgcagga 1860 ttctgcaggc cagtgtgcac cgagcctcca acttgtgcct ccctacttca ggtgaccaga agteageage tteecaqaag eecegaagee ggggeateet ceaeteacte ttetgetgtg 1920 tetgeeggga tgatggggag geeetgeetg etcaeagegg ggegeeeetg ettgtggagg 1980 agaatggege catecetaag gtgegtgggg geeaggtggg geeaeggggg caeetggaet 2040 cagtottcag ggotttaggg gaaggggoto otgactgago tittcaggat ggacttgcag 2100 2160 acctgaaagt gcagagtagg agggtggcag cctcccctgc caggccctgc ccactgtggg gaaactgaat teteceteat aagtggaage ttttttetae ettggttttt agagaggtet 2280 caaagagcca agaggcctac ccaagcccta gagctggcag gggcaaagct gggaaggggg aagtatetgt teetggggee tggggtteet etggagaegg etagggggag aageetgegt 2340 2400 accecagtee aatacetget eeetgaggee aaggeecagg acteagacaa gatetgegtg 2460 2520 gtcatcgacc tggacgagac cctggtgcac agctecttca aggtgggcec tgctcaacag 2580 ccctcagccc gggtctcggg gggcatcccc caccctggcc tgggagggag gtgtgtgctg 2640 gaccccatge cetggggete etectecaae tecageaget etttteeece cacagecagt 2700 gaacaacgcg gacttcatca tccctgtgga gattgatggg gtggtccacc aggtgagggc 2760 caggaagagg cagtggtggg cttggcatct gcctccagac cctaggctct tcccaccaat coggagogoc toggatogga attogataca totogaatot cagagococa gagagogtot 2820 gagactigic ccaaagicac acagaaccic aagggetigi getgacteca ageetgeaga gtgggeteet eetetagget eeecegtget gtgeteeete geeceaeeet geeegggaee 2940

3000 caqttcaaqt aattcaqqat aqqttqtqtq ctqtccaqcc tqttctccat tacttqqctc ggggaccggt gccctgcagc cttggggtga gggggctgcc cctggattcc tgcactaggc 3060 tgaggttgag gcaggggaag ggattgggaa ttagggacct cgtgaggtag gactggccag 3120 tggagtggaa gttttgateg ttttetggeg gggggtgggt acagttteec cagcagtggt 3180 cagggtaget ggccaagegg agectgeggg eccagtetee tteetgtgeg cetetgeete 3240 cotagoccat accetaccas cocteasca cocceacact accecactas cocquasce 3300 cctcactggc ccgccccca ggtctacgtg ttgaagcgtc ctcatgtgga tgagttcctg 3360 cagegaatgg gegagetett tgaatgtgtg etgttcaetg etageetege caaggtgage 3420 3480 cccacagggg teccggggca accetquet cetacetace teccquatge ageccagtga 3540 acctgcgggc cccaggatga cccacctcct gctcccagta cgcagaccca gtagctgacc 3600 tgctggacaa atggggggcc ttccgggccc ggctgtttcg agagtcctgc gtcttccacc gggggaacta cgtgaaggac ctgagccggt tgggtcgaga cctgcggcgg gtgctcatcc 3660 tggacaattc acctgcctcc tatgtcttcc atccagacaa tgctgtgagt gcgggctgga 3720 ctgggactgg gacaggaget gagacccagg aaggggtcag tecattcagg ccacettgge 3780 ctettqqate cecaqttqqq qqqtqqqtqc ceteccaqte ettectqcat teattqeetq 3840 tgcctgccgc ccacteccct catccacctg ccctgtagcc atatggtctt ttcccctcgc 3900 acaaagcaga gcatctgcca tgcacagggg cccccacagg gcaacggagt ttggaaagtt 3960 tcaatttttc qaattgccag ttgtgaccta ctgatggccc acagaattaa tttagtgggt 4020 totgattggg aattttaaca aaatgaaata gaatagaaaa tatccggtcg ggtgcagtgg 4080 4140 ctcatqcctq taatcccaqc actttqqqaa qctqaqqtqq qcaqqtaqct qaqcccaqta gttcaagacc agcctcggca acatagtgaa accttatgtc tacaaaaaat acaaaaacta 4200 gecaggegtg gtggegeatg cetggagtee eggetatgea gaaggetgag gtaggagtat 4260 4320 cgcttgagec ctggaggcag aggetgtggt gagecaagat tgtgecactg cactetagec 4380 tgggcaacag agcaagaccc tgcctcaaaa aaaaaaaaa gtatccaagt gcttcgcaca gataaggtta ggaattgtga agcttttgca ttgttacgtt ataaatgtgt tttcctgggg 4440 attgctgtca aaaaagtttg aacactgtgg gtgaggggtt ttcagaaact gcatgatctg 4500 agtagtggct acatagggct ggcctggaaa ttctgcaccc aggaccacct gccccctca 4560 tettectaca eccaettece caggiacegg tggeetegtg gittgacaac atgagigaca 4620 capageteea egaceteete ceettetteg ageaacteag eegtgtggac gacgtgtact 4680 cagtgetcag gcagecaegg ceagggaget agtgagggtg atggggeeag gacetgeeee 4740

4800 tgaccaatga tacccacacc tcctcccagg aagactgccc aggcctttgt taggaaaacc 4860 catgggeege egecacacte agtgeeatgg ggaageggge gteteceeca ceageceeae caggoggtgt aggggcagca ggctgcactg aggaccgtga gctccaggcc ccgtgtcagt 4920 gccttcaaac ctcctcccct attctcaqqq gacctgggqq gccctqcctg ctgctccctt 4980 5040 tttctqtctc tqtccatqct qccatqtttc tctqctqcca aattqqqccc cttqqcccct teeggttetg etteetgggg geagggttee tgeettggae eeceagtetg ggaacggtgg 5100 5160 acatcaagtg cettgeatag ageceetet teecegeeca gettteecag gggeacaget 5220 ctaggetggg aggggagaac cageceetee eeetgeeeca ceteeteeet tgggaetgag 5280 agggcccta ccaacetttg cctctqcctt ggagggaggg gaggtctgtt accactgggg aaqqcaqcaq qaqtctqtcc ttcaqqcccc acaqtqcaqc ttctccaqqq ccqacaqctq 5340 5400 agggctgctc cctgcatcat ccaagcaatg acctcagact tctgccttaa ccagccccgg 5460 ggcttggctc ccccagctct gagcgtgggg gcataggcag gacccccctt gtggtgccat 5520 ataaatatgt acatgtgtat atagattttt aggggaagga gagagggaag ggtcagggta gagacacccc tecettgece ettteetggg cecagaagtt gggggggggg agggaaagga 5580 tttttacatt ttttaaactg ctattttctg aatggaacaa gctgggccaa ggggcccagg 5640 coctatecte tateceteae acceptitae tecaticati caticaaaaa aacattieti 5700 gagcaccttc tgtgcccagc atatgctagg cccaccagct aagtgtgtgt ggggggtctc 5760 tacgccagct catcagtgcc teettgccca teettcaccg gtgcctttgg gggatetgta 5820 5880 ggaggtggga cettetgtgg ggtttgggga tetecaggaa geeggaecaa getgteecet 5940 teccetgtge caacceatet cetacageee cetgeetgat eccetgetgg etgggggeag ctcccaggat atcctgcctt ccaactgttt ctgaagcccc tcctcctaac atggcgattc 6000 eggaggteaa ggeettggge tetecceagg gtetaaeggt taaggggace cacataceag 6060 tgccaagggg gatgtcaagt ggtgatgtcg ttgtgctccc ctcccccaga gcgggtgggc 6120 6180 ggggggtgaa tatggttggc ctgcatcagg tggccttccc atttaagtgc cttctctgtg 6240 actgagagec ctagtgtgat gagaactaaa gagaaageca gaceectate etgettetgt 6300 ggttattgcg ggggacttca gcaagtgggg tgtgtgcctt gcacctgcgg ctgccgtggg 6360 ecceccec getteageae acetagaggg etgttggtgg agggagggge tgeceggeee 6420 tegacaette aggtgggaag ggcagegtea gagcacaaat ttgageetee aggetgtget cqtctacqtc ttcccqcctc qqqtatqtqq tctqcaaaat qqaqatqtqc cctattqqca 6480 qqactaatta aqtqcctqqa cacaqacqac aqqatactaq taqctqqaaa qcaaaattcq 6540 aaggeetggg taggggeagt eetggaatge ggegggggag ggggegtgge etetgeeetg 6600

gagcagaggg gcggggc	ttg tgcggctccg	aaggcagagg	cggggagcgg	ggcgaggctc	6660
tgggtggagg ctccagc	ggc agaacttgtt	ggcctgggtg	cggcgggctc	cggcgcctgg	6720
ctctgccggg cggcctg	ggt ggggccggcg	ccggggctcg	gccccccccg	cccctctgcg	6780
gcctctgagc agccatt	ggc cgcgccccg	ccccacttcc	cgccccgccc	cgcgtccggg	6840
aggcacttcc tttgcga	aac cgcgcggccc	caggcgccgg	caggaaatgc	cctcccgccg	6900
tecceageea geetttg	ctt gcttcccacg	ccagccgcta	gaggcctccc	tgtcctcgcg	6960
gacgcaggaa ctccccg <210> 14 <211> 4833 <212> DNA <213> Homo sapien		tggggccac	ctcactcacc	cctttcccgg	7020
<400> 14					
gecattteet cetettg	ttt tcactccgga	ttctccatgt	tggacccaaa	ctgaggagcc	60
cggagetgee getgggg	gat cggggccggg	ggcacccggg	ggagccgctg	cccgggccgc	120
ccgccctttg tacaggc	cgc ctcccttccc	ggtccgggga	ggaaacgaga	ggggggatgt	180
gaacagctgt ggaagtc	gga gtctcgggag	ccggagcggg	cccccgccca	ggccccccag	240
cccagcccag cccgcgc	gcc cgcccgtcct	cccgtccagc	cagcccgggc	ccgcgggatt	300
gttagatgga acacggc	tcc atcatcaccc	aggcgcggag	ggaagacgcc	ctggtgctca	360
ccaagcaagg cctggtc	tcc aagtcctctc	ctaagaagcc	tcgtggacgt	aacatcttca	420
aggccctttt ctgctgt	ttt cgcgcccagc	atgttggcca	gtcaagttcc	tccactgage	480
tegetgegta taaggag	gaa gcaaacacca	ttgctaagtc	ggatctgctc	cagtgtctcc	540
agtaccagtt ctaccag	atc ccagggacct	gcctgctccc	agaggtgaca	gaggaagatc	600
aaggaaggat ctgtgtg	gtc attgaceteg	atgaaaccct	tgtgcatagc	tcctttaagc	660
caatcaacaa tgctgac	ttc atagtgccta	tagagattga	ggggaccact	caccaggtgt	720
atgtgctcaa gaggcct	tat gtggatgagt	tcctgagacg	catgggggaa	ctctttgaat	780
gtgttctctt cactgcc	agc ctggccaagt	atgccgaccc	tgtgacagac	ctgctggacc	840
ggtgtggggt gttccgg	gcc cgcctattcc	gtgagtcttg	cgtgttccac	cagggctgct	900
acgtcaagga cetcage	ege etggggaggg	acctgagaaa	gaccctcatc	ctggacaact	960
cgcctgcttc ttacata	ttc caccccgaga	atgcagtgcc	tgtgcagtcc	tggtttgatg	1020
acatggcaga cactgag	ttg ctgaacctga	tcccaatctt	tgaggagctg	agcggagcag	1080
aggacgtcta caccagc	ctt ggggcagctg	cgggcccctt	agcctgccct	gcttccaagc	1140
gacggccatc ccagtag	ggg actttcccac	actgtgcctt	tacgatcagc	gtgacagagt	1200
agaagetgga gtgeete	acc acacggeeeg	gaaacagcgg	gaagtaactg	gaaagagctt	1260

1320 taggacaget tagatgeega gtgggegaat gecagaceaa tgataceeag agetacetge egecaactig tigagatgig igttigactg igagagagig igtgittigig igtgigtitti 1380 gccatgaact gtggccccag tgtatagtgt ttcagtgggg gagaagctga aagaccaaga 1440 ctcttcccaa qttaqcttgt ctcctctcct qtcaccctaa qaqccactga qttqtqtaqq 1500 gatgaaract attgaagact ccattgccaa accatggcct ttcctcagtg ttgtaaggcc 1560 tatgccaagg ataaaggaag ggtatgcctt tgggtactcc aggcatacac ctttctgaaa 1620 teetteteea gecagetget geagacaaaa gateacattt etgggaagat gagaacttgt 1680 ttecagacca geatecagtg geeateaggt ettgtggeec aaaggetatg ettgeeteeg 1740 1800 getgagtgee tgggatagge ettttetatg tetecceaag getggggtge tgageetgee 1860 ttcctcacca cctagccata gtctcaaacc tgtggggaag gaggttttct ccctgcccgg 1920 gaagaggaca gataactgat ttccgttctt ttgactgtgt tttaaaaattc tctttctaaa cacagagtgt tgggcctggt ttgtttctga caaagttaca gtcctgggcc tgtaatgaat 1980 gteggeggeg etggggttge agggaaaaga caaateetea aagegtggae gtgtgteece 2040 atggcttgtg gatcagctaa gctcgggatc atttccataa gtctgctttt cagggattct ctgctggtgc tggtgcaagg acttctgttc caaaggctgg gaaaaactaa gctgtcccag 2160 coccteccat ttottgggca gggctotttt cotgttgtgt ottoccccag ggcctgtcot gtaccgaget etgtetgtte cagectacat cetteetggg tgttgetttt cetettaagg 2280 geetcagaac tettgetett eetggggtga gggggaatga gtgttettga catgtgacag 2340 cctaatgcgc atgetttctg cctctggtaa caggagtgag tgagcccctc agacctgcac 2400 2460 totgggtgtc toctgettac aaaggttett aatagtgaat getttaaaat taaagteate acqaaatqqa aqttttccca qqqtqqaaaa taaqaqqaaq tqctqctqta attqqqaqca caaggggcct cccaaaaagg agccccacct cagcatcact gccttaatcg tggcctccct 2580 ggggtgggtq gggttetete etecetecet ecetecteet ggggtgggag ggegeteetg 2640 2700 ttcccatctc tqtqttccct qqaqqcaqqt atcacaaaqc atttqtqaat tqctttaqqt gcagggacac cacccactca ggactettee ceateateee ttecattgee acaccetaga 2760 2820 tocagectea ggaactaaca agttktgaga aaagcaggtg gtagagcage agettegtge teteageggt ggetggetgg catttttete tagegttgtg gtgccacett ceettettgt 2880 cccaaggtta taaggccttg tctttctctt tggaatcata aagtggaaca gagtccccag 2940 aactcatqtq qhcatttccq acaqcatcac tccccqqtqc ctatqqqqtc ccqqtqtacc 3000 taaagggaga aggaccccat gtgctagcca gaaatatact gtctcttgaa ggaaagcagg 3060

agctca	gact	cttagagcca	gctgtggctt	cggacccaag	gcctgaccta	ggctgctatc	3120
ctaata	ttgg	aggagggcc	tctcttccaa	gccccaccct	aagggttagc	ccttggacaa	3180
atcttg	tgcc	gtctaggccc	agccaggctt	ttctgactaa	ataagcaata	agaggeteta	3240
agctga	ctga	gttgcaagga	ccctttccgc	cctcccttgg	atctccatgt	ttctccagat	3300
ggcgga	agag	catgtgccac	cccctttcct	aacagacttg	tccaagtgct	tggcgtggga	3360
cccatg	acca	aageceagga	tggcttggtg	ggagtgtccc	tgctgcatct	gcatgaagcc	3420
cctgct	tttt	aggcctcact	cccatcagaa	ccctgcctgc	ccacctgcaa	ctcccccca	3480
acaatg	ccat	tcccacttgc	cccagagaag	ctactcggcc	aaacctagcc	agggtctgtt	3540
cttgtg	gacc	agagccagcc	tagtcattat	ttgctgtcgg	gtttccagtt	tcaccgtgtg	3600
ttaggg	tgag	ggatgattgt	aaaatttgct	cctcaaagga	atcaggccag	actcaatttt	3660
gggagg	gcaa	gacagggagg	aggccgcttc	atcccagact	ctcttctagg	gcttcccacc	3720
atcago	ccct	cccacttgag	actggtcttt	gggaggcaat	aggccaccat	gcctggtcag	3780
caccaa	ttca	agccatgcca	ggaatctgcc	tacctgccag	gttcagttct	tttaaggtgc	3840
ctcttc	aggg	acacagtgtg	tctctctgat	tgggcttcta	aatcaaaagc	ctgatgttcg	3900
tgtccc	tctc	atagggggag	ctttggacac	aggaccagtt	tggaaaaggg	tcaggtaagg	3960
gtttcc	actc	tgcacattgt	agagggaaca	ctctgtaggc	ccatgggtcc	cttactagag	4020
aggttg	agtg	aatttgcctt	cagttaacat	gggaccttct	gtttagcttc	ctcttgcttc	4080
ccaaag	attt	taagcatttt	gtaaatgtat	aaactcacct	ctggtaacag	tggcccagac	4140
gctgct	ttgt	getaaaagea	tgggaaatgt	aaaggcagtc	tttctctggg	aaatggatgc	4200
tattct	attc	tgctgcccct	acctgttcct	gaggcctcat	ttagaaagaa	aatcccctca	4260
gaagge	tgtc	tggcacccag	tgtcctagcc	aggccaagta	tatgagaaag	gtaagtccat	4320
tttccc	cttc	aggtcctcag	tggattactt	aaccactgct	gtccctcggt	ccctttttcc	4380
taaacg	ggtt	tagttctgtc	ttttttctcc	ttttttctaa	atgctggtaa	atatttacat	4440
tcagco	aggg	aagaggaggc	cagaggtcgg	gccagctgcc	ccattcttt	aacgttgtag	4500
ggcctg	ccca	tggagcggac	cctcctcttt	gggcctcgtg	agcttttttg	cttatcatgt	4560
tccatt	tcgt	geegetttee	cccttcaaga	tgccatttgg	agggtagggg	atctgcttcc	4620
cactgt	gact	gggctatggg	attctgacta	ccttgcttac	agattcatgg	tttgataaat	4680
ttgttg	tatt	ccaaaacttg	aaatgcagga	cgccattaag	tgtctgttta	tatttttgga	4740
atattt	gtat	tacttacaat	taattaataa	aagtgggttt	aaaaaacctt	tccaggaaaa	4800
aaaaaa <210> <211>	aaaa 15 859	aaaaaaaaa	aaaaaaaaa	aaa			4833

<212> DNA

<213> Homo sapiens

<400> 15 atggacggcc cggccatcat cacccaggtg accaacccca aggaggacga gggccggttg 60 cegggegegg gegagaaage eteccagtge aacgteaget taaagaagea gaggageege 120 agcatectta geteettett etgetgette egtgattaca atgtggagge cectecacce 180 agcagececa gtgtgettee gecactggtg gaggagaatg gtgggettea gaagecacea 240 getaagtace ttetteeaga ggtgaeggtg ettgaetatg gaaagaaatg tgtggteatt 300 gatttagatg aaacattggt gcacagttcg tttaagccta ttagtaatgc tgattttatt 360 420 gttccggttg aaatcgatgg aactatacat caggtgtatg tgctgaagcg gccacatgtg gacgagttee tecagaggat ggggcagett tttgaatgtg tgetetttae tgecagettg 480 540 gecaagtatg cagaccctgt ggetgacctc ctagaccget ggggtgtgtt cegggeeegg ctcttcagag aatcatgtgt ttttcatcgt gggaactacg tgaaggacct gagtcgcctt 600 gggcgggagc tgagcaaagt gatcattgtt gacaattccc ctgcctcata catcttccat 660 cetgagaatg cagtgeetgt geagteetgg ttegatgaca tgaeggacac ggagetgetg 780 gacctcatcc ccttctttga gggcctgagc cgggaggacg acgtgtacag catgctgcac agactetgea ataggtagee etggeetetg cetgeeteee geetgtgeac tetggaacet 840 ctggcctcag gggacctgc 859 <210> 16 <211> 754 <212> DNA <213> Homo sapiens <400> 16 60 atgatgggga ggcctgcct gctcacagcg gggcgccct gcttgtggag gagaatggcg ccatccctaa ggcagacccc agtccaatac ctgctccctg aggccaaggc ccaggactca gacaagatet gegtggteat egacetggae gagaceetgg tgcacagete etteaageea 180 240 gtgaacaacg cggacttcat catccctgtg gagattgatg gggtggtcca ccaggtctac 300 gtgttgaage gteeteacgt ggatgagtte etgeagegaa tgggegaget etttgaatgt gtgctgttca ctgctagcct cgccaagtac gcagacccag tagctgacct gctggacaaa 360 420 tggggggcct teegggeeeg getgtttega gagteetgeg tettecaeeg ggggaactae gtgaaggacc tgagccggtt gggtcgagac ctgcggcggg tgctcatcct ggacaattca 480 540 cetqcetect atqtetteca tecaqacaat qetqtaceqq tqqeeteqtq qtttqacaae atgagtgaca cagageteca egacetecte ecettetteg ageaacteag cegtgtggac gacgtgtact cagtgetcag gcagecacgg ccagggaget agtgagggtg atggggccag 660

gacetgeece tgaceaatga tacceacace teeteecagg aagaetgeec aggeetttgt	720
taggaaaacc catgggccgc cgccacactc agtg <2210> 17 <211> 27 <211> 27 <2122 DNA <213> Artificial sequence	754
<220> <223> Synthetic construct: polymerase binding site	
<400> 17 gaattaatac gactcactat agggaga <210> 18 <211> 25 <212> DNA <213> Artificial sequence	27
<220> <223> Primer	
<400> 18 atgggcgaac tatacgagtg cgttc <210> 19 <211> 25 <212> DNA <213Attificial sequence	25
<220> <223> Primer	
<400> 19 atcaacqaca acttcgagat cgtcg <210> 20 <211> 24 <212> DNA <213 Artificial sequence	25
<220> <223> Primer	
<400> 20 atgtcgctct tgcaaaaact aagc <210> 21 <211> 25 <212> DNA <213> Artificial sequence	24
<220> <223> Primer	
<pre><400> 21 tgaagatcct caccgagcgc ggcta <210> 22 <211> 25 <212> DNA <213> Artificial sequence</pre>	25
<220>	

<400>	22	
	gtgc gggagtacgg cttcc	25
	23	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	23	
	tegt tgagetttgg eg	22
	24	
<211>	23	
	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
	24	
	seta ttaetaetgg ete	23
	25	
	25	
<212>		
<213>	Artificial sequence	
.000.		
<220> <223>	Dud	
<223>	Primer	
<1005	25	
<400>		0.5
	agec gagegageca tecag	25
<210>		
	26	
	DNA	
<213>	Artificial sequence	
<220>		
	Drimon	
<223>	Primer	
<400>	36	
	20 actg ggccaagggt cattac	26
	27	۷0
<211>	26	
	DNA	
	Artificial sequence	
~ZI3>	wrettrerar sednelics	
<220>		
<223>	Primer	
-223/		
<400>	27	
	caag agcacgacgt acaaag	26
<210>		20
	26	
	DNA	
<213>	Artificial sequence	
V2132	vitilitat seducine	
<220>		
<223>	Primer	
	L L LING L	
<400>	28	

<pre>ctcgc <210> <211> <212> <213></pre>	25 DNA	26
<220> <223>	Primer	
<210> <211> <212>	etege aceteagaaa egate 30 25	25
<220> <223>	Primer	
<210> <211> <212>	gaact aacggeeget eegag 31 22	25
<220> <223>	Primer	
<210> <211> <212>	eatig tictociggi gg 32 25	22
<220> <223>	Primer	
<400> cttgtc <210> <211> <212> <213>	etget getggtteaa eatgg 33 25 DNA	25
<220> <223>	Primer	
<210> <211> <212>	25	25
<220> <223>	Primer	
<400>	34	25

<210>	35	
<211>	26	
<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	Primer	
	E & AlliC &	
<400>	35	
	actc gtcatactcc tgcttg	26
<210>		20
<211>		
<211>		
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	36	
	gctc gcccatgtag acctg	25
<210>		
<211>	23	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	37	
	gatt ggggaagaag gtc	23
<210>	38	
<211>	24	
<211>		
	Artificial sequence	
\213/	Artificial Sequence	
<220>		
	Budden and	
<223>	Primer	
<400>		٠.
	aacc gcgcgcatta aagt	24
	39	
	24	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	39	
	tggt cacgaatccg aatc	24
<210>		
<211>		
<212>		
	Artificial sequence	
	merreau ocquence	
<220>		
<223>	Primer	
~ZZ3>	LITHET	
<100>	10	
<400>		0-
	atcg aacatctgct gggtcag	27
<210>	41	

<211>	26	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	41	
cgatca	gaag tggatcgcgg tcctta	26
	42	
<211>	24	
<212>	DNA	
	Artificial sequence	
1220	metricular bodiento	
<220>		
<223>	Primer	
-220		
<400>	42	
	ctga agcagaactt catg	24
<210>	43	~ .
<211>	25	
	DNA	
<213>	Artificial sequence	
\Z13/	Altilicial Sequence	
<220>		
<223>	Primer	
<2237	FILMEL	
<400>	43	
		25
	ataa aaggtgtggc cattc 44	23
<210>		
<211>	24	
	DNA	
<213>	Artificial sequence	
.000		
<220>	= 1	
<223>	Primer	
<400>	44	
	gcca tcgttgagat ctgc	24
<210>	45	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
	45	
	tgag gtagaccctg ga	22
	46	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	46	
	tcat tactcagatc agcaagg	27
<210>	47	
<211>	22	

<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	47	
	accc tgtgttgctg ta	22
<210>	48	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	48	
	tgat ctcgactgct ccagcag	27
<210>	49	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	49	
tgccct	cacc caaggtctct gacactgtgg	30
<210>	50	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	50	
ctgtgg	ccat ggagggaaac agtggcttcc	30
<210>	51	
<211>	28	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	51	
gcaacc	gcag gcacgactgt ttacggag	28
<210>	52	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	52	
	cctg cgaaacctcc ccaggtaga	29
<210>	53	
<211>	28	
<212>	DNA	

<213>	Artificial sequence	
<220>		
<223>	Primer	
1223/	FILMET	
<400>	53	
	aaca gcacacatte aaagaget	28
<210>	54	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
12207	221102	
<400>	54	
	gtcc atgccatcac	20
	55	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	55	
	gaga gtggtgatge cacagtg	27
<210> <211>	56 28	
	DNA	
<213>	Artificial sequence	
	In Casacada Soquenco	
<220>		
<223>	Primer	
<400>	56 cage teetggatgg cagtgetg	28
<210>	57	20
<211>	28	
	DNA	
	Artificial sequence	
<220>		
<223>	Primer	
<400>	57	
	ccag gagcagetga gggagcac	28
<210>	58	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
×220		
<220> <223>	Primer	
~2232	ETIMOL	
<400>	58	
	ccat ccggaagaag ttggccttgt	30
<210>	59	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	

<220> <223>	Primer	
<400>	59	
agccaa	ctca gctggactct ctccagcttc	30
<210>	60	
<211>	30	
	DNA	
	Artificial sequence	
-220	merrar begaenee	
<220>		
	Primer	
\223/	FILMET	
<400>	60	
	ttat attateetge aegeegggag	30
	61	50
	27	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Primer	
	61	
	ctat gcagggtaag ggaataa	27
<210>	62	
<211>	28	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	62	
	ttet gggtcactee ttagacae	28
<210>	63	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Primer	
<400>	63	
	aagt tactgaagag tgggctttgg	30
<210>		50
<211>		
	DNA	
\213>	Artificial sequence	
<220>		
	Budana a	
<223>	Primer	
<400>	64	20
<400>	64 ttcg agteceegga gaggatate	29
<400> caccgg <210>	64 ttcg agtccccgga gaggatatc 65	29
<400> caccgg <210> <211>	64 tteg agteceegga gaggatate 65 28	29
<400> caccgg <210> <211> <212>	64 ttcg agtccccgga gaggatatc 65	29

```
<220>
<223> Primer
<400> 65
gggctttgat ttttggagcc accttgtg
                                                                     28
<210> 66
<211> 29
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 66
gctgggagga atgctttcta atgcatttg
                                                                     29
<210> 67
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 67
cagacgacaa gttacatgca acatg
                                                                     25
<210> 68
<211> 150
<212> PRT
<213> Homo Sapiens
<400> 68
Asn Arc Lys Leu Val Leu Met Val Asp Leu Asp Gln Thr Leu Ile His
             5
                                 10
Thr Thr Glu Gln His Cys Gln Gln Met Ser Asn Lys Gly Ile Phe His
          20
                             25
Phe Gln Leu Gly Arg Gly Glu Pro Met Leu His Thr Arg Leu Arg Pro
                          40
His Cys Lys Asp Phe Leu Glu Lys Ile Ala Lys Leu Tyr Glu Leu His
                      55
Val Phe Thr Phe Gly Ser Arg Leu Tyr Ala His Thr Ile Ala Gly Phe
                  70
                                     75
Leu Asp Pro Glu Lys Lys Leu Phe Ser His Arg Ile Leu Ser Arg Asp
              85
                                 90
Glu Cys Ile Asp Pro Phe Ser Lys Thr Gly Asn Leu Arg Asn Leu Phe
                              105
                                                 110
           100
Pro Cys Gly Asp Ser Met Val Cys Ile Ile Asp Asp Arg Glu Asp Val
                         120
                                            125
       115
Trp Lys Phe Ala Pro Asn Leu Ile Thr Val Lys Lys Tyr Val Tyr Phe
   130
                   135
                                         140
Gln Gly Thr Gly Asp Met
145
                  150
```