

Ayudantía 12 - Física General IV

Karina N. Catalán; E-mail: kcatalans@gmail.com

Física Nuclear

Vida Media

La vida media es el promedio de vida de un núcleo o de una partícula subatómica libre antes de desintegrarse. Se representa con la letra griega τ .

$$N\left(t\right)=N_{0}e^{-\lambda t},\quad\lambda:$$
 constante de desintegración, $\tau=\frac{1}{\lambda}$

Período de Semidesintegración (o Semivida)

Es el tiempo necesario para que se desintegren la mitad de los núcleos de una muestra inicial de un radioisótopo.

Uranio-235	7,038·10 ⁸ años	Uranio-238	4,468·10 ⁹ años	Potasio-40	1,28·10 ⁹ años
Rubidio-87	4,88·10 ¹⁰ años	Calcio-41	1,03·10 ⁵ años	Carbono-14	5760 años
Radio-226	1620 años	Cesio-137	30,07 años	Bismuto-207	31,55 años
Estroncio-90	28,90 años	Cobalto-60	5,271 años	Cadmio-109	462,6 días
Yodo-131	8,02 días	Radón-222	3,82 días	Oxígeno-15	122 segundos

Período de desintegración de algunos radionucleidos

Relación entre Vida Media y Semivida

La Semivida y la Vida Media se relacionan mediante la siguiente expresión:

$$t_{\frac{1}{2}} = \tau \ln 2$$

Desintegraciones (o Decaimientos)

 $_{Z}^{A}X$

Número átomico (Z): número de protones

Número másico (A): número de neutrones + número de protones

Alfa (α)

La desintegración alfa o decaimiento alfa es una variante de desintegración radiactiva por la cual un núcleo atómico emite una partícula alfa (núcleo de He: 4He consiste en 2 protones y 2 neutrones) y se convierte en un núcleo con cuatro unidades menos de número másico y dos unidades menos de número atómico.

$$_{Z}^{A}X \longrightarrow_{Z=2}^{A-4} Y +_{2}^{4} He^{2+} =_{Z=2}^{A-4} Y + \alpha$$

Beta Positivo (β^+)

Un protón decae en un neutrón, un positrón y un neutrino electrónico:

$$p^+ \longrightarrow n^0 + e^+ + \nu_e$$

 ν_e : neutrino electrónico.

$$_{Z}^{A}X \longrightarrow_{Z-1}^{A} J + e^{+} + \nu_{e}$$

Beta Negativo (β^-)

Un neutrón se convierte en un protón, un electrón y un antineutrino electrónico:

$$n^0 \longrightarrow p^+ + e^- + \bar{\nu}_e$$

 $\bar{\nu}_e$: antineutrino electrónico.

$$_{Z}^{A}X \longrightarrow_{Z+1}^{A}K + e^{-} + \bar{\nu}_{e}$$

Problemas

Problema 1 Considere el isótopo radiactivo Bismuto-210 $^{210}_{83}Bi$.

- a) Estudie qué tipos de desintegración, α , β^- y/o β^+ , son posibles para este isótopo.
- b) Para los casos pertinentes, halle la energía cinética liberada. Señale con claridad, con una palabra o título, cada caso que esté analizando.

Datos de masa (en equivalente de energía en reposo):

Bismuto-210 ($^{210}_{83}Bi$): $m_{Bi}c^2 = 195489, 97 [MeV]$

Polonio-210 $\binom{210}{84} Po$): $m_{Po}c^2 = 195488, 82 [MeV]$

Plomo-210 (${}^{210}_{82}Pb$): $m_{Pb}c^2 = 195490, 00 [MeV]$

Talio-206 $\binom{206}{81}Tl$: $m_{Tl}c^2 = 191756, 48 [MeV]$

Partícula $\alpha \left({}_{2}^{4}He \right)$: $m_{\alpha}c^{2}=3726,30 \left[MeV \right]$

Electrón e^- : $m_e c^2 = 0.51 \, [MeV]$

Neutrino: masa despreciable.

Problema 2 La masa del sol es $2 \cdot 10^{30} [kg]$, su radio $7 \cdot 10^8 [m]$ y su temperatura en la superficie es 5700 [K].

- a) Calcule la masa perdida por el Sol por segundo debido a la radiación.
- b) Calcule el tiempo necesario para que la masa del Sol disminuya en 1%.

Problema 3

- a) ¿Por qué no puede un protón decaer en un neutrón más otras partículas?
- b) ¿Por qué un neutrón libre decae, mientras que un neutrón en un núcleo estable (por ejemplo ^{12}C), no lo hace?
- c) ¿Cómo decae el ^{12}N (Z=7)?. Escriba una expresión para la energía liberada en términos de las masas involucradas.

Problema 4 El elemento radiactivo ${}^{238}_{92}U$ con masa 221,662 $\left[\frac{GeV}{c^2}\right]$ experimenta una desintegración tipo alfa (núcleo de 4_2He con masa 3,726 $\left[\frac{GeV}{c^2}\right]$).

- a) Escriba la reacción correspondiente y determine los valores de A y Z para el núcleo resultante.
- b) Si se sabe que la masa del núcleo resultante es de $217,891 \, [GeV]$, determine la energía liberada en la reacción.
- c) El núcleo producido en el proceso anterior es inestable y mediante sucesivas desintegraciones tipo α y β se llega al núcleo $^{226}_{88}Ra$ ¿Cuántas desintegraciones α , β^+ y β^- se producen durante este proceso?

Problema 5 El Plutonio $^{239}_{94}Pu$ es un isótopo altamente radiactivo y su vida media es de 24.000 (veinticuatro mil) años. Su masa es 222, 56 $\left\lceil \frac{GeV}{c^2} \right\rceil$.

- a) Por decaimiento radiactivo alfa de este isótopo se origina $\frac{235}{92}U$ cuya masa es 218,83 $\left[\frac{GeV}{c^2}\right]$. La masa del núcleo de $\frac{4}{2}He$ es de 3,73 $\left[\frac{GeV}{c^2}\right]$. Determine la energía que se libera en este proceso.
- b) Una muestra de 100 gramos de estos isótopos tiene aproximadamente $3 \cdot 10^{23}$. Estime el orden de magnitud de la potencia promedio emitida por decaimiento radiactivo del $^{239}_{94}Pu$ y fundamente brevemente en qué se basa para hacer esta estimación.