|

REPUBLIQUE DU CAMEROUN

TALISATION DES ACTES DE MARIA

REPUBLIC OF CAMEROON

Paix - Travail - Patrie

Peace-Work-Fatherland

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR

MINISTRY OF HIGHER EDUCATION

IAI–CAMEROUN – CENTRE DE DOUALA

AICS – CAMEROON – DOUALA CENTER

Etablissement Inter – Etats d'Enseignement Supérieur

CENTRE D'EXCELLENCE TECHNOLOGIQUE PAUL BIYA

BP 13 719 Yaoundé (Cameroun) Tel. (+237) 242 72 99 57/ (+237) 242 72 99 58

EXPOSE DE PLATEFORME ET OUTILS DE DEVELOPPEMENT

THÈME: DIGITALISATION DES ACTES DE MARIAGE

FILIERE : Systèmes et Réseaux (SR2)

Noms des membres de groupe

- **♣** MOUNCHILI ISSAH YAZID
- **♣** FOTSO SIMO ANGE
- **♣** EMATOU CRESUS
- **4** NJIGANG
- **INWE ULRICH**

Sous la supervision de :

Mr TCHAKOUTIO LUDOVIC

ANNEE ACADEMIQUE

2023-2024

10 mai 2024

1

INTRODUCTION

La digitalisation des actes de mariage vise à remplacer les procédures traditionnelles basées sur des documents papier par des solutions numériques. L'objectif est de simplifier et d'accélérer le processus d'enregistrement des mariages, ainsi que de faciliter l'accès et la gestion des données relatives aux mariages.

CHAPITRE1: ANALYSE

L'analyse est primordiale dans tout projet informatique. Ici, nous allons décrire le problème posé, présenter les limites et proposer des solutions, faire une étude comparative des différentes méthodes d'analyse, présenter notre méthode d'analyse ainsi que tous les diagrammes représentant les différentes fonctionnalités de notre solution

.

Aperçu

INTRODUCTION

- I. RECEUIL DE L'EXISTANT
- II. ETUDE COMPARATIVE DES METHODES ET LANGAGES DE MODELISATION
- III. PRESENTATION DE LA METHODE D'ANALYSE
- IV. DIAGRAMMES D'ANALYSE

CONCLUSION

I. ETUDE DE L'EXISTANT

Au Cameroun pour établir un acte de mariage dans une mairie, il faudrait au préalable que les personnes désirantes s'unir se rapprochent des locaux d'une mairie un ou deux mois avant le jour du mariage pour inscrire le mariage.

Pour inscrire le mariage on demande un témoin à chacun c'est-à-dire que le marié vient avec un témoin et la mariée vient également avec un témoin. Ils doivent aussi fournir les pièces d'identification de chacun d'entre eux ainsi que de leurs témoins, il faut aussi des demi cartes photos des deux conjoints réunis.

Ces informations permettront à la mairie de faire la publication des bancs pour le mariage en question. Les actes de mariage sont établis de façon manuscrite.

Le tableau ci-dessous représente les critique les conséquences et une solution

Critique	Conséquence	Solution
Gestion inefficace des documents Délai de traitement long	Vol Détérioration des données	DIGITALISATION DES ACTES DE MARIAGE
Difficultés d'accès aux informations	Pertes des actes dans les archive	

II. ETUDE COMPARATIVE DES METHODES ET LANGUAGES DE MODELISATION

II.1. Généralité sur les méthodes d'analyses UML et MERISE

Une méthode définit une démarche reproductible qui produit des résultats fiables. Une méthode d'élaboration d'application décrit comment modéliser et construire les systèmes logiciels de manière fiable et reproductible. De manière générale, une méthode définie :

- Des éléments de modélisation ;
- Une représentation graphique ;

> Du savoir-faire et des règles.

Il existe plusieurs méthodes d'analyse, mais les plus utilisées sont MERISE et UML :

- ➤ MERISE (Méthode d'Etude et de Réalisation Informatique pour les Systèmes d'Entreprise) est une méthode d'analyse, de conception structurelle et de réalisation des systèmes d'information qui est élaborée en plusieurs étapes : schéma directeur, étude préalable, étude détaillée et la réalisation.
- ➤ UML (Unified Modeling Language), est un langage de modélisation des systèmes standards, qui utilise des diagrammes pour représenter chaque aspect d'un système : statique, dynamique ... en s'appuyant sur la notion d'orienté objet qui est un véritable atout pour ce langage.

II.2. Etude comparative entre MERISE et UML

Tableau 2 : Etude comparative UML MERISE

MERISE	UML
Méthode systématique d'analyse et de	Langage de représentation d'un système
conception des systèmes d'information :	d'information
Représentation sous forme de model	Représentation sous forme de diagrammes
Approche systématique	Approche Objet
Franco-Français	Internationale

Propose de considérer le système réel selon	Propose une approche différente en ce sens
deux aspects:	qu'elle associe les données et les traitements.
Une vue statique (données)	Avec UML, les données d'un type et les
Une vue dynamique	traitements associés
Avec MERISE, nous avons une étude	UML permet de limiter les points de
séparée des données et des traitements	maintenances dans le code et facilite l'accès à
	l'information en cas d'évolution
Schéma directeur, étude préalable, Etude	Langage de modélisation des systèmes
détaillée et la réalisation	standards, qui utilise des diagrammes pour
	représenter chaque aspect d'un système :
	statique, dynamique en s'appuyant sur la
	notion d'orienté objet

III. PRESENTATION DE LA METHODE D'ANALYSE

III.1. Choix de la méthode d'analyse

Au regard de la complexité croissante des systèmes d'informations et de cette étude comparative, **UML** est le mieux adapté dans le cadre de notre projet. UML est un langage unifié de modélisation qui permet de spécifier, visualiser, construire et documenter de manière précise un système d'information. UML grâce à ses langages offre une description statique, dynamique et fonctionnelle du système à réaliser en plus il est idéal pour :

- Concevoir et déployer une architecture logicielle développée dans un langage objet. Certes UML, dans sa volonté "unificatrice" a proposé des formalismes ;
- Pour modéliser les données (le modèle de classe réduit sans méthodes et stéréotypé en entités), mais avec des lacunes que ne présentait pas l'entité relation de Merise ;
- Pour modéliser le fonctionnement métier (le diagramme de cas d'utilisation) qui est un formalisme très ancien.

III.2. Présentation de UML

La principale avancée des 15 dernières années réside dans la POO (programmation orientée objet). Face à ce nouveau mode de programmation, les méthodes de modélisation classiques tel que **MERISE** ont rapidement montré certaines limites et ont dû s'adapter. Dans ce contexte, l'Object management group (OMG) a eu pour objectif de définir une notation standard utilisable dans le développement informatique basé sur l'objet. C'est ainsi que nait **UML** qui est issue de la fusion des langages BOOCH, OMT et OOSE.

III.2.1 Version

La version d'UML que nous allons utiliser dans notre projet est la version 2.4 qui présente 14 diagrammes.

Figure 1: diagramme UML version 2.5

Source: www.umlchanel.com

III.2.2. Les diagrammes d'UML

La modélisation d'un projet informatique effectué à l'aide d'UML version 2.5 présente 14 diagrammes. Ces diagrammes sont regroupés de la manière suivante :

➤ Diagrammes comportementaux : Diagramme de cas d'utilisation, d'activité, diagramme d'état transition et des diagrammes d'interactions (diagramme de séquence, de communication, le diagramme global d'interaction, le diagramme de temps).

➤ Diagrammes structurels : Diagramme de classe, diagramme de composants, diagramme d'objets, diagramme de profils, diagramme de structure composite, diagramme de déploiement et le diagramme de paquetages.

IV. DIAGRAMMES D'ANALYSE

IV.1. Diagrammes de cas d'utilisation

IV.1.1. Définition

Le diagramme de cas d'utilisation identifie les fonctionnalités fournies par le système, les utilisateurs qui interagissent avec le système, et les interactions entre ces derniers. Les cas d'utilisations sont utilisés dans la phase d'analyse pour définir les acteurs de haut niveau du système. Les principaux objectifs d'un diagramme de cas d'utilisation sont les suivants :

- Fournir une vue de haut niveau de ce que fait le système ;
- ➤ Identifier les utilisateurs (acteurs) du système ;
- Déterminer des secteurs nécessitants des interfaces homme-machine.

IV.1.2. Formalisme

Dans un diagramme de cas d'utilisation on retrouve les éléments suivants :

Tableau 3 : éléments d'un diagramme de cas d'utilisation

REPRESENTATION	NOM	DESCRIPTION
Acteur	Acteur	Utilisateurs qui interagissent avec un système. Un acteur peut être une personne, une organisation ou un système externe qui interagi avec votre application ou votre système. Il s'agit nécessairement d'objets externes qui produisent ou consomment des données.
cas d'utilisation	Cas d'utilisation	Représente les différentes applications possibles pour un utilisateur.

		Séquence spécifique d'actions et d'interactions
SYSTEME		entre les acteurs et le système. Un système peut
		également être appelé scénario.
	Système	
		Lignes reliant les acteurs aux cas d'utilisation. Dans
	Association	les diagrammes complexes, il est important de
	Association	pouvoir identifier les acteurs associés à chaque cas
		d'utilisation.
		Les relations sont utilisées pour lier les cas
		d'utilisation entre eux. Elles permettent de définir
	Relation	quel cas d'utilisation dépend de l'autre (relation
		< <include>> ou d'inclusion) ou encore quel cas</include>
		d'utilisation est une possibilité étendue d'un autre
		(relation <<extend>></extend> ou d' extension). Les relations
		sont représentées par une flèche à trait interrompu
		allant d'un cas d'utilisation à un autre.
		Les généralisations sont utilisées pour lier les
>	Généralisation	acteurs entre eux. Elles permettent de dire qu'un
		acteur effectue tous les cas d'utilisation d'un autre
		en plus de ce qu'il peut faire. Cette relation est aussi
		appelée relation d' héritage .
		Les généralisations sont représentées par une
		flèche allant d'un acteur (celui qui hérite) à un
		autre.

IV.1.3. Diagrammes de cas d'utilisation de la solution

IV.1.3.1. Diagramme de cas d'utilisation global du système

Figure 2 : diagramme de cas d'utilisation global du système

IV.2. Diagrammes de séquence

IV.2.1. Définition

Vue de l'extérieur du système, Les Diagrammes de séquence permettent de montrer les interactions entre les utilisateurs et le système à travers une représentation linéaire et chronologique des cas d'utilisations du système. Chaque colonne correspond à un objet ou éventuellement à un acteur, introduit dans le diagramme des cas d'utilisation. La ligne de vie de l'objet représente la durée de son interaction avec les autres objets du diagramme.

IV.3.2. Formalisme

Tableau 4 : Eléments d'un diagramme de séquence

REPRESENTATION	NOM	DESCRIPTION

Acteur_9	Ligne de vie Acteur	La ligne de vie représente l'ensemble d'activité effectué par l'acteur
Objet 9	Ligne de vie Objet	La ligne de vie représente l'ensemble d'activité effectué par un objet de l'application
	Activation	Indique qu'une action est lancée
alt Condition Condition	Alternatif	Condition à l'envoi d'un message
Message	Message asynchrone	Message ou l'émetteur n'est pas bloqué lors de l'envoi et peux continuer son exécution
message de retour>	Message de retour	Réponse d'un message synchrone
Message d'appel Reflexif	Message d'appel Réflexif	Lorsqu'un acteur ou un Objet s'auto envoie un message
message d'appel de procedure	Message d'appel de procédure ou Message synchrone	Message synchrone ou l'émetteur est bloqué en attente de retour

IV.2.3. Diagrammes de séquence de la solution

IV.2.3.1. Diagramme de séquence « authentification »

Figure 3 : diagramme de séquence "authentification"

CONCLUSION

L'analyse d'un projet est une étape cruciale qui doit être effectuée avant de concevoir son application car elle nous permet de cerner les différentes fonctionnalités de notre application.

Dans la suite nous allons ressortir le dossier de conception de notre projet.

CHAPITRE 2: CONCEPTION

Le chapitre de conception vient concrétiser les résultats obtenus lors de l'analyse. Dans cette section nous parlerons des objectifs de ce document, et des diagrammes y intervenant.

Aperçu

INTRODUCTION

- I. DIAGRAMME DE CLASSE
- II. DIAGRAMME DE PAQUETAGE
- III. DIAGRAMME DE COMPOSANT

CONCLUSION

INTRODUCTION

Dans la réalisation d'un projet informatique, le dossier de conception est celui qui présente l'architecture du système étudié. L'analyse UML nous permet à travers ses diagrammes structurels de représenter la structure de notre application ainsi que les différents composants matériels et logiciels. Dans cette partie, nous vous présenterons le diagramme de classe, son model physique de données associé.

I. DIAGRAMME DE CLASSE

I.1. Définition

Le diagramme de classe est l'un des types de diagrammes les plus utiles dans une modélisation UML, car il décrit clairement la structure d'un système particulier en modélisant ses classes, ses attributs, ses opérations et les relations entre ses objets. Une classe défini un type d'objet et possède un nom des attributs et opérations. Le nom d'une classe commence par une majuscule, le nom d'une propriété commence par une minuscule, les types de base (Int, long, double, boolean) sont en minuscules, il n'y a pas d'espace dans les noms des classes ou de propriétés.

I.2. Formalisme

Tableau 5 : éléments d'un diagramme de classe

REPRESENTATION	NOM	DESCRIPTION
Classe	Classe	Une classe est une représentation abstraite d'un ensemble d'objets, elle contient les informations nécessaires à la construction de l'objet (c'est-à-dire la définition des attributs et des méthodes).
< <enum>> nomEnumeration - valeur1 : EnumConstant - valeur2 : EnumConstant - valeur3 : EnumConstant</enum>	ENUMERATION	L'énumération UML est particulièrement adaptée pour modéliser un ensemble fini de valeurs possibles que peut recevoir l'attribut d'une classe.

nom Attribut . Tema	ATTDIDIT	Ein de vie du exetème destruction de
nomAttribut : Type	ATTRIBUT	Fin de vie du système, destruction de
		l'objet
) (1 1 0 E		
nomMéthode () : Type		Abstraction d'un moment de la vie d'une
	METHODE	entité pendant laquelle elle satisfait un
		ensemble de conditions
		L'association est représentée par un
01	ASSOCIATION	simple trait continu, reliant deux
0*	ASSOCIATION	classes. Le fait que deux instances
		soient ainsi liées permet la navigation
		d'une instance vers l'autre, et vice versa
		(en générale une classe possède un
		attribut qui fait référence à l'autre
		classe)
0.*		C'est une relation particulière qui
01	AGREGATION	attribue à l'une des classes le rôle
	AGREGATION	d' agrégat et à l'autre classe le rôle
		d' agrégé . L'agrégation peut être
		assimilée à une appartenance faible.
		Il s'agit d'une appartenance forte. La vie
01		de l'objet composant est liée à celle de
0*		son composé.
	COMPOSITION	1

I.3. Représentation du diagramme de classe de la solution

Figure 4 : diagramme de classe

II. Diagramme de package

II.1. Définition

Le diagramme de paquetages permet de décomposer le système en catégories ou parties plus facilement observables, appelés « packages ». Cela permet également d'indiquer les acteurs qui interviennent dans chacun des packages.

II.2. Formalisme

Dans un diagramme de packages on retrouve les éléments suivants :

Tableau 1 : éléments d'un diagramme de cas d'utilisation

REPRESENTATION	NOM	DESCRIPTION
Package_1	Package	Représente les différentes familles de fonctionnalités du système.

SYSTEME	Système	Séquence spécifique d'actions et d'interactions entre les acteurs et le système. Un système peut également être appelé scénario.
	Association	Lignes reliant les différents paquages.

II.3. Diagramme de paquetage de la solution

Figure5 : diagramme de paquetage de la solution

CONCLUSION

La phase de conception est une étape primordiale dans la conception logicielle, car elle nous donne une vue globale de la structure de notre application. Après cette étape nous pouvons passer à la réalisation de notre projet.

CHAPITRE 3: REALISATION

Cette partie présente les différentes technologies, langages de programmation, architectures utilisées nécessaires pour la réalisation de notre application ainsi que son déploiement.

Aperçu

INTRODUCTION

- I. PRESENTATION DE L'ENVIRONEMENT LOGICIEL ET TECHNOLOGIES UTILISEES
- II. PRESENTATION DE L'ARCHITECTURE UTILISEE
- III. DIAGRAMME DE DEPLOIEMENT

CONCLUSION

INTRODUCTION

Le dossier de réalisation permet de représenter l'environnement logiciel utilisé, les différentes technologies utilisées pour la réalisation de notre projet ainsi que son déploiement. Dans cette partie, nous présenterons les différentes technologies et environnement logiciel utilisé ainsi que l'architecture de notre application.

I. Langages de programmation et technologies utilisées

Dans le cadre de notre projet et parmi le grand nombre de technologies existantes nous avons opté pour les technologies suivantes :

Figure 1 : technologies et langages de programmation utilisés

TECHNOLOGIE et	ROLE
LANGAGES	
Php 7.4	HyperText Preprocessor langage serveur utilisé pour traiter du contenu dynamique
S JOUETY BY ASYNCHYONOUS JAVASCYIST AND XML	JQuery est ce qu'on appelle une « librairie » ou une « bibliothèque » JavaScript. Le rôle d'une librairie, en informatique, est de simplifier l'utilisation d'un certain langage de programmation en fournissant un ensemble de codes déjà prêt à l'emploi. Nous l'utilisons pour effectuer des requêtes de type Ajax qui s'exécute de façon asynchrone grâce aux callbacks, et aussi pour manipuler facilement un tableau HTML à l'aide de son plugin DataTables
ZZZ E	Html est un langage de programmation utilisé pour gérer contenu de notre application Le CSS est utilisé pour gérer la forme

Bootstrap est une collection d'outils utiles à la création du design (graphisme, animation et interactions avec la page dans le navigateur, etc.) de site et application web. C'est un ensemble qui contient des codes HTML et CSS, des formulaires, boutons, outils de navigation et autres éléments interactifs, ainsi que des extensions JavaScripts en option.

II. PRESENTATION DE L'ARCHITECTURE DE L'APPLICATION

II.1. Architecture logique

Notre projet suit une logique applicative standardisé et utilisée dans la plupart des entreprises de nos jours. Cette logique est le MVC (Modèle-Vue-Contrôleur) qui est un design pattern permettant de mieux organiser son code.

- Le model contient les données à afficher
- La vue contient la présentation de l'interface graphique
- Le contrôleur contient la logique concernant les actions effectuées par l'utilisateur. Dans ce motif d'architecture logicielle, le code est organisé de manière à faciliter la détection des erreurs, facilité la collaboration et la réutilisabilité du code.

Figure 2 : représentation de l'architecture MVC

Source: www.architecturel.com 28/08/2022, 14:45

II.2. Architecture physique

Notre application a été implémentée suivant le modèle d'architecture 3-tiers encore appelée Architecture à 3 niveaux. Cette architecture est l'application du modèle plus général qu'est le multi-tiers. L'architecture logique du système est divisée en trois niveaux ou couches :

- ➤ Une couche présentation qui correspond à l'affichage, la restitution des données sur le poste de travail, le dialogue avec un utilisateur.
- ➤ Une couche de traitement qui correspond à la logique métier des données, la mise en œuvre de l'ensemble des règles de gestion et de la logique applicative.
- ➤ Une couche d'accès aux données qui correspond aux données qui sont destinées à être conservées de manière persistante.

Figure 3 : Présentation de l'architecture 3-tiers

Source: www.architecturel.com 28/08/2022, 14:45

III. DIAGRAMME DE DEPLOIEMENT

III.1. Définition

Le diagramme de déploiement permet de représenter d'une part la disposition physique des ressources matérielles qui constituent le système et montre la répartition des composants (éléments logiciels) qui s'exécutent sur ces matériels et d'autres parts les chemins de communication entre les différentes ressources matérielles.

III.3. Diagramme de déploiement de la solution

Figure 6 : diagramme de déploiement de la solution

CONCLUSION

La phase de réalisation est une étape très importante où nous nous concentrons sur l'aspect technique de notre application, des différentes technologies qui sont utilisées pour un résultat optimal. Le choix de ces technologies nécessite une bonne étude car toute application mal réalisée conduit à la production d'une mauvaise application.

CHAPITRE 4: GUIDE D'UTILISATION

Cette partie présente notre application ainsi que quelques fonctionnalités qu'elle regorge. Elle vous présentera un aperçu de notre travaille ainsi que quelques indications pour l'utiliser.

Aperçu

INTRODUCTION

- I. PRESENTATION DE NOTRE APPLICATION
- II. PRESENTATION DE QUELQUES FONCTIONNALITES

CONCLUSION

INTRODUCTION

Le Guide d'utilisation est ce document permettant de présenter les différentes fonctionnalités de notre application. Dans cette partie, nous allons présenter notre application et ensuite étaler quelques fonctionnalités disponibles sur notre application.

I. PRESENTATION DE NOTRE APPLICATION

- 1. Présentation des interfaces
 - 1.2 Interface accueil

© 2024 cree par mounchili yaziddounya83@gmail.com

1.3 Interface de connexion

1.4 Interface d'inscription

1.5 Interface Administrateur

1.6 Interface enregistre couple et acte de mariage

		I.
nom de l'epoux	entre le nom de l'epoux	
nom de l'epouse	entre le nom de l'epouse	
le	mm/dd/yyyy	
age de l'epoux	age de l'epoux	
profession de l'epoux	entre le profession de l'epoux	
domicile de l'epoux	entre le domicile de l'epoux	
pere de l'epoux	entre le nom de pere de l'epoux de l'epoux	
mere de l'epoux	entre le nom de mere de l'epoux de l'epoux	
age epouse	age l'epouse	
profession epouse	profession de l'epouse	
domicile	domicile de l'epouse	
pere de l'epouse	nom du pere de l'epouse	
mere de l'epouse	nom de la mere de l'epouse	
regime matrimomial	polygamie	~
chef famille	chef famille de l'epoux	
chef famille	chef famille de l'epouse	
temoin epoux	nom temoin de l'epoux	
temoin epouse	nom temoin de l'epouse	
dresser par	acte dresser par Le présent acte a été dressé par	
	Assisté de Secrétaire d'Etat-civil	
fait le	mm/dd/yyyy	(11-)
	valider	

1.7 Aperçu du fichier PDF de l'acte de mariage.

CONCLUSION

Le but de ce dossier était de mieux étayer les futurs utilisateurs de notre solution, sur son utilisation. Ayant présenté quelques fonctionnalités de notre application, Ce chapitre est donc apte à remplir sa mission et pourra permettre à n'importe qui d'utiliser l'application.

APPORT PERSONNEL:

- ♣ MOUNCHILI ISSAH YAZID 100% concepteur, control
- **♣** FOTSO SIMO ANGE 95% view
- **♣** EMATOU CRESUS 95% model
- **♣** NJIGANG 60%
- **4** TINWE ULRICH 50%

TABLE DE MATIERES:

INTRODUCTION	2
I. ETUDE DE L'EXISTANT	
II. ETUDE COMPARATIVE DES METHODES ET LANGUAGES DE MODELISATIO	N4
II.1. Généralité sur les méthodes d'analyses UML et MERISE	
II.2. Etude comparative entre MERISE et UML	5
III. PRESENTATION DE LA METHODE D'ANALYSE	6
III.1. Choix de la méthode d'analyse	6
III.2. Présentation de UML	7
IV. DIAGRAMMES D'ANALYSE	8
IV.1. Diagrammes de cas d'utilisation	8
IV.2. Diagrammes de séquence	10
I. DIAGRAMME DE CLASSE	14
I.1. Définition	14
I.2. Formalisme	14
I.3. Représentation du diagramme de classe de la solution	15
II. Diagramme de package	16
II.3. Diagramme de paquetage de la solution	17
I. Langages de programmation et technologies utilisées	19
II. PRESENTATION DE L'ARCHITECTURE DE L'APPLICATION	20

II.1. Architecture logique	20
II.2. Architecture physique	21
III. DIAGRAMME DE DEPLOIEMENT	22
III.1. Définition	22
III.3. Diagramme de déploiement de la solution	22
APPORT PERSONNEL :	29
ΓARLE DE MATIERES :	20