Ejercicio 9: Sean $A = \{x : x = 10k + 5 \land k \in \mathbb{Z}\}$ y $B = \{x : x = 5h \land h \in \mathbb{Z}\}$ conjuntos:

(a) Probar que $A \subseteq B$.

Para ver que $A \subseteq B$ tomemos un elemento cualquiera de A y probemos que es un elemento de B.

Sea $x \in A$ entonces x se puede escribir como x = 10k + 5 para algún número $k \in \mathbb{Z}$.

Luego, $x = 10k + 5 = 5 \cdot 2k + 5 = 5 \cdot (2k + 1) = 5 \cdot h$, siendo h = 2k + 1. Aquí hemos usado la propiedad distributiva del producto en la suma de números enteros en la tercera igualdad.

Observemos que $h \in \mathbb{Z}$ porque $k \in \mathbb{Z}$ y por ser producto y suma de números enteros (es decir, el producto y la suma de números enteros son operaciones cerradas en \mathbb{Z}).

Con lo que tenemos que $x = 5 \cdot h$, $h \in \mathbb{Z}$, entonces $x \in B$.

Como x es un elemento cualquiera de A y probamos que x pertenece a B, queda demostrado que $A \subseteq B$.

(b) ¿El número 40 es un elemento de A? ¿Y de B? Justifique su respuesta.

Supongamos que $40 \in A$, entonces 40 = 10k + 5 para algún $k \in \mathbb{Z}$. Busquemos cuál es el valor de k, para eso despejamos k de la ecuación anterior y tenemos que

$$40-5=10k\Rightarrow \frac{35}{10}=k$$
, es decir $k\notin \mathbb{Z}$, absurdo.

Este absurdo o contradicción viene de suponer que $40 \in A$, luego $40 \notin A$.

Sin embargo, como $40 = 5 \cdot 8$ y $8 \in \mathbb{Z}$ tenemos que $40 \in B$.

(c) ¿Está el conjunto B incluido en el conjunto A? Justifique su respuesta.

Si B estuviera contenido o incluido en A, todo elemento de B sería elemento de A. Como vimos en el inciso anterior que $40 \in B$ y $40 \notin A$, concluimos que B no está contenido en A.

Observación: Si escribimos A y B por extensión, mostrando algunos de sus elementos, vamos a ver que hay otros enteros, además del 40 que pertenecen a B y no pertenecen a A. Recordemos que el conjunto B es el conjunto de los múltiplos enteros de 5, es decir, los números enteros terminados en 5 o 0. En cambio, en el conjunto A encontramos a los enteros que son suma de un múltiplo de 10 y 5. Es decir, los elementos del conjunto A son los enteros terminados en 5 que son múltiplos de 5, pero NO todos los múltiplos de 5 (por esto $A \subseteq B$, pero $A \ne B$).