

Tercera Red de Monitoreo

Equipo ANE

Universidad Nacional de Colombia Signal Processing and Recognition Group - SPRG

October 1, 2024

Preparación del Equipo - Antenas

- Antenas:
 - lacksquare Toagle Antenna: Área efectiva $A_e=rac{\lambda^2 G}{4\pi}$

■ ANT 500 Antenna:

Preparación del Equipo - Transmisor, Receptor y Software

■ Transmisor: USRP B200 mini.

■ **Receptor:** HackRF One.

■ **Software:** Python para control de transmisión/recepción.

π γ)

Configuración del Sistema

- 1 Conectar las antenas al HackRF One.
- 2 Configurar el USRP B200 mini con Python para transmitir en las siguientes bandas:
 - Servicios Fijos y Móviles
 - FM (88-108 MHz)
 - TDT (470-790 MHz)
 - Banda L (1-2 GHz)
 - 5G (hasta 3.5 GHz)
- 3 Configurar HackRF One para recibir en las frecuencias correspondientes.

Procedimiento de Medición

- **Calibración inicial:** Medición de señal de referencia.
- Captura de datos con HackRF One en cada banda.
- Registro de intensidad de campo eléctrico con dispositivo manual.
- Cálculo de potencia en dBm con la ecuación:

$$P_{dBm} = 10 \log_{10} \left(\frac{P_{mW}}{1mW} \right)$$

 \blacksquare $\eta = 377$ ohmios (impedancia del espacio libre).

		center		
Index	Emisora	Frecuencia (MHz)	Potencia (dBm)	Campo Eléctrico 377 (V/m)
0	Olímpica Stereo	89.7	-9.52	0.2052
1	Radio Nacional de Colombia	90.1	-14.29	0.1185
2	Radio Uno	91.7	-8.21	0.2386
3	La W Radio	92.5	-17.09	0.0858
4	La FM	94.3	-5.90	0.3114
5	Tropicana	95.5	-11.61	0.1612
6	RCN Radio	98.7	-15.02	0.1089
7	La Mega	100.7	-14.27	0.1188
8	Los 40	101.7	- 18.29	0.0748
9	Radio Tiempo	102.7	-15.58	0.1022

Table: Datos de las emisoras con sus frecuencias, potencias en dBm y campos eléctricos a 377.

Validación Experimental

■ Uso de analizador de espectro y dispositivo de medición de campo manual.

■ Comparación de datos entre HackRF One y dispositivos externos.

- Calibración adicional si se encuentra discrepancia.
- Confirmación de precisión en bandas objetivo.

Pruebas en Bandas Específicas

■ Servicios Fijos y Móviles:

■ Cálculo de la distancia mínima usando la fórmula de Fresnel.

$$d = \sqrt{\frac{4\lambda D}{\pi}}$$

donde λ es la longitud de onda y D es la distancia entre las antenas.

- FM (88-108 MHz):
 - Medición en entorno libre de interferencias.
- TDT (470-790 MHz):
 - Medición con filtros pasa banda.

Pruebas en Bandas Específicas

■ Banda L (1-2 GHz):

Uso del modelo de Hata para estimar pérdidas.

$$PL(dB) = 69.55 + 26.16 \log_{10}(f) - 13.82 \log_{10}(h_{\rm trans}) - a(h_{\rm rec}) + [44.9 - 6.55 \log_{10}(h_{\rm trans})] \log_{10}(d)$$

donde f es la frecuencia en MHz, h_{trans} y h_{rec} son las alturas de las antenas, y d es la distancia en km.

■ 5G (hasta 3.5 GHz):

Cálculo de la primera zona de Fresnel.

$$r_1 = 17.32\sqrt{\frac{d}{4f}}$$

donde r_1 es el radio de la zona de Fresnel en metros, d es la distancia en kilómetros, y f es la frecuencia en GHz.

Conclusiones

- El HackRF One es adecuado para mediciones de RF en varias bandas.
- La calibración adecuada asegura mediciones precisas.
- Los resultados son consistentes con dispositivos de medición estándar.
- Este enfoque es aplicable para análisis en FM, TDT, Banda L y 5G.