# Machine Learning Lab 02

# Maximilian Pfundstein (maxpf364) 2018-11-30

### Contents

| 1 | $\mathbf{Ass}$ | gnment 2: Analysis of Credit Scoring                             |
|---|----------------|------------------------------------------------------------------|
|   | 1.1            | Import creditscoring.xls                                         |
|   | 1.2            | Decision Tree Fitting                                            |
|   |                | 1.2.1 Deviance                                                   |
|   |                | 1.2.2 Gini                                                       |
|   |                | 1.2.3 Conclusions                                                |
|   | 1.3            | Finding the Optimal Tree                                         |
|   |                | 1.3.1 Optimal Tree Depth                                         |
|   |                | 1.3.2 Dependency of Deviances                                    |
|   |                | 1.3.3 Optimal Tree                                               |
|   |                | 1.3.4 Interpretating the Tree Structure                          |
|   |                | 1.3.5 Estimate of the Missclassification Rate                    |
|   | 1.4            | Naïve Bayes                                                      |
|   |                | 1.4.1 Classification with Naïve Bayes                            |
|   |                | 1.4.2 Naïve Bayes Confusion Matrices and Misclassification Rates |
|   |                | 1.4.3 Comparison with Step 3                                     |
|   |                | 1.4.4 TPR, FPR and ROC Curves                                    |
| 2 | Ass            | gnment 3: Uncertainty Estimation                                 |
| 3 | Ass            | gnemnt 4: Principal Components                                   |
| 4 | App            | endix: Source Code                                               |

# 1 Assignment 2: Analysis of Credit Scoring

### 1.1 Import creditscoring.xls

Let's import the data and have a look at it.

Table 1: creditscoring.xls

| resident | property | age | other | housing | exister | job | depends | telephon | foreign | good_bad              |
|----------|----------|-----|-------|---------|---------|-----|---------|----------|---------|-----------------------|
| 4        | 1        | 67  | 3     | 2       | 2       | 3   | 1       | 2        | 1       | good                  |
| 2        | 1        | 22  | 3     | 2       | 1       | 3   | 1       | 1        | 1       | bad                   |
| 3        | 1        | 49  | 3     | 2       | 1       | 2   | 2       | 1        | 1       | good                  |
| 4        | 2        | 45  | 3     | 3       | 1       | 3   | 2       | 1        | 1       | good                  |
| 4        | 4        | 53  | 3     | 3       | 2       | 3   | 2       | 1        | 1       | bad                   |
| 4        | 4        | 35  | 3     | 3       | 1       | 2   | 2       | 2        | 1       | $\operatorname{good}$ |

### 1.2 Decision Tree Fitting

Task: Fit a decision tree to the training data by using the following measures of impurity:

- a. Deviance
- b. Gini index

#### 1.2.1 Deviance

The model for the decision tree using deviance.

```
##
## Classification tree:
## tree(formula = good_bad ~ ., data = train, split = "deviance")
## Variables actually used in tree construction:
## [1] "duration" "history" "marital" "exister" "amount" "purpose"
## [7] "savings" "resident" "age" "other"
## Number of terminal nodes: 22
## Residual mean deviance: 0.7423 = 277.6 / 374
## Misclassification error rate: 0.1869 = 74 / 396
```

The confusion matrix looks as follows:

|                       | bad | good |
|-----------------------|-----|------|
| bad                   | 49  | 56   |
| $\operatorname{good}$ | 43  | 152  |

Therefore the error rate is:

## [1] 0.33

#### 1.2.2 Gini

The model for the decision tree using gini

```
##
## Classification tree:
## tree(formula = good_bad ~ ., data = train, split = "gini")
## Variables actually used in tree construction:
## [1] "foreign" "coapp" "depends" "telephon" "existcr" "savings"
## [7] "history" "property" "amount" "marital" "duration" "resident"
## [13] "job" "installp" "purpose" "employed" "housing"
## Number of terminal nodes: 53
## Residual mean deviance: 0.9468 = 324.7 / 343
## Misclassification error rate: 0.2247 = 89 / 396
```

The confusion matrix looks as follows:

|                       | 11  |      |
|-----------------------|-----|------|
|                       | bad | good |
| bad                   | 25  | 43   |
| $\operatorname{good}$ | 67  | 165  |

Therefore the error rate is:

#### 1.2.3 Conclusions

**Question:** Report the misclassification rates for the training and test data. Choose the measure providing the better results for the following steps.

**Answer:** The misqualification rate for the decision tree with deviance is 0.33 compared to the decision tree with gini as the classifier which has a misqualification rate of 0.3666667. Therefor we will continue with using the decision tree that uses **deviance** as the classifier.

### 1.3 Finding the Optimal Tree

### Task:

- 1. Use training and validation sets to choose the optimal tree depth.
- 2. Present the graphs of the dependence of deviances for the training and the validation data on the number of leaves.
- 3. Report the optimal tree, report it's depth and the variables used by the tree.
- 4. Interpret the information provided by the tree structure.
- 5. Estimate the misclassification rate for the test data.

### 1.3.1 Optimal Tree Depth

The best tree is the tree with index 5 and a test score of 350.952.

## [1] 5

## [1] 350.952

#### 1.3.2 Dependency of Deviances

The following plots shows the Tree Depth vs the Training Score. The orange line indicates the training and the blue line the test score.

# **Tree Depth vs Training/Test Score**



### 1.3.3 Optimal Tree

The following plot shows the optimal tree and it's variables. It has a depth of 4.

# **Optimal Tree**



### 1.3.4 Interpretating the Tree Structure

Some blabla must be added.

### 1.3.5 Estimate of the Missclassification Rate

```
##
## Classification tree:
## snip.tree(tree = decisionTree_deviance, nodes = c(6L, 11L, 41L,
## 21L, 4L))
## Variables actually used in tree construction:
## [1] "duration" "history" "amount" "savings"
## Number of terminal nodes: 7
## Residual mean deviance: 1.018 = 396 / 389
## Misclassification error rate: 0.2323 = 92 / 396
```

|      | bad | good |
|------|-----|------|
| bad  | 25  | 43   |
| good | 67  | 165  |

## [1] 0.2633333

### 1.4 Naïve Bayes

#### Task:

- Use training data to perform classification using Naïve Bayes.
- Report the confusion matrices and misclassification rates for the training and for the test data.
- Compare the results with those from step 3.

### 1.4.1 Classification with Naïve Bayes

Let's train the model and have a look at the summary.

```
## Length Class Mode
## apriori 2 table numeric
## tables 19 -none- list
## levels 2 -none- character
## call 4 -none- call
```

### 1.4.2 Naïve Bayes Confusion Matrices and Misclassification Rates

Data for Naïve Bayes on train:

|                       | bad | good |
|-----------------------|-----|------|
| bad                   | 62  | 55   |
| $\operatorname{good}$ | 52  | 231  |

## [1] 0.2675

Data for Naïve Bayes on test:

|      | bad | $\operatorname{good}$ |
|------|-----|-----------------------|
| bad  | 50  | 45                    |
| good | 42  | 163                   |

## [1] 0.29

### 1.4.3 Comparison with Step 3

We can see that the misqualification rate for the optimized decision tree with 0.2633333 is better than the Naïve Bayes approach with a rate of 0.29. We have to keep in mind that we first had to find the best tree and thus spend more time optimizing the hyper parameters.

Add more blabla.

#### 1.4.4 TPR, FPR and ROC Curves

Task: Compute the TPR and FPR values for the two models.

The corresponding values for FPR and RTP can be seen in the following table.

| fprs_tree | tprs_tree | fprs_bayes | tprs_bayes |
|-----------|-----------|------------|------------|
| 0.0000000 | 0.0000000 | 0.1304348  | 0.0240385  |

| fprs_tree | tprs_tree | fprs_bayes | tprs_bayes |
|-----------|-----------|------------|------------|
| 0.0000000 | 0.0000000 | 0.1739130  | 0.0288462  |
| 0.0000000 | 0.0000000 | 0.1847826  | 0.0432692  |
| 0.0978261 | 0.0144231 | 0.2500000  | 0.0721154  |
| 0.0978261 | 0.0144231 | 0.3043478  | 0.0865385  |
| 0.0978261 | 0.0144231 | 0.3260870  | 0.1153846  |
| 0.0978261 | 0.0144231 | 0.3804348  | 0.1298077  |
| 0.0978261 | 0.0144231 | 0.4456522  | 0.1586538  |
| 0.3478261 | 0.0913462 | 0.5000000  | 0.1875000  |
| 0.3478261 | 0.0913462 | 0.5434783  | 0.2163462  |
| 0.3478261 | 0.0913462 | 0.6086957  | 0.2692308  |
| 0.3478261 | 0.0913462 | 0.6630435  | 0.3125000  |
| 0.4891304 | 0.2692308 | 0.6956522  | 0.3413462  |
| 0.4891304 | 0.2692308 | 0.7065217  | 0.3846154  |
| 0.4891304 | 0.2692308 | 0.7500000  | 0.4567308  |
| 0.4891304 | 0.2692308 | 0.7934783  | 0.5240385  |
| 0.9782609 | 0.9278846 | 0.8478261  | 0.5817308  |
| 0.9891304 | 0.9423077 | 0.8804348  | 0.7019231  |
| 0.9891304 | 0.9423077 | 0.9347826  | 0.8028846  |

Task: Plot the corresponding ROC curves.

This is the ROC curve of the Optimized Tree and Naïve Bayes.



**Question:** Conclusion?

### 2 Assignment 3: Uncertainty Estimation

```
set.seed(12345)
```

### 3 Assignemnt 4: Principal Components

```
set.seed(12345)
```

### 4 Appendix: Source Code

```
knitr::opts_chunk$set(echo = TRUE)
library(knitr)
library(ggplot2)
library(readxl)
library(tree)
library(e1071)
set.seed(12345)
creditscoring = read_excel("./creditscoring.xls")
creditscoring$good_bad = as.factor(creditscoring$good_bad)
kable(head(creditscoring[,(ncol(creditscoring)-10):ncol(creditscoring)]),
      caption = "creditscoring.xls")
n=dim(creditscoring)[1]
set.seed(12345)
id=sample(1:n, floor(n*0.4))
train=creditscoring[id,]
id1=setdiff(1:n, id)
set.seed(12345)
id2=sample(id1, floor(n*0.3))
valid=creditscoring[id2,]
id3=setdiff(id1,id2)
test=creditscoring[id3,]
# Create the models
decisionTree_deviance = tree(good_bad ~ ., data = train, split = "deviance")
decisionTree_gini = tree(good_bad ~ ., data = train, split = "gini")
# Prediction
prediction_deviance_train =
  predict(decisionTree_deviance, newdata = train, type = "class")
prediction_deviance_test =
  predict(decisionTree_deviance, newdata = test, type = "class")
```

```
predictiona_gini_train =
  predict(decisionTree_gini, newdata = train, type = "class")
prediction gini test =
  predict(decisionTree_gini, newdata = test, type = "class")
summary(decisionTree_deviance)
#plot(decisionTree_deviance)
confusion_matrix_deviance = table(prediction_deviance_test, test$good_bad)
kable(confusion_matrix_deviance)
error_rate_deviance =
 1 - sum(diag(confusion_matrix_deviance)/sum(confusion_matrix_deviance))
print(error_rate_deviance)
summary(decisionTree_gini)
#plot(decisionTree_gini)
confusion_matrix_gini = table(prediction_gini_test, test$good_bad)
kable(confusion_matrix_gini)
error_rate_gini =
  1 - sum(diag(confusion_matrix_gini)/sum(confusion_matrix_gini))
print(error_rate_gini)
# Taken from the slides
trainScore = rep(0, 9)
testScore = rep(0, 9)
for(i in 2:9) {
  prunedTree = prune.tree(decisionTree_deviance, best = i)
  pred = predict(prunedTree, newdata = valid, type = "tree")
 trainScore[i] = deviance(prunedTree)
  testScore[i] = deviance(pred)
}
## Add one as the trim the first index
optimalTreeIdx = which.min(testScore[-1]) + 1
optimalTreeScore = min(testScore[-1])
print(optimalTreeIdx)
print(optimalTreeScore)
plot(2:9, trainScore[2:9], type = "b", col = "orange", ylim = c(325,475),
```

```
main = "Tree Depth vs Training/Test Score", ylab = "Deviance",
     xlab = "Number of Leaves")
points(2:9, testScore[2:9], type = "b", col = "blue")
legend("topright", legend = c("Train (orange)", "Test (blue)"))
optimalTree = prune.tree(decisionTree_deviance, best = optimalTreeIdx)
plot(optimalTree)
text(optimalTree, pretty = 1)
title("Optimal Tree")
prediction optimalTree test =
  predict(optimalTree, newdata = test, type = "class")
confusion_matrix_optimalTree = table(prediction_optimalTree_test, test$good_bad)
error_optimalTree =
 1 - sum(diag(confusion_matrix_optimalTree)/sum(confusion_matrix_optimalTree))
summary(optimalTree)
kable(confusion_matrix_gini)
print(error_optimalTree)
naiveBayesModel = naiveBayes(good_bad ~ ., data = train)
summary(naiveBayesModel)
# Prediction
prediction_bayes_train =
 predict(naiveBayesModel, newdata = train, type = "class")
prediction_bayes_test =
  predict(naiveBayesModel, newdata = test, type = "class")
confusion_matrix__bayes_train = table(prediction_bayes_train, train$good_bad)
confusion_matrix__bayes_test = table(prediction_bayes_test, test$good_bad)
error_bayes_train = 1 - sum(diag(confusion_matrix__bayes_train)/
                              sum(confusion_matrix__bayes_train))
error_bayes_test = 1 - sum(diag(confusion_matrix__bayes_test)/
                              sum(confusion_matrix__bayes_test))
kable(confusion_matrix__bayes_train)
print(error_bayes_train)
kable(confusion_matrix__bayes_test)
print(error_bayes_test)
```

```
# prediction optimal tree
prediction_optimalTree_test_p =
  predict(optimalTree, newdata = test, type = "vector")
# prediction naive bayes
prediction_bayes_test_p =
  predict(naiveBayesModel, newdata = test, type = "raw")
pi = seq(from = 0.05, to = 0.95, by = 0.05)
fprs_tree = c()
tprs_tree = c()
fprs_bayes = c()
tprs_bayes = c()
for (i in pi) {
  current_tree_pi_confusion =
   table(test$good_bad, factor(prediction_optimalTree_test_p[,2] > i,
                                lev=c(TRUE, FALSE)))
  current_bayes_pi_confusion =
   table(test$good_bad, factor(prediction_bayes_test_p[,2] > i,
                                lev=c(TRUE, FALSE)))
  \# FPR = FP / N-
  # TPR = TP / N+
  fprs_tree =c(fprs_tree, current_tree_pi_confusion[1,2]/
                 sum(current_tree_pi_confusion[1,]))
 tprs_tree = c(tprs_tree, current_tree_pi_confusion[2,2]/
                  sum(current_tree_pi_confusion[2,]))
  fprs_bayes = c(fprs_bayes, current_bayes_pi_confusion[1,2]/
                   sum(current_bayes_pi_confusion[1,]))
 tprs_bayes = c(tprs_bayes, current_bayes_pi_confusion[2,2]/
                   sum(current_bayes_pi_confusion[2,]))
}
roc_values = data.frame(fprs_tree, tprs_tree, fprs_bayes, tprs_bayes)
kable(roc_values)
ggplot(roc_values) +
  geom_line(aes(x = tprs_tree, y = fprs_tree,
                colour = "ROC Optimized Tree")) +
  geom_point(aes(x = tprs_tree, y = fprs_tree), colour = "orange") +
  geom_line(aes(x = tprs_bayes, y = fprs_bayes,
                colour = "ROC Naive Bayes")) +
  geom_point(aes(x = tprs_bayes, y = fprs_bayes), colour = "blue") +
  labs(title = "ROC for Optimized Tree and Naive Bayes", y = "FPR",
       x = "TRP", color = "Legend") +
  scale_color_manual(values = c("blue", "orange"))
```

set.seed(12345)

set.seed(12345)