Show the multiplication of a matrix by a vector in a "Map-Reduce" environment when a Matrix is too large to fin into a single machine.

$$A_{m \times n} \times C_{n \times 1} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \times \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n (a_{1i} \times c_i) \\ \sum_{i=1}^n (a_{2i} \times c_i) \\ \vdots \\ \sum_{i=1}^n (a_{mi} \times c_i) \end{bmatrix}$$

First, we can divide the matrix A into m \times n numbers, and each will be stored as (i, j, a_{ij}) like:

$$(1, 1, a_{11}), (2, 1, a_{21}), \dots, (m, 1, a_{m1})$$

$$(1, 2, a_{12}), (2, 2, a_{22}), \dots, (m, 2, a_{m2})$$

. . .

$$(1, n, a_{1n}), (2, n, a_{2n}), ..., (m, n, a_{mn})$$

And we can divide the matrix C into n numbers, and each will be stored as (j, c_j) like:

$$(1, c_1), (2, c_2), ..., (n, c_n)$$

Next, if (i, j, a_{ij}) and (j, c_j) have the same j, they can be sent to machine j. The map task will multiply each a_{ij} with c_j and we can get a series of $(i, a_{ij} \times c_j)$ like:

Finally, the reduce task will add every $a_{ij} \times c_j$ together if it has the same i and we get $(i, \sum_{j=1}^{n} (a_{ij} \times c_j))$ like:

$$i = 1$$
 $i = 2$ $i = m$ $\sum_{j=1}^{n} (a_{1j} \times c_j)$ $\sum_{j=1}^{n} (a_{2j} \times c_j)$... $\sum_{j=1}^{n} (a_{mj} \times c_j)$

The number i means the row of $\sum_{j=1}^{n} (a_{ij} \times c_j)$ in the final matrix and we can get the answer.

$$\begin{bmatrix} \sum_{j=1}^{n} (a_{1j} \times c_j) \\ \sum_{j=1}^{n} (a_{2j} \times c_j) \\ \vdots \\ \sum_{j=1}^{n} (a_{mj} \times c_j) \end{bmatrix}$$