Application No. 10/564,172 Paper Dated: December 3, 2009

In Reply to USPTO Correspondence of November 23, 2009

Attorney Docket No. 4587-045810

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims

1. (Currently Amended) A method for structuring the surface of a substrate, whereby the substrate is prepared and the material of the substrate is elastically expanded by the application of a tensile stress so that a surface area of the substrate to be structured is enlarged, whereby then at least one solution is applied to the enlarged surface area, which solution contains at least one solid substance dissolved in a solvent, whereby the expansion is then at least partly reversed by reduction or removal of the tensile stress, so that the size of the structure is reduced to the size of the structure to be produced, whereby the solvent is removed from the surface of the substrate so that the solid substance remains behind,

wherein the solutions are said at least one solution is applied to the surface area so as to form, on the surface of the substrate, a plurality of fields arranged in a matrix pattern, further wherein said plurality of fields are separated from one another by spaces, said spaces being free of said at least one solution.

- 2. (Previously Presented) A method for structuring the surface of a substrate, whereby the substrate is prepared, and on a surface area of the substrate which is enlarged with respect to a surface area that is to be provided with the structure, at least one solution is applied that contains at least one solid substance dissolved in a solvent, whereby the material of the substrate is elastically compressed by the application of a compression stress so that the size of the surface area on which the solution was applied is reduced to the size of the surface area to be provided with the structure, and whereby the solvent is removed from the surface of the substrate so that the solid remains behind.
- 3. (Previously Presented) The method as claimed in claim 1, characterized in that the substrate is realized in the form of a board or film and that the material of the substrate is

Application No. 10/564,172

Paper Dated: December 3, 2009

In Reply to USPTO Correspondence of November 23, 2009

Attorney Docket No. 4587-045810

expanded and/or compressed by central stretching in the plane of extension of the substrate with

respect to a center that is preferably approximately in the center of the substrate.

4. (Currently Amended) The methodas method as claimed in claim 1,

characterized in that the material of the substrate is expanded and/or compressed by one-

dimensional stretching in the plane of extension of the substrate.

5. (Cancelled)

6. (Previously Presented) The method as claimed in claim 1, characterized in that

to produce the structure, at least one biomolecule is applied to the substrate that preferably bonds

to the substrate.

7. (Previously Presented) The method as claimed in claim 1, characterized in that

the substrate consists of an optically transparent material.

8. (Previously Presented) The method as claimed in claim 1, characterized in that

the substrate contains at least one elastomer, in particular polypyrrole, polyacetylene and/or

polydimethylsiloxane (PDMS).

9. (Presently Presented) A method for structuring the surface of a substrate,

whereby the substrate is prepared and the material of the substrate is elastically expanded by the

application of a tensile stress so that a surface area of the substrate to be structured is enlarged,

whereby then at least one solution is applied to the enlarged surface area, which solution contains

at least one solid substance dissolved in a solvent, whereby the expansion is then at least partly

reversed by reduction or removal of the tensile stress, so that the size of the structure is reduced

to the size of the structure to be produced, whereby the solvent is removed from the surface of

the substrate so that the solid substance remains behind,

Page 3 of 6

Application No. 10/564,172

Paper Dated: December 3, 2009

In Reply to USPTO Correspondence of November 23, 2009

Attorney Docket No. 4587-045810

wherein the substrate, after the reduction or removal of the tensile stress and/or

after the application of the compression stress is applied to a detection device which is preferably

integrated in a semiconductor chip, preferably so that the coating areas each cover at least one

sensor of the detection device.

10. (Previously Presented) A method for structuring the surface of a substrate,

whereby the substrate is prepared and the material of the substrate is elastically expanded by the

application of a tensile stress so that a surface area of the substrate to be structured is enlarged,

whereby then at least one solution is applied to the enlarged surface area, which solution contains

at least one solid substance dissolved in a solvent, whereby the expansion is then at least partly

reversed by reduction or removal of the tensile stress, so that the size of the structure is reduced

to the size of the structure to be produced, whereby the solvent is removed from the surface of

the substrate so that the solid substance remains behind,

wherein the substrate contains a ceramic material, preferably tetragonal zirconium

oxide, magnesium aluminum oxide spinel and/or alpha aluminum oxide.

11. (Previously Presented) The method as claimed in claim 2, characterized in

that the substrate is realized in the form of a board or film and that the material of the substrate is

expanded and/or compressed by central stretching in the plane of extension of the substrate

radially with respect to a center that is preferably approximately in the center of the substrate.

12. (Previously Presented) The method as claimed in claim 2, characterized in

that the material of the substrate is expanded and/or compressed by one-dimensional stretching

in the plane of extension of the substrate.

13. (Previously Presented) The method as claimed in claim 2, characterized in

that the solutions are applied to the surface area so that on the surface of the substrate, a coating

is formed that has a plurality of different coating areas arranged next to one another in a matrix.

Page 4 of 6

Application No. 10/564,172

Paper Dated: December 3, 2009

In Reply to USPTO Correspondence of November 23, 2009

Attorney Docket No. 4587-045810

14. (Previously Presented) The method as claimed in claim 2, characterized in

that to produce the structure, at least one biomolecule is applied to the substrate that preferably

bonds to the substrate.

15. (Previously Presented) The method as claimed in claim 2, characterized in

that the substrate consists of an optically transparent material.

16. (Previously Presented) The method as claimed in claim 2, characterized in

that the substrate contains at least one elastomer, in particular polypyrrole, polyacetylene and/or

polydimethylsiloxane (PDMS).

17. (Previously Presented) The method as claimed in claim 2, characterized in

that the substrate, after the reduction or removal of the tensile stress and/or after the application

of the compression stress is applied to a detection device which is preferably integrated in a

semiconductor chip, preferably so that the coating areas each cover at least one sensor of the

detection device.

18. (Previously Presented) The method as claimed in claim 2, characterized in

that the substrate contains a ceramic material, preferably tetragonal zirconium oxide, magnesium

aluminum oxide spinel and/or alpha aluminum oxide.

Page 5 of 6