Controle Fuzzy

Jhonantans Moraes Rocha

Outubro 2016

1 Fase Mínima

Ponto de operação utilizado	
A1, A3	28
A2, A4	32
a1, a3	0.071
a2, a4	0.057
g	981
k1	3,33
k2	3.35
y1	0.70
y2	0.60

1.1 Linearização

Linearizando em:

Figure 1: Pontos de Linearização

Sintonizando o controlador LQI na forma:

Figure 2: Esquemático do Sistema em Malha Fechada

Onde utiliza-se como entrada do canal integrador o erro entre as referências e os níveis h_1 e h_2 . Para a sintonia do controlador, são necessárias as matrizes Q e R, onde:

$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Temos:

$$-K = \begin{bmatrix} -4.8384 & 0.0849 & -0.4874 & 0.0004 & 0.9999 & -0.0118 \\ -0.0413 & -5.6072 & -0.0125 & -0.4663 & 0.0118 & 0.9999 \end{bmatrix}$$

Figure 3: Resposta do nível h1 para a referência

Figure 4: Resposta do nível h2 para a referência

1.2 Modelagem Fuzzy

Seguindo o mesmo princípio, desenvolve-se controladores para cada uma das combinações dos modelos a seguir:

```
% Fuzzy Sets

9 - vec_h1 = [1 5 10 15];

10 - vec_h2 = [1 5 10 15];

11
```

Figure 5: Pontos de Linearização Fuzzy

Obtém-se um total de 4x4 = 16 matrizes K. Aplicando-se o controle

fuzzy sobre o sistema não-linear, obtém-se:

Figure 6: Resposta do nível h1 para a referência

Figure 7: Resposta do nível h2 para a referência

1.3 Comparação

Comparando os resultados para o níveil h_1 em uma única imagem, notase uma leve diferença:

Figure 8: Comparação para h1

Figure 9: Comparação para h2

Como pode ver, o ganho pela utilização fuzzy foi muito pequeno, uma vez que os K obtidos para cada um dos sistemas foi praticamente idêntico.

2 Fase Não Mínima

Ponto de operação utilizado	
A1, A3	28
A2, A4	32
a1, a3	0.071
a2, a4	0.057
g	981
k1	3,15
k2	3.29
y1	0.43
y2	0.34

2.1 Linearização

Linearizando em:

Figure 10: Pontos de Linearização

E sintonizando o controlador da mesma forma que anterior, obtemos:

$$-K = \begin{bmatrix} 14.9984 & -30.1819 & 13.2258 & -18.4241 & 0.1469 & 0.9892 \\ -23.8928 & 27.2788 & -15.8981 & 20.0756 & 0.9892 & -0.146 \end{bmatrix}$$

Figure 11: Resposta do nível h1 para a referência

Figure 12: Resposta do nível h2 para a referência

Para outro ponto, em:

Figure 13: Pontos de Linearização

E sintonizando o controlador da mesma forma que anterior, obtemos:

$$-K = \begin{bmatrix} 22.1950 & -40.9672 & 18.1821 & -24.6981 & 0.1593 & 0.9872 \\ -32.8634 & 40.1285 & -21.6964 & 27.9406 & 0.9872 & -0.1593 \end{bmatrix}$$

Figure 14: Resposta do nível h1 para a referência

Figure 15: Resposta do nível h2 para a referência

Para um terceiro ponto, em:

Figure 16: Pontos de Linearização

E sintonizando o controlador da mesma forma que anterior, obtemos:

$$-K = \begin{bmatrix} 27.7556 & -49.1931 & 21.9359 & -29.5209 & 0.1651 & 0.9863 \\ -39.7251 & 50.0135 & -26.1520 & 33.9199 & 0.9863 & -0.1651 \end{bmatrix}$$

Figure 17: Resposta do nível h1 para a referência

Figure 18: Resposta do nível h2 para a referência

2.2 Modelagem Fuzzy

Seguindo o mesmo princípio, desenvolve-se controladores para cada uma das combinações dos modelos a seguir:

```
% Fuzzy Sets

9 - vec_h1 = [1 5 10 15];

10 - vec_h2 = [1 5 10 15];

11
```

Figure 19: Pontos de Linearização Fuzzy

Obtém-se um total de 4x4 = 16 matrizes K. Aplicando-se o controle

fuzzy sobre o sistema não-linear, obtém-se:

Figure 20: Resposta do nível h1 para a referência

Figure 21: Resposta do nível h2 para a referência

2.3 Modelagem Fuzzy

Estou procurando o motivo para tamanha discrepância do sistema fuzzy. Pode haver algum erro no meu código, estou o apurando. Mesmo assim se houvesse, deveria aparecer também o sistema em fase mínima, o que não é caso. Se não for este o motivo, qual poderia ser? Os K para o não linear variam muito de um sistema para o outro, o que torna suas respostas muito diferentes, mesmo assim, com um controlador simples o sistema final de todos se estabiliza, enquanto o fuzzy não. Vou verificar como o sistema se comporta para cada um dos 16 ganhos individualmente. Também preciso apurar as matrizes Q e R que utilizo para o desenvolvimento dos controladores.