Electronic Devices

Mid Term Lecture - 01

Faculty Name: Dr. Md. Kabiruzzaman Email : kabiruzzaman@aiub.edu

Reference book:

Electronic Devices and Circuit Theory (Chapter-1)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

Reference Books

electronic devices and circuit theory

ROBERT L. BOYLESTAD | LOUIS NASHELSKY

FIFTH EDITION

MICROELECTRONIC CIRCUITS

Adel S. Sedra
University of Waterloo

Kenneth C. Smith

University of Toronto

New York Oxford OXFORD UNIVERSITY PRESS 2004

	Mid				
НАРТ	ER 1: Semiconductor Diodes	1		Zener Diodes	91
1.1	Introduction	1		Voltage-Multiplier Circuits	98
				Practical Applications Summary	101 111
1.2	Semiconductor Materials: Ge, Si, and GaAs	2		Computer Analysis	112
1.3	Covalent Bonding and Intrinsic Materials	3	2.15	Computer vitalyas	
1.4	Energy Levels	5	CHAPT	ER 3: Bipolar Junction Transistors	129
1.5	n-Type and p-Type Materials	7	3.1	Introduction	129
1.6	Semiconductor Diode	10	3.2	Transistor Construction	130
1.7	Ideal Versus Practical	20	3.3 3.4	Transistor Operation Common-Base Configuration	130 131
1.8	Resistance Levels	21	3.5	Common-Emitter Configuration	136
			3.6	Common-Collector Configuration	143
1.9	Diode Equivalent Circuits	27	3.7	Limits of Operation	144
1.10	Transition and Diffusion Capacitance	30	3.8	Transistor Specification Sheet	145
1.11	Reverse Recovery Time	31	3.9	Transistor Testing	149
1.12	Diode Specification Sheets	32		Transistor Casing and Terminal Identification	151 152
1.13	Semiconductor Diode Notation	35		Transistor Development Summary	154
	Diode Testing	36		Computer Analysis	155
1.14					
1.15	Zener Diodes	38	CHAPT	ER 4: DC Biasing—BJTs	160
1.16	Light-Emitting Diodes	41	4.1	Introduction	160
1.17	Summary	48	4.2	Operating Point	161
1.18	Computer Analysis	49	4.3 4.4	Fixed-Bias Configuration Emitter-Bias Configuration	163 169
			4.5	Voltage-Divider Bias Configuration	175
			4.6	Collector Feedback Configuration	181
HAPT	ER 2: Diode Applications	55	4.7	Emitter-Follower Configuration	186
2.1	Introduction	55	4.8	Common-Base Configuration	187
2.2	Load-Line Analysis	56	4.9	Miscellaneous Rias Configurations	189
2.3	Series Diode Configurations	61	4.10 4.11	Summary Table Design Operations	192 194
				Multiple BJT Networks	199
2.4	Parallel and Series-Parallel Configurations	67		Current Mirrors	205
2.5	AND/OR Gates	70	4.14	Current Source Circuits	208
2.6	Sinusoidal Inputs; Half-Wave Rectification	72		pnp Transistors	210
2.7	Full-Wave Rectification	75		Transistor Switching Networks	211
2.8	Clippers	78		Troubleshooting Techniques Bias Stabilization	215 217
2.9	Clampers	85		Practical Applications	217
	•			Summary	233
2.10	Networks with a dc and ac Source	88	4.21	Computer Analysis	235

		Final			
	ER 5: BJT AC Analysis	253			
5.1	Introduction	253		ER 7: FET Biasing	422
5.2	Amplification in the AC Domain	253	7.1	Introduction	422
5.3	BJT Transistor Modeling	254	7.2	Fixed-Bias Configuration	423
5.4	The r _e Transistor Model	257	7.3	Self-Bias Configuration	427
5.5	Common-Emitter Fixed-Bias Configuration	262	7.4	Voltage-Divider Biasing	431
5.6	Voltage-Divider Bias	265	7.5	Common-Gate Configuration	436
5.7	CE Emitter-Bias Configuration	267	7.6	Special Case $V_{GS_Q} = 0 \text{ V}$	439
5.8	Emitter-Follower Configuration	273	7.7	Depletion-Type MOSFETs	439
5.9	Common-Base Configuration	277	7.8	Enhancement-Type MOSFETs	443
	Collector Feedback Configuration	279	7.9	Summary Table	449
5.11	Collector DC Feedback Configuration	284	7.10	Combination Networks	449
5.12	Effect of R_L and R_S	286	7.11	Design	452
5.13	Determining the Current Gain	291	7.12	Troubleshooting	455
5.14	Summary Tables	292	7.13	p-Channel FETs	455
5.15	Two-Port Systems Approach	292	7.14	Universal JFET Bias Curve	458
5.16	Cascaded Systems	300	7.15	Practical Applications	461
5.17	Darlington Connection	305	7.16	Summary	470
5.18	Feedback Pair	314	7.17	Computer Analysis	471
5.19	The Hybrid Equivalent Model	319			
5.20	Approximate Hybrid Equivalent Circuit	324		TD 0. FFT 4 [1/]	
5.21	Complete Hybrid Equivalent Model	330		ER 8: FET Amplifiers	481
5.22	Hybrid π Model	337	8.1	Introduction	481
5.23	Variations of Transistor Parameters	338	8.2	JFET Small-Signal Model	482
5.24	Troubleshooting	340	8.3	Fixed-Bias Configuration	489
5.25	Practical Applications	342	8.4	Self-Bias Configuration	492
5.26	Summary	349	8.5	Voltage-Divider Configuration	497
5.27	Computer Analysis	352	8.6	Common-Gate Configuration	498
			8.7	Source-Follower (Common-Drain) Configuration	501
СНАРТ	ER 6: Field-Effect Transistors	378	8.8	Depletion-Type MOSFETs	505
6.1	Introduction	378	8.9	Enhancement-Type MOSFETs	506
6.2	Construction and Characteristics of JFETs	379	8.10	E-MOSFET Drain-Feedback Configuration	507
6.3	Transfer Characteristics	386	8.11	E-MOSFET Voltage-Divider Configuration	510
6.4	Specification Sheets (JFETs)	390	8.12	Designing FET Amplifier Networks	511
6.5	Instrumentation	394	8.13	Summary Table	513
6.6	Important Relationships	395	8.14	Effect of R_L and R_{sig}	516
6.7	Depletion-Type MOSFET	396		Cascade Configuration	518
6.8	Enhancement-Type MOSFET	402	8.16	Troubleshooting	521
6.9	MOSFET Handling	409	8.17	Practical Applications	522
6.10	VMOS and UMOS Power and MOSFETs	410	8.18	Summary	530
6.11	CMOS	411	8.19	Computer Analysis	531
	MESFETs	412			
	Summary Table	414			
0.13	January Labre	717			

Introduction

One of the noteworthy things about this field, as in many other areas of technology, is how little the fundamental principles change over time. Systems are incredibly smaller, current speeds of operation are truly remarkable, and new gadgets surface every day, leaving us to wonder where technology is taking us.

- The miniaturization that has occurred in recent years leaves us to wonder about its limits.
- Complete systems now appear on wafers thousands of times smaller than the single element of earlier networks.
- The first integrated circuit (IC) was developed by Jack Kilby while working at Texas Instruments in 1958.

Figure 1.1: Jack St. Clair Kilby, inventor of the integrated circuit and co-inventor of the electronic handheld calculator.

(Courtesy of Texas Instruments.)

Introduction Contd.

- □ Today, the Intel® CoreTM i7 Extreme Edition Processor of Fig. 1.2 has 731 million transistors in a package that is only slightly larger than a 1.67 sq. inches.
- ☐ In 1965, Dr. Gordon E. Moore presented a paper predicting that the transistor count in a single IC chip would double every two years.
- Now, more than 45 years, later we find that his prediction is amazingly accurate and expected to continue for the next few decades.

Figure 1.2: Intel® Core™ i7 Extreme Edition Processor.

Semiconductor Materials: Ge, Si & GaAs

- The construction of every discrete (individual) solid-state (hard crystal structure) electronic device or integrated circuit begins with a semiconductor material of the highest quality.
- Semiconductors are a special class of elements having a conductivity between that of a good conductor and that of an insulator.
- In general, semiconductor materials fall into one of two classes: single-crystal and compound.
- ❖ Single-crystal semiconductors such as germanium (Ge) and silicon (Si) have a <u>repetitive crystal structure</u>, whereas compound semiconductors such as gallium arsenide (GaAs), cadmium sulfide (CdS), gallium nitride (GaN), and gallium arsenide phosphide (GaAsP) are constructed of <u>two or more semiconductor materials of different atomic structures</u>.
- **❖** The three semiconductors used most frequently in the construction of electronic devices are <u>Ge, Si, and GaAs.</u>

Semiconductor Materials: Ge, Si & GaAs Contd.

Germanium:

- In the first few decades following the <u>discovery of the diode</u> in 1939 and <u>the transistor</u> in 1947 <u>germanium was used almost exclusively</u> because it was relatively easy to find and was available in fairly large quantities.
- It was also relatively <u>easy to refine to obtain very high levels of purity</u>, an important aspect in the fabrication process.
- However, it was discovered in the early years that diodes and transistors constructed using germanium as the base material <u>suffered</u> <u>from low levels of reliability due primarily to its sensitivity to changes in</u> <u>temperature.</u>

Semiconductor Materials: Ge, SI & GaAs Contd.

Silicon:

- At the time, scientists were aware that another material, <u>silicon, had</u>
 <u>improved temperature sensitivities</u>, but the refining process for
 manufacturing silicon of very high levels of purity was still in the
 development stages.
- Finally, however, in 1954 the first silicon transistor was introduced, and silicon quickly became the semiconductor material of choice.
- Not only is silicon <u>less temperature sensitive</u>, but it is one of the most <u>abundant materials on earth</u>, removing any concerns about availability.

Semiconductor Materials: Ge, SI & GaAs Contd.

Gallium Arsenide:

- As time moved on, however, the field of electronics became increasingly sensitive to issues of speed.
- The result was the development of the first GaAs transistor in the early 1970s.
- This new transistor had <u>speeds of operation up to five times that of Si</u>.
- GaAs was more difficult to manufacture at high levels of purity, was more expensive, and had little design support in the early years of development.
- However, in time <u>the demand for increased speed</u> resulted in more funding for GaAs research, to the point that today it is <u>often used as the base material for new high-speed, very large scale integrated (VLSI) circuit designs.</u>

Covalent Bonding and Intrinsic Materials

- ➤ To fully appreciate why Si, Ge, and GaAs are the semiconductors of choice for the electronics industry requires some understanding of the atomic structure of each and how the atoms are bound together to form a crystalline structure.
- The fundamental components of an atom are the <u>electron, proton, and neutron</u>.
- In the lattice structure, <u>neutrons and protons form the nucleus</u> and <u>electrons</u> appear in fixed orbits around the nucleus. The Bohr model for the three materials is provided in Fig. 1.3.

Atomic structure of (a) silicon; (b) germanium; and (c) gallium and arsenic.

- As indicated in Fig. 1.3, <u>silicon has 14 orbiting electrons</u>, <u>germanium has 32 electrons</u>, <u>gallium has 31 electrons</u>, and <u>arsenic has 33</u> orbiting electrons (the same arsenic that is a very poisonous chemical agent).
- For germanium and silicon there are four electrons in the outermost shell, which are referred to as <u>valence electrons</u>.
- Gallium has three valence electrons and arsenic has five valence electrons.
- Atoms that have four valence electrons are called tetravalent, those with three are called trivalent, and those with five are called pentavalent.
- The term valence is used to indicate that the potential (ionization potential) required to remove any one of these electrons from the atomic structure is significantly lower than that required for any other electron in the structure.

- In a pure silicon or germanium crystal the four valence electrons of one atom form a bonding arrangement with four adjoining atoms, as shown in Fig. 1.4.
- * This bonding of atoms, strengthened by the sharing of electrons, is called covalent bonding.

FIG. 1.4

Covalent bonding of the silicon atom.

- **❖** Because GaAs is a compound semiconductor, there is sharing between the two different atoms, as shown in Fig. 1.5.
- ❖ Each atom, gallium or arsenic, is surrounded by atoms of the complementary type. There is still a sharing of electrons similar in structure to that of Ge and Si, but now five electrons are provided by the As atom and three by the Ga atom.

FIG. 1.5

Covalent bonding of the GaAs crystal.

- **❖** Although the covalent bond will result in a stronger bond between the valence electrons and their parent atom, <u>it is still possible for the valence electrons to absorb sufficient kinetic energy</u> from external natural causes to <u>break the covalent bond and assume the "free" state.</u>
- * The term free is applied to any electron that has separated from the fixed lattice structure and is very sensitive to any applied electric fields such as established by voltage sources or any difference in potential.
- * The external causes include effects such as <u>light energy in the form of photons</u> and <u>thermal energy (heat) from the surrounding medium.</u>
- **❖** At room temperature there are approximately 1.5 * 10¹⁰ free carriers in 1 cm³ of intrinsic silicon material, that is, 15,000,000,000 (15 billion) electrons in a space smaller than a small sugar cube an enormous number.

- ❖ <u>The term intrinsic is applied</u> to any semiconductor material that has been carefully <u>refined to reduce the number of impurities to a very</u> <u>low level</u>-essentially as pure as can be made available through modern technology.
- ***** The free electrons in a material due only to external causes are referred to as intrinsic carriers. Table 1.1 compares the number of intrinsic carriers per cubic centimeter (abbreviated n_i) for Ge, Si, and GaAs.

TABLE 1.1
Intrinsic Carriers n_i

Semiconductor	Intrinsic Carriers (per cubic centimeter)
GaAs	1.7×10^{6}
Si	1.5×10^{10}
Ge	2.5×10^{13}

TABLE 1.2
Relative Mobility Factor μ,

Semiconductor μ_n (cm²/V·s)Si1500Ge3900GaAs8500

- ➤ It is interesting to note that Ge has the highest number and GaAs the lowest.
- > In fact, Ge has more than twice the number as GaAs.
- > The number of carriers in the intrinsic form is important, but other characteristics of the material are more significant in determining its use in the field.
- \triangleright One such factor is <u>the relative mobility (μ_n) </u> of the free carriers in the material, that is, <u>the ability of the free carriers to move throughout the material.</u>
- ➤ Table 1.2 clearly reveals that the free carriers in GaAs have <u>more than</u> <u>five times the mobility</u> of free carriers in Si, a factor that results in response times using GaAs electronic devices that can be up to five times those of the same devices made from Si.
- Note also that free carriers in Ge have <u>more than twice the mobility of</u> <u>electrons</u> in Si, a factor that results in the continued use of Ge in high-speed radio frequency applications.

- ***** Extremely high levels of purity are necessary because the addition of one part of impurity (of the proper type) per million in a wafer of silicon material can <u>change that material from a relatively poor conductor to a good conductor of electricity.</u>
- * The ability to change the characteristics of a material through this process is called doping, something that germanium, silicon, and gallium arsenide readily and easily accept.
- **❖** One important and interesting <u>difference between semiconductors</u> and <u>conductors</u> is their reaction to <u>the application of heat.</u>

- For conductors, the resistance increases with an increase in heat. This is because the numbers of carriers in a conductor do not increase significantly with temperature, but their vibration pattern about a relatively fixed location makes it increasingly difficult for a sustained flow of carriers through the material.
- Materials that react in this manner are said to have a <u>positive</u> <u>temperature coefficient.</u>
- Semiconductor materials, however, exhibit an <u>increased level of</u> <u>conductivity with the application of heat.</u> As the temperature rises, an increasing number of valence electrons absorb sufficient thermal energy to break the covalent bond and to contribute to the number of free carriers.
- > Semiconductor materials have a <u>negative temperature coefficient.</u>

Energy Levels

- Within the atomic structure of each and every isolated atom there are specific energy levels associated with each shell and orbiting electron, as shown in Fig. 1.6.
- The energy levels associated with each shell will be different for every element.
- The farther an electron is from the nucleus, the higher is the energy state, and any electron that has left its parent atom has a higher energy state than any electron in the atomic structure.

Energy Levels Contd.

FIG. 1.6

Energy levels: (a) discrete levels in isolated atomic structures; (b) conduction and valence bands of an insulator, a semiconductor, and a conductor.

n-Type & p-Type Materials

- **❖** The <u>characteristics of a semiconductor material can be altered</u> significantly by the <u>addition of specific impurity atoms</u> to the relatively pure semiconductor material.
- **❖** These impurities, although only <u>added at 1 part in 10 million</u>, can <u>alter the band structure sufficiently</u> to totally change the electrical properties of the material.
- **❖** A semiconductor material that has been <u>subjected to the doping</u> <u>process</u> is called an <u>extrinsic material</u>.
- **❖** There are two extrinsic materials of immeasurable importance to semiconductor device fabrication: <u>n -type and p -type materials.</u>

n-Type Material

- ❖ Both n -type and p -type materials are formed by <u>adding a</u> <u>predetermined number of impurity</u> <u>atoms</u> to a silicon base.
- ❖ An n -type material is created by introducing impurity elements that have <u>five valence electrons</u> (<u>pentavalent</u>), such as antimony, arsenic, and phosphorus. (Group V elements in Periodic Table)
- ❖ The effect of such impurity elements is indicated in Fig. 1.7 (using antimony as the impurity in a silicon base).

FIG. 1.7
Antimony impurity in n-type material.

n-Type Material Contd.

- ✓ Note that the four covalent bonds are still present. There is, however, an additional fifth electron due to the impurity atom, which is unassociated with any particular covalent bond.
- ✓ This remaining electron, loosely bound to its parent (antimony) atom, is relatively free to move within the newly formed n -type material.
- ✓ Diffused impurities with five valence electrons are called <u>donor</u> <u>atoms.</u>
- ✓ It is important to realize that even though a <u>large number of free carriers</u> have been established in the n -type material, it is <u>still electrically neutral</u> since ideally the <u>number of positively charged protons in the nuclei is still equal to the number of free and orbiting negatively charged electrons</u> in the structure.

n-Type Material Contd.

- ❖ Those <u>free electrons due to</u> <u>the added impurity sit at this</u> <u>energy level</u> and have less difficulty absorbing a sufficient measure of thermal energy to move into the conduction band at room temperature.
- ❖ The result is that at room temperature, there are a large number of carriers (electrons) in the conduction level, and the conductivity of the material increases significantly.

Effect of donor impurities on the energy band structure.

p-Type Material

- ❖ The p -type material is formed by doping a pure germanium or silicon crystal with impurity atoms having three valence electrons.
- ❖ The elements most frequently used for this purpose are boron, gallium, and indium. (Group III elements in Periodic Table)
- **❖** Note that there is now an <u>insufficient</u> <u>number of electrons to complete the</u> <u>covalent bonds</u> of the newly formed lattice.

FIG. 1.9

Boron impurity in p-type material.

p-Type Material Contd.

- ☐ The resulting vacancy is called a hole and is represented by a small circle or a plus sign, indicating the absence of a negative charge.
- ☐ Since the resulting vacancy will readily accept a free electron:

The diffused impurities with three valence electrons are called *acceptor atoms*.

☐ The resulting p -type material is <u>electrically neutral</u>, for the same reasons described for the n -type material.

Electron vs Hole Flow

The effect of the hole on conduction is shown in Fig. If a valence electron <u>acquires sufficient kinetic energy to break its covalent bond</u> and <u>fills the void created by a hole</u>, then a vacancy, or hole, will be created in the covalent bond that released the electron.

Majority & Minority Carriers

- ❖ In an n-type material (Fig. a) the electron is called the majority carrier and the hole the minority carrier.
- ❖ In a p-type material the hole is the majority carrier and the electron is the minority carrier.

Thank You