151

DBMS_PREDICTIVE_ANALYTICS

Machine learning can discover useful information buried in vast amounts of data. However, both the programming interfaces and the machine learning expertise required to obtain these results are too complex for use by the wide audiences that can obtain benefits from using Oracle Machine Learning for SQL.

The <code>DBMS_PREDICTIVE_ANALYTICS</code> package addresses both of these complexities by automating the entire machine learning process from data preprocessing through model building to scoring new data. This package provides an important tool that makes machine learning possible for a broad audience of users, in particular, business analysts.

This chapter contains the following topics:

- Overview
- Security Model
- Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

DBMS_PREDICTIVE_ANALYTICS Overview

DBMS_PREDICTIVE_ANALYTICS automates parts of the machine learning process.

Machine learning, according to a commonly used process model, requires the following steps:

- Understand the business problem.
- 2. Understand the data.
- **3.** Prepare the data for mining.
- 4. Create models using the prepared data.
- Evaluate the models.
- 6. Deploy and use the model to score new data.

DBMS PREDICTIVE ANALYTICS automates parts of step 3 — 5 of this process.

Predictive analytics procedures analyze and prepare the input data, create and test machine learning models using the input data, and then use the input data for scoring. The results of scoring are returned to the user. The models and supporting objects are not preserved after the operation completes.

DBMS_PREDICTIVE_ANALYTICS Security Model

The DBMS_PREDICTIVE_ANALYTICS package is owned by user SYS and is installed as part of database installation. Execution privilege on the package is granted to public. The routines in the package are run with invokers' rights (run with the privileges of the current user).

The <code>DBMS_PREDICTIVE_ANALYTICS</code> package exposes APIs which are leveraged by the Oracle Machine Learning for SQL option. Users who wish to invoke procedures in this package require the <code>CREATE MINING MODEL</code> system privilege (as well as the <code>CREATE TABLE</code> and <code>CREATE VIEW</code> system privilege).

Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms

This table lists and briefly describes the DBMS PREDICTIVE ANALYTICS package subprograms.

Table 151-1 DBMS_PREDICTIVE_ANALYTICS Package Subprograms

Subprogram	Purpose
EXPLAIN Procedure	Ranks attributes in order of influence in explaining a target column.
PREDICT Procedure	Predicts the value of a target column based on values in the input data.
PROFILE Procedure	Generates rules that identify the records that have the same target value.

EXPLAIN Procedure

The EXPLAIN procedure identifies the attributes that are important in explaining the variation in values of a target column.

The input data must contain some records where the target value is known (not NULL). These records are used by the procedure to train a model that calculates the attribute importance.

EXPLAIN supports DATE and TIMESTAMP datatypes in addition to the numeric, character, and nested datatypes supported by Oracle Machine Learning for SQL models.

Data requirements for Oracle Machine Learning for SQL are described in *Oracle Machine Learning for SQL User's Guide*

The EXPLAIN procedure creates a result table that lists the attributes in order of their explanatory power. The result table is described in the Usage Notes.

Syntax

Parameters

Table 151-2 EXPLAIN Procedure Parameters

Parameter	Description
data_table_name	Name of input table or view
explain_column_name	Name of the column to be explained
result_table_name	Name of the table where results are saved

Table 151-2 (Cont.) EXPLAIN Procedure Parameters

Parameter	Description
data_schema_name	Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The EXPLAIN procedure creates a result table with the columns described in Table 151-3.

Table 151-3 EXPLAIN Procedure Result Table

Column Name	Datatype	Description
ATTRIBUTE_NAME	VARCHAR2(30)	Name of a column in the input data; all columns except the explained column are listed in the result table.
EXPLANATORY_VALUE	NUMBER	Value indicating how useful the column is for determining the value of the explained column. Higher values indicate greater explanatory power. Value can range from 0 to 1.
		An individual column's explanatory value is independent of other columns in the input table. The values are based on how strong each individual column correlates with the explained column. The value is affected by the number of records in the input table, and the relations of the values of the column to the values of the explain column.
		An explanatory power value of 0 implies there is no useful correlation between the column's values and the explain column's values. An explanatory power of 1 implies perfect correlation; such columns should be eliminated from consideration for PREDICT. In practice, an explanatory power equal to 1 is rarely returned.
RANK	NUMBER	Ranking of explanatory power. Rows with equal values for explanatory_value have the same rank. Rank values are not skipped in the event of ties.

Example

The following example performs an EXPLAIN operation on the SUPPLEMENTARY_DEMOGRAPHICS table of Sales History.

```
--Perform EXPLAIN operation
BEGIN
    DBMS_PREDICTIVE_ANALYTICS.EXPLAIN(
        data_table_name => 'supplementary_demographics',
explain_column_name => 'home_theater_package',
        result_table_name => 'demographics_explain_result');
END;
/
--Display results
SELECT * FROM demographics explain result;
ATTRIBUTE NAME
                                         EXPLANATORY VALUE
Y BOX GAMES
                                                  .524311073
YRS RESIDENCE
                                                  .495987246
HOUSEHOLD SIZE
                                                  .146208506
                                                                     3
AFFINITY CARD
                                                    .0598227
                                                                      4
EDUCATION
                                                                       5
                                                  .018462703
OCCUPATION
                                                  .009721543
                                                                       6
```

FLAT_PANEL_MONITOR .000137	733 0	7 8
	0	8
PRINTER_SUPPLIES	0	
OS_DOC_SET_KANJI	0	8
BULK_PACK_DISKETTES	0	8
BOOKKEEPING_APPLICATION	0	8
COMMENTS	0	8
CUST_ID	0	8

The results show that Y_BOX_GAMES, YRS_RESIDENCE, and HOUSEHOLD_SIZE are the best predictors of HOME THEATER PACKAGE.

PREDICT Procedure

The PREDICT procedure predicts the values of a target column.

The input data must contain some records where the target value is known (not NULL). These records are used by the procedure to train and test a model that makes the predictions.

PREDICT supports DATE and TIMESTAMP datatypes in addition to the numeric, character, and nested datatypes supported by Oracle Machine Learning for SQL models.

Data requirements for Oracle Machine Learning for SQL are described in *Oracle Machine Learning for SQL User's Guide*

The PREDICT procedure creates a result table that contains a predicted target value for every record. The result table is described in the Usage Notes.

Syntax

```
DBMS_PREDICTIVE_ANALYTICS.PREDICT (
    accuracy OUT NUMBER,
    data_table_name IN VARCHAR2,
    case_id_column_name IN VARCHAR2,
    target_column_name IN VARCHAR2,
    result_table_name IN VARCHAR2,
    data_schema_name IN VARCHAR2 DEFAULT NULL);
```

Parameters

Table 151-4 PREDICT Procedure Parameters

Parameter	Description
accuracy	Output parameter that returns the predictive confidence, a measure of the accuracy of the predicted values. The predictive confidence for a categorical target is the most common target value; the predictive confidence for a numerical target is the mean.
data_table_name	Name of the input table or view.
case_id_column_name	Name of the column that uniquely identifies each case (record) in the input data.
target_column_name	Name of the column to predict.

Table 151-4 (Cont.) PREDICT Procedure Parameters

Parameter	Description
result_table_name	Name of the table where results will be saved.
data_schema_name	Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The PREDICT procedure creates a result table with the columns described in Table 151-5.

Table 151-5 PREDICT Procedure Result Table

Column Name	Datatype	Description
Case ID column name	VARCHAR2 or NUMBER	The name of the case ID column in the input data.
PREDICTION	VARCHAR2 or NUMBER	The predicted value of the target column for the given case.
PROBABILITY	NUMBER	For classification (categorical target), the probability of the prediction. For regression problems (numerical target), this column contains ${\tt NULL}$.

Make sure that the name of the case ID column is not 'PREDICTION' or 'PROBABILITY'.

Predictions are returned for all cases whether or not they contained target values in the input.

Predicted values for known cases may be interesting in some situations. For example, you could perform deviation analysis to compare predicted values and actual values.

Example

The following example performs a PREDICT operation and displays the first 10 predictions. The results show an accuracy of 79% in predicting whether each customer has an affinity card.

SELECT * FROM pa_demographics_predict_result WHERE rownum < 10;</pre>

CUST_ID	PREDICTION	PROBABILITY
101501	1	.834069848
101502	0	.991269965
101503	0	.99978311
101504	1	.971643388
101505	1	.541754127
101506	0	.803719133
101507	0	.999999303
101508	0	.999999987
101509	0	.999953074

PROFILE Procedure

The PROFILE procedure generates rules that describe the cases (records) from the input data.

For example, if a target column CHURN has values 'Yes' and 'No', PROFILE generates a set of rules describing the expected outcomes. Each profile includes a rule, record count, and a score distribution.

The input data must contain some cases where the target value is known (not NULL). These cases are used by the procedure to build a model that calculates the rules.

PROFILE does not support nested types or dates.

Data requirements for Oracle Machine Learning for SQL are described in *Oracle Machine Learning for SQL User's Guide*

The PROFILE procedure creates a result table that specifies rules (profiles) and their corresponding target values. The result table is described in the Usage Notes.

Syntax

Parameters

Table 151-6 PROFILE Procedure Parameters

Parameter	Description
- arameter	
data_table_name	Name of the table containing the data to be analyzed.
target_column_name	Name of the target column.
result_table_name	Name of the table where the results will be saved.
data_schema_name	Name of the schema where the input table or view resides and where the result table is created. Default: the current schema.

Usage Notes

The PROFILE procedure creates a result table with the columns described in Table 151-7.

Table 151-7 PROFILE Procedure Result Table

Column Name	Datatype	Description
PROFILE_ID	NUMBER	A unique identifier for this profile (rule).
RECORD_COUNT	NUMBER	The number of records described by the profile.
DESCRIPTION	SYS.XMLTYPE	The profile rule. See "XML Schema for Profile Rules".

XML Schema for Profile Rules

The DESCRIPTION column of the result table contains XML that conforms to the following XSD:

Example

This example generates a rule describing customers who are likely to use an affinity card (target value is 1) and a set of rules describing customers who are not likely to use an affinity card (target value is 0). The rules are based on only two predictors: education and occupation.

```
SET serveroutput ON

SET trimspool ON

SET pages 10000

SET long 10000

SET pagesize 10000

SET linesize 150

CREATE VIEW cust_edu_occ_view AS

SELECT cust_id, education, occupation, affinity_card
FROM sh.supplementary_demographics;

BEGIN

DBMS_PREDICTIVE_ANALYTICS.PROFILE(
DATA_TABLE_NAME => 'cust_edu_occ_view',
TARGET_COLUMN_NAME => 'affinity_card',
RESULT_TABLE_NAME => 'profile_result');

END;
```

This example generates eight rules in the result table <code>profile_result</code>. Seven of the rules suggest a target value of 0; one rule suggests a target value of 1. The <code>score</code> attribute on a rule identifies the target value.

This SELECT statement returns all the rules in the result table.

```
SELECT a.profile_id, a.record_count, a.description.getstringval()
FROM profile result a;
```


This SELECT statement returns the rules for a target value of 0.

```
SELECT *
FROM profile_result t
WHERE extractvalue(t.description, '/SimpleRule/@score') = 0;
```

The eight rules generated by this example are displayed as follows.

```
<SimpleRule id="1" score="0" recordCount="443">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
      <Array type="string">"< Bach." "Assoc-V" "HS-grad"</pre>
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="297" />
  <ScoreDistribution value="1" recordCount="146" />
</SimpleRule>
<SimpleRule id="2" score="0" recordCount="18">
  <CompoundPredicate booleanOperator="and">
   <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
     <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
     <Array type="string">"10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "Presch."
   </SimpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="18" />
</SimpleRule>
<SimpleRule id="3" score="0" recordCount="458">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
     <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
     <Array type="string">"Assoc-A" "Bach."
     </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="248" />
  <ScoreDistribution value="1" recordCount="210" />
</SimpleRule>
<SimpleRule id="4" score="1" recordCount="276">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
     <Array type="string">"Armed-F" "Exec." "Prof." "Protec."
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
      <Array type="string">"Masters" "PhD" "Profsc"
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
```

```
<ScoreDistribution value="1" recordCount="183" />
  <ScoreDistribution value="0" recordCount="93" />
</SimpleRule>
<SimpleRule id="5" score="0" recordCount="307">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
     <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"Crafts" "Sales" "TechSup" "Transp."
     </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="184" />
  <ScoreDistribution value="1" recordCount="123" />
</SimpleRule>
<SimpleRule id="6" score="0" recordCount="243">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
     <Array type="string">"Assoc-A" "Bach." "Masters" "PhD" "Profsc"
     </Arrav>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other"
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="197" />
  <ScoreDistribution value="1" recordCount="46" />
</SimpleRule>
<SimpleRule id="7" score="0" recordCount="2158">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
      <Array type="string">
        "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
        "Presch."
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"?" "Cleric." "Crafts" "Farming" "Machine" "Sales" "TechSup" " Transp."
      </Array>
    </simpleSetPredicate>
  </CompoundPredicate>
  <ScoreDistribution value="0" recordCount="1819"/>
  <ScoreDistribution value="1" recordCount="339"/>
</SimpleRule>
<SimpleRule id="8" score="0" recordCount="597">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="EDUCATION" booleanOperator="isIn">
     <Array type="string">
        "10th" "11th" "12th" "1st-4th" "5th-6th" "7th-8th" "9th" "< Bach." "Assoc-V" "HS-grad"
        "Presch."
     </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
     <Array type="string">"Handler" "House-s" "Other"
     </Array>
```

</SimpleSetPredicate>
</CompoundPredicate>
<ScoreDistribution value="0" recordCount="572"/>
<ScoreDistribution value="1" recordCount="25"/>
</SimpleRule>

