FDC104: Programming for Data Analysis and Scientific Computing

Lecture 8&9: Linear Model Development

Lecture overview

Topics

- Simple and Multiple Linear Regression
- Polynomial Regression and Pipelines
- Model evaluation using visualization
- Measure for evaluation
- Logistic Regression Classification

Question: How can you determine a fair value for a used car?

Activities

Hand-on lab: Model Development

Lecture 8 & 9: Linear Model Development

Section 1: Simple Linear Model & Multiple Linear Model

Model Development

 A model can be simply defined as a mathematical equation used to predict a value given one or more other values

Independent variables or features

dependent variables

Model Development

Usually the more relevant data we have the more accurate our model is

Simple & Multiple Linear Regression

• Linear regression refers to one independent variable to make a prediction

 Multiple linear regression refers to multiple independent variables to make a prediction

Simple Linear Regression

- The predictor (independent) variable -x
- The target (dependent) variable y

chỉ sử dụng một biến

$$y = b_0 + b_1 x$$

 $-b_0$: the intercept

 $-b_1$: the slope

Simple Linear Regression: Fit & Predict

thuật toán tốt --> đi qua càng nhiều điểm càng tốt ->> khớp vs dữ liệu trong quá khứ -> dự đoán tốt trong tương lai

Fit

 (b_0, b_1)

học máy --> học để tìm ra hệ số này

Predict

$$\hat{y} = b_0 + b_1 x$$

Building a Simple Linear Model

1. Import linear_model from 'scikit-learn' library:

```
from sklearn.linear_model import LinearRegression
```

2. Create a Linear Regression Object:

```
lm=LinearRegression()
```

3. We define the predictor variable and target variable:

```
X = df[['highway-mpg']]
Y = df['price']
```

- 4. Then we fit the model: lm.fit(X, Y)
- 5. We can obtain a prediction with: Yhat=lm.predict(X)

```
or we can view (b_0\,,b_1): \underset{\text{lm.coef}\_}{\text{lm.intercept}\_}
```

Multiple Linear Regression (MLR)

MLR is used to explain the relationship between:

- One contiuous target (Y) variable
- Two or more predictor (X) variables

$$\hat{Y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$

- b_0 : The intercept
- b_1 : the **coefficient** or **parameter** of x_1
- b_2 : the **coefficient** or **parameter** of x_2 and so on...

Multiple Linear Regression – Example

n	x_1	<i>x</i> ₂	
1	0	0	
2	0	2	
3	1	0	
4	3	2	

Building a MLR Estimator

1. Create a Linear Regression Object

2. Extract the predictor variables:

```
Z = df[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']]
```

- 3. Train model: lm.fit(Z, df['price'])
- 4. Obtain a prediction:

	x_3	x_4		Yhat
5	-4	3	1	2
:	:	:	7	:
4	2	-4		3
	5 : 4	: :	: : :	: : :

Building a MLR Estimator

6. Find the intercept (b_0) : lm.intercept_--15678.742628061467

```
Find the coefficients: lm.coef_
array([52.65851272 ,4.69878948,81.95906216 , 33.58258185])
```

Finally, the estimated linear model is:

```
Price = -15678.74 + (52.66) * horsepower + (4.70) * curb-weight + (81.96) * engine-size + (33.58) * highway-mpg
```


Activity – Hand-on Lab (~30 mins)

Lecture 8 & 9: Linear Model Development

Section 2: Polynomial Regression

(dành cho mối quan hệ phi tuyến)

A special case of the general linear regression model:

Useful for describing curvilinear relationship

Curvilinear relationships:

 Squaring or setting higher-order terms of the predictor variables

Quadratic – 2nd order

$$\hat{Y} = b_0 + b_1 x_1 + b_2 (x_1)^2$$

thay vì bậc 1 thì tạo ra bậc 2,3,4,5... -> ko có công thức đánh số bậc bao nhiêu bâc càng cao thì mô hình càng phức tạp

10

Cubic – 3rd order

$$\hat{Y} = b_0 + b_1 x_1 + b_2 (x_1)^2 + b_3 (x_1)^3$$

Higher order

$$\hat{Y} = b_0 + b_1 x_1 + b_2 (x_1)^2 + b_3 (x_1)^3 + \dots$$

Polynomial regression with more than one dimension

• We can also have multi dimensional polynomial linear regression

$$\hat{Y} = b0 + b1 X_1 + b2 X_2 + b3 X_1 X_2 + b4 (X_1)^2 + b5 (X_2)^2 + \dots$$

Polynomial features

Polynomial regression: linear regression with polynomial features

Creating polynomial features

 We can use "preprocessing" library in scikit-learn to transform variables to polynomial features

```
from sklearn.preprocessing import PolynomialFeatures
    pr=PolynomialFeatures(degree=2, include_bias=False)
x_polly=pr.fit_transform(x[['horsepower', 'curb-weight']])
```


Example:

X ₁	<i>X</i> ₂		
1	2		

pr=PolynomialFeatures(degree=2,include_bias=False)
pr.fit_transform([[1,2]])

<i>X</i> ₁	<i>X</i> ₂	X_1X_2	X ₁ ²	X2 ²
1	2	(1) 2	1	(2) ²

1	2	2	1	4

Pre-processing

- When creating polynomial features, the dimension of the data gets larger → Need to consider normlize the features (before polynomial transform)
- We can easily use "preprocessing" library to normalize multiple features:

```
from sklearn.preprocessing import StandardScaler
SCALE=StandardScaler()
SCALE.fit(x_data[['horsepower', 'highway-mpg']])
x_scale=SCALE.transform(x_data[['horsepower', 'highway-mpg']])
```

Pipelines

There are many steps to build a model

We can simplify the process using a pipeline

 Pipeline: sequentially perform a series of transformations and training/predicting

Pipelines

Building a pipeline

1. Import libraries:

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
```

2. Create pipeline constructor:

```
Input=[('scale',StandardScaler()),('polynomial',PolynomialFeatures(degree=2),...
('mode',LinearRegression())]
```

3. Build pipeline: pipe=Pipeline(Input)

Pipelines

We can now train the pipeline with our data:

```
Pipe.fit(df[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']],y)
```

• We can also make predictions with the pipeline:

yhat=Pipe.predict(X[['horsepower', 'curb-weight', 'engine-size', 'highway-mpg']])

Activity – Hand-on Lab (~30 mins)

Lecture 8 & 9: Linear Model Development

Section 3: Model Evaluation using Visualization

Regression Plot

Regression Plot – Gives us a good estimate of:

- The relationship between two variables
- The strength of the correlation
- The direction of the relationship (positive or negative)

Residual Plot – Represents the error between the actual value and the predicted value:

X-axis: the predictor variable or fitted values.

The residuals randomly spread out around x-axis then a linear model is appropriate

The **residuals** are not randomly spread out around the x-axis:

- The linear model is not appropriate
- Nonlinear model may be more appropriate

The **residuals** are not randomly spread out around the x-axis, variance appears to change with x axis:

- The linear model is not appropriate
- Nonlinear model may be more appropriate

Distribution Plots

Compare the distributions:

- The predited values that result from the model
- The actual values

Activity – Hand-on Lab (~30 mins)

Lecture 8 & 9: Linear Model Development

Section 4: Measures for In-sample evaluation

Measures for In-sample Evaluation

- A way to numerically determine how good the model fits on dataset
- Two important measures to determine the fit of a model:
 - Mean Squared Error (MSE)
 - R-squared (R^2)

Mean Square Error (MSE)

Example

$$MSE = \frac{sum \ all \ squared \ errors}{number \ of \ samples}$$

Mean Square Error (MSE)

In python we can easily measue the MSE as follows

```
from sklearn.metrics import mean_squared_error
mean_squared_error(df['price'],Y_predict_simple_fit)
3163502.944639888
```

R-squared/R^2

 A measure to determine how close the data is to the fitted regression line

Think about as comparing a regression model to the mean of the

data points

R-squared/R^2

$$R^2 = \left(1 - \frac{\text{MSE of regression line}}{\text{MSE of the average of the data}}\right)$$

- For the most part, R^2 take values between 0 and 1
- Good model: R^2 closes to 1
- If R^2 < 0, it may be caused by over-fitting

R-squared/R^2

- Generally the values of the R-squared are between 0 and 1
- We can calculate R-squared as follows

```
X = df[['highway-mpg']]
Y = df['price']

lm.fit(X, Y)

lm.score(X,y)
0.496591188
```


Activity – Hand-on Lab (~30 mins)

Lecture 8 & 9: Linear Model Development

Section 5: Logistic Regression for Classification

Classification

- Up to this point, the methods we have seen have centered around modeling and the prediction of a quantitative response variable (ex, the used cars' price, etc). Linear regression perform well under these situations
- When the response variable is categorical, then the problem is no longer called a regression problem but is instead labeled as a classification problem.
- The goal is to attempt to classify each observation into a category (aka, class or cluster) defined by Y, based on a set of predictor variables X.

Example: Heart Data

response variable *Y*is Yes/No

Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No

Binary Classification

The simplest form of classification is when the response variable y has only two categories, and then an ordering of the categories is natural. For our example, a patient in the ICU could be categorized as having [atherosclerotic] heart disease (AHD) or not (note, the y=0 category is a "catch-all" so it would involve those patients with lots of other diseases or diagnoses):

$$y = \begin{cases} 1 & \text{if patient has heart disease} \\ 0 & \text{otherwise.} \end{cases}$$

• Linear regression could be used to predict y directly from a set of covariates (like sex, age, resting HR, etc.), and if $\hat{y} \geq 0.5$, we could predict the patient to have AHD and predict not to have heart disease if $\hat{y} < 0.5$.

Binary Classification

What could go wrong with this linear regression model?

The main issue is you could get non-sensical values for y. Since this is modeling P(y=1), values for \hat{y} below 0 and above 1 would be at odds with the natural measure for y. Linear regression can lead to this issue.

Logistic regression curve

Think of a function that would do this for us

Sigmoid Function

The Sigmoid (aka Logistic) Function takes in any value and outputs it to be between 0 and 1.

Logistic Regression

• This means we can take our Linear Regression solution and place it into the Sigmoid Function

Logistic Regression

- We can set a cutoff point at 0.5, anything below it results in class 0, anything above is class 1.
- Based on this probability we assign a class for the prediction.

Classification Model Evaluation

- After we train a logistic regression model, we need to evaluate our model's performance
- We use a confusion matrix to evaluate classification models

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease NO = negative test = False = 0 YES = positive test = True = 1

Confusion Matrix

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

Basic Terminology:

- True Positives (TP)
- True Negatives (TN)
- False Positives (FP)
- False Negatives (FN)

Accuracy:

- Overall, how often is it correct?
- (TP + TN) / total = 150/165 = 0.91

Misclassification Rate (Error rate):

- Overall, how often is it wrong?
- (FP + FN) / total = 15/165 = 0.09

Activity – Hand-on Lab (~30 mins)

Lecture 8 & 9: Linear Model Development

Wrap-up

Summary

In summary, in this lecture, you learned:

- Linear Regression
- Polynomial Regression
- Logistic Regression for Classification Problem
- Model evaluation using visualization
- Measure for evaluation

Thank You!

