Computer Architecture

Daniel Page

Department of Computer Science, University Of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB. UK. ⟨csdsp@bristol.ac.uk⟩

October 14, 2024

Keep in mind there are *two* PDFs available (of which this is the latter):

- 1. a PDF of examinable material used as lecture slides, and
- 2. a PDF of non-examinable, extra material:
 - the associated notes page may be pre-populated with extra, written explaination of material covered in lecture(s), plus
 - anything with a "grey'ed out" header/footer represents extra material which is useful and/or interesting but out of scope (and hence not covered).

ı	Notes:
	Notes:
	Notes:
	Notes:
	Notes:

Notes:

COMS10015 lecture: week #2

https://xkcd.com/571

© Daniel Page (csdsp@bristol.ac.uk)

University of BRISTOL

git # c144985a @ 2024-10-1-

COMS10015 lecture: week #2

▶ Claim: at least conceptually we could say that

$$123 \equiv \langle 3, 2, 1 \rangle,$$

i.e., the decimal literal 123 is basically just a sequence of digits.

Notes:	

COMS10015 lecture: week #2

- Question: given

 - a bit is a single binary digit, i.e., 0 or 1,
 a byte is an 8-element sequence of bits, and
 a word is a w-element sequence of bits

and so, e.g.,

$$01111011 \equiv \langle 1, 1, 0, 1, 1, 1, 1, 1, 0 \rangle,$$

what do these things mean ... what do they represent?

► Answer: anything we decide they do!

University of BRISTOL

COMS10015 lecture: week #2

► Concept:

the representation
$$\begin{cases} & \chi \\ & \text{of } X \end{cases}$$
 where $\begin{cases} & \chi \\ & \chi \end{cases}$ the value $\begin{cases} & \chi \\ & \chi \end{cases}$ of $\begin{cases} & \chi \\ & \chi \end{cases}$

i.e., we need

- 1. a concrete representation that we can write down, plus
- 2. a mapping that yields the correct value *and* is consistent (in both directions).

Notes:	
Notes:	

COMS10015 lecture: week #2

- ► Agenda:
 - 1. useful properties of bit-sequences,
 - 2. positional number systems → standard integer representations.

© Daniel Page (csdsp@bristol.ac.uk)	
Computer Architecture	

Part 1: useful properties of bit-sequences

Definition

A given literal, say

$$X = 1111011,$$

can be interpreted in two ways:

1. A little-endian ordering is where we read bits in a literal from right-to-left, i.e.,

$$X_{LE} = \langle X_0, X_1, X_2, X_3, X_4, X_5, X_6 \rangle = \langle 1, 1, 0, 1, 1, 1, 1 \rangle,$$

where

- \blacktriangleright the Least-Significant Bit (LSB) is the right-most in the literal (i.e., X_0), and
- the Most-Significant Bit (MSB) is the left-most in the literal (i.e., $X_{n-1} = X_6$).
- 2. A big-endian ordering is where we read bits in a literal from left-to-right, i.e.,

$$X_{BE} = \langle X_6, X_5, X_4, X_3, X_2, X_1, X_0 \rangle = \langle 1, 1, 1, 1, 0, 1, 1 \rangle,$$

- the Least-Significant Bit (LSB) is the left-most in the literal (i.e., $X_{n-1} = X_6$), and the Most-Significant Bit (MSB) is the right-most in the literal (i.e., X_0).

	Notes:
Į	
	Notes:
	Ivoles.

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an n-element bit-sequence X, and an m-element bit-sequence Ywe can clearly

1. overload $\emptyset \in \{\neg\}$, i.e., write

 $R = \emptyset X$,

to mean

 $R_i = \emptyset X_i$

for $0 \le i < n$,

2. overload $\Theta \in \{\land, \lor, \oplus\}$, i.e., write

 $R = X \ominus Y$,

to mean

 $R_i = X_i \ominus Y_i$

for $0 \le i < n = m$, where if $n \ne m$, we pad either X or Y with 0 until the n = m.

University of BRISTOL

Part 1: useful properties of bit-sequences

Definition

Following the idea of vectorial Boolean function, given an *n*-element bit-sequence *X*, and an *m*-element bit-sequence *Y* we can clearly

1. overload $\emptyset \in \{\neg\}$, i.e., write

 $R = \emptyset X$,

to mean

 $R_i = \emptyset X_i$

for $0 \le i < n$,

2. overload $\Theta \in \{\land, \lor, \oplus\}$, i.e., write

 $R = X \ominus Y$,

to mean

 $R_i = X_i \ominus Y_i$

for $0 \le i < n = m$, where if $n \ne m$, we pad either X or Y with 0 until the n = m.

Example: in C, we use the computational (or **bit-wise**) operators ~, &, |, and ^ this way: they apply NOT, AND, OR, and XOR to corresponding bits in the operands.

K	University of	
8	BRISTOL	

No	tes:
	Although they look similar take care not to confuse the hit-wise operators with the Boolean operators! & and It's reason

think of the former as being used for *computation* and the latter for *conditions* (i.e., when a decision is needed).

• Although they look similar, take care not to confuse the bit-wise operators with the Boolean operators !, && and | |. It's reasonable to think of the former as being used for computation and the latter for conditions (i.e., when a decision is needed).

Part 1: useful properties of bit-sequences

Definition

Given two *n*-bit sequences *X* and *Y*, we can define some important properties named after Richard Hamming, a researcher at Bell Labs:

The **Hamming weight** of *X* is the number of bits in *X* that are equal to 1, i.e., the number of times $X_i = 1$. This can be expressed as

$$HW(X) = \sum_{i=0}^{n-1} X_i.$$

► The **Hamming distance** between *X* and *Y* is the number of bits in *X* that differ from the corresponding bit in *Y*, i.e., the number of times $X_i \neq Y_i$. This can be expressed as

$$HD(X,Y) = \sum_{i=0}^{n-1} X_i \oplus Y_i.$$

Note that both quantities naturally generalise to non-binary sequences.

© Daniel Page (csdsp@bristol.a Computer Architecture

git # c144985a @ 2024-10-14

Part 1: useful properties of bit-sequences

Definition

Given two n-bit sequences X and Y, we can define some important properties named after Richard Hamming, a researcher at Bell Labs:

▶ The **Hamming weight** of *X* is the number of bits in *X* that are equal to 1, i.e., the number of times $X_i = 1$. This can be expressed as

$$HW(X) = \sum_{i=0}^{n-1} X_i.$$

► The **Hamming distance** between X and Y is the number of bits in X that differ from the corresponding bit in Y, i.e., the number of times $X_i \neq Y_i$. This can be expressed as

$$HD(X,Y) = \sum_{i=0}^{n-1} X_i \oplus Y_i.$$

Note that both quantities naturally generalise to non-binary sequences.

Example: given $X = \langle 1, 0, 0, 1 \rangle$ and $Y = \langle 0, 1, 1, 1 \rangle$ we find that

$$HW(X) = \sum_{i=0}^{n-1} X_i$$

$$= 1 + 0 + 0 + 1 = 2$$

$$HD(X, Y) = \sum_{i=0}^{n-1} X_i \oplus Y_i = (1 \oplus 0) + (0 \oplus 1) + (0 \oplus 1) + (1 \oplus 1) = 1 + 1 + 1 + 0 = 3$$

el Page (csdsp@bristol.ac.uk)
Computer Architecture

oit # c144985a @ 2024-10-1

Notes:

Notes:

Part 2: positional number systems → standard integer representations (1)

► Concept: a **positional number system** expresses the value of a number *x* using a base-b (or radix-b) expansion, i.e.,

$$\hat{x} = \langle \hat{x}_0, \hat{x}_1, \dots, \hat{x}_{n-1} \rangle$$

$$\mapsto x$$

$$= \pm \sum_{i=0}^{n-1} \hat{x}_i \cdot b^i$$

where each \hat{x}_i

- is one of n digits taken from the digit set $X = \{0, 1, ..., b-1\}$, is "weighted" by some power of of the base b.

© Daniel Page (csdsp@bristol.ac.uk)	University of BRISTOL	
Computer Architecture	S BRISTOL	git # c144985a @ 2024-10-14

Part 2: positional number systems → standard integer representations (1)

Beware!

- ▶ for b > 10 we can't express \hat{x}_i using a single Arabic numeral, for b = 16, for example, we use letters instead:

$$\begin{array}{cccc} A & \mapsto & 10 \\ B & \mapsto & 11 \\ C & \mapsto & 12 \\ D & \mapsto & 13 \\ E & \mapsto & 14 \\ F & \mapsto & 15 \end{array}$$

el Page (csdspdbristol.ac.ul) Computer Architecture	Ø	Uı B	niversity of RISTOI	
		F	\mapsto	
		Ε	\mapsto	
		D	\mapsto	

Notes:		
1 votes.		
Notes:		
Notes.		

Part 2: positional number systems → standard integer representations (2)

Example

Consider an example where we

1. set b = 10, i.e., deal with **decimal** numbers, and

2. have
$$\hat{x}_i \in X = \{0, 1, \dots, 10 - 1 = 9\}.$$

This means we can write

$$\hat{x} = 123 \qquad = \langle 3, 2, 1 \rangle_{(10)}$$

$$\mapsto x$$

$$= \sum_{i=0}^{n-1} \hat{x}_i \cdot 10^i$$

$$= 3 \cdot 10^0 + 2 \cdot 10^1 + 1 \cdot 10^2$$

$$= 3 \cdot 1 + 2 \cdot 10 + 1 \cdot 100$$

$$= 123_{(10)}$$

i.e., represent the value "one hundred and twenty three" in a variety of ways using different bases.

© Daniel Page (csdsp@bristol.ac. Computer Architecture University of BRISTOL

git # c144985a @ 2024-10-1

Part 2: positional number systems → standard integer representations (2)

Example

Consider an example where we

1. set b = 2, i.e., deal with **binary** numbers, and

2. have $\hat{x}_i \in X = \{0, 2 - 1 = 1\}.$

This means we can write

$$\hat{x} = 1111011 \qquad = \langle 1, 1, 0, 1, 1, 1, 1 \rangle_{(2)}$$

$$\mapsto x$$

$$= \sum_{i=0}^{n-1} \hat{x}_i \cdot 2^i$$

$$= 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 + 1 \cdot 2^4 + 1 \cdot 2^5 + 1 \cdot 2^6$$

$$= 1 \cdot 1 + 1 \cdot 2 + 0 \cdot 4 + 1 \cdot 8 + 1 \cdot 16 + 1 \cdot 32 + 1 \cdot 64$$

$$= 123_{(10)}$$

i.e., represent the value "one hundred and twenty three" in a variety of ways using different bases.

Notes:	

Notes:			

Part 2: positional number systems → standard integer representations (2)

Example

Consider an example where we

1. set b = 8, i.e., deal with **octal** numbers, and

2. have
$$\hat{x}_i \in X = \{0, 1, \dots, 8 - 1 = 7\}.$$

This means we can write

$$\hat{x} = 173 \qquad = \langle 3, 7, 1 \rangle_{(8)}$$

$$\mapsto x$$

$$= \sum_{i=0}^{n-1} \hat{x}_i \cdot 8^i$$

$$= 3 \cdot 8^0 + 7 \cdot 8^1 + 1 \cdot 8^2$$

$$= 3 \cdot 1 + 7 \cdot 8 + 1 \cdot 64$$

$$= 123_{(10)}$$

i.e., represent the value "one hundred and twenty three" in a variety of ways using different bases.

© Daniel Page (csdsp@bristol.ac. Computer Architecture University of BRISTOL

git # c144985a @ 2024-10-

Part 2: positional number systems → standard integer representations (2)

Example

Consider an example where we

1. set b = 16, i.e., deal with **hexadecimal** numbers, and

= 123₍₁₀₎

2. have $\hat{x}_i \in X = \{0, 1, \dots, 16 - 1 = 15\}.$

This means we can write

$$\hat{x} = 7B \qquad = \langle B, 7 \rangle_{(16)}$$

$$\mapsto x$$

$$= \sum_{i=0}^{n-1} \hat{x}_i \cdot 16^i$$

$$= 11 \cdot 16^0 + 7 \cdot 16^1$$

$$= 11 \cdot 1 + 7 \cdot 16$$

i.e., represent the value "one hundred and twenty three" in a variety of ways using different bases.

Part 2: positional number systems → standard integer representations (3)

- **Problem**: we want to represent and perform various operations on elements of \mathbb{Z} , but
 - 1. it's an an infinite set, and
 - 2. so far we've ignored the issue of sign.
- ► Solution: in C, for example, we get

```
\begin{array}{rcl} \text{unsigned char} & \simeq & \text{uint8\_t} & \mapsto & \{ & 0, \dots, +2^8-1 \, \} \\ & \text{char} & \simeq & \text{int8\_t} & \mapsto & \{ \, -2^7, \dots, 0, \dots, +2^7-1 \, \} \end{array}
```

but why these, and how do they work?

© Daniel Page (_sdspthristol.ac.uk)

Computer Architecture

© University of BRISTOL git#c144985a @ 2024-10-14

Part 2: positional number systems → standard integer representations (4) Unsigned

Definition

An unsigned integer can be represented in n bits by using the natural binary expansion. That is, we have

$$\hat{x} = \langle \hat{x}_0, \hat{x}_1, \dots, \hat{x}_{n-1} \rangle$$

$$\mapsto x$$

$$= \sum_{i=0}^{n-1} \hat{x}_i \cdot 2^i$$

for $\hat{x}_i \in \{0, 1\}$, which yields

$$0 \le x \le 2^n - 1.$$

Notes:	
Notes.	
Notes:	

Part 2: positional number systems \sim standard integer representations (5)

```
Example (n = 8)

11111111 \mapsto 1 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = +255_{(10)}

\vdots

10000101 \mapsto 1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = +133_{(10)}

\vdots

10000000 \mapsto 1 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = +128_{(10)}

01111111 \mapsto 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = +127_{(10)}

\vdots

01111011 \mapsto 0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = +123_{(10)}

\vdots

00000001 \mapsto 0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = +1_{(10)}

000000000 \mapsto 0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = +0_{(10)}
```

```
© Daniel Page (catephristol.ac.u)

Computer Architecture

© University of BRISTOL git # c144985a @ 2024-10-14
```

Part 2: positional number systems \sim standard integer representations (6) $_{\text{Unsigned}}$

- ► Fact:
 - each hexadecimal digit $x_i \in \{0, 1, ..., 15\}$,
 - four bits gives $2^4 = 16$ possible combinations, so
 - each hexadecimal digit can be thought of as a short-hand for four binary digits.
- **Example:** we can perform the following translation steps

such that in C, for example,

$$0x8AC = 2220_{(10)}$$
.

University of BRISTOL

Part 2: positional number systems → standard integer representations (7) Unsigned

- Fact: left-shift (resp. right-shift) of some x by y digits is equivalent to multiplication (resp. division) by b^y .
- **Example**: taking b = 2 we find that

$$\begin{array}{rcl} x \times 2^{y} & = & (\sum_{i=0}^{n-1} x_{i} \cdot 2^{i}) \times 2^{y} \\ & = & \sum_{i=0}^{n-1} x_{i} \cdot 2^{i} \times 2^{y} \\ & = & \sum_{i=0}^{n-1} x_{i} \cdot 2^{i+y} \\ & = & x \ll y \end{array}$$

and

$$\begin{array}{rcl} x/2^{y} & = & (\sum_{i=0}^{n-1} x_{i} \cdot 2^{i})/2^{y} \\ & = & \sum_{i=0}^{n-1} x_{i} \cdot 2^{i}/2^{y} \\ & = & \sum_{i=0}^{n-1} x_{i} \cdot 2^{i-y} \\ & = & x \gg y \end{array}$$

such that in C, for example,

```
© Daniel Page (_cdspcbristol.ac.uk)

Computer Architecture

University of
BRISTOL
```

Part 2: positional number systems \sim standard integer representations (8) $_{\text{Unsigned}}$

- ▶ Problem: set the *i*-th bit of some x, i.e., x_i , to 1.
- ► Solution: compute

$$x \vee (1 \ll i)$$
.

Example

If $x = 0011_{(2)}$ and i = 2 then we compute

meaning initially $x_2 = 0$, then we changed it so $x_2 = 1$.

Notes:	
Notes:	
1000	

1	Notes:		

Part 2: positional number systems \leadsto standard integer representations (9) $_{\text{Unsigned}}$

- ▶ Problem: set the *i*-th bit of some x, i.e., x_i , to 0.
- ► Solution: compute

$$x \land \neg (1 \ll i)$$
.

```
Example
If x = 0111_{(2)} and m = 2 then we compute
                                                    ∧ ¬ ( 1
                                                                          ≪ i )
                                         0111_{(2)} \quad \land \quad \neg \quad ( \quad 1 \quad \ll \quad 2 \quad )
                                         0111_{(2)}^{(2)} \land \neg (0100_{(2)}^{(2)}
                                         0111<sub>(2)</sub> \(\Lambda\)
                                                                    1011_{(2)}
                                         0011(2)
meaning initially x_2 = 1, then we changed it so x_2 = 0.
```

```
© Daniel Page (csdsp@bristol.ac.uk)

Computer Architecture
                                                                                            University of BRISTOL
```

Part 2: positional number systems \rightsquigarrow standard integer representations (10) Unsigned

- **Problem:** extract the *i*-th bit of some x, i.e., x_i .
- ► Solution: compute

```
Example
If x = 0011_{(2)}, then
1. if i = 2 we compute
                                                  \begin{array}{ccccc} x & \gg & i & ) & \wedge & 1 \\ 0011_{(2)} & \gg & 2 & ) & \wedge & 1 \\ \end{array}
                                                 0000(2)
                                                              ) ^ 1
                                                   0000(2)
   meaning x_2 = 0, or
2. if i = 0 we compute
                                                 0001(2)
   meaning x_0 = 1.
```


Notes:

Notes:

Part 2: positional number systems \sim standard integer representations (11) Unsigned

- ▶ Problem: extract an *m*-bit sub-word (i.e., *m* contiguous bits) starting at the *i*-th bit of some *x*.
- ► Solution: compute

meaning $\langle x_1, x_2 \rangle = \langle 1, 0 \rangle$ as expected.

$$(x \gg i) \wedge ((1 \ll m) - 1).$$


```
© Daniel Page (csdspébristol.ac.uk)

Computer Architecture

University of

BRISTOL git # c144985a @ 2024-10-14
```

Part 2: positional number systems → standard integer representations (12) Signed, sign-magnitude

Definition

A signed integer can be represented in n bits by using the **sign-magnitude** approach; 1 bit is reserved for the sign (0 means positive, 1 means negative) and n-1 for the magnitude. That is, we have

$$\hat{x} = \langle \hat{x}_0, \hat{x}_1, \dots, \hat{x}_{n-1} \rangle$$

$$\mapsto x$$

$$= (-1)^{\hat{x}_{n-1}} \cdot \sum_{i=0}^{n-2} \hat{x}_i \cdot 2^i$$

for $\hat{x}_i \in \{0, 1\}$, which yields

$$-2^{n-1} + 1 \le x \le +2^{n-1} - 1.$$

Note that there are two representations of zero (i.e., +0 and -0).

Notes:		

Part 2: positional number systems → standard integer representations (13) Signed, sign-magnitude

```
Example (n = 8)

01111111 \mapsto (-1)^0 · (1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = +127_{(10)}

\vdots

01111011 \mapsto (-1)^0 · (1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = +123_{(10)}

\vdots

00000001 \mapsto (-1)^0 · (0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0) = +1_{(10)}

00000000 \mapsto (-1)^0 · (0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0) = +0_{(10)}

10000000 \mapsto (-1)^1 · (0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0) = -0_{(10)}

10000001 \mapsto (-1)^1 · (0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0) = -1_{(10)}

\vdots

11111011 \mapsto (-1)^1 · (1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = -123_{(10)}

\vdots

11111111 \mapsto (-1)^1 · (1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0) = -127_{(10)}
```

```
© Daniel Page ( subprint collactual)

Computer Architecture

© University of BRISTOL git#c144985a@2024-10-14
```

Part 2: positional number systems \rightsquigarrow standard integer representations (14) Signed, sign-magnitude

Notes:			

Part 2: positional number systems \rightsquigarrow standard integer representations (15) Signed, two's-complement

Definition

A signed integer can be represented in n bits by using the **two's-complement** approach; the basic idea is to weight the (n-1)-th bit using -2^{n-1} rather than $+2^{n-1}$, and all other bits as normal. That is, we have

$$\hat{x} = \langle \hat{x}_0, \hat{x}_1, \dots, \hat{x}_{n-1} \rangle$$

$$\mapsto x$$

$$= \hat{x}_{n-1} \cdot -2^{n-1} + \sum_{i=0}^{n-2} \hat{x}_i \cdot 2^i$$

for $\hat{x}_i \in \{0, 1\}$, which yields

$$-2^{n-1} \le x \le +2^{n-1} - 1.$$

© Daniel Page (catephristol.ac.ul)

Computer Architecture

© Whiversity of git # c144985a @ 2024-10-14

Part 2: positional number systems \leadsto standard integer representations (16) Signed, two's-complement

Example $(n = 8)$				
01111111	\mapsto	$0 \cdot -2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$	=	+127 ₍₁₀₎
01111011	:	$0 \cdot -2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$:	. 122
01111011	→	$0 \cdot -2^{r} + 1 \cdot 2^{0} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$	=	+123 ₍₁₀₎
00000001	: →	$0 \cdot -2^{7} + 0 \cdot 2^{6} + 0 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$	=	+1(10)
00000000 11111111	\mapsto	$\begin{array}{l} 0 \cdot -2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 \\ 1 \cdot -2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 \end{array}$	=	$^{+0}_{(10)}$ $^{-1}_{(10)}$
	:		:	
10000101	→	$1 \cdot -2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$	=	-123 ₍₁₀₎
10000000	: →	$1 \cdot -2^{7} + 0 \cdot 2^{6} + 0 \cdot 2^{5} + 0 \cdot 2^{4} + 0 \cdot 2^{3} + 0 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0}$:=	-128 ₍₁₀₎

University of BRISTOL

Notes:

Part 2: positional number systems \rightsquigarrow standard integer representations (17) Signed, two's-complement

Conclusions

► Take away points:

- 1. We control what bit-sequences mean: we can interpret an instance of the C char data-type as
 - a signed 8-bit integer, or
 - ▶ a generic object which can take one of 2⁸ states,

and, as a result, can represent anything, e.g.,

- a pixel within an image,a character within a document,
- a number within a matrix,
- 2. Beyond this, knowing about various standard representations is important and useful in a general sense.

Notes:	

Additional Reading

- ▶ Wikipedia: Numeral system. url: https://en.wikipedia.org/wiki/Numeral_system.
- D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009.
- B. Parhami. "Part 1: Number representation". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000.
- W. Stallings. "Chapter 9: Number systems". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013.
- A.S. Tanenbaum and T. Austin. "Appendix A: Binary numbers". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012.

© Daniel Page (csdsp@bristol.ac.u Computer Architecture

git # c144985a @ 2024-10-14

References

- [1] Wikipedia: Numeral system. url: https://en.wikipedia.org/wiki/Numeral_system (see p. 69).
- [2] D. Page. "Chapter 1: Mathematical preliminaries". In: A Practical Introduction to Computer Architecture. 1st ed. Springer, 2009 (see p. 69).
- [3] B. Parhami. "Part 1: Number representation". In: Computer Arithmetic: Algorithms and Hardware Designs. 1st ed. Oxford University Press, 2000 (see p. 69).
- [4] W. Stallings. "Chapter 9: Number systems". In: Computer Organisation and Architecture. 9th ed. Prentice Hall, 2013 (see p. 69).
- [5] A.S. Tanenbaum and T. Austin. "Appendix A: Binary numbers". In: Structured Computer Organisation. 6th ed. Prentice Hall, 2012 (see p. 69).

Notes:	
Notes:	