Notebook in Algebraic Geometry

Setup and the first examples

1 Notations

All schemes are assumed to be separated. For a "scheme" which is not separated, we will use the term "prescheme".

Let A be a ring. We denote by Spec A the spectrum of A. For an ideal $I \subset A$, we use V(I) to denote the closed subscheme of Spec A defined by I.

Let S be Spec K, Spec \mathcal{O}_K or an algebraic variety. An S-variety is an integral scheme X which is of finite type and flat over S. For an algebraic variety, we mean a K-variety.

We will use k, K to denote fields, and k, K to denote their algebraically closure relatively.

Let X be an integral scheme. We denote by $\mathcal{K}(X)$ the function field of X. For a closed point $x \in X$, we denote by $\kappa(x)$ the residue field of x.

We denote the category of S-varieties by \mathbf{Var}_S . We denote by X(T) the set of T-points of X, that is, the set of morphisms $T \to X$.

Let X be an algebraic variety over k. A geometrical point is referred a morphism $\operatorname{Spec} \mathbf{k} \to X$.

When refer a point (may not be closed) in a scheme, we will use the notation $\xi \in X$. We use Z_{ξ} to denote the Zariski closure of $\{\xi\}$ in X. When we talk about a closed point on an algebraic variety, we will use the notation $x \in X(\mathbf{k})$.

1.1 Separated and proper morphisms

2 Examples

Example 1. Let **k** be an algebraically closed field and A the localization of $\mathbf{k}[x]$ at (x). Let $S = \operatorname{Spec} A$ and $X = \operatorname{Spec} A[y]$. There are three types of points in X:

- (i) closed points with residue field **k**, like p = (x, y a);
- (ii) closed points with residue field $\mathbf{k}(y)$, like P = (xy 1);
- (iii) non-closed points, like $\eta_1 = (x), \eta_2 = (y), \eta_3 = (x y)$.

3 Preparation in commutative algebra

3.1 Associated prime ideals

This part refers to [Mat70, Chapter 3].

Definition 2 (Associated prime ideals). Let A be a noetherian ring and M an A-module. The associated prime ideals of M are the prime ideals $\mathfrak p$ of form $\mathrm{Ann}(x)$ for some $x \in M$. The set of associated prime ideals of M is denoted by $\mathrm{Ass}(M)$.

Example 3. Let $A = \mathbf{k}[x, y]/(xy)$ and M = A. First we see that $(x) = \operatorname{Ann} y$, $(y) = \operatorname{Ann} x \in \operatorname{Ass} M$. Then we check other prime ideals. For (x, y), if xf = yf = 0, then $f \in (x) \cap (y) = (0)$. If $(x - a) = \operatorname{Ann} f$ for some f, note that $y \in (x - a)$ for $a \in \mathbf{k}^*$, then $f \in (x)$. Hence f = 0. Therefore $\operatorname{Ass} M = \{(x), (y)\}$.

Example 4. Let $A = \mathbf{k}[x,y]/(x^2,xy)$ and M = A. The underlying space of Spec A is the y-axis since $\sqrt{(x^2,xy)} = (x)$. First note that $(x) = \operatorname{Ann} y, (x,y) = \operatorname{Ann} x \in \operatorname{Ass} M$. For (x,y-a) with $a \in \mathbf{k}^*$, easily see that xf = (y-a)f = 0 implies f = 0 since $A = \mathbf{k} \cdot x \oplus \mathbf{k}[y]$ as \mathbf{k} -vector space. Hence $\operatorname{Ass} M = \{(x), (x,y)\}$.

Let A be a noetherian ring and M an A-module. Note that $S^{-1}M = 0$ if and only if $S \cap \text{Ann } M \neq \emptyset$. Then the set

$$\{\mathfrak{p} \in \operatorname{Spec} A \colon M_{\mathfrak{p}} \neq 0\}$$

is equal to $V(\operatorname{Ann} M)$.

Definition 5. Let A be a noetherian ring and M an A-module. The *support* of M is the closed subset $V(\operatorname{Ann} M)$ of Spec A, denoted by Supp M.

Date: June 3, 2025, Author: Tianle Yang, loveandjustice@88.com

Lemma 6. Let A be a noetherian ring and M an A-module. Then the maximal element of the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}$$

belongs to $\operatorname{Ass} M$.

Proof. We just need to show that such Ann x is prime. Otherwise, there exist $a, b \in A$ such that $ab \in A$ nn x but $a, b \notin A$ nn x. It follows that Ann $x \subseteq A$ nn ax since $b \in A$ nn $ax \setminus A$ nn $ax \cap A$ nn ax

An element $a \in A$ is called a zero divisor for M if $M \to aM, m \mapsto am$ is not injective.

Corollary 7. Let A be a noetherian ring and M an A-module. Then

$$\{\text{zero divisors for }M\}=\bigcup_{\mathfrak{p}\in\operatorname{Ass}M}\mathfrak{p}.$$

Lemma 8. Let A be a noetherian ring and M an A-module. Then $\mathfrak{p} \in \mathrm{Ass}_A M$ iff $\mathfrak{p} \in \mathrm{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$.

Proof. Yang: To be completed.

Proposition 9. We have Ass $M \subset \text{Supp } M$. Moreover, if $\mathfrak{p} \in \text{Supp } M$ satisfies $V(\mathfrak{p})$ is an irreducible component of Supp M, then $\mathfrak{p} \in \text{Ass } M$.

Proof. For any $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M$, we have $A/\mathfrak{p} \cong A \cdot x \subset M$. Tensoring with $A_{\mathfrak{p}}$ gives $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} \hookrightarrow M_{\mathfrak{p}}$ since $A_{\mathfrak{p}}$ is flat. Hence $M_{\mathfrak{p}} \neq 0$ and $\mathfrak{p} \in \operatorname{Supp} M$.

Now suppose $\mathfrak{p} \in \operatorname{Supp} M$ and $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Supp} M$. First we show that $\mathfrak{p} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Let $x \in M_{\mathfrak{p}}$ such that $\operatorname{Ann} x$ is maximal in the set

$$\{\operatorname{Ann} x \colon x \in M_{\mathfrak{p}}, x \neq 0\}.$$

Then we claim that $\operatorname{Ann} x = \mathfrak{p} A_{\mathfrak{p}}$. First, $\operatorname{Ann} x$ is prime by Lemma 6. If $\operatorname{Ann} x \neq \mathfrak{p}$, then $V(\operatorname{Ann} x) \supset V(\mathfrak{p})$. This implies that $\operatorname{Ann} x \notin \operatorname{Supp} M_{\mathfrak{p}}$ since $\operatorname{Supp} M_{\mathfrak{p}} = \operatorname{Supp} M \cap \operatorname{Spec} A_{\mathfrak{p}}$. This is a contradiction. Thus $\mathfrak{p} A_{\mathfrak{p}} \in \operatorname{Ass}_{A_{\mathfrak{p}}} M_{\mathfrak{p}}$. Suppose $x = y_0/c$ for $y_0 \in M$ and $c \in A \setminus \mathfrak{p}$. For $a \in \operatorname{Ann} y_0$, $ay_0 = 0$. Then $a/1 \in \operatorname{Ann} x = \mathfrak{p} A_{\mathfrak{p}}$. It follows that $a \in \mathfrak{p}$. Hence $\operatorname{Ann} y_0 \subset \mathfrak{p}$. Inductively, if $\operatorname{Ann} y_n \subsetneq \mathfrak{p}$, then there exists $b_n \in A \setminus \mathfrak{p}$ such that $y_{n+1} := b_n y_n$, $\operatorname{Ann} y_{n+1} \subset \mathfrak{p}$ and $\operatorname{Ann} y_n \subsetneq \operatorname{Ann} y_{n+1}$. To see this, choose $a_n \in \mathfrak{p} \setminus \operatorname{Ann} y_n$. Then $(a_n/1)y_n = 0$ since $a_n/1 \in \mathfrak{p} A_{\mathfrak{p}}$. By definition, there exist $b_n \in A \setminus \mathfrak{p}$ such that $a_n b_n y_n = 0$. This process must terminate since A is noetherian. Thus $\operatorname{Ann} y_n = \mathfrak{p}$ for some n. Hence $\mathfrak{p} \in \operatorname{Ass} M$. Yang: To be modified.

Remark 10. The existence of irreducible component is guaranteed by Zorn's Lemma.

Definition 11. A prime ideal $\mathfrak{p} \in \operatorname{Ass} M$ is called *embedded* if $V(\mathfrak{p})$ is not an irreducible component of Supp M.

Example 12. For $M = A = \mathbf{k}[x,y]/(x^2,xy)$, the origin (x,y) is an embedded point.

Proposition 13. If we have exact sequence $0 \to M_1 \to M_2 \to M_3$, then Ass $M_2 \subset \text{Ass } M_1 \cup \text{Ass } M_3$.

Proof. Let $\mathfrak{p} = \operatorname{Ann} x \in \operatorname{Ass} M_2 \setminus \operatorname{Ass} M_1$. Then the image [x] of x in M_3 is not equal to 0. We have that $\operatorname{Ann} x \subset \operatorname{Ann}[x]$. If $a \in \operatorname{Ann}[x] \setminus \operatorname{Ann} x$, then $ax \in M_1$. Since $\operatorname{Ann} x \subseteq \operatorname{Ann} ax$, there is $b \in \operatorname{Ann} ax \setminus \operatorname{Ann} x$. However, it implies $ba \in \operatorname{Ann} x$, and then $a \in \operatorname{Ann} x$ since $\operatorname{Ann} x$ is prime, which is a contradiction.

Corollary 14. If M is finitely generated, then the set Ass M is finite.

Proof. For $\mathfrak{p}=\mathrm{Ann}\,x\in\mathrm{Ass}\,M$, we know that the submodule M_1 generated by x is isomorphic to A/\mathfrak{p} . Inductively, we can choose M_n be the preimage of a submodule of M/M_{n-1} which is isomorphic to A/\mathfrak{q} for some $\mathfrak{q}\in\mathrm{Ass}\,M/M_{n-1}$. We can take an ascending sequence $0=M_0\subset M_1\subset\cdots\subset M_n\subset\cdots$ such that $M_i/M_{i-1}\cong A/\mathfrak{p}_i$ for some prime \mathfrak{p}_i . Since M is finitely generated, this is a finite sequence. Then the conclusion follows by Proposition 13.

Definition 15. An A-module is called *co-primary* if Ass M has a single element. Let M be an A-module and $N \subset M$ a submodule. Then N is called *primary* if M/N is co-primary. If Ass $M/N = \{\mathfrak{p}\}$, then N is called \mathfrak{p} -primary.

Remark 16. This definition coincide with primary ideals in the case M = A. Recall an ideal $\mathfrak{q} \subset A$ is called *primary* if $\forall ab \in \mathfrak{p}, a \notin \mathfrak{q}$ implies $b^n \in \mathfrak{q}$ for some n.

Let \mathfrak{q} be a \mathfrak{q} -primary ideal. Since Supp $A/\mathfrak{q} = \{\mathfrak{p}\}$, $\mathfrak{p} \in \operatorname{Ass} A/\mathfrak{q}$. Suppose $\operatorname{Ann}[a] \in \operatorname{Ass} A/\mathfrak{q}$. Then $\mathfrak{p} \subset \operatorname{Ann}[a]$ since $V(\mathfrak{p}) = \operatorname{Supp} A/\mathfrak{q}$. If $b \in \operatorname{Ann}[a]$, then $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Hence $b^n \in \mathfrak{q}$, and then $b \in \mathfrak{p}$. This shows that $\operatorname{Ass} A/\mathfrak{q} = \{\mathfrak{p}\}$ and \mathfrak{q} is \mathfrak{p} -primary as an A-submodule.

Let $\mathfrak{q} \subset A$ be a \mathfrak{p} -primary A-submodule. First we have $\mathfrak{p} = \sqrt{\mathfrak{q}}$ since $V(\mathfrak{p})$ is the unique irreducible component of Supp A/\mathfrak{q} . Suppose $ab \in \mathfrak{q}$ and $a \notin \mathfrak{q}$. Then $b \in \mathrm{Ann}[a] \subset \mathfrak{p}$ since \mathfrak{p} is the unique maximal element in $\{\mathrm{Ann}[c] : c \in A \setminus \mathfrak{q}\}$. This implies that $b^n \in \mathfrak{q}$.

Definition 17. Let A be a noetherian ring, M an A-module and $N \subset M$ a submodule. A minimal primary decomposition of N in M is a finite set of primary submodules $\{Q_i\}_{i=1}^n$ such that

$$N = \bigcap_{i=1}^{n} Q_i,$$

no Q_i can be omitted and Ass M/Q_i are pairwise distinct. For Ass $M/Q_i = \{\mathfrak{p}\}$, Q_i is called belonging to \mathfrak{p} .

Indeed, if $N \subset M$ admits a minimal primary decomposition $N = \bigcap Q_i$ with Q_i belonging to \mathfrak{p} , then $\mathrm{Ass}(M/N) = \{\mathfrak{p}_i\}$. For given i, consider $N_i := \bigcap_{j \neq i} Q_j$, then $N_i/N \cong (N_i + Q_i)/Q_i$. Since $N_i \neq N$, $\mathrm{Ass}\,N_i/N \neq \emptyset$. On the other hand, $\mathrm{Ass}\,N_i/N \subset \mathrm{Ass}\,M/Q_i = \{\mathfrak{p}\}$. It follows that $\mathrm{Ass}\,N_i/N = \{\mathfrak{p}_i\}$, whence $\mathfrak{p}_i \in \mathrm{Ass}\,M/N$. Conversely, we have an injection $M/N \hookrightarrow \bigoplus M/Q_i$, so $\mathrm{Ass}\,M/N \subset \bigcup \mathrm{Ass}\,M/Q_i$. Due to this, if Q_i belongs to \mathfrak{p} , we also say that Q_i is the \mathfrak{p} -component of N.

Proposition 18. Suppose $N \subset M$ has a minimal primary decomposition. If $\mathfrak{p} \in \operatorname{Ass} M/N$ is not embedded, then the \mathfrak{p} component of N is unique. Explicitly, we have $Q = \nu^{-1}(N_{\mathfrak{p}})$, where $\nu : M \to M_{\mathfrak{p}}$.

Proof. First we show that $Q = \nu^{-1}(Q_{\mathfrak{p}})$. Clearly $Q \subset \nu^{-1}(Q_{\mathfrak{p}})$. Suppose $x \in \nu^{-1}(Q_{\mathfrak{p}})$. Then there exists $s \in A \setminus \mathfrak{p}$ such that $sx \in Q$. That is, $[sx] = 0 \in M/Q$. If $[x] \neq 0$, we have $s \in \text{Ann}[x] \subset \mathfrak{p}$. This contradiction enforces $Q = \nu^{-1}(Q_{\mathfrak{p}})$.

Then we show that $N_{\mathfrak{p}} = Q_{\mathfrak{p}}$. Just need to show that for $\mathfrak{p}' \neq \mathfrak{p}$ and the \mathfrak{p}' component Q' of N, $Q'_{\mathfrak{p}} = M_{\mathfrak{p}}$. Since \mathfrak{p} is not embedded, $\mathfrak{p}' \not\subset \mathfrak{p}$. Then $\mathfrak{p} \notin V(\mathfrak{p}) = \operatorname{Supp} M/Q'$. So $M_{\mathfrak{p}}/Q'_{\mathfrak{p}} = 0$.

Example 19. If \mathfrak{p} is embedded, then its components may not be unique. For example, let $M = A = \mathbf{k}[x,y]/(x^2,xy)$. Then for every $n \in \mathbb{Z}_{>1}$, $(x) \cap (x^2,xy,y^n)$ is a minimal primary decomposition of $(0) \subset M$.

Let A be a noetherian ring and $\mathfrak{p} \subset A$ a prime ideal. We consider the \mathfrak{p} component of \mathfrak{p}^n , which is called n-th symbolic power of \mathfrak{p} , denoted by $\mathfrak{p}^{(n)}$. We have $\mathfrak{p}^{(n)} = \mathfrak{p}^n A_{\mathfrak{p}} \cap A$. In general, $\mathfrak{p}^{(n)}$ is not equal to \mathfrak{p}^n ; see below example.

Example 20. Let $A = \mathsf{k}[x, y, z, w]/(y^2 - zx^2, yz - xw)$ and $\mathfrak{p} = (y, z, w)$. We have $z = y^2/x^2, w = yz/x \in \mathfrak{p}^2 A_{\mathfrak{p}}$, whence $\mathfrak{p}^2 A_{\mathfrak{p}} = (z, w) \neq \mathfrak{p}^2$.

Theorem 21. Let A be a noetherian ring and M an A-module. Then for every $\mathfrak{p} \in \mathrm{Ass}\,M$, there is a \mathfrak{p} -primary submodule $Q(\mathfrak{p})$ such that

$$(0) = \bigcap_{\mathfrak{p} \in \operatorname{Ass} M} Q(\mathfrak{p}).$$

Proof. Consider the set

$$\mathcal{N}:=\{N\subset M\colon \mathfrak{p}\notin \mathrm{Ass}\, N\}.$$

Note that $\operatorname{Ass} \bigcup N_i = \bigcup \operatorname{Ass} N_i$ by definition of associated prime ideals. Then it is easy to check that \mathcal{N} satisfies the conditions of Zorn's Lemma. Hence \mathcal{N} has a maximal element $Q(\mathfrak{p})$. We claim that $Q(\mathfrak{p})$ is \mathfrak{p} -primary. If there is $\mathfrak{p}' \neq \mathfrak{p} \in \operatorname{Ass} M/Q(\mathfrak{p})$, then there is a submodule $N' \cong A/\mathfrak{p}$. Let N'' be the preimage of N' in M. We have $Q(\mathfrak{p}) \subsetneq N''$ and $N'' \in \mathcal{N}$. This is a contradiction. By the fact $\operatorname{Ass} \bigcap N_i = \bigcap \operatorname{Ass} N_i$, we get the conclusion.

Corollary 22. Let A be a noetherian ring and M a finitely generated A-module. Then every submodule of M has a minimal primary decomposition.

3.2 Length of a module Yang: To be completed

Definition 23. Let A be a ring and M an A module.

3.3 Nakayama's Lemma Yang: To be completed

Theorem 24 (Nakayama's Lemma). Let (A, \mathfrak{m}) be a local ring. Suppose M is a finitely generated A-module. If $\mathfrak{m}M = M$, then M = 0.

| Proof. Yang: To be added.

Proposition 25 (Geometric form of Nakayama's Lemma). Let $X = \operatorname{Spec} A$ be an affine scheme, $x \in X$ a closed point and \mathcal{F} a coherent sheaf on X. If $a_1, \dots, a_k \in \mathcal{F}(X)$ generate $\mathcal{F}|_x = \mathcal{F} \otimes \kappa(x)$, then there is an open subset $U \subset X$ such that $a_i|_U$ generate $\mathcal{F}(U)$.

3.4 Noether's Normalization Lemma and Hilbert's Nullstellensatz Yang: To be completed.

Theorem 26 (Noether's Normalization Lemma). Let A be a k-algebra of finite type. Then there is an injection $\mathsf{k}[T_1,\cdots,T_d]\hookrightarrow A$ such that A is finite over $\mathsf{k}[T_1,\cdots,T_d]$.

Remark 27. Here A does not need to be integral. For example,

Theorem 28 (Hilbert's Nullstellensatz). Let A be a

Normal, Cohen-Macaulay and regular schemes

1 Height, Depth and Dimension Yang: To be completed

Krull dimension and height of prime ideals Algebraically, we have the following definitions.

Definition 29. Let A be a noetherian ring. The *height of a prime ideal* \mathfrak{p} in A is defined as the maximum length of chains of prime ideals contained in \mathfrak{p} , that is,

$$\operatorname{ht}(\mathfrak{p}) := \sup\{n \mid \exists \text{ a chain of prime ideals } \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n = \mathfrak{p}\}.$$

The $Krull\ dimension$ of A is defined as

$$\dim A := \max_{\mathfrak{p} \in \operatorname{Spec} A} \operatorname{ht}(\mathfrak{p}).$$

Geometrically, we have the corresponding definition.

Definition 30. Let X be a noetherian scheme. The *codimension of an irreducible subscheme* Y in X is defined as the length of the longest chain of irreducible closed subsets containing Y, that is,

$$\operatorname{codim}_X(Y) := \sup\{n \mid \exists \text{ a chain of irreducible closed subsets } Y = Y_0 \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_n\}.$$

The dimension of X is defined as

$$\dim X := \max_{\xi \in X} \operatorname{codim}_X Z_{\xi}.$$

For an affine scheme $X = \operatorname{Spec} A$, above two definitions coincide by the correspondence of prime ideals and irreducible closed subsets.

Proposition 31. Let A be a noetherian ring and $\mathfrak{p} \in \operatorname{Spec} A$. Then

$$ht(\mathfrak{p}) = \operatorname{codim}_{\operatorname{Spec} A} V(\mathfrak{p}) = \dim A_{\mathfrak{p}}.$$

Lemma 32. Let $A \subset B$ be noetherian rings such that B is finite over A. Then the induced morphism Spec $B \to \operatorname{Spec} A$ is surjective.

Proof. For $\mathfrak{p} \in \operatorname{Spec} A$, let $S := A - \mathfrak{p}$ and denote $S^{-1}B$ by $B_{\mathfrak{p}}$. Then we have $A_{\mathfrak{p}} \hookrightarrow B_{\mathfrak{p}}$ and $B_{\mathfrak{p}}$ is finite over $A_{\mathfrak{p}}$. Let $\mathfrak{P}B_{\mathfrak{p}}$ be a maximal ideal of $B_{\mathfrak{p}}$. We claim that $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}}$ is maximal. Indeed, consider $A_{\mathfrak{p}}/(\mathfrak{P} \cap A_{\mathfrak{p}}) \hookrightarrow B_{\mathfrak{p}}/\mathfrak{P}B_{\mathfrak{p}}$, the latter is finite over the former. This enforces $A_{\mathfrak{p}}/(\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}})$ be a field. Hence $\mathfrak{P}B_{\mathfrak{p}} \cap A_{\mathfrak{p}} = \mathfrak{p}A_{\mathfrak{p}}$, and then $\mathfrak{P} \cap A = \mathfrak{p}$.

Proposition 33. Let $A \subset B$ be noetherian rings such that B is finite over A. Then dim $A = \dim B$.

Proof. If we have a sequence $\mathfrak{P}_1 \subsetneq \mathfrak{P}_2$ of prime ideals in B, then there exists $f \in \mathfrak{P}_2 \setminus \mathfrak{P}_1$. Since B is finite over A, there exist $a_1, \dots, a_n \in A$ such that

$$f^n + a_1 f^{n-1} + \dots + a_n = 0.$$

Then $a_n \in \mathfrak{P}_2 \cap A$. If $a_n \in \mathfrak{P}_1$, $f^{n-1} + \cdots + a_{n_1} \in \mathfrak{P}_1$ since $f \notin \mathfrak{P}_1$. Then $a_{n-1} \in \mathfrak{P}_2$. Repeat the process, it will terminate, whence $\mathfrak{P}_1 \cap A \subsetneq \mathfrak{P}_2 \cap A$. Otherwise, we have $f^n \in a_1B + \cdots + a_nB \subset \mathfrak{P}_1$.

Conversely, suppose we have $\mathfrak{p}_1, \mathfrak{p}_2 \in \operatorname{Spec} A$ with $\mathfrak{p}_1 \subsetneq \mathfrak{p}_2$. Choose $\mathfrak{P}_1 \in \operatorname{Spec} B$ such that $\mathfrak{P}_1 \cap A = \mathfrak{p}_1$, then we have $A/\mathfrak{p}_1 \subset B/\mathfrak{P}_1$. Let \mathfrak{P}_2 be the preimage of the prime ideal in B/\mathfrak{P}_1 which is over image of \mathfrak{p}_2 in A/\mathfrak{p}_1 . Proposition 32 guarantees that such \mathfrak{P}_2 exists. Then we get $\mathfrak{P}_1 \subseteq \mathfrak{P}_2$. Repeat this progress, we get $\dim B \geq \dim A$.

Proposition 34. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0.

Proof. Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal and every non-unit element in A is a zero divisor.

Yang: To be completed.

Theorem 35 (Krull's Principal Ideal Theorem). Let A be a noetherian ring. Suppose $f \in A$ is not a unit. Let \mathfrak{p} be a minimal prime ideal among those containing f. Then $\operatorname{ht}(\mathfrak{p}) \leq 1$.

Proof. By replacing A by $A_{\mathfrak{p}}$, we may assume A is local with maximal ideal \mathfrak{p} . Note that A/(f) is artinian since it has only one prime ideal $\mathfrak{p}/(f)$.

Let $\mathfrak{q} \subseteq \mathfrak{p}$. Consider the sequence $\mathfrak{q}^{(1)} \supset \mathfrak{q}^{(2)} \supset \cdots$, its image in A/(f) is stationary. Then there exists $n \in \mathbb{Z}_{\geq 0}$ such that $\mathfrak{q}^{(n)} + (f) = \mathfrak{q}^{(n+1)} + (f)$. For $x \in \mathfrak{q}^{(n)}$, we may write x = y + af for $y \in \mathfrak{q}^{(n+1)}$. Then $af \in \mathfrak{q}^{(n)}$. Since $\mathfrak{q}^{(n)}$ is \mathfrak{q} -primary and $f \notin \mathfrak{q}$, $a \in \mathfrak{q}^{(n)}$. Then we get $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)} + f\mathfrak{q}^{(n)}$. That is, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = f\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)}$. Note that $f \in \mathfrak{p}$, by Nakayama's Lemma, $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)}$. That is, $\mathfrak{q}^n A_{\mathfrak{q}} = \mathfrak{q}^{n+1} A_{\mathfrak{q}}$. By Nakayama's Lemma again, $\mathfrak{q}^n A_{\mathfrak{q}} = 0$. It follows that $\mathfrak{q}A_{\mathfrak{q}}$ is minimal, whence $A_{\mathfrak{q}}$ is artinian. Therefore, \mathfrak{q} is minimal in A.

Corollary 36. Let A be a noetherian local ring. Suppose $f \in A$ is not a unit. Then $\dim A/(f) \ge \dim A - 1$. If f is not contained in a minimal prime ideal, the equality holds.

Proof. Let $\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$ be a sequence of prime ideals. By assumption, $f \in \mathfrak{p}_n$. If $f \in \mathfrak{p}_0$, we get a sequence of prime ideals in A/(f) of length n. Now we suppose $f \notin \mathfrak{p}_0$. Then there exists $k \geq 0$ such that $f \in \mathfrak{p}_{k+1} \setminus \mathfrak{p}_k$.

Choose \mathfrak{q} be a minimal prime ideal among those containing (\mathfrak{p}_{k-1}, f) . Then by Krull's Principal Ideal Theorem 35, $\mathfrak{p}_k \not\subset \mathfrak{q}_k$. This implies that $\mathfrak{q}_k \subsetneq \mathfrak{p}_{k+1}$. Replace \mathfrak{p}_k by \mathfrak{q}_k , we have $f \in \mathfrak{q}_k \setminus \mathfrak{p}_{k-1}$

Repeat this process, we get a sequence $\mathfrak{p}'_0 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ such that $f \in \mathfrak{p}'_1$. This gives a sequence $\mathfrak{p}'_1 \subsetneq \cdots \subsetneq \mathfrak{p}'_n$ in A/(f). Hence we get $\dim A/(f) \geq \dim A - 1$.

Since f is not contained in minimal prime ideal, preimage of a minimal prime ideal in A/(f) has height 1. Hence a sequence of prime ideals in A/fA can be extended by a minimal prime ideal in A. It follows that $\dim A/(f) + 1 \le \dim A$.

For varieties, the Krull dimension behaves well by follows.

Lemma 37. Let X be an algebraic variety over k. Then for every closed point $x \in X(\mathbf{k})$, we have

$$\dim X = \dim \mathcal{O}_{X,x} = \operatorname{trdeg}(\mathcal{K}(X)/\mathsf{k}).$$

Proof. Since X is irreducible, we may assume that $X=\operatorname{Spec} A$ is affine. Let $d=\operatorname{trdeg}(\mathscr{K}(X)/\mathsf{k})$. By Noether's Normalization Lemma 26, there is an injective and finite homomorphism $A_0=\mathsf{k}[T_1,\cdots,T_d]\hookrightarrow A$. Let \mathfrak{M} be the corresponding maximal ideal of x in A and $\mathfrak{m}=\mathfrak{M}\cap\mathsf{k}[T_1,\cdots,T_d]$. Denote the image of T_i in $I:=A_0/\mathfrak{m}$ by t_i . The extension I/k is finite by Nullstellensatz 28. Let $f_i\in\mathsf{k}[T]$ be the minimal polynomial of t_i and $g_i:=f_i(T_i)\in A_0$. Then $g_i\in\mathfrak{m}$ and $\mathfrak{m}=g_1A_0+\cdots,g_dA_0$. In particular, $g_1,\cdots,g_d\in\mathfrak{M}$.

We have $A/g_1A + \cdots + g_dA$ is finite over A_0/\mathfrak{m} , whence it is artinian. This implies that $A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}$ is also artinian. Since g_{k+1} is not a zero divisor in $A_0/g_1A_0 + \cdots + g_kA_0$, g_{k+1} is not contained in any minimal prime ideal of $A_0/g_1A_0 + \cdots + g_kA_0$. Then g_{k+1} is also not contained in any minimal prime ideal of $A/g_1A + \cdots + g_kA$. By Corollary 36, dim $A_{\mathfrak{M}} = \dim(A_{\mathfrak{M}}/g_1A_{\mathfrak{M}} + \cdots + g_dA_{\mathfrak{M}}) + d = d$.

Theorem 38. Let S be spectrum of a field k or an algebraic integer ring \mathcal{O}_K and X an integral S-variety. Then we have the follows:

- (i) For every point $\xi \in X$, dim $X = \dim \mathcal{O}_{X,\xi} + \operatorname{codim} Z_{\xi}$.
- (ii) For every non-empty open subset $U \subset X$, dim $U = \dim X$.
- (iii) $\dim X = \operatorname{trdeg}(\mathcal{K}(X)/\mathcal{K}(S)) + \dim S$.

Proof. Yang: To be continued.

Example 39. For general noetherian schemes, Theorem 38 may not hold. Let $A = \mathsf{k}[t]$, $\mathfrak{m} = (t)$, $B = A_{\mathfrak{m}}[x]$ and $X = \operatorname{Spec} B$. Then we have $\dim X = 2$ since Yang: To be added.

Depth For a noetherian local ring (A, \mathfrak{m}) , we can define the depth of an A-module M. Somehow the Krull dimension is "homological" and the depth is "cohomological".

Definition 40. Let A be a noetherian ring, $I \subset A$ an ideal and M a finitely generated A-module. A sequence $t_1, \dots, t_n \in \mathfrak{m}$ is called an M-regular sequence in I if t_i is not a zero divisor on $M/(t_1, \dots, t_{i-1})M$ for all i.

Example 41. Let $A = k[x, y]/(x^2, xy)$ and I = (x, y). Then depth_I A = 0.

Definition 42. The *I-depth* of M is defined as the maximum length of M-regular sequences in I, denoted by depth_I M. When A is a local ring with maximal ideal \mathfrak{m} , we write depth M for depth_{\mathfrak{m}} M.

Regular and Serre's conditions Up to now, there are three numbers measuring the "size" of a local ring (A, \mathfrak{m}) :

- $\dim A$: the Krull dimension of A.
- depth A: the depth of A.
- $\dim_{\kappa(\mathfrak{m})} T_{A,\mathfrak{m}}$: the dimension of Zariski tangent space $T_{A,\mathfrak{m}} := (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ as a $\kappa(\mathfrak{m})$ -vector space.

These three numbers are related by the following inequalities.

Proposition 43. Let (A, \mathfrak{m}) be a local noetherian ring with residue field k. Then the following inequalities hold:

$$\operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

Proof. The first inequality is a direct corollary of Corollary 36.

Let t_1, \dots, t_n be a $\kappa(\mathfrak{m})$ -basis of $\mathfrak{m}/\mathfrak{m}^2$. Then we have $\mathfrak{m}/(t_1, \dots, t_n) + \mathfrak{m}^2 = 0$, whence $\mathfrak{m}/(t_1, \dots, t_n) = \mathfrak{m}(\mathfrak{m}/(t_1, \dots, t_n))$. It follows that $\mathfrak{m} = (t_1, \dots, t_n)$ by Nakayama's Lemma. By Corollary 36,

$$n + \dim A/(t_1, \dots, t_n) \ge n - 1 + \dim A/(t_1, \dots, t_{n-1}) \ge \dots \ge 1 + \dim A/(t_1) \ge \dim A.$$

We conclude the result. \Box

Definition 44. Let X be a locally noetherian scheme and $k \in \mathbb{Z}_{\geq 0}$. We say that X verifies property (R_k) or is regular in codimension k if $\forall \xi \in X$ with codim $Z_{\xi} \leq k$,

$$\dim_{\kappa(\xi)} T_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

We say that X verifies property (S_k) if $\forall \xi \in X$ with depth $\mathcal{O}_{X,\xi} < k$,

$$\operatorname{depth} \mathcal{O}_{X,\xi} = \dim \mathcal{O}_{X,\xi}.$$

Proof. Yang: To be completed.

Example 46. Let A be a noetherian ring. Then A verifies (S_1) iff A has no embedded point.

Suppose A verifies (S_1) . If $\mathfrak{p} \in AssA$, every element in \mathfrak{p} is a zero divisor. Then depth $A_{\mathfrak{p}} = 0$. It follows that $\dim A_{\mathfrak{p}} = 0$ and then \mathfrak{p} is minimal.

 \Box

Suppose A has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 0$. This means every element in $\mathfrak{p}A_{\mathfrak{p}}$ is a zero divisor. Then

$$\mathfrak{p} \subset \{\text{zero divisors in }A\} = \bigcup_{\text{minimal prime ideals}} \mathfrak{q}$$

By Lemma 45, $\mathfrak{p} = \mathfrak{q}$ for some minimal \mathfrak{q} , whence dim $A_{\mathfrak{p}} = 0$.

Example 47. Let A be a noetherian ring verifies (S_1) . Then A verifies (S_2) iff for any nonzero divisor $f \in A$, Ass_A A/fA has no embedded point.

Suppose A verifies (S_2) . Let $f \in A$ be a nonzero divisor and $\mathfrak{p} \in \mathrm{Ass}_A A/fA$. There exist $g \in A \setminus fA$ such that $\mathfrak{p} = (f : g)$. For any $t_1, t_2 \in \mathfrak{p}$, there exist s_1, s_2 with $s_i \notin (t_i)$ and $t_i g = f s_i$. Then $t_1 t_2 g = f s_1 t_2 = f s_2 t_1$. Since f is not a zero divisor, $s_1 t_2 = s_2 t_1$. Then t_2 is a zero divisor in $A_{\mathfrak{p}}/t_1 A_{\mathfrak{p}}$ since $s_1 \notin (t_1)$. Since $f \in \mathfrak{p}$, depth $A_{\mathfrak{p}} = 1$ and then ht $\mathfrak{p} = 1$. This show that \mathfrak{p} is not embedded in $\mathrm{Ass}_A A/fA$.

Conversely, suppose $\operatorname{Ass}_A A/fA$ has no embedded point. Let $\mathfrak{p} \in \operatorname{Spec} A$ with depth $A_{\mathfrak{p}} = 1$. Then there exists $f \in A_{\mathfrak{p}}$ which is not a zero divisor. We have depth $A_{\mathfrak{p}}/fA_{\mathfrak{p}} = 0$ and $\operatorname{Ass}_A A/fA$ has no embedded point, whence \mathfrak{p} is minimal in A/fA. Then ht $\mathfrak{p} = 1$ by Krull's Principal Ideal Theorem 35 and the fact f is not a zero divisor.

Example 48. Let X be a locally noetherian scheme. Then X is reduced iff it verifies (R_0) and (S_1) .

The properties are local, whence we can assume $X = \operatorname{Spec} A$. Suppose A is reduced. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be all minimal prime ideals of A. We have $\bigcap \mathfrak{p}_i = \mathfrak{N} = (0)$, where \mathfrak{N} is the nilradical of A. Hence A has no embedded point. Since $A_{\mathfrak{p}}$ is artinian, local and reduced, $A_{\mathfrak{p}}$ is a field and hence regular.

Conversely, let Ass A be equal to $\{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$. Then every \mathfrak{p}_i is minimal by (S_1) . Let f be in \mathfrak{N} . Then the image of f in $A_{\mathfrak{p}_i}$ is 0 since by (R_0) , $A_{\mathfrak{p}_i}$ is a field. It follows that $f \in \mathfrak{q}_i$, where \mathfrak{q}_i is the \mathfrak{p}_i component of (0) in A. Hence $f \in \bigcap \mathfrak{q}_i = (0)$. That is, A is reduced.

2 Normal schemes Yang: To be completed

Definition 49. An integral domain A is called *normal* if it is integrally closed in its field of fractions Frac(A).

Lemma 50. Let $A \subset C$ be rings and B the integral closure of A in C, S a multiplicatively closed subset of A. Then the integral closure of $S^{-1}A$ in $S^{-1}C$ is $S^{-1}B$.

Proof. For every $b \in B$ and $\forall s \in S$, there exists $a_i \in A$ s.t.

$$b^n + a_1 b^{n-1} + \dots + a_n = 0.$$

Then

$$\left(\frac{b}{s}\right)^n + \frac{a_1}{s^1} \left(\frac{b}{s}\right)^{n-1} + \dots + \frac{a_n}{s^n} = 0.$$

Hence b/s is integral over $S^{-1}A$, $S^{-1}B$ is integral over $S^{-1}A$. If $c/s \in S^{-1}C$ is integral over $S^{-1}A$, then $\exists a_i \in S^{-1}A$ s.t.

$$\left(\frac{c}{s}\right)^n + a_1 \left(\frac{c}{s}\right)^{n-1} + \dots + a_n = 0.$$

Then

$$c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n} = 0 \in S^{-1}C$$

Then $\exists t \in S \text{ s.t.}$

$$t(c^{n} + a_{1}sc^{n-1} + \dots + a_{n}s^{n}) = 0 \in C.$$

Then

$$(ct)^n + a_1 st(ct)^{n-1} + \dots + a_n s^n t^n = t^n (c^n + a_1 sc^{n-1} + \dots + a_n s^n) = 0.$$

Hence ct is integral over A, then $ct \in B$. Then $c/s = (ct)/(st) \in S^{-1}B$. This completes the proof.

Proposition 51. Normality is a local property. That is, for an integral domain A, TFAE:

- (i) A is normal.
- (ii) For any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the localization $A_{\mathfrak{p}}$ is normal.
- (iii) For any maximal ideal $\mathfrak{m} \in \mathrm{mSpec}\,A$, the localization $A_{\mathfrak{m}}$ is normal.

Proof. When A is normal, $A_{\mathfrak{p}}$ is normal by Lemma 50.

Assume that $A_{\mathfrak{m}}$ is normal for every $\mathfrak{m} \in \mathrm{mSpec}\,A$. If A is not normal, let \tilde{A} be the integral closure of A in Frac A, \tilde{A}/A is a nonzero A-module. Suppose $\mathfrak{p} \in \mathrm{Supp}\,\tilde{A}/A$ and $\mathfrak{p} \subset \mathfrak{m}$. We have $\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}} = 0$ and $\tilde{A}_{\mathfrak{p}}/A_{\mathfrak{p}} = (\tilde{A}_{\mathfrak{m}}/A_{\mathfrak{m}})_{\mathfrak{p}} \neq 0$. This is a contradiction.

Definition 52. A scheme X is called *normal* if the local ring $\mathcal{O}_{X,\xi}$ is normal for any point $\xi \in X$. A ring A is called *normal* if Spec A is normal.

Remark 53. Yang: To be completed

Example 54.

Definition 55. Let X be a scheme. The *normalization* of X is an X-scheme X^{ν} with the following universal property: for any normal X-scheme Y with dominant structure morphism, its structure morphism $Y \to X$ factors through X^{ν} .

Proposition 56. Let X be an integral scheme. Then the normalization X^{ν} of X exists. Moreover, $X^{\nu} \to X$ is birational.

Proof. First suppose $X = \operatorname{Spec} A$ is affine. Let A^{ν} be the integral closure of A in Frac A and $X^{\nu} := \operatorname{Spec} A^{\nu}$. Suppose there is a dominant morphism $Y \to X$ with Y normal. It gives a homomorphism $A \to \mathcal{O}_Y(Y)$. We claim that it is injective. Otherwise, it factors through $A \to A/I$ and then $Y \to \operatorname{Spec} A$ factors through $A \to A/I$ and then $A \to$

Yang: To be completed

Lemma 57. Let A be a normal ring. Then A verifies (R_1) and (S_2) .

Proof. Yang: To be completed.

Proposition 58. Let A be a noetherian ring A of dimension ≥ 1 verifying (S_2) . Then

$$A = \bigcap_{\mathfrak{p} \in \operatorname{Spec} A, \operatorname{ht}(\mathfrak{p}) = 1} A_{\mathfrak{p}}.$$

Proof. Yang: To be completed.

Theorem 59 (Serre's criterion for normality). Let X be a locally noetherian scheme. Then X is normal if and only if it verifies (R_1) and (S_2) .

Proof. Yang: To be completed.

Theorem 60. Let X be a normal noetherian scheme. Let $F \subset X$ be a closed subset of codimension ≥ 2 . Then the restriction $H^0(X, \mathcal{O}_X) \to H^0(X \setminus F, \mathcal{O}_X)$ is an isomorphism.

Proof. Yang: To be completed.

Theorem 61. Let X be a normal noetherian S-scheme and Y a proper S-scheme. Let $f: X \dashrightarrow Y$ be a rational map. Then f is defined on an open subset $U \subset X$ whose complement has codimension ≥ 2 .

Proof. Yang: To be completed.

Remark 62. Theorem 60 and Theorem 61 are very similar. However, they are base on different properties. Yang: To be completed.

Definition 63 (Cohen-Macaulay). A noetherian local ring (A, \mathfrak{m}) is called *Cohen-Macaulay* if dim $A = \operatorname{depth} A$. A locally noetherian scheme X is called *Cohen-Macaulay* if $\mathcal{O}_{X,\xi}$ is Cohen-Macaulay for any point $\xi \in X$.

By definition, it is easy to see that X is Cohen-Macaulay if and only if it verifies (S_k) for all $k \geq 0$.

Example 64 (Non Cohen-Macaulay rings).

Definition 65. An ideal I of a noetherian ring A is called *unmixed* if

$$ht(I) = ht(\mathfrak{p}), \quad \forall \mathfrak{p} \in Ass(A/I).$$

We say that the unmixedness theorem holds for a noetherian ring A if any ideal $I \subset A$ generated by ht(I) elements is unmixed. We say that the unmixedness theorem holds for a locally noetherian scheme X if $\mathcal{O}_{X,\xi}$ is unmixed for any point $\xi \in X$.

Remark 66. Recall that the set of associated primes of a module M is defined as

$$\operatorname{Ass}(M) := \{ \mathfrak{p} \in \operatorname{Spec} A \colon \exists x \in M \text{ such that } \mathfrak{p} = \operatorname{Ann}(x) \}.$$

Theorem 67. Let X be a locally noetherian scheme. Then the unmixedness theorem holds for X if and only if X is Cohen-Macaulay.

Theorem 68. Let X be a locally noetherian scheme. Suppose that X is Cohen-Macaulay. Let $F \subset X$ be a closed subset of codimension $\geq k$. Then the restriction $H^i(X, \mathcal{O}_X) \to H^i(X \setminus F, \mathcal{O}_X)$ induced by the is an isomorphism.

4 Regular schemes

Proposition 69. Let (A, \mathfrak{m}) be a regular local ring. Then A is integral.

Proposition 70. If X verifies (R_k) , then $\operatorname{codim}_X X_{\operatorname{sing}} \geq k+1$.

Proposition 71. A regular scheme is Cohen-Macaulay.

Corollary 72. A regular scheme is normal.