

Future Depth: Learning to Predict the Future Improves Video Depth Estimation (ECCV 2024?)

2024.04.18

Motivation & Contribution

- 1. F-Net adopts a multi-frame/time step future prediction loss based on auto-regressive sampling of future frames. Extract stronger motion, correspondence cues at inference time for better temporally consistent depth prediction.
- 2. R-Net is trained to perform MAE on features of a consecutive set of frames with a learnable, adaptive masking strategy. This encourages R-Net to leverage critical scene features distributed across frames for reconstruction and thus, understand the multi-view correspondences.

每个子问题都没有得到完美解决,并且给下一步增加了噪音,增加了管道整体工作所需的复杂性和工程工作量。

在这方面,每个子问题之间缺乏沟通就很能说明问题:如果它们互相帮助似乎更合理,即密集重建自然应该受益于为恢复相机姿势而构建的稀疏场景,反之亦然。

最重要的是, 该流程中的关键步骤很脆弱

具体来说,为了预测某个像素位置的未来特征,F-Net 需要找到当前和之前时间步中可用的相应特征。这本质上使 F-Net 能够理解底层运动和多帧对应关系,以及较长上下文中的运动。

具体来说,为了预测某个像素位置的未来特征,F-Net 需要找到当前和之前时间步中可用的相应特征。这本质上使 F-Net 能够理解底层运动和多帧对应关系,以及较长上下文中的运动。

DIG Method: R-Net During training only Adaptive Skip Attention Reconstruction Network Module (SAM) Sampler FC Layer FC Layer Conv Layer Masked Volume $M_{1,T} \odot V_{1,T}$ $\hat{V}_{1,T}$ $V_{1,T}$ $1 \times (T * C) \times H' \times W'$ $1\times (T*C)\times H'\times W'$ $1 \times (T * C) \times H' \times W$ $1 \times C \times H' \times W'$ dashed cube: Masked Feature $Q_{\mathit{scene},1,T}\,:\, \text{Reconstruction-Aware Query for}\,\, I_{1,T} \quad M_{1,T}\,:\, \text{Mask for}\,\, I_{1,T}$ colored cube: Unmasked Feature $V_{1,T}\,:\, { m Feature \, Volume \, for} \,\, I_{1,T}$ $\odot\,:\,$ Element-wise Multiplication

我们观察到掩模生成器学习以鼓励 R-Net 利用多视图对应的方式对帧进行掩模。特别是,它跨帧屏蔽了同一对象的不同部分;例如,参见图 5 中的白色卡车及其上方的掩模。因此,R-Net 需要利用跨帧分布的信息来重建完整的特征量。

自适应采样器生成的蒙版侧重于跨帧的重要对象,例如货车、汽车、电车、公共汽车、铁路轨道和道路边界等。

Qscene 在不同的时间步捕获重要的前景信息(例如卡车、停放的汽车、附近的树)

Method: R-Net (0为mask掉, 1保留)

$$\mathcal{L}_R = ||(1 - M_{1,T}) \odot (\hat{V}_{1,T} - V_{1,T})||_2 + \mathcal{L}_D(D_{1,T}, D_{1,T}^{gt})$$

use the output features from the last layer as Q_{scene} .

我们观察到掩模生成器学习以鼓励 R-Net 利用多视图对应的方式对帧进行掩模。特别是,它跨帧屏蔽了同一对象的不同部分;例如,参见图 5 中的白色卡车及其上方的掩模。因此,R-Net 需要利用跨帧分布的信息来重建完整的特征量。

自适应采样器生成的蒙版侧重于跨帧的重要对象,例如货车、汽车、电车、公共汽车、铁路轨道和道路边界等。

Qscene 在不同的时间步捕获重要的前景信息(例如卡车、停放的汽车、附近的树)

- 1. First pretrain the FutureDepth encoder and decoder to perform depth prediction, without using F-Net, R-Net, and the refinement network. (5 epochs)
- 2. Train R-Net to perform feature volume reconstruction with random masking. In this step, we only use the L2 loss to train R-Net, and do not update the encoder or decoder. (3 epoch)

```
###### pretraining en(\cdot), de(\cdot) ######
for epoch = 1\rightarrow 5 do
   for I_{1,T}, D_{1,T}^{gt} \in \mathcal{D} do
      D_{1,T} = de(en(I_{1,T}))

SILogLoss (D_{1,T}, D_{1,T}^{gt})
      Update parameters of en(\cdot), de(\cdot)
   end for
end for
###### pretraining reconstruction network g(\cdot)#######
for epoch = 1\rightarrow 3 do
   freeze en(\cdot) weights
   for I_{1,T}, D_{1,T}^{gt} \in \mathcal{D} do
      V_{1,T} = en(I_{1,T})
      generate random mask M_{1,T}
      \hat{V}_{1,T} = g(M_{1,T} \odot V_{1,T})
      L2-loss between V_{1,T} and \hat{V}_{1,T}
       Update parameters of g(\cdot)
   end for
end for
```

预训练阶段,我们训练编码器和解码器 5 个 epoch,随后训练 R-Net 3 个 epoch。在主要训练部分,我们训练 FutureDepth 的所有组件 15 个 epoch。

3. Initialize both F-Net and R-Net with the pretrained R-Net weights, freeze encoder and decoder, and train the adaptive mask generator, F-Net, and R-Net simultaneously. We compute the LF , LA, and LR losses and learn the weights for F-Net, mask generator, and R-Net, respectively.

 $\mathcal{L}_{F} = \sum_{i=1}^{L} ||\tilde{V}_{1+i,T+i} - V_{1+i,T+i}||_{2} \qquad \qquad \mathcal{L}_{R} = ||(1 - M_{1,T}) \odot (\hat{V}_{1,T} - V_{1,T})||_{2} + \mathcal{L}_{D}(D_{1,T}, D_{1,T}^{gt})$

4. Finally, freeze F-Net, mask generator, and R-Net, and train the encoder, decoder, and refinement network using the following loss: N = T

```
\mathcal{L}_{D,final} = rac{1}{NT} \sum_{i=0}^{N} \sum_{t=1}^{T} \mathcal{L}_{D}(D_{t}^{i}, D_{t}^{gt})
for every epoch do
   for I_{1,T}, D_{1,T}^{gt} \in \mathcal{D} do
                                                                                                       ### step-2 updating FutureDepth's en(\cdot), de(\cdot), rf(\cdot) weights###
       ### step-1 updating h(\cdot), s(\cdot), g(\cdot) weights###
                                                                                                       freeze s(\cdot), g(\cdot), h(\cdot) weights
      freeze en(\cdot), de(\cdot) weights
                                                                                                       V_{1,T} = en(I_{1,T})
       V_{1,T} = en(I_{1,T}); \quad M_{1,T} = s(V_{1,T})
       \tilde{V}_{1,T} = V_{1,T}
                                                                                                       \hat{V}_{1,T}, Q_{scene,1,T} = g(V_{1,T})
      for i=1 \rightarrow L do
                                                                                                       get Q_{motion,1,T} from future prediction F-Net h(\cdot)
            \tilde{V}_{i+1,i+T} = h(\tilde{V}_{i,i+T-1})
                                                                                                       Q_{all,1,T} = \text{cross-attn}(Q_{scene,1,T}, Q_{motion,1,T})
      end for
                                                                                                       D_{1,T}^0 = de(\hat{V}_{1,T}, Q_{all,1,T})
       \hat{V}_{1,T}, Q_{scene,1,T} = g(M_{1,T} \odot V_{1,T})
                                                                                                       for i=1 \rightarrow N do
       Q_{all,1,T} = \text{cross-attn}(Q_{scene,1,T}, Q_{motion,1,T})
                                                                                                             D_{1,T}^{i} = rf(D_{1,T}^{i-1}, Q_{all,1,T})
      D_{1,T} = de(\hat{V}_{1,T}, Q_{all,1,T})
                                                                                                       end for
      compute loss \mathcal{L}_F in Eq. 1 (main paper)
                                                                                                      compute loss \mathcal{L}_{D,final} in Eq. 3 (main paper)
      compute loss \mathcal{L}_A (refer section 2.2)
                                                                                                       Update parameters of FutureDepth 's en(\dot{)}, de(\cdot), rf(\cdot) weights
      compute loss \mathcal{L}_R in Eq. 2 (main paper)
                                                                                                   end for
       Update parameters of h(\cdot), s(\cdot), g(\cdot)
                                                                                                end for
```

预训练阶段,我们训练编码器和解码器 5 个 epoch,随后训练 R-Net 3 个 epoch。在主要训练部分,我们训练 FutureDepth 的所有组件 15 个 epoch。

Experiments

,	N	VYUDV2		Sintel			
Method	$\delta < 1.25 \uparrow$	Abs Rel↓	OPW↓	$\delta < 1.25 \uparrow$	Abs Rel↓	OPW↓	
ST-CLSTM [59]	0.833	0.131	0.645	0.351	0.517	0.585	
FMNet [51]	0.832	0.134	0.387	0.357	0.513	0.521	
R-CVD [21]	0.886	0.103	0.394	0.521	0.422	0.475	
Many-Depth-FS [53]	0.865	0.096	0.428	0.492	0.487	0.540	
NVDS [52]	0.950	0.072	0.364	0.591	0.335	0.424	
MAMo [57]	0.942	0.074	0.388	0.579	0.358	0.493	
Baseline (ours)	0.917	0.093	0.480	0.477	0.504	0.611	
FutureDepth (ours)	0.981	0.063	0.303	0.623	0.296	0.392	

Experiments

Type	Method	Encoder	Abs Rel↓	Sq Rel↓	RMSE↓	$\text{RMSE}_{log} \downarrow$	$\delta < 1.25 \uparrow$
SF	AdaBins [4]	EfficientNet	0.058	0.190	2.360	0.088	0.964
	BinsFormer [25]	Swin-L	0.052	0.151	2.098	0.079	0.975
	NeWCRFs [58]	Swin-L	0.052	0.155	2.129	0.079	0.974
	PixelFormer [2]	Swin-L	0.051	0.149	2.081	0.077	0.976
	iDisc [35]	Swin-L	0.050	0.145	2.067	0.077	0.977
	GEDepth [56]	[24]	0.048	0.142	2.050	0.076	0.976
	FlowGRU [11]	[11]	0.112	0.700	4.260	0.184	0.881
	RDE-MV [34]	ResNet18†	0.111	0.821	4.650	0.187	0.821
	STAD [22]	[26]†	0.109	0.594	3.312	0.153	0.889
	Patil et.al. [34]	ConvLSTM†	0.102	-	4.148	-	0.884
	ST-CLSTM [59]	ResNet18	0.101	-	4.137	-	0.890
	NeuralRGB [26]	CNN-based†	0.100	2	2.829	-	0.931
ME	Cao et.al. [7]	_	0.099	_	3.832	400	0.886
MF	FMNet [51]	ResNeXt-101	0.099	-	3.744	0.129	0.888
	Flow2Depth [55]	[30]†	0.081	0.488	3.651	0.146	0.912
	TC-Depth-FS [38]	ResNet50	0.071	0.330	3.222	0.108	0.922
	ManyDepth-FS [53]	ResNet50	0.069	0.342	3.414	0.111	0.930
	ManyDepth-FS [53]	Swin-L	0.060	0.248	2.747	0.099	0.955
	NVDS [52]	DPT-L [36]	0.052	0.159	2.101	0.077	0.976
	MAMo [57]	Swin-L	0.049	0.130	1.989	0.072	0.977
		ResNet34	0.063	0.219	2.521	0.098	0.957
MF	Baseline	Swin-B	0.055	0.162	2.163	0.082	0.973
	Daseillie	Swin-L	0.053	0.154	2.094	0.079	0.975
		Dinov2 (ViT-L)	0.051	0.141	2.064	0.076	0.979
Ours)		ResNet34	0.054	0.179	2.016	0.087	0.965
	FutureDepth	Swin-B	0.049	0.129	1.998	0.077	0.976
	rutureDeptii	Swin-L	0.044	0.119	1.920	0.068	0.983
		Dinov2 (ViT-L)	0.041	0.117	1.856	0.066	0.984

Experiments

Model	Type	R-Net	AM	F-Net	Refine	Sq Rel↓	RMSE↓	$\delta < 1.25 \uparrow$	OPW↓
Baseline	\mathbf{SF}					0.156	2.098	0.974	0.544
						0.154	2.094	0.975	0.540
				✓		0.129	1.978	0.981	0.311
Baseline	MF	✓ (RM)				0.148	2.040	0.976	0.478
		1	1			0.136	1.999	0.980	0.416
		✓	✓	✓		0.122	1.931	0.983	0.284
FutureDepth	\mathbf{MF}	√	√	√	√	0.119	1.920	0.983	0.281

Table 10: Ablation study on different masking ratios of adaptive sampler during inference on KITTI (Eigen split) dataset. We perform this experiment using Swin-L for FutureDepth encoder. Here we set L=4, T=4 and N=3.

Metric					
RMSE↓	1.920	1.906	1.892	1.911	1.956
Sq Rel↓	0.119	0.114	0.108	0.111	0.133

