Thumrongsak Kosiyatrakul tkosiyat@cs.pitt.edu

Turing Machine Example

ullet Design a Turing machine that recognizes the language B where

$$B = \{ w \# w \mid w \in \Sigma^* \}$$

- On input string w:
 - Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether those positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
 - When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept.

• A Turing machine that decides $B = \{w \# w \mid w \in \Sigma^*\}.$

- $\Sigma = \{0, 1, \#\}$
- $\Gamma = \{0, 1, \#, \mathsf{x}, \sqcup\}$
- $1 \rightarrow x, R$
 - Read 1, write x, and move the tape head to the right direction
- # → R.
 - ullet A shorthand notation for # o #, R
 - Read #, write #, and move the tape head to the right direction
- \bullet 0, 1 \rightarrow L
 - A shorthand notation representing two transitions:
 - ullet 0 o L which is 0 o 0, L
 - $\bullet \ 1 \to L \text{ which is } 1 \to 1, L$
- ullet $q_{
 m reject}$ is omitted
 - ullet All missing exiting arrows go to $q_{
 m reject}$
 - Assume that it moves the tape head to the right direction before entering $q_{\rm reject}$ without writing a symbol (writing the same symbol it read)

Computing 01#01


```
q_101#01
xq_21#01
x1q_2#01
x1#q_401
x1q_6#x1
xq_71#x1
q_7 x 1 # x 1
xq_11#x1
xxq_3#x1
xx#q_5x1
xx#xq_51
xx#q_6xx
xxq_6#xx
xq_7x#xx
xxq_1#xx
xx#q_8xx
xx#xq_8x
xx#xxq_8\sqcup
xx#xx \sqcup q_{accept}
```

Computing 01#10

Computing 01 (no # symbol)

Turing Machine Example

ullet Design a Turing machine that recognizes the language A where

$$A = \{0^{2^n} \mid n \ge 0\}$$

- On input string w:
 - Sweep left to right across the tape, crossing off every other 0
 - ② If in stage 1 the tape contained a single 0, accept
 - If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject
 - Return the head to the left-hand end of the tape
 - Go to stage 1

Moving the Tape Head Back

- Suppose we want to move the tape head back to the left most end of the tape
 - Need a state to do that

- This will result in an infinite loop
- Recall that if the tape head is at the left-most square and the transition is L, it will stay at the same place
 - There is no signal telling a TM that its tape head is currently at the left-most square
- The trick is to mark the left-most symbol (depending on Γ)
 - \bullet Turn 0 or 1 to \Box
 - Turn 0 to $\dot{0}$ or x
 - Turn 1 to 1 or ...

• A Turing machine that decides $A = \{0^{2^n} \mid n \ge 0\}$.

Computing 0000

 q_10000 $\Box q_2 000$ $□ xq_300$ $\Box x 0 q_4 0$ $\Box x0xq_3 \Box$ $\Box x 0 q_5 x$ $\sqcup xq_50x$ $\Box q_5 x 0 x$ q_5 \square x0x $\Box q_2 x 0 x$ $\Box xq_20x$ $\sqcup xxq_3x$ $\square xxxq_3 \square$ $\sqcup xxq_5x$ $\sqcup xq_5xx$ $\Box q_5$ xxx $q_5 \sqcup xxx$ $\Box q_2$ XXX $\sqcup xq_2xx$ $\sqcup xxq_2x$ $\square xxxq_2 \square$ $\sqcup xxx \sqcup q_{accept}$

Computing 000

 q_1000 $\Box q_200$ $\Box xq_30$ $\Box x0q_4\Box$ $\Box x0\Box q_{\mathrm{reject}}$

Designing a TM

- Designing a TM in a form of a state diagram is hard
 - Need to keep in mind out the content of the tape
 - Need to worry about moving tape head
- But for a simple problem, it is not that bad
- Let's create a TM that shift all symbols on the tape to the right by one square by inserting the blank symbol at the left-most square and move the tape head back to the left-most square
 - Let $\Sigma = \{0,1\}$ and $\Gamma = \{0,1,\sqcup\}$
 - Here are some input/output (on the tape)

Input	Output
01101	⊔01101
0	⊔0
111	⊔111
ε	ε

ullet Note that this TM always accepts all strings over Σ

Designing a TM

Solution

