生産情報システム工学 #12 ボロノイ図(1)

2015/07/8(水) **溝口 知広 准教授(居室:**61-408室) mizo@cs.ce.nihon-u.ac.jp

- ボロノイ図(Voronoi diagram)
 - 最近点問題を解くために提案されたデータ構造
 - 例:最寄りのコンビニはどこ?勢力圏は?

■ 世界の空港の位置をボロノイ図で表現

- http://gigazine.net/news/20140516-world-voronoi-airport/

■ボロノイ分割のアプリ

- www.raymondhill.net/voronoi/rhill-voronoi.html

■ 自然界におけるボロノイ図の例

蜂の巣

ハニカム構造 (蜂の巣の応用)

■ 3次元の例:FEMによる自動車の衝突試験

- ボロノイ図の応用例
 - 最寄りの携帯基地局の探索
 - 有限要素法(FEM)の領域分割
 - **画像データの圧縮**
 - 離散データの集約

- ボロノイ図の応用分野
 - 社会学, 数学, 生物学, 物理学, 考古学, ...

■ボロノイ図

■ドロネー三角形分割

■ドロネー三角形分割

■ ボロノイ分割問題の一般化

- 母点集合: $S = \{ p_i = (x_i, y_i) | i = 1, 2, ..., n \}$

- Ap と点 q のユークリッド距離: $d(q, p_i)$

- ボロノイ領域:

$$V(p_i) = \bigcap_{i \neq j} \{ q | d(q, p_i) < d(q, p_j) \}$$

- 平面上の点qで、Sの中で最も近い 点がp_iであるという性質を持つものを 集めてできる集合
- Sに属する各点p_iが、他よりも自分に 近い点の集合を囲い込んでできる領域(=勢力圏)

- ■ボロノイ図の性質
 - 1. ボロノイ領域V(p_i)は凸である
 - 2. ボロノイ領域 $V(p_i)$ が有界でないための必要十分条件は、 p_i が母点集合Sの凸包の境界上の点であることである(有界:境界があるという意味)

■ボロノイ図の性質

3. 全てのボロノイ頂点はちょうど3つの辺の共通点である. すなわち, 各ボロノイ頂点は, それに最も近い3つの母点から等距離にある ______

■ボロノイ図の性質

4. ボロノイ頂点vが $V(p_1),V(p_2),V(p_3)$ の共通点とする. 3つの母点 p_1,p_2,p_3 を通る円をC(v)で表すと、C(v)はSの他の母点を含まない

■ボロノイ図の性質

5. ボロノイ頂点vが $V(p_1),V(p_2),V(p_3)$ の共通点とする. 3つの母点 p_1,p_2,p_3 を通る円をC(v)で表すと、C(v) はSの他の母点を含まない

■ボロノイ図の性質

6. 点集合Sのボロノイ図に対して、ボロノイ辺を共有する2つの母点を直線線分で結ぶと、ボロノイ点の次数がすべて3であるから、点集合Sの三角形分割が得られる。これをドローネ三角形分割 (Delaunay triangulation)と呼ぶ。

- ■ボロノイ図の性質
 - n点のボロノイ図は高々2n-5個の頂点と高々3n-6本の辺を持つ

4.2 構成法

- ボロノイ図を構成する様々なアルゴリズム
 - 1. 直接法
 - ・ 垂直二等分線の定義による方法 (計算量: O(n³))
 - 2. 逐次添加法
 - 3点から始めて1点ずつ添加する方法 (計算量:O(n²))
 - 3. Fortuneの走査法
 - ・ 巧妙で高速な方法, 難しい (計算量: O(nlogn))

■ V(p₁)の計算手順 0. 入力母点集合

 p_1

p₄

 p_3

 p_2

- V(p₁)の計算手順
 - p₁とp₂の垂直二等分線を求め、その直線を境界線とするp₁側の半平面をH(p₁,p₂)求める

- V(p₁)の計算手順
 - 同様に、p₁とp₃の半平面をH(p₁,p₃)を求め、
 H(p₁,p₂)との共通領域H(p₁,p₂)∩H(p₁,p₃)を求める

- V(p₁)の計算手順
 - 3. さらに、H(p₁,p₂)∩H(p₁,p₃)と半平面H(p₁,p₄)との 共通領域H(p₁,p₂)∩H(p₁,p₃)∩H(p₁,p₄)を求める

■ V(p₁)の計算手順 4. これを繰り返す

■ 逐次添加法

- 3点p₁,p₂,p₃のボロノイ図を作成する
- P₄から順に1点ずつ追加しながらボロノイ図を更新する

■ 逐次添加法

- p₁,p₂,...,p_mまで処理が終わったとする
- p_{m+1} に最も近い母点を探し、それを $p_{(1)}$ とする

■ 逐次添加法

- 線分 $p_{(1)}p_{m+1}$ の垂直二等分線とボロノイ領域 $V_m(p_{(1)})$ の辺との交点を求め、その1つを q_1 とする

■ 逐次添加法

- q_1 がのっている辺で $V_m(p_{(1)})$ 隣接する領域を $V_m(p_{(2)})$ とし、k=2とする

■ 逐次添加法

- 線分 $p_{(k)}p_{m+1}$ の垂直二等分線と領域 $V_m(p_{(k)})$ の辺との交点を求める. q_{k-1} と異なる交点 q_k をとする.

- q_k がのっている辺で $V_m(p_{(k)})$ と、隣接する領域を $V_m(p_{(k+1)})$ とし、

■ 逐次添加法

- 線分 $p_{(k)}p_{m+1}$ の垂直二等分線と領域 $V_m(p_{(k)})$ の辺との交点を求める. q_{k-1} と異なる交点 q_k をとする.

- q_k がのっている辺で $V_m(p_{(k)})$ と、隣接する領域を $V_m(p_{(k+1)})$ とし、

■ 逐次添加法

- 線分 $p_{(k)}p_{m+1}$ の垂直二等分線と領域 $V_m(p_{(k)})$ の辺との交点を求める. q_{k-1} と異なる交点 q_k をとする.

- q_k がのっている辺で $V_m(p_{(k)})$ と、隣接する領域を $V_m(p_{(k+1)})$ とし、

■ 逐次添加法

- 線分 $p_{(k)}p_{m+1}$ の垂直二等分線と領域 $V_m(p_{(k)})$ の辺との交点を求める. q_{k-1} と異なる交点 q_k をとする.

- q_kがのっている辺でV_m(p_(k))と隣接する領域をV_m(p_(k+1))とし,

■ 逐次添加法

- 多角形q1q2...qk-1が母点p_{m+1}のボロノイ領域V_{m+1}(p_{m+1})になる
- V_{m+1}(p_{m+1})内にあるボロノイ図V_mの部分は消す

