- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Кинематика материальной точки. Координата, путь перемещение, скорость и ускорение. Прямолинейное равноускоренное движение.
- 3. **6.10.** Точка совершает гармонические колебания. Наибольшее смещение x_{\max} точки равно 10 см, наибольшая скорость $x_{\max} = 20$ см/с. Найти угловую частоту ω колебаний и максимальное ускорение $x_{\max} = 20$ см/с.

Билет №2

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Вращательное движения. Угловая скорость и ускорение. Равноускоренное вращательное движение.
- 3. **6.58.** Амплитуда колебаний маятника длиной l=1 м за время t=10 мин уменьшилась в два раза. Определить логарифмический декремент колебаний.

Билет №3

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Криволинейное движение, радиус кривизны траектории, нормальное и тангенциальное ускорение.
- 3. **3.6.** Определить момент инерции J тонкого однородного стержня длиной l=30 см и массой m=100 г относительно оси, перпендикулярной стержню и проходящей через точку, отстоящую от конца стержня на 1/3 его длины.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Принцип инерции Галилея. Законы Ньютона. Импульс. Принцип суперпозиции. Импульс. Закон сохранения импульса.
- 3. **3.21.** Тонкий однородный стержень длиной l=50 см и массой m=400 г вращается с угловым ускорением ε =3 рад/ c^2 около оси, проходящей перпендикулярно стержню через его середину. Определить вращающий момент M.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Виды сил: Сила тяжести и вес. Сила трения. Закон всемирного тяготения. Сила упругости. Сила Кулона. Электрическая и магнитная составляющая силы Лоренца. Сила Ампера.
- 3. **1.17.** С какой высоты H упало тело, если последний метр своего пути оно прошло за время t=0,1 с?

Билет №6

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Неинерциальные системы отсчета. Силы инерции: поступательная, вращательная, центробежная и сила Кориолиса.
- 3. **1.34.** По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки a_n =4,9 м/ c^2 ; в этот момент векторы полного и нормального ускорений образуют угол $_0$ =60°. Найти скорость ν и тангенциальное ускорение a_{τ} точки.

Билет №7

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Механическая работа, мощность. Потенциальное поле сил. Консервативные и неконсервативные силы. Потенциальная энергия.
- 3. **1.46.** Снаряд, выпущенный из орудия под углом $\alpha = 30^{\circ}$ к горизонту, дважды был на одной и той же высоте h: спустя время $t_1 = 10$ с и $t_2 = 50$ с после выстрела. Определить начальную скорость v_0 и высоту h.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Гравитационная потенциальная энергия. Потенциальная энергия пружины. Кинетическая энергия. Закон сохранения энергии. Упругий и неупругий удар.
- 3. **1.57.** Велосипедное колесо вращается с частотой n=5 с¹. Под действием сил трения оно остановилось через интервал времени $\Delta t=1$ мин. Определить угловое ускорение ε и число N оборотов, которое сделает колесо за это время.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. центр масс, момент силы, момент импульса. Момент инерции. Главные оси инерции
- 3. **3.38.** Шарик массой m=100 г, привязанный к концу нити длиной l_1 =1 м, вращается, опираясь на горизонтальную плоскость, с частотой n_1 =1 с⁻¹. Нить укорачивается и шарик приближается к оси вращения до расстояния l_2 =0,5 м. С какой частотой n_2 будет при этом вращаться шарик? Какую работу A совершит внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.

Билет №10

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Основное уравнение динамики вращательного движения. Закон сохранения момента импульса. Кинетическая энергия твердого тела. Теорема Кёнига.
- 3. **3.27.** Через неподвижный блок массой m=0,2 кг перекинут шнур, к концам которого подвесили грузы массами m_1 =0,3 кг и m_2 =0,5 кг. Определить силы натяжения T_1 и T_2 шнура по обе стороны блока во время движения грузов, если масса блока равномерно распределена по ободу.

Билет №11

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Момент инерции. Главные оси инерции. Работа момента сил. Теорема Штейнера.
- 3. **2.42.** Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту n вращения, при которой кубик соскользнет с диска.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Свободные колебания. Гармонические колебания и их характеристики. Пружинный, математический и физический маятники.
- 3. **2.6.** Наклонная плоскость, образующая угол $\alpha = 25^{\circ}$ с плоскостью горизонта, имеет длину l = 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t = 2 с. Определить коэффициент трения f тела о плоскость.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Затухающие колебания. Вынужденные колебания. Резонанс.
- 3. **2.60.** Вычислить работу A, совершаемую на пути s=12 м равномерно возрастающей силой, если в начале пути сила $F_1=10$ H, в конце пути $F_2=46$ H.

- 1. Основные сведения из математики, применяемые в физике: прямоугольный треугольник, тригонометрические функции, теорема косинусов; векторы, проекции векторов, скалярное и векторное произведения; вычисление производных и простейших интегралов.
- 2. Гармонические колебания и их характеристики. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
- 3. **2.77. В** баллистический маятник массой M=5 кг попала пуля 10 г и застряла в нем. Найти скорость v пули, если маятник, отклонившись после удара, поднялся на высоту h=10 см.

