1

(a) Minimize
$$100 y_1 + 90 y_2 + 500 y_3$$

Subject to $5y_1 - y_2 \ge 20$
 $-4 y_1 + 12 y_2 + y_3 \ge 30$

(b) Put the problem into min form

Minimize 4 x, -3x2 Subject to

$$6 \chi_{1} + 11 \chi_{2} \geqslant -30$$

$$-2 \chi_{1} + 7 \chi_{2} \geqslant -50$$

$$-\chi_{2} \geqslant -80$$

$$\chi_1, \chi_2 \geqslant 0$$

The dual problem:

Maximize
$$-30y_1 - 50y_2 - 80y_3$$

Subject to
 $6y_1 - 2y_2 \leq 4$
 $11y_1 + 7y_2 - y_3 \leq -3$
 $y_1, y_2, y_3 \geq 0$

Maximize
$$-x_1 + 2x_2$$

Subject to
 $5x_1 + x_2 \le 60$

$$-3 \chi_1 + 8 \chi_2 \leq -10$$

$$\chi_1 + 7\chi_2 \leq 20$$

$$-\chi_1 - 7\chi_2 \leqslant -20$$

$$\chi_1, \chi_2 \geq 0$$

The dual problem:

Minimize 60 y, -10 y2 + 20 (y3 - y4) Subject to

$$5y_1 - 3y_2 + (y_3 - y_4) \ge -1$$

 $y_1 + 8y_2 + 7(y_3 - y_4) \ge 2$

Let $y_3' = y_3 - y_4$, the dual problem becomes

Minimizing 604,-1042+2043' Subject to

$$5y_1 - 3y_2 + y_3' \ge -1$$

 $y_1 + 8y_2 + 7y_3' \ge 2$
 $y_1, y_2 \ge 0$, y_3' unrestricted

Minimizing $60y_1 - 10y_2 + 20y_6$ Subject to $5y_1 - 3y_2 + y_3 \ge -1$

or
$$y_1 + 8y_2 + 7y_3 \ge 2$$

 $y_1, y_2 \ge 0$, y_3 unrestricted

When you are familiar with duality, you may write the dual problem more quickly.

original problem:

Maximize
$$-\chi_{1} + 2\chi_{2}$$

Subject to $5\chi_{1} + \chi_{2} \leq 60$ (y₁)
 $-3\chi_{1} + 8\chi_{2} \leq -10$ (y₂)
 $\chi_{1} + 7\chi_{2} = 20$ (y₃)
 $\chi_{1}, \chi_{2} \geq 0$

The dual problem is

Minimize
$$60y_1 - 10y_2 + 20y_3$$

Subject to $5y_1 - 3y_2 + y_3 \ge -1$
 $y_1 + 8y_2 + 7y_3 \ge 2$
 $y_1, y_2 \ge 0$, y_3 unrestricted

(f) Let $y_3' = -y_3$ and put the problem into min form:

Minimize
$$2y_1 - 3y_2 - 4y_3'$$

Subject to $8y_1 + y_3' = 50$ (X_1)
 $-6y_2 + y_3' = 70$ (X_2)
 $-y_3' \ge -15$ (X_3)

y1, y2, y3 ≥ 0

The dual problem is

Maximize
$$50 \, \chi_1 - 70 \, \chi_2 - 15 \, \chi_3$$

Subject to $8 \, \chi_1 \qquad \leqslant 2$
 $-6 \, \chi_2 \qquad \leqslant -3$
 $\chi_1 + \chi_2 - \chi_3 \leqslant -4$
 $\chi_1 \text{ unrestricted}, \chi_2, \chi_3 \geqslant 0$

or Maximize
$$50 \times 1 - 70 \times 2 - 15 \times 3$$
Subject to 4×1

$$2 \times 2 \qquad > 1$$

$$- \times 1 - \times 2 + \times 3 > 4$$

$$\times, unrestricted, \times 2, \times 3 > 0$$

(b) The dual problem:

Minimize $15y_1+20y_2$ Subject to $3y_1+y_2 \ge 6$ $7y_1-2y_2 \ge 1$ $y_1+3y_2 \ge 4$ $y_1, y_2 \ge 0$

 \Rightarrow Minimal value of b.Y = 41 $\frac{1}{4}$ attained at $(\frac{7}{4}, \frac{3}{4})$

The isocost lines are

15 y1+20 y2=C

Where C is any

Constant. The
farthest line to

left which
intersects the
feasible region is
the line through

(4, 3/4), i.e.,

15 y1+20 y2=414

(c) Add slack variables χ_4 and χ_5 and put the problem into a minimization problem in canonical form:

Minimize
$$-6x_1 - x_2 - 4x_3$$

Subject to
 $3x_1 + 7x_2 + x_3 + x_4 = 15$
 $x_1 - 2x_2 + 3x_3 + x_5 = 20$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

	% {	X 2	X 3	χ ₄	1.5	
X ₄	3	7	1	1	0	15
X5	1	-2	3	0	1	20
	-6	-1	-4	0	0	0
α,	1	7/3	1/3	1/3	0	5
χ5	0	- 13/3	8/3	-1/3	1	15
	0	13	-2	2	0	30
χ,	1	23/8	0	3/8	-1/8	25/8
χ3	0	-13/8	1	-1/8	3/8	45/8
	0	39/4	0	7/4	3/4	165/4
·				i	K	dual optimal

Maximal value of
$$C \cdot X = -\left(-\frac{165}{4}\right) = 41\frac{1}{4}$$

attained at $\left(\frac{25}{8}, 0, \frac{45}{8}\right)$