

Team 61: Driver Drowsiness
Detection
Bi-Weekly Update 4

Dakota Mouton, Ali Imran, Coady Lewis Sponsor: John Lusher

TA: Max Lesser

Project Summary

Problem:

Driving fatigue has been a major cause of accidents on the road. Truck drivers are at a greater risk of driver fatigue because of the long hours spent driving.

Solution:

Our Driver Drowsiness Detection System will use a machine learning (ML) algorithm and electroencephalogram (EEG) device to determine a driver's level of fatigue and alert the driver to rest.

Project/Subsystem Overview

EEG

- Filter out unwanted frequencies.
- Take in brain waves in microvolts and amplify them to volts.
- Send data to MCU

MCU

- Receive incoming signals from EEG
- Send data to computer running ML algorithm

Dakota

Simulator

- Collect data
- Muse 2 EEG device

Signal Processor

- Perform live analysis of signals
- Process raw
 EEG signals

ML Algorithm

- Input processed EEG signals
- Output fatigue state of user

Team 2: Coady and Ali

Project Timeline

January	February	March	April	
SP/ML Light Integration	SP/ML Live Analysis Full Integration	Model Refinements	System Verifications	
EEG/MCU Interfacing	Classification Testing	Transition State Classification	Integration of SP/ML & EEG (stretch goal)	
	EEG PCB Complete	Testing	Final Presentations/Demo	
		Live spectrum analyzer for EEG		

Dakota Mouton

Accomplishments since last update 18 hrs of effort	Ongoing progress/problems and plans until the next presentation	
 PCB completely soldered and assembled. PCB is powering on and functioning. 	 Finishing live spectrum analyzer program for EEG. Fixing software to take in I2C serial communication for data input. EEG validations. 	

Dakota Mouton

Inter-Integrated Circuit (I2C)

- Using I2C serial communication to interface the signal between the EEG device and the arduino board for live analysis.
- Continuing work on FFT live spectrum analyzer to see spikes for our target frequencies.
- PCB is turning on and sending signal to MCU.

Coady Lewis

Accomplishments since last update 20 hrs of effort	Ongoing progress/problems and plans until the next presentation
-Researched LSTM layers and RNN's to get more information into the modelWrote and tested program to probabilistically generate augmented sequences for training an LSTM layerModified live analysis for modularity.	-Finish constructing LSTM layersFinish formatting input sequences and labelsTest LSTM as both a trim for the KSVM output and as a standalone model.

Coady Lewis

- -This is a test of the data augmentation script generating 10000 sequences.
- -It's a histogram of the state changes in a single sequence.

Ali Imran

Accomplishments since last update 7 hrs of effort (26 total)	Ongoing progress/problems and plans until the next presentation
 Real-time live analysis graph implemented for Neural Network models Collected more "grey area" training data Tested models on new individual 	 Collect more data, specifically around the "transition" region Test the model over a long session/multiple times in a day Implement RNN

Ali Imran

New **Drowsy** Data (15 min each)

Drowsy Fraction = 0.8869565217391304

Awake Fraction = 0.11304347826086956

Output Count = 115

Drowsy Fraction = 0.7478260869565218

Awake Fraction = 0.25217391304347825

Output Count = 115

New **Near Awake** Data (15 min each)

Drowsy Fraction = 0.21367521367521367

Awake Fraction = 0.7863247863247863

Output Count = 117

Drowsy Fraction = 0.34782608695652173

Awake Fraction = 0.6521739130434783

Output Count = 115

Ali Imran

Execution Timeline

Execution & Validation Plan

Driver Drowsiness Detection Validation Plan: ML/SP - Machine Learning/Signal Processing

Test Name	Success Criteria	Methodology	Result	Owner
ML/SP Accuracy	> 90% success rate	Collect strongly labeled data (fully awake/drowsy) in real time of Coady/Ali and ensure classification accuracy is above 90% over 5-minute intervals	Exceeded on existing datasets (up to 97%)	Ali, Coady
ML/SP Performance	For 10 second chunk of data, output drowsiness state in < 10 seconds	Send a 10 second chunk of real-time data to ML/SP and ensure a classification is output within the next 10 seconds	Exceeded, smallest accurate classification interval at 2.5 seconds	Ali, Coady
ML/SP New Individual	For a new individual who hasn't had their data trained on the models, attain an accuracy of > 70%	Collect new individual's data in real-time and ensure classification accuracy is above 70% over 5-minute intervals	Currently very low accuracies	Ali, Coady
ML/SP Transition Detection	System is able to plot the point when someone goes from awake to drowsy	Collect data over a long session of Coady/Ali when going from an awake to drowsy state and plot the classification over time	Untested	Ali, Coady
EEG Filter Lower Limit	f=8-12 Hz	When we close our eyes for a short period of time there should be a spike on our FFT spectrum analyzer in the range of 8-12 Hz	Untested	Dakota
EEG Filter Upper Limit	f<=30 Hz	Our upper frequency range of fatigue is 30 Hz and want to test if power line interference (around 60 Hz) spikes which would cause noise and misreadings.	Untested	Dakota
Gain from Instrumentation Amplifier close to 100	G = 80+	Gain from Instrumentation amplifier close to 100 to properly amplify our signal voltages to a readable and manipulative level.	Untested	Dakota
Final voltage readings have amplified from microvolts to volts	0.148 <v<0.81172 But V<1 Input 15 Hz, 30uV</v<0.81172 	Final voltage readings have amplified from microvolts to volts	Untested	Dakota
Amplified Final Voltage Readings (Min/Max)	Max Input: 10 Hz, 30uV Min Input: 1000 Hz, 20 uV	Final voltage readings have amplified from microvolts to volts (Max and Min Readings)	Untested	Dakota
System voltage input	6 V	Verifying components receive proper operating voltages to function correctly.	Regulated to +-5V	All
Peak Power Consumption	2 W	To be used to determine how long the device can last running off AA batteries and efficiency of the device.	Untested	All

Thanks for listening! Questions?