Posshive rekker

\(\frac{1}{2} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2}

Konvegere huiss den er begrenset.

Setting: La f: [1,20] vove en positiv og owtregende Kont, funksjon. Da konvegere I f(j) hviss / I f(x)dx konvegere, J=1

For motsatt inglikæsjon tegn boksene undu grafen istedel -

Setning:
$$\sum_{j=1}^{\infty} (\frac{1}{j})^p$$
 konvergere huiss $p>1$.

Beris! Undosaku nair (x) dk < 00.

For p=1: \(\frac{1}{k} \, dk = \lim \text{[lnx]} = \text{0.}

=
$$\lim_{n\to\infty} \frac{1}{1-p} n^{1-p} + \frac{1}{p-1}$$
 $\lim_{n\to\infty} \frac{1}{p \cdot 1} n^{1-p} + \frac{1}{p-1}$

mai 14-07:58

Sammen ligningstesten: La [aj og [b] voue postive

- (i) Dosin I a; konvergent og bje aj for alle j, da er E bj konvegent.
 - (1i) Deson E aj es divegent, og bjøa- forallej, da er Ét divergent.
- Σby ς Σa_j < M. (i)Zens , (ii) \(\sum_{j=0}^{\infty} a_j \in \sum_{j=0}^{\infty} b_j \\ \sum_{j=0}^{\infty} \)

Grensesammenligningskriterium?

La É a; og É b; være poschive rekker,

- (i) Doson Eaj e konvegent og lim Ej < 8,
 da es Ebj konvegent.
- (ii) Duson La, e dregent og lin a, >0 si es Ét bj agri diversent.

14.05.2013.notebook May 14, 2013

Beu(8: (i)
$$\lim_{y \to 0} \frac{b_{y}}{a_{y}} = S < 0$$
.

Da fras N to s.a. $\frac{b_{y}}{a_{y}} \leq N$ for $\frac{a_{y}}{a_{y}} \leq N$.

 $\frac{b_{y}}{b_{y}} \leq N \cdot \alpha_{y}$. $\frac{b_{y}}{a_{y}} \leq N \cdot \sum_{j=0}^{\infty} \alpha_{j} < 0$.

(ii) $\lim_{y \to 0} \frac{b_{y}}{a_{y}} > 0$

Da fras evo sa. $\frac{b_{y}}{a_{y}} \geq e$ for oble j .

 $\frac{b_{y}}{b_{y}} \geq e \cdot \alpha_{y}$.

 $\frac{b_{y}}{b_{y}} > e \cdot \sum_{j=0}^{\infty} \alpha_{j}$

Eksempel: $\frac{b_{y}}{a_{y}} = \frac{3n^{4} + 5n + 1}{3n^{4} + 5}$.

Augior on $\frac{b_{y}}{a_{y}} = \frac{b_{y}}{n^{4}} = \frac{1}{n^{2}} \left(\frac{3 + 5/n + 1/n^{2}}{2 + 5/n^{4}}\right)$

Sult $\frac{b_{y}}{a_{y}} = \frac{1}{n^{2}} \cdot \frac{3 + 5/n + 1/n^{2}}{2 + 5/n^{4}}$

Sult $\frac{b_{y}}{a_{y}} = \frac{1}{n^{2}} \cdot \frac{3 + 5/n + 1/n^{2}}{2 + 5/n^{4}}$
 $\frac{b_{y}}{a_{y}} = \frac{1}{n^{2}} \cdot \frac{3}{2} \cdot \frac{3}{2}$

Sai $\frac{b_{y}}{b_{y}} = \frac{3}{n^{2}} \cdot \frac{3}{2} \cdot \frac{3}{2}$

Source $\frac{3 + 5/n + 1/n^{2}}{2 + 5/n^{4}} = \frac{3}{2}$

Ebsempel: Augier on
$$\sum_{j=1}^{\infty} sin(\frac{1}{j^2})$$
 konvegue elle divegeer.

How at $sin = \sum_{j=0}^{\infty} (-1)^j \cdot \frac{x^{j+1}}{(x^{j+1})}$.

 $= x \cdot \sum_{j=0}^{\infty} (-1)^j \cdot \frac{x^{j}}{(x^{j+1})}$.

 $= x \cdot g(x)$, $dw g(x) = 1$.

Fai $sin(\frac{1}{j^2}) = \frac{1}{j^2} \cdot g(\frac{1}{j^2}) = \frac{1}{j^2} \cdot 2$.

Sommonly $mod = \sum_{j=1}^{\infty} \frac{1}{j^2}$.

 $sin(\frac{1}{j^2}) = sin(\frac{1}{j^2}) = 2$.

 $sin(\frac{1}{j^2}) = sin(\frac{1}{j^2}) = 2$.

 $sin(\frac{1}{j^2}) = sin(\frac{1}{j^2}) = 2$.

Rottesten: \(\sum_{3=1}^{20}\alpha_{j}\endown en positive retter.\)

- (i) duson lin √a; < 1 sa konvegere ∑a,
- (ii) dusom lim Va, > 1 sai diregerer rekka.
- (221) Desom lim Ja,=) es dut j-700 ingen Konklusjon.

Bevis: (i) $\lim_{j \to \infty} \sqrt[3]{a_j} = S < 1$.

The fins $S < S_0 < 1$ og N > 0 $S < a_0$. $\sqrt[3]{a_j} \le S_0$ for j > N. $\sqrt[3]{a_j} \le S_0$ for j > N. $\sqrt[3]{a_j} \le S_0$ for j > N. $\sqrt[3]{a_j} \le S_0$ $\sqrt[3]{a_j} \le S_0$ $\sqrt[3]{a_j} \le S_0$.

(ii) Tibravende.

14.05.2013.notebook May 14, 2013

Ets: Augler on
$$\sum_{j=1}^{20} (1-\frac{1}{3})^{j^2}$$
 konvergerer.

Rotter: So pai $2im$ $\sqrt{(1-\frac{1}{3})^2}$

= $2im$ $(1-\frac{1}{3})^3$.

So cohecult par $\lim_{j\to 0} \ln(1-\frac{1}{3})^j$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j$.

Sai $\ln x = (x-1) + g(x)$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j + j \cdot g(\frac{1}{3})^j$.

Sai $\lim_{j\to 0} x = (x-1) + g(x)$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j = j \cdot (-\frac{1}{3})^j + j \cdot g(\frac{1}{3})^j$.

Sai $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j = -j$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j = -j$.

** $\lim_{j\to 0} j \ln(1-\frac{1}{3})^j = -j$.

Sai rekker konvergerer.

mai 14-09:23

A Hernvende rekker

DEF: En rekke \(\sum_{a_{5}}^{2} \) es alterwende durson \(a_{5} \), allow motsatt fortegn au \(a_{5} \),

Selving: Anta at 5=0 a, e alterwende.

Dosm as > 0 (folgen la,7 autos moto)

så Konveger I a.

Eta: $\Sigma(-1)^{\frac{1}{2}}\frac{1}{5}$ toweger.

Hush: $\Sigma(-1)^{\frac{1}{2}}\frac{1}{5}$ — ∞ .

Beens!

a,ta2 a1+a2+93 la31< la2) a1+a2+93+a4 la41< la8]

Abrolut konvegens:

Det: \(\Sigma \) as absolute honvegen duson \(\Sigma \) \(\sigma \)

14.05.2013.notebook May 14, 2013

Setting: Desom
$$\stackrel{\circ}{\Sigma}a_{j}$$
 e absolute honvegent er den ogen konvergent.

Beris: $\stackrel{\circ}{\Sigma}$ lajl konvergere.

Da es $S_{m} = \stackrel{\circ}{\Sigma}$ lajl en Carchy-folga.

Sie for ε to find $N_{\varepsilon} \in \mathbb{N}$,

So. $1 S_{m} - S_{\alpha} \ge \varepsilon$ for all Kilin N_{ε} .

Vil vise at $\widetilde{S}_{m} = \stackrel{\circ}{\Sigma} a_{j}$ er Carchy:

 $= |a_{s+1} + a_{s+2} + \cdots + a_{m}|$
 $= |a_{s+1}| + |a_{s+2}| + \cdots + |a_{m}|$
 $= |a_{s+1}| + |a_{s+2}| + \cdots + |a_{s+2}|$
 $= |a_{s+1}| + |a_{s+2}| + \cdots + |a_{s+2}|$
 $= |a_{s+1}| + |a_{s+2}| + \cdots + |a_{s+2}|$