Principes de fonctionnement des machines binaires

2020-2021

Matthieu Picantin

méthode ordinaire

$$J = (\neg a \wedge \neg b) \vee (a \wedge \neg b) \vee (a \wedge b)$$

$$J = \overline{a}\overline{b} + \overline{a}\overline{b} + \overline{a}b$$

méthode de Karnaugh

$$J = [\neg b] \lor [a]$$

$$J = \left[\overline{b}\right] + \left[a\right]$$

ces méthodes correspondent...

,	(b						
	`	0	1					
а	0	0	1					
	1	1	0					

... quand les 1 sont isolés

on représente le tableau sur un plan (fini)...

F		cde													
,		000	001	011	010	110	111	101	100						
ab	00	0	1	1	0	0	0	1	1						
	01	0	0	0	0	1	0	0	0						
	11	1	1	1	1	0	1	0	0						
	10	1	1	1	1	0	0	1	1						

... mais on *pense* le tableau sur un plan infini, ou de façon équivalente sur un tore.

on représente le tableau sur un plan (fini)...

0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	_ 0	1	1	1	1 C	de 0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	1	010	011	0 1 1	010	100	101	101	100	1	1	1	1	0	0	1	1
0	1	1	0	0	0	1	d 0	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	01	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	01	1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	1 0	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1
0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1	0	1	1	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0	1	1	1	1	0	1	0	0
1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	1	1	0	0	1	1

... mais on *pense* le tableau sur un plan infini, ou de façon équivalente sur un tore.

... mais on *pense* le tableau sur un plan infini, ou de façon équivalente sur un tore.

$$F = \overline{ac} + \overline{bce} + \overline{abcde} + \overline{abcde} + \overline{bcd}$$

La méthode de Karnaugh en bref

- Chaque 1 doit être dans au moins un rectangle.
- Un rectangle ne doit contenir que des 1 (ou des jokers).
- Un rectangle se place horizontalement ou verticalement, jamais en diagonale.
- Un rectangle est de taille $2^k \times 2^\ell = 2^{k+\ell}$ avec $k + \ell$ le nombre de variables libres (les variables libres n'apparaissent pas dans la clause).
- Les rectangles peuvent s'intersecter.
- Les rectangles peuvent glisser sur les bords, glisser sur le tore.
- Chaque rectangle doit être aussi grand que possible.
- Il doit y avoir le moins possible de rectangle(s).