

Robotics I: Introduction to Robotics

Kapitel 4 – Dynamics

Tamim Asfour https://h2t.iar.kit.edu/

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) + \epsilon(q, \dot{q}, \ddot{q})$$

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

Models in Robotics – Outline

Kinematic Models

Kinematics studies of motion of bodies and systems based **only on geometry**, i.e. without considering the physical properties and the forces acting on them. The essential concept is a **pose** (position and orientation).

Dynamic Models

Dynamics studies the relationship between the **forces and moments** acting on a robot and accelerations they produce

Geometric Models

Geometry: Mathematical description of the **shape of bodies**

Contents

- Dynamic Model
- Generalized Coordinates
- Modeling of Dynamics
 - Method of Lagrange
 - Method of Newton-Euler
- Challenges of Dynamics

Dynamic Model: Definition & Goal

Definition:

The dynamic model describes the relationship between the actuator and contact forces and moments acting on a robot and accelerations and motions they produce

Goal:

- Analysis of the dynamics
- Design und synthesis of mechanical structures
- Controller design and control (→ Inverse Dynamics)
- Modeling and simulation (→ Forward Dynamics)

Motivation

Boston Dynamics: https://www.youtube.com/watch?v=_sBBaNYex3E

Dynamic Model: Equation of Motion

General equation of motion

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q}) + \epsilon(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$$

n: degrees of freedom of the robot

Dynamic Model: Equation of Motion

General equation of motion

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q}) + \epsilon(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$$

```
oldsymbol{q}, \dot{oldsymbol{q}}, \ddot{oldsymbol{q}}: n 	imes 1 vector of generalized coordinates (position, velocity and acceleration)
oldsymbol{	au}: n 	imes 1 vector of generalized forces
oldsymbol{M}(oldsymbol{q}): n 	imes n matrix of mass inertia (symmetric, positive-definite)
oldsymbol{C}(\dot{oldsymbol{q}}, oldsymbol{q}) \dot{oldsymbol{q}}: n 	imes 1 vector with centripetal and Coriolis components oldsymbol{g}(oldsymbol{q}): n 	imes 1 vector of gravitational components oldsymbol{e}(oldsymbol{q}, \dot{oldsymbol{q}}, \ddot{oldsymbol{q}}): n 	imes 1 non-linear effects, e.g. friction (often neglected)
```

What are generalized coordinates?

n: degrees of freedom of the robot

Contents

- Dynamic Model
- **■** Generalized Coordinates
- Modeling of Dynamics
 - Method of Lagrange
 - Method of Newton-Euler
- Challenges of Dynamics

Generalized Coordinates (1)

Definition

使用广义坐标,减少不必要的冗余,关注于自由度的独立性

Minimum set of independent coordinates that completely describe the system state.

- General Model
 - lacksquare A robot consists of N particles with mass m_i and coordinate x_i
 - For each position vector of a particle 3 spatial coordinates are needed, in total 3N coordinates, to describe the system
 - Newton's second law: $F_i = m_i \cdot \ddot{x}_i$ with i = 1, ..., N
 - Particles cannot move independently of each other due to connections and joints

→ Introduction of constraints

Generalized Coordinates (2)

■ Holonomic constraints can be formulated as equations of the coordinates x_i (k: number of constraints):

$$f_i(x_1, ..., x_{3N}) = 0$$
 $j = 1, ..., k$

The 3N coordinates can be reduced to n = 3N - k independent generalized coordinates q_i using k independent constraints which must automatically satisfy the constraints:

$$x_i = x_i(q_1, ..., q_n)$$
 $i = 1, ..., 3N$ and $n = 3N - k$
 $f_i(q_1, ..., q_n) = 0$ $j = 1, ..., k$ and $n = 3N - k$

Generalized Coordinates: 2D pendulum

The rod of a plane pendulum (2D) should always have the length l and must therefore fulfill the following constraint (k = 1) according to Pythagoras:

$$f_1(x_1, x_2) = 0$$
 $x_1 = x, x_2 = y$
 $\Leftrightarrow x^2 + y^2 - l^2 = 0$

There is only one **generalized coordinate** q, since n = 2N - k = 1. The coordinates x, y of the center of mass r depend on θ :

Generalized Coordinates: 2D pendulum

■ The generalized coordinate automatically satisfies the constraint:

$$(l \cdot \sin \theta)^2 + (l \cdot \cos \theta)^2 - l^2 = 0$$

$$\iff l^2 \cdot (\sin^2 \theta + \cos^2 \theta - 1) = 0$$

As the following generally applies:

$$\sin^2\theta + \cos^2\theta = 1$$

Generalized Coordinates: 3D pendulum

Position of the mass: $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Constraint (k = 1) on a sphere surface

$$|\mathbf{r}| = l \Leftrightarrow |\mathbf{r}| - l = 0$$

 $f_1(\mathbf{r}) = |\mathbf{r}| - l = 0$

Generalisierte Koordinaten (n = 3N - k = 2): $\mathbf{q} = \begin{pmatrix} \theta \\ \phi \end{pmatrix}$ $\mathbf{r} = f(\mathbf{q}) = l \cdot \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ -\cos \theta \end{pmatrix}$

Generalized Coordinates: Example

$$|\mathbf{r}| - l = 0 \Rightarrow |\mathbf{r}|^2 - l^2 = 0$$

$$r = f(q) = l \cdot \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ -\cos \theta \end{pmatrix}$$

$$|r|^2 =$$

Generalized Coordinates: Example

$$|r| - l = 0 \Rightarrow |r|^2 - l^2 = 0$$

$$r = f(q) = l \cdot \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ -\cos \theta \end{pmatrix}$$

$$|\mathbf{r}|^{2} = l^{2} \cdot \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ -\cos \theta \end{pmatrix}^{2}$$

$$= l^{2} \cdot (\sin^{2} \theta \cos^{2} \phi + \sin^{2} \theta \sin^{2} \phi + \cos^{2} \theta)$$

$$= l^{2} \cdot (\sin^{2} \theta \cdot (\cos^{2} \phi + \sin^{2} \phi) + \cos^{2} \theta)$$

$$= l^{2} \cdot (\sin^{2} \theta + \cos^{2} \theta)$$

$$= l^{2}$$

Dynamic Model: Equation of Motion

General equation of motion

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q}) + \epsilon(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$$

n: degrees of freedom of the robot

Direct Dynamic Problem

Calculate the resulting changes in movement based on external forces and moments as well as the initial state and the dynamic properties of the robot

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q})$$

(non-linear effects neglected)

 \rightarrow solve differential equation for q(t), $\dot{q}(t)$, $\ddot{q}(t)$

Inverse Dynamic Problem

Calculate required driving forces and torques based on the desired motion parameters and the dynamic properties of the robot

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q})$$

(non-linear effects neglected)

Calculate the right part of the equation by inserting q(t), $\dot{q}(t)$, $\dot{q}(t)$

Dynamic Model: Example

$$F_i = -m\ddot{x}$$
 inertia

$$F_f = -K_{sf}\dot{x}$$
 sliding friction

au external force

- Balance of forces: $\tau = -(F_i + F_f)$
- **Equation of motion:** $\tau = m\ddot{x} + K_{sf}\dot{x}$
- **Inverse problem:** Given the state of motion, what external force τ acts on the system or is required to maintain the state of motion?
- **Direct problem:** Given the external force and current state of motion, what is the new motion (or acceleration) state of the system?

Contents

Dynamic Model

Generalized Coordinates

Modeling of Dynamics

Method of Lagrange

Method of Newton-Euler

Challenges of Dynamics

Modeling of Dynamics

There are various methods for deriving the terms of the general equation of motion:

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)$$

- Lagrange
 - Work or energy considerations of the overall system
 - Equations of motion by formal derivation
- Newton-Euler

牛顿-欧拉刚体方程

- Based on the Newton and Euler equations for rigid bodies
- Isolated consideration of the arm elements
- Efficient method due to recursive algorithm

Contents

- Dynamic Model
- Generalized Coordinates
- Modeling of Dynamics
 - Method of Lagrange
 - Method of Newton-Euler
- Challenges of Dynamics

Method of Lagrange

Lagrange function:

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}) = E_{kin}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - E_{pot}(\boldsymbol{q})$$

■ The equation of motion can be derived using the Lagrange function for each generalized coordinate:

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

 q_i : *i*-th component of the generalized coordinates

 τ_i : *i*-th component of the generalized forces

Method of Lagrange

The resulting equation can be written in scalar form:

$$\tau_i = \sum_{j=1}^n M_{ij} \, \ddot{q}_j + \sum_{j=1}^n \sum_{k=1}^n C_{ijk} \, \dot{q}_j \dot{q}_k + g(q)$$

 C_{iik} : first order Christoffel symbols

$$C_{ijk} = \frac{1}{2} \left(\frac{\partial M_{ij}}{\partial q_k} + \frac{\partial M_{ik}}{\partial q_j} - \frac{\partial M_{jk}}{\partial q_i} \right)$$

Method of Lagrange: Procedure

Goal: Determine the equation of motion for each joint i of a robot

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

Procedure:

- 1. Calculate E_{kin} and E_{pot}
- 2. Express E_{kin} and E_{pot} in generalized coordinates

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}) = E_{kin}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - E_{pot}(\boldsymbol{q})$$

Calculate the derivations

Method of Lagrange: 3D-Pendulum (1)

 3D-pendulum with gravity (see example of generalized coordinates)

$$\mathbf{r} = f(\mathbf{q}) = l \cdot \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ -\cos \theta \end{pmatrix}$$

$$E_{kin} = \frac{1}{2}m|\dot{r}|^2 = \frac{1}{2}ml^2(\dot{\theta}^2 + \dot{\phi}^2 \cdot \sin^2\theta)$$

$$\blacksquare E_{pot} = m \cdot g \cdot h = mg \cdot (-l \cdot \cos \theta)$$

Method of Lagrange: 3D-Pendulum (2)

• Lagrange function with $q = (\theta, \phi)$

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}) = E_{kin}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - E_{pot}(\boldsymbol{q})$$
$$= \frac{1}{2} m l^2 (\dot{\theta}^2 + \dot{\phi}^2 \cdot \sin^2 \theta) + mgl \cdot \cos \theta$$

$$\frac{\partial L}{\partial \theta} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{\partial L}{\partial \phi} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) =$$

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

Method of Lagrange: 3D-Pendulum (2)

• Lagrange function with $q = (\theta, \phi)$

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}) = E_{kin}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - E_{pot}(\boldsymbol{q})$$
$$= \frac{1}{2} m l^2 (\dot{\theta}^2 + \dot{\phi}^2 \cdot \sin^2 \theta) + mgl \cdot \cos \theta$$

$$\frac{\partial L}{\partial \theta} = ml^2 \sin \theta \cos \theta \cdot \dot{\phi}^2 - mgl \cdot \sin \theta$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left(m l^2 \dot{\theta} \right) = m l^2 \ddot{\theta}$$

$$\frac{\partial L}{\partial \phi} = 0$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\phi}}\right) = \frac{d}{dt}\left(ml^2\,\dot{\phi}\cdot\sin^2\theta\right) = ml^2\sin^2\theta\cdot\ddot{\phi} + 2ml^2\sin\theta\cos\theta\cdot\dot{\theta}\cdot\dot{\phi}$$

Method of Lagrange: 3D-Pendulum (3)

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

$$\frac{\partial L}{\partial \theta} = ml^2 \sin \theta \cos \theta \cdot \dot{\phi}^2 - mgl \cdot \sin \theta
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \frac{d}{dt} \left(ml^2 \dot{\theta} \right) = ml^2 \ddot{\theta}
\frac{\partial L}{\partial \phi} = 0
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) = \frac{d}{dt} \left(ml^2 \dot{\phi} \cdot \sin^2 \theta \right) = ml^2 \sin^2 \theta \cdot \ddot{\phi} + 2ml^2 \sin \theta \cos \theta \cdot \dot{\theta} \dot{\phi}$$

Structure of general equations of motion

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)$$

E Equation of motion of the 3D-pendulum (no external forces -> $\tau = 0$)

$$\mathbf{0} = \begin{bmatrix} ml^2 & 0 \\ 0 & ml^2 \sin^2 \theta \end{bmatrix} \begin{bmatrix} \ddot{\theta} \\ \ddot{\phi} \end{bmatrix} + \begin{bmatrix} -ml^2 \sin \theta \cos \theta \cdot \dot{\phi}^2 \\ 2ml^2 \sin \theta \cos \theta \cdot \dot{\theta} \dot{\phi} \end{bmatrix} + \begin{bmatrix} mgl \sin \theta \\ 0 \end{bmatrix}$$

Lagrange: Example – Two pivot joints (1)

Idealization:

masses of arm elements as point masses in $m_{\rm 1}$ and $m_{\rm 2}$ no friction

Constraints of the system (k = 2):

$$f_1(\mathbf{r}_1, \mathbf{r}_2) = |\mathbf{r}_1|^2 - a_1^2 = 0$$

 $f_2(\mathbf{r}_1, \mathbf{r}_2) = |\mathbf{r}_2 - \mathbf{r}_1|^2 - a_2^2 = 0$

$$\rightarrow n = 2N - k = 2$$

 \rightarrow generalized coordinates q_1, q_2

Lagrange: Example – Two pivot joints (2)

Joint 1:

$$E_{kin,1} = \frac{1}{2}m_1v^2 = \frac{1}{2}m_1a_1^2\dot{q_1}^2$$

$$E_{pot,1} = m_1 g h = m_1 g a_1 \sin(q_1)$$

Lagrange: Example – Two pivot joints (3)

Joint 2:

Position:

$${x_2 \brack y_2} = \begin{bmatrix} a_1 \cos(q_1) + a_2 \cos(q_1 + q_2) \\ a_1 \sin(q_1) + a_2 \sin(q_1 + q_2) \end{bmatrix}$$

Velocity:

$$\begin{bmatrix} \dot{x}_2 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} -a_1 \dot{q}_1 \sin(q_1) - a_2 (\dot{q}_1 + \dot{q}_2) \sin(q_1 + q_2) \\ a_1 \dot{q}_1 \cos(q_1) + a_2 (\dot{q}_1 + \dot{q}_2) \cos(q_1 + q_2) \end{bmatrix}$$

Lagrange: Example – Two pivot joints (4)

Joint 2:

$$\begin{bmatrix} \dot{x}_2 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} -a_1 \dot{q}_1 \sin(q_1) - a_2 (\dot{q}_1 + \dot{q}_2) \sin(q_1 + q_2) \\ a_1 \dot{q}_1 \cos(q_1) + a_2 (\dot{q}_1 + \dot{q}_2) \cos(q_1 + q_2) \end{bmatrix}$$

Kinetic energy:

$$v_2^2 = \dot{x}_2^2 + \dot{y}_2^2 = a_1^2 \dot{q}_1^2 + a_2^2 (\dot{q}_1 + \dot{q}_2)^2 + 2a_1 a_2 (\dot{q}_1^2 + \dot{q}_1 \dot{q}_2) \cos(q_2)$$

$$E_{kin,2} = \frac{1}{2} m_2 v_2^2 = \frac{1}{2} m_2 a_1^2 \dot{q}_1^2 + \frac{1}{2} m_2 a_2^2 (\dot{q}_1 + \dot{q}_2)^2 + m_2 a_1 a_2 (\dot{q}_1^2 + \dot{q}_1 \dot{q}_2) \cos(q_2)$$

Potential energy:

$$E_{pot,2} = m_2 g y_2 = m_2 g [a_1 \sin(q_1) + a_2 \sin(q_1 + q_2)]$$

Lagrange function:

$$L = E_{kin} - E_{pot} = E_{kin,1} + E_{kin,2} - E_{pot,1} - E_{pot,2}$$

$$= \frac{1}{2} (m_1 + m_2) a_1^2 \dot{q}_1^2 + \frac{1}{2} m_2 a_2^2 (\dot{q}_1 + \dot{q}_2)^2 + m_2 a_1 a_2 (\dot{q}_1^2 + \dot{q}_1 \dot{q}_2) \cos(q_2)$$

$$- (m_1 + m_2) g a_1 \sin(q_1) - m_2 g a_2 \sin(q_1 + q_2)$$

Lagrange: Example – Two pivot joints (5)

- Equation of motion
 - Joint 1:

$$\frac{\partial L}{\partial \dot{q}_1} = (m_1 + m_2)a_1^2 \dot{q}_1 + m_2 a_2^2 (\dot{q}_1 + \dot{q}_2) + m_2 a_1 a_2 (2\dot{q}_1 + \dot{q}_2) \cos(q_2)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) = (m_1 + m_2) a_1^2 \ddot{q}_1 + m_2 a_2^2 (\ddot{q}_1 + \ddot{q}_2) + m_2 a_1 a_2 (2\ddot{q}_1 + \ddot{q}_2) \cos(q_2) - m_2 a_1 a_2 (2\dot{q}_1 \dot{q}_2 + \dot{q}_2^2) \sin(q_2)$$

$$\frac{\partial L}{\partial q_1} = -(m_1 + m_2)ga_1\cos(q_1) - m_2ga_2\cos(q_1 + q_2)$$

Lagrange: Example – Two pivot joints (5)

- Equation of motion
 - Joint 2:

$$\frac{\partial L}{\partial \dot{q_2}} = m_2 a_2^2 (\dot{q_1} + \dot{q_2}) + m_2 a_1 a_2 \dot{q_1} \cos(q_2)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_2} \right) = m_2 a_2^2 (\ddot{q}_1 + \ddot{q}_2) + m_2 a_1 a_2 \ddot{q}_1 \cos(q_2) - m_2 a_1 a_2 \dot{q}_1 \dot{q}_2 \sin(q_2)$$

$$\frac{\partial L}{\partial q_2} = -m_2 a_1 a_2 (\dot{q_1}^2 + \dot{q_1} \dot{q_2}) \sin(q_2) - m_2 g a_2 \cos(q_1 + q_2)$$

Lagrange: Example – Two pivot joints (6)

Equation of motion:

$$\begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix} = \begin{bmatrix} (m_1 + m_2)a_1^2 + m_2a_2^2 + 2m_2a_1a_2\cos(q_2) & m_2a_2^2 + m_2a_1a_2\cos(q_2) \\ m_2a_2^2 + m_2a_1a_2\cos(q_2) & m_2a_2^2 \end{bmatrix} \begin{bmatrix} \ddot{q_1} \\ \ddot{q_2} \end{bmatrix}$$

$$+ \begin{bmatrix} -m_2a_1a_2(2\dot{q_1}\dot{q_2} + \dot{q_2}^2)\sin(q_2) \\ m_2a_1a_2\dot{q_1}^2\sin(q_2) \end{bmatrix}$$

$$+ \begin{bmatrix} (m_1 + m_2)ga_1\cos(q_1) + m_2ga_2\cos(q_1 + q_2) \\ m_2ga_2\cos(q_1 + q_2) \end{bmatrix}$$

Summarized:

$$\boldsymbol{\tau} = M(\boldsymbol{q})\ddot{\boldsymbol{q}} + C(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + g(\boldsymbol{q})$$

Method of Lagrange: Summary

To determine the equations of motion, the kinetic and potential energy must be determined. From this, the Lagrange function can be calculated.

$$L(\boldsymbol{q}, \dot{\boldsymbol{q}}) = E_{kin}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - E_{pot}(\boldsymbol{q})$$

The equations of motion then follow formally by differentiation:

$$\tau_i = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}$$

Method of Lagrange: Properties

Properties

- Simple formulation of the equations
- Closed model, analytically evaluable
- Very extensive calculations $O(n^3)$ (n : number of joints)
- Only driving torques are calculated

Contents

Dynamic Model

Generalized Coordinates

Modeling of Dynamics

Method of Lagrange

Method of Newton-Euler

Challenges of Dynamics

Method of Newton-Euler

■ Idea: Forces and moments acting on an arm element can be calculated from the joint angle positions, velocities and accelerations using the recursive Newton-Euler algorithm (RNEA)

Properties

- Isolated considertaion of each arm element
- Efficient calculation in real-time with complexity O(n) possible through recursive algorithm

Newton-Euler: Mathematical Basics

- The moment of inertia of a rigid body in a rotation motion is comparable to the mass in a linear motion:
 - linear motion: force = mass · acceleration (Newton's second law)

$$f = m \cdot a = m \cdot \dot{v}_c = m \cdot \ddot{c}$$

■ rotation motion: **torque** = *moment of inertia* · *angular acceleration* (Angular momentum theorem)

$$M = \overline{I}^{COM} \alpha = \overline{I}^{COM} \dot{\omega}$$

LI 43

Newton-Euler: Euler's Equation of Motion

If a body is subjected to a torque, **gyroscopic effects** develop (Euler forces and centrifugal forces at all mass points)

The torques can be added up and described by **Euler's equation of motion** for rigid bodies:

$$\boldsymbol{n}_{COM} = \overline{\boldsymbol{I}}^{COM} \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \overline{\boldsymbol{I}}^{COM} \boldsymbol{\omega}$$

 n_{CoM} : torques around the center of mass CoM

 $ar{I}^{CoM}$: moments of inertia around the center of mass

 ω : angular velocities of the rigid body

 $\dot{\omega}$: angular accelerations (time derivative of ω)

gyroscopic effects: Kreiselwirkung

Newton-Euler: Equation of Motion

The Newton-Euler equations, which describe the complete motion of a rigid body, can be expressed in the form of a single equation:

$$\begin{pmatrix} \boldsymbol{n}_{COM} \\ \boldsymbol{f} \end{pmatrix} = \begin{pmatrix} \overline{\boldsymbol{I}}^{COM} \dot{\boldsymbol{\omega}} + \boldsymbol{\omega} \times \overline{\boldsymbol{I}}^{COM} \boldsymbol{\omega} \\ m \ddot{\boldsymbol{c}} \end{pmatrix}$$

in simple terms:

erms:
$$\mathbf{v} = \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{v}_C \end{pmatrix}$$

$$\mathbf{f} = \boldsymbol{I}\mathbf{a} + \mathbf{v} \times \boldsymbol{I}\mathbf{v} \qquad \text{where} \qquad \mathbf{f} = \begin{pmatrix} \boldsymbol{n}_{COM} \\ \boldsymbol{f} \end{pmatrix} \qquad \mathbf{a} = \begin{pmatrix} \dot{\boldsymbol{\omega}} \\ \dot{\boldsymbol{v}}_C \end{pmatrix}$$
 linear velocity of the body in relation to CoM

linear velocity of the body in relation to *CoM* v_{c} :

linear acceleration of the body in relation to *CoM*

f, v, a: 6D force or motion vectors, which describe all forces and motions (velocity, acceleration) acting on the body

Newton-Euler: Basic Principle

Considering the center of mass of a single arm element:

force = change of momentum → temporal derivation of the momentum (Newton's second law)

$$\boldsymbol{f}_{i} = \frac{d}{dt} (m_{i} \, \boldsymbol{v}_{C,i}) = m_{i} \ddot{\boldsymbol{c}}_{i}$$

■ torque = change of angular momentum → time derivative of the angular momentum + torque of gyroscopic effects (Euler's equation of motion)

$$\mathbf{n}_{C,i} = \frac{d}{dt}(I_i \, \boldsymbol{\omega}_i) + \boldsymbol{\omega}_i \times I_i \, \boldsymbol{\omega}_i$$
$$= I_i \, \dot{\boldsymbol{\omega}}_i + \boldsymbol{\omega}_i \times I_i \, \boldsymbol{\omega}_i$$

Forces and torques acting on an arm element can be calculated from velocity and joint angular velocity.

Newton-Euler: Concatenation

The accelerations \ddot{c}_i and $\dot{\omega}_i$ of an arm element i depend on the accelerations of the **preceding** arm elements.

Accelerations can be calculated recursively via the kinematic model from the base to the gripper → forward equations

The force f_i and the torque $n_{C,i}$ which act on an arm element i depend on the **subsequent** arm elements.

Forces and moments can be calculated recursively from the gripper to the base → backward equations

→ Recursive Newton-Euler Algorithm (RNEA)

concatenation: Verkettung

Recursive Newton-Euler Algorithm (RNEA)

- General procedure: 選唱社會
 - Recursive calculation of velocity and acceleration for each arm element from the base to the end effector (forward path)
 - Calculation of the forces/moments which act on each arm element, or which are required for the accelerations using Newton-Euler
 - 3. Recursive calculation of the forces over all arm elements and the joint force variables for the respective joint type (backward path)

Recursive calculation of the **velocity** and **acceleration** of each individual arm element i from the base to the end effector (**forward path**)

Velocity

$$\mathbf{v}_i = \mathbf{v}_{p(i)} + \boldsymbol{\phi}_i \dot{\boldsymbol{q}}_i$$

 \dot{q}_i : generalized velocity of the arm element i

 ϕ_i : 6 × n motion matrix (depends on joint type)

 $\mathbf{v}_{p(i)}$: velocity of the preceding element p(i)

Acceleration

$$\mathbf{a}_i = \mathbf{a}_{p(i)} + \boldsymbol{\phi}_i \ddot{\boldsymbol{q}}_i + \dot{\boldsymbol{\phi}}_i \dot{\boldsymbol{q}}_i$$

 \ddot{q}_i : generalized acceleration of the arm element i

 $\dot{\boldsymbol{\phi}}_i$: derivation of $\boldsymbol{\phi}_i$

forward path

Calculation of the forces/moments using the Newton-Euler equation, which act on each arm element i due to the acceleration (from step 1)

$$\mathbf{f}_i^{\mathbf{a}} = \mathbf{I}_i \mathbf{a}_i + \mathbf{v}_i \times \mathbf{I}_i \mathbf{v}_i$$

 $\mathbf{f}_i^{\mathbf{a}}$: forces acting on arm element i due to \mathbf{a}_i

 I_i : moment of inertia of arm element i

 \mathbf{v}_i : velocity of arm element i (calculated in step 1)

 \mathbf{a}_i : acceleration of arm element i (calculated in step 1)

Recursive calculation of the forces between the arm elements (left) and the joint force variables for the respective joint type (backward path)

$$\mathbf{f}_i = \mathbf{f}_i^{\mathbf{a}} - \mathbf{f}_i^{\mathbf{e}} + \sum_{j \in c(i)} \mathbf{f}_j$$

Recursive calculation of the forces between the arm elements (left) and the joint force variables for the respective joint type (backward path)

$$\mathbf{f}_i = \mathbf{f}_i^{\mathbf{a}} - \mathbf{f}_i^{\mathbf{e}} + \sum_{j \in c(i)} \mathbf{f}_j$$
$$\boldsymbol{\tau}_i = \boldsymbol{\phi}_i^T \mathbf{f}_i$$

 \mathbf{f}_i : resulting force on arm element i

 $\mathbf{f}_{i}^{\mathbf{e}}$: sum of all external forces acting on i

 \mathbf{f}_i : force of an adjacent arm element j

c(i): set of arm elements in the kinematic chain subsequent to i

 ϕ_i : 6 × n motion matrix (depends on joint type)

 τ_i : generalized forces/torques acting on i

RNEA: Summary

1. Recursive calculation of the **velocity** and **acceleration** of each individual arm element i from the base to the end effector:

$$\mathbf{v}_i = \mathbf{v}_{p(i)} + \boldsymbol{\phi}_i \dot{\boldsymbol{q}}_i$$
 with $\mathbf{v}_0 = 0$ $\mathbf{a}_i = \mathbf{a}_{p(i)} + \boldsymbol{\phi}_i \ddot{\boldsymbol{q}}_i + \dot{\boldsymbol{\phi}}_i \dot{\boldsymbol{q}}_i$ with $\mathbf{a}_0 = -\mathbf{a}_g$

2. Calculation of the forces/moments on each individual arm element i using Newton-Euler:

$$\mathbf{f}_i^{a} = \mathbf{I}_i \mathbf{a}_i + \mathbf{v}_i \times \mathbf{I}_i \mathbf{v}_i$$

 Recursive calculation of the forces between the arm elements and the generalized forces for the respective joint type

$$au_i = oldsymbol{\phi}_i^T \mathbf{f}_i$$
 with $\mathbf{f}_i = \mathbf{f}_i^{\mathrm{a}} - \mathbf{f}_i^{\mathrm{e}} + \sum_{j \in c(i)} \mathbf{f}_j$

Recursive Newton-Euler Algorithm (RNEA)

Complete Algorithm

```
{\bf v}_0 = 0
\mathbf{a}_0 = -\mathbf{a}_g
for i = 1 to n do
      \mathbf{v}_i = \mathbf{v}_{p(i)} + \boldsymbol{\phi}_i \dot{\boldsymbol{q}}_i
      \mathbf{a}_i = \mathbf{a}_{p(i)} + \boldsymbol{\phi}_i \ddot{\boldsymbol{q}}_i + \dot{\boldsymbol{\phi}}_i \dot{\boldsymbol{q}}_i
      \mathbf{f}_i = \mathbf{I}_i \mathbf{a}_i + \mathbf{v}_i \times \mathbf{I}_i \mathbf{v}_i - \mathbf{f}_i^{\mathbf{e}}
end for
for i = n to 1 do
      \boldsymbol{\tau}_i = \boldsymbol{\phi}_i^T \mathbf{f}_i
      if p(i) \neq 0 then
             \mathbf{f}_{p(i)} = \mathbf{f}_{p(i)} + \mathbf{f}_i
       end if
end for
```


Method of Newton-Euler: Summary

(motion of the base)

 $f = Ia + v \times Iv$

where

$$\mathbf{v} = \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{v}_C \end{pmatrix} \mathbf{a} = \begin{pmatrix} \dot{\boldsymbol{\omega}} \\ \dot{\boldsymbol{v}}_C \end{pmatrix}$$

$$f = \begin{pmatrix} n_C \\ f \end{pmatrix}$$

(forces and torques on the end effector)

Method of Newton-Euler: Properties

Properties

Arbitrary number of joints

Loads on arm elements are calculated

Effort O(n) (n: number of joints)

Recursive

Contents

- Dynamic Model
- Generalized Coordinates
- Modeling of Dynamics
 - Method of Lagrange
 - Method of Newton-Euler
- Challenges of Dynamics

Challenges of Dynamics

- The methods presented for modeling dynamics (Lagrange and Newton-Euler) are only approximations of the dynamics
- Non-linear forces (e.g. friction) cannot be modeled directly, but have a major influence:

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) + \epsilon(q, \dot{q}, \ddot{q})$$

```
q, \dot{q}, \ddot{q}: n \times 1 vector of generalized coordinates (position, velocity and acceleration)
	au: n \times 1 vector of generalized forces
M(q): n \times n matrix of mass inertia (symmetric, positive-definite)
C(\dot{q}, q)\dot{q}: n \times 1 vector with centripetal and Coriolis components
g(q): n \times 1 vector of gravitational components
e(q, \dot{q}, \ddot{q}): n \times 1 non-linear effects, e.g. friction
```


Challenges of Dynamics

- The dynamics of a robot can change considerably over time, e.g. due to
 - Wear and tear
 - Material changes (elongation, etc.)
- The dynamics vary greatly depending on the task to be performed Examples:
 - Interaction with the environment
 - Grasping and manipulating objects
 - Use of tools

Learning of Dynamics

Dynamics depend on the task to be performed (here: 'pick and place')

without object

with object (851g)

Learning of Dynamics

- The 'pick and place' task can be divided into several phases:
 - **1. Approaching** the object
 - 2. Grasping the object
 - 3. Placing the object
 - **4. Withdrawing** from the object
- The diagram shows that the torques with and without the object differ greatly from each other
 - → Dynamics must be adapted or learned during the task

Hitzler, K., Meier, F., Schaal, S. and Asfour, T., *Learning and Adaptation of Inverse Dynamics Models: A Comparison*, IEEE/RAS International Conference on Humanoid Robots (Humanoids), October, 2019

Learning of Kinematics and Dynamics

