Universidade de São Paulo – Instituto de Ciências Matemáticas e de Computação (USP - ICMC)

LoG Conference

Introdução às Graph Neural Networks

Marcos Gôlo

Google Research

Sumário

- 1. Introdução
- 2. Grafos
- 3. Graph Neural Networks
- 4. Contextos de exploração (Aplicações)
- 5. Prática: **Unsupervised** Graph neural networks
- 6. Código extra: **Supervised** Graph neural networks

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento

Dados

Estruturado

Nome	Altura	Peso	IMC	
José	1.80	75	23.15	
Maria	Maria 1.65		25.34	
Paula	1.71	68	23.26	

Tabela com dados pessoais

Não estruturado

Flamengo campeão de tudo em 2025!

O malvadão voltou!!!!

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento obtido

Definição de grafos G = (V, A)

$$V = \{A, B, C, D, E, F, G\}$$

 $A = \{(A, B), (B, C), (B, D), ..., (F, G)\}$

Definição de grafos G = (V, A)

$$V = \{A, B, C, D, E, F, G\}$$

$$A = \{(A, B), (B, C), (B, D), ..., (F, G)\}$$

	Α	В	С	D	E	F	G
Α	0	1	0	0	1	0	0
В	1	0	1	1	1	0	0
С	0	1	0	0	0	1	1
D	0	1	0	0	1	0	0
E	1	1	0	1	0	0	1
F	0	0	1	0	0	0	1
G	0	0	1	0	1	1	0

A = Matriz de adjacência

Dados: Pesquisadores

Nós:

- Marcos
- Solange
- Ricardo
- Gilberto
- Diego
- Rafael

Relações: Orientação/Pesquisa relacionada

Nós:

- A
- B
- (🛕
- D
- E
- F

Relações: ?

O que fazer?

Dados: Não estruturados

Nós:

- A 🛑
- B
- C
- D
- G
- H

Relações: ?

Podemos inferir as relações por meio de SIMILARIDADE

Dados

Estruturado

Nome	Altura	Peso	IMC
José	1.80	75	23.15
Maria	1.65	69	25.34
Julia	1.71	68	23.26

Tabela com dados pessoais

Dados

Não estruturado

Flamengo campeão de tudo em 2025!

O malvadão voltou!!!!

Flamengo campeão de tudo em 2025!

O malvadão voltou!!!!

Flamengo campeão da Supercopa do Br!

Áudio?

- características que englobam informações de tempo e frequência
- conseguimos enfatizar diferentes componentes do áudio

librosa. Disponível em: https://librosa.org/doc

Texto?

- construção de vetores a partir de textos
- características que enfatizam informação de contexto
- características que possibilitam computar a similaridade entre textos

1	\sim		· ·	1. •
1.	()	CHICO	t∩ı	ótimo
Ι.	U	curso	IUI	ULITIU

- 2. Aprendi sobre GNN
- 3. Ótimo curso sobre GNN

0	curso	foi	ótimo	aprendi	sobre	GNN
1	1	1	1	0	0	0
0	0	0	0	1	1	1
0	1	0	1	0	1	1

Caseli, H.M.; Nunes, M.G.V. (org.). 2023. Processamento de Linguagem Natural: Conceitos, Técnicas e Aplicações em Português

Imagem?

- construção de vetores a partir de histograma de cores
- características que enfatizam a textura
- características que possibilitam computar a similaridade entre imagem

Csurka, G. et al. "Visual categorization with bags of keypoints." Workshop on statistical learning in computer vision. 2004.

Video?

Combinação entre vetores de características de áudio e imagem

Embeddings

Jacob Devlin et al.. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Karen Simonyan, Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. Jordi Pons et al.. End-to-end learning for music audio tagging scale.

Nós:

Relações: Inferidas por similaridade

Grafo desconexo

- Não há interação entre músicas distintas
- Não exploramos o potencial da modelagem dos dados em grafos
- Podemos enriquecer esse grafo!

Grafo não direcionado

Grafo direcionado

Grafo ponderado

Alguns tipos de grafos

Como preparar seu grafo para a GNN?

Representações iniciais?

Representações faltantes!

Graph Embedding

- Vértices sem características
- Objetivo: Encontrar embeddings para os vértices em um espaço d-dimensional que preserve as noções de similaridade
- Ideia: Aprender uma representação que aproxime no espaço construído vértices que sejam vizinhos no grafo vizinhos

Graph Embedding

Regularização de grafos

Características ausentes em alguns vértices

Objetivo da regularização:

propagar informações entre os nós

Premissas:

- objetos que estão relacionados devem ter representações similares
- objetos que já possuem características, devem ter representação final similar à inicial

Resultado:

todos os objetos possuem informações

Regularização de grafos

Características ausentes em alguns nós

Estado inicial do grafo. Vértice A não tem características

Inicialização das características dos vértice A

Propagação das características entre vértices vizinhos

Regularização de grafos

Características ausentes em alguns vértices

ICMC-USP

Vantagens

- Suporta dados multimodais
- Complementaridade das informações
- Versatilidade para domínios complexos
- Propagação de informação
- Construir características apenas com a topologia do grafo

Pontos de atenção

- grafo desconexo -> criar links
- nós com informações faltantes -> regularização (embeddings propagation)
- over smoothing embeddings muitos similares
- cenário indutivo

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento obtido

Justificativa para GNNs

- Avanços das redes neurais em diferentes cenários de dados euclidianos
- E para dados não euclidianos, como os grafos?
- Propuseram as Redes Neurais para Grafos, ou as *Graph Neural Networks*

Rede Neural para imagem

Rede Neural para Grafo

Fonte: Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on neural networks and learning systems 32.1 (2020):

- GNN: *g(0, A; W)*
- **0**: Representações dos objetos
- **A:** Matriz de adjacência
- **W**: Pesos da rede neural
- Uma GNN genérica pode ser definida com dois passos:
 - Agregação: agrega informações dos vizinhos de uma nó
 - Combinação: combina a representação aprendida pelo neurônio com a representação agregada

$$m{h}^l_{o_i} = COMBINE^{(l)}(m{h}^{l-1}_{o_i},m{a}^l_{o_i})$$

$$m{h}^l_{o_i} = COMBINE^{(l)}(m{h}^{l-1}_{o_i},m{a}^l_{o_i})$$
 representação combinada representação do nó alvo

Graph Convolutional Networks

Agregação e Combinação por meio de médias

GAT e GraphSAGE

Graph Attention Network (GAT)

- Na GCN, a importância dos nós vizinhos em é a mesma
- Ruídos podem influenciar negativamente no processo de aprendizagem
- A GAT foca as arestas mais importantes através do mecanismo de atenção
- A GAT tem atenção às principais relações do grafo, melhorando a agregação das informações

GraphSAGE

- Novo método de combinação e diferentes agregadores.
- GraphSAGE realiza uma amostragem nos vizinhos
- Reduz o tempo e a complexidade da memória

Graph Autoenconder (GNN não supervisionada)

Função de perda: Diferença entre \mathbf{A} e $\hat{\mathbf{A}}$

Vantagens e Desvantagens da GNN

Vantagens

- Resolve diferentes tarefas de forma end-to-end
 - classificação de nós
 - classificação de aresta
 - predição de aresta
 - classificação de grafos
- Adaptabilidade para diferentes tipos de dados e modelagens de grafo
- Resultados estado-da-arte

Desvantagens

- Representações convergem para mesmo local com muitas camadas
- Black-box (explicabilidade)

Detecção Notícias Falsas

Detecção de Eventos

Detecção de Crimes

Detecção de Fraude

Recomendação

Classificação de Grafos

Recomendação de Notícias

Detecção de Comunidades

Detecção de Notícia Falsa: Dataset

- Notícias Falsas sobre política
- Notícias Falsas de 2019.
- Classe Real e Falsa
- Anotação por humanos
- Notícias: 2064
- Notícias Falsas: 1044
- Notícias Reais: 1020

Detecção de Notícia Falsa: Grafo

Detecção de Notícia Falsa

- GNN para duas classes?
- No mundo real, teríamos que rotular tanto notícias falsas quanto reais.
- Rotulação é caro!!!!
- Será que podemos utilizar algum aprendizado que só precisamos rotular as notícias falsas que são nosso foco?
- SIM!!!

One-Class Learning (OCL)

- No OCL o treinando é apenas em amostras de uma classe (classe de interesse). Ausência de contra-exemplos.
- OCL reduz esforços de rotulação e não exige
 cobertura abrangente da classe de não interesse
- Aplicações de domínio aberto ou quando há interesse em uma única classe do problema
- Após treinar, funciona com um classificador binário:
 - Classe de interesse
 - Não classe de interesse

Pipeline

Graph Autoencoder

Tarefa

One-Class Learning

- notícias falsas
- notícias não rotuladas

Vamos praticar?

Prática - Fake News

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento

Mineração de dados

- 1. Dados
- 2. Pré-processamento
- 3. Aprendizado de padrões
- 4. Pós-processamento
- 5. Uso do conhecimento

Universidade de São Paulo - Instituto de Ciências Matemáticas e de Computação (USP - ICMC)

LoG Conference

Obrigado!

Agradecimento especial: Angelo Cesar Mendes da Silva

marcosgolo@usp.br

