## Problem samples in previous Algorithm exams

(PS: These questions are for informational purposes only and will not appear in this year's exam.)

| Score | Continu I. Fill in the blowle |
|-------|-------------------------------|
|       | Section I: Fill in the blank  |

- 1. Finding a smallest vertex cover in an undirected tree  $T = \langle V, E \rangle$  can be finished in O(/V/) time.
- 2. The hallmarks of divide and conquer are: Optimal substructure and independent sub-problem.
- 3. The time complexity of the Dijkstra's algorithm is  $O\left((|V| \cdot d + |E|) \frac{\log |V|}{\log d}\right)$  if the priority queue is implemented by a d-ary heap (d>2).
- **4. If**  $T(n) = T(n/4) + 2T(n/2) + n^2$ , then  $T(n) = ___O(n^2)$ \_\_\_\_.

5. 
$$\sum_{i=1}^{n} i^{k} = \underline{\theta(n^{k+1})}$$
\_\_\_\_.

- 6. The hallmarks of dynamic programming are: optimal substructure and overlapping sub-problem.
- 7. Suppose edges X are part of a minimum spanning tree of G=(V, E). Pick any subset of nodes S for which X does not cross between S and V-S, and let e be the lightest edge across this partition. Then  $X \cup \{e\}$  is a part of some MST. This is called cut property.
- 8. A set of nodes S is a vertex cover of graph G = (V, E) (S touches every edge in E) if and only if the remaining nodes, V-S, are an <u>independent set</u> of G.

| Score | Evaluator | Section II: Choice                                  |
|-------|-----------|-----------------------------------------------------|
|       |           | Choose the most appropriate answer from each group. |

- 1. The time complexity of finding single-source shortest paths in a directed acyclic graph (DAG) is ( C ).
- (A)  $O((/V/+/E/)\log/V/)$  (B) O(/V//E/)
- (C) O(/V/+/E/)
- (D)  $O((/V/^3))$

| The Examination Pa                                                                                                       | per for Algorithm Design                                                      | n and Analysis of Jinan Ur                                                                                                                                             | niversity                                  |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Student Name                                                                                                             | , Student No                                                                  | _                                                                                                                                                                      |                                            |
| 2. In which of the footimal solutions? ( (A) Knapsack (C) Set Cover                                                      |                                                                               | greedy algorithm cannot g<br>(B) Minimum Spann<br>(D) Huffman Encodin                                                                                                  | ing Tree                                   |
| 3. The running tim implemented by a bi                                                                                   | ·                                                                             | orithm is ( A ) if the                                                                                                                                                 | priority queue is                          |
| (A) $O(( V  +  E )\log  E )$                                                                                             | V                                                                             | <b>(B)</b> $O( V  \log  V )$                                                                                                                                           | ( + E )                                    |
| (C) $O(\log d  V ^2)$                                                                                                    |                                                                               | <b>(D)</b> $O\left(( V \cdot d +  V )\right)$                                                                                                                          | $E \mid) \frac{\log \mid V \mid}{\log d} $ |
| (A) If each edge weight (B) A subset $C \subseteq V$ is (C) The time complete (D) If implemented $O(( V + E )\log V )$ . | a vertex cover in G if an exity of the Bellman-Ford with disjoint sets, the r | correct? (B) minimal spanning trees wide only if $V$ - $C$ is a clique in $O( V  \cdot  E )$ . Funning time of the Krusk tants $a > 0$ , $b > 1$ , and $d \ge 0$ , the | G.<br>cal's algorithm is                   |
| if $d < \log_b a$ ?                                                                                                      |                                                                               |                                                                                                                                                                        |                                            |
| (A) $O(n^d)$                                                                                                             | <b>(B)</b> $O(n^d \log_b n)$                                                  | (C) $O(n^d \log_2 n)$                                                                                                                                                  | <b>(D)</b> $O(n^{\log_b a})$               |
|                                                                                                                          | oh (DAG) is ( C ).                                                            | ich finds single-source sh $(C) O(/V/+/E/)$                                                                                                                            | -                                          |
| 7. Which of the follo (A) SAT (C) Set Cover                                                                              | wing problems is NOT a                                                        | NP-Complete problem? ( (B) Minimum Spann (D) Independent Set                                                                                                           | ing Tree                                   |
| 8. The running time implemented by a <i>d</i> -                                                                          | ·                                                                             | orithm is ( D ) if the                                                                                                                                                 | priority queue is                          |
| <b>(A)</b> $O(( V  +  E )\log  E )$                                                                                      | V                                                                             | <b>(B)</b> $O( V  \log  V  +  I )$                                                                                                                                     | E  )                                       |
| (C) $O(\log d  V ^2)$                                                                                                    |                                                                               | <b>(D)</b> $O\left(( V \cdot d +  E )^{\frac{1}{2}}\right)$                                                                                                            | $\frac{\log  V }{\log d}$                  |

T 5. Any problem in NP can be reduced into a 3SAT problem in the polynomial time.

independent sub-problem.

F 4. The hallmarks of dynamic programming are optimal substructure and

| The Examination Paper for Algorithm Design and Analysis of Jinan University                            |
|--------------------------------------------------------------------------------------------------------|
| Student Name, Student No                                                                               |
| T 6. A subset $S \subseteq V$ is a vertex cover in $G$ if and only if $V - S$ is an independent set in |
| G.                                                                                                     |
| 7. The time complexity of the Bellman-Ford's algorithm is $O(( V + E )\log V )$ .                      |
| 8. If each edge weight is increased by 1, the shortest path will not change.                           |
| T 9. Any problem in NP can be reduced into a 3D-matching problem in the polynomial time.               |
| T 10. Matroids exhibit the optimal-substructure property and the greedy-choice property.               |

| Score | Evaluator | C42 IV/-    | Shout Oraclina         |  |
|-------|-----------|-------------|------------------------|--|
|       |           | Section IV: | <b>Short Questions</b> |  |

1. Solve the following recurrence relations and give a  $\theta$  bound for each of them.

$$(1)T(n) = 9T(n/3) + n$$

(2) 
$$\begin{cases} T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + cn \\ T(1) = 1 \end{cases}$$

$$(3)T(n) = T(n-1) + \log n$$

**Answer:** 

(1) According to the master theorem:

$$a=9, b=3, f(n)=n, \log_3 9>1, \text{ so } T(n)=O(n^{\log_3 9})=O(n^2)$$

(2) Use the recursive tree method:

$$T(n) = cn + \frac{3cn}{4} + \left(\frac{3}{4}\right)^2 cn + \dots = \left[1 + \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 + \dots\right] cn = \theta(n)$$

(3)Use the iterative method:

$$T(n) = \log n + \log(n-1) + ... + \log 2 + T(1) = \log(n!) + T(1) = \theta(n \log n)$$

## 2. What are the characteristics of an algorithm?

#### **Answer:**

An algorithm is a sequence of steps which is used to solve a category of problems. Characteristics are given by:

- a) Unambiguous: every step is deterministic;
- b) Mechanical: machine can "understand";
- c) Finite: can be implemented in limited steps;
- d) Input/output: to state the problem size and the result.

## 3. Show that the master theorem is correct.

**Master theorem** If  $T(n) = aT(\lceil n/b \rceil) + O(n^d)$  for some constants a > 0, b > 1, and  $d \ge 0$ , then

$$T(n) = \begin{cases} O(n^d) & \text{if} \quad d > \log_b a \\ O(n^d \log_b n) & \text{if} \quad d = \log_b a \\ O(n^{\log_b a}) & \text{if} \quad d < \log_b a \end{cases}$$

## Proof.

- Assume *n* is a power of *b*
- The total work done at the *kth* level

$$a^{k} \times O(\frac{n}{h^{k}})^{d} = O(n^{d}) \times (\frac{a}{h^{d}})^{k}$$

- As k goes from 0 to  $\log_b n$ , these numbers form a geometric series with ratio  $a/b^d$ .
- 1. The ratio is less than 1.

Then the series is decreasing, and its sum is just given by its first term,  $O(n^d)$ .

2. The ratio is greater than 1.

The series is increasing and its sum is given by its last term,  $O(n^{\log_b a})$ :

$$n^d \left(\frac{a}{b^d}\right)^{\log_b n} \ = \ n^d \left(\frac{a^{\log_b n}}{(b^{\log_b n})^d}\right) \ = \ a^{\log_b n} \ = \ a^{(\log_a n)(\log_b a)} \ = \ n^{\log_b a}.$$

3. The ratio is exactly 1.

In this case  $O(\log_b n)$  terms of the series are equal to  $O(n^d)$ .

4. Compare the Kruskal's algorithm and the Prim's algorithm (viz. similarities and differences).

#### **Answer:**

|                    | Kruskal                                  | prim                                       |
|--------------------|------------------------------------------|--------------------------------------------|
| sort all edges?    | yes                                      | no                                         |
| minimum            | the lightest edge in the remaining edges | the lightest edge among<br>the cross edges |
| data structure     | disjoint set<br>(connected component)    | binary heap<br>(priority queue)            |
| time<br>complexity | $O(( V  +  E )\log V )$                  | $O(( V  +  E )\log V )$                    |

- 3. (10 Points) Suppose you are choosing between the following three algorithms:
- Algorithm A solves problems by dividing them into seven subproblems of size n/4, recursively solving each subproblem, and then combining the solutions in  $O(n^2)$  time.
- Algorithm B solves problems of size n by recursively solving one subproblem of size  $\sqrt[3]{n}$  and then combining the solution in constant time.
- Algorithm C solves problems of size n by recursively solving a subproblem of size n-2 and then combining the solution in  $O(c^n)$  time, where c > 1 is a constant.

What are the running times of each of these algorithms (in big-O notation), and which would you choose?

**Answer:** 

Algorithm A:

$$T(n) = 7T(n/4) + O(n^2) = \theta(n^2)$$
 by the Master theorem.

## Algorithm B:

$$T(n) = T(\sqrt[3]{n}) + c = T(\sqrt[3]{\sqrt[3]{n}}) + c + c = T(\sqrt[3]{\sqrt[3]{\sqrt[3]{n}}}) + 3c$$

$$= k + T(b) \text{ s.t. } b^{\frac{3^*...*3}{k}} = n$$

$$\Rightarrow b^{3^k} = n \Rightarrow k = \log_3 \log_b n \Rightarrow k = \theta(\log \log n)$$

## Algorithm C:

Student Name \_\_\_\_\_, Student No.\_\_\_\_

$$T(n) = T(n-2) + O(c^{n}) = T(n-4) + O(c^{n-2}) + O(c^{n})$$

$$= T(n-6) + O(c^{n-4}) + O(c^{n-2}) + O(c^{n})$$

$$= T(0) + \sum_{i=1}^{n/2} c^{2i} = T(0) + \theta(c^{2*n/2}) = \theta(c^{n})(c^{2} > 1)$$

Choose Algorithm B due to the lower time complexity.

# 5. Sort the following functions in the increasing order of asymptotic (big-O) complexity and explain why:

$$f_1(n) = \log \log n$$

$$f_2(n) = n^{\sqrt{n}}$$

$$f_3(n) = \log(n^{100})$$

$$f_4(n) = 2^{2^{100}}$$

$$f_5(n) = 2^n$$

$$f_6(n) = n^{10} \cdot 2^{n/2}$$

$$f_7(n) = n\sqrt{n}$$

$$f_8(n) = 2^{2^n}$$

$$f_9(n) = \sum_{i=1}^n i + 1$$

$$f_{10}(n)=100n$$

#### Answer:

$$f_1(n) = \log \log n$$

$$f_2(n) = n^{\sqrt{n}} = (2^{\lg n})^{\sqrt{n}} = 2^{\sqrt{n} \cdot \lg n}$$

$$f_3(n) = \log(n^{100}) = 100 \log n = \theta(\log n)$$

$$f_4(n) = 2^{2^{100}} = \theta(1)$$

$$f_5(n) = 2^n$$

$$f_6(n) = n^{10} \cdot 2^{n/2} = 2^{\lg(n^{10})} \cdot 2^{n/2} = 2^{n/2 + 10\lg n}$$

$$f_7(n) = n\sqrt{n} = n^{1.5}$$

$$f_8(n) = 2^{2^n}$$

$$f_9(n) = \sum_{i=1}^n i + 1 = n + (n-1) + \dots + 1 + 1 = \theta(n^2)$$

$$f_{10}(n) = 100n = \theta(n)$$

$$so, f_4(n) < f_1(n) < f_3(n) < f_{10}(n) < f_7(n) < f_9(n) < f_2(n) < f_6(n) < f_5(n) < f_8(n)$$

| The Examination Par | oer for _ | Algorithm Design and An | <u> 1alysis</u> | of Jinan | University |
|---------------------|-----------|-------------------------|-----------------|----------|------------|
| Student Name        | , Stud    | ent No.                 |                 |          |            |

| Score | Evaluator | Section IV: | D : 14 1 :          | (50 D : 4)  |
|-------|-----------|-------------|---------------------|-------------|
|       |           | Section IV: | Design and Analysis | (50 Points) |

1. (10 Points) Give a simple reduction from RUDRATA CYCLE to SAT. (Hint: you may use variables  $x_{ij}$  whose intuitive meaning is "vertex i is the jth vertex of the Hamilton cycle"; you then need to write clauses that express the constraints of the problem.) Answer:

#### RUDRATA CYCLE to SAT

We introduce variables  $x_{ij}$  for  $1 \le i, j \le n$  meaning that the *i*th vertex is at the *j*th position in the Rudrata cycle. Each vertex must appear at some position in the cycle. Thus, for every vertex *i*, we add the clause  $x_{i1} \lor x_{i2} \lor \ldots \lor x_{in}$ . This adds *n* clauses with *n* variables each.

Also, if the *i*th vertex appears at the *j*th position, then the vertex at (j+1)th position must be a neighbor of *i*. In other words, if  $\underline{u},\underline{v}$  are not neighbors, then either  $\underline{u}$  appears at the *j*th position, or  $\underline{v}$  appears at the (j+1)th position, but not both. Thus for every  $(u,v) \notin E$  and for all  $1 \le j \le n$ , add the clause  $(\bar{x}_{uj} \lor (\bar{x}_{v(j+1)})$ . This adds at most  $O(n^2) \times n = O(n^3)$  clauses with 2 variables each.

Using the "meanings" of the clauses given above, it is easy to see that every satisfying assignment gives a Rudrata cycle and vice-versa.

(Each clause category: 5 points)

2. (12 Points) Suppose Dijkstra's algorithm is run on the following graph, starting at node A.



- (1) (4 Points) Draw a table showing the intermediate distance values of all the nodes at each iteration of the algorithm.
- (2) (4 Points) Show the final shortest-path tree.
- (3) (4 Points) Suppose the above graph becomes undirected. What is the minimal spanning tree, by running Kruscal's algorithm in this undirected graph?

**Answer:** 

Student Name \_\_\_\_\_, Student No.\_\_\_\_\_

(a)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |      | Iteration |          |          |          |   |   |   |   |
|--------------------------------------------------------|------|-----------|----------|----------|----------|---|---|---|---|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Node | 0         | 1        | 2        | 3        | 4 | 5 | 6 | 7 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | A    | 0         | 0        | 0        | 0        | 0 | 0 | 0 | 0 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | В    | $\infty$  | 1        | 1        | 1        | 1 | 1 | 1 | 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | C    | $\infty$  | $\infty$ | 3        | 3        | 3 | 3 | 3 | 3 |
| $F \propto 8 7 7 7 6$                                  | D    | $\infty$  | $\infty$ | $\infty$ | 4        | 4 | 4 | 4 | 4 |
|                                                        | E    | $\infty$  | 4        | 4        | 4        | 4 | 4 | 4 | 4 |
| C 20 00 7 5 5 5 5                                      | F    | $\infty$  | 8        | 7        | 7        | 7 | 7 | 6 | 6 |
| G   W W 1 3 3 3 3                                      | G    | $\infty$  | $\infty$ | 7        | 5        | 5 | 5 | 5 | 5 |
| $H  \infty  \infty  \infty  \infty  8  8  6$           | Н    | $\infty$  | $\infty$ | $\infty$ | $\infty$ | 8 | 8 | 6 | 6 |

**(b)** 



(c) first sort all the edges in an increasing ordering of weights: A-B, C-D, D-G, G-F, G-H, B-C, C-G, A-E, D-H, E-F, B-F, B-G, A-F The chosen edges and the final MST are as follows: A-B, C-D, D-G, G-F, G-H, B-C, A-E



- 3. (10 Points) Given two strings  $x = x_1 x_2 ... x_n$  and  $y = y_1 y_2 ... y_m$ , we wish to find the length of their longest common substring, that is, the largest k for which there are indices i and j with  $x_i x_{i+1} ... x_{i+k-1} = y_j y_{j+1} ... y_{j+k-1}$ .
- (1) (6 Points) Give a dynamic programming algorithm to do this in time O(mn). (Hint: define subproblem L(i, j) to be the length of the longest common substring of x and y terminating at  $x_i$  and  $y_j$ )
- (2) (4 Points) Suppose that x=ABCBDAB and y=BDCABA. Fill the following table showing all intermediate optimal values  $L(i, j)(1 \le i \le 7, 1 \le j \le 6)$  defined above.

Student Name \_\_\_\_\_, Student No.\_\_\_\_

| L(i,j) | A | В | C | В | D | A | В |
|--------|---|---|---|---|---|---|---|
|        |   |   |   |   |   |   |   |
| В      |   |   |   |   |   |   |   |
| D      |   |   |   |   |   |   |   |
| C      |   |   |   |   |   |   |   |
| A      |   |   |   |   |   |   |   |
| В      |   |   |   |   |   |   |   |
| A      |   |   |   |   |   |   |   |

## **Answer:**

**(1)** 

Subproblems: For  $1 \le i \le n$  and  $1 \le j \le m$ , define subproblem L(i, j) to be the length of the longest common substring of x and y terminating at  $x_i$  and  $y_j$ . The recursion is:

$$L(i,j) = \begin{cases} L(i-1,j-1) + 1 & \text{if } equal(x_i,y_j) = 1\\ 0 & \text{otherwise} \end{cases}$$

The initialization is, for all  $1 \le i \le n$  and  $1 \le j \le m$ :

$$L(0,0) = 0$$

$$L(i,0) = 0$$

$$L(0,j)=0$$

The output of the algorithm is the maximum of L(i,j) over all  $1 \le i \le n$  and  $1 \le j \le m$ .

Correctness and Running Time: The initialization is clearly correct. Hence, it suffices to prove the correctness of the recursion. The longest common substring terminating at  $x_i$  and  $y_j$  must include  $x_i$  and  $y_j$ : hence, it will be 0 if these characters are different and L(i-1,j-1)+1 if they are equal. The running time is O(mn) as we have mn subproblems and each takes constant time to evaluate through the recursion.

**(2)** 

| X/Y |   | A | В | С | В | D | A | В |
|-----|---|---|---|---|---|---|---|---|
|     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| В   | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| D   | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| С   | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| A   | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| В   | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 2 |
| A   | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |

| The Examination Paper | t for Algorithm Design and Ana | lysis of Jinan University |
|-----------------------|--------------------------------|---------------------------|
| Student Name          | , Student No                   |                           |

4. (10 points) A *contiguous* subsequence of a list S is a subsequence made up of consecutive elements of S. For instance, if S is

then 15, -30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give an algorithm for the following task:

*Input*: A list of numbers,  $a_1, a_2, ..., a_n$ .

*Output*: The contiguous subsequence of maximum sum (a subsequence of length zero has sum zero).

For the preceding example, the answer would be 10, -5, 40, 10, with a sum of 55.

Notice that you will get a different score if your algorithm meets a different time complexity requirement. The max score which you can obtain is given for each requirement.

- Basic requirement:  $O(n^2)$  (max score: 6 points)
- Medium requirement:  $O(n\log n)$  (max score: 8 points)
- Advanced requirement: O(n) (max score: 10 points)

#### **Answer:**

## 1) A brute-force algorithm: $O(n^2)$

We can easily devise a brute-force solution to this problem: just try every possible pair of buy and sell dates in which the buy date precedes the sell date. A period of n days has  $\binom{n}{2}$  such pairs of dates. Since  $\binom{n}{2}$  is  $\Theta(n^2)$ , and the best we can hope for is to evaluate each pair of dates in constant time, this approach would take  $\Omega(n^2)$  time.

## 2) A divide-and-conquer algorithm: $O(n \log n)$

```
FIND-MAXIMUM-SUBARRAY (A, low, high)
 1
   if high == low
2
         return (low, high, A[low])
                                              // base case: only one element
3
    else mid = \lfloor (low + high)/2 \rfloor
 4
         (left-low, left-high, left-sum) =
             FIND-MAXIMUM-SUBARRAY (A, low, mid)
5
         (right-low, right-high, right-sum) =
             FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)
6
         (cross-low, cross-high, cross-sum) =
             FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
7
        if left-sum > right-sum and left-sum > cross-sum
 8
             return (left-low, left-high, left-sum)
9
        elseif right-sum \ge left-sum and right-sum \ge cross-sum
10
             return (right-low, right-high, right-sum)
11
        else return (cross-low, cross-high, cross-sum)
```

Student Name , Student No.

```
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
 1 left-sum = -\infty
2 \quad sum = 0
3
    for i = mid downto low
4
        sum = sum + A[i]
5
        if sum > left-sum
6
            left-sum = sum
            max-left = i
7
8
   right-sum = -\infty
9
   sum = 0
   for j = mid + 1 to high
10
        sum = sum + A[j]
11
12
        if sum > right-sum
13
            right-sum = sum
14
            max-right = j
    return (max-left, max-right, left-sum + right-sum)
15
```

## 3) A dynamic-programming algorithm: O(n)

Subproblems: Define an array of subproblems D(i) for  $0 \le i \le n$ . D(i) will be the largest sum of a (possibly empty) contiguous subsequence ending exactly at position i.

Algorithm and Recursion: The algorithm will initialize D(0) = 0 and update the D(i)'s in ascending order according to the rule:

$$D(i) = \max\{0, D(i-1) + a_i\}$$

The largest sum is then given by the maximum element  $D(i)^*$  in the array D. The contiguous subsequence of maximum sum will terminate at  $i^*$ . Its beginning will be at the first index  $j \leq i^*$  such that D(j-1)=0, as this implies that extending the sequence before j will only decrease its sum.

Correctness: The contiguous subsequence of largest sum ending at i will either be empty or contain  $a_i$ . In the first case, the value of the sum will be 0. In the second case, it will be the sum of  $a_i$  and the best sum we can get ending at i-1, i.e.  $D(i-1)+a_i$ . Because we are looking for the largest sum, D(i) will be the maximum of these two possibilities.

Running Time: The running time for this algorithm is O(n), as we have n subproblems and the solution of each can be computed in constant time. Moreover, the identification of the optimal subsequence only requires a single O(n) time pass through the array D.

5. (10 Points) Prove that if there are n elements overall in disjoint-set trees, there can be at most  $n/2^k$  nodes of rank k ( $k \ge 0$ ). (*Hint*: as an example, a disjoint-set tree is shown as follows:)

Student Name , Student No.



## **Answer: Using induction:**

k=0: forest of n singleton trees with height 0. k=1: n/2 single-child trees with height 1. assume when rank = k, the property holds how to produce the most nodes at rank k+1? Merge equal-height trees as many as possible so that #nodes of rank k+1 is at most  $(n/2^k)/2$ .

6. (10 points) A vertex cover of a graph G = (V, E) is a subset of vertices  $S \subseteq V$  that includes at least one endpoint of every edge in E. Give a <u>2-approximation</u> algorithm for the following task. (*Hint*: you need to explain why the approximation ratio of your algorithm is 2.)

Input: An undirected graph G = (V, E).

Output: The size of the smallest vertex cover of G.

#### **Answer:**

#### Approximation Algorithm For Vertex Cover

Here we define algorithm  $Approx\_Vertex\_Cover$ , an approximation algorithm for Vertex Cover. Start with an empty set V'. While there are still edges in E, pick an edge (u, v) arbitrarily. Add both u and v into V'. Remove all edges incident on u or v. Repeat until there are no more edges left in E.  $Approx\_Vertex\_Cover$  runs in polynomial time.

Claim: Approx\_Vertex\_Cover is a 2-approximation algorithm.

Proof: Let  $U \subseteq E$  be the set of all the edges that are picked by  $Approx\_Vertex\_Cover$ . The optimal vertex cover must include at least one endpoint of each edge in U (and other edges). Furthermore, no two edges in U share an endpoint. Therefore, |U| is a lower bound for  $C_{opt}$ . i.e.  $C_{opt} \ge |U|$ . The number of vertices in V' returned by  $Approx\_Vertex\_Cover$  is  $2 \cdot |U|$ . Therefore,  $C = |V'| = 2 \cdot |U| \le 2C_{opt}$ . Hence  $C \le 2 \cdot C_{opt}$ .  $\square$