Data Streaming Concepts and Tools

Kristo Raun

Introduction to Near Real-Time Data Analytics

August 2022

Agenda for the week

Agenda for the week

Data Streaming Concepts and Tools

Data Streaming Concepts and Tools

Apache Flink setup, practice

Data Streaming Concepts and Tools

Apache Flink setup, practice

Connecting Apache Flink and Kafka

Expectation

25 Most In-Demand Data Engineering Skills in 2021

Classification

Classification

Classification

MSK Event Hubs Pub/Sub Kafka

MSK

Event Hubs

Pub/Sub

Kafka

Kinesis

Stream Analytics

Dataflow

Flink

_ _ _ _ _

MSK Event Hubs Pub/Sub Kafka

Kinesis Stream Analytics Dataflow Flink

Glue Data Factory Cloud Data Fusion ETL

_ _ _ _ _ _

MSK	Event Hubs	Pub/Sub	Kafka
Kinesis	Stream Analytics	Dataflow	 Flink
Glue	Data Factory	Cloud Data Fusion	ETL
EMR	HDInsight	Dataproc	Managed open-source (Hadoop)

MSK	Event Hubs	Pub/Sub	 Kafka
Kinesis	Stream Analytics	Dataflow	 Flink
Glue	Data Factory	Cloud Data Fusion	ETL
EMR	HDInsight	Dataproc	Managed open-source (Hadoop)
Redshift	Synapse	BigQuery	Data warehouse

MSK	Event Hubs	Pub/Sub	Kafka
Kinesis	Stream Analytics	Dataflow	Flink
Glue	Data Factory	Cloud Data Fusion	ETL
EMR	HDInsight	Dataproc	Managed open-source (Hadoop)
Redshift	Synapse	BigQuery	Data warehouse
S3	Blob storage	Cloud storage	Storage / Data lake

MSK	Event Hubs	Pub/Sub	Kafka
Kinesis	Stream Analytics	Dataflow	Flink
Glue	Data Factory	Cloud Data Fusion	ETL
EMR	HDInsight	Dataproc	Managed open-source (Hadoop)
Redshift	Synapse	BigQuery	Data warehouse
S3	Blob storage	Cloud storage	Storage / Data lake
Quicksight	Power BI	Looker, Data Studio	Visualization

Confluent | Conduktor | Redpanda

Kafka

Confluent | Conduktor | Redpanda

Ververica | Aiven

Kafka

Flink

Note: arbitrary incomplete list

Confluent | Conduktor | Redpanda

Ververica | Aiven

Fivetran | Talend | Hevo | Matillion | ...

Kafka

Flink

ETL

Note: arbitrary incomplete list

Confluent | Conduktor | Redpanda

Ververica | Aiven

Fivetran | Talend | Hevo | Matillion | ...

Databricks | Cloudera

Kafka

Flink

ETL

Managed open-source (Hadoop)

- - - - -

Confluent | Conduktor | Redpanda

Ververica | Aiven

Fivetran | Talend | Hevo | Matillion | ...

Databricks | Cloudera

Snowflake | Vertica | Databricks

Kafka

Flink

ETL

Managed open-source (Hadoop)

Data warehouse

- - - - -

Confluent | Conduktor | Redpanda

Ververica | Aiven

Fivetran | Talend | Hevo | Matillion | ...

Databricks | Cloudera

Snowflake | Vertica | Databricks

Databricks | Snowflake

Kafka

Flink

ETL

Managed open-source (Hadoop)

Data warehouse

Storage / Data lake

- - - - -

Confluent | Conduktor | Redpanda

Ververica | Aiven

Fivetran | Talend | Hevo | Matillion | ...

Databricks | Cloudera

Snowflake | Vertica | Databricks

Databricks | Snowflake

Qlik | Tableau

Kafka

Flink

ETL

Managed open-source (Hadoop)

Data warehouse

Storage / Data lake

Visualization

Community/trial versions to try out

- https://confluent.cloud/signup
 - 60 days
- https://databricks.com/try-databricks
 - Free (forever?)
- https://www.ververica.com/getting-started
 - Free, need to install on K8s cluster

Flink

Streaming Dataflow

Stateful streaming

One individual event at a time (for example an event parser)

Vs

• Remember information across multiple events (for example window operators). = **stateful**

Examples of stateful operations:

- When an application searches for certain event patterns, the state will store the sequence of events encountered so far.
- When aggregating events per minute/hour/day, the state holds the pending aggregates.
- When training a machine learning model over a stream of data points, the state holds the current version of the model parameters.
- When historic data needs to be managed, the state allows efficient access to events that occurred in the past.

What time is it?

What time is it?

Processing time: system time of the machine that is executing the respective <u>operation</u>.

Event time: the time that each individual event occurred on its <u>producing device</u>.

What time is it?

Windows

```
bidtime | price | item | supplier_id |
          | 2020-04-15 08:05 | 4.00 | C | supplier1
           2020-04-15 08:07 | 2.00 | A | supplier1
          2020-04-15 08:09 | 5.00 | D | supplier2
          2020-04-15 08:11 | 3.00 | B | supplier2
          | 2020-04-15 08:13 | 1.00 | E | supplier1
           2020-04-15 08:17 | 6.00 | F | supplier2
-- cumulative window aggregation
Flink SQL> SELECT window_start, window_end, SUM(price)
 FROM TABLE(
   CUMULATE (TABLE Bid, DESCRIPTOR (bidtime), INTERVAL '2' MINUTES, INTERVAL '10' MINUTES))
 GROUP BY window_start, window_end;
    window_start | window_end | price |
  ------
2020-04-15 08:00 | 2020-04-15 08:06 | 4.00 |
| 2020-04-15 08:00 | 2020-04-15 08:08 | 6.00 |
| 2020-04-15 08:00 | 2020-04-15 08:10 | 11.00 |
| 2020-04-15 08:10 | 2020-04-15 08:12 | 3.00 |
2020-04-15 08:10 | 2020-04-15 08:14 | 4.00 |
2020-04-15 08:10 | 2020-04-15 08:16 | 4.00 |
2020-04-15 08:10 | 2020-04-15 08:18 | 10.00 |
2020-04-15 08:10 | 2020-04-15 08:20 | 10.00 |
```

Flink SQL> SELECT * FROM Bid;

Watermark

• A Watermark(t) declares that event time has reached time t in that stream, meaning that there should be no more elements from the stream with a timestamp t' <= t (i.e. events with timestamps older or equal to the watermark).

Watermark vs window

Watermark	Window
Progress of event time	Logical partition of events
Based on time	Based on time or count
Goal: Determine when is a portion of data processed, Handle out-of-order streams	Goal: Aggregations

Flink architecture

Flink Components

External Components (all optional)

High Availability Service Provider File Storage and Persistency

Resource Provider

Metrics Storage

Application-level data sources and sinks

Flink architecture

Flink Deployment

Application Mode

A dedicated JobManager is started for submitting the job. The JobManager will only execute this job, then exit.

The Flink Application runs on the JobManager.

Session Mode

Multiple jobs share one JobManager.

Stateful Stream Processing

DataStream / DataSet API

Core APIs

Stateful Stream Processing

Table API

Declarative DSL

DataStream / DataSet API

Core APIs

Stateful Stream Processing

SQL

High-level Language

Table API

Declarative DSL

DataStream / DataSet API

Core APIs

Stateful Stream Processing

SQL

High-level Language

SQL

Table API

Declarative DSL

Python + SQL

DataStream / DataSet API

Core APIs

Pandas / PySpark

Stateful Stream Processing

