Institut für Mathematik

Prof. Dr. Hannes Uecker

Klausur "Mathematische Modellierung", 20.7.2010

Aufgabe 1 Betrachte die 1D Iteration $x_{n+1} = f_{\mu}(x_n)$ mit $f_{\mu}(x) = \frac{\mu x^2}{1+x^2}$ für $x \in \mathbb{R}$ mit Parameter $\mu > 0$.

- a) In Abhängigkeit von μ bestimme man alle Fixpunkte. Insbesondere bestimme man $\mu_0 \in \mathbb{R}$, sodaß für $\mu < \mu_0$ genau ein Fixpunkt und für $\mu > \mu_0$ genau drei Fixpunkte vorliegen.
- b) Man bestimme via Linearisierung die Stabilität aller Fixpunkte. Welche Bifurkation findet bei μ_0 statt?
- c) Für $\mu = 5/2$ und $x_0 = 1$ bestimme man das Verhalten von x_n für $n \to \infty$ mittels graphischer Iteration (cobwebbing).

Aufgabe 2 Man zeichne das Phasenporträt für $\ddot{x} = -x + x^3$.

 $\bf Aufgabe~3~$ Man bestimme alle Fixpunkte und ihre Stabilität und skizziere das Phasenporträt für das 2–Spezies–system

$$\dot{x} = x(2-x-y), \quad \dot{y} = y(3-x-2y), \quad x, y \ge 0.$$

Um welchen Typ (PP), (C) oder (S) handelt es sich?

Aufgabe 4 Man skizziere das Phasenporträt für

$$\dot{x} = -\nabla f(x), x \in \mathbb{R}^2$$
, wobei $f(x) = e^{1-x_1^2} + x_1^2 + x_2^2$,

und gebe eine kompakte absorbierende Menge B und den globalen Attraktor $\mathcal{A} = \omega(B)$ an.