Effect of the soil degradation degree on CO₂ emissions in cultivated peatland

Félix L'Heureux Bilodeau; Laval University Jacynthe Dessureault-Rompré; Laval University Alain N. Rousseau; INRS

INTRODUCTION

- In Quebec, a large proportion of vegetables are grown on **cultivated peatland**.
- Drainage of these soils favors peat mineralization, which contribute in part to annual soil losses of 1 to 5 cm and CO₂ emissions. This leads to soil degradation and a significant decrease in agricultural productivity.
- ► Efforts to establish soil conservation strategies require knowledge of the intensity level of CO₂ emissions related to the physicochemical properties of soils.

Objective:

Quantify the carbon loss through mineralization of cultivated peatland and identify the physicochemical parameters that influence CO₂ fluxes.

MATERIALS AND METHODS

- Gas fluxes emitted from the soil were measured using the static chamber-based method from September 2021 to September 2022.
- ► Field experimentation was conducted in cultivated peatland of southwestern Quebec.
- ► Five sites (F1 to F5) were selected based on their organic matter content to represent a wide range of soil degradation levels.
- ► Four of the sites were **bare**, and one site had **miscanthus vegetation** (F3).
- ▲ A characterization of the sites was carried out, and several physicochemical soil properties were measured every 2 or 3 weeks.
- ▲ Losses of carbon through mineralization were converted into a loss of soil height.

Cultivated peatland lose an average of 0.61 cm yr⁻¹ of soil through mineralization of organic matter in the form of CO₂ emissions.

In these soils, total microbial activity
(FDA) could predict soil loss by being correlated with carbon emissions.

RESULTS

Graph 1: Carbon flux as a function of time for the 5 farms

Table 1: Mixed linear regression of the influence of edaphic parameters on temporal carbon fluxes

	Estimated	Std error	Pr(> t)	
(Intercept)	-7.21E-01	5.99E-01	0.23561	
Organic matter	-6.99E-03	4.39E-03	0.12593	
Soil temperature	2.08E-02	6.43E-03	0.00142	**
Soil water content	-1.18E-02	3.14E-03	0.00022	***
Air temperature	2.42E-02	4.20E-03	3.39E-08	***
Labile carbon	9.01E-06	3.75E-06	0.0172	*
N	3.83E-01	1.45E-01	0.00925	**
рН	1.68E-01	7.98E-02	0.04479	*
Electric conductivity	2.45E-04	2.74E-04	0.37351	

CONCLUSIONS

- ► Carbon losses through mineralization of cultivated peatland vary significantly according to edaphic parameters and the presence or absence of vegetation.
- ▲ Annual fluxes vary from 3.2 to 15.3 Mg C-CO₂ ha⁻¹ yr⁻¹.
- ► Considering that organic soils lose an average of 2 cm yr⁻¹ in height, the mineralization of organic matter contributes to 30% of soil losses.
- ▲ Further experiments would enable predictive models to be established to estimate carbon losses at field level as a function of edaphic and meteorological parameters.
- ▲ Knowing the extent of carbon losses will help to find soil conservation strategies, such as replacing carbon loss through the **amendment of carbon-rich biomass.**

ACKNOWLEDGEMENTS

- Jean Caron
- CRSNG
- Diane Bulot
- And all assistants and JDRlab teams