Tutorial 3: Proofs and Rules of Inference

Ahmed Attia Mohamed Salaheldeen

October 2023

Problem 1

Show that the argument form with premises p_1, p_2, \dots, p_n and conclusion $q \to r$ is valid if the argument form with premises p_1, p_2, \dots, p_n, q and conclusion r is valid.

Problem 2

For each of these sets of premises, what relevant conclusion or conclusions can be drawn? Explain the rules of inference used to obtain each conclusion from the premises

- 1. "If I play hockey, then I am sore the next day." "I use the whirlpool if I am sore." "I did not use the whirlpool."
- 2. "All insects have six legs." "Dragonflies are insects." "Spiders do not have six legs." "Spiders eat dragonflies.
- 3. "Every student has an Internet account." "Homer does not have an Internet account." "Maggie has an Internet account."

Problem 3

Determine whether these are valid arguments.

- 1. If x is a positive real number, then x^2 is a positive real number. Therefore, if a^2 is positive, where a is a real number, then a is a positive real number.
- 2. If $x^2 \neq 0$, where x is a real number, then $x \neq 0$. Let a be a real number with $a^2 \neq 0$; then $a \neq 0$.

Problem 4

Use rules of inference to show that if $\forall x (P(x) \to (Q(x) \land S(x)))$ and $\forall x (P(x) \land R(x))$ are true, then $\forall x (R(x) \land S(x))$ is true.

Problem 5

Use rules of inference to show that if $\forall x (P(x) \lor Q(x)), \forall x (\neg Q(x) \lor S(x)), \forall x (R(x) \to \neg S(x)),$ and $\exists x \neg P(x)$ are true, then $\exists x \neg R(x)$ is true

Problem 6

Use a direct proof to show that every odd integer is the difference of two squares.

Problem 7

Prove that if n is a perfect square, then n+2 is not a perfect square

Problem 8

Pove or disprove that the product of two irrational numbers is irrational.

Problem 9

Prove or disprove that the product of a nonzero rational number and an irrational number is irrational.

Problem 10

Prove that if x is irrational, then 1/x is irrational.

Problem 11

Prove that if m and n are integers and mn is even, then m is even or n is even.

Problem 12

Show that if n is an integer and $n^3 + 5$ is odd, then n is even using a) a proof by contraposition. b) a proof by contradiction.

Problem 13

Show that if you pick three socks from a drawer containing just blue socks and black socks, you must get either a pair of blue socks or a pair of black socks

Problem 14

Show that at least ten of any 64 days chosen must fall on the same day of the week.

Problem 15

Use a proof by contradiction to show that there is no rational number r for which $r^3 + r + 1 = 0$.

Problem 16

Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd.