Homomorphe Verschlüsselung

Definition Homomorphe Verschlüsselung

Sei Π ein Verschlüsselungsverfahren mit $Enc: G \to G'$ für Gruppen G, G'. Π heißt homomorph, falls $Enc(m_1) \circ_{G'} Enc(m_2)$ eine gültige Verschlüsselung von $m_1 \circ_G m_2$ für alle $m_1, m_2 \in G$ ist.

Bsp:

- Textbook-RSA mit $Enc: (\mathbb{Z}_N^*, \cdot) \to (\mathbb{Z}_N^*, \cdot)$ und $m_1^e \cdot m_2^e = (m_1 \cdot m_2)^e \bmod N.$
- **EIGamal** mit $Enc: (\mathbb{Z}_p^*, \cdot) \to (\mathbb{Z}_p^*, \cdot) \times (\mathbb{Z}_p^*, \cdot)$ und $(g^{y_1}, h^{y_1}m_1) \cdot (g^{y_2}, h^{y_2}m_2) = (g^{y_1+y_2}, h^{y_1+y_2}m_1m_2).$ Hier ist $\circ_{G'}$ die komponentenweise Multiplikation in $\mathbb{Z}_p^* \times \mathbb{Z}_p^*$.
- Goldwasser-Micali mit $Enc: (\mathbb{Z}_2,+) \to (\mathbb{Z}_N^*,\cdot)$ und $z^{m_1}x_1^2 \cdot z^{m_2}x_2^2 = z^{m_1+m_2 \bmod 2}(x_1x_2)^2 \bmod N.$

E-voting mit Paillier

• Paillier mit $Enc: (\mathbb{Z}_N, +) \to (\mathbb{Z}_{N^2}^*, \cdot)$ und $(1+N)^{m_1}r_1^N \cdot (1+N)^{m_2}r_2^N = (1+N)^{m_1+m_2 \mod N}(r_1r_2)^N \mod N^2.$ Vorteil: $G = (\mathbb{Z}_N, +)$ ist additiv und groß.

Algorithmus E-voting mit Paillier

- Wahlleiter generiert öffentlichen RSA-Modul N = pq.
- Wähler $i \in [n]$ mit n < N wählt $v_i = 0$ für NEIN, $v_i = 1$ für JA und sendet an alle anderen Wähler $c_i = (1 + N)^{v_i} r_i^N \mod N^2$.
- Wähler aggregieren $c := \prod_{i=1}^{n} c_i \mod N^2$.
- Wahlleiter erhält c und veröffentlicht $Dec(c) = \sum_{i=1}^{n} v_i$.

Eigenschaften: (falls alle Parteien sich an das Protokoll halten)

- Wahlleiter erhält *c*, ohne die einzelnen *c*_i kennenzulernen.
- Kein Wähler erhält Informationen über die v_i anderer Wähler.
- Berechnung von c ist öffentlich verifizierbar.

Voll homomorphe Verschlüsselung

Definition Voll homomorphe Verschlüsselung

Sei Π ein Verschlüsselungsverfahren mit $Enc: R \to R'$ für Ringe R, R'. Π heißt voll homomorph, falls

- $Enc(m_1) + Enc(m_2)$ eine gültige Verschlüsselung von $m_1 + m_2$
- ② $Enc(m_1) \cdot Enc(m_2)$ eine gültige Verschlüsselung von $m_1 \cdot m_2$ für alle $m_1, m_2 \in R$ ist.

Anwendung: Cloud Computing

- Sende verschlüsselt Algorithmus A, Eingabe x an einen Server S.
- S berechnet daraus die verschlüsselte Ausgabe Enc(A(x)).
- Erlaubt Auslagern von Berechnungen an S.
- S lernt nichts über das Programm A oder die Eingabe x.

Erste voll homomorphe Verschlüsselung:

Gentry Verfahren (2009), basierend auf Problemen der Gittertheorie.

CCA-sichere Verschlüsselung in der Praxis

PKCS #1 Standard für RSA Verschlüsselung

- Textbook RSA ist nicht CCA sicher.
- **PKCS #1:** Benutze invertierbare Padding Funktion F(m, r) und definiere Chiffretext $c = F(m, r)^e \mod N$ für zufälliges r.
- PKCS #1 Version 1.5 (1991):

$$F(m,r) = 00000000||00000011||r||00000000||m.$$

Ist nicht CCA-sicher (Bleichenbacher Angriff, 1998).

 PKCS #1 Version 2.0 (1998): RSA Optimal Asymmetric Encryption Padding (RSA-OAEP).

$$F(m,r) = F_{G,H}(m||0^{k_1}||r),$$

wobei $F_{G,H}$ ein zwei Runden Feistel Netzwerk mit den Rundenfunktionen G und H ist.

RSA-OAEP

Sei $n = \lfloor \log_2(N) \rfloor$ und $k_0, k_1 = \lfloor n/8 \rfloor$. Seien $G : \{0, 1\}^{k_0} \to \{0, 1\}^{n-k_0}$ Hashfunktionen. Sei $F_{G,H}$ ein zwei Runden Feistel Netzwerk.

Algorithmus RSA OAEP Verschlüsselung

- **1 Gen:** $(N, e, d) \leftarrow GenRSA(1^n)$. pk = (N, e, G, H), sk = (N, d)
- **2 Enc:** Für $m \in \{0,1\}^{n-k_0-k_1}$ setze $m' := m||0^{k_1}$, wähle $r \in_R \{0,1\}^{k_0}$ und berechne $s||t := F_{G,H}(m'||r) \in \mathbb{Z}_N$. Der Chiffretext is $c = (s||t)^e \mod N$.
- **3 Dec:** Berechne $(s||t) = c^d \mod N$ und $(m'||r) = F_{G,H}^{-1}(s||t)$.

Ausgabe
$$\begin{cases} m & \text{falls } m' = m | |0^{k_1}| \\ \bot & \text{sonst} \end{cases}.$$

Satz (ohne Beweis). Unter der RSA Annahme ist RSA-OAEP CCA-sicher im random oracle Modell.

Digitale Signaturen

Funktionsweise von digitalen Signaturen:

- Schlüsselgenerierung erzeugt pk, sk.
- Signieren ist Funktion von sk.
- Verifikation ist Funktion von pk.

Idee: Es soll unmöglich sein, ein gültiges Paar von Nachricht m mit zugehöriger Signatur σ zu erzeugen, ohne sk zu kennen.

Eigenschaften digitaler Signaturen.

- Integrität: m kann nicht verändert werden, da man keine gültige Signatur zu einem $m' \neq m$ erstellen kann.
- Authentizität: Falls σ ein gültige Signatur zu m ist, so kommt die Signatur vom Besitzer des sk.
- Transferierbarkeit: Jeder kann die Gültigkeit von (m, σ) überprüfen. Insbesondere kann (m, σ) weitergereicht werden.
- Nicht-Abstreitbarkeit: Signierer kann nicht behaupten, dass eine andere Person eine gültige Signatur erzeugt hat.

Definition Signaturverfahren

Definition Signaturverfahren

Ein Signaturverfahren ist ein 3-Tupel (Gen, Sign, Vrfy) von ppt Alg mit

- **1 Gen:** $(pk, sk) \leftarrow Gen(1^n)$.
- **Sign:** Für eine Nachricht $m \in \{0, 1\}^*$ berechne $\sigma \leftarrow Sign_{sk}(m)$.

(Sign kann probabilistisch sein.)

3 Vrfy: Für ein Tupel (m, σ) berechne

$$Vrfy_{pk}(m, \sigma) := \begin{cases} 1 & \text{falls } \sigma \text{ gültig ist für } m. \\ 0 & \text{sonst} \end{cases}$$

Korrektheit: Für alle $n \in \mathbb{N}$, $(pk, sk) \leftarrow Gen(1^n)$, $m \in \{0, 1\}^*$, $\sigma \leftarrow Sign_{sk}(m)$ gilt: $Vrfy_{pk}(m, \sigma) = 1$.

Unfälschbarkeit von Signaturen

Spiel CMA-Spiel $Forge_{A,\Pi}(n)$

Sei Π ein Signaturverfahren mit Angreifer A.

- ② $(m, \sigma) \leftarrow \mathcal{A}^{Sign_{sk}(\cdot)}(pk)$, wobei $Sign_{sk}(\cdot)$ ein Signierorakel für beliebige Nachrichten $m' \neq m$ ist.
- **3** $Forge_{A,\Pi}(n) = \begin{cases} 1 & \text{falls } Vrfy_{pk}(m,\sigma) = 1, Sign_{sk}(m) \text{ nicht angefragt} \\ 0 & \text{sonst} \end{cases}$

Definition CMA-Sicherheit

Sei Π ein Signaturverfahren. Π heißt *existentiell unfälschbar* unter *Chosen Message Angriffen (oder kurz CMA-sicher)*, falls für alle ppt Angreifer $\mathcal A$ gilt

$$\operatorname{Ws}[Forge_{\mathcal{A},\Pi}(n)=1] \leq \operatorname{negl}(n).$$

CMA Spiel Forge

Unsicherheit von Textbook RSA Signaturen

Algorithmus Textbook RSA Signaturen

- **1 Gen:** $(N, e, d) \leftarrow GenRSA(1^n)$. Setze pk = (N, e), sk = (N, d).
- **2** Sign: Für $m \in \mathbb{Z}_N$ berechne $\sigma = m^d \mod N$.
- **3 Vrfy:** Für $(m, \sigma) \in \mathbb{Z}_N \times \mathbb{Z}_N$ Ausgabe $\begin{cases} 1 & \text{falls } \sigma^e \stackrel{?}{=} m \mod N \\ 0 & \text{sonst} \end{cases}$.

Unsicherheit: gegenüber CMA-Angriffen

- Wähle beliebiges $\sigma \in \mathbb{Z}_N$. Berechne $m := \sigma^e \mod N$.
- Offenbar ist σ eine gültige Signatur für m.
- Angreifer besitzt keine Kontrolle über *m* (existentielle Fälschung).

Fälschen einer Signatur für ein gewähltes $m \in \mathbb{Z}_N$:

- Wähle $m_1 \in_R \mathbb{Z}_N^* \setminus \{1, m\}$. Berechne $m_2 = \frac{m}{m} \mod N$.
- Lasse m_1, m_2 vom Orakel $Sign_{sk}(\cdot)$ unterschreiben.
- Seien σ_1, σ_2 die Signaturen. Dann ist $\sigma = \sigma_1 \cdot \sigma_2 = m_1^d \cdot m_2^d = (m_1 m_2)^d = m^d \mod N$ gültig für m.

Erinnerung: Hashfunktionen und Kollisionen

Definition Hashfunktion

Eine *Hashfunktion* ist ein Paar (*Gen*, *H*) von pt Algorithmen mit

- **10 Gen:** $s \leftarrow Gen(1^n)$. *Gen* ist probabilistisch.
- **4 H:** Für einen Index s und ein Argument $x \in \{0, 1\}^*$ berechne $H_s(x)$, wobei $H_s: \{0, 1\}^* \to \{0, 1\}^n, x \mapsto H_s(x)$.

Spiel $HashColl_{A,\Pi}(n)$

- \bullet $s \leftarrow Gen(1^n)$
- $(x,x') \leftarrow \mathcal{A}(s)$

Kollisionsresistente Hashfunktionen

Definition Kollisionsresistenz

Eine Hashfunktion Π heißt *kollisionsresistent* (CR), falls für alle ppt \mathcal{A} gilt $\operatorname{Ws}[HashColl_{\mathcal{A},\Pi}(n)=1] \leq \operatorname{negl}(n)$.

Hashed RSA

Algorithmus Hashed RSA

- **Gen:** $(N, e, d) \leftarrow GenRSA(1^n)$, $s \leftarrow GenHash(1^n)$ mit $H_s: \{0, 1\}^* \rightarrow \mathbb{Z}_N$. Ausgabe pk = (N, e, H), sk = (N, d, H).
- **2** Sign: Für $m \in \{0,1\}^*$ berechne $\sigma = H_s(m)^d \mod N$.
- **Vrfy:** Für $(m, \sigma) \in \{0, 1\}^* \times \mathbb{Z}_N$ Ausgabe 1 gdw $\sigma^e \stackrel{?}{=} H_s(m) \bmod N$.

Einfacher Angriff:

- Sei $m_1 \neq m_2$ eine Kollision für H ist, d.h. $H(m_1) = H(m_2)$.
- Frage (m_1, σ) an. Dann ist (m_2, σ) eine gültige Fälschung.
- D.h. wir benötigen für *H* Kollisionsresistenz.

Anmerkung: Sicherheit gegen unsere Angriffe für Textbook RSA

- **1** Wähle $\sigma \in \mathbb{Z}_N$, berechne σ^e . Müssen $m \in H^{-1}(\sigma^e)$ bestimmen. Aber: Urbildbestimmung ist schwer für kollisionsresistentes H.
- ② CR ist aber nicht ausreichend da es Hashfunktionen H gibt, die CR und homomorph $(H(m) = H(m_1) \cdot H(m_2) \text{ in } \mathbb{Z}_N^*)$ sind.