DSP First, 2/e

Lecture 23
Frequency Response,
H(z), Poles and Zeros
for IIR and FIR Systems

READING ASSIGNMENTS

- This Lecture:
 - Chapter 9, Sects. 9-5 and 9-6
 - Chapter 10, Sects. 10-5 and 10-7

LECTURE OBJECTIVES

- ZEROS and POLES
- Relate H(z) to FREQUENCY RESPONSE

$$H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\hat{\omega}}}$$

- Four demos: PeZ, 3-Domain movies
 - Placing Poles and Zeros
- Bandpass Filters: IIR
- Nulling Filters: FIR Notch Filters: IIR

THREE DOMAINS: $H(e^{j\hat{\omega}})$

$$y[n] = a_1 y[n-1] + b_0 x[n] + b_1 x[n-1]$$

Impulse response, h[n]

$$H(e^{j\hat{\omega}}) = \frac{b_0 + b_1 e^{-j\hat{\omega}}}{1 - a_1 e^{-j\hat{\omega}}}$$

Motivation: Filter Design

- Some tasks/analysis easier in one domain
 - Freq domain: system response to sinusoids
 - Time domain: calculate output to any signal
 - Z-domain: given specs, build a filter
- Can we design a filter that removes DC and sinusoids at frequency $\hat{\omega} = \pi/3$?
- Z-domain reduces this to polynomial roots

H(z) = Rational Function

First Order:

$$H(z) = \frac{b_0 + b_1 z^{-1}}{1 - a_1 z^{-1}}$$

We can also study Second-Order Systems:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 - a_1 z^{-1} - a_2 z^{-2}} = \frac{B(z)}{A(z)}$$

Numerator & Denominator Polynomials

POLES & ZEROS of H(z)

- Zeros of H(z), i.e., where is H(z)=0?
 - Look for Roots of Numerator Polynomial

$$H(z) = \frac{B(z)}{A(z)}$$
, so $B(z_0) = 0 \Rightarrow H(z_0) = 0$
if $A(z_0) \neq 0$

- Poles of H(z), i.e., where is H(z)=infinity?
 - Look for Roots of Denominator Polynomial

$$H(z) = \frac{B(z)}{A(z)}$$
, so $A(z_0) = 0 \Rightarrow H(z_0) \rightarrow \infty$
if $B(z_0) \neq 0$

Poles/Zeros of 1st-order H(z)

Roots of Numerator & Denominator Polys:

$$H(z) = \frac{1 + b_1 z^{-1}}{1 - 0.8 z^{-1}}$$

$$H(z) = \frac{z(1+b_1z^{-1})}{z(1-0.8z^{-1})} = \frac{z+b_1}{z-0.8}$$

Pole at: z = 0.8 Zero at: $z = -b_1$

PHASE from 3-D PLOT

FREQ. RESPONSE from H(z)

$$H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\hat{\omega}}}$$

- Relate H(z) to FREQUENCY RESPONSE
- EVALUATE H(z) on the <u>UNIT CIRCLE</u>
 - ANGLE is same as FREQUENCY

$$z = e^{j\hat{\omega}}$$
 (as $\hat{\omega}$ varies)
defines a CIRCLE, radius = 1

UNIT CIRCLE: RECAP

- MAPPING BETWEEN z and $\hat{\omega}$

$$z = e^{j\hat{\omega}}$$

$$z = 1 \quad \leftrightarrow \quad \hat{\omega} = 0$$

$$z = -1 \quad \leftrightarrow \quad \hat{\omega} = \pm \pi$$

$$z = \pm j \quad \leftrightarrow \quad \hat{\omega} = \pm \frac{1}{2}\pi$$

Frequency Response from poles and zeros

$$|H(e^{j\hat{\omega}})| = G \frac{|e^{j\hat{\omega}} - z_1| |e^{j\hat{\omega}} - z_2|}{|e^{j\hat{\omega}} - p_1| |e^{j\hat{\omega}} - p_2|}$$

$$|H(e^{j\hat{\omega}})| = G \frac{\overline{Z_1 Z} \cdot \overline{Z_2 Z}}{\overline{P_1 Z} \cdot \overline{P_2 Z}}$$

$$H(z) = G \frac{(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)}$$

IIR H(z) example: two poles

Poles just inside the unit circle (for stability)

$$H(z) = \frac{1}{1 + 0.97z^{-1} + 0.9409z^{-2}}$$

2 Poles :
$$z = 0.97e^{\pm j2\pi/3}$$
 | 2 Zeros : $z = 0.0$

2 Zeros :
$$z = 0.0$$

- MATLAB: roots () and poly ()
 - roots([1, 0.97, 0.9409])
 - -poly(0.97*exp(j*2*pi*[1,-1]/3))

MOVIE for H(z) in 3-D

- POLES to H(z) to Frequency Reponse
 - TWO POLES SHOWN

Frequency Response from H(z)

Walking around the Unit Circle

THREE DOMAINS: $H(e^{j\hat{\omega}})$

$$y[n] = a_1 y[n-1] + b_0 x[n] + b_1 x[n-1]$$

Impulse response, h[n]

$$H(e^{j\hat{\omega}}) = \frac{b_0 + b_1 e^{-j\hat{\omega}}}{1 - a_1 e^{-j\hat{\omega}}}$$

3 DOMAINS MOVIE: FIR

3 DOMAINS MOVIE: IIR

7 IIR MOVIES @ WEBSITE

- http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
- 3 DOMAINS MOVIES: <u>IIR</u> Filters
 - One pole moving and a zero at the origin
 - One pole and one zero; both moving
 - Two complex-conjugate poles moving radially
 - Two complex-conjugate poles moving in angle
 - Movement of a zero in a two-pole Filter
 - Radial Movement of Two out of Four Poles
 - Angular Movement of Two out of Four Poles

Reminder: 4 FIR MOVIES @ WEBSITE

- http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
- 3 DOMAINS MOVIES: <u>FIR</u> Filters
 - Two zeros moving around UC and inside
 - Three zeros; one held fixed at z = -1
 - Ten zeros; 9 equally spaced around UC; one moving
 - Ten zeros; 8 equally spaced around UC; two moving

Remove Interference

- Design a NOTCH filter (Find a_k and b_k)
 - To Reject completely 0.7π
 - This is NULLING
 - Zeros on UC

2 Zeros :
$$z = e^{\pm j0.7\pi}$$

- Make the frequency response magnitude FLAT away from the notch. 2 Poles : $z = 0.97e^{\pm j0.7\pi}$
 - Use poles at the <u>same angle</u>
- Z-POLYNOMIALS provide the TOOLS
 - PEZDEMO GUI

PeZ Demo: Pole-Zero Placing

Complex POLE-ZERO PLOT

$$H(z) = \frac{1 - 0.45z^{-1}}{1 - 0.9z^{-1} + 0.81z^{-2}}$$

h[n]: Decays & Oscillates

3 DOMAINS MOVIE: IIR

SINUSOIDAL RESPONSE

- x[n] = SINUSOID => y[n] is SINUSOID
- Get MAGNITUDE & PHASE from H(z)

if
$$x[n] = e^{j\hat{\omega}n}$$

then $y[n] = H(e^{j\hat{\omega}})e^{j\hat{\omega}n}$
where $H(e^{j\hat{\omega}}) = H(z)|_{z=e^{j\hat{\omega}}}$

POP QUIZ

Given:

$$H(z) = \frac{2 + 2z^{-1}}{1 - 0.8z^{-1}}$$

- Find the Impulse Response, h[n]
- Find the output, y[n]

When
$$x[n] = \cos(0.25\pi n)$$

Evaluate FREQ. RESPONSE

POP QUIZ: Eval Freq. Resp.

Given:
$$H(z) = \frac{2 + 2z^{-1}}{1 - 0.8z^{-1}}$$

Find output, y[n], when $x[n] = \cos(0.25\pi n)$

$$x[n] = \cos(0.25\pi n)$$

• Evaluate at
$$z = e^{j0.25\pi}$$

$$H(z) = \frac{2 + 2(\frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2})}{1 - 0.8e^{-j0.25\pi}} = 5.182e^{-j1.309}$$

$$y[n] = 5.182\cos(0.25\pi n - 0.417\pi)$$