1

SUPPLEMENTARY MATERIAL

This document contains the supplementary material related to SofToss: Learning to Throw Objects with a soft robot.

A. Tables

Table SI

Neural network training. Here are collected the different hyperparameters changed and fixed in the training of the direct model of the task and the actuation network in the two distinguished actuation scenarios.

Direct model of the task											
Default values											
learning rate 0.001 Optimiser Adam											
batch's size	16	Loss fui	nction	MSE							
number of epochs	4000	Training/tes	partition	0.95							
Best combination of the changed parameters											
Hyperparameter Partial Actuation Complete actuation											
Number of units		64	64								
Activation function		ReLU	eLU								
Normalisation	R	Rescaling	Z-s	core							
	Actuation network										
	De	fault values									
learning rate	0.001	Optim	iser	Adam							
batch's size	32	Loss fui	nction	MSE							
number of epochs	500	Training/tes	partition	0.9							
Best com	bination	of the change	d parameters	3							
Hyperparameter	Parti	al Actuation	Complete	actuation							
Number of units		128	1	28							
Activation function		ReLU	Re	:LU							

Table SII

Qualitative analysis of the video recorded related to Deep reinforcement learning controller in the complete actuation scenario. All the recordings of the throws are reported in the supplementary material (Data file). We have considered the following four states of the object:

(E) Enter; (BI) Bounced-in; (BO) Bounced-out; (O) out.

	Deep r	einforc	ement	learni	ng con	troller	- comp	lete ac	tuation	scena	rio		
Т	Tossed object												
Target	P	ingPon	g		Lemon	l	·	Marker	•		Tomato)	
A	О	О	О	О	О	О	О	О	О	О	О	О	
В	ВО	BO	O	BO	BO	BO	Е	E	Е	Е	E	Е	
C	О	O	O	О	E	O	BI	Е	Е	BI	BI	BI	
D	Е	Е	E	Е	E	E	О	O	O	BI	BO	BI	
E	Е	E	E	BI	BI	E	BI	BI	BI	BO	BO	BO	
F	ВО	BO	BI	ВО	BI	BI	ВО	BO	O	ВО	BI	BO	
G	Е	E	E	Е	E	E	Е	E	E	Е	E	E	
Н	ВО	ВО	BO	Е	E	E	Е	E	E	Е	E	Е	
I	ВО	BI	BI	Е	E	E	О	O	E	Е	E	Е	
L	Е	E	E	Е	E	E	Е	BI	BO	ВО	BI	BI	
$\sum \mathbf{E}$		12			17			13			12		
∑ BI		3			4			5		8			
∑ BO		8		4			3			7			
\sum o		7			5		9			3			

Table SIII

Qualitative analysis of the video recorded related to Deep reinforcement learning controller in the partial actuation scenario. All the recordings of the throws are reported in the supplementary material (Data file). We have considered the following four states of the object:

(E) enter; (BI) bounced-in; (BO) bounced-out; (O) out.

I	Deep reinforcement learning controller - partial actuation scenario											
Towast						Tossed	d objec	t				
Target		PingPo	ng		Lemor	ı		Marker	•	Tomato		
A	Е	Е	Е	Е	Е	Е	Е	Е	О	BI	BI	Е
В	E	BO	Е	Е	E	Е	Е	E	Е	BI	BO	Е
C	О	BO	O	Е	E	Е	ВО	BI	BI	BI	BO	O
D	O	O	O	О	O	O	О	E	E	E	E	E
E	Е	O	BO	Е	E	E	BO	BO	BO	BI	E	BI
F	Е	E	BO	Е	BI	BI	О	O	O	BI	BO	BI
G	Е	E	E	Е	E	E	Е	E	E	E	E	E
Н	Е	E	E	Е	E	E	О	O	O	BI	BI	BI
I	Е	E	E	ВО	BI	BO	О	O	O	О	BO	BO
L	Е	E	E	ВО	BI	ВО	О	O	O	BI	BO	BO
$\sum \mathbf{E}$		20			19			10			9	
∑ BI		0			4			2			12	
∑ BO		4		4		4			7			
\sum O		6			3			14			2	

Table SIV

Qualitative analysis of the video recorded related to non-real-time controller in the complete actuation scenario. All the recordings of the throws are reported in the supplementary material (Data file). We have considered the following four states of the object: (E) enter; (BI) bounced-in; (BO) bounced-out; (O) out.

	Ор	timisat	ion ba	sed co	ntrollei	· - com	plete a	ectuat	ion sce	enario		
Target		Tossed object										
	P	PingPon	g		Lemon		1	Marke	r		Tomato)
A	E	Е	Е	Е	E	Е	E	Е	Е	BI	BI	BI
В	E	E	E	Е	E	E	E	E	E	Е	E	BI
C	BO	BO	BO	Е	E	Е	E	E	Е	BI	BI	E
D	О	BO	O	ВО	BO	BO	Е	E	Е	Е	E	BI
E	E	E	E	Е	E	E	E	Е	E	BI	E	E
F	E	E	BO	BI	BO	BO	ВО	O	BO	BO	BO	BI
G	E	E	E	Е	E	E	Е	E	E	Е	E	E
Н	E	E	E	Е	E	E	Е	E	E	ВО	BI	BI
I	E	E	E	ВО	BO	E	О	O	O	BI	BI	BO
L	во	BO	во	Е	E	E	Е	E	E	ВО	BI	BI
$\sum \mathbf{E}$		20			22			24			10	
∑ BI		0			1			0		15		
∑ BO		8		7			2			5		
\sum O		2			0			4			0	

Table SV

Quantitative analysis of the trajectories recorded related to Deep reinforcement learning controller in the complete actuation scenario. THANKS TO THE VICON SYSTEM WE RECORDED THE TRAJECTORIES OF THE OBJECT IN THE DIFFERENT TRIALS. EACH VALUE REPRESENTS THE AVERAGE OF THE DISTANCES, IN MILLIMETERS, FROM THE CENTER OF THE BOX SELECTED AS A TARGET, IN THE THREE TRIALS PERFORMED.

Deep re	einforcement	learning		complete actuation scenario
Target			Tossed ob	ject
Target	PingPong	Lemon	Marker	Tomato
A	179.27	139.67	122.36	87.94
В	92.72	67.41	30.43	38.02
C	47.63	61.54	63.50	61.52
D	47.70	66.56	81.69	63.36
E	50.12	69.49	68.26	71.15
F	111.49	128.45	119.22	144.12
G	32.99	39.26	36.01	46.08
Н	41.38	49.81	30.78	52.27
I	97.23	9.35	37.66	53.75
L	51.73	36.13	62.42	41.61

Table SVI

Quantitative analysis of the trajectories recorded related to Deep reinforcement learning controller in the partial actuation scenario. Thanks to the VICON system we recorded the trajectories of the object in the different trials. Each value represents the average of the distances, in millimeters, from the center of the box selected as a target, in the three trials performed.

Deep re	einforcement	learning	controller ·	- partial actuation scenario
Tomost			Tossed o	bject
Target	PingPong	Lemon	Marker	Tomato
A	42.99	24.89	35.61	31.34
В	42.22	15.89	19.95	24.19
C	31.78	25.11	46.84	67.75
D	105.00	99.31	86.50	72.33
E	68.50	60.94	45.42	58.45
F	72.82	108.87	90.78	112.45
G	22.80	58.85	45.43	70.70
Н	35.22	83.39	53.59	94.81
I	37.31	95.32	95.30	95.77
L	62.31	65.24	84.22	79.25

Table SVII

Quantitative analysis of the trajectories recorded related to Optimization-based controller in the complete actuation scenario. Thanks to the VICON SYSTEM WE RECORDED THE TRAJECTORIES OF THE OBJECT IN THE DIFFERENT TRIALS. EACH VALUE REPRESENTS THE AVERAGE OF THE DISTANCES, IN MILLIMETERS, FROM THE CENTER OF THE BOX SELECTED AS A TARGET, IN THE THREE TRIALS PERFORMED.

Non-rea	al-time contr		•	ition scena
Target		Toss	ed object	
raiget	PingPong	Lemon	Marker	Tomato
A	80.99	46.31	45.73	39.92
В	66.24	51.37	29.97	32.76
C	44.02	48.15	36.34	95.66
D	130.04	75.59	76.10	58.40
E	52.81	38.74	38.80	43.79
F	111.80	135.28	119.18	147.09
G	62.93	55.88	42.64	74.09
H	24.15	85.46	49.70	52.46
I	81.22	75.70	98.33	93.06
L	77.15	17.37	38.59	32.76

Table SVIII

Errors of the RL agent in the direct model. DISTANCE IN MILLIMETERS OF THE LANDING POSITIONS ASSOCIATED WITH THE ACTUATION PATTERNS IDENTIFIED BY THE REINFORCEMENT LEARNING AGENT AND THE RESPECTIVE TARGETS.

Landir	ng position errors i	in the Direct Model
Target	Partial actuation	Complete actuation
A	12.38	42.29
В	27.32	20.30
C	20.13	19.07
D	29.49	39.76
E	35.16	37.33
F	28.96	27.16
G	28.07	49.50
Н	48.18	24.72
I	2.43	19.17
L	11.74	26.23

Table SIX

Comparison of RL agents in object-specific direct models. Analysis of the reinforcement learning (RL) agents within the context of object-specific direct models. The performance of these agents is evaluated on the minimum, average, and maximum distances (in millimeters) of the landing positions achieved by the corresponding actuation patterns. The RL agents' policies are trained and tested using the environment built upon the object-specific direct model.

Scenario Partial					Complete			
Object	Average	Lemon	PingPong	Marker	Average	Lemon	PingPong	Marker
Min	2.43	15.96	13.48	14.45	19.07	4.23	6.14	1.84
Average	24.38	26.50	23.53	25.21	30.55	21.17	22.61	19.90
Max	48.18	43.36	48.12	42.84	49.50	40.34	40.64	34.86