5

10

15

30

35

CLAIMS

- 1. An oligonucleotide comprising at least one internucleotide phosphorus atom protected with a group of formula -X^aSiR³R⁴R⁵ wherein X^a represent O or S, and R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more.
- 2. An oligonucleotide according to claim 1, wherein the group of formula -X^aSiR³R⁴R⁵ is a tert-butyldimethylsilyloxy group.
- 3. An oligonucleotide according to either of claims 1 and 2, wherein a single group of formula $-X^aSiR^3R^4R^5$ is located at the terminal internucleotide linkage.
- 4. An oligonucleotide according to claim 1, having the Formula (1):

 $R^{1}-X^{1}$ $X^{2}=P-X^{a}-SiR^{3}R^{4}R^{5}$ $X^{4}-R^{2}$

Formula (1)

wherein:

20 R¹ and R² independently are nucleoside, nucleotide or oligonucleotide moieties;

R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more;

X^a represents O or S, preferably O;

X¹ and X⁴ are each independently -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ 25 alkyl, preferably both of X¹ and X⁴ being O; and X² is O or S, preferably S.

- 5. An oligonucleotide according to claim 4, wherein X^1 , X^a and X^4 are each O, and one of R^3 , R^4 and R^5 represents a tert-butyl group, with the others representing methyl groups.
- 6. An oligonucleotide according to either of claims 4 and 5, wherein R^1 is a nucleotide substituted at the 3'-position by X^1 , and R^2 represents an oligonucleotide substituted at the 5'-position by X^4 .
- 7. An oligonucleotide according to claim 4, of Formula (2):

Formula (2)

wherein:

25

5 X^a for each occurrence is independently -O- or S-;

 X^1 and X^4 are, independently, -O-, -CH₂-, -S- or NRⁿ, where Rⁿ represents H or C₁₋₄ alkyl;

X² for each occurrence is O or S;

 X^3 for each occurrence is, independently, -O-, -S-, -CH₂-, or -(CH₂)₂-;

R⁶ is H, an alcohol protecting group, an amino protecting group or a thio protecting group;

10 R⁷ for each occurrence is, independently, -H, -F -OR⁸, -NR⁹R¹⁰, -SR¹¹, or a substituted or unsubstituted aliphatic group, such as methyl or allyl;

 R^8 for each occurrence is, independently, -H, a substituted or unsubstituted aliphatic group (e.g., methyl, ethyl, methoxyethyl or allyl), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl, an alcohol protecting group, or -(CH_2)_q-NR^xR^y;

15 R⁹ and R¹⁰ for each occurrence are each, independently, -H, a substituted or unsubstituted aliphatic group, or an amine protecting group, or R⁹ and R¹⁰ taken together with the nitrogen to which they are attached are a heterocyclyl group;

R¹¹ for each occurrence is, independently, -H, a substituted or unsubstituted aliphatic group, or a thio protecting group;

R¹² for each occurrence is, independently, a phosphorus protecting group, provided that at least one R¹² represents a group of formula -SiR³R⁴R⁵, in which R³, R⁴ and R⁵ are as previously defined;

R¹³ is for each occurrence is, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group;

 R^{14} is H a hydroxy protecting group, a thio protecting group, an amino protecting group, -(CH₂)_q-NR^xR^y, a solid support, or a cleavable linker attached to a solid support;

R^x and R^y are each, independently, -H, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted aliphatic

group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted heteroaralkyl group or an amine protecting group, or, R^x and R^y taken together with the nitrogen to which they are attached form a heterocyclyl group;

q is an integer from 1 to about 6;

- B is -H, a natural or unnatural nucleobase, or a protected natural or unnatural nucleobase; and n is a positive integer.
- 8. An oligonucleotide according to claim 7, wherein each X¹, X³ and X⁴ are O; R⁶ is H or an alcohol protecting group; R⁷ is H, F, OCH₃, OCH₂CH₂OCH₃ or O-protecting group; R¹² is -CH₂CH₂CN or tert-butyldimethylsilyl, provided at least one R¹² is tert-butyldimethylsilyl; R¹⁴ is H or a cleavable linker attached to a solid support, and n is from 8 to 40.
- 15 9. A process for the preparation of a compound of Formula (1) as defined in claim 4, which comprises oxidising or sulfurising a compound of Formula (3):

$$R^{1}-X^{1}$$
 $P-X^{a}-SiR^{3}R^{4}R^{5}$
 $X^{4}-R^{2}$

20

Formula (3)

wherein R^1 , R^2 , R^3 , R^4 , R^5 , X^a , X^1 and X^4 are as defined in claim 4.

10. A compound of Formula (3):

25

Formula (3)

- 30 wherein R¹, R², R³, R⁴, R⁵, X^a, X¹ and X⁴ are as defined in claim 4.
 - 11. A compound of Formula (4):

5

20

25

30

R^{1} - X^{1} - $P(NR^{17}R^{18})$ - X^{8} - $SiR^{3}R^{4}R^{5}$

wherein R¹, R³, R⁴, R⁵, X^a and X¹ are as defined in claim 4, and R¹⁷ and R¹⁸ are each, independently, a substituted or unsubstituted aliphatic group, a substituted or unsubstituted aralkyl or R¹⁷ and R¹⁸ taken together with the nitrogen to which they are bound form a heterocyclyl group.

- 12. A process for the preparation of a compound of Formula (1) as defined in claim 4 which comprises:
- a) coupling a compound of Formula (4) as defined in claim 11, with a compound of formula R²-X¹-H wherein R² and X¹ are as defined in claim 4, in the presence of an activator; and b) oxidising or sulfurising the product of step a).
- 13. A process for the preparation of a compound of Formula (3) as defined in claim 10 which comprises coupling a compound of Formula (4) as defined in claim 11, with a compound of formula R²-X¹-H wherein R² and X¹ are as defined in claim 4, in the presence of an activator.
 - 14. A process for the preparation of a compound of Formula (4) as defined in claim 11, which comprises reacting a compound of formula R¹-X¹-H, wherein R¹ and X¹ are as defined in claim 4 with a compound of formula R³R⁴R⁵Si-X^a-P(NR¹⁷R¹⁸)₂ wherein X^a, R³, R⁴, R⁵, R¹⁷ and R¹⁸ are as defined in claim 5.
 - 15. A process for the preparation of a compound of Formula (4) wherein X^a is O which comprises a) reacting a compound of formula R¹-X¹-H, wherein R¹ and X¹ are as defined in claim 4 and a compound of formula Z-P(NR¹⁷R¹⁸)₂ wherein R¹⁷ and R¹⁸ are as defined in claim 11 and Z represents a leaving group, preferably a chlorine atom, to form a compound of formula R¹-X¹-P(NR¹⁷R¹⁸)₂; b) hydrolysing the compound of formula R¹-X¹-P(NR¹⁷R¹⁸)₂ to form a compound of formula R¹-X¹-PH(=O)(NR¹⁷R¹⁸), the hydrolysis preferably taking place in the presence of a weak acid, such as tetrazole, S-ethyltetrazole, or an imidazole salt; and c) reacting the compound of formula R¹-X¹-PH(=O)(NR¹⁷R¹⁸) with a silylating agent of formula Y¹-SiR³R⁴R⁵ wherein Y¹ is a leaving group, to form the compound of Formula (4).
- 16. A process for the preparation of a compound of formula R³R⁴R⁵Si-X^a-P(NR¹⁷R¹⁸)₂ which comprises reaction of a compound of formula Z-P(NR¹⁷R¹⁸)₂ as defined in claim 15, with a compound of formula H-X^a-SiR³R⁴R⁵, wherein X^a, R³, R⁴, and R⁵ are as defined in claim 1, preferably in the presence of a base.

WO 2004/085454

- 17. A process for the preparation of a compound of formula R³R⁴R⁵Si-O-P(NR¹⁷R¹⁸)₂ wherein R³, R⁴, and R⁵ are as defined in claim 1, and R¹⁷ and R¹⁸ are as defined in claim 11 which comprises:
- a) hydrolysis of a compound of formula Z-P(NR¹⁷R¹⁸)₂ wherein Z is as defined in claim 15 to form a compound of formula H-O-P(NR¹⁷R¹⁸)₂; and
- b) reaction of the product of step a) with a compound of formula Y¹-SiR³R⁴R⁵ wherein Y¹ is a leaving group.
- 18. A process for the synthesis of an oligonucleotide comprising at least one internucleotide phosphorus atom protected with a group of formula -X¹SiR³R⁴R⁵, wherein X¹ represents O or S, and R³, R⁴ and R⁵ each independently are optionally substituted hydrocarbyl groups, selected such that the total number of carbon atoms in R³ plus R⁴ plus R⁵ is 4 or more, which comprises reacting a silylating agent of formula Y¹-SiR³R⁴R⁵, wherein Y¹ is a leaving group, with an oligonucleotide H-phosphonate diester.
 - 19. A process according to claim 18, wherein the oligonculeotide H-phosphonate diester is a compound of Formula (7):

$$R^{1}-X^{1}$$

 $H-P=0$
 $X^{4}-R^{2}$

20 wherein

25

30

5

15

 R^1 , R^2 , X^1 and X^4 are as defined in claim 4.

- 20. A process according to either of claims 18 or 19, wherein R^1 is a nucleotide substituted at the 3'-position by X^1 , R^2 represents an oligonucleotide substituted at the 5'-position by X^4 , and X^4 are both O.
- 21. A process according to any one of claims 18 to 20, wherein the silylating agent is a group of formulae:

22. A process according to any one of claims 18 to 21, wherein one of R³, R⁴ and R⁵ represents a tert-butyl group, with the others representing methyl groups.

23. A process for the preparation of a deprotected oligonucleotide which comprises a) assembling an oligonucleotide compound comprising at least one internucleotide phosphorus atom protected with a group of formula -X^aSiR³R⁴R⁵ wherein X^a, R³, R⁴ and R⁵ are as defined in claim 1, and b) removing the SiR³R⁴R⁵ groups.