Appl. No. 10/597,739 Response Dated July 29, 2009 Reply to Office Action of April 29, 2009 Docket No.: P17140/1020.P17140 Examiner: Adnan Baig TC/A.U. 2416

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

 (Currently Amended) A method, comprising: estimating a channel impulse response matrix;

creating a crosstalk suppression filter matrix based on said channel impulse response matrix;

filtering a plurality of data streams received over a channel for a multiple input multiple output system to reduce far end cross talk between said data streams using said crosstalk suppression filter matrix to form filtered data streams, said filtered data streams having substantially similar equal impulse responses; and

equalizing said filtered data streams using one or more a <u>plurality of</u> equalizers with a set of <u>having</u> substantially similar equalization parameters, wherein the <u>number of</u> equalizers corresponds to the <u>number of filtered</u> data streams.

- (Original) The method of claim 1, wherein said channel impulse response matrix
 and said crosstalk suppression filter matrix have a substantially similar structure and
 matrix dimension.
- (Original) The method of claim 1, wherein said estimating comprises: estimating at least one channel characteristic for said channel;

approximating a plurality of channel impulse response values based on said channel characteristic; and

creating said channel impulse response matrix using said channel impulse response values.

4. (Original) The method of claim 1, wherein said creating comprises:

Appl. No. 10/597,739 D
Response Dated July 29, 2009
Reply to Office Action of April 29, 2009

Docket No.: P17140/1020.P17140 Examiner: Adnan Baig TC/A.U. 2416

transposing said channel impulse response matrix;

substituting each element of said transposed channel impulse response matrix with its minor element; and

determining a sign for each minor element.

 (Original) The method of claim 1, wherein each data stream comprises an intersymbol interference signal.

(Canceled)

(Currently Amended) A multiple input multiple output system, comprising:
 a communications medium:

a plurality of transmitters to connect to said communications medium, with each transmitter to transmit a data stream over said communications medium using a communications channel:

a plurality of receivers to connect to said communications medium, said plurality of receivers to receive said data streams from said communications channel; and

a crosstalk filtering module to connect to said plurality of receivers, said crosstalk filtering module to filter said data streams to reduce far end crosstalk noise incurred by said data streams during said transmission to form filtered data streams, said filtered data streams having substantially similar equal impulse responses; and

ene or more a <u>plurality</u> of equalizers to connect to said crosstalk filtering module, said one or more <u>plurality</u> of equalizers <u>having</u> to equalize said filtered data streams using a set of substantially similar equalization parameters to equalize said filtered data streams, wherein the number of equalizers corresponds to the number of filtered data streams.

(Canceled)

 Appl. No. 10/597,739
 Docket No.: P17140/1020.P17140

 Response Dated July 29, 2009
 Examiner: Adnan Baig

 Reply to Office Action of April 29, 2009
 TC/A,U, 2416

 (Previously Presented) The multiple input multiple output system of claim 7, further comprising a channel estimator to connect to said receivers, said channel estimator to estimate at least one channel characteristic for said channel.

- 10. (Previously Presented) The multiple input multiple output system of claim 7, wherein said crosstalk filtering module comprises:
- a channel impulse response matrix generator to generate a channel impulse response matrix;
- a crosstalk suppression filter matrix generator to generate a crosstalk suppression filter matrix using said channel impulse response matrix; and
 - a filter to filter said data streams using said crosstalk suppression filter matrix.
- 11. (Currently Amended) An apparatus, comprising:
- a plurality of receivers to receive a plurality of data streams transmitted over a communications channel:
- a crosstalk filtering module to connect to said plurality of receivers, said crosstalk filtering module to filter said data streams to reduce far end crosstalk noise incurred by said data streams during said transmission to form filtered data streams, said filtered data streams having substantially similar equal impulse responses; and
- one or more a <u>plurality</u> of equalizers to connect to said crosstalk filtering module, said one or more <u>plurality</u> of equalizers <u>having</u> to equalize said filtered data streams using a-set of substantially similar equalization parameters to equalize said filtered data streams, wherein the number of equalizers corresponds to the number of filtered data streams.
- 12. (Original) The apparatus of claim 11, wherein said crosstalk filtering module comprises:
- a channel impulse response matrix generator to generate a channel impulse response matrix;

 Appl. No. 10/597,739
 Docket No.: P17140/1020.P17140

 Response Dated July 29, 2009
 Examiner: Adnan Baig

 Reply to Office Action of April 29, 2009
 TC/A,U, 2416

a crosstalk suppression filter matrix generator to generate a crosstalk suppression filter matrix using said channel impulse response matrix; and

- a filter to filter said data streams using said crosstalk suppression filter matrix.
- 13. (Original) The apparatus of claim 11, further comprising a channel estimator to connect to said receivers, said channel estimator to estimate at least one channel characteristic for said channel.
- 14. (Original) The apparatus of claim 13, wherein said channel impulse matrix generator is to connect to said channel estimator, and said channel impulse matrix generator is to use said at least one channel characteristic for said channel to generate said channel impulse matrix.
- (Currently Amended) An article of manufacture comprising:
 a storage medium;

said storage medium including stored instructions that, when executed by a processor, result in estimating a channel impulse response matrix, creating a crosstalk suppression filter matrix based on said channel impulse response matrix, filtering a plurality of data streams received over a channel for a multiple input multiple output system to reduce far end cross talk between said data streams using said crosstalk suppression filter matrix to form filtered data streams, said filtered data streams having substantially similar equal impulse responses, and equalizing said filtered data streams using a plurality of equalizers have a set of substantially similar equalization parameters, wherein the number of equalizers corresponds to the number of filtered data streams.

16. (Original) The article of claim 15, wherein the stored instructions, when executed by a processor, further result in said estimating by estimating at least one channel characteristic for said channel, approximating a plurality of channel impulse response values based on said channel characteristic, and creating said channel impulse response matrix using said channel impulse response values.

 Appl. No. 10/597,739
 Docket No.: P17140/1020.P17140

 Response Dated July 29, 2009
 Examiner: Adnan Baig

 Reply to Office Action of April 29, 2009
 TC/A.U. 2416

17. (Original) The article of claim 15, wherein the stored instructions, when executed by a processor, further result in said creating by transposing said channel impulse response matrix, substituting each element of said transposed channel impulse response matrix with its minor element, and determining a sign for each minor element.

18. (Canceled)