Survey Research and Design

Survey Weighting

William Marble October 3, 2023

Last Time

Models of nonresponse:

- ► Separate cause model (ignorable nonresponse)
- ► Common cause model (conditionally ignorable nonresponse)
- ► Survey variable cause model (nonignorable nonresponse)

1

Last Time

Models of nonresponse:

- ► Separate cause model (ignorable nonresponse)
- ► Common cause model (conditionally ignorable nonresponse)
- Survey variable cause model (nonignorable nonresponse)

Weighting intuition:

- ► Upweight respondents who are underrepresented in the sample relative to the population
- ► Force the distribution of weighting variables in the sample to match the known population targets

1

Choosing Weighting Variables

What Variables to Weight On?

- ► How to determine "underrepresented"? Try to come up with weighting variables that satisfy conditional ignorability
- ▶ Must affect both response probability and responses to question of interest
- ► Must have population targets for weighting variables
- Easy to test over/underrepresentation and whether weighting variables are correlated with response
- ► Key assumption (untestable!): we're adjusting for all variables that affect both nonresponse + attitudes

Before Weighting

- Do everything possible to ensure match between sample and population on key variables
- ► We don't want to rely too much on weights: large weights ~> higher uncertainty/standard error
- ▶ Potentially oversample subgroups we think will be underrepresented
- Quota sampling (once frowned upon, now common) tries to minimize need for weighting
- ► Might oversample rural areas or Republicans/Independents (who are less likely to take surveys)

What Variables to Use in Weighting?

- ► Typically use sociodemographic variables: age, race, sex
- ► Nowadays also weight on education
- ► Income?
- ► Party ID? Past vote choice?
- ► Region/state?

Growing Educational Polarization

Figure 1: Net Republican Votes in Presidential Races Among Whites, By Education

Education Weighting

Education Weighting Vastly More Important in '16

A poll that didn't weight by education might have been imperceptibly more Democratic-leaning in past elections, but was notably biased in 2016.

The effect of neglecting to weight by education in a typical national survey (pct. margin)

Weighting on Partisanship

- ▶ Partisanship isn't quite the same as age/race/sex/education
- ▶ No Census data on partisanship, but party registration data from voter files
- ► Evidence of over-time differential nonresponse (graph from 2012):

Weighting on Partisanship

Two-party Obama support, adjusting for demographics (light line) or demographics and partisanship (dark line)

The Hows of Survey Weighting

Post-stratification

Recall: Stratified random sample is a random sample within strata defined by the researcher.

Post-stratification

Recall: Stratified random sample is a random sample within strata defined by the researcher.

Post-stratification treats our data *as if* they were generated by a SRS.

From Last Time...

Post-Stratifying on Gender

	Sample Partisanship		Pop. Proportion
Gender	Democrat	Republican	
Men	40%	60%	50%
Women	60%	40%	50%

Basic idea: reweight sample according to population proportion

More Variables for Post-Stratification

Post-Stratifying on Gender and Age

Gender	Age	Democrat	Republican	Pop. Proportion
Men	18-29	60%	40%	15%
Women	18-29	70%	30%	15%
Men	30-39	45%	55%	12%
Women	30-39	56%	44%	13%
<u>:</u>	:	:	:	:

Even More Variables...

 $\mathsf{State} \times \mathsf{Age} \times \mathsf{Race} \times \mathsf{Gender} \times \mathsf{Education}$

51 states (+ DC) \times 6 age groups \times 5 racial groups \times 2 gender groups \times 3 education levels = 9,180 poststratification cells

Most surveys don't have that many respondents \sim poststratification infeasible

Matching Population Margins

Instead of matching the joint distribution of the weighting variables, we can match the marginal distribution

Matching Population Margins

Instead of matching the $joint\ distribution$ of the weighting variables, we can match the $marginal\ distribution$

Joint distribution of age \times gender looks like:

	Men	Women
18-40	<i>x</i> ₁ %	x2%
41-64	x ₃ %	x4%
65+	x5%	<i>x</i> ₆ %

with
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 100$$
.

Matching Population Margins

Instead of matching the $joint\ distribution$ of the weighting variables, we can match the $marginal\ distribution$

Joint distribution of age × gender looks like:

	Men	Women
18-40	<i>x</i> ₁ %	x ₂ %
41-64	x ₃ %	x4%
65+	x5%	<i>x</i> ₆ %

with $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 100$.

Marginal distributions of age and gender (separately) looks like this:

Category	Percent of Population
Men Women	x ₁ % x ₂ %
18-40	<i>y</i> ₁ %
41-64	y ₂ %
65+	y ₃ %

with $x_1 + x_2 = 100$ and $y_1 + y_2 + y_3 = 100$

Raking

- ► Most commonly used weighting method is called "raking" or "iterative proportional fitting"
- Ensures matches on specified margins (but not full joint distribution)
- ► Tends to generate weights that are similar to weights you get from other methods

Raking Algorithm

Suppose we are weighting on K variables. Start with weights of 1 for each unit in sample. (Or start with design-based weights.)

Raking Algorithm

Suppose we are weighting on K variables. Start with weights of 1 for each unit in sample. (Or start with design-based weights.)

Then repeat the following steps over and over until the results don't change...

- 1. Update weights to match margins on Variable 1
- 2. Update weights to match margins on Variable 2 $\,$

: :

K. Update weights to match margins on Variable K

Raking Algorithm

Suppose we are weighting on K variables. Start with weights of 1 for each unit in sample. (Or start with design-based weights.)

Then repeat the following steps over and over until the results don't change...

- 1. Update weights to match margins on Variable 1
- 2. Update weights to match margins on Variable 2 \cdot

K. Update weights to match margins on Variable K

For each step, we compute the weight updates as $\frac{Population\ Proportion}{Weighted\ Sample\ Proportion}$, then multiply the old weights by the updates to obtain new weights.

Trimming Weights

- ▶ More weighting variables → high-variance weights and more large weight
- ► After weighting, may want to "trim" very small and very large weights

Trimming Weights

- ▶ More weighting variables → high-variance weights and more large weight
- ► After weighting, may want to "trim" very small and very large weights
- ► Large weights ~ individual people are very influential:

: TheUpshot

THE 2016 RACE

How One 19-Year-Old Illinois Man Is Distorting National Polling Averages

Trimming Weights

- ▶ More weighting variables → high-variance weights and more large weight
- ► After weighting, may want to "trim" very small and very large weights
- \blacktriangleright Large weights \leadsto individual people are very influential:

: TheUpshot

THE 2016 RACE

How One 19-Year-Old Illinois Man Is Distorting National Polling Averages

▶ Often trim to be between [0.2,4], but also see stuff like [0.1,7]. No single right answer.

Accounting for Weights in Standard Error Calculation

Weighting reduces the "effective sample size"

Intuition: people with large weights have a lot of influence \sim higher variance if that person was/wasn't in the sample

Account for this in standard error/margin of error using "design effect" (deff):

$$SE_{wtd} = SE_{unwtd} imes \sqrt{deff}$$
 $deff = 1 + \left(rac{ ext{sd(weights)}}{ ext{mean(weights)}}
ight)^2$

Effects of Weighting in October 2022 PORES/SurveyMonkey Poll

