Propositional Logic

What is Logic?

"Computer science is continuation of logic by other means"

Georg Gottlob

"Contrariwise", continued Tweedledee, "if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't. That's logic"

Lewis Carroll, *Through the Looking Glass*

"Logic celebrates the unity of a pathological masculine self-identity that cannot listen and recognizes only negation but not difference"

Andrea Nye, Words of Power

Use of Logic

- In mathematics and rhetoric:
 - Give precise meaning to statements.
 - Distinguish between valid and invalid arguments.
 - Provide rules of `correct' reasoning.

Natural language can be very ambiguous

`If you do your homework, then you'll get to watch the game.' ≀

`If you don't do your homework, then you will not get to watch ...'

'You do your homework, or you'll fail the exam.'

П

`If you don't do your homework, then you'll fail the exam.'

Use of Logic (cntd)

- In computing:
 - Derive new data / knowledge from existing facts
 - Design of computer circuits.
 - Construction of computer programs.
 - Verification of correctness of programs and circuit design.
 - Specification

What the customer really needed

How the Programmer understood it

What the customer got

Statements (propositions)

- Propositional logic deals with statements and their truth values
- A statement is a declarative sentence that can be true or false
- Truth values are TRUTH (T or 1) and FALSE (F or 0).
- Examples:
 - 1 + 1 = 2 (statement, T)
 - The moon is made of cheese (statement, F)
 - Go home! (not statement, imperative)
 - What a beautiful garden! (not statement, exclamation)
 - y + 1 = 2 (not statement, uncertain)
 - The God exists (statement, ?)

Compound Statements

- Simplest statements are called primitive statements
- We cannot decide the truth value of a primitive statement. This is not what logic does.
 - We shall use propositional variables to denote primitive statements, p, q, r, ...
- Instead we combine primitive statements by means of logic connectives into compound statements or formulas and look how the truth value of a compound statement depends on the truth values of the primitive statements it includes.

We will denote compound statements by Φ, Ψ, \dots

Logic Connectives

- negation (not, ¬) `It is not true that at least one politician was honest'
- conjunction (and, ∧) `In this room there is a lady, and in the other room there is a tiger'
- disjunction (or, ∨) `Margaret Mitchell wrote `Gone with the Wind or I am going home'
- implication (if..., then..., \rightarrow) `If there is a tiger in this room, then there is no lady there'
- exclusive or (either ..., or ..., ⊕) `There is either a tiger in this room, or a lady'
- biconditional (equivalence) (if and only if, ↔)
 `There is a lady in this room if and only if there is a tiger in the other room'

Truth tables

Truth table is a way to specify the exact dependence of the truth value of a compound statement through the values of primitive statements involved

	s of primitive state ositional variables		e of compound statements (formulas)
p	q	Φ	
0	0	0	
0	1	1	
•••	• • •	•••	

Truth Tables of Connectives (negation and conjunction)

Negation

р	¬р
F (0)	T (1)
T (1)	F (0)

unary connective

`Today is Friday' ⇒
`Today is not Friday'

Conjunction

р	q	p∧q
0	0	0
0	1	0
1	0	0
1	1	1

binary connective

`Today is Friday' ⇒
`It is raining'

`Today is Friday and it is raining'

Truth Tables of Connectives (disjunction)

Disjunction – inclusive `or'

р	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

`Students who have taken calculus can take this course' ⇒

`Students who have taken computing can take this course'

`Students who have taken calculus or computing can take this course'

Be careful with 'or' constructions in natural languages!

'You do your homework, or you'll fail the exam.'

`Today is Friday or Saturday'

Truth Tables of Connectives (exclusive or)

Exclusive `or'
 One of the statements is true but not both

р	q	p ⊕ q
0	0	0
0	1	1
1	0	1
1	1	0

^{&#}x27;You can follow the rules or be disqualified.'

^{&#}x27;Natalie will arrive today or Natalie will not arrive at all.'

Truth Tables of Connectives (implication)

Implication

р	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Note that logical (*material*) implication does not assume any causal connection.

`If black is white, then we live in Antarctic.'

'If pigs fly, then Paris is in France.'

Implication as a promise

Implication can be thought of as a promise, and it is true if the promise is kept

`If I am elected, then I will lower taxes'

- He is not elected and taxes are not lowered promise kept!

- He is not elected and taxes are lowered promise kept!

- He is elected, but (=and) taxes are not lowered promise broken!

- He is elected and taxes are lowered promise kept!

Playing with Implication

Parts of implication

`if p, then q' `**if** p, q' `p is sufficient for q' `p only if q' `q **when** p'

`q **unless** ¬p' `p **implies** q' `q whenever p' `q follows from p' `a sufficient condition for q is p' `a necessary condition for p is q'

Playing with Implication (cntd)

Converse, contrapositive, and inverse

P → Q `The home team wins whenever it is raining'
 (`If it is raining then the home team wins')

- Converse $q \rightarrow p$
 - `If the home team wins, then it is raining'
- Contrapositive $\neg q \rightarrow \neg p$

`If the home team does not win, then it is not raining'

• Inverse $\neg p \rightarrow \neg q$

`If it is not raining, then the home team does not win'

Truth Tables of Connectives (biconditional)

Biconditional or Equivalence
 One of the statements is true if and only if the other is true

р	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

^{&#}x27;You can take the flight if and only if you buy a ticket.'

Example

'You can access the Internet from campus if you are a computer science major or if you are not a freshman.'

- p 'you can access the Internet from campus'
- q 'you are a computer science major'
- r 'you are a freshman'

Tautologies

 Tautology is a compound statement (formula) that is true for all combinations of truth values of its propositional variables

$$(p \rightarrow q) \lor (q \rightarrow p)$$

р	q	$(p \to q) \lor (q \to p)$
0	0	1
0	1	1
1	0	1
1	1	1

Contradictions

 Contradiction is a compound statement (formula) that is false for all combinations of truth values of its propositional variables

$$(p \oplus q) \wedge (p \oplus \neg q)$$

р	q	$(p \oplus q) \wedge (p \oplus \neg q)$
0	0	0
0	1	0
1	0	0
1	1	0

Homework

Exercises from the Book:

No. 1,3, 4, 8a, 8c (page 54)