

組合邏輯設計

Outline

- 解碼器
- 編碼器
- 多工器
- 解多工器
- 加法器
- 减法器

算術邏輯

•解碼器是將n 位元的輸入碼轉換成m 條線輸出的 邏輯電路,其中m=2n;如下圖所示,其任何一條 輸入線,都可以是0 或1 兩種狀況,因此,在n 條輸入線中計有2n 個輸入組合,而每條輸出線 的輸出狀態與各輸入組合都有著特定的關係;解碼器的種類甚多,如二進制、BCD 碼轉十進制或 BCD 對顯示器解碼等。

m 個輸出端,其中m=2ⁿ: 且每次僅有一或多個 輸出端為激發態。

• 二線對四線解碼器 (2-of-4 decoder),它有兩條輸入線,計有2²個輸入狀態,而輸出端也有四種狀態與之對應

輸	入		輸	出		
В	A	Qo	Q_1	Q_2	Q3	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

(a)真值表

(b)電路圖

• 三線對八線解碼器

C	В	A	Q ₀	Q_1	Q_2	Q3	Q4	Q5	Q_6	21
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

(a) 真值表

- 致能控制(Enable)
 - · 在解碼器中,常會有一個或多個致能 (enable) 控制端,它控制著解碼電路是否接受輸入信號。
 - 如在下圖中,每個AND 閘都多出一個輸入端,且被連接起來,形成致能控制時的情形;如下圖所示,當致能控制端為0,則不論A、B、C 的輸入為何,其輸出都為0;換句話說,此時解碼器是被關閉的

· BCD 對十進制解碼器

• BCD 對十進制解碼電路的IC 包裝如TTL 的7442 與 CMOS 的4028 等都是。如下圖為CD4028 的方塊圖, 其功能主要是將BCD 碼由0000 到1001 轉換成0 到9的十進制輸出。

TABLE I - TRUTH TABLE

D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0

I = HIGH LEVEL

0 = LOW LEVEL

解碼器是以n 位元輸入信號來選擇m 個輸出端,即依據輸入狀態來決定哪一輸出端被激發。也就是說,我們用解碼器的特定輸出端來辨認某一特定的輸入組合,而編碼器 (encoder) 則做相反的工作,它是針對不同的輸入,賦予特定的數碼輸出,如下圖所示, m 個輸入端每次最多只有個被激發,而輸出端就會有一組n 位元碼送出與之對應。

- 八進位對三進位編碼器(1/2)
 - 我們先假設每次僅有一條輸入線為1,則所有輸入組合便僅有8種,而不是2⁸,如果A₀=1,則輸出的二進位碼為000,若A₁=1,則輸出的二進位碼為001,依此類推。由於我們做了以上假設,每次僅有一輸入端為1,因此我們只要分別將能使該輸出端輸出1的輸入線"或"起來就可以了。例如,當A₁、A₃、A₅或A₇為1時,Q₀(輸出端最低位元)必須為1,故得Q₀的布林代數式為

$$Q_0 = A_1 + A_3 + A_5 + A_7$$

$$Q_1 = A_2 + A_3 + A_6 + A_7$$

$$Q_2 = A_4 + A_5 + A_6 + A_7$$

• 八進位對三進位編碼器(2/2)

A_0	A_1	A_2	A_3	A_4	A_5	A_6	A_7	Q_2	Q_1	Q_0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

※每次僅有一輸入端為1,不允許有其他組合

• 在數位系統中,常常有信號選擇的需求,這種以多只信號輸入經選擇,再傳送到輸出的組合電料稱為多工器(multiplexer,MUX),又稱為資料器擇器(data selector)。如下圖所示,多工器的m 個輸入信號經由n 條資料選擇線來控制(m=2n),選擇一個輸入送至輸出端,其簡單結構如下圖(b)所示,圖中任一個開關被選上時(即開關ON),使輸出與該輸入連接,將該開關所控制的輸入送至輸出。

(a)多工器示意圖

(b)多工器結構簡示圖

• 二對一多工器

- 所謂二對一多工器就是2線對1線的資料選擇器;設 其兩輸入端分別為A與B,輸出為Z,而資料選擇端 為S,則其真值表詳如下圖所示,由真值表可知其布 林代數式為: Z = AS + BS
- 即當S = 0 時, Z = A; 也就是A 信號被選至輸出端。當S = 1, Z = B; 即B 信號被選至輸出端。因輸出信號是A 或B 是由S 來決定的,故S 又被稱為資料選擇線,其電路圖詳如下圖(b)所示。

S	Z
0	A
1	В

(b) 電路圖

•四對一多工器

所謂四對一的多工器,就是可以由4個資料輸入端選擇其中一個送至輸出的資料選擇裝置,其真值表如圖7-35(a)所示,其布林代數式為:

$$Z = I_0 \overline{S}_1 \overline{S}_0 + I_1 \overline{S}_1 S_0 + I_2 S_1 \overline{S}_0 + I_3 S_1 S_0$$

選擇	信號	輸出信號
S_1	S ₀	Z
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

$$Z = I_0 \overline{S_1} \overline{S_0} + I_1 \overline{S_1} S_0 + I_2 S_1 \overline{S_0} + I_3 S_1 S_0$$

(a)真值表與布林代數式

(b)電路圖

• 解多工器

- 多工器能從多組輸入信號選擇一組做為輸出,解多工器 (demultiplexer, DEMUX)的功能則恰好相反,是將一組信號傳 送至多組輸出端中的一組,因此,**解多工器又稱為資料分配器** (data distributor)
- 如圖7-38 所示,左邊為一組信號輸入,右邊卻有n 組信號輸出線,至於輸入信號應被傳送至哪組信號輸出線,則完全由底部的選擇端來決定。

•一對四解多工器(1/2)

- 一對四的解多工器是由一組2線對4 線解碼器配合及閘所構成;**圖中唯一的資料輸入線**,分別接到4 個AND閘上,當 Y_0 到 Y_3 任一腳為1,則I 信號就被送到對應的Q 端輸出,即當 $S_1S_0=00$ 時,因 $Y_0=1$ 而 Y_1 、 Y_2 、 Y_3 都等於0,故 $Q_0=I$,而 Q_1 、 Q_2 、 Q_3 都為0;當 $S_1S_0=10$ 時,因只有 $Y_1=1$,故 $Q_1=I$,其它輸出則皆為0,依此類推。因此,我們可說一對四的解多工器
- 就是一組受2 線對4 線解碼器所控制的資料分配器;就I 信號而言,其要送到第幾號輸出端完全是依解碼器輸入(資料選擇端)的二進位值所決定

• 一對四解多工器(2/2)

• 再者,就下圖所示,若I = 0,則不論 S_1S_0 輸入為何,則 $Q_0 \times Q_1 \times Q_2 \times Q_3$ 全部輸出0,若I = 1,則 $Q_0 = Y_0 \times Q_1 = Y_1 \times Q_2 = Y_2 \times Q_3 = Y_3$,整個電路就是一個二線對四線的解碼器,因此,I 輸入事實上也就是解碼器的致能控制端。

輔	i J	λ.		輸	出	
S_1	S_0	I	Q ₀	Q_1	Q_2	Q_3
0	0	I	I	0	0	0
0	1	I	0	I	0	0
1	0	I	0	0	I	0
1	1	I	0	0	0	I

隨堂練習

- •請完成下列電路,並完成紀錄,包括真值表、最簡Equation、電路設計並下載至DE10-Lite、模擬波形圖。
 - a) 三線對八線解碼器(包含致能控制)
- ·本次每一個實驗完成後需助教確認正確,在做下一題,全部完成後,將專案壓縮上傳EE-Class。
- •作業X_第X組 例如:作業5-1_第一組

三線對八線解碼器(包含致能控制)

(1/2)

三線對八線解碼器(包含致能控制) (2/2)

