MedvedskyPV 26122024-165646

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 5.16 кГц больше на 2 дБ, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ больше на 4.2 дБ, чем вклад ГУН. Известно, что C = 13.96 нФ, а $R_1 = 3985$ Ом. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- 1) 2165 O_M
- 2) 2376 O_M
- $3)2587 \, \text{OM}$
- 4) 2798 Om
- $5)3009\,\mathrm{Om}$
- 6) 3220 O_M
- 7) 3431 O_M
- 8) 3642 Om
- 9) 3853 O_M

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10¹, а крутизна характеристики управления частотой ГУН равна 0.3 МГц/В. Частота колебаний опорного генератора (ОГ) 280 МГц. Частота колебаний ГУН 350 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 4.3 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 30 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 9259 кГц на 1.6 дБ больше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 1.21 В/рад
- 2) 1.38 В/рад
- 3) 1.55 В/рад
- 4) 1.72 В/рад
- 5) 1.89 В/рад
- 6) 2.06 В/рад
- 7) 2.23 В/рад
- 8) 2.40 В/рад
- 9) 2.57 В/рад

Источник колебаний с доступной мощностью 2.2 дБм и частотой 2570 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 114 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 2570.00018 МГц, если спектральная плотность мощности его собственных шумов равна минус 117 дБм/Гц, а полоса пропускания ПЧ установлена в положение 20 Γ ц?

- 1) -89.1 дБм
- 2) -90.8 дБм
- 3) -92.5 дБм
- 4) -94.2 дБм
- 5) -95.9 дБм
- 6) -97.6 дБм
- 7) -99.3 дБм
- 8) -101 дБм
- 9) -102.7 дБм

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением верхней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 3890 МГц и спектральную плотность мощности фазового шума на отстройке 100 кГц минус 81 дБн/Гц . Спектральная плотность мощности фазового шума на отстройке 100 кГц синтезированного колебания равна минус 72 дБн/Гц, а частота его равна 10960 МГц. Чему равна спектральная плотность мощности фазового шума второго колебания на отстройке 100 кГц при описанном выше некогерентном синтезе?

- 1) -78.8 дБн/Гц
- (2) -75.8 дБн/ Γ ц
- 3) -75.6 дБн/Гц
- 4) 74.5 дБн/Гц
- 5) -72.8 дБн/Гц
- 6) -72.6 дБн/Гц
- 7) -72.4 дБн/Гц
- 8) -71.5 дБн/Гц
- 9) -69.6 дБн/ Γ ц

Источник колебаний и частотой 6860 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 152 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1414 K. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 1 Гц, если с доступная мощность на выходе усилителя равна -0.2 дБм?

- 1) -150.5 дБн/ Γ ц
- (2) -151 дБн/Гц
- 3) 151.5 дБн/Гц
- 4) -152 дБн/ Γ ц
- 5)-152.5 дБн/Гц
- 6) -153 дБн/Гц
- 7) -153.5 дБн/ Γ ц
- 8) -154 дБн/Гц
- 9) -154.5 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 110 МГц. Частота колебаний ГУН 4220 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 140.5 дБн/Гц для ОГ и минус 50.8 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 0 дБ/декада, а фазовых шумов ГУН минус 10 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=31.7223, \tau=7.9208$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.7 МГц/В. Крутизна характеристики фазового детектора 0.4 В/рад.

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, Φ Д - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько д ${\rm B}$ отличается спектральная плотность мощности фазовых шумов на частоте отстройки 87 к ${\rm \Gamma}$ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на плюс 0.4 дБ
- 2) на минус 0 дБ
- на минус 0.4 дБ
- 4) на минус 0.8 дБ
- на минус 1.2 дБ
- 6) на минус 1.6 дБ
- 7) на минус 2 дБ
- на минус 2.4 дБ
- 9) на минус 2.8 дБ