Computational Methodologies: Distributed Computing

bcng57

Question 1

Let $G = (V_G, E_G)$ be a connected topology graph with specified root $p_r \in V_G$. Let $D = \max\{dist(p_i, p_j) \mid p_i, p_j \in V_G\}$, be the diameter of the graph.

(a)

Theorem

The time complexity of the synchronous model of the Flooding algorithm on G is O(D).

Proof

In the worst case the distance from p_r to some $p_i \in V_G$ is D as this is the furthest any message can travel from p_r without reaching an already visited node.

- In this case it takes at most D rounds for $\langle M \rangle$ to reach p_i .
- This is because $\langle M \rangle$ must be passed along each of the D nodes on the path from p_r to p_i and the message can only be transferred once per round.
- As p_i is the furthest node from p_r , after D rounds every node will have received $\langle M \rangle$.

Once a node has received $\langle M \rangle$, each node responds in one round. Therefore, after D+1 rounds every node will have responded with either $\langle parent \rangle$ or $\langle already \rangle$. As all nodes have responded, each node will also have terminated.

Therefore, the overall time complexity is D + 1 = O(D)

(b)

Theorem

The time complexity of the asynchronous model of the Flooding algorithm on G is O(D)

Proof

Assume that the distance from p_r to some $p_i \in V_G$ is D.

Let P be a path of length D between p_r and p_i .

Suppose there is a maximum delay on every edge in G.

Then the total max time for $\langle M \rangle$ to get from p_r to p_i is D.

As p_i is the furthest any node can be from p_r , every node in V_G will have received $\langle M \rangle$ after D maximum edge delays.

Once a node has received $\langle M \rangle$, it responds immediately. This response takes at most one maximum edge delay. Once every node has received a response from all its neighbours (excluding its parent), it terminates.

All nodes respond and, therefore, terminate in at most D+1 edge delays.

Therefore the overall time complexity is O(D).

Question 2

(a)

We shall prove this by contradiction. First, assume that there is some uniform synchronous algorithm, A, that correctly computes the AND of the input bits.

Run A on a ring where all input bits are 1. In any round i, the states of all the processors are the same. Therefore, there must be some round r where all the processors terminate. Now run A on a ring with 2(r+1) processors, where processor p_0 has input bit 0 and the remaining processors have input bit 1. For A to be correct some message $\langle M \rangle$ originating from p_0 must reach all the nodes in the ring, however, it takes r+1 rounds for $\langle M \rangle$ to reach processor p_{r+1} . As p_{r+1} has initial bit 1, it will terminate in r rounds with its result as 1. This is incorrect, so A cannot be correct which is a contradiction. Therefore, a uniform synchronous algorithm for this problem does not exist.

(b)

Initially, each processor p_i sends a message $\langle b_i, 0 \rangle$ to the right where b_i is its input bit. Upon receiving a message $\langle b_{j-1}, c_{j-1} \rangle$, a processor p_j compares c_{j-1} to n.

- If c_{j-1} is not equal to n, send a message $\langle b_{j-1} \text{ AND } b_j, c_{j-1} + 1 \rangle$ to the right.
- If c_{j-1} is equal to n, then its original message has been passed around the ring, so it can set the result to b_{j-1} and terminate

Each processor sends a message that must be forwarded to all n of the processors in the ring. This means that in total n^2 messages are sent, so the message complexity is $O(n^2)$.

(c)

If the input bit of a processor is 0, then the processor sets its result to be 0, sends a $\langle terminate \rangle$ message in both directions and terminates. A processor with input bit 1, waits for $\lfloor n/2 \rfloor$ rounds.

- If it receives a \(\langle terminate \rangle \) in this time, then it sets its result to 0, forwards the \(\langle terminate \rangle \) message and terminates.
- If no message is received within $\lfloor n/2 \rfloor$ rounds, then it sets its result to 1 and terminates.

In the worst case, where all the processors have 0 as an input bit, they all send 2 $\langle terminate \rangle$ messages to the left and right. This means that in total 2n messages are sent, so overall the message complexity is O(n).