Separable Equations: Complete Method and Analysis

ODE 1 - Prof. Adi Ditkowski

Lesson 12

Definition and Recognition 1

Definition 1 (Separable Equation). A first-order ODE is **separable** if it can be written in the form:

$$\frac{dy}{dx} = g(x)h(y)$$

where g(x) is a function of x only and h(y) is a function of y only.

Alternative forms that are separable:

- M(x)N(y)dx + P(x)Q(y)dy = 0• $\frac{dy}{dx} = \frac{f(x)}{g(y)}$
- Autonomous: $\frac{dy}{dx} = f(y)$

2 Solution Method

Method 1 (Separation of Variables). 1. Write in standard form: $\frac{dy}{dx} = g(x)h(y)$

- 2. Separate variables: $\frac{dy}{h(y)} = g(x)dx$ (assuming $h(y) \neq 0$)
- 3. Integrate both sides: $\int \frac{dy}{h(y)} = \int g(x)dx$
- 4. Include integration constant: H(y) = G(x) + C
- 5. Solve for y if possible (explicit solution)
- 6. Check for singular solutions where h(y) = 0

Division by h(y) loses solutions where h(y) = 0. These must be checked separately!

3 Complete Solution Structure

Theorem 1 (General and Singular Solutions). For $\frac{dy}{dx} = g(x)h(y)$:

- General solution: Obtained by separation (family of curves)
- Singular solutions: Constants y = c where h(c) = 0
- Complete solution: Union of general and singular solutions

Example 1 (Finding All Solutions). Solve: $\frac{dy}{dx} = 2x(y^2 - 1)$ Step 1: Separate (assuming $y^2 - 1 \neq 0$):

$$\frac{dy}{y^2 - 1} = 2x \, dx$$

Step 2: Use partial fractions:

$$\frac{1}{y^2 - 1} = \frac{1}{2} \left(\frac{1}{y - 1} - \frac{1}{y + 1} \right)$$

Step 3: Integrate:

$$\frac{1}{2}\ln\left|\frac{y-1}{y+1}\right| = x^2 + C$$

Step 4: General solution:

$$\frac{y-1}{y+1} = Ae^{2x^2}$$

where $A = \pm e^{2C}$

Step 5: Check $y^2 - 1 = 0$:

- If y = 1: $\frac{dy}{dx} = 0 = 2x(1-1)$
- If y = -1: $\frac{dy}{dx} = 0 = 2x(1-1)$

Complete solution: $\frac{y-1}{y+1} = Ae^{2x^2}$ and $y = \pm 1$

Autonomous Equations

Definition 2 (Autonomous Equation). An ODE $\frac{dy}{dx} = f(y)$ depending only on y is **au**tonomous.

Method 2 (Solving Autonomous Equations). For $\frac{dy}{dx} = f(y)$:

- 1. Find equilibria: solve f(y) = 0
- 2. For non-equilibrium solutions: $\int \frac{dy}{f(y)} = \int dx = x + C$
- 3. This gives x as a function of y (inverse solution)
- 4. Invert if possible to get y(x)

Autonomous equations have time-translation symmetry: if y(x) is a solution, so is $y(x-x_0)$ for any constant x_0 .

5 Common Integration Patterns

5.1 Essential Integrals for Separable Equations

Integral	Result	Notes
$\int \frac{dy}{y}$	$\ln y + C$	$y \neq 0$
$\int \frac{dy}{y^2}$	$-\frac{1}{y} + C$	$y \neq 0$
$\int \frac{dy}{1-y^2}$	$\left \frac{1}{2} \ln \left \frac{1+y}{1-y} \right + C \right $	$ y \neq 1$
$\int \frac{dy}{1+y^2}$	$\arctan(y) + C$	All y
$\int \frac{dy}{\sqrt{1-y^2}}$	$\arcsin(y) + C$	y < 1
$\int \frac{dy}{y(1-y)}$	$\left \ln \left \frac{y}{1-y} \right + C \right $	$y \neq 0, 1$

6 Implicit Solutions

Definition 3 (Implicit Solution). A relation F(x,y) = C that cannot be solved explicitly for y but satisfies the ODE.

Example 2 (Necessarily Implicit). For $\frac{dy}{dx} = \frac{-2xy}{x^2 + 2y^2}$:

Separating gives: $x^2 + 2y^2 = C$ (circles and ellipses)

Cannot solve explicitly for y as a single-valued function.

Prof. Ditkowski accepts implicit solutions. Don't waste time trying to solve for y if the algebra becomes messy!

7 Existence and Uniqueness Issues

Theorem 2 (Uniqueness Violation at Equilibria). For $\frac{dy}{dx} = f(y)$ with $f(y_0) = 0$:

- The constant solution $y = y_0$ exists
- Non-constant solutions may touch $y = y_0$
- Uniqueness fails if $f'(y_0) = 0$

Example 3 (Non-unique Solution). $\frac{dy}{dx} = 2\sqrt{|y|}$ with y(0) = 0 Solutions include:

- y = 0 (singular)
- $y = x^2$ for $x \ge 0$

- $y = -x^2$ for $x \le 0$
- Combinations thereof

8 Solution Verification

Method 3 (Verification Protocol). 1. Differentiate the solution (implicit differentiation if needed)

- 2. Substitute into original ODE
- 3. Verify algebraic identity
- 4. Check initial conditions
- 5. Verify singular solutions separately
- 6. State domain of validity

9 Common Errors

Critical mistakes that cost points:

- 1. Forgetting to check for singular solutions
- 2. Losing absolute value signs in logarithms
- 3. Incorrect partial fraction decomposition
- 4. Not including integration constant
- 5. Domain errors (e.g., ln(y) requires y > 0)
- 6. Sign errors when separating