

Design Specification Document Template

Division Automotive Entry Program

Window Lifter
Title: SW Component

	History					
Issue status (Index)	Maturity/Date (draft/invalid/valid) (dd-mmm-yyyy)	Author Department	Check/Release Department	Description		
1.0	Draft 19-0ct-2017	Luis Archundia	Luis Archundia	Document inception		
2.0	Draft 27-0ct-2017	Luis Archundia	Luis Archundia	Document Editing (Functional Description)		
3.0	Draft 27-0ct-2017	Luis Archundia	Luis Archundia	Document Editing (Physical Block Diagram)		
4.0	Draft 28-0ct-2017	Jorge Olvera	Jorge Olvera	Document Editing (Uses Case Diagram)		
5.0	Draft 29-0ct-2017	Jorge Olvera	Jorge Olvera	Document Editing (Software Component Internal Breakdown)		
6.0	Draft 29-0ct-2017	Jorge Olvera	Jorge Olvera	Document Editing (Functional Decomposition)		
7.0	Draft 29-0ct-2017	Luis Archundia	Luis Archundia	Document Editing (Purpose, Realization, Constraints and Targets)		
8.0	Draft 29-0ct-2017	Jorge Olvera	Jorge Olvera	Document Editing (Function description and dynamic behavior)		
9.0	Draft 05-Nov-2017	Jorge Olvera	Jorge Olvera	Document Editing (Physical Block Diagram)		
10	Draft 08-Nov-2017	Jorge Olvera	Jorge Olvera	Document Editing (Dynamic behavior)		
11	Draft 23-Nov-2017	Luis Archundia	Luis Archundia	Document Editing (FSM added)		
12	Draft 26-Nov-2017	Jorge Olvera	Jorge Olvera	Document Editing (Physical Block Diagram)		
13	Draft 27-Nov-2017	Luis Archundia	Luis Archundia	Document Editing (FSM's element description)		

Design Specification Document Template

Division Automotive Entry Program

Table of Contents

1	PURPOSE	3
2	DEFINITIONS AND ABBREVIATIONS	3
3	REALIZATION CONSTRAINTS AND TARGETS	2
J	NEALIZATION CONSTITATION AND TAXOLIS	
4	SW CONCEPTUAL DESIGN	5
4.1	Block Diagram for conceptual design description	5
4.2		
4.2	Uses Case Diagram for requirements analysis	0
5	SW COMPONENT INTERNAL BREAKDOWN	9
5.1	Activity diagrams to identify software components	9
5.2	Physical Block Diagram for Design Description	
5.3	Functional Decomposition	17
5.4	Function Description and Dynamic Behavior	
-	4.1 void wc_void_ControlWindowUp (T_UBYTE * porcent)	าช วก
-	4.3 T_UBYTE bc_T_UBYTE_statusButt_Up ()	20
	4.4 T_UBYTE bc_ T_UBYTE_statusButt_Down ()	22
	4.5 void ic_void_onIndicator_Up ()	23
	4.6 void ic_void_offIndicator_Up ()	
	4.7 void ic_void_onIndicator_Down ()	
	4.8 void ic_void_offIndicator_Down ()	
	4.10 void tmr1ms void DisableTimer1ms ()	

Division Automotive Entry Program

1 Purpose

To provide an embedded SW solution based on the ARM Cortex M4 Microcontroller along with a hardware functional prototype, capable of emulating the behavior of a car's window lifter module, using an LED bar and NXP's S32K144 Development Kit Platform, implementing basic movement functionalities as well as safety and comfort features. This embedded SW application shall emulate the control of the window's movement in two (2) directions; up and down.

2 Definitions and abbreviations

Definitions

T_UBYTE	Data type unsigned char
T_UWORD	Data type unsigned int
T_ULONG	Data type unsigned long
S_GPIO_Type	General purpose input output (GPIO) Structure
S_PORT_Type	PORT Structure
S_PCC_Type	Peripheral clock control PCC Structure
S_LPIT_Type	Low power interrup (LPIT) Structure
S WDOG Type	Watchdog (WDOG) Structure

Abbreviations

SW	Software
SDK	Software Development Kit (platform)
ms	Miliseconds
MAL	Microcontroller abstraction layer
HAL	Hardware abstraction layer
APP	Application layer
src	Source
io	Input /output
init	initialization
bc	buttonscontrol file .c /.h
WC	windowcontrol file .c / .h
ic	Indicatorcontrol .c / .h
UML	Unified modeling language

References

N°	Document name
1	WindowLifterRequirementsLetter
2	WindowLifter_TraceabilityMatrix
3	Test Plan WindowLifter

3 Realization constraints and targets

To create a SW solution along with a functional hardware prototype that is capable of emulating the behavior of a car's window movement along with the use of simple hardware components such as a 10 LED bar.

The solution provided must be developed using the NXP S32K144EVB Development Kit Platform provided.

The solution must consider implementing basic functionality such as upward/downward movement, automatic movement using the provided mechanical interfaces within the platform, as well as safety functionality such as an "Anti-Pinch" functionality and fail proven activation algorithms such as a de-bouncing mechanism (software de-bounce).

The project must also consider timing critical. It is mandatory that it comply within the time boundaries previously agreed in the requirements document.

Two buttons shall indicate window's movement button #1 for upward movement and button #2 for downward movement.

Detailed Software Design Document			DSD_WindowLifter.doc	1.5
Project:	AEP Window Lifter	28-Nov-17		Page 3 / 25

Design Specification Document Template

Division Automotive Entry Program

While the RED color of the LED bar will Indicate the window's movement and height. LED bar should turn its LEDs on and off in order to indicate movement. Upward movement (LEDs ON) means window closing, while downward movement (LEDs OFF) indicate window opening.

Well defined state changes should be implemented within the code considering the time between each state transition should be of 400 ms. Movement shall also be indicated with additional LEDs of different colors to indicate direction of movement: BLUE = upward movement and GREEN = downward movement.

An anti-bouncing algorithm shall also be implemented to avoid accidental activation of the module. This anti-bouncing mechanism should be implemented by software means and considering at least 10 ms in order to consider a valid press. Added to this feature, button combinations should be fail proven.

Different behaviors shall be invoked when a valid button press is detected, depending on the time the button was pressed.

Different behaviors to be invoked:

BUTTON # (INPUT)	BEHAVIOR INVOKED	CONDITIONS TO ACTIVATE
Button #1	Automatic UPWARD movement	10 ms > Button #1 pressed < 500 ms
Button #1	Manual UPWARD movement	Button #1 pressed >= 500 ms
Button #2	Automatic DOWNWARD movement	10 ms > Button #2 pressed < 500 ms
Button #2	Manual DOWNWARD movement	Button #2 pressed >= 500 ms.
Button #3	ANTI-PINCH Functionality	Button #3 pressed > 10 ms & UPWARD movement happening.

An added functionality shall also be implemented considering the user's safety. The ANTI-PINCH functionality shall be activated by pressing a third button (button #3) as long as the window is moving in upward direction. If the case is true, then the window shall stop movement, and move down automatically until completely open. Then the module shall stop any communication with the user for 5 seconds. After that, communication shall be restored and the module should behave normally.

4 SW Conceptual design

4.1 <u>Block Diagram for conceptual design description</u>

4.2 <u>Uses Case Diagram for requirements analysis</u>

RF01, RF06

All indicator are LEDS
All indicators can have two states (High, Low)

RF02, RF03, RF04, RF05

All pressed buttons have to be validated All buttons have to be pressed at least 10 msec

Division Automotive Entry Program

RF05, RF07

UP automatic have to be validated Window closes automatically The time between each transition time shall be 400 msc

RF05, RF08

DOWN automatic have to be validated Window opens automatically The time between each transition time shall be 400 msc

Division Automotive Entry Program

RF05, RF09

UP semiautomatic have to be validated Window closes semiautomatically The time between each transition time shall be 400 msc

RF05, RF10

DOWN semiautomatic have to be validated Window opens semiautomatically

The time between each transition time shall be 400 msc

5 SW Component internal breakdown

5.1 Activity diagrams to identify software components

VALIDATE BUTTON PRESS

UP AUTOMATIC

Division Automotive Entry Program

DOWN AUTOMATIC

UP SEMIAUTOMATIC

Division Automotive Entry Program

DOWN SEMIAUTOMATIC

5.2 Finite-State Machine

STATE	STATE NUMBER	DESCRIPTION
WAIT_FOR_A_PULSE	0	Initial state in which the FSM stands
		by until a signal is generated.
VALIDATE_A_PULSE	1	De-bouncing state. State in which
		code performs the de-bouncing
		feature, to get rid of accidental
		activation.
CHOOSE_TYPE_WORK	2	State in which the module, (based on
		the conditions provided), decides
		which feature to activate. Sets
		respective flags to perform specific
		functions in the code in addition to
		setting output indicators on.
AUTOMATIC_WORK	3	State in which code performs
		specifically the automatic up/down
		feature. Checks whether the flag set
		on the last state is either up or
		down. Then calls the necessary
		<pre>subsequent function(s) to activate</pre>
		the respective feature.
SEMIAUTOMATIC_WORK	4	State in which code performs
		specifically the semi-automatic
		up/down feature. Checks whether the
		flag set on the last state is
		activated as well as the last signal
		that set the flag. If both conditions
		are still true, then calls the
		necessary subsequent function(s) to
		activate the respective feature.
ANTIPINCH_WORK	5	This state checks whether the anti-
		pinch flag is activated. If true,
		then
		<pre>"wc_WindowDown(lpuw_CounterTime1ms);"</pre>
		function is called, in order to move
		the window down automatically.
		*Note that: the anti-pinch flag is
		only activated if either upward
		movement features are activated along
		with the anti-pinch button (sensor).
STOP_5_SECONDS	6	State in which an added safety
		feature is added as part of the anti-
		pinch functionality feature. After
		detecting the window in its lowest
		level. The module Breaks down
		communication with the user,
		remaining idle for 5 seconds. Module
		reestablishes communication with user
		after the 5 second idle time. Module
		returns to its initial state (state
		0).

Detailed Software Design Document			DSD_WindowLifter.doc	1.5
Project:	AEP Window Lifter	28-Nov-17		Page 12 / 25

Division Automotive Entry Program

FLAGS	DESCRIPTION
bi1_flagAutomaticUp	Flag critical to validate the condition for the "Automatic
	upward motion" to be performed.
bi1_flagAutomaticDown	Flag critical to validate the condition for the "Automatic
	downward motion" to be performed.
<pre>bi1_flagSemiautomaticUp</pre>	Flag critical to validate the condition for the "Semi-
	Automatic upward motion" to be performed.
bi1_flagSemiautomaticDown	Flag critical to validate the condition for the "Semi-
	Automatic downward motion" to be performed.
bi1_flagUp	Flag critical to validate the condition to change from state
	#1 to state #2 (upward motion)
bi1_flagDown	Flag critical to validate the condition to change from state
	#1 to state #2 (downward motion)
bi1_flagAntipinch	Flag critical to validate the condition for the "Anti-pinch
	feature to be performed."

VARIABLES	DESCRIPTION
ruw_CounterTime1ms	Ram, UWORD (2 Bytes) variable to keep track of the time it takes to perform a functionality. Keeps being set and reset in order to comply with the required times provided by the specs.
rub_WindowLevel	Ram, UBYTE (1 Byte) variable to keep track of the window's height percentage, in order to know the highest/lowest level.

INPUTS	DESCRIPTION
<pre>bc_T_UBYTE_statusButt_Up()</pre>	Gets the button's value for the upward feature. Returns
	a bit: 1 == TRUE if pressed or 0 == FALSE if not
	pressed.
<pre>bc_T_UBYTE_statusButt_Down()</pre>	Gets the button's value for the downward feature.
	Returns a bit: 1 == TRUE if pressed or 0 == FALSE if not pressed.
<pre>bc_T_UBYTE_statusButt_AntiP()</pre>	Gets the button's value for the anti-pinch feature.
	Returns a bit: 1 == TRUE if pressed or 0 == FALSE if not pressed.

OUTPUTS	DESCRIPTION
<pre>ic_void_onIndicator_Up()</pre>	Sets or clears the output's value for the LED
<pre>ic_void_offIndicator_Up()</pre>	indicator (upward motion only) either ON or
	OFF. Returns a bit: 0 == TRUE if lit or 1 ==
	FALSE if not lit.
<pre>ic_void_onIndicator_Down()</pre>	Sets or clears the output's value for the LED
<pre>ic_void_offIndicator_Down()</pre>	indicator (downward motion only) either ON or
	OFF. Returns a bit: 0 == TRUE if lit or 1 ==
	FALSE if not lit.
<pre>wc_void_WindowDown(T_UWORD *lpub_Time)</pre>	Keeps track of the window's height and the
	time taken to move it downwards checks that
	it complies with the specified times while
	calling other function to perform the action.

Detailed Software Design Document		ment	DSD_WindowLifter.doc	1.5
Project:	AEP Window Lifter	28-Nov-17		Page 13 / 25

Design Specification Document Template

Division Automotive Entry Program

<pre>wc_void_WindowUp(T_UWORD *lpub_Time)</pre>	Keeps track of the window's height and the
	time taken to move it upwards checks that it
	complies with the specified times while
	calling other function to perform the action.

For more details on the code's implementation with FSM please click on the following link:

Finite State Machine Diagram

Detailed Software Design Document		ment	DSD_WindowLifter.doc	1.5
Project:	AEP Window Lifter	28-Nov-17		Page 14 / 25

5.3 Binary Progression Scheduler

OSTYCK	TASKS	
500 us	Task1 (1 millisecond) : Mask Task1: Offset Task1:	This task implements the Window lifter's FSM 0x01 0x00
	Task2 (2 milliseconds) : Mask Task2: Offset Task2:	This task implements a functions that turns on and turns off a LED 0x03 0x01

Task state and transition

Scheduler state and transition

Design Specification Document Template

Division Automotive Entry Program

5.4 Physical Block Diagram for Design Description

Design Specification Document Template

Division Automotive Entry Program

5.5 Functional Decomposition

bc_T_UBYTE_statusButt_Up ()

- * Returns the state of the pin which is connected to a button (Up)
- * Returns 1 if the state is high (+-5v)
- * Returns 0 if the state is low (+-0v)

ic_void_onIndicator_Up ()

* Turns on the indicator LED (Up)

ic_void_offIndicator_Up ()

* Turns off the indicator LED (Up)

bc_T_UBYTE_statusButt_AntiP()

- * Returns the state of the pin which is connected to a button (Antipinch)
- * Returns 1 if the state is high (+-5v)
- * Returns 0 if the state is low (+-0v)

bc_T_UBYTE_statusButt_Down ()

- * Returns the state of the pin which is connected to a button (Down)
- * Returns 1 if the state is high (+-5v)
- * Returns 0 if the state is low (+-0v)

ic_void_onIndicator_Down ()

* Turns on the indicator LED (Down)

ic_void_offIndicator_Down ()

* Turns off the indicator LED (Down)

wc_WindowDown (T_UWORD *lpub_Time)

- * Gets the value of the time (pointer)
- \ast Values the window's level and the time transition to use the function wc_void_ControlWindowUp ()
- * Decrements the window's level

wc_void_ControlWindowDown (T_UBYTE * lpub_WindowLevel)

- * Turns off the window's leds sequentially
- * The time between each transition is 400 milliseconds
- \ast Uses the value of a pointer (The window's level) to turn off a LED

wc_WindowUp (T_UWORD *lpub_Time)

- * Gets the value of the time (pointer)
- \ast Values the window's level and the time transition to use the function wc_void_ControlWindowUp ()
- * Increments the window's level

wc_void_ControlWindowUp (T_UBYTE * lpub_WindowLevel)

- * Turns on the window's leds sequentially
- * The time between each transition is 400 milliseconds
- * Uses the value of a pointer (The window's level) to turn on a LED

5.6 Function Description and Dynamic Behavior

5.6.1 void wc_void_ControlWindowUp (T_UBYTE * porcent)

Description	This function controls the up movement, modifies the value of a pointer wich represents the position of the window
Parameter 1	Receives a pointer to integer to increment its value.
Return Value	void
Precondition	
	the window's leds off, executed inside main
Post condition	the window's leds on

Design Specification Document Template

Division Automotive Entry Program

5.6.2 void wc_void_ControlWindowDown (T_UBYTE * porcent)

Description	This function controls the down movement, modifies the value of a pointer wich represents the position of the window
Parameter 1	Receives a pointer to integer to decrement its value.
Return Value	void
Precondition	
	the window's leds on, executed inside main
Post condition	the window's leds off

Division Automotive Entry Program

Project: AEP Window Lifter 28-Nov-17

5.6.3 T_UBYTE bc_ T_UBYTE _statusButt_Up ()

Description	This function returns the value 1 (Byte) if the pin receives a high voltage signial
Parameter 1	void
Return Value	T_UBYTE
Precondition	
	Low voltage singial, executed inside main, called function, connected pin to Up button
Post condition	Value 1(Byte) if the signial is high or value 0 (Byte) if the signial is Low

Dynamic Behavior

5.6.4 T_UBYTE bc_ T_UBYTE _statusButt_Down ()

Description	This function returns the value 1 (Byte) if the pin receives a high voltage signial
Parameter 1	void
Return Value	T_UBYTE
Precondition	
	Low voltage singial, executed inside main, called function, connected pin to Down button
Post condition	Value 1(Byte) if the signial is high or value 0 (Byte) if the signial is Low

Dynamic Behavior

Detailed Software Design Document

AEP Window Lifter

Project:

28-Nov-17

Design Specification Document Template

Division Automotive Entry Program

5.6.5 void ic_void_onIndicator_Up ()

Description	This function turns on the Up indicator
Parameter 1	void
Return Value	void
Precondition	
	turned off up indicator, executed inside main
Post condition	turned on up indicator

Dynamic Behavior

5.6.6 void ic_void_offIndicator_Up ()

Description	This function turns off the Up indicator
Parameter 1	void
Return Value	void
Precondition	
	turned on up indicator, executed inside main
Post condition	turned off up indicator

Design Specification Document Template

Division Automotive Entry Program

5.6.7 void ic_void_onIndicator_Down ()

Description	This function turns on the Down indicator
Parameter 1	void
Return Value	void
Precondition	
	turned off Down indicator, executed inside main
Post condition	turned on Down indicator

Dynamic Behavior

5.6.8 void ic_void_offIndicator_Down ()

Description	This function turns off the Down indicator
Parameter 1	void
Return Value	void
Precondition	
	turned on Down indicator, executed inside main
Post condition	turned off Down indicator

Design Specification Document Template

Division Automotive Entry Program

5.6.9 void tmr1ms_void_EnableTimer1ms()

Description	This function enables the timer's interrup and assigns a value to the timer's counter
Parameter 1	void
Return Value	void
Precondition	
	Disabled interrup, executed inside main
Post condition	Enabled interrup, counter decrements its value

Dynamic Behavior

5.6.10 void tmr1ms_void_DisableTimer1ms ()

Description	This function disables the timer's interrup
Parameter 1	void
Return Value	void
Precondition	
	Enabled interrup, executed inside main
Post condition	Disabled interrup

