Now let ASW be arbitrary. $\Lambda A = ?$

Take $X_1 \in A$ Is $X_1 \nleq all$ of A?

If so $X_1 = \Lambda A$.

If not $X_1 \nleq Y_1$ for $Y_1 \in A$.

Let $X_2 = X_1 \wedge Y_1$ Is $X_2 \nleq all$ of A? $(X_2 < X_1)$ If so $X_2 = \Lambda A$ If not $X_2 \nleq Y_2$ for $Y_2 \in A$

Let $X_3 = X_2 \land Y_2 \cdots$ $(X_3 < X_2)$

The descending chain XIXX2>X3>... must end since W has finite height, and the last XX is AA.

Prop If W is finite, the neak order I

If Any A has at least one upper band wo.

VA = 1 (upper bounds of A) 12

Very Similar to arguments for Noetherian rings This gives W another algebraic structue!

 $\frac{T_{NM}}{M_R(U, Y)} = \begin{cases} (-1)^J & \text{if } V = UW_0(J) \text{ for some } J \leq S \\ 0 & \text{otherwise} \end{cases}$

Topological proof - see book Combinational proof?

