IN4252 Web Science & Engineering Hands-on Assignment Social Web Data Analytics

Kevin Nanhekhan k.r.nanhekhan@student.tudelft.net, 4959094

Task 1: Retrieving via Twitter API

1.2 Accessing Public Streaming API

1. What is the starting and ending time of the data that you have crawled?

Starting time: 2022-12-02 17:56:43 Ending time: 2022-12-02 18:06:44

2. What is the id of the first tweet you got? And the last one?

First tweet id: 1598722836272644099 Last tweet id: 1598725327697711108

3. How many tweets did you get?

34551 tweets

4. How large is the result file (uncompressed file in JSON format)?
Total result file size is 10,6 Mb

1.3 Filtering Tweets sent from Amsterdam

- How many tweets sent from Amsterdam did you get?
 58394 tweets
- 2) How many tweets are related to COVID-19? **90769 tweets**.

Task 2: Exploratory and Confirmatory Data Analysis

Besides the four mandatory features (#entities, #entityType, #tweetsPosted and sentiment) also a look has been taken at the feature nFavorties as the amount of times a tweet has been favorited could have an effect in its relevance. For the hypothesis testing either the Mann Whitey U test as T-test has been applied, depending on whether the data is normally distributed or not.

#entities:

Feature relevant:			Feature non-relevant	
count	2817.000000	CC	ount	37138.000000
mean	2.367057	m	nean	1.882304
std	1.606369	st	td	1.706187
min	0.000000	m	nin	0.000000
25%	1.000000	2	5%	0.000000
50%	2.000000	50	0%	2.000000
75%	3.000000	7:	5%	3.000000
max	10.000000	m	nax	11.000000

Mann Whitney U test - p-value: 1.9277452753941775e-63

From the plotted histograms we see that the data follows a skewed distribution and not a normal distribution so $Mann\ Whitney\ U$ test can be applied. The p-values is below 0.05 (p < 0.05) which shows that using #entities (number of entities) is a useful feature in discerning whether tweets are relevant or not.

#entityType

Feature relevant: count 2817.000000 mean 0.795527 std 0.787920 min 0.000000	count mean std	e non-relevant 37138.000000 0.597340 0.754422
25% 0.000000	min 25%	0.000000 0.000000
50% 1.000000	50%	0.000000
75% 1.000000 max 3.000000	75%	1.000000
Name: #antityTypes dtype: fleat64	max	4.000000

Name: #entityTypes, dtype: float64

Name: #entityTypes, dtype: float64

Mann Whitney U test - p-value: 1.6603458547298032e-46

From the plotted histograms we see that the data follows a skewed distribution and not a normal distribution so $Mann\ Whitney\ U\ test$ can be applied. The p-values is below 0.05 (p < 0.05) which shows that using # entityTypes (number of entity types) is a useful feature in discerning whether tweets are relevant or not.

#tweetsPosted:

Feature relevant: count 2817.000000 mean 29862.847710 48384.225953 std min 0.000000 25% 2988.000000 50% 12094.000000 75% 34790.000000 545006.000000 max

Name: #tweetsPosted, dtype: float64

Feature non-relevant count 3.713800e+04 2.888887e+04 mean 5.728857e+04 std 0.000000e+00 min 2.481000e+03 25% 50% 1.018400e+04 75% 2.996175e+04 max 1.399152e+06

Name: #tweetsPosted, dtype: float64

P-values:

Mann Whitney U test - p-value: 1.1039335884346776e-06

From the plotted histograms we see that the data follows a skewed distribution and not a normal distribution so $Mann\ Whitney\ U\ test$ can be applied. The p-values is below 0.05 (p < 0.05) which shows that using #tweetsPosted (number of tweets posted) is a useful feature in discerning whether tweets are relevant or not.

sentiment:

Feature relevant:				
count	2817.000000			
mean	-0.024494			
std	0.268697			
min	-1.000000			
25%	0.000000			
50%	0.000000			
75%	0.000000			
max	1.000000			

Name: sentiment, dtype: float64

Feature non-relevant count 37138.000000 0.041925 mean 0.412782 std min -1.000000 25% 0.000000 50% 0.000000 75% 0.000000 1.000000 max

Name: sentiment, dtype: float64

T-test - p-value: 4.378557294479076e-17

From the plotted histograms, we see that the data follows a normal distribution so T-test can be applied. The p-values is below 0.05 (p < 0.05) which shows that using *sentiment* is a useful feature in discerning whether tweets are relevant or not.

nFavorites:

Feature relevant:				
count	2817.000000			
mean	184.261981			
std	1856.418620			
min	0.000000			
25%	0.000000			
50%	1.000000			
75%	11.000000			
max	57064.000000			

Name: nFavorties, dtype: float64

Feature non-relevant count 37138.000000 mean 185.978755 std 3648.010529 0.000000 min 0.000000 25% 50% 2.000000 75% 25.000000 551473.000000 max

Name: nFavorties, dtype: float64

Mann Whitney U test - p-value: 2.6749752490079864e-21

From the boxplots we see that the data follows a skewed distribution and not a normal distribution so *Mann Whitney U test* can be applied. The p-values is below 0.05 (p < 0.05) which shows that using nFavorties (number of times a tweet has been as favorite by others) is a useful feature in discerning whether tweets are relevant or not.