Теория вероятностей и математическая статистика Лектор А.А. Лобузов

Семестр 6

Лекция 7

Проверка статистических гипотез

Рассмотрим статистическую модель (\mathscr{X} , \mathscr{G} (\mathscr{X}) , \mathscr{F}) Пусть $\mathbf{X} = (X_1, X_2, ..., X_N)$ — случайная выборка объёма N из распределения \mathscr{L} . По \mathbf{X} необходимо сделать заключение о справедливости предположения (гипотезы) $\mathbf{H}_0 = \{\mathscr{L} \in \mathscr{T}_0 \subset \mathscr{F}\}$. Если гипотеза \mathbf{H}_0 неверна, то принимается конкурирующая гипотеза $\mathbf{H}_1 = \{\mathscr{L} \in \mathscr{T}_1 \subset \mathscr{F}\}$ При этом $\mathscr{T}_0 \cap \mathscr{T}_1 = \mathscr{O}$. Иногда $\mathscr{T}_0 \cup \mathscr{T}_1 = \mathscr{F}$.

Пример простых гипотез.

Основная гипотеза: $\mathbf{H}_0 = \{ \xi \sim F(x, \theta_0) \}$, конкурирующая гипотеза $\mathbf{H}_1 = \{ \xi \sim F(x, \theta_1) \}$. Критическое множество $S = \{ \mathbf{x} = (x_1, x_2, ..., x_N) \in \mathscr{X} \}$, если $\mathbf{X} = (X_1, X_2, ..., X_N) \in S$, то гипотеза \mathbf{H}_0 отвергается. Ошибка первого рода: приняли \mathbf{H}_1 , при условии, что \mathbf{H}_0 верна. Ошибка второго рода: приняли \mathbf{H}_0 , при условии, что \mathbf{H}_1 верна.

Числовой критерий: $C(x_1, x_2, ..., x_N)$

Классификация:

1) правосторонний критерий

$$S = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : \hat{C}(x_1, x_2, ..., x_N) > z_{\kappa p} \}$$

2) левосторонний критерий

$$\hat{S} = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) < z_{\kappa p} \}$$

3) двусторонний критерий

$$\dot{S} = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) < z_{\kappa p, 1} \} \cup \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) > z_{\kappa p, 2} \}$$

Пример 1.

Числовой критерий: $C(x_1, x_2, ..., x_N)$

Правосторонний критерий

$$S = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) > z_{\kappa p} \}$$

Пример 2.

Числовой критерий: $C(x_1, x_2, ..., x_N)$ Левосторонний критерий

 $S = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) < z_{\kappa n} \}$

Пример 3.

Числовой критерий: $C(x_1, x_2, ..., x_N)$

Двусторонний критерий

$$S = \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) < z_{\kappa p, 1} \} \cup \{ \mathbf{x} = (x_1, x_2, ..., x_N) : C(x_1, x_2, ..., x_N) > z_{\kappa p, 2} \}$$

Рассмотрим простую параметрическую гипотезу $H_0 = \{ \xi \sim F(x, \theta_0) \}$ и конкурирующую гипотезу $H_1 = \{ \xi \sim F(x, \theta_1) \}$.

Пусть $\alpha \in (0,1)$,

рассмотрим такую область $S_{\alpha} \subset \mathscr{X}$, что

$$P_0(S_{\alpha}) = P((x_1, x_2, ..., x_N) \in S_{\alpha} \mid H_0 \text{ верна}) = \alpha.$$

Число α называется уровнем значимости,

область S_{α} – критической областью уровня α .

Вероятность ошибки первого рода совпадает с а.

Вероятность ошибки второго рода

$$eta = \Pr_1(\overline{S}_{\alpha}) = \Pr((x_1, x_2, ..., x_N) \in \overline{S}_{\alpha} \mid H_1 \text{ верна}).$$
 Возьмем гипотезы $H_{\rho} = \{ \xi \sim F(x, \rho) \}.$

Мощность критерия – функция

$$W(S_{\alpha}, \rho) = P((x_1, x_2, ..., x_N) \in S_{\alpha} \mid H_{\rho}$$
 верна).

Если конкурирующая гипотеза простая

$$egin{aligned} \mathbf{H}_1 &= \{ \ \xi \sim F(x, \ \theta_1) \} (\theta = \theta_1), \ \mathbf{W}(S_{\alpha}, 1) = 1 - \beta. \end{aligned}$$

Пусть S_{α}^{*} – такая область, что

$$W(S_{\alpha}^*, \rho) = \max_{S_{\alpha}} \{ W(S_{\alpha}, \rho) \}.$$

Тогда критерий, соответствующий S_{α}^{*} , называется наиболее мощным.

Теорема Пирсона

Пусть ξ –д.с.в.

ξ	x_1	•••	x_m
P	p_1	•••	p_{m}

$$\left\{X_{j}\right\}_{j=1}^{N}$$
 - H.O.p.c.B. $X_{j} \sim \xi$

Пусть
$$n_k = \left| \left\{ X_j = x_k \right\} \right|$$
 — число X_j , равных x_k

Теорема Пирсона утверждает, что

$$\chi_B^2 = \sum_{k=1}^m \frac{\left(n_k - N \cdot p_k\right)^2}{N \cdot p_k} \sim \chi^2 \left(m - 1\right)$$

Обобщение: пусть ξ –д.с.в. ~ $F(x_1, \theta_1, ..., \theta_r)$

ξ	x_1	•••	x_m
P	$P_1(\theta_1,,\theta_r)$	•••	$P_m(\theta_1,,\theta_r)$

$$\tilde{\theta}_i(X_1,...,X_N)$$
 – оценка для $\theta_i,\ i=1,...,r$

Пусть
$$n_k = |\{X_j = x_k\}|$$
 — число X_j , равных x_k

По теореме Пирсона:
$$\chi_B^2 = \sum_{k=1}^m \frac{\left(n_k - N \cdot p_k\left(\tilde{\theta}_1, \dots, \tilde{\theta}_r\right)\right)^2}{N \cdot p_k\left(\tilde{\theta}_1, \dots, \tilde{\theta}_r\right)} \sim \chi^2(\underbrace{m-r-1}_l)$$

Критерий «хи-квадрат»

Рассмотрим гипотезу о нормальном распределении

C.B.
$$\xi : H_0 = \{ \xi \sim N(\tilde{a}, \tilde{\sigma}^2) \}$$

Для данной выборки $\{x_1, ..., x_N\}$

строится группированная выборка:

$$x_{(1)} = \min x_j$$
 , $x_{(N)} = \max x_j$, $m = 1 + [\log_2 N]$, $h = (x_{(N)} - x_{(1)})/m$, $a_0 = x_{(1)}$, $a_k = a_{k-1} + h$, $k = 1, ..., m$ n_1 – число значений x_j , попавших в интервал $[a_0, a_1]$, n_k – число значений x_j , попавших в интервал $(a_{k-1}, a_k]$, $k = 2, ..., m$, $\sum_{i=1}^{m} n_k = N$

Находим относительные частоты

 W_k — относительная частота попадания в k — ый интервал,

$$w_k = \frac{n_k}{N}, \sum_{k=1}^{m} w_k = 1$$

Находим оценки параметров распределения

Оценка математического ожидания
$$\tilde{a} = \sum_{i=1}^{m} x_{i}^{*} \cdot w_{i}$$
, где $x_{i}^{*} = \frac{1}{2} (a_{i-1} + a_{i})$.

Оценка дисперсии
$$\tilde{\sigma}^2 = \sum_{i=1}^m (x_i^*)^2 \cdot w_i - (\tilde{a})^2 - \frac{h^2}{12}$$
, $\tilde{\sigma} = \sqrt{\tilde{\sigma}^2}$.

Вычисление выборочного значения критерия
$$\chi_B^2 = \sum_{i=1}^m \frac{(n_i - Np_i^*)^2}{Np_i^*}$$
, где $p_1^* = \Phi(\frac{a_1 - a}{\tilde{\sigma}})$,

$$p_i^* = \Phi(\frac{a_i - \tilde{a}}{\tilde{\sigma}}) - \Phi(\frac{a_{i-1} - \tilde{a}}{\tilde{\sigma}}), i = 2,..., (m-1), p_m^* = 1 - \Phi(\frac{a_{m-1} - \tilde{a}}{\tilde{\sigma}}),$$

$$\Phi(x) = \int_{-\infty}^{x} \varphi(t) dt$$
 – функция Лапласа, $\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$.

k	a_{k}	$\frac{a_k - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_k-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_k - \tilde{a}}{\tilde{\sigma}})$	p_k^*
0	a_0	$\frac{a_0 - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_0-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_0-\tilde{a}}{\tilde{\sigma}})$	_
1	a_1	$\frac{a_1 - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_1-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_1-\tilde{a}}{\tilde{\sigma}})$	<i>p</i> ₁ *
2	a_2	$\frac{a_2 - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_2-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_2-\tilde{a}}{\tilde{\sigma}})$	p *
			•••	•••	
m-1	a_{m-1}	$\frac{a_{m-1} - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_{m-1}-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_{m-1} - \tilde{a}}{\tilde{\sigma}})$	p_{m-1}^*
m	a_m	$\frac{a_m - \tilde{a}}{\tilde{\sigma}}$	$\frac{1}{\tilde{\sigma}}\varphi(\frac{a_m-\tilde{a}}{\tilde{\sigma}})$	$\Phi(\frac{a_m - \tilde{a}}{\tilde{\sigma}})$	p_m^*

Найденное значение критерия χ_B^2 сравнивается с критическим значением $\chi_{\kappa p,\alpha}^2(l)$, где α – уровнь значимости, $\alpha=0,05$, l=m-3 – число степеней свободы.

l	4	5	6	7	8
$\chi^2_{\kappa p,\alpha}(l)$	9.5	11,1	12,6	14,1	15,5

Если $\chi_B^2 \leq \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки нормальному распределению $N(\tilde{a},\tilde{\sigma}^2)$ не противоречит экспериментальным данным (может быть принята) при уровне значимости $\alpha=0,05$.

Если $\chi_B^2 > \chi_{\kappa p,\alpha}^2(l)$, то гипотеза о соответствии выборки нормальному распределению $N(\tilde{a},\tilde{\sigma}^2)$ противоречит экспериментальным данным (не может быть принята) при уровне значимости $\alpha=0,05$.