$Exercices\ MP/MP^*$

Table des matières

1 Intégration 2

1 Intégration

Exercice 1.1. Soit f continue strictement positive de $[a,b] \subset \mathbb{R}$ dans \mathbb{R}_+^* et

$$S: [a,b] \to \mathbb{R}$$

$$x \mapsto \int_a^x f$$
(1)

Montrer que pour tout $n \ge 1$, pour tout $k \in [1, n]$, il existe un unique $x_k \in [a, b]$ tel que $S(x_k) = k \frac{S(b)}{n}$. Évaluer ensuite $\lim_{n \to +\infty} \sum_{k=1}^n f(x_k)$.

Exercice 1.2. Soit f continue non identiquement nulle et $g(x) = \left(\int_0^1 |f(t)|^x dt\right)^{\frac{1}{x}}$.

- 1. Montrer que $\lim_{x \to +\infty} g(x) = ||f||_{\infty}$.
- 2. On suppose |f| > 0, calculer $\lim_{x \to 0} g(x)$.

Exercice 1.3. Soit $f: [0, a] \to \mathbb{R}$ strictement croissante continue avec f(0) = 0. Soit $g: [0, f(a)] \to [0, a] = f^{-1}$ (continue strictement croissante). Soit $(x, y) \in [0, a] \times [0, f(a)]$. Montrer que

$$xy \leqslant \int_0^x f + \int_0^y g. \tag{2}$$

Expliciter le cas d'égalité.

Exercice 1.4. Existence et calcul de

$$I = \int_{\frac{1}{\pi}}^{1} \frac{\ln(x)}{(1+x)\sqrt{1-x^2}} dx.$$
 (3)

Exercice 1.5. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{4}} \tan^n(x) dx$.

- 1. Exprimer I_n en fonction de n.
- 2. Que vaut $\lim_{n\to+\infty} I_n$ (sous réserve d'existence)?
- 3. En déduire $\frac{\pi}{4}$ et $\ln(2)$ comme somme de séries.

Exercice 1.6. Soit $E = \{ f \in \mathcal{C}^0 ([a, b], \mathbb{R}_+^*) \}$. On définit

$$\phi: E \to \mathbb{R}
f \mapsto \int_a^b f \times \int_a^b \frac{1}{f} \tag{4}$$

- 1. Montrer que l'on peut définir $m = \min_{f \in E} \phi(f)$ et évaluer m. Déterminer les $f \in E$ tels que $\phi(f) = m$.
- 2. Montrer que f n'est pas majorée sur E.
- 3. Déterminer $\phi(E)$.

Exercice 1.7. Existence et calcul de $I = \int_0^{+\infty} \frac{\sqrt{x} \ln(x)}{(1+x)^2} dx$.

Exercice 1.8. Existence et calcul de $I = \int_0^1 \frac{\ln(t)}{\sqrt{t(1-t)^3}} dt$.

Exercice 1.9. Existence et calcul de $I = \int_0^{\frac{\pi}{4}} \frac{\cos^3(t)}{\sqrt{\cos(2t)}} dt$.

Exercice 1.10. Soit $f: [a,b] \to \mathbb{R}$ ou \mathbb{C} continue par morceaux et $g: \mathbb{R} \to \mathbb{R}$ ou \mathbb{C} continue par morceaux T-périodique (T>0). Évaluer $\lim_{\lambda \to +\infty} \int_a^b f(t)g(\lambda t) dt$. Cas particulier : pour $f: [0,2\pi] \to \mathbb{R}$ continue, évaluer $\lim_{n \to +\infty} \int_0^{2\pi} \frac{f(t)}{3+2\cos(nt)} dt$.

Exercice 1.11. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ uniformément continue et intégrable.

- 1. Montrer que $\lim_{x \to +\infty} f(x) = 0$.
- 2. Montrer que $f^2 \in \mathcal{L}^1(\mathbb{R}_+)$.

Exercice 1.12. Soit

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{n}{\sqrt{\pi}} e^{-n^2 x^2}$$
(5)

- 1. Étudier la convergence simple, la convergence uniforme et en moyenne.
- 2. Soit g continue et bornée sur \mathbb{R} , évaluer $\lim_{x\to+\infty}\int_{-\infty}^{+\infty}f(t)f_n(t)dt$.

Exercice 1.13. Existence et calcul de $I = \int_1^{+\infty} \frac{1}{x} - \arcsin\left(\frac{1}{x}\right) dx$.

Exercice 1.14. Existence et calcul de $I = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) dt$. On pourra poser $J = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) dt$.