Proof. Assume the topology of E is given by the metric d. Since B is closed and $A \cap B = \emptyset$, for every $a \in A$ since $a \notin \overline{B} = B$, there is some open ball $B_0(a, \epsilon_a)$ of radius $\epsilon_a > 0$ such that $B_0(a, \epsilon_a) \cap B = \emptyset$. Similarly, since A is closed and $A \cap B = \emptyset$, for every $b \in B$ there is some open ball $B_0(b, \epsilon_b)$ of radius $\epsilon_b > 0$ such that $B_0(b, \epsilon_b) \cap A = \emptyset$. Let

$$U = \bigcup_{a \in A} B_0(a, \epsilon_a/2), \quad V = \bigcup_{b \in B} B_0(b, \epsilon_b/2).$$

Then A and B are open sets such that $A \subseteq U$ and $B \subseteq V$, and we claim that $U \cap V = \emptyset$.

If not, then there is some $z \in U \cap V$, which implies that for some $a \in A$ and some $b \in B$, we have

$$z \in B_0(a, \epsilon_a/2) \cap B_0(b, \epsilon_b/2).$$

It follows that

$$d(a,b) \le d(a,z) + d(z,b) < (\epsilon_a + \epsilon_b)/2.$$

If $\epsilon_a \leq \epsilon_b$, then $d(a,b) < \epsilon_b$, so $a \in B_0(b,\epsilon_b)$, contradicting the fact that $B_0(b,\epsilon_b) \cap A = \emptyset$. If $\epsilon_b \leq \epsilon_a$, then $d(a,b) < \epsilon_a$, so $b \in B_0(a,\epsilon_a)$, contradicting the fact that $B_0(a,\epsilon_a) \cap B = \emptyset$. \square

Compact spaces also have the following property.

Proposition 37.30. Given a compact topological space, E, for every $a \in E$, for every neighborhood, V, of a, there exists a compact neighborhood, U, of a such that $U \subseteq V$. See Figure 37.33.

Figure 37.33: Let E be the peach square of \mathbb{R}^2 . Each point of E is contained in a compact neighborhood U, in this case the small closed yellow disk.