

Pró-reitora de Pós-Graduação, Pesquisa e Inovação

Especialização em Ciências de Dados e Analytics

Programação para Ciência de Dados

Parte 2 – Pandas Aula 6

Agenda

- Biblioteca Pandas
 - Visão geral e instalação
 - Series
 - DataFrame
 - Dados ausentes
 - Agrupamento
 - Concatenação, junção e mesclagem de dados
 - -I/O

Pandas

Biblioteca escrita sobre o numpy

 Oferece diversos recursos para visualização e limpeza de dados, com funcionalidades similares aquelas que temos no Excel

Instalação

- Com o Anaconda já instalado, o processo de instalação do Pandas é muito simples:
 - conda install pandasOU
 - pip install pandas

Pandas :: Series

- Pandas possui essencialmente dois objetos, um deles é o Series
- Parece muito com o tipo de dados dicionário de Python

```
import numpy as np
import pandas as pd

rotulo = ['a', 'b', 'c']

valores = [3, 17, 30]

pd.Series(valores, rotulo)

a    3
b    17
c    30
dtype: int64
```

```
np_valores = np.array(valores)

pd.Series(np_valores, rotulo)

a     3
b     17
c     30
dtype: int32
```

Veja que ao criar a *Series* com numpy há uma economia de memória, por usar int32

Pandas :: Series

Operações básicas

top5Paises1990

```
EUA 89.5
JP 66.6
AL 42.4
UK 34.6
FR 26.9
dtype: float64
```

```
top5Paises1990 + top5Paises2000 + top5Paises2010
```

```
AL 286.4
CG NaN
CH NaN
EUA 432.4
FR NaN
JP 317.5
UK NaN
dtype: float64
```

NaN ocorre porque os rótulos não foram localizados em algumas das séries somadas.

- O DataFrame corresponde a um conjunto de Series
- Podemos vê-lo como uma planilha Excel!

```
paises = ['EUA','JP','AL','UK','FR','CG','CH']
```

```
anos = ['1990','2000','2010']
```

```
dados = [[89.5,66.6,42.4,34.6,26.9,15,0],

[197.4,128.9,85.5,70.4,58.7,73.9,41.7],

[145.5,122,158.5,59.8,99.7,126.9,406]]
```

```
df = pd.DataFrame(dados, anos, paises)
```

df

	EUA	JP	AL	UK	FR	CG	СН
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0

 Acesso aos dados é similar a notação usada em Dicionários!

	EUA	JP	AL	UK	FR	CG	СН
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0

```
df['CH']
```

1990 0.0 2000 41.7 2010 406.0

Name: CH, dtype: float64

	СН	EUA
1990	0.0	89.5
2000	41.7	197.4
2010	406.0	145.5

```
df['CH']['2000']
```

41.7

 df.loc: Para selecionar linhas ou células do DF usando os rótulos

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

```
df.loc['2000']

EUA 197.4

JP 128.9

AL 85.5

UK 70.4

FR 58.7

CG 73.9

CH 41.7

BR 5.9

Name: 2000, dtype: float64

df.loc[['2000','2010'],['UK','FR']]
```

 df.iloc: Para selecionar linhas ou células usando os índices

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

```
df.iloc[2]
FUΔ
       145.5
       122.0
JР
       158.5
       59.8
UK
FR
       99.7
       126.9
CG
       406.0
CH
BR
         8.0
Name: 2010, dtype: float64
df.iloc[1:,3:5]
```

	UK	FR
2000	70.4	58.7
2010	59.8	99.7

 Inserção de novos valores também é similar ao que temos em Dicionários!

```
df['BR'] = [1,5.9,8]

df
```

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

df.drop: Para remoção de linhas (0) ou colunas (1) df

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

df.drop('UK', axis=1)

	EUA	JP	AL	FR	CG	СН	BR
1990	89.5	66.6	42.4	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	99.7	126.9	406.0	8.0

df

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

para remover no objeto corrente, use inplace=true
df.drop('UK', axis=1, inplace=True)
12

- Seleção condicional de valores no DF
 - Similar ao que temos com *numpy* array

```
mediaPorPais = df.mean()
mediaPorPais
      144.133333
JP
      105.833333
       95,466667
       54.933333
       61.766667
       71.933333
      149.233333
         4.966667
dtype: float64
mediaGeral = mediaPorPais.mean()
mediaGeral
86.03333333333333
indicesMaiorMediaGeral = df > mediaGeral
indicesMaiorMediaGeral
     EUA
                       UK
                             FR
                                  CG
                                              BR
```

- Seleção condicional de valores no DF
 - Similar ao que temos com *numpy* array

```
df[indicesMaiorMediaGeral]
```

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2000	197.4	128.9	NaN	NaN	NaN	NaN	NaN	NaN
2010	145.5	122.0	158.5	NaN	99.7	126.9	406.0	NaN

```
df[indicesMaiorMediaGeral]['JP']
```

1990 NaN 2000 128.9 2010 122.0

Name: JP, dtype: float64


```
df[df['JP'] > mediaGeral]['JP']
```

2000 128.9

Name: JP, dtype: float64

 Operadores de seleção úteis

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

desvioPadraoGeral	=	df.std().std()
-------------------	---	----------------

desvioPadraoGeral

68.52119478973259

mediaGeral

86.03333333333333

```
df[(df > mediaGeral+desvioPadraoGeral)]
```

```
EUA
                     UK
                          FR
                              CG
                                    CH
                                         BR
1990
     NaN
          NaN
                NaN
                    NaN NaN
                             NaN
                                   NaN NaN
          NaN
               158.5
                    NaN NaN NaN 406.0
```

```
df[(df > mediaGeral)
    & (df <= mediaGeral+desvioPadraoGeral)]</pre>
```

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2000	NaN	128.9	NaN	NaN	NaN	NaN	NaN	NaN
2010	145.5	122.0	NaN	NaN	99.7	126.9	NaN	NaN

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	NaN	NaN	NaN	NaN	NaN	15.0	0.0	1.0
2000	197.4	NaN	NaN	NaN	NaN	NaN	NaN	5.9
2010	NaN	NaN	158.5	NaN	NaN	NaN	406.0	8.0

 Alterando o índice do DF

- df.reset_index

	EUA	JP	AL	UK	FR	CG	СН	BR
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

df.reset_index(inplace=True)

df

	index	EUA	JP	AL	UK	FR	CG	CH	BR
0	1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
1	2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2	2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

 Alterando o índice do DF

	index	EUA	JP	AL	UK	FR	CG	СН	BR
0	1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
1	2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2	2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

df

	index	EUA	JP	AL	UK	FR	CG	СН	BR	Ano
0	1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0	1990
1	2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9	2000
2	2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0	2010

```
df.set_index('Ano',inplace=True)
```

df

		index	EUA	JP	AL	UK	FR	CG	CH	BR
A	lno									
19	990	1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
20	000	2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
20	010	2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

```
df = df.iloc[:,1:]
```

df

	EUA	JP	AL	UK	FR	CG	СН	BR
Ano								
1990	89.5	66.6	42.4	34.6	26.9	15.0	0.0	1.0
2000	197.4	128.9	85.5	70.4	58.7	73.9	41.7	5.9
2010	145.5	122.0	158.5	59.8	99.7	126.9	406.0	8.0

Agenda

- Biblioteca Pandas
 - Visão geral e instalação
 - Series
 - DataFrame
 - -I/O
 - Multiníveis
 - Dados ausentes
 - Agrupamento
 - Concatenação, junção e *mesclagem* de dados

Pandas :: 1/0

Prof. Dr. Byron Leite

Importando dados com o Pandas

− pd.read ...

```
pd.read
pd.read_clipboard -
pd.read_csv
pd.read_excel
pd.read_feather
pd.read_fwf
pd.read_gbq
pd.read_hdf
pd.read_html
pd.read_json
pd.read_msgpack
```


Contact us | User Guide | Home English | Français Search

Information Science, technology and innovation 타 타 🗎 🗾 Data Characteristics Date last updated June 2018 release. Regional data February 2018 Other Aspects Other comments .. - Data not available

▲ 🔻

Contact us | Site Map | User Guide | Home

Fonte: http://data.uis.unesco.org/

Ciência de Dados

Powered by .Stat technology | @ UIS. All rights reserved. | Terms & Conditions

Data extracted on 03 Feb 2019 12:31 UTC (GMT) from UIS.Stat

Pandas :: 1/0

Exportando dados com o Pandas

```
C:\Users\byron\Google Drive\UPE\especializacao\residencia-ia\python\dados\SCN DS 03022019073414299-OK.csv ...
       – pd.to csv
                                                                Arquivo Editar Localizar Visualizar Formatar Linquagem Configurações Tools Macro Executar Plugins Janela ?
                                                                🕽 📇 🗎 😭 🗟 😘 🚵 🔏 🐚 🛍 🗩 C l 🏔 🦖 🔍 🤜 🖫 📑 T l 🗜 🐺 📓 🖋 📹 👁 l 🗉 🕦 🗈
                                                                                                                                                         4 >
                                                                 SCN_DS_03022019073414299-ResearchersFTE.csv 🗵 님 SCN_DS_03022019073414299-OK.csv 🗵
del dfIn['INDICATOR']
                                                                     , Indicator, Country, Time, Value CRIF
                                                                    0, Researchers (FTE) - Total , Argentina, 2011, 49028.83 CRIF
                                                                  3 1, Researchers (FTE) - Total , Argentina, 2012, 50489. 182310000004 CRIF
del dfIn['LOCATION']
                                                                    2, Researchers (FTE) - Total , Argentina, 2013, 50784.51421 CRIF
                                                                    3, Researchers (FTE) - Total , Argentina, 2014, 51665.0 CRL
                                                                  6 4, Researchers (FTE) -- Total , Argentina, 2015, 52969.5 CRLE
del dfIn['TIME']
                                                                  7 5, Researchers (FTE) - Total , Brazil, 2011, 148673.0 CRLE
                                                                  8 6, Researchers (FTE) - Total , Brazil, 2012, 160399.0 CRLE
                                                                  9 7, Researchers (FTE) - Total , Brazil, 2013, 172126.0 CRLE
del dfIn['Flag Codes']
                                                                 10 8, Researchers (FTE) - Total , Brazil, 2014, 183853.0CRLE
                                                                 9, Researchers (FTE) - Total , Chile, 2011, 6078.4 CRLE
                                                                 12 10, Researchers (FTE) - Total , Chile, 2012, 6798.01 CRLF
del dfIn['Flags']
                                                                 13 11, Researchers (FTE) - Total , Chile, 2013, 5892.899 CRIF
                                                                 14 12, Researchers (FTE) - Total , Chile, 2014, 7585.24 CRLF
                                                                 15 13, Researchers (FTE) - Total , Chile, 2015, 8175.32699999999 CRIFF
dfIn.columns
                                                                Normal text length: 2.231 lines: 41
                                                                                              Ln:1 Col:1 Sel:0|0
                                                                                                                             Windows (CR LF) UTF-8
Index(['Indicator', 'Country', 'Time', 'Value'], dtype='object')
dfIn.to csv('C:\\Users\\byron\\Google Drive\\UPE\\especializacao\\residencia-ia\\python\\dados\\SCN DS 03022019073414299-OK.csv')
```

Importando dados do Excel – pd.read excel

Time Unnamed: 1

Country

Argentina

Colombia

Fcuador

Paraguay

Uruguay

Venezuela (Bolivarian Republic of)

Latin America and the Caribbean

Brazil

Chile

NaN

NaN

NaN

NaN

NaN

NaN

2736.39444

dfInXls

Pandas :: 1/0

Exportando dados com o Pandas

	Time	Unnamed: 1	2011	2012	2013	2014	2015			_ : _		£
0	Country	NaN	NaN	NaN	NaN	NaN	NaN	A1		· : : >	· ·	fx
1	Argentina	NaN	49028.83000	50489.18231	50784.5	51665.00000	52969.5					
2	Brazil	NaN	148673.00000	160399.00000	172126	183853.00000			А	В	С	
3	Chile	NaN	6078.40000	6798.01000	5892.9	7585.24000	8175.33	1		Time	2011	
4	Colombia	NaN	9119.80982	8812.94661	7820.03	5651.22725	6364.25	2	1	Argentina	49028,83	50
5	Ecuador	NaN	2736.39444	4350.80000	5508	6372.60000		3	2	Brazil	148673	-
6	Paraguay	NaN	317.00000	1081.00000		1004.50000	1222	4	3	Chile	6078,4	_
0	Faraguay	ivaiv	317.00000	1001.00000		1004.30000		5	4	Colombia	9119,81	88
7	Uruguay	NaN	1777.00000	1825.00000	1803	1724.00000	1799	6	5	Ecuador	2736,394	
8	Venezuela (Bolivarian Republic of)	NaN	6720.00000	8686.00000	10834	8192.00000	7488	7	6	Paraguay	317	
9	Latin America and the Caribbean	NaN	281937.68509	287970.10495	302624	314616.39137	319730	8	7	Uruguay	1777	
3	Latin America and the Cambbean	INGIN	201937.00309	201910.10493	302024	314010.39137	319730	9	8	Venezuela	6720	1
	15- 11- 511							10	9	Latin Ame	281937,7	28
del	dfInXls['Unnamed: 1']							11				
								4)	Researcher	sFTE	\oplus
dfI	nXls.drop(index=0, axis=1	, inplace=	True)					Pron	to			
dfI	nXls.replace('', np.nan	, inplace=	True)									

sheet name='ResearchersFTE')

dfInXls.to excel('C:\\Users\\byron\\Google Drive\\UPE\\especializacao\\residencia-ia\\python\\dados\\SCN DS 03022019073414299-0

Search FDIC...

Deposit Insurance ▼ Consumer Protection ▼ Industry Analysis ▼ Regulations & Examinations ▼ Institution & Asset Sales ▼

News & Events ▼

About FDIC ▼

Home > Industry Analysis > Failed Banks > Failed Bank List

Failed Bank List

The FDIC is often appointed as receiver for failed banks. This page contains useful information for the customers and vendors of these banks. This includes information on the acquiring bank (if applicable), how your accounts and loans are affected, and how vendors can file claims against the receivership.

This list includes banks which have failed since October 1, 2000. To search for banks that failed prior to those on this page, visit this link: Failures and Assistance **Transactions**

Click arrows next to headers to sort in Ascending or Descending order.

Download Data

Search:

Show 25 ▼ entries

Showing 1 to 25 of 555 entries

First Previous

act
Lasi

≑ Bank Name	‡ City	‡ ST		Acquiring Institution	Closing Date	≑ Updated Date
Washington Federal Bank for Savings	Chicago	IL	30570	Royal Savings Bank	December 15, 2017	February 21, 2018
The Farmers and Merchants State Bank of Argonia	Argonia	KS	17719	Conway Bank	October 13, 2017	February 21, 2018
Fayette County Bank	Saint Elmo	IL	1802	United Fidelity Bank, fsb	May 26, 2017	January 29, 2019
Guaranty Bank, (d/b/a BestBank in Georgia & Michigan)	Milwaukee	WI	30003	First-Citizens Bank & Trust Company	May 5, 2017	March 22, 2018
First NBC Bank	New Orleans	LA	58302	Whitney Bank	April 28, 2017	January 29, 2019

Fonte: https://www.fdic.gov/bank/individual/failed/banklist.html

Pandas :: 1/0

Importando dados da Internet

	Bank Name	City	ST	CERT	Acquiring Institution	Closing Date	Updated Date
0	Washington Federal Bank for Savings	Chicago	IL	30570	Royal Savings Bank	December 15, 2017	February 21, 2018
1	The Farmers and Merchants State Bank of Argonia	Argonia	KS	17719	Conway Bank	October 13, 2017	February 21, 2018
2	Fayette County Bank	Saint Elmo	IL	1802	United Fidelity Bank, fsb	May 26, 2017	January 29, 2019
3	Guaranty Bank, (d/b/a BestBank in Georgia & Mi	Milwaukee	WI	30003	First-Citizens Bank & Trust Company	May 5, 2017	March 22, 2018
4	First NBC Bank	New Orleans	LA	58302	Whitney Bank	April 28, 2017	January 29, 2019

dfInHtml[0]

Proficio Bank Cottonwood Heights UT 35495

Cache Valley Bank

March 3, 2017

January 29, 2019

Exercício

- Crie um DataFrame para representar os dados da tabela abaixo obtidos a partir do site http://data.uis.unesco.org/ conforme tela ao lado, utilizando algum método de importação
- Limpe as linhas e colunas do DataFrame importado que não tem relevância e escolha apenas 5 países em um período de 5 anos
- Construa uma função que recebe o DataFrame criado e um ano e retorna o país com melhor colocação no ano

Dica: https://pandas.pydata.org/pandas-docs/stable/reference/series.html

Fonte: http://data.uis.unesco.org/

