Révisions 5 – Modélisation des systèmes linéaires – Domaine fréquentiel

l'Ingénieur

Sciences

Modéliser le Révisions Application 02 Corrigé

Système de freinage d'un TGV DUPLEX

Concours Centrale Supelec PSI 2006 - Ressources UPSTI Savoirs et compétences :

Mise en situation

Analyse des réponses fréquentielles en boucle ouverte

Question 1 En prenant C(p) = 1, compléter par le tracé asymptotique le diagramme de Bode de la fonction de transfert en boucle ouverte fourni.

Correction On a pour $H_1(p)$, $\frac{1}{\omega_0^2} = 0.01 \Leftrightarrow \omega_0 = 10 \text{ et } 2\frac{\xi}{\omega_0} = 0.1 \text{ soit } \xi = 0.1 \times 10/2 = 0.5$. Les pulsations caractéristiques de la FTBO sont donc $\omega_0 = 10 \, \text{rad s}^{-1}$ et $1/0, 05 = 20 \, \text{rad s}^{-1}$.

Pour tracer un diagramme de Bode avec un intégrateur, il est nécessaire de définir un point pour définir la « hauteur » du tracé. Pour cela on prend un point pour lequel seul l'intégrateur et les constantes ont de l'effet. Ainsi, $\frac{2000 \times 45 \times 10^{-6}}{\text{. On a donc } 20 \log 0, 09 - 20 \log 0, 1 \simeq -0.92 \, \text{dB.}}$ pour $\omega = 0.1 \,\mathrm{rad}\,\mathrm{s}^{-1}$, on a FTBO(p) \simeq

On peut dresser le tableau de variations de la FTBO puis tracer les asymptotes.

	$\omega o 0$	ω =	10	ω =	20	$\omega o \infty$
$ H_1(j\omega) _{dB}$	$20\log 2000$		-40 dB/decade		-40 dB/decade	
$ H_2(j\omega) _{dB}$	-20 dB/decade		-20 dB/decade		−20 dB/decade	
$ M(j\omega) _{dB}$	0		0		−20 dB/decade	
$ FTBO(j\omega) _{dB}$	-20 dB/decade		-60 dB/decade		-80 dB/decade	
$Arg(FTBO(j\omega))$	-90°		-270°		-360°	

Synthèse du régulateur de la boucle de régulation

On décide d'implémenter un régulateur de type P.I. dont la fonction de transfert est : $C(p) = K_r \left(1 + \frac{1}{T_i p} \right)$.

Question 2 Calculer la valeur que doit prendre l'argument de C(p) afin d'assurer la marge de phase imposée par le cahier des charges à la pulsation de coupure ω_c souhaitée.

Méthode Si on note ω_c on définit la pulsation de coupure telle que $|FTBO(j\omega_c)| = 0$ dB. On peut alors définir la marge de phase par $M\varphi = \arg[FTBO(j\omega_c)] - (-180^\circ)$.

Correction La pulsation de coupure souhaitée est $\omega_c \simeq 1 \text{ rad s}^{-1}$. On cherche donc K_r et T_i tels que arg [FTBO $(j\omega_c)$] $(-180^\circ) = 60^\circ$.

$$\arg[\text{FTBO}(j\omega)] = \arg\left[\underbrace{\frac{2000}{1+0,1p+0,01p^2}}_{\to -5,7^{\circ}\text{qd}}\underbrace{\frac{1}{\omega=\omega_c}}_{\to -2,8^{\circ}\text{qd}}\underbrace{\frac{K_r}{\omega=\omega_c}}_{\to -2,8^{\circ}\text{qd}}\underbrace{\frac{45\cdot 10^{-6}}{p}}_{\to -0}\right] = \arg\left[\left(1+\frac{1}{T_ip}\right)\right] - 98,5$$

Ci-dessus, ce sont les **arguments** que l'on évalue lorsque $\omega = \omega_c$. L'argument du produit est égal à la somme des arguments.

$$\arg \left[\mathrm{FTBO} \left(j \omega \right) \right] = \arg \left[\frac{T_i p + 1}{T_i p} \right] - 98, 5.$$

Pour respecter la marge souhaitée, il est donc nécessaire que $\arg[\text{FTBO}(j\omega_c)] - (-180) \ge 60 \text{ Soit } \arg\left[\frac{T_ip+1}{T_ip}\right] - 98,5 + 180 \ge 60 \text{ et } \arg\left[\frac{T_ip+1}{T_ip}\right] \ge -21,5 ^\circ.$

Question 3 Calculer la valeur minimale, T_{imin} , que l'on peut conférer à la constante T_i de l'action intégrale du régulateur.

Correction On en déduit que pour $\omega = \omega_c = 1$, $\arg \left[\frac{T_i p + 1}{T_i p} \right] \ge -21.5^\circ \Leftrightarrow \arctan(T_i \omega) - 90 \ge -21.5^\circ \Leftrightarrow \arctan(T_i \omega) \ge 68.5^\circ \text{ et donc} \Rightarrow T_i \ge \tan(68.5) = 2.54 \text{ s.}$

Attention : à ce stade, la marge de phase serait de 60°SI la pulsation de coupure était de 1 rad s⁻¹ ce qui n'est pas encore le cas pour le moemnt.

Question 4 En adoptant $T_i = T_{imin}$, déterminer alors le gain K_r du régulateur permettant de satisfaire la pulsation de coupure et la marge de phase souhaitées. (Approche graphique demandée, approche analytique facultative)

Méthode Il faut chercher K_r tel que $20 \log ||FTBO(j\omega_c)|| = 0$.

 $\begin{array}{l} \textbf{Correction} \quad \text{En raisonnant graphiquement à l'aide du diagramme en boucle ouverte non corrigé, on lit que le gain est d'environ <math>-20 \text{ dB lorsque } \omega = 1.$ La fonction de transfert du correcteur est $C(p) = K_r \left(1 + \frac{1}{T_i p}\right) = K_r \frac{T_i p + 1}{T_i p}.$ Le gain dB du correcteur doit donc être de $20 \text{ dB lorsque } \omega = 1: 20 \log K_r + 20 \log \sqrt{T_i^2 \omega^2 + 1} - 20 \log T_i \omega = 20 \\ \Leftrightarrow \log K_r + \log \sqrt{T_i^2 + 1} - \log T_i = 1 \\ \Leftrightarrow \log K_r = 1 - \log \sqrt{T_i^2 + 1} + \log T_i. \\ \text{On a donc } K_r = 9, 3. \end{array}$

Anlaytiquement (à vérifier....) $20\log ||FTBO(j\omega_c)|| = 0 \Rightarrow ||FTBO(j\omega_c)|| = 1.$ $||FTBO(j\omega)|| = \left| \left| \frac{2000}{1 + 0, 1p + 0, 01p^2} \cdot \frac{1}{1 + 0, 05p} \cdot K_r \left(1 + \frac{1}{T_i p} \right) \cdot \frac{45 \cdot 10^{-6}}{p} \right| \right|$ $= \left| \left| \frac{2000}{1 + 0, 1p + 0, 01p^2} \cdot \frac{1}{1 + 0, 05p} \cdot K_r \frac{1 + T_i p}{T_i p} \frac{45 \cdot 10^{-6}}{p} \right| \right|$ $= \frac{K_r}{T_i \omega^2} 90 \cdot 10^{-3} \sqrt{1 + T_i^2 \omega^2} \left| \left| \frac{1}{1 + 0, 1p + 0, 01p^2} \frac{1}{1 + 0, 05p} \right| \right| = \frac{K_r}{T_i \omega^2} 90 \cdot 10^{-3} \frac{\sqrt{1 + T_i^2 \omega^2}}{\sqrt{1 + 0, 05^2 \omega^2}} \frac{1}{\sqrt{(1 - 0, 01^2 \omega^2)^2 + 0, 1^2 \omega^2}}$ $= \frac{K_r}{T_i} 90 \cdot 10^{-3} \frac{\sqrt{1 + T_i^2}}{\sqrt{1 + 0, 05^2}} \frac{1}{\sqrt{(1 - 0, 01^2)^2 + 0, 1^2}}$

Question 5 Le système étant bouclé par le régulateur dimensionné à la question précédente, déterminer la marge de gain. Conclure sur les marges de stabilité obtenues. (Approche graphique demandée, approche analytique facultative)

Méthode Soit ω_{φ} la pulsation telle que $\varphi(\omega_{\varphi}) = -180^{\circ}$. La marge de gain s'exprime alors par $MG = -20 \log ||H(j\omega_{\varphi})||$.

Correction Approche analytique On résout
$$\arg[\text{FTBO}(j\omega)] = -180^{\circ}$$
 $\arg[\text{FTBO}(j\omega)] = \arg\left[\frac{2000}{1+0,1p+0,01p^2} \cdot \frac{1}{1+0,05p} \cdot K_r\left(1 + \frac{1}{T_ip}\right) \cdot \frac{45 \cdot 10^{-6}}{p}\right]$ Approche graphique

Vérification du cahier des charges vis-à-vis de la consigne de glissement

Question 6 En examinant les diagrammes de Bode suivants de la fonction de transfert en boucle fermée F(p), justifier l'expression adoptée et compléter les diagrammes fournis par leur tracé asymptotique.

Correction

Question 7 Proposer les valeurs numériques pour les différents paramètres associés à cette fonction de transfert.

Correction • $K_f = 1$: lorsque ω tend vers 0, le gain tend vers 0;

- $\omega_0 = 0.5$: valeur de la pulsation de résonance; $\tau_1 = \frac{1}{0.9} = 1.11$ s;
- $\tau_2 = \frac{1}{7} = 0.14 \,\mathrm{s};$
- $\xi < 0.7$ (résonance).

Question 8 En justifiant votre réponse, montrer que l'on peut approcher la fonction de transfert F(p) par la forme suivante: $F(p) = \frac{v_1(p)}{v_c(p)} = \frac{K_f(1+\tau_1 p)}{(1+\tau_2 p)^2}$.

Correction La pulsation propre ω_0 est relativement loin de la bande passante, en conséquence sa dynamique sera rapide vis-à-vis du zéro et du pôle double (pôles dominants). On adopte donc:

$$F(p) = \frac{v_1(p)}{v_c(p)} = \frac{(1+3,3p)}{(1+1,66p)^2}$$

On donne la réponse temporelle vis-à-vis de la consigne de glissement : $f(t) = \left(\frac{\tau_2 - \tau_1}{\tau_2^3}t + \frac{\tau_1}{\tau_2^2}\right)e^{-\frac{t}{\tau_2}}u(t)$.

Calculer le temps du 1ermaximum et en déduire le dépassement en réponse à une variation en échelon de la consigne de glissement relatif $v_c(t) = v_{c0}u(t)$ où u(t) désigne l'échelon unité.

Correction

Calcul du temps du 1^{er} maximum

Le temps du 1^{er} maximum est donné par $f(t_m) = 0$, soit pour :

$$\frac{\tau_2 - \tau_1}{\tau_2^3} t_m + \frac{\tau_1}{\tau_2^2} = 0$$

On obtient done:

$$t_m = \frac{\tau_2 \tau_1}{\tau_1 - \tau_2}$$

L'application numérique avec les valeurs adoptées conduit à $t_m = 3,3$ s.

Calcul du dépassement

La réponse indicielle peut être obtenue par intégration de la réponse impulsionnelle, le dépassement étant donné par la valeur de la sortie pour $t = t_m$:

$$v(t_m) = \int_{0}^{t_m} f(t)dt = \int_{0}^{t_m} (ay(t) + b\dot{y}(t))dt = a\int_{0}^{t_m} y(t)dt + b[y(t)]_{0}^{t_m}$$

Avec $y(t) = te^{-t/\tau_2}$ dont l'intégration peut être effectuée facilement par parties :

$$\int_{0}^{t_{m}} t e^{-t/\tau_{2}} = \left[-\tau_{2} t e^{-t/\tau_{2}} - \tau_{2}^{2} e^{-t/\tau_{2}} \right]_{0}^{t_{m}} = -\tau_{2} t_{m} e^{-t_{m}/\tau_{2}} - \tau_{2}^{2} e^{-t_{m}/\tau_{2}} + \tau_{2}^{2}$$

$$v(t_m) = \frac{1}{\tau_2^2} \left[-\tau_2 t_m e^{-t_m/\tau_2} - \tau_2^2 e^{-t_m/\tau_2} + \tau_2^2 \right] + \frac{\tau_1}{\tau_2^2} t_m e^{-t_m/\tau_2}$$

Pour $t = t_m$ on obtient $v(t_m) = 1.13$, soit un dépassement de 13%.

Question 10 Vérifier le cahier des charges en réponse à une variation en échelon de la consigne de glissement relatif.

- Correction Le temps du 1^{er} maximum est inférieur à 3,5 s. et le dépassement inférieur à 20% ce qui vérifie le cahier des charges.
- Le régulateur comportant une action intégrale, l'erreur statique est nulle vis-à-vis d'une consigne constante.

Analyse des performances temporelles en réponse à des variations d'adhérence

Question 11 Déterminer la fonction de transfert $F_2(p) = \frac{v_1(p)}{F_{ext}(p)}$ entre le glissement et la force de perturbation que vous expliciterez en fonction des différentes transmittances de la boucle de régulation (on suppose v_c nulle). En expliquant soigneusement votre démarche, montrer que le module de la réponse fréquentielle, notée $\|F_2(j\omega)\|$, de cette fonction peut être approché par la relation : $||F_2(j\omega)|| = \min \left| ||H_2(j\omega)||; \frac{1}{||C(j\omega)H_1(j\omega)M(j\omega)||} \right|$

Correction On a directement
$$F_2(p) = -\frac{H_2(p)}{1 + H_2(p)M(p)C(p)H_1(p)}$$
.

On peut alors déterminer le module et on a $||F_2(j\omega)|| = \left|\left|\frac{H_2(j\omega)}{1 + H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)}\right|\right|$.

Dans ces conditions:

• $\operatorname{si}\left|\left|H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)\right|\right| >> 1$ alors $||F_2(j\omega)|| \simeq \left|\left|\frac{H_2(j\omega)}{H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)}\right|\right| \simeq \left|\left|\frac{1}{M(j\omega)C(j\omega)H_1(j\omega)}\right|\right|$;

• $\operatorname{si}\left|\left|H_2(j\omega)M(j\omega)C(j\omega)H_1(j\omega)\right|\right| << 1$ alors $||F_2(j\omega)|| \simeq \left|\left|H_2(j\omega)\right|\right|$.

On peut en conclure que $||F_2(j\omega)|| = \min\left[\left|\left|H_2(j\omega)\right|\right|; \frac{1}{\left|\left|C(j\omega)H_1(j\omega)M(j\omega)H_1(j\omega)H$

Question 12 La figure suivante comporte le tracé de la fonction $\frac{1}{\|C(j\omega)H_1(j\omega)M(j\omega)\|}$. Tracer directement sur cette figure le diagramme asymptotique de la fonction $\|H_2(j\omega)\|$.

Question 13 En déduire la forme du tracé asymptotique de la fonction $||F_2(j\omega)||$. En analysant les brisures de ce diagramme et en supposant que le système bouclé est stable, donner directement sous forme numérique, l'expression de la fonction de transfert $F_2(p)$ entre le glissement et la perturbation due à la variation d'adhérence.

Correction

En analysant les brisures de F_2 , on peut proposer la fonction de transfert suivante : $F_2 = -\frac{Kp}{\left(1+\tau_1p\right)\left(1+\tau_2p\right)}$ avec $\tau_1 = \frac{1}{0,35} \simeq 2.9\,\mathrm{s}$, $\tau_2 = \frac{1}{1,8} \simeq 0.6\,\mathrm{s}$. Avec cette proposition, en basse fréquence, seul le dérivateur existe, ona donc $20\log K\omega = 20\log 0.01K = -123\,\mathrm{soit}\ K = 100\times 10^{-123/20} \simeq 7\cdot 10^{-5}$. Au final, $F_2 = -\frac{7\cdot 10^{-5}p}{\left(1+2.9p\right)\left(1+0.6p\right)}$.

Question 14 Préciser les pôles de la fonction $F_2(p)$ déterminée à la question précédente et en justifiant votre réponse proposer une fonction approchée de cette fonction sous la forme : $F_2(p) = \frac{K_2 p}{1 + T p}$.

Correction

Cette fonction de transfert est caractérisée par deux pôles :

$$\begin{cases} p_1 = -0.35 \\ p_2 = -2 \end{cases}$$

Le pôle p_2 étant caractérisé par une dynamique relativement rapide par rapport à celle de p_1 , on va pouvoir le négliger pour l'étude de la réponse temporelle. Soit la fonction approchée :

$$F_2(p) = -\frac{\frac{p}{12100}}{(1+2,8p)}$$

Question 15 En utilisant cette fonction de transfert, donner l'expression de l'évolution temporelle du glissement relatif $v_1(t)$ en réponse à une variation en échelon de la force perturbatrice $F_{ext} = F_0 u(t)$, où u(t) représente l'échelon unité et avec $F_0 = 2000 \, \mathrm{N}$.

Correction La réponse à un échelon de perturbation est donnée sur la figure suivante, c'est la réponse typique d'une fonction du 1^{er} ordre en partant d'une condition non nulle ($\nu_1 = 0.05$) avec une entrée nulle. Le temps de réponse est alors de $t_r = 3T = 8,4$ s.

Question 16 Tracer l'allure de l'évolution temporelle du glissement relatif $v_1(t)$ en précisant la valeur initiale $v_1(0)$. En vous référant à des fonctions ou des résultats connus, déterminer un ordre de grandeur du temps de réponse t_r à partir duquel le glissement reste en dessous de 5 % de la valeur initiale $v_1(0)$ (valeurs à considérer en valeur absolue).

Retour sur le cahier des charges

Conclure sur les performances obtenues vis-à-vis des exigences du cahier des charges en réponse à des **Question 17** variations de l'adhérence.

- Le temps de réponse de 8,4 s. est inférieur au temps de réponse de 9 s. demandé. En conséquence on peut conclure que le cahier des charges est satisfait au regard de cette contrainte.
- Le régulateur comportant une action intégrale (donc avant le point d'entrée de la perturbation) l'erreur statique est nulle comme montré sur la réponse temporelle.

Correction

- 1. ...
 2. $\arg\left[\frac{T_{i}p+1}{T_{i}p}\right] \ge -21.5^{\circ}$.
 3. $T_{i} \ge \tan(68,5) = 2.54 \text{ s}$.
 4. ***
 5. ***
 6. ***
 7. ***
 8. ***
 9. ***