Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

Conclusion and outlook

PEPO cluster expansion of tensor exponential

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 16, 2021

m Statement ical notation r expansion

iistruction 1L

nstruction 2

olvers

Ising Model

Conclusion and

Intoduction

Statistical Quantum mechanics

Problem Statement

$$\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}$$

$$Z={
m Tr}ig(e^{-eta\hat{H}}ig) \ \langle X
angle ={
m Tr}ig(
ho\hat{X}ig)$$

(1)

Graphical notation

$$j$$
 i_1
 i_2
 $0 \downarrow 1 \downarrow 0$
 $j \downarrow 0$

 i_2

j₂

jз

(3)

(5)

4/37

$$\overline{}$$

イロト イ御ト イミト イミト

Graphical notation

Graphical notation

$$\hat{H} = \left(\sum_{\langle ij \rangle} H_2^i H_2^j + \sum_i H_1^i\right)$$

(7)

$$H\left(\bigcirc \longrightarrow \bigcirc\right) = H_1 \otimes 1 \otimes 1$$

 $+1 \otimes H_1 \otimes 1$

$$H_1\otimes 1$$

$$+1\otimes 1\otimes H_1$$

$$+H_2\otimes H_2\otimes 1$$

$$+1\otimes \textit{H}_2\otimes \textit{H}_2$$

General idea

$$\circ$$

$$\bigcirc = \exp\left(-\beta H(\bigcirc)\right)$$

$$\bigcirc$$
)

(8)

(9)

General idea

Intoductio

Problem Statement Graphical notation

Cluster expansion

Construction 1

Construction 2

Solvers

2D Transvers

Conclusion an

Advantages

- Cluster expansion

- size extensive
- symmetry
- fast

Construction 1D

Variant C

Results

Construction 2D

lvers

2D Transversa Ising Model

Conclusion and

Construction 1D

Variant A

Intoduction

Variant A

Variant C

Construction 2

Solvers

Ising Model

(11)

Variant C

Intoduction

Variant A

Variant C

Construction 2

Solvers

2D Transversa Ising Model

Conclusion and

(12)

Error measure

Intoductio

Variant A

Variant C

Results

Construction 21

Solvers

2D Transversa Ising Model

Conclusion and

 $\epsilon(\mathsf{map}) = \frac{||\exp{-\beta H(\mathsf{map})} - \mathsf{MPO}(\mathsf{map})||}{||\exp{-\beta H(\mathsf{map})}||} \tag{13}$

Construction 1D

Variant A

Variant

Results

Construction 2D

Solvers

2D Transversa Ising Model

Construction 1D

Variant 0

Results

Construction 2E

Solvers

2D Transversal Ising Model

Construction 1D

Variant A

Variant (

Results

Construction 2D

Solvers

2D Transversal Ising Model

Construction 1D

Construction 2D

Loops

Solvers

Solvers

Ising Model

Conclusion and outlook

Construction 2D

Linear blocks

(14)

(15)

Constituction 1

Construction 2

Linear blocks

C - I - - - -

2D Transvers

Linear blocks

(18)

(17)

Intoductio

Constituction 1

Construction 21

Linear blocks

C - I - - - -

2D Transvers

Conclusion and

And many more "linear" blocks

(19)

Loops

 α^{β}

 β'

- bond dim
- solver: see later

(21)

(20)

Unsolved

Intoduction

Construction 1D

Construction 2D

Loons

Solvers

2D Transversal

Conclusion and

(22)

Easy to solve on finite lattice, difficult in thermodynamic limit...

Construction 1D

Solvers
Linear solver

Non-linear solvers

2D Transversal

Conclusion an

Solvers

Linear solver

- pseudoinverse
- optimisation for tree graphs
- implemented for any shape

Intoduction

Linear solver

Non-linear solvers

2D Transversa

Construction 1D

Construction 2D

Solvers

Linear solver

Non-linear solvers

2D Transversal Ising Model

sequential linear

Intoduction

Construction 1L

Construction 21

Linear column

Non-linear solvers

2D Transversal Ising Model

- initialize randomly
- use linear sovler for 1 tensor
- fast

true non-linear solver

Intoduction

Construction 1D

Construction 2D

Solvers

_inear solver

Non-linear solvers

2D Transversal Ising Model

- Matlab fsolve
- exact jocobian
- multiple patterns
- multiple maps

Construction 1D

Construction 2L

Solvers

2D Transversal Ising Model

First results

Conclusion and

2D Transversal Ising Model

Overview

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

First results

$$\hat{H} = -J \left(\sum_{\langle ij \rangle} \sigma_i^z \sigma_j^z + \Gamma \sum_i \sigma_i^x \right)$$
 (24)

Overview

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

First results

Figure: figure taken from [1]

First results

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transvers: Ising Model

First results

First results

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

First results

Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

Conclusion and outlook

Conclusion

Intoduction

Construction 1L

Construction 2D

Solvers

2D Transversallsing Model

- Working code for 1D and 2D
- General solvers
- Promising first results in 2D

Outlook: short term

Intoduction

Construction 1D

Construction 2E

Solvers

2D Transversal Ising Model

- Accurate estimate transversal Ising quantum critical point
- Improve blocks for loops
- continuous improvements framework

Outlook: long term

Intoduction

Construction $1\mathsf{D}$

Construction 2D

Solvers

2D Transversal Ising Model

- Incorporate symmetries of Hamiltonians
- Look at other (types of) Hamiltonians
- Generalize for other lattice geometries
- Generalize to 3D

References I

Intoduction

Construction $1\mathsf{D}$

Construction 2D

Solvers

2D Transversal

Conclusion and outlook

S. Hesselmann, S. Wessel, Thermal ising transitions in the vicinity of two-dimensional quantum critical points, Phys. Rev. B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

URL https://link.aps.org/doi/10.1103/PhysRevB.93.155157