

Teoria da Computação

Terceiro Teste 2019–2020

Data: 20 de Dezembro de 2019 Duração: 60 minutos

- 1. (8 valores) Considere a linguagem $L_1 = \{w \in \{a,b\}^*: \#_a(w) \neq \#_b(w)\}.$
 - (a) Construa um autómato de pilha que reconheça L_1 por pilha vazia.

Solução: Se no final da leitura de w ainda restar algum a ou b na pilha então é porque $\#_a(w) \neq \#_b(w)$. O AP seguinte é não determinista e reconhece a linguagem na modalidade de pilha vazia.

(b) Construa um autómato de pilha determinista que reconheça L_1 . Indique a modalidade de reconhecimento.

Solução:

O AP seguinte é determinista e reconhece a linguagem na modalidade de estados de aceitação. A estratégia consiste em marcar a primeira letra lida (e guardada na pilha) para que se possa identificar quando o número de a's lidos é igual ao número de b's lidos.

$2.\ (2\ {\rm valores})\ {\rm Considere}$ o problema da paragem

 $HALT = \{\langle M, w \rangle : M \text{ \'e uma m\'aquina de Turing que p\'ara com } w\}$

(a) Mostre que HALT é recorrentemente enumerável.

Solução: Basta considerar uma pequena variação da Máquina de Turing Universal: Dados $\langle M, w \rangle$ onde M é uma MT e w é uma palavra

- simula M com a entrada w;
- se M atinge um estado de aceitação então aceita;
 se M atinge um estado de rejeição então aceita.

Note-se que esta máquina de Turing pode não parar: basta que M não pare com w. No entanto esta nova máquina Turing pára e aceita todos os pares $\langle M, w \rangle$ tais que a máquina de Turing M pára com w, ou seja reconhece a linguagem HALT.

(b) Mostre que HALT não é recorrentemente enumerável.

Solução: Sempre que uma linguagem L e a sua linguagem complementar \overline{L} são recorrentemente enumeráveis então também L e \overline{L} são decidíveis (basta executar as máquinas M_L e $M_{\overline{L}}$ em paralelo).

Assim, uma vez que HALT é recorrentemente enumerável, se $\overline{\text{HALT}}$ fosse recorrentemente enumerável então HALT seria decidível o que sabemos ser falso. Logo $\overline{\text{HALT}}$ não pode ser recorrentemente enumerável.

3. (4 valores) Sabendo que o problema de decisão $E_{MT} = \{\langle M \rangle : \mathcal{L}(M) = \emptyset\}$ é indecidível, mostre que o problema $DIF_{MT} = \{\langle M_1, M_2 \rangle : M_1 \in M_2 \text{ são máquinas de Turing e } \mathcal{L}(M_1) \neq \mathcal{L}(M_2)\}$ é também indecidível.

Solução: Admitamos que DIF_{MT} é decidível. Então existe uma MT $M_{\rm DIF}$ tal que, para $\langle M_1, M_2 \rangle$,

- Se $\mathcal{L}(M_1) \neq \mathcal{L}(M_2)$ então M_{DIF} pára e aceita $\langle M_1, M_2 \rangle$;
- Se $\mathcal{L}(M_1) = \mathcal{L}(M_2)$ então M_{DIF} pára e rejeita $\langle M_1, M_2 \rangle$.

Seja M_\emptyset uma qualquer máquina de Turing tal que $\mathcal{L}(M_\emptyset)=\emptyset.$

Se existe a MT $M_{\rm DIF}$ então também existe a MT $M_{\rm E}$ tal que, para cada $\langle M \rangle$:

- simula o funcionamento da máquina M_{DIF} com $\langle M, M_{\emptyset} \rangle$.
- Se a simulação para num estado de aceitação então $M_{\rm E}$ rejeita $\langle M \rangle$;
- Se a simulação para num estado de rejeição então $M_{\rm E}$ aceita $\langle M \rangle$.

Esta máquina decide a linguagem E_{MT} uma vez que:

- Se $\mathcal{L}(M) = \emptyset$ então a máquina M_{DIF} rejeita $\langle M, M_{\emptyset} \rangle$ e a máquina M_{E} aceita $\langle M \rangle$;
- Se $\mathcal{L}(M) \neq \emptyset$ então a máquina M_{DIF} aceita $\langle M, M_{\emptyset} \rangle$ e a máquina M_{E} rejeita $\langle M \rangle$.

Mas a linguagem $E_{\rm MT}$ é indecidível, pelo que esta máquina não pode existir!

- 4. (6 valores) Em cada uma das seguintes alíneas construa uma máquina de Turing que satisfaça a especificação indicada:
 - (a) $\#1^k \vdash \#1^{2k}, k \ge 1;$

Solução: A MT seguinte começa por marcar todos os 1's e em seguida vai acrescentado no final um 1 por cada $\overline{1}$ que encontra (desmarcando esse $\overline{1}$). A máquina pára exatamente antes do símbolo #.

(b) $1^n \vdash 1^n \# 1^{2^n}$, $n \ge 1$. (Dica: $2^n = 2 \times 2^{n-1}$)

Solução: Seguindo a sugestão, basta ir duplicando o número 1's após o separador # tantas vezes quantas o número de 1's antes do separador. A rotina DUPLICA representada na figura seguinte corresponde à MT implementada na alínea anterior. Note que no estado q_3 , antes de executar a rotina DUPLICA, a máquina está sobre o símbolo # e que após executar a rotina a máquina fica sobre o símbolo que precede #. Inicialmente a máquina começa por colocar um 1 após # e voltar ao início da palavra.

