MATH 7410 Homework 4 (In-Progress)

James Harbour

October 31, 2022

Problem 1

Let X be a normed space and x_n a sequence in X such that $x_n \to x$ weakly. Show that there is a sequence y_n such that $y_n \in co\{x_1, \ldots, x_n\}$ and $||y_n - x|| \to 0$.

Proof. Let $C_n = co\{x_1, \ldots, x_n\}$ and $C = \bigcup_{n=1}^{\infty} C_n$. Note that $C = co\{x_i : i \in \mathbb{N}\}$ is convex. Thus $x \in \overline{C}^{wk} = \overline{C}^{\|\cdot\|}$, whence there is some sequence $(z_n)_{n=1}^{\infty}$ in C such that $\|z_n - x\| \to 0$. Let $k_n \in \mathbb{N}$ be such that $z_n \in C_{k_n}$.

Note that a sequence a_n in X converges to 0 in norm if and only if for every $\varepsilon > 0$, the set $\{n \in \mathbb{N} : ||a_n|| \ge \varepsilon\}$ is finite. This condition is invariant under rearrangements, so without loss of generality we may take the sequence $(k_n)_{n\in\mathbb{N}}$ to be nondecreasing. Construct a new sequence $(y_m)_{m\in\mathbb{N}}$ as follows. For $m < k_1$, set $y_m = 0$. For $n \in \mathbb{N}$ and $k_n \le m < k_{n+1}$, set $y_m = z_n$.

The sequence $y_m - x$ still has the condition that for all $\varepsilon > 0$ the set of indices whose corresponding elements have norm at least ε is finite, as we have only added a finite number of elements to this set. Thus $y_n \in C_n$ for all $n \in \mathbb{N}$ and $||y_n - x|| \to 0$.

Problem 2

If \mathcal{H} is a Hilbert space and h_n is a sequence in \mathcal{H} such that $h_n \to h$ weakly and $||h_n|| \to ||h||$, show that $||h_n - h|| \to 0$.

Proof.

Problem 3

If X, Y are Banach spaces and $B \in B(Y^*, X^*)$, then $B = A^*$ for some $A \in B(X, Y)$ if and only if B is wk^* -continuous.

Proof.

 (\Longrightarrow) : Suppose that $B=A^*$ for some $A\in B(X,Y)$ and let $(\psi_{\alpha})_{\alpha\in I}$ be a net in Y^* such that $\psi_{\alpha}\to\psi\in Y^*$ weak*. Fix $x\in X$. Then

$$B(\psi_{\alpha})(x) = A^*(\psi_{\alpha})(x) = \psi_{\alpha}(Ax) \xrightarrow{\alpha \in I} \psi(Ax) = B(\psi)(x),$$

so $B(\psi_{\alpha}) \to B(\psi)$ weak*, i.e. B is weak*-continuous.

 $\underline{(\Leftarrow)}$: Suppose that B is wk^* -continuous. Let ι_X, ι_Y be the canonical injections into the corresponding double-duals. For shorthand, we may write $\hat{x} := \iota_X(x)$ and similarly for Y. Noting that $B^* \in B(X^{**}, Y^{**})$ we investigate what occurs when B^* is restricted to the image of X inside its double dual.

Fix $x \in X$. We claim that $B^*(\hat{x}) \in (Y^*, wk^*)^*$. To this end, let $(\phi_{\alpha})_{\alpha \in I}$ be net in Y^* such that $\phi_{\alpha} \to \phi \in Y^*$ weak*. Then,

$$B^*(\hat{x})(\phi_\alpha) = \hat{x}(B(\phi_\alpha)) = B(\phi_\alpha)(x) \to B(\phi)(x) = B^*(\hat{x})(\phi),$$

so $B^*(\hat{x})$ is weak*-continuous, whence there exists some $y \in Y$ such that $B^*(\hat{x}) = \hat{y}$.

Problem 4

Let X, Y be Banach spaces over $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$. For $C \subseteq B(X, Y)$ convex and $F \subseteq X$ finite, set $C_F = \{(Tx)_{x \in F} : T \in C\} \subseteq Y^{\oplus F}$. Equip $Y^{\oplus F}$ with the norm

$$||(y_x)_{x\in F}|| = \sum_{x\in F} ||y_x||.$$

(a): Let $C \subseteq B(X,Y)$ be convex. Show that $T \in \overline{C}^{SOT}$ if and only if for every $F \subseteq X$ finite, we have that $(Tx)_{x \in F} \in \overline{C_F}^{\|\cdot\|}$. Show that $T \in \overline{C}^{WOT}$ if and only if for every $F \subseteq X$ finite, we have that $(Tx)_{x \in F} \in \overline{C_F}^{weak}$.

Proof.

 \Longrightarrow : Suppose $T \in \overline{C}^{SOT}$, so there is some net $(T_{\alpha})_{\alpha \in I}$ in C such that $T_{\alpha} \to T$ SOT. Let $F \subseteq X$ finite. Then $\|T_{\alpha}x - Tx\| \to 0$ for every $x \in F$. Since F is finite,

$$||(T_{\alpha}x)_{x \in F} - (Tx)_{x \in F}|| = \sum_{x \in F} ||T_{\alpha}x - Tx|| \xrightarrow{\alpha \in I} 0$$

so $T \in \overline{C}^{SOT}$.

<u></u>:

(b): Suppose that $C \subseteq B(X,Y)$ is convex. Show that $\overline{C}^{WOT} = \overline{C}^{SOT}$.

(c): IF $\phi: B(X,Y) \to \mathbb{F}$ is linear, show that ϕ is WOT-continuous if and only if it is SOT-continuous.

Problem 5

Let I be a set and \mathcal{M} be the set of all $m \in l^{\infty}(I)^*$ such that :

- $m(f) \ge 0$ for all $f \ge 0$,
- m(1) = 1.

Identify $\operatorname{Prob}(I)$ with $\{f \in l^1(I) : f \geq 0, \|f\|_1 = 1\}$ and view $l^1(I) \subseteq l^{\infty}(I)^*$ by $f \mapsto \phi_f$ where $\phi_f(g) = \sum_{i \in I} f(i)g(i)$. Show that $\operatorname{Prob}(I)$ is weak*-dense in \mathcal{M} .

Proof. Suppose, for the sake of contradiction, that there is some $\psi \in \mathcal{M} \setminus \overline{\operatorname{Prob}(I)}^{wk^*}$. Then there exists some wk^* -continuous linear functional $T: l^{\infty}(I)^* \to \mathbb{F}$ such that $\ker(T) \supseteq \overline{\operatorname{Prob}(I)}^{wk^*}$ and $T(\psi) = 1$. Note that $T \in (l^{\infty}(I)^*, wk^*)^* = l^{\infty}(I)$, so there is some $f \in l^{\infty}(I)$ such that $T = \hat{f}$, i.e. $T(\phi) = \phi(f)$ for all $\phi \in l^{\infty}(I)^*$. Then, for $i \in I$

$$0 = T(\delta_i) = \delta_i(f) = f(i),$$

whence f = 0 and consequently T = 0, contradicting that $T(\psi) = 1$.