

Chapter 4 Entity Relationship (ER) Modeling

Learning Objectives

- In this chapter, you will learn:
 - The main characteristics of entity relationship components
 - How relationships between entities are defined, refined, and incorporated into the database design process
 - How ERD components affect database design and implementation
 - That real-world database design often requires the reconciliation of conflicting goals

Entity Relationship Model (ERM)

- Basis of an entity relationship diagram (ERD)
- ERD depicts the:
 - Conceptual database as viewed by end user
 - Database's main components
 - Entities
 - Attributes
 - Relationships
- Entity Refers to the entity set and not to a single entity occurrence

Attributes

- Characteristics of entities
- Required attribute: Must have a value, cannot be left empty
- Optional attribute: Does not require a value, can be left empty
- Domain Set of possible values for a given attribute
- Identifiers: One or more attributes that uniquely identify each entity instance

Figure 4.1 - The Attributes of the Student Entity: Chen and Crow's Foot

Attributes

- Composite identifier: Primary key composed of more than one attribute
- Composite attribute: Attribute that can be subdivided to yield additional attributes
- Simple attribute: Attribute that cannot be subdivided
- Single-valued attribute: Attribute that has only a single value
- Multivalued attributes: Attributes that have many values

Figure 4.3 - A Multivalued Attribute in an Entity

Attributes

- Multivalued attributes: Attributes that have many values and require creating:
 - Several new attributes, one for each component of the original multivalued attribute
 - A new entity composed of the original multivalued attribute's components
- Derived attribute: Attribute whose value is calculated from other attributes
 - Derived using an algorithm

Figure 4.4 – Splitting the Multivalued Attributes into New Attributes

Figure 4.6 - Depiction of a Derived Attribute

Table 4.2 - Advantages and Disadvantages of Storing Derived Attributes

TABLE 4.2

ADVANTAGES AND DISADVANTAGES OF STORING DERIVED ATTRIBUTES

	DERIVED /	DERIVED ATTRIBUTE				
	STORED	NOT STORED				
Advantage	Saves CPU processing cycles Saves data access time Data value is readily available Can be used to keep track of historical data	Saves storage space Computation always yields current value				
Disadvantage	Requires constant maintenance to ensure derived value is current, especially if any values used in the calculation change	Uses CPU processing cycles Increases data access time Adds coding complexity to queries				

Relationships

- Association between entities that always operate in both directions
- Participants: Entities that participate in a relationship
- Connectivity: Describes the relationship classification
- Cardinality: Expresses the minimum and maximum number of entity occurrences associated with one occurrence of related entity

Figure 4.7 - Connectivity and Cardinality in an ERD

Existence Dependence

Existence dependence

Entity exists in the
 database only when it is
 associated with another
 related entity
 occurrence

Existence independence

- Entity exists apart from all of its related entities
- Referred to as a strong
 entity or regular entity

Relationship Strength

Weak (non-identifying) relationship

• Primary key of the related entity does not contain a primary key component of the parent entity

Strong (identifying) relationships

• Primary key of the related entity contains a primary key component of the parent entity

Figure 4.8 - A Weak (Non-Identifying) Relationship between COURSE and CLASS

Figure 4.9 - A Strong (Identifying) Relationship between COURSE and CLASS

Weak Entity

- Conditions
 - Existence-dependent
 - Has a primary key that is partially or totally derived from parent entity in the relationship
- Database designer determines whether an entity is weak based on business rules

Figure 4.10 - A Weak Entity in an ERD

Figure 4.11 - A Weak Entity in a Strong Relationship

FIGURE 4.11 A WEAK ENTITY IN A STRONG RELATIONSHIP

T:	ah	le	na	me	• F	N	۱P	10	\cap	V	FI	F

Data	hase	name:	Ch04	ShortC	'n
Data	Dust	manne.	CHUT	SHOLL	

EMP_NUM	EMP_LNAME	EMP_FNAME	EMP_INITIAL	EMP_DOB	EMP_HIREDATE
1001	Callifante	Jeanine	J	12-Mar-64	25-May-97
1002	Smithson	v∕villiam	K	23-Nov-70	28-May-97
1003	√Vashington	Herman	Н	15-Aug-68	28-May-97
1004	Chen	Lydia	В	23-Mar-74	15-Oct-98
1005	Johnson	Melanie		28-Sep-66	20-Dec-98
1006	Ortega	Jorge	G	12-Jul-79	05-Jan-02
1007	O'Donnell	Peter	D	10-Jun-71	23-Jun-02
1008	Brzenski	Barbara	А	12-Feb-70	01-Nov-03

Table name: DEPENDENT

EMP_NUM	DEP_NUM	DEP_FNAME	DEP_DOB
1001	1	Annelise	05-Dec-97
1001	2	Jorge	30-Sep-02
1003	1	Suzanne	25-Jan-04
1006	1	Carlos	25-May-01
1008	1	Michael	19-Feb-95
1008	2	George	27-Jun-98
1008	3	Katherine	18-Aug-03

Relationship Participation

Optional participation

• One entity occurrence does not require a corresponding entity occurrence in a particular relationship

Mandatory participation

• One entity occurrence requires a corresponding entity occurrence in a particular relationship

Table 4.3 - Crow's Foot Symbols

TABLE 4.3	TABLE 4.3						
CROW'S FOOT SYMBOLS	CROW'S FOOT SYMBOLS						
CROW'S FOOT SYMBOLS	CARDINALITY	COMMENT					
O€	(0,N)	Zero or many; the "many" side is optional.					
l€	(1,N)	One or many; the "many" side is mandatory.					
II	(1,1)	One and only one; the "1" side is mandatory.					
O	(0,1)	Zero or one; the "1" side is optional.					

Figure 4.13 - CLASS is Optional to COURSE

Figure 4.14 - COURSE and CLASS in a Mandatory Relationship

Relationship Degree

- Indicates the number of entities or participants associated with a relationship
- Unary relationship: Association is maintained within a single entity
 - Recursive relationship: Relationship exists between occurrences of the same entity set
- Binary relationship: Two entities are associated
- Ternary relationship: Three entities are associated

Figure 4.15 Three Types
of
Relationship
Degree

Figure 4.17 - An ER Representation of Recursive Relationships

Associative (Composite) Entities

- Used to represent an M:N relationship between two or more entities
- Is in a 1:M relationship with the parent entities
 - Composed of the primary key attributes of each parent entity
- May also contain additional attributes that play no role in connective process

Figure 4.23 - Converting the M:N Relationship into Two 1:M Relationships

FIGURE 4.23 CONVERTING THE M:N RELATIONSHIP INTO TWO 1:M RELATIONSHIPS

Database name: Ch04_CollegeTry

Table name: STUDENT

STU_NUM	STU_LNAME
321452	Bowser
324257	Smithson

Table name: ENROLL

CLASS_CODE	STU_NUM	ENROLL_GRADE
10014	321452	С
10014	324257	В
10018	321452	A
10018	324257	В
10021	321452	С
10021	324257	С

Table name: CLASS

CLASS_CODE	CRS_CODE	CLASS_SECTION	CLASS_TIME	ROOM_CODE	PROF_NUM
10014	ACCT-211	3	TTh 2:30-3:45 p.m.	BUS252	342
10018	CIS-220	2	MVVF 9:00-9:50 a.m.	KLR211	114
10021	QM-261	1	MVVF 8:00-8:50 a.m.	KLR200	114

Figure 4.25 - A Composite Entity in an ERD

Developing an ER Diagram

- Create a detailed narrative of the organization's description of operations
- Identify business rules based on the descriptions
- Identify main entities and relationships from the business rules
- Develop the initial ERD
- Identify the attributes and primary keys that adequately describe entities
- Revise and review ERD

Figure 4.26 - The First Tiny College ERD Segment

Figure 4.27 - The Second Tiny College ERD Segment

Figure 4.28 The Third Tiny
College ERD
Segment

Figure 4.29 - The Fourth Tiny College ERD Segment

Figure 4.30 - The Fifth Tiny College ERD Segment

Figure 4.31 - The Sixth Tiny College ERD Segment

Figure 4.32 - The Seventh Tiny College ERD Segment

Figure 4.33 - The Eighth Tiny College ERD Segment

Figure 4.34 - The Ninth Tiny College ERD Segment

Table 4.4 - Components of the ERM

TABLE 4.4							
COMPONENTS OF THE ERM							
ENTITY	RELATIONSHIP	CONNECTIVITY	ENTITY				
SCHOOL	operates	1:M	DEPARTMENT				
DEPARTMENT	has	1:M	STUDENT				
DEPARTMENT	employs	1:M	PROFESSOR				
DEPARTMENT	offers	1:M	COURSE				
COURSE	generates	1:M	CLASS				
SEMESTER	includes	1:M	CLASS				
PROFESSOR	is dean of	1:1	SCHOOL				
PROFESSOR	chairs	1:1	DEPARTMENT				
PROFESSOR	teaches	1:M	CLASS				
PROFESSOR	advises	1:M	STUDENT				
STUDENT	enrolls in	M:N	CLASS				
BUILDING	contains	1:M	ROOM				
ROOM	is used for	1:M	CLASS				
Note: ENROLL is the composite entity that implements the M:N relationship "STUDENT enrolls in CLASS."							

Database Design Challenges: Conflicting Goals

Database design must conform to design standards

Need for high processing speed may limit the number and complexity of logically desirable relationships

Need for maximum information generation may lead to loss of clean design structures and high transaction speed

Figure 4.38 Various
Implementations
of the 1:1
Recursive
Relationship

