

Proceso de representación de datos, en formato gráfico, de forma clara y eficaz.

Permite captar conceptos difíciles o identificar nuevos patrones.

VENTAJAS

ABSORCIÓN DE GRANDES CANTIDADES DE DATOS

ACELERA EL PROCESO DE LA TOMA DE DECISIONES

PUEDE REVELAR PATRONES Y TENDENCIAS

LIBRERÍAS

MATPLOTLIB

Gráficos sencillos en pocas líneas de código

SEABORN

Basado en matplotlib, más estilos de gráficos

PLOTLY

Hace gráficos interactivos que no tienen otras librerías

TIPOS DE GRÁFICAS

GRÁFICO DE LÍNEAS

plt.plot(x, y)

PUNTOS CONECTADOS POR MEDIO DE UNA LÍNEA QUE MUESTRAN UNA TENDENCIA

ej. tendencia de ventas en un tiempo de un año

GRÁFICO DE DISPERSIÓN

plt.scatter(x, y)

MUESTRA RELACIÓN ENTRE DOS CONJUNTOS DE DATOS

ej. edad vs peso

HISTOGRAMA

plt.hist(x, num_bins, facecolor = 'red')

MUESTRA DISTRIBUCIÓN DE VALORES EN UN RANGO DETERMINADO

ej. frecuencia de edades por intervalos

GRÁFICO DE PASTEL

REPRESENTA DATOS POR MEDIO DE PORCENTAJES Y PROPORCIONES

ej. proporción de estudiantes de cinco semestres

plt.pie(x, labels=y)

GRÁFICO DE BARRAS

plt.bar(range(5), y, edgecolor='black) plt.xticks(range(5), x, rotation=60)

REPRESENTA CONJUNTO DE DATOS DISCRETOS POR CATEGORÍAS

NOTA: plt.barh

BOXPLOT

REPRESENTA DATOS POR MEDIO DE CUARTILES, INDICA MEDIANA BIGOTES-LIMITES

boxplot(x)

VIOLIN

VISUALIZAR DISTRIBUCIÓN DE DATOS Y DENSIDAD DE PROBABILIDAD.

SEABORN EJEMPLO: IRIS SPECIES

```
import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

```
iris_filepath = "C:/Users/rbote/Downloads/Iris.csv"

#Asginar una variable para la lectura del archivo
iris_data = pd.read_csv(iris_filepath, index_col="Id")
iris_data.head()
```

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
ld					
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3.0	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5.0	3.6	1.4	0.2	Iris-setosa

GRAFICO DE BARRAS

sns.barplot(x=iris_data['PetalLengthCm'], y=iris_data['PetalWidthCm'])

NOTA: plt.figure(figuresize = (x,y))

```
!python -m pip install --upgrade pip
!pip3 install plotly
import plotly
plotly.__version__
```


BAFIGO 0

Gráfico de lineas
sns.lineplot(data=iris_data)

GRÁFICO DE DISPERSIÓN

sns.scatterplot(x=iris_data['SepalLengthCm'], y=iris_data['SepalWidthCm'])

```
sns.regplot(x=iris_data['SepalLengthCm'],
    y=iris_data['SepalWidthCm'])
```



```
sns.lmplot(x='SepalLengthCm', y='SepalWidthCm',
hue='Species',data = iris_data)
```

```
4.5 1
   4.0
SepalWidthCm
3.0
                                                                                Species
                                                                               Iris-setosa
                                                                               Iris-versicolor
                                                                               Iris-virginica
   2.5
   2.0
                                                               7.5
          4.5
                   5.0
                           5.5
                                             6.5
                                                      7.0
                                    6.0
                                SepalLengthCm
```

```
sns.swarmplot(x=iris_data['Species'],
    y=iris_data['SepalLengthCm'],
    data = iris_data)
```



```
# KDE plot
sns.kdeplot(data=iris_data['PetalLengthCm'], shade=True)
```


GRÁFICO I

GRÁFICO DE DENSIDAD DE DOS VARIABLES 2D

MAPA DE GALOR

sns.heatmap(iris_data.drop(['Species'],axis = 1).corr())

EJEMPLO: US POLICE SHOOTINGS

```
import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

HTTPS://WWW.KAGGLE.COM/AHSEN1330/US-POLICE-SHOOTINGS

```
poli_filepath = "C:/Users/enriq/Desktop/shootings.csv"

# Leer el archivo y guardar en variable poli_data
poli_data = pd.read_csv(poli_filepath, index_col="date", parse_dates=True)

poli_data.head()
```

		id	name	manner_of_death	armed	age	gender	race	city	state	signs_of_mental_illness	threat_level	flee	body_camera	arms_category
da	te														
201 01-	5- 02	3	Tim Elliot	shot	gun	53.0	М	Asian	Shelton	WA	True	attack	Not fleeing	False	Guns
201 01-	5- 02	4	Lewis Lee Lembke	shot	gun	47.0	М	White	Aloha	OR	False	attack	Not fleeing	False	Guns
201 01-	5- 03	5	John Paul Quintero	shot and Tasered	unarmed	23.0	М	Hispanic	Wichita	KS	False	other	Not fleeing	False	Unarmed
201 01-	5- 04	8	Matthew Hoffman	shot	toy weapon	32.0	М	White	San Francisco	CA	True	attack	Not fleeing	False	Other unusual objects
201 01-	5- 04	9	Michael Rodriguez	shot	nail gun	39.0	М	Hispanic	Evans	СО	False	attack	Not fleeing	False	Piercing objects


```
import matplotlib as plt
from matplotlib import pyplot

plt.pyplot.figure(figsize=(14,7))

plt.pyplot.hist(poli_data['age'], color='#f26dc8')

plt.pyplot.xlabel('Edad')
plt.pyplot.ylabel("Frecuencia Absoluta")
plt.pyplot.title('EDAD DE PERSONAS DISPARADAS POR POLICIAS EN EUA (2015-2020)')
plt.pyplot.show()
```

sns.distplot(a=poli_data['age'], kde=False)

GRÁFICO DE PASTEL


```
from matplotlib import colors
from matplotlib import cm

plt.pyplot.figure(figsize=(8,8))

desfase= [0, 0, 0, 0.2, 0.2, 0.2]

poli_data['race'].value_counts().plot.pie(autopct="%0.1f %%", cmap='plasma_r', explode=desfase)
# Otros colormaps: Blues, Accent, prism, rainbow, oranges

plt.pyplot.title('RAZA DE PERSONAS DISPARADAS')
plt.pyplot.show()
```

BOXPLOT

```
import seaborn as sns
sns.boxplot(x='race', y='age', data=poli_data)
plt.pyplot.show()
```


VIOLIN

```
sns.violinplot(y=poli_data['age']
plt.pyplot.xlabel("Edad")
plt.pyplot.ylabel(" ")
```



```
plt.pyplot.figure(figsize = (10,7))
chains = poli_data['armed'].value_counts()[:10] #top 10
sns.barplot(x = chains, y = chains.index)
plt.pyplot.title("ARMAS PORTADAS POR LA VÍCTIMA")
plt.pyplot.xlabel("Frecuencia Absoluta")
plt.pyplot.ylabel("Arma")
```

GRÁFICO DE BARRAS


```
plt.pyplot.figure(figsize = (10,7))
chains = poli_data['city'].value_counts()[:20] #top 20
sns.barplot(x = chains, y = chains.index)
plt.pyplot.title("20 CIUDADES CON MAYORES CASOS DE VICTIMAS DE POLICIAS")
plt.pyplot.ylabel("Ciudad")
plt.pyplot.xlabel("Frecuencia Absoluta")
```

```
plt.pyplot.figure(figsize = (10,7))
chains = poli_data['state'].value_counts()[:20] #top 20
sns.barplot(x = chains, y = chains.index)
plt.pyplot.title("20 ESTADOS CON MAYORES CASOS DE VICTIMAS DE POLICIAS")
plt.pyplot.ylabel("Estado")
plt.pyplot.xlabel("Frecuencia Absoluta")
```


DIAGRAMA DE DISPERSIÓN

```
plt.pyplot.figure(figsize = (16,10))
sns.scatterplot(x=poli_data['state'], y=poli_data['age'], hue=poli_data['race'])
```


HEATMAP

