

Networking

NETWORKING

Insights from Production: Scheduled Ethernet Fabric in Large Al Training Clusters

Pengfei Huo (ByteDance, Sr. Network Architect)

Henry-Xiguang Wu (Broadcom, Switch Product Marketing)

Agenda

- Challenges for AI training network
- Introduction of Scheduled Ethernet Fabric
- ByteDance's Production Insights
- Standardization and Ecosystem
- Call to Actions

What Makes Al Networks Unique?

- Fewer flows (low entropy)
- High bandwidth flows
- Synchronized and bursty traffic
- Links are saturated in micro-seconds (<< RTT)
- Training jobs run for long periods of time (hours, days)
- Tail latency impacts job completion time significantly

GPU to GPU Communication Drives High Bandwidth Utilization

Scheduled Ethernet Fabric – Receiver based Scheduling

- Switch scheduled fabric
 - Standard Ethernet I/O
 - Receiver based scheduling
 - Leaf: switching, forwarding, queuing, scheduling
 - Spine: forwarding at low power
 - OCP compliant system
- Leaf deployment options
 - ToR/MoR in the XPU racks
 - In the network rack, with spines

^{* 800}G Distributed Disaggregated Chassis Routing System Evolution, https://www.opencompute.org/documents/ddc-v3-ocp-base-specification-revision-5-0-pdf

NOS Options

Centralized State Synchronization

 Every J3-AI sends local ARP and port information to the Redis DB on the Controller which syncs it to all other J3-AI. Full mesh BGP distributes routes.

Distributed State Synchronization

 Full mesh connectivity between J3-Als for state synchronization to distribute ARP and port information. Full mesh BGP distributes routes.

The Journey to Scheduled Fabric

- 2022 Testing with Jericho2&Ramon Chassis
 - HBM is not mandatory for AI, On-chip buffer works well
- 2023 POC Jericho2C+/Ramon Scheduled Fabric with 128 x 200G XPU*
 - Excellent performance at AI traffic
 - Comprehensive tests covering internal CC/credit mechanism/impact of cable lengths/compatibility/dynamic PFC/gRPC/etc . . .
 - Identified areas to optimize for AI application from NOS perspective
- 2024 June First Scheduled Fabric with J2C+/Ramon in Production
 - ByteDance drove the implementation of distributed control plane
- 2024 Aug Jericho3/Ramon3 POC completed
- More excitement to go

Architecture of The 1st Scheduled Fabric in Production

Scheduled Ethernet AI Fabric

- 1280 xPUs cards at a speed of 400GE
- Distributed management system
- Two-layer Architecture
- 4-Rail connection
 - Single-rail performs on par with multi-rail in SF, single low digit % performance premium at multi-rail
 - Users are free to choose multi or single rail
- N+2 redundancy at Spine
 - Performance degradation is linear at failure
- No need for DC-QCN
 - No struggling on parameter tuning
 - PFC in between NCP and NIC/endpoint
- QP number/entropy does not impact load balancing

Performance in the Production Cluster

• Rather than static PFC, dynamic PFC enables more controls to user and better performance

Static Threshold

Dynamic Adjusted Threshold

• Collective communication performance based on 128 XPU cards

^{*} ACL based hashing is hard to manage and scale in real application

Reduce Scatter - 22% improved

All Gather - 21% improved

All Reduce - 119% improved

Performance in Jericho3 POC

- XPU Servers
 - 8 XPU cards per Server
 - 400G NIC per XPU card
- Network
 - Jericho3 NCP: 3.2T downlink
 - Ramon3 NCF
 - 2 Rails, very four NICs from each server belongs to one rail

Multi- DataParallel allReduce - 26% improved

Multi- All2all - 37% improved

Multi- All2all&allreduce - 20% improved

Seamless Operation & Maintenance

One Net Platform: orchestration, controller

O&M: Device/Link auto isolation/Rping

Automation Planning& Construction

Distributed tools GRPC/SNMP/ERSAPN/Rping/ZTP/LLDP/Upgrade/Hot Patch...

White Box

Commerical Box

Scheduled Fabric

System Layer - One Platform

- Unified orchestration, O&M&C

Solution Layer

- Unified O&M and Construction Solution/Process

Tools Layer - Unified standard for each function

Independently upgrade GRPC/Sflow/ERSPAN/ZTP/link-verfiy

Device Layer - Different Switches

Unified Construct & Operate across Scheduled and non-Scheduled Fabric systems

Scheduled Fabric is managed as individual boxes

Standardization Initiative

Proprietary control planes from vendors create challenges in construction, operation, and supply

ByteDance response – Disaggregation and Standardization

Step-1: Control Plane from Centralized to Distributed mode

Step-2: Control plane Interoperability

• OSF (Open Scheduled Fabric) Framework

Open Scheduled Fabric Framework

- Easy to develop solely leverage EVPN with extended Community value
- One protocol covers all scenarios L2, L3, Multi-tenant

	RD (8 octets)
Ξ1	thernet Segment Identifier (10 octets)
	Ethernet Tag ID (4 octets)
	MAC Address Length (1 octet)
	MAC Address (6 octets)
	IP Address Length (1 octet)
	IP Address (0, 4, or 16 octets)
	MPLS Label1 (3 octets)
	MPLS Label2 (0 or 3 octets)

Call to Action

- Welcome to OSF ecosystem
 - A receiver based option besides UEC, Standard Ethernet with DCQCN or DLB/GLB and other Ethernet solutions
 - Software is planned to be contributed to SAI/SONiC
- MSA is ongoing
 - aiming to standardize the hardware resource allocation, e.g. MOD port range,
- Please contribute to
 - 800G Distributed Disaggregated Chassis Routing System Evolution (V3), https://www.opencompute.org/documents/ddc-v3-ocp-
 - A OSF Framework for Artificial Intelligence (AI) Network, https://datatracker.ietf.org/doc/html/draft-hcl-rtgwg-osf-framework-00
 - BGP Extension for Tunnel Egress Point, https://datatracker.ietf.org/doc/html/draft-hcl-idr-extend-tunnel-egress-point-00
 - Distributed Forwarding in a Virtual Output Queue (VOQ) Architecture, https://github.com/sonic- net/SONiC/blob/master/doc/vog/architecture.md

Thank you!

