

Mars Express Power Challenge

Runner-up Solution

Stephanos Stephani October 28, 2016

European Space Operations Centre, Darmstadt

Table of contents

- 1. Competition Recap
- 2. Feature Engineering
- 3. Models
- 4. Final Product
- 5. Can it be simpler?

Competition Recap

A rough timeline

Tools

- jupyter
- python
- · scikit-learn
- xgboost
- pandas
- · TensorFlow

Feature Engineering

Long-term data (LTDATA)

Figure 1: Added 2 features

Figure 2: Removed proxies

Solar aspect angles files (SAAF)

Figure 3: Sa, sx, sy, sz. These were used without modifications.

Events Files (EVTF)

- Time in Umbra/Penumbra
- Time to pericentre passage
- Height change

Figure 4: Time to pericentre, time in umbra/penumbra, height change.

Flight Dynamics Timeline (FTL)

Figure 5: All FTL types in dummy form with a very bad shortcut that was forgotten.

Detailed Mission Operations Plan (DMOP)

- Command shorthands (first 4 chars)
- Pairs of subsystem commands suspected to be on-off toggles

Table 1: Examples of pairs

Command	Count
AACFM01A	7353
AACFM02A	7342
ATTTF310A	3601
ATTTF310B	3599

```
dmop.groupby(['group','subsystem'])['subsystem'].count().sort_values(ascending=False)
group
       subsystem
AACF
       AACFE91A
                           37317
       AACFE03A
                           36424
                           20035
AAAA
       AAAAF56A1
APSF
       APSF28A1
                           18312
       APSF38A1
                           16881
                           16719
AACF
       AACFE05A
```

Detailed Mission Operations Plan (DMOP)

Figure 7: NPWD2551 against ATTT shorthand

Figure 8: NPWD2551 vs ATTTTF310A-ATTTF310B

Adding lags and differences

All features exist in 3 incarnations.

Table 2: Lags and differences

Original	Lagged	Differenced
sa	sa.ewma	sa.diff
SX	sx.ewma	sx.diff
Sy	sy.ewma	sy.diff
SZ	sz.ewma	sz.diff

Putting it all together

80 x 3 = 240 features available

'UMBRA_time, PENUMBRA_time, solar constantmars, sunmarsearthangle deg, eclipseduration min, occultationduration_min,sa,sx,sy,sz,ut, ttp, flagcomms, pair1, pair2, pair3, pair4, pair5, pair6, pair7, pair8, pair9, pair10, pair11, pair12, pair13, pair14, pair15, pair16, pair17, PENE, PENS, AAAA, AACF, ADMF, AHHH, AMMM, A000, APSF, ASSS, ASXX, ATMB, ATTT, AVVV, AXXX, MAPO, MOCE, MOCS, MPER, PDNE, PDNS, PPNE, PPNS, SCMN, UPBE, UPBS, ACROSS_TRACK, D1PVMC, D2PLND, D3POCM, D4PNPO, D7PLTS, D8PLTP, D9PSPO, EARTH, INERTIAL, MAINTENANCE, NADIR, NADIR_LANDER, SLEW, SPECULAR, WARMUP, UMBRA_season, conjuction, sunmarsearthangle_deg2, des len, asc des, height change'

Models

The usual suspects

- · Random Forests (scikit-learn)
- Extremely Randomized Trees (scikit-learn)
- Gradient Boosted Trees (xgboost)

Random Forests and Extra Trees

Bagging

Random Forests and Extra Trees

Random Subspace

A clumsy tour of Gradient Boosting

In a nutshell...

Keep adding trees. Make sure each additional tree compensates for the weaknesses of the existing trees.

Kearns and Valiant, 1988 [5]: "Can a set of weak learners be combined to create a stronger learner?"

Schapire, 1990 [6]:

Schapire, 1990 [6]: "Sure."

Adaboost-Freund and Schapire, 1997 [2]

Gradient Boosting

Gradient Boosting [3]: AdaBoost + Gradient Descent

X	True Value (y)	Prediction (<i>F</i> (<i>x</i>))	residual
<i>X</i> ₁	102.5	101.0	1.5
<i>X</i> ₂	45.3	40.3	5.0
<i>X</i> ₃	231.2	230.0	1.2
<i>X</i> ₄	149.8	149.7	0.1

Gradient Boosting

Simply add a new tree h(x) which tries to predict all the residuals.

Х	True Value (y)	Prediction (<i>F</i> (<i>x</i>))	residual	h(x)
<i>X</i> ₁	102.5	101.0	1.5	1.4
<i>X</i> ₂	45.3	40.3	5.0	5.0
<i>X</i> ₃	231.2	230.0	1.2	1.1
<i>X</i> ₄	149.8	149.7	0.1	0.1

Gradient Boosting

New model = F(x) + h(x)

Х	True Value (y)	Prediction (F(x))	residual	h(x)	F(x) + h(x)	new residual
<i>X</i> ₁	102.5	101.0	1.5	1.4	102.4	0.1
<i>X</i> ₂	45.3	40.3	5.0	5.0	45.3	0.0
<i>X</i> ₃	231.2	230.0	1.2	1.1	231.1	0.1
X_4	149.8	149.7	0.1	0.1	149.8	0.0

xgboost [1]

XGBoost

- Highly optimized implementation of gradient boosted trees
- State of the art results
- Fast and scalable
- · Most successful algorithm on Kaggle

Final Product

Best submission

Final feature set

Table 3: Features subset for best submission, delays and lags not shown

Feature	Details
solarconstantmars sunmarsearthangle_deg sasxsysz ttp pair3 pair9 pair10 pair11 UMBRA_time PENUMBRA_time ATMB height_change asc_des SLEW SPECULAR MOCS MOCE WARMUP PENE	(Time to pericenter) ['ASSSF01P0', 'ASSSF06P0'] used as on-off switches ['ATTTF030A', 'ATTTF030B'] used as on-off switches ['ATTTF321P', 'ATTTF321R'] used as on-off switches ['AACFM01A', 'AACFM02A'] used as on-off switches Time since umbra event Time since penumbra event Subsystem commands prefixed with ATMB

Can it be simpler?

Skip manual feature selection. Skip multiple datasets.

Simpler models...

- · Auto-feature selection, no data bagging: 0.082 (4th place)
- Single xgboost: 0.090 (7th place)

Get in touch

- github.com/stephanos-stephani/
 MarsExpressChallenge
- Ss2539@cornell.edu

Appendix - xgboost parameters

Hyperparameter tuning was performed with sklearn.model_selection.GridSearchCV and yielded the following:

Appendix - Extremely Randomized Trees parameters

Appendix - ExtraTrees-RF difference in sklearn

1.11.2.2. Extremely Randomized Trees

In extremely randomized trees (see ExtraTreesClassifier and ExtraTreesRegressor classes), randomness goes one step further in the way splits are computed. As in random forests, a random subset of candidate features is used, but instead of looking for the most discriminative thresholds, thresholds are drawn at random for each candidate feature and the best of these randomly-generated thresholds is picked as the splitting rule. This usually allows to reduce the variance of the model a bit more, at the expense of a slightly greater increase in bias.

Appendix - Gradient boosting

Why is it called gradient boosting?

- · Mathematically related to gradient descent
- Residual = negative gradient
- When we fit new tree h to residual we are moving downhill towards the minimum error

Appendix - Gradient Boosting Intuition - For square error, residual happens to be the negative gradient

h(x) compensates for the shortcomings of F(x) by predicting y - F(x)

Conveniently, if we are minimizing square error, we want to minimize a loss function by changing F(x). The loss function is:

$$L(y_i, F(x_i)) = \frac{(y_i - F(x_i))^2}{2}$$
$$-\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)} = y_i - F(x_i)$$

Appendix - Extremely Randomized Trees [4]

Fast, good complement to xgboost

- Randomly splits (as opposed to selecting split with best information gain)
- · Skipping optimization means speed
- Optimization may contribute to over-fitting or correlation of trees in ensemble. Maybe ERT adds robustness.

References L

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CoRR. abs/1603.02754, 2016.

Y. Freund and R. E. Schapire.

A decision-theoretic generalization of on-line learning and an application to boosting.

Journal of Computer and System Sciences, 55(1):119 – 139, 1997.

I. H. Friedman.

Greedy function approximation: A gradient boosting machine. Ann. Statist., 29(5):1189-1232, 10 2001.

P. Geurts, D. Ernst, and L. Wehenkel.

Extremely randomized trees.

Mach. Learn., 63(1):3-42, Apr. 2006.

References II

M. Kearns.

Thoughts on hypothesis boosting. 1988.

R. E. Schapire.

The strength of weak learnability. *Mach. Learn.*, 5(2):197–227, July 1990.