

```
项目
                                              Linear Regression
                                                   项目审阅
                                                   代码审阅
                                                     注释
与大家分享你取得的成绩! 🍏 📫
Requires Changes
还需满足 2 个要求 变化
还有两个问题需要修改, 加油!
矩阵运算
 学生正确的构建了一个 4*4 的单位矩阵,没有用 NumPy
 学生正确地实现了shape 函数
 学生正确地实现了matxRound 函数
 学生正确的实现了 transpose 函数
 做得不错!
 学生正确地实现了 matxMultiply 函数
 可以不需要else语句,程序结构可以改成这样
     if not A_col == B_row:
         return None
     C = []
      for A_row_num in range(A_row):
         C_{row} = []
         for B_col_num in range(B_col):
            C_row.append(sum(A[A_row_num][e]*B[e][B_col_num] for e in range(A_col)))
         C.append(C_row)
 学生自己写了测试并且函数正确地通过了测试
Gaussian Jordan 消元法
```

学生正确实现了增广矩阵
另外一种增广矩阵的方式是 Ab = [A+b for A,b in zip(A,b)] 这样也不需要拷贝了,列表加法会自动复制。
✓
学生按要求正确实现了初等行变换
多余的pass应该去掉。
✓
学生正确实现了Gaussian Jordan 消元法求解 Ax = b
arepsilon
学生证明了A为奇异矩阵
这个公式不正确
det(A)=det(I)-det(Y)-det(X)·det(Z) 只有方阵才有行列式,X和Z都不一定是方阵。
提供一种证明的思路
矩阵行列式为0与矩阵为奇异矩阵等价,因此证明A的行列式 A 为0,
矩阵转置不改变行列式。 因此考虑求A转置的行列式。
将 A转置 一行一行展开就可以得到 A = Y ,此处需要给出一些展开的公式说明。行列式展开的规则,可以参看 https://www.mathsisfun.com/algebra/matrix-determinant.html
同时还可以利用一个推论,若行列式的某行全为0,则行列式等于0。 因此 A = Y =0
$arnothing$ 生测试了 $\mathrm{g}_{\dot{-}}$ Solve() 实现正确
A = [[1,0,2],[0,1,3],[0,3,0]]
这个矩阵是奇异矩阵吗?奇异矩阵的行列式为0,这个矩阵的行列式可不为0。
性回归
✓
学生正确的证明了损失函数相对于参数的导数
✓
学生正确地计算了线性回归的最佳参数
学生正确地对构建的数据点进行线性回归
这里只有y需要加上高斯噪音,x并不需要。
には、(1.1) III(本が出上で2017年日3 - A/1 1 III) 本の
U 重新提交
<u>⊌</u> 下载项目