* Hierarchical Clustering[Hc]

Combine data points which are very close by distance

* Hierarchical clustering algorithms build a hierarchy of cluster "Consists where "Each mode is a cluster" consists

of clusters of its daughter modes.

What "Hc" does ?

Same as K-means but different process.

STEP: 2 Take the two closest data points and Make them

one cluster (# that forms N-1 clusters)

STEP:3 Take the two clasest clusters and make them

One cluster (# that forms N-2 clusters)

STEP: 4 Repeat STEP 3, until there is only one cluster

STep 5: Final model.

Euclidean Distance: it is used to identify distance between two points.

*Euclidean distance between P, and P2

$$= \sqrt{(n_2 - n_1)^2 + (y_2 - y_1)^2}$$

Agglomerative HC Consider The following dataset of N=6 data points STEP: 1 (Make Each data point a single point cluster) that forms 6 clusters) STep: 2 (Take the two closest data points and make them one cluster -> that forms 5 clusters)

STEP 3: Take the two closest clusters and make them one cluster -> that forms 4 clusters (n-2) Repeat step 3. until There is only one cluster. # Final

3

3

									_
	TO OT		\ YA	Mo	Mo,		E	ED	
	To	0	351	3363			1510	26	99
4	DT	1	-0-	3543	167		1676	284	Ю
1	/A			0	3690		1867	819	
Ľ	Mo	- 41			0	1	1824	2976	3
In	VΙ			a marin			0	1195	
E	D			2				0	

TO OT MO VA ED WI

OT and Mo (combined)

Distances are recalculated agam.

	To	OT/MO	VA	WI	ED
To		351	3363	1510	2699
OT/MO			3543	1676	2840
VA				1867	819
WI	,	*			1195
ED			v)		

TO OT MO VA EDW

OT/Mo and To (combined)

Distances are recalculated again, to make as one cluster.

	10/01/m0	VA/ED/WI
TO/OT/MO		1676
VA/ED/WI		

Code :-

Same data & Same Steps till modelling

Using the dendogram to find optimal mo. of clusters.

dend rogram = Sch. dendrogram (sch. linkage (x,
method = "ward"))

method = "ward")

plt. title ("Dendrogram")

plt. nlabel ("Customers")

plt. ylabel ("Euclidean distances")

plt. show ()

Q: How to identify optimal clusters during dendrogram? biggest disadvantage with "HC" is we Com't identify "Optimal no. of clusters". Only in K-means We identify. Hierarchical clustering model: from Sklearn. Cluster import Agglome rative Clustering. 77 9 # hc = Agglomerative Clustering (n-clusters = 5, appinity= "Euclidean", linkage = "ward") Predict # y_hc = hc. fit-predict (n) # y_hc array ([4,3,4,3,4,3, 1,1,1,1,1,1,1

3

3

0,2]

```
# Visualismig dusters
 # cluster 1
 # plt. Scatter (n [y_hc = =0,0], n [y_hc = =0,1], 5=100,
              C = "red", Label = "cluster 1")
 # cluster 2
# plt. Scatter (n[y_hc== 1,0], n[y_hc = = 1,1], s=100,
 # cluster 3
# plt. Scatter (n[y-hc == 2,0), n[y-hc = = 2,1], s=100,
  # cluster 4 cluster 4" cluster 3")
# plt. Scatter (n Ty-hc = = 3,0], n [y-hc = = 3,1], s=100,
                 c = "cyan", Label = "cluster 4")
# plt. scatter [n[y-hc = = 4,0], n[y-hc = = 4,1], S=100,
                    C = "magenta", label = "cluster 5")
# ptt. title ("clusters of customers")
   plt. xlabel ( 4 Amnual Income (K$)")
   plt. 4 label ("spending Score (1-100)")
  plt. Show () ) )
plt. legend ()
```


9 mil

5:00 Am.