

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

CONTINUOUS ASSESSMENT TEST - 1 - WINTER SEMESTER 2019-2020

Programme Name & Branch: B.Tech.IT

Course Name Code: ITE1006

Course Name: Theory of Computation

Faculty Name(s): Dr. Swarna Priya RM, Dr. Viswanathan P

Exam Duration: 90 mins Maximum Marks: 50

General instruction(s):

Answer ALL Questions

Section A (4*5-20)

- Give the state diagram and transition table of NFA recognizing the language L = {w/w contains even number of 0's or exactly two 1's} with six states or fewer over an alphabet ∑ = {0, 1}
- 2. (i) Prove by mathematical induction: (3 Marks) $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- (ii) For the language $L = \{01,2\}$ over the set $A=\{0,1,2\}$. Find L^3 , L^2 , L^1 and L^0 (2 Marks)
- Design a DFA to accept the language L = {w|w is of even length and begins with ab} where inputs are a's and b's.
- 4. Convert the given Mealy machine into Moore machine.

Section B (3*10-30)

For a NFA with c moves shown below determine the strings accepted by it.
Construct an equivalent NFA without c moves.

States	Input symbols		
	a	b	E
→ q0	(q1)		-
• q1	{q1}	-	(92)
q2	•	{q0}	

 Construct minimized DFA for the following transition diagram using Myhill-Nerode Theorm.

7. Design an equivalent DFA for the given NFA

bce