Integração de dados na nuvem AWS com modelos de interação por voz para monitoramento e prevenção da dengue

1st Renato B. D. de Oliveira departamento de Engenharia da computação departamento de Engenharia Elétrica departamento de Engenharia Elétrica Universidade de São Paulo

São Paulo, Brasil renato.bueno@usp.br 2nd Andras Horacio Cassimo Universidade de São Paulo São Paulo, Brasil andrasmirropo@usp.br

3rd Victor Soares Braz Universidade de São Paulo São Paulo, Brasil vsoaresbraz@gmail.com

Abstract—Os dados com a incidência de dengue são disponibilizados abertamente via API do infodengue¹, entretanto, existe a necessidade de integrá-los com modelos de interação de voz para informar os cidadãos sobre epidemia de dengue, alertas, vacinação e medidas de prevenção. Esse artigo se propõe a realizar a integração dos dados disponibilizados pela API do infodengue com modelos de interação por voz e nuvem da AWS.

Index Terms-integração, nuvem, modelos de interação por voz, monitoramento, dengue

I. INTRODUÇÃO

Os assistentes de voz como alexa e google permitem obter informações sobre saúde pública em tempo real. Com os surtos de epidemia de dengue que o Brasil enfrentou no primeiro semestre de 2024, informações sobre as cidades que estão em epidemia ou pré-epidemia podem auxiliar na tomada de decisões pelos cidadãos, agentes públicos e agentes de saúde. Medidas como limpeza da caixa d'água, evitar água parada em vasos de plantas e garrafas são medidas simples que podem ser tomadas. O combate a desinformação é necessário tendo em vista que a vacina da dengue está disponível para uma parcela elegível da população.

II. TRABALHOS RELACIONADOS

Os sistemas de reconhecimento de voz auxiliam na disseminação de informações em tempo real e com isso ajudam no combate à desinformação. [2] Na vacinação da COVID-19 houve muita desinformação sobre a eficácia das vacinas. A necessidade de obter informações de fontes confiáveis e em tempo real é uma demanda crescente e importante para a saúde pública. Em muitos municípios do Brasil no ano de 2024 a dengue atingiu patamares de epidemia. Dados disponibilizados em formato interoperáveis e integráveis como o JSON e por meio de APIs facilitam a construção de sistemas de monitoramento em tempo real com auxílio de reconhecimento de voz como alexa.

De acordo com [4], os assistentes de voz podem oferecer orientação, lembretes e informações relacionadas a vacinas

¹https://api.mosqlimate.org/docs/datastore/GET/infodengue/

e exames, aumentando as chances de adesão às vacinas. O estudo [1] comparou 3 assistentes de voz google, alexa e siri para avaliar informações de saúde sobre vacinas e constatou variabilidade de resultados entre os assistentes devido a qualidade das fontes de informação. Esse artigo se propõe a preecher essa lacuna através do Dengue status, uma skill da alexa que entrega respostas de fontes de informação de alta qualidade.

III. METODOLOGIA

Nossa abordagem coletou dados da dengue da API do infodengue e simulou um dispositivo IoT que envia dados para a nuvem da AWS via protocolo MQTT. Os dados são publicados em um tópico chamado arbovirus/alertas. Uma funçao lambda subscrita ao tópico coleta os dados e armazena no banco de dados dynamoDB, conforme figura 1.

Fig. 1. Arquitetura Dengue status

Foi criada uma skill na alexa, que recebeu o nome Dengue Status, para receber os comandos de voz. Esses comandos acionam uma trigger criada na função lambda para consultar os dados de incidência e nível. A incidência de dengue é considerada alta ou epidêmica quando há surtos da doença em várias regiões [5]. A quantidade de casos por 100 mil habitantes deve ultrapassar os 300 casos para ser considerada epidêmica [3]. O nível utilizado para classificar utilizou uma

escala de 1 a 4 em que 4 corresponde a epidemia. Os valores 2 e 3 pré-epidemia e o valor 1 alerta.

A requisição para a API utilizou parâmetros como dengue, data de início, data fim, SP para a uf e limite de 300 resultados por página. O código completo utilizado para consulta pode ser consulado no git².

A coleta dos dados da API do infodengue e a simulação de um dispositivo IoT que envia os dados via protocolo MQTT para a nuvem da AWS foi simulada com código em python, conforme figura 2. O trigger utilizado realiza um select * from arbovirus/alertas e persiste na tabela arboviroses no dynamoDB. Para a consulta ao estado de São Paulo foram retornados 645 municípios sendo que a data inicial e data final são definidas com base na semana epidemiológica mais recente do SINAN (Sistema de informação de agravos de notificação)³.

Os dados retornados pelo API estão organizados em 30 colunas e para este artigo foram selecionados 6 colunas: município, incidência, nível, SE, temperatura média e umidade média. As colunas município corresponde a todos os municípios do estado de São Paulo, a incidência informa quantas pessoas contraíram a dengue sendo que o número de casos é dividido pelo total da população multiplicado por 100 mil. O nível possui 4 categorias (1 = green, 2 = yellow, 3 = orange, 4 = red) mas para este trabalho 1 é o nível inicial, 2 e 3 pré-epidêmico e 4 epidêmico. SE correponde a semana epidemiológica no formato aaaase, por exemplo 202436. Temperatura e umidade média são as médias diárias da semana epidemiológica retornada.

IV. TESTES

Os testes foram desenvolvidos para invocar a skill Dengue Status, invocar as intents Epidemia, Alerta e mostrar exatamento o valores encontrados em nível e incidência de acordo com a lógica da figura 3.

Níveis de alerta da dengue

Fig. 2. Níveis de alerta da dengue

Embora a API disponibilize níveis de alerta de 1 a 4, os valores 2 e 3 foram categorizados como pré-epidêmicos, permitindo que a skill da Alexa sugira ações imediatas. Quando o nível atinge 4, como ocorreu na cidade de São Paulo durante a semana epidemiológica mais recente (36 - de 01/09/2024 a 07/09/2024), com uma incidência de 18,4 mil casos por 100 mil habitantes, conforme reportado pelo simulador, o cenário é considerado de epidemia.

A figura 3 mostra a invocação da skill Dengue Status com o comando alexa, abrir relatório aedes. Em seguida uma mensagem de boas vindas é mostrada e como a skill pode ajudar. Para realizar a consulta duas intenções foram criadas epidemia e alerta. Para invocar a intenção epidemia é necessário utilizar o enunciado existe epidemia de dengue em cidade. No campo cidade deve-se colocar o nome da cidade que se deseja a informação. Qual é o nível de epidemia em cidade. Para invocar a intenção alerta deve-se utilizar o mesmo comando que a intenção epidemia mas deve-se utilizar a palavra alerta.

alexa abrir relatório aedes

Bem-vindo ao Relatório Aedes. Você pode perguntar sobre o alerta ou epidemia em uma cidade específica. Como posso ajudar?

existe epidemia de dengue em são paulo

O município São Paulo está em nível 4 de epidemia. A situação é grave e requer ações imediatas. Recomendamos buscar orientação das autoridades de saúde locais, intensificar o combate aos criadouros de mosquitos e garantir que todas as medidas de prevenção sejam seguidas rigorosamente.

Fig. 3. Testes invocação da skill Dengue Status e da intent epidemia

V. RESULTADOS E DISCUSSÃO

Os resultados mostram que o assistente de voz informa as cidades que estão em epidemia, em alerta e os níveis de dengue atribuídos a cada cidade. Medidas de prevenção são sugeridas para diminuir os focos de dengue. Os dados disponibilizados pela API não são validados com relação a acurácia pois alguns municípios apresentam nível de incidência 4 mas um número de incidência baixo, como foi o caso da cidade de São Paulo na semana 36. A API é disponibilizada pelo site da Fiocruz⁴, portanto os dados são confiáveis. Entretanto, é necessário comparar com outras fontes oficiais como o ministério da saúde⁵,

²https://github.com/renatobdo/psi5120/blob/main/TF/README.md ³http://portalsinan.saude.gov.br/calendario-epidemiologico

painel de monitoramento de arboviroses do estado de São Paulo⁶ e os dados disponibilizados pelo SINAN.⁷ Os dados fornecidos por essas fontes oficiais precisam ser convertidos e filtrados para que possam ser integrados e utilizados, já que não estão em formatos como JSON, que facilita o uso.

VI. CONCLUSÃO

O assistente de voz disponibilizou informações sobre a existência de epidemia em determinado município informado pelo usuário. Além disso, informou o nível em que a cidade se encontra. Contudo, os dados disponibilizados pela API precisam ser validados, pois, apesar de serem provenientes de fontes confiáveis como a Fiocruz, podem gerar dúvidas sobre a correspondência com a realidade.

Para trabalhos futuros pretende-se validar os dados com outras fontes oficiais como o ministério da saúde, portal de monitoramento da dengue do estado de São Paulo e SINAN. Dados de vacinação serão utilizados para informar a população sobre o público elegível para tomar a vacina da dengue e postos em que elas podem se dirigir para serem imunizadas. Os dados também serão utilizados para combater as mentiras espalhadas em redes sociais.

REFERENCES

- Alagha, E. C., & Helbing, R. R. (2019). Evaluating the quality of voice assistants' responses to consumer health questions about vaccines: an exploratory comparison of Alexa, Google Assistant and Siri. BMJ Health & Care Informatics, 26(1), e100075. https://doi.org/10.1136/bmjhci-2019-100075
- [2] Gould, M., & Swanson, R. (2023). Opportunities and Challenges of Voice Assistants in Providing Public Health Information. Annals of Family Medicine, 21(Suppl 1), S1-S4. https://doi.org/10.1370/afm.21.s1.4187
- [3] PROADESS Fiocruz. (n.d.). Ficha de Indicadores de Saúde O04: Cobertura de Exames Citopatológicos. Recuperado de https://www.proadess.icict.fiocruz.br/index.php?pag=fic&cod=O04&tab=1, apud Organização Mundial da Saúde (OMS).
- [4] Rammohan, Rajmohan MD; Sinha, Atul MD; Mehta, Vaishali MD; Srivastava, Pranay MD; Joy, Melvin MD; Saggar, Tulika MD; Mustacchia, Paul MD, MBA. S1360-Can Voice Assistances (VA) Help Guide Hepatitis B Vaccination and Liver Disease Screening for the General Population?. The American Journal of Gastroenterology 117(10S):p e977, October 2022. | DOI: 10.14309/01.ajg.0000862080.57906.ae
- [5] Telessaúde Unifesp. (2021, 9 de abril). Qual é a diferença entre surto, epidemia, pandemia e endemia. Recuperado de https://www.telessaude.unifesp.br/index.php/dno/redes-sociais/159qual-e-a-diferenca-entre-surto-epidemia-pandemia-e-endemia

⁴https://info.dengue.mat.br/epi-scanner/

⁵https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses

⁶https://dengue.saude.sp.gov.br/dengue/

⁷http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/denguebsp.def