AYRIK MATEMATİK DERSİ

KÜME TEORİSİ (SETS)

Konya, 2020

Niceleyiciler:

Bir önerme içerisinde değişken bulunuyorsa bu önerme açık önermedir.

"HER" niceleyicisi Evrensel niceleyicidir ve \forall ile gösterilir.

"EN AZ" ya da "BAZI" niceleyicisi varlıksal niceleyicidir ve ∃ ile gösterilir.

 $A = \{ x: x \in \mathbb{N}, x < 6 \} \text{ ise } A \text{ kümesinin yazılışı-> } A = \{ 0, 1, 2, 3, 4, 5 \} \text{ olur.}$

1)
$$P(x)$$
: $(\exists x \in A, x + 3 = 7)P(x) = ?$

P(x) önermesi x=4 için 4+3=7 olur. Önerme "en az" istediğine göre bir x için bile doğru olması yeterli olduğundan P(x)=1

2)
$$Q(x)$$
: $(\forall x \in A, x \text{ cift})Q(x)=?$

"Her" dediğine göre A kümesindeki her elemanın önermeyi sağlaması gerekir. Ancak x=3 için x çift değildir ve önermeyi sağlamaz. Bu nedenle Q(x)=0

$$\overline{\forall} = \exists \quad \overline{\exists} = \forall$$

Soru: A={1, 2, 3, 4, 5} ise aşağıdaki önermelerin doğruluk değerlerini ve olumsuzlarını bulunuz.

- 1) P(x): $(\exists x \in A, x + 3 = 10)$ "Bazı" elemanlar için x+3=10 olmaz. P(x)=0 Olumsuzu: $(\exists x \in A, x + 3 = 10) = \forall x \in A, x + 3 \neq 10$
- 2) Q(x): $(\forall x \in A, x + 3 \le 7)$

"Her" eleman için doğru değildir. Çünkü x=5 için 5+3=8>7 olur. Q(x)=0

Olumsuzu: $(\forall x \in A, x + 3 \le 7) = \exists x \in A, x + 3 > 7$

- 1) E={x:x∈N, 1<x<20}
 A={ x:x∈E, 3<x<12}
 B={ x:x∈E, x çift ve x<15}
 C={ x:x∈E, 4+x=8} Buna göre
- $A \cap B$, $A \cup B$, A B, B A, A', B', $A \cap C$, $B \cap C$, $A \cap (B \cup C) = ?$
- 2) $(A-B) \cap (A \cap B) = ?$ $A-B=A \cap B'$ yerine yazarsak $(A \cap B') \cap (A \cap B)$ $A \cap (B' \cap B) \rightarrow B' \cap B = \emptyset$ $A \cap \emptyset = \emptyset$

3)
$$\overline{(A \cup B \cup C)} = ?\overline{(A \cup C)} \cap \overline{(A \cup B)}$$

$$= \overline{(A \cap \overline{C})} \cap \overline{(A \cap B)}$$

$$= \overline{A} \cap \overline{C} \cap \overline{A} \cap \overline{B}$$

$$= \overline{A} \cap \overline{B} \cap \overline{C}$$

$$= \overline{(A \cup B \cup C)}$$

- 4) $(E \cap A) \cap (\emptyset \cup A')=?$ $E \cap A=A \text{ ve } \emptyset \cup A'=A' \text{ olur}$ $A \cap A'=\emptyset$
- 5) $(A \cup B) \cap (A \cup B') = ?$ $A \cup (B \cap B') \rightarrow B \cap B' = \emptyset$ olduğundan $A \cup \emptyset = A$

6)
$$A\Delta(B \cap A) = ?A - B$$

 $\#A\Delta B = (A - B) \cup (B - A)$

$$[A - (B \cap A)] \cup [(B \cap A) - A]$$

$$[A \cap (\overline{B} \cap A)] \cup [(B \cap A) \cap \overline{A}]$$

$$[A \cap (\overline{B} \cup \overline{A})] \cup [(B \cap A) \cap \overline{A}]$$

$$B \cap A \cap \overline{A} = \emptyset$$

$$[(A \cap \overline{B}) \cup (A \cap \overline{A})] \cup \emptyset$$

$$A \cap \overline{A} = \emptyset$$

 $(A \cap \overline{B}) \cup \emptyset = (A \cap \overline{B}) = A - B$

8) 25 kişilik bir sınıfta İngilizce (İ), Fransızca (F) ve Almanca (A) bilen öğrenciler mevcuttur.

15 kişi=İngilizce

12 kişi=Fransızca

11 kişi=Almanca

3 kişi=her 3 dili

- 5 kişi=İngilizce + Almanca
- 9 kişi=İngilizce + Fransızca
- 4 kişi=Fransızca + Almanca

- a) Sadece Almanca bilen?
- b) Sadece İngilizce bilen?
- c) Sadece Fransızca bilen?
- d) Fransızca + Almanca bilen ama İngilizce bilmeyen?
- e) İngilizce + Fransızca bilen ama Almanca bilmeyen?
- f) Sadece bir tek dilen toplam kişi?
- g) En azından bir dil bilenlerin toplamı?
- h)Hiçbir dili bilmeyen?
- a) 5
- b) 4
- c)2
- d)1
- e)6
- f)11 g) (İUAUF)=23
- h)2

- 1) $A=\{1,2\}$ $B=\{a, b, c\}$ $C=\{c, d\}$
- a) AxB=? b) BxA=? c) CxC=?
- d) (AxB) \cap (AxC)=? e) Ax(B \cap C)=?
- a) $AxB=? \{(1,a),(1,b),(1,c),(2,a),(2,b),(2,c)\}$
- b) BxA=? {(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)}
- c) CxC=? {(c,c), (c,d), (d,c), (d,d)}
- d) (AxB) ∩ (AxC)=?
 AxC={(1,c),(1,d),(2,c),(2,d)}
 (AxB) ∩ (AxC)=? {(1,c), (2,c)}
- e) Ax(B ∩ C)=?
 B ∩ C={c}
 Ax(B ∩ C)=? {(1,c), (2,c)}

A herhangi bir küme olsun. A x $A = A^2$ ile gösterilir ve "A iki" olarak okunur. A x A x A xx A = n adet A çarpımı A^n ile gösterilir. ("A n diye okunur")

A x A = A^2 'nin $(x,x) \in A$ şeklindeki elemanlarına " A^2 'nin köşegeni" denir.

2)
$$\overline{(AxB)} = ?\overline{A}x\overline{B}$$

 $\{(x,y): (x,y) \notin AxB\}$
 $x \notin A \text{ veya } y \notin B$
 $x \in \overline{A} \text{ veya } y \in \overline{B}$
Eşitlik yok
3) $(AxB) - (CxC) = ?[(A-C)xB] \cup [Ax(B-C)]$

Verilen ifadeler için Eşitlik var mıdır? İspatlayınız.

Kuvvet Küme Ailesi (Power Set):

A herhangi bir küme olsun. A'nın tüm alt kümelerinin oluşturduğu aileye A'nın kuvvet kümesi denir ve P(A) ile gösterilir.

ÖRNEK:

$$A=\{1, 2, 3\}$$
 ise $P(A)=\{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

P(A), A kümesinin tüm alt kümelerinin kümesidir. P(A) kuvvet kümesinin elemanları birer kümedir. P(A) gibi elemanları da küme olan bir küme düşünelim. Bu kümeye genel olarak \mathscr{A} dersek, \mathscr{A} genel kümesi A_1 , A_2 , A_3, A_n elemanlarından oluşur. Bu durumda \mathscr{A} genel kümesi:

$$\mathcal{A}=\{A_1, A_2, A_3, \dots, A_n\}$$
 olur.

A'nın indisleri (1,2,3,....,n) olarak sıralandığı için ortak özellik yöntemiyle yazarsak,

$$\mathscr{A} = \{A_i \mid i=1,2,....n\}$$
 olur.

İndisleri belirten sayılar I={1,2,....n} şeklinde yazılabileceği için 🖋 genel kümesi:

 $\mathscr{A} = \{A_i, i \in I\}$ biçiminde genel formda yazılır.

Küme Aileleri:

I doğal sayıların herhangi bir alt kümesi olmak üzere yani $I \subset N$ iken; A_i ($i \in I$) olsun. Burada I kümesine indis kümesi, A_i kümelerine de indislenmiş küme denir. I indis kümesi olmak üzere $\{A_i : i \in I\}$ kümesine bir küme ailesi denir ve $\mathcal{J}=\{A_i: i \in I\}$ olarak gösterilir.

ÖRNEK:

I={1, 2, 3, 4} olsun. $i \in I$ iken A_i 'ler = A_1 , A_2 , A_3 , A_4 olur. A_i 'ler aşağıdaki verilmiş olsun

$$A_1 = \{a, b\}$$

$$A_2 = \{a, c, d\}$$

$$A_3 = \{e, f, g\}$$

$$A_1 = \{a, b\}$$
 $A_2 = \{a, c, d\}$ $A_3 = \{e, f, g\}$ $A_4 = \{a, b, e, f\}$ olsun.

$$\mathscr{A} = \{\{a,b\}, \{a,c,d\}, \{e,f,g\}, \{a,b,e,f\}\}$$
 olur.

Eğer $\mathcal{A} = \{A : i \in \emptyset\}$ ise $\mathcal{A} = Bos$ ailedir.

 $\mathscr{A}=\{A_i:i\in I\}$ ve $\mathscr{B}=\{A_i:j\in J\}$ verilsin. Eğer $I\subset J$ ise \mathscr{A} ailesi \mathscr{B} ailesinin alt ailesidir.

ÖRNEK:

$$J=\{1, 2, 3, 4, 5\}$$
 $\mathscr{G}=\{A_1, A_2, A_3, A_4, A_5\}$

$$I=\{2, 3, 4\}$$
 A_{2}

Küme Ailelerinin Birleşimi:

$$\mathcal{L} \{\{a,b\},\{a,c,d\},\{e,f,g\},\{a,b,e,f\}\}\}$$

$$\bigcup_{\substack{A_i \\ i \in I}} A_i = A_1 \cup A_2 \cup A_3 \cup A_4$$

$$= \{a,b,c,d,e,f,g\}$$

Küme Ailelerinin Kesişimi:

 $\mathscr{A}_{i}: \mathsf{i} \in I \text{ } \mathsf{olsun}. \text{ } \left\{x: \forall k \in I, x \in A_{k}\right\} \text{ } \mathsf{şeklinde} \text{ } \mathsf{tanımlanan} \text{ } \mathsf{kümeye} \mathscr{A}_{\mathsf{ailesinin}} \text{ } \mathsf{kesişimi} \text{ } \mathsf{denir}$

$$\bigcap \mathscr{A}$$
 ya da $\bigcap A_i$ ya da $\bigcap A_i$ ile gösterilir.

$$\mathcal{A}_{\{a,b\},\{a,c,d\},\{a,c\},\{a,e\},\{a,b,e,g\}\}}$$

$$\bigcap_{i \in I} A_{i} = A_{i} \cap A_{2} \cap A_{3} \cap A_{4}$$

$$= \{a\}$$

Kurallar:

 $\mathcal{A}_{i}: i \in I \} \text{ ve } \mathcal{B}_{i}: j \in J \} \text{ verilsin.}$

1)
$$\left(\bigcap_{i \in I} A_i\right) = \bigcup_{i \in I} \overline{A_i}$$
 2) $\left(\bigcup_{i \in I} A_i\right) = \bigcap_{i \in I} \overline{A_i}$

$$2) \left(\bigcup_{i \in I} A_i \right) = \bigcap_{i \in I} \overline{A_i}$$

3)
$$\left(\bigcup_{i \in I} A_i \right) \cap \left(\bigcup_{j \in J} B_j \right) = \bigcup_{i \in I} \left[\bigcup_{j \in J} \left(A_i \cap B_j \right) \right] = \bigcup_{j \in J} \left[\bigcup_{i \in I} \left(A_i \cap B_j \right) \right]$$

4)
$$\left(\bigcap_{i \in I} A_i \right) \cup \left(\bigcap_{j \in J} B_j \right) = \bigcap_{i \in I} \left[\bigcap_{j \in J} \left(A_i \cup B_j \right) \right] = \bigcap_{j \in J} \left[\bigcap_{i \in I} \left(A_i \cup B_j \right) \right]$$

Ayrım Kümesi (parçalanışı-bölmelenmesi):

B herhangi bir küme olsun. B'nin alt kümelerinden oluşan bir Aailesi olsun. Eğer;

1)
$$\emptyset \notin \mathscr{A}$$
 2) $\forall i \neq j \text{ icin } B_i \cap B_j = \emptyset$ 3) $U \mathscr{A} = B \text{ ise}$

ailesi B kümesinin ayrışımı veya parçalanışıdır.

ÖRNEK:

 $B=\{a, b, c, d, e, f, g, h\}$

$$B_1 = \{a\}$$
 $B_2 = \{b, d\}$

$$B_3 = \{c, f\}$$

$$B_4 = \{e, g, h\}$$

$$B_1=\{a\}$$
 $B_2=\{b, d\}$ $B_3=\{c, f\}$ $B_4=\{e, g, h\}$ ise $A=\{b_1, b_2, b_3, b_4\}$

Küme Örtüsü:

 \mathscr{A} herhangi bir aile olsun. B de bir küme olsun. Eğer (B \subset $\upsilon\mathscr{A}$ ise \mathscr{A} ailesi B kümesinin bir örtüsü denir.

 $\mathscr{A} = \{\{a,b\},\{a,c,d\},\{e,f,g\}\}\}$ ve B={a, d, e} olsun. U $\mathscr{A} = \{a,b,c,d\}$ olduğundan \mathscr{A} ailesi B'nin bir örtüsüdür.

Küme Ailelerinin Kartezyen Çarpımı:

1)
$$\left(\bigcup_{i \in I} A_i\right) x \left(\bigcup_{j \in J} B_j\right) = \bigcup_{\substack{(i,j) \in (IxJ)}} A_i x B_j$$

2)
$$\left(\bigcap_{i \in I} A_i\right) \times \left(\bigcap_{j \in J} B_j\right) = \bigcap_{(i,j) \in (IxJ)} \left(A_i \times B_j\right)$$

1) I indis kümesi ve A_n ($n \in I$) olmak üzere;

 A_n ={nk:k \in N} ve I={x:x \in N ve x=asal sayı} ise $\bigcup A_i = ?$

I={2, 3, 5, 7, 11.....} indis kümesi $\bigcup A_i = A_2 \cup A_3 \cup A_5 \cup$ olur. Buna göre;

 $A_2 = \{2k: k \in \mathbb{N}\} = \{0, 2, 4, 6, 8,\}$

 $A_3 = \{3k: k \in \mathbb{N}\} = \{0, 3, 6, 9, 12, \dots\}$

 $A_5 = \{5k: k \in \mathbb{N}\} = \{0, 5, 10, 15, 20,\}$ devam eder.....

 $\bigcup A_i = \{0,2,3,4,5,6,7,8,9....\}$

2) A={1, 2, 3} bütün ayrışımlarını bulunuz.

1)
$$\emptyset \notin \mathscr{A}$$
 2) $\forall i \neq j \text{ icin } B_i \cap B_j = \emptyset$

$$A_1 = \{1\} \quad A_2 = \{2\} \quad A_3 = \{3\} \quad A_4 = \{1, 2\} \quad A_5 = \{1, 3\} \quad A_6 = \{2, 3\} \quad A_7 = \{1, 2, 3\}$$

$$A_3 = \{3\}$$

$$A_4 = \{1, 2\}$$

$$A_5 = \{1, 3\}$$

$$A_6 = \{2, 3\}$$

$$A_7 = \{1,2,3\}$$

$$\mathcal{A}_1 = \{A_7\}$$

$$2 = \{A_1, A_6\}$$

$$\mathcal{A}_3 = \{A_2, A_5\}$$

$$\mathcal{A}_{4} = \{A_3, A_4\}$$

$$\mathcal{A}_1 = \{A_7\}$$
 $\mathcal{A}_2 = \{A_1, A_6\}$ $\mathcal{A}_3 = \{A_2, A_5\}$ $\mathcal{A}_4 = \{A_3, A_4\}$ $\mathcal{A}_5 = \{A_1, A_2, A_3\}$

3) a ve b gerçek sayılar olmak üzere [a, b] kümesi $a \le x \le b$ eşitsizliğini doğrulayan gerçek sayılar kümesidir.

 $\mathcal{J} = \{A_i : i \in Z \land A_i = [i, i+1]\}$ ise aşağıdakiler cevaplayın.

a)
$$A_1 \cup A_2 = 3$$

a)
$$A_1 \cup A_2 = ?$$
 b) $A_{-2} \cup A_{-1} \cup A_0 = ?$ c) $A_3 \cap A_4 = ?$

c)
$$A_3 \cap A_4 = ?$$

Z=tam sayılar={...-3, -2, -1, 0, 1, 2, ...}

a)
$$A_1=[1, 2]$$
 $A_2=[2, 3]$ $\rightarrow A_1 \cup A_2=[1, 3]$

$$\rightarrow A_1 \cup A_2 = [1, 3]$$

b)
$$A_{-2}$$
=[-2, -1] A_{-1} =[-1, 0]

b)
$$A_{-2}=[-2, -1]$$
 $A_{-1}=[-1, 0]$ $A_0=[0, 1]$ $\rightarrow A_{-2} \cup A_{-1} \cup A_{0=}[-2, 1]$

c)
$$A_3$$
=[3, 4] A_4 =[4, 5]

$$\rightarrow A_3 \cap A_4 = \{4\}$$

4)IR Reel sayılar olmak üzere $A_1=\{x: x\in IR \text{ ve } x\leq 2\} \text{ ve } A_2=\{x: x\in IR \text{ ve } x\geq 3\}$ IR'nin bir ayrışımı olur mu?

a)
$$A_1 \cap A_2 = \emptyset$$

b)
$$A_1 \cup A_2 = IR$$

a)
$$A_1 \cap A_2 = \emptyset$$
 b) $A_1 \cup A_2 = IR$ c) $\emptyset \notin \mathscr{A}$ olmalı

$$A_1$$
=(-\infty, 2]

$$A_1 = (-\infty, 2]$$
 $A_2 = [3, +\infty)$ ise $\rightarrow A_1 \cap A_2 = \emptyset$ ve $A_1 \cup A_2 = IR - (2, 3)$

 $A_1 \cup A_2 = IR$ olmadığından, ayrışımı olmaz!

5) $A_1=\{x: x\in IR \text{ ve } x<1\} \text{ ve } A_2=\{x: x\in IR \text{ ve } x>1\} \text{ ve } A_3=\{1\} \text{ ise } U\mathscr{A} \text{ IR'nin bir ayrışımı olur mu?}$

 $A_1 = (-\infty, 1)$ $A_2 = (1, +\infty)$ $A_3 = \{1\}$ $A_1 \cap A_2 = \emptyset$ $A_1 \cap A_3 = \emptyset$ $A_2 \cap A_3 = \emptyset$ ve $A_1 \cup A_2 \cup A_3 = \mathbb{R}$ Evet, ayrışımı olur.

6) $A_n = \{(n, n+1), n \in \mathbb{Z}\}$ için $U = \emptyset$, IR'nin bir ayrışımı olur mu? $A_1 = (1, 2)$ $A_2 = (2, 3)$ $A_3 = (3, 4)$ $A_n = (n, n+1)$ Tüm i \neq j için $A_i \cap A_j = \emptyset$ ve $A_1 \cup A_2 \cup A_3$ $\cup A_n = IR$ olmalı $A_i \cap A_j = \emptyset$ ama $A_1 \cup A_2 \cup A_3$ $\cup A_n = IR$ olmaz. Hayır ayrışımı olmaz! $\{\{1\}, \{2\}, \{3\}, \{4\}, \dots, \{n\}\}\}$ noktaları dahil olmaz.

7) $A_n = \{[0, 1/n]: n \in \mathbb{N} \text{ ve n} > 0\} \text{ ise } \mathbf{U} = ? \cap \mathscr{A} = ?$ $A_1 = [0, 1] \quad A_2 = [0, 1/2] \quad A_3 = [0, 1/3]$ $\mathbf{U} = [0, 1] \quad \cap \mathscr{A} = \{0\}$