

Report No: CCIS15110088102

FCC REPORT

(BLE)

Applicant: Grand Electronics, INC

Address of Applicant: 11650 Brentcross Dr Tomball, TX 77377, United States

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: N10PLUS, N10p, N11plus, N11, N1-Octa

Trade mark: NeuTab

FCC ID: 2AGNKN10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 12 Nov., 2015

Date of Test: 12 Nov., to 15 Dec., 2015

Date of report issued: 15 Dec., 2015

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	15 Dec., 2015	Original

Tested by: Teven / Date: 15 Dec., 2015

Test Engineer

Reviewed by: Date: 15 Dec., 2015

Project Engineer

3 Contents

			Page				
1	COV	ER PAGE	1				
2	2 VERSION						
3		TENTS					
4		T SUMMARY					
5	GEN	ERAL INFORMATION	5				
	5.1	CLIENT INFORMATION	5				
	5.2	GENERAL DESCRIPTION OF E.U.T.					
	5.3	TEST ENVIRONMENT AND MODE					
	5.4	DESCRIPTION OF SUPPORT UNITS					
	5.5	LABORATORY FACILITY	7				
	5.6	LABORATORY LOCATION	7				
	5.7	TEST INSTRUMENTS LIST	8				
6	TES	T RESULTS AND MEASUREMENT DATA	9				
	6.1	ANTENNA REQUIREMENT:	9				
	6.2	CONDUCTED EMISSION	10				
	6.3	CONDUCTED OUTPUT POWER	13				
	6.4	OCCUPY BANDWIDTH					
	6.5	POWER SPECTRAL DENSITY	18				
	6.6	BAND EDGE					
	6.6.1	00.000000 =00.00					
	6.6.2						
	6.7	SPURIOUS EMISSION					
	6.7.1						
	6.7.2	Radiated Emission Method	30				
7	TES	T SETUP PHOTO	35				
8		CONSTRUCTIONAL DETAILS	26				

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Grand Electronics, INC
Address of Applicant:	11650 Brentcross Dr Tomball, TX 77377, United States
Manufacturer:	GRAND ELECTRI-TECH GLOBAL TRADING LIMITED
Address of Manufacturer:	UNIT 04, 7/F, BRIGHT WAY TOWER, NO. 33 MONG KOK ROAD, KOWLOON, HK.
Factory:	Shenzhen KAY HOLINESS technology limited.
Address of Factory:	3F 2 building Dadan industrial Jihua road Bantian Linggang District ShenZhen

5.2 General Description of E.U.T.

Product Name:	Tablet
Model No.:	N10PLUS, N10p, N11plus, N11, N1-Octa
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-4000mAh
AC adapter:	Model: HT-001-050200
	Input:100-240V AC, 50/60Hz
	Output:5V DC MAX 2000mA
Remark:	Item No.: N10PLUS, N10p, N11plus, N11, N1-Octa were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2442MHz		
The Highest channel	2480MHz		

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

Report No: CCIS15110088102

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 7 of 36

5.7 Test Instruments list

Radiated Emission:									
Item Test Equipment		Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7						
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	150 kHz to 30 MHz							
. , ,								
Class / Severity:	Class B							
Receiver setup:	RBW=9kHz, VBW=30kHz	1	ID 10					
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak							
	0.15-0.5	66 to 56*	56 to 46*					
		0.5-5 56 46						
	5-30	60	50					
	* Decreases with the logarithm							
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 							
Test setup:	LISN 40cm		er — AC power					
Test Uncertainty:			±3.28 dB					
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Measurement Data

Neutral:

Trace: 73

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Tablet : N10PLUS EUT : NIUPLUS
Test Mode : BLE mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: STEVEN
Remark

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu∇	<u>ab</u>	
1	0.155	41.70	0.25	10.78	52.73	65.74	-13.01	QP
2	0.160	26.30	0.25	10.78	37.33	55.47	-18.14	Average
3	0.205	23.55	0.25	10.76	34.56	53.40	-18.84	Average
1 2 3 4 5 6 7 8	0.211	37.32	0.25	10.76	48.33	63.18	-14.85	QP
5	0.260	15.87	0.26	10.75	26.88	51.42	-24.54	Average
6	0.264	32.92	0.26	10.75	43.93	61.29	-17.36	QP
7	0.274	16.99	0.26	10.74	27.99	50.98	-22.99	Average
8	0.276	31.87	0.26	10.74	42.87	60.94	-18.07	QP
9	0.385	37.20	0.25	10.72	48.17	58.17	-10.00	QP
10	0.385	21.64	0.25	10.72	32.61	48.17	-15.56	Average
11	0.454	35.42	0.27	10.74	46.43	56.80	-10.37	QP
12	0.454	22.32	0.27	10.74	33.33	46.80	-13.47	Average

Line:

Trace: 75

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition : Tablet EUT

Model : N10PLUS Test Mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: STEVEN Remark

CHAIR	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	−−dBuV	<u>dB</u>	
1	0.160	41.32	0.27	10.78	52.37	65.47	-13.10	QP
2	0.160	25.91	0.27	10.78	36.96	55.47	-18.51	Average
1 2 3 4 5 6 7 8	0.211	37.41	0.28	10.76	48.45	63.18	-14.73	QP
4	0.211	17.63	0.28	10.76	28.67	53.18	-24.51	Average
5	0.264	32.83	0.27	10.75	43.85	61.29	-17.44	QP
6	0.365	16.41	0.27	10.73	27.41	48.61	-21.20	Average
7	0.369	38.00	0.27	10.73	49.00	58.52	-9.52	QP
8	0.516	33.30	0.28	10.76	44.34	56.00	-11.66	QP
9	0.521	15.43	0.28	10.76	26.47	46.00	-19.53	Average
10	0.665	31.44	0.23	10.77	42.44	56.00	-13.56	QP
11	0.779	12.49	0.23	10.80	23.52	46.00	-22.48	Average
12	7.213	9.08	0.32	10.81	20.21	50.00	-29.79	Average

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Page 12 of 36

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.65		
Middle	-0.79	30.00	Pass
Highest	-1.14		

Test plot as follows:

Date: 1.DEC.2015 10:36:53 Lowest channel

Date: 1.DEC.2015 10:42:25 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.792			
Middle	0.786	>500	Pass	
Highest	0.786			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.074		
Middle	1.074	N/A	N/A
Highest	1.074		

Test plot as follows:

6dB EBW

Date: 1.DEC.2015 10:48:07

Lowest channel

Date: 1.DEC.2015 10:50:21

Middle channel

Date: 1.DEC.2015 10:52:29

Highest channel

99% OBW

Date: 1.DEC.2015 10:56:10

Lowest channel

Date: 1.DEC.2015 10:57:54

Middle channel

Date: 1.DEC.2015 10:59:34

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-1.44		
Middle	-1.52	8.00	Pass
Highest	-1.69		

Test plots as follow:

Date: 1.DEC.2015 11:02:02

Lowest channel

Date: 1.DEC.2015 11:05:08

Middle channel

Date: 1.DEC.2015 11:06:42

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 1.DEC.2015 11:11:33

Lowest channel

Date: 1.DEC.2015 11:16:17

Highest channel

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1							
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
·	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above 1G112	RMS	1MHz	3MHz	Average Value			
Limit:	Freque	ency	Limit (dBuV		Remark			
	Above 1	IGHz -	54.0 74.0		Average Value Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
Test setup:	AE SOCM	EUT Gro	Horn Anti	Antenna To Controller	wer			
Test Instruments:	Refer to section	5.7 for detail	S					
Test mode:	Refer to section	5.3 for detail	s					
Test results:	Passed							

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet : N10 PLUS Model

Test mode : BLE-L Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

1 2

ır	Freq		Antenna Factor							
	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
			27.58 27.58			54.46 41.49			Peak Average	

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet : N10 PLUS Model Test mode : BLE-L

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven Remark :

mar.	K :								
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	19.92	27.58	6.63	0.00	54.13	74.00	-19.87	Peak
2	2390 000	7 19	27 58	6 63	0.00	41 40	54 00	-12.60	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet : N10 PLUS Model Test mode : BLE-H Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: steven

Remark

1 2

	Freq		Antenna Factor						
-	MHz	dBu∜		<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
	2483.500 2483.500					54.72 42.19			

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet : N10 PLUS EUT Model Test mode : BLE-H Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: steven

Remark

Freq		Antenna Factor						Remark	
MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		-
2483.500 2483.500					54.88 42.17				

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:							
	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 27.NOV.2015 16:11:52

30MHz~25GHz

Middle channel

Date: 27.NOV.2015 16:13:27

30MHz~25GHz

Highest channel

Date: 27.NOV.2015 16:16:15

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark								
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Va								
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	Above 1G112	RMS	1MHz	3MHz	Average Value				
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
			74.0		Peak Value le 0.8 meters above				
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make to find the meters and to find the make the limit specified B for the EUT have 10 dB	at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the anter the anter the anter the rota table maximum read the rota table the rota table maximum read the rota table the rota table maximum read the rota table the	camber. The nof the highest teters away funted on the trained from one the maximutical polarization in the Enna was turned ding. In the Euther was set of the Euther Euther Euther Euther Euther Euther Could be ported. Other do be re-tested in the first teter the set of the set of the euther Euth	table was a st radiation. Tom the in op of a variance meter to um value or ions of the EUT was and to height from 0 degrate Deak Dold Mode. The stopped wise the end one by one stopped to be stopped wise the end one by one	rotated 360 degrees				

Below 1GHz

Horizontal:

Site

3m chamber FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: Tablet : N10PLUS EUT . MIOPLUS
lest mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: STEVEN
REMARK :

CHICKLY									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu₹	<u>dB</u> /m		<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	100.934	50.20	13.06	0.97	29.52	34.71	43.50	-8.79	QP
2	108.267	52.54	12.39	1.03	29.47	36.49	43.50	-7.01	QP
3	127.665	60.17	9.32	1.18	29.34	41.33	43.50	-2.17	QP
4	146.374	62.39	8.23	1.30	29.24	42.68	43.50	-0.82	QP
5 6	160.346	58.06	8.67	1.33	29.13	38.93	43.50	-4.57	QP
6	241.676	53.57	12.09	1.58	28.59	38.65	46.00	-7.35	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : Tablet Condition

EUT Model : N10PLUS
Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: STEVEN
RFMARK

:	Read	Ant enna	Cable	Preamp		Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBu∜	dB/m	₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
64.208	48.10	10.97	0.74	29.76	30.05	40.00	-9.95	QP
110.182	55.70	12.25	1.05	29.46	39.54	43.50	-3.96	QP
115.726	57.43	11.21	1.09	29.42	40.31	43.50	-3.19	QP
125.007	59.45	9.70	1.16	29.36	40.95	43.50	-2.55	QP
145.861	62.59	8.23	1.30	29.24	42.88	43.50	-0.62	QP
213.015	50.11	10.97	1.45	28.75	33.78	43.50	-9.72	QP
	Freq MHz 64.208 110.182 115.726 125.007 145.861	Read. Freq Level MHz dBuV 64.208 48.10 110.182 55.70 115.726 57.43 125.007 59.45 145.861 62.59	ReadAntenna Level Factor MHz dBuV dB/m 64.208 48.10 10.97 110.182 55.70 12.25 115.726 57.43 11.21 125.007 59.45 9.70 145.861 62.59 8.23	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 64.208 48.10 10.97 0.74 110.182 55.70 12.25 1.05 115.726 57.43 11.21 1.09 125.007 59.45 9.70 1.16 145.861 62.59 8.23 1.30	ReadAntenna Cable Preamp Level Factor Loss Factor	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 64.208 48.10 10.97 0.74 29.76 30.05 110.182 55.70 12.25 1.05 29.46 39.54 115.726 57.43 11.21 1.09 29.42 40.31 125.007 59.45 9.70 1.16 29.36 40.95 145.861 62.59 8.23 1.30 29.24 42.88	ReadAntenna Cable Preamp Limit Level Factor Loss Factor Level Line	ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit

Above 1GHz

Test channel:			Lo	west	Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	45.58	31.53	10.57	40.24	47.44	74.00	-26.56	Vertical
4804.00	45.66	31.53	10.57	40.24	47.52	74.00	-26.48	Horizontal
Т	est channel	•	Lowest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.25	31.53	10.57	40.24	38.11	54.00	-15.89	Vertical
4804.00	36.54	31.53	10.57	40.24	38.40	54.00	-15.60	Horizontal

Т	:	Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.49	31.58	10.66	40.15	47.58	74.00	-26.42	Vertical
4884.00	46.04	31.58	10.66	40.15	48.13	74.00	-25.87	Horizontal
Т	est channel	:	Middle		Le	vel:	A	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	36.59	31.58	10.66	40.15	38.68	54.00	-15.32	Vertical
4884.00	37.59	31.58	10.66	40.15	39.68	54.00	-14.32	Horizontal

Т	:	Hiç	Highest		vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.08	31.69	10.73	40.03	47.47	74.00	-26.53	Vertical
4960.00	45.61	31.69	10.73	40.03	48.00	74.00	-26.00	Horizontal
Т	est channel	:	Highest		Le	vel:	A	verage
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	36.88	31.69	10.73	40.03	39.27	54.00	-14.73	Vertical
4960.00	36.55	31.69	10.73	40.03	38.94	54.00	-15.06	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.