Date Period

Introduction to Sequences

Find the next three terms in each sequence.

4)
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{1}{4}$, $\frac{5}{32}$, ...

7) 5,
$$\frac{5}{2}$$
, $\frac{5}{4}$, $\frac{5}{8}$, $\frac{5}{16}$, ...

Find the tenth term in each sequence.

9)
$$-1$$
, $\frac{2}{3}$, $\frac{7}{3}$, 4, $\frac{17}{3}$, ...

14)
$$-6$$
, -2 , 0 , 1 , $\frac{3}{2}$, ...

Find the first four terms in each sequence.

17)
$$a_n = \frac{2n+1}{n^3}$$

18)
$$a_n = 3^{n-1}$$

19)
$$a_n = n^2 + 1$$

$$20) \ a_n = \frac{n^3}{2n+1}$$

-1-

Find the tenth term in each sequence.

21)
$$a_n = \frac{2n+1}{n^3}$$

22)
$$a_n = 4^{n-1}$$

23)
$$a_n = (2n)^2$$

24)
$$a_n = (2n-1)^2$$

Find the first four terms in each sequence.

25)
$$a_n = a_{n-1} + 10$$

 $a_1 = 29$

26)
$$a_n = a_{n-1} \cdot 2$$

 $a_1 = -1$

27)
$$a_n = a_{n-1} + n$$

 $a_1 = -4$

28)
$$a_n = \frac{2 + a_{n-1}}{2}$$

 $a_1 = 10$

Find the tenth term in each sequence.

29)
$$a_n = na_{n-1}$$

 $a_1 = -1$

30)
$$a_n = a_{n-1} + 10$$

 $a_1 = 11$

31)
$$a_n = a_{n-1} \cdot 3$$

 $a_1 = -3$

32)
$$a_n = \frac{2 + a_{n-1}}{2}$$

 $a_1 = -14$

Write the explicit formula for each sequence.

34)
$$-6$$
, -3 , -2 , $-\frac{3}{2}$, $-\frac{6}{5}$, ...

Write the recursive formula for each sequence.

-2-

Introduction to Sequences

Date Period

Find the next three terms in each sequence.

7)
$$5, \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \frac{5}{16}, \dots$$

$$\frac{5}{32}, \frac{5}{64}, \frac{5}{128}$$

Find the tenth term in each sequence.

9) -1,
$$\frac{2}{3}$$
, $\frac{7}{3}$, 4, $\frac{17}{3}$, ...
$$a_{10} = 14$$

11)
$$-2$$
, -6 , -18 , -54 , -162 , ... $a_{10} = -39366$

13) -4, 12, -36, 108, -324, ...
$$a_{10} = 78732$$

15) -28, 172, 372, 572, 772, ...
$$a_{10} = 1772$$

Find the first four terms in each sequence.

17)
$$a_n = \frac{2n+1}{n^3}$$
 3, $\frac{5}{8}$, $\frac{7}{27}$, $\frac{9}{64}$

19)
$$a_n = n^2 + 1$$

2, 5, 10, 17

4)
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{3}{8}$, $\frac{1}{4}$, $\frac{5}{32}$, ...
$$\frac{3}{32}$$
, $\frac{7}{128}$, $\frac{1}{32}$; Note: $a_n = \frac{n}{2^n}$

10) 7, 9, 12, 16, 21, ...
$$a_{10} = 61$$

12)
$$-23$$
, -18 , -13 , -8 , -3 , ... $a_{10} = 22$

14) -6, -2, 0, 1,
$$\frac{3}{2}$$
, ...
$$a_{10} = \frac{127}{64}$$

16) 37, 46, 55, 64, 73, ...
$$a_{10} = 118$$

18)
$$a_n = 3^{n-1}$$

1, 3, 9, 27

20)
$$a_n = \frac{n^3}{2n+1} = \frac{1}{3}, \frac{8}{5}, \frac{27}{7}, \frac{64}{9}$$

Find the tenth term in each sequence.

21)
$$a_n = \frac{2n+1}{n^3}$$

$$a_{10} = \frac{21}{1000}$$

23)
$$a_n = (2n)^2$$

$$a_{10} = 400$$

22)
$$a_n = 4^{n-1}$$

 $a_{10} = 262144$

24)
$$a_n = (2n-1)^2$$

 $a_{10} = 361$

Find the first four terms in each sequence.

25)
$$a_n = a_{n-1} + 10$$

 $a_1 = 29$
29, 39, 49, 59

27)
$$a_n = a_{n-1} + n$$

 $a_1 = -4$
 $-4, -2, 1, 5$

26)
$$a_n = a_{n-1} \cdot 2$$

 $a_1 = -1$
 $-1, -2, -4, -8$

28)
$$a_n = \frac{2 + a_{n-1}}{2}$$

 $a_1 = 10$
10, 6, 4, 3

Find the tenth term in each sequence.

29)
$$a_n = na_{n-1}$$

 $a_1 = -1$
 $a_{10} = -3628800$

31)
$$a_n = a_{n-1} \cdot 3$$

 $a_1 = -3$
 $a_{10} = -59049$

30)
$$a_n = a_{n-1} + 10$$

 $a_1 = 11$
 $a_{10} = 101$

32)
$$a_n = \frac{2 + a_{n-1}}{2}$$

$$a_1 = -14$$

$$a_{10} = \frac{63}{32}$$

Write the explicit formula for each sequence.

33)
$$-12$$
, -9 , -6 , -3 , 0 , ...
$$a_n = -15 + 3n$$

34) -6, -3, -2,
$$-\frac{3}{2}$$
, $-\frac{6}{5}$, ... $a_n = -\frac{6}{n}$

Write the recursive formula for each sequence.

35) 2, 4, 7, 11, 16, ...
$$a_n = a_{n-1} + n$$

36) 15, 215, 415, 615, 815, ...
$$a_n = a_{n-1} + 200$$

$$a_n = 15$$

Create your own worksheets like this one with Infinite Algebra 2. Free trial available at KutaSoftware.com