Une remarque:

!

Les formes indéterminées sont du type : " $\infty - \infty$ ", " $0 \times \infty$ ", $\frac{"0"}{0}$ et $\frac{"\infty"}{\infty}$.

Un exemple:

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = 3u_n - 2$. Conjecturer une expression de u_n en fonction de n.

Exemple

Autre type d'exemple :

Exemple

On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier naturel n, $u_{n+1} = 3u_n - 2$. Conjecturer une expression de u_n en fonction de n.

Avec sa solution:

Solution

Pour tout entier naturel n, $u_n = 3^n + 1$.

Autre présentation d'un exemple et sa solution dans un seul cadre :

Exemple

Montrer que la suite (u_n) définie sur \mathbb{N} par $u_0 = 2$ et $u_{n+1} = \sqrt{u_n}$ est bornée par 1 et 2 autrement dit que pour tout entier n, $1 \le u_n \le 2$.

Solution

Par récurrence, ... Initialisation : n = 0

Hérédité : Par HR, $1\leqslant u_p\leqslant 2$, la fonction racine carrée étant strictement croissante sur \mathbb{R} , $1\leqslant \sqrt{u_p}\leqslant 1$

 $\sqrt{2}$ donc $1 \le u_{p+1} \le \sqrt{2} < 2$ la propriété est vraie au rang p+1

Conclusion : Pour tout entier naturel n, $1 \le u_n \le 2$.