J/ψ and Υ at high temperature

I.M.Narodetskii, Yu.A.Simonov, and A.I.Veselov

Institute of Theoretical and Experimental Physics, Moscow 117218, Russia

Abstract

We use the screened Coulomb potential with r-dependent coupling constant and the non-perturbative quark—antiquark potential derived within the Field Correlator Method (FCM) to calculate J/ψ and Υ binding energies and melting temperatures in the deconfined phase of quark-gluon plasma.

keywords: Quark-gluon plasma, non-perturbative potential, heavy mesons

PACS: 12.38Lg, 14.20Lg, 25.75Mg

1 INTRODUCTION

Since 1986, the gold-plated signature of deconfinement was thought to be J/ψ suppression [1]. If Debye screening of the Coulomb potential above T_c is strong enough then J/ψ production in A+A collisions will be suppressed. Indeed, applying the Bargmann condition [2] for the screened Coulomb potential

$$V_C(r) = -\frac{4}{3} \cdot \frac{\alpha_s(r)}{r} \cdot e^{-m_d r},\tag{1}$$

where m_d is the Debye mass, we obtain the simple estimate for the number of, say, $c\bar{c}$ S—wave bound states

$$n \le \mu_c \int_0^\infty |V_C(r)| r \, dr = \frac{4\alpha_s}{3} \cdot \frac{\mu_c}{m_d}, \tag{2}$$

where μ_c is the constituent mass of the c-quark and for the moment we neglect the r-dependence of α_s . Taking $\mu_c=1.4$ GeV and $\alpha_s=0.39$ we conclude that if $m_d\geq 0.7$ GeV, there is no J/ψ bound state. Parenthetically, we note that no light or strange mesons $(\mu\sim 300-500 \text{ MeV})$ survive. But this is not the full story.

There is a significant change of views on physical properties and underlying dynamics of quark–gluon plasma (QGP), produced at RHIC, see e.g. [3] and references there in. Instead of behaving like a gas of free quasiparticles – quarks and gluons, the matter created in RHIC interacts much more strongly than originally expected. Also, the interaction deduced from lattice studies is strong enough to support $Q\overline{Q}$ bound states. It is more appropriate to describe the non-perturbative (NP) properties of the QCD phase close to T_c in terms remnants of the non–perturbative part of the QCD force rather than a strongly coupled Coulomb force.

In the QCD vacuum, the NP quark-antiquark potential is $V = \sigma r$. At $T \geq T_c$, $\sigma = 0$, but that does not mean that the NP potential disappears. In a recent paper [4] we calculated binding energies for the lowest $Q\overline{Q}$ and QQQ eigenstates (Q = c, b) above T_c using the NP $Q\overline{Q}$ potential derived in the Field Correlator Method (FCM) [5] and the screened Coulomb potential with the strong coupling constant $\alpha_s = 0.35$ in Eq. (1). In this talk we extend our analysis to the case of the running $\alpha_s(r)$.

2 The Field Correlator Method as applied to finite T

The NP $Q\overline{Q}$ potential can be studied through the modification of the correlator functions, which define the quadratic field correlators of the nonperturbative vaccuum fields

$$\langle tr F_{\mu\nu}(x)\Phi(x,0)F_{\lambda\sigma}(0)\rangle = \mathcal{A}_{\mu\nu;\lambda\sigma}D(x) + \mathcal{B}_{\mu\nu;\lambda\sigma}D_1(x),$$
 (3)

where $\mathcal{A}_{\mu\nu;\lambda\sigma}$ and $\mathcal{B}_{\mu\nu;\lambda\sigma}$ are the two covariant tensors constructed from $g_{\mu\nu}$ and $x_{\mu}x_{\nu}$, $\Phi(x,0)$ is the Schwinger parallel transporter, x Euclidian.

At $T \geq T_c$, one should distinguish the color electric correlators $D^E(x)$, $D_1^E(x)$ and color magnetic correlators $D^H(x)$, $D_1^H(x)$. Above T_c , the color electric correlator $D^E(x)$ that defines the string tension at T=0 becomes zero [6] and, correspondingly, $\sigma^E=0$. The color magnetic correlators $D^H(x)$ and $D_1^H(x)$ do not produce static quark–antiquark potentials, they only define the spatial string tension $\sigma_s=\sigma^H$ and the Debye mass $m_d \propto \sqrt{\sigma_s}$ that grows with T.

The main source of the NP static $Q\overline{Q}$ potential at $T \geq T_c$ originates from the color–electric correlator function $D_1^E(x)$

$$V_{np}(r,T) = \int_{0}^{1/T} d\nu (1 - \nu T) \int_{0}^{r} \lambda d\lambda \, D_{1}^{E}(x). \tag{4}$$

In the confinement region the function $D_1^E(x)$ was calculated in [7]

$$D_1^E(x) = B \, \frac{\exp(-M_0 \, x)}{x},\tag{5}$$

where $B=6\alpha_s^f\sigma_f M_0$, α_s^f being the freezing value of the strong coupling constant to be specified later, σ_f is the sting tension at T=0, and the parameter M_0 has the meaning of the gluelump mass. In what follows we take $\sigma_f=0.18~{\rm GeV^2}$ and $M_0=1~{\rm GeV}$. Above T_c the analytical form of D_1^E should stay unchanged at least up to $T\sim 2\,T_c$. The only change is

 $B \to B(T) = \xi(T)B$, where the factor $\xi(T) = \left(1 - 0.36 \frac{M_0}{B} \frac{T - T_c}{T_c}\right)$ is determined by lattice data [9]. Integrating over λ one obtains

$$V_{np}(r,T) = \frac{B(T)}{M_0} \int_{0}^{1/T} (1 - \nu T) \left(e^{-\nu M_0} - e^{-\sqrt{\nu^2 + r^2}} M_0 \right) d\nu = V(\infty, T) - V(r, T)$$
 (6)

Note that $V(\infty, T_c) \approx 0.5$ GeV that agrees with lattice estimate for the free quark-antiquark energy.

In the framework of the FCM, the masses of heavy quarkonia are defined as

$$M_{Q\bar{Q}} = \frac{m_Q^2}{\mu_Q} + \mu_Q + E_0(m_Q, \mu_Q), \tag{7}$$

 $E_0(m_Q, \mu_Q)$ is an eigenvalue of the Hamiltonian $H = H_0 + V_{np} + V_C$, m_Q are the bare quark masses, μ_Q are the auxiliary fields that are introduced to simplify the treatment of relativistic kinematics. The auxiliary fields are treated as c-number variational parameters to be found from the extremum condition imposed on $M_{Q\bar{Q}}$ in Eq. (7). Such an approach allows for a very transparent interpretation of axiliary fields as the constituent masses that appear due to the interaction. Once m_Q is fixed, the quarkonia spectrum is described. The dissociation points are defined as those temperature values for which the energy gap between $V(\infty, T)$ and E_0 disappears.

3 Coulomb potential

We use the perturbative screened Coulomb potential (1) with the r-dependent QCD coupling constant $\alpha_s(r,T)$. Note that in the entire regime of distances for which at T=0 the heavy quark potential can be described well by QCD perturbation theory $\alpha_s(r,T)$ remains unaffected by temperature effects at least up to $T \leq 3 T_c$ and agrees with the zero temperature running coupling $\alpha_s(r,0) = \alpha_s(r)$. For our purposes, we find it convenient to define the r-dependent coupling constant in terms of the \mathbf{q}^2 dependent constant $\alpha_B(\mathbf{q}^2)$ calculated in the background perturbation theory (BPTh) [8]

$$\alpha_s(r) = \frac{2}{\pi} \int_0^\infty dq \, \frac{\sin \, qr}{q} \, \alpha_B(\mathbf{q}^2). \tag{8}$$

The formula for $\alpha_B(\mathbf{q}^2)$ is obtained by solving the two-loop renormalization group equation for the running coupling constant in QCD:

$$\alpha_B(\mathbf{q}^2) = \frac{4\pi}{\beta_0 t} \left(1 - \frac{\beta_1}{\beta_0^2} \frac{\ln t}{t} \right), \quad t = \ln \frac{\mathbf{q}^2 + m_B^2}{\Lambda_V^2},$$
 (9)

where β_i are the coefficients of the QCD β -function.

In Eq. (9) the parameter $m_B \sim 1$ GeV has the meaning of the mass of the lowest hybrid excitation. The result can be viewed as arising from the interaction of a gluon with

Table 1: J/ψ above the deconfinement region. $V(\infty,T)$ is the continuum threshold (a constant shift in the potential). Units are GeV or GeV⁻¹.

T/T_c	$V(\infty)$	μ_b	$E_0 - V(\infty)$	r_0	$M_{J/\psi}$
$1\\1.2$	$0.445 \\ 0.368$	1.443 1.423	-0.011 -0.003	8.23 10.07	

background vacuum fields. We employ the values $\Lambda_V=0.36\,\mathrm{GeV},\ m_B=0.95\,\mathrm{GeV},\ \mathrm{which}$ lie within the range determined in Ref. [10]. The result is consistent with the freezing of $\alpha_B(r)$ with a magnitude 0.563 (see Table 4 of Ref. [11]. The zero temperature potential with the above choice of the parameters gives a fairly good description of the quarkonium spectrum [10]. At finite temperature we utilize the information on m_d in Eq. (1) from Ref. [12]. For pure-gauge SU(3) theory $(T_c=275\,\mathrm{MeV})\ m_d$ varies between 0.8 GeV and 1.4 GeV, when T varies between T_c and $2\,T_c$.

4 Results

The solutions for the binding energy for the 1S J/ψ and Υ states are shown in Tables 1, 2. In these Tables we present the constituent quark masses μ_Q for $c\overline{c}$ and $b\overline{b}$, the differences $\varepsilon_Q = E_0 - V_{Q\overline{Q}}(\infty)$, the mean squared radii $r_0 = \sqrt{\overline{r^2}}$, and the masses of the $Q\overline{Q}$ mesons. We employ $m_c = 1.4$ GeV and $m_b = 4.8$ GeV. Note that, as in the confinement region, the constituent masses μ_Q only slightly exceed bare quark masses m_Q that reflect smallness of the kinetic energies of heavy quarks.

At $T=T_c$ we obtain the weakly bound $c\overline{c}$ state that disappears at $T\sim 1.3\,T_c$. The charmonium masses lie in the interval 3.2 - 3.3 GeV, that agrees with the results of Ref. [9]. Note that immediately above T_c the mass of the $c\overline{c}$ state is about 0.2 GeV higher than that of J/ψ . As expected, the Υ state remains intact up to the larger temperatures, $T\sim 2.3\,T_c$, see Table 2. The masses of the L = 0 bottomonium lie in the interval 9.7–9.8 GeV, about 0.2–0.3 GeV higher than 9.460 GeV, the mass of $\Upsilon(1S)$ at T=0. At $T=T_c$ the $b\overline{b}$ separation r_0 is 0.25 fm that compatible with $r_0=0.28$ fm at T=0. The 1S bottomonium undergo very little modification till $T\sim 2\,Tc$. The results agree with those found previously for a constant $\alpha_s=0.35$ [4]. We also mention that the melting temperatures for Ω_c and Ω_b calculated in [4] practically coincide with those for J/ψ and Υ .

Our results for $1S(J/\psi)$ are qualitatively agree with those of Refs. [13], [14] based on phenomenological $Q\overline{Q}$ potentials identified with the free quark-antiquark energy measured on the lattice while our melting temperature for $1S(\Upsilon)$ is much smaller than $T \sim (4-6) T_c$ found in Ref. [14].

This work was supported in part by RFBR Grants # 08-02-00657, # 08-02-00677, # 09-02-00629 and by the grant for scientific schools # NSh.4961.2008.2.

		_					
\mathbf{m} 11 α	10	77	1 1	1	. 1	deconfinemen	
Table 7.	1 4	hh	ctoto	0.0000	tho	docontroomon	t rogion
Table 4.	11)	ω	State	anove	une	песопппешен	t region.
	_~	00	20000	0000000	0110	GOOGILIII OIII OI	

T/T_c	$V(\infty,T)$	μ_b	$E_0(T) - V(\infty, T)$	r_0	$M_{b\overline{b}}$
1	0.445	4.948	-0.255	1.39	9.796
1.3	0.332	4.922	-0.158	1.69	9.777
1.6	0.237	4.894	- 0.084	2.23	9.755
2.0	0.134	4.854	- 0.022	4.23	9.712
2.2	0.090	4.831	- 0.006	6.77	9.684
2.3	0.070	4.821	- 0.002	8.32	9.668

References

- [1] T. Matsui and H. Satz, Phys. Lett. **B178**, 416 (1986)
- [2] V. Bargmann, Proc. Nat. Acad. Sci. (USA), 38 961 (1952)
- [3] M. J. Tannenbaum, Rep. Prog. Phys. 69, 2005 (2006)
- [4] I. M. Narodetskiy, Yu. A. Simonov, A. I. Veselov, JETP Lett. 90, 232 (2009) [Pisma Zh. Eksp. Teor. Fiz. 90, 254 (2009)];
- [5] for a recent review see A. V. Nefediev, Yu. A. Simonov, M. A. Trusov, Int. J. Mod. Phys. **E18**, 549 (2009) and references therein
- [6] Yu. A. Simonov, JETP Lett. **54**, 249 (1991); Phys. At. Nucl. **58**, 309 (1995)
- [7] Yu. A. Simonov, Phys. Lett. B**619**, 293 (2005)
- [8] Yu. A. Simonov, Phys. Atom. Nucl. 58, 107 (1995), [Yad. Fiz. 58, 113 (1995)].
- [9] A. DiGiacomo, E. Meggiolaro, Yu. A. Simonov, and A. I. Veselov, Phys. Atom. Nucl. 70, 908 (2007)
- [10] A. M. Badalian and D. S. Kuzmenko, Phys. Rev. D 65, 016004 (2002).
- [11] R. Ya. Kezerashvili, I. M. Narodetskiy, A. I. Veselov, Phys. Rev. D 79, 034003 (2009)
- [12] N. O. Agasian, Phys. Lett. B 562, 257 (2003), [arXiv:hep-ph/0303127].
- [13] D. Blaschke, O. Kaczmarek, E. Laermann, V. Yudichev, Eur. Phys. J. C43, 81 (2005)
- [14] W. M. Alberico, A. Beraudo, A. De Pace, and A. Molinari, arXiv: hep-ph/0507084