

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-106951

(43) Date of publication of application: 24.04.1998

(51)Int.CI.

H01L 21/20 H01L 27/12 H01L 29/786 H01L 21/336

(21)Application number: 08-255644

(71)Applicant: SHARP CORP

(22)Date of filing:

27.09.1996

(72)Inventor: MAKITA NAOKI

(54) SEMICONDUCTOR THIN FILM, SEMICONDUCTOR DEVICE AND MANUFACTURE OF SEMICONDUCTOR THIN FILM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a semiconductor thin film which is high in quality and serves as an active region of a semiconductor device by a method in which an amorphous silicon film formed on a substrate having an insulating surface is crystallized by irradiation with a strong light beam.

SOLUTION: An insulating base film 102 such as a silicon oxide film is formed on a substrate 101, and an amorphous silicon film 103 is formed thereon. Then, the amorphous silicon film 103 is irradiated with a strong light beam 104 such as a laser beam to be crystallized. In result, a crystalline silicon film 105 is formed of crystal grains 106, and ridges 108 like hillocks are formed at grain boundaries 107 on the surface of the film 105. The ridges 108 are selectively oxidized by a thermal treatment to be flattened. Then, a surface oxide film 109 is removed, thereby a high-quality crystalline silicon film 110 without ridges induced by crystallization on its surface can be obtained.

LEGAL STATUS

[Date of request for examination]

28.01.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3389022

[Date of registration]

17.01.2003

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平10-106951

(43)公開日 平成10年(1998) 4月24日

(51)Int.C1. * H01L 21/20 27/12 29/786 21/336	識別記号	F I H01L 21/20 27/12 29/78	R
		審査請求	未請求 請求項の数10 OL (全15頁)
(21)出願番号	特願平8-255644	(71)出願人	00005049
(22)出願日	平成8年(1996)9月27日	(72)発明者	大阪府大阪市阿倍野区長池町22番22号 牧田 直樹 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
		(74)代理人	弁理士 梅田 勝

(54) 【発明の名称】半導体薄膜、半導体装置および半導体薄膜の製造方法

(57)【要約】

【課題】 表面凹凸の無い高品質結晶性ケイ素薄膜、および高性能で且つ信頼性の高い薄膜半導体装置を実現する。

【解決手段】 絶縁表面を有する基板上に形成された結晶性を有するケイ素膜であって、該ケイ素膜は、非晶質ケイ素膜を強光照射により結晶化させたものからなり、その表面が酸化工程により削られ、薄膜化されたものであることを特徴とする。

【特許請求の範囲】

【請求項1】 絶縁表面を有する基板上に形成された結 晶性を有するケイ素膜であって、

該ケイ素膜は、非晶質ケイ素膜を強光照射により結晶化 させてなり、その表面が酸化工程により削られ、平坦化 されていることを特徴とする半導体薄膜。

【請求項2】 絶縁表面を有する基板上に形成された結 晶性を有するケイ素膜であって、

該ケイ索膜は、固相結晶成長により結晶化された結晶性 ケイ素膜に強光照射により再結晶化させてなり、その表 10 面が酸化工程により削られ、平坦化されていることを特 徴とする半導体薄膜。

【請求項3】 絶縁表面を有する基板上に画素電極を駆 動する薄膜トランジスタを有し、該薄膜トランジスタに は画素電極による液晶容量と並列に補助容量が接続され てなる半導体装置において、

上記薄膜トランジスタのチャネル領域と、上記補助容量 の一方の電極とが上記絶縁表面を有する基板上に形成さ れた非晶質ケイ索膜に強光照射を照射して結晶化させ、 その表面が酸化工程により削られ平坦化された半導体薄 20 膜を用いて構成されたことを特徴とする半導体装置。

【請求項4】 絶縁表面を有する基板上に画素電極を駆 動する薄膜トランジスタを有し、該薄膜トランジスタに は該画素電極による液晶容量と並列に補助容量が接続さ れてなる半導体装置において、

上記薄膜トランジスタのチャネル領域と、上記容量成分 の一方の電極とが上記絶縁表面を有する基板上に固相結 晶成長により結晶化された結晶性ケイ素膜に強光照射に より再結晶化させてなり、その表面が酸化工程により削 られ平坦化された半導体薄膜を用いて構成されたことを 30 特徴とする半導体装置。

【請求項5】 絶縁表面を有する基板上に非晶質ケイ素 膜を形成する工程と、 上記非晶質ケイ素膜に強光照射 により結晶化させる工程と、

上記工程により形成された結晶性ケイ素膜表面を酸化す る工程と、

上記工程により形成された酸化膜を除去し、上記結晶性 ケイ素膜表面を平坦化する工程と、からなることを特徴 とする半導体薄膜の製造方法。

【請求項6】 絶縁表面を有する基板上に非晶質ケイ素 40 膜を形成する工程と、 上記非晶質ケイ素膜にその結晶 化を助長する触媒元素を導入し、強光照射により結晶化 させる工程と、

上記工程により形成された結晶性ケイ素膜表面を酸化す る工程と、

上記工程により形成された酸化膜を除去し、上記結晶性 ケイ累膜表面を平坦化する工程と、からなることを特徴 とする半導体薄膜の製造方法。

【請求項7】 上記請求項 6 記載の半導体薄膜の製造方 法において、

上記触媒元素を選択的に導入する工程と、触媒元素が導 入された領域から、その周辺へと横方向に結晶成長させ る工程を備えることを特徴とする半導体薄膜の製造方 法。

【請求項8】 上記請求項5あるいは6記載の半導体薄 膜の製造方法において、

上記強光照射後における結晶性ケイ素膜表面の平均面粗 さRaと、上記酸化膜の膜厚Tが、T>Raの関係にあ ることを特徴とする半導体薄膜の製造方法。

【請求項9】 上記請求項8記載の半導体薄膜の製造方 法において、

上記平均面粗さRaは、原子間力顕微鏡(AFM)に て、10μm□以下の測定エリアに対して測定された値 であることを特徴とする半導体薄膜の製造方法。

【請求項10】 上記請求項5あるいは6記載の半導体 薄膜の製造方法において、

上記酸化工程が、スチーム(水蒸気)雰囲気中あるいは 酸素雰囲気中あるいはHCI雰囲気中での加熱処理によ り行われることを特徴とする半導体薄膜の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体薄膜、半導 体装置および半導体薄膜の製造方法に関する。特に、本 発明の半導体薄膜は、絶縁表面を有する基板上に設けら れた薄膜トランジスタ (以下、TFTという) を用いた 半導体装置に有効であり、アクティブマトリクス型の液 晶表示装置、密着型イメージセンサー、三次元 I Cなど に利用できる。

[0002]

【従来の技術】近年、大型で高解像度の液晶表示装置、 高速で高解像度の密着型イメージセンサー、三次元IC などへの実現に向けて、ガラス等の絶縁基板上や、絶縁 膜上に高性能な半導体素子を形成する試みがなされてい る。これらの装置に用いられる半導体素子には、ケイ素 半導体薄膜を用いるのが一般的である。ケイ素半導体薄 膜としては、非晶質ケイ素半導体(a—Si)からなる ものと、結晶性を有するケイ素半導体からなるものの2 つに大別される。

【0003】非晶質ケイ素半導体は作製温度が低く、気 相法で比較的容易に作製することが可能で量産性に富む ため、最も一般的に用いられているが、導電性等の物性 が結晶性を有するケイ素半導体に比べて劣るため、今後 より高速特性を得るためには、結晶性を有するケイ素半 導体からなる半導体装置の作製方法の確立が強く求めら れていた。尚、結晶性を有するケイ素半導体としては、 多結晶ケイ素、微結晶ケイ素、結晶成分を含む非晶質ケ イ索、結晶性と非晶質ケイ索の中間の状態を有するセミ アモルファスケイ素等が知られている。

【0004】これら結晶性を有する薄膜状のケイ素半導 50 体を得る方法として、次の方法がある。

【0005】(1)成膜時に結晶性を有する膜を直接成膜する。

【0006】(2) 非晶質の半導体膜を成膜しておき、 熱エネルギーを加えることにより結晶性を有せしめる。 【0007】(3) 非晶質の半導体膜を成膜しておき、 レーザー光など強光のエネルギーにより結晶性を有せし める。

【0008】しかしながら、上記(1)の方法では、成膜工程と同時に結晶化が進行するので、大粒径の結晶性ケイ素を得ることが難しく、それにはケイ素膜の膜厚を 10大きくすることが不可欠となる。しかし、膜厚を大きくしても基本的には膜厚と同程度の結晶粒径しか得られず、この方法により良好な結晶性を有するケイ素膜を作製することは原理的に不可能である。

【0009】また、上記(2)の方法は、結晶化に際し600℃以上の高温にて数十時間にわたる加熱処理が必要であるため、生産性に非常に乏しい。また、固相結晶化現象を利用するため、結晶粒は基板面に平行に拡がり数μmの粒径を持つものさえ現れるが、成長した結晶粒同士がぶつかり合って粒界が形成されるため、その粒界20はキャリアに対するトラップ準位として働き、TFTの移動度を低下させる大きな原因となっている。さらに、それぞれの結晶粒は双晶構造を示し、一つの結晶粒内においても所謂双晶欠陥と呼ばれる結晶欠陥が多量に存在している。

【0010】上記(8)の方法を利用して、前述の問題点を解決する方法が、特開平6-244103号公報(以下、第1の公報という)および特開平6-244104号公報(以下、第2の公報という)で提案されている。これらの方法では、非晶質ケイ素膜の結晶化を助長30する触媒元素を利用することで、加熱温度の低温化および処理時間の短縮を図っている。具体的には、非晶質ケイ素膜の表面にニッケルやパラジウム等の金属元素を微量に導入させ、しかる後に加熱することで、550℃、4時間程度の処理時間で結晶化が終了する。

【0011】この低温結晶化のメカニズムは、まず金属元素を核とした結晶核発生が早期に起こり、その後その金属元素が触媒となって結晶成長を助長し、結晶化が急激に進行することで理解される。そういった意味で以後これらの金属元素を「触媒元素」と呼ぶ。これらの触媒 40元素により結晶化が助長されて結晶成長した結晶性ケイ素膜は、通常の固相成長法で結晶化した結晶性ケイ素膜の一つの粒内が双晶構造であるのに対して、その粒内は何本もの柱状結晶ネットワークで構成されており、それそれの柱伏結晶内部はほぼ理想的な単結晶状態となっている。

【0012】現在は上記(3)の方法が主流となっている。上記(3)の方法では溶融固化過程を利用し結晶化するので、個々の結晶粒内の結晶性は非常に良好である。また、照射光の波長を選ぶことで、アニールの対象 50

であるケイ素膜のみを効率的に加熱し、下層のガラス基板への熱的損傷を防ぐことができると共に、上記(2)の方法のような長時間にわたる処理が必要でない。装置面でも高出力のエキシマレーザーアニール装置などが開発され、大面積基板に対しても対応可能になりつつある。

【0013】上記第1の公報は、非晶質ケイ素膜に触媒 元素を導入し、触媒元素と非晶ケイ素膜を反応させた 後、触媒元素を除去し、その後非晶質ケイ素膜の結晶化 温度より低い温度でアニールするものである。また、上 記第2の公報は、非晶質ケイ素膜の一部に選択的に触媒 元素を導入し加熱することで、他の部分を非晶質ケイ素 膜の状態として残したまま、選択的に触媒元素が導入さ れた領域のみを結晶化し、そして、さらに加熱時間を延 長することで、その導入領域から横方向(基板と平行な 方向) に結晶成長を行わせている。この横方向結晶成長 領域の内部では、成長方向がほぼ一方向に揃った柱状結 晶がひしめき合っており、触媒元素が直接導入されラン ダムに結晶核の発生が起こった領域に比べて、結晶性が 良好な領域となっている。よって、この横方向結晶成長 領域の結晶性ケイ素膜を半導体装置の活性領域に用いる ことにより、半導体装置の高性能化が行える。

【0014】上記(3)の方法を利用した第1の公報お よび第2の公報で提案されている技術は、有用なもので あるけれども、この技術だけでは未だ十分な性能の半導 体装置は得られていない。すなわち、個々の結晶粒を構 成する柱状結晶の結晶性は良好でも、その結晶粒界部は キャリアに対するトラップ準位として働く。しかしなが ら、第1の公報および第2の公報により得られる結晶性 ケイ素膜に、強光照射することでその結晶性はさらに助 長され、非常に高品質な結晶性ケイ素膜となる。 がって、現在の技術において、高性能な半導体装置を実 現するためには、その活性領域を構成するケイ素半導体 薄膜の作製において、上記(3)の方法が最良である。 ところが、上記(3)の方法で得られる結晶性ケイ素膜 は、その表面ラフネスの大きさが大きな問題点となる。 すなわち、上記(3)の方法では、非晶質ケイ素膜は、 強光のエネルギーにより、その融点1414℃以上まで 瞬時に加熱され、数十nsec.程度の冷却時間にて室 温付近まで冷却され固化される。この際、あまりにも固 化速度が速いので、ケイ素膜は過冷却状態となり、一瞬 にして固化される結果、一般的に結晶粒径は100~2 00nm程度と非常に小さくなると共に、結晶粒がぶつ かり合った点、すなわち結晶粒界は山状に盛り上がる。 この現象は、特に3つの結晶粒がぶつかり合った三極点 で顕著となる。この結晶成長に起因する山状の盛り上が りを以後「リッジ」と呼ぶ。

【0015】上記の現象は、非晶質ケイ素膜においてだけでなく、結晶性ケイ素膜に対しても同様に起こる。結晶性ケイ素膜の場合は、強光照射により溶融した状態で

も、幾分かの微結晶成分は保持され、その成分が核となり、元の結晶の情報を幾分か残した形で再結晶化される。したがって、上述の非晶質ケイ素膜から結晶化した場合に比べ、結晶粒径が大きくなると共に、個々のリッジの大きさも大きくなり、リッジの発生密度は逆に減少する。

【0016】図6に、実際に強光照射により結晶化され た結晶性ケイ素膜の表面状態の原子間力顕微鏡(AF M) 像を下にスケッチした図を示す。図6において、X --Υ方向のフルスケールは2μmであり、2方向のフル 10 スケールは50nmである。このような結晶性ケイ索膜 により、MOS型トランジスタなど半導体装置の活性領 域を作製すると、結晶性ケイ素膜表面のリッジに電界集 中が起こる。すなわち、この結晶性ケイ素表面に形成さ れる絶縁膜の耐圧低下につながり、リーク電流発生の原 因となる。したがって、半導体装置としての信頼性が大 きく低下し、実用に耐える半導体装置を得ることは非常 に困難である。また、液晶表示装置などのアクティブマ トリクス基板においては、液晶容量と並列に補助容量が 設けられているが、画素電極をスイッチングするTFT 20 のチャネル領域と共にその補助容量成分の電極として、 上記結晶性ケイ素膜を用いた場合、そのリッジによる表 面積率の変化のため、容量は設計値からずれることにな り、表示むらやフリッカーなどの表示不良を引き起こす 原因となる。

【0017】結晶性ケイ素薄膜の表面の凹凸を低減する方法が、特開平7-135173号公報(以下、第3の公報という)に示されている。第3の公報では、非晶質ケイ素膜にシリコンイオンを注入した後、エキシマレーザーなどのパルスレーザーを照射し、該非晶質ケイ素膜 30を結晶化している。また、特開平6-163588公報(以下、第4の公報という)では、上記(3)の方法により結晶化されたと思われる結晶性ケイ素膜に対して、研磨剤を用いてその表面研磨を行い、結晶性ケイ素膜表面の凹凸を低減している。

[0018]

【発明が解決しようとする課題】上記第3の公報および 第4の公報は、上記問題点に対しての解決策として提案 されているが、これらの技術を用いても抜本的な解決は 困難である。第4の公報では、研磨剤により結晶性ケイ 素膜の表面凹凸を研磨しているが、上記結晶性ケイ素膜 は半導体装置の活性領域として使用される部分であり、 MOSトランジスタにおいてはその表面はチャネルを構 成する訳であり、この面に対してダメージを与えること は、好ましくない。また上記研磨工程においては、結晶 性ケイ素膜表面はかなりの研磨ダメージを受け、このよ うなケイ素膜を活性領域に用い半導体装置を製造したと しても本発明の目的とする高信頼性および高性能な半導 体装置は全く得られない。

【0019】また、第3の公報の技術を用いても、上記 50

メカニズムによりリッジが発生する以上、若干その大きさが低減される程度の効果しか無く、抜本的な解決策とはならない。したがって、第3の公報による方法を用いて半導体薄膜を形成し、半導体装置を作製したとしても、本発明の目的とする高信頼性を有する高性能な装置を得ることはできない。

【0020】本発明は、TFTなどの半導体装置に使用される半導体薄膜において、上述の熱エネルギーあるいはレーザー光を使用して結晶化される際の問題点を全て解決し、高品質な結晶性ケイ素膜を得るものであり、高信頼性を有する高性能半導体装置や高表示レベルの液晶表示装置などを実現するものである。

[0021]

【課題を解決するための手段】本発明は、より大型でより高解像度のアクティブマトリクス液晶表示装置や、同一基板上に液晶駆動用のドライバを作り込むドライバモノリシック型アクティブマトリクス液晶表示装置、高遠で高解像度の密着型イメージセンサー、三次元ICなどを実現するために、それら半導体素子の活性領域となる高品質な半導体薄膜を供給することを目的とする。すなわち、本発明は、上述のようにレーザー光などの強光照射により得られる半導体薄膜における従来の問題点を解決するものである。具体的には、本発明は以下の特徴を有する。

【0022】本発明の請求項1記載の半導体薄膜は、絶縁表面を有する基板上に形成された結晶性を有するケイ索膜であって、該ケイ素膜は、非晶質ケイ素膜を強光照射により結晶化させてなり、その表面が酸化工程により削られ、平坦化されていることを特徴とする。

【0023】本発明の請求項2記載の半導体薄膜は、絶縁表面を有する基板上に形成された結晶性を有するケイ素膜であって、該ケイ素膜は、固相結晶成長により結晶化された結晶性ケイ素膜に強光照射により再結晶化させてなり、その表面が酸化工程により削られ、平坦化されていることを特徴とする。

【0024】本発明の請求項3記載の半導体装置は、絶縁表面を有する基板上に画素電極を駆動する薄膜トランジスタを有し、薄膜トランジスタには画素電極による液晶容量と並列に補助容量が接続されてなる半導体装置において、上記薄膜トランジスタのチャネル領域と、上記補助容量の一方の電極とが、上記絶縁表面を有する基板上に形成された非晶質ケイ素膜に強光照射を照射して結晶化させ、その表面が酸化工程により削られ平坦化された半導体薄膜を用いて構成されたことを特徴とする。

【0025】本発明の請求項4記載の半導体装置は、絶縁表面を有する基板上に画素電極を駆動する薄膜トランジスタを有し、薄膜トランジスタには画素電極による液晶容量と並列に補助容量が接続されてなる半導体装置において、上記薄膜トランジスタのチャネル領域と、上記補助容量の一方の電極とが、上記絶縁表面を有する基板

上に固相結晶成長により結晶化された結晶性ケイ素膜に 強光照射により再結晶化させてなり、その表面が酸化工 程により削られ平坦化された半導体薄膜を用いて構成さ れたことを特徴とする。

【0026】本発明の請求項5記載の半導体薄膜の製造方法は、絶縁表面を有する基板上に非晶質ケイ素膜を形成する工程と、上記非晶質ケイ素膜に強光照射により結晶化させる工程と、上記工程により形成された結晶性ケイ素膜表面を酸化する工程と、上記工程により形成された酸化膜を除去し、上記結晶性ケイ素膜表面を平坦化す 10 る工程とからなることを特徴とする。本発明の請求項6 記載の半導体薄膜の製造方法は、絶縁表面を有する基板上に非晶質ケイ素膜を形成する工程と、上記非晶質ケイ素膜にその結晶化を助長する触媒元素を導入し、強光照射により結晶化させる工程と、上記工程により形成された酸化度を除去し、上記結晶性ケイ素膜表面を酸化する工程と、上記工程により形成された酸化度を除去し、上記結晶性ケイ素膜表面を平坦化する工程とからなることを特徴とする。

【0027】本発明の請求項7記載の半導体薄膜の製造方法は、上記請求項6記載の半導体薄膜の製造方法にお 20いて、上記触媒元素を選択的に導入する工程と、触媒元素が導入された領域から、その周辺へと横方向に結晶成長させる工程を備えることを特徴とする。

【0028】本発明の請求項8記載の半導体薄膜の製造方法は、上記請求項5あるいは6記載の半導体薄膜の製造方法において、上記強光照射後における結晶性ケイ素膜表面の平均面粗さRaと、上記酸化膜の膜厚Tが、T>Raの関係にあることを特徴とする。

【0029】本発明の請求項9記載の半導体薄膜の製造方法は、上記請求項8記載の半導体薄膜の製造方法にお 30いて、上記平均面粗さRaは、原子間力顕微鏡(AFM)にて、10μm□以下の測定エリアに対して測定された値であることを特徴とする。

【0030】本発明の請求項10記載の半導体薄膜の製造方法は、上記請求項5あるいは6記載の半導体薄膜の製造方法において、上記酸化工程が、スチーム(水蒸気)雰囲気中あるいは酸素雰囲気中あるいはHCI雰囲気中での加熱処理により行われることを特徴とする。

【0031】前記請求項6において、触媒元素として、 Ni、Co、Pd、Pt、Cu、Ag、Au、In、S 40 n、Al、Sbから選ばれた一種または複数種類の元素 を用いることが好ましい。特に、Ni元素を少なくとも 用いることが好ましい。

【0032】前記請求項5あるいは6で使用される強光として、波長500nm以下のレーザー光を用いることが好ましい。特に波長308nmのXeC1エキシマレーザー光を用いることが好ましい。

【0033】前記請求項10において、スチーム(水蒸 気)雰囲気中の加熱処理は、550~900℃の温度範 囲にて行われることを特徴とする。ここで、加圧スチー 50

ム (水蒸気) 雰囲気は、1気圧以上の下にて行われることが好ましい。また酸素雰囲気中あるいはHCI雰囲気中での加熱処理は、 $800\sim1100$ Cの温度範囲にて行われることが好ましい。

【0034】本発明者らは、強光照射により結晶化された高性能な結晶性ケイ素半導体薄膜において、上述の全ての問題点を解決することで、高性能な半導体装置や高表示品位の液晶表示装置など様々な分野に応用される、万能で高品質な結晶性ケイ素膜を実現するため、日夜研究に明け暮れた。その結果、上記特徴を有する本発明により上記問題点を全て解決でき、目的とする高品質結晶性ケイ素薄膜、そして高信頼性で高性能な半導体装置が実現できた。

【0035】本発明の大まかな主旨としては、強光照射により結晶化された結晶性ケイ素膜において、その表面を酸化工程により削り、薄膜化することである。本発明の出発点は、強光照射による結晶化時におけるリッジ発生のメカニズムにある。上述のように、強光照射による結晶化時には、ケイ素膜は、強光のエネルギーにより、その融点1414℃以上まで瞬時に加熱され、数十nsec.程度の冷却時間にて室温付近まで冷却され固化される。その液相から固相への変化の際、結晶粒がぶつかり合い、そのぶつかり合った点が山状に盛り上がるのである。すなわち、結晶性ケイ素膜の結晶粒界部において、リッジが発生する。この現象は、結晶粒界の中でも、特に3つの結晶粒がぶつかり合った三極点で顕著となる。

【0036】本発明は上記リッジの発生原因に対して、 見出されたものである。本発明の概要を図1を用いて説明する。図1は、本発明の項品質結晶性ケイ素膜の製造工程を示す断面図であり、(A)→(D)の順に製造工程が進行する。

【0037】図1(A)において、ガラス等の基板101の上に、酸化ケイ素膜などの絶縁性の下地膜102が形成され、さらにその上に非晶質ケイ素膜103が形成されている。この非晶質ケイ素膜103に対して、図1(B)に示すようにレーザーなどの強光104を照射し、溶融固化過程において結晶化する。その結果、非晶質ケイ素膜103は結晶性ケイ素膜105となる。結晶性ケイ素膜105は結晶粒106により構成され、その結晶粒界107において表面が山状に盛り上がる。すなわち、リッジ108が出現する。

【0038】次に、本発明のポイントである酸化工程を行う訳であるが、酸化工程は、Si原子の結合状態が特に劣悪となる結晶粒界部において特に進行する性質がある。すなわち、結晶性ケイ素膜105に酸化工程を施すと、図1(C)のように結晶性ケイ素膜105の表面が全体的に薄膜酸化されると共に、リッジ108が存在する結晶粒界107部において特に酸化が進行し、相対的に見れば、リッジ108が選択的に酸化され、削られた

ような状態となる。ここで、109は薄膜酸化工程により得られたケイ素の表面酸化膜を示す。そして、図1(D)に示すように、この表面酸化膜109を除去することで、本発明の目的とする、膜表面において結晶化起因のリッジの無い高品質結晶性ケイ素膜110を得ることができる。

【0039】本発明の上記各特徴について、以下にその作用を説明する。

【0040】第1に本発明によれば、結晶性ケイ素膜は、非晶質ケイ素膜を強光照射により結晶化させてなり、その表面が酸化工程により削られ、平坦化されているから、結晶性ケイ素表面が全体的に薄膜酸化されるが、特にリッジが存在する結晶粒界は酸化が進行し、相対的にはリッジが選択的により酸化され、削られるようになる。この結果、結晶性ケイ素膜表面は結晶化に起因するリッジのない高品質結晶性ケイ素膜表面となる。

【0041】第2に本発明によれば、結晶性ケイ素膜 は、固相結晶成長により結晶化された結晶性ケイ素膜に 強光照射により再結晶化させてなり、その表面が酸化工 程により削られ、平坦化されているから、固相結晶成長 20 結晶性ケイ素膜を出発膜とすることで、初期の均一な結 晶性の情報を残したまま再結晶化されるため、基板全面 にわたってさらに均一な結晶性ケイ素膜が得られる。な ぜなら、上記強光照射による結晶化時の問題点として、 光源であるレーザー等の安定性が十分でなく、基板全面 にわたって均一な膜質の結晶性ケイ素膜を得るのは難し いといった点がある。強光照射前の出発膜を固相成長結 晶性ケイ素膜とすることで、初期の均一な結晶性の情報 をある程度は残したまま再結晶化されるため、非晶質ケ イ素膜に比べて、強光照射工程がダイレクトに及ぼす影 30 響が薄れ、より均─な結晶性ケイ素膜が得られ易い。但 し、固相成長工程のみで結晶化されたケイ素膜自体は、 強光照射により結晶化されたものと比較して結晶性が劣 悪であり、強光照射工程を加えることにより初めて、高 性能半導体装置に使用可能な高品質結晶性ケイ素膜とな

【0042】また本発明において、強光照射前の出発膜として、非晶質ケイ素膜の結晶化を助長する触媒元素を用い固相結晶化されたケイ素膜を用いると、均一性の面に加えて、さらに結晶性が向上し、高品質な結晶性ケイ素膜、そして電流駆動能力に優れる高性能半導体装置が実現できる。なぜなら、上記触媒元素を用いた結晶性ケイ素膜では、上述のように柱状結晶のネットワーク構造により構成される。結晶粒界部には、触媒元素が極在し、劣悪な結晶状態となっているが、個々の柱状結晶内の結晶性は良好で、ほぼ単結晶状態を示す。この結晶性ケイ素膜に強光を照射し、溶融固化過程において再結晶性ケイ素膜に強光を照射し、溶融固化過程において再結晶化することを特徴とする。液晶表示装置用のアクティブマトリクス基板においては、画素用TFTのチャネル領域に加えて、液晶画素容量と並列に接続された補助容量 Csの一方の電極があると、結合状態の強い個々の柱状結晶の一部が溶融されずに残り、それを種結晶として結晶化が進行する。その結果、得られる結晶性ケイ素膜は、非常に高品質な 50 るため、液晶画素容量と並列に補助容量 Csを設けてい

結晶性ケイ索膜となるのである。すなわち、上記触媒元 素により固相結晶化された結晶性ケイ素膜は、従来の触 媒元素を用いないで固相結晶化された結晶性ケイ素膜と 比較して、強光照射による再結晶化工程との相性が非常 によい。

【0043】さらに、第3の本発明は、強光照射前の出発膜として、非晶質ケイ素膜の結晶化を助長する触媒元素により横方向に一次元的に固相結晶化されたケイ素膜を用いると、さらに結晶性が向上し、現状では最高のものであると思われる高品質な結晶性ケイ素膜が得られ、電流駆動能力に非常に優れる高性能半導体装置が実現できる。すなわち、このケイ素膜では柱状結晶がほぼ一方向に沿って整然と並んでおり、この領域では結晶粒界は原理上存在しない。この領域に強光照射を行うと、個々の柱状結晶はそれぞれ結合し、広領域にわたって単結晶状態に近い非常に良好な結晶性の結晶性ケイ素領域か得られる。

【0044】ここで、上記触媒元素の種類としては、ニ ッケル (Ni)、コバルト (Co)、パラジウム (P d)、白金(Pt)、銅(Cu)、銀(Ag)、金(A u)、インジウム(In)、錫(Sn)、アルミニウム (A1)、アンチモン(Sb)を利用することができ る。これらから選ばれた一種または複数種類の元素であ れば、微量で結晶化助長の効果があり、半導体装置へ及 ぼす影響を小さく抑えることができる。それらの中で も、特にNiを用いた場合に最も顕著な効果を得ること ができる。この理由については、未だよくわかっていな いが、一応次のようなモデルを考えている。触媒元素は 単独では作用せず、ケイ素膜と結合しシリサイド化する ことで結晶成長に作用する。そのときの結晶構造が、非 晶質ケイ素膜の結晶化時に一種の鋳型のように作用し、 非晶質ケイ素膜の結晶化を促すといったモデルである。 Niは2つのSiとNiSi,のシリサイドを形成す る。NiSi、は螢石型の結晶構造を示し、その結晶構 造は、単結晶ケイ素のダイヤモンド構造と非常に類似し たものである。しかも、NiSi、はその格子定数が 5. 406 Aであり、結晶シリコンのダイヤモンド構造 での格子定数5.430Åに非常に近い値をもつ。よっ て、NiSi、は、非晶質ケイ素膜を結晶化させるため の鋳型としては最高のものであり、本発明における触媒 元素としては、特にNiを用いるのが最も望ましい。 【0045】第4に本発明の高品質結晶性ケイ素半導体 薄膜は、半導体装置全般において、その活性領域に利用 できる一方、液晶表示用のアクティブマトリクス基板に おいては、画素用TFTのチャネル領域に加えて、液晶 画素容量と並列に接続された補助容量Csの一方の電極 部を構成することを特徴とする。液晶表示装置用のアク ティブマトリクス基板では、ゲートパルス信号がオフさ れた際に発生する画素電極部での電圧降下現象を緩和す

る。この補助容量Csは大きいほど上記電圧降下を小さ くできるため、また、製造プロセス簡略の面からも、T FTのゲート絶縁膜と同一層により構成するのが最も望 ましい。しかしながら、補助容量CSの画面内でのばら つきは、画面上にフリッカーなどの表示むらを引き起こ す原因となる。従来の強光照射により得られる結晶性ケ イ素膜を用い補助容量Сsの電極を作製した場合には、 リッジによる表面ラフネスのため補助容量Csがばらつ き、良好な表示品位の液晶表示装置を得ることは難しか った。それに対して、本発明による結晶性ケイ素膜を用 10 いた場合には、表面ラフネスが大きく低減されるため、 補助容量Csのばらつきを抑えることができ、表示むら の無い高表示品位の液晶表示装置が得られる。

【0046】本発明におけるリッジによるケイ素膜の表 面粗さは、平均面粗さRaによって定義される。平均面 粗さRaとは、基準面(指定面の高さの平均値となるフ ラット面) から指定面までの偏差の絶対値を平均した値 であり、次式で表される。

[0047]

 $Ra = 1/S_0 S | F(X, Y) - Z_0 | dXdY$ ここで、S. は基準面の面積、Z. は基準面の高さ、F (X, Y) は座標 (X, Y) における指定面の高さを表 す。本発明は、リッジによるケイ素膜表面の凹凸を酸化 工程により低減することが目的であるから、少なくとも 表面粗さの平均値を表す上記平均面粗さRa以上の膜厚 にわたり、ケイ素膜を酸化することが必要となる。酸化 工程により酸化されるケイ素膜の膜厚Tが平均面粗さR aよりも少ないと、リッジの大きさは若干は小さくなる ものの、その形状としては変化しないため、電界集中に はない。したがって、本発明においては、強光照射後に おけるケイ素膜表面の平均面粗さRaと表面酸化膜の膜 厚Tが、少なくともT>Raの関係にあることを特徴と

【0048】前記の平均面粗さRaは、原子間力顕微鏡 (AFM) にて、10μm□以下の測定エリアに対して . 測定された値であれば、サブnmオーダーまでの測定信 頼性があり、本発明の主旨を損なうことはない。

【0049】本発明において用いられる強光としては、 波長500nm以下のレーザー光を用いることが望まし い。なぜなら、強光照射によるケイ素膜の結晶化あるい は再結晶化において、波長500nm以下の強光にて行 えば、ケイ索膜に対する吸収係数が極めて高いため、ガ ラス基板に熱的ダメージを与えることなく、ケイ素膜の みを瞬時に加熱することができる。また、レーザー光を 用いることで、ケイ素膜を瞬時に、融点1414℃に加 熱するだけの高出力化が可能となる。その中でも、特に 波長308nmのXeClエキシマレーザー光は、出力 が大きいため、基板照射時のピームサイズを大きくで き、大面積基板に対応しやすく、また出力も比較的安定 しており、量産装置に適用する上で最も望ましい。

【0050】第5に本発明における結晶性ケイ素膜表面 の酸化工程としては、スチーム(水蒸気)雰囲気中での 加熱処理により行われることを特徴とする。スチーム雰 囲気は、他の酸化ガスに比較して酸化レートが大きく、 比較的低温かつ短時間である程度の酸化膜が得られる。 したがって、基板に耐熱性の低いガラスなどの素材を用 いた場合には、基板温度を十分に上げることができない ため、低温にて酸化レートの大きなスチーム雰囲気が最 も適している。また、このスチーム雰囲気は、その原子 成分として半導体薄膜に対して有害となる成分は全く含 んでいないため、安心して使用できる。

【0051】上記スチーム雰囲気での酸化工程における 加熱温度としては、550~900℃の温度範囲である ことを特徴とする。550℃以下の温度では十分な酸化 レートが得られず、長時間を費やしても酸化はほとんど 進まない。これに対して、900℃以上では、酸化レー トが大きすぎるため、その制御が困難となり、半導体薄 膜全てが酸化されるような場合も出てくる。よって、上 記温度範囲において処理することが望ましい。

【0052】また、ガラス基板が使用できる650℃程 度以下の温度でより酸化レートを大きくするには、この 酸化工程を1気圧以上の加圧スチーム (水蒸気) 雰囲気 下にて行えばよい。酸化レートは圧力に応じて増大する ため、10気圧では、1気圧時に比べて約10倍の酸化 レートが得られる。よって、この酸化工程を1気圧以上 の加圧スチーム (水蒸気) 雰囲気下にて行うことで、本 発明における半導体薄膜製造時のタクトタイムの向上が

対してのウィークポイントという点では、ほとんど効果 30 1-10-0-5-31 基板に石英などの高耐熱性の基板を用いた 場合には、より高い温度まで加熱できる。このとき、酸 化現象に加えて、前記低温酸化工程では起こらなかった 新たな現象が起こる。すなわち、対象物である結晶性ケ イ素膜は、表面酸化されると共に、個々の結晶粒内およ び粒界がさらに良好に処理され、残っていた結晶欠陥が ほぼ消滅する。また、結晶性ケイ素膜中に存在している 不純物元素が表面酸化膜へと引き出され、結晶性ケイ素 膜は非常に高品質化される。このような高い温度では、 スチーム雰囲気でのレート制御は困難であり、酸素ある いはHC1雰囲気中で行うのがよい。特にHC1ガス は、半導体薄膜中に含まれる不純物元素に対するゲッタ リング特性に優れ、触媒元素を用いて結晶化された結晶 性ケイ素膜に対しては、その触媒元素を除去する意味で 非常に有効である。

> 【0054】上記加熱処理温度としては、800~11 00℃の温度範囲であることが望ましい。800℃以下 であれば、十分な酸化レートが得られない上、上記の結 晶性改善および不純物除去の効果も見られない。また、 1100℃以上では、酸化レートはさらに上昇するが、 結晶性改善および不純物除去の効果は、ほぼ飽和に達

し、石英基板の耐熱性の面からも、これ以上温度を上げる必要はない。

[0055]

【発明の実施の形態】

(実施例1) 本発明を用いた第1の実施例について説明する。本実施例では、本発明を利用し、ガラス基板上に液晶表示装置用のアクティブマトリクス基板を作製する際の工程について、説明を行う。本発明のアクティブマトリクス基板は、液晶表示装置の各画素電極に対応して1個づつスイッチング素子としてNチャネル型TFTが形成され、そのドレイン領域側には画素液晶容量と並列に補助容量Csが設けられている。

【0056】以下において、図2は本実施例の作製工程の概要を示す断面図であり、(A) \rightarrow (F)の順にしたがって作製工程が順次進行する。図2(F)は本実施例にて作製した画素TFTおよびその補助容量Cs部の完成図を示し、N型TFT領域224と、補助容量Cs領域226を示す。

【0057】まず、図2(A)に示すように、ガラス等の透明で絶縁性の基板201上に例えばスパッタリング 20法によって厚さ300nm程度の酸化ケイ素からなる下地膜202を形成する。この酸化ケイ素膜は、ガラス基板からの不純物の拡散を防ぐために設けられる。

【0058】次に、減圧CVD法やプラズマCVD法などによって、厚さ $40\sim100\,\mathrm{nm}$ 、例えば $50\,\mathrm{nm}$ の非晶質ケイ素 ($a-\mathrm{Si}$) 膜203を成膜する。プラズマCVD法により前記 $a-\mathrm{Si}$ 膜203を成膜した場合には、その膜中に多量の水素を含有し、後のレーザー照射時の膜剥がれの原因となるため、ここで $450\,\mathrm{C}$ 程度の温度で数時間熱処理を行い、膜中の水素を放出してお 30く必要がある。

【0059】その後、図2(A)に示すように、レーザ -光207を照射し、a-Si膜203を結晶化する。 このときのレーザー光としては、XeC1エキシマレー

ザー(波長308 nm、パルス幅40 n s e c.)を用いた。レーザー光207の照射条件は、照射時に基板を200~500 $\mathbb C$ 、例えば400 $\mathbb C$ に加熱し、エネルギー密度200~350 $\mathbb C$ 0 $\mathbb C$ 1 $\mathbb C$ 1 $\mathbb C$ 2 $\mathbb C$ 2 $\mathbb C$ 3 $\mathbb C$ 3 $\mathbb C$ 3 $\mathbb C$ 4 $\mathbb C$ 5 $\mathbb C$ 6 $\mathbb C$ 7 $\mathbb C$ 7 $\mathbb C$ 7 $\mathbb C$ 7 $\mathbb C$ 8 $\mathbb C$ 9 \mathbb

【0060】次に、例えば10気圧のスチーム雰囲気下\ にて、加熱温度550~900℃、例えば600℃にて 4時間程度のアニール処理を施す。この工程により、図 2 (B) に示すように、結晶性ケイ素膜203dの表面は酸化され、表面酸化膜208が形成されて結晶性ケイ素膜203dは膜厚30nm程度に薄膜化される。このとき、以前に図1を用いて説明したように、結晶性ケイ素膜203dの表面のリッジ部は特に酸化作用が進み、結晶粒表面に比べ大きく酸化される。その後、表面酸化膜208をエッチングし除去する。このときの結晶性ケイ素膜203dの表面を原子間力顕微鏡AFMにより測定した結果、平均面粗さRaは1~2nm程度と、初期値に比べ大きく低減された。

【0061】次に、前記結晶性ケイ素膜203dのパターニングにより不要な部分を除去することで、図2

(C) に示すような素子間分離を行って、液晶表示画面 領域内で後にTFTの活性領域(ソース領域、ドレイン 領域、チャネル領域)および捕助容量 Csの下部電極を 構成する島状の結晶性ケイ素膜 209を形成する。

【0062】次に、図2(D)に示すように、上記島状の結晶性ケイ素膜領域209上にフォトレジストを塗布し、露光・現像してマスク210を形成する。すなわち、マスク210により、後にTFTのチャネル領域となる部分のみが覆われた状態となっている。そして、イオンドーピング法によって、フォトレジスト210をマスクとして不純物(リン)211を注入する。ドーピングガスとして、フォスフィン(PH₁)を用い、加速電圧を5~30kV、例えば15kV、ドーズ量を1×10¹⁵~8×10¹⁵~m1、例えば2×10¹⁵ cm1とする。この工程により、不純物が注入された領域は後のTFTのソース領域218と補助容量Cs領域226の下部電極219を形成する。フォトレジストのマスク210により、不純物211が注入されない領域は、上述のように後にTFTのチャネル領域217となる。

【0063】次に、図2(E)に示すように、マスク210を除去し、上記チャネル領域217、ソース領域218、下部電極219を覆うように厚さ20~150nm、ここでは100nmの酸化ケイ素膜をゲート絶縁膜212として成膜する。酸化ケイ素膜の形成には、ここではTEOS(Tetra Ethoxy Ortho

Silicate)を原料とし、酸素とともに基板温度150~600℃、好ましくは300~400℃で、40 RFプラズマCVD法で分解・堆積した。あるいはTE OSを原料としてオゾンガスとともに減圧CVD法によって、基板温度を350~600℃、好ましくは400~550℃として形成してもよい。成膜後、ゲート絶縁膜212自身のバルク特性および結晶性ケイ素膜、ゲート絶縁膜の界面特性を向上するために、不活性ガス雰囲気下で400~600℃で数時間のアニールを行った。同時に、このアニール処理により、ソース領域218とドレイン領域および補助容量 C よの領域219にドービングされた不純物211が活性 化され、ソース領域218とドレイン領域および補助容

15

量Csの領域219が低抵抗化された結果、そのシート 抵抗は500~800 Ω /口となった。

【0064】引き続いて、スパッタリング法によって、 厚さ300~500nm、例えば400nmのアルミニ ウムを成膜する。そして、アルミニウム膜をパターニン グして、ゲート電極213と補助容量Cs領域226の 上部電極214を形成する。ここで、ゲート電極213 は平面的に見れば第n番目のゲートバスラインの一部で あり、補助容量CSの上部電極214は第n+1番目の ゲートバスラインの一部として形成されている。

【0065】そして、図2(F)に示すように、厚さ5 00 n m程度の酸化ケイ素膜を層間絶縁膜220として 形成する。この酸化ケイ素膜はTEOSを原料として、 これと酸素とのプラズマCVD法、もしくはオゾンとの 滅圧 CVD 法あるいは常圧 CVD 法によって形成すれ ば、段差被覆性に優れた良好な層間絶縁膜が得られる。 次に、層間絶縁膜220にコンタクトホールを形成し て、ソース電極221と画索電極222を形成する。ソ ース電極221は、金属材料、例えば、窒化チタンとア ルミニウムの二層膜によって形成する。窒化チタン膜 は、アルミニウムが半導体層に拡散するのを防止する目 的のバリア膜として設けられる。画素電極222はIT 〇など透明導電膜により形成される。

【0066】そして最後に、1気圧の水素雰囲気で35 0°C、1時間程度のアニールを行い、図2(F)に示す N型TFT224および補助容量Cs領域226を完成 させる。このアニール処理により、N型TFT224の 活性領域/ゲート絶縁膜の界面へ水素原子を供給し、T FT特性を劣化させる不対結合手を低減する効果があ る。なお、さらにN型TFT224を保護する目的で、 必要な箇所のみプラズマCVD法により形成された窒化 ケイ索膜でカバーしてもよい。

【0067】以上の実施例にしたがって作製したN型T FTは、電界効果移動度で50~80cm¹/Vs、閾 値電圧2~3Vという良好な特性を示した。また、N型 TFT224のチャネル領域217とその補助容量Cs 領域226の下部電極219においては、その表面平均 粗さRaが共に1~2nm程度に低減されているため、 ゲート絶縁膜212を介したリーク電流はほとんど無 く、それぞれの容量の不均一性も小さく抑えられる。そ 40 の結果、本実施例にて作製したアクティブマトリクス基 板を用い、液晶表示パネルを作製し、全面表示を行った 結果、信頼性が高く、表示むらの無い高表示品位の液晶 表示装置が実現できた。

【0068】 (実施例2) 本発明を用いた第2の実施例 について説明する。本実施例では、石英ガラス基板上に Nチャネル型TFTを作製する際の工程において、本発 明を利用した場合についての説明を行う。本実施例のT FTはアクティブマトリクス型の液晶表示装置のドライ

する索子としても用いることができる。なお、TFTの 応用範囲としては、液晶表示装置のみではなく、一般に 言われる薄膜集積回路に利用できることは言うまでもな い。以下において、図3は本実施例で説明するTFTの 作製工程の概要を示す断面図であり、(A)→(F)の 順にしたがって作製工程が順次進行する。

【0069】まず、石英ガラスよりなる基板301の表 面を1%程度の低濃度フツ酸により洗浄する。次に減圧 CVD法によって、厚さ40~100nm、例えば60 nmの真性 (I型) の非晶質ケイ素膜 (a-Si膜) 3 03を成膜する。

【0070】まず、石英ガラスよりなる基板301の表 面を1%程度の低濃度フツ酸により洗浄する。次に減圧 CVD法によって、厚さ40~100nm、例えば60 nmの真性 (I型) の非晶質ケイ素膜 (a-Si膜) 3 03を成膜する。

【0071】次に図3(A)に示すように、a-Si膜 303の表面にニッケルのような触媒元素を溶かせた水 溶液が接するように基板301を保持する。本実施例で は、溶質としては酢酸ニッケルを用い、水溶液中のニッ ケル濃度は10ppmとなるようにした。その後、スピ ナーにより水溶液を基板301上に均一に延ばし乾燥さ せ、触媒元素膜305を形成する。

【0072】そして、これを水素還元雰囲気下または不 活性雰囲気下、加熱温度520~600℃で数時間から 十数時間、例えば550℃で4時間アニールして結晶化 させる。この際、表面に塗布されたニッケルが核とな り、基板301に対して垂直方向に非晶質ケイ索膜30 3の結晶化が起こり、図3(B)に示すように結晶性ケ イ素膜303aが形成される。表面に塗布されたニッケ ルは、結晶性ケイ素膜303a全体に拡散しており、こ のときの結晶性ケイ素膜303a中のニッケル濃度は、 2×10''atoms/cm'程度であった。このとき の個々の結晶粒は、100~200mm幅の柱状結晶の ネットワークにより構成されており、20~30μm程 度の結晶粒径であった。

【0073】その後、図3(B)に示すように、レーザ 一光307を照射し、結晶性ケイ素膜303aの再結晶 化を行う。このときのレーザー光としては、XeCIエ キシマレーザー (波長308nm、パルス幅40nse c) を用いた。レーザー光307の照射条件は、照射時 に基板を200~500℃、例えば400℃に加熱し、 エネルギー密度200~350mJ/cm'、例えば3 00mJ/cm¹とした。レーザー光307は、基板面 に対して順次走査され、結晶性ケイ素膜303aの任意 の一点に対して、それぞれ10回レーザー照射されるよ うに走査ビッチを設定した。この工程により、結晶性ケ イ素膜303aはその融点以上に加熱され、溶融し固化 することで、一部を種結晶として再結合し、さらに良好 バー回路や画素部分は勿論、同―基板上にCPUを構成 50 な結晶性となる。ここで、原子間力顕微鏡(AFM)に

より、結晶性ケイ素膜303aの表面の平均面粗さRa を測定すると、6~7 nm程度の値であった。第1実施 例と比較して表面の平均面粗さRaが大きいのは、レー ザー照射における出発膜が結晶性ケイ素膜であるため、 上記のように、その一部を種結晶として再結晶化し、結 晶粒径が大きく成長するからであり、その分リッジも大 きくなるからである。

【0074】次に、HClガス雰囲気下にて、加熱温度 800~1100℃、例えば1050℃で30分程度ア ニール処理を施す。この工程により、図3(C)に示す 10 ように、結晶性ケイ素膜303aの表面は酸化され、表 面酸化膜308が形成されて、結晶性ケイ素膜303a は膜厚30nm程度に薄膜化される。このとき、以前に 図1を用いて説明したように、結晶性ケイ素膜308a ・の表面のリッジ部は特に酸化作用が進み、結晶粒表面に 比べ大きく酸化される。それと共に、結晶性ケイ素膜3 03aの結晶粒内では、欠陥が消滅すると共にそれぞれ の柱状結晶が結合し、ほぼ単結晶状態へと変化する。ま た、結晶粒界部も良好に処理され、キャリアに対するト ラップ準位、トラップ密度が低減される。その結果、結 20 晶性ケイ素膜303aは、非常に高品質な結晶性ケイ素 膜303a'へと変化する。同時に、結晶性ケイ素膜3 03 a 中 (特に結晶粒界部) に残留していたニッケル は、結晶性ケイ素膜303a中から表面酸化膜308へ と移動し、高品質結晶性ケイ素膜303a'\表面酸化 膜308の界面、および表面酸化膜308中にニッケル が局在する。

【0075】その後、表面酸化膜308をエッチングし 除去することで、得られる高品質結晶性ケイ素膜303 a'の表面を原子間力顕微鏡 (AFM) により測定した 結果、平均面粗さRaは2nm程度と、初期値に比べ大 きく低減された。また、このエッチング工程にて、結晶 性ケイ素膜303a中から表面酸化膜308へと移動し てきたニッケルも同時に除去され、高品質結晶性ケイ素 膜303a'中のニッケル濃度は、5×10''atom s/cm³程度にまで低減された。

【0076】次に、図3(D)に示すように、パターニ ングにより不要な部分の結晶性ケイ素膜303a'を除 去して素子間分離を行い、後にTFTの活性領域(ソー ス領域、ドレイン領域、チャネル領域)となる島状の結 40 晶性ケイ素膜309を形成する。

【0077】次に、上記の活性領域となる島状の結晶性 ケイ素膜309を覆うように厚さ20~150nm、こ こでは100nmの酸化ケイ素膜をゲート絶縁膜312 として成膜する。酸化ケイ素膜の形成には、ここではT EOS (Tetra Ethoxy Ortho Si licate)を原料とし、酸素とともに基板温度15 0~600°C、好ましくは300~400°Cで、RFプ ラズマCVD法で分解・堆積した。成膜後、ゲート絶縁 膜312自身のバルク特性および結晶性ケイ素膜309 50 ニウムが半導体層に拡散するのを防止する目的のバリア

∖ゲート絶縁膜312の界面特性を向上するために、不 活性ガス雰囲気下で800~1000℃で30~60分 アニールを行った。

【0078】引き続いて、スパッタリング法によって、 厚さ300~800nm、例えば500nmのアルミニ ウムを成膜する。そして、アルミニウム膜をパターニン グして、ゲート電極313を形成する。さらに、このア ルミニウムの電極の表面を陽極酸化して、表面に酸化物 層315を形成する。この状態を図3(E)に示す。陽 極酸化は、酒石酸が1~5%含まれたエチレングリコー ル溶液中で行い、最初一定電流で220Vまで電圧を上 げ、その状態で1時間保持して終了させる。得られた酸 化物層315の厚さは200nmである。なお、この酸 化物層315は、後のイオンドーピング工程において、 オフセットゲート領域を形成する厚さとなるので、オフ セットゲート領域の長さを上記陽極酸化工程で決めるこ とができる。

【0079】次に、イオンドーピング法によって、ゲー ト電極313とその周囲の酸化物層315をマスクとし て活性領域に不純物(リン)を注入する。ドーピングガ スとして、フォスフィン (PH.) を用い、加速電圧を 60~90kV、例えば80kV、ドーズ量を1×10 ''~8×10'' c m '、例えば2×10'' c m 'とす る。この工程により、不純物が注入された領域は後にT FTのソース領域318とドレイン領域319となり、 ゲート電極313およびその周囲の酸化物層315にマ スクされ不純物が注入されない領域は、後にTFTのチ ャネル領域317となる。

【0080】その後、図3(E)に示すように、レーザ 一光316の照射によってアニールを行い、イオン注入 した不純物の活性化を行うと同時に、上記の不純物導入 工程で結晶性が劣化した部分の結晶性を改善させる。こ の際、使用するレーザーとしてXeClエキシマレーザ 一(波長308nm、パルス幅40nsec)を用い、 エネルギー密度 1 5 0 ~ 4 0 0 m J / c m¹、好ましく は200~250mJ/cm'で、1カ所に付き4ショ ット照射を行った。こうして形成されたN型不純物(リ ン)が注入されたソース領域318、ドレイン領域31 9のシート抵抗は、200~300 Ω /口であった。

【0081】続いて、厚さ600nm程度の酸化ケイ素 膜を層間絶縁膜320として形成する。この酸化ケイ素 膜の形成には、TEOSを原料として、これと酸素との プラズマCVD法、もしくはオゾンとの減圧CVD法あ るいは常圧CVD法によって形成すれば、段差被覆性に 優れた良好な層間絶縁膜が得られる。

【0082】次に、層間絶縁膜320にコンタクトホー ルを形成して、金属材料、例えば、窒化チタンとアルミ ニウムの二層膜によってTFTのソース電極321、ド レイン電極322を形成する。窒化チタン膜は、アルミ 膜として設けられる。そして最後に、1気圧の水素雰囲 気で350℃、1時間程度のアニールを行い、図3 (F) に示すN型TFT324を完成させる。

【0083】この実施例によるN型TFTを、液晶表示 装置の画素電極をスイッチングする素子として用いる場。 合にはソース電板321またはドレイン電板322をI TOなど透明導電膜からなる画素電極に接続し、もう一 方の電極より信号を入力する。また、このTFTを薄膜 集積回路に用いる場合には、ゲート電極313上にもコ ンタクトホールを形成し、必要とする配線を施せばよ V١.

【0084】以上の実施例にしたがって作製したN型T FTは、電界効果移動度で200~250cm¹/V s、閾値電圧0~1Vという良好な特性を示し、TFT オフ領域でのリーク電流も数pA程度と小さい。また、 繰り返し測定を行っても、それに伴う経時変化はほとん どなく、非常に安定した特性を示した。

【0085】(実施例3)本発明を用いた第3の実施例 について説明する。本実施例では、アクティブマトリク ス型の液晶表示装置の周辺駆動回路や、一般の薄膜集積 20 回路を形成するNチャネル型TFTとPチャネル型TF Tを相補型に構成したCMOS構造の回路を石英ガラス 基板上に作製する工程について、説明を行う。

【0086】図4は、本実施例で説明するTFTの作製 工程の概要を示す平面図である。図5は、図4のA-A'で切った断面図であり、(A) \rightarrow (F) の順にした がって工程が順次進行する。図5 (F) に示すのが、本 実施例によるСМОS回路の完成図であり、N型TFT 424とP型TFT425により構成される。

【0087】まず、石英ガラスよりなる基板401の表 30 面を1%程度の低濃度フツ酸により洗浄する。

【0088】次に、減圧CVD法あるいはプラズマCV D法によって、厚さ40~100nm、例えば60nm の真性 (I型) の非晶質ケイ素膜 (a-Si膜) 403 を成膜する。

【0089】次に、a-Si膜403上に感光性樹脂 (フォトレジスト)を塗布し、露光・現像してマスク4 04とする。マスク404に形成したスルーホールによ り、スリット領域400においてスリット状にa-Si 膜403が露呈される。即ち、図5(A)の状態を上面 40 から見ると、図4のように領域400でa-Si膜40 3か露呈しており、他の部分はフォトレジストによりマ スクされている状態となっている。

【0090】次に、図5(A)に示すように、基板40 1表面にニッケルを薄膜蒸着し、触媒元素膜405を形 成する。本実施例では、蒸着ソースと基板間の距離を通 常より大きくして、蒸着レートを低下させることで、ニ ッケルの触媒元素膜405の厚さが1~2nm程度とな るように制御した。このときの基板401上におけるニ ッケルの面密度を実際に測定すると、 4×10^{11} ato 50 共にそれぞれの柱状結晶が結合し、ほぼ単結晶状態な

ms/cm¹程度であった。そして、フォトレジストマ スク404を除去することで、マスク404上の触媒元 素膜405がリフトオフされ、スリット領域400のa 一Si膜403において、選択的に触媒元素としてニッ ケルの微量添加が行われたことになる。そして、これを 不活性雰囲気下、例えば加熱温度550℃で16時間ア ニールして結晶化させる。

【0091】この際、領域400においては、a-Si 膜403の表面に添加されたニッケルを核として基板4 01に対して垂直方向にa-Si膜403の結晶化が起 こり、結晶性ケイ索膜403aが形成される。そして、 スリット領域400の周辺領域では、図5 (B) におい て、矢印406で示すように、スリット領域400から 横方向(基板と平行な方向)に結晶成長が行われ、横方 向結晶成長した結晶性ケイ素膜403bが形成される。 また、それ以外の領域は、そのまま非晶質ケイ素膜領域

403cとして残る。この横方向結晶成長した結晶性ケ イ素膜403b中のニッケル濃度は1×10''atom s/cm¹程度であった。なお、上記結晶成長に際し、 矢印406で示される基板と平行な方向の結晶成長の距

離は、80μm程度であった。

【0092】その後、図5(B)に示すように、レーザ 一光407を照射し、a-Si膜403の再結晶化を行 う。このときのレーザー光としては、XeC1エキシマ レーザー (波長308nm、パルス幅40nsec) を 用いた。レーザー光407の照射条件は、照射時に基板 を200~500℃、例えば400℃に加熱し、エネル ギー密度200~350mJ/cm¹、例えば300m J/cm'とした。レーザー光407は、基板面に対し て順次走査され、a-Si膜403の任意の一点に対し て、それぞれ10回レーザー照射されるように走査ビッ チを設定した。この工程により、結晶性ケイ素領域40 3 a および 4 0 3 b はその融点以上に加熱され、溶融し 固化することで、一部を種結晶として再結合し、さらに 良好な結晶性となる。また、非晶質ケイ素膜領域403 cは、結晶化され結晶性ケイ素膜403dとなる。ここ で、原子間力顕微鏡(AFM)により、結晶性ケイ素膜 403b表面の平均面粗さRaを測定すると、6~7n m程度の値であった。

【0093】次に、酸素ガス雰囲気下にて、加熱温度8 00~1100℃、例えば1050℃で30分程度のア ニール処理を施す。この工程により、図5(C)に示す ように、結晶性ケイ素膜403a、403b、403d の表面は酸化され、表面酸化膜408が形成され、特に 結晶性ケイ素膜403bは膜厚30nm程度に薄膜化さ れる。このとき、以前に図1を用いて説明したように、 結晶性ケイ素膜403bの表面のリッジ部は特に酸化作 用が進み、結晶粒表面に比べ大きく酸化される。それと 共に、結晶性ケイ素膜403 bでは、欠陥が消滅すると

る。その結果、結晶性ケイ索膜 4 6 3 b は、非常に高品 質な結晶性ケイ素膜403b'へと変化する。また、結 晶性ケイ素膜403aも高品質化され高品質な結晶性ケ イ素膜403a'となる。

【0094】その後、表面酸化膜408をエッチングし 除去することで、高品質結晶性ケイ素領域を得る。この 高品質結晶性ケイ素領域の膜表面を原子間力顕微鏡(A FM)により測定した結果、平均面粗さRaは2nm程 度と、初期値に比べ大きく低減された。

【0095】その後、図5(D)に示すように、高品質 10 結晶性ケイ索膜403b'領域が、後のTFTの活性領 域(素子領域)を構成する島状の結晶性ケイ素膜409 n、409pとなるように、それ以外の結晶性ケイ素膜 をパターニングによりエッチング除去して素子間分離を

【0096】次に、上記の活性領域となる島状の結晶性 ケイ素膜409nおよび409pを覆うように厚さ10 0 nmの酸化ケイ素膜をゲート絶縁膜412として成膜 する。本実施例では、ゲート絶縁膜412の成膜方法と してSiH,ガスとN,Oガス原料とし、基板温度800 20 ℃で、減圧CVD法にて分解・堆積した。

【0097】引き続いて、図5 (E) に示すように、ス パッタリング法によって厚さ400~800nm、例え ば500nmのアルミニウム(0.1~2%のシリコン を含む)を成膜し、アルミニウム膜をパターニングし て、ゲート電極413n、413pを形成する。

【0098】次に、イオンドーピング法によって、島状 の結晶性ケイ素膜領域409n、409pにゲート電極 413n、413pをマスクとして不純物(リン、およ びホウ素)を注入する。ドーピングガスとして、フォス 30 フィン (PH₁) およびジボラン (B₁H₁) を用い、前 者の場合は、加速電圧を60~90kV、例えば80k V、後者の場合は、40~80kV、例えば65kVと し、ドーズ量は1×10¹¹~8×10¹¹cm⁻¹、例えば リンを2×10¹¹ cm⁻¹、ホウ素を5×10¹¹ cm⁻¹と する。この工程により、ゲート電極413n、413p にマスクされ不純物が注入されない領域は後にTFTの チャネル領域417n、417pとなる。ドーピングに 際しては、ドーピングが不要な領域をフォトレジストで 覆うことによって、それぞれの元素を選択的にドーピン 40 グを行う。この結果、N型の不純物をドープしたソース 領域418nとドレイン領域419n、P型の不純物を ドープしたソース領域418pとドレイン領域419p が形成され、図5(E)および(F)に示すように、N チャネル型TFT424とPチャネル型TFT425と を形成することができる。この状態を基板上方より見る と図4のようになっており、ここで活性領域409nお よび409pにおいて、矢印406で示す結晶成長方向 とキャリアの移動方向 (ソース→ドレイン方向) は平行

で、さらに高移動度を有するTFTが得られる。

【0099】その後、図5(E)に示すように、レーザ 一光416の照射によってアニールを行い、イオン注入 した不純物の活性化を行う。レーザー光としては、Xe C1エキシマレーザー (波長308nm、パルス幅40 nsec)を用い、レーザー光の照射条件としては、エ ネルギー密度250mJ/cm'でーか所につき4ショ ット照射した。

【0100】続いて、図5 (F) に示すように、厚さ6 00nmの酸化ケイ素膜を層間絶縁膜420として、T EOSを原料としたプラズマCVD法によって形成し、 これにコンタクトホールを形成して、金属材料、例え ば、窒化チタンとアルミニウムの二層膜によってTFT のソース電極421、ドレイン電極・ソース電極42 2、ドレイン電極423を形成する。そして最後に、1 気圧の水素雰囲気下で350℃、1時間程度のアニール を行い、N型TFT424とP型TFT425を完成さ

【0101】以上の実施例にしたがって作製したCMO S構造の回路において、それぞれのTFTの電界効果移 動度はN型TFTで250~350cm¹/Vs、P型 TFTで120~180cmⁱ/Vsと高く、閾値電圧 はN型TFTで0~1V、P型TFTで-2~-3Vと 非常に良好な特性を示す。さらに、繰り返し測定に伴う 特性劣化もほとんどなく、信頼性の高いCMOS構造回 路が得られた。

【0102】以上、本発明に基づく3例の実施例につき 具体的に説明したが、本発明は上述の実施例に限定され るものではなく、本発明の技術的思想に基づく各種の変 形が可能である。例えば、前述の3例の実施例において /は、XeCIエギシマレーザーを用いて、a―Si膜を 結晶化、あるいは固相結晶成長ケイ素膜を再結晶化し た。本発明は、それ以外の様々な強光照射により結晶化 された場合にも勿論、同様の効果があり、波長248 n mのKrFエキシマレーザーや、波長488nmの連続 発振Arレーザーなどにおいても同様である。また、レ -ザー光の代わりに赤外光、フラッシュランプを使用し て短時間に試料を加熱する、いわゆるRTA(ラピッド ・サーマル・アニール) などのいわゆるレーザー光と同 等の強光を用いてもよい。

【0103】また、上記第2および第3実施例では、固 相結晶成長法としては、触媒元素を用い短時間で結晶化 する方法を用いたが、触媒元素を用いず通常の固相結晶 成長法を用いても同様の効果が得られる。また、上記第 2 および第3実施例では、触媒元素であるニッケルを導 入する方法として、非晶質ケイ素膜表面にニッケル塩を 溶かせた水溶液を塗布する方法、あるいは蒸着法により ニッケル薄膜を形成する方法により、ニッケルの微量添 加を行い、結晶成長を行わす方法を採用した。しかし、 となるように配置してある。このような配置を採ること 50 第1の非晶質ケイ素膜成膜前に、基板表面にニッケルを

導入し、非晶質ケイ素膜下層よリニッケルを拡散させ結晶成長を行わせる方法でもよい。即ち、結晶成長は非晶質ケイ素膜の上面側から行ってもよいし、下面側から行ってもよい。また、ニッケルの導入方法としても、その他、様々な手法を用いることができる。例えば、ニッケル塩を溶かせる溶媒として、SOG(スピンオングラス)材料を溶媒としてSIO膜より拡散させる方法も有効であるし、スパッタリング法やメッキ法により直接導入する方法や、イオンドーピング法により直接導入する方法なども利用できる。さらに、結晶化を助長する不純10物金属元素としては、ニッケル以外にコバルト(Co)、パラジウム(Pd)、白金(Pt)、銅(Cu)、銀(Ag)、金(Au)、インジウム(In)、スズ(Sn)、アルミニウム(Al)、アンチモン(Sb)を用いても効果が得られる。

【0104】さらに、本発明の応用としては、液晶表示用のアクティブマトリクス型基板以外に、例えば、密着型イメージセンサー、ドライバー内蔵型のサーマルヘッド、有機系EL等を発光素子としたドライバー内蔵型の光書き込み素子や表示素子、三次元IC等が考えられる。本発明を用いることで、これらの素子の高速、高解像度化等の高性能化が実現される。さらに本発明は、上述の実施例で説明したMOS型トランジスタに限らず、結晶性半導体を素子材としたバイポーラトランジスタや静電誘導トランジスタをはじめとして幅広く半導体プロセス全般に応用することができる。

[0105]

【発明の効果】本発明を用いることにより、表面凹凸の無い高品質結晶性ケイ素薄膜が得られ、非常に高性能で且つ信頼性の高い薄膜半導体装置を実現することができ 30 る。特に液晶表示装置においては、ケイ素膜の表面凹凸に起因する表示むらを無くし、画素TFTのスイッチング特性の向上、周辺駆動回路部を構成するTFTに要求される高性能化・高集積化が図れ、同一基板上にアクティブマトリクス部と周辺駆動回路部を構成するフイールドライバモノリシック型のアクティブマトリクス基板を実現でき、モジュールのコンパクト化、高性能化、低コスト化が図れる。

【図面の簡単な説明】

【図1】本発明の概要を製造工程順に説明する図である。

- 【図2】第1の実施例の作製工程を説明する図である。
- 【図3】第2の実施例の作製工程を説明する図である。
- 【図4】第3の実施例の概要を平面図である。

【図5】第3の実施例の作製工程を説明する図である。 【図6】結晶性ケイ素膜表面の原子間力顕微鏡(AF

M) 像を下にスケッチした図を示す。

【符号の説明】

- 101 基板
- 102 下地膜
- 103 非晶質ケイ素膜
- 104 レーザー光
- 105 結晶性ケイ素膜
- 106 結晶粒
- 107 結晶粒界
- 108 リッジ
- 109 表面酸化膜
- 110 高品質結晶性ケイ素膜
- 201、301、401 基板
- 202 下地膜
- 203、303、403 非晶質ケイ素 (a-Si)

膜

- 207、307、407 レーザー光
- 20 208、308、408 表面酸化膜
 - 209、309、409 島状の結晶性ケイ素膜
 - 210 マスク
 - 211 不純物 (リン)
 - 212、312、412 ゲート絶縁膜
 - 213、313、413 ゲート電極
 - 214 上部電極
 - 217、317、417 チャネル領域
 - 218、318、418 ソース領域
 - 2 1 9 下部電極
 - 220、320、420 層間絶縁膜
 - 221、321、421 ソース電極
 - 222 画素電極
 - 224 N型TFT領域
 - 226 補助容量Cs領域
 - 305、405 触媒元素膜
 - 3 1 5 酸化物層
 - 316、416 レーザー光
 - 319、419 ドレイン領域
 - 322、422、423 ドレイン電極
- 40 324、424 N型TFT
 - 404 マスク
 - 406 矢印
 - 425 P型TFT

【図4】

