Ejercicios Grupos Topológicos

Cristo Daniel Alvarado

26 de marzo de 2024

Índice general

1. Ejercicios Capítulo 1

 $\mathbf{2}$

Capítulo 1

Ejercicios Capítulo 1

Ejercicio 1.0.1

Sea H un subgrupo denso abeliano de un grupo topológico G. Entonces, G es abeliano.

Demostración:

Por la proposición 1.3.2 (4), como ab = ba para todo $a, b \in H$, entonces se sigue que ab = ba para todo $a, b \in \overline{H}$. Como H es denso en G es tiene entonces que $\overline{H} = G$, es decir:

$$ab = ba, \quad \forall a, b \in G$$

por tanto, G es abeliano.

Ejercicio 1.0.2

Suponga que H es un subgrupo denso de un grupo topológico G y $n \in \mathbb{N}$. Pruebe que si $x^n = e_G$ para todo $x \in H$, entonces los elementos del grupo G satisfacen la misma ecuación.

Demostración:

Sea $f:G\to G$ tal que $x\mapsto x^n.$ Esta es una función continua para la que cual se tiene que el conjunto

$$A = f^{-1}(e_G)$$

$$= \left\{ x \in G \middle| f(x) = e_G \right\}$$

$$= \left\{ x \in G \middle| x^n = e_G \right\}$$

es cerrado, pero $H \subseteq A$, luego $G = \overline{H} \subseteq A$, es decir que

$$x^n = e_g, \quad \forall x \in G$$

Definición 1.0.1

Sea G un grupo. Decimos que G es **grupo de torsión** si para todo $g \in G$ existe $n_g \in G$ tal que $g^{n_g} = e_G$.

Ejercicio 1.0.3

Sean G un grupo topológico y H un subgrupo denso de G tal que todo elemento $h \in H$ es de orden finito. ¿Es G de torsión?

Solución:

Considere el grupo (\mathbb{S}^1, \cdot) donde:

$$\mathbb{S}^1 = \left\{ e^{ix} \in \mathbb{C} \middle| x \in \mathbb{R} \right\}$$

donde el producto \cdot es el producto usual de \mathbb{C} , dado por:

$$e^{ix} \cdot e^{iy} = e^{i(x+y)}$$

dotado de la topología $\tau_{\mathbb{S}^1}$

$$\tau_{\mathbb{S}^1} = \left\{ U \cap \mathbb{S}^1 \middle| U \text{ es abierto en } \mathbb{C} \right\}$$

es claro que las funciones $f: \mathbb{S}^1 \times \mathbb{S}^1 \to \mathbb{S}^1$ tales que $(e^{ix}, e^{iy}) \mapsto e^{i(x+y)}$ y, $g: \mathbb{S}^1 \to \mathbb{S}^1$ tales que $e^{ix} \mapsto e^{-ix}$ son continuas ya que son reestricciones de funciones continuas de $\mathbb{C} \setminus \{0\}$ a $\mathbb{C} \setminus \{0\}$. Es claro que el conjunto:

$$\mathbb{H}^1 = \left\{ e^{2\pi i r} \in \mathbb{S}^1 \middle| r \in \mathbb{Q} \right\}$$

es subgrupo de (\mathbb{S}^1, \cdot) , el cual es denso en \mathbb{S}^1 , para el que se cumple que todo elemento es de orden finito, pues si $r = \frac{p}{q} \in \mathbb{Q}$:

$$(e^{2\pi ir})^q = e^{2\pi ip} = 1$$

donde 1 es la identidad de (\mathbb{S}^1, \cdot) . Por ende, todo elemento del subgrupo denso \mathbb{H}^1 es de orden finito, pero G no es de torsión, ya que el elemento

 e^{i}

no es de orden finito.

Ejercicio 1.0.4

Demuestre que si S es denso en un grupo topológico G y O es abierto no vacío en G, entonces $O \cdot S = S \cdot O = G$.

Demostración:

Ejercicio 1.0.5

Sea G un grupo topológico. ¿Es $G' = \left\{ xyx^{-1}y^{-1} \in G \middle| x,y \in G \right\}$ un subgrupo de G? ¿Es G' cerrado en G?

Solución:

Afirmamos que G' no es subgrupo de G. En efecto, es claro que $e \in G'$, pero... (hay algo con el producto que falla)

Es cerrado, ya que si $f: G \times G \to G$ es tal que $(x,y) \mapsto xyx^{-1}y^{-1}$, se tiene que f es una función continua para la cual

$$G' = \left\{ xyx^{-1}y^{-1} \in G \middle| x, y \in G \right\}$$
$$= \left\{ f(x, y) \in G \middle| (x, y) \in G \times G \right\}$$
$$= f^{-1}(G)$$

es decir, que G' es la imagen inversa de un cerrado (el conjunto G) y, por ende es cerrado.

Ejercicio 1.0.6

Pruebe que si G es un grupo topológico, entonces el conjunto

$$H = \left\{ g \in G \middle| gx = xg, \forall x \in G \right\}$$

es un subgrupo cerrado normal de G.

Demostración:

Veamos que es subgrupo. En efecto, es claro que $e_G \in H$. Sean ahora $g, h \in G$, entonces se tiene que $g^{-1} \in G$, pues:

$$gx = xg$$

$$\Rightarrow gxg^{-1} = x$$

$$\Rightarrow xg^{-1} = g^{-1}x$$

$$\Rightarrow q^{-1}x = xq^{-1}$$

 $\forall x \in G$ y, además:

$$(gh)x = g(hx) = g(xh) = (gx)h = x(gh), \quad \forall x \in G$$

por tanto, $gh \in H$. Se sigue entonces que H es subgrupo de G.

Veamos que es normal. Sea $g \in G$ y $h \in G$, hay que ver que $ghg^{-1} \in H$. En efecto, veamos que:

$$(ghg^{-1})x = (gg^{-1})hx = (e_G)xh = x(he_G) = x(hgg^{-1}) = x(ghg^{-1}), \quad \forall x \in G$$

por tanto, $ghg^{-1} \in H$. Luego, H es normal en G.

Ahora, como H es subgrupo, entonces \overline{H} también lo es...

Ejercicio 1.0.7

Sea G un grupo tal que todos sus elementos son de orden 2. Demuestre que G tiene que ser abeliano. Pruebe que si G es infinito, entonces admite una topología de Hausdorff no discreta.

Demostración:

Veamos que G es abeliano. En efecto, sean $a, b \in G$, se tiene entonces que:

$$(ab)^2 = (ab)(ab) = e_G$$

es decir, que $ab = (ab^{-1}) = b^{-1}a^{-1}$, pero $a^{-1} = a$ y $b^{-1} = b$. Por ende, ab = ba luego, G es abeliano. Suponga que G es infinito. (no sé).

Ejercicio 1.0.8

Dé un ejemplo de grupo que admite al menos dos topologías de Hausdorff de grupo distintas.

Solución:

Ejercicio 1.0.9

Sea $G = \mathbb{R} \setminus \{0\}$ el grupo multiplicativo de los números reales con la topología usual, y sean $G' = \{-1, 1\}$ y $G'' = \{x \in \mathbb{R} | x > 0\}$.

1. Pruebe que G' y G'' son subgrupos de G.

- 2. Pruebe que existe un isomorfismo topológico entre G/G' y G''.
- 3. Pruebe que $G y G' \oplus G''$ son topológicamente isomorfos.
- 4. Pruebe que $G' \cong \mathbb{Z}_2$, $G'' \cong \mathbb{R}$ y, deduzca que $G \cong \mathbb{Z}_2 \oplus \mathbb{R}$.

Demostración:

De (1): Es claro que son subgrupos de G.

De (2): Notemos que:

$$G/G' = \left\{ G'a \middle| a \in G \right\}$$
$$= \left\{ \{-1, 1\} a \middle| a \in G \right\}$$
$$= \left\{ \{-a, a\} \middle| a \in G \right\}$$

Defina $f: G'' \to G/G'$ tal que $a \mapsto \{-a, a\}$. Afirmamos que esta función es continua. En efecto,

Ejercicio 1.0.10

Sea $GL(n,\mathbb{R})$ el grupo lineal general con la topología definida en un ejemplo anterior. Introduzcamos los siguientes subconjuntos de $GL(n,\mathbb{R})$; el conjunto $SL(n,\mathbb{R})$ de las matrices con determinante igual a 1; el conjunto $TL(n,\mathbb{R})$ de las matrices triangulares superiores con los elementos de la diagonal principal iguales a 1; el conjunto $O(n,\mathbb{R})$ de las matrices ortogonales. Pruebe lo siguiente:

- 1. Cada uno de los conjuntos $SL(n,\mathbb{R})$, $TL(n,\mathbb{R})$, $O(n,\mathbb{R})$ es un subgrupo cerrado de $GL(n,\mathbb{R})$.
- 2. $SL(n,\mathbb{R})$ es un subgrupo normal de $GL(n,\mathbb{R})$, pero $TL(n,\mathbb{R})$ y $O(n,\mathbb{R})$ no lo son si $n \geq 2$.

Demostración:

De (1): Primero, ya se sabe que $GL(n,\mathbb{R})$ es grupo con el producto usual de matrices. Veamos que es grupo topológico con la topología dotada por la métrica:

$$d(A,B) = \sqrt{\sum_{i,j=1}^{n} |A_{i,j} - B_{i,j}|^2}$$

ya que, la función $(A, B) \mapsto AB^{-1}$ es continua (podemos verla como una función de \mathbb{R}^{n^2} a \mathbb{R}^n donde solo se involucran sumas, productos, cuadrados y diferencias de elementos de \mathbb{R} , por ende, es continua). Luego, es grupo topológico.

Ya se sabe que $SL(n,\mathbb{R})$, $TL(n,\mathbb{R})$, $O(n,\mathbb{R})$ son subgrupos de $GL(n,\mathbb{R})$. Veamos que son cerrados.

1. $SL(n,\mathbb{R})$ es cerrado. En efecto, la función determinante det : $GL(n,\mathbb{R}) \to \mathbb{R}$ es continua (vista como función de \mathbb{R}^{n^2} a \mathbb{R} lo es), además:

$$SL(n,\mathbb{R}) = \left\{ A \in GL(n,\mathbb{R}) \middle| \det(A) = 1 \right\}$$
$$= \det^{-1}(1)$$

donde $\{1\} \subseteq \mathbb{R}$ es cerrado, luego $SL(n,\mathbb{R})$ es cerrado.

2. $TL(n,\mathbb{R})$ es cerrado. En efecto, la función s

Ejercicio 1.0.11

Sea G un grupo topológico abeliano. Pruebe que para todo $n \in \mathbb{N}$, $G_n = \left\{g \in G \middle| g^n = e_G\right\}$ es un subgrupo cerrado de G. ¿Es válida la conclusión si el grupo G no es abeliano?

Sugerencia. Considere el grupo $G = O(2, \mathbb{R})$.

Demostración:

Veamos que es subgrupo. Sea $n \in \mathbb{N}$, es claro que $e_G \in G_n$. Además, si $x, y \in G_n$, entonces:

$$(xy^{-1})^n = x^n y^{-n} = e_G$$

pues, como $y^n = e_G$, entonces $y^{-n} = e_G$. Luego, $xy^{-1} \in G_n$. Por ende, G_n es subgrupo de G.

Veamos ahora que es cerrado. En efecto, notemos que la función $f:G\to G$ tal que $x\mapsto x^n$ es una función continua, y

$$G_n = \left\{ g \in G \middle| x^n = e_G \right\}$$

$$= \left\{ g \in G \middle| f(x) = e_G \right\}$$

$$= \left\{ g \in G \middle| f(x) \in \{e_G\} \right\}$$

$$= f^{-1}(e_G)$$

donde el conjunto $\{e_G\}$ es cerrado, luego G_n es cerrado.

Para la otra parte, considere $G = O(2, \mathbb{R})$, se tiene entonces que:

asd

Ejercicio 1.0.12

Sea $a \in \mathbb{R} \setminus \mathbb{Q}$ y, $H_1 = \{(x, ax) | x \in \mathbb{R}\} \subseteq \mathbb{R}^2$ (recta que pasa por el origen y que tiene pendiente irracional). Sea $H_2 =$

Ejercicio 1.0.13

Sea S(X) el grupo de todas las permutaciones de un conjunto dado X, es decir, S(X) consta de todas las funciones biyectivas de X en X. Si $n \in \mathbb{N}$ y $x_1, ..., x_n \in X$, y $y_1, ..., y_n \in X$, denotemos:

$$U(x_1, ..., x_n, y_1, ..., y_n) = \left\{ f \in S(X) \middle| f(x_i) = y_i \text{ para todo } i \in [|1, n|] \right\}$$

Demuestre que la familia de todos los conjuntos $U(x_1, ..., x_n, y_1, ..., y_n)$ forma base de una topología de grupo Hausdorff \mathcal{P} en S(X). La topología \mathcal{P} se llama **topología de la convergencia puntual en** S(X).

Demostración:

Denotemos por \mathcal{U} a la familia de todos estos conjuntos. Si el conjunto es vacío, esta familia es vacía, por lo que no tiene sentido analizar este caso particular, suponga entonces que $X \neq \emptyset$.

Hay que verificar que se cumplen dos condiciones:

1. Sean $m, n \in \mathbb{N}$, y $x_1, ..., x_n, y_1, ..., y_n, z_1, ..., z_m, u_1, ..., u_m \in X$. Queremos ver que el conjunto:

$$U(x_1,...,x_n,y_1,...,y_n) \cap U(z_1,...,z_m,u_1,...,u_m)$$

se expresa como unión de elementos de \mathcal{U} . En efecto, si f está en la intersección si y sólo si

$$f(x_i) = y_i$$
 y $f(z_i) = u_i$

 $\forall i \in [|1, n|], j \in [|1, m|], \text{ es decir que}$

$$f \in U(x_1, ..., x_n, z_1, ..., z_m, y_1, ..., y_n, u_1, ..., u_m)$$

por tanto, se tiene que

$$U(x_1,...,x_n,y_1,...,y_n) \cap U(z_1,...,z_m,u_1,...,u_m) = U(x_1,...,x_n,z_1,...,z_m,y_1,...,y_n,u_1,...,u_m)$$

(podemos renombrar los x_i y z_j como algún α_k y de manera análoga con los otros elementos de X, pero no es muy relevante a la demostración tal procedimiento).

2. X es unión de elementos de esta familia. En efecto, como X es no vacío, existe $x_0 \in X$, sea $\mathcal{X}_{x_0} = \{U(x_0, y) | y \in X\}$. Se tiene entonces que:

$$\bigcup_{U \in \mathcal{X}_{x_0}} U = X$$

en efecto, una contención es inmediata. Sea $f \in S(X)$, entonces $f(x_0) \in X$, luego $f \in U(x_0, f(x_0)) \subseteq \bigcup_{U \in \mathcal{X}} U$.

Luego, \mathcal{U} es base de una topología sobre S(X).

Además, es Hausdorff. En efecto, sean $f,g\in S(X)$ tales que $f\neq g$, entonces existe $x\in X$ tal que $f(x)\neq g(x)$. Tenemos que:

$$f \in U(x, f(x))$$
 y $g \in U(x, g(x))$

se tiene que $U(x, f(x)) \cap U(x, g(x)) = \emptyset$ ya que los elementos de S(X) son funciones. Por ende, estos son dos abiertos disjuntos que contienen a f y g. Por tanto, el espacio es Hausdorff.

Ejercicio 1.0.14

Sea $S_f(X)$ el subgrupo de S(X) que consiste en todas las permutaciones de X que mueven a lo más un número finito de puntos. Pruebe que $S_f(X)$ es denso en S(X).

Demostración:

Hay que probar que todo abierto no vacío en S(X) dotado de la topología \mathcal{P} del inciso anterior, contiene puntos de $S_f(X)$.

En efecto, sea $U \subseteq S(X)$ abierto no vacío y $f \in U$. Por el ejercicio anterior, como \mathcal{U} es base de la topología \mathcal{P} sobre S(X), existen $n \in \mathbb{N}$ y $x_1, ..., x_n, y_1, ..., y_m \in X$ tales que

$$f \in U(x_1, ..., x_n, y_1, ..., y_m) \subseteq U$$

es decir, que $f(x_i) = y_i$ para todo $i \in [1, n]$. Se tiene entones que la función:

$$i_n(x) = \begin{cases} y_i & \text{si} \quad x = x_i \text{ para algún } i \in \begin{bmatrix} 1, n \\ x & \text{si} \end{cases}$$
 $x \neq x_i \text{ para todo } i \in \begin{bmatrix} 1, n \\ 1, n \end{bmatrix}$

está en $S_f(X)$ y, más aún, en $U(x_1, ..., x_n, y_1, ..., y_m)$, luego $f \in U$. Por tanto, $U \cap S_f(X) \neq \emptyset$. Finalmente, se sigue que $S_f(X)$ es denso en S(X).

Ejercicio 1.0.15 (*)

Sea G grupo topológico que tiene una base en la identidad consistente de subgrupos de G. Demuestre que G se encaja en S(X) para algún conjunto X como subgrupo topológico.

Ejercicio 1.0.16

Sean G cualquier grupo y \mathcal{V} una familia de subgrupos normales de G cerrada bajo intersecciones finitas. Muestre que la familia de todos los conjuntos de la forma gN, con g recorriendo todo G y N recorriendo todo \mathcal{V} , es base para una topología de grupo para G.

Demostración:

Ejercicio 1.0.17

Sea \mathcal{F} la familia de todos los subgrupos de un grupo dado G que tienen índice finito en G. Pruebe que la familia \mathcal{F} es base en e_G para una topología de grupo en G.

Demostración:

Ejercicio 1.0.18

Sea G un grupo topológico.

- 1. Verifique que $G^* = G/\overline{\{e_G\}}$ es un grupo topológico Hausdorff. Muestre que si H es cualquier grupo Hausdorff y, $f: G \to H$ es un homomorfismo continuo, entonces existe un homomorfismo continuo $g: G^* \to H$ tal que $g \circ \pi = f$, donde $\pi: G \to G^*$ es el homomorfismo canónico. Comente este resultado.
- 2. Sea G_i el grupo G con la topología indiscreta, y sea $i:G\to G_i$ la función identidad. Verifique que la función $\pi\Delta i:G\to G^*\times G:i$, dada por:

$$\pi\Delta i(g)=(\pi(g),i(g))$$

es un isomorfismo topológico entre G y su imagen $\pi \Delta i(G)$.

Demostración:

Ejercicio 1.0.19

Sea H un subgrupo abierto y divisible de un grupo topológico abeliano G. Demuestre que G es topológicamente isomorfo a $H \times G/H$ (note que G/H es un grupo discreto).

Demostración:

Ejercicio 1.0.20

Sea G un grupo abeliano libre de torsión. Muestre que si g y h son elementos distintos de G entonces, existe un homomorfismo ϕ de G en \mathbb{R} tal que $\phi(g) \neq \phi(h)$. Use este homomorfismo para definir una topología en G que sea Hausdorff.

Demostración:

Vamos a probar que, en general, el resultado no es correcto. Considere al grupo

$$G = \prod_{i \in I} \mathbb{Z}$$

donde $I = \mathcal{P}(\mathbb{R})$. Se tiene que $|I| = \aleph_2$, por ende:

$$|G| = |\prod_{i \in I} \mathbb{Z}| = |I| \cdot |\mathbb{Z}| = |I| \cdot \aleph_0 = |I|$$

Luego, $|G| = \aleph_2$. Es claro que G es abeliano. Veamos que es libre de torsión. En efecto, si $x = \{x_i\}_{i \in I} \neq 0$ es tal que $x_i \in \mathbb{Z}$ para todo $i \in I$, entonces existe $i_0 \in I$ tal que $x_{i_0} \neq 0$. Por ende:

$$mx_{\{0\}} = (\cdots, mx_{i_0}, \cdots) \neq 0$$

para todo $m \in \mathbb{N}$. Por ende, G es libre de torsión. Por Cantor-Bernstein, no puede existir una función invectiva de G en \mathbb{R} , en particular, no puede existir el homomorfismo pedido.

Para que tal homomorfismo exista, hay que pedir de forma adicional que $|G| \leq \aleph_1$.

Ejercicio 1.0.21

Demuestre que para cualquier número natural $n \in \mathbb{N}$ distinto de cero, el grupo \mathbb{T}^n es topológicamente isomorfo a $\mathbb{R}^n/\mathbb{Z}^n$.

Demostración:

Ejercicio 1.0.22

Sean G y H grupos topológicos y sea ϕ un homomorfismo de H al grupo de automorfismos de G. Definimos una multiplicación de grupo en $G \times H$ mediante

$$(g_1, h_1) \star (g_2, h_2) = (g_1 \phi(h_1)(g_2), h_1 h_2)$$

Muestre que

- 1. Cada $\phi(h)$ es un homeomorfismo de G sobre sí misimo.
- 2. Con la topología producto y la multiplicación, $G \times H$ es un grupo topológico. Esta estructura se llama **producto semidirecto** de G por H determinado por ϕ y se denota como $G \times_{\phi} H$.

Demostración:

Ejercicio 1.0.23

Demuestre que todo subgrupo no discreto G de \mathbb{R} es denso en \mathbb{R} .

Demostración:

Ejercicio 1.0.24

Demuestre que si G es un subgrupo cerrado de \mathbb{R} , entonces $G = \{0\}$ o $G = \mathbb{R}$ o G es un subgrupo discreto de la forma $a\mathbb{Z} = \{0, a, -a, 2a, -2a, ...\}$, para alguna a > 0.

Demostración:

Ejercicio 1.0.25

Demuestre que si G es un subgrupo cerrado de \mathbb{R} , entonces el subgrupo generado por $\{a,b\}$ es cerrado si y sólo si a y b son dependientes respecto a \mathbb{Q} , es decir, a=rb o b=ra para algún $r\in\mathbb{Q}$.

Demostración:

Ejercicio 1.0.26

Demuestre que si H es un subgrupo cerrado de \mathbb{R} y $\{0\} \neq H \neq \mathbb{R}$ entonces, el grupo cociente \mathbb{R}/H es topológicamente isomorfo a \mathbb{T} .

Demostración:

Ejercicio 1.0.27

Muestre que todo subgrupo cerrado propio de T es finito.

Demostración:

Ejercicio 1.0.28

Muestre que si $A = \{a_1, ..., a_m\}$ es un subconjunto linealmente independiente de \mathbb{R}^n , entonces el subgrupo generado por A es topológicamente isomorfo a \mathbb{Z}^m .

Ejercicio 1.0.29

Demuestre que todo subgrupo no discreto y cerrado H de \mathbb{R}^n con $n \in \mathbb{N}$, contiene una línea recta que pasa por el cero.

Ejercicio 1.0.30

Demuestre que si g es un homeomorfismo inyectivo de \mathbb{T} en \mathbb{T} , entonces g(x) = x para toda $x \in \mathbb{T}$, o g(x) = -x.

Sugerencia. Primero observe que g debe ser suprayectivo. Después, note que $\mathbb T$ tiene solamente dos elementos de orden 2.