HEAT TRANSFER COEFFICIENTS OF STEAM WATER MIXTURES

LEE WILSON FISHER AND JOHN MARSHALL KING 1953

Library
U. S. Naval Postgraduate School
Monterey, California

HEAT TRANSFER COEFFICIENTS

of

STEAM WATER MIXTURES

L. W. Fisher

and

J. M. King

Tables To reduce School

HEAT TRANSFER COEFFICIENTS

of

STEAM WATER MIXTURES

by

LEE WILSON FISHER Lieutenant, United States Navy

and

JOHN MARSHALL KING Lieutenant, United States Navy

Submitted in partial fulfillment
of the requirements
for the degree of
MASTER OF SCIENCE
in
MECHANICAL ENGINEERING

UNITED STATES NAVAL POSTGRADUATE SCHOOL Monterey, California 1953

F45

10 TO 10 TO

Ç

THE RESERVE TO SERVE THE RESERVE THE RESER

This work is accepted as fulfilling
the thesis requirements for the degree of
MASTER OF SCIENCE

IN

MECHANICAL ENGINEERING

from the United States Naval Postgraduate School.

PREFACE

It has become apparent during the course of instruction at the Naval Postgraduate School that the phenomena of heat transfer is of ever increasing importance in many fields of engineering. The attainment of higher thermal efficiencies ultimately becomes a problem in heat transfer. The concept of the heat transfer coefficient has become an accepted method for predicting the relative ease with which heat flow will occur.

In conversations with Professor E. 3. Drucker, of the U. S. Naval Postgraduate School, the authors were made aware of the lack of adequate data on transfer coefficients as they relate to wet steam. Such lack of data was considered sufficiently important to be investigated.

The experimental work of this thesis was conducted at the U. S. Naval Postgraduate School from March to June of 1953.

The authors desire to express their appreciation to Professor E. E. Drucker for his extensive assistance in the preparation of this thesis, to the Research Division of the Babcock and Wilcox Company for their invaluable aid in the instrumentation of the test section, and also to Chief Jones, USN, and Chief Wallace, USN, for their aid in the construction of the experimental set-up.

TABLE OF CONTENTS

	Page
CERTIFICATE of APPROVAL	i
PREFACE	
TABLE of CONTENTS	iii
LIST of ILLUSTRATIONS	iv
TABLE of SYMBOLS and ABBREVIATIONS	v
SUMMARY	
INTRODUCTION	2
CHAPTER	
I. Review of Literature on Two-Phase Flow	4
II. Equipment	7
III. Operating Procedure	10
IV. Method of Calculation	12
V Conclusions and Results	15
BIBLIOGRAPHY	19
APPENDIX	
TABLE I	32
TABLE II	44
TABLE TIT	45

10 71 - 10 and the same of th .

LIST OF ILLUSTRATIONS

Figui	re l'itle	Page
1	Schematic-Heat Flow Apparatus	20
2	Detail-Test Section	21
3	Schematic-Heater Control Circuit	22
4	Schematic-Test Section	23
5	Schematic Thermocouple Circuit	24
6	Curve of h vs percent Moisture for Mass Velocity of 73,300 lbs/(hr)'sq.ft.)	25
7	Curve of h vs percent Moisture for Mass Velocity of 87,900 lbs/(hr)(so. ft.)	26
8	Curve of h vs percent Moisture for Mass Velocity of 132,000 lbs/(hr)(sc.ft.)	27
9	Curve of h vs percent Moisture for Mass Velocity of 146,500 lbs/(hr)(sq.ft.)	28
10	Curve of h vs percent Moisture for Mass Velocity of 172,300 lbs/(hr)(sa.ft.)	29
11	Curves of h vs Mass Flow Rate	30
12	Curves of h vs 4t	31

----, . . • Sa - I I HITT

TABLE OF SYMBOLS AND ABBREVIATIONS

- A Area of heat transfer surface, square feet.
- cp Specific heat at constant pressure, Btu/(lb)(deg F).
- d Diameter, feet.
- G Mass velocity, lb/(hr)(sq ft of cross section).
- h Coefficient of heat transfer between fluid and surface, Btu/(hr)(sq ft)(deg F).
- k Coefficient of thermal conductivity, Btu/(hr)(ft)(deg F).
- L Heated length of tube, feet.
- M Mass flow rate, lb/hr.
- u Fluid viscosity, lb/(hr)(ft).
- P Total pressure, lb/sq in.
- II 3.1416....
- e Fluid density, lb/cu ft.
- g Rate of heat transfer, Btu/hr.
- r Radius, feet.
- T Temperature, degrees Fahrenheit.
- v Fluid velocity, ft/hr
- x Moisture content of steam, lb water/lb mixture, percent.
- Nu hd , Nusselt Group, dimensionless.
- Pr $\frac{u_c}{k^p}$, Prandtl Group, dimensionless.
- Re $\frac{\ell Vd}{u}$, Reynolds, Group, dimensionless.

Subscripts:

- l inlet. w water. t tube. d depth
- 2 outlet. s steam. o outer. i inner

. . . . Company of the compan . I will not the state of the s • . ٽ م . * . . . " (. . · · THE PERSON NAMED IN - (• • • • • 10

SUMMARY

The object of the development and preparation of this thesis was to determine the local or point coefficients of heat transfer to wet steam at moderate pressures, and to note their manner of variation with respect to moisture content of the steam. To accomplish this, steam at a known condition was passed through a vertical steel tube of 0.50 inches inside diameter which was heated electrically.

Coefficients were determined under the following conditions: moisture content in the range from 0 to 6 percent, absolute pressures up to 215 psia, and a variation in mass velocity from 73,000 to 172,000 pounds per hour per square foot.

The effects of moisture content were found to be significant, causing a rapid increase in the coefficient with increasing percent moisture. The local coefficients as they are herein presented vary from 110 BTU's/hr-Ft²-OF for saturated steam to values approaching 6500 BTU's/hr-Ft²-OF for steam with a moisture content of about 6%.

.

INTRODUCTION

Steam power has been long established as the primary means of ship propulsion in the U. S. Navy. In the advent of atomic power for naval vessels, it is entirely probable that steam will continue to be the means by which this power is transmitted to the main engines.

The Navy's interest in the improvement of the thermal efficiencies of boilers has led to the utilization of higher temperatures and pressures. It is felt that additional improvement may be brought about by critical re-evaluation of the current concept of boiler design as it relates to heat transfer. Consequently, it is important to know as much as possible about the mechanism of heat flow to the working medium as it passes through successive stages from saturated water to saturated steam. One aspect of this problem may be solved by experimentally determining the coefficients of heat transfer to steam with varying degrees of moisture content.

In this thesis work, experimentation was conducted in an effort to determine the coefficients for steam with a quality of 96 to 100 percent. Although this is a fairly narrow range of moisture content, the results did tend to indicate the trend with which the transfer coefficients varied with quality. Time was a limiting factor in preventing further investigation of steam with higher moisture content.

Heat transfer coefficients of this kind, that is, coefficients relating to forced convection, are usually correlated with respect to the local Nusselt, Reynolds, and Prandtl numbers. Such correlation, however, is invariably made for fluids which are of a single phase only. Obviously this was not the case in the present investigation. In addition, a thorough survey of all existing literature failed to yield any data on values of density, viscosity, or thermal conductivity of wet steam, thus preventing the computation of the above dimensionless quantities. Further research to determine some of these parameters would be extremely useful.

This work may be considered as an extension of the investigation of heat transfer in two phase flow. It represents some of the initial data available for steam at relatively
low flow rates and low heat flux densities.

The second secon and the state of t THE RESIDENCE OF SHAPE SHAPE - c and delicated in the part of the latter of t

CHAPTER I

REVIEW OF LITERATURE ON TWO PHASE FLOW

A survey of the broad field of heat transfer indicates that a large quantity of data has been collected on the heat flow to fluids inside tubes. Unfortunately very little data has been published with respect to gas-liquid mixtures.

The lack of information on temperature and velocity distributions has made it necessary to correlate experimental data on heat transfer coefficients by means of empirical equations in terms of certain dimensionless groups. Perhaps the most highly utilized equation is the Nusselt relation for single phase flow in forced convection through a tube (4):--
Nu=0.024 Re^{0.8} Pr^{0.4} (1)

It has been found by McAdams and others (4), (5) from data for vaporization inside tubes that the local film coefficients, in the preheat section where the fluid is initially heated, are usually somewhat higher than would be predicted from the Nusselt relation. This result is logical from the standpoint that some vapor bubbles may have formed in the preheating section, with the possibility that they disrupt the film locally as they are formed on the tube wall. As they move out into the fluid they would condense thus releasing their heat of condensation. The combined effect is an increase in heat transfer coefficient. In a comparable manner, it might be expected that as far as the influence on

the film coefficient is concerned, the coefficient will increase when gas passes through a system simultaneously with a liquid.

In 1949 Bergelin(2) observed that if a gas and a liquid pass simultaneously in upward flow through a tube, as the gas-liquid ratio is increased, the following three flow conditions could be distinguished:

- (a) bubble flow, when gas bubbles pass individually through the tube;
- (b) slug flow, when alternatively slugs of gas and liquid pass through the tube, and
- (c) annular flow, when the liquid flows in an annulus along the tube wall, while the gas passes at a much higher velocity through the center of the tube. Verschoor and Stemerding(8) in their investigation of the transfer coefficients to air and water mixtures verified the observations of Bergelin. They found that as their air to water mixture was increased, the heat transfer coefficient increased until a maximum was reached that coincided with the transition from slug to annular flow. Prior to reaching this maximum there was a change in slope in their curve which corresponded to the change from bubble flow to slug flow. It is interesting to note that their heat transfer coefficients increased with an increase in flow density, however this was of secondary importance compared to the influence of varying the airwater mixture.

Yoder and Dodge(9) measured film coefficients of Freon-12 boiling in a vertical tube. Their results showed that pressure and flow rate had very little effect on the coefficients, but as the relative amount of vapor increased from 40 to 100 percent, there was a very significant decrease in the heat transfer coefficients.

CHAPTER II

HOUIPMENT

The equipment was a flow system in which steam was taken from a main line and passed through a throttle valve, a cooler, the test section, a condenser, and to a weigh tank. The assembly is shown schematically in Figure 1. The steam was supplied from a Babcock and Wilcox FM boiler at a pressure of 200 psig. After passing through a throttle valve the steam was made to flow through a cooler which was intended for use as a method of varying the quality. It was never subsequently used since time limited the investigation to a percent moisture not greater than 6 percent. On either end of the test section an Ellison combination throttling and separating calorimeter was installed for quality determination. Prior to the condenser an orifice of 0.166 inches diameter was installed to maintain the pressure in the test section. A bypass was provided around the orifice to permit adjustment of the flow rate independently of pressure.

The test section as seen in Figures 2 and 4 consisted of a vertical steel tube having an inside diameter of 0.50 inches and an outside diameter of 1.25 inches. Its overall length was approximately $27\frac{1}{2}$ inches, but with an active length of 24 inches for purposes of heat transfer. Recesses were cut in either end of the test section to minimize axial heat loss. The thermocouples in the test section were made of No. 28 gauge chromel-alumel wire, and were installed by the Research

Division of the Babcock and Wilcox Company. Four pairs of thermocouples were installed along the tube, one of each pair at the outer surface of the tube, the other at a known depth below the surface thermocouples. The leads of the thermocouples were threaded through a milled slot and out a $\frac{1}{4}$ " tube welded to the test section. The original thought was that the thermocouples as located would permit determination of the temperature gradient across the wall of the tube, thus the inside surface temperature could be found by extrapolation.

At either end of the test section, thermocouple probes were projected into the fluid stream for measuring the temperature of the steam. These probes were obtained from Leeds and Northrop, and manufactured of iron-constantan wire.

The heating element consisted of four independent heaters, each containing 29.8 feet of No. 18 Nichrome V wire. The wire was wound around the tube in a single layer. Each heater was approximately 6 inches in length. In order to prevent shorting of the heater coils, the wire was insulated with glass sleeving, and a thin layer of mica, 0.0015 inches thick, was wrapped around the tube before the heaters were wound. Power supply to the heaters was controlled by four 115v-15amp Powerstats. See Figure 3. The total power to each heater was measured by portable wattmeters.

The insulation of the test section was accomplished by winding the tube, outside the heaters, with strips of 1/8"

. and the second s 4 e of the second The state of the s the state of the s the party of the same of the s

thick asbestos cloth. This was followed by applying a length of standard $1\frac{1}{2}$ " magnesia pipe insulation. The entire section was then covered with an aluminum sheet casing. Provisions were made so that air, heated to approximately the same temperature as the outer surface of the insulation, could be supplied to the space between the insulation and casing, thus minimizing any heat loss due to convection, and reducing the conducted heat loss through the insulation.

CHAPTER III

OPERATING PROCEDURE

There were four primary variables associated with the apparatus: heat flux, flow rate, quality, and pressure. It was found, however, during preliminary experimentation, that the minimum moisture content of the steam available for use was approximately 6%. Interest at this time was primarily centered on the region between 0 and 10 percent moisture, thus necessitating throttling the steam to lower pressures in order to obtain a given quality at the entrance of the test section. Such an arrangement meant that only the heat flux, pressure, and flow rate could be varied independently of one another. The only other limiting factor associated with the equipment was, that due to the design of the heaters and the power supply used, the maximum heat input was restricted to 1 kw per heater, or a total of 4 kw.

The procedure was to select an approximate quality at the entrance of the test section by setting the throttle valve accordingly. The flow rate was either taken as that provided by the pressure across the orifice in the line to the condenser or adjusted by means of the by pass around the orifice. Power was then supplied to the heaters and the system was allowed to come to a steady-state condition.

The approach to steady-state condition was determined by noting the change in the millivolt reading of the thermo-couples contained in the test section. When they became

the second secon ,

approximately constant, steady-state was considered to exist. It normally took from 1/2 to 3/4 hours before the system reached equilibrium. It was never possible to keep temperatures constant over a period longer than a few minutes, even though heat input and flow rate appeared unchanged. Each run was made at constant flow rate, heat flux, pressure and quality of the inlet steam.

For each run, temperatures, pressures, flow rate, and power input were recorded. Data points were taken at various settings of power inputs, flow rates, and pressures. Most of the runs were concluded at a power input such that the minimum change in quality which occurred through the test section was 3%.

CHAPTER IV

METHOD OF CALCULATION

The fundamental law of heat transfer by convection may be stated by the mathematical expression:(4)

$$q = hA \Delta T \tag{2}$$

The factor of proportionality h, defined in the equation, is called "the film coefficient of heat transfer." It is this coefficient which was computed.

For each set of conditions imposed on the test section, the density of heat flux, the inside surface temperature of the tube, the T, the quality of the steam, and the local coefficient of heat transfer were calculated. Each of these factors was evaluated at four positions corresponding to the locations of the thermocouples inside the tube wall.

The power dissipated in the heating elements was obtained from wattmeter measurements. The heat flux density was then calculated from the power dissipated and the dimensions of the heat transfer surface.

Early in the process of collecting data for the investigation, it was discovered that the thermocouple pairs in the test section were indicating unreasonable temperature gradients through the tube wall. It became necessary to calculate the inner surface temperature by applying to the depth thermocouple a computed temperature drop corresponding to the heat input. The temperature drop was calculated using

10 Keep - W the contract of the same of th A STATE OF THE PARTY OF THE PAR . _1=0 1 1 the second secon

the Fourier conduction equation for steady-state heat transmission:(4)

$$\mathbf{g} = -k A \frac{dt}{dx} \tag{3}$$

For a circular tube, this equation may be integrated to give:

$$Q = \frac{2\pi K L \Delta T}{\ln r_0/r_0}$$
The depth thermocouples were shielded from any direct influ-

The depth thermocouples were shielded from any direct influence of the heaters, and thus were considered to be more accurate than those on the surface of the tube.

The temperature of the steam was measured at both the entrance and exit of the test section, however, these measurements were consistently erratic and failed to give desired results. It was felt that greater reliability would result from assuming the saturation temperature corresponding to the absolute pressure in the test section for computing the ΔT .

In the preliminary phase of the investigation it was discovered that the reproducibility of the calorimeters, for determination of quality below the level which could be found by the throttling principle alone, was rather poor. With results taken over a long period of time it was found that the average quality of the steam at the test section, at a pressure of 200 psig, was 94%. Further use of the calorimeters was discontinued, and this value of 94% for quality was used as a basis for all further computations. The quality of the steam, at each point in the test section corresponding to the location of the thermocouples, was computed by adjusting the

16 V V - 4 A

-1 Time - 9

-/6-

c ,

enthalpy of the incoming steam in an amount equal to the heat input to the test section. The quality at pressures lower than 200 psig was determined by the use of the Mollier Diagram.

CHAPTER V

CONCLUSIONS AND RESULTS

One hundred runs were made of which forty-six were successful. The remainder of the runs were eliminated because the tube wall temperatures obtained indicated that steady-state conditions had not yet been reached. The ranges of pressure, temperature, quality, and mass rate of flow are given in Table I of Appendix I.

In the process of collecting data a number of experimental errors became apparent. These errors, however, did not exceed the range of expectancy ordinarily associated with this type of investigation. The temperature determinations were expected to be in error at least 2 to 3%. This was not serious as long as the temperature difference between the fluid and the wall surface was large. At small temperature differences care had to be taken to insure that unreasonable results were not obtained. Another error is introduced in the calculation of the transfer coefficient by neglecting axial heat loss from the test section. In estimating this loss it was found to be small, in the range of 10 to 40 BTU/hr. The error due to the radial heat loss was approximately 2% of the input power.

Curves for the heat transfer coefficient versus the percent moisture were made for each mass velocity. In addition a plot was made of the transfer coefficient versus the temperature difference between the wall and the fluid, and one

of the transfer coefficient versus the mass rate of flow. These curves are seen in Figures 6 through 12. The physical properties of steam-water mixtures were not available, thus preventing any correlation of the transfer coefficient with any existing data.

The curves depicting the heat transfer coefficient the percent moisture show a very gradual rise in the coefficient up to moisture content between one and two percent. Above this value the coefficient increased rapidly as the moisture increased from two to five percent. A possible explanation of this phenomenon is that at high qualities there are only small droplets of water in the fluid, but not enough to materially disrupt the boundary layer between the steam and the wall of the test section. As the amount of moisture in the steam increases, the water droplets become larger and begin to rupture the boundary layer and collect on the wall of the test section, with a consequent increase in the heat transfer coefficient. The sharp change in slope of the curve is the point at which the water begins to collect in droplets on the tube wall. With a further increase in moisture, there is an approach to annular flow where the boundary layer becomes completely liquid. At this point the transfer coefficient should reach a maximum and then start to decrease. Fully developed annular flow was never reached in this experiment.

and the second s managed a sign of the other and the state of the cold and the c . The state of the

Figure 11 shows the influence of mass flow rate on the heat transfer coefficient. It is surprising to note that the coefficient decreased as the flow rate increased to a value of about 200 lbs/hr. With flow rates above this value, the coefficient increased. Only one point on the curve was established beyond this transition region. However, the predicted curve is extrapolated (dotted line) on the plot. The initial decrease in the coefficient was possibly due to the water droplets on the wall being flattened out as the flow rate increased and thereby forming a liquid boundary layer. As the mass flow rate increased beyond 200 lbs/hr the velocity of the gas was apparently sufficient to start wiping the water droplets off the wall instead of just flattening them out. This is how the continued upward trend in the curve was predicted.

Figure 12 indicates curves of the transfer coefficient versus the difference in temperature between the tube wall and the fluid. This shows the correlation between the heat transfer coefficient and temperature difference, for a given range in quality of about five percent. These curves appear to be in the region of unstable film boiling when compared to the boiling curve for free convection(7), but the coefficients determined in the investigation are necessarily higher than those of the boiling curve due to the influence of forced convection.

The available literature and results of this investigation permits the conclusion that a maximum heat transfer coefficient exists with respect to the moisture content of the mixture. This point has not been within the range of the subject investigation. The location of this maximum represents an optimum for future design of certain types of heat transfer equipment.

Additional research would be amply justified in order that the peak in this curve be definitely established.

BIBLIOGRAPHY

- 1. Baker, H. Dean. Manual on Thermometry, United Aircraft Corporation, Conn., 1950.
- 2. Bergelin, O.P. Heat Transfer and Fluid Mechanics Institute, 1949. (University of California, Berkeley).
- 3. Cryder, D.S. and Gilliland, E.R. Heat Transmission from Metal Surfaces to Boiling Liquids. Industrial and Engineering Chemistry. Vol. 24: 1382-1387, 1932.
- 4. McAdams, W.H. Heat Transmission, (2nd Edition). McGraw-Hill, New York, 1942.
- 5. McAdams, W.H., Drexel, R.E. and Goldey, R.H. Transactions, American Society of Mechanical Engineers. Vol. 67:613 +, 1945.
- 6. McAdams, W.H., Kennel, W.E. and Alloms, J.N. Heat Transfer to Superheated Steam at High Pressures. Transactions, American Society of Mechanical Engineers. Vol. 72:421-430, 1950.
- 7. Scorah, R. Theory of the Adiabatic Bubble. Proceedings of the Midwest Conference on Fluid Dynamics, 1950.
- 8. Verschoor, H. and Stemerding, S. Heat Transfer in Twophase Flow. I. M. E. and A. S. M. E. Proceedings, General Discussion on Heat Transfer, 201-204, September 1951.
- 9. Yoder, R.J. and Dodge, B.F. Heat Transfer Coefficients of Boiling Freon-12. I.M.E. and A.S.M.E. Proceedings, General Discussion on Heat Transfer, 15-19, September, 1951.

· · ·

SCHEMATIC - HEAT FLOW APPARATUS - FIGURE 1

- 22-

SCHEMATIC & HEATER CONTROL CIRCUIT FIGURE

Brass Fittings

Steel tube & flanges

Ashestos

Will 85% Magnesia

× × Thermocouples

..... Heater Wires

TEST SECTION - FIGURE 4

PERCENT MOISTURE

M- MASS RATE OF FLOW 165/HR

TABLE I

SUMMARIZED DATA

	A/A	26,050	25,900	25,800	26,050	20,800	20,800	20,800	20,800	20,800	20,800	20,800	20,800
	q	3170	415	1	1	5200	1160	107	1	4500	1000	115	1
	×	996.	986.	Supht	Supht	.963	.977	766.	Supht	696*	626.	166.	Supht
	₩ E-4	338.2	392.7	598	652.5	329.6	343.6	519.8	573	330.98	347.15	507	567
Arrian dun arriano	Test Sec. Temp of	2425								0 0			
TTULTITOO	Test Sec Sta. No.	-1 С	v m	` ~	,	-1 С	ν (n -	± -	-l c	ν (η -	†
hr.	Outlet Temp of	377				32T			C L	221			
100 lbs/hr.	Inlet Temp or	329.96			7	365.0			700	350.53			
Mass Flow Rate	Press psis	103			3				ť	0			
Mass	Run No.	,r-I			(×			(η			

· 7 • • • .

Q/A	19,800	19,800	19,800	18,150	18,150	18,150	18,150	13,150	16,200	16,200	16,200	16,200		20,800	20,800	20,800	16,200
q	0787	1310	127.9	i	2740	750	125.1	i i	3820	1431	714	103.4		5210	2000	500	103.4
×	796.	.978	.992	Supht	796.	.977	066.	Supht	.958	896.	086.	.941		.958	.957	086.	.941
E-1	330.5	341.5	481.3	537	333.2	352.5	472.2	530	329.7	336.5	348.6	6.084		342.7	348.47	379	6.084
Test Sec.	341.0	200	500	1000	000	3 20 1	0 20 5	· ~ C	700	000	0 10	0 00		359.5	54.	0000	000
Test Sec Sta. No.	Н (ν (η -	- -	-l C	<i>i</i> (n -	-	н с	ν (η -	†		H (ν (η -	-
Outlet Temp OF	345			c	040			(363.0				s/hr.	338.1			
Inlet Temp or	326.35			700	260.22			7 200	345.0				e _ 120 lbs/	338.1			
Press psia	86			0	0			t	200				Flow Rate	115			
Run No.	7			Ł	^				0				Mass				

0/A ·	26,050	26,200	26,050	26,050	25,800	25,800	25,800	26,050	23,600	23,650	23,600	23,500	23,600	22,500	23,500	23,500
Ц	3800 .	649	116	1 1	3040	1210	129.1		5250	2290	176.5	å å	5070	2860	247	i 1
×	. 959	.925	166.	Supht	.958	.972	986	Supht	.959	.972	.987	Supht	.958	.972	.987	Supht
ω Ει	351.2	382.7	569.2	618.9	354.7	366.7	548.2	60109	347.6	353.6	477.7	567.9	349.1	352.6	439	295
Test Sec. Temp of	3772	7.000	5773 · t	0000	770000	3700	7000	000000000000000000000000000000000000000	300 1000 1000	7000	100 t	269.0	3000	7000	443.07	564.6
Test Sec Sta. No.	н с	٧ (n -	† r	-1 С	ν (n -	† r	-1 С	ν (Λ -	-	-1 С	ν (n -	1
Outlet Temp OF	367			263	202			L	22%			7	22%			
Inlet Temp OF	344.3			٢ ٧ - ٢	740.T			ر د	245 · T			-	C•44°			
Press	125			Ó	027			CC	747			2	167			
Run No.	₩			C	<i>></i>			(2			ر	7			

Table less loss in Option of the last *

0 / A	32,000	32,000	32,000	32,000	31,900	31,300	31,300	31,300		42,700	41,600	41,600	77,600	33,400	33,300	33,400
۲.	5140	1095	127.5	i ì	5300	1190	126.9	-		0787	1240	169	l l	0004	1505	147.5
×	096.	086.	366.	Supht	096.	086.	366.	Supht		. 953	.970	.987	Supht	.953	.967	566.
о Е-	350.3	374.3	593.3	655	350.8	373.5	969	099		38	717	. 626	089	384.54	398.33	49.209
Test Sec Temp	372	36.00	2000	500	200	.020	1000	61.		7070	1000	0 mo	0000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	395.34	027
Test Sec Sta. No.	П (ν (n -	† r	-1 С	ν (Λ -	⇉		- С	ν (Λ -	-	-1 (v m	7
Outlet Temp OF	345.5				7.44.0				/hr	395			t	301		
Inlet Temp OF	344.9			-	244.7				Flow Rate = 180 lbs/	378.4			7	3/0.2		
Press	126			701	027					192			Ť.	787		
Run No.	12			(T				Mass	14			۲	T2		

2 1 . . . 4 a • • ٠ . 100 100 • 15 i B

A/n	m 0	32,400	33,500	33,500	33,600	33,800	33,600	33,700	33,600	33,800	36,400	36,400	36,400	36,400
,C	1,380	229	148	2110	320	149.5	380	1895	229	149	4290	1369	176.2	
×	456.	. 982	.996	896.	.983	566.	.953	896.	.982	966.	456.	896.	786.	Supht
T s	83	5 6	601.34	391.54	78.627	78.865	384.84	394.74	522.14	603.84	384.7	402.87	583.87	635.37
Test Sec Temp OF	6,000	07.04 07.05	100t	397.6	485.9	6.409	3000 3000 4000 4000	1000 1000 1000 1000	100 to	600	30000	100t 100t	700 C	621.9
Test Sec Sta. No.	Н «	m 4	r- (v m	7	}	4 0	≀ ~	\ ~) r	H 0	ν	∩ ~)
Outlet Temp OF	381		380			7 O O O C	•			C tx	0			
Inlet Temp of	3762		375.75			376 2	2			376 2	ו0/0			
Press	187		186			787	0			100	0			
Run No.	16		17			ά	H			C	47			

.

Q/A	36,400	36,400	31,800	, L	7,8	31,800	31,800	31,800	30,000	30,250	30,250
ч	2000	197	3395	297.5	150	2995	291	149.5	1777	527	153.5
×	456.	.083	.953	.979	. 993	.953	086.	.993	.965	.978	.992
€-1 Ω	383.5	561.5	386	m	68	398.3	486.3	589.8	393.54	434.04	574.04
Test Sec Temp of	41004	-1000000	0 + t0 = 0	-+00 m	1-700	an com	m htm	12000 HV	$0 \circ \sim$	+ ood	30
Test Sec Sta. No.	Н 00 0	n + r	-1 ~2	m 4	: H	N	m +	(v c	`~	.
Outlet Temp of	389		0.00		376.6			376.6			
Inlet Temp or	376.2	, E	3/0.0		376.6			376.6			
Press	187	7	00 00 T		188			138			
Run No.	20		7		22			23			

O/A	30,500	30,350	30,250	30,250	30,500	30,100	30,250	30,250		41,300	006,04	41,500	41,550
- C	3620	1851	556	154	3290	1781	483	153.8		3620	649	171	150
×	.953	396.	876.	.992	.953	.965	.978	.992		846.	.963	626.	366.
E S	385.04	393.04	431.04	572.84	385.9	393.6	439.1	573.1		396.04	442.54	614.84	662.94
Test Sec Temp of	390.9	7 00 t	NOU	O 00 L	りた -	7 m	200	- m		426.2	74.	222	70.
Test Sec Sta. No.	Н (∨ (η -	7 6	⊣ (ν (η -	‡		~ (N (η -	7
Outlet Temp of	376.6			7 7 2 4	2,000				hr.	391			
Inlet Temp or	376.6				370.0				te 200 lbs/h	384.7			
Press	188			1	200				Flow hate	207			
Run No.	24			1	25				Mass	56			

	0 0 0	0 0 0	0 0	0 0 0	0 0	0 0 0
Q/A	42,400	42,400	42,450	44,000	44,200	43,500
ď	3490 649	151.3	181.5	3320 720 197	333.9	182
×	796.	996.	.983	.950	Supht.	.965 .983 Supht
EH Ø	397.04	662.34 398 451	618.8	398.02 447.92 616.92	677.32	441.7 621.7 675.2
Test Sec Temp or				0004444 000000000000000000000000000000		
Test Sec Sta. No.	7 2 5	4 1 0	m + 1	-	л t	2 m 4
Outlet Temp OF	393	395	(065	397	
Inlet Temp OF	384.7	384.7	70	784.	389.7	
Run Press No. ' psia	207	207			207	
Run No.	27	28	(N N	30	

9/A	36,600	36,600	, 6	36,950	36,200	36,500	36,300	36,800	36,000	36,000	35,800	36,500	35,800	36,100
ч	3330	422	320	1260	231	160.5	3420	1280	217.5	157.1	3820	1290	247	161.5
×	846.	978	876.	.963	826.	.992	876.	.963	.977	066.	876.	.962	926.	066.
EH SO	395.67	471.97		413.97	541.57	611.97	395.27	413.47	550.27	613.97	394.0	413.0	529.3	0.809
Test Sec Temp of	416.0 4316.0 4316.0	nm+m	000	•••	+100	0 20 0	200	000	0.01	000	000	000	0101	· ·
Test Sec Sta. No.	- N	m 4	Н (N C	Λ ~	7 -	-l c	ν	n -	-	-l (ν	n -	†
Outlet Temp or	384.7		384.7			7000	704.			7	7.400			
Inlet Temp of	384.7		384.7			-	204.			70	304.			
Press psia	207		207				7.02			0	/ 02			
Run No.	3		32			(2			ć	34			

Q/A	33,350	33,550	33,350	33,350	33,600	33,800	33,350	33,600	47,400	47,300	47,400	47,400	7,400	47,300	47,400	7,400
q	3450	1339	350	166.1	3450	1630	343	166.7	3620	1295	210	166.5	3810	1875	204.5	168.5
×	876.	096.	.972	.985	876.	096.	.972	986.	246.	.961	.978	766.	946.	.961	.977	166.
e v	393.94	77.607	479.24	584.74	394.44	44.504	482.04	587.74	400.5	424.5	617.8	678.3	399.51	411.01	618.81	10.899
Test sec Temp of	417.2	417.2 429.2 415.5 465.5 479.			400-	444 044 044 040	11 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	500 500 500 500 500 500 500 500 500 500	400°0 400°0	400000000000000000000000000000000000000	0 m 0	6000 6000 6000 6000 6000 6000 6000 600	1007	4170.7	627.3	676.5
Test Sec Sta. No.	Н (ν ς	^ ~	7 -	н с	ν (η -	† r	-1 С	v c	n -	₹ -	-1 С	ν (η -	₹
Outlet Temp OF	384.3			201. 7	. 400				391			C	271			
Inlet Temn OF	384.3			7 700	• +000			Mass Flow Rate-250 lbs/nr.	70/05			r roc	201.1			
Press	206			2007	0		6	Flow Rate	ンTン			0 - 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
Run No.	35			90	0)	Mass	n			t	20			

• 100 . .

0 / A	004,74	47,300	47,400	47,400	47,950	47,950	47,950	47,950	7,400	7,400	47,400	7,400	7,400	7,400	47,750	47,750
٦	0484	2160	177	163	4370	2050	218	173 .	0807	1716	223	168.5	5050	2220	222	171.5
×	946.	. 196	.977	.991	946.	196.	.977	.992	246.	.962	.978	766.	946.	.962	.978	166.
e N	398.01	10.604	655.31	679.01	398.01	410.41	19.909	664.01	398.71	414.71	19.109	668.01	396.5	408.5	9.109	665.7
Test sec Temp or	429.7	4417 117 200 300 300	000000000000000000000000000000000000000	0000	466.5	4144	675.7	672.5	407.2	なったったったったったったったったったったったったったったったったったったった	610.1	676.7	40000	417.0	610.1	674.2
Test Sec Sta. No.	Н (v c	n -	₹ ┌	н с	ν (n -	t r	-1 с	v c	^	-	-1 с	v (n -	-
Outlet Temp or	391			C	276				2%6				396			
Inlet Temp or	387.7			7 7 7 7 7	1.100			1 60	T. /00			ر د د د د د د د د د د د د د د د د د د د	30/°T			
Press psisa	212			כרכ	ソエン			מנכ	マ コ マ			c C	タナタ			
Run No.	39				2			ر -	1			C	7 + 7			

Q/A	45,800	45,600	45,600	45,400	45,800	45,800	45,800	45,600	43.700	43,500	43,700	43,700	43,700	73,600	43,700	43,700
ц	7200	3400	705	183.0	5270	3600	260	176.5	4240	2880	390	183	3960	2620	1035	182.5
× .	246.	196.	.978	. 989	246.	.962	.978	686.	946.	.961	926.	.991	546.	.958	.973	886.
€	397.29	400.59	501.09	636.99	395.79	399.79	562.29	645.59	397.17	402.17	16.664	626.17	398.17	403.67	429.47	626.97
Test sec Temp of	426.7														4 0	
Test Sec Sta. No.	, H (~ (Μ -	ا ۲	-1 (V (m -	† r	⊣ (ν (m -	7 -	⊣ (ν (η -	7
Outlet Temp of	387.1				7./00			T C	30/.1			C C	307.T			
Inlet Temp of	387.1				30/.1				30/.1			T (387.T			
oress psisa	212				777			(ンナン			(212			
Run No.	43			-	74			L.	45				04			

· Ellerifie Labore. E 4

TABLE II

THERMOCOUPLE ERROR - OF

12	23.5	7.9-	-6.3	-5.5	-5.6	1.4-	9.4-	-5.4	-5.3
								-6.1	
10	8.4-	4.4-	-3.6	-3.5	-3.9	-2.3	-3.9	13.7	-4.3
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-7.1	-6.3	-5.5	6.5-	-5.3	-5.9	1-6.7	0.9-
100	-4.5	-3.9	-2.0	-5.0	-2.4	-1.0	-2.6	-1.9 -6.7	-1.5
7	~	6.0-	-0.2	-0.5	. 2.0-	-0.5	9.0-	-1.4	-1.5
9	-6.5	6.4-	8.4-	-9.5	-2.4	-2.3	-2.7	-3.7	-2.0
								-1.9	
								-4.1	
m	1.5	-1.4	0	8:0	6.0-	0.		-2.4	-2.0
2	1.5	-1.4	∞.	-0.5	9.0-	-0.5	9.0-	-2.4	-1.5
Н	-1.2	-1.4	-0.3	-0.5	9.0-	0.0-	9.0-	1.9	-2.0
Press	199.5	177.5	157	128	100	75	64	35.6	19.0

TABLE III

CALCULATED TEMPERATURE DROP FOR VARIOUS FOWER INPUTS

Power Input per Coil in Kilowatts	Temperature Difference Between Surface Thermo- couple and Inside Surface	Temperature Dif- ference Between Depth Couple and Inside Surface
300	11.94	2.80
350	13.92	3.26
400	15.91	3.73
450	17.90	4.20
500	19.92	4.66
550	21.9	5.13
600	23.9	5.60
650	25.9	6.06
700	27.9	6.53
750	29.8	u.00
800	31.8	u.46
850	33.8	7.92
900	35.8	8.40
950	37.8	8.86
1000	39.8	9.32

a . n ١. ٠ 0 . . . , 2 . e . . . ^ . - - -

Thesis F45

Fisher

Heat transfer coefficients of steam water mixtures.

1 17mm L. S. Naval Pos.graduate School Monterey, California

thesF45
Heat transfer coefficients of steam wate

3 2768 002 00190 1
DUDLEY KNOX LIBRARY