

Tartalom

- ➤ Másolással összeépítés
- Kiválogatás + összegzés
- Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- Eldöntés + megszámolás
- ► Eldöntés + eldöntés
- > Sorozatszámítás mátrixra
- Eldöntés mátrixra

Másolással összeépítés

A **másolás** programozási tétellel összeépítés minden programozási tételre működik.

Csupán annyi a teendő, hogy a bemenetben szereplő $X_{1..N} \in H^N$ sorozat X_i elemei helyett i-edik feldolgozandó elemként az $f(X_i)$ -t kell írni, pl.

$$\sum_{i=1}^{N} X_i \to \sum_{i=1}^{N} f(X_i) \text{ vagy } \max_{i=1}^{N} X_i \to \max_{i=1}^{N} f(X_i)$$

... a kimenetben:

$$\begin{array}{ccc} \underset{t \in I}{\text{Kiv\'alogat}} \underset{T(X_{i})}{\overset{N}{\text{Kiv\'alogat}}} \underset{T(X_{i})}{\overset{N}{\text{Kiv\'alogat}}} \underset{T(X_{i})}{\overset{i=1}{\text{Kiv\'alogat}}} \\ \end{array}$$

- > Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f: H_1 \rightarrow H_2$
- \gt Kimenet: $Y \in H_2^N$
- ➤ Előfeltétel: –
- > Utófeltétel: $\forall i (1 \le i \le N)$: $Y_i = f(X_i)$

Másolással összeépítés

A másolás programozási tételnek volt azonban egy változata, ami új lehetőségeket teremt:

Utófeltétel: $\forall i(1 \le i \le N): Y_{p(i)} = X_i$, ahol p(i) lehet pl. N-i+1, ami éppen a sorozat elemei sorrendje megfordítását jelenti.

Több programozási tétel megoldása kihasználta az elemek sorrendjét, pl. a lehetséges megoldások közül az elsőt adta meg, vagy az összes várt elemet a bemenet sorrendjében adta meg.

Ez az összeépítés lehetőséget teremt a hátulról feldolgozásra.

- > Bemenet: $N \in \mathbb{N}$, $X \in H_1^N$ $f: H_1 \rightarrow H_2$ > Kimenet: $Y \in H_2^N$
- > Előfeltétel: -
- \succ Utófeltétel: $\forall i(1 \le i \le N)$: $Y_{p(i)} = f(X_i)$

Másolás + keresés

Feladat:

Adott tulajdonságú utolsó elem keresése.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$

 \triangleright Kimenet: Van \in L, Ind \in N

> Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$ és

 $Van \rightarrow 1 \leq Ind \leq N \text{ és } T(X_{Ind}) \text{ és}$

 $\forall i (Ind \le i \le N): nem T(X_i)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, T: H \rightarrow L$

≻ Kimenet: Van∈L, Ind∈N

> Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

Van→1≤Ind≤N és T(X_{Ind})

Másolás + keresés

Feladat:

Adott tulajdonságú utolsó elem keresése.

Másolás + keresés

Vezessük be a j=N-i+1 jelölést! Így i=1 esetén j=N, i növelése esetén j csökken, $i\leq N$ helyett $N-j+1\leq N$, azaz $1\leq j$ lesz. Ezzel iről j-re áttérve a megoldás a hátulról keresésre:

Feladat:

Adott tulajdonságú elemek összege – feltételes összegzés.

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{Z}^N, T: \mathbb{Z} \to \mathbb{L}$
- \triangleright Kimenet: $S \in \mathbb{Z}$
- ➤ Előfeltétel: –
- > Utófeltétel: $S = \sum_{i=1 \ T(X_i)}^{N} X_i$

Specifikáció (a végleges):

- > Bemenet: N∈N, X∈H^N
- > Kimenet: S∈H
- > Előfeltétel: N≥0
- ➤ Utófeltétel: S=F(X_{1 N})
- Definíció:

$$F(X_{1..N}]) := \begin{cases} F_0 & , N = 0 \\ f(F(X_{1..N-1}), X_N) & , N > 0 \end{cases}$$

$$\sum_{i=1}^{N} X_{i} := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_{i} + X_{N} & , N > 0 \end{cases}$$

Specifikáció_a:

> Utófeltétel_a: (Db,Y)= Kiválogat i é

$$S = \sum_{i=1}^{Db} X_{Y_i}$$

Specifikáció_b:

$$S = \sum_{i=1}^{Db} Y_i$$

Specifikáció:

- Bemenet: N∈N, X∈Z^N, T:Z→L
- ≻ Kimenet: S∈Z
- > Előfeltétel: –
- > Utófeltétel:S= $\sum_{i=1}^{N} X_i$

Specifikáció:

- > Bemenet: N∈N, X∈Z^N, T:Z→L
- ≻ Kimenet: S∈Z
- > Előfeltétel: -
- > Utófeltétel:S=∑X;
- ► Utófeltétel_a: (Db, Y) = Kiválogat i $\underset{T(X_i)}{\overset{i=1}{\sum}}$

$$\text{és} \quad S = \sum_{i=1}^{Db} X_{Y_i}$$

Specifikáció (a végleges):

- > Bemenet: N ∈ N,
 - $X \in H^N$
- > Kimenet: S∈H
- > Előfeltétel: N≥0
- ➤ Utófeltétel: S=F(X_{1 N})
- ➤ Definíció:

$$F(X_{1..N}]) := \begin{cases} F_0 &, N = \\ f(F(X_{1..N-1}), X_N) &, N > \end{cases}$$

Változó

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket!

Változó

1. megoldási ötlet_h:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket!

	Db:=0	i,Db:Egész Y:Tömb[]
Db:=0	i=1N	
i=1N $T(X[i])$	T(X[i])	
Db:=Db+1 Y[Db]:=X[i] —	Db:=Db+1	
	Y[Db]:=X[i]	
S:=0 i=1N	S:=0	
S:=S+X[i]	i=1 D b	
	S:=S+Y[i]	Π

2. megoldási ötlet:

Kiválogatás helyett azonnal adjuk össze a megfelelő elemeket!

→ nincs érték-/index-feljegyzés (Y-ban) + nincs számlálás (Db-ben)

Feladat:

Adott tulajdonságú elemek maximuma – **feltételes**

maximumkeresés.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$,

 $T \cdot H \rightarrow I$

 \triangleright Kimenet: MaxI \in N, Van \in L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i (1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

 $\forall i(1 \le i \le N): T(X_i) \rightarrow X_{May} \ge X_i$

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$, $X \in H^N$
- \gt Kimenet: Max \in N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és $\forall i \ (1 \leq i \leq N): X_{Max} \geq X_i$

- ▶ Bemenet: N∈N, X∈H^N, T:H→L
- ≻ Kimenet: Van∈L, Ind∈N
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X;) és Van→1≤Ind≤N és T(X_{Ind})

N

Specifikáció₂:

► Utófeltétel₂: (Van,MaxI)= $\underset{T(X_{\cdot})}{\text{MaxInd }} X_{i}$

Specifikáció:

- ▶ Bemenet: N∈N, X∈H^N
- > Kimenet: MaxI∈N, Van∈L
- Előfeltétel: –
- ▶ Utófeltétel: Van=∃i ($1 \le i \le N$): $T(X_i)$ és Van→($1 \le MaxI \le N$ és $T(X_{MaxI})$ és $\forall i(1 \le i \le N)$: $T(X_i) \rightarrow X_{MaxI} \ge X_i$)

Specifikáció₃:

ightharpoonup Utófeltétel₃: (Van,Ind,Ért)= $\mathop{\rm Max}_{\substack{i=1\\ T(X_i)}} X_i$

A megoldás felé:

Specifikáció':

N

► Utófeltétel': (Db,Y)=Kiválogat i és T(X;)

$$Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$$

$$MaxI = MaxInd X_{Y_i})$$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$ $X \in \mathbb{H}^N$

T:H→L

> Kimenet: Db∈N

 $Y \in \mathbb{N}^{\mathrm{Db}}$

> Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$ $Y \subseteq (1, 2, ..., N)$

Specifikáció:

- > Bemenet: N∈N, X∈H^N
- > Kimenet: Max∈N
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és ∀i (1≤i≤N): X_{Max}≥X_i

Kiolvasható az algoritmikus ötlet:

Válogassuk ki az adott tulajdonságúakat, majd válasszuk ki a maximumot, ha van értelme!

1. megoldás algoritmusa:

Válogassuk ki az adott tulajdonságúakat, majd ...!

1. megoldása algoritmusa:

..., majd válasszuk ki a maximumot, ha van értelme!

2. megoldási ötlet (és algoritmusa):
Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, amely **kisebb minden** "normál" elemnél.

Változó i:Egész

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1 N} \in \mathbb{H}^{N}$

 \triangleright Kimenet: $Db \in \mathbb{N}$,

$$MaxI_{1,N} \in \mathbb{N}^{\mathbb{N}}$$

➤ Előfeltétel: N>0

➤ Utófeltétel: Db = $\sum_{i=1}^{i=1} 1$ és

 $\forall i(1 \le i \le Db): \forall j(1 \le j \le N): X_{MaxI_i} \ge X_j$ és $MaxI \subseteq (1,2,...,N)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$ $X \in H^{\mathbb{N}}$

 $T:H\rightarrow L$

> Kimenet: $Db \in \mathbb{N}$ $Y \in \mathbb{N}^{Db}$

> Előfeltétel: −

> Utófeltétel: $Db = \sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$ $Y \subseteq (1,2,...,N)$

Specifikáció:

> Bemenet: N∈N,

 $X \in H^N$

> Kimenet: Max∈N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

Feladat:

2018. 11. 19. 17:13

Összes maximális elem kiválogatása.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1 N} \in \mathbb{H}^{N}$

 \triangleright Kimenet: $Db \in \mathbb{N}$,

 $MaxI_{1} \in \mathbb{N}^{N}$

► Előfeltétel: N>0

ightharpoonup Utófeltétel: MaxÉ= MaxÉrt X_i és $_{i=1}$

(Db,MaxI)= $\underset{i=1}{\text{Kiv\'alogat i}}$ $\underset{X_i=\text{Max\'e}}{\overset{N}{\text{Liv\'alogat i}}}$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 $X \in H^N$

 $T:H\rightarrow L$

 \triangleright Kimenet: $Db \in \mathbb{N}$

 $Y \in N^{Db}$

Előfeltétel: –

➤ Utófeltétel: Db= $\sum_{i=1}^{n} 1$ és

 $T(X_i)$

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ \'es}$

 $Y\subseteq(1,2,...,N)$

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$,

 $X \in H^N$

 \triangleright Kimenet: Max \in N

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele

egyenlőeket!

Specifikáció:

- ▶ Bemenet: N∈N, X∈H^N
- ≻ Kimenet: Db∈N, MaxI∈NDb
- > Előfeltétel: N>0
- > Utófeltétel: MaxÉ=MaxÉrt X:
- (Db, MaxI) = Kiválogat i

i=1 X_i=MaxÉ

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$,
- $X \in H^N$ > Kimenet: $Max \in N$
- > Előfeltétel: N>0
- > Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i$

1. megoldási ötlet:

Határozzuk meg a maximumot, majd válogassuk ki a vele

egyenlőeket!

(Db, MaxI) = Kiválogat i

Specifikáció: > Bemenet: $N \in \mathbb{N}$, $X \in \mathbb{H}^{\mathbb{N}}$ > Kimenet: $Db \in \mathbb{N}$, $MaxI \in \mathbb{N}^{Db}$ > Előfeltétel: N > 0> Utófeltétel: $MaxÉ = MaxÉrt X_i$ i=1

- > Bemenet: $N \in \mathbb{N}$ $X \in H^{\mathbb{N}}$ $T: H \to L$
- > Kimenet: $Db \in N$ $Y \in N^{Db}$
- > Előfeltétel: –
- > Utófeltétel: $Db = \sum_{i=1}^{1} 1$ és $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$ $Y \subseteq (1, 2, ..., N)$

2. megoldási ötlet:

A pillanatnyi maximálissal egyenlőeket azonnal válogassuk ki! Ha "feleslegeset" válogattunk ki, azt a következő maximumnál felülírjuk.

Specifikáció:			
> Bemenet: N∈N, X∈H ^N			
> Kimenet: Db∈N,			
$MaxI \in N^{Db}$			
≻ Előfeltétel: N>0 N			
> Utófeltétel: MaxÉ=MaxÉrt X _i és			
i=1			
(Db, MaxI) = Kiválogat i			
i=1 X _i =MaxÉ			

	,		
Db:=1; MaxI[1]:=1; MaxÉ:=X[1]			
i=2N			
X[i]>MaxÉ	X[i]=MaxÉ		
Db:=1	Db:=Db+1		
MaxI[1]:=i	MaxI[Db]:=i		
MaxÉ:=X[i]			

Változó MaxÉ:TH i:**Egész**

Eldöntés + megszámolás

Feladat:

Van-e egy sorozatban legalább K darab adott tulajdonságú

elem?

Specifikáció:

► Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N$,

 $T:H\rightarrow L$

- ➤ Kimenet: Van∈L
- ➤ Előfeltétel: K>0
- ► Utófeltétel: $db = \sum_{i=1 \atop T(X_i)}^{N} 1$ és $Van = db \ge K$

Specifikáció:

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$, $T: H \rightarrow \mathbb{I}$.
- > Kimenet: Van∈L
- > Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

- > Bemenet: N∈N,
 - $X \in H^N$, $T: H \rightarrow L$
- ➤ Kimenet: Db∈N
- > Előfeltétel: -
- Vtófeltétel: Db= $\sum_{i=1}^{N} 1$

Eldöntés + megszámolás

Változó

i:Egész

1. megoldási ötlet:

Számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e! (Azaz valójában nincs: eldöntés tétel!)

Specifikáció: db = 0> Bemenet: $N,K \in \mathbb{N}$, $X \in H^N$ > Kimenet: Van∈L i=1..N➤ Előfeltétel: – [K>0] ▶ Utófeltétel:db= $\sum 1$ és Van=db≥K db = db + 1Specifikáció: > Bemenet: N∈N, Van:=db≥K $X \in H^N$ T:H→L ➤ Kimenet: Db∈N Db:=0> Előfeltétel: i=1..N \rightarrow Utófeltétel: Db= $\sum_{i=1}^{n}$ T(X[i])Db:=Db+1

Eldöntés + megszámolás

i:Egész

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

Keresés + megszámolás

Feladat:

Egy sorozatban melyik a K. adott tulajdonságú elem (ha van

egyáltalán)?

Specifikáció:

► Bemenet: N,K∈N, $X_{1..N}$ ∈H^N, T:H→L

 \triangleright Kimenet: Van \in L, KI \in N

➤ Előfeltétel: K>0

> Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{1} 1 = K$ és

Van
$$\rightarrow$$
1 \leq KI \leq N és $\sum_{j=1 \atop T(X_i)}^{KI}$ 1 $=$ K és $T(X_{KI})$

Specifikáció:

- > Bemenet: N∈N, X∈H^N, T:H→L
- ≻ Kimenet: Van∈L, Ind∈N
- > Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→1≤Ind≤N és T(X_{Ind})

- > Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$,
 - T:H→L
- ➤ Kimenet: Db∈N
- Előfeltétel: –
- \rightarrow Utófeltétel: Db= $\sum_{i=1}^{n} 1$

Keresés + megszámolás

1. megoldási ötlet:

Az előbbi ötlet: "számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e..." kevés, még hátra van a K. újbóli megkeresése...

A működőnek látszó ötlet: a megszámolás helyett kiválogatás

kell... és a keresésre nincs szükség...

... de helypazarló és túl hosszadalmas!

- \triangleright Bemenet: N,K \in N, X \in H^N
- > Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0
- ▶ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{i} 1 = K$ és Van→1≤KI≤N és $\sum_{j=1}^{KI} 1 = K$ és $T(X_{KI})$

Specifikáció: > Bemenet: N,K∈N, X∈H^N

- > Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0

Specifikáció:

> Előfeltétel: –

i = 1

➤ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{n} 1=K$ és Van→1≤KI≤N és $\sum_{j=1}^{KI} 1=K$ és $T(X_{KI})$

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, T: H \rightarrow L$

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Specifikáció:

> Bemenet: N∈N.

≻ Kimenet: Db∈N≻ Előfeltétel: –

i≤N és nem T(X[i])

Van

Db:=0

i:=i+1

2018. 11. 19. 17:13

Van:=i≤N

Ind:=i

 \triangleright Utófeltétel: Db= $\sum 1$

Van→1≤Ind≤N és T(X_{Ind})

 $X \in H^N$

T:H→L

i=1..N

Db:=Db+1

T(X[i])

➤ Kimenet: Van∈L, Ind∈N

Keresés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább: keresés a K.-ig.

Keresés + megszámolás

2. megoldási ötlet:

Ha megtaláltunk a K.-at, akkor jegyezzük föl az indexét!

- > Bemenet: N,K∈N, X∈ H^N
- ➤ Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0
- ▶ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{i} 1=K$ és Van \rightarrow 1≤KI≤N és $\sum_{j=1}^{KI} 1=K$ és $T(X_{KI})$

Keresés + másolás

Feladat:

Egy sorozat első T tulajdonságú eleme előtti elemei kiválogatása (az összes, ha nincs T tulajdonságú).

Specifikáció:

- > Bemenet: N,K∈N, X_1 N∈HN, $T:H\to L$
- \triangleright Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{H}^{\mathbb{N}}$
- ➤ Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$ és (Van és 0≤Db<N és $T(X_{Db+1})$ vagy Db=N) és $\forall i(1\leq i\leq Db)$: nem $T(X_i)$ és $Y_i=X_i$

Specifikáció:

- > Bemenet: N∈N, X∈H^N, T:H→L
- ➤ Kimenet: Van ∈ L, Ind ∈ N
- > Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind})

- ➤ Bemenet: $N \in \mathbb{N}$, $X \in H^{\mathbb{N}}$, $T : H \rightarrow I$.
- ➤ Kimenet: Db∈N
- ➤ Előfeltétel: –
- > Utófeltétel: Db= $\sum_{i=1}^{\infty} 1$

Keresés + másolás

1. megoldási ötlet:

Az első ötlet: "keressük meg az első adott tulajdonságú elemet, majd az előtte levőket másoljuk le…"

... hosszadalmas!

- ▶ Bemenet: $N,K \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}$
- > Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $\sum_{j=1}^{i} 1 = K$ és

$$Van \rightarrow 1 \le KI \le N$$
 és $\sum_{j=1}^{KI} 1 = K$ és $T(X_{KI})$

Specifikáció: > Bemenet: N,K∈N, X∈H^N

- \triangleright Kimenet: Van \in L, KI \in N
- ➤ Előfeltétel: K>0

Specifikáció:

> Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{i} 1=K$ és Van→1≤KI≤N és $\sum_{j=1}^{KI} 1=K$ és $T(X_{KI})$

> Bemenet: $N \in \mathbb{N}, X \in \mathbb{H}^{\mathbb{N}}, T: H \rightarrow L$

Keresés + másolás

2. megoldási ötlet:

Keresés közben másoljuk le a szükséges elemeket:

➤ Kimenet: Van∈L, Ind∈N > Előfeltétel: – > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és Van→1≤Ind≤N és T(X_{Ind}) Specifikáció: > Bemenet: N∈N, $X \in H^N$ T:H→L ➤ Kimenet: Db∈N > Előfeltétel: - \triangleright Utófeltétel: Db= $\sum 1$ i:=1 i≤N és nem T(X[i]) i:=i+1Van:=i≤N Van Ind:=i Db:=0i=1..NT(X[i])

Db:=Db+1

Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, Y_{1,M} \in \mathbb{H}^M$

➤ Kimenet: Van ∈ L

➤ Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$, $\exists j(1 \le j \le M)$: $X_i = Y_i$

> Utófeltétel': $Van = \exists A = 0 \ \exists$

Specifikáció:

➤ Bemenet: $N \in N$, $X \in H^N$, $T \cdot H \rightarrow I$.

> Kimenet: Van∈L

> Előfeltétel: –

➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

Eldöntés + eldöntés

1. megoldási ötlet:

Határozzuk meg a két sorozat közös elemeit (metszet), s ha ennek elemszáma legalább 1, akkor van közös elem!

Specifikáció:

- > Az utófeltétel "igazítása":
 - ❖ a metszet részeredménye volt: Db∈N
 - * a módosított utófeltétel: metszet utófeltétele és Van=Db>0.

Megjegyzés:

A metszet = kiválogatás + eldöntés

Specifikáció:

- > Bemenet: N,M∈N, X∈HN, Y∈HM
- > Kimenet: Van∈L
- > Előfeltétel: -
- » Utófeltétel: Van=∃i(1≤i≤N), ∃j(1≤j≤M): X_i=Y_j

Specifikáció:

- \gt Bemenet: N,M \in N, X \in H^N, Y \in H^M
- \triangleright Kimenet: $Db \in \mathbb{N}$, $Z \in H^{Db}$
- ➤ Előfeltétel: HalmazE(X) és HalmazE(Y)
- > Utófeltétel: $Db = \sum_{i=1}^{1} 1$ és $\forall i (1 \le i \le Db) \cdot (7 \in I)$

Eldöntés + eldöntés

2. megoldási ötlet:

Ha már találtunk 1 darab közös elemet, akkor ne nézzük

tovább!

> Utófeltétel': Van =
$$\prod_{i=1}^{N} \left(\prod_{j=1}^{M} X_i = Y_j \right)$$

Specifikáció:

- > Bemenet: N∈N, X∈H^N,
 - T:H→L
- > Kimenet: Van∈L
- Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$

```
i:=0

Van:=Hamis

i < N és nem Van

i:=i+1

Van:=T(X[i])
```

```
i:=0; Van:=Hamis

i < N és nem Van

i := i+1; j := 1

j \le M és X[i] \ne Y[j]

j := j+1

Van:=j \le M
```


Összegzés mátrixra

Feladat:

Egy mátrix elemeinek összege.

Specifikáció:

➤ Bemenet: N,M∈N, $X_{1..N,1..M}$ ∈ $\mathbb{Z}^{N\times M}$

 \triangleright Kimenet: $S \in \mathbb{Z}$

> Előfeltétel: –

➤ Utófeltétel:S= $\sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$

Specifikáció (a végleges):

- > Bemenet: N∈N,
 - $X \in H^N$
- ➤ Kimenet: S∈H
- > Előfeltétel: -
- > Utófeltétel: S=F(X_{1 N})
- Definíció:

$$F(X_{1..N}) := \begin{cases} F_0 &, N = 0 \\ f(F(X_{1..N-1}), X_N) &, N > 0 \end{cases}$$

$$\sum_{i=1}^{N} X_i := \begin{cases} 0 & , N = 0 \\ \sum_{i=1}^{N-1} X_i + X_N & , N > 0 \end{cases}$$

Összegzés mátrixra

Algoritmus:

Ez két – egymásba ágyazott – összegzés tétel alkalmazását kívánja meg.

Specifikáció:

- \triangleright Bemenet: N,M \in N, X \in Z^{N×M}
- > Kimenet: S∈Z
- Előfeltétel: –
- > Utófeltétel: $S = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$

	Változó
S:=0	i,j,S0:E
i=1N	
S0:=0	
j=1M	
S0:=S0+X[i,j]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
S:=S+S0	

i,j,S0:Egész

Összegzés mátrixra

Algoritmus:

A megoldás lényegében csak abban különbözik az alapváltozattól, hogy a mátrix miatt két – egymásba ágyazott – ciklusra van szükség.

Specifikáció:

- > Bemenet: N,M \in N, X \in Z^{N×M}
- ➤ Kimenet: S∈Z
- > Előfeltétel: -
- > Utófeltétel: $S = \sum_{i=1}^{N} \left(\sum_{j=1}^{M} X_{i,j} \right)$

		Változó
S:=	0	i,j: Egész
	i=1N	
	j=1M	
	S:=S+X[i,j]	

Megjegyzés: a másolás, a megszámolás és a maximumkiválasztás tétel hasonló elven valósítható meg mátrixokkal.

Feladat:

Van-e egy mátrixban adott tulajdonságú elem?

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1..N.1..M} \in \mathbb{H}^{N \times M}$

➤ Kimenet: Van∈L

➤ Előfeltétel: –

 \triangleright Utófeltétel: Van= $\exists i(1 \le i \le N)$, $\exists j(1 \le j \le M)$: $T(X_{i,j})$

```
> Utófeltétel': Van= \exists \left( \begin{matrix} M \\ \exists \\ j=1 \end{matrix} T(X_{i,j}) \right)
```

Specifikáció:

- ➤ Bemenet: $N \in N$, $X \in H^N$, $T: H \rightarrow L$
- ➤ Kimenet: Van ∈ L
- > Előfeltétel: –
- > Utófeltétel: Van=∃i(1≤i≤N): $T(X_i)$

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Algoritmus:

Az alapváltozathoz képest itt meg kell fogalmazni a mátrix elemein való – nem feltétlenül – végighaladást, soronként, balról jobbra!

Megjegyzés: a keresés és a kiválasztás tétel is hasonlóan fogalmazható meg mátrixokra.

Áttekintés

- ➤ Másolással összeépítés
- Kiválogatás + összegzés
- Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- Eldöntés + megszámolás
- ► Eldöntés + eldöntés
- > Sorozatszámítás mátrixra
- > Eldöntés mátrixra

