For the intraband terms,

$$I = C \left[-\frac{1}{2\omega_{nm}^2} \frac{1}{\omega_{nm} - \omega} + \frac{2}{\omega_{nm}^2} \frac{1}{\omega_{nm} - 2\omega} + \frac{1}{2\omega_{nm}^2} \frac{1}{\omega} \right] - D \left[-\frac{3}{2\omega_{nm}^3} \frac{1}{\omega_{nm} - \omega} + \frac{4}{\omega_{nm}^3} \frac{1}{\omega_{nm} - 2\omega} + \frac{1}{2\omega_{nm}^3} \frac{1}{\omega} - \frac{1}{2\omega_{nm}^2} \frac{1}{(\omega_{nm} - \omega)^2} \right], \tag{1}$$

where $C = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} (r_{nm}^{\text{LDA,b}})_{;k^c}$, and $D = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{b} \Delta_{nm}^{c}$. Time-reversal symmetry allow us to write, $\mathbf{r}_{mn}(\mathbf{k}) = \mathbf{r}_{nm}(-\mathbf{k})$, $\mathbf{r}_{mn;\mathbf{k}}(\mathbf{k}) = -\mathbf{r}_{nm;\mathbf{k}}(-\mathbf{k})$, $\mathcal{V}_{mn}^{\Sigma,a}(-\mathbf{k}) = -\mathcal{V}_{nm}^{\Sigma,a}(\mathbf{k})$, $\omega_{mn}^{S}(-\mathbf{k}) = \omega_{mn}^{S}(\mathbf{k})$, and $\Delta_{nm}^{a}(-\mathbf{k}) = -\Delta_{nm}^{a}(\mathbf{k})$. Also, for a clean cold semiconductor $f_n = 1$ for an occupied or valence (n = v) band and $f_n = 0$ for an empty or conduction (n = c) band independent of \mathbf{k} and $f_{nm} = -f_{mn}$.

We also use the following expression,

$$\left(\frac{f_{mn}r_{nm}^{b}}{\omega_{nm}^{S} - \omega_{2}}\right)_{:k^{c}} = \frac{f_{mn}}{\omega_{nm}^{S} - \omega} \left(r_{nm}^{LDA,b}\right)_{:k^{c}} - \frac{f_{mn}r_{nm}^{b}\Delta_{nm}^{c}}{(\omega_{nm}^{S} - \omega)^{2}},$$
(2)

where LDA and scissored energies combine.