# 1 Derivação Numérica

Dado um conjunto de pontos  $(x_i, y_i)_{i=1}^n$ , a derivada  $(\frac{dy}{dx})_i$  pode ser calculada de várias formas. Na próxima seção trabalharemos com diferenças finitas, que é mais adequada quando as abcissas estão próximas e os dados não sofrem perturbações significativas. Na seção subsequente trataremos os casos quando os dados oscilam via ajuste ou interpolações de curvas.

### 1.1 Aproximação da derivada por diferenças finitas

A derivada  $f'(x_0)$  de uma função f(x) no ponto  $x_0$  é

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Da definição, se  $h \neq 0$  é pequeno (não muito pequeno para evitar o cancelamento catastrófico), é esperado que uma aproximação para a derivada no ponto  $x_0$  seja dada por

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}.$$

Observe que se h for exatamente a distância entre  $x_0$  e  $x_1$ , então  $x_0 + h = x_1$  e

$$f'(x_0) \approx \frac{f(x_1) - f(x_0)}{h} = \frac{y_1 - y_0}{h}.$$

**Exemplo 1.** Calcule a derivada numérica da função  $f(x) = \cos(x)$  no ponto x = 1 usando h = 0.1, h = 0.001 e h = 0.0001.

A tabela abaixo mostra a derivada numérica para cada valor de h.

| h      | f(1+h)                                 | $\frac{f(1+h) - f(1)}{h}$                          |
|--------|----------------------------------------|----------------------------------------------------|
| 0.1    | $f(1.1) = \cos(1.1) = 0.4535961$       | $\frac{0.4535961 - 0.5403023}{0.1} = -0.8670618$   |
| 0.01   | $f(1.01) = \cos(1.01) = 0.4535961$     | $\frac{0.5318607 - 0.5403023}{0.01} = -0.8441584$  |
| 0.001  | $f(1.001) = \cos(1.001) = 0.4535961$   | $\frac{0.5403023 - 0.5403023}{0.001} = -0.841741$  |
| 0.0001 | $f(1.0001) = \cos(1.0001) = 0.4535961$ | $\frac{0.5403023 - 0.5403023}{0.0001} = -0.841498$ |

Observe que quanto menor h, melhor é a aproximação, visto que o valor exato para a derivada é  $f'(1) = -\sin(1) = -0.8414710$ . Porém, quando  $h = 10^{-13}$ , a derivada numérica é -0.8404388, resultado pior que aquele para h = 0.0001 (usando aritmética de computador no scilab). Além disso, quando  $h = 10^{-16}$ , a derivada numérica calculada no scilab é zero (cancelamento catastrófico). Isso nos motiva a pensar qual é o melhor h.

Essa aproximação para a derivada é denominada diferenças progressivas. A derivada numérica também pode ser aproximada usando definições equivalentes:

$$f'(x_0) \approx \frac{f(x_0) - f(x_0 - h)}{h} = \frac{y_i - y_{i-1}}{h}$$

que é denominada diferenças regressivas ou

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \frac{y_{i+1} - y_{i-1}}{2h}$$

que é denominada diferenças centrais.

**Exemplo 2.** Calcule a derivada numérica da função  $f(x) = \cos(x)$  no ponto x = 1 usando diferenças progressivas, diferenças regressivas e diferenças centrais com h = 0.1, h = 0.01 e h = 0.001.

A tabela abaixo mostra a derivada numérica para cada valor de h.

| h     | diferenças progressivas | diferenças regressivas                             | diferenças centrais                                    |
|-------|-------------------------|----------------------------------------------------|--------------------------------------------------------|
| 0.1   | -0.8670618              | $\frac{\cos(1) - \cos(0.9)}{0.1} = -0.8130766$     | $\frac{\cos(1.1) - \cos(0.9)}{0.2} = -0.8412007$       |
| 0.01  | -0.8441584              | $\frac{\cos(1) - \cos(0.99)}{0.01} = -0.8387555$   | $\frac{\cos(1.01) - \cos(0.99)}{0.02} = -0.8414570$    |
| 0.001 | -0.841741               | $\frac{\cos(1) - \cos(0.999)}{0.001} = -0.8412007$ | $\frac{\cos(1.001) - \cos(0.999)}{0.002} = -0.8414708$ |

#### 1.2 Erros de truncamento

Seja  $D_{+,h}f(x_0)$  a aproximação da derivada de f em  $x_0$  por diferenças progressivas,  $D_{-,h}f(x_0)$  a aproximação por diferenças regressivas e  $D_{0,h}f(x_0)$  a aproximação por diferenças centrais, então

$$D_{+,h}f(x_0) - f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0)$$

$$= \frac{f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3) - f(x_0)}{h} - f'(x_0)$$

$$= \frac{h}{2}f''(x_0) + O(h^2) = O(h).$$

Analogamente,

$$D_{-,h}f(x_0) - f'(x_0) = \frac{f(x_0) - f(x_0 - h)}{h} - f'(x_0)$$

$$= \frac{f(x_0) - \left(f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3)\right)}{h} - f'(x_0)$$

$$= -\frac{h}{2}f''(x_0) + O(h^2) = O(h).$$

Também,

$$D_{0,h}f(x_0) - f'(x_0) = \frac{f(x_0 + h) - f(x_0 - h)}{2h} - f'(x_0)$$

$$= \frac{f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3) - \left(f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) + O(h^3)\right)}{2h} - f'(x_0)$$

$$= O(h^2).$$

**Exemplo 3.** Calcule a derivada numérica e o erro de truncamento de  $f(x) = e^{-x}$  em x = 1.5 pela fórmula de diferença progressiva para h = 0.1, h = 0.01 e h = 0.001.

Como 
$$|f''(x)| = |e^{-x}| < 1$$
, então  $|f'_{+}(x_0) - f'(x_0)| < \frac{h}{2}$ .

| h     | diferenças progressivas | $erro = \frac{h}{2}$ |
|-------|-------------------------|----------------------|
| 0.1   | -0.2123364              | 0.05                 |
| 0.01  | -0.2220182              | 0.005                |
| 0.001 | -0.2230186              | 0.0005               |

O valor exato da derivada é f'(1.5) = -0.2231302.

#### 1.3 Erros de arredondamento

Para entender como os erros de arredondamento se propagam ao calcular as derivadas numéricas vamos considerar o operador de diferenças finitas progressivas

$$D_{+,h}f(x) = \frac{f(x+h) - f(x)}{h}.$$

Nesse contexto temos o valor exato f'(x) para a derivada, a sua aproximação numérica  $D_{+,h}f(x)$  e a representação em número de máquina do operador  $D_{+,h}f(x)$  que denoraremos por  $\overline{D_{+,h}f(x)}$ . Seja  $\varepsilon(x,h)$  o erro de arredondamento ao calcularmos a derivada e consideremos

$$\overline{D_{+,h}f(x)} = D_{+,h}f(x)(1+\varepsilon(x,h)) = \frac{\overline{f(x+h)} - \overline{f(x)}}{h}(1+\varepsilon(x,h)).$$

Também, consideremos

$$|\overline{f(x+h)} - f(x+h)| = \delta(x,h) \le \delta$$

е

$$|\overline{f(x)} - f(x)| = \delta(x, 0) \le \delta,$$

onde  $\overline{f(x+h)}$  e  $\overline{f(x)}$  são as representação em ponto flutuante dos números f(x+h) e f(x), respectivamente. A diferença do valor da derivada e sua aproximação representada em ponto flutuante pode ser estimada da seguinte forma:

$$\left| f'(x) - \overline{D_{+,h}} f(x) \right| = \left| f'(x) - \frac{\overline{f(x+h)} - \overline{f(x)}}{h} (1 + \varepsilon(x,h)) \right|$$

$$= \left| f'(x) - \left( \frac{\overline{f(x+h)} - \overline{f(x)}}{h} + \frac{f(x+h) - f(x+h)}{h} + \frac{f(x) - f(x)}{h} \right) (1 + \varepsilon) \right|$$

$$= \left| f'(x) + \left( -\frac{f(x+h) - f(x)}{h} - \frac{\overline{f(x+h)} - f(x+h)}{h} + \frac{\overline{f(x)} - f(x)}{h} \right) (1 + \varepsilon) \right|$$

$$\leq \left| f'(x) - \frac{f(x+h) - f(x)}{h} \right| + \left( \left| \frac{\overline{f(x+h)} - f(x+h)}{h} \right| + \left| \frac{\overline{f(x)} - f(x)}{h} \right| \right) |1 + \varepsilon|$$

$$+ \left| \frac{f(x+h) - f(x)}{h} \right| \varepsilon$$

$$\leq Mh + \left( \left| \frac{\delta}{h} \right| + \left| \frac{\delta}{h} \right| \right) |1 + \varepsilon| + |f'(x)| \varepsilon$$

$$\leq Mh + \left( \frac{2\delta}{h} \right) |1 + \varepsilon| + |f'(x)| \varepsilon$$

onde

$$M = \frac{1}{2} \max_{x \le y \le x+h} |f''(y)|$$

está relacionado com o erro de truncamento.

Esta estimativa mostra que se o valor de h for muito pequeno o erro ao calcular a aproximação numérica cresce. Isso nos motiva a procurar o valor ótimo de h que minimiza o erro.

**Exemplo 4.** Estude o comportamento da derivada de  $f(x) = e^{-x^2}$  no ponto x = 1.5 quando h fica pequeno.

Segue a tabela com os valores da derivada para vários valores de h.

| h               | $10^{-2}$  | $10^{-4}$  | $10^{-6}$  | $10^{-7}$  | $10^{-8}$  | $10^{-9}$  |
|-----------------|------------|------------|------------|------------|------------|------------|
| $D_{+,h}f(1.5)$ | -0.3125246 | -0.3161608 | -0.3161973 | -0.3161976 | -0.3161977 | -0.3161977 |
|                 |            |            |            |            |            |            |
| h               | $10^{-10}$ | $10^{-11}$ | $10^{-12}$ | $10^{-13}$ | $10^{-14}$ | $10^{-15}$ |
| $D_{+,h}f(1.5)$ | -0.3161976 | -0.3161971 | -0.3162332 | -0.3158585 | -0.3178013 | -0.3747003 |

Observe que o valor exato é -0.3161977 e o h ótimo é algo entre  $10^{-8}$  e  $10^{-9}$ .

### 1.4 Fórmula de três e cinco pontos para a derivada primeira

Para aproximar a derivada de uma função f(x) em  $x_0$ ,  $x_1$  ou  $x_2$  usaremos os três pontos vizinhos  $(x_0, f(x_0))$ ,  $(x_1, f(x_1))$  e  $(x_2, f(x_2))$ . Uma interpolação usando polinômios de Lagrange para esses três pontos é da forma:

$$f(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} + \frac{f'''(\xi(x))}{6} (x - x_0)(x - x_1)(x - x_2).$$

A derivada de f(x) é

$$f'(x) = f(x_0) \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

$$+ \frac{f'''(\xi(x))}{6} ((x - x_1)(x - x_2) + (x - x_0)(2x - x_1 - x_2))$$

$$+ D_x \left(\frac{f'''(\xi(x))}{6}\right) (x - x_0)(x - x_1)(x - x_2).$$

$$(1)$$

Trocando x por  $x_0$ , temos

$$f'(x_0) = f(x_0) \frac{2x_0 - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{2x_0 - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{2x_0 - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

$$+ \frac{f'''(\xi(x_0))}{6} ((x_0 - x_1)(x_0 - x_2) + (x_0 - x_0)(2x_0 - x_1 - x_2))$$

$$+ D_x \left(\frac{f'''(\xi(x_0))}{6}\right) (x_0 - x_0)(x_0 - x_1)(x_0 - x_2).$$

Considerando uma malha equiespaçada onde  $x_1 = x_0 + h$  e  $x_2 = x_0 + 2h$ , temos:

$$f'(x_0) = f(x_0) \frac{-3h}{(-h)(-2h)} + f(x_1) \frac{-2h}{(h)(-h)} + f(x_2) \frac{-h}{(2h)(h)} + \frac{f'''(\xi(x_0))}{6} ((-h)(-2h))$$

$$= \frac{1}{h} \left[ -\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$

Similarmente, trocando x por  $x_1$  ou trocando x por  $x_2$  na expressão (1), temos outras duas expressões

$$f'(x_1) = \frac{1}{h} \left[ -\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_1))}{6}$$

$$f'(x_2) = \frac{1}{h} \left[ \frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + h^2 \frac{f'''(\xi(x_2))}{3}$$

Podemos reescrever as três fórmulas da seguinte forma:

$$f'(x_0) = \frac{1}{h} \left[ -\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$

$$f'(x_0 + h) = \frac{1}{h} \left[ -\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0 + h))}{6}$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[ \frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0 + 2h))}{3}$$

ou ainda

$$f'(x_0) = \frac{1}{2h} \left[ -3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$
 (2)

$$f'(x_0) = \frac{1}{2h} \left[ f(x_0 + h) - f(x_0 - h) \right] + h^2 \frac{f'''(\xi(x_0))}{6}$$
(3)

$$f'(x_0) = \frac{1}{2h} \left[ f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + h^2 \frac{f'''(\xi(x_0))}{3}$$
(4)

Observe que uma das fórmulas é exatamente as diferenças centrais obtida anteriormente.

Analogamente, para construir as fórmulas de cinco pontos tomamos o polinômio de Lagrange para cinco pontos e chegamos a cinco fórmulas, sendo uma delas a seguinte:

$$f'(x_0) = \frac{1}{12h} \left[ f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi(x_0))$$
 (5)

**Exemplo 5.** Calcule a derivada numérica de  $f(x) = e^{-x^2}$  em x = 1.5 pela fórmula de três e cinco pontos para h = 0.1, h = 0.01 e h = 0.001.

A tabela mostra os resultados:

| h                       | h = 0.1    | h = 0.01     | h = 0.001        |
|-------------------------|------------|--------------|------------------|
| diferenças progressivas | -0.2809448 | -0.3125246   | -0.3158289       |
| diferenças regressivas  | -0.3545920 | -0.3199024   | -0.3165667       |
| três pontos usando (2)  | -0.3127746 | -0.3161657   | -0.3161974       |
| três pontos usando (3)  | -0.3177684 | -0.3162135   | -0.3161978       |
| três pontos usando (4)  | -0.3135824 | -0.3161665   | -0.3161974       |
| cinco pontos usando (5) | -0.3162384 | -0.316197677 | -0.3161976736860 |

O valor exato da derivada é f'(1.5) = -0.3161976736856.

## 1.5 Aproximação para a derivada segunda por diferenças centrais

Para aproximar a derivada segunda, considere as expansões em série de Taylor

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \frac{h^3}{6}f'''(x_0) + O(h^4)$$

$$f(x_0 - h) = f(x_0) - hf'(x_0) + \frac{h^2}{2}f''(x_0) - \frac{h^3}{6}f'''(x_0) + O(h^4).$$

Somando as duas expressões, temos:

$$f(x_0 + h) + f(x_0 - h) = 2f(x_0) + h^2 f''(x_0) + O(h^4)$$

ou seja, uma aproximação de segunda ordem para a derivada segunda em  $x_0$  é

$$f''(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2} + O(h^2) := D_{0,h}^2 f(x_0) + O(h^2),$$

onde

$$D_{0,h}^2 f(x_0) = \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$

**Exemplo 6.** Calcule a derivada segunda numérica de  $f(x) = e^{-x^2}$  em x = 1.5 para h = 0.1, h = 0.01 e h = 0.001.

A tabela mostra os resultados:

| h                  | h = 0.1   | h = 0.01  | h = 0.001 |
|--------------------|-----------|-----------|-----------|
| $D_{0,h}^2 f(1.5)$ | 0.7364712 | 0.7377814 | 0.7377944 |

Observe que  $f''(x) = (4x^2 - 2)e^{-x^2}$  e f''(1.5) = 0.7377946.

#### 1.6 Problemas de valor contorno

Nesta seção usaremos a aproximação numérica da derivada para resolver problemas de valor de contorno da forma

$$\begin{cases}
-u_{xx} = f(x, u), & a < x < b. \\
u(a) = u_a \\
u(b) = u_b
\end{cases}$$

Resolver numericamente o problema acima exige uma discretização do domínio [a, b], ou seja, dividir o domínio em N partes iguais, definindo

$$h = \frac{b - a}{N}$$

O conjunto de abcissas  $x_i$ , i=1,...,N+1 formam uma malha para o problema discreto. Nosso objetivo é encontrar as ordenadas  $u_i=u(x_i)$  que satisfazem a versão discreta:

$$\begin{cases} -\frac{u_{i+1}-2u_i+u_{i-1}}{h^2} = f(x_i, u_i), & 2 \le i \le N. \\ u_1 = u_a \\ u_{N+1} = u_b \end{cases}$$

O vetor solução  $(u_i)_{i=1}^{N+1}$  do problema é solução do sistema acima, que é linear se f for linear em u e não linear caso contrário.

Exemplo 7. Encontre uma solução numérica para o problema de contorno

$$\begin{cases} -u_{xx} + u = e^{-x}, & 0 < x < 1. \\ u(0) = 1 \\ u(1) = 2 \end{cases}$$

Observe que

$$h = \frac{1}{N}$$

e a versão discreta da equação é

$$\begin{cases} -\frac{u_{i+1}-2u_i+u_{i-1}}{h^2}+u_i=e^{-x_i}, & 2 \le i \le N. \\ u_1=1 \\ u_{N+1}=2 \end{cases}$$

ou seja,

$$\begin{cases} u_1 = 1 \\ -u_{i+1} + (2+h^2)u_i - u_{i-1} = h^2 e^{-x_i}, & 2 \le i \le N. \\ u_{N+1} = 2 \end{cases}$$

que é um sistema linear. A sua forma matricial é:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2+h^2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2+h^2 & \cdots & 0 & 0 & 0 \\ \vdots & & & \ddots & & & \\ 0 & 0 & 0 & \cdots & -1 & 2+h^2 & -1 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_N \\ u_{N+1} \end{bmatrix} = \begin{bmatrix} 1 \\ h^2 e^{-x_2} \\ h^2 e^{-x_3} \\ \vdots \\ h^2 e^{-x_N} \\ 2 \end{bmatrix}$$

Para N = 10, temos a seguinte solução:

## 1.7 Derivada via ajuste ou interpolação

Dado os valores de uma função em pontos  $\{(x_i, y_i)\}_{i=1}^N$ , as derivadas  $\left(\frac{dy}{dx}\right)_i$  podem ser obtidas através da derivada de uma curva que melhor ajusta ou interpola os pontos. Esse tipo de técnica é necessário quando os pontos são muito espaçados entre si ou quando a função oscila muito. Por exemplo, dado os pontos (0, 1), (1, 2), (2, 5), (3, 9), a parábola que melhor ajusta os pontos é

$$Q(x) = 0.95 + 0.45x + 0.75x^2.$$

Usando esse ajuste para calcular as derivadas, temos

$$Q'(x) = 0.45 + 1.5x$$

е

$$y'(x_1) \approx Q'(x_1) = 0.45,$$
  $y'(x_2) \approx Q'(x_2) = 1.95,$   $y'(x_3) \approx Q'(x_3) = 3.45$  e  $y'(x_4) \approx Q'(x_4) = 4.95$ 

Agora olhe o gráfico da seguinte tabela de pontos.

| x  | y     |
|----|-------|
| 0. | 1.95  |
| 1  | 1.67  |
| 2  | 3.71  |
| 3  | 3.37  |
| 4  | 5.12  |
| 5  | 5.79  |
| 6  | 7.50  |
| 7  | 7.55  |
| 8  | 9.33  |
| 9  | 9.41  |
| 10 | 11.48 |



Observe que as derivadas calculadas por diferenças finitas oscilam entre um valor pequeno e um grande em cada intervalo e além disso, a fórmula progressiva difere da regressiva significantemente. Por exemplo, por diferenças regressivas  $f'(7) \approx \frac{(7.55-7.50)}{1} = 0.05$  e por diferenças progressivas  $f'(7) \approx \frac{(9.33-7.55)}{1} = 1.78$ . A melhor forma de calcular a derivada aqui é fazer um ajuste de curva. A reta que melhor ajusta os dados da tabela é y = f(x) = 1.2522727 + 0.9655455x. Usando esse ajuste, temos  $f'(7) \approx 0.9655455$ .

# 2 Integração

# 2.1 Introdução

Considere o problema de calcular a área entre uma função positiva, o eixo x e as retas x=a e x=b. O valor exato dessa área é calculada fazendo uma aproximação por retângulos com bases iguais e depois tomando o limite quando o número de retângulos tende ao infinito:

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) h_n,$$

onde  $h_n = \frac{b-a}{n}$  é o tamnho da base dos retângulo e  $f(x_i)$ ,  $1 \le i \le n$ ,  $a + (i-1)h \le x_i \le a + ih$ , é a altura dos retângulos. Essa definição é generalizada para cálculo de integrais num intervalo [a, b]:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i)h_n.$$

A figura abaixo mostra um exemplo quando  $f(x) = x^2 + 1$ ,  $0 \le x \le 2$ . Temos a aproximação por um retângulo com base  $h_1 = 2$ , depois com dois retângulos de base  $h_2 = 1$  e, finalmente com quatro retângulo de bases  $h_3 = 0.5$ .



Os valores aproximados para a integral são dados na tabela:

|                         | $h_1 = 2$      | $h_2 = 1$                       | $h_3 = 0.5$ | $h_4 = 0.25$ |
|-------------------------|----------------|---------------------------------|-------------|--------------|
| $\int_0^2 (x^2 + 1) dx$ | $h_1 f(1) = 4$ | $h_2 f(0.5) + h_2 f(1.5) = 4.5$ | 4.625       | 4.65625      |

Observe que

$$\int_0^2 (x^2 + 1)dx = \left[ \frac{x^3}{3} + x \right]_0^2 = \frac{8}{3} + 2 = 4.6666667$$

## 2.2 Regras de Integração Numérica

A integral de uma função num intervalo [a,b], também chamada de quadratura numérica, é aproximada pela soma

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} a_{i} f(x_{i}),$$

onde  $x_i$ ,  $1 \le i \le n$ , são pontos distintos do intervalo [a,b]. Nessa definição, a integral  $\int_0^2 (x^2 + 1) dx$  (dada na seção 2.1) usando uma aproximação por retângulo usa apenas um ponto, o ponto médio do intervalo  $(x_1 = 1)$ , e a soma se reduz a uma parcela ((2-0)f(1)). A fórmula geral para essa caso, chamado de regra do ponto médio é:

$$\int_{a}^{b} f(x)dx \approx (b-a)f\left(\frac{a+b}{2}\right) := hf(x_1). \tag{6}$$

A forma natural de obter as regras de integração é usar o polinômio de Lagrange que passa pelo pontos  $\{(x_i, f(x_i))\}_{i=1}^n$ 

$$f(x) = P_n(x) + \text{termo de erro} = \sum_{i=1}^n f(x_i) L_i(x) + \prod_{i=1}^n (x - x_i) \frac{f^{(n+1)}(\xi(x))}{(n+1)!}.$$

e integramos

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} \left[ f(x_i) \int_{a}^{b} L_i(x)dx \right] + \frac{1}{(n+1)!} \int_{a}^{b} \prod_{i=1}^{n} (x - x_i) f^{(n+1)}(\xi(x)) dx.$$

A fórmula de quadratura então é

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} a_{i} f(x_{i}),$$

onde

$$a_i = \int_a^b L_i(x) dx$$

#### 2.2.1 Regra do ponto médio

A regra do ponto médio (6) pode ser deduzida mais formalmente usando a expansão de Taylor

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(\xi(x))}{2}(x - x_1)^2$$

que leva a integral

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x_{1})dx + f'(x_{1}) \int_{a}^{b} (x - x_{1})dx + \int_{a}^{b} \frac{f''(\xi(x))}{2} (x - x_{1})^{2} dx.$$

Usando o teorema do valor médio para integrais e que h=b-a e  $x_1=(a+b)/2$ , temos:

$$\int_{a}^{b} f(x)dx = hf(x_{1})dx + f'(x_{1}) \int_{a}^{b} (x - x_{1})dx + f''(\eta) \int_{a}^{b} \frac{1}{2}(x - x_{1})^{2}dx.$$

$$= hf(x_{1}) + f'(\eta) \left[ \frac{(x - x_{1})^{2}}{2} \right]_{a}^{b} + f''(\eta) \left[ \frac{1}{6}(x - x_{1})^{3} \right]_{a}^{b}$$

$$= hf(x_{1}) + f'(\eta) \left[ \frac{(b - x_{1})^{2}}{2} - \frac{(a - x_{1})^{2}}{2} \right] + f''(\eta) \left[ \frac{1}{6}(b - x_{1})^{3} - \frac{1}{6}(a - x_{1})^{3} \right]$$

$$= hf(x_{1}) + \frac{h^{3}f''(\eta)}{3}.$$

para  $a \leq \eta \leq b$ .

Exemplo 8. Use a regra do ponto médio para aproximar a integral

$$\int_0^1 e^{-x^2} dx.$$

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplica a regra do ponto médio em cada uma delas. Finalmente, repita o processo dividindo em quatro integrais.

Usando o intervalo [0,1], temos h=1 e  $x_1=1/2$ . A regra do ponto médio resulta em

$$\int_0^1 e^{-x^2} dx \approx 1 \cdot e^{-1/4} = 0.7788008$$

Usando dois intervalos, [0, 1/2] e [1/2, 1] e usando a regra do ponto médio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx 0.5 \cdot e^{-1/16} + 0.5 \cdot e^{-9/16}) = 0.4697065 + 0.2848914 = 0.7545979$$

Agora, usando quatro intervalos, temos

$$\int_{0}^{1} e^{-x^{2}} dx \approx 0.25 \cdot e^{-1/64} + 0.25 \cdot e^{-9/64} + 0.25 \cdot e^{-25/64} + 0.25 \cdot e^{-49/64} = 0.7487471$$

Observe que o valor da integral é

$$\int_0^1 e^{-x^2} dx = 0.7468241330.$$

#### 2.2.2 Regra do Trapézio

A regra do trapézio consiste em aproximar a integral por um trapézio em vez de um retângulo, como fizemos. Para isso, o polinômio de Lagrange deve ser uma reta, como mostra a figura.



O polinômio de Lagrange de primeira ordem que passa por  $(x_0, f(x_0)) := (a, f(a))$  e  $(x_1, f(x_1)) := (b, f(b))$  é dado por

$$P_1(x) = f(x_0) \frac{(x - x_0)}{(x_1 - x_0)} + f(x_1) \frac{(x - x_1)}{(x_0 - x_1)} = f(x_0) \frac{(x - x_0)}{h} - f(x_1) \frac{(x - x_1)}{h},$$

onde  $h = x_1 - x_0$ . Podemos integrar a função f(x) aproximando-a por esse polinômio:

$$\int_{a}^{b} f(x)dx = f(x_0) \int_{a}^{b} \frac{(x - x_0)}{h} dx - f(x_1) \int_{a}^{b} \frac{(x - x_1)}{h} dx + \frac{1}{2!} \int_{a}^{b} (x - x_0)(x - x_1) f''(\xi(x)) dx.$$

Pelo teorema do valor médio, existe  $a \leq \eta \leq b$  tal que  $\int_a^b f(\xi(x))g(x)dx = f(\eta)\int_a^b g(x)dx$  e, portanto,

$$\begin{split} \int_{a}^{b} f(x) dx &= f(x_0) \left[ \frac{(x - x_0)^2}{2h} \right]_{x_0}^{x_1} - f(x_1) \left[ \frac{(x - x_1)^2}{2h} \right]_{x_0}^{x_1} + \frac{f''(\eta)}{2} \left[ \frac{x^3}{3} - \frac{x^2}{2} (x_1 + x_0) + x_0 x_1 x \right]_{x_0}^{x_1} \\ &= f(x_0) \frac{(x_1 - x_0)^2}{2h} + f(x_1) \frac{(x_0 - x_1)^2}{2h} \\ &+ \frac{f''(\eta)}{2} \left( \frac{x_1^3}{3} - \frac{x_1^2}{2} (x_1 + x_0) + x_0 x_1 x_1 - \frac{x_0^3}{3} + \frac{x_0^2}{2} (x_1 + x_0) - x_0 x_1 x_0 \right) \\ &= f(x_0) \frac{h^2}{2h} + f(x_1) \frac{h^2}{2h} \\ &+ \frac{f''(\eta)}{2} \frac{2x_1^3 - 3x_1^2 (x_1 + x_0) + 6x_1^2 x_0 - 2x_0^3 + 3x_0^2 (x_1 + x_0) - 6x_1 x_0^2}{6} \\ &= \frac{h}{2} (f(x_0) + f(x_1)) + \frac{f''(\eta)}{12} \left( x_0^3 - 3x_0^2 x_1 + 3x_1^2 x_0 + x_1^3 \right) \\ &= \frac{h}{2} (f(x_0) + f(x_1)) - \frac{h^3 f''(\eta)}{12} \end{split}$$

Exemplo 9. Use a regra do trapézio para aproximar a integral

$$\int_0^1 e^{-x^2} dx.$$

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplica a regra do trapézio em cada uma delas. Finalmente, repita o processo dividindo em quatro integrais.

Usando o intervalo [0,1], temos h=1,  $x_0=0$  e  $x_1=1$ . A regra do trapézio resulta em

$$\int_0^1 e^{-x^2} dx \approx \frac{1}{2} (e^0 + e^{-1}) = 0.6839397$$

Usando dois intervalos, [0, 1/2] e [1/2, 1] e usando a regra do trapézio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx \frac{0.5}{2} (e^0 + e^{-1/4}) + \frac{0.5}{2} (e^{-1/4} + e^{-1}) = 0.4447002 + 0.2866701 = 0.7313703$$

Agora, usando quatro intervalos, temos

$$\int_{0}^{1} e^{-x^{2}} dx \approx \frac{0.25}{2} (e^{0} + e^{-1/16}) + \frac{0.25}{2} (e^{-1/16} + e^{-1/4}) + \frac{0.25}{2} (e^{-1/4} + e^{-9/16}) + \frac{0.25}{2} (e^{-9/16} + e^{-1})$$

$$= 0.7429841$$

#### 2.2.3 Regra de Simpson

A regra de Simpson consiste em aproximar a integral usando três pontos do intervalo:

$$x_0 = a$$
,  $x_1 := \frac{a+b}{2} = x_0 + h$  e  $x_2 := b = x_1 + h$ .

Para isso, o polinômio de Lagrange deve ser uma parábola:

$$P_2(x) = f(x_0) \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}.$$

Se usarmos o mesma metodologia da regra dos trapézios, calcularemos

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} P_{2}(x)dx + \int_{a}^{b} \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{6} f'''(\xi(x))dx$$

e obteremos o fórmula de Simpson com um erro de quarta ordem. O fato é que a regra de Simpson tem ordem cinco e, para isso, usaremos uma abordagem alternativa. Considere o polinômio de Taylor

$$f(x) = f(x_1) + f'(x_1)(x - x_1) + \frac{f''(x_1)}{2}(x - x_1)^2 + \frac{f'''(x_1)}{6}(x - x_1)^3 + \frac{f^{(4)}(\xi(x))}{12}(x - x_1)^4,$$

onde  $x_0 \le \xi(x) \le x_2$  e integre no intervalo  $[a, b] = [x_0, x_2]$ :

$$\int_{a}^{b} f(x)dx = \left[ f(x_{1})(x - x_{1}) + f'(x_{1}) \frac{(x - x_{1})^{2}}{2} + \frac{f''(x_{1})}{2} (x - x_{1})^{3} + \frac{f'''(x_{1})}{18} (x - x_{1})^{3} \right]_{x_{0}}^{x_{2}} + \frac{1}{24} \int_{x_{0}}^{x_{2}} f^{(4)}(\xi(x))(x - x_{1})^{4} dx,$$

Pelo teorema do valor médio, existe  $x_0 \le \eta \le x_2$  tal que

$$\int_{a}^{b} f(x)dx = \left[ f(x_{1})(x - x_{1}) + f'(x_{1}) \frac{(x - x_{1})^{2}}{2} + \frac{f''(x_{1})}{2}(x - x_{1})^{3} + \frac{f'''(x_{1})}{18}(x - x_{1})^{3} \right]_{x_{0}}^{x_{2}} 
+ \frac{f^{(4)}(\eta)}{24} \int_{x_{0}}^{x_{2}} (x - x_{1})^{4} dx 
= \left[ f(x_{1})(x - x_{1}) + f'(x_{1}) \frac{(x - x_{1})^{2}}{2} + \frac{f''(x_{1})}{2}(x - x_{1})^{3} + \frac{f'''(x_{1})}{18}(x - x_{1})^{3} \right]_{x_{0}}^{x_{2}} 
+ \frac{f^{(4)}(\eta)}{120} \left[ (x - x_{1})^{5} \right]_{x_{0}}^{x_{2}}$$

Usando o fato que

$$(x_2 - x_1)^3 - (x_0 - x_1)^3 = 2h^3,$$
  
$$(x_2 - x_1)^4 - (x_0 - x_1)^4 = 0$$

e

$$(x_2 - x_1)^5 - (x_0 - x_1)^5 = 2h^5$$

temos

$$\int_{a}^{b} f(x)dx = 2hf(x_1) + \frac{h^3}{3}f''(x_1) + \frac{h^5f^{(4)}(\eta)}{60}.$$

Usando a diferenças finitas centrais para a derivada segunda:

$$f''(x_1) = \frac{f(x_0) - 2f(x_1) + f(x_2)}{h^2} + \frac{h^2}{12}f^{(4)}(\eta_1),$$

 $x_0 \le \eta_1 \le x_2$ , temos

$$\int_{a}^{b} f(x)dx = 2hf(x_{1}) + \frac{h^{3}}{3} \left( \frac{f(x_{0}) - 2f(x_{1}) + f(x_{2})}{h^{2}} + \frac{h^{2}}{12} f^{(4)}(\eta_{1}) \right) + \frac{h^{5}f^{(4)}(\eta)}{60}.$$

$$= \frac{h}{3} (f(x_{0}) + 4f(x_{1}) + f(x_{2})) - \frac{h^{5}}{12} \left( \frac{1}{3} f^{(4)}(\eta_{1}) - \frac{1}{5} f^{(4)}(\eta) \right).$$

Pode-se mostrar que é possível escolher  $\eta_2$  que substitua  $\eta$  e  $\eta_1$  com a seguinte estimativa

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left( f(x_0) + 4f(x_1) + f(x_2) \right) - \frac{h^5}{90} f^{(4)}(\eta_2).$$

Exemplo 10. Use a regra de Simpson para aproximar a integral

$$\int_0^1 e^{-x^2} dx$$
.

Depois divida a integral em duas

$$\int_0^{1/2} e^{-x^2} dx + \int_{1/2}^1 e^{-x^2} dx.$$

e aplica a regra de Simpson em cada uma delas.

Usando o intervalo [0,1], temos  $h=1/2, x_0=0, x_1=1/2$  e  $x_2=1$ . A regra de Simpson resulta em

$$\int_0^1 e^{-x^2} dx \approx \frac{0.5}{3} (e^0 + 4e^{-1/4} + e^{-1}) = 0.7471804$$

Usando dois intervalos, [0, 1/2] e [1/2, 1] e usando a regra do trapézio em cada um dos intervalos, temos:

$$\int_0^1 e^{-x^2} dx \approx \frac{0.25}{3} (e^0 + 4e^{-1/16} + e^{-1/4}) + \frac{0.25}{3} (e^{-1/4} + 4e^{-9/16} + e^{-1}) = 0.7468554$$

### 2.3 Regras compostas

Vimos que em todas as estimativas de erro que derivamos, o erro depende do tamanho do intervalo de integração. Um estratégia para reduzir o erro consiste em dividir o intervalo de integração em diversos subintervalos menores:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{N_{i}} \int_{a_{k}}^{b_{k}} f(x)dx$$

onde

$$a = a_1 < b_1 = a_2 < b_2 = a_3 < \dots < b_{N_i-1} = a_{N_i} < b_{N_i} = b$$

Depois, aplica-se um método simples em cada subintervalo.

A regra composta dos trapézios assume a seguinte forma:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{N_i} \int_{a_k}^{b_k} f(x)dx \approx \sum_{k=1}^{N_i} \frac{b_k - a_k}{2} \left[ f(a_k) + f(b_k) \right]$$

Se assumirmos que todos os intervalos têm o mesmo comprimento h, temos:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=1}^{N_{i}} [f(a_{k}) + f(b_{k})]$$

Definimos

$$x_k = a + (k-1)h$$

portanto

$$a_k = x_k, \quad b_k = x_{k+1}$$

E temos:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \sum_{k=1}^{N_{i}} \left[ f(x_{k}) + f(x_{k+1}) \right] = \frac{h}{2} \left[ f(x_{1}) + 2f(x_{2}) + 2f(x_{3}) + \dots + 2f(x_{N_{i}}) + f(x_{N_{i}+1}) \right]$$

Já a regra composta de Simpson assume a seguinte forma:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{N_{i}} \int_{a_{k}}^{b_{k}} f(x)dx \approx \sum_{k=1}^{N_{i}} \frac{b_{k} - a_{k}}{6} \left[ f(a_{k}) + 4f\left(\frac{a_{k} + b_{k}}{2}\right) + f(b_{k}) \right]$$

Se mais uma vez assumirmos que todos os intervalos têm o mesmo comprimento 2h, temos:

$$\int_{a}^{b} f(x)dx \approx \frac{2h}{6} \sum_{k=1}^{N_{i}} \left[ f(a_{k}) + 4f\left(\frac{a_{k} + b_{k}}{2}\right) + f(b_{k}) \right]$$

Definimos

$$x_k = a + (k-1)h, \quad k = 1, \dots 2N_i + 1$$

portanto

$$a_k = x_{2k-1}, \quad b_k = x_{2k+1}$$

E temos:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \sum_{k=1}^{N_{i}} \left[ f(x_{2k-1}) + 4f(x_{2k}) + f(x_{2k+1}) \right] = \frac{h}{3} \left[ f(x_{1}) + 4f(x_{2}) + 2f(x_{3}) + 4f(x_{4}) + \dots + 4f(x_{2N_{i}}) + f(x_{2N_{i}+1}) \right]$$

Exemplo 11. Calcule numericamente a integral

$$\int_0^2 x^2 e^{x^2} dx$$

pelas regras compostas do ponto médio, trapézio e Simpson variando o número de intervalos  $N_i = 1, 2, 3, 6, 12, 24, 48, 96.$ 

| $N_i$ | ponto médio | Trapézios | Simpson   |
|-------|-------------|-----------|-----------|
| 1     | 5.4365637   | 218.3926  | 76.421909 |
| 2     | 21.668412   | 111.91458 | 51.750469 |
| 3     | 31.678746   | 80.272022 | 47.876505 |
| 6     | 41.755985   | 55.975384 | 46.495785 |
| 12    | 45.137529   | 48.865685 | 46.380248 |
| 24    | 46.057757   | 47.001607 | 46.372373 |
| 48    | 46.292964   | 46.529682 | 46.37187  |
| 96    | 46.352096   | 46.411323 | 46.371838 |

## 2.4 O método de Romberg

O método de Romberg é um método simplificado para construir quadraturas de alta ordem. Considere o método de trapézios composto aplicado à integral

$$\int_{a}^{b} f(x)dx$$

Defina I(h) a aproximação desta integral pelo método dos trapézios composto com malha de largura constante igual a h. Aqui  $h = \frac{b-a}{N_i}$  para algum  $N_i$  inteiro, i.e.:

$$I(h) = \frac{h}{2} \left[ f(a) + 2 \sum_{j=2}^{N_i} f(x_j) + f(b) \right], \quad N_i = \frac{b-a}{h}$$

**Teorema 1.** Se f(x) é uma função analítica no intervalo (a,b), então a função I(h) admite uma representação na forma

$$I(h) = I_0 + I_2 h^2 + I_4 h^4 + I_6 h^6 + \dots$$

Para um demonstração, veja [1]. Em especial observamos que

$$\int_{a}^{b} f(x)dx = \lim_{h \to 0} I(h) = I_0$$

Ou seja, o valor exato da integral procurada é dado pelo coeficiente  $I_0$ .

A ideia central do método de Romberg, agora, consiste em usar a extrapolação de Richardson para construir métodos de maior ordem a partir do métodos dos trapézios para o intervalo (a, b)

Exemplo 12. Construção do método de quarta ordem.

$$I(h) = I_0 + I_2 h^2 + I_4 h^4 + I_6 h^6 + \dots$$

$$I\left(\frac{h}{2}\right) = I_0 + I_2 \frac{h^2}{4} + I_4 \frac{h^4}{16} + I_6 \frac{h^6}{64} + \dots$$

Usamos agora uma eliminação gaussiana para obter o termo  $I_0$ :

$$\frac{4I(h/2) - I(h)}{3} = I_0 - \frac{1}{4}I_4h^4 - \frac{5}{16}I_6h^6 + \dots$$

Lembramos que

$$I(h) = \frac{h}{2} [f(a) + f(b)]$$

$$I(h/2) = \frac{h}{4} [f(a) + 2f(c) + f(b)], \quad c = \frac{a+b}{2}$$

$$\frac{4I(h/2) - I(h)}{3} = \frac{h}{3} [f(a) + 2f(c) + f(b)] - \frac{h}{6} [f(a) + f(b)]$$
$$= \frac{h}{6} [f(a) + 4f(c) + f(b)]$$

Observe que esquema coincide com o método de Simpson.

A partir de agora, usaremos a seguinte notação

$$R_{1,1} = I(h)$$

$$R_{2,1} = I(h/2)$$

$$R_{3,1} = I(h/4)$$

$$\vdots$$

$$R_{n,1} = I(h/2^{n-1})$$

Observamos que os pontos envolvidos na quadratura  $R_{k,1}$  são os mesmos pontos envolvidos na quadratura R(k-1,1) acrescidos dos pontos centrais, assim, temos a seguinte fórmula de recorrência:

$$R_{k,1} = \frac{1}{2}R_{k-1,1} + \frac{h}{2^{k-1}} \sum_{i=1}^{2^{k-2}} f\left(a + (2i-1)\frac{h}{2^{k-1}}\right)$$

Definimos  $R_{k,2}$  para  $k \ge 2$  como o esquema de ordem quatro obtido da fórmula do exemplo 12:

$$R_{k,2} = \frac{4R_{k,1} - R_{k-1,1}}{3}$$

Os valores  $R_{k,2}$  representam então os valores obtidos pelo método de Simpson composto aplicado a uma malha composta de  $2^{k-1} + 1$  pontos.

Similarmente os valores de  $R_{k,j}$  são os valores obtidos pela quadratura de ordem 2j obtida via extrapolação de Richardson. Pode-se mostrar que

$$R_{k,j} = R_{k,j-1} + \frac{R_{k,j-1} - R_{k-1,j-1}}{4^{j-1} - 1}.$$

**Exemplo 13.** Construa o esquema de Romberg para aproximar o valor de  $\int_0^1 e^{-x^2} dx$  com erro de ordem 8.

| 1.0183156 |           |           |           |
|-----------|-----------|-----------|-----------|
| 0.8770373 | 0.8299445 |           |           |
| 0.8806186 | 0.8818124 | 0.8852703 |           |
| 0.8817038 | 0.8820655 | 0.8820824 | 0.8820318 |

**Exemplo 14.** Construa o esquema de Romberg para aproximar o valor de  $\int_0^2 x^2 e^{x^2} dx$  com erro de ordem 12.

| 218.3926  |           |           |           |           |           |
|-----------|-----------|-----------|-----------|-----------|-----------|
| 111.91458 | 76.421909 |           |           |           |           |
| 66.791497 | 51.750469 | 50.105706 |           |           |           |
| 51.892538 | 46.926218 | 46.604601 | 46.549028 |           |           |
| 47.782846 | 46.412949 | 46.378731 | 46.375146 | 46.374464 |           |
| 46.72661  | 46.374531 | 46.37197  | 46.371863 | 46.37185  | 46.371847 |

### 2.5 Ordem de precisão

Todos os métodos de quadratura que vimos até o momento são da forma

$$\int_{a}^{b} f(x)dx \approx \sum_{j=1}^{N} w_{j} f(x_{j})$$

Exemplo 15. (a) Método do trapézio

$$\int_{a}^{b} f(x)dx \approx [f(a) + f(b)] \frac{b - a}{2}$$

$$= \frac{b - a}{2} f(a) + \frac{b - a}{2} f(b)$$

$$:= w_{1}f(x_{1}) + w_{2}f(x_{2}) = \sum_{j=1}^{2} w_{j}f(x_{j})$$

(b) Método do trapézio com dois intervalos

$$\int_{a}^{b} f(x)dx \approx \left[ f(a) + 2f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{4}$$

$$= \frac{b-a}{4}f(a) + \frac{b-a}{2}f\left(\frac{a+b}{2}\right) + \frac{b-a}{4}f(b)$$

$$:= w_{1}f(x_{1}) + w_{2}f(x_{2}) + w_{3}f(x_{3}) = \sum_{j=1}^{3} w_{j}f(x_{j})$$

(c) Método de Simpson

$$\int_{a}^{b} f(x)dx \approx \left[ f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \frac{b-a}{6}$$

$$= \frac{b-a}{6}f(a) + \frac{2(b-a)}{3}f\left(\frac{a+b}{2}\right) + \frac{b-a}{6}f(b)$$

$$:= \sum_{j=1}^{3} w_{j}f(x_{j})$$

(d) Método de Simpson com dois intervalos

$$\int_{a}^{b} f(x)dx \approx \left[ f(a) + 4f\left(\frac{3a+b}{4}\right) + 2f\left(\frac{a+b}{2}\right) + 4f\left(\frac{a+3b}{4}\right) + f(b) \right] \frac{b-a}{12} \\
= \frac{b-a}{12}f(a) + \frac{b-a}{3}f\left(\frac{3a+b}{4}\right) + \frac{b-a}{6}f\left(\frac{a+b}{2}\right) + \frac{b-a}{3}f\left(\frac{a+3b}{4}\right) + \frac{b-a}{12}f(b) \\
:= \sum_{j=1}^{5} w_{j}f(x_{j})$$

A principal técnica que temos usado para desenvolver os métodos numéricos é o polinômio de Taylor:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + R_n(x)$$

Integrando termo a termo, temos:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} a_{0}dx + \int_{a}^{b} a_{1}xdx + \int_{a}^{b} a_{2}x^{2}dx + \dots + \int_{a}^{b} a_{n}x^{n}dx + \int_{a}^{b} R_{n}(x)dx$$
$$= a_{0}(b-a) + a_{1}\frac{b^{2} - a^{2}}{2} + a_{2}\frac{b^{3} - a^{3}}{3} + \dots + a_{n}\frac{b^{n+1} - a^{n+1}}{n+1} + \int_{a}^{b} R_{n}(x)dx$$

Neste momento, é natural invertigar o desempenho de um esquema numérico aplicado a funções do tipo  $f(x) = x^n$ .

**Definição 1.** A **ordem de precisão** ou **ordem de exatidão** de um esquema de quadratura numérica como o maior inteiro positivo **n** para o qual o esquema é exato para todas as funções do tipo  $x^k$  com  $0 \le k \le n$ , ou seja,

Um esquema é dito de ordem n se

$$\sum_{j=1}^{n} w_j f(x_j) = \int_a^b f(x) dx, \quad f(x) = x^k, \ k = 0, 1, \dots n$$

ou, equivalentemente:

$$\sum_{j=1}^{n} w_j x_j^k = \int_a^b x^k dx = \frac{b^{k+1} - a^{k+1}}{k+1}, \quad k = 0, 1, \dots n$$

Observação 1. Se o método tem ordem 0 ou mais, então

$$\sum_{j=1}^{n} w_j = b - a$$

Exemplo 16. A ordem de precisão do esquema de trapézios é 1:

$$\int_{a}^{b} f(x)dx \approx [f(a) + f(b)] \frac{b - a}{2} = \sum_{j=1}^{2} w_{j} f(x_{j})$$

onde  $w_j = \frac{b-a}{2}, x_1 = a \ e \ x_2 = b.$ 

$$\sum_{j=1}^{n} w_j = b - a \qquad (k = 0)$$

$$\sum_{j=1}^{n} w_j x_j = (a+b)^{\frac{b-a}{2}} = \frac{b^2 - a^2}{2} \qquad (k=1)$$

$$\sum_{j=1}^{n} w_j x_j^2 = (a^2 + b^2) \frac{b-a}{2} \neq \frac{b^3 - a^3}{3} \qquad (k=2)$$

**Exemplo 17.** A ordem de precisão do esquema de Simpson é 3:

$$\int_{a}^{b} f(x)dx \approx \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)\right] \frac{b-a}{6} = \sum_{j=1}^{3} w_j f(x_j)$$

onde  $w_1=w_3=\frac{b-a}{6}, w_2=4\frac{b-a}{6}, \; x_1=a, \; x_2=\frac{a+b}{2}$ e  $x_3=b$ 

$$\sum_{j=1}^{n} w_j = (1+4+1)^{\frac{b-a}{6}} = b-a \tag{k=0}$$

$$\sum_{j=1}^{n} w_j x_j = (a + 4\frac{a+b}{2} + b)\frac{b-a}{6} = (a+b)\frac{b-a}{2} = \frac{b^2 - a^2}{2}$$
 (k = 1)

$$\sum_{j=1}^{n} w_j x_j^2 = (a^2 + 4\left(\frac{a+b}{2}\right)^2 + b^2) \frac{b-a}{6} = (3a^2 + 4ab + 3b^2) \frac{b-a}{2} = \frac{b^3 - a^3}{3} \qquad (k=2)$$

$$\sum_{j=1}^{n} w_j x_j^3 = (a^3 + 4\left(\frac{a+b}{2}\right)^3 + b^3) \frac{b-a}{6} = \frac{b^4 - a^4}{4}$$
 (k = 3)

$$\sum_{j=1}^{n} w_j x_j^4 = (a^4 + 4\left(\frac{a+b}{2}\right)^4 + b^4) \frac{b-a}{6} \neq \frac{b^5 - a^5}{4}$$
 (k = 3)

**Problema 1.** Encontre os pesos  $w_i$  e as abscissas  $x_i$  tais que o esquema de dois pontos

$$\int_{-1}^{1} f(x)dx = w_1 f(x_1) + w_2 f(x_2)$$

é de ordem 3.

#### Solução:

Temos um sistema de quatro equações e quatro incógnitas dado por:

$$w_1 + w_2 = 2$$

$$x_1w_1 + x_2w_2 = 0$$

$$x_1^2w_1 + x_2^2w_2 = \frac{2}{3}$$

$$x_1^3w_1 + x_2^3w_2 = 0$$

Da segunda e quarta equação, temos:

$$\frac{w_1}{w_2} = -\frac{x_2}{x_1} = -\frac{x_2^3}{x_1^3}$$

Como  $x_1 \neq x_2$ , temos  $x_1 = -x_2$  e  $w_1 = w_2$ . Da primeira equação, temos  $w_1 = w_2 = 1$ . Da terceira equação, temos  $-x_1 = x_2 = \frac{\sqrt{3}}{3}$ .

Esse esquema de ordem de precisão três e dois pontos chama-se quadratura de Gauss-Legendre com dois pontos:

$$\int_{-1}^{1} f(x)dx = f\left(\frac{\sqrt{3}}{3}\right) + f\left(-\frac{\sqrt{3}}{3}\right)$$

Exemplo 18. Comparação

| f(x)              | Exato                                                  | Trapézio                         | Simpson                                           | Gauss-Legendre (2)                                                    |
|-------------------|--------------------------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|
| $e^x$             | $e - e^{-1} \approx 2.3504024$                         | $e^{-1} + e$ $\approx 3.0861613$ | $\frac{e^{-1} + 4e^0 + e^1}{3} \approx 2.3620538$ | $e^{-\frac{-\sqrt{3}}{3}} + e^{\frac{\sqrt{3}}{3}} \approx 2.3426961$ |
| $x^2\sqrt{3+x^3}$ | $\frac{16}{9} - \frac{4}{9}\sqrt{2} \approx 1.1492384$ | 3.4142136                        | 1.1380712                                         | 1.1541058                                                             |
| $x^2e^{x^3}$      | $\frac{e-e^{-1}}{3} \approx 0.7834675$                 | 3.0861613                        | 1.0287204                                         | 0.6790505                                                             |

### 2.6 Quadratura de Gauss-Legendre

A quadratura de Gauss-Legendre de N pontos é o esquema numérico

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{N} w_{i} f(x_{i})$$

cuja ordem de exatidão é 2N-1.

- $\bullet$  O problema de encontrar os N pesos e N abscissas é equivalente a um sistema não-linear com 2N equações e 2N incógnitas.
- Pode-se mostrar que este problema sempre tem solução e que a solução é única se  $x_1 < x_2 < \ldots < x_n$
- $\bullet$  As abscissas são das pelos zeros do enésimo polinômio de Legendre,  $P_N(x).$
- Os pesos são dados por

$$w_j = \frac{2}{(1 - x_j^2) [P_N'(x_j)]^2}.$$

• Estes dados são tabelados e facilmente encontrados.

| n | $x_j$                                                                             | $w_j$                                                        |
|---|-----------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1 | 0                                                                                 | 2                                                            |
| 2 | $\pm \frac{\sqrt{3}}{3}$                                                          | 1                                                            |
| 3 | $0 \\ \pm \sqrt{\frac{3}{5}}$                                                     | 8<br>9<br>5<br>9                                             |
| 4 | $\pm\sqrt{\left(3-2\sqrt{6/5}\right)/7}$ $\pm\sqrt{\left(3+2\sqrt{6/5}\right)/7}$ | $     \begin{array}{r}                                     $ |

### Exemplo 19. Aproximar

$$\int_{-1}^{1} \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 3 pontos.

$$I_3 = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right) = \frac{4}{9}\sqrt{10} + \frac{8}{9} \approx 2.2943456$$

No Scilab:

exec pesos.sci; I3=f(0)\*w3(1)+f(x3(2))\*w3(2)+f(-x3(2))\*w3(2)

Exemplo 20. Aproximar

$$\int_{-1}^{1} \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 4 pontos.

$$I4=f(x4(1))*w4(1)+f(-x4(1))*w4(1)+f(x4(2))*w4(2)+f(-x4(2))*w4(2)$$

### Exemplo 21. Aproximar

$$\int_0^1 \sqrt{1+x^2} dx$$

pelo método de Gauss-Legendre com 3, 4 e 5 pontos.

Faz-se a mudança de variáveis u = 2x - 1

$$\int_0^1 \sqrt{1+x^2} dx = \frac{1}{2} \int_{-1}^1 \sqrt{1+\left(\frac{u+1}{2}\right)^2} du$$

```
\begin{split} & \text{deff('y=f(u)','y=sqrt(1+(u+1)^2/4)/2')} \\ & \text{I3=f(0)*w3(1)+f(x3(2))*w3(2)+f(-x3(2))*w3(2)} \\ & \text{I4=f(x4(1))*w4(1)+f(-x4(1))*w4(1)+f(x4(2))*w4(2)+f(-x4(2))*w4(2)} \\ & \text{I5=f(0)*w5(1)+f(x5(2))*w5(2)+f(-x5(2))*w5(2)+f(x5(3))*w5(3)+f(-x5(3))*w5(3)} \end{split}
```

# 3 Soluções Numéricas para problemas de valor inicial

Muitos problemas de valor inicial da forma

$$y'(t) = f(y(t), t)$$
  
 $y(t_0) = y_0$  condição inicial

não podem ser resolvidos exatamente, ou seja, sabe-se que a solução existe e é única, porém não podemos expressá-la em termos de funções elementares. Por isso é necessário calcular soluções numéricas. Nesse propósito, construímos uma malha de pontos no eixo t,  $\{t_i\}_{i=1}^N$  e calculamos o valor aproximado da função solução  $y(t_i)$  em cada ponto da malha usando esquemas numéricos.

#### 3.1 Método de Euler

Seja o problema de valor inicial

$$y'(t) = f(y(t), t)$$
  
 $y(0) = y_0$  condição inicial

Aproximamos a derivada y'(t) por um esquema de primeira ordem do tipo

$$y'(t) = \frac{y(t+h) - y(t)}{h} + O(h), \quad h > 0$$

assim temos

$$\frac{y(t+h) - y(t)}{h} = f(y(t), t) + O(h)$$
$$y(t+h) = y(t) + hf(y(t), t) + O(h^{2})$$

Definindo  $y^{(k)}$  como uma aproximação para y((k-1)h) e  $t^{(k)}=(k-1)h$ , temos

$$y^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)})$$
  
 $y^{(1)} = y_0 \text{ condição inicial}$ 

Exemplo 1: Considere o problema de valor inicial

$$y'(t) = 2y(t)$$
$$y(0) = 1$$

Sabemos da teoria elementar de equação diferenciais ordinárias, que a solução exata deste problema é única e é dada por

$$y(t) = e^{2t}.$$

O método de Euler aplicada a este problema produz o seguinte esquema:

$$y^{(k+1)} = y^{(k)} + 2hy^{(k)} = (1+2h)y^{(k)}$$
  
 $y^{(1)} = 1,$ 

cuja solução é dada por

$$y^{(k)} = (1+2h)^{k-1}.$$

Como t = (k-1)h, a solução aproximada é

$$y(t) \approx \tilde{y}(t) = (1 + 2h)^{\frac{t}{h}}.$$

Fica óbvio que se  $h \to 0$ , então

$$\tilde{y}(t) \to e^{2t}$$
.

Exemplo 22. Considere o problema de valor inicial

$$y'(t) = y(t)(1 - y(t))$$
  
 $y(0) = 1/2$ 

É fácil encontrar a solução exata desta equação pois

$$\frac{dy(t)}{y(t)(1-y(t))} = dt$$

$$\left(\frac{1}{y} + \frac{1}{1-y}\right)dy = dt$$

$$\ln(y) - \ln(1-y) = t + C$$

$$\ln\left(\frac{y}{1-y}\right) = t + C$$

$$\frac{y}{1-y} = e^{t+C}$$

$$y = e^{t+C}(1-y)$$

$$y(1+e^{t+C}) = e^{t+C}$$

$$y = \frac{e^{t+C}}{1+e^{t+C}}$$

ainda  $y(0)=\frac{e^C}{1+e^C}=1/2,$ temos  $e^C=1$ e, portanto, C=0.

Assim, a solução exata é dada por  $y = \frac{e^t}{1+e^t}$ 

O método de Euler produz o seguinte esquema iterativo:

$$y^{(k+1)} = y^{(k)} + hy^{(k)}(1 - y^{(k)})$$
  
 $y^{(1)} = 1/2$ 

## Comparação

| t   | Exato                                         | Euler $h = .1$ | Euler $h = .01$ |
|-----|-----------------------------------------------|----------------|-----------------|
| 0   | 1/2                                           | .5             | .5              |
| 1/2 | $\frac{e^{1/2}}{1+e^{1/2}} \approx 0.6224593$ | 0.6231476      | 0.6225316       |
| 1   | $\frac{e}{1+e} \approx 0.7310586$             | 0.7334030      | 0.7312946       |
| 2   | $\frac{e^2}{1+e^2} \approx 0.8807971$         | 0.8854273      | 0.8812533       |
| 3   | $\frac{e^3}{1+e^3} \approx 0.9525741$         | 0.9564754      | 0.9529609       |

## Exemplo 3

$$y' = -y + t$$
$$y(0) = 1$$

Cuja solução exata é  $y(t)=2e^{-t}+t-1$ . O esquema recursivo de Euler fica:

$$y^{(k+1)} = y(k) - hy(k) + ht^{(k)}$$
  
 $y(0) = 1$ 

## Comparação

| t | Exato                           | Euler $h = .1$ | Euler $h = .01$ |
|---|---------------------------------|----------------|-----------------|
| 0 | 1                               | 1              | 1               |
| 1 | $2e^{-1} \approx 0.7357589$     | 0.6973569      | 0.7320647       |
| 2 | $2e^{-2} + 1 \approx 1.2706706$ | 1.2431533      | 1.2679593       |
| 3 | $2e^{-3} + 2 \approx 2.0995741$ | 2.0847823      | 2.0980818       |

#### Exemplo 4

$$x' = -y$$

$$y' = x$$

$$x(0) = 1$$

$$y(0) = 0$$

Cuja solução exata é  $x(t) = \cos(t)$  e  $y(t) = \sin(t)$ 

Escreva

$$z(t) = \left[ \begin{array}{c} x(t) \\ y(t) \end{array} \right]$$

e temos

$$\begin{bmatrix} x^{(k+1)} \\ y^{(k+1)} \end{bmatrix} = \begin{bmatrix} x^{(k)} \\ y^{(k)} \end{bmatrix} + h \begin{bmatrix} -y^{(k)} \\ x^{(k)} \end{bmatrix}$$

Equivalente a

$$x^{(k+1)} = x^{(k)} - hy^{(k)}$$
  
 $y^{(k+1)} = y^{(k)} + hx^{(k)}$ 

Exemplo 5 Resolva o problema de valor inicial de segunda ordem dado por

$$y'' + y' + y = \cos(t)$$
$$y(0) = 1$$
$$y'(0) = 0$$

e compare com a solução exata para h = 0.1 e h = 0.01.

Procedemos com a substituição w = y', de forma que obtermos o sistema:

$$y' = w$$

$$w' = -w - y + \cos(t)$$

$$y(0) = 1$$

$$w(0) = 0$$

$$y^{(k+1)} = y^{(k)} + hw^{(k)}$$

$$w^{(k+1)} = w^{(k)} - hw^{(k)} - hy^{(k)} + h\cos(t^{(k)})$$

$$y^{(1)} = 1$$

$$w^{(1)} = 0$$

### 3.2 Método de Euler modificado

No método de Euler, usamos a seguinte iteração:

$$y^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)})$$
  
 $y^{(1)} = y_i \text{ condição inicial}$ 

A idéia do método de Euler melhorado é substituir a declividade  $f(y^{(k)}, t^{(k)})$  pela média aritmética entre  $f(y^{(k)}, t^{(k)})$  e  $f(y^{(k+1)}, t^{(k+1)})$ .

No entanto, não dispomos do valor de  $y^{(k+1)}$  pelo que aproximamos por

$$\tilde{y}^{(k+1)} = y^{(k)} + h f(y^{(k)}, t^{(k)}).$$

$$\tilde{y}^{(k+1)} = y^{(k)} + hf(y^{(k)}, t^{(k)}) 
y^{(k+1)} = y^{(k)} + \frac{h}{2} \left[ f(y^{(k)}, t^{(k)}) + f(\tilde{y}^{(k+1)}, t^{(k+1)}) \right] 
y^{(1)} = y_i \text{ condição inicial}$$

Refaça o exemplo 2 via método de Euler melhorado.

### 3.3 Ordem de precisão

Considere o problema de valor inicial dado por

$$y'(t) = f(y(t), t)$$
  
$$y(0) = y_i$$

No método de Euler, aproximamos a derivada y'(t) por um esquema de primeira ordem do tipo

$$y'(t) = \frac{y(t+h) - y(t)}{h} + O(h), \quad h > 0$$

de forma que tínhamos

$$y(t+h) = y(t) + hf(y(t),t) + O(h^2)$$

Se fixarmos um instante de tempo t = Nh, temos:

$$y(t) = [y(0) + hf(y(0), 0) + O(h^{2})] + [y(h) + hf(y(h), h) + O(h^{2})]$$

$$+ \dots [y(t-h) + hf(y(t-h), t-h) + O(h^{2})]$$

$$= y^{k} + \sum_{i=0}^{N-1} O(h^{2}) = y^{k} + O(h)$$

Por isso, o método de Euler é dito ter ordem global de precisão h.

# 4 Métodos de Runge-Kutta

Os métodos de Runge-Kutta consistem em métodos do tipo:

$$y^{(n+1)} = y^{(n)} + w_1 k_1 + \ldots + w_n k_n$$

onde

$$k_{1} = hf(y^{(n)}, t^{(n)})$$

$$k_{2} = hf(y^{(n)} + \alpha_{2,1}k_{1}, t^{(n)} + \beta_{2}h)$$

$$k_{3} = hf(y^{(n)} + \alpha_{3,1}k_{1} + \alpha_{3,2}k_{2}, t^{(n)} + \beta_{3}h)$$

$$\vdots$$

$$k_{n} = hf(y^{(n)} + \alpha_{n,1}k_{1} + \alpha_{n,2}k_{2} + \dots + \alpha_{n,n-1}k_{n-1}, t^{(n)} + \beta_{n}h)$$

Os coeficientes são escolhidos de forma que a expansão em taylor de  $y^{(n+1)}$  e  $y^{(n)} + w_1k_1 + \ldots + w_nk_n$  coincidam até ordem k+1.

Exemplo:

$$y^{(n+1)} = y^{(n)} + \frac{k_1 + k_2}{2}$$

onde  $k_1 = hf(y^{(n)}, t^{(n)})$  e  $k_2 = f(y^{(n)} + k_1, t^{(n)+h})$ 

### 4.1 Métodos de Runge-Kutta - Quarta ordem

$$y^{(n+1)} = y^{(n)} + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

onde

$$k_1 = hf(y^{(n)}, t^{(n)})$$

$$k_2 = hf(y^{(n)} + k_1/2, t^{(n)} + h/2)$$

$$k_3 = hf(y^{(n)} + k_2/2, t^{(n)} + h/2)$$

$$k_4 = hf(y^{(n)} + k_3, t^{(n)} + h)$$

Este método tem ordem de truncamento local de quarta ordem. Uma discussão heurística usando método de Simpson pode ajudar a compreender os estranhos coeficientes:

$$\begin{split} y(t^{(n+1)}) - y(t^{(n)}) &= \int_{t^{(n)}}^{t^{(n+1)}} f(y(s), s) ds \\ &\approx \frac{h}{6} \left[ f\left(y(t^{(n)}), t^{(n)}\right) + 4f\left(y(t^{(n)} + h/2), t^{(n)} + h/2\right) + f\left(y(t^{(n)} + h), t^{(n)} + h\right) \right] \\ &\approx \frac{k_1 + 4(\frac{k_2 + k_3}{2}) + k_4}{6} \end{split}$$

onde  $k_1$  e  $k_4$  representam as inclinações nos extermos e  $k_2$  e  $k_3$  são duas aproximações diferentes para a inclinação no meio do intervalo.

## 4.2 Métodos de passo múltiplo - Adams-Bashforth

O método de Adams-Bashforth consiste de um esquema recursivo do tipo:

$$y_{n+1} = y_n + \sum_{j=0}^{k} w_j f(y^{(n-j)}, t^{(n-j)})$$

Exemplo: Adams-Bashforth de segunda ordem

$$y_{n+1} = y_n + \frac{h}{2} \left[ 3f\left(y^{(n)}, t^{(n)}\right) - f\left(y^{(n-1)}, t^{(n-1)}\right) \right]$$

Exemplo: Adams-Bashforth de terceira ordem

$$y_{n+1} = y_n + \frac{h}{12} \left[ 23f\left(y^{(n)}, t^{(n)}\right) - 16f\left(y^{(n-1)}, t^{(n-1)}\right) + 5f\left(y^{(n-2)}, t^{(n-2)}\right) \right]$$

Exemplo: Adams-Bashforth de quarta ordem

$$y_{n+1} = y_n + \frac{h}{24} \left[ 55f\left(y^{(n)}, t^{(n)}\right) - 59f\left(y^{(n-1)}, t^{(n-1)}\right) + 37f\left(y^{(n-2)}, t^{(n-2)}\right) - 9f\left(y^{(n-3)}, t^{(n-3)}\right) \right]$$

Os métodos de passo múltiplo evitam os múltiplos estágios do métodos de Runge-Kutta, mas exigem ser "iniciados" com suas condições iniciais.

## 5 Métodos de passo múltiplo - Adams-Moulton

O método de Adams-Moulton consiste de um esquema recursivo do tipo:

$$y_{n+1} = y_n + \sum_{j=-1}^{k} w_j f(y^{(n-j)}, t^{(n-j)})$$

Exemplo: Adams-Moulton de quarta ordem

$$y_{n+1} = y_n + \frac{h}{24} \left[ 9f\left(y^{(n+1)}, t^{(n+1)}\right) + 19f\left(y^{(n)}, t^{(n)}\right) - 5f\left(y^{(n-1)}, t^{(n-1)}\right) + f\left(y^{(n-2)}, t^{(n-2)}\right) \right]$$

O método de Adams-Moulton é inplícito, ou seja, exige que a cada passo, uma equação em  $y^{(n+1)}$  seja resolvida.

#### 5.1 Estabilidade

Consideremos o seguinte problema de teste:

$$\begin{cases} y' = -\alpha y \\ y(0) = 1 \end{cases}$$

cuja solução exata é dada por  $y(t) = e^{-\alpha t}$ .

Considere agora o método de Euler aplicado a este problema com passa h:

$$\begin{cases} y^{(k+1)} = y^{(k)} - \alpha h y^{(k)} \\ y^{(1)} = 1 \end{cases}$$

A solução exata do esquema de Euler é dada por

$$y^{(k+1)} = (1 - \alpha h)^k$$

e, portanto,

$$\tilde{y}(t) = y^{(k+1)} = (1 - \alpha h)^{t/h}$$

Fixamos um  $\alpha > 0$ , de forma que  $y(t) \to 0$ . Mas observamos que  $\tilde{y}(t) \to 0$  somente quando  $|1 - \alpha h| < 1$  e solução positivas somento quando  $\alpha h < 1$ .

Conclusão: Se o passo h for muito grande, o método pode se tornar instável, produzindo solução espúrias. **Problema** Resolva o problema 1 pelos diversos métodos e vefique heuristicamente a estabilidade para diversos valores de h.

## Referências

[1] Demailly, J. P. Analyse Numérique et Équations Differentielles, nouvelle Édition ed. EDP Sciences, Grenoble, 2006.