

Clocks

Solution

1.(D) To coincide, At 3'o clock minute hand to travel for 15 min to cover 90°.

Degrees covered by minute hand in one

minute
$$=\frac{360}{60} = 6^{\circ}$$

Relative speed =
$$6 - \frac{1}{2} = \left(5\frac{1}{2}\right)^{\circ}$$

By keeping hour hand on hold,

Required time =
$$\frac{90 \times 2}{11}$$

$$=16\frac{4}{11}$$
 minutes.

2.(D) To be in a straight line, the minute hand has to travel just 30°.

Relative speed = $5\frac{1}{2}^{\circ}$

By keeping hour hand on hold,

Required time =
$$\frac{30 \times 2}{11} = 5\frac{5}{11}$$
 minutes

3.(A) Time from 12 p.m. on Monday to 2 p.m. on the following Monday = 7 days 2 hours = 170 hours

∴ The watch gains
$$\left(2+4\frac{4}{5}\right)$$
 min.

or
$$\frac{34}{5}$$
 min. in 170 hr.

Now, $\frac{34}{5}$ min. are gained in 170 hrs

$$\bigcirc$$
 2 min. are gained in

$$\left(170 \times \frac{5}{34} \times 2\right) \text{ hrs} = 50 \text{ hrs}$$

So, the watch is correct 2 days 2 hrs after 12 p.m. on Monday i.e. it will be correct at 2 p.m. on Wednesday.

4.(D) Every day, the time gap between the two clocks becomes 15 minutes. When the gap between them becomes 24 hrs then the two watches will show same time.

[An argument runs in this type of questions that the gap should be of 12 hours. But note

that the time mentioned is 3:00 p.m. and not 3 o'clock. When the time mentioned is 3:00 p.m., that means that the difference between 3:00 p.m. and 3:00 a.m. is important, whereas when 3 o'clock is mentioned, that difference is immaterial and hence a gap of 12 hours is taken.]

To create a gap of 15 minutes, it takes 1 day. To create a gap of 24 hours, it will take

$$=\frac{1\times24\times60}{15}=96 \text{ days}$$

5.(D) To show the correct time again, watch must create 24 hours difference.

So, the required time

$$=\frac{4}{3}\times\frac{60\times24}{24}=80 \text{ days}$$

7.(B)

6.(D) The clock starts by showing correct time and after every 24 hours and hence (n + 1) times in n days.

So, it will show correct time 8 times in 7 days. In 12 hours they are 11 times in a straight line. So, in 24 hours they will be 22 times.

8.(D) Total time hour hand has to travel = 6 hours. Hence, Angle traced by hour hand in 6 hours

$$=\left(\frac{360}{12}\times6\right)^{\circ}=180^{\circ}$$

9.(D) At 5'o clock the angle between hour and minute hand will be 150°.

The minute hand have to cover $15 \times 6^{\circ} = 90^{\circ}$ In this 15 min hour hand will also move

$$=15\times\frac{1}{2}=7.5^{\circ}$$

So, required angle

$$360 - (150^{\circ} + 90^{\circ} - 7.5^{\circ}) = 127\frac{1}{2}^{\circ}$$

10.(C) Required angle

$$= 270^{\circ} - (6^{\circ} \times 20) + \left(\frac{1}{2}^{\circ} \times 20\right) = 160^{\circ}$$

11.(D) At 10'o clock the angle between hour hand and minute hand will be 60° .

ISO Certified

To be at 10:25, the minute hand will cover $= 25 \times 6^{\circ} = 150^{\circ}$.

Hour hand will travel in this

$$25 \, \text{min} = 25 \times \frac{1}{2}^{\circ} = 12.5^{\circ}$$

So, angle between them at 10:25. = $150^{\circ} + 12.5^{\circ} = 162.5^{\circ}$

Keep in touch:

www.mockopedia.com

So, reflex angle = $360^{\circ} - 162.5^{\circ}$ = 197.5°

Since between 2 – 4 O' clock and 8 – 10 O' clock two hands of a clock make 90° angle only 2 times while in rest of the hours two hands make 90° angle 2 times every one hour. Hence, they are at right angle 22 times in 12 hours and 44 times in 24 hours.

12.(D)