Lecture 29: Estimation - Part II

Satyajit Thakor IIT Mandi

Point estimation

$$E(\hat{\Theta}) = 0$$

- Recall that an unbiased estimator is more desirable in practice.
- If we have two or more unbiased estimators to choose from. which is better to choose?

▶ Suppose that two point estimates $\hat{\Theta}_1$ and $\hat{\Theta}_2$ are unbiased and symmetric around θ and have variance

Point estimation

- ▶ Which is a better point estimate? Answer: $\hat{\Theta}_2$
- $\hat{\Theta}_2$ is better in the sense that it is likely to provide an estimate closer to the true value θ than the estimate provided by $\hat{\Theta}_1$, that is,

- ➤ Till now we discussed simple ways to define an estimate, e.g., sample mean, sample variance.
- Now we will study one of the most popular (and scientific) method for parameter estimation.
- ► Some times, it happens that you know the family distribution of the random variable, e.g., Bernoulli, binomial, normal, etc.
- ▶ But you do not know the crucial parameter. For example:
 - ightharpoonup In Bern(p), p is not known.
 - ▶ In Binom(n, p), p is not known.
 - In $Pois(\lambda)$, λ is not known.
 - ▶ In $\mathcal{N}(\mu, \sigma^2)$, μ and σ^2 are not known.

- ► <u>Maximum likelihood method:</u> Find the parameter value such that the likelihood function is maximized.
- Let x_1, \ldots, x_n be a sample from some population or distribution and let θ be a parameter we want to estimate.
- ► The quantity

$$L(x_1,\ldots,x_n;\theta)=f(x_1,\ldots,x_n;\theta)$$

is called the likelihood function, where f is either the joint PFD or PMF with parameter θ .

ightharpoonup Since X_1, \ldots, X_n are iid, we have

$$L(x_1, \dots, x_n; \theta) = f(x_1, \dots, x_n; \theta)$$

$$= f(x_1; \theta) \cdots f(x_n; \theta) = \bigcap_{i=1}^{n} f(x_i, \theta)$$

- Let's try to understand likelihood function and its maximization by example.
- We want to find the parameter p of the Bernoulli random variable "X = 1 if not defective and X = 0 otherwise".
- Assume that we have only three samples $x_1 = 1, x_2 = 1, x_3 = 0$. What is the best estimate of p given this information? $2/\sqrt{2}$?
- ► The likelihood function is

$$L(x_1, x_2, x_3; p) = P(X_1 = 1; p)P(X_2 = 1; p)P(X_3 = 0; p) = p^2(1 - p)$$

To find the maximum of the likelihood function, differentiate it and equate to zero: $(\mathcal{L}(\cdot) = \mathcal{P}^{-1})$

diffentiate:
$$\frac{d}{dp}L(x_1,x_2,x_3;0) = \frac{d}{dp}(p^2-p^3)$$
$$= 2p-3p^2$$

equate to zero:
$$2\hat{p}-3\hat{p}^2=0$$
 \hat{p} is the estimate $\hat{p}=0$ or $\hat{p}=\frac{2}{3}$.

To verify that the value indeed maximizes the likelihood function, check whether the second derivative at the estimated value is negative. $\hat{p}=0$ does not maximize

Second
$$\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = 2 > 0$$

derivative $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] = 2 - 6p \Big|_{p=\hat{p}} = -2 < 0$
 $\frac{d^2}{dp^2} \left[(\varkappa_1, \varkappa_2, \varkappa_3; 0) \right] =$

≥ 2/3 is indeed a reasonable estimate of the parameter from the given sample: on average 2 are not defective out of 3.

Basic idea of maximum likelihood estimation: the reasonable estimator of a parameter based on a sample is that parameter value that produces the largest probability of obtaining the sample.

Definition: Given a random sample (or independent observations) x_1, x_2, \ldots, x_n from a PDF/PMF $f(x; \theta)$, the maximum likelihood estimator $\hat{\theta}$ is that which maximizes the likelihood function

$$L(x_1,\ldots,x_n;\theta)=f(x_1;\theta)\cdots f(x_n;\theta)=\prod_{i=1}^n f(x_i;\theta).$$

 \triangleright Example: Given a sample x_1, \ldots, x_n find maximum likelihood estimator of p for $X \sim \text{Bern}(p)$.

For a Bernoulli v.v. X, with P(X=1)=p and

P(x,=0)=1-P, We can write:

 $P(X_i = x_i) = p^{x_i} (1-p)^{1-x_i}, \text{ for } x_i = 1, 0.$

Hence, the likelihood function is: $L(x_1,...,x_n;p) = TTf(x_i;p)$

 $= \prod_{i=1}^{n} P(X_i = x_i; p)$ $= \prod_{i=1}^{n} p^{x_{i}} (1-p)^{1-x_{i}} = p^{x_{i}} (1-p)^{n-\sum x_{i}}$

Maximum likelihood estimation

- Note that the expression is too complex to find \hat{p} .

- If a value maximizes a function then it also maximizes any monotically increasing function of the function.

House take log both sides:

- Differ tiate: $\Rightarrow \frac{1}{4p} \log L(\mathcal{H}, ..., \mathcal{H}; p) = \frac{\sum \mathcal{H}}{p} - \frac{(n - \sum \mathcal{H})}{1 - p}$

Maximum likelihood estimation - Equate to zero:

Taximum likelihood estimation

- Equate to zero:

$$\frac{\sum m'}{n} = \frac{(n - \sum m')}{n} = \frac{1}{n}$$

$$\Rightarrow \frac{\sum m'}{\hat{p}} - \frac{(n - \sum m')}{(-\hat{p})} = 0$$

$$\Rightarrow \sum m' - \sum m' \hat{p} = n\hat{p} - \sum m' \hat{p}$$

$$\Rightarrow \hat{p} = \prod_{i=1}^{n} \sum_{i=1}^{n} m'$$

- Second devivative test:

$$\frac{\int_{-\infty}^{2} \log L(x_{1},...,x_{n};p)}{dp^{2}} \left| \frac{\int_{-\infty}^{2} \log L(x_{1},...,x_{n};p)}{p^{2}} \right| = \frac{-\sum x_{1}}{p^{2}} - \frac{\left(n-\sum x_{1}\right)}{\left(1-p\right)^{2}} \left| p-\hat{p} \right|$$

Maximum likelihood estimation $\lesssim \varkappa$

 $\Rightarrow \hat{p} = \frac{\sum xi}{n} \text{ maximizes the } \log - \text{likelihood function.}$

=> p is the maximum likelihood estimate.

< 0. (: \sum can only \)

i=1

take values 0,1,...,h

(n-E 21)

 $=-\left(\frac{N^2}{5\pi i}+\frac{N^2}{N-5\pi i}\right)$