

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6 : C07D 231/54, A61K 31/415	A1	(11) International Publication Number: (43) International Publication Date:	WO 96/09293 28 March 1996 (28.03.96)
(21) International Application Number: PCT/US9 (22) International Filing Date: 14 September 1995 (1995) (30) Priority Data: 08/309,294 20 September 1994 (20,09.94)	4.09.9	Brentwood, MO 63144 (US).	US/US]; 8758 Pine Avenue,

(60) Parent Application or Grant

(63) Related by Continuation US

Filed on

08/309,294 (CIP) 20 September 1994 (20.09.94)

(71) Applicant (for all designated States except US): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

(71) Applicant (for US only): ROGERS, Kathy, L. [US/US]; 7431 Arlington Drive, Richmond Heights, MO 63117 (US).

(72) Inventor: ROGERS, Roland, S. (deceased).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TALLEY, John, J. [US/US]; 8772 Pine Avenue, Brentwood, MO 63144 (US). (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE. SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: BENZ[g]INDAZOLYL DERIVATIVES FOR THE TREATMENT OF INFLAMMATION

(57) Abstract

A class of benz[g]indazolyl derivatives is described for use in treating inflammation and inflammation-related disorders. Compounds of particular interest are defined by Formula (I) wherein A is -CH-CH-; wherein B is phenyl or pyridyl; wherein R1 is selected from lower haloalkyl, cyano, lower alkoxycarbonyl, lower Nmonoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N,N-dialkylaminocarbonyl and lower N-alkyl-N-phenylaminocarbonyl; wherein R2 is phenyl optionally substituted at a substitutable position with a radical selected from lower alkylsulfonyl and sulfamyl; and

wherein R3 is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, cyano, lower alkoxycarbonyl, aminocarbonyl, lower N-monoalkylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, amino, lower N,N-dialkylamino and nitro; or a pharmaceutically-acceptable salt thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	TE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	kussian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Swizerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ.	Kazakhstan	SK	Slovakia
CM	Carneroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Gabon		-		

BENZ[g]INDAZOLYL DERIVATIVES FOR THE TREATMENT OF INFLAMMATION

FIELD OF THE INVENTION

5

10

30

35

This invention is in the field of antiinflammatory pharmaceutical agents and specifically relates to compounds, compositions and methods for treating inflammation and inflammation-associated disorders, such as arthritis.

BACKGROUND OF THE INVENTION

Prostaglandins play a major role in the 15 inflammation process and the inhibition of prostaglandin production, especially production of ${\tt PGG_2,\ PGH_2}$ and ${\tt PGE_2,\ has\ been\ a\ common\ target\ of}$ antiinflammatory drug discovery. However, common nonsteroidal antiinflammatory drugs (NSAIDs) that are active in reducing the prostaglandin-induced pain and 20 swelling associated with the inflammation process are also active in affecting other prostaglandin-regulated processes not associated with the inflammation process. Thus, use of high doses of most common NSAIDs can produce severe side effects, including life threatening 25 ulcers, that limit their therapeutic potential. An alternative to NSAIDs is the use of corticosteroids, which have even more drastic side effects, especially when long term therapy is involved.

Previous NSAIDs have been found to prevent the production of prostaglandins by inhibiting enzymes in the human arachidonic acid/prostaglandin pathway, including the enzyme cyclooxygenase (COX). The recent discovery of an inducible enzyme associated with inflammation (named "cyclooxygenase-2 (COX-2)" or "prostaglandin G/H synthase II") provides a viable target of inhibition which more effectively reduces inflammation and produces fewer and less drastic side effects.

The novel compounds described herein are such safe and also effective antiinflammatory agents. The invention compounds are found to show usefulness in vivo as antiinflammatory agents with minimal side effects. The compounds described herein preferably selectively inhibit cyclooxygenase-2 over cyclooxygenase-1.

Substituted pyrazoles having antiinflammatory activity are described in copending applications 08/160,594 and 08/160,553.

Fused tricyclic pyrazoles having a saturated ring bridging the pyrazole and a phenyl radical have been previously described as HMG-CoA reductase inhibitors in U.S. Patent Nos. 5,134,155 and 5,315,012. Tricyclic pyrazoles have been previously described as antibiotics by M. Hashem et al. [J. Med. Chem., 19, 229 (1976)].

Tricyclic benz[g]indazoles and 4,5-dihydrobenz[g]indazoles are described as antiinflammatory agents in U.S. Patent No. 3,940,418.

R. Hamilton [J. Heterocyclic Chem., 13, 545 (1976)] describes tricyclic benz[g]indazoles and 4,5-dihydrobenz[g]indazoles as antiinflammatory agents. Specifically, [7-chloro-1-phenyl-1H-benz[g]indazol-3-yl]carboxylic acid and methyl (7-chloro-1-phenyl-1H-benz[g]indazol-3-yl)carboxylate are described.

The invention's unsaturated benz[g]indazolyl derivatives are found to show usefulness in vivo as antiinflammatory agents with minimal side effects.

DESCRIPTION OF THE INVENTION

30

25

10

15

20

A class of compounds useful in treating inflammation-related disorders is defined by Formula I:

10

20

wherein A is -(CH₂)_m-CH=CH-(CH₂)_n-;
wherein m is 0 or 1;
wherein n is 0 or 1;
wherein B is selected from aryl and heteroaryl;
wherein R¹ is selected from hydrido, halo,
haloalkyl, cyano, nitro, formyl, alkoxycarbonyl,
carboxyl, carboxyalkyl, alkoxycarbonylalkyl, amidino,
cyanoamidino, aminocarbonyl, alkoxy, alkoxyalkyl,
aminocarbonylalkyl, N-monoalkylaminocarbonyl, N-

aminocarbonylatkyl, N-monoalkylaminocarbonyl, N-arylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylthioalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl,

N-alkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, N,N-dialkylaminosulfonyl, N-alkyl-N-arylaminosulfonyl and heterocyclic;

wherein R² is selected from aryl and heteroaryl, wherein R² is optionally substituted at a substitutable position with one or more radicals selected from alkylsulfonyl, aminosulfonyl, halo, alkyl, alkoxy, hydroxyl and haloalkyl; and

wherein \mathbb{R}^3 is one or more radicals selected from hydrido, halo, alkylthio, alkylsulfinyl, alkyl,

alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, N-monoalkylaminocarbonyl, N-arylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, haloalkyl, hydroxyl, alkoxy, hydroxyalkyl, haloalkoxy, aminosulfonyl, N-

30 alkylaminosulfonyl, amino, N-alkylamino, N,Ndialkylamino, heterocyclic, nitro and acylamino;

provided \mathbb{R}^2 is substituted when \mathbb{R}^3 is halo; or a pharmaceutically-acceptable salt thereof.

Compounds of Formula I would be useful for, but not limited to, the treatment of inflammation in a subject, and for treatment of other inflammation-associated disorders, such as, as an analgesic in the treatment of

/

pain and headaches, or as an antipyretic for the treatment of fever. For example, compounds of the invention would be useful to treat arthritis, including but not limited to rheumatoid arthritis, spondyloarthopathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus and juvenile arthritis. Such compounds of the invention would be useful in the treatment of asthma, bronchitis, menstrual cramps, tendinitis, bursitis, and skin related conditions such as psoriasis, eczema, burns and dermatitis. Compounds of the 10 invention also would be useful to treat gastrointestinal conditions such as inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis and for the prevention of colorectal cancer. Compounds of the invention would be useful in 15 treating inflammation in such diseases as vascular diseases, migraine headaches, periarteritis nodosa, thyroiditis, aplastic anemia, Hodgkin's disease, sclerodoma, rheumatic fever, type I diabetes, myasthenia gravis, multiple sclerosis, sarcoidosis, nephrotic 20 syndrome, Behcet's syndrome, polymyositis, gingivitis, cystic fibrosis, hypersensitivity, conjunctivitis, swelling occurring after injury, myocardial ischemia, and the like. The compounds also would be useful in the treatment of ophthalmic diseases such as retinitis, 25 retinopathies, uveitis, and of acute injury to the eye tissue. The compounds also would be useful for the treatment of certain central nervous system disorders such as alzheimers disease and dementia. The compounds of the invention are useful as anti-inflammatory agents, 30 such as for the treatment of arthritis, with the additional benefit of having significantly less harmful side effects. These compounds also would be useful in the treatment of allergic rhinitis, respiratory distress syndrome, endotoxin shock syndrome, atherosclerosis and 35 central nervous system damage resulting from stroke, ischemia and trauma.

Besides being useful for human treatment, these compounds are also useful for treatment of mammals, including horses, dogs, cats, rats, mice, sheep, and pigs, and of birds.

The present compounds may also be used in cotherapies, partially or completely, in place of other conventional antiinflammatories, such as together with steroids, NSAIDs, 5-lipoxygenase inhibitors, LTB4 antagonists and LTA4 hydrolase inhibitors.

10 Suitable LTB4 inhibitors include, among others, ebselen, Bayer Bay-x-1005, Ciba Geigy compound CGS-25019C, Leo Denmark compound ETH-615, Lilly compound LY-293111, Ono compound ONO-4057, Terumo compound TMK-688, Lilly compounds LY-213024, 264086 and 292728, ONO compound ONO-LB457, Searle compound SC-53228, 15 calcitrol, Lilly compounds LY-210073, LY223982, LY233469, and LY255283, ONO compound ONO-LB-448, Searle compounds SC-41930, SC-50605 and SC-51146, and SK&F compound SKF-104493. Preferably, the LTB_4 inhibitors are selected from ebselen, Bayer Bay-x-1005, Ciba Geigy compound CGS-20 25019C, Leo Denmark compound ETH-615, Lilly compound Ly-293111, Ono compound ONO-4057, and Terumo compound TMK-688.

Suitable 5-LO inhibitors include, among others,
25 masoprocol, tenidap, zileuton, pranlukast, tepoxalin,
rilopirox, flezelastine hydrochloride, enazadrem
phosphate, and bunaprolast.

The present invention preferably includes compounds which selectively inhibit cyclooxygenase-2 over

30 cyclooxygenase-1. Preferably, the compounds have a cyclooxygenase-2 IC50 of less than about 0.2 µM, and also have a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase-1 inhibition of at least 50, and more preferably of at least 100. Even more preferably, the compounds have a cyclooxygenase-1 IC50 of greater than about 1 µM, and more preferably of greater than 10 µM. Such preferred selectivity may indicate an ability to

6

reduce the incidence of common NSAID-induced side effects.

A preferred class of compounds consists of those compounds of Formula I wherein A is $-(CH_2)_m$ -CH=CH- $(CH_2)_n$ -: wherein B is selected from aryl, and five-six membered heteroaryl; wherein m is 0 or 1; wherein n is 0 or 1; wherein R1 is selected from halo, lower haloalkyl, cyano, nitro, formyl, lower alkoxycarbonyl, lower carboxyalkyl. lower alkoxycarbonylalkyl, amidino, cyanoamidino, lower 10 alkoxy, lower alkoxyalkyl, lower aminocarbonylalkyl, lower N-monoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-Nphenylaminocarbonyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower hydroxyalkyl, lower alkylthio, 15 lower alkylsulfinyl, lower alkylsulfonyl, lower alkylthioalkyl, lower alkylsulfinylalkyl, lower alkylsulfonylalkyl, lower N-alkylaminosulfonyl, Nphenylaminosulfonyl, phenylsulfonyl, lower N,Ndialkylaminosulfonyl, lower N-alkyl-N-phenylaminosulfonyl 20 and five-seven membered heterocyclic; wherein R² is selected from phenyl and five-six membered heteroaryl, wherein R^2 is optionally substituted at a substitutable position with one or more radicals selected from lower alkylsulfonyl, aminosulfonyl, halo, lower alkyl, lower 25 alkoxy, hydroxyl and lower haloalkyl; and wherein R³ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower N-monoalkylaminocarbonyl, N-phenylaminocarbonyl, 30 lower N, N-dialkylaminocarbonyl, lower N-alkyl-Nphenylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, aminosulfonyl, lower N-alkylaminosulfonyl, amino, lower N-alkylamino, lower N, N-dialkylamino, five-seven membered heterocyclic, nitro and acylamino; or a 35

pharmaceutically-acceptable salt thereof.

A more preferred class of compounds consists of those compounds of Formula I wherein A is -CH=CH-; wherein B is selected from aryl and six membered heteroaryl; wherein R1 is selected from halo, lower haloalkyl, cyano, nitro, formyl, lower alkoxycarbonyl, lower carboxyalkyl, lower alkoxy, lower Nmonoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N,Ndialkylaminocarbonyl, lower N-alkyl-Nphenylaminocarbonyl, lower alkylcarbonyl and lower hydroxyalkyl; wherein R^2 is phenyl optionally substituted 10 at a substitutable position with one or more radicals selected from lower alkylsulfonyl and aminosulfonyl; and wherein \mathbb{R}^3 is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, 15 aminocarbonyl, lower N-monoalkylaminocarbonyl, Nphenylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-N-phenylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower 20 haloalkoxy, amino, lower N-alkylamino, lower N, Ndialkylamino, nitro and acylamino; or a pharmaceuticallyacceptable salt thereof.

An even more preferred class of compounds consists of those compounds of Formula I wherein A is -CH=CH-; 25 wherein B is phenyl or pyridyl; wherein R^1 is selected from lower haloalkyl, cyano, lower alkoxycarbonyl, lower N-monoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N, N-dialkylaminocarbonyl and lower N-alkyl-Nphenylaminocarbonyl; wherein R^2 is phenyl optionally substituted at a substitutable position with a radical 30 selected from lower alkylsulfonyl and aminosulfonyl; and wherein ${\ensuremath{\mathsf{R}}}^3$ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, cyano, lower alkoxycarbonyl, aminocarbonyl, lower Nmonoalkylaminocarbonyl, lower haloalkyl, hydroxyl, lower 35 alkoxy, lower hydroxyalkyl, lower haloalkoxy, amino,

lower N,N-dialkylamino and nitro; or a pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists of those compounds of Fcrmula I wherein A is -CH=CH-; wherein B is phenyl or pyridyl; wherein R¹ is selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, 10 dichloropropyl, cyano, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, Nmethylaminocarbonyl, N-phenylaminocarbonyl, N,Ndimethylaminocarbonyl and N-methyl-N-phenylaminocarbonyl; 15 wherein R² is phenyl optionally substituted at a substitutable position with methylsulfonyl or aminosulfonyl; and wherein R³ is one or more radicals selected from fluoro, chloro, bromo, methylthio, 20 ethylthio, isopropylthio, tert-butylthio, isobutylthio, hexylthio, methylsulfinyl, ethylsulfinyl, isopropylsulfinyl, tert-butylsulfinyl, isobutylsulfinyl, hexylsulfinyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, hexyl, cyano, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, 25 butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, aminocarbonyl, N-methylaminocarbonyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, 30 dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxyl, methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy, hydroxymethyl, trifluoromethoxy, amino, N,N-dimethylamino and nitro; or

a pharmaceutically-acceptable salt thereof.

20

A family of specific compounds of particular interest within Formula I consists of compounds and pharmaceutically-acceptable salts thereof as follows:

- 5 4-[6-chloro-7-methoxy-1H-benz[g]indazol-1yl]benzenesulfonamide;
 - [1-(4-aminosulfonylphenyl)-6-chloro-7-methoxy-1Hbenz[g]indazol-3-yl]carbonitrile;
 - methyl [1-(4-aminosulfonylphenyl)-6-chloro-7-methoxylH-benz[g]indazol-3-yl]carboxylate;
 - ethyl [1-(4-aminosulfonylphenyl)-6-chloro-7-methoxy1H-benz[g]indazol-3-yl]carboxylate;
 - N-methyl [1-(4-aminosulfonylphenyl)-6-chloro-7-methoxy-1H-benz[g]indazol-3-yl]carboxamide;
- 6-chloro-7-methoxy-1-(4-methylsulfonylphenyl)-1Hbenz[g]indazole;
 - [1-(4-methylsulfonylphenyl)-6-chloro-7-methoxy-1Hbenz[g]indazol-3-yl]carbonitrile;
 - methy1 [1-(4-methylsulfonylphenyl)-6-chloro-7methoxy-1H-benz[g]indazol-3-yl]carboxylate;
 - ethyl [1-(4-methylsulfonylphenyl)-6-chloro-7-methoxylH-benz[g]indazol-3-yl]carboxylate;
 - N-methyl [1-(4-methylsulfonylphenyl)-6-chloro-7-methoxy-1H-benz[g]indazol-3-yl]carboxamide;
- 25 [1-(4-methylsulfonylphenyl)-3-(difluoromethyl)-1Hbenz[g]indazol-7-yl]carboxylic acid;
 - methyl [1-(4-methylsulfonylphenyl)-3 (difluoromethyl)-1H-benz[g]indazol-7 yl]carboxylate;
- 30 [1-(4-methylsulfonylphenyl)-3-(difluoromethyl)-1Hbenz[g]indazol-7-yl]carbonitrile;
 - 3-(difluoromethyl)-7-hydroxy-1-(4methylsulfonylphenyl)-1H-benz[g]indazole;
 - 3-(difluoromethyl)-7-hydroxymethyl-1-(4-
- 35 methylsulfonylphenyl)-lH-benz[g]indazole;
 - 3-(difluoromethyl)-1-(4-methylsulfonylphenyl)-7trifluoromethoxy-1H-benz[g]indazole;

PCT/US95/11402

```
7-chloro-3-(difluoromethyl)-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-7-fluoro-1-(4-
         methylsulfonylphenyl)-lH-benz[g]indazole;
    7-bromo-3-(difluoromethyl)-1-(4-
5
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-7-methyl-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-7-methoxy-1-(4-
         methylsulfonylphenyl) -1H-benz[g]indazole;
10
    3-(difluoromethyl)-6,7-methylenedioxy-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-7-dimethylamino-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-6-fluoro-7-methoxy-1-(4-
15
         methylsulfonylphenyl)-1H-benz[g]indazole;
    6-chloro-3-(difluoromethyl)-7-fluoro-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    6-chloro-3-(difluoromethyl)-7-methyl-1-(4-
          methylsulfonylphenyl)-1H-benz[g]indazole;
20
    3-(difluoromethyl)-6-fluoro-7-methyl-1-(4-
          methylsulfonylphenyl)-1H-benz[g]indazole;
    6,7-dichloro-3-(difluoromethyl)-1-(4-
          methylsulfonylphenyl)-1H-benz[g]indazole;
25
    6,7-difluoro-3-(difluoromethyl)-1-(4-
          methylsulfonylphenyl)-lH-benz[g]indazole;
    3-(difluoromethyl)-1-(4-methylsulfonylphenyl)-7-
          methylthio-1H-benz[g]indazole;
     6-chloro-3-(difluoromethyl)-1-(4-
          methylsulfonylphenyl)-7-methylthio-1H-
30
          benz[g]indazole;
     3-(difluoromethyl)-1-(4-methylsulfonylphenyl)-7-
          methylsulfinyl-1H-benz[g]indazole;
     6-chloro-3-(difluoromethyl)-7-methylsulfinyl-1-(4-
          methylsulfonylphenyl)-1H-benz[g]indazole;
35
     [1-(4-methylsulfonylphenyl)-3-(trifluoromethyl)-1H-
          benz[g]indazol-7-yl]carboxylic acid;
```

```
methyl [1-(4-methylsulfonylphenyl)-3-
           (trifluoromethyl)-1H-benz[g]indazol-7-
           yl]carboxylate;
      [1-(4-methylsulfonylphenyl)-3-(trifluoromethyl)-1H-
  5
           benz[g]indazol-7-yl]carbonitrile;
     7-hydroxy-1-(4-methylsulfonylphenyl)-3-
           (trifluoromethyl)-1H-benz[g]indazole;
     7-hydroxymethyl-1-(4-methylsulfonylphenyl)-3-
           (trifluoromethyl)-1H-benz[g]indazole;
     1-(4-methylsulfonylphenyl)-7-trifluoromethoxy-3-
10
           (trifluoromethyl)-1H-benz[g]indazole;
     7-chloro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     7-fluoro-1-(4-methylsulfonylphenyl)-3-
15
          (trifluoromethyl)-1H-benz[g]indazole;
     7-bromo-1-(4-methylsulfonylphenyl)-3-
           (trifluoromethyl)-1H-benz[g]indazole;
     7-methyl-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
20
     7-methoxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     6,7-methylenedioxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     7-dimethylamino-1-(4-methylsulfonylphenyl)-3-
25
          (trifluoromethyl)-1H-benz[g]indazole;
     6-fluoro-7-methoxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     6-chloro-7-fluoro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     6-chloro-7-methyl-1-(4-methylsulfonylphenyl)-3-
30
          (trifluoromethyl)-1H-benz[g]indazole;
    6-fluoro-7-methyl-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    6,7-dichloro-1-(4-methylsulfonylphenyl)-3-
35
          (trifluoromethyl)-1H-benz[g]indazole;
    6,7-difluoro-1-(4-methylsulfonylphenyl)-3-
          (trifluorom thyl)-1H-benz[g]indazole;
```

```
1-(4-methylsulfonylphenyl)-7-methylthio-3-
          (trifluoromethyl)-1H-benz(g)indazole;
    6-chloro-1-(4-methylsulfonylphenyl)-7-methylthio-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    7-methylsulfinyl-1-(4-methylsulfonylphenyl)-3-
5
          (trifluoromethyl)-1H-benz[g]indazole;
    6-chloro-7-methylsulfinyl-1-(4-methylsulfonylphenyl)-
         3-(trifluoromethyl)-1H-benz[g]indazole;
    6-chloro-7-methoxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
10
    [1-(4-aminosulfonylphenyl)-3-(difluoromethyl)-1H-
         benz(g)indazol-7-yl]carboxylic acid;
    methyl [1-(4-aminosulfonylphenyl)-3-
          (difluoromethyl)-1H-benz[g]indazol-7-
15
         yl]carboxylate;
    [1-(4-aminosulfonylphenyl)-3-(difluoromethyl)-1H-
         benz[g]indazol-7-yl]carbonitrile;
    4-[3-(difluoromethyl)-7-hydroxy-1H-benz[g]indazol-1-
         yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-7-hydroxymethyl-1H-
20
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-7-trifluoromethoxy-1H-
          benz[q]indazol-1-yl]benzenesulfonamide;
    4-[7-chloro-3-(difluoromethyl)-1H-benz[g]indazol-1-
         vllbenzenesulfonamide;
25
    4-[3-(difluoromethyl)-7-fluoro-1H-benz[g]indazol-1-
          yl]benzenesulfonamide;
     4-[7-bromo-3-(difluoromethyl)-1H-benz[g]indazol-1-
          yl]benzenesulfonamide;
     4-[3-(difluoromethyl)-7-methyl-1H-benz[g]indazol-1-
30
          yl]benzenesulfonamide;
     4-[3-(difluoromethyl)-7-methoxy-1H-benz[g]indazol-1-
          yl]benzenesulfonamide;
     4-[3-(difluoromethyl)-6,7-methylenedioxy-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
35
     4-[3-(difluoromethyl)-7-dimethylamino-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
```

WO 96/09293

13

PCT/US95/11402

```
4-[3-(difluoromethyl)-6-fluoro-7-methoxy-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     4-[6-chloro-3-(difluoromethyl)-7-fluoro-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
 5
    4-[6-chloro-3-(difluoromethyl)-7-methyl-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     4-[3-(difluoromethyl)-6-fluoro-7-methyl-1H-
          benz[q]indazol-1-yl]benzenesulfonamide;
     4-[6,7-dichloro-3-(difluoromethyl)-1H-
10
          benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6,7-difluoro-3-(difluoromethyl)-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     4-[3-(difluoromethyl)-7-methylthio-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-chloro-3-(difluoromethyl)-7-methylthio-1H-
15
          benz[g]indazol-1-yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-7-methylsulfinyl-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-chloro-3-(difluoromethyl)-7-methylsulfinyl-1H-
20
         benz[g]indazol-1-yl]benzenesulfonamide;
     [1-(4-aminosulfonylphenyl)-3-(trifluoromethyl)-1H-
         benz[g]indazol-7-yl]carboxylic acid;
    methyl [1-(4-aminosulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazol-7-
25
         yl]carboxylate;
    4-[1-(methylsulfonyl)-3-(trifluoromethyl)-1H-
       pyrazolo[4,3-f]quinoline;
    4-[3-(trifluoromethyl)-lH-pyrazolo[3,4-e]isoquinolin-1-
       yl]benzenesulfonamide;
30
    [1-(4-aminosulfonylphenyl)-3-(trifluoromethyl)-1H-
         benz(g)indazol-7-yl)carbonitrile;
    4-[7-hydroxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-
         yl]benzenesulfonamide;
    4-[7-hydroxymethyl-3-(trifluoromethyl)-1H-
35
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[7-trifluoromethoxy-3-(trifluoromethyl)-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
```

4-[7-chloro-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide; 4-[7-fluoro-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide; 5 4-[7-bromo-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide; 4-[7-methyl-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide; 4-[7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-10 1 yl]benzenesulfonamide; 4-[6,7-methylenedioxy-3-(trifluoromethyl)-1Hbenz(g)indazol-1-yl)benzenesulfonamide; 4-[7-dimethylamino-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide; 4-[6-fluoro-7-methoxy-3-(trifluoromethyl)-1H-15 benz(g)indazol-1-yl]benzenesulfonamide; 4-[6-chloro-7-fluoro-3-(trifluoromethyl)-1Hbenz(g)indazol-1-yl]benzenesulfonamide; 4-[6-chloro-7-methyl-3-(trifluoromethyl)-1H-20 benz[g]indazol-1-yl]benzenesulfonamide; 4-[6-fluoro-7-methyl-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide; 4-[6,7-dichloro-3-(trifluoromethyl)-1Hbenz(g)indazol-1-yl)benzenesulfonamide; 25 4-[6,7-difluoro-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide; 4-[7-methylthio-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide; 4-[6-chloro-7-methylthio-3-(trifluoromethyl)-1H-30 benz[g]indazol-1-yl]benzenesulfonamide; 4-[7-methylsulfinyl-3-(trifluoromethyl)-1Hbenz(g)indazol-1-yl)benzenesulfonamide; 4-[6-chloro-7-methylsulfinyl-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide; and 35 4-[6-chloro-7-methoxy-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide.

15

Within Formula I there is a subclass of compounds of high interest represented by Formula II:

$$\begin{array}{c}
\mathbb{R}^{1} \\
\mathbb{N} \\
\mathbb{N}$$

5

wherein R¹ is hydrido or haloalkyl; and wherein R³ is one or more radicals selected from alkyl, alkoxy and halo; or a pharmaceutically-acceptable salt thereof.

A preferred class of compounds consists of those

compounds of Formula II wherein R¹ is hydrido or lower
haloalkyl; and wherein R³ is one or more radicals selected
from lower alkyl, lower alkoxy and halo; or a
pharmaceutically-acceptable salt thereof.

A class of compounds of particular interest consists

of those compounds of Formula II wherein R¹ is selected
from hydrido, fluoromethyl, difluoromethyl,
trifluoromethyl, chloromethyl, dichloromethyl,
trichloromethyl, pentafluoroethyl, heptafluoropropyl,
difluorochloromethyl, dichlorofluoromethyl,

difluoroethyl, difluoropropyl, dichloroethyl and
dichloropropyl; and wherein R³ is one or more radicals
selected from fluoro, chloro, bromo, methyl, ethyl,
methoxy, methylenedioxy, ethoxy, propoxy, n-butoxy and
tert-butoxy; or a pharmaceutically-acceptable salt

25 thereof.

30

The term "hydrido" denotes a single hydrogen atom (H). This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form a methylene (-CH2-) radical. Where used, either

alone or within other terms such as "haloalkyl", "alkylsulfonyl", "alkoxyalkyl" and "hydroxyalkyl", the term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about six carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-10 butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, hexyl and the like. The term "halo" means halogens such as fluorine, chlorine, bromine or iodine. The term "haloalkyl" embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as 15 defined above. Specifically embraced are monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have two or more of the 20 same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals having 1-6 carbon atoms. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 25 trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten 30 carbon atoms any one of which may be substituted with one or more hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include 35 hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl and hydroxyhexyl. The terms "alkoxy" and "alkoxyalkyl"

embrace linear or branched oxy-containing radicals each

having alkyl portions of one to about ten carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy. The term "alkoxyalkyl" embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals. More preferred alkoxyalkyl radicals are "lower alkoxyalkyl" radicals having one to 10 six carbon atoms and one or two alkoxy radicals. Examples of such radicals include methoxymethyl, methoxyethyl, ethoxyethyl, methoxybutyl and methoxypropyl. The "alkoxy" or "alkoxyalkyl" radicals may be further substituted with one or more halo atoms, 15 such as fluoro, chloro or bromo, to provide "haloalkoxy" or haloalkoxyalkyl radicals. More preferred haloalkoxy radicals are "lower haloalkoxy" radicals having one to six carbon atoms and one or more halo radicals. Examples of such radicals include fluoromethoxy, 20 chloromethoxy, trifluoromethoxy, trifluoroethoxy, fluoroethoxy and fluoropropoxy. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such 25 as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. The term "heterocyclic" embraces saturated, partially saturated and unsaturated heteroatomcontaining ring-shaped radicals, where the heteroatoms 30 may be selected from nitrogen, sulfur and oxygen. Preferred heterocyclic radicals contain 3 to 10 members. Examples of saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocylic group containing 1 to 4 nitrogen atoms [e.g. pyrrolidiny], 35 imidazolidinyl, piperidino, piperazinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms

PCT/US95/11402

[e.g. morpholinyl, etc.]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.]. Examples of partially saturated heterocyclic radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. Examples of unsaturated heterocyclic radicals, also termed "heteroaryl" radicals, include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, 10 pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.] tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.; unsaturated condensed heterocyclic group 15 containing 1 to 5 nitrogen atoms, for example, indoly1, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo[1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for 20 example, pyranyl, furyl, etc.; unsaturated 3 to 6membered heteromonocyclic group containing a sulfur atom, for example, thienyl, etc.; unsaturated 3- to 6membered heteromonocyclic group containing 1 to 2 oxygen 25 atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4oxadiazolyl, 1,2,5-oxadiazolyl, etc.] etc.; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzoxazolyl, 30 benzoxadiazolyl, etc.]; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4- thiadiazolyl, 1,3,4thiadiazolyl, 1,2,5-thiadiazolyl, etc.] and 35 isothiazolyl; unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms

[e.g., benzothiazolyl, benzothiadiazolyl, etc.] and the

19

like. The term also embraces radicals where heterocyclic radicals are fused with aryl radicals. Examples of such fused bicyclic radicals include benzofuryl, benzothienyl, and the like. Said "heterocyclic" radicals 5 may have 1 to 3 substituents such as lower alkyl, hydroxy, oxo, amino and lower alkylamino. More preferred heteroaryl radicals include five to six membered heteroaryl radicals. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a 10 divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having alkyl radicals of one to six carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio. The term 15 "alkylthioalkyl" embraces alkylthio radicals attached to an alkyl radical. More preferred alkylthioalkyl radicals are "lower alkylthioalkyl" radicals having alkyl radicals of one to six carbon atoms and an alkylthio radical as described above. Examples of such 20 radicals include methylthiomethyl. The term "arylthio" embraces radicals containing an aryl radical, attached to a divalent sulfur atom, such as a phenylthio radical. The term "alkylsulfinyl" embraces radicals containing a linear or branched alkyl radical, of one to ten carbon 25 atoms, attached to a divalent -S(=0) - radical. More preferred alkylsulfinyl radicals are "lower alkylsulfinyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfinyl radicals include methylsulfinyl, ethylsulfinyl, butylsulfinyl and 30 hexylsulfinyl. The term "alkylsulfinylalkyl" embraces alkylsulfinyl radicals attached to an alkyl radical, where alkyl and alkylsulfinyl are defined as above. More preferred alkylsulfinylalkyl radicals are "lower alkylsulfinylalkyl* radicals having one to six carbon 35 atoms. Examples of such lower alkylsulfinylalkyl radicals include methylsulfinylmethyl. The term

"sulfonyl", whether used alone or linked to other terms such as alkylsulfonyl, denotes respectively divalent radicals -SO₂-. "Alkylsulfonyl" embraces alkyl radicals attached to a sulfonyl radical, where alkyl is defined as above. More preferred alkylsulfonyl radicals are "lower alkylsulfonyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfonyl radicals include methylsulfonyl, ethylsulfonyl and propylsulfonyl. The term "alkylsulfonylalkyl" embraces 10 alkylsulfonyl radicals attached to an alkyl radical, where alkyl and alkylsulfonyl are defined as above. More preferred alkylsulfonylalkyl radicals are "lower alkylsulfonylalkyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfonylalkyl 15 radicals include methylsulfonylmethyl, ethylsulfonylmethyl and propylsulfonylmethyl. The term "arylsulfonyl" embraces aryl radicals as defined above, attached to a sulfonyl radical. Examples of such radicals include phenylsulfonyl. The terms "sulfamyl", "aminosulfonyl" and "sulfonamidyl" whether alone or used 20 with terms such as "N-alkylaminosulfonyl", "Narylaminosulfonyl", "N,N-dialkylaminosulfonyl" and "Nalkyl-N-arylaminosulfonyl", denote a sulfonyl radical substituted with an amine radical, forming a sulfonamide 25 (-SO₂NH₂). The terms "N-alkylaminosulfonyl" and "N,Ndialkylaminosulfonyl denote aminosulfonyl radicals substituted, respectively, with one alkyl radical, a cycloalkyl ring, or two alkyl radicals. The terms "Narylaminosulfonyl and "N-alkyl-N-arylaminosulfonyl" 30 denote aminosulfonyl radicals substituted with one aryl radical or one alkyl and one aryl radical, respectively. The term "acyl" denotes a radical provided by the residue after removal of hydroxyl from an organic acid. Examples of such acyl radicals include formyl, alkanoyl and aroyl radicals. The terms "carboxy" or "carboxyl", 35 whether used alone or with other terms, such as

"carboxyalkyl", denotes -CO₂H. The term "carbonyl",

WO 96/09293

21

PCT/US95/11402

whether used alone or with other terms, such as "alkoxycarbonyl", denotes -(C=O)-. The term "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom 5 to a carbonyl radical. Preferably, "lower alkoxycarbonyl" embraces alkoxy radicals having one to six carbon atoms. Examples of such "lower alkoxycarbonyl* ester radicals include substituted or unsubstituted methoxycarbonyl, ethoxycarbonyl, 10 propoxycarbonyl, butoxycarbonyl and hexyloxycarbonyl. The term "alkylcarbonyl" includes radicals having alkyl radicals attached to a carbonyl radical. More preferred alkylcarbonyl radicals are "lower alkylcarbonyl" radicals having one to six carbon atoms. Examples of 15 such radicals include methylcarbonyl and ethylcarbonyl. The term "alkylcarbonylalkyl" denotes radicals having alkylcarbonyl attached to alkyl radicals as defined above. More preferred alkylcarbonylalkyl radicals are "lower alkylcarbonylalkyl" radicals having alkyl radicals of one to six carbon atoms. Examples of such 20 radicals include methylcarbonylmethyl and ethylcarbonylmethyl. The term "alkoxycarbonylalkyl" embraces radicals having "alkoxycarbonyl", as defined above substituted to an alkyl radical. More preferred 25 alkoxycarbonylalkyl radicals are "lower alkoxycarbonylalkyl having lower alkoxycarbonyl radicals as defined above attached to one to six carbon atoms. Examples of such lower alkoxycarbonylalkyl radicals include methoxycarbonylmethyl. The term 30 "carboxyalkyl" embraces radicals having a carboxy radical as defined above, attached to an alkyl radical. More preferred carboxyalkyl radicals are "lower carboxyalkyl" having alkyl portions of one to six carbons. The term "aminoalkyl" embraces alkyl radicals 35 substituted with amino radicals. More preferred aminoalkyl radicals are "lower aminoalkyl" having one to

six carbon atoms. Examples include aminomethyl,

aminoethyl and aminobutyl. The term "alkylaminoalkyl" embraces aminoalkyl radicals having the nitrogen atom substituted with at least one alkyl radical. More preferred alkylaminoalkyl radicals are "lower alkylaminoalkyl* having one to six carbon atoms attached 5 to a lower aminoalkyl radical as described above. term "alkylamino" denotes amino groups which have been substituted with one or two alkyl radicals. More preferred alkylamino radicals are "lower alkylamino" 10 radicals having alkyl radicals of one to six carbon atoms, attached to a nitrogen atom. Suitable "lower alkylamino" may be mono or dialkylamino such as Nmethylamino, N-ethylamino, N,N-dimethylamino, N,Ndiethylamino or the like. The term "alkylaminocarbonyl" 15 embraces alkylamino radicals, as described above, to a carbonyl radical. More preferred alkylaminocarbonyl radicals are "lower alkylaminocarbonyl" having lower alkylamino radicals, as described above, attached to a carbonyl radical. Examples of such radicals include N-20 methylaminocarbonyl and N,N-dimethylcarbonyl. The terms "N-monoarylaminocarbonyl" and "N-alkyl-Narylaminocarbonyl denote aminocarbonyl radicals substituted, respectively, with one aryl radical, and one alkyl and one aryl radical. The term "arylamino" 25 denotes amino groups which have been substituted with one or two aryl radicals, such as N-phenylamino. The "arylamino" radicals may be further substituted on the aryl ring portion of the radical. The term "aminocarbonyl" denotes an amide group of the formula 30 -C(=0)NH2. The term "aminocarbonylalkyl" denotes an aminocarbonyl radical attached to an alkyl radical, as defined above. The term "amidino" denotes ar. -C(=NH)-NH2 radical. The term "cyanoamidino" denotes an -C(=N-CN)-NH2 radical. The term "cycloalkyl" embraces 35 radicals having three to ten carbon atoms, such as cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. The term "acylamino" embraces an amino

10

15

radical substituted with an acyl group. An examples of an "acylamino" radical is acetylamino $(CH_3C(=0)-NH-)$.

The present invention comprises a pharmaceutical composition comprising a therapeutically-effective amount of a compound of Formula I in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention also comprises a method of treating inflammation or inflammation-associated disorders in a subject, the method comprising administering to the subject having such inflammation or disorder a therapeutically-effective amount of a compound of Formula I.

Compounds of Formula I would also be capable of inhibiting cytokines, such as TNF, IL-1, IL-6, and IL-8. As such, the compounds can be used in the manufacture of a medicament or in a method for the treatment for the prophylactic or therapeutic treatment of diseases mediated by cytokines, such as TNF, IL-1, IL-6, and IL-8.

20 Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. The term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature of the salt is not critical, 25 provided that it is pharmaceutically-acceptable. Suitable pharmaceutically-acceptable acid addition salts of compounds of Formula I may be prepared from an inorganic acid or from an organic acid. Examples of such inorganic acids are hydrochloric, hydrobromic, 30 hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, example of which are formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic,

24

fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, stearic, cyclohexylaminosulfonic, algenic, β-hydroxybutyric, salicylic, galactaric and galacturonic acid. Suitable pharmaceuticallyacceptable base addition salts of compounds of Formula I include metallic salts made from aluminum, calcium, 10 lithium, magnesium, potassium, sodium and zinc or organic salts made from N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and 15 procaine. All of these salts may be prepared by conventional means from the corresponding compound of Formula I by reacting, for example, the appropriate acid or base with the compound of Formula I.

25

GENERAL SYNTHETIC PROCEDURES

The compounds of the invention can be synthesized according to the following procedures of Schemes I-VI, 5 wherein the $R^{1}-R^{3}$ substituents are as defined for Formula I-II, above, except where further noted.

Scheme I

Synthetic Scheme I shows the three step procedure for preparation of fused pyrazole compounds embraced by Formula I. In step 1, a ketone 1 (where X is $(CH_2)_{2-4}$) is reacted with base, such as a lithium base, for example lithium diisopropyl amide (LDA) or LiHMDS, or sodium methoxide (25%) in a protic solvent, such as methanol, followed by condensation with suitable acylating agents R¹COLG (where LG represents an 20 appropriate leaving group such as methoxy, ethoxy, chloro, imidazole, tosyl and the like), such as ethyl trifluoroacetate, in an appropriate solvent such as diethyl ether, methanol or tetrahydrofuran, to give the intermediate diketone 2 (in the enol form). In

10

15

step 2, the diketone 2 in an anhydrous protic solvent, such as absolute ethanol or acetic acid, is treated with the free base or hydrochloride salt of a phenylhydrazine 3 at reflux for about 24 hours to afford the fused pyrazole 4. In step 3, the fused pyrazole 4 is treated with a dehydrogenating agent such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Additional agent can be periodically added to give the partially unsaturated antiinflammatory compounds 5 of this invention. Dehydrogenation simultaneous with halogenation can be achieved by reacting the dihydro fused pyrazole 4 with N-chlorosuccinimide (NCS) and heating to about 50°C for several days.

15

10

Scheme II

8

27

Synthetic Scheme II shows the three step procedure for preparation of benz[g]indazole compounds 9 embraced by Formula I. In step 1, 1-tetralone derivatives 6 are reacted with base, such as lithium diisopropyl amide (LDA) or sodium methoxide (25%) in a protic solvent, such as methanol, followed by condensation with suitable acylating agents R1COLG (where LG is defined for Scheme I) such as ethyl trifluoroacetate in an appropriate solvent such as 10 diethyl ether, methanol or tetrahydrofuran to give the intermediate diketones 7. In step 2, the diketones 7 in an anhydrous protic solvent, such as absolute ethanol or acetic acid, are treated with the free base or hydrochloride salt of a phenylhydrazine at reflux 15 for 24 hours to afford the 4,5-dihydrobenz[g]indazoles 8. In step 3, the 4,5-dihydrobenz[g]indazoles 8 are reacted with DDO or Nchlorosuccinimide (NCS) and heated to an appropriate temperature. Additional reagent can be periodically 20 added to give the antiinflammatory compounds 9 of this invention.

SCHEME III

 $R^{2}NHNH_{2} \xrightarrow{\text{solvent}} R^{2}NHNH_{3}^{+}C1^{-}$ $10 \qquad \qquad 3$

25

30

Synthetic Scheme III illustrates a procedure used to prepare the substituted phenylhydrazine hydrochlorides 3 as used in Schemes I-II. The substituted phenylhydrazine is converted to the hydrochloride salt by stirring with a 4N solution of hydrochloric acid in a solvent such as dioxane.

SCHEME IV

LG
$$SO_2C1$$
 Ammonia LG SO_2NH_2 $I1$ $I2$ $Hydrazine$ NH_2NH SO_2NH_2 SO_2NH_2

Synthetic Scheme IV shows the two step procedure for preparation of substituted heteroarylhydrazine compounds 13 as used in Scheme I where R² is thienyl. In step 1, the heteroarylthionyl chloride 11 (where LG represents a leaving group such as halo) is treated with ammonia to give the heteroaryl sulfonamides 12. In step 2, the heteroaryl sulfonamides 12 are treated with hydrazine to give the substituted heteroarylhydrazines 13.

SCHEME V

5 Synthetic Scheme V shows procedures for preparing antiinflammatory agents 15, 16 and 17 of Formula I. The esters 14, which can be prepared as shown in Scheme I, are dissolved in aqueous ethanol and a base such as 10% NaOH is added. The reaction is 10 heated to reflux to give the acids 15. The acids 15 can be decarboxylated to the fused pyrazole 16 by heating to about 290°C. The acids 15 can be converted to the appropriate amides 17 by dissolving in methanol and treating with an appropriate amine in

PCT/US95/11402 WO 96/09293

30

the presence of a coupling agent such as dicyclohexylcarbodiimide (DCC). The amides 17 can also be prepared directly from esters 14 by treating with an appropriate amine.

5

10

SCHEME VI

Synthetic Scheme VI shows procedures for preparing antiinflammatory agents 18 of Formula I. The dihydrobenzindazole esters 14, which can be prepared similar to that shown in Scheme I and as shown in Hamilton, J. Heterocyclic Chem., 13, 545 (1976), are dissolved in ethanol and a base such as 10% NaOH is 15 added. The reaction is heated to reflux to give the decarboxylated agents 18.

The following examples contain detailed descriptions of the methods of preparation of 20 compounds of Formula I-II. These detailed descriptions fall within the scope, and serve to exemplify, the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the 25 scope of the invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated.

31

Example 1

$$H_2N$$
 N
 N
 CF_2H

5 4-[6-Chloro-3-(difluoromethyl)-7-methoxy-1Hbenz[g]indazol-1-yl]benzenesulfonamide

Step 1 Preparation of 2-[2.2-difluoro-1-hvdroxyethvlidene]-3.4-dihvdro-6-methoxy-1(2H)-

10 <u>naphthalenone</u>

Ethyl difluoroacetate (6.2 g, 50 mmol) was dissolved in 75 mL of ether. To this solution was added 12 mL of 25% sodium methoxide in methanol (52.5 mmol). A solution of 6-methoxy-1-tetralone (8.81 g, 50 mmol) in 125 mL of ether was added over about 1 minute. The 15 reaction mixture was stirred at room temperature for 14 hours and was diluted with 150 mL of 1N HCl. The phases were separated and the organic layer was washed with brine, dried over anhydrous MgSO4, filtered and 20 concentrated in vacuo. The residue was taken up in 70 mL of boiling ethanol/water and cooled to room temperature, whereupon crystals of 2-[2,2-difluoro-1hydroxyethylidene]-3,4-dihydro-6-methoxy-1(2H)naphthalenone (also known as 6-methoxy-2-difluoroacetyl-25 1-tetralone) formed which were isolated by filtration and air dried (10.8 g, 85%): mp 52-54°C.

Step 2 Preparation of 4-[3-(difluoromethyl)-4.5-dihydro-7-methoxy-lH-benz[glindazol-1-

30 <u>vllbenzenesulfonamide</u>

32

3,4-Dihydro-6-methoxy-2-[2,2-difluoro-1-hydroxyethylidene]-1(2H)-naphthalenone from Step 1 (2.54 g, 10 mmol) was added to 4-sulfonamidophenylhydrazine hydrochloride (2.91 g, 13 mmol) and 250 mL of absolute ethanol. The solution was warmed to reflux for 15 hours and concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with water and with brine, dried over anhydrous MgSO₄, filtered and reconcentrated in vacuo. The residue was recrystallized from a mixture of ethanol and water to give 4-[3-(difluoromethyl)-4,5-dihydro-7-methoxy-1H-benz[g]indazol-1-yl]benzenesulfonamide (3.3 g, 82%): mp 256-257°C.

Step 3 Preparation of 4-[6-chloro-3-(difluoromethyl)-7-methoxy-1H-benz[glindazol-1yllbenzenesulfonamide

4-[3-(Difluoromethyl)-4,5-dihydro-7-methoxy-1Hbenz[g]indazol-1-yl]benzenesulfonamide (1.0 g, 1.23 mmol) from Step 2 was suspended in chloroform (100 ml), and N-chlorosuccinimide (NCS) (329 mg, 1.23 mmol) was 20 added. The reaction was heated to 50°C for 16 hours. At this point, ethanol (20 ml) was added to dissolve the suspended reagents. The reaction was again heated to 50°C for 24 hours. An additional equivalent of NCS (329 25 mg) was added, and the reaction was heated to 50°C for an additional 4 days. Upon cooling, a precipitate which had formed was collected. This solid was pure 4-[6chloro-3-(difluoromethy1)-7-methoxy-1H-benz[g]indazol-1yl]benzenesulfonamide (350 mg, 65%): ¹H NMR (acetone d_6) $\delta = 4.0$ (s, 3H), 7.2 (t, 1H, j = 54.0 Hz), 7.3 (d, 30 1H j = 9.3 Hz), 7.6 (d, 1H j = 9.3 Hz), 7.9 (d, 2H j =8.7 Hz), 8.0 (d, 1H j = 9.3 Hz), 8.1 (d, 1H j = 9.3 Hz), 8.2 (d, 2H j = 8.7 Hz); ¹⁹F NMR (acetone d_6) δ -113.5 ppm (d, 2F).

10

15

33

Example 2

$$H_2N$$
 N
 N
 CF_2H

4-[3-(Difluoromethyl)-7-methoxy-1H-benz[g]indazol-1-yl]benzenesulfonamide

4-[3-(Difluoromethyl)-4,5-dihydro-7-methoxy-1Hbenz[g]indazol-1-yl]benzenesulfonamide (Example 1, Step 2) (600 mg, 1.5 mmol) was dissolved in 1,4-dioxane (200 10 ml), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (341 mg, 1.5 mmol) was added. The reaction was heated to reflux for 16 hours, a second equivalent of DDQ (340 mg, 1.5 mmol) was added and the reaction was heated to reflux for an additional 24 hours. At three successive 15 24 hour intervals, 1.5 mmol additional DDQ was added and heating continued until no starting material was left (as determined by thin layer chromatography). The reaction was cooled to room temperature, at which time most of the hydroquinone by-product precipitated. 20 reaction was filtered and concentrated. The residue was chromatographed on silica gel eluting with 50% ethyl acetate in hexane to yield 4-[3-(difluoromethyl)-7methoxy-1H-benz[g]indazol-1-yl]benzenesulfonamide (514 mg, 85 %): ¹H NMR (acetone d_6) $\delta = 3.9$ (s, 3H), 7.05 25 (m, 1H), 7.2 (t, 1H j = 54.0 Hz), 7.5 (m, 2H), 7.7 (m, 2H)1H), 7.9 (m, 3H), 8.2 (d, 2H, j = 8.7 Hz); ¹⁹F NMR (acetone d_6) δ -113.3 ppm (d, 2F).

WO 96/09293

34

Example 3

$$H_2N$$
 N
 N
 CF_3

4-[7-Methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide

Preparation of 3,4-dihvdro-6-methoxy-2-[2.2.2-trifluoro-1-hydroxyethylidenel-1(2H)-

10 naphthalenone

5

25

6-Methoxytetralone (16.06 g, 91 mmol) was dissolved in ether (150 mL) and tetrahydrofuran (THF) (25 mL), and treated with ethyl trifluoroacetate (14.69 g, 103 mmol) and a sodium methoxide solution (25% in 15 methanol, 24.44 g, 113 mmol). The reaction was stirred for 67.2 hours at room temperature, then treated with 3N HCl (40 mL). The organic layer was collected, washed with brine, dried over MgSO4, and concentrated in vacuo to give a brown solid which was recrystallized from ethanol/water to give the diketone as orange needles (19.67 g, 79%): mp 77-79°C; ¹H NMR (CDCl₃) 300 MHz 16.01 (br s, 1H) 7.93 (d, J=8.9 Hz, 1H) 6.87 (dd, J=8.7 Hz J=2.6 Hz, 1H) 6.73 (d, J=2.4 Hz, 1H) 3.87 (s, 3H) 2.86 (m, 2H) 2.74 (m, 2H); 19F NMR (CDCl₃) 300 MHz -71.38(s). Mass Spectrum $M^+ = 273.0688$

Step 2 Preparation of 4-[4.5-dihvdro-7-methoxy-3-(trifluoromethyl)-1H-benz[glindazol-1yllbenzenesulfonamide

4-Sulfonamidophenylhydrazine hydrochloride (4.35 30 g, 19.4 mmol) was added to a stirred solution of 3,4dihydro-6-methoxy-2-[2,2,2-trifluoro-1hydroxyethylidene]-1(2H)-naphthalenone from Step 1 (5.06
g, 18.6 mmol) in ethanol (100 mL). The reaction was
heated to reflux and stirred for 16 hours. The reaction
mixture was filtered and washed with ethanol to give the
desired pyrazole as a white solid (6.97 g, 88%): mp 277278°C; ¹H NMR (acetone d₆) 300 MHz 8.09 (d, J=8.7 Hz,
2H) 7.80 (d, J=8.9 Hz, 2H) 7.00 (d, J=2.6 Hz, 1H) 6.78
(m, 3H) 6.69 (dd, J=8.7 Hz J=2.6 Hz, 1H) 3.81 (s, 3H)
3.04 (m, 2H) 2.84 (m, 2H); ¹9F NMR (acetone d₆) 300 MHz
-62.43 (s). Mass Spectrum M+ = 423.0838.

Step 3 Preparation of 4-[7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-

15 <u>vllbenzenesulfonamide</u>

4-[4,5-Dihydro-7-methoxy-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide from Step 2 (1.27 g, 3.0 mmol) was dissolved in 1,4-dioxane (200 ml), and DDQ (681 mg, 3.0 mmol) was added. The reaction was heated to reflux for 16 hours at which time a second 20 equivalent of DDQ (681 mg, 3.0 mmol) was added and the reaction was heated to reflux for an additional 24 hours. At three successive 24 hour intervals, 3.0 mmol additional DDQ was added and heating continued until no starting material was left (as determined by thin layer 25 chromatography). The reaction was cooled to room temperature at which time most of the hydroquinone byproduct precipitated. The reaction was filtered and concentrated. The residue was chromatographed on silica gel eluting with 50% ethyl acetate in hexane to yield 4-30 [7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide (1.1 g, 87%): 1 H NMR (acetone d_{6}) $\delta = 3.9$ (s, 3H), 6.9 (broad s, 2H) 7.1 (m, 1H), 7.6 (m, 2H), 7.8 (m, 2H), 8.0 (d, 2H j = 8.7 Hz), 8.2 (d, 2H j = 8.7 Hz); 19 F NMR (acetone d_6) δ -61.8 ppm (s, 3F). 35

5

10

30

36

Example

4-[7-Methoxy-1H-benz[g]indazol-1yl]benzenesulfonamide

Step 1. Preparation of 2-carbomethoxy-6-methoxy-1-tetralone.

A solution of 6-methoxy-1-tetralone (10.0 g, 0.057 mol) and dimethyl oxalate (7.37 g, 0.062 mol) in 100 mL of methanol was treated with a solution of 25% sodium methoxide in methanol. The solution was stirred at room temperature for 16 hours. The dark mixture was treated with 60 mL of 6 N hydrochloric 15 acid, whereupon a precipitate formed that was isolated by filtration and air dried to provide 8.65 g (58%) of 2-carbomethoxy-6-methoxy-1-tetralone that was judged to be of sufficient purity to take onto the next step without further purification: 1H NMR 20 $(CDCl_3/300 \text{ MHz})$ 7.99 (1H, d, J=8.66 Hz), 6.87 (1H, dd, J=8.66, 2.42 Hz), 6.72 (1H, d, J=2.42 Hz), 3.91 (3H, s), 3.88 (3H, s), 2.97 (2H, m), 2.86(2H, m).

Step 2. Preparation of 4.5-dihydro meth: 25 [3-\carbomethoxy)-1H-benz[g]indazol-1 vllbenzenesulfonamide.

A solution of 2-carbomethoxy-6-methoxy-1tetralone from Step 1 (6.00 g, 22.9 mmol) in 30 mL of anhydrous methanol was warmed to reflux and treated with 4-sulfonamidophenylhydrazine

37

hydrochloride (5.63 g, 25.2 mmol). The solution was maintained at reflux for 14 hours and cooled to room temperature, whereupon the desired pyrazole separated from solution, was isolated by filtration and air dried to afford 8.29 g (88%) of 4,5-dihydro-4-[3-(carbomethoxy)-1H-benz[g]indazol-1-yl]benzenesulfonamide: 1H NMR (CDCl3/300 MHz) 7.96 (2H, d, J=8.66 Hz), 7.59 (2H, d, J=8.66 Hz), 6.78 (1H, d, J=2.62 Hz), 6.71 (1H, d, J=8.66 Hz), 6.49 (1H, dd, J=8.66, 2.62 Hz), 6.43 (2H, s), 3.86 (3H, s), 3.70 (3H, s), 2.97 - 2.97 (4H, m). Mass spectrum M+H = 414. Anal. Calc'd. for C20H19N3O5S: C, 58.1; H, 4.63; N, 10.16; S, 7.75. Found: C, 58.20; H, 4.59; N, 10.19; S, 7.69.

15

Step 3. Preparation of 4.5-dihydro-7-methoxy-4-[3-(carboxy)-1H-benz[a]indazol-1yllbenzenesulfonamide.

A solution of 4,5-dihydro-4-[3-(carbomethoxy)-20 1H-benz[g]indazol-1-yl]benzenesulfonamide from Step 2 (3.00 g, 7.26 mmol) in 25 mL of dioxane was treated with 2.5 N sodium hydroxide (7.3 mL, 18.1 mmol) and 5 mL of water. The solution was warmed to reflux and after 1 hour the solution was cooled to 25 room temperature and acidified by the addition of excess 6 N hydrochloric acid. The acid separated as a white solid and was isolated by filtration and air dried to provide 2.41 g (83%) of pure acid that was used directly in the next step: ¹H NMR (CD₃OD): 30 8.09 (2H, d, J=8.66 Hz), 7.74 (2H, d, J=8.66 Hz), 6.96 (1H, d, J=2.62 Hz), 6.70 (1H, d, J=8.66 Hz), 6.60 (1H, dd, J=8.66, 2.62 Hz), 3.78 (3H, s), 3.01(4H, s). Mass spectrum M+H = 400.

35 Step 4. Preparation of 4-[7-methoxy-1H-benz[g]indazol-1-vl]benzenesulfonamide.

4,5-Dihydro-4-[3-(carboxy)-1H-benz[g]indazol-1-yl]benzenesulfonamide from Step 3 (1.00 g, 2.5 mmol)

38

was heated to 295°C for 0.5 hour. The residue was
dissolved in a small amount of ethyl acetate and
purified by flash chromatography, eluting with 40%
ethyl acetate in hexane to give 4-[7-methoxy-1H5 benz[g]indazol-1-yl]benzenesulfonamide as a white
solid (200 mg, 20%): 1H NMR (CD3OD): 8.28 (1H, s),
8.18 (2H, d, J=8.66 Hz), 7.81 (1H, s), 7.77 (2H, d,
J=8.66 Hz), 7.59 (1H, d, J=8.86 Hz), 7.52 (1H, d,
J=9.27 Hz), 7.46 (1H, d, J=2.62 Hz), 7.0 (1H, dd,
10 J=9.27, 2.62 Hz), 3.91 (3H, s). Mass spectrum M+H =
354. Anal. Calc'd. for C18H15N3O3S: C, 61.18; H,
4.28; N, 11.89; S, 9.07. Found: C, 60.93; H, 4.23;
N, 11.73; S, 8.93.

Example 5

15

20

25

30

4-[3-(Trifluoromethyl)-1H-benz[g]indazol-1yl]benzenesulfonamide

Step 1 Preparation of 3.4-dihydro-2-[2.2.2-trifluoro-1-hydroxyethylidene]-1(2H)-naphthalenone

To a solution of ethyl trifluoroacetate (28.4 g, 0.2 mol) and 75 mL of ether was added 48 mL of 25% sodium methoxide in methanol (0.21 mol). A solution of 1-tetralone (29.2 g, 0.2 mol) in ether (50 mL) was added over about 5 minutes. The reaction mixture was stirred at room temperature for 14 hours and was diluted with 100 mL of 3N HCl. The phases were separated, and the organic layer was washed with 3N HCl and with brine,

WO 96/09293

39

dried over anhydrous MgSO4, filtered and concentrated in vacuo. The residue was taken up in 70 mL of boiling ethanol/water and cooled to room temperature, whereupon crystals of 3,4-dihydro-2-[2,2,2-trifluoro-1-

hydroxyethylidene]-1(2H)-naphthalenone formed which were 5 isolated by filtration and air dried to give 32 g (81%) of pure 3,4-dihydro-2-[2,2,2-trifluoro-1hydroxyethylidene]-1(2H)-naphthalenone: mp 48-49°C; 1H NMR (CDCl₃) δ 2.8 (m, 2H), 2.9 (m, 2H), 7.2 (d, j = 3.0 Hz, 1H), 7.36 (m, 1H), 7.50 (m, 1H), 7.98 (m, 1H); 19F10 NMR (CDCl₃) δ -72.0. EI GC-MS M⁺ = 242.

Preparation of 4.5-dihydro-4-[3-Step 2 (trifluoromethyl)-1H-benz[alindazol-1-

yllbenzenesulfonamide 15

3,4-Dihydro-2-[2,2,2-trifluoro-1hydroxyethylidene]-1(2H)-naphthalenone from Step 1 (1.21 g, 5.0 mmol) was added to 4-sulfonamidophenylhydrazine hydrochloride (1.12 g, 5.0 mmol) and 25 mL of absolute ethanol. The solution was warmed to reflux for 15 20 hours, cooled and concentrated in vacuo. The residue was dissolved in ethyl acetate, washed with water and with brine, dried over anhydrous MgSO4, filtered and reconcentrated in vacuo. The residue was recrystallized from a mixture of ethyl acetate and isooctane to give 25 1.4 g (71%) of pure 4,5-dihydro-4-[3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide: mp 257-258°C; ^{1}H NMR (CDC1₃/CD₃OD, 4:1) δ 2.7 (m, 2H), 2.9 (m, 2H), 6.6 (m, 1H), 6.9 (m, 1H), 7.1 (m, 1H), 7.16 (m, 1H), 7.53 (m, 2H), 7.92 (m, 2H); 19 F NMR CDCl₃ δ -62.5. FAB-30 $MS M^{+}H = 394.$

Preparation of 4-[3-(trifluoromethyl)-1H-Step 3 benz[glindazol-1-yl]benzenesulfonamide

4,5-Dihydro-4-[3-(trifluoromethyl)-1H-35 benz[g]indazol-1-yl]benzenesulfonamide from Step 2 (393 mg, 1.0 mmol) was dissolved in 1,4-dioxane (50 ml), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (227 mg,

40

1.0 mmol) was added. The reaction was heated to reflux for 16 hours at which time a second equivalent of DDQ (227 mg, 1.0 mmol) was added and the reaction was heated to reflux for an additional 24 hours. At three 5 successive 24 hour intervals, 1.0 mmol additional DDO was added and heating continued until no starting material was left. The reaction was cooled to room temperature at which time most of the hydroquinone byproduct precipitated. The reaction was filtered and concentrated. The residue was chromatographed on silica 10 gel eluting with 50% ethyl acetate in hexane to yield 4-[3-(trifluoromethyl)-lH-benz[g]indazol-1yl]benzenesulfonamide (352 mg, 90%): ¹H NMR (acetone d_6) $\delta = 6.89$ (broad s, 2H), 7.5 (m, 1H), 7.7 (m, 2H), 7.89 (s, 2H), 8.0 (d, 2H, j = 8.7 Hz), 8.15 (d, 1H, j =15 8.3 Hz), 8.3 (d, 2H, j = 8.7 Hz); 19 F NMR (acetone d_6) δ -61.7 ppm (s, 3F).

BIOLOGICAL EVALUATION

20

Rat Carrageenan Foot Pad Edema Test

The carrageenan foot edema test was performed with materials, reagents and procedures essentially as described by Winter, et al., (Proc. Soc. Exp. Biol. Med., 111, 544 (1962)). Male Sprague-Dawley rats were 25 selected in each group so that the average body weight was as close as possible. Rats were fasted with free access to water for over sixteen hours prior to the test. The rats were dosed orally (1 mL) with compounds suspended in vehicle containing 0.5% methylcellulose and 30 0.025% surfactant, or with vehicle alone. One hour later a subplantar injection of 0.1 mL of 1% solution of carrageenan/sterile 0.9% saline was administered and the volume of the injected foot was measured with a displacement plethysmometer connected to a pressure 35 transducer with a digital indicator. Three hours after the injection of the carrageenan, the volume of the foot was again measured. The average foot swelling in a

41

group of drug-treated animals was compared with that of a group of placebo-treated animals and the percentage inhibition of edema was determined (Otterness and Bliven, Laboratory Models for Testing NSAIDs, in Non-steroidal Anti-Inflammatory Drugs, (J. Lombardino, ed. 1985)). The % inhibition shows the % decrease from control paw volume determined in this procedure and the data for selected compounds in this invention are summarized in Table I.

10

25

35

TABLE I.

RAT PAW EDEMA % Inhibition¹

Example		
1	29	
2	24	

Evaluation of COX-1 and COX-2 activity in vitro

The compounds of this invention exhibited inhibition in vitro of COX-2. The COX-2 inhibition activity of the compounds of this invention illustrated in the Examples was determined by the following methods.

a. Preparation of recombinant COX baculoviruses

A 2.0 kb fragment containing the coding region of either human or murine COX-1 or human or murine COX-2 was cloned into a BamH1 site of the baculovirus transfer vector pVL1393 (Invitrogen) to generate the baculovirus transfer vectors for COX-1 and COX-2 in a manner similar to the method of D.R. O'Reilly et al (Baculovirus Expression Vectors: A Laboratory Manual (1992)). Recombinant baculoviruses were isolated by transfecting 4 µg of baculovirus transfer vector DNA into SF9 insect cells (2x10e8) along with 200 ng of linearized

42

baculovirus plasmid DNA by the calcium phosphate method. See M.D. Summers and G.E. Smith, A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures, Texas Agric. Exp. Station Bull. 1555 (1987). Recombinant viruses were purified by three rounds of plaque purification and high titer (10E7 - 10E8 pfu/ml)

plaque purification and high titer (10E7 - 10E8 pfu/ml) stocks of virus were prepared. For large scale production, SF9 insect cells were infected in 10 liter fermentors (0.5 x $10^6/\text{ml}$) with the recombinant

baculovirus stock such that the multiplicity of infection was 0.1. After 72 hours the cells were centrifuged and the cell pellet homogenized in Tris/Sucrose (50 mM: 25%, pH 8.0) containing 1% 3-[(3-cholamidopropyl)dimethylammonio] -1-propanesulfonate (CHAPS). The homogenate was centrifuged at 10,000xG for 30 minutes, and the resultant supernatant was stored at -80°C before being assayed for COX activity.

b. Assay for COX-1 and COX-2 activity: 20 COX activity was assayed as PGE2 formed/µg protein/time using an ELISA to detect the prostaglandin released. CHAPS-solubilized insect cell membranes containing the appropriate COX enzyme were incubated in a potassium phosphate buffer (50 mM, pH 8.0) containing epinephrine, phenol, and heme with the addition of 25 arachidonic acid (10 μM). Compounds were pre-incubated with the enzyme for 10-20 minutes prior to the addition of arachidonic acid. Any reaction between the arachidonic acid and the enzyme was stopped after ten minutes at 37°C/room temperature by transferring 40 μl 30 of reaction mix into 160 μl ELISA buffer and 25 μM indomethacin. The PGE2 formed was measured by standard ELISA technology (Cayman Chemical). Results are shown in Table II.

10

43 TABLE II.

		Human COX-2	Human COX-1
	Example	<u>ΙD50</u> μμ	<u>ΙD50</u> μΜ
5	1	1	>100
	2	<.1	. 8
	3	<.1	>100
	4	>100	>100
	5	>100	>100
10			

Biological paradigms for testing the cytokine-inhibiting activity of these compounds are found in WO95/13067, published 18 May 1995.

15 Also embraced within this invention is a class of pharmaceutical compositions comprising the active compounds of this combination therapy in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if 20 desired, other active ingredients. The active compounds of the present invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and 25 in a dose effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly, intraperitoneally, subcutaneously, intramuscularly or topically.

For oral administration, the pharmaceutical 30 composition may be in the form of, for example, a tablet, capsule, suspension or liquid. The pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection as a composition wherein, for example, saline, dextrose or water may be used as a suitable carrier.

44

The amount of therapeutically active compounds that are administered and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the disease, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 2000 mg, preferably in the range of about 10 0.5 to 500 mg and most preferably between about 1 and 100 mg. A daily dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.5 and about 20 mg/kg body weight and most preferably between about 0.1 to 10 mg/kg 15 body weight, may be appropriate. The daily dose can be administered in one to four doses per day.

In the case of psoriasis and other skin conditions, it may be preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day.

20

25

30

35

For inflammations of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to 15% When formulated in an ointment, the active ingredients may be employed with either paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-inwater cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. The topical formulation may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal

45

penetration enhancers include dimethylsulfoxide and related analogs. The compounds of this invention can also be administered by a transdermal device. Preferably topical administration will be accomplished using a patch 5 either of the reservoir and porous membrane type or of a solid matrix variety. In either case, the active agent is delivered continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. If the active agent is absorbed through the skin, a controlled and predetermined flow of the active agent is administered to the recipient. the case of microcapsules, the encapsulating agent may also function as the membrane.

10

15 The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an 20 oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make-up the so-called emulsifying wax, and 25 the wax together with the oil and fat make up the socalled emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, 30 Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others.

The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a non-greasy, non-staining and washable product with suitable consistency to avoid leakage from

46

tubes or other contain rs. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used.

Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients. The antiinflammatory active ingredients are preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% and particularly about 1.5% w/w.

10

15

For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with 20 one or more adjuvants appropriate to the indicated route of administration. If administered per os, the compounds may be admixed with lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose 25 alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. 30 Such capsules or tablets may contain a controlled-release formula on as may be provided in a dispersion of active compour in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection 35 solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral

administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

48

What is claimed is:

1. A compound of Formula I

$$\begin{array}{c}
\mathbb{R}^{3} & \mathbb{A} \\
\mathbb{N} & \mathbb{N}
\end{array}$$
(I)

5

wherein A is $-(CH_2)_m-CH=CH-(CH_2)_n-$; wherein m is 0 or 1; wherein n is 0 or 1;

wherein B is selected from aryl and heteroaryl; wherein R¹ is selected from hydrido, halo, haloalkyl, cyano, nitro, formyl, alkoxycarbonyl, carboxyl, carboxyalkyl, alkoxycarbonylalkyl, amidino, cyanoamidino, aminocarbonyl, alkoxy, alkoxyalkyl,

aminocarbonylalkyl, N-monoalkylaminocarbonyl, N-monoarylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, alkylcarbonyl, alkylcarbonylalkyl, hydroxyalkyl, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylthioalkyl,

20 alkylsulfinylalkyl, alkylsulfonylalkyl, Nalkylaminosulfonyl, N-arylaminosulfonyl, arylsulfonyl, N,N-dialkylaminosulfonyl, N-alkyl-Narylaminosulfonyl, and heterocyclic;

wherein R² is selected from aryl and heteroaryl,
25 wherein R² is optionally substituted at a
substitutable position with one or more radicals
selected from alkylsulfonyl, aminosulfonyl, halo,
alkyl, alkoxy, hydroxyl, and haloalkyl; and

wherein R³ is one or more radicals selected from hydrido, halo, alkyl, alkylthio, alkylsulfinyl, alkylsulfonyl, cyano, carboxyl, alkoxycarbonyl, aminocarbonyl, N-monoalkylaminocarbonyl, N-monoarylaminocarbonyl, N,N-dialkylaminocarbonyl, N-alkyl-N-arylaminocarbonyl, haloalkyl, hydroxyl,

49

alkoxy, hydroxyalkyl, haloalkoxy, aminosulfonyl, N-alkylaminosulfonyl, amino, N-alkylamino, N,N-dialkylamino, heterocyclic, nitro, and acylamino; provided \mathbb{R}^2 is substituted when \mathbb{R}^3 is halo; or a pharmaceutically-acceptable salt thereof.

5

2. Compound of Claim 1 wherein A is -(CH2)m-CH=CH-(CH₂)_n-; wherein B is selected from aryl, five and six membered heteroaryl; wherein m is 0 or 1; wherein n is 0 or 1; wherein R¹ is selected from 10 halo, lower haloalkyl, cyano, nitro, formyl, lower alkoxycarbonyl, lower carboxyalkyl, lower alkoxycarbonylalkyl, amidino, cyanoamidino, lower alkoxy, lower alkoxyalkyl, lower aminocarbonylalkyl, 15 lower N-monoalkylaminocarbonyl, Nphenylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-N-phenylaminocarbonyl, lower alkylcarbonyl, lower alkylcarbonylalkyl, lower hydroxyalkyl, lower alkylthio, lower alkylsulfinyl, 20 lower alkylsulfonyl, lower alkylthioalkyl, lower alkylsulfinylalkyl, lower alkylsulfonylalkyl, lower N-alkylaminosulfonyl, N-phenylaminosulfonyl, phenylsulfonyl, lower N, N-dialkylaminosulfonyl, lower N-alkyl-N-phenylaminosulfonyl and five-seven membered heterocyclic; wherein R² is selected from phenyl and 25 five or six membered heteroaryl, wherein R² is optionally substituted at a substitutable position with one or more radicals selected from lower alkylsulfonyl, aminosulfonyl, hydrido, halo, lower alkyl, lower alkoxy, hydroxyl and lower haloalkyl; 30 and wherein R³ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower N-35 monoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N, N-dialkylaminocarbonyl, lower N-alkyl-N-

phenylaminocarbonyl, lower haloalkyl, hydroxyl, lower

5

alkoxy, lower hydroxyalkyl, lower haloalkoxy, aminosulfonyl, lower N-alkylaminosulfonyl, amino, lower N-alkylamino, lower N,N-dialkylamino, fiveseven membered heterocyclic, nitro and acylamino; or a pharmaceutically-acceptable salt thereof.

- Compound of Claim 2 wherein A is -CH=CH-; wherein B is selected from aryl and six membered heteroaryl; wherein R1 is selected from halo, lower haloalkyl, cyano, nitro, formyl, lower 10 alkoxycarbonyl, lower carboxyalkyl, lower alkoxy, lower N-monoalkylaminocarbonyl, Nphenylaminocarbonyl, lower N.N-dialkylaminocarbonyl, lower N-alkyl-N-phenylaminocarbonyl, lower 15 alkylcarbonyl and lower hydroxyalkyl; wherein R2 is phenyl substituted at a substitutable position with a radical selected from lower alkylsulfonyl and aminosulfonyl; and wherein R³ is one or more radicals selected from halo, lower alkylthio, lower 20 alkylsulfinyl, lower alkyl, lower alkylsulfonyl, cyano, carboxyl, lower alkoxycarbonyl, aminocarbonyl, lower N-monoalkylaminocarbonyl, Nphenylaminocarbonyl, lower N,N-dialkylaminocarbonyl, lower N-alkyl-N-phenylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower 25 haloalkoxy, amino, lower N-alkylamino, lower N, N-
- 4. Compound of Claim 3 wherein A is -CH=CH-; wherein B is phenyl or pyridyl; wherein R¹ is selected from lower haloalkyl, cyano, lower alkoxycarbonyl, lower hydroxyalkyl, lower N-monoalkylaminocarbonyl, N-phenylaminocarbonyl, lower N,N-dialkylaminocarbonyl and lower N-alkyl-N-phenylaminocarbonyl; wherein R² is phenyl substituted at a substitutable position with a radical selected

dialkylamino, nitro and acylamino; or a pharmaceutically-acceptable salt thereof.

51

from lower alkylsulfonyl and aminosulfonyl; and wherein R³ is one or more radicals selected from halo, lower alkylthio, lower alkylsulfinyl, lower alkyl, cyano, lower alkoxycarbonyl, aminocarbonyl, lower N-monoalkylaminocarbonyl, lower haloalkyl, hydroxyl, lower alkoxy, lower hydroxyalkyl, lower haloalkoxy, amino, lower N,N-dialkylamino and nitro; or a pharmaceutically-acceptable salt thereof.

- 5. Compoud of Claim 4 wherein A is -CH=CH-; wherein R¹ is selected from fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl,
- dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, cyano, hydroxymethyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, pentoxycarbonyl, N-
- methylaminocarbonyl, N-phenylaminocarbonyl, N,N-dimethylaminocarbonyl and N-methyl-N-phenylaminocarbonyl; wherein R² is phenyl substituted at a substitutable position with methylsulfonyl or aminosulfonyl; and wherein R³ is one or more radicals
- selected from fluoro, chloro, bromo, methylthio, ethylthio, isopropylthio, tert-butylthio, isobutylthio, hexylthio, methylsulfinyl, ethylsulfinyl, isopropylsulfinyl, tert-butylsulfinyl, isobutylsulfinyl, hexylsulfinyl, methyl, ethyl,
- isopropyl, tert-butyl, isobutyl, hexyl, cyano,
 methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl,
 tert-butoxycarbonyl, propoxycarbonyl, butoxycarbonyl,
 isobutoxycarbonyl, pentoxycarbonyl, aminocarbonyl, Nmethylaminocarbonyl, fluoromethyl, difluoromethyl,
- trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl,

52

difluoroethyl, difluoropropyl, dichloroethyl,
 dichloropropyl, hydroxyl, methoxy, methylenedioxy,
 ethoxy, propoxy, n-butoxy, hydroxymethyl,
 trifluoromethoxy, amino, N,N-dimethylamino and nitro;
 or a pharmaceutically-acceptable salt thereof.

6. Compound of Claim 5 selected from compounds, and their pharmaceutically acceptable salts, of the group consisting of

10

- 4-[6-chloro-7-methoxy-1H-benz[g]indazol-1yl]benzenesulfonamide;
- [1-(4-aminosulfonylphenyl)-6-chloro-7-methoxy-1Hbenz[g]indazol-3-yl]carbonitrile;
- 15 methyl [1-(4-aminosulfonylphenyl)-6-chloro-7methoxy-1H-benz[g]indazol-3-yl]carboxylate;
 - N-methyl [1-(4-aminosulfonylphenyl)-6-chloro-7methoxy-1H-benz[g]indazol-3-yl]carboxamide;
 - 6-chloro-7-methoxy-1-(4-methylsulfonylphenyl)-1Hbenz[g]indazole;
 - [1-(4-methylsulfonylphenyl)-6-chloro-7-methoxy-1Hbenz[g]indazol-3-yl]carbonitrile;
 - ethyl [1-(4-methylsulfonylphenyl)-6-chloro-7methoxy-1H-benz[g]indazol-3-yl]carboxylate;
- N-methyl [1-(4-methylsulfonylphenyl)-6-chloro-7-methoxy-1H-benz[g]indazol-3-yl]carboxamide;
 - 7-chloro-3-(difluoromethyl)-1-(4methylsulfonylphenyl)-1H-benz[g]indazole;
 - 3-(difluoromethyl)-7-fluoro-1-(4-
- 30 methylsulfonylphenyl)-1H-benz[g]indazole;
 - 3-(difluoromethyl)-7-methyl-1-(4
 - methylsulfonylphenyl)-lH-benz[g]indazole;
 - 3-(difluoromethyl)-7-methoxy-1-(4methylsulfonylphenyl)-1H-benz[g]indazole;
- 35 3-(difluoromethyl)-6,7-methylenedioxy-1-(4methylsulfonylphenyl)-1H-benz[g]indazole;

PCT/US95/11402

```
3-(difluoromethyl)-6-fluoro-7-methoxy-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    6-chloro-3-(difluoromethyl)-7-fluoro-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    6-chloro-3-(difluoromethyl)-7-methyl-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    3-(difluoromethyl)-6-fluoro-7-methyl-1-(4-
         methylsulfonylphenyl) -1H-benz[q]indazole;
    6,7-dichloro-3-(difluoromethyl)-1-(4-
10
         methylsulfonylphenyl)-1H-benz[q]indazole;
    6,7-difluoro-3-(difluoromethyl)-1-(4-
         methylsulfonylphenyl)-1H-benz[g]indazole;
    [1-(4-methylsulfonylphenyl)-3-(trifluoromethyl)-1H-
         benz[g]indazol-7-yl]carboxylic acid;
15
    methyl [1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazol-7-
         yl]carboxylate;
    7-chloro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
20
    7-fluoro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    7-methyl-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    7-methoxy-1-(4-methylsulfonylphenyl)-3-
25
          (trifluoromethyl)-1H-benz[g]indazole;
    6,7-methylenedioxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    6-fluoro-7-methoxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
30
    6-chloro-7-fluoro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    6-chloro-7-methyl-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
    6-fluoro-7-methyl-1-(4-methylsulfonylphenyl)-3-
35
          (trifluoromethyl)-1H-benz[g]indazole;
    6,7-dichloro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
```

```
6,7-difluoro-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
     6-chloro-1-(4-methylsulfonylphenyl)-7-methylthio-3-
          (trifluoromethyl)-1H-benz[g]indazole;
 5
     6-chloro-7-methylsulfinyl-1-(4-
          methylsulfonylphenyl)-3-(trifluoromethyl)-1H-
          benz[g]indazole;
     6-chloro-7-methoxy-1-(4-methylsulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazole;
10
    [1-(4-aminosulfonylphenyl)-3-(difluoromethyl)-1H-
          benz[g]indazol-7-yl]carboxylic acid;
    methyl [1-(4-aminosulfonylphenyl)-3-
          (difluoromethyl)-1H-benz[g]indazol-7-
          yl]carboxylate;
    [1-(4-aminosulfonylphenyl)-3-(difluoromethyl)-1H-
15
          benz[g]indazol-7-yl]carbonitrile;
    4-[7-chloro-3-(difluoromethyl)-1H-benz[g]indazol-1-
          yl]benzenesulfonamide:
    4-[3-(difluoromethy1)-7-fluoro-1H-benz[g]indazol-1-
20
         yl]benzenesulfonamide;
    4-[7-bromo-3-(difluoromethyl)-1H-benz[g]indazol-1-
         yl]benzenesulfonamide;
    4-[3-(difluoromethyl)-7-methyl-1H-benz[g]indazol-1-
         yl]benzenesulfonamide;
25
    4-[3-(difluoromethyl)-7-methoxy-1H-benz[g]indazol-
          1-y1]benzenesulfonamide;
    4-[3-(difluoromethyl)-6,7-methylenedioxy-1H-
         benz(g)indazol-1-yl]benzenesulfonamide:
    4-[3-(difluoromethyl)-6-fluoro-7-methoxy-1H-
30
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-chloro-3-(difluoromethyl)-7-fluore H-
         benz[g]indazol-1-yl]benzenesulfona...ide;
    4-[6-chloro-3-(difluoromethyl)-7-methyl-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
35
    4-[3-(difluoromethyl)-6-fluoro-7-methyl-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
```

```
4-[6,7-dichloro-3-(difluoromethyl)-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     4-[6,7-difluoro-3-(difluoromethyl)-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
 5
     4-[6-chloro-3-(difluoromethyl)-7-methylthio-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     4-[6-chloro-3-(difluoromethyl)-7-methylsulfinyl-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
     [1-(4-aminosulfonylphenyl)-3-(trifluoromethyl)-1H-
10
          benz[g]indazol-7-yl]carboxylic acid;
     methyl [1-(4-aminosulfonylphenyl)-3-
          (trifluoromethyl)-1H-benz[g]indazol-7-
          yl]carboxylate;
     [1-(4-aminosulfonylphenyl)-3-(trifluoromethyl)-1H-
15
          benz(g)indazol-7-yl]carbonitrile;
     4-[7-chloro-3-(trifluoromethyl)-1H-benz[g]indazol-
          1-yl]benzenesulfonamide;
     4-[7-fluoro-3-(trifluoromethyl)-1H-benz[g]indazol-
          1-y1]benzenesulfonamide;
20
    4-[7-methyl-3-(trifluoromethyl)-1H-benz[g]indazol-
          1-yl]benzenesulfonamide;
    4-[7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-
          1-yl]benzenesulfonamide;
    4-[6,7-methylenedioxy-3-(trifluoromethyl)-1H-
25
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[7-dimethylamino-3-(trifluoromethyl)-1H-
          benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-fluoro-7-methoxy-3-(trifluoromethyl)-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
30
    4-[6-chloro-7-fluoro-3-(trifluoromethyl)-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-chloro-7-methyl-3-(trifluoromethyl)-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6-fluoro-7-methyl-3-(trifluoromethyl)-1H-
35
         benz[g]indazol-1-yl]benzenesulfonamide;
    4-[6,7-dichloro-3-(trifluoromethyl)-1H-
         benz[g]indazol-1-yl]benzenesulfonamide;
```

- 4-[6,7-difluoro-3-(trifluoromethyl)-1Hbenz[g]indazol-1-yl]benzenesulfonamide;
- 4-[6-chloro-7-methylthio-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide;
- 5 4-[6-chloro-7-methylsulfinyl-3-(trifluoromethyl)1H-benz[g]indazol-1-yl]benzenesulfonamide; and
 - 4-[6-chloro-7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazol-1-yl]benzenesulfonamide.
- 7. Compound of Claim 5 which is 4-[6-chloro-7-methoxy-3-(trifluoromethyl)-1H-benz[g]indazcl-1-yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
- 8. Compound of Claim 5 which is 4-[3-(difluoromethyl)-7-methoxy-1H-benz[g]indazol-1yl]benzenesulfonamide, or a pharmaceutically-acceptable salt thereof.
- 9. A compound of Formula II

$$R^3$$

$$N$$

$$0 = S = 0$$

$$NH_2$$

$$(II)$$

wherein R¹ is hydrido or haloalkyl; and wherein R³ is one or more radicals selected from alkyl, alkoxy and halo; or a pharmaceutically-acceptable salt thereof.

10. Compound of Claim 9 wherein R¹ is hydrido or 30 lower haloalkyl; and wherein R³ is one or more radicals selected from lower alkyl, lower alkoxy and halo; or a pharmaceutically-acceptable salt thereof.

- 11. Compound of Claim 10 wherein R¹ is selected
 from hydrido, fluoromethyl, difluoromethyl,
 trifluoromethyl, chloromethyl, dichloromethyl,
 5 trichloromethyl, pentafluoroethyl, heptafluoropropyl,
 difluorochloromethyl, dichlorofluoromethyl,
 difluoroethyl, difluoropropyl, dichloroethyl and
 dichloropropyl; and wherein R³ is one or more
 radicals selected from fluoro, chloro, bromo, methyl,
 ethyl, methoxy, methylenedioxy, ethoxy, propoxy, nbutoxy and tert-butoxy; or a pharmaceuticallyacceptable salt thereof.
- 12. A pharmaceutical composition comprising a therapeutically-effective amount of a compound, said compound selected from a family of compounds of Claim 1, 2, 3, 4, 5, 6, 7, 8, or 9; or a pharmaceutically-acceptable salt thereof.
- 13. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to said inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Claim 1; further provided that R³ is not hydrido when R¹ is trifluoromethyl; and further provided that R¹ is not hydrido when R³ is a single methoxy radical; or a pharmaceutically-acceptable salt thereof.
 - 14. A method of treating inflammation or an inflammation-associated disorder in a subject, said method comprising administering to the subject having or susceptible to said inflammation or inflammation-associated disorder, a therapeutically-effective amount of a compound of Claim 2, 3, 4, 5, 6, 7, 8, or 9; or a pharmaceutically-acceptable salt thereof.

- 15. The method of Claim 13 for use in treatment of inflammation.
- 16. The method of Claim 13 for use in treatment of an inflammation-associated disorder.
 - 17. The method of Claim 16 wherein the inflammation-associated disorder is arthritis.
- 10 18. The method of Claim 16 wherein the inflammation-associated disorder is pain.
 - 19. The method of Claim 16 wherein the inflammation-associated disorder is fever.

Inter sal Application No PCT/US 95/11402

A (7 A)	CHILDRE		rc1/03 93/11402	
ÎPC 6	SUPERATION OF SUBJECT MATTER CO7D231/54 A61K31/415			_
According	to International Patent Classification (IPC) or to both national	lassification and IPC		
B. FIELD	DS SEARCHED			-
IPC 6	documentation searched (classification system followed by class CO7D	(ication symbols)		-
	33.5			
Document	ation scarched other than minimum documentation to the extent			
	one cauncing of the cauncing of the cauncing	nat such documents are includ	led in the fields scarched	
	•		·	
Electronic	data base consulted during the international search (name of data	base and, where practical, se	arch terms used)	-
				i
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		· · · · · · · · · · · · · · · · · · ·	-
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.	٦
				4
X	CHEMICAL ABSTRACTS, vol. 113, n	o. 5,	1,2	
	30 July 1990, Columbus, Ohio, U abstract no. 40087s,	5;	1	
	E. BECALLI ET AL. 'Rearrangemen	ts of		١
	non-indoliziable arylhydrazones	of		
	methoxy-substituted aromatic ca compounds in polyphosphoric aci	rbonyl		l
	page 560 ; column 2 ;	a. ·		1
	see abstract: and Chemical Abst	racts,		I
	CHEMICAL SUBSTANCES, 12th Colle	ctive		l
	Index, vol. 106-115, 1987-1991, 13512CS: RN's [128064-81-3] and	page		
!	[128064-78-8]		<u>, </u>	l
1	& J. CHEM. RES., SYNOP.,			l
	no.1, 1990 page 8			l
	page o			l
ľ		-/		Ì
				l
		· · · · · · · · · · · · · · · · · · ·		ľ
X Furth	er documents are listed in the continuation of box C.	X Patent family mem	hers are listed in annex.	l
Special cau	gories of aled documents :	'T' later document publishe	ed after the international filing date	
A" documer consider	nt defining the general state of the art which is not red to be of particular relevance	or priority date and no	t in conflict with the application but principle or theory underlying the	ĺ
	ocument hut published on or after the international	เมงเมติดย	relevance; the claimed invention	ĺ
L' documen	it which may throw doubts on priority claim(s) or	CHUNDI DC COURTOCLEG U	ovel or cannot be considered to	l
CILATION	or other special reason (as specified)	"Y" document of particular	relevance; the claimed invention Involve an inventive step when the	
. outer me		document is combined	with one or more other such docu- in being obvious to a person skilled	i
P documen later tha	it published prior to the international filing date but in the priority date claimed	in the art. "&" document member of th	·	
ate of the ac	ctual completion of the international search		niernational search report	
18	December 1995	4 04 00		
		- 4. 01. 96		
with and Ma	uling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer		
	N1 2280 HV Ripwijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl.	F2-1. 5		
	Fax: (+31-70) 340-3016	Fink, D		

Inter tal Application No
PCT/US 95/11402

	PCT/US 95/11402	
	AUON) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	l
x	CHEMICAL ABSTRACTS, vol. 65, no. 13, 19 December 1966, Columbus, Ohio, US; abstract no. 20134c, 'Pyrroloindazole derivatives.' see 20134f: compounds of formula I, wherein R, R2 are Ph, CH2Ph and Ph, H & NL, A, 6 600 752 (AMERICAN CYANAMID CO.) 25 August 1966	1,2
A	WO,A,94 15932 (G.D. SEARLE & CO.) 21 July 1994 see page 76 - page 78; claim 1 see page 8, line 6 - line 10	1,9,
A	JOURNAL OF HETEROCYCLIC CHEMISTRY, vol.13, no.3, June 1976, PROVO US pages 545 - 553 R.W. HAMILTON 'The Antiarrhythmic and Antiinflammatory Activity of a Series of Tricyclic Pyrazoles' cited in the application see the whole document; in particular page 548, table III, compound no. 48; page 548 table IV, compound no. 60; and page 549, table V, compound no. 75	1,9, 12-19

rnational application No.

PCT/US 95/11402

ļ	ROX I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
	This int	ternational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
	1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 12-10 and dispersed to a problem of the searched by this Authority, namely:	
l		Altough claims 13-19 are directed to a method of treatment of (diagnostic	
		method practised on) the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
	2	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
	ı. 🔲	Claims Nos.:	
		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Ľ	Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	I
7	This Int	ternational Searching Authority found multiple inventions in this international application, as follows:	
	*		
			I
1	. [As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2	. 🔲	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
			ļ
3	. 🗀	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4		No required additional search fees were timely paid by the applicant. Consequently, this international search report is	
7		restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
R	emark o	on Protest The additional search fees were accompanied by the applicant's protest.	
		No protest accompanied the payment of additional search fees.	
		proved and in payment of auditorial search fees.	Ì

minormation on patent family members

Intern. il Application No
PCT/US 95/11402

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
NL-A-6600752		BE-A-	676991	24-08-66	
		CH-A-	477464	31-08-69	
		DE-A-	1645892	17-09-70	
		FR-M-	5500	30-10-67	
		FR-A-	1476735	23-06-67	
		GB-A-	1065183		
		US-A-	3404157	01-10-68	
WO-A-9415932	21-07-94	AU-B-	6027694	15-08-94	
#O // J41030L		CA-A-	2152792	21-07-94	
		EP-A-	0679157	02-11-95	