Week 4 Briefing Making robots learn by trial and error

Jack Cashman

July 19, 2024

Plan for presentation

Overview and Motivation

2 Attempting to Improve Beta Policy Performance

Overview and Motivation

- Last week I found that the beta distribution is a promising alternative as a prior for the policy in continuous and bounded action spaces.
- This week, I've been experimenting in order to boost the performance of PPO-clip when using a beta policy.
- Today I'll recap some of these experiments, as well as some issues and how I fixed them.

Overview and Motivation

- Last week I found that the beta distribution is a promising alternative as a prior for the policy in continuous and bounded action spaces.
- This week, I've been experimenting in order to boost the performance of PPO-clip when using a beta policy.
- Today I'll recap some of these experiments, as well as some issues and how I fixed them.

Overview and Motivation

- Last week I found that the beta distribution is a promising alternative as a prior for the policy in continuous and bounded action spaces.
- This week, I've been experimenting in order to boost the performance of PPO-clip when using a beta policy.
- Today I'll recap some of these experiments, as well as some issues and how I fixed them.

A Note On Numerical Instability

Given d independent, beta-distributed random variables X_1, \ldots, X_d , each with parameters α_i, β_i , the joint distribution, f, is:

$$f(x_1,\ldots x_d) \propto \prod_{i=1}^d x_i^{\alpha_i-1} (1-x_i)^{\beta_i-1}$$

If either $\alpha_i < 1$ or $\beta_i < 1$, for some $1 \leq i \leq d$, then f is unbounded. This is problematic, as in PPO I need to call a method that returns $\log(f(\mathbf{x}))$ for a point $\mathbf{x} \in [0,1]^d$. The distribution is bounded if we enforce $\alpha_i, \beta_i \geq 1$ for all i. I've used this restriction in all of the following implementations.

- For numerical stability I require $\alpha_i, \beta_i > 1$.
- In computation, the α_i and β_i that is output by the NN are relatively close to this lower bound.
- This distribution is *very* stochastic. For larger α_i and β_i , the policy becomes less stochastic.
- Perhaps introducing larger lower bounds on the α_i and β_i can improve performance?
- I've tested lower bounds of 1, 3, 5, 25 on 5 seeds for 3 environments.

- For numerical stability I require $\alpha_i, \beta_i > 1$.
- In computation, the α_i and β_i that is output by the NN are relatively close to this lower bound.
- This distribution is *very* stochastic. For larger α_i and β_i , the policy becomes less stochastic.
- Perhaps introducing larger lower bounds on the α_i and β_i can improve performance?
- I've tested lower bounds of 1, 3, 5, 25 on 5 seeds for 3 environments.

- For numerical stability I require $\alpha_i, \beta_i > 1$.
- In computation, the α_i and β_i that is output by the NN are relatively close to this lower bound.
- This distribution is *very* stochastic. For larger α_i and β_i , the policy becomes less stochastic.
- Perhaps introducing larger lower bounds on the α_i and β_i can improve performance?
- I've tested lower bounds of 1, 3, 5, 25 on 5 seeds for 3 environments.

- For numerical stability I require $\alpha_i, \beta_i > 1$.
- In computation, the α_i and β_i that is output by the NN are relatively close to this lower bound.
- This distribution is *very* stochastic. For larger α_i and β_i , the policy becomes less stochastic.
- Perhaps introducing larger lower bounds on the α_i and β_i can improve performance?
- I've tested lower bounds of 1, 3, 5, 25 on 5 seeds for 3 environments.

- For numerical stability I require $\alpha_i, \beta_i > 1$.
- In computation, the α_i and β_i that is output by the NN are relatively close to this lower bound.
- This distribution is *very* stochastic. For larger α_i and β_i , the policy becomes less stochastic.
- Perhaps introducing larger lower bounds on the α_i and β_i can improve performance?
- I've tested lower bounds of 1, 3, 5, 25 on 5 seeds for 3 environments.

Restrictions on α and β - Results

It appears that requiring $\alpha_i, \beta_i \geq 3$ yields the best performance.

- I've been using 2 NNs to predict the vectors $\alpha = \begin{pmatrix} \alpha_1 & \dots & \alpha_d \end{pmatrix}^\mathsf{T}$ and $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To ensure that both vectors satisfy $\alpha_i, \beta_i > 3$, I push the output through the ReLU function, and then add 3
- Nan suggested that we may be able to instead use a single neural network. So, output $(\alpha_1 \ldots \alpha_d \ \beta_1 \ldots \beta_d)^\mathsf{T}$
- To test this, I've compared over 5 seeds for 3 separate mujoco environments; Half-Cheetah, Hopper, and Walker-2d

- I've been using 2 NNs to predict the vectors $\alpha = \begin{pmatrix} \alpha_1 & \dots & \alpha_d \end{pmatrix}^\mathsf{T}$ and $\beta = \begin{pmatrix} \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To ensure that both vectors satisfy $\alpha_i, \beta_i > 3$, I push the output through the ReLU function, and then add 3
- Nan suggested that we may be able to instead use a single neural network. So, output $(\alpha_1 \ldots \alpha_d \ \beta_1 \ldots \beta_d)^\mathsf{T}$
- To test this, I've compared over 5 seeds for 3 separate mujoco environments; Half-Cheetah, Hopper, and Walker-2d

- I've been using 2 NNs to predict the vectors $\alpha = \begin{pmatrix} \alpha_1 & \dots & \alpha_d \end{pmatrix}^\mathsf{T}$ and $\beta = \begin{pmatrix} \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To ensure that both vectors satisfy $\alpha_i, \beta_i > 3$, I push the output through the ReLU function, and then add 3
- Nan suggested that we may be able to instead use a single neural network. So, output $\begin{pmatrix} \alpha_1 & \dots & \alpha_d & \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To test this, I've compared over 5 seeds for 3 separate mujoco environments; Half-Cheetah, Hopper, and Walker-2d

- I've been using 2 NNs to predict the vectors $\alpha = \begin{pmatrix} \alpha_1 & \dots & \alpha_d \end{pmatrix}^\mathsf{T}$ and $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To ensure that both vectors satisfy $\alpha_i, \beta_i > 3$, I push the output through the ReLU function, and then add 3
- Nan suggested that we may be able to instead use a single neural network. So, output $\begin{pmatrix} \alpha_1 & \dots & \alpha_d & \beta_1 & \dots & \beta_d \end{pmatrix}^\mathsf{T}$
- To test this, I've compared over 5 seeds for 3 separate mujoco environments; Half-Cheetah, Hopper, and Walker-2d

Different NN models - Results

Overall, using a single network to predict both the vector of α_i 's and β_i 's appears to be more effective.

	Cheetah	Hopper	Walker
Double Net	284 ± 46.6	$\textbf{358.2} \pm \textbf{43.2}$	347 ± 20.3
Single Net	631 ± 48.4	383.4 ± 15.6	346.4 ± 10.8

Combining this with the aforementioned restriction that $\alpha_i, \beta_i > 3$, the algorithm performs similar to, or better than the clean1 implementation that assume a diagonal Gaussian prior for the policy.

Conclusion

The performance when a Beta prior is assumed vs the performance when a digaonal Gaussian prior is assumed across 5 random seeds:

	Cheetah	Hopper	Walker
Gaussian Prior	$\textbf{32.5} \pm \textbf{139.4}$	765.6 ± 237.5	365.7 ± 13.6
Beta Prior	742 ± 72.8	415.5 ± 59.6	384.6 ± 5

The beta distribution serves as a promising alternative to the traditional diagonal Gaussian in certain continuous and bounded action spaces.