Applied Epidemiology I: Tables and interpreting results

Enoch Yi-Tung Chen

Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet

November 26, 2020

Acknowledgements

This course material is based on my learning from Anastasia Lam's teachings in last year's Applied Epidemiology I lab sessions, and readings from *Epidemiology* by Gordis [1], *A First Course in Probability and Statistics* by Goldsman and Goldsman [2], *Principles of Biostatistics* by Pagano and Gauvreau [3], and *Biostatistics I* by Gabriel and Frumento [4]. I especially want to thank Marlene Stratmann for reviewing the slides and Prof. Paul Dickman for providing me with suggestions to improving the teaching.

Outline

- Tables
 - One-way tables
 Two by two tables
 Stata tool for Epidemiology
- Basic Epidemiology terms
 Rate vs. proportion
 Risk, risk difference, risk ratio
 Odds, odds ratio
- $egin{align*} egin{align*} \textbf{Interpreting results} \\ \textbf{Principles} \\ \textbf{Ratio} > \textbf{or} < 1 \\ \textbf{More examples} \\ \end{bmatrix}$

- Calculate ratios using Stata Risk ratio Odds ratio Incidence rate ratio
- 6 References

We use cancer data still.
 sysuse cancer, clear
 keep if drug == 1 | drug == 2

- We use cancer data still.
 sysuse cancer, clear
 keep if drug == 1 | drug == 2
- One-way table of frequencies with mean and sd of age
 table died, contents(freq mean age sd age)

1 if patient	 			
died	 	Freq.	mean(age)	sd(age)
	0 1	9 25	55.1111 56.88	5.487359 6.227091

- One-way table of frequencies
 - . tabulate died

1 if			
patient died	Freq.	Percent	Cum.
0 1	9 25	26.47 73.53	26.47 100.00
	34	100.00	

- One-way tables of frequencies each variable specified
 - . tab1 died drug
 - -> tabulation of died

ıt	Percent	Freq.	1 if patient died
	26.47 73.53	9 25	0 1
00	100.00	34	Total

-> tabulation of drug

Drug type (1=placebo)	Freq.	Percent	Cum.
0 1	14 20	41.18 58.82	41.18 100.00
Total	34	100.00	

 2 by 2 table for drug and died with relative frequency by column or row

. tabulate died drug, col row

1 if			
patient	Drug type	(1=placebo)	
died	1 0	1	Total
	+		+
0	l 8	1	J 9
	88.89	11.11	100.00
	57.14	5.00	26.47
	+		+
1	1 6	19	1 25
	1 24.00	76.00	100.00
	42.86	95.00	73.53
	+		+
Total	l 14	20	l 34
	41.18	58.82	100.00
	100.00	100.00	100.00

• 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
    1 if |
  patient | Drug type (1=placebo)
                                  Total
              88.89 11.11 |
                               100.00
              57.14
                       5.00 l
       1 I
                        19 I
              24.00 76.00 |
                              100.00
              42.86
                       95.00 I
                                 73.53
              14 20 |
   Total |
                                     34
              41.18 58.82 I
                              100.00
             100.00 100.00 |
                               100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
                                     0.001
```

 2 by 2 table with chi-square test and fisher's exact test How to interpret the results?

•	1 if		COI FOW CHIZ	exact
	patient	Drug type	(1=placebo)	
_	died	1 0	1	Total
	0	. 8	1	9
		88.89	11.11	100.00
		57.14	5.00	26.47
_	1	l 6	19	25
		1 24.00	76.00	100.00
		42.86		73.53
_	Total	I 14		
		41.18	58.82	100.00
		100.00	100.00	100.00
	I	Pearson chi2 Fisher's ex	(1) = 11.503 act =	Pr = 0.001 0.001

tabulate died drug cel rou chi? evact

• 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
     1 if |
  patient | Drug type (1=placebo)
              88.89 11.11 |
                                100.00
                       5.00 I
       1 I
                         19 I
              24.00 76.00 I
                                  100.00
              42.86
                        95.00 I
                                  73.53
    Total |
              14 20 |
                                      34
              41.18 58.82 I
                               100.00
             100.00
                    100.00 I
                                100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
                                       0.001
```

- How to interpret the results?
- Chi-square test: testing the association between two binary variables.

 2 by 2 table with chi-square test and fisher's exact test

```
. tabulate died drug, col row chi2 exact
     1 if |
  patient | Drug type (1=placebo)
              88.89 11.11 |
                                  100.00
                        5.00 I
       1 I
                         19 I
              24.00 76.00 I
                                  100.00
              42.86
                        95.00 I
                                  73.53
    Total |
              14 20 I
                                      34
              41.18 58.82 I
                               100.00
                    100.00 I
              100.00
                                100.00
        Pearson chi2(1) = 11.5039 Pr = 0.001
         Fisher's exact =
                                       0.001
```

- How to interpret the results?
- Chi-square test: testing the association between two binary variables.
- Using placebo has association with that the patients died or not.

• 2 by 2 tables straitified by sex

. bysort sex: tab died drug, col row chi2

 \rightarrow sex = 0

1 if patient died	Drug type	(1=placebo)	Total
0	6	1	7
	85.71	14.29	100.00
	75.00	9.09	36.84
1	2	10	12
	16.67	83.33	100.00
	25.00	90.91	63.16
Total	8	11	19
	42.11	57.89	100.00
	100.00	100.00	100.00

Pearson chi2(1) = 8.6466 Pr = 0.003

-> sex = 1 1 if patient died		Drug type 0	(1=placebo) 1	Total
0	1	2	0	2
	-	100.00	0.00	100.00
	-	33.33	0.00	13.33
	-+			
1	-	4	9	13
	-	30.77	69.23	100.00
	-	66.67	100.00	86.67
	-+			
Total	-	6	9	15
	-	40.00	60.00	100.00
	-	100.00	100.00	100.00
1	Pe	arson chi2(1) = 3.46	15 Pr = 0.063

Tables: Stata tool for Epidemiology

 How to use Stata to generate risk ratios (relative risk) and odds ratios?

Tables: Stata tool for Epidemiology

- How to use Stata to generate risk ratios (relative risk) and odds ratios?
- A useful tool in Stata's default function can be found at
- Statistics Epidemiology and related Tables for epidemiologists

Stata/IC 16.1 File Edit View Data Graphics Statistics User Window Help

Tables: Stata tool for Epidemiology

- How to use Stata to generate risk ratios (relative risk) and odds ratios?
- A useful tool in Stata's default function can be found at
- Statistics Epidemiology and related Tables for epidemiologists
 Stata/IC 16.1 File Edit View Data Graphics Statistics User Window Help
- But before demonstrating how this works, a recapture on basic epi terms!

Rate

Proportion

Rate

• Incidence (rate): no. of diseased total person-time

Proportion

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): $\frac{\text{no. of deaths}}{\text{total person-time}}$

Proportion

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

• Cumulative incidence: **over a time period**, no. of new cases of the disease no. of initially disease-free persons

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

- Cumulative incidence: over a time period, no. of new cases of the disease no. of initially disease-free persons
- Point prevalence: at a specified time, no. of diseased no. of persons

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

- Cumulative incidence: **over a time period**, no. of new cases of the disease no. of initially disease-free persons
- Point prevalence: at a specified time, no. of diseased no. of persons
- Period prevalence: over a time period, no. of diseased no. of persons

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): no. of deaths total person-time
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

- Cumulative incidence: over a time period, no. of new cases of the disease no. of initially disease-free persons
- Point prevalence: at a specified time, no. of diseased no. of persons
- Period prevalence: over a time period, no. of diseased no. of persons
- Survival (proportion/probability) rate:

```
no. of alive persons (since diagnosis)
no. of initially disease-free persons (since diagnosis)
```

Rate

- Incidence (rate): no. of diseased total person-time
- Mortality (rate): $\frac{\text{no. of deaths}}{\text{total person-time}}$
- Hazard (rate): in survival analysis, usually hazard is defined as mortality rate.

Proportion

- Cumulative incidence: over a time period, no. of new cases of the disease no. of initially disease-free persons
- Point prevalence: at a specified time, no. of diseased no. of persons
- Period prevalence: over a time period, no. of diseased no. of persons
- Survival (proportion/probability) rate:

```
no. of alive persons (since diagnosis)
no. of initially disease-free persons (since diagnosis)
```

Risk

• Is risk a rate or a proportion?

Risk: the proportion (probability) of an event, e.g., death.

Risk: the proportion (probability) of an event, e.g., death.

Estimates of risk: cumulative incidence, cumulative hazard

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative hazard} = 1 - \mbox{Survival proportion} = \mbox{Cumulative probability of death}$

$$F(t) = 1 - S(t) = P(T \le t)$$

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative hazard} = 1 - \mbox{Survival proportion} = \mbox{Cumulative probability of death}$

$$F(t) = 1 - S(t) = P(T \le t)$$

• Risk difference: the difference of the probabilities of an event between the exposed group and non-exposed group

Risk: the proportion (probability) of an event, e.g., death.

- Estimates of risk: cumulative incidence, cumulative hazard
- E.g., in survival analysis,

 $\label{eq:Cumulative hazard} \mbox{Cumulative hazard} = 1 - \mbox{Survival proportion} = \mbox{Cumulative probability of death}$

$$F(t) = 1 - S(t) = P(T \le t)$$

- Risk difference: the difference of the probabilities of an event between the exposed group and non-exposed group
- Risk ratio (relative risk): the ratio of the probabilities of an event between the exposed group and non-exposed group

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

- Risk difference between females having shiba and males having shiba = $\widehat{p_F} \widehat{p_M} = 2/4 2/3 = -0.16667$
- Interpretation: Females have 16.67 % lower risk of having shiba than males.

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

Epidemiologists love two by two tables!

- Risk difference between females having shiba and males having shiba $= \widehat{p_F} \widehat{p_M} = 2/4 2/3 = -0.16667$
- Interpretation: Females have 16.67 % lower risk of having shiba than males.
- Risk ratio between females having shiba and males having shiba

$$=\widehat{p_F}\div\widehat{p_M}=2/4\div2/3=0.75.$$

 Interpretation: The RR of females having shiba is 0.75 times than males having shiba.

Basic Epidemiology terms: Odds, odds ratio

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

Basic Epidemiology terms: Odds, odds ratio

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

 Odds ratio measures the association between an exposure and an outcome.

Odds ratio (OR) =
$$\frac{Odds_{exposed}}{Odds_{unexposed}}$$

Basic Epidemiology terms: Odds, odds ratio

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

Odds ratio measures the association between an exposure and an outcome.

Odds ratio (OR) =
$$\frac{Odds_{exposed}}{Odds_{unexposed}}$$

 E.g., the OR is 0.5, which indicates that there is a 50% decrease in the odds of having an outcome among the exposed compared to the unexposed.

Odds: the ratio between those having and not having an outcome.

$$Odds = \frac{p}{1 - p}$$

Odds ratio measures the association between an exposure and an outcome.

$$Odds \ ratio \ (OR) = \frac{Odds_{exposed}}{Odds_{unexposed}}$$

- E.g., the OR is 0.5, which indicates that there is a 50% decrease in the odds of having an outcome among the exposed compared to the unexposed.
- Why there is no odds difference?

	Female (Exposed)	Male (Unexposed)	Total
shiba	2	2	4
(Case) guinea pig (Noncase)	2	1	3
Total	4	3	7

	Female (Exposed)	Male (Unexposed)	Total
shiba	2	2	4
(Case) guinea pig (Noncase)	2	1	3
Total	4	3	7

 The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$

$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

	Female (Exposed)	Male (Unexposed)	Total
shiba (Case)	2	2	4
guinea pig (Noncase)	2	1	3
Total	4	3	7

- OR of having shiba (females to males)
- OR = $\frac{Odds_f}{Odds_m} = \frac{1}{2}$

 The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$

$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

	Female (Exposed)	Male (Unexposed)	Total
shiba	2	2	4
(Case) guinea pig (Noncase)	2	1	3
Total	4	3	7

The odds of having shiba among females is

$$\widehat{odds_F} = \frac{p(\text{having shiba}|\text{female})}{p(\text{having guinea pig}|\text{female})}$$
$$= \frac{(2/4)}{(2/4)} = 1$$

 The odds of having shiba among males is 2 (calculation ignored).

- OR of having shiba (females to males)
- OR = $\frac{Odds_f}{Odds_m} = \frac{1}{2}$
- Interpretation: there is a 50% decrease in the odds of having shiba among females compared to males. Higher odds of shiba ownership among males than females!
- It seems that females instead love guinea pigs more.

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed
- Example:
 - 1. Females have a RR of 0.75 having shiba compared to males.

Interpreting results: Principles

- When describing a ratio, it can ideally be illustrated by
 - 1. Exposed group
 - 2. Ratio (exact value, higher or lower percentage)
 - 3. Outcome
 - 4. Unexposed
- Example:
 - 1. Females have a RR of 0.75 having shiba compared to males.
 - 2. Females have a 50% decrease in the odds of having shiba compared to males.

Interpreting results: Ratio > or < 1

Ratio

Interpreting results: Ratio > or < 1

Ratio

- As ratio < 1,
 - $(1 RR/OR) \times 100\%$
 - E.g., RR = 0.75, $(1 0.75) \times 100\% = 25\%$
 - 25% lower risk

Interpreting results: Ratio > or < 1

Ratio

- As ratio < 1,
 - $(1 RR/OR) \times 100\%$
 - E.g., RR = 0.75, $(1-0.75) \times 100\% = 25\%$
 - 25% lower risk
- As ratio > 1,
 - $(RR/OR 1) \times 100\%$
 - E.g., OR = 2.05, $(2.05 1) \times 100\% = 105\%$
 - The odds is 2 times higher.
 - Twice the odds

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

	OR (95% C.I.)
	Model 2
	sex, y ² Model 1 + AGP ³
V negative (n = 770)	
Glucose intolerance status ¹	
normal glucose tolerance	ref.
IFG/IGT	2.65 (1.00;7.06)
diabetes	4.23 (1.54;11.57)
Glucose intolerance status ¹ normal glucose tolerance IFG/IGT	2.65 (1.00;7.06)

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

OR (95% C.I.)	OR (95% C.I.) Model 1	OR (95% C.I.) Model 2	
Unadjusted	Adjusted for age, sex, socio-demography Model 1 + A		
ref.	ref.	ref.	
2.26 (1.50;3.41)	2.34 (1.52;3.61)	2.65 (1.00;7.06)	
2.15 (1.35;3.42)	2.14 (1.32;3.46)	4.23 (1.54;11.57)	
	Unadjusted ref. 2.26 (1.50;3.41)	Model 1 Adjusted for age, sex, socio-demography 2 ref. ref. 2.26 (1.50;3.41) 2.34 (1.52;3.61)	

1. People with diabetes had a higher odds of TB (OR 2.15, 95% CI: 1.35-3.42) relative to people without diabetes.

Diabetes Is a Risk Factor for Pulmonary Tuberculosis: A Case-Control Study from Mwanza, Tanzania (Faurholt-Jepsen, 2011)

	OR (95% C.I.)	OR (95% C.I.) Model 1	OR (95% C.I.) Model 2	
	Unadjusted	Adjusted for age, sex, socio-demography Model 1 +		
HIV negative (n = 770)				
Glucose intolerance status ¹				
normal glucose tolerance	ref.	ref.	ref.	
IFG/IGT	2.26 (1.50;3.41)	2.34 (1.52;3.61)	2.65 (1.00;7.06)	
diabetes	2.15 (1.35;3.42)	2.14 (1.32;3.46)	4.23 (1.54;11.57)	

- 1. People with diabetes had a higher odds of TB (OR 2.15, 95% CI: 1.35-3.42) relative to people without diabetes.
- Having diabetes was associated with more than a
 2-fold increase (OR: 2.15, 95% CI: 1.35; 3.42) in the odds of TB compared to not having diabetes.

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

 $\begin{tabular}{ll} \textbf{Table 3} Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9,309) \\ \end{tabular}$

	OR (CI 95 %)	P value
Anxiety symptoms		
Model 1		
Physical activity		
Yes	0.71 (0.54, 0.91)	0.01
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.71 (0.55, 0.93)	0.01
No	1 (reference)	
Depression symptoms		
Model 1		
Physical activity		
Yes	0.63 (0.48, 0.81)	< 0.001
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.63 (0.49, 0.82)	0.001
No	1 (reference)	

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

Table 3 Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9.309)

	OR (CI 95 %)	P value	
Anxiety symptoms			
Model 1			
Physical activity			
Yes	0.71 (0.54, 0.91)	0.01	
No	1 (reference)		
Model 2			
Physical activity			
Yes	0.71 (0.55, 0.93)	0.01	
No	1 (reference)		
Depression symptoms			
Model 1			
Physical activity			
Yes	0.63 (0.48, 0.81)	< 0.001	
No	1 (reference)		
Model 2			
Physical activity			
Yes	0.63 (0.49, 0.82)	0.001	
No	1 (reference)		

1. Patients who conducted recommended levels of physical activity had a 29% lower odds of anxiety (OR: 0.71, 95% CI: 0.54-0.91) and a 37% lower odds of depression (OR: 0.63, 95% CI: 0.48-0.81) relative to those who did not.

Bidirectional association between physical activity and symptoms of anxiety and depression: the Whitehall II study (Azevedo Da Silva, 2012)

Table 3 Cross-sectional associations between physical activity at recommended levels and anxiety and/or depression symptoms at phase 1 (1985–1988) (N = 9,309)

	OR (CI 95 %)	P value
Anxiety symptoms		
Model 1		
Physical activity		
Yes	0.71 (0.54, 0.91)	0.01
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.71 (0.55, 0.93)	0.01
No	1 (reference)	
Depression symptoms		
Model 1		
Physical activity		
Yes	0.63 (0.48, 0.81)	< 0.001
No	1 (reference)	
Model 2		
Physical activity		
Yes	0.63 (0.49, 0.82)	0.001
No	1 (reference)	

- 1. Patients who conducted recommended levels of physical activity had a 29% lower odds of anxiety (OR: 0.71, 95% CI: 0.54-0.91) and a 37% lower odds of depression (OR: 0.63, 95% CI: 0.48-0.81) relative to those who did not.
- Our results showed that individuals who practiced recommended levels of physical activity were less likely to have anxiety
 (OR: 0.71, 95% CI: 0.54-0.91) and depression
 (OR: 0.63, 95% CI: 0.48-0.81) in comparison with those who did not.

Calculate ratios using Stata: Risk ratio

• Finally we come back to Stata again!

Calculate ratios using Stata: Risk ratio

- Finally we come back to Stata again!
- cs case exposed
 - . cs died drug

	Drug type [1	1=placebo] Unexposed	 Total	
Cases Noncases		6 8	25 9	
Total	20	14] 34	
Risk	.95	.4285714	.7352941	
	Point e	estimate	 [95% Conf	. Interval]
Risk difference Risk ratio Attr. frac. ex. Attr. frac. pop	2.21	14286 16667 88722 71429	.245166 1.200631 .1671043	4.092525
		chi2(1) =	11.50 Pr>ch	i2 = 0.0007

Calculate ratios using Stata: Odds ratio

cs case exposed, or
 cs died drug, or

		[1=placebo] Unexposed	 Total		
Cases Noncases	•	6 8	25 9		
Total	20	14	34		
Risk	 .95	.4285714	 .7352941		
	Point	estimate	 [95% Cor	nf. Interval]	
Risk difference Risk ratio Attr. frac. ex. Attr. frac. pop	1 2.5	5214286 216667 5488722	1.200631	6 .7976911 1 4.092525 3 .7556521	
Odds ratio	•	5.33333	3.189793	3 .	(Cornfield
•	+	chi2(1) =	11.50 Pr>c	chi2 = 0.0007	

Calculate ratios using Stata: Incidence rate ratio

ir case exposed studytime

. ir died drug studytime

Incidence-rate comparison

Incidence-rate comparison					
	Drug type [1=pla	cebo]			
	Exposed Unex	•	Total		
1 if patient die	•	6 I	25		
Months to death	•	209	389		
	·+ 	 			
Incidence rate	1 .1055556 .02	87081	.0642674		
	Point estim	ate	[95% Conf.	Interval]	
Inc. rate diff.	.0768474	 	.0241182	.1295766	
Inc. rate ratio	3.676852	1	1.411772	11.24864	(exact)
Attr. frac. ex.	.7280282		.2916701	.9111003	(exact)
Attr. frac. pop	.5533014	1			
Mid p-values for	tests of incidence	 -rate dif	ference:		

Adj Pr(Exposed 1 if patient die <= 19) = 0.9985 (lower one-sided)

Adj Pr(Exposed 1 if patient die >= 19) = 0.0015 (upper one-sided)

Two-sided p-value = 0.0031

Applied Epi I: Interpreting results

References¹

- 1. Gordis L. Epidemiology. Philadelphia, PA: Elsevier/Saunders, 2014. ISBN 9781455737338.
- David Goldsman PG. A First Course in Probability and Statistics. Georgia Institute of Technology, 2020.
- Marcello Pagano KG. Principles of Biostatistics. Cengage Learning, Inc, 2000. ISBN 0534229026.
- 4. Erin Gabriel PF. Epidemiology PhD program, Karolinska Institutet, 2020.