Semantyka i weryfikacja programów

Bartosz Klin

(slajdy Andrzeja Tarleckiego)

Instytut Informatyki
Wydział Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski

http://www.mimuw.edu.pl/~klin

pok. 5680

klin@mimuw.edu.pl

Strona tego wykładu:

http://www.mimuw.edu.pl/~klin/sem19-20.html

Program Semantics & Verification

Bartosz Klin

(slides courtesy of Andrzej Tarlecki)

Institute of Informatics
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

http://www.mimuw.edu.pl/~klin office: 5680

klin@mimuw.edu.pl

This course:

http://www.mimuw.edu.pl/~klin/sem19-20.html

LR(k) parsing

- The word is processed from the left
- The rightmost derivation is produced

Here the pushdown automaton works a bit differently:

- Stack alphabet $\Gamma = N \cup T$, intial stack: empty, accept if at the end the stack is the starting nonterminal
- Two actions to choose from at each step:

How to choose the action?

- shift: push the symbol from input to the stack, read the next symbol
- reduce: if the top of the stack contains the right-hand side of some production, replace it with the left-hand side (nonterminal)
- This is more flexible than LL parsing, because we do not have to commit to a
 production until we see the entire right-hand side of it

Bartosz Klin: Semantics & Verification

Example

$S \to S + P$	P
$P \to P * F$	F
$F \to (S) \mid n$	

Stack	Input	Action	Stack	Input	Action
ϵ	1 + (2 * 3)	shift	S + (P *	3)	shift
1	+(2*3)	reduce $F o n$	S + (P * 3)	$reduce\; F \to n$
F	+(2*3)	reduce $P \rightarrow F$	S + (P * F)	reduce $P \rightarrow P * F$
P	+(2*3)	reduce $S \to P$	S + (P)	$reduce\; S \to P$
S	+(2*3)	shift	S + (S)	shift
S +	(2*3)	shift	S + (S)		$ reduce \ F \to (S) $
S+(2 * 3)	shift	S + F		$reduce\; P \to F$
S + (2	* 3)	reduce $F o n$	S + P		reduce $S \to S + P$
S + (F	* 3)	reduce $P \rightarrow F$	S		
S + (P	* 3)	shift (!)			

LR parser states

- Information about things read so far will be stored in parser states.
- A parser state is a closed set of handles such as:

$$S \to S \bullet + P$$

That is, a handle is a production with one position marked. Intutively, the handle says: it is possible that we are just reading this production and we have read up to the marked place so far.

• The closure operator is: if $A \to w \bullet Bv$ is in the state and $B \to u$ is a production then $B \to \bullet u$ is in the state too.

Example

$$S \rightarrow S + P \mid P$$
 $P \rightarrow P * F \mid F$
 $F \rightarrow (S) \mid n$

1:
$$S \to \bullet S + P \mid \bullet P$$

$$P \to \bullet P * F \mid \bullet F$$

$$F \to \bullet (S) \mid \bullet n$$

$$2: \quad S \to S \bullet + P$$

$$3: \quad S \to P \bullet$$

$$P \to P \bullet * F$$

$$4: P \rightarrow F \bullet$$

$$5: S \to \bullet S + P \mid \bullet P$$

$$P \to \bullet P * F \mid \bullet F$$

$$F \to (\bullet S) \mid \bullet (S) \mid \bullet n$$

$$6: P \rightarrow n \bullet$$

$$7: S \to S + \bullet P$$

$$P \to \bullet P * F \mid \bullet F$$

$$F \to \bullet (S) \mid \bullet n$$

$$8: \quad P \to P * \bullet F$$

$$F \to \bullet(S) \mid \bullet n$$

$$9: \quad S \to S \bullet + P$$
$$F \to (S \bullet)$$

$$10: \quad S \to S + P \bullet$$

$$P \to P \bullet * F$$

11:
$$P \rightarrow P * F \bullet$$

$$12: P \to (S) \bullet$$

The control table, part one

We build a transition relation between states, labeled with symbols from $T \cup N$:

$\delta(p)$	(x)	=	Clc	sur	$e\{A$	4 —	$\rightarrow wx$	• <i>v</i> :	A –	$\rightarrow w$	$xv \in$	$\{p\}$	
δ	1	2	3	4	5	6	7	8	9	10	11	12	
S	2				9							Г	
P	3				3		10						GOTO part
F	4				4		4	11				L	
+		7							7				_
*			8							8			
(5				5		5	5					ACTION part
)									12				
n	6				6		6	6					

The LR(0) automaton

- a pushdown automaton; on the stack, parser states alternate with symbols
- starting from the initial parser state on the stack
- If a state p is at the top of the stack, the current input symbol is a and $\delta(p,a)=q$ then push a,q to the stack (the shift action)
- But how to reduce?
- Add reduction actions to the control table: if P is a production $A \to w$, p is a state and $A \to w \bullet \in p$ then add an action R_P to $\delta(p, a)$ for every terminal a.
- If a state p is at the top of the stack, the current input symbol is a and $\delta(p,a)=R_P$ for $P=A\to w$, then:
 - ullet pop |w| pairs from the stack, revealing some state q,
 - push $A, \delta(q, A)$ to the stack.

The control table ctd.

1	: <i>S</i>	$\rightarrow S + P$
	\sim	D

$$2:S\to P$$

$$3:P\to P*F$$

$$4:P\to F$$

$$5: F \to (S)$$

$$6: F \to n$$

δ	1	2	3	4	5	6	7	8	9	10	11	12
\overline{S}	2				9							
P	3				3		10					
F	4				4		4	11				
+		7	R_2	$\overline{R_4}$		$\overline{R_6}$			7	R_1	R_3	R_5
*			$R_2, 8$	R_4		R_6				$R_1, 8$	R_3	R_5
(5		R_2	R_4	5	R_6	5	5		R_1	R_3	R_5
)			R_2	R_4		R_6			12	R_1	R_3	R_5
n	6		R_2	R_4	6	R_6	6	6		R_1	R_3	R_5

Shift/reduce conflicts!

Reduce/reduce conflicts also happen...

The SLR(1) automaton

- "Simple LR(1)"
- A way to avoid some shift/reduce and reduce/reduce conflicts.
- Intuition: LR(0) reduces whenever it can. In SLR(1), we reduce only when it has a basic chance of working.
- Add reduction actions to the control table: if P is a production $A \to w$, p is a state and $A \to w \bullet \in p$ then add an action R_P to $\delta(p,a)$ for every terminal a such that $a \in \mathsf{Follow}(A)$.
- The rest is as before

The SLR(1) control table

δ	1	2	3	4	5	6	7	8	9	10	11	12
\overline{S}	2				9							
P	3				3		10					
F	4				4		4	11				
+		7	R_2	R_4		R_6			7	R_1	R_3	R_5
*			8	R_4		R_6				8	R_3	R_5
(5				5		5	5				
)			R_2	R_4		R_6			12	R_1	R_3	R_5
n	6				6		6	6				

$$\begin{aligned} 1: S &\to S + P \\ 2: S &\to P \end{aligned}$$

$$2:S\to F$$

$$3:P\to P*F$$

$$4:P\to F$$

$$5: F \to (S)$$

$$6: F \to n$$

 $Follow(S) = \{+, \}, so$

no conflicts.

Example revisited

$S \rightarrow S + P$	P
$P \rightarrow P * F$	F
$F \to (S) \mid n$	

Stack	Input	Action	Stack	Input	Action
1	1 + (2 * 3)	6	$_{1}S_{2}+_{7}(_{5}P_{3}*_{8}$	3)	6
$_{1}1_{6}$	+(2*3)	R_6	$_{1}S_{2}+_{7}(_{5}P_{3}*_{8}3_{6}$)	R_6
$_1F_4$	+(2*3)	R_4	$_{1}S_{2}+_{7}(_{5}P_{3}*_{8}F_{11}$)	R_3
$_1P_3$	+(2*3)	R_2	$_{1}S_{2}+_{7}(_{5}P_{3}$)	R_2
$_1S_2$	+(2*3)	7	$_{1}S_{2}+_{7}(_{5}S_{9}$)	12
$_{1}S_{2}+_{7}$	(2*3)	5	$_{1}S_{2}+_{7}(_{5}S_{9})_{12}$	#	R_5
$_{1}S_{2}+_{7}(_{5}$	2 * 3)	6	$_{1}S_{2}+_{7}F_{4}$	#	R_4
$_{1}S_{2}+_{7}(_{5}2_{6}$	* 3)	R_6	$_{1}S_{2}+_{7}P_{10}$	#	R_1
$_{1}S_{2}+_{7}(_{5}F_{4}$	* 3)	R_4	$_1S_2$	#	
$_{1}S_{2}+_{7}(_{5}P_{3}$	* 3)	8 (!)			

Expressive power

- More general ideas: LR(1)
- Here handles include the next symbol to be read, e.g.

$$(S \rightarrow S \bullet + P, a)$$

- LR(1) automata are huge, so LALR(1) is a simplified version
- $LR(0) \subset SLR(1) \subset LALR(1) \subset LR(1) \subset LR(2) \subset \cdots \subset LR(k) \subset \cdots$
- Theorem (Knuth): Every deterministic context-free language has an LR(k) grammar, and even a (bigger) LR(1) grammar.
- There is a language in LR(1) but not in LL(k) for any k:

$$\{a^ib^j : i \ge j\}$$

Certified compilers

Do you trust your compiler?

- Most software errors arise from source code
- But what if the compiler itself is flawed?
- Testing is immune to this problem, since it is applied to target code

But good luck identifying the bug!

- Formal verification is harmed: even if the source program is proved correct, the compiled one may be wrong.
- Common practice for safety-critical systems:
 - turn off most optimizations
 - perform human audit of target code

It this paranoia?

- In 1995, 12 out of 20 commercially available C compilers were found to have flaws in optimizing integer division.
- In 2008, all 13 tested C compilers had flaws in dealing with volatile variables. Some GCC versions optimized this out:

```
extern volatile int WATCHDOG;
void reset_watchdog() { WATCHDOG = WATCHDOG;}
```

- CSmith: a tool for testing C compilers with randomly generated programs. In 2011, it found 325 errors in GCC, LLVM and other mainstream compilers.
- GCC shipped with Ubuntu 8.04.1 had this wrong on all optimization levels:

```
int foo(void) {
  signed char x = 1;
  unsigned char y = 255;
  return x > y; }
```

Solution I: Target code validation

After compilation, prove that the target code is equivalent to the source code.

Problems:

- Formal semantics of both source and target languages must be provided.
- Program equivalence is almost always undecidable.
- Typically needs human assistance.
- Even if it works, it is very time-consuming.

Solution II: Proof-carrying code

Augment target code with a formal proof of its desirable properties.

Advantages:

- Source code semantics is not needed
- Very robust framework, exending beyond compiler correctness
- Small burden on the user: checking proofs is not very costly
- Great for mobile code

Problems:

- Does not really check compiler correctness
- Huge burden on the developer

Solution III: Certified compiler

Formally prove that the compiler is correct.

Advantages:

- No burden on the developer or on the user
- Guarantees that source-code analyses apply to target code
- One-off effort

Problems:

- Formal semantics of both source and target languages must be provided.
- Huge burden on the compiler developer

CompCert

- A certified C compiler
- Developed since 2005 at INRIA Paris (principal: Xavier Leroy)
- Free for non-commercial use
- Licenses sold for commercial use

Main ingredients:

- Small-step operational semantics of the source language
- Small-step operational semantics of the target language
- A compiler written in (a functional sublanguage of) Coq
- A proof of correctness in Coq
- A translation from the functional sublanguage of Coq to Caml

Bartosz Klin: Semantics & Verification

Languages

The source language:

- A large subset of C
- No longjmp or setjmp
- Only structural switch, no "Duff's device"
- No variable-length array types

Supported target architectures:

- PowerPC
- RISC-V, ARMv8 64-bit
- Intel x86, 32- and 64-bit

The compiler structure

• 20 passes, 11 intermediate languages, each with its own small-step operational semantics

Bartosz Klin: Semantics & Verification

Example intermediate language

RTL: Register Transfer Language

$$egin{aligned} i ::= & \mathsf{nop}(l) \mid \mathsf{op}(op, ec{r}, r, l) \mid \mathsf{load}(k, m, ec{r}, r, l) \mid \mathsf{store}(k, m, ec{r}, r, l) \ & \mid & \mathsf{call}(sig, (r \mid id), ec{r}, r, l) \mid \mathsf{tailcall}(sig, (r \mid id), ec{r}, r) \ & \mid & \mathsf{cond}(b, ec{r}, l_t, l_f) \mid \mathsf{return}(r) \end{aligned}$$

A CFG (Control Flow Graph) is a finite map $g:l\mapsto i$

Example semantic rule:

$$\frac{g(l) = \operatorname{op}(op, \vec{r}, r, l') \quad \operatorname{eval_op}(G, \sigma, op, R(\vec{r})) = v}{G \vdash \mathcal{S}(\Sigma, g, \sigma, l, R, M) \to \mathcal{S}(\Sigma, g, \sigma, l', R[r \mapsto v], M)}$$

Example transformation

RTL to LTL: register allocation

- ullet Purpose: divide pseudo-registers r into actual registers and stack allocations
- ullet First step: back-propagation to check which r is alive in which point l
- Two pseudo-registers interfere if they are both alive at some point
- If r and r' do not interfere, they can be stored in the same register
- Coloring pseudo-registers with registers: an NP-complete problem, but good heuristics exist

Property to prove:

Each transition of program is "simulated" by transitions of the transformed program

CompCert performance

- no errors uncovered so far (after years of attempts)
- compilation process: approx. 2 times slower than GCC with no optimization
- compiled code: approx. 10% slower than GCC with level 1 optimization, 20% slower than GCC with level 2 optimization
- main reason: lack of fancy loop optimizations etc.

What can go wrong?

Unverified parts of the compilation process:

- on the front end: preprocessing
- on the back end: assembling and linking

The verification process itself:

- What if one or both semantics are wrong?
- What if the translation from the functional sublanguage of Coq to Caml is wrong?
- What if the Caml compiler is wrong?
- What if the Coq proof system is wrong?
- What if mathematics is inconsistent?