

 Σ Gesamt

(max. 27)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Lars Diening Dr. Sebastian Schwarzacher, Maximilian Wank $\begin{array}{c} \text{Wintersemester} \ 2013/14 \\ 19.12.2013 \end{array}$

Viel Erfolg!

Analysis einer Veränderlichen

Probeklausur

Nachname:	Vorname:								
Matrikelnr.:	Fachsemester:								
Abschluss:	Bachelor, P	PO 🗖 2	2007 🗖 :	2010 🗖	2011	Ma	aster, Po	O 🗖 201	10 🖵 2011
	Lehramt Gymnasium:			☐ modularisiert		🖵 r	☐ nicht modularisiert		
	☐ Diplom		Anderes:						
Hauptfach:	☐ Mathema	atik 🛭	☐ Wirtse	haftsm.	☐ Inf.	□ Phys	s. 🖵 St	at. 🗖	
Nebenfach:	☐ Mathema	atik [☐ Wirtse	haftsm.	☐ Inf.	□ Phys	s. 🖵 St	at. 🗖	
Anrechnung	der Credit I	Points f	ür das	☐ Haup	tfach [□ Nebenf	fach (l	Bachelor	/ Master)
Bitte schalten selbst erstellte, bitte jede Aufg Sie dies am und Rest auf die Ri Zeit, um die K Da wir keine Au dürfen, notieren Ihr Klausurerge	einseitig pe abe auf dem teren Ende e ickseite oder lausur zu be ushänge mit n Sie sich bit	r Hand dafür des An auf ei earbeite Namer te die 1	beschrie vorgeseh gabenbla ne von u en. n oder M nebenste	ebene A4 enen Bla attes der ns ausge latrikelnu	Seite in tt. Falls entspred händigte	der Klau der Platz chenden A e leere Sei machen	ısur zu l z nicht a Aufgabe	benutzer usreicht e und scl	n. Lösen Sie , vermerker nreiben der
Aufgabe	1	2	3	4	5	6	7	8	9
max. Punkt	e 3	2	4	4	3	3	4	2	
					3	0		_	2

Name: _____

Aufgabe 1 3 Punkte

Beweisen Sie die Summenformel

$$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

mittels vollständiger Induktion.

Lösung zu Aufgabe 1

Induktionsanfang n = 0: klar! [+1]

Induktionsschritt $n \mapsto n+1$: [+1/2 von wo nach wo]

$$\sum_{k=0}^{n+1} k^3 = \left(\sum_{k=0}^n k^3\right) + (n+1)^3$$

$$\begin{bmatrix} +1/2 \end{bmatrix} \frac{n^2(n+1)^2}{4} + (n+1)^3 \quad \text{nach Induktions vor auss setzung [+1/2 Hinweis]}$$

$$= \frac{(n+1)^2}{4} (n^2 + 4(n+1))$$

$$= \frac{(n+1)^2}{4} (n+2)^2.$$
[+1/2 für Rechnung]

Name: _			

Aufgabe 2 2 Punkte

Sei

$$a_n := \frac{1}{n^2} \sum_{k=0}^n k.$$

Bestimmen Sie den Grenzwert der Folge $(a_n)_n$.

Lösung zu Aufgabe 2

$$a_n = \frac{1}{n^2} \frac{n(n+1)}{2}$$
 [+1] nach Vorlesung
$$= \frac{1}{2} + \frac{1}{2n}$$
 [+1/2 Vereinfachung so, dass Grenzwert erkennbar]
$$\xrightarrow{n \to \infty} \frac{1}{2}$$
 [+1/2]

Name:		

Aufgabe 3 4 Punkte

Beweisen Sie mit der Eulerschen Formel (d.h. mit Hilfe der Definition von $\cos : \mathbb{R} \to \mathbb{R}$ durch die komplexe Exponentialfunktion) die Gleichung

$$\cos(3x) = 4(\cos(x))^3 - 3\cos(x)$$

für alle $x \in \mathbb{R}$.

Lösung zu Aufgabe 3

Es gilt cos(x) = Re(exp(ix)).

```
\cos(3x) = \operatorname{Re}(\exp(i3x)) \quad \text{[+1/2 Anwendung Eulersche Formel]}
= \operatorname{Re}\left((\exp(ix)^3) \quad \text{[+1 für Ansatz mit Potenzgesetz]}\right)
= \operatorname{Re}\left((\cos x + i\sin x)^3\right) \quad \text{[+1/2 Anwendung Eulersche Formel]}
= \operatorname{Re}\left((\cos x)^3 + 3(\cos x)^2(i\sin x) + 3\cos x(i\sin x)^2 + (i\sin x)^3\right) \quad \text{[+1]}
= (\cos x)^3 - 3\cos x\sin x^2 \quad \text{[+1/2 für richtiger Realteil]}
= (\cos x)^3 - 3\cos x(1 - \cos x^2) \quad \text{[+1/2 Eleminierung von sin]}
= 4(\cos(x))^3 - 3\cos(x).
```

Name: _____

Aufgabe 4 4 Punkte

Sei $M := \{(x, y) : x^2 + 3y^2 \le 1\} \subset \mathbb{R}^2$.

- a) Ist M abgeschlossen? Begründen Sie ihre Antwort.
- b) Ist M kompakt? Begründen Sie ihre Antwort.

Lösung zu Aufgabe 4 a) M abgeschlossen. [+1/2] Begründung folgt:

Sei $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x^2 + 3y^2$. Dann ist f offensichtlich stetig [+1/2].

Da $x^2+3y^2\geq 0$, gilt $M=\{(x,y): x^2+3y^2\in [0,1]\}=f^{-1}([0,1])$ [+1/2]. Damit ist f als Urbild der abgeschlossenen [+1/2] Menge [0,1] ebenfalls abgeschlossen [+1/2 für Argument].

b) M ist kompakt. [+1/2] Begründung folgt:

Nach Heine-Borel und dem ersten Teil, müssen wir noch zeigen, dass M beschränkt ist. [+1/2 Heine-Borel zitiert oder angewendet].

Für $(x,y)\in M$ gilt $x^2\leq 1$ und $y^2\leq \frac{1}{3}$, also insbesondere $|x|\leq 1$ und $|y|\leq \frac{1}{\sqrt{3}}$. Damit ist M beschränkt. [+1/2 für Beschränktheit]

Name:			

Aufgabe 5 3 Punkte

Es sei $f:[0,2]\to\mathbb{R}$ eine stetige Funktion, die zusätzlich der Gleichung f(0)=f(2) genügt. Zeigen Sie, dass ein $\xi\in[0,1]$ mit $f(\xi)=f(\xi+1)$ existiert.

Lösung zu Aufgabe 5

Falls f(0) = f(1), dann sind wir schon fertig mit $\xi = 0$ [+1/2 für diesen Spezialfall]. Also können wir im Folgenden annehmen, dass $f(0) \neq f(1)$.

Sei $g:[0,1]\to\mathbb{R}, x\mapsto f(x+1)-f(x)$. Dann gilt $g(0)=f(1)-f(0)\neq 0$. Es gilt

$$g(1) = f(2) - f(1) = f(0) - f(1) = -g(0).$$

Da $g(0) \neq 0$ und g(1) = -g(0), haben g(0) und g(1) also verschiedene Vorzeichen [+1]. Da g außerdem stetig [+1/2] existiert nach dem Zwischenertsatz ein $\xi \in (0,1)$ mit $g(\xi) = 0$ [+1]. Daraus folgt $f(\xi) = f(\xi + 1)$.

Aufgabe 6 3 Punkte

Sei $A \subset \mathbb{R}$ und sei $f : A \to \mathbb{R}$ gleichmäßig stetig auf A. Sei $(a_n)_n$ eine Cauchyfolge aus A. Zeigen Sie, dass $(f(a_n))_n$ eine Cauchyfolge in \mathbb{R} ist.

Lösung zu Aufgabe 6

Sei $\varepsilon > 0$.

Da f gleichmäßig stetig, existiert ein $\delta > 0$ derart, dass

$$\forall x, y \in A : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$
 [+1]

Da $(a_n)_n$ Cauchyfolge, existiert ein $N \in \mathbb{N}$ derart, dass

$$|a_n - a_m| < \delta$$
 für alle $n, m \ge N$. [+1]

Folglich gilt

$$|f(a_n) - f(a_m)| < \varepsilon$$
 für alle $n, m \ge N$. [+1]

Somit ist $f(a_n)$ eine Cauchyfolge.

Alternative fehlerhafte Lösung [maximal 2 Punkte]:

Da f is gleichmäßig stetig, ist f stetig [+1/2].

Da $(a_n)_n$ Cauchyfolge, existiert $a \in \mathbb{R}$ mit $a_n \to a$ [+1/2].

FEHLER: Da A nicht abgeschlossen sein muss, können wir nicht $a \in A$ folgern, was später für die Stetigkeit gebraucht wird. [Hier fehlt der Punkt.] Im der nachfolgenden Lösung gehen wir trotzdem von $a \in A$ aus.

Da f stetig auf A, gilt $f(a_n) \to f(a)$. [+1/2]

Damit ist $f(a_n)$ ebenfalls eine Cauchyfolge [+1/2].

Name: $_$

4 Punkte Aufgabe 7

Wir betrachten die Reihe

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \, 2^n} x^n.$$

Bestimmen Sie die Mengen

 $M_1 := \{x \in \mathbb{R} : \text{ die Reihe konvergiert}\} \text{ und } M_2 := \{x \in \mathbb{R} : \text{ die Reihe konvergiert absolut}\}.$

Lösung zu Aufgabe 7

Sei $a_n := \frac{(-1)^n}{n \cdot 2^n} x^n$.

Wurzelkriterium:

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \frac{|x|}{2\sqrt[n]{n}} = \frac{|x|}{2}.$$
 [+1]

Damit konvergiert die Reihe absolut für |x| < 2 [+1/2] und divergiert für |x| > 2 [+1/2].

Es bleiben die Fälle x = -2 und x = 2. [+1/2 für Erkennen des Problems.]

Fall x=2. Die Reihe ist dann $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Die Reihe konvergiert [+1/2], aber nicht absolut [+1/2].

Fall x=-2. Die Reihe ist dann $\sum_{n=1}^{\infty} \frac{1}{n}$. Die Reihe konvergiert nicht. [+1/2]

Damit folgt $M_1 = (-2, 2]$ und $M_2 = (-2, 2)$.

(Alternative: Quotientenkriterium):

$$\frac{|a_{n+1}|}{|a_n|} = \frac{n|x|}{2(n+1)} \to \frac{|x|}{2}.$$

Bemerkung: Die Reihe ist nur für $x \ge 0$ alternierend.

Bemerkung: Eine alternierende Reihe $\sum_{k=1}^{\infty} (-1)^n a_n$ konvergiert, falls a_n eine monotone(!) Nullfolge ist. Die Nullfolgeneigenschaft reicht nicht für die Konvergenz.

Bemerkung: Die folgende fehlerhafte Lösung ergibt nur 2 Punkte: Wurzelkriterium:

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \frac{|x|}{2\sqrt[n]{n}} = \frac{|x|}{2}.$$
 [+1]

Damit konvergiert die Reihe genau dann (FEHLER), wenn $|x| \le 2$. [+1/2 für |x| < 2] und [+1/2 für |x| > 2]. Da die Randbetrachtung fehlt, gibt es keine weiteren Punkte.

Name:		

Aufgabe 8 2 Punkte

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ eine beschränkte Folge. Zeigen Sie, dass eine Folge $(b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ genau dann beschränkt ist, wenn $(a_n + b_n)_{n \in \mathbb{N}} \subset \mathbb{R}$ beschränkt ist.

Lösung zu Aufgabe 8

 \Rightarrow : Da $(a_n)_n$ und $(b_n)_n$) beschränkt, existieren A, B > 0 mit $|a_n| \leq A$ und $|b_n| \leq B$ für alle

 $n \in \mathbb{N}$ [+1/2]. Damit gilt $|a_n + b_n| \le |a_n| + |b_n| \le A + B$ für alle $n \in \mathbb{N}$ [+1/2]. \Leftarrow : Da $(a_n)_n$ beschränkt, ist auch $(-a_n)_n$ beschränkt [+1/2]. Damit ist nach erstem Teil auch $((a_n + b_n) + (-a_n))_n = (b_n)_n$ beschränkt [+1/2].

(Alternativbeweis: $|b_n| = |(a_n + b_n) - a_n| \le |a_n + b_n| + |a_n| \le C + A$.)

Name:		

Aufgabe 9 2 Punkte

Sie (X, d) ein metrischer Raum und $x, y \in X$ mit $x \neq y$. Zeigen Sie, dass es offene Bälle $B_r(x)$ und $B_s(y)$ gibt, so dass $B_r(x) \cap B_s(y) = \emptyset$.

Lösung zu Aufgabe 9

Sei $r:=s:=\frac{d(x,y)}{2}.$ Da $x\neq y$ ist r>0 [+1/2]. Behauptung: $B_r(x)\cap B_s(y)=\emptyset.$

Beweis durch Widerspruch. Sei also $B_r(x) \cap B_s(y) \neq \emptyset$. Dann existiert $z \in B_r(x) \cap B_s(y)$. Es folgt

$$d(x,y) \le d(x,z) + d(y,z)$$
 [+1/2] $< r + r$ [+1/2] $= d(x,y)$.

Dies ist ein Widerspruch [+1/2].