

Diffusion equation

Let u(x,t) is defined for $x \in [0,1]$ and $t \in [0,T]$.

$$q(x,t)\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(p(x,t) \frac{\partial u}{\partial x} \right) + f(x,t) \tag{1}$$

Note q(x,t) and p(x,t).

Initial condition:

$$u(x,t=0) = u_0(x)$$

Boundary conditions

$$u(0,t) = \mu_1(t)$$
 $u(1,t) = \mu_2(t)$

The Sturm-Liouville operator

Need to approximate the Sturm-Liouville operator

$$Lu = \frac{\partial}{\partial x} \left(p(x, t) \frac{\partial u}{\partial x} \right)$$

Use at (x_i, t)

$$\Lambda(t)y_j = \frac{1}{h} \left(a_{j+1}(t) \, \frac{y_{j+1} - y_j}{h} - a_j(t) \, \frac{y_j - y_{j-1}}{h} \right)$$

The Sturm-Liouville operator

The FD diffusivity, a_j , needs to satisfy the second order approximation conditions

$$\frac{a_{j+1}(t) + a_j(t)}{2} = p(x_j, t) + O(h^2)$$
$$\frac{a_{j+1}(t) - a_j(t)}{h} = p'(x_j, t) + O(h^2)$$

For example,

$$\begin{aligned} a_j(t) &= p(x_j - h/2, t)\,, \quad \text{or} \\ a_j(t) &= (p(x_j, t) + p(x_{j-1}, t))/2\,, \\ \text{etc} \end{aligned}$$

Approximation of the PDE

Now approximate the r.h.s. of the PDE (1) using a scheme with weights on the six-point stencil

$$u(x_j, t_n) \longrightarrow \sigma y_j^{n+1} + (1 - \sigma) y_j^n$$

Then

$$q(x_j, t) \frac{y_j^{n+1} - y_j^n}{\tau} = \Lambda(t) \left[\sigma y_j^{n+1} + (1 - \sigma) y_j^n \right] + f(x_j, t)$$

with $t \in [t_n, t_{n+1}]$

Approximation of the PDE

The scheme

$$q(x_j, t) \frac{y_j^{n+1} - y_j^n}{\tau} = \Lambda(t) \left[\sigma y_j^{n+1} + (1 - \sigma) y_j^n \right] + f(x_j, t)$$

approximates the PDE (1) with

- $ightharpoonup O(au^2 + h^2)$ if $t = t_n + au/2$ and $\sigma = 1/2$
- $ightharpoonup O(\tau + h^2)$ otherwise

Stability: the method of frozen coefficients

- Pretend that the coefficients are constant.
- Analyze the von Neumann stability.
- ▶ Require that the scheme is stable for all allowed values of p(x,t) and q(x,t)

This guarantees stability of the scheme iff the coefficients are smooth enough.

The method of frozen coefficients

As an example, consider the explicit scheme with $\sigma=0$ for f(x,t)=0

$$q(x_j,t)\frac{y_j^{n+1} - y_j^n}{\tau} = \Lambda(t)y_j^n$$

Pretend that

$$q(x,t) = q = \text{const},$$
 and $a(x,t) = a = \text{const}$

The FD scheme becomes
$$q \, \frac{y_j^{n+1} - y_j^n}{ au} = a \, \mathcal{D}_{xx} y_j^n$$

The method of frozen coefficients

Absorb the coefficients into the step size:

$$\frac{y_j^{n+1} - y_j^n}{\tau_1} = \mathcal{D}_{xx} y_j^n$$

with $\tau_1 = \tau a/q$.

Which is stable for $\tau_1 \leqslant h^2/2$

Then, the original scheme is von Neumann stable if

$$\frac{a(x,t)}{q(x,t)}\tau \leqslant \frac{h^2}{2} \qquad \forall x,t \in \Omega$$

Nonlinear equations

Nonlinear parabolic equation

Let u(x,t) is defined for $x \in [0,1]$ and $t \in [0,T]$.

$$\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(p(u) \frac{\partial u}{\partial x} \right) + f(u) \tag{2}$$

Initial condition:

$$u(x,t=0) = u_0(x)$$

Boundary conditions

$$u(0,t) = \mu_1(t)$$
 $u(1,t) = \mu_2(t)$

Nonlinear parabolic equation

Typically, avoid explicit schemes for non-linear equations.

Construct a scheme which is

- ightharpoonup Implicit w.r.t. y^{n+1}
- Linear w.r.t. y^{n+1}

An implicit linear scheme

$$\frac{y_j^{n+1} - y_j^n}{\tau} = \frac{1}{h} \left[a_j^n \frac{y_{j+1}^{n+1} - y_j^{n+1}}{h} - a_j^n \frac{y_j^{n+1} - y_{j-1}^{n+1}}{h} \right] + f(y_j^n)$$

with

$$a_j^n = \frac{1}{2} (p(y_j^n) + p(y_{j-1}^n))$$

- ightharpoonup Note that the nonlinearities are at y^n
- ▶ Solve for y^{n+1} via a tridiagonal solve
- The scheme is unconditionally stable
- ▶ The scheme approximates Eq. (2) with $O(\tau + h^2)$

A nonlinear scheme

Evaluate non-linear terms at y^{n+1} :

$$\frac{y_j^{n+1} - y_j^n}{\tau} = \frac{1}{h} \left[a_j^{n+1} \frac{y_{j+1}^{n+1} - y_j^{n+1}}{h} - a_j^{n+1} \frac{y_j^{n+1} - y_{j-1}^{n+1}}{h} \right] + f(y_j^{n+1})$$

with

$$a_j^{n+1} = \frac{1}{2} (p(y_j^{n+1}) + p(y_{j-1}^{n+1}))$$

At each layer, need to solve *nonlinear* equations for y^{n+1} .

A nonlinear scheme

Transition $n \longrightarrow n+1$: solve nonlinear equations for y^{n+1} .

Use an iterative method: construct a sequence of $M=\mathrm{const}$ steps:

$$y_j^{(s)}, \qquad j = 1, \dots, N, \qquad s = 0, 1, \dots, M$$

with

$$y_j^{(0)} = y_j^n$$
, and $y_j^{(M)} = y_j^{n+1}$

NB: use a fixed number, M, of *inner* iterations.

A nonlinear scheme

Label inner iterations by s:

$$\begin{split} & \frac{y_j^{(s+1)} - y_j^n}{\tau} = \frac{1}{h} \bigg[a_j^{(s)} \, \frac{y_{j+1}^{(s+1)} - y_j^{(s+1)}}{h} - a_j^{(s)} \, \frac{y_j^{(s+1)} - y_{j-1}^{(s+1)}}{h} \bigg] + f(y_j^{(s)}) \\ & \text{with } s = 0, 1, \cdots, M-1, \quad y_i^{(0)} = y_i^n \text{ and } y_i^{(M)} = y_i^{n+1} \end{split}$$

- ightharpoonup M=1 is a linear scheme.
- ► The nonlinear coefficients are evaluated at the "previous iteration", s
- ▶ Solving for y^{s+1} is a tridiagonal solve.

A predictor-corrector type scheme

Transition $n \longrightarrow n+1$ via an auxilliary layer n+1/2.

Step 1:
$$n \longrightarrow n + 1/2$$

Use an implicit linear scheme

$$\frac{w_j - y_j^n}{\tau/2} = \frac{1}{h} \left[a_j^n \frac{w_{j+1} - w_j}{h} - a_j^n \frac{w_j - w_{j-1}}{h} \right] + f(y_j^n)$$

$$w_0 = \mu_1(t_n + \tau/2), \qquad w_N = \mu_2(t_n + \tau/2)$$

Here $w_i \equiv y_i^{n+1/2}$

NB: nonlinear coefficients are at layer n.

A predictor-corrector type scheme

Transition $n \longrightarrow n+1$ via an auxilliary layer n+1/2.

Step 2:
$$n \longrightarrow n+1$$

Use the Crank-Nicholson scheme with nonlinear coefficients evaluated at $y^{n+1/2}$:

$$\frac{y_j^{n+1} - y_j^n}{\tau} = \frac{1}{2} \left[\mathcal{D}_x \left(a_j \mathcal{D}_x y_j^{n+1} \right) + \mathcal{D}_x \left(a_j \mathcal{D}_x y_j^n \right) \right] + f_j$$

Here
$$f_j \equiv f(y_j^{n+1/2})$$
 and $a_j \equiv a(y_j^{n+1/2})$