SỞ GIÁO DỤC & ĐÀO TẠO NAM ĐỊNH TRƯ**ỜNG THPT TRẦN HƯNG ĐẠO**

ĐỀ KIỂM TRA ĐÁNH GIÁ GIỮA HỌC KỲ I NĂM HỌC 2020 - 2021

Môn: Toán 12

Thời gian làm <u>bài: 90 phút (không kể thời</u> gian giao đề)

Mã đề 001

Họ, tên thí sinh: Số báo danh:

Câu 1: Cho khối hộp chữ nhật có 3 kích thước 3; 4; 5. Thể tích của khối hộp đã cho bằng

Câu 2: Cho hàm số f(x) có bảng biến thiên như sau

x	$-\infty$		-2		1		$+\infty$
f'(x)		+	0	-	0	+	
f(x)	$-\infty$		✓ ⁵ 〜				+∞

Số nghiệm thực của phương trình f(x)-3=0 là

A. 3.

B. 0.

C. 2.

D. 1.

Câu 3: Đồ thị hàm số nào trong bốn hàm số sau đây luôn nằm dưới trục hoành?

A. $y = -x^3 - 2x^2 + x - 1$.

B. $y = x^4 - 3x^2 + 3$.

C. $y = -x^4 - 4x^2 + 1$.

D. $y = -x^4 + 2x^2 - 2$.

Câu 4: Cho hàm số $y = (2x^2 + 2)(x^2 - 1)$ có đồ thị (C), số giao điểm của đồ thị (C) với trục hoành là

A. 4.

B. 1

C. 2.

D. 3.

Câu 5: Hàm số $y = \frac{x+2}{x-1}$ nghịch biến trên các khoảng

A. $(-1;+\infty)$.

B. R\ {1}.

C. $(-\infty;1)$ và $(1;+\infty)$.

D. $(1; +\infty)$.

Câu 6: Số đường tiệm cận của đồ thị hàm số $y = \frac{\sqrt{x-1}}{x^2-2x}$ là

A. 0.

R. 1

 C^{2}

D. 3.

Câu 7: Bảng biến thiên dưới đây là của một trong bốn hàm số được cho ở các phương án A, B, C, D. Hỏi đó là hàm số nào?

A. $y = \frac{2x-1}{x-2}$.

B. $y = \frac{2x-3}{x+2}$.

C. $y = \frac{x+3}{x-2}$.

D. $y = \frac{2x-5}{x-2}$.

Câu 8: Số cách chọn ra 3 học sinh trong 10 học sinh bất kì là

A. 120.

B. 6.

C. 30.

D. 720.

Câu 9: Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy và SA = a. Thể tích khối chóp đã cho bằng

- **A.** $\frac{1}{6}a^3$.

- C. $2a^{3}$.
- **D.** $\frac{1}{2}a^3$.

Câu 10: Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau

Giá trị cực tiểu của hàm số bằng

C. 2.

D. 4.

Câu 11: Số mặt phẳng đối xứng của hình hộp chữ nhật này có các kích thước là a, b, c (a < b < c) là

B. 2.

C. 3.

Câu 12: Tiệm cận ngang của đồ thị hàm số $y = \frac{3x+1}{x-2}$ là

- **A.** y = 2.
- **B.** y = 3.
- **D.** y = -3.

Câu 13: Cho hàm số y = f(x) có bảng biên thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

- **A.** (0;2).
- **B.** (4; 10).
- C. (2;5).
- **D.** $(-\infty; 5)$.

Câu 14: Gọi M, N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số: $y = x^3 - 3x^2 + 1$ trên [1;2]. Khi đó tổng M + N bằng

A. 2.

B. 0.

C. −2.

-4.

Câu 15: Cho hàm số y = f(x) có bảng biến thiến trên đoạn [-5,7] như sau:

Mệnh đề nào dưới đây đúng?

- **A.** $\min_{[-5;7]} f(x) = 1$.

- **B.** $\min_{[-5,7]} f(x) = 6$. **C.** $\min_{[-5,7]} f(x) = 2$. **D.** $\min_{[-5,7]} f(x) = 9$.

Câu 16: Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?

A. $y = \frac{1}{\sqrt{x}}$.

B. $y = \frac{1}{x^4 + 1}$.

C. $y = \frac{1}{x^2 + 1}$.

D. $y = \frac{1}{x^2 + x + 1}$.

Câu 17: Cho bốn hình vẽ sau đây:

Hình nào ở trên **không** phải là hình đa diện?

- **A.** Hình 1.
- **B.** Hình 3.
- **C.** Hình 2.
- **D.** Hình 4.

Câu 18: Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

- **A.** $y = x^3 3x^2 + 1$.
- **B.** $y = x^3 3x + 1$.
- C. $y = x^4 2x^2 + 1$. D. $y = -x^3 + 3x + 1$.

Câu 19: Khối hai mươi mặt đều thuộc loại nào sau đây?

- **A.** {4;3}.
- **B.** {3;4}.
- **C.** {3;5}.
- **D.** {5;3}.

Câu 20: Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau

Hàm số y = f(x) có bao nhiều điểm cực trị?

A. 3.

B. 0.

C. 1.

D. 2.

Câu 21: Cho hàm số y = f(x) luôn nghịch biến trên R. Tập nghiệm của bất phương trình $f\left(\frac{1}{r}\right) > f(1)$ là

- **A.** $(-\infty;1)$.
- **B.** $(-\infty; 0) \cup (1; +\infty)$. **C.** (0; 1).
- **D.** $(-\infty;0)\cup(0;1)$.

Câu 22: Tất cả các giá trị thực của tham số m để hàm số $y = x^4 + mx^2 - m - 5$ có 3 điểm cực trị là

- **B.** m > 8.
- C. m < 0.

Câu 23: Cho tứ diện đều ABCD cạnh a. Góc giữa hai đường thẳng CI và AC, với I là trung điểm của AB bằng

- A. 30°.
- **B.** 10°.
- C. 170°.
- D. 150°.

Câu 24: Tập giá trị của hàm số $f(x) = x + \frac{9}{x}$ với $x \in [2;4]$ là đoạn [a;b]. Khi đó P = b - a là

- **A.** $P = \frac{25}{4}$. **B.** $P = \frac{1}{2}$. **C.** $P = \frac{13}{2}$. **D.** P = 6.

Câu 25: Tất cả các giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại điểm x = 3 là

- **A.** m = -7.
- **B.** m = 5.
- C. m = -1.
- **D.** m = 1.

Câu 26: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại $B, BC = a\sqrt{2}$. Biết $SA \perp (ABC)$, góc giữa SC và đáy bằng 60° . Thể tích khối chóp S.ABC bằng

B.
$$\frac{a^3}{12}$$
.

C.
$$\frac{2\sqrt{3}a^3}{3}$$
.

D.
$$\frac{a^3\sqrt{3}}{3}$$
.

Câu 27: Cho khối chóp tứ giác S.ABCD có đáy ABCD là hình bình hành tâm I. Gọi V_1, V_2 lần lượt là thể tích khối chóp S.ABI, S.ABCD. Khẳng định nào sau đây là đúng?

A.
$$\frac{V_1}{V_2} = \frac{1}{6}$$
.

B.
$$V = \frac{1}{8}$$
.

C.
$$\frac{V_1}{V_2} = \frac{1}{2}$$
.

D.
$$\frac{V_1}{V_2} = \frac{1}{4}$$
.

Câu 28: Cho khối chóp SABC có thể tích khối chóp bằng $\frac{a^3\sqrt{6}}{2}$ và diện tích tam giác SBC bằng $a^2\sqrt{3}$.

Khoảng cách từ A đến mặt phẳng (SBC) bằng

A.
$$\frac{3a\sqrt{2}}{2}$$
.

B.
$$\frac{3a}{2\sqrt{2}}$$
.

C.
$$\frac{a\sqrt{2}}{2}$$
.

D.
$$\frac{3a}{2}$$
.

Câu 29: Tất cả các giá trị thực của tham số m để đường thẳng d: y = x - 2m cắt đồ thị hàm số $y = \frac{x-3}{x+1}$ (C) tại hai điểm phân biệt có hoành độ dương là

A.
$$1 < m < \frac{3}{2}$$
.

A.
$$1 < m < \frac{3}{2}$$
. **B.** $0 < m < \frac{1}{3}$. **C.** $0 < m < 1$.

C.
$$0 < m < 1$$
.

D.
$$\begin{bmatrix} m > 5 \\ m < -2 \end{bmatrix}$$
.

Câu 30: Số giá trị nguyên của tham số m để hàm số $y = \frac{1}{3}x^3 - 2mx^2 + 4x - 5$ đồng biến trên \mathbb{R} là

Câu 31: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA vuông góc với đáy và $SA = a\sqrt{3}$. Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABC). Trong các khẳng định sau, khẳng định nào đúng?

B.
$$\varphi = 30^{\circ}$$
.

$$\mathbf{C.} \, \sin \varphi = \frac{2\sqrt{5}}{5}.$$

$$\mathbf{D.} \, \sin \varphi = \frac{\sqrt{5}}{5}.$$

Câu 32: Cho hàm số $y = \frac{x+m}{x-1}$ (với m là tham số thực) thỏa mãn $\min_{[2;4]} y = 3$. Mệnh đề nào dưới đây là đúng?

A.
$$3 < m \le 4$$
.

B.
$$1 \le m < 3$$
.

C.
$$m > 4$$
.

D.
$$m < -1$$
.

Câu 33: Tất cả các giá trị m để đồ thị hàm số $y = \frac{2mx + 3m + 1}{2x - m^2}$ cắt trục Oy tại điểm có tung độ bằng -4 là

A.
$$m = 1$$
 hoặc $m = \frac{-1}{4}$.

B.
$$m = 1$$
.

C.
$$m = \frac{-1}{4}$$
.

D.
$$m = \frac{1}{5}$$
.

Câu 34: Cho hình lập phương ABCD.A'B'C'D' có diện tích tam giác ACD' bằng $a^2\sqrt{3}$. Thể tích của khối lập phương đã cho bằng

- **A.** $4\sqrt{2}a^3$.
- **B.** $8a^3$.

 C_{1} a^{3}

D. $2\sqrt{2}a^3$.

Câu 35: Cho các hàm số: $y = x^3 - 2$, $y = 2x - \cos x$, $y = \frac{2x - 1}{x + 1}$, $y = x^4 + 3$. Số các hàm số đồng biến trên tập xác định là

A. 3.

B. 2.

C. 1.

D. 4.

Câu 36: Cho hình chóp S.ABCD, có đáy là hình thang có đáy lớn AB, SA vuông góc mặt phẳng đáy, $AD = CD = CB = \frac{1}{2}AB = 2a$, $SA = a\sqrt{3}$. Khoảng cách giữa hai đường thẳng SD và CB bằng

- **A.** $a\sqrt{6}$.
- **B.** $\frac{a\sqrt{2}}{3}$.
- C. $\frac{a\sqrt{6}}{2}$.

D. $\frac{a\sqrt{3}}{2}$

Câu 37: Cho khối chóp S.ABC có $\widehat{ASB} = \widehat{ASC} = \widehat{BSC} = 60^{\circ}$, SA = SB = a, SC = x(x > a). Tìm x sao cho thể tích khối chóp S.ABC bằng $\frac{\sqrt{2}a^3}{4}$?

- A. x = 2a.
- **B.** x = 4a.
- **C.** x = 3a.
- **D.** x = 6a.

Câu 38: Một chất điểm chuyển động với quy luật $s(t) = 6t^2 - t^3$. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất bằng

A. 12.

B. 24.

C. 2.

D. 6.

Câu 39: Cho hàm số y = f(x) có bảng biến thiên:

Số giá trị nguyên của $m \in [-4, 4]$ để hàm số có 4 tiệm cận là

A. 7.

B. 6

C. 5.

D. 8.

Câu 40: Cho hàm số $f(x) = x^3 - (2m-1)x^2 + (2-m)x + 2$. Tất cả các giá trị thực của tham số m để hàm số y = f(|x|) có 5 cực trị là

A.
$$\frac{5}{4} \le m \le 2$$
.

B.
$$-\frac{5}{4} < m < 2$$
.

C.
$$-2 < m < \frac{5}{4}$$
.

D.
$$\frac{5}{4} < m < 2$$
.

Câu 41: Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + 1$ có bảng biến thiên như sau:

Mệnh đề nào dưới đây đúng?

A.
$$b > 0, c > 0$$
.

B.
$$b > 0, c < 0$$
.

C.
$$b < 0, c < 0$$
. **D.** $b < 0, c > 0$.

D.
$$b < 0, c > 0$$
.

Câu 42: Cho hàm số $f(x) = x^4 - 2x^2 + m$ (m là tham số thực). Gọi S là tập hợp các giá trị của m sao cho $\max_{[0;2]}\left|f\left(x\right)\right|+\min_{[0;2]}\left|f\left(x\right)\right|=7$. Tổng các phần tử của S là

Câu 43: Số giá trị nguyên của tham số m sao cho hàm số $y = \frac{mx-9}{x-m}$ luôn đồng biến trên $(-\infty; 2)$ là

Câu 44: Cho hàm số y = f(x) có bảng biến thiên như sau

Số nghiệm thuộc đoạn $0; \frac{9\pi}{2}$ của phương trình $f(f(\cos x)) = 2$ là

A. 10.

Câu 45: Cho hàm số y = f(x) có bảng biên thiên như hình vẽ

\boldsymbol{x}	$-\infty$		- 2		3	-	+∞
y'		+	0	_	0	+	
y	$-\infty$	/	√ ⁴ ∼				+∞

Hàm số $g(x) = f\left(2x^2 - \frac{5}{2}x - \frac{3}{2}\right)$ nghịch biến trên khoảng nào trong các khoảng sau?

$$\mathbf{A} \cdot \left(-1; \frac{1}{4}\right).$$

B.
$$\left(\frac{1}{4};1\right)$$
.

C.
$$\left(\frac{9}{4};+\infty\right)$$
.

D.
$$\left[1; \frac{5}{4}\right]$$
.

Câu 46: Hình vẽ bên là đồ thị của hàm số y = f(x).

Gọi S là tập hợp các giá trị nguyên âm của tham số m để hàm số y = |f(x-2020) - m| có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng

Câu 47: Một nhóm gồm 3 học sinh lớp 10, 3 học sinh lớp 11 và 3 học sinh lớp 12 được xếp ngồi vào một hàng có 9 ghế, mỗi em ngồi 1 ghế. Xác suất để 3 học sinh lớp 10 không ngồi 3 ghế liền nhau bằng

A.
$$\frac{5}{12}$$
.

B.
$$\frac{7}{12}$$
.

$$\frac{11}{12}$$
.

D.
$$\frac{1}{12}$$
.

Câu 48: Cho hình lăng trụ tam giác ABC. A'B'C' có đáy ABC là tam giác vuông cân tại C. Biết ABB'A' là hình thoi cạnh 2a, $\widehat{AA'B'} = 60^{\circ}$ và góc giữa đường thẳng AC' và mặt phẳng (AA'B'B) bằng 30° . Gọi M là trung điểm của A'B'. Thể tích khối tứ diện ACMC' bằng

A.
$$\frac{a^3}{6}$$
.

B.
$$\frac{a^3}{48}$$
.

C.
$$\frac{a^3\sqrt{3}}{48}$$
.

D.
$$\frac{a^3\sqrt{3}}{6}$$
.

Câu 49: Cho hàm số $f(x) = x^3 + x + 2$. Số giá trị nguyên của tham số m để phương trình $f(\sqrt[3]{f^3(x) + f(x) + m}) = -x^3 - x + 2$ có nghiệm $x \in [-1; 2]$ là?

Câu 50: Cho hai số thực dương x, y thỏa mãn $\frac{9x^3 + x}{y+1} = \sqrt{3y+2}$. Giá trị lớn nhất của biểu thức

S = 6x - y là

A.
$$\frac{82}{3}$$
.

B.
$$\frac{89}{12}$$
.

C.
$$\frac{17}{12}$$
. **D.** $\frac{11}{3}$.

D.
$$\frac{11}{3}$$
.

----- HÉT -----