In the Claims:

This listing of claims will replace all prior versions, and listings of the claims in the application.

Please amend claims 41-44, 54, 56-57, and 71; and add new claims 72-82, as follows:

1-40. (Canceled).

41. (Currently amended) A compound of general formula (A)

$$\begin{array}{c}
X \\
X \\
X \\
X
\end{array}$$
(A)
$$\begin{array}{c}
X \\
X \\
X \\
X
\end{array}$$

in which:

 R^2 and R^3 are independently hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(O

alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl, or R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) excloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous;

 R_4 is hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5 to 10 membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)sulfonylamino, aminosulfonyl, C_1 - C_{10} alkylsufinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by O, S, NR, CO, C(NR), C(R)SO₂, or OC(O)O, wherein R is as defined above and the saturated or unsaturated hydrocarbon chain is optionally substituted as defined above;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl; and

Y is 0, 1 or 2 oxygen atoms; -or-NR-where-R-is-H, OH, C₁-G₆-alkyl, or substituted C₁-G₆-alkyl:

in which V and W are as follows:

a single carbon-carbon bond;

V is CR and W is N, saturated or unsaturated;

V is N and W is CR, saturated or unsaturated;

a linkage of the form VW or WV = RRC-O or RRC-S, wherein each R is independently selected from hydrogen. V-and-W-are each optionally substituted (C_1 - C_6) alkyl, C_6 aryl or heterocycle, $\frac{1}{2}$ and

in which each R is independently defined.

42. (Currently amended) A compound of general formula (B1)

$$\begin{array}{c}
X \\
S \\
Z \\
R_1
\end{array}$$
(B1)

in which:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkene ring system, the cyclic moiety being optionally substituted with $(C_1$ - $C_{10})$ alkyl, $(C_1$ - $C_{10})$ alkenyl, $(C_1$ - $C_{10})$ alkynyl, $(C_1$ - $C_{10})$ alkoxy, $(C_1$ - $C_{10})$ thioalkoxy, hydroxyl, $(C_1$ - $C_{10})$ hydroxylalkyl, halo, $(C_1$ - $C_{10})$ haloalkyl, amino, amido, $(C_1$ - $C_{10})$ alkylamino, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylcarbonyl, $(C_1$ - $C_{10})$ alkylsulfonylamino, aminosulfonyl, $(C_1$ - $C_{10})$ alkylsulfinyl, or $(C_1$ - $C_{10})$ alkylsulfonyl,

 R^3 is hydrogen, (C_1-C_{12}) alkyl, substituted (C_1-C_{12}) alkyl, or unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, cyano, nitro, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, (C_1-C_{10}) alkylsulfinyl, or (C_1-C_{10}) alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), N(R)SO₂, SO₂N(R), N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO₂, SO₂O, or OC(O)O, where R is independently hydrogen, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkoxy, hydroxyl, hydroxyl, hydroxyl, hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, halo, (C_1-C_{10}) haloalkyl, (C_1-C_{10}) haloalkyl, (C_1-C_{10}) haloalkyl, halo, (C_1-C_{10}) haloalkyl,

amino, (C_1-C_{10}) alkylearbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylearbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl,

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl; and

Y is 0, 1 or 2 oxygen atoms; , or NR where R is H, OH, C_4 - C_6 -alkyl, or substituted C_4 - C_6 -alkyl; and

Z is a one atom linkage of N, CH, or CR or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂, wherein R is C₁-C₆ alkyl or substituted C₁-C₆ alkyl.

43. (Currently amended) A compound of general formula: (B2)

(B2)

in which:

R14 is hydrogen or (C1-C6)alkyl;

 \mathbb{R}^{k} is $(C_{6} \text{ or } C_{10})$ aryl, $(C_{6} \text{ or } C_{10})$ arylalkyl, a 6- or 10 membered ring system having one or more heteroatoms in the ring, $(C_{6} \text{ or } C_{10})$ heteroaryl, $(C_{3} \cdot C_{8})$ heterocycloalkenyl, $(C_{5} \cdot C_{8})$ eyeloalkene ring, $(C_{5} \cdot C_{8})$ eyeloalkene ring, $(C_{5} \cdot C_{8})$ eyeloalkene ring, $(C_{5} \cdot C_{8})$ eyeloalkene ring over the eyelic mojety being optionally substituted with $(C_{11} \cdot C_{10})$ alkyl.

 (C_4-C_{40}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkeny, (C_1-C_{10}) thioalkexy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_4-C_{10}) haloalkyl, amino, amido, (C_1-C_{10}) alkylamino, (C_4-C_{10}) alkylamino, (C_4-C_{10}) alkylamino, (C_4-C_{10}) alkylamino, aminosulfonyl, (C_4-C_{10}) alkylamino, aminosulfonyl, (C_4-C_{10}) alkylamino, aminosulfonyl, (C_4-C_{10}) alkylamino, aminosulfonyl, (C_4-C_{10}) alkylamino, aminosulfonyl, aminosulfo

 R^2 and R^2 are each independently hydrogen, $(C_4\cdot C_{12})$ alkyl, substituted $(C_4\cdot C_{12})$ alkyl, or unsaturated $(C_2\cdot C_{12})$ comprising one or more C=C bond or C=C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_4\cdot C_{10})$ alkoxy, $(C_4\cdot C_{10})$ thioalkoxy, hydroxyl, $(C_1\cdot C_{10})$ hydroxylalkyl, halo, $(C_4\cdot C_{10})$ haloalkyl, evano, nitro, amino, amido, $(C_4\cdot C_{10})$ alkylamino, $(C_4\cdot C_{10})$ alkylearbonyloxy, $(C_4\cdot C_{10})$ alkoxyearbonyl, $(C_4\cdot C_{10})$ alkylearbonyl, $(C_4\cdot C_{10})$ alkylamino, aminosulfonyl, $(C_4\cdot C_{10})$ alkylsulfinyl, or $(C_4\cdot C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_{2\pi}SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), OC(O), $OSO_{2\pi}SO_2O$, or OC(O)O, where R-is independently hydrogen, $(C_4\cdot C_{10})$ alkyl, $(C_4\cdot C_{10})$ alkenyl, $(C_4\cdot C_{10})$ alkoxy, $(C_4\cdot C_{10})$ alkoxy, $(C_4\cdot C_{10})$ alkoxy, hydroxyl, $(C_4\cdot C_{10})$ haloalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with $(C_4\cdot C_{10})$ alkyl, $(C_4\cdot C_{10})$ alkoxy, hydroxyl, $(C_4\cdot C_{10})$ hydroxylalkyl, halo, $(C_4\cdot C_{10})$ haloalkyl, amino, $(C_4\cdot C_{10})$ alkoxy, $(C_4\cdot C_{10})$ alkoxy, $(C_4\cdot C_{10})$ alkylsulfonyl, or $(C_4\cdot C_{10})$ alkylsulfonyl, or

 R^2 -and R^3 -optionally form a $(C_6 \circ C_{10})$ aryl, $(C_6 \circ C_{10})$ arylalkyl, a 6- or-10-membered ring system having one or more heteroatoms in the ring, $(C_2 \cdot C_8)$ heterocycloalkenyl, $(C_5 \cdot C_8)$ eyeloalkene ring, $(C_5 \cdot C_8)$ eyeloalkyl, $(C_5 \cdot C_8)$ heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a $(C_6 \circ r \cdot C_{10})$ aryl, $(C_6 \circ r \cdot C_{10})$ arylalkyl, $(C_6 \circ r \cdot C_{10})$ heteroaryl, $(C_3 \cdot C_8)$ heterocycloalkenyl, $(C_5 \cdot C_8)$ cycloalkene ring, $(C_5 \cdot C_8)$ eycloalkyl, $(C_5 \cdot C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R^2 R^3 , with R^1 and R^2 as defined above.

n is equal to [[0,]] 1 or 2; [[,]] and

X is hydroxyl (-OH), -OR, or [[NHR,]] hydroxamate (-NHOH), NHOR, NROR, NROR, NROW, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl, -and

Y is 0, 1 or 2 oxygen atoms, or NR where R is H, OH, OR or C, where R is C₁-C₆ alkyl or substituted C₁-C₆ alkyl, and Z is a one atom linkage of N, CH or CR, or a two-atom linkage of varying combinations of atoms of CH, CR, O, N, S, SO, SO₂ and in which each R is independently C₂-C₆ alkyl or

44. (Currently amended) A compound of general formula (C)

$$R_{4}$$
 $N_{R_{5}}$ $N_{R_{5}}$ $N_{R_{5}}$ $N_{R_{5}}$

in which:

substituted C. C. alkyl.

 R^3 is hydrogen, $(C_1 - C_{12})$ alkyl, substituted $(C_1 - C_{12})$ alkyl, or unsaturated $(C_2 - C_{12})$ comprising one or more C = C bond or C = C bond, $(C_6$ or $C_{10})$ aryl or $(C_6$ or $C_{10})$ heteroaryl, or a combination thereof to form a linked or fused ring system, or $(C_1 - C_{10})$ alkoxy, $(C_1 - C_{10})$ thioalkoxy, hydroxyl, $(C_1 - C_{10})$ hydroxylalkyl, halo, $(C_1 - C_{10})$ haloalkyl, cyano, nitro, amino, amido, $(C_1 - C_{10})$ alkylamino, $(C_1 - C_{10})$ alkylamino, $(C_1 - C_{10})$ alkylamino, aminosulfonyl, $(C_1 - C_{10})$ alkylamino, aminosulfonyl, $(C_1 - C_{10})$ alkylsulfinyl, or $(C_1 - C_{10})$ alkylsulfonyl, in which the saturated or an unsaturated hydrocarbon chain is optionally interrupted by O, S, NR, CO, C(NR), $N(R)SO_2$, $SO_2N(R)$, N(R)C(O)O, OC(O)N(R), N(R)C(O)N(R), OC(O), C(O)O, OSO_2 , SO_2O , or OC(O)O, where R is independently hydrogen, $(C_1 - C_{10})$ alkxyl, $(C_1 - C_{10})$ alkexyl, $(C_1 - C_{10})$ alkxynyl, $(C_1 - C_{10})$ alkxynyl, $(C_1 - C_{10})$ alkxynyl, $(C_1 - C_{10})$ alkxyl,

 (C_1-C_{10}) hydroxylalkyl, hydroxyl, (C_1-C_{10}) halolalkyl, where each of the saturated or unsaturated hydrocarbon chains are optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkoxyl, hydroxyl, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, (C_1-C_{10}) alkylcarbonyloxy, (C_1-C_{10}) alkoxycarbonyl, (C_1-C_{10}) alkylcarbonyl, (C_1-C_{10}) alkylsulfonylamino, aminosulfonyl, or (C_1-C_{10}) alkylsulfonyl;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, where each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is 0, 1 or 2 oxygen atoms; τ or NR where R is H, OH, OR or C, where R is G_1 - G_6 alkyl or substituted G_2 - G_6 alkyl; and

 R^4 and R^5 are each independently hydrogen, unsubstituted or substituted C_1 - C_{10} alkyl, an unsaturated hydrocarbon chain of up to ten carbon atoms comprising one or more carbon-carbon double bonds, C_6 or C_{10} aryl, a 5- to 10-membered heterocyclic group, C_1 - C_{10} alkoxy, C_1 - C_{10} thioalkoxy, hydroxyl, halo, cyano, nitro, amino, amido, $(C_1$ - C_{10} alkyl)carbonyloxy, $(C_1$ - C_{10} alkyl)carbonyl, $(C_1$ - C_{10} alkyl)thiocarbonyl, $(C_1$ - C_{10} alkyl)suffonylamino, aminosulfonyl, C_1 - C_{10} alkylsulfinyl, C_1 - C_{10} alkylsulfonyl, or a saturated or unsaturated C_3 - C_{12} hydrocarbon chain interrupted by C_1 , C_1 - $C_$

- 45. (Previously presented) A compound as claimed in claim 41, in which \mathbb{R}^2 and \mathbb{R}^3 are both Hydrogen.
- 46. (Previously presented) A compound as claimed in claim 41, in which R^2 is methyl (CH₃) and R^3 is Hydrogen.
- 47. (Previously presented) A compound as claimed in claim 41, in which R² is Hydrogen and R³ is methyl (CH₃).

- 48. (Previously presented) A compound as claimed in claim 41, in which R² and R³ are both methyl (CH₃).
- (Previously presented) A compound as claimed in claim 41, in which X is -OH, -OC₂H₃, -OCH₃, or NHOH.
- 50. (Previously presented) A compound as claimed in claim 41, in which Y is represented by one or two oxygen atoms.
- 51-52. (Canceled).

53. (Previously presented) A compound of general formula (Ia)

$$R_1$$
 R_2
 R_3
 R_3
 R_3
 R_4
 R_5
 R_5
 R_5
 R_5

wherein:

R2 and R3 are both Hydrogen (H);

Y is two oxygen atoms;

n is 1:

R1 is

X is -OH, -CH₃, -OC₂H₅ or NHOH.

54. (Currently amended) A compound of general formula (B)

$$R_1$$
 R_2
 R_3
 R_3
 R_3

wherein:

R² and R³ are both methyl (CH₃);

Y is zero oxygen atoms;

n is zero;

R₁ is

X is -OCH3, -OC2H5 or -OH.

55. (Previously presented) A compound which is:

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6d).

6-(4-Methoxy-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6e),

6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b).

6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7c).

6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8b),

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8c),

6-Benzenesulfinyl-hexa-2,4-dienoic acid (8d),

6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9a),

6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b),

6-Benzenesulfonyl-hexa-2,4-dienoic acid (10a),

6-Benzenesulfonyl-hexa-2,4-dienoic acid methyl ester (10b),

6-Benzenesulfonyl-hexa-2,4-dienoic acid hydroxyamide (11a),

- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b),
- 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a),
- 4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b),
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid ethyl ester (24c).
- 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide (25c),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b),
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c),
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid methyl ester (28e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g).
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h).
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i),
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b).
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c),
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g).
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f).
- 6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i),
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a),
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c),
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e),
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide

(31f),

6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i),

(2E,4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a),

(2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a),

- (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a.), or
- (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-N-hydroxy-acrylamide (52a).
- (Currently amended) A pharmaceutical composition comprising a compound of claims
 to 50, and or 53 to 55, and optionally a pharmaceutically acceptable adjuvant and/or diluent.
- 57. (Currently amended) A method of inhibiting HDAC activity in an individual comprising administering to said individual a therapeutically effective amount of a compound of general formula (I):

$$R_1$$
 R_2
 R_3
 R_2
 R_3

in which:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl, } (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_3\text{-}C_8) \text{ heterocycloalkenyl, } (C_5\text{-}C_8) \text{ cycloalkene ring, } (C_5\text{-}C_8) \text{ cycloalkyl, } (C_5\text{-}C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1\text{-}C_{10}) \text{ alkyl, } (C_1\text{-}C_{10}) \text{ alkenyl, } (C_1\text{-}C_{10}) \text{ alkoxy, } (C_1\text{-}C_{10}) \text{ thioalkoxy, hydroxyl, } (C_1\text{-}C_{10}) \text{ hydroxylalkyl, halo, } (C_1\text{-}C_{10}) \text{ haloalkyl, amino, amido, } (C_1\text{-}C_{10}) \text{ alkylamino, } (C_1\text{-}C_{10}) \text{ alkylcarbonyl, } (C_1\text{-}C_{10}) \text{ alkylthiocarbonyl, } (C_1\text{-}C_$

(C1-C10) alkylsulfonylamino, aminosulfonyl, (C1-C10) alkylsulfinyl, or (C1-C10) alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, or (C_1-C_{10}) haloalkyl; or

 R^2 and R^3 optionally form a (C_6 or C_{10}) aryl, (C_6 or C_{10}) arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_5 - C_8) heterocycloalkenyl, (C_5 - C_8) cycloalkene ring, (C_5 - C_8) cycloalkyl, (C_5 - C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms selected from oxygen, nitrogen, sulphur, and phosphorous; or

 R^1 and R^2 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, $(C_6$ or $C_{10})$ heteroaryl, $(C_3$ - $C_8)$ heterocycloalkenyl, $(C_5$ - $C_8)$ cycloalkene ring, $(C_5$ - $C_8)$ cycloalkyl, $(C_5$ - $C_8)$ heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1 R 2 N, with R^1 and R^2 as defined above;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is 0, 1 or 2 oxygen atoms; $\frac{1}{2}$ or NR-where R is H, OH, C_4 - C_6 -alkyl, or substituted C_4 - C_6 -alkyl;

O represents

$$\left(\begin{array}{c} R_{\mathbf{1}} \\ \\ R_{\mathbf{5}} \end{array} \right)_{\mathbf{m}} \quad \text{or} \quad \left(\begin{array}{c} R_{\mathbf{1}} \\ \\ R_{\mathbf{5}} \end{array} \right)$$

wherein:

m is an integer from 1 to 4;

n is an integer from 1 to 8; and

 $\ensuremath{R^4}$ and $\ensuremath{R^5}$ each independently represent hydrogen, or unsubstituted or substituted $\ensuremath{C_{1}\text{-}C_{10}}$

alkyl;

or a pharmaceutically acceptable salt thereof.

58-63. (Canceled).

64. (Previously presented) A compound of claim 43, wherein:

X is NHOH, OH, NROR, or CRROH; and Z is CR or N.

65. (Previously presented) The method of claim 57, wherein:

 $R^{\rm I}$ is (C₆ or C₁₀) aryl, optionally substituted by (C₁-C₁₀) alkoxy, halo or (C₁-C₁₀) alkylamino;

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a C_6 aryl;

n is equal to 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently selected from hydrogen, C₁-C₆ alkyl or substituted C₁-C₆ alkyl;

Y is O, 1, or 2 oxygen atoms;

Q represents

$$\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}_m$$
 or $\begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$

wherein:

m is an integer from 1 to 4;

n' is an integer from 1 to 8; and

R4 and R5 each independently represent hydrogen or methyl.

- 66. (Previously presented) The method of claim 57, wherein said compound of general formula (I) is:
 - 6-Phenylsulfanyl-hexa-2,4-dienoic acid (6a),
 - 6-(4-Chloro-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6b), or
 - 6-Phenylsulfanyl-hexa-2.4-dienoic acid methyl ester (6c).
- 67. (Previously presented) A method of stimulating hematopoietic cells ex vivo, comprising administering an effective amount of a compound of general formula (I).
- 68-69. (Canceled).
- 70. (Previously presented) A compound of general formula (Ib)

$$R_1$$
 R_2
 R_3
 R_2
 R_3
 R_3
 R_4
 R_5
 R_5
 R_5

wherein:

 $R^1 \text{ is } (C_6 \text{ or } C_{10}) \text{ aryl}, (C_6 \text{ or } C_{10}) \text{ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, } (C_6 \text{ or } C_{10}) \text{ heteroaryl, } (C_5-C_8) \text{ heterocycloalkenyl, } (C_5-C_8) \text{ cycloalkene ring, } (C_5-C_8) \text{ cycloalkyl, } (C_5-C_8) \text{ heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with } (C_1-C_{10}) \text{ alkyl, } (C_1-C_{10}) \text{ alkenyl, } (C_1-C_{10}) \text{ alkynyl, } (C_1-C_{10}) \text{ alkoxy, } (C_1-C_{10}) \text{ thioalkoxy, hydroxyl, } (C_1-C_{10}) \text{ hydroxylalkyl, halo, } (C_1-C_{10}) \text{ haloalkyl, amino, amido, } (C_1-C_{10}) \text{ alkylamino, } (C_1-C_{10}) \text{ alkylaminoyl, } (C_1-C_{10}) \text{ alkylamino, aminosulfonyl, } (C_1-C_{10}) \text{ alkylsulfinyl, or } (C_1-C_{10}) \text{ alkylsulfonyl; } (C_1-C_{10}) \text{ alkylsulfonyl, } (C_1-C_{10}) \text{ alkylsulfonyl, } (C_1-C_{10}) \text{ alkylsulfonyl, or } (C_1-C_{10}) \text{ alkylsulfonyl, } (C_1-C_{10})$

 R^2 and R^3 are each independently hydrogen or methyl, or R^2 and R^3 optionally form a (C₆ or C₁₀) arvl;

n is 0, 1 or 2;

X is hydroxamate (-NHOH); and

Y is 0, 1 or 2 oxygen atoms;

or a pharmaceutically acceptable salt thereof.

71. (Currently amended) The method of claim 57, wherein the compound of formula (I) has a structure of general formula (Ia):

$$R_1$$
 R_2
 R_3
 R_3
 R_2
 R_3

wherein:

 R^1 is $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, $(C_6$ or $C_{10})$ heteroaryl, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl or a combination thereof to form a linked or fused ring system, the cyclic moiety being optionally substituted with (C_1-C_{10}) alkyl, (C_1-C_{10}) alkenyl, (C_1-C_{10}) alkynyl, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, (C_1-C_{10}) haloalkyl, amino, amido, (C_1-C_{10}) alkylamino, (C_1-C_{10}) alkyltarbonyl, (C_1-C_{10}) alkyltarbonyl, (C_1-C_{10}) alkyltarbonyl, (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl, or (C_1-C_{10}) alkylsulfonyl,

 R^2 and R^3 are each independently hydrogen, (C_1-C_{12}) alkyl, unsaturated (C_2-C_{12}) comprising one or more C=C bond or C=C bond, (C_1-C_{10}) alkoxy, (C_1-C_{10}) thioalkoxy, hydroxyl, (C_1-C_{10}) hydroxylalkyl, halo, or (C_1-C_{10}) haloalkyl; or

 R^2 and R^3 optionally form a $(C_6$ or $C_{10})$ aryl, $(C_6$ or $C_{10})$ arylalkyl, a 6- or 10-membered ring system having one or more heteroatoms in the ring, (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_5-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally containing up to 3 heteroatoms, e.g. oxygen, nitrogen, sulphur or phosphorous; or

 R^1 and R^2 optionally form a (C₆ or C₁₀) aryl, (C₆ or C₁₀) arylalkyl, (C₆ or C₁₀) heteroaryl,

 (C_3-C_8) heterocycloalkenyl, (C_5-C_8) cycloalkene ring, (C_3-C_8) cycloalkyl, (C_5-C_8) heterocycloalkyl linked or fused ring system, optionally the ring formed is further substituted with a group R^1 as defined above, or the ring formed is fused to a further C_6 aryl group which is optionally substituted with a group R^1 as defined above, or a group R^1R^2N , with R^1 and R^2 as defined above;

n is 0, 1 or 2;

X is hydroxyl (-OH), -OR, NHR, hydroxamate (-NHOH), NHOR, NROR, NRNHR, or SR, wherein each R is independently hydrogen, C₁-C₆ alkyl; and

Y is 0, 1 or 2 oxygen atoms; , or NR where R is H, OH, C4-C6-alkyl, or substituted C4-C6 alkyl;

or a pharmaceutically acceptable salt thereof.

72. (New) The compound of claim 70, in which R^2 and R^3 are both Hydrogen (H), Y is equal to zero oxygen atoms, n is equal to 1, and R^1 is one of

- (New) The compound of claim 70, wherein the compound is 6-(4-chlorophenylsulfanyl)-hexa-2,4-dienoic acid hydroxamide (7b).
- 74. (New) The method of claim 71, in which R^2 and R^3 are both Hydrogen; R^2 is methyl (CH₃) and R^3 is Hydrogen; R^2 is Hydrogen and R^3 is methyl (CH₃); or R^2 and R^3 are both methyl (CH₃).
- 75. (New) The method of claim 71, in which R¹ is (C₆ or C₁₀) aryl, optionally substituted by

halo, (C1-C10) alkoxy or (C1-C10) alkylamino.

- 76. (New) The method of claim 75 in which R^1 is (C_6 or C_{10}) aryl, optionally substituted by chlorine, methoxy or dimethylamino.
- 77. (New) The method of claim 71, in which X is -OH, -OC₂H₅, -OCH₃, or NHOH.
- 78. (New) The method of claim 71, in which R² and R³ are both Hydrogen (H), Y is equal to zero oxygen atoms, and n is equal to 1, R¹ is one of

and X is one of -OH, -OCH3, -OC2H5 or NHOH.

79. (New) The method of claim 71, in which R^2 and R^3 are both Hydrogen (H), Y is equal to one oxygen atom, and n is equal to 1, R^1 is one of

and X is one of -OH, -OCH3, -OC2H5 or NHOH.

80. (New) The method of claim 71, in which R^2 and R^3 are both Hydrogen (H), Y is equal to two oxygen atoms, n is equal to 1, R^1 is one of

and X is one of-OH, -CH3,-OC2H5 or NHOH.

- 81. (New) The method of claim 57, wherein said compound of general formula (I) is:
 - 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid methyl ester (6d);
 - 6-(4-Methoxy-phenylsulfanyl)-hexa-2.4-dienoic acid methyl ester (6e):
 - 6-(4-Chloro-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7b);
 - 6-(4-Dimethylamino-phenylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (7c);
 - 6-Phenylsulfinyl-hexa-2,4-dienoic acid methyl ester (8a);
 - 6-(4-Chloro-benzenesulfinyl)-hexa-2,4-dienoic acid methyl ester (8b);
 - 6-(4-Methoxy-benzetiesulfinyl)-hexa-2.4-dienoic acid methyl ester (8c):
 - 6-Benzenesulfinyl-hexa-2,4-dienoic acid (8d):
 - 6-(4-Chloro-benzenesulfinyl)-hexa-2.4-dienoic acid hydroxyamide (9a):
 - 6-(4-Methoxy-benzenesulfinyl)-hexa-2,4-dienoic acid hydroxyamide (9b);
 - 6-Benzenesulfonyl-hexa-2,4-dienoic acid (10a);
 - 6-Benzenesulfonyl-hexa-2.4-dienoic acid methyl ester (10b):
 - 6-Benzenesulfonyl-hexa-2.4-dienoic acid hydroxyamide (11a):
 - 6-(Naphthalen-2-vIsulfanyl)-hexa-2,4-dienoic acid methyl ester (13b):
 - 6-(Naphthalen-2-ylsulfanyl)-hexa-2,4-dienoic acid hydroxyamide (14a);
 - 4-(4-Dimethylamino-phenylsulfanyl)-2-methyl-pent-2-enoic acid methyl ester (21b);
 - 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2, 4-dienoic acid ethyl ester (24c);
 - 6-(4-Dimethylamino-phenylsulfanyl)-4-methyl-hepta-2,4-dienoic acid hydroxyamide

(25c);

- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid methyl ester (28b);
- 7-(4-Chloro-phenylsulfanyl)-heptanoic acid ethyl ester (28c);
- 6-(4-Amino-phenylsulfanyl)-hexanoic acid methyl ester (28d);

- 6-(4-Dimethylamino-phenylsulfany!)-hexanoic acid methyl ester (28e);
- 6-(4-((4-Chlorobenzyl)-methylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28f);
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid methyl ester (28g);
- 6-(4-Bromo-phenylylsulfanyl)-hexanoic acid methyl ester (28h);
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid methyl ester (28i);
- 6-(4-Chloro-phenylsulfanyl)-hexanoic acid hydroxyamide (29b);
- 6-(4-Dimethylamino-phenylsulfanyl)-hexanoic acid hydroxamide (29c);
- 6-(4-(4-Chlorobenzenesulfonylamino)-phenylsulfanyl)-hexanoic acid hydroxamide (29g);
- 6-(4'-Chloro-biphenyl-4-ylsulfanyl)-hexanoic acid hydroxamide (29i);
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid methyl ester (30b);
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid ethyl ester (30c);
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid methyl ester (30e);
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid methyl ester (30f);
- 6-(4'-Chloro-biphenyl-4-ylsulfinyl)-hexanoic acid methyl ester (30i);
- 6-(4-Chloro-benzenesulfinyl)-hexanoic acid hydroxyamide (31a);
- 7-(4-Chloro-benzenesulfinyl)-heptanoic acid hydroxyamide (31c);
- 6-(4-Dimethylamino-benzenesulfinyl)-hexanoic acid hydroxyamide (31e);
- 6-(4-((4-Chlorobenzyl)-methylamino)-benzenesulfinyl)-hexanoic acid hydroxamide (31f);
 - 6-(4'-Chloro-biphenyl-4-sulfinyl)-hexanoic acid hydroxyamide (31i);
- (2E, 4E)-5-(5-Dimethylamino-benzo[b]thiophen-2-yl)-penta-2,4-dienoic acid ethyl ester (41a);
- (2E,4E)-5-(5-Dimethylaminobenzo[b]thiophen-2-yl)-penta-2,4-dienoic acid hydroxamide (42a);
 - (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-acrylic acid ethyl ester (51a); or
 - (E)-3-(3-(4-Dimethylamino-phenylsulfanyl)-phenyl)-N-hydroxy-acrylamide (52a).
- 82. (New) A pharmaceutical composition comprising a compound of claims 70, 72 or 73,

and optionally a pharmaceutically acceptable adjuvant and/or diluent.