All pair Shortest Path

Chapter 25 from textbook

All Pairs Shortest Paths (APSP)

- given: directed graph G = (V, E), weight function $\omega : E \to R$, |V| = n
- goal: create an $n \times n$ matrix $D = (d_{ij})$ of shortest path distances

$$i.e., d_{ij} = \delta(v_i, v_j)$$

• trivial solution: run a SSSP (single source shortest path) algorithm n times, one for each vertex as the source.

All Pairs Shortest Paths (APSP)

- All edge weights are nonnegative : use Dijkstra's algorithm
 - Implementation using binary heap :
 - Running time: O $(V(V+E)\log V)=O(V^2\log V+EV\log V)$
 - For dense graph: O (V³lgV)
 - ◆ For sparse graph: O(V²log V)
- Negative edge weights : use Bellman-Ford algorithm
 - Running time: $(V(VE)) = O(V^2E)$
 - For dense graph: O (V⁴)
 - For sparse graph: O (V³)
- Can we do better?

Adjacency Matrix Representation of Graphs

 $ightharpoonup n \times n$ matrix $\mathbf{W} = (\omega_{ij})$ of edge weights :

$$\omega_{ij} = \begin{cases} \omega(v_i, v_j) & \text{if } (v_i, v_j) \in E \\ \infty & \text{if } (v_i, v_j) \notin E \end{cases}$$

- ► assume $\omega_{ii} = 0$ for all $v_i \in V$, because
 - no neg-weight cycle

⇒ shortest path to itself has no edge,

i.e.,
$$\delta (v_i, v_i) = 0$$

 $(\delta \text{ denotes the shortest path})$

Dynamic Programming

- (1) Characterize the structure of an optimal solution.
- (2) Recursively define the value of an optimal solution.
- (3) Compute the value of an optimal solution in a bottom-up manner.
- (4) Construct an optimal solution from information constructed in (3).

Assumption: negative edge weights may be present, but no negative weight cycles.

(1) Structure of a Shortest Path:

- Consider a shortest path p_{ij}^{m} from v_i to v_j such that $|p_{ij}^{m}| \le m$
 - i.e., path p_{ii}^{m} has at most m edges.
- no negative-weight cycle \Rightarrow all shortest paths are simple
 - \implies m is finite \implies $m \le n 1$
- $i = j \implies |p_{ii}| = 0 \& \omega(p_{ii}) = 0$
- $i \neq j \implies \text{decompose path } p_{ij}^{m} \text{ into } p_{ik}^{m-1} \& v_k \rightarrow v_j \text{, where } |p_{ik}^{m-1}| \leq m-1$
 - \mathbf{p}_{ik}^{m-1} should be a shortest path from v_i to v_k by optimal substructure property. (why?)
 - Therefore, $\delta(v_i, v_j) = \delta(v_i, v_k) + \omega_{kj}$

(2) A Recursive Solution to All Pairs Shortest Paths Problem:

- d_{ij}^{m} = minimum weight of any path from v_i to v_j that contains at most "m" edges.
- m = 0: There exist a shortest path from v_i to v_j with no edges $\leftrightarrow i = j$.

$$d_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

• $m \ge 1$: $d_{ij}^{m} = \min \{ d_{ij}^{m-1}, \min_{1 \le k \le n \ \Lambda \ k \ne j} \{ d_{ik}^{m-1} + \omega_{kj} \} \}$ = $\min_{1 \le k \le n} \{ d_{ik}^{m-1} + \omega_{kj} \} \text{ for all } v_k \in V,$ since $\omega_{j,j} = 0 \text{ for all } v_j \in V.$

- to consider all possible shortest paths with $\leq m$ edges from v_i to v_j
 - \blacktriangleright consider shortest path with $\leq m$ -1 edges, from v_i to v_k , where

• note: $\delta(v_i, v_j) = d_{ij}^{n-1} = d_{ij}^n = d_{ij}^{n+1}$, since $m \le n - 1 = /V / - 1$

(3) Computing the shortest-path weights bottom-up:

- given $W = D^1$, compute a series of matrices D^2 , D^3 , ..., D^{n-1} , where $D^m = (d_{ij}^m)$ for m = 1, 2, ..., n-1
 - ► final matrix D^{n-1} contains actual shortest path weights, i.e., $d_{ij}^{n-1} = \delta(v_i, v_j)$
- SLOW-APSP(W) $D^{1} \leftarrow W$ for $m \leftarrow 2$ to n-1 do $D^{m} \leftarrow EXTEND(D^{m\text{-}1}, W)$ return $D^{n\text{-}1}$

EXTEND (D, W)

return D

► D = (d_{ij}) is an n x n matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do d_{ij} $\leftarrow \infty$ for $k \leftarrow 1$ to n do d_{ij} $\leftarrow \min\{d_{ij}, d_{ik} + \omega_{kj}\}$

MATRIX-MULT(A, B)

► $C = (c_{ij})$ is an $n \times n$ result matrix for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $c_{ij} \leftarrow 0$ for $k \leftarrow 1$ to n do $c_{ij} \leftarrow c_{ij} + a_{ik} \times b_{kj}$ return C

X

- relation to matrix multiplication C = A $B : \mathbf{c}_{ij} = \sum_{1 \le k \le n} \mathbf{a}_{ik} \times \mathbf{b}_{kj}$,
 - ightharpoonup D^{m-1} \leftrightarrow A & W \leftrightarrow B & D^m \leftrightarrow C "min" \leftrightarrow "addition" & "addition" \leftrightarrow "x" & " ∞ " \leftrightarrow "0"
- Thus, we compute the sequence of matrix products

s, we compute the sequence of matrix products
$$D^{1} = D^{0} \times W = W \text{ ; note } D^{0} = \text{identity matrix,}$$

$$D^{2} = D^{1} \times W = W^{2}$$

$$D^{3} = D^{2} \times W = W^{3}$$

$$i.e., d_{ij}^{0} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$D^{n-1} = D^{n-2} \times W = W^{n-1}$$

- running time : $\Theta(n^4) = \Theta(V^4)$
 - ightharpoonup each matrix product : $\Theta(n^3)$
 - \triangleright number of matrix products : n-1

• Example

	1	2	3	4	5
1	0	3	8	8	-4
2	8	0	8	1	7
3	8	4	0	8	8
4	2	8	-5	0	8
5	8	8	8	6	0

$$D^1 = D^0 W$$

	1	2	3	4	5
1	0	3	8	2	-4
2	3	0	-4	1	7
3	8	4	0	5	11
4	2	-1	-5	0	-2
5	8	8	1	6	0

$$D^2 = D^1 W$$

	1	2	3	4	5
1	0	3	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	11
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^3 = D^2 W$$

	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

$$D^4 = D^3 W$$

Improving Running Time Through Repeated Squaring

- idea: goal is not to compute all D^m matrices
 - \blacktriangleright we are interested only in matrix D^{n-1}
- recall: no negative-weight cycles $\Rightarrow D^m = D^{n-1}$ for all $m \ge n-1$
- we can compute D^{n-1} with only $\lceil \lg(n-1) \rceil$ matrix products as

$$D^{1} = W$$

$$D^{2} = W^{2} = W \times W$$

$$D^{4} = W^{4} = W^{2} \times W^{2}$$

$$D^{8} \stackrel{\bullet}{=} W^{8} = W^{4} \times W^{4}$$

$$D^{2^{\lceil \lg(n-1) \rceil}} = W^{2^{\lceil \lg(n-1) \rceil - 1}} = W^{2^{\lceil \lg(n-1) \rceil - 1}} \times W^{2^{\lceil \lg(n-1) \rceil - 1}}$$

• This technique is called repeated squaring.

Improving Running Time Through Repeated Squaring

```
• FASTER-APSP (W)
D^{1} \leftarrow W
m \leftarrow 1
while m < n-1 do
D^{2m} \leftarrow EXTEND (D^{m}, D^{m})
m \leftarrow 2m
return D^{m}
```

- final iteration computes D^{2m} for some $n-1 \le 2m \le 2n-2 \Rightarrow D^{2m} = D^{n-1}$
- running time : $\Theta(n^3 \lg n) = \Theta(V^3 \lg V)$
 - \triangleright each matrix product : $\Theta(n^3)$
 - ► # of matrix products : lg(n-1)
 - ightharpoonup simple code, no complex data structures, small hidden constants in Θ -notation.

Idea Behind Repeated Squaring

• decompose p_{ij}^{2m} as p_{ik}^{m} & p_{kj}^{m} , where

$$p_{ij}^{2m}: v_i \sim v_j$$

$$p_{ik}^{m}: v_i \sim v_k$$

$$p_{kj}^{m}: v_k \sim v_j$$

- Assumption: negative-weight edges, but no negative-weight cycles
 - (1) The Structure of a Shortest Path:
- Definition: intermediate vertex of a path $p = \langle v_1, v_2, v_3, ..., v_k \rangle$ is the set of vertices appearing on the path p other than v_1 or v_k .
- p_{ij}^{m} : a shortest path from v_i to v_j with all intermediate vertices from $V_m = \{ v_1, v_2, ..., v_m \}$
- Relationship between $p_{ij}^{\ m}$ and $p_{ij}^{\ m-1}$ will depends on whether v_m is an intermediate vertex of $p_{ij}^{\ m}$ or not
 - case 1: v_m is not an intermediate vertex of $p_{ij}^{\ m}$ $\Rightarrow \text{ all intermediate vertices of } p_{ij}^{\ m} \text{ are in } V_{m-1}$ $\Rightarrow p_{ij}^{\ m} = p_{ij}^{\ m-1}$

- case 2: v_m is an intermediate vertex of p_{ij}^{m}
 - decompose path as $v_i \sim v_m \sim v_j$

$$\Rightarrow p_1: v_i \sim v_m \& p_2: v_m \sim v_j$$

- by opt. structure property both $p_1 \& p_2$ are shortest paths.
- v_m is not an intermediate vertex of p₁ & p₂

$$\Rightarrow p_1 = p_{im}^{m-1}$$
 & $p_2 = p_{mj}^{m-1}$

(2) A Recursive Solution to APSP Problem:

• $d_{ij}^{m} = \omega(p_{ij})$: weight of a shortest path from v_i to v_j with all intermediate vertices from

$$V_{m} = \{ v_{1}, v_{2}, ..., v_{m} \}.$$

- note: $d_{ij}^{n} = \delta (v_i, v_j)$ since $V_n = V$
 - ▶ i.e., all vertices are considered for being intermediate vertices of p_{ii}^{n} .

- compute d_{ij}^{m} in terms of d_{ij}^{k} with smaller k < m
- $\mathbf{m} = \mathbf{0}$: $\mathbf{V}_0 = \text{empty set}$
 - \Rightarrow path from v_i to v_j with no intermediate vertex.
 - i.e., v_i to v_i paths with at most one edge

$$\Rightarrow d_{ij}^{0} = \omega_{ij}$$

• $m \ge 1$: $d_{ij}^{m} = \min \{d_{ij}^{m-1}, d_{im}^{m-1} + d_{mj}^{m-1}\}$

 v_m is an intermediate vertex of p_{ij}^m

 v_m is an not intermediate vertex of p_{ii}^m

(3) Computing Shortest Path Weights Bottom Up:

```
FLOYD-WARSHALL(W)
       \triangleright D<sup>0</sup>, D<sup>1</sup>, ..., D<sup>n</sup> are n \times n matrices
       for m \leftarrow 1 to n do
            for i \leftarrow 1 to n do
                 for j \leftarrow 1 to n do
                  d_{ii}^{m} \leftarrow \min \{d_{ii}^{m-1}, d_{im}^{m-1} + d_{mi}^{m-1}\}
       return D<sup>n</sup>
```

```
FLOYD-WARSHALL (W)
        \triangleright D is an n \times n matrix
        D \leftarrow W
        for m \leftarrow 1 to n do
           for i \leftarrow 1 to n do
                for j \leftarrow 1 to n do
                    if d_{ij} > d_{im} + d_{mj} then
                       d_{ii} \leftarrow d_{im} + d_{mi}
        return D
```

- maintaining $n \ D$ matrices can be avoided by dropping all superscripts.
 - m-th iteration of outermost for-loop begins with $D = D^{m-1}$ ends with $D = D^m$
 - computation of d_{ij}^{m} depends on d_{im}^{m-1} and d_{mj}^{m-1} .

 no problem if $d_{im} & d_{mj}$ are already updated to $d_{im}^{m} & d_{mj}^{m}$ since $d_{im}^{m} = d_{im}^{m-1} & d_{mj}^{m} = d_{mj}^{m-1}$.
- running time : $\Theta(n^3) = \Theta(V^3)$ simple code, no complex data structures, small hidden constants