Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. Ideally, the programming language best suited for the task at hand will be selected. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Some languages are more prone to some kinds of faults because their specification does not require compilers to perform as much checking as other languages. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). Use of a static code analysis tool can help detect some possible problems. Debugging is often done with IDEs. Standalone debuggers like GDB are also used, and these often provide less of a visual environment, usually using a command line. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Also, specific user environment and usage history can make it difficult to reproduce the problem. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. There are many approaches to the Software development process. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Many applications use a mix of several languages in their construction and use. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users.