

Capstone Project Ted Talks Views Prediction

Discussion points

- 1. Problem statement
- 2. Data Summary
- 3. Exploratory Data Analysis
- 4. Feature Engineering
- 5. Feature selection
- 6. Modelling
- 7. Model Selection
- 8. Challenges
- 9. Conclusion

Problem Statement

TED is devoted to spreading powerful ideas on just about any topic. These datasets contain over 4,000 TED talks including transcripts in many languages Founded in 1984 by Richard Salman as a nonprofit organization that aimed at bringing experts from the fields of Technology, Entertainment, and Design together,

TED Conferences have gone on to become the Mecca of ideas from virtually all walks of life. As of 2015, TED and its sister TEDx chapters have published more than 2000 talks for free consumption by the masses and its speaker list boasts of the likes of Al Gore, Jimmy Wales, Shahrukh Khan, and Bill Gates.

The **main objective** is to build a predictive model, which could help in predicting the views of the videos uploaded on the TEDx website.

Data Summary

- Dataset name: data ted talks
- Shape:
- Rows = 4005
- Columns = 19
- Features
- 'talk_id', 'title', 'speaker_1', 'all_speakers', 'occupations', 'about_speakers', 'views', 'recorded_date', 'published_date', 'event', 'native_lang', 'available_lang', 'comments', 'duration', 'topics', 'related_talks', 'url', 'description', 'transcript'
- Target variable: 'views'

Exploratory Data Analysis

Handling Missing values

- For numerical feature:
- used KNNImputer to
- impute missing values

- For categorical features:
- Replaced Nan values with
- 'Unknown' category

Overview of Speaker column

- Sir Ken Robinson's talk on "Do Schools Kill Creativity?" is the most popular TED Talk with more than 65 million views.
- Alex Gendler is the most popular speaker wrt to total views followed by Sir Ken Robinson

Which is the most popular and frequent event?

TED-Ed is the most popular and frequent event

Most popular title?

- Most popular title:
- Do schools kill creativity with 65M views

Most popular topic tags?

Most frequent Speaker's occupations

- Writer is the most frequent speaker's
- occupation followed by author and
- journalist

Overview of published_date

- Most videos are published on Tuesday followed by Thursday
- But the videos published on Friday are more popular

Published month overview

April have maximum released videos. But the videos released in March are more popular

Published year overview

Most videos are published in 2019. But videos in 2006 are most viewed

Feature Engineering

- 1. speaker_1_avg_views
- 2. event_wise_avg_views
- 3. num_of_tags
- 4. topics_wise_avg_views
- 5. num_of_lang
- 6. video_age
- 7. related_talks_views

Due to high number of cardinality in Speaker_1 and event Column, therefore applied mean encoding

In Mean Encoding each distinct value of categorical value is replaced with average value of target variable

Transformations

- Applied on the following features:
- Comments
- Duration
- event_wise_avg_views
- num_of_tags
- topics_wise_avg_views
- num_of_lang
- video_age
- related_talks_views
- speaker_1_avg_views

Feature selection

Collinearity

Modelling

- Linear Regression
- Random Forest Regressor
- XGB Regressor

Feature Importance

- Random Forest
- Regressor

XGBoost Regressor

Model Selection

- Out of all the models Random Forest Regressor is the best model according to MAE
- MAE is the best deciding factor because it is linear, and it is not affected by outliers.

	Model_Name	MAE_train	MAE_t est	R2_Score_train	R2_Score_test	RMSE_Score_train	RMSE_Score_test
0	RandomForest	194448.312067	198446.460537	0.822242	0.813493	464841.027669	476025.460417
	Model_Name	MAE_train	MAE_test	R2_Score_train	R2_Score_test	RMSE_Score_train	RMSE_Score_test
0	XGBRegressor:	178306.065248	220603.953167	0.900319	0.831262	348092.977714	452782.186293
		Name MAE_	train MAE	_test R2_Score_	train R2_Score	_test RMSE_Score_tr	ain RMSE_Score_test
0	LinearRegre	ession 269984.5	03141 261784.0	96106 0.8	15410 0.8	19199 473690.117	306 468687.593596

Challenges

- 1. Dataset has lot of categorical features with high cardinality. So, its conversion to meaningful numerical data was a tedious task.
- 2. Treatment of outliers in numerical features
- 3. Creation of new features to be added in the model
- 4. Selection of right features for modelling
- 5. Selection of right model with best scores

Conclusion

- We have built a predictive model, which could help TED in predicting the views on the talks uploaded on TEDx website.
- In all these models our errors have been in the range of 2,00,000 which is around 10% of the average views. We have been able to correctly predict views 90% of the time. After hyper parameter tuning, we have prevented overfitting and decreased errors by regularizing and reducing learning rate. Given that only have 10% errors, our models have performed very well on unseen data due to various factors like feature selection, correct model selection.

Thank You