Introduction to Computing

Lecture 2

Dr. Naveed Anwar Bhatti

Webpage: naveedanwarbhatti.github.io

Weblink is working now

Google Classroom Coming Soon

Before moving to C++ Programming

Number System

(Different Ways To Say How Many)

The "WHY" slide

Binary numbers

 All computers work with 0's and 1's... so it is like learning alphabets before learning English

Number systems

 There are more than one way to express a number in binary. So 1010 could be -2, -5 or -6 and need to know which one.

Base conversion

 For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another. "A **Number System** is a writing-system for expressing numbers, a mathematical notation for representing numbers of a given set, using symbols in a consistent manner"

Ideally, a number system will:

- Represent a useful set of numbers (integers, or rational numbers)
- Give every number a unique representation (or a standard representation)
- Reflect the algebraic and arithmetic structure of the numbers

"The number of distinct symbols that can be used to represent numbers in that system"

• For example, the base for the *decimal number system* is **10**, as we use the ten symbols **0,1,2,3,4,5,6,7,8,9** to represent numbers in this system.

Numbering Systems		
System	Base	Digits
Binary	2	01
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

"The number of distinct symbols that can be used to represent numbers in that system"

• For example, the base for the decimal number system is **10**, as we can use the ten symbols 0,1,2,...,9 to represent numbers in this system.

System	stems Base	Digits
	2	01
Binary	-	
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

Same number will have different representations in different systems.

- '101' means a hundred and one in decimal
- '101' means five, in binary

- The decimal numeral system has **ten** as its base. It is the number system most widely used by modern civilizations.
- This system uses the **10** symbols: {**0,1,2,3,4,5,6,7,8,9**}

Binary Number System

- The binary numeral system has two as its base.
- It is the numerical base used by computers where numbers stored using the on/off logic. The ON and OFF conveniently translate into 1 and 0.
- This system uses the **2** symbols: {**0,1**}

Octal Number System

- The octal numeral system (base eight) has eight as its base.
- This system uses the **8** symbols: {0,1,2,3,4,5,6,7,8}

- The hexadecimal numeral system (base 16) has sixteen as its base
- This system uses the **16** symbols: {**0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F**}
- The main advantage of using this numeral system is that it keeps the representations short, and hence manageable

Two-fifty-sixes sixteens ones

Binary -> Decimal

101

$$2^2 2^1 2^0$$

$$1x2^2 \quad 0x2^1 \quad 1x2^0$$

$$4 + 0 + 1 = 5$$

Octal -> Decimal

765

$$8^2 \ 8^1 \ 8^0$$

$$7x8^2$$
 $6x8^1$ $5x8^0$

Hexa -> Decimal

F6C

$$16^2 \ 16^1 \ 16^0$$

$$15x16^2 6x16^1 12x16^0$$

Convert following into decimal

• Binary: **1101110**₂ **110**₁₀

• Octal: 4675 8 2493₁₀

• Hexadecimal: **FF4**₁₆ **4084**₁₀