Èric Díez Apolo AC-40

Problema 4. Repaso Cache

Se quiere diseñar la memoria cache para un determinado procesador. Se barajan dos alternativas:

- (1) Con escritura inmediata (write through) y sin carga en caso de fallo de escritura.
- (2) Con escritura cuando reemplazo (copy back) y carga en caso de fallo de escritura

Se han obtenido por simulación las siguientes medidas:

- porcentaje de escrituras: 20%
- porcentaje de bloques modificados: 33.33%
- tasa de aciertos caso (1): 0.9
- tasa de aciertos caso (2): 0.85

El tiempo de acceso a memoria cache es de 10 ns y el tiempo de memoria principal para escribir una palabra es de 80 ns. Para leer o escribir un bloque en la memoria principal se emplean 100 ns.

Se pide:

- a) Calculad el tiempo invertido en ejecutar 1000 accesos para las dos alternativas. Detallad el número de accesos de cada tipo y el tiempo empleado para cada uno de ellos.
- Indicad qué alternativa sería la más rápida para un programa que sólo realizara lecturas.
- Indicad qué motivos pueden existir para que la escritura de una palabra tarde ligeramente menos que la escritura de un bloque.

Problema 5. Repaso Cache

Tenim una CPU amb les següents característiques:

- CPI ideal: 1.5 cicles/instrucció
- · Temps de cicle (Tc): 10 ns
- Nombre de referències per instrucció (nr): 1.6 referències/instrucció
- Cache d'instruccions i dades separades
- Cache de dades amb copy back i write allocate.

Les característiques de les dues caches son les següents:

Característica	Instruccions	Dades		
Numero de referències a memòria per instrucció (nr)	1 ref/inst	0.6 ref/inst		
Taxa de fallades (m)	4 %	10 %		
Penalització (Tpf) al reemplaçar un bloc no modificat	10 cicles	15 cicles		
Penalització (Tpf) al reemplaçar un bloc modificat		20 cicles		
Temps de servei en cas d'encert (Tsa)	1 cicles	1 cicles		
Percentatge de blocs modificats (pm)	0 %	20 %		

- a) Calculeu el temps mig d'accés a memòria en cicles (Tmal) pels accessos a instruccions?
- b) Calculeu el temps mig d'accés a memòria en cicles (TmaD) pels accessos a dades?
- c) Calculeu el temps mig d'accés a memòria en cicles (Tma) per tots els accessos?
- d) Calculeu el temps d'execució en ns. (Texec) d'una instrucció?

Èric Díez Apolo AC-40

Problema 7. Repaso Memoria Virtual

Dado el siguiente código escrito en ensamblador x86:

```
movl $0, %ebx
movl $0, %esi
for: cmpl $512*1000, %esi
    jge end
(a) movl (%ebx, %esi, 4), %eax
(b) addl %eax, 8*1024(%ebx, %esi, 4)
(c) movl %eax, 16*1024(%ebx, %esi, 4)
    addl $512, %esi
    jmp for
end:
```

Suponiendo que la memoria utiliza páginas de tamaño 8KB y que utilizamos un TLB de 4 entradas (reemplazo LRU), responde a las siguientes preguntas:

 Para cada uno de los accesos (etiquetas a, b, c), indica a qué página de la memoria virtual se accede en cada una de las 17 primeras iteraciones.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а																	
b																	
С																	

Suponiendo que la memoria utiliza páginas de tamaño 4KB y que utilizamos un TLB de 4 entradas (reemplazo LRU), responde a las siguientes preguntas:

d) Para cada uno de los accesos (etiquetas a, b, c), indica a qué página de la memoria virtual se accede en cada una de las 17 primeras iteraciones.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
а																	
b																	
c																	