复习

■ 2型文法推导,归约,语法树,二义性

对于前缀表达式文法G1:

E::=-EE

E::=-E

E::= a | b | c

画出文法的句子 --a-bc 的推导、归约过程,和所有可能语法树,判断该文法是否具有二义性。

§ 4.2 上下文无关文法的变换

- 上下文无关文法(Context-Free Grammar, CFG) 的简化
 - ■消无用符号
 - ■消ε产生式
 - ■消单产生式
- ■对生成式形式进行标准化

生成式的标准形式

■ Chomsky范式 (CNF - Chomsky Normal Form) 生成式形式为A→BC, A→a, A, B, C∈N, a∈T (后面将证明,每个上下文无关文法都有一个CNF文法)

■Greibach范式 (GNF)

生成式形式为 $A \rightarrow a\beta$, $a \in T$, $\beta \in N^*$

意义:对每个2型语言都可找到一个文法使产生式的右端都以终结符开始

中心思想:消除左递归.

4

变换算法 -- 消去无用符号

- 令 有用符号 (useful symbol)
- 对于 CFG G=(N, T, P, S), 称符号 $X \in N \cup T$ 是有用的,当且仅当 $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$,其中 $w \in T^*$, α , $\beta \in (N \cup T)^*$.
 - 称符号 X 是生成符号 (generating symbol),当且仅当存在 $w \in T^*$,满足 $X \stackrel{*}{\Rightarrow} w$.
 - 称符号 X 是可达符号 (reachable symbol) , 当且仅当存在 α , β ∈ (N ∪ T)* , 满足 S $\stackrel{*}{\Rightarrow}$ α X β .
- ◆ 无用符号 (useless symbol)
 - 非生成符号
 - 不可达符号

消去无用符号

◆ 计算生成符号 (generating symbol) 集

→ 计算可达符号 (reachable symbol) 集

- ◆ 消去班生成符号、不可达符号
- ◆ 消去相关产生式

计算生成符号集

◆思路 对于 CFG G = (N, T, P, S),可通过下列归纳步骤计算生成符号集合:

基础 任何终结符 a∈T都是生成符号;

归纳 必果有产生式 $A \rightarrow \alpha$, 其中 $\alpha \in (N \cup T)^*$ 的 每一个符号都是生成符号,则 A 也是生成符号;

算法1: 找出有用旅終结符

令步骤:

- (1) $N_0 = \Phi$ (赋为 Φ) N_0 为有用的非终结符集
- (2) N' = {A | A→ω且ω∈T*} N'为非终结符集合
- (3) 如果N ₀≠N'则转(4),否则转(6)
- (4) $N_0 = N'$
- (5) N'= N₀ \cup { A | A \rightarrow α 且 α \in (T \cup N₀)* }, 转(3)
- (6) $N_1 = N'$

小结: 算法**1**找出能推出终结符串的非终结符作为有用符号.

算法1:找出有用旅终结符(图示)

一层层向外扩展,直至最外两层相等为止。所得集合即是算法1的有用符号。Ptomputer Science & Technology, BUPT

计算可达符号集

◆ 思路 对于 CFG G=(N, T, P, S), 可通过下列归纳步骤计算可达符号集合:

基础 S是可达符号;

归物 贴果 A 是可达符号,并且有产生式 $A \rightarrow \alpha$,其中 $\alpha \in (N \cup T)^*$,则 α 中的每一个符号都是可达符号;

4

算法2: 找出有用符号(从S可达的符号)

◆算法步骤:

- (1) $N_0 = \{S\}$
- (2) N'= {x | A∈N ₀ 且A→αxβ} ∪ N ₀(N'为有用符号集合)
- (3) 如果N ₀≠N'转(4), 否则转(5)
- (4) N₀=N'; 转(2) (继续迭代下去)
- (5) $N_1 = N' \cap N$ $T_1 = N' \cap T$
 - P₁由P内只含N'中符号的生成式组成 (即删去了从S起不可达的符号)。

算法2:找出从S可达的符号 (图示)

一层层外扩,找出从S可达的所有符号(含非终结符和终

消去班生成符号及不可达符号

例:(\$P102 例 1)

已知2型文法G=({S, A, B}, {a}, P, S)

P: S→AB, S→a, A→a

由算法1: B推不出终结符串, 删除之, 并删S→AB.

 $N_1=\{S, A\}, P_1: S \rightarrow a, A \rightarrow a$

由算法2: A不出现在S能推导出的句型中, 删除之.

并删A→a

∴ 结果为G1=({S}, {a}, { S→a}, S)

应用算法1和算法2,可删去文法中所有无用符号.

消去班生成符号及不可达符号

注意:

必须先执行算法1,再执行算法2,不能颠倒. 否则,可能导致无用符号不会被完全删除.

柳:

上例中,若先用算法2,得

S→a, S→AB, A→a

再用算法1, 得 $S\rightarrow a$, $A\rightarrow a$ 。 而 $A\rightarrow a$ 是多余的.

定理:

任何非空的上下文无关语言,可由不存在无用符号的上下文无关语言产生(证明略)。

课堂作业

去除下面生成式的无用符号

 G_1 :

 $S \rightarrow DC \mid ED$

 $C \rightarrow CE \mid DC$

 $D \rightarrow a$

 $E \rightarrow aC \mid b$

消去&产生式

- ◆目的 方便文法的设计,利于文法规范化。
- 令影响消去ε产生式,除了文法不能产生字符串 ε外,不会影响到原文法相应的语言中其它字符串 的产生。

◆可致空符号 (nullable symbol)

对于 CFG G=(N, T, P, S), 称符号 $A \in N$ 是可致空的,当且仅当 $A \stackrel{*}{\Rightarrow} \varepsilon$.

消去 ε 产生式及其影响,需要计算可致空符号的集合。

算法3: 生成无ε文法

令定义:

若G的生成式中无任何 ϵ 产生式,或只有一个生成式 $S \rightarrow \epsilon$ 且S不出现在任何生成式的右边,则称G为无 ϵ 文法.

◆ 恩略 对于 CFG G = (N, T, P, S),可通过下列归纳步骤计算可致空符号集合:

算法3: 生成无ε文法

算法步骤:

- (1) 利用算法1, 找出N'= {A | A∈N且A=>+ ε}(找出能推导出ε的所有非终结符A)
- (2) 用以下两步组成 P_1
- ① 如果生成式A→ β_0 C₁ β_1 C₂...C_n β_n ∈P n≥0 且每个C_k (1≤k≤n) 均在N'内

而对于0≤j≤n, 没有β_i在N'内 (β_i也可能是终结符)

则 P_1 应加入 $A \rightarrow \beta_0 Y_1 \beta_1 Y_2 \beta_2 ... Y_n \beta_n$

其中Y_k是C_k或ε (即所有的可能组合)

但是 $A \rightarrow ε$ 不加入 P_1

算法3: 生成无ε文法

算法步骤 (读):

② 如果S∈N',则P₁中应加入以下生成式 S₁→ε|S S₁是新的起始符 N₁=N∪{S₁} 如果S∉N',则N₁=N, S₁=S 由此得出G₁=(N₁,T, P₁,S₁)

消去&产生式

G = (N, T, P, S) 其中N={S}, T={ a, b }

P: S→aSbS | bSaS|ε

求其无ε文法 G_1 =(N_1 , T, P_1 , S_1)

- 解: (1) :: S =>+ε :: N'={S}
 - (2) ① P₁的构造

由S→aSbS;加入

S→aSbS|aɛbS|aSbɛ|aɛbɛ

由S→bSaS;加入S→bSaS|bεaS|bεaε|bεaε 但S→ε不加入P₁

② 由S∈N'得出

 $S_1 \rightarrow \epsilon \mid S$ college of the puter science $\{S_1\}_{0} = \{S_1\}_{0} = \{S_1\}_{0}$

消去&产生式

◆ 练 刃

心下产生式表示的文法中,B,D为可致空符号:

 $S \rightarrow A$; $A \rightarrow 0BD$; $B \rightarrow 0BC$;

 $B \rightarrow 1$; $B \rightarrow \varepsilon$; $C \rightarrow 1$; $D \rightarrow \varepsilon$.

通过上述步驟,消去 ϵ 产生式,得到此下产生式集合: $S \rightarrow A; A \rightarrow 0BD; A \rightarrow 0B; A \rightarrow 0D; A \rightarrow 0; B \rightarrow 0BC; B \rightarrow 1; C \rightarrow 1.$

消去单产生式

◆单产生式 形的 $A \rightarrow B$ 的产生式,其中A、B 为旅移结符。

◆消去单产生式的目的 可简化某些证明,减少推导步数,利于文法规范化。

◆ 単充偶対 (unit pairs)

对于 CFG G=(N, T, P, S), A, $B \in N$, 縣 (A, B) 是单元偶对,当具仅当 $A \stackrel{>}{\Rightarrow} B$,具该推导过程仅使用过单产生式。消去单产生式时,需要计算所有单元偶对的集合。

4

消去单产生式

思路 设 CFG G=(N,T,P,S), 对每个单元偶对 (A,B), 在 G_1 中加入产生式 $A\to\alpha$,其中 $B\to\alpha$ 笱一个非单产生式;从而消去 G中的单产生式,得到 CFG $G_1=(N,T,P_1,S)$;

算法步骤:

- (1) 对每个A \in N,构造非终结符集N_A={B|A=>* B} (N_A是可由A推出的单生成式中的非终结符集)。 构造方法分三步:
 - \bigcirc **N**₀={A}
 - ② N'={C | 如果B→C∈P且B∈ N₀}∪N₀

消去单产生式

算法步骤 (读):

(2) 构造P₁:

如果 $B \to \alpha \in P$ 且不是单生成式,则对于 $B \in N_A$ 的所有A,把 $A \to \alpha$ 加入到 P_1 中

(即对每个B \in N_A (意味着A=>+ B)的非单生成式B $\rightarrow \alpha \in$ P, 直接将 α 与N_A的A连接,构成新产生式A $\rightarrow \alpha$ 加入到P₁中)

(3) 得到G₁=(N₁, T₁, P₁, S)

CFG 的简化

◆ 小结

设 CFG G=(V, T, P, S), 可以通过下列步骤对 G 进行简化:

- (1) 消除 G中的 E产生式;
- (2) 消除 G中的单元产生式;
- (3) 消除 G 中的 无用符号。
- ◆ 注意 以上简化步骤的次序。
- \diamondsuit 结论 设 CFG G的语言至少包含一个非 ε 的字符串,通过上述步骤从 G构造 G_1 ,则有 $L(G_1)=L(G)-\{\varepsilon\}$.

-

消去单产生式 (例)

例: 设 2型文法G = ({S,A,B}, { (,), +,*, a}, P, S) P: S→S+A|A A→A*B|B B→(S)|a 构造无单生成式的文法G₁

解: (1) 构造N_S, N_A, N_B

- ① $N_0 = \{S\}$
- ② N' = {C | $B \rightarrow C \in P \perp B \in N_0$ } $\cup N_0$ = {A} \cup {S} = {A, S}
- ③ ∵ N₀≠N' ∴ N₀ = N' = {A,S} 继续转② N'={B}∪{A,S}={B,A,S}
 - ∵ N₀≠N' ∴ N₀ = N' ={B,A,S}
 继续转② 有N'={B,A,S}= N₀
 - $\therefore N_S = \{B, A, S\}$

同理可得: NA={A,B} Lege NB = {B} Cience & Technology, BUPT

消去单产生式 (续)

(2) 构造P₁

对N_S= {S,A,B}

∵ S→S+A∈P且不是单生成式,且S∈N_S
于是,将S→S+A加到P₁中.

 $X : A \rightarrow A*B \in P, A \in N_S$

∴ 将S→A*B加到P₁中.

(∵S→A, A→A*B ∴ 直接用S→A*B代替这两条产生式)

又∵ $B\rightarrow$ (S) ∈ P, B ∈ N_S ∴ 将S \rightarrow (S) 加到P₁中.

又∵ $B \rightarrow a \in P$, $B \in N_S$ ∴ 将 $S \rightarrow a$ 加到 P_1 中.

消去单产生式 (续)

同理: 对N_A= {A, B}

- ∵ A→A*B ∈ P且非单生成式, A ∈ N_A
- ∴ 将A→A*B加到P₁中.
- ∵ B→(S)|a∈P且非单生成式, B ∈ N_A
- ∴ 将A→(S)|a加到P₁中.

同理: 对N_B={B}

将B→(S)|a加到 P_1 中.

结果: P₁为

S→S+A|A*B|(S)|a

A→A*B|(S)|a

B→(S)|a

消除递归

递归的定义:

在2型文法中

若存在 $A=>^+αAβ$, A∈N,则称G是递归文法。

若存在 A=>+ Aβ G是左递归文法

若存在 A=>+αA G是右递归文法

若存在 A=>+ A G是循环文法

生成式的代换

定义: 2型文法中所有形如 $A \rightarrow \alpha$ 的生成式称为A生成式.

引理1: 对A→α的A生成式可进行变换

设 G = (N,T,P,S)

A→ α B β 是P中的生成式, B∈N, α , β ∈(N∪T)*

 $B \rightarrow r_1 | r_2 | ... | r_k 是 P 中的 B 生成式$

可生成 $G_1 = (N_1, T, P_1, S)$

 P_1 中的生成式是将P中的 $A \rightarrow \alpha B$ β用 $A \rightarrow \alpha r_1 \beta | ... | \alpha r_k \beta$ 取代.

证明思路: P₁和P中生成式产生的语言相等,证明从略。

即

生成式的代换

例: 设文法G有S→a S S | b

应用引理1,设 $\alpha = a$ B=S, $\beta = S$

$$B \rightarrow \underline{a} S S | \underline{b}$$

$$| r_1 | r_2$$

替换S→aSS | b有G₁的产生式为:

$$S \rightarrow a \underline{aSS} S | \underline{abS} | b$$

生成式的代换

其句子aabbb的推导树为

即将子树根S用下一层的直接后代代替了.

1

消除直接左递归

引理2: 消除直接左递归

设G = (N, T, P, S), P中有A生成式

 $A \rightarrow A\alpha_1 \mid A\alpha_2 \mid ... \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid ... \mid \beta_n$

其中β_i的第一个字符不是非终结符A (可以是其它非终结符)

可构成 G_1 = (N \cup {A'}, T, P₁, S), A'为新引入的非终结符

G₁中的P₁为,将P中的A生成式用以下生成式取代

 $A \rightarrow \beta_1 | \beta_2 | \dots | \beta_n | \beta_1 A' | \beta_2 A' | \dots | \beta_n A'$

 $A' \rightarrow \alpha_1 |\alpha_2| \dots |\alpha_m| \alpha_1 A' |\alpha_2 A'| \dots |\alpha_m A'|$

证明思路:

G和G₁二者的正则式都是(β₁+β₂+…+β_n)(α₁+…+α_m)*

消除直接左递归 (例)

例: (书P106 例4)

可变换为

$$S \rightarrow A \mid AS'$$
 $S' \rightarrow +A \mid +AS'$
 $A \rightarrow B \mid BA'$
 $A' \rightarrow *B \mid *BA'$
 $B \rightarrow (S) \mid a$

消除直接左递归对推导树的影响

G中局部:

消除左选归的算法

Why 消左递归?

- ◇ 以后的句法分析算法不适用于左递归,会引起死循环。
- ◇ 对于给定的2型文法,该文法不存在无用符号,无循环且是
- 无ε生成式的文法,为了消除G中可能存在的左递归,构成一
- 个等效的无左递归的文法G₁,可用算法5。
- ◆ 算法5在原理上与求解正规表达式方程组的算法类似.

消除左递归(示例)

$$\mathbf{A}_1 \rightarrow \mathbf{A}_2 \mathbf{A}_3 | \mathbf{a} \tag{1}$$

$$\mathbf{A}_2 \rightarrow \mathbf{A}_3 \mathbf{A}_1 | \mathbf{A}_1 \mathbf{b} \tag{2}$$

$$\mathbf{A}_3 \rightarrow \mathbf{A}_1 \mathbf{A}_2 \mid \mathbf{A}_3 \mathbf{A}_3 \mid \mathbf{a} \tag{3}$$

排序: {A₁, A₂, A₃}

当 i=1 对(1)变换,不用变。
$$A_1 \rightarrow A_2 A_3 | a$$

当 i=2 对 (2) 变换
$$A_2 \rightarrow A_3 A_1 \mid A_2 A_3 b \mid ab$$
 (4)

$$\beta_1$$
 α_1 β_2

消直接左递归
$$\begin{cases} A_2 \rightarrow A_3 A_1 |ab| A_3 A_1 A_2' |abA_2' \\ A_2' \rightarrow A_3 b |A_3 b A_2' \end{cases}$$
 (5)

$$A_2' \rightarrow A_3 b \mid A_3 b A_2'$$
 (6)

消除左递归(示例)

对(8)消直接左递归

作业

Ch4 习题: 8. 9.