Optimization for Machine Learning HW 1

Due: 9/13/2022

This homework is optional. You may do as much of it as you like.

- 1. This question provides practice thinking about random variables.
 - (a) Is there a random variable X supported on the positive integers that has finite mean $\mathbb{E}[X]$ but infinite second moment $\mathbb{E}[X^2]$? If so, explicitly state a probability mass function for such an X and prove that it has the desired properties. If not, prove that no such distribution random variable exists.

Solution:

(b) If X is a random variable satisfying $\mathbb{E}[\|X - \mathbb{E}[X]\|^n] \leq \sigma^n$ for some n > 0, show that for any $\delta > 0$, $P[\|X - \mathbb{E}[X]\| \leq \frac{\sigma}{\delta^{1/n}}] \geq 1 - \delta$. This statement is often written instead as "with probability at least $1 - \delta$, $\|X - \mathbb{E}[X]\| \leq \frac{\sigma}{\delta^{1/n}}$ ".

Solution:

(c) Suppose that X is a random variable such that for all real numbers (not just integers!) n > 0, $\mathbb{E}[\|X - \mathbb{E}[X]\|^n]^{1/n} \le \sigma \sqrt{n}$. Show that with probability at least $1 - \delta$, $\|X - \mathbb{E}[X]\| \le \sigma \sqrt{2} \exp(1) \log(1/\delta)$. Distributions satisfying this property are called *subgaussian*. The Normal distribution is an example of a distribution satisfying this kind of property.

Solution:

- 2. This question provides practice in some linear algebra ideas.
 - (a) For any matrix M, the operator norm of M is $||M||_{\text{op}} = \sup_{\|v\|=1} ||Mv\|$. Prove that the operator norm satisfies the triangle inequality: for all matrices A and B of the same dimensions, $||A+B||_{\text{op}} \le ||A||_{\text{op}} + ||B||_{\text{op}}$.

Solution:

(b) Most of the matrices we will discuss in this class are *symmetric* matrices. The real spectral theorem states that any symmetric matrix $M \in \mathbb{R}^{d \times d}$ has an orthonormal basis of eigenvectors. That is, there exists v_1, \ldots, v_d such that each v_i has norm $1, \langle v_i, v_j \rangle = 0$ for all $i \neq j$, and $Mv_i = \lambda_i v_i$ for some real numbers $\lambda_1, \ldots, \lambda_d$. Prove that $\|M\|_{\text{op}} = \max_i |\lambda_i|$ for any symmetric matrix M.

Solution:

3. Suppose you are working for a online store and you need to predict the probability that a person who visits your homepage will buy something. You have a dataset z_1, \ldots, z_N where z_i is 1 if the *i*th visitor

to the homepage bought something, and 0 otherwise. You assume that each z_i is an independent and indentically distributred random variable, so your task is just to learn $p = P[z = 1] = \mathbb{E}[z]$. You decide to use the simple estimate $\hat{p} = \frac{1}{N} \sum_{t=1}^{N} z_i$. Show that for any N and any p, $\mathbb{E}[|\hat{p} - p|] \leq \frac{\sqrt{p(1-p)}}{\sqrt{N}}$.

Solution: