

UniversiTà degli STudi di Napoli Federico II

Università degli Studi di Napoli Federico II Progetto di Software Security

Anno Accademico 2024/2025

Professori:

Prof. Roberto Natella

Studenti:

Riziero Graziani (M63001596) Stefano Angelo Riviello (M63001592) Andrea Esposito (M63001650)

Contents

1	Intr	roduzione Analisi delle Minacce APT	4
	1.1	Vulnerabilità sfruttate	4
	1.2	Cronologia della vulnerabilità	7
	1.3	Tecniche MITRE ATT&CK	8
	1.4	Strumenti e tool	8
	1.5	Prodotti vulnerabili	8
	1.6	Altri elementi utili	8
2	AP'	$\Gamma 29$	9
	2.1	F-Secure_Dukes_Whitepaper	9
	2.2	Analisi Vulnerabilità	10
	2.3	TTP MITRE ATT&CK	16
	2.4	Tool Utilizzati	20
	2.5	Informazioni sui prodotti vulnerabili	22
	2.6	IoC	23
	2.7	Elementi Utili alla Simulazione	23
3	AP'	T Carbanak	24
	3.1	Carbanak_APT	25
	3.2	Analisi Vulnerabilita'	26
	3.3	TTP MITRE ATTCK	31
	3.4	Tool Utilizzati	36
	3.5	Informazioni sui prodotti vulnerabili	37
	3.6	IoC	38
	3.7	Elementi Utili alla Simulazione	39
4	\mathbf{AP}'	T Oilrig	40
	4.1	APT34 The Helix Kitten Cybercriminal Group Loves to Meow Middle	
		Eastern and International Organizations	41
	4.2	Analisi Vulnerabilita'	41
	13	TTP MITRE ATTCK	15

	4.4	Tool Utilizzati						
	4.5	Informazioni sui prodotti vulnerabili						
	4.6	IoC						
	4.7	Elementi Utili alla Simulazione						
5	AP'	Γ Fin6 53						
	5.1	More eggs Backdoor						
	5.2	Analisi Vulnerabilita'						
	5.3	TTP MITRE ATTCK						
	5.4	Tool Utilizzati						
	5.5	Informazioni sui prodotti vulnerabili						
	5.6	IoC						
	5.7	Elementi Utili alla Simulazione						
6	AP'	APT Fin7						
	6.1	Profile of an Adversary - FIN7_Deepwatch						
	6.2	Analisi Vulnerabilità						
	6.3	TTP MITRE ATT&CK						
	6.4	Tool Utilizzati						
	6.5	Informazioni sui prodotti vulnerabili						
	6.6	IoC						
	6.7	Elementi Utili alla Simulazione						
7	AP'	Γ Sandworm 80						
	7.1	CrashOverride						
	7.2	Analisi Vulnerabilità						
	7.3	TTP MITRE ATT&CK						
	7.4	Tool Utilizzati						
	7.5	Informazioni sui prodotti vulnerabili						
	7.6	IoC						
	7.7	Elementi Utili alla Simulazione						
8	Ext	ra: Ransomware Conti						
	Ω 1	Contil coke						

	8.2	Analisi Vulnerabilità	95
	8.3	TTP MITRE ATT&CK	97
	8.4	Tool Utilizzati	101
	8.5	Informazioni sui prodotti vulnerabili	102
	8.6	${\rm IoC} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	104
	8.7	Elementi Utili alla Simulazione	104
9	Ext	ra: Ransomware BlackBasta	105
	9.1	Ransomware Roundup - Black Basta	106
	9.2	Analisi Vulnerabilità	107
	9.3	TTP MITRE ATT&CK	112
	9.4	Tool Utilizzati	115
	9.5	Informazioni sui Prodotti Vulnerabili	118
	9.6	${\rm IoC} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	119
	9.7		

1 Introduzione Analisi delle Minacce APT

Le organizzazioni sono sempre più frequentemente bersaglio di attacchi avanzati e persistenti (APT), che si caratterizzano per l'impiego di strategie sofisticate, suddivise in più fasi e supportate da tecniche eterogenee. Le fonti di Cyber Threat Intelligence (CTI), come i report sugli attacchi e gli articoli specializzati in cybersecurity, offrono informazioni importanti. Il presente lavoro si propone di analizzare documenti di threat intelligence focalizzati su campagne di attacco condotte da gruppi APT (Advanced Persistent Threat), al fine di identificare e comprendere l'uso delle vulnerabilità software sfruttate durante le varie fasi dell'attacco. L'obiettivo finale è presentare i risultati sotto forma di presentazione, evidenziando pattern, tecniche e strumenti comunemente usati nei cyberattacchi avanzati.

Per ogni **APT** analizzato verranno esaminati i seguenti aspetti:

1.1 Vulnerabilità sfruttate

- CVE (Common Vulnerabilities and Exposures): identificatore univoco delle vulnerabilità.
- CVSS (Common Vulnerability Scoring System): punteggio di gravità della vulnerabilità da 0 a 10.
- CWE (Common Weakness Enumeration): categorizzazione delle debolezze software che causano vulnerabilità.
- CPE (Common Platform Enumeration): identificazione univoca dei prodotti software/hardware vulnerabili.
- EPSS (Exploit Prediction Scoring System): probabilità che una vulnerabilità venga sfruttata attivamente.
- KEV (Known Exploited Vulnerabilities): elenco ufficiale delle vulnerabilità note come attivamente sfruttate.

Abbiamo sfruttato il progetto CVSS-BT per poter effettuare un'analisi globale delle CVE ed ottenere delle metriche di vulnerabilità più precise. Il progetto in questione

rilascia ogni giorno un nuovo file **CSV** con tutte le **metriche CVE aggiornate**. Per agevolare il nostro lavoro abbiamo realizzato uno **script Python** per consultare rapidamente tutte le informazioni disponibili su una specifica CVE.Di seguito riportiamo una **breve descrizione**:

• Introduzione:

La gestione delle **vulnerabilità** non si basa solo sul punteggio **CVSS standard**, ma deve considerare anche informazioni aggiuntive come la **probabilità di exploit**, la **presenza di exploit pubblici** e l'effettivo sfruttamento *in-the-wild*. Il progetto **cvss-bt** arricchisce i dati CVSS integrando queste informazioni in un unico file **CSV** aggiornato periodicamente. Per maggiori informazioni, si consiglia di fare riferimento alla documentazione/**README** del progetto stesso.

Questo script permette di **inserire l'ID di una CVE** e ottenere immediatamente tutte le informazioni correlate presenti nel file cvss-bt.csv, così da poter valutare con più accuratezza il **rischio reale** e la **priorità di intervento**.

• Come funziona:

- Inserisci il file cvss-bt.csv (scaricabile dal repository cvss-bt) nella stessa cartella dello script.
- Avvia lo script Python.
- Inserisci l'ID della CVE richiesta (es: CVE-2024-24919).
- Otterrai una stampa a video di tutte le informazioni arricchite per quella vulnerabilità.

• Maggiori dettagli su cvss-bt:

Il tool **cvss-bt** serve per aiutarti a capire quanto è davvero pericolosa una **vul-nerabilità** (CVE), non solo guardando il punteggio CVSS "base" che vedi sul **National Vulnerability Database** (NVD), ma anche tenendo conto di quante informazioni di "minaccia reale" ci sono su quella vulnerabilità, ad esempio se esistono **exploit pubblici**, se è già stata sfruttata da attaccanti, o se esistono **strumenti automatici** per sfruttarla.

• Spiegazione dei campi:

Campo	Spiegazione		
cve	L'identificativo univoco della vulnerabilità (es:		
	CVE-2024-24919).		
cvss-bt_score	Il punteggio "enriched" CVSS Base+Threat		
	(CVSS-BT), cioè il punteggio CVSS base arricchito		
	con le informazioni sulla minaccia effettiva (exploit,		
	KEV, ecc). Più alto = più rischiosa/prioritaria.		
cvss-bt_severity	Il livello di severità associato al punteggio CVSS-BT		
	(es: HIGH, CRITICAL, MEDIUM).		
cvss-bt_vector	La stringa vettoriale che descrive la composizione det-		
	tagliata del punteggio CVSS-BT secondo lo standard		
	CVSS (quali metriche hanno contribuito). Può con-		
	tenere anche una parte E (Exploitability) non pre-		
	sente nel base.		
cvss_version	Versione dello standard CVSS usato (es: 3.1, 4.0).		
base_score	Il punteggio CVSS "base", cioè calcolato senza arric-		
	chimenti. È quello che trovi nel NVD .		
base_severity	Livello di severità associato al base score (HIGH,		
	CRITICAL, ecc).		
base_vector	Vettore CVSS base, secondo lo standard, usato per		
	calcolare il base score.		
assigner	L'ente/organizzazione che ha pubblicato la CVE.		
published_date	Data di pubblicazione ufficiale della CVE.		
epss	Valore di EPSS (Exploit Prediction Scoring Sys-		
	tem): una probabilità da 0 a 1 che la vulnerabilità venga		
	effettivamente sfruttata nel mondo reale. Più alto = più		
	probabile venga sfruttata.		
cisa_kev	True/False: la vulnerabilità è presente nella lista delle		
	vulnerabilità sfruttate attivamente secondo il catalogo		
	CISA KEV (Known Exploited Vulnerabilities).		
	Se True, è già stata usata in attacchi reali!		
vulncheck_kev	True/False: simile al campo sopra, ma secondo la fonte		
	VulnCheck KEV.		
exploitdb	True/False: la vulnerabilità ha un exploit pubblico		
	(PoC) su ExploitDB.		
metasploit	True/False: è disponibile un modulo per questa vul-		
	nerabilità su Metasploit , quindi può essere facilmente		
	sfruttata tramite framework automatici.		
nuclei	True/False: esiste un template per il tool Nuclei		
	(scanner automatico), utile per automatizzare la rile-		
	vazione.		
poc_github	True/False: esiste un exploit proof-of-concept pub-		
	blico su GitHub per questa vulnerabilità.		

Il punteggio CVSS base (quello che trovi di solito nei siti ufficiali) dà un'idea di

quanto una vulnerabilità potrebbe essere pericolosa, ma non ti dice:

- Se esiste già un exploit automatico
- Se la vulnerabilità è stata già sfruttata "sul campo"
- Se esistono **strumenti pubblici** e facili da usare per attaccarla

Più precisamente il progetto CVSS-BT:

- Prende ogni **CVE** del catalogo NVD
- Per ogni CVE, cerca se:
 - * Esistono **exploit pubblici** (su GitHub, ExploitDB, Metasploit...)
 - * È già stata usata in **attacchi reali** (fonti come CISA KEV, VulnCheck KEV)
 - * Esiste codice funzionante e facile da usare (come moduli Metasploit)
 - * Ha un **punteggio EPSS alto** (cioè la probabilità che venga sfruttata è alta)
- Usa queste informazioni per arricchire il punteggio CVSS base, aggiungendo una componente chiamata Exploitability/Exploit Code Maturity (E).

Perché conviene usarlo? Puoi vedere a colpo d'occhio non solo quanto potrebbe essere grave una vulnerabilità, ma anche quanto è probabile che venga sfruttata davvero, e se è già nel mirino degli attaccanti.

1.2 Cronologia della vulnerabilità

Per stabilire se fosse uno **zero-day** (vulnerabilità sconosciuta al pubblico e non patchata al momento dell'attacco) oppure già nota, specificando:

- La data di divulgazione pubblica.
- L'eventuale disponibilità di patch.
- Gli aggiornamenti su analisi e mitigazioni nel tempo.

1.3 Tecniche MITRE ATT&CK

Un framework che mappa le azioni degli attaccanti, tra cui:

- Lateral Movement
- Privilege Escalation
- Initial Access
- Execution
- e molte altre, a seconda del contesto.

1.4 Strumenti e tool

Utilizzati dagli attaccanti, come:

- RAT (Remote Access Trojan)
- Strumenti di escalation dei privilegi
- Exploit kit specifici

1.5 Prodotti vulnerabili

Definiamo:

- Se si tratta di un sistema operativo, software o hardware.
- Versioni affette e distribuzione dell'impatto sulla famiglia di prodotti.

1.6 Altri elementi utili

IOC (Indicators of Compromise) che sono informazioni tecniche, come indirizzi IP,
hash, domini o URL, utilizzate per identificare e rilevare attività informatiche malevole.
Eventuali simulazioni realizzabili in laboratorio per mostrare l'attacco.

2 APT29

Introduzione

APT29, noto anche come Cozy Bear, The Dukes, NOBELIUM o Midnight Blizzard, è un gruppo di cyber-spionaggio attribuito all'intelligence estera russa (SVR). Attivo almeno dal 2008, è considerato uno degli attori più sofisticati nel panorama mondiale della cybersicurezza. I suoi obiettivi principali includono governi, ambasciate e istituzioni diplomatiche, oltre a partiti politici (come il DNC durante le elezioni USA del 2016), centri di ricerca – in particolare in ambito medico, inclusi quelli coinvolti nello sviluppo dei vaccini COVID-19 – e aziende tecnologiche, come dimostrato nel celebre attacco alla supply chain di SolarWinds nel 2020. Le tecniche utilizzate comprendono lo spear phishing, ovvero email mirate per il furto di credenziali, l'impiego di malware personalizzati (tra cui MiniDuke, Cozy-Duke e SeaDuke), e l'uso di canali di controllo camuffati tramite servizi legittimi come Twitter, GitHub e servizi cloud. Le sue caratteristiche distintive includono un'estrema sofisticazione e adattabilità, la capacità di mantenere accesso prolungato ai sistemi compromessi e una continua evoluzione delle tattiche impiegate per evitare il rilevamento.

Tra i vari report di APT29 abbiamo analizzato quello che ci dava più informazioni.

2.1 F-Secure_Dukes_Whitepaper

Il report è un'analisi dettagliata delle attività del gruppo di cyber-spionaggio noto come APT29 o "The Dukes", attivo dal 2008 e ritenuto collegato alla Federazione Russa. Questo gruppo ha condotto campagne di spionaggio informatico principalmente contro governi occidentali, think tank, enti governativi, ma anche contro stati dell'ex URSS, governi asiatici, africani e mediorientali, e perfino soggetti coinvolti nel traffico di droga o in movimenti estremisti.

Il documento analizza le varie famiglie di malware sviluppate e utilizzate dal gruppo (come MiniDuke, CosmicDuke, OnionDuke, CozyDuke, CloudDuke, SeaDuke, HammerDuke, PinchDuke, GeminiDuke), evidenziando la capacità del gruppo di adattare rapidamente i propri strumenti in risposta alle scoperte della comunità di

sicurezza.

Il modus operandi del gruppo comprende sia campagne massicce di spear-phishing che attacchi molto mirati e "chirurgici". Spesso, dopo un'intrusione rapida e rumorosa per raccogliere quanti più dati possibile, se il target risulta interessante, il gruppo passa a tecniche più stealth per una presenza persistente e una raccolta dati a lungo termine.

Il report mette in risalto anche la capacità di **resilienza** e l'"**arroganza**" del gruppo, che spesso continua ad usare strumenti anche dopo che questi sono stati scoperti pubblicamente, modificandoli solo minimamente per **eludere i controlli**.

2.2 Analisi Vulnerabilità

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilità:

Campo	Valore		
cve	CVE-2010-0232		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/E:H		
${ m cvss_version}$	3.1		
base_score	7.8		
base_severity	HIGH		
${\it base_vector}$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H		
assigner	secure@microsoft.com		
$published_date$	2010-01-21T19:30Z		
epss	0.73257		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	True		
nuclei	False		
$\operatorname{poc_github}$	True		
cwe	CWE-264: Permissions, Privileges, and Access Controls		
сре	Microsoft Windows NT, 2000 (SP4), XP (SP2/SP3), Server		
	2003 (SP2), Vista (SP1/SP2), Server 2008 (SP2), 7 (x86)		

La vulnerabilità CVE-2010-0232 riguarda diversi sistemi operativi Windows (NT, 2000, XP, Vista, Server 2003 e 2008) e permette a un attaccante locale di ottenere privilegi elevati. È classificata come grave, con un punteggio CVSS di 7.8, ed è ben documentata da Microsoft. Sono disponibili exploit pubblici e moduli in ExploitDB e Metasploit, mentre il rischio di sfruttamento è considerato piuttosto alto. La vulnerabilità è riconosciuta nei principali database di sicurezza (come CISA e VulnCheck) e riguarda i controlli di permessi e privilegi nel sistema operativo.

Campo	Valore		
cve	CVE-2013-0640		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvs-bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
$cvss_version$	3.1		
base_score	7.8		
base_severity	HIGH		
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	psirt@adobe.com		
${\bf published_date}$	2013-02-14T01:55Z		
epss	0.92564		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	False		
nuclei	False		
$ m poc_github$	False		
cwe	CWE-787: Out-of-Bounds Write		
cpe	Adobe Reader/Acrobat 9.x, 10.x, 11.x		

La vulnerabilità CVE-2013-0640 colpisce Adobe Reader e Acrobat (versioni 9.x, 10.x e 11.x) e consente la scrittura fuori dai limiti della memoria, un tipo di attacco spesso sfruttato per eseguire codice malevolo. Ha un livello di gravità alto (CVSS 7.8) ed è riconosciuta nei principali database di sicurezza. Sono disponibili exploit pubblici su ExploitDB e il rischio di sfruttamento è elevato, anche se non risultano moduli Metasploit pubblici associati.

Campo	Valore		
cve	CVE-2013-0641		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${ m cvss_version}$	3.1		
$base_score$	7.8		
base_severity	HIGH		
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	psirt@adobe.com		
${\bf published_date}$	2013-02-14T01:55Z		
epss	0.89391		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	False		
metasploit	False		
nuclei	False		
$\operatorname{poc_github}$	False		
cwe	CWE-120: Buffer Copy without Checking Size of Input		
cpe	Adobe Acrobat Reader 9.x (incluso 9.1.x e 9.2–9.5.3)		

La vulnerabilità CVE-2013-0641 riguarda Adobe Acrobat Reader 9.x (comprese alcune versioni specifiche) e permette la copia di buffer senza controllare la dimensione dell'input, facilitando possibili attacchi di tipo buffer overflow. Il rischio è considerato alto (CVSS 7.8), la vulnerabilità è riconosciuta nei principali database di sicurezza e sono disponibili exploit pubblici. Tuttavia, non risultano exploit disponibili su Metasploit o PoC su GitHub.

Campo	Valore		
cve	CVE-2010-4398		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvss ext{-}bt ext{-}vector}$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/E:H		
${ m cvss_version}$	3.1		
${ m base_score}$	7.8		
base_severity	HIGH		
${\it base_vector}$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H		
assigner	cve@mitre.org		
$published_date$	2010-12-06T13:44Z		
epss	0.12282		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	False		
nuclei	False		
$\mathrm{poc_github}$	False		
cwe	CWE-787: Out-of-bounds Write		
cpe	Microsoft Windows XP (SP2 Professional x64 e SP3),		
	Windows Server 2003 (SP2),		
	Windows Vista (SP1, SP2),		
	Windows Server 2008 (tutte le versioni, incl. R2, SP2),		
	Windows 7		

La vulnerabilità CVE-2010-4398 riguarda diversi sistemi operativi Windows, tra cui XP, Server 2003, Vista, Server 2008 e Windows 7. Permette la scrittura fuori dai limiti della memoria (out-of-bounds write), con un rischio considerato alto (CVSS 7.8). È stata riconosciuta dai principali database di sicurezza, sono disponibili exploit pubblici, ma non risultano exploit su Metasploit né proof-of-concept su GitHub. Il rischio di sfruttamento è medio-basso rispetto ad altre vulnerabilità simili.

Le informazioni temporali relative a F-Secure Dukes sono le seguenti :

Punto	Dettaglio		
Tipo	Vulnerabilità di escalation dei privilegi in Microsoft		
	Windows tramite il driver win32k.sys.		
Divulgazione	Divulgata pubblicamente a gennaio 2010. Disclosure e		
	PoC pubblici di Tavis Ormandy il 19 gennaio 2010.		
Zero day?	Non era zero day al momento dell'utilizzo noto da parte		
	dei Dukes (CosmicDuke lo ha sfruttato dopo la pubbli-		
	cazione pubblica).		
Patch	Microsoft ha rilasciato una patch per CVE-2010-0232		
	tramite aggiornamento di sicurezza MS10-015 pubbli-		
	cato il 9 febbraio 2010.		
Utilizzo nel mal-	Utilizzata da CosmicDuke nel 2010, almeno una setti-		
ware	mana dopo la divulgazione pubblica e la pubblicazione		
	del PoC. Quindi colpiva solo sistemi non aggiornati.		

Table 1: Dettagli temporali per CVE-2010-0232

Punto	Dettaglio	
Tipo	Vulnerabilità di tipo Out-of-bounds Write nel driver	
	win32k.sys su sistemi Windows.	
Divulgazione	Divulgata pubblicamente nel dicembre 2010. PoC pub-	
	blico già disponibile online poco dopo la disclosure.	
Zero day?	Non era zero day al momento dell'utilizzo documentato	
	nei Dukes; patch e PoC già pubblici.	
Patch	Microsoft ha rilasciato la patch di sicurezza relativa nel	
	2011 tramite MS11-034.	
Utilizzo nel mal-	Sfruttata da CosmicDuke dopo la pubblicazione pub-	
ware	blica della vulnerabilità. Quindi targeting su sistemi	
	privi di patch.	

Table 2: Dettagli temporali per CVE-2010-4398

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice remoto in Adobe		
	Reader e Acrobat, sfruttabili tramite PDF malevoli.		
Divulgazione	Divulgate pubblicamente il 12 febbraio 2013, con advi-		
	sory Adobe e comunicati FireEye e Kaspersky.		
Zero day?	Utilizzate come zero-day inizialmente: i primi		
	attacchi documentati (tra cui quelli del gruppo		
	Dukes/MiniDuke) precedono la pubblicazione della		
	patch e dell'advisory.		
Patch	Adobe ha pubblicato la patch il 20 febbraio 2013 (Secu-		
	rity Bulletin APSB13-07).		
Utilizzo nel mal-	Utilizzate attivamente in campagne spear-phishing di		
ware	MiniDuke tra il 12 e il 20 febbraio 2013, sia prima che		
	dopo la disclosure pubblica.		

Table 3: Dettagli temporali per CVE-2013-0640 e CVE-2013-0641

2.3 TTP MITRE ATT&CK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique	Sub-technique	Descrizione
001	INITIAL	PHISHING	ATTACHMENT	Utilizzo di documenti Microsoft
	ACCESS	(T1566)	(T1566.001)	Word e PDF appositamente
	(TA0001)			creati come allegati email
				malevoli per infiltrare organiz-
				zazioni target.
002	EXECUTION	SYSTEM SER-	SERVICE EX-	Creazione e scrittura di un es-
	(TA0002)	VICES (T1569)	ECUTION	eguibile malevolo su disco e suc-
			(T1569.002)	cessiva esecuzione.

003	DISCOVERY	SYSTEM IN-	_	Raccolta di informazioni sul sis-
	(TA0007)	FORMATION		tema compromesso.
		DISCOVERY		
		(T1082)		
004	EXFILTRA-	EXFILTRATION	_	Esfiltrazione di dati attraverso un
	TION	OVER C2		canale di comando e controllo
	(TA0010)	CHANNEL		(C&C).
		(T1041)		
004	EXECUTION	COMMAND	_	Esecuzione di comandi remoti
	(TA0002)	AND SCRIPT-		sulla macchina compromessa.
		ING INTER-		
		PRETER		
		(T1059)		
005	INITIAL	PHISHING	ATTACHMENT	Uso di allegati di spearphishing
	ACCESS	(T1566)	(T1566.001)	per consegnare malware.
	(TA0001)			
006	CREDENTIAL	CREDENTIAL	_	Raccolta di credenziali tramite
	ACCESS	DUMPING		varie tecniche.
	(TA0006)	(T1003)		
007	IMPACT	ENDPOINT	_	Utilizzo di attacchi DoS per com-
	(TA0040)	DENIAL OF		promettere o limitare la disponi-
		SERVICE		bilità dei sistemi.
		(T1499)		
008	INITIAL	PHISHING	SPEARPHISHING	Uso di link in email di spearphish-
	ACCESS	(T1566)	LINK	ing per indurre le vittime a vis-
	(TA0001)		(T1566.002)	itare siti compromessi o scaricare
				malware.
009	INITIAL	PHISHING	SPEARPHISHING	Utilizzo di una email di
	ACCESS	(T1566)	LINK	spearphishing contenente un
	(TA0001)		(T1566.002)	link a un archivio zip ospitato su
				cloud (DropBox).

010	RESOURCE	COMPROMISE	_	Il nodo Tor compromesso mod-
	DEVEL-	INFRASTRUC-		ifica eseguibili scaricati tramite
	OPMENT	TURE (T1584)		connessioni HTTP per introdurre
	(TA0042)			malware.
011	COMMAND	APPLICATION	WEB PRO-	Uso di connessioni HTTP per
	AND CON-	LAYER PRO-	TOCOLS	scaricare eseguibili.
	TROL	TOCOL	(T1071.001)	
	(TA0011)	(T1071)		
012	EXECUTION	USER EXECU-	MALICIOUS	Gli eseguibili modificati vengono
	(TA0002)	TION (T1204)	FILE	eseguiti dalle vittime, risultando
			(T1204.002)	nell'infezione.
013	DISCOVERY	SYSTEM OWN-	_	Capacità di OnionDuke di rac-
	(TA0007)	ER/USER		cogliere informazioni sul sistema
		DISCOVERY		e di tentare di rubare username e
		(T1033)		password delle vittime.
013	IMPACT	NETWORK		Uno dei moduli di OnionDuke è
	(TA0040)	DENIAL OF		progettato per eseguire attacchi
		SERVICE		DoS.
		(T1498)		
014	INITIAL	PHISHING	SPEARPHISHING	Invio di email di spear-phishing
	ACCESS	(T1566)	LINK	contenenti link malevoli che por-
	(TA0001)		(T1566.002)	tano a un sito compromesso che
				ospita CozyDuke.
017	COMMAND	WEB SERVICE	_	Comunicazione con server C&C
	AND CON-	(T1102)		tramite HTTP o HTTPS per
	TROL			scaricare comandi da eseguire
	(TA0011)			(HammerDuke, variante sem-
				plice).

019	LATERAL	REMOTE SER-	_	Uso di servizi remoti per es-
	MOVE-	VICES (T1021)		eguire comandi su macchine com-
	MENT			promesse (CloudDuke).
	(TA0008)			
021	COLLECTION	DATA FROM	_	Attività di raccolta dati da un sis-
	(TA0009)	LOCAL SYS-		tema locale (PinchDuke).
		TEM (T1005)		
022	EXFILTRA-	EXFILTRATION		Uso di canali di comando e con-
	TION	OVER COM-		trollo per esfiltrare dati rubati dal
	(TA0010)	MAND AND		sistema compromesso.
		CONTROL		
		CHANNEL		
		(T1041)		
023	COMMAND	APPLICATION	WEB PRO-	Uso di protocolli web
	AND CON-	LAYER PRO-	TOCOLS	(HTTP/HTTPS) per comu-
	TROL	TOCOL	(T1071.001)	nicazioni C&C e trasferimento
	(TA0011)	(T1071)		dati esfiltrati.
024	COLLECTION	DATA FROM	_	Raccolta di dati dal sistema lo-
	(TA0009)	LOCAL SYS-		cale, come file creati in un dato
		TEM (T1005)		periodo con estensioni specifiche.
026	DISCOVERY	SYSTEM IN-	_	Raccolta di informazioni di sis-
	(TA0007)	FORMATION		tema sulla configurazione del
		DISCOVERY		computer della vittima (Gemi-
		(T1082)		niDuke).
028	COLLECTION	INPUT CAP-	_	Keylogging, ovvero la cattura dei
	(TA0009)	TURE (T1056)		dati di input utente.
029	COLLECTION	SCREEN CAP-	_	Cattura di screenshot del desktop
	(TA0009)	TURE (T1113)		o di finestre specifiche.
030	COLLECTION	CLIPBOARD	_	Furto del contenuto della clip-
	(TA0009)	DATA (T1115)		board di sistema.

031	COLLECTION	DATA	FROM			Raccolta di dati dal sistema lo-
	(TA0009)	LOCAL	SYS-			cale, inclusi file utente con esten-
		TEM (T	1005)			sioni specifiche.
032	CREDENTIAI	CREDE	NTIALS	CREDENT	ΓIALS	Furto delle credenziali salvate nei
	ACCESS	FROM	PASS-	FROM	WEB	browser web.
	(TA0006)	WORD		BROWSE	RS	
		STORES	5	(T1555.003	3)	
		(T1555)				
033	EXFILTRA-	EXFILT	RATION			Uso di protocolli alternativi per
	TION	OVER	AL-			esfiltrare dati rubati (HTTP,
	(TA0010)	TERNA	ΓIVE			HTTPS, FTP o WebDav).
		PROTO	COL			
		(T1048)				
034	EXFILTRA-	EXFILT	RATION	_		Uso di un canale C&C per es-
	TION	OVER	COM-			filtrare i dati raccolti verso un
	(TA0010)	MAND	AND			server remoto.
		CONTRO	OL			
		CHANN	EL			
		(T1041)				

2.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti.Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione
MINIDUKE	S0051	Trojan modulare APT, utilizzato come loader
		di terzo stadio nelle campagne CosmiDuke,
		noto per impieghi in attacchi mirati contro
		istituzioni governative europee; permette es-
		ecuzione di comandi remoti sul sistema com-
		promesso.
COSMICDUKE	S0050	Malware che combina codice della famiglia
		MiniDuke (loader) e componenti info-stealer,
		utilizzato per furto di credenziali, dati locali,
		keylogging, screenshot, e persistenza tramite
		diversi vettori di attacco. Permette anche
		privilege escalation, esfiltrazione via diversi
		protocolli (HTTP, HTTPS, FTP, WebDav).
ONIONDUKE	S0052	Tool modulare con funzionalità di furto cre-
		denziali, attacchi DoS, raccolta informazioni,
		dropper e diffusione tramite torrent o Tor
		node compromessi; permette credential dump-
		ing e attacchi di impatto (DoS).
COZYDUKE	S0046	Malware modulare che utilizza moduli scarica-
		bili da C&C per dotarsi delle funzionalità nec-
		essarie; impiegato in spear-phishing con link
		malevoli e raccolta iniziale di informazioni.
CLOUDDUKE	S0054	Toolset composto da loader, downloader e
		backdoor, consente l'esecuzione remota di co-
		mandi, anche tramite OneDrive per la comu-
		nicazione C&C, rendendo difficile il blocco del
		traffico malevolo.

Tool	ID MITRE	Descrizione
SEADUKE	S0053	Backdoor multipiattaforma scritta in Python,
		utilizzabile sia su sistemi Windows che Linux,
		impiegata per accesso persistente e controllo
		remoto.
HAMMERDUKE	S0037	Backdoor Windows-only (scritta in .NET), in
		grado di comunicare tramite HTTP/S o Twit-
		ter per recuperare comandi da eseguire; pen-
		sata per persistenza e controllo delle vittime.
PINCHDUKE	S0048	Toolset che include loader e trojan info-
		stealer, raccoglie configurazioni di sistema,
		file, credenziali, e le esfiltra via HTTP/S; uti-
		lizzato nelle campagne iniziali (dal 2008) so-
		prattutto per furto credenziali e raccolta dati
		locali.
GEMINIDUKE	S0049	Info-stealer focalizzato sulla raccolta di infor-
		mazioni di sistema, utenti, configurazioni di
		rete, processi e file; include componenti di per-
		sistenza personalizzati.

Table 5: Tool associati al gruppo Dukes

2.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Op-	Vulnerabilità di esecuzione di codice
	erativo	tramite file malevoli (doc, pdf, es-
		eguibili, ecc.), inclusi exploit di priv-
		ilege escalation (es. CVE-2010-0232,
		CVE-2010-4398) e social engineering
		(phishing via documenti Office, PDF,
		ecc).
Adobe Reader	Applicazione	Vulnerabilità di esecuzione di codice
		tramite PDF malevoli, spesso sfrut-
		tando vulnerabilità 0-day (es. CVE-
		2013-0640, CVE-2013-0641).
Adobe Acrobat	Applicazione	Vulnerabilità di esecuzione di codice
		tramite file PDF modificati.

Table 6: Prodotti vulnerabili e principali note sulle vulnerabilità sfruttate dalle campagne Dukes

2.6 IoC

Gli *Indicators of Compromise* (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del report originale, all'interno dell'appendice. In questa sezione finale del PDF è possibile trovare esempi di hash, nomi di file, URL malevoli, domini di command and control, percorsi di debug e altri indicatori tecnici associati alle varie famiglie di malware descritte nel rapporto.

2.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Simulazione spear- GoPhish		Invio di email di phishing con allegati o
phishing		link malevoli, monitoraggio delle aperture
		e dei click.
Generazione docu-	Metasploit	Creazione di file Word/PDF con macro o
menti/attachment		exploit, payload per l'accesso remoto.
malevoli		
Privilege escalation	Metasploit (exploit)	Esecuzione di exploit locali (es. CVE-
		2010-0232) per ottenere privilegi ammin-
		istrativi.
Credential dump-	Mimikatz	Estrazione di password e hash da memoria
ing		e programmi installati.
Keylogging e rac-	PyKeylogger	Registrazione dei tasti premuti, screen-
colta dati utente		shot, raccolta dati dalla clipboard.
Persistenza	Metasploit persistence	Installazione di backdoor o persistence
		fileless per il mantenimento dell'accesso.
Command and	Metasploit	Gestione delle sessioni di controllo remoto,
Control (C2)		invio di comandi, ricezione dati.
Esfiltrazione dati	Metasploit	Esportazione di file e informazioni sensi-
		bili tramite cloud, HTTP/S o DNS.
Simulazione bot-	Hping3, Metasploit	Test di attacchi DoS a scopo di laboratorio
net/DoS auxiliary		su target controllati.

Table 7: Tool consigliati per la simulazione in ambiente di laboratorio

3 APT Carbanak

Introduzione

Carbanak è uno dei gruppi di **cybercriminali** più famosi e temuti degli ultimi anni. Attivo dal 2013 circa, questo gruppo ha preso di mira soprattutto **banche e istituzioni finanziarie** in tutto il mondo, riuscendo a rubare cifre che superano complessivamente il **miliardo di dollari**. Il loro metodo principale era l'invio di **email trappola (phish-**

ing) a dipendenti delle banche: bastava che una sola persona aprisse il file allegato per permettere agli hacker di infiltrarsi nella rete interna della banca. Una volta dentro, Carbanak studiava i sistemi per settimane o mesi, controllando in modo quasi invisibile le attività degli operatori. Poi agiva con grande precisione, riuscendo a prelevare soldi direttamente dai bancomat, a effettuare bonifici verso conti controllati dal gruppo, o a manipolare i dati per coprire i furti. Dopo anni di attività e vari adattamenti delle loro tecniche, nel 2018 è stato arrestato quello che si ritiene fosse il capo dell'organizzazione. L'operazione Carbanak ha lasciato il segno nella storia della sicurezza informatica, diventando un caso di studio su come anche le banche più sicure possano essere vulnerabili di fronte ad attacchi così sofisticati.

3.1 Carbanak_APT

Il report analizza una vasta campagna di cyberattacchi, iniziata dal 2013, che ha colpito banche e istituzioni finanziarie in tutto il mondo, generando perdite fino a un miliardo di dollari. Gli attacchi sono stati realizzati da un gruppo criminale sconosciuto con motivazione principalmente finanziaria, utilizzando tecniche avanzate tipiche delle APT (Advanced Persistent Threats).

La compromissione iniziava tramite **email di spear phishing** con allegati malevoli, che sfruttavano vulnerabilità di **Microsoft Office** per eseguire codice dannoso. Una volta infettato il sistema, veniva installato il malware **Carbanak**, utilizzato per ottenere accesso remoto, esfiltrare dati e controllare i computer delle vittime.

Successivamente, gli attaccanti si muovevano lateralmente nella rete, acquisendo credenziali e sfruttando strumenti come **Ammyy Admin**, **Mimikatz**, **Metasploit** e **PsExec** per raggiungere i sistemi critici (ATM, SWIFT, database).

L'obiettivo finale era monetizzare l'accesso: i criminali eseguivano bonifici fraudolenti, manipolavano database o comandavano agli ATM di dispensare contanti a complici. Dal punto di vista tecnico, Carbanak si mascherava come processi di sistema, cancellava le tracce, acquisiva video e screenshot delle attività degli operatori bancari e comunicava in modo cifrato con i server di comando e controllo.

Il malware restava attivo per mesi, permettendo azioni mirate e difficili da rilevare. **Oltre 100 banche sono state colpite**, con perdite per singolo istituto fino a milioni di dollari. Gli attaccanti limitavano i prelievi a **massimo 10 milioni di dollari per vittima** per

ridurre il rischio di indagini approfondite.

3.2 Analisi Vulnerabilita'

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilita':

Campo	Valore
cve	CVE-2012-0158
${ m cvss\text{-}bt_score}$	8.8
cvss-bt_severity	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
$base_score$	8.8
base_severity	HIGH
${\bf base_vector}$	CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
${\bf published_date}$	2012-04-10T21:55Z
epss	0.94295
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\mathbf{poc_github}$	True
cwe	CWE-94: Improper Control of Generation of Code ('Code Injection')
cpe	Microsoft Office (Word, Excel, altri componenti) fino a Office
	2010

La vulnerabilità CVE-2012-0158 interessa Microsoft Office (Word, Excel e altri componenti) fino alla versione 2010. È molto grave (CVSS 8.8) e permette l'iniezione di codice, potenzialmente consentendo l'esecuzione di comandi arbitrari sul sistema. Il rischio di sfruttamento è elevato, con exploit e PoC pubblici disponibili e presenza nei principali database di sicurezza. È ampiamente riconosciuta come una delle vulnerabilità più sfruttate su Office.

Campo	Valore
cve	CVE-2013-3906
${ m cvss ext{-}score}$	7.8
cvss-bt_severity	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
base_score	7.8
base_severity	HIGH
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
${\bf published_date}$	2013-11-06T15:55Z
epss	0.92857
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
${ m poc_github}$	False
cwe	CWE-94:Improper Control of Generation of Code ('Code Injection')
cpe	Microsoft Office 2007 SP3, 2010 SP1/SP2, 2013; Windows
	Server 2008/2012; Lync 2010/2013; altri prodotti Microsoft
	Office e Windows

La vulnerabilità CVE-2013-3906 colpisce vari prodotti Microsoft, tra cui Office 2007/2010/2013, Windows Server 2008/2012 e Lync. Consente l'iniezione di codice (code injection) con un rischio alto (CVSS 7.8). È ampiamente riconosciuta nei principali database di sicurezza e sono disponibili exploit pubblici, anche se non risultano PoC su GitHub. Il rischio di sfruttamento è elevato e riguarda sia Office che Windows.

Campo	Valore
cve	CVE-2014-1761
${ m cvss\text{-}bt_score}$	7.8
$cvss-bt_severity$	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
$base_score$	7.8
base_severity	HIGH
${\it base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
$published_date$	2014-03-25T13:24Z
epss	0.92944
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\mathrm{poc_github}$	False
cwe	CWE-787: Out-of-bounds Write
сре	Microsoft Word 2003, 2007, 2010, 2013; Word Viewer; Office
	per Mac 2011; Office Web Apps; SharePoint Server

La vulnerabilità CVE-2014-1761 interessa diversi prodotti Microsoft, tra cui Word (2003, 2007, 2010, 2013), Word Viewer, Office per Mac 2011, Office Web Apps e SharePoint Server. È di tipo "out-of-bounds write" e può consentire l'esecuzione di codice dannoso. Il rischio è alto (CVSS 7.8), sono disponibili exploit pubblici e moduli Metasploit, ed è ampiamente riconosciuta nei database di sicurezza.

Campo	Valore		
cve	CVE-2013-3660		
${ m cvss\text{-}bt_score}$	7.8		
$cvss-bt_severity$	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${\it cvss_version}$	3.1		
${ m base_score}$	7.8		
base_severity	HIGH		
$base_vector$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	cve@mitre.org		
${\bf published_date}$	2013-05-24T20:55Z		
epss	0.67944		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	False		
metasploit	True		
nuclei	False		
poc_github True			
cwe	CWE-119: Improper Restriction of Operationsthe		
cpe	Bounds of a Memory Buffer Windows XP SP2/SP3, Vista SP2, 7 SP1, 8, Server 2003 SP2, Server 2008 SP2/R2 SP1, Server 2012.		

La vulnerabilità CVE-2013-3660 riguarda vari sistemi Windows (XP, Vista, 7, Server 2003/2008/2012) e deriva da una gestione non corretta della memoria, che può portare all'esecuzione di codice malevolo. Ha un rischio alto (CVSS 7.8), è riconosciuta dai principali database di sicurezza, ma al momento non risultano exploit pubblici né moduli Metasploit o PoC su GitHub.

Le informazioni temporali relative CVE di Carbanak APT sono le seguenti:

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice in Microsoft Office		
	(Word, Excel, ecc.), sfruttata tramite allegati .doc malevoli		
	in spear phishing.		
Divulgazione	Divulgata pubblicamente ad aprile 2012.		
Zero day?	Non era zero day al momento degli attacchi Carbanak: la		
	vulnerabilità era nota e con patch disponibile già da tempo.		
Patch	Microsoft ha rilasciato la patch MS12-027 il 10 aprile 2012 per		
	correggere la vulnerabilità.		
Utilizzo nel mal-	Sfruttata nei primi attacchi Carbanak tramite allegati .doc		
ware	malevoli, targeting utenti di istituzioni finanziarie che non		
	avevano applicato la patch.		

Table 8: Informazioni temporali per CVE-2012-0158

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice in Microsoft Office		
	tramite file .doc e .cpl.		
Divulgazione	Divulgata pubblicamente a novembre 2013.		
Zero day?	Non era zero day per Carbanak: la vulnerabilità era già pub-		
	blica e patchata al momento degli attacchi.		
Patch	Microsoft ha rilasciato la patch MS13-096 il 12 novembre 2013.		
Utilizzo nel mal-	Sfruttata tramite spear phishing in allegati Office per instal-		
ware	lare il malware Carbanak su sistemi non aggiornati.		

Table 9: Informazioni temporali per CVE-2013-3906

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice remoto in Microsoft		
	Word.		
Divulgazione	Divulgata pubblicamente ad aprile 2014.		
Zero day?	Non era zero day per Carbanak: la vulnerabilità era nota e		
	con patch disponibile.		
Patch	Microsoft ha rilasciato la patch MS14-017 l'8 aprile 2014.		
Utilizzo nel mal-	Utilizzata per compromettere le vittime tramite spear phish-		
ware	ing, targeting sistemi privi di patch.		

Table 10: Informazioni temporali per CVE-2014-1761

Punto	Dettaglio		
Tipo	Vulnerabilità di privilege escalation su Windows		
	(Win32k.sys).		
Divulgazione	Divulgata pubblicamente a giugno 2013.		
Zero day?	Non era zero day al momento degli attacchi Carbanak: la		
	vulnerabilità era pubblica e con patch.		
Patch	Microsoft ha pubblicato la patch MS13-053 l'11 giugno 2013.		
Utilizzo nel mal-	Utilizzata da Carbanak per ottenere privilegi amministrativi		
ware	dopo l'infezione iniziale, su sistemi non aggiornati.		

Table 11: Informazioni temporali per CVE-2013-3660

3.3 TTP MITRE ATTCK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique	Sub-technique	Descrizione
001	INITIAL	PHISHING	SPEARPHISHING	Invio di email di phishing con al-
	ACCESS	(T1566)	ATTACHMENT	legati malevoli per compromet-
	(TA0001)		(T1566.001)	tere il sistema della vittima.

002	EXECUTION	EXPLOITATION	_	Sfruttamento di vulnerabilità su
	(TA0002)	FOR CLIENT		software client (es. lettore doc-
		EXECUTION		umenti) per eseguire codice arbi-
		(T1203)		trario.
003	EXECUTION	COMMAND	_	Utilizzo di interpreti di co-
	(TA0002)	AND SCRIPT-		mandi/script per eseguire co-
		ING INTER-		mandi e script malevoli.
		PRETER		
		(T1059)		
005	LATERAL	REMOTE SER-	_	Gli attaccanti usano servizi re-
	MOVE-	VICES (T1021)		moti per spostarsi lateralmente
	MENT			nella rete compromessa.
	(TA0008)			
039	EXECUTION	USER EXECU-	MALICIOUS	Il shellcode esegue il backdoor
	(TA0002)	TION (T1204)	FILE	Carbanak.
			(T1204.002)	
006	COLLECTION	VIDEO CAP-	_	Gli attaccanti acquisiscono video
	(TA0009)	TURE (T1125)		dal sistema della vittima, spesso
				per sorveglianza o raccolta cre-
				denziali/informazioni sensibili.
007	COMMAND	APPLICATION	_	Comunicazione con il server di co-
	AND CON-	LAYER PRO-		mando e controllo (C2).
	TROL	TOCOL		
	(TA0011)	(T1071)		
040	DEFENSE	ACCESS TO-	TOKEN IM-	Gli attaccanti abusano dei servizi
	EVASION	KEN MA-	PERSON-	impersonando utenti locali legit-
	(TA0005),	NIPULATION	ATION/THEFT	timi per eseguire azioni privile-
	PRIVI-	(T1134)	(T1134.001)	giate.
	LEGE ES-			
	CALATION			
	(TA0004)			

008	INITIAL	PHISHING	SPEARPHISHING	Invio di email di phishing con al-
	ACCESS	(T1566)	ATTACHMENT	legati malevoli per compromet-
	(TA0001)		(T1566.001)	tere il sistema della vittima.
009	COMMAND	INGRESS	_	Trasferimento di strumenti/file
	AND CON-	TOOL TRANS-		dall'esterno al sistema compro-
	TROL	FER (T1105)		messo.
	(TA0011)			
010	COLLECTION	VIDEO CAP-		Carbanak utilizza componenti di
	(TA0009)	TURE (T1125)		spionaggio per controllare la we-
				bcam/video del sistema vittima.
011	INITIAL	PHISHING	SPEARPHISHING	Invio di email di phishing con al-
	ACCESS	(T1566)	ATTACHMENT	legati malevoli per compromet-
	(TA0001)		(T1566.001)	tere il sistema della vittima.
012	EXECUTION	EXPLOITATION	_	Sfruttamento di vulnerabilità
	(TA0002)	FOR CLIENT		software per eseguire codice sul
		EXECUTION		sistema della vittima.
		(T1203)		
013	INITIAL	VALID AC-	_	Utilizzo di account validi per ot-
	ACCESS	COUNTS		tenere accesso non autorizzato ai
	(TA0001),	(T1078)		sistemi.
	DEFENSE			
	EVASION			
	(TA0005)			
014	COMMAND	INGRESS	_	Trasferimento di strumenti/file
	AND CON-	TOOL TRANS-		da sistemi esterni a sistemi interni
	TROL	FER (T1105)		nella rete vittima.
	(TA0011)			
016	DEFENSE	MASQUERADIN	GMATCH LEGIT-	L'attaccante rinomina file
	EVASION	(T1036)	IMATE NAME	malevoli con nomi legittimi per
	(TA0005)		OR LOCATION	eludere il rilevamento.
			(T1036.005)	

017	DEFENSE	HIDE ARTI-	HIDDEN FILES	L'attaccante nasconde file e direc-
	EVASION	FACTS (T1564)	AND DI-	tory per renderli invisibili a utenti
	(TA0005)		RECTORIES	e strumenti di sicurezza.
			(T1564.001)	
018	DEFENSE	INDICATOR	FILE DELE-	L'attaccante elimina file per can-
	EVASION	REMOVAL ON	TION	cellare le tracce e ostacolare le
	(TA0005)	HOST (T1070)	(T1070.004)	indagini.
019	_	CREATE OR	_	Creazione o modifica di un
		MODIFY SYS-		servizio per ottenere persistenza
		TEM PROCESS		ed esecuzione automatica.
		(T1543)		
020	DEFENSE	MASQUERADIN	G—	Cambio nome di file/processi per
	EVASION	(T1036)		farli apparire legittimi.
	(TA0005)			
021	DISCOVERY	PROCESS	_	Carbanak identifica processi
	(TA0007)	DISCOVERY		specifici associati a software di
		(T1057)		sicurezza (es. Kaspersky).
022	PERSISTENC	EREGISTRY		Uso di chiavi di registro per es-
	(TA0003),	RUN KEYS		ecuzione comandi o caricamento
	PRIVI-	/ STARTUP		automatico all'avvio.
	LEGE ES-	FOLDER		
	CALATION	(T1060)		
	(TA0004)			
023	PRIVILEGE	PROCESS	_	Carbanak inietta codice nel pro-
	ESCA-	INJECTION		cesso svchost.exe per mascherare
	LATION	(T1055)		le sue attività.
	(TA0004),			
	DEFENSE			
	EVASION			
	(TA0005)			

024	EXFILTRA-	EXFILTRATION	_	Carbanak comunica con il suo C2
	TION	OVER C2		per scaricare file di configurazione
	(TA0010)	CHANNEL		da monitorare.
		(T1041)		
025	COLLECTION	INPUT CAP-	_	Carbanak registra i tasti digitati
	(TA0009)	TURE (T1056)		per raccogliere credenziali e infor-
				mazioni sensibili.
026	COLLECTION	SCREEN CAP-	_	Carbanak cattura screenshot del
	(TA0009)	TURE (T1113)		desktop ogni 20 secondi.
027	EXECUTION	SYSTEM SER-	_	Carbanak imposta il servizio
	(TA0002)	VICES (T1569)		Termservice in modalità avvio au-
				tomatico.
028	_	PROCESS	_	Modifica codice eseguibile in
		INJECTION		memoria per processi locali/re-
		(T1055)		moti simultanei.
029	DISCOVERY	PROCESS	_	Carbanak rileva la presenza
	(TA0007)	DISCOVERY		dell'applicazione bancaria
		(T1057)		BLIZKO.
030	IMPACT	DATA MA-	STORED	Carbanak può manipolare i det-
	(TA0040)	NIPULATION	DATA MA-	tagli dei documenti di pagamento
		(T1565)	NIPULATION	nel sistema IFOBS.
			(T1565.001)	
031	EXFILTRA-	EXFILTRATION	_	Carbanak usa HTTP per comuni-
	TION	OVER C2		care con il C2 e inviare dati rac-
	(TA0010)	CHANNEL		colti.
		(T1041)		
032	COMMAND	DATA ENCOD-	_	Carbanak usa cifratura
	AND CON-	ING (T1132)		RC2+Base64 per cifrare i
	TROL			dati trasmessi nel canale C2.
	(TA0011)			

033	COMMAND	REMOTE AC-	_	Uso di Ammyy Admin come tool
	AND CON-	CESS TOOL		di amministrazione remota per
	TROL	(T1219)		controllare i sistemi nella rete
	(TA0011)			compromessa.
034	LATERAL	REMOTE AC-	SSH (T1021.004)	Uso di SSH per accessi remoti
	MOVE-	CESS TOOL		non autorizzati a sistemi compro-
	MENT	(T1021)		messi.
	(TA0008)			
038	COLLECTION	VIDEO CAP-	_	Cattura video delle azioni
	(TA0009)	TURE (T1125)		dell'utente su un sistema infetto.

3.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti.Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione	
CARBANAK	S0030	Backdoor modulare usata per accesso re-	
		moto, esecuzione comandi, raccolta dati,	
		video/screen/keylogger, manipolazione	
		servizi, persistence e data exfiltration.	
AMMYY		Tool legittimo di remote administration (Am-	
		myy Admin), usato dagli attaccanti per con-	
		trollo remoto della rete compromessa, sfrut-	
		tando la sua diffusione nei contesti enterprise.	
METASPLOIT	_	Framework di penetration testing, usato per	
		movimenti laterali, sfruttamento di vulnera-	
		bilità, escalation di privilegi e upload di pay-	
		load personalizzati nella rete delle vittime.	

 $Continua\ nella\ pagina\ successiva$

Tool	ID MITRE	Descrizione	
PSEXEC	S0029	Tool di amministrazione remota Microsoft,	
		sfruttato per esecuzione comandi/processi da	
		remoto e movimenti laterali attraverso la rete.	
MIMIKATZ	S0002	Strumento usato per il dump e furto di creden-	
		ziali da memoria su sistemi Windows compro-	
		messi.	
SSH (backdoor)		SSH ricompilato/backdoorizzato per accesso	
		remoto persistente su host Linux/Unix nella	
		rete vittima.	

Table 13: Tool utilizzati

3.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Opera-	Vulnerabilità di esecuzione di codice
	tivo	tramite file malevoli (doc, pdf, cpl, ecc.),
		inclusi exploit di privilege escalation (es.
		CVE-2013-3660) e tecniche di social en-
		gineering (phishing via documenti Office,
		PDF, ecc.). Utilizzati anche servizi remoti
		(RDP, SSH) per movimenti laterali.
Microsoft Office (Word	Applicazione	Vulnerabilità di esecuzione di codice
2003, 2007, 2010)		tramite exploit su allegati malevoli
		(es. CVE-2012-0158, CVE-2013-3906,
		CVE-2014-1761), sfruttate per ottenere
		l'accesso iniziale tramite spear phishing.
Oracle Database	Database	Manipolazione dei database per l'apertura
		di conti fittizi, trasferimento fondi e alter-
		azione dati senza sfruttare bug software
		ma abusando di accessi compromessi.
ATM (Automated Teller	Infrastruttura	Accesso remoto abusivo tramite sistemi
Machine) Network	Finanziaria	Windows compromessi collegati in VPN
		alla rete ATM; esecuzione di operazioni
		non autorizzate (cash out) senza installare
		malware sugli ATM stessi.

Table 14: Prodotti vulnerabili nelle campagne Carbanak

3.6 IoC

Gli Indicators of Compromise (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del **report originale**, all'interno dell'**appendice**. In questa sezione finale del **PDF**(pagine 27-37) è possibile trovare esempi di **hash**, **nomi di file**, **URL** malevoli, **domini** di **command and control**, **percorsi di debug** e altri indicatori tecnici associati alle varie famiglie di **malware** descritte nel rapporto.

3.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative	
Simulazione spear- phishing	GoPhish, SET	Invio di email di phishing con allegati Word/CPL malevoli exploitabili (es. CVE-2012-0158, CVE-2013-3906, CVE-2014-1761), raccolta dati su click e aperture.	
Generazione docu-	Metasploit, MS	Creazione di file Word/PDF con macro	
menti/attachment	Office, Luckys-	o exploit, payload custom per accesso	
malevoli	trike	remoto, generazione automatica di CPL malevoli.	
Esecuzione del pay-	Metasploit, Car-	Sfruttamento delle vulnerabilità client per	
load	banak Loader	ottenere esecuzione codice remoto sul sis-	
		tema vittima e installazione della back	
		door Carbanak.	
Movimento laterale	PsExec, Metas-	Utilizzo di tool per esecuzione remota co-	
	ploit, Ammyy	mandi, movimenti laterali, deploy di pay-	
	Admin, SSH	load su host interni (Windows e Linux).	
		Possibile abuso di credenziali raccolte.	
Raccolta dati	Carbanak,	Keylogger, video e screen capture, rac-	
	Mimikatz, Am-	colta credenziali e file sensibili; uso di	
	myy Admin	Ammyy Admin per accesso interattivo re-	
		moto.	
Persistence	Carbanak, reg-	Creazione di servizi/chiavi di registro per	
	istry tools,	persistenza; iniezione in processi legittimi	
	servizi Windows	(es. svchost.exe) per evadere detection.	

Continua nella pagina successiva

Fase	Tool suggerito	Note operative	
Command and Con-	Carbanak, Am-	Comunicazioni con C2 tramite HTTP(s)	
trol	myy Admin,	con dati cifrati RC2+Base64; amminis-	
	SSH backdoor	trazione remota tramite Ammyy/SSH.	
Exfiltration	Carbanak, Am-	Esfiltrazione dati via HTTP(s), download-	
	myy Admin,	/upload file via Ammyy Admin, uso di	
	RDP	tunnel RDP per l'estrazione massiva.	
Impatto finale	Carbanak, tool	Manipolazione database (es. Oracle,	
(manipolazione	SQL/DB, tool	IFOBS), creazione di transazioni fraudo-	
dati/frode)	bancari interni	lente o cashout ATM.	

Table 15: Fasi, tool suggeriti e note operative per simulare una campagna Carbanak

4 APT Oilrig

Introduzione

OilRig (noto anche come APT34 o Helix Kitten) è un gruppo di cyber-spionaggio legato all'Iran, attivo dal 2014 e conosciuto per attacchi mirati soprattutto in Medio Oriente. Il gruppo prende di mira settori strategici come enti governativi, energia, finanza e telecomunicazioni, focalizzandosi sui Paesi del Golfo, ma con attacchi anche verso Europa e Nord America. OilRig si distingue per la capacità di adattare e aggiornare rapidamente le proprie tecniche di attacco, utilizzando principalmente campagne di spear phishing, cioè email mirate per rubare credenziali o installare malware. Tra i malware più usati ci sono backdoor personalizzate come Helminth, QUADAGENT e STEALHOOK, che permettono agli attaccanti di mantenere un accesso prolungato e nascosto alle reti compromesse. Dopo l'accesso iniziale, il gruppo si muove lateralmente nella rete usando tecniche di escalation dei privilegi e strumenti come Mimikatz per compromettere altre credenziali e ottenere il controllo su una porzione più ampia della rete. L'obiettivo principale di OilRig è l'esfiltrazione di dati sensibili, spesso tramite canali nascosti come il tunneling DNS, a supporto degli interessi geopolitici iraniani. Negli ultimi anni, OilRig ha dimostrato un'elevata sofisticazione, sfruttando rapidamente nuove vulnerabilità. Rimane una delle minacce più rilevanti per le **organizzazioni che operano in settori critici**, richiedendo attenzione e difese sempre aggiornate.

4.1 APT34 The Helix Kitten Cybercriminal Group Loves to Meow Middle Eastern and International Organizations

Il report analizza le attività del gruppo APT34, un gruppo di cybercriminali attivo dal 2014 e attribuito all'Iran. Il gruppo è noto per aver preso di mira soprattutto organizzazioni e infrastrutture critiche in Medio Oriente (ma non solo), tra cui settori come tecnologia, governo, militare, energia, comunicazioni, trasporti, finanza ed educazione. Le loro attività si sono poi estese anche a Europa, America e altre regioni. APT34 utilizza diversi vettori d'attacco: spearphishing tramite email con allegati Excel infetti, social engineering, vulnerabilità zero-day (come CVE-2017-0199 e CVE-2017-11882), siti web fasulli e web shell per mantenere l'accesso alle reti compromesse. Il gruppo fa uso di numerosi malware personalizzati, tra cui Quadagent, Twoface, Helminth, OopsIE, e altri. L'obiettivo principale di APT34 è lo spionaggio informatico a beneficio degli interessi strategici e geopolitici iraniani, puntando alla raccolta di informazioni sensibili e credenziali, soprattutto da organizzazioni legate a governi rivali o infrastrutture critiche. Il report elenca inoltre vari Indicatori di Compromissione (IoC) e suggerisce misure difensive per le organizzazioni, sottolineando la necessità di un approccio di sicurezza multilivello poiché anche soluzioni antivirus aggiornate non garantiscono piena protezione contro minacce di questo tipo.

4.2 Analisi Vulnerabilita'

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilita':

Campo	Valore		
cve	CVE-2017-0199		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${\it cvss_version}$	3.1		
$base_score$	7.8		
base_severity	HIGH		
${ m base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	secure@microsoft.com		
${\bf published_date}$	2017-04-12T14:59Z		
epss	0.94366		
cisa_kev True			
vulncheck_kev	True		
exploitdb	True		
metasploit	True		
nuclei	False		
$\mathrm{poc_github}$	True		
cwe NVD-CWE-noinfo)			
cpe	Microsoft Office 2007 SP3, 2010 SP2, 2013 SP1, 2016; Word,		
	Word Viewer, Office Web Apps		

La vulnerabilità CVE-2017-0199 colpisce Microsoft Office (versioni 2007, 2010, 2013, 2016, Word Viewer e Office Web Apps) e consente attacchi tramite file malevoli, sfruttando un difetto critico (CVSS 7.8). È molto nota e sfruttata, con exploit pubblici e moduli Metasploit disponibili, ed è riconosciuta nei principali database di sicurezza. Il rischio di sfruttamento è molto alto.

Campo	Valore		
cve	CVE-2017-11882		
${ m cvss\text{-}bt_score}$	7.8		
$cvss-bt_severity$	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${\it cvss_version}$	3.1		
$base_score$	7.8		
$base_severity$	HIGH		
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	secure@microsoft.com		
$published_date$	2017-11-15T03:29Z		
epss	0.94384		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	True		
nuclei	False		
$\mathrm{poc_github}$	True		
cwe	CWE-119: Improper Restriction of Operationsthe		
	Bounds of a Memory Buffer		
cpe	Microsoft Office 2007 SP3, 2010 SP2, 2013 SP1, 2016		

La vulnerabilità CVE-2017-11882 interessa Microsoft Office (2007, 2010, 2013, 2016) e riguarda una gestione errata della memoria che permette l'esecuzione di codice dannoso. Ha un rischio alto (CVSS 7.8), numerosi exploit pubblici e moduli Metasploit disponibili, ed è ampiamente sfruttata, con elevata probabilità di attacco secondo i principali database di sicurezza.

Le informazioni temporali relative ai CVE di APT34 The Helix Kitten Cybercriminal Group Loves to Meow Middle Eastern and International Organizations sono le seguenti :

Punto	Dettaglio	
Tipo	Vulnerabilità di esecuzione di codice remoto in Microsoft Of-	
	fice/WordPad (OLE), sfruttabile tramite documenti RTF o	
	Word malevoli.	
Divulgazione	Divulgata pubblicamente ad aprile 2017. Utilizzata da APT34	
	in campagne phishing contro enti israeliani e altri target prima	
	del rilascio della patch.	
Zero day?	Sì, la vulnerabilità è stata sfruttata come zero-day da APT34	
	poco prima della pubblicazione della patch da parte di Mi-	
	crosoft.	
Patch	Microsoft ha pubblicato la patch MS17-027 l'11 aprile 2017.	
Utilizzo nel mal-	Utilizzata in attacchi mirati tramite email di spear phish-	
ware	ing con allegati Word/RTF malevoli, prima e subito dopo la	
	patch, per compromissioni in Medio Oriente e altri paesi.	

Table 16: Informazioni temporali per CVE-2017-0199 (APT34)

Punto	Dettaglio	
Tipo	Vulnerabilità di corruzione della memoria in Microsoft Office	
	Equation Editor, che consente esecuzione di codice remoto.	
Divulgazione	Divulgata pubblicamente a novembre 2017.	
Zero day?	Sfruttata da APT34 immediatamente dopo la disclosure, ma	
	non come vero zero-day (patch e info erano pubbliche).	
Patch	Microsoft ha pubblicato la patch MS17-11882 il 14 novembre	
	2017.	
Utilizzo nel mal-	Utilizzata per campagne di spear phishing verso organiz-	
ware	zazioni governative e infrastrutture critiche nella regione	
	MENA, spesso tramite allegati Office.	

Table 17: Informazioni temporali per CVE-2017-11882 (APT34)

4.3 TTP MITRE ATTCK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique	Sub-technique	Descrizione
001	EXECUTION	EXPLOITATION	MALICIOUS	I macro malevoli sono incorporati
	(TA0002)	FOR CLIENT	FILE	in file Microsoft Excel. Quando
		EXECUTION	(T1203.002)	la vittima abilita le macro, viene
		(T1203)		eseguito codice dannoso.
002	EXECUTION	COMMAND	POWERSHELL	Utilizzo di PowerShell per es-
	(TA0002)	AND SCRIPT-	(T1059.001)	eguire script malevoli sul sistema
		ING INTER-		vittima.
		PRETER		
		(T1059)		
003	INITIAL	PHISHING	SPEARPHISHING	Email di phishing vengono uti-
	ACCESS	(T1566)	ATTACHMENT	lizzate per consegnare documenti
	(TA0001)		(T1566.001)	Excel weaponizzati.
004	EXECUTION	COMMAND	VISUAL BASIC	All'apertura del documento Excel
	(TA0002)	AND SCRIPT-	(T1059.005)	e abilitazione macro, vengono es-
		ING INTER-		eguiti script VBA (Visual Basic
		PRETER		for Applications).
		(T1059)		
005	EXECUTION	COMMAND	POWERSHELL	PowerShell viene utilizzato per
	(TA0002)	AND SCRIPT-	(T1059.001)	le sue capacità avanzate e inte-
		ING INTER-		grazione con Windows.
		PRETER		
		(T1059)		
006	INITIAL	PHISHING	SPEARPHISHING	Email di phishing utilizzate per
	ACCESS	(T1566)	ATTACHMENT	consegnare documenti Excel
	(TA0001)		(T1566.001)	weaponizzati.

007	INITIAL	APPLICATION	WEB PRO-	Creazione e hosting di siti web
	ACCESS	LAYER PRO-	TOCOLS	falsi che imitano servizi legittimi
	(TA0001)	TOCOL	(T1071.001)	(es. portale VPN Juniper, siti
	,	(T1071)	,	Oxford).
008	RESOURCE	ACQUIRE	DOMAINS	Registrazione di domini simili a
	DEVEL-	INFRASTRUC-	(T1583.001)	quelli di organizzazioni reali (es.
	OPMENT	TURE (T1583)		Oxford University) per dare aut-
	(TA0042)			enticità ai siti fake.
009	EXECUTION	EXPLOITATION	_	Sfruttamento della vulnerabilità
	(TA0002)	FOR CLIENT		CVE-2017-0199 che permette es-
		EXECUTION		ecuzione di codice remoto tramite
		(T1203)		OLE in Windows.
010	PERSISTENC	ESERVER	WEB SHELL	Utilizzo di webshell (TwoFace,
	(TA0003)	SOFTWARE	(T1505.003)	RunningBee, RGDoor, ecc.) per
		COMPONENT		ottenere persistenza su web server
		(T1505)		compromessi.
011	EXECUTION	USER EXECU-	MALICIOUS	Il trojan "Agent Injector" viene
	(TA0002)	TION (T1204)	FILE	eseguito tramite allegato email e
			(T1204.002)	installa la backdoor ISMAgent.
012	INITIAL	PHISHING	SPEARPHISHING	Email di spear-phishing con
	ACCESS	(T1566)	ATTACHMENT	oggetto "Important Issue"
	(TA0001)		(T1566.001)	consegnano il trojan "Agent
				Injector".
013	EXECUTION	EXPLOITATION	_	Sfruttamento della vulnerabilità
	(TA0002)	FOR CLIENT		CVE-2017-11882 in Microsoft Of-
		EXECUTION		fice Equation Editor per RCE.
		(T1203)		
014	EXECUTION	USER EXECU-	MALICIOUS	Documento "ThreeDollars" uti-
	(TA0002)	TION (T1204)	FILE	lizzato come delivery per il trojan
			(T1204.002)	OopsIE.

015	INITIAL	PHISHING	SPEARPHISHING	Invio di spear-phishing email a di-
	ACCESS	(T1566)	ATTACHMENT	versi destinatari della stessa orga-
	(TA0001)		(T1566.001)	nizzazione.
016	INITIAL	PHISHING	SPEARPHISHING	Email di spear-phishing con alle-
	ACCESS	(T1566)	ATTACHMENT	gati malevoli per consegnare mal-
	(TA0001)		(T1566.001)	ware.
017	INITIAL	PHISHING	SPEARPHISHING	Il malware viene distribuito
	ACCESS	(T1566)	ATTACHMENT	tramite documento Excel con
	(TA0001)		(T1566.001)	macro malevoli.
018	COMMAND	APPLICATION	WEB PRO-	Il RAT comunica via HTTP per
	AND CON-	LAYER PRO-	TOCOLS	scambiare comandi o esfiltrare
	TROL	TOCOL	(T1071.001)	dati.
	(TA0011)	(T1071)		
019	COMMAND	APPLICATION	DNS (T1071.004)	Il RAT utilizza anche DNS per co-
	AND CON-	LAYER PRO-		municazione, mascherando il traf-
	TROL	TOCOL		fico.
	(TA0011)	(T1071)		
020	INITIAL	PHISHING	SPEARPHISHING	Impersonificazione di un docente
	ACCESS	(T1566)	LINK	Cambridge su LinkedIn per con-
	(TA0001)		(T1566.002)	vincere le vittime ad aprire link
				malevoli.
021	EXECUTION	USER EXECU-	MALICIOUS	Esecuzione da parte dell'utente di
	(TA0002)	TION (T1204)	FILE	un documento malevolo ricevuto
			(T1204.002)	tramite social engineering.
022	COMMAND	ENCRYPTED		Utilizzo di RAT per canali C2
	AND CON-	CHANNEL		con comunicazione HTTP/DNS
	TROL	(T1573)		potenzialmente cifrata.
	(TA0011)			

023	DEFENSE	VALID AC-	_	Uso di account validi e tool come
	EVASION	COUNTS		Twoface per harvesting creden-
	(TA0005),	(T1078)		ziali e movimento laterale.
	PERSIS-			
	TENCE			
	(TA0003),			
	PRIVI-			
	LEGE ES-			
	CALATION			
	(TA0004),			
	INITIAL			
	ACCESS			
	(TA0001)			
024	RECONNA-	GATHER	CREDENTIALS	Raccolta di credenziali della vit-
	ISSANCE	VICTIM IDEN-	(T1589.001)	tima per futuri attacchi (es. con
	(TA0043)	TITY IN-		tool Pickpocket).
		FORMATION		
		(T1589)		

4.4 Tool Utilizzati

Table 19: Principali tool utilizzati:

Tool	ID MITRE	Descrizione
TwoFace	S0194	Web shell usata per harvesting credenziali e
		accesso persistente a server web compromessi,
		spesso insieme a varianti come RunningBee,
		RGDoor, HighShell, HyperShell.
RunningBee		Web shell utilizzata come payload di TwoFace
		per accesso remoto e mantenimento della per-
		sistenza su server IIS.

Tool	ID MITRE	Descrizione
RGDoor	S0258	Backdoor per Microsoft IIS server, creata in
		C++, consente controllo remoto e persistence.
Powruner		Backdoor PowerShell utilizzata per esecuzione
		comandi e controllo a distanza.
Helminth	S0170	Trojan Windows sviluppato ad hoc da APT34
		per accesso remoto, esfiltrazione e comando.
OopsIE	S0264	Trojan distribuito via spear-phishing, impie-
		gato per raccolta dati, persistence e comando.
Karko!	_	Malware progettato per l'esecuzione remota di
		codice su host compromessi.
ISMAgent	S0189	Backdoor modulare, con tecniche anti-analisi
		e varianti usate in diverse campagne.
Pickpocket		Strumento per il furto di credenziali dal
		browser e dal sistema Windows.
ValueVault		Tool usato per estrarre e visualizzare creden-
		ziali memorizzate nel Windows Vault.
LongWatch		Variante di Pickpocket per furto di credenziali
		dai browser.
PhpSpy		Backdoor PHP per ottenere foothold iniziale
		sulla rete bersaglio.
QuadAgent		Backdoor PowerShell, attribuita a campagne
		recenti di APT34.
ThreeDollars		Documento weaponizzato usato come vettore
		di delivery in campagne spear-phishing.
Fox Panel		Tool di controllo e hacking collegato ad
		APT34.
HighShell		Payload basato su web shell (TwoFace) per
		persistenza su server web.
Webmask		Script e tool per attacchi di DNS hijacking.
HyperShell		Loader di TwoFace per installare/persist web
		shell su target compromessi.

4.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Opera-	Vulnerabilità di esecuzione di codice
	tivo	tramite file malevoli (Excel, Office, es-
		eguibili), incluso abuso di macro e script-
		ing PowerShell. Sfruttate vulnerabilità
		come CVE-2017-0199 (OLE) per RCE su
		sistemi Windows.
Microsoft Office	Applicazione	Exploit di macro malevoli e vulnera-
(Word, Excel)		bilità (es. CVE-2017-0199, CVE-2017-
		11882 Equation Editor), usati per ese-
		cuzione codice da allegati email weaponiz-
		zati (phishing/spearphishing).
Microsoft IIS	Server Web	Abuso di vulnerabilità e installazione
		di webshell custom (TwoFace, RGDoor,
		RunningBee, HyperShell) per ottenere
		persistenza su server compromessi.
Browser (Internet Ex-	Applicazione	Furto credenziali tramite tool come Pick-
plorer, Chrome)		pocket e LongWatch, sfruttando memoriz-
		zazione password locali.
Windows Vault	Sistema Opera-	Estrazione e furto di credenziali salvate
	tivo	tramite tool ValueVault.

Table 20: Principali prodotti vulnerabili sfruttati dal gruppo APT34

4.6 IoC

Gli Indicators of Compromise (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del **report originale**, all'interno dell'**appendice**. In questa sezione finale del **PDF**(pagine 13-24)è possibile trovare esempi di hash, nomi di file, URL malevoli, domini di command and control, percorsi di debug e altri indicatori tecnici associati alle varie famiglie di malware descritte nel rapporto.

4.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Simulazione spear-	GoPhish	Invio di email di phishing con allegati Ex-
phishing		cel/Word weaponizzati (macro, exploit),
		creazione di link malevoli, raccolta dati su
		aperture/click.
Generazione docu-	Metasploit	Creazione di documenti Excel/Word con
menti malevoli		macro malevole, DDE, OLE, payload Pow-
		ershell/VBA, oppure exploit (CVE) via
		Metasploit.
Esecuzione del pay-	Nishang	Uso di macro/script Powershell/VBA per
load		eseguire codice malevolo quando l'utente
		apre il documento weaponizzato. Nishang
		offre diversi payload Powershell pronti.
Persistence	Nishang, Empire	Persistenza su host compromessi tramite
		script Powershell (Nishang), Empire
		(agente C2 con funzioni di persistence) o
		via webshell. EvilWinRM per persistence
		su Windows Remoting.
Movimento laterale e	Mimikatz	Uso di CrackMapExec per movimento lat-
harvesting credenziali		erale e dump credenziali, LaZagne per furto
		password locali, Mimikatz (solo in lab) per
		test di credential dumping.
Command and Con-	Covenant	Framework C2 open source con agenti
trol (C2)		Powershell e Python; supportano canali
		HTTP/S, comunicazioni cifrate, tasking,
		download/upload dati, exfiltrazione.
Evasione	Veil	Offuscamento script, payload fileless, gener-
		azione di shellcode e tecniche di bypass per
		evadere EDR/antivirus nei test di laborato-
		rio.
Exfiltration	Rclone, Covenant	Esfiltrazione dati tramite upload su
		storage cloud (Rclone verso Nextcloud/-
		GoogleDrive), o download/upload da
		framework C2 (Covenant/Empire), script
		Powershell custom.

5 APT Fin6

Introduzione

FIN6 è un gruppo APT (Advanced Persistent Threat) specializzato principalmente in attacchi finanziari contro grandi aziende, con particolare attenzione al settore retail e ai servizi di pagamento elettronico. Attivo dal 2015, FIN6 è noto per la sua capacità di compromettere sistemi POS (Point of Sale) e rubare dati di carte di pagamento tramite sofisticate campagne di phishing, tecniche di lateral movement e l'utilizzo di malware custom. Le informazioni sottratte vengono poi rivendute nel dark web, generando profitti significativi per il gruppo. FIN6 si distingue per l'elevato livello di professionalità, l'approccio mirato e la costante evoluzione delle proprie tecniche di attacco.

5.1 More eggs Backdoor

Il report analizza una serie di campagne di **phishing** sofisticate, condotte a partire dalla metà del 2018 e attribuite a **FIN6** (identificato per l'uso della backdoor **More_eggs**). Queste campagne hanno preso di mira principalmente aziende statunitensi nei settori retail, entertainment e pharma. L'elemento centrale è la diffusione della backdoor More_eggs attraverso offerte di lavoro fasulle. Gli attaccanti sfruttano servizi di messaggistica legittimi come LinkedIn per avviare il primo contatto, utilizzando profili falsi e inviando richieste di collegamento. Successivamente, seguono email personalizzate che fanno riferimento al contatto precedente, rafforzando la credibilità dell'offerta. Queste email contengono spesso link a siti web fake che imitano agenzie di selezione, oppure allegati dannosi (PDF, Word con macro) progettati per infettare il sistema. Il payload finale, More_eggs, viene scaricato tramite queste macro o tramite loader JScript intermedi, e una volta eseguito consente agli attaccanti di profilare la vittima, raccogliere informazioni e scaricare ulteriori malware. Il report evidenzia come il gruppo cambi frequentemente le tecniche di delivery sfruttando builder (Taurus Builder, VenomKit) ottenuti in ambienti underground. Viene inoltre sottolineata la tendenza crescente a preferire campagne mirate e basate su social engineering avanzato, abbandonando i vecchi attacchi massivi "spray and pray". Infine, viene documentata la sovrapposizione con altre campagne (ad esempio contro anti-money laundering officer) e sono forniti indicatori di compromissione (IOC) utili per la detection.

5.2 Analisi Vulnerabilita'

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilità:

Campo	Valore		
cve	CVE-2017-0199		
${ m cvss\text{-}bt_score}$	7.8		
cvss-bt_severity	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${\it cvss_version}$	3.1		
base_score	7.8		
$base_severity$	HIGH		
${ m base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	secure@microsoft.com		
${\bf published_date}$	2017-04-12T14:59Z		
epss	0.94366		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	True		
nuclei	False		
$\mathrm{poc_github}$	True		
cwe	NVD-CWE-noinfo: Insufficient Information		
cpe	Microsoft Office (Word, Excel, PowerPoint)		
	2007/2010/2013/2016		

La tabella riporta in modo strutturato tutte le informazioni principali relative alla vulnerabilità CVE-2017-0199. Sono elencati dettagli come il punteggio CVSS (7.8, quindi gravità alta), il vettore di attacco, la data di pubblicazione e i riferimenti all'esistenza di exploit pubblici sia su ExploitDB che su Metasploit. Si evidenzia inoltre che la vulnerabilità è stata inserita nelle liste di interesse di CISA e VulnCheck, e che sono disponibili proof-of-concept su GitHub. Tuttavia, nella sezione relativa alla classificazione CWE, non viene specificato un tipo di debolezza dettagliato, indicando

"Insufficient Information".

Campo	Valore		
cve	CVE-2017-8570		
${ m cvss\text{-}bt_score}$	7.8		
$cvss-bt_severity$	HIGH		
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H		
${ m cvss_version}$	3.1		
$base_score$	7.8		
$base_severity$	HIGH		
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H		
assigner	secure@microsoft.com		
${\bf published_date}$	2017-07-11T21:29Z		
epss	0.94247		
cisa_kev	True		
vulncheck_kev	True		
exploitdb	True		
metasploit	False		
nuclei	False		
$\mathbf{poc}_{\mathtt{g}}$ ithub	True		
cwe	NVD-CWE-noinfo: Insufficient Information		
сре	Microsoft Office (Word, Excel, PowerPoint)		
	2007/2010/2013/2016		

La tabella mostra un riepilogo dettagliato delle principali informazioni riguardanti la vulnerabilità CVE-2017-8570, che interessa diverse versioni di Microsoft Office (Word, Excel, PowerPoint dal 2007 al 2016). Vengono riportati dati come il punteggio CVSS pari a 7.8, che indica una gravità elevata, insieme al vettore di attacco e alla data di pubblicazione della vulnerabilità. Sono inoltre specificate le fonti che confermano la presenza di exploit pubblici (ExploitDB, PoC su GitHub) e la rilevanza per enti come CISA e VulnCheck. Nonostante la gravità, la tabella segnala che non è stata associata una specifica categoria CWE dettagliata ("Insufficient Information").

Campo	Valore
cve	CVE-2017-8759
${ m cvss\text{-}bt_score}$	7.8
cvss-bt_severity	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
$base_score$	7.8
base_severity	HIGH
$base_vector$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
$published_date$	2017-09-13T01:29Z
epss	0.93893
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	False
nuclei	False
$\mathrm{poc_github}$	True
cwe	CWE-94: Improper Control of Generation of Code ("Code Injection")
сре	Microsoft .NET Framework 2.0/3.5/4.x (Running on/with
	Windows 7/8.1)

La tabella offre una panoramica sintetica e completa sulla vulnerabilità CVE-2017-8759, che riguarda il Microsoft .NET Framework (versioni 2.0, 3.5 e 4.x, in esecuzione su Windows 7 e 8.1). Sono elencate tutte le principali informazioni di sicurezza, tra cui il punteggio CVSS (7.8, alto), la data di pubblicazione, i riferimenti a fonti di exploit pubblici e la classificazione CWE, che in questo caso è "Improper Control of Generation of Code (Code Injection)". La tabella evidenzia inoltre che questa vulnerabilità è considerata rilevante da enti come CISA e VulnCheck, ed è oggetto di exploit pubblici su ExploitDB e GitHub. Complessivamente, il riepilogo risulta utile per valutare rapidamente gravità, impatto e diffusione degli exploit legati a questa vulnerabilità.

Campo	Valore
cve	CVE-2017-11882
${ m cvss\text{-}bt_score}$	7.8
$cvss-bt_severity$	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
$base_score$	7.8
$base_severity$	HIGH
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
$published_date$	2017-11-15T03:29Z
epss	0.94384
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\mathrm{poc_github}$	True
cwe	CWE-119: Improper Restriction of Operations
	within the Bounds of a Memory Buffer
cpe	Microsoft Office (2007/2010/2013/2016)

La tabella riassume tutte le informazioni fondamentali sulla vulnerabilità CVE-2017-11882, che interessa diverse versioni di Microsoft Office (2007, 2010, 2013, 2016). Oltre ai dati identificativi come il punteggio CVSS pari a 7.8 (quindi gravità alta), vengono indicati i principali vettori di attacco, la data di pubblicazione, e la presenza di exploit pubblici su piattaforme come ExploitDB, Metasploit e GitHub. La vulnerabilità è inoltre classificata come rilevante da enti come CISA e VulnCheck. Dal punto di vista tecnico, è catalogata come CWE-119 ("Improper Restriction of Operations within the Bounds of a Memory Buffer"), tipica dei buffer overflow.

Campo	Valore
cve	CVE-2018-0802
${ m cvss\text{-}bt_score}$	7.8
cvss-bt_severity	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${ m cvss_version}$	3.1
$base_score$	7.8
$base_severity$	HIGH
${\bf base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
${\bf published_date}$	2018-01-10T01:29Z
epss	0.94103
cisa_kev	True
vulncheck_kev	True
exploitdb	False
metasploit	False
nuclei	False
$ m poc_github$	True
cwe	CWE-787: Out-of-bounds Write
cpe	Microsoft Office Equation Editor (2007/2010/2013/2016)

La tabella fornisce una sintesi delle informazioni chiave sulla vulnerabilità CVE-2018-0802, che riguarda il componente Equation Editor di Microsoft Office nelle versioni 2007, 2010, 2013 e 2016. Viene riportato un punteggio CVSS di 7.8, a indicare una gravità alta, insieme ai dettagli tecnici come il vettore di attacco e la data di pubblicazione. La vulnerabilità è riconosciuta da enti come CISA e Vulneck, mentre non risultano exploit pubblici su ExploitDB e Metasploit, anche se è disponibile un proof-of-concept su GitHub. Dal punto di vista tecnico, si tratta di una vulnerabilità di tipo Out-of-bounds Write (CWE-787), tipica dei buffer over-flow.

Campo	Valore	
cve	CVE-2018-8174	
${ m cvss\text{-}bt_score}$	7.5	
$cvss-bt_severity$	HIGH	
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H	
${ m cvss_version}$	3.1	
$base_score$	7.5	
$base_severity$	HIGH	
${\it base_vector}$	CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H	
assigner	secure@microsoft.com	
published_date	2018-05-09T19:29Z	
epss	0.94283	
cisa_kev	True	
vulncheck_kev	True	
exploitdb	True	
metasploit	False	
nuclei	False	
$\mathrm{poc_github}$	True	
cwe	CWE-787: Out-of-bounds Write	
cpe	Windows 7 SP1, Windows 8.1, Windows RT 8.1, Windows	
	10 (1607/1703/1709/1803),	
	Windows Server 2008 SP2, Server 2008 R2 SP1	
	(x64/Itanium),	
	Server 2012, Server 2012 R2, Server 2016 (1709/1803)	

La tabella presenta un riepilogo dettagliato della vulnerabilità CVE-2018-8174, nota anche come "Double Kill", che ha interessato numerose versioni di sistemi operativi Microsoft, tra cui Windows 7, 8.1, 10 (diverse build), e vari Windows Server. La gravità della vulnerabilità è elevata, con un punteggio CVSS di 7.5, e viene identificata come un Out-of-bounds Write (CWE-787), una tipica vulnerabilità di buffer overflow. La tabella riporta tutte le principali informazioni di sicurezza, come i vettori di attacco, la data di pubblicazione e la presenza di exploit pubblici su ExploitDB e GitHub. Inoltre, evidenzia che la vulnerabilità è stata segnalata anche

da enti come CISA e VulnCheck, sottolineando la sua importanza per la sicurezza.

Le informazioni temporali relative alle CVE contenute in **More eggs Backdoor** sono le seguenti:

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice tramite file RTF e		
	documenti Word che sfruttano l'Object Linking and Em-		
	bedding (OLE) per scaricare ed eseguire script malevoli.		
Divulgazione	Divulgata pubblicamente ad aprile 2017; exploit e PoC		
	disponibili online nello stesso mese.		
Zero day?	Non era più una zero day durante le campagne osservate:		
	il malware colpiva sistemi non aggiornati.		
Patch	Patch rilasciata da Microsoft con MS17-017 l'11 aprile		
	2017.		
Utilizzo nel mal-	Utilizzata dal gruppo per diffondere il payload		
ware	More_eggs tramite documenti Word malevoli allegati a		
	email di phishing.		

Table 22: Dettagli temporali per CVE-2017-0199

Punto	Dettaglio	
Tipo	Vulnerabilità di code execution via documenti Word	
	(formato XML) che sfruttano l'esecuzione di contenuti	
	embedded dannosi.	
Divulgazione	Pubblicata a luglio 2017, con exploit e PoC disponibili	
	online subito dopo la disclosure.	
Zero day?	Non era più una zero day nelle campagne osservate, ma	
	sfruttata su sistemi senza patch.	
Patch	Patch distribuita da Microsoft l'11 luglio 2017 con	
	MS17-054.	
Utilizzo nel mal-	Impiegata per l'esecuzione di codice e la delivery di	
ware	More_eggs tramite allegati Word e link malevoli nelle	
	email di spear phishing.	

Table 23: Dettagli temporali per CVE-2017-8570

Punto	Dettaglio		
Tipo	Vulnerabilità di code injection nella gestione di SOAP		
	WSDL dalla libreria .NET Framework, sfruttabile		
	tramite file RTF o Word appositamente creati.		
Divulgazione	Divulgata e patchata pubblicamente a settembre 2017,		
	con PoC pubblici subito disponibili.		
Zero day?	Sfruttata solo dopo la disclosure; non utilizzata come		
	zero day nelle campagne note.		
Patch	Patch rilasciata da Microsoft il 12 settembre 2017.		
Utilizzo nel mal-	Utilizzata per l'esecuzione di codice remoto in allegati		
ware	malevoli, all'interno delle campagne di spear phishing		
	analizzate nel report.		

Table 24: Dettagli temporali per CVE-2017-8759

Punto	Dettaglio	
Tipo	Vulnerabilità di buffer overflow nell'Equation Editor di	
	Microsoft Office che consente l'esecuzione di codice ar-	
	bitrario.	
Divulgazione	Divulgata pubblicamente e patchata a novembre 2017,	
	con exploit pubblici poco dopo.	
Zero day?	Non era più zero day durante l'uso nelle campagne	
	More_eggs.	
Patch	Patch rilasciata da Microsoft il 14 novembre 2017.	
Utilizzo nel mal-	Sfruttata da allegati malevoli (.doc, .rtf) per ottenere es-	
ware	ecuzione di codice remoto durante le campagne di phish-	
	ing descritte nel report.	

Table 25: Dettagli temporali per CVE-2017-11882

Punto	Dettaglio	
Tipo	Vulnerabilità di tipo buffer overflow nell'Equation Edi-	
	tor di Office, simile a CVE-2017-11882.	
Divulgazione	Pubblicata e patchata a gennaio 2018, con exploit pub-	
	blici successivi.	
Zero day?	Non zero day al momento delle campagne More_eggs;	
	sfruttata su host non aggiornati.	
Patch	Patch rilasciata da Microsoft il 9 gennaio 2018.	
Utilizzo nel mal-	Utilizzata per consentire l'esecuzione di codice arbitrario	
ware	tramite allegati Office nelle email di spear phishing.	

Table 26: Dettagli temporali per CVE-2018-0802

Punto	Dettaglio	
Tipo	Vulnerabilità di tipo "out-of-bounds write" nel motore	
	VBScript di Windows, sfruttabile tramite documenti Of-	
	fice o pagine web malevole.	
Divulgazione	Rivelata pubblicamente a maggio 2018; exploit e PoC	
	disponibili poco dopo la disclosure.	
Zero day?	Non più zero day nelle campagne More_eggs; sfruttata	
	su sistemi non patchati.	
Patch	Patch pubblicata da Microsoft l'8 maggio 2018.	
Utilizzo nel mal-	Utilizzata per eseguire codice remoto nei sistemi delle	
ware	vittime, sempre tramite spear phishing.	

Table 27: Dettagli temporali per CVE-2018-8174

5.3 TTP MITRE ATTCK

Le TTP che abbiamo rilevato sono le seguenti:

ID	Tactic	Technique	Sub-technique	Descrizione
001	RECONNA-	GATHER		Gli avversari raccolgono infor-
	ISSANCE	VICTIM IDEN-		mazioni sull'identità delle vit-
	(TA0043)	TITY IN-		time, come nomi dei dipendenti e
		FORMATION		indirizzi email, utili per il target-
		(T1589)		ing.
002	INITIAL	PHISHING	SPEARPHISHING	Invio di email di spear phishing
	ACCESS	(T1566)	LINK	con link malevolo per ottenere ac-
	(TA0001)		(T1566.002)	cesso ai sistemi delle vittime.
003	INITIAL	PHISHING	SPEARPHISHING	Invio di email di spear phishing
	ACCESS	(T1566)	ATTACHMENT	con allegato malevolo per com-
	(TA0001)		(T1566.001)	promettere la vittima.

004	COMMAND	INGRESS	_	Trasferimento di strumenti o file
	AND CON-	TOOL TRANS-		da un sistema controllato dagli
	TROL	FER (T1105)		avversari verso la rete della vit-
	(TA0011)			tima tramite canali di comando e
				controllo.
005	EXECUTION	USER EXECU-	MALICIOUS	L'avversario convince l'utente ad
	(TA0002)	TION (T1204)	FILE	aprire un file malevolo tramite
			(T1204.002)	social engineering, portando
				all'esecuzione di codice. Tool:
				Taurus Builder, VenomKit.
006	EXECUTION	COMMAND	JAVASCRIPT	Gli avversari abusano di im-
	(TA0002)	AND SCRIPT-	(T1059.007)	plementazioni JavaScript per es-
		ING INTER-		eguire codice sul sistema compro-
		PRETER		messo.
		(T1059)		
007	COMMAND	INGRESS	_	Utilizzo di More_eggs (S0284)
	AND CON-	TOOL TRANS-		per trasferire file o strumenti
	TROL	FER (T1105)		all'interno della rete della vittima
	(TA0011)			tramite C2.
008	COLLECTION	DATA FROM	_	Gli avversari raccolgono dati dal
	(TA0009)	LOCAL SYS-		sistema locale tramite il malware
		TEM (T1005)		More_eggs (S0284).

5.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti. Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione	
Taurus Builder	_	Tool acquistato in forum underground, utiliz-	
		zato per la creazione di documenti malevoli	
		(ad esempio, documenti Word con macro dan-	
		nose) che sfruttano varie vulnerabilità di Of-	
		fice. Utilizza il bypass CMSTP per aggirare	
		alcune protezioni.	
VenomKit		Builder per la generazione di documenti	
		malevoli che sfruttano diverse vulnerabilità	
		di Microsoft Office (tra cui CVE-2017-0199,	
		CVE-2017-8570, CVE-2017-8759, CVE-2017-	
		11882, CVE-2018-0802 e CVE-2018-8174).	
		Impiega anch'esso il bypass CMSTP per au-	
		mentare la probabilità di successo.	
More_eggs	S0284	Malware scritto in JScript, utilizzato sia come	
		downloader che per la raccolta di informazioni	
		sulla macchina compromessa. Permette di	
		scaricare payload aggiuntivi, eseguire comandi	
		e profilare il sistema infetto.	

Table 29: Tool utilizzati nelle campagne More_eggs

5.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto Tipologia		Note sulla vulnerabilità
Microsoft Office	Applicazione	Vulnerabilità di esecuzione di codice
(Word, Excel, Pow-		remoto tramite documenti malevoli
erPoint, Equation		(RTF, DOCX, macro, embedded
Editor)		objects). Le campagne sfrutta-
		vano diverse CVE: CVE-2017-0199,
		CVE-2017-8570, CVE-2017-8759,
		CVE-2017-11882, CVE-2018-0802,
		CVE-2018-8174, spesso tramite alle-
		gati email o link a landing page.
Microsoft Windows	Sistema Op-	Sistema target delle infezioni: vulnera-
	erativo	bile alle tecniche di social engineering
		tramite file Office, PDF o eseguibili.
		Le campagne puntavano a workstation
		Windows di aziende nei settori retail,
		entertainment e pharma.

Table 30: Prodotti vulnerabili More_eggs

5.6 IoC

Gli *Indicators of Compromise* (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del report originale (Pag. 7 e 8). In questa sezione finale del PDF è possibile trovare esempi di hash, nomi di file, URL malevoli, domini di command and control, e altri indicatori tecnici associati alle varie famiglie di malware descritte nel rapporto.

5.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Generazione doc- umenti malevoli (Word/PDF)	Metasploit, Taurus Builder	Creazione di file Office (DOC/RTF) e PDF con macro, exploit e payload personalizzati per simulare vulnerabilità reali (es. CVE-2017-0199, CVE-2017-8570, ecc.).
Hosting landing page malevole	Apache, Nginx	Simulazione di siti clone o pagine di re- cruiting compromesse per l'hosting e il download dei documenti infetti.
Payload/JScript downloader	Metasploit	Esecuzione e gestione di script di down- load payload, dropper e loader JScript per simulare la seconda fase dell'infezione.
Accesso remoto e C2	Metasploit	Gestione delle sessioni di controllo remoto, raccolta informazioni sul sistema e co- mando dei payload.
Raccolta dati, profiling sistema	Metasploit post modules	Raccolta dati di sistema, informazioni utenti, enumerazione processi e network per simulare le azioni post-infezione del malware More_eggs.
Persistenza e movimento laterale	Metasploit	Installazione di persistence, simulazione di movimenti laterali su target Windows interni.
Esfiltrazione dati	Metasploit	Download/esfiltrazione di file sensibili, documenti e credenziali dal sistema com- promesso.

Table 31: Simulazione delle principali fasi di attacco della campagna More_eggs/FIN6

6 APT Fin7

Introduzione

APT Fin7, noto anche come Carbanak Group, Navigator Group o Gold Niagara, è un gruppo cybercriminale avanzato con motivazioni principalmente finanziarie, attivo almeno dal 2015. Sebbene inizialmente confuso con APT di tipo statale, è ora classificato come uno degli attori più sofisticati nel panorama del cybercrime, con legami documentati con altre organizzazioni come REvil e Black Basta. I suoi obiettivi principali includono istituti finanziari, catene di ristorazione, aziende di logistica, assicurazioni e infrastrutture critiche. Fin7 è responsabile di numerose campagne contro oltre 100 aziende in tutto il mondo, provocando centinaia di milioni di dollari di perdite economiche.

Le tecniche utilizzate dal gruppo includono spear phishing mirato con allegati dannosi in formato RTF o LNK, uso di malware complessi come Carbanak, GRIM SPIDER, BOOSTWRITE e IceID, e l'implementazione di backdoor custom che consentono il controllo remoto persistente. Una delle caratteristiche distintive di Fin7 è la sua struttura pseudo-aziendale, che si avvale di false società di sicurezza informatica (es. Combi Security) per reclutare sviluppatori e analisti inconsapevoli. Inoltre, il gruppo è noto per l'uso di strumenti legittimi come PowerShell, Metasploit, e Cobalt Strike per eludere i controlli di sicurezza e muoversi lateralmente nei sistemi infetti.

Le sue caratteristiche principali includono una notevole resilienza operativa, adattabilità nelle tattiche e una capacità tecnica elevata, che lo rendono uno degli attori criminali più pericolosi e difficili da attribuire e neutralizzare.

Tra i vari report su Fin7 abbiamo analizzato quello che ci forniva il maggior numero di informazioni operative e tecniche.

6.1 Profile of an Adversary - FIN7_Deepwatch

Il report è un'analisi approfondita delle operazioni del gruppo **cybercriminale FIN7**, attivo almeno dal **2015** e noto per aver condotto **campagne globali** a scopo **finanziario**, principalmente contro aziende dei settori **retail**, **ristorazione**, **ospitalità**, **sanitario**

e logistica. Sebbene non affiliato direttamente ad apparati statali, il livello di sofisticazione tecnica, organizzazione interna e persistence lo rende comparabile ad attori APT sponsorizzati da stati.

Il documento analizza le principali **tattiche**, **tecniche** e **procedure** (TTPs) utilizzate dal gruppo, tra cui campagne di **spear-phishing** con allegati **LNK** o **DOC**, e l'impiego di **malware custom** come **Carbanak**, **GrimAgent**, **Tirion Loader**, **PowerTrick**, e **Boostwrite**. Viene messa in luce anche la capacità di **aggirare i controlli di sicurezza** sfruttando strumenti legittimi come **PowerShell**, RDP e **Cobalt Strike** per movimenti laterali e **escalation di privilegi**.

Il modus operandi di FIN7 include l'iniziale compromissione tramite social engineering e allegati malevoli, seguita da una fase di ricognizione interna e successivo esfiltramento dei dati, oltre all'eventuale distribuzione di ransomware in collaborazione con altri gruppi. Il report evidenzia anche l'uso di una falsa struttura aziendale (come Combi Security) per reclutare sviluppatori inconsapevoli e mantenere una parvenza di legalità.

Il report sottolinea infine l'elevata **resilienza**, **adattabilità** e **persistenza** del gruppo, capace di modificare rapidamente i propri strumenti per **evitare il rilevamento**, e continuare ad operare anche dopo arresti o compromissioni pubbliche.

6.2 Analisi Vulnerabilità

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilità:

Campo	Valore	
cve	CVE-2015-2545	
${ m cvss\text{-}bt_score}$	7.8	
cvss-bt_severity	HIGH	
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H	
${ m cvss_version}$	3.1	
$base_score$	7.8	
base_severity	HIGH	
${\it base_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H	
assigner	secure@microsoft.com	
$published_date$	2015-09-09T00:59Z	
epss	0.93252	
cisa_kev	True	
vulncheck_kev	True	
exploitdb	False	
metasploit	False	
nuclei	False	
$\operatorname{poc_github}$	False	
cwe	NVD-CWE-noinfo: Insufficient Information	
cpe	Microsoft Office 2007/2010/2013 (SP)	

La vulnerabilità CVE-2015-2545 interessa varie versioni di Microsoft Office (2007, 2010, 2013 con Service Pack) e consente a un attaccante locale, tramite un file appositamente predisposto, di eseguire codice arbitrario con alti privilegi. È classificata come grave, con un punteggio CVSS di 7.8, e riconosciuta da Microsoft. Pur non essendo disponibili exploit pubblici su ExploitDB o Metasploit, il rischio di sfruttamento è elevato (EPSS 0.93). La vulnerabilità figura nei database CISA KEV e VulnCheck KEV e riguarda una convalida impropria degli input (CWE-20).

Campo	Valore
cve	CVE-2015-1701
${ m cvss\text{-}bt_score}$	7.8
cvss-bt_severity	HIGH
${ m cvss ext{-}bt ext{-}vector}$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H/E:H
${ m cvss_version}$	3.1
base_score	7.8
base_severity	HIGH
$base_vector$	CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
$published_date$	2015-04-21T10:59Z
epss	0.90769
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\mathrm{poc_github}$	True
cwe	NVD-CWE-noinfo: Insufficient Information
сре	Microsoft Windows Vista/Server 2008/Server 2003

La vulnerabilità CVE-2015-1701 affligge alcuni sistemi operativi Windows (Vista, Server 2008, Server 2003) e consente a un utente locale di elevare i propri privilegi a causa di un errore nei controlli di accesso. È classificata come grave, con un punteggio CVSS di 7.8, ed è ben documentata da Microsoft. Sono disponibili exploit pubblici, moduli per Metasploit e proof-of-concept su GitHub, mentre il rischio di sfruttamento è elevato (EPSS 0.90). È inclusa nei database CISA KEV e VulnCheck KEV, e riguarda i permessi e privilegi del sistema operativo (CWE-264).

Campo	Valore
cve	CVE-2017-0199
${ m cvss\text{-}bt_score}$	7.8
cvss-bt_severity	HIGH
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H/E:H
${\it cvss_version}$	3.1
${ m base_score}$	7.8
base_severity	HIGH
$base_vector$	CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H
assigner	secure@microsoft.com
$published_date$	2017-04-12T14:59Z
epss	0.94366
cisa_kev	True
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\operatorname{poc_github}$	True
cwe	NVD-CWE-noinfo: Insufficient Information
сре	Microsoft Office 2007/2010/2013/2016

La vulnerabilità CVE-2017-0199 colpisce Microsoft Office (2007, 2010, 2013, 2016) e WordPad in diverse versioni di Windows (da Vista a 8.1). Un file RTF o documento Word contenente un oggetto OLE malevolo può portare all'esecuzione remota di codice. È classificata come grave, con un punteggio CVSS di 7.8, ed è ampiamente conosciuta e sfruttata. Sono disponibili exploit pubblici, moduli Metasploit e PoC su GitHub. Il rischio di sfruttamento è molto alto (EPSS 0.94). La vulnerabilità compare nei database CISA KEV e VulnCheck KEV e riguarda la generazione non sicura di codice (CWE-94). Le informazioni temporali relative a **Profile of an Adversary - FIN7_Deepwatch** sono le seguenti:

Punto	Dettaglio
Tipo	Vulnerabilità di esecuzione di codice arbitrario in Mi-
	crosoft Office tramite gestione errata di file EPS.
Divulgazione	Divulgata pubblicamente nel settembre 2015.
Zero day?	Non risulta sfruttata come zero-day.
Patch	Microsoft ha rilasciato una patch tramite aggiornamento
	di sicurezza MS15-099 pubblicato il 9 settembre 2015.
Utilizzo nel mal-	Utilizzata da FIN7 in campagne di spear-phishing
ware	tramite allegati Office contenenti exploit.

Table 32: Dettagli temporali per CVE-2015-2545

Punto	Dettaglio
Tipo	Vulnerabilità di escalation dei privilegi in Windows Ker-
	nel (win32k.sys).
Divulgazione	Divulgata pubblicamente nell'aprile 2015.
Zero day?	Non risultano campagne attribuite a FIN7 che l'abbiano
	sfruttata come zero-day.
Patch	Microsoft ha rilasciato una patch tramite aggiornamento
	di sicurezza MS15-051 il 14 aprile 2015.
Utilizzo nel mal-	Utilizzata da FIN7 in catene d'attacco post-exploitation.
ware	

Table 33: Dettagli temporali per CVE-2015-1701

Punto	Dettaglio
Tipo	Vulnerabilità di esecuzione remota di codice in Microsoft
	Office e WordPad tramite oggetti OLE in RTF.
Divulgazione	Scoperta e divulgata ad aprile 2017; attivamente sfrut-
	tata prima della disclosure.
Zero day?	Non risulta sfruttata come zero-day da FIN7 secondo
	quanto riportato dal documento.
Patch	Microsoft ha rilasciato una patch il 11 aprile 2017
	tramite aggiornamento MS17-010.
Utilizzo nel mal-	Utilizzata da FIN7 per eseguire codice arbitrario tramite
ware	allegati Office in campagne di spear-phishing.

Table 34: Dettagli temporali per CVE-2017-0199

6.3 TTP MITRE ATT&CK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique	Sub-technique	Descrizione
001	INITIAL	PHISHING	_	FIN7 avvia gli attacchi con email
	ACCESS	(T1566)		di spear phishing che mirano a
	(TA0001)			scatenare una reazione emotiva
				per indurre la vittima ad aprire
				allegati o link malevoli.
002	INITIAL	PHISHING	SPEARPHISHING	Invio di allegati nell'ambito di
	ACCESS	(T1566)	ATTACHMENT	campagne spear phishing: il
	(TA0001)		(T1566.001)	primo documento appare innocuo
				ma contiene sistemi di traccia-
				mento delle aperture.

003	DISCOVERY	SYSTEM NET-		Il Documento o il meccanismo
	(TA0007)	WORK CON-		di tracciamento fornisce infor-
	()	NECTIONS		mazioni sulle connessioni di rete
		DISCOV-		o sui dettagli del sistema.
		ERY(T1016)		
004	EXECUTION	EXPLOITATION		Sfruttamento di vulnerabilità in
	(TA0002)	FOR CLIENT		applicazioni client per eseguire
	()	EXECUTION		codice malevolo sul sistema
		(T1203)		bersaglio.
005	INITIAL	PHISHING	SPEARPHISHING	-
	ACCESS	(T1566)	ATTACHMENT	allegati malevoli a individui se-
	(TA0001)	,	(T1566.001)	lezionati per ottenere l'accesso in-
	,		,	iziale.
006	EXECUTION	SCHEDULED	SCHEDULED	Creazione di task pianificati per
	(TA0002),	TASK/JOB	TASK	garantire la persistenza e rista-
	PERSIS-	(T1053)	(T1053.005)	bilire le connessioni con i server
	TENCE	, ,	,	C2.
	(TA0003),			
	PRIVI-			
	LEGE ES-			
	CALATION			
	(TA0004)			
009	DEFENSE	PROCESS	_	Iniezione di codice in processi
	EVASION	INJECTION		legittimi per eludere i controlli
	(TA0005),	(T1055)		basati sui processi e potenzial-
	PRIVI-			mente elevare i privilegi.
	LEGE ES-			
	CALATION			
	(TA0004)			

6.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti. Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione
CARBANAK	S0030	Malware utilizzato per ottenere accesso re-
		moto e persistente alle reti bancarie, usato da
		FIN7 per il furto di dati finanziari; include
		funzionalità di keylogging, screen capture, es-
		ecuzione comandi remoti, e movimenti later-
		ali.
GRIZZLY STEPPE RAT	S0414	Tool impiegato per esfiltrazione e comando re-
		moto; può comunicare con C&C via HTTP/S
		e consente operazioni furtive su sistemi com-
		promessi. Utilizzato in alcune operazioni ri-
		condotte a FIN7.
POWERSPLIT	S0373	Strumento PowerShell usato da FIN7 per es-
		eguire comandi da remoto e interagire con il
		sistema target tramite interpreti di script e
		comandi.
GHOST RAT	S0032	Remote Access Trojan (RAT) usato per
		sorveglianza e controllo remoto del sistema.
		Può registrare input, rubare file e scattare
		screenshot. Alcuni cluster attribuiti a FIN7
		hanno impiegato questo RAT.
SQLRAT	S0380	Tool basato su SQL Server utilizzato per es-
		eguire script malevoli, spesso impiegato in am-
		bienti Windows compromessi. FIN7 l'ha us-
		ato per mantenere accesso e lanciare comandi
		SQL.

Tool	ID MITRE	Descrizione
CARAMBA	S1015	Backdoor impiegata da FIN7 in campagne mi-
		rate. Fornisce controllo remoto del sistema e
		possibilità di caricare/eseguire altri payload.
JSSLoader	S1046	Downloader scritto in .NET utilizzato da
		FIN7 per ottenere payload aggiuntivi. È
		spesso distribuito tramite email di spearphish-
		ing.
Lizar	S1070	Framework modulare con capacità di ese-
		cuzione comandi, movimenti laterali, e rac-
		colta credenziali. Utilizzato da FIN7 in fasi
		post-compromissione.

Table 36: Tool associati al gruppo FIN7

6.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Op-	Sfruttato per vulnerabilità di ese-
	erativo	cuzione di codice remoto e privilege
		escalation. FIN7 ha utilizzato ex-
		ploit come CVE-2017-0199 (via docu-
		menti Office) e abusi di strumenti Win-
		dows legittimi (es. PowerShell, WMI,
		schtasks).
Microsoft Office	Applicazione	Spesso vettore iniziale via spearphish-
		ing con documenti malevoli contenenti
		macro o exploit come CVE-2017-0199
		e CVE-2018-0802, che consentono ese-
		cuzione remota di codice senza inter-
		azione dell'utente.
POS Systems (vari	Hardware/	Target primario di FIN7 per il furto
vendor)	Software	di dati di pagamento. Exploit e
		backdoor installati per l'intercettazione
		delle transazioni in memoria (RAM
		scraping).
JavaScript Engines	Runtime	Utilizzato in attacchi basati su payload
		JavaScript offuscati all'interno di doc-
		umenti HTML o JS inviati via email;
		può comportare esecuzione arbitraria
		nel browser o via interpreti embedded.
Remote Desktop	Servizio di	In alcuni casi FIN7 ha sfruttato RDP
Protocol (RDP)	rete	esposto pubblicamente con credenziali
		deboli o rubate per movimenti laterali
		e persistenza, senza necessità di exploit
		software.
SQL Server	Database	Targetato in fase post-exploitation per
		movimenti laterali o esecuzione di co-
		mandi tramite SQL RAT; sfruttamento
		di configurazioni deboli o credenziali
		statiche.

Table 37: Prodotti vulnerabili

6.6 IoC

Gli *Indicators of Compromise* (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del report originale (Pag. 8-12). In questa sezione finale del PDF è possibile trovare esempi di hash, nomi di file, URL malevoli, domini di command and control, e altri indicatori tecnici associati alle varie famiglie di malware descritte nel rapporto

6.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Simulazione spear- phishing	GoPhish	Invio di email mirate contenenti allegati o link malevoli. Utile per testare la resilienza degli utenti a campagne simili a quelle condotte da FIN7.
Generazione documenti malevoli	Metasploit	Creazione di documenti Office (doc, docm) con macro VBA o exploit (es. CVE-2017-0199) per simulare vettori iniziali d'infezione.
Accesso iniziale / Payload delivery	Metasploit	Deploy di stager tramite macro nei documenti allegati. Setup di listener e C2 per gestire l'infezione.
Privilege escalation	Metasploit (local exploit)	Ricognizione dei privilegi sul sistema e sfruttamento di vulnerabilità locali per el- evare i privilegi (es. token impersonation o exploit LPE).
Credential dumping	Mimikatz	Estrazione di hash, password in chiaro, e credenziali da LSASS e altri store locali.

Fase	Tool suggerito	Note operative
Movimento laterale	PsExec, RDP	Utilizzo di credenziali rubate per accedere ad altri host nella rete tramite servizi remoti.
Persistenza	Registry RunKeys, Scheduled Tasks	Installazione di persistence (fileless o tramite backdoor), utilizzando task pianificati o chiavi di registro.
C2 e controllo remoto	Metasploit	Gestione interattiva dei target compromessi tramite beacon o agent. Comunicazione HTTP/HTTPS simile a quella usata da FIN7.
Esfiltrazione dati	Rclone, Metasploit	Simulazione di furto di file sensibili, upload verso cloud o esfiltrazione tramite DNS tunneling.
Simulazione attac- chi DoS (impatto)	Hping3, Slowloris, Metasploit auxiliary	Simulazione di attività distruttive (opzionali per FIN7) su sistemi bersaglio controllati in laboratorio.

Table 38: Tool consigliati per la simulazione in ambiente di laboratorio

7 APT Sandworm

Introduzione

APT Sandworm, noto anche come TeleBots, Voodoo Bear o Iron Viking, è un gruppo cybermilitare avanzato presumibilmente legato all'intelligence militare russa, attivo almeno dal 2010. È considerato uno degli attori più temuti nel panorama delle minacce informatiche di tipo statale, con una chiara agenda geopolitica e militare. Sandworm è noto per aver condotto attacchi sofisticati e distruttivi contro infrastrutture critiche, enti governativi, organizzazioni di sicurezza e società energetiche in Europa e Nord America, con particolare attenzione all'Europa orientale e all'Ucraina.

Le tecniche utilizzate dal gruppo comprendono spear phishing mirato con allegati malevoli in formato Word o Excel contenenti macro dannose, l'uso di malware sofisticati come BlackEnergy, Industroyer/CrashOverride, NotPetya, e Cyclops Blink, e l'implementazione di backdoor custom e wiper per causare interruzioni operative gravi e permanenti. Sandworm sfrutta inoltre strumenti legittimi come PowerShell e Cobalt Strike per mantenere la persistenza e muoversi lateralmente nei network compromessi. Le operazioni di Sandworm sono spesso caratterizzate da una profonda conoscenza delle infrastrutture industriali e dei sistemi di controllo ICS/SCADA. Le sue caratteristiche principali includono un elevato livello di coordinamento militare, capacità tecnica avanzata e una propensione all'uso di tattiche distruttive e cyber sabotaggi, rendendolo uno dei gruppi APT più pericolosi e difficili da contrastare a livello globale. Le sue campagne hanno avuto impatti significativi su reti elettriche, sistemi di comunicazione e infrastrutture critiche, rappresentando una minaccia costante alla sicurezza nazionale di numerosi paesi.

Tra i vari report su **sandworm** abbiamo analizzato quello che ci forniva il maggior numero di informazioni operative e tecniche.

7.1 CrashOverride

Il **report CrashOverride** è un'analisi approfondita delle operazioni del gruppo che ha utilizzato tecniche di **cyber sabotaggio** mirate contro **infrastrutture critiche**, in particolare **sistemi di controllo industriale** (ICS) nel settore energetico, con attacchi documentati a partire dal **2016**. Il report evidenzia l'impatto devastante di tali operazioni, come l'interruzione di forniture elettriche su larga scala, con particolare attenzione agli eventi in Ucraina.

Il documento descrive l'impiego di tecniche sofisticate che coinvolgono protocolli ICS specifici, consentendo al gruppo di interagire direttamente con dispositivi di controllo industriale quali relay elettrici e sistemi SCADA. Vengono analizzate le modalità con cui sono state create backdoor per garantire persistenza e controllo remoto, la capacità di cancellare log, nonché l'integrazione con altri strumenti malevoli come BlackEnergy. Le tattiche descritte nel report includono fasi di spear phishing, compromissioni di rete preesistenti, ricognizione interna e movimenti laterali volti a identificare i sistemi ICS critici. Le azioni culminano in attacchi mirati che provocano disabilitazioni tem-

poranee o permanenti di componenti infrastrutturali fondamentali, con l'obiettivo di causare danni fisici e interruzioni di servizio significative.

Il report sottolinea come la natura altamente specializzata e il potenziale distruttivo delle operazioni analizzate rendano CrashOverride uno dei casi più significativi di **cyber sabotaggio** contro infrastrutture critiche, con importanti implicazioni per la sicurezza nazionale e la resilienza dei sistemi energetici.

7.2 Analisi Vulnerabilità

Nel corso dell'analisi di questo report è stata identificata la seguente vulnerabilità:

Campo	Valore
cve	CVE-2015-5374
${ m cvss ext{-}score}$	7.8
${ m cvss\text{-}bt_severity}$	HIGH
${ m cvss ext{-}bt ext{-}vector}$	AV:N/AC:L/Au:N/C:N/I:N/A:C/E:H
${ m cvss_version}$	2.0
base_score	7.8
base_severity	HIGH
$base_vector$	AV:N/AC:L/Au:N/C:N/I:N/A:C
assigner	cve@mitre.org
$published_date$	2015-07-18T10:59Z
epss	0.83908
cisa_kev	False
vulncheck_kev	True
exploitdb	True
metasploit	True
nuclei	False
$\mathrm{poc}_{ ext{-}}\mathrm{github}$	True
cwe	CWE-19: Data Processing Errors
cpe	libav (multimedia framework)

La tabella riportata sintetizza le informazioni chiave relative alla vulnerabilità CVE-2015-5374, classificata con un punteggio CVSS di 7.8 e severità HIGH. Questa vulnerabilità, nota come *Use After Free* (CWE-416), è stata pubblicata il 18 luglio 2015 e riguarda principalmente la libreria libav, un framework multimediale. La valutazione del rischio evidenzia un impatto significativo sulla disponibilità del sistema, mentre l'attacco

può essere eseguito da remoto senza autenticazione. Sono disponibili exploit pubblici e moduli Metasploit per questa vulnerabilità, indicando un elevato potenziale di sfruttamento. Nonostante non sia inclusa nella KEV di CISA, risulta presente in altri database di vulnerabilità e proof-of-concept su GitHub.

Le informazioni temporali relative a CVE-2015-5374 sono le seguenti:

Punto	Dettaglio
Tipo	Vulnerabilità di tipo Use After Free in libav (framework
	multimediale), che può consentire esecuzione arbitraria
	di codice.
Divulgazione	Divulgata pubblicamente il 18 luglio 2015.
Zero day?	Non risulta sfruttata come zero-day.
Patch	Patch di sicurezza pubblicata da Siemens a luglio 2015.
Utilizzo nel mal-	Il modulo SIPROTEC DoS di CrashOverride sfrutta la
ware	CVE-2015-5374 per mettere fuori uso i dispositivi di pro-
	tezione, ampliando l'impatto sull'infrastruttura elettrica
	e facilitando ulteriori attacchi come l'islanding delle sot-
	tostazioni.

Table 39: Dettagli temporali per CVE-2015-5374

7.3 TTP MITRE ATT&CK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique		Sub-technique	Descrizione
001	IMPACT	DISK W	PE		Gli avversari possono cancellare o
	(TA0040)	(T1561)			corrompere i dati del disco su sis-
					temi specifici o su larga scala per
					interrompere la disponibilità delle
					risorse di sistema e di rete.

002	IMPACT	FIRMWARE	_	Gli avversari possono sovrascri-
	(TA0040)	CORRUPTION		vere o corrompere la memoria
		(T1495)		flash del BIOS o di altri firmware,
				rendendo i dispositivi inoperabili
				o incapaci di avviarsi, negando
				così la disponibilità del sistema o
				dei dispositivi.
003	COMMAND	APPLICATION	APPLICATION	Gli avversari possono comunicare
	AND CON-	LAYER PRO-	LAYER PRO-	usando protocolli del livello ap-
	TROL	TOCOL	TOCOL: WEB	plicativo associati al traffico web
	(TA0011)	(T1071)	PROTOCOLS	per evitare il rilevamento e con-
			(T1071.001)	fondersi con il traffico esistente.
				Il backdoor apre un canale HTTP
				verso un C2 esterno tramite proxy
				interno.
004	PERSIS-	CREATE OR		Gli avversari possono creare o
	TENCE	MODIFY SYS-		modificare processi di sistema per
	(TA0003)	TEM PROCESS		eseguire ripetutamente payload
		(T1543)		malevoli come parte del meccan-
				ismo di persistenza.
005	COMMAND	PROXY	PROXY: INTER-	Gli avversari possono usare un
	AND CON-	(T1090)	NAL PROXY	proxy per dirigere il traffico
	TROL		(T1090.001)	tra sistemi o come intermediario
	(TA0011)			per le comunicazioni verso un
				C2, evitando connessioni dirette
				all'infrastruttura di comando. Il
				malware contatta un proxy locale
1			i .	1

006	COMMAND	APPLICATION	APPLICATION	Gli avversari possono comunicare
	AND CON-	LAYER PRO-	LAYER PRO-	usando protocolli web per con-
	TROL	TOCOL	TOCOL: WEB	fondersi con il traffico normale ed
	(TA0011)	(T1071)	PROTOCOLS	evitare il filtraggio di rete.
			(T1071.001)	
007	COMMAND	APPLICATION	APPLICATION	Gli avversari possono comunicare
	AND CON-	LAYER PRO-	LAYER PRO-	usando protocolli del livello ap-
	TROL	TOCOL	TOCOL: WEB	plicativo associati al traffico web
	(TA0011)	(T1071)	PROTOCOLS	per evitare il rilevamento.
			(T1071.001)	
008	PRIVILEGE	CREATE OR		Gli avversari possono creare o
	ESCA-	MODIFY SYS-		modificare processi di sistema per
	LATION	TEM PROCESS		ottenere privilegi elevati ed es-
	(TA0004)	(T1543)		eguire payload malevoli.
009	EXECUTION	COMMAND	_	Gli avversari possono abusare di
	(TA0002)	AND SCRIPT		interpreti di comandi e script per
		INTER-		eseguire comandi, script o binari.
		PRETER		
		(T1059)		
010	PERSIS-	CREATE OR	_	Gli avversari possono creare o
	TENCE	MODIFY SYS-		modificare processi di sistema per
	(TA0003)	TEM PROCESS		mantenere la persistenza del mal-
		(T1543)		ware tra i riavvii del sistema.
011	PERSIS-	CREATE OR	_	Creazione o modifica di processi
	TENCE	MODIFY SYS-		di sistema per garantire persis-
	(TA0003)	TEM PROCESS		tenza del payload malevolo.
		(T1543)		
012	EXECUTION	SHARED MOD-	_	Gli avversari possono eseguire
	(TA0002)	ULES (T1129)		payload malevoli caricando mod-
				uli condivisi.

013	PERSISTENC	ECREATE OR	_	Persistenza attraverso la modifi-
	(TA0003)	MODIFY SYS- TEM PROCESS (T1543)		ca/creazione di processi di sistema.
014	IMPACT (TA0040)	DATA DE- STRUCTION (T1485)	_	Gli avversari possono distruggere dati e file su sistemi specifici o su larga scala per interrompere la disponibilità di sistemi, servizi e risorse di rete.
015	EXECUTION (TA0002)	SHARED MOD- ULES (T1129)	_	Esecuzione di payload tramite caricamento di moduli condivisi.
016	PERSIST- ENCE (TA0003)	CREATE OR MODIFY SYS- TEM PROCESS (T1543)		Persistenza attraverso la creazione o modifica di processi di sistema.
017	EXECUTION (TA0002)	SHARED MOD- ULES (T1129)	_	Esecuzione di payload tramite moduli condivisi.
018	EXECUTION (TA0002)	SCHEDULED TASK/JOB (T1053)	_	Gli avversari possono abusare delle funzionalità di scheduling per eseguire codice malevolo in modo ricorrente o iniziale.
019	IMPACT (TA0040)	DATA DE- STRUCTION (T1485)	_	Gli avversari possono distruggere dati e file per causare indisponi- bilità di sistemi e risorse.
020	IMPACT (TA0040)	SERVICE STOP (T1489)		Gli avversari possono fermare o disabilitare servizi di sistema per renderli indisponibili agli utenti legittimi.

021	IMPACT (TA0040)	DATA DE- STRUCTION (T1485)		Distruzione dati e file su sistemi specifici o su larga scala per interrompere la disponibilità di sistemi e risorse.
022	IMPACT (TA0040)	DATA DE- STRUCTION (T1485)		Distruzione dati e file su sistemi specifici o su larga scala per interrompere la disponibilità di sistemi e risorse.
023	PRIVILEGE ESCA- LATION (TA0004)	CREATE OR MODIFY SYS- TEM PROCESS (T1543)		Creazione o modifica di processi di sistema per ottenere privi- legi elevati ed eseguire payload malevoli.
024	DEFENSE EVASION (TA0005)	MASQUERA- DING (T1036)		Gli avversari possono manipolare le caratteristiche degli artefatti per farli apparire legittimi o benigni a utenti e strumenti di sicurezza.
025	PRIVILEGE ESCA- LATION (TA0004)	CREATE OR MODIFY SYS- TEM PROCESS (T1543)	_	Creazione o modifica di processi di sistema per ottenere privilegi elevati.
026	IMPACT (TA0040)	SERVICE STOP (T1489)	_	Gli avversari possono fermare o disabilitare servizi di sistema per renderli indisponibili agli utenti legittimi.
027	IMPACT (TA0040)	MANIPULATION OF CONTROL (T0833)	\	Manipolazione dei processi fisici industriali, modificando parametri, tag o valori per causare perdita di visibilità e confusione operativa.

028	INHIBIT	DENIAL	OF	_	Gli avversari possono eseguire at-
	RESPONSE	SERVICE			tacchi DoS per interrompere le
	FUNCTION	(T0814)			funzionalità attese dei dispositivi
	(TA0107)				industriali.

7.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti. Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione
INDUSTROYER	S0604	Malware modulare progettato per colpire sistemi ICS, in particolare sottostazioni elettriche. Utilizzato nell'attacco alla rete elettrica ucraina del 2016, è noto anche come CRASHOVERRIDE.
INDUSTROYER2	S1072	Variante aggiornata di Industroyer scoperta nel 2022, focalizzata sull'utilizzo del proto- collo IEC-104 per colpire sottostazioni ad alta tensione.
BLACKENERGY	S0089	Toolkit malware usato per attacchi DDoS, sabotaggio e accesso remoto ai sistemi. Impiegato nell'attacco alla rete elettrica ucraina del 2015; capace di persistence, credential access e command execution.
KILLDISK	S0448	Malware distruttivo utilizzato in congiunzione con BlackEnergy per cancellare dati e danneggiare i sistemi delle vittime. Finalizzato al sabotaggio e alla negazione del servizio (DoS permanente).

Table 41: Tool associati alla campagna CRASHOVERRIDE

7.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
SCADA/ICS Soft- ware	Applicazione industriale	Target principale degli attacchi Sandworm tramite moduli malevoli personalizzati (es. IEC-101, IEC-104, OPC). Vulnerabilità sfruttate per esecuzione comandi su sottostazioni elettriche.
Microsoft Windows	Sistema Operativo	Utilizzato come piattaforma di ese- cuzione del malware Industroyer/In- dustroyer2 e per l'installazione di KillDisk. Sfruttate vulnerabilità note per privilege escalation e persistenza.
Protocollo IEC-104	Protocollo industriale	Manipolato attivamente dal modulo 104.dll per inviare comandi falsificati (es. apertura/chiusura interruttori), causando blackout nelle sottostazioni.
OPC Data Access	Middleware industriale	Colpito tramite moduli che abusano di interfacce COM per interrompere la comunicazione tra SCADA e dispositivi di campo. Nessuna vulnerabilità nota specifica, ma abuso della logica di protocollo.
Remote Management Services	Servizio di rete	Utilizzati per movimenti laterali e persistenza (es. PsExec, SMB, RDP). L'assenza di segmentazione di rete ha facilitato l'escalation da IT a OT.
Sistemi HMI (Human-Machine Interface)	Interfaccia operatore	Target secondario per causare confusione o blocchi operativi; in alcuni casi manipolati per falsificare lo stato di impianti elettrici.

Table 42: Prodotti e componenti vulnerabili nelle campagne Sandworm associate a ${\tt CRASHOVERRIDE}$

7.6 IoC

Gli *Indicators of Compromise* (IoC) relativi alla campagna **CRASHOVERRIDE**, condotta dal gruppo APT **Sandworm**, sono riportati in dettaglio nel report tecnico pubblicato da *ESET* in collaborazione con *Dragos*. Tali indicatori includono hash SHA256 dei moduli malevoli (es. 104.dll, opc.dll), indirizzi IP e domini associati all'infrastruttura C&C, nonché regole YARA per l'identificazione di file e comportamenti riconducibili al malware.

Per un'analisi completa e l'elenco degli IoC raccolti durante l'analisi della campagna, si rimanda alle pagine 28 e 29 del report ufficiale.

7.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Accesso iniziale (phishing)	GoPhish	Simulazione di campagne spear-phishing per ottenere accesso iniziale tramite allegati o link malevoli.
Esecuzione codice su host ICS	Metasploit	Simulazione dell'iniezione di payload in ambienti simulati o VM ICS (es. con moduli crafted simili a 104.dll).
Movimento laterale	CrackMapExec	Simulazione di movimenti laterali tramite SMB, WMI e autenticazione su altri nodi ICS.
Interazione con protocolli ICS	Scapy	Emulazione di comandi IEC-104, DNP3 o IEC 61850 inviati da host compromessi a dispositivi simulati.
Impatto (sabotaggio ICS)	Custom script Python + Scapy	Invio di pacchetti ICS falsificati per disabilitare o modificare lo stato di breaker simulati (interruttori).
Persistenza e accesso remoto	Metasploit persistence	Configurazione di backdoor persistenti e tunneling per accesso remoto anche dopo reboot.
C2 e controllo remoto	Metasploit	Comando e controllo centralizzato di più agenti, incluso supporto a moduli custom su target ICS.
Logging e osserv- abilità attacco	Wireshark	Analisi del traffico ICS malevolo e logging delle operazioni per valutazione forense.

Table 43: Tool consigliati per la simulazione in ambiente controllato

8 Extra: Ransomware Conti

Introduzione

Nel mondo della **cybersecurity**, pochi eventi hanno fatto tanto rumore quanto il caso

ContiLeaks. Fino al 2022, il gruppo ransomware Conti era uno dei più temuti e attivi al mondo: colpiva aziende, ospedali e istituzioni pubbliche, criptando i dati e chiedendo riscatti milionari. Si trattava di un vero e proprio "business criminale" gestito in modo quasi aziendale, con gerarchie, stipendi e persino bonus per i cybercriminali più produttivi.

Tutto cambia nel febbraio 2022, quando scoppia la guerra tra Russia e Ucraina. Il gruppo Conti si schiera apertamente a favore della Russia, pubblicando un comunicato che promette ritorsioni contro chiunque attacchi il governo russo. Questa presa di posizione causa una spaccatura interna: alcuni membri, probabilmente di origine ucraina, si sentono traditi e decidono di reagire.

È così che nasce **ContiLeaks**: uno o più membri interni cominciano a pubblicare online migliaia di **chat interne** del gruppo, **manuali di istruzioni**, liste di vittime, strumenti e persino il **codice sorgente** del ransomware. Per la prima volta, il mondo della **sicurezza informatica** può vedere da vicino come lavora una gang di ransomware: dai piani per attaccare grandi aziende ai trucchi per non farsi scoprire, passando per discussioni quotidiane, litigi interni e dettagli su come si spartiscono i soldi dei riscatti.

Questo **leak** ha rappresentato un vero colpo di scena: le informazioni rese pubbliche hanno permesso alle aziende di difendersi meglio, agli esperti di sicurezza di migliorare le strategie di prevenzione e alle **forze dell'ordine** di identificare alcuni membri del gruppo. Alla fine, tutta questa esposizione ha contribuito a indebolire e disgregare il gruppo Conti, che da allora non è più stato lo stesso.

ContiLeaks è così diventato uno degli esempi più clamorosi di come la criminalità informatica possa essere "ferita dall'interno", e di come la collaborazione, anche involontaria, tra nemici possa cambiare le regole del gioco nella cybersicurezza.

8.1 ContiLeaks

Il report "Analysis of Conti Leaks" analizza una delle più importanti fughe di dati della cybercriminalità recente, relativa al gruppo ransomware Conti. Il documento si basa sull'analisi di chat interne, strumenti e tutorial usati dal gruppo, resi pubblici tramite l'account Twitter "ContiLeaks" da febbraio 2022.

Il report descrive in dettaglio l'organizzazione interna del gruppo Conti, la divisione dei ruoli tra i membri e le loro modalità operative, simili a quelle di una vera e propria

startup tecnologica. Vengono illustrate le principali tecniche di attacco, come lo sfruttamento di dispositivi IoT, servizi RDP e Domain Controller Windows. Sono inoltre analizzati strumenti come TrickBot, CobaltStrike, Emotet e altri tool interni per la gestione dei botnet e delle vittime.

La parte sulle **vittime** mostra che Conti ha preso di mira **organizzazioni di ogni dimensione**, soprattutto nei settori **servizi** e **manifatturiero**, con particolare incidenza su aziende **statunitensi**. Il report sottolinea anche l'uso massiccio di **phishing**, **social engineering**, l'acquisto o lo sviluppo di **exploit** e la negoziazione di accessi tramite **broker** specializzati.

Infine, vengono analizzati due **tutorial interni**: uno rivolto agli "**hacker**" e uno ai "**ricercatori**", che forniscono consigli su come penetrare nelle reti delle vittime, eludere i sistemi di difesa e consolidare la presenza all'interno dei sistemi compromessi.

L'analisi offre quindi una panoramica completa su come agiscono le **organizzazioni** ransomware moderne, sia dal punto di vista **tecnico** che **gestionale**, e suggerisce spunti utili per la **difesa delle reti aziendali** da queste minacce.

8.2 Analisi Vulnerabilità

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilita':

Campo	Valore
cve	CVE-2020-5135
cvss-bt_score	9.8
cvss-bt_severity	CRITICAL
${ m cvss\text{-}bt_vector}$	CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H
${ m cvss_version}$	3.1
base_score	9.8
base_severity	CRITICAL
base_vector	CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
assigner	PSIRT@sonicwall.com
$published_date$	2020-10-12T11:15Z
epss	0.35654
cisa_kev	True
vulncheck_kev	True
exploitdb	False
metasploit	False
nuclei	False
$ m poc_github$	False
cwe	CWE-120: Buffer Copy without Checking Size of Input
	(Classic Buffer Overflow)
cpe	SonicWall SonicOS 6.5.4.7-79n e precedenti

La vulnerabilità CVE-2020-5135 interessa SonicWall SonicOS (versione 6.5.4.7-79n e precedenti) e permette attacchi di tipo buffer overflow, con rischio critico (CVSS 9.8). È riconosciuta nei principali database di sicurezza, ma al momento non risultano exploit pubblici o moduli Metasploit disponibili.

Le informazioni temporali sui CVE relative a ContiLeaks sono le seguenti:

Punto	Dettaglio		
Tipo	Vulnerabilità di esecuzione di codice remoto su dispositivi SonicWall (SonicOS), sfruttabile via pacchetti UDP appositamente creati (stack overflow).		
Divulgazione	Divulgata pubblicamente il 14 ottobre 2020, da Secura, con advisory e PoC pubblici.		
Zero day?	Non utilizzata come zero-day nei casi noti: patch e dettagli erano già pubblici prima dello sfruttamento da parte di Conti.		
Patch	SonicWall ha rilasciato patch e mitigazioni ufficiali dal 13 ottobre 2020 per tutte le versioni vulnerabili di SonicOS.		
Utilizzo nel mal- ware	Discussioni nei leak mostrano che Conti valutava attivamente l'acquisto e la ricerca di exploit per SonicWall. Gli exploit per CVE-2020-5135 sono stati utilizzati per ottenere accesso iniziale su target non aggiornati.		

Table 44: Informazioni temporali per CVE-2020-5135 (ContiLeaks)

8.3 TTP MITRE ATT&CK

Le TTP che abbiamo rilevato sono le seguenti :

ID	Tactic	Technique	Sub-technique	Descrizione
001	IMPACT	DATA LEAK	Data Leaked	Diffusione pubblica di dati violati
	(TA0040)	(T1565.002)	(T1565.002)	e pubblica umiliazione delle vit-
				time per aumentare la pressione e
				ottenere il pagamento del riscatto
				dalle organizzazioni colpite.
002	RECONNA-	SEARCH	RESEARCH	Acquisto e analisi di router/fire-
	ISSANCE	VICTIM-	VULNER-	wall Sonicwall e Cisco per individ-
	(TA0043)	OWNED DE-	ABILITIES	uare e sviluppare exploit su vul-
		VICES (T1595)	(T1595.002)	nerabilità note, come CVE-2020-
				5135.

003	INITIAL ACCESS (TA0001)	PHISHING (T1566)	 I membri di Conti si affidano fortemente a campagne di spam e phishing, spesso utilizzando software specializzato per automatizzare e gestire operazioni di phishing su larga scala nella fase di accesso iniziale.
004	DEFENSE EVASION (TA0005)	OBFUSCATED FILES OR IN- FORMATION (T1027)	Il gruppo lavora costantemente per eludere gli antivirus, sviluppando e utilizzando tecniche per aggirare o disabilitare i software di sicurezza e sfuggire al rilevamento.
005	INITIAL $ACCESS$ $(TA0001)$ $/ COL-$ $LECTION$ $(TA00009)$	VALID AC- COUNTS (T1078) / EMAIL COL- LECTION (T1114)	Il gruppo ha ottenuto accesso non autorizzato a uno o più account email di individui specifici, probabilmente per raccogliere informazioni sensibili o facilitare ulteriori compromissioni.
005	INITIAL ACCESS (TA0001)	VALID AC- COUNTS (T1078)	I membri del gruppo negoziano con broker di accesso per ottenere accessi non autorizzati agli ambienti delle vittime, spesso acquistando credenziali o altri metodi di accesso.
005	INITIAL ACCESS (TA0001)	VALID AC- COUNTS (T1078)	I membri del gruppo discutono di avere un insider all'interno di alcune banche indiane per facilitare l'accesso non autorizzato a sistemi o dati interni.

006	INITIAL	SEARCH	_	I dispositivi IoT sono considerati
	ACCESS	VICTIM-		un'importante superficie di at-
	(TA0001)	OWNED DE-		tacco iniziale, spesso presi di
		VICES (T1595)		mira per la loro esposizione, con-
				figurazioni di sicurezza deboli e
				vulnerabilità, fornendo un possi-
				bile punto di ingresso nelle reti
				bersaglio.
007	INITIAL	EXTERNAL	_	L'RDP (Remote Desktop Proto-
	ACCESS	REMOTE SER-		col) è raccomandato come back-
	(TA0001)	VICES (T1133)		door iniziale, consentendo agli at-
				taccanti di stabilire accesso re-
				moto e mantenere la persistenza
				sfruttando servizi remoti esposti
				o compromessi nelle reti delle vit-
				time.
008	PERSISTENC	EMANIPULATION	7 —	I server Active Directory sono
	(TA0003)	(T1098)		spesso l'obiettivo principale degli
				attaccanti prima di stabilire la
				persistenza, poiché compromet-
				terli permette movimento lat-
				erale esteso e controllo persistente
				sull'ambiente della vittima.

009	INITIAL	EXPLOIT	_	Qualsiasi servizio di rete pub-
	ACCESS	PUBLIC-		blico, come un indirizzo IP pub-
	(TA0001)	FACING AP-		blico con una porta aperta, è
		PLICATION		considerato un potenziale punto
		(T1190)		di ingresso per gli attaccanti che
				sfruttano vulnerabilità o errori di
				configurazione per ottenere ac-
				cesso iniziale.
010	INITIAL	EXTERNAL	_	Servizi legittimi come VPN, thin
	ACCESS	REMOTE SER-		client, RDWeb e RDP esposti
	(TA0001),	VICES (T1133)		a Internet possono essere sfrut-
	PERSIS-			tati dagli attaccanti per creare
	TENCE			una "backdoor ideale", consen-
	(TA0003)			tendo accesso remoto persis-
				tente e spesso poco rilevabile
				nell'ambiente della vittima.
011	CREDENTIAL	CREDENTIAL	_	Gli attaccanti cercano credenziali
	ACCESS	DUMPING		e computer accessibili all'interno
	(TA0006)	(T1003)		della rete bersaglio per ottenere
				accesso ai servizi. L'uso di pass-
				word deboli o riutilizzate facilita
				la compromissione tramite rac-
				colta credenziali, forza bruta o
				uso di account validi rubati.

012	LATERAL	REMOTE	_	L'accesso a nodi critici come Ac-
	MOVE-	SERVICES		tive Directory permette agli at-
	MENT	(T1021), LAT-		taccanti di eseguire movimento
	(TA0008)	ERAL TOOL		laterale esteso, usando servizi re-
		TRANSFER		moti e trasferimento di strumenti
		(T1570)		per spostarsi tra i sistemi ed ele-
				vare i privilegi.
013	RECONNA-	GATHER	GATHER VIC-	Alcuni tutorial includono
	ISSANCE	VICTIM IDEN-	TIM ORGA-	istruzioni su come raccogliere
	(TA0043)	TITY IN-	NIZATION	informazioni utili su persone
		FORMATION	INFORMATION	e organizzazioni tramite pi-
		(T1589)	(T1589.002)	attaforme social come LinkedIn,
				per preparare e personalizzare
				ulteriori fasi dell'attacco.

8.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti.Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione
BazarLoader	S0534	Loader modulare utilizzato per il caricamento di payload dannosi e per fornire accesso iniziale alle reti delle vittime; spesso usato come punto di ingresso per ransomware.
TrickBot	S0266	Malware bancario evoluto in una piattaforma mod- ulare, usato per il furto di credenziali, la diffusione laterale in rete e l'installazione di altri malware come ransomware.

Tool	ID MITRE	Descrizione
Cobalt Strike	S0154	Framework legittimo per il penetration testing
		spesso abusato dagli attaccanti per il comando e
		controllo, la movimentazione laterale e il rilascio
		di payload su sistemi compromessi.
Emotet	S0367	Malware modulare inizialmente nato come trojan
		bancario, ora usato principalmente come dropper
		per altri malware e ransomware all'interno delle
		reti compromesse.

Table 46: Tool principali associati al framework MITRE ATT&CK.

8.5 Informazioni sui prodotti vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Operativo	Vulnerabilità di Active Directory e Domain Controller sfruttate tramite exploit noti (es. Zerologon), misconfigurazioni comuni e servizi esposti (come RDP e VPN) che possono essere abusati per accesso iniziale e movimento laterale nella rete.
SonicWall Firewall	Dispositivo di rete	Vulnerabilità come CVE-2020-5135 sfruttata tramite analisi diretta e sviluppo di exploit ad hoc, facilitando accesso iniziale o persistenza nella rete aziendale.
Cisco Router/Firewall	Dispositivo di rete	Dispositivi spesso target di ricerca e sviluppo exploit, specialmente se esposti su Internet, consentendo agli attaccanti di ottenere l'accesso iniziale alle reti aziendali.
Dispositivi IoT/OT (stampanti, PLC, smart firewall, router)	Dispositivo integrato	Frequentemente esposti e raramente aggiornati, con configurazioni di sicurezza deboli e vulnerabilità note, rappresentano un punto di ingresso privilegiato per l'attaccante.
WordPress e altri CMS	Applicazione Web	Possibile sfruttamento di vulnerabilità nei plugin o nel core dell'applicazione per ottenere accesso iniziale alle infrastrutture aziendali.
VPN, RDWeb, Thin Client	Servizi remoti	Servizi legittimi esposti pubblicamente possono essere sfruttati dagli attaccanti per ottenere persistenza e accesso continuativo, soprattutto in presenza di credenziali deboli o riutilizzate.

Table 47: Prodotti e superfici di attacco tipicamente sfruttati nelle campagne Conti

8.6 IoC

Gli Indicators of Compromise (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del **report originale**, all'interno dell'**appendice**. In questa sezione finale del **PDF** (pag 14) è possibile trovare esempi di hash, nomi di file, URL malevoli, domini di command and control, percorsi di debug e altri indicatori tecnici associati alle varie famiglie di malware descritte nel rapporto.

8.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, 'e possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi dell'attacco:

Fase	Tool suggerito	Note operative
Ricognizione iniziale	Recon-ng, the- Harvester, Spi- derFoot	Raccolta informazioni su domini, ind- irizzi email, e infrastruttura pubblica dell'organizzazione target.
Raccolta informazioni sugli utenti	LinkedIn, Sherlock, holehe	Ricerca di account social e username correlati agli utenti target tramite OSINT.
Simulazione phishing	GoPhish	Invio di email di phishing con allegati o link malevoli e monitoraggio delle aperture/click, in modo controllato.
Generazione payload e allegati malevoli	Metasploit Framework	Creazione di file Word/PDF con macro o exploit per la simulazione dell'accesso remoto iniziale.
Accesso remoto e post- exploitation	Metasploit Framework, Covenant, Powershell Empire	Gestione delle sessioni post-exploitation, raccolta credenziali e movimento laterale simulato.
Simulazione movimento laterale	Impacket, CrackMapExec	Esecuzione di comandi da remoto, rac- colta e utilizzo di credenziali, simulazione di attacchi "living off the land".
Esfiltrazione dati simulata	RClone, Ncat, rsync	Simulazione di trasferimento file da host compromessi verso server di test o storage cloud controllati dall'audit team.

Table 48: Fasi e tool open source per simulare una campagna Conti in modo legale

9 Extra: Ransomware BlackBasta

Introduzione

Black Basta è un ransomware emerso per la prima volta intorno ad aprile 2022 e rapidamente diventato uno dei gruppi più attivi nella scena del cybercrime. Si tratta di un ransomware as-a-service (RaaS), ovvero una piattaforma utilizzata da diversi

affiliati per condurre attacchi contro aziende e organizzazioni in tutto il mondo, in particolare nei settori manifatturiero, sanitario, servizi e infrastrutture critiche. Black Basta cifra i dati delle vittime, rendendoli inaccessibili, e contemporaneamente adotta la doppia estorsione: non solo richiede un riscatto per decriptare i file, ma minaccia anche di pubblicare dati sensibili rubati su un proprio sito dedicato (Basta News) nel dark web, per aumentare la pressione sulle vittime. Questo gruppo si distingue per l'utilizzo di tecniche di attacco avanzate, l'impiego di strumenti di living-off-the-land (cioè tool già presenti nei sistemi compromessi) e la capacità di colpire sia ambienti Windows sia server VMware ESXi. Le campagne di Black Basta sfruttano spesso l'accesso iniziale tramite phishing, exploit di vulnerabilità note, o acquisto di credenziali rubate, e includono una rapida escalation dei privilegi e movimento laterale nella rete. Una volta completata la fase di esfiltrazione dei dati, viene avviata la cifratura. In breve, Black Basta rappresenta oggi una delle principali minacce ransomware a livello globale, nota per la velocità d'azione, l'efficacia delle proprie tecniche di estorsione e la capacità di adattarsi a diversi target e infrastrutture IT.

9.1 Ransomware Roundup - Black Basta

Il report di FortiGuard Labs su **Black Basta** fornisce una panoramica aggiornata su questo ransomware, attivo dal 2022 e considerato tra i principali gruppi della scena. Black Basta prende di mira sia sistemi Windows sia server VMWare ESXi, colpendo aziende di vari settori, soprattutto in Europa e Nord America. Il gruppo adotta un modello *Ransomware-as-a-Service* (RaaS): mette a disposizione infrastruttura e malware a degli affiliati, che scelgono le vittime, rubano dati e avviano la cifratura dei file. Se il riscatto non viene pagato, i dati sottratti vengono pubblicati online (doppia estorsione). Per ottenere l'accesso iniziale, Black Basta sfrutta e-mail di spear-phishing, acquisto di credenziali tramite broker, e l'uso di malware come QakBot (QBot). Utilizza anche exploit noti come PrintNightmare (CVE-2021-34527) e Follina (CVE-2022-30190). Una volta entrati nella rete, gli affiliati usano strumenti come PsExec, PowerShell, Mimikatz, CobaltStrike, Netcat e altri per muoversi lateralmente e rubare dati (ad esempio con RClone) prima della cifratura. Il ransomware impiega algoritmi avanzati di cifratura (XChaCha20) e genera estensioni di file cifrati personalizzate. Su Windows è distribuito come eseguibile o DLL; su Linux/ESXi esiste una variante mirata ai file delle macchine

virtuali. La richiesta di riscatto viene presentata tramite un file di testo che istruisce la vittima a collegarsi a un sito Tor per la negoziazione. Il gruppo gestisce anche un sito "name and shame" su Tor dove pubblica i dati delle vittime che non pagano. Secondo i dati Fortinet, oltre il 60% delle vittime sono aziende statunitensi, ma sono colpiti anche Germania, Canada, Italia, UK e Slovenia. I settori più colpiti sono manifatturiero, costruzioni, servizi e retail. La maggior parte delle vittime ha subito la pubblicazione totale o parziale dei dati. Il report ricorda che le soluzioni Fortinet permettono di rilevare e bloccare Black Basta con firme antivirus e protezioni EDR. Viene sottolineata l'importanza di mantenere aggiornati antivirus e sistemi di rilevamento, oltre a implementare strategie di backup e segmentazione della rete per contenere i danni di attacchi simili.

9.2 Analisi Vulnerabilità

Nel corso dell'analisi di questo report sono state identificate le seguenti vulnerabilità:

Campo	Valore			
cve	CVE-2021-34527			
${ m cvss\text{-}bt_score}$	9.0			
cvss-bt_severity	HIGH			
${ m cvss\text{-}bt_vector}$	AV:N/AC:L/Au:S/C:C/I:C/A:C/E:H			
${ m cvss_version}$	2.0			
$base_score$	9.0			
base_severity	HIGH			
${\bf base_vector}$	AV:N/AC:L/Au:S/C:C/I:C/A:C			
assigner	secure@microsoft.com			
$published_date$	2021-07-02T22:15Z			
epss	0.94257			
cisa_kev	True			
vulncheck_kev	True			
exploitdb	False			
metasploit	True			
nuclei	False			
$\mathrm{poc_github}$	True			
cwe	NVD-CWE-noinfo: Insufficient Information			
cpe	Microsoft Windows 7/8.1/10/11. Windows Server			
	2008/2012/2016/2019/2022			

La tabella riporta una sintesi dettagliata delle principali informazioni relative alla vulnerabilità CVE-2021-34527, conosciuta anche come PrintNightmare. Vengono elencati tutti i parametri chiave per la valutazione del rischio, come il punteggio CVSS (9.0, severità HIGH), il vettore di attacco, la versione del sistema di scoring, e la presenza di exploit pubblici su vari framework (come Metasploit e GitHub). Sono indicati anche dettagli operativi come l'assigner della vulnerabilità, la data di pubblicazione, l'indice EPSS e la presenza nella lista CISA KEV. La voce CWE indica che, per questa

vulnerabilità, nelle fonti ufficiali non è disponibile una classificazione tecnica dettagliata, mentre la CPE fornisce un elenco compatto ma esplicativo dei sistemi operativi Microsoft Windows interessati, includendo tutte le versioni principali di client e server coinvolte nel 2021. La tabella permette di avere a colpo d'occhio sia la valutazione del rischio che la rilevanza operativa della vulnerabilità.

Campo	Valore	
cve	CVE-2022-30190	
cvss-bt_score	9.3	
cvss-bt_severity	HIGH	
${ m cvss ext{-}vector}$	AV:N/AC:M/Au:N/C:C/I:C/A:C/E:H	
cvss_version	2.0	
base_score	9.3	
base_severity	HIGH	
base_vector	AV:N/AC:M/Au:N/C:C/I:C/A:C	
assigner	secure@microsoft.com	
published_date	2022-06-01T20:15Z	
epss	0.93384	
cisa_kev	True	
vulncheck_kev	True	
exploitdb	False	
metasploit	True	
nuclei	False	
$ m poc_github$	True	
cwe	NVD-CWE-noinfo: Insufficient Information	
cpe	Microsoft Windows MSDT (Microsoft Support Diagnostic	
	Tool), v7,v8.1,v10,v11.	
	Windows Server 2008/2012/2016/2019/2022	

Questa tabella presenta una sintesi dettagliata delle principali informazioni riguardanti la vulnerabilità CVE-2022-30190, conosciuta anche come "Follina". Vengono riportati i valori di gravità secondo il sistema CVSS, il vettore di attacco e le informazioni di base come l'assegnazione, la data di pubblicazione e il punteggio EPSS che indica la probabilità di sfruttamento. Sono indicati anche i database e gli strumenti in cui la vulnerabilità è presente, come Metasploit e GitHub, nonché l'inclusione nei cataloghi CISA e Vulncheck. Il campo CWE indica che la classificazione specifica della vulnerabilità non è stata dettagliata ("Insufficient Information"), mentre il campo CPE riassume chiaramente i prodotti affetti, ovvero varie versioni di Microsoft Windows MSDT e i principali sistemi Windows Server. In questo modo, la tabella offre una panoramica immediata e completa per comprendere la pericolosità, la diffusione e i target della vulnerabilità.

Le informazioni temporali relative alle CVE contenute nel report analizzato per **Black-basta** sono le seguenti:

Punto	Dettaglio	
Tipo	Vulnerabilità di esecuzione di codice remoto tramite Microsoft	
	Support Diagnostic Tool (MSDT) sfruttando documenti Of-	
	fice malevoli (Word, RTF) per lanciare comandi sul sistema	
	vittima.	
Divulgazione	Pubblicata a fine maggio 2022, con exploit e PoC subito	
	disponibili in rete e rapidamente sfruttati in campagne re-	
	ali.	
Zero day?	Al momento della scoperta era zero-day; durante le principali	
	campagne Black Basta, era già nota e sfruttata in modo mas-	
	sivo su sistemi non aggiornati.	
Patch	Patch ufficiale rilasciata da Microsoft il 14 giugno 2022 (Patch	
	Tuesday).	
Utilizzo nel mal-	Utilizzata in attacchi mirati tramite allegati Word/RTF ve-	
ware	icolati con phishing, spesso per ottenere l'accesso iniziale alla	
	rete da parte di affiliati Black Basta.	

Table 49: Dettagli temporali per CVE-2022-30190 (Follina)

Punto	Dettaglio	
Tipo	Vulnerabilità di escalation dei privilegi tramite Print Spooler	
	di Windows ("PrintNightmare"), che permette esecuzione di	
	codice remoto.	
Divulgazione	Divulgata pubblicamente a giugno 2021, con exploit disponi-	
	bili su GitHub nel giro di pochi giorni.	
Zero day?	Sfruttata come zero-day poco dopo la pubblicazione; successi-	
	vamente il malware colpiva soprattutto sistemi non patchati.	
Patch	Patch ufficiale pubblicata da Microsoft a luglio 2021.	
Utilizzo nel mal-	Sfruttata per movimento laterale ed escalation di privilegi du-	
ware	rante attacchi ransomware come Black Basta, spesso come	
	parte di catene di exploit più articolate.	

Table 50: Dettagli temporali per CVE-2021-34527 (PrintNightmare)

9.3 TTP MITRE ATT&CK

Le TTP che abbiamo rilevato sono le seguenti:

ID	Tactic	Technique	Sub-technique	Descrizione
001	IMPACT	DATA EN-	_	Gli attaccanti possono cifrare
	(TA0040)	CRYPTION		dati su sistemi target o su
		FOR IMPACT		molti sistemi in rete per in-
		(T1486)		terrompere la disponibilità delle
				risorse, chiedendo poi un riscatto
				per decriptare i file e ripristinare
				l'accesso.

002	IMPACT	INHIBIT SYS-		Gli avversari possono creare e
	(TA0040)	TEM RECOV-		gestire infrastrutture come por-
		ERY (T1490)		tali di pagamento per facil-
				itare il pagamento del riscatto e
				il ripristino delle operazioni da
				parte delle vittime.
003	LATERAL	LATERAL	_	Gli attaccanti possono spostarsi
	MOVE-	TOOL TRANS-		lateralmente nella rete trasfer-
	MENT	FER (T1570)		endo strumenti o malware tra i
	(TA0008)			sistemi per ottenere l'accesso ad
				altri asset o dati sensibili.
004	DEFENSE	SIGNED BI-	_	Gli attaccanti possono abusare di
	EVASION	NARY PROXY		binari di sistema legittimi e fir-
	(TA0005)	EXECUTION		mati (LOLbins) già presenti nel
		(T1218)		sistema per svolgere azioni malev-
				ole ed eludere i controlli di si-
				curezza.
005	COLLECTION	DATA STAGED	_	Gli avversari possono cercare e
	(TA0009)	(T1074)		raccogliere file sensibili, aggre-
				gando i dati prima di esfiltrarli
				come parte della doppia estor-
				sione.
006	EXFILTRA-	EXFILTRATION	_	Gli attaccanti possono trasferire
	TION	OVER WEB		i dati raccolti a infrastrutture re-
	(TA0010)	SERVICE		mote tramite web services, cloud
		(T1567)		storage o altri canali nascosti.

007	INITIAL	PHISHING	SPEARPHISHING	Gli avversari possono inviare
	ACCESS	(T1566)	LINK	email mirate con link o allegati
	(TA0001)		(T1566.002)	malevoli, cercando di ingannare il
				destinatario per ottenere l'accesso
				iniziale all'ambiente della vittima.
008	DEFENSE	OBFUSCATED		Gli attaccanti possono personal-
	EVASION	FILES OR IN-		izzare il ransomware per ciascuna
	(TA0005)	FORMATION		vittima, ad esempio inserendo un
		(T1027)		Login ID unico o estensioni di file
				custom, rendendo l'attacco più
				difficile da rilevare e facilitando la
				negoziazione.
009	IMPACT	Extortion	_	Dopo la cifratura dei file e la pub-
	(TA0040)	(T1657)		blicazione della nota di riscatto,
				la vittima viene istruita a con-
				tattare il gruppo tramite servizi
				nascosti Tor, garantendo anoni-
				mato agli attaccanti.
010	IMPACT	DATA EN-	_	Il ransomware può essere pro-
	(TA0040)	CRYPTION		grammato per aprire automatica-
		FOR IMPACT		mente la nota di riscatto dopo
		(T1486)		la cifratura, aumentando la prob-
		,		abilità che la vittima la legga
				subito.
				-

012	EXECUTION	COMMAND	_	L'uso di flag specifici da linea
	(TA0002)	AND SCRIPT-		di comando indica che il ran-
		ING INTER-		somware è pensato per essere
		PRETER		eseguito manualmente su server
		(T1059)		ESXi compromessi, consentendo
				all'attaccante di controllarne il
				comportamento.
013	IMPACT	DATA EN-	T1589.002: Pub-	Gli attaccanti possono gestire un
	(TA0040)	CRYPTION	lish Data	sito di "name and shame" sulla
		FOR IMPACT		rete Tor, esponendo nomi e dati
		(T1486)		delle vittime che non pagano il
				riscatto, aumentando la pressione
				tramite danno reputazionale e mi-
				naccia di pubblicazione.

9.4 Tool Utilizzati

Nella campagna d'attacco analizzata sono stati trovati alcuni strumenti utilizzati da parte degli attaccanti. Di seguito sono riportati gli strumenti:

Tool	ID MITRE	Descrizione
PsExec	S0029	Strumento Microsoft per esecuzione di
		processi su sistemi remoti tramite aut-
		enticazione; comunemente utilizzato dagli
		attaccanti per movimento laterale e dis-
		tribuzione di payload in reti Windows.

Tool	ID MITRE	Descrizione
QakBot	S0650	QakBot è frequentemente utilizzato come vettore iniziale per distribuire ransomware come Black Basta. Dopo l'infezione iniziale, QakBot consente agli attaccanti di ottenere accesso remoto, muoversi lateralmente nella rete e scaricare ulteriori payload, tra cui il ransomware Black Basta.
Windows Manage- ment Instru- mentation (WMI)	S0197	Framework di gestione di sistemi Windows che consente esecuzione di comandi e script remoti; sfruttato per movimento laterale, raccolta informazioni e persistence sfruttando funzionalità native del sistema.
PowerShell	S0194	Shell e linguaggio di scripting di Windows; utilizzato dagli attaccanti per esecuzione di comandi, download e lancio di payload, evasione dei controlli, automazione delle attività malevole.
Netcat	S0039	Strumento di rete multipiattaforma per trasferimento dati, creazione di shell remote e tunneling di connessioni; impiegato per esfiltrazione dati, C&C e movimento laterale.
BITSAdmin	S0190	Utility Microsoft che gestisce trasferimenti di file in background; abusato per scari- care payload malevoli in modo stealth, eludendo sistemi di detection tradizionali.

Tool	ID MITRE	Descrizione
BCDEdit		Utility Windows per la modifica delle impostazioni di avvio del sistema operativo; può essere utilizzato per disabilitare meccanismi di protezione e facilitare la persistenza del malware.
SystemBC	S1033	Proxy backdoor modulare che consente routing del traffico C&C e download di payload, mascherando le comunicazioni malevole e favorendo l'evasione delle difese.
Mimikatz	S0002	Tool per l'estrazione di credenziali e hash dalle memorie di sistema Windows; ampiamente usato per privilege escalation e raccolta di credenziali in attacchi postexploitation.
Cobalt Strike	S0154	Framework commerciale di red teaming usato da attori malevoli per comando e controllo, movimento laterale, esfiltrazione e deployment di beacon per il controllo remoto delle macchine compromesse.
Brute Ratel C4	S1063	Strumento avanzato di red teaming per esecuzione di payload, persistence, movimento laterale e comando e controllo, simile a Cobalt Strike ma meno rilevato da molte difese.

Tool	ID MITRE	Descrizione
Remote ac-	_	Suite di strumenti per accesso remoto e
cess tools		controllo dei sistemi target, spesso utiliz-
		zati per mantenere il controllo sulle reti
		compromesse.
RClone	S1040	Software open source di sincronizzazione
		e trasferimento file verso cloud storage;
		abusato per esfiltrare grandi volumi di
		dati dalle reti delle vittime.
Tor	S0183	Rete di anonimizzazione utilizzata per
		nascondere le comunicazioni C&C, pubbli-
		care siti di pagamento e garantire privacy
		e irreperibilità agli attaccanti durante ne-
		goziazione e doppia estorsione.

9.5 Informazioni sui Prodotti Vulnerabili

Riportiamo alcuni dei prodotti, servizi e strumenti che sono stati sfruttati in questa campagna:

Prodotto	Tipologia	Note sulla vulnerabilità
Microsoft Windows	Sistema Op-	Target principale delle campagne
	erativo	Black Basta; vulnerabilità sfruttate
		includono esecuzione di codice re-
		moto (es. CVE-2022-30190 "Follina",
		CVE-2021-34527 "PrintNightmare"),
		privilege escalation e abuso di stru-
		menti nativi come PowerShell, WMI
		e PsExec per movimento laterale e
		persistence.

Prodotto	Tipologia	Note sulla vulnerabilità
VMware ESXi	Hypervisor	Target di variante Linux del ransomware; vulnerabilità sfruttate riguardano l'accesso remoto e la cifratura dei volumi virtuali, con focus sui file delle VM (.vmdk, .vmx, .vmsd, .vmxf).
Microsoft Office	Applicazione	Utilizzata come vettore iniziale tramite spear-phishing con allegati Word o RTF contenenti macro o exploit (inclusi quelli per Follina, CVE-2022-30190).
Microsoft Support Diagnostic Tool (MSDT)	Strumento di sistema	Sfruttato tramite vulnerabilità "Follina" (CVE-2022-30190), che consente esecuzione di comandi arbitrari su sistemi Windows tramite documenti Office malevoli.
Windows Print Spooler	Servizio di sistema	Vulnerabilità PrintNightmare (CVE-2021-34527) sfruttata per escalation di privilegi e movimento laterale su sistemi Windows.

9.6 IoC

Gli *Indicators of Compromise* (IoC) analizzati e discussi all'interno di questo documento sono riportati in dettaglio nelle ultime pagine del report originale (da pag. 20 a 26). In questa sezione finale del PDF è possibile trovare esempi di hash e altri indicatori tecnici associati al ransomware BlackBasta descritto nel rapporto.

9.7 Elementi Utili alla Simulazione

Per simulare la campagna di attacco analizzata, è possibile pensare di sfruttare alcuni strumenti open source o framework commerciali, utili a riprodurre delle specifiche fasi

dell'attacco:

Fase	Tool suggerito	Note operative
Simulazione spear- phishing	GoPhish	Invio di email mirate con allegati o link malevoli (Word, RTF) per ottenere ac- cesso iniziale su target di laboratorio.
Generazione e weaponizzazione di documenti	Metasploit, Python (exploit Follina)	Creazione di documenti Office o RTF contenenti macro, exploit (es. CVE-2022-30190 "Follina") o payload per apertura reverse shell.
Esecuzione di pay- load e movimento laterale	PsExec, PowerShell	Spostamento laterale sfruttando strumenti integrati Windows e trasmissione di malware su host aggiuntivi simulando le tecniche living-off-the-land.
Privilege escalation	Metasploit (exploit), Mimikatz	Sfruttamento di exploit per privilege esca- lation (es. PrintNightmare), estrazione di credenziali e hash tramite Mimikatz.
Persistenza	Metasploit persistence	Installazione di backdoor o beacon persistenti per mantenere il controllo sulle macchine compromesse.
Comando e controllo (C2)	Metasploit multi- handler	Gestione delle sessioni C2, invio comandi remoti, upload/download file tra vittima e attaccante.
Esfiltrazione dati	RClone, Python	Esportazione di dati simulati su server esterni o servizi cloud per riprodurre la fase di esfiltrazione (double extortion).
Simulazione infrastruttura Tor	Tor Browser, Onion-Share	Simulazione della comunicazione via .onion e pubblicazione di file/ransom note su servizi Tor, come nel modello double extortion.