Bit Manipulation - 1

Vinay Neekhra Senior Instructor & Mentor

Reachable in Scaler Lounge 🚏

"Do your bit, get your bite!"

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots \} \Rightarrow \text{Deximal System}$$

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$342 = 300 + 40 + 2$$

$$= 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$2563 = 2000 + 500 + 60 + 3$$

$$\{0, 1\}$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$\{1, 2, 3, 4, \dots 9, 10 \dots 11 \dots 9\}$$

$$= 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$= 3 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 11 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 2, 3, 4 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 10 \dots 9, 10 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 4 + 2 + 0 = 6$$

$$\{1, 10 \dots 9, 10 \dots 9, 10 \dots 9, 10 \dots 9\}$$

$$= 1 \times 2^{3} + 0 \times 2^{3} + 1 \times 2^{3} + 1 \times 2^{5} + 1 \times 2^$$

$$= 8 + 0 + 2 + 1 = 11$$

- Binary to decimal:

Quiz: (1011010)2

$$2^{3} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^{3} = 8$$

$$2^{4} = 16$$

$$2^{5} = 32$$

$$2^{6} = 64$$

$$2^{7} = 128$$

$$2^{8} = 256$$

$$2^{9} = 512$$

$$2^{10} = 1024$$

$$\Rightarrow 64+16+8+2 = 90$$

S. Decimal to Binary: long-division method.

2	20	O			
2	10		1		
2	5		\Rightarrow	10100	= 20.
2	2			43210	.
2	<u>_</u>			B842	
	0	<u>.</u>			~

Quiz

101101

Dased and not (say 3 bit (0,1,2) or 4-bit (0,1,2,3) 8 assor ?

Addition of decimal numbers:

Algo. (d1+d2)1/10 => digit (d1+d2)/10=> carry

Addition of Binary numbers:

+ 100 | 110 | 1 | 2 1+1 = 2 =

Bitwise operators:

(1) => are operated on individual bits
(2) computer programming

{AND, OR, XOR, NOT, left shift, right shift}

0→1 1→ true (set)

A	В	A&B	AIB	A 1 B
0	0		\mathcal{O}	0 \
0	1	\bigcirc	1.	1 \
١	0	0	1	1 \
l	l	1	1	0 \
				

Obs": A'B = O if bits are same Lit bits are different

bit wise addition

2+3-5

S. Bit wise operation on number

$$\frac{5 \& 6}{1} = 4$$

$$\frac{101}{100} = 4$$

$$\frac{1}{1} = \frac{20 \& 45}{9 \cdot 10 \cdot 100}$$

$$\frac{10100}{1100} = 57$$

Properties:

A & L = 0, it last bit is 0, =) A is even

I, it last bit is 1, =) A is odd

the bit

$$\frac{16 \ 8 \ 4 \ 2}{\text{even}} + \text{odd} = \text{odd}$$

$$A \& L = = 0$$

Faster

$$\frac{A \Rightarrow 101}{0 \Rightarrow 000}$$

$$A \Rightarrow 101$$

$$A \Rightarrow 101$$

$$A \Rightarrow 101$$

$$4) \quad A \mid 0 \quad = \quad A$$

$$6) \quad A^{\wedge} \circ \quad = A$$

$$7) A^A = 0$$

$$A \rightarrow 101$$

$$0 \rightarrow 000$$

$$\begin{array}{c}
101 \\
A \Rightarrow clol \\
A \Rightarrow lol
\end{array}$$

000

A - 101

8) Commutative property:

$$q \&b = b \& a$$

$$q b = b | q$$

$$q b = b^{\prime} a$$

(akb)kc = ak(bkc)(a|b)|c = a|(b|c) $(a^b)^c = a^cb^c$ a^b^a^d^b -> (a^a)^(b)^d Quiti $o^d \Rightarrow d$ Quit: 1 -> 001 2-010 3 - 011 47 100 5-101 6-110 子つ川

Q: Given an array of integers where every element appears twice except for one element which appears only once. Find the unique element. ex_1 A = [6,9,6,(0,9)], am = 10A = [2,3,5)6,3,6,2), qns = 5Obsn: Jake XOR of all the numbers001010 int num = 0 for (int i=0; i<N; i++) {
 num = num^A(i) // num ^= A(i) return num: left shift: int: 4 Bytes: 4*8 bits = 32 bits 8 bit number > #2 with every shift 128 64 32 16 8 4 2 1 discarded 7 6 5 4 3 2 1 0

7. Operator.

$$A \times B \Rightarrow A / B \Rightarrow A - O \times (9/6)$$