732A96/TDDE15 Advanced Machine Learning Graphical Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 2: Probabilistic Inference

Contents

- Probabilistic Inference for BNs
 - ▶ Naive Solution
 - Variable Elimination
- Probabilistic Inference for MNs
- Beyond Variable Elimination

Literature

- Main source
 - Koller, D. and Friedman, N. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009. Chapter 9.2-9.4.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapter 8.

What is the state of a random variable X_k if a random variable X_i is observed to be in the state x_i?

$$p(x_k|x_i) = \frac{p(x_k,x_i)}{p(x_i)} = \frac{\sum_{x \setminus \{x_i,x_k\}} p(x)}{\sum_{x \setminus x_i} p(x)}$$

▶ For instance, $p(d) = \sum_{a,b,c} p(a,b,c,d) = \sum_{a,b,c} p(a)p(b|a)p(c|b)p(d|c)$ for the DAG $A \to B \to C \to D$.

Figure 9.2 Computing P(D) by summing over the joint distribution for a chain $A \to B \to C \to D$; all of the variables are binary valued.

Figure 9.2 Computing P(D) by summing over the joint distribution for a chain $A \to B \to C \to D$; all of the variables are binary valued.

Figure 9.3 The first transformation on the sum of figure 9.2

$$\begin{array}{c} (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) \quad P(c^1\mid b^1) \quad P(d^1\mid c^1) \\ + \ (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) \quad P(c^1\mid b^2) \quad P(d^1\mid c^1) \\ + \ (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) \quad P(c^2\mid b^1) \quad P(d^1\mid c^2) \\ + \ (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) \quad P(c^2\mid b^2) \quad P(d^1\mid c^2) \\ + \ (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) \quad P(c^1\mid b^1) \quad P(d^2\mid c^1) \\ + \ (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) \quad P(c^1\mid b^1) \quad P(d^2\mid c^1) \\ + \ (P(a^1)P(b^1\mid a^1) + P(a^2)P(b^1\mid a^2)) \quad P(c^2\mid b^1) \quad P(d^2\mid c^2) \\ + \ (P(a^1)P(b^2\mid a^1) + P(a^2)P(b^2\mid a^2)) \quad P(c^2\mid b^2) \quad P(d^2\mid c^2) \end{array}$$

Figure 9.3 The first transformation on the sum of figure 9.2 $\,$

Figure 9.4 The second transformation on the sum of figure 9.2

Figure 9.4 The second transformation on the sum of figure 9.2

$$\begin{array}{ll} (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^1\mid c^1) \\ + & (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^1\mid c^2) \\ & & & & & & & & & \\ (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^2\mid c^1) \\ + & & & & & & & & & \\ (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^2\mid c^2) \\ \end{array}$$

Figure 9.5 The third transformation on the sum of figure 9.2

$$\begin{array}{cccc} (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^1\mid c^1) \\ + & (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^1\mid c^2) \\ & & (\tau_1(b^1)P(c^1\mid b^1) + \tau_1(b^2)P(c^1\mid b^2)) & P(d^2\mid c^1) \\ + & (\tau_1(b^1)P(c^2\mid b^1) + \tau_1(b^2)P(c^2\mid b^2)) & P(d^2\mid c^2) \end{array}$$

Figure 9.5 The third transformation on the sum of figure 9.2

$$\tau_{2}(c^{1}) \quad P(d^{1} \mid c^{1})
+ \tau_{2}(c^{2}) \quad P(d^{1} \mid c^{2})
\tau_{2}(c^{1}) \quad P(d^{2} \mid c^{1})
+ \tau_{2}(c^{2}) \quad P(d^{2} \mid c^{2})$$

Figure 9.6 The fourth transformation on the sum of figure 9.2

Then, instead of
$$p(d) = \sum_{a,b,c} p(a)p(b|a)p(c|b)p(d|c)$$
, we can do
$$p(d) = \sum_{c} p(d|c)\tau_2(c)$$
$$= \sum_{c} p(d|c) \sum_{b} p(c|b)\tau_1(b)$$
$$= \sum_{c} p(d|c) \sum_{b} p(c|b) \sum_{a} p(a)p(b|a)$$

 Do we gain anything? Yes, the former case implies 62 operations (multiplications and additions) and the latter only 18.

Let us define a factor $\phi(U)$ as a function $\phi: Values(U) \to \mathbb{R}$. Let us also define $Scope(\phi) = U$.

Figure 9.8 The Extended-Student Bayesian network

$$\begin{array}{ll} P(C,D,I,G,S,L,J,H) & = & P(C)P(D\mid C)P(I)P(G\mid I,D)P(S\mid I) \\ & & P(L\mid G)P(J\mid L,S)P(H\mid G,J) \\ & = & \phi_C(C)\phi_D(D,C)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I) \\ & & \phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J). \end{array}$$

▶ The following algorithm returns p(y) where $Y = X \setminus Z$.

Algorithm 9.1 Sum-product variable elimination algorithm

```
Procedure Sum-Product-VE (
          \Phi, // Set of factors
         Z. // Set of variables to be eliminated
         \prec // Ordering on Z
         Let Z_1, \ldots, Z_k be an ordering of Z such that
          Z_i \prec Z_i if and only if i < j
         for i = 1, ..., k
            \Phi \leftarrow \text{Sum-Product-Eliminate-Var}(\Phi, Z_i)
5
         \phi^* \leftarrow \prod_{\phi \in \Phi} \phi
         return \phi^*
      Procedure Sum-Product-Eliminate-Var (
          \Phi, // Set of factors
               // Variable to be eliminated
         \Phi' \leftarrow \{ \phi \in \Phi : Z \in Scope[\phi] \}
       \Phi'' \leftarrow \Phi - \Phi'
      \psi \leftarrow \prod_{\phi \in \Phi'} \phi
         \tau \leftarrow \sum_{z} \psi
         return \Phi'' \cup \{\tau\}
```


Figure 9.8 The Extended-Student Bayesian network

$$\begin{split} P(C, D, I, G, S, L, J, H) &= & P(C)P(D \mid C)P(I)P(G \mid I, D)P(S \mid I) \\ & & P(L \mid G)P(J \mid L, S)P(H \mid G, J) \\ &= & \phi_G(C)\phi_D(D, C)\phi_I(I)\phi_G(G, I, D)\phi_S(S, I) \\ & \phi_t(L, G)\phi_I(J, L, S)\phi_H(H, G, J). \end{split}$$

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	I	$\phi_I(I)$, $\phi_S(S, I)$, $\tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H(H, G, J)$	H, G, J	$\tau_4(G, J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S)$, $\phi_J(J, L, S)$	J, L, S	$\tau_6(J, L)$
7	L	$\tau_6(J, L)$	J, L	$\tau_7(J)$

Figure 9.8 The Extended-Student Bayesian network

$$\begin{split} P(C,D,I,G,S,L,J,H) &= & P(C)P(D \mid C)P(I)P(G \mid I,D)P(S \mid I) \\ & & P(L \mid G)P(J \mid L,S)P(H \mid G,J) \\ &= & \phi_G(C)\phi_D(D,C)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I) \\ & \phi_t(L,G)\phi_I(J,L,S)\phi_H(H,G,J). \end{split}$$

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	G	$\phi_G(G, I, D), \phi_L(L, G), \phi_H(H, G, J)$	G, I, D, L, J, H	$\tau_1(I, D, L, J, H)$
2	I	$\phi_I(I)$, $\phi_S(S, I)$, $\tau_1(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_2(D, L, S, J, H)$
3	S	$\phi_J(J, L, S), \tau_2(D, L, S, J, H)$	D, L, S, J, H	$\tau_3(D, L, J, H)$
4	L	$\tau_3(D, L, J, H)$	D, L, J, H	$\tau_4(D, J, H)$
5	H	$\tau_4(D, J, H)$	D, J, H	$\tau_5(D, J)$
6	C	$\phi_C(C)$, $\phi_D(D,C)$	D, J, C	$\tau_6(D)$
7	D	$\tau_5(D, J), \tau_6(D)$	D, J	$\tau_7(J)$

What is the state of a random variable X_k if a random variable X_i is observed to be in the state x_i?

$$p(x_k|x_i) = \frac{p(x_k, x_i)}{p(x_i)} = \frac{\sum_{x \setminus \{x_i, x_k\}} p(x)}{\sum_{x \setminus x_i} p(x)}$$

- ► E.g., $p(d|a) = \frac{\sum_{c} p(d|c) \sum_{b} p(d|b) p(a) p(b|a)}{\sum_{a} p(d|c) \sum_{b} p(d|b) p(a) p(b|a)}$ for $A \rightarrow B \rightarrow C \rightarrow D$.
- ► The following algorithm returns $p(y|e) = \frac{p(y,e)}{p(e)} = \frac{\phi^*}{\alpha}$ where $Y \subseteq X \setminus E$.
- Given a factor $\phi(U)$, let us define the reduced factor $\phi[E=e](Y)$ as a factor with scope $Y=U\setminus E$ such that $\phi[E=e](y)=\phi(y,z)$ where $Z=U\cap E$.

Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities

Figure 9.8 The Extended-Student Bayesian network

$$\begin{split} P(C,D,I,G,S,L,J,H) &=& P(C)P(D\mid C)P(I)P(G\mid I,D)P(S\mid I) \\ &=& P(L\mid G)P(J\mid L,S)P(H\mid G,J) \\ &=& \phi_C(C)\phi_D(D,C)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I) \\ && \phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J). \end{split}$$

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1'	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau'_1(D)$
2'	D	$\phi_G[I = i^1](G, D), \phi_I[I = i^1](), \tau'_1(D)$	G, D	$\tau'_2(G)$
5'	G	$\tau'_{2}(G), \phi_{L}(L, G), \phi_{H}[H = h^{0}](G, J)$	G, L, J	$\tau'_5(L, J)$
6'	S	$\phi_S[I = i^1](S), \phi_J(J, L, S)$	J, L, S	$\tau'_6(J, L)$
7'	L	$\tau'_{6}(J,L), \tau'_{5}(J,L)$	J, L	$\tau_7'(J)$

Table 9.3 A run of sum-product variable elimination for $P(J,i^1,h^0)$

Probabilistic Inference for MNs

- The VE algorithm can also be used for probabilistic inference in MNs. Simply,
 - initialize the set of factors Φ to the MN's clique potentials $\{\varphi(k)\}$,
 - run the VE algorithm, and
 - normalize the returned unnormalized probability distribution by dividing with the MN's normalization constant Z.

Beyond Variable Elimination

Figure 10.1 Cluster tree for the VE execution in table 9.1

- The execution of VE defines a cluster tree, a graphical flowchart of the factor-manipulation process:
 - Each node C_i in the tree is called a cluster and it contains the variables in $Scope(\psi_i)$.
 - The tree has an edge annotated with an arrow from C_i to C_j if the factor (a.k.a. message) \(\tau_i\) is used in the computation of \(\tau_j\).
- Now, consider passing messages towards the cluster C₆ in order to compute p(s). Notice the reusing of previously computed messages.
- Therefore, a clique tree is a data structure to perform repeated probabilistic inference efficiently.
- The process of building the cluster tree from a given DAG is known as compilation. You will learn more about cluster trees in the lab.

Contents

- ▶ Probabilistic Inference for BNs
 - Naive Solution
 - Variable Elimination
- Probabilistic Inference for MNs
- ▶ Beyond Variable Elimination

Thank you