Comments on homework (Week 5)

- No difference in means (average) between the two populations (H_0)
- ▶ The direction of difference can be inferred from the means.
- Confidence intervals show the range of the magnitude of difference at a specified level of confidence.
- Confidence intervals allow to test the hypothesis (95% CI for 5% significance level)

Some useful formulas (t-test last week)

- ▶ T-test statistic: $t = \frac{\hat{\Delta}}{\hat{\sigma}_{\hat{\Delta}}} = \frac{\bar{Y}_1 \bar{Y}_2}{\hat{\sigma}_{\hat{\Delta}}}$
- ► Estimated standard error: $\hat{\sigma}_{\hat{\Delta}} = \frac{\hat{\sigma}}{\sqrt{n}} = \hat{\sigma}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
- Estimated common population standard deviation:

$$\hat{\sigma} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

- Confidence intervals: $\hat{\Delta} \pm z_{a/2} \hat{\sigma}_{\hat{\Delta}}$
- ▶ Confidence intervals (95%, standard normal/ t-distribution with df>120): $\hat{\Delta} \pm 1.96 \hat{\sigma}_{\hat{\Lambda}}$

Z-test (inference in proportions)

Recall the conceptual framework we use for statistical inference:

- 1. **Type** of data (**level** of measurement)
- 2. **Assumptions** about the data (often assumed implicitly)
- 3. Statistical hypotheses:
- Null hypothesis (H₀)
- Alternative hypothesis (H₁)
- 4. Test statistic
- 5. **P-value** (using sampling distribution of the test statistic)
- 6. Substantive **conclusion** (inference in the population)

Exercise 1

Decided to vote Lib Dem

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	No (vote other party)	2387	56.2	74.0	74.0
	Yes (vote Lib Dem)	839	19.8	26.0	100.0
	Total	3226	76.0	100.0	
Missing	Not asked	1021	24.0		
Total		4247	100.0		

Some useful formulas (Z-test this week)

- ▶ Z-test statistic: $z = \frac{\hat{\Delta}}{\hat{\sigma}_{\hat{\Delta}}} = \frac{\hat{\pi} \pi_0}{\hat{\sigma}_{\hat{\Delta}}}$
- lacksquare Estimated standard error: $\hat{\sigma}_{\hat{\Delta}} = \sqrt{rac{\hat{\pi}(1-\hat{\pi})}{n}}$
- ▶ Z-test statistic (two-sample): $z = \frac{\hat{\Delta}}{\hat{\sigma}_{\hat{\Delta}}} = \frac{\hat{\pi_1} \hat{\pi_2}}{\hat{\sigma}_{\hat{\Delta}}}$
- Estimated standard error (two-sample): $\hat{\sigma}_{\hat{\Delta}} = \sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{p_1} + \frac{1}{p_2})}$
- Estimated standard error (two-sample) for confidence intervals: $\hat{\sigma}_{\hat{\Delta}} = \sqrt{\frac{\hat{\pi}_1(1-\hat{\pi}_1)}{n_1} + \frac{\hat{\pi}_2(1-\hat{\pi}_2)}{n_2}}$
- ▶ Confidence intervals: $\hat{\pi} \pm z_{a/2} \hat{\sigma}_{\hat{\pi}}$
- ▶ Confidence intervals (95%, standard normal): $\hat{\pi} \pm 1.96\hat{\sigma}_{\hat{\pi}}$