Memória cache

Objetivos de aprendizagem

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

Após ler este capítulo, você será capaz de:

- Apresentar uma visão geral das características dos sistemas de memória do computador e do uso da hierarquia da memória.
- Descrever os conceitos básicos e o objetivo da memória cache.
- Discutir os elementos-chave do projeto da cache.
- Fazer distinção entre mapeamento direto, mapeamento associativo e mapeamento associativo por conjunto.
- Compreender as implicações do desempenho dos diversos níveis de memória.

WILLIAM STALLINGS Arquitetura e Organização de Computadores

Localização	Desempenho	
Interna (por exemplo, registradores do processador, memória principal, cache)	Tempo de acesso	
Externa (por exemplo, discos ópticos, discos magnéticos, fitas)	Tempo de ciclo	
	Taxa de transferência	
Método de acesso	Tipo físico	
Sequencial	Semicondutor	
Direto	Magnético	
Aleatório	Óptico	
Associativo	Magneto-óptico	
Unidade de transferência	Características físicas	
Palavra	Volátil/não volátil	
Bloco	Apagável/não apagável	
Capacidade	Organização	
Número de palavras	Módulos de memória	
Número de bytes		

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- O termo localização indica se a memória é interna ou externa ao computador.
- Uma característica óbvia da memória é a sua capacidade.
- Um conceito relacionado é a unidade de transferência.
- Para a memória interna, a unidade de transferência é igual ao número de linhas elétricas que chegam e que saem do módulo de memória.
- O método de acesso das unidades de dados inclui:

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Acesso sequencial: a memória é organizada em unidades de dados chamadas registros.
- Acesso direto: envolve um mecanismo compartilhado de leituraescrita.
- Acesso aleatório: cada local endereçável na memória tem um mecanismo de endereçamento exclusivo, fisicamente interligado.
- Associativo: permite fazer uma comparação de um certo número de bits com uma combinação específica, fazendo isso com todas as palavras simultaneamente.

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Do ponto de vista do usuário, as duas características mais importantes da memória são capacidade e desempenho.
- Três parâmetros de desempenho são usados:
- 1. Tempo de acesso (latência)
- 2. Tempo de ciclo de memória
- 3. Taxa de transferência
- Uma variedade de tipos físicos da memória tem sido empregada. As mais comuns hoje em dia são memória semicondutora, memória de superfície magnética, usada para disco e fita, e óptica e magneto-óptica.

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- As restrições de projeto podem ser resumidas por três questões:
- 1. Quanto?
- 2. Com que velocidade?
- 3. A que custo?
- A questão da quantidade é, de certa forma, livre.
- Para conseguir maior desempenho, a memória deve ser capaz de acompanhar a velocidade do processador.
- O custo da memória deve ser razoável em relação a outros componentes.

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- Diversas tecnologias são usadas para implementar sistemas de memória e, por meio desse espectro de tecnologias, existem as seguintes relações:
- 1. Tempo de acesso mais rápido, maior custo por bit.
- 2. Maior capacidade, menor custo por bit.
- 3. Maior capacidade, tempo de acesso mais lento.
- O dilema que o projetista enfrenta é claro.

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Para sair desse dilema, é preciso não contar com um único componente ou tecnologia de memória, mas empregar uma hierarquia de memória.
- Uma hierarquia típica é ilustrada na figura a seguir.
- Conforme se desce na hierarquia, ocorre o seguinte:
- 1. Diminuição do custo por bit.
- 2. Aumento da capacidade.
- 3. Aumento do tempo de acesso.
- Diminuição da frequência de acesso à memória pelo processador.

WILLIAM STALLINGS
Arquitetura e
Organização de
Computadores
10ª edição

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

A memória cache é desenvolvida para combinar o tempo de acesso de memórias de alto custo e alta velocidade com as memórias de menor velocidade, maior tamanho e mais baixo custo.

Arquitetura e Organização de Computadores

10ª edição

A figura abaixo representa o uso de múltiplos níveis de cache:

Estrutura de cache/memória principal:

Largura
da palavra

(b) Memória principal

WILLIAM STALLINGS Arquitetura e Organização de Computadores

WILLIAM STALLINGS Arquitetura e Organização de Computadores

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

Organização típica da memória cache:

Elementos de projeto da cache

Arquitetura e Organização de Computadores

10ª edição

Endereços da cache	Política de escrita		
Lógico	Write through		
Físico	Write back		
Tamanho da memória cache Função de mapeamento	Tamanho da linha Número de caches		
Direto	Um ou dois níveis		
Associativo	Unificada ou separada		
Associativo em conjunto			

Algoritmo de substituição

Usado menos recentemente (LRU — do inglês, *Least Recently Used*)

Primeiro a entrar, primeiro a sair (FIFO — do inglês, First In, First Out)

Usado menos frequentemente (LFU — do inglês, *Least Frequently Used*)

Aleatória

Endereços da cache

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- Uma cache lógica, também conhecida como cache virtual, armazena dados usando endereços virtuais.
- Uma cache física armazena dados usando endereços físicos da memória principal.
- Uma vantagem da cache lógica é que a velocidade de acesso a ela é maior do que para uma cache física, pois a cache pode responder antes que a MMU realize uma tradução de endereço.
- A desvantagem é que a maioria dos sistemas de memória virtual fornece, a cada aplicação, o mesmo espaço de endereços de memória virtual.

Endereços da cache

Arquitetura e
Organização de
Computadores
10ª edição

Cache lógica:

Endereços da cache

Arquitetura e Organização de Computadores 10ª edição

> Cache física:

Tamanho da memória cache

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Quanto maior a cache, maior o número de portas envolvidos no endereçamento da cache.
- > O resultado é que caches grandes tendem a ser ligeiramente mais lentas que as pequenas mesmo quando construídas com a mesma tecnologia de circuito integrado e colocadas no mesmo lugar no chip e na placa de circuito.
- A área disponível do chip e da placa limita o tamanho da cache.
- Como o desempenho da cache é muito sensível à natureza da carga de trabalho, é impossível chegar a um único tamanho ideal de cache.

Arquitetura e Organização de Computadores 10º edição

- É NECESSÁRIO HAVER UM ALGORITMO PARA MAPEAR OS BLOCOS DA MEMÓRIA PRINCIPAL ÀS LINHAS DE CACHE.
- É PRECISO HAVER UM MEIO PARA DETERMINAR QUAL BLOCO DA MEMÓRIA PRINCIPAL ATUALMENTE OCUPA UMA LINHA DA CACHE.
- A ESCOLHA DA FUNÇÃO DE MAPEAMENTO DITA COMO A CACHE É ORGANIZADA. TRÊS TÉCNICAS PODEM SER UTILIZADAS:
- 1. DIRETA,
- 2. ASSOCIATIVA E
- 3. ASSOCIATIVA POR CONJUNTO.

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

- Mapeamento direto é a técnica que mapeia cada bloco da memória principal a apenas uma linha de cache possível.
- > 0 mapeamento é expresso como:

i = j m'odulo m

- > em que
- i = número da linha da cache
- \triangleright j = número do bloco da memória principal
- > m = número de linhas da cache

Arquitetura e Organização de Computadores

10ª edição

Mapeamento da memória principal para a cache - direto:,

da memória principal (igual ao tamanho da cache) b = e

b = extensão do bloco em bits t = extensão da tag em bits

Organização de cache com mapeamento direto:

Arquitetura e Organização de Computadores 10ª edição

Arquitetura e Organização de Computadores

10ª edição

O mapeamento associativo compensa a desvantagem do mapeamento direto, permitindo que cada bloco da memória principal seja carregado em qualquer linha da cache:

Organização da memória cache totalmente associativa:

WILLIAM STALLINGS
Arquitetura e
Organização de
Computadores
10ª edição

WILLIAM STALLINGS Arquitetura e Organização de **Computadores**

10ª edição

- > O mapeamento associativo por conjunto é um meio-termo que realça os pontos fortes das técnicas direta e associativa, enquanto reduz suas desvantagens.
- Neste caso, a cache é uma série de conjuntos, cada um consistindo em uma série de linhas. As relações são:

$$m = v \times k$$

 $i = j \mod v$

Isso é conhecido como mapeamento associativo em conjunto com k-linhas.

Arquitetura e Organização de Computadores

10ª edição

ho Mapeamento da memória principal na cache - associativa em conjunto com k linhas (k-way):

Arquitetura e Organização de Computadores

10ª edição

Também é possível implementar a cache associativa em conjunto como k caches de

Arquitetura e Organização de Computadores

10ª edição

> Associatividade variável pelo tamanho da cache:

Algoritmos de substituição

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

- Uma vez que a cache esteja cheia, e um novo bloco seja trazido para a cache, um dos blocos existentes precisa ser substituído.
- Para as técnicas associativa e associativa em conjunto, um algoritmo de substituição é necessário.
- O mais eficaz é o usado menos recentemente (LRU).
- Outra possibilidade é "primeiro a entrar, primeiro a sair" (FIFO).
- Outra possibilidade de algoritmo, ainda, é o usado menos frequentemente (LFU).

Arquitetura e Organização de Computadores

- Quando um bloco que está residente na cache estiver para ser substituído, existem dois casos a serem considerados.
- 1. Se o bloco antigo na cache não tiver sido alterado, ele pode ser substituído por novo bloco sem primeiro atualizar o bloco antigo.
- Se pelo menos uma operação de escrita tiver sido realizada em uma palavra nessa linha da cache, então a memória principal precisa ser atualizada escrevendo a linha de cache no bloco de memória antes de trazer o novo bloco.
- Diversas políticas de escrita são possíveis, com escolhas econômicas e de desempenho.

Arquitetura e Organização de Computadores 10º edição

- A técnica mais simples é denominada write through.
- Usando esta técnica, todas as operações de escrita são feitas na memória principal e também na cache, garantindo que a memória principal sempre seja válida.
- Numa técnica alternativa, conhecida como write back, as atualizações são feitas apenas na cache.
- Em uma organização de barramento em que mais de um dispositivo (em geral, um processador) tem uma cache e a memória principal é compartilhada, um novo problema é introduzido.

Arquitetura e Organização de Computadores

- Se os dados em uma cache forem alterados, isso invalida não apenas a palavra correspondente na memória principal, mas também essa mesma palavra em outras caches (se qualquer outra cache tiver essa mesma palavra).
- Mesmo que uma política write through seja usada, as outras caches podem conter dados inválidos.
- Diz-se que um sistema que impede esse problema mantém coerência de cache.
- Algumas das técnicas possíveis para a coerência de cache são:

WILLIAM STALLINGS Arquitetura e Organização de Computadores

- Observação do barramento com write through: cada controlador de cache monitora as linhas de endereço para detectar as operações de escrita para a memória por outros mestres de barramento.
- Transparência do hardware: um hardware adicional é usado para garantir que todas as atualizações na memória principal por meio da cache sejam refletidas em todas as caches.
- Memória não cacheável: somente uma parte da memória principal é compartilhada por mais de um processador, e esta é designada como não cacheável.

Tamanho da linha

Arquitetura e Organização de Computadores

- À medida que o tamanho do bloco aumenta, a razão de acerto a princípio aumentará por causa do princípio da localidade, que diz que os dados nas vizinhanças de uma palavra referenciada provavelmente serão referenciados no futuro próximo.
- À medida que o tamanho do bloco aumenta, dados mais úteis são trazidos para a cache.
- Contudo, a razão de acerto começará a diminuir enquanto o bloco se torna ainda maior e a probabilidade de uso da informação recém-trazida se torna menor que a probabilidade de reutilizar as informações que foram substituídas.

Número de caches

Arquitetura e Organização de Computadores 10º edição

Caches multinível

- À medida que a densidade lógica aumenta, torna-se possível ter uma cache no mesmo chip que o processador: a cache no chip.
- A cache no chip reduz a atividade do barramento externo do processador e, portanto, agiliza o tempo de execução e aumenta o desempenho geral do sistema.
- A organização mais simples desse tipo é conhecida como uma cache de dois níveis, com a cache interna designada como nível 1 (L1) e a cache externa designada como nível 2 (L2).

Número de caches

Arquitetura e Organização de Computadores 10ª edição

Caches multinível

Razão de acerto total (L1 e L2) para L1 de 8 kB e 16 kB:

Número de caches

Arquitetura e Organização de Computadores 10º edição

Caches unificadas versus separadas

- Mais recentemente, tornou-se comum dividir a cache em duas: uma dedicada a instruções e uma dedicada a dados.
- Essas duas caches existem no mesmo nível, normalmente como duas caches L1.
- Quando o processador tenta buscar uma instrução da memória principal, ele primeiro consulta a cache L1 de instrução.
- Quando o processador tenta buscar dados da memória principal, ele primeiro consulta a cache L1 de dados.

Organização da cache do pentium 4

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

A evolução da organização da memória cache é vista claramente na evolução dos microprocessadores Intel:

Problema	Solução	Processador em que o recurso apareceu inicialmente
Memória externa mais lenta que o barramento do sistema	Acrescentar cache externa usando tecnologia de memória mais rápida	386
Maior velocidade do processador torna o barramento externo um gargalo para o acesso à cache L2	Mover a cache externa para o chip, trabalhando na mesma velocidade do processador	486
Cache interna um tanto pequena, por conta do espaço limitado no chip	Acrescentar cache L2 externa usando tecnologia mais rápida que a memória principal	486
Quando ocorre uma disputa entre o mecanismo de pré-busca de instruções e a unidade de execução no acesso simultâneo à memória cache. Nesse caso, a busca antecipada é adiada até o término do acesso da unidade de execução aos dados	Criar caches separadas para dados e instruções	Pentium
Maior velocidade do processador torna o barramento externo um gargalo para o acesso à cache L2	Criar barramento back-side separado, que trabalha com velocidade mais alta que o barramento externo principal (front-side). O barramento back- -side é dedicado à cache L2	Pentium Pro
	Mover cache L2 para o chip do processador	Pentium II
Algumas aplicações lidam com bancos de dados enormes,	Acrescentar cache L3 externa	Pentium III
e precisam ter acesso rápido a grandes quantidades de dados. As caches no chip são muito pequenas	Mover cache L3 para o chip	Pentium 4

Organização da cache do pentium 4

WILLIAM STALLINGS Arquitetura e Organização de Computadores

10ª edição

Visão simplificada da organização do Pentium 4, destacando o posicionamento das três caches:

Organização da cache do pentium 4

WILLIAM STALLINGS Arquitetura e Organização de Computadores 10ª edição

Modos de operação da cache do Pentium 4:

Bits de controle		Modo de operação		
CD	NW	Preenchimento da cache	Write throughs	Invalidado
0	0	Habilitado	Habilitado	Habilitado
1	0	Desabilitado	Habilitado	Habilitado
1	1	Desabilitado	Desabilitado	Desabilitado

Obs.: CD = 0; NW = 1 é uma combinação inválida.