EDCO3A ESTRUTURAS DE DADOS 1

Aula 04 - Listas ordenadas (Implementação dinâmica)

Prof. Rafael G. Mantovani

Licença

Este trabalho está licenciado com uma Licença CC BY-NC-ND 4.0:

Atribuição-NãoComercial-SemDerivações 4.0 Internacional (CC BY-NC-ND 4.0)

maiores informações:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.pt_BR

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

Nós de Lista

elementos ORDENADOS

elementos ORDENADOS

Nas listas manteremos os elementos **ORDENADOS**

Diferentes implementações de lista dinâmica:

- A | Single-linkage: singularmente encadeada
- B Double-linkage: duplamente encadeada
- C | Circulares: nó sentinela

• Diferentes implementações de lista dinâmica:

- A Single-linkage: singularmente encadeada
- B Double-linkage: duplamente encadeada
- C | Circulares: nó sentinela

(Lista) propricamente dita

15

• Diferentes implementações de lista dinâmica:

- A Single-linkage: singularmente encadeada
- B Double-linkage: duplamente encadeada
- C Circulares: nó sentinela

Dois tipos necessários: nó de lista (**NoLista**) e a lista (**Lista**) propriamente dita. Mas, ... NoLista agora contém **dois ponteiros**: um para o próximo elemento (**Prox**), e outro para o elemento anterior (**Ant**)

tipo **NoLista**

Ant *NoLista (anterior)

• Diferentes implementações de lista dinâmica:

- A | Single-linkage: singularmente encadeada
- B Double-linkage: duplamente encadeada
- C Circulares: nó sentinela

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

Operações em Listas Dinâmicas

Dada uma estrutura **S**, chave **k**, elemento **x**:

iniciar (S)

inserir (S, k)

remover (S, k)

pesquisar (S, k)

destruir (S)

Operações de modificação

Operações adicionais de consulta

Operações em Listas Dinâmicas

Dada uma estrutura **S**, chave **k**, elemento **x**:

iniciar (S)

inserir (S, k)

remover (S, k)

pesquisar (S, k)

Operações de modificação

destruir (S)

Operações adicionais de consulta

Inicialização

• Single-linkage

tipo **Lista**

Número de elementos:

Inicialização

• Single-linkage

Inicialização

Single-linkage

IniciaLista (L) 1. L.inicio = NULL; 2. L.tamanho = 0;

Tamanho da Lista

Single-linkage

Exercício 01

- Mãos a obra: implemente um TDA para Lista com alocação dinâmica, e as funções de manipulação.
- Quais TDAs serão necessários?
- Implemente, em C, as funções para inicializar, verificar tamanho, se está vazia, e imprimir a lista.

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

Inserção (Insert)

a) primeira inserção (elemento x = 5)

a) primeira inserção (elemento x = 5)

a) primeira inserção (elemento x = 5)

a) primeira inserção (elemento x = 5)

01

- 1.Criar ponteiro **Novo** e alocar memória para o nó
- 2. Início aponta para Novo (novo nó)
- 3. Novo aponta para NULL
- 4. Contador é incrementado

NoLista (Novo)

- b) não é primeira inserção (elemento x = 3)
- Percorrer a lista, usando Aux (Ponteiro)

- Próximo do Novo recebe Próximo de Aux
- 3. Próximo de Aux recebe Novo
- 4. Contador é incrementado

(enfre U e 5)

Novo

Insert (L, x)

- 1. Criar novo nó Novo //malloc
- **2.** Novo.chave = x
- **3.** Se for a primeira inserção ou x < Inicio.chave:
- **4.** Novo->proximo = L->primeiro
- **5.** L->primeiro = Novo
- 6. Senão:
- 7. Criar ponteiro Aux = L->primeiro
- 8. // percorrendo a lista ordenada
- 9. Enquanto (Aux->proximo != NULL & x > Aux->proximo.chave)
- 10. Aux = Aux proximo
- **11.** Novo->proximo = Aux->proximo
- 12. Aux->proximo = Novo
- 13. incrementa contador de elementos

Insert (L, x)

- 1. Criar novo nó Novo //malloc
- 2. Novo.chave = x
- **3.** Se for a primeira inserção ou x < Inicio.chave:
- **4.** Novo->proximo = L->primeiro
- 5. L->primeiro = Novo
- 6. Senão:
- 7. Criar ponteiro Aux = L->primeiro
- 8. // percorrendo a lista ordenada
- 9. Enquanto (Aux->proximo != NULL & x > Aux->proximo.chave)
- 10. Aux = Aux proximo
- **11.** Novo->proximo = Aux->proximo
- 12. Aux->proximo = Novo
- 13. incrementa contador de elementos

Obs: precisaremos de dois ponteiros do tipo NoLista

- um para o novo elemento (Novo)
- um para percorrer a lista (Aux)

Exercício 02

• Implementar a função de inserção de uma lista ordenada

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

- Procura a primeira ocorrência de um elemento
 - se achar: ?
 - se não achar?

- Procura a primeira ocorrência de um elemento
 - se achar: ?
 - se não achar?

Pergunta: como implementar se eu quiser fazer a função search do tipo bool?

Search(L, 5) = ?
 Search(L, 4) = ?
 Search(L, -2) = ?
 Search(L, 90) = ?
 Número de elementos : 5

□ Search(L, 5) = Sucesso :)

Search(L, 4) = Fail !

Search(L,-2) = ?

Search(L,-2) = Fail!

Search(L, 90) = Fail !

Podemos fazer de várias formas

Podemos fazer de várias formas

```
Pesquisa(L, x)
1. criar ponteiro Aux
2. Repetir (Aux = L->primeiro; Aux != NULL; Aux = Aux->proximo)
3. se Aux->x == x
4. return True;
5. return False;
```

Podemos fazer de várias formas

```
Pesquisa(L, x)
1. criar ponteiro Aux
2. Repetir (Aux = L->primeiro; Aux != NULL; Aux = Aux->proximo)
3. se Aux->x == x
4. return True;
5. return False;
Boa implementação?
```

Podemos fazer de várias formas

```
    Pesquisa(L, x)
    criar ponteiro Aux
    Repetir (Aux = L->primeiro; Aux != NULL; Aux = Aux->proximo)
    se Aux->x == x
    return True;
    return False;
```

Boa implementação? Não, pois percorre todos os elementos no pior caso.

Podemos fazer de várias formas

```
Pesquisa (L, x)
1. Se a Lista esta vazia
2. return False;
3. criar ponteiro Aux = L->primeiro
4. Enquanto (Aux != NULL && x > Aux->x)
5. Aux = Aux->next
6. Se Aux == NULL II Aux->x > x // não existe elemento
7. return False;
8. return True;
```

Melhor! Evita comparações desnecessárias.

Exercício 03

• Implementar a função de pesquisa de uma lista ordenada

Roteiro

- 1 Listas Ordenadas
- 2 Operações gerais
- 3 Inserção de elementos
- 4 Pesquisa de elementos
- 5 Remoção de elementos
- 6 Referências

5 casos diferentes para se checar

- 5 casos diferentes para se checar
 - A Lista vazia

- 5 casos diferentes para se checar
 - A | Lista vazia
 - B elemento a ser removido é menor que o primeiro da lista

- 5 casos diferentes para se checar
 - A | Lista vazia
 - B elemento a ser removido é menor que o primeiro da lista
 - c elemento a ser removido é o primeiro

- 5 casos diferentes para se checar
 - A Lista vazia
 - B elemento a ser removido é menor que o primeiro da lista
 - c elemento a ser removido é o primeiro
 - elemento a ser removido não é o primeiro (percorrer a lista)

- 5 casos diferentes para se checar
 - A | Lista vazia
 - B elemento a ser removido é menor que o primeiro da lista
 - c elemento a ser removido é o primeiro
 - elemento a ser removido não é o primeiro (percorrer a lista)
 - D1 elemento não está na lista depois de percorrer

- 5 casos diferentes para se checar
 - A | Lista vazia
 - B elemento a ser removido é menor que o primeiro da lista
 - c elemento a ser removido é o primeiro
 - D elemento a ser removido não é o primeiro (percorrer a lista)
 - D1 elemento não está na lista depois de percorrer
 - D2 elemento está na lista depois de percorrer

Remoção (Remove)

```
Remove (L, x)
//casos 1 e 2
1. Se a lista está vazia OU x é menor do que o primeiro elemento:
2.
     return False; // NULL
3. Se x == primeiro elemento: //caso 3
    remove o primeiro // dequeue
4.
5. decrementa o contador
    return elemento;
7. // casos 4 e 5
8. Percorrer a lista:
9. Se achar o elemento:
10. remove o elemento;
11. decrementa o contador
12.
       return elemento;
13. Senão, chegou até o último elemento e ele o valor não existe
14. return False; //NULL
```

Exercício 04

• Implementar a função de remoção de uma lista ordenada

Complexidade das operações

Custo (O)

- pesquisa/busca =
- inserção (ordenada) =
- remoção do ultimo =
- remoção do primeiro =
- remoção de k =

Complexidade das operações

Custo (O)

```
    pesquisa/busca = O(n) // percorrer lista
    inserção (ordenada) = O(n) // percorrer lista
    remoção do ultimo = O(n) // percorrer lista
    remoção do primeiro = O(1) // como na fila
    remoção de k = O(n) // percorrer lista
```

Roteiro

- 1 Introdução
- 2 Filas
- 3 Operações gerais
- 4 Inserção de elementos
- 5 Remoção de elementos
- 6 Referências

Referências sugeridas

[Cormen et al, 2018]

[Tenenbaum et al, 1995]

Referências sugeridas

[Ziviani, 2010]

[Drozdek, 2017]

Perguntas?

Prof. Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br