Chapter 6 Graphs

2024 Spring Ri Yu Ajou University

Contents

Graph Abstract Data Type
Elementary Operations
Spanning Trees
Shortest Paths

Definitions

- \Leftrightarrow G = (V, E), where
 - V(G): set of vertices finite and nonempty (정점)
 - *E(G)*: set of edges finite and possibly empty (간선)
 - Restrictions
 - A graph may not have an edge from a vertex, I, back to itself
 - A graph may not have multiple occurrence of the same edge
- Undirected graph
 - unordered: (u, v) = (v, u)
- Directed graph (digraph)
 - ordered: $\langle u, v \rangle \neq \langle v, u \rangle$

Examples of Graph (1)

$$V(G_1) = \{0, 1, 2, 3\}$$

 $E(G_1) = \{(0,1), (0,2), (0,3), (1,2),$
 $(1,3), (2,3)\}$

$$G_2$$

$$V(G_2) = \{0, 1, 2, 3, 4, 5, 6\}$$

 $E(G_2) = \{(0,1), (0,2), (1,3), (1,4),$
 $(2,5), (2,6)\}$

Examples of Graph (1)

$$V(G_1) = \{0, 1, 2, 3\}$$

 $E(G_1) = \{(0,1), (0,2), (0,3), (1,2),$
 $(1,3), (2,3)\}$

$$V(G_2) = \{0, 1, 2, 3, 4, 5, 6\}$$

 $E(G_2) = \{(0,1), (0,2), (1,3), (1,4),$
 $(2,5), (2,6)\}$

Examples of Graph (2)

$$V(G_3) = \{0, 1, 2\}$$

 $E(G_3) = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 2 \rangle\}$

 G_4

$$G_5$$
 V(G_5) = {0, 1, 2, 3}
E(G_5) = {(0,1), (1,2),
(1,3), (3,1), (3,2),
(2,3), (3,2)}

```
V(G_4) = \{0, 1, 2\}

E(G_4) = \{ <0,0>, <0,2>,

<1,0>, <2,1>, <2,0> \}
```

Examples of Graph (2)

$$V(G_3) = \{0, 1, 2\}$$

 $E(G_3) = \{\langle 0, 1 \rangle, \langle 1, 0 \rangle, \langle 1, 2 \rangle\}$

Terminology (1)

- ❖ Complete graph (완전 그래프)
 - A graph that has the <u>maximum number of edges</u>
 - \rightarrow For an <u>undirected graph with *n* vertices</u>, the maximum number of the edges = n(n-1)/2
 - \rightarrow For a <u>directed graph with *n* vertices</u>, the maximum number of the edges = n(n-1)
- ❖ Multigraph (다중그래프)

A graph whose edges are unordered pairs of vertexes, and the same pair of vertexes can be connected by multiple edges

Terminology - Example

Terminology (2)

- \Leftrightarrow If (u, v) is an edge of an undirected graph,
 - The vertices *u* and *v* are adjacent (인접한)
 - The edge (u, v) is incident (부속된) on u and v

- \Leftrightarrow If $\langle u, v \rangle$ is a directed edge,
 - The vertex u is adjacent to v
 - The vertex ν is adjacent from u
 - The edge $\langle u, v \rangle$ is incident on u and v

A subgraph of G is a graph G' such that $V(G') \subseteq V(G)$ and $E(G') \subseteq E(G)$

Terminology (3)

Terminology (4)

- * A **path** from vertex u to v in graph G is a sequence of vertices, u, i_1 , i_2 , ..., i_k v such that (u, i_1) , (i_1, i_2) , ..., (i_k, v) are edges in an undirected graph
 - If G' is a directed graph, the path consists of $\langle u, i_1 \rangle$, $\langle i_1, i_2 \rangle$, ..., $\langle i_k, v \rangle$
 - The length of a path is the number of the edges on it
- ❖ A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- * A cycle is a simple path in which the first and the last vertices are the same

Terminology (5)

Cycle: 0, 1, 0

0, 1, 0, 1, 2 ??

Terminology (6)

- \clubsuit In an undirected graph G, two vertices u and v are connected if there is a path in G from u and v
- A connected component or simply a component of an undirected graph is a <u>maximal connected subgraph</u>
- ❖ A tree is a graph that is connected and acyclic

Terminology (7)

```
V(G_6) = \{0, 1, 2, 3, 4, 5, 6, 7\}
  E(G_6) = \{(0,1), (0,2), (1,2), (1,3), (2,3), (4,5), (5,6), (6,7)\}
                                      H_2
                                                Is 0 adjacent to 1?
                                                Is 0 adjacent to 3?
                                                Is 0 connected to 3?
                                            6
                                                Is 3 connected to 4?
  V(H_3) = \{0,1,2\}
                               Connected component??
   E(H_3)=\{(0,1), (0,2), (1,2)\}
                    Connected components
V(H_1) = \{0, 1, 2, 3\}
                                    V(H_2) = \{4,5,6,7\}
E(H_1) = \{(0,1), (0,2), (1,2), E(H_2) = \{(4,5), (5,6), (6,7)\}
         (1,3), (2,3)
```

Terminology (8)

- \clubsuit A directed graph is **strongly connected** if, for every pair of vertices, u and v in V(G), there is a <u>directed path</u> from u and v and also from v to u
- A strongly connected component is a <u>maximal</u> subgraph that is strongly connected

Terminology (9)

Terminology (10)

- ❖ The degree of a vertex is the number of edges incident to that vertex
- For a directed graph,

the in-degree of a vertex ν is defined as the number of edges that have ν as the head

the out-degree of a vertex ν is defined as the number of edges that have ν as the tail

Property

e : the number of edges

 d_i : the degree of a vertex *i* in graph G

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

Terminology (11)

Degree of 0

Degree of 1

Degree of 3

in-degree of 1

out-degree of 1

out-degree of 2

Graph representations

- 1. Adjacency Matrix
- 2. Adjacency Lists

Adjacency Matrix

Two-dimensional $n \times n$ array, when the number of nodes is n

$$G_1$$

Property of Adjacency Matrix

- The adjacency matrix for an undirected graph is symmetric
- * The adjacency matrix for a digraph need not be symmetric
- * For an undirected graph, the degree of any vertex i is its row sum
- For a directed graph,

the <u>row sum</u> is the out-degree; the <u>column sum</u> is the in-degree

```
\langle i,j \rangle \rightarrow \text{row } i, \text{ column } j \text{ is set to } 1
```


						(사	당, 아	주대)		(0, 1)	
0	사당					(사	당 <i>,</i> 강년	남)		(0, 2)	
1	아주대					(강남, 의왕) (평촌, 의왕) (수지, 강남) (아주대, 강남)			(2, 3) (4, 3)		
2	강남										
3	의왕								(5, 2)		
4	평촌								(1, 2)		
5	수지					(5)	(명동 <i>,</i> 서울역)			(6, 7)	
6	명동		[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	
7	서울역	[0]							. ,		
		[1]									
		[2]									
		[3]									
		[4]									
		[5]									
		[6]									

[7]

사당
아주대
강남
의왕
평촌
수지
명동
서울역

		(사당, 아주대) (0, (사당, 강남) (0, (강남, 의왕) (2,								
		(강남, 의왕) (2, (평촌, 의왕) (4,								
				•	ㅁ, ㄱ. 지, 강님	•		(5, 2)		
				(O)	주대, 경	· 강남)		(1, 2)		
								(6, 7)		
	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]		
[0]	0	1	1	0	0	0	0	0		
[1]	1	0	1	0	0	0	0	0		
[2]	1	1	0	1	0	1	0	0		
[3]	0	0	1	0	1	0	0	0		
[4]	0	0	0	1	0	0	0	0		
[5]	0	0	1	0	0	0	0	0		
[6]	0	0	0	0	0	0	0	1		
[7]	0	0	0	0	0	0	1	0		

Waste of memory

Utilization = 20/64 = 31(%)

0	1	1	0	0	0	0	0
1	0	0	1	1	0	0	0
1	0	0	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	0	0	0	0	0	1
0	0	1	0	0	0	0	1
0	0	1	0	0	0	0	1
0	0	0	1	1	1	1	0

Adjacency Lists

Replace *n* rows of adjacency matrix with *n* linked lists

Every vertex *i* in *G* has one list

The nodes in chain *i* represent the vertices that are adjacent from *i*

The vertices in each chain are not required to be ordered

Adjacency Lists - Examples

Adjacency Lists in C

```
typedef struct node *nodePointer;
typedef struct node {
   int vertex;
   nodePointer link;
};
nodePointer adjLists[MAX_NODES];
```

0 사당
1 아주대
2 강남
3 의왕
4 평촌
5 수지
6 명동
7 서울역

[0]	
[1]	
[2]	
[3]	
[4]	
[5]	
[6]	
[7]	

```
(사당, 아주대)(0, 1)(사당, 강남)(0, 2)(강남, 의왕)(2, 3)(평촌, 의왕)(4, 3)(수지, 강남)(5, 2)(아주대, 강남)(1, 2)(명동, 서울역)(6, 7)
```

			(사당, 아주대) (0, 1)
0	사당		(사당, 강남) (0, 2)
1	아주대		(강남, 의왕) (2, 3)
2	강남		(평촌, 의왕) (4, 3)
3	의왕		(수지, 강남) (5, 2)
4	평촌		(아주대, 강남) (1, 2) (명동, 서울역) (6, 7)
5	수지	[0]	
6	명동	[0]	1 2
7	서울역	[1]	$0 \longrightarrow 2$
		[2]	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		[3]	2 4
		[4]	3
		[5]	2
		[6]	7
		[7]	6

Weighted Edges (가중치 간선)

- Assign weights to edges of a graph
 - Distance from one vertex to another, or
 - Cost of going from one vertex to an adjacent vertex
- Modify representation to signify an edge with the weight of the edge
 - for adjacency matrix : weight instead of 1
 - for adjacency list : add weight field

Graph Traversal

- Visit every vertex in a graph
 - DFS (Depth First Search) similar to a preorder tree traversal
 - BFS (Breath First Search) similar to a level-order tree traversal

Depth First Search

```
#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];
nodePointer graph[MAX_VERTICES];
void dfs(int v)
/* depth first search of a graph beginning at v */
   nodePointer w;
  visited[v] = TRUE;
  printf("%5d", v);
  for (w = graph[v]; w; w = w->link){
     if (!visited[w->vertex])
        dfs(w->vertex);
```

```
typedef struct node *nodePointer;
typedef struct node {
    int vertex;
    nodePointer link;
};
nodePointer adjLists[MAX_NODES];
```


Example of DFS

visited

dfs(0);

Function call stack


```
void dfs(int v)
{
   nodePointer w;
   visited[v] = TRUE;
   printf("%5d", v);
   for (w = graph[v]; w; w = w->link){
      if (!visited[w->vertex])
          dfs(w->vertex);
   }
}
```


Breadth First Search

- BFS starts at vertex v and marks it as visited
- It then visits each of vertices on v's adjacency list
- When all the vertices on v's adjacency list are visited, all the unvisited vertices are visited that are adjacent to the first vertex on v's adjacency list

Breadth First Search

```
void bfs(int v)
   nodePointer w;
   front = rear = NULL;/* initialize queue */
   printf("%5d", v);
   visited[v] = TRUE;
   addq(v); /* p.159, Chapter 4 */
   while (front) {
      v = deleteq(); /* p.160, Chapter 4 */
      for (w = graph[v]; w; w = w->link)
        if (!visited[w->vertex]) {
           printf("%5d", w->vertex);
           addq(w->vertex);
           visited[w->vertex] = TRUE;
        } /* if */
   } /* while */
```

```
typedef struct node *queuePointer;
typedef struct node {
    int vertex;
    queuePointer link;
    };
queuePointer front, rear;
```

Example of BFS

visited

1

1

1

void bfs(int v)

3

4 5

6

Run bfs(0) and show the result.

Connected Components (연결요소)

: a component of an undirected graph is a maximal connected subgraph

- To determine whether or not an undirected graph is connected
 - simply calling dfs(0) or bfs(0) and then determine if there are unvisited vertices
- ❖ To list the connected components of a graph
 - make repeated calls to either dfs(v) or bfs(v) where v is an unvisited vertex

```
void connected(void)
{ /* determine the connected components of a graph */
   int i;
   for (i = 0; i < n; i++) {
     if (!visited[i])
        dfs(i);
     printf("\n");
   }
}</pre>
```

Example of Connected Components

Spanning Trees (신장트리)

- \bullet If graph G is connected, dfs() or bfs implicitly partitions the edges in G into two sets:
 - T: (for tree edges) set of edges used or traversed during the search
 - N: (for nontree edges) set of remaining edges
- ❖ A spanning tree is any tree that consists solely of edges in G and that include all the vertices in G
 - 1) if we add a nontree edge into a spanning tree \rightarrow cycle
 - 2) spanning tree is a minimal subgraph, G', of G such that V(G)=V(G') and G' is connected

Example of DFS/BFS Spanning Trees

Minimum Cost Spanning Tree

- >A spanning tree of least cost
 - Kruskal's algorithm
 - Prim's algorithm
 - Sollin's algorithm
- Applications
 - Network design: telephone, electrical, water, road, ...

Minimum Cost Spanning Tree

Greedy method

- Make the best decision, <u>local optimum</u>, at each stage using some criterion
- When the algorithm terminates, we hope that the local optimum is equal to the <u>global optimum</u>.
- Spanning tree construction constraints
 - use only edges within the graph
 - use exactly *n*-1 edges
 - may not use edges that would produce a cycle

Kruskal's Algorithm

```
T = \{\};
E = a set of every edges in the input graph
while (T contains less than (n-1) edges && E is not empty)
   choose a least cost edge (v,w) from E;
   delete (v,w) from E;
   if ((v,w) does not create a cycle in T)
      add(v,w) to T;
   else
      discard (v,w);
if (T contains fewer than (n-1) edges)
   printf("no spanning tree\n");
```

An Example of Kruskal's Algorithm

```
T = \{\};
while (T contains less than (n-1) edges &&
    E is not empty)
   choose a least cost edge (v,w) from E;
   delete (v,w) from E;
   if ((v,w) does not create a cycle in T)
      add(v,w) to T;
   else
      discard (v,w);
if (T contains fewer than (n-1) edges)
   printf("no spanning tree\n");
```

$$T = \{(0,5)(2,3)(1,6)(1,2)(3,4)(5,4)\}$$

An Example of Kruskal's Algorithm

Prim's Algorithm

```
T = \{\};
TV = {0}; /* start with vertex 0 and no edge*/
while (T contains fewer than n-1 edges)
   let (u,v) be a least cost edge such that u \in TV and v \notin TV;
   if (there is no such edge) break;
   add v to TV;
   add (u,v) to T;
if (T contains fewer than n-1 edges)
printf("no spanning tree\n");
```

An Example of Prim's Algorithm

```
T = \{\};
TV = \{0\};
while (T contains fewer than n-1 edges)
   let (u,v) be a least cost edge such that u \in TV and v \notin TV
  TV;
   if (there is no such edge)
         break;
   add v to TV;
   add (u,v) to T;
if (T contains fewer than n-1 edges)
  printf("no spanning tree\n");
```


An Example of Prim's Algorithm

Sollin's Algorithm

Start with a forest that has no edges

Select **several edges** for inclusion in T at each stage

- 1) Each component selects a least cost edge with which to connect to another component
- 2) Duplicate selections are eliminated
- Cycles are possible when the graph has some edges that have the same cost

Terminate when

- There is only one tree at the end of a stage, or
- No edges remain for selection

An Example of Sollin's Algorithm

First stage: (0,5), (1,6), (2,3), (3,2), (4,3), (5,0), (6,1)

Second stage: (5,4), (1,2)

An Example of Sollin's Algorithm

Start with a forest that has no edges Select several edges for inclusion in T at each stage

- 1) Each component selects a least cost edge with which to connect to another component
- 2) Duplicate selections are eliminated

```
First stage:
    T={(0,5)(1,6)(2,3)(4,3)(6,1)}
Second stage:
    T = { (0,5) (1,6) (2,3) (4,3) (5,4) (1,2) }
```


Shortest Paths

Single source -> all destinations

- Dijkstra algorithm
- Bellman-Ford algorithm

What is the shortest path?

Let's find all paths from 0 to 2.

Source 10 10 4 15 20 35 30 5

The length of a path is now defined to be the sum of the weights of the edges on that path, rather than the number of edges.

Path					Length		
1)	0	2			10		
2)	0	2	3		25		
3)	0	2	3	1	45		
4)	0	4			45		

Shortest paths from 0

Shortest Path Observations

 V_0 : source vertex

S: set of vertices, including v_0 , whose shortest paths have been found

w: any vertex ($\notin S$)

distance[w]: the length of the shortest path starting from v_0 , going through vertices only in S, and ending in w

- 1) If the next shortest path from v_0 is to u, the path from v_0 to u goes through only those vertices that are in S
- 2) Vertex u is chosen so that it has the minimum distance, distance[u], among all the vertices not in S
- 3) Shortest path from v_0 to w can be changed by adding u to S
 - \rightarrow distance [w] = distance[u] + cost(<u, w>)

Implementation of Dijkstra's Algorithm in C (1)

```
#define MAX VERTICES 6
int cost[][MAX_VERTICES] =
{{ 0, 50, 10, 1000, 45, 1000},
 {1000, 0, 15, 1000, 10, 1000},
 { 20, 1000, 0, 15, 1000, 1000},
 {1000, 20, 1000, 0, 35, 1000},
 {1000, 1000, 30, 1000, 0, 1000},
 {1000, 1000, 1000, 3, 1000, 0}};
int distance[MAX_VERTICES];
short int found[MAX_VERTICES];
int n = MAX_VERTICES;
```


Implementation of Dijkstra's Algorithm in C (2)

```
void shortestPath(int v, int cost[][MAX VERTICES],
     int distance[], int n, short int found[])
   int i, u, w;
  for (i = 0; i < n; i++) {
       found[i] = FALSE;
       distance[i] = cost[v][i];
  found[v] = TRUE; distance[v] = 0;
  for (i = 0; i < n-2; i++) {
       u = choose(distance, n, found);
       found[u] = TRUE;
       for (w = 0; w < n; w++)
           if (!found[w])
              if (distance[u]+cost[u][w] < distance[w])</pre>
                     distance[w] = distance[u]+cost[u][w];
   } /* for i */
```

- v : source vertex
- cost[][]: adjacency matrix of a digraph
- distance[i]: the shortest path from vertex v to i
- found[i]: 0 if the shortest path from i has not been found 1 otherwise ($i \in S$)

Implementation of Dijkstra's Algorithm in C (3)

```
int choose(int distance[], int n, int found[])
 /* find smallest distance not yet checked */
   int i, min, minpos;
  min = INT_MAX;
  minpos = -1;
  for (i = 0; i < n; i++)
       if (distance[i] < min && !found[i]) {</pre>
          min = distance[i];
          minpos = i;
  return minpos;
```

Dijkstra's Algorithm Example 1

Initial condition

Cost adjacency matrix

distance

Dijkstra's Algorithm Example 1 – 1st Step

$$S = \{0, 2\}$$

 $0 \rightarrow 2$: $(0, 2)$, 10

Dijkstra's Algorithm Example 1 – 2nd Step

[0] [1] [2] [3] [4] [5] [0]
$$\begin{bmatrix} 0 & 45 & 10 & 25 & 45 & \infty \end{bmatrix}$$
 [1] $\begin{bmatrix} \infty & 0 & 15 & \infty & 10 & \infty \end{bmatrix}$ [2] $\begin{bmatrix} 20 & \infty & 0 & 15 & \infty & \infty \end{bmatrix}$ [3] $\begin{bmatrix} \infty & 20 & \infty & 0 & 35 & \infty \end{bmatrix}$ [4] $\begin{bmatrix} \infty & \infty & \infty & \infty & 30 & 0 & \infty \end{bmatrix}$ [5] $\begin{bmatrix} \infty & \infty & \infty & \infty & 3 & \infty & 0 \end{bmatrix}$

$$S = \{0, 2, 3\}$$

 $0 \rightarrow 2$: $(0, 2)$, 10
 $0 \rightarrow 3$: $(0, 2, 3)$, 25

Dijkstra's Algorithm Example 1 – 3rd Step


```
S = \{0, 2, 3, \underline{1}\}

0 \rightarrow 2: (0, 2), 10

0 \rightarrow 3: (0, 2, 3), 25

0 \rightarrow 1: (0, 2, 3, 1), 45
```

Dijkstra's Algorithm Example 1 – 4th Step

$$S = \{0, 2, 3, 1, 4\}$$

$$0 \rightarrow 2$$
: (0, 2), 10

$$0 \rightarrow 3$$
: (0, 2, 3), 25

$$0 \rightarrow 1$$
: (0, 2, 3, 1), 45

 $0 \rightarrow 4$: (0, 4), 45

Implementation of Dijkstra's Algorithm in C (4)

```
void shortestPath(int v, int cost[][MAX VERTICES],
     int distance[], int n, short int found[], int pi[]) /* pi: an array of predecessors for each vertex */
   int i, u, w;
   for (i = 0; i < n; i++) {
       found[i] = FALSE;
       distance[i] = cost[v][i];
       if (distance[i] < MAX DISTANCE) pi[i]=v; else pi[i]=-1;</pre>
   found[v] = TRUE; distance[v] = 0;
   for (i = 0; i < n-2; i++) {
       u = choose(distance, n, found);
       found[u] = TRUE;
       for (w = 0; w < n; w++)
           if (!found[w])
              if (distance[u]+cost[u][w] < distance[w]){</pre>
                      distance[w] = distance[u]+cost[u][w]; pi[w]=u;
   } /* for i */
```

Dijkstra's Algorithm: Example 2

서울:0, 시흥:1, 성남:2, 인천:3, 수원:4, 평택:5, 안성:6

Cost adjacency matrix

Γ 0	10	7	1000	15	1000	1000
10	0	1000	5	8	1000	1000
7	1000	0	1000	6	1000	1000
1000	5	1000	0	12	6	1000
15	8	6	12	0	1000	3
1000	1000	1000	6	1000	0	1
L1000	1000	1000	1000	3	1	0

ni		_	_	[3]	_		_
рτ	0	0	0	-1	0	-1	-1

S={서울(0), 성남(2)}

				[3]			
рi	0	0	0	-1	2	-1	-1

S={서울(0), 성남(2), 시흥(1), <mark>수원(4)</mark>}

					[4]		
рi	0	0	0	1	2	-1	4

How to determine the path

S={서울(0), 성남(2), 시흥(1), 수원(4), 인천(3), 안성(6), 평택(5) }

서울 → 평택 서울(0) 성남(2) 수원(4) 안성(6) 평택(5)

서울 → 인천?

Negative Edge Cases

Shortest path from 0 to 2 ? 0,1,2

Dikstra's algorithm cannot find this shortest path

Cost of the shortest path between 0 and 2 ?

$$0,1,0,1,0,1,0,1,...,2 \rightarrow -\infty$$

There is no shortest path!!

Bellman-Ford's algorithm: Overview

Allows negative weights

If there is a negative cycle, returns "a negative cycle exists"

The idea:

- There is a shortest path from s to any other vertex that does not contain a negative cycle
- The maximal number of edges in such a path with no cycles is |V|-1, because it can have at most |V| nodes on the path if there is no cycle
 - \Rightarrow it is enough to check paths of up to |V|-1 edges.

Bellman-Ford Algorithm

```
void BellmanFord(int n, int v)
{ /* single source all destination shortest paths with negative edge lengths. */
 for (int i=0; i<n; i++)
    dist[i] = length[v][i]; /* initialize dist */
  for (int k = 2; k <= n-1; k++)
    for (each u such that u != v and u has at least one incoming edge)
        for (each <i, u> in the edge)
            if (dist[u] > dist[i] + length[i][u])
                 dist[u] = dist[i] + length[i][u];
  for each edge (u,w) in E
     if (dist(w) > dist(u)+length[u][w])
                                               /* negative cycle detection */
          return FALSE;
```

Bellman-Ford's algorithm: Example

Initial state (path length = 1)

dist[1]=
$$6(0,1)$$

dist[2]= ∞
dist[3]= $7(0,3)$
dist[4]= ∞

	[0]	[1]	[2]	[3]	[4]
[0]	0	6	∞	7	∞
[1]	∞	0	5	8	-4
[2]	∞	-2	0	∞	∞
[3]	∞	∞	-3	0	9
[4]	2	∞	7	∞	0

Path length = 2

```
for each <i,u>,
  min{dist[u], dist[i] + length[i][u]}
```



```
dist[1]= 6 (0,1)

min\{6, \infty+(-2)\}

dist[2]= \infty (0,3,2)

min\{\infty, 6+5, 7+(-3), \infty+7\}

dist[3]= 7 (0,3)

min\{7, 6+8\}

dist[4]= \infty (0,1,4)

min\{\infty, 6+(-4), 7+9\}
```

Path length = 3

```
for each <i,u>,
  min{dist[u], dist[i] + length[i][u]}
```



```
dist[1]= 6 (0,3,2,1)
  min{6, 4+(-2)}

dist[2]= 4 (0,3,2)
  min{4, 6+5, 7+(-3), 2+7}

dist[3]= 7 (0,3)
  min{7, 2+8}

dist[4]= -2 (0,3,2,1,4)
  min{2, 2+(-4), 7+9}
```

Path length = 4

```
for each <i,u>,
  min{dist[u], dist[i] + length[i][u]}
```



```
dist[1]= 2 (0,3,2,1)
  min{2, 4+(-2)}

dist[2]= 4 (0,3,2)
  min{4, 2+5, 7+(-3), 2+7}

dist[3]= 7 (0,3)
  min{7, 2+8}

dist[4]= -2 (0,3,2,1,4)
  min{-2, 2+(-4), 7+9}
```

Next Topic

Sorting