How Much Attention Do You Need? A Granular Analysis of Neural Machine Translation Architectures

Steven Walton University of Oregon

21 Feb 2019

Overview

Questions:

- ▶ If attention is all you need, then how much?
- ► Where is the attention important?
- ► What type of attention do we need? Self? LSTM? Transformers?

Overview

Questions:

- ▶ If attention is all you need, then how much?
- ► Where is the attention important?
- ► What type of attention do we need? Self? LSTM? Transformers?

Answers:

- Source attention on lower encoder layers brings no additional benefits.
- ► Multiple source attention and residual feed-forward layers are key.
- ► Self-attention is more important for the source than for the target side.

- ► Flexible Neural Machine Translation Architecture Combination
 - Neural Machine Translation (NMT)
 - ► Architecture Definition Language (ADL)
 - Layer Definitions
 - Standard Architectures
- Related Work
- Experiments
- Conclusion

Neural Machine Translation (NMT)

► NMT is a sequence to sequence prediction task

$$X \mapsto Y$$

$$p(y_t|Y_{1:t-1}, X; \theta) = \operatorname{softmax}(\boldsymbol{W}_o \boldsymbol{z}^L + \boldsymbol{b}_o)$$

- $ightharpoonup W_o$ projects a model dependent hidden vector z^L of the Lth decoder layer to the dimension of the target vocabulary V_{trg}
- ► Training minimizes cross-entropy loss

Architecture Definition Language

in an easy to understand manner. ightharpoonup E.G. pos ightharpoonup repeat(n, res(cnn(glu) ightharpoonupdropout)) ▶ Positional encoding → residual CNN with gated linear units → dropout

► ADL is a language used to describe

► This language lets us discuss a NMT

network structures.

Laver Description nos Positional embeddings. norm, bnorm Laver and batch normalization. repeat(n, l)Layer repetition. res(l)Residual connection. birnn, rnn Recurrent neural network. cnnConvolutional neural network. ff, linear, ffl Feed-forward and linear laver. $[mh]_dot_src_att(h)$ [Multi-head] dot source attention. $[mh]_dot_self_att(h)$ [Multi-head] dot self-attention. $res_nd(l)$ $res(norm \rightarrow l \rightarrow dropout)$ $res_{-}d(l)$ $res(l \rightarrow dropout)$ act, dropout Other lavers. parallel, highway

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- Conclusion

Related Work

- ▶ Britz et al. (2017) explored hyperparams of RNN NMT models with different attention mechanisms.
- ► Schrimpf et al (2018) defined language for exploring architectures for RNNs.
- ➤ Zoph and Le (2016), Negrinho and Gordan (2017), and Liu et al. (2017) explored architectures for image classification.

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- Conclusion

Experiments: Setup

- ► Used adapted version of SOCKEYE (Heiber et al. 2017)
- Used WMT and IWSLT datasets for different sets of text, which are on the order of 5 million training sentences.
- ► English \rightarrow German and Latvian \rightarrow English translation problems.
- ► Ran each experiment 3 times with different random seeds. values reported are the mean result and standard deviation of the BLEU and METEOR scores.

NMT Architectures defined by ADL

```
e.g. Transformer [Vaswani et al. 2017] t_{\rm enc} = res\_nd(mh.dot.self\_att) \rightarrow res\_nd(ff) t_{\rm dec} = res\_nd(mh.dot.self\_att) \rightarrow res\_nd(mh.dot.sec.att) \rightarrow res\_nd(mh.dot.se
```

$$\mathbf{U}^{L_s} = pos \rightarrow repeat(n, t_{enc}) \rightarrow norm$$

$$\mathbf{Z}^L = pos \rightarrow repeat(n, t_{dec}) \rightarrow norm$$

Usage in Sockeye, our NMT toolkit:

- > sockeve-train -s train.de -t train.en
- --custom-seq-encoder repeat(6,birnn)
- --custom-seq-decoder pos->res(norm->mh_dot_self_att)->res(mh_dot_src_att)

https://github.com/awslabs/sockeye/tree/acl18

Experiments: What to Attend To?

- Best attention on the upper encoder block.
- No gains observed by attention on different encoder layers in source attention mechanism.

Encoder/Decoder Combinations

- Baseline: 6 laver Transformer, 512 hidden units
- Data sets: IWSLT'16, WMT'17
- Metrics: BLEU (and METEOR in the paper)
- · 3 runs, reporting mean and standard deviation

$t_{\rm enc} = res_nd($ $) \rightarrow res_nd(fft)$					
$t_{\rm dec} = res_nd(\\ /) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(ff)$				l)	
•	1	IWSLT	WMT'17	WMT'17	
Encoder	Decoder	$EN\rightarrow DE$	$EN\rightarrow DE$	$LV \rightarrow EN$	
self-att	self-att	25.4 ± 0.2	27.6 ± 0.0	18.3 ± 0.0	
self-att	RNN	25.1 ± 0.1	27.4 ± 0.1	18.4 ± 0.2	
self-att	CNN	25.4 ± 0.4	27.6 ± 0.2	18.0 ± 0.3	
RNN	self-att	25.8 ± 0.1	27.2 ± 0.1	17.8 ± 0.1	
CNN	self-att	25.7 ± 0.1	26.6 ± 0.3	16.8 ± 0.4	
RNN	RNN	25.1 ± 0.1	26.7 ± 0.1	17.8 ± 0.1	
CNN	CNN	25.3 ± 0.3	26.9 ± 0.1	16.4 ± 0.2	
self-att	combined	25.1 ± 0.2	27.6 ± 0.2	18.3 ± 0.1	
self-att	none	23.7 ± 0.2	25.3 ± 0.2	15.9 ± 0.1	
Engador blook		IWCI	TU	/MT:17	_

self-att none	$23.7 \pm 0.2 \mid 25.3 \pm$	0.2 15.9 ± 0.1	
Encoder block	IWSLT	WMT'17	
upper	25.4 ± 0.2	27.6 ± 0.0	
increasing	25.4 ± 0.1	27.3 ± 0.1	
decreasing	25.3 ± 0.2	27.1 ± 0.1	

BLEU Scores

Experiments: Network Structure

RNN → Transformer

- ➤ RNN includes multiple source attention layers, multi-headed attention, layer normalization, residual upscaling FF layers, and single headed MLP attention.
- ➤ Start with RNN, add multi-headed attention (mh), positional embedding (pos), layer normalization (norm), single headed attention, attention to residual blocks (multi-att), and residual feed-forward layers after attention blocks (ff).
- Gains from multi-headed attention and feed-forward residual layers.

RNN to Transformer

 $U^{L_s} = dropout \rightarrow res_d(birnn) \rightarrow repeat(5, res_d(rnn))$

 $\mathbf{Z}^{L} = dropout \rightarrow repeat(6, res_d(rnn)) \rightarrow res_d(dot_src_att) \rightarrow res_d(ffl)$

1/	IWSLT	WMT'17	WMT'17
Model	$EN\rightarrow DE$	$EN\rightarrow DE$	LV→EN
Transformer	25.4 ± 0.1	27.6 ± 0.0	18.5 ± 0.0
RNMT	23.2 ± 0.2	25.5 ± 0.2	-
- input feeding	23.1 ± 0.2	24.6 ± 0.1	-
RNN	22.8 ± 0.2	23.8 ± 0.1	15.2 ± 0.1
+ mh	23.7 ± 0.4	24.4 ± 0.1	16.0 ± 0.1
+ pos	23.9 ± 0.2	24.1 ± 0.1	15.6 ± 0.1
+ norm	23.7 ± 0.1	24.0 ± 0.2	15.2 ± 0.1
+ multi-att-1h	24.5 ± 0.0	25.2 ± 0.1	16.6 ± 0.2
/ multi-att	24.4 ± 0.3	25.5 ± 0.0	17.0 ± 0.2
+ ff	25.1 ± 0.1	26.7 ± 0.1	17.8 ± 0.1
77/		17.000	

 $\mathbf{U}^{L_s} = pos \rightarrow res_nd(birnn) \rightarrow res_nd(ffl)$ $\rightarrow repeat(5, res_nd(rnn) \rightarrow res_nd(ffl) \rightarrow norm$

 $\mathbf{Z}^{L} = pos \rightarrow repeat(6, res_nd(rnn) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(fft)) \rightarrow norm$

Can see that as RNN → Transformer the BLEU scores increase.

Experiments: Network Structure

CNN → Transformer

- ► Neither Transformer nor CNN have dependency between decoder timesteps during traning, use multiple source attention mechanisms, and use different residual structures.
- ► Largest gains from adding residual feed-forward layers.

Can see that as CNN →
Transformer the BLEU scores increase.

 $\mathbf{Z}^{L} = pos \rightarrow repeat(6, res_nd(cnn) \rightarrow res_nd(mh_dot_src_att) \rightarrow res_nd(ffl)) \rightarrow norm$

Experiments: Self-Attention Variations

- ➤ Self-attention has advantage because two positions directly connected and no dependencies between consecutive timesteps.
- ► Self-attention has disadvantage because positional information isn't directly represented and need multiple heads.
- Experiments show attention is more important to decoder side.
- ▶ Attention on encoder shows little to no improvement.

Experiments: Self-Attention Variations

		IWSLT EN→DE	WMT'17 EN→DE		WMT'17 LV→EN	
Encoder	Decoder	BLEU	BLEU	METEOR	BLEU	METEOR
self-att	self-att	25.4 ± 0.2	27.6 ± 0.0	47.2 ± 0.1	18.3 ± 0.0	51.1 ± 0.1
self-att	RNN	25.1 ± 0.1	27.4 ± 0.1	47.0 ± 0.1	18.4 ± 0.2	51.1 ± 0.1
self-att	CNN	25.4 ± 0.4	27.6 ± 0.2	46.7 ± 0.1	18.0 ± 0.3	50.3 ± 0.3
RNN	self-att	25.8 ± 0.1	27.2 ± 0.1	46.7 ± 0.1	17.8 ± 0.1	50.6 ± 0.1
CNN	self-att	25.7 ± 0.1	26.6 ± 0.3	46.3 ± 0.1	16.8 ± 0.4	49.4 ± 0.4
RNN	RNN	25.1 ± 0.1	26.7 ± 0.1	46.4 ± 0.2	17.8 ± 0.1	50.5 ± 0.1
CNN	CNN	25.3 ± 0.3	26.9 ± 0.1	46.1 ± 0.0	16.4 ± 0.2	47.9 ± 0.2
self-att	combined	25.1 ± 0.2	27.6 ± 0.2	47.2 ± 0.2	18.3 ± 0.1	51.1 ± 0.1
self-att	none	23.7 ± 0.2	25.3 ± 0.2	43.1 ± 0.1	15.9 ± 0.1	45.1 ± 0.2

Table 5: Different variations of the encoder and decoder self-attention layer.

- ► Flexible Neural Machine Translation Architecture Combination
- ► Related Work
- Experiments
- ► Conclusion

Conclusion

- ► Defined ADL for specifying NMT architectures on composable building blocks.
- ► Found RNN models benefit from multiple source attention mechanisms and residual feed-forward blocks.
- Found CNN benefits from layer normalization and feed-forward blocks.
- ► These features explain the effectiveness of transformers, as they make the respective models more transformer "like".
- ► RNN and CNN models with self-attention on the encoder side are competitive with transformers.