KIN

Table of Contents

Calling Syntax	
/O Variables	
Example	
Hypothesis	
imitations	
Version Control	
Group Members	
Function	
Validity	
Main Calculations	
Output Data	
-T =	

Função que calcula a cinemática do robô planar 3R, que recebe os ângulos de junta e devolve a matriz de transformação do sistema do punho com relação a base.

Calling Syntax

wrelb= kin(theta,L)

I/O Variables

```
IN Double Array theta: Joint angles [ 	heta_1 	heta_2 	heta_3] [degrees degrees degrees]
```

IN Double Array \mathbf{L} : $\mathit{Ligaments length} \, [\, L_1 \, L_2] \, [\mathsf{meters meters}]$

OU Double Matrix \mathbf{wrelb} : W $\mathbf{relative}$ \mathbf{to} B $\mathbf{Homogeneous}$ $\mathbf{Transformation}$ \mathbf{Matrix} $\mathbf{4x4}$

Example

```
theta = [0 90 -90]
L = [0.5 0.3]
wrelb= kin(theta,L)
```

Hypothesis

RRR planar robot.

Limitations

Segue as sintaxes e configurações para o robô 3R planar apresentado no enunciado da lista de exercícios.

Version Control

1.0; Grupo 04; 2025/04/03; First issue.

Group Members

· Guilherme Fortunato Miranda

13683786

• João Pedro Dionizio Calazans

13673086

Function

```
function wrelb= kin(theta,L)
```

Validity

Not apply

Main Calculations

```
total_theta = sum(theta);
  rel30 =[cosd(total_theta) -sind(total_theta) 0
cosd(theta(1))*L(1)+cosd(theta(1)+theta(2))*L(2);
        sind(total_theta) cosd(total_theta) 0
sind(theta(1))*L(1)+sind(sum(theta(1:2)))*L(2);
        0 0 1 0;
        0 0 0 1;];
```

Output Data

```
wrelb = rel30;
end
wrelb =
    1.0000
                   0
                             0
                                  0.5000
              1.0000
                                  0.3000
         0
                             0
                       1.0000
         0
                   0
                   0
                                  1.0000
```

Published with MATLAB® R2024b