61A Lecture 18

Friday, March 6

Announcements

- Project 3 due Thursday 3/12 @ 11:59pm (get started now!)
- -Project party on Tuesday 3/10 5pm-6:30pm in 2050 VLSB
- -Bonus point for early submission by Wednesday 3/11
- ·Homework 6 due Monday 3/16 @ 11:59pm (not yet released)
- •Midterm 2 is on Thursday 3/19 7pm-9pm
- *Emphasis: mutable data, object-oriented programming, recursion, and recursive data
- *Fill out conflict form if you cannot attend due to a course conflict

Type Coercion

Review: Type Dispatching Analysis

 $\label{thm:minimal_problem} \mbox{Minimal violation of abstraction barriers: we define cross-type functions as necessary.}$

Extensible: Any new numeric type can "install" itself into the existing system by adding new entries to the cross-type function dictionaries ${\sf T}$

Arg 1	Arg 2	Add	Multiply
Complex	Complex		
Rational	Rational		
Complex	Rational		
Rational	Complex		

Coercion

 $\label{eq:converted} \textbf{Idea: Some types can be converted into other types}$

Takes advantage of structure in the type system

def rational_to_complex(r):
 """Return complex equal to rational."""
 return ComplexRI(r.numer/r.denom, 0)

Question: Can any numeric type be coerced into any other?

Question: Can any two numeric types be coerced into a common type?

Question: Is coercion exact?

Applying Operators with Coercion

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme $% \left(1\right) =\left(1\right) \left(1\right) \left($

Arg 1	Arg 2		Add		Multi	Multiply	
Complex	Compl	ex					
Rational	ational Rational						
Complex	olex Rational						
Rational	Compl	ex					
		\swarrow	<u> </u>	y			
From	То	Coerce	Тур	9	Add	Multiply	
Complex	Rational		Com	plex			
Rational	Complex		Rati	onal			

Sequence Operations

Linked List Processing

(Demo)