

Redes Neuronales para grafos

Tema 1

Introducción a las redes neuronales para grafos

Ángel Panizo LLedot

angel.panizo@upm.es

Despacho: 1216

Adrian Giron Jimenez

adrian.giron@upm.es

Despacho: 12

Libro de la asignatura

Hamilton, W. L. (2020). Graph representation learning. Morgan & Claypool Publishers.

https://www.cs.mcgill.ca/~wlh/grl_book/

Calendario

semana	martes	jueves
1	14/01: Introducción	16/01: Shallow embeddings
2	21/01: GNN – paso de mensajes	23/01: GNN – arquitecturas avanzadas
3		30/01: GNN – consideraciones prácticas
4		<u>06/02: Torneo</u>
5		13/02: Métodos generativos

Máster Deep Learning

Evaluación

- Una única práctica.
- ▶ 85% entrega (Código + memoria).
- ▶ 15% actividad en clase (sesión del torneo del 6 de febrero)

Ejemplos de grafos

Ejemplos de grafos

Las redes neuronales para grafos (GNNs)

SON UN TIPO DE RED NEURONAL DISEÑADA PARA TRABAJAR CON GRAFOS Y SON CAPACES DE APRENDER **REPRESENTACIONES**. DE NODOS, ARISTAS O EL GRAFO COMPLETO, CAPTURANDO INFORMACIÓN DE LAS CONEXIONES Y RELACIONES ENTRE SUS ELEMENTOS.

¿Qué pueden hacer la GNNs?

- Sistemas de recomendación.
- Predicción de las propiedades de una molecula.
- Generación de mallas 3D.
- Detección de Código duplicado.
- Predicción del tráfico.
- ▶ etc

- EL DEEP LEARNING HA SOBRESALIDO EN OTROS DOMINIOS COMO **IMÁGENES** Y **TEXTO**.
- ¿POR QUÉ **NO SE APLICA** TANTO A LOS DATOS DE **RED**?

LAS REDES NO TIENEN UNA ESTRUCTURA HOMOGÉNEA COMO EL TEXTO O LAS IMÁGENES.

Texto

- Tiene principio y fin.
- Todas las palabras tiene sucesores y antecesores
- Se pueden dividir en frases

Imagen

- Tiene un ancho y un alto.
- Se pueden redimensionar.
- Todos los pixels tienen vecinos en cada punto cardinal.

Grafo

- No tiene principio claro.
- No tiene un sistema de coordinadas.
- Cada nodo tiene una vecindad de tamaño diferente.

- Cuando aplicamos Inductive learning entrenamos un modelo para poder predecir casos nuevos que no tenemos previstos.
- Puede predecir datos nuevos sin necesidad de un reentrenamiento
- Cuando aplicamos Transductive learning entrenamos un modelo para predecir un conjunto de casos que ya conocemos de antemano.
- Si aparecen datos nuevos, es necesario entrenar de nuevo.

Inductive

Transductive

Máster Deep Learning

Entrenar y predecir

Entrer

Tipos de nodos:

- *Transductive*: Intervienen en el cálculo de la función de perdida durante el el proceso de entrenamiento.
- *Inductive*: NO intervienen en el cálculo de la función de perdida durante el proceso de entrenamiento.

Entrenar y predecir

Tipos de aprendizaje

Supervisado:

 Se realiza el proceso de testing con nodos de tipo Transductive.

Semisupervisado:

 Se realiza el proceso de testing con nodos de tipo Inductive.

Nosupervisado:

No tengo etiquetas.

Evolución del machine learning para grafos

DE LOS ATRIBUTOS MANUALES A LAS GNNS

Representational learning Se crean métodos capaces de aprender atributos agnosticos a las tareas de manera automática

Son capaces de crear atributos adhoc para un problema especifico de manera automática

Pipeline tradicional

Representational learning

Representational learning

GNNs

¿Cómo se representa un grafo?

NOCIONES BÁSICAS DE GRAFOS

Nomenclatura

- ▶ Grafo: G(V,E)
 - Nodos: $V = \{v_0, ..., v_N\}$
 - ▶ Nº de nodos => N = |V|
 - ► Aristas: $E = \{(u,v) \mid u \in V \land v \in V\}$

Máster Deep Learning

Nomenclatura

- ▶ Grafo: G(V,E)
 - $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$
 - N = 7
 - $E = \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_5, v_1), (v_5, v_6), (v_6, v_7), (v_7, v_1)\}$

Cómo represento un grafo

- ▶ Grafo: G(V,E)
 - X: Matriz de atributos
 - (N x NºAtributos)
 - ▶ A: Matriz de adyacencia
 - (N x N)
 - $A_{ij} = \begin{cases} 0 \text{ si } e_{ij} \notin E \\ 1 \text{ si } e_{ij} \in E \end{cases}$

Cómo represento un grafo

▶ Grafo: G(V,E)

		v_1	v_2	v_3	v_4	v_5	v_6	v_7
	v_1	0	1	0	0	1	0	1
	v_2	1	0	1	0	0	0	0
A =	v_3	0	1	0	1	0	0	0
	v_4	0	0	1	0	1	0	0
	v_5	1	0	0	1	0	1	0
	v_6	0	0	0	0	1	0	1
	v_7	1	0	0	0	0	1	0
	'							

		x_1	x_2
	v_1	1	1
X =	v_2	2	2
	v_3	3	3
	v_4	4	4
	v_5	5	5
	v_6	6	6
	v_7	7	7

Grado de un nodo

- Nº de enlaces que tiene un nodo
 - $d_i = \sum_{j=0}^N A_{ij}$

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	d
v_1	0	1	0	0	1	0	1	3
v_2	1	0	1	0	0	0	0	2
v_3	0	1	0	1	0	0	0	2
v_4	0	0	1	0	1	0	0	2
v_5	1	0	0	1	0	1	0	3
v_6	0	0	0	0	1	0	1	2
v_7	1	0	0	0	0	1	0	2

Caminos en un grafo

- Un camino es una secuencia de aristas donde cada elemento de la secuencia comparte una arista con el siguiente y el anterior nodo de la secuencia.
- Un camino aleatorio o "Random walk", es un camino dónde cada arista de la secuencia se elige al azar.

Caminos en un grafo

- Se dice que dos nodos n_i y n_j son accesibles o "reachables", si existen al menos un camino que partiendo de n_i termine en n_i
- La **distancia** (**geodésica**) entre dos nodos n_i y n_j se define como el camino de menor longitud que empieza en n_i y termina en n_j .

Caminos y la matriz de adyacencia

- Las potencias de la matriz de adyacencia me indican el número de caminos de longitud N que hay entre dos nodos.
- La distancia más larga que puede existir entre dos nodos en un grafo es N -1
- $\sum_{i=1}^{N-1} A^i$ Me indica si dos nodos son alcanzables o no.

Componentes conexas

- ▶ **Subgrafo:** $S \subseteq G \Rightarrow S(V', E')$ es un **subgrafo** de G(V, E) si $V' \subseteq V \land E' \subseteq E$
- Una componente conexa (CC) de G es un Subgrafo de G donde todos los pares de nodos son accesibles entre sí y no se pueden añadir más nodos de G sin que se deje de cumplir la propiedad.

Componentes conexas

▶ Subgrafo generado sobre un nodo *u* que contienen todos sus vecinos a una distancia *D* y las aristas entre ellos.

Ponderado

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	2	0	0	1	0	2
v_2	2	0	1	0	0	0	0
v_3	0	1	0	1	0	0	0
v_4	0	0	1	0	3	0	0
v_5	1	0	0	3	0	1	0
v_6	0	0	0	0	1	0	1
v_7	2	0	0	0	0	1	0

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	0	1	0	1
v_2	1	0	1	0	0	0	0
v_3	0	1	0	1	0	0	0
v_4	0	0	1	0	1	0	0
v_5	1	0	0	1	0	1	0
v_6	0	0	0	0	1	0	1
v_7	1	0	0	0	0	1	0

Máster Deep Learning

	v_1	v_2	v_3	v_4	v_5	v_6	v_7
v_1	0	1	0	0	1	0	1
v_2	1	0	1	0	0	0	0
v_3	0	1	0	1	0	0	0
v_4	0	0	1	0	1	0	0
v_5	1	0	0	1	0	1	0
v_6	0	0	0	0	1	0	1
v_7	1	0	0	0	0	1	0

v3 v7 $\exists (i,j) \in E, A_{ij} \neq A_{ji}$										
	v_1	v_2	v_3	v_4	v_5	v_6	v_7			
v_1	0	1	0	0	0	0	1			
v_2	0	0	0	0	0	0	0			
v_3	0	1	0	0	0	0	0			
v_4	0	0	1	0	1	0	0			
v_5	1	0	0	0	0	1	0			
v_6	0	0	0	0	0	0	1			

- ▶ In degree: $d^{in}(x) = \sum_{i=0}^{N-1} A_{xi}$
- Out degree: $d^{out}(x) = \sum_{i=0}^{N-1} A_{ix}$

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	d^{out}
v_1	0	1	0	0	0	0	1	2
v_2	0	0	0	0	0	0	0	0
v_3	0	1	0	0	0	0	0	1
v_4	0	0	1	0	1	0	0	2
v_5	1	0	0	0	0	1	0	2
v_6	0	0	0	0	0	0	1	1
v_7	0	0	0	0	0	0	0	0
d^{in}	1	2	1	0	1	1	2	

Componentes conexas en grafos dirigidos

- En grafos dirigidos existen dos variantes la **fuerte** y la **débil:**
- En la **fuerte**, para cada par de nodos n_i y n_j debe haber un camino tanto de n_i a n_j, como de n_j y n_i.
- En la débil basta con que existe al menos un camino, de n_i y n_j o de n_j y n_i

Grafos k-partidos

- Tengo k tipos de nodos
- Tengo k-1 tipos de relación
- Las relaciones solo unen nodos de tipos distintos.
- Todos los tipos de nodos tiene algún tipo de relación

Proyecciones en grafos partidos

- Los nodos y las aristas tienen diferentes tipos.
- Puedo tener conexiones en la misma capa y conexiones entre capas

	v_1	v_2	v_1	v_2	v_3	v_1	v_4
v_1	0	1	0	0	0	0	1
v_2	1	0	0	0	1	0	0
v_1	0	0	0	1	0	0	0
v_2	0	0	1	0	1	0	0
v_3	0	1	0	1	0	0	0
v_1	0	0	0	0	0	0	1
v_4	1	0	0	0	0	1	0

Prácticar

- Hacer grupos y pensar que tipos de grafos usarias en cada caso.
- Tienes las instrucciones detalladas en la hoja de ejercicios ""

Metricas para nodos: Centralidad

- Miden como de importante es un nodo en la red
- Destaca el page rank (o algoritmo de google) que indica los nodos que están conectados a otros nodos bien conectados.

Detección de comunidades

- Tarea que consiste en dividir un grafo en grupos de nodos con más conexiones entre los nodos del grupo comparados con el resto de nodos de la red.
- Cabe destacar el algoritmo de Louvain.

Densidad de un grafo

- El número máximo de aristas de un grafo viene fijado por su número de nodos.
 - ▶ Dirigidos: N * (N 1)
 - ► No-Dirigidos: $\frac{N*(N-1)}{2}$
- La densidad de un grafo se mide como el porcentaje de aristas que tiene del total possible.

NETWORKX Y PYTORCH GEOMETRIC

Pytorch geometric (PyG)

- Libreria basada en pytroch que permite hacer deep learning sobre grafos.
- Framework potente que permite implementar muchos tipos de arquitecturas con poco esfuerzo.
- Tiene un sinfin de arquitecturas ya programadas y lista para usar.

Máster Deep Learning

NetworkX

- Librería para la creación, manipulación y análisis de grafos.
- Proporciona funciones para calcular métricas de grafos, encontrar caminos y detectar comunidades.
- Ampliamente utilizada tanto en análisis como en la visualización de grafos.

NetworkX

- Librería para la creación,
 - mą/
 - cal en

Veamos un ejemplo

- COI
- Ampliamente umzada tanto en análisis como en la visualización de grafos.

¿Qué representa mi grafo?

EL MODELO DEBAJO DE LAS MATEMÁTICAS

56

Escoger la representación adecuada

Siempre tenemos que pensar que representa nuestra red.

- Red profesional: Conecto individuos que trabajan juntos.
- Red sexual: Conecto individuos que han tenido relaciones sexuales.
- Red de citas científicas: Conecto papers que se citan uno al otro.
- Red ASOIAF: Conecto personajes que aparecen a menos de 15 palabras de otro personaje en los libros de "canción de hielo y fuego".

Proceso de creación de un grafo

58 Prácticar

- Vamos a crear un grafo a partir de datos en bruto, que es el proceso que tengo que hacer antes de realizar cualquier tarea de machine learning sobre grafos.
- Tienes toda la información el la hoja de ejercicios "".

