

Regresión Logística y Naïve Bayes

Denis Parra

Curso Exploratorio de Computación –

IIC 1005

2018

PLAN SEMESTRAL

Week	Fecha semana	Clase Martes	Clase Jueves	Presentador	ayudante	Ayudantía	Control	Tarea
I	6 - 8 Mar	Introduccion+terminal	Github+Jupyter					
II	13 - 15 Mar	Leng. Prog + Jupyter 2	Visualizacion + HCI		Dan + Vi	Jupyter Pandas		
Ш	20 - 22 Mar	Tecn Web HTML + CSS	Tecn Web JS		Vi + Dan	Jupyter Plots		tc1 Git+Shell
IV	27 - 29 Mar	Arquitectura	SO+Redes	HL + CR	Dal + Fl	Web		
٧	3 - 5 Abr	BD	BD	AS	FI + Dal +ViD	Web		TG1 Jupyter + We
VI	10 - 12 Abr	Algoritmos	Ingenieria de Sotware	YE + JN		-	I1: 13Abr Web/HCI	
VII	17 - 19 Abr	ML	ML		Dal + Fl	SQL		tc2 BD (SQL)
VIII	24 - 26 Abr	ML	ML		Antonio	ML		
IX	3 may.	FERIADO	Guest: DL	HL	Antonio	Sala de Ayuda	ML	TG2 ML
X	8 - 10 May	Computabilidad	Complejidad	CRi	No hay	No hay		
ΧI	15 - 17 May	Prog Logica	Prog Logica	JB	Vicho	Turing	I2: 16May IngSoft	
XII	22 - 24 Ma	ВРМ	ВРМ	MS	Vicho	Sala de Ayuda	TC3	tc3 Maq de Turing
XIII	29 - 31 Ma	Guest: Criptomonedas	Guest: TBA	CR - ??	Dal +	BPM		
XIV	5 - 7 Jun	Guest: CSCW	Guest: MOOC	VH - Mar	Dal +	BPM + Prolog		tc4 BPM
XV	12 -14 Jun	Guest: Miguel Nussb.	Guest: Mobile & Cloud	MN - AN		Prolog	I3: 14Jun ML+IA	
XVI	19 - 21 Jun	Resumen Final						

Resumen

- Inteligencia de Máquina: Aprender de los Datos
- Revisemos de modo conceptual un ejemplo: Construir para un banco un sistema que automáticamente apruebe o niegue crédito

Applicant information:

Rechazar o
Aprobar credito??

age	23 years	
gender	male	
annual salary	\$30,000	
years in residence	1 year	
years in job	1 year	
current debt	\$15,000	
• • •	• • •	

Formalización del Problema de Aprendizaje

 Encontrar la formula de aprobación g que se aproxime lo más posible a la formula ideal f

```
• Input: \mathbf{x} (customer application)

• Output: y (good/bad customer?)

• Target function: f: \mathcal{X} \to \mathcal{Y} (ideal credit approval formula)

• Data: (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \cdots, (\mathbf{x}_N, y_N) (historical records)

↓ ↓ ↓

• Hypothesis: g: \mathcal{X} \to \mathcal{Y} (formula to be used)
```

Formalizacion del Problema de Aprendizaje

El conjunto de hipótesis H

Motivación

- Nos interesa usar un modelo de regresión en que la variable dependiente es binaria (1 ó 0) o multinomial (espacio finito de valores).
- Para la tarea, Y = 1 significa que el usuario es vendedor

$$P(Y = 1) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k$$

Motivación

 Sin embargo, considerando que en una regresión lineal múltiple la variable dependiente "Y" podría tomar cualquier valor en un rango continuo, hacemos uso de la función logística para hacer una transformación

Función logística

Función logística con $\beta_0+\beta_1x+e$ en el eje horizontal y $\pi(x)$ en el eje vertical.

$$y=rac{1}{1+e^{-f(X)}}$$

$$p_i = rac{1}{1 + e^{-(eta_0 + eta_1 x_{1,i} + \cdots + eta_k x_{k,i})}}$$

Modelo de regresión logística

 De esta forma, el modelo logístico nos queda:

$$\log\left(\frac{P}{1-P}\right) = \alpha + \beta_1 x_1 + \dots + \beta_p x_p$$

donde P = P(Y = 1 | x₁, ..., x_p), es decir, la probabilidad de que el evento Y ocurra (dadas las covariables x₁, ..., x_p). La expresión es equivalente a:

$$\Pr(Y=1|x_1,x_2,\dots,x_p) = \frac{1}{1+\exp(-\alpha-\beta_1 x_1 - \beta_2 x_2 - \dots - \beta_p x_p)}$$

Tarea 2: Regresión Logística para Predicción

- Con el objetivo de simplificar algunos temas como los supuestos del modelo y cómo obtener los valores de β, usaremos el software scikit-learn para "obtener" los valores de β. Quedan pendientes:
 - ¿Cómo interpretar estos valores?
 - ¿Cómo evaluar qué tan buena es la predicción del modelo?

Interpretar valores de β

- β_j es la cantidad de cambio en logit por cada unidad que cambia X_i
- A diferencia de regresión lineal, los β_j no se interpretan directamente, sino que exp(β_i)
- exp(β_i): odds ratio (razón de disparidad)
 - $-\exp(\beta_i) = 1$, no hay cambio en los odds ratio
 - $-\exp(\beta_i)$ < 1 odds ratio decrece
 - $-\exp(\beta_i) > 1$ odds ratio crece
 - $-\exp(\beta_0)$: baseline

Interpretar valores de β

• Ejemplo: en la tarea, si $exp(\beta_j) = 1.2 \text{ y X}_j$ es "largo de la pagina en letras", por cada letra adicional mi chance (odds) de ser *phishy* es 20% mayor.

Si tomamos un valor de ejemplo, digamos p(50) = 2/3, entonces

$$rac{p(50)}{1-p(50)} = rac{rac{2}{3}}{1-rac{2}{3}} = 2.$$

 Recomiendo revisar: http://www.ats.ucla.edu/stat/mult_pkg/faq/general/odds ratio.htm

sklearn

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

Clasificador Bayesiano "Naive"

 Este modelo se basa en Probabilidades, particularmente usa el teorema de Bayes y más precisamente el supuesto "Naïve" de Independencia Condicional

Teorema de Bayes

Thomas Bayes (1701 – 1761)

Teorema de Bayes

- P(A = sí): Probabilidad del evento A sea "sí"
- P(A=sí|B=sí): Probabilidad de que el evento A sea "sí" DADO QUE el evento B fue "sí"
- Por simplicidad, usamos P(A) = P(A="sí")

$$P(A | B) = \frac{P(A,B)}{P(B)}$$
 $P(A | B) = \frac{P(B|A) * P(A)}{P(B)}$

Noción del Teorema de Bayes

- << La riqueza hace la felicidad >>
- ¿Son felices los ricos? P(feliz = sí | rico = sí)
- ... yo sé que de la gente feliz, 20% es rica.

Supongamos:

A: gente feliz = 40% de la población

B: gente rica = 10% de la población

C: P(rico | feliz) = 20%

Noción del Teorema de Bayes

- << La riqueza hace la felicidad >>
- ¿Son felices los ricos? P(feliz = sí | rico = sí)
- ... yo sé que de la gente feliz, 20% es rica.

Felices
que son
ricos

Gente Feliz

Supongamos:

A: gente feliz = 40% de la población B: gente rica = 10% de la población

$$P(feliz \mid rico) = \frac{P(rico|feliz) * P(feliz)}{P(rico)}$$

$$P(feliz \mid rico) = \frac{0.2 * 0.4}{0.1}$$

¿Y por qué se llama "Naïve"?

• Naïve significa "ingenuo"

 Es "ingenuo" por que asume independencia de los eventos*

• * en realidad, asume independencia condicional

Independencia de Eventos

 Supongamos que lanzo una moneda al aire y quiero saber la probabilidad de que ocurra "cara"

$$P(Cara = 1) = P(Cara)$$

• ¿Y si quiero calcular la probabilidad de que ocurra dos veces seguidas? Si son Independientes...

$$\Rightarrow$$
 P(Cara=1, Cara=1) = P(Cara = 1) * P(Cara = 1)

Si no asumo independencia:

El segundo lanzamiento depende del primero

Independencia Condicional

$$(\forall i, j, k)P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

- ¿Probabilidad de oír un trueno dado que llueve y ya hubo un rayo?
- …en realidad, basta con ver el rayo para saber si habrá un trueno

No necesito "llueve=sí"

Independencia Condicional

$$(\forall i, j, k) P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$$

- ¿Probabilidad de oír un trueno dado que llueve y ya hubo un rayo?
- …en realidad, basta con ver el rayo para saber si habrá un trueno

P(trueno = Si | Iluvia = si, rayo=si) = P(trueno =Si | rayo = si)

No necesito "llueve=sí"

$$P(X|Y) = P(X_1, X_2|Y)$$

= $P(X_1|X_2, Y)P(X_2|Y)$
= $P(X_1|Y)P(X_2|Y)$

OK, pero ¿¿por qué es "Naïve"??

- Ejemplo: Clasificar una frase como SPAM
- P(spam=Si | <frase>) , y <frase> es "viagra feliz".
 Usando Bayes

De la misma forma, podemos calcular P(spam = No | <frase>)

Volviendo: Ejemplo de Clasificación

 Consideremos un auto SUV, color rojo, doméstico. ¿La probabilidad de que la roben es mayor o menor de que no la roben?

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Latent Dirichlet Allocation (LDA)

- Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003).
 Latent dirichlet allocation. the Journal of machine Learning research, 3, 993-1022.
- Steyvers, M., & Griffiths, T. (2007). Probabilistic topic models. Handbook of latent semantic analysis, 427(7), 424-440.
- Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.

Representaciones Distribucionales

- Podemos asumir un modelo en el cual la distribución de contextos en los cuales las palabras (consideradas átomos) aparecen, nos dice algo sobre esa palabra y sobre esos contextos.
- Contexto: puede ser palabras adyacentes, trozos de discursos, o simplemente ... Documentos.
- Si dos palabras aparecen en el mismo contexto (documento), podrían pertenecer a una misma clase semántica.

Latent Dirichlet Allocation

PROBABILISTIC GENERATIVE PROCESS

STATISTICAL INFERENCE

Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic models

LDA (Blei)

LDA III

Plate notation

Figure 4. The graphical model for the topic model using plate notation.

Modelos Gráficos Graphical model representations

Compact notation:

"generate a word from Cat n times"

Documents in Latent Space - LDA

 Latent Dirichlet Allocation: extends pLSI by adding two Dirichlet priors.

 α is the parameter of the Dirichlet prior on the per-document topic distributions. β is the parameter of the Dirichlet prior on the per-topic word distribution. θ_i is the topic distribution for document i, φ_k is the word distribution for topic k, z_{ij} is the topic for the jth word in document i, and wij is a specific word in the document

LDA II

Document #29795

Bix beiderbecke, at age⁰⁶⁰ fifteen²⁰⁷, sat¹⁷⁴ on the slope⁰⁷¹ of a bluff⁰⁵⁵ overlooking⁰²⁷ the mississippi¹³⁷ river¹³⁷. He was listening⁰⁷⁷ to music⁰⁷⁷ coming⁰⁰⁹ from a passing⁰⁴³ riverboat. The music⁰⁷⁷ had already captured⁰⁰⁶ his heart¹⁵⁷ as well as his ear¹¹⁹. It was jazz⁰⁷⁷. Bix beiderbecke had already had music⁰⁷⁷ lessons⁰⁷⁷. He showed⁰⁰² promise¹³⁴ on the piano⁰⁷⁷, and his parents⁰³⁵ hoped²⁶⁸ he might consider¹¹⁸ becoming a concert⁰⁷⁷ pianist⁰⁷⁷. But bix was interested²⁶⁸ in another kind⁰⁵⁰ of music⁰⁷⁷. He wanted²⁶⁸ to play⁰⁷⁷ the cornet. And he wanted²⁶⁸ to play⁰⁷⁷ jazz⁰⁷⁷...

Document #1883

There is a simple of reason of why there are so few periods of really great theater of really great theater of reason of reason of really great theater of readout of reado

Document #21359

Topic 77

word MUSIC .090 DANCE .034 SONG PLAY SING SINGING .026BAND .026 PLAYED .023SANG .022 SONGS .021 DANCING .020PIANO .017 PLAYING .016 RHYTHM .015 ALBERT .013 MUSICAL .013

Topic 82

word	prob.
LITERATURE	.031
POEM	.028
POETRY	.027
POET	.020
PLAYS	.019
POEMS	.019
PLAY	.015
LITERARY	.013
WRITERS	.013
DRAMA	.012
WROTE	.012
POETS	.011
WRITER	.011
SHAKESPEARE	.010
WRITTEN	.009
STAGE	.009

Topic 166

Topic 100	
word	prob.
PLAY	.136
BALL	.129
GAME	.065
PLAYING	.042
HIT	.032
PLAYED	.031
BASEBALL	.027
GAMES	.025
BAT	.019
RUN	.019
THROW	.016
BALLS	.015
TENNIS	.011
HOME	.010
CATCH	.010
FIELD	.010

LDAvis

Next Topic

Clear Topic

Previous Topic

Selected Topic: 5

Top-30 Most Relevant Terms for Topic 5 (3.1% of tokens)

- 1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
- 2. relevance(term w | topic t) = $\lambda * p(w | t) + (1 \lambda) * p(w | t)/p(w)$; see Sievert & Shirley (2014)

Otras extensiones

Tópicos a lo largo del tiempo (DTM)

http://socialcomputing.ing.puc.cl/uploads/DynamicTopicModellingTutorial.pdf

Gracias!

• Consultas a:

Denis Parra

dparra@ing.puc.cl