

(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3199711号
(P3199711)

(45)発行日 平成13年8月20日(2001.8.20)

(24)登録日 平成13年6月15日(2001.6.15)

(51)Int.Cl.⁷
G 1 1 B 20/12

識別記号

F I
G 1 1 B 20/12

1 0 3

20/10
27/00

3 0 1

1 0 3

20/10
27/00

3 0 1 Z
D

H 0 4 N 5/85

H 0 4 N 5/85

請求項の数3(全38頁)

(21)出願番号

特願2000-57116(P2000-57116)

(73)特許権者 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(22)出願日

平成12年3月2日(2000.3.2)

(72)発明者 村瀬 篤

大阪府門真市大字門真1006番地 松下電器産業株式会社内

(65)公開番号

特開2000-348442(P2000-348442A)

(72)発明者 岡田 智之

大阪府門真市大字門真1006番地 松下電器産業株式会社内

(43)公開日

平成12年12月15日(2000.12.15)

(72)発明者 津賀 一宏

大阪府門真市大字門真1006番地 松下電器産業株式会社内

審査請求日

平成12年3月9日(2000.3.9)

(74)代理人 100062144

弁理士 青山 葵 (外1名)

(31)優先権主張番号

特願平11-96516

審査官 竹中 辰利

(32)優先日

平成11年4月2日(1999.4.2)

最終頁に続く

(33)優先権主張国

日本(JP)

早期審査対象出願

(54)【発明の名称】 光ディスクとその記録装置および再生装置

(57)【特許請求の範囲】

【請求項1】 ビデオストリームと、少なくとも1本のオーディオストリームを含む少なくとも1本のAVストリームを記録する光ディスクであって、前記光ディスクは管理情報を記録する領域を備え、前記管理情報は、ビデオ属性と、オーディオ属性を含む少なくとも1以上

の第1情報と、

前記1本のAVストリームに対応して設られ、前記第1情報を特定する情報を含む第2情報を含み、前記ビデオ属性は前記ビデオストリームのビデオ圧縮モードを含み、前記オーディオ属性はアプリケーションフラグを含み、前記1本のオーディオストリームが、

(a) 第1音声チャンネルデータと第2音声チャンネル

データを含み、前記第1音声チャンネルデータと第2音声チャンネルデータのいずれか一方が選択的に再生されるデュアルモノラル音声データと、

(b) 第1音声チャンネルデータと第2音声チャンネルデータを含む、ステレオ音声データを含む場合には、前記アプリケーションフラグがセットされる、光ディスク。

【請求項2】 請求項1記載の光ディスクに情報を記録する記録装置。

【請求項3】 請求項1記載の光ディスクから情報を再生する再生装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、読み書き可能な光ディスクと、その記録装置、再生装置に関する。中でも

動画像データおよび静止画データおよび音声データを含むマルチメディアデータが記録された光ディスクと、その記録装置、再生装置に関する。

【0002】

【従来の技術】650MB程度が上限であった書き換え型光ディスクの分野で数GBの容量を有する相変化型ディスクDVD-RAMが出現した。また、ディジタルAVデータの符号化規格であるMPEG(MPEG2)の実用化とあいまってDVD-RAMは、コンピュータ用途だけでなくAVにおける記録・再生メディアとして期待されている。つまり従来の代表的なAV記録メディアである磁気テープに代わるメディアとして普及が予測される。

【0003】(DVD-RAMの説明)近年、書き換え可能な光ディスクの高密度化が進みコンピュータデータや音声データの記録に留まらず、画像データの記録が可能となりつつある。

【0004】例えば、光ディスクの信号記録面には、従来から凸凹上のガイド溝が形成されている。

【0005】従来は凸または凹にのみ信号を記録していたが、ランド・グループ記録法により凸凹両方に信号を記録することが可能となった。これにより約2倍の記録密度向上が実現した。

【0006】また、記録密度を向上させるために有効なCLV方式(線速度一定記録)の制御を簡易化し実用化を容易とするゾーンCLV方式なども考案、実用化されている。

【0007】これらの大容量化を目指す光ディスクを用いて如何に画像データを含むAVデータを記録し、従来のAV機器を大きく超える性能や新たな機能を実現するかが今後の大きな課題である。

【0008】このような大容量で書き換え可能な光ディスクの出現により、AVの記録・再生も従来のテープに代わり光ディスクが主体となることが考えられる。テープからディスクへの記録メディアの移行はAV機器の機能・性能面で様々な影響を与えるものである。

【0009】ディスクへの移行において最大の特徴はランダムアクセス性能の大幅な向上である。仮にテープをランダムアクセスする場合、一巻きの巻き戻しに通常數分オーダーの時間が必要である。これは光ディスクメディアにおけるシーク時間(数10ms以下)に比べて桁違いに遅い。従ってテープは実用上ランダムアクセス装置になり得ない。

【0010】このようなランダムアクセス性能によって、従来のテープでは不可能であったAVデータの分散記録が光ディスクでは可能となった。

【0011】図34は、DVDレコーダのドライブ装置のブロック図である。図中の11はディスクのデータを読み出す光ピックアップ、12はECC(error correcting code)処理部、13はトラ

ックバッファ、14はトラックバッファへの入出力を切り替えるスイッチ、15はエンコーダ部、16はデコーダ部、17はディスクの拡大図である。

【0012】17に示す様に、DVD-RAMディスクには、1セクタ=2KBを最小単位としてデータが記録される。また、16セクタ=1ECCブロックとして、ECC処理部12でエラー訂正処理が施される。

【0013】13に示すトラックバッファは、DVD-RAMディスクにAVデータをより効率良く記録するため、AVデータを可変ビットレートで記録するためのバッファである。DVD-RAMへの読み書きレート(図中Va)が固定レートであるのに対して、AVデータはその内容(ビデオであれば画像)の持つ複雑さに応じてビットレート(図中Vb)が変化するため、このビットレートの差を吸収するためのバッファである。例えば、ビデオCDの様にAVデータを固定ビットレートとした場合は必要がなくなる。

【0014】このトラックバッファ13を更に有効利用すると、ディスク上にAVデータを離散配置することが可能になる。図35を用いて説明する。

【0015】図35(a)は、ディスク上のアドレス空間を示す図である。図35(a)に示す様にAVデータが[a1, a2]の連続領域と[a3, a4]の連続領域に分かれ記録されている場合、a2からa3へシークを行っている間、トラックバッファに蓄積してあるデータをデコーダ部へ供給することでAVデータの連続再生が可能になる。この時の状態を示すのが図35(b)である。

【0016】a1から読み出しを開始したAVデータは、時刻t1からトラックバッファへの入力且つトラックバッファからの出力が開始され、トラックバッファへの入力レート(Va)とトラックバッファからの出力レート(Vb)のレート差(Va-Vb)の分だけトラックバッファへはデータが蓄積されていく。この状態がa2(時刻t2)まで継続する。この間にトラックバッファに蓄積されたデータ量をB(t2)とすると、a3を読み出し開始できる時刻t3までの間、トラックバッファに蓄積されているB(t2)を消費してデコーダへ供給しつづけられれば良い。

【0017】言い方をえれば、シーク前に読み出すデータ量([a1, a2])が一定量以上確保されていれば、シークが発生した場合でも、AVデータの連続供給が可能である。

【0018】尚、本例では、DVD-RAMからデータを読み出す、即ち再生の場合の例を説明したが、DVD-RAMへのデータの書き込み、即ち録画の場合も同様に考えることができる。

【0019】上述したように、DVD-RAMでは一定量以上のデータが連続記録さえされればディスク上にAVデータを分散記録しても連続再生／録画が可能で

ある。

【0020】(MPEGの説明) 次にAVデータについて説明をする。

【0021】先にも述べたが、DVD-RAMに記録するAVデータはMPEG (ISO/IEC13818)と呼ばれる国際標準規格を使用する。

【0022】数GBの大容量を有するDVD-RAMであっても、非圧縮のデジタルAVデータをそのまま記録するには十分な容量をもっているとは言えない。そこで、AVデータを圧縮して記録する方法が必要になる。AVデータの圧縮方式としてはMPEG (ISO/IEC13818)が世の中に広く普及している。近年のLSI技術の進歩によって、MPEGコーデック（伸長／圧縮LSI）が実用化してきた。これによってDVDレコーダでのMPEG伸長／圧縮が可能となってきた。

【0023】MPEGは高効率なデータ圧縮を実現するために、主に次の2つの特徴を有している。

【0024】一つ目は、動画像データの圧縮において、従来から行われていた空間周波数特性を用いた圧縮方式の他に、フレーム間での時間相關特性を用いた圧縮方式を取り入れたことである。MPEGでは、各フレーム (MPEGではピクチャとも呼ぶ) をIピクチャ (フレーム内符号化ピクチャ) 、Pピクチャ (フレーム内符号化と過去からの参照関係を使用したピクチャ) 、Bピクチャ (フレーム内符号化と過去および未来からの参照関係を使用したピクチャ) の3種類に分類してデータ圧縮を行う。

【0025】図36はI、P、Bピクチャの関係を示す図である。図36に示すように、Pピクチャは過去で一番近いIまたはPピクチャを参照し、Bピクチャは過去および未来の一一番近いIまたはPピクチャを夫々参照している。また、図36に示すようにBピクチャが未来のIまたはPピクチャを参照するため、各ピクチャの表示順 (display order) と圧縮されたデータでの順番 (coding order) とが一致しない現象が生じる。

【0026】MPEGの二つ目の特徴は、画像の複雑さに応じた動的な符号量割り当てをピクチャ単位で行える点である。MPEGのデコーダは入力バッファを備え、このデコーダバッファに予めデータを蓄積する事で、圧縮の難しい複雑な画像に対して大量の符号量を割り当てることが可能になっている。

【0027】DVD-RAMで使用する音声データは、データ圧縮を行うMPEG音声、ドルビーディジタル (AC-3) と非圧縮のLPCMの3種類から選択して使用できる。ドルビーディジタルとLPCMはビットレート固定であるが、MPEG音声はビデオストリーム程大きくはないが、音声フレーム単位で数種類のサイズから選択することができる。

【0028】この様なAVデータはMPEGシステムと

呼ばれる方式で一本のストリームに多重化される。図37はMPEGシステムの構成を示す図である。41はパックヘッダ、42はパケットヘッダ、43はペイロードである。MPEGシステムはパック、パケットと呼ばれる階層構造を持っている。パケットはパケットヘッダ42とペイロード43とから構成される。AVデータは夫々先頭から適当なサイズ毎に分割されペイロード43に格納される。パケットヘッダ42はペイロード43に格納してあるAVデータの情報として、格納してあるデータを識別するためのID (stream ID) と90kHzの精度で表記したペイロード中に含まれているデータのデコード時刻DTS (Decoding Time Stamp) および表示時刻PTS (Presentation Time Stamp) (音声データのようにデコードと表示が同時に行われる場合はDTSを省略する) が記録される。パックは複数のパケットを取りまとめた単位である。DVD-RAMの場合は、1パケット毎に1パックとして使用するため、パックは、パックヘッダ41とパケット (パケットヘッダ42およびペイロード43) から構成される。パックヘッダには、このパック内のデータがデコーダバッファに入力される時刻を27MHzの精度で表記したSCR (System Clock Reference) が記録される。

【0029】この様なMPEGシステムストリームをDVD-RAMでは、1パックを1セクタ (=2048B) として記録する。

【0030】次に、上述したMPEGシステムストリームをデコードするデコーダについて説明する。図38はMPEGシステムデコーダのデコーダモデル (P-STD) である。51はデコーダ内の規準時刻となるSTC (System Time Clock) 、52はシステムストリームのデコード、即ち多重化を解くデマルチプレクサ、53はビデオデコーダの入力バッファ、54はビデオデコーダ、55は前述したI、PピクチャとBピクチャの間で生じるデータ順と表示順の違いを吸収するためにI、Pピクチャを一時的に格納するリオーダバッファ、56はリオーダバッファにあるI、PピクチャとBピクチャの出力順を調整するスイッチ、57は音声デコーダの入力バッファ、58は音声デコーダである。

【0031】この様なMPEGシステムデコーダは、前述したMPEGシステムストリームを次の様に処理していく。STC51の時刻とパックヘッダに記述されているSCRが一致した時に、デマルチプレクサ52は当該パックを入力する。デマルチプレクサ52は、パケットヘッダ中のストリームIDを解読し、ペイロードのデータを夫々のストリーム毎のデコーダバッファに転送する。また、パケットヘッダ中のPTSおよびDTSを取り出す。ビデオデコーダ54は、STC51の時刻とDTSが一致した時刻にビデオバッファ53からピクチャデータを取り出しデコード処理を行い、I、Pピクチャ

はリオーダバッファ55に格納し、Bピクチャはそのまま表示出力する。スイッチ56は、ビデオデコーダ54がデコードしているピクチャがI、Pピクチャの場合、リオーダバッファ55側へ傾けてリオーダバッファ55内の前1またはPピクチャを出し、Bピクチャの場合、ビデオデコーダ54側へ傾けておく。音声デコーダ58は、ビデオデコーダ54同様に、STC51の時刻とPTS(音声の場合DTSはない)が一致した時刻に音声バッファ57から1音声フレーム分のデータを取り出しデコードする。

【0032】次に、MPEGシステムストリームの多重化方法について図39を用いて説明する。図39(a)はビデオフレーム、図39(b)はビデオバッファ、図39(c)はMPEGシステムストリーム、図39(d)は音声データを夫々示している。横軸は各図に共通した時間軸を示していて、各図とも同一時間軸上に描かれている。また、ビデオバッファの状態においては、縦軸はバッファ占有量(ビデオバッファのデータ蓄積量)を示し、図中の太線はバッファ占有量の時間的遷移を示している。また、太線の傾きはビデオのビットレートに相当し、一定のレートでデータがバッファに入力されていることを示している。また、一定間隔でバッファ占有量が削減されているのは、データがデコードされた事を示している。また、斜め点線と時間軸の交点はビデオフレームのビデオバッファへのデータ転送開始時刻を示している。

【0033】以降、ビデオデータ中の複雑な画像Aを例に説明する。図39(b)で示すように画像Aは大量の符号量を必要とするため、画像Aのデコード時刻よりも図中の時刻t1からビデオバッファへのデータ転送を開始しなければならない。(データ入力開始時刻t1からデコードまでの時間をv_b v_d e l a yと呼ぶ)その結果、AVデータとしては網掛けされたビデオパックの位置(時刻)で多重化される。これに対して、ビデオの様にダイナミックな符号量制御を必要としない音声データの転送はデコード時刻より特別に早める必要はないので、デコード時刻の少し前で多重化されるのが一般的である。従って、同じ時刻に再生されるビデオデータと音声データでは、ビデオデータが先行している状態で多重化が行われる。尚、MPEGではバッファ内にデータを蓄積できる時間が限定されていて、静止画データを除く全てのデータはバッファに入力されてから1秒以内にバッファからデコーダへ出力されなければならないよう規定されている。そのため、ビデオデータと音声データの多重化でのすれば最大で1秒(厳密に言えばビデオデータのリオーダの分だけ更にずれることがある)である。

【0034】尚、本例では、ビデオが音声に対して先行するとしたが、理屈の上では、音声がビデオに対して先行することも可能である。ビデオデータに圧縮率の高

い簡単な画像を用意し、音声データを必要に早く転送を行った場合は、このようなデータを意図的に作ることは可能である。しかしながらMPEGの制約により先行できるのは最大でも1秒までである。

【0035】(音声ストリームの構成と再生方法の説明)次にAVデータ内の音声ストリームの構成と再生方法について説明する。前述のように、磁気テープのような順次アクセスメディアでは、1次元的な記録領域にそって記録・再生される。図41を用いて1つのテープ上に複数のトラックを設けてAVストリームを記録する例を説明する。この例では、1つのビデオストリームに対して、最大2本の音声ストリーム、音声ストリーム1と音声ストリーム2が記録可能になっている。ここで、音声ストリーム1は、1つの音声チャンネルから構成されており、いわゆるモノラル音声が記録され、音声ストリーム2は、2つの音声チャンネルから構成されており、いわゆるステレオ音声または2カ国語音声などの2つのモノラル音声が記録可能である。これら2本の音声ストリームは、どちらか1方だけを記録することも、全く音声ストリームを記録しないことも可能であるが、それによって、ビデオストリームを記録する領域を拡大する事はできない。すなわち、音声ストリームを記録する領域、トラックはあらかじめ確保されており、実際の音声ストリームを記録する必要が無い場合でも他の用途に用いる事はできない。また、ユーザはこれら2本の音声ストリーム、音声チャンネルの内、所望のものを再生時に選択することができ、ユーザによって選択された音声ストリーム、音声チャンネルがビデオと同時に再生される。

【0036】一方、DVD-RAMのようなディスクメディアでは、音声ストリームをより柔軟に記録、再生することができる。同一ディスク上に記録される複数のAVストリームのそれぞれについて、ビデオストリームと同時に記録する音声ストリーム数やチャンネル構成を変えることが可能である。図42に、ディスクメディアにおける音声ストリームの構成例を示す。図42(a)のAVストリーム1は、ビデオストリームに対して1つの音声ストリームを対応させ、その音声ストリームが1つのチャンネルから構成される例である。また、図42(b)のAVストリーム2は、同様にビデオストリームに対して1つの音声ストリームを対応させるが、その音声ストリームは2つのチャンネルから構成され、主音声と副音声が記録される例である。すなわち、選択的に一方が再生される第1音声チャンネルデータ(主音声)と第2音声チャンネルデータ(副音声)を含む領域を、音声ストリームに含む例である。さらに、図42(c)のAVストリーム3は、ビデオストリームに対して2つの音声ストリームを対応させ、音声ストリーム1は1チャンネル(モノラル)、音声ストリーム2は2つのチャンネルから構成される例であり、この音声ストリーム2には始めの部分は

ステレオ音声が記録され、途中からはデュアルモノラル音声が記録されるすなわち、音声ストリーム2には、同時に再生される第1音声チャンネルデータと第2音声チャンネルデータを含む第2の領域（ステレオ領域）と、選択的に一方が再生される第1音声チャンネルデータと第2音声チャンネルデータを含む第1の領域（デュアルモノラル領域）と、ひとつの音声チャンネルデータを含む第3の領域（モノラル領域）との少なくともいずれか2つの領域が含まれる例である。ステレオ領域、デュアルモノラル領域、モノラル領域の他に、他の種類の領域が含まれてもよい。すなわち異なった種類の領域が混在する音声ストリームの例である。図42(c)の音声ストリーム2は、ステレオ領域と、デュアルモノラル領域の2つの領域が混在した場合を示す。ステレオ領域としては、コマーシャル放送が考えられ、デュアルモノラル領域としては、日本語と英語のバイリンガルの放送が考えられる。

【0037】このように、DVD-RAMのようなディスクメディアにおいては、ビデオストリームと音声ストリームの関係づけが柔軟であり、同一ディスク内の複数のAVストリーム毎に、用途・目的に応じて音声ストリームの構成を使い分けることができる。なお、図42では、AVストリームの構成をわかりやすく説明するため、テープのトラック構成を連想させる図を用いたが、実際のAVストリームは、図39(c)MPEGストリームの様に、ビデオストリームデータおよび1つ以上の音声ストリームデータがマルチプレクスされる構成となる。

【0038】

【発明が解決しようとする課題】本発明は上記従来技術において説明した次世代AV記録メディアとして期待されるDVD-RAMの性能を最大限に引き出す上で支障となる以下の課題を解決し、書き換え可能な大容量光ディスクDVD-RAMの最大且つ本命の用途であるDVDレコーダーを実現するものである。

【0039】DVD-RAMにあっては、音声ストリームを図42(a)、(b)、(c)に示すように、自由に1本または複数本設定することが出来、また、各音声ストリームにおいてもチャンネル数を変えることが可能である。利用者はその音声ストリームが記録されているAVストリームを再生すれば、何本の音声ストリームがあり、チャンネル構成はどのようにになっているのかを知ることが出来るが、そのDVD-RAMを再生装置に装着した時点では知ることが出来なかった。そこで、この発明により、AVストリームを再生する前に、そのAVストリームについての音声ストリームの構成を知ることが出来るようになる。さらには、この発明により、DVD-RAMを再生装置に装着した時点で、DVD-RAM内に1つまたは複数存在するAVストリームのそれぞれについて音声ストリームの構成がどのようになってい

るのかを知ることが出来るようになる。

【0040】DVDレコーダでビデオストリームと音声ストリームの対応づけを柔軟にし、個々のAVストリーム毎に異なる多様な音声ストリーム構成を実現する場合の最大の課題は、内部データの管理方法およびユーザへの見せ方である。内部データの管理方法は、多様な音声ストリーム構成を管理し、記録・再生はもとより、編集機能を不整合なく実現するものでなければならぬ。また、多様な音声ストリーム構成は、有限の記録領域の有効活用およびユーザ目的に応じた多彩なAVストリームの記録を実現するものであるが、同時にわかりづらさをもたらすものである。つまりユーザにとって、ある1つのAVストリームをまさに再生しようとするとき、このAVストリームがどのような音声ストリーム構成で記録されたもののかがわからなければ、適切な音声ストリーム・音声チャンネルを選択することが困難になってしまう。たとえば、英語と日本語の2カ国語の音声ストリームが存在し互いに選択可能であるとしても、単にその時点のプレーヤーの設定にしたがって所望でない方の音声ストリームを再生してしまう事故が発生してしまう。この場合、状況によっては、再生開始直後に所望のもの以外の音声ストリームを再生してしまったことに気づき、マニュアル操作で選択し直すことができる場合もあるが、できれば再生すべきAVストリームを選択する際に同時に、所望の音声ストリーム・音声チャンネルも正しく選択できる方こそ望ましい。

【0041】したがって、DVD-RAMのような書き換え型ディスクにおいて、1つのビデオストリームに対して複数の構成の音声ストリームを対応づける場合は、各音声ストリーム・音声チャンネルについての情報を、ディスク内の管理情報を用いて適切にユーザに提示する仕組みを構築すること、および、ユーザが設定した選択情報に従い、自動的に再生すべき音声ストリームを選択することを本発明の課題とする。

【0042】

【課題を解決するための手段】上記課題を解決するため、請求項1に係る発明は、ビデオストリームと、少なくとも1本のオーディオストリームを含む少なくとも1本のAVストリームを記録する光ディスクであって、前記光ディスクは管理情報を記録する領域を備え、前記管理情報は、ビデオ属性と、オーディオ属性を含む少なくとも1以上の第1情報と、前記1本のAVストリームに対応して設られ、前記第1情報を特定する情報を含む第2情報を含み、前記ビデオ属性は前記ビデオストリームのビデオ圧縮モードを含み、前記オーディオ属性はアプリケーションフラグを含み、前記1本のオーディオストリームが、

(a) 第1音声チャンネルデータと第2音声チャンネルデータを含み、前記第1音声チャンネルデータと第2音声チャンネルデータのいずれか一方が選択的に再生され

るデュアルモノラル音声データと、

(b) 第1音声チャンネルデータと第2音声チャンネルデータを含む、ステレオ音声データを含む場合には、前記アプリケーションフラグがセットされる、光ディスクである。

【0043】請求項2に係る発明は、請求項1記載の光ディスクに情報を記録する記録装置である。

【0044】請求項3に係る発明は、請求項1記載の光ディスクから情報を再生する再生装置である。

【0045】

【0046】

【0047】

【0048】

【0049】

【発明の実施の形態】本発明の1実施例であるDVDレコーダとDVD-RAMを用いて本発明の詳細を説明する。

【0050】(DVD-RAM上の論理構成)まずDVD-RAM上の論理構成について図1を用いて説明する。図1は、ディスク上の物理セクタアドレスと、ファイルシステムを通して見えるディスク上のデータ構成を示している。

【0051】物理セクタアドレスの先頭部分にはリードイン領域がありサーボを安定させるために必要な規準信号や他のメディアとの識別信号などが記録されている。リードイン領域に繞いてデータ領域が存在する。この部分に論理的に有効なデータが記録される。最後にリードアウト領域がありリードイン領域と同様な規準信号などが記録される。

【0052】データ領域の先頭にはボリューム情報と呼ばれるファイルシステム用の管理情報が記録される。ファイルシステムについては本特許の内容と直接関係がないので省略する。

【0053】ファイルシステムを通すことで、図1に示す様にディスク内のデータがディレクトリやファイルとして扱うことが可能になる。

【0054】DVDレコーダが扱う全てのデータは、図1に示す様にルート(ROOT)ディレクトリ直下のDVD_RTRディレクトリ下に置かれる。

【0055】DVDレコーダが扱うファイルは大きく2種類に区別され、1つの管理情報ファイル(RTR_I_FOファイル)と複数(少なくとも1つ)のAVファイル(RTR_MOV, VROファイル, RTR_STO, VR0ファイル)である。

【0056】AVファイルは、動画を記録するRTR_MOV, VROファイルと、静止画および静止画と同時に録音した音声データを記録するRTR_STO, VR0ファイルが記録される。

【0057】図2は、動画を記録したRTR_MOV, VROファイルの構成図である。図2に示すように、R

TR_MOV, VROファイルには、MPEGのプログラムストリームであるM_VOB(動画ビデオオブジェクト“Movie Video Object”)が記画順に配置される。

【0058】また、M_VOBは、ビデオの再生時間を基準に0.4秒から1.0秒を一単位としたVOBU(ビデオオブジェクトユニット“Video Object Unit”)から構成されている。

【0059】VOBUは、V_PCK(ビデオパック)、A_PCK(音声パック)と、SP_PCK(サブピクチャパック)から構成され、各パックは2KB単位で構成されている。

【0060】また、VOBU内のビデオデータは、少なくとも1つ以上のGOP(グループオブピクチャーズ“Group of Pictures”)から構成されている。GOPとは、MPEGビデオのデコード単位であり、Iピクチャを先頭として、複数のP、Bピクチャから構成されている。

【0061】図3は、静止画および音声データを記録したRTR_STO, VROファイルの構成図である。図3に示すように、RTR_STO, VROファイルには、静止画用のMPEGプログラムストリームであるS_VOB(Still Picture Video Object)が記画順に配置される。

【0062】M_VOBとの大きな違いは、動画データの代わりに静止画データが記録されている他に、動画データと音声データが互いに多重化されているのではなく、静止画データ(Video part)の後に、音声データ(Audio part)が続いて記録されていることである。

【0063】また、S_VOBは、1つのVOBUから構成され、VOBUは、V_PCK、A_PCKおよびSP_PCKから構成されている。

【0064】(AVデータと管理情報)次に、図4を用いて前述したM_VOBおよびS_VOBと、管理情報との関係について説明する。

【0065】既に説明した通り、AVデータは動画像用のM_VOBと静止画像用のS_VOBの2種類が存在する。M_VOBは、個々のM_VOB毎に管理情報M_VOB1が存在し、M_VOB1には対応するM_VOBの属性情報が記録される。S_VOBの場合は、個々のS_VOB毎に管理を行うと、管理情報量が増大するため、複数のS_VOBを一塊としたグループS_VOG毎に管理情報S_VOG1が存在する。S_VOG1は、対応するS_VOBグループの属性情報が記録される。

【0066】ここで重要なのは、MPEGストリームのデータでは、時間とデータ量の間には線形性がないことである。先に述べたように、MPEGストリームでは、高効率な圧縮を実現するために、時間相関特性を用いた

圧縮方法や、VBRと呼ばれる、可変長符号方法を用いた圧縮が行われているため、時間とデータ量、即ちアドレス情報とが一意に対応しない。

【0067】そこで、M_VOB1では、時間とアドレスを変換するためのフィルタ（TMAP）を有し、S_VOG1では、グループ内での静止画番号とアドレスを変換するためのフィルタ（S_VOB_Entry）を有している。

【0068】次に、再生シーケンスの管理情報について説明する。

【0069】再生シーケンスは、M_VOB、S_VOGの部分区間または全区間を示すセルのシーケンス（PGC）として規定される。

【0070】この再生シーケンスは、ディスク内の全AVデータを参照するオリジナルPGCと、ディスク内のAVデータの中からユーザが好みのものを選び、再生順序を定義したユーザ定義PGC（複数定義することが可能）の2種類が存在する。

【0071】前者のオリジナルPGCは、プログラムセット（Program Set）とも呼ばれ、間に、複数のセルを論理的に束ねたプログラム（Program）と呼ばれる層を有している。

【0072】後者のユーザ定義PGCは、プレイリスト（Play List）とも呼ばれ、オリジナルPGCと異なり、間にはProgramを有していない。

【0073】（管理情報ファイル）次に図5から図33を用いて管理情報ファイル”RTR.IFO”の中身について説明する。

「RTR_VMG」（図5）

RTR.IFOファイル内は、RTR_VMG（リアルタイム記録ビデオ管理）と呼ばれる管理情報が記録されている。このRTR_VMGは、RTR_VMG1、M_AVFIT、S_AVFIT、ORG_PGC1、UD_PGC1T、TXTDT_MG、MNFITの7つのテーブルから構成されている。

【0074】次に、各テーブルの詳細を説明する。

「RTR_VMG1」（図6）

RTR_VMG1（リアルタイム記録ビデオ管理情報）は、VMG1_MATとPL_SRPTから構成されている。

「VMG1_MAT」（図6）

VMG1_MAT（ビデオ管理情報管理テーブル）は、ディスク全体に関する情報として、以下の情報が記録されている。プレーヤおよびレコーダは、最初にVMG1_MATを読み取り、ディスクの大まかな構成情報を得ることが可能である。

【0075】VMG_ID（ビデオ管理識別子）このディスクに、ビデオレコーディングデータが記録されていることを示す識別子”DVD_RTR_VMG0”が記録されている。

【0076】RTR_VMG_EA（RTR_VMG終了アドレス）

RTR_VMGの終了アドレスが記録されている。

【0077】VMG1_EA（VMG1終了アドレス）VMG1の終了アドレスが記録されている。

【0078】VERN（バージョン番号）

このビデオレコーディングデータの記録フォーマットのバージョン番号が図7のフォーマットに従い記録されている。

【0079】TM_ZONE（タイムゾーン）

このディスク内に記録されている全日時情報が使用するタイムゾーンが記録されている。TM_ZONEは図7に示す通り、日時情報の基準を、ユニバーサル時刻であるグリニッジ標準時を用いているか、地域毎の標準時を用いているかを示すTZ_TY（タイムゾーンタイプ）と、グリニッジ標準時との時差を記録するTZ_OFFSET（タイムゾーンオフセット）から構成されている。

【0080】STILL_TM（スタイル時間）

音無し静止画を表示する際の静止時間長が記録されている。

【0081】CHRS（プライマリテキスト用キャラクタセットコード）

後述するプライマリテキスト用のキャラクタセットコードが記録されている。

【0082】M_AVFIT_SA（M_AVFIT開始アドレス）

M_AVFITの開始アドレスが記録されている。M_AVFITにアクセスを行う場合、この開始アドレスまでシークを行う。

【0083】S_AVFIT_SA（S_AVFIT開始アドレス）

S_AVFITの開始アドレスが記録されている。S_AVFITにアクセスを行う場合、この開始アドレスまでシークを行う。

【0084】ORG_PGC1_SA（ORG_PGC1開始アドレス）

ORG_PGC1の開始アドレスが記録されている。ORG_PGC1にアクセスを行う場合、この開始アドレスまでシークを行う。

【0085】UD_PGC1T_SA（UD_PGC1T開始アドレス）

UD_PGC1Tの開始アドレスが記録されている。UD_PGC1Tにアクセスを行う場合、この開始アドレスまでシークを行う。

【0086】TXTDT_MG_SA（TXTDT_MG開始アドレス）

TXTDT_MGの開始アドレスが記録されている。TXTDT_MGにアクセスを行う場合、この開始アドレスまでシークを行う。

【0087】MNFIT_SA (MNFIT開始アドレス)

MNFITの開始アドレスが記録されている。MNFITにアクセスを行う場合、この開始アドレスまでシークを行う。

「PL_SRPT」(図8)

PL_SRPT (プレイリストサーチポインタテーブル)は、PL_SRPTIとn個のPL_SRPから構成されるテーブルである。

【0088】「PL_SRPTI」(図8)

PL_SRPTI (プレイリストサーチポインタテーブル情報)には、PL_SRPにアクセスするための以下の情報が記録されている。

【0089】PL_SRP_Ns (PL_SRP数)

PL_SRPの数が記録されている。

【0090】PL_SRPT_EA (PL_SRPT終了アドレス)

このPL_SRPTの終了アドレスが記録されている。

【0091】「PL_SRP」(図8)

また、PL_SRP (プレイリストサーチポインタ)には、このプレイリストの実データであるユーザ定義PGCにアクセスするための以下の情報が記録されている。

【0092】PL_TY (プレイリストタイプ)

このプレイリストのタイプを識別する値として、以下の何れかが図9に示される記述フォーマットに従い記録されている。

【0093】

0000b : 動画のみ

0001b : 静止画のみ

0010b : 動画、静止画混在

0011b : 音声のみ

PGCN (PGC番号)

このプレイリストに対応するPGCの番号が記録されている。PGC番号は、後述するUD_PGCIT内でのPGC情報の記録順である。

【0094】PL_CREATE_TM (プレイリスト記録日時)

このプレイリストを作成した日時情報が図9に示される記述フォーマットに従い記録されている。

【0095】PRM_TXTI (プライマリテキスト情報)

このプレイリストの内容を示すテキスト情報が記録されている。例えば、テレビ番組を録画した場合は、番組名が記録される。また、このプライマリテキスト情報は、アスキーコード用のフィールドと、前述したCHRSで指定されるキャラクタコードセット用のフィールドから構成される。

【0096】IT_TXT_SRPN (IT_TXTサーチポインタ番号)

前述したプライマリテキストに加えて、このプレイリス

トの内容を示す情報がIT_TXTとしてオプション記録されている場合、TXTDT_MG内に記録されるIT_TXTへのリンク情報として、IT_TXT_SRPNの番号が記録されている。IT_TXT_SRPN番号は、後述するTXTDT_MG内の記録順である。

【0097】THM_PTRI (サムネイルポインタ情報)

このプレイリストを代表するサムネイル情報を記述する。

「THM_PTRI」(図8)

THM_PTRIは、サムネイルの位置を示す以下の情報が記録されている。

【0098】CN (セル番号)

サムネイルを含んでいるセル番号が記録されている。セル番号は、このプレイリストが対応するUD_PGC内でのセル情報の記録順である。

【0099】THM_PT (サムネイルポイント)

前述したCNが示すセルが動画セルの場合は、図10に示すPTM記述フォーマットに従いサムネイルとして用いるビデオフレームの表示時刻が記録されている。PTMは、MPEGプログラムストリーム中に記述されているタイムスタンプの基準時間に従い付与されている。

【0100】また、前述したCNが示すセルが静止画セルの場合は、図11に示すS_VOB_ENTN記述フォーマットに従いサムネイルとして用いる静止画像の静止画VOBエントリ番号が記録されている。静止画VOBエントリ番号は、このセルが示す静止画VOBグループ内の静止画VOBエントリの記録順である。

「M_AVF1T」(図12)

M_AVF1T (動画AVファイル情報テーブル)は、「動画AVファイル”RTR_MOV, VRO”に対応する管理情報が記録され、M_AVF1TI, M_VOB_STI, M_AVF1から構成されている。

「M_AVF1TI」(図12)

M_AVF1TI (動画AVファイル情報テーブル情報)は、M_VOB_STI, M_AVF1にアクセスするために必要な以下の情報が記録されている。

【0101】M_AVFI_Ns (動画AVファイル情報数)

後続するAVFI情報のフィールド数を示し、“0”的場合は、AVFIが存在しないことを示し、“1”的場合は、AVFIが存在することを示している。また、AVFIの有無は、動画用AVファイルである、RTR_MOV, VROの有無にも対応している。

【0102】M_VOB_STI_Ns (M_VOB_STI数)

後続するM_VOB_STIのフィールド数を示している。

【0103】M_AVF1T_EA (M_AVF1T終了アドレス)

M_AVF1Tの終了アドレスが記録されている。

「M_VOB_ST1」(図12)

M_VOB_ST1(動画VOBストリーム情報)は、動画VOBのストリーム情報として、以下の情報が記録されている。

【0104】V_ATR(ビデオ属性)

以下に記すビデオ属性情報が図13のフォーマットに従い、記録されている。

【0105】Video compression mode

ビデオ圧縮モードを識別する以下の値の何れかが記録されている。

【0106】

00b : MPEG-1

01b : MPEG-2

TV system

テレビシステムを識別する以下の値の何れかが記録されている。

【0107】

00b : 525/60 (NTSC)

01b : 625/50 (PAL)

Aspect ratio

解像度比を識別する以下の値の何れかが記録されてい

000b : 720x480 (NTSC), 720x576 (PAL)

001b : 702x480 (NTSC), 702x576 (PAL)

010b : 352x480 (NTSC), 352x576 (PAL)

011b : 352x240 (NTSC), 352x288 (PAL)

100b : 544x480 (NTSC), 544x576 (PAL)

101b : 480x480 (NTSC), 480x576 (PAL)

AST_Ns(音声ストリーム数)

対応するVOBに記録されている音声ストリーム数が記録されている。

【0112】SPST_Ns(サブピクチャストリーム数)

対応するVOBに記録されているサブピクチャストリーム数が記録されている。

【0113】A_ATRO(音声ストリーム0属性)

音声ストリーム0に対応する以下の音声属性情報が、図13のフォーマットに従い記録されている。

【0114】音声コーディングモード(Audio coding mode)

音声の圧縮方式を識別する以下の値の何れかが記録されている。

【0115】

000b : ドルビーAC-3

001b : 拡張ストリーム無しMPEG音声

010b : 拡張ストリーム付きMPEG音声

011b : リニアPCM

プリファレンスフラグ(Preference Flag)

る。

【0108】

00b : 4x3

01b : 16x9

line21_switch_1

フィールド1用クローズドキャプションデータがビデオストリーム中に記録されているかを識別する以下の値の何れかが記録されている。

【0109】

1b : 記録されている

0b : 記録されていない

line21_switch_2

フィールド2用クローズドキャプションデータがビデオストリーム中に記録されているかを識別する以下の値の何れかが記録されている。

【0110】

1b : 記録されている

0b : 記録されていない

Video resolution

ビデオ解像度を識別する以下の値の何れかが記録されている。

【0111】

音声チャンネルのプリファレンス情報を識別する以下の値の何れかが記録されている。

【0116】

00b : 非該当

01b : 音声チャンネル1

10b : 音声チャンネル2

例えば、音声チャンネル1で日本語、音声チャンネル2で英語の音声がある場合、ユーザが英語を好む場合は、ユーザ設定により予めプリファレンスフラグ10bが選ばれる。

【0117】アプリケーションフラグ(Application Flag)

アプリケーション情報を識別する以下の値の何れかが記録されている。

【0118】

00b : 非該当

01b : 複数の音声チャンネル構成が混在

10b : 補助音声付き

ここで、複数の音声チャンネル構成が混在している場合は、例えば、モノラル音声、ステレオ音声、デュアル音声(例えば英語と日本語の音声)などのいずれか2つ

以上がひとつのAVストリームの中に、別の時間帯で混在している場合を言う。

【0119】また、補助音声付とは、目の不自由な方のための音声を言う。

【0120】Quantization/DRC

MPEG音声使用時は、DRC（ダイナミックレンジ制御）情報の有無を識別する以下の値の何れかが記録されている。

【0121】00b : DRCデータはMPEGストリームに含まれていない

01b : DRCデータはMPEGストリームに含まれている

また、PCM音声使用時は、Quantizationを識別する以下の値が記録されている。

【0122】00b : 16ビット

f s

サンプリング周波数を識別する以下の値が記録されている。

【0123】00b : 48 kHz

音声チャンネル数 (Number of Audio channels)

音声チャンネル数を識別する以下の値の何れかが記録されている。

【0124】

0000b : 1チャンネル (モノラル)

0001b : 2チャンネル (ステレオ)

0010b : 3チャンネル

0011b : 4チャンネル

0100b : 5チャンネル

0101b : 6チャンネル

0110b : 7チャンネル

0111b : 8チャンネル

1001b : 2チャンネル (デュアルモノラル)

デュアルモノラルとは、例えば、主音声（日本語）と副音声（英語）のデュアル音声であって、主音声も副音声もモノラルである場合を言う。

【0125】Bit rate

ビットレートを識別する以下の何れかの値が記録されている。

【0126】

0000 0001b : 64 kbps

0000 0010b : 89 kbps

0000 0011b : 96 kbps

0000 0100b : 112 kbps

0000 0101b : 128 kbps

0000 0110b : 160 kbps

0000 0111b : 192 kbps

0000 1000b : 224 kbps

0000 1001b : 256 kbps

0000 1010b : 320 kbps

0000 1011b : 384 kbps

0000 1100b : 448 kbps

0000 1101b : 768 kbps

0000 1110b : 1536 kbps

ここで、重要なのは、対応する音声ストリームが拡張ストリーム付きのMPEG音声ストリームの場合、拡張ストリームを除く基本ストリームのビットレートのみを記録することである。なぜなら拡張ストリームは、可変長符号方式を用いた圧縮を行うため、上記したような固定のビットレートでは表現ができないためである。

【0127】A_ATR1 (音声ストリーム1属性)

音声ストリーム1に対応する以下の音声属性情報が、図13のフォーマットに従い記録されている。個々のフィールドは、前述したA_ATR0と同一である。

【0128】図43に示すように、ひとつのAVストリームに対し、音声ストリーム1、音声ストリーム2の2つの音声ストリームが存在する場合は、音声ストリーム1の管理情報は、音声属性A_ATR0が用いられ、音声ストリーム2の管理情報は、音声属性A_ATR1が用いられる。音声属性A_ATR0、音声属性A_ATR1は、同じ構成を有するので、図13の下には、音声属性A_ATR0または音声属性A_ATR1の構成が示されている。音声ストリームが2本ある場合としては、例えば、野球中継において、音声ストリーム1では一方のチームにひいきのアナウンサの音声をステレオで提供し、音声ストリーム2では他方のチームにひいきのアナウンサの音声をステレオで提供する場合が考えられる。

【0129】また、図44に示すように、ひとつのAVストリームに対し、音声ストリーム1のみの1本の音声ストリームが存在する場合は、音声ストリーム1の管理情報は、音声属性A_ATR0が用いられ、音声属性A_ATR1は、空欄にされるか、初期状態にされる。

【0130】更に、図45に示すように、ひとつのAVストリームに対し、音声ストリーム1、音声ストリーム2の2つの音声ストリームが存在する場合は、音声ストリーム1の管理情報は、音声属性A_ATR0が用いられ、音声ストリーム2の管理情報は、音声属性A_ATR1が用いられる。図45に示す場合、音声属性A_ATR1におけるプリファレンスフラグは、“10b”となっているので、音声チャンネル2、すなわち副音声が優先的に選択されるようになっている。また、アプリケーションフラグが“01b”となっているので、複数の音声チャンネルが混在することを示す。また、音声チャンネル数は、“1001b”となっているので、2チャンネル（デュアルモノラル）が代表モードであることが示される。複数モード有る場合、どれが代表モードであるかは、各モードの積算時間を比較して多い方を探る方法や、送られてきた放送信号に予め代表モードが何かがコードで示される方法などがある。

【0131】SP_ATR (サブピクチャ属性)

以下に記すサブピクチャ属性情報が図14のフォーマットに従い記録されている。

【0132】アプリケーションフラグ (Application Flag)

アプリケーション情報を識別する以下の値の何れかが記録されている。

【0133】

00b : 非該当

01b : 字幕

10b : アニメーション

SP_PLT (サブピクチャカラーパレット)

サブピクチャ用のカラーパレット情報が図14のフォーマットに従い記録されている。

「M_AVF1」(図15)

M_AVF1 (動画AVファイル情報)は動画VOBにアクセスするために必要な情報、M_AVF1_GI、M_VOB1_SRP、M_VOB1から構成されている。

「M_AVF1_GI」(図15)

M_AVF1_GI (動画AVファイル情報一般情報)には、M_VOB1_SRP_Nsが記録されている。

【0134】M_VOB1_SRP_Ns (動画ビデオオブジェクト情報サーチポインタ数)

M_VOB1_SRPの数が記録されている。

「M_VOB1_SRP」(図15)

M_VOB1_SRP (動画VOB情報サーチポインタ)には、各M_VOB1へアクセスするためのアドレス情報が記録されている。

【0135】M_VOB1_SA (動画VOB情報開始アドレス)

M_VOB1の開始アドレスが記録され、当該VOB情報へのアクセスを行う場合は、ここで示されるアドレスへシークを行えば良い。

「M_VOB1」(図16)

M_VOB1 (動画VOB情報)は、動画VOBの管理情報、M_VOB_GI、SML1、AGAPI、TM API、CP_MNGIから構成されている。

「M_VOB_GI」(図16)

M_VOB_GI (動画VOB一般情報)には、動画VOBの一般情報として以下の情報が記録されている。

【0136】VOB_TY (VOBタイプ)

VOBの属性情報が図17に示すフォーマットに従い記録されている。

【0137】TE

このVOBの状態を識別する以下の値の何れかが記録されている。

【0138】

0b : 通常状態

1b : 一時消去状態

A0_STATUS

音声ストリーム0の状態を識別する以下の値の何れかが記録されている。

【0139】

00b : オリジナル状態

01b : 書き換え済み状態

A1_STATUS

音声ストリーム1の状態を識別する以下の値の何れかが記録されている。

【0140】

00b : オリジナル状態

01b : 書き換え済み状態

10b : アフレコ用ダミー状態

11b : アフレコ済み状態

APS

アナログコピー防止信号制御情報を識別する以下の値の何れかが記録されている。

【0141】

00b : APS無し

01b : タイプ1

10b : タイプ2

11b : タイプ3

SML_FLG

このVOBが直前のVOBとシームレス再生されるかを識別する以下の値の何れかが記録されている。

【0142】

0b : シームレス再生不可

1b : シームレス再生可

A0_GAP_LOC

音声ストリーム0内の音声再生ギャップの有無と、音声再生ギャップ区間が多重化されているVOBUを示す以下の値の何れかが記録されている。

【0143】

00b : 音声再生ギャップ無し

01b : 先頭VOBUに音声再生ギャップが多重化

10b : 第2VOBUに音声再生ギャップが多重化

11b : 第3VOBUに音声再生ギャップが多重化

A1_GAP_LOC

音声ストリーム1内の音声再生ギャップの有無と、音声再生ギャップ区間が多重化されているVOBUを示す以下の値の何れかが記録されている。

【0144】

00b : 音声再生ギャップ無し

01b : 先頭VOBUに音声再生ギャップが多重化

10b : 第2VOBUに音声再生ギャップが多重化

11b : 第3VOBUに音声再生ギャップが多重化

VOB_REC_TM (VOB記録日時)

このVOBを記録した日時が図9に示したPL_CREATE_TMと同じフォーマットで記録されている。ここで重要なのは、記録日時とはVOB先頭の表示ビデオ

フレームの記録日時を示していることであり、編集や部分消去によって、VOB先頭ビデオフレームが代わった場合、このVOB_REC_TMも修正しなければならないことである。また、カムコーダで良く見られるようにVOBの再生と同期して記録日時を表示したい場合は、VOB_REC_TMIにVOB内での経過時刻を加算することで求めることが可能である。

【0145】VOB_REC_TM_SUB (VOB記録日時差分情報)

VOBへの編集や部分消去によって、VOB先頭ビデオフレームが代わった場合に修正されるVOB_REC_TMの誤差を吸収するためのフィールドである。VOB_REC_TMは図9に示す通り、年月日時分秒までの情報しか持ち合わせないため、フレームやフィールド精度での編集または消去を行った場合に、VOB_REC_TMだけでは、充分な記録精度が出せないため、このフィールドを使用して端数を記録する。

【0146】M_VOB_STIN (M_VOB_STI番号)

このVOBの対応するM_VOB_STI番号が記録されている。ここで示されるM_VOB_STI番号は、前述したM_VOB_STIテーブル内での記録順である。

【0147】VOB_V_S_PT (VOBビデオ開始PTM)

このVOBの表示開始時刻をストリーム中のタイムスタンプと同一基準時間で記録する。

【0148】VOB_V_E_PT (VOBビデオ終了PTM)

このVOBの表示終了時刻をストリーム中のタイムスタンプと同一基準時間で記録する。ここで注意するのは、ストリーム中のタイムスタンプは当該フレームの表示開始時刻を示しているが、VOB_V_E_PTでは、表示終了時刻、即ち、表示開始時刻に当該フレームの表示期間を加算した時刻が記録される。

「SMLI」(図16)

SMLI(シームレス情報)には、直前のVOBとシームレス再生する場合に必要となる以下の情報が記録されている。また、このフィールドは、前述したSML_FLGに"1b"が記録されている場合のみ存在する。

【0149】VOB_FIRST_SCR (VOB先頭SCR)

当該VOB最初のパックのSCRが記録される。

【0150】PREV_VOB_LAST_SCR (前VOB最終SCR)

前VOB最後のパックのSCRが記録される。

「AGAPI」(図16)

AGAPI(音声ギャップ情報)には、音声再生ギャップをデコーダで処理するために必要な以下の情報が記録されている。また、このフィールドは、前述したAO_

GAP_LOCまたはA1_GAP_LOC何れかに"00b"以外の値が記録されている場合に存在する。

【0151】VOB_A_STOP_PT (VOB音声ストップPTM)

音声再生ギャップ、即ち、デコーダが音声再生を一時的に停止する時刻が、ストリーム中のタイムスタンプと同一基準時間で記録されている。

【0152】VOB_A_GAP_LEN (VOB音声ギャップ長)

音声再生ギャップの時間長が90kHzの精度で記録されている。

「CP_MNGI」(図16)

CP_MNGI(コピー管理情報)は、このVOBに対するコピー管理情報、CPG_STATUSとCPGIから構成されている。

【0153】CPG_STATUS (コピー防御状態)

当該VOBコピー防御状態として、"コピーフリー"、"一世代コピー化"を識別する値が記録されている。

【0154】CPGI (コピー防御情報)

当該VOBにかけられているコピー防御情報が記録されている。

「TMAPI」(図18)

TMAPI(タイムマップ情報)は、TMAP_GI、TM_ENT、VOBU_ENTから構成されている。

「TMAP_GI」(図18)

TMAP_GI(TMAP一般情報)は、TM_ENT_Ns、VOBU_ENT_Ns、TM_OFs、ADR_OFsから構成され、夫々のフィールドは以下の通りである。

【0155】TM_ENT_Ns (TM_ENT数)

後述するTM_ENTのフィールド数が記録されている。

【0156】VOBU_ENT_Ns (VOBU_ENT数)

後述するVOBU_ENTのフィールド数が記録されている。

【0157】TM_OFs (タイムオフセット)

タイムマップのオフセット値がビデオフィールド精度で記録されている。

【0158】ADR_OFs (アドレスオフセット)

当該VOB先頭のAVファイル内でのオフセット値が記録されている。

「TM_ENT」(図18)

TM_ENT(タイムエントリ)は、一定間隔TMU毎のアクセスポイント情報として以下のフィールドから構成されている。TMUはNTSCの場合、600ビデオフィールド(NTSC)、PALの場合、500ビデオフィールドである。

【0159】VOBU_ENT_N (VOBU_ENT番

号)

このTM_ENTが示す時刻(N番目のTM_ENTの場合、 $TM_x \times (N-1) + TM_{OFF}$)を含むVOBUのエントリ番号が記録されている。

【0160】TM_DIFF(時間差)

このTM_ENTが示す時刻と前述したVOBU_ENTが示すVOBUの表示開始時刻の差が記録されている。

【0161】VOBU_ADR(VOBUアドレス)

前述したVOBU_ENTが示すVOBUのVOB内での先頭アドレスが記録されている。

「VOBU_ENT」(図19)

VOBU_ENT(VOBUエントリ)には、対応するVOBUの以下の構成情報が図19に示すフォーマットで記録されている。以降のフィールドを順に加算することで、所望のVOBUへアクセスするために必要な時刻、アドレス情報を得ることが可能である。

【0162】1STREF_SZ

VOBU先頭パックから、VOBU内先頭AVピクチャの最終データを含むパックまでのパック数が記録されている。

【0163】VOBU_PB_TM

このVOBUの再生時間長が記録されている。

【0164】VOBU_SZ

このVOBUのデータ量が記録されている。

「S_AVF1」(図20)

S_AVF1(静止画AVファイル情報テーブル)は、静止画AVファイル"RTR_STO_VRO"に対応する管理情報が記録され、S_AVF1TI、S_VOB_STI、S_AVF1から構成されている。

「S_AVF1TI」(図20)

S_AVF1TI(静止画AVファイル情報テーブル情報)は、S_VOB_STI、S_AVF1にアクセスするために必要な以下の情報が記録されている。

【0165】S_AVF1_Ns(静止画AVファイル情報数)

S_AVF1数として、"0"または"1"が記録されている。この値は、静止画AVファイル数、即ち、RTR_STO_VROファイルの有無にも対応している。

【0166】S_VOB_STI_Ns(静止画VOBストリーム情報数)

後述するS_VOB_STI数が記録されている。

【0167】S_AVF1_EA(静止画AVファイル情報終了アドレス)

S_AVF1の終了アドレスが記録されている。

「S_VOB_STI」(図20)

S_VOB_STI(静止画VOBストリーム情報)は、静止画VOBのストリーム情報として、以下の情報が記録されている。

【0168】V_ATR(ビデオ属性)

ビデオ属性情報として、Video compression mode、TV system、Aspect ratio、Video resolutionが記録されている。個々のフィールドは前述したM_VOB_STIでのV_ATRと同一である。

【0169】OA_ATR(音声ストリーム属性)

音声ストリーム属性情報として、Audio coding mode、Application Flag、Quantization/DRC、fs、Number of Audio channelsが記録されている。個々のフィールドは前述したM_VOB_STIでのA_ATRと同一である。

【0170】SP_ATR(サブピクチャ属性)

サブピクチャ属性情報として、Application Flagが記録されている。当該フィールドは前述したM_VOB_STIでのSP_ATRと同一である。

【0171】SP_PLT(サブピクチャカラーパレット)

サブピクチャ用のカラーパレット情報が記録されている。記録フォーマットは、前述したM_VOB_STIでのSP_PLTと同一である。

「S_AVF1」(図23)

S_AVF1(静止画AVファイル情報)は、静止画VOBにアクセスするために必要な情報、S_AVF1_GI、S_VOGI_SRP、S_VOGIから構成される。

「S_AVF1_GI」(図23)

S_AVF1_GI(静止画AVファイル情報一般情報)には、S_VOGI_SRP_Nsが記録されている。

【0172】S_VOGI_SRP_Ns(静止画VOBグループサーチポインタ数)

後述するS_VOGI_SRPのフィールド数が記録されている。

「S_VOGI_SRP」(図23)

S_VOGI_SRP(静止画VOBグループ情報サーチポインタには、S_VOGI_SAが記録されている。

【0173】S_VOGI_SA(静止画VOBグループ情報開始アドレス)

には、このS_VOGIの開始アドレスが記録されている。

「S_VOGI」(図23)

S_VOGI(静止画VOBグループ情報)は、静止画VOBの管理情報、S_VOG_GI、S_VOB_ENT、CP_MNGIから構成されている。

「S_VOG_GI」(図23)

S_VOG_GI(静止画VOBグループ一般情報)には、静止画VOBグループの一般情報として以下の情報が記録されている。

【0174】S_VOB_Ns(静止画VOB数)

静止画VOBグループ内の静止画VOB数が記録されている。

【0175】S_VOB_STIN (S_VOB_ST
1番号)

静止画VOBのストリーム情報が記録されているS_VOB_ST 1番号が記録されている。S_VOB_ST 1番号は、前述したS_VOB_ST 1テーブル内での記録順である。

【0176】FIRST_VOB_REC_TM (先頭VOB録画日時)

この静止画VOBグループ内の先頭静止画VOBの録画日時情報が記録されている。

【0177】LAST_VOB_REC_TM (最終VOB録画日時)

この静止画VOBグループ内の最終静止画VOBの録画日時情報が記録されている。

【0178】S_VOB_SA (静止画VOBグループ開始アドレス)

RTR_STO_VROファイル内での静止画VOBグループの開始アドレスが記録されている。

「CP_MNGI」

CP_MNGI (コピー管理情報) は、当該静止画VOBグループに関するコピー管理情報が記録されている。

個々のフィールドは、前述したM_VOBのCP_MNGIと同一である。

「S_VOB_ENT」 (図24)

S_VOB_ENT (静止画VOBエントリ) は、静止画VOBグループ内の個々の静止画VOBに対応し、音声の有無で以下のタイプAとタイプBに分けられる。

「S_VOB_ENT (Type A)」 (図24)

タイプAは、S_VOB_ENT_TY、V_PART_SZから構成され、個々のフィールドは以下の通りである。

【0179】S_VOB_ENT_TY (静止画VOBエントリタイプ)

この静止画VOBのタイプ情報が図25に示すフォーマットで記録されている。

【0180】MAP_TY

タイプAまたはタイプBを識別する以下の値の何れかが記録されている。

【0181】

00b : タイプA

01b : タイプB

TE

この静止画VOBの状態を識別する以下の値の何れかが記録されている。

【0182】

0b : 通常状態

1b : 一時消去状態

SPST_Ns

この静止画VOB内のサブピクチャストリーム数が記録されている。

【0183】V_PART_SZ (ビデオパートサイズ)

この静止画VOBのデータ量が記録されている。

「S_VOB_ENT (Type B)」 (図24)

タイプBは、S_VOB_ENT_TY、V_PART_SZ、の他に、A_PART_SZ、A_PB_TMを有していて、個々のフィールドは以下の通りである。

【0184】S_VOB_ENT_TY (静止画VOBエントリタイプ)

この静止画VOBのタイプ情報が記録されている。個々のフィールドは、前述したタイプAと同一である。

【0185】V_PART_SZ (ビデオパートサイズ)

この静止画VOB中のビデオパートのデータ量が記録されている。

【0186】A_PART_SZ (音声パートサイズ)

この静止画VOB中の音声パートのデータ量が記録されている。

【0187】A_PB_TM (音声再生時間)

この静止画VOB中の音声パートの再生時間長が記録されている。

「UD_PGCIT」 (図26)

UD_PGCIT (ユーザ定義PGC情報テーブル)

は、UD_PGCITI、UD_PGCISRP、UD_PGCIIから構成される。

「UD_PGCITI」 (図26)

UD_PGCITI (ユーザ定義PGC情報テーブル情報) はユーザ定義PGC情報テーブルを構成する以下の情報が記録されている。

【0188】UD_PGCISRP_Ns (ユーザ定義PGC情報サーチポインタ数)

UD_PGCISRP数が記録されている。

【0189】UD_PGCIT_EA (ユーザ定義PGC情報テーブル終了アドレス)

UD_PGCITの終了アドレスが記録されている。

「UD_PGCISRP」 (図26)

UD_PGCISRP (ユーザ定義PGC情報サーチポインタ) には、UD_PGCISAIが記録されている。

【0190】UD_PGCISAI (ユーザ定義PGC情報開始アドレス)

UD_PGCISAIには、UD_PGCIIの開始アドレスが記録され、このPGCIIにアクセスする場合は、記録されているアドレスまでシークをすれば良い。

「UD_PGCII」 (図26)

UD_PGCII (ユーザ定義PGC情報) の詳細は、後述するPGCIIで説明する。

「ORG_PGCII」 (図5)

ORG_PGC1 (オリジナルPGC情報) の詳細は、後述するPGCIで説明する。

「TXTDT_MG」(図27)

TXTDT_MG (テキストデータ管理) は、TXTD T1、IT_TXT_SRP、IT_TXTから構成される。個々のフィールドは以下の通りである。

「TXTDT1」(図27)

TXTDT1 (テキストデータ情報) は、CHRS、IT_TXT_SRP_Ns、TXTDT_MG_EAから構成される。

【0191】**CHRS** (キャラクタセットコード)

IT_TXTで使用するキャラクタセットコードが記録されている。

【0192】**IT_TXT_SRP_Ns** (IT_TXTサーチポインタ数)

IT_TXT_SRP数が記録されている。

【0193】**TXTDT_MG_EA** (テキストデータ管理終了アドレス)

TXTDT_MGの終了アドレスが記録されている。

「IT_TXT_SRP」(図27)

IT_TXT_SRP (IT_TXTサーチポインタ) には、対応するIT_TXTへのアクセス情報として以下のものが記録されている。

【0194】**IT_TXT_SA** (IT_TXT開始アドレス)

IT_TXTの開始アドレスが記録されている。このIT_TXTにアクセスする場合は、このアドレスまでシーケすれば良い。

【0195】**IT_TXT_SZ** (IT_TXTサイズ)

IT_TXTのデータサイズが記録されている。このIT_TXTを読み出したい場合は、このサイズだけデータを読み出せば良い。

「IT_TXT」(図27)

IT_TXTは、IDCD (識別コード) とIDCDに対応するTXT (テキスト) とTMCD (終了コード) を1セットとした、複数または一つのセットから構成される。IDCDに対応するTXTが無い場合は、省略してIDCDとTMCDを1セットとしても良い。また、IDCDは以下の通り規定されている。

【0196】**ジャンルコード**

30h : 映画

31h : 音楽

32h : ドラマ

33h : アニメーション

34h : スポーツ

35h : ドキュメンタリ

36h : ニュース

37h : 天気

38h : 教育

39h : 趣味

3Ah : エンターテイメント

3Bh : 芸術 (演劇、オペラ)

3Ch : ショッピング

入力ソースコード

60h : 放送局

61h : カムコーダ

62h : 写真

63h : メモ

64h : その他

「PGCI」(図28)

ORG_PGC1 (オリジナルプログラムチェイン情報) と、UD_PGC1 (ユーザディファインドプログラムチェイン情報) は、共通のデータ構造を有し、両者をまとめて、PGCI (プログラムチェイン情報) と言う。PGCI (プログラムチェイン情報) は、PGC_GI (プログラムチェイン一般情報)、PGI (プログラム情報)、CI_SRP (セル情報サーチポインタ)、CI (セル情報) から構成されている。

「PGC_GI」(図28)

PGC_GI (PGC一般情報) は、PGC一般の情報として、PG_Ns (プログラム数) とCI_SRP_Ns (セル情報サーチポインタ数) から構成されている。個々のフィールドは以下の通りである。

【0197】**PG_Ns** (プログラム数)

このPGC内のプログラム数が記録されている。ユーザ定義PGCの場合、プログラムを持てないため、このフィールドは”0”が記録される。

【0198】**CI_SRP_Ns** (CI_SRP数)

後述するCI_SRPの数が記録されている。

「PGI」(図28)

PGI (プログラム情報) は、PG_TY (プログラムタイプ)、C_Ns (セル数)、PRM_TXTI (プライマリテキスト情報)、IT_TXT_SRPN、THM_PTRIから構成されている。個々のフィールドは以下の通りである。

【0199】**PG_TY** (プログラムタイプ)

このプログラムの状態を示す以下の情報が、図29に示すフォーマットを用いて記録されている。

【0200】**Protect** (プロテクト)

0b : 通常状態

1b : プロテクト状態

C_Ns (セル数)

このプログラム内のセル数が記述されている。

【0201】**PRM_TXTI** (プライマリテキスト情報)

このプログラムの内容を示すテキスト情報が記録されている。詳細は、前述したPL_SRPTと同一である。

【0202】**IT_TXT_SRPN** (IT_TXT_SRPN番号)

前述したプライマリテキストに加えて、このプログラムの内容を示す情報を I T _ T X T としてオプション記録されている場合、このフィールドに T X T D T _ M G 内に記録されている I T _ T X T _ S R P の番号が記録されている。

【0203】 THM_PTR1 (サムネイルポインタ情報)

このプログラムを代表するサムネイル情報が記述されている。THM_PTR1 の詳細は、前述した P L _ S R P T の THM_PTR1 と同一である。

「C I_SRP」(図28)

C I_SRP (セル情報サーチポインタ) は、このセル情報へアクセスするためのアドレス情報が記録されている。

【0204】 C I_SA (セル情報開始アドレス)

このセル情報の開始アドレスが記録されている。このセルへアクセスする場合は、このアドレスまでシークすれば良い。

「C I」(図30)

C I (セル情報) は、動画用の M_C_I と静止画用の S_C_I に分類される。

「M_C_I」(図30)

M_C_I (動画セル情報) は、M_C_G_I、M_C_EPI から構成される。

「M_C_G_I」(図30)

M_C_G_I (動画セル一般情報) は、セルを構成する以下の基本情報を有している。

【0205】 C_TY (セルタイプ)

動画セル、静止画セルを識別するための以下の情報が図31に示すフォーマットで記録されている。

【0206】 C_TY1

000b : 動画セル

001b : 静止画セル

M_VOB_I_SRPN (動画VOB情報サーチポインタ番号)

このセルが対応する動画VOB情報のサーチポインタ番号が記録されている。このセルが対応するストリームデータへアクセスする場合、まずこのフィールドが指す動画VOB情報サーチポインタ番号へアクセスをする。

【0207】 C_EPI_Ns (セルエントリポイント情報数)

このセル内に存在するエントリポイントの数が記録されている。

【0208】 C_V_S_PTM (セルビデオ開始時刻)

このセルの再生開始時刻が図10に示すフォーマットで記録されている。

【0209】 C_V_E_PTM (セルビデオ終了時刻)

このセルの再生終了時刻が図10に示すフォーマットで

記録されている。C_V_S_PTM と C_V_E_PTM を用いて、このセルが対応する VOB 内でのセルの有効区間が指定されている。

「M_C_EPI」(図32)

M_C_EPI (動画セルエントリポイント情報) は、プライマリテキストの有無でタイプAとタイプBに分類される。

「M_C_EPI (タイプA)」(図32)

M_C_EPI (タイプA) は、エントリポイントを示す以下の情報から構成されている。

【0210】 EPI_TY (エントリポイントタイプ)

このエントリポイントのタイプを識別する以下の情報が図33に示すフォーマットに従い記録されている。

【0211】 EPI_TY1

00b : タイプA

01b : タイプB

EPI_PTM (エントリポイント時刻)

エントリポイントが置かれている時刻が図10に示すフォーマットに従い記録されている。

「M_C_EPI (タイプB)」(図32)

M_C_EPI (タイプB) は、タイプAが有する EPI_TY、EPI_PTM の他に、以下に記す PRM_TXTI を有している。

【0212】 PRM_TXTI (プライマリテキスト情報)

このエントリポイントが示す場所の内容を示すテキスト情報が記録されている。詳細は、前述した P L _ S R P T と同一である。

「S_C_I」(図30)

S_C_I (静止画セル情報) は、S_C_G_I、S_C_EPI から構成される。

「S_C_G_I」(図30)

S_C_G_I (静止画セル一般情報) は、セルを構成する以下の基本情報を有している。

【0213】 C_TY (セルタイプ)

動画セル、静止画セルを識別するための情報が記録されている。詳細は、前述した動画セルの通りである。

【0214】 S_VOG_I_SRPN (静止画VOBグループ情報サーチポインタ番号)

このセルが対応する静止画VOBグループ情報のサーチポインタ番号が記録されている。このセルが対応するストリームデータへアクセスする場合、まずこのフィールドが指す静止画VOBグループ情報サーチポインタ番号へアクセスをする。

【0215】 C_EPI_Ns (セルエントリポイント情報数)

このセル内に存在するエントリポイントの数が記録されている。

【0216】 S_S_VOB_ENTN (開始静止画VOB番号)

このセルの再生開始静止画VOB番号が図11に示すフォーマットで記録されている。静止画VOB番号は、前述したS_VOG1_SRPNが示すS_VOG内の順番である。

【0217】E_S_VOB_ENTN (終了静止画VOB番号)

このセルの再生終了静止画VOB番号が図11に示すフォーマットで記録されている。静止画VOB番号は、前述したS_VOG1_SRPNが示すS_VOG内の順番である。なお、S_S_VOB_ENTNとE_S_VOB_ENTNを用いて、このセルが対応するS_VOG内のセルの有効区間が指定されている。

「S_C_EPI」(図32)

S_C_EPI (静止画セルエントリポイント情報)は、プライマリテキストの有無でタイプAとタイプBに分類される。

「S_C_EPI (タイプA)」(図32)

S_C_EPI (タイプA)は、エントリポイントを示す以下の情報から構成されている。

【0218】EP_TY (エントリポイントタイプ)

このエントリポイントのタイプを識別する以下の情報が図33に示すフォーマットに従い記録されている。

【0219】EP_TY1

00b : タイプA

01b : タイプB

S_VOB_ENTN (静止画VOBエントリ番号)

エントリポイントが置かれている静止画番号をが図11に示すフォーマットに従い記録されている。

「S_C_EPI (タイプB)」(図32)

S_C_EPI (タイプB)は、タイプAが有するEP_TY、S_VOB_ENTNの他に、以下に記すPRM_TXTIを有している。

【0220】PRM_TXTI (プライマリテキスト情報)

このエントリポイントが示す場所の内容を示すテキスト情報が記録されている。詳細は、前述したPL_SRPTと同一である。

【0221】(DVDレコーダの構成)

次に、図40を用いてDVDレコーダの構成について説明する。

【0222】図中、7801はユーザへの表示およびユーザからの要求を受け付けるユーザインターフェース部、7802は全体の管理および制御を司るシステム制御部、7803はADコンバータをはじめとする映像および音声を入力する入力部、7804はエンコーダ部、7805は映像および音声を出力する出力部、7806はMPEGストリームをデコードするデコーダ部、7807はトラックバッファ、7808はドライブである。

【0223】(DVDレコーダの動作) 次に、図40を用いてDVDレコーダの基本的な録画再生動作を説明す

る。

【0224】まず、録画動作について説明する。録画開始に先立って、システム制御部7802の指示に基づいて、入力部7803、エンコーダ部7804、トラックバッファ7807を初期設定する。入力部に入力された映像データ、音声データはA/D変換され、エンコーダ部に渡される。エンコーダ部では映像データと音声データを圧縮しマルチプレクスしてMPEGストリームを生成しトラックバッファに渡す。トラックバッファのデータは順次ドライブに渡されDVD-RAMディスクに記録される。

【0225】次に、再生動作について説明する。ユーザは再生すべきDVD-RAMディスクをドライブに挿入し、ディスク上に存在する複数のAVストリームから再生すべきAVストリームを選択する。ここで、ユーザによるAVストリームの選択方法についてさらに詳細に説明する。1枚のディスクには複数のAVストリームを記録可能であるため、再生装置は現在ディスク中に存在するすべてのAVストリームの一覧をユーザに対してわかりやすく提示することが肝要である。前述の様に、記録された各AVストリームはディスク内ではビデオオブジェクト(VOB)として管理される。個々のVOBごとに専用の管理情報、ビデオオブジェクトインフォメーション(VOBI)が設けられ、各VOB固有の属性情報が記録管理される。また、1つまたは複数のVOBのシーケンスは、上位概念であるプログラム(PG)で管理される。プログラムの概念が導入される理由は、本来一体として管理されるべきものが、何らかの理由で複数のAVストリームとして記録された場合に対応するためである。たとえば、ディスクカメラで撮影された、ある日の午前中の「玉入れ」のAVストリームと午後の「リレー」のAVストリームをまとめて「運動会」という単位で管理したい場合にプログラムの概念が利用される。個々のプログラムに対しては、プログラムインフォメーション(PGI)という管理情報が設けられており、そのプログラムのタイトル名などの属性情報が記録管理される。このように、プログラムはユーザが認識する管理単位(録画、再生を行う単位)であり、VOBはDVDレコーダーが内部でAVストリームを管理する単位となる。

【0226】図46を用いて本発明に関する管理情報と実際のAVストリームデータについて説明する。

【0227】図46の横の列L1は、プログラムチェイン情報PGCIが示され、左側のブロックL1aには、記録されたものがそのまま再生されるのに必要なオリジナルプログラムチェイン情報ORG_PGC1が示され、右側のブロックL1b、L1cにはユーザにより編集されたものが、編集に従って再生されるのに必要なユーザディファインドプログラム情報UD_PGC1が示されている。ORG_PGC1の管理情報については、

図5、図28、図30に階層構造が示されている。また、UD_PGC1の管理情報については、図5、図26、図28、図30に階層構造が示されている。図5において、UD_PGC1T(user defined program chain information table)となっているのは、UD_PGC1が複数存在し得るので、まず、UD_PGC1のテーブルであるUD_PGC1Tを設け、そのテーブルから個別のUD_PGC1を選出すように展開されている。

【0228】図46において、1番目に記録されているプログラムのタイトルは、次に説明する順番で管理情報内をたどって求めることができる。

【0229】図5のS1→図28のS2→S3。

【0230】図46において、2番目の横の列L2は、静止画像用の管理情報S_VOB1と、動画像用の管理情報M_VOB1が示されている。光ディスクには最高999個の管理情報M_VOB1を作成することが出来る。M_VOB1の管理情報については、図5、図15、図16に階層構造が示されている。

【0231】L1のプログラムチェイン情報PGCIにあるCe11が、L2の動画像用の管理情報M_VOB1のいずれと関連があるのかは、次に説明する管理情報により知ることができる。

【0232】図5のS1→図28のS2→S4(C_Nsは、プログラム内に含まれるセルの数を示す。プログラムに含まれるセルの数を、先頭のプログラムから順番に累積すると目的のプログラムに含まれるセルの番号が求まる。求まったセルの番号がセルサーチポインタC1_SRP#nとして、利用される。)→S5→S6→S7(セルサーチポインタに基づきセルのアドレスを求める。)→S8(目的のセル情報の番号が求まる。)→図30のS9(動画セル情報M_C1)→S10(動画セル一般情報M_CG1)→S11(動画VOB情報サーチポイント番号M_VOB1_SRPN)→図5のS12(AVファイル情報テーブル)→図15のS13→S14→S15(ここでS11で特定された動画VOB情報サーチポインタにアクセス)→S16→S17(ここで動画VOB情報のスタートアドレスを特定)→S18→S19。

【0233】図46において、3番目の横の列L3は、動画像用のVOBのストリーム情報M_VOB_ST1が示されている。このM_VOB_ST1に、本発明にかかるアプリケーションフラグやプリファレンスフラグが書き込まれている。すなわち図12の右下に示すM_VOB_ST1の中には、音声属性A_ATR0、A_ATR1が設けられており、音声属性A_ATR0またはA_ATR1の中には、図13の下に示すように、アプリケーションフラグ(b17、b16)やプリファレンスフラグ(b19、b18)が割り当てられている。

光ディスクには最高64個のM_VOB_ST1を作

成することが出来る。ひとつのM_VOB1に対し、ひとつの中VOB_ST1が割り当てられるが、複数のM_VOB1に対し同じ内容のM_VOB_ST1が割り当てられる場合が多い。かかる場合は、複数のM_VOB1について、共通のM_VOB_ST1とリンクさせる。例えば、図46のM_VOB1#1と、M_VOB1#2は、共通のM_VOB_ST1#2とリンクしている。あるM_VOB1が、いずれのM_VOB_ST1とリンクされているかは、次に説明する管理情報により知ることができる。

【0234】上述の説明において、図15のS19で、図46のプログラムチェイン情報PGCIにあるCe11に対し、どの動画像用の管理情報M_VOB1とリンクされているかが特定された。その、動画像用の管理情報M_VOB1とリンクするM_VOB_ST1は、次のようにして求まる。

【0235】図15のS19→S20→図16のS21(M_VOB_ST1Nは、動画像用のVOBのストリーム情報の番号を示す。)

このM_VOB_ST1Nからアプリケーションフラグ(b17、b16)やプリファレンスフラグは、次のようにして求まる。

【0236】図5のS12→図12のS22→S23→S24。

【0237】図47は、DVD-RAMディスクが記録装置により記録される工程を示したフローチャートであり、各ステップは、次のとおりである。

【0238】ステップ#1：図40に示す記録再生装置を初期化する。システム制御部7802にはメモリN_AC1、メモリN_AC2、メモリAP_FLG1、メモリAP_FLG2、メモリPR_FLGがあり、これらが初期化される。メモリN_AC1およびN_AC2は、それぞれ音声ストリーム1および音声ストリーム2の音声チャンネル数の情報を一時的に記録するためのものである。メモリPR_FLGにはユーザの好みのチャンネル情報、例えば日本語と英語のデュアルの場合、英語が好みのチャンネルであれば英語の音声が含まれる音声チャンネル2が優先的に設定される情報を一時的に記録するためのものである。メモリAP_FLG1およびAP_FLG2は、それぞれ音声ストリーム1および音声ストリーム2のアプリケーション情報、すなわち複数の音声チャンネル構成が混在しているかどうか、例えばひとつのM_VOB_ST1で特定されるひとつのAVストリームの中にモノラル、ステレオ、デュアルなどが複数混在しているかどうか、を示すフラグを一時的に記録するためのものである。複数混在している場合として、例えば、図42(c)に示すように洋画が日本語と英語のデュアルで受信され、コマーシャル(CM)がステレオで受信される場合がある。

【0239】ステップ#1では、N_AC1=N_AC

$2 = 1111b$ 、 $AP_FLG1 = AP_FLG2 = 0b$ に初期化する。ここで“b”は、2値化表示を示す。また、 PR_FLG は、ユーザインタフェス7801を通じてユーザが予め設定した値、またはデフォルトで設定されている値に設定される。

【0240】ステップ#2：入力部7803は、入力信号をA/D変換したデータ(音声データと映像データとが有るが、ここでは特に音声データに注目する。)と、入力信号から抽出した音声チャンネル情報をエンコーダ部7804に送る。

【0241】ステップ#3：エンコーダ部7804は音声データを、その構成に従ってエンコードし、エンコードされた音声データおよび映像データ、すなわちAVストリームデータをトラックバッファに渡すと共に音声チャンネル情報をシステム制御部に通知する。

【0242】ステップ#4：音声ストリーム1または音声ストリーム2について、システム制御部7802は通知された音声チャンネル情報を、上述した4ビットで表される識別コードに変換し、メモリN_AC1またはN_AC2に記録する。例えば、識別コードが0001bであれば、音声チャンネル情報は2チャンネル(ステレオ)であることが示される。

【0243】ステップ#5：音声ストリーム1または音声ストリーム2について、通知された音声チャンネル情報が、同じAVストリームデータ内で、以前に通知されていた音声チャンネル情報と異なっていればメモリAP_FLG1またはAP_FLG2に01bを記録する。例えば図42(c)に示すように、同じAVストリームデータ内のひとつの音声ストリームに異なった音声チャンネル構成が混在している場合、上述したアプリケーションフラグについては、01bがメモリAP_FLGに記録され、複数の音声チャンネル構成が混在していることが示される。

【0244】ステップ#6：システム制御部7802は、ドライブを制御し、トラックバッファからAVストリームデータを順次取り出し、ディスク上に記録する。

【0245】ステップ#7：同じAVストリームに入力すべきデータがまだ存在するかどうかが判断され、存在する場合は、ステップ#2に戻り、存在しなければステップ#8に進む。すなわちAVストリーム1本分の記録処理が終われば、ステップ#8に進む。

【0246】ステップ#8：記録が終わったAVストリーム(VOB)に対する管理情報M_VOB1をRTF.Oファイルに記録を開始する。管理情報の多くはシステム制御部7802のメモリに一時的に蓄えられている。

【0247】ステップ#9：メモリN_AC1に記録されている音声チャンネル数の情報、およびメモリAP_FLG1に記録されている音声チャンネル構成が混在しているかどうかの情報を、ストリーム情報M_VOB_

STI中のATR0の中、すなわち図13の下半分のb11、b10、b9、b8のエリア、およびb17、b16のエリアにそれぞれ記録する。同様に、メモリN_AC2の情報、およびメモリAP_FLG2の情報を、ストリーム情報M_VOB_STI中のATR1の中に記録する。

【0248】ステップ#10：メモリPR_FLGに記録されているプリファレンス情報を、ストリーム情報M_VOB_STI中のATR0の中、すなわち図13の下半分のb19、b18のエリアに記録する。更に他の情報も設定し、M_VOB_STIを完成し、RTF.Oファイルに記録する。

【0249】ステップ#11：録画されたVOBに対応するセル情報(CI)、プログラム情報(PGI)を生成し、オリジナルプログラムチェーン情報(ORG_PGC1)の最後尾に追加する。

【0250】図50に示すように、本発明にあっては、DVD-RAMディスクが再生装置にセットされれば、再生される前に、DVD-RAMに記録されている全てのプログラム(例えばTVドラマ、海外ドキュメンタリー、新作映画劇場等)のリストが出力部7805により表示される。このプログラムリストには、各プログラムの音声がどのような構成になっているのかを、タイトル等の情報と共に表示される。

【0251】図48は、プログラムリスト、特に音声に関する情報を表示させる工程を示したフローチャートを示す。ここでは、ユーザによる編集がなされていないオリジナルプログラムについてプログラムリストが表示される場合を示す。各ステップは、次のとおりである。

【0252】ステップ#20：プログラムをカウントするカウント値Nをゼロにリセットする。

【0253】ステップ#21：カウント値Nを1インクリメントする。

【0254】ステップ#22：N番目のプログラム情報PGIを読み出す。

【0255】ステップ#23：PGIの中のPRM_TXTIからタイトル名を読み出す。

【0256】ステップ#24：PGIに対応するセル情報CIを読み、動画ビデオオブジェクト情報のサーチポイント番号“M_VOB1_SRPN”を求める。

【0257】ステップ#25：M_VOB1_SRPNを用いて、対応するM_VOBの動画ビデオオブジェクト情報M_VOB1を読み出し、動画ビデオオブジェクトストリーム情報番号M_VOB_STINを求める。

【0258】ステップ#26：M_VOB_STINを用いて、対応するM_VOBの動画ビデオオブジェクトストリーム情報M_VOB_STI内のA_ATR0を読み出し、音声ストリーム1についてアプリケーションフラグ、プリファレンスフラグ、音声チャンネル数を求める。同様に、A_ATR1を読み出し、その中にも管

理情報があれば、音声ストリーム2についてアプリケーションフラグ、プリファレンスフラグ、音声チャンネル数を求める。

【0259】ステップ#27：次のプログラム情報PG1があるかどうかを判断する。あれば、ステップ#21に戻り、なければステップ#28に進む。

【0260】ステップ#28：ステップ#23で得られたタイトル名およびステップ#26で得られたアプリケーションフラグ、プリファレンスフラグ、音声チャンネル数を用いて、プログラムリストの画面を作成し、表示する。A_ATROからの情報により、音声ストリーム1について複数の音声チャンネル構成が混在しているかどうか、また、補助音声があるかどうか、が表示され、音声チャンネル数が表示される。A_ATR1からの情報により、音声ストリーム2について複数の音声チャンネル構成が混在しているかどうか、また、補助音声があるかどうか、が表示され、音声チャンネル数が表示される。A_ATROとA_ATR1の両方の情報がある場合は、音声ストリームが2本ある旨の表示がなされ、A_ATROのみの情報しかない場合は、音声ストリームが1本ある旨の表示がなされる。

【0261】ステップ#29：表示されたプログラムリストを参照して、ユーザは、ユーザインタフェス7801を介し、プログラムをひとつ選択する。

【0262】ステップ#30：再生装置は選択されたプログラムを再生する。再生の工程は、図49のフローチャートに示されている。

【0263】図50を用いてプログラムリスト画面の構成例を説明する。画面中左端の列の数字1、2、3はプログラムの通し番号である。画面中左から2つ目の列の「TVドラマ」、「海外ドキュメンタリー」、「新作映画劇場」はプログラムの名称であり、光ディスク中のオリジナルプログラムチェーンインフォメーション(ORG_PGC1)中の各プログラムインフォメーション(PGI)の中のPRM_TXTIフィールドにそれぞれ記録されている。

【0264】画面中左から3つ目の列の（音声ストリーム2本、モノラルとステレオ）などは、当該プログラム中に含まれるセル(Cell)中から参照されるVOBに含まれる音声ストリームに関する情報を示すもので、当該VOBのVOB1中のM_VOB_STINで指定されるM_VOB_STIに記録されているATRO、ATR1の情報を用いて生成し表示される。この情報によって、ユーザは各プログラムに含まれる音声ストリームの構成を知ることができ、再生すると得られる結果の概要および選択可能な音声ストリームを認識することができる。

【0265】たとえば、「海外ドキュメンタリー」を選択した場合は、ATROに記録されている情報からデュアルモノラル構成の音声ストリーム1が再生されるこ

と、デフォルトでは、ユーザの喜好としてATROのPreference Flagで指定されている音声チャンネル1（主音声）が再生されることを実際の再生に先立って知ることができる。また、「新作映画劇場」を選択した場合は、ATROのNumber Of Audio ChannelおよびApplication Flagに記録されている情報から、音声ストリーム1はデュアルモノラル構成とその他の構成が混在しており、代表モードであるデュアルモノラル区間では、ユーザの喜好としてATROのPreference Flagで指定されている音声チャンネル2（副音声）が再生されることを知ることができる。

【0266】このように、ATRO/1の情報を再生すべきプログラムの選択時にユーザに提示することにより、多彩な音声ストリームの構成に関する基本的な情報、すなわち、何本の音声ストリームが存在するか、各音声ストリームのチャンネル構成はどうであるか、チャンネル構成は複数のモードが混在しているかどうか、などを事前に知らしめることができ、実際の再生時のユーザ混乱を防ぐという効果が得られる。また、デュアルモノラル構成の音声ストリームについては、音声チャンネル1、2のいずれを選択して再生するかを個々のVOBごとに設定することができ、ユーザはその喜好情報をATRO/ATR1のPreference Flagに記録しておくことができるという効果が得られる。さらに、再生装置に、自動的に対象VOBのPreference Flagに指定された音声チャンネルを選択して再生する機能が備備されている場合は、ユーザは自分の喜好情報を一度設定し記録しておけば、以降は全く音声チャンネル切り替え操作を行うこと無しにいつでも所望の音声チャンネルが再生されるという効果も得られる。

【0267】つづいて、ユーザが再生すべきプログラムを決定した後の、再生動作について説明する。システム制御部7802の指示により、トラックバッファ7807、デコーダ部7806、出力部7805を初期設定する。システム制御部の指示により、ドライブは当該プログラムに含まれる最初のVOBのAVデータの開始位置にシークし、データの読み出しを開始し、読み出したAVデータをトラックバッファに渡す。デコーダはトラックバッファからデータを受け取りMPGデコードを行い伸長した映像音声データを出力部に渡す。出力部はD/A変換をおこない、出力端子に接続されたテレビなどに映像音声を出力する。

【0268】図49は、プログラムリストから選択された一つのプログラムを再生するフローチャートを示し、各ステップは次の通りである。

【0269】ステップ#40：選ばれたプログラムのプログラム情報PGIに対応するセル情報C1を読み出し、M_VOB_SRPNを求める。

【0270】ステップ#41：求められたM_VOB_SRPNから対応するM_VOB1を読み出し、VOBデータの読み出しアドレスを求める。

【0271】ステップ#42：M_VOB1中のM_VOB_STINを求める。

【0272】ステップ#43：M_VOB_STINを用いて対応するVOBのストリームの属性情報がデコーダにセットされる。この場合、音声チャンネル数や複数の音声チャンネル構成が混在しているかどうか等の情報もデコーダにセットされる。

【0273】ステップ#44：2つの音声ストリームが存在すれば、再生装置のユーザインタフェスにより、一方が選択される。また、選択された音声ストリーム（または、音声ストリームが始めから1本しかなかった場合はその音声ストリーム）に音声チャンネルが複数存在し、ユーザのプリファレンス情報が記録されていれば、そのプリファレンス情報を用いて一方の音声チャンネルを選択する。プリファレンス情報が記録されていなければ、例えば音声チャンネル1が選択される。

【0274】ステップ#45：決定された音声チャンネルをデコーダにセットする。

【0275】ステップ#46：読み出しアドレスからVOBデータを読み出し、トラックバッファを介してデコーダに供給する。

【0276】ステップ#47：デコーダは、ステップ#44で選択された音声チャンネルをデコードする。

【0277】ステップ#48：更に読み出すべきVOBデータがあるかどうかを判断する。有れば、ステップ#40に戻り、なければ終了する。

【0278】なお、本実施の形態では、DVD-RAMディスクを用いたが、書き換え型光ディスクメディアであればどれでもよい。また、本実施の形態では、ATR0/ATR1中のPreference Flagの値として、デュアルモノラル構成の2つ音声チャンネルのし好情報を用いたが、複数音声ストリームのし好情報を記録してもよい。また、ATR0/ATR1のApplication Flag情報として、複数の音声チャンネル構成が混在しているかどうか、目の不自由な方のための補助音声が含まれているかどうかを示す情報を用いたが、特定の言語の音声が含まれているかどうかなどの情報を記録してもよい。また、DVDレコーダとしては、録画機能、再生機能を1台の機器として保持しているものを説明したが、録画専用機、再生専用機であっても本発明の効果は変わらない。

【0279】

【発明の効果】本発明によれば、映像音声情報に含まれる音声ストリーム構成のタイプを示す情報を光ディスク上に記録することにより、ユーザが再生すべきAVストリームを選択する際に、有意な情報を提供することが可能になり、ユーザの混乱を防ぎわかりやすい操作性を実

現するという効果が得られる。また、記録されたユーザのし好情報に基づいて自動的に適切な音声チャンネルを選択し再生する再生装置を実現することが可能になる。

【図面の簡単な説明】

- 【図1】 実施例2におけるディスク論理構成図
- 【図2】 動画用AVファイル内の構成図
- 【図3】 静止画用AVファイル内の構成図
- 【図4】 AVデータと管理情報の関係図
- 【図5】 RTR_VMG構成図
- 【図6】 RTR_VMG1構成図
- 【図7】 VERNおよびTM_ZONEの書式説明図
- 【図8】 PL_SRP構成図
- 【図9】 PL_TYおよびPL_CREATEの書式説明図
- 【図10】 PTM記録書式説明図
- 【図11】 S_VOB_ENTN記録書式説明図
- 【図12】 M_AVFIT構成図
- 【図13】 V_ATRおよびA_ATR書式説明図
- 【図14】 動画用SP_ATRおよびSP_PLT書式説明図
- 【図15】 M_AVFI構成図
- 【図16】 M_VOB1構成図
- 【図17】 VOB_TY書式説明図
- 【図18】 TMAP1構成図
- 【図19】 VOBUENT書式説明図
- 【図20】 S_AVFIT構成図
- 【図21】 V_ATRおよびOA_ATR書式説明図
- 【図22】 静止画用SP_ATRおよびSP_PLT書式説明図
- 【図23】 S_AVFI構成図
- 【図24】 S_VOB_ENT構成図
- 【図25】 S_VOB_ENT_TTY書式説明図
- 【図26】 UD_PGCIT構成図
- 【図27】 TXTDT_MG構成図
- 【図28】 PGC1構成図
- 【図29】 PG_TY書式説明図
- 【図30】 CI構成図
- 【図31】 C_TY書式説明図
- 【図32】 C_EPI構成図
- 【図33】 EP_TY1書式説明図
- 【図34】 DVDレコーダのドライブ装置ブロック図
- 【図35】 (a) ディスク上のアドレス空間を示す図、(b) トラックバッファ内データ蓄積量を示す図
- 【図36】 MPEGビデオストリームにおけるピクチャ関連図
- 【図37】 MPEGシステムストリームの構成図
- 【図38】 MPEGシステムデコーダ(PSTD)の構成図
- 【図39】 (a) ビデオデータを示す図、(b) ビデオバッファを示す図、(c) MPEGシステムス

トリーを示す図、(d) 音声データを示す図
【図40】 DVDレコーダの構成図
【図41】 従来のAVストリームにおける音声ストリーム構成例の説明図
【図42】 AVストリーム例における音声ストリーム構成の説明図
【図43】 音声ストリーム構成例1とディスク内の管理情報の関係の説明図
【図44】 音声ストリーム構成例2とディスク内の管理情報の関係の説明図
【図45】 音声ストリーム構成例3とディスク内の管理情報の関係の説明図
【図46】 ディスク内の管理情報の構造を示した説明図
【図47】 音声データに関する管理情報をディスクに記録する動作を示すフローチャート
【図48】 再生装置に挿入されたディスクのプログラムリストを表示する動作を示すフローチャート
【図49】 再生装置に挿入されたディスクのプログラムを再生する動作を示すフローチャート
【図50】 プログラムリストが表示された画面の説明図
【符号の説明】
1.1 光ピックアップ

1 2	ECC処理部
1 3	トラックバッファ
1 4	スイッチ
1 5	エンコーダ部
1 6	デコーダ部
4 1	バックヘッダ
4 2	パケットヘッダ
4 3	ペイロード
5 1	STC
5 2	デマルチプレクサ
5 3	ビデオバッファ
5 4	ビデオデコーダ
5 5	リオーダバッファ
5 6	スイッチ
5 7	音声バッファ
5 8	音声デコーダ
7 8 0 1	ユーザインターフェース部
7 8 0 2	システム制御部
7 8 0 3	入力部
7 8 0 4	エンコーダ部
7 8 0 5	出力部
7 8 0 6	デコーダ部
7 8 0 7	トラックバッファ
7 8 0 8	ドライブ

【図5】

【図24】

S_VOB_ENT (TYPE A)	2bytes
S_VOB_ENT_TY	1byte
V_PART_SZ	1byte
S_VOB_ENT (TYPE B)	6bytes
S_VOB_ENT_TY	1byte
V_PART_SZ	1byte
A_PART_SZ	2bytes
A_PB_TM	2bytes

【図17】

VOB.TY							
b15	b14	b13	b12	b11	b10	b9	b8
TE	A0_STATUS		A1_STATUS		reserved	APS	
b7	b6	b5	b4	b3	b2	b1	b0

SML_FLG	A0_GAP_LOC	A1_GAP_LOC	reserved
---------	------------	------------	----------

【図 1】

【図 2】

【図 1.2】

【図3】

[図4]

[图 19]

【図 6】

【図 7】

VERN							
b15	b14	b13	b12	b11	b10	b9	b8
reserved							
b7	b6	b5	b4	b3	b2	b1	b0
Book version							

TM_ZONE							
b15	b14	b13	b12	b11	b10	b9	b8
TZ_TY				TZ_OFFSET[11..8]			
b7	b6	b5	b4	b3	b2	b1	b0
TZ_OFFSET[7..0]							

【図 15】

【図8】

[图9]

PL_TY							
b7	b6	b5	b4	b3	b2	b1	b0
PL_TY1				reserved			
PL_CREATE_TM							
b39	b38	b37	b36	b35	b34	b33	b32
Year[13..6]							
b31	b30	b29	b28	b27	b26	b25	b24
Year[5..0]							
b23	b22	b21	b20	b19	b18	b17	b16
Month[1..0]				Day[4..0]			
b15	b14	b13	b12	b11	b10	b9	b8
Hour[3..0]				Minute[5..2]			
b7	b6	b5	b4	b3	b2	b1	b0
Minute[1..0]				Second[5..0]			

【図18】

〔図10〕

[図 1 1]

【図1-4】

【図 1 3】

V_ATR							
b15	b14	b13	b12	b11	b10	b9	b8
Video compression mode	TV system		Aspect ratio		reserved		
b7	b6	b5	b4	b3	b2	b1	b0
line21_switch_1	line switch_2	Video resolution			reserved		

A_ATR0							
b23	b22	b21	b20	b19	b18	b17	b16
Audio coding mode		reserved		Preference Flag		Application Flag	
b15	b14	b13	b12	b11	b10	b9	b8
Quantization/DRC	fs		Number of Audio channels				
b7	b6	b5	b4	b3	b2	b1	b0
Bitrate							

【図 2 5】

S_VOB_ENT_TY							
b7	b6	b5	b4	b3	b2	b1	b0
MAP_TY	TE	reserved			SPST_Ns		

【図 1 6】

【図 2 0】

【図 2 6】

【図 2 1】

V_ATR							
b15	b14	b13	b12	b11	b10	b9	b8
Video compression mode		TV system		Aspect ratio		reserved	
b7	b6	b5	b4	b3	b2	b1	b0
reserved		Video resolution				reserved	
OA_ATR							
b15	b14	b13	b12	b11	b10	b9	b8
Audio coding mode			reserved			Application Flag	
b7	b6	b5	b4	b3	b2	b1	b0
Quan./DRC		fs		Number of Audio channels			

【図 2 2】

SP_ATR							
b15	b14	b13	b12	b11	b10	b9	b8
reserved						Application Flag	
b7	b6	b5	b4	b3	b2	b1	b0
reserved							

SP_PLT							
b23	b22	b21	b20	b19	b18	b17	b16
Luminance signal(Y)							
b15	b14	b13	b12	b11	b10	b9	b8
Color difference signal(Cr=R-Y)							
b7	b6	b5	b4	b3	b2	b1	b0
Color difference signal(Cb=B-Y)							

【図 2 8】

【図 2 7】

【図 2 3】

【図 2 9】

PG_TY							
b7	b6	b5	b4	b3	b2	b1	b0
Protect	reserved						

【図 3 1】

C_TY							
b7	b6	b5	b4	b3	b2	b1	b0
C_TY1	reserved						

【図 3 0】

【図 3 2】

M_C_EPI (Type A)	7bytes
EP_TY	1byte
EP_PTMI	6bytes
S_C_EPI (Type A)	7bytes
EP_TY	1byte
S_VOB_ENTN	6bytes
M_C_EPI (Type B)	135bytes
EP_TY	1byte
EP_PTMI	6bytes
PRM_TXTI	128bytes
S_C_EPI (Type B)	135bytes
EP_TY	1byte
S_VOB_ENTN	6bytes
PRM_TXTI	128bytes

【図 3 3】

EP_TY1							
b7	b6	b5	b4	b3	b2	b1	b0
EP_TY1	reserved						

【図 3 6】

【図 3 4】

【図 35】

【図 40】

【図 37】

【図 48】

【図 3.8】

【図 4.1】

【図 3.9】

【図 4 2】

(a) AVストリーム1

(b) AVストリーム2

(c) AVストリーム3

【図 4 3】

(a) AVストリーム1

ATR0 Preference Flag=00b (非該当)
Application Flag=00b (非該当)
Number of Audio channels=0000b (モノラル)

ATR1 Preference Flag=00b (非該当)
Application Flag=00b (非該当)
Number of Audio channels=0000b (ステレオ)

【図 4 4】

(b) AVストリーム2

ATR0 Preference Flag=01b (音声チャンネル1を喜好)
Application Flag=11b (副音声有り)
Number of Audio channels=1001b (デュアルモノラル)

ATR1 (存在しない)

【図 4 5】

(c) AVストリーム3

ATR0 Preference Flag=00b (非該当)
Application Flag=00b (非該当)
Number of Audio channels=D000b (モノラル)

ATR1 Preference Flag=10b (音声チャンネル2を喜好)
Application Flag=01b (複数の音声チャンネル構成が混在)
Number of Audio channels=1001b (代表モードはデュアルモノラル)

【図 4 6】

【図 47】

【図 49】

【図 50】

フロントページの続き

(72) 発明者 杉本 紀子

大阪府門真市大字門真1006番地 松下電
器産業株式会社内

(56) 参考文献 特開 平5-95524 (J P, A)

特開 平10-3780 (J P, A)

実開 平3-115954 (J P, U)

国際公開97/15924 (WO, A 1)

(58) 調査した分野 (Int. Cl. 7, DB名)

G11B 20/10

G11B 27/00

H04N 5/85