Chapter 1 基本概念

图像格式

• 表示形式有BMP、JPEG、TIFF、GIF、PNG

CMY 青色cyan、品红magenta、黄色 HSV 色相、饱和度、明度 YUV 明亮度、色度、浓度

• 设备无关的: CIE models, CIE XYZ, CIE Lab, CIE YUV

• 设备相关的: CMY, HSV, RGB

• 无损压缩: BMP、PNG

• 有损: JPEG、GIF

• 均可: TIFF

- 光圈、焦距,对成像、景深的影响 加上棱镜光圈越大,景深越浅 长焦,景深越浅 对小孔成像,光 圈越小越好,太小也不行
- 成像原理 CCD, 电信号, 电信号转图像, 调整对比度、白平衡等
- 彩色(chromatic color)和消色(Achromatic color),加色和补色,减色,三原色

1 > RGB是加色,加光,CMYK是减色,涂颜料

BMP文件结构

• 游程编码(行程编码Run Length Encoding, RLE)

1 AAAAABBBBCCC

2 5A4B3C

Palette(调色板) and Bitmap data

bmp图片存储矩阵是上下颠倒的(即矩阵第一行是图片最下面),每一行的byte数必须是4的倍数,不然要在最后加padding

记录顺序是在扫描行内是从左到右,扫描行之间是从下到上。

pixels displayed on the screen

pixels stored in .bmp-file

6 bytes that represent a row in the bitmap: A0 37 F2 8B 31 C4

must be saved as: A0 37 F2 8B 31 C4 00 00

Chapter 2 二值图像

怎么二值化要掌握,1.全局thresholding 2.复杂公式版,可能要考 公式,记住思想自己推,至少记住步骤

$$\begin{split} &\sigma_{within}^{2}(T) = \frac{N_{Fgrd}(T)}{N} \sigma_{Fgrd}^{2}(T) + \frac{N_{Bgrd}(T)}{N} \sigma_{Bgrd}^{2}(T) \\ &\sigma_{between}^{2}(T) = \sigma^{2} - \sigma_{within}^{2}(T) \\ &= \left(\frac{1}{N} \sum_{x,y} (f^{2}[x,y] - \mu^{2})\right) - \frac{N_{Fgrd}}{N} \left(\frac{1}{N_{Fgrd}} \sum_{x,y \in Fgrd} (f^{2}[x,y] - \mu_{Fgrd}^{2})\right) - \frac{N_{Bgrd}}{N} \left(\frac{1}{N_{Bgrd}} \sum_{x,y \in Bgrd} (f^{2}[x,y] - \mu_{Bgrd}^{2})\right) \\ &= -\mu^{2} + \frac{N_{Fgrd}}{N} \mu_{Fgrd}^{2} + \frac{N_{Bgrd}}{N} \mu_{Bgrd}^{2} \\ &= \frac{N_{Fgrd}}{N} \left(\mu_{Fgrd} - \mu\right)^{2} + \frac{N_{Bgrd}}{N} \left(\mu_{Bgrd} - \mu\right)^{2} \\ &\to \frac{N_{Fgrd}(T) \cdot N_{Bgrd}(T)}{N^{2}} \left(\mu_{Fgrd}(T) - \mu_{Bgrd}(T)\right)^{2} \end{split}$$

Target: minimize variance

$$egin{aligned} \sigma \ W_f &= rac{N_f}{N}, W_b = rac{N_b}{N}, W_f + W_b = 1 \ \mu &= W_f * \mu_f + W_b * \mu_b \ \sigma &= W_f (\mu_f - \mu)^2 + W_b (\mu_b - \mu)^2 \ &\Rightarrow minimize \ W_b W_f (\mu_f - \mu_b)^2 \end{aligned}$$

前景点占图像的比例wf 均值uf 背景点占图像的比例wb 均值ub

整个图像的均值u = wf * uf + wb * ub

枚举threshholding, 检验那个thresh对应的方差最小

- 形态学操作,考:像素图手画结果或者物理意义
- Dilation膨胀:Input image 和 structure element交集非空

• Erosion腐蚀: structure element 和原图像完全重合中间才为1

应用: 提取边界, 填洞, 提取结构

Opening

先Erosion腐蚀再dilation膨胀

Closing

先dilation再erosion

- 灰度划分,为什么是256个灰度级而不是128, Weber's law, 2% 人眼差不多能分别出2%以上的灰度差别,再低难以分辨。 由设备极限决定。
- 亮度变化,logarithm algorithm,必须掌握

L代表亮度,对于RGB来说应该可以直接用3通道? $L_d=rac{log(L_w+1)}{log(L_{max}+1)}$ Lw是真正亮度 Ld是display luminance Lmax是最大亮度

- 直方图均值化 让色彩分布变得更平均
- 设一幅图像的像素总数为n,分L个灰度级, n_k 为 第k个灰度级出现的像素数,则第k个灰度级出现的概率为:

$$P(r_k) = n_k / n$$
 (0\le r_k \le 1, k = 0,1,2,...,L-1)

离散灰度直方图均衡化的转换公式为:

$$S_k = T(r_k) = \sum_{i=0}^k P(r_i) = \sum_{i=0}^k \frac{n_i}{n} = \frac{1}{n} \sum_{i=0}^k n_i$$

							2000
N. rie							
52	132	139	68	98	131	95	134
110	114	112	76	95	116	84	102
173	117	104	87	90	122	123	128
143	120	135	131	125	147	146	136
117	121	131	128	131	135	132	143
128	118	100	102	120	118	126	164
107	110	110	122	133	128	128	134
101	121	131	122	108	122	134	105

k	0	1	2	3	4	5	6	7
r_k	0	1/7	2/7	3/7	4/7	5/7	6/7	1
n_k	790	1023	850	656	329	245	122	81
$P(r_k)$	0.19	0.25	0.21	0.16	0.08	0.06	0.03	0.02
S_k	0.19	0.44	0.65	0.81	0.89	0.95	0.98	1.00
$\sim s_k$	1/7	3/7	5/7	6/7	6/7	1	1	1
S_k	s_1	s_3	S_5	s_6	s_6	S ₇	<i>S</i> ₇	<i>S</i> ₇
n_k	790	1023	850	985		448		
$P(s_k)$	0.19	0.25	0.21	0.24		0.11		

Continuous histogram equalization

Discrete histogram equalization

Chapter 3 图像基本操作

- Nearest neighbor
- **linear, bilinear interpolation**,要写的正式一点,写成方程组模式 z=Ax+By+Cxy+D代入4个点坐标
- Morph这一页要掌握 两张图像生成渐变

$$r_{i,j} = r_{i,j}^{a} + \frac{r_{i,j}^{b} - r_{i,j}^{a}}{N} * n.....n = 0...N - 1$$

$$g_{i,j} = g_{i,j}^{a} + \frac{g_{i,j}^{b} - g_{i,j}^{a}}{N} * n.....n = 0...N - 1$$

$$b_{i,j} = b_{i,j}^{a} + \frac{b_{i,j}^{b} - b_{i,j}^{a}}{N} * n.....n = 0...N - 1$$

• 怎么实现带皱纹的表情的模仿要掌握

Input: Images A A' B

Step1: Mark feature points

Step 2: For each feature point v_b in B, warp it:

$$V_{b'} = V_b + V_{a'} - V_a$$

Let $\ B_{g}$ be the warped image of B

Step3: Align A, A' with B_g by image warping.

Step4: Compute ratio image: $\Re = \frac{A'}{A}$

Step5: $B' = \Re \cdot B_g$

U

Before deformation: $I = \rho E(n)$

After deformation: $I' = \rho E(n')$

Expression ratio image: $\frac{I'}{I} = \frac{E(n')}{E(n)}$

• 1D卷积convolution的例子要掌握

The convolution g(x) of two 1D functions f(x) and h(x)

$$g(x) = f(x) * h(x) = \int_{-\infty}^{\infty} f(t)h(|x-t|)dt$$

$$h[i,j] = A p_1 + B p_2 + C p_3 + D p_4 + E p_5 + F p_6 + G p_7 + H p_8 + I p_9$$

• <mark>均值滤波(高斯滤波)要掌握</mark> simple mean 全是1, weighted mean,中间是4,上下左右是2, 角上是1 最后都要除以总值

amp	ole 1	1	1	
$\frac{1}{9}$ ×	1	1	1	
	1	1	1	

	1	2	1
$\frac{1}{16}$ ×	2	4	2
	_1	2	1
tor'c			

- 中值滤波, slide上的例子要掌握 周围9个数的中位数代替该点, 都是用原图做 屏幕快照 2017-06-28 下午4.33.17
- 双边滤波,基本思想,每个sigma是什么意思,公式不用记,要能解释
 屏幕快照 2017-06-28 下午4.52.36
 对角线的2%这么大 sigma s 一般设为gradient的均值或中位值?
- 掌握FFT,公式的推导,解释

Chapter 4 操作

- 引导滤波,基本思想 解决双边滤波中的梯度反转、计算缓慢问题,能够保边、非迭代 l是guide,p是输入图,q是输出图。输出是l的线性表达 $min \sum (aI_i + b p_i)^2 + \epsilon a^2 \ q_i = \hat{a}_i I_i + \hat{b}_i$
- 特征检测,两页slides, Feature detection: math三页

geomatric transform 几何变换

interpolation 插值

Chapter 5 基本概念

- SIFT, 7475
- 1. 获得特征点
- 2. 计算每个像素的梯度方向
- 3. 抛弃梯度太小的像素
- 4. 为剩下的像素建立8格的直方图
- 5. 分为4*4的格子,每个格子内是直方图的统计结果,每个特征转化为*44*8=128维的高维向量,作为 descriptor,完

Chapter 6 基本概念

• bag of words

Chapter 7 基本概念

- CNN, BP
- laplace 要掌握 spatial filtering,公式 实质上是二阶导数,可以获取变化剧烈的地方,轮廓,与原图结合相当于图像增强 中间是-4,上下左右是1,角上是0 或中间是-8,其他都是1

Chapter 8 傅里叶变换

FFT

Chapter 9

Chapter 10 基本概念

• <u>数码相机</u>在工作时,外部景象通过镜头将光线会聚到感光器CCD上,CCD由数干个独立的光敏元件组成,这些光敏元件通常排列成与取景器相对应的矩阵。外界景象所反射的光透过镜头照射到CCD上,并被转换成电荷,每个元件上的电荷量取决于其所受到的光照强度。由于CCD上每一个电荷感

应元件最终表现为所拍摄图像的一个像素,因此CCD上每一个电荷感应元件集成度越高,像素就越多,最终图像的分辨率自然就会高。