Abstract

Unitarity violation is one important framework for searching for new physics. I will discuss how neutrino oscillations are affected by unitarity violation and the importance of tau neutrinos. I will discuss exactly how they play the key role in constraining tau neutrino unitarity via a complex interplay of the matter effect, tau lepton production threshold, misreconstructed tau neutrino energy, and the matter effect. This allows one to identify tau neutrino with no event-by-event discrimination and without assuming unitarity and hopefully encourages experimentalists to perform these analyses in the future.

Unitarity Violation in Neutrino Physics: Brief Pedagogy

Parameter counting

Neutrino oscillations implies 7+ new parameters:

- ► Masses: 3 parameters
 - ▶ We've measured 2(ish)
 - ▶ Need DUNE/JUNO/atmospherics to complete these 2
 - ► Need cosmology for third
- ► Mixing matrix:
 - \triangleright Start with a 3 × 3 complex matrix: 18 parameters
 - ► Unitarity (9 conditions): 9 parameters
 - ▶ Rephasing of charged leptons (3 conditions): 6 parameters
 - ► Rephasing of neutral leptons (3 conditions)*: 4 parameters

*Valid for Dirac neutrinos, or in environments where Dirac/Majorana are indistinguishable, such as $p_{\nu}\gg m_{\nu}$

Many different ways to parameterize matrix:

Typical: θ_{23} , θ_{13} , θ_{12} , δ

Other parameterizations discussed: PBD, R. Pestes 2006.09384

Unitarity violation meaning

Consistency of the three-flavor oscillation picture?

and/or

Searches for unitarity violation?

Unitarity violation meaning

Consistency of the three-flavor oscillation picture?

and/or

Searches for unitarity violation?

Not the same!

Lots of models to test standard three-flavor picture: Sterile, unitarity violation, vector NSI, scalar NSI, neutrino decay, decoherence, CPTV/LIV, . . .

Unitarity violation: what is it?

Our 3×3 matrix isn't unitary:

$$U_3U_3^{\dagger} \neq 1$$

Addition of new flavor states $\nu_a, \nu_b, \nu_c, \dots$ and new mass states ν_4, ν_5, ν_6

$$U \to \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \frac{U_{e4}}{U_{\mu 1}} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \frac{U_{\mu 4}}{U_{\mu 4}} & \cdots \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & \frac{U_{\tau 4}}{U_{\tau 4}} & \cdots \\ \frac{U_{a1}}{U_{a2}} & \frac{U_{a3}}{U_{a3}} & \frac{U_{a4}}{U_{a4}} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Unitarity Violation \Rightarrow

New mass states not directly accessible by oscillations or decay. Thus check if U_3 is what it should be

Unitarity violation: a tale of four regimes

*Details depends on the specific experiment/channel

Unitarity violation: mass ranges

experiment	$(4,4) (m_4)$	$(5,3) (m_4)$
atmospheric ν_{μ} disappearance	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
atmospheric ν_{τ} appearance	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
astrophysical ν_{τ} appearance	$\lesssim 15~{ m MeV}$	$\gtrsim 40~{ m MeV}$
solar ⁸ B	$\lesssim 5~{ m MeV}$	$\gtrsim 20~{ m MeV}$
DONuT/FASERnu	$\in [100 \text{ eV}, 90 \text{ MeV}]$	$\gtrsim 200~{ m MeV}$
LBL ν_{τ} appearance (OPERA)	$\in [1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
LBL ν_{τ} appearance (DUNE)	$\in [0.1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
LBL ν_{μ} disappearance (DUNE)	$\in [0.1 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$
CEvNS	$\in [10 \text{ eV}, 15 \text{ MeV}]$	$\gtrsim 40~{ m MeV}$

(m,n): m total neutrinos, n accessible neutrinos

PBD, J. Gehrlein 2109.14575

Unitarity violation: how to calculate

Kinematically accessible states

- 1. Unitary calculation of full $n \times n$ matrix
- 2. Oscillation averaged:

$$\sin^2 \frac{\Delta m_{41}^2 L}{4E} \to \frac{1}{2}$$
$$\sin \frac{\Delta m_{41}^2 L}{4E} \to 0$$

3. No matter effect:

$$H^{\text{mat}} = \text{diag}(V_{\text{CC}} + V_{\text{NC}}, V_{\text{NC}}, V_{\text{NC}}, 0, \dots)$$

Unitarity violation: how to calculate

Kinematically accessible states

- 1. Unitary calculation of full $n \times n$ matrix
- 2. Oscillation averaged:

$$\sin^2 \frac{\Delta m_{41}^2 L}{4E} \to \frac{1}{2}$$
$$\sin \frac{\Delta m_{41}^2 L}{4E} \to 0$$

3. No matter effect:

$$H^{\mathrm{mat}} = \mathrm{diag}(V_{\mathrm{CC}} + V_{\mathrm{NC}}, V_{\mathrm{NC}}, V_{\mathrm{NC}}, 0, \dots)$$

Kinematically **inaccessible** states

- 1. Nonunitary calculation of $m \times m$ matrix m = number of kinematically accessible states
- 2. Rescale probability:

$$P_{\alpha\beta} = \frac{|\sum_{i=1}^{\operatorname{acc}} U_{\alpha i}^* e^{iP_i L} U_{\beta i}|}{(\sum_{i=1}^{\operatorname{acc}} U_{\alpha i}^* U_{\alpha i})(\sum_{i=1}^{\operatorname{acc}} U_{\beta i}^* U_{\beta i})}$$

- 3. Cannot subtract multiples of 1
- 4. Rescale cross section/flux as appropriate
- 5. Rescale G_F in matter effect

Unitarity violation

- ▶ Oscillations could conceivably differentiate: 2 new states from 1, but not 3+ from 2
- ► Zero distance effect ⇒ near detector with flux prediction

E.g. RAA, Gallium

Numerous parameterizations: α matrix, η matrix, submatrix & Cauchy-Schwartz

All apply to the inaccessible cases only

▶ There is an approximate correspondence to sterile and NSI

$$\alpha_{ee} \approx \frac{1}{2}(s_{14}^2 + s_{15}^2 + s_{16}^2) \approx -\epsilon_{ee}, \dots$$

M. Blennow, et al. 1609.08637

Caveats apply! Applies to one experiment at a time

▶ Additional EW precision information: W, Z, π , μ , τ decays

Care is required

S. Antush, et al. hep-ph/0607020S. Antusch, O. Fischer 1407.6607

Unitarity violation status from oscillations

3σ maximal deviations from unitarity

]	$\operatorname{Leptons}$	

	Parke+	Hu+	Ellis+
	(2015)	(2020)	(2020)
ν_e row	0.073	0.003	0.05
ν_{μ} row	0.064	0.02	0.04
ν_{τ} row	0.43	0.2	0.82
$\nu_1 \text{ col}$	0.17	0.06	0.22
$\nu_2 \operatorname{col}$	0.23	0.09	0.27
ν_2 col	0.31	0.12	0.40

Quarks				
u row	0.0015	$\sim 3\sigma$ tension		
c row	0.06			
t row	-			
$d \operatorname{col}$	0.005	•		
s col	0.06			
$b \operatorname{col}$	-			
	1			

Lepton constraints don't include anomalies Care is required

> S. Ellis, K. Kelly, S. Li 2008.01088 Z. Hu, et al. 2008.09730

S. Parke, M. Ross-Lonergan 1508.05095

Parke, M. Ross-Lonergan 1508.05095 PDG

Unitarity violation status from oscillations

3σ maximal deviations from unitarity

	Leptons				
		Parke+	Hu+	Ellis+	
		(2015)	(2020)	(2020)	
	ν_e row	0.073	0.003	0.05	
	ν_{μ} row	0.064	0.02	0.04	
	ν_{τ} row	0.43	0.2	0.82	
•	$\nu_1 \text{ col}$	0.17	0.06	0.22	
	$\nu_2 \operatorname{col}$	0.23	0.09	0.27	
	ν_3 col	0.31	0.12	0.40	

${f Quarks}$				
u row	0.0015	$\sim 3\sigma$ tension		
c row	0.06			
t row	-			
$d \operatorname{col}$	0.005			
s col	0.06			
$b \operatorname{col}$	-			
	ı			

Vastly different mixing angle hierarchy

Like comparing apples and hairstyles

Lepton constraints don't include anomalies Care is required

S. Ellis, K. Kelly, S. Li 2008.01088

Z. Hu, et al. 2008,09730

S. Parke, M. Ross-Lonergan 1508.05095 PDG

DUNE Collaboration Call: October 18, 2024 10/22

Global tau neutrino data set

The global tau neutrino data set:

Experiment	Source	~Events detected	
DONuT	Production	7.5	
OPERA	Long-baseline	8	
SK	Atmospheric	291^{1}	
IceCube	Atmospheric	1804^{2}	
IceCube	Astrophysical	2	will increase to ~ 430 ,

see H. Tanaka and M. P. Zezula's talks

²with ~ 10k en route "soon," see J. Koskinen IceCube NuTau2021 talk

Dominant unitarity constraint comes from atmospheric ν_{τ} appearance

PBD, J. Gehrlein 2109.14575

Global tau neutrino data set

The global tau neutrino data set:

Experiment	Source	~Events detected	
DONuT	Production	7.5	•
OPERA	Long-baseline	8	
SK	Atmospheric	291^{1}	
IceCube	Atmospheric	1804^{2}	
IceCube	Astrophysical	2 1 _v	will increase to ~ 430 ,
	'	see H. Tanaka and	d M. P. Zezula's talks

 2 with ~ 10 k en route "soon," see J. Koskinen IceCube NuTau2021 talk

Dominant unitarity constraint comes from atmospheric ν_{τ} appearance

PBD, J. Gehrlein 2109.14575

A word on solar neutrinos:

- 1. SK 1998: showed that ν_{μ} - ν_{τ} mixing is large (no ν_e appearance detected)
- 2. SNO 2001,2002: ES and NC measured a statistically significant non- ν_e flux
- 3. $\Rightarrow \nu_e \rightarrow \nu_\tau$ at SNO with input from SK

Unitarity violation framework

 \triangleright Suppose there are m total neutrinos and n kinematically accessible: (m,n)

Accessible: [10 eV, 15 MeV]; inaccessible: \geq 40 MeV

 ν_{τ} is an exception to this that requires care

- ► Standard: (3,3)
- ▶ One accessible sterile: (4,4)
- ► Two heavy steriles: (5,3)
- ► Include matter effect
 - Steriles don't experience it relevant for m=n
 - ▶ It modifies the probability relevant for m > n
- \triangleright For m=n oscillation probabilities can be calculated in the usual fashion
- For m > n care is required:
 - Flux, cross sections, and weak interaction need to be rescaled
 - Oscillation probability needs to be rescaled and carefully calculated:

$$P_{\alpha\beta}^{r} = \left| \left[N^{*}We^{-i\Lambda L}W^{\dagger}N^{T} \right]_{\alpha\beta} \right|^{2}$$

 $N: m \times m$ submatrix

 W, Λ eigenvectors/eigenvalues of Hamiltonian in mass basis with matter effect

Modern tau row picture

Future tau row picture

Strong CLFV constraints

Prediction in MUV	Prediction in the SM	Experiment
$[R_{\ell}]_{\rm SM} \left(1 - 0.15(\epsilon_{ee} + \epsilon_{\mu\mu})\right)$	20.744(11)	20.767(25)
$[R_b]_{\rm SM} \left(1 + 0.03(\epsilon_{ee} + \epsilon_{\mu\mu})\right)$	0.21577(4)	0.21629(66)
$[R_c]_{\rm SM} \left(1 - 0.06(\epsilon_{ee} + \epsilon_{\mu\mu})\right)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\mathrm{SM}}\left(1-0.25(\epsilon_{ee}+\epsilon_{\mu\mu})-0.27\epsilon_{\tau}\right)$	41.470(15) nb	41.541(37) nb
$[R_{inv}]_{SM} (1 + 0.75(\epsilon_{ee} + \epsilon_{\mu\mu}) + 0.67\epsilon_{\tau})$	5.9723(10)	5.942(16)
$[M_W]_{\mathrm{SM}}(1-0.11(\epsilon_{ee}+\epsilon_{\mu\mu}))$	80.359(11) GeV	80.385(15) GeV
$[\Gamma_{\mathrm{lept}}]_{\mathrm{SM}}(1 - 0.59(\epsilon_{ee} + \epsilon_{\mu\mu}))$	83.966(12) MeV	83.984(86) MeV
$[(s_{W,\text{eff}}^{\ell,\text{lep}})^2]_{\text{SM}}(1+0.71(\epsilon_{ee}+\epsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\text{eff}}^{\ell,\text{had}})^2]_{\text{SM}}(1+0.71(\epsilon_{ee}+\epsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

S. Antush, O. Fischer 1407.6607

Additional constraints

- ▶ Lepton flavor universality: $\tau \to \mu\nu\nu$ vs. $\tau \to e\nu\nu$, etc.
- ► CKM unitarity constraints often include leptons
- ► Scattering NC, CC at NuTeV
- \triangleright θ_W measurements

Low energy (θ_W and others) experiments dominate fits, EWPO are comparably important

S. Antush, O. Fischer 1407.6607

CLFV results

$$\begin{vmatrix} NN^{\dagger} \end{vmatrix} = \begin{pmatrix} 0.9979 - 0.9998 & <10^{-5} & <0.0021 \\ <10^{-5} & 0.9996 - 1.0 & <0.0008 \\ <0.0021 & <0.0008 & 0.9947 - 1.0 \end{pmatrix}$$

S. Antush, O. Fischer **1407.6607**

Precision at the 10^{-3} level Further improvements possible on multiple fronts Oscillations at the $10^{-1} - 10^{-2}$ level Non-oscillation constraints apply for heavy* m_4

*Depends on the exact probe

Mass dependent constraints

Mass dependent constraints

Kinematically accessible constraints:

Mass dependent constraints

Neutrino oscillation summary

- ▶ Unitarity violation is phenomenologically very rich
- \triangleright Atmospheric works for ν_{τ} because τ is in direct region
- \triangleright CLFV and EW tests are stronger than oscillations, apply for m_4 large
- ▶ Oscillations dominate for 10 eV $\lesssim m_4 \lesssim 10 \text{ MeV}$

Precision is coming to neutrinos!

Thanks! Questions?

2109.14575 & 2109.14576

Backups

References


```
SK hep-ex/9807003
```

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle ${\tt 1405.7540}$

P. de Salas et al. 1708.01186

F. Capozzi et al. 2003.08511

I. Esteban et al. 2007.14792

Complex phase in different parameterizations

- ► Can relate the complex phase in one parameterization to that in another
- $ightharpoonup U_{132}$ and U_{213} similar to U_{123}
- δ constrained to $\sim [150^{\circ}, 210^{\circ}]$ in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - ⇒ parameterization dependent

DUNE TDR II 2002.03005

Unitarity constraints on tau neutrinos

Past studies used:

- 1. $\nu_{\mu} \rightarrow \nu_{\tau}$ at OPERA
- 2. SNO NC and CC data

S. Ellis, K. Kelly, S. Li 2008.01088 Z. Hu, J. Ling, J. Tang, T. Wang 2008.09730

S. Parke M. Ross-Lonergan 1508.05095

Unitarity violation: tau row

Leptons: tau row is the weakest

- 1. Existing global analyses use OPERA and SNO
- 2. More data from atmospheric ν_{τ} appearance!

PBD 2109.14576

Also astrophysical ν_{τ} appearance; weak but distinct!

PBD, J. Gehrlein 2109.14575

Atmospheric works because τ is in direct region Strong kinematic dependence due to τ mass in energy range of interest

PBD, et al. 2203.05591 (whitepaper)

Unitarity violation: tau row

Leptons: tau row is the weakest

- 1. Existing global analyses use OPERA and SNO
- 2. More data from atmospheric ν_{τ} appearance!

PBD 2109.14576

Also astrophysical ν_{τ} appearance; weak but distinct!

PBD, J. Gehrlein 2109.14575

Atmospheric works because τ is in direct region Strong kinematic dependence due to τ mass in energy range of interest

Tau neutrino data set doubles every two years!

PBD, et al. 2203.05591 (whitepaper)

2006.09384

Atmospheric tau neutrino appearance

 \blacktriangleright Atmospheric neutrinos begin as ν_{μ} and mostly oscillate away to ν_{τ}

Atmospheric tau neutrino appearance

- \triangleright Atmospheric neutrinos begin as ν_{μ} and mostly oscillate away to ν_{τ}
- ▶ High tau lepton production threshold diminishes events

Y. Jeong, M. Reno 1007.1966

Atmospheric tau neutrino appearance

- \triangleright Atmospheric neutrinos begin as ν_{μ} and mostly oscillate away to ν_{τ}
- ▶ High tau lepton production threshold diminishes events
- ▶ Identifying tau lepton in large coarse detectors is hard

Y. Jeong, M. Reno 1007.1966

Tau neutrino appearance at SuperK

SuperK used:

- 1. Hadronic tau decay information
- 2. Tau polarization information
- 3. Neural net
- 4. and standard oscillations

Tau neutrino appearance at SuperK

SuperK used:

- 1. Hadronic tau decay information
- 2. Tau polarization information
- 3. Neural net
- 4. and standard oscillations

Detected few hundred tau neutrino events, constrained the ν_{τ} "normalization" e.g. weighted cross section: $(1.47 \pm 0.32) \times SM$

Super-KamiokaNDE 1711.09436 see H. Tanaka and M. P. Zezula's talks

Tau neutrino appearance at IceCube

IceCube/DeepCore:

- 1. Much bigger than SuperK
- 2. 3D compared to SuperK's 2D
- 3. Much worse detector than SuperK
- 4. No ability to differentiate:
 - $\triangleright \nu_{\tau}$ CC that goes to a muon
 - $\triangleright \nu_{\mu} \text{ CC}$

or

- $\triangleright \nu_{\tau}$ CC (that go to an electron or hadrons)
- $\triangleright \nu_e$ CC
- $\triangleright \nu NC$

M. Rodriguez IceCube slides

Possible means of identifying tau neutrinos event-by-event

Hadronic showers contain far more muons and neutrons than electromagnetic showers

In practice, not possible

S. Li, M. Bustamante, J. Beacom 1606.06290

Inelasticity correlates with E_{ν} not $E_{\rm dep}$ and could be used

IceCube 1808.07629

Too hard to measure y at low atm. energies

2006.09384

IceCube results

Using oscillation parameters IceCube finds:

IceCube 1901.05366

Past work

Tau neutrino appearance in a large coarse detector is possible with:

- 1. Tau neutrino threshold
- 2. NC

T. Stanev astro-ph/9907018

Seeing extra low energy tau neutrinos could indicate astrophysical sources

H. Athar, F. Lee, G. Lin hep-ph/0407183

Both papers largely overlooked

My motivation

- ▶ Tau neutrino identification is relevant for unitarity
 - yet neither SuperK nor IceCube constrained unitarity with their data
- ► IceCube has the biggest data sets
- ▶ IceCube has extremely limited particle identification

cascades vs. tracks

▶ It would seem like $\nu_{\mu} \rightarrow \nu_{e}$ could mimic $\nu_{\mu} \rightarrow \nu_{\tau}$

For different oscillation parameters or with unitarity violation

What, if any, physical effects allows for the identification of tau neutrinos without particle identification and without assuming unitarity?

Mimicry isn't always flattery

How to mimic $\nu_{\mu} \rightarrow \nu_{\tau}$ with $\nu_{\mu} \rightarrow \nu_{e}$ in the Earth:

Through the mantle:

2006.09384

Mimicry isn't always flattery

How to mimic $\nu_{\mu} \rightarrow \nu_{\tau}$ with $\nu_{\mu} \rightarrow \nu_{e}$ in the Earth:

Back to IceCube observables

Define this cascade ratio:

$$\mathcal{R}_c(E_{\text{reco}}, \cos \theta_z) \equiv \frac{\frac{d^2 N_c}{dE_{\text{reco}} d \cos \theta_z}}{\Phi_i(E_{\text{reco}}) \sigma_{\text{tot}}(E_{\text{reco}})}$$

$$= f_{\text{CC}} \left[P_{\mu e}^r(E_{\text{reco}}, \cos \theta_z) + \eta_{\nu_\tau}^{\gamma - 1} R_{\tau \mu} (E_{\text{reco}}/\eta_{\nu_\tau}) (1 - f_{\tau \mu}) P_{\mu \tau}^r(E_{\text{reco}}/\eta_{\nu_\tau}, \cos \theta_z) \right]$$

$$+ (1 - f_{\text{CC}}) \eta_{\text{NC}}^{\gamma - 1} \sum_{\beta \in \{e, \mu, \tau\}} P_{\mu \beta}^r(E_{\text{reco}}/\eta_{\text{NC}}, \cos \theta_z)$$

- $\triangleright \nu_e$ CC appearance
- ▶ ν_{τ} CC appearance with $\tau \to \nu_{\tau} + (e, X)$
- $\triangleright \tau$ production threshold
- ▶ Reconstructed energy shift from spectrum and cross section

Different for $\tau \to \nu_{\tau}$ and NC

► NC

Reconstructed vs. true energy

 τ 's always decay to invisible energy ν_{τ} $\eta_{\nu_{\tau}} = 0.625$

NC always loses some energy $\eta_{\rm NC} \simeq \frac{1}{3}$

Impact of effects

Through the mantle:

Impact of effects

Through the core:

IceCube detector sensitivities

Contains all information on detector efficiencies, flux, and track/cascade misidentification

Tau identification in atmospherics

Effects considered:

- 1. NC
- 2. Matter effect
- 3. $\eta_{\nu_{\tau}}$: Tau neutrino reconstruction
- 4. $R_{\tau\mu}$: Tau lepton production threshold
- 5. External Δm_{31}^2 constraint
- 6. External ν_e row constraint

Conclusions:

- 1. With all known effects tau neutrinos can be identified even without assuming unitarity
- 2. With all effects off and no unitarity: ν_{τ} 's cannot be identified. Dial up ν_{e} to match
- 3. Including NC doesn't matter much
- 4. Turning on $R_{\tau\mu}$, $\eta_{\nu_{\tau}}$, or the matter significantly enhances sensitivity
- 5. Certain combinations approximately cancel: Just $R_{\tau\mu}$ and $\eta_{\nu_{\tau}}$ has almost no sensitivity

2006.09384