

Indução de ADs

- Geralmente usa estratégia gulosa de divisão e conquista
 - Divide progressivamente objetos baseado em um atributo preditivo de teste
 - Escolhido para otimizar algum critério
- Decisões importantes
 - Escolha do atributo preditivo
 - Como dividir os objetos entre os ramos
 - Quando parar de dividir os objetos

© André de Carvalho - ICMC/USP

Escolha do atributo preditivo

- Atributo preditivo que melhor particiona conjunto atual de objetos
 - Para um mesmo atributo preditivo, diferentes partições podem ser geradas
 - Necessário escolher:
 - Atributo preditivo mais discriminativo
 - Melhor partição para esse atributo
 - Como dividir os objetos

© André de Carvalho - ICMC/USP

Como dividir os objetos

- Depende do tipo do atributo preditivo e do número de divisões a serem geradas
 - Atributo preditivo binário
 - Divisão binária
 - Árvore binária
 - Atributo preditivo n-ário
 - Divisão binária
 - Divisão n-ária (n > 2)

© André de Carvalho - ICMC/USP

Atributo binário

- Teste mais simples que existe
 - Define dois possíveis resultados (filhos)

© André de Carvalho - ICMC/USP

Divisão n-ária para atributo n-ário

- Condição de teste formada por 2 ou mais comparações
 - Cada comparação pode ter 1 ou mais operadores relacionais
 - Um operador
 - Ex. A < valor, A = valor</p>
 - Mais de um operador
 - Ex.: valor_{inf} < A < valor_{sup}
 - Escolher valores (pontos de referência)

© André de Carvalho - ICMC/USP

Medidas para escolha de atributo

- Selecionam atributo que melhor discrimina os objetos atuais
 - Buscam partições mais puras após divisão
 Quanto mais homogêneas as partições, mais puras
 - Medidas de impureza

© André de Carvalho - ICMC/USP

Medidas de impureza

- Baseadas no grau de impureza dos nós filhos
 - Quando maior, pior
- Diferentes medidas geram diferentes partições
- Exemplos
 - Entropia
 - Gini
 - Erro de classificação
 - Qui-quadrado

© André de Carvalho - ICMC/USP

Propriedade de uma medida de impureza

- Seja uma tarefa de classificação binária
 - Deve ser dependente apenas da magnitude relativa das classes
 - Não muda se a magnitude das duas classes for multiplicada por uma constante
 - Proporção dos exemplos em cada classe
 - Não deve mudar se as classes positiva e negativa são trocadas
 - Deve ser 0, se a proporção de exemplos de uma das classes for 1 (da outra será 0)

© André de Carvalho - ICMC/USP

20

Medidas de impureza

 $Entropia(v) = -\sum_{i=1}^{C} p(i/v) \log_2 p(i/v)$

 $Gini(v) = 1 - \sum_{i=1}^{c} [p(i/v)]^2$

 $ErroClass(v) = 1 - \max[p(i/v)]$

Onde:

P(i/v) = fração de dados pertencente a classe i em um nó v<math>C = número de classes $Considera-se que <math>Olog_2O = O$

© André de Carvalho - ICMC/USP

Exercício

- Divisão n-ária
 - Índice de impureza é calculado para cada um dos n subconjuntos
 - Necessário definir valor de n
 - Resulta em subconjuntos, em geral, mais puros que a divisão binária
 - Porém, nós com menos exemplos ⇒ menor confianca

© André de Carvalho - ICMC/USP

Exercício

 Definir a melhor divisão considerando divisão binária e divisão n-ária para:

	Tipo de carro		
Classe	Família	Esporte	Luxo
C1	1	2	1
C2	4	1	1
Gini		-	

Classe	Tipo de carro	
	Família	Esporte e Luxo
C1	1	3
C2	4	2
Gini _{Div}		•

	Tipo de carro	
Classe	Esporte	Familia e Luxo
C1	2	2
C2	1	5
Gini _{Div}		

© André de Carvalho - ICMC/USP

Exercício

 Definir a melhor divisão considerando divisão binária e divisão n-ária para:

	Tipo de carro		
Classe	Família	Esporte	Luxo
C1	1	2	1
C2	4	1	1
Ginini		0.393	Contraction to the state of

	Tipo de carro	
Classe	Família	Esporte e Luxo
C1	3	1
C2	2	4
Gini _{Div}	0.400	

	ripo de carro	
Classe	Esporte	Família e Luxo
C1	2	2
C2	1	5
Gini _{Div}	0.419	

© André de Carvalho - ICMC/USP 40

Atributos n-ários

- Várias possíveis posições de referência
- Cada posição tem uma matriz de contagens associada a ela
 - Contagens das proporções das classes em cada uma das partições

© André de Carvalho - ICMC/USP

Critério de parada

- Diversas alternativas:
 - Os objetos do nó atual têm a mesma classe
 - Os objetos do nó atual têm valores iguais para os atributos de entrada, mas classes diferentes
 - O número de objetos do nó é menor que um dada quantidade
 - Todos os atributos preditivos já foram incluídos no caminho atual

© André de Carvalho - ICMC/USP

Espaço de hipóteses

- Cada percurso da raiz a um nó folha representa uma regra de classificação
- Cada folha está associada a uma classe
 - Corresponde a um hiper-retângulo no espaço de soluções
 - Cada classe é representada por um conjunto de hiper-retângulos
 - Interseção de hiper-retângulos é um conjunto vazio
 - União de hiper-retângulos cobre todo o espaço

© André de Carvalho - ICMC/USP

Aspectos positivos das ADs

- Baixo custo de indução e dedução
- Fácil interpretação da hipótese induzida
 - Para árvores pequenas
- Acurácia comparável a de outros classificadores
 - Para conjuntos de dados de baixa complexidade
- Indica atributos preditivos mais relevantes
- Atributos preditivos podem ser numéricos ou simbólicos

© André de Carvalho - ICMC/USP

58

Aspectos negativos das ADs

- Dificuldade para predição de valores contínuos
 - Árvores de regressão
- Baixo desempenho em problemas com muitas classes e poucos dados
- Abordagem gulosa
- Limitação de hipóteses a híperretângulos

© André de Carvalho - ICMC/USP

Overfitting

- Partição recursiva pode gerar árvores perfeitamente ajustadas aos dados
- Decisões são baseadas em conjuntos cada vez menores de dados
 - Níveis mais profundos podem ter muito poucos dados
 - Presença de ruído nos dados afeta bastante escolha de atributos para esses nós
 - Reduz capacidade de generalização
 - Poda

© André de Carvalho - ICMC/USP

Poda de árvores

- Elimina parte da árvore
- Pode ser realizada em duas etapas
 - Durante indução (pré-poda)
 - Parar o crescimento da árvore mais cedo
 - Após indução (pós-poda)
 - Crescer a árvore completa e depois podá-la
 - Mais lento, porém mais confiável

© André de Carvalho - ICMC/USP

Exercício

- Usando medida de entropia,
 - Induzir uma árvore de decisão capaz de distinguir:
 - Pacientes potencialmente saudáveis
 - Pacientes potencialmente doentes
 - Testar a árvore para novos casos
 - (Luis, não, não, pequenas, sim)
 - (Laura, sim, sim, grandes, sim)

© André de Carvalho - ICMC/USP

Conclusão

- Árvores de decisão
- Algoritmo de Hunt
- Medidas para escolha de atributos
- Ponto de referência
- Critério de parada
- Espaço de hipóteses

© André de Carvalho - ICMC/USP

