Differentiation - Implicit Functions

Many equations involving 2 variables *x* and *y* can be solved for *y* in terms of *x*:

 \rightarrow Example: $= 2x^2 + 4$, $y = \sin^2 x - 3$, $y = 3e^{2x} - 5e^x + 1$ (explicit function)

For great variety of equations, it is very difficult if not impossible to do so:

 \rightarrow Example: $x^2 + 2y^2 - 3xy + 4x - 5y = 0$, $xy + cosy - x^2 = 1$ (implicit function)

Remember The chain rule for differentiating composite functions: $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ Consider, for example, this implicit function:

$$x^2 + y^2 = 25$$
 (1)

The gradient of the curve is given by $\frac{dy}{dx}$.

Differentiating both sides of \bigcirc with respect to x

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^2) + \frac{\mathrm{d}}{\mathrm{d}x}(y^2) = \frac{\mathrm{d}}{\mathrm{d}x}(25) \qquad ②$$

To differentiate y^2 with respect to x, the chain rule must be used:

$$\frac{\mathrm{d}}{\mathrm{d}x}(y^2) = \frac{\mathrm{d}}{\mathrm{d}y}(y^2) \times \frac{\mathrm{d}y}{\mathrm{d}x} = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$$

Finally $\frac{dy}{dx} =$

Example 1

Find $\frac{dy}{dx}$ for each of these implicit functions.

a
$$2x^3 + 3y^2 = 7$$
 b $\frac{x^2}{x - y^2} = 5$ **c** $2x^2 + y^3 = 5xy$ **d** $x \ln y + y^2 = 10$

Example 2

Find $\frac{dy}{dx}$, in terms of x and y, for the curve $\tan(x+y) = y^2$.

Example 3

Find the gradient of the curve $x^2 - 3xy + y^2 = 31$ at the point (2, -3).

Example 4

Find the equations of the tangent and normal to the curve $y^2e^x + x^2 = 9$ at the point (0, 3).

Exercise 1

1 Differentiate with respect to x

$$\mathbf{a} y^2$$

$$b v^3$$

c
$$3v^4$$

$$\mathbf{d} x \mathbf{v}$$

$$\mathbf{e}^{-}x^2\mathbf{1}$$

$$\mathbf{f} = xy$$

$$h \ln y^5$$

a
$$y^2$$
 b y^3 **c** $3y^4$ **d** xy
e x^2y **f** xy^2 **g** $\ln y$ **h** $\ln y^5$
i $\ln x^2y^3$ **j** $\sin y$ **k** $x\cos y$ **l** x^2e^{2y}

$$1 x^2 e^{2y}$$

$$\mathbf{m} e^{x} y^{2}$$

$$\mathbf{n} = \frac{1}{y}$$

$$\mathbf{m} \ \mathbf{e}^{x} y^{2} \qquad \qquad \mathbf{n} \ \frac{1}{v} \qquad \qquad \mathbf{o} \ \frac{x}{v^{3}}$$

$$\mathbf{p} \sin(x+y)$$

2 Find $\frac{dy}{dx}$ for each of these implicit functions.

a
$$x^2 + y^2 = 8$$

b
$$2x^3 + 3y^4 = 10$$

a
$$x^2 + y^2 = 8$$
 b $2x^3 + 3y^4 = 10$ **c** $x^2 + 3xy = 2y^2 + 4$

d
$$x^3 - 2xy^2 + 7x = 0$$

$$e 4x^2 + 6y^2 = 3x^2y^2$$

d
$$x^3 - 2xy^2 + 7x = 0$$
 e $4x^2 + 6y^2 = 3x^2y^2$ **f** $3x^3 + 2x^2y + 5xy^2 + 4y^3 = 8$

g
$$\frac{1}{x} + \frac{1}{v} = 2$$

g
$$\frac{1}{x} + \frac{1}{y} = 2$$
 h $\frac{x^2}{2x + 5y^2} = 2$

3 For each of these implicit functions, find $\frac{dy}{dx}$ in terms of x and y.

a
$$4e^{x}y - 3xe^{y} = 10$$
 b $x \tan y = 10$

b
$$x \tan y = 10$$

$$\mathbf{c} \quad x \sin y + y \sin x = 1$$

d
$$3x \ln y = 2y^2 + 8$$

d
$$3x \ln y = 2y^2 + 8$$
 e $2\sin 2x \cos 3y = 1$ **f** $e^x \ln y = y$

f
$$e^{x} \ln y = y$$

g
$$4xy - x \ln y^3 = 8$$

g
$$4xy - x \ln y^3 = 8$$
 h $2x \sin^2 y = 3(x+y)^2$

4 Find the gradient of each for these curves at the points specified.

a
$$xy^2 = 20$$
 at $(5, 2)$

b
$$x^2 + 3xy + 2y^2 = 15$$
 at $(1, 2)$

a
$$xy^2 = 20$$
 at $(5, 2)$
b $x^2 + 3xy + 2y^2 = 15$ at $(1, 2)$
c $(x-1)^2 + (y+2)^2 = 2$ at $(2, -3)$
d $\sec y = x + y$ at $(1, 0)$

d
$$\sec y = x + y$$
 at $(1, 0)$

e
$$e^x y + x^2 y = 2$$
 at $(0, 2)$

$$\mathbf{f} \quad \frac{\sin x}{\sin y} = 2 \text{ at } \left(\frac{\pi}{2}, \frac{\pi}{6}\right)$$

g
$$x \ln y^3 = 6$$
 at (2, e)

h
$$\frac{8x^2}{4x^2 - 3y^3} = 3y$$
 at (3, 2)

Question 5

Find the equations of the tangent and normal to the curve $\sin x \sin y = \frac{\sqrt{3}}{4}$ at the point $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$.

Question 6

Show that one of the points of intersection of the line 3y = 2x + 1 and the curve $2x^2 - 3xy + y^2 = 5$ is the point (4, 3). Find the equation of the tangent to the curve at this point. What is the area of the triangle bounded by the tangent and the axes?

Answers

1 a
$$2y \frac{dy}{dx}$$
 b $3y^2 \frac{dy}{dx}$

b
$$3y^2 \frac{dy}{dx}$$

k
$$\cos y - x \sin y \frac{\mathrm{d}y}{\mathrm{d}x}$$

c
$$12y^3 \frac{dy}{dx}$$

c
$$12y^3 \frac{dy}{dx}$$
 d $x \frac{dy}{dx} + y$

$$1 2xe^{2x}\left(x\frac{dy}{dx}+1\right)$$

e
$$x^2 \frac{dy}{dx} + 2xy$$
 f $2xy \frac{dy}{dx} + y^2$

$$f = 2xy \frac{dy}{dx} + y^2$$

$$\mathbf{m} \, \mathbf{e}^x y \left(2 \frac{\mathbf{d} y}{\mathbf{d} x} + y \right)$$

$$\mathbf{g} = \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\mathbf{g} \; \frac{1}{y} \frac{\mathrm{d}y}{\mathrm{d}x} \qquad \qquad \mathbf{h} \; \frac{5}{y} \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\mathbf{n} = -\frac{1}{y^2} \frac{\mathrm{d}y}{\mathrm{d}x}$$

$$\mathbf{i} = \frac{2}{x} + \frac{3}{y} \frac{\mathrm{d}y}{\mathrm{d}x}$$
 $\mathbf{j} = \cos y \frac{\mathrm{d}y}{\mathrm{d}x}$

$$\int \cos y \frac{dy}{dx}$$

$$o \frac{y - 3x \frac{dy}{dx}}{v^4}$$

2 a
$$-\frac{x}{y}$$
 b $-\frac{x^2}{2y^3}$

$$\frac{1}{2y^3}$$

$$c \frac{2x + 3y}{4y - 3x}$$

c
$$\frac{2x+3y}{4y-3x}$$
 d $\frac{3x^2-2y^2+7}{4xy}$

e
$$\frac{x(4-3y^2)}{3y(x^2-2)}$$

$$\mathbf{f} = \frac{9x^2 + 4xy + 5y^2}{2x^2 + 10xy + 12y^2}$$

$$g - \frac{y^2}{x^2}$$

g
$$-\frac{y^2}{x^2}$$
 h $\frac{x-2}{10y}$

4 a
$$-\frac{1}{5}$$
 b $-\frac{8}{11}$ c 1 d -1 e -2 f 0

$$-\frac{8}{11}$$

$$g - \frac{e}{2}$$
 $h \frac{24}{45}$

Question 5

$$x + 3y - \frac{5\pi}{6} = 0, y = 3x - \frac{5\pi}{6}$$

Question 6

$$7x - 6y - 10 = 0$$

Area =
$$\frac{25}{21}$$
 square units

$$\mathbf{p} \cos(x+y) \left[1 + \frac{\mathrm{d}y}{\mathrm{d}x} \right]$$

3 a
$$\frac{3e^{y}-4e^{x}y}{4e^{x}-3xe^{y}}$$

$$\mathbf{b} - \frac{1}{x} \sin y \cos y$$

$$c = \frac{\sin y + y \cos x}{x \cos y + \sin x}$$

d
$$\frac{3y \ln y}{4y^2 - 3x}$$

e
$$\frac{2}{3}$$
 cot $2x$ cot $3y$

$$f = \frac{e^x y \ln y}{v - e^x}$$

$$\frac{y(4y-3\ln y)}{3x-4xy}$$

h
$$\frac{3(x+y) - \sin^2 y}{x \sin 2y - 3(x+y)}$$

Exercise 2 - Implicit Differentiation

Question 1

The equation of a curve is

$$\sqrt{x} + \sqrt{y} = \sqrt{a}$$

where a is a positive constant.

(i) Express
$$\frac{dy}{dx}$$
 in terms of x and y. [3]

(ii) The straight line with equation y = x intersects the curve at the point P. Find the equation of the tangent to the curve at P. [3]

Question 2

The equation of a curve is $x^3 + 2y^3 = 3xy$.

(i) Show that
$$\frac{dy}{dx} = \frac{y - x^2}{2y^2 - x}$$
. [4]

(ii) Find the coordinates of the point, other than the origin, where the curve has a tangent which is parallel to the x-axis.[5]

Question 3

The equation of a curve is $xy(x + y) = 2a^3$, where a is a non-zero constant. Show that there is only one point on the curve at which the tangent is parallel to the x-axis, and find the coordinates of this point. [8]

Question 4

The equation of a curve is

$$x \ln y = 2x + 1.$$

(i) Show that
$$\frac{dy}{dx} = -\frac{y}{x^2}$$
. [4]

(ii) Find the equation of the tangent to the curve at the point where y = 1, giving your answer in the form ax + by + c = 0. [4]

Question 5

The equation of a curve is $x^3 - x^2y - y^3 = 3$.

(i) Find
$$\frac{dy}{dx}$$
 in terms of x and y. [4]

(ii) Find the equation of the tangent to the curve at the point (2, 1), giving your answer in the form ax + by + c = 0. [2]

Question 6

A curve C has the equation $x^3 + xy + 2y^3 = k$, where k is a constant.

Determine $\frac{dy}{dx}$ in terms of x and y.

Given that C has a tangent parallel to the y-axis, verify that the y-coordinate of the point of contact of the tangent with C must satisfy $216y^6 + 4y^3 + k = 0$.

Hence verify that $k \le \frac{1}{54}$.

Answers

1. i)
$$-\sqrt{\frac{y}{x}}$$
 ii) $x + y = \frac{1}{2}a$

3.

4. ii)
$$4x + y + 1 = 0$$

5. i)
$$\frac{3x^2 - 2xy}{x^2 + 3y^2}$$
 ii) $8x - 7y - 9 = 0$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3x^2 + y}{x + 6y^2}$$