- **1.122.** Две небольшие шайбы масс m_1 и m_2 связаны нитью длины l и движутся по гладкой плоскости. В некоторый момент скорость одной шайбы равна нулю, а другой v, причем ее направление перпендикулярно нити. Найти силу натяжения нити в этот момент.
- **1.123.** Плот массы M с человеком массы m покоится на поверхности пруда. Относительно плота человек совершает перемещение \mathbf{l}' со скоростью $\mathbf{v}'(t)$ и останавливается. Пренебрегая сопротивлением воды, найти:
 - а) перемещение 1 плота относительно берега;
- б) горизонтальную составляющую силы, с которой человек действовал на плот в процессе движения.
- **1.126.** Ствол пушки направлен под углом $\vartheta = 45^\circ$ к горизонту. Когда колеса пушки закреплены, скорость снаряда, масса которого в $\eta = 50$ раз меньше массы пушки, $v_0 = 180$ м/с. Найти скорость пушки сразу после выстрела, если колеса ее освободить.
- **1.127.** Пушка массы M начинает свободно скользить вниз по гладкой плоскости, составляющей угол α с горизонтом. Когда пушка прошла путь l, произвели выстрел, в результате которого снаряд вылетел с импульсом \mathbf{p} в горизонтальном направлении, а пушка остановилась. Пренебрегая массой снаряда, найти продолжительность выстрела.

- **1.134.** Две одинаковые тележки движутся друг за другом по инерции (без трения) с одной и той же скоростью \mathbf{v}_0 . На задней тележке находится человек массы m. В некоторый момент человек прыгнул в переднюю тележку со скоростью \mathbf{u} относительно своей тележки. Имея в виду, что масса каждой тележки равна M, найти скорости, с которыми будут двигаться обе тележки после этого.
- **1.135.** На краю покоящейся тележки массы M стоят два человека, масса каждого из которых равна m. Пренебрегая трением, найти скорость тележки после того, как оба человека спрыгнут с одной и той же горизонтальной скоростью \mathbf{u} относительно тележки:
 - а) одновременно; б) друг за другом.
 - В каком случае скорость тележки будет больше?
- **1.138.** Найти закон изменения массы ракеты со временем, если она движется в отсутствие внешних сил с постоянным ускорением a, скорость истечения газа относительно ракеты постоянна и равна u, а ее масса в начальный момент равна m_0 .
- **1.140.** Ракета поддерживается в воздухе на постоянной высоте, выбрасывая вертикально вниз струю газа со скоростью $u = 900\,$ м/с. Найти:
- а) время, которое ракета может оставаться в состоянии покоя, если начальная масса топлива составляет $\eta=25\%$ ее массы (без топлива);
- б) массу газов $\mu(t)$, которую должна ежесекундно выбрасывать ракета, чтобы оставаться на постоянной высоте, если начальная масса ракеты (с топливом) равна m_0 .

1.142. Тележка с песком движется по горизонтальной плоскости под действием постоянной силы \mathbf{F} , сонаправленной с ее скоростью. При этом песок высыпается через отверстие в дне с постоянной скоростью \mathbf{p} кг/с. Найти ускорение и скорость тележки в момент t, если в момент t=0 тележка с песком имела массу m_0 и ее скорость была равна нулю.

Рис. 1.22

1.143. Платформа массы m_0 начинает двигаться вправо под действием постоянной силы **F** (рис. 1.22). Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна μ кг/с. Найти зависимости от времени скорости и ускорения платформы при погрузке.

1.144. Цепочка AB длины l находится в гладкой горизонтальной трубке так, что часть ее длины h свободно свешивается, касаясь своим концом B поверхности стола (рис. 1.23). В некоторый момент ко-

нец A цепочки отпустили. С какой скоростью он выскочит из трубки?

Рис. 1.23

1.150. Частицы массы m попадают в область, где на них действует встречная тормозящая сила. Глубина x проникновения частиц в эту область зависит от импульса p частиц как $x = \alpha p$, где α — заданная постоянная. Найти зависимость модуля тормозящей силы от x.

1.154. К небольшому бруску массы m=50 г, лежащему на горизонтальной плоскости, приложили постоянную горизонтальную силу F=0,10 Н. Найти работу сил трения за время движения бруска, если коэффициент трения зависит от пройденного пути x как $k=\gamma x$, где γ — постоянная.

1.157. Цепочка массы m = 0.80 кг и длины l = 1.5 м лежит на шероховатом столе так, что один ее конец свешивается у его края. Цепочка начинает сама соскальзывать, когда ее свешивающаяся часть составляет $\eta = 1/3$ длины цепочки. Какую работу совершат силы трения, действующие на цепочку, при ее полном соскальзывании со стола?