Sampling Distributions

Ryan Miller

Statistical Inference

A major goal of statistics is *inference*, or using a sample to learn about a population. Today we will walk through the train-of-thought behind how statisticians have approached inference.

- ► In this activity, the population will be the end of semester grades of my previous Sta-209 students
 - I won't give you the population, but I'll let you take as many random samples of size n = 10 as you want
- Our short-term goal will be see what we can learn about a population by repeatedly taking random samples
 - Our long-term goal will be to apply this insight to situations involving only a single random sample

The Population Distribution

- ► The population distribution contains *all* of the information about the variable of interest
 - In our example, we could view the population distribution using a table or barchart of the end of semester grades
- ▶ In most situations, statisticians focus on a single statistic that summarizes the aspect of the population they are most interested in
 - In our example, the statistic of interest will be the proportion of A's

Estimation

- Suppose we're interested in the population proportion of A's, denoted p_A
- ▶ How would you estimate p_A from a single random sample?
- ls your estimate likely to be p_A exactly?

Estimation

- ▶ The logical estimator of p_A is the sample proportion of A's, \hat{p}_A
- ▶ This estimate is *unlikely* to be exactly p_A , but it should be close
 - Exactly how close is something we seek to determine
 - In today's activity, we'll take repeated random samples to gauge how close \hat{p}_A tends to be to p_A

Sampling Distribution Activity - Directions

This is the only time we'll use R in this class, but it is the software of choice for most statisticians, and you'll use it in future stats classes (if you choose to take them).

- Open RStudio and type: source("https://remiller1450.github.io/s209f19/funs.R")
- 2. Enter **sample_grades()** to generate a random sample of 10 student's end of semester grades
- 3. Find the proportion of A's in the sample and record it on the board
- 4. Repeat steps 1-3 until you've recorded results from 6 different random samples

These values represent the distribution of possible sample proportions that could occur when taking a random sample of size n=10 from this population. With your group, discuss why it is important to study this distribution.

Sampling Distribution Activity - Some Questions

- 1. Based off the **sampling distribution** (the dotplot on the board), what do you think p_A is?
- 2. Had you only collected a *single* random sample of size 10, what would you expect is the *most likely* value of \hat{p}_A for that sample?
- 3. How much variability is there across different samples?
- 4. Could we use this variability to come up with an **interval** estimate of p_A ?

Sampling Distribution Activity - Answers

- 1. Assuming the samples are *representative*, p_A is the center of the sampling distribution! This is because the sample statistic \hat{p}_A is **unbiased**
- 2. p_A is the center of the sampling distribution, so \hat{p}_A is most likely to be p_A !
- 3. We can assess the variability of the possible sample means that we could see by looking at the standard deviation of the sampling distribution, this is called the **standard error** (*SE*) since it describes an estimate
- 4. We could provide estimates of p_A that look like $\hat{p}_A \pm c * SE$. The 68-95-99 rule could help us choose c (at least for sampling distributions with the right shape)

Confidence Intervals

- ► Intervals of the form Estimate ± MOE, where MOE is a carefully determined margin of error, are called confidence intervals
- We will spend the next couple of weeks studying confidence intervals
- For now, we'll investigate the influence a few different factors have an the sampling distribution

The sampling distribution depends upon:

- 1. The parameters of the population distribution
- 2. The size of the sample
- 3. How the sample was collected
- ▶ We'll first investigate the role of sample size using StatKey, a free online companion to the Lock5 textbook: StatKey Link
- We'll look at the "NFL Contracts" dataset that comes pre-loaded in StatKey

Sampling distribution of \bar{x} for 1000 samples of size n = 10

Sampling distribution of \bar{x} for 1000 samples of size n = 30

Sampling distribution of \bar{x} for 1000 samples of size n=100

Sampling distribution of \bar{x} for 1000samples of size n=1000

Sampling distribution of \bar{x} when the entire population is sampled

- As the size of our sample increases, the **standard error**, denoted *SE*, of our sample statistic decreases
- Standard error is the standard deviation of a sample statistic (ie: it describes variability in the sampling distribution)

- Quarterbacks represent 4.3% of NFL players but tend to receive a disproportionate amount of media attention and are paid higher salaries than other positions
- Suppose we sample in a way that makes QBs four times more likely to be sampled than other positions, how might this influence the sampling distribution (for estimates, \bar{x} , of mean the NFL salary)?
- What if QBs were ten times more likely to be sampled?

- Larger samples tend to provide better estimates if the samples are representative
 - ▶ But larger sample size cannot fix sampling bias, in fact it often exacerbates it

Conclusion

Right now you should:

- Understand the relationships between the population distribution, the sample distribution, and the sampling distribution
- Be comfortable with the terminology of parameters and statistics
- 3. Understand, when we only have one sample, the sample statistic is our best guess at the population parameter
- 4. Understand the impact of bias and sample size (variability) on the sampling distribution

If you want more information:

▶ Read Ch 3.1