S/N : 10/761,613 Page 3

Applicant : King Jien Chui Attorney Docket: CS03-050

Reply to the Office action dated April 5, 2006

1 2

3

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listing, of claims in the application:

6 7

Listing of claims:

8 9

10

11 12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

- 1. (CURRENTLY AMENDED) A method of forming a semiconductor device comprising:
- a) forming a gate structure over a substrate being doped with a first conductivity type impurity;
 - b) performing a doped depletion region implantation by implanting ions being a
 second conductive type into the substrate to form doped depletion
 regions; and
 - c) performing a S/D implantation by implanting ions being the second conductivity type into the substrate to form source and drain regions adjacent to said gate structure; <u>at least a portion of</u> the doped depletion regions are <u>directly</u> beneath and separated from said source and drain regions;
 - (1) said doped depletion regions having an impurity concentration and thickness so that said doped depletion regions are depleted due to a built-in potential created between said doped depletion regions and said substrate; said doped depletion regions having an impurity concentration so that a built-in junction potential between said doped depletion regions and said substrate forms depletion regions in the substrate

28 between the source and drain regions and the doped depletion

29 regions;

S/N

: 10/761,613

Page 4

: King Jien Chui Attorney Docket: CS03-050 Applicant Reply to the Office action dated April 5, 2006 1 said depletion regions have a net impurity concentration of the 2 first conductivity type. 3 4 2. (CURRENTLY AMENDED) The method of claim 1 wherein said doped 5 depletion regions are not formed <u>directly</u> under said gate structure. 6 7 3. (CANCELED) 8 9 4.(CURRENTLYAMENDED) The method of claim 1 which further includes said 10 doped depletion regions having an impurity concentration so that a built-in 11 junction potential between said doped depletion regions and said substrate 12 forms depletion regions in the substrate between the source and drain 13 regions and the doped depletion region regions; said depletion regions 14 have a net impurity concentration of the first conductivity type; 15 said depletion regions have a net impurity concentration between 16 1E16 to 5E18 atom/∞. 17 18 (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 19 implanting ions of the first impurity type into said substrate between said 20 source and drain regions and said doped depletion regions. 21 22 6. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 23 performing an implant type selected from the group consisting of Halo 24 implant, threshold voltage implant, and a field implant, that implant ions of 25 the first impurity type into said substrate at least between said source and 26 drain regions and said doped depletion regions. 27 28 7. (CURRENTLY AMENDED) The method of claim 1 wherein a region of said 29 substrate between said source[/] and drain regions and said doped

Attorney Docket: CS03-050

S/N

Applicant

: 10/761,613 : King Jien Chui

Reply to the Office action dated April 5, 2006 1 depletion regions has a concentration of the first conductivity type impurity 2 between 1E16 to 1E18 atom/cc; a channel region in said substrate under 3 said gate structure; said channel region has a concentration of a second 4 type impurity between 1E16 to 1E18 atom/cc. 5 6 8. (PREVIOUSLY PRESENTED) The method of claim 1 wherein said doped 7 depletion regions are fully depleted. 8 9 9. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 10 performing LDD implantation by implanting ions being the second 11 conductivity type into the substrate using the gate structure as a mask to 12 form LDD regions. 13 14 10. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 15 performing a LDD implantation by implanting ions being the second 16 conductivity type into the substrate using the gate structure as a mask to 17 form LDD regions; 18 the LDD regions are formed before the doped depletion regions. 19 20 11. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 21 performing a LDD implantation by implanting ions being the second 22 conductivity type into the substrate using the gate structure as a mask to 23 form LDD regions; 24 wherein the doped depletion regions are formed after the LDD regions. 25 26 12. (PREVIOUSLY PRESENTED) The method of claim 1 wherein said first 27 conductivity type is p-type and said substrate has a boron concentration 28 between 1E17 to 1E19 atom/cc. 29

S/N

: 10/761,613

: King Jien Chui Attorney Docket: CS03-050 Applicant Reply to the Office action dated April 5, 2006 1 13. (PREVIOUSLY PRESENTED) The method of claim 1 wherein said first 2 conductivity type is n-type and said substrate has an As or P concentration 3 between 1E 17 to 1E 19 atom/cc. 4 14. (PREVIOUSLY PRESENTED) The method of claim 1 wherein said substrate 5 6 is comprised of Si or SiGe or strained Si, or relaxed SiGe or strained Ge. 7 8 15. (ORIGINAL) The method of claim 1 wherein said gate structure has a channel 9 width between 0.04 and $0.5 \mu m$. 10 11 16. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 12 performing a LDD implantation by implanting ions being the second 13 conductivity type into the substrate using the gate structure as a mask to form LDD regions; the LDD implantation is performed by implanting As ions 14 at a dose between 5E14 and 1E16 atoms /cm², at an energy between 1keV 15 and 10 keV. 16 17 17. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 18 performing a LDD implantation by implanting ions being the second 19 conductivity type into the substrate using the gate structure as a mask to 20 form LDD regions; the LDD implantation is performed by implanting Boron ions at a dose between 21 1E14 and 5E15 atoms /cm², at an energy between 1 keV and 10 keV. 22 23 24 18. (PREVIOUSLY PRESENTED) The method of claim 1 wherein the doped 25 depletion region implantation is performed by implanting As or Pions at a dose between 5E12 and 5E13 atoms/cm², at an energy between 100 keV 26

23

24

S/N : 10/761,613 Page 7 : King Jien Chui Attorney Docket: CS03-050 Applicant Reply to the Office action dated April 5, 2006 1 and 500 keV; said doped depletion region having a minimum depth below 2 a surface of said substrate between 0.09 and 0.7 µm. 3 4 19. (PREVIOUSLY PRESENTED) The method of claim 1 wherein the doped depletion region implantation is performed by implanting boron ions at a 5 6 dose between 5E11 and 5E13 atoms/cm2, at an energy between 50 keV 7 and 200 keV; said doped depletion region having a minimum depth below a 8 surface of the substrate between 0.09 and 0.7 μ m. 9 20. (PREVIOUSLY PRESENTED) The method of daim 1 wherein the S/D 10 implantation is performed by implanting arsenic (As) or phosphorus (P) ions 11 at a dose between 5E14 to 1E16 atoms/cm², at an energy between 50 keV 12 and 80 keV; said source and drain regions having a depth below a surface 13 of said substrate of between 0.04 and 0.5 µm. 14 15 16 21. (CURRENTLY AMENDED) The method of claim 1 wherein said second 17 conductivity type is p-type; and said S/D implant implantation is performed by implanting boron ions at a dose between 5E14 to 1E16 atoms/cm², at an 18 19 energy between 50keV and 80keV; said source and drain regions have a depth below a surface of said substrate of between 0.04 and 0.5 µm. 20 21 22 22. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes

said gate structure having sidewalls; and forming one or more spacers on

the sidewalls of said gate structure.

S/N : 10/761,613 Page 8

Applicant : King Jien Chui Attorney Docket: CS03-050

Reply to the Office action dated April 5, 2006

1 2

3

4 5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26 27

28

29

23. (CURRENTLY AMENDED) A method of forming a semiconductor device comprising:

- a) forming a gate structure over a substrate being doped with a first conductivity type impurity;
- b) performing a doped depletion region implantation by implanting ions being a second conductivity type to the substrate to form doped depletion regions beneath and separated from said source[/] and drain regions;
 - (1) said doped depletion regions have an impurity concentration and thickness so that said doped depletion regions are depleted due to a built-in potential created between said doped depletion regions and said substrate; and
- c) performing a S/D implantation by implanting ions being the second conductivity type into the substrate to form <u>said</u> source and drain regions adjacent to said gate structure;
 - (1) said substrate between said source and drain regions and said doped depletion regions has a concentration of a first type impurity between 1E16 to 1E18 atom/cc; said doped depletion regions have an impurity concentration so that the built-in potential between said doped depletion regions and said substrate forms depletion regions in the substrate between the source and drain regions and the doped depletion region regions; said depletion regions have a net impurity concentration of the first conductivity type; said depletion regions have a net impurity concentration between 1E16 to 1E18 atom/cc.

24. (PREVIOUSLY PRESENTED) The method of claim 23 wherein said doped depletion regions are not formed under said gate structure.

S/N

: 10/761,613

Attorney Docket: CS03-050 Applicant : King Jien Chui Reply to the Office action dated April 5, 2006 1 25. (CURRENTLY AMENDED) The method of claim 23 wherein a region of said 2 substrate between said source[/] and drain regions and said doped 3 depletion regions has a concentration of said first conductivity type 4 impurity between 1E16 to 1E18 atom/cc; 5 a channel region in said substrate under said gate structure; said channel 6 region has a concentration of a second conductivity type impurity between 7 1E16 to 1E18 atom/cc. 8 9 26. (PREVIOUSLY PRESENTED) The method of claim 23 which further 10 includes; said gate structure has sidewalls; forming one or more spacers on the sidewalls of said gate structure. 11 12 13 27. (PREVIOUSLY PRESENTED) The method of claim 23 which further 14 includes; said gate structure has sidewalls; forming two or more spacers 15 on the sidewalls of said gate structure prior to the doped depletion region 16 implantation. 17 18 CLAIMS 28 TO 35 (CANCELED) 19 20 **CLAIM 36 (CANCELED)** 21 22 37. (PREVIOUSLY PRESENTED) The method of claim 1 which further includes 23 said gate structure has sidewalls; forming two or more spacers on the 24 sidewalls of said gate structure prior to the doped depletion region 25 implantation. 26 27 38. (CURRENTLY AMENDED) A method of forming a semiconductor device 28 comprising: 29 forming a gate structure over a substrate being doped with a first 30 conductivity type impurity;

S/N : 10/761.613 Page 10 Attorney Docket: CS03-050 Applicant : King Jien Chui Reply to the Office action dated April 5, 2006 1 performing a doped depletion region implantation by, using said gate 2 structure as an implant mask and implanting ions being of a second 3 conductive type into the substrate to form doped depletion regions; 4 and 5 performing a S/D implantation by implanting ions of the second 6 conductivity type into the substrate to form source and drain 7 regions adjacent to said gate; 8 the doped depletion regions are beneath and separated from said source 9 and drain regions; said doped depletion regions have an impurity 10 concentration and thickness so that said doped depletion regions are depleted due to a built-in potential created between said doped 11 12 depletion regions and said substrate. 13 14 39. (PREVIOUSLY PRESENTED) The method of claim 38 which further 15 includes said doped depletion regions having an impurity concentration so that a built-in junction potential between said doped depletion regions and 16 17 said substrate forms depletion regions in the substrate between the 18 source and drain regions and the doped depletion regions; 19 said depletion regions have a net impurity concentration of the first 20 conductivity type. 21 22 40. (PREVIOUSLY PRESENTED) The method of claim 38 wherein said doped 23 depletion regions are fully depleted. 24 25 41. (NEW) The method of claim 1, further comprising a channel region in said 26 substrate under said gate structure; wherein said heavily doped depletion

regions are not directly beneath said channel region.

27

28

Attorney Docket: CS03-050

S/N

Applicant

: 10/761,613

: King Jien Chui Reply to the Office action dated April 5, 2006 42. (NEW) The method of claim 23, wherein at least a portion of the doped 1 2 depletion regions are directly beneath and separated form said source and 3 drain regions. 4 5 43. (NEW) A method of forming a semiconductor device comprising: 6 a) forming a gate structure over a substrate being doped with a first 7 conductivity type impurity; 8 b) performing a doped depletion region implantation by implanting ions being a second conductive type into the substrate to form doped depletion 9 10 regions: 11 c) performing a S/D implantation by implanting ions being the second 12 conductivity type into the substrate to form source and drain regions adjacent to said gate structure; the doped depletion regions are 13 14 beneath and separated from said source and drain regions; and d) performing LDD implantation by implanting ions being the second 15 conductive type into the substrate using the gate structure as a mask to 16 17 form LDD regions: 18 (1) said doped depletion regions having an impurity concentration and 19 thickness so that said doped depletion regions are depleted due to a 20 built-in potential created between said doped depletion regions and 21 said substrate: 22 said doped depletion regions having an impurity concentration so that a 23 built-in junction potential between said doped depletion regions and 24 said substrate forms depletion regions in the substrate between the 25 source and drain regions and the doped depletion regions; said depletion regions have a net impurity concentration of the first 26 27 conductivity type. 28 29 30 31