1 目的

太陽電池の各試験を行い、太陽電池の特性を知り、取り扱い上の要点を習得する。

2 理論

2.1 再生可能エネルギー

太陽光,風力,その他非化石エネルギー源のうち,エネルギー源として永続的に利用することができると認められるもののこと.

再生可能エネルギーとして、太陽光、風力、水力、地熱、太陽熱、大気中の熱その他の自然界に存する熱、バイオマスが挙げられる。 $^{1)}$

2.2 太陽光発電の原理

現在最も多く使われている太陽電池は、シリコン系太陽電池である.この太陽電池では、電気的な性質の異なる2種類(p型、n型)の半導体を重ね合わせた構造をしている.

太陽電池に太陽の光が当たると,電子と正孔が発生し,正孔はp型半導体へ,電子はn型半導体側へ引き寄せられる。このため、表面と裏面につけた電極に導線をつなげば,電子がn型からp型に,正孔はp型からn型に流れ,電流を取り出すことができる。 $^{2)}$

図1 太陽光発電の原理

2.3 種類

太陽光発電の種類は、使用している材料によって細かく分けられているが、大別すると図.2のようになる.

 $^{^{1)}}$ 環境省 平成26年度2050年再生可能エネルギー等分散型エネルギー普及可能性検証検討委託業務報告書 第1章再生可能エネルギー導入加速化の必要性,https://www.env.go.jp/earth/report/h27-01/,2019-7-1閲覧

²⁾ 太陽電池とは - 太陽光発電協会,http://www.jpea.gr.jp/knowledge/solarbattery/index.html,2019-7-1閲覧

図2 太陽光発電の種類

3 実験装置回路

図3 実験装置回路

使用機器

太陽電池実験装置 照度計

実験方法 5

測定上の注意

実験装置のセレクトスイッチは以下の特性を持っているので、測定の際はすばやく読み取ること.

設定:太陽電池がセットされていなくても、「ON」にしたときランプが約 30 秒点灯する.

測定:太陽電池がセットされている場合に限り、約5秒点灯する.

5.1 開放電圧の照度依存性試験

- 1. 実験装置のコンセントを差し込む前に以下の設定を行う.
 - ・負荷スイッチは「OFF」にする.
 - \cdot スライドトランスは「0」にする.
- 2. 照度計を太陽電池脇のほぼ中心にセットする. 以降, 照度計は極力動かさないこと.
- 3. セレクトスイッチを設定にセット、装置の照明を ON にすることで、照度の設定ができる。 100lx が 理想だが、実験室の原明を感知するときがあるので、その時は最低値に設定する。
- **4.** セレクトスイッチを測定にセット、装置の照明を **ON** にすることで、各数値を読むことができる.この項目では発生電圧を読み取る.
- 5. 照度を対数的に上げていき同様の測定を行う(最高照度は 20000lx).

5.2 短絡電流の照度依存性試験

- 1. 以下の設定を行う.
 - · 負荷スイッチは「ON」にする.
 - ・負荷抵抗は「100%」にする.
 - ・スライドトランスは[0]にする.
- 2. 照度の設定は, 5.1 と同様に行い, 発電電流を読み取る.

5.3 電圧電流特性の照度依存性試験

- 1. 以下の設定を行う.
 - ·負荷スイッチは「ON」にする.
 - · 負荷抵抗は「0%」にする.
 - ・スライドトランスは「0」にする.
- 2. 照度の設定は, 5.1 を参照.
- **3.** 一定限度のもと、負荷抵抗を 0% から 100%まで増加し、それぞれの発電電圧および発電電流を読み取る.

6 結果

6.1 開放電圧の照度依存性試験

測定結果を表1に示す。また、グラフを短絡電流の照度依存特性と共に図4に示す。

表1 解放電圧の照度依存特性

照度(目標値)[lx]	照度(実測値)[lx]	発生電圧[V]
100	1.01E+02	11.0
200	2.01E+02	13.7
300	3.04E + 02	14.7
400	4.02E+02	15.4
500	5.03E+02	15.8
600	5.98E + 02	16.1
700	7.11E+02	16.4
800	7.98E + 02	16.6
900	8.96E + 02	16.7
1000	1.05E+03	16.9
2000	2.10E+03	17.9
3000	2.99E+03	18.2
4000	3.97E + 03	18.5
5000	5.05E+03	18.7
6000	5.97E + 03	18.8
7000	6.97E + 03	18.9
8000	7.96E + 03	19.0
9000	9.06E + 03	19.1
10000	1.07E + 04	19.1
20000	2.05E + 04	19.5
最大値	2.55E+04	19.6

6.2 短絡電流の照度依存性試験

測定結果を表2に示す. また, グラフを解放電圧の照度依存特性と共に図4に示す.

表2	短絡雷流の	照度依存特性

照度(目標値)[lx]	照度(実測値)[lx]	発電電流[mA]
100	1.03E+02	3
200	2.01E+02	9
300	2.96E + 02	13
400	4.00E+02	18
500	4.92E+02	21
600	5.97E + 02	25
700	7.09E + 02	29
800	7.98E + 02	32
900	9.02E+02	35
1000	9.97E + 02	37
2000	1.97E + 03	63
3000	2.97E + 03	85
4000	4.01E+03	106
5000	5.09E + 03	127
6000	6.05E + 03	143
7000	7.00E + 03	158
8000	7.98E + 03	174
9000	9.03E+03	191
10000	1.00E + 04	205
20000	2.02E + 04	322
最大値	2.51E+04	379

図4 開放電圧及び短絡電流の照度依存特性

6.3 電圧電流特性の照度依存性試験

表3 電圧電流特性の照度依存特性 (200lx)

負荷抵抗	発電電圧[V]	発電電流[mA]	電力[mW]
0	2.3	8	18.4
5	2.2	9	19.8
10	2.1	9	18.9
15	2.0	8	16.0
20	2.0	9	18.0
25	1.9	9	17.1
30	1.6	9	14.4
35	1.5	9	13.5
40	1.4	8	11.2
45	1.3	8	10.4
50	1.2	8	9.6
55	1.0	9	9.0
60	0.9	9	8.1
65	0.8	9	7.2
70	0.7	9	6.3
75	0.6	9	5.4
80	0.5	9	4.5
85	0.3	9	2.7
90	0.2	9	1.8
95	0.1	9	0.9
100	0.1	1	0.1

表4 電圧電流特性の照度依存特性(2000lx)

負荷抵抗	発電電圧[V]	発電電流[mA]	電力[mW]
0	12.3	57	701.1
5	12.0	58	696.0
10	11.4	58	661.2
15	10.7	59	631.3
20	10.7	59	631.3
25	9.8	60	588.0
30	9.8	60	588.0
35	8.3	61	506.3
40	7.7	61	469.7
45	7.1	62	440.2
50	6.3	62	390.6
55	5.6	62	347.2
60	5.0	63	315.0
65	4.4	63	277.2
70	3.7	64	236.8
75	3.0	64	192.0
80	2.3	64	147.2
85	1.6	65	104.0
90	1.2	64	76.8
95	0.4	64	25.6
100	0.1	64	6.4

表5 電圧電流特性の照度依存特性(20000lx)

負荷抵抗	発電電圧[V]	発電電流[mA]	電力[mW]
0	19.1	90	1719.0
5	19.0	94	1786.0
10	18.9	99	1871.1
15	18.9	105	1984.5
20	18.8	111	2086.8
25	18.7	117	2187.9
30	18.6	130	2418.0
35	18.5	141	2608.5
40	18.4	153	2815.2
45	18.2	164	2984.8
50	18.0	184	3312.0
55	17.8	203	3613.4
60	17.5	225	3937.5
65	17.0	249	4233.0
70	15.8	281	4439.8
75	13.4	291	3899.4
80	10.2	298	3039.6
85	7.4	305	2257.0
90	5.1	309	1575.9
95	1.9	315	598.5
100	0.1	318	31.8

図5 電圧電流特性の照度依存特性

7 考察

開放電圧の照度依存性試験では、図3の開放電圧のグラフを見ると、照度をあげるとそれに伴い、発生電圧

も単調に上昇していくことがわかる。しかし、増加量は一定値ではなく、照度をあげるほど増加量は低下していくことが読み取れる。今回は実験器具の関係で25500lxまでの測定で終わったが、さらに大きい照度の光を当てると、発生電圧は20.0V付近で飽和していくと考えられる。

短絡電流の照度依存性試験では、図3の短絡電流のグラフを見ると、

表6

照度(目標値)[lx]	発生電圧[V]	発電電流[mA]	最大出力[mW]
100	11.0	3	33
200	13.7	9	123.3
300	14.7	13	191.1
400	15.4	18	277.2
500	15.8	21	331.8
600	16.1	25	402.5
700	16.4	29	475.6
800	16.6	32	531.2
900	16.7	35	584.5
1000	16.9	37	625.3
2000	17.9	63	1127.7
3000	18.2	85	1547
4000	18.5	106	1961
5000	18.7	127	2374.9
6000	18.8	143	2688.4
7000	18.9	158	2986.2
8000	19.0	174	3306
9000	19.1	191	3648.1
10000	19.1	205	3915.5
20000	19.5	322	6279