Voronoi Diagram

 Given a set P of n points in the plane (general position), its Voronoi diagram is a partition of the plane into n cells, each containing one point of P and everything closer to it than to any other point.

Delaunay Triangulation

- 3 points p_i , p_j , p_k in P form a triangle in DT(P) iff the unique circle through p_i , p_j , p_k contains no other point from P.
- 2 points p_i, p_j in P form an edge in DT(P) iff there exists a circle through p_i and p_j that contains no other point from P.

Constructing DT

- Construct VD(P) in O(nlogn) time and O(n) space and convert it to DT(P) in O(n) time.
- VD(P) algorithms are complex and can cause serious precision problems.
- DT(P) can be determined directly in $O(n^2)$ time.
 - Randomized version $O_e(n \log n)$.
 - Generalizes to 3D.

Constructing DT

O(n) Flips pr. Added Point

Locating a Triangle in O(n) Time

Flips in R³

Kinetic Delaunay Triangulation in R²

- n points with (piecewise) linear trajectories.
- Events:
 - Insertion and deletion (disregarded in the following).
 - Trajectory and/or speed change events (deletion followed by insertion).
 - Circle events: 4 points on a common circle.
 - Side events: 3 points on a common line where one half-plane contains no points. Can be considered as a special case of circle events (imagine everything inside a huge triangle with stationary corners).
- Simplifying assumption: No collisions, no pair of events occurs at the same time.

Incircle test

$$\begin{vmatrix} a_x & a_y & a_x^2 + a_y^2 & 1 \\ b_x & b_y & b_x^2 + b_y^2 & 1 \\ c_x & c_y & c_x^2 + c_y^2 & 1 \\ d_x & d_y & d_x^2 + d_y^2 & 1 \end{vmatrix}$$

- If this determinant is 0 then point d is inside the circle through points a, b, and c?
- Why?
- Assuming linear trajectories, roots of a 4-th degree polynomial need to be determined to find time t where these 4 points are cocircular.

Events – Kinetic DT in R²

- Determine DT at t = 0.
- Identify times for flip events for pairs af triangles sharing an edge and place these events on a heap. One certificate pr. edge.
- Repeat:
 - Remove top flip events from the heap and flip.
 - Delete future events involving one of the two deleted triangles (or use lazy deletion).
 - Identify times for up to 5 new flip events and place them on the heap.
- until the heap is empty or $t > t_{end}$

Kinetic DT in R²

- Responsive: Well, flips require O(1) time, 5 new certificates need to be added. Computing their failure time depends on trajectories. Linear trajectories involve finding roots of polynomials of at most 4-th degree.
- Compact: Yes, O(n) certificates at any time since DT is planar.
- Local: No, but expected degree of a vertex in DT is 6, so this is the expected number of certificates involving it.
- Efficient: Unsure. Some scheduled events can become inactive due to peigbboring flips

α-Complexes via Voronoi Diagrams

α-Complexes via Delaunay Triangulations

- 0-simplex=vertex, 1-simplex=edge, 2-simplex = triangle, 3-simplex = tetrahedron (in R³)
- k-simplex is short iff its smallest circumcircle has radius at most α.
- k-simplex is Gabriel iff its smallest circumcircle contains no other points.
- k-simplex of DT is in αC iff it short and Gabriel, or it is a face of another DT-simplex that is short and Gabriel.
- A face of a short simplex is short but a face of a Gabriel simplex is not necessarily Gabriel.

Events – Kinetic αC in R²

- Determine DT at t = 0.
- Short triangles of DT are automatically Gabriel.
 They and their faces are in αC.
- If an edge is not already in αC, it is checked if it is short and Gabriel. If so, it is added to αC.
- Times for flip and radius events are determined and stored in a heap.
- What about Gabriel events for edges? They are actually redundant.

Redundancy of Gabriel Events

- Any triangle of αC in R² is automatically Gabriel (otherwise it would not be in DT).
- Consider an edge ab of DT that is about to change from Gabriel to non-Gabriel or vice versa.
- At the time of transition, its smallest circumcircle goes through a and b and through a third vertex c.
- Δabc is short and Gabriel and therefore in αC.
 Hence, all faces of Δabc (including ab) are in αC.

Kinetic αC in R^2

- Place flip events for pairs of edge-sharing DT-triangles and radius events for DT-triangles and DT-edges on a heap.
- Repeat:
 - If next is a flip event, flip. If the original pair of triangles was short so is the new pair. If it was non-short, check if the new edge is short. Create 5 new flip events.
 - If it is a radius event and its simplex σ is to become
 - short: If σ is Gabriel, σ and all its faces are added to α C.
 - non-short: all faces of σ are short. Remove σ from αC (if it is in αC). If a face of σ is not Gabriel and has no other coface in αC , σ has to be removed from αC .
- until the heap is empty or t > tend

Certificate Failures

- Assuming piecewise-linear trajectories, finding the time when a radius certificate of an
 - Edge-sharing pair of DT-triangles fails, requires finding a root of a polynomial of degree 2.
 - triangle fails, requires finding a root of a polynomial of degree 5.
 - tetrahedron fails, requires finding a root of a polynomial of degree 8 (this is R³ case).

A-Complexes of Proteins

Amino Acid Chain

Backbone: disregard side chains and hydrogens.

From wikipedia

 C_{α} -trace: disregard all but C_{α} -atoms.

Folding

From Wikimedia Commons

20 Different Side Chains

0-5 degrees of freedom pr. side chain

lonbonded interactions

Potential Energy Function

U = Bond + Angle + Dihedral + van der Waals + Electrostatic^{1,2,3}

Bond

$$\sum_{i}^{bonds} K_{b,i} (b_i - b_{0,i})^2$$

van der Waals

$$\sum_{pairs·i,j} \left[\varepsilon_{ij} \left(\frac{r_{0,ij}}{r_{ij}} \right)^{12} - 2\varepsilon_{ij} \left(\frac{r_{0,ij}}{r_{ij}} \right)^{6} \right]$$

Angle

$$\sum_{i}^{bond} K_{\theta,i}(\theta_i - \theta_{0,i})$$

Electrostatic

$$332 \sum_{pairs \cdot i, j} \left(\frac{q_i q_j}{r_{ij}} \right)$$

Dihedral

$$\sum_{i}^{torsion} K_{\phi,i} \{1 - \cos[n_i (\phi_i - \phi_{0,i})]\}$$

- 1. Levitt M. Hirshberg M. Sharon R. Daggett V. Comp. Phys. Comm. (1995) 91: 215-231
- 2. Levitt M. et al. J. Phys. Chem. B (1997) 101: 5051-5061
- 3. Dynameomics: Protein Mechanics, Folding and Unfolding through Large Scale All-Atom Molecular Dynamics Simulations. David A. C. Beck. Valerie Daggett Research Group

α-Complexes for Rotating R²-Points

- Subset of points rotates around common point with the same circular velocity.
- Flip and radius events require solutions of second degree polynomials

α-Complexes for Rotating R³-Points

- Subset of points rotates around common axis with the same circular velocity.
- Flip and radius events require solutions of fourth degree polynomials.
- Radius events for tetrahedra with 2 rotating and two stationary points still refuses to be solved analytically.