MMM CLASSES

Sg $\rightarrow E \rightarrow B$ \sim V = vertical 2-plane bundle on E.

e(E) = Gysin(e(V)2) & H4(B)

For B=Sh compute by intersecting 2 generic sections with O-section, since O e is P. dual to section nO-section

@ U is P. dual to n

3 Gysin is P. dual to projection.

We will see: if E_1 diffeo. E_2 then $e_1(E_1) = e_1(E_2)$ e.g. Atiyah-Kodaira: $S_4 o M$ $S_{49} o M$ $S_{49} o M$ $S_{20} o M$ $S_{21} o S_{22} o S_{21} o S_{22} o S_{22}$

More generally: $e_i(E) = Gysin(e(v)^{i+1}) \in H^{Zi}(B)$

Compute by intersecting i+1 sections with O-section.

Thm. (Church-Farb-Thibault) ezi+1 geometric.

Want to show $e_i \neq 0$. Need $S_g \rightarrow M^{2i+2} \rightarrow B^{2i}$ with $e_i(M) \neq 0 \quad \forall g, i$.

Will use branched covers.

SIGNATURE

$$M = \text{closed}, \text{ oriented } 4k - \text{manifold}$$

$$\longrightarrow H^{2k}(M; \mathbb{Q}) \otimes H^{2k}(M; \mathbb{Q}) \longrightarrow H^{4k}(M; \mathbb{Q}) \approx \mathbb{Q}$$

$$\times \otimes \beta \longmapsto \times \cup \beta$$

bilin form, symmetric since 2k even.

T(M) = signature of this form: # pos. eigen vals - # neg. eigenvals

Rochlin:
$$\nabla(M^4) = 0 \iff M^4 = \partial W^5$$

Hirzebruch: $P_1(M^4) = 3\nabla(M^4)$ (baby case of H. ∇ formula)

$$P_{rop}$$
. $S_g \rightarrow E \rightarrow S_h$
 $\Rightarrow \langle e_i(E), S_h \rangle = \langle p_i(E), E \rangle (= # 3 \nabla (E))$

Cor. e, is geometric.

$$Pf \text{ of } Prop. \quad TE \cong V \oplus \Pi^* Sh$$

$$\Rightarrow p_1(E) = p_1(V \oplus \Pi^* Sh)$$

$$= p_1(V) + \Pi^* p_1(Sh)$$

$$= e(V)^2 + O \qquad \text{in general } p_1 = e^2$$

$$\Rightarrow \langle e_1(E), Sh \rangle = \langle Gysin(e(V)^2), Sh \rangle$$

$$= \langle e(V)^2, E \rangle \qquad \text{exercise:}$$

$$= \langle p_1(E), E \rangle \qquad \text{of } Gysin(\omega)(\pi) = \alpha(\pi^* \pi)$$

$$= \langle p_1(E), E \rangle \qquad \text{of } Gysin(\omega)(\pi) = \alpha(\pi^* \pi)$$

BRANCHED COVERS

A cyclic branched cover is a map $\widetilde{M} \stackrel{p}{\rightarrow} M$ that is a cyclic covering away from a codim 2 subman of M = ramification locus (can allow more complicated ram. locus, but we won't)

Althornbother deschiptions & p.e.M. I nod U. s.t. p-1(U) -> U is

1 trivial m-fold cover (m copies of U), or

2 quotient by order m rotation (m=degree of cover)

e.g.

Can sometimes get cyclic branched covers via group actions: Soy $74m \ CN$ by or press diffeos s.t. O fixed set has coolim 2, F=mnfld @ action free outside FThen N=N/74m is a manifold (check!) and $N \rightarrow N$ is cyclic b. cover Near F, proj looks like $F \times C \rightarrow F \times C$ $(p,z) \mapsto (p,z^m)$

Thm. Every closed, or. 3-man is a 3-fold branched cover over 53.

EXISTENCE OF BRANCHED COVERS

Prop. $M = \text{closed or. smooth } \widehat{man.}$ $B \subseteq M$ or. subman of codim 2.

If $[B] \in \text{Hn-2}(M)$ divis. by m in [An-2(M; 7]].

then $\exists m\text{-fold cyclic } \widehat{man}$. branched cover over M ramified along B.

Proof for M=53, B=K. Let S= Seifert surface \(\mu\) [S] \(\xi\) \(\mu\) \(\mu

(via $H_2(S^3, K) \rightarrow H_2(S^3-K, N(K)-K) \rightarrow H_2(S^3-N(K), \partial N(K))$ $\stackrel{P.D.}{\longrightarrow} H'(S^3-N(K)) \rightarrow H'(S^3-K)$

The elt of H^1 is signed intersection with S. An elt of $H^1(S^3-K)$ is a map $H_1(S^3-K) \to \mathbb{Z}$. Reduce mad any m, get a cover over $\% S^3-K$. Glue K into the cover:

This works in general. There is no Selfert surface per se, but there is a a class in A Hn-1 (M, \mathbb{Z}_m) with boundary B. Thun, elts of $H^1(M; \mathbb{Z}_m)$ are maps $H_1(M; \mathbb{Z}) \to \mathbb{Z}_m$, so can proceed as above.

We know the eft of H' is nontrivial by considering a small loop around B in M. It intersects A in one pt.

EXISTENCE OF BRANCHED COVERS II Vector Burdle Version.

Suppose [B] = m[A] in $H_{n-2}(M; \mathbb{Z})$ Let $[B]^*$, $[A]^*$ be P. duals. We know:

> Group of G'-bundles $\cong H^2(M; \mathbb{Z})$ on M under \otimes

Let E_B be G'-bundle corr. to E_B^* . This means E_B has a Section $S: M \to E_B$ s.t.

Im(s) n M = B.

Similarly, EA =>[A]*. By above isomorphism:

Define

$$f: E_A \longrightarrow E_B$$

$$V \longmapsto V \otimes \dots \otimes V = V^m$$

Set

$$\widetilde{M} = \int_{-1}^{-1} (|m(s)|).$$

Each pt of M-B has m preimages: the mth roots.

BRANCHED COVERS AND EULER CLASSES

A cyclic branched cover $\tilde{E} \stackrel{P}{=} E$ is a cyclic branched cover of surface bundles if the restriction of p to a (surface) fiber is a branched cover of surfaces onto a fiber of E.

Equivalently \tilde{E} is a cyclic branched cover over E s.t. ramification locus intersects each fiber of E in a O-manifold.

(use: the restriction of a (branched) cover to a subman. of base is a branched cover)

Prop. Let $\widetilde{E} \xrightarrow{P} E$ be a fiberwise cyclic branched covers over M with fiber genus $\frac{2g}{g} & g$. Then

(1) $p^* [D]^* = 2[D]^*$ D = ram. locus.

(2) $e(\tilde{V}) = p^* e(V) - [\tilde{D}]$

Note: (1) is just a fact about branched covers.

Pf of (1). pt 12013* //completed Astholy//4//worth bk
about As Mod Mobbles. Clear when D is a
0-manifold. In general, replace fundamental
class with Thom class of normal bundle.

Pf of (2). Clearly: $H^2(E) \xrightarrow{p^*} H^2(\widetilde{E})$ N(D) = tub. nbd. $H^2(E \setminus IntN(D)) \rightarrow H^2(\tilde{E} \setminus IntN(\tilde{D}))$ (check on the level of bundles). \Rightarrow e(V), $e(\tilde{V})$ have same image in lower right. Consider LES of pair: $H^{2}(\widetilde{E},\widetilde{E})$ Int $N(\mathfrak{D}) \longrightarrow H^{2}(\widetilde{E}) \longrightarrow H^{2}(\widetilde{E})$ Int $N(\mathfrak{D})) \longrightarrow ...$ Since $p^*e(V)$, $e(\tilde{V})$ have same image in they differ by elt of $H^2(\widetilde{E}, \widetilde{E} \setminus \text{Int} N(\widetilde{D})) \cong H^2(N(\widetilde{D}), \partial N(\widetilde{D}))$ $\cong H_{n-2}(\widetilde{D}) \cong \mathbb{Z}.$ Remains to compute this integer. Evaluate p*(e(V))+K[D]* and $e(\tilde{V})$ on fiber of \tilde{E} : $e(\tilde{V}) = 2 - 2(2g) = 2 - 4q$.

since fibers \longrightarrow $p^*(e(V))(52g) = 2(2-2g) = 4-4g$ map with

degree 2. $K[\tilde{D}]^*(Sg) = 2k \leftarrow \tilde{D}$ intersects each fiber in 2pts

Thm.
$$\widetilde{E} \stackrel{\rho}{\longrightarrow} E$$
 as above. Then:
 $e_i(\widetilde{E}) = 2e_i(E) - 3i(\widetilde{D}, \widetilde{D})$

$$e(\tilde{V}) = p^*(e(V)) - [\tilde{D}]^*$$

Squaring:

$$e(\tilde{V})^{2} = p^{*}(e(V)^{2}) - 2p^{*}(e(V))[\tilde{D}]^{*} + [\tilde{D}]^{*2}$$
Use $Prop(1) \rightarrow e_{1}(\tilde{E}) = 2e_{1}(E) - 2(e(\tilde{V})[\tilde{D}]^{*} + [\tilde{D}]^{*2})^{*} + [\tilde{D}]^{*2}$

$$= 2e_{1}(E) - i(\tilde{D}, \tilde{D}) - 2e(\tilde{V})[\tilde{D}]^{*}$$

Remains to Show: $e(\tilde{V})[\tilde{D}]^* = i(\tilde{D}, \tilde{D}).$

But since \widetilde{V} is transverse to \widetilde{D} at all points, its restriction to \widetilde{D} is isomorphic to the normal bundle N \widetilde{D}

$$\Rightarrow e(\widetilde{V})[\widetilde{D}]^* = e(\widetilde{V})(\widetilde{D})$$

= $e(N\widetilde{D})(\widetilde{D})$
= $i(\widetilde{D},\widetilde{D})$.

Yan

ATIYAH'S CONSTRUCTION

Will form a 2-fold branched cover over S129 × S3.

~> need a D with [D] even.

Start with two covers: S129

Key: $f^*=0$ on $H^1(S_3;7L_2)$ S_3 $h^*=0$ on $H^1(S_2;7L_2)$ S_3

cover corr. to TC1(S3) - H1(S3; Z2)

quotient by <I>

D is union of two graphs in Size x Sz:

"key" will >> [D] is even

Some features: O If n PIF = \$ since I has no fixed pts

2 Vertical bundle V (= pullback of TS3 via proj to S3)

is transverse to D

3 Projection $D \rightarrow S_3$ is a covering map (namely f).

@ Each S3-fiber intersects D in two pts.

2 -> VID = ND normal bundle

3 -> VID = TD tangent bundle.

⊕ ⇒ when we take the branched cover over D, fibers are S6.

Claim ([D] is even.

Let $[D]^*$ be P.dual, Z_2 $[D]_2^* \in H^2(S_{129} \times S_3)$ the mod 2 reduction $Need [D]_2^* = 0.$

 $\begin{array}{cccc}
D & & & & & & & & & \\
& & & & & & & \\
S_{129} \times S_3 & \longrightarrow & S_3 \times S_3 & \longrightarrow & S_2 \times S_2
\end{array}$

 $[D]_2^* = (f \times id)^* (h \times h)^* [\Delta]_2^*$

But $H^2(S_2 \times S_2) \cong H^2(S_2 \times pt) \oplus (H'(S_2) \otimes H'(S_2)) \oplus H^2(pt \times S_2)$

and $(h \times h)^*$ kills H^2 factors since h has deg 2 $(f \times id)^*$ kills middle factor since

 $f_*(H_1(S_{129}; \mathbb{Z})) \subseteq 2H_1(S_3; \mathbb{Z})$ by defn.

Thus \exists 2-fold cyclic branched cover $E \longrightarrow S_{129} \times S_3$ with ram. locus D. E has the structure of a surface bundle over S_{129}

Thm. e,(E)= 768 \$0.

Pf. By previous Thm:
$$e_1(E) = 2e_1(S_{129} \times S_3) - 3i(\widehat{D}, \widehat{D})$$

 $= -3i(\widehat{D}, \widehat{D})$
 $= -3/2i(D,D)$ by $Prop(1)$
 $= -3i(\Gamma_F, \Gamma_F)$

Recall from above that the normal bundle NIF is isomorphic to the tangent bundle TIF (both are \cong to VIF). So: