

Московский Государственный Университет Факультет вычислительной математики и кибернетики

«Отчет о выполнении задания на ПВС»

Гордеев Михаил студент группы 618/1 вариант 2

1 Математическая постановка дифференциальной задачи

В прямоугольной области $[0,1] \times [0,1]$ требуется найти дважды гладкую функцию u=u(x,y), удовлетворяющую дифференциальному уравнению

$$-\Delta u = 4(2 - 3x^2 - 3y^2), 0 < x < 1, 0 < y < 1$$

и дополнительному условию $u(x,y)=(1-x^2)^2+(1-y^2)^2$ во всех граничных точках (x,y) прямоугольника. Оператор Лапласа Δ определен равенством:

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Решением данной задачи является функция $u(x,y)=(1-x^2)^2+(1-y^2)^2.$

2 Результаты

2.1 Таблицы

Таблица 1: Результаты расчетов на ПВС IBM Blue Gene/P MPI

Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение S
128	1000×1000	0.14	38
256	1000×1000	0.1	53.2
512	1000×1000	0.09	59.1
128	2000×2000	0.53	119.42
256	2000×2000	0.29	218.24
512	2000×2000	0.2	316.45

Таблица 2: Результаты расчетов на ПВС IBM Blue Gene/P MPI/OpenMP

Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение S
128	1000×1000	0.09	140
256	1000×1000	0.07	180
512	1000×1000	0.07	180
128	2000×2000	0.25	104.96
256	2000×2000	0.16	164
512	2000×2000	0.12	218.67

2.2 Графики

Рис. 1: Приближенное решение, полученное программой

Рис. 2: Точное решение