

Technological Foundations of Artificial Intelligence

人工智能的技术基础

中国地质大学(北京) 叶 山 yes@cugb.edu.cn

传感器、云计算和物联网

大数据的相关技术

传感器

- 传感器 (sensor) 最早来自于感觉 (sense) 一词。
- 定义:把特定的测量信息按照一定规律转换成信号的装置, 从而满足信息的传输、处理、记录、显示和控制等需求。

传感器的分类

传感器的功能

测量与采集数据

• 数据收集装置

控制作用

• 声控、光控、温控器件

检测和诊断

- 判断装备是否在正确工作
- 追踪和控制系统的状态

可穿戴式监测

• 心跳、血压、呼吸

云计算

- 计算资源: CPU资源、内存资源、硬盘资源、网络资源等
- 云计算:通过互联网,以按需付费的方式提供的计算资源的服务。

云计算

云计算

对比条目	本地系统 On Premise	云计算 Cloud Computing
产业的可扩展性	产业扩张时,需要购买硬件 设备,开销大、不灵活。 因购买了硬件设备,经营规 模扩大之后,难以再收缩。	用多少资源就买多少资源。 产业规模的扩大或缩小更加 灵活。
服务器的容量	需要物理空间来安置服务器。 耗费电力,需要精心维护。	云计算的解决方案由云服务 的供给商来负责。 不用自己管理、维持服务器, 节约开支和设备空间。
数据安全	用传统的物理方法来保障安全(消防、安保、清洁), 安全性相对较弱。 当出现数据损失时,本地系统难以恢复数据,因此数据 丢失的风险较大。	数据分布式储存,多次备份 在云端,有更高的安全性。 云服务提供比较稳定的灾备 功能,恢复数据的概率较大。
维护成本	需要投入人力物力去维护硬 件设备和相关的软件,维护 成本较大。	不用亲自维护硬件设备,由 云服务提供商负责维护,能 明显降低成本和资源分配。

云计算的部署模式

- 大数据和人工智能通常会涉及到大规模的计算任务,需要大量的计算资源,所以云计算是大数据和人工智能的技术基础。
- 云计算可以按照部署模式分为三种
 - 公共云:云的基础设施在网上对公众开放,基础设施本身由云服务的 提供商管理(阿里云、百度云、亚马逊AWS、微软Azure、谷歌云)。
 - 私有云:云的基础设施隶属于一家机构(包括公司、学校、政府部门等),它可以由机构自己管理,也可以委托给第三方来维护。

云计算的服务模式

云计算的服务模式

laaS	PaaS	SaaS
服务器、存储、网络、 虚拟化部件	服务器、存储、网络、 虚拟化部件、操作系统、 中间件	服务器、存储、网络、 虚拟化部件、操作系统、 中间件、代码库、数据、 应用程序
操作系统、中间件、代 码库、数据、应用程序	代码库、数据、应用程 序	无 甚至可以提出个性化定 制需求
网络工程师、构架师、 科研人员、数据科学家	软件开发人员、数据分 析师	普通用户
亚马逊AWS、谷歌云、 微软Azure、IBM云、阿 里云、腾讯云、百度云	Red Hat OpenShift、 Heroku、Mapbox、微信 小程序、谷歌地球引擎、 大地量子	Gmail、新浪邮箱、网易 云音乐、Office365、微 信、QQ、百度网盘、高 德地图、滴滴出行、Esri ArcGIS Pro
	服务器、存储、网络、虚拟化部件 操作系统、中间件、代码库、数据、应用程序 网络工程师、构架师、科研人员、数据科学家 亚马逊AWS、谷歌云、微软Azure、IBM云、阿	服务器、存储、网络、虚拟化部件 服务器、存储、网络、虚拟化部件 虚拟化部件、操作系统、中间件 代码库、数据、应用程序 内络工程师、构架师、 对研人员、数据科学家 软件开发人员、数据分析师 软件开发人员、数据分析师 Red Hat OpenShift、Heroku、Mapbox、微信、小程序、谷歌地球引擎、

提供空地自 已建房子

毛坯房

精装修

物联网

物联网

物联网是一个由相互关联的电器设备组成的系统,这些设备与互联网相连,相互之间可以传输和接收数据。

物联网

物联网设备

物联网: 智慧农业

物联网的应用和发展

- 物联网应用领域:智能家居、可穿戴设备、智能汽车、智慧 农业、智慧电网、数字城市、智能物流、智慧工厂、智能医 疗等
- 2018年全世界联网的电器设备大约 230 亿台
- 根据预测, 2025 年联网的电器设备有 800 亿台
- 两种相关的服务模式:
 - HaaS (Hardware as a Service, 硬件即服务)
 - DaaS (Device as a Service, 设备即服务)

物联网与人工智能

- · 物联网是数据的重要来源,为AI提供了设施和数据的基础
- 人工智能的算法让物联网更加智能

并行计算与计算机视觉

并行计算技术

串行计算(serial computing)

- •一个问题被按逻辑先后顺序分解成为一系列离散的指令
- 这些指令被顺次执行
- 所有指令均在一个处理器上被执行
- 在任何时刻, 最多只有一个指令能够被执行

并行计算 (parallel computing)

- •一个问题被分解成为一系列可以同时执行的离散部分
- 每个部分可以进一步被分解成为一系列离散指令
- •来自每个部分的指令可以在不同的处理器上被同时执行
- 需要一个总体的控制/协作机制来对不同部分的指令进行调度

并行计算的适用前提

并行计算与GPU

- GPU (Graphic Processing Unit 图形处理器): 显卡的处理器, 是一种在计算机、游戏机、智能手机上负责图像运算和图形渲染的处理器。
- GPU最早设计用于3D 渲染。

并行计算与GPU

对比方面	CPU	GPU VS
全称	中央处理器	图形处理器
组成占比	执行单元占25% 控制单元占25% 缓存单元占50%	执行单元占90% 控制单元占5% 缓存单元占5%
核心数量	通常有4-8个核心	数百甚至上千个核心
核心性能及特点	单个核心更强大,内存也更多,能 在不同的指令集之间快速切换(低 延迟)	单个核心较弱,内存较少,但能获取 大量相同的指令,并高速推进任务 (高吞吐量)
执行特点	快速处理步骤和逻辑复杂的任务	将任务分解为简单且独立的部分,以 便同时处理
适用领域	更适用于串行计算,尤其是快速执 行需要复杂逻辑来控制的任务	专为并行计算而构建:有很多并行的 执行单元,而且图形处理是最典型的 并行计算案例

并行计算和人工智能

机器学习 (深度学习)

并行计算框架

- Hadoop: 基于Java语言的大数据框架,它把大数据集分派 到由普通计算机组成的集群中,作为多个节点进行存储。
 - 索引和跟踪数据,提高大数据处理和分析效率
 - 多节点备份,保障数据的安全
 - 数据储存HDFS 映射缩减 (map reduce) 资源管理 (YARN)
- Spark: 处理分布式存储数据的工具。
 - 不负责存储数据,只负责高效率的处理
 - 和分布式文件存储系统集成

并行计算与计算机视觉

数字图像处理:将图像信号进行加工,转换成数字信号,并利用计算机对其进行处理的过程。它是计算机视觉的基础。

色彩模型

色彩模型与色彩空间

图像滤波

通过滤镜来隐去某些不需要的视觉信息,让有用信息更突出

图像金字塔

图像金字塔:一种图像多尺度表达的方法,在这种方法中,图像信号被反复平滑和局部重新采样。

图像金字塔是尺度空间表示法和多分辨率分析法的前身。

中级图像处理

特征提取

特征提取包括特征检测和抓取两个步骤,是计算机视觉领域的核心技术。

特征检测:用计算机提取图像信息,决定图像的每一个像素点是否属于某一个图像特征(feature,或称要素)。

特征检测把像素点划分为由连续曲线或连续区域组成的不同子集。

什么是特征

特征是一个图像中有趣或有用的部分,往往和图像识别目的及图像所在领域相关。

一个图像分析的算法是否成功,往往由其使用和定义的特征决定。特征检测要满足可重复性:从同一场景的不同图像里,提取到的特征应该是相同的。

特征的常见类型

边缘(edge):图像中物体的轮廓。此处 图像具有不连续性(亮度急剧变化)。

斑点 (blob): 图像里某个属性 (颜色、亮度等) 和周围不同的区域。

角点(corner):局部邻域中,存在两个明显且方向不同的边缘。应用于运动检测、全景拼接、兴趣点发现。

脊(ridge):图像 里,平面转折处的长 条形物体被称为脊。 常用于遥感、医学等 图像的分析。

特征检测

特征抓取,检查图中的像素是否代表或属于某个特征。

- 基础方法:边缘检测、角点检测、斑点检测、脊检测、曲度 检测、运动检测
- 进阶方法: 模板匹配、霍夫变换、灵活变形分析、降维技术

图像分割

语义分割:用计算机根据语义去识别并分割图像,将其划分成若干个互不重叠区域的过程,每个区域具有某相似的性质,从而帮助理解图像整体的含义。该工作在像素层面上做分割。

目标检测:识别图像中存在的特定物体或内容,检测到它们的位置并标记,但不会在像素层面上进行处理。

常用于美术设计、广告传媒、无人驾驶、增强现实、安防监控等诸多行业。

语义分割 (semantic segmentation)

目标检测 (object detection)

图像分割

基于图论

基于深度语义

基于像素聚类

高级图像处理

数字图像生成

DALL-E

Pop Quiz

1. 以下哪一项是定序数据?

- A. 学历 | B. 性别 | C. 温度 | D. 颜色
- 2. 以下哪种云计算服务模式的个性化程度最高?
- A. IaaS | B. PaaS | C. SaaS | D. DaaS
- 3. 以下哪种数据记录不同时间点对同一个对象的观测?
- A. 截面数据 | B. 时序数据 | C. 面板数据 | D. 时空立方体
- 4. 以下哪一项不是人工智能发展的"三驾马车"之一?
- A. 数据 | B. 算法 | C. 算力 | D. 传感器
- 5.以下哪一项不属于大数据的"5V"之一?
- A. Value | B. Veracity | C. Viscosity | D. Volume

