Below are raw outputs of supervised learning models on ECA

	Model	precision_at_4	~	recall_at_4	
0	Logistic Regression		0.5000		0.5000
3	Extra Trees		0.5000		0.5000
4	Gradient Boosting		0.4375		0.4375
9	SVM (RBF)		0.4375		0.4375
2	Random Forest		0.3750		0.3750
7	KNN		0.3750		0.3750
13	MLP		0.3750		0.3750
11	LDA		0.3750		0.3750
8	SVM (Linear)		0.3750		0.3750
10	GaussianNB		0.3125		0.3125
5	AdaBoost		0.2500		0.2500
12	QDA		0.1875		0.1875
6	Hist Gradient Boosting		0.1875		0.1875
1	Decision Tree		0.1250		0.1250
15	LSTM		0.1250		0.1250
16	GRU		0.1250		0.1250
14	ARIMA		0.0625		0.0625

^	model ÷	Precision	÷	Accuracy		Recall	\$	AUC	0	-1score	\$	WEI	À	WEI_share	¢
	Logistic Regression		0.4000		0.9536		0.1250	0.9	382		0.1905		0.0643		1.0
1	Decision Tree		0.1053		0.9153		0.1250	0.5	382		0.1143		0.0847		1.0
2	Random Forest		0.3125		0.9399		0.3125	0.7	376		0.3125		0.0904		1.0
3	Extra Trees		0.8750		0.9727		0.4375	0.7	618		0.5833		0.0749		1.0
4	Gradient Boosting		0.3000		0.9344		0.3750	0.7	876		0.3333		0.0746		1.0
5	AdaBoost		0.3529		0.9426		0.3750	0.7	786		0.3636		0.3500		1.0
6	Hist Gradient Boosting		0.0000		0.9563		0.0000	0.8	292		0.0000		0.0618		1.0
7	KNN		1.0000		0.9617		0.1250	0.7	294		0.2222		0.0617		1.0
8	SVM (Linear)		0.0000		0.9508		0.0000	0.8	793		0.0000		0.0680		1.0
9	SVM (RBF)		0.6667		0.9590		0.1250	0.8	468		0.2105		0.0821		1.0
10	GaussianNB		0.1034		0.8934		0.1875	0.6	839		0.1333		0.1747		1.0
11	LDA		0.3333		0.9481		0.1875	0.9	362		0.2400		0.0630		1.0
12	QDA		0.1429		0.9153		0.1875	0.8	614		0.1622		0.0971		1.0
13	MLP		0.3333		0.9454		0.2500	0.9	261		0.2857		0.0537		1.0
14	ARIMA		0.0559		0.5219		0.6250	0.5	488		0.1026		0.4877		1.0
15	LSTM		0.0000		0.9563		0.0000	0.5	000		0.0000		0.0832		1.0
16	GRU		0.0000		0.9563		0.0000	0.5	000		0.0000		0.0740		1.6

From the results and plots, we can see that the extra tree model can perform best in predicting. So, we choose to evaluate that model.

== 26)24 results – Extr	a Trees :	=		
4 rows	✓ 4 rows × 4 cols				
÷	Extra Trees_prob		actual_peak ÷	is_CP ÷	timestamp
901		0.64250	22485.78	1	2024-06-20
900		0.53500	23851.82	1	2024-06-19
887		0.46875	18764.47	θ	2024-06-06
904		0.37500	19076.84	0	2024-06-23
	2/4 True CP in .04: 50.00%	month: 4	Precision@4: 50.00	0%	
4 rows	✓ 4 rows × 4 cols				
‡	Extra Trees_prob		actual_peak	is_CP ÷	timestamp ÷
942		0.80250	23355.86	1	2024-07-31
941		0.71500	22371.08	1	2024-07-30
940		0.61875	22244.97	1	2024-07-29
926		0.58625	21637.19	0	2024-07-15
	3/4 True CP in .04: 75.00%	month: 4	Precision@4: 75.00	0%	
4 rows	✓ 4 rows × 4 cols				
\$	Extra Trees_prob		actual_peak ‡	is_CP ÷	timestamp ÷
944		0.84125	22103.13	1	2024-08-02
943		0.79500	23179.24	1	2024-08-01
947		0.49375	20269.79	0	2024-08-05
945		0.40875	21899.00	θ	2024-08-03
	2/4 True CP in .04: 50.00%	month: 4	Precision@4: 50.00	0%	
4 rows	✓ 4 rows × 4 cols				
\$	Extra Trees_prob		actual_peak ÷	is_CP ÷	timestamp
992		0.20500	20886.45	1	2024-09-19
994		0.12250	18923.97	θ	2024-09-21
979		0.06625	18005.31	0	2024-09-06
983		0.05250	17733.50	0	2024-09-10
	1/4 True CP in .04: 25.00%	month: 4	Precision@4: 25.00)%	

For 2024's results, the model can achieve an average precision of 50% and an average recall of 50%. While in the previous algorithm, it cannot be evaluated on ECA, so almost every metric is 0.

	Original		Limited to June- September	Monte (Carlo
Accuracy		0		0	0.5
Recal1		0		0	0
Precision		0		0	0

This showed that the supervised model can perform much better than the old ones.

Next, below are raw outputs of supervised learning models on RTO/TESLA

	model	Precision *	Accuracy		Recall	AUC =	F1score =	WEI	WEI_share	
0	Logistic Regression	0.571	4	0.9645	0.7500	0.9680	0.6486	0.0564		
8	SVM (Linear)	0.666	7	0.9727	0.7500	0.9673	0.7059	0.0468		
10	GaussianNB	0.212	1	0.8525	0.8750	0.9646	0.3415	0.1460		
11	LDA	0.714	5	0.9727	0.6250	0.9573	0.6667	0.0631		
5	AdaBoost	0.461	5	0.9508	0.7500	0.9488	0.5714	0.3115		
3	Extra Trees	0.521	7	0.9590	0.7500	0.9477	0.6154	0.0604		
6	Hist Gradient Boosting	0.480	9	0.9536	0.7500	0.9429	0.5854	0.0539		
4	Gradient Boosting	0.407	4	0.9426	0.6875	0.9422	0.5116	0.0682		
2	Random Forest	0.461	5	0.9508	0.7500	0.9247	0.5714	0.0611		
7	KNN	0.631	5	0.9699	0.7500	0.9143	0.6857	0.0514		
12	QDA	0.137	7	0.8989	0.2500	0.8988	0.1778	0.1013		
13	MLP	0.133	5	0.9262	0.1250	0.8845	0.1290	0.0734		
9	SVM (RBF)	0.705	9	0.9754	0.7500	0.8811	0.7273	0.0581		
1	Decision Tree	0.272	7	0.9290	0.3750	0.6646	0.3158	0.0710		
15	LSTM	0.000	9	0.9563	0.0000	0.5000	0.0000	0.0833		
16	GRU	0.000	9	0.9563	0.0000	0.5000	0.0000	0.0794		
14	ARIMA	0.000	9	0.9508	0.0000	0.4971	0.0000	0.0895		

	Model	×.	procision at /		recall_at_4	~
			precision_at_4		recatt_at_4	
	Logistic Regression			0.7500		0.7500
8	SVM (Linear)			0.7500		0.7500
10	GaussianNB			0.7500		0.7500
11	LDA			0.6875		0.6875
9	SVM (RBF)			0.6250		0.6250
6	Hist Gradient Boosting			0.5625		0.5625
2	Random Forest			0.5625		0.5625
5	AdaBoost			0.5000		0.5000
3	Extra Trees			0.3750		0.3750
4	Gradient Boosting			0.3750		0.3750
7	KNN			0.3750		0.3750
1	Decision Tree			0.1875		0.1875
12	QDA			0.1875		0.1875
13	MLP			0.1875		0.1875
14	ARIMA			0.1250		0.1250
15	LSTM			0.1250		0.1250
16	GRU			0.1250		0.1250

From the results and plots, we can see that the SVM (Linear) model performs best in predicting. So, we choose to evaluate that model.

== 2024 r	esults — SVM (Lir	near) ≡	=					
4 rows ∨ 4								
SVM	(Linear)_prob		actual_peak	¢ \$	is_CP		timestamp	
900	0.9	991512		23851.82		1	2024-06-19	
899	0.9	976383		23097.18		1	2024-06-18	
901	0.8	894208		22485.78		1	2024-06-20	
898	0.8	814411		21647.62		1	2024-06-17	
Hits: 4/4 Recall@4:	True CP in mont 100.00%	th: 4	Precision@	4: 100.0	3%			
4 rows ∨ 4								
≎ SVM	(Linear)_prob		actual_peak	¢	is_CP		timestamp	
920	0.9	953414		21836.21		0	2024-07-09	
940	0.9	953346		22244.97		1	2024-07-29	
926	0.9	948989		21637.19		0	2024-07-15	
942	0.8	868142		23355.86		1	2024-07-31	
Hits: 2/4 Recall@4:	True CP in mont 50.00%	th: 4	Precision@	4: 50.00	6			
4 rows ✓ 4								
÷ SVM	(Linear)_prob		actual_peak	¢	is_CP		timestamp	
943	0.9	977480		23179.24		1	2024-08-01	
969	0.9	956275		22749.83		1	2024-08-27	
944	0.9	918841		22103.13		1	2024-08-02	
968	0.8	876354		22466.42		1	2024-08-26	
Hits: 4/4 Recall@4:	True CP in mont 100.00%	th: 4	Precision@	4: 100.0	3%			
4 rows 4								
SVM	(Linear)_prob		actual_peak	¢ ÷	is_CP		timestamp	
991	0.2	264484		20180.01		0	2024-09-18	
989	0.1	198206		21546.47		1	2024-09-16	
992	0.1	142151		20886.45		1	2024-09-19	
985	0.1	124292		19582.95		Θ	2024-09-12	
Hits: 2/4 Recall@4:	True CP in mont 50.00%	th: 4	Precision@	4: 50.00	6			

For 2024's results, the model can achieve an average precision of 75% and an average recall of 75%. For June and August, it can even achieve 100% accuracy.

	Original	Limited to June- September	Monte Carlo
Accuracy	0. 333333333	0. 333333333	0. 428571429
Recal1	0.6	0.6	0.6
Precision	0. 428571429	0. 428571429	0.6

While in the previous algorithm, both Recall and Precision are lower than in the new model. And the new model is even more accurate.

Though the models used for the datasets are different, we can find that the logistics regression model can achieve almost the second-best on both sides when evaluating normal power load, while maintaining the same precision and recall value when predicting 4CP. So, I think we can simply conclude that logistic regression is a better model in general evaluation.

15/08 Update

I tried to limit the training set to the top 10% of the whole dataset to make a relatively more balanced dataset. (Every month between June and September has 4 CP days, then it will be 16 in total. 16/365≈5%, assume all 4CP days are in these top 10%, then it will achieve a balance between the number of positive and negative labels.)

Then I found that this limitation on the training set can largely improve the performance of algorithms.

For models on TESLA/RTO:

Aggre	gated Precision@4 / Recall	_@4	(single number	per mod	el):	
17 rows						
	Model		precision_at_4		recall_at_4	
4	Gradient Boosting			0.9375		0.9375
3	Extra Trees			0.9375		0.9375
2	Random Forest			0.8750		0.8750
1	Decision Tree			0.8750		0.8750
0	Logistic Regression			0.7500		0.7500
6	Hist Gradient Boosting			0.7500		0.7500
8	SVM (Linear)			0.7500		0.7500
14	ARIMA			0.7500		0.7500
11	LDA			0.7500		0.7500
5	AdaBoost			0.6875		0.6875
7	KNN			0.6250		0.6250
9	SVM (RBF)			0.5625		0.5625
10	GaussianNB			0.2500		0.2500
12	QDA			0.1250		0.1250
13	MLP			0.1250		0.1250
16	GRU			0.0625		0.0625
15	LSTM			0.0000		0.0000

Both Gradient Boosting and Extra Trees achieve 0.9375 in precision and recall predictions for 4 CP days. This is much higher than the previous results. (0.75)

Then, for the ECA

Extra Trees also achieve a higher result. (Previous highest is 0.5)

And the details also showed that it performed very well.

So, we can conclude that the extra trees model is suitable for evaluating all 3 situations (ECA/RTO/TESLA)