General Purpose Transistors

NPN and PNP Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-323/SC-70 package which is designed for low power surface mount applications.

Features

• Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage MMBT3904WT1 MMBT3906WT1	V _{CEO}	40 -40	Vdc
Collector – Base Voltage MMBT3904WT1 MMBT3906WT1	V _{CBO}	60 -40	Vdc
Emitter – Base Voltage MMBT3904WT1 MMBT3906WT1	V _{EBO}	6.0 -5.0	Vdc
Collector Current – Continuous MMBT3904WT1 MMBT3906WT1	I _C	200 -200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation (Note 1) @T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

 Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

ON Semiconductor®

http://onsemi.com

SC-70 (SOT-323) CASE 419 STYLE 3

MARKING DIAGRAM

xx = AM for MMBT3904WT1

= 2A for MMBT3906WT1

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT3904WT1	SC-70/ SOT-323	3000/Tape & Reel
MMBT3904WT1G	SC-70/ SOT-323 (Pb-Free)	3000/Tape & Reel
MMBT3906WT1	SC-70/ SOT-323	3000/Tape & Reel
MMBT3906WT1G	SC-70/ SOT-323 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•		
Collector – Emitter Breakdown Voltage (Note 2) ($I_C = 1.0 \text{ mAdc}, I_B = 0$) ($I_C = -1.0 \text{ mAdc}, I_B = 0$)	MMBT3904WT1 MMBT3906WT1	V _{(BR)CEO}	40 -40	_ _	Vdc
Collector – Base Breakdown Voltage $(I_C = 10 \mu Adc, I_E = 0)$ $(I_C = -10 \mu Adc, I_E = 0)$	MMBT3904WT1 MMBT3906WT1	V _{(BR)CBO}	60 -40		Vdc
Emitter – Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$) ($I_E = -10 \mu Adc, I_C = 0$)	MMBT3904WT1 MMBT3906WT1	V _{(BR)EBO}	6.0 -5.0	-	Vdc
Base Cutoff Current ($V_{CE} = 30 \text{ Vdc}$, $V_{EB} = 3.0 \text{ Vdc}$) ($V_{CE} = -30 \text{ Vdc}$, $V_{EB} = -3.0 \text{ Vdc}$)	MMBT3904WT1 MMBT3906WT1	I _{BL}	_ _	50 –50	nAdc
Collector Cutoff Current $(V_{CE} = 30 \text{ Vdc}, V_{EB} = 3.0 \text{ Vdc})$ $(V_{CE} = -30 \text{ Vdc}, V_{EB} = -3.0 \text{ Vdc})$	MMBT3904WT1 MMBT3906WT1	I _{CEX}	_ _	50 –50	nAdc
ON CHARACTERISTICS (Note 2)					
DC Current Gain $ \begin{array}{l} (I_C=0.1 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=1.0 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=10 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=50 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=50 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=100 \text{ mAdc, } V_{CE}=1.0 \text{ Vdc}) \\ (I_C=-0.1 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ (I_C=-1.0 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ (I_C=-10 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ (I_C=-50 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ (I_C=-100 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ (I_C=-100 \text{ mAdc, } V_{CE}=-1.0 \text{ Vdc}) \\ \end{array} $	MMBT3904WT1 MMBT3906WT1	h _{FE}	40 70 100 60 30 60 80 100 60 30	- 300 - - - 300 -	-
Collector – Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}$, $I_B = 1.0 \text{ mAdc}$) ($I_C = 50 \text{ mAdc}$, $I_B = 5.0 \text{ mAdc}$) ($I_C = -10 \text{ mAdc}$, $I_B = -1.0 \text{ mAdc}$) ($I_C = -50 \text{ mAdc}$, $I_B = -5.0 \text{ mAdc}$)	MMBT3904WT1 MMBT3906WT1	V _{CE(sat)}	- - - -	0.2 0.3 -0.25 -0.4	Vdc
Base – Emitter Saturation Voltage $(I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc})$ $(I_C = 50 \text{ mAdc}, I_B = 5.0 \text{ mAdc})$ $(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	V _{BE(sat)}	0.65 - -0.65 -	0.85 0.95 -0.85 -0.95	Vdc

^{2.} Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$; Duty Cycle $\leq 2.0\%$.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic			Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS					
	MMBT3904WT1 MMBT3906WT1	fΤ	300 250	_ _	MHz
Output Capacitance ($V_{CB} = 5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$) ($V_{CB} = -5.0 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	MMBT3904WT1 MMBT3906WT1	C _{obo}	_ _	4.0 4.5	pF
Input Capacitance $(V_{EB}=0.5\ Vdc,\ I_C=0,\ f=1.0\ MHz)$ $(V_{EB}=-0.5\ Vdc,\ I_C=0,\ f=1.0\ MHz)$	MMBT3904WT1 MMBT3906WT1	C _{ibo}	_ _	8.0 10.0	pF
Input Impedance $ \begin{array}{l} \text{(V_{CE} = 10 Vdc, I_{C} = 1.0 mAdc, f = 1.0 kHz)} \\ \text{(V_{CE} = -10 Vdc, I_{C} = -1.0 mAdc, f = 1.0 kHz)} \end{array} $	MMBT3904WT1 MMBT3906WT1	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio $(V_{CE} = 10 \text{ Vdc}, I_{C} = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$ $(V_{CE} = -10 \text{ Vdc}, I_{C} = -1.0 \text{ mAdc}, f = 1.0 \text{ kHz})$	MMBT3904WT1 MMBT3906WT1	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
	MMBT3904WT1 MMBT3906WT1	h _{fe}	100 100	400 400	-
Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$) ($V_{CE} = -10 \text{ Vdc}$, $I_{C} = -1.0 \text{ mAdc}$, $f = 1.0 \text{ kHz}$)	MMBT3904WT1 MMBT3906WT1	h _{oe}	1.0 3.0	40 60	μmhos
Noise Figure $ \begin{array}{l} \text{Noise Figure} \\ \text{($V_{CE}=5.0$ Vdc, $I_{C}=100$ μAdc, $R_{S}=1.0$ k Ω, $f=1.0$ kHz)} \\ \text{($V_{CE}=-5.0$ Vdc, $I_{C}=-100$ μAdc, $R_{S}=1.0$ k Ω, $f=1.0$ kHz)} \end{array} $	MMBT3904WT1 MMBT3906WT1	NF		5.0 4.0	dB

SWITCHING CHARACTERISTICS

Characteristic	Condition	Symbol	Min	Max	Unit	
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc})$ $(V_{CC} = -3.0 \text{ Vdc}, V_{BE} = 0.5 \text{ Vdc})$	MMBT3904WT1 MMBT3906WT1	t _d	- -	35 35	ns
Rise Time	$(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ $(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _r	- -	35 35	
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ $(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _s	- -	200 225	ns
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _f	_ _	50 75	

MMBT3904WT1

^{*} Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

MMBT3904WT1

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CF} = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

MMBT3904WT1

h PARAMETERS

Figure 11. Input Impedance

IC, COLLECTOR CURRENT (mA)

Figure 12. Voltage Feedback Ratio

IC, COLLECTOR CURRENT (mA)

TYPICAL STATIC CHARACTERISTICS

Figure 13. DC Current Gain

MMBT3904WT1

Figure 14. Collector Saturation Region

Figure 15. "ON" Voltages

Figure 16. Temperature Coefficients

Figure 17. Capacitance

* Total shunt capacitance of test jig and connectors

Figure 18. Delay and Rise Time Equivalent Test Circuit

Figure 19. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

MMBT3906WT1

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

Figure 24. Current Gain

Figure 25. Output Admittance

I_C, COLLECTOR CURRENT (mA)

Figure 26. Input Impedance

Figure 27. Voltage Feedback Ratio

Figure 28. DC Current Gain

MMBT3906WT1

Figure 29. Collector Saturation Region

Figure 30. "ON" Voltages

Figure 31. Temperature Coefficients

Figure 32. Capacitance

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 **ISSUE M**

- DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
Α	0.80	0.90	1.00	0.032	0.035	0.040		
A1	0.00	0.05	0.10	0.000	0.002	0.004		
A2	0.7 REF			0.028 REF				
b	0.30	0.35	0.40	0.012	0.014	0.016		
С	0.10	0.18	0.25	0.004	0.007	0.010		
D	1.80	2.10	2.20	0.071	0.083	0.087		
E	1.15	1.24	1.35	0.045	0.049	0.053		
е	1.20	1.30	1.40	0.047	0.051	0.055		
e1	0.65 BSC			0.026 BSC				
L		0.425 REF			0.017 REF			
He	2.00	2 10	2.40	0.079	0.083	0.095		

STYLE 3:

PIN 1. BASE EMITTER COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.