FCC SAR Test Report

SESF1506050 Report No. Client AIR S.R.L.

Address San Nicolas 1450 (S2002QYN – Rosario, Santa Fe, Argentina)

GREEN CONNECT INTERNATIONAL CORP. Manufacturer :

4F., NO.87, LN.87, SEC.1, SIHCHUAN RD., BANCIAO DIST., NEW TAIPEI CITY **Address**

22063, TAIWAN

CX Phone Product

Brand CX

Model **CX502E**

FCC ID 2AFEA-CX502E

Standards FCC 47 CFR Part 2 (2.1093)/IEEE C95.1:1992/IEEE 1528-2003/KDB 865664 D01

v01r03/KDB648474 D04 v01r02/KDB 447498 D01 v05r02/KDB 616217 D04 v01r01

Test Date June 09th, 2015

Statement of Compliance:

The SAR values measured for the test sample are below the maximum recommended level of 1.6W/kg averaged over any 1g tissue according to FCC Acknowledge Data Base/ FCC 47CFR Part 2 (2.1093)/ IEEE Std.1528-2003.

The test result only corresponds to the tested sample. It is not permitted to copy this report, in part or in full, without the permission of the test laboratory.

The testing described in this report has been carried out to the best of our knowledge and ability, and our responsibility is limited to the exercise of reasonable care. This certification is not intended to believe the sellers from their legal and/or contractual obligations.

Report No.: SESF1506050

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

June 12th, 2015 Issued Date :

Page No. 1 of 40

Release Version

Report No.: SESF1506050

Report No.	Issue Date	Description
SESF1506050	2015-06-12	Initial release

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 2 of 40

Report No.: SESF1506050

June 12th, 2015

3 of 40

Issued Date :

Page No. :

Contents

1. Summary of Maximum SAR Value	
2. Description of Equipment under Test	5
3. Simultaneous Transmission Condition	
4. Basic restrictions and Standards	8
4.1. Test Standards	
4.2. Environment Condition	8
4.3. RF Exposure Limits	8
5. General Information	9
6. DASY5 Measurement System	10
6.1. Uncertainty of Inter-/Extrapolation and Averaging	11
6.2. DASY5 E-Field Probe	11
6.3. Data Acquisition Electronics (DAE)	12
6.4. Robot	12
6.5. Light Beam Unit	12
6.6. Measurement Server	13
6.7. SAM Phantom	13
6.8. Device Holder	14
6.9. Test Equipment List	15
7. The SAR Measurement Procedure	16
7.1. System Performance Check	16
7.2. Test Requirements	22
8. Conducted Power <average></average>	25
9. Analysis and Results	29
9.1. Antenna Location	29
9.2. SAR exclusion	30
9.3. Required Edges for SAR Testing	30
9.4. Estimated SAR	31
9.5. SAR Test Results Summary	32
10.Simultaneous Transmission Analysis	37
10.1. Simultaneous Transmission Scenario with Wi-Fi	37
10.2. Simultaneous Transmission Scenario with Bluetooth	37
10.3. Simultaneous Transmission Scenario with Wi-Fi & Bluetooth	37
10.4. Simultaneous Transmission Scenario (Hotspots)	38
10.5. Simultaneous Transmission Conclusion	39
11. Measurement Uncertainty	40
APPENDIX A. SAR System Verification Data	
APPENDIX B. SAR measurement Data	
APPENDIX C. Calibration Data for Probe, Dipole and DAE	

APPENDIX D. Photographs of EUT and Setup

1. Summary of Maximum SAR Value

Todininally of maximum of the va	
Highest Reported SAR	Head
GSM850	0.098
PCS1900	0.302
WCDMA Band II	0.331
WCDMA Band V	0.115
WIFI	0.019
	Body-Worn Accessory Configuration
	0.806
	Body-Worn Hotspot Configuration
	0.859
Highest Simultaneous Transmission SAR	Head
PCS1900 +802.11b	0.350
	Body
PCS1900 +802.11b	1.018

<Unit: W/kg>

Report No.: SESF1506050

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 4 of 40

2. <u>Description of Equipment under Test</u>

	ulpinent under rest	
Product Name	CX Phone	
Model No.	CX502E	
Brand Name	CX	
IMEI1	862172020906816	
IMEI2	862172020906817	
Antenna Type	Internal	
Device Category	Portable	
RF Exposure Environment	Uncontrolled	
<u>2G</u>		
Support Band	GSM850/PCS1900	
GPRS Type	Class B	
GPRS Class	Class 12	
Uplink	GSM 850: 824~849MHz	
	PCS 1900: 1850~1910MHz	
Downlink	GSM 850: 869~894MHz	
	PCS 1900: 1930~1990MHz	
Release Version	R99	
Type of modulation	GMSK for GSM/GPRS; 8PSK for EDGE	
Antenna Gain	GSM 850: 0dBi	
	PCS1900: 0dBi	
<u>3G</u>		
Support Band	WCDMA Band II/WCDMA Band V	
Uplink	WCDMA Band II: 1850~1910MHz	
	WCDMA Band V: 824~849MHz	
Downlink	WCDMA Band II: 1930~1990MHz	
	WCDMA Band V: 869~894MHz	
Release Version	Rel-6	
Type of modulation	QPSK	
Antenna Gain	WCDMA Band II: 0dBi	
	WCDMA Band V: 0dBi	

Report No.: SESF1506050

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 5 of 40

<u>Bluetooth</u>		
Bluetooth Frequency	2402~2480MHz	
Channel separation	1MHz/2MHz	
Modulation technology	GFSK, Pi/4QPSK, 8DPSK	
Antenna Gain	-1dBi	
<u>Wi-Fi</u>		
Hotspots Function	YES	
Tx Rate	802.11b: 1/2/5.5/11 Mbps	
	802.11g: 6/9/12/18/24/36/48/54 Mbps	
	802.11n: up to 150 Mbps	
Type of modulation	802.11b: DSSS; 802.11g/n: OFDM	
Wi-Fi Frequency	802.11b/g/n(20MHz): 2412 ~ 2462 MHz	
	802.11n(40MHz):2422~2452 MHz	
Antenna Gain	-1dBi	

Cerpass Technology Corp. Issued

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

Issued Date : June 12th, 2015

Report No.: SESF1506050

Page No. : 6 of 40

3. Simultaneous Transmission Condition

RF Exposure Condition	Capable Transmit Configurations			
Head	1.GSM 850/1900 (GPRS/EDGE) + WiFi 2.4GHz			
	2.WCDMA Band II/V (RMC)+ WiFi 2.4GHz			
Body-worn Accessory	1. GSM 850/1900 Voice +BT			
	2. GSM 850/1900(GPRS/EDGE) + BT			
	3. WCDMA Band II/V (Voice)+ BT			
	4. WCDMA Band II/V (RMC) + BT			
	5. GSM 850/1900(GPRS/EDGE) + WiFi 2.4GHz			
	6. WCDMA Band II/V (RMC)+ WiFi 2.4GHz			
Wireless Router	1. GSM 850/1900 (GPRS/EDGE) + WiFi 2.4GHz			
(Hotspot)	2. WCDMA Band II/V + WiFi 2.4GHz			

Notes:

- 1. GPRS/EDGE and WCDMA support hotspot mode.
- 2. By reason of their independent modules and antennas, when GSM/GPRS or WCDMA is on, BT function can also be at work.
- 3. WiFi 2.4GHz Radio cannot transmit simultaneously with Bluetooth Radio.
- 4. According to FCC KDB Publication 447498 D01v05r02 section5.3, transmitter are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneously transmission analysis.

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 7 of 40

4. Basic restrictions and Standards

4.1. Test Standards

- 1. IEEE 1528-2003
- 2. FCC KDB Publication 447498 D01 General RF Exposure Guidance v05r02
- 3. FCC KDB Publication 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- 4. FCC KDB Publication 616217 D04 SAR for laptop and tablets v01r01
- 5. FCC KDB Publication 648474 D04 D04 Handset SAR v01r02
- 6. FCC KDB Publication 941225 D01 3G SAR Procedures v03

4.2. Environment Condition

Item	Target	Measured	
Ambient Temperature(℃)	18~25	21.5±2	
Temperature of Simulant(℃)	20~22	21±2	
Relative Humidity(%RH)	30~70	52	

4.3. RF Exposure Limits

Human Exposure	Basic restrictions for electric, magnetic and electromagnetic fields. (Unit in mW/g or W/kg)		
Spatial Peak SAR ¹ (Head and Body)	1.60		
Spatial Average SAR ² (Whole Body)	0.08		
Spatial Peak SAR ³ (Arms and Legs)	4.00		

Notes:

- 1. The Spatial Peak value of the SAR averaged over any 1gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 2. The Spatial Average value of the SAR averaged over the whole body.
- 3. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over appropriate averaging time.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 8 of 40

5. **General Information**

Our Lab,

Test Site	Cerpass Technology (Suzhou) Co.,Ltd
Test Site Location	No.66,Tangzhuang Road, Suzhou Industrial Park, Jiangsu 215006, China

Report No.: SESF1506050

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 9 of 40

6. DASY5 Measurement System

Figure 2.1 SPEAG DASY5 System Configurations

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic(DAE)attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter(ECO)performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows 7
- DASY5 software
- Remove control with teach pendant additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

10 of 40

Page No.

6.1. <u>Uncertainty of Inter-/Extrapolation and Averaging</u>

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$\begin{split} f_1(x,y,z) &= A e^{-\frac{z}{2\alpha}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right) \\ f_2(x,y,z) &= A e^{-\frac{z}{\alpha}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{\alpha}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right) \\ f_3(x,y,z) &= A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{\alpha}} + \frac{a^2}{2(a+2z)^2} \right) \end{split}$$

6.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

Model	EX3DV4		
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)		
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)		
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm		
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.		

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

11 of 40

Page No.

6.3. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Report No.: SESF1506050

6.4. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

6.5. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 12 of 40

6.6. Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

Report No.: SESF1506050

6.7. SAM Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The ELI4 Phantom also is a fiberglass shell phantom with 2mm shell thickness. It has 30 liters filling volume, and with a dimension of 600mm for major ellipse axis, 400mm for minor axis. It is intended for compliance testing of handheld and body-mounted wireless devices in frequency range of 30 MHz to 6GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 13 of 40

6.8. <u>Device Holder</u>

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report No.: SESF1506050

The laptop extension is lightweight and made of POM, acrylic glass and foam. It fits easily on upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 14 of 40

Issued Date : June 12th, 2015

6.9. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	5P6VA1/A/01	only once
Robot Controller	Stäubli	CS8C	5P6VA1/C/01	only once
Dipole Validation Kits	Speag	D835V2	4d120	2015.06.16
Dipole Validation Kits	Speag	D1900V2	5d142	2015.06.18
Dipole Validation Kits	Speag	D2450V2	869	2015.06.13
SAM ELI Phantom	Speag	SAM	1211	N/A
Laptop Holder	Speag	SM LH1 001CD	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	918	2015.12.29
E-Field Probe	Speag	EX3DV4	3661	2016.04.24
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183W-S+	MN136701248	2015.09.03
Directional Coupler	Agilent	778D	MY52180185	2015.09.03
Directional Coupler	Agilent	772D	MY52180104	2015.09.03
Spectrum Analyzer	R&S	FSP40	100324	2016.03.23
Vector Network	Agilent	E5071C	MY4631693	2016.01.15
Signal Generator	R&S	SML	103287	2016.03.09
Power Meter	BONN	BLWA0830-160/100/40D	76659	2015.11.10
AUG Power Sensor	R&S	NRP-Z91	100384	2016.03.09

Cerpass Technology Corp. Issued Date : J

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

sued Date : June 12th, 2015

15 of 40

Page No. :

7. The SAR Measurement Procedure

7.1. System Performance Check

7.1.1 <u>Purpose</u>

- 1. To verify the simulating liquids are valid for testing.
- 2. To verify the performance of testing system is valid for testing.

7.1.2 Tissue Dielectric Parameters for Head and Body Phantoms

Target Frequency	Head		Body	
(MHz)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
850	41.5	0.92	55.2	0.99
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5200	36.0	4.66	49.0	5.30
5600	35.5	5.07	48.5	5.77
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 16 of 40

7.1.3 <u>Tissue Calibration Result</u>

■The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Assessment Kit and Agilent Vector Network Analyzer E5071C.

Report No.: SESF1506050

Head Tissue Simulant Measurement											
Frequency	Description	Dielectric F	Parameters	Tissue Temp.							
[MHz]	Description	٤,	σ [s/m]	[°C]							
	Reference result	41.50	0.90	NI/A							
835MHz	± 5% window	39.43 to 43.58	0.86 to 0.95	N/A							
	06-09-2015	41.50	0.90	21.0							
	Reference result	39.50	1.45	NI/A							
1900MHz	± 5% window	38.00 to 42.00	1.33 to 1.47	N/A							
	06-09-2015	39.50	1.45	21.0							
	Reference result	37.95	1.88	NI/A							
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	N/A							
	06-09-2015	37.95	1.80	21.0							

Body Tissue Simulant Measurement										
Frequency	Description	Dielectric F	Parameters	Tissue Temp.						
[MHz]	Description	ε _r	σ [s/m]	[°C]						
	Reference result	55.20	0.97	N/A						
835MHz	± 5% window	52.44 to 57.96	0.92 to 1.02	IN/A						
	06-09-2015	55.80	0.98	21.0						
	Reference result	51.10	1.50	N/A						
1900MHz	± 5% window	50.64 to 55.97	1.44 to 1.60	IN/A						
	06-09-2015	51.10	1.50	21.0						
	Reference result	50.68	1.95	N/A						
2450MHz	± 5% window	50.065 to 55.335	1.8525 to 2.0475	IN/A						
	06-09-2015	50.68	1.95	21.0						

[■]Refer to KDB 865664 D01 v01r03, The depth of body tissue-equivalent liquid in a phantom must be \geq 15.0 cm with \leq ± 0.5 cm variation for SAR measurements \leq 3 GHz and \geq 10.0 cm with \leq ± 0.5 cm variation for measurements > 3 GHz.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 17 of 40

7.1.4 System Performance Check Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and the system performance check. They are read-only document files and destined as fully defined but unmeasured masks, so the finished system performance check must be saved under a different name. The system performance check document requires the SAM Twin Phantom or ELI4 Phantom, so the phantom must be properly installed in your system. (User defined measurement procedures can be created by opening a new document or editing an existing document file). Before you start the system performance check, you need only to tell the system with which components (probe, medium, and device) you are performing the system performance check; the system will take care of all parameters.

Report No.: SESF1506050

- The Power Reference Measurement and Power Drift Measurement jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the Dipole output power. If it is too high (above ±0.2 dB), the system performance check should be repeated;
- The Surface Check job tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ±0.1mm). In that case it is better to abort the system performance check and stir the liquid;
- The Area Scan job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable;
- The Zoom Scan job measures the field in a volume around the peak SAR value assessed in the previous Area Scan job (for more information see the application note on SAR evaluation). If the system performance check gives reasonable results. The dipole input power(forward power) was 250mW, 1 g and 10 g spatial average SAR values normalized to 1W dipole input power give reference data for comparisons and it's equal to 10x(dipole forward power). The next sections analyze the expected uncertainties of these values, as well as additional checks for further information or troubleshooting.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 18 of 40

7.1.5 System Performance Check Setup

7.1.6 Validation Dipoles

The dipoles use is based on the IEEE Std.1528-2003 and FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03standard, and is complied with mechanical and electrical specifications in line with the requirements of both EN62209-1 and EN62209-2. The table below provides details for the mechanical and electrical specifications for the dipoles.

Report No.: SESF1506050

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No.

19 of 40

Issued Date :

June 12th, 2015

7.1.7 Result of System Performance Check: Valid Result

System Performance Check at 835MHz, 1900MHz, 2450MHz for Head.

Validation Dipole: D835V2-SN: 4d120

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
	Reference result	9.29	6.00	
835 MHz	± 10% window	8.36 to 10.22	5.4 to 6.6	21.0
	06-09-2015	10.0	6.6	

Report No.: SESF1506050

Validation Kit: D1900V2-SN: 5d142

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
1900MHz	Reference result ± 10% window	40.5 36.45 to 44.55	21.2 19.08 to 23.32	21.0
	06-09-2015	38.0	19.76	

Validation Kit: D2450V2-SN: 869

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450MHz	Reference result ± 10% window	52.8 47.52 to 58.08	24.8 22.32 to 27.28	21.0
2430WHZ	06-09-2015	55.2	25.52	21.0

Note: All SAR values are normalized to 1W forward power.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 20 of 40

System Perfo	ormance Check at 835	MHz, 1900MHz, 2450N	/IHz for Body.								
Validation Dipole: D835V2-SN: 4d120											
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]							
835 MHz	Reference result ± 10% window	9.47 8.52 to 10.42	6.23 5.61 to 6.85	21.0							
	06-09-2015	9.64	6.16								
Validation Kit	:: D1900V2-SN: 5d142										
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]							
1900MHz	Reference result ± 10% window	40.4 36.36 to 44.44	21.3 19.17 to 23.43	21.0							
	06-09-2015	38.64	20.20								
Validation Kit	:: D2450V2-SN: 869										
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]							

50.3

45.27 to 55.33

52.8

23.6

21.24 to 25.96

24.32

Note: All SAR values are normalized to 1W forward power.

Reference result

± 10% window

06-09-2015

Cerpass Technology Corp.

2450MHz

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No.

21 of 40

June 12th, 2015

Issued Date :

Report No.: SESF1506050

21.0

7.2. <u>Test Requirements</u>

7.2.1 <u>Test Procedures</u>

Step 1 Setup a Connection

First, engineer should record the conducted power before the test. Then establish a call in handset at the maximum power level with a base station simulator via air interface, or make the EUT estimate by itself in testing band. Place the EUT to the specific test location. After the testing, must export SAR test data by SEMCAD. Then writing down the conducted power of the EUT into the report, also the SAR values tested.

Step 2 Power Reference Measurements

To measure the local E-field value at a fixed location which value will be taken as a reference value for calculating a possible power drift.

Step 3 Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01v01r01

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5\pm1~\mathrm{mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

June 12th, 2015 Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 22 of 40

Step 4 Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 v01r03

		1	≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform	grid: Δz _{Zoem} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	tial resolution, mal to phantom face graded grid		≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz; ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
			≤ 1.5·Δz	z _{Zoom} (n-1)
Minimum zoom scan volume			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 5 Power Drift Measurements

Repetition of the E-field measurement at the fixed location mentioned in Step 1 to make sure the two results differ by less than ± 0.2 dB.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 23 of 40

When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.2.2 Test Channel

Per FCC KDB 941225 D03 v03, When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is \leq 1.2 W/kg, SAR measurement is not required for the secondary mode.

Report No.: SESF1506050

Here are HSDPA/HSUPA sub-test setups as show blow, per FCC KDB 941225 D03 v03:

Sub-test	β_e	β_d	β _d (SF)	β_c/β_d	$\beta_{ls}^{(I)}$	CM (dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15(3)	15/15 ⁽³⁾	64	12/15(3)	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$.

Note 3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Sub- test	βε	βα	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15(3)	15/15 ⁽³⁾	64	11/15(3)	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15(4)	15/15(4)	64	15/15(4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

Note 2: CM = 1 for β_c/β_d =12/15, β_{hc}/β_c=24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} cannot be set directly; it is set by Absolute Grant Value.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 24 of 40

Conducted Power<Average>

■ <u>Band850</u>

Mode	Frequency Average Burst <mhz> Power<dbm></dbm></mhz>		Duty Cycle Factor <db></db>	Frame Power <dbm></dbm>	Max. Tune-up Power(dBm)	Scaling Factor
	824.2	32.02	9	23.02	32.5	1.12
GSM850	836.6	32.36	9	23.36	32.5	1.03
	848.8	32.29	9	23.29	32.5	1.05
	824.2	31.82	9	22.82	32.0	1.04
GPRS850(1slot)	836.6	31.98	9	22.98	32.0	1.00
	848.8	31.85	9	22.85	32.0	1.04
	824.2	30.41	6	24.41	31.0	1.15
GPRS850(2slot)	836.6	30.52	6	24.52	31.0	1.12
	848.8	30.45	6	24.45	31.0	1.14
	824.2	28.05	4.25	23.80	28.5	1.11
GPRS850(3slot)	836.6	28.26	4.25	24.01	28.5	1.06
	848.8	28.11	4.25	23.86	28.5	1.09
	824.2	26.64	3	23.64	27.0	1.09
GPRS850(4slot)	836.6	26.71	3	23.71	27.0	1.07
	848.8	26.58	3	23.58	27.0	1.10
	824.2	28.25	9	19.25	28.0	0.94
EDGE850(1slot)	836.6	28.23	9	19.23	28.0	0.95
	848.8	28.19	9	19.19	28.0	0.96
	824.2	27.92	6	21.92	28.0	1.02
EDGE850(2slot)	836.6	27.88	6	21.88	28.0	1.03
	848.8	27.83	6	21.83	28.0	1.04
	824.2	26.26	4.25	22.01	26.5	1.06
EDGE850(3slot)	836.6	26.21	4.25	21.96	26.5	1.07
	848.8	26.15	4.25	21.90	26.5	1.08
	824.2	25.92	3	22.92	26.0	1.02
EDGE850(4slot)	836.6	25.94	3	22.94	26.0	1.01
	848.8	25.88	3	22.88	26.0	1.03
SIM2	_					-
GSM850	824.2	32.33	9	23.33	33.0	1.17

Note:

- 1. Scaling Factor = Max. Power (mW) / AVG Burst Power (mW); Max. Power is the tune-up power.
- 2. This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.
- 3. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged powers were calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 25 of 40

■ Band1900

Mode	Mode I ; , I		. , , , , , , , , , , , , , , , , , , ,			
	1850.2	28.44	9	19.44	29.0	1.14
PCS1900	1880	28.89	9	19.89	29.0	1.03
	1909.8	28.68	9	19.68	29.0	1.08
	1850.2	28.45	9	19.45	29.0	1.14
GPRS1900(1slot)	1880	28.81	9	19.81	29.0	1.04
	1909.8	28.55	9	19.55	29.0	1.11
	1850.2	27.42	6	21.42	28.0	1.14
GPRS1900(2slot)	1880	27.58	6	21.58	28.0	1.10
	1909.8	27.45	6	21.45	28.0	1.14
	1850.2	25.14	4.25	20.89	25.5	1.09
GPRS1900(3slot)	1880	25.22	4.25	20.97	25.5	1.07
	1909.8	25.19	4.25	20.94	25.5	1.07
	1850.2	24.15	3	21.15	24.5	1.08
GPRS1900(4slot)	1880	24.21	3	21.21	24.5	1.07
	1909.8	24.18	3	21.18	24.5	1.08
	1850.2	26.49	9	17.49	27.0	1.12
EDGE1900(1slot)	1880	26.38	9	17.38	27.0	1.15
	1909.8	26.31	9	17.31	27.0	1.17
	1850.2	25.29	6	19.29	26.0	1.18
EDGE1900(2slot)	1880	25.26	6	19.26	26.0	1.19
	1909.8	25.18	6	19.18	26.0	1.21
	1850.2	24.27	4.25	20.02	25.0	1.18
EDGE1900(3slot)	1880	24.24	4.25	19.99	25.0	1.19
	1909.8	24.21	4.25	19.96	25.0	1.20
	1850.2	23.29	3	20.29	24.0	1.18
EDGE1900(4slot)	1880	23.18	3	20.18	24.0	1.21
	1909.8	23.14	3	20.14	24.0	1.22
SIM2						
PCS1900	1850.2	28.86	9	19.86	33.0	2.59

Note:

- 1. Scaling Factor = Max. Power (mW) / AVG Burst Power (mW); Max. Power is the tune-up power.
- 2. This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.
- 3. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged powers were calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 26 of 40

■ WCDMA

	0000		(Conducted Po	wer (dBm)			
Mode	3GPP Subtest	Band II ((1900MHz) Ch	nannel	Band V	MPR		
	Sublest	9262	9400	9538	4132	4183	4233	
WCDMA R99	1	22.33	22.39	22.23	22.17	22.23	22.28	N/A
	1	22.09	22.11	22.13	22.06	22.13	22.09	0
Rel5 HSDPA	2	20.86	20.92	20.81	21.34	21.42	21.46	0
Reis HSDFA	3	20.34	20.37	20.26	20.22	20.27	20.23	0.5
	4	20.08	20.15	20.12	20.08	20.13	20.15	0.5
	1	22.56	22.59	22.38	22.87	22.40	22.58	0.0
	2	21.19	21.24	21.12	21.27	21.31	21.26	2.0
Rel6 HSUPA	3	20.36	20.39	20.23	20.33	20.45	20.32	1.0
	4	19.82	19.89	19.71	19.97	19.89	19.84	2.0
	5	19.26	19.29	19.16	19.34	19.42	19.32	0.0

Report No.: SESF1506050

Mode	Band II <1900MHz> Channel	Average Burst Power <dbm></dbm>	Max. Tune-up Power <dbm></dbm>	Scaling Factor
	9262	22.33	23.0	1.17
R99 WCDMA	9400	22.39	23.0	1.15
	9538	22.23	23.0	1.19
	9262	22.09	23.0	1.23
Rel5 HSDPA	9400	22.11	23.0	1.23
	9538	22.13	23.0	1.22
	9262	22.56	23.0	1.11
Rel6 HSUPA	9400	22.59	23.0	1.10
	9538	22.38	23.0	1.15

Mode	Band V<850MHz> Channel	Average Burst Power <dbm></dbm>	Max. Tune-up Power <dbm></dbm>	Scaling Factor
	4132	22.17	23.0	1.21
WCDMA	4183	22.23	23.0	1.19
	4233	22.28	23.0	1.18
	4132	22.06	23.0	1.24
HSDPA	4183	22.13	23.0	1.22
	4233	22.09	23.0	1.23
	4132	22.87	23.0	1.03
HSUPA	4183	22.40	23.0	1.15
	4233	22.58	23.0	1.10

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 27 of 40

■ WIFI

Mode	Channel	Average Burst Power <dbm></dbm>	Max. Tune-up Power <dbm></dbm>	Scaling Factor	Duty Cycle	DC Factor
	2412	14.07	14.5	1.10	0.99	1.01
802.11b	2437	13.71	14.5	1.20	0.99	1.01
2462	13.57	14.5	1.24	0.99	1.01	
	2412	9.94	10.0	1.01	0.99	1.01
802.11g	2437	9.64	10.0	1.09	0.99	1.01
	2462	8.94	10.0	1.28	0.99	1.01
	2412	11.85	12.0	1.04	0.99	1.01
802.11n(HT20)	2437	11.57	12.0	1.10	0.99	1.01
	2462	10.84	12.0	1.31	0.99	1.01
	2412	9.23	11.0	1.50	0.99	1.01
802.11n(HT40)	2437	10.61	11.0	1.09	0.99	1.01
	2462	8.89	11.0	1.63	0.99	1.01

Report No.: SESF1506050

■ Max. Bluetooth Power

Mode	Channel	Max. Average Burst Power <dbm></dbm>	Max. Tune-up Power <dbm></dbm>	Scaling Factor
	Low	-5.814	-5.0	1.21
BT 3.0 /1M	Mid	-6.600	-5.0	1.45
	High	-6.825	-5.0	1.52

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 28 of 40

9. Analysis and Results

9.1. Antenna Location

Rear Of EUT Top

Antonno		Antenna Distance to Edges(mm)											
Antenna	Back	Тор	Left-side	Right-side	Bottom								
GSM/WCDMA	<5	124	14	<5	<5								
WIFI/BT	<5	<5	27	19	90								

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 29 of 40

Issued Date : June 12th, 2015

9.2. SAR exclusion

■ Bluetooth

Per FCC KDB 447498 D01v05r02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{\textit{Max Power of Channel(mW)}}{\textit{Test Separation Distance(mm)}} \times \sqrt{\textit{Frequency(GHz)}} \leq 3.0$$

Based on the maximum conducted power and the antenna to use separation distance, Max. Average output power Bluetooth are lower the Pre, therefore BT SAR is not required;

$$[(0.32mW/5)*\sqrt{2.441}] = 0.01<3.0$$
, Bluetooth for Head, Body.

Note: 0.32mW comes from -5.0dBm

■ Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is capable of QPSK HSUPA/HSDPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA/HSDPA in KDB 941225 D01 v03.

When the user utilizes multiple services in UMTS 3G mode, it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

9.3. Required Edges for SAR Testing

Test Mode	Back	Тор	Left side	Right side	Bottom
Band850	Yes	No	Yes	Yes	Yes
Band1900	Yes	No	Yes	Yes	Yes
WCDMA Band II	Yes	No	Yes	Yes	Yes
WCDMA Band V	Yes	No	Yes	Yes	Yes
WIFI	Yes	Yes	Yes	Yes	No
Bluetooth	No	No	No	No	No

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 30 of 40

9.4. Estimated SAR

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is≤1.6W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05r02 4.3.2 2, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Report No.: SESF1506050

Estimated SAR =
$$\frac{\sqrt{f(GHz)}}{7.5} * \frac{(Max \ Power \ of \ channel, \ mW)}{Min. \ Separation, \ mm}$$

Modo	Frequency	Maximum Power	Separation Distance	Estimated SAR	
Mode	Mode [MHz]	[dBm]	[mm]	[W/kg]	
Bluetooth	2441	-5.0	5	0.013	

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 31 of 40

SAR Test Results Summary 9.5.

■Band 850MHz Head

Test Mode	Test Position Head	СН.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Left-Check	128	824.2	Fixed	0	32.02	32.50	1.15	N/A	N/A	N/A
	Left-Check	190	836.6	Fixed	0	32.36	32.50	1.05	-0.06	0.093	0.098
	Left-Check	251	848.8	Fixed	0	32.29	32.50	1.14	N/A	N/A	N/A
	Left-Tilt	190	836.6	Fixed	0	32.36	32.50	1.05	-0.05	0.051	0.054
GSM85	Right-Check	128	824.2	Fixed	0	32.02	32.50	1.15	N/A	N/A	N/A
0	Right-Check	190	836.6	Fixed	0	32.36	32.50	1.05	-0.02	0.064	0.067
	Right-Check	251	848.8	Fixed	0	32.29	32.50	1.14	N/A	N/A	N/A
	Right-Tilt	190	836.6	Fixed	0	32.36	32.50	1.05	0.04	0.048	0.050
	SIM2										
	Left-Check	190	836.6	Fixed	0	32.33	32.50	1.07	0.17	0.085	0.091

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

■ Band 850MHz Body

Test Mode	Test Position Body	СН.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune- up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Back	128	824.20	Fixed	10	32.02	32.50	1.15	N/A	N/A	N/A
GSM850	Back	190	836.60	Fixed	10	32.36	32.50	1.05	0.02	0.283	0.30
GSIVIOSO	Back	251	848.80	Fixed	10	32.29	32.50	1.14	N/A	N/A	N/A
	Front	190	836.60	Fixed	10	32.36	32.50	1.05	0.07	0.220	0.23
	Back	128	824.20	Fixed	10	30.41	31.00	1.15	N/A	N/A	N/A
	Back	190	836.60	Fixed	10	30.52	31.00	1.12	-0.07	0.446	0.50
	Back	251	848.80	Fixed	10	30.45	31.00	1.14	N/A	N/A	N/A
GPRS-2slot	Front	190	836.60	Fixed	10	30.52	31.00	1.12	-0.03	0.189	0.21
	Left-side	190	836.60	Fixed	10	30.52	31.00	1.12	0.09	0.393	0.44
	Right-side	190	836.60	Fixed	10	30.52	31.00	1.12	-0.08	0.421	0.470
	Bottom	190	836.60	Fixed	10	30.52	31.00	1.12	0.04	0.052	0.058

Note:

- 1. When the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 32 of 40

■Band 1900MHz Head

Test Mode	Test Position Head	CH.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Left-Check	512	1850.2	Fixed	0	28.44	29.00	1.14	N/A	N/A	N/A
	Left-Check	661	1880	Fixed	0	28.89	29.00	1.03	0.01	0.294	0.302
	Left-Check	810	1909.8	Fixed	0	28.68	29.00	1.08	N/A	N/A	N/A
	Left-Tilt	661	1880	Fixed	0	28.89	29.00	1.03	-0.01	0.103	0.106
PCS	Right-Check	512	1850.2	Fixed	0	28.44	29.00	1.14	N/A	N/A	N/A
1900	Right-Check	661	1880	Fixed	0	28.89	29.00	1.03	0.19	0.222	0.228
	Right-Check	810	1909.8	Fixed	0	28.68	29.00	1.08	N/A	N/A	N/A
	Right-Tilt	661	1880	Fixed	0	28.89	29.00	1.03	0.06	0.072	0.074
	SIM2										
	Left-Check	661	1880	Fixed	0	28.86	29.00	1.03	-0.09	0.292	0.302

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

■ Band 1900MHz Body

Test Mode	Test Position Body	CH.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power	Max.Tune-up Power (dBm)	_	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Back	512	1850.2	Fixed	10	28.44	29.00	1.14	N/A	N/A	N/A
PCS1900	Back	661	1880	Fixed	10	28.89	29.00	1.03	0.12	0.391	0.401
FC31900	Back	810	1909.8	Fixed	10	28.68	29.00	1.08	N/A	N/A	N/A
	Front	661	1880	Fixed	10	28.89	29.00	1.03	0.09	0.348	0.357
	Back	512	1850.2	Fixed	10	27.42	28.00	1.14	N/A	N/A	N/A
	Back	661	1880	Fixed	10	27.58	28.00	1.10	-0.13	0.732	0.806
	Back	810	1909.8	Fixed	10	27.45	28.00	1.14	N/A	N/A	N/A
GPRS-2slot	Front	661	1880	Fixed	10	27.58	28.00	1.10	0.10	0.695	0.766
	Left-side	661	1880	Fixed	10	27.58	28.00	1.10	-0.04	0.447	0.492
	Right-side	661	1880	Fixed	10	27.58	28.00	1.10	0.05	0.071	0.078
	Bottom	661	1880	Fixed	10	27.58	28.00	1.10	0.01	0.561	0.618

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 33 of 40

■WCDMA Band II Head

Test Mode	Test Position Head	CH.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Left-Check	9262	1852.4	Fixed	0	22.33	23.0	1.17	N/A	N/A	N/A
	Left-Check	9400	1880	Fixed	0	22.39	23.0	1.15	0.07	0.288	0.331
	Left-Check	9538	1907.6	Fixed	0	22.23	23.0	1.19	N/A	N/A	N/A
Band II	Left-Tilt	9400	1880	Fixed	0	22.39	23.0	1.15	0.06	0.094	0.108
Danu II	Right-Check	9262	1852.4	Fixed	0	22.33	23.0	1.17	N/A	N/A	N/A
	Right-Check	9400	1880	Fixed	0	22.39	23.0	1.15	-0.03	0.212	0.244
	Right-Check	9538	1907.6	Fixed	0	22.23	23.0	1.19	N/A	N/A	N/A
	Right-Tilt	9400	1880	Fixed	0	22.39	23.0	1.15	-0.16	0.12	0.138

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

■ WCDMA Band II Body

Test Mode	Test Position Body	СН.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	up Power	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Back	9262	1852.4	Fixed	10	22.33	23.0	1.17	N/A	N/A	N/A
	Back	9400	1880	Fixed	10	22.39	23.0	1.15	0.01	0.411	0.473
	Back	9538	1907.6	Fixed	10	22.23	23.0	1.19	N/A	N/A	N/A
WCDMA Band II	Front	9400	1880	Fixed	10	22.39	23.0	1.15	0.11	0.398	0.458
Bana n	Left-side	9400	1880	Fixed	10	22.39	23.0	1.15	-0.17	0.287	0.330
	Right-side	9400	1880	Fixed	10	22.39	23.0	1.15	-0.09	0.051	0.059
	Bottom	9400	1880	Fixed	10	22.39	23.0	1.15	-0.11	0.414	0.476

Note:

- 1. When the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 34 of 40

■WCDMA Band V Head

Test Mode	Test Position Head	CH.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune-up Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Left-Check	4132	826.4	Fixed	0	22.17	23.0	1.21	N/A	N/A	N/A
	Left-Check	4183	836.6	Fixed	0	22.23	23.0	1.19	0.14	0.096	0.115
	Left-Check	4233	846.6	Fixed	0	22.28	23.0	1.18	N/A	N/A	N/A
Band V	Left-Tilt	4183	836.6	Fixed	0	22.23	23.0	1.19	0.15	0.033	0.039
Ballu V	Right-Check	4132	826.4	Fixed	0	22.17	23.0	1.21	N/A	N/A	N/A
	Right-Check	4183	836.6	Fixed	0	22.23	23.0	1.19	0.03	0.026	0.031
	Right-Check	4233	846.6	Fixed	0	22.28	23.0	1.18	N/A	N/A	N/A
	Right-Tilt	4183	836.6	Fixed	0	22.23	23.0	1.19	-0.14	0.011	0.013

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

■ WCDMA Band V Body

Test Mode	Test Position Body	СН.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power (dBm)	Max.Tune- up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Back	4132	826.4	Fixed	10	22.17	23.0	1.21	N/A	N/A	N/A
	Back	4183	836.6	Fixed	10	22.23	23.0	1.19	0.08	0.217	0.259
	Back	4233	846.6	Fixed	10	22.28	23.0	1.18	N/A	N/A	N/A
WCDMA Band V	Front	4183	836.6	Fixed	10	22.23	23.0	1.19	0.08	0.079	0.094
Dana v	Left-side	4183	836.6	Fixed	10	22.23	23.0	1.19	-0.09	0.059	0.070
	Right-side	4183	836.6	Fixed	10	22.23	23.0	1.19	0.11	0.211	0.252
	Bottom	4183	836.6	Fixed	10	22.23	23.0	1.19	-0.16	0.026	0.031

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 35 of 40

WIFI Head

Test Mode	Test Position Head	CH.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power	Max. Tune -up Power (dBm)	Scaling	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)	DC Scaled SAR- 1g(W/kg)
	Left-Check	1	2412	Fixed	0	14.07	14.5	1.10	N/A	N/A	N/A	N/A
	Left-Check	6	2437	Fixed	0	13.71	14.5	1.20	0.06	0.016	0.019	0.019
	Left-Check	11	2462	Fixed	0	13.57	14.5	1.24	N/A	N/A	N/A	N/A
802.11b	Left-Tilt	6	2437	Fixed	0	13.71	14.5	1.20	0.11	0.016	0.019	0.019
802.110	Right-Check	1	2412	Fixed	0	14.07	14.5	1.10	N/A	N/A	N/A	N/A
	Right-Check	6	2437	Fixed	0	13.71	14.5	1.20	0.02	0.015	0.018	0.018
	Right-Check	11	2462	Fixed	0	13.57	14.5	1.24	N/A	N/A	N/A	N/A
	Right-Tilt	6	2437	Fixed	0	13.71	14.5	1.20	0.12	0.012	0.014	0.015

Note:

- 1.When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

■ WIFI Body

Test Mode	Test Position Body	СН.	Fre. <mhz></mhz>	Ant.	Dist. mm	Measured Conducted Power	Max.Tune- up Power (dBm)	Scaling Factor	Power Drift(dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)	DC Scaled SAR-g (W/kg)
	Back	1	2412	Fixed	10	14.07	14.5	1.10	-0.12	0.039	0.043	0.043
	Back	6	2437	Fixed	10	13.71	14.5	1.20	0.07	0.044	0.053	0.053
	Back	11	2462	Fixed	10	13.57	14.5	1.24	0.10	0.041	0.051	0.051
802.11b	Front	1	2437	Fixed	10	14.07	14.5	1.10	-0.01	0.00453	0.005	0.005
	Left-side	1	2437	Fixed	10	14.07	14.5	1.10	0.06	0.00292	0.003	0.003
	Right-side	1	2437	Fixed	10	14.07	14.5	1.10	0.07	0.00266	0.003	0.003
	Тор	1	2437	Fixed	10	14.07	14.5	1.10	-0.04	0.025	0.028	0.028
802.11g	Back	1	2437	Fixed	10	9.64	10.0	1.09	0.09	0.026	0.028	0.029
802.11 n(20)	Back	1	2437	Fixed	10	11.57	12.0	1.10	0.17	0.025	0.028	0.028
802.11 n(40)	Back	1	2437	Fixed	10	10.61	11.0	1.09	0.19	0.00936	0.010	0.010

Note:

- 1. When the 1-g SAR is \leq 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498;
- 2. Two SIM cards cannot work simultaneously.

June 12th, 2015 Cerpass Technology Corp. Issued Date :

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 36 of 40

10. Simultaneous Transmission Analysis

10.1. Simultaneous Transmission Scenario with Wi-Fi

Configuration	Mode	Max. Scaled SAR(W/kg)	Wi-Fi SAR(W/kg)	∑ SAR(W/kg)
Head	GSM850	0.098	0.019	0.117
Head	PCS1900	0.302	0.019	0.321
Head	WCDMA Band II	0.331	0.019	0.350
Head	WCDMA Band V	0.115	0.019	0.134
Body	GSM850	0.500	0.053	0.553
Body	PCS1900	0.806	0.053	0.859
Body	WCDMA Band II	0.476	0.053	0.529
Body	WCDMA Band V	0.259	0.053	0.312

Note: WIFI SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

10.2. Simultaneous Transmission Scenario with Bluetooth

Configuration	Mode	Max. Scaled SAR(W/kg)	Bluetooth SAR(W/kg)	∑ SAR(W/kg)
Head	GSM850	0.098	0.013	0.111
Head	PCS1900	0.302	0.013	0.315
Head	WCDMA Band II	0.331	0.013	0.344
Head	WCDMA Band V	0.115	0.013	0.128
Body	GSM850	0.500	0.013	0.513
Body	PCS1900	0.806	0.013	0.819
Body	WCDMA Band II	0.476	0.013	0.489
Body	WCDMA Band V	0.259	0.013	0.272

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

10.3. Simultaneous Transmission Scenario with Wi-Fi & Bluetooth

Bluetooth and WIFI cannot be transmit at same time, due to they share the same antenna.

Cerpass Technology Corp.

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. 37 of 40

Report No.: SESF1506050

CERPASS TECHNOLOGY (SUZHOU) CO., LTD

10.4. Simultaneous Transmission Scenario (Hotspots)

Simult Tx	Configuration	GPRS850 SAR(W/kg)	Wi-Fi SAR(W/kg)	∑ SAR(W/kg)
	Back	0.50	0.053	0.553
	Front	0.21	0.005	0.215
Dody	Left side	0.44	0.003	0.443
Body	Right side	0.47	0.003	0.473
	Тор	0.40	0.028	0.428
	Bottom	0.058	0.40	0.458
Simult Tx	Configuration	GPRS1900 SAR(W/kg)	Wi-Fi SAR(W/kg)	∑AR(W/kg)
	Back	0.806	0.053	0.859
	Front	0.766	0.005	0.771
Pody	Left side	0.492	0.003	0.495
Body	Right side	0.078	0.003	0.081
	Тор	0.40	0.028	0.428
	Bottom	0.618	0.40	1.018
Simult Tx	Configuration	WCDMA Band II SAR(W/kg)	Wi-Fi SAR(W/kg)	∑ SAR(W/kg)
	Back	0.473	0.053	0.526
		0.450		
	Front	0.458	0.005	0.463
Pody	Front Left side	0.458	0.005	0.463 0.333
Body				
Body	Left side	0.330	0.003	0.333
Body	Left side Right side	0.330 0.059	0.003 0.003	0.333 0.062
Body Simult Tx	Left side Right side Top	0.330 0.059 0.4	0.003 0.003 0.028	0.333 0.062 0.428
	Left side Right side Top Bottom	0.330 0.059 0.4 0.476	0.003 0.003 0.028 0.40	0.333 0.062 0.428 0.876
	Left side Right side Top Bottom Configuration	0.330 0.059 0.4 0.476 WCDMA Band V SAR(W/kg)	0.003 0.003 0.028 0.40 Wi-Fi SAR (W/kg)	0.333 0.062 0.428 0.876 ∑ SAR(W/kg)
Simult Tx	Left side Right side Top Bottom Configuration Back	0.330 0.059 0.4 0.476 WCDMA Band V SAR(W/kg) 0.259	0.003 0.003 0.028 0.40 Wi-Fi SAR (W/kg) 0.053	0.333 0.062 0.428 0.876 ∑ SAR(W/kg) 0.312
	Left side Right side Top Bottom Configuration Back Front	0.330 0.059 0.4 0.476 WCDMA Band V SAR(W/kg) 0.259 0.094	0.003 0.003 0.028 0.40 Wi-Fi SAR (W/kg) 0.053 0.005	0.333 0.062 0.428 0.876 ∑ SAR(W/kg) 0.312 0.099
Simult Tx	Left side Right side Top Bottom Configuration Back Front Left side	0.330 0.059 0.4 0.476 WCDMA Band V SAR(W/kg) 0.259 0.094 0.070	0.003 0.003 0.028 0.40 Wi-Fi SAR (W/kg) 0.053 0.005 0.003	0.333 0.062 0.428 0.876 ∑ SAR(W/kg) 0.312 0.099 0.073

Report No.: SESF1506050

Note: An estimated SAR of 0.4 W/kg was used to determine simultaneous transmission SAR for test separation distances >50mm per 447498 D01v05r02.

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 38 of 40

10.5. <u>Simultaneous Transmission Conclusion</u>

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05r02.

Report No.: SESF1506050

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666 Page No. : 39 of 40

CERPASS TECHNOLOGY (SUZHOU) CO., LTD

11. Measurement Uncertainty

	Uncert.	Prob.	D :	(ci)	(ci)	Std.Unc.	Std. nc.	(vi)
Error Description	value	Dist.	Div.	1g	10g	(1g)	(10g)	veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max.SAR Eval.	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Power Scalingp	±0%	R	√3	0	0	±0%	±0%	∞
Phantom and Setup								
Phantom Uncertainty	±6.1%	R	√3	1	1	±3.5%	±3.5%	∞
SAR correction	±1.9%	R	√3	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)DAK	±2.5%	R	√3	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity (mea.)DAK	±2.5%	R	√3	0.26	0.26	±0.3%	±0.4%	∞
Temp. unc. –ConductivityBB	±3.4%	R	√3	0.78	0.71	±1.5%	±1.4%	∞
Temp. unc. – PermittivityBB	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty						±11.2%	±11.1%	361
Expanded STD Uncertainty(k=	2)					±22.3%	±22.2%	

DASY5 Uncertainty Budget, according to IEEE 1528/2011 and IEC 62209-1/2011(0.3-3GHz)

--END--

Cerpass Technology Corp. Issued Date : June 12th, 2015

Tel:+86-512-6917-5888 Fax:+86-512-6917-5666

40 of 40

Page No. :

Report No.: SESF1506050

ļ	APPENDIX A. SAR System Verification Data
	The plots for system verification with largest deviation for each SAR system combination are hown as follows.

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D835 Head

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.88$ S/m; $\epsilon r = 41.50$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/SystemPerformanceCheck-D835 Head/Area Scan (4x12x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 2.47 W/kg

Configuration/SystemPerformanceCheck-D835 Head/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 55.21 V/m; Power Drift = 0.01 dB, Peak SAR (extrapolated) = 3.68 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D1900 Head

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.45 S/m; ϵ r = 39.50; ρ = 1000 kg/m3

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/SystemPerformanceCheck D1900 Head/Area Scan (7x11x1):

Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 10.4 W/kg

Configuration/SystemPerformanceCheck D1900 Head/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 83.59 V/m; Power Drift = 0.01 dB, Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.5 W/kg; SAR(10 g) = 4.94 W/kg Maximum value of SAR (measured) = 10.7 W/kg

0 dB = 10.7 W/kg = 10.29 dBW/kg

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D835 Body

DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; σ = 0.98 S/m; ϵ r = 55.80; ρ = 1000 kg/m3

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Performance Check at Frequencies above 1 GHz/Systemcheck-D835

Body/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 3.06 W/kg

System Performance Check at Frequencies above 1 GHz/Systemcheck-D835 Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm,

Reference Value = 56.89 V/m; Power Drift = 0.04 dB, Peak SAR (extrapolated) = 3.68

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.10 W/kg

0 dB = 3.10 W/kg = 4.91 dBW/kg

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D1900 Body

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; σ = 1.50 S/m; ϵ r = 51.10; ρ = 1000 kg/m3

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Body/Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of

SAR (measured) = 13.8 W/kg

System Performance Check at Frequencies above 1 GHz/Systemcheck-D1900 Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 94.43 V/m; Power Drift = 0.13 dB, Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 9.66 W/kg; SAR(10 g) = 5.05 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D2450 Head

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.80 \text{ S/m}$; $\epsilon r = 37.95$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/SystemPerformanceCheck-D2450 Head/Area Scan (4x6x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 11.3 W/kg

Configuration/SystemPerformanceCheck-D2450 Head/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 92.67 V/m; Power Drift = 0.04 dB, Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.38 W/kg Maximum value of SAR (measured) = 16.0 W/kg

0 dB = 16.0 W/kg = 12.04 dBW/kg

Test Laboratory: Cerpass Lab

SystemPerformanceCheck-D2450 Body

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ S/m}$; $\epsilon r = 50.68$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Meas. Ambient Temp (celsius) -22°C; Input power-250mW

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/SystemPerformanceCheck-D2450 Body/Area Scan (4x6x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 10.7 W/kg

Configuration/SystemPerformanceCheck-D2450 Body/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 91.77 V/m; Power Drift = 0.04 dB, Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 15.2 W/kg

0 dB = 15.2 W/kg = 11.82 dBW/kg

APPENDIX B. SAR measurement Data The SAR plots are shown as follows.		
	APPENDIX B. SAR measurement Data	
The SAR plots are shown as follows.		
	The SAR plots are shown as follows.	

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: GSM850 Mid Touch-Left

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

Probe: EX3DV4 - SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn918; Calibrated: 2014/12/29

Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0966 W/kg
Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.604 V/m; Power Drift = -0.06 dB, Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.093 W/kg; SAR(10 g) = 0.070 W/kg Maximum value of SAR (measured) = 0.0974 W/kg

0 dB = 0.0974 W/kg = -10.11 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: GSM850 Mid Tilt-Left

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0579 W/kg

Configuration/GSM850 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.108 V/m; Power Drift = -0.05 dB, Peak SAR (extrapolated) = 0.0610 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.042 W/kg Maximum value of SAR (measured) = 0.0528 W/kg

0 dB = 0.0528 W/kg = -12.77 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: GSM850 Mid Touch-Right

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0645 W/kg
Configuration/GSM850 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.682 V/m; Power Drift = -0.02 dB, Peak SAR (extrapolated) = 0.0720 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.055 W/kg Maximum value of SAR (measured) = 0.0658 W/kg

0 dB = 0.0658 W/kg = -11.82 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: GSM850 Mid Tilt-Right

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

Probe: EX3DV4 - SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn918; Calibrated: 2014/12/29

Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0486 W/kg

Configuration/GSM850 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.545 V/m; Power Drift = 0.04 dB, Peak SAR (extrapolated) = 0.0600 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.0499 W/kg

0 dB = 0.0499 W/kg = -13.02 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: GSM850 Mid Touch-Left

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0839 W/kg
Configuration/GSM850 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.067 V/m; Power Drift = 0.17dB, Peak SAR (extrapolated) = 0.114 W/kg

SAR(1 g) = 0.085 W/kg; SAR(10 g) = 0.064 W/kg Maximum value of SAR (measured) = 0.0900 W/kg

0 dB = 0.0900 W/kg = -10.46 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GSM850 Mid Body-Back

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.288 W/kg
Configuration/GSM850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 16.38 V/m; Power Drift = 0.02 dB, Peak SAR (extrapolated) = 0.362 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.219 W/kg Maximum value of SAR (measured) = 0.298 W/kg

0 dB = 0.298 W/kg = -5.26 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GSM850 Mid Body-Front

Communication System Band: GSM850MHz; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.225 W/kg
Configuration/GSM850 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement

grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.49 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.322 W/kg

SAR(1 g) = 0.220 W/kg; SAR(10 g) = 0.150 W/kg Maximum value of SAR (measured) = 0.237 W/kg

0 dB = 0.237 W/kg = -6.25 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS850(2up) Mid Body-Back

Communication System Band: GPRS850MHz(2up); Frequency: 836.6 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.96 \text{ S/m}$; $\epsilon r = 55.85$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS(2up)850 Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.463 W/kg

Configuration/GPRS(2up)850 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 20.79 V/m; Power Drift = -0.07 dB, Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.446 W/kg; SAR(10 g) = 0.345 W/kg Maximum value of SAR (measured) = 0.468 W/kg

0 dB = 0.468 W/kg = -3.30 dBW/kg

Z-Axis Plot

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GSM850 Mid Body-Front

Communication System Band: GPRS850MHz(2up); Frequency: 836.6 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.96 \text{ S/m}$; $\epsilon r = 55.85$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GSM850 Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.193 W/kg

Configuration/GSM850 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.45 V/m; Power Drift = -0.03 dB, Peak SAR (extrapolated) = 0.274 W/kg

SAR(1 g) = 0.189 W/kg; SAR(10 g) = 0.129 W/kg Maximum value of SAR (measured) = 0.203 W/kg

0 dB = 0.203 W/kg = -6.93 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS850(2up) Mid Body-Leftside

Communication System Band: GPRS850MHz(2up); Frequency: 836.6 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS850(2up) Mid Body-Leftside/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.378 W/kg
Configuration/GPRS850(2up) Mid Body-Leftside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 19.11 V/m; Power Drift = 0.09 dB, Peak SAR (extrapolated) = 0.513 W/kg

SAR(1 g) = 0.393 W/kg; SAR(10 g) = 0.286 W/kg Maximum value of SAR (measured) = 0.416 W/kg

0 dB = 0.416 W/kg = -3.81 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS850(2up) Mid Body-Rightside

Communication System Band: GPRS850MHz(2up); Frequency: 836.6 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.96 \text{ S/m}$; $\epsilon r = 55.85$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS850(2up) Mid Body-Rightside/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.424 W/kg

Configuration/GPRS850(2up) Mid Body-Rightside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 21.99 V/m; Power Drift = -0.08 dB, Peak SAR (extrapolated) = 0.545 W/kg

SAR(1 g) = 0.421 W/kg; SAR(10 g) = 0.309 W/kg Maximum value of SAR (measured) = 0.448 W/kg

0 dB = 0.448 W/kg = -3.49 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS850(2up) Mid Body-Bottom

Communication System Band: GPRS850MHz(2up); Frequency: 836.6 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 836.6 MHz; $\sigma = 0.96 \text{ S/m}$; $\epsilon r = 55.85$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS850(2up) Mid Body-Bottom/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0543 W/kg Configuration/GPRS850(2up) Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.331 V/m; Power

Drift = 0.04 dB, Peak SAR (extrapolated) = 0.0800 W/kg

SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.034 W/kg Maximum value of SAR (measured) = 0.0575 W/kg

0 dB = 0.0575 W/kg = -12.40 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: PCS1900 Mid Touch-Left

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ S/m; $\epsilon r = 39.74$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.282 W/kg

Configuration/PCS1900 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.258 V/m; Power Drift = 0.01 dB, Peak SAR (extrapolated) = 0.447 W/kg

SAR(1 g) = 0.294 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 0.319 W/kg

0 dB = 0.319 W/kg = -4.96 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: PCS1900 Mid Tilt-Left

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon = 39.74$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Left Section; Tissue Temp (celsius) - 21[°]C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

Probe: EX3DV4 - SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn918; Calibrated: 2014/12/29

Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD

Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0996 W/kg

Configuration/PCS1900 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.158 V/m; Power Drift = -0.01 dB, Peak SAR (extrapolated) = 0.168 W/kg

SAR(1 g) = 0.103 W/kg; SAR(10 g) = 0.061 W/kg Maximum value of SAR (measured) = 0.114 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: PCS1900 Mid Touch-Right

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ S/m; $\epsilon r = 39.74$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

G

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.223 W/kg

Configuration/PCS1900 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.458 V/m; Power Drift = 0.19 dB, Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.222 W/kg; SAR(10 g) = 0.148 W/kg Maximum value of SAR (measured) = 0.235 W/kg

0 dB = 0.235 W/kg = -6.29 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: PCS1900 Mid Tilt-Right

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon = 39.74$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Right Section; Tissue Temp (celsius) - 21 °C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0753 W/kg

Configuration/PCS1900 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.530 V/m; Power Drift = 0.06 dB, Peak SAR (extrapolated) = 0.113 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.045 W/kg Maximum value of SAR (measured) = 0.0758 W/kg

0 dB = 0.0758 W/kg = -11.20 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: PCS1900 Mid Touch-Left

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.42$ S/m; $\epsilon = 39.74$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.285 W/kg

Configuration/PCS1900 Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.669 V/m; Power Drift = -0.09 dB, Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.292 W/kg; SAR(10 g) = 0.181 W/kg Maximum value of SAR (measured) = 0.320 W/kg

0 dB = 0.320 W/kg = -4.95 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: PCS1900 Mid Body-Back

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ S/m; $\epsilon r = 51.14$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.357 W/kg

Configuration/PCS1900 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.94 V/m; Power Drift = 0.12 dB, Peak SAR (extrapolated) = 0.663 W/kg

SAR(1 g) = 0.391 W/kg; SAR(10 g) = 0.209 W/kg Maximum value of SAR (measured) = 0.445 W/kg

0 dB = 0.445 W/kg = -3.52 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: PCS1900 Mid Body-Front

Communication System Band: PCS1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ S/m; $\epsilon r = 51.14$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/PCS1900 Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.384 W/kg
Configuration/PCS1900 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.52 V/m; Power Drift = 0.09 dB
Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.348 W/kg; SAR(10 g) = 0.198 W/kg

0 dB = 0.384 W/kg = -4.16 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS1900(2up) Mid Body-Back

Communication System Band: GPRS1900MHz(2up); Frequency: 1880 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 1880 MHz; σ = 1.46 S/m; ϵ r = 51.14; ρ = 1000 kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS1900(2up) Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.676 W/kg

Configuration/GPRS1900(2up) Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 19.45 V/m; Power Drift = -0.13 dB, Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.732 W/kg; SAR(10 g) = 0.390 W/kg Maximum value of SAR (measured) = 0.833 W/kg

0 dB = 0.833 W/kg = -0.79 dBW/kg

Z-Axis Plot

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS1900(2up) Mid Body-Front

Communication System Band: GPRS1900MHz(2up); Frequency: 1880 MHz; Duty Cycle:

1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon r = 51.14$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS1900(2up) Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.727 W/kg
Configuration/GPRS1900(2up) Mid Body-Front/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.48 V/m; Power Drift = 0.10 dB, Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.659 W/kg; SAR(10 g) = 0.379 W/kg

0 dB = 0.727 W/kg = -1.38 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS1900(2up) Mid Body-Leftside

Communication System Band: GPRS1900MHz(2up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon r = 51.14$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS1900(2up) Mid Body-Leftside/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.440 W/kg

Configuration/GPRS1900(2up) Mid Body-Leftside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.234 V/m; Power Drift = -0.04 dB, Peak SAR (extrapolated) = 0.729 W/kg

SAR(1 g) = 0.447 W/kg; SAR(10 g) = 0.254 W/kg Maximum value of SAR (measured) = 0.494 W/kg

0 dB = 0.494 W/kg = -3.06 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS1900(2up) Mid Body-Rightside

Communication System Band: GPRS1900MHz(2up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon r = 51.14$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS1900(2up) Mid Body-Rightside/Area Scan (5x13x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0752 W/kg

Configuration/GPRS1900(2up) Mid Body-Rightside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.620 V/m; Power Drift = 0.05 dB, Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.071 W/kg; SAR(10 g) = 0.043 W/kg Maximum value of SAR (measured) = 0.0778 W/kg

0 dB = 0.0778 W/kg = -11.09 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: GPRS1900(2up) Mid Body-Bottom

Communication System Band: GPRS1900MHz(2up); Frequency: 1880 MHz; Duty Cycle: 1:4.2

Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon r = 51.14$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/GPRS1900(2up) Mid Body-Bottom/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.592 W/kg
Configuration/GPRS1900(2up) Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 19.05 V/m; Power Drift = 0.01 dB, Peak SAR (extrapolated) = 0.944 W/kg

SAR(1 g) = 0.561 W/kg; SAR(10 g) = 0.307 W/kg Maximum value of SAR (measured) = 0.628 W/kg

0 dB = 0.628 W/kg = -2.02 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band II Mid Touch-Left

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ S/m; $\epsilon r = 39.74$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.285 W/kg

Configuration/WCDMA Band II Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.212 V/m; Power Drift = 0.07 dB, Peak SAR (extrapolated) = 0.444 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.178 W/kg Maximum value of SAR (measured) = 0.313 W/kg

0 dB = 0.313 W/kg = -5.04 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band II Mid Tilt-Left

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon = 39.74$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.102 W/kg

Configuration/WCDMA Band II Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.472 V/m; Power Drift = 0.06 dB, Peak SAR (extrapolated) = 0.158 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.104 W/kg

0 dB = 0.104 W/kg = -9.83 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band II Mid Touch-Right

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.43$ S/m; $\epsilon r = 39.74$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.226 W/kg

Configuration/WCDMA Band II Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.240 V/m; Power Drift = -0.03 dB, Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.212 W/kg; SAR(10 g) = 0.138 W/kg Maximum value of SAR (measured) = 0.221 W/kg

0 dB = 0.221 W/kg = -6.56 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band II Mid Tilt-Right

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.43 \text{ S/m}$; $\epsilon = 39.74$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.94, 7.94, 7.94); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.119 W/kg

Configuration/WCDMA Band II Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.743 V/m; Power Drift = -0.16 dB, Peak SAR (extrapolated) = 0.189 W/kg

SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.072 W/kg Maximum value of SAR (measured) = 0.129 W/kg

0 dB = 0.129 W/kg = -8.89 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band II Mid Body-Back

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon = 51.14$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.426 W/kg

Configuration/WCDMA Band II Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.91 V/m; Power Drift = 0.01 dB, Peak SAR (extrapolated) = 0.706 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.224 W/kg Maximum value of SAR (measured) = 0.444 W/kg

0 dB = 0.444 W/kg = -3.53 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band II Mid Body-Front

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon = 51.14$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.403 W/kg

Configuration/WCDMA Band II Mid Body-Front/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 13.28 V/m; Power Drift = 0.11 dB, Peak SAR (extrapolated) = 0.633 W/kg

SAR(1 g) = 0.398 W/kg; SAR(10 g) = 0.238 W/kg Maximum value of SAR (measured) = 0.433 W/kg

0 dB = 0.433 W/kg = -3.64 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band II Mid Body-Leftside

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon = 51.14$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Body-Leftside/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.316 W/kg

Configuration/WCDMA Band II Mid Body-Leftside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.210 V/m; Power Drift = -0.17 dB, Peak SAR (extrapolated) = 0.472 W/kg

SAR(1 g) = 0.287 W/kg; SAR(10 g) = 0.163 W/kg Maximum value of SAR (measured) = 0.320 W/kg

0 dB = 0.320 W/kg = -4.95 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band II Mid Body-Rightside

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon r = 51.14$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Body-Rightside/Area Scan (5x13x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0452 W/kg

Configuration/WCDMA Band II Mid Body-Rightside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.295 V/m; Power Drift = -0.09 dB, Peak SAR (extrapolated) = 0.106 W/kg

SAR(1 g) = 0.051 W/kg; SAR(10 g) = 0.024 W/kg Maximum value of SAR (measured) = 0.0417 W/kg

0 dB = 0.0417 W/kg = -13.80 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band II Mid Body-Bottom

Communication System Band: WCDMA Band II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.46 \text{ S/m}$; $\epsilon = 51.14$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(8.08, 8.08, 8.08); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band II Mid Body-Bottom/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.431 W/kg

Configuration/WCDMA Band II Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 16.31 V/m; Power Drift = -0.11 dB, Peak SAR (extrapolated) = 0.698 W/kg

SAR(1 g) = 0.414 W/kg; SAR(10 g) = 0.225 W/kg Maximum value of SAR (measured) = 0.468 W/kg

0 dB = 0.468 W/kg = -3.30 dBW/kg

Z-Axis Plot

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band V Mid Touch-Left

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m³

Phantom section: Left Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0948 W/kg Configuration/WCDMA Band V Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.902 V/m; Power Drift = 0.14 dB, Peak SAR (extrapolated) = 0.120 W/kg

SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.100 W/kg

0 dB = 0.100 W/kg = -10.00 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band V Mid Tilt-Left

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0318 W/kg

Configuration/WCDMA Band V Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.362 V/m; Power Drift = 0.15 dB, Peak SAR (extrapolated) = 0.0380 W/kg

SAR(1 g) = 0.033 W/kg; SAR(10 g) = 0.027 W/kg Maximum value of SAR (measured) = 0.0338 W/kg

0 dB = 0.0338 W/kg = -14.71 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band V Mid Touch-Right

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21℃ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0260 W/kg
Configuration/WCDMA Band V Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.802 V/m; Power

Drift = 0.03dB, Peak SAR (extrapolated) = 0.0280 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.023 W/kg Maximum value of SAR (measured) = 0.0266 W/kg

0 dB = 0.0266 W/kg = -15.75 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: WCDMA Band V Mid Tilt-Right

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.89$ S/m; $\epsilon r = 41.47$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21℃ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.6, 9.6, 9.6); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0108 W/kg

Configuration/WCDMA Band V Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.331 V/m; Power Drift = -0.14 dB, Peak SAR (extrapolated) = 0.0120 W/kg

SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00889 W/kg Maximum value of SAR (measured) = 0.0109 W/kg

0 dB = 0.0109 W/kg = -19.63 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band V Mid Body-Back

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.222 W/kg

Configuration/WCDMA Band V Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.28 V/m; Power Drift = 0.08 dB, Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.170 W/kg Maximum value of SAR (measured) = 0.226 W/kg

0 dB = 0.226 W/kg = -6.46 dBW/kg

Z-Axis Plot

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band V Mid Body-Front

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0832 W/kg Configuration/WCDMA Band V Mid Body-Front/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.449 V/m; Power Drift = 0.08 dB, Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.054 W/kg Maximum value of SAR (measured) = 0.0838 W/kg

0 dB = 0.0838 W/kg = -10.77 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band V Mid Body-Leftside

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Body-Leftside/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0599 W/kg

Configuration/WCDMA Band V Mid Body-Leftside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.785 V/m; Power Drift = -0.09 dB, Peak SAR (extrapolated) = 0.0740 W/kg

SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.045 W/kg Maximum value of SAR (measured) = 0.0619 W/kg

0 dB = 0.0619 W/kg = -12.08 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band V Mid Body-Rightside

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Body-Rightside/Area Scan (5x13x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.155 W/kg

Configuration/WCDMA Band V Mid Body-Rightside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.32 V/m; Power Drift = 0.11 dB, Peak SAR (extrapolated) = 0.286 W/kg

SAR(1 g) = 0.211 W/kg; SAR(10 g) = 0.143 W/kg Maximum value of SAR (measured) = 0.226 W/kg

0 dB = 0.226 W/kg = -6.46 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: WCDMA Band V Mid Body-Bottom

Communication System Band: WCDMA Band V; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.6 MHz; $\sigma = 0.96$ S/m; $\epsilon r = 55.85$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(9.68, 9.68, 9.68); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/WCDMA Band V Mid Body-Bottom/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Configuration/WCDMA Band V Mid Body-Bottom/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.638 V/m; Power Drift = -0.16 dB, Peak SAR (extrapolated) = 0.0400 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.017 W/kg Maximum value of SAR (measured) = 0.0276 W/kg

0 dB = 0.0276 W/kg = -15.59 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Touch-Left

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ S/m; $\epsilon r = 38.03$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Drift = 0.06 dB, Peak SAR (extrapolated) = 0.0350 W/kg

Configuration/802.11b 2437MHz Mid Touch-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0128 W/kg
Configuration/802.11b 2437MHz Mid Touch-Left/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.051 V/m; Power

SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0173 W/kg

0 dB = 0.0173 W/kg = -17.62 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Tilt-Left

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ S/m; $\epsilon r = 38.03$; $\rho = 1000$ kg/m3

Phantom section: Left Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Tilt-Left/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0151 W/kg

Configuration/802.11b 2437MHz Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.030 V/m; Power Drift = 0.11 dB, Peak SAR (extrapolated) = 0.0290 W/kg

SAR(1 g) = 0.016 W/kg; SAR(10 g) = 0.00805 W/kg, Maximum value of SAR (measured) = 0.0174 W/kg

0 dB = 0.0174 W/kg = -17.59 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Touch-Right

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ S/m; $\epsilon r = 38.03$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21°C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Touch-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0168 W/kg

Configuration/802.11b 2437MHz Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.055 V/m; Power

Drift = 0.02 dB, Peak SAR (extrapolated) = 0.0310 W/kg

SAR(1 g) = 0.015 W/kg; SAR(10 g) = 0.010 W/kg Maximum value of SAR (measured) = 0.0164 W/kg

0 dB = 0.0164 W/kg = -17.85 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Tilt-Right

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.77$ S/m; $\epsilon r = 38.03$; $\rho = 1000$ kg/m3

Phantom section: Right Section; Tissue Temp (celsius) - 21 ℃ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

= 0.0139 W/kg

- Probe: EX3DV4 SN3661; ConvF(7.17, 7.17, 7.17); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Tilt-Right/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0136 W/kg
Configuration/802.11b 2437MHz Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 2.303 V/m; Power Drift = 0.12 dB, Peak SAR (extrapolated) = 0.0210 W/kg
SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00653 W/kg Maximum value of SAR (measured)

0 dB = 0.0139 W/kg = -18.57 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2412MHz Low Body-Back

Communication System Band: 802.11b; Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.88$ S/m; $\epsilon r = 50.86$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2412MHz Low Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0365 W/kg
Configuration/802.11b 2412MHz Low Body-Back/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 20.22 V/m; Power Drift = -0.12 dB, Peak SAR (extrapolated) = 0.0670 W/kg

SAR(1 g) = 0.039 W/kg; SAR(10 g) = 0.021 W/kg Maximum value of SAR (measured) = 0.0446 W/kg

0 dB = 0.0446 W/kg = -13.51 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Body-Back

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.94$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0595 W/kg
Configuration/802.11b 2437MHz Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.401 V/m; Power Drift = 0.07 dB, Peak SAR (extrapolated) = 0.0890 W/kg

SAR(1 g) = 0.044 W/kg; SAR(10 g) = 0.019 W/kg Maximum value of SAR (measured) = 0.0582 W/kg

0 dB = 0.0582 W/kg = -12.35 dBW/kg

Z-Axis Plot

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2462MHz High Body-Back

Communication System Band: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.96$ S/m; $\epsilon r = 50.62$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

SAR(1 g) = 0.041 W/kg; SAR(10 g) = 0.024 W/kg

Configuration/802.11b 2462MHz High Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0452 W/kg
Configuration/802.11b 2462MHz High Body-Back/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.05 V/m; Power Drift = 0.10 dB, Peak SAR (extrapolated) = 0.0670 W/kg

0 dB = 0.0452 W/kg = -13.45 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Body-Front

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21 $^{\circ}$ C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Body-Front/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.00476 W/kg
Configuration/802.11b 2437MHz Mid Body-Front/Zoom Scan (5x5x7)/Cube 0:
Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.6670 V/m; Power Drift = -0.01 dB, Peak SAR (extrapolated) = 0.0160 W/kg

SAR(1 g) = 0.00453 W/kg; SAR(10 g) = 0.0015 W/kg Maximum value of SAR (measured) = 0.00489 W/kg

0 dB = 0.00489 W/kg = -23.11 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Body-Leftside

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Body-Leftside/Area Scan (5x13x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.00623 W/kg

Configuration/802.11b 2437MHz Mid Body-Leftside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.7110 V/m; Power Drift = 0.06 dB, Peak SAR (extrapolated) = 0.0120 W/kg

SAR(1 g) = 0.00292 W/kg; SAR(10 g) = 0.00108 W/kg Maximum value of SAR (measured) = 0.00361 W/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Body-Rightside

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Body-Rightside/Area Scan (5x13x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.00540 W/kg

Configuration/802.11b 2437MHz Mid Body-Rightside/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.116 V/m; Power Drift = 0.07 dB, Peak SAR (extrapolated) = 0.0140 W/kg

SAR(1 g) = 0.00266 W/kg; SAR(10 g) = 0.000968 W/kg Maximum value of SAR (measured) = 0.00487 W/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11b 2437MHz Mid Body-Top

Communication System Band: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11b 2437MHz Mid Body-Top/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0329 W/kg

Configuration/802.11b 2437MHz Mid Body-Top/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.996 V/m; Power Drift = -0.04 dB, Peak SAR (extrapolated) = 0.0510 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.00999 W/kg Maximum value of SAR (measured) = 0.0334 W/kg

0 dB = 0.0334 W/kg = -14.76 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11g 2437MHz Mid Body-Back

Communication System Band: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11g 2437MHz Mid Body-Back/Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0236 W/kg

Configuration/802.11g 2437MHz Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.2710 V/m; Power Drift = 0.09 dB, Peak SAR (extrapolated) = 0.0550 W/kg

SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0339 W/kg

0 dB = 0.0339 W/kg = -14.70 dBW/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11n(20MHz) 2437MHz Mid Body-Back

Communication System Band: 802.11n(20MHz); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m3

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11n(20MHz) 2437MHz Mid Body-Back/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.0241 W/kg

Configuration/802.11n(20MHz) 2437MHz Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.5160 V/m; Power Drift = 0.17 dB, Peak SAR (extrapolated) = 0.0560 W/kg

SAR(1 g) = 0.025 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0309 W/kg

Test Laboratory: Cerpass Lab DUT: Mobile Phone; Type: 502E

Procedure Name: 802.11n(40MHz) 2437MHz Mid Body-Back

Communication System Band: 802.11n(40MHz); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 2.01$ S/m; $\epsilon r = 50.73$; $\rho = 1000$ kg/m3

Phantom section: Flat Section; Tissue Temp (celsius) - 21° C Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY5 Configuration:

- Probe: EX3DV4 SN3661; ConvF(7.31, 7.31, 7.31); Calibrated: 2015/4/24;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn918; Calibrated: 2014/12/29
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD
- Measurement SW: DASY52, Version 52.8 (8);

Configuration/802.11n(40MHz) 2437MHz Mid Body-Back/Area Scan (8x12x1):

Measurement grid: dx=15mm, dy=15mm, Maximum value of SAR (measured) = 0.00859 W/kg

Configuration/802.11n(40MHz) 2437MHz Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 0.1780 V/m; Power Drift = 0.19 dB, Peak SAR (extrapolated) = 0.0240 W/kg

SAR(1 g) = 0.00936 W/kg; SAR(10 g) = 0.00372 W/kg Maximum value of SAR (measured) = 0.00967 W/kg

0 dB = 0.00967 W/kg = -20.15 dBW/kg	
APPENDIX C. Calibration Data for Probe, Dipole and DAE	
Please refer to attached files.	

APPENDIX D. Photographs of EUT and Setup
Please refer to attached files.