Escoamentos Multifásicos

(FEN03711)

Prof. Gustavo Rabello Anjos

Programa de Pós-Graduação em Engenharia Mecânica gustavo.anjos@uerj.br

10. período, 2015

Tópicos da aula

- Conceitos Básicos de escoamentos dispersos;
- Abordagem computacional de escoamentos particulados;
- Mecanismos e a equação de BBO (com exemplos);
- Forças importantes;
- Solução da velocidade da partícula.

Abordagens computacionais

euler x lagrange

euler x euler

- euleriano-lagrangiano DNS para fase contínua e cálculo da trajetória de cada partícula;
- euleriano-lagrangiano LES/RANS para fase contínua e cálculo da trajetória de cada partícula;
- euleriano-euleriano (dois fluidos) as fases são descritas por duas equações distintas e acopladas por condições de contorno apropriadas;
- multifluidos euleriano-euleriano modelos estatísticos são utilizados para o cálculo de muitas partículas.

Equações Governantes

Conservação de quantidade de movimento

十

Conservação de massa

2a. lei de Newton para partículas

Problema do canal

Mecanismos

2a. lei de Newton

$$\sum \mathbf{F} = m\mathbf{a} = m\frac{D\mathbf{v}}{Dt}$$

$$\sum \mathbf{F} = \mathbf{F}_{\text{lift}} + \mathbf{F}_{\text{drag}} +$$

 $\mathbf{F}_{\mathrm{gravidade}} + \mathbf{F}_{\mathrm{massa\ virtual}} +$

 $\mathbf{F}_{\mathrm{historia}} + \mathrm{etc.}$

$$m = \rho_p dV = \rho_p \pi \frac{d_p^3}{6}$$

Mecanismos

- distorção local do campo de velocidades: arrasto e 'lift'
 - arrasto (drag): diferença de velocidades
 - lift: assimetria
 - diferença de velocidade;
 - gradiente de velocidade;
 - diferença de rotação;
 - forma (partículas não esféricas).
- distorção local do campo de aceleração: massa virtual
- campo de tensões local: gravidade (buoyance)
- não-equilíbrio local: Basset

Arrasto (drag)

Força que faz resistência ao movimento de uma partícula em um meio fluido, ou seja, aparece devido ao atrito entre a partícula e o fluido. Esta força é consequentemente paralela ao escoamento.

$$\mathbf{F}_{\mathrm{drag}} = -3\pi\mu d_p$$

$$\mathbf{F}_{\mathbf{drag}} = 3\pi \mu d_p \mathbf{u}$$

Sustentação (lift)

Força perpendicular ao escoamento que surge devido à diferença de pressão sobre um objeto. Em partículas, esta força aparece devido à sua rotação. Por sua vez, a rotação das partículas é causada onde há gradiente de velocidade.

$$\mathbf{F}_{\mathrm{lift}} = 1,61 (\mu \rho_p)^{1/2} d_p^2 |\mathbf{u} - \mathbf{v}| \frac{d\mathbf{u}}{dy} \left(\left| \frac{d\mathbf{u}}{dy} \right| \right)^{1/2}$$

$$\mathbf{F}_{\mathrm{lift}} = 0$$
 escoamento escoamento cisalhante uniforme

Massa virtual

Força causada pelo deslocamento de fluido ao redor de uma partícula quando em movimento. Para modelagem desta força, considera uma partícula com massa adicional, ou diâmetro aumentado.

$$\mathbf{F}_{\text{massa virtual}} = \frac{1}{2} \frac{M}{dt}$$

$$= -\frac{1}{2} \frac{\rho_p \pi \frac{d_p^3}{6}}{dt}$$

$$\mathbf{F}_{\text{massa virtual}} = -\frac{1}{2} \frac{M}{dt} \mathbf{v}$$

$$= \frac{1}{2} \frac{\rho_p \pi \frac{d_p^3}{6}}{dt} \mathbf{v}$$

Gravidade

$$\mathbf{F}_{ ext{gravidade}} = m\mathbf{g}$$
 $m = \rho_p V$
 $V = \pi \frac{d_p^3}{6}$
 $\mathbf{F}_{ ext{gravidade}} = \rho_p \pi \frac{d_p^3}{6} \mathbf{g}$

Outras forças/acoplamentos

- forças eleltrostáticas (Coulomb): descreve a interação eletrostática entre partículas eletricamente carregadas;
- forças 'thermophoretics': aparecem devido a gradientes de temperatura na fase contínua;
- acoplamento da conservação de quantidade de movimento angular para partículas;
- acoplamento da conservação de energia em partículas;
- acoplamento de transferência de calor por convecção e radiação;
- etc.

Equação BBO

Equação de Basset-Boussinesq-Oseen: descreve o movimento e as forças atuantes de uma partícula em escoamentos transientes e com baixo número de Reynolds

Zhou & Fan (1998)

$$\rho_{p}\frac{\pi d_{p}^{3}}{6}\frac{d\mathbf{v}}{dt} = 3\pi\mu d_{p}(\mathbf{u}-\mathbf{v}) + \rho_{p}\frac{\pi d_{p}^{3}}{6}\mathbf{g} + \rho_{f}\frac{\pi d_{p}^{3}}{6}(\nabla\cdot\tau) + \rho_{f}$$

história (basset)

Equação BBO

Flows with Droplet and Particles, Crowe et at. (2012)

$$\begin{split} &\rho_p \frac{\pi d_p^3}{6} \frac{d\mathbf{v}}{dt} = \mathbf{p}_p \frac{\pi d_p^3}{6} \mathbf{g} + \mathbf{v} (\nabla p + \nabla \cdot \tau) + 3\pi \mu d_p \left[(\mathbf{u} - \mathbf{v}) + \frac{d_p^2}{24} \nabla^2 \mathbf{u} \right] \\ &+ \frac{1}{2} \rho \mathbf{v} \frac{d}{dt} \left[(\mathbf{u} - \mathbf{v}) + \frac{d_p^2}{24} \nabla^2 \mathbf{u} \right] \quad \underset{\text{virtual}}{\text{massa}} \\ &+ \frac{3}{2} \pi \mu d_p^2 \int\limits_0^t \left[\frac{d/d\tau \left(\mathbf{u} - \mathbf{v} + d_p^2/24 \times \nabla^2 \mathbf{u} \right)}{\pi \nu (t - \tau)^{1/2}} \right] d\tau \quad \underset{\text{(basset)}}{\text{história}} \end{split}$$

Equação BBO no canal

Para o problema proposto neste curso, a equação de Basset-Boussinesq-Oseen deverá tomar a forma de:

$$\begin{split} \rho_p \frac{\pi d_p^3}{6} \frac{d\mathbf{v}}{dt} &= \boxed{\rho_p \frac{\pi d_p^3}{6} \mathbf{g}} + \boxed{3\pi \mu d_p(\mathbf{u} - \mathbf{v})} \\ &+ \frac{1}{2} \frac{\rho_p \pi d_p^3/6}{dt} (\mathbf{u} - \mathbf{v}) \boxed{\maxsa} \quad \text{sustentação} \\ &+ 1,61 (\mu \rho_p)^{1/2} d_p^2 |\mathbf{u} - \mathbf{v}| \frac{d\mathbf{u}}{dy} \left(\left| \frac{d\mathbf{u}}{dy} \right| \right)^{1/2} \end{split}$$

Equação de BBO simplificada

E como resolver esta equação diferencial ordinária de primeira ordem para encontrar a velocidade da partícula no tempo n+1?

Reposta: Analiticamente ou numericamente.

Equação de BBO simplificada

$$\mathbf{v}^{n+1} = \frac{\left(\frac{B}{m}v^n + \frac{C}{m}\right)exp(\frac{B\Delta t}{m}) - \frac{C}{m}}{B/m}$$

Equação de BBO simplificada

$$\frac{d\mathbf{v}}{dt} = B\mathbf{v} + C$$

$$\frac{d\mathbf{v}}{dt} = \frac{B}{m}\mathbf{v} + \frac{C}{m}$$
 explícito implícito

$$\frac{\mathbf{v}^{n+1} - \mathbf{v}^n}{\Delta t} = \frac{B}{m} \mathbf{v}^n + \frac{C}{m}$$

$$\frac{\mathbf{v}^{n+1} - \mathbf{v}^n}{\Delta t} = \frac{B}{m} \mathbf{v}^{n+1} + \frac{C}{m}$$

$$\mathbf{v}^{n+1} = \left(\frac{B}{m}\mathbf{v}^n + \frac{C}{m}\right)\Delta t + \mathbf{v}^n$$

$$\mathbf{v}^{n+1} = \left(\frac{B}{m}\mathbf{v}^n + \frac{C}{m}\right)\Delta t + \mathbf{v}^n \qquad \left(\frac{1}{\Delta t} - \frac{B}{m}\right)\mathbf{v}^{n+1} = \frac{C}{m} + \frac{\mathbf{v}^n}{\Delta t}$$