Hybrid Genetic Search for the Dynamic Vehicle Routing Problem

Mohammed Ghannam

HTW Berlin

Static Solver

- Starting point: static baseline.
- New crossover operator HGreX ¹
 - Choose random node.
 - Choose best (unassigned) outgoing arc.
 - If all arcs assigned, choose random unassigned.

¹K. Puljić and R. Manger (Nov. 2013). "Comparison of Eight Evolutionary Crossover Operators for the Vehicle Routing Problem". In: Mathematical Communications 18

Dynamic Solver

Goal: Adapt HGS for the dynamic variant.

Adapting HGS: Solution Representation

Giant-tour representation

Adapting HGS: Solution Representation

Giant-tour representation

Adapting HGS: Solution Representation

Adapting HGS: Initial Population

Random Solutions

Adapting HGS: Initial Population

Random Solutions

Adapting HGS: Initial Population

Delete some optional nodes

Adapting HGS: Fitness

- Feasibility → Penalize missing must-go nodes.
- Comparability → Normalize by the number of nodes visited.
- Future flexibility → Lateness measure.

```
penalized cost = total distance
+ total time warp
+ total capacity violation
+ no. of missed must dispatched nodes
+ latest times of arrival
```

$$\frac{\textit{normalized penalized cost}}{\textit{no. of nodes in solution}}$$

Adapting HGS: New Local Search Operators

Any Questions?

- mohammed.ghannam@htw-berlin.de
- github.com/mmghannam

