$$X = \underbrace{M}_{\text{local martingale}} + \underbrace{A}_{\text{local martingale}}$$
 bounded variation process Ito: $f \in \mathcal{C}^2, df(X_t) = f'(X_s)dX_s + \frac{1}{2}f''(X_s)d < M >_s$

1 Basic concepts of SPT

Starting point: semimartingale market models, ie:

$$dB(t) = r(t)B(t)dt (1)$$

$$dX_i(t) = X_i(t) \left(b_i(t)dt + \sum_{\nu} \sigma_{i,\nu} dW_{\mu}(t) \right)$$
 (2)

Here:

- B(t) is the value of the bank accound if we start from 1 dollar today.
- $X_i(t)$ stands for the price of one share of stock of company i.
- r(t) is the short rate.
- $b_i(t)$ rate of return of stock i.
- $\sigma_{i,\nu}(t)$ volatility of stock i with respect to W_{ν} .

Theorem 1 (Solutions). (1) and (2) admist solutions (as long as we know the ?) $B(t) = e^{\int_0^t r_s ds}$

$$X_i(t) = X_i(0) \exp\left(\int_0^t \gamma_i(s) ds + \int \Sigma_{\nu=1}^d \sigma_{i,\nu}(s) dW_{\nu}(s)\right)$$

where

$$\gamma_i(t) = b_i(t) - \frac{1}{2}a_{ii}(t) = b_i(t) - \frac{1}{2}\sum_{\mu=1}^d \sigma_{i\mu}(t)$$

is called the growth rate.

Proof. • $e^{\int_0^t r(s)ds}$ is a process of bounded variations. $(\int_0^t r(s)ds = \int_0^t r(s)^+ ds - r(s)^- ds)$ By Ito's formula for the semi martingale $\int_0^t r(s)ds$ and $f = \exp \det_0^{\int_0^t r(s)ds} = e^{\int_0^t r(s)ds} d(\int_0^t r(s)ds) = e^{\int_0^t r(s)ds} r(t)dt$.

$$\begin{split} X_i(t) &= X_i(0) e^{\int_0^t \gamma_i(s) ds + \int \sum_{\nu=1}^d \sigma_{i,\nu}(s) dW_{\nu}(s)} \\ d\log(X_i(t)) &= d(\int_0^t \gamma_i(s) ds + \int \sum_{\nu=1}^d \sigma_{i,\nu}(s) dW_{\nu}(s)) = \gamma_i(t) dt + \sum_{\nu=1}^d \sigma_{i,\nu}(t) dW_{\nu}(t) \\ d\log(X_i(t)) &= \frac{dX_i(t)}{X_i(t)} - \frac{1}{2} \frac{1}{X_i(t)^2} \underbrace{X_i(t)^2 \sum_{d < X_i > (t)}}_{d < X_i > (t)} \\ &= \frac{dX_i(t)}{X_i(t)} - \frac{1}{2} \sum \sigma_{i\mu}^2(t) dt \end{split}$$

Remak 1 (growth rate).

$$\frac{1}{T}\log X_i(t) - \frac{1}{T} \int_0^T \gamma_i(t)dt \to 0$$

Whenever σ does not grow too fast in T.

Proof.

$$\frac{1}{T}\log X_i(t) - \frac{1}{T}\int_0^T \gamma_i(t)dt = \frac{1}{T}\int_0^T \sum_{\nu} \gamma_{i\nu}(t)dW_{\nu}(t)$$

Theorem 2 (Time change martingale). Every stochastic integral $I_t = \sum \int h_{\nu} dW_{\nu}(s)$ can be written as a time change of a brownian motion β where

$$\beta(s) = I_{\tau_s}$$

$$\tau_s = \inf\{t : \int_0^t \sum h_{\nu}(s)^2 ds\}$$

 $I_t = \beta(\langle I \rangle_t)$

2 Class Portfolios old theory

Definition 1 (Portfolios). Fix a filtration $(\mathcal{F}_t)_{t\geq 0}$ such that B, X_i, r, b, σ are adapted to it. A portfolio $\Pi(t) = (\Pi_1(t), \ldots, \Pi_n(t))$ is a bounded progressively measurable process with respect to $(\mathcal{F}_t)_t$ such that:

$$\sum_{i} \Pi_i(t) = 1 \ \forall t$$

We Π call long-only portfolio if $\pi_i(t) \geq 0 \forall i$

Definition 2 (Progessively measurable). $\Pi(t)$ measurable with respect to $\bigcup_{s < t} \mathcal{F}_s$

Example 1. • Equal weighted portfolio: $\Pi_1(t) = \dots = \Pi_n(t) = \frac{1}{n}$.

• Market portfolio: Suppose company i has $N_i(t)$ shares at time $t \Pi_i(t) = \frac{X_i(t)V_i(t)}{\sum X_i(t)V_i(t)}$

Assumption: All portfolios Π are self financing \iff we immediately re investing all gain from traind). Mathematically, the portfolio value $V^{(\pi)}(t) = \sum \Pi_i(t) X_i(t)$ satisfies the equation $\frac{dV^{\pi}(t)}{V_i^{pt}(t)} = \sum_i \pi_i(t) \frac{dX_i(t)}{X_i(t)}$.

Theorem 3. Has an explicit solution

$$V^{(\pi)}(t) = V^{(\pi)}(0) \exp(\int_0^t \gamma_{\pi}(u) du + \int_0^t \sum_{\nu} \sigma_{\pi\nu}(u) dW_{\nu}(u))$$
$$\gamma_{\pi}(t) = \sum_i \pi_i(t) \gamma_i(t) + \gamma_{\pi}^*(t) \gamma_{\pi}^*(t) = \frac{1}{2} (\sum_i \pi_i(t) a_{ii}(t) - \sum_{i,j} \pi_i(t) \pi_j(t) a_{i,j}(t))$$
$$\sigma_{\pi\nu}(t) = \sum_i \pi_i(t) \sigma_{i\mu}(t)$$

Definition 3 (Portfolio). • Classical portfolios:

$$\zeta(t) = (\underbrace{\zeta_i(t)}_{(\# \ of \ share)})_i$$

- Self financing condition: portfolio value $V(t) = \zeta X$ satisfies $dV = \zeta dX$
- in SPT, we wwwwant to think about weights. $\Pi_i(t) = \frac{\zeta_i(t)X_i(t)}{\zeta.X}$
- It only make sens to think of V in relative terms:

$$\frac{dV^{(\pi)}(t)}{V^{\pi}(t)} = \sum_{i} \pi_i(t) \frac{dX_i(t)}{X_i(t)}$$

Theorem 4. Has an explicit solution

$$V^{(\pi)}(t) = V^{(\pi)}(0) \exp\left(\int_0^t \gamma_\pi(u) du + \int_0^t \sum_{\nu} \sigma_{\pi\nu}(u) dW_{\nu}(u)\right)$$
$$\gamma_\pi(t) = \sum_i \pi_i(t) \gamma_i(t) + \underbrace{\gamma_\pi^*(t)}_{excess\ growth\ rate}$$
$$\gamma_\pi^*(t) = \frac{1}{2} \left(\sum_i \pi_i(t) a_{ii}(t) - \sum_{i,j} \pi_i(t) \pi_j(t) a_{i,j}(t)\right)$$
$$\sigma_{\pi\nu}(t) = \sum_i \pi_i(t) \sigma_{i\mu}(t)$$

We can prove that $\frac{1}{T}\log(V^{\pi}(t)) - \frac{1}{T}\int_{0}^{T}\gamma^{\pi}(u)du \to 0$

Remak 2 (Market portfolios and market weights). *Disclaimer:* From now on, think of $X_i(t)$ as the market capitalization of company i (# shares. price per share).

2.0.1 The market portfolio

Recall: the market portfolio has weights $\pi_i(t) = \frac{X_i(t)}{\sum X_j} = \mu_i(t)$. For the market portfolio:

$$\frac{1}{T} \int_0^T \gamma^{\mu} du = \frac{1}{T} \int_0^T \sum \gamma_i(u) \mu_i(u) du + \frac{1}{T} \int_0^T \gamma_{\mu}^*(u) du$$

If in the original model for X_i the coefficients only depend on the μ_i s: $b_i(t) = \bar{b}_i \cdot \mu$, $\sigma_{i\nu}(t) = \bar{\sigma}_{i\nu} \cdot \mu$ then we are taking the average of a function on μ :

$$\frac{1}{T} \int_0^T f(\mu_1(t), \dots, \mu_n(t)) dt$$

 $\mu \to \int_0^T f(\mu(t)) dt$ is a clled an additive functional. To understand market portfolio:

- Need to understand how μ begaves in the real world.
- Select a class of models compatible with that.
- $\bullet \ \, {\rm Study} \ the \ assymptotics \ of \ the \ additive \ functional, \ which \ will \ give \ us \ the \ asymptotic \ growth \ of \ market \ portfolio.$

Main observation (Fernholz): rank the market weights: $\mu_{(1)} \geq \ldots \geq \mu_{(n)}$

- the curve $\log k \to \log \mu_{(k)}(t)$ is very stable over time.
- shape is close to linear (weights decay poly)
- \Longrightarrow look for models of $(\mu_1(t), \dots, \mu_n(t))$ so that $(\mu_{(1)}(t), \dots, \mu_{(n)}(t))$ is stochastically stable. e.g. there exist an initial distribution of $(\mu_{(1)}(0), \dots, \mu_{(n)}(0)) \stackrel{d}{=} (\mu_{(1)}(t), \dots, \mu_{(n)}(t))$ Such a distribution is a called a stationary / invariant distribution of the process.