Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)»

Факультет радиотехники и кибернетики

Кафедра инфокоммуникационных систем и сетей

СКОРОСТЬ СХОДИМОСТИ К ФОРМАЦИИ В НЕЛИНЕЙНОЙ МОДЕЛИ ДВИЖЕНИЯ ДЕЦЕНТРАЛИЗОВАННЫХ АВТОНОМНЫХ АГЕНТОВ В ЗАВИСИМОСТИ ОТ СВОЙСТВ ГРАФА КОММУНИКАЦИИ

Выпускная квалификационная работа (бакалаврская работа)

Направление подготовки: 03.03.01 Прикладные математика и физика

Выполнил:	
студент 112 группы	Бородий Дмитрий Андреевич
Научный руководитель:	
д. фм. н., главный научный сотрудник	Чеботарев Павел Юрьевич

Оглавление

B	Введение		
1	Цель работы	5	
2	Обзор существующих подходов	6	
3	Основные определения и математическая модель	7	
	3.1 Некоторые сведения из алгебраической теории графов	7	
	3.2 Базовая линейная модель движения в формации	7	
	3.3 Нелинейная модель движения в ориентированной формации	10	
	3.4 Дальнейшие расширения модели	11	
	3.4.1 Избегание столкновений	11	
	3.4.2 Учет ненадежности связей коммуникации	11	
4	Описание системы моделирования	12	
	4.1 Интерактивный режим	12	
	4.2 Режим сбора данных	12	
	4.3 Используемые технологии	12	
5	Моделирование и результаты	13	
	5.1 Скорость сходимости к формации в зависимости от параметров модели	13	
	5.2 Скорость сходимости в зависимости от алгебраической связности графа коммуни-		
	кации	13	
	5.3 Скорость сходимости при стохастических разрывах связей в графе коммуникации .	13	
	5.4 Построение графов с максимальной алгебраической связностью	13	
6	Интерпретация результатов	14	
7	Выводы и направления для дальнейших исследований	15	
\mathbf{C}	писок литературы	16	

Введение

В этой части вводится понятие многоагентных систем, описываются их преимущества по сравнению с монолитными системами, приводятся примеры удачных приложений многоагентного подхода и обозначается цель данной работы.

Многоагентные системы

В широком смысле под многоагентной системой понимают совокупность автономных, т.е. обладающих некоторым поведением объектов — агентов, — которые кооперируют для решения общей задачи. В процессе решения задачи агенты могут обмениваться друг с другом информацией и на ее основе корректировать свое поведение. Ключевыми свойствами многоагентных систем являются:

- Отсутствие центрального управления. Поведение агентов определяется ими самими на основе определенных правил, которые в простейших случаях едины и неизменны для всех агентов, но в принципе могут и меняться во времени в зависимости от полученной агентом информации.
- Отсутствие у агентов глобальной информации о всей системе. Каждый агент действует, полагаясь на некоторую "локальную" информацию, полученную из его непосредственного окружения и от взаимодействия с соседними агентами.

Из этого общего описания вытекают потенциальные преимущества многоагентных систем:

- Сложность системы и, соответственно, сложность решаемых ей задач, определяются не сложностью устройства отдельно взятого агента, а взаимодействием большого числа агентов. Поэтому техническое устройство каждого отдельного агента может быть достаточно простым, что приводит к более низкой стоимости всей системы и к повышеной надежности.
- **Высокая отказоустойчивость.** Даже если отдельные агенты вышли из строя, остальные все еще могут выполнить поставленную задачу.

Стоит обратить внимание на сходство многоагентных систем с системами, имеющими место в живой природе. И действительно, некоторые работы строят прямую аналогию с такими живыми системами как колонии муравьев или стаи птиц и пытаются воспроизвести некоторые модели поведения этих существ.

Некоторые приложения

начиная с 2004-2005 года наблюдается повышенный интерес не вообще к теме многоагентных систем и децентрализованного управления, а к графовым, сетевым моделям таких систем

В последние годы (начиная с 2004-2005 года) наблюдается повышенный интерес к теме много-агентных систем и децентрализованного управления. При этом исследования не ограничиваются разработкой теории и компьютерными моделями - в ряде случаев построены успешно действующие прототипы подобных систем.

Ниже приведен неполный список задач, в которых успешно применяется многоагентный подход и ссылки на соответствующие работы:

- Координация движения различных аппаратов (спутники, беспилотные летатальные аппараты, подводные и наземные средства): [1], [2], [3], [4].
- Сортировка, кластеризация объектов: [5], [6], [7], [8].
- Строительство пространственных структур: [9], [10], [11], [12].

Цель работы

дополнить, сменить прошедшее время на настоящее В данной работе рассматривается задача о движении агентов в определенной формации. Изучается нелинейная модель движения агентов на плоскости, описанная в работе [2]. Оригинальная модель была расширена, чтобы сделать ее более реалистичной и в уже получившейся модели эмпирически при помощи компьютерной симуляции изучаются зависимости скорости сходимости к формации от параметров модели.

Показана сильная зависимость скорости сходимости модели от алгебраической связности графа коммуникации. Для случая неориентированных графов коммуникации предложен эвристический рандомизированный алгоритм построения графов с определенным числом ребер с большими значениями алгебраической связности (относительно случайного графа с тем же числом ребер). В экспериментах с моделью показано, что графы коммуникации, порожденные этим алгоритмом, дают в среднем большую скорость сходимости чем случайно построенный граф коммуникации.

К целям работы также относится создание интерактивной среды для проведения дальнейших экспериментов с подобными моделями, возможно уже другими исследователями. Все исходные коды как среды, так и самой работы выложены в открытый репозиторий по ссылке: https://github.com/dmitru/flocks.

Обзор существующих подходов

TODO

Кратко рассказать про подходы к образованию формаций в разных работах. Чуть подробнее про работы Verrman et al.

Основные определения и математическая модель

3.1. Некоторые сведения из алгебраической теории графов

TODO: Вставить

3.2. Базовая линейная модель движения в формации

Исходная модель (будем далее называть ее "модель 1") описывает систему из N агентов, движущихся в d-мерном пространстве (в рассматриваемом случае d=2). Перед агентами стоит следующая задача: начав движение из заданной позиции с заданными скоростями, выстроиться в заранее заданную формацию и продолжить движение в ней.

Каждому агенту известна разница своих координат и скоростей с координатами и скоростями некоторых других агентов, которые входят в его *множество соседей*. Эти множества задаются *графом коммуникации* G, в котором проведено ребро $i \to j$, если агент j получает информацию от агента i. Каждый агент знает также свою позицию в желаемой конфигурации и позиции его соседей.

Теперь опишем модель формально. Состоянием i-го агента является вектор x_i в пространстве \mathbb{R}^{2d} .

$$x_i = x_i^p \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x_i^v \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Здесь x_i^p и x_i^v это пространственное положение и скорость агента, а \otimes — произведение Кронекера.

Состояние всей системы описывается вектором $x = (x_1, x_2, \dots, x_N)^T$. Желаемая формация задается вектором $h = (h_1, 0, h_2, 0 \dots h_N, 0)^T = h_p \otimes (1, 0)^T \in \mathbb{R}^{2dN}$.

¹Таким образом, вектор x_i имеет вид (для d=2): $(x_i,\dot{x}_i,y_i,\dot{y}_i)$. Обозначения позаимствованы из работы [2].

Определение 1 Говорят, что система движется *в формации*, когда \exists функции q(t), w(t), такие что: $x^p(t) - h^p \equiv q(t)\mathbf{1}$, $x^v(t) \equiv w(t)\mathbf{1}$.

Говорят, что система *сходится* к формации, когда $x^p(t) - h^p - q(t)\mathbf{1} \to 0$, $x^v(t) - w(t)\mathbf{1} \to 0$.

Смысл определения в том, что при движении в формации все агенты имеют одну и ту же скорость, а их позиции совпадают с требуемой формацией с точностью до некоторого смещения.

Уравнение движения агентов имеет в данной модели следующий вид: $\dot{x_i} = A_1 x_i + B_1 u_i$, где

$$A_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & a_{22} & 0 & a_{24} \\ 0 & 0 & 0 & 1 \\ 0 & a_{42} & 0 & a_{44} \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix},$$

а u_i это управляющий сигнал, который еще предстоит ввести.

Вид матриц A_1 , B_1 объяснен в работе [2]. Подматрица $A_0 = \begin{pmatrix} a_{22} & a_{24} \\ a_{42} & a_{44} \end{pmatrix}$ матрицы A_1 определяет динамику движения формации как целого. Физический смысл чисел $a_{22}, a_{24}, a_{42}, a_{44}$ такой: a_{24}, a_{42} отвечают за кривизну траектории формации. При $a_{24} = -a_{42} \neq 0$ агенты двигаются в формации по окружности определенного радиуса; при $|a_{24}| \neq |a_{42}|$, где $|a_{24}|, |a_{42}| > 0$ — по эллипсу, при $a_{24} = a_{42} = 0$ — по прямой. Числа a_{22} и a_{44} отвечают за ускорение формации вдоль линии текущего курса, при $a_{22} > 0, a_{44} > 0$ ускорение положительное, при a_{22}, a_{44} — отрицательное. В дальнейшем ограничимся случаем движения по прямой и по окружности, введя вместо a_{24}, a_{42} один параметр $k = a_{24} = -a_{42}$ — кривизна траектории движения. При k = 0 получаем прямолинейное движение, а по мере увеличения k движение происходит по окружности все меньшего радиуса.

Рисунок 3.1: Движение, задаваемое моделью 1. На рисунке а) параметр кривизны движения k=0, на рисунке б) k=1, на рисунке в) параметр k меняет значение во время движения. Во всех случаях граф коммуникации полный, $f_1=f_2=-2.5$. Иллюстрации сделаны в интерактивном режиме симуляции модели.

Управляющий сигнал получается преобразованием u = Fz, где F — матрица обратной связи, а z —функция, описывающая "выходной сигнал" из системы. Этот выходной сигнал рассчитывается так же как и в базовой модели консенсуса:

$$z_i = (x_i - h_i) + \frac{1}{|\mathbb{J}_i|} \sum_{j \in \mathbb{J}_i} ((x_i - h_i) - (x_j - h_j)) \quad i = 1, \dots, N.$$

Объединив уравнения для всех агентов в одно, получим общее уравнение движения для всей системы:

$$\dot{x} = Ax + BFL(x - h),\tag{3.1}$$

где $L \equiv L_G \otimes I_{2N}, L_G$ —матрица лапласа графа коммуникации G, а матрицы A, B и F определены через "размножение" матриц A_1, B_1 и F_1 для одного агента: $A = I_N \otimes A_1, B = I_N \otimes B_1, F = I_N \otimes F_1$, т.к. законы движения всех агентов одинаковы.

В работах [2], [1] авторы ограничиваются матрицей обратной связи F_1 вида

$$F_1 = \left(\begin{array}{ccc} f_1 & f_2 & 0 & 0 \\ 0 & 0 & f_1 & f_2 \end{array} \right),$$

такая же матрица используется и в данной работе.

Для рассмотренной модели имеется ряд доказанных теоретических результатов, интересующие нас приведены ниже.

Во-первых, так же как и в базовой модели консенсуса, существует необходимое условие сходимости модели:

Утверждение 1 Необходимым условием сходимости модели к формации является наличие в графе коммуникации G остовного исходящего дерева.

Но для рассматриваемой модели это условие не является достаточным. Достаточные условия сходимости даются следующей теоремой [1,2]:

Во-вторых, для случая неориентированных графов в работе [1] имеется теорема о скорости сходимости к формации.

Теорема 1 Модель 1 сходится к формации, когда коэффициенты обратной связи f_1, f_2 и параметр k удовлетворяют неравенствам

$$\frac{f_2^2}{f_1} < -\frac{\beta^2}{\alpha(\alpha^2 + \beta^2)}$$
 и (3.2)

$$|k| < \frac{-f_1|\beta|}{f_2\alpha} - \frac{f_2(\alpha^2 + \beta^2)}{|\beta|},$$
 (3.3)

где $\alpha + i\beta = \lambda$ — собственные числа матрицы Лапласа графа коммуникации G.

Теорема 2 Для неориентированных графов скорость сходимости пропорциональна выражению $(a_2 2 + \lambda_1 f_2)/2$, где λ_1 — наименьшее ненулевое собственное значение матрицы L_G .

3.3. Нелинейная модель движения в ориентированной формации

Как можно видеть на рисунке 3.1, формация не меняет своей ориентации при поворотах, что не очень реалистично. Изменив уравнение движения 3.1, получим уже нелинейную модель 2:

$$\dot{x} = Ax + BFL(x - T_x h),\tag{3.4}$$

где оператор T_x определен как

$$T_x: h \to \sum_{i=1}^N E_i \otimes R_{x_i^v} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} h_i. \tag{3.5}$$

В этом определении E_i это матрица, состоящая из нулей и единственной единицей на i-й диагональной позиции, а $R_v:\mathbb{R}^2\to\mathbb{R}^2$ поворачивает базисный вектор e_1 в направлении вектора v.

Модель значительно усложнилась: перестала быть линейной и от агентов стало требоваться знать не только скорости относительно соседей, но и их собственные асболютные скорости. Следует также заметить, что R_v не определен для нулевых векторов v, и поэтому модель 2 не допускает нулевой скорости агентов.

На рисунке ??-motion показаны траектории агентов в модели 2:

Рисунок 3.2: Движение, задаваемое моделью 2 — формация ориентируется по направлению движения. На рисунке б) видно искажение формации во время совершения разворота.

На последнем рисунке видно, что во время разворота агенты выстраиваются не в точности в заданную формацию (на рисунке отмечена квадратами), а в ее немного искаженную версию. Причем при уменьшении радиуса разворота искажение это все больше.

3.4. Дальнейшие расширения модели

В этой работе в модель 2 были внесены еще две поправки. Получившуюся модель назовем моделью 3 — именно она рассматривается в данной работе. Рассмотрим эти поправки по очереди.

3.4.1. Избегание столкновений

Во-первых, чтобы избежать столкновений между агентами, в уравнение движения был добавлен потенциал отталкивания. Этот потенциал включается тогда, когда расстояние между агентами становится меньше заданного порога r_0 и линейно возрастает по ммере уменьшения расстояния. Чтобы не допустить возникновения бесконечно больших ускорений, его вклад в ускорение агентов ограничен параметром r_1 , начиная с которого потенциал перестает возрастать. Интенсивность расталкивания регулируется параметром D.

Вид дополнительных ускорений, вызванных потенциалом расталкивания и действующих на агента i:

$$a_i^{rep} = -D \sum_{i \neq j, |r_{ij}| < r_0} \min(r_1, r_0 - |r_{ij}|) \frac{r_{ij}}{|r_{ij}|}.$$
(3.6)

Рассмотренный потенциал отталкивания взят из работы [3], где он использовался для предотвращения столкновений между квадрокоптерами во время построения ими формации.

3.4.2. Учет ненадежности связей коммуникации

Вторым дополнением модели послужил учет случайных разрывов связей в графе коммуникации, которые почти наверняка будут иметь место при построении реальных многоагентных систем.

Моделирование разрыва связей можно провести по-разному. Например, можно было моделировать разрывы и восстановления связей различными случайными процессами в зависимости от дополнительных предположений, например пуассоновскими процессами с разными параметрами для разрыва и восстановления. В этой работе использовался более простой подход: при пошаговом численном решении уравнения движения на каждом k-м шаге проводится обновление графа коммуникации. При этом для каждого ребра независимо с вероятностью p будет ли оно деактивировано (т.е. не влиять на формирование множеств соседей) на протяжении следующих k шагов. После k шагов процедура повторяется.

Окончательная форма уравнения движения в модели 3 будет такой:

$$\dot{x} = Ax + BFL(t)(x - T_x h) + a^{rep} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \tag{3.7}$$

Описание системы моделирования

В ходе выполения работы была создана компьютерная система для проведения численных экспериментов с рассмотренными моделями. Система работает в двух основных режимах:

4.1. Интерактивный режим

Основная задача этого режима - позволить исследователю интерактивно взаимодействовать с моделью, чтобы в процессе этого выработать гипотезы, которые в дальнейшем можно было бы подтвердить более детальным анализом.

В интерактивном режиме пользователь задает начальные параметры модели и в режиме реального времени может наблюдать ее движение. В этом режиме уравнение движения решается пошагово на маленьких отрезках времени в перерывах между отрисовками состояния модели на экране. Благодаря этому есть возможность менять любой параметр в уравнениях системы, например связав изменение параметров с нажатием на определенную клавишу.

Также можно попросить систему одновременно с отрисовкой модели строить графики произвольных функций от состояния модели (например близость текущего состояния системы к желаемой формации или проекции скорости отдельных агентов), а также любую текстовую информацию (номер шага, количество столкновений, процент активных ребер графа коммуникации).

Реализация этого режима значительно облегчила процесс отладки модели. Например, ТООО

4.2. Режим сбора данных

TODO

4.3. Используемые технологии

TODO

Моделирование и результаты

описать сами эксперименты, что меняли, что нет и привести графики/таблицы

5.1. Скорость сходимости к формации в зависимости от параметров модели

TODO

5.2. Скорость сходимости в зависимости от алгебраической связности графа коммуникации

TODO

5.3. Скорость сходимости при стохастических разрывах связей в графе коммуникации

TODO

5.4. Построение графов с максимальной алгебраической связностью

TODO: описать сам алгоритм, продемонстрировать его работу в модели, показать что он помогает ускорить скорость сходимости к формации

Интерпретация результатов

ТООО Что-нибудь про параметры модели, Что-нибудь про комграфы, Что-нибудь про связи

Выводы и направления для дальнейших исследований

TODO

В ходе выполнения данной работы были проделаны

Список литературы

- 1. Decentralized control of vehicle formations / Gerardo Lafferriere, Alan Williams, J Caughman, JJP Veerman // Systems & control letters. 2005. Vol. 54, no. 9. Pp. 899–910.
- 2. Flocks and formations / JJP Veerman, Gerardo Lafferriere, John S Caughman, A Williams // *Journal of Statistical Physics.* 2005. Vol. 121, no. 5-6. Pp. 901–936.
- 3. Outdoor flocking and formation flight with autonomous aerial robots / Gábor Vásárhelyi, Csaba Virágh, Gergő Somorjai et al. // Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on / IEEE. 2014. Pp. 3866–3873.
- 4. *Williams, A.* Stable motions of vehicle formations / A Williams, G Lafferriere, JJP Veerman // Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on / IEEE. 2005. Pp. 72–77.
- 5. The dynamics of collective sorting robot-like ants and ant-like robots / Jean-Louis Deneubourg, Simon Goss, Nigel Franks et al. // Proceedings of the first international conference on simulation of adaptive behavior on From animals to animats. 1991. Pp. 356–363.
- 6. *Ding, Hongli*. Sorting in Swarm Robots Using Communication-Based Cluster Size Estimation / Hongli Ding, Heiko Hamann // Swarm Intelligence. Springer, 2014. Pp. 262–269.
- 7. *Kabla, Alexandre J.* Collective cell migration: leadership, invasion and segregation / Alexandre J Kabla // *Journal of The Royal Society Interface*. 2012. P. rsif20120448.
- 8. Segregation of multiple heterogeneous units in a robotic swarm / Vinicius Graciano Santos, Luciano C Pimenta, Luiz Chaimowicz et al. // Robotics and Automation (ICRA), 2014 IEEE International Conference on / IEEE. 2014. Pp. 1112–1117.
- 9. *Pennisi, Elizabeth*. Cooperative 'bots' don't need a boss / Elizabeth Pennisi // *Science*. 2014. Vol. 346, no. 6216. Pp. 1444–1444.
- 10. *Petersen, Kirstin Hagelskjaer*. Collective Construction by Termite-Inspired Robots / Kirstin Hagelskjaer Petersen. 2014.
- Building tensile structures with flying machines / Federico Augugliaro, Ammar Mirjan, Fabio Gramazio et al. // Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on / IEEE. 2013. Pp. 3487–3492.

12. Lindsey, Quentin. Construction of cubic structures with quadrotor teams / Quentin Lindsey, Daniel Mellinger, Vijay Kumar // Proc. Robotics: Science & Systems VII. — 2011.