Feedback — Quiz: Week Four

Help Center

You submitted this quiz on **Mon 13 Apr 2015 9:46 PM PDT**. You got a score of **7.00** out of **7.00**.

Question 1

Which of the following models is an example of a second order polynomial model (k=2)?

1.00	Great job, this is correct!
1.00 / 1.00	
	1.00 / 1.00

Question 2

If you fit a polynomial regression model and obtain an overall p-value of 0.17 for the model, what does this indicate?

Your Answer		Score	Explanation
This model does not fit better than the naïve model	•	1.00	Great job! In this instance, large p-values (>.05) indicate that the current model does not fit any better than the naïve model. If this p-value were significant at p<.05, this would indicate a better fit than the naïve model.
○ This model fits better than the naïve model			
This does not tell us anything about the model			

This model has the same fit as the naïve model			
Total	1.00 /		
	1.00		

Question 3

If you added any random variable into a model, what would happen to the sums of squares due regression?

Your Answer	,	Score	Explanation
 The sums of squares due regression would decrease 			
The sums of	~	1.00	Nice work!
squares due regression would increase			Adding any variable into a model will always increase the sums of squares due regression. Even if the added variable is a series of random numbers, by chance you will always end up artificially increasing the sums of squares due regression.
The sums of squares due regression would remain the same			
We do not			
have enough information to interpret this			
Total		1.00 /	
		1.00	

Question 4

What is a partial F test used for in polynomial regression?

Your Answer		Score	Explanation
$\ \ \ \ \ \ \ \ $	~	1.00	Yes, you got it!
To determine which model best fits the data			
lacksquare To determine the amount of variability in Y explained by X			
Total		1.00 /	
		1.00	

Question 5

How is extra sums of squares calculated in polynomial regression?

Your Answer		Score	Explanation
By subtracting the due regression sums of squares for the straight line model from the due regression sums of squares for the polynomial model	•	1.00	Great job!
 By subtracting the total sums of squares for the straight line model from the total sums of squares for the polynomial model 			
This cannot be calculated			
Total		1.00 /	
		1.00	

Question 6

You conduct a partial F-test of a polynomial term and yield an F value of 16. You compare this value to a critical value of F of 2.02. Should the polynomial term be added to the model?

Your Answer	Score	Explanation
No. You do not reject the null so the term is not significant.		
No. You reject the null and the term is not significant.		

Yes. You reject the null and conclude the term is significant.	~	1.00	Yes, this is correct!
Total		1.00 /	
		1.00	

Question 7

Conclusions from t-test and partial f test are exactly equivalent.

(please answer True or False below)

Your Answer	Score	Explanation
True	✓ 1.00	Great job, you got it right!
		Conclusions for both tests will be equivalent because we know that $t^2 = {\cal F}$
False		
Total	1.00 / 1.00	