Real Variables I

November 1, 2024

Chapter 1

Number Systems

```
Natural numbers: \mathbb{N} = \{1, 2, 3, \ldots\}
Integers: \mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}
Rational numbers: \mathbb{Q} = \{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}
```

Remark. Note for real numbers, \mathbb{Q} has holes in it. **Example.** $\nexists p \in \mathbb{Q}$ s.t $p^2 = 2$

Proof. Assume $\exists p \in \mathbb{Q} \text{ s.t } p^2 = 2$. Then $p = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. So, $p^2 = \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2$. So, a^2 is even $\Rightarrow a$ is even. So, a = 2k for some $k \in \mathbb{Z}$. So, $4k^2 = 2b^2 \Rightarrow b^2 = 2k^2$. So, b^2 is even $\Rightarrow b$ is even. So, b = 2l for some $l \in \mathbb{Z}$. So, a and b are both even, which contradicts the fact that a and b are coprime. So, $\not p \in \mathbb{Q}$ s.t $p^2 = 2$. Q.E.D.

Definition 1 (Order). An order on a set S is a relation < such that:

- (a) If $a, b \in S$, then exactly one of a < b, a = b, or b < a is true.
- (b) If $a, b, c \in S$ and a < b and b < c, then a < c.

Definition 2 (Ordered Set). An ordered set S is a set with an order <.

Definition 3. Let S be an ordered set. A set $E \subset S$ is bounded above if $\exists \beta \in S \text{ s.t } \forall x \in E : x \leq \beta$. Similarly, a set S is bounded below if $\exists \beta \in S \text{ s.t } \forall x \in E : x \geq \beta$.

Definition 4 (LUB, GLB). Let S be an ordered set and $E \subset S$, $E \neq \emptyset$, with E bounded above. If $\exists \alpha$ s.t. α is an upper bound for E and $\forall \gamma < \alpha$: γ is not an upper bound for E, then such α is called least upper bound (LUB), or *Supremum*. Similarly, if $\exists \alpha$ s.t. α is a lower bound for E and $\forall \gamma > \alpha$: γ is not a lower bound for E. Then such α is called greatest lower bound (GLB), or *Infimum*.

Definition 5 (LUB property). An ordered set S has the least upper bound (LUB) property if $\forall E \subset S$ if $E \neq \emptyset$ and E bounded above implies $\exists \sup E \in S$; i.e., Every bounded subset of S has the least upper bound(LUB). **Example.**

- \mathbb{Z} has the LUB property.
- \mathbb{Q} does not have the LUB property.

Theorem 1. Let S be an ordered set. Then S has the LUB property if and only if S has the GLB property.

Proof. (\Rightarrow) Suppose S has the LUB property. Let $B \subset S$ be non-empty and bounded below. Let L be the set of all lower bounds of B. Then L is non-empty and bounded above. Let $\alpha = \sup L$. We claim that $\alpha = \inf B$. (\Leftarrow)Suppose S has the GLB property. Let $E \subset S$ be non-empty and bounded above. Let U be the set of all upper bounds of E. Then U is non-empty and bounded below. Let $\beta = \inf U$. We claim that $\beta = \sup E$. Q.E.D.

Definition 6 (Fields). Let F be a set with two operations, addition and multiplication. Then F is a field if the following axioms are satisfied:

- (a) a+b=b+a and $a \cdot b=b \cdot a$ for all $a,b \in F$ (Commutative laws).
- (b) (a+b)+c=a+(b+c) and $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ for all $a,b,c\in F$ (Associative laws).
- (c) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$ (Distributive law).
- (d) $\exists 0 \in F \text{ s.t. } a + 0 = a \text{ for all } a \in F.$
- (e) $\exists (-a) \in F$ s.t. a + (-a) = 0 for all $a \in F$.
- (f) $\forall x, y \in F : xy \in E$.
- (g) $\forall x, y \in F : xy = yx$.
- (h) $\exists 1 \in F \text{ s.t. } a \cdot 1 = a \text{ for all } a \in F.$
- (i) If $a \neq 0$, then $\exists a^{-1} \in F$ s.t. $a \cdot a^{-1} = 1$.

- (j) $\forall x, y, z \in F : x(y+z) = xy + xz$ Example.
- (a) \mathbb{Q} is a field, while \mathbb{Z} is not a field.
- (b) $F_p = \{0, 1, \dots, p-1\}$ with mod p arithmetic is a field.

Read Text book: 114,115,116,118

Definition 7 (Ordered Field). An ordered field F is a field that is an ordered set such that the following properties are satisfied:

- (a) If $a, b, c \in F$ and a < b, then a + c < b + c.
- (b) If $a, b \in F$ and 0 < a and 0 < b, then 0 < ab.

Remark. We say x is positive if x > 0 and x is negative if x < 0.

Example. \mathbb{Q} is an ordered field.

Theorem 2. \exists an ordered field \mathbb{R} which has the LUB property and contains \mathbb{Q} as a subfield.

Theorem 3.

- (a) Arithmetic properties of \mathbb{R} : If $x, y \in \mathbb{R}$ and x > 0 then $\exists n \in \mathbb{N}$ such that nx > y.
- (b) $\mathbb Q$ is dense in $\mathbb R$: If $x,y\in\mathbb R$ and x< y, then $\exists p\in\mathbb Q$ such that x< p< y.
- (c) $x, y \in \mathbb{R}$ then $\exists \alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $x < \alpha < y$.

- **Proof.** (a) Let $A = \{nx \mid n \in \mathbb{N}\}$. Suppose $\forall nx \in A : nx \leq y$. Then y is an upper bound for A. So, A has a least upper bound α . Since $\alpha x < \alpha$ as x > 0, αx is not an upper bound for A. Thus, $\exists m \in \mathbb{N} : mx > \alpha x$, so $\alpha < (m+1)x \in A$, contradicting the fact that α is a supremum of A. Therefore, $\exists n \in \mathbb{N}$ such that nx > y.
- (b) Since y-x>0, by (a), $\exists n\in\mathbb{N}$ such that n(y-x)>1. ny-nx>1 and therefore, 1+nx< ny. Let $m\in\mathbb{Z}$ such that $(m-1)\leq nx< m$. Such m exists by the extended version of (a). This implies there exists $m\in\mathbb{N}$ such that $nx< m\leq nx+1< ny$. Therefore, $x<\frac{m}{n}< y$.
- (c) $\exists k \in \mathbb{Q}$ such that $k^2 = 2$; i.e., $\exists \sqrt{2} \in \mathbb{R}$. $0 < \sqrt{2} < 2$ because if $\sqrt{2} \ge 2$ then $2 = \sqrt{2} \cdot \sqrt{2} \ge 2 \cdot 2 = 4$, which is a contradiction. By (b), $\exists p \in \mathbb{Q}$ such that $x and <math>\exists q \in \mathbb{Q}$ such that $x . Let <math>\alpha = p + \frac{\sqrt{2}}{2}(q p)$. Then $x and <math>\alpha \notin \mathbb{Q}$ since otherwise $\sqrt{2} = 2 \cdot \frac{\alpha p}{q p}$ would be rational

Q.E.D.

Note. (a) can be improved to:

$$\forall x, y \in \mathbb{R}, x > 0, \exists n \in \mathbb{Z} \text{ such that } (n-1)x \le y < nx.$$
 (1.1)

Proof. Case 1: $y \ge 0$. Let $A = \{m \in \mathbb{N} : y < mx\} \subset \mathbb{N}$. By (a), $A \ne \emptyset$. Every non-empty subset of \mathbb{N} has a smallest element. Let n = smallest element of A. Then the inequality holds true. Case 2: Let y < 0, then there exists $n \in \mathbb{N}$ such that $(n-1)x \le -y < nx$, which implies that (by changing sign for all terms) $-nx < y \le -(n-1)x$. Hence, the statement holds. Q.E.D.

Lemma 1. Let $a, b \in \mathbb{R}$ such that 0 < a < b, then $0 < b^n - a^n \le nb^{n-1}(b-a)$ for some $n \in \mathbb{N}$.

$$b^{n} - a^{n} = (b - a)(\underbrace{b^{n-1} + ab^{n-2} + \dots + a^{n-2}b + a^{n-1}}_{n \text{ terms}})$$

$$< (b - a)nb^{n-1}$$

Q.E.D.

Theorem 4. $\forall x \in \mathbb{R}, x > 0, n \in \mathbb{N} : \exists ! (\text{unique}) y > 0 : y^n = x \text{ (we write } y = x^{1/n} = \sqrt{x}^n, \text{ the } n^{\text{th}} \text{ root of } x).$

Proof. Uniqueness: For any $y_1, y_2 \in \mathbb{R}$, if $0 < y_1 < y_2$, then $0 < y_1^n < y_2^n$, hence y_1^n and y_2^n cannot both be equal to x.

Existence: Let $E_x = \{t \in \mathbb{R}_{>0} \mid t^n < x\}$. If $E \neq \emptyset$, E is bounded above, hence (by the least-upper-bound property) there exists a $\sup E$. Choose $y = \sup E$. Consider two cases.

- (a) If $x \le 1$, then $t_0 = \frac{x}{2}$ and thereby $t_0^n = \frac{x^n}{2^n} < x^n \le x$ (by assumption that $x \le 1$).
- (b) If x > 1, then let $t_0 = 1$, leading to $t_0^n = 1 < x$.

In either case, $t_0 \in E$, and hence E is not empty. 1(a) (E is bounded above) Let $\beta = x + 1$. Then, $\beta^n = (x + 1)^n > x + 1 > x$. Then, for any $t \in E$, we have that $t^n < x < \beta^n$, hence $t < \beta$, making t an upper bound of E.

- (a) Assuming that $y^n < x$, we find 0 < h < 1 such that $(y+h)^n < x$, which leads to $y+h \in E$, something that contradicts with the fact that $y = \sup E$. This is equivalent to finding an 0 < h < 1 such that $(y+h)^n y^n < x y^n$. By the lemma 1, we have $0 < (y+h)^n y^n < n(y+1)^{n-1}h$ for any 0 < h < 1. Choose h so that $\frac{(x-y)^n}{n(y+1)^{n-1}}$. Then 0 < h < 1 still holds and $hn(y+1)^{n-1} < x y^n$, leading to $(y+h)^n < x$, and therefore $y+h \in E$. However, this contradicts the fact that $y = \sup E$ as y+h > y.
- (b) Assuming that $y^n > x$, we find k > 0 such that $(y k)^n > x$, which leads to a contradiction since otherwise y k would be an upper bound for E that's smaller than y, which is $\sup E$. By the lemma 1, $y^n (y k)^n \le ny^{n-1}k < y^n x$ for any $h < \frac{y^n x}{ny^{n-1}}$. Therefore, $-(y k)^n < -x$, or $x < (y k)^n$. Thus, y k is also an upper bound of E and $y k < y = \sup E$, which is a contradiction.

Since $y^n < x$ and $y^n > x$ are both contradictions, $y^n = x$. Q.E.D.

Definition 8 (Cut/Dedekind Cut). The set \mathbb{R} elements are (Dedekind) cuts, which are sets $\alpha \subset \mathbb{Q}$ such that

- $\forall p \in \alpha, q \in \mathbb{Q} : q$
- No greatest element in α

Example. $\alpha = \{ p \in \mathbb{Q} \mid p < 0 \}, \ \alpha = \{ p \in \mathbb{Q} \mid p \leq 0 \lor p^2 < 2 \}$

Definition 9 (Order of cuts). For $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta := \alpha \subset \beta$

Proof (test). Let γ be set of cuts A, and show that γ is a cut and that $\gamma = \sup A$. Q.E.D.

Theorem 5. There exists an ordered field \mathbb{R} such that $\mathbb{Q} \subset \mathbb{R}$ and \mathbb{R} has the LUB property.

Proof. Let \mathbb{R} be the set of all cuts with:

order $a < b := a \subset b$. addition $\alpha + \beta = \{p + q \mid p \in \alpha, q \in \beta\}$.

multiplication $\alpha \cdot \beta = \{p \cdot q \mid p \in \alpha, q \in \beta\}.$

Q.E.D.

Complex Numbers

Definition 10 (Complex Field). The underlying set is $\mathbb{C} = \{(a,b)|a \in \mathbb{R}, b \in \mathbb{R}\}$

Addition is defined as (a, b) + (c, d) = (a + c, b + d)

Multiplication is defined as $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$

Zero element is (0,0)

One element is (1,0)

Theorem 6. \mathbb{C} is a field.

Proof. Verify the 11 field axioms. For just a few axioms:

(M3):

 $x = (a,b), y = (c,d), z = (e,f). \ x(yz) = (a,b)(ce-df,cf+de) = (a(ce-df)-b(cf+de),a(cf+de)+b(ce-df)) = (ac-bd,ad+bc)(e,f) = (xy)z$

(M4):

 $(a,b)(1,0) = (a \cdot 1 - b \cdot 0, a \cdot 0 + b \cdot 1) = (a,b)$

(M5):

 $x \neq 0$ means x = (a, b) with $a \neq 0$ or $b \neq 0$. That is, $a^2 + b^2 > 0$. Let $\frac{1}{x} = (\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2})$. Then $x \cdot \frac{1}{x} = (a, b)(\frac{a}{a^2 + b^2} + \frac{-b}{a^2 + b^2}) = (\frac{a^2 + b^2}{a^2 + b^2}, \frac{-ab + ba}{a^2 + b^2}) = (1, 0)$. Q.E.D.

Identification of \mathbb{R} as a subfield of \mathbb{C} . Identify $(a,0) \in \mathbb{C}$ with $a \in \mathbb{R}$. Then (a,0)+(b,0)=(a+b,0), (a,0)(b,0)=(ab,0), so we can represent them by $a+b=a+b, a\cdot b=a\cdot b$. Write $i=(0,1), i^2=(0,1)(0,1)=(-1,0)$. So, $i^2=-1$. $(a,b) \leftrightarrow a+bi$. Usually write z=a+bi for $z \in \mathbb{C}$. Re(z)=a, Im(z)=b.

Definition 11. Complex conjugate of z=a+bi is defined as a-bi and denoted by \overline{z}

Note.

(a)
$$\overline{z+w} = \overline{z} + \overline{u}$$

(b)
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

(c)
$$z + \overline{z} = 2 \cdot \operatorname{Re}(z)$$

(d)
$$z - \overline{z} = 2i \cdot \operatorname{Im}(z)$$

(e)
$$z\overline{z} = (a+bi)(a-bi) = a^2 + b^2 \ge 0$$
, with $=$ if any only if $z = 0$

(f)
$$\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{a-bi}{a^2+b^2}$$

Definition 12. $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$

In particular, if
$$z = a \in \mathbb{R}$$
 then $|z| = \sqrt{a^2} = |a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$

Theorem 7. For $z, w \in \mathbb{C}$,

(a)
$$|z| \ge 0$$
 with $= \inf z = 0$

(b)
$$|z| = |\overline{z}|$$

(c)
$$|zw| = |z| \cdot |w|$$

(d)
$$|\text{Re}(z) \le |z|, |\text{Im}(z)| \le |z|$$

Proof. Let
$$z = a + bi$$
. Then $|\operatorname{Re}(z)| = |a| \le \sqrt{a^2 + b^2} = |z|$ Q.E.D.

(e)
$$|z+w| \le |z| + |w|$$
 (Triangle inequality)

Proof

$$|z+w|^2 = (z+w)(\overline{z+w})$$

$$= z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$$

$$= |z|^2 + z\overline{w} + w\overline{z} + |w|^2$$

$$= |z|^2 + 2\operatorname{Re}(z\overline{w}) + |w|^2$$

$$\leq (|z| + |w|)^2$$

Q.E.D.

Theorem 8 (Cauchy-Schwarz inequality). If $a_1, a_n, b_1, b_n \in \mathbb{C}$, then

$$|\sum_{j=1}^{n} a_j \overline{b_j}| \le (\sum_{j=1}^{n} |a_j|^2)^{\frac{1}{2}} (\sum_{j=1}^{n} |b_j|^2)^{\frac{1}{2}}.$$

Interpretation: $(\vec{a}, \vec{b}) = \sum_{j=1}^{n} a_{j} \overline{b_{j}}$ defined on inner product on \mathbb{C}^{n} and $|(\vec{a}, \vec{b})| \leq \sqrt{(\vec{a} \cdot \vec{a})(\vec{b} \cdot \vec{b})}$. (Note that $\vec{a} \cdot \vec{b} = \overline{\vec{b} \cdot \vec{a}}$)

Proof. Let $A = \sum |a_j|^2$, $B = \sum |b_j|^2$, $C = \sum a_j \overline{b_j}$ We can assume 1. $B \neq 0$ because B = 0 is $0 \leq 0$, 2. $C \neq 0$ because C = 0, LHS is 0. For any $\lambda \in \mathbb{C}$, $0 \leq \sum_{j=1}^{n} |a_j + \lambda b_j|^2 = \sum_{j=1}^{n} (a_j + \lambda b_j)(\overline{a_j} + \overline{\lambda b_j}) = \sum_{j=1}^{n} |a_j|^2 + \lambda \sum_{j=1}^{n} b_j \overline{a_j} + \overline{\lambda} \sum_{j=1}^{n} a_j \cdot \overline{b_j} + |\lambda|^2 \sum_{j=1}^{n} |b_j|^2$. Let $\lambda = tC$ for $t \in \mathbb{R}$.

Then $0 \le A + \lambda \overline{C} + \overline{\lambda}C + |\lambda|^2 B = A + 2|C|^2 t + B|C|^2 t^2 = p(t)$. p(t) is a quadratic function in terms of t and it must be non-negative. Regardless of the value of t. Therefore, the discriminant of $p(t) = (2|C|^2)^2 - 4AB|C|^2 = 4|C|^2(|C|^2 - AB) \le 0$. Since $|C| \ge 0$, $|C|^2 \le AB$.

Definition 13 (Euclidean k-space). For $k \in N$, $\mathbb{R}^k := \{\vec{x} = (x_1, x_2, \dots, x_k) : x_1, x_2, \dots, x_k \in \mathbb{R}\}$ with the following properties:

Addition $\vec{x} + \vec{y} = (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k)$

Scalar multiplication $\lambda \vec{x} = (\lambda x_1, \lambda x_2, \dots, \lambda x_k)$

Inner(dot) product $(\vec{x}, \vec{y}) = \sum_{j=1}^{k} x_j y_j$, which is bilinear: $(\alpha \vec{x} + \beta \vec{y}) \cdot \vec{z} = \alpha \vec{x} \cdot \vec{z} + \beta \vec{y} \cdot \vec{z}$.

Norm $|\vec{x}| = \sqrt{(\vec{x}, \vec{x})} = \sum_{j=1}^{k} |x_j|^{2^{1/2}}$

Remark. Addition and Scalar multiplication make \mathbb{R}^k into a vector space.

Theorem 9. Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^k$. Then

- (a) $|\vec{x}| \ge 0$
- (b) $|\vec{x}| = 0 \leftrightarrow \vec{x} = \vec{0}$
- (c) $|\alpha \vec{x}| = |\alpha||\vec{x}|$
- (d) $|\vec{x} \cdot \vec{y}| \leq |\vec{x}||\vec{y}|$ (special case of Cauchy-Schwarz inequality)
- (e) $|\vec{x} + \vec{y}| \le |\vec{x}| + |\vec{y}|$ (Triangle inequality)

 Proof. $|\vec{x} + \vec{y}|^2 = (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) = |\vec{x}|^2 + 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 \le |\vec{x}|^2 + 2|\vec{x} \cdot \vec{y}| + |\vec{y}|^2 \le (|\vec{x}| + |\vec{y}|)^2$ Q.E.D.
- (f) $|\vec{x} \vec{y}| \le |\vec{x} \vec{z}| + |\vec{z} \vec{y}|$ **Proof.** $|\vec{x} - \vec{y}| = |(\vec{x} - \vec{z}) + (\vec{z} - \vec{y})| \le |\vec{x} - \vec{z}| + |\vec{z} - \vec{y}|$ Q.E.D.

Chapter 2

Basic Topology

Definition 14. Sets A and B have the same cardinality, if $\exists f : A \to B$ that is 1-1 and onto (i.e., bijective).

Theorem 10. Let $A \sim B$ be a relation between two sets having the same cardinality. Then is an equivalence relation. That is,

- (a) $A \sim A$ (Reflexive)
- (b) $A \sim B \Rightarrow B \sim A$ (Symmetry)
- (c) $A \sim B \& B \sim C \Rightarrow A \sim C$ (Transitivity)

Definition 15. Let $\mathbb{N} = \{1, 2, 3, \ldots\}$. Let $J_n = \{1, 2, \ldots, n\}$ for $n \in \mathbb{N}$.

- A set A is finite if $A \sim J_n$ for some $n \in \mathbb{N}$ (or if $A = \emptyset$).
- A set A is countably infinite if $A \sim \mathbb{N}$.
- A set A is countable if A is finite or countably infinite.

Example. \mathbb{Z} is a countably infinite. For $n \in \mathbb{Z} = \{0, +1, -1, +2, -2, \ldots\}$,

$$Let \ f(n) = \begin{cases} 1 & \text{if } n = 0 \\ 2n & \text{if } n > 0 \\ -2n + 1 & \text{if } n < 0 \end{cases}$$

Then f is bijective and therefore $|\mathbb{Z}| = |\mathbb{N}|$

Theorem 11. A subset of a countably infinite set is countable.

Proof. Let A be some countably infinite set and S be a infinite subset of A.

As A is a countably infinite set, we can remove duplicates and arrange A so that $A = \{a_1, a_2, a_3, \ldots\}$. Let n_1 be the smallest positive integer such that $x_{n_1} \in S$. Let n_k be the smallest positive integer greater than n_{k-1} such that $x_{n_k} \in E$ for $k = 2, 3, \ldots$ Let $f(k) = x_{n_k}$ for $k = 1, 2, 3, \ldots$ Then this is a bijection from $\mathbb N$ to S. Q.E.D.

Remark. Roughly speaking, countable sets represent the **smallest infinity**, as no uncountable set can be a subset of a countable set.

Theorem 12. Let E_1, E_2, \ldots be countably infinite sets. Then $S = \bigcup_{n=1}^{\infty} E_n$ is countably infinite.

```
Proof. Write E_1 = \{x_{11}, x_{12}, x_{13}, x_{14}, \ldots\}

E_2 = \{x_{21}, x_{22}, x_{23}, x_{24}, \ldots\}

Form an array:

\begin{cases} x_{11} & x_{12} & x_{13} & x_{14} & \ldots \\ x_{21} & x_{22} & x_{23} & x_{24} & \ldots \\ x_{31} & x_{32} & x_{33} & x_{34} & \ldots \\ x_{41} & x_{42} & x_{43} & x_{44} & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{cases}
```

This matrix might have duplicates. Let T be a subset of \mathbb{N} such that $t \in T$ if and only if t is the smallest positive integer such that $x_t \in E_1 \cup E_2 \cup \ldots \cup E_n$.

Then a set $\{x_t|t\in T \text{ and } \exists_{i\in\mathbb{N}}: x_t\in E_i\}$ is S. Clearly, |S|=|T|, or $S\sim T$, and T is a subset of a countably infinite set, \mathbb{N} . Therefore, T is also countable, implying S is also countable. As S is infinite, S is countably infinite. Q.E.D.

Corollary. If A is countable and $n \in \mathbb{N}$, then $\{(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in A\}$ is countable.

Theorem 13. Let $A = \{(b_1, b_2, b_3 \dots) | b_i \in \{0, 1\}\}$. I.e., A is a set of all infinite binary strings. Then A is uncountable.

Proof (Contor's Diagonalization argument,1891). Let $E \subset A$ be countably infinite. $E = \{s^{(1)}, s^{(2)}, s^{(3)}, \dots | s^{(i)} \in A\}$. It suffices to find some $s \in A \setminus E$, for this shows every countably infinite subset of A is proper construction of s. Write

$$s^{(1)} = b_1^1 b_2^1 \dots (2.1)$$

$$s^{(2)} = b_1^2 b_2^2 b_3^2 \dots (2.2)$$

$$s^{(3)} = b_1^3 b_2^3 b_3^3 \dots (2.3)$$

:

On diagonal, flip each bit, i.e., $0 \to 1$ and $1 \to 0$ and represent the flipped bit of b_i^i by $\tilde{b_i^i}$. Let $s = \tilde{b_1^1} \tilde{b_2^2} \tilde{b_3^3} \dots$ Then $s \in A$ and $s \notin E$ as s differs from each $s^{(i)}$ in the i-th bit. Therefore, A is uncountable. Q.E.D.

Corollary. The set $\mathcal{P}(\mathbb{N})$ of subsets of \mathbb{N} is uncountable.

Proof. We can create $f: \mathcal{P}(\mathbb{N}) \to A$ be a bijection, where A is the set of all infinite binary strings, by

$$f(S)_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$
 (2.4)

For example, if $f(\{\text{odd natural numbers}\}) = (1,0,1,0,1,0,1,0,\ldots)$. This f is a bijection, and therefore A is uncountable.

Q.E.D.

Theorem 14. \mathbb{R} is uncountable.

Proof. This is a rough sketch of the proof:

- (a) It's enough to show that [0, 1] is uncountable.
- (b) Consider binary decimal representation of $x \in [0,1]$. For example, $x=0.101001001\ldots$ Given x, choose maximal $b_1\in$ $\{0,1\}$ such that $\frac{b_1}{2} \leq x$. Then choose $b_2 \in \{0,1\}$ such that $\frac{b_1}{2} + \frac{b_2}{2} \leq x$. Continue this process to get b_1, b_2, b_3, \ldots Then $x = \sup \left\{\sum_{i=1}^{n} \frac{b_i}{2^i}\right\}$. Consider any dyadic rational of the form $\frac{m}{2^n}$. Let it be $\frac{3}{2^4}$. Then this maps $\frac{3}{2^4} \to 0, 0, 1, 1, 0, 0, 0, \dots$ and never produce $0, 0, 1, 0, 1, 1, 1, 1, \ldots$, which also represents $\frac{3}{2^4}$. Let A_1 be a subset of $A = \{\text{infinite binary strings}\}\$ such that A_1 does not contain any strings ending in $1, 1, 1, 1, \ldots$ Then the decimal representation defines a bijection $f:[0) \to A \setminus A_1$.
- (c) A_1 is countable because $A = (A \setminus A_1) \cup A_1$, which is uncountable.

This shows that [0,1] is uncountable, and therefore \mathbb{R} is uncountable.

Definition 16 (Metric Spaces). A set X is a metric space with metric d: $X \times X \to \mathbb{R}$ if

- (a) d(p,q) > 0 if $p \neq q$ and d(p,q) = 0 if $p = q, \forall p, q \in X$
- (b) $\forall_{p,q\in X}: d(p,q)=d(q,p)$ (c) $\forall_{p,q,r\in X}: d(p,q)\leq d(p,r)+d(r,q)$ (Triangle Inequality)

Remark. A metric space does not need to be an ordered set or to have addition or multiplication defined on it.

Example (Metric Spaces). (a) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^k$ are metric spaces with d(p,q) =|p-q|. Note the meaning of |x| depends on the context.

- (b) Every subset of a metric space is a metric space.
- (c) $X = \{1, 2, 3, 4, 5, 6\}$

Definition 17 (Neighborhood). A neighborhood in X is a set $N_r(p) := \{q : d(q,p) < r\}$, where $p \in X, r > 0$.

Remark. If $r_1 \leq r_2$, then $N_{r_1}(p) \subset N_{r_2}(p)$.

Example.

 \mathbb{R}^1 intervals, $N_r(x) = \{ y \in \mathbb{R}^1 : |x - y| < r \}$

 $\mathbb{R}^2 \ disks \ N_r(x) = \{ y \in \mathbb{R}^2 : |x - y| < r \}$

 $\mathbb{R}^3 \ balls, N_r(x) = \{ y \in \mathbb{R}^3 : |x - y| < r \}$

Given example (c), $N_1(2)=\{2\}=N_{\frac{1}{2}}(2),\ N_2(2)=\{1,2,4,6\},\ N_3(2)=\{1,2,3,4,5,6\}=X.$

Definition 18. Let $E \subset X$. $p \in E$ is an interior point of E if $\exists r > 0$ such that $N_r(p) \subset E$.

Example.

 $X = \mathbb{R}^2, E = \{x \in \mathbb{R} : |x| \le 1\}$

 $X = \mathbb{N}, E \subset X.$

Definition 19. $E \subset X$ is an open set if $\forall_{x \in E}$ is an interior point of E.

Theorem 15. Every neighborhood is an open set.

Proof. Let $g \in N_r(p)$. Then we must find s > 0, such that $N_s(g) \subset N_r(p)$. We know d(p,q) < r. Choose s such that 0 < s < r - d(p,q). Let $x \in N_s(q)$, then d(q,x) < s < r - d(p,q). By triangle inequality, $d(p,x) \le d(p,q) + d(q,x) < d(p,q) + r - d(p,q)$, so $x \in N_r(p)$, so $N_s(q) \subset N_r(p)$. Q.E.D.

Definition 20. Let $E \subset X$ and $p \in X$. p is a limit point of E if $\forall_{r>0} \exists_{q \in E}$ such that $q \neq p$ and $q \in N_r(p)$

Example. $E = \{\frac{1}{n} : n \in \mathbb{N}\} \subset \mathbb{R} \text{ has exactly one limit point, 0. note } 0 \notin E.$

Theorem 16. If p is a limit point of $E \subset S$, then every neighborhood of p contains infinitely many points of E.

Proof. Let $N_r(p)$ be a neighborhood of p. Then $N_r(p)$ contains at least one point $q_1 \in E$ such that $q_1 \neq p$. Let $r_1 = d(p, q_1)$. Then $N_{r_1}(p)$ contains some $q_2 \in E$ such that $q_2 \neq p$. Let $r_2 = d(p, q_2)$. Then $N_{r_2}(p)$ contains some $q_3 \in E$ such that $q_3 \neq p$. Continue this process to get q_1, q_2, q_3, \ldots Q.E.D.

Corollary. If $E \subset X$ is finite then E has no limit points.

Definition 21 (Closed Set). A set $E \subset X$ is closed if every limit point of E is in E.

Theorem 17. $E \subset X$ is open iff $E^c = \{x \in X : x \notin E\}$ is closed.

- E is open $\Rightarrow E^c$ is closed. Let p be a limit point of E^c . Then every neighborhood of p contains some $q \in E^c$ such that $q \neq p$. If $p \in E$, then because E is open, p is an interior point, i.e., there exists some neighborhood of p that is a subset of E, which does not contain any points of E^c . This implies $p \notin E$ and therefore $p \in E^c$.
- E^c is closed $\Rightarrow E$ is open. Let $p \in E$. Then $p \notin E^c$, so p is not a limit point of E^c . Therefore, there exists some neighborhood of p that contains no points of E^c , i.e., all points of the neighborhood are in E. p Thus, Every $p \in E$ is an interior point of E, and hence E is open.

Q.E.D.

Theorem 18 (De Morgan's Laws).

- (a) $(\bigcup_{\alpha} E_{\alpha})^c = \bigcap_{\alpha} E_{\alpha}^c$
- (b) $(\bigcap_{\alpha} E_{\alpha})^{c} = \bigcup_{\alpha} E_{\alpha}^{c}$

Theorem 19.

- (a) For all collection $\{G_{\alpha}\}$ of open sets : $\bigcup_{\alpha} G_{\alpha}$ is open.
- (b) For all collection $\{F_{\alpha}\}$ of closed sets : $\bigcap_{\alpha} F_{\alpha}$ is closed.
- (c) For all finite collection $\{G_1, G_2, \dots, G_n\}$ of open sets : $\bigcap_{i=1}^n G_i$ is open.
- (d) For all finite collection $\{F_1, F_2, \dots, F_n\}$ of closed sets : $\bigcup_{i=1}^n F_i$ is closed.

- **Proof.** (a) Let $x \in \bigcup_{\alpha} G_{\alpha}$. Then $x \in G_{\alpha_0}$ for some α_0 . So there exists a neighborhood N of x such that $N \subset G_{\alpha_0} \subset \bigcup_{\alpha} G_{\alpha}$.
- (b) it's suffice to prove that $(\bigcap_{\alpha} F_{\alpha})^c$ is open. But $(\bigcap_{\alpha} F_{\alpha})^c = \bigcup_{\alpha} F_{\alpha}^c$ is open by (a).
- (c) Let $x \in \bigcap_{i=1}^n G_i$. Then $x \in G_i$ for i = 1, 2, ..., n. So there exists a $r_i > 0$ such that $N_{r_i}(x) \subset G_i$. Let $r = \min\{r_1, r_2, ..., r_n\}$. Then $N_r(x) \subset N_{r_i} \subset G_i$ for i = 1, 2, ..., n and therefore $N_r(x) \subset \bigcap_{i=1}^n G_i$.
- (d) $(\bigcup_{i=1}^n F_i)^c = \bigcap_{i=1}^n F_i^c$ is open by (c).

Q.E.D.

Definition 22 (Closure). Let $E \subset X$. Let E' be a set of limit points of E in X. The set $\overline{E} = E \cup E'$ is the closure of E.

Theorem 20.

- (a) \overline{E} is closed.
- (b) $E = \overline{E} \Leftrightarrow E$ is closed.
- (c) If $F \subset X$ is closed and $E \subset F$, then $\overline{E} \subset F$. (i.e., \overline{E} is the smallest closed set containing E, and $\overline{E} = \bigcap_{F: \text{closed set with } F \supset E} F$.)
- **Proof.** (a) Let p be a limit point of \overline{E} . It suffices to show $p \in E'$ since this implies that $p \in E' \subset E \cup E' = \overline{E}$. Let r > 0. $\exists_{q \in \overline{E}, q \neq p} : q \in N_{\frac{r}{2}}(p)$, i.e., $d(p,q) < \frac{r}{2}$. Since $q \in E \cup E'$, $\exists_{s \in \overline{E}}$ such that $d(q,s) < \frac{r}{2}$ (if $q \in E$, take s = q). But $d(p,s) \leq d(p,q) + d(q,s) < \frac{r}{2} + \frac{r}{2} = r$.
- (b) (\Rightarrow) by (a)
 - (\Leftarrow) Suppose E is closed. Then $E' \subset E$, so $\overline{E} = E \cup E' = E$.
- (c) Suppose F is closed. Then $F'\supset E'$ and also $F\supset F'$. So $F=\overline{F}=F\cup F'\supset E\cup E'=\overline{E}$

Q.E.D.

Example. Let $X = \mathbb{R}$, d(p,q) = |p-q|. Let $E \subset \mathbb{R}$ be nonempty and bounded above, and let $y = \sup E$. Then $y \in \overline{E}$.

Proof. Suppose for contradiction $y \notin \overline{E}$. Then y is neither a point in E nor a limit point of E, so \exists some interval $N_r(y) = (y - r, y + r)$ such that $(y-r,y+r)\cap E = \emptyset$. However, then y-r in an upper bound for E since y is a least upper bound, which is a contradiction. Therefore, $y \in \overline{E}$. Q.E.D.

Definition 23 (Relative Openness). Suppose X is a metric space, so $Y \in X$ is a metric space with the same metric. Let $E \subset Y$. Then E is open relative to Y if E is an open set in the metric space Y

Example. $X = R^2 \supset \mathbb{R} = y, E = (0,1) \subset Y$. Then E is open relative to Y, but E is neither open nor closed in X.

```
Theorem 21. A set E \subset Y \subset X is open relative to Y \Leftrightarrow \exists_{\text{open set } G \subset X}: E = G \cap Y

Proof. (\Rightarrow) Suppose E \subset Y is open relative to Y. Given p \in E, \exists_{r_p > 0}: N_{r_p}{}^Y(p) \subset E, where N_r{}^Y(p) = \{q \in Y: d(p,q) < r\}. Then E \subset \bigcup_{p \in E} N_{r_p}{}^Y(p) and \bigcup_{p \in E} N_{r_p}{}^Y(p) \subset E. Therefore, E = \bigcup_{p \in E} N_{r_p}{}^Y(p). Let G = \bigcup_{p \in E} N_{r_p}{}^X(p). This time, we are considering p's neighborhood in X, so each N_{r_p}{}^X is open. Thus G is a union of open sets in X, and therefore open. \forall_{p \in E}: p \in N_{r_p}(p)^X, so E \subset G \cap Y. Let p \in G \cap Y. Then p \in G and p \in Y. So p \in N_{r_p}{}^X(p) for some r_p > 0. But p \in Y, so p \in N_{r_p}{}^Y(p). Therefore, p \in E. This implies G \cap Y \subset E, and therefore E = G \cap Y.

(\Leftarrow) Suppose G \subset X is open and E = G \cap Y. Then \forall_{p \in E}: \exists_{r_p > 0}: N_{r_p}{}^X(p) \subset G, so N_{r_p}{}^Y(p) = N_{r_p}{}^X(p) \cap Y \subset G \cap Y = E. Q.E.D.
```

Note: Midterm 1 material ends here.

Definition 24 (Open Cover). An open cover of $E \subset X$ is a collection $\{G_{\alpha}\}$ of open subsets of X s.t $E \subset \bigcup_{\alpha} G_{\alpha}$.

Definition 25 (Compact). A set $K \subset X$ is compact if every open cover has a finite subcover; i.e., $\exists_{\alpha_1,\alpha_2,...\alpha_n}$: s.t $K \subset G_{\alpha_1} \cup G_{\alpha_2} \cup ... \cup G_{\alpha_n}$

Example.

- If E is finite, then E is compact.
- $(0,1) \subset \mathbb{R}$ is not compact. Bad cover: $(\frac{1}{n},1), n>2$
- $[0,\infty] \subset \mathbb{R}$ is not compact. Bad cover: (-1,n) for $n \in \mathbb{N}$.
- $E \subset \mathbb{R}^k$ is compact if and only if E is closed and bounded.

Theorem 22. If K is compact then K is closed.

Proof. Suppose K is compact. It suffices to prove that K^c is open. Let $p \in K^c$. We need to produce r > 0 s.t. $N_r(p) \subset K^c$. For $q \in K$, let $W_q = N_{r_q}(q)$, where $r_q = \frac{1}{2}d(p,q) > 0$. $\forall_{x \in N_{r_q}(p)} : x \in W_q \Rightarrow d(x,p) + d(x,q) < 2r_q = d(p,q)$. However, X is a metric space and $p,q,x \in X$, so $d(p,q) \leq d(p,x) + d(x,q)$, leading to $d(p,q) \leq d(p,x) + d(x,q) < d(p,q)$, which is a contradiction. Hence, $\forall_{x \in N_{r_q}} : x \notin W_q$. $N_{r_q}(p) \subset W_q^c$ for $\forall_{q \in K}$. Note that $\{W_q\}_{q \in K}$ is an open cover of K. K compact $\Rightarrow \exists_{\text{finite number of open sets } W_{q_1}, W_{q_2}, \dots W_{q_n}}$ s.t. $K \subset \bigcup_{i=1}^n W_{q_i}$. Let $r = \min\{r_{q_1}, r_{q_2}, \dots r_{q_n}\} > 0$.

$$\therefore N_r(p) \subset \left(\bigcap_{i \in \{1,2,\dots n\}} N_{r_p}(p)\right) \subset \left(\bigcap_{i \in \{1,2,\dots n\}} W_{q_i}{}^c\right) = \left(\bigcup_{i \in \{1,2,\dots \mathbb{N}\}} W_{q_i}\right)^c \subset K^c$$
 Q.E.D.

Theorem 23. If $K \subset X$ is compact then K is bounded; i.e., $\exists_{M < \infty}$ s.t. $\forall_{p,q \in K} : d(p,q) \leq M$

Proof. Fix $p \in K$. An open cover of K is $\{N_n(p)\}_{n \in \mathbb{N}}$. In fact, this is an open cover of X. K compact $\Rightarrow \exists_{\text{finite subcover}N_{n_1}(p),N_{n_2}(p)...N_{n_m}(p)}$. Let $R = \max\{n_1,n_1,\ldots n_m\}$. $K \subset N_R(p)$. Let M = 2R. $\forall_{q,r \in K}: d(q,r) \leq d(q,p) + d(p,r) < R + R = 2R = M$. Q.E.D.

Theorem 24. If F is closed, K is compact, and $F \subset K$ then F is compact.

Proof. Suppose $F \subset K$. let $\{V_{\alpha}\}$ be an open cover of F. It suffice to produce a finite subcover:

Consider $\{V_{\alpha}\}$ together with F^c . This gives an open cover of X, hence of K, so $\exists_{\text{subcover of }K}$. Drop F^c from this finite subcover. The result is a finite subcover of $\{V_{\alpha}\}$, which covers F Q.E.D.

Corollary. If F is closed and K is compact then $F \cap K$ is compact.

Theorem 25. Suppose $K \subset Y \subset X$. Then K is compact relative to X iff K is compact relative to Y.

Note. This is not true for open sets. For instance, let $K=Y=[0,1]\subset X=\mathbb{R}.$ Y is open and closed relative to Y, but Y is not open relative to X

Proof.

- (\Rightarrow) Suppose K is compact relative to X. Let $\{V_{\alpha}\}$ be an open cover of K relative to Y. For any subset of a metric space, there always exists an open cover relative to the whole space, as the whole metric space is trivially an open cover of itself. Then $\{V_{\alpha}\}$ is an open cover of K relative to X. Since K is compact relative to X, $\exists_{\text{finite subcover}}$.
- (\Leftarrow) Suppose K is compact relative to Y. Let $\{V_{\alpha}\}$ be an open cover of K relative to X. Then $\{V_{\alpha} \cap Y\}$ is an open cover of K relative to Y. Since K is compact relative to Y, $\exists_{\text{finite subcover}}$.

Q.E.D.

Theorem 26. Suppose $\{K_{\alpha}\}$ is a collection of compact sets such that $\bigcap_{i\in\{1,2,...,n\}} K_{\alpha_i} \neq \emptyset$. Then $\lim_{n\to\infty} \bigcap_{i\in\{1,2,...,n\}} K_{\alpha_i} \neq \emptyset$, or equivalently, $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$

 $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$ **Example.** Let $G_j = (0, \frac{1}{j}) \subset \mathbb{R}$. Then $\{G_j\}$ is a collection of open sets, but none of them are compact. (compact sets are closed) Then $\{G_j\}$ satisfies non-empty finite intersection property but $\bigcap_{j \in \mathbb{N}} G_j = \emptyset$.

Proof. Then $K_{\alpha_0} \cap \left(\bigcap_{\alpha \neq \alpha_0} K_{\alpha}\right) = \emptyset$, so $K_{\alpha_0} \subset \left(\bigcap_{\alpha \neq \alpha_0} K_{\alpha}\right)^c = \bigcup_{\alpha \neq \alpha_0} \left(K_{\alpha}\right)^c$ and $\left\{\left(K_{\alpha}\right)^c\right\}_{\alpha \neq \alpha_0}$ is an open cover of K_{α_0} , so \exists a finite subcover $K_{\alpha_0} \subset \bigcup_{i=1}^n K_{\alpha_i}{}^c$. But then, $K_{\alpha_0} \cap \left(\bigcap_{i=1}^n K_{\alpha_i}\right) = \emptyset$, contradiction. Q.E.D.

Corollary. If $\{K_1, K_2, \ldots\}$ are non-empty compact sets with $\forall_n : K_n \supset K_{n+1}$, then $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$.

Proof. If $n_1 < n_N$ then $\bigcap_{i=1}^N K_{n_i} = K_{n_N} \neq \emptyset$ Q.E.D.

Theorem 27. If K is compact and $E \subset K$ is infinite, then E has a limit point in K.

Proof. Contrapositive of the statement is : if $E \subset K$ has no limit point in K, then E is finite.

Suppose every point $g \in K$ is not a limit point of E. Then

$$\exists_{V_q = N_{r_g}(q)} : V_q \cap E = \begin{cases} \emptyset & \text{if } q \notin E \\ \{q\} & \text{if } q \in E \end{cases}$$

 $\{V_q\}_{q\in K}$ is an open cover of K, so $\exists_{\text{finite subcover }V_{q_1}\cup V_{q_2},\dots V_{q_n}}$. Then $E=E\cap K\subset (\bigcup_{i=1}^n V_{q_i}\cap E)\subset \{q_1,q_2,\dots q_n\}$, so E is finite.

Q.E.D.

Theorem 28. Let $I_n = [a_n, b_n] \subset \mathbb{R}$ be such that $\forall_n : I_n \supset I_{n+1}$. Then

 $\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$ **Proof.** Since $I_n \supset I_{n+1}, \ \forall_{n,m} : a_n \leq a_{n+m} \leq b_{n+m} \leq b_n$. Let $E = \{a_1, a_2, \ldots\}$. Then $E \neq \emptyset$, every b_k is an upper bound for E, so $\exists x = \sup E \text{ and } a_k \leq x \leq b_k \text{ for all } k$. Therefore, $x \in I_k$ for all k, so $x \in \bigcap_{n=1}^{\infty} I_n$. Q.E.D.

Theorem 29. Let $\{I_n\}$ be a sequence of k-cells such that $i_n \supset I_{n+1}$; i.e., $I_n = \{ \mathbf{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k : a_{nj} \le x_j \le b_{nj}, \ a_{nj} \le a_{n+1,j} \le b_{n+1,j} \le b_{nj} \text{ for } j = 1, 2, \dots, k \}.$ Then $\bigcap_{n=1}^{\infty} I_n \ne \emptyset$.

Proof. Apply previous theorem to each component. Q.E.D.

Note. k-cell is a higher dimensional analog of a rectangle or rectangular solid, which is a Cartesian product of k closed intervals on the

Formally, Given real numbers a_i and b_i such that $a_i < b_i$ for every integer i from 1 to k,

$$I = \{x = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k : a_i \le x_i \le b_i \text{ for } i = 1, 2, \dots, k\}$$

Theorem 30. Let $I \subset \mathbb{R}^k$ be a k-cell. Then I is compact.

Proof. Let $I = I_0 = \{x = (x_1, x_2, \dots, x_k), a_j \le x_j \le b_j\}$. Let $\Delta = \{\sum_{i=1}^{k} (b_j - a_j)^2\}^{1/2}$. Then $|\mathbf{x} - \mathbf{y}| \le \Delta$ for $\mathbf{x}, \mathbf{y} \in I$.

Suppose for contradiction $\{G_{\alpha}\}$ is an open cover of I that has no finite subcover.

Let $c_j = \frac{1}{2}(a_j + b_j)$ for $j = 1, 2, \dots, k$. Using $[a_j, c_j], [c_j, b_j]$, we get 2^k k-cells Q_i with $I = \bigcup_{i=1}^{2^k} Q_i$. At least one Q_i , call it I_1 , has no finite subcover. Otherwise, every Q_i has a finite subcover, and I would have a finite subcover, namely the union of the finite subcovers of each Q_i . Repeat this step to construct $I_0 = I, I_1, I_2, \ldots$ Then the sequence $\{I_n\}$ constructed by this process satisfies the following properties:

- (a) $I_0 = I \supset I_1 \supset I_2 \supset I_3 \supset \dots$
- (b) $\forall_n : I_n$ has no finite subcover from $\{G_\alpha\}$ (c) if $x, y \in I_n$ then $|x y| \leq 2^{-n} \Delta$, where $\Delta =$ diagonal of $I = \left(\sum_{j=1}^k (b_j a_j)^2\right)^{1/2}$.

By theorem 29 and (a), $\exists_{x^* \in \bigcap_{n=1}^{\infty} I_n}$. Since $x^* \in I$, $x^* \in G_{\alpha_0}$ for some α_0 , so $\exists r > 0$ such that $N_r(x^*) \subset G_{\alpha_0}$. But by (c), $I_n \subset I_n$ $N_{2^{-n}\Delta}(x^*)$. As soon as n is large enough that $2^{-n}\Delta < r$, we have $I_n \subset N_{2^{-n}\Delta}(x^*) \subset G_{\alpha_0}$, which contradicts (b). Q.E.D.

Note. Reverse triangle inequality $\forall_{a,b,c \in X}: d(a,b) \geq d(a,c) - d(c,b)$ because $d(a,c) \leq d(a,b) + d(b,c)$.

Theorem 31. For $E \subset \mathbb{R}^k$, the following are equivalent:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point in E.

Proof.

- $(a)\Rightarrow (b)$ Because E is bounded, there exists a k-cell I such that $E\subset I;$ i.e., \exists_M s.t. $\forall_{x,y\in E}:|x-y|\leq M.$ Therefore, E is compact.
- $(b) \Rightarrow (c)$ by theorem 28
- $(c) \Rightarrow (a)$ To see that E is bounded, suppose it were not. Then E has an infinite subset $S = \{x_1, x_2, x_3, \ldots\}$ with $\forall_n : |x_n| \geq n$. S has no limit point in \mathbb{R}^k Let $S = \{(x_1, x_2, x_3, \ldots) \in E : |x_n - x_0| < \infty \}$ $\frac{1}{n}$. Then S is an infinite set because if S is finite, there exists a point $\mathbf{x} \in S$ such that $|\mathbf{x}| \geq |\mathbf{x}'|$ for $\mathbf{x}' \in S$. However, there exists $n \in \mathbb{N}$ such that $n > |\mathbf{x}|$ and by definition of S, there exists $x_n \in S$ such that $|x_n| \ge n > |\mathbf{x}|$, which is a contradiction. Thus, S is infinite. This S however, cannot have a limit point in E. By triangle inequality, for any $y \in \mathbb{R}^k$, $|x_n| \leq |x_n - y| + |y|$, and from archimedean property, $\exists_{m \in \mathbb{N}}$ s.t. $m > |x_n - y| + |y|$, which implies for any $y \in \mathbb{R}^k$, r > 0, $\exists_{m \in \mathbb{N}} : |x - y| < r < m$. However, by the definition of S, there are at most m such elements in S. Since a limit point y of E must contain an infinite number of points of E such that d(x,y) < r for any r > 0, y cannot be a limit point, which contradicts the assumption that any infinite subset of E contains a limit point in E. Therefore, E must be bounded.

To see that E is closed, suppose it were not closed. Then $\exists_{x_0 \in} : E' \setminus E$. If T has no limit point in E except $x_0 \notin E$, it contradicts (c) because T is infinite and there must be a limit point of T in E.

Therefore, we can show that E is closed by showing that T has no limit point in E except x_0 . Form an infinite sequence $(x_1, x_2, x_3, \ldots), x_n \in E$ with $|x_n - x_0| < \frac{1}{n}$. Let $y \in E, y \neq x_0$. We'll show that y cannot be a limit point of T. $|y - x_n| \geq |y - x_0| + |x_0 - x_n| > |y - x_0| - |x_0 - x_n| > |y - x_0| - \frac{1}{n}$. Choose $n \geq \frac{2}{|y - x_0|}$, so $\frac{1}{n} \leq \frac{|y - x_0|}{2}$. Then $|y - x_n| \geq |y - x_0| - \frac{1}{2}|y - x_0| = \frac{1}{2}|y - x_0|$. So only finitely many x_n can lie in $N_{\frac{1}{2}|y - x_0|}(y)$. So y cannot be a limit point of S. Therefore, E is closed.

Q.E.D.

Remark. (b) and (c) are equivalent in any metric space, but (a) does not, in general, imply (b) or (c) in a metric space other than \mathbb{R}^k .

Example. Failure of Heine-Borel theorem in general metric spaces.

some infinite set, discrete metric $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$. Then E is bounded and closed but not compact.

Theorem 32 (Weirstrass's theorem). Every bounded infinite subset $E \subset \mathbb{R}^k$ has a limit point in \mathbb{R}^k .

Proof. Choose a k-cell $I \supset E$. Since I is compact, by theorem 31, E has a limit point in I. Q.E.D.

Example. Let

$$E_0 = [0, 1] (2.5)$$

$$E_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \tag{2.6}$$

$$E_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$$
 (2.7)

$$\vdots (2.8)$$

This gives $E_0 \supset E_1 \supset E_2 \supset E_3 \supset \ldots$, where each E_n is the union of 2^n closed intervals of length $\frac{1}{3^n}$.

Definition 26 (Cantor Set). The cantor set $P := \bigcap_{n=1}^{\infty} E_n$.

Proposition 1. P is compact, non-empty and contains no open intervals (a,b) and uncountable.

Proof. Compactness P is compact because $P \subset E_0 = [0, 1]$ and E_0 is compact.

Non-emptiness P is non-empty because $P \subset E_0$ and E_0 is non-empty.

No open intervals P contains no open intervals (a,b) because any (a,b) contains some $(\frac{3k+1}{3^n},\frac{3k+2}{3^n})$ and these are all removed.

Uncountability P is uncountable because P is a perfect set. Equivalently, P consists of points in [0,1] whose ternary, i.e., base 3, representation contains only 0's and 2's.

Note. ternary representation: $0.a_1a_2a_3... = \sum_{n=1}^{\infty} \frac{a_n}{3^n}$ where $a_n \in \{0, 1, 2\}.$

Q.E.D.

Example (Cantor Set). Let E = [0,1], $E_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$. $E_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{1}{3}] \cup [\frac{2}{3},\frac{7}{9}] \cup [\frac{8}{9},1]$, etc. Keep removing open middle third. This gives $E_0 \supset E_1 \supset E_2 \dots$ Each E_n is the union of 2^n closed intervals of length $\frac{1}{3^n}$.

Definition 27 (Separated Sets). **Separated Sets** $A, B \subset X$ are separated if $\overline{A} \cap B = A \cap \overline{B} = \emptyset$.

Connected Sets $E \subset X$ is connected if there is no non-empty separated

sets $A, B \subset E$.

Example (Separated Sets). In \mathbb{R}^1 , [0,1) and (1,2] are separated so [0,1)U(1,2] is not connected. Every interval is connected (open, closed, semi-open).

Theorem 33. $E \subset \mathbb{R}^1$ is connected if and only if E is an interval; i.e., $\forall_{x,y \in E, x < y}$ s.t. $\forall_{z \in (x,y)} : z \in E$

Theorem 34. A metric space X is connected if and only if the only nonempty subset of X which is both open and closed is X itself.

Chapter 3

Sequence and Series

3.1 Sequences

Definition 28. In a metric space (X, d), a sequence $\{p_n\}$ converges to p if $\forall_{\varepsilon>0}\exists_N \text{ s.t. } n\geq N \Rightarrow d(p_n,p)<\varepsilon.$ We write $\lim_{n\to\infty} p_n = p$ or $p_n \to p$.

If $\{p_n\}$ does not converge to any p then it is said to diverge.

Theorem 35. If s_n and t_n are sequences in \mathbb{C} with $s_n \to s$ and $t_n \to t$, then the following hold:

- (a) $s_n + t_n \to s + t$ (b) $cs_n \to cs, c + s_n \to c + s$ for any $c \in \mathbb{C}$ (c) $s_n t_n \to st$
- (d) $\frac{1}{s} \to \frac{1}{s}$ if $s \neq 0$

Lemma 2 (Squeeze Lemma). In \mathbb{R} , if $\forall_{n\in\mathbb{N}}: 0 \leq x_n \leq s_n$ and $\lim_{n\to\infty} s_n \to 0$,

then $\lim_{n\to\infty} x_n = 0$. **Proof.** Let $\varepsilon > 0$. Choose N such that $n \ge N \Rightarrow 0 \le s_n < \varepsilon$. Then $0 \le x_n \le s_n < \varepsilon$ for $n \ge N$, so $x_n \to 0$. Q.E.D.

Theorem 36. (a) If p > 0 then $\frac{1}{n^p} \to 0$.

Proof. Let $\varepsilon > 0$. Choose N such that $\frac{1}{N^p} < \varepsilon$; i.e., $N > \frac{1}{\varepsilon^{\frac{1}{p}}}$. Then for $n \ge N$, $\frac{1}{n^p} \le \frac{1}{N^p} < \varepsilon$.

- (b) If p > 0 then $\sqrt[p]{p} \to 1$. **Proof.** p = 1 is obvious. Suppose p > 1. Let $x_n = \sqrt[n]{p} - 1 > 0$. Want to show $x_n \to 0$.
 - Since $(x_n+1)^n$, we have $p=(x_n+1)^n=\sum_{k=0}^n\binom{n}{k}x_n^k>\binom{n}{k},1)x_n'=nx_n$. Therefore, $x_n\leq \frac{p}{n}$, so $x_n\to 0$ by the Squeeze Lemma. Suppose $p\in (0,1)$. Let $q=\frac{1}{p}>1$. Then $\sqrt[n]{q}\to 1$ by the previous case. By 35, $\sqrt[n]{p}=\frac{1}{\sqrt[n]{q}}\to 1$. Q.E.D.
- (c) $\sqrt[n]{n} \to 1$ **Proof.** Let $x_n = \sqrt[n]{n} - 1 > 0$, for $n \ge 2$. $n = (x_n + 1)^n = \sum_{k=0}^n \binom{n}{k} (x_k)^k > \binom{n}{n} (x_k)^k > \binom{n$
- (d) If p > 0 and $\alpha \in \mathbb{R}$, then $\frac{n^{\alpha}}{(1+p)^n} \to 0$; i.e., Exponentials beat powers.

Proof. We want an upper bound on $\frac{n^{\alpha}}{(1+p)^n}$, so seek a lower

bound on $(1+p)^n$. $(1+p)^n = \sum_{k=0}^n \binom{n}{k} p^k > \binom{n}{k} p^k$ for $k \le n$ $(1+p)^n > \binom{n}{k} p^k = \frac{n(n-1)\cdots(n-k+1)}{k!} p^k$. Then for $k \le \frac{n}{2}$, $\binom{n}{k} p^k > (\frac{n}{2})^k \frac{p^k}{k!}$. Therefore, $\frac{n^\alpha}{(1+p)^n} < (\frac{2}{p})^k k! \frac{1}{n^{k-\alpha}}$. Let $k_0 \in \mathbb{Z}$ s.t. $k > \alpha$. Then for $n \ge 2k_0$, RHS $\to 0$ by (a).

If |x| < 1 then $x^n \to 0$.

Proof. $|x^n-0|=|x|^n$, so $x^n\to 0\Leftrightarrow |x|^n\to 0$ and $|x|^n=\frac{n_0}{(\frac{1}{|x|})^n}\to 0$ by (d) with $\alpha=0$ and $1+p=\frac{1}{|x|}>1$, so $p=\frac{1}{|x|}-1>0$. Q.E.D.

Q.E.D.

Theorem 37. Let $\{p_n\}$ be a sequence in (X, d).

- (a) $p_n \to p \Leftrightarrow \forall_{r>0} : N_r(p)$ contains all but finitely many p_n . **Proof.** $\forall_{n\geq N} : p_n \in N_r(p)$ Q.E.D.
- (b) If $p_n \to p$ and $p_n \to p'$ then p = p'. **Proof.** $d(p,p') \leq d(p_n,p) + d(p_n,p')$ for all n. Fix ε . Choose N such that $d(p_n,p) < \frac{\varepsilon}{2}$ and $d(p_n,p') < \frac{\varepsilon}{2}$ for $n \geq N'$. Then $d(p,p') < \varepsilon$. Then for $n \geq \max\{N,N'\}$, $d(p,p') < \varepsilon$. This is true for all $\varepsilon > 0$, so d(p, p') = 0.
- (c) If $\{p_n\}$ converges, then p_n is bounded, in a sense that $\exists_{M>0,q\in X}$ s.t. $d(p_n,q)\leq$ M for all n.

Proof. If $p_n \to p$, then $\exists N \text{ s.t. } d(p_n, p) < 1 \text{ for all } n \geq N$. Thus, $\forall_{n \geq 1} : d(p_n, p) \leq \max\{1, d(p, p_1), \dots, d(p, p_{N-1})\} = M$ Q.E.D.

(d) If $E \subset X$ has a limit point p, then $\exists_{p_n \in E}$ s.t. $p_n \to p$.

Proof. We need to choose $p_n \in E$ s.t. $d(p, p_n) < \frac{1}{n}$. Let $\varepsilon > 0$. Then $d(p, p_n) < \varepsilon$ if $n > \frac{1}{\varepsilon}$ Q.E.D.

Definition 29. Given $p_n, n_1 < n_2 < n_3 < \ldots$, we say $p_{n_i} = (p_{n_1}, p_{n_2}, \ldots)$ is a subsequence of p_n .

Lemma 3. $p_n \to p \Leftrightarrow \text{every subsequence of } \{p_n\} \text{ converges to } p$ **Proof.** Look at assignment 6 Q.E.D.

Theorem 38. (a) $\{p_n\}$ in X, X compact, then \exists convergent subsequence.

Proof. Let $E = \text{range of}\{p_n\}$. If E is finite, then $\exists p \in X$ and $n_1 < n_2 < \ldots$ s.t. $p_n = p$ for $\forall i$. This subsequence converges to p. If E is infinite then by Theorem 28, E has a limit point $p \in X$; i.e., every neighborhood of p contains infinitely many points of E. Choose n_1 s.t. $d(p, p_{n_1}) < 1$.

Q.E.D.

(b) $\{p_n\}$ in \mathbb{R}^k , bounded, then \exists convergent subsequence. **Proof.** Choose a k-cell I that contains $\{p_n\}$. I is compact. Apply (a).

Q.E.D.

Definition 30 (Cauchy Sequence). $\{p_n\}$ is a Cauchy sequence in (X,d) if $\forall \varepsilon: \exists_{N\in\mathbb{N}} \text{ s.t. } d(p_m,p_n) < \varepsilon \forall m,n\geq N.$

Definition 31. For $E \subset X$, $E \neq \emptyset$, we define diam $E = \sup \{d(p,q) : p,q \in E\}$. diam $E = \infty$ if the set is not bounded above. **Example.** For a sequence p_n in X, let $E_n = \{p_N, p_{N+1}, \ldots\}$. Then $\{p_n\}$ is a Cauchy sequence iff $\lim_{N \to \infty} diam \ E_N = 0$.

Theorem 39. (a) If $p_n \to p$ then $\{p_n\}$ is a Cauchy sequence.

- (b) If X is a compact metric space and $\{p_n\}$ in X is a Cauchy sequence, then $\exists_{p \in X}$ s.t. $p_n \to p$.
- (c) In \mathbb{R}^K every Cauchy sequence converges.

Proof. Let $\varepsilon > 0$. Choose N s.t., $d(p_n, p) < \varepsilon/2$ if $n \ge N$. Then for $m, n \ge N$, $d(p_m, p_n) \le d(p_n, p) + d(p, p_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Suppose $\{p_n\}$ is Cauchy. Let $E_N = \{p_N, P_{N+1}, \ldots\}$. Then $\overline{E_N}$ is closed, hence compact. Also $\overline{E_N} \supset \overline{E_{N+1}}$ and $\lim_{N \to \infty} \operatorname{diam} \ \overline{E_N} = 0$ (use

Theorem 3.10(a) to see diam $\overline{E_N} = \text{diam } E_N$) By theorem 3.10(b), $\exists ! p \in \bigcap_{N=1}^{\infty} \overline{E_N}$. Claim: $p_n \to p$.

Proof of the claim: Let $\varepsilon > 0$. Choose N_0 s.t.diam $\overline{E_{N_0}} < \varepsilon$, so $d(p,q) < \varepsilon \forall g \in \overline{E_{N_0}}$, and hence $\forall g \in N_0$; i.e., $d(p,p_n) < \varepsilon$ if $n \geq N_0$.

Let $\varepsilon > 0$. Choose N s.t., $d(p_n, p) < \varepsilon/2$ if $n \ge N$. Then for $m, n \ge N$, $d(p_m, p_n) \le d(p_n, p) + d(p, p_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Suppose $\{p_n\}$ in \mathbb{R}^k is Cauchy. Cauchy sequences are bounded in any metric space. Therefore, $\exists k$ -cell I, which is compact, containing $\{p_n\}$. Then (b) applies Q.E.D.

Note. The converse of Theorem 39(a) does not hold in general. **Example.** $X = \mathbb{Q}$ has a Cauchy sequence with no limit in \mathbb{Q} . (see assignment 6). Converse does hold if X is compact.

Theorem 40. (a) diam $\overline{E} = \text{diam } E$

- (b) If $K_n \subset X$, $K_n \neq \emptyset$, K compact, $K_n \supset K_{n+1} \forall n$ and if $\lim_{n \to \infty} \text{diam } K_n = 0$, then $\bigcap_{n=1}^{\infty} K_n$ is a single point.
- **Proof.** (a) $E \subset \overline{E} \Rightarrow \operatorname{diam} E \leq \operatorname{diam} \overline{E}$. For the opposite inequality, let $\varepsilon > 0, p, q \in \overline{E}$. Choose $p', q' \in E$ s.t. $d(p, p') < \varepsilon, d(q, q') < \varepsilon$. Then $d(p, q) \leq d(p, p') + d(p', q') + d(q', q) < \varepsilon + \varepsilon = 2\varepsilon$. diam $\overline{E} \leq \operatorname{diam} E + 2\varepsilon$. Since ε is arbitrary, diam $\overline{E} \leq \operatorname{diam} E$.
 - (b) Let $K = \bigcap_{n=1}^{\infty} K_n$. By Theorem 2.36, $K \neq \emptyset$. Since $K \subset K_n \forall n$, diam $k \leq \text{diam } K_n \forall n$, so diam K = 0. Therefore, $d(p,q) = 0 \forall p,q \in K$, so K is a simple point.

Q.E.D.

Definition 32 (Complete Metric Space). A metric space (X,d) is complete if every Cauchy sequence in X converges to a point in X.

Example. (a) $X compact \Rightarrow X complete$.

- (b) \mathbb{R}^k is complete, so is \mathbb{C} .
- (c) \mathbb{Q} is not complete. (see assignment 6)

(d) See assignment 6 for reference to completion of a metric space.

We've seen that convergent sequences are bounded. $p_n = (-1)^n$ shows the converse if false. However the converse does hold for monotonic sequences.

Definition 33 (Monotone). • A sequence $\{s_n\}$ in \mathbb{R} is monotonically increasing if $s_n \leq s_{n+1} \forall n$.

• A sequence $\{s_n\}$ in \mathbb{R} is monotonically decreasing if $s_n \geq s_{n+1} \forall n$.

Theorem 41. A monotone sequence in \mathbb{R} converges if and only if it is bounded

Proof. \Rightarrow all convergent sequences are bounded in any metric space.

 \Leftarrow Increasing case Let $\{s_n\}$ be monotonically increasing and $s_n \leq M \forall n$. Let $s = \sup\{s_n : n \in \mathbb{N}\}$. Then $s_n \leq s \forall n$. Let $\varepsilon > 0$. $\exists N \text{ s.t. } s - \varepsilon < s_N \leq s$. But then $s - \varepsilon < s_N \leq s_{N+1} \leq s_{N+2} \ldots \leq s$, so $|s - s_n| < \varepsilon \forall n \geq N$, and therefore $s_n \to s$.

Q.E.D.

Definition 34 (Infinite Limits). We say

- $s_n \to \infty$ if $\forall_{M \in \mathbb{R}} : \exists_N \text{ s.t. } s_n \ge M \forall_{n \in N}$.
- $s_n \to -\infty$ if $\forall_{M \in \mathbb{R}} : \exists_N \text{ s.t. } s_n < M \forall_{n \in N}$.

Definition 35. Let $\{s_n\}$ be a sequence in \mathbb{R} . We define $\limsup_{n\to\infty} s_n = \overline{\lim_{n\to\infty}} s_n = \inf_{n\geq 1} \{\sup_{m\geq n} \{s_m\}\} = \lim_{n\to\infty} \sup_{m\geq n} \{s_m\}.$ $\liminf_{n\to\infty} s_n = \lim_{n\to\infty} s_n = \sup_{n\geq 1} \{\inf_{m\geq n} \{s_m\}\} = \lim_{n\to\infty} \inf_{m\geq n} \{s_m\}.$

Note. Alternate definition; see ass 7 for equivalence

Remark. (a) If $a_n \leq b_n \forall n \text{ and } a_n \to a \text{ and } b_n \to b$, then $a \leq b$.

(b) $\liminf_{n\to\infty} s_n \le \limsup_{n\to\infty} s_n$

Example. (a) $s_n = (-1)^n (1 + \frac{1}{n^2}) \ 1 \le \sup_{m \ge n} s_m \le 1 + \frac{1}{n^2}$, so $\limsup_{n \to \infty} s_n = 1$. Similarly, $\liminf_{n \to \infty} s_n = -1$

(b) If $\{s_n\}$ has no upper bound, then $\sup_{m\geq n} s_m = \infty$ and in this case we say $\limsup_{n\to\infty} s_n = \infty$; e.g.,

$$s_n = \begin{cases} n & n \text{ odd} \\ -n & n \text{ even} \end{cases}$$

 $has \lim \sup_{n\to\infty} s_n = \infty$, $\lim \inf_{n\to\infty} s_n = -\infty$

Lemma 4. $\limsup_{n\to\infty} s_n = \liminf_{n\to\infty} s_n = L \Leftrightarrow s_n \to L$. **Proof** (L finite).

- $\Rightarrow \text{ This follows from } \inf_{m \geq n} s_m \leq s_n \leq \sup_{m \geq n} s_m. \lim_{n \to \infty} \inf_{m \geq n} s_m = \lim\inf_{n \to \infty} s_n, \text{ and } \lim_{n \to \infty} \sup_{m \geq n} s_m = \lim\sup_{n \to \infty} s_n. \text{ Therefore, } \lim_{n \to \infty} s_n = L.$ $\Leftarrow \text{ If } s_n \to L, \text{ then } \forall_{\varepsilon > 0}: \exists_N \text{ s.t. } s_m \in [L \varepsilon, L + \varepsilon] \forall m \geq N. \text{ Therefore, } \forall_{n \geq N}: L \varepsilon \leq \inf_{m \geq N} s_m \leq \inf_{m \geq n} s_m \leq \sup_{m \geq n} s_m \leq \sup_{m \geq N} s_m \leq L + \varepsilon. \text{ Let } n \to \infty: L \varepsilon \leq \lim\inf_{n \to \infty} s_n \leq \lim\sup_{m \geq N} s_m \leq L + \varepsilon. \text{ Since } \varepsilon \text{ is arbitrary so } L \leq \liminf_{n \to \infty} s_n \leq \lim\sup_{m \in \mathbb{N}} s_m \leq L + \varepsilon. \text{ Since } \varepsilon \text{ is arbitrary so } L \leq \lim\inf_{m \in \mathbb{N}} s_m \leq L + \varepsilon.$
- $\limsup_{n\to\infty} s_n \le L+\varepsilon$. Since ε is arbitrary, so $L \le \liminf_{n\to\infty} s_n \le 1$ $\limsup_{n\to\infty} s_n \le L.$

Q.E.D.

3.2Series

Definition 36 (Series). Let $\{a_n\}$ be a sequence in \mathbb{C} . Form a new sequence $\{s_n\}$, the sequence of partial sums, by $s_n = a_1 + a_2 + \ldots + a_n = \sum_{k=1}^n a_k$. If $s_n \to s$, we say **the series** $\sum_{k=1}^{\infty} a_k$ **converges** and that $\sum_{k=1}^{\infty} a_k = s$. If $\{s_n\}$ diverges then we say $\sum_{k=1}^{\infty} a_k$ diverges.

Theorem 42. $\sum_{n\in\mathbb{N}} a_n$ converges if and only if $\exists_{\varepsilon>0}:\exists N$ s.t. $|\sum_{k=m}^n a_k| < \varepsilon \forall n \geq m \geq N$. **Proof.** $\sum_n a_n$ converges $\Leftrightarrow \{s_n\}$ converges $\Rightarrow \{s_n\}$ is a Cauchy sequence. Use $s_n - s_{m-1} = \sum_{k=m}^n a_k$. Q.E.D.

Corollary. If $\sum_n a_n$ converges then $a_n \to 0$.

Proof. Take m=n in Theorem 3.22. $\sum_n a_n$ converges $\Rightarrow \forall_{\varepsilon>0}: \exists_N \text{ s.t. } |a_n|<\varepsilon \text{ if } n\geq N.$ Q.E.D.

Remark. n-th term test for divergence: If $a_n \not\to 0$ then $\sum_n a_n$ di-

verges. Example. $\sum_{n=1}^{\infty} \frac{n}{n+1}$ diverges because $\frac{n}{n+1} \to 1 \neq 0$. Converse to Corollary is false! E.g., $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges but $\frac{1}{n} \to 0$.

Theorem 43. If $a_n \geq 0$, then $\sum_n a_n$ converges if and only if $\{s_n\}$ is

Proof. $\{s_n\}$ is monotone increasing, so by Theorem 41, it converges if and only if it is bounded.

Theorem 44 (Comparison Test). (a) If $|a_n| \le c_n \forall n \ge N_0$ and $\sum_n c_n$ converges, then $\sum_{n} a_n$ converges.

Proof. Suppose $|a_n| \le c_n \forall n \ge N_0$ and $\sum_n c_n$ converges. Let $\varepsilon > 0$. By theorem 3.22, $\exists N$ s.t. $\sum_{k=m}^n c_k < \varepsilon$ if $n \ge m \ge N$. Can take $N \ge N_0$. Then $|N \ge N_0|$. $|\sum_{k=m}^n a_k| \le \sum_{k=m}^n |a_k| \le \sum_{k=m}^n c_k < \varepsilon$ if $n \ge m \ge N$. By theorem 3.22 again, $\sum_n a_n$ converges. Q.E.D.

(b) If $a_n \ge d_n \ge 0 \forall n \ge N_0$ and if $\sum_n d_n$ diverges, then $\sum_n a_n$ diverges.

Proof. This follows from (a): if $\sum_n a_n$ converges then $\sum_n d_n$ converges. Thus it's contrapositive, (b) is true.

Theorem 45 (Geometric Series). $\sum_{n=0}^{\infty} x^n = \begin{cases} \frac{1}{1-x} & \text{if } -1 < x < 1 \\ \text{diverges} & \text{otherwise} \end{cases}$ Proof. Let $S_n = 1 + x + x^2 + \dots + x^n$, $xS_n = x + x^2 + \dots + x^n + x^{n+1}$. Then $S_n - xS_n = 1 - x^{n+1} \Rightarrow S_n = \frac{1-x^{n+1}}{1-x}$ If $|x| < 1 (\Leftrightarrow -1 < x < 1)$, then $x^{n+1} \to 0$ and $S_n \to \frac{1}{1-x}$. If $|x| \ge 1$, then x^{n+1} does not converge to 0, so $\sum_{n=0}^{\infty} x^n$ diverges. Q.E.D.

$$S_n - xS_n = 1 - x^{n+1} \Rightarrow S_n = \frac{1 - x^{n+1}}{1 - x}$$

Theorem 46. Suppose $a_1 \geq a_2 \geq a_3 \geq \cdots \geq 0$. Then $\sum_{n=1}^{\infty} a_n$ converges $\Leftrightarrow \sum_{k=1}^{\infty} 2^k a_{2^k}$ converges.

- **Proof.** (\Leftarrow) We show that if $\sum_n a_n$ then $\sum_k 2^k a_{2^k}$ diverges. For this, note that $a_1 + a_2 + \ldots + a_n \leq a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \cdots + (a_{2^k} + a_{2^k+1} + \cdots + a_{2^{k+1}-1})$ if $2^{k+1} > n$. $a_1 + a_2 \cdots + a_n \leq a_1 + 2a_2 + 4a_4 + \cdots + 2^k a_{2^k}$. LHS unbounded as $n \to \infty$, so RHS is also unbounded as $k \to \infty$.
- (\$\Rightarrow\$) $a_1 + a_2 + a_3 + \dots + a_n \ge a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + a_{2^{k-1}+2} + \dots + a_{2^k}) \text{ if } 2^k \le n. \ a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \dots + (a_{2^{k-1}+1} + a_{2^{k-1}+2} + \dots + a_{2^k}) \ge a_1 + a_2 + 2a_4 + 4a_8 + \dots + 2^{k-1} a_{2^k} \ge \frac{1}{2} (a_1 + 2a_2 + 4a_4 + \dots + 2^k a_{2^k}).$ If $\sum_{n=0}^{\infty} a_n = a_{n-1} + a_{n-1$ If $\sum_{n} a_n$ converges, then LHS is bounded for all n so RHS is bounded for all k. Hence RHS converges since it is monotone.

Q.E.D.

Theorem 47 (p-series). $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Proof. For $p \leq 0$, $\frac{1}{n^p} \not\to 0$, so series diverges. For p > 0, $\frac{1}{n^p}$ is decreasing, so $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges iff $\sum_k 2^k \cdot \frac{1}{(2^k)^p}$ converges. But $\sum_k 2^k \cdot \frac{1}{(2^k)^p} = \sum_k \left(\frac{1}{2^{p-1}}\right)^k$ converges iff $\frac{1}{2^{p-1}} < 1 \Leftrightarrow p-1 > 0$, which is equivalent to p > 1. Q.E.D.

Theorem 48. $\sum_{n=3}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1 and diverges if $p \le 1$. (log is to base e.)

Proof. If $p \leq 0$, then $\frac{1}{n(\log n)^p} \geq \frac{1}{n}$, so $\sum_n \frac{1}{n(\log n)^p}$ diverges by the comparison test. If p > 0 then $\frac{1}{n(\log n)^p}$ decreases since $\log n$ increases. By theorem 46, $\sum_n \frac{1}{n(\log n)^p}$ converges $\Leftrightarrow \sum_k 2^k \cdot \frac{1}{2^k (\log 2^k)^p}$ converges $\Leftrightarrow \sum_k \frac{1}{(\log 2)^p} \cdot \frac{1}{k^p}$ converges $\Leftrightarrow p > 1$ Q.E.D.

Definition 37 (e). $e := \sum_{n=0}^{\infty} \frac{1}{n!}$.

Remark. Convergence $\frac{1}{n!} = \frac{1}{(n(n-1)(n-2)\cdots 3\cdot 2\cdot 1)} \leq \frac{1}{2\cdot 2\cdot 2\cdot 2\cdot \cdots 2\cdot 1} = \frac{1}{2^{n-1}}.$ Therefore, $S_n = \sum_{k=0}^n \frac{1}{k!} \leq 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} < 1 + \sum_{k=1}^\infty \frac{1}{2^{k-1}} = 1 + \frac{1}{1-1/2} = 3.$ Hence, $e \leq 3$.

Rate of Convergence $0 < e - S_n = \sum_{k=n+1} \infty \frac{1}{k!} < \sum_{k=n+1}^{\infty} \frac{1}{(n+1)^{k-n+1}} \cdot \frac{1}{(n+1)!} = \frac{1}{(n+1)!} \sum_{k=n+1} \infty \frac{1}{(n+1)^{k-(n+1)}} = \frac{1}{(n+1)!} \cdot \frac{1}{1-1/(n+1)} = \frac{1}{(n!) \cdot n}.$

Theorem 49. $e \notin \mathbb{Q}$.

Proof. For contradiction, suppose $e = \frac{p}{q}, p, q \in \mathbb{N}$. Then $0 < e - S_q < \frac{1}{q \cdot q!}$, so $0 < q! \cdot e - q! \cdot S_q < \frac{1}{q}$. If we show $q! \cdot e - q! \cdot S_q \in \mathbb{Z}$, then we'll have a contradiction. But $q! \cdot e - q! \cdot S_q = q! \cdot \frac{p}{q} - \sum_{k=0}^q \frac{q!}{k!}$. Because $q! \cdot \frac{p}{q} \in \mathbb{N}$ and $\sum_{k=0}^q \frac{q!}{k!} \in \mathbb{N}$, the difference of them, $q! \cdot e - q! \cdot S_q \in \mathbb{Z}$, thus a contradiction. Q.E.D.

Theorem 50. $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$.

Proof. Let $t_n = (1+\frac{1}{n})^n$. Then $t_n = \sum_{k=0}^n {n \choose k} \cdot \frac{1}{n^k} = \sum_{k=0}^n \frac{1}{k!} \cdot (\frac{n}{n} \cdot \frac{n-1}{n}) \cdot \cdots \cdot \frac{n-k+1}{n} \le S_n$. So $\limsup_{n \to \infty} t_n \le \limsup_{n \to \infty} S_n = \lim_{n \to \infty} S_n = e$. On the other hand, for fixed m and $n \ge m$, $t_n \ge \sum_{k=0}^m {n \choose k} \cdot \frac{1}{n^k} = \sum_{k=0}^m \frac{1}{k!} (1-\frac{1}{n}) (1-\frac{2}{n}) \cdot \cdots \cdot (1-\frac{k-1}{n})$. Let $n \to \infty$ with m fixed. $\liminf_{n \to \infty} t_n \ge \sum_{k=0}^m \frac{1}{k!} \cdot 1 = S_m$. This is true for any m. Now let $m \to \infty$. $\liminf_{n \to \infty} t_n \ge \limsup_{m \to \infty} s_m = e$. $e \le \liminf_{n \to \infty} t_n \le \limsup_{n \to \infty} t_n \le \lim \sup_{n \to \infty} t_n = \lim_{n \to \infty} t_n \le \lim \sup_{n \to \infty} t_n \le \lim_{n \to$

Theorem 51 (Root test). Let $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. Then,

$$\sum a_n \begin{cases} \text{converges} & \text{if } \alpha < 1 \\ \text{diverges} & \text{if } \alpha > 1 \\ \text{inconclusive} & \text{if } \alpha = 1 \end{cases}$$

Proof (Just outline). $\alpha < \beta < 1$ Eventually $|a_n| \leq \beta^n$, thus convergence. $\alpha > 1$ $|a_n| > 1$ for infinitely many n, thus divergence. $\alpha = 1$ $\frac{1}{n}$ diverges, $\frac{1}{n^2}$ converges. Q.E.D.

Q.E.D.

Theorem 52 (Ratio test). The series $\sum_{n=1}^{\infty} a_n$ with $a_n \neq 0$ converges if $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ and diverges if $\exists_{N \in \mathbb{N}}$ s.t. $\forall_{n \geq N} : \left| \frac{a_{n+1}}{a_n} \right| \geq 1$. Otherwise, inconclusive.

Proof. (see textbook).

Convergence
$$\sum a_n \begin{cases} \text{converges} & \text{if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \\ \text{diverges} & \text{if } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \\ \text{diverges} & \text{if } \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \end{cases}$$

Note. Note that we cannot replace \liminf with \limsup in the

Example. Let $s_n = \sum_{n=0}^{\infty} a_n = \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$. First, note that $a_{2k} = \frac{1}{2} \cdot \frac{1}{4^k}, a_{2k+1} = 2a_{2k} = \frac{1}{4^k}$ for $k \ge 0$.

Ratio test Then the ratio $\frac{a_{n+1}}{a_n}$ is the sequence $2, \frac{1}{8}, 2, \frac{1}{8}, 2, \frac{1}{8}, \dots$ Therefore, $\liminf_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{8}, \limsup_{n\to\infty} \frac{a_{n+1}}{a_n} = 2$. The ratio test is inconclusive for s_n .

Root test
$$a_n = \begin{cases} \frac{1}{2} \cdot \frac{1}{2^n} & n \ even, \\ \frac{2}{2^n} & n \ odd, \end{cases}$$
, so $(\frac{1}{2})^{1/n} \cdot \frac{1}{2} \leq \sqrt[n]{a_n} \leq \frac{2^{1/n}}{2}$, thus $\lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{2} < 1$. Therefore, $s_n = \sum_{n=0}^{\infty} a_n \ converges.$

This is an example where the ratio test is inconclusive but the root test is conclusive.

Theorem 53. If $\sum a_n = A$ and $\sum b_n = B$, then $\sum a_n + b_n = A + B$ and $\sum c \cdot a_n = cA$.

Power Series

Definition 38 (Power Series). For $z \in \mathbb{C}$ and a complex sequence $\{c_n\}$, $\sum_{n=0}^{\infty} c_n z^n$ is a power series.

Remark. As $z^0 = 1$ for all $z \in \mathbb{C}$, by convention $\sum_{n=0}^{\infty} c_n z^n = c_0 + \sum_{n=1}^{\infty} c_n z^n$.

Theorem 54. Let $R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|c_n|}}$ such that

$$R = \begin{cases} 0 & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \infty \end{cases}$$

 $R = \begin{cases} 0 & \text{if } \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \infty \end{cases}$ $\text{. Then } \sum c_n z^n \begin{cases} \text{converges} & \text{if } |z| < R \\ \text{diverges} & \text{if } |z| > R \\ \text{inconclusive} & \text{if } |z| = R \end{cases}$ $\text{Proof. } \limsup_{n \to \infty} \sqrt[n]{|c_n z^n|} = |z| \cdot \limsup_{n \to \infty} \sqrt[n]{|c_n|} = \frac{|z|}{R}. \text{ By root test, the series converges if } \frac{|z|}{R} < 1 \text{ and diverges if } \frac{|z|}{R} > 1.$

Note. In practice, often use the ratio test to find R.

Q.E.D.

Example. (a) $\sum n! \cdot z^n$ has R = 0.

By ratio test $\left|\frac{(n+1)! \cdot z^{n+1}}{n! \cdot z^n}\right| = |z| \cdot (n+1) \to \infty \forall z \neq 0$. Hence, the series diverges $\forall z \neq 0$.

By root test Note $n \neq \frac{1}{2}(\frac{2}{3})^2(\frac{3}{4})^3 \cdots (\frac{n-1}{n})^{n-1} n^n$ for $n \geq 2$. Then $n \neq \frac{n^n}{(1+1)^1(1+\frac{1}{2})^2(1+\frac{1}{n-1})^{n-1}}$. In the proof of Theorem 50, we saw $(1+\frac{1}{j}) \leq e$. So $n! \geq \frac{n^n}{e^{n-1}} = e \cdot (\frac{n}{e})^n$. $\sqrt[n]{n!} \geq e^{1/n} \cdot \frac{n}{e} \to \infty$ as $n \to \infty$. Therefore, $R = \frac{1}{\infty} = 0$.

Note. Cf. Stirling's formula: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Definition 39 (Absolute Convergence, Conditional Convergence).

- (a) $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.
- (b) $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Remark. All other convergence tests seen so far are actually tests for absolute convergence.

• $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$ converges conditionally by the alternating se-Example.

ries test of assignment 7's practice problem 1. See also Theorem 3.43. (MUST TAKE A LOOK!)

Given $a_1 \ge a_2 \ge a_3 \ge \cdots \ge 0$ and $a_n \to 0$, then $\sum (-1)^n a_n$ converges.