

Math 673/4

Multigrid Methods: A Mostly Matrix-Based Approach

Chapter 09: Additive Preconditioners Based on Subspace Decompositions

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

F24/S25

Chapter 09, Part 2 of 2 Additive Preconditioners Based on Subspace Decompositions

Hierarchical Basis Preconditioner

Now, we need to connect the spaces W_j to V_ℓ where $0 \le j \le \ell$. In so doing, we will have the tools to build a preconditioner based on the hierarchical basis. Be careful, the number of indices in this section can get a little overwhelming.

Proposition

Let $\mathcal{B}_{j}^{W}=\{\phi_{j,i}\}_{i=1}^{m_{j}}$ and $\mathcal{B}_{\ell}^{V}=\{\psi_{\ell,i}\}_{i=1}^{n_{\ell}}$ be the usual bases for W_{j} and V_{ℓ} , respectively. For each $0\leq j\leq \ell$, there are unique numbers

$$q_{j,k,i}^{\ell} \in \mathbb{R}, \quad 1 \leq k \leq n_{\ell}, \quad 1 \leq i \leq m_{j},$$

such that

$$\phi_{j,i} = \sum_{k=1}^{n_\ell} q_{j,k,i}^\ell \psi_{\ell,k}. \tag{1}$$

Proof.

Exercise

Definition (Hierarchical Prolongation Matrix)

Define the matrix $\mathsf{Q}_j^\ell \in \mathbb{R}^{n_\ell imes m_j}$ via

$$\left[Q_j^\ell\right]_{k,i}:=q_{j,k,i}^\ell,\quad 1\leq k\leq n_\ell,\quad 1\leq i\leq m_j.$$

 Q_j^{ℓ} is called a **hierarchical prolongation matrix**.

Lemma

Suppose that Q_j^ℓ is a hierarchical prolongation matrix and $\mathbf{w}_j \in \mathbb{R}^{m_j}$ is the coordinate vector of the function $\mathbf{w}_j \in W_j$ with respect to the basis \mathcal{B}_j^W . Then,

$$\operatorname{rank}(\mathsf{Q}_j^\ell)=m_j,$$

and the coordinate vector of $w_j \in V_\ell$ in the basis \mathcal{B}_ℓ^V is simply

$$\mathsf{Q}_{j}^{\ell}\mathbf{w}_{j}\in\mathbb{R}^{n_{\ell}}.$$

Proof.

Exercise.

Remark

Note that the family of spaces W_j are hierarchical, but are not nested

$$W_0 \not\subset W_1 \not\subset W_2 \cdots$$
.

Furthermore, it makes no sense to stack the prolongation matrices as we did in the past:

$$\mathsf{Q}_j^\ell \neq \mathsf{Q}_k^\ell \mathsf{Q}_j^k,$$

for $j < k < \ell$. In fact, the product on the right hand side is not usually defined.

T

Definition

Define the bilinear form $C_j:W_j\times W_j\to\mathbb{R}$ via

$$C_{j}\left(w_{j},v_{j}\right) \coloneqq \sum_{r=1}^{m_{j}} w_{j}\left(\boldsymbol{N}_{j,r}^{W}\right) v_{j}\left(\boldsymbol{N}_{j,r}^{W}\right), \quad \forall \ w_{j},v_{j} \in W_{j}.$$

Let $\mathcal{B}_j^W=\{\phi_{j,i}\}_{i=1}^{m_j}$ be the usual basis for W_j . Define the matrix $\mathsf{C}_j\in\mathbb{R}^{m_j\times m_j}$ via

$$[C_{j}]_{i,k} := C_{j} (\phi_{j,i}, \phi_{j,k})$$

$$= \sum_{r=1}^{m_{j}} \phi_{j,i} (\mathbf{N}_{j,r}^{W}) \phi_{j,k} (\mathbf{N}_{j,r}^{W})$$

$$= \sum_{r=1}^{m_{j}} \delta_{ir} \delta_{kr}$$

$$= \delta_{ik}. \tag{2}$$

Definition (Hierarchical Basis Preconditioner)

Suppose that $\mathcal{B}_{\ell}^V = \{\psi_{\ell,i}\}_{i=1}^{n_\ell}$ is the usual basis for the finite element space V_ℓ . Let $\mathsf{A}_L \in \mathbb{R}^{n_L \times n_L}$ be the SPD matrix defined via

$$[\mathsf{A}_L]_{i,j} = \mathsf{a}(\psi_{L,j},\psi_{L,i}), \quad 1 \leq i,j \leq \mathsf{n}_L,$$

where

$$a(u,v) = (\nabla u, \nabla v)_{L^2}, \quad \forall \ u,v \in H_0^1(\Omega).$$

The hierarchical basis preconditioner for A_L is defined as

$$C_{H} = \sum_{\ell=0}^{L} Q_{\ell}^{L} C_{\ell}^{-1} Z_{\ell}^{L} = \sum_{\ell=0}^{L} Q_{\ell}^{L} Z_{\ell}^{L},$$
 (3)

where C_ℓ is as in (2), $Q_\ell^L \in \mathbb{R}^{n_L \times m_\ell}$ is the hierarchical prolongation matrix from a previous definition and

$$\mathsf{Z}_{\ell}^{\mathit{L}} = \left(\mathsf{Q}_{\ell}^{\mathit{L}}\right)^{\top}.$$

Lemma

Assumption (SS1) holds for the hierarchical basis decomposition. In particular, for any object

$$\boldsymbol{u}_L \in \mathbb{R}^{n_L} \overset{\mathcal{B}_L^V}{\leftrightarrow} u_L \in V_L$$

there exist unique objects

$$\mathbf{w}_{\ell} \in \mathbb{R}^{m_{\ell}} \overset{\mathcal{B}_{\ell}^{W}}{\leftrightarrow} \mathbf{w}_{\ell} \in W_{\ell}, \quad 0 \leq \ell \leq L,$$

such that

$$\boldsymbol{u}_{L} = \sum_{\ell=0}^{L} Q_{\ell}^{L} \boldsymbol{w}_{\ell} \in \mathbb{R}^{n_{L}} \overset{\mathcal{B}_{L}^{V}}{\leftrightarrow} u_{L} = \sum_{\ell=0}^{L} w_{\ell} \in V_{L}.$$

Furthermore, the hierarchical basis preconditioner, C_H, defined in (3), is SPD.

Proof.

This follows from the lemmas on the last slide deck. The details are left for an exercise.

Remark

Our goal is now to show that

$$\lambda_{\mathsf{min}}(\mathsf{C}_{\mathrm{H}}\mathsf{A}_{L}) \geq C \left(1 + |\mathsf{log}(\mathit{h}_{L})|^{2}\right)^{-1},$$

and

$$\lambda_{\max}(C_HA_L) \leq C$$
,

where these constants are positive and independent of L. If this is the case,

$$rac{\lambda_{\mathsf{max}}}{\lambda_{\mathsf{min}}} =: \kappa(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathsf{L}}) \leq C \left(1 + \left| \mathsf{log}(\mathit{h}_{\mathsf{L}}) \right|^2 \right).$$

This estimate is quite useful, since the logarithmic dependence on h_L is quite weak. For example, suppose

$$h_L=\frac{1}{2^L},$$

which is entirely reasonable. Then

$$|\log(h_L)|^2 = L^2 |\log(1/2)|^2$$
.

Our analysis that follows will only work for d = 2.

Now, we need some technical lemmas. For more details, see the book by Brenner and Scott.

Theorem (Mean-Zero Poincaré)

Suppose that Ω is an open polyhedral set in \mathbb{R}^d . Then, for every $u \in H^1(\Omega)$,

$$\|u - \bar{u}\|_{L^2(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)},$$
 (4)

for some constant C>0 that is independent of u by dependent upon Ω , where \bar{u} is the average of u:

$$\bar{u} \coloneqq \frac{1}{|\Omega|} \int_{\Omega} u(x) dx.$$

As a consequence, for every $u \in H^1(\Omega)$,

$$||u - \bar{u}||_{H^{1}(\Omega)} \le C |u - \bar{u}|_{H^{1}(\Omega)} = C |u|_{H^{1}(\Omega)},$$
 (5)

for some constant C > 0 that is independent of u by dependent upon Ω .

Theorem (Inverse Inequality)

Suppose that Ω is an open polyhedral domain in \mathbb{R}^d , \mathcal{T}_j , $0 \leq j \leq L$ is a nested family of triangulations of Ω , and S_j , $0 \leq j \leq L$, are the associated piecewise-linear finite element spaces. Assume that $1 \leq p, q \leq \infty$ and $0 \leq m \leq \ell$. Then, for all $v \in S_j$ and all $K \in \mathcal{T}_j$,

$$\|v\|_{W^{p,\ell}(K)} \le Ch_j^{m-\ell+d/p-d/q} \|v\|_{W^{q,m}(K)},$$
 (6)

for some constant C>0 depends on the shape of the triangle K. Here $W^{p,\ell}$ is the Sobolev space of derivative-order ℓ .

Proof.

See Brenner and Scott (2008), Section 5.3.

The following result is known as a Trace Estimate and allows one to control the values of a function on a boundary by its function values and derivatives in the interior of the domain.

Theorem (Trace Estimate)

Suppose that Ω is an open polyhedral domain in \mathbb{R}^d and 1 . Then,there is a constant C > 0, which depends upon the shape of Ω , such that

$$\|v\|_{L^{p}(\partial\Omega)} \le C \|v\|_{L^{p}(\Omega)}^{1-1/p} \|v\|_{W^{1,p}(\Omega)}^{1/p}, \tag{7}$$

for all $v \in W^{1,p}(\Omega)$.

Proof.

See Brenner and Scott (2008), Section 1.6 for a proof in a simplified setting and for a discussion about the more general case here.

Salgado and Wise

Theorem

Suppose that Ω is an open polyhedral domain in \mathbb{R}^d , \mathcal{T}_ℓ , $0 < \ell < L$ is a nested family of triangulations of Ω , and S_{ℓ} , $0 < \ell < L$, are the associated piecewise-linear finite element spaces. Then, for all $v_{\ell} \in S_{\ell}$, $\ell \geq 1$,

$$\|v_{\ell} - \mathcal{I}_{\ell-1}v_{\ell}\|_{L^{2}(\Omega)} \le Ch_{\ell} |v_{\ell}|_{H^{1}(\Omega)},$$
 (8)

for some constant C > 0 that is independent of ℓ .

Proof.

Note that the previous interpolation error estimate from Chapter 6 does not cover this case, since v_{ℓ} is not in $H^2(\Omega)$. However, the stated result still holds since we are interpolating a very specific class of functions. The proof of the one dimensional case is left as an exercise.

In two space dimensions $H^1\hookrightarrow L^p$, for any $1\leq p<\infty$. We cannot quite get control for $p=\infty$. But, if the function space is finite dimensional we can get control of the $p=\infty$ case, at the cost of an h-dependence. Here is the result from Section 4.9 in the book by Brenner and Scott.

Theorem

Suppose that Ω is an open polygonal domain in \mathbb{R}^2 and \mathcal{T}_ℓ , $0 \le \ell \le L$ is a nested family of triangulations of Ω . Then, for any $v_\ell \in V_\ell$,

$$\|v_\ell\|_{L^\infty(\Omega)} \leq C\sqrt{1+\left|\log(h_\ell)\right|}\left|v_\ell\right|_{H^1(\Omega)},$$

for some constant C>0 that is independent of ℓ but depends upon the shape of Ω . Further, for all $v_\ell \in S_\ell$ and any $K \in \mathcal{T}_\ell$,

$$\left\| \mathbf{v}_{\ell} - \bar{\mathbf{v}}_{\ell} \right\|_{L^{\infty}(K)} \leq C \sqrt{1 + \left| \log(h_{\ell}) \right|} \left| \mathbf{v}_{\ell} \right|_{H^{1}(K)},$$

for some constant C>0 that is independent of ℓ but depends upon the shape of the triangle $K\in \mathcal{T}_\ell$, where

$$\bar{v}_{\ell} = \frac{1}{|K|} \int_{K} v_{\ell}(x) dx.$$

Lemma

Suppose that $0 \le j < \ell$. For any $v_{\ell} \in S_{\ell}$,

$$\|v_{\ell} - \bar{v}_{j,\ell}\|_{L^{\infty}(\mathcal{K}_{j})} \leq C \sqrt{1 + \left|\log\left(\frac{h_{j}}{h_{\ell}}\right)\right| |v_{\ell}|_{H^{1}(\mathcal{K}_{j})}}, \tag{9}$$

for some constant C>0 that is independent of j and ℓ but depends upon the shape of the triangle $K_j\in\mathcal{T}_j$, where

$$\bar{v}_{j,\ell} = \frac{1}{|K_j|} \int_{K_j} v_\ell(x) dx.$$

Proof.

Exercise.

Lemma

Assume that $\Omega \subset \mathbb{R}^2$ is a polygonal domain. Suppose that $\mathcal{I}_\ell : C(\overline{\Omega}) \to V_\ell$, $0 \le \ell \le L$, is the Lagrange nodal interpolation operator, and $\mathcal{I}_{-1} \equiv 0$. Then, for all $u_L \in V_L$,

$$\|\mathcal{I}_{\ell}u_{L}-\mathcal{I}_{\ell-1}u_{L}\|_{L^{2}(\Omega)}\leq Ch_{\ell}\left(1+\sqrt{L-\ell}\right)|u_{L}|_{H^{1}(\Omega)}.$$
 (10)

for some constant C>0 that is independent of but depends upon the shape of Ω .

Proof.

Define the piecewise constant function \bar{u}_I^ℓ such that

$$ar{u}_L^\ell|_K := rac{1}{|K|} \int_K u_L(x) \, dx, \quad \forall \, K \in \mathcal{T}_\ell.$$

Then,

$$\begin{split} \|\mathcal{I}_{\ell}u_{L} - \mathcal{I}_{\ell-1}u_{L}\|_{L^{2}(\Omega)}^{2} &= \|\mathcal{I}_{\ell}u_{L} - \mathcal{I}_{\ell-1}\left[\mathcal{I}_{\ell}\left[u_{L}\right]\right]\|_{L^{2}(\Omega)}^{2} \\ &\stackrel{(8)}{\leq} Ch_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} |\mathcal{I}_{\ell}\left[u_{L}\right]|_{H^{1}(K)}^{2} \\ &= Ch_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left|\mathcal{I}_{\ell}u_{L} - \bar{u}_{L}^{\ell}\right|_{H^{1}(K)}^{2} \\ &\stackrel{(6)}{\leq} Ch_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left\|\mathcal{I}_{\ell}u_{L} - \bar{u}_{L}^{\ell}\right\|_{L^{\infty}(K)}^{2} \\ &\stackrel{(9)}{\leq} Ch_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left\|u_{L} - \bar{u}_{L}^{\ell}\right\|_{L^{\infty}(K)}^{2} \\ &\stackrel{(9)}{\leq} Ch_{\ell}^{2} \sum_{K \in \mathcal{T}_{\ell}} \left(1 + \left|\log\left(\frac{h_{\ell}}{h_{L}}\right)\right|\right) |u_{L}|_{H^{1}(K)}^{2} \\ &= Ch_{\ell}^{2} \left(1 + \left|\log\left(\frac{h_{\ell}}{h_{L}}\right)\right|\right) |u_{L}|_{H^{1}(\Omega)}^{2} \,. \end{split}$$

Now, notice that

$$h_\ell = h_0 2^{-\ell} \quad 1 \le \ell \le L.$$

So,

$$\log(h_\ell/h_L) = \log(2^{L-\ell}) = (L-\ell)\log(2).$$

The result follows.

Lemma

There is some constant $C_7 > 0$, independent of L, such that

$$\lambda_{\min}(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{L}) \geq \frac{\mathsf{C}_{7}}{1 + |\mathsf{log}(h_{L})|^{2}}.\tag{11}$$

Proof.

By definition, for any $w_{\ell,1}, w_{\ell,2} \in W_{\ell}$

$$C_{\ell}(w_{\ell,1}, w_{\ell,2}) = \sum_{i=1}^{m_{\ell}} w_{\ell,1}(N_{\ell,i}^{W}) w_{\ell,2}(N_{\ell,i}^{W}).$$

Let

$$\mathbf{w}_{\ell,\alpha} \in \mathbb{R}^{m_{\ell}} \overset{\mathcal{B}_{\ell}^{W}}{\leftrightarrow} w_{\ell,\alpha} \in W_{\ell}, \quad \alpha = 1, 2.$$

Then,

$$(C_{\ell} \mathbf{w}_{\ell,1}, \mathbf{w}_{\ell,2})_{\ell} = \sum_{i=1}^{m_{\ell}} [\mathbf{w}_{\ell,1}]_{i} [\mathbf{w}_{\ell,2}]_{i}$$

$$= \sum_{i=1}^{m_{\ell}} w_{\ell,1} (\mathbf{N}_{\ell,i}^{W}) w_{\ell,2} (\mathbf{N}_{\ell,i}^{W})$$

$$= C_{\ell} (\mathbf{w}_{\ell,1}, \mathbf{w}_{\ell,2}).$$

This last object is like a mass-lumping inner product. All that is missing is a factor of h_{ℓ}^2 .

T

Proof (Cont.)

There are constants $C_3>0$, $C_4>0$ such that, for all $0\leq\ell\leq L$,

$$C_3 h_\ell^2 C_\ell (w_\ell, w_\ell) \le \|w_\ell\|_{L^2(\Omega)}^2 \le C_4 h_\ell^2 C_\ell (w_\ell, w_\ell),$$
 (12)

for all $w_{\ell} \in W_{\ell}$. Therefore, for any $w_{\ell} \in W_{\ell} \overset{\mathcal{B}_{\ell}^{W}}{\leftrightarrow} \mathbf{w}_{\ell} \in \mathbb{R}^{m_{\ell}}$,

$$(C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell} = h_{\ell}^{-2} h_{\ell}^{2} C_{\ell} (w_{\ell}, w_{\ell})$$

$$\stackrel{(12)}{\leq} C_{3}^{-1} h_{\ell}^{-2} \|w_{\ell}\|_{L^{2}(\Omega)}^{2}$$

$$= C_{3}^{-1} h_{\ell}^{-1} \|w_{\ell} - \mathcal{I}_{\ell-1} w_{\ell}\|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(??)}{\leq} C_{3}^{-1} C \|w_{\ell}\|_{H^{1}(\Omega)}^{2}$$

$$\stackrel{(6)}{\leq} C_{3}^{-1} C h_{\ell}^{-2} \|w_{\ell}\|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(12)}{\leq} C_{3}^{-1} C C_{4} (C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell}. \tag{13}$$

Therefore, there are constants $C_5 > 0$, $C_6 > 0$, such that we have the equivalence

$$C_5 \sum_{\ell=0}^{L} |w_{\ell}|_{H^1(\Omega)}^2 \leq \sum_{\ell=0}^{L} (C_{\ell} \mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{\ell} \leq C_6 \sum_{\ell=0}^{L} |w_{\ell}|_{H^1(\Omega)}^2,$$
 (14)

for any collection (w_ℓ) , with $w_\ell \in W_\ell$, in general. Now, let $u_L \in V_L$ be given and

$$u_L = \sum_{\ell=0}^L w_\ell, \quad \exists! \ w_\ell \in W_\ell, \quad 0 \le \ell \le L.$$

Recall that

$$w_{\ell} = \mathcal{I}_{\ell} u_{L} - \mathcal{I}_{\ell-1} u_{L}, \quad 1 \leq \ell \leq L,$$

and

$$w_0 = \mathcal{I}_0 u_L$$
.

We make the usual identification $w_\ell \in W_\ell \overset{\mathcal{B}_\ell^W}{\leftrightarrow} w_\ell \in \mathbb{R}^{m_\ell}$, and we observe that

$$(\boldsymbol{w}_{\ell})_{\ell=0}^{L} \in \mathsf{Q}[\boldsymbol{u}_{L}],$$

with respect to the hierarchical prolongation matrices from Definition 1. Then, from (13)

$$\begin{split} \sum_{\ell=0}^{L} \left(\mathsf{C}_{\ell} \boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell} \right)_{\ell} & \leq & C_{3}^{-1} C \sum_{\ell=0}^{L} h_{\ell}^{-2} \left\| \boldsymbol{w}_{\ell} \right\|_{L^{2}(\Omega)}^{2} \\ & \stackrel{(10)}{\leq} & C \sum_{\ell=0}^{L} \left(1 + \sqrt{L - \ell} \right)^{2} \left| \boldsymbol{u}_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \leq & C \sum_{\ell=0}^{L} \left(1 + L - \ell \right) \left| \boldsymbol{u}_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \leq & C \left(1 + L + L^{2} \right) \left| \boldsymbol{u}_{L} \right|_{H^{1}(\Omega)}^{2} \\ & \stackrel{L \geq 1}{\leq} & C L^{2} \left| \boldsymbol{u}_{L} \right|_{H^{1}(\Omega)}^{2}. \end{split}$$

But

$$|u_L|_{H^1(\Omega)}^2 = a(u_L, u_L) = (A_L u_L, u_L)_L,$$

and

$$\begin{aligned} |\log(h_L)|^2 &= \left|\log(h_0 2^{-L})\right|^2 \\ &= |\log(h_0) - L \log(2)|^2 \\ &= \log^2(h_0) - 2 \log(h_0) L \log(2) + L^2 \log^2(2). \end{aligned}$$

So,

$$L^2 \leq C \left(1 + \left|\log(h_L)\right|^2\right), \quad \exists \ C > 0.$$

Thus,

$$\sum_{\ell=0}^{L} \left(\mathsf{C}_{\ell} \boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell} \right) \leq C \left(1 + \left| \mathsf{log}(\boldsymbol{h}_{L}) \right|^{2} \right) \left(\mathsf{A}_{L} \boldsymbol{u}_{L}, \boldsymbol{u}_{L} \right)_{L},$$

and

$$\lambda_{\min}(\mathsf{C}_{\mathrm{H}}\mathsf{A}_{\mathit{L}}) \geq \mathit{C}_{7} \left(1 + \left| \mathsf{log}(\mathit{h}_{\mathit{L}}) \right|^{2} \right)^{-1}.$$

In the last line we use the "big" theorem from the first slide deck:

Theorem (Eigenvalues of CA)

Suppose that Assumption (SS1) holds for the set of prolongation matrices $\{Q_j\}_{j=0}^L$ and C is an additive subspace preconditioner with respect to $\{Q_j\}_{j=0}^L$. The eigenvalues of CA are positive, provided A is SPD with respect to (\cdot,\cdot) . Moreover

$$\lambda_{\max}(\mathsf{CA}) = \max_{\boldsymbol{u} \in \mathbb{R}_{\pi}^{n}} \frac{(\mathsf{A}\boldsymbol{u}, \boldsymbol{u})}{\min_{(\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}]} \sum_{\ell=0}^{L} (\mathsf{C}_{\ell}\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\ell}}, \tag{15}$$

$$\lambda_{\min}(\mathsf{CA}) = \min_{\boldsymbol{u} \in \mathbb{R}_{\star}^{n}} \frac{(\mathsf{A}\boldsymbol{u}, \boldsymbol{u})}{\min_{(\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}]} \sum_{\ell=0}^{L} (\mathsf{C}_{\ell}\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\ell}}.$$
 (16)

Lemma (Trace-Type Estimate)

Suppose that Ω is an open polygonal domain in \mathbb{R}^2 and \mathcal{T}_ℓ , $0 \le \ell \le L$ is a nested family of triangulations of Ω . Assume that S_ℓ is the usual family of finite element spaces subordinate to \mathcal{T}_ℓ . Then, for every $K \in \mathcal{T}_\ell$ and every $v_\ell, w_\ell \in S_\ell$, there is a constant C > 0, which depends upon the shape of K, such that

$$\int_{\partial K} \frac{\partial v_{\ell}}{\partial n} w_{\ell} \, \mathrm{d}\mathbf{s} \le C h_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} ||w_{\ell}||_{L^{1}(\partial K)}. \tag{17}$$

Proof.

$$\int_{\partial K} \frac{\partial v_{\ell}}{\partial n} w_{\ell} \, \mathrm{d}s \stackrel{\text{Young Ineq.}}{\leq} \left\| \frac{\partial v_{\ell}}{\partial n} \right\|_{L^{\infty}(\partial K)} \|w_{\ell}\|_{L^{1}(\partial k)} \\
\stackrel{(7)}{\leq} C |v_{\ell}|_{W^{1,\infty}(K)} \|w_{\ell}\|_{L^{1}(\partial k)} \\
\stackrel{(6)}{\leq} Ch_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \|w_{\ell}\|_{L^{1}(\partial k)}.$$

Lemma (Strengthened Cauchy-Schwarz Inequality I)

For any $v_{\ell} \in V_{\ell}$ and $v_k \in V_k$, $0 \le \ell \le k \le L$, and d=2, there is a constant C > 0 such that

$$\int_{\Omega} \nabla v_{\ell} \cdot \nabla v_{k} \, d\mathbf{x} \leq 2^{(\ell-k)/2} C |v_{\ell}|_{H^{1}(\Omega)} \left(h_{k}^{-1} \|v_{k}\|_{L^{2}(\Omega)} \right). \tag{18}$$

Proof.

For any $K \in \mathcal{T}_{\ell}$, since $\Delta v_{\ell}|_{K} \equiv 0$,

$$\int_{K} \nabla v_{\ell} \cdot \nabla v_{k} \, \mathrm{d}\mathbf{x} = \int_{\partial K} \frac{\partial v_{\ell}}{\partial n} v_{k} \, \mathrm{d}\mathbf{s}$$

$$\stackrel{(17)}{\leq} Ch_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \int_{\partial K} |v_{k}| \, \mathrm{d}\mathbf{s}$$

$$\leq Ch_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} \left(h_{k} \sum_{\mathbf{N}_{k} \in \partial K} |v_{k}(\mathbf{N}_{k})| \right)$$

$$\stackrel{C.S.}{\leq} Ch_{\ell}^{-1} |v_{\ell}|_{H^{1}(K)} h_{k} \left(\frac{h_{\ell}}{h_{k}} \right)^{1/2} \left(\sum_{\mathbf{N}_{k} \in \partial K} |v_{k}(\mathbf{N}_{k})|^{2} \right)^{1/2}$$

$$\leq C \left(\frac{h_{k}}{h_{\ell}} \right)^{1/2} |v_{\ell}|_{H^{1}(K)} h_{k}^{-1} ||v_{k}||_{L^{2}(K)}.$$

Thus,

$$\begin{split} \int_{\Omega} \nabla v_{\ell} \cdot \nabla v_{k} \, \mathrm{d} \boldsymbol{x} &= \sum_{K \in \mathcal{T}_{\ell}} \int_{K} \nabla v_{\ell} \cdot \nabla v_{k} \, \mathrm{d} \boldsymbol{x} \\ &\leq C2^{(\ell-k)/2} \sum_{K \in \mathcal{T}_{\ell}} |v_{\ell}|_{H^{1}(K)} \, h_{k}^{-1} \, \|v_{k}\|_{L^{2}(K)} \\ &\stackrel{\text{C.s.}}{\leq} C2^{(\ell-k)/2} \, |v_{\ell}|_{H^{1}(\Omega)} \, h_{k}^{-1} \, \|v_{k}\|_{L^{2}(\Omega)} \, . \end{split}$$

Lemma (Strengthened Cauchy-Schwarz Inequality II)

For any $w_\ell \in W_\ell$ and $w_k \in W_k$, $0 \le \ell \le k \le L$, there is a constant C > 0 such that

$$\int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} \, d\mathbf{x} \leq 2^{(\ell-k)/2} C |w_{\ell}|_{H^{1}(\Omega)} |w_{k}|_{H^{1}(\Omega)}. \tag{19}$$

Proof.

Observe that

$$w_k = w_k - \mathcal{I}_{k-1} w_k.$$

We use the interpolation error estimate

$$\|w_k - \mathcal{I}_{k-1}w_k\|_{L^2(\Omega)} \leq Ch_k |w_k|_{H^1(\Omega)},$$

to conclude that

$$\|w_k\|_{L^2(\Omega)} \leq Ch_k |w_k|_{H^1(\Omega)}.$$

Now, we use the last result. Since $w_{\ell} \in V_{\ell}$ and $w_k \in V_k$,

$$\int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} \, dx \leq C2^{(\ell-k)/2} |w_{\ell}|_{H^{1}(\Omega)} h_{k}^{-1} ||w_{k}||_{L^{2}(\Omega)}
\leq 2^{(\ell-k)/2} C |w_{\ell}|_{H^{1}(\Omega)} |w_{k}|_{H^{1}(\Omega)}.$$

Next, we need a little technical lemma, a kind of convolution result.

Lemma (Discrete Convolution Estimate)

Suppose that $\{a_j\}, \{b_j\} \subset \mathbb{R}$ are sequences satisfying $a_j, b_j \geq 0$, for $-\infty < j < \infty$, with

$$s_1 := \sum_{j=-\infty}^{\infty} a_j < \infty,$$

and

$$s_2 := \sum_{j=-\infty}^{\infty} b_j^2 < \infty.$$

Then,

$$\sum_{j=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} a_{j-k} b_k \right)^2 \le s_1^2 s_2. \tag{20}$$

Proof.

Exercise.

Lemma

There is a constant $C_8 > 0$, independent of L, such that

$$\lambda_{\max}(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathit{L}}) \leq \mathit{C}_{8}.$$

Proof.

Let $v_L \in V_L$ be arbitrary.

$$v_L \in V_L \stackrel{\mathcal{B}_L}{\leftrightarrow} v_L \in \mathbb{R}^{n_L}$$
.

There exist unique $w_\ell \in W_\ell \overset{\mathcal{B}_\ell^W}{\leftrightarrow} \mathbf{w}_\ell \in \mathbb{R}^{m_\ell}$, $\ell = 0, \dots, L$, such that

$$\mathbf{v}_L = \sum_{\ell=0}^L \mathbf{w}_\ell \overset{\mathcal{B}_L}{\leftrightarrow} \mathbf{v}_L = \sum_{\ell=0}^L \mathbf{Q}_\ell^L \mathbf{w}_\ell.$$

Then,

$$\begin{aligned} (\mathbf{v}_{L}, \mathbf{v}_{L})_{A_{L}} &= a(v_{L}, v_{L}) \\ &= a\left(\sum_{\ell=0}^{L} w_{\ell}, \sum_{k=0}^{L} w_{k}\right) \\ &= \int_{\Omega} \left(\nabla \sum_{\ell=0}^{L} w_{\ell}\right) \cdot \left(\nabla \sum_{k=0}^{L} w_{k}\right) dx \\ &= \sum_{\ell,k=0}^{L} \int_{\Omega} \nabla w_{\ell} \cdot \nabla w_{k} dx \\ &\stackrel{(19)}{\leq} C \sum_{\ell,k=0}^{L} 2^{-|\ell-k|/2} |w_{\ell}|_{H^{1}(\Omega)} |w_{k}|_{H^{1}(\Omega)} \\ &\leq C \sum_{\ell=0}^{L} \left(\sum_{k=0}^{L} 2^{-|\ell-k|/2} |w_{k}|_{H^{1}(\Omega)}\right) |w_{\ell}|_{H^{1}(\Omega)} . \end{aligned}$$

Continuing with the estimate,

$$(\mathbf{v}_{L}, \mathbf{v}_{L})_{A_{L}} \overset{\text{C.S.}}{\leq} C \left\{ \sum_{\ell=0}^{L} \left(\sum_{k=0}^{L} 2^{-|\ell-k|/2} |w_{k}|_{H^{1}(\Omega)} \right)^{2} \right\}^{1/2} \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2}$$

$$\overset{(20)}{\leq} C \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2} \left\{ \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2} \right\}^{1/2}$$

$$= C \sum_{\ell=0}^{L} |w_{\ell}|_{H^{1}(\Omega)}^{2}$$

$$\overset{(14)}{\leq} \frac{C}{C_{5}} \sum_{\ell=0}^{L} (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{C_{\ell}} .$$

Recall that, since decompositions are unique,

$$\lambda_{\max}(C_{H}A_{L}) \stackrel{\text{(15)}}{=} \max_{\mathbf{v}_{L} \in \mathbb{R}_{\star}^{n_{L}}} \frac{(\mathbf{v}_{L}, \mathbf{v}_{L})_{A_{L}}}{\sum_{\ell=0}^{L} (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{C_{\ell}}}$$

$$= \max_{\mathbf{v}_{L} \in \mathbb{R}_{\star}^{n_{L}}} \frac{\frac{C}{C_{5}} \sum_{\ell=0}^{L} (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{C_{\ell}}}{\sum_{\ell=0}^{L} (\mathbf{w}_{\ell}, \mathbf{w}_{\ell})_{C_{\ell}}}$$

$$\leq C_{8},$$

using the estimate on the previous slide.

Theorem

$$\kappa(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathsf{L}}) = \frac{\lambda_{\mathsf{max}}(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathsf{L}})}{\lambda_{\mathsf{min}}(\mathsf{C}_{\mathsf{H}}\mathsf{A}_{\mathsf{L}})} \le \frac{C_8}{C_7} \left(1 + \left| \mathsf{log}(h_{\mathsf{L}}) \right|^2 \right). \tag{21}$$

Proof.

The result follows from the last few lemmas.

The BPX Preconditioner

The BPX Preconditioner

The BPX preconditioner has a slightly better performance than the hierarchical basis preconditioner, in the sense that the logarithmic dependence on h_L can be removed.

T

Definition (BPX Preconditioner)

Define the bilinear form $C_\ell:V_\ell imes V_\ell o\mathbb{R}$ via

$$C_{\ell}\left(w_{\ell},v_{\ell}
ight)=\sum_{i=1}^{n_{\ell}}w_{\ell}(\mathbf{N}_{\ell,i})v_{\ell}(\mathbf{N}_{\ell,i}), \quad \forall w_{\ell},v_{\ell}\in V_{\ell}.$$

The associated matrix $C_\ell \in \mathbb{R}^{n_\ell \times n_\ell}$ is defined as

$$[\mathsf{C}_\ell]_{j,k} = C_\ell (\psi_{\ell,j}, \psi_{\ell,k}) = \delta_{j,k}, \quad 1 \leq j, k \leq n_\ell,$$

where $\mathcal{B}_\ell = \{\psi_{\ell,j}\}_{j=1}^{n_\ell}$ is the standard Lagrange nodal basis for the piecewise linear finite element space V_ℓ , $0 \le \ell \le L$. The **BPX preconditioner** is precisely

$$C_{BPX} := \sum_{\ell=0}^{L} P_{\ell,L} C_{\ell}^{-1} R_{\ell,L} = \sum_{\ell=0}^{L} P_{\ell,L} R_{\ell,L},$$
 (22)

where $\mathsf{P}_{\ell,L} \in \mathbb{R}^{n_L \times n_\ell}$ is the standard multilevel prolongation matrix and $\mathsf{R}_{\ell,L} = \mathsf{P}_{\ell,L}^\top$.

Remark

Note that we have dropped, and will continue to drop, the superscripted V and just write $\mathcal{B}_\ell = \{\psi_{\ell,j}\}_{i=1}^{n_\ell}$ for the standard Lagrange nodal basis for the piecewise linear finite element space V_{ℓ} , $0 < \ell < L$.

Remark

In the BPX framework, we effectively are taking

$$Q_{\ell}^{L} = P_{\ell,L}$$
.

Salgado and Wise

Lemma

Assumption (SS1) holds for the BPX framework, that is, for every $u_L \in V_L$, there exists $v_\ell \in V_\ell$, $0 \le \ell \le L$, such that

$$u_L = \sum_{\ell=0}^L v_\ell,$$

or, equivalently

$$\mathbf{u}_L = \sum_{\ell=0}^L \mathsf{P}_{\ell,L} \mathbf{v}_{\ell},$$

with

$$V_{\ell} \ni v_{\ell} \stackrel{\mathcal{B}_{\ell}}{\leftrightarrow} \mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}},$$

and

$$V_L \ni u_L \stackrel{\mathcal{B}_L}{\leftrightarrow} \boldsymbol{u}_L \in \mathbb{R}^{n_L}.$$

This decomposition is not unique.

Proof.

Exercise.

Lemma (Strengthened Cauchy-Schwarz III)

Let $0 \le j \le \ell$. For any $v_j \in V_j$ and $v_\ell \in V_\ell$,

$$\int_{\Omega} \nabla v_j \cdot \nabla v_{\ell} \, dx \le C 2^{-|j-\ell|/2} \frac{\|v_j\|_{L^2(\Omega)}}{h_j} \frac{\|v_{\ell}\|_{L^2(\Omega)}}{h_{\ell}}, \tag{23}$$

for some C > 0.

Proof.

This is follows from (18) and the inverse inequality

$$|v_j|_{H^1(\Omega)} \le ch_j^{-1} \|v_j\|_{L^2(\Omega)}$$
.

Lemma

T

For some $C_9 > 0$ that is independent of L,

$$\lambda_{\max}(C_{\mathrm{BPX}}A_L) \leq C_9.$$

for some $C_9 > 0$ that is independent of L.

Proof.

Let $u_L \in V_L$ be arbitrary. There exist $v_\ell \in V_\ell$, $0 \le \ell \le L$, such that

$$u_L = \sum_{\ell=0}^L v_\ell,$$

or

$$\mathbf{u}_{L} = \sum_{\ell=0}^{L} \mathsf{P}_{\ell,L} \mathbf{v}_{\ell}, \quad V_{\ell} \ni \mathbf{v}_{\ell} \stackrel{\mathcal{B}_{\ell}}{\leftrightarrow} \mathbf{v}_{\ell} \in \mathbb{R}^{n_{\ell}}.$$

As usual, we write

$$(\mathbf{v}_{\ell}) \in \mathsf{Q}[\mathbf{u}_{L}],$$

though the decomposition is not unique.

Then,

$$(\boldsymbol{u}_{L}, \boldsymbol{u}_{L})_{A_{L}} = \sum_{\ell=0}^{L} \sum_{j=0}^{L} a(v_{j}, v_{\ell})$$

$$\stackrel{(23)}{\leq} C \sum_{\ell=0}^{L} \sum_{j=0}^{L} 2^{-|j-\ell|/2} h_{j}^{-1} \|v_{j}\|_{L^{2}(\Omega)} h_{\ell}^{-1} \|v_{\ell}\|_{L^{2}(\Omega)}$$

$$\stackrel{C.S.}{\leq} C \left\{ \sum_{\ell=0}^{L} \left(\sum_{j=0}^{L} 2^{-\frac{|\ell-j|}{2}} \frac{\|v_{j}\|_{L^{2}(\Omega)}}{h_{j}} \right)^{2} \right\}^{\frac{1}{2}} \left\{ \sum_{\ell=0}^{L} \left(\frac{\|v_{\ell}\|_{L^{2}(\Omega)}}{h_{\ell}} \right)^{2} \right\}^{\frac{1}{2}}$$

$$\stackrel{(20)}{\leq} C \sum_{j=0}^{L} h_{j}^{-2} \|v_{j}\|_{L^{2}(\Omega)}^{2}$$

$$\leq C \sum_{i=0}^{L} (C_{j} \boldsymbol{v}_{j}, \boldsymbol{v}_{j})_{j}.$$

Now, for $(v_\ell) \in Q[u_L]$, as above,

$$\lambda_{\max}(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{L}) \stackrel{\text{(15)}}{=} \max_{\substack{\boldsymbol{u}_{L} \in \mathbb{R}_{\star}^{n_{L}} \\ \boldsymbol{u}_{L} \in \mathbb{R}_{\star}^{n_{L}}}} \frac{(\boldsymbol{u}_{L}, \boldsymbol{u}_{L})_{\mathsf{A}_{L}}}{\min_{\substack{\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}_{L}] \\ \boldsymbol{u}_{\ell} \in \mathbb{Q}[\boldsymbol{u}_{L}]}} \sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}}$$

$$\leq \max_{\boldsymbol{u}_{L} \in \mathbb{R}_{\star}^{n_{L}}} \frac{C \sum_{\ell=0}^{L} (\mathsf{C}_{\ell} \boldsymbol{v}_{\ell}, \boldsymbol{v}_{\ell})_{\ell}}{\min_{\substack{\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}_{L}] \\ \boldsymbol{u}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}_{L}]}} \sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}}$$

$$\leq C_{9}.$$

Recall that the minimum in the denominator is achievable for some $(w_\ell) \in Q[u_L]$, so we have taken $v_\ell = w_\ell$ in the third step to conclude the upper bound.

Before we establish a lower for $\lambda_{min}\left(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_L\right)$ we need another technical lemma.

Lemma

Let $u \in H_0^1(\Omega)$ be arbitrary. Then, for any $1 \le \ell \le L$,

$$\mathcal{R}_{\ell-1}u = \mathcal{R}_{\ell-1}(\mathcal{R}_{\ell}u), \tag{24}$$

where $\mathcal{R}_{\ell}: H^1_0(\Omega) \to V_{\ell}$ is the Ritz projection, for $0 \le \ell \le L$. In other words, $\mathcal{R}_{\ell-1} = \mathcal{R}_{\ell-1}\mathcal{R}_{\ell}$.

Proof.

By definition,

$$a(\mathcal{R}_{\ell-1}(\mathcal{R}_{\ell}u), w_{\ell-1}) = a(\mathcal{R}_{\ell}u, w_{\ell-1}), \quad \forall w_{\ell-1} \in V_{\ell-1}.$$

But, since $V_{\ell-1} \subset V_{\ell}$, we also have

$$a(\mathcal{R}_{\ell}u, w_{\ell-1}) = a(u, w_{\ell-1}), \quad \forall w_{\ell-1} \in V_{\ell-1}.$$

Also observe that

$$a(\mathcal{R}_{\ell-1}u,w_{\ell-1})=a(u,w_{\ell-1}),\quad\forall\ w_{\ell-1}\in V_{\ell-1}.$$

Hence,

$$\mathsf{a}(\mathcal{R}_{\ell-1}(\mathcal{R}_\ell u), \mathsf{w}_{\ell-1}) = \mathsf{a}(\mathcal{R}_{\ell-1} u, \mathsf{w}_{\ell-1}), \quad \forall \ \mathsf{w}_{\ell-1} \in V_{\ell-1}.$$

And we conclude that $\mathcal{R}_{\ell-1} = \mathcal{R}_{\ell-1}\mathcal{R}_{\ell}$ since

$$\mathcal{R}_{\ell-1}(\mathcal{R}_{\ell}u), \mathcal{R}_{\ell-1}u \in V_{\ell-1}.$$

Salgado and Wise

Lemma

There is a constant $C_{10} > 0$ that is independent of L, such that

$$\lambda_{\min}\left(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{\mathit{L}}\right) \geq \mathit{C}_{10}.$$

for some $C_{10} > 0$ that is independent of L.

Proof.

Let $u_L \in V_L$ be arbitrary. Set

$$v_{\ell} := \mathcal{R}_{\ell} u_{L} - \mathcal{R}_{\ell-1} u_{L}, \quad 0 \leq \ell \leq L,$$

where $\mathcal{R}_{\ell}: \mathcal{H}^1_0(\Omega) \to V_{\ell}$ is the Ritz projection, for $0 \le \ell \le L$, and $R_{-1} \equiv 0$. Since

$$\mathcal{R}_L u_L = u_L$$

it follows that

$$u_{L} = \sum_{\ell=0}^{L} v_{\ell} \in V_{L} \stackrel{\mathcal{B}_{\ell}}{\leftrightarrow} u_{L} = \sum_{\ell=0}^{L} \mathsf{P}_{\ell,L} v_{\ell} \in \mathbb{R}^{n_{L}}, \quad v_{\ell} \in V_{\ell} \stackrel{\mathcal{B}_{\ell}}{\leftrightarrow} v_{\ell} \in \mathbb{R}^{n_{\ell}}.$$

Moreover,

$$a(v_j, v_\ell) = 0, \quad 0 \le j \ne \ell \le L. \tag{25}$$

To see this, recall that, in general,

$$a(\mathcal{R}_{\ell}u_{L}, w_{\ell}) = a(u_{L}, w_{\ell}), \quad \forall w_{\ell} \in V_{\ell}.$$

Suppose $j < \ell$, for definiteness. Then, since $V_j \subset V_\ell$,

$$a(\mathcal{R}_{\ell}u_L, w_j) = a(u_L, w_j), \quad \forall w_j \in V_j.$$

In particular, since

$$v_j := \mathcal{R}_j u_L - \mathcal{R}_{j-1} u_L \in V_j \subset V_\ell$$

it follows that

$$a(\mathcal{R}_{\ell}u_{L},v_{j})=a(u_{L},v_{j}).$$

Likewise,

$$a(\mathcal{R}_{\ell-1}u_L,v_j)=a(u_L,v_j).$$

Subtracting, we have

$$a(\mathcal{R}_{\ell}u_{L}-\mathcal{R}_{\ell-1}u_{L},v_{i})=0.$$

To make further progress, let us assume that Ω is convex. Then the standard regularity condition holds. And, for $1 \le \ell \le L$,

$$h_{\ell}^{-2} \| v_{\ell} \|_{L^{2}(\Omega)}^{2} = h_{\ell}^{-2} \| \mathcal{R}_{\ell} u_{L} - \mathcal{R}_{\ell-1} u_{L} \|_{L^{2}(\Omega)}^{2}$$

$$\stackrel{(24)}{=} h_{\ell}^{-2} \| \mathcal{R}_{\ell} u_{L} - \mathcal{R}_{\ell-1} (\mathcal{R}_{\ell} u_{L}) \|_{L^{2}(\Omega)}^{2}$$
Nitsche
$$\leq Ch_{\ell}^{-2} h_{\ell}^{2} \| \mathcal{R}_{\ell} u_{L} - \mathcal{R}_{\ell-1} (\mathcal{R}_{\ell} u_{L}) \|_{H^{1}(\Omega)}^{2}$$

$$= C \| \mathcal{R}_{\ell} u_{L} - \mathcal{R}_{\ell-1} (\mathcal{R}_{\ell} u_{L}) \|_{H^{1}(\Omega)}^{2}$$

$$= C \| v_{\ell} \|_{H^{1}(\Omega)}^{2}. \tag{26}$$

Estimate (26) holds trivially for $\ell = 0$.

Therefore,

$$\sum_{\ell=0}^{L} (C_{\ell} \mathbf{v}_{\ell}, \mathbf{v}_{\ell})_{\ell} \leq C \sum_{\ell=0}^{L} h_{\ell}^{-2} \| \mathbf{v}_{\ell} \|_{L^{2}(\Omega)}^{2}
\leq C \sum_{\ell=0}^{L} | \mathbf{v}_{\ell} |_{H^{1}(\Omega)}^{2}
\leq C \sum_{\ell=0}^{L} | \mathbf{v}_{\ell} |_{H^{1}(\Omega)}^{2}
\leq C | \mathbf{u}_{L} |_{H^{1}(\Omega)}^{2}.$$
(27)

So, finally,

$$\lambda_{\min}(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{L}) = \min_{\substack{\boldsymbol{u}_{L} \in \mathbb{R}^{n_{L}}_{\star}}} \frac{(\boldsymbol{u}_{L}, \boldsymbol{u}_{L})_{\mathsf{A}_{L}}}{\min_{\substack{\boldsymbol{w}_{\ell}) \in \mathsf{Q}[\boldsymbol{u}_{L}] \\ \boldsymbol{w}_{\ell} \in \mathsf{Q}[\boldsymbol{u}_{L}]}} \sum_{\ell=0}^{L} (\boldsymbol{w}_{\ell}, \boldsymbol{w}_{\ell})_{\mathsf{C}_{\ell}}$$

$$\stackrel{(27)}{\geq} \min_{\substack{\boldsymbol{u}_{L} \in \mathbb{R}^{n_{L}}_{\star}}} \frac{(\mathsf{A}_{L}\boldsymbol{u}_{L}, \boldsymbol{u}_{L})_{L}}{C |\boldsymbol{u}_{L}|_{H^{1}(\Omega)}}$$

$$= C_{10}.$$

Theorem

$$\kappa\left(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{L}\right) = \frac{\lambda_{\mathsf{max}}\left(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{L}\right)}{\lambda_{\mathsf{min}}\left(\mathsf{C}_{\mathrm{BPX}}\mathsf{A}_{L}\right)} \leq \frac{C_{9}}{C_{10}}.\tag{28}$$

Proof.

Follows from the previous lemmas.

