MATH 258: Homework #4

Jesse Farmer

02 February 2005

1. Let p be prime. Show that p divides $\binom{p}{i}$ for $1 \le i \le p-1$. Deduce that for x, y elements of a commutative ring A of characteristic p, $(x+y)^{p^n} = x^{p^n} + y^{p^n}$.

Lemma 1. If a, b, c are integers with $c \mid ab$ where a and c are relatively prime then $c \mid b$.

Proof. Since a and c are relatively prime there exist integers j and k such that

$$cj + ak = 1$$

And hence

$$cbj + abk = b$$

By hypothesis there exists an integer h such that ab = hc and therefore

$$c(bj + hk) = b$$

Since $\binom{p}{i}$ is an integer and

$$\binom{p}{i} = \frac{p(p-1)\cdots(p-i+1)}{i!}$$

we have $i! \mid p(p-1)\cdots(p-i+1)$. But g.c.d(p,i!)=1 since $1 \leq i \leq p-1$. From the above lemma, $i! \mid (p-1)\cdots(p-i+1)$, and hence

$$\binom{p}{i} = p \cdot \frac{(p-1)\cdots(p-i+1)}{i!} = pk$$

where k is an integer.

Let $x, y \in A$ where A is a commutative ring with char A = p for some prime p. Then

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} \cdot x^k y^{p-k}$$

For $1 \le k \le p-1$ and some $j \in \mathbb{Z}$

$$\binom{p}{k} = pj = \underbrace{(1+1+\dots+1)}_{p \text{ times}} j = 0$$

since char A=p. Hence $\binom{p}{k}x^ky^{p-k}=0$ for all $1\leq k\leq p-1$ and $(x+y)^p=x^p+y^p$. Assume $(x+y)^{p^n}=x^{p^n}+y^{p^n}$. Then

$$(x+y)^{p^{n+1}} = \left((x+y)^{p^n} \right)^p = \left(x^{p^n} + y^{p^n} \right)^p = \left(x^{p^n} \right)^p + \left(y^{p^n} \right)^p = x^{p^{n+1}} + y^{p^{n+1}}$$

Therefore $(x+y)^{p^n} = x^{p^n} + y^{p^n}$ for all $n \in \mathbb{N}$.

2. Determine the ideals, prime ideals, and maximal ideals of $\mathbb{Z}/168\mathbb{Z}$.

There is a one-to-one correspondence between ideals of $\mathbb{Z}/168\mathbb{Z}$ and ideals of \mathbb{Z} that contain 168 \mathbb{Z} . Since \mathbb{Z} is a principal ideal domain, any ideal which contains 168 \mathbb{Z} must be of the form $k\mathbb{Z}$ where $k \mid 168$. The maximal ideals are those that correspond to the prime divisors of 168. The ideals are therefore all $(k\mathbb{Z})/(168\mathbb{Z})$ where $k \mid 168$, and the maximal ideals (and prime ideals) are all such k that are prime, namely, k = 2, 3, 7.

3. Let p be a prime. Show that $\mathbb{Q}(\sqrt{p})$ is a field. Find all q prime such that $\mathbb{Q}(\sqrt{p}) \cong \mathbb{Q}(\sqrt{q})$.

Since addition is performed coordinate-wise $\mathbb{Q}(\sqrt{p})$ is clearly an abelian group with respect to addition. Consider $(\mathbb{Q}(\sqrt{p}),\cdot)$. We will treat $\mathbb{Q}(\sqrt{p})$ as a subset of $\mathbb{Q} \times \mathbb{Q}$ with multiplication defined by

$$(a,b)\cdot(c,d)=(ac+pbd,ad+bc)$$

$$(a,b)((c,d)(e,f)) = (a,b)(ce+pdf,cf+de)$$

$$= (ace+padf+pbcf+pbde,acf+ade+bce+pbdf)$$

$$= (ac+pbd,ad+bc)(e,f)$$

$$= ((a,b)(c,d))(e,f)$$

The identity is (1,0): (a,b)(1,0) = (a+pb0,a0+b) = (a,b), and the operation is commutative since addition and multiplication on \mathbb{Q} are commutative. The inverse of $(a,b) \neq 0$ is given by

$$(a,b) \cdot \left(\frac{a}{a^2 - pb^2}, \frac{-b}{a^2 - pb^2}\right) = \left(\frac{a^2 - pb^2}{a^2 - pb^2}, \frac{ab - ab}{a^2 - pb^2}\right) = (1,0)$$

since $a^2 = pb^2$ if and only if $a = \sqrt{p}b$ and hence (a,b) = (0,0). Distributivity is equally trivial:

$$(a,b)((c,d) + (e,f)) = (a,b)(c+e,d+f)$$

$$= (ac+ae+pbd+pbf,ad+af+bc+be)$$

$$= (ac+pbd,ad+bc) + (ae+pbf,af+be)$$

$$= (a,b)(c,d) + (a,b)(e,f)$$

Hence $\mathbb{Q}(\sqrt{p})$ is a field. Now let $f: \mathbb{Q}(\sqrt{p}) \to \mathbb{Q}(\sqrt{q})$ be an isomorphism of fields where p, q are any two primes. From the additive and multiplicative properties of f is is fairly obvious that

$$f(m,n) = (m,0)f(1,0) + (n,0)f(0,1)$$

where $m, n \in \mathbb{Q}$. f(1,0) = (1,0) from the fact that this is an isomorphism. All that is left is to determine the value of f(0,1). Note that $f(0,1)^2 = f(p,0) = (p,0)$. Hence we must find an $(a,b) \in \mathbb{Q}(\sqrt{q})$ such that $(a,b)^2 = (p,0)$. But $(a,b)^2 = (a^2 + qb^2, 2ab)$. If this equals (p,0) then either a=0 or b=0. If b=0 then $a^2=p$ and hence a is not rational, so assume a=0. Then we must find a rational b=m/n in lowest terms such that $pn^2=qm^2$. If p=q then clearly m=n=1, so assume $p\neq q$. Then $p\mid m^2$ and hence $p\mid m$, so that m=kp and $n^2=qpk^2$. But then $p\mid n^2$ and $p\mid n$, so m/n is not in lowest terms. Hence there is no such $m/n\in\mathbb{Q}$ and p=q. That is, $\mathbb{Q}(\sqrt{p})\cong\mathbb{Q}(\sqrt{q})$ for p,q primes if and only if p=q.

4. Let A be a commutative ring and R = A[U]. Show that if $f, g : R \to B$ are ring homomorphisms such that f(x) = g(x) for all $x \in A \cup U$ then $f \equiv g$.

Define $Z = \{x \in C \mid f(x) = g(x)\}$, where $A \subset C$, and $U \subset C$ for some ring C. Then for all $x, y \in Z$, f(x-y) = f(x) - f(y) = g(x) - g(y) = g(x-y) and f(xy) = f(x)f(y) = g(x)g(y) = g(xy). Associativity and commutativity is inherited in the same way from R and R, and therefore R is a subring of R. Since R and R agree on R and R and R are definition the smallest subring of R containing $R \cup R$, it follows that R and R and hence R and R are R and R and R and R are R and R and R are R and R and R are R are R and R are R and R are R and R are R are R are R and R are R and R are R are R and R are R are R and R are R and R are R are R and R are R are R and R are R and R are R and R are R are R are R and R are R are R are R are R and R are R are R are R and R are R are R are R are R are R and R are R are R are R are R are R are R and R are R are R are R and R are R and R are R and R are R and R are R are R are R are R are R and R are R and R are R are R are R are R are R are

5. Find all the roots of $x^3 - x$ in $\mathbb{Z}_6[x]$.

 $x^3 - x = x(x^2 - 1)$, so that either if $x^3 - x = 0$, x = 0, Clearly x = 0 and x = 1 are roots. x = 5 is a root since $5^1 - 1 = 24 \equiv 0 \mod 6$. x = 2 is a root since $2(2^2 - 1) = 6 \equiv 0 \mod 6$. x = 3 is a root since $3(3^2 - 1) = 24 \equiv 0 \mod 4$. x = 4 is a root since $4(4^2-1)=60\equiv 0\mod 6$. So every element of \mathbb{Z}_6 is a root of this polynomial.

6. Let F be a finite field. Show that char F is prime and that $\prod_{a \in F^{\times}} a = -1$. Deduce from this Wilson's Theorem: $(p-1)! \equiv -1 \mod p$ where p is prime.

The characteristic of a field F is the smallest positive integer p such that

$$\underbrace{1+1+\cdots+1}_{p \ times}$$

or 0 is there is no such integer. If p is composite then p = nk for some n, k nonzero and less than p. But then

$$\underbrace{1+1+\cdots+1}_{nk\ times} = \underbrace{(1+1+\cdots+1)}_{n\ times} \underbrace{(1+1+\cdots+1)}_{k\ times} = 0$$

Since F is a field this means that one of $\underbrace{1+1+\cdots+1}_{n\ times}$ or $\underbrace{1+1+\cdots+1}_{k\ times}$ is zero, and hence that p is not minimal. Therefore, if p is minimal, p must be prime.

Now let $|F| = q < \infty$ so that $|F^{\times}| = q - 1$. Assume that q > 2 since for q = 2 then result is trivial: 1=-1 and 1 is the only unit. Consider $a\in F^{\times}$ such that $a^2=1$, then $a^1-1=(a-1)(a+1)=0$ and hence $a = \pm 1$. Since a is a unit if and only if a^{-1} is a unit, q - 1 is always even. We can therefore pair each unit with its inverse, and, since -1 is always a unit, it follows that for $F^{\times} = \{a_1, \dots, a_{g-1}\}$, letting $a_1 = 1$ and $a_2 = -1$,

$$a_1 a_2 \cdots a_{q-1} = 1 \cdot -1 \cdot (a_3 a_3^{-1}) \cdots (a_{q-1} a_{q-1}^{-1}) = -1$$

If $F = \mathbb{Z}/p\mathbb{Z}$ where p is prime, then F is a finite field of order p and the k such that $1 \le k \le p-1$ are precisely the units of F. Therefore, by above, $(p-1)! \equiv -1 \mod p$.

7. Let $f: \mathbb{Z}[x] \to \mathbb{C}$ be the ring homomorphism defined by f(x) = i and f(n) = n for $n \in \mathbb{Z}$. Show that $\ker f = \{g \cdot (x^2 + 1) \mid g \in \mathbb{Z}[x]\}$ and that this is the ideal generated by $x^2 + 1$ in $\mathbb{Z}[x]$.

f is defined by

$$f\left(\sum a_k x^k\right) = \sum a_k i^k$$

where $a_k \in \mathbb{Z}$. So that if $\sum a_k i^k = 0$, i is a root of the polynomial $\sum a_k x^k$. There exist polynomials q and r such that for any $p \in \ker f$, $p(x) = q(x)(x^2 + 1) + r(x)$. But as p(i) = 0, r = 0, and hence $p(x) = q(x)(x^2 + 1)$ for some polynomial $q \in \mathbb{Z}[x]$. So $\ker f \subset (x^2 + 1)$. Since $f(x^2 + 1) = 0$, $(x^2+1) \subset \ker f$, and therefore $\ker f = (x^2+1)$, the ideal generated by x^2+1 .