() Preliminary Specifications (V) Final Specifications

Module	10.1" 2.5K Color TFT-LCD with LED Backlight design
Model Name	G101QAN01.1

Customer	Date	Approved by	Date
			<u>2019/5/20</u>
Checked & Approved by		Prepared by	
			<u>2019/5/20</u>
		General Display AU Optronics	

Contents

1. Operating Precautions	4
2. General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 Absolute Ratings of TFT LCD Module	10
4.2 Absolute Ratings of Environment	10
5. Electrical Characteristics	
5.1 TFT LCD Module	11
5.1.1 Power Specification	11
5.1.2 Logic Power Consumption	11
5.2 Backlight Unit	
6. Signal Interface Characteristic	19
6.1 Pixel Format Image	19
6.2 Integration Interface Requirement	20
6.3 Interface Timing	22
6.4 Power ON/OFF Sequence	23
6.5 Power ON/OFF MIPI comment	25
7. Reliability Test Criteria	27
8. Mechanical Characteristics	28
8.1 LCM Outline Dimension (Front View)	28
8.2 LCM Outline Dimension (Rear View)	29
9. Label and Packaging	30
9.1 Shipping Label (on the rear side of TFT-LCD display)	30
9.2 Carton/Pallet Package	30
10 Safety	31
10.1 Sharp Edge Requirements	31
10.2 Materials	31
10.3 Capacitors	31
10.4 National Test Lab Requirement	31

Record of Revision

AUO-General G101QAN01.1

AU OPTRONICS CORPORATION

Version and Date	Page	Old description	New Description
1.0 2019/05/20	All		-

G101QAN01.1

AU OPTRONICS CORPORATION

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

2. General Description

G101QAN01.0 is a Color Active Matrix Liquid Crystal Display composed of a TFT LCD panel and LED backlight system. The screen format is intended to support the 16:10 1600(H) x2560(V) screen and 16.7M. All input signals are MIPI interface compatible.

2.1 Display Characteristics

The following items are characteristics summary under 25 °C condition:

Items	Unit	S	Specifications						
Screen Diagonal	[inch]	1	10.1"						
Active Area	[mm]	1	135.36 (H) x 216.576 (V)						
Pixels H x V		1	600 x 2560						
Pixel Pitch	[mm]	0	.0846 x 0.084	16					
Pixel Arrangement		R	.G.B. Vertica	I Stripe					
Display Mode		Α	HVA						
Nominal Input Voltage LCD VCC	[Volt]	+	3.3V (Typ.)						
Power Consumption	[Watt]		Logic power 0.5 max BLU power 2.03 max (w/o LED Driver)						
Weight	[Grams]	1	20g						
			Length	Min. 142.76	Тур. 142.96	Max. 143.16			
Physical Size	[mm]		Width	227.84	228.04	228.24			
			Thickness			4.05			
Electrical Interface		8	channel MIP	I					
Surface Treatment		G	Blare						
Support Color		1	16.7M Colors						
Temperature Range Operating Storage (Non-Operating)	[°C] [°C]		0℃~50℃ -20℃~60℃						
RoHS Compliance		R	toHS Complia	ance					

O-General Product Specification

AU OPTRONICS CORPORATION

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 °C (Room Temperature):

Item	Unit	Conditions	Min.	Тур.	Max.	Note
White Luminance	[cd/m2]		340	400		
Uniformity	%	9 points	70			
Contrast Ratio			800	1000		
Response Time	[msec]	Rising + Falling		25	35	
Viewing Angle	[degree] [degree]	Horizontal (Right) CR = 10 (Left)	80	85		
Viewing Angle	[degree] [degree]	Vertical (Upper) CR = 10 (Lower)	80	85		
		Red x	0.592	0.642	0.692	
		Red y	0.283	0.333	0.383	
		Green x	0.257	0.307	0.357	
Color / Chromaticity Coordinates		Green y	0.551	0.601	0.651	
(CIE 1931)		Blue x	0.100	0.150	0.200	
		Blue y	0.025	0.075	0.125	
		White x	0.263	0.313	0.363	
		White y	0.279	0.329	0.379	
Color Gamut	%			65		

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR 3 or equivalent)

Aperture Field angle 2 with 50cm measuring distance

Test Point Follow Note 2 position

Environment < 1 lux

Module Driving Equipment

Note 3: The luminance uniformity of 9 points is defined by dividing the minimum luminance values by the maximum test point luminance

$$\delta_{\text{W9}}$$
 =
$$\frac{\text{Minimum Brightness of nine points}}{\text{Maximum Brightness of nine points}}$$

Note 4: Definition of contrast ratio (CR):

Contrast ratio (CR)=
$$\frac{\text{Brightness on the "White" state}}{\text{Brightness on the "Black" state}}$$

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 6: Definition of viewing angle

Viewing angle is the measurement of contrast ratio $\Box 10$, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 10.1 inch color TFT/LCD module:

4. Absolute Maximum Ratings

An absolute maximum rating of the module is as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
	IOVCC	-0.3	+3.3		
Logic/LCD drive Voltage	VSP	-0.3	+6.6	[Volt]	Note 1,2
	VSN	-6.6	+0.3		

4.2 Absolute Ratings of Environment

ii								
Item	Symbol	Min	Max	Unit				
Operating Temperature	TOP	0	50	[°C]				
Operation Humidity	HOP	5	90	[%RH]				
Storage Temperature	TST	-20	60	[°C]				
Storage Humidity	HST	5	90	[%RH]				

Note 1: At Ta (25 □)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: Maximum wet-bulb temperature is less than 39 °C and no condensation

Note 4: Operating temperature means "Front and rear surface" of panel

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

The power specification are measured under 25 $\hfill \square$ and frame frenquency under 60Hz

Parameter		Symbol	'	/alues	;	Units	Notes
		Syllibol	Min	Тур	Max	Ullits	Notes
LCD Input Ar	nalog Voltage	IOVCC	1.7	1.8	1.9	V	
LCD Input Ar	nalog Voltage	VSP	5.3	5.6	5.9	V	
LCD Input Ar	nalog Voltage	VSN	-5.9	-5.6	-5.3	V	
"H" Level In	put Voltage	VIH	0.7 IOVCC		IOVCC	V	Applicable Pin: LCD_RST
"L" Level In	put Voltage	VIL	0		0.3 IOVCC	V	Applicable Pin: LCD_RST
Input high le	•	IН			1	μA	For the digital, I/O circuit (Not include thepull-up/down)
Input low level leakage current		PN	-1			uA	
LCD	Normal	PD			500	mW	Note1

Notes:

(1) The specified current and power consumption are under the conditions at IOVCC = 1.8V,

T = 25°C, and fv = 60 Hz, at white pattern

5.1.2 Logic Power Consumption

Parameter	Symbol Values			Units	Notes	
raiailletei	Syllibol	Тур	Max	Units	Notes	
	IIOVCC		45	mA	White Pattern	
Normal Mode	IVSP		30	mA	White Pattern	
	IVSN		30	mA	White Pattern	
	IIOVCC		300	uA		
Sleep Mode	IVSP		15	uA		
	IVSN		15	uA		

O-General roduct Specification

AU OPTRONICS CORPORATION

5.1.3 MIPI DC Characteristics

Input signals shall be low or High-impedance state when VDD is off.

Parameter	Symbol	Conditions	S	UNIT			
Parameter	Syllibol	Conditions	MIN	TYP	MAX	0.411	
MIPI digital operation current	IMVDDA	MVDDA=1.5V, Data Rate=1000Mbps	-	10		mA	
MIPI digital stand-by current	IMVDDAST	MVDDA input current. All input signal are stopped.	-	100	-	uA	
MIPI Characteristics for High Speed Receiver							
Single-endedl input low voltage	VILHS		-40	-	-	mV	
Single-endedl input high voltage	VIHHS		-	-	460	mV	
Common-mode voltage	VCMRXDC		70	-	330	mV	
Differential input impedance	ZID		80	100	125	ohm	
Differential input high threshold	VIDTH			-	70	mV	
Differential input low threshold	VIDTL		-70	-	-	mV	
MIPI Characteristics for Low P	ower Mode						
Pad signal voltage range	VI		-50	-	1350	mV	
Ground shift	VGNDSH		-50	-	50	mV	
Output low level	VOL		-50		50	mV	
Output high level	VOH		1.1	1.2	1.3	V	

5.1.4 MIPI AC Characteristics 5.1.4.1 LP Transmission

(IOVCC= 1.7V to 1.9V, GND=DGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	S	UNIT		
raiailletei	Symbol	MIN	TYP	MAX	ONIT
15%-85% rise time and fall time	TRLP / TFLP	-	-	25	ns
Pulse width of the LP exclusive-OR clock	TLP-PULSE-TX	50	-	75	ns
Period of the LP exclusive-OR clock	TLP-PER-TX	100	1	150	ns

Figure: LP Transmitter Timing Definitions

5.1.4.2 High Speed Transmission

Data-Clock Timing Specifications (IOVCC= 1.7V to 1.9V, GND=DGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	Sp	UNIT		
raiailletei	Symbol	MIN	TYP	MAX	ONIT
UI instantaneous	UIINST	1	1	2.5	ns
Data to Clock Setup Time	TSETUP	0.15	-	-	UIINST
Data to Clock Hold Time	THOLD	0.15	-	-	UIINST

CLKn

TCLKp

1 UI_{INST}

5.1.5 High-Speed Data Transmission in Bursts

(IOVCC= 1.7V to 1.9V, GND=DGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	9	UNIT		
Farameter	Symbol	MIN	TYP	MAX	UNIT
Time to drive LP-00 to prepare for HS transmission	THS-PREPARE	40+4*UI	-	85+6*UI	ns
Time from start of tHS-TRAIL or tCLK-TRAIL period to start of LP-11 state	TEOT			105 ns +	ns
Time to enable Data Lane receiver line termination measured from when Dn cross VIL,MAX	THS-TERM-EN	-	-	35+4*UI	ns
Time to drive flipped differential state after last payload data bit of a HS transmission burst	THS-TRAIL	60+4*UI	-	-	ns
Time-out at RX to ignore transition period of EoT	THS-SKIP	40	-	55+4*UI	ns
Time to drive LP-11 after HS burst	THS-EXIT	100	-	-	ns
Length of any Low-Power state period	TLPX	50	1		ns
Sync sequence period	THS-SYNC	145 ns + 10*UI			ns
Minimum lead HS-0 drive period before the Sync sequence	THS-ZERO	105ns+ 6*UI		60ns+ 4*UI	ns

Note:

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 2. UI means Unit Interval, equal to one half HS clock period on the Clock Lane.
- 3. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

Figure : High-Speed Data Transmission in Bursts

5.1.6 High-Speed Clock Transmission

Switching the Clock Lane Operation Timing Parameters (IOVCC= 1.7V to 1.9V, GND=DGND= 0V, TA= -20 to +85°C)

Parameter	Symbol	S	UNIT		
Parameter	Symbol	MIN	TYP	MAX	UNII
Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	TCLK-POST	60+52*UI	-	-	ns
Detection time that the clock has stopped toggling	TCLK-MISS			60	ns
Time to drive LP-00 to prepare for HS clock transmission	TCLK-PREPARE	38	-	95	ns
Minimum lead HS-0 drive period before starting Clock	TCLK-PREPARE +TCLK-ZERO	300	-	-	ns
Time to enable Clock Lane receiver line termination measured from when Dn cross VIL,MAX	THS-TERM-EN	-	-	38	ns
Minimum time that the HS clock must be set prior to any associated date lane beginning the transmission from LP to HS mode	TCLK-PRE	8*UI	-	-	UI
Time to drive HS differential state after last payload clock bit of a HS transmission burst	TCLK-TRAIL	60	-	-	ns

Note:

The DSI host processor shall support continuous clock on the Clock Lane for NT chip that require it, so the host processor needs to keep the HS serial clock running.

Figure: Switching the Clock Lane between Clock Transmission and Low-Power Mode

5.1.7 LP11 timing request between data transformation

When Clock lane of DSI TX chip always keeps High speed mode, then Clock lane never go back to Lowpower mode.

If Date lane of TX chip needs to transmit the next new data transmission or sequence, after the end of Low power mode or High speed mode. Then TX chip needs to keep LP-11 stop state before the next new data transmission, no matter in Low power mode or High speed mode. The LP-11 minimum timing is required for RX chip in the following 9 conditions, include of LP - LP, LP - HS, HS - LP, and HS – HS. This rule is suitable for short or long packet between TX and RX data transmission.

(1) Timing between LP - LP command

Dovomotov	Symbol -	5	LINUT		
Parameter		MIN	TYP	MAX	UNIT
LP-11 delay to a start of the new Escape Mode Entry	TDEE	100			ns

(2)Timing between LP - HS command

Parameter	Symbol	S	UNIT			
r ai ailletei	Symbol	MIN	TYP	MAX	UNII	
LP-11 delay to a start of the Entering High Speed Mode	TDEH	100			ns	

(3)Timing between HS - LP command

Parameter	Symbol	9	UNIT		
r al allietei	Syllibol	MIN	TYP	MAX	ONIT
LP-11 delay to a start of the Escape Mode Entry	TDHE	100			ns

O-General Product Specification

AUO-General G101QAN01.1

AU OPTRONICS CORPORATION

5.2 Backlight Unit

5.2.1 LED characteristics

· - · · · · · · · · · · · · · · · ·							
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark	
LED light bar Voltage per string	V_L		28.25	29	V	(Ta=25°C)	
Current of Each string	I _{LED}		14		mA	(Ta=25°C)	
Power Consumption (5P5S, W/O efficiency)	P_{BL}			2.03	W	(Ta=25°C) Note1.	
						(Ta=25°C)	
LED Life Time	L _L	15000			Hr	Note2.	

Note 1: Calculator value for reference P_{BL} = VF (Normal Distribution) * IF (Normal Distribution) . W/O Efficiency

Note 2: The LED life-time define as the estimated time to 50% degradation of initial luminous.

6. Signal Interface Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

6.2 Integration Interface Requirement

6.2.1 Connector Description

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

Connector Name / Designation	For Signal Connector
Manufacturer	Hirose
Type / Part Number	FH26W-61S-0.3SHW(60)
Mating Housing/Part Number	FPC

6.2.2 Pin Assignment

MIPI lane is a differential signal technology for LCD interface and high speed data transfer device.

Pin	Symbol	I/O	Description
1	GND		AGND
2	GND		AGND
3	NC		
4	NC		
5	FB5	I	LED-
6	FB4	I	LED-
7	FB3	I	LED-
8	FB2	I	LED-
9	FB1	I	LED-
10	NC		
11	VLED2	I	LED+
12	VLED1	I	LED+
13	NC		
14	VSP	I	+5.6V
15	VSP	I	+5.6V
16	NC		
17	VSN	I	-5.6V
18	VSN	I	-5.6V
19	NC		
20	IOVCC	I	+1.8V
21	IOVCC	I	+1.8V

22	NC		for AUO internal use
23	LCD_RST	I	Reset +1.8V
24	NC		For AUO internal use
25	NC		For AUO internal use
26	ID	0	connect 10k ohm to GND
27	NC		For AUO internal use
28	GND		DGND
29	GND		DGND
30	D0PA	I	MIPI input Data pair
31	D0NA	I	MIPI input Data pair
32	GND		DGND
33	D1PA	I	MIPI input Data pair
34	D1NA	I	MIPI input Data pair
35	GND		DGND
36	CLKPA	Ι	MIPI input CLK pair
37	CLKNA	Ι	MIPI input CLK pair
38	GND		DGND
39	D2PA	Ι	MIPI input Data pair
40	D2NA	I	MIPI input Data pair
41	GND		DGND
42	D3PA	I	MIPI input Data pair
43	D3NA	I	MIPI input Data pair
44	GND		DGND
45	D0PB	I	MIPI input Data pair
46	D0NB	I	MIPI input Data pair
47	GND		DGND
48	D1PB	I	MIPI input Data pair
49	D1NB	I	MIPI input Data pair
50	GND		DGND
51	CLKPB	I	MIPI input CLK pair
52	CLKNB	I	MIPI input CLK pair
53	GND		DGND
54	D2PB	I	MIPI input Data pair
55	D2NB	Ι	MIPI input Data pair
56	GND		DGND
57	D3PB	I	MIPI input Data pair

O-General Product Specification

AU OPTRONICS CORPORATION

58	D3NB	I	MIPI input Data pair
59	GND		DGND
60	GND		DGND
61	GND		DGND

6.3 Interface Timing

6.3.1 Timing Characteristics

Basically, interface timings should match the 1600x2560 manufacturing guide line timing.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit
	MIPI Data frequency	FDATA		943		MHz
DCLK	Frequency	1/Tc		158		MHz
	Vertical Total Time	TV	1	2608	1	TH
	Vertical Active Display Period	TVD	1	2560	-	TH
	Vertical Front Porch Period	TVFP	Note2	16	Note2	TH
	Vsync pulse width	TVPW	Note2	8	Note2	TH
DE	Vertical Back Porch Period	TVBP	note2	24	Note2	TH
DL	Horizontal Total Time	TH	1	1008		Тс
	Horizontal Active Display Period	THD	-	800	-	Тс
	Horizontal Front Porch Period	THFP	Note3	120		Тс
	Horizontal pulse width	THPW	-	8	-	Тс
	Horizontal Back Porch Period	THBP	Note3	80		Тс

Note1: Frame rate=60Hz

Note2: Vertical Period are dependent on GOA timing, and don't modify. TVFP+TVPW+TVBP>16

Note3: tHFP = 0.65us (min), tHBP= 0.64us (min)

Note4: Horizontal Period is set by per port

Note5: DCLK=Frame rate*TV*TH.

TV=TVD+TVFP+TVPW+TVBP TH=THD+THFP+THPW+THBP

6.4 Power ON/OFF Sequence

Power on/off sequence is as follows. Interface signals and LED on/off sequence are also shown in the chart.

6.4.1 Power on Timing Sequence: IOVCC=1.7 to 1.9V

Note1: LCD_RST signal H to L to H (#1) is better than only L to H(#2)

Power Sequence Timing				
Parameter	Va	Unite		
1 at afficter	Min.	Max.	Onite	
T1	0.5	2	ms	
T2	10	-	ms	
Т3	0	-	ms	
T4	15	-	ms	
Т5	1	-	ms	
Т6	10	-	us	
T7	20	-	ms	
Т8	6	-	frame	
Т9	3	-	frame	

6.4.2 Power off Timing Sequence: IOVCC=1.7 to 1.9V

Power Sequence Timing				
Parameter	Va	Unite		
1 at afficter	Min.	Max.	Onite	
T10	50	-	ms	
T11	80	-	ms	
T12	100	-	ms	
T13	0	-	ms	
T14	10	-	ms	
T15	1	-	ms	
T16	10	-	ms	
T17	0	-	ms	
T18	-	10	ms	

a. IOVCC AC characteristic:

IOVCC= 1.8V, GND=AGND= 0V, TA= -20 to +85°C)

6.4.3 Power reset Timing Sequence: IOVCC=1.7 to 1.9V

Parameter Symbol	Symbol	Min.	Тур.	Max.	Unit	Conditions
IOVCC power source slew time	TPOR	0.5		2	ms	From 0V to 90% IOVCC
IOVCC resettle time	TRES			500	ms	

6.5 Power ON/OFF MIPI comment

6.5.1 Power On Set Table

Ston	Register	Operation	
Step	Register	Data	Operation
1	Reset = LOW		
2	Power (IOVC	C) ON	
3	15ms or more		
4	MIPI LP-11 status ON		
5	1ms or more		
6	Reset = H	IIGH	
7	20ms or more	е	
8	Power (VSP, VSP ON◊ 10	VSN,) ON ms or more ◊	ON VSN ON

6.5.2 Power Off Set Table

Ston	Register	Operation	
Step	Register	Data	Operation
1	MIPI Video Pixel Stream OFF		
2	MIPI LP-11 Status OFF(LP-00)		
3	10ms or more		
4	Reset = LOW		
5	1ms or more		
6		VSP, IOVCC) C	

O-General Product Specification

AU OPTRONICS CORPORATION

6.5.3 Display On & Sleep Out Set Table

Step	Data	R	egister Setting	Operation	
Step	Туре	Register	Data	Operation	
1	39h	F0h	55h,AAh,52h,08h,00h	Switch page0	
2	15h	C0h	0Dh	ESD detect signal	
3	15h	62h	01h	Set ESD protect command	
4	05h	11	-	Sleep Out	
5	05h	29	-	Display On	
6	MIPI Video Pixel Stream ON				
7	120ms or more				

6.5.4 Display Off & Sleep In Set Table

Step	Data	Register Setting		Operation
Step	Туре	Register	Data	Орегаціон
1	0x05	28	-	Display Off
2	20ms or more			
3	0x05	10	-	Sleep In
4		100ms or more		
5		MIPI Video Pixel Stream OFF		

7. Reliability Test Criteria

Items	Required Condition	Note
Temperature	10,00,000/711,010,1	
Humidity Bias	40 °C, 90%RH, 240 hours	
High Temperature		
Operation	50 °C, 240 hours	
Low Temperature		
Operation	0 °C, 240 hours	
Hot Storage	60 °C, 240 hours	
Cold Storage	-20 °C, 240 hours	
Thermal Shock	-20°C (30mins) / 60°C (30mins), 27cycle	
Test	-20 (30Hills) / 00 (30Hills), 27 Cycle	
FOD	Contact : ±8KV	
ESD	Air . 1451/07	Note 1
	Air: ±15KV	

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

- 8. Mechanical Characteristics
- 8.1 LCM Outline Dimension (Front View)

8.2 LCM Outline Dimension (Rear View)

9. Label and Packaging

9.1 Shipping Label (on the rear side of TFT-LCD display)

9.2 Carton/Pallet Package

10 Safety

10.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

10.2 Materials

10.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

10.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V0 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V0 or better. The actual UL flammability rating will be printed on the printed circuit board.

10.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition

U.S.A. Information Technology Equipment