Chapter 10 Error Detection and Correction

Data can be corrupted during transmission.

Some applications require that errors be detected and corrected.

10-1 INTRODUCTION

Let us first discuss some issues related, directly or indirectly, to error detection and correction.

Topics discussed in this section:

Types of Errors

Redundancy

Detection Versus Correction

Forward Error Correction Versus Retransmission

Coding

Modular Arithmetic

Note

In a single-bit error, only 1 bit in the data unit has changed.

Figure 10.1 Single-bit error

Note

A burst error means that 2 or more bits in the data unit have changed.

Figure 10.2 Burst error of length 8

Note

To detect or correct errors, we need to send extra (redundant) bits with data.

Figure 10.3 The structure of encoder and decoder

Note

In this book, we concentrate on block codes; we leave convolution codes to advanced texts.

Note

In modulo-N arithmetic, we use only the integers in the range 0 to N −1, inclusive.

Figure 10.4 XORing of two single bits or two words

$$0 + 0 = 0$$

$$1 + 1 = 0$$

a. Two bits are the same, the result is 0.

$$0 + 1 = 1$$

$$1 + 0 = 1$$

b. Two bits are different, the result is 1.

c. Result of XORing two patterns

10-2 BLOCK CODING

In block coding, we divide our message into blocks, each of k bits, called datawords. We add r redundant bits to each block to make the length n = k + r. The resulting n-bit blocks are called codewords.

Topics discussed in this section:

Error Detection
Error Correction
Hamming Distance
Minimum Hamming Distance

Figure 10.5 Datawords and codewords in block coding

Example: In this coding scheme, k = 4 and n = 5. As we saw, we have $2^k = 16$ datawords and $2^n = 32$ codewords. We saw that 16 out of 32 codewords are used for message transfer and the rest are either used for other purposes or unused.

Figure 10.6 Process of error detection in block coding

Let us assume that k = 2 and n = 3. Table 10.1 shows the list of datawords and codewords. Later, we will see how to derive a codeword from a dataword.

Assume the sender encodes the dataword 01 as 011 and sends it to the receiver. Consider the following cases:

1. The receiver receives 011. It is a valid codeword. The receiver extracts the dataword 01 from it.

Example 10.2 (continued)

- 2. The codeword is corrupted during transmission, and 111 is received. This is not a valid codeword and is discarded.
- 3. The codeword is corrupted during transmission, and 000 is received. This is a valid codeword. The receiver incorrectly extracts the dataword 00. Two corrupted bits have made the error undetectable.

 Table 10.1
 A code for error detection (Example 10.2)

Datawords	Codewords
00	000
01	011
10	101
11	110

Note

An error-detecting code can detect only the types of errors for which it is designed; other types of errors may remain undetected.

Figure 10.7 Structure of encoder and decoder in error correction

Let us add more redundant bits to Example 10.2 to see if the receiver can correct an error without knowing what was actually sent. We add 3 redundant bits to the 2-bit dataword to make 5-bit codewords. Table 10.2 shows the datawords and codewords. Assume the dataword is 01. The sender creates the codeword 01011. The codeword is corrupted during transmission, and 01001 is received. First, the receiver finds that the received codeword is not in the table. This means an error has occurred. The receiver, assuming that there is only 1 bit corrupted, uses the following strategy to guess the correct dataword.

Example 10.3 (continued)

- 1. Comparing the received codeword with the first codeword in the table (01001 versus 00000), the receiver decides that the first codeword is not the one that was sent because there are two different bits.
- 2. By the same reasoning, the original codeword cannot be the third or fourth one in the table.
- 3. The original codeword must be the second one in the table because this is the only one that differs from the received codeword by 1 bit. The receiver replaces 01001 with 01011 and consults the table to find the dataword 01.

 Table 10.2
 A code for error correction (Example 10.3)

Dataword	Codeword
00	00000
01	01011
10	10101
11	11110

Note

The Hamming distance between two words is the number of differences between corresponding bits.

Let us find the Hamming distance between two pairs of words.

1. The Hamming distance d(000, 011) is 2 because

 $000 \oplus 011 \text{ is } 011 \text{ (two } 1\text{s)}$

2. The Hamming distance d(10101, 11110) is 3 because

 $10101 \oplus 11110 \text{ is } 01011 \text{ (three 1s)}$

Note

The minimum Hamming distance is the smallest Hamming distance between all possible pairs in a set of words.

Find the minimum Hamming distance of the coding scheme in Table 10.1.

Solution

We first find all Hamming distances.

$$d(000, 011) = 2$$
 $d(000, 101) = 2$ $d(000, 110) = 2$ $d(011, 101) = 2$ $d(011, 110) = 2$

The d_{min} in this case is 2.

Find the minimum Hamming distance of the coding scheme in Table 10.2.

Solution

We first find all the Hamming distances.

d(00000, 01011) = 3	d(00000, 10101) = 3	d(00000, 11110) = 4
d(01011, 10101) = 4	d(01011, 11110) = 3	d(10101, 11110) = 3

The d_{min} in this case is 3.

Note

To guarantee the detection of up to s errors in all cases, the minimum Hamming distance in a block code must be $d_{min} = s + 1$.

The minimum Hamming distance for our first code scheme (Table 10.1) is 2. This code guarantees detection of only a single error. For example, if the third codeword (101) is sent and one error occurs, the received codeword does not match any valid codeword. If two errors occur, however, the received codeword may match a valid codeword and the errors are not detected.

Our second block code scheme (Table 10.2) has $d_{min} = 3$. This code can detect up to two errors. Again, we see that when any of the valid codewords is sent, two errors create a codeword which is not in the table of valid codewords. The receiver cannot be fooled.

However, some combinations of three errors change a valid codeword to another valid codeword. The receiver accepts the received codeword and the errors are undetected.

Figure 10.8 Geometric concept for finding d_{min} in error detection

Figure 10.9 Geometric concept for finding d_{min} in error correction

Note

To guarantee correction of up to t errors in all cases, the minimum Hamming distance in a block code must be $d_{min} = 2t + 1$.

A code scheme has a Hamming distance $d_{min} = 4$. What is the error detection and correction capability of this scheme?

Solution

This code guarantees the detection of up to three errors (s = 3), but it can correct up to one error. In other words, if this code is used for error correction, part of its capability is wasted. Error correction codes need to have an odd minimum distance $(3, 5, 7, \ldots)$.

10-3 LINEAR BLOCK CODES

Almost all block codes used today belong to a subset called linear block codes. A linear block code is a code in which the exclusive OR (addition modulo-2) of two valid codewords creates another valid codeword.

Topics discussed in this section:

Minimum Distance for Linear Block Codes Some Linear Block Codes

-

Note

In a linear block code, the exclusive OR (XOR) of any two valid codewords creates another valid codeword.

Let us see if the two codes we defined in Table 10.1 and Table 10.2 belong to the class of linear block codes.

- 1. The scheme in Table 10.1 is a linear block code because the result of XORing any codeword with any other codeword is a valid codeword. For example, the XORing of the second and third codewords creates the fourth one.
- 2. The scheme in Table 10.2 is also a linear block code. We can create all four codewords by XORing two other codewords.

In our first code (Table 10.1), the numbers of 1s in the nonzero codewords are 2, 2, and 2. So the minimum Hamming distance is $d_{min} = 2$. In our second code (Table 10.2), the numbers of 1s in the nonzero codewords are 3, 3, and 4. So in this code we have $d_{min} = 3$.

•

Note

A simple parity-check code is a single-bit error-detecting code in which n = k + 1 with $d_{min} = 2$.

Table 10.3 Simple parity-check code C(5, 4)

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

Figure 10.10 Encoder and decoder for simple parity-check code

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The codeword created from this dataword is 10111, which is sent to the receiver. We examine five cases:

- 1. No error occurs; the received codeword is 10111. The syndrome is 0. The dataword 1011 is created.
- 2. One single-bit error changes a_1 . The received codeword is 10011. The syndrome is 1. No dataword is created.
- 3. One single-bit error changes r_0 . The received codeword is 10110. The syndrome is 1. No dataword is created.

Example 10.12 (continued)

- **4.** An error changes r_0 and a second error changes a_3 . The received codeword is 00110. The syndrome is 0. The dataword 0011 is created at the receiver. Note that here the dataword is wrongly created due to the syndrome value.
- 5. Three bits—a₃, a₂, and a₁—are changed by errors.
 The received codeword is 01011. The syndrome is 1.
 The dataword is not created. This shows that the simple parity check, guaranteed to detect one single error, can also find any odd number of errors.

A simple parity-check code can detect an odd number of errors.

All Hamming codes discussed in this book have $d_{min} = 3$.

The relationship between m and n in these codes is n = 2m - 1.

Table 10.4 Hamming code C(7, 4)

Datawords	Codewords	Datawords	Codewords
0000	0000 <mark>000</mark>	1000	1000110
0001	0001101	1001	1001 <mark>011</mark>
0010	0010 <mark>111</mark>	1010	1010 <mark>001</mark>
0011	0011 <mark>010</mark>	1011	1011 <mark>100</mark>
0100	0100 <mark>011</mark>	1100	1100 <mark>101</mark>
0101	0101 <mark>110</mark>	1101	1101000
0110	0110 <mark>100</mark>	1110	1110 <mark>010</mark>
0111	0111 <mark>001</mark>	1111	1111 <mark>111</mark>

Figure 10.12 The structure of the encoder and decoder for a Hamming code

Table 10.5 Logical decision made by the correction logic analyzer

Syndrome	000	001	010	011	100	101	110	111
Error	None	q_0	q_1	b_2	q_2	b_0	b_3	b_1

Let us trace the path of three datawords from the sender to the destination:

- 1. The dataword 0100 becomes the codeword 0100011. The codeword 0100011 is received. The syndrome is 000, the final dataword is 0100.
- 2. The dataword 0111 becomes the codeword 0111001. The syndrome is 011. After flipping b_2 (changing the 1 to 0), the final dataword is 0111.
- 3. The dataword 1101 becomes the codeword 1101000. The syndrome is 101. After flipping b_0 , we get 0000, the wrong dataword. This shows that our code cannot correct two errors.

We need a dataword of at least 7 bits. Calculate values of k and n that satisfy this requirement.

Solution

We need to make k = n - m greater than or equal to 7, or $2^m - 1 - m \ge 7$.

- 1. If we set m = 3, the result is $n = 2^3 1$ and k = 7 3, or 4, which is not acceptable.
- 2. If we set m = 4, then $n = 2^4 1 = 15$ and k = 15 4 = 11, which satisfies the condition. So the code is

C(15, 11)

Figure 10.13 Burst error correction using Hamming code

10-4 CYCLIC CODES

Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another codeword.

Topics discussed in this section:

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

Table 10.6 A CRC code with C(7, 4)

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001 <mark>011</mark>	1001	1001110
0010	0010110	1010	1010 <mark>011</mark>
0011	0011 <mark>101</mark>	1011	1011000
0100	0100111	1100	1100 <mark>010</mark>
0101	0101100	1101	1101 <mark>001</mark>
0110	0110 <mark>001</mark>	1110	1110100
0111	0111 <mark>010</mark>	1111	1111111

Figure 10.14 CRC encoder and decoder

Figure 10.15 Division in CRC encoder

Figure 10.16 Division in the CRC decoder for two cases

