TD1 - Convex Set

Exercise 1. Let C be a nonempty convex subset of \mathbb{R}^n

- (a) Let $f: C \to \mathbb{R}$ be a convex function, and $g: \mathbb{R} \to \mathbb{R}$ be a function that is convex and montonically nondecreasing over a convex set that contains the set of values that f can take, $\{f(x) \mid x \in C\}$. Show that the function h defined by h(x) = g(f(x)) is convex over C. In addition, if g is montonically increasing and f is strictly convex, then h is strictly convex.
- (b) Let $f = (f_1, ..., f_m)$, where $f_i : C \to \mathbb{R}$ is convex function, and let $g : \mathbb{R}^m \to \mathbb{R}$ be a function that is convex and monotonically nodecreasing over a convex set that contains the set $\{f(x) \mid x \in C\}$, in the sense that for all u, u_1 in this set such that $u \leq u_1$, we have $g(u) \leq g(u_1)$. Show that function h defined by h(x) = g(f(x)) is convex over $C \times \cdots \times C$.

Exercise 2. What is the distance between two parallel hyperplanes $\{x \in \mathbb{R}^n : a^{\top}x = b_1\}$ and $\{x \in \mathbb{R}^n : a^{\top}x = b_2\}$.

Exercise 3. Which of the following sets are convex? Justify your answer.

- (a) A slab, i.e., a set of the form $\{x \in \mathbb{R}^{\times} : \alpha \leq a^{\top}x \leq \beta\}$
- (b) A rectangle, i.e., a set of the form $\{x \in \mathbb{R}^n : \alpha_i \leq x_i \leq \beta_i, \forall i = 1, ..., n\}$
- (c) A wedge, i.e., a set of the form $\{x \in \mathbb{R}^n : a_1 x \leq b_1, a_2^\top x \leq b_2\}$
- (d) The set of points closer to a given point than to a given (arbitrary) set $S \subset \mathbb{R}^n$, i.e.,

$$\{x \in \mathbb{R}^n : ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\}$$

(e) The set of points closer to one set than another, i.e.,

$$\{x : \mathbf{dist}(x, S) \le \mathbf{dist}(x, T)\},\$$

where $S, T \subseteq \mathbb{R}^n$, and

$$dist(x, S) = \inf\{||x - z||_2 : z \in S\}$$

- (f) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e., the set $\{x: ||x-a|_2 \le \theta ||x-b||_2\}$. You can assume $a \ne b$ and $0 \le \theta \le 1$.
- (g) The set $\{x: x+S_2 \subset S_1\}$, where $S_1, S_2 \subseteq \mathbb{R}^n$ with S_1 convex.

Exercise 4. Let $C \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{ x \in \mathbb{R}^n : x^\top A x + b^\top x + c \le 0 \},$$

with $A \in \mathbb{S}^n$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$

- (a) Show that C is convex if $A \succeq 0$.
- (b) Show that the intersection of C and the hyperplane defined by $g^{\top}x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda g g^{\top} \succeq 0$ for some $\lambda \in \mathbb{R}$

Exercise 5. Hyperbolic sets. Show that the hyperbolic set $\{x \in \mathbb{R}^2_+ : x_1x_2 \geq 1\}$ is convex.

As a generalization, show that $\{x \in \mathbb{R}^n_+ : \prod_{i=1}^n x_i \geq 1\}$ is convex. Hint. If $a, b \geq 0$ and $0 \leq \theta \leq 1$, then $a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b$.

Exercise 6. Show that if S_1 and S_2 are convex set in $\mathbb{R}^{m \times n}$, then so is their

$$S = \{(x, y_1 + y_2) \mid x \in \mathbb{R}^m, y_1, y_2 \in \mathbb{R}^n, (x, y_1) \in S_1, (x, y_2) \in S_2\}$$

.

Exercise 7. Let study the image of hyperplanes, halfspaces, and polyhedra under the perspective function P(x,t) = x/t, with $\mathbf{dom}P = \mathbb{R}^n \times R_{++}$. For each of the following sets C, give a simple description of

$$P(C) = \{v/t \mid (v,t) \in C, t > 0\}$$

- (a) The polyhedron $C = \mathbf{conv}\{(v_1, t_1), ..., (v_k, t_k)\}$ where $v_k \in \mathbb{R}^n$ and $t_i > 0$.
- (b) The hyperplane $C = \{(v,t) \mid f^T v + gt = h\}$, with f and g not both zero.
- (c) The halfspace $C = \{(v,t) \mid f^T v + gt \leq h\}$, with f and g not both zero.

Exercise 8. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be linear-fractional function

$$f(x) = (Ax + b)/(c^{T}x + d),$$
 $\mathbf{dom} f = \{x \mid c^{T}x + d > 0\}$

We want to study the inverse image of a convex set C under f, i.e.,

$$f^{-1}(C) = \{x \in \mathbf{dom} f \mid f(x) \in C\}$$

For each of the following sets $C \subseteq \mathbb{R}^n$, given a simple description of $f^{-1}(C)$.

- (a) The halfspace $C = \{y \mid g^T y \leq h\}$ with $g \neq 0$.
- (b) The polyhedron $C = \{y \mid Gy \succeq h\}.$
- (c) The ellipsoid $\{y \mid y^T P^{-1} y \leq 1\}$, where $P \in \mathbb{S}^n_{++}$.

Exercise 9. Given an example of two closed convex sets that are disjoint but cannot be strictly separated.

Exercise 10. Supporting hyperplanes.

- (a) Express the closed convex set $\{x \in \mathbb{R}^2_+ \mid x_1 x_2 \ge 1\}$ as an intersection of halfspaces.
- (b) Let $C = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\}$, the l_{∞} -norm unit ball in \mathbb{R}^n , and let \hat{a} be a point in the boundary of C. Identity the supporting hyperplanes of C at \hat{x} explicitly.

Exercise 11. Positive semidefinite cone for n = 1, 2, 3. Given an explicit description of the positive semidefinite cone \mathbb{S}^n_+ in terms of the matrix coefficients and ordinary inequalities, for n = 1, 2, 3. To describe a general element on \mathbb{S}^n , for n = 1, 2, 3, use the notation

$$x_1, \quad \begin{pmatrix} x_1 & x_2 \\ x_2 & x_3 \end{pmatrix}, \quad \begin{pmatrix} x_1 & x_2 & x_3 \\ x_2 & x_4 & x_5 \\ x_3 & x_5 & x_6 \end{pmatrix}$$

Exercise 12. Cones in \mathbb{R}^2 . Suppose that $K \subseteq \mathbb{R}^2$ is a closed convex cone.

- (a) Give a simple description of K in terms of the polar coordinates of its elements $(x = r(\cos \theta, \sin \theta))$ with $r \ge 0$).
- (b) Give a simple description of K^* , and draw a plot illustrating the relation between K and K^* .
- (c) Where is K pointed?
- (d) Where is K proper (hence, defines a generalized inequality)? Draw a plot illustrating what $x \leq_K y$ means when K is proper.

Exercise 13. Properties of dual cones. Let K^* be the dual cone of a convex cone K, as defined as

$$K^* = \{y \mid x^T y \ge 0 \text{ for all } x \in K\}$$

Prove the following.

- (a) K^* is indeed a convex cone.
- (b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$.
- (c) K^* is closed.
- (d) The interior of K^* is given by $\mathbf{int}K^* = \{y \mid y^T x > 0 \text{ for all } x \in \mathbf{cl}K\}$

Exercise 14. Find the dual cone of $\{Ax \mid x \succeq 0\}$, where $A \in \mathbb{R}^{m \times n}$

Exercise 15. Let K_{pol} be the set of (coefficients of) non-negative polynomials of degree 2k on \mathbb{R}

$$K_{\text{pol}}\{x \in \mathbb{R}^{2k+1} \mid x_1 + x_2t + x_3t^2 + \dots + x_{2k+1}t^{2k} \ge 0 \text{ for all } t \in \mathbb{R}\}$$

- (a) Show that K_{pol} is a proper cone.
- (b) A basis result state that a polynomial of degree 2k is nonnegative on \mathbb{R} if and only if it can be expressed as the sum of squares of two polynomials of degree k or less. In other words, $x \in K_{\text{pol}}$ if and only if the polynomial

$$p(t) = x_1 + x_2t + x_3t^2 + \dots + x_{2k+1}t^{2k}$$

can be expressed as

$$p(t) = r(t)^2 + s(t)^2$$

Use this result to show that

$$K_{\text{pol}}\left\{x \in \mathbb{R}^{2k+1} \mid x_i = \sum_{m+n=i+1} Y_{mn} \text{ for some } Y \in \mathbb{S}_+^{k+1}\right\}$$

In other word, $p(t) = x_1 + x_2t + x_3t^2 + \dots + x_{2k+1}t^{2k}$ is nonnegative if and only if there exists a matrix $Y \in \mathbb{S}^{k+1}_+$ such that

$$x_1 = Y_{11}$$

$$x_2 = Y_{12} + Y_{21}$$

$$x_3 = Y_{13} + Y_{22} + Y_{31}$$

$$\vdots$$

$$x_{2k+1} = Y_{k+1,k+1}$$

(c) Show that $K_{\text{pol}}^* = K_{\text{han}}$ where

$$K_{\text{han}} = \{ z \in \mathbb{R}^{2k+1} \mid H(z) \succeq 0 \}$$

and

$$H(z) = \begin{pmatrix} z_1 & z_2 & z_3 & \cdots & z_k & z_{k+1} \\ z_2 & z_3 & z_4 & \cdots & z_{k+1} & z_{k+2} \\ z_3 & z_4 & z_5 & \cdots & z_{k+2} & z_{k+3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ z_k & z_{k+1} & z_{k+2} & \cdots & z_{2k-1} & z_{2k} \\ z_{k+1} & z_{k+2} & z_{k+3} & \cdots & z_{2k} & z_{2k+1} \end{pmatrix}$$

This is the *Hankel matrix* with coefficient $z_1, ..., z_{2k+1}$.