Simplified conduction equation.

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + Q = 0.$$

assumptions to get to this equation.

$$X_{0}=0$$

$$X_{1}=X$$

$$X_0 = 0 \longrightarrow T$$
.
 $X_1 = X \longrightarrow T(X_1) = T_1$

$$\frac{\partial}{\partial x} = -\varphi$$

$$\frac{\partial}$$

Handy Abouelella.

Question 2 Coatrag. K = 0.015 W/Cm.K. Cladding to k = 0.15 w/cmk Ruel. 10=0.05 W/an-K fag K = 0.004. T (bating surface) = 600 K Q = 250 W/cm3 Solution. RE = 0.6.cm without Fuel Center line. K=0.05 W/cm-K RF = 0.6 cm. tg = 6.005 cm Tp-Tc; = PRI 2 hand.

hgab = Kgab

Te-625 = 93.75

TE = 718.75 K.

To-Theel = PRF 4k

To=718.75 = 250 x(0.6)

T = 1168.75 K

K= 0.15 W/cm.K 600 K. Tci -Tcox = PRF hotal = Kohad had = 0.15 w/an./e Mab = 0.004 = 0.8 hgas = 0.8 W/cm2.k hay = 3 w/a2. K. Tp-625 = 250 x0.06 Tc: -600 = 250 W/cm x 0.6 cm Tc; - 600 = 25 K Tci = 625 K

Fuel periet

Fuel.

galo

	15 50 00 00 00 00 00 00 00 00 00 00 00 00	
coat.	ted=0.015 Wlcm.k Te	
cladi	tend = 0.05 cm. Te; -Teo = 2 Kud, Te; -656k = 250 80.05 x 6.6 Te; = 650 +25 Te; = 650 +25	
30%	tydo: = 6.004 w /cm.k tydo: = 0.005 cm b The first tydo The	
fuel.	To - 7 - 1218.75 K	

Question 3 . Fuel - S UN enrichment = 19.5 % - 0.195 g = 12.3 g/cm3 . 0 = 570 barns. MN = 14 \$ = 5 × 10 1/cm^2-5. - M(MN) => M(U) = (235+ 0.195) + (238+ 0.805) = 237.415. M(UN) = (6.5 \$ 237.415) + (0.5 x14) = 125.7.75. glmo1. Ng = 1 x Av x atom backion x enrichment $N_{f} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{33} \times 0.5 \times 0.195}{125.7075} = 5.75 \times 10^{21} \, \frac{135}{125} \, lm^{335} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, g \, lm^{3} \, \times 6.023 \times 10^{335}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3} \, lm^{3}}{125.7075} = \frac{12.3 \, lm^{3}}{1$ Q = Ex (Nx * p) of Q = 200 \$ 106 \$ 1.6 \$ 10 \$ 5.75 \$ 10 \$ 5 \$ 10 \$ 570 \$ 10

$$Q = E_{\ell} (N_{\ell} * \phi) \circ_{\ell}^{0}$$

$$Q = 200 * 10^{6} * 1.6 * 10^{-19} * 5.75 * 10^{12} * 570 * 10^{-24}$$

$$Q = 524 \text{ w/cm}^{3}$$

$$Q = 524 \text{ w/cm}^{3}$$

Q = 524 w/cm3 = 200 x 106 x 1.6 x 10 x 5 x 10 x 57 0 x 10 24

NE = Same as they for UN.

$$N_{f} = \frac{\int_{x} Av \times atom fraction \times enrichment}{M}.$$

$$S.75 \pm 10^{21} = \frac{10.97 \pm 6.023 \pm 10^{23} \times \frac{1}{3} \times X}{M(uo2)}$$

$$M(u) = X \cdot 235 + (1-X) \cdot 238$$

$$M(uo2) = \left[(X \cdot 235) + (1-X) \cdot 238 \right] + 2 \times 16$$

$$5.75 \pm 10^{21} = \frac{10.97 \pm 6.023 \pm 10^{3} \pm \frac{1}{3} \times X}{\left[X.235 + (1-X) \cdot 238 \right] + 32}$$

X= emichment =

$$l = 27.8 = 3.5 \text{ m} \Rightarrow 2.0 = 1.75.$$
 $lHR^{\circ} = 350 \text{ w/cm}$
 $\delta = 1.3$
 $lHR \text{ at } 2 = 1.4 \text{ m}$?

 $lHR(\frac{2}{20}) = lHR^{\circ} \cos(\frac{\pi}{28}(\frac{2}{20}-1))$
 $lHR(\frac{2}{20}) = 350 \cos(\frac{\pi}{281.3}(\frac{1.4}{1.75}-1))$
 $lHR(\frac{2}{20}) = 349.99 \text{ w/cm}$.

$$C_{p} = 4200 \text{ J/kg.k}$$

$$\dot{m} = 0.22 \text{ kg/s. r.d.}$$

$$\Delta T_{cool} = \frac{28}{11} \frac{20 \text{ LHR}^{0}}{\dot{m} C_{p}} \left[Sm(\frac{II}{28}) + Sm(\frac{II}{28}(\frac{2}{20}-1)) \right]$$

$$O T_{cool} = 0.83 \times \frac{1.75 \times 350}{0.22 \times 4200} \left(8m(1.2) + Sm(1.2(\frac{1.4}{1.75}-1)) \right)$$

$$D T_{cool} = \frac{9.2 \times 10^{-3} \text{ k. 1!}}{1.25 \times 10^{-3} \text{ k. 1!}}$$
when to check the calculations again.

Question (S)

Back words enter.

$$\frac{dt=0.5}{t_n=1.5}$$

$$Y_{n+1} = Y_n + dt Y_{n+1}$$

$$\frac{\partial y}{\partial t} = t \times \exp(-2t)$$

$$\frac{t_0 = 0}{y_0 = 4}$$

t = 6.5. $Y_1 = Y_0 + dt Y_1$ $Y_1 = 4 + (0.5) * [0.5 exp(-2 * 0.5)] = 4.09$. t = 1 $Y_2 = Y_1 + dt Y_2$ $Y_3 = 4.09 + 6.5 [1 exp(-2 * 1)] = 4.159$. t = 1.5 t = 1.5t = 1.5 Questron @ merease the heat capacity and efficiency.

energy 0/p.

if also allow us to operate at thermal newton spectrum.

= Compound UF6

pustion (0)

x finite difference

+ finite volume

* fin te element method.

Question 6

fertile. - D Can be Converted into fissile atom by bombarding with neutrons.

fission will occur + Chain reaction hissile -

fissionable - O GASSION Will occur with con

Questron 3

- 1) swelling
- 2) anisotropic irradiation growth.
- (4) thermal Statisty.
 (4) thermal Conductivity.

Question (8)

ration between fuel atoms to the volume st's occupying in the fuel.

heat capacity and the limit of thermal Conductivity if his ide used to limit structural changes and swelling

Question (11)

Questron (12)

UOZ Joyler

.