

Curs 3 Pătrânjel David-George

Agenda Cursului

01 02

Rețele Generative Antrenarea

Adversariale Rețelelor GAN

03 04

Arhitecturi GAN Aplicații

01 Rețele Generative Adversariale

Introducere

- GANs: Rețele Generative Adversariale
- Arhitectură propusă în 2014 de Ian Goodfellow et al. în lucrarea
 "Generative Adversarial Nets".
- Rețea neuronală ce stă la baza Inteligenței Artificiale Generative.
- Utile în generarea de conținut nou, diferit de setul de date utilizat în procesul de antrenare.
- Aplicații în procesarea și generarea de imagini, texte, conținut video, sunet (muzică, voce etc.).
- Are la bază o antrenare competitivă între un Generator și un Discriminator!

Arhitetura GAN

GENERATOR

Generează conținut nou

DISCRIMINATOR

Discerne între imagini generate și imagini reale

GENERATOR DISCRIMINATOR SET DE DATE

Generatorul

GENERATOR (G)

Generează conținut nou

GENERATOR

- Pornind de la spațiul latent Z, G învață distribuția datelor reale P(X) pentru a genera imagini cu distribuția P'(X).
- Spațiul latent este supra-eșantionat prin utilizarea straturilor convoluționale (rețele CNN) pentru a obține o imagine.
- G nu are acces la datele reale!

Generatorul

Discriminatorul

DISCRIMINATOR

Discerne între imagini generate și imagini reale

- Pornind de la imagini (reale sau generate), D învață să distingă între imagin reale și generate.
- Imaginile sunt sub-eșantionate prin utilizarea straturilor convoluționale (rețele CNN) pentru a obține în final o valoare de 0 sau 1 (real/generat).
- D are o arhitectură tipică unui clasificator binar.

Discriminatorul

https://learnopencv.com/deep-convolutional-gan-in-pytorch-and-tensorflow/

Flow-ul unui GAN

02 Antrenarea Rețelelor GAN

Algoritmul de antrenare

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

Antrenare MinMax - GAN

$$\min_{G} \max_{D} \left[\mathbb{E}_{(X \sim P(X))} \left[\log D(X) \right] + \mathbb{E}_{(Z \sim P(Z))} \left[\log \left(1 - D(G(Z)) \right) \right] \right]$$

Full proof

03 Arhitecturi GAN

1. Rețele Generative Adversariale Condiționate (cGAN)

- Arhitectură propusă în 2014 în lucrarea
 "Conditional Generative Adversarial Nets".
- Permite generarea imaginilor pe baza unei etichete sau condiții suplimentare (set de date adnotat).
- Introducerea unei condiții suplimentare mărește controlul asupra rezultatelor obținute, având astfel un generator specializat.

Antrenarea cGAN

2. Rețele Generative Adversariale Ciclice (CycleGAN)

- Arhitectură propusă în 2017 în lucrarea "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks".
- Permite transformarea imaginilor dintr-un set X la un set Y fără a necesita perechi de imagini în procesul de antrenare.
- Arhitectra CycleGAN asigura transformarea unei imagini în **ambele sensuri** ($X \rightarrow Y \rightarrow X$).

CycleGAN

Antrenarea CycleGAN

04

Aplicații

Generarea Procedurală de Teren Condiționat (cGAN)

D. Pătrânjel, "Conditional Procedural Terrain Generation from Real-life Data in Video Games," B.S. Thesis, Facultatea de Matematică și Informatică, Universitatea din București, București, 2024.

Super Rezoluție

V. Sinha, "ESRGAN: Enhanced Super Resolution GAN - Analytics Vidhya - Medium," Medium, Dec. 14, 2021. [Online]. Available: https://medium.com/analytics-vidhya/esrgan-enhanced-super-resolution-gan-96a28821634

Restaurarea imaginilor vechi

Chowdhury, A M Mahmud & Imtiaz, Masudul. (2022). Computational Intelligence for Solving the Biometric Enrollment Issue.

Generare text-imagine

This small blue bird has a short pointy beak and brown on its wings

This bird is completely red with black wings and pointy beak

A small sized bird that has a cream belly and a short pointed bill

A small bird with a black head and wings and features grey wings

H. Zhang et al., "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks," arXiv (Cornell University), Jan. 2016, doi: 10.48550/arxiv.1612.03242.

Paired image-to-image translation

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translationwith conditional adversarial networks," arxiv, 2016.

Resurse

I. Goodfellow et al., "GAN(Generative Adversarial Nets)," Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, vol. 29, no. 5, p. 177, Oct. 2017, doi: 10.3156/jsoft.29.5_177_2.

M. Mirza and S. Osindero, "Conditional generative adversarial Nets," arXiv (Cornell University), Jan. 2014, doi: 10.48550/arxiv.1411.1784.

H. Sen, "Understanding GANs — Deriving the Adversarial loss from scratch," Medium, Mar. 07, 2024. [Online]. Available: https://medium.com/analytics-vidhya/understanding-gans-deriving-the-adversarial-loss-from-scratch-ccd8b683d7e2

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks," arXiv (Cornell University), Jan. 2017, doi: 10.48550/arxiv.1703.10593.

Computerphile, "Generative Adversarial Networks (GANs) - Computerphile" YouTube. Oct 25, 2017. [Online]. Available: https://www.youtube.com/watch?v=Sw9r8CL98N0&t=78s

