Les sous-groupes de $(\mathbb{R}, +)$

Partie I: Sous-groupes de $(\mathbb{R}, +)$

Soit G un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$. On pose $G^+ = \{x \in G \mid x > 0\}$ et $\alpha = \inf G^+$

- 1. Justifier l'existence de α
- 2. Dans cette question on suppose que $\alpha > 0$.
 - (a) Montrer que $\alpha \in G^+$
 - (b) Montrer que $G = \alpha \mathbb{Z}$.

On dit dans ce cas que G est dicret

- 3. On suppose que $\alpha = 0$. Soit $(x, y) \in \mathbb{R}^2$ tel que x < y:
 - (a) Montrer qu'il existe $z \in G$ tel que 0 < z < y x;

Indication: Utiliser la caractérisation epsilonesque de la borne supérieure

(b) Montrer que $G \cap]x, y \neq \emptyset$;

<u>Indication</u>: Vérifier que $(n+1)z \in G \cap]x,y[$, avec $n=E\left(\frac{x}{z}\right)$

- (c) En déduire que G est dense dans \mathbb{R}
- 4. Soit H un sous-groupe de (\mathbb{R}_+^*, \times) tel que

$$\exists \varepsilon > 0, \ \]1,1+\varepsilon[\cap H = \emptyset]$$

Montrer que H est monogène, c'est-à-dire, il existe $\gamma \in H$ tel que $H = <\gamma>$

Partie II: Applications à la densité

5. Soit $(a,b) \in \mathbb{R} \times \mathbb{R}^*$, on pose $H := a\mathbb{Z} + b\mathbb{Z} = \{an + bm \mid (m,n) \in \mathbb{Z}^2\}$. Montrer que $\frac{a}{b} \in \mathbb{Q} \iff \exists \gamma \in \mathbb{R} \quad \text{tel que } H = \gamma \mathbb{Z}$

Indication: Poser
$$\frac{a}{b} = \frac{p}{q}$$
 où $(p,q) \in \mathbb{Z} \times \mathbb{N}^*$, $p \wedge q = 1$ puis $\gamma = \frac{b}{q}$

- 6. Soit r un irrationnel. On pose $\mathcal{G} := \{m + nr \mid (m, n) \in \mathbb{Z}^2\}$
 - (a) Montrer que \mathcal{G} est dense dans \mathbb{R}
 - (b) Soit c et d deux réels tels que 0 < c < d < 1. Montrer qu'il existe $n \in \mathbb{Z}$ tel que : c < nr E(nr) < d
- 7. Soit a et b deux réels tels que a < b. Montrer qu'il existe $n \in \mathbb{Z}$ tel que $a < \tan n < b$.

<u>Indication</u>: Considérer l'ensemble $T := \{n + m\pi \mid (n, m) \in \mathbb{Z}^2\}.$

8. Soit a et b deux réels tels que $-1 \leqslant a < b \leqslant 1$. Montrer qu'il existe $n \in \mathbb{N}$ tel que $a < \cos n < b$.

<u>Indication</u>: Considérer l'ensemble $T := \{n + 2m\pi \mid (n, m) \in \mathbb{Z}^2\}.$

Partie III: Équations de Pell-Fermat

Soit m un entier naturel qui n'est pas un carré parfait.

On appelle équation de Pell-Fermat toute équation de la forme $x^2-my^2=1$ d'inconnue $(x,y)\in\mathbb{Z}^2$

- 9. Soit $(x,y) \in \mathbb{Z}^2$ tel que $x + y\sqrt{m} > 1$ et $x^2 my^2 = 1$. Montrer que $x + y\sqrt{m} \ge 1 + \sqrt{m}$
- 10. On pose

$$G_m := \{x + y\sqrt{m} \mid (x, y) \in \mathbb{Z}^2, \ x + y\sqrt{m} > 0 \ \text{ et } x^2 - my^2 = 1\}$$

Montrer qu'il existe $\gamma_m \in G_m$ tel que $G_m = \{\gamma_m^n \mid n \in \mathbb{Z}\}$

11. Déterminer, γ_m pour m=2, m=3 et m=5

Les sous-groupes de $(\mathbb{R}, +)$

Partie I

- 1. G^+ est une partie non vide et minorée par 0, ceci justifie l'existence de α .
- 2. Supposons que $\alpha > 0$
 - (a) Par absurde, on suppose que $\alpha \notin G^+$. Pour $\varepsilon = \alpha$, il existe $y \in G^+$ tel que : $\alpha < x < 2\alpha$. Poue $\varepsilon = y - \alpha > 0$, il existe $x \in G^+$ tel que $\alpha < x < y$, il vient que $0 < y - x < \alpha$, donc $y - x \in G^+$, ce qui est absurde
 - (b) Il est clair $\alpha \mathbb{Z} \subset G$ car $\alpha \in G$. Inversement. Soit $x \in G$, il existe un entier n tel que

$$na \leqslant x < (n+1)a$$

Alors $x - n\alpha$ est un nombre positif de G strictement inférieur à α . Il en résulte que ce nombre est nul, ce qui prouve que x appartient à $\alpha \mathbb{Z}$. On a donc bien l'égalité

$$G = \alpha \mathbb{Z}$$

3. Soit $a, b \in \mathbb{R}$ tel que a < b. Le réel b - a > 0, d'après la caractérisation de la borne inférieure, il existe $z \in G^+$ tel que z < b - a. Soit $n = E\left(\frac{a}{z}\right) + 1$, on a :

$$\frac{a}{z} < n = E\left(\frac{a}{z}\right) + 1 \leqslant \frac{a}{z} + 1 < \frac{b}{z}$$

Ainsi a < nz < b, soit $]a, b[\cap G \neq \emptyset]$

4. La fonction ln réalise un isomorphisme de groupes de (\mathbb{R}_+^*, \times) vers $(\mathbb{R}, +)$, donc $G = \ln(H)$ est un sous-groupe de $(\mathbb{R}, +)$. Soit $v = \ln(1 + \varepsilon) > 0$, l'hypothèse $]1, 1 + \varepsilon[\cap H = \emptyset]$ fournit $]0, v[\cap G = \emptyset]$, donc G est de la forme $a\mathbb{Z}$. Posons finalement $\gamma = e^a$, alors

$$H = \exp(G) = \{ \gamma^n \mid n \in \mathbb{Z} \}$$

Partie II

- 5. \Leftarrow) Supposons qu'il existe $\gamma \in \mathbb{R}$ tel que $H = \gamma \mathbb{Z}$. Il existe p et q entiers tels que : $a = \gamma . p$ et $b = \gamma . q$. Alors $\frac{a}{b} = \frac{p}{a} \in \mathbb{Q}$
 - \Rightarrow) Réciproquement, si $\frac{a}{b}$ est rationnel, il existe p et q entiers premiers entre eux tels que $\frac{a}{b} = \frac{p}{q}$. Posons $\gamma = \frac{b}{q}$. On a $a = \gamma p$ et $b = \gamma q$, ce qui prouve que a et b appartiennent à $\gamma \mathbb{Z}$, donc $H \subset \gamma \mathbb{Z}$. D'autre part, il existe m et n premiers entre eux tels que mp + nq = 1. Donc, en multipliant par γ

$$\gamma = mp\gamma + nq\gamma = ma + nb$$

ce qui montre que γ appartient à H, et donc que $\gamma \mathbb{Z}$ est inclus dans H. On a bien l'égalité $H = \gamma \mathbb{Z}$.

- 6. Soit $r \in \mathbb{R} \setminus \mathbb{Q}$
 - (a) G est un sous-groupe de $(\mathbb{R}, +)$, donc G est soit dense, soit de la forme $\alpha \mathbb{Z}$. Puisque $r \notin \mathbb{Q}$, d'après la question précédente, G n'est pas de la forme $\alpha \mathbb{Z}$, donc G est dense dans \mathbb{R}
 - (b) L'ensemble G est dense dans \mathbb{R} , il existe $m, n \in \mathbb{Z}$ tel que c < m + nr < d. Le réel m + nr appartient à [0,1[, donc de partie entière nulle, donc m = -E(nr), par suite c < nr E(nr) < d
- 7. Soit $a, b \in \mathbb{R}$ tels que a < b, on a $\arctan a < \arctan b$. Le sous-groupe T est dense dans \mathbb{R} , il existe $m, n \in \mathbb{Z}$ tels que $\arctan a < n + m\pi < \arctan b$, puis par la périodicité de la tangente on obtient $a < \tan n < b$

Les sous-groupes de $(\mathbb{R}, +)$

8. Soit $a,b \in \mathbb{R}$ tels que 0 < a < b < 1, la fonction arccos est strictement décroissante sur $]0,1[,\ 0 < \arccos b < \arccos a < \frac{\pi}{2}$. Le sous-groupe T est dense dans \mathbb{R} , il existe $m,n \in \mathbb{Z}$ tels que $\arccos b < n + 2m\pi < \arccos a$, puis par la périodicité et la décroissance stricte de la fonction cosinus on obtient $a < \cos n < b$

Partie III

- 9. Soit $x, y \in \mathbb{Z}$ tels que $x + y\sqrt{m} > 1$ (1) et $x^2 my^2 = 1$. Les égalités $x^2 my^2 = (x y\sqrt{m})(x + y\sqrt{m}) = 1$ montrent que $0 < x y\sqrt{m} < 1$ (2). On somme (1) et (2) on obtient 2x > 1, donc $x \ge 1$ puis (2) donne $0 \le x 1 < y\sqrt{m}$, soit $y \ge 1$. Finalement $x + y\sqrt{m} \ge 1 + \sqrt{m}$
- 10. Montrons que G_m est un sous-groupe de (\mathbb{R}_+^*, \times)
 - $-1 \in G_m$
 - Soit $a, b \in G_m$, il existe $x, y, \alpha, \beta \in \mathbb{Z}$ tels que $a = x + y\sqrt{m}$, $b = \alpha + \beta\sqrt{m}$, $x^2 my^2 = 1$ et $\alpha^2 m\beta^2 = 1$. On a:

$$\frac{1}{a} = \frac{1}{x + y\sqrt{m}} = x - y\sqrt{m} \in G_m$$

et

$$ab = (x + y\sqrt{m})(\alpha + \beta\sqrt{m}) = (\alpha x + m\beta y) + (\beta x + \alpha y)\sqrt{m}$$

Or

$$(\alpha x + m\beta y)^{2} - m(\beta x + \alpha y)^{2} = (x + y\sqrt{m})(\alpha + \beta\sqrt{m})(x - y\sqrt{m})(\alpha - \beta\sqrt{m})$$
$$= (x^{2} - my^{2})(\alpha^{2} - m\beta^{2}) = 1$$

On a $]1,1+\sqrt{m}[\cap G_m=\emptyset,$ donc il existe $\gamma_m\in G_m$ tel que $G_m=\{\gamma_m^n\mid n\in\mathbb{Z}\}$

11. • Cas m=2: Soit $x=a+b\sqrt{2}\in G_2\cap]1, +\infty[$. Par hypothèse $a^2-2b^2=1$, donc $a-b\sqrt{2}>0$. Additionnons x et $\overline{x}=a-b\sqrt{2}: x+\overline{x}=2a>0$ et finalement a>0 soit $a\geqslant 1$. Puis le cas a=1 est exclu, car sinon b=0, donc $a\geqslant 2$. Le cas a=2, donne l'égalité $2b^3=3$, ce qui est impossible, donc $a\geqslant 3$.

D'autre part x vérifie l'équation $x^2=1+2bx\sqrt{2}$, donc $b=\frac{x^2-1}{2x\sqrt{2}}$. Conclusion b>0, soit $b\geqslant 1$. Mais b=1 donne $a^2=3$, donc $b\geqslant 2$. Ainsi $a+b\sqrt{2}\geqslant 3+2\sqrt{2}$. Ce qui montre que tout élément de $G_2\cap]1,+\infty[$ est supérieur ou égal à $3+2\sqrt{2}$. Or il se trouve que $3+2\sqrt{2}\in G_2\cap]1,+\infty[$ comme on le vérifie aisément. Donc $\gamma_2=3+2\sqrt{2}$

- Cas m=3: On trouve $\gamma_3=2+\sqrt{3}$
- Cas m = 5: On trouve $\gamma_5 = 9 + 4\sqrt{5}$