4. Topologie-Übung

Joachim Breitner

14. November 2007

Aufgabe 1

Es gibt auf der Menge $X \coloneqq \{1,2,3\}$ folgende Topologien, geordnet nach Zahl der Elemente:

- $\{\emptyset, X\}$
- $\{\emptyset, X, \{a\}\}\$, für $a \in X$ (3 Möglichkeiten)
- $\{\emptyset, X, \{a, b\}\}\$, für $a \neq b \in X$ (3 Möglichkeiten)
- $\{\emptyset, X, \{a\}, \{a, b\}\}\$, für $a \neq b \in X$ (6 Möglichkeiten)
- $\{\emptyset, X, \{a\}, \{b,c\}\},$ für $a,b,c \in X$ paarweise verschieden (3 Möglichkeiten)
- $\{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$, für $a \neq b \in X$ (3 Möglichkeiten)
- $\{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}\},$ für $a,b,c \in X$ paarweise verschieden (3 Möglichkeiten)
- $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, für $a, b, c \in X$ paarweise verschieden (6 Möglichkeiten)
- P(X)

Insgesamt gibt es also 29 verschiedene Topologien auf X.

Aufgabe 2

Behauptung: Sei X ein topologischer Raum, $A \subseteq X$. Dann gilt: A ist offen und abgeschlossen genau dann, wenn $\partial A = \emptyset$.

$$\partial A = \bar{A} \setminus \mathring{A}, \ \mathring{A} = \bigcup_{U \subset A, \ U \text{ offen}} U, \ \bar{A} = \bigcap_{A \subset U, \ U \text{ abg.}} U,$$

"⇒": A offen, also $A=\mathring{A},$ A abgeschlossen, also $A=\bar{A},$ also gilt $\partial A=\bar{A}\setminus\mathring{A}=A\setminus A=\emptyset.$

" —": $\bar{A}\setminus \mathring{A}=\emptyset \implies \bar{A}=\mathring{A} \implies A\subseteq \bar{A}=\mathring{A}\subseteq A \implies A$ ist offen und abgeschlossen.

Behauptung: $x \in \partial A$ genau dann, wenn für jede Umgebung U von X gilt: $U \cap A \neq \emptyset$ und $U \cap (X \setminus A) \neq \emptyset$.

" \Longrightarrow ": $x \in \partial A = \bar{A} \setminus \mathring{A}$. Sei U eine Umgebung von x, die o.B.d.A offen ist.

- 1. Fall: $x \in A$, also $U \cap A \neq \emptyset$.

 Annahme: $U \cap (X \emptyset A) \neq \emptyset \implies U \subseteq A \implies x \in \mathring{A} \implies x \in \bar{A} \setminus \mathring{A} \land x \in \mathring{A}$
- 2. Fall: $x \notin A$, also $U \cap (X \setminus A) \neq \emptyset$ Annahme: $U \cap A = \emptyset \implies A \subseteq X \setminus U$, also $X \setminus U$ ist abgeschlossene Teilmenge von X, die A enthält, also $x \in X \setminus U$, im Widerspruch zu $x \in U$.

" —": $x \notin \mathring{A}$, denn wäre $x \in \mathring{A}$, so wäre \mathring{A} eine Umgebung von x, also nach Vorraussetzung $\mathring{A} \cap (X \setminus A) \neq 0$, im Widerspruch zu $\mathring{A} \subseteq A$.

 $x \in \bar{A}$, denn wäre $x \notin \bar{A}$, so wäre $X \setminus \bar{A}$ offen und eine Umgebung von x, also gälte $(X \setminus \bar{A}) \cap A \neq \emptyset$, im Widerspruch zu $\bar{A} \supseteq A$.

Also gilt: $x \in \bar{A} \setminus \mathring{A} = \partial A$.

Aufgabe 3

 $A \subseteq \mathbb{C}^n$ heißt Zariski-abgeschlossen, wenn es $P_i \in \mathbb{C}^n[X_1, \dots, X_n], i \in I$ gibt mit $A = \{z \in \mathbb{C}^n \mid \forall i \in I : P_i(z) = 0\}.$

 $A \subseteq \mathbb{C}^n$ heißt Zariski-offen, genau dann, wenn $\mathbb{C}^n \setminus A$ Zariski-abgeschlossen ist.

Behauptung: Das ist eine Topologie auf \mathbb{C}^n .

• \mathbb{C}^n und \emptyset sind Zariski-offen, da \emptyset Nullstellenmenge von P(z) := 1 und \mathbb{C}^n Nullstellenmenge von P(z) := 0 ist.

• Sei $(U_i)_{i\in I}$ eine Familie Zariski-offener Mengen. dann ist $\bigcup_{i\in I} U_i$ auch Zariski-offen:

Für jedes $i \in I$ gilt: U_i ist Zariski-offen, also gibt es Polynome $P_{ij} \in \mathbb{C}^n[X_1,\ldots,X_n], i \in I, j \in J_i$, mit

$$\mathbb{C}^n \setminus U_i = \{ z \in \mathbb{C}^n \mid \forall j \in J_i : P_{ij}(z) = 0 \}.$$

Also ist

$$\mathbb{C}^n \setminus \bigcup_{i \in I} U_i = \bigcap_{i \in I} (X \setminus U_i) = \{ x \in \mathbb{C}^n \mid \forall i \in I \ \forall j \in J_i : P_{ij}(z) = 0 \}$$

Zariski-abgeschlossen, und damit $\bigcup_{i \in I} U_i$ Zariski-offen.

• Seien U,V Zariski-offene Teilmengen. Dann ist $U \cap V$ auch Zariski-offen: U ist Zariski-offen, also ist $\mathbb{C}^n \setminus U$ ist Nullstellenmenge einer Familie von Polynomen $P_i,\ i \in I:\ U = \mathbb{C}^n \setminus \{z \in \mathbb{C}^n \mid \forall i \in I:\ P_i(z) = 0\} = \mathbb{C}^n \setminus \bigcap_{i \in I} U_i = \bigcup_{i \in I} (\mathbb{C}^n \setminus U_i), \text{ wobei } U_i = \{z \in \mathbb{C}^n \mid P_i = 0\}.$ Analog ist $V = \bigcup_{i \in J} (\mathbb{C}^n \setminus V_j), \text{ wobei } V_j = \{z \in \mathbb{C}^n \mid Q_j(z) = 0\}.$ Damit ist $\mathbb{C}^n \setminus (U \cap V) = \bigcap_{i \in I, j \in J} (U_i \cup V_j) = \{z \in \mathbb{C}^n \mid \forall (i, j) \in I \times J:\ P_{ij}(z) = 0\}, \text{ wobei } P_{ij} = P_i \cdot Q_j. \text{ Also ist } \mathbb{C}^n \setminus (U \cap V) \text{ abgeschlossen und } U \cap V \text{ offen.}$ ■

Auf $\mathbb C$ sind Zariski-offene Mengen sind dann gerade die Komplemente endlicher Mengen, das heißt: $\mathbb C$ ist nicht hausdorff'sch bezüglich dieser Topologie.

Behauptung: $\mathcal{B} := \{U \subset \mathbb{C}^n \mid U \text{ ist Komplement einer Nullstellenmenge eines einzelnen Polynoms}\}$

Sei U offen, dann ist $\mathbb{C}^n \setminus U = \{z \in \mathbb{C}^n \mid \forall i \in I : P_i(z) = 0\}$ mit $P_i \in \mathbb{C}[X_1, \dots, X_n], i \in I$. Dann ist

$$\mathbb{C}^n \setminus U = \bigcap_{i \in I} \underbrace{\{z \in \mathbb{C} \mid P_i(z) = 0\}}_{B_i :=} = \bigcup_{i \in I} (\mathbb{C}^n \setminus B_i)$$

mit $(\mathbb{C}^n \setminus B_i) \in \mathcal{B}$, also ist U Vereinigung von Mengen aus \mathcal{B} .

Aufgabe 4

Betrachte die Topologie auf \mathbb{Z} , die $\{a+b\mathbb{Z} \mid a,b\in\mathbb{Z},b\neq0\}$ als Subbasis besitzt.

Behauptung: Jede Menge der Form $a+b\mathbb{Z},\,b\neq 0$ ist abgeschlossen bezüglich dieser Topologie.

Es gilt o.B.d.A: $a+b\mathbb{Z}=\mathbb{Z}\setminus\bigcup_{i=1}^{b-1}((a+i)+b\mathbb{Z})$, also ist $a+b\mathbb{Z}$ komplement einer offenen Menge, also abgeschlossen.

Behauptung: $\{-1,1\}$ ist abgeschlossen.

Es gilt: $\mathbb{Z} \setminus \{-1,1\} = \bigcup_{p \in \mathbb{P}} (0+p\mathbb{Z})$, denn jedes $n \in \mathbb{Z}$ hat eine Primzahl p als Teiler, wenn $n \notin \{-1,1\}$, also $n \in p\mathbb{Z}$. Daher ist $\mathbb{Z} \setminus \{-1,1\}$ offen und $\{-1,1\}$ abgeschlossen.

Behauptung: Es gibt unendlich viele Primzahlen \mathbb{P} .

Annahme: \mathbb{P} ist endlich. Dann wäre $\mathbb{Z} \setminus \{-1,1\}$ als endliche Vereinigung abgeschlossener Mengen abgeschlossen, also wäre $\{-1,1\}$ offen. Das ist ein Widerspruch, denn alle offenen Mengen $\neq \emptyset$ sind in dieser Topologie unendlich.

4