Syllabus

Savitribal Phule Pune University Fourth Year of Computer Engineering (2015 Course) Elective I

M

int

C

410244(D): Data Mining and Warehousing

Teaching Scheme : TH : 03 Hours/Week	Ciedit	Examination Scheme : In-Sem (Paper) : 30 Marks
		End-Sem (Paper) : 70 Marks

Pre-requisites Courses

310242-Database Management Systems, 310244 - Information Systems and Engineering Economics

Companion Course: 410247- Laboratory Practice II

Course Objectives

- To understand the fundamentals of Data Mining.
- To identify the appropriateness and need of mining the data.
- To learn the preprocessing, mining and post processing of the data.
- To understand various methods, techniques and algorithms in data mining.

Course Outcomes

On completion of the course the student should be able to:

- Apply basic, intermediate and advanced techniques to mine the data.
- Analyze the output generated by the process of data mining.
- Explore the hidden patterns in the data.
- Optimize the mining process by choosing best data mining technique.

Course Contents

Unit 1: Introduction (08 Hours)

Data Mining, Data Mining Task Primitives, Data: Data, Information and Knowledge; Attribute Types: Nominal, Binary, Ordinal and Numeric attributes, Discrete versus Continuous Attributes; Introduction to Data Preprocessing, Data Cleaning: Missing values, Noisy data; Data integration: Correlation analysis; transformation: Min-max normalization, z-score normalization and decimal scaling; data reduction: Data Cube Aggregation, Attribute Subset Selection, sampling; and Data Discretization: Binning, Histogram Analysis

(Refer chapter 1)

Unit II : Data Warehouse (08 Hours)

Data Warehouse, Operational Database Systems and Data Warehouses (OLTP Vs OLAP), A Multidimensional Data Model: Data Cubes, Stars, Snowflakes, and Fact Constellations Schemas; OLAP Operations in the Multidimensional Data Model, Concept Hierarchies, Data Warehouse Architecture, The Process of Data Warehouse Design, A three-tier data warehousing architecture, Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP. (Refer chapter 2)

Unit III: Measuring Data Similarity and Dissimilarity

(08 Hours)

Measuring Data Similarity and Dissimilarity, Proximity Measures for Nominal Attributes and Binary Attributes, interval scaled; Dissimilarity of Numeric Data: Minskowski Distance, Euclidean distance and Manhattan distance; Proximity Measures for Categorical, Ordinal Attributes, Ratio scaled variables; Dissimilarity for Attributes of Mixed Types, Cosine Similarity.

(Refer chapter 3)

Unit IV: Association Rules Mining

(08 Hours)

Market basket Analysis, Frequent item set, Closed item set, Association Rules, a-priori Algorithm, Generating Association Rules from Frequent Item sets, Improving the Efficiency of a-priori, Mining Frequent Item sets without Candidate Generation: FP Growth Algorithm; Mining Various Kinds of Association Rules: Mining multilevel association rules, constraint based association rule mining, Meta rule-Guided Mining of Association Rules.

(Refer chapter 4)

Unit V: Classification

(08 Hours)

Introduction to: Classification and Regression for Predictive Analysis, Decision Tree Induction, Rule-Based Classification: using IF-THEN Rules for Classification, Rule Induction Using a Sequential Covering Algorithm. Bayesian Belief Networks, Training Bayesian Belief Networks, Classification Using Frequent Patterns, Associative Classification, Lazy Learners-k-Nearest-Neighbor Classifiers, Case-Based Reasoning. (Refer chapter 5)

Upit VI: Multiclass Classification

(08 Hours)

Multiclass Classification, Semi-Supervised Classification, Reinforcement learning, Systematic Learning, Wholistic learning and multi-perspective learning. Metrics for Evaluating Classifier Performance: Accuracy, Error Rate, precision, Recall, Sensitivity, Specificity; Evaluating the Accuracy of a Classifier: Holdout Method, Random Sub sampling and Cross-Validation.

(Refer chapter 6)

UNIT I

		1-1 to 1-21
Chapter 1:	Introduction	1-1 10 1-21

SVI	hi ie	
SVII	Dus	

Data Mining, Data Mining Task Primitives, Data : Data, Information and Knowledge; Attribute Types: Nominal, Binary, Ordinal and Numeric attributes, Discrete versus Continuous Attributes; Introduction to Data Preprocessing, Data Cleaning: Missing values, Noisy data; Data integration : Correlation analysis; transformation: Min-max normalization, z-score normalization and decimal scaling; data reduction: Data Cube Aggregation, Attribute Subset Selection, sampling; and Data Discretization: Binning, Histogram Analysis.

✓	Syllabus Topic : Data Mining1-1
1.1	Data Mining1-1
1.1.1	Applications of Data Mining1-1
1.1.2	Challenges to Data Mining (Oct. 16)1-2
1.1.3	KDD Process
	(Knowledge Discovery in Databases) (Aug. 17)1-2
1.1.4	Architecture of a Typical Data Mining System1-4
✓	Syllabus Topic: Data Mining Task Primitives1-4
1.2	Data Mining Task Primitives1-4
✓	Syllabus Topic : Data - Data,
	Information and Knowledge1-6
1.3	Data : Data, Information and Knowledge1-6
1	Syllabus Topic: Attributes Types - Nominal,
4	Binary, Ordinal and Numeric Attributes,
7	Discrete Versus Continuous Attributes1-6
1.4	Attributes Types1-6
✓	Syllabus Topic: Introduction to Data
/	Pre-processing1-8
1,6	Introduction to Data Pre-processing1-8
1.6	Different Forms of Data Pre-processing
	(Oct. 16, Dec. 16)1-8
,	Syllabus Topic : Data Cleaning1-9
6.1	Data Cleaning1-9
.6.1(A)	Steps in Data Cleansing1-9

✓	Syllabus Topic : Missing Values1-10
1.6.1(B)	Missing Values (May 16, Dec. 16, Dec. 17)1-10
✓	Syllabus Topic: Noisy Data1-11
1.6.1(C)	Noisy Data1-11
1.6.1(D)	Inconsistent Data1-13
✓	Syllabus Topic : Data Integration1-13
1.6.2	Introduction to Data Integration1-13
1.6.2(A)	Entity Identification Problem1-14
✓	Syllabus Topic : Correlation Analysis1-14
1.6.2(B)	Redundancy and Correlation Analysis1-14
/	Syllabus Topic: Data Transformation and Data Discretization - Min-max Normalization, Z-Score Normalization and Decimal Scaling
1.6.3	Data Transformation and Data Discretization1-15
1.6.3(A)	Data Transformation1-15
	Data Discretization1-15
1.6.3(B)	
1.6.3(C)	Data Transformation by Normalization (May 17)1-15
✓	Syllabus Topic: Discretization by Binning1-16
1.6.3(D)	Discretization by Binning1-16
✓	Syllabus Topic: Discretization by Histogram Analysis1-17
1.6.3(E)	Discretization by Histogram Analysis1-17
✓	Syllabus Topic : Data Reduction1-17
1.6.4	Data Reduction1-17
1.6.4(A)	Need for Data Reduction1-17
1.6.4(B)	Data Reduction Technique1-18
✓	Syllabus Topic: Data Cube Aggregation,
ч.	Attribute Subset Selection1-18
1.6.4(B).	1 Data Cube Aggregation1-18
1.6.4(B).2	2 Dimensionality Reduction (May 16, Dec. 17)1-18
1.6.4(B).3	3 Data Compression1-19
✓	Syllabus Topic : Sampling1-20
1.6.4(B).4	4 Numerosity Reduction1-20
1.7	Solved University Questions and Answers1-21

UNIT II

Chapter 2:	Data	Warehouse	2-1 to 2-35
Chapter 2:	Data	Wateriouse	2-1 (0 2-3

Syllabus :

Data Warehouse, Operational Database Systems and Data Warehouses (OLTP Vs OLAP), A Multidimensional Data Model: Data Cubes, Stars, Snowflakes, and Fact Constellations Schemas; OLAP Operations in the Multidimensional Data Model, Concept Hierarchies, Data Warehouse Architecture, The Process of Data Warehouse Design, A three-tier data warehousing architecture, Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP.

✓	Syllabus Topic: Data Warehouse2-1
2.1	Data Warehouse2-1
2.1.1	Features of Data Warehouse2-2
✓	Syllabus Topic : Operational Database
	Systems and Data Warehouses (OLTP Vs OLAP)2-2
2.2	Operational Database Systems and Data
	Warehouses (OLTP Vs OLAP)2-2
2.2.1	Why are Operational Systems not Suitable for
	Providing Strategic Information?2-2
2.2.2	OLAP Vs OLTP2-3
✓	Syllabus Topic : A Multidimensional
	Data Model2-4
2.3	A Multidimensional Data Model2-4
2.3.1	What is Dimensional Modeling ?2-4
✓	Syllabus Topic : Data Cubes2-4
2.3.2	Data Cubes2-4
1	Syllabus Topic : Stars Schemas2-4
2.8.3	Star Schema2-4
/	Syllabus Topic: The Snowflake Schema2-5
2.3.4	The Snowflake Schema2-5
2.3.5	Star Flake Schema2-6
2.3.6	Differentiate between Star Schema and
	Snowflake Schema2-6
2.3.7	Factless Fact Table2-6

/	Syllabus Topic : Fact Constellation Schema or Families of Star2-7
2.3.8	Fact Constellation Schema or Families of Star2-7
2.3.9	Examples on Star Schema and Snowflake Schema2-7
, ~	Syllabus Topic : OLAP Operations in the Multidimensional Data Model2-21
2.4	OLAP Operations in the
	Multidimensional Data Model2-21
/	Syllabus Topic : Concept Hierarchies2-24
2.5	Concept Hierarchies2-24
/	Syllabus Topic : Data Warehouse Architecture2-24
2.6	Data Warehouse Architecture2-24
√	Syllabus Topic : The Process of Data Warehouse Design2-27
2.7	The Process of Data Warehouse Design2-27
2.8	Data Warehousing Design Strategies or
	Approaches for Building a Data Warehouse2-27
2.8.1	The Top Down Approach : The Dependent Data Mart Structure
2.8.2	The Bottom-Up Approach : The Data
	Warehouse Bus Structure2-28
2.8.3	Hybrid Approach2-29
2.8.4	Federated Approach2-29
2.8.5	A Practical Approach2-29
✓	Syllabus Topic : A Three-Tier Data Warehousing Architecture
2.9	A Three-Tier Data Warehousing Architecture2-30
2.9.1	Data Warehouse and Data Marts2-30
✓	Syllabus Topic: Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP2-31
2.10	Types of OLAP Servers : ROLAP versus MOLAP versus HOLAP2-31
2.10.1	MOLAP2-31

2.10.2	ROLAP2-32
2.10.3	HOLAP2-33
2.10.4	DOLAP2-33
2.11	Examples of OLAP2-33

UNIT III

Chapter 3: Measuring Data Similarity and Dissimilarity 3-1 to 3-7

Syllabus:

3.4

Measuring Data Similarity and Dissimilarity, Proximity Measures for Nominal Attributes and Binary Attributes, interval scaled; Dissimilarity of Numeric Data: Minkowski Distance, Euclidean distance and Manhattan distance; Proximity Measures for Categorical, Ordinal Attributes, Ratio scaled variables; Dissimilarity for Attributes of Mixed Types, Cosine Similarity.

✓	Syllabus Topic: Measuring Data Similarity and
	Dissimilarity3-1
3.1	Measuring Data Similarity and Dissimilarity3-1
3.1.1	Data Matrix versus Dissimilarity Matrix3-1
✓	Syllabus Topic: Proximity Measures for
	Nominal Attributes and Binary Attributes,
	Interval Scaled3-2
3.2	Proximity Measures for Nominal Attributes
	and Binary Attributes, Interval Scaled3-2
3.2.1	Proximity Measures for Nominal Attributes3-2
3.2.2	Proximity Measures for Binary Attributes3-2
3.2.3	Interval Scaled (May 17)3-3
✓	Syllabus Topic: Dissimilarity of Numeric
	Data : Minkowski Distance, Euclidean
	Distance and Manhattan Distance3-4
3.3	Dissimilarity of Numeric Data : Minkowski
	Distance, Euclidean Distance and
	Manhattan Distance3-4
✓	Syllabus Topic: Proximity Measures for Categorical,
	Ordinal Attributes, Ratio Scaled Variables3-5
3.4	Proximity Measures for Categorical, Ordinal Attributes,
	Ratio Scaled Variables3-5

3.4.1	Categorical Attributes3-5
3.4.2	Ordinal Attributes3-5
3.4.3	Ratio Scaled Attributes3-5
3.4.4	Discrete Versus Continuous Attributes3-6
✓	Syllabus Topic : Dissimilarity for Attributes of Mixed
	Types3-6
3.5	Dissimilarity for Attributes of Mixed Types3-6
✓	Syllabus Topic : Cosine Similarity3-6
3.6	Cosine Similarity3-6
	UNIT TV

Association Rules Mining

4-1 to 4-30

Syllabus:

Chapter 4:

Market basket Analysis, Frequent item set, Closed item set, Association Rules, a-priori Algorithm, Generating Association Rules from Frequent Item sets, Improving the Efficiency of a-priori, Mining Frequent Item sets without Candidate Generation: FP Growth Algorithm; Mining Various Kinds of Association Rules: Mining multilevel association rules, constraint based association rule mining, Meta rule-Guided Mining of Association Rules.

✓	Syllabus Topic : Market Basket Analysis	.4-1
4.1	Market Basket Analysis	.4-1
4.1.1	What is Market Basket Analysis?	.4-1
4.1.2	How is it Used ?	4-1
4.1.3	Applications of Market Basket Analysis (Dec. 17)	
✓	Syllabus Topic : Frequent Itemsets	.4-2
4.2	Frequent Itemsets	.4-2
✓	Syllabus Topic : Closed Itemsets	4-2
4.3	Closed Itemsets (May 16, Dec. 16, Aug. 17)	4-2
✓	Syllabus Topic: Association Rules	4-3
4.4	Association Rules SMON	
4.4.1	Finding the Large Itemsets	
4.4.2	Frequent Pattern Mining	
4.4.3	Efficient and Scalable Frequent Itemset	
	Mining Method	.4-4

✓	Syllabus Topic : A-priori Algorithm4-4
4.5	A-priori Algorithm4-4
4.5.1	Advantages and Disadvantages of Apriori Algorithm4-5
✓	Syllabus Topic : Generating Association Rules from Frequent Item Sets4-5
4.6	Generating Association Rules from Frequent Item Sets4-5
✓	Syllabus Topic: Improving the Efficiency of a-priori4-5
4.7	Improving the Efficiency of a-priori4-5
4.8	Solved Example on Apriori Algorithm4-6
✓	Syllabus Topic : Mining Frequent Item sets without Candidate Generation : FP Growth Algorithm
4.9	Mining Frequent Item sets without Candidate Generation: FP Growth Algorithm4-20
4.9.1	FP-Tree Algorithm4-20
4.9.2	FP-Tree Size4-21
4.9.3	Example of FP Tree4-21
4.9.4	Mining Frequent Patterns from FP Tree4-23
4.9.5	Benefits of the FP-Tree Structure4-27
✓	Syllabus Topic : Mining Various Kinds of Association Rules4-27
4.10	Mining Various Kinds of Association Rules4-27
4.10,1	Mining Multilevel Association Rules4-27
✓	Syllabus Topic : Constraint based Association Rule Mining4-29
4.10.2	Constraint based Association Rule Mining4-29
✓	Syllabus Topic : Metarule-Guided Mining of Association Rule4-29
4.10.3	Metarule-Guided Mining of Association Rule4-29
4.11	Solved University Question and Answer4-29

UNITV

Chapter 5: Classification

5-1 to 5-34

Syllabus:

Introduction to : Classification and Regression for Predictive Analysis, Decision Tree Induction, Rule-Based Classification: using IF-THEN Rules for Classification, Rule Induction Using a Sequential Covering Algorithm. Bayesian Belief Networks, Training Bayesian Belief Networks, Classification Using Frequent Patterns, Associative Classification, Lazy Learners-k-Nearest-Neighbor Classifiers, Case-Based Reasoning.

✓	Syllabus Topic: Introduction to: Classification and Regression for Predictive Analysis5-1
5.1	Introduction to : Classification and Regression for Predictive Analysis5-1
5.1.1	Classification is a Two Step Process5-1
5.1.2	Difference between Classification and Prediction 5-3
5.1.3	Issues Regarding Classification and Prediction5-3
5.1.4	Regression5-3
✓	Syllabus Topic: Decision Tree Induction5-5
5.2	Decision Tree Induction Classification Methods5-5
5.2.1	Appropriate Problems for Decision Tree Learning5-5
5.2.2	Decision Tree Representation5-5
5.2.3	Algorithm for Inducing a Decision Tree5-6
5.2.4	Tree Pruning5-7
5.2.5	Examples of ID35-7
✓	Syllabus Topic: Rule-Based Classification
5.3	Rule-Based Classification: using IF-THEN Rules for Classification5-27
5.3.1	Rule Coverage and Accuracy5-28
5.3.2	Characteristics of Rule-Based Classifier5-28
*	Syllabus Topic: Rule Induction Using a Sequential Covering Algorithm5-29
5.4	Rule Induction Using a Sequential Covering Algorithm5-29

6.2