Ch 10. 차원 축소와 척도 학습

10.1 k-최근접 이웃 기법 10.2 임베딩 10.3 주성분 분석

10.1.1 k-최근접이웃기법K-Nearest Neighbor, KNN

■ k-최근접 이웃 기법 (k-Nearest Neighbor, KNN)

새로운 데이터가 주어졌을 때, 기존 데이터 가운데 **가장 가까운 k개 이웃의 정보**를 바탕으로 예측 거리 척도에 기반

- 지도 학습 Supervised Learning
- 게으른 학습 Lazy Learning

10.1.2 KNN의하り町田中中日Hyperparameter of KNN

■ 거리 계산법

• 유클리디안 거리

$$\|\mathbf{p} - \mathbf{q}\| = \sqrt{(\mathbf{p} - \mathbf{q}) \cdot (\mathbf{p} - \mathbf{q})} = \sqrt{\|\mathbf{p}\|^2 + \|\mathbf{q}\|^2 - 2\mathbf{p} \cdot \mathbf{q}}.$$

• 맨하탄 거리

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p}-\mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|$$

• 마할라노비스 거리

$$D_M(ec{x}) = \sqrt{(ec{x} - ec{\mu})^T S^{-1} (ec{x} - ec{\mu})}.$$

10.1.2 KNN의하り町田中山目Hyperparameter of KNN

■ 탐색할 이웃 수, k

- *k* 가 너무 작을 경우 → **Overfitting**
- *k* 가 너무 클 경우 → Underfitting

1-nearest neighbours

10.1.2 KNN의하り町田卍印目Hyperparameter of KNN

- 탐색할 이웃 수, k
 - *k* 가 너무 작을 경우 → **Overfitting**
 - *k* 가 너무 클 경우 → Underfitting

■ Best K? → Greedy Algorithm

10.1.3 KNN수행시고려해야할점

■ Cut-off 기준 설정

학습데이터 범주의 **사전확률**을 고려해야 함 (특히, 범주 간 비율이 불균형한 데이터일 경우) ex) 제조업 정상 / 불량 데이터 분류 문제 (범주 비율 정보 – 정상 : 0.8 / 불량 : 0.2)

■ 변수 정규화

모든 특성들을 고르게 반영하기 위해 정규화가 필요

도시	인구(명)	미세먼지농도(µg/m³)	
서울	1000만	200	
시애틀	67만	40	

10.1.4 KNN의장단점

■ 장점

- Robust Model: 학습데이터 내에 있는 노이즈, Outlier의 영향을 크게 받지 않음
- 단순한 모델이지만, 적은 오차범위 : $Err(1 NN) \le 2 * IdealErr$

■ 단점

- 데이터 각각의 특성에 맞게 하이퍼파라미터 튜닝 해야 함
- 높은 계산복잡도

10.2.0 차원의저주 Curse of Dimensionality

■ 차원의 저주 (Curse of Dimensionality)

When the dimensionality increases, the volume of the space increases so fast that the available data become sparse.

차원이 커질수록, 데이터 공간에서 데이터 샘플이 희박해진다

차원이 증가함에 따라 model complexity는 기하급수적으로 높아지고, 한정된 자료가 설명 할 수 있는 공간은 줄어들게 됨.

10.2.0 차원의저주 Curse of Dimensionality

■ 고차원 데이터의 한계점

- 변수 多: 불필요한 변수 존재
- 시각화 어려움
- 계산 복잡도 증가 : 모델링 비효율적

이를 극복하는 방법 중 하나는, **차원을 축소**시키는 것!

10.2.1 차원축소 Dimension Reduction

 $Z_1 = X_1 + 0.2*X_2$ $Z_2 = X_3 - 2*X_5$ $Z_3 = X_4 + X_6 - X_9$

Variable selection

X _I	X ₅	X ₈

Xı	X ₂	X ₃	 X_n
		•••	

Variable extraction

Z _I	Z ₂	Z_3

변수선택 (Feature Selection)

전체 특성 중 유의미한 특성만을 선택

- 선택한 변수 해석 용이
- 변수 간 상관관계 고려 어려움
- 변수추출 (Feature Extraction)

기존 특성을 조합하여 새로운 변수 추출

- 변수 간 상관관계 고려 + 극적인 차원축소 가능
- ← 추출된 변수의 해석이 어려움

10.2.2 다차원스케일링 Multiple Dimensional Scaling, MDS

■ 다차원 스케일링 (Multiple Dimensional Scaling)

d 차원 공간 상에 있는 객체 간 거리를 최대한 보존하는 저차원의 좌표계를 찾고자 함 비음수성 / 동일성 / 대칭성 / 삼각부등식 성질 만족

10.2.2 다차원스케일링 Multiple Dimensional Scaling, MDS

■ MDS 알고리즘

BInner product matrix

ZCoordinate matrix

입력: 거리 행렬 $\mathbf{D} \in \mathbb{R}^{m \times m}$, 원소 $dist_{ij}$ 는 샘플 x_i 에서 x_j 까지의 거리 저차원 공간 차원수 d'

과정:

- 1: 식 10.7~10.9에 따라 $dist_{i}^{2}$, $dist_{.j}^{2}$, $dist_{.i}^{2}$ 을 계산
- 2: 식 10.10에 따라 행렬 B를 계산
- 3: 행렬 B에 대해 고윳값 분해 실행
- 4: $\tilde{\Lambda}$ d'개 최대 고윳값으로 구성된 대각 행렬로, $\tilde{\mathbf{V}}$ 에 상응하는 고유 벡터 행렬로 하여 값을 구한다
- 출력: 행렬 $\tilde{\mathbf{\Lambda}} \tilde{\mathbf{V}}^{1/2} \in \mathbb{R}^{m \times d'}$, 각 행은 한 샘플의 저차원 좌표
- 1. 객체 간 근접도 (유사도) 행렬 생성
- 2. 거리 행렬 D를 통해 내적 행렬 B 도출
- 3. B에 대해 고윳값 분해
- 4. 거리 정보를 최대한 보존하는 좌표 시스템 (Z) 찾기

10.3.0 주성분분석개요 Principal Component Analysis, PCA

■ 주성분 분석 (Principal Component Analysis, PCA)

고차원 데이터를 효과적으로 분석하기 위한 대표적인 분석 기법

10.3.0 주성분분석개요 Principal Component Analysis, PCA

■ 주성분 분석 (Principal Component Analysis, PCA)

차원을 줄이면서, 정보의 손실을 최소화하는 새로운 축을 찾아내는 기법

10.3.0 주성분분석개요 Principal Component Analysis, PCA

■ 주성분 분석 (Principal Component Analysis, PCA)

차원을 줄이면서, **정보의 손실을 최소화**하는 새로운 축을 찾아내는 기법

10.3.1 PCA 알고리즘

■ PCA 알고리즘

1. Mean Centering

- X_i 의 평균이 0이라면 2. 샘플의 공분산 행렬 XX^T 구하기
- 3. 공분산 행렬 XX^T 에 대하여 고윳값 분해
- 4. eigenvalue와 eigenvector 구하여 정렬

$$\lambda(1) > \lambda(2) > \lambda(3) > \lambda(4) > \lambda(5)$$
 $e(1) > e(2) > e(3) > e(4) > e(5)$ is a vector

5. 정렬된 eigenvector를 토대로 기존 변수 선형변환

$$W_1 = e(1)X = e_{11} \cdot X_1 + e_{12} \cdot X_2 + \dots + e_{15} \cdot X_5$$

...
 $W_5 = e(5)X = e_{51} \cdot X_1 + e_{52} \cdot X_2 + \dots + e_{55} \cdot X_5$

10.3.2 PCA 예제

Step 1. Mean Centering

$$\mathbf{X} = \begin{array}{|c|c|c|c|c|c|}\hline X_1 & X_2 & X_3 \\ \hline 0.2 & 5.6 & 3.56 \\ \hline 0.45 & 5.89 & 2.4 \\ \hline 0.33 & 6.37 & 1.95 \\ \hline 0.54 & 7.9 & 1.32 \\ \hline 0.77 & 7.87 & 0.98 \\ \hline \end{array}$$

$$\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 \\ -1.1930 & -1.0300 & 1.5012 \\ -0.0370 & -0.7647 & 0.3540 \\ -0.5919 & -0.3257 & -0.0910 \\ 0.3792 & 1.0739 & -0.7140 \\ 1.4427 & 1.0464 & -1.0502 \end{bmatrix}$$

(normalize X to $E(X_i)=0$, $Var(X_i)=1$)

■ Step 2. 샘플의 공분산 행렬 구하기

$$\Sigma = rac{1}{n} X^T X$$

0.0468	0.1990	-0.1993
0.1990	1.1951	-1.0096
-0.1993	-1.0096	1.0225

10.3.2 PCA예제

■ Step 3. 공분산 행렬 고윳값 분해 (Singular Value Decomposition, SVD)

The eigenvalue-eigenvector pairs on the correlation matrix, Σ

$$[E \wedge V] = svd(\Sigma)$$

$$\lambda_1 = 0.0786, \qquad e_1^T = [0.2590 \quad 0.5502 \quad 0.7938]$$
 $\lambda_2 = 0.1618, \qquad e_2^T = [0.7798 \quad -0.6041 \quad 0.1643]$
 $\lambda_3 = 2.7596, \qquad e_3^T = [0.5699 \quad 0.5765 \quad -0.5855]$

10.3.2 PCA예제

■ Step 4. eigenvalue와 eigenvector 구하여 정렬

$$\lambda_{1} = 0.0786, e_{1}^{T} = \begin{bmatrix} 0.2590 & 0.5502 & 0.7938 \end{bmatrix} \\ \lambda_{2} = 0.1618, e_{2}^{T} = \begin{bmatrix} 0.7798 & -0.6041 & 0.1643 \end{bmatrix} \\ \lambda_{3} = 2.7596, e_{3}^{T} = \begin{bmatrix} 0.5699 & 0.5765 & -0.5855 \end{bmatrix}$$
, $\mathbf{X} = \begin{bmatrix} \mathbf{X}_{1} & \mathbf{X}_{2} & \mathbf{X}_{3} \\ -1.1930 & -1.0300 & 1.5012 \\ -0.0370 & -0.7647 & 0.3540 \\ -0.5919 & -0.3257 & -0.0910 \\ 0.3792 & 1.0739 & -0.7140 \\ \hline 1.4427 & 1.0464 & -1.0502 \end{bmatrix}$ (normalize X to E(X_i)=0, Var(X_i)=1)

■ Step 5. 기존 변수 선형 변환

$$Z_1 = e_1^T X = 0.5699 \cdot X_1 + 0.5765 \cdot X_2 - 0.5855 \cdot X_3 = 0.5699 \cdot \begin{bmatrix} -1.1930 \\ -0.0370 \\ -0.5919 \\ 0.3792 \\ 1.4427 \end{bmatrix} + 0.5765 \cdot \begin{bmatrix} -1.0300 \\ -0.7647 \\ -0.3257 \\ 1.0739 \\ 1.0464 \end{bmatrix} - 0.5855 \cdot \begin{bmatrix} 1.5012 \\ 0.3540 \\ -0.0910 \\ -0.7140 \\ -1.0502 \end{bmatrix} = \begin{bmatrix} -2.1527 \\ -0.6692 \\ -0.4718 \\ 1.2533 \\ 2.0404 \end{bmatrix}$$

$$Z_{2} = e_{2}^{T} X = \begin{bmatrix} -0.0615 \\ 0.4912 \\ -0.2798 \\ -0.4703 \\ 0.3204 \end{bmatrix} \qquad Z_{3} = e_{3}^{T} X = \begin{bmatrix} 0.3160 \\ -0.1493 \\ -0.4047 \\ 0.1223 \\ 0.1157 \end{bmatrix} \qquad \therefore Z = \begin{bmatrix} -2.1527 & -0.0615 & 0.3160 \\ -0.6692 & 0.4912 & -0.1493 \\ -0.4718 & -0.2798 & -0.4047 \\ 1.2533 & -0.4703 & 0.1223 \\ 2.0404 & 0.3204 & 0.1157 \end{bmatrix}$$

10.3.3 PCA의이해

■ Eigenvalues와 PC Scores

 $\lambda(i), \qquad i=1,\ldots,p$

Eigenvalues of the covariance matrix

Variances of each principal component

10.3.4 몇개의주성분?

Scree Plot

주성분의 개수와, 총 분산 중 설명하는 비율을 보여주는 Plot

- Elbow Point
- Cut-off (보통 70% 이상)

10.3.5 PCA의 한계점

■ 데이터의 분포가 비선형적일 경우 적용하기 어려움

10.3.5 PCA의한계점

■ 분류 / 예측 자체에 주요한 변수 추출은 X

■ 결과 해석이 어려움

	PCA factor			
Variable	1	2	3	4
Distance to main city	0.83	0.10	-0.13	0.01
Total area of the farm (ha)	0.10	0.01	0.81	0.13
Number of land division in the				
farms/total area	-0.76	-0.21	-0.39	-0.05
Hectares of pastures/total area	-0.52	0.42	-0.36	0.38
Hectares of grassland/total area	0.30	-0.94	0.11	0.05
Hectares of exotic woodland/total area	-0.11	-0.01	-0.04	-0.68
Hectares of native woodland/total area	0.29	0.82	0.21	0.04
Number of cattle on each farm	0.01	0.01	-0.78	0.23
Intensity of hunting	0.07	0.19	0.09	0.75
Number of dogs living on the farm	-0.84	0.28	0.07	0.01
Eigenvalue	2.4	1.9	1.6	1.3
Percentage of variance explained	23.9	19.3	16.3	12.6

Efc. 참고자료

■ 고려대학교 김성범,강필성 교수님 강의

- <u>Dimensionality Reduction MDS</u>
- Principal Component Analysis (PCA, 주성분 분석)

■ 참고 블로그

- ratsgo's blog
- Data Science by Yngie