Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*

Test 16

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea întreagă a numărului $2 + 3\sqrt{5}$.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4x + 5$, $g: \mathbb{R} \to \mathbb{R}$, g(x) = 2 x și $h: \mathbb{R} \to \mathbb{R}$, h(x) = 2 + x. Arătați că $(f \circ g)(x) = (f \circ h)(x)$, pentru orice număr real x.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} + \sqrt{3-x} = 2\sqrt{3}$.
- **5p 4.** Se consideră mulțimea $A = \{1, 2, 3, ..., 30\}$. Determinați numărul de elemente ale mulțimii A care sunt divizibile cu 2 sau cu 3.
- **5p 5.** Se consideră triunghiul ABC, punctul G, centrul său de greutate și punctele M și N astfel încât $\overrightarrow{BM} = \frac{1}{4}\overrightarrow{BA}$ și $\overrightarrow{CN} = \frac{2}{5}\overrightarrow{CA}$. Arătați că punctele M, N și G sunt coliniare.
- **5p 6.** Arătați că, dacă triunghiul ABC este înscris într-un cerc de rază $\frac{1}{2}$, atunci $\cos^2 A = 1 BC^2$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a) = \begin{pmatrix} 2 & 0 \\ a & 2 \end{pmatrix}$, unde a este număr real.
- **5p a**) Arătați că $\det(A(a)) = 4$, pentru orice număr real a.
- **5p b**) Arătați că $A(a) \cdot A(b) = 2A(a+b)$, pentru orice numere reale a și b.
- **5p** c) Determinați numărul real x și numărul natural n pentru care $A(1) \cdot A(2) \cdot ... \cdot A(5) = 2^n A(x)$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = x + y 7$.
- **5p a)** Arătați că $5 \circ 2 = 0$.
- **5p b**) Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = 7 + \log_7 x$. Arătați că $f(x) \circ f(y) = f(xy)$, pentru orice $x, y \in (0,+\infty)$.
- **5p** c) Demonstrați că $a^2 \circ b^2 \neq 0$, pentru orice numere întregi a și b.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^{2x}(x-5)$.
- **5p a**) Arătați că $f'(x) = e^{2x}(2x-9), x \in \mathbb{R}$.
- **5p b)** Calculați $\lim_{x \to +\infty} \frac{f'(x)}{f(x)}$.
- **5p** c) Arătați că $e^{2x} \le \frac{e^9}{2(5-x)}$, pentru orice $x \in (-\infty,5)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.
- **5p** a) Arătați că $\int_{0}^{2} f(x) \sqrt{x^2 + 1} dx = 2$.

5p b) Arătați că
$$\int_{1}^{2} \left(f(x) + f\left(\frac{1}{x}\right) \right) dx = \sqrt{5} - \sqrt{2} + \ln \frac{2 + \sqrt{5}}{1 + \sqrt{2}}$$
.

5p c) Determinați
$$a \in (1, +\infty)$$
 astfel încât $\int_{0}^{x} f(e^{t})dt = \ln(e^{x} + \sqrt{e^{2x} + 1}) + \ln(a - 1)$, pentru orice număr real x .