A DISKRETNA MATEMATIKA i ALGEBRA

- 22.01.2017.
- \mathcal{A} . Data je tačka P, i prava a određena tačkom $A \in a$ i vektorom pravca \vec{a} , pri čemu $P \notin a$. U funkciji od \vec{r}_P , \vec{r}_A i \vec{a} izraziti vektore položaja tačaka Q i R takvih da je PQR jednakostranični trougao kod kojeg je $PQ \parallel a$ i $R \in a$.
- Neka su a = (-2, 3, 4), b = (-3, 1, -1), c = (5, 3, 11) elementi prostora \mathbb{R}^3 , i neka je V = Lin(a, b, c). Naći dimenziju prostora V i sve potskupove skupa $\{a, b, c\}$ koji su baza prostora V. Napisati jednačinu skupa V.
- Neka je $a_1=(-2,-3),\ a_2=(1,2),\ b_1=(-1,p),\ b_2=(3,1).$ Neka je $f:\mathbb{R}^2\to\mathbb{R}^2$ linearna transformacija za koju je $f(a_1)=b_1$ i $f(a_2)=b_2$. Odrediti matricu linearne transformacije f. U zavisnosti od parametra $p\in\mathbb{R}$ diskutovati dim $(f(\mathbb{R}^2))$.

B DISKRETNA MATEMATIKA i ALGEBRA

22.01.2017.

- **1.** Data je tačka F, i prava b određena tačkom $B \in b$ i vektorom pravca \vec{b} , pri čemu $F \notin b$. U funkciji od \vec{r}_F , \vec{r}_B i \vec{b} izraziti vektore položaja tačaka G i H takvih da je FGH jednakostranični trougao kod kojeg je $FG \parallel b$ i $H \in b$.
- **2.** Neka su $a=(-3,1,-2),\ b=(2,1,2),\ c=(12,1,10)$ elementi prostora \mathbb{R}^3 , i neka je $V=\mathrm{Lin}(a,b,c)$. Naći dimenziju prostora V i sve potskupove skupa $\{a,b,c\}$ koji su baza prostora V. Napisati jednačinu skupa V.
- **3.** Neka je $a_1=(2,5),\ a_2=(1,2),\ b_1=(-p,2),\ b_2=(-2,1).$ Neka je $f:\mathbb{R}^2\to\mathbb{R}^2$ linearna transformacija za koju je $f(a_1)=b_1$ i $f(a_2)=b_2$. Odrediti matricu linearne transformacije f. U zavisnosti od parametra $p\in\mathbb{R}$ diskutovati dim $(f(\mathbb{R}^2))$.

C DISKRETNA MATEMATIKA i ALGEBRA

22.01.2017.

- 1. Data je tačka X, i prava c određena tačkom $C \in c$ i vektorom pravca \vec{c} , pri čemu $X \notin c$. U funkciji od \vec{r}_X , \vec{r}_C i \vec{c} izraziti vektore položaja tačaka Y i Z takvih da je XYZ jednakostranični trougao kod kojeg je $XY \parallel c$ i $Z \in c$.
- **2.** Neka su a = (2, 1, -3), b = (1, 2, 3), c = (7, 8, 3) elementi prostora \mathbb{R}^3 , i neka je V = Lin(a, b, c). Naći dimenziju prostora V i sve potskupove skupa $\{a, b, c\}$ koji su baza prostora V. Napisati jednačinu skupa V.
- **3.** Neka je $a_1 = (2,3)$, $a_2 = (1,1)$, $b_1 = (-1,2)$, $b_2 = (2,p)$. Neka je $f: \mathbb{R}^2 \to \mathbb{R}^2$ linearna transformacija za koju je $f(a_1) = b_1$ i $f(a_2) = b_2$. Odrediti matricu linearne transformacije f. U zavisnosti od parametra $p \in \mathbb{R}$ diskutovati $\dim(f(\mathbb{R}^2))$.

D DISKRETNA MATEMATIKA i ALGEBRA

22.01.2017.

- **1.** Data je tačka V, i prava d određena tačkom $D \in d$ i vektorom pravca \vec{d} , pri čemu $V \notin d$. U funkciji od \vec{r}_V , \vec{r}_D i \vec{d} izraziti vektore položaja tačaka N i K takvih da je VNK jednakostranični trougao kod kojeg je $VN \parallel d$ i $K \in d$.
- **2.** Neka su a = (-1, 3, 2), b = (3, 1, -1), c = (-7, -9, -1) elementi prostora \mathbb{R}^3 , i neka je V = Lin(a, b, c). Naći dimenziju prostora V i sve potskupove skupa $\{a, b, c\}$ koji su baza prostora V. Napisati jednačinu skupa V.
- **3.** Neka je $a_1=(2,-1),\ a_2=(1,-1),\ b_1=(1,3),\ b_2=(-2,p).$ Neka je $f:\mathbb{R}^2\to\mathbb{R}^2$ linearna transformacija za koju je $f(a_1)=b_1$ i $f(a_2)=b_2$. Odrediti matricu linearne transformacije f. U zavisnosti od parametra $p\in\mathbb{R}$ diskutovati dim $(f(\mathbb{R}^2))$.

A REŠENJA:

1. Neka je P_1 projekcija tačke P na na pravu a, dakle $\vec{r}_{P_1} = \vec{r}_A + \frac{(\vec{r}_P - \vec{r}_A)\vec{a}}{\vec{a}\vec{a}}\vec{a}$. $|PP_1|$ je dužina visine trougla PQR, te je dužina stranice trougla $|PQ| = \frac{2}{\sqrt{3}}|PP_1|$. Tako dobijamo (postoje dva rešenja) $\vec{r}_Q = \vec{r}_P \pm \frac{2}{\sqrt{3}}|PP_1|\frac{\vec{a}}{|\vec{a}|}$ i $\vec{r}_R = \vec{r}_{P_1} + \frac{1}{2}\overrightarrow{PQ}$.

2. dim
$$V = \text{rang} \begin{bmatrix} -2 & -3 & 5 \\ 3 & 1 & 3 \\ 4 & -1 & 11 \end{bmatrix} = \text{rang} \begin{bmatrix} a: & b: & c: \\ 0 & 0 & 0 \\ 7 & 0 & 14 \\ 4 & -1 & 11 \end{bmatrix} = 2,$$

Svaka dva od vektora skupa $\{a,b,c\}$ su nekolinearna tj. linearno nezavisna jer su im koordinate neproporcionalne, te je su svi dvočlani skupovi $\{a,b\},\{a,c\},\{b,c\}$ baze prostora V. Kako je dimV=2, sledi da je V ravan koja sadrži koordinatni početak. Jedan njen vektor normale je npr. $a\times b=(-7,-14,7)\parallel (-1,-2,1)$, te jednačina ravni V glasi -x-2y+z=0.

3. Za matricu $M_f = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ je $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ · $\begin{bmatrix} -2 \\ -3 \end{bmatrix} = \begin{bmatrix} -1 \\ p \end{bmatrix}$ i $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ · $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, što je ekvivalentno sa sistemom linearnih jednačina $\begin{pmatrix} -2a & -3b & = -1 \\ a & +2b & = 3 \end{pmatrix}$ · $\begin{pmatrix} -2c & -3d & = p \\ c & +2d & = 1 \end{pmatrix}$ čijim rešavanjem dobijamo da je $M_f = \begin{bmatrix} -7 & 5 \\ -2p - 3 & p + 2 \end{bmatrix}$. Kako je dim $(f(\mathbb{R}^2)) = \operatorname{rang} M_f \in \{1, 2\}$, iz det $M_f = 3p + 1$ sledi da je dim $(f(\mathbb{R}^2)) = \begin{cases} 2 & p \neq -\frac{1}{3} \\ 1 & p = -\frac{1}{2} \end{cases}$.

B REŠENJA:

1. Neka je F_1 projekcija tačke F na na pravu b, dakle $\vec{r}_{F_1} = \vec{r}_B + \frac{(\vec{r}_F - \vec{r}_B)\vec{b}}{\vec{b}\vec{b}}\vec{b}$. $|FF_1|$ je dužina visine trougla $|FG| = \frac{2}{\sqrt{3}}|FF_1|$. Tako dobijamo (postoje dva rešenja) $\vec{r}_G = \vec{r}_F \pm \frac{2}{\sqrt{3}}|FF_1|\frac{\vec{b}}{|\vec{b}|}$ i $\vec{r}_H = \vec{r}_{F_1} + \frac{1}{2}\overrightarrow{FG}$.

2. dim
$$V = \text{rang} \begin{bmatrix} a: & b: & c: \\ -3 & 2 & 12 \\ 1 & 1 & 1 \\ -2 & 2 & 10 \end{bmatrix} = \text{rang} \begin{bmatrix} a: & b: & c: \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 4 & 12 \end{bmatrix} = 2,$$

Svaka dva od vektora skupa $\{a,b,c\}$ su nekolinearna tj. linearno nezavisna jer su im koordinate neproporcionalne, te je su svi dvočlani skupovi $\{a,b\}$, $\{a,c\}$, $\{b,c\}$ baze prostora V. Kako je dimV=2, sledi da je V ravan koja sadrži koordinatni početak. Jedan njen vektor normale je npr. $a\times b=(4,2,-5)$, te jednačina ravni V glasi 4x+2y-5z=0.

C REŠENJA:

1. Neka je X_1 projekcija tačke X na na pravu c, dakle $\vec{r}_{X_1} = \vec{r}_C + \frac{(\vec{r}_X - \vec{r}_C)\vec{c}}{\vec{c}\vec{c}}\vec{c}$. $|XX_1|$ je dužina visine trougla XYZ, te je dužina stranice trougla $|XY| = \frac{2}{\sqrt{3}}|XX_1|$. Tako dobijamo (postoje dva rešenja) $\vec{r}_Y = \vec{r}_X \pm \frac{2}{\sqrt{3}}|XX_1|\frac{\vec{c}}{|\vec{c}|}$ i $\vec{r}_Z = \vec{r}_{X_1} + \frac{1}{2}\overrightarrow{XY}$.

2.
$$\dim V = \operatorname{rang} \begin{bmatrix} a: & b: & c: \\ 2 & 1 & 7 \\ 1 & 2 & 8 \\ -3 & 3 & 3 \end{bmatrix} = \operatorname{rang} \begin{bmatrix} a: & b: & c: \\ 0 & -3 & -9 \\ 1 & 2 & 8 \\ 0 & 0 & 0 \end{bmatrix} = 2,$$

Svaka dva od vektora skupa $\{a,b,c\}$ su nekolinearna tj. linearno nezavisna jer su im koordinate neproporcionalne, te je su svi dvočlani skupovi $\{a,b\}$, $\{a,c\}$, $\{b,c\}$ baze prostora V. Kako je dimV=2, sledi da je V ravan koja sadrži koordinatni početak. Jedan njen vektor normale je npr. $a\times b=(9,-9,3)\parallel (3,-3,1)$, te jednačina ravni V glasi 3x-3y+z=0.

D REŠENJA:

1. Neka je V_1 projekcija tačke V na na pravu d, dakle $\vec{r}_{V_1} = \vec{r}_D + \frac{(\vec{r}_V - \vec{r}_D)\vec{d}}{d\vec{d}}\vec{d}$. $|VV_1|$ je dužina visine trougla VNK, te je dužina stranice trougla $|VN| = \frac{2}{\sqrt{3}}|VV_1|$. Tako dobijamo (postoje dva rešenja) $\vec{r}_N = \vec{r}_V \pm \frac{2}{\sqrt{3}}|VV_1|\frac{\vec{d}}{|\vec{d}|}$ i $\vec{r}_K = \vec{r}_{V_1} + \frac{1}{2}\overrightarrow{VN}$.

2. dim
$$V = \text{rang} \begin{bmatrix} a: & b: & c: \\ -1 & 3 & -7 \\ 3 & 1 & -9 \\ 2 & -1 & -1 \end{bmatrix} = \text{rang} \begin{bmatrix} a: & b: & c: \\ -1 & 3 & -7 \\ 0 & 10 & -30 \\ 0 & 0 & 0 \end{bmatrix} = 2,$$

Svaka dva od vektora skupa $\{a,b,c\}$ su nekolinearna tj. linearno nezavisna jer su im koordinate neproporcionalne, te je su svi dvočlani skupovi $\{a,b\}$, $\{a,c\}$, $\{b,c\}$ baze prostora V. Kako je dimV=2, sledi da je V ravan koja sadrži koordinatni početak. Jedan njen vektor normale je npr. $a\times b=(-5,5,-10)\parallel (-1,1,-2)$, te jednačina ravni V glasi -x+y-2z=0.