Assignment 2

Christopher Tait - S3899475

2. Nondeterminism

a)

I constructed this NFA by slowly adding transitions, and making sure that the converted DFA Form after each transition was added did not have many states.

DFA form:

b)

This NFA was constructed by chance when I was trying to constuct one that had a DFA with 2 or 3 states.

DFA form:

C)
To construct this NFA, I first removed the bottom lambda transition and then tested adding transitions to see what would increase the final state cound the most.

DFA Form:

3. Pumping Lemma

a

Claim: The language $L_1 = \{1^i 2^j 3^{2i} 2^j 1^i\}$ is not regular.

To prove that this language is not regular, I will first prove that a part of it is not regular.

Claim: The language $L_2 = \{1^i 2^j 3^{2i}\}$ is not regular.

Proof:

Assume L is regular, then the Pumping Lemma will apply.

This means there is an integer $n \ge 1$ that for some string $w \in L_2$, where $|w| \ge n$, w=xyz such that:

- 1. |xy| ≤ n
- 2. $y! = \lambda$
- 3. $xy^iz \in L$, for $i \ge 0$

When w = $1^n 2^n 3^{2n}$ by the Pumping Lemma, w=xyz= $1^n 2^n 3^{2n}$ and $|xy| \le n$

Using $y = 1^j$ for some $1 \le j \le n$

Choose i=3 and consider xyyyz = $1^{n+2j}2^n3^{2n}$

By the Pumping Lemma, $xyyyz \in L_2$ but this is not the case as 2(n+2j)! = 2n, so we have a contradiction

Hence L_2 is not regular and L_1 , by extension is not either

b)

Same as (a) except using w=1ⁿ3²ⁿ and i=0

Claim: The language $L_1 = \{1^i 2^j 3^{2i} 2^j 1^i\}$ is not regular.

To prove that this language is not regular, I will first prove that a part of it is not regular.

Claim: The language $L_3 = \{1^i 2^j 3^{2i}\}$ is not regular.

Proof:

Assume L is regular, then the Pumping Lemma will apply.

This means there is an integer $n \ge 1$ that for some string $w \in L_3$, where $|w| \ge n$, w = xyz such that:

- |xy| ≤ n
- $y! = \lambda$
- $xy^iz \in L$, for $i \ge 0$

When $w = 1^{i}2^{0}3^{2i} = 1^{n}3^{2n}$, by the Pumping Lemma, $w = xyz = 1^{n}3^{2n}$ and $|xy| \le n$

Using $y = 1^j$ for some $1 \le j \le n$

Choose i=0 and consider $xz = 1^{n-j}3^{2n}$

By the Pumping Lemma, $xz \in L_2$ but this is not the case as 2(n-j)! = 2n, so we have a contradiction.

Hence L_3 is not regular and L_1 by extension is not regular either.

Most steps remain the same as the 2^{j} is not used in the original proof. Only the last few steps are changed, because w is different.

c)

Correct Proof

Claim: The language L={1ⁱ2ⁱ#3²ⁱ@2ⁱ1ⁱ} is not context free

Proof: Assume L is context-free. Then the Pumping Lemma applied and so for some $n \ge 1$ such that for all $w \in L$ such that $|w| \ge n$, w=xyzuv where:

- |yzu| ≤ n
- $y! = \lambda$ or $u! = \lambda$
- xyⁱzuⁱv ∈ L for all i ≥ 0

Choose $w = 1^n 2^n \# 3^{2n} @ 2^n 1^n$ and so $w \in L$ and $|w| \ge n$. So by the Pumping Lemma $w = xyzuv = 1^n 2^n \# 3^{2n} @ 2^n 1^n$ and $|yzu| \le n$. This means that y and u can contain at most two of 1, 2 and 3. We will refer to the part of the string before # as zone 1, the part of the string between # and @ as zone 2, and the part of the string after @ as zone 3.

Now if y or u contains # or @, then clearly $xy^2zu^2v \notin L$, as this would contain two occurrences of either # or @.

Hence neither u nor v contains either # or @.

Now note that both y and u can only cover at most two of zone 1, zone 2, and zone 3, as $|yzu| \le n$. This means that $xy^2zu^2v \notin L$, as one of the zones will have the same string as w, but the other two will have longer strings, and hence xy^2zu^2v is not of the form $1^i2^i\#3^{2i}@2^i1^i$. This is a contradiction, and so L2 is not context-free.

4. Intracability

For this section I used the website https://tspvis.com/ to simulate the Travelling Salesperson Problem. I used the depth first search algorithm (a brute force algorithm) to find the complete solution. The input data was constructed by placing a point on the capital of each australian state and territory, in order of decreasing population of state. This means that the order of cities added was:

- 3. Melbourne, Brisbane, Sydney
- 4. Perth
- 5. Adelaide
- 6. Hobart
- 7. Canberra
- 8. Alice Springs
- 9. Norfolk Island

Complete solution: Depth first search

The two estimations I used were the Nearest Neighbour algorithm, which is a simple greedy algorithm, and the Furthests Insetion algorithm. Unfortunately, both algorithms did not take long to complete, even with the maximum number of 200 points. The Nearest Neighbour algorithm still took about 1s and the Furthest Insertion took 3s.

n Brute Force Nearest Neighbour Furthest Insertion

3	1	1	1
4	3	1	1
5	2	1	1
6	7	1	1
7	48	1	1
8	337	1	1
9	2707	1	1

5. Creative Cloud

This image was created using Adobe Firefly with the prompt "A game that includes that platypus, which simulates a turing machine". I used this prompt to try and get something mechanical looking, and slected the final image from the four generated based on the one that had the correct number of legs.

6. Get Creative!

For this section I have chosen to extend my Langton's Ant simulator with 'boundaries'. The boundaries essentially make the turning machine that is Langton's Ant have a 2d looping tape to move on. These boundaries can be adusted using the mouse, and allow a lot more variations for different Langton's Ants, that have the same definition (e.g. turn left on a black square, turn right on a white one). The simulation runs in the browser and is now packaged into a single html file that will run on all modern browsers. The simulation can be downloaded here:

https://github.com/s3899475/COSC1107-Assignment-2/releases/download/v1/out.html

Reflection

From this creative project, I have learned of another example of how simple rules can turn into a complex, winding pattern. This phenomenon seems common in the world of mathematics and computing, and leads to many rabbit hole topics. I have never looked into Langton's Ant before, but have been interesting in generating images of fractals such as the mandelbrot set. If I were to do the project again, I would perhaps use pure JavaScript instead of the Nim language, as cross compiling to Javascript can lead to some loss of performance. Another idea would be to implement the Langton's ant using a GUI library, to acheive greater simulation performance.

7. The Platypus Game

a)

Class	Number	Percentage	
Reachable	1499	75%	
Unreachable	176	9%	
None	325	16%	

Reachable

Time taken for tournament: 1444.152 seconds

Wins: 1042279 Winless Machines: 0

Top 10 Machines:

Number	Wins	For	Against
200911315	1356	88142	36299
150566290	1356	87515	37061

Number	Wins	For	Against
180142529	1340	87599	38683
180289115	1335	78374	29264
157242778	1324	87490	21387
144071213	1319	82836	24544
169484218	1317	91729	28405
196206039	1316	83546	38475
169624512	1311	92039	28866
178908893	1307	80706	38185

Unreachable

Time taken for tournament: 34.296 seconds

Wins: 12335

Winless Machines: 0

Top 10 Machines:

Number	Wins	For	Against
176855009	165	25835	15461
138502054	156	25750	17362
143680804	156	25750	17362
159390644	156	25750	17362
163642809	156	25750	17362
174154661	156	25750	17362
186661941	156	25750	17362
243414685	156	23728	16920
197303116	155	23408	16594
150037820	151	21358	16441

None

Time taken for tournament: 120.339 seconds

Wins: 47922

Winless Machines: 1

Top 10 Machines:

Number	Wins	For	Against
179585518	299	49595	31093
185106832	295	46523	32289
179053738	293	48075	31494
176990952	292	45640	30095
176433994	291	46440	29059
145036604	290	47145	31417
184568622	290	47145	31417
172660075	290	44395	30246

Number	Wins	For	Against
196346980	287	48435	30118
134269205	285	45640	32030

b)

For this task I have chosen to do an alternative tournament with the 'Green', 'Animal' and 'Check' combination of options. This tournament took 2686.145 seconds to run. The top 10 machines are as follows:

Number	Wins	For	Against
162814060	1995	160047	77183
179585518	1992	236395	119365
179457744	1991	176197	86780
172660075	1977	217505	113988
36324288	1966	227044	117949
11880700	1952	265714	133586
42748637	1945	194674	103927
179053738	1936	200424	118886
180289115	1936	99903	49022
42613953	1927	204141	112958

As seen above, the top 10 machines are completely different from the tournament run using the 'tree', 'tiebreaker' and 'terminate' options.

c)

If the tournament were to be run again, I would reccommend that:

- The tournament be run in a bracket based fashion, where each student's top 10 machines would face off against another student's machines, and the winner would enter in to the next round.
- Each player has a set number of lives, perhaps 3. When a player has a platypus on a green cell, they lose a life but the cell gets reverted to its initial state. The game ends when one player's lives are reduced to 0.