Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №3

Выполнение циклических команд

Вариант 49909

Выполнил:

Шмунк Андрей Александрович

Группа Р3108

Преподаватели:

Ткешелашвили Нино Мерабиевна

Клименков Сергей Викторович

Содержание

Задание	
Описание программы	
Область представления	
Эбласть допустимых значений	
•	
Грассировка программы	
Вывод	5

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

3A6:	03BB	3B4:	F003
3A7:	0200	3B5:	7EF3
3A8:	E000	3B6:	F801
3A9:	E000	3B7:	EEF1
3AA:	+ AF40	3B8:	83A8
3AB:	0680	3B9:	CEF8
3AC:	0500	3BA:	0100
3AD:	EEFB	3BB:	F900
3AE:	AF03	3BC:	F800
3AF:	EEF8	3BD:	F000
3B0:	AEF5		
3B1:	EEF5		
3B2:	AAF4	I	
3B3:	F204	l	

I	TC		TC		
Адрес	Код команды	Мнемоника	<u> </u>		
3A6	03BB	arr_first_element	Адрес первого элемента		
3A7	0200	arr_last_element	Адрес текущего элемента		
3A8	E000	arr_lenght	Количество элементов массива		
3A9	E000	result	Результат		
3AA	AF40	LD #40	Прямая загрузка 0040 -> АС		
3AB	0680	SWAB	Обмен старшего и младшего байтов		
3AC	0500	ASL	Арифметический сдвиг влево		
3AD	EEFB	ST IP-4	Прямое относительное сохранение AC -> M(3A9)		
3AE	AF03	LD #03	Прямая загрузка 0003 -> АС		
3AF	EEF8	ST IP-7	Прямое относительное сохранение AC -> M(3A8)		
3B0	AEF5	LD IP-10	Прямая относительная загрузка $M(3A6) -> AC$		
3B1	EEF5	ST-10	Прямое относительное сохранение AC -> M(3A7)		
3B2	AAF4	LD (IP-11)+	Косвенная автоинкрементная загрузка M(3A7)+=1; M(3A7)->AC		
3B3	F204	BMI IP+4	Если N==1, то IP+4+1 -> IP		
3B4	F003	BEQ IP+3	Если Z==1, то IP+3+1 -> IP		
3B5	7EF3	CMP IP-12	Установить флаги по результату AC-M(3A9)		
3B6	F801	BLT IP+1	Если меньше (N⊕V==1 / N!=V) IP+1+1 -> IP		
3B7	EEF1	ST -15	Прямое относительное сохранение AC -> M(3A8)		
3B8	83A8	LOOP 3A8	M(3A8)-1 -> M; Если M<=0, то IP+1->IP		
3B9	CEF8	JUMP IP-8	Прямой относительный прыжок IP-8+1 -> IP		
3BA	0100	HLT	Останов		
3BB	F900	-			
3BC	F800	-	Элементы массива		
3BD	F000	-	1		
		1	1		

Описание программы

Перебор всех элементов массива и поиск наибольшего положительного элемента с начала массива.

Область представления

arr_first_element, arr_last_element - 11-ти разрядные, адрес БЭВМ. arr_length, result - 16-ти разрядные целые числа, беззнаковое. arr[i] - 16-ти разрядные знаковые целые числа.

Область допустимых значений

```
arr_length \in [1; 127] result \in [0; 2^{16} - 1] arr_first_element \in [0; 3A6 - arr_length] \cup [3BB; 7FF] arr_last_element \in [arr_first_elem; arr_first_elem + arr_length - 1] Элементы массива arr[i] \in [-32768; 32767] (т. е. [-2^{15}; 2^{15} - 1])
```

Трассировка программы

	лняемая ианда	Содержимое регистров после выполнения команды					Ячейка, содержимое которой изменилось после выполнения команды					
Адрес	Код команды	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Новый код
3AA	AF40	3AB	AF40	3AA	0040	000	0040	0040	000	0000	-	-
3AB	680	3AC	0680	3AB	0680	000	03AB	4000	000	0000	-	-
3AC	500	3AD	0500	3AC	4000	000	03AC	8000	00A	1010	-	-
3AD	EEFB	3AE	EEFB	3A9	8000	000	FFFB	8000	00A	1010	3A9	8000
3AE	AF04	3AF	AF04	3AE	0004	000	0004	0004	000	0000	-	-
3AF	EEF8	3B0	EEF8	3A8	0004	000	FFF8	0004	000	0000	3A8	0004
3B0	AEF5	3B1	AEF5	3A6	0390	000	FFF5	0390	000	0000	-	-
3B1	EEF5	3B2	EEF5	3A7	0390	000	FFF5	0390	000	0000	3A7	0390
3B2	AAF4	3B3	AAF4	390	0007	000	FFF4	0007	000	0000	3A7	0391
3B3	F204	3B4	F204	3B3	F204	000	03B3	0007	000	0000	-	-
3B4	F003	3B5	F003	3B4	F003	000	03B4	0007	000	0000	-	-
3B5	7EF3	3B6	7EF3	3A9	8000	000	FFF3	0007	00A	1010	-	-
3B6	F801	3B7	F801	3B6	F801	000	03B6	0007	00A	1010	-	-
3B7	EEF1	3B8	EEF1	3A9	0007	000	FFF1	0007	00A	1010	3A9	0007
3B8	83A8	3B9	83A8	3A8	0003	000	0002	0007	00A	1010	3A8	0003
3B9	CEF8	3B2	CEF8	3B9	03B2	000	FFF8	0007	00A	1010	-	-
3B2	AAF4	3B3	AAF4	391	FFFE	000	FFF4	FFFE	008	1000	3A7	0392
3B3	F204	3B8	F204	3B3	F204	000	0004	FFFE	008	1000	-	-
3B8	83A8	3B9	83A8	3A8	0002	000	0001	FFFE	008	1000	3A8	0002
3B9	CEF8	3B2	CEF8	3B9	03B2	000	FFF8	FFFE	008	1000	-	-
3B2	AAF4	3B3	AAF4	392	000A	000	FFF4	000A	000	0000	3A7	0393
3B3	F204	3B4	F204	3B3	F204	000	03B3	000A	000	0000	-	-
3B4	F003	3B5	F003	3B4	F003	000	03B4	000A	000	0000	-	-
3B5	7EF3	3B6	7EF3	3A9	0007	000	FFF3	000A	001	0001	-	-
3B6	F801	3B7	F801	3B6	F801	000	03B6	000A	001	0001	-	-
3B7	EEF1	3B8	EEF1	3A9	000A	000	FFF1	000A	001	0001	3A9	000A

Вывод

В ходе лабораторной работы я научился работать с командами ветвления, циклами, и массивами. Изучил режимы адресации, в том числе прямую и косвенную.