MH4311 Cryptography

Lecture 3
One–Time Pad & Information Theory

Wu Hongjun

Lecture Outline

- Classical ciphers
- Symmetric key encryption
 - One-time pad & information theory
 - Block cipher
 - Stream cipher
- Hash function and Message Authentication Code
- Public key encryption
- Digital signature
- Key establishment and management
- Introduction to other cryptographic topics

Recommended Reading

- CTP Section 2.1, 2.2, 2.3, 2.4, 2.6
- HAC Section 2.1.1, 2.1.2, 2.1.3, 2.2

- Wikipedia:
 - One-time pad
 - http://en.wikipedia.org/wiki/One-time_pad
 - Information theory
 - http://en.wikipedia.org/wiki/Information_theory

Weakness of Vigenere cipher

- Key is expanded (repeated) so as to encrypt a long message using shift ciphers
 - Similar scheme being used in Microsoft Word 95
 - Key word is XORed with the plaintext
- Attack Vigenere cipher
 - Find key length:
 - Kasiski test or
 - Index of Coincidence
 - Then use frequency analysis to break each shift cipher

One-Time Pad (OTP)

- To strengthen Vigenere cipher, we can use the secure One-Time Pad:
 - Key generation
 - 1) truly random key
 - 2) key is as long as the message
 - Encryption
 - 3) each key is used to encrypt only one message (using shift ciphers)
 - ⇒The resulting cipher is unconditionally secure (it achieves perfect secrecy), i.e., unbreakable to attackers with unlimited computing resource

Example

Plaintext: nanyang

Key: XRTRPLK

Ciphertext: K

A BCDE FG H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

n->13 X->23 (13+23) mod 26 = 10->K

- Why do we call it One-Time Pad?
 - One-time: each key is used to encrypt only one message
 - Pad: in early implementations, key material distributed as a pad of paper
 - top sheet can be easily torn off and destroyed after use

- OTP is also called Vernam cipher
 - Invented by Gilbert Vernam (an AT&T engineer) in 1917

- Modern one-time pad deals with bit sequence
- Bit
 - A bit has value either 1 or 0
 - It is the most basic information unit
 - All the information on computer (such as operating system, application software, music, video, pdf files, word document files ...) are stored/processed as a sequence of bits
 - One byte consists of 8 bits
 - Byte is the commonly used information unit on computer

- Modern one-time pad deals with bit sequence
 - Instead of using "addition mod 26"
 - "addition mod 2" is used for bit sequence
 - "addition mod 2", also called XOR (exclusive OR)
 - "(a + b) mod 2" is denoted as "a XOR b", " $a \oplus b$ "
 - In C programming language, "a XOR b" is encoded as "a ^ b"
- Example:

Plaintext: 1010011000

Key: ⊕ 0110101110

Ciphertext: =

- The key must be randomly generated
 - In 1944–1945, the U.S. Army's Signals
 Intelligence Service was able to solve a one-time pad system used by the German Foreign Office for its high-level traffic, since the pads were not completely random the machine used to generate the pads produced predictable output

- Mainly limited to diplomacy and intelligence applications in history
 - Used by British Special Operations Executive in World War II
 - Used by spies in the Cold War
 - Used to protect the hotline between Moscow and Washington D.C. after the Cuban missile crisis

- Advantage
 - easy to encrypt/decrypt
 - perfect security
- Disadvantage
 - The key should not be reused
 - Due to key distribution mistake, the embassies of Soviet Union used the key of one-time pad more than once in WWII
 - Large key size for long message

- How to prove that one-time pad achieves perfect security?
 - One-time pad was believed to be secure

Its perfect secrecy was proven by Shannon (1948)

Claude Shannon (1912-2001)

"the father of information theory and cryptography"

Random variable

- A discrete random variable X takes certain values with certain probabilities
- The probability that the discrete random variable X takes on a particular value x is denoted as Pr[X = x]
- Let X denote the set of all the possible values of x, it must be true that

$$\sum_{x \in X} \mathbf{Pr}(\mathbf{X} = x) = 1$$

Example: Coin Toss

- The random variable X is the result of coin toss: head or tail
- The set of all the possible values of X: $X = \{\text{tail}, \text{head}\}$
- $Pr[X = tail] = Pr[X = head] = \frac{1}{2}$ (for a fair coin toss)

- Random variable example 2: English text
 - Let X be the random variable representing letters in English text
 - The set of all the possible values of X:

$$X = \{a, b, c, d, ..., z\}$$

$$-\Pr[X = a] = 0.082, \Pr[X = b] = 0.015, ...$$

 $\Pr[X = z] = 0.01$

- Join Probability
 - X and Y are two random variables
 - The join probability Pr[X=x, Y=y] is the probability that X takes the value x and Y takes the value y
- X and Y are independent if

$$Pr[X=x, Y=y] = Pr[X=x] \cdot Pr[Y=y]$$

for all values of x and y

- Conditional Probability
 - X and Y are two random variables
 - The conditional probability Pr[X=x / Y=y] is the probability that X takes the value x given that Y takes the value y
- Joint Probability and conditional probability are related:

$$Pr[X=x, Y=y] = Pr[X=x/Y=y] \cdot Pr[Y=y]$$

$$Pr[X=x, Y=y] = Pr[X=x / Y=y] \cdot Pr[Y=y] \quad (1)$$

$$Pr[Y=y, X=x] = Pr[Y=y / X=x] \cdot Pr[X=x]$$
 (2)

Pr[Y=y, X=x] is the same as Pr[X=x, Y=y] (3)

From (1), (2), (3),

$$Pr[X=x / Y=y] \cdot Pr[Y=y] = Pr[Y=y / X=x] \cdot Pr[X=x]$$

$$\mathbf{Pr}[\mathbf{X}=x \mid \mathbf{Y}=y] = \frac{\mathbf{Pr}[\mathbf{Y}=y \mid \mathbf{X}=x] \cdot \mathbf{Pr}[\mathbf{X}=x]}{\mathbf{Pr}[\mathbf{Y}=y]}$$

Bayes' Theorem

Bayes' theorem example: Dice Throwing

- A pair of dice are randomly thrown
- X is a random variable defined as the sum of two dice
 - The set of all the possible values of **X** is $X = \{2,3,4,...,12\}$
- Y is a random variable
 - Y = d if the two dice are the same (throw "doubles")
 - Y = n if the two dice are not the same

Bayes' theorem example: Dice Throwing (cont.)

- Now we perform the following computation to test Bayes' theorem

$$Pr[X = 4] = Pr[1st dice = 1] \cdot Pr[2nd dice = 3]$$

+ $Pr[1st dice = 2] \cdot Pr[2nd dice = 2]$
+ $Pr[1st dice = 3] \cdot Pr[2nd dice = 1]$
= $1/6 \times 1/6 + 1/6 \times 1/6 + 1/6 \times 1/6 = 1/12$

$$\begin{aligned} \mathbf{Pr}[\mathbf{Y}=\mathsf{d}\,|\,\mathbf{X}=4] &= \frac{\mathbf{Pr}[\mathsf{1stdice}=2] \bullet \mathbf{Pr}[\mathsf{2nddice}=2]}{\mathbf{Pr}[\mathsf{1stdice}=1] \bullet \mathbf{Pr}[\mathsf{2nddice}=3] + \mathbf{Pr}[\mathsf{1stdice}=2] \bullet \mathbf{Pr}[\mathsf{2nddice}=2] + \mathbf{Pr}[\mathsf{1stdice}=3] \bullet \mathbf{Pr}[\mathsf{2nddice}=1]} \\ &= \frac{1/6 \times 1/6}{1/6 \times 1/6 + 1/6 \times 1/6 + 1/6 \times 1/6} = 1/3 \end{aligned}$$

$$\mathbf{Pr}[\mathbf{Y} = d] = \mathbf{Pr}[1 \text{st dice} = 1] \cdot \mathbf{Pr}[2 \text{nd dice} = 1] + \dots$$
$$+ \mathbf{Pr}[1 \text{st dice} = 6] \cdot \mathbf{Pr}[2 \text{nd dice} = 6]$$
$$= (1/6 \times 1/6) \times 6 = 1/6$$

$$\begin{aligned} \mathbf{Pr}[\mathbf{X} = 4 \mid \mathbf{Y} = d] &= \frac{\mathbf{Pr}[1 \text{stdice} = 2] \bullet \mathbf{Pr}[2 \text{nddice} = 2]}{\mathbf{Pr}[1 \text{stdice} = 1] \bullet \mathbf{Pr}[2 \text{nddice} = 1] + \mathbf{Pr}[1 \text{stdice} = 2] \bullet \mathbf{Pr}[2 \text{nddice} = 2] + \dots + \mathbf{Pr}[1 \text{stdice} = 6] \bullet \mathbf{Pr}[2 \text{nddice} = 6]} \\ &= \frac{1/6 \times 1/6}{(1/6 \times 1/6) \times 6} = 1/6 \end{aligned}$$

$$--> Pr[Y=d \mid X=4] \cdot Pr[X=4] = Pr[X=4 \mid Y=d] \cdot Pr[Y=d] = 1/36$$

Perfect Secrecy of OTP

- A cryptosystem has perfect secrecy if knowing ciphertext reveals no information about the plaintext
- Definition:
 - A cryptosystem has perfect secrecy if for every plaintext p and every ciphertext c,

$$Pr[P = p \mid C = c] = Pr[P = p]$$

- $Pr[P = p \mid C = c]$ is a posteriori probability that the plaintext is p, given that the ciphertext c is observed.
- Pr[P = p] is a priori probability that the plaintext is p
- an attacker cannot correctly guess the plaintext with higher probability after knowing the ciphertext

Perfect Secrecy of OTP

- One-time pad
 - $P = C = K = \{0,1\}^n$ (*n*-bit sequence)
 - Key is chosen randomly
 - $Pr(K = k) = 1/2^n$
 - Show that $Pr[P = p \mid C = c] = Pr[P = p]$ (perfect secrecy)
- Proof.
 - $-\mathbf{Pr}[\mathbf{C} = c \mid \mathbf{P} = p] = \mathbf{Pr}[\mathbf{K} = p \oplus c] = 1/2^{\mathrm{n}}$
 - $\mathbf{Pr}[\mathbf{C} = c] = \sum_{p \in P} (\mathbf{Pr}[\mathbf{P} = p] \cdot \mathbf{Pr}[\mathbf{C} = c \mid \mathbf{P} = p])$ = $\sum_{n} (\mathbf{Pr}[\mathbf{P} = p]) \times 1/2^{n} = 1/2^{n}$
 - Using Bayes' theorem:

$$\mathbf{Pr}[\mathbf{P} = p \mid \mathbf{C} = c] = \mathbf{Pr}[\mathbf{P} = p] \cdot \mathbf{Pr}[\mathbf{C} = c \mid \mathbf{P} = p] / \mathbf{Pr}[\mathbf{C} = c]$$

$$= \mathbf{Pr}[\mathbf{P} = p] \cdot (1/2^{n}) / (1/2^{n})$$

$$= \mathbf{Pr}[\mathbf{P} = p]$$

- One-time pad
 - Key length = message length
 - Perfect secrecy
- How about the security of the following cipher?
 - key length < message length,</p>
 - the attacker has unlimited computing resource
- The concept "Entropy" is needed to answer the above question

Entropy in information theory

- Claude Shannon's information theory
 - "A Mathematical Theory of Communication", 1948
- a measure of the uncertainty associated with a random variable

Definition

Suppose that X is a discrete random variable which takes on values from a finite set X. The entropy of the random variable X is defined as (in bits):

$$H(\mathbf{X}) = -\sum_{x \in X} \mathbf{Pr}[x] \cdot \log_2 \mathbf{Pr}[x]$$

- Example: Let X denote the outcome of coin toss
 - For coin toss, the head and tail appear with prob. 0.5 $H(\mathbf{X}) = -0.5 \log_2 0.5 0.5 \log_2 0.5 = 1$
 - If the coin is not perfect, the head appears with prob. 0.7 $H(\mathbf{X}) = -0.7 \log_2 0.7 (1-0.7) \log_2 (1-0.7) = 0.881$
 - If coin toss is wrongly performed, and the head appears with prob. 1 (note that $\lim_{y\to 0} y \log_2 y = 0$)

$$H(\mathbf{X}) = -1\log_2 1 - (1-1)\log_2 (1-1) = 0$$

⇒ Entropy is used to measure uncertainty (as uncertainty decreases, entropy drops)

letter	probability	letter	probability
A	.082	N	.067
B	.015	0	.075
C	.028	P	.019
D	.043	Q	.001
E	.127	R	.060
F	.022	S	.063
G	.020	T	.091
H	.061	U	.028
I	.070	V	.010
J	.002	W	.023
K	.008	X	.001
L	.040	Y	.020
M	.024	Z	.001

- Entropy (per letter) of a natural language L
 - For random message: $H(\mathbf{P}) = (-\frac{1}{26}\log_2\frac{1}{26}) \times 26 = \log_2 26 \approx 4.70$
 - "First order approximation": single letters $H(\mathbf{P}) = -0.082\log_2 0.082 0.015\log_2 0.015 \dots 0.001\log_2 0.001 = 4.19$
 - "Second order approximation": digrams $H(\mathbf{P}^2)/2 \approx 3.9$
 - we consider large segment of letters:

$$1.0 \le H_L = \frac{\lim_{n \to \infty} H(\mathbf{P}^n)}{n} \le 1.5$$

In average, each English letter carries about 1.5-bit information!

• Redundancy of a natural language L

$$R_L = 1 - \underbrace{\frac{H_L}{\log_2 |P|}}$$
 information in a letter information in a random letter

- -/P/ is the number of letters in a language (26 for English)
- $-\log_2|P|$ denotes the entropy (per letter) of a random message: $(-\frac{1}{|P|}\log_2\frac{1}{|P|})\times |P| = \log_2|P|$
- For the English language, if using H_L =1.25,

$$R_L = 1 - \frac{1.25}{\log_2 26} \approx 1 - \frac{1.25}{4.7} \approx 0.75$$

The English language is about 75% redundant!

- Unicity distance
 - The unicity distance of a cryptosystem is defined as the average amount of ciphertext required to determine the key, given unlimited computing resource.

$$n_0 \approx \frac{\log_2 |K|}{R_L \log_2 |P|}$$
 The uncertainty in the key The information leaked from each ciphertext letter

- Examples
 - For a substitution cipher,
 - |K| = 26!, $n_0 \approx \log_2 26! / (0.75 \times 4.7) \approx 25$
 - For Vigenere cipher with key length 100,
 - $|K| = 26^{100}$, $n_0 \approx \log_2 26^{100} / (0.75 \times 4.7) \approx 133$

Summary

- One-Time Pad
 - Perfect secrecy
- Information theory
 - Entropy
 - Entropy & redundancy of a language
 - Unicity distance