How to Keep a Secret

Eleanor McMurtry May 2020

1 How to keep a secret

What does it mean for a cryptosystem to be secure?

Definition 1. A *cryptosystem* is three algorithms:

- Gen which generates keys (symmetric or asymmetric)
- Enc which encrypts a message *m* to produce a *ciphertext* {*m*}
- Dec which decrypts a ciphertext $\{m\}$ to recover the *plaintext m*.

In an ideal world, a cryptosystem would be *impossible* to break. We will imagine an *adversary* \mathcal{A} , which is an algorithm that attempts to recover m from $\{m\}$ without knowing any required secret keys.

Here's what we would like:

Definition 2. A cryptosystem is *information-theoretic secure* if for all adversaries \mathcal{A} , $\mathcal{A}(\{m\}) \neq m$

Intuitively, "information-theoretic secure" means that any adversary, even with an infinite amount of time and computational power, cannot recover the plaintext — because it *does not have enough information* about *m* to do so. Unfortunately, it turns out that distributing a public key breaks this requirement:

Proposition 1.1. A public key cryptosystem cannot be information-theoretic secure.

Back to the drawing board. We imagine the adversary as playing a *game* with a challenger \mathcal{C} : \mathcal{C} gives \mathcal{A} the public key with a ciphertext $\{m\}$, and \mathcal{A} *guesses* what m is.

Definition 3. An *adversary* \mathcal{A} is a probabilistic polynomial time algorithm that aims to break a cryptosystem.

We require that \mathcal{A} is polynomial time because we have conceded that if \mathcal{A} had enough time to e.g. brute force the private key (an exponentially-hard problem), it could break our encryption. It should however be *very unlikely* that \mathcal{A} can guess the plaintext. Here's what that means:

Definition 4. A function $f: \mathbb{N} \to \mathbb{R}$ is *negligible* if for all polynomials P(x), there exists N > 0 such that for all n > N,

$$|f(n)| < \frac{1}{P(n)}$$

The idea is that f is much smaller than any polynomial, so it goes to 0 very quickly. Here's an example of a *game* based on the not-very-good Caesar cipher:

Definition 5. Consider the Caesar cryptosystem described below for an alphabet of N letters:

- Gen: choose a random integer $c \in \mathbb{Z}$
- Enc: take each letter in m and shift it c letters along. That is, $\{m\} = m + c \mod N$.
- Dec: take each letter in $\{m\}$ and shift it -c letters along. That is, $m = \{m\} c \mod N$.

The adversary $\mathcal A$ plays a game with a challenger $\mathcal C$ as follows:

- 1. \mathcal{C} runs Gen to obtain c.
- 2. \mathcal{C} chooses a message m and encrypts it to obtain $\{m\}$.
- 3. \mathcal{C} sends $\{m\}$ to \mathcal{A} .
- 4. \mathcal{A} outputs a message m^* .

 \mathcal{A} wins if $m = m^*$. The Caesar cipher is *secure* if for all PPT adversaries \mathcal{A} ,

$$\Pr[\mathcal{A} \text{ wins}] < \operatorname{negl}(N)$$

where negl(N) is some negligible function.

Proposition 1.2. *The Caesar cipher is not secure.*

Proof. Let \mathcal{A} choose a random $c^* \in \mathbb{Z}$, and output $\{m\} - c^* \mod N$. With non-negligible probability 1/N, $c = c^*$, and A outputs m.

This is a fairly basic idea of "secure", and it turns out we can do a little better. We will require *indistinguishability*: it should be hard for $\mathcal A$ to guess the difference between two ciphertexts. If $\mathcal A$ can break the encryption outright, the game is easy — it can just decrypt the ciphertexts. So, if $\mathcal A$ can't tell the difference, it also can't decrypt the ciphertexts.

Definition 6. The *indistinguishability game* for a cryptosystem Π , written G_{ind}^{Π} , runs as follows:

- 1. \mathcal{C} runs Gen to obtain a key.
- 2. \mathcal{A} sends \mathcal{C} two messages: m_0 and m_1 .
- 3. \mathcal{C} flips a coin $b \in \{0, 1\}$ and sends $\{m_b\}$ to \mathcal{A} .
- 4. \mathcal{A} outputs a bit b^* .

 \mathcal{A} wins if $b = b^*$.

We say Π is *indistinguishable-secure* if for all PPT adversaries \mathcal{A} ,

$$\Pr\left[\mathcal{A} \text{ wins } G_{\text{ind}}^{\Pi}\right] < \frac{1}{2} + \text{negl}(\lambda)$$

for a *security parameter* λ (e.g. key length).

In a public key setting, \mathcal{A} can encrypt m_0 and m_1 itself, and see whether either matches $\{m_b\}$. This is called a *chosen plaintext attack*, and breaks "textbook RSA" — RSA used without random padding.

In this setting, \mathcal{C} gives \mathcal{A} the algorithm Enc (including the public key) in step 1. A cryptosystem that is indistinguishable-secure under this condition is called *IND-CPA secure*. To prove this property, we will use *proof by reduction*: we will show that *if* \mathcal{A} can win $G_{\text{IND-CPA}}^{\Pi}$, *then* it can win another game that we assume is hard.

Below is a common such assumption — it forms the basis of the Diffie-Hellman and ElGamal schemes.

Definition 7 (The Decisional Diffie-Hellman game). Let \mathbb{G} be a cyclic group, and g be an element of (prime) order q. The game $G_{\mathrm{DDH}}^{\mathbb{G},g,q}$ is defined as follows:

1. \mathcal{C} chooses $a, b, c \leftarrow \mathbb{Z}_q$ uniformly at random and calculates

$$x_0 = g^c x_1 = g^{ab}$$

- 2. \mathcal{C} flips a coin $i \in \{0, 1\}$ and sends g^a, g^b , and x_i to \mathcal{A} .
- 3. \mathcal{A} outputs a bit i^* .

 \mathcal{A} wins if $i = i^*$. We say that the DDH assumption holds in \mathbb{G} if there exists g, q such that for all PPT adversaries \mathcal{A} ,

$$\Pr\left[\mathcal{A} \text{ wins } G_{\mathrm{DDH}}^{\mathbb{G},g,q}\right] < \frac{1}{2} + \mathsf{negl}(q)$$

The idea: \mathcal{A} shouldn't be able to easily tell the difference between g^{ab} and g^c . If it could compute discrete logarithms, then it could easily win — and that's supposed to be hard.

We are, at last, ready to prove that ElGamal is IND-CPA secure. The proof below mirrors that of [1].

Theorem 1.1. If the DDH assumption holds in \mathbb{G} , the ElGamal cryptosystem over \mathbb{G} is IND-CPA

Proof. Let $\mathcal A$ be a PPT adversary that wins $G_{\mathrm{IND-CPA}}^{\mathrm{ElGamal}}$ with probability $\frac{1}{2}+\varepsilon(q)$. Consider an adversary $\mathcal D$ that attacks DDH. It receives input g^a,g^b,x and acts as a challenger to $\mathcal A$, but instead of Enc it gives $\mathcal A$ access to $\mathrm{Enc}_{\mathcal D}(m)=\left(g^b,m\cdot x\right)$. If $\mathcal A$ wins, $\mathcal D$ outputs 1; otherwise, \mathcal{D} outputs 0.

• Case 1: If $x = g^c$, \mathcal{D} needs to output 0 to win. \mathcal{A} receives the "ciphertext"

$$(g^b, m \cdot g^c)$$

This is not a valid encryption so $\mathcal A$ can do no better than guessing, and wins with probability $\frac{1}{2}$. Then $\mathcal D$ wins with probability $\frac{1}{2}$.

• Case 2: If $x = g^{ab}$, \mathcal{D} needs to output 1 to win. \mathcal{A} receives the ciphertext

$$(g^b, m \cdot g^{ab})$$

This is a valid encryption of m with private key a and random factor b, so $\mathcal A$ wins with probability $\frac{1}{2} + \varepsilon(q)$, meaning that $\mathcal D$ outputs 1 and also wins with probability $\frac{1}{2} + \varepsilon(q)$. But since the DDH assumption holds in $\mathbb G$,

$$\Pr\Big[\mathcal{D} \text{ wins } G_{\text{DDH}}^{\mathbb{G}, g, q}\Big] = \frac{1}{2} + \varepsilon(q) \leq \frac{1}{2} + \operatorname{negl}(q)$$

so that $\varepsilon(q) \leq \text{negl}(q)$.

References

[1] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. Chapman and Hall/CRC, 2014.