CS3231 Midterm 2 Printed Notes

Chong Chin Herng

October 2024

6 CFG

Context-Free Grammar (CFG) A CFG (V, T, P, S) is a method to describe a language over Σ where

- V is a finite set of non-terminal symbols
- T is a finite set of terminal symbols such that $V \cap T \neq \emptyset$
- P is a finite set of productions of the form $A \to \gamma$, where $A \in V$ and $\gamma \in (V \cup T)^*$
- $S \in V$ is the start symbol

Additionally, for any $\alpha, \beta, \gamma \in (V \cup T)^*$, if there is a production $A \to \gamma$ in P, then $\alpha A\beta$ derives A in one step, or $\alpha A\beta \Rightarrow \alpha \gamma \beta$. Moreover, \Rightarrow^* is the reflexive and transitive closure of \Rightarrow . Finally, $L(G) = \{w \in T^* | S \Rightarrow^* w\}$.

Context-Free Language (CFL) A CFL is a language that can be described by a CFG.

Derivation A derivation of a string w is a sequence of derivation steps from the start symbol to w.

Sentential Form $\alpha \in (V \cup T)^*$ is a sentential form with respect to a CFG with start symbol S if and only if $S \Rightarrow^* \alpha$.

Left Most Derivation A left most derivation is a derivation such that in each step, the leftmost non-terminal in the sentential form is replaced.

Right Most Derivation A right most derivation is a derivation such that in each step, the right-most non-terminal in the sentential form is replaced.

Parse Tree A parse tree is a graphical representation of a derivation.

Right-Linear Grammar A CFG (V, T, P, S) is right-linear if and only if all its productions are of the form $A \to wB$ or $A \to w$ for some $A, B \in V$ and $w \in T^*$.

- **Theorem 6.1** There is a right-linear grammar that can describe a regular language.
- **Theorem 6.2** Languages described by a right-linear grammar are regular.

Ambiguous Grammar A CFG G is ambiguous if and only if there exists $w \in L(G)$ such that there exists two different parse trees for the derivation of w.

Inherently Ambiguous Language A language L is inherently ambiguous if and only if any CFG that describes L is ambiguous.

7 Push Down Automata (NPDA/PDA)

Push Down Automaton (PDA) A PDA $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a finite automaton where

- \bullet Q is a finite set of states
- Σ is a finite set of input symbols
- Γ is a finite set of stack symbols
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$ is a transition function
- $q_0 \in Q$ is the starting state
- $Z_0 \in \Gamma$ is the initial stack symbol
- $F \subseteq Q$ is a finite set of accepting states

Instantaneous Description of a PDA An instantaneous description of a PDA with set of states Q, set of input symbols Σ and set of stack symbol Γ is a tuple (q, w, α) where $q \in Q$, $w \in \Sigma^*$ and $\alpha \in \Gamma^*$.

Step of a PDA For any PDA $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, if $(p, \beta) \in \delta(q, a, X)$, then for any $w \in \Sigma^*$ and $\alpha \in \Gamma^*$, the instantaneous description $(q, aw, X\alpha)$ yields the instantaneous description $(p, w, \beta\alpha)$ in one step, or $(q, aw, X\alpha) \vdash (p, w, \beta\alpha)$. Moreover, \vdash^* is the reflexive and transitive closure of \vdash .

Language accepted by a PDA by final state A language L is accepted by a PDA P with input symbol set Σ by final state if and only if $L = \{w \in \Sigma^* | (q_0, w, Z_0) \vdash^* (q_f, \epsilon, \alpha) \text{ for some } q_f \in F\}.$

Language accepted by a PDA by empty stack A language L is accepted by a PDA P with input symbol set Σ by empty stack if and only if $L = \{w \in \Sigma^* | (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \text{ for some } q \in Q\}.$

Theorem 7.1 There is a PDA that accepts a given language by final state if and only if there is a PDA that accepts the same language by empty stack.

Theorem 7.2 There is a PDA that accepts a given language if and only if there is a CFG that describes the same language.

Deterministic Push Down Automaton (DPDA) An DPDA $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a finite automaton where

- Q is a finite set of states
- Σ is a finite set of input symbols
- Γ is a finite set of stack symbols
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma^*)$ is a transition function
- $q_0 \in Q$ is the starting state
- $Z_0 \in \Gamma$ is the initial stack symbol
- $F \subseteq Q$ is a finite set of accepting states

such that for all $a \in \Sigma \cup \{\epsilon\}, Z \in \Gamma$ and $q \in Q$,

- $|\delta(q, a, Z)| \leq 1$
- If $\delta(q, \epsilon, Z) \neq \emptyset$, then if $a \neq \epsilon$, then $\delta(q, a, Z) = \emptyset$

Instantaneous descriptions and steps of DPDA is similar to that of NPDA.

Theorem 7.3 There exists a language accepted by a PDA but not by any DPDA.

Theorem 7.4 There is a DPDA accepting by final state that can accept a regular language.

Theorem 7.5 If L is accepted by a DPDA by empty stack, then for every $x, y \in L$, x is not a prefix of y.

8 CFG Properties

Chomsky Normal Form A CFG (V, T, P, S) is in Chomsky Normal Form if and only if each of its productions are of the form $A \to BC$ or $A \to a$ for some $A, B, C \in V$, $a \in T$.

Useful Symbol For a CFG (V, T, P, S), a symbol A is useful if and only if $S \Rightarrow^* \alpha A\beta \Rightarrow^* w$ for some $\alpha, \beta \in (V \cup T)^*$ and $w \in T^*$.

Generating Symbol For a CFG (V, T, P, S), a symbol A is generating if and only if $A \Rightarrow^* w$ for some $w \in T^*$.

Reachable Symbol For a CFG (V, T, P, S), a symbol A is reachable if and only if $S \Rightarrow^* \alpha A \beta$ for some $\alpha, \beta \in (V \cup T)^*$.

Theorem 8.1 If a symbol is useful, then it is reachable and generating.

Algorithm 8.2 Given a CFG G = (V, T, P, S), the algorithm below removes all non-generating symbols from G.

- 1. All symbols in T are generating.
- 2. If there is a production of the form $A \to \alpha$ in P and α consists only of generating symbols, then A is generating.
- 3. Repeat step 2 until no new generating symbols are discovered.
- 4. The remaining symbols are non-generating. Remove all productions involving them.

Algorithm 8.3 Given a CFG G = (V, T, P, S), the algorithm below removes all non-reachable symbols from G.

- 1. S is reachable.
- 2. If A is reachable and there is a production of the form $A \to \alpha$ in P, then every symbol in α is reachable.
- 3. Repeat step 2 until no new reachable symbols are discovered.
- 4. The remaining symbols are non-reachable. Remove all productions involving them.

Algorithm 8.4 Given a CFG G, the algorithm below removes all useless symbol from G.

- 1. Remove non-generating symbols from G.
- 2. Remove non-reachable symbols from G.

 ϵ **Productions** An ϵ production is a production of the form $A \to \epsilon$.

Nullable Symbol For a CFG (V, T, P, S), if there is a production of the form $A \to \epsilon$ in P, then A is nullable. If there is a production of the form $A \to \alpha$ in P and every symbol in α is nullable, then A is nullable.

Algorithm 8.5 Given a CFG G = (V, T, P, S) such that $\epsilon \notin L(G)$, the algorithm below removes all ϵ productions from G.

- 1. Identify nullable symbols.
- 2. Remove ϵ productions.
- 3. For each production of the form $B \to \alpha$ in P, replace it with all possible productions of the form $B \to \alpha'$ where α' can be formed from α by deleting zero or more nullable symbols.

Unit Production For a CFG (V, T, P, S), a unit production is a production of the form $A \to B$ for some $A, B \in V$.

Unit Pair For a CFG (V, T, P, S), for any $A, B, C \in V$, (A, A) is a unit pair. If (A, B) is a unit pair and there is a production of the form $B \to C$ in P, then (A, C) is a unit pair.

Algorithm 8.6 Given a CFG G = (V, T, P, S), the algorithm below removes all unit productions from G.

- 1. Identify unit pairs.
- 2. Remove unit productions.
- 3. For each unit pair (A, B), for each non-unit production of the form $B \to \gamma$ in P, add the production $A \to \gamma$ in P.

Algorithm 8.7 Given a CFG G = (V, T, P, S) without ϵ productions and unit productions, the algorithm below converts all productions to productions of length 2 (involving only non-terminals on RHS) or productions of length 1 (involving only terminal on RHS).

1. For each production of the form $A \to X_1 X_2 \cdots X_k$ for some symbols X_1, X_2, \cdots, X_k , replace it with the productions $A \to Z_1 B_2, B_2 \to Z_2 B_3, \cdots B_{k-1} \to Z_{k-1} Z_k$ where B_i are new non-terminals. If $X_i \in T$, then Z_i are new non-terminals and the production $Z_i \to X_i$ is added. Otherwise, $Z_i = X_i$.

Algorithm 8.8 Given a CFG G such that $\epsilon \notin L(G)$, the algorithm below converts G into Chomsky Normal Form.

- 1. Remove ϵ productions from G.
- 2. Remove unit productions from G.
- 3. Convert all remaining productions to productions of length 2 (involving only non-terminals on RHS) or productions of length 1 (involving only terminal on RHS).

Theorem 8.9 For any parse tree of a derivation of a string w using a grammar in Chomsky Normal Form, if height of the parse tree is s, then $|w| \leq 2^{s-1}$.

Theorem 8.10 (Pumping Lemma) Let L be a CFL. Then, there exists $n \in \mathbb{Z}^+$ such that for all $z \in L$ satisfying $|z| \geq n$, we can write z = uvwxy such that

- 1. $|vwx| \le n$
- 2. $vx \neq \epsilon$
- 3. For all $i \in \mathbb{N}$ we have $uv^iwx^iy \in L$

Substitution A mapping $s: \Sigma^* \to CFL$ is a substitution on the alphabet Σ if and only if $s(\epsilon) = \{\epsilon\}$ and for all $a \in \Sigma$ and $w \in \Sigma^*$ we have s(wa) = s(w)s(a).

Theorem 8.11 For any substitution s on Σ , if L is a CFL over Σ , then $\bigcup_{w \in L} s(w)$ is a CFL.

Theorem 8.12 If L is context-free, then L^R is context-free.

Theorem 8.13 If L is context-free and R is regular, then $L \cap R$ is context-free.

Theorem 8.14 A CFL L is empty if and only if a CFG describing L has the start symbol as a useless symbol.

Algorithm 8.15 (CYK Algorithm) Given a CFG G = (V, T, P, S) and a string $w = a_1 a_2 \cdots a_n$ over T, the dynamic programming algorithm below determines whether $w \in L(G)$ by computing $X_{i,j} = \{A \in V : A \Rightarrow^* a_i a_{i+1} \cdots a_j\}$.

- 1. Let $X_{i,i} = \{A \in V : \text{there is a production of the form } A \to a_i \text{ in } P\}.$
- 2. For s = 1 to n 1, for i = 1 to n s, let j = i + s, then let

$$X_{i,j} = \{A \in V : \exists B \in X_{i,k}, C \in X_{k+1,j} \text{ and a production of the form } A \to BC \text{ in } P\}$$

3. $w \in L(G)$ if and only if $S \in X_{1,n}$.

Tutorial 4

Question 2 A CFG (V, T, P, S) is left-linear if and only if all its productions are of the form $A \to Bw$ or $A \to w$ for some $A, B \in V$ and $w \in T^*$. There is a right-linear grammar that describes L if and only if there is a left-linear grammar that describes L^R . Moreover, there is a left-linear grammar that describes L if and only if L is regular.

Tutorial 5

Question 2 The presence of any memory device can sometimes reduce the number of states required to accept a regular language.

Question 3 A two stack NPDA $NPDA = (Q, \Sigma, \Gamma_1, \Gamma_2, \delta, q_0, Z_0, Y_0, F)$ is a finite automaton where

- Q is a finite set of states
- Σ is a finite set of input symbols
- Γ_1 is a finite set of stack symbols for the first stack
- Γ_2 is a finite set of stack symbols for the second stack
- $\delta: Q \times (\Sigma \cup {\epsilon}) \times \Gamma_1 \times \Gamma_2 \to \mathcal{P}(Q \times \Gamma_1^* \times \Gamma_2^*)$ is a transition function
- $q_0 \in Q$ is the starting state
- $Z_0 \in \Gamma_1$ is the initial stack symbol on the first stack
- $Y_0 \in \Gamma_2$ is the initial stack symbol on the second stack
- $F \subseteq Q$ is a finite set of accepting states

Additionally, an instantaneous description of a two stack NPDA is a tuple (q, w, α, β) for some $q \in Q$, $w \in \Sigma^*$, $\alpha \in \Gamma_1^*$ and $\beta \in \Gamma_2^*$. Moreover, if $(p, \alpha', \beta') \in \delta(q, a, X, Y)$, then for any $w \in \Sigma^*$, $\alpha \in \Gamma_1$ and $\beta \in \Gamma_2$, we have $(q, aw, X\alpha, Y\beta) \vdash (p, w, \alpha'\alpha, \beta'\beta)$. \vdash^* is the reflexive and transitive closure of \vdash . For acceptance by final state, we have

$$L(NPDA) = \{ w \in \Sigma^* : (q_0, w, Z_0, Y_0) \vdash^* (q_f, \epsilon, \alpha, \beta) \text{ for some } q_f \in F, \alpha \in \Gamma_1^* \text{ and } \beta \in \Gamma_2^* \}$$

In fact, there exists a language that can be accepted by a two stack NPDA but not by a one stack NPDA.

Tutorial 6

Question 5 Given a CFG G = (V, T, P, S), the algorithm below determines whether G is describing a finite language.

- 1. Convert G into Chomsky Normal Form and remove useless symbols.
- 2. Construct a directed graph with vertex set V and there is an edge from A to B if and only if there is a production of the form $A \to \alpha B\beta$ in P.
- 3. G is describing a finite language if and only if the constructed directed graph is acyclic.

Question 6 Given a CFG G = (V, T, P, S), the algorithm below constructs $Unit(A) = \{B \in V : (B, A) \text{ is a unit pair}\}$ for all $A \in V$.

- 1. Construct a directed graph with vertex set V and there is an edge from A to B if and only if there is a production $A \to B$ in P.
- 2. Let $Unit(A) = \{B \in V : \text{there exists a path from } A \text{ to } B \text{ in the constructed directed graph}\}.$

Question 7 A CFG (V, T, P, S) is in Greibach Normal Form if and only if each of its productions are of the form $A \to a\alpha$ for some $a \in T$ and $\alpha \in (V \cup T)^*$. For every non-empty CFL L, there is a CFG in Greibach Normal Form that describes $L - \{\epsilon\}$.

Tutorial 7

Question 3 For any language L over Σ , if L is context free, then Prefix(L) is context-free. If L is regular, then Prefix(L) is context-free, where $Prefix(L) = \{x \in \Sigma^* : \exists y \in \Sigma^* (xy \in L)\}.$

Question 4 Let L be a CFL. Then, there exists $n \in \mathbb{Z}^+$ such that for all $z \in L$ satisfying $|z| \ge n$, if we mark at least n positions in z to be distinguished, we can write z = uvwxy such that

- vwx has at most n distinguished positions
- \bullet vx has at least one distinguished position
- For all $i \in \mathbb{N}$ we have $uv^iwx^iy \in L$