JK フリップフロップ(ハードウェア) 問2

(H26 秋·FE 午後間 2)

【解答】

[設問1] a-ア

「設問2] b-ア、 c-エ

[設問3] d-ア, e-イ, f-カ (d, e, f は順不同)

【解説】

JK フリップフロップに関する問題である。フリップフロップの問題は過去に出題 されていない。午前試験の用語としてもウェイトが低く、知らない受験者が多かった ように推測している。しかし、論理演算(論理回路を含む)の出題頻度は高いので、 新傾向という意味において、今後は注意が必要かもしれない。

レジスタや SRAM などの基本回路では、1 ビットの情報を記憶できるフリップフロ ップが利用されている。フリップフロップ(以下,FF という)には,RS-FF,D-FF, JK-FF, T-FF などの種類がある。教科書などでフリップフロップを説明する場合, RS-FF を取り上げることが多いので、この機会に RS-FF の内容を理解しておくとよ

簡単に RS-FF と JK-FF の違い及び用語の説明を行い、問題の解説を行う。

・RS-FF:RSは、Reset (リセット) と Set (セット) のことである。ビット 0 を記 憶させる場合, リセット (S=0, R=1) が, 1 を記憶させる場合, セット (S=1, R=0) が行われる。

表 Δ RS-FF の入力値と結果

S	R	Q (現在の値)	Q (次の結果)
1	0	0又は1	1 (常に1となる)
0	1	0又は1	0 (常に0となる)
0	0	0又は1	0又は1(前の状態を保持)
1	1	0又は1	入力が禁止されているため意味なし (不定)
	1	1 0	1 0 0 0 X は 1 0 1 0 X は 1 0 0 0 0 X は 1

・JK-FF: JK の名称の由来は不明であるが、集積回路の発明で有名なジャック・キ ルビー(Jack Kilby)が,セット用,リセット用の入力端子の名前にJと K を割り当てたことから命名されたとの説がある。RS-FF との違いは、 RS-FF では R=S=1 の入力が禁止されているが、JK-FF では入力が許可 されていることである。その場合、表1の真理値表にあるとおり、現在の 値が反転 (1→0, 0→1) する。(区分⑦, ⑧)

なお, 問題の解説のため, 表1と等価な内容を表Bで示す。

表 B IK-FF の入力値と結果

表 B JK-FF の八万 個と和来								
区分	J_1	K_1	Q1 (現在の値)	Q ₂ (次の結果)				
1	0	0	. 0	0				
2	0	0	1	11				
3	0	1	0	0				
4	0	1	1	0				
⑤	1	0	0	1 .				
6	1	0	1	1				
7	1	1	0	1	結果が反転			
8	1	1	1					
			11	+ ///	7 0 V200 V21			

注記:表1との整合性から、現在の値(状態)をJ₁, K₁, Q₁, 次の結果 を Q2 で示す。

・組合せ回路:現在の入力だけで出力が決まる回路で、OR 回路、AND 回路などを 想定すればよい。

・順序回路:前の状態を記憶しておき,その状態が出力に影響する回路で,フリップ フロップが利用される。

問題解決のポイントは、JK フリップフロップが何かを知らなくても、表 1 が示す 真理値表の意味を理解し、設問の内容を推測、理解できるかどうかである。

参考までに、本問のように CLK の立ち下がり(又は立ち上がり)で、Q の値が決 定される順序回路を、エッジトリガ方式の(同期式)順序回路という。コンピュータ をはじめ大部分のディジタル回路では、このエッジトリガ方式の順序回路が使用され ている。一方,CLKの1と0でQの値が変化する方式をレベルトリガ方式という。

最初に図2及び表1(表Bを含む)の意味を図Aで説明する。

注記:時刻 t, において CLK の値は 1 から 0 に変化している。これが立ち下がり(1 →0) である。この時点で Q の値も 1 から 0 に変化していることが分かる。 時刻 t_1 から微小時間進んだ時刻 t_2 では、時刻 t_1 で変化した CLK 及び Q の値 がともに0であることが分かる。

図A 図2の説明図

表 1 で示されている真理値表は、図 A で示したように、時刻 t_1 の J、 K、Q の値を J_1 , K_1 , Q_1 , 変化後の時刻 t_2 の Q の値を Q_2 で示し、まとめたものである。 (表 B 参 照)

設問文から、「J と Q, K と \overline{Q} をそれぞれ同一の値の信号とする回路」なので、J=Q, $K=\overline{Q}$ が成立することになる。また、Q の初期値は Q であるから、J=Q=0、K=Q $\overline{\mathbf{Q}}$ =1 が成立する。CLK の立ち下がり時で, $\mathbf{J_1}$ = $\mathbf{Q_1}$ =0, $\mathbf{K_1}$ = $\overline{\mathbf{Q_1}}$ =1 の場合を表 B で 確認すると、区分3が該当することが分かる。このとき、その後の Q の変化 (Q_2) は 0 であるから、現在の値0をそのまま維持することが分かる。したがって、正解は「0 のままである」の(ア)である。なお、他の選択肢は 0→0 の場合がないので誤りで ある。

「設問2]

 Q_1 から Q_2 への変化に着目し、そのときの J_1 、 K_1 との関係をまとめたものが表 2 で ある。表 2 で既知となっている 3 行目及び 4 行目の内容をヒントとして表 1 (表 B) との関係を読み取ればよい。

- ・3 行目: $Q_1 \rightarrow Q_2$ が $1 \rightarrow 0$ の場合なので、表 B では区分④、 \otimes が該当する。このとき、 K_1 の値はどちらも 1 であるが、 J_1 の値は 0 と 1 の 2 通りがあるため、 J_1 の 値は任意(0又は1のいずれの値もあり得る)としている。
- ・4 行目: $Q_1 \rightarrow Q_2$ が $0 \rightarrow 1$ の場合なので、表 B では区分⑤、⑦が該当する。このとき、 J_1 の値はどちらも 1 であるが、 K_1 の値は 0 と 1 の 2 通りがあるため、 K_1 の値は任意としている。

同様な観点で, 2 行目(空欄 b)及び 5 行目(空欄 c)について読み取ると次のよう になる。

- ・2 行目(空欄 b): $Q_1 \rightarrow Q_2$ が $0 \rightarrow 0$ の場合なので、表 B では区分①、③が該当する。
 - このとき、 J_1 の値はどちらも0であるが、 K_1 の値は0と1の2通りがある ため、任意ということになる。
- ・5 行目(空欄 c): $Q_1 \rightarrow Q_2$ が $1 \rightarrow 1$ の場合なので、表 B では区分②、⑥が該当する。 このとき、 J_1 の値は 0 と 1 の 2 通りがあるため任意、 K_1 の値はどちらも 0となる。

以上から、空欄bの正解は「0 任意」の(ア)、空欄cの正解は「任意 0 」 の (エ) である。

[設問3]

2進カウンタの内容である。カウンタとは数を数えるものであるが、2進数の場合0 と 1 しかないため, カウンタを進めると結果的には 0→1 と 1→0 を繰り返すことにな る。その様子を示したものが図 4 であるが、その内容を図 C で示す。

注記1: CLK の立ち下がり (1→0) は、1回目から4回目まである。

注記 2:1 回目の CLK の立ち下がり $(1\rightarrow 0)$ で、Q の値は $0\rightarrow 1$ と変化している。注記 3:2 回目の CLK の立ち下がり $(1\rightarrow 0)$ で、Q の値は $1\rightarrow 0$ と変化している。

注記 4:2回目以降,3回目,4回目では,Qの値は0→1,1→0と変化を繰り返すことが

図 C 図 4 の説明図

表 3 は,表 2 の $Q_1 \rightarrow Q_2$ の変化に着目すると,0 \rightarrow 1 (表 2 の 4 行目),1 \rightarrow 0 (表 2 の3行目)の内容であると理解できる。

この表3を基に、2進カウンタの構成例を示したものが図5である。図5では、J の入力を Q としているため、 $J=\overline{Q}$ が成立する。また、K の入力は常に 1 であるから、 K=1である。この内容を表3で確認すると、1回目と2回目のどちらの条件も満たし ていることが分かる。

- ・1 回目の CLK の立ち下がり $(1\rightarrow 0)$: Q=0 なので、 $\overline{Q}=1$ である。したがって、J $=\overline{\mathbf{Q}}=1$ である。 $\mathbf{K}=1$ であるが、表 3 の \mathbf{K} の値は任意(任意 $_{\mathbf{K}}$)なので、0でも1でもよく,条件を満たす。
- ・2回目の CLK の立ち下がり $(1\rightarrow 0)$: Q=1 なので、 $\overline{Q}=0$ である。したがって、J

 $=\overline{\mathbf{Q}}=\mathbf{0}$ である。表 3 の \mathbf{J} の値は任意(任意 \mathbf{J})なので、 $\mathbf{0}$ でも $\mathbf{1}$ でもよい。 K=1なので条件を満たす。

このような観点で、選択肢で示されている J, K の値が、表 3 の条件を満たすかど うかを吟味していく。その結果を表 C で示す。なお、任意は 0 でも 1 でもよいことに 留意する。

表 C 選択肢 (ア) ~ (カ) の吟味

1回目				2回目			
J	K	Q	Q	J	K	Q	$\overline{\mathbf{Q}}$
1	任意 K	0	1	任意』	1	1	0
0	0			0	0		
0	0			0	0		
0	0			0	×		
×	0			0	0		
×	0			0	×		
0	0			0	0		
	1 0 0 0 ×	J K 1 任意 K ○ ○ ○ ○ ○ ○ ○ X ○	J K Q 1 任意 _K 0 ○ ○ ○ ○ ○ ○ × ○	J K Q Q 1 任意x 0 1 ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○	J K Q Q J 1 任意x 0 1 任意ょ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○	J K Q Q Q J K 1 任意x 0 1 任意x 1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○	J K Q Q Q J K Q 1 任意 _K 0 1 任意 _J 1 1 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ × ○ ○ ○ ○

注記:○は条件を満たす場合,×は条件を満たさない場合を示す。

したがって、正解は(ア)、(イ)、(カ)であり、解答は順不同である。なお、選択 肢(ウ)~(オ)の誤りの内容を補足しておく。

- ウ: $K=\overline{Q}$ としたとき、2 回目の CLK の立ち下がりでは $\overline{Q}=0$ のため K=0 となるが、 Kは1でなければならず条件を満たさない。
- エ:J=Q としたとき、1回目の CLK の立ち下がりでは Q=0 のため J=0 となるが、 Jは1でなければならず条件を満たさない。
- オ:J=Q としたとき、1回目の CLK の立ち下がりでは Q=0 のため J=0 となるが、 Jは1でなければならず条件を満たさない。同様に、 $K=\overline{Q}$ のとき、2回目の CLKの立ち下がりでは \overline{Q} =0のためK=0となるが、Kは1でなければならず条件を満 たさない。