

EMNLP 2022: Generative Entity Typing with Curriculum Learning

Siyu Yuan

syyuan21@m.fudan.edu.cn

KW@Fudan

Outline

- Background
- Generative Entity Typing
- GET with Curriculum Learning
- Experiments
- Takeaways

Entity Typing

 Entity typing aims to assign types to the entity mentions in given texts.

Entity Typing

 Entity typing aims to assign types to the entity mentions in given texts.

Entity Typing

 Entity typing aims to assign types to the entity mentions in given texts.

Drawbacks

Closed Type Set

Cannot assign the entity to the types out of the predefined set

Drawbacks

- Few-shot Dilemma for Long-tail Types
 - Hardly handle few-shot and zero-shot issues
 - more than 80% types have less than 5 instances
 - 25% types even never appear in the training data from the ultra-fine dataset

- Definition:
 - Generate types with a pre-trained language model from given a text with an entity mention

- Definition:
 - Generate types with a pre-trained language model from given a text with an entity mention

Open Type Set

Generate more open types for entity mentions

- Definition:
 - Generate types with a pre-trained language model from given a text with an entity mention

Open Type Set

Generate more open types for entity mentions

Conceptual Reasoning
Capability

Handle the few-shot and zero-shot dilemma well

- Definition:
 - Generate types with a pre-trained language model from given a text with an entity mention

Input Text

Predefined
type set
company
substance
product
continent
...

In the early 1980s, P & G tried to launch here a concentrated detergent under the Ariel brand name that it markets in Europe.

Entity: P & G

Generation

detergent company*
detergent manufacturer*
company

Classification

company

(*) means the generated types are out of predefined type set

Challenge 1: Fine-grained Types Generation

Tends to generate coarse-grained types

Challenge 1: Fine-grained Types Generation

Biased to generate high-frequency vocabulary

Tends to generate coarse-grained types

How to guide the PLMs to generate high-quality and fine-grained types for entities is crucial.

Challenge 2: heterogeneous data

Human-annotated data

- Less than 10%
- High-quality

Ultra fine-grained entity typing dataset

Auto-generated data

- More than 90%
- Low-quality

Challenge 2: heterogeneous data

Human-annotated data

- Less than 10%
- High-quality

Ultra fine-grained entity typing dataset

Auto-generated data

- More than 90%
- Low-quality

How to train the PLMs to generate desirable types on these low-quality heterogeneous.

Curriculum Learning

Curriculum Instruction

CL-based GET: Overview 上場

A CL-based strategy to train GET model

CL-based GET: Overview 工場

Prompts Construction 正場

M is a	such as M
M is one of	especially M
M refers to	, including M
M is a member of	

Prompts Construction

Input Text

In the early 1980s, P & G tried to launch here a concentrated detergent under the Ariel brand name that it markets in Europe.

	, 57	
M is a		such as M
M is one of		especially M
M refers to		, including M
M is a member of _		

Prompts Construction

Input Text

In the early 1980s, P & G tried to launch here a concentrated detergent under the Ariel brand name that it markets in Europe.

		, T	
	M is a		such as M
M is one of		especially M	
M refers to		, including M	
M	is a member of _		

Input Data

In the early 1980s, P & G tried to launch here a concentrated detergent under the Ariel brand name that it markets in Europe.

P & G is a ____

Curriculum Instruction

Does the difficulty of a sample for model learning greatly depend on the granularity of its type?

Does the difficulty of a sample for model learning greatly depend on the granularity of its type?

Curriculum Instruction

Does the difficulty of a sample for model learning greatly depend on the granularity of its type?

It is more difficult for PLMs to fit the training samples of fine-grained types.

Curriculum Instruction

2. Curriculum Instruction

T5 backbone

An encoder-decoder pre-trained model

T5 backbone

An encoder-decoder pre-trained model

Loss function of one sample $D_k^{(i)}$

$$L(D_k^{(i)}) = L_{CE}(T_k^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)}))$$

T5 backbone

An encoder-decoder pre-trained model

Loss function of one sample $oldsymbol{D}_k^{(i)}$

$$L(D_k^{(i)}) = L_{CE}(T_k^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)}))$$

$$D_k^{(i)} = \langle X^{(i)}, M^{(i)}, T_k^{(i)} \rangle$$

Whole training data $D = D_A \cup D_B \cup D_C$

A type for entity mention
$$M^{(i)}$$
 w.r.t. the context of $X^{(i)}$

Why do we adopt Self-paced Learning (SPL)?

Why do we adopt Self-paced Learning (SPL)?

A fixed curriculum ignores the feedback from the training process

SPL-based Training Process 正場

• The training objective

$$\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$$

SPL-based Training Process 空場

The training objective

$$\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$$

• The binary variable $v_k^{(i)} \in [0,1]$

$$v_k^{(i)} = \begin{cases} 1, & L(D_k^{(i)}) < \lambda \\ 0, & L(D_k^{(i)}) \ge \lambda \end{cases} \iff \begin{matrix} Whether \ the \ sample \\ D_k^{(i)} \ should \ be \ considered \end{cases}$$

SPL-based Training Process 正場

The training objective

$$\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$$

• The binary variable $v_{k}^{(i)} \in [0,1]$

$$v_k^{(i)} = \begin{cases} 1, & L(D_k^{(i)}) < \lambda \\ 0, & L(D_k^{(i)}) \ge \lambda \end{cases} \iff \begin{matrix} Whether\ the\ sample \\ D_k^{(i)}\ should\ be\ considered \end{cases}$$

Binary self-paced function

$$g(\mathbf{v}; \lambda) = -\sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} \qquad \iff \begin{array}{c} A \text{ regularizer to} \\ avoid \text{ over-fitting} \end{array}$$

SPL-based Training Process 上場

The training objective

$$\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$$

• The binary variable $v_k^{(i)} \in [0,1]$

$$v_k^{(i)} = \begin{cases} 1, & L(D_k^{(i)}) < \lambda \\ 0, & L(D_k^{(i)}) \ge \lambda \end{cases} \qquad g(\mathbf{v}; \lambda) = -\sum_{i=1}^N \sum_{k=1}^{K^{(i)}} v_k^{(i)}$$

"Easy" samples with small losses are first used for training

SPL-based Training Process 空場

The training objective

$$\min_{\boldsymbol{\theta}, \boldsymbol{\nu}} E(\boldsymbol{\theta}, \boldsymbol{\nu}; \lambda) = \sum_{i=1}^{N} \sum_{k=1}^{K^{(i)}} v_k^{(i)} L(D_k^{(i)}) + g(\boldsymbol{\nu}; \lambda)$$

• The binary variable $v_k^{(i)} \in [0,1]$

$$v_k^{(i)} = \begin{cases} 1, & L(D_k^{(i)}) < \lambda \\ 0, & L(D_k^{(i)}) \ge \lambda \end{cases} \qquad g(\mathbf{v}; \lambda) = -\sum_{i=1}^N \sum_{k=1}^{K^{(i)}} v_k^{(i)}$$

$$\lambda = \mu \lambda, \mu > 1 \Longrightarrow$$

 $\lambda = \mu \lambda, \mu > 1 \Longrightarrow \left[egin{array}{ll} \textit{More samples with larger losses are} \\ \textit{gradually incorporated} \end{array} \right]$

Why do we adopt prior knowledge?

CL-based Learning

Why do we adopt prior knowledge?

Expect the model to be trained according to the predetermined curriculum

CL-based Learning

Why do we adopt prior knowledge?

Expect the model to be trained according to the predetermined curriculum

Intervene SPL

Prior Knowledge

Prior knowledge

Order of subsets Length of types

Prior knowledge

Order of subsets Length of types

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases} 1, if D_{k}^{(i)} \in D_{A} \\ 2, if D_{k}^{(i)} \in D_{B} \\ 3, if D_{k}^{(i)} \in D_{C} \end{cases}$$

Prior knowledge

Order of subsets

Length of types

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases} 1, if D_{k}^{(i)} \in D_{A} \\ 2, if D_{k}^{(i)} \in D_{B} \\ 3, if D_{k}^{(i)} \in D_{C} \end{cases} length(T_{k}^{(i)})$$

Prior knowledge

Order of subsets Length of types

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases} 1, if D_{k}^{(i)} \in D_{A} \\ 2, if D_{k}^{(i)} \in D_{B} & \Rightarrow length(T_{k}^{(i)}) \\ 3, if D_{k}^{(i)} \in D_{C} & \downarrow \\ & & \downarrow \end{cases}$$

$$w(D_{k}^{(i)}) = length(T_{k}^{(i)}) \times \gamma(D_{k}^{(i)})$$

Prior Knowledge

Prior knowledge

Order of subsets Length of types

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases}
1, if D_{k}^{(i)} \in D_{A} \\
2, if D_{k}^{(i)} \in D_{B} \\
3, if D_{k}^{(i)} \in D_{C}
\end{cases} \quad \text{length}(T_{k}^{(i)})$$

$$w(D_{k}^{(i)}) = length(T_{k}^{(i)}) \times \gamma(D_{k}^{(i)})$$

$$L(D_{k}^{(i)}) = L_{CE}(T_{k}^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)})) \times w(D_{k}^{(i)})$$

Prior Knowledge

Prior knowledge

Order of subsets Length of types

$$\gamma\left(D_{k}^{(i)}\right) = \begin{cases}
1, if D_{k}^{(i)} \in D_{A} \\
2, if D_{k}^{(i)} \in D_{B} \\
3, if D_{k}^{(i)} \in D_{C}
\end{cases} \qquad \text{length}(T_{k}^{(i)})$$

$$w(D_{k}^{(i)}) = length(T_{k}^{(i)}) \times \gamma(D_{k}^{(i)})$$

$$L(D_{k}^{(i)}) = L_{CE}(T_{k}^{(i)}, f(X^{(i)}, \boldsymbol{\theta}, M^{(i)})) \times w(D_{k}^{(i)})$$

A sample with a large weight would be incorporated 44 later by the training process

Experiments

Dataset:

Dataset	Type	Language	Size of D3	Size of Test set
BNN (Weischedel and Brunstein, 2005)	Coarse-grained	English	10,000	500
FIGER (Shimaoka et al., 2016)	Fine-grained	English	10,000	278
Ultra-Fine (Choi et al., 2018)	Ultra fine-grained	English	5500	500
GT (Lee et al., 2020)	Multilingual	English	4,750	250
G1 (Lee et al., 2020)	Withingual	Chinese	4,750	250

Metrics:

- CT # \Longrightarrow The number of correct types
- Len. ⇒ The average length of types
- Precision, Relative Recall, Relative F1

Overall Results

Model	BNN				FIGER				
Model	CT#	Prec.	R-Recall	R-F1	CT#	Prec.	R-Recall	R-F1	
Zhang et al. (2018)	555	58.10%	50.49%	54.03%	348	62.00%	49.85%	55.26%	
Lin and Ji (2019)	534	55.90%	48.58%	51.98%	353	62.90%	50.57%	56.07%	
Xiong et al. (2019)	558	58.40%	50.75%	54.31%	350	62.30%	50.09%	55.53%	
Ali et al. (2020)	697	73.00%	63.43%	67.88%	399	71.00%	57.08%	63.29%	
Chen et al. (2020)	718	75.20%	65.35%	69.93%	388	69.10%	55.56%	61.59%	
Zhang et al. (2021)	732	76.70%	66.65%	71.32%	394	70.10%	56.36%	62.48%	
Li et al. (2021)	668	69.90%	60.74%	65.00%	397	70.60%	56.76%	62.93%	
Ours	875	82.30%	79.62%	80.94%	444	66.20%	63.52%	64.83%	

Table 3: Comparison results of different approaches on the sample test set in coarse-grained and fine-grained entity typing dataset.

 Our model significantly improves precision and covers more entity types

Overall Results

Model	Ultra-Fine					
Wiodei	CT#	Prec.	R-Recall	R-F1		
Xiong et al. (2019)	782	50.30%	24.28%	32.75%		
Onoe and Durrett (2019) ELMo	884	51.50%	27.44%	35.81%		
Onoe and Durrett (2019) BERT	884	51.60%	27.44%	35.83%		
López and Strube (2020)	915	43.40%	28.41%	34.34%		
Onoe et al. (2021)	1039	52.80%	32.26%	40.05%		
Liu et al. (2021b)	1042	54.50%	32.35%	40.60%		
Dai et al. (2021)	1213	53.60%	37.66%	44.24%		
Ours	1275	87.10%	39.58%	54.43%		

Table 4: Comparison results of different approaches on the sample test set in Ultra-fine entity typing dataset.

- The classification-based approaches are **extremely difficult** to select the appropriate types from the large predefined type set.
- our GET model has no classification constraint since it transforms multiclassification into a generation paradigm that is more suitable for PLMs

Dataset	MaNew	MiNew	R.New
BNN	4	100	11.61%
FIGER	25	137	26.81%
Ultra-Fine	73	543	42.14%

Total number of generated types beyond the predefined type set

Table 5: The number and ratio of new types generated by our model on different datasets.

Dataset	MaNew	MiNew	R.New
BNN	4	100	11.61%
FIGER	25	137	26.81%
Ultra-Fine	73	543	42.14%

Total number of generated types beyond the human-annotated type set of each instance

Table 5: The number and ratio of new types generated by our model on different datasets.

Dataset	MaNew	MiNew	R.New
BNN	4	100	11.61%
FIGER	25	137	26.81%
Ultra-Fine	73	543	42.14%

Table 5: The number and ratio of new types generated by our model on different datasets.

Ratio of new generated types per sample

Overall Results

Dataset	MaNew	MiNew	R.New
BNN	4	100	11.61%
FIGER	25	137	26.81%
Ultra-Fine	73	543	42.14%

Table 5: The number and ratio of new types generated by our model on different datasets.

 Our model can generate abundant types that are not in the golden labeled set

Model	Dataset		Chinese			English			
Model	Dataset	CT#	Prec.	R-F1	Len.	CT#	Prec.	R-F1	Len.
FT	Auto-	690	84.46%	70.81%	2.80	870	75.85%	52.87%	1.48
PCL	generated	646	91.76%	70.37%	2.75	864	85.97%	54.87%	1.32
SPL w/o PK	data	672	92.18%	72.22%	2.75	900	87.12%	56.66%	1.54
Ours	uata	714	90.04%	74.18%	2.86	928	87.14%	57.84%	1.62
FT	Human-	383	72.54%	53.98%	2.65	352	84.82%	48.82%	1.72
PCL	annotated	370	77.24%	54.01%	2.64	375	88.03%	51.62%	1.69
SPL w/o PK	data	383	78.64%	55.59%	2.61	370	90.46%	51.53%	1.74
Ours	uata	409	83.64%	59.28%	2.63	373	90.75%	51.88%	1.82

Table 6: Performance comparisons of our model and its variants on the auto-generated and human-annotated test set.

- The superiority of PCL and SPL over FT verifies CL's advantage over the general training strategy
- SPL w/o PK's superiority over PCL verifies SPL's effectiveness

Analysis of SPL

Figure 4: The ratio of training samples of different learning strategies in each epoch.

 The training on the former subsets can be regarded as a pre-training process that helps model optimization and regularizes the training on the later subsets.

Effectiveness of Prior Knowledge

Model	Dataset	Chinese				Eng	lish		
Model	Dataset	CT#	Prec.	R-F1	Len.	CT#	Prec.	R-F1	Len.
FT	Auto-	690	84.46%	70.81%	2.80	870	75.85%	52.87%	1.48
PCL		646	91.76%	70.37%	2.75	864	85.97%	54.87%	1.32
SPL w/o PK	generated data	672	92.18%	72.22%	2.75	900	87.12%	56.66%	1.54
Ours	uata	714	90.04%	74.18%	2.86	928	87.14%	57.84%	1.62
FT	Human-	383	72.54%	53.98%	2.65	352	84.82%	48.82%	1.72
PCL	annotated	370	77.24%	54.01%	2.64	375	88.03%	51.62%	1.69
SPL w/o PK	data	383	78.64%	55.59%	2.61	370	90.46%	51.53%	1.74
Ours	uata	409	83.64%	59.28%	2.63	373	90.75%	51.88%	1.82

Table 6: Performance comparisons of our model and its variants on the auto-generated and human-annotated test set.

• If the prior knowledge is ignored, SPL would only rely on the selfjudgment of the model and **treat all the selected samples equally**

Analysis of Prior Knowledge

 The prior knowledge about the type length is considered to reweight the importance of samples, which lets the model pay more attention to fine-grained types.

Applications

Short Text Classification

Method $\mathbf{F}\mathbf{1}$ Prec. Recall 72.92% 72.70% 72.47% No type 73.99% 73.17% 73.30% types (KG) 74.51% 73.41% 73.53% types (Gen.)

Entity linking

Dataset	Method	F1
AIDA	triples (KG.)	94.58%
CoNLL-YAGO	triples (Gen.)	94.92%
ACE 2014	triples (KG)	89.74%
ACE 2014	triples (Gen.)	90.54%

Table 7: Performance of short text classification based on Bi-LSTM without/with different external knowledge on NLPCC2017 dataset.

Table 8: Performance of entity linking model DCA-SL with different external knowledge.

 The generated types effectively improve downstream tasks' performance.

Conclusion

- Propose a novel generative paradigm for entity typing
- Employs a generative PLM trained with curriculum learning
- The prior knowledge of type length and subset order help our model generate more highquality fine-grained types.

Thanks