Chapter 4
Cloud Compute
Cloud Compute

Cloud Compute Defined

- Computer calculations in the cloud
 - Operating systems
 - Services
 - Applications
 - Functions

Cloud Compute Benefits

- Dynamic performance improvement
- Use only when required
- Test new hardware capabilities
- Evaluate new software
- Implement specialized processing

Cloud Compute Challenges

- Latency of results
 - Traffic has to cross the Internet and back
- Learning new methodologies
- Understanding cloud architectures
 - Cloud structure and networking
- Understanding service provider options

Central Processing Units (CPUs)

- The core compute engine
- Cloud providers offer varying technologies
- Plan for proposed resources
 - What is required at peak
- Implement available resources
 - What is required at all times
 - Use elasticity to achieve peak requirements

CPU Technologies

- Hyperthreading
 - Multiple threads of concurrent operation
 - Results in multiple virtual CPUs
 - For example, a 4-core hyperthreaded CPU
 - = 8 virtual CPUs

CPU Technologies

- $\bullet VT-x$
 - Virtualization technology in the CPU
 - •Intel's solution
 - AMD implements AMD-V

Overcommitment Ratios

- Utilize real resources for virtual machines well
- Scenario:
 - 2 CPUs
 - Each is quad core
 - Each is hyperthreaded
 - Total of 16 virtual CPUs
 - Run 4 virtual machines, each with 8 CPUs
 - Result is a 2:1 overcommitment ratio
 - 2 virtual processors for each of the CPUs (including hyperthreading)
- Overcommitment is the primary factor in private clouds
- Cloud service providers hide this from you and perform it themselves

Memory Requirement Factors

- Operating system
- Services
- Applications
- Processes

Memory Ballooning

- A feature of virtualization platforms
 - Unused, allocated memory for one guest can be used by another
 - Allows for overcommitment of memory
- Mostly used in private clouds from a configuration perspective
 - Service providers may used it, but you won't configure it
- Bursting
 - The action of ballooning

Performance Factors

- •CPU
- Memory
- Disks
- Network

DEMO

Optimizing CPU options in AWS

 $\underline{https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html}$

Storage Optimized Instances in AWS

 $\underline{\text{https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/storage-optimized-instances.html}}$

Load testing in GCP

 $\underline{\text{https://cloud.google.com/community/tutorials/load-testing-iot-using-gcp-and-locust}}$

Hands-On

- Azure Pricing Calculator
 - https://azure.microsoft.com/en-us/pricing/calculator
- AWS Pricing Calculator

https://calculator.aws/#/

• GCP Pricing Calculator

https://cloud.google.com/products/calculator/

Public/Community Cloud Energy Savings

- •Shared resources = energy savings
 - Only use what you need on a shared system

<u>Traditional Private Deployments</u>

- Departmental servers
- Multiple data centers
- Localized servers in distributed companies
- High-powered desktops in many cases

Private Cloud Deployment Energy Savings

- Virtualization changed everything
- Private cloud is basically automated virtualization
 - With some extra bells and whistles
- The new deployment that saves energy
 - Multiple virtual servers on a single box
 - Services accessed across the Internet in the private cloud
 - Virtual desktops with high computing power
 - Possible shared among multiple resources

DEMO

- AWS Dedicated Hosts and Instances
 - https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/dedicated-hosts-overview.html
- Azure Dedicated Host
 - https://azure.microsoft.com/en-us/services/virtual-machines/dedicated-host/

04.08 High Availability and Disaster Recovery for
04:00 mgm Availability and Disaster Recovery for
Choud Compute CH04: Cloud Compute
(HU4: CIOUR COMPLIFE
Cito+: cloud compate

HA/DR Effect for Compute

- High availability and disaster recover (HA/DR)
- Server or service must be there
 - Virtual servers demand the full virtual server be available
 - Serverless compute requires the function to be available

HA/DR Effect for Compute

- Availability functions for compute
 - Clustering
 - Multiple instances with a primary and failover
 - Load balancing
 - Multiple instances with workload rotating between them
 - Serverless limits
 - Imposed by service provider

<u>DEMO</u>

- AWS Lambda Limits
 - https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Monitoring Terminology

- Target object
 - Baselines
 - Anomalies
- Alerts
- Events
 - System can log
 - Event collection for analysis

Event Correlation

- Event timestamps are used to correlate
- Ex:
 - Event A happened at 10:17:32 and Event B happened at 10:17:33
 - Event B and A are related
 - Maybe Event B was caused by Event A
- Correlation benefits
 - Determination of cause
 - Locating attack points
 - Identifying errant code

<u>Hands-On</u>

Monitoring in AWS

Forecasting Required Resources

- Forecasting is looking into the future to determine needs
 - Look at today to predict tomorrow
- Baseline
 - Standard normal performance today
 - Current average utilization
 - Recent peak utilization
 - How often?

Forecasting Required Resources

- Upsize/increase or downsize/decrease resources to meet future demands
 - CPU
 - Memory
 - Storage

Policies and Monitoring

- Monitoring may reveal sensitive data
 - Can monitor down to the process level
 - Identifying processes can give you insight into points of attack

Policies and Monitoring

- Policies should be in place
- Policies in support of event collection
 - What can be monitored?
 - When should it be monitored?
 - What can be correlated?
- Policies to communicate alerts appropriately
 - How should it be reported?
 - Who should be notified?

