Algebraic Geometry 2 Tutorial session 4

Lecturer: Rami Aizenbud TA: Shai Shechter

May 17, 2020

The pullback and direct image - recollections

Let $f: X \to Y$ be a continuous map of topological space, and let \mathcal{F} be a sheaf on X and \mathcal{G} a sheaf on Y.

The pullback and direct image - recollections

Let $f: X \to Y$ be a continuous map of topological space, and let $\mathcal F$ be a sheaf on X and $\mathcal G$ a sheaf on Y. Recall that we defined the pullback of $\mathcal F$ to be the sheaf $f_*\mathcal F$ on Y, defined by

$$f_*\mathcal{F}(V)=\mathcal{F}(f^{-1}(V))$$
 for $V\subseteq Y$ open.

The pullback and direct image - recollections

Let $f:X\to Y$ be a continuous map of topological space, and let $\mathcal F$ be a sheaf on X and $\mathcal G$ a sheaf on Y. Recall that we defined the pullback of $\mathcal F$ to be the sheaf $f_*\mathcal F$ on Y, defined by

$$f_*\mathcal{F}(V)=\mathcal{F}(f^{-1}(V))$$
 for $V\subseteq Y$ open.

We also defined the direct image sheaf $f^{-1}\mathcal{G}$ on X, by sheafification of the presheaf defined by

$$f^{-1}\mathcal{G}(U) = \lim_{V \supset f(U) \text{ open}} \mathcal{G}(V)$$
 for $U \subseteq X$ open.

Adjontness of pullback and direct image

Exercise

Let $f:X\to Y$ be a continuous map, $\mathcal F$ a sheaf on X and $\mathcal G$ a sheaf on Y. Then there exists a natural bijection

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(Y)}(\mathcal{G},f_*\mathcal{F}).$$

Adjortness of pullback and direct image

Exercise

Let $f:X\to Y$ be a continuous map, $\mathcal F$ a sheaf on X and $\mathcal G$ a sheaf on Y. Then there exists a natural bijection

$$\operatorname{Hom}_{\operatorname{\mathbf{Sh}}(X)}(f^{-1}\mathcal{G},\mathcal{F}) \simeq \operatorname{Hom}_{\operatorname{\mathbf{Sh}}(Y)}(\mathcal{G},f_*\mathcal{F}).$$

Proof.

We construct natural maps going in both directions, and verify that their compositions are equivalent to identity (some details are left as exercises).

• $F : \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$:

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$. We construct $F(\varphi)_V$ for V in a basis for the topology on Y. Recall from exercise, that Y has a basis of subsets V such that for $U \subseteq f^{-1}(V) \subseteq X$ open, we have $f^{-1}\mathcal{G}(U) = \lim_{V \supset f(U)} \mathcal{G}(V)$.

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$. We construct $F(\varphi)_V$ for V in a basis for the topology on Y. Recall from exercise, that Y has a basis of subsets V such that for $U \subseteq f^{-1}(V) \subseteq X$ open, we have $f^{-1}\mathcal{G}(U) = \lim_{V \supseteq f(U)} \mathcal{G}(V)$. Let $V \subseteq Y$ be such, and $U = f^{-1}(V)$.

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$. We construct $F(\varphi)_V$ for V in a basis for the topology on Y. Recall from exercise, that Y has a basis of subsets V such that for $U \subseteq f^{-1}(V) \subseteq X$ open, we have $f^{-1}\mathcal{G}(U) = \lim_{V \supseteq f(U)} \mathcal{G}(V)$. Let $V \subseteq Y$ be such, and $U = f^{-1}(V)$. By definition

$$f^{-1}\mathcal{G}(U) = \lim_{V' \supset f(U)} \mathcal{G}(V') = \mathcal{G}(V)$$
 and $\mathcal{F}(U) = f_*\mathcal{F}(V)$.

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$. We construct $F(\varphi)_V$ for V in a basis for the topology on Y. Recall from exercise, that Y has a basis of subsets V such that for $U \subseteq f^{-1}(V) \subseteq X$ open, we have $f^{-1}\mathcal{G}(U) = \lim_{V \supseteq f(U)} \mathcal{G}(V)$. Let $V \subseteq Y$ be such, and $U = f^{-1}(V)$. By definition

$$f^{-1}\mathcal{G}(U) = \lim_{V' \supseteq f(U)} \mathcal{G}(V') = \mathcal{G}(V)$$
 and $\mathcal{F}(U) = f_*\mathcal{F}(V)$.

In particular, $\operatorname{Hom}(f^{-1}\mathcal{G}(U), \mathcal{F}(U)) = \operatorname{Hom}(\mathcal{G}(V), f_*\mathcal{F}(V))$, and we can define $F(\varphi)_V = \varphi_{f^{-1}(V)}$.

• $F: \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F}) \to \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$: Let $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$. We construct $F(\varphi)_V$ for V in a basis for the topology on Y. Recall from exercise, that Y has a basis of subsets V such that for $U \subseteq f^{-1}(V) \subseteq X$ open, we have $f^{-1}\mathcal{G}(U) = \lim_{V \supseteq f(U)} \mathcal{G}(V)$. Let $V \subseteq Y$ be such, and $U = f^{-1}(V)$. By definition

$$f^{-1}\mathcal{G}(U) = \lim_{V' \supseteq f(U)} \mathcal{G}(V') = \mathcal{G}(V)$$
 and $\mathcal{F}(U) = f_*\mathcal{F}(V)$.

In particular, $\operatorname{Hom}(f^{-1}\mathcal{G}(U), \mathcal{F}(U)) = \operatorname{Hom}(\mathcal{G}(V), f_*\mathcal{F}(V))$, and we can define $F(\varphi)_V = \varphi_{f^{-1}(V)}$. This gives rise to a sheaf morphism $F(\varphi) \in \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})$ (Ex).

• $G: \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f_*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

• $G: \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f_*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes the suitable diagram commutative.

• $G: \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f_*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes the suitable diagram commutative. The maps $(g_U)_{U\subseteq X \text{ open}}$ comprise a morphism of presheaves form the presheaf $(U\mapsto \lim_{V\supset f(U)}\mathcal{G}(V))$ to \mathcal{F} (Ex).

• $G: \operatorname{Hom}(\mathcal{G}, f_*\mathcal{F}) \to \operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})$: Given $\psi: \mathcal{G} \to f_*\mathcal{F}$, $U \subseteq X$ open and $f(U) \subseteq V \subseteq Y$ open, we have a map $g_{V,U}: \mathcal{G}(V) \to \mathcal{F}(U)$, given by the composition

$$\mathcal{G}(V) \xrightarrow{\psi_V} f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}V) \xrightarrow{\operatorname{res}_{f^{-1}(V),U}} \mathcal{F}(U).$$

The universal property of direct limit then gives a map

$$g_U = \lim_{V \supseteq f(U)} g_{V,U} : \lim_{V \supseteq f(U)} \mathcal{G}(V) o \mathcal{F}(U),$$

which makes the suitable diagram commutative. The maps $(g_U)_{U\subseteq X \text{ open}}$ comprise a morphism of presheaves form the presheaf $(U\mapsto \lim_{V\supseteq f(U)}\mathcal{G}(V))$ to \mathcal{F} (Ex). Sheafifying, we set $G(\psi)=\widetilde{g}:f^{-1}\mathcal{G}\to\mathcal{F}$.

We need to show $FG \sim \mathbf{1}_{\operatorname{Hom}(\mathcal{G},f_*\mathcal{F})}$ and $GF \sim \mathbf{1}_{\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F})}$.

• Given $\psi: \mathcal{G} \to f_*\mathcal{F}$ and $V \subseteq Y$ open, we have $(F\mathcal{G}\psi)_V = (\mathcal{G}\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$.

We need to show $FG \sim \mathbf{1}_{\operatorname{Hom}(\mathcal{G},f_*\mathcal{F})}$ and $GF \sim \mathbf{1}_{\operatorname{Hom}(f^{-1}\mathcal{G},\mathcal{F})}$.

• Given $\psi: \mathcal{G} \to f_*\mathcal{F}$ and $V \subseteq Y$ open, we have $(F\mathcal{G}\psi)_V = (\mathcal{G}\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is a filtered limit with a terminal object, and equals to its value at V.

We need to show $FG \sim \mathbf{1}_{\operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})}$ and $GF \sim \mathbf{1}_{\operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})}$.

• Given $\psi: \mathcal{G} \to f_*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is a filtered limit with a terminal object, and equals to its value at V. It follows that $(FG\psi)_V = (G\psi)_{f^{-1}(V)} = \psi_V$.

We need to show $FG \sim \mathbf{1}_{\operatorname{Hom}(\mathcal{G}, f_*\mathcal{F})}$ and $GF \sim \mathbf{1}_{\operatorname{Hom}(f^{-1}\mathcal{G}, \mathcal{F})}$.

- Given $\psi: \mathcal{G} \to f_*\mathcal{F}$ and $V \subseteq Y$ open, we have $(FG\psi)_V = (G\psi)_{f^{-1}(V)}$, where the RHS is given by a direct limit over open sets containing $f(f^{-1}(V)) = V$. Hence it is a filtered limit with a terminal object, and equals to its value at V. It follows that $(FG\psi)_V = (G\psi)_{f^{-1}(V)} = \psi_V$.
- The equivalence $(GF\varphi)_U = \varphi_U$ for all $\varphi : f^{-1}\mathcal{G} \to \mathcal{F}$ follows similarly, by unfolding the definitions (Ex).

Schemes

Let A be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \triangleleft A : \mathfrak{p} \text{ prime} \}.$$

Let A be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \triangleleft A : \mathfrak{p} \text{ prime} \}.$$

Examples

Let A be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \triangleleft A : \mathfrak{p} \text{ prime} \}.$$

Examples

- ② Spec $(k[x]) =: \mathbb{A}^1_k \approx \{\text{irreducibe monic polynomials in } x\} \sqcup \{0\}$

Let A be a commutative unital ring.

Definition

The spectrum of R is the set

$$\operatorname{Spec}(A) = \{ \mathfrak{p} \triangleleft A : \mathfrak{p} \text{ prime} \}.$$

Examples

- ② Spec $(k[x]) =: \mathbb{A}^1_k \approx \{\text{irreducibe monic polynomials in } x\} \sqcup \{0\}$

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Exercise

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Exercise

• $V((0)) = A \text{ and } V(A) = \emptyset.$

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}.$

Exercise

- $V((0)) = A \text{ and } V(A) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = A \text{ and } V(A) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = A \text{ and } V(A) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Proof.

Home exercise.

Given $I \triangleleft A$, define $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(A) : I \subseteq \mathfrak{p} \}$.

Exercise

- $V((0)) = A \text{ and } V(A) = \emptyset.$
- $V(IJ) = V(I) \cup V(J).$
- **3** Given a collection $\{I_{\alpha}\}$ of ideals, $V(\sum I_{\alpha}) = \bigcap V(I_{\alpha})$.

Proof.

Home exercise.

The collection $\{V(I): I \triangleleft R\}$ is the set of closed sets for a topology on $\operatorname{Spec}(R)$, which is known as the *Zariski Topology* of R.

Let A be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(A)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if A is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Let A be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(A)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if A is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Solution.

Let A be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(A)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if A is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Solution.

O By definition, and by the previous exercise:

$$\overline{\mathfrak{p}} = \bigcap_{\mathfrak{p} \in F \text{ closed}} F = \bigcap_{\substack{I \leq R \\ I \subseteq \mathfrak{p}}} V(I) = V(\sum_{I \subseteq \mathfrak{p}} I) = V(\mathfrak{p}).$$

In particular, $\{\mathfrak{p}\}$ is closed iff $\{\mathfrak{p}\} = V(\mathfrak{p})$ which occurs iff \mathfrak{p} is maximal (o/w, take $\mathfrak{m} \supseteq \mathfrak{p}$ maximal).

Let A be a ring.

- Show that $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p})$, for all $\mathfrak{p} \in \operatorname{Spec}(A)$ and, in particular, that $\{\mathfrak{p}\}$ is closed iff \mathfrak{p} is maximal.
- ② Show that, if A is a domain, then $\{(0)\}$ is a <u>dense</u> point.

Solution.

O By definition, and by the previous exercise:

$$\overline{\mathfrak{p}} = \bigcap_{\mathfrak{p} \in F \text{ closed}} F = \bigcap_{\substack{I \leq R \\ I \subseteq \mathfrak{p}}} V(I) = V(\sum_{I \subseteq \mathfrak{p}} I) = V(\mathfrak{p}).$$

In particular, $\{\mathfrak{p}\}$ is closed iff $\{\mathfrak{p}\} = V(\mathfrak{p})$ which occurs iff \mathfrak{p} is maximal (o/w, take $\mathfrak{m} \supsetneq \mathfrak{p}$ maximal).

② Note: $(0) \in \operatorname{Spec}(R)$ iff R is a domain, in which case V(0) = R.

Show that Spec(A) is irreducible iff A is a domain.

Exercise

Show that Spec(A) is irreducible iff A is a domain.

Solution.

Assume A is domain, and $0 \neq I_1, I_2 \triangleleft A$ proper ideals such that $\operatorname{Spec}(A) = V(I_1) \cup V(I_2)$. Let $f_i \in I_i$ (i = 1, 2). Then, since

$$V(I_1) \cup V(I_2) \subseteq V((f_1)) \cup V((f_2)) = V((f_1f_2)),$$

we have that f_1f_2 is necessarily nilpotent, and since A is a domain, either $f_1=0$ or $f_2=0$. By fixing $0\neq f_1\in I_1$ (wlog, assuming such exists) and letting $f_2\in I_2$ vary we deduce that $I_2=(0)$ and hence $V(I_2)=\operatorname{Spec}(A)$.

Exercise

Show that Spec(A) is irreducible iff A is a domain.

Solution.

Assume A is domain, and $0 \neq I_1, I_2 \triangleleft A$ proper ideals such that $\operatorname{Spec}(A) = V(I_1) \cup V(I_2)$. Let $f_i \in I_i$ (i = 1, 2). Then, since

$$V(I_1) \cup V(I_2) \subseteq V((f_1)) \cup V((f_2)) = V((f_1f_2)),$$

we have that f_1f_2 is necessarily nilpotent, and since A is a domain, either $f_1=0$ or $f_2=0$. By fixing $0 \neq f_1 \in I_1$ (wlog, assuming such exists) and letting $f_2 \in I_2$ vary we deduce that $I_2=(0)$ and hence $V(I_2)=\operatorname{Spec}(A)$.

For the converse implication, assume $\operatorname{Spec}(A)$ is irreducible and let $f_1, f_2 \in A$ non-nilpotents. By assumption

 $V((f_1)) \cup V((f_2)) = V((f_1f_2)) \subsetneq \operatorname{Spec}(A)$, and hence there exists $\mathfrak{p} \in \operatorname{Spec}(A)$ such that $f_1f_2 \notin \mathfrak{p}$. In particular, $f_1f_2 \neq 0$.

The last two exercises imply the following:

The last two exercises imply the following:

Corollary

If $\operatorname{Spec}(A)$ is irreducible then there exists $\xi \in \operatorname{Spec}(A)$ such that $\overline{\xi} = \operatorname{Spec}(A)$.

The last two exercises imply the following:

Corollary

If $\operatorname{Spec}(A)$ is irreducible then there exists $\xi \in \operatorname{Spec}(A)$ such that $\overline{\xi} = \operatorname{Spec}(A)$. Such an element is called a generic point of $\operatorname{Spec}(A)$.

Definition

• A ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space and a sheaf of rings \mathcal{O}_X on X.

Definition

- A ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space and a sheaf of rings \mathcal{O}_X on X.
- ② A morphism of ringed spaces is a pair (f, f^{\sharp}) , in which f is a continuous map $X \to Y$ and $f^{\sharp} : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of sheaves of rings on Y.

Definition

- A ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space and a sheaf of rings \mathcal{O}_X on X.
- ② A morphism of ringed spaces is a pair (f, f^{\sharp}) , in which f is a continuous map $X \to Y$ and $f^{\sharp} : \mathcal{O}_Y \to f_* \mathcal{O}_X$ is a morphism of sheaves of rings on Y.
- **3** (X, \mathcal{O}_X) is a *locally ringed space* if, in addition, the stalk $\mathcal{O}_{X,x}$ is a local ring for all $x \in X$.

Definition

- A ringed space is a pair (X, \mathcal{O}_X) consisting of a topological space and a sheaf of rings \mathcal{O}_X on X.
- ② A morphism of ringed spaces is a pair (f, f^{\sharp}) , in which f is a continuous map $X \to Y$ and $f^{\sharp} : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of sheaves of rings on Y.
- **3** (X, \mathcal{O}_X) is a *locally ringed space* if, in addition, the stalk $\mathcal{O}_{X,x}$ is a local ring for all $x \in X$.
- **1** A morphism of locally ringed spaces (f, f^{\sharp}) is a morphism of ringed spaces with the **added requirement** that $f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to f_*\mathcal{O}_{X,x}$ is a local homomorphism (i.e. preimage of the maximal ideal is maximal) for any $x \in X$.

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

• for any $\mathfrak{p} \in \operatorname{Spec}(A)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} at \mathfrak{p} is isomorphic to the local ring $A_{\mathfrak{p}} = (A - \mathfrak{p})^{-1}A$, and

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

- for any $\mathfrak{p} \in \operatorname{Spec}(A)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} at \mathfrak{p} is isomorphic to the local ring $A_{\mathfrak{p}} = (A \mathfrak{p})^{-1}A$, and
- for any $f \in A$, let $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : f \notin \mathfrak{p} \}$; this is an open set of $\operatorname{Spec}(A)$. Then $\mathcal{O}(D(f)) \simeq f^{-1}A$.

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

- for any $\mathfrak{p} \in \operatorname{Spec}(A)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} at \mathfrak{p} is isomorphic to the local ring $A_{\mathfrak{p}} = (A \mathfrak{p})^{-1}A$, and
- for any $f \in A$, let $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : f \notin \mathfrak{p} \}$; this is an open set of $\operatorname{Spec}(A)$. Then $\mathcal{O}(D(f)) \simeq f^{-1}A$.

Thus $(\operatorname{Spec}(A), \mathcal{O})$ is a locally ring space, with $\mathcal{O}(\operatorname{Spec}(A)) \simeq A$.

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

- for any $\mathfrak{p} \in \operatorname{Spec}(A)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} at \mathfrak{p} is isomorphic to the local ring $A_{\mathfrak{p}} = (A \mathfrak{p})^{-1}A$, and
- for any $f \in A$, let $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : f \notin \mathfrak{p} \}$; this is an open set of $\operatorname{Spec}(A)$. Then $\mathcal{O}(D(f)) \simeq f^{-1}A$.

Thus $(\operatorname{Spec}(A), \mathcal{O})$ is a locally ring space, with $\mathcal{O}(\operatorname{Spec}(A)) \simeq A$.

Explicit construction

The sheaf \mathcal{O} is defined by sheafifying the presheaf on $\operatorname{Spec}(A)$ whose stalks are given by $A_{\mathfrak{p}} = \lim_{\mathfrak{p} \in D(f), f \in A} A_f$.

Let A be a ring. The spectrum of A has an associated sheaf of rings \mathcal{O} , which has the following properties:

- for any $\mathfrak{p} \in \operatorname{Spec}(A)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ of \mathcal{O} at \mathfrak{p} is isomorphic to the local ring $A_{\mathfrak{p}} = (A \mathfrak{p})^{-1}A$, and
- for any $f \in A$, let $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(A) : f \notin \mathfrak{p} \}$; this is an open set of $\operatorname{Spec}(A)$. Then $\mathcal{O}(D(f)) \simeq f^{-1}A$.

Thus $(\operatorname{Spec}(A), \mathcal{O})$ is a locally ring space, with $\mathcal{O}(\operatorname{Spec}(A)) \simeq A$.

Explicit construction

The sheaf \mathcal{O} is defined by sheafifying the presheaf on $\operatorname{Spec}(A)$ whose stalks are given by $A_{\mathfrak{p}} = \lim_{\mathfrak{p} \in D(f), \ f \in A} A_f$. Explicitly, $\mathcal{O}(U)$ consists of functions $s: U \to \bigsqcup_{\mathfrak{p} \in U} A_{\mathfrak{p}}$ for which there exists an open cover $U = \bigcup_{\alpha} V_{\alpha}$ such that, given α , $\exists a_{\alpha}, b_{\alpha} \in A$ with $V_{\alpha} \subseteq D(b_{\alpha})$, such that $s(\mathfrak{q}) =$ "the image of a_{α}/b_{α} in $A_{\mathfrak{q}}$ ", for all $\mathfrak{q} \in V_{\alpha}$.

Proposition (2.3 in Hartshorne)

1 Let $\varphi: A \to B$ be a homomorphism of rings. Then φ induces a natural morphism of locally ringed spaces

$$(f, f^{\sharp}): (\operatorname{Spec}(B), \mathcal{O}_{\operatorname{Spec}(B)}) \to (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}).$$

② Conversely, any morphism of locally ring spaces (f, f^{\sharp}) as above is induced from a ring homomorphism $\varphi : A \to B$.

Let R be a dvr and K = Frak(R), its field of fractions.

Let R be a dvr and $K = \operatorname{Frak}(R)$, its field of fractions. The space $T = \operatorname{Spec}(R)$ has two points. One of them, denoted t_0 , is closed and corresponds to the maximal ideal \mathfrak{m} of R. The second, denoted t_0 is open and dense, and corresponds to the zero ideal.

Let R be a dvr and $K = \operatorname{Frak}(R)$, its field of fractions. The space $T = \operatorname{Spec}(R)$ has two points. One of them, denoted t_0 , is closed and corresponds to the maximal ideal \mathfrak{m} of R. The second, denoted t_0 is open and dense, and corresponds to the zero ideal.

$$\mathcal{O}_{T,t_0} \simeq R_{\mathfrak{m}} = R$$
 and $\mathcal{O}_{T,t_1} \simeq R_{(0)} = K$.

Let R be a dvr and $K = \operatorname{Frak}(R)$, its field of fractions. The space $T = \operatorname{Spec}(R)$ has two points. One of them, denoted t_0 , is closed and corresponds to the maximal ideal \mathfrak{m} of R. The second, denoted t_0 is open and dense, and corresponds to the zero ideal.

$$\mathcal{O}_{\mathcal{T},t_0} \simeq R_{\mathfrak{m}} = R$$
 and $\mathcal{O}_{\mathcal{T},t_1} \simeq R_{(0)} = K$.

The map $f: S = \operatorname{Spec}(K) \to T$, sending the only point in $\operatorname{Spec}(K)$ to t_1 , is part of a morphism (f, f^{\sharp}) of **locally** ringed spaces, since the corresponding stalks are both K.

Let R be a dvr and $K = \operatorname{Frak}(R)$, its field of fractions. The space $T = \operatorname{Spec}(R)$ has two points. One of them, denoted t_0 , is closed and corresponds to the maximal ideal \mathfrak{m} of R. The second, denoted t_0 is open and dense, and corresponds to the zero ideal.

$$\mathcal{O}_{T,t_0} \simeq R_{\mathfrak{m}} = R$$
 and $\mathcal{O}_{T,t_1} \simeq R_{(0)} = K$.

The map $f: S = \operatorname{Spec}(K) \to T$, sending the only point in $\operatorname{Spec}(K)$ to t_1 , is part of a morphism (f, f^{\sharp}) of **locally** ringed spaces, since the corresponding stalks are both K. Therefore, it is induced from a ring homomorphism $\varphi: R \to K$.

Example - contd

On the other hand, if $\text{Im}(f) = \{t_0\}$, and (f, f^{\sharp}) is a morphism of ringed spaces, then f^{\sharp} induces a homomorphism on stalks

$$f^{\sharp}: \mathcal{O}_{\operatorname{Spec}(R),t_0} = R \to K.$$

Example - contd

On the other hand, if $\text{Im}(f) = \{t_0\}$, and (f, f^{\sharp}) is a morphism of ringed spaces, then f^{\sharp} induces a homomorphism on stalks

$$f^{\sharp}: \mathcal{O}_{\operatorname{Spec}(R),t_0} = R \to K.$$

Assuming $R/\mathfrak{m} \not\simeq K$, this is **not** a local homomorphism.

Example - contd

On the other hand, if $\text{Im}(f) = \{t_0\}$, and (f, f^{\sharp}) is a morphism of ringed spaces, then f^{\sharp} induces a homomorphism on stalks

$$f^{\sharp}: \mathcal{O}_{\operatorname{Spec}(R),t_0} = R \to K.$$

Assuming $R/\mathfrak{m} \not\simeq K$, this is **not** a local homomorphism. Therefore, in this case, (f, f^{\sharp}) is not induced from any morphism $R \to K$.

Proof of proposition

```
Proof.
```

Proof of proposition

Proof.

• Let $\varphi: A \to B$ be a ring homomorphism. Define $f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) \in \operatorname{Spec}(A)$.

Proof of proposition

Proof.

• Let $\varphi: A \to B$ be a ring homomorphism. Define $f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ by $f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) \in \operatorname{Spec}(A)$.

<u>f</u> is continuous. Given $I \triangleleft A$, we have

$$\mathfrak{p} \in f^{-1}(V(I)) \iff f(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}) \supseteq I \iff \mathfrak{p} \supseteq \varphi(I).$$

Thus
$$f^{-1}(V(I)) = V((\varphi(I)))$$
.

Construction of f^{\sharp} . For any $\mathfrak{p} \in \operatorname{Spec} B$, we have a localized map $\varphi_{\mathfrak{p}} : A_{\varphi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$, defined by $\varphi_{\mathfrak{p}}(a/b) = \varphi(a)/\varphi(b)$.

Construction of f^{\sharp} . For any $\mathfrak{p} \in \operatorname{Spec} B$, we have a localized map $\varphi_{\mathfrak{p}}: A_{\varphi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$, defined by $\varphi_{\mathfrak{p}}(a/b) = \varphi(a)/\varphi(b)$. Given $V \subseteq \operatorname{Spec}(A)$ open, and $s \in \mathcal{O}_{\operatorname{Spec}(A)}(V)$ define

$$f^{\sharp}(s)(\mathfrak{p})=\varphi_{\mathfrak{p}}\circ s\circ f.$$

Construction of f^{\sharp} . For any $\mathfrak{p} \in \operatorname{Spec} B$, we have a localized map $\varphi_{\mathfrak{p}} : A_{\varphi^{-1}(\mathfrak{p})} \to B_{\mathfrak{p}}$, defined by $\varphi_{\mathfrak{p}}(a/b) = \varphi(a)/\varphi(b)$. Given $V \subseteq \operatorname{Spec}(A)$ open, and $s \in \mathcal{O}_{\operatorname{Spec}(A)}(V)$ define

$$f^{\sharp}(s)(\mathfrak{p})=\varphi_{\mathfrak{p}}\circ s\circ f.$$

Then f^{\sharp} is a ring homomorphism. Furthermore, if $U \subseteq V$ is such that there exist $a, b \in A$ with $U \subseteq D(b)$ such that $s(\mathfrak{q}) = a/b \in A_{\mathfrak{q}}$ for all $\mathfrak{q} \in U$, then $f^{-1}(U) \subseteq D(\varphi(b))$ and $f^{\sharp}(s)(\mathfrak{q}') = \varphi(a)/\varphi(b) \in B_{\mathfrak{q}'}$ for all $\mathfrak{q}' \in f^{-1}(U)$. It follows that $f^{\sharp}(s) \in \mathcal{O}_{\operatorname{Spec}(B)}(f^{-1}(V)) = f_*\mathcal{O}_{\operatorname{Spec}(B)}(V)$.

② Given a morphism of locally ringed spaces (f, f^{\sharp}) , in particular, we get a map $\varphi := f^{\sharp}_{\operatorname{Spec}(A)} : A \to B$, where we identify a ring R with $\mathcal{O}_{\operatorname{Spec}(R)}(\operatorname{Spec}(R))$.

② Given a morphism of locally ringed spaces (f, f^{\sharp}) , in particular, we get a map $\varphi := f^{\sharp}_{\operatorname{Spec}(A)} : A \to B$, where we identify a ring R with $\mathcal{O}_{\operatorname{Spec}(R)}(\operatorname{Spec}(R))$. φ must agree with f^{\sharp} on stalks, i.e. we have a commutative diagram

② Given a morphism of locally ringed spaces (f, f^{\sharp}) , in particular, we get a map $\varphi := f^{\sharp}_{\operatorname{Spec}(A)} : A \to B$, where we identify a ring R with $\mathcal{O}_{\operatorname{Spec}(R)}(\operatorname{Spec}(R))$. φ must agree with f^{\sharp} on stalks, i.e. we have a commutative diagram

$$A \xrightarrow{\varphi} B .$$

$$I_{A} \downarrow \qquad \qquad \downarrow I_{B}$$

$$A_{f(\mathfrak{p})} \xrightarrow{f^{\sharp}} B_{\mathfrak{p}}$$

In particular, since the bottom row consists of local rings and a local homorphism, it must be that

$$\varphi^{-1}(\mathfrak{p})=\varphi^{-1}\circ I_B^{-1}(\mathfrak{p}B_{\mathfrak{p}})=I_A^{-1}\circ f^{\sharp}(\mathfrak{p}B_{\mathfrak{p}})=f(\mathfrak{p}).$$

Thus $f = \varphi^{-1}$.

Let $R = \overline{\mathbb{F}_q}[[t]]$, and $\varphi : R \to R$ defined by $\varphi(\sum a_i t^i) = \sum a_i^q t^i$.

Let $R = \overline{\mathbb{F}_q}[[t]]$, and $\varphi : R \to R$ defined by $\varphi(\sum a_i t^i) = \sum a_i^q t^i$. $T = \operatorname{Spec}(R)$ has two points with $\mathfrak{p} = (t)$, a closed point, and (0), which is open and dense. Both points are invariant under φ^{-1} .

Let $R = \overline{\mathbb{F}_q}[[t]]$, and $\varphi : R \to R$ defined by $\varphi(\sum a_i t^i) = \sum a_i^q t^i$. $T = \operatorname{Spec}(R)$ has two points with $\mathfrak{p} = (t)$, a closed point, and (0), which is open and dense. Both points are invariant under φ^{-1} .

• The associated map $f : \operatorname{Spec}(R) \to \operatorname{Spec}(R)$ is the identity map.

Let $R = \overline{\mathbb{F}_q}[[t]]$, and $\varphi : R \to R$ defined by $\varphi(\sum a_i t^i) = \sum a_i^q t^i$. $T = \operatorname{Spec}(R)$ has two points with $\mathfrak{p} = (t)$, a closed point, and (0), which is open and dense. Both points are invariant under φ^{-1} .

- The associated map $f : \operatorname{Spec}(R) \to \operatorname{Spec}(R)$ is the identity map.
- Given $V \subseteq \operatorname{Spec}(R)$ and $s \in \mathcal{O}_{\operatorname{Spec}(R)}(V)$, we have

$$f^{\sharp}(s)(\cdot)=(s(\cdot))^{q}.$$

Corollary (of the proposition)

Let A, B be rings. Then A and B are isomorphic if and only if $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$ are isomorphic as locally ringed spaces.

Definition

An affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to $\operatorname{Spec}(A)$ for some ring A.

Definition

An *affine scheme* is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to $\operatorname{Spec}(A)$ for some ring A.

A *scheme* is a locally ringed space (X, \mathcal{O}_X) for which X is covered by open sets $X = \bigcup U_{\alpha}$, such that $(U, \mathcal{O}_X |_{U_{\alpha}})$ is an affine scheme.

Definition

An affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to $\operatorname{Spec}(A)$ for some ring A.

A *scheme* is a locally ringed space (X, \mathcal{O}_X) for which X is covered by open sets $X = \bigcup U_{\alpha}$, such that $(U, \mathcal{O}_X |_{U_{\alpha}})$ is an affine scheme.

Here $\mathcal{O}_X \mid_{U_{\alpha}}$ denotes the restricted sheaf $\mathcal{O}_X \mid_{U_{\alpha}} (V) = \mathcal{O}_X(V)$ for $V \subseteq U_{\alpha}$ open.