Reguläre Ausdrücke

by

Dr. Günter Kolousek

Allgemeines

- ► Eine Sprache ist eine Menge von Wörtern
 - ► Frage: Was ist ein Wort?
- ► Reguläre Ausdrücke (engl. regular expressions, kurz: regex) dienen dazu Sprachen zu beschreiben.
 - eigentlich: ganz bestimmte Arten von Sprachen
- ► Eine Menge (von Wörtern), die durch einen regulären Ausdruck beschrieben wird, heißt reguläre Menge.
- Anwendungen: Suchen von Strings (z.B. vim, Emacs, grep,...), lexikalische Analyse (→ Compiler),...

Definition regulärer Mengen

Rekursive Definition!

Ein regulärer Ausdruck ist...

- ▶ das Zeichen ϵ (Epsilon), das die Menge kennzeichnet, die den Leerstring als einziges Element enthält. ϵ bezeichnet die leere Zeichenkette.
 - ightharpoonup Menge: $\{\epsilon\}$
- ein einzelnes Zeichen a (aus dem Alphabet) ist ein regulärer Ausdruck, der die Menge kennzeichnet, die nur das Wort a enthält.
 - ▶ Menge: {*a*}

Definition regulärer Mengen – 2

Wenn r und s reguläre Ausdrücke sind, dann sind auch die folgenden Ausdrücke regulär (Operationen):

- 1. Oftmalige Verkettung:
 - rⁿ ... genau n-Mal r z.B.: regex: r² = rr, Menge: {rr}, d.h. die Menge, die das Wort rr enthält (siehe nächster Punkt)
 - r* ... 0,1 oder n-Mal r, d.h. ϵ oder Verkettung von beliebig vielen r: $\{\epsilon, r, rr, rrr, ...\}$
 - ▶ r^+ ... 1 oder n-Mal r oder Verkettung von beliebig vielen r mindestens jedoch ein r: $\{r, rr, rrr, ...\}$
- 2. rs... Verkettung: r und s
- 3. r|s ... Vereinigung: r oder s

Definition regulärer Mengen – 3

- Operatorreihenfolge (Prioritäten) gemäß der angegebenen Reihenfolge:
 - oftmalige Verkettung vor einer Verkettung
 - Verkettung vor einer Vereinigung
 - D.h. wie in der Mathematik üblich:
 - Potenzrechnung vor Punktrechnung
 - Punktrechnung vor Strichrechnung
- Arten von Zeichen
 - Terminalzeichen: gewöhnliche Zeichen
 - Metazeichen: Zeichen, die Teil von Beschreibungssprache

Beispiele regulärer Ausdrücke

- ightharpoonup Wörter gegeben durch folgende Menge $\{a,b\}$
 - ▶ a|b
- ► Wörter gegeben durch folgende Menge {aa, ab, ba, bb}
 - \triangleright $(a|b)^2$
- ightharpoonup Wörter über dem Alphabet $\{a,b\}$, die mit einem a beginnen
 - ▶ a(a|b)*
- ▶ Wörter über dem Alphabet $\{a, b, c\}$, die aus einer beliebigen Folge von a und b beginnen (mindestens Länge 1) und optional mit einem c enden können:
 - $ightharpoonup (a|b)^+(c|\epsilon)$
- ► Bezeichner einer Sprache
 - $(a|b|..|z|A|B|..|Z)(a|b|..|Y|Z|0|..|9)^*$

Reguläre Definition

- andere Schreibweise für reguläre Ausdrücke, um leichter kompliziertere Muster zu beschreiben.
- besteht aus einer Reihe von Definitionen der Form:

$$\begin{aligned} d_1 &\rightarrow r_1 \\ d_2 &\rightarrow r_2 \\ \cdots \\ d_n &\rightarrow r_n \end{aligned}$$

- ▶ d₁, d₂,... Namen von regulären Ausdrücken
- ► r₁, r₂,... die regulären Ausdrücke selbst.

Anwendungen

Achtung: leicht verschiedene Syntax je Tool!

- ▶ grep
 - sucht nach Zeichenketten mittels regex
 - Unix-Kommandos verwenden oft regex!
 - ▶ gibt alle Zeilen aus, die gefundene Zeichenketten enthalten
 - beherrscht sowohl die BRE als auch die ERE.
 - ▶ BRE ... basic regular expression: Metazeichen ?, +, {, |, (und) sind mit \ zu maskieren, um ihre "Metafunktionalität" zu erhalten.
 - ERE ... extended regular expression: Metazeichen habe ihre "normale" Metafunktionalität.
- Programmiersprachen: Python, Perl, PHP, Java,...
- ► Editoren: Eclipse, Emacs, Sublime,...

Basiskonstrukte

- ein beliebiges Zeichen
- ▶ ^ ... Anfang der Zeile
- ▶ \$... Ende der Zeile
- ► Folgende Metazeichen werden mit \ maskiert.
 - ► z.B.: \ [oder \\$
 - aber viele Zusatzbedeutungen:
 - ► \A ... Anfang des Strings, \Z ... Ende des Strings
 - \d ... ein Ziffern-Zeichen (in ASCII [0-9]) (Gegenteil davon: \D) (nicht in grep)
 - \w...ein Wort-Zeichen (in ASCII [a-zA-Z0-9_]) (Gegenteil davon: \W)
 - \s...ein Whitespace-Zeichen (Gegenteil davon: \S) (nicht in grep)
 - ▶ \b ... ein leerer String am Anfang oder Ende eines Wortes (Gegenteil davon: \B), z.B.: \botto\b findet otto, otto., (otto), mini otto maxi aber nicht ottomaxi or otto42

Zeichenklassen

- ▶ [abc] ... eines der Zeichen a, b oder c
 - ► [a-c] ... eines der Zeichen a, b oder c
 - ► [-abc], [abc-] oder [a\-bc] ... eines der Zeichen a, b, c oder -
 - ▶ []abc] oder [abc\]] ... eines der Zeichen a, b, c oder]
 - ► [(+*)] ... eines der Zeichen (, +, * oder)
- ► [^abc] ... ein Zeichen aber weder a noch b noch c
 - ▶ [abc^] ... aber: eines der Zeichen a, b, c oder ^
- Weitere Bedeutungen innerhalb von []:
 - [:alnum:],[:alpha:],[:digit:],
 - [:space:],[:upper:],[:lower:]

Zusammensetzungen

- r?... optional (greedy, d.h. gierig)
 r*... beliebig (greedy)
 r+... mind. ein Mal (greedy)
 r??, r*?, r+?... nicht greedy!
 r{n}... genau n Mal
 r{n,}... mind. n Mal
- ► r{,n}... höchstens n Mal
- ► r{m,n}...mbisnMal
- ▶ | ... oder
- ▶ () ... runde Klammern bilden Gruppe
 - ▶ \n ... Zugriff auf Inhalt der n.ten Gruppe
 - ► (.+) \1 ... z.B.: "maxi maxi" oder "42 42"
 - ► Gruppe ohne "capture": (?:regex), z.B.: (?:42)
 - nicht in POSIX, grep, GNU

Präfix und Postfix

wird zur Suche herangezogen ist jedoch nicht im Ergebnis enthalten

- ▶ Präfix (?<=regex)</p>
 - (?<=[A-Z]+)[0-9]+
 - ► ALPHA42 → true
 - ▶ alpha42 → false
- ▶ Postfix (?=regex)
 - ► [0-9]+(?=[A-Z]+)
 - ► 420MEGA → true
 - ▶ 42omega → false

Beispiel mittels grep

```
grep -Ein "ko[[:digit:]]" *.c
```

- ► E ... ERE
- ▶ i ... ignore case
- n ... show line numbers
- o ... zeigt nur die gefundenen Zeichenketten (nicht ganze Zeilen)

D.h. es werden alle Vorkommnisse der Form ko1 oder K0001 in C - Source-Dateien gesucht und die Ergebnisse mit Zeilennummern ausgegeben.

Beispiel in Python

Beispiele 1

- Menge der Zeichenketten aus Nullen und Einsen, die mindestens ein Paar aufeinanderfolgender Einsen enthält.
- ► Gesucht sind 5 Wörter des folgenden regulären Ausdruckes: (c|d) (d|e)^{*}
- Menge der Zeichenreihen aus Nullen und Einsen, deren zehntes Symbol von rechts eine Eins ist.
- Menge von Zeichenketten über dem Alphabet {a,b,c}, die mindestens ein a und mindestens ein b enthalten.
- ganze Zahlen oder Dezimalzahlen in der üblichen Notation darstellt:
 - Vorzeichen optional
 - danach mindestens eine Ziffer
 - danach kann ein Komma kommen. Wenn Komma dann jedoch mindestens eine Ziffer.

Beispiele 2

- ▶ Datumsformat, z.B.: 2005-OKT-06 oder 2005-10-06 (nicht jedoch 2004-10-54).
- Nullen und Einsen derart, dass alle Paare aufeinanderfolgender Nullen vor allen Paaren aufeinanderfolgenden Einsen stehen.
- Menge der Zeichenketten aus Nullen und Einsen, deren Anzahl von Nullen durch 5 teilbar ist.
- ➤ Zeichenketten, die mit einer 1 beginnen und danach beliebig viele Zeichen haben können, jedoch immer wechselt sich eine 0 mit einer 1 ab. Also: 1 oder 10 oder 101...
- Nullen und Einsen, die die Teilzeichenkette 101 nicht enthalten.
- Üben und Testen: → https://regex101.com/