Supervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

• Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

All figures have been taken from https://github.com/amueller/introduction_to_ml_with_ python/blob/master/02-supervised-learning.ipynb

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - kNN regression
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet

- Regularized linear models comparison
- Linear models for classification
- Summary
- 4. Decission Trees
 - Summary
- 5. Ensembles of Decision Trees
 - Summary
- 6. Support Vector Machines
 - Kernelized Support Vector Machines
 - Summary
- 7. A
 - -1
 - A: Summary
 - ARIMA

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

Generalization

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest classifier

- Given a data point, it takes its k closests neighbors
- Same prediction than its neighbors

k-NN does not generate a model

The whole dataset must be stored

k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-NN classification (III)

k-Nearest Neighbors

kNN regression (I)

k-NN regression

Given a data point

- 1. Take the k closest data points
- 2. Predict same target value (1-NN) or averate target value (k-NN)

Performace is measured with a regression metric, by default, R²

k-Nearest Neighbors

kNN regression (II)

k determines boundary smoothness

- I. With k = 1, prediction visits all data points
- 2. With large k values, fit is worse

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope
- Intepretable model

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

- OLS does not have any hyperparameter
- No complexity control

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Linear regression can be used to fit non-linear models

• Just adding new attributes

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and coefficients
- Intercepts are not part of regularization

Three regularizations

• LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

 $\alpha \sum_{i=1}^{n} |\beta_{i}|$

Ridge (L2)

 $\frac{\alpha}{2} \sum_{i}^{n} \beta_{i}^{2}$

ElasticNet

 $\alpha \left(\frac{\lambda}{2} \sum_{i}^{n} \beta_{i}^{2} + (1 - \lambda) \sum_{i}^{n} |\beta_{i}| \right)$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \alpha \sum_{i=1}^{n} \beta_i^2$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- ullet Optimal lpha depends on the problem

Ridge by default

T . /T\

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

lpha controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- ullet Optimal lpha depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Lasso regression (II)

(Source)

ElasticNet

Lasso and Ridge can be combined

$$\text{MSE} + \alpha \left(\lambda \frac{1}{2} \sum_{i=1}^{n} |\beta_i| + (1 - \lambda) \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- ullet lpha controls the model complexity
- λ balances between L1 and L2

Regularized linear models comparison

Linear models for classification (I)

A linear regression can be used as classifier

- Just compare the prediction with a threshold (o, for instance)
 - If $\hat{\gamma} > 0$, assign class 1
 - If $\hat{\gamma} <= 0$, assign class -1
- The decision boundary for any binary linal classifier is a line, plane or hyperplane

A logistic regression is a generalization of a linear regression

- It is a binary classifier
- Its output is a probability

$$p = \sigma \left(\beta_0 + \sum_{i=1}^n \beta_i x_i \right), \stackrel{\mid \vdots \mid 0.6}{\stackrel{\mid \vdots$$

where $\sigma(t)$ is the logistic function, defined as $\sigma(t)=\frac{1}{1+e^t}$

Linear models for classification (II)

Linear models for classification (III)

The model can be regularized with L1, L2 and ElasticNet

- In Scikit-Learn, regularization strength is given by C
- Lower values of C correspond to smaller regularization strength

Summary

Hyperparameters	Advantages	Disadvantages
-	Fast train and predict	No complexity tuning
lpha (L1, L2, ElasticNet)	Scales well to large data-	Limited in low dimen-
	sets	sional spaces
l1_ratio (ElasticNet)	Better in high dimen-	_
	sional spaces	
	Few hyperparameters	
	Interpretable	

Better when the number of features is large compared to the number of samples

Decission Trees

TODO

Summary

Hyperparameters Advantages Disadvantages

Ensembles of Decision Trees

TODO

Ensembles of Decision Trees

Summary

Hyperparameters Advantages Disadvantages

Support Vector Machines

TODO

Support Vector Machines

Kernelized Support Vector Machines

TODO

Support Vector Machines

Summary

Hyperparameters Advantages Disadvantages

0000

Α

B: Summary

Hyperparameters Advantages Disadvantages

0000

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

ARMA model = AR + MA

• ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

