Estadística II - 3006915 Regresión Lineal Simple

Mateo Ochoa Medina

Universidad Nacional de Colombia Facultad de Ciencias, Escuela de Estadística Medellín

Periodo académico 2023-2S

Contenido

- Estimación por mínimos cuadrados ordinarios de los parámetros de regresión y estimación de la varianza
- Propiedades de los estimadores de mínimos cuadrados bajo el modelo normal y el modelo ajustado de regresión
- 3 Pruebas de hipótesis e intervalos de confianza para los parámetros de regresión
- 4 Referencias

Contenido

- Estimación por mínimos cuadrados ordinarios de los parámetros de regresión y estimación de la varianza
- 2 Propiedades de los estimadores de mínimos cuadrados bajo el modelo normal y el modelo ajustado de regresión
- 3 Pruebas de hipótesis e intervalos de confianza para los parámetros de regresión
- 4 Referencias

Estimación por mínimos cuadrados ordinarios de los parámetros de regresión

Dados los pares de observaciones $(x_1, y_1), \ldots, (x_n, y_n)$, donde, $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, los respectivos valores de β_0 y β_1 que minimizan a $S(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2$ son:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{1}$$

y

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} y_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(2)

Por consiguiente, $\hat{\beta}_0$ y $\hat{\beta}_1$ en las ecuaciones (1) y (2) son las estimaciones por mínimos cuadrados de β_0 y β_1 , respectivamente.

Estimación de la respuesta media en $X = x_i$ y estimación de la varianza

Una estimación de la respuesta media (o respuesta ajustada), en $X=x_i$, es:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = \bar{y} + (x_1 - \bar{x}) \hat{\beta}_1.$$
 (3)

La diferencia entre el valor observado y_i y el respectivo valor ajustado \hat{y}_i se llama *residual*. Así, el *i*-ésimo residual se expresa como

$$e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$
 (4)

De esta manera, una estimación de la varianza σ^2 a partir de la ecuación (4) está dado por:

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n e_i^2}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2}{n-2}.$$
 (5)

Tipo de sumas

Las principales sumas en el ajuste por mínimos cuadrados son:

1 Suma corregida de cuadrados de las x_i :

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x}) x_i.$$
 (3)

② Suma corregida de los productos cruzados de x_i y y_i :

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x}) y_i = \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}).$$
 (4)

Suma de cuadrados de residuales:

$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = S_{yy} - \hat{\beta}_1 S_{xy}.$$
 (5)

3 Suma de cuadrados corregida de las y_i . También es conocida como suma de cuadrados totales o SST:

$$S_{yy} = SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = \sum_{i=1}^{n} (y_i - \bar{y}) y_i.$$

Consideraciones de la estimación de los parámetros de regresión

Notas relacionadas con
$$\hat{\beta}_0$$
 $\left(=\bar{y}-\hat{\beta}_1\bar{x}\right)$ y $\hat{\beta}_1$ $\left(=\frac{\sum_{i=1}^n(x_i-\bar{x})y_i}{\sum_{i=1}^n(x_i-\bar{x})^2}\right)$:

• $\hat{\beta}_1$ puede ser expresado en función de la suma corregida de cuadrados de las x_i (S_{xx}) y de la suma corregida de los productos cruzados de x_i y y_i (S_{xy}) así:

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}. (7)$$

• Bajo el modelo normal, los estimadores de máxima verosimilitud de los parámetros de regresión $\left(\tilde{\beta}_0 \text{ y } \tilde{\beta}_1\right)$ son iguales a los respectivos estimadores de mínimos cuadrados $\left(\hat{\beta}_0 \text{ y } \hat{\beta}_1\right)$.

◆ロト ◆御 ▶ ◆ 恵 ▶ ◆ 恵 → 釣 ♀ (

7/23

Consideraciones de la estimación de la varianza

Notas relacionadas con $\hat{\sigma}^2 \left(= \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2} \right)$:

• $\hat{\sigma}^2$ puede ser expresado en función de la suma de cuadrados de residuales (*SSE*) así:

$$\hat{\sigma}^2 = \frac{SSE}{n-2}.$$
(8)

- Bajo los supuestos del modelo en relación a los errores, el estimador de σ^2 es insesgado y es tal que, $E\left(\hat{\sigma}^2\right) = \sigma^2$. Este estimador también recibe el nombre de error cuadrático medio y es denotado por MSE.
- Se puede escribir el estimador de máxima verosimilitud de la varianza, $\tilde{\sigma}^2$, de la siguiente forma

$$\tilde{\sigma}^2 = \left(\frac{n-2}{n}\right)\,\hat{\sigma}^2.$$

Contenido de la Contenido de l

- Estimación por mínimos cuadrados ordinarios de los parámetros de regresión y estimación de la varianza
- Propiedades de los estimadores de mínimos cuadrados bajo el modelo normal y el modelo ajustado de regresión
- 3 Pruebas de hipótesis e intervalos de confianza para los parámetros de regresión
- 4 Referencias

Bajo la validez de los supuestos considerados sobre los errores, tenemos que:

① $\hat{\beta}_0$, $\hat{\beta}_1$ y \hat{Y}_i (respuesta estimada para $X = x_i$) son combinaciones lineales de las variables aleatorias Y_1, \ldots, Y_n , por tanto, son variables aleatorias normales. Así:

$$\hat{eta}_0 = \sum_{i=1}^n m_i Y_i$$
, donde $m_i = \frac{1}{n} - \bar{x} c_i$, $\hat{eta}_1 = \sum_{i=1}^n c_i Y_i$, donde $c_i = \frac{x_i - \bar{x}}{S_{xx}}$,

$$\hat{Y}_i = \sum_{i=1}^n h_{ij} Y_j$$
, donde $h_{ij} = m_j + c_j x_i = \frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{S_{xx}}$.

Regresión Lineal Simple

10/23

Estadística II

Mateo Ochoa Medina

② $\hat{\beta}_0$ y $\hat{\beta}_1$, son los mejores estimadores lineales insesgados de β_0 y β_1 , respectivamente. Por tanto, $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$, es un estimador insesgado para $E(Y|X) = \beta_0 + \beta_1 X$. Luego:

$$E(\hat{\beta}_0) = E\left(\sum_{i=1}^n m_i Y_i\right) = \beta_0 \sum_{i=1}^n m_i + \beta_1 \sum_{i=1}^n m_i x_i = \beta_0.$$

Note que
$$\sum_{i=1}^{n} m_{i} = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} c_{i}\right) = 1 - \bar{x} \sum_{i=1}^{n} \frac{x_{i} - \bar{x}}{S_{xx}} = 1$$
, $\sum_{i=1}^{n} m_{i} x_{i} = \sum_{i=1}^{n} \left[\left(\frac{1}{n} - \bar{x} c_{i}\right) x_{i}\right] = \bar{x} - \bar{x} \sum_{i=1}^{n} \frac{(x_{i} - \bar{x}) x_{i}}{S_{xx}} = 0$.

$$E(\hat{\beta}_1) = E\left(\sum_{i=1}^n c_i Y_i\right) = \beta_0 \sum_{i=1}^n c_i + \beta_1 \sum_{i=1}^n c_i x_i = \beta_1.$$

Note que
$$\sum_{i=1}^{n} c_i = \sum_{i=1}^{n} \frac{x_i - \bar{x}}{S_{xx}} = 0$$
, $\sum_{i=1}^{n} m_i x_i = \sum_{i=1}^{n} \frac{(x_i - \bar{x})x_i}{S_{xx}} = 1$.

Mateo Ochoa Medina Estadística II Regresión Lineal Simple 11/23

 $\hat{\beta}_0$, $\hat{\beta}_1$ y \hat{Y}_i tienen varianza dada por, respectivamente:

$$V\left(\hat{\beta}_{0}\right) = V\left(\sum_{i=1}^{n} m_{i} Y_{i}\right) = \sum_{i=1}^{n} m_{i}^{2} \sigma^{2} = \left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right) \sigma^{2}.$$
Note que $\sum_{i=1}^{n} m_{i}^{2} = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} c_{i}\right)^{2} = \sum_{i=1}^{n} \left(\frac{1}{n} - \frac{\bar{x} (x_{i} - \bar{x})}{S_{xx}}\right)^{2}$

$$= \frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}^{2}} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}.$$

$$V\left(\hat{\beta}_{1}\right) = V\left(\sum_{i=1}^{n} c_{i} Y_{i}\right) = \sum_{i=1}^{n} c_{i}^{2} \sigma^{2} = \frac{\sigma^{2}}{S_{xx}}.$$

Note que
$$\sum_{i=1}^{n} c_i^2 = \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{S_{xx}} \right)^2 = \frac{1}{S_{xx}^2} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{S_{xx}}.$$

$$V\left(\hat{Y}_i\right) = V\left(\sum_{j=1}^n h_{ij}Y_j\right) = \sum_{j=1}^n h_{ij}^2\sigma^2 = \sigma^2\left[\frac{1}{n} + \frac{(x_i - \bar{x})^2}{S_{xx}}\right].$$

Note que
$$\sum_{j=1}^{n} h_{ij}^2 = \sum_{j=1}^{n} \left[\frac{1}{n} + (x_i - \bar{x}) c_j \right]^2 = \left[\frac{1}{n} + \frac{1}{5_{xx}} (x_i - \bar{x})^2 \right].$$

Mateo Ochoa Medina Estadística II Regresión Lineal Simple 12 / 23

La covarianza entre los estimadores de los parámetros es:

$$COV\left(\hat{\beta}_{0}, \, \hat{\beta}_{1}\right) = COV\left(\sum_{i=1}^{n} m_{i}Y_{i}, \, \sum_{i=1}^{n} c_{i}Y_{i}\right)$$

$$= \sum_{i=1}^{n} m_{i}c_{i} COV\left(Y_{i}, \, Y_{i}\right) + \sum_{i=1}^{n} \sum_{j \neq i}^{n} m_{i}c_{j} COV\left(Y_{i}, \, Y_{j}\right)$$

$$= \sum_{i=1}^{n} m_{i}c_{i}V\left(Y_{i}\right) = \sigma^{2} \sum_{i=1}^{n} m_{i}c_{i} = -\frac{\bar{x}}{S_{xx}}\sigma^{2}.$$

Note que
$$\sum_{i=1}^{n} m_{i}c_{i} = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}c_{i}\right)c_{i} = \frac{1}{n}\sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}}{S_{xx}}\right) - \bar{x}\sum_{i=1}^{n} \left(\frac{x_{i} - \bar{x}}{S_{xx}}\right)^{2} = -\frac{\bar{x}}{S_{xx}^{2}}\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = -\frac{\bar{x}}{S_{xx}}.$$

Mateo Ochoa Medina Estadística II Regresión Lineal Simple 13 / 23

5 La covarianza entre la variable respuesta y su correspondiente estimador, en un valor dado x_i , es:

$$COV\left(Y_{i}, \hat{Y}_{i}\right) = COV\left(Y_{i}, \sum_{j=1}^{n} h_{ij}Y_{j}\right)$$

$$= h_{ii} COV\left(Y_{i}, Y_{i}\right) + \sum_{j \neq i}^{n} h_{ij} COV\left(Y_{i}, Y_{j}\right)$$

$$= h_{ii}\sigma^{2} = \left[\frac{1}{n} + \frac{(x_{i} - \bar{x})^{2}}{S_{xx}}\right]\sigma^{2}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

1 La covarianza entre la variable respuesta ajustada en x_i y la ajustada en x_k , con $i, k \in \{1, 2, ..., n\}$, $i \neq k$, es,

$$COV\left(\hat{Y}_{i}, \, \hat{Y}_{k}\right) = COV\left(\hat{\beta}_{0} + \hat{\beta}_{1} \, x_{i}, \, \hat{\beta}_{0} + \hat{\beta}_{1} \, x_{k}\right)$$

$$= COV\left(\hat{\beta}_{0}, \, \hat{\beta}_{0}\right) + x_{i} \, COV\left(\hat{\beta}_{0}, \, \hat{\beta}_{1}\right)$$

$$+ x_{k} \, COV\left(\hat{\beta}_{0}, \, \hat{\beta}_{1}\right) + x_{i} x_{k} \, COV\left(\hat{\beta}_{1}, \, \hat{\beta}_{1}\right)$$

$$= V\left(\hat{\beta}_{0}\right) + (x_{i} + x_{k}) \, COV\left(\hat{\beta}_{0}, \, \hat{\beta}_{1}\right) + x_{i} x_{k} \, V\left(\hat{\beta}_{1}\right)$$

$$= \left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right) \, \sigma^{2} - \frac{\bar{x} \, (x_{i} + x_{k})}{S_{xx}} \, \sigma^{2} + \frac{x_{i} x_{k}}{S_{xx}} \, \sigma^{2}$$

$$= \left[\frac{1}{n} + \frac{(x_{i} - \bar{x}) \, (x_{k} - \bar{x})}{S_{xx}}\right] \, \sigma^{2}.$$

La suma de los residuales del modelo de regresión con intercepto es siempre cero:

$$\sum_{i=1}^{n} e_{i} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i}) = \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1} x_{i}) = 0.$$

3 La suma de los valores observados y_i es igual a la suma de los valores ajustados \hat{y}_i :

$$\sum_{i=1}^n y_i = \sum_{i=1}^n \hat{y}_i.$$

9 La recta de regresión de mínimos cuadrados siempre pasa por el centroide de los datos (\bar{x}, \bar{y}) .

- (ロト(間) (注) (注) (注) (注) かく(C)

16/23

• La suma de los residuales ponderados por el correspondiente valor de la variable predictora es cero:

$$\sum_{i=1}^n x_i e_i = 0.$$

La suma de los residuales ponderados por el correspondiente valor ajustado es siempre igual a cero:

$$\sum_{i=1}^n \hat{y}_i e_i = 0.$$

17/23

Mateo Ochoa Medina Estadística II Regresión Lineal Simple

Contenido

- Estimación por mínimos cuadrados ordinarios de los parámetros de regresión y estimación de la varianza
- 2 Propiedades de los estimadores de mínimos cuadrados bajo el modelo normal y el modelo ajustado de regresión
- Pruebas de hipótesis e intervalos de confianza para los parámetros de regresión
- 4 Referencias

Intervalos de confianza para los parámetros de regresión

Bajo los supuestos del modelo de regresión, se cumple que:

$$T = \frac{\hat{\beta}_{0} - \beta_{0}}{\sqrt{V(\hat{\beta}_{0})}} \qquad T = \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{V(\hat{\beta}_{1})}}$$

$$= \frac{\hat{\beta}_{0} - \beta_{0}}{\sqrt{\frac{\hat{\sigma}^{2} \sum_{i=1}^{n} x_{i}^{2}}{nS_{xx}}}} \sim t_{n-2}.$$

$$(9)$$

$$= \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\frac{\hat{\sigma}^{2}}{S_{xx}}}} \sim t_{n-2}.$$

Por tanto un intervalo de confianza del $(1-\alpha)$ % para β_0 es:

$$\hat{\beta}_0 \pm t_{\alpha/2, n-2} \times \sqrt{\frac{\hat{\sigma}^2 \sum_{i=1}^n x_i^2}{n S_{xx}}}.$$
 (10) $\hat{\beta}_1 \pm t_{\alpha/2, n-2} \times \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}.$

Por tanto un intervalo de confianza del $(1-\alpha)$ % para β_1 es:

$$\hat{\beta}_1 \pm t_{\alpha/2, \, n-2} \times \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}. \tag{12}$$

Nota:

 t_{n-2} es la variables aleatoria t-Student con n-2 grados de libertad, en tanto que $t_{\alpha/2, n-2}$ es un percentil de la distribución t-Student con n-2 grados de libertad, tal que, $P(t_{n-2} > t_{\alpha/2, n-2}) = \alpha/2$.

Pruebas de hipótesis para los parámetros de regresión

Para probar si β_0 es significativamente distinto de cero se plantea el test:

Para probar si β_1 es significativamente distinto de cero se plantea el test:

$$H_0: \beta_0 = 0$$
 vs. $H_1: \beta_0 \neq 0$. (13)

$$H_0: \beta_0 = 0$$
 vs. $H_1: \beta_0 \neq 0$. (13) $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$. (15)

El estadístico de prueba está dado por:

El estadístico de prueba está dado por:

$$T = \frac{\hat{\beta}_{0} - \beta_{0}}{\sqrt{\frac{\hat{\sigma}^{2} \sum_{i=1}^{n} x_{i}^{2}}{nS_{xx}}}}$$

$$= \frac{\hat{\beta}_{0}}{\sqrt{\frac{\hat{\sigma}^{2} \sum_{i=1}^{n} x_{i}^{2}}{nS_{xx}}}} \sim t_{n-2},$$
(14)

$$T = \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\frac{\hat{\sigma}^{2}}{S_{xx}}}} \sim t_{n-2}$$

$$= \frac{\hat{\beta}_{1}}{\sqrt{\frac{\hat{\sigma}^{2}}{S_{xx}}}} \sim t_{n-2},$$
(16)

Se define T_0 como el valor observado de T, luego, se rechaza H_0 si $|T_0| >$ $t_{\alpha/2,\,n-2}$ o con valor P si $P(|t_{n-2}| > |T_0|)$ es pequeña.

Se define T_0 como el valor observado de T, luego, se rechaza H_0 si $|T_0| >$ $t_{\alpha/2, n-2}$ o con valor P si $P(|t_{n-2}| > |T_0|)$ es pequeña.

Consideración sobre el test de significancia de la pendiente

Nota sobre H_0 : $\beta_1=0$ vs. H_1 : $\beta_1\neq 0$ (los cuales se relacionan también con la significancia de la regresión):

Si la pendiente de la recta de regresión es significativa (es decir, cuando se rechaza H_0), entonces el modelo de regresión lineal simple también lo es, es decir, la variabilidad en la variable respuesta explicada por la regresión en X es significativa respecto a la variabilidad total observada. Mientras que, el no rechazar H_0 implica que no hay relación lineal entre X e Y. Note que eso puede implicar que X tiene muy poco valor para explicar la variación de Y y que el mejor estimador para cualquier X es $\hat{Y} = \bar{Y}$, o que la verdadera relación entre X e Y no es lineal.

Mateo Ochoa Medina Estadística II Regresión Lineal Simple 21/23

Contenido

- Estimación por mínimos cuadrados ordinarios de los parámetros de regresión y estimación de la varianza
- 2 Propiedades de los estimadores de mínimos cuadrados bajo el modelo normal y el modelo ajustado de regresión
- 3 Pruebas de hipótesis e intervalos de confianza para los parámetros de regresión
- 4 Referencias

Referencias

- Montgomery, D. C., Peck, E. A., y Vining, G. G. (2012). *Introduction to Linear Regression Analysis*. Wiley, New Jersey, quinta edición.
- Álvarez, N. G. (2022). Notas de Clase Análisis de Regresión 3006918, Capítulo 2: Regresión Lineal Simple. Notas no publicadas.
- Álvarez, N. G. y Gómez, C. M. L. (2018). Notas de Clase Estadística II (3006918): Análisis de Regresión Lineal e Introducción al Muestreo.