

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ (ШКОЛА)

Департамент математического и компьютерного моделирования

ОТЧЁТ

к лабораторной работе №1 по дисциплине «Математическое и копмьютерное моделирование»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр.

Б9121-01.03.02сп

Держапольский Ю.В.

(Ф.И.О.) (подпись)

Профессор к.ф.-м. н.

Пермяков М. С. (подпись)

« 26 » апреля 2024 г.

г. Владивосток

2024

Содержание

1	Вве	дение	3
2	Пос	Построение математической модели	
	2.1	Модель с терморегулятором	5
3	Анализ модели		6
	3.1	Вычисление точек покоя	8
4	Вычислительные эксперименты		9
	4.1	Алгоритм	9
	4.2	Программа	9
	4.3	Модель без терморегулятора	11
	4.4	Модель с терморегулятора	12
5	Зак	лючение	14

1. Введение

В повседневном мире люди каждый день используют различные приборы нагревания. Например, микроволновка для разогревания еды, утюг для глажки вещей, радиатор для нагревания помещения и т. д.

Однако, таких приборов существует большое количество и все они имеют различные параметры, которые влияют на скорость нагрева. И в быту людей интересует как быстро нагреется тот или иной прибор. Для этого можно создать математическую модель, которая будет учитывать параметры нагревателей и показывать изменение температуры.

Будем рассматривать электрические нагреватели, которые могут иметь или не иметь терморегулятора.

2. Построение математической модели

Главной характеристикой любого нагревателя является его температура. При включении нагревателя со временем температура изменяется. Поэтому нужно найти зависимость температуры (K) от времени (c): T(t).

Сделаем предположение, что нагревательный элемент состоит из одного материала и окружающая температура постоянная и равна T_0 .

Процесс нагревания можно описать уравнением теплового баланса, который описывает изменение внутренней энергии тела на ΔQ (Дж) от изменения температуры:

$$\Delta Q = cm\Delta T,$$

где c – удельная теплоёмкость тела $\left(\frac{\Pi \mathbb{X}}{\mathbf{k} \Gamma \cdot \mathbf{K}}\right)$, m – масса тела (кг), ΔT - изменение температуры за промежуток времени Δt .

Поскольку наш нагревательный прибор использует от электрический ток, он потребляет мощность во время работы, за счёт чего изменяет свою внутреннюю энергию:

$$\Delta Q_1 = P\Delta t,$$

где P – мощность (Вт).

На внутреннюю энергию также влияют входящие и исходящие тепловые потоки. На единицу площади за единицу времени исходящий поток изменяет энергию на -kT, а входящий на kT_0 , где k>0 - коэффициент, который зависит от конструкции. Учитывая тепловые потоки, внутрення энергия изменяется на

$$\Delta Q_2 = -kS(T - T_0)\Delta t,$$

где S — площадь нагревателя (м 2).

Также любое тело, нагретое выше абсолютного нуля, начинает уменьшать внутреннюю энергию за счёт излучения, что описывает закон Стефана-

Больцмана. На единицу площади за единицу времени нагреватель излучает энергию равную $-\sigma T^4$, а изучение из внешней среды изменяет энергию на σT_0^4 , где $\sigma \approx 5.68 \cdot 10^{-8} \frac{\mathrm{BT}}{\mathrm{m}^2 \mathrm{K}^4} - \mathrm{постоянная}$ Стефана–Больцмана. Значит, общее изменение энергии за счёт излучения:

$$\Delta Q_3 = -\sigma S(T^4 - T_0^4) \Delta t.$$

В итоге, применяя закон теплового баланса, получаем:

$$cm\Delta T = P\Delta t - kS(T - T_0)\Delta t - \sigma S(T^4 - T_0^4)\Delta t.$$

Делим обе части на $cm\Delta t$ и совершаем предельный переход при $\Delta t \to 0$:

$$\frac{dT}{dt} = \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

Получили дифференциальное уравнение, которое описывает поведение температуры нагревателя. Для получения единственного решения добавим начальное условие: $T(0) = T_0$.

2.1. Модель с терморегулятором

В быту, для того чтобы нагреватель не нагревался до опасных температур, целесообразно ограничить максимальную температуру. Для этого введём функцию «переключатель», которая по достижении максимальной температуры T_{max} отключит нагреватель, и после чего по достижении температуры включения T_{min} снова включит его.

$$H(T, T_{max}, T_{min}) = \begin{cases} 0, T > T_{max}, \\ 1, T < T_{min}. \end{cases}$$

Добавляя в уравнение:

$$\frac{dT}{dt} = \frac{P \cdot H(T, T_{max}, T_{min}) - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}.$$

3. Анализ модели

Найдём точки равновесия дифференциального уравнения.

$$\frac{dT}{dt} = 0 \Rightarrow \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm} = 0.$$

Заметим, что удельная теплоёмкость и масса находятся в знаменателе, а значит не влияют на точки равновесия, однако они влияют на скорость изменения температуры в самом дифференциальном уравнении.

В начальный момент времени уравнение будет выглядеть так:

$$\frac{dT}{dt} = \frac{P}{cm} > 0,$$

значит температура будет расти. С ростом температуры отрицательные слагаемые по модулю будут увеличиваться и со временем уравновесят мощность. Такая температура будет максимальной. Убедимся, что других максимальных температур нет.

Преобразуем уравнение:

$$T^4 + \frac{k}{\sigma}T - \left(T_0^4 + \frac{kT_0 + \frac{P}{S}}{\sigma}\right) = 0.$$

Уравнение четвёртой степени, а значит оно имеет ровно 4 корня на \mathbb{C} . Определим тип этих корней: их положительность или комплексность.

Для удобства переобозначим:

$$a = \frac{k}{\sigma} > 0, \quad b = \left(T_0^4 + \frac{kT_0 + \frac{P}{S}}{\sigma}\right) > 0, \quad T^4 + aT - b = 0.$$

Воспользуемся теоремой Декарта: «Число положительных корней многочлена с вещественными коэффициентами равно числу перемен знаков в ряду его коэффициентов или на чётное число меньше этого числа». Знак коэффициентов нашего уравнения меняется только раз — между последними двумя, значит существует ровно один положительный корень. Подставляя в уравнение T=-T, найдём количество отрицательных корней.

$$T^4 - aT - b = 0.$$

Знак меняется также один раз, значит существует ровно один отрицательный корень.

Из предыдущего следует, что остаётся два комплексных корня. Покажем это. Данное уравнения можно свести к кубическому уравнению разольвенты

$$x^4 + px^2 + qx + r = 0 \Rightarrow y^3 - 2py^2 + (p^2 - 4r)y + q^2 = 0$$

корни которой связаны с корнями исходного уравнения

$$y_1 = (x_1 + x_2)(x_3 + x_4), \ y_2 = (x_1 + x_3)(x_2 + x_4), \ y_3 = (x_1 + x_4)(x_2 + x_3).$$

Сведём наше уравнения к разольвенте

$$y^3 + 4by + a^2 = 0.$$

Данное уравнение представлено в виде $(y^3 + py + q = 0)$, к которому можно применить формулу Кардано, а более конкретно, найти величину Q, которая определит типы корней.

$$Q = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2 = \left(\frac{4b}{3}\right)^3 + \left(\frac{a^2}{2}\right)^2.$$

Поскольку Q>0, то у уравнения один вещественный корень и два сопряжённых комплексных.

Из того, что среди y_i есть комплексный корень, следует, что и среди корней T_i тоже есть комплексный. Известно, что комплексные корни многочленов с вещественными коэффициентам всегда образуют комплексно-сопряжённые пары, значит, что среди T_i есть комплексно-сопряжённая пара.

В итоге получили, что уравнение имеет один положительный, один отрицательный и пару комплексно-сопряжённых корней.

Исследуем устойчивость. Обозначим правую часть дифференциального уравнения за R.

$$\frac{dR}{dT} = \frac{-kS - 4\sigma ST^3}{cm} = 0 \Rightarrow T_e = -\sqrt[3]{\frac{k}{4\sigma}},$$

В точке T_e функция достигает экстремума, при этом меньше этой точки всегда возрастает, а больше — убывает. Отсюда следует, что это максимум. Но мы уже знаем, что многочлен всегда имеет два вещественных корня, соответственно, отрицательный находится левее T_e , а значит производная положительная, а положительный корень правее T_e с отрицательной производной. Из чего, методом первого приближения, мы находим, что отрицательный корень неустойчивый, а положительный устойчивый.

В итоге получаем, что данное дифференциальное уравнение имеет пару комплексно-сопряжённых точек равновесия и пару вещественных, одно из которых всегда положительное и устойчивое, а второе отрицательное и неустойчивое. Мы убедились, что существует только положительная максимальная температура, к которой будет стремиться температура со временем.

3.1. Вычисление точек покоя

Вычислим теоретически точки покоя и сравним результаты полученные при анализе. Возьмём параметры:

$$\begin{split} \frac{dT}{dt} &= \frac{P - kS(T - T_0) - \sigma S(T^4 - T_0^4)}{cm}. \\ P &= 3000 \text{Вт}, \ m = 0.5 \text{кг}, \ c = 897 \frac{\text{Дж}}{\text{кг} \cdot \text{K}}, \ S = 0.4 \text{m}^2, \ k = 2, \ T_0 = 296 \text{K}. \end{split}$$

Найдём точки устойчивости уравнения с данными параметрами:

$$T_1 = -645.06..., T_2 = 599.58..., T_{3,4} = 22.73... \pm i623.15...$$

Данные точки согласуются с теоретическим анализом. Исследуем положительное положение равновесия.

$$\left. \frac{dR}{dT} \right|_{T_2} = -0.045\dots$$

Получили отрицательное значение, данное положение равновесия устойчивое значит оно устойчивое.

4. Вычислительные эксперименты

4.1. Алгоритм

Для нахождения численного решения будем использовать метод Рунге-Кутты, с помощью которого получим массив значений, являющийся решением дифференциального уравнения с заданными параметрами.

4.2. Программа

25

Для расчётов и визуализации была написана программа с использованием языка Python и библиотек numpy и matplotlib.

```
import numpy as np
  def runge kutta(function, y0: float, a: float, b: float, h: float):
       num = int((b - a) / h + 1)
       x_a = np.linspace(a, b, num=num, endpoint=False)
       y a = [y0] * num
       for i in range(num - 1):
           k0 = function(x_a[i], y_a[i])
10
           k1 = function(x_a[i] + h / 2, y_a[i] + h * k0 / 2)
11
           k2 = function(x_a[i] + h / 2, y_a[i] + h * k1 / 2)
12
           k3 = function(x_a[i] + h, y_a[i] + h * k2)
13
           y_a[i + 1] = y_a[i] + h / 6 * (k0 + 2 * k1 + 2 * k2 + k3)
14
15
       return x_a, np.array(y_a)
16
17
18
  KC = 276
  sigma = 5.67e-8
21
_{22} T_l = 190 + KC
_{23} T u = 200 + KC
```

```
is_turned = True
26
   def H1(T):
27
       global is_turned
28
29
       if T > T u:
30
            is_turned = False
31
       elif T < T_l:</pre>
32
            is_turned = True
33
34
       return int(is_turned)
35
36
  def H0(T):
37
       return 1.
38
39
   def utug(P, m, c, S, k, tp = 0, Tl=190 + KC, Tu=200 + KC):
       global T_l, T_u
41
       T_l = Tl
42
       T u = Tu
       Hi = [H0, H1]
44
45
       def dTdt(t, T):
46
            return (P * Hi[tp](T) - k * S * (T - T0) - sigma * S * (T**4 - T0**4)) /
47
                 (c * m)
48
       x = np.linspace(a, b, n)
49
50
       return runge_kutta(dTdt, T0, a, b, (b-a)/n)
51
  a, b = 0, 250
53
  n = 10000
55
56
  P = 3000
57
  m = 0.5
  с = 897 # Алюминий
  S = 0.4
  k = 2
  T0 = 20 + KC
```

Итогом программы является массив со значениями численного решения

дифференциального уравнения с заданными параметрами на некотором отрезке времени $[0, t_0]$.

Проведём вычислительные эксперименты с помощью написанной программы и визуализируем результаты.

4.3. Модель без терморегулятора

Построим несколько решений уравнения для модели без терморегулятора с разными параметрами.

Рис. 1: Графики при $T_0 = 296$.

На графике (Рис. 1) построены несколько решений с указанными параметрами, а также жёлтый пунктир на отметке T=600 — округлённое значение точки равновесия, найденное при анализе.

Как можно увидеть, первые три решения, которые отличаются только массой и удельной теплоёмкостью, возрастают до определённого значения — точки равновесия.

Остальные различаются в параметрах, которые влияют на максимальное значение, что можно также увидеть.

4.4. Модель с терморегулятора

Построим несколько решений уравнения для модели с терморегулятором с разными параметрами. На каждом рисунке находятся решения дифференциального уравнения с одними и теми же параметрами, кроме максимальной и минимальной температуры терморегулятора. Серым пунктиром обозначены соответствующие максимальная и минимальная температуры

Рис. 2: Графики при $P=3000 {\rm Bt}, \; m=0.5 {\rm kf}, \; c=897 \frac{\rm Дж}{\rm kf}, \; S=0.4 {\rm m}^2, \; k=2, \; T_0=296 {\rm K}.$

Рис. 3: Графики при

$$P=2500 \mathrm{Bt}, \; m=0.4 \mathrm{kr}, \; c=554 \frac{\mathrm{Дж}}{\mathrm{kr} \cdot \mathrm{K}}, \; S=0.2 \mathrm{m}^2, \; k=4, \; T_0=296 \mathrm{K}.$$

Рис. 4: Графики при

$$P=2500$$
Вт, $m=1$ кг, $c=897\frac{Дж}{кг\cdot K}$, $S=0.2$ м², $k=2$, $T_0=296$ K.

5. Заключение

Таким образом, была построена математическая модель электрического нагревателя с терморегулятором и без него. Модель представляет из себя дифференциальное уравнение. Данная модель была проанализирована и были найдены точки равновесия дифференциального уравнения. Написана программа для численного решения решения уравнения в зависимости от параметров. Проведены вычислительные эксперименты, которые соответствуют с результатам анализа.