rSVD.1

Shrewd selection was proposed to avoid an expensive SVD:

Goal: truncate
$$\overline{A}_{\ell}(\nabla) \to \widetilde{A}_{\ell}^{\mathrm{tr}}(\nabla)$$
 to minimize $C_{1} = \bigcup_{\substack{w \ D \ \overline{D} \ \overline{D} \ \overline{D}}} \overline{D}_{d} \overline{D}_{d} \overline{D}_{d}$

Optimal truncation can be achieved via SVD; but that has 2s costs, $\mathcal{O}(\mathcal{D}^3 d^3)$

[McCullogh2024] pointed out: a more generic approach to avoid an expensive SVD is a 'randomized SVD' (rSVD).

Consider was matrix M. Cost of full SVD: $O(M \cdot M \text{ min}(M, N))$ (my figures assume m < n)

If we know that we will truncate it to rank k< m, n, computing full SVD is wasteful!

Definition: 'range' of a matrix is the vector space spanned by its column vectors.

Matrix-vector multiplication yields 'linear combination of column vectors' = 'vector in range of matrix'

$$\vec{y} = \vec{M} \cdot \vec{x} = \vec{C}_j \times \vec{J}$$

$$\vec{C}_j \times \vec{J} = \vec{C}_j \times \vec{J} \times \vec{J} = \vec{C}_j \times \vec{J} \times \vec{J} \times \vec{J} = \vec{C}_j \times \vec{J} \times \vec{J}$$

For a truncated SVD, the range of \upMathbb{N} is the 'most relevant' \upMathbb{k} -dimensional subspace of range of \upMathbb{M}

$$\vec{y} = usv^{\dagger}\vec{x} \implies \vec{c}_{j} \left(sv^{\dagger}\vec{x} \right)^{j}$$

$$\sim \text{column } j \text{ of } u$$

The 'truncated' version of M can be found by projection onto the range of u:

Key idea of randomized SVD: find good guess for $\,u\,$ by sampling range of $\,M\,$ using random input vectors \vec{x}

'Range finder algorithm':

target rank oversampling parameter

(i) Construct random
$$n \neq \ell$$
 'test matrix' $\int l$, with $\ell = k + l$ $\langle n \mid n \rangle$

(ii) Compute
$$M\Omega$$
 Cost: $O(m.n.l)$, $dim(rang(MJ)) \simeq l$ (1)

(iii) Do thin QR-decomposition
$$M\Omega = QR$$

Since columns of $\mathfrak N$ are random vectors, the columns of $\mathfrak M\mathfrak N$ are very likely linearly independent. Then, $\mathfrak Q$ has $\boldsymbol\ell$ columns. They 'explore' (try to 'find') the range of $\mathfrak M$, thus serve as good guess for $\mathfrak u$.

'Subsequent factorization': (compare (6)):

- (iv) Compute Q[†]M
- (v) Perform full SVD on $^{\dagger}M$ and truncate from $l = k_{fp}$ to k singular values.

(vi) Construct
$$\hat{\mathbf{u}} = \hat{\mathbf{Q}}_{\mathbf{u}}$$

Final result: rSVD of M is given by

Remarks:

1. Total cost: (() (w.v. () Sophisticated implementation can yield lower costs, see [Halko2011].

2. Accuracy:

For full SVD + truncation to rank k: $\|M - uu^{\dagger}M\| = S_{k+1}$

 $\| \cdot \| = \ell_1$ operator norm = largest singular value

first discarded singular value of M

For rSVD with l = k + p: $E \| M - QQ^{\dagger}M \| \leq \left[1 + \frac{4\sqrt{k+p}}{p-1} \sqrt{min\{m,n\}} \right] s_{k+1}$

= expectation value w.r.t. sampling over random test matrices

3. Error probability decreases rapidly when increasing oversampling parameter *p*:

P(||M-QQ+A|| > [1+9/k+p. /min {m,n}] Sk+1) < 6.p-P

In practice, p = 5 suffices $(1 - 3 \cdot 5^{-5} = 0.11704)$

4. Example: M = random matrix with M = N = 200, rSVD with k = 100, p = 5

5. rSVD is advisable in variational contexts, i.e. during sweeps, where small errors made at a given iteration can be compensated by doing additional iterations.

6. Try using rSVD yourself in your MPS computations! Write a rSVD routine, replace SVD by rSVD.