ROBOTIC FUNDAMENTALS (UMFM4X-15-M)

Forward Kinematics

Previously on

ROBOTIC FUNDAMENTALS

- Kinematics and Reference frames Basis of the Analysis
- Connecting Frames Translation Vectors and Rotation Matrices
- Unified Representation Homogeneous Transformations
 - Compound Transformations
- Euler Angles
- Quaternions
- HT in Matlab plotting vectors and CS

Questions?

Today's Lecture

The Denavit Hartenberg (DH) convention

Placing of frames

Examples

Joint, Cartesian, Actuator space

What is the goal of FK?

 To give the Cartesian coordinates of the end effector of a manipulator in terms of <u>joint parameters</u>

$$x, y, z = f(q_1, q_2, ..., q_n)$$

 Give a set of orientation values for the end-effector of a manipulator in terms of <u>joint parameters</u>

RPY or ZYZ or ZXZ =
$$f(q_1, q_2, ..., q_n)$$

Planar RRR

What about complex problems?

DENAVIT HARTENBERG

Denavit Hartenberg (DH)

- Principle of use
- Proximal vs Distal
- Examples
- Joint, Cartesian, Actuator space

DH Approach

- There is a large number of ways to encode kinematics using HT
- We will sacrifice some of this flexibility for a more systematic approach: **DH** (**Denavit-Hartenberg**) parameters.
- DH parameters is a standard for describing a series of transforms for arbitrary mechanisms.

Denavit Hartenberg notation

- Uniquely defines the architecture of a robot manipulator (kinematic chain) for any configuration
- Link shape is not important; joints and links are numbered from base forward, eg. joint 1 refers to the connection point between the base and link 1, etc.
- Proximal or Distal (standard) convention

Denavit Hartenberg – how to fix frames (proximal convention)

For all the links we set:

- Z_n axis to lie along the axis of motion of n^{th} joint (or n+1 in case of standard DH)
- X_n axis to be along a_n (perpendicular) pointing from Z_n to Z_{n-1} axis If $a_n = 0$: X_n is normal to the plane of Z_n to Z_{n-1} .
- Y_i completes the right hand rule

For **first** and **last** links

- Link 0: reference/static frame. For simplification, choose z_0 to be aligned with z_1 and origin of frame $\{0\}$ to be the same as $\{1\}$ when $q_1=0$.
- Link n: for simplification, choose x_n to be aligned with x_{n-1}

Four DH parameters (proximal convention)

Four parameters can be defined which uniquely specify the link and joint geometry. Each parameter for link n can be thought of as a successive movement required to map frame $\{n\}$ to $\{i+1\}$:

141

- 1. Link **length** a_n : length of the perpendicular <u>- displacement in the x_n </u> direction to bring the origin of frame $\{n\}$ coincident with that of frame $\{n+1\}$
- 2. Link **twist** α_n : rotation about x_n to make z_n coincident with z_{n+1} (defined from z_n to z_{n+1})
- 3. Link offset d_n : displacement along z_n to go from x_{n-1} to the link x_n
- 4. Joint **angle** θ_n : rotation about z_n required to align x_{n-1} with x_n (defined from x_{n-1} to x_n)

DH parameters – Proximal Table form

	n	a _{<i>n-1</i>}	a_{n-1}	d_n	θ_n
	1				
Link Number	2				

(or joint No)

Four DH parameters (proximal convention)

Displacements or rotations only along/around x or z axes!

- 1. a_n : distance along x_n , $n \rightarrow n+1$
- 2. α_n : rotation about x_n , $n \rightarrow n+1$
- 3. d_n : distance along z_n , $n-1 \rightarrow n$
- 4. θ_n : rotation about z_n , n-1 -> n

OR

- 1. \mathbf{a}_{n-1} : distance along \mathbf{x}_{n-1} , $\mathbf{n-1} \rightarrow \mathbf{n}$
- 2. α_{n-1} : rotation about x_{n-1} , $n-1 \rightarrow n$
- 3. d_n : distance along z_n , $n-1 \rightarrow n$
- 4. θ_n : rotation about z_n , $n-1 \rightarrow n$

Proximal convention (modified DH)

 a_n = the distance from z_n to z_{n+1} measured along x_n α_n = the angle between z_n and z_{n+1} measured about x_n d_n = the distance from x_{n-1} to x_n measured along z_n θ_n = the angle between x_{n-1} to x_n measured about z_n

Example 1: Planar RRR – **Proximal** convention

n	a _{<i>n-1</i>}	a_{n-1}	d_n	θ_n
1				-1
2				
3				1
е				

Example 1: Planar RRR

$${}^{0}T_{1} = \begin{pmatrix} c_{q_{1}} & -s_{q_{1}} & 0 & 0 \\ s_{q_{1}} & c_{q_{1}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}T_{2} = \begin{pmatrix} c_{q_{2}} & -s_{q_{2}} & 0 & l_{1} \\ s_{q_{2}} & c_{q_{2}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{2}T_{3} = \begin{pmatrix} c_{q_{3}} & -s_{q_{3}} & 0 & l_{2} \\ s_{q_{3}} & c_{q_{3}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{3}T_{e} = \begin{pmatrix} 1 & 0 & 0 & l_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R}_{n}^{n-1}T = \begin{bmatrix}
c\theta_{n} & -s\theta_{n} & 0 & \mathbf{a}_{n-1} \\
s\theta_{n}c\alpha_{n-1} & c\theta_{n}c\alpha_{n-1} & -s\alpha_{n-1} & -s\alpha_{n-1}d_{n} \\
s\theta_{n}s\alpha_{n-1} & c\theta_{n}s\alpha_{n-1} & c\alpha_{n-1} & c\alpha_{n-1}d_{n} \\
0 & 0 & 0 & 1
\end{bmatrix}$$

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$$

$${}^{0}T_{e} = {}^{0}T_{3}{}^{3}T_{e}$$

n	a_{n-1}	a_{n-1}	d_n	q_n
1	0	0	0	q_1
2	l_1	0	0	q_2
3	l_2	0	0	q_3
e	l_3	0	0	0

Distal convention – frames & parameters

Let us define a coordinate frame $o_i x_i y_i z_i$ attached to link i as follows:

- z axis is along the rotation direction for revolute joints, along the translation direction for prismatic joints.
- 2. The z_{i-1} axis lies along the axis of motion of the *i*th joint.
- 3. The origin o_i is located at the intersection of joint axis z_i with the common normal to z_i and z_{i-1} .

 Between z_{i-1} and z_i
- The x_i axis is taken along the common normal and points from joint i to joint i+1.
- 5. The y_i axis is selected to complete right-hand frame. The y_i axis is defined by the cross product $y_i = z_i \times x_i$.

Showing only z and x axes is sufficient, drawing is made clearer by **NOT** showing y axis.

- 1. Link **length** a_i : offset distance from o_i to the intersection of the z_{i-1} and x_i axes along x_i
- 2. Link **twist** α_i : angle <u>about</u> x_i from z_{i-1} axis to the z_i
- 3. Link **offset** d_i : distance from o_{i-1} to the intersection of z_{i-1} with x_i along z_{i-1}
- 4. Joint **angle** θ_i : angle <u>about</u> z_{i-1} from x_{i-1} to x_i

DH parameters – Distal Table form

	i	a_i	a_i	d_i	θ_i
	1				
Link Number	2				

 a_n = the distance from z_{n-1} to z_n measured along x_n

 α_n = the angle between z_{n-1} and z_n measured about x_n

 d_n = the distance from x_{n-1} to x_n measured along z_{n-1}

 θ_n = the angle between \mathbf{x}_{n-1} to \mathbf{x}_n measured about \mathbf{z}_{n-1}

Distal convention (standard DH)

Comparison of DH conventions

Proximal (modified)

1.
$$a_n$$
: distance along x_n , z_n -> z_{n+1}

2.
$$\alpha_n$$
: rotation about x_n , z_n -> z_{n+1}

3.
$$d_n$$
: distance along z_n , $x_{n-1} \rightarrow x_n$

4.
$$\theta_n$$
: rotation about z_n , $x_{n-1} \rightarrow x_n$

Distal (standard)

1.
$$a_n$$
: distance along x_n , z_{n-1} -> z_n

2.
$$\alpha_n$$
: rotation about x_n , z_{n-1} -> z_n

3.
$$d_n$$
: distance along z_{n-1} , $x_{n-1} \rightarrow x_n$

4.
$$\theta_n$$
: rotation about z_{n-1} , $x_{n-1} \rightarrow x_n$

n	a_n	a_n	d_n	θ_n
1				
2				

Example 2: RRRP – **Distal** convention

Practice proximal convention on RRRP in class

Example 2: RRRP – **Distal** convention

 a_n = the distance from z_{n-1} to z_n measured along x_n α_n = the angle between z_{n-1} and z_n measured about x_n d_n = the distance from x_{n-1} to x_n measured along z_{n-1} θ_n = the angle between x_{n-1} to x_n measured about z_{n-1}

Example 2: RRRP – **Distal** convention

n	a_n	a_n	d_n	θ_n
1	l_2	0	l_1	$q_{_1}$
2	l_3	π	0	q_2
3	0	0	l_4	q_3
4	0	0	q_4	0

Joint space, Actuator space and Cartesian space

- Kinematic joints actuated directly by actuator ⇒
 Joint Space = Actuator Space
- Actuator + linkage ⇒ Joint Space ≠ Actuator Space
- We can compute the Cartesian space from joint space
 Cartesian Space = Task Space or Operational Space

• Example: End-effector representation in joint space and Cartesian space $\begin{bmatrix} n \end{bmatrix} \begin{bmatrix} a \cos \theta + a \cos \theta \\ + a \cos \theta \end{bmatrix}$

$$q = \begin{bmatrix} p_x \\ p_y \\ \phi \end{bmatrix} = \begin{bmatrix} a_1 \cos \theta_1 + a_2 \cos \theta_{12} + a_3 \cos \theta_{123} \\ a_1 \sin \theta_1 + a_2 \sin \theta_{12} + a_3 \sin \theta_{123} \\ \theta_1 + \theta_2 + \theta_3 \end{bmatrix}$$

Example 3 – 3D Space RRR: Home Position

Example 3 – 3D Space RRR: Off-Home Position

Observe that frame i moves with link i

Example 3 – 3D Space RRR: Table of DH parameters

Example 3 – 3D Space RRR: Transformation Matrices

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & 0 & s\theta_{1} & Rc\theta_{1} \\ s\theta_{1} & 0 & -c\theta_{1} & Rs\theta_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & L_{1}c\theta_{2} \\ s\theta_{2} & c\theta_{2} & 0 & L_{1}s\theta_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & L_{2}c\theta_{3} \\ s\theta_{3} & c\theta_{3} & 0 & L_{2}s\theta_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example 3 – 3D Space RRR (1)

Example 3 – 3D Space RRR (2)

Example 3 – 3D Space RRR (3)

Example 3 – 3D Space RRR: Compound Transformation

$$_{3}^{0}T = _{1}^{0}T _{2}^{1}T _{3}^{2}T$$

$$^{0}_{3}T =$$

$$\begin{bmatrix} c\theta_{1}c\theta_{23} & -c\theta_{1}s\theta_{23} & s\theta_{1} & c\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ s\theta_{1}c\theta_{23} & -s\theta_{1}s\theta_{23} & -c\theta_{1} & s\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ s\theta_{23} & c\theta_{23} & 0 & L_{2}s\theta_{23} + L_{1}s\theta_{2} \\ 0 & 0 & 1 \end{bmatrix}$$

where

$$c\theta_i = \cos(\theta_i)$$

$$s\theta_i = \sin(\theta_i)$$

$$c\theta_{23} = \cos(\theta_2 + \theta_3)$$

$$s\theta_{23} = \sin(\theta_2 + \theta_3)$$

Example 3 – 3D Space RRR: HT to FK

$$^{0}_{3}T =$$

$$\begin{bmatrix} c\theta_1c\theta_{23} & -c\theta_1s\theta_{23} & s\theta_1 \\ s\theta_1c\theta_{23} & -s\theta_1s\theta_{23} & -c\theta_1 \\ s\theta_{23} & c\theta_{23} & 0 \end{bmatrix} \begin{bmatrix} c\theta_1(L_2c\theta_{23} + L_1c\theta_2 + R) \\ s\theta_1(L_2c\theta_{23} + L_1c\theta_2 + R) \\ L_2s\theta_{23} + L_1s\theta_2 \end{bmatrix}$$

$$T = \begin{bmatrix} Rotation & Translation \\ 0 & 0 & 1 \end{bmatrix}$$

Example 3 – 3D Space RRR: Cartesian Coordinates

$$^{0}_{3}T =$$

$$\begin{bmatrix} c\theta_{1}c\theta_{23} & -c\theta_{1}s\theta_{23} & s\theta_{1} \\ s\theta_{1}c\theta_{23} & -s\theta_{1}s\theta_{23} & -c\theta_{1} \\ s\theta_{23} & c\theta_{23} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ s\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ L_{2}s\theta_{23} + L_{1}s\theta_{2} \end{bmatrix}$$

$$x_e = c\theta_1(L_2c\theta_{23} + L_1c\theta_2 + R)$$
 $y_e = s\theta_1(L_2c\theta_{23} + L_1c\theta_2 + R)$
 $z_e = L_2s\theta_{23} + L_1s\theta_2$

Example 3 – 3D Space RRR: **RPY Angles**

$$\beta = A \tan 2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$

$$\alpha = A \tan 2(\frac{r_{21}}{c\beta}, \frac{r_{11}}{c\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{c\beta}, \frac{r_{33}}{c\beta})$$

$$^{0}_{3}T =$$

$$\begin{bmatrix} c\theta_{1}c\theta_{23} & -c\theta_{1}s\theta_{23} & s\theta_{1} \\ s\theta_{1}c\theta_{23} & -s\theta_{1}s\theta_{23} & -c\theta_{1} \\ s\theta_{23} & c\theta_{23} & 0 \\ 0 & 0 & 1 \end{bmatrix} c\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ s\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R) \\ L_{2}s\theta_{23} + L_{1}s\theta_{2} \\ L_{2}s\theta_{23} + L_{1}s\theta_{2} \\ 0 & 1 \end{bmatrix}$$

$$\beta = \theta_{2} + \theta_{3}$$

$$\alpha = \theta_{1}$$

$$\gamma = 90^{\circ}$$

$$c\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R)$$

$$s\theta_{1}(L_{2}c\theta_{23} + L_{1}c\theta_{2} + R)$$

$$L_{2}s\theta_{23} + L_{1}s\theta_{2}$$

$$1$$

 X_e

Proximal DH convention

i	a _{i-1}	α_{i-1}	d_i	θ_i
1	0	0	0	q_1
2	0	90°	0	q_2
3	0	90°	0	-90°
4	0	-90°	0	q_4
5	0	90°	0	q_5
6	0	0	d_6	q_6

We have to use the distal convention!

$a_n = \mathbf{z}_{n-1}$ to \mathbf{z}_n along \mathbf{x}_n
$\alpha_n = \mathbf{z_{n-1}}$ and $\mathbf{z_n}$ about $\mathbf{x_n}$
$d_n = \mathbf{x}_{n-1}$ to \mathbf{x}_n along \mathbf{z}_{n-1}
$\theta_n = \mathbf{x}_{n-1}$ to \mathbf{x}_n about \mathbf{z}_{n-1}

Distal DH convention

i	a_{i}	$lpha_i$	d_i	θ_{i}
1				
2				
3				
4				
5				
6				

 q_3

 Z_6 Z_5 Z_5 Z_4 Z_4 Z_4 Z_4

Distal DH convention

i	a_{i}	$lpha_i$	d_i	θ_{i}
1	0	90°	d_1	q_1
2				
3				
4				
5				
6				

 $a_n = z_{n-1}$ to z_n along x_n

 $\alpha_n = \mathbf{z_{n-1}}$ and $\mathbf{z_n}$ about $\mathbf{x_n}$ $d_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ along $\mathbf{z_{n-1}}$ $\theta_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ about $\mathbf{z_{n-1}}$

 d_6 Z_6 Z_5 Z_5 Z_4 Z_4 Z_4

$a_n = z_{n-1}$ to z_n along x_n
$\alpha_n = \mathbf{z_{n-1}}$ and $\mathbf{z_n}$ about $\mathbf{x_n}$
$d_n = \mathbf{x}_{n-1}$ to \mathbf{x}_n along \mathbf{z}_{n-1}
$\theta_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ about $\mathbf{z_{n-1}}$

Distal DH convention

i	a_{i}	$lpha_i$	d_i	$ heta_i$
1	0	90°	d_1	q_1
2	0	90°	d_2	q_2
3				
4				
5				
6				

 Z_6 Z_5 Z_5 Z_4 Z_4 Z_4 Z_4 Z_4

 $a_n = z_{n-1}$ to z_n along x_n $\alpha_n = z_{n-1}$ and z_n about x_n $d_n = x_{n-1}$ to x_n along z_{n-1} $\theta_n = x_{n-1}$ to x_n about z_{n-1}

Distal DH convention

i	a_{i}	α_i	d_i	θ_{i}
1	0	90°	d_1	q_1
2	0	90°	d_2	q_2
3	0	90°	q_3	90°
4				
5				
6				

 Z_{6} Z_{5} Z_{5} Z_{4} Z_{4} Z_{4}

 $a_n = z_{n-1}$ to z_n along x_n $\alpha_n = z_{n-1}$ and z_n about x_n $d_n = x_{n-1}$ to x_n along z_{n-1} $\theta_n = x_{n-1}$ to x_n about z_{n-1}

Distal DH convention

i	a_{i}	$lpha_i$	d_i	$ heta_i$
1	0	90°	d_1	q_1
2	0	90°	d_2	q_2
3	0	90°	q_3	90°
4	0	90°	0	q_4
5				
6				

Distal DH convention

i	a_{i}	$lpha_i$	d_i	θ_{i}
1	0	90°	d_1	q_1
2	0	90°	d_2	q_2
3	0	90°	q_3	90°
4	0	90°	0	q_4
5	0	0°	0	q_5
6				

 $a_n = z_{n-1}$ to z_n along x_n

 $\alpha_n = \mathbf{z_{n-1}}$ and $\mathbf{z_n}$ about $\mathbf{x_n}$ $d_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ along $\mathbf{z_{n-1}}$ $\theta_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ about $\mathbf{z_{n-1}}$

Distal DH convention

i	a_{i}	$lpha_i$	d_i	θ_{i}
1	0	90°	d_1	q_1
2	0	90°	d_2	q_2
3	0	90°	q_3	90°
4	0	90°	0	q_4
5	0	0°	0	q_5
6	0	0°	d_6	q_6

 $a_n = z_{n-1}$ to z_n along x_n

 $\alpha_n = \mathbf{z_{n-1}}$ and $\mathbf{z_n}$ about $\mathbf{x_n}$ $d_n = \mathbf{x_{n-1}}$ to $\mathbf{x_n}$ along $\mathbf{z_{n-1}}$

Summary

Denavit-Hartenberg is a systematic way of **setting reference frames**.

Forward kinematics using the Denavit-Hartenberg approach:

- Fix frames and axes on each joint
- Find the 4 DH parameters and fill the DH table
- Use the formula to calculate each transformation matrix i-1T_i
- Multiply consecutive transformation matrices to derive ⁰T_n

Next week: Inverse Kinematics