

Operating Manual and Guide

Clickable Table of Contents:

Overview

Specifications

How to Encode

Command Prefixes List

Command Use and Formulation Guide

Overview

1. Specifications

The Cooptair 8000 utilizes up-to 256 16-bit commands, and can store, save, branch, utilize conditional branching, and do simple mathematics. It has a total of 16 registers, each storing 8 bits of data, and 256 memory addresses, also storing 8 bits of data each. It utilizes 8-bit complement numerical values, and thus can store integer values ranging from 128 to -127, inclusive.

2. How to Encode

To encode, you may enter the circuit entitled "CPU - CommandController". In this file, you will find Pre-Programmable ROM, with 256 16 Bit Commands. The first command to run will be 00, and the last command will be FF. Every Command consists of 4 hexadecimal digits, or 16 bits of data. The list of commands, and their respective encoding, can be found later in this guide.

Command Prefixes List

Bits	Command Use
0000	Data->Register (MOV)
0001	Index->Register (STR)
0010	Register->Index (LDA)
0011	Register->Out (RET)
0100	Add (ADD)
0101	Subtract (SUB)
0110	Not Implemented
0111	Not Implemented
1000	Branch (B)
1001	Branch Positive (BPOS)

1010	Branch Zero (BZERO)
1011	Branch Negative (BNEG)
1100	Not Implemented
1101	Not Implemented
1110	Save Register to Output (SAV)
1111	Exit (EXIT)

Command Use and Formulation Guide

MNemonic	<u>Action</u>	<u>Guide</u>
MOV	Puts Static Input Value into Register R ₁	0000 + R ₁ Address (4 Bits) + Input (8 Bits)
STR	Stores Value of Register R ₁ into Memory Address M ₁	0001 + R ₁ Address (4 Bits) + M ₁ Address (8 Bits)
LDA	Loads Value of Memory M ₁ into Register R ₁	0010 + R ₁ Address (4 Bits) + M ₁ Address (8 Bits)
RET	Returns Value of Register R ₁ into CPU Handling Unit	0011 + R ₁ Address (4 Bits) + 1111 1111
ADD	Adds the Value of Registers R ₁ and R ₂ , then returns the value into Register R ₃	0100 + R ₁ Address (4 Bits) + R ₂ Address (4 Bits) + R ₃ Address (4 Bits)
SUB	Subtracts the Value of Register R ₂ from R ₁ , then returns the value into Register R ₃	0101 + R ₁ Address (4 Bits) + R ₂ Address (4 Bits) + R ₃ Address (4 Bits)
В	Branches to Inputted OpCode Address O ₁ Unconditionally	1000 0000 + O ₁ Address (8 Bits)
BPOS	Branches to Inputted OpCode Address O ₁ if the Value of Register R ₁ is Positive	1001 + R ₁ Address (4 Bits) + O ₁ Address (8 Bits)

BZER	Branches to Inputted OpCode Address O ₁ if the Value of Register R ₁ is Zero	1010 + R ₁ Address (4 Bits) + O ₁ Address (8 Bits)
BNEG	Branches to Inputted OpCode Address O ₁ if the Value of Register R ₁ is Negative	1011 + R ₁ Address (4 Bits) + O ₁ Address (8 Bits)
SAV	Returns Value of Register R ₁ to the Main GUI	1101 + R ₁ Address (4 Bits) + 0000 0000
EXIT	Quits the Program, and halts running. Will reset upon "Clearing"	1111 1111 1111 111