Package 'psychmeta'

August 16, 2017

Type Package

Title Psychometric Meta-Analysis Toolkit
Version 0.1.0
Date 2017-08-15
Maintainer Jeffrey A. Dahlke <dahlk068@umn.edu></dahlk068@umn.edu>
Description Tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Supports bare-bones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values. Includes tools for converting effect sizes, computing sporadic artifact corrections, reshaping meta-analytic databases, computing multivariate corrections for range variation, and more.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Imports MASS, boot, tmvtnorm, tibble, reshape2, ggplot2, dplyr, stats, metafor
RoxygenNote 6.0.1
NeedsCompilation no
Author Jeffrey A. Dahlke [aut, cre], Brenton M. Wiernik [aut], Michael T. Brannick [ctb], Jack Kostal [ctb], Sean Potter [ctb], Yuejia (Mandy) Teng [ctb]
R topics documented:
psychmeta-package adjust_n_d adjust_n_r composite_d_matrix composite_d_scalar composite_rel_matrix composite_rel_scalar composite_re_matrix composite_r_matrix composite_r_matrix 11 composite_r_scalar 12 composite_u_matrix 13

2

<u> </u>	14
compute_dmod	15
compute_dmod_npar	17
compute_dmod_par	19
confidence	21
confidence_r	22
convert_es	23
convert_ma	24
correct_d	25
correct_d_bias	28
correct_glass_bias	29
correct_matrix_mvrr	30
correct_means_mvrr	31
correct_r	32
correct_r_bias	34
correct_r_dich	35
correct_r_split	36
reate_ad	37
reate_ad_group	41
redibility	42
lata_d_bb_multi	43
lata_d_meas_multi	44
lata_r_bvdrr	44
lata_r_bvirr	45
lata_r_gonzalezmule_2014	45
lata_r_mcdaniel_1994	46
lata_r_mcleod_2007	46
lata_r_meas	47
lata_r_meas_multi	47
lata_r_oh_2009	48
lata_r_roth_2015	48
lata r uvdrr	
lata_r_uvun	
estimate_artifacts	
estimate_length_sb	
estimate q dist	54
estimate_rel_dist	
estimate_rel_sb	56
	57
estimate_u	58
	58 65
estimate_var_rho_int	
estimate_var_rho_tsa	67
generate_directory	74
neterogeneity	74
na_d	76
na_d_ad	81
na_d_bb	84
na_d_ic	85
na_d_order2	88
na_r	89
na_r_ad	94
nar bb	97

psychmeta-package 3

	ma_r_ic	98
	ma_r_order2	101
	merge_simdat_r	103
	metareg	103
	mix_dist	104
	mix_r_2group	105
	psychmeta_news	106
	reshape_mat2dat	107
	reshape_vec2mat	108
	reshape_wide2long	109
	sensitivity	110
	simulate_alpha	112
	simulate_matrix	113
	simulate_r_database	
	simulate_r_sample	116
	sparsify_simdat_r	117
	truncate_dist	
	truncate_mean	
	truncate_var	
	unmix_r_2group	
	var_error_alpha	
	var_error_d	
	var_error_delta	
	var_error_g	
	var_error_q	
	var_error_r	
	var_error_rel	
	var_error_r_bvdrr	
	var_error_r_bvirr	
	var_error_u	
	wt_cov	
	wt_dist	132
Index		134

psychmeta-package

psychmeta: Psychometric meta-analysis toolkit

Description

Overview of the **psychmeta** package.

Details

The **psychmeta** package provides tools for computing bare-bones and psychometric meta-analyses and for generating psychometric data for use in meta-analysis simulations. Currently supports barebones, individual-correction, and artifact-distribution methods for meta-analyzing correlations and d values.

4 psychmeta-package

Running a meta-analysis

The main functions for conducting meta-analyses in **psychmeta** are ma_r for correlations and ma_d for *d* values. These functions take meta-analytic dataframes including effect sizes and sample sizes (and, optionally, study labels, moderators, construct and measure labels, and psychometric artifact information) and return the full results of psychometric meta-analyses for all of the specified variable pairs. Examples of correctly formatted meta-analytic datasets for ma functions are data_r_roth_2015, data_r_gonzalezmule_2014, and data_r_mcdaniel_1994. Individual parts of the meta-analysis process can also be run separately; these functions are described in detail below.

Preparing a database for meta-analysis

The convert_es function can be used to convert a variety of effect sizes to either correlations or *d* values. Sporadic psychometric artifacts, such as artificial dichotomization or uneven splits for a *truly* dichotomous variable, can be individually corrected using correct_r and correct_d. These functions can also be used to compute confidence intervals for observed, converted, and corrected effect sizes. 'Wide' meta-analytic coding sheets can be reformatted to the 'long' data frames used by **psychmeta** with reshape_wide2long. A correlation matrix and accompanying vectors of information can be similarly reformatted using reshape_mat2dat.

Meta-analytic models

psychmeta can compute barebones meta-analyses (no corrections for psychometric artifacts), as well as models correcting for measurement error in one or both variables, univariate direct (Case II) range restriction, univariate indirect (Case IV) range restriction, bivariate direct range restriction, bivariate indirect (Case V) range restriction, and multivariate range restriction. Artifacts can be corrected individually or using artifact distributions. Artifact distribution corrections can be applied using either Schmidt and Hunter's (2015) interactive method or Taylor series approximation models. Meta-analyses can be computed using various weights, including sample size (default for correlations), inverse variance (computed using either sample or mean effect size; error based on mean effect size is the default for d values), and weight methods imported from **metafor**.

Preparing artifact distributions meta-analyses

For individual-corrections meta-analyses, reliability and range restriction (u) values should be supplied in the same data frame as the effect sizes and sample sizes. Missing artifact data can be imputed using either bootstrap or other imputation methods. For artifact distribution meta-analyses, artifact distributions can be created automatically by ma_r or ma_d or manually by the create_ad family of functions.

Moderator analyses

Subgroup moderator analyses are run by supplying a moderator matrix to the ma_r or ma_d families of functions. Both simple and fully hierarchical moderation can be computed. Subgroup moderator analysis results are shown by passing an ma_obj to print(). Meta-regression analyses can be run using metareg.

Reporting results and supplemental analyses

Meta-analysis results can be viewed by passing an ma object to print(). Bootstrap confidence intervals, leave one out analyses, and other sensitivity analyses are available in sensitivity. Supplemental heterogeneity statistics (e.g., Q, I^2) can be computed using heterogeneity. Meta-analytic results can be converted between the r and d metrics using heterogeneity. Each heterogeneity contains a

adjust_n_d 5

metafor escalc object in ma\$...\$escalc that can be passed to **metafor**'s functions for plotting, publication/availability bias, and other supplemental analyses. Second-order meta-analyses of correlations can be computed using ma_r_order2. Example second-order meta-analysis datasets from Schmidt and Oh (2013) are available.

Simulating psychometric meta-analyses

psychmeta can be used to run Monte Carlo simulations for different meta-analytic models. simulate_r_sample simulates samples of correlations with measurement error and/or range restriction artifacts. simulate_r_database can be used to simulate full meta-analytic databases of sample correlations and artifacts. Example datasets fitting different meta-analytic models simulated using these functions are available (data_r_meas, data_r_uvdrr, data_r_uvirr, data_r_bvdrr, data_r_bvirr, data_r_meas_multi, and data_d_meas_multi). Additional simulate functions are also available and more are slated for development.

Author(s)

Maintainer: Jeffrey A. Dahlke <dahlk068@umn.edu>

Authors:

• Brenton M. Wiernik <psychmeta@wiernik.org>

Other contributors:

- Michael T. Brannick [contributor]
- Jack Kostal [contributor]
- Sean Potter [contributor]
- Yuejia (Mandy) Teng [contributor]

adjust_n_d Adjusted sample size for a non-Cohen d value for use in a metaanalysis of Cohen's d values

Description

This function is used to convert a non-Cohen d value (e.g., Glass' Δ) to a Cohen's d value by identifying the sample size of a Cohen's d that has the same standard error as the non-Cohen d. This function permits users to account for the influence of sporadic corrections on the sampling variance of d prior to use in a meta-analysis.

Usage

```
adjust_n_d(d, var_e, p = NA)
```

Arguments

d Vector of non-Cohen d standardized mean differences.

var_e Vector of error variances of standardized mean differences.

p Proportion of participants in a study belonging to one of the two groups being contrasted.

6 adjust_n_r

Details

The adjusted sample size is computed as:

$$n_{adjusted} = \frac{d^2p(1-p) + 2}{2p(1-p)var_e}$$

Value

A vector of adjusted sample sizes.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. Chapter 7 (Equations 7.23 and 7.23a).

Examples

$$adjust_n_d(d = 1, var_e = .03, p = NA)$$

adjust_n_r

Adjusted sample size for a non-Pearson correlation coefficient for use in a meta-analysis of Pearson correlations

Description

This function is used to compute the adjusted sample size of a non-Pearsonian correlation (e.g., a tetrachoric correlation) based on the correlation and its estimated error variance. This function allows users to adjust the sample size of a correlation corrected for sporadic artifacts (e.g., unequal splits of dichotomous variables, artificial dichotomization of continuous variables) prior to use in a meta-analysis.

Usage

Arguments

Vector of correlations.

var_e Vector of error variances.

Details

The adjusted sample size is computed as:

$$n_{adjusted} = \frac{(r^2 - 1)^2 + var_e}{var_e}$$

Value

A vector of adjusted sample sizes.

composite_d_matrix 7

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. Equation 3.7.

Examples

```
adjust_n_r(r = .3, var_e = .01)
```

composite_d_matrix

Matrix formula to estimate the standardized mean difference associated with a weighted or unweighted composite variable

Description

This function is a wrapper for $composite_r_matrix$ that converts d values to correlations, computes the composite correlation implied by the d values, and transforms the result back to the d metric.

Usage

```
composite_d_matrix(d_vec, r_mat, wt_vec, p = 0.5)
```

Arguments

d_vec	Vector of standardized mean differences associated with variables in the composite to be formed.
r_mat	Correlation matrix from which the composite is to be computed.
wt_vec	Weights to be used in forming the composite (by default, all variables receive equal weight).
р	The proportion of cases in one of the two groups used the compute the standardized mean differences.

Details

The composite d value is computed by converting the vector of d values to correlations, computing the composite correlation (see composite_r_matrix), and transforming that composite back into the d metric. See "Details" of composite_r_matrix for the composite computations.

Value

The estimated standardized mean difference associated with the composite variable.

```
composite_d_matrix(d_vec = c(1, 1), r_mat = matrix(c(1, .7, .7, 1), 2, 2), wt_vec = c(1, 1), p = .5)
```

8 composite_d_scalar

composite_d_scalar	Scalar formula to estimate the standardized mean difference associ-
	ated with a composite variable

Description

This functions estimates the d value of a composite of X variables, given the mean d value of the individual X values and the mean correlation among those variables.

Usage

```
composite_d_scalar(mean_d, mean_intercor, k_vars, p = 0.5,
    partial_intercor = FALSE)
```

Arguments

mean_d The mean standardized mean differences associated with variables in the com-

posite to be formed.

mean_intercor The mean correlation among the variables in the composite.

k_vars The number of variables in the composite.

p The proportion of cases in one of the two groups used the compute the standard-

ized mean differences.

partial_intercor

Logical scalar determining whether the intercor represents the partial (i.e., within-group) correlation among variables (TRUE) or the overall correlation be-

tween variables (FALSE).

Details

There are two different methods available for computing such a composite, one that uses the partial intercorrelation among the X variables (i.e., the average within-group correlation) and one that uses the overall correlation among the X variables (i.e., the total or mixture correlation across groups).

If a partial correlation is provided for the interrelationships among variables, the following formula is used to estimate the composite d value:

$$d_X = \frac{\bar{d}_{x_i}k}{\sqrt{\bar{\rho}_{x_ix_j}k^2 + \left(1 - \bar{\rho}_{x_ix_j}\right)k}}$$

where d_X is the composite d value, \bar{d}_{x_i} is the mean d value, $\bar{\rho}_{x_ix_j}$ is the mean intercorrelation among the variables in the composite, and k is the number of variables in the composite. Otherwise, the composite d value is computed by converting the mean d value to a correlation, computing the composite correlation (see composite_r_scalar for formula), and transforming that composite back into the d metric.

Value

The estimated standardized mean difference associated with the composite variable.

composite_rel_matrix 9

References

Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies with multiple effect sizes. *Psychological Bulletin*, *99*(3), 400–406.

Examples

```
composite_d_scalar(mean_d = 1, mean_intercor = .7, k_vars = 2, p = .5)
```

Description

This function computes the reliability of a variable that is a weighted or unweighted composite of other variables.

Usage

```
composite_rel_matrix(rel_vec, r_mat, sd_vec, wt_vec = rep(1, length(rel_vec)))
```

Arguments

rel_vec	Vector of reliabilities associated with variables in the composite to be formed.
r_mat	Correlation matrix from which the composite is to be computed.
sd_vec	Vector of standard deivations associated with variables in the composite to be formed.
wt_vec	Weights to be used in forming the composite (by default, all variables receive equal weight).

Details

This function treats measure-specific variance as reliable.

The Mosier composite formula is computed as:

$$\rho_{XX} = \frac{\mathbf{w}^T \left(\mathbf{r} \circ \mathbf{s}\right) + \mathbf{w}^T \mathbf{S} \mathbf{w} - \mathbf{w}^T \mathbf{s}}{\mathbf{w}^T \mathbf{S} \mathbf{w}}$$

where ρ_{XX} is a composite reliability estimate, \mathbf{r} is a vector of reliability estimates, \mathbf{w} is a vector of weights, \mathbf{S} is a covariance matrix, and \mathbf{s} is a vector of variances (i.e., the diagonal elements of \mathbf{S}).

Value

The estimated reliability of the composite variable.

References

Mosier, C. I. (1943). On the reliability of a weighted composite. *Psychometrika*, 8(3), 161–168. https://doi.org/10.1007/BF02288700

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. pp. 441 - 447.

10 composite_rel_scalar

Examples

```
composite_rel_matrix(rel_vec = c(.8, .8),
r_mat = matrix(c(1, .4, .4, .1), 2, 2), sd_vec = c(1, 1))
```

composite_rel_scalar Scalar formula to estimate the reliability of a composite variable

Description

This function computes the reliability of a variable that is a unit-weighted composite of other variables.

Usage

```
composite_rel_scalar(mean_rel, mean_intercor, k_vars)
```

Arguments

mean_rel The mean reliability of variables in the composite.

mean_intercor The mean correlation among the variables in the composite.

k_vars The number of variables in the composite.

Details

The Mosier composite formula is computed as:

$$\rho_{XX} = \frac{\bar{\rho}_{x_i x_i} k + k \left(k - 1\right) \bar{\rho}_{x_i x_j}}{k + k \left(k - 1\right) \bar{\rho}_{x_i x_j}}$$

where $\bar{\rho}_{x_ix_i}$ is the mean reliability of variables in the composite, $\bar{\rho}_{x_ix_j}$ is the mean intercorrelation among variables in the composite, and k is the number of variables in the composite.

Value

The estimated reliability of the composite variable.

References

Mosier, C. I. (1943). On the reliability of a weighted composite. *Psychometrika*, 8(3), 161–168. https://doi.org/10.1007/BF02288700

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. pp. 441 - 447.

```
composite_rel_scalar(mean_rel = .8, mean_intercor = .4, k_vars = 2)
```

composite_r_matrix 11

composite_r_matrix	Matrix formula to estimate the correlation between two weighted or unweighted composite variables

Description

This function computes the weighted (or unweighted, by default) composite correlation between a set of X variables and a set of Y variables.

Usage

```
composite_r_matrix(r_mat, x_col, y_col, wt_vec_x = rep(1, length(x_col)),
  wt_vec_y = rep(1, length(y_col)))
```

Arguments

r_mat	Correlation matrix from which composite correlations are to be computed.
x_col	Column indices of variables from 'r_mat' in the X composite (specify a single variable if Y is an observed variable rather than a composite).
y_col	Column indices of variables from 'r_mat' in the Y composite (specify a single variable if Y is an observed variable rather than a composite).
wt_vec_x	Weights to be used in forming the X composite (by default, all variables receive equal weight).
wt_vec_y	Weights to be used in forming the Y composite (by default, all variables receive equal weight).

Details

This is computed as:

$$\rho_{XY} \frac{\mathbf{w}_{X}^{T} \mathbf{R}_{XY} \mathbf{w}_{Y}}{\sqrt{\left(\mathbf{w}_{X}^{T} \mathbf{R}_{XX} \mathbf{w}_{X}\right) \left(\mathbf{w}_{Y}^{T} \mathbf{R}_{YY} \mathbf{w}_{Y}\right)}}$$

where ρ_{XY} is the composite correlation, w is a vector of weights, and R is a correlation matrix. The subscripts of w and R indicate the variables indexed within the vector or matrix.

Value

A composite correlation

References

Mulaik, S. A. (2010). Foundations of factor analysis. Boca Raton, FL: CRC Press. pp. 83-84.

```
r_mat <- matrix(.4, 3, 3)
r_mat[,1] <- r_mat[1,] <- .3
diag(r_mat) <- 1
composite_r_matrix(r_mat = r_mat, x_col = 2:3, y_col = 1)</pre>
```

12 composite_r_scalar

composite_r_scalar Scalar formula to estimate the correlation between a composite and another variable or between two composite variables

Description

This function estimates the correlation between a set of X variables and a set of Y variables using a scalar formula.

Usage

```
composite_r_scalar(mean_rxy, k_vars_x = NULL, mean_intercor_x = NULL,
   k_vars_y = NULL, mean_intercor_y = NULL)
```

Arguments

mean_rxy Mean correlation between sets of X and Y variables.

k_vars_x Number of X variables.

mean_intercor_x

Mean correlation among X variables.

k_vars_y Number of Y variables.

mean_intercor_y

Mean correlation among Y variables.

Details

The formula to estimate a correlation between one composite variable and one external variable is:

$$\rho_{Xy} = \frac{\bar{\rho}_{x_i y}}{\sqrt{\frac{1}{k_x} + \frac{k_x - 1}{k_x} \bar{\rho}_{x_i x_j}}}$$

and the formula to estimate the correlation between two composite variables is:

$$\rho_{XY} = \frac{\bar{\rho}_{x_i y_j}}{\sqrt{\frac{1}{k_x} + \frac{k-1}{k_x} \bar{\rho}_{x_i x_j}} \sqrt{\frac{1}{k_y} + \frac{k_y - 1}{k_y} \bar{\rho}_{y_i y_j}}}$$

where $\bar{\rho}_{x_iy}$ and $\bar{\rho}_{x_iyj}$ are mean correlations between the x variables and the y variable(s), $\bar{\rho}_{x_ix_j}$ is the mean correlation among x variables, $\bar{\rho}_{y_iy_j}$ is the mean correlation among y variables, k_x is the number of x variables, and k_y is the number of y variables.

Value

A vector of composite correlations

References

Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). *Measurement theory for the behavioral sciences*. San Francisco, CA: Freeman. p. 163-164.

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. pp. 441 - 447.

composite_u_matrix 13

Examples

```
## Composite correlation between 4 variables and an outside variable with which
## the four variables correlate .3 on average:
composite_r_scalar(mean_rxy = .3, k_vars_x = 4, mean_intercor_x = .4)

## Correlation between two composites:
composite_r_scalar(mean_rxy = .3, k_vars_x = 2, mean_intercor_x = .5,
k_vars_y = 2, mean_intercor_y = .2)
```

composite_u_matrix

Matrix formula to estimate the u ratio of a composite variable

Description

This function estimates the u ratio of a composite variable when at least one matrix of correlations (restricted or unrestricted) among the variables is available.

Usage

```
composite_u_matrix(ri_mat = NULL, ra_mat = NULL, u_vec, wt_vec = rep(1,
  length(u_vec)), sign_r_vec = 1)
```

Arguments

ri_mat	Range-restricted correlation matrix from which the composite is to be computed (if NULL, ri_mat is estimated from ra_mat).
ra_mat	Unrestricted correlation matrix from which the composite is to be computed (if NULL, ra_mat is estimated from ri_mat).
u_vec	Vector of u ratios associated with variables in the composite to be formed.
wt_vec	Weights to be used in forming the composite (by default, all variables receive equal weight).
sign_r_vec	The signs of the relationships between the variables in the composite and the variable by which range restriction was induced.

Details

This is computed as:

$$u_{composite} = \sqrt{\frac{\left(\mathbf{w} \circ \mathbf{u}\right)^T \mathbf{R}_i \left(\mathbf{w} \circ \mathbf{u}\right)}{\mathbf{w}^T \mathbf{R}_a \mathbf{w}}}$$

where $u_{composite}$ is the composite u ratio, u is a vector of u ratios, \mathbf{R}_i is a range-restricted correlation matrix, \mathbf{R}_a is an unrestricted correlation matrix, and w is a vector of weights.

Value

The estimated u ratio of the composite variable.

```
composite_u_matrix(ri_mat = matrix(c(1, .3, .3, 1), 2, 2), u_vec = c(.8, .8))
```

14 composite_u_scalar

composite_u_scalar

Scalar formula to estimate the u ratio of a composite variable

Description

This function provides an approximation of the u ratio of a composite variable based on the u ratios of the component variables, the mean restricted intercorrelation among those variables, and the mean unrestricted correlation among those variables. If only one of the mean intercorrelations is known, the other will be estimated using the bivariate indirect range-restriction formula. This tends to compute a conservative estimate of the u ratio associated with a composite.

Usage

```
composite_u_scalar(mean_ri = NULL, mean_ra = NULL, mean_u, k_vars)
```

Arguments

mean_ri The mean range-restricted correlation among variables in the composite.

mean_ra The mean unrestricted correlation among variables in the composite.

mean_u The mean u ratio of variables in the composite.

k_vars The number of variables in the composite.

Details

This is computed as:

$$u_{composite} = \sqrt{\frac{\bar{\rho}_i \bar{u}^2 k(k-1) + k \bar{u}^2}{\bar{\rho}_a k(k-1) + k}}$$

where $u_{composite}$ is the composite u ratio, \bar{u} is the mean univariate u ratio, $\bar{\rho}_i$ is the mean restricted correlation among variables, $\bar{\rho}_a$ is the mean unrestricted correlation among variables, and k is the number of variables in the composite.

Value

The estimated u ratio of the composite variable.

```
composite_u_scalar(mean_ri = .3, mean_ra = .4, mean_u = .8, k_vars = 2)
```

compute_dmod 15

compute_dmod	$Comprehensive \ d_Mod \ calculator$	

Description

This is a general-purpose function to compute d_{Mod} effect sizes from raw data and to perform bootstrapping. It subsumes the functionalities of the compute_dmod_par (for parametric computations) and compute_dmod_npar (for non-parametric computations) functions and automates the generation of regression equations and descriptive statistics for computing d_{Mod} effect sizes. Please see documentation for compute_dmod_par and compute_dmod_npar for details about how the effect sizes are computed.

Usage

```
compute_dmod(data, group, predictors, criterion, referent_id,
  focal_id_vec = NULL, conf_level = 0.95, rescale_cdf = TRUE,
  parametric = TRUE, bootstrap = TRUE, boot_iter = 1000,
  stratify = FALSE, empirical_ci = FALSE, cross_validate_wts = FALSE)
```

Arguments

focal_id_vec

rescale_cdf

parametric

data	Data frame containing the data to be analyzed (if not a data frame, must be an object convertible to a data frame via the as.data.frame function). The data set must contain a criterion variable, at least one predictor variable, and a categorical variable that identifies the group to which each case (i.e., row) in the data set belongs.
group	Name or column-index number of the variable that identifies group membership in the data set.
predictors	Name(s) or column-index number(s) of the the predictor variable(s) in the data set. No predictor can be a factor-type variable. If multiple predictors are specified, they will be combined into a regression-weighted composite that will be carried forward to compute d_{Mod} effect sizes.
	 Note: If weights other than regression weights should be used to combine the predictors into a composite, the user must manually compute such a composite, include the composite in the dat data set, and identify the com- posite variable in predictors.
criterion	Name or column-index number of the criterion variable in the data set. The criterion cannot be a factor-type variable.
referent_id	Label used to identify the referent group in the group variable.

conf_level Confidence level (between 0 and 1) to be used in generating confidence intervals.

Default is .95

Logical argument that indicates whether parametric d_{Mod} results should be rescaled to account for using a cumulative density < 1 in the computations (TRUE; default)

Label(s) to identify the focal group(s) in the group variable. If NULL (the de-

fault), the specified referent group will be compared to all other groups.

or not (FALSE).

Logical argument that indicates whether d_{Mod} should be computed using an assumed normal distribution (TRUE; default) or observed frequencies (FALSE).

16 compute_dmod

bootstrap

Logical argument that indicates whether d_{Mod} should be bootstrapped (TRUE; default) or not (FALSE).

Number of bootstrap interations to compute (default = 1000).

Stratify

Logical argument that indicates whether the random bootstrap sampling should be stratified (TRUE) or unstratefied (FALSE; default).

empirical_ci

Logical argument that indicates whether the bootrapped confidence invervals should be computed from the observed empirical distributions (TRUE) or computed using bootstrapped means and standard errors via the normal-theory approach (FALSE).

cross_validate_wts

Only relevant when multiple predictors are specified and bootstrapping is performed. Logical argument that indicates whether regression weights derived from the full sample should be used to combine predictors in the bootstrapped samples (TRUE) or if a new set of weights should be derived during each iteration of the bootstrapping procedure (FALSE; default).

Value

If bootstrapping is selected, the list will include:

- point_estimate A matrix of effect sizes $(d_{Mod_{Signed}}, d_{Mod_{Unsigned}}, d_{Mod_{Under}}, d_{Mod_{Over}})$, proportions of under- and over-predicted criterion scores, minimum and maximum differences, and the scores associated with minimum and maximum differences. All of these values are computed using the full data set.
- bootstrap_mean A matrix of the same statistics as the point_estimate matrix, but the values in this matrix are the means of the results from bootstrapped samples.
- bootstrap_se A matrix of the same statistics as the point_estimate matrix, but the values in this matrix are bootstrapped standard errors (i.e., the standard deviations of the results from bootstrapped samples).
- bootstrap_CI_Lo A matrix of the same statistics as the point_estimate matrix, but the values in this matrix are the lower confidence bounds of the results from bootstrapped samples.
- bootstrap_CI_Hi A matrix of the same statistics as the point_estimate matrix, but the values in this matrix are the upper confidence bounds of the results from bootstrapped samples.

If no bootstrapping is performed, the output will be limited to the point_estimate matrix.

References

Nye, C. D., & Sackett, P. R. (2016). New effect sizes for tests of categorical moderation and differential prediction. *Organizational Research Methods*, https://doi.org/10.1177/1094428116644505.

compute_dmod_npar 17

```
Sigma = matrix(c(1, .3, .3, 1), 2, 2), empirical = TRUE)
colnames(refDat) <- colnames(foc1Dat) <- colnames(foc2Dat) <- colnames(foc3Dat) <- c("X", "Y")</pre>
dat <- rbind(cbind(G = 1, refDat), cbind(G = 2, foc1Dat),</pre>
             cbind(G = 3, foc2Dat), cbind(G = 4, foc3Dat))
# Compute point estimates of parametric d_mod effect sizes:
compute_dmod(data = dat, group = "G", predictors = "X", criterion = "Y",
     referent_id = 1, focal_id_vec = 2:4,
     conf_level = .95, rescale_cdf = TRUE, parametric = TRUE,
     bootstrap = FALSE)
# Compute point estimates of non-parametric d_mod effect sizes:
compute_dmod(data = dat, group = "G", predictors = "X", criterion = "Y",
     referent_id = 1, focal_id_vec = 2:4,
     conf_level = .95, rescale_cdf = TRUE, parametric = TRUE,
     bootstrap = FALSE)
# Compute unstratified bootstrapped estimates of parametric d_mod effect sizes:
compute_dmod(data = dat, group = "G", predictors = "X", criterion = "Y",
     referent_id = 1, focal_id_vec = 2:4,
     conf_level = .95, rescale_cdf = TRUE, parametric = TRUE,
     boot_iter = 10, bootstrap = TRUE, stratify = FALSE, empirical_ci = FALSE)
# Compute unstratified bootstrapped estimates of non-parametric d_mod effect sizes:
compute_dmod(data = dat, group = "G", predictors = "X", criterion = "Y",
     referent_id = 1, focal_id_vec = 2:4,
     conf_level = .95, rescale_cdf = TRUE, parametric = FALSE,
     boot_iter = 10, bootstrap = TRUE, stratify = FALSE, empirical_ci = FALSE)
```

Description

compute_dmod_npar

This function computes non-parametric d_{Mod} effect sizes from user-defined descriptive statistics and regression coefficients, using a distribution of observed scores as weights. This non-parametric function is best used when the assumption of normally distributed predictor scores is not reasonable and/or the distribution of scores observed in a sample is likely to represent the distribution of scores in the population of interest. If one has access to the full raw data set, the dMod function may be used as a wrapper to this function so that the regression equations and descriptive statistics can be computed automatically within the program.

gle focal group

Function for computing non-parametric d_Mod effect sizes for a sin-

Usage

```
compute_dmod_npar(referent_int, referent_slope, focal_int, focal_slope, focal_x,
    referent_sd_y)
```

Arguments

```
referent_int Referent group's intercept.
referent_slope Referent group's slope.
focal_int Focal group's intercept.
```

focal_slope Focal group's slope.

focal_x Focal group's vector of predictor scores.

referent_sd_y Referent group's criterion standard deviation.

Details

The $d_{Mod_{Signed}}$ effect size (i.e., the average of differences in prediction over the range of predictor scores) is computed as

$$d_{Mod_{Signed}} = \frac{\sum_{i=1}^{m} n_i \left[X_i \left(b_{1_1} - b_{1_2} \right) + b_{0_1} - b_{0_2} \right]}{SD_{Y_1} \sum_{i=1}^{m} n_i},$$

where

- SD_{Y_1} is the referent group's criterion standard deviation;
- m is the number of unique scores in the distribution of focal-group predictor scores;
- X is the vector of unique focal-group predictor scores, indexed i = 1 through m;
- X_i is the i^{th} unique score value;
- n is the vector of frequencies associated with the elements of X;
- n_i is the number of cases with a score equal to X_i ;
- b_{1_1} and b_{1_2} are the slopes of the regression of Y on X for the referent and focal groups, respectively; and
- b_{0_1} and b_{0_2} are the intercepts of the regression of Y on X for the referent and focal groups, respectively.

The $d_{Mod_{Under}}$ and $d_{Mod_{Over}}$ effect sizes are computed using the same equation as $d_{Mod_{Signed}}$, but $d_{Mod_{Under}}$ is the weighted average of all scores in the area of underprediction (i.e., the differences in prediction with negative signs) and $d_{Mod_{Over}}$ is the weighted average of all scores in the area of overprediction (i.e., the differences in prediction with negative signs).

The $d_{Mod_{Unsigned}}$ effect size (i.e., the average of absolute differences in prediction over the range of predictor scores) is computed as

$$d_{Mod_{Unsigned}} = \frac{\sum_{i=1}^{m} n_i |X_i (b_{1_1} - b_{1_2}) + b_{0_1} - b_{0_2}|}{SD_{Y_1} \sum_{i=1}^{m} n_i}.$$

The d_{Min} effect size (i.e., the smallest absolute difference in prediction observed over the range of predictor scores) is computed as

$$d_{Min} = \frac{1}{SD_{Y_1}} Min \left[|X (b_{1_1} - b_{1_2}) + b_{0_1} - b_{0_2}| \right].$$

The d_{Max} effect size (i.e., the largest absolute difference in prediction observed over the range of predictor scores) is computed as

$$d_{Max} = \frac{1}{SD_{Y_1}} Max \left[|X (b_{1_1} - b_{1_2}) + b_{0_1} - b_{0_2}| \right].$$

Note: When d_{Min} and d_{Max} are computed in this package, the output will display the signs of the differences (rather than the absolute values of the differences) to aid in interpretation.

compute_dmod_par 19

Value

A vector of effect sizes ($d_{Mod_{Signed}}$, $d_{Mod_{Unsigned}}$, $d_{Mod_{Under}}$, $d_{Mod_{Over}}$), proportions of underand over-predicted criterion scores, minimum and maximum differences (i.e., $d_{Mod_{Under}}$ and $d_{Mod_{Over}}$), and the scores associated with minimum and maximum differences.

Examples

```
# Generate some hypothetical data for a referent group and three focal groups:
set.seed(10)
refDat <- MASS::mvrnorm(n = 1000, mu = c(.5, .2),
                         Sigma = matrix(c(1, .5, .5, 1), 2, 2), empirical = TRUE)
foc1Dat <- MASS::mvrnorm(n = 1000, mu = c(-.5, -.2),
                         Sigma = matrix(c(1, .5, .5, 1), 2, 2), empirical = TRUE)
foc2Dat \leftarrow MASS::mvrnorm(n = 1000, mu = c(0, 0),
                         Sigma = matrix(c(1, .3, .3, 1), 2, 2), empirical = TRUE)
foc3Dat <- MASS::mvrnorm(n = 1000, mu = c(-.5, -.2),
                          Sigma = matrix(c(1, .3, .3, 1), 2, 2), empirical = TRUE)
colnames(refDat) <- colnames(foc1Dat) <- colnames(foc2Dat) <- colnames(foc3Dat) <- c("X", "Y")</pre>
# Compute a regression model for each group:
refRegMod <- lm(Y ~ X, data.frame(refDat))$coef</pre>
foc1RegMod <- lm(Y ~ X, data.frame(foc1Dat))$coef</pre>
foc2RegMod <- lm(Y ~ X, data.frame(foc2Dat))$coef</pre>
foc3RegMod <- lm(Y ~ X, data.frame(foc3Dat))$coef</pre>
# Use the subgroup regression models to compute d_mod for each referent-focal pairing:
# Focal group #1:
compute_dmod_npar(referent_int = refRegMod[1], referent_slope = refRegMod[2],
             focal_int = foc1RegMod[1], focal_slope = foc1RegMod[2],
             focal_x = foc1Dat[,"X"], referent_sd_y = 1)
# Focal group #2:
compute_dmod_npar(referent_int = refRegMod[1], referent_slope = refRegMod[2],
             focal_int = foc2RegMod[1], focal_slope = foc1RegMod[2],
             focal_x = foc2Dat[,"X"], referent_sd_y = 1)
# Focal group #3:
compute_dmod_npar(referent_int = refRegMod[1], referent_slope = refRegMod[2],
             focal_int = foc3RegMod[1], focal_slope = foc3RegMod[2],
             focal_x = foc3Dat[,"X"], referent_sd_y = 1)
```

compute_dmod_par

Function for computing parametric d_Mod effect sizes for any number of focal groups

Description

This function computes d_{Mod} effect sizes from user-defined descriptive statistics and regression coefficients. If one has access to a raw data set, the dMod function may be used as a wrapper to this function so that the regression equations and descriptive statistics can be computed automatically within the program.

20 compute_dmod_par

Usage

```
compute_dmod_par(referent_int, referent_slope, focal_int, focal_slope,
  focal_mean_x, focal_sd_x, referent_sd_y, focal_min_x, focal_max_x,
  focal_names = NULL, rescale_cdf = TRUE)
```

Arguments

Referent group's intercept. referent_int referent_slope Referent group's slope. focal_int Focal groups' intercepts. focal_slope Focal groups' slopes. Focal groups' predictor-score means. focal_mean_x focal_sd_x Focal groups' predictor-score standard deviations. referent_sd_y Referent group's criterion standard deviation. focal_min_x Focal groups' minimum predictor scores. focal_max_x Focal groups' maximum predictor scores. focal_names Focal-group names. If NULL (the default), the focal groups will be given numeric labels ranging from 1 through the number of groups. rescale_cdf Logical argument that indicates whether parametric d_{Mod} results should be rescaled to account for using a cumulative density < 1 in the computations (TRUE; default) or not (FALSE).

Details

The $d_{ModSigned}$ effect size (i.e., the average of differences in prediction over the range of predictor scores) is computed as

$$d_{Mod_{Signed}} = \frac{1}{SD_{Y_1}} \int f_2(X) \left[X \left(b_{1_1} - b_{1_2} \right) + b_{0_1} - b_{0_2} \right] dX,$$

where

- SD_{Y_1} is the referent group's criterion standard deviation;
- $f_2(X)$ is the normal-density function for the distribution of focal-group predictor scores;
- b_{1_1} and b_{1_0} are the slopes of the regression of Y on X for the referent and focal groups, respectively;
- b_{0_1} and b_{0_0} are the intercepts of the regression of Y on X for the referent and focal groups, respectively; and
- the integral spans all X scores within the operational range of predictor scores for the focal group.

The $d_{Mod_{Under}}$ and $d_{Mod_{Over}}$ effect sizes are computed using the same equation as $d_{Mod_{Signed}}$, but $d_{Mod_{Under}}$ is the weighted average of all scores in the area of underprediction (i.e., the differences in prediction with negative signs) and $d_{Mod_{Over}}$ is the weighted average of all scores in the area of overprediction (i.e., the differences in prediction with negative signs).

The $d_{Mod_{Unsigned}}$ effect size (i.e., the average of absolute differences in prediction over the range of predictor scores) is computed as

$$d_{Mod_{Unsigned}} = \frac{1}{SD_{Y_1}} \int f_2(X) |X(b_{1_1} - b_{1_2}) + b_{0_1} - b_{0_2}| dX.$$

confidence 21

The d_{Min} effect size (i.e., the smallest absolute difference in prediction observed over the range of predictor scores) is computed as

$$d_{Min} = \frac{1}{SD_{Y_{1}}}Min\left[\left|X\left(b_{1_{1}}-b_{1_{2}}\right)+b_{0_{1}}-b_{0_{2}}\right|\right].$$

The d_{Max} effect size (i.e., the largest absolute difference in prediction observed over the range of predictor scores) is computed as

$$d_{Max} = \frac{1}{SD_{Y_1}} Max \left[\left| X \left(b_{1_1} - b_{1_2} \right) + b_{0_1} - b_{0_2} \right| \right].$$

Note: When d_{Min} and d_{Max} are computed in this package, the output will display the signs of the differences (rather than the absolute values of the differences) to aid in interpretation.

If d_{Mod} effect sizes are to be rescaled to compensate for a cumulative density less than 1 (see the rescale_cdf argument), the result of each effect size involving integration will be divided by the ratio of the cumulative density of the observed range of scores (i.e., the range bounded by the focal_min_x and focal_max_x arguments) to the cumulative density of scores bounded by -Inf and Inf.

Value

A matrix of effect sizes ($d_{ModSigned}$, $d_{ModUnsigned}$, $d_{ModUnsigned}$, $d_{ModUnder}$, $d_{ModOver}$), proportions of underand over-predicted criterion scores, minimum and maximum differences (i.e., $d_{ModUnder}$ and $d_{ModOver}$), and the scores associated with minimum and maximum differences. Note that if the regression lines are parallel and infinite focal_min_x and focal_max_x values were specified, the extrema will be defined using the scores 3 focal-group SDs above and below the corresponding focal-group means.

References

Nye, C. D., & Sackett, P. R. (2016). New effect sizes for tests of categorical moderation and differential prediction. *Organizational Research Methods*, https://doi.org/10.1177/1094428116644505.

Examples

confidence

Construct a confidence interval

Description

Function to construct a confidence interval around an effect size or mean effect size.

Usage

```
confidence(mean, se = NULL, sd = NULL, k = 1, conf_level = 0.95,
  conf_method = "t")
```

22 confidence_r

Arguments

mean	Mean effect size (if used in a meta-analysis) or observed effect size (if used on individual statistics).
se	For individual statistic.: standard error of the statistic.
sd	For meta-analyses: Observed standard deviation of effect sizes, before accouting for variance from artifacts.
k	For meta-analyses: Number of studies in the meta-analysis.
conf_level	Confidence level that defines the width of the confidence interval (default = .95).
conf_method	Distribution to be used to compute the width of confidence intervals. Available options are "t" for <i>t</i> distribution or "norm" for normal distribution.

Details

```
CI = mean_{es} \pm quantile \times SE_{es}
```

Value

A matrix of confidence intervals of the specified width.

Examples

```
confidence(mean = .3, sd = .15, k = 10, conf_level = .95) confidence(mean = c(.3, .5), sd = c(.15, .2), k = c(10, 5), conf_level = .95) confidence(mean = c(.3, .5), se = c(.15, .2), conf_level = .95)
```

confidence_r

Construct a confidence interval for correlations using Fisher's z transformation

Description

Construct a confidence interval for correlations using Fisher's z transformation

Usage

```
confidence_r(r, n, conf_level = 0.95)
```

Arguments

r A vector of correlationsn A vector of sample sizes

conf_level Confidence level that defines the width of the confidence interval (default = .95).

Value

A confidence interval of the specified width (or matrix of confidence intervals)

```
confidence_r(r = .3, n = 200, conf_level = .95)
```

convert_es 23

convert_es	Convert effect sizes and compute confidence intervals	

Description

This function converts a variety of effect sizes to either correlations or Cohen's d values. The function also computes and prints confidence intervals for the output effect sizes.

Usage

```
convert_es(es, input_es = c("r", "d", "delta", "g", "t", "p.t", "F", "p.F",
  "chisq", "p.chisq", "or", "lor", "z"), output_es = c("r", "d"), n1 = NULL,
  n2 = NULL, df1 = NULL, df2 = NULL, correct_bias = TRUE,
  conf_level = 0.95)
```

Arguments

	7.7
es	Vector of effect sizes to convert.
input_es	Metric of input effect sizes. Currently supports correlations, Cohen's d , independent samples t values (or their p values), two-group one-way ANOVA F values (or their p values), 1df χ^2 values (or their p values), odds ratios, log odds ratios, and Fisher z .
output_es	Metric of output effect sizes. Currently supports correlations and Cohen's d .
n1	Vector of total sample sizes or sample sizes of group 1 of the two groups being contrasted.
n2	Vector of sample sizes of group 2 of the two groups being contrasted.
df1	Vector of input test statistic degrees of freedom (for t and χ^2) or between-groups degree of freedom (for F).
df2	Vector of input test statistic within-group degrees of freedom (for F).
correct_bias	Logical argument that determines whether to correct output effect sizes and error-variance estimates for small-sample bias (TRUE) or not (FALSE) when computing confidence intervals.
conf_level	Confidence level that defines the width of the confidence interval (default = .95).

Value

A psychmeta effect size es object containing:

meta_input	A matrix of converted effect sizes and adjusted sample sizes for use in subsequent meta-anlayses.
original_es	The input data.
confidence	The output data with computed confidence intervals (for printing).

Notes

To use converted effect sizes in a meta-analysis, add the values from es\$meta_input to your meta-analytic input data frame.

24 convert_ma

References

Chinn, S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. *Statistics in Medicine*, 19(22), 3127–3131. https://doi.org/10/c757hm

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: SAGE.

#' Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg

Examples

```
## To convert a statistic to r or d metric:
convert_es(es = 1, input_es="d", output_es="r", n1=100)
convert_es(es = 1, input_es="d", output_es="r", n1=50, n2 = 50)
convert_es(es = .2, input_es="r", output_es="d", n1=100, n2=150)
convert_es(es = -1.3, input_es="t", output_es="r", n1 = 100, n2 = 140)
convert_es(es = 10.3, input_es="F", output_es="d", n1 = 100, n2 = 150)
convert_es(es = 1.3, input_es="chisq", output_es="r", n1 = 100, n2 = 100)
convert_es(es = .021, input_es="p.chisq", output_es="d", n1 = 100, n2 = 100)
convert_es(es = 4.37, input_es="or", output_es="r", n1=100, n2=100)
convert_es(es = 4.37, input_es="or", output_es="r", n1=100, n2=100)
convert_es(es = 1.47, input_es="lor", output_es="r", n1=100, n2=100)
convert_es(es = 1.47, input_es="lor", output_es="r", n1=100, n2=100)

## To simply compute a confidence interval for r or d:
convert_es(es = .3, input_es="r", output_es="r", n1=100)
convert_es(es = .8, input_es="d", output_es="r", n1=64, n2=36)
```

convert_ma

Function to convert meta-analysis of correlations to d values or viceversa

Description

Takes a meta-analysis class object of d values or correlations (classes ma_r_as_r, ma_d_as_d, ma_r_as_d, and ma_d_as_r; second-order meta-analyses are currently not supported) as an input and uses conversion formulas and Taylor series approximations to convert effect sizes and variance estimates, respectively.

Usage

```
convert_ma(ma_obj)
```

Arguments

ma_obj

A meta-analysis object of class ma_r_as_r, ma_d_as_d, ma_r_as_d, or ma_d_as_r

Details

The formula used to convert correlations to *d* values is:

$$d = \frac{r\sqrt{\frac{1}{p(1-p)}}}{\sqrt{1-r^2}}$$

correct_d 25

The formula used to convert *d* values to correlations is:

$$r = \frac{d}{\sqrt{d^2 + \frac{1}{p(1-p)}}}$$

To approximate the variance of correlations from the variance of d values, the function computes:

$$var_r \approx a_d^2 var_d$$

where a_d is the first partial derivative of the d-to-r transformation with respect to d:

$$a_d = -\frac{1}{\left[d^2p(1-p)-1\right]\sqrt{d^2 + \frac{1}{p-p^2}}}$$

To approximate the variance of d values from the variance of correlations, the function computes:

$$var_d \approx a_r^2 var_r$$

where a_r is the first partial derivative of the r-to-d transformation with respect to r:

$$a_r = \frac{\sqrt{\frac{1}{p-p^2}}}{(1-r^2)^{1.5}}$$

Value

A meta-analysis converted to the d value metric (if ma_obj was a meta-analysis in the correlation metric) or converted to the correlation metric (if ma_obj was a meta-analysis in the d value metric).

correct_d

Correct d values for range restriction and/or measurement error

Description

This function is a wrapper for the correct_r function to correct d values for statistical and psychometric artifacts.

Usage

```
correct_d(correction = c("meas", "uvdrr_g", "uvdrr_y", "uvirr_g", "uvirr_g",
  "bvdrr", "bvirr"), d, ryy = 1, uy = 1, rGg = 1, pi = NULL,
  pa = NULL, uy_observed = TRUE, ryy_restricted = TRUE, sign_rgz = 1,
  sign_ryz = 1, n1 = NULL, n2 = NA, conf_level = 0.95,
  correct_bias = FALSE)
```

Arguments

correction Type of correction to be applied. Options are "meas", "uvdrr_g", "uvdrr_y", "uvirr_g", "uvirr_y", "bvdrr", "bvirr"

d Vector of d values.

ryy Vector of reliability coefficients for Y (the continous variable).

26 correct_d

uy	Vector of u ratios for Y (the continous variable).
rGg	Vector of reliabilities for the group variable (i.e., the correlations between observed group membership and latent group membership).
pi	Proportion of cases in one of the groups in the observed data (not necessary if $n1$ and $n2$ reflect this proportionality).
ра	Proportion of cases in one of the groups in the population.
uy_observed	Logical vector in which each entry specifies whether the corresponding uy value is an observed-score u ratio (TRUE) or a true-score u ratio. All entries are TRUE by default.
ryy_restricted	Logical vector in which each entry specifies whether the corresponding rxx value is an incumbent reliability (TRUE) or an applicant reliability. All entries are TRUE by default.
sign_rgz	Vector of signs of the relationships between grouping variables and the selection mechanism.
sign_ryz	Vector of signs of the relationships between Y variables and the selection mechanism.
n1	Optional vector of sample sizes associated with group 1 (or the total sample size, if n2 is NULL).
n2	Optional vector of sample sizes associated with group 2.
conf_level	Confidence level to define the width of the confidence interval (default = .95).
correct_bias	Logical argument that determines whether to correct error-variance estimates for small-sample bias in correlations (TRUE) or not (FALSE). For sporadic corrections (e.g., in mixed artifact-distribution meta-analyses), this should be set to FALSE (the default).

Value

Data frame(s) of observed d values (dgyi), operational range-restricted d values corrected for measurement error in Y only (dgpi), operational range-restricted d values corrected for measurement error in the grouping only (dGyi), and range-restricted true-score d values (dGpi), range-corrected observed-score d values (dgya), operational range-corrected d values corrected for measurement error in Y only (dgpa), operational range-corrected d values corrected for measurement error in the grouping only (dGya), and range-corrected true-score d values (dGpa).

References

Alexander, R. A., Carson, K. P., Alliger, G. M., & Carr, L. (1987). Correcting doubly truncated correlations: An improved approximation for correcting the bivariate normal correlation when truncation has occurred on both variables. *Educational and Psychological Measurement*, 47(2), 309–315. https://doi.org/10.1177/0013164487472002

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. *Journal of Applied Psychology*, 91(3), 594–612. https://doi.org/10.1037/0021-9010.91.3.594

Le, H., Oh, I.-S., Schmidt, F. L., & Wooldridge, C. D. (2016). Correction for range restriction in meta-analysis revisited: Improvements and implications for organizational research. *Personnel Psychology*, 69(4), 975–1008. https://doi.org/10.1111/peps.12122

correct_d 27

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 43–44, 140–141.

```
## Correction for measurement error only
correct_d(correction = "meas", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "meas", d = .5, ryy = .8, uy = .7,
          rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for direct range restriction in the continuous variable
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for direct range restriction in the grouping variable
correct_d(correction = "uvdrr_g", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "uvdrr_g", d = .5, ryy = .8, uy = .7,
          rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for indirect range restriction in the continuous variable
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for indirect range restriction in the grouping variable
correct_d(correction = "uvirr_g", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "uvirr_g", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for indirect range restriction in the continuous variable
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "uvdrr_y", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for direct range restriction in both variables
correct_d(correction = "bvdrr", d = .5, ryy = .8, uy = .7,
          rGg = .9, pi = .7, pa = .5)
correct_d(correction = "bvdrr", d = .5, ryy = .8, uy = .7,
          rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
## Correction for indirect range restriction in both variables
correct_d(correction = "bvirr", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = .7, pa = .5)
correct_d(correction = "bvirr", d = .5, ryy = .8, uy = .7,
         rGg = .9, pi = NULL, pa = .5, n1 = 100, n2 = 200)
```

28 correct_d_bias

correct_d_bias

Correct for small-sample bias in Cohen's d values

Description

Corrects a vector of Cohen's d values for small-sample bias, as Cohen's d has a slight positive bias.

Usage

```
correct_d_bias(d, n)
```

Arguments

d Vector of Cohen's d values.

n Vector of sample sizes.

Details

The bias correction is estimated as:

$$d_c = \frac{d_{obs}}{1 + \frac{.75}{n - 3}}$$

where d_{obs} is the observed effect size, d_c is the corrected estimate of d, and n is the total sample size.

Value

Vector of d values corrected for small-sample bias.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 293–295.

```
correct_d_bias(d = .3, n = 30)
correct_d_bias(d = .3, n = 300)
correct_d_bias(d = .3, n = 3000)
```

correct_glass_bias 29

correct_glass_bias Correct for small-sample bias in Glass' Δ values

Description

Correct for small-sample bias in Glass' Δ values

Usage

correct_glass_bias(delta, nc, ne, use_pooled_sd = rep(FALSE, length(delta)))

Arguments

delta Vector of Glass' Δ values.

nc Vector of control-group sample sizes.

ne Vector of experimental-group sample sizes.

use_pooled_sd Logical vector determining whether the pooled standard deviation was used

(TRUE) or not (FALSE; default).

Details

The bias correction is estimated as:

$$\Delta_c = \Delta_{obs} \frac{\Gamma\left(\frac{n_{control} - 1}{2}\right)}{\Gamma\left(\frac{n_{control} - 1}{2}\right)\Gamma\left(\frac{n_{control} - 2}{2}\right)}$$

where Δ is the observed effect size, Δ_c is the corrected estimate of Δ , and $n_{control}$ is the control-group sample size.

Value

Vector of d values corrected for small-sample bias.

References

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. *Journal of Educational Statistics*, 6(2), 107–128. https://doi.org/10.2307/1164588

```
correct_glass_bias(delta = .3, nc = 30, ne = 30)
```

30 correct_matrix_mvrr

correct_matrix_mvrr

Multivariate select/correction for covariance matrices

Description

Correct (or select upon) a covariance matrix using the Pearson-Aitken-Lawley multivariate selection theorem.

Usage

```
correct_matrix_mvrr(Sigma_i, Sigma_xx_a, x_col, y_col = NULL,
    standardize = FALSE, var_names = NULL)
```

Arguments

Sigma_i	The complete range-restricted (unrestricted) covariance matrix to be corrected (selected upon).
Sigma_xx_a	The matrix of unrestricted (range-restricted) covariances among of selection variables.
x_col	The row/column indices of the variables in Sigma_i that correspond, in order, to the variables in Sigma_xx_a.
y_col	Optional: The variables in Sigma_i not listed in x_col that are to be manipuated by the multivariate range-restriction formula.
standardize	Should the function's output matrix be returned in standardized form (TRUE) or in unstandardized form (FALSE; the default).
var_names	Optional vector of names for the variables in Sigma_i, in order of appearance in the matrix.

Value

A matrix that has been manipuated by the multivariate range-restriction formula.

References

Aitken, A. C. (1934). Note on selection from a multivariate normal population. *Proceedings of the Edinburgh Mathematical Society (Series 2), 4*(2), 106–110.

Lawley, D. N. (1943). A note on Karl Pearson's selection formulae. *Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences*, 62(1), 28–30.

```
Sigma_i <- matrix(.2, 5, 5)
diag(Sigma_i) <- 1
Sigma_xx_a <- matrix(.4, 2, 2)
diag(Sigma_xx_a) <- .8
correct_matrix_mvrr(Sigma_i = Sigma_i, Sigma_xx_a = Sigma_xx_a, x_col = 1:2, standardize = TRUE)</pre>
```

correct_means_mvrr 31

correct_	means	myrr
COLLECT	_11110 at 13_	_111 V 1 1

Multivariate select/correction for vectors of means

Description

Correct (or select upon) a vector of means using principles from the Pearson-Aitken-Lawley multivariate selection theorem.

Usage

```
correct_means_mvrr(Sigma, means_i = rep(0, ncol(Sigma)), means_x_a, x_col,
  y_col = NULL, as_correction = TRUE, var_names = NULL)
```

Arguments

Sigma	The complete covariance matrix to be used to manipulate means: This matrix may be entirely unrestricted or entirely range restricted, as the regression weights estimated from this matrix are expected to be invariant to the effects of selection.
means_i	The complete range-restricted (unrestricted) vector of means to be corrected (selected upon).
means_x_a	The vector of unrestricted (range-restricted) means of selection variables
x_col	The row/column indices of the variables in Sigma that correspond, in order, to the variables in means $_x_a$
y_col	Optional: The variables in Sigma not listed in x_col that are to be manipuated by the multivariate range-restriction formula.
as_correction	Should the function correct the means for the effects of selection (TRUE) or induce selection (FALSE)?
var_names	Optional vector of names for the variables in Sigma, in order of appearance in the matrix.

Value

A vector of means that has been manipuated by the multivariate range-restriction formula.

References

Aitken, A. C. (1934). Note on selection from a multivariate normal population. *Proceedings of the Edinburgh Mathematical Society (Series 2), 4*(2), 106–110.

Lawley, D. N. (1943). A note on Karl Pearson's selection formulae. *Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences*, 62(1), 28–30.

```
Sigma <- diag(.5, 4)
Sigma[lower.tri(Sigma)] <- c(.2, .3, .4, .3, .4, .4)
Sigma <- Sigma + t(Sigma)
diag(Sigma) <- 1
correct_means_mvrr(Sigma = Sigma, means_i = c(.3, .3, .1, .1),
means_x_a = c(-.1, -.1), x_col = 1:2, as_correction = FALSE)</pre>
```

32 correct_r

correct_r Correct correlations for ran	nge restriction and/or measurement error
--	--

Description

Correct correlations for range restriction and/or measurement error

Usage

```
correct_r(correction = c("meas", "uvdrr_x", "uvdrr_y", "uvirr_x", "uvirr_y",
   "bvdrr", "bvirr"), rxyi, ux = 1, uy = 1, rxx = 1, ryy = 1,
   ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE,
   ryy_restricted = TRUE, sign_rxz = 1, sign_ryz = 1, n = NULL,
   conf_level = 0.95, correct_bias = FALSE)
```

Arguments

correction	Type of correction to be applied. Options are "meas", "uvdrr_x", "uvdrr_y", "uvirr_x", "uvirr_y", "bvirr"
rxyi	Vector of observed correlations.
ux	Vector of u ratios for X.
uy	Vector of u ratios for Y.
rxx	Vector of reliability coefficients for X.
ryy	Vector of reliability coefficients for Y.
ux_observed	Logical vector in which each entry specifies whether the corresponding ux value is an observed-score u ratio (TRUE) or a true-score u ratio. All entries are TRUE by default.
uy_observed	Logical vector in which each entry specifies whether the corresponding uy value is an observed-score u ratio (TRUE) or a true-score u ratio. All entries are TRUE by default.
rxx_restricted	Logical vector in which each entry specifies whether the corresponding rxx value is an incumbent reliability (TRUE) or an applicant reliability. All entries are TRUE by default.
ryy_restricted	Logical vector in which each entry specifies whether the corresponding rxx value is an incumbent reliability (TRUE) or an applicant reliability. All entries are TRUE by default.
sign_rxz	Vector of signs of the relationships between X variables and the selection mechanism.
sign_ryz	Vector of signs of the relationships between Y variables and the selection mechanism.
n	Optional vector of sample sizes associated with the rxyi correlations.
conf_level	Confidence level to define the width of the confidence interval (default = .95).
correct_bias	Logical argument that determines whether to correct error-variance estimates for small-sample bias in correlations (TRUE) or not (FALSE). For sporadic corrections (e.g., in mixed artifact-distribution meta-analyses), this should be set to FALSE, the default).

correct_r 33

Details

The correction for measurement error is:

$$\rho_{TP} = \frac{\rho_{XY}}{\sqrt{\rho_{XX}\rho_{YY}}}$$

The correction for univariate direct range restriction is:

$$\rho_{TP_a} = \left[\frac{\rho_{XY_i}}{u_X \sqrt{\rho_{YY_i}} \sqrt{\left(\frac{1}{u_X^2} - 1\right) \frac{\rho_{XY_i}^2}{\rho_{YY_i}} + 1}} \right] / \sqrt{\rho_{XX_a}}$$

The correction for univariate indirect range restriction is:

$$\rho_{TP_a} = \frac{\rho_{XY_i}}{u_T \sqrt{\rho_{XX_i} \rho_{YY_i}} \sqrt{\left(\frac{1}{u_T^2} - 1\right) \frac{\rho_{XY_i}^2}{\rho_{XX_i} \rho_{YY_i}} + 1}}$$

The correction for bivariate direct range restriction is:

$$\rho_{TP_{a}} = \frac{\frac{\rho_{XY_{i}}^{2} - 1}{2\rho_{XY_{i}}} u_{X} u_{Y} + \operatorname{sign}\left(\rho_{XY_{i}}\right) \sqrt{\frac{\left(1 - \rho_{XY_{i}}^{2}\right)^{2}}{4\rho_{XY_{i}}} u_{X}^{2} u_{Y}^{2} + 1}}{\sqrt{\rho_{XX_{a}} \rho_{YY_{a}}}}$$

The correction for bivariate indirect range restriction is:

$$\rho_{TP_a} = \frac{\rho_{XY_i} u_X u_Y + \lambda \sqrt{\left|1 - u_X^2\right| \left|1 - u_Y^2\right|}}{\sqrt{\rho_{XX_a} \rho_{YY_a}}}$$

where the λ value allows u_X and u_Y to fall on either side of unity so as to function as a two-stage correction for mixed patterns of range restriction and range enhancement. The λ value is computed as:

$$\lambda = \operatorname{sign}\left[\rho_{ST_a}\rho_{SP_a}\left(1 - u_X\right)\left(1 - u_Y\right)\right] \frac{\operatorname{sign}\left(1 - u_X\right)\min\left(u_X, \frac{1}{u_X}\right) + \operatorname{sign}\left(1 - u_Y\right)\min\left(u_Y, \frac{1}{u_Y}\right)}{\min\left(u_X, \frac{1}{u_X}\right)\min\left(u_Y, \frac{1}{u_Y}\right)}$$

Value

Data frame(s) of observed correlations (rxyi), operational range-restricted correlations corrected for measurement error in Y only (rxpi), operational range-restricted correlations corrected for measurement error in X only (rtyi), and range-restricted true-score correlations (rtpi), range-corrected observed-score correlations (rxya), operational range-corrected correlations corrected for measurement error in Y only (rxpa), operational range-corrected correlations corrected for measurement error in X only (rtya), and range-corrected true-score correlations (rtpa).

References

Alexander, R. A., Carson, K. P., Alliger, G. M., & Carr, L. (1987). Correcting doubly truncated correlations: An improved approximation for correcting the bivariate normal correlation when truncation has occurred on both variables. *Educational and Psychological Measurement*, 47(2), 309–315. https://doi.org/10.1177/0013164487472002

34 correct_r_bias

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. *Journal of Applied Psychology*, 91(3), 594–612. https://doi.org/10.1037/0021-9010.91.3.594

Le, H., Oh, I.-S., Schmidt, F. L., & Wooldridge, C. D. (2016). Correction for range restriction in meta-analysis revisited: Improvements and implications for organizational research. *Personnel Psychology*, 69(4), 975–1008. https://doi.org/10.1111/peps.12122

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 43-44, 140-141.

Examples

```
## Correction for measurement error only
correct_r(correction = "bvirr", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE)
correct_r(correction = "meas", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE, n = 100)
## Correction for direct range restriction in X
correct_r(correction = "uvdrr_x", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE)
correct_r(correction = "uvdrr_x", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE, n = 100)
\#\# Correction for indirect range restriction in X
correct_r(correction = "uvirr_x", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE)
correct_r(correction = "uvirr_x", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE, n = 100)
## Correction for direct range restriction in X and Y
correct_r(correction = "bvdrr", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE)
correct_r(correction = "bvdrr", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE, n = 100)
## Correction for indirect range restriction in X and Y
correct_r(correction = "bvirr", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE)
correct_r(correction = "bvirr", rxyi = .3, ux = .8, uy = .8, rxx = .8, ryy = .8,
    ux_observed = TRUE, uy_observed = TRUE, rxx_restricted = TRUE, ryy_restricted = TRUE, n = 100)
```

correct_r_bias

Correct correlations for small-sample bias

Description

Correct correlations for small-sample bias

correct_r_dich 35

Usage

```
correct_r_bias(r, n)
```

Arguments

r Vector of correlations.

n Vector of sample sizes.

Details

$$r_c = \frac{r_{obs}}{\left(\frac{2n-2}{2n-1}\right)}$$

Value

Vector of correlations corrected for small-sample bias.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 140–141.

Examples

```
correct_r_bias(r = .3, n = 30)
correct_r_bias(r = .3, n = 300)
correct_r_bias(r = .3, n = 3000)
```

correct_r_dich

Correct correlations for artifical dichotomization of one or both variables

Description

Correct correlations for artifical dichotomization of one or both variables

Usage

```
correct_r_dich(r, p_x = NA, p_y = NA, n = NULL)
```

Arguments

r	Vector of correlations attenuated by artificial dichomization.
p_x	Vector of proportions of the distribution on either side of the split applied to X (set as NA if X is continuous).
p_y	Vector of proportions of the distribution on either side of the split applied to Y (set as NA if Y is continuous).
n	Optional vector of sample sizes.

36 correct_r_split

Details

$$r_c = \frac{r_{obs}}{\left[\frac{\phi(p_X)}{p_X(1-p_X)}\right]\left[\frac{\phi(p_Y)}{p_Y(1-p_Y)}\right]}$$

Value

Vector of correlations corrected for artificial dichomization (if n is supplied, corrected error variance and adjusted sample size is also reported).

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 43–44.

Examples

```
correct_r_dich(r = 0.32, p_x = .5, p_y = .5, n = 100)
```

correct_r_split

Correct correlations for uneven/unrepresentative splits

Description

This correction is mathematically equivalent to correcting the correlation for direct range restriction in the split variable.

Usage

```
correct_r_split(r, pi, pa = 0.5, n = NULL)
```

Arguments

r	Vector of correlations affected by an uneven or unrepresentative split of a di- chotomous variable.
pi	Vector of proportions of incumbent/sample cases in one of the categories of the dichotomous variable.
pa	Vector of proportions of applicant/population cases in one of the categories of the dichotomous variable.
n	Optional vector of sample sizes.

Details

$$r_c = \frac{r_{obs}}{u\sqrt{\left(\frac{1}{u^2} - 1\right)r_{obs}^2 + 1}}$$

where $u=\sqrt{\frac{p_i(1-p_i)}{p_a(1-p_a)}}$, the ratio of the dichotomous variance in the sample (p_i) is the incumbent/sample proportion in one of the two groups) to the dichotomous variance in the population (p_a) is the applicant/population proportion in one of the two groups). This correction is identical to the correction for univariate direct range restriction, applied to a dichotomous variable.

Value

Vector of correlations corrected for unrepresentative splits (if n is supplied, corrected error variance and adjusted sample size is also reported).

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. pp. 287-288.

Examples

```
correct_r_split(r = 0.3, pi = .9, pa = .5, n = 100)
```

create_ad

Generate an artifact distribution object for use in artifact-distribution meta-analysis programs.

Description

This function generates ad_obj class objects containing either interactive or Taylor series artifact distributions. Use this to create objects that can be supplied to the ma_r_ad and ma_d_ad functions to apply psychometric corrections to barebones meta-analysis objects via artifact distribution methods.

Usage

```
create_ad(ad_type = "tsa", rxxi = NULL, n_rxxi = NULL, wt_rxxi = n_rxxi,
    rxxa = NULL, n_rxxa = NULL, wt_rxxa = n_rxxa, ux = NULL,
    ni_ux = NULL, na_ux = NULL, wt_ux = ni_ux, dep_sds_ux_obs = FALSE,
    ut = NULL, ni_ut = NULL, na_ut = NULL, wt_ut = ni_ut,
    dep_sds_ut_obs = FALSE, mean_qxi = NULL, var_qxi = NULL, k_qxi = NULL,
    mean_n_qxi = NULL, mean_rxxi = NULL, var_rxxi = NULL, k_rxxi = NULL,
    mean_n_rxxi = NULL, mean_qxa = NULL, var_qxa = NULL, k_qxa = NULL,
    mean_n_qxa = NULL, mean_rxxa = NULL, var_rxxa = NULL, k_rxxa = NULL,
    mean_n_qxa = NULL, mean_ux = NULL, var_ux = NULL, k_ux = NULL,
    mean_ni_ux = NULL, mean_na_ux = NA, dep_sds_ux_spec = FALSE,
    mean_ut = NULL, var_ut = NULL, k_ut = NULL, mean_ni_ut = NULL,
    mean_na_ut = NA, dep_sds_ut_spec = FALSE, estimate_rxxa = TRUE,
    estimate_rxxi = TRUE, estimate_ux = TRUE, estimate_ut = TRUE,
    var_unbiased = TRUE, ...)
```

Arguments

ad_type	Type of artifact distribution to be computed: Either "tsa" for Taylor series approximation or "int" for interactive.
rxxi	Vector of incumbent reliability estimates.
n_rxxi	Vector of sample sizes associated with the elements of rxxi.
wt_rxxi	Vector of weights associated with the elements of rxxi (by default, sample sizes will be used as weights).

rxxa	Vector of applicant reliability estimates.
n_rxxa	Vector of sample sizes associated with the elements of rxxa.
wt_rxxa	Vector of weights associated with the elements of rxxa (by default, sample sizes will be used as weights).
ux	Vector of observed-score u ratios.
ni_ux	Vector of incumbent sample sizes associated with the elements of ux.
na_ux	Vector of applicant sample sizes that can be used in estimating the sampling error of supplied ux values. NULL by default. Only used when ni_ux is not NULL. If supplied, must be either a scalar or the same length as ni_ux.
wt_ux	Vector of weights associated with the elements of ux (by default, sample sizes will be used as weights).
dep_sds_ux_obs	Logical scalar or vector determinining whether supplied ux values were computed using dependent samples (TRUE) or independent samples (FALSE).
ut	Vector of true-score u ratios.
ni_ut	Vector of incumbent sample sizes associated with the elements of ut.
na_ut	Vector of applicant sample sizes that can be used in estimating the sampling error of supplied ut values. NULL by default. Only used when ni_ut is not NULL. If supplied, must be either a scalar or the same length as ni_ut.
wt_ut	Vector of weights associated with the elements of ut (by default, sample sizes will be used as weights).
dep_sds_ut_obs	Logical scalar or vector determinining whether supplied ut values were computed using dependent samples (TRUE) or independent samples (FALSE).
mean_qxi	Vector that can be used to supply the means of externally computed distributions of incumbent square-root reliabilities.
var_qxi	Vector that can be used to supply the variances of externally computed distributions of incumbent square-root reliabilities.
k_qxi	Vector that can be used to supply the number of studies included in externally computed distributions of incumbent square-root reliabilities.
mean_n_qxi	Vector that can be used to supply the mean sample sizes of externally computed distributions of incumbent square-root reliabilities.
mean_rxxi	Vector that can be used to supply the means of externally computed distributions of incumbent reliabilities.
var_rxxi	Vector that can be used to supply the variances of externally computed distributions of incumbent reliabilities.
k_rxxi	Vector that can be used to supply the number of studies included in externally computed distributions of incumbent reliabilities.
mean_n_rxxi	Vector that can be used to supply the mean sample sizes of externally computed distributions of incumbent reliabilities.
mean_qxa	Vector that can be used to supply the means of externally computed distributions of applicant square-root reliabilities.
var_qxa	Vector that can be used to supply the variances of externally computed distributions of applicant square-root reliabilities.
k_qxa	Vector that can be used to supply the number of studies included in externally computed distributions of applicant square-root reliabilities.
mean_n_qxa	Vector that can be used to supply the mean sample sizes of externally computed distributions of applicant square-root reliabilities.

mean_rxxa	Vector that can be used to supply the means of externally computed distributions of applicant reliabilities.
var_rxxa	Vector that can be used to supply the variances of externally computed distributions of applicant reliabilities.
k_rxxa	Vector that can be used to supply the number of studies included in externally computed distributions of applicant reliabilities.
mean_n_rxxa	Vector that can be used to supply the mean sample sizes of externally computed distributions of applicant reliabilities.
mean_ux	Vector that can be used to supply the means of externally computed distributions of observed-score u ratios.
var_ux	Vector that can be used to supply the variances of externally computed distributions of observed-score u ratios.
k_ux	Vector that can be used to supply the number of studies included in externally computed distributions of observed-score u ratios.
mean_ni_ux	Vector that can be used to supply the mean incumbent sample sizes of externally computed distributions of observed-score u ratios.
mean_na_ux	Vector or scalar that can be used to supply the mean applicant sample size(s) of externally computed distributions of observed-score u ratios.
dep_sds_ux_spe	c
	Logical scalar or vector determining whether externally computed ux distributions were computed using dependent samples (TRUE) or independent samples (FALSE).
mean_ut	Vector that can be used to supply the means of externally computed distributions of true-score u ratios.
var_ut	Vector that can be used to supply the variances of externally computed distributions of true-score u ratios.
k_ut	Vector that can be used to supply the number of studies included in externally computed distributions of true-score u ratios.
mean_ni_ut	Vector that can be used to supply the mean sample sizes for of externally computed distributions of true-score u ratios.
mean_na_ut	Vector or scalar that can be used to supply the mean applicant sample size(s) of externally computed distributions of true-score u ratios.
dep_sds_ut_spe	С
	Logical scalar or vector determining whether externally computed ut distributions were computed using dependent samples (TRUE) or independent samples (FALSE).
estimate_rxxa	Logical argument to estimate rxxa values from other artifacts (TRUE) or to only used supplied rxxa values (FALSE). TRUE by default.
estimate_rxxi	Logical argument to estimate rxxi values from other artifacts (TRUE) or to only used supplied rxxi values (FALSE). TRUE by default.
estimate_ux	Logical argument to estimate ux values from other artifacts (TRUE) or to only used supplied ux values (FALSE). TRUE by default.
estimate_ut	Logical argument to estimate ut values from other artifacts (TRUE) or to only used supplied ut values (FALSE). TRUE by default.
var_unbiased	$Logical\ scalar\ determining\ whether\ variance\ should\ be\ unbiased\ (TRUE)\ or\ maximum-likelihood\ (FALSE).$
	Further arguments.

Details

Allows consolidation of observed and estimated artifact information by cross-correcting artifact distributions and forming weighted artifact summaries.

For u ratios, error variances can be computed for independent samples (i.e., settings in which the unrestricted standard deviation comes from an external study) or dependent samples (i.e., settings in which the range-restricted standard deviation comes from a sample that represents a subset of the applicant sample that provided the unrestricted standard deviation). The former circumstance is presumed to be more common, so error variances are computed for independent samples by default.

Value

Artifact distribution object (matrix of artifact-distribution means and variances) for use artifact-distribution meta-analyses.

```
## Example computed using observed values only:
create_ad(ad_type = "tsa", rxxa = c(.9, .8), n_rxxa = c(50, 150),
              rxxi = c(.8, .7), n_rxxi = c(50, 150),
              ux = c(.9, .8), ni_ux = c(50, 150))
create_ad(ad_type = "int", rxxa = c(.9, .8), n_rxxa = c(50, 150),
               rxxi = c(.8, .7), n_rxxi = c(50, 150),
              ux = c(.9, .8), ni_ux = c(50, 150))
## Example computed using all possible input arguments (arbitrary values):
rxxa <- rxxi <- ux <- ut <- c(.7, .8)
n_rxxa <- n_rxxi <- ni_ux <- ni_ut <- c(50, 100)
na_ux <- na_ut <- c(200, 200)
mean_qxa <- mean_qxi <- mean_ux <- mean_ut <- mean_rxxi <- mean_rxxa <- c(.7, .8)</pre>
var_qxa <- var_qxi <- var_ux <- var_ut <- var_rxxi <- var_rxxa <- c(.1, .05)</pre>
k_qxa \leftarrow k_qxi \leftarrow k_ux \leftarrow k_t \leftarrow k_rxxi \leftarrow 2
mean_n_qxa <- mean_n_qxi <- mean_ni_ux <- mean_ni_ut <- mean_n_rxxa <- mean_n_rxxi <- 100</pre>
dep_sds_ux_obs <- dep_sds_ux_spec <- dep_sds_ut_obs <- dep_sds_ut_spec <- FALSE</pre>
mean_na_ux <- mean_na_ut <- 200</pre>
wt_rxxa <- n_rxxa
wt_rxxi <- n_rxxi
wt_ux <- ni_ux
wt_ut <- ni_ut
estimate_rxxa <- TRUE
estimate_rxxi <- TRUE
estimate_ux <- TRUE
estimate_ut <- TRUE
var_unbiased <- TRUE
create_ad(rxxa = rxxa, n_rxxa = n_rxxa, wt_rxxa = wt_rxxa,
              mean_qxa = mean_qxa, var_qxa = var_qxa,
              k_qxa = k_qxa, mean_n_qxa = mean_n_qxa,
               mean_rxxa = mean_rxxa, var_rxxa = var_rxxa,
               k_rxxa = k_rxxa, mean_n_rxxa = mean_n_rxxa,
               rxxi = rxxi, n_rxxi = n_rxxi, wt_rxxi = wt_rxxi,
               mean_qxi = mean_qxi, var_qxi = var_qxi,
```

create_ad_group 41

```
k_qxi = k_qxi, mean_n_qxi = mean_n_qxi,
mean_rxxi = mean_rxxi, var_rxxi = var_rxxi,
k_rxxi = k_rxxi, mean_n_rxxi = mean_n_rxxi,

ux = ux, ni_ux = ni_ux, na_ux = na_ux, wt_ux = wt_ux,
dep_sds_ux_obs = dep_sds_ux_obs,
mean_ux = mean_ux, var_ux = var_ux, k_ux =
k_ux, mean_ni_ux = mean_ni_ux,
mean_na_ux = mean_na_ux, dep_sds_ux_spec = dep_sds_ux_spec,

ut = ut, ni_ut = ni_ut, na_ut = na_ut, wt_ut = wt_ut,
dep_sds_ut_obs = dep_sds_ut_obs,
mean_ut = mean_ut, var_ut = var_ut,
k_ut = k_ut, mean_ni_ut = mean_ni_ut,
mean_na_ut = mean_na_ut, dep_sds_ut_spec = dep_sds_ut_spec,
estimate_rxxa = estimate_rxxa, estimate_rxxi = estimate_rxxi,
estimate_ux = estimate_ux, estimate_ut = estimate_ut, var_unbiased = var_unbiased)
```

create_ad_group

Generate an artifact distribution object for a dichotomous grouping variable.

Description

This function generates ad_obj class objects containing either interactive or Taylor series artifact distributions for dichotomous group-membership variables. Use this to create objects that can be supplied to the ma_r_ad and ma_d_ad functions to apply psychometric corrections to barebones meta-analysis objects via artifact distribution methods.

Usage

```
create_ad_group(ad_type = "tsa", rGg = NULL, n_rGg = NULL,
  wt_rGg = n_rGg, pi = NULL, pa = NULL, n_pi = NULL, n_pa = NULL,
  wt_p = n_pi, mean_rGg = NULL, var_rGg = NULL, k_rGg = NULL,
  mean_n_rGg = NULL, var_unbiased = TRUE, ...)
```

Arguments

ad_type	Type of artifact distribution to be computed: Either "tsa" for Taylor series approximation or "int" for interactive.
rGg	Vector of incumbent reliability estimates.
n_rGg	Vector of sample sizes associated with the elements of rGg.
wt_rGg	Vector of weights associated with the elements of rGg (by default, sample sizes will be used as weights if provided).
pi	Vector of incumbent/sample proportions of members in one of the two groups being compared (one or both of pi/pa can be vectors - if both are vectors, they must be of equal length).
pa	Vector of applicant/population proportions of members in one of the two groups being compared (one or both of pi/pa can be vectors - if both are vectors, they must be of equal length).

42 credibility

n_pi	Vector of sample sizes associated with the elements in pi.
n_pa	Vector of sample sizes associated with the elements in pa.
wt_p	Vector of weights associated with the collective element pairs in pi and pa.
mean_rGg	Vector that can be used to supply the means of externally computed distributions of correlations between observed and latent group membership.
var_rGg	Vector that can be used to supply the variances of externally computed distributions of correlations between observed and latent group membership.
k_rGg	Vector that can be used to supply the number of studies included in externally computed distributions of correlations between observed and latent group membership.
mean_n_rGg	Vector that can be used to supply the mean sample sizes of externally computed distributions of correlations between observed and latent group membership.
var_unbiased	$Logical\ scalar\ determining\ whether\ variance\ should\ be\ unbiased\ (TRUE)\ or\ maximum-likelihood\ (FALSE).$
	Further arguments.

Details

Allows consolidation of observed and estimated artifact information by cross-correcting artifact distributions and forming weighted artifact summaries.

Value

Artifact distribution object (matrix of artifact-distribution means and variances) for use in artifact-distribution meta-analyses.

Examples

credibility

Construct a credibility interval

Description

Function to construct a credibility interval around a mean effect size.

Usage

```
credibility(mean, sd, k = NULL, cred_level = 0.8, cred_method = "t")
```

data_d_bb_multi 43

Arguments

mean	Mean effect size.
sd	Residual/true standard deviation of effect sizes, after accouting for variance from artifacts.
k	Number of studies in the meta-analysis.
cred_level	Credibility level that defines the width of the credibility interval (default = .80).
cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for <i>t</i> distribution or "norm" for normal distribution.

Details

$$CV = mean_{es} \pm quantile \times SD_{es}$$

Value

A matrix of credibility intervals of the specified width.

Examples

```
\label{eq:credibility} $$\operatorname{cred_level} = .8$, $$\operatorname{cred_level} = .8$, $$\operatorname{cred_level} = .8$, $$k = 10$) $$\operatorname{credibility}(mean = c(.3, .5), sd = c(.15, .2), $\operatorname{cred_level} = .8$, $$k = 10$) $$
```

data_d_bb_multi

Hypothetical d value dataset simulated with sampling error only

Description

Data set for use in example meta-analyses of multiple variables.

Usage

```
data(data_d_bb_multi)
```

Format

data.frame

```
data(data_d_bb_multi)
```

44 data_r_bvdrr

data_d_meas_multi	Hypothetical d value dataset simulated to statisfy the assumptions of the correction for measurement error only in multiple constructs
	the correction for measurement error only in multiple constructs

Description

Data set for use in example meta-analyses correcting for measurement error in multiple variables.

Usage

```
data(data_d_meas_multi)
```

Format

data.frame

Examples

```
data(data_d_meas_multi)
```

data_r_bvdrr

Hypothetical dataset simulated to statisfy the assumptions of the bivariate correction for direct range restriction

Description

Data set for use in example meta-analyses of bivariate direct range restriction. Note that the BVDRR correction is only an approximation of the approproate range-restriction correction and tends to have a noticeable positive bias when applied in meta-analyses.

Usage

```
data(data_r_bvdrr)
```

Format

data.frame

```
data(data_r_bvdrr)
```

data_r_bvirr 45

data_r_bvirr

Hypothetical dataset simulated to statisfy the assumptions of the bivariate correction for indirect range restriction

Description

Data set for use in example meta-analyses of bivariate indirect range restriction.

Usage

```
data(data_r_bvirr)
```

Format

data.frame

Examples

```
data(data_r_bvirr)
```

data_r_gonzalezmule_2014

Meta-analysis of OCB correlations with other constructs

Description

Data set to demonstrate corrections for univariate range restriction and measurement error using individual corrections or artifact distributions.

Usage

```
data(data_r_gonzalezmule_2014)
```

Format

data.frame

References

Gonzalez-Mulé, E., Mount, M. K., & Oh, I.-S. (2014). A meta-analysis of the relationship between general mental ability and nontask performance. *Journal of Applied Psychology*, 99(6), 1222–1243. https://doi.org/10.1037/a0037547

```
data(data_r_gonzalezmule_2014)
```

46 data_r_mcleod_2007

Description

Data set to demonstrate corrections for univariate range restriction and criterion measurement error using artifact distributions.

Usage

```
data(data_r_mcdaniel_1994)
```

Format

data.frame

References

McDaniel, M. A., Whetzel, D. L., Schmidt, F. L., & Maurer, S. D. (1994). The validity of employment interviews: A comprehensive review and meta-analysis. *Journal of Applied Psychology*, 79(4), 599–616. https://doi.org/10.1037/0021-9010.79.4.599

Examples

```
data(data_r_mcdaniel_1994)
```

data_r_mcleod_2007

Bare-bones meta-analysis of parenting and childhood depression

Description

Data set to demonstrate bare-bones meta-analysis.

Usage

```
data(data_r_mcleod_2007)
```

Format

data.frame

References

McLeod, B. D., Weisz, J. R., & Wood, J. J., (2007). Examining the association between parenting and childhood depression: A meta-analysis. *Clinical Psychology Review*, 27(8), 986–1003. https://doi.org/10.1016/j.cpr.2007.03.001

```
data(data_r_mcleod_2007)
```

data_r_meas 47

data_r_meas	Hypothetical dataset simulated to statisfy the assumptions of the cor-
	rection for measurement error only

Description

Data set for use in example meta-analyses correcting for measurement error in two variables.

Usage

```
data(data_r_meas)
```

Format

data.frame

Examples

```
data(data_r_meas)
```

 ${\tt data_r_meas_multi}$

Hypothetical correlation dataset simulated to statisfy the assumptions of the correction for measurement error only in multiple constructs

Description

Data set for use in example meta-analyses correcting for measurement error in multiple variables.

Usage

```
data(data_r_meas_multi)
```

Format

data.frame

```
data(data_r_meas_multi)
```

48 data_r_roth_2015

sonality measures across East Asian countries	data_r_oh_2009	Second order meta-analysis of operational validities of big five personality measures across East Asian countries
---	----------------	---

Description

Example of a second-order meta-analysis of correlations corrected using artifact-distribution methods.

Usage

```
data(data_r_oh_2009)
```

Format

data.frame

References

Oh, I.-S. (2009). The Five-Factor Model of personality and job performance in East Asia: A cross-cultural validity generalization study. (Doctoral dissertation) Iowa City, IA: University of Iowa. http://search.proquest.com/dissertations/docview/304903943/

Schmidt, F. L., & Oh, I.-S. (2013). Methods for second order meta-analysis and illustrative applications. *Organizational Behavior and Human Decision Processes*, 121(2), 204–218. https://doi.org/10.1016/j.obhdp.2013.03.002

Examples

```
data(data_r_oh_2009)
```

data_r_roth_2015	Artifact-distribution meta-analysis of the correlation between school
	grades and cognitive ability

Description

Data set to demonstrate corrections for univariate range restriction and cognitive ability measurement error.

Usage

```
data(data_r_roth_2015)
```

Format

data.frame

data_r_uvdrr 49

References

Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. *Intelligence*, *53*, 118–137. https://doi.org/10.1016/j.intell.2015.09.002

Examples

```
data(data_r_roth_2015)
```

data_r_uvdrr

Hypothetical dataset simulated to statisfy the assumptions of the univariate correction for direct range restriction

Description

Data set for use in example meta-analyses correcting for univariate direct range restriction.

Usage

```
data(data_r_uvdrr)
```

Format

data.frame

Examples

```
data(data_r_uvdrr)
```

data_r_uvirr

Hypothetical dataset simulated to statisfy the assumptions of the univariate correction for indirect range restriction

Description

Data set for use in example meta-analyses correcting for univariate indirect range restriction.

Usage

```
data(data_r_uvirr)
```

Format

data.frame

```
data(data_r_uvirr)
```

50 estimate_artifacts

estimate_artifacts	Estimation of applicant and incumbent reliabilities and of true- and observed-score u ratios
	ooser, en seere a rance

Description

Functions to estimate the values of artifacts from other artifacts. These functions allow for reliability estimates to be corrected/attenuated for range restriction and allow u ratios to be converted between observed-score and true-score metrics. Some functions also allow for the extrapolation of an artifact from other available information.

Available functions include:

• estimate_rxxa

Estimate the applicant reliability of variable X from X's incumbent reliability value and X's observed-score or true-score u ratio.

· estimate_rxxa_u

Estimate the applicant reliability of variable X from X's observed-score and true-score u ratios.

estimate_rxxi

Estimate the incumbent reliability of variable X from X's applicant reliability value and X's observed-score or true-score u ratio.

· estimate rxxi u

Estimate the incumbent reliability of variable X from X's observed-score and true-score u ratios.

• estimate_ux

Estimate the true-score u ratio for variable X from X's reliability coefficient and X's observed-score u ratio.

• estimate_uy

Estimate the observed-score u ratio for variable X from X's reliability coefficient and X's true-score u ratio.

• estimate_ryya

Estimate the applicant reliability of variable Y from Y's incumbent reliability value, Y's correlation with X, and X's u ratio.

• estimate_ryyi

Estimate the incumbent reliability of variable Y from Y's applicant reliability value, Y's correlation with X, and X's u ratio.

• estimate uy

Estimate the observed-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.

• estimate_up

Estimate the true-score u ratio for variable Y from Y's applicant and incumbent reliability coefficients.

Usage

```
estimate_rxxa(rxxi, ux, ux_observed = TRUE, indirect_rr = TRUE)
estimate_rxxi(rxxa, ux, ux_observed = TRUE, indirect_rr = TRUE)
```

estimate_artifacts 51

```
estimate_ut(ux, rxx, rxx_restricted = TRUE)
estimate_ux(ut, rxx, rxx_restricted = TRUE)
estimate_ryya(ryyi, rxyi, ux)
estimate_ryyi(ryya, rxyi, ux)
estimate_uy(ryyi, ryya, indirect_rr = TRUE)
estimate_up(ryyi, ryya)
estimate_rxxa_u(ux, ut)
estimate_rxxi_u(ux, ut)
```

Arguments

rxxi	Vector of incumbent reliability estimates for X.
ux	Vector of observed-score u ratios for X (if used in the context of estimating a reliability value, a true-score u ratio may be supplied by setting ux _observed to FALSE).
ux_observed	Logical vector determining whether each element of ux is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).
indirect_rr	Logical vector determining whether each reliability value is associated with indirect range restriction (TRUE) or direct range restriction (FALSE).
rxxa	Vector of applicant reliability estimates for X.
rxx	Vector of reliability estimates for X (used in the context of estimating ux and ut specify that reliability is an incumbent value by setting rxx_restricted to FALSE).
rxx_restricted	Logical vector determining whether each element of rxx is an incumbent reliability (TRUE) or an applicant reliability (FALSE).
ut	Vector of true-score u ratios for X.
ryyi	Vector of incumbent reliability estimates for Y.
rxyi	Vector of observed-score incumbent correlations between X and Y.
ryya	Vector of applicant reliability estimates for Y.

Details

Formulas to estimate rxxa

Formulas for indirect range restriction:

$$\begin{split} \rho_{XX_a} &= 1 - u_X^2 \left(1 - \rho_{XX_i} \right) \\ \rho_{XX_a} &= \frac{\rho_{XX_i}}{\rho_{XX_i} + u_T^2 - \rho_{XX_i} u_T^2} \end{split}$$

Formula for direct range restriction:

$$\rho_{XX_a} = \frac{\rho_{XX_i}}{u_X^2 \left[1 + \rho_{XX_i} \left(\frac{1}{u_X^2} - 1\right)\right]}$$

52 estimate_artifacts

Formulas to estimate rxxi

Formulas for indirect range restriction:

$$\begin{split} \rho_{XX_i} &= 1 - \frac{1 - \rho_{XX_a}}{u_X^2} \\ \rho_{XX_i} &= 1 - \frac{1 - \rho_{XX_a}}{\rho_{XX_a} \left[u_T^2 - \left(1 - \frac{1}{\rho_{XX_a}}\right) \right]} \end{split}$$

Formula for direct range restriction:

$$\rho_{XX_i} = \frac{\rho_{XX_i} u_X^2}{1 + \rho_{XX_i} (u_X^2 - 1)}$$

Formulas to estimate ut

$$u_{T} = \sqrt{\frac{\rho_{XX_{i}}u_{X}^{2}}{1 + \rho_{XX_{i}}u_{X}^{2} - u_{X}^{2}}}$$
$$u_{T} = \sqrt{\frac{u_{X}^{2} - (1 - \rho_{XX_{a}})}{\rho_{XX_{a}}}}$$

Formulas to estimate ux

$$u_X = \sqrt{\frac{u_T^2}{\rho_{XX_i} \left(1 + \frac{u_T^2}{\rho_{XX_i}} - u_T^2\right)}}$$

$$u_X = \sqrt{\rho_{XX_a} \left[u_T^2 - \left(1 - \frac{1}{\rho_{XX_a}} \right) \right]}$$

Formula to estimate ryya

$$\rho_{YY_a} = 1 - \frac{1 - \rho_{YY_i}}{1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)}$$

Formula to estimate ryyi

$$\rho_{YY_i} = 1 - (1 - \rho_{YY_a}) \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2} \right) \right]$$

Formula to estimate uy

$$u_Y = \sqrt{\frac{1 - \rho_{YY_a}}{1 - \rho_{YY_i}}}$$

Formula to estimate up

$$u_P = \sqrt{\frac{\frac{1 - \rho_{YY_a}}{1 - \rho_{YY_i}} - (1 - \rho_{YY_a})}{\rho_{YY_a}}}$$

estimate_length_sb 53

Value

A vector of estimated artifact values.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg p. 127.

Le, H., & Schmidt, F. L. (2006). Correcting for indirect range restriction in meta-analysis: Testing a new meta-analytic procedure. *Psychological Methods*, 11(4), 416–438. https://doi.org/10.1037/1082-989X.11.4.416

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. *Journal of Applied Psychology*, 91(3), 594–612. https://doi.org/10.1037/0021-9010.91.3.594

Le, H., Oh, I.-S., Schmidt, F. L., & Wooldridge, C. D. (2016). Correction for range restriction in meta-analysis revisited: Improvements and implications for organizational research. *Personnel Psychology*, 69(4), 975–1008. https://doi.org/10.1111/peps.12122

Examples

```
estimate_rxxa(rxxi = .8, ux = .8, ux_observed = TRUE)
estimate_rxxi(rxxa = .8, ux = .8, ux_observed = TRUE)
estimate_ut(ux = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ux(ut = .8, rxx = .8, rxx_restricted = TRUE)
estimate_ryya(ryyi = .8, rxyi = .3, ux = .8)
estimate_ryyi(ryya = .8, rxyi = .3, ux = .8)
estimate_uy(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_up(ryyi = c(.5, .7), ryya = c(.7, .8))
estimate_rxxa_u(ux = c(.7, .8), ut = c(.65, .75))
estimate_rxxi_u(ux = c(.7, .8), ut = c(.65, .75))
```

estimate_length_sb

Inverse Spearman-Brown formula to estimate the amount by which a measure would have to be lengthened or shorted to achieve a desired level of reliability

Description

This function implements the inverse of the Spearman-Brown prophecy formula and answers the question: "How much would I have to increase (do decrease) the length of this measure to obtain a desired reliability level given the current reliability of the measure?" The result of the function is the multiplier by which the length of the original measure should be adjusted. The formula implemented here assumes that all items added to (or subtracted from) the measure will be parallel forms of the original items.

Usage

```
estimate_length_sb(rel_initial, rel_desired)
```

Arguments

```
rel_initial Initial reliability of a measure.
```

rel_desired Desired reliability of a lengthened or shortened measure.

54 estimate_q_dist

Details

This is computed as:

$$k^* = \frac{\rho_{XX}^*(\rho_{XX} - 1)}{(\rho_{XX}^* - 1)\rho_{XX}}$$

where ρ_{XX} is the inital reliability, ρ_{XX}^* is the predicted reliability of a measure with a different length, and k^* is the number of times the measure would have to be lengthened to obtain a reliability equal to ρ_{XX}^* .

Value

The estimated number of times by which the number of items in the initial measure would have to be multiplied to achieve the desired reliability.

References

Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). *Measurement theory for the behavioral sciences*. San Francisco, CA: Freeman. p. 236.

Examples

Estimated k to achieve a reliability of .8 from a measure with an initial reliability of .7
estimate_length_sb(rel_initial = .7, rel_desired = .8)

Estimated k to achieve a reliability of .8 from a measure with an initial reliability of .9
estimate_length_sb(rel_initial = .9, rel_desired = .8)

estimate_q_dist

Estimate descriptive statistics of square-root reliabilities

Description

Estimate descriptive statistics of square-root reliabilities from descriptive statistics of reliabilities via Taylor series approximation

Usage

```
estimate_q_dist(mean_rel, var_rel)
```

Arguments

mean_rel Mean reliability value.

var_rel Variance of reliability values.

Details

$$var_{q_X} = \frac{var_{\rho_{XX}}}{4q_X^2}$$

estimate_rel_dist 55

Value

The estimated mean and variance of a distribution of square-root reliability values.

Examples

```
estimate_q_dist(mean_rel = .8, var_rel = .15)
```

estimate_rel_dist

Estimate descriptive statistics of reliabilities

Description

Estimate descriptive statistics of reliabilities from descriptive statistics of square-root reliabilities via Taylor series approximation

Usage

```
estimate_rel_dist(mean_q, var_q)
```

Arguments

mean_q Mean square-rootreliability value.

var_q Variance of square-root reliability values.

Details

$$var_{\rho_{XX}} = 4q_X^2 var_{\rho_{XX}}$$

Value

The estimated mean and variance of a distribution of reliability values.

```
estimate_rel_dist(mean_q = .9, var_q = .05)
```

56 estimate_rel_sb

Description

This function implements the Spearman-Brown prophecy formula for estimating the reliability of a lengthened (or shortened) measure. The formula implemented here assumes that all items added to (or subtracted from) the measure will be parallel forms of the original items.

Usage

```
estimate_rel_sb(rel_initial, k)
```

Arguments

k

rel_initial Initial reliability of a measure.

The number of times by which the measure should be lengthened (if k > 1) or shortened (if k < 1), assuming that all new items are parallel forms of initial

items.

Details

This is computed as:

$$\rho_{XX}^* = \frac{k\rho_{XX}}{1 + (k-1)\rho_{XX}}$$

where ρ_{XX} is the initial reliability, k is the multiplier by which the measure is to be lengthened (or shortened), and ρ_{XX}^* is the predicted reliability of a measure with a different length.

Value

The estimated reliability of the lengthened (or shortened) measure.

References

Ghiselli, E. E., Campbell, J. P., & Zedeck, S. (1981). *Measurement theory for the behavioral sciences*. San Francisco, CA: Freeman. p. 232.

```
## Double the length of a measure with an initial reliability of .7 estimate_rel_sb(rel_initial = .7, k = 2)
## Halve the length of a measure with an initial reliability of .9 estimate_rel_sb(rel_initial = .9, k = .5)
```

estimate_u 57

estimate_u	Estimate u ratios from available artifact information
------------	---

Description

Uses information about standard deviations, reliability estimates, and selection ratios to estimate u ratios. Selection ratios are only used to estimate u when no other information is available, but estimates of u computed from SDs and reliabilities will be averaged to reduce error.

Usage

```
estimate_u(measure_id = NULL, sdi = NULL, sda = NULL, rxxi = NULL,
    rxxa = NULL, item_ki = NULL, item_ka = NULL, n = NULL, meani = NULL,
    sr = NULL, rxya_est = NULL, data = NULL)
```

Arguments

measure_id	Vector of measure identifiers.
sdi	Scalar or vector containing restricted standard deviation(s).
sda	Scalar or vector containing unrestricted standard deviation(s).
rxxi	Scalar or vector containing restricted reliability coefficient(s).
rxxa	Scalar or vector containing unrestricted reliability coefficient(s).
item_ki	Scalar or vector containing the number of items used in measures within samples.
item_ka	Scalar or vector indicating the number of items toward which reliability estimates should be adjusted using the Spearman-Brown formula.
n	Vector of sample sizes.
meani	Vector of sample means.
sr	Vector of selection ratios (used only when no other usuable u-ratio inputs are available).
rxya_est	Vector of estimated unrestricted correlations between the selection mechanism and the variable of interest (used only when sr is used).
data	Optional data frame containing any or all information for use in other arguments.

Value

A vector of estimated u ratios.

```
rxya_est <- .5
## Estimate u from standard deviations only:
estimate_u(sdi = sdi, sda = sda)
## Estimate u from incumbent standard deviations and the
## mixture standard deviation:
estimate_u(sdi = sdi, sda = "mixture", meani = meani, n = n)
## Estimate u from reliability information:
estimate_u(rxxi = rxxi, rxxa = rxxa)
## Estimate u from both standard deviations and reliabilities:
estimate_u(sdi = sdi, sda = sda, rxxi = rxxi, rxxa = rxxa,
           item_ki = item_ki, item_ka = item_ka, n = n,
           meani = meani, sr = sr, rxya_est = rxya_est)
estimate_u(sdi = sdi, sda = "average", rxxi = rxxi, rxxa = "average",
           item_ki = item_ki, item_ka = item_ka, n = n, meani = meani)
## Estimate u from selection ratios as direct range restriction:
estimate_u(sr = sr)
## Estimate u from selection ratios as indirect range restriction:
estimate_u(sr = sr, rxya_est = rxya_est)
```

estimate_var_artifacts

Taylor series approximations for the variances of estimates artifact distributions.

Description

Taylor series approximations to estimate the variances of artifacts that have been estimated from other artifacts. These functions are implemented internally in the create_ad and related functions, but are useful as general tools for manipulating artifact distributions.

Available functions include:

- estimate_var_qxi
 Estimate the variance of a qxi distribution from a qxa distribution and a distribution of u ratios.
- estimate_var_rxxi
 Estimate the variance of an rxxi distribution from an rxxa distribution and a distribution of u ratios.
- estimate_var_qxa

 Estimate the variance of a qxa distribution from a qxi distribution and a distribution of u ratios.
- estimate_var_rxxa
 Estimate the variance of an rxxa distribution from an rxxi distribution and a distribution of u ratios.
- estimate_var_ut
 Estimate the variance of a true-score u ratio distribution from an observed-score u ratio distribution and a reliability distribution.

- estimate_var_ux
 - Estimate the variance of an observed-score u ratio distribution from a true-score u ratio distribution and a reliability distribution.
- estimate_var_qyi
 Estimate the variance of a qyi distribution from the following distributions: qya, rxyi, and ux.
- estimate_var_ryyi
 Estimate the variance of an ryyi distribution from the following distributions: ryya, rxyi, and ux.
- estimate_var_qya
 Estimate the variance of a qya distribution from the following distributions: qyi, rxyi, and ux.
- estimate_var_ryya
 Estimate the variance of an ryya distribution from the following distributions: ryyi, rxyi, and ux.

Usage

```
estimate_var_qxi(qxa, var_qxa = 0, ux, var_ux = 0, ux_observed = TRUE,
  indirect_rr = TRUE)
estimate_var_qxa(qxi, var_qxi = 0, ux, var_ux = 0, ux_observed = TRUE,
  indirect_rr = TRUE)
estimate_var_rxxi(rxxa, var_rxxa = 0, ux, var_ux = 0, ux_observed = TRUE,
  indirect_rr = TRUE)
estimate_var_rxxa(rxxi, var_rxxi = 0, ux, var_ux = 0, ux_observed = TRUE,
  indirect_rr = TRUE)
estimate_var_ut(rxx, var_rxx = 0, ux, var_ux = 0, rxx_restricted = TRUE,
  rxx_as_qx = FALSE)
estimate_var_ux(rxx, var_rxx = 0, ut, var_ut = 0, rxx_restricted = TRUE,
 rxx_as_qx = FALSE)
estimate_var_ryya(ryyi, var_ryyi = 0, rxyi, var_rxyi = 0, ux, var_ux = 0)
estimate_var_qya(qyi, var_qyi = 0, rxyi, var_rxyi = 0, ux, var_ux = 0)
estimate_var_qyi(qya, var_qya = 0, rxyi, var_rxyi = 0, ux, var_ux = 0)
estimate_var_ryyi(ryya, var_ryya = 0, rxyi, var_rxyi = 0, ux, var_ux = 0)
```

Arguments

qxa Square-root of applicant reliability estimate.

var_qxa Variance of square-root of applicant reliability estimate.

ux Observed-score u ratio.

var_ux Variance of observed-score u ratio.

ux_observed Logical vector determining whether u ratios are observed-score u ratios (TRUE)

or true-score u ratios (FALSE).

indirect_rr Logical vector determining whether reliability values are associated with indi-

rect range restriction (TRUE) or direct range restriction (FALSE).

qxi Square-root of incumbent reliability estimate.

var_qxi Variance of square-root of incumbent reliability estimate.

rxxa Incumbent reliability value.

var_rxxa Variance of incumbent reliability values.

rxxi Incumbent reliability value.

var_rxxi Variance of incumbent reliability values.

rxx Generic argument for a reliability estimate (whether this is a reliability or the

square root of a reliability is clarified by the rxx_as_qx argument).

var_rxx Generic argument for the variance of reliability estimates (whether this pertains

to reliabilities or the square roots of reliabilities is clarified by the rxx_as_qx

argument).

rxx_restricted Logical vector determining whether reliability estimates were incumbent relia-

bilities (TRUE) or applicant reliabilities (FALSE).

rxx_as_qx Logical vector determining whether the reliability estimates were reliabilities

(TRUE) or square-roots of reliabilities (FALSE).

ut True-score u ratio.

var_ut Variance of true-score u ratio.
ryyi Incumbent reliability value.

var_ryyi Variance of incumbent reliability values.
rxyi Incumbent correlation between X and Y.

var_rxyi Variance of incumbent correlations.

qyi Square-root of incumbent reliability estimate.

var_qyi Variance of square-root of incumbent reliability estimate.

qya Square-root of applicant reliability estimate.

var_qya Variance of square-root of applicant reliability estimate.

ryya Applicant reliability value.

var_ryya Variance of applicant reliability values.

Details

Partial derivatives to estimate the variance of qxa using ux

Indirect range restriction:

$$b_{u_X} = \frac{(q_{X_i}^2 - 1)u_X}{\sqrt{(q_{X_i}^2 - 1)u_X^2 + 1}}$$

$$b_{q_{X_i}} = \frac{q_{X_i}^2 u_X^2}{\sqrt{(q_{X_i}^2 - 1)u_X^2 + 1}}$$

Direct range restriction:

$$b_{u_X} = \frac{q_{X_i}^2 (q_{X_i}^2 - 1) u_X}{\sqrt{-\frac{q_{X_i}^2}{q_{X_i}^2 (u_X^2 - 1) - u_X^2}} (q_{X_i}^2 (u_X^2 - 1) - u_X^2)^2}$$

$$b_{q_{X_i}} = \frac{q_{X_i} u_X^2}{\sqrt{-\frac{q_{X_i}^2}{q_{X_i}^2(u_X^2-1) - u_X^2}} (q_{X_i}^2(u_X^2-1) - u_X^2)^2}$$

61

Partial derivatives to estimate the variance of rxxa using ux
Indirect range restriction:

$$b_{u_X} = 2 \left(\rho_{XX_i} - 1 \right) u_X$$
$$\rho_{XX_i} : b_{\rho_{XX_i}} = u_X^2$$

Direct range restriction:

$$b_{u_X} = \frac{2(\rho_{XX_i} - 1)\rho_{XX_i} u_X}{(-\rho_{XX_i} u_X^2 + \rho_{XX_i} + u_X^2)^2}$$
$$b_{\rho_{XX_i}} = \frac{u_X^2}{(-\rho_{XX_i} u_X^2 + \rho_{XX_i} + u_X^2)^2}$$

Partial derivatives to estimate the variance of rxxa using ut

$$b_{u_T} = \frac{2(\rho_{XX_i} - 1) * \rho_{XX_i} u_T}{(-\rho_{XX_i} u_T^2 + \rho_{XX_i} + u_T^2)^2}$$
$$b_{\rho_{XX_i}} = \frac{u_T^2}{(-\rho_{XX_i} u_T^2 + \rho_{XX_i} + u_T^2)^2}$$

Partial derivatives to estimate the variance of qxa using ut

$$b_{u_T} = \frac{q_{X_i}^2(q_{X_i}^2 - 1)u_T}{\sqrt{\frac{-q_{X_i}^2}{q_{X_i}^2 * (u_T^2 - 1) - u_T^2}} (q_{X_i}^2(u_T^2 - 1) - u_T^2)^2}$$

$$b_{q_{X_i}} = \frac{q_{X_i} u_T^2}{\sqrt{\frac{q_{X_i}^2}{u_T^2 - q_{X_i}^2(u_T^2 - 1)}} (u_T^2 - q_{X_i}^2(u_T^2 - 1))^2}$$

Partial derivatives to estimate the variance of qxi using ux #### Indirect range restriction:

$$b_{u_X} = \frac{1 - qxa^2}{u_X^3 \sqrt{\frac{q_{X_a}^2 + u_X^2 - 1}{u_X^2}}}$$

$$b_{q_{X_a}} = \frac{q_{X_a}}{u_X^2 \sqrt{\frac{q_{X_a-1}^2}{u_X^2} + 1}}$$

Direct range restriction:

$$\begin{split} b_{u_X} &= -\frac{q_{X_a}^2(q_{X_a}^2-1)u_X}{\sqrt{\frac{q_{X_a}^2u_X^2}{q_{X_a}^2(u_X^2-1)+1}}(q_{X_a}^2(u_X^2-1)+1)^2}\\ b_{q_{X_a}} &= \frac{q_{X_a}u_X^2}{\sqrt{\frac{q_{X_a}^2u_X^2}{q_{X_a}^2(u_X^2-1)+1}}(q_{X_a}^2(u_X^2-1)+1)^2} \end{split}$$

Partial derivatives to estimate the variance of rxxi using ux
Indirect range restriction:

$$b_{u_X} = \frac{2 - 2\rho_{XX_a}}{u_X^3}$$
$$b_{\rho_{XX_a}} = \frac{1}{u_X^2}$$

Direct range restriction:

$$\begin{split} b_{u_X} &= -\frac{2(\rho_{XX_a} - 1)\rho_{XX_a}u_X}{(\rho_{XX_a}(u_X^2 - 1) + 1)^2} \\ b_{\rho_{XX_a}} &= \frac{u_X^2}{(\rho_{XX_a}(u_X^2 - 1) + 1)^2} \end{split}$$

Partial derivatives to estimate the variance of rxxi using ut

$$u_T : b_{u_T} = -\frac{2(\rho_{XX_a} - 1)\rho_{XX_a}u_T}{(\rho_{XX_a}(u_T^2 - 1) + 1)^2}$$
$$b_{\rho_{XX_a}} = \frac{u_T^2}{(\rho_{XX_a}(u_T^2 - 1) + 1)^2}$$

Partial derivatives to estimate the variance of qxi using ut

$$b_{u_T} = -\frac{(q_{X_a} - 1)q_{X_a}^2(q_{X_a} + 1)u_T}{\sqrt{\frac{q_{X_a}^2 u_T^2}{q_{X_a}^2 u_T^2 - q_{X_a}^2 + 1}}(q_{X_a}^2 u_T^2 - q_{X_a}^2 + 1)^2}$$

$$b_{q_{X_a}} = \frac{q_{X_a} u_T^2}{\sqrt{\frac{q_{X_a}^2 u_T^2}{q_{X_a}^2 u_T^2 - q_{X_a}^2 + 1}} (q_{X_a}^2 u_T^2 - q_{X_a}^2 + 1)^2}$$

Partial derivatives to estimate the variance of ut using qxi

$$b_{u_X} = \frac{q_{X_i}^2 u_X}{\sqrt{\frac{q_{X_i}^2 u_X^2}{(q_{X_i}^2 - 1)u_X^2 + 1}} ((q_{X_i}^2 - 1)u_X^2 + 1)^2}$$

$$b_{q_{X_i}} = -\frac{u_X^2(u_X^2-1)}{\sqrt{\frac{q_{X_i}^2u_X^2}{(q_{X_i}^2-1)u_X^2+1}}((q_{X_i}^2-1)u_X^2+1)^2}$$

Partial derivatives to estimate the variance of ut using rxxi

$$b_{u_X} = \frac{\rho_{XX_i} u_X}{\sqrt{\frac{\rho_{XX_i} u_X^2}{(\rho_{XX_i} - 1)u_X^2 + 1}} ((\rho_{XX_i} - 1)u_X^2 + 1)^2}$$

$$b_{\rho_{XX_i}} = -\frac{u_X^2(u_X^2 - 1)}{2\sqrt{\frac{\rho_{XX_i}u_X^2}{(\rho_{XX_i} - 1)u_X^2 + 1}}((\rho_{XX_i} - 1)u_X^2 + 1)^2}$$

Partial derivatives to estimate the variance of ut using qxa

$$\begin{split} b_{u_X} &= \frac{u_X}{q_{X_a}^2 \sqrt{\frac{q_{X_a}^2 + u_X^2 - 1}{q_{X_a}^2}}} \\ b_{q_{X_a}} &= \frac{1 - u_X^2}{q_{X_a}^3 \sqrt{\frac{q_{X_a}^2 + u_X^2 - 1}{q_{X_a}^2}}} \end{split}$$

Partial derivatives to estimate the variance of ut using rxxa

$$b_{u_X} = \frac{u_X}{\rho_{XX_a} \sqrt{\frac{\rho_{XX_a} + u_X^2 - 1}{\rho_{XX_a}}}}$$

$$b_{\rho_{XX_a}} = \frac{1 - u_X^2}{2\rho_{XX_a}^2 \sqrt{\frac{\rho_{XX_a} + u_X^2 - 1}{\rho_{XX_a}}}}$$

Partial derivatives to estimate the variance of ux using qxi

$$\begin{split} b_{u_T} &= \frac{q_{X_i}^2 u_T}{\sqrt{\frac{u_T^2}{u_T^2 - q_{X_i}^2(u_T^2 - 1)}} (u_T^2 - q_{X_i}^2(u_T^2 - 1))^2} \\ b_{q_{X_i}} &= \frac{q_{X_i}(u_T^2 - 1) \left(\frac{u_T^2}{u_T^2 - q_{X_i}^2(u_T^2 - 1)}\right)^{1.5}}{u_T^2} \end{split}$$

Partial derivatives to estimate the variance of ux using rxxi

$$b_{u_T} = \frac{\rho_{XX_i} u_T}{\sqrt{\frac{u_T^2}{-\rho_{XX_i} u_T^2 + \rho_{XX_i} + u_T^2} (-\rho_{XX_i} u_T^2 + \rho_{XX_i} + u_T^2)^2}}$$
$$b_{\rho_{XX_i}} = \frac{(u_T^2 - 1) \left(\frac{u_T^2}{-\rho_{XX_i} u_T^2 + \rho_{XX_i} + u_T^2}\right)^{1.5}}{2u_T^2}$$

Partial derivatives to estimate the variance of ux using qxa

$$\begin{split} b_{u_T} &= \frac{q_{X_a}^2 u_T}{\sqrt{q_{X_a}^2 (u_T^2 - 1) + 1}} \\ b_{q_{X_a}} &= \frac{q_{X_a} (u_T - 1)}{\sqrt{q_{X_a}^2 (u_T^2 - 1) + 1}} \end{split}$$

Partial derivatives to estimate the variance of ux using rxxa

$$b_{u_T} = \frac{\rho_{XX_a} u_T}{\sqrt{\rho_{XX_a} (u_T^2 - 1) + 1}}$$

$$b_{\rho_{XX_a}} = \frac{u_T^2 - 1}{2\sqrt{\rho_{XX_a} (u_T^2 - 1) + 1}}$$

Partial derivatives to estimate the variance of ryya

$$\begin{split} b_{\rho_{YY_i}} &= \frac{1}{\rho_{XY_i}^2 \left(\frac{1}{u_X^2} - 1\right) + 1} \\ b_{u_X} &= \frac{2(\rho_{YY_i} - 1)\rho_{XY_i}^2 u_X}{(u_X^2 - \rho_{XY_i}^2 (u_X^2 - 1))^2} \\ b_{\rho_{XY_i}} &= \frac{2(\rho_{YY_i} - 1)\rho_{XY_i} u_X^2 (u_X^2 - 1)}{(u_X^2 - \rho_{XY_i}^2 (u_X^2 - 1))^2} \end{split}$$

Partial derivatives to estimate the variance of qya

$$\begin{split} b_{qY_i} &= \frac{q_{Y_i}}{\left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)\right] \sqrt{1 - \frac{1 - q_{Y_i}^2}{1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)}}} \\ b_{u_X} &= -\frac{\left(1 - q_{Y_i}^2\right) \rho_{XY_i}^2}{u_X^3 \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)\right] \sqrt{1 - \frac{1 - q_{Y_i}^2}{1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)}}} \\ b_{\rho_{XY_i}} &= -\frac{\left(1 - q_{Y_i}^2\right) \rho_{XY_i} \left(1 - \frac{1}{u_X^2}\right)}{\left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)\right] \sqrt{1 - \frac{1 - q_{Y_i}^2}{1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2}\right)}}} \end{split}$$

Partial derivatives to estimate the variance of ryyi

$$\begin{split} \rho_{YY_a} : b_{\rho_{YY_a}} &= \rho_{XY_i}^2 \left(\frac{1}{u_X^2} - 1\right) + 1 \\ b_{u_X} &= -\frac{2(\rho_{YY_a} - 1)\rho_{XY_i}^2}{u_X^3} \\ b_{\rho_{XY_i}} &= -\frac{2(\rho_{YY_a} - 1)\rho_{XY_i}(u_X^2 - 1)}{u_X^2} \end{split}$$

Partial derivatives to estimate the variance of qyi

$$b_{q_{Y_a}} = \frac{q_{Y_a} \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2} \right) \right]}{\sqrt{1 - (1 - q_{Y_a}) \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2} \right) \right]}}$$

$$b_{u_X} = \frac{(1 - q_{Y_a}^2) \rho_{XY_i} \left(1 - \frac{1}{u_X^2} \right)}{\sqrt{1 - (1 - q_{Y_a}) \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2} \right) \right]}}$$

$$b_{\rho_{XY_i}} = \frac{(1 - q_{Y_a}^2) \rho_{XY_i}^2}{u_X^3 \sqrt{1 - (1 - q_{Y_a}) \left[1 - \rho_{XY_i}^2 \left(1 - \frac{1}{u_X^2} \right) \right]}}$$

estimate_var_rho_int 65

Examples

```
estimate_var_qxi(qxa = c(.8, .85, .9, .95), var_qxa = c(.02, .03, .04, .05),
                  ux = .8, var_ux = 0,
                  ux_observed = c(TRUE, TRUE, FALSE, FALSE),
                  indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_qxa(qxi = c(.8, .85, .9, .95), var_qxi = c(.02, .03, .04, .05),
                  ux = .8, var_ux = 0,
                  ux_observed = c(TRUE, TRUE, FALSE, FALSE),
                  indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_rxxi(rxxa = c(.8, .85, .9, .95),
                   var_rxxa = c(.02, .03, .04, .05), ux = .8, var_ux = 0,
                  ux_observed = c(TRUE, TRUE, FALSE, FALSE),
                  indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_rxxa(rxxi = c(.8, .85, .9, .95), var_rxxi = c(.02, .03, .04, .05),
                   ux = .8, var_ux = 0,
                  ux_observed = c(TRUE, TRUE, FALSE, FALSE),
                  indirect_rr = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_ut(rxx = c(.8, .85, .9, .95), var_rxx = 0,
                 ux = c(.8, .8, .9, .9), var_ux = c(.02, .03, .04, .05),
                  rxx_restricted = c(TRUE, TRUE, FALSE, FALSE),
                 rxx_as_qx = c(TRUE, FALSE, TRUE, FALSE))
estimate_var_ux(rxx = c(.8, .85, .9, .95), var_rxx = 0,
                 ut = c(.8, .8, .9, .9), var_ut = c(.02, .03, .04, .05),
                  rxx_restricted = c(TRUE, TRUE, FALSE, FALSE),
                 rxx_as_qx = c(TRUE, FALSE, TRUE, FALSE))
\texttt{estimate\_var\_ryya}(\texttt{ryyi} = .9, \, \texttt{var\_ryyi} = .04, \, \texttt{rxyi} = .4, \, \texttt{var\_rxyi} = 0, \, \texttt{ux} = .8, \, \texttt{var\_ux} = 0)
estimate_var_ryya(ryyi = .9, var_ryyi = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
estimate_var_qyi(qya = .9, var_qya = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
estimate_var_ryyi(ryya = .9, var_ryya = .04, rxyi = .4, var_rxyi = 0, ux = .8, var_ux = 0)
```

estimate_var_rho_int Non-linear estimate of variance of ρ corrected for psychometric artifacts using numeric integration

Description

Functions to estimate the variance of ρ corrected for psychometric artifacts. These functions integrate over the residual distribution of correlations from an interactive artifact-distribution meta-analysis to non-linearly estimate the variance of ρ .

Available functions include:

- estimate_var_rho_int_meas Variance of ρ corrected for measurement error only
- estimate_var_rho_int_uvdrr Variance of ρ corrected for univariate direct range restriction (i.e., Case II) and measurement error
- estimate_var_rho_int_bvdrr Variance of ρ corrected for bivariate direct range restriction and measurement error
- estimate_var_rho_int_uvirr
 Variance of ρ corrected for univariate indirect range restriction (i.e., Case IV) and measurement error

66 estimate_var_rho_int

• estimate_var_rho_int_bvirr Variance of ρ corrected for bivariate indirect range restriction (i.e., Case V) and measurement error

• estimate_var_rho_int_rb Variance of ρ corrected using Raju and Burke's correction for direct range restriction and measurement error

Usage

```
estimate_var_rho_int_meas(mean_qx, mean_qy, var_res)

estimate_var_rho_int_uvdrr(mean_rxyi, mean_rtpa, mean_qxa, mean_qyi, mean_ux, var_res)

estimate_var_rho_int_uvirr(mean_rxyi, mean_rtpa, mean_qxi, mean_qyi, mean_ut, var_res)

estimate_var_rho_int_bvirr(mean_qxa, mean_qya, mean_ux, mean_uy, var_res)

estimate_var_rho_int_bvdrr(mean_rxyi, mean_rtpa, mean_qxa, mean_qya, mean_ux, mean_uy, var_res)

estimate_var_rho_int_rb(mean_rxyi, mean_rtpa, mean_qx, mean_qy, mean_ux, var_res)
```

Arguments

mean_qx	Mean square root of reliability for X.
mean_qy	Mean square root of reliability for Y.
var_res	Residual variance from an interative artifact distribution (i.e., variance of observed correlations minus predicted error variance and predicted artifact variance).
mean_rxyi	Mean observed correlation.
mean_rtpa	Mean corrected correlation.
mean_qxa	Mean square root of unrestricted reliability for X.
mean_qyi	Mean square root of restricted reliability for Y.
mean_ux	Mean observed-score u ratio for X.
mean_qxi	Mean square root of restricted reliability for X.
mean_ut	Mean true-score u ratio for X.
mean_qya	Mean square root of unrestricted reliability for Y.
mean_uy	Mean observed-score u ratio for Y.

Value

A vector of non-linear estimates of the variance of rho.

Notes

estimate_var_rho_int_meas and estimate_var_rho_int_bvirr do not make use of numeric integraction because they are linear functions.

References

Law, K. S., Schmidt, F. L., & Hunter, J. E. (1994). Nonlinearity of range corrections in meta-analysis: Test of an improved procedure. *Journal of Applied Psychology*, 79(3), 425–438. https://doi.org/10.1037/0021-9010.79.3.425

estimate_var_rho_tsa $\it Taylor \, Series \, Approximation \, of \, variance \, of \, \rho \, corrected \, for \, psychometric \, artifacts$

Description

Functions to estimate the variance of ρ corrected for psychometric artifacts. These functions use Taylor series approximations (i.e., the delta method) to estimate the variance in observed effect sizes predictable from the variance in artifact distributions based on the partial derivatives.

The available Taylor-series functions include:

- estimate_var_rho_tsa_meas Variance of ρ corrected for measurement error only
- estimate_var_rho_tsa_uvdrr Variance of ρ corrected for univariate direct range restriction (i.e., Case II) and measurement error
- estimate_var_rho_tsa_bvdrr
 Variance of ρ corrected for bivariate direct range restriction and measurement error
- estimate_var_rho_tsa_uvirr
 Variance of ρ corrected for univariate indirect range restriction (i.e., Case IV) and measurement error
- estimate_var_rho_tsa_bvirr Variance of ρ corrected for bivariate indirect range restriction (i.e., Case V) and measurement error
- estimate_var_rho_tsa_rb1
 Variance of ρ corrected using Raju and Burke's TSA1 correction for direct range restriction and measurement error
- estimate_var_rho_tsa_rb2
 Variance of ρ corrected using Raju and Burke's TSA2 correction for direct range restriction and measurement error. Note that a typographical error in Raju and Burke's article has been corrected in this function so as to compute appropriate partial derivatives.

Usage

```
estimate_var_rho_tsa_meas(mean_rtp, var_rxy, var_e, mean_qx = 1, var_qx = 0,
    mean_qy = 1, var_qy = 0)

estimate_var_rho_tsa_uvdrr(mean_rtpa, var_rxyi, var_e, mean_ux = 1,
    var_ux = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0)

estimate_var_rho_tsa_bvdrr(mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1,
    var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0,
    mean_qya = 1, var_qya = 0)
```

```
estimate_var_rho_tsa_uvirr(mean_rtpa, var_rxyi, var_e, mean_ut = 1,
   var_ut = 0, mean_qxa = 1, var_qxa = 0, mean_qyi = 1, var_qyi = 0)

estimate_var_rho_tsa_bvirr(mean_rtpa, var_rxyi, var_e = 0, mean_ux = 1,
   var_ux = 0, mean_uy = 1, var_uy = 0, mean_qxa = 1, var_qxa = 0,
   mean_qya = 1, var_qya = 0, sign_rxz = 1, sign_ryz = 1)

estimate_var_rho_tsa_rb1(mean_rtpa, var_rxyi, var_e, mean_ux = 1,
   var_ux = 0, mean_rxx = 1, var_rxx = 0, mean_ryy = 1, var_ryy = 0)

estimate_var_rho_tsa_rb2(mean_rtpa, var_rxyi, var_e, mean_ux = 1,
   var_ux = 0, mean_qx = 1, var_qx = 0, mean_qy = 1, var_qy = 0)
```

Arguments

mean_rtp	Mean corrected correlation.
var_rxy	Variance of observed correlations.
var_e	Error variance of observed correlations
mean_qx	Mean square root of reliability for X.
var_qx	Variance of square roots of reliability estimates for X.
mean_qy	Mean square root of reliability for Y.
var_qy	Variance of square roots of reliability estimates for Y.
mean_rtpa	Mean corrected correlation.
var_rxyi	Variance of observed correlations.
mean_ux	Mean observed-score u ratio for X.
var_ux	Variance of observed-score u ratios for X.
mean_qxa	Mean square root of unrestricted reliability for X.
var_qxa	Variance of square roots of unrestricted reliability estimates for X.
mean_qyi	Mean square root of restricted reliability for Y.
var_qyi	Variance of square roots of restricted reliability estimates for Y.
mean_uy	Mean observed-score u ratio for Y.
var_uy	Variance of observed-score u ratios for Y.
mean_qya	Mean square root of unrestricted reliability for Y.
var_qya	Variance of square roots of unrestricted reliability estimates for Y.
mean_ut	Mean true-score u ratio for X.
var_ut	Variance of true-score u ratios for X.
sign_rxz	Sign of the relationship between X and the selection mechanism.
sign_ryz	Sign of the relationship between Y and the selection mechanism.
mean_rxx	Mean reliability for X.
var_rxx	Variance of reliability estimates for X.
mean_ryy	Mean reliability for Y.
var_ryy	Variance of reliability estimates for Y.

Details

Measurement error only

The attenuation formula for measurement error is

$$\rho_{XY} = \rho_{TP} q_X q_Y$$

where ρ_{XY} is an observed correlation, ρ_{TP} is a true-score correlation, and q_X and q_Y are the square roots of reliability coefficients for X and Y, respectively.

The Taylor series approximation of the variance of ρ_{TP} can be computed using the following linear equation,

$$var_{\rho_{TP}} \approx \left[var_{r_{XY}} - var_e - \left(b_1^2 var_{q_X} + b_2^2 var_{q_Y} \right) \right] / b_3^2$$

where b_1 , b_2 , and b_3 are first-order partial derivatives of the attenuation formula with respect to q_X , q_Y , and ρ_{TP} , respectively. The first-order partial derivatives of the attenuation formula are:

$$b_1 = \frac{\partial \rho_{XY}}{\partial q_X} = \rho_{TP} q_Y$$

$$b_2 = \frac{\partial \rho_{XY}}{\partial q_Y} = \rho_{TP} q_X$$

$$b_3 = \frac{\partial \rho_{XY}}{\partial \rho_{TP}} = q_X q_Y$$

####### Univariate direct range restriction (UVDRR; i.e., Case II) #######

The UVDRR attenuation procedure may be represented as

$$\rho_{XY_{i}} = \frac{\rho_{TP_{a}}q_{Y_{i}}q_{X_{a}}u_{X}}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}$$

The attenuation formula can also be represented as:

$$\rho_{XY_i} = \rho_{TP_a} q_{Y_i} q_{X_a} u_X A$$

where

$$A = \frac{1}{\sqrt{\rho_{TP_{a}}^{2}q_{X_{a}}^{2}\left(u_{X}^{2}-1\right)+1}}$$

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TP_a}} \approx \left[var_{r_{XY_i}} - var_e - \left(b_1^2 var_{q_{X_a}} + b_2^2 var_{q_{Y_i}} + b_3^2 var_{u_X}\right)\right]/b_4^2$$

where b_1 , b_2 , b_3 , and b_4 are first-order partial derivatives of the attenuation formula with respect to q_{X_a} , q_{Y_i} , u_X , and ρ_{TP_a} , respectively. The first-order partial derivatives of the attenuation formula are:

$$b_1 = \frac{\partial \rho_{XY_i}}{\partial q_{X_a}} = \rho_{TP_a} q_{Y_i} u_X A^3$$

$$b_2 = \frac{\partial \rho_{XY_i}}{\partial q_{Y_i}} = \frac{\rho_{XY_i}}{q_{Y_i}}$$

$$b_3 = \frac{\partial \rho_{XY_i}}{\partial u_X} = -\rho_{TP_a} q_{Y_i} q_{X_a} \left(\rho_{TP_a}^2 q_{X_a}^2 - 1\right) A^3$$

$$b_4 = \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = q_{Y_i} q_{X_a} u_X A^3$$

####### Univariate indirect range restriction (UVIRR; i.e., Case IV) ########
Under univariate indirect range restriction, the attenuation formula yielding ρ_{XY_i} is:

$$\rho_{XY_i} = \frac{u_T q_{X_a}}{\sqrt{u_T^2 q_{X_a}^2 + 1 - q_{X_a}^2}} \frac{u_T \rho_{TP_a}}{\sqrt{u_T^2 \rho_{TP_a}^2 + 1 - \rho_{TP_a}^2}}$$

The attenuation formula can also be represented as:

$$\rho_{XY_i} = q_{X_a} q_{Y_i} \rho_{TP_a} u_T^2 A B$$

where

$$A = \frac{1}{\sqrt{u_T^2 q_{X_a}^2 + 1 - q_{X_a}^2}}$$

and

$$B = \frac{1}{\sqrt{u_T^2 \rho_{TP_a}^2 + 1 - \rho_{TP_a}^2}}$$

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TPa}} \approx \left[var_{r_{XY_i}} - var_e - \left(b_1^2 var_{q_{X_a}} + b_2^2 var_{q_{Y_i}} + b_3^2 var_{u_T}\right)\right]/b_4^2$$

where b_1 , b_2 , b_3 , and b_4 are first-order partial derivatives of the attenuation formula with respect to q_{X_a} , q_{Y_i} , u_T , and ρ_{TP_a} , respectively. The first-order partial derivatives of the attenuation formula are:

$$\begin{split} b_1 &= \frac{\partial \rho_{XY_i}}{\partial q_{X_a}} = \frac{\rho_{XY_i}}{q_{X_a}} - \rho_{XY_i} q_{X_a} B^2 \left(u_T^2 - 1 \right) \\ b_2 &= \frac{\partial \rho_{XY_i}}{\partial q_{Y_i}} = \frac{\rho_{XY_i}}{q_{Y_i}} \\ b_3 &= \frac{\partial \rho_{XY_i}}{\partial u_T} = \frac{2\rho_{XY_i}}{u_T} - \rho_{XY_i} u_T q_{X_a}^2 B^2 - \rho_{XY_i} u_T \rho_{TP_a}^2 A^2 \\ b_4 &= \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = \frac{\rho_{XY_i}}{\rho_{TP_a}} - \rho_{XY_i} \rho_{TP_a} A^2 \left(u_T^2 - 1 \right) \end{split}$$

####### Bivariate direct range restriction (BVDRR) #######

Under bivariate direct range restriction, the attenuation formula yielding ρ_{XY_i} is:

$$\rho_{XY_i} = \frac{A + \rho_{TP_a}^2 q_{X_a} q_{Y_a} - \frac{1}{q_{X_a} q_{Y_a}}}{2\rho_{TP_a} u_X u_Y}$$

where

$$A = \sqrt{\left(\frac{1}{q_{X_a}q_{Y_a}} - \rho_{TP_a}^2 q_{X_a}q_{Y_a}\right)^2 + 4\rho_{TP_a}u_X^2u_Y^2}$$

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TP_a}} \approx \left[var_{r_{XY_a}} - var_e - \left(b_1^2 var_{q_{X_a}} + b_2^2 var_{q_{Y_a}} + b_3^2 var_{u_X} + b_4^2 var_{u_Y} \right) \right] / b_5^2$$

where b_1, b_2, b_3, b_4 , and b_5 are first-order partial derivatives of the attenuation formula with respect to $q_{X_a}, q_{Y_a}, u_X, u_Y$, and ρ_{TP_a} , respectively. First, we define terms to simplify the computation of partial derivatives:

$$B = \left(\rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 + q_{X_a} q_{Y_a} A - 1\right)$$

$$C = 2\rho_{TP_a} q_{X_a}^2 q_{Y_a}^2 u_X u_Y A$$

The first-order partial derivatives of the attenuation formula are:

$$\begin{aligned} b_1 &= \frac{\partial \rho_{XY_i}}{\partial q_{X_a}} = \frac{\left(\rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 + 1\right) B}{q_{X_a} C} \\ b_2 &= \frac{\partial \rho_{XY_i}}{\partial q_{Y_i}} = \frac{\left(\rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 + 1\right) B}{q_{Y_a} C} \\ b_3 &= \frac{\partial \rho_{XY_i}}{\partial u_X} = -\frac{\left(\rho_{TP_a} q_{X_a} q_{Y_a} - 1\right) \left(\rho_{TP_a} q_{X_a} q_{Y_a} + 1\right) B}{u_X C} \\ b_4 &= \frac{\partial \rho_{XY_i}}{\partial u_Y} = -\frac{\left(\rho_{TP_a} q_{X_a} q_{Y_a} - 1\right) \left(\rho_{TP_a} q_{X_a} q_{Y_a} + 1\right) B}{u_Y C} \\ b_5 &= \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = \frac{\left(\rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 + 1\right) B}{\rho_{TP_a} C} \end{aligned}$$

####### Bivariate indirect range restriction (BVIRR; i.e., Case V) #######
Under bivariate indirect range restriction, the attenuation formula yielding ρ_{XY_i} is:

$$\rho_{XY_i} = \frac{\rho_{TP_a} q_{X_a} q_{Y_a} - \lambda \sqrt{|1 - u_X^2| \, |1 - u_Y^2|}}{u_X u_Y}$$

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TP_a}} \approx \left[var_{r_{XY_i}} - var_e - \left(b_1^2var_{q_{X_a}} + b_2^2var_{q_{Y_i}} + b_3^2var_{u_X} + b_4^2var_{u_Y}\right)\right]/b_5^2$$

where b_1, b_2, b_3, b_4 , and b_5 are first-order partial derivatives of the attenuation formula with respect to $q_{X_a}, q_{Y_a}, u_X, u_Y$, and ρ_{TP_a} , respectively. First, we define terms to simplify the computation of partial derivatives:

$$b_1 = \frac{\partial \rho_{XY_i}}{\partial q_{X_a}} = \frac{\rho_{TP_a} q_{Y_a}}{u_X u_Y}$$

$$b_2 = \frac{\partial \rho_{XY_i}}{\partial q_{Y_i}} = \frac{\rho_{TP_a} q_{X_a}}{u_X u_Y}$$

$$b_3 = \frac{\partial \rho_{XY_i}}{\partial u_X} = \frac{\lambda \left(1 - u_X^2\right) \sqrt{|1 - u_Y^2|}}{u_Y |1 - u_X^2|^{1.5}} - \frac{\rho_{XY_i}}{u_X}$$

$$b_4 = \frac{\partial \rho_{XY_i}}{\partial u_Y} = \frac{\lambda \left(1 - u_Y^2\right) \sqrt{|1 - u_X^2|}}{u_X |1 - u_Y^2|^{1.5}} - \frac{\rho_{XY_i}}{u_Y}$$

$$b_5 = \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = \frac{q_{X_a} q_{Y_a}}{u_X u_Y}$$

####### Raju and Burke's TSA1 procedure #######

Raju and Burke's attenuation formula may be represented as

$$\rho_{XY_i} = \frac{\rho_{TP_a} u_X \sqrt{\rho_{XX_a} \rho_{YY_a}}}{\sqrt{\rho_{TP_a}^2 \rho_{XX_a} \rho_{YY_a} u_X^2 - \rho_{TP_a}^2 \rho_{XX_a} \rho_{YY_a} + 1}}$$

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TP_a}} \approx \left[var_{r_{XY_i}} - var_e - \left(B^2 var_{\rho_{YY_a}} + C^2 var_{\rho_{XX_a}} + D^2 var_{u_X} \right) \right] / A^2$$

where A, B, C, and D are first-order partial derivatives of the attenuation formula with respect to ρ_{TP_a} , ρ_{XX_a} , ρ_{YY_a} , and u_X , respectively. The first-order partial derivatives of the attenuation formula are:

$$A = \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = \frac{\rho_{XY_i}}{\rho_{TP_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{\rho_{TP_a} u_X^2}$$

$$B = \frac{\partial \rho_{XY_i}}{\partial \rho_{YY_a}} = \frac{1}{2} \left(\frac{\rho_{XY_i}}{\rho_{YY_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{\rho_{YY_a} u_X^2} \right)$$

$$C = \frac{\partial \rho_{XY_i}}{\partial \rho_{XX_a}} = \frac{1}{2} \left(\frac{\rho_{XY_i}}{\rho_{XX_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{\rho_{XX_a} u_X^2} \right)$$

$$D = \frac{\partial \rho_{XY_i}}{\partial u_X} = \frac{\rho_{XY_i} - \rho_{XY_i}^3}{u_X}$$

####### Raju and Burke's TSA2 procedure #######

Raju and Burke's attenuation formula may be represented as

$$\rho_{XY_i} = \frac{\rho_{TP_a} q_{X_a} q_{Y_a} u_X}{\sqrt{\rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 u_X^2 - \rho_{TP_a}^2 q_{X_a}^2 q_{Y_a}^2 + 1}}$$

estimate_var_rho_tsa 73

The Taylor series approximation of the variance of ρ_{TP_a} can be computed using the following linear equation,

$$var_{\rho_{TP_a}} \approx \left[var_{r_{XY_i}} - var_e - \left(F^2 var_{q_{Y_a}} + G^2 var_{q_{X_a}} + H^2 var_{u_X} \right) \right] / E^2$$

where E, F, G, and H are first-order partial derivatives of the attenuation formula with respect to ρ_{TP_a} , q_{X_a} , q_{Y_a} , and u_X , respectively. The first-order partial derivatives of the attenuation formula (with typographic errors in the original article corrected) are:

$$E = \frac{\partial \rho_{XY_i}}{\partial \rho_{TP_a}} = \frac{\rho_{XY_i}}{\rho_{TP_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{\rho_{TP_a}u_X^2}$$

$$F = \frac{\partial \rho_{XY_i}}{\partial q_{Y_a}} = \frac{\rho_{XY_i}}{q_{Y_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{q_{Y_a}u_X^2}$$

$$G = \frac{\partial \rho_{XY_i}}{\partial q_{X_a}} = \frac{\rho_{XY_i}}{q_{X_a}} + \frac{\rho_{XY_i(1-u_X^2)}^3}{q_{X_a}u_X^2}$$

$$H = \frac{\partial \rho_{XY_i}}{\partial u_X} = \frac{\rho_{XY_i} - \rho_{XY_i}^3}{u_X}$$

Value

Vector of meta-analytic variances estimated via Taylor series approximation.

Notes

A typographical error in Raju and Burke's article has been corrected in estimate_var_rho_tsa_rb2 so as to compute appropriate partial derivatives.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Hunter, J. E., Schmidt, F. L., & Le, H. (2006). Implications of direct and indirect range restriction for meta-analysis methods and findings. *Journal of Applied Psychology*, 91(3), 594–612. https://doi.org/10.1037/0021-9010.91.3.594

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. *Journal of Applied Psychology*, 68(3), 382–395. https://doi.org/10.1037/0021-9010.68.3.382

Examples

74 heterogeneity

```
mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005)
estimate_var_rho_tsa_uvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ut = .8, var_ut = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qyi = .8, var_qyi = .005)
estimate_var_rho_tsa_bvirr(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                  mean_ux = .8, var_ux = .005,
                  mean_uy = .8, var_uy = .005,
                  mean_qxa = .8, var_qxa = .005,
                  mean_qya = .8, var_qya = .005,
                  sign_rxz = 1, sign_ryz = 1)
estimate_var_rho_tsa_rb1(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_rxx = .8, var_rxx = .005,
                mean_ryy = .8, var_ryy = .005)
estimate_var_rho_tsa_rb2(mean_rtpa = .5, var_rxyi = .02, var_e = .01,
                mean_ux = .8, var_ux = .005,
                mean_qx = .8, var_qx = .005,
                mean_qy = .8, var_qy = .005)
```

generate_directory

Generate a system of folders from a file path to a new directory

Description

This function is intended to be helpful in simulations when directories need to be created and named according to values generated during the simulation.

Usage

```
generate_directory(path)
```

Arguments

path

The path to the directory to be created

Value

Creates a system of folders to a new directory

heterogeneity

Supplemental heterogeneity statistics for meta-analyses

Description

This function computes a variety of supplemental statistics for meta-analyses. The statistics here are included for interested users. It is strongly recommended that heterogeneity in meta-analysis be interpreted using the SD_{res} , SD_{ρ} , and SD_{δ} statistics, along with corresponding credibility intervals, which are reported in the default ma_obj output (Wiernik et al., 2017).

heterogeneity 75

Usage

```
heterogeneity(ma_obj, es_failsafe = NULL, conf_level = 0.95, ...)
```

Arguments

ma_obj Meta-analysis object.

es_failsafe Failsafe effect-size value for file-drawer analyses.

conf_level Confidence level to define the width of confidence intervals (default = .95).

Additional arguments.

Value

ma_obj with heterogeneity statistics added. Included statistics include:

es_type The effect size metric used. percent_var_accounted

Percent variance accounted for statistics (by sampling error, by other artifacts, and total). These statistics are widely reported, but not recommended, as they tend to be misinterpreted as suggesting only a small portion of the observed variance is accounted for by sampling error and other artifacts (Schmidt, 2010; Schmidt & Hunter, 2015, p. 15, 425). The square roots of these values are more interpretible and appropriate indices of the relations between observed effect sizes and statistical artifacts (see cor(es, perturbations)).

cor(es, perturbations)

H_squared

I_squared

tau_squared

Q

The correlation between observed effect sizes and stastical artifacts in each sample (with sampling error, with other artifacts, and with artifacts in total), computed as $\sqrt{percent\ var\ accounted}$. These indices are more interpretible and appropriate indices of the relations between observed effect sizes and statistical artifacts than percent_var_accounted.

rel_es_obs $1 - \frac{var_{pre}}{var_{es}}$, the reliability of observed effect size differences as indicators of true effect sizes differences in the sampled studies. This value is useful for correcting correlations between moderators and effect sizes in meta-regression.

The ratio of the observed effect size variance to the predicted (error) variance. Also the square root of Q divided by its degrees of freedom.

The ratio of the observed effect size standard deviation to the predicted (error) standard deviation.

The estimated percent variance not accounted for by sampling error or other artifacts (attributable to moderators and uncorrected artifacts). This statistic is simply rel_es_obs expressed as a percentage rather than a decimal.

Cochran's χ^2 statistic. Significance tests using this statistic are strongly discouraged; heterogeneity should instead be determined by examining the width of the credibility interval and the practical differences between effect sizes contained within it (Wiernik et al., 2017). This value is not accurate when artifact distribution methods are used for corrections.

 au^2 , an estimator of the random effects variance component (analogous to the Hunter-Schmidt SD^2_{res} , SD^2_{ρ} , or SD^2_{δ} statistics), with its confidence interval. This value is not accurate when artifact distribution methods are used for corrections.

tau

 $\sqrt{\tau^2}$, analogous to the Hunter-Schmidt SD_{res} , SD_{ρ} , and SD_{δ} statistics, with its confidence interval. This value is not accurate when artifact distribution methods are used for corrections.

file_drawer

Fail-safe N and k statistics (file-drawer analyses). These statistics should not be used to evaluate publication bias, as they counterintuitively suggest *less* when publication bias is strong (Becker, 2005). However, in the absence of publication bias, they can be used as an index of second-order sampling error (how likely is a mean effect to reduce to the specified value with additional studies?). The confidence interval around the mean effect can be used more directly for the same purpose.

References

Becker, B. J. (2005). Failsafe N or file-drawer number. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), *Publication bias in meta-analysis: Prevention, assessment and adjustments* (pp. 111–125). Hoboken, NJ: Wiley. https://doi.org/10.1002/0470870168.ch7

Higgins, J. P. T., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine*, 21(11), 1539–1558. https://doi.org/10.1002/sim.1186

Schmidt, F. (2010). Detecting and correcting the lies that data tell. *Perspectives on Psychological Science*, 5(3), 233–242. https://doi.org/10.1177/1745691610369339

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. pp. 15, 414, 426, 533–534.

Wiernik, B. M., Kostal, J. W., Wilmot, M. P., Dilchert, S., & Ones, D. S. (2017). Empirical benchmarks for interpreting effect size variability in meta-analysis. *Industrial and Organizational Psychology*, 10(3). https://doi.org/10.1017/iop.2017.44

Examples

```
ma_obj <- ma_r_ic(rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi, ux = ux,
    correct_rr_y = FALSE, data = data_r_uvirr)
ma_obj <- heterogeneity(ma_obj = ma_obj)
ma_obj$follow_up_analyses$heterogeneity$barebones$`Analysis ID = 1`
ma_obj$follow_up_analyses$heterogeneity$individual_correction$true_score$`Analysis ID = 1`</pre>
```

ma_d

Master framework for meta-analysis of d values

Description

This is the master function for meta-analyses of d values - it facilitates the computation of barebones, artifact-distribution, and individual-correction meta-analyses of correlations for any number of group-wise contrasts and any number of dependent variables. When artifact-distribution meta-analyses are performed, this function will automatically extract the artifact information from a database and organize it into the requested type of artifact distribution object (i.e., either Taylor series or interactive artifact distributions). This function is also equipped with the capability to clean databases containing inconsistently recorded artifact data, to impute missing artifacts (when individual-correction meta-analyses are requested), and remove dependency among samples by forming composites or averaging effect sizes and artifacts. The automatic compositing features are employed when sample_ids and/or construct names are provided. When multiple meta-analyses

are computed within this program, the result of this function takes on the class ma_master, which means that it is a list of meta-analyses. Follow-up analyses (e.g., sensitity, heterogeneity, meta-regression) performed on ma_master objects will analyze data from all meta-analyses recorded in the object.

Usage

```
ma_d(d, n1, n2 = NULL, n_adj = NULL, sample_id = NULL,
  treat_as_d = TRUE, ma_method = "bb", ad_type = "tsa",
 correction_method = "auto", group_id = NULL, group_order = NULL,
 construct_y = NULL, measure_y = NULL, construct_order = NULL,
 wt_type = "inv_var_mean", error_type = "mean", correct_bias = TRUE,
 correct_rGg = FALSE, correct_ryy = TRUE, correct_rr_g = FALSE,
 correct_rr_y = TRUE, indirect_rr_g = TRUE, indirect_rr_y = TRUE,
 rGg = NULL, pi = NULL, pa = 0.5, ryy = NULL, ryy_restricted = TRUE,
 uy = NULL, uy_observed = TRUE, sign_rgz = 1, sign_ryz = 1,
 conf_level = 0.95, cred_level = 0.8, conf_method = "t",
 cred_method = "t", var_unbiased = TRUE, moderators = NULL,
 cat_moderators = TRUE, moderator_type = "simple", pairwise_ads = FALSE,
 residual_ads = TRUE, check_dependence = TRUE,
 collapse_method = "composite", intercor = 0.5, partial_intercor = FALSE,
 clean_artifacts = TRUE, impute_artifacts = ifelse(ma_method == "ad",
 FALSE, TRUE), impute_method = "bootstrap_mod", decimals = 2,
 hs_override = FALSE, data = NULL, ...)
```

Arguments

d	Vector or column name of observed d values.
n1	Vector or column name of sample sizes.
n2	Vector or column name of sample sizes.
n_adj	Optional: Vector or column name of sample sizes adjusted for sporadic artifact corrections.
sample_id	Optional vector of identification labels for samples/studies in the meta-analysis.
treat_as_d	Logical scalar determining whether d values are to be meta-analyzed as d values (TRUE) or whether they should be meta-analyzed as correlations (FALSE).
ma_method	Method to be used to compute the meta-analysis: "bb" (barebones), "ic" (individual correction), or "ad" (artifact distribution).
ad_type	For when ma_method is "ad", specifies the type of artifact distribution to use: "int" or "tsa".
correction method	

correction_method

When ma_method is "ad", select one of the following methods for correcting artifacts: "auto", "meas", "uvdrr", "uvirr", "bvdrr", "bvirr", "rbOrig", "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj". (note: "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj" can only be used when Taylor series artifact distributions are provided and "rbOrig" and "rbAdj" can only be used when interative artifact distributions are provided). See "Details" of /link{ma_d_ad} for descriptions of the available methods.

group_id Vector of construct names for construct initially designated as X.
group_order Vector indicating the order in which group_ids should be arranged.
Vector of construct names for construct initially designated as Y.

Vector of names names for measures associated with constructs initially desigmeasure_y nated as "Y". construct_order Vector indicating the order in which Y variables should be arranged. Type of weight to use in the meta-analysis: options are "sample size", "inv var mean" wt_type (inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see **metafor** documentation for details about the **metafor** methods). error_type Method to be used to estimate error variances: "mean" uses the mean effect size to estimate error variances and "sample" uses the sample-specific effect sizes. correct_bias Logical scalar that determines whether to correct correlations for small-sample bias (TRUE) or not (FALSE). Logical scalar that determines whether to correct the grouping variable variable correct_rGg for measurement error (TRUE) or not (FALSE). correct_ryy Logical scalar that determines whether to correct the Y variable for measurement error (TRUE) or not (FALSE). Logical scalar or vector or column name determining whether each d value correct_rr_g should be corrected for range restriction in the grouping variable (TRUE) or not (FALSE). Logical scalar or vector or column name determining whether each d should be correct_rr_y corrected for range restriction in Y (TRUE) or not (FALSE). Logical vector or column name determining whether each d should be corrected indirect_rr_g for indirect range restriction in the grouping variable (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_g (i.e., if correct_rr_g == FALSE, the value supplied for indirect_rr_g is disregarded). Logical vector or column name determining whether each d should be corrected indirect_rr_y for indirect range restriction in Y (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_y (i.e., if correct_rr_y == FALSE, the value supplied for indirect_rr_y is disregarded). Vector or column name of reliability estimates for X. rGg Scalar or vector containing the restricted-group proportions of group memberрi ship. If a vector, it must either (1) have as many elements as there are d values or (2) be named so as to match with levels of the group_id argument. Scalar or vector containing the unrestricted-group proportions of group mempa bership (default = .5). If a vector, it must either (1) have as many elements as there are d values or (2) be named so as to match with levels of the group_id argument. Vector or column name of reliability estimates for Y. ryy ryy_restricted Logical vector or column name determining whether each element of ryy is an incumbent reliability (TRUE) or an applicant reliability (FALSE). Vector or column name of u ratios for Y. uy uy_observed Logical vector or column name determining whether each element of uy is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE). Sign of the relationship between X and the selection mechanism (for use with sign_rgz bvirr corrections only).

sign_ryz Sign of the relationship between Y and the selection mechanism (for use with bvirr corrections only). conf_level Confidence level to define the width of the confidence interval (default = .95). cred level Credibility level to define the width of the credibility interval (default = .80). conf_method Distribution to be used to compute the width of confidence intervals. Available options are "t" for t distribution or "norm" for normal distribution. cred_method Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution. var_unbiased Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE). moderators Matrix or column names of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator). cat_moderators Logical scalar or vector identifying whether variables in the moderators argument are categorical variables (TRUE) or continuous variables (FALSE). Type of moderator analysis: "none" means that no moderators are to be used, moderator_type "simple" means that moderators are to be examined one at a time, "hierarchical" means that all possible combinations and subsets of moderators are to be examined, and "all" means that simple and hierarchical moderator analyses are to be performed. Logical value that determines whether to compute artifact distributions in a pairwise_ads construct-pair-wise fashion (TRUE) or separately by construct (FALSE, default). Logical argument that determines whether to use residualized variances (TRUE) residual_ads or observed variances (FALSE) of artifact distributions to estimate sd_delta. check_dependence

Logical scalar that determines whether database should be checked for violations of independence (TRUE) or not (FALSE).

collapse_method

Character argument that determines how to collapase dependent studies. Options are "composite" (default), "average," and "stop."

intercor

The intercorrelation(s) among variables to be combined into a composite. Can be a scalar or a named vector with element named according to the names of constructs.

partial_intercor

Logical value that determines whether to compute artifact distributions in a construct-pair-wise fashion (TRUE) or separately by construct (FALSE, default).

clean_artifacts

If TRUE, mutliple instances of the same contruct (or construct-measure pair, if measure is provided) in the database are compared and reconciled with each other in the case that any of the matching entries within a study have different artifact values. When impute_method is anything other than "stop", this method is always implemented to prevent discrepancies among imputed values.

impute_artifacts

If TRUE, artifact imputation will be performed (see impute_method for imputation procedures). Default is FALSE for artifact-distribution meta-analyses and TRUE otherwise. When imputation is performed, clean_artifacts is treated as TRUE so as to resolve all rescrepancies among artifact entries before and after imputation.

impute_method Method to use for imputing artifacts. Choices are:

• "bootstrap_mod" = select random values from the most specific moderator categories available (default).

- "bootstrap_full" = select random values from the full vector of artifacts.
- "simulate_mod" = generate random values from the distribution with the mean and variance of observed artifacts from the most specific moderator categories available. (uses rnorm for u ratios and rbeta for reliability values).
- "simulate_full" = generate random values from the distribution with the mean and variance of all observed artifacts (uses rnorm for u ratios and rbeta for reliability values).
- "wt_mean_mod" = replace missing values with the sample-size weighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "wt_mean_full" = replace missing values with the sample-size weighted mean of the full distribution of artifacts (not recommended).
- "unwt_mean_mod" = replace missing values with the unweighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "unwt_mean_full" = replace missing values with the unweighted mean of the full distribution of artifacts (not recommended).
- "replace_unity" = replace missing values with 1 (not recommended).
- "stop" = stop evaluations when missing artifacts are encountered. If an imputation method ending in "mod" is selected but no moderators are provided, the "mod" suffix will internally be replaced with "full".

decimals

Number of decimal places to which results should be rounded (default is to perform no rounding).

hs_override

When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).

data

Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.

. . .

Further arguments to be passed to functions called within the meta-analysis.

Value

A list object of the classes psychmeta, ma_d_as_r or ma_d_as_d, ma_bb (and ma_ic or ma_ad, as appropriate).

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. Chapter 3.

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

The 'ma_d' function can compute multi-construct bare-bones meta-analyes:

ma_d_ad 81

ma_d_ad

Artifact-distribution meta-analysis of d values

Description

This function computes artifact distribution meta-analyses of d values. It supports interactive methods as well as Taylor series methods for all available corrections.

Usage

```
ma_d_ad(ma_obj, ad_obj_g = NULL, ad_obj_y = NULL,
    correction_method = "auto", use_ic_ads = "tsa", correct_rGg = FALSE,
    correct_ryy = TRUE, correct_rr_g = FALSE, correct_rr_y = TRUE,
    indirect_rr_g = TRUE, indirect_rr_y = TRUE, residual_ads = TRUE,
    sign_rgz = 1, sign_ryz = 1, decimals = 2, ...)
```

Arguments

ma_obj

Meta-analysis object of correlations or d values (regardless of input metric, output metric will be d).

ad_obj_g

Artifact-distribution object for the grouping variable (output of the link{create_ad} or link{create_ad_group} functions). If ma_obj is of the class ma_master (i.e,. the output of ma_r or ma_d), the object supplied for ad_obj_g must be a named list of artifact distributions with names. corresponding to the "X" constructs in the meta-analyses contained within ma_obj.

ad_obj_y

Artifact-distribution object for the Y variable (output of the create_ad function). If ma_obj is of the class ma_master, the object supplied for ad_obj_y must be a named list of artifact distributions with names corresponding to the "Y" constructs in the meta-analyses contained within ma_obj.

correction_method

One of the following methods for correcting artifacts: "auto", "meas", "uvdrr", "uvirr", "bvdrr", "rbOrig", "rb1Orig", "rb2Orig", "rb2Orig", "rb1Adj", and "rb2Adj". (note: "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj" can only be used when Taylor series artifact distributions are provided and "rbOrig" and "rbAdj" can only be used when interative artifact distributions are provided). See "Details" for descriptions of the available methods.

use_ic_ads

Determines whether artifact distributions should be extracted from the individual correction results in ma_obj. Only evaluated when ad_obj_g or ad_obj_y is NULL and ma_obj does not contain individual correction results. Use one of

 ma_d_ad

	the following commands: tsa to use the Taylor series method or int to use the interactive method.
correct_rGg	Logical argument that determines whether to correct the grouping variable for measurement error (TRUE) or not (FALSE).
correct_ryy	Logical argument that determines whether to correct the Y variable for measurement error (TRUE) or not (FALSE).
correct_rr_g	Logical argument that determines whether to correct the grouping variable for range restriction (TRUE) or not (FALSE).
correct_rr_y	Logical argument that determines whether to correct the Y variable for range restriction (TRUE) or not (FALSE).
indirect_rr_g	If correct_rr_g = TRUE: Logical argument that determines whether to correct for indirect range restriction in the grouping variable (TRUE) or not (FALSE).
indirect_rr_y	If $correct_rr_y = TRUE$: Logical argument that determines whether to correct for indirect range restriction in Y (TRUE) or not (FALSE).
residual_ads	Logical argument that determines whether to use residualized variances (TRUE) or observed variances (FALSE) of artifact distributions to estimate sd_delta.
sign_rgz	Sign of the relationship between the grouping variable and the selection mechanism (for use with the bvirr correction_method only).
sign_ryz	Sign of the relationship between Y and the selection mechanism (for use with the bvirr correction_method only).
decimals	Number of decimal places to which interactive artifact distributions should be rounded (default is 2 decimal places). Rounding artifact distributions can help to consolidate trivially different values and speed up the computation of meta-analyses (especially in simulations).
	Additional arguments.

Details

The options for correction_method are:

"auto"

Automatic selection of the most appropriate correction procedure, based on the available artifacts and the logical arguments provided to the function. (default)

- "meas"
 Correction for measurement error only.
- "uvdrr"

 Correction for univariate direct range restriction (i.e., Case II). The choice of which variable to correct for range restriction is made using the correct_rr_x and correct_rr_y arguments.
- "uvirr"
 Correction for univariate indirect range restriction (i.e., Case IV). The choice of which variable to correct for range restriction is made using the correct_rr_x and correct_rr_y arguments.
- "bvdrr"
 Correction for bivariate direct range restriction. Use with caution: This correction is an approximation only and is known to have a positive bias.
- "bvirr"

 Correction for bivariate indirect range restriction (i.e., Case V).

ma_d_ad 83

• "rbOrig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied interactively. We recommend using "uvdrr" instead.

• "rbAdj"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied interactively. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

• "rb1Orig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA1 method. We recommend using "uvdrr" instead.

• "rb1Adj"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA1 method. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

• "rb2Orig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA2 method. We recommend using "uvdrr" instead.

• "rb2Adj"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA2 method. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

Value

A list object of the classes psychmeta, ma_r_as_d or ma_d_as_d, ma_bb, and ma_ad (and that inherits class ma_ic from ma_obj)

Note

The difference between "rb" methods with the "orig" and "adj" suffixes is that the original does not account for the impact of range restriction on criterion reliabilities, whereas the adjusted procedure attempts to estimate the applicant reliability information for the criterion. The "rb" procedures are included for posterity: We strongly recommend using the "uvdrr" procedure to appropriately correct for univariate range restriction.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.)*. Thousand Oaks, California: SAGE Publications, Inc. Chapter 4.

Law, K. S., Schmidt, F. L., & Hunter, J. E. (1994). Nonlinearity of range corrections in meta-analysis: Test of an improved procedure. *Journal of Applied Psychology*, 79(3), 425.

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. *Journal of Applied Psychology*, 68(3), 382. https://doi.org/10.1037/0021-9010.68.3.382

 ma_d_bb

ma_d_bb Bare-bones meta-analysis of d values
--

Description

This function computes bare-bones meta-analyses of d values.

Usage

```
ma_d_bb(d, n1, n2 = rep(NA, length(d)), n_adj = NULL, sample_id = NULL,
  wt_type = "sample_size", error_type = "mean", correct_bias = FALSE,
  conf_level = 0.95, cred_level = 0.8, conf_method = "t",
  cred_method = "t", var_unbiased = TRUE, moderators = NULL,
  cat_moderators = TRUE, moderator_type = "simple", hs_override = FALSE,
  data = NULL, ...)
```

Arguments

•	5	
	d	Vector of <i>d</i> values.
	n1	Vector or column name of primary sample sizes (if sugroup sample sizes are not known, these values are total sample sizes; if subgroup sample sizes are known, these values are sample sizes for the first of the two groups).
	n2	Optional: Vector or column name of secondary sample sizes. If subgroup sample sizes are known, these values are sample sizes for the second of the two groups. NULL by default.
	n_adj	Optional: Vector or column name of sample sizes adjusted for sporadic artifact corrections.
	sample_id	Optional vector of identification labels for samples/studies in the meta-analysis. When TRUE, program will use sample-size weights, error variances estimated from the mean effect size, maximum likelihood variances, and normal-distribution confidence and credibility intervals.
	wt_type	Type of weight to use in the meta-analysis: options are "sample_size", "inv_var_mean" (inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see metafor documentation for details about the metafor methods).
	error_type	Method to be used to estimate error variances: "mean" uses the mean effect size to estimate error variances and "sample" uses the sample-specific effect sizes.
	correct_bias	Logical argument that determines whether to correct effect sizes and error variances for small-sample bias (TRUE) or not (FALSE).
	conf_level	Width of confidence interval. Set to .95 by default.
	cred_level	Width of credibility interval. Set to .80 by default.
	conf_method	Distribution to be used to compute the width of confidence intervals. Available options are "t" for <i>t</i> distribution or "norm" for normal distribution.
	cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for <i>t</i> distribution or "norm" for normal distribution.
	var_unbiased	Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE).

ma_d_ic 85

moderators	Matrix of moderator variables or column names of data to be used in the meta- analysis (can be a vector in the case of one moderator).
cat_moderators	Logical scalar or vector identifying whether variables in the moderators argument are categorical variables (TRUE) or continuous variables (FALSE).
moderator_type	Type of moderator analysis ("none", "simple", or "hierarchical").
hs_override	When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).
data	Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.
	Further arguments to be passed to functions called within the meta-analysis.

Value

A list object of the classes psychmeta, ma_d_as_d, and ma_bb.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. Chapter 7.

Examples

ma_d_ic

Individual-correction meta-analysis of d values

Description

This function computes individual-correction meta-analyses of d values.

Usage

```
ma_d_ic(d, n1, n2 = NULL, n_adj = NULL, sample_id = NULL,
    treat_as_d = TRUE, wt_type = "inv_var_mean", error_type = "mean",
    correct_bias = TRUE, correct_rGg = FALSE, correct_ryy = TRUE,
    correct_rr_g = FALSE, correct_rr_y = TRUE, indirect_rr_g = TRUE,
    indirect_rr_y = TRUE, rGg = NULL, pi = NULL, pa = 0.5, ryy = NULL,
    ryy_restricted = TRUE, uy = NULL, uy_observed = TRUE, sign_rgz = 1,
    sign_ryz = 1, conf_level = 0.95, cred_level = 0.8, conf_method = "t",
    cred_method = "t", var_unbiased = TRUE, moderators = NULL,
    cat_moderators = TRUE, moderator_type = "simple",
    impute_method = "bootstrap_mod", decimals = 2, hs_override = FALSE,
    data = NULL, ...)
```

86 ma_d_ic

Arguments

d Vector or column name of observed d values. Vector or column name of sample sizes. n1 Vector or column name of sample sizes. n2 Optional: Vector or column name of sample sizes adjusted for sporadic artifact n adi corrections sample_id Optional vector of identification labels for samples/studies in the meta-analysis. Logical scalar determining whether d values are to be meta-analyzed as d values treat_as_d (TRUE) or whether they should be meta-analyzed as correlations (FALSE). Type of weight to use in the meta-analysis: options are "sample_size", "inv_var_mean" wt_type (inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see metafor documentation for details about the metafor methods). Method to be used to estimate error variances: "mean" uses the mean effect size error_type to estimate error variances and "sample" uses the sample-specific effect sizes. correct_bias Logical scalar that determines whether to correct correlations for small-sample bias (TRUE) or not (FALSE). Logical scalar that determines whether to correct the grouping variable variable correct_rGg for measurement error (TRUE) or not (FALSE). correct_ryy Logical scalar that determines whether to correct the Y variable for measurement error (TRUE) or not (FALSE). correct_rr_g Logical scalar or vector or column name determining whether each d value should be corrected for range restriction in the grouping variable (TRUE) or not (FALSE). Logical scalar or vector or column name determining whether each d should be correct_rr_y corrected for range restriction in Y (TRUE) or not (FALSE). indirect_rr_g Logical vector or column name determining whether each d should be corrected for indirect range restriction in the grouping variable (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_x (i.e., if correct_rr_g == FALSE, the value supplied for indirect_rr_g is disregarded). indirect_rr_y Logical vector or column name determining whether each d should be corrected for indirect range restriction in Y (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_y (i.e., if correct_rr_y == FALSE, the value supplied for indirect_rr_y is disregarded). Vector or column name of reliability estimates for X. rGg Scalar or vector containing the restricted-group proportions of group memberрi ship. If a vector, it must either have as many elements as there are d values. Scalar or vector containing the unrestricted-group proportions of group memра bership. If a vector, it must either have as many elements as there are d values. Vector or column name of reliability estimates for Y. ryy ryy_restricted Logical vector or column name determining whether each element of ryy is an incumbent reliability (TRUE) or an applicant reliability (FALSE). Vector or column name of u ratios for Y. uy uy_observed Logical vector or column name determining whether each element of uy is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).

ma_d_ic 87

Sign of the relationship between X and the selection mechanism (for use with sign_rgz bvirr corrections only). sign_ryz Sign of the relationship between Y and the selection mechanism (for use with bvirr corrections only). conf_level Confidence level to define the width of the confidence interval (default = .95). Credibility level to define the width of the credibility interval (default = .80). cred_level conf_method Distribution to be used to compute the width of confidence intervals. Available options are "t" for *t* distribution or "norm" for normal distribution. cred method Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution. var_unbiased Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE). Matrix or column names of moderator variables to be used in the meta-analysis moderators (can be a vector in the case of one moderator). cat_moderators Logical scalar or vector identifying whether variables in the moderators argument are categorical variables (TRUE) or continuous variables (FALSE).

moderator_type Type of moderator analysis: "none" means that no moderators are to be used, "simple" means that moderators are to be examined one at a time, "hierarchical" means that all possible combinations and subsets of moderators are to be examined, and "all" means that simple and hierarchical moderator analyses are to be performed.

impute_method

Method to use for imputing artifacts. Choices are:

- "bootstrap_mod" = select random values from the most specific moderator categories available (default).
- "bootstrap_full" = select random values from the full vector of artifacts.
- "simulate_mod" = generate random values from the distribution with the mean and variance of observed artifacts from the most specific moderator categories available. (uses rnorm for u ratios and rbeta for reliability values).
- "simulate_full" = generate random values from the distribution with the mean and variance of all observed artifacts (uses rnorm for u ratios and rbeta for reliability values).
- "wt_mean_mod" = replace missing values with the sample-size weighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "wt_mean_full" = replace missing values with the sample-size weighted mean of the full distribution of artifacts (not recommended).
- "unwt_mean_mod" = replace missing values with the unweighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "unwt_mean_full" = replace missing values with the unweighted mean of the full distribution of artifacts (not recommended).
- "replace_unity" = replace missing values with 1 (not recommended).
- "stop" = stop evaluations when missing artifacts are encountered. If an imputation method ending in "mod" is selected but no moderators are provided, the "mod" suffix will internally be replaced with "full".

decimals

Number of decimal places to which results should be rounded (default is to perform no rounding).

88 ma_d_order2

hs_override	When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).
data	Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.
	Further arguments to be passed to functions called within the meta-analysis.

Value

A list object of the classes psychmeta, ma_d_as_r or ma_d_as_d, ma_bb, and ma_ic.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.)*. Thousand Oaks, California: SAGE Publications, Inc. Chapter 3.

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

ma_d_order2

Second-order meta-analysis function for d values

Description

This function computes second-order meta-analysis function for *d* values. It supports second-order analyses of bare-bones, artifact-distribution, and individual-correction meta-analyses.

Usage

```
ma_d_order2(d = NULL, delta = NULL, var_d = NULL, var_d_c = NULL,
    k = NULL, ma_type = c("bb", "ic", "ad"), sample_id = NULL,
    moderators = NULL, moderator_type = "simple", construct_x = NULL,
    construct_y = NULL, conf_level = 0.95, cred_level = 0.8,
    conf_method = "t", cred_method = "t", var_unbiased = TRUE,
    hs_override = FALSE, data = NULL)
```

Arguments

d	Vector or column name of mean observed d values.
delta	Vector or column name of mean corrected d values.
var_d	Vector or column name of observed variances of observed d values.

var_d_c	Vector or column name of observed variances of corrected d values.
k	Vector or column name of meta-analyses' k values.
ma_type	Type of meta-analyses being analyzed: "bb" (barebones), "ic" (individual correction), or "ad" (artifact distribution).
sample_id	Vector or column name of study ID labels.
moderators	Matrix or column names of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator).
moderator_type	Type of moderator analysis ("none", "simple", or "hierarchical").
construct_x	Vector or column name of construct names for X.
construct_y	Vector or column name of construct names for Y.
conf_level	Confidence level to define the width of the confidence interval (default = .95).
cred_level	Credibility level to define the width of the credibility interval (default = .80).
conf_method	Distribution to be used to compute the width of confidence intervals. Available options are "t" for t distribution or "norm" for normal distribution.
cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution.
var_unbiased	Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE).
hs_override	When TRUE, this will override settings for $conf_method$ (will set to "norm"), $cred_method$ (will set to "norm"), and $var_unbiased$ (will set to FALSE).
data	Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.

Value

An object of the classes psychmeta, ma_d_as_d, ma_order2, and ma_bb, ma_ic, and/or ma_ad.

ma_r	Master framework for meta-analysis of correlations	_

Description

This is the master function for meta-analyses of correlations - it facilitates the computation of barebones, artifact-distribution, and individual-correction meta-analyses of correlations for any number of construct pairs. When artifact-distribution meta-analyses are performed, this function will automatically extract the artifact information from a database and organize it into the requested type of artifact distribution object (i.e., either Taylor series or interactive artifact distributions). This function is also equipped with the capability to clean databases containing inconsistently recorded artifact data, to impute missing artifacts (when individual-correction meta-analyses are requested), and remove dependency among samples by forming composites or averaging effect sizes and artifacts. The automatic compositing features are employed when sample_ids and/or construct names are provided. When multiple construct pairs are meta-analyzed, the result of this function takes on the class ma_master, which means that it is a list of meta-analyses. Follow-up analyses (e.g., sensitity, heterogeneity, meta-regression) performed on ma_master objects will analyze data from all meta-analyses recorded in the object.

90 $m_{\perp}r$

Usage

```
ma_r(rxyi, n, n_adj = NULL, sample_id = NULL, ma_method = "bb",
  ad_type = "tsa", correction_method = "auto", construct_x = NULL,
  construct_y = NULL, measure_x = NULL, measure_y = NULL,
  construct_order = NULL, wt_type = "sample_size", error_type = "mean",
  correct_bias = TRUE, correct_rxx = TRUE, correct_ryy = TRUE,
  correct_rr_x = TRUE, correct_rr_y = TRUE, indirect_rr_x = TRUE,
  indirect_rr_y = TRUE, rxx = NULL, rxx_restricted = TRUE, ryy = NULL,
  ryy_restricted = TRUE, ux = NULL, ux_observed = TRUE, uy = NULL,
  uy_observed = TRUE, sign_rxz = 1, sign_ryz = 1, conf_level = 0.95,
  cred_level = 0.8, conf_method = "t", cred_method = "t",
  var_unbiased = TRUE, moderators = NULL, cat_moderators = TRUE,
 moderator_type = "simple", pairwise_ads = FALSE, residual_ads = TRUE,
  check_dependence = TRUE, collapse_method = "composite", intercor = 0.5,
  clean_artifacts = TRUE, impute_artifacts = ifelse(ma_method == "ad",
  FALSE, TRUE), impute_method = "bootstrap_mod", decimals = 2,
 hs_override = FALSE, data = NULL, ...)
```

Arguments

rxyi Vector or column name of observed correlations

n Vector or column name of sample sizes.

n_adj Optional: Vector or column name of sample sizes adjusted for sporadic artifact

corrections.

sample_id Optional vector of identification labels for samples/studies in the meta-analysis.

ma_method Method to be used to compute the meta-analysis: "bb" (barebones), "ic" (indi-

vidual correction), or "ad" (artifact distribution).

ad_type For when ma_method is "ad", specifies the type of artifact distribution to use:

"int" or "tsa".

correction_method

When ma_method is "ad", select one of the following methods for correcting artifacts: "auto", "meas", "uvdrr", "uvirr", "bvdrr", "bvirr", "rbOrig", "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj". (note: "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj" can only be used when Taylor series artifact distributions are provided and "rbOrig" and "rbAdj" can only be used when interative artifact distributions are provided). See "Details" of ma_r_ad for descriptions of the available methods.

construct_x Vector of construct names for construct initially designated as X.

construct_y Vector of construct names for construct initially designated as Y.

measure_x Vector of names names for measures associated with constructs initially desig-

nated as "X".

measure_y Vector of names names for measures associated with constructs initially desig-

nated as "Y".

construct_order

Vector indicating the order in which variables should be arranged, with variables listed earlier in the vector being preferred for designation as X.

wt_type Type of weight to use in the meta-analysis: options are "sample_size", "inv_var_mean"

(inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options

	borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see metafor documentation for details about the metafor methods).
error_type	Method to be used to estimate error variances: "mean" uses the mean effect size to estimate error variances and "sample" uses the sample-specific effect sizes.
correct_bias	Logical scalar that determines whether to correct correlations for small-sample bias (TRUE) or not (FALSE).
correct_rxx	Logical scalar that determines whether to correct the X variable for measurement error (TRUE) or not (FALSE).
correct_ryy	$Logical\ scalar\ that\ determines\ whether\ to\ correct\ the\ Y\ variable\ for\ measurement\ error\ (TRUE)\ or\ not\ (FALSE).$
correct_rr_x	Logical scalar, logical vector or column name determining whether each correlation in rxyi should be corrected for range restriction in X (TRUE) or not (FALSE). If using artifact distribution methods, this must be a scalar value.
correct_rr_y	Logical scalar, logical vector or column name determining whether each correlation in rxyi should be corrected for range restriction in Y (TRUE) or not (FALSE). If using artifact distribution methods, this must be a scalar value.
indirect_rr_x	Logical vector or column name determining whether each correlation in rxyi should be corrected for indirect range restriction in X (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_x (i.e., if correct_rr_x == FALSE, the value supplied for indirect_rr_x is disregarded).
indirect_rr_y	Logical vector or column name determining whether each correlation in rxyi should be corrected for indirect range restriction in Y (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_y (i.e., if correct_rr_y == FALSE, the value supplied for indirect_rr_y is disregarded).
rxx	Vector or column name of reliability estimates for X.
rxx_restricted	Logical vector or column name determining whether each element of rxx is an incumbent reliability (TRUE) or an applicant reliability (FALSE).
ryy	Vector or column name of reliability estimates for Y.
ryy_restricted	Logical vector or column name determining whether each element of ryy is an incumbent reliability (TRUE) or an applicant reliability (FALSE).
ux	Vector or column name of u ratios for X.
ux_observed	Logical vector or column name determining whether each element of ux is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).
uy	Vector or column name of u ratios for Y.
uy_observed	Logical vector or column name determining whether each element of uy is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE).
sign_rxz	Sign of the relationship between X and the selection mechanism (for use with bvirr corrections only).
sign_ryz	Sign of the relationship between Y and the selection mechanism (for use with bvirr corrections only).
conf_level	Confidence level to define the width of the confidence interval (default = .95).
cred_level	Credibility level to define the width of the credibility interval (default = .80).
conf_method	Distribution to be used to compute the width of confidence intervals. Available options are "t" for t distribution or "norm" for normal distribution.
cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution.

var_unbiased Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE).

moderators Matrix or column names of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator).

cat_moderators Logical scalar or vector identifying whether variables in the moderators argument are categorical variables (TRUE) or continuous variables (FALSE).

moderator_type Type of moderator analysis: "none" means that no moderators are to be used, "simple" means that moderators are to be examined one at a time, and "hierarchical" means that all possible combinations and subsets of moderators are to be examined.

pairwise_ads Logical value that determines whether to compute artifact distributions in a construct-pair-wise fashion (TRUE) or separately by construct (FALSE, default).

residual_ads Logical argument that determines whether to use residualized variances (TRUE) or observed variances (FALSE) of artifact distributions to estimate sd_rho.

check_dependence

Logical scalar that determines whether database should be checked for violations of independence (TRUE) or not (FALSE).

collapse_method

Character argument that determines how to collapase dependent studies. Options are "composite" (default), "average," and "stop."

The intercorrelation(s) among variables to be combined into a composite. Can be a scalar or a named vector with element named according to the names of constructs.

clean_artifacts

intercor

If TRUE, mutliple instances of the same contruct (or construct-measure pair, if measure is provided) in the database are compared and reconciled with each other in the case that any of the matching entries within a study have different artifact values. When impute_method is anything other than "stop", this method is always implemented to prevent discrepancies among imputed values.

impute_artifacts

If TRUE, artifact imputation will be performed (see impute_method for imputation procedures). Default is FALSE for artifact-distribution meta-analyses and TRUE otherwise. When imputation is performed, clean_artifacts is treated as TRUE so as to resolve all rescrepancies among artifact entries before and after imputation.

impute_method Method to use for imputing artifacts. Choices are:

- "bootstrap_mod" = select random values from the most specific moderator categories available (default).
- "bootstrap_full" = select random values from the full vector of artifacts.
- "simulate_mod" = generate random values from the distribution with the mean and variance of observed artifacts from the most specific moderator categories available. (uses rnorm for u ratios and rbeta for reliability values).
- "simulate_full" = generate random values from the distribution with the mean and variance of all observed artifacts (uses rnorm for u ratios and rbeta for reliability values).
- "wt_mean_mod" = replace missing values with the sample-size weighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).

• "wt_mean_full" = replace missing values with the sample-size weighted mean of the full distribution of artifacts (not recommended).

- "unwt_mean_mod" = replace missing values with the unweighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "unwt_mean_full" = replace missing values with the unweighted mean of the full distribution of artifacts (not recommended).
- "replace_unity" = replace missing values with 1 (not recommended).
- "stop" = stop evaluations when missing artifacts are encountered. If an imputation method ending in "mod" is selected but no moderators are provided, the "mod" suffix will internally be replaced with "full".

If an imputation method ending in "mod" is selected but no moderators are provided, the "mod" suffix will internally be replaced with "full".

decimals

Number of decimal places to which interactive artifact distributions should be rounded (default is 2 decimal places).

hs_override

When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).

data

Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.

. . .

Further arguments to be passed to functions called within the meta-analysis.

Value

A list object of the classes psychmeta, ma_r_as_r, ma_bb (and ma_ic or ma_ad, as appropriate).

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. Chapter 3.

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

94 ma_r_ad

ma_r_ad

Artifact-distribution meta-analysis of correlations

Description

This function computes artifact distribution meta-analyses of correlations. It supports interactive methods as well as Taylor series methods for all available corrections.

Usage

```
ma_r_ad(ma_obj, ad_obj_x = NULL, ad_obj_y = NULL,
  correction_method = "auto", use_ic_ads = "tsa", correct_rxx = TRUE,
  correct_ryy = TRUE, correct_rr_x = TRUE, correct_rr_y = TRUE,
  indirect_rr_x = TRUE, indirect_rr_y = TRUE, residual_ads = TRUE,
  sign_rxz = 1, sign_ryz = 1, decimals = 2, ...)
```

Arguments

ma_obj Meta-analysis object of correlations or d values (regardless of input metric, output metric will be r).

Artifact-distribution object for the X variable (output of the create_ad function). If ma obj is of the class ma_master (i.e,. the output of ma_r or ma_d), the object supplied for ad_obj_x must be a named list of artifact distributions with names corresponding to the "X" constructs in the meta-analyses contained within ma_obj.

Artifact-distribution object for the Y variable (output of the create_ad function). If ma_obj is of the class ma_master, the object supplied for ad_obj_y must be a named list of artifact distributions with names corresponding to the "Y" constructs in the meta-analyses contained within ma_obj.

correction_method

One of the following methods for correcting artifacts: "auto", "meas", "uvdrr", "uvirr", "bvdrr", "rbOrig", "rb1Orig", "rb2Orig", "rbAdj", "rb1Adj", and "rb2Adj". (note: "rb1Orig", "rb2Orig", "rb1Adj", and "rb2Adj" can only be used when Taylor series artifact distributions are provided and "rbOrig" and "rbAdj" can only be used when interative artifact distributions are provided). See "Details" for descriptions of the available methods.

Determines whether artifact distributions should be extracted from the individual correction results in ma_obj. Only evaluated when ad_obj_x or ad_obj_y is NULL and ma_obj does not contain individual correction results. Use one of the following commands: tsa to use the Taylor series method or int to use the interactive method.

Logical argument that determines whether to correct the X variable for measurement error (TRUE) or not (FALSE).

Logical argument that determines whether to correct the Y variable for measurement error (TRUE) or not (FALSE).

Logical argument that determines whether to correct the X variable for range restriction (TRUE) or not (FALSE).

Logical argument that determines whether to correct the Y variable for range restriction (TRUE) or not (FALSE).

ad_obj_x

ad_obj_y

use_ic_ads

correct_rxx

correct_ryy

correct_rr_x

correct_rr_y

ma_r_ad 95

indirect_rr_x	If $correct_rr_x = TRUE$: Logical argument that determines whether to correct for indirect range restriction in X (TRUE) or not (FALSE).
indirect_rr_y	If $correct_rr_y = TRUE$: Logical argument that determines whether to correct for indirect range restriction in Y (TRUE) or not (FALSE).
residual_ads	Logical argument that determines whether to use residualized variances (TRUE) or observed variances (FALSE) of artifact distributions to estimate sd_rho.
sign_rxz	Sign of the relationship between X and the selection mechanism (for use with the bvirr correction_method only).
sign_ryz	Sign of the relationship between Y and the selection mechanism (for use with the bvirr correction_method only).
decimals	Number of decimal places to which interactive artifact distributions should be rounded (default is 2 decimal places). Rounding artifact distributions can help to consolidate trivially different values and speed up the computation of meta-analyses (especially in simulations).
	Additional arguments.

Details

The options for correction_method are:

"auto"

Automatic selection of the most appropriate correction procedure, based on the available artifacts and the logical arguments provided to the function. (default)

• "meas"

Correction for measurement error only.

• "uvdrr"

Correction for univariate direct range restriction (i.e., Case II). The choice of which variable to correct for range restriction is made using the correct_rr_x and correct_rr_y arguments.

• "nvirr"

Correction for univariate indirect range restriction (i.e., Case IV). The choice of which variable to correct for range restriction is made using the correct_rr_x and correct_rr_y arguments.

• "bvdrr"

Correction for bivariate direct range restriction. Use with caution: This correction is an approximation only and is known to have a positive bias.

"bvirr"

Correction for bivariate indirect range restriction (i.e., Case V).

• "rbOrig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied interactively. We recommend using "uvdrr" instead.

• "rbAdj"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied interactively. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

• "rb1Orig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA1 method. We recommend using "uvdrr" instead.

96 ma_r_ad

• "rb1Adj"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA1 method. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

• "rb2Orig"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA2 method. We recommend using "uvdrr" instead.

• "rb2Adi"

Not recommended: Raju and Burke's version of the correction for direct range restriction, applied using their TSA2 method. Adjusted to account for range restriction in the reliability of the Y variable. We recommend using "uvdrr" instead.

Value

A list object of the classes psychmeta, ma_r_as_r or ma_d_as_r, ma_bb, and ma_ad (and that inherits class ma_ic from ma_obj)

Note

The difference between "rb" methods with the "orig" and "adj" suffixes is that the original does not account for the impact of range restriction on criterion reliabilities, whereas the adjusted procedure attempts to estimate the applicant reliability information for the criterion. The "rb" procedures are included for posterity: We strongly recommend using the "uvdrr" procedure to appropriately correct for univariate range restriction.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. Chapter 4.

Law, K. S., Schmidt, F. L., & Hunter, J. E. (1994). Nonlinearity of range corrections in meta-analysis: Test of an improved procedure. *Journal of Applied Psychology*, 79(3), 425–438. https://doi.org/10.1037/0021-9010.79.3.425

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Raju, N. S., & Burke, M. J. (1983). Two new procedures for studying validity generalization. *Journal of Applied Psychology*, 68(3), 382–395. https://doi.org/10.1037/0021-9010.68.3. 382

Examples

ma_r_bb 97

wt_rxxi = data_r_mcdaniel_1994\$`ryyi frequency`)

ma_r_bb

Bare-bones meta-analysis of correlations

Description

This function computes bare-bones meta-analyses of correlations.

Usage

```
ma_r_bb(r, n, n_adj = NULL, sample_id = NULL, wt_type = "sample_size",
  error_type = "mean", correct_bias = TRUE, conf_level = 0.95,
  cred_level = 0.8, conf_method = "t", cred_method = "t",
  var_unbiased = TRUE, moderators = NULL, cat_moderators = TRUE,
  moderator_type = "simple", hs_override = FALSE, data = NULL, ...)
```

Arguments

guments		
r	Vector or column name of observed correlations.	
n	Vector or column name of sample sizes.	
n_adj	Optional: Vector or column name of sample sizes adjusted for sporadic artifact corrections.	
sample_id	Optional vector of identification labels for samples/studies in the meta-analysis. When TRUE, program will use sample-size weights, error variances estimated from the mean effect size, maximum likelihood variances, and normal-distribution confidence and credibility intervals.	
wt_type	Type of weight to use in the meta-analysis: native options are "sample_size", "inv_var_mean" (inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see metafor documentation for details about the metafor methods).	
error_type	Method to be used to estimate error variances: "mean" uses the mean effect size to estimate error variances and "sample" uses the sample-specific effect sizes.	
correct_bias	Logical argument that determines whether to correct correlations for small-sample bias (TRUE) or not (FALSE).	
conf_level	Confidence level to define the width of the confidence interval (default = .95).	
cred_level	Credibility level to define the width of the credibility interval (default = .80).	
conf_method	Distribution to be used to compute the width of confidence intervals. Available	

options are "t" for t distribution or "norm" for normal distribution.

 ma_ric

cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution.
var_unbiased	Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE).
moderators	Matrix of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator).
cat_moderators	Logical scalar or vector identifying whether variables in the moderators argument are categorical variables (TRUE) or continuous variables (FALSE).
moderator_type	Type of moderator analysis ("none", "simple", or "hierarchical").
hs_override	When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).
data	Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.
	Further arguments to be passed to functions called within the meta-analysis.

Value

A list object of the classes psychmeta, ma_r_as_r, and ma_bb.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. Chapter 3.

Examples

ma_r_ic

Individual-correction meta-analysis of correlations

Description

This function computes individual-correction meta-analyses of correlations.

ma_r_ic 99

Usage

```
ma_r_ic(rxyi, n, n_adj = NULL, sample_id = NULL, wt_type = "sample_size",
    error_type = "mean", correct_bias = TRUE, correct_rxx = TRUE,
    correct_ryy = TRUE, correct_rr_x = TRUE, correct_rr_y = TRUE,
    indirect_rr_x = TRUE, indirect_rr_y = TRUE, rxx = NULL,
    rxx_restricted = TRUE, ryy = NULL, ryy_restricted = TRUE, ux = NULL,
    ux_observed = TRUE, uy = NULL, uy_observed = TRUE, sign_rxz = 1,
    sign_ryz = 1, conf_level = 0.95, cred_level = 0.8, conf_method = "t",
    cred_method = "t", var_unbiased = TRUE, moderators = NULL,
    cat_moderators = TRUE, moderator_type = "simple",
    impute_method = "bootstrap_mod", hs_override = FALSE, data = NULL, ...)
```

Arguments

ξ	guments		
	rxyi	Vector or column name of observed correlations.	
	n	Vector or column name of sample sizes.	
	n_adj	Optional: Vector or column name of sample sizes adjusted for sporadic artifact corrections.	
	sample_id	Optional vector of identification labels for studies in the meta-analysis.	
	wt_type	Type of weight to use in the meta-analysis: options are "sample_size", "inv_var_mean" (inverse variance computed using mean effect size), and "inv_var_sample" (inverse variance computed using sample-specific effect sizes). Supported options borrowed from metafor are "DL", "HE", "HS", "SJ", "ML", "REML", "EB", and "PM" (see metafor documentation for details about the metafor methods).	
	error_type	Method to be used to estimate error variances: "mean" uses the mean effect size to estimate error variances and "sample" uses the sample-specific effect sizes.	
	correct_bias	Logical scalar that determines whether to correct correlations for small-sample bias (TRUE) or not (FALSE).	
	correct_rxx	$\label{logical} \begin{tabular}{ll} Logical scalar that determines whether to correct the X variable for measurement error (TRUE) or not (FALSE). \end{tabular}$	
	correct_ryy	Logical scalar that determines whether to correct the Y variable for measurement error (TRUE) or not (FALSE).	
	correct_rr_x	Logical scalar or vector or column name determining whether each correlation in rxyi should be corrected for range restriction in X (TRUE) or not (FALSE).	
	correct_rr_y	Logical scalar or vector or column name determining whether each correlation in rxyi should be corrected for range restriction in Y (TRUE) or not (FALSE).	
	indirect_rr_x	Logical vector or column name determining whether each correlation in rxyi should be corrected for indirect range restriction in X (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_x (i.e., if correct_rr_x == FALSE, the value supplied for indirect_rr_x is disregarded).	
	indirect_rr_y	Logical vector or column name determining whether each correlation in rxyi should be corrected for indirect range restriction in Y (TRUE) or not (FALSE). Superceded in evaluation by correct_rr_y (i.e., if correct_rr_y == FALSE, the value supplied for indirect_rr_y is disregarded).	
	rxx	Vector or column name of reliability estimates for X.	
	rxx_restricted	Logical vector or column name determining whether each element of rxx is an incumbent reliability (TRUE) or an applicant reliability (FALSE).	
	ryy	Vector or column name of reliability estimates for Y.	

 ma_r_ic

ryy_restricted Logical vector or column name determining whether each element of ryy is an incumbent reliability (TRUE) or an applicant reliability (FALSE). Vector or column name of u ratios for X. ux ux_observed Logical vector or column name determining whether each element of ux is an observed-score u ratio (TRUE) or a true-score u ratio (FALSE). Vector or column name of u ratios for Y. uν Logical vector or column name determining whether each element of uy is an uy_observed observed-score u ratio (TRUE) or a true-score u ratio (FALSE). Sign of the relationship between X and the selection mechanism (for use with sign_rxz bvirr corrections only). Sign of the relationship between Y and the selection mechanism (for use with sign_ryz bvirr corrections only). conf_level Confidence level to define the width of the confidence interval (default = .95). cred_level Credibility level to define the width of the credibility interval (default = .80). Distribution to be used to compute the width of confidence intervals. Available conf method options are "t" for *t* distribution or "norm" for normal distribution. Distribution to be used to compute the width of credibility intervals. Available cred_method options are "t" for *t* distribution or "norm" for normal distribution. var_unbiased Logical scalar determining whether variances should be unbiased (TRUE) or maximum-likelihood (FALSE). moderators Matrix or column names of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator). Logical scalar or vector identifying whether variables in the moderators argucat_moderators ment are categorical variables (TRUE) or continuous variables (FALSE). moderator_type Type of moderator analysis: "none" means that no moderators are to be used, "simple" means that moderators are to be examined one at a time, and "hierarchical" means that all possible combinations and subsets of moderators are to be examined.

impute_method

Method to use for imputing artifacts. Choices are:

- "bootstrap_mod" = select random values from the most specific moderator categories available (default).
- "bootstrap_full" = select random values from the full vector of artifacts.
- "simulate_mod" = generate random values from the distribution with the mean and variance of observed artifacts from the most specific moderator categories available. (uses rnorm for u ratios and rbeta for reliability values).
- "simulate_full" = generate random values from the distribution with the mean and variance of all observed artifacts (uses rnorm for u ratios and rbeta for reliability values).
- "wt_mean_mod" = replace missing values with the sample-size weighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).
- "wt_mean_full" = replace missing values with the sample-size weighted mean of the full distribution of artifacts (not recommended).
- "unwt_mean_mod" = replace missing values with the unweighted mean of the distribution of artifacts from the most specific moderator categories available (not recommended).

ma_r_order2 101

• "unwt_mean_full" = replace missing values with the unweighted mean of the full distribution of artifacts (not recommended).

- "replace_unity" = replace missing values with 1 (not recommended).
- "stop" = stop evaluations when missing artifacts are encountered. If an imputation method ending in "mod" is selected but no moderators are provided, the "mod" suffix will internally be replaced with "full".

hs_override

When TRUE, this will override settings for wt_type (will set to "sample_size"), error_type (will set to "mean"), correct_bias (will set to TRUE), conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).

data

Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.

. . .

Further arguments to be passed to functions called within the meta-analysis (e.g., create_ad_int and create_ad_tsa).

Value

A list object of the classes psychmeta, ma_r_as_r, ma_bb, and ma_ic.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings (3rd ed.)*. Thousand Oaks, CA: SAGE. https://doi.org/10/b6mg. Chapter 3.

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

ma_r_order2

Second-order meta-analysis function for correlations

Description

This function computes second-order meta-analysis function for correlations. It supports second-order analyses of bare-bones, artifact-distribution, and individual-correction meta-analyses.

Usage

```
ma_r_order2(r = NULL, rho = NULL, var_r = NULL, var_r_c = NULL,
    k = NULL, ma_type = c("bb", "ic", "ad"), sample_id = NULL,
    moderators = NULL, moderator_type = "simple", construct_x = NULL,
    construct_y = NULL, conf_level = 0.95, cred_level = 0.8,
    conf_method = "t", cred_method = "t", var_unbiased = TRUE,
    hs_override = FALSE, data = NULL)
```

ma_r_order2

Arguments

r	Vector or column name of mean observed correlations.
rho	Vector or column name of mean corrected correlations.
var_r	Vector or column name of observed variances of observed correlations.
var_r_c	Vector or column name of observed variances of corrected correlations.
k	Vector or column name of meta-analyses' k values.
ma_type	Type of meta-analyses being analyzed: "bb" (barebones), "ic" (individual correction), or "ad" (artifact distribution).
sample_id	Vector or column name of study ID labels.
moderators	Matrix or column names of moderator variables to be used in the meta-analysis (can be a vector in the case of one moderator).
moderator_type	Type of moderator analysis ("none", "simple", or "hierarchical").
construct_x	Vector or column name of construct names for X.
construct_y	Vector or column name of construct names for Y.
conf_level	Confidence level to define the width of the confidence interval (default = .95).
cred_level	Credibility level to define the width of the credibility interval (default = .80).
conf_method	Distribution to be used to compute the width of confidence intervals. Available options are "t" for t distribution or "norm" for normal distribution.
cred_method	Distribution to be used to compute the width of credibility intervals. Available options are "t" for t distribution or "norm" for normal distribution.
var_unbiased	$Logical\ scalar\ determining\ whether\ variances\ should\ be\ unbiased\ (TRUE)\ or\ maximum-likelihood\ (FALSE).$
hs_override	When TRUE, this will override settings for conf_method (will set to "norm"), cred_method (will set to "norm"), and var_unbiased (will set to FALSE).
data	Data frame containing columns whose names may be provided as arguments to vector arguments and/or moderators.

Value

An object of the classes psychmeta, ma_r_as_r, ma_order2, and ma_bb, ma_ic, and/or ma_ad.

Examples

merge_simdat_r 103

merge_simdat_r

Merge multiple "simdat_r" class objects

Description

This function allows for multiple simulated databases from simulate_r_database to be merged together into a single database. Merged databases will be assigned moderator variable codes.

Usage

```
merge_simdat_r(...)
```

Arguments

... Collection of objects created by the "simulate_r_database" function. Simply enter the database objects as merge_simdat_r(data_obj1, data_obj2, data_obj_3).

Value

A merged database of class simdat_r

metareg

Compute meta-regressions

Description

This function is a wrapper for **metafor**'s rma function that computes meta-regressions for all barebones and individual-correction meta-analyses within an object. It makes use of both categorical and continuous moderator information stored in the meta-analysis object and allows for interaction effects to be included in the regression model. Output from this function will be added to the meta-analysis object in a list called follow_up_analyses. If using this function with a multi-construct meta-analysis object from ma_r or ma_d, note that the follow_up_analyses list is appended to the meta-analysis object belonging to a specific construct pair within the construct_pairs list.

Usage

```
metareg(ma_obj, max_interaction = 1)
```

104 mix_dist

Arguments

```
ma_obj Meta-analysis object.
max_interaction
```

The maximum level at which interactions should be analyzed. Default is 1 (i.e., main effects only).

Value

ma_obj with meta-regression results added (see ma_obj\$follow_up_analyses\$meta_regression).

Examples

mix_dist

Descriptive statistics for a mixture distribution

Description

Compute descriptive statistics for a mixture distribution. This function returns the grand mean, the pooled sample (within-sample) variance, variance of sample means (between-groups), and mixture (total sample) variance of the mixture sample data.

Usage

```
mix_dist(mean_vec, var_vec, n_vec, unbiased = TRUE)
```

Arguments

mean_vec Vector of sample means.

var_vec Vector of sample variances.

n_vec Vector of sample sizes.

unbiased Logical scalar determining whether variance should be unbiased (TRUE) or maximum-likelihood (FALSE).

 mix_r_2group 105

Details

The grand mean of a mixture distribution is computed as:

$$\mu = \frac{\sum_{i=1}^k \bar{x}_i n_i}{\sum_{i=1}^k n_i}$$

where μ is the grand mean, \bar{x}_i represents the sample means, and n_i represents the sample sizes.

Maximum-likelihood mixture variances are computed as:

$$var_{BG_{ML}} = \frac{\sum_{i=1}^{k} (\bar{x}_i - \mu) n_i}{\sum_{i=1}^{k} n_i}$$
$$var_{WG_{ML}} = \frac{\sum_{i=1}^{k} v_i n_i}{\sum_{i=1}^{k} n_i}$$
$$var_{mix_{ML}} = var_{BG_{ML}} + var_{WG_{ML}}$$

where v_i represents the sample variances.

Unbiased mixture variances are computed as:

$$var_{BG_{Unbiased}} = \frac{\sum_{i=1}^{k} (\bar{x}_i - \mu) n_i}{(\sum_{i=1}^{k} n_i) - 1}$$
$$var_{WG_{Unbiased}} = \frac{\sum_{i=1}^{k} v_i (n_i - 1)}{(\sum_{i=1}^{k} n_i) - 1}$$
$$var_{mix_{Unbiased}} = var_{BG_{Unbiased}} + var_{WG_{Unbiased}}$$

Value

The mean, pooled sample (within-sample) variance, variance of sample means (between-groups), and mixture (total sample) variance of the mixture sample data.

Examples

$$mix_dist(mean_vec = c(-.5, 0, .5), var_vec = c(.9, 1, 1.1), n_vec = c(100, 100, 100))$$

mix_r_2group

Estimate the mixture correlation for two groups

Description

Estimate the mixture correlation for two groups

Usage

$$mix_r_2group(rxy, dx, dy, p = 0.5)$$

psychmeta_news

Arguments

rxy	Average within-group correlation
dx	Standardized mean difference between groups on X.
dy	Standardized mean difference between groups on Y.
р	Proportion of cases in one of the two groups.

Details

The average within-group correlation is estimated as:

$$\rho_{xy_{WG}} = \rho_{xy_{Mix}} \sqrt{\left(d_x^2 p (1-p) + 1\right) \left(d_y^2 p (1-p) + 1\right)} - \sqrt{d_x^2 d_y^2 p^2 (1-p)^2}$$

where $\rho_{xy_{WG}}$ is the average within-group correlation, $\rho_{xy_{Mix}}$ is the overall mixture correlation, d_x is the standardized mean difference between groups on X, d_y is the standardized mean difference between groups on Y, and p is the proportion of cases in one of the two groups.

Value

A vector of two-group mixture correlationa

Examples

```
mix_r_2group(rxy = .375, dx = 1, dy = 1, p = .5)
```

psychmeta_news

Retrieve the NEWS file for the psychmeta package

Description

This function gives a shortcut to the utils::news(package = "psychmeta") function and displays psychmeta's NEWS file, which contains version information, outlines additions and changes to the package, and describes other updates.

Usage

```
psychmeta_news()
```

Examples

psychmeta_news()

reshape_mat2dat 107

reshape_mat2dat

Description

This function is designed to extract data from a correlation matrix that is in the format commonly published in journals, with leading columns of construct names and descriptive statistics being listed along with correlation data.

Usage

```
reshape_mat2dat(var_names, cor_data, common_data = NULL, unique_data = NULL,
    diag_label = NULL, lower_tri = TRUE, data = NULL)
```

Arguments

var_names	Vector (or scalar column name to match with data) containing variable names.
cor_data	Square matrix (or vector of column names to match with data) containing correlations among variables.
common_data	Vector or matrix (or vector of column names to match with data) of data common to both X and Y variables (e.g., sample size, study-wise moderators).
unique_data	Vector or matrix (or vector of column names to match with data) of data unique to X and Y variables (e.g., mean, SD, reliability).
diag_label	Optional name to attrible to values extracted from the diagonal of the matrix (if NULL, no values are extracted from the diagonal).
lower_tri	Logical scalar that identifies whether the correlations are in the lower triangle (TRUE) or in the upper triangle FALSE of the matrix.
data	Matrix, dataframe, or tibble containing study data (when present, column names of data will be matched to column names provided as other arguments).

Value

Long-format dataframe of correlation data, variable names, and supporting information

Author(s)

Jack W. Kostal

Examples

Arguments can be provided as quoted characters or as the unquoted names of data's columns:

108 reshape_vec2mat

```
reshape_mat2dat(var_names = var_names,
               cor_data = c("Var1", "Var2", "Var3"),
               common_data = "n",
               unique_data = c("mean", "sd", "rel"),
               data = dat)
## Arguments can also provided as raw vectors, matrices, dataframes, etc. without a data argument:
reshape_mat2dat(var_names = dat[,1],
               cor_data = dat[,6:8],
               common_data = dat[,2],
               unique_data = dat[,3:5])
## If data is not null, arguments can be a mix of matrix/dataframe/vector and column-name arguments
reshape_mat2dat(var_names = dat[,1],
               cor_data = dat[,6:8],
               common_data = "n",
               unique_data = c("mean", "sd", "rel"),
               data = dat)
```

reshape_vec2mat

Assemble a variance-covariance matrix

Description

The reshape_vec2mat function facilitates the creation of square correlation/covariance matrices from scalars or vectors of variances/covariances. It allows the user to supply a vector of covariances that make up the lower triangle of a matrix, determines the order of the matrix necessary to hold those covariances, and constructs a matrix accordingly.

Usage

```
reshape_vec2mat(cov = NULL, var = NULL, order = NULL, var_names = NULL)
```

Arguments

cov	Scalar or vector of covariance information to include the off-diagonal positions of the matrix (default value is zero). If a vector, the elements must be provided in the order associated with concatenated column vectors of the lower triangle of the desired matrix, which is the order or elements that would occur if the lower triangle of the desired matrix were extracted with the following P fund
	lower triangle of the desired matrix were extracted with the following R function: $x[lower.tri(x)]$.
var	Scalar or vector of variance information to include the diagonal positions of the matrix (default value is 1).
order	If cov and var are scalars, this argument determines the number of variables to create in the output matrix.
var_names	Optional vector of variable names.

Value

A variance-covariance matrix

reshape_wide2long 109

Examples

```
## Specify the lower triangle covariances
## Can provide names for the variables
reshape_vec2mat(cov = c(.3, .2, .4), var_names = c("x", "y", "z"))
## Specify scalar values to repeat for the covariances and variances
c(cov = .3, var = 2, order = 3)
## Give a vector of variances to create a diagonal matrix
reshape_vec2mat(var = 1:5)
## Specify order only to create identity matrix
reshape_vec2mat(order = 3)
## Specify order and scalar variance to create a scalar matrix
reshape_vec2mat(var = 2, order = 3)
## A quick way to make a 2x2 matrix for bivariate correlations
reshape_vec2mat(cov = .2)
```

reshape_wide2long

Reshape database from wide format to long format

Description

This function automates the process of converting a wide-format database (i.e., a database in which intercorrelations between construct pairs define the columns, such that there are mutiple columns of correlations) to a long-format database (i.e., a database with just one column of correlations). The meta-analysis functions in **psychmeta** work best with long-format databases, so this function can be a helpful addition to one's workflow when data are organized in a wide format.

Usage

```
reshape_wide2long(data, common_vars, es_design, n_design, other_design,
  es_name = "rxyi")
```

Arguments

data	Database of data for use in a meta-analysis in "wide" format.
common_vars	String vector of column names relevant to all variables in data.
es_design	p x p matrix containing the names of columns of intercorrelations among variables in the lower triangle of the matrix.
n_design	Scalar sample-size column name or a p x p matrix containing the names of columns of sample sizes the lower triangle of the matrix.
other_design	A matrix with variable names on the rows and names of long-format variables to create on the columns. Elements of this matrix must be column names of data.
es_name	Name of the effect size represented in data.

Value

A long-format database

110 sensitivity

Examples

```
n_params = c(mean = 150, sd = 20)
rho_params \leftarrow list(c(.1, .3, .5),
                    c(mean = .3, sd = .05),
                    rbind(value = c(.1, .3, .5), weight = c(1, 2, 1)))
rel_params = list(c(.7, .8, .9),
                   c(mean = .8, sd = .05),
                   rbind(value = c(.7, .8, .9), weight = c(1, 2, 1)))
sr_params = c(list(1, 1, c(.5, .7)))
sr\_composite\_params = list(1, c(.5, .6, .7))
wt_params = list(list(c(1, 2, 3),
                       c(mean = 2, sd = .25),
                       rbind(value = c(1, 2, 3), weight = c(1, 2, 1))),
                  list(c(1, 2, 3),
                       c(mean = 2, sd = .25),
                       rbind(value = c(1, 2, 3), weight = c(1, 2, 1)))
## Simultate with wide format
data <- simulate_r_database(k = 10, n_params = n_params, rho_params = rho_params,</pre>
                           rel_params = rel_params, sr_params = sr_params,
                        sr_composite_params = sr_composite_params, wt_params = wt_params,
                           var_names = c("X", "Y", "Z"), format = "wide")$statistics
## Define values to abstract from the data object
common_vars <- "sample_id"</pre>
es_design <- matrix(NA, 3, 3)
var_names <- c("X", "Y", "Z")</pre>
es_design[lower.tri(es_design)] <- c("rxyi_X_Y", "rxyi_X_Z", "rxyi_Y_Z")</pre>
rownames(es_design) <- colnames(es_design) <- var_names</pre>
n_design <- "ni"
other_design <- cbind(rxxi = paste0("rxxi_", var_names),</pre>
                       ux_local = paste0("ux_local_", var_names),
                       ux_external = paste0("ux_external_", var_names))
rownames(other_design) <- var_names</pre>
## Reshape the data to "long" format
reshape_wide2long(data = data, common_vars = common_vars, es_design = es_design,
                            n_design = n_design, other_design = other_design)
```

sensitivity

Sensitivity analyses for meta-analyses

Description

Wrapper function to compute bootstrap analyses, leave-one-out analyses, and cumulative meta-analyses. This function helps researchers to examine the stability/fragility of their meta-analytic results with bootstrapping and leave-one-out analyses, as well as detect initial evidence of publication bias with cumulative meta-analyses.

Usage

```
sensitivity(ma_obj, leave1out = TRUE, bootstrap = TRUE, cumulative = TRUE,
sort_method = "weight", boot_iter = 1000, boot_conf_level = 0.95,
```

sensitivity 111

```
boot_ci_type = "bca", ...)
sensitivity_bootstrap(ma_obj, boot_iter = 1000, boot_conf_level = 0.95, boot_ci_type = "bca", ...)
sensitivity_cumulative(ma_obj, sort_method = "weight", ...)
sensitivity_leave1out(ma_obj, ...)
```

Arguments

ma_obj	Meta-analysis object.	
leave1out	Logical scalar determining whether to compute leave-one-out analyses (TRUE) or not (FALSE).	
bootstrap	Logical scalar determining whether bootstrapping is to be performed (TRUE) or not (FALSE).	
cumulative	Logical scalar determining whether a cumulative meta-analysis is to be computed (TRUE) or not (FALSE).	
sort_method	Method to sort samples in the cumulative meta-analysis. Options are "weight" to sort by weight (default), "n" to sort by sample size, and "inv_var" to sort by inverse variance.	
boot_iter	Number of bootstrap iterations to be computed.	
boot_conf_level		
	Width of confidence intervals to be constructed for all bootstrapped statistics.	
boot_ci_type	Type of bootstrapped confidence interval (see "type" options for boot::boot.ci for possible arguments). Default is "bca".	
	Additional arguments.	

Value

An updated meta-analysis object with sensitivity analyses added.

- When bootstrapping is performed, the bootstrap section of the follow_up_analyses section of the updated ma_obj returned by this function will contain both a matrix summarizing the mean, variance, and confidence intervals of the boostrapped samples and a table of meta-analytic results from all bootstrapped samples.
- When leave-one-out analyses are performed, the ma_obj will acquire a list of leave-one-out
 results in its follow_up_analyses section that contains a table of all leave-one-out metaanalyses along with plots of the mean and residual variance of the effect sizes in the metaanalyses.
- When cumulative meta-analysis is performed, the ma_obj will acquire a list of cumulative meta-analysis results in its follow_up_analyses section that contains a table of all meta-analyses computed along with plots of the mean and residual variance of the effect sizes in the meta-analyses, sorted by the order in which studies were added to the meta-analysis.

```
## Run a meta-analysis using simulated UVIRR data:
ma_obj <- ma_r_ic(rxyi = rxyi, n = n, rxx = rxxi, ryy = ryyi, ux = ux,
correct_rr_y = FALSE, data = data_r_uvirr)</pre>
```

112 simulate_alpha

```
## Pass the meta-analysis object to the sensitivity() function:
ma_obj <- sensitivity(ma_obj = ma_obj, boot_iter = 10, cumulative = TRUE,
boot_ci_type = "norm", sort_method = "inv_var")

## Examine the tables and plots produced for the meta-analysis:
ma_obj$follow_up_analyses$bootstrap$barebones$`Analysis ID = 1`
ma_obj$follow_up_analyses$bootstrap$individual_correction$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$leave1out$individual_correction$true_score$`Analysis ID = 1`
ma_obj$follow_up_analyses$cumulative$individual_correction$true_score$`Analysis ID = 1`</pre>
```

simulate_alpha

Generate a vector of simulated sample alpha coefficients

Description

This function generates inter-item covariance matrices from a population matrix and computes a coefficient alpha reliability estimate for each matrix.

Usage

```
simulate_alpha(item_mat = NULL, alpha = NULL, k_items = NULL, n_cases,
   k_samples, standarized = FALSE)
```

Arguments

item_mat	Item intercorrelation/intercovariance matrix. If item_mat is not supplied, the user must supply both alpha and k_items. If item_mat is NULL, the program will assume that all item intercorrelations are equal.
alpha	Population alpha value. Must be supplied if item_mat is NULL.
k_items	Number of items on the test to be simulated. Must be supplied if item_mat is $\ensuremath{NULL}.$
n_cases	Number of cases to simulate in sampling distribution of alpha.
k_samples	Number of samples to simulate.
standarized	Should alpha be computed from correlation matrices (TRUE) or unstandardized covariance matrices (FALSE)?

Value

A vector of simulated sample alpha coefficients

```
## Define a hypothetical matrix:
item_mat <- reshape_vec2mat(cov = .3, order = 12)

## Simulations of unstandardized alphas
set.seed(100)
simulate_alpha(item_mat = item_mat, n_cases = 50, k_samples = 10, standarized = FALSE)
set.seed(100)
simulate_alpha(alpha = mean(item_mat[lower.tri(item_mat)]) / mean(item_mat),
k_items = ncol(item_mat), n_cases = 50, k_samples = 10, standarized = FALSE)</pre>
```

simulate_matrix 113

```
## Simulations of standardized alphas
set.seed(100)
simulate_alpha(item_mat = item_mat, n_cases = 50, k_samples = 10, standarized = TRUE)
set.seed(100)
simulate_alpha(alpha = mean(item_mat[lower.tri(item_mat)]) / mean(item_mat),
k_items = ncol(item_mat), n_cases = 50, k_samples = 10, standarized = TRUE)
```

simulate_matrix

Generate a list of simulated sample matrices sampled from the Wishart distribution

Description

This function generates simulated sample matrices based on a population matrix and a sample size. It uses the Wishart distribution (i.e., the multivariate χ^2 distribution) to obtain data, rescales the data into the input metric, and can be standardized into a correlation matrix by setting as_cor to TRUE. The function can produce a list of matrices for any number of samples.

Usage

```
simulate_matrix(sigma, n, k = 1, as_cor = FALSE)
```

Arguments

sigma	Population covariance matrix. May be standardized or unstandardized.
n	Sample size for simulated sample matrices.
k	Number of sample matrices to generate.
as_cor	Should the simulated matrices be standardized (TRUE) or unstandardized (FALSE)?

Value

A list of simulated sample matrices.

```
## Define a hypothetical matrix:
sigma <- reshape_vec2mat(cov = .4, order = 5)

## Simualte a list of unstandardized covariance matrices:
simulate_matrix(sigma = sigma, n = 50, k = 10, as_cor = FALSE)

## Simualte a list of correlation matrices:
simulate_matrix(sigma = sigma, n = 50, k = 10, as_cor = TRUE)</pre>
```

114 simulate_r_database

Description

The simulate_r_database function generates databases of psychometric correlation data from sample-size parameters, correlation parameters, reliability parameters, and selection-ratio parameters. The output database can be provided in either a long format or a wide format. If composite variables are to be formed, parameters can also be defined for the weights used to form the composites as well as the selection ratios applied to the composites. This function will return a database of statistics as well as a database of parameters - the parameter database contains the actual study parameters for each simulated samples (without sampleing error) to allow comparisons between meta-analytic results computed from the statistics and the actual means and variances of parameters. The merge_simdat_r function can be used to merge multiple simulated databasesa and the sparsify_simdat_r function can be used to randomly delete artifact information (a procedure commonly done in simulations of artifact-distribution methods).

Usage

```
simulate_r_database(k, n_params, rho_params, rel_params, sr_params,
wt_params = NULL, allow_neg_wt = FALSE, sr_composite_params = NULL,
var_names = NULL, composite_names = NULL, show_applicant = FALSE,
keep_vars = "all", decimals = 2, format = "long", max_iter = 100)
```

Arguments

var_names

composite_names

k	Number of studies to simulate.
n_params	Parameter distribution (or data-generation function; see details) for sample size.
rho_params	List of parameter distributions (or data-generation functions; see details) for correlations.
rel_params	List of parameter distributions (or data-generation functions; see details) for reliabilities.
sr_params	List of parameter distributions (or data-generation functions; see details) for selection ratios.
wt_params	List of parameter distributions (or data-generation functions; see details) to create weights for use in forming composites. If multiple composites are formed, the list should be a list of lists, with the general format: list(comp1_params = list(params
allow_neg_wt	Logical scalar that determines whether negative weights should be allowed (TRUE) or not (FALSE).
sr_composite_pa	arams
	Parameter distributions (or data-generation functions; see details) for composite selection ratios.

show_applicant Should applicant data be shown for sample statistics (TRUE) or suppressed (FALSE)?

Optional vector of variable names for all non-composite variables.

Optional vector of names for composite variables.

simulate_r_database 115

keep_vars	Optional vector of variable names to be extracted from the simulation and returned in the output object. All variables are returned by default. Use this argument when only some variables are of interest and others are generated solely to serve as selection variables.
decimals	Number of decimals to which statistical results (not parameters) should be rounded. Rounding to 2 decimal places best captures the precision of data available from published primary research.
format	Database format: "long" or "wide."
max_iter	Maximum number of iterations to allow in the parameter selection process before terminating with convergence failure. Must be finite.

Details

Values supplied as any argument with the suffix "params" can take any of three forms (see Examples for a demonstration of usage):

- A vector of values from which study parameters should be sampled.
- A vector containing a mean with a variance or standard deviation. These values must be named "mean," "var," and "sd", respectively, for the program to recognize which value is which.
- A matrix containing a row of values (this row must be named "values") from which study parameters should be sampled and a row of weights (this row must be labeled 'weights') associated with the values to be sampled.
- A function that is configured to generate data using only one argument that definines the number of cases to generate, e.g., fun(n = 10).

Value

A database of simulated primary studies' statistics and analytically determined parameter values.

```
## Note the varying methods for defining parameters:
n_params = function(n) rgamma(n, shape = 100)
rho_params \leftarrow list(c(.1, .3, .5),
                   c(mean = .3, sd = .05),
                   rbind(value = c(.1, .3, .5), weight = c(1, 2, 1)))
rel_params = list(c(.7, .8, .9),
                  c(mean = .8, sd = .05),
                  rbind(value = c(.7, .8, .9), weight = c(1, 2, 1)))
sr_params = c(list(1, 1, c(.5, .7)))
sr\_composite\_params = list(1, c(.5, .6, .7))
wt_params = list(list(c(1, 2, 3),
                      c(mean = 2, sd = .25),
                      rbind(value = c(1, 2, 3), weight = c(1, 2, 1)),
                 list(c(1, 2, 3),
                      c(mean = 2, sd = .25),
                      rbind(value = c(1, 2, 3), weight = c(1, 2, 1))))
## Simultate with long format
simulate_r_database(k = 10, n_params = n_params, rho_params = rho_params,
                  rel_params = rel_params, sr_params = sr_params,
                  sr_composite_params = sr_composite_params, wt_params = wt_params,
                  var_names = c("X", "Y", "Z"), format = "long")
```

116 simulate_r_sample

simulate_r_sample

Simulation of data with measurement error and range-restriction arti-

Description

This function simulates a psychometric sample and produces correlation matrices, artifact information, and other descriptive statistics that have been affected by measurement error and/or range restriction. It allows the formation of composite variables within the simulation and allows selection to be performed on any or all variables, including composites. By setting the sample size to n = Inf, users can explore the effects of measurement error and/or range restriction on parameters without the influence of sampling error. To generate multiple samples and compile a database of simulated statistics, see the simulate_r_database function.

Usage

```
simulate_r_sample(n, rho_mat, rel_vec = rep(1, ncol(rho_mat)),
    sr_vec = rep(1, ncol(rho_mat)), wt_mat = NULL, sr_composites = NULL,
    var_names = NULL, composite_names = NULL, ...)
```

Arguments

	n	Number of cases to simulate before performing selection. If Inf, function will simulate parameter values.
	rho_mat	Matrix of true-score correlations.
	rel_vec	Vector of reliabilities corresponding to the variables in rho_mat.
	sr_vec	Vector of selection ratios corresponding to the variables in rho_mat (set selection ratios to 1 for variables that should not be used in selection).
	wt_mat	Optional matrix of weights to use in forming a composite of the variables in rho_mat. Matrix should have as many rows (or vector elements) as there are variables in rho_mat.
	sr_composites	Optional vector selection ratios for composite variables. If not NULL, $sr_composites$ must have as many elements as there are columns in wt_mat .
	var_names	Vector of variable names corresponding to the variables in rho_mat.
composite_names		
		Optional vector of names for composite variables.
		Further arguments.

Value

A list of study information, including correlations, reliabilities, standard deviations, means, and u ratios for true scores and for observed scores.

sparsify_simdat_r 117

Examples

sparsify_simdat_r

Create sparse artifact information in a "simdat_r" class object

Description

This function can be used to randomly delete artifact from databases produced by the simulate_r_database function. Deletion of artifacts can be performed in either a study-wise fashion for complete missingness within randomly selected studies or element-wise missingness for compeltely random deletion of artifacts in the database. Deletion can be applied to reliability estimates and/or u ratios.

Usage

```
sparsify_simdat_r(data_obj, prop_missing, sparify_arts = c("rel", "u"),
    study_wise = TRUE)
```

Arguments

data_obj	Object created by the "simdat_r" function.
prop_missing	Proportion of studies in from which artifact information should be deleted.
sparify_arts	Vector of codes for the artifacts to be sparsified: "rel" for reliabilities, "u" for u ratios, or $c("rel", "u")$ for both.
study_wise	Logical scalar argument determining whether artifact deletion should occur for all variables in a study (TRUE) or randomly across variables within studies (FALSE).

Value

A sparsified database

118 truncate_mean

truncate_dist	nd
---------------	----

Description

This function computes the mean and variance of a normal distributions that has been truncated at one or both ends.

Usage

```
truncate_dist(a = -Inf, b = Inf, mean = 0, sd = 1)
```

Arguments

а	Quantile (i.e., cut score) below which scores should be censored from the distribution.
b	Quantile (i.e., cut score) above which scores should be censored from the distribution.
mean	Scalar mean or vector of means.
sd	Scalar standard deviation or vector of standard deviations.

Value

A matrix of truncated means (column 1) and truncated variances (column 2).

Examples

```
truncate_dist(a = -1, b = 3, mean = 0, sd = 1)
truncate_dist(a = 1, b = Inf, mean = 0, sd = 1)
truncate_dist(a = c(-1, 1), b = c(3, Inf), mean = 0, sd = 1)
```

truncate_mean

Truncation function for means

Description

This function computes the mean of a normal distributions that has been truncated at one or both ends.

Usage

```
truncate_mean(a = -Inf, b = Inf, mean = 0, sd = 1)
```

truncate_var 119

Arguments

a	Quantile (i.e., cut score) below which scores should be censored from the distribution.
b	Quantile (i.e., cut score) above which scores should be censored from the distribution.
mean	Scalar mean or vector of means.
sd	Scalar standard deviation or vector of standard deviations.

Value

A vector of truncated means.

Examples

```
truncate\_mean(a = -1, b = 3, mean = 0, sd = 1) \\ truncate\_mean(a = 1, b = Inf, mean = 0, sd = 1) \\ truncate\_mean(a = c(-1, 1), b = c(3, Inf), mean = 0, sd = 1)
```

truncate_var

Truncation function for variances

Description

This function computes the variance of a normal distributions that has been truncated at one or both ends

Usage

```
truncate_var(a = -Inf, b = Inf, mean = 0, sd = 1)
```

Arguments

a	Quantile (i.e., cut score) below which scores should be censored from the distribution.
b	Quantile (i.e., cut score) above which scores should be censored from the distribution.
mean	Scalar mean or vector of means.
sd	Scalar standard deviation or vector of standard deviations.

Value

A vector of truncated variances

```
truncate_var(a = -1, b = 3, mean = 0, sd = 1)

truncate_var(a = 1, b = Inf, mean = 0, sd = 1)

truncate_var(a = c(-1, 1), b = c(3, Inf), mean = 0, sd = 1)
```

120 unmix_r_2group

unmix_r_2group Estimate the average within-group correl lation for two groups	relation from a mixture corre-
---	--------------------------------

Description

Estimate the average within-group correlation from a mixture correlation for two groups

Usage

```
unmix_r_2group(rxy, dx, dy, p = 0.5)
```

Arguments

rxy	Overall mixture correlation.
dx	Standardized mean difference between groups on X.
dy	Standardized mean difference between groups on Y.
р	Proportion of cases in one of the two groups.

Details

The mixture correlation for two groups is estimated as:

$$r_{xy_{Mix}} \frac{\rho_{xy_{WG}} + \sqrt{d_x^2 d_y^2 p^2 (1-p)^2}}{\sqrt{\left(d_x^2 p (1-p) + 1\right) \left(d_y^2 p (1-p) + 1\right)}}$$

where $\rho_{xy_{WG}}$ is the average within-group correlation, $\rho_{xy_{Mix}}$ is the overall mixture correlation, d_x is the standardized mean difference between groups on X, d_y is the standardized mean difference between groups on Y, and p is the proportion of cases in one of the two groups.

Value

A vector of average within-group correlations

var_error_alpha 121

var_error_aipha Analytic estimate of the sampling variance of alpha	var_error_alpha	Analytic estimate of the sampling variance of alpha	
---	-----------------	---	--

Description

Analytic estimate of the sampling variance of alpha

Usage

```
var_error_alpha(item_mat = NULL, alpha = NULL, k_items = NULL, ncases)
```

Arguments

item_mat	Item intercorrelation/intercovariance matrix. If item_mat is not supplied, the user must supply both alpha and k_items. If item_mat is NULL, the program will assume that all item intercorrelations are equal.
alpha	Vector of population alpha values. Must be supplied if item_mat is NULL.
k_items	Vector of numbers of items to be simulated. Must be supplied if item_mat is NULL.
ncases	Vector of sample sizes to simulate in sampling distribution of alpha.

Value

Vector of sampling variances of the supplied alpha(s).

References

Duhachek, A., & Iacobucci, D. (2004). Alpha's standard error (ASE): An accurate and precise confidence interval estimate. *Journal of Applied Psychology*, 89(5), 792–808. https://doi.org/10.1037/0021-9010.89.5.792

```
item_mat <- matrix(.3, 5, 5)
diag(item_mat) <- 1
alpha <- mean(item_mat[lower.tri(item_mat)]) / mean(item_mat)
k_items <- nrow(item_mat)

var_error_alpha(item_mat = item_mat, ncases = 50)
var_error_alpha(alpha = alpha, k_items = k_items, ncases = 50)
var_error_alpha(alpha = c(alpha, alpha), k_items = c(k_items, k_items), ncases = 50)</pre>
```

122 var_error_d

var_error_d

Estimate the error variance Cohen's d values

Description

Allows for error variance to be estimated using total sample size of both groups being compared (in this case, supply sample sizes using only the n1 argument) or using separate sample sizes for group 1 and group 2 (i.e., the groups being compared; in this case, supply sample sizes using both the n1 and n2 arguments).

Usage

```
var_error_d(d, n1, n2 = NA, correct_bias = TRUE)
```

Arguments

d	Vector of Cohen's d values.
n1	Vector of sample sizes from group 1 (or the total sample size with the assumption that groups are of equal size, if no group 2 sample size is supplied).
n2	Vector of sample sizes from group 2.
commont bica	I a give I array mant that determines whether to compet amon various a estimates for

correct_bias Logical argument that determines whether to correct error-variance estimates for small-sample bias in d values (TRUE) or not (FALSE).

Details

The sampling variance of a *d* value is:

$$\left(\frac{n-1}{n-3}\right)\left(\frac{n_1+n_2}{n_1n_2} + \frac{d^2}{2(n_1+n_2)}\right)$$

When groups 1 and 2 are of equal size, this reduces to

$$var_e = \left(\frac{n-1}{n-3}\right) \left(\frac{4}{n}\right) \left(1 + \frac{d^2}{8}\right)$$

The estimated error variance can be divided by the following term to correct for small-sample bias:

$$bias\ factor = \left(1 + \frac{.75}{n-3}\right)^2$$

Value

A vector of sampling-error variances.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. pp. 292–295.

```
var_error_d(d = 1, n1 = 30, n2 = 30, correct_bias = TRUE)
var_error_d(d = 1, n1 = 60, n2 = NA, correct_bias = TRUE)
```

var_error_delta 123

	error	401+0
var	error	gerra

Estimate the error variance of Glass' delta values

Description

Estimate the error variance of Glass' delta values

Usage

```
var_error_delta(delta, nc, ne = NA, use_pooled_sd = FALSE,
    correct_bias = TRUE)
```

Arguments

delta Vector of Glass' delta values.

nc Vector of control-group sample sizes (or the total sample size with the assump-

tion that groups are of equal size, if no experimental-group sample size is sup-

plied).

ne Vector of experimental-group sample sizes.

use_pooled_sd Logical vector determining whether the pooled standard deviation was used

(TRUE) or not (FALSE). FALSE by default.

correct_bias Logical argument that determines whether to correct error-variance estimates for

small-sample bias in d values (TRUE) or not (FALSE).

Value

A vector of sampling-error variances.

Examples

```
var_error_delta(delta = .3, nc = 30, ne = 30)
var_error_delta(delta = .3, nc = 60, ne = NA)
```

var_error_g

Estimate the error variance Hedge's g values

Description

Allows for error variance to be estimated using total sample size of both groups being compared (in this case, supply sample sizes using only the n1 argument) or using separate sample sizes for group 1 and group 2 (i.e., the groups being compared; in this case, supply sample sizes using both the n1 and n2 arguments).

Usage

```
var_error_g(g, n1, n2 = NA)
```

124 var_error_q

Arguments

g	Vector of Hedge's	g values.
---	-------------------	-----------

n1 Vector of sample sizes from group 1 (or the total sample size with the assumption

that groups are of equal size, if no group 2 sample size is supplied).

n2 Vector of sample sizes from group 2.

Value

A vector of sampling-error variances.

References

Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). *Introduction to meta-analysis*. Chichester, UK: Wiley. Chapter 4.

Examples

```
var\_error\_g(g = 1, n1 = 30, n2 = 30)

var\_error\_g(g = 1, n1 = 60, n2 = NA)
```

var_error_q

Estimate the error variance of square roots of reliability estimates

Description

Estimate the error variance of square roots of reliability estimates

Usage

```
var_error_q(q, n)
```

Arguments

q Vector of of square roots of reliability estimates.

n Vector of sample sizes.

Details

The sampling variance of the square root of a reliability coefficient is:

$$var_e = \frac{(1 - q_X^2)^2}{n - 1}$$

Value

A vector of sampling-error variances.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

var_error_r 125

Examples

```
var_error_q(q = .8, n = 100)
```

var_error_r

Estimate the error variance of correlations

Description

Estimate the error variance of correlations

Usage

```
var_error_r(r, n, correct_bias = TRUE)
```

Arguments

r Vector of correlations.

n Vector of sample sizes.

small-sample bias in correlations (TRUE) or not (FALSE).

Details

The sampling variance of a correlation is:

$$var_e = \frac{(1-r^2)^2}{n-1}$$

which can be corrected for bias by dividing the sampling variance by the bias factor:

bias factor =
$$(\frac{2n-2}{2n-1})^2$$

Value

A vector of sampling-error variances.

References

Schmidt, F. L., & Hunter, J. E. (2015). *Methods of meta-analysis: Correcting error and bias in research findings* (3rd ed.). Thousand Oaks, CA: Sage. https://doi.org/10/b6mg. p. 99.

```
var_error_r(r = .3, n = 30, correct_bias = TRUE)
var_error_r(r = .3, n = 30, correct_bias = FALSE)
```

126 var_error_r_bvdrr

var_error_rel

Estimate the error variance of reliability estimates

Description

Estimate the error variance of reliability estimates

Usage

Arguments

rel Vector of reliability estimates.

n Vector of sample sizes.

Details

The sampling variance of a reliability coefficient is:

$$var_e = \frac{4r_{XX}(1 - r_{XX})^2}{n - 1}$$

Value

A vector of sampling-error variances.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

```
var_error_rel(rel = .8, n = 100)
```

var_error_r_bvdrr

Taylor series approximation of the sampling variance of correlations corrected using the Case V correction for indirect range restriction

Description

This function propagates error in the bivariate direct range-restriction correction forumula to allow for the computation of a pseudo compound attenuation factor in individual-correction meta-analysis. Traditional methods for estimating compound attenuation factors (i.e., dividing the observed correlation by the corrected correlation) do not work with the BVDRR correction because BVDRR has an additive term that makes the corrected correlation inappropriate for use in estimating the effect of the correction on the variance of the sampling distribution of correlations.

var_error_r_bvdrr 127

Usage

```
var_error_r_bvdrr(rxyi, var_e, n, ux, uy, qx, qx_restricted = TRUE, qy,
   qy_restricted = TRUE, r_deriv_only = FALSE)
```

Arguments

rxyi	Vector of observed correlations.
var_e	Vector of estimated sampling variances for rxyi values.
n	Vector of sample sizes.
ux	Vector of observed-score u ratios for X.
uy	Vector of observed-score u ratios for Y.
qx	Vector of square roots of reliability estimates for X.
qx_restricted	Logical vector determining whether each element of qx is derived from an incumbent reliability (TRUE) or an applicant reliability (FALSE).
qy	Vector of square roots of reliability estimates for X.
qy_restricted	Logical vector determining whether each element of qy is derived from an incumbent reliability (TRUE) or an applicant reliability (FALSE).
r_deriv_only	Logical scalar determining whether to use the partial derivative with respect to rxyi only (TRUE) or a full Taylor series approximation of the disattenuation formula (FALSE).

Details

Per the principles of propagation of uncertainty and assuming that q_{X_a} , q_{Y_a} , u_X , u_Y , and ρ_{XY_i} , are independent, we can derive a linear approximation of the sampling error of ρ_{TP_a} . We begin with the bivariate direct range restriction formula,

$${\rho _{T{P_a}}} = \frac{{\frac{{\rho _{X{Y_i}}^2 - 1}}{{2{\rho _{X{Y_i}}}}}{u_X}{u_Y} + sign\left({{\rho _{X{Y_i}}}} \right)\sqrt {\frac{{{{{{\left({1 - {\rho _{X{Y_i}}}^2}} \right)}^2}}}{{4{\rho _{X{Y_i}}}}}u_X^2u_Y^2 + 1}}}{{{q_{{X_a}}{q_{{Y_a}}}}}}$$

which can be expressed as

$$\rho_{TP_a} = \frac{A + sign\left(\rho_{XY_i}\right)B}{q_{X_c}q_{Y_c}}$$

where

$$A = \frac{\rho_{XY_i}^2 - 1}{2\rho_{XY_i}} u_X u_Y$$

and

$$B = \sqrt{\frac{\left(1 - \rho_{XY_i}^2\right)^2}{4\rho_{XY_i}} u_X^2 u_Y^2 + 1}$$

which implies the following linear approximation of the sampling variance of ρ_{TP_a} :

$$SE_{\rho_{TP_a}}^2 = b_1^2 SE_{q_{X_a}}^2 + b_2^2 SE_{q_{Y_a}}^2 + b_3^2 SE_{u_X}^2 + b_4^2 SE_{u_Y}^2 + b_5^2 SE_{\rho_{XY_i}}^2$$

128 var_error_r_bvirr

where b_1 , b_2 , b_3 , b_4 , and b_5 are the first-order partial derivatives of the disattenuation formula with respect to q_{X_a} , q_{Y_a} , u_{X} , u_{Y} , and ρ_{XY_i} , respectively. These partial derivatives are computed as follows:

$$b_{1} = \frac{\partial \rho_{TP_{a}}}{\partial q_{X_{a}}} = -\frac{\rho_{TP_{a}}}{q_{X_{a}}}$$

$$b_{2} = \frac{\partial \rho_{TP_{a}}}{\partial q_{Y_{a}}} = -\frac{\rho_{TP_{a}}}{q_{Y_{a}}}$$

$$b_{3} = \frac{\partial \rho_{TP_{a}}}{\partial u_{X}} = \frac{\frac{A}{u_{X}} + \frac{\left(1 - \rho_{XY_{i}}^{2}\right)^{2} u_{X} u_{Y}^{2} sign(\rho_{XY_{i}})}{4\rho_{XY_{i}}^{2}B}}{q_{X_{a}} q_{Y_{a}}}$$

$$b_{4} = \frac{\partial \rho_{TP_{a}}}{\partial u_{Y}} = \frac{\frac{A}{u_{Y}} + \frac{\left(1 - \rho_{XY_{i}}^{2}\right)^{2} u_{X}^{2} u_{Y} sign(\rho_{XY_{i}})}{4\rho_{XY_{i}}^{2}B}}{q_{X_{a}} q_{Y_{a}}}$$

$$b_{5} = \frac{\partial \rho_{TP_{a}}}{\partial \rho_{XY_{i}}} = \frac{sign(\rho_{XY_{i}}) \left(-\frac{\left(1 - \rho_{XY_{i}}^{2}\right)^{2} u_{X}^{2} u_{Y}^{2}}{\rho_{XY_{i}}} - \frac{\left(1 - \rho_{XY_{i}}^{2}\right)^{2} u_{X}^{2} u_{Y}^{2}}{2\rho_{XY_{i}}^{3}}}\right) + u_{X} u_{Y}}{q_{X_{a}} q_{Y_{a}}}$$

Value

A vector of corrected correlations' sampling-error variances.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

var_error_r_bvirr

Taylor series approximation of the sampling variance of correlations corrected using the Case V correction for indirect range restriction

Description

This function propagates error in the bivariate indirect range-restriction correction forumula to allow for the computation of a pseudo compound attenuation factor in individual-correction meta-analysis. Traditional methods for estimating compound attenuation factors (i.e., dividing the observed correlation by the corrected correlation) do not work with the BVIRR correction because BVIRR has an additive term that makes the corrected correlation inappropriate for use in estimating the effect of the correction on the variance of the sampling distribution of correlations. The equation-implied adjustment for the BVIRR correction (i.e., the first derivative of the correction equation with respect to the observed correlation) underestimates the error of corrected correlations, so this function helps to account for that additional error.

var_error_r_bvirr 129

Usage

```
var_error_r_bvirr(rxyi, var_e, n, ux, uy, qx, qx_restricted = TRUE, qy,
  qy_restricted = TRUE, sign_rxz = 1, sign_ryz = 1,
  r_deriv_only = FALSE)
```

Arguments

rxyi	Vector of observed correlations.
var_e	Vector of estimated sampling variances for rxyi values.
n	Vector of sample sizes.
ux	Vector of observed-score u ratios for X.
uy	Vector of observed-score u ratios for Y.
qx	Vector of square roots of reliability estimates for X.
qx_restricted	Logical vector determining whether each element of qx is derived from an incumbent reliability (TRUE) or an applicant reliability (FALSE).
qy	Vector of square roots of reliability estimates for X.
qy_restricted	Logical vector determining whether each element of qy is derived from an incumbent reliability (TRUE) or an applicant reliability (FALSE).
sign_rxz	Sign of the relationship between X and the selection mechanism.
sign_ryz	Sign of the relationship between Y and the selection mechanism.
r_deriv_only	Logical scalar determining whether to use the partial derivative with respect to rxyi only (TRUE) or a full Taylor series approximation of the disattenuation formula (FALSE).

Details

Per the principles of propagation of uncertainty and assuming that q_{X_a} , q_{Y_a} , u_X , u_Y , and ρ_{XY_i} , are independent, we can derive a linear approximation of the sampling error of ρ_{TP_a} . We begin with the bivariate indirect range restriction formula,

$$\rho_{TP_{a}} = \frac{\rho_{XY_{i}}u_{X}u_{Y} + \lambda\sqrt{\left|1 - u_{X}^{2}\right|\left|1 - u_{Y}^{2}\right|}}{q_{X_{a}}q_{Y_{a}}}$$

which implies the following linear approximation of the sampling variance of ρ_{TP_a} :

$$SE_{\rho_{TP_a}}^2 = b_1^2 SE_{q_{X_a}}^2 + b_2^2 SE_{q_{Y_a}}^2 + b_3^2 SE_{u_X}^2 + b_4^2 SE_{u_Y}^2 + b_5^2 SE_{\rho_{XY_i}}^2$$

where b_1 , b_2 , b_3 , b_4 , and b_5 are the first-order partial derivatives of the disattenuation formula with respect to q_{X_a} , q_{Y_a} , u_{X} , u_{Y} , and ρ_{XY_i} , respectively. These partial derivatives are computed as follows:

$$\begin{split} b_1 &= \frac{\partial \rho_{TP_a}}{\partial q_{X_a}} = -\frac{\rho_{TP_a}}{q_{X_a}} \\ b_2 &= \frac{\partial \rho_{TP_a}}{\partial q_{Y_a}} = -\frac{\rho_{TP_a}}{q_{Y_a}} \\ b_3 &= \frac{\partial \rho_{TP_a}}{\partial u_X} = \left[\rho_{XY_i} u_Y - \frac{\lambda u_X \left(1 - u_X^2\right) \sqrt{|1 - u_Y^2|}}{|1 - u_X^2|^{1.5}} \right] / \left(q_{X_a} q_{Y_a} \right) \end{split}$$

130 var_error_u

$$b_{4} = \frac{\partial \rho_{TP_{a}}}{\partial u_{Y}} = \left[\rho_{XY_{i}} u_{X} - \frac{\lambda u_{Y} \left(1 - u_{Y}^{2} \right) \sqrt{|1 - u_{X}^{2}|}}{|1 - u_{Y}^{2}|^{1.5}} \right] / \left(q_{X_{a}} q_{Y_{a}} \right)$$

$$b_{5} = \frac{\partial \rho_{TP_{a}}}{\partial \rho_{XY_{i}}} = \frac{u_{X} u_{Y}}{q_{X_{a}} q_{Y_{a}}}$$

Value

A vector of corrected correlations' sampling-error variances.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

var_error_u

Estimate the error variance of u ratios

Description

Estimate the error variance of u ratios

Usage

```
var_error_u(u, n_i, n_a = NA, dependent_sds = FALSE)
```

Arguments

u Vector of u ratios.

n_i Vector of incumbent-group sample sizes.

n_a Vector of applicant-group sample sizes.

applicant sample and an incumbent sample that is a subset of that applicant

sample (TRUE).

wt_cov 131

Details

The sampling variance of a u ratio is computed differently for independent samples (i.e., settings where the referent unrestricted standard deviations comes from an different sample than the range-restricted standard deviation) than for dependent samples (i.e., unrestricted samples from which a subset of individuals are selected to be in the incumbent sample).

The sampling variance for independent samples (the more common case) is:

$$var_e = \frac{u^2}{2} \left(\frac{1}{n_i - 1} + \frac{1}{n_a - 1} \right)$$

and the sampling variance for dependent samples is:

$$var_e = \frac{u^2}{2} \left(\frac{1}{n_i - 1} - \frac{1}{n_a - 1} \right)$$

where u is the u ratio, n_i is the incumbent sample size, and n_a is the applicant sample size.

Value

A vector of sampling-error variances.

References

Dahlke, J. A., & Wiernik, B. M. (2017). One of these artifacts is not like the others: New methods to account for the unique implications of indirect range-restriction corrections in organizational research. Unpublished manuscript.

Examples

```
var\_error\_u(u = .8, n_i = 100, n_a = 200)
var\_error\_u(u = .8, n_i = 100, n_a = NA)
```

wt_cov

Compute weighted covariances

Description

Compute the weighted covariance among variables in a matrix or between the variables in two separate matrices/vectors.

Usage

```
wt_cov(x, y = NULL, wt = NULL, as_cor = FALSE, use = "everything")
wt_cor(x, y = NULL, wt = NULL, use = "everything")
```

132 wt_dist

Arguments

X	Vector or matrix of x variables.
У	Vector or matrix of y variables
wt	Vector of weights
as_cor	Logical scalar that determines whether the covariances should be standardized (TRUE) or unstandardized (FALSE).
use	Method for handling missing values. "everything" uses all values and does not account for missingness, "listwise" uses only complete cases, and "pairwise" uses pairwise deletion.

Value

Scalar, vector, or matrix of covariances.

Examples

```
wt_{cov}(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_{cor} = FALSE, use = "everything")

wt_{cov}(x = c(1, 0, 2), y = c(1, 2, 3), wt = c(1, 2, 2), as_{cor} = TRUE, use = "everything")
```

wt_dist

Weighted descriptive statistics for a vector of numbers

Description

Compute the weighted mean and variance of a vector of numeric values. If no weights are supplied, defaults to computing the unweighted mean and the unweighted maximum-likelihood variance.

Usage

```
wt_dist(x, wt = rep(1, length(x)), unbiased = TRUE)
wt_mean(x, wt = rep(1, length(x)))
wt_var(x, wt = rep(1, length(x)), unbiased = TRUE)
```

Arguments

x Vector of values to be analyzed.

wt Weights associated with the values in x.

unbiased Logical scalar determining whether variance should be unbiased (TRUE) or

maximum-likelihood (FALSE).

wt_dist 133

Details

The weighted mean is computed as

$$\bar{x}_w = \frac{\sum_{i=1}^k x_i w_i}{\sum_{i=1}^k w_i}$$

where x is a numeric vector and w is a vector of weights.

The weighted variance is computed as

$$var_w(x) = \frac{\sum_{i=1}^{k} (x_i - \bar{x}_w)^2 w_i}{\sum_{i=1}^{k} w_i}$$

and the unbiased weighted variance is estimated by multiplying $var_w(x)$ by $\frac{k}{k-1}$.

Value

A weighted mean and variance if weights are supplied or an unweighted mean and variance if weights are not supplied.

```
wt_dist(x = c(.1, .3, .5), wt = c(100, 200, 300))

wt_mean(x = c(.1, .3, .5), wt = c(100, 200, 300))

wt_var(x = c(.1, .3, .5), wt = c(100, 200, 300))
```

Index

*Topic datagen	compute_dmod_par, 19
simulate_r_database, 114	confidence, 21
simulate_r_sample, 116	confidence_r, 22
*Topic datasets	convert_es, 4, 23
data_d_bb_multi, 43	convert_ma, 4, 24
data_d_meas_multi,44	correct_d, 4, 25
data_r_bvdrr, 44	correct_d_bias, 28
data_r_bvirr, 45	correct_glass_bias, 29
data_r_gonzalezmule_2014,45	correct_matrix_mvrr, 30
data_r_mcdaniel_1994, 46	correct_means_mvrr, 31
data_r_mcleod_2007,46	correct_r, 4, 25, 32
data_r_meas, 47	correct_r_bias, 34
data_r_meas_multi,47	correct_r_dich, 35
data_r_oh_2009, 48	correct_r_split, 36
data_r_coth_2015, 48	create_ad, 4, 37, 58, 94
data_r_uvdrr, 49	create_ad_group, 41
data_r_uvirr, 49	credibility, 42
*Topic distribution	Ci Calbilley, 42
simulate_alpha, 112	data_d_bb_multi, 43
simulate_matrix, 113	data_d_meas_multi, 5, 44
*Topic regression	data_r_bvdrr, 5, 44
metareg, 103	data_r_bvirr, 5, 45
*Topic univar	data_r_gonzalezmule_2014, 4, 45
mix_dist, 104	data_r_mcdaniel_1994, 4, 46
truncate_dist, 118	data_r_mcleod_2007,46
truncate_mean, 118	data_r_meas, 5, 47
truncate_var, 119	data_r_meas_multi, 5, 47
wt_dist, 132	data_r_oh_2009, 48
*Topic utilities	data_r_roth_2015, 4, 48
generate_directory, 74	data_r_uvdrr, <i>5</i> , 49
•	data_r_uvirr, <i>5</i> , 49
adjust_n_d,5	
adjust_n_r,6	estimate_artifacts, 50
	estimate_length_sb, 53
composite_d_matrix, 7	estimate_q_dist, 54
<pre>composite_d_scalar, 8</pre>	estimate_rel_dist, 55
composite_r_matrix, 7, 11	estimate_rel_sb, 56
composite_r_scalar, 8, 12	estimate_rxxa (estimate_artifacts), 50
composite_rel_matrix,9	estimate_rxxa_u (estimate_artifacts), 50
composite_rel_scalar, 10	estimate_rxxi (estimate_artifacts), 50
composite_u_matrix, 13	estimate_rxxi_u (estimate_artifacts), 50
composite_u_scalar, 14	estimate_ryya (estimate_artifacts), 50
compute_dmod, 15	estimate_ryyi (estimate_artifacts), 50
compute_dmod_npar, 17	estimate_u, 57

INDEX 135

estimate_up (estimate_artifacts), 50	(estimate_var_artifacts), 58
estimate_ut (estimate_artifacts), 50	
estimate_ux (estimate_artifacts), 50	generate_directory,74
estimate_uy (estimate_artifacts), 50	1. 4. 74
estimate_var_artifacts,58	heterogeneity, 4, 74
estimate_var_qxa	ma_d, 4, 76, 81, 94, 103
(estimate_var_artifacts), 58	ma_d_ad, 81
estimate_var_qxi	
(estimate_var_artifacts), 58	ma_d_barebones (ma_d_bb), 84
estimate_var_qya	ma_d_bb, 84
(estimate_var_artifacts), 58	ma_d_ic, 85 ma_d_order2, 88
estimate_var_qyi	
(estimate_var_artifacts), 58	ma_r, 4, 81, 89, 94, 103
estimate_var_rho_int, 65	ma_r_ad, 90, 94
estimate_var_rho_int_bvdrr	ma_r_barebones (ma_r_bb), 97
(estimate_var_rho_int), 65	ma_r_bb, 97
estimate_var_rho_int_bvirr	ma_r_ic, 98
(estimate_var_rho_int), 65	ma_r_order2, 5, 101
estimate_var_rho_int_meas	merge_simdat_r, 103, 114
(estimate_var_rho_int), 65	metareg, 4, 103
estimate_var_rho_int_rb	mix_dist, 104
(estimate_var_rho_int), 65	mix_r_2group, 105
estimate_var_rho_int_uvdrr	psychmeta(psychmeta-package), 3
(estimate_var_rho_int), 65	psychmeta (psychilleta package), 3 psychmeta-package, 3
estimate_var_rho_int_uvirr	psychmeta_news, 106
(estimate_var_rho_int), 65	psychilie ta_flews, 100
estimate_var_rho_tsa, 67	reshape_mat2dat, 4, 107
estimate_var_rho_tsa_bvdrr	reshape_vec2mat, 108
(estimate_var_rho_tsa), 67	reshape_wide2long, 4, 109
	resnape_mideliong, 7, 100
estimate_var_rho_tsa_bvirr	sensitivity, 4, 110
(estimate_var_rho_tsa), 67	sensitivity_bootstrap(sensitivity), 110
estimate_var_rho_tsa_meas	sensitivity_cumulative (sensitivity),
(estimate_var_rho_tsa), 67	110
estimate_var_rho_tsa_rb1	sensitivity_leavelout (sensitivity), 110
(estimate_var_rho_tsa), 67	simulate_alpha, 112
estimate_var_rho_tsa_rb2	simulate_matrix, 113
(estimate_var_rho_tsa), 67	simulate_r_database, 5, 103, 114, 116, 117
estimate_var_rho_tsa_uvdrr	simulate_r_sample, 5, 116
(estimate_var_rho_tsa), 67	sparsify_simdat_r, <i>114</i> , 117
estimate_var_rho_tsa_uvirr	3
(estimate_var_rho_tsa), 67	truncate_dist, 118
estimate_var_rxxa	truncate_mean, 118
(estimate_var_artifacts), 58	truncate_var, 119
estimate_var_rxxi	
(estimate_var_artifacts), 58	unmix_r_2group, 120
estimate_var_ryya	
(estimate_var_artifacts), 58	var_error_alpha, 121
estimate_var_ryyi	var_error_d, 122
(estimate_var_artifacts), 58	var_error_delta, 123
estimate_var_ut	var_error_g, 123
(estimate_var_artifacts), 58	var_error_q, 124
estimate_var_ux	var_error_r, 125

INDEX

```
var_error_r_bvdrr, 126
var_error_r_bvirr, 128
var_error_rel, 126
var_error_u, 130
wt_cor (wt_cov), 131
wt_cov, 131
wt_dist, 132
wt_mean (wt_dist), 132
wt_var (wt_dist), 132
```