MA109 Quiz: Solutions [Unofficial]

Krushnakant

December 2020

Contents

1	1
2	2
3	3
4	4
5	5
6	6

Note: a,b,A,B are constants dependent on Roll Numbers.

Disclaimer

These are unofficial solutions. Correctness is not guaranteed.

Question.

Given
$$A > 0$$
, and $f(x) = \begin{cases} A & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$. Is $f(x)$ continuous at $x = 0$?

Solution.

Suppose f(x) is continuous at x = 0. Then, if given $\epsilon > 0$, there exists a $\delta > 0$ such that $|x - 0| < \delta \implies |f(x) - f(0)| < \epsilon$

Note that f(0) = A, and for x > 0, f(x) = x.

Let $\epsilon = A/2$, and consider the corresponding δ .

Then,
$$0 < x < \delta \implies |x - 0| < \delta \implies |x - A| < A/2$$
, i.e. $x \in (A/2, 3A/2)$

But, if $x = \min\{A/3, \delta/2\}$, then $0 < x < \delta$, but, $x \notin (A/2, 3A/2)$

This gives contradiction, hence f(x) is not continuous at x = 0.

Question.

f(x) is a twice differentiable function on (0,2B) such that f''(x) > 0 on (0,B), f''(B) = 0. Is B an inflection point for y = f(x)?

Solution.

The given statement is False. We give an explicit counterexample.

Let
$$f(x) = (x - B)^4$$
. Then, $f'(x) = 4(x - B)^3$, and $f''(x) = 12(x - B)^2$.

It is easy to see that f''(x) satisfies conditions given in the question.

As f''(x) > 0 for $x \in (0, B)$, f is convex on (0, B).

As f''(x) > 0 for $x \in (B, 2B)$, f is convex on (B, 2B).

Thus, x = B cannot be an inflection point as convexity of the function does not change about the point x = B.

Caution.

Some may give an example for which f''(x) > 0 for $x \in (0, B)$, while f''(x) = 0 for $x \in [B, 2B)$. Note that this function is convex on (0, B) but can be considered concave on (B, 2B). Thus x = B is an inflection point, hence technically this is not a counter-example.

Question.

Prove that for $A, B \ge 1$; $f(x) = x^3 + Ax + B$ has exactly one real root.

Solution.

(i). Existence of the root:

At x = A, f(x) > 0.

At
$$x = -A - B$$
, $f(x) = (-A - B)^3 + A(-A - B) + B < -A^3 - B(A - 1) < 0$ as $A > 1$.

Then, as f(x) is continuous on R, by Intermediate value theorem, there exists a $c \in (-A - B, A)$ such that f(c) = 0

Thus, at least one root exists.

(ii). Uniqueness of root:

First, we observe that $f'(x) = 3x^2 + A > 0 \ \forall x \in \mathbb{R}$

As $f'(x) > 0 \ \forall x \in \mathbb{R}$, f(x) is a strictly increasing function on \mathbb{R} , and hence it is one-to-one.

So if f(c) = 0 then for all x < c, f(x) < 0 and for all x > c, f(x) > 0.

Therefore only one c exists such that f(c) = 0.

Aliter. Suppose there are distinct c_1, c_2 such that $f(c_1) = f(c_2) = 0$, then, as f is differentiable (and thus continuous) on \mathbb{R} , using Rolle's theorem, there must be a $c_3 \in (c_1, c_2)$ such that $f'(c_3) = 0$ which contradicts f'(x) being strictly positive. Hence, root must be unique.

Question.

Let (x_n) be a convergent sequence of non negative real numbers.

Then, prove that $x \ge b$ if $x = \lim_{n \to \infty} (b + x_n)$

Solution.

$$x = \lim_{n \to \infty} (b + x_n)$$

Claim 1. $\lim_{n\to\infty} b = b$.

This can be seen because, for any $\epsilon > 0$, N = 1 ensures that for all $n \in \mathbb{N}, n > N$ $|b-b| = 0 < \epsilon$

Claim 2.

Suppose $\lim_{n\to\infty}(x_n)=L$. Then, $L\geq 0$.

[Note: We can write that because L exists, as (x_n) is given to be convergent.]

Proof: Suppose L < 0. Let L = -K for some K > 0

Then, if we take $\epsilon = K/2$,

for any $N \in \mathbb{N}$, for all $n \in \mathbb{N}$, n > N,

$$|x_n - L| = |x_n + K| = x_n + K \ge K > K/2$$

Thus, as no $N \in \mathbb{N}$ satisfies the $\epsilon - N$ condition for $\epsilon = K/2$; we cannot have L < 0. Thus, we conclude that $L \ge 0$.

Now, we can use algebra of limits and say that

$$x = \lim_{n \to \infty} (b + x_n) = \lim_{n \to \infty} b + \lim_{n \to \infty} x_n = b + L \ge b$$
, as $L \ge 0$

For simplicity we assume a = 1. For any other a, solution will be similar.

Question.

Evaluate $\lim_{n\to\infty} S_n$, where

$$S_n = \sum_{k=1}^n \cos\left(\frac{2\pi}{3} \cdot \frac{k}{n}\right)$$

Solution.

Let $f(x) = \cos(2\pi x/3)$.

We can observe that S_n is the Riemann sum of f(x) on the interval [0,1], with respect to the partition $P = \left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, 1\right\}$

The tags/markings corresponding to the partition are $\left\{\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, 1\right\}$

As f(x) is a continuous function on \mathbb{R} , hence it is Riemann integrable.

As
$$n \to \infty$$
, $||P|| = \frac{1}{n} \to 0$, hence, $\lim_{n \to \infty} S_n = \int_0^1 \cos(2\pi x/3) dx$

Let
$$F(x) = \frac{3}{2\pi} \sin\left(\frac{2\pi x}{3}\right)$$
, then $F'(x) = f(x)$, hence by FTC,

$$\int_0^1 \cos(2\pi x/3) dx = F(1) - F(0) = \frac{3}{2\pi} [\sin(2\pi/3) - \sin(0)] = \frac{3\sqrt{3}}{4\pi}$$

Therefore,
$$\lim_{n\to\infty} S_n = \frac{3\sqrt{3}}{4\pi}$$

Question.

For $f(x) = \cos(x)$, calculate the Taylor polynomial of degree 3 around the point $x = \pi/2$, call it $P_3(x)$, and check if for $x \in [\pi/2, \pi]$; $|f(x) - P_3(x)| < 2C/3$, where $C = \frac{B}{B+1}$.

Solution.

$$f(x) = \cos(x), f'(x) = -\sin(x), f''(x) = -\cos(x), f'''(x) = \sin(x), f''''(x) = \cos(x)$$

At $x = \pi/2$,

$$f(x) = 0$$
, $f'(x) = -1$, $f''(x) = 0$, $f'''(x) = 1$.

$$P_3(x) = \sum_{n=0}^{3} \frac{f^{(n)}(\pi/2)}{n!} \left(x - \frac{\pi}{2}\right)^n$$

Therefore,

$$P_3(x) = -\left(x - \frac{\pi}{2}\right) + \frac{\left(x - \frac{\pi}{2}\right)^3}{3!}$$

The following holds for $x \in [\pi/2, \pi]$

We know from Taylor's theorem that there exists a $c \in [\pi/2, x)$ such that:

$$|f(x) - P_3(x)| = |R_3(x)| = \left| \frac{f''''(c) \left(x - \frac{\pi}{2} \right)^4}{4!} \right| = \left| \frac{\cos(c) \left(x - \frac{\pi}{2} \right)^4}{4!} \right|$$

We have $|\cos(c)| \le 1$ and $|x - \pi/2| \le \pi/2 < 1.6$ in the concerned domain.

Therefore, $|R_3(x)| < (1.6)^4/4! < 7/24 < 1/3$.

You can deduce the answer from here. For example, for C=2/3, The Statement that $|f(x)-P_3(x)|<2C/3$ for all $x\in[\pi/2,\pi]$ is **true**.