Mark Gluzman

Mg3627

Homework 4

ELEN 4903

Due 4/15

Problem 1 (K-means) – 35 points

Implement the K-means algorithm discussed in class. Generate 500 observations from a mixture of three Gaussians on \mathbb{R}^2 with mixing weights $\pi = [0.2, 0.5, 0.3]$ and means μ and covariances Σ ,

$$\mu_1 = \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \; \Sigma_1 = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right], \qquad \mu_2 = \left[\begin{array}{c} 3 \\ 0 \end{array} \right], \; \Sigma_2 = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right], \qquad \mu_3 = \left[\begin{array}{c} 0 \\ 3 \end{array} \right], \; \Sigma_3 = \left[\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right].$$

1. For K = 2, 3, 4, 5, plot the value of the K-means objective function per iteration for 20 iterations (the algorithm may converge before that).

K=2

K=4

K=5

2. For K=3,5, plot the 500 data points and indicate the cluster of each for the final iteration by marking it with a color or a symbol.

Problem 2 (Matrix factorization) -85 points

In this problem, you will implement the MAP inference algorithm for the matrix completion problem discussed in class. As a reminder, for users $u \in \mathbb{R}^d$ and movies $v \in \mathbb{R}^d$, we have

$$u_i \sim N(0, \lambda^{-1}I), \quad i = 1, \dots, N_1, \qquad v_j \sim N(0, \lambda^{-1}I), \quad j = 1, \dots, N_2.$$

We are given an $N_1 \times N_2$ matrix M with missing values. Given the set $\Omega = \{(i,j) : M_{ij} \text{ is measured}\}$, for each $(i,j) \in \Omega$ we model $M_{ij} \sim N(u_i^T v_j, \sigma^2)$.

Run your code on the user-movie ratings dataset provided on Courseworks and the course website. For your algorithm, set $\sigma^2=0.25$, d=10 and $\lambda=10$. Train the model on the larger training set for 100 iterations. For each user-movie pair in the test set, predict the rating by mapping the relevant dot product to the closest integer from 1 to 5. Since the equations are in the slides, there's no need to re-derive it.

We get 2856 right predictions for test data.

1. Plot the RMSE of your predictions on the held out test set provided for iteration number 2 to 100.

2. On a separate plot, show the log joint likelihood for iterations 2 to 100.

3. After 100 iterations, pick three reasonably well-known movies from the list provided and for each movie find the 5 closest movies according to Euclidean distance using their respective locations v_j . List the query movie, the five nearest movies and their distances. A mapping from index to movie is provided with the data.

Star Trek: First Contact (1996) (j=222)

j	name	norm
265	Hunt for Red October, The (1990)	0.720150181219108
257	Men in Black (1997)	0.762281766781272
96	Terminator 2: Judgment Day (1991)	0.770290926327502
751	Tomorrow Never Dies (1997)	0.800504226487610
227	Star Trek VI: The Undiscovered Country (1991)	0.812414918469992

Schindler's List (1993) (j=318)

1:	0.000.0	D C KING
	i name	norm
J	Harrie	1101111

193	Right Stuff, The (1983)	0.721615915802672
527	Gandhi (1982)	0.728778487306746
496	It's a Wonderful Life (1946)	0.745928165011728
648	Quiet Man, The (1952)	0.765626906619497
191	Amadeus (1984)	0.788624310444579

Men in Black (1997) (j=257)

j	name	norm
751	Tomorrow Never Dies (1997)	0.483932631781324
210	Indiana Jones and the Last	0.582607768141017
	Crusade (1989)	
28	Apollo 13 (1995)	0.670110739017594
73	Maverick (1994)	0.671661119087559
204	Back to the Future (1985)	0.699454320524803

- 4. After 100 iterations, perform K-means on the vectors u_1, \ldots, u_{N_1} learned by your algorithm. Set K=20, which is an arbitrary number. The centroids can be interpreted as personality types (as far as movies are concerned).
 - Pick the 5 centroids corresponding to the 5 clusters that have the most data. For each cluster selected, give the number of users allocated to that cluster.
 - For each of these 5 centroids, list the 10 movies with the largest (most positive) dot product with that centroid. Also give the value of the dot product next to the movie.

1)K=5

Users=86

Movies, product:

127 4.811536 318 4.725766

483 4.699937 64 4.671357

357 4.663574

187 4.637208

511 4.615301 98 4.594775

603 4.565392

50 4.554406

Users=75

Movies, product:

285 4.550719 100 4.544112 474 4.502968 59 4.502309 124 4.472952 60 4.457969 408 4.448727

4.4053694.403207

9 4.414366

3)K=7

Users=72

Movies, product:

169 4.454813 963 4.452296 663 4.414917 285 4.384483 64 4.367692 114 4.356898 56 4.348003 1019 4.32295 900 4.321017 313 4.320852

4)K=2

Users=63

Movies, product:

272 4.541741114 4.440276315 4.43941316 4.415547

```
64 4.390447
173 4.377597
169 4.356413
12 4.348799
515 4.281796
50 4.223
```

5)K=1

Users=62

Movies, product:

```
251 4.427672
408 4.41937
316 4.412835
315 4.358765
170 4.354415
169 4.350802
272 4.305891
114 4.296356
87 4.29002
318 4.28138
```

- 5. After 100 iterations, perform K-means on the vectors v_1, \ldots, v_{N_2} learned by your algorithm. Set K = 20, which is an arbitrary number.
 - Pick the 5 centroids corresponding to the 5 clusters that have the most data. For each cluster selected, give the number of movies allocated to that cluster.
 - For each of these 5 centroids, list the 10 movies with the smallest Euclidean distance to that centroid. Also give the value of the Euclidean distance next to the movie.

1) K=20 Movies=181

Movies, norms:

```
6850.5809771020.8364191550.8845098550.9092959150.9543126560.9730718240.976256
```

445 0.979414

- 594 0.986478
- 26 0.98777
- 2) K=10 Movies-128 Movies, norms:
 - 832 0.83329
 - 275 0.904779
 - 102 0.914897
 - 685 0.941197
 - 181 0.953546
 - 205 0.962934
 - 633 0.978939
 - 646 0.981474
 - 827 0.991828
 - 454 1.037712
- 3) K=7 Movies= 126
 - Movies, norms:
 - 685 1.208627
 - 181 1.324258
 - 445 1.394391
 - 102 1.402213
 - 302 1.432047
 - 205 1.48524
 - 832 1.496041
 - 700 1.496434
 - 926 1.496472
 - 827 1.503925
- 4) K=13 Movies=106
 - Movies, norms:
 - 874 0.542698
 - 860 0.569779
 - 571 0.572453
 - 227 0.605792829 0.605801
 - 273 0.616113
 - 583 0.621318
 - 573 0.625397
 - 345 0.649258

360 0.660692

5) K=11 Movies 105 Movies, norms:

- 106 0.534191
- 908 0.574216
- 378 0.577228
- 844 0.581871
- 70 0.619979
- 616 0.643111
- 924 0.645678
- 786 0.648098
- 411 0.676988
- 579 0.68727