Lagrange Multipliers

Gabriela Georgieva Angelina Kuznetsova Fedor Shafranov

December 10, 2022

Abstract

Oftentimes one wants to find a minima or maxima of a (differentiable) function subject to one or more constraints. An elegant way to find an extremum is by using the so-called Lagrange Multipliers. Lagrange Multipliers are handy when solving optimization problems in Economics, Business, Computer Science, etc.

Contents

1	Lagrange Multipliers			
	1.1	Introduction		
	1.2	Single Constraint		
	1.3	Multiple Constraints		
	1.4	Second Derivative Test		
	1.5	Lagrangian		
2 Applications				

1 Lagrange Multipliers

1.1 Introduction

Theorem 1. (Implicit Function Theorem)

Suppose that $F: \mathbb{R}^{n+1} \to \mathbb{R}$ is C^1 . We will denote points in \mathbb{R}^{n+1} by (\boldsymbol{x}, z) , where $\boldsymbol{x} \in \mathbb{R}^n$ and $z \in \mathbb{R}$. Assume

$$F(\boldsymbol{x}_0, z_0) = c$$
 and $\nabla F(\boldsymbol{x}_0, z_0) \neq \mathbf{0}$

Then there is a ball U that contains \mathbf{x}_0 and a neighborhood V of z_0 in \mathbb{R} such that there is a function $z = g(\mathbf{x})$ defined for \mathbf{x} in U and z in V that satisfies

$$F(\boldsymbol{x}, g(\boldsymbol{x})) = c$$

Theorem 2. (Method of Lagrange Multipliers)

Suppose that $f: U \subset \mathbb{R}^n \to \mathbb{R}$ and $g: U \subset \mathbb{R}^n \to \mathbb{R}$ are C^1 . Let $\mathbf{x}_0 \in U$ and $g(\mathbf{x}_0) = c$, and let S be the level set for g with value c (i.e these are the set of points $\mathbf{x} \in \mathbb{R}^n$ that satisfy $g(\mathbf{x}) = c$). Assume $\nabla g(\mathbf{x}_0) \neq \mathbf{0}$.

If f achieves a local extremum at x_0 , then there exists λ such that

$$\nabla f(\boldsymbol{x}_0) = \lambda \nabla g(\boldsymbol{x}_0)$$

Proof. For the sake of simplicity, take n=3. Then we are dealing with a level surface of the function g(x, y, x) = c though the point (x_0, y_0, z_0) . By the Implicit Function Theorem we know that there is a function $z = \phi(x, y)$

- 1.2 Single Constraint
- 1.3 Multiple Constraints
- 1.4 Second Derivative Test
- 1.5 Lagrangian
- 2 Applications