# G02\_HW15

# Group 02 HW 15 2019/12/24

| ID        | Name | Your works                         | Times you spend | Self score | TA |
|-----------|------|------------------------------------|-----------------|------------|----|
| 108202529 | 葉揚昀  | PPT, Tracker, random theta fitting | 7hr             | 7          |    |
| 108202009 | 田家瑋  | Tracker, modeling fitting          | 7hr             | 2          |    |
| 108202016 | 張家菖  | Purchase spring, stepper motor     | 4hr             | 7          |    |

#### 1. Our progress

#### Device:

- Ensure the new stepper motor can push our device.
- Combine 3 different springs with two screws respectively.
- Combine 2 blocks with a screw.
   (Make 2 pendulums drop in the same time.)
- Dig a hole on the board to fix stepper motor.



Fig.1 Three screws (axis) can fix pendulums.



Fig.2 Combine the springs with two screws respectively. (Use plastic-soil.)



Fig.3 We use a 9V pattery as power supply.





Fig.4 Entire stepper motor device.



Fig.5 The gear stuck on the stepper motor with plastic-soil.



Fig.6 The two blocks with a screw to ensure 2 pendulums drop in the mean time.



Fig.7 The hole on the board to fix stepper motor .

#### 2. Measure

- Mass of device (screws, pendulum and spring)
- Values of k (Apply Hooke's law)

| Spring | x0 (m)  | x' (m) | ∆x (m)  | W (kgw) | F (Nt)   | K (Nt/m) |
|--------|---------|--------|---------|---------|----------|----------|
| 1(3)   | 0.1372  | , ,    |         |         | ·        | ·        |
| 1(3)   | 0.1372  | 0.1430 | 0.0004  | 0.009   | 0.0722   | 103.0333 |
| 2(1)   | 0.0448  | 0.0479 | 0.0031  | 0.089   | 0.8722   | 281.3548 |
| 3(粗)   | 0.15025 | 0.1542 | 0.00395 | 0.08526 | 0.835548 | 211.5311 |
| 4(糾)   | 0.1498  | 0.161  | 0.0112  | 0.08526 | 0.835548 | 74.6025  |

Table.1 Measure the values of k (4 spring)

| Devices             | Mass (g) |
|---------------------|----------|
| Pendulum_1          | 69.19    |
| Pendulum_2          | 69.09    |
| PVC_cylinder        | 228.48   |
| Screw + Bearing (1) | 13.39    |
| Screw + Bearing (1) | 13.38    |
| Spring              | 26.65    |

Table.2 The mass of devices

Random theta (pendulums with different initial conditions)



Fig.8 Random initial theta1 & theta2

### Try1.

- 1. RK4 fitted coefficient of air resistance.
- Problem: It would decay too fast.



Fig.9 RK4 fitting theta1 (original time partition of data)

#### Try2.

Try solve Try1.: Slice each time interval into smaller tree parts.

(Make norm of time partition into 1/3 times :  $||p'|| = \frac{1}{3} ||p||$ )

Problem: It also decayed too fast.



```
for i in range (0, num):
    if i % 3 == 0:
        i_prime = int(i/3)
        tp.append(t[i_prime])
    else:
        i_prime = int(i/3)
        div = t[i_prime] + 1/3 * (i % 3) *
(t[i_prime + 1] - t[i_prime])
        tp.append(div)
```

Fig.9 RK4 fitting theta1 (New time partition of data)

Try3. (Two normal modes superposition)

• Normal mode 1 ( $\theta_1 = \theta_2$  all the time):

Set 
$$(\theta_1) q_1 = \frac{\theta_1 + \theta_2}{2} = A_1 e^{i\omega_1 t} \rightarrow damped: q_1 = A_1 e^{-\alpha_1 t} e^{i(\omega_1 t + \varphi_1)}$$
 (1)

• Normal mode 2 ( $\theta_1 = -\theta_2$  all the time):

Set 
$$(\theta_1) q_2 = \frac{\theta_1 - \theta_2}{2} = A_2 e^{i\omega_2 t} \rightarrow damped: q_2 = A_2 e^{-\alpha_2 t} e^{i(\omega_2 t + \varphi_2)}$$
 (2)

Combine (1) & (2), we get:

$$\theta_1 = q_1 + q_2$$

$$\theta_2 = q_1 - q_2$$

Where  $\omega_1$  is normal mode 1 frequency and  $\omega_2$  is normal mode 2 frequency.

Try3. Use it as model function to fit:



Fig.10 Model function fitting theta1 (New time partition of data)