AMENDMENTS TO THE CLAIMS

1. (Withdrawn) A process for preparing an alkyl 3-(4-tetrahydropyranyl)-3-oxopropanoate compound represented by the formula (1):

$$O = O = O$$

$$O = O$$

wherein R^1 and R^2 may be the same or different from each other, and represent a group which does not participate in the reaction, and R^1 and R^2 may be bonded to form a ring, and the ring may contain a hetero atom(s), and R^3 represents a hydrocarbon group,

which comprises reacting 4-acyltetrahydropyran represented by the formula (2):

$$O CHR^1R^2$$
(2)

wherein R^1 and R^2 have the same meanings as defined above, and a carbonic acid diester represented by the formula (3):

$$R^3O OR^3$$
 (3)

wherein R³ has the same meanings as defined above, and two R³s may be bonded to each other to form a ring,

Application No.: 10/583,473

Reply dated December 28, 2009

Reply to Office Action of September 28, 2009

Docket No.: 0283-0226PUS1

Page 3 of 17

in the presence of a base.

2. (Withdrawn) The process according to Claim 1, wherein R¹ and R² may be the

same or different from each other, and represent at least one selected from the group consisting

of a hydrogen atom; a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl

group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl

group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group; a benzyl group,

a phenethyl group; a phenyl group, a tolyl group; a methoxy group, an ethoxy group, a propoxy

group; a benzyloxy group, a phenethyloxy group; a phenoxy group; a formyl group, an acetyl

group, a propionyl group, a benzoyl group; a formyloxy group, an acetoxy group, a benzoyloxy

group; fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and R³ is the same or

different from each other, and each represent at least one selected from the group consisting of a

methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a

heptyl group, an octyl group, a nonyl group, a decyl group, a benzyl group, a phenethyl group, a

phenyl group, a naphthyl group and an anthryl group.

(Withdrawn) The process according to Claim 1, wherein an amount of the

carbonic acid diester to be used is 1.0 to 50 mol based on 1 mol of the 4-acyltetrahydropyran.

4. (Withdrawn) The process according to Claim 1, wherein the base is at least one

selected from the group consisting of sodium hydride; sodium methoxide, sodium ethoxide,

sodium n-propoxide, sodium isopropoxide, sodium n-butoxide, sodium tert-butoxide, potassium

methoxide, potassium ethoxide, potassium n-propoxide, potassium isopropoxide, potassium n-

butoxide, potassium tert-butoxide; sodium carbonate, potassium carbonate; sodium hydrogen carbonate, potassium hydrogen carbonate; sodium hydroxide, and potassium hydroxide.

- (Withdrawn) The process according to Claim 1, wherein an amount of the base to be used is 0.1 to 10 mol based on 1 mol of the 4-acyltetrahydropyran.
- 6. (Withdrawn) The process according to Claim 1, wherein the reaction is carried out by mixing 4-acyltetrahydropyran, the carbonic acid diester and the base with stirring at 20 to 150°C.
- 7. (Withdrawn) The process for preparing the alkyl 3-(4-tetrahydropyranyl)-3oxopropanoate compound according to Claim 1, wherein the 4-acyltetrahydropyran represented by the formula (2) is obtained by subjecting 4-acyl-4-alkoxycarbonyltetrahydropyran represented by the formula (4):

$$R^2R^1HC$$
 OR^4 (4)

wherein R¹ and R² have the same meanings as defined above, R⁴ represents an alkyl group,

to decarboxylation in the presence of an acid.

(Withdrawn) The process according to Claim 7, wherein the acid is hydrochloric acid or sulfuric acid.

- 9. (Withdrawn) The process according to Claim 7, wherein the decarboxylation is carried out at a temperature of 90 to 140°C.
- 10. (Currently amended) A process for preparing 4-acyltetrahydropyran represented by the formula (2):

$$O CHR^1R^2$$
(2)

wherein R¹ and R² may be the same or different from each other, and represent a group which does not participate in the reaction, and R¹ and R² may be bonded to form a ring, and the ring may contain a hetero atom(s),

which comprises subjecting 4-acyl-4-alkoxycarbonyltetrahydropyran represented by the formula (4):

$$R^2R^1HC$$
 OR^4 (4)

wherein R¹ and R² have the same meanings as defined above, and R⁴ represents an alkyl group,

to decarboxylation in the presence of an acid a mineral acid.

Application No.: 10/583,473 Docket No.: 0283-0226PUS1
Reply dated December 28, 2009 Page 6 of 17

Reply to Office Action of September 28, 2009

11. (Currently amended) The process according to Claim 10, wherein the mineral acid is hydrochloric acid or sulfuric acid.

- 12. (Original) The process according to Claim 10, wherein the decarboxylation is carried out at a temperature of 90 to 140°C.
- 13. (Withdrawn) An alkyl 3-(4-tetrahydropyranyl)-3-oxopropanoate compound represented by the formula (1):

wherein R^1 and R^2 may be the same or different from each other, and represent a group which does not participate in the reaction, and R^3 represents a hydrocarbon group.

14. (Withdrawn) A 4-propionyl-4-alkoxytetrahydropyran represented by the formula (5):

$$H_3CH_2C$$
 OR^4 (5)

wherein R⁴ has the same meaning as defined above.

Application No.: 10/583,473 Docket No.: 0283-0226PUS1 Page 7 of 17

Reply dated December 28, 2009

Reply to Office Action of September 28, 2009

(Withdrawn) The 4-propionyl-4-alkoxytetrahydropyran according to Claim 14, 15.

wherein R⁴ is a methyl group.

(New) The process according to Claim 10, wherein R¹ and R² may be the same or 16.

different from each other, and each represents one selected from the group consisting of a

hydrogen atom; a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a

hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a

dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group; a benzyl group, a

phenethyl group; a phenyl group, a tolyl group; a methoxy group, an ethoxy group, a propoxy

group; a benzyloxy group, a phenethyloxy group; a phenoxy group; a formyl group, an acetyl

group, a propionyl group, a benzoyl group; a formyloxy group, an acetoxy group, a benzoyloxy

group; a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

(New) The process according to Claim 10, wherein R⁴ is a linear or branched 17.

alkyl group having 1 to 6 carbon atoms.

18. (New) The process according to Claim 10, wherein the compound of the formula

(4) is selected from the group consisting of 4-acetyl-4-methoxycarbonyltetrahydropyran and 4-

propionyl-4-methoxycarbonyltetrahydropyran.

19. (New) The process according to Claim 10, wherein the compound of the formula

(2) is selected from the group consisting of 4-acetyltetrahydropyran and 4-propionyltetrahydro-

pyran.

Application No.: 10/583,473 Docket No.: 0283-0226PUS1 Page 8 of 17

Reply dated December 28, 2009

Reply to Office Action of September 28, 2009

20. (New) The process according to Claim 10, wherein an amount of the mineral acid

is 0.1 to 20 mol based on 1 mol of the 4-acyl-4-alkoxycarbonyltetrahydropyran.

21. (New) The process according to Claim 10, wherein an amount of the mineral acid

is 1 to 10 mol based on 1 mol of the 4-acyl-4-alkoxycarbonyltetrahydropyran.

22. (New) The process according to Claim 10, wherein the reaction is carried out in

the presence of a solvent.

23. (New) The process according to Claim 22, wherein the solvent is selected from

the group consisting of water; an alcohol; an amide; an urea; an ether; an aliphatic hydrocarbon;

and an aromatic hydrocarbon.

24. (New) The process according to Claim 22, wherein the solvent is selected from

the group consisting of water; methanol, ethanol, isopropyl alcohol, t-butyl alcohol, N,N-

dimethylformamide, N-methylpyrrolidone, N,N'-dimethylimidazolidinone, tetrahydrofuran,

hexane, heptane, toluene and xylene.

25. (New) The process according to Claim 22, wherein an amount of the solvent is 3

to 10 ml based on 1 g of the 4-acyl-4-alkoxycarbonyltetrahydropyran.

BIRCH, STEWART, KOLASCH & BIRCH, LLP

JWB/JWB/mua