MACHINE LEARNING

Clasificador Naïve Bayes

Edgar Acuna
Departamento de Matematicas
Universidad de Puerto Rico en Mayaguez

Construccion de un clasificador Bayesiano estimando f(x/c)

- Asumir que se quiere predecir la variable Y que asume G valores distintos y que estos valores son $v_1, v_2, \dots v_G$.
- Asumir que hay m atributos de entrada llamados $X_1, X_2, ... X_m$
- Dividir el conjunto de datos en G subconjuntos de datos llamados $DS_1, DS_2, \dots DS_G$.
- Definir DS_i = Registros en los cuales $Y=v_i$
- En cada grupo DS_i , usamos estimacion de densidad para estimar la distribucion de las variables de entrada entre los registros $Y=v_i$. Es decir, la funcion de probabilidad conjunta por clase $P(X_1, X_2, ... X_m \mid Y=v_i)$
- Idea 2: Para predecir la clase a la cual pertenece el nuevo vector de entradas $(X_1 = u_1, X_2 = u_2,, X_m = u_m)$ es mejor hallar la clase Y=vi para la cual la probabilidad posterior $P(Y=v_i \mid X_1, X_2, ..., X_m)$ sea la mayor posible.

Terminologia

MLE (Estimador Maximo Verosimil):

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v)$$

MAP (Estimador Maximo a Posteriori):

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

COMP 6315 Edgar Acuna

3

Estimacion de un Clasificador Bayesiano[1]

- 1. Estimar la distribucion de las predictoras en cada clase. Es decir, estimar $P(X_1, X_2, ... X_m / Y=v_i)$.
- 2. Estimar $P(Y=v_i)$. Como la fraccion de registros con $Y=v_i$.
- 3. Para hacer una nueva prediccion usar:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m)$$

$$= \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

Estimacion de un clasificador Bayesiano[2]

- 1. Estimar la distribucion de las predictoras en cada clase. Es decir, estimar $P(X_1, X_2, ... X_m / Y=v_i)$.
- 3. Estimar $P(Y=v_i)$. Como la fraccio de registros con $Y=v_i$.
- 4. Para una nueva prediccion:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v)$$

= $\underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_n)$

Podemos usar nuestro favorito estimador de densidad.

Tenemos dos opciones:

- •Estimador de densidad conjunta (kernel, k-nn)
- Estinador Naïve de densidad

Clasificador Naïve Bayes[1]

En el caso del clasificador naive se supone que las variables predictoras son independientes en cada una de las clases. Esto es,

$$P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) = P(X_1 = u_1 / Y = v) \dots P(X_m = u_m / Y = v).$$

Luego,

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)$$

Se convierte en:

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v) \prod_{j=1}^{m} P(X_{j} = u_{j} \mid Y = v)$$

COMP 6315 Edgar Acuna

6

Clasificador Naïve Bayes[2]

Si hay muchos atributos de entrada este producto puede producir underflow, asi que es mejor usar logaritmos.

$$Y^{\text{predict}} = \underset{v}{\operatorname{argmax}} \left(\log P(Y = v) + \sum_{j=1}^{m} \log P(X_j = u_j \mid Y = v) \right)$$

Si X_j es discreta entonces $P(X_j=u_j/Y=v) = (\#de\ records\ con\ X_j=u_j\ en\ la\ clase\ v)/\#\ de$

records en la clase v. Es decir, la frecuencia relativa.

Clasificador Naïve Bayes[3]

El clasificador Naïve Bayes puede ser aplicado tambien cuando hay predictoras continuas, hay dos alternativas

- a) Aplicar previamente un metodo de discretizacion tal como: Usando intervalos de igual ancho, usando intervalos con igual frecuencia, ChiMerge,1R, Discretizacion usando el metodo de la entropia. Todos ellos estan disponible en la libreria dprep (ver disc.mentr, disc.ew, disc.ef y chiMerge). Algunas veces discretizacion solo en dos intervalos es usada.
- b) Asumiendo una distribucion para cada predictora, por lo general esta se asume Gausiana, con media y varianza estimada de los datos. En forma mas general se puede estimar la distribucion usando un metodo tal como el kernel (muy pesado computacionalmente).

COMP 6315 Edgar Acuna

8

Clasificador Naïve Bayes [4]

Asi en que caso que X_i sea continua,

$$P[X_j = a_j / C_i] = \frac{1}{s_j \sqrt{2\pi}} \exp\left[\frac{-(a_i - \bar{x}_j)^2}{2s_j^2}\right]$$

Donde, \bar{X}_j y S_j son la media y la varianza de los valores de la variable X_j en la clase C_{i} .

La libreria e1071 de R contiene una funcion **naiveBayes** que calcula el clasificador naïve Bayes, tanto para datos discretos como continuos.

Naïve Bayes tambien esta disponible en Weka, Rapidminer, y en la libreria scikit-learn de Python.

COMP 6315 Edgar Acuna

9

Ejemplo 1.(atributos discretos solamente)

X1	X2	X3	Υ
0	0	1	0
0	1	0	0
1	1	0	0
0	0	1	1
1	1	1	1
0	0	1	1
1	1	0	1

Ejemplo 1. (Cont.)

$$P(Y=0)=3/7$$
 $P(Y=1)=4/7$

A que clase sera asignada el registro (X1=0,X2=0,X3=1)?

$$P(X_1 = 0, X_2 = 0, X_3 = 1/Y = 0) = P(X_1 = 0/Y = 0)P(X_2 = 0/Y = 0)$$

 $P(X_3 = 1/Y = 0) = (2/3)(1/3)(1/3) = 2/27$

$$P(X_1 = 0, X_2 = 0, X_3 = 1/Y = 1) = P(X_1 = 0/Y = 1)P(X_2 = 0/Y = 1)$$

 $P(X_3 = 1/Y = 1) = (2/4)(2/4)(3/4) = 3/16$

Como (3/7)(2/27)<(4/7)(3/16) entonces (X1=0,X2=0, x3=1) sera asignado a la clase 1. Si el objeto esta asignado a la clase 0 entonces el NB comete un error.

COMP 6315

Edgar Acuna

Ejemplo 2. (atributos discretos y continuos)

X1	X2	Х3	X4	Υ
0	0	1	3.15	0
0	1	0	8.17	0
1	1	0	5.72	0
0	0	1	7.16	1
1	1	1	9.32	1
0	0	1	12.81	1
1	1	0	15.48	1

COMP 6315 Edgar Acuna

12

```
#Metodo 1. Discretizando la columna 4
dnaiveeje2=disc.ew(naiveeje2,c(4:5))
 dnaiveeje2
   col1 col2 col3 col4 col5
[1,] 0 0 1 1
[2,] 0 1 0 1 0 [3,] 1 1 0 0 [4,] 0 0 1 1 1 1 [5,] 1 1 1 2 1 [6,] 0 0 1 2 1
[7,] 1 1 0 2
#Metodo 2. Sin discretizar la columna 4
Media y desviacion estandar de la col4 en cada clase
mean(naiveeje2[naiveeje2[,5]==0,4])
1] 5.68
> mean(naiveeje2[naiveeje2[,5]==1,4])
≻[1] 11.1925
```

```
> sd(naiveeje2[naiveeje2[,5]==0,4])
[1] 2.510239
> sd(naiveeje2[naiveeje2[,5]==1,4])
[1] 3.686293
> # a que clase sera asignado el vector(0,0,1,4.25)?
Hay que calcular
P[X1=0/Y=0]P[X2=0/Y=0]P[X3=1/Y=0]f(X4=425/Y=0]P[Y=0]
y compararla con
P[X1=0/Y=1]P[X2=0/Y=1]P[x3=1/Y=1]f(x4=425/Y=1]P[Y=1]
> (2/27)*dnorm(4.25,5.68,2.5102)*3/7
[1] 0.0042896
> (3/16)*dnorm(4.25,11.1925,3.6862)*4/7
[1] 0.0019681
Luego el vector sera asignado a la clase 0.
>#usando naivebayes de e1071
naivebayes21=as.data.frame(naiveeje2)
a=naiveBayes(col5~.,data=naivebayes21)
a
                COMP 6315
                                                Edgar Acuna
```

```
>.....
>A-priori probabilities:
>Y
>0.4285714 0.5714286
>Conditional probabilities:
> col1
> Y [,1] [,2]
> 0 0.3333333 0.5773503
> 1 0.5000000 0.5773503
>col4
>Y [,1] [,2]
> 0 5.6800 2.510239
> 1 11.1925 3.686293
```

Naive Bayes para Bupa

Sin discretizar

Discretizando con el metodo de la entropia

```
>dbupa=disc.mentr(bupa,1:7)
#convirtiendo cada variable en un factor de lo contrario no considerada que
#ha sido discretizada
>for (i in 1:7)
+dbupa[,i]=as.factor(dbupa[,i])
>b=naiveBayes(V7~.,data=dbupa)
>pred=predict(b,dbupa[,-7])
>error=sum(pred!=bupa[,7])/dim(dbupa)[1]
>error
[1] 0.3681159
```

Naïve Bayes para Bupa (cont.)

```
Discretizando por el metodo ChiMerge
chibupa=chiMerge(bupa,1:6)
for (i in 1:7)
chibupa[,i]=as.factor(chibupa[,i])
b=naiveBayes(V7~.,data=chibupa)
pred=predict(b,chibupa[,-7])
error=sum(pred!=chibupa[,7])/dim(chibupa)[1]
error
[1] 0.1420290
Discretizando usando intervalos de igual ancho
dbupa=disc.ew(bupa,1:6)
#convirtiendo cada variable en un factor
for (i in 1:7)
dbupa[,i]=as.factor(dbupa[,i])
b=naiveBayes(V7~.,data=dbupa)
pred=predict(b,dbupa[,-7])
error=sum(pred!=dbupa[,7])/dim(dbupa)[1]
error
[1] 0.2608696
```

Naïve Bayes en Python

Scikit learn tiene un sub-modulo naïve Bayes que hace clasificacion por Naïve Bayes cuando todas las predictoras son binarias (bernoulliNB), multinomiales (MultinomialNB) y continuas (GaussianNB). Sin embargo, no considera que haya predictoras de distinto tipos.

19 Edgar Acuna

Naïve Bayes en Rapidminer

Naïve Bayes para Diabetes

Sin Descretizar

```
> a=naiveBayes(V9~.,data=diabetes)
> pred=predict(a,diabetes[,-9],type="raw")
> pred1=max.col(pred)
> table(pred1,diabetes[,9])
pred1 1 2
  1 421 104
  2 79 164
> error = (79+104)/768
[1] 0.2382813
Discretizando por el metodo de la entropia
> ddiabetes=disc.mentr(diabetes,1:9)
> for (i in 1:9)
+ ddiabetes[,i]=as.factor(ddiabetes[,i])
> b=naiveBayes(V9~.,data=ddiabetes)
> pred=predict(b,ddiabetes[,-9])
> error=sum(pred!=ddiabetes[,9])/dim(ddiabetes)[1]
> error
[1] 0.2161458
```

Naïve Bayes para Diabetes (cont.)

Discretizando por el metodo ChiMerge

```
ddiabetes=chiMerge(diabetes,1:8)
for (i in 1:9)
+ ddiabetes[,i]=as.factor(ddiabetes[,i])
b=naiveBayes(V9~.,data=ddiabetes)
pred=predict(b,ddiabetes[,-9])
error=sum(pred!=ddiabetes[,9])/dim(ddiabetes)[1]
> error
[1] 0.09895833
```

Discretizando por el metodo de intervalos de igual ancho

```
ddiab=disc.ew(diabetes,1:8)
ddiabetes=disc.ew(diabetes,1:8)
for (i in 1:9)
+ ddiabetes[,i]=as.factor(ddiabetes[,i])
b=naiveBayes(V9~.,data=ddiabetes)
pred=predict(b,ddiabetes[,-9])
error=sum(pred!=ddiabetes[,9])/dim(ddiabetes)[1]
> error
[1] 0.2083333
```

Error por Validacion cruzada-Naïve Bayes

```
library (dprep)
data(diabetes)
crossval(diabetes,method="naiveBayes",repet=1)
The error estimation in each repetition are:
[1] 0.2513021
The mean error estimation by cross-validation using all the repetitions is:
[1] 0.2513021
```

Validacion Cruzada en Rapidminer

The Auto-mpg dataset

Donor: Quinlan, R. (1993)

Number of Instances: 398 minus 6 missing=392 (training: 196 test:

196):

Number of Attributes: 9 including the class attribute7. Attribute Information:

- 1. mpg: continuous (discretizado bad<=25,good>25)
- 2. cylinders: multi-valued discrete
- 3. displacement: continuous (discretizado low<=200, high>200)
- 4. horsepower: continuous ((discretizado low<=90, high>90)
- 5. weight: continuous (discretizado low<=3000, high>3000)
- 6. acceleration: continuous (discretizado low<=15, high>15)
- 7. model year: multi-valued discrete (discretizado 70-74,75-77,78-82
- 8. origin: multi-valued discrete
- 9. car name: string (unique for each instance)

Note: horsepower has 6 missing values

The auto-mpg dataset

```
18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu"
15.0 8 350.0 165.0 3693. 11.5 70 1 "buick skylark 320"
18.0 8 318.0 150.0 3436. 11.0 70 1 "plymouth satellite"
16.0 8 304.0 150.0 3433. 12.0 70 1 "amc rebel sst"
17.0 8 302.0 140.0 3449. 10.5 70 1 "ford torino"
```

27.0 4 140.0 86.00 2790. 15.6 82 1 "ford mustang gl"

44.0 4 97.00 52.00 2130. 24.6 82 2 "vw pickup"

32.0 4 135.0 84.00 2295. 11.6 82 1 "dodge rampage"

28.0 4 120.0 79.00 2625. 18.6 82 1 "ford ranger"

31.0 4 119.0 82.00 2720. 19.4 82 1 "chevy s-10" Edgar Acuna

Resultados del clasificador NB para "MPG": 392 records

Resultados del clasificador NB para: "mpg"

```
> #sin discretizar
> b=naiveBayes(mpg~.,data=autompg)
> pred=predict(b,autompg[,-1],type="raw")
> pred1=max.col(pred)
> table(pred1,autompg[,1])
pred1 1 2
  1 180 8
  2 56 148
> error = 64/392
[1] 0.1632
>#Discretizando manualmente
> b=naiveBayes(mpg~.,data=autompg2)
> pred=predict(b,autompg2[,-1])
> table(pred,autompg2[,1])
pred 1 2
  1 182 7
  2 54 149
> 61/392
[1] 0.1556122
                    COMP 6315
```

Clasificadores Naive Bayes (cont.)

- Las probabilidades cero afectan al clasificador Naïve Bayes (ocurre si un valor de una variable en el conjunto de prueba no aparece en el conjunto de entrenamiento). Para resolver el problema se usa la correccion de Laplace (1+conteo)/(k+n), conteo es numero de veces que se repite un valor de la variable y k indica el numero de valores distintos de la variable, n es el numero de datos
- El proceso de discretizacion tambien parecer afectar el rendimiento del clasificador.
- Naïve Bayes es bastante barato. No tiene problemas para trabajar con 10,000 atributos.
- Niave Bayes puede aplicarse a conjunto de datos con distinto tipos de variables.
- Naïve Bayes es un caso particular de Redes Bayesianas