RICHIAMI SU SOLUZIONE SISTEMI LINEARI

1) Assegnata una matrice $n \times n$ A ed un n-vettore b, si assuma che il sistema lineare

$$(*) Ax = b$$

possa essere risolto con il metodo di eliminazione di Gauss senza la tecnica del Pivoting:

a) Trasformare la matrice A secondo le istruzioni

for
$$k=1,\ldots,n-1$$

for $i=k+1,\ldots,n$
 $c=A(i,k)/A(k,k)$
for $j=k+1,\ldots,n$
 $A(i,j)=A(i,j)-A(k,j)*c$
end
 $A(i,k)=c$
end
end

b) Trasformata la matrice A secondo le istruzioni del punto a), si denoti con U la matrice triangolare superiore di elementi

$$U_{ij} = A_{ij}, \qquad j \ge i, \qquad \qquad U_{ij} = 0, \qquad j < i,$$

e con

$$L_{ij} = A_{ij}, j < i, L_{ij} = 0, j > i, L_{ij} = 1, j = i.$$

La soluzione del sistema (*) si ottiene risolvendo i due sistemi triangolari

$$Ly = b$$
,

е

$$Ux = y$$
.

Scrivere un sottoprogramma che implementi tale metodo per la risoluzione del sistema lineare Ax = b.

- 2) Scrivere un programma che
 - a) legga un intero n e costruisca la matrice $n \times n$ A ed il vettore b con le seguenti regole:

$$A = (a_{i,j}),$$
 $A_{i,j} = cos((j-1)\beta_i),$ $\beta_i = \frac{2i-1}{2n}\pi,$

$$A = A + nI,$$
 $b_i = \sum_{j=1}^{n} a_{i,j}, \quad i = 1, \dots, n;$

b) utilizzi il sottoprogramma del punto 1) per calcolare la la soluzione del sistema $Ax=b\,$