Clase nº34

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

24 de Noviembre 2021

Objetivo de la clase

- ► Calcular el límite de algunas sucesiones.
- ► Comprender el concepto de serie numérica.
- Conocer y utilizar propiedades de una serie.

Definición 7

Si una sucesión no converge, entonces diremos que **diverge**. Es decir, una sucesión $\{a_n\}$ diverge si:

Dado $L\in\mathbb{R}$ existe $\epsilon>0$ tal que para todo n existe otro número natural $m,\ m\geq n$ de modo que,

$$|a_m - L| \ge \epsilon$$
.

Observación

La definición anterior nos dice que ningún número real L puede ser límite de la sucesión.

Que la sucesión sea divergente incluye los límites $\pm\infty$ y el caso de las sucesiones que oscilan.

Teorema 8

Si una sucesión $\{a_n\}$ tiene límite L, entonces el límite es único.

Teorema 9

Toda sucesión convergente es acotada.

Teorema 10

Sean $\{a_n\}$ y $\{b_n\}$ sucesiones convergentes. Entonces se cumplen las siguientes propiedades:

- 1. $\lim_{n\to+\infty} (a_n+b_n) = \lim_{n\to+\infty} a_n + \lim_{n\to+\infty} b_n$.
- 2. $\lim_{n\to+\infty}(a_n\cdot b_n)=\lim_{n\to+\infty}a_n\cdot\lim_{n\to+\infty}b_n.$
- 3. $\lim_{n\to+\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to+\infty} a_n}{\lim_{n\to+\infty} b_n}$; cuando $b_n \neq 0$ y $\lim_{n\to+\infty} b_n \neq 0$.

Ejemplo 14

Sea $\{a_n\}$, $\{b_n\}$ tales que $a_n=n$, $b_n=n$, entonces en este caso no puede usarse la fórmula del teorema, pues $\lim_{n\to+\infty}(a_n-b_n)\neq\lim_{n\to+\infty}a_n-\lim_{n\to+\infty}b_n=+\infty+(-\infty)\text{ pero }a_n-b_n=0\text{ y }\lim_{n\to+\infty}(a_n-b_n)=\lim_{n\to+\infty}0=0.$

Ejemplo 15

Encontrar el

$$\lim_{n\to+\infty}\frac{n}{2n+1}.$$

Ejemplo 16

Encontrar el

$$\lim_{n\to+\infty}\frac{n^4+3n^3-4}{n^5+2}$$

Sea
$$a_n = \frac{1^2 + 2^2 + ... + n^2}{n^3}$$
, encontrar

$$\lim_{n\to+\infty}a_n.$$

Corolario 11

Sean $\{a_n\}$ y $\{b_n\}$ successones convergentes y $c \in \mathbb{R}$. Entonces se cumplen las siguientes propiedades:

- 1. $\lim_{n\to+\infty}(c\cdot a_n)=c\cdot \lim_{n\to+\infty}a_n$
- $2. \lim_{n\to+\infty} (-a_n) = -\lim_{n\to+\infty} a_n.$
- 3. $\lim_{n\to+\infty} (a_n-b_n) = \lim_{n\to+\infty} a_n \lim_{n\to+\infty} b_n$.

Teorema 12

Si la sucesión $\{a_n\}$ es convergente, entonces $\{|a_n|\}$ es convergente y $\lim_{n\to +\infty}|a_n|=|\lim_{n\to +\infty}a_n|$.

Teorema 13

Si $\lim_{n\to+\infty} a_n = +\infty$, (o bien $-\infty$), entonces $\lim_{n\to+\infty} \frac{1}{a_n} = 0$.

Ejemplo 18

El recíproco del teorema 13 es falso. Veamos esto, sea $a_n=(-1)^n\frac{1}{n}$ converge a 0, pero $\frac{1}{a_n}=(-1)^nn$ no diverge a $+\infty$ y tampoco a $-\infty$.

Ejemplo 19

Sea $a_n = \sqrt{n+1} - \sqrt{n}$. Mostrar que $\lim_{n \to +\infty} a_n = 0$.

Teorema 14

- 1. Si $\{a_n\}$ es una sucesión convergente tal que $a_n \geq 0$ para todo n. Entonces, $\lim_{n \to +\infty} a_n \geq 0$.
- 2. Si $\{a_n\}$ y $\{b_n\}$ son dos sucesiones convergentes tales que $a_n \leq b_n$, para todo n. Entonces, $\lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} b_n$.

Teorema 15

Si $a_n \leq c_n \leq b_n, \forall n \in \mathbb{N}$, y si $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$, entonces la sucesión $\{c_n\}$ es convergente y $\lim_{n \to +\infty} c_n = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$.

Ejemplo 20

Calcular $\lim_{n \to +\infty} c_n$, donde c_n está dada por

$$c_n = \frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n}.$$

Corolario 16

Si $\lim_{\substack{n\to+\infty\\n\to+\infty}}|a_n|=0$, entonces la sucesión $\{a_n\}$ es convergente y $\lim_{\substack{n\to+\infty\\n\to+\infty}}a_n=0$.

Definición 17

Una serie de término general $a_n, a_n \in \mathbb{R}, n \in \mathbb{Z}^+$ se denota

$$S = \sum_{n=1}^{+\infty} a_n$$

y se define:

1. La sucesión de **sumas parciales** de la serie como aquella cuyo término general es

$$S_n = a_1 + a_2 + ... + ... + a_n = \sum_{i=1}^n a_i.$$

Definición 17

2. La **suma de la serie** como el límite de la sucesión de sumas parciales, es decir:

$$\sum_{n=1}^{+\infty} a_n = \lim_{n \to +\infty} S_n = S.$$

Si tal límite existe, diremos que la serie **converge** hacia S, si el límite es $\pm \infty$ diremos que **diverge** a $\pm \infty$. Si las sumas parciales oscilan, diremos que la suma de la serie oscila.

$$\sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^n = \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \dots + \left(\frac{1}{4}\right)^i + \dots$$

Propiedad 18

Si la serie
$$\sum_{n=1}^{\infty} a_n$$
 es convergente, entonces $\lim_{n\to+\infty} a_n = 0$.

$$\sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^n = \left(\frac{1}{4}\right)^1 + \left(\frac{1}{4}\right)^2 + \dots + \left(\frac{1}{4}\right)^i + \dots$$

Propiedad 19

Si $\lim_{n\to+\infty} a_n \neq 0$, entonces la serie infinita $\sum_{n\to+\infty} a_n$ es divergente.

$$\sum_{n=1}^{\infty} 2^n = 2^1 + 2^2 + \dots + 2^j + \dots$$

Propiedades 20

Si
$$\sum_{n=1}^{\infty} a_n$$
 y $\sum_{n=1}^{\infty} b_n$ son series convergentes y $c \in \mathbb{R}$, entonces:

a)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n.$$

b)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

c)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$
.

Ejemplo 24

Tenemos que $\sum_{n=1}^{+\infty} \left(\frac{1}{3}\right)^n$ y $\sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^n$ son convergentes. Calcular

$$\sum_{n=0}^{+\infty} \left(5 \cdot \left(\frac{1}{3} \right)^n + 6 \cdot \left(\frac{1}{4} \right)^n \right).$$

Propiedad 21

$$\sum_{n=1}^{\infty} a_n \text{ es divergente y } c \in \mathbb{R} - \{0\}, \text{ entonces } \sum_{n=1}^{\infty} c \cdot a_n \text{ es divergente.}$$

$$\sum_{n=1}^{+\infty} 2^n$$
 es divergente, entonces
$$\sum_{n=1}^{+\infty} -20 \cdot 2^n$$
 es divergente.

Propiedad 22

Si $\sum_{n=0}^{\infty} a_n$ es convergente y $\sum_{n=0}^{\infty} b_n$ es divergente, entonces

$$\sum_{n=1}^{\infty} (a_n + b_n)$$

es divergente.

$$\sum_{n=1}^{+\infty} 2^n \text{ diverge y } \sum_{n=1}^{+\infty} \left(\frac{1}{4}\right)^n \text{ es convergente. Entonces}$$

$$\sum_{n=1}^{+\infty} \left(2^n + \frac{1}{4^n}\right) \text{ es divergente.}$$

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.