INFORME FINAL SESIÓN 2

CIRCUITOS ELECTRÓNICOS

Lucía Colmenarejo Pérez Jesús Daniel Franco López G. 1201 P. 08

INTRODUCCIÓN

En esta sesión aprenderemos a utilizar correctamente los aparatos del laboratorio:

- Multímetro
- Generador de ondas
- Osciloscopio
- Fuente de alimentación

RESOLUCIÓN DE EJERCICIOS

1. Sin conectar ningún cable, fija una tensión de +12 V en S1 y +5 V en S2.

Adjuntamos foto de las tensiones fijadas en la fuente de tensión:

2. Conectar la fuente de alimentación con el multímetro con los cables disponibles y medir la salida de tensión de las fuentes S1 y S2 fijadas en el ejercicio anterior. El + de la fuente se conectará a la entrada V del multímetro y el – a la entrada COM.

Adjuntamos foto del multímetro:

3. Medida de corriente: utilizando la fuente S2 a 5 V, medir la corriente que circula por una resistencia de $2.2 \mathrm{K}\Omega$ cuando la conectamos a la salida utilizando el siguiente esquema (enunciado). Repetir la medida de corriente cambiando el valor de la fuente a 2 V y a 8 V. Calcular el valor de la resistencia a partir de la Ley de Ohm (V=IR).

R (Ω)	V (V)	I (mA)	R obtenida por la ley de Ohm $R = \frac{V}{I}$
2200	5	2,21	2380,95
2200	2	0,88	2272,72
2200	8	3,535	2263,08

4. Medir el valor de la resistencia utilizando el multímetro y comparar con el valor extraído de la Ley de Ohm.

El valor obtenido al medir la resistencia con el multímetro es R = 2,171 k Ω .

Vemos que el valor es muy parecido al ideal marcado por el componente y por la ley de Ohm del apartado anterior. Aunque bien es cierto que se puede apreciar una diferencia debida a la resistencia interna de los aparatos utilizados en el laboratorio (supuestos ideales en los cálculos realizados).

5. Fijar los siguientes parámetros en el generador de funciones: a) frecuencia=1KHz, b) amplitud=2Vpp, c) ciclo de trabajo=50%, d) función sinusoidal, e) offset DC=0 V. Medir el valor de la tensión de salida utilizando el multímetro y el cable conversor de BNC a bananas suministrado. Para ello habrá que poner el conmutador del multímetro en la posición V y pulsar el AC/DC del panel principal para cambiar a modo de medida AC. El valor mostrado es aproximadamente la tensión eficaz de la señal suministrada.

Tensión eficaz obtenida experimentalmente: Vef = 1,406V

Tensión eficaz obtenida teóricamente: Vef =
$$\frac{Vpp}{\sqrt{2}}$$
 = $\frac{2}{\sqrt{2}}$ = $\frac{2\sqrt{2}}{2}$ = $\sqrt{2}$ = 1,4142V

6. Conectaremos la señal del E5 al canal 1 del osciloscopio utilizando la placa de inserción y conectando en paralelo la salida del generador de funciones y la del osciloscopio como se muestra en las figuras. Para el osciloscopio usaremos una de las sondas suministradas y para el generador de funciones el cable BNC a bananas empleado anteriormente. Mediremos la tensión pico a pico (Vpp) y periodo de la onda sinusoidal utilizando los cuadrantes del display. Para la medida de la tensión pico a pico asegurarse que el factor de Sonda en el menú del osciloscopio coincide con el factor de la sonda proporcionada (x1 ó x10). Este factor de sonda se encuentra escrito en la propia sonda y habrá que buscarlo para introducir el factor apropiado en el menú.

Vpp = 4,12v usando los cursores. Observamos que es 2 veces la marcada por el generados de funciones, pero es problema del osciloscopio.

$$T = 1 \text{ ms} \Rightarrow F = \frac{1}{T} = \frac{1}{1000 \text{ ms}} = 1000 \text{ Hz}$$

7. Medir la Vpp y frecuencia de la señal anterior utilizando el menú MEASURE y comparar con los valores nominales introducidos en el generador de funciones. Repetir las medidas cambiando la onda sinusoidal por una onda triangular.

Usando el menú Measure obtenemos los siguientes resultados

SINUSOIDAL	TRIANGULAR	
Vpp = 4,08 V	V = 3,72V	
F = 1 kHz	F = 1kHz	

