In [1]: #step-1:problem statement import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn import preprocessing,svm from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression

In [4]: #step-2:reading the data set df=pd.read_csv(r"C:\Users\chinta pavani\Documents\fiat500_VehicleSelection df

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.61
1	2	рор	51	1186	32500	1	45.666359	12.24
2	3	sport	74	4658	142228	1	45.503300	11.41
3	4	lounge	51	2739	160000	1	40.633171	17.63 <u>4</u>
4	5	pop	73	3074	106880	1	41.903221	12.49
	•••							
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.660
1535	1536	pop	51	2223	60457	1	45.481541	9.41;
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

```
In [5]: M df=df[['engine_power','age_in_days']]
df.columns=['Eng','Age']
```

In [6]: ► df.head(10)

Out[6]:

	Eng	Age
0	51	882
1	51	1186
2	74	4658
3	51	2739
4	73	3074
5	74	3623
6	51	731
7	51	1521
8	73	4049
9	51	3653

In [7]:

#step-3:exploring the data scatter-plotting the data scatter
sns.lmplot(x="Eng",y="Age",data=df,order=2,ci=None)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x25136eb0a10>

2 of 7

```
df.describe()
 In [8]:
     Out[8]:
                           Eng
                                      Age
              count 1538.000000
                               1538.000000
                      51.904421
                               1650.980494
               mean
                std
                       3.988023
                               1289.522278
                min
                      51.000000
                                366.000000
               25%
                      51.000000
                                670.000000
               50%
                      51.000000 1035.000000
               75%
                      51.000000 2616.000000
                      77.000000 4658.000000
               max
 In [9]:
          df.info()
              <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 1538 entries, 0 to 1537
             Data columns (total 2 columns):
                   Column Non-Null Count Dtype
               0
                   Eng
                           1538 non-null
                                            int64
                           1538 non-null
               1
                   Age
                                            int64
              dtypes: int64(2)
             memory usage: 24.2 KB
In [22]:
          ▶ #step-4:data cleaning-eliminating nan or missing input
             df.fillna(method='ffill',inplace=True)
             C:\Users\chinta pavani\AppData\Local\Temp\ipykernel_28804\4116506308.py:
             1: SettingWithCopyWarning:
             A value is trying to be set on a copy of a slice from a DataFrame
             See the caveats in the documentation: https://pandas.pydata.org/pandas-do
             cs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (http
```

s://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returni ng-a-view-versus-a-copy)

df.fillna(method='ffill',inplace=True)

```
In [11]:
          #step-5:training our model
             x=np.array(df['Eng']).reshape(-1,1)
             y=np.array(df['Age']).reshape(-1,1)
```

```
In [12]: ► df.dropna(inplace=True)
```

C:\Users\chinta pavani\AppData\Local\Temp\ipykernel_28804\1379821321.py:
1: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [13]: N x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.10844042252426467

```
In [21]: #step-6:exploring our results
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
    #data scatter of predicted values
```



```
In [20]: #step-7:working with a smallest dataset
df500=df[:][:500]
sns.lmplot(x="Eng",y="Age",data=df500,order=1,ci=None)
```

Out[20]: <seaborn.axisgrid.FacetGrid at 0x25136eb2090>

Regression: 0.05674189944888408


```
In [19]: #step-8:evaluation of model
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.05674189944888408

```
In []: #step-9:conclusion #dataset we have taken is poor for linear model but with the smaller data
```

7 of 7