ENGR 498: Design for the Internet of Things – Signal Processing and Step Analysis

Dr. Jason Forsyth

Department of Engineering

James Madison University

Accelerometer Measurements

Figure 58. Output Response vs. Orientation to Gravity

Anatomy of a Step – Acceleration

SIDDANAHALLI NINGE GOWDA et al.: UMOISP: USAGE MODE AND ORIENTATION INVARIANT SMARTPHONE PEDOMETER

Anatomy of a Step - Gyroscope

Looking for steps

- Acceleration data is very noisy due to random motions
- Walking/steps are very periodic but can vary based upon pace and terrain
 - Consider the impact of stairs; hiking...etc.
- Want to isolate individual steps from noise; find a rhythmic pattern
 - Look for peaks (apex of stride) and/or zero crossings (swinging arm)
- Significantly dependent upon sensing location (hand, waist, foot...etc)

Counting Steps via Peaks

 How many maxima are detected?

 Would want to pair maxima with minima to ensure full stride

- Peaks can only occur so quickly
 - There's a maximum walking pace
 - Help reduce/remove noise

Counting Steps via Zero Crossing

 How many times does the signal cross a "zero" threshold?

Accel will be at 1g when idle

- Need to detect rising and falling across threshold
 - Should occur relatively close in time

Stride Frequency

RESEARCH ARTICLE

Journal of Experimental Biology (2016) 219, 851-858 doi:10.1242/jeb.133488

Table 2. Average stride lengths (SL) and stride frequencies (SF)

Straight		CCW		CW	
SL (m)	SF (Hz)	SL (m)	SF (Hz)	SL (m)	SF (Hz)
3.73±0.23	2.16±0.10	3.52±0.19*	2.10±0.12*	3.48±0.17*	2.08±0.10*
3.86±0.39	2.08±0.09	3.67±0.23*	2.07±0.08	3.62±0.19*	1.96±0.08*
3.47±0.20	2.06±0.16	3.41±0.16	1.94±0.14*	3.33±0.20*	2.00±0.15
Straight		AL outside		AL inside	
SL (m)	SF (Hz)	SL (m)	SF (Hz)	SL (m)	SF (Hz)
3.69±0.37	2.07±0.12	3.52±0.27*	2.04±0.12	3.53±0.20*	1.95±0.10*
	SL (m) 3.73±0.23 3.86±0.39 3.47±0.20 Straight SL (m)	SL (m) SF (Hz) 3.73±0.23 2.16±0.10 3.86±0.39 2.08±0.09 3.47±0.20 2.06±0.16 Straight SL (m) SF (Hz)	SL (m) SF (Hz) SL (m) 3.73±0.23 2.16±0.10 3.52±0.19* 3.86±0.39 2.08±0.09 3.67±0.23* 3.47±0.20 2.06±0.16 3.41±0.16 Straight AL outside SL (m) SF (Hz) SL (m)	SL (m) SF (Hz) SL (m) SF (Hz) 3.73±0.23 2.16±0.10 3.52±0.19* 2.10±0.12* 3.86±0.39 2.08±0.09 3.67±0.23* 2.07±0.08 3.47±0.20 2.06±0.16 3.41±0.16 1.94±0.14* Straight AL outside SL (m) SF (Hz)	SL (m) SF (Hz) SL (m) SF (Hz) SL (m) 3.73±0.23 2.16±0.10 3.52±0.19* 2.10±0.12* 3.48±0.17* 3.86±0.39 2.08±0.09 3.67±0.23* 2.07±0.08 3.62±0.19* 3.47±0.20 2.06±0.16 3.41±0.16 1.94±0.14* 3.33±0.20* Straight AL outside AL inside SL (m) SF (Hz) SI (m)

Signal Processing and Detection

 Separate concerns into Signal Processing (filtering, averages...etc.) and Detection (based upon the signal, did a step occur?)

- Sampling rate should be sufficient to capture step waveform
 - At least 50Hz

Derivative=> remove signal drift, extract energy

Integrate=> sum signal and help identify peaks

Pipeline and Detection

Capturing Acceleration Data

- Simple method is to stream out of Arduino in comma separated value (CSV)
 - Can be imported into Excel or MATLAB
- Leave clear "quiet" areas in the signal to help with segmentation and see when the steps begin/end

- Capture only the data you need for a particular experiment
 - Really difficult to parse through 5 minutes of data to find a 30s activity

Some practical tips on filtering

- Work with the magnitude of acceleration to each individual vector
 - Allows step detection regardless of orientation
- Try diff, sum, then square operations
- Sample data sets on website

Pan-Thompkins Algorithm for QRS Detection (but we're using it for foot steps...)

- To detect heart beats, we will follow a standard algorithm to isolate the "energy" from each heart beat. Will create a "pipeline" for processing the data.
- Each signal is an array/vector of sequential values from [1-n]: $x_1, x_2, ..., x_n$. Each operation will result in a new array/vector.
- Three major operations to be performed:
 - Diff: take the difference between sequential points $y_1 = x_1 x_2$
 - Square: take the result of Diff and perform ^2 operation $z_1=y_1\ast y_1$
 - Moving average: take the result from Diff and average some M values $Q = \sum_{i=1}^{M} z_i$

Some important items to notice

• The "peak" is now more prominent, relative to the signal "floor", so it is easier to "see".

- Signal is generally "0" when there is no peak nearby. This makes detection easier.
- Minor noise in signal is removed. However, signal is time delayed due to processing (average filter)

Practice in Excel then do it in C++

Signal Analysis in Excel

 Leave the original data alone and process each "signal" as a new column. Use the basic +/* operators in Excel and the average() function.

• Write the equation once and then copy it down the excel column. This will propagate the equation into each cell.

• Some initial values may be unknown or deleted. Can't have a result from a 10 data point average after the second result.

Time (seconds)	MLII	V5	Diff	Square	Moving Average
0	4.725	4.775			
0.004	4.735	4.745	-0.03	0.0009	
0.008	4.725	4.735	-0.01	1E-04	
0.012	4.715	4.745	0.01	1E-04	
0.016	4.72	4.735	-0.01	1E-04	
0.02	4.705	4.725	-0.01	0.0001	
0.024	4.7	4.71	-0.015	0.000225	
0.028	4.69	4.715	0.005	2.5E-05	
0.032	4.71	4.71	-0.005	2.5E-05	
0.036	4.71	4.71	0	0	0.000175
0.04	4.695	4.695	-0.015	0.000225	1E-04
0.044	4.69	4.69	-0.005	2.5E-05	9.16667E-05
0.048	4.71	4.71	0.02	0.0004	0.000125
0.052	4.695	4.705	-0.005	2.5E-05	0.000116667
0.056	4.705	4.685	-0.02	0.0004	0.00015

Creating the First Diff Entry

When Done, double click the bottom right of cell to copy down the entire column.

Creating the Square Column

When Done, double click the bottom right of cell to copy down the entire column.

E2	:	< ~	f_X	=D2*D2	
	Α	В	С	D	E
1	Time (seconds)	MLII	V5	Diff	Square
2	0	4.725	4.775	0	0
3	0.004	4.735	4.745	-0.03	
4	0.008	4.725	4.735	-0.01	
5	0.012	4.715	4.745	0.01	

Make a Moving Average of 10pts. Can be adjusted.

This time, when typing in the formula use the built-in average function.

Type "=average(" then use the cursor to select a range of data (about 10 pts). Then type ")" to close the formula. Press enter.

Expand the formula down the column.

You should have something like this...

M24 $\stackrel{\blacktriangle}{\checkmark}$ \times \checkmark f_x						
	Α	В	С	D	E	F
1	Time (seconds)	MLII	V5	Diff	Square	Moving Avg
2	0	4.725	4.775	0	0	
3	0.004	4.735	4.745	-0.03	0.0009	
4	0.008	4.725	4.735	-0.01	1E-04	
5	0.012	4.715	4.745	0.01	1E-04	
6	0.016	4.72	4.735	-0.01	1E-04	
7	0.02	4.705	4.725	-0.01	0.0001	
8	0.024	4.7	4.71	-0.015	0.000225	
9	0.028	4.69	4.715	0.005	2.5E-05	
10	0.032	4.71	4.71	-0.005	2.5E-05	
11	0.036	4.71	4.71	0	0	
12	0.04	4.695	4.695	-0.015	0.(25	0.00016364
13	0.044	4.69	4.69	-0.005	2.5E-05	0.00016591
14	0.048	4.71	4.71	0.02	0.0004	0.00012045
15	0.052	4.695	4.705	-0.005	2.5E-05	0.00011364
16	0.056	4.705	4.685	-0.02	0.0004	0.00014091
17	0.06	4.7	4.705	0.02	0.0004	0.00016818
18	0.064	4.71	4.715	0.01	1E-04	0.00016818
19	0.068	4.71	4.72	0.005	2.5E-05	0.00015
20	0.072	4.7	4.72	0	0	0.00014773
21	0.076	4.705	4.745	0.025	0.000625	0.00020227
22	0.08	4.72	4.785	0.04	0.0016	0.00034773
23	0.084	4.735	4.79	0.005	2.5E-05	0.00032955
24	0.088	4.74	4.79	0	0	0.00032727
25	0.092	4.73	4.805	0.015	0.000225	0.00031136

Some practical tips on detection

• Identify peaks or zero crossings and then subsequent event soon after

If corresponding event did not occur, then likely was a false alarm

Don't set static threshold; should float with your data

A wild assignment appears...

Participant	Phone Location	Steps Taken	Walking Begins (index)	Walking Ends (index)	Start (s)	End (s)
p1.1	Handheld	70	1607	5393	16.07	53.93
p1.4	Purse	70	2110	5963	21.1	59.63
p2.2	Handheld	66	1469	5930	14.69	59.3
p9.2	Pants pocket	70	4774	8525	47.74	85.25
p11.3	Backpack	76	1603	6709	16.03	67.09
p27.1	Handheld	68	7325	11053	73.25	110.53