Analiza wybranego obwodu sieci rozdzielczej średniego napięcia

Akademia Górniczo- Hutnicza Im. Stanisława Staszica

Wydział Elektrotechniki, Automatyki, Informatyki i inżynierii Biomedycznej

Projekt z przedmiotu: **Urządzenia i Sieci Elektroenergetyczne**

Wykonawcy:

Jakub Cios Maciej Duda

Część "sieciowa"

1. Dobór parametrów obwodu i jego struktury

- Napięcie na zaciskach transformatora zasilającego sieć: $U_0 = 15[kV]$
- Liczba stacji transformatorowych: 15
- Liczba stacji transformatorowych w torze głównym: 3
- Liczba stacji transformatorowych na rozgałęzieniach: 12
- Liczba stacji transformatorowych o mocy znamionowej:
 - o 630[kVA]: 3
 - o 400[kVA]: 2
 - o 250[kVA]: 2
 - o 160[kVA]: 2
 - o 100[kVA]: 4
 - o 63[kVA]: 2
- Długość poszczególnych odcinków sieci:
 - o magistrala linii (węzły bez oznaczenia literowego oraz 3 A2) -12336 [m]
 - odgałęzienia magistrali linią napowietrzną 15648 [m]
 - o odgałęzienia magistrali linią kablową 12949 [m]
- Przekroje przewodów:
 - o magistrala: $70[mm^2]$
 - o odgałęzienia (napowietrzna): 35[mm²]
 - o odgałęzienia (kablowa): 50,35[mm²]50[mm²]
- Linia ta jest w większości poprowadzona linią napowietrzą AFL, oprócz kilku odcinków, które poprowadzone zostały linią kablowa Cu.

Na stronie 8 znajduje się schemat projektu, a na kolejnych tabele z obliczeniami.

2. Zbudowanie modelu sieci dla potrzeb obliczeń rozpływowych

Wszystkie elementy sieci zostały zaplanowane z myślą o napięciu 15 [kV], co oznacza, że schemat zastępczy linii, obejmujący zarówno linie kablowe, jak i napowietrzne, uwzględnia jedynie te elementy, które wpływają na przepływ prądu wzdłuż linii. Przy projektowaniu i analizie sieci elektroenergetycznej, skupiamy się wyłącznie na komponentach, które mają wpływ na prąd i napięcie w linii, pomijajac aspekty które nie sa uwzględnione w aspekcie poruszanego projektu.

Parametry określone według przyjmowanych na podstawach elektroenergetyki:

- Konduktywność linii:
 - $\circ \quad \text{AFL: 33 } \left[\frac{m}{\Omega m m^2} \right]$ $\circ \quad \text{Cu: 54 } \left[\frac{m}{\Omega m m^2} \right]$
- Reaktancja jednostkowa linii napowietrznej magistrali: $X_0 = 0.4 \left[\frac{\Omega}{km} \right]$
- Reaktancja jednostkowa linii napowietrznej odgałęzień: $X_0 = 0.4 \left[\frac{\Omega}{km} \right]$
- Reaktancja jednostkowa linii kablowej: $X_0 = 0.1 \left[\frac{\Omega}{km} \right]$

Rezystancje jednostkowe linii została obliczona według następującego wzoru:

$$R_0 = \frac{1}{\mathbf{y} \cdot \mathbf{S}}$$

S – przekrój przewodu w $[mm^2]$

 γ – konduktywność materiału przewodnika $\left[\frac{m}{\Omega \mathrm{mm}^2}\right]$

- Rezystancja jednostkowa linii napowietrznej magistrali: $R_0 = 0.43 \left[\frac{\Omega}{km} \right]$
- Rezystancja jednostkowa linii napowietrznej odgałęzień: $R_0 = 0.87 \left[\frac{\Omega}{km} \right]$
- Rezystancja jednostkowa linii kablowej: $R_0 = 0.37 \left[\frac{\Omega}{km} \right]$

Tabela 1 Parametry kabli wykorzystywane przy analizie.

	Parametry kabli								
Тур	Konduktywność $\left[\frac{MS}{m}\right]$	Przekrój $[mm^2]$	Rodzaj	$R_0\left[\frac{\Omega}{km}\right]$	$X_0\left[\frac{\Omega}{km}\right]$				
			nap.						
AFL	33	70	magistrala	0,4329004329	0,4				
			nap.						
AFL	33	35	odgałęzienie	0,8658008658	0,4				
Cu	54	50	kablowa	0,3703703704	0,1				

Rezystancje oraz reaktancje linii zostały policzone według następujących wzorów:

$$R = \frac{l}{\mathbf{y} \cdot \mathbf{S}}$$

$$X = X_0 \cdot l$$

l – długość linii [m], [km]

S – przekrój przewodu w $[mm^2]$

 γ – konduktywność materiału przewodnika $\left[\frac{m}{\Omega \mathrm{mm}^2}\right]$

 X_0 – reaktancja jednostkowa linii $\left[\frac{\Omega}{km}\right]$

3. Wykonanie estymacji obciążeń węzłowych w zależności od stopnia obciążenia transformatorów (w danym węźle odbiorczym) z uwzględnieniem dwóch stanów pracy

Prąd odbiorników wyliczyliśmy według następujących wzorów:

$$|I_{Odb}| = \frac{S_{Odb} * k_j}{\sqrt{3} * U_N}$$

$$I^{C}_{Odb} = I_{Odb} * cos \boldsymbol{\varphi}$$

$$I^{B}_{Odb} = I_{Odb} * sin \phi$$
(wartość ujemna dla indukcyjnego charakteru odbiornika)

I_{Odb} – moduł prądu odbiornika [A]

I_{Odb} – część rzeczywista prądu odbiornika [A]

I_{Odb} – część urojona prądu odbiornika [A]

 S_{Odb} – moc transformatora [VA]

 k_i – współczynnik różny dla pracy w dolinie i szczycie [–]

 U_N – napięcie znamionowe linii [V]

4. Wyznaczenie rozpływów prądów w analizowanym obwodzie

Posiadając prądy odbiorników oraz parametry zastępcze linii obliczyliśmy idąc od końca moduły prądów w poszczególnych odcinkach linii według następującego wzoru:

$$|I| = \sqrt{I^{C}_{Odb}^{2} + I^{B}_{Odb}^{2}}$$

Posiadając prądy płynące w poszczególnych linii dokonaliśmy sprawdzenia czy dobrane przez nas przekroje są odpowiednie względem obciążalności długotrwałej. Zostało to przeprowadzone poprzez wyznaczenie największej wartości prądu w poszczególnym typie linii i porównanie jej z wartością

wyznaczoną z tabeli zawartej w "Zbiór zadań z sieci elektrycznych" autorstwa Jana Strojnego i Jana Strzałki według poniższej zależności:

$$I_r < I_{dop}$$

Tabela 2 Porównanie wyników z dopuszczalnymi wartościami

Sprawdzenie dobranych przewodów kablowych						
	Idop	Ir				
AFL	136,95	114,5923987	Zgodny			
AFL	88,81	21,33886595	Zgodny			
Cu	163,8	24,92838694	Zgodny			

Wyliczone przez nas prądy spełniały powyższą zależność zatem dobrane przez nas przekroje nie musiałby być zmieniane ze względu na ten warunek.

5. Wyznaczenie spadków napięć w analizowanym obwodzie

Posiadając prądy w poszczególnych odcinkach linii oraz ich rezystancję i reaktancję wyznaczyliśmy spadki napięć według poniższego wzoru:

$$\Delta U = I^{C}_{Odh} * R - I^{B}_{Odh} * X$$

Biorąc pod uwagę spadki napięcia w poszczególnych odcinkach linii określiliśmy idąc od GPZ napięcie w poszczególnych węzłach.

6. Analizy warunków napięciowych w sieci z uwzględnieniem bilansu odchyleń i spadku napięcia do odbiorcy końcowego w stosunku do wartości dopuszczalnych

Dzięki wyznaczonym w poprzednim punkcie napięciom węzłowym byliśmy w stanie stwierdzić czy największy odchył napięcia nie przekracza wartości 5%.

Tabela 3 Dla szczytu

Umin	Umin/Umax	deltaU (%)
14596,22632	97,30817547	2,69182453

Tabela 4 Dla doliny

Umin	Umin/Umax	deltaU (%)	
14756,61339	98,37742263	1,622577374	

W naszym przypadku udało się to osiągnąć za pierwszym razem zatem nie musieliśmy zmieniać przekrojów naszych linii również z tego powodu, zatem zostały one ostatecznie zatwierdzone.

Zrobiliśmy również wykres słupkowy napięć w poszczególnych węzłach od transformatora T1 (odbiorca najbliższy GPZ) do transformatora TC4 (odbiorca najdalszy od GPZ). Napięcie wyraźnie ma tendencję spadkową wraz z oddalaniem się od GPZ, co jest zgodne z oczekiwaniami.

Wartość napięcia w węźle na odcinku T1-TC4

7. Wyznaczenie strat mocy dla reprezentatywnych stanów skrajnych (szczyt, dolina) w obwodzie

Straty mocy biernej oraz pozornej w poszczególnych odcinkach linii zostały policzone według poniższych wzorów:

$$\Delta P = 3 * I^2 * R$$

$$\Delta Q = 3 * I^2 * X$$

8. Wyznaczenie rocznych strat energii

Wyliczenia rocznych strat energii dokonaliśmy poprzez zsumowanie strat w dla szczytu oraz doliny i przykładowym przydzieleniu im czasu występowania w skali roku.

Tabela 5 Roczne straty energii

ROCZNE STRA	ATY ENERGII	Szczyt	Dolina
SUMA P [kP]	A P [kP] 112,399743		33,89402562
czas [h]	8760	5123	3637
Energia [kWh]	525457,3616	402184,7904	123272,5712

Następnie podzieliliśmy ich występowanie na kwartały i przedstawiliśmy w formie wykresu.

Tabela 6 Rozkład na kwartał

ROZKŁAD NA KWARTAŁ							
I		II		III		IV	
Szczyt	Dolina	Szczyt	Dolina	Szczyt	Dolina	Szczt	Dolina
1756,66	814,6	2003,733 950,78		1962,77	887,69	1560,2817	1022,987
2571,26		2954,513		2850,46		2583,2687	

Schemat 1 Zaproponowana struktura sieci

Szczyt obciążenia

Tabela 7 Wyniki obliczeń dla poszczególnych odcinków

odcinek	długość	R	Χ	I	Ic	lb	deltaU	deltaP	deltaQ
0-1	996	0,4311688312	0,3984	114,5923987	103,3739268	-49,44946014	64,2722801	16985,57425	15694,67061
w1-2	1994	0,8632034632	0,7976	95,67866971	86,35133143	-41,20504094	107,403909	23706,34965	21904,66707
w2-3	3015	1,305194805	1,206	74,36460972	66,71957475	-32,84194761	126,6894312	21653,5545	20007,88436
w3-4	2620	1,134199134	1,048	42,41271704	37,97694601	-18,88359444	62,86342626	6120,723436	5655,548455
w4-C1	1286	1,113419913	0,5144	17,49105862	15,49261712	-8,118863604	21,42613185	1021,909484	472,1221814
wC1-C2	1059	0,9168831169	0,4236	10,59262896	9,603644378	-4,469206086	10,69857509	308,6332776	142,5885743
wC2-C3	994	0,8606060606	0,3976	5,05145703	4,615338052	-2,053259066	4,788363704	65,88081771	30,43693778
1-T1	1508	1,305627706	0,6032	18,91399482	17,02259534	-8,244419203	27,19820576	1401,222633	647,3648563
2-T2	491	0,4251082251	0,1964	21,33886595	19,63175667	-8,363093322	9,988132764	580,71552	268,2905702
C1-TC1	3220	2,787878788	1,288	6,92820323	5,888972746	-3,649657518	21,11850108	401,4545455	185,472
C2-TC2	617	0,5341991342	0,2468	5,542562584	4,988306326	-2,415947019	3,261004645	49,23179221	22,745088
C3-TC3	332	0,2874458874	0,1328	1,818653348	1,67316108	-0,7127636354	0,5755982823	2,852181818	1,317708
C3-TC4	720	0,6233766234	0,288	3,233161507	2,942176972	-1,340495431	2,22014703	19,54909091	9,03168
3-A1	1688	0,7307359307	0,6752	31,95268894	28,74262875	-13,95835317	30,42795163	2238,187883	2068,085604
A1-TA1	739	0,6398268398	0,2956	11,08512517	9,533207645	-5,656673227	7,771714727	235,8657662	108,969984
A1-A2	2023	0,8757575758	0,8092	20,92653218	19,2094211	-8,301679946	23,54051547	1150,534613	1063,093983
A2-A5	1503	0,5566666667	0,1503	10,78550223	9,744325393	-4,623330068	6,119227645	194,2661873	52,45187058
A2-A3	1082	0,9367965368	0,4328	10,33525565	9,465095709	-4,150839973	10,66335242	300,1988182	138,691854
A3-A4	836	0,7238095238	0,3344	4,967749159	4,316670909	-2,458634574	3,946614916	53,58766884	24,75750301
A5-TA5	727	0,2692592593	0,0727	7,409328455	6,594302325	-3,378361289	2,021183825	44,34550412	11,97328611
A5-TA6	3743	1,386296296	0,3743	3,387121579	3,150023069	-1,244968778	4,832857127	47,71323786	12,88257422
A3-TA2	590	0,5108225108	0,236	5,419394527	5,1484248	-1,692205399	3,029291757	45,00832169	20,79384462
A4-TA3	755	0,6536796537	0,302	1,770155925	1,699349688	-0,4956436591	1,260514701	6,144821455	2,838907512
A4-TA4	1419	1,228571429	0,5676	3,271651525	2,61732122	-1,962990915	4,329759714	39,45079365	18,22626667
4-B1	1505	0,5574074074	0,1505	24,92838694	22,48432888	-10,76473084	14,15302346	1039,159817	280,5731506
B1-B2	919	0,3403703704	0,0919	11,29827464	10,56320053	-4,008716058	3,963801481	130,3458644	35,19338339
B1-TB1	3037	1,124814815	0,3037	13,70244639	11,92112836	-6,75601478	15,46086348	633,5756905	171,0654364
B2-TB2	204	0,075555556		-	7,944339704		0,6475078211		
B2-TB3	1311	0,485555556					i		

Tabela 9 Wartości maksymalne (kolory odpowiadają poszczególnym przedziałom odcinków).

		delta U
max	114,5923987	126,6894312
max	21,33886595	27,19820576
max	24,92838694	15,46086348

Tabela 8 Wyniki obliczeń dla poszczególnych węzłów

węzeł	lodb	Ic,odb	lb,odb	U	Sodb	Cosq (max)	kj (max)
0	-	-	-	15000	-	-	-
1	-	-	-	14935,72772	ı	•	-
T1	18,91399482	17,02259534	-8,244419203	14908,52951	630000	0,9	0,78
2	-	-	-	14828,32381	-	-	-
T2	21,33886595	19,63175667	-8,363093322	14818,33568	630000	0,92	0,88
3	-	-	-	14701,63438	-	-	-
4	-	-	-	14638,77095	-	-	-
B1	-	-	-	14624,61793	-	-	-
TB1	13,70244639	11,92112836	-6,75601478	14609,15707	400000	0,87	0,89
B2	-	-	-	14620,65413	-	-	-
TB2	8,275353858	7,944339704	-2,31709908	14620,00662	250000	0,96	0,86
TB3	3,117691454	2,618860821	-1,691616978	14619,16076	100000	0,84	0,81
C1	-	-	-	14617,34482	-	-	-
TC1	6,92820323	5,888972746	-3,649657518	14596,22632	250000	0,85	0,72
C2	-	-	-	14606,64625	-	-	-
TC2	5,542562584	4,988306326	-2,415947019	14603,38524	160000	0,9	0,9
C3	-	-	-	14601,85788	-	-	-
TC3	1,818653348	1,67316108	-0,7127636354	14601,28228	63000	0,92	0,75
TC4	3,233161507	2,942176972	-1,340495431	14599,63774	100000	0,91	0,84
A1	-	-	-	14671,20643	-	-	-
TA1	11,08512517	9,533207645	-5,656673227	14663,43471	400000	0,86	0,72
A2	-	-	-	14647,66591	1	-	-
A3	-	-	-	14637,00256	-	-	-
TA2	5,419394527	5,1484248	-1,692205399	14633,97327	160000	0,95	0,88
A4	-	-	-	14633,05595	-	-	-
TA3	1,770155925	1,699349688	-0,4956436591	14631,79543	63000	0,96	0,73
TA4	3,271651525	2,61732122	-1,962990915	14628,72619	100000	0,8	0,85
A5	-	-	-	14645,64473		-	_
TA5	7,409328455	6,594302325	-3,378361289			0,89	0,77
	-	3,150023069	-1,244968778	-		0,93	0,88

Tabela 10 Wartości maksymalne.

Umin	Umin/Umax	deltaU (%)
14596,22632	97,30817547	2,69182453

Dolina obciążenia

Tabela 11 Wyniki obliczeń dla poszczególnych odcinków.

odcinek	długość	R	X	I	Ic	Ib	deltaU	deltaP	deltaQ
0-1	996	0,4311688312	0,3984	73,37871898	72,47063392	-11,50841515	35,83203112	6964,803447	6435,478385
w1-2	1994	0,8632034632	0,7976	61,91594274	61,41322156	-7,874019464	59,29242346	9927,488865	9172,999711
w2-3	3015	1,305194805	1,206	48,71697176	48,07643034	-7,874019464	72,24517461	9293,026183	8586,756193
w3-4	2620	1,134199134	1,048	27,6217109	27,14845303	-5,091209184	36,12733915	2596,042016	2398,742823
w4-C1	1286	1,113419913	0,5144	12,3769707	12,20585827	-2,050957751	14,64525832	511,6923978	236,4018878
wC1-C2	1059	0,9168831169	0,4236	6,568321562	6,239905484	-2,050957751	6,590049693	118,6708472	54,82593143
wC2-C3	994	0,8606060606	0,3976	3,79704027	3,607188257	-1,185625444	3,575772752	37,22340189	17,19721167
1-T1	1508	1,305627706	0,6032	11,63938143	11,05741236	-3,634395686	16,6291314	530,6405236	245,1559219
2-T2	491	0,4251082251	0,1964	13,33679122	13,33679122	0	5,669579643	226,842	104,801004
C1-TC1	3220	2,787878788	1,288	5,965952782	5,965952782	0	16,63235321	297,6835017	137,5297778
C2-TC2	617	0,5341991342	0,2468	2,771281292	2,632717228	-0,8653323061	1,619959277	12,30794805	5,686272
C3-TC3	332	0,2874458874	0,1328	1,333679122	1,266995166	-0,4164411723	0,4194959375	1,53384	0,70863408
C3-TC4	720	0,6233766234	0,288	2,463361149	2,340193091	-0,7691842721	1,680346738	11,34822511	5,24288
3-A1	1688	0,7307359307	0,6752	21,11218291	20,92797731	-2,78281028	17,17177848	977,120212	902,8590759
A1-TA1	739	0,6398268398	0,2956	8,775724092	8,687966851	-1,237968228	5,924737783	147,8255931	68,295424
A1-A2	2023	0,8757575758	0,8092	12,33711445	12,24001046	-1,544842052	11,96936808	399,8824507	369,4913844
A2-A5	1503	0,5566666667	0,1503	7,754823109	7,422799961	-2,244843467	4,469425285	100,42926	27,11590021
A2-A3	1082	0,9367965368	0,4328	6,168557226	6,120005229	-0,7724210262	6,067503524	106,9384112	49,40554597
A3-A4	836	0,7238095238	0,3344	3,256893016	3,163971851	-0,7724210262	2,54841055	23,03310745	10,64129564
A5-TA5	727	0,2692592593	0,0727	5,484827557	5,265434455	-1,535751716	1,529416131	24,30064815	6,561175
A5-TA6	3743	1,386296296	0,3743	2,270911059	2,157365506	-0,7090917508	3,256160853	21,44754403	5,790836889
A3-TA2	590	0,5108225108	0,236	2,956033378	2,956033378	0	1,510008392	13,39090563	6,1865984
A4-TA3	755	0,6536796537	0,302	1,527668812	1,46656206	-0,4277472674	1,087841454	4,576617818	2,114397432
A4-TA4	1419	1,228571429	0,5676	1,732050808	1,697409791	-0,3446737588	2,281025998	11,05714286	5,1084
4-B1	1505	1,303030303	0,1505	15,24874641	14,94259477	-3,040251433	19,92821163	908,9584989	104,9847066
B1-B2	919	0,7956709957	0,0919	7,730799353	7,473991685	-1,976033132	6,12843585	142,6604486	16,47728181
B1-TB1	3037	2,629437229	0,3037	7,544043517	7,468603082	-1,064218301	19,96142609	448,9442694	51,85306311
B2-TB2	204	0,1766233766	0,0204	5,388602512	5,173058412	-1,508808703	0,9444627417	15,38585859	1,777066667
B2-TB3	1311	1,135064935	0,1311	2,347891095	2,300933273	-0,4672244286	2,672961798	18,77145166	2,168102667

Tabela 13 Wartości maksymalne (kolory odpowiadają poszczególnym przedziałom odcinków).

	I	delta U
max	73,37871898	72,24517461
max	13,33679122	16,63235321
max	15,24874641	19,96142609

Tabela 12 Wyniki obliczeń dla poszczególnych węzłów.

węzeł	Iodb	Ic,odb	lb,odb	U	Sodb	Cosq (min)	kj (min)
0	-	-	-	15000	-	-	-
1	-	-	-	14964,16797	-	-	-
T1	11,63938143	11,05741236	-3,634395686	14947,53884	630000	0,95	0,48
2	-	-	-	14904,87555	-	-	-
T2	13,33679122	13,33679122	0	14899,20597	630000	1	0,55
3	-	-	-	14832,63037	-	-	-
4	-	-	-	14796,50303	1	-	-
B1	-	-	-	14776,57482	1	-	-
TB1	7,544043517	7,468603082	-1,064218301	14756,61339	400000	0,99	0,49
B2	-	-	-	14770,44638	1	-	-
TB2	5,388602512	5,173058412	-1,508808703	14769,50192	250000	0,96	0,56
TB3	2,347891095	2,300933273	-0,4672244286	14767,77342	100000	0,98	0,61
C1	-	-	-	14781,85777	-	-	-
TC1	5,965952782	5,965952782	0	14765,22542	250000	1	0,62
C2	-	-	-	14775,26772	1	-	-
TC2	2,771281292	2,632717228	-0,8653323061	14773,64776	160000	0,95	0,45
C3	-	-	-	14771,69195	1	-	-
TC3	1,333679122	1,266995166	-0,4164411723	14771,27245	63000	0,95	0,55
TC4	2,463361149	2,340193091	-0,7691842721	14770,0116	100000	0,95	0,64
A1	-	-	-	14815,45859	-	-	-
TA1	8,775724092	8,687966851	-1,237968228	14809,53385	400000	0,99	0,57
A2	-	-	-	14803,48922	-	-	-
А3	-	-	-	14797,42172	-	-	-
TA2	2,956033378	2,956033378	0	14795,91171	160000	1	0,48
A4	-	-	-	14794,87331	-	-	-
TA3	1,527668812	1,46656206	-0,4277472674	14793,78547	63000	0,96	0,63
TA4	1,732050808	1,697409791	-0,3446737588	14792,59228	100000	0,98	0,45
A5	-	-	-	14801,95981	-	-	-
TA5	5,484827557	5,265434455	-1,535751716	14800,43039	250000	0,96	0,57
TA6	2,270911059	2,157365506	-0,7090917508	14798,70365	100000	0,95	0,59

Tabela 10 Wartości maksymalne.

Umin	Umin/Umax	deltaU (%)
14756,61339	98,37742263	1,622577374

Część "urządzeniowa"

1. Wyznaczenie charakterystycznych wielkości zwarciowych po stronie SN i nn

Parametry zwarciowe potrzebne do doboru urządzeń zabezpieczających obliczyliśmy zakładając czas trwania zwarcia jako jedną sekundę według następujących wzorów:

$$X_k = \sum X$$

$$R_k = \sum R$$

(suma od GPZ do punktu zwarcia)

$$|Z_k| = \sqrt{{R_k}^2 + {X_k}^2}$$

$$I_k^{\prime\prime} = \frac{c * U_N}{\sqrt{3} * |Z_k|}$$

$$\kappa = 1,02 + 0.98^{-3*\frac{R_k}{X_k}}$$

(wzór z Podstaw Elektroenergetyki)

$$i_n = \kappa * \sqrt{2} * I_k^{\prime\prime}$$

$$I_{th} = \sqrt{m+n} * I_k^{\prime\prime}$$

$$S_k^{\prime\prime} = \sqrt{3} * I_k^{\prime\prime} * U_N$$

 X_k – zastępcza reaktancja zwarciowa [Ω]

 R_k – zastępcza rezystancja zwarciowa $[\Omega]$

 Z_k – zastępcza impedancja zwarciowa [Ω]

I_k" – początkowy prąd zwarciowy [A]

c – współczynnik zależny od poziomu napięcia (wybrane 1,1 z zakresu 0,95 ÷ 1,1) [-]

U_N – napięcie znamionowe [V]

 $i_{\text{p}}-$ udarowy prąd zwarciowy [A]

κ – współczynnik udaru [-]

Ith – prad zwarciowy cieplny [A]

m, n – współczynniki uwzględniające wpływ cieplnej składowej nieokresowej i okresowej

 $m = f(T_k, \kappa)$ oraz n = 1 (przyjęte z Podstaw Elektroenergetyki) [-]

T_k – ustalony czas trwania zwarcia [s]

Sk" – moc zwarciowa obliczeniowa [VA]

Obliczeń dokonaliśmy jedynie dla szczytu ponieważ wtedy są sprzyjające warunki do wystąpienia wyższych parametrów zwarciowych. Przyjęto również założenie, iż początkowy prąd zwarciowy równa się ustalonemu.

Prarametry zwarciowe dla 15kV						
Zv	varcie dla TC4		Zwarcie dla T1			
Czas zwarcia	1 sek	Jednostka	Czas zwarcia	1 sek	Jednostka	
Zk	10,26603594	Om	Zk	2,004910165	Om	
Xk	5,6768	Om	Xk	1,0016	Om	
Rk	8,553679654	Om	Rk	1,736796537	Om	
С	1,1	-	С	1,1	-	
Un	15000	V	Un	15000	V	
R/X	1,506778406	-	R/X	1,734022101	-	
kappa	1,030667667	-	k	1,025395074	-	
m	0,1	-	m	0,1	-	
n	1	-	n	1	1	
lk"	927,941369	Α	lk"	4751,474459	Α	
ip	1352,552671	А	ip	6890,244349	Α	
Ith	973,2331184	A	Ith	6762,126233	Α	
S''	24108623,96	VA	S''	123446927,6	VA	

Następnie przeliczyliśmy obliczone prądy na drugą stronę transformatora mnożąc je przez przekładnię 15.75/0.42 .

	Prądy zwarciowe 0.4kV					
Z	Zwarcie dla TC4 Zwarcie dla T1					
lk"	lk" 34797,80134 A		lk"	101817,3098	Α	
ip 50720,72516 A		ip	147648,0932	Α		
Ith	36496,24194	Α	lth	144902,705	Α	

Dzięki obliczonemu prądowi zwarciowemu cieplnemu byliśmy w stanie sprawdzić również poprawność dobranych przewodów ze względu na obciążalność prądową zwarciową. Dokonaliśmy tego dobierając największą możliwą wartość obciążalności z tabel zawartych w "Zbiór zadań z sieci elektrycznych" autorstwa Jana Strojnego i Jana Strzałki dla temperatury 40 stopni (lato – gorsze warunki) i podstawiając ją do poniższego warunku.

$$s_{min} \ge \frac{I_{th}}{J_{C1}}$$

	dla TC4		dla TC1
Ith	973,2331184	Ith	6762,126233
Jc1	100	Jc1	100
s(min)	9,732331184	s(min)	67,62126233
S	35	S	35
	Zgodny		Niezgodny

Niestety jak widać dla punktu bliższego względem GPZ przekrój okazał się zbyt mały. Jednakże ze względu na to, iż parametry zwarciowe mieliśmy obliczyć tylko dla dwóch skrajnych punktów, a taka sytuacja może występować też w innych punktach sieci, nie wzięliśmy tego warunku pod uwagę. Przy prawdziwym projekcie byłoby to niedopuszczalne.

2. Dobranie pól rozdzielnic SN i nn w oparciu o elementy prefabrykowane produkowane w kraju

W obu punktach wybraliśmy stację transformatorową typu MRw-b(pp) 20/1000-3"a" firmy ZPUE.

1	Ściany, grubość 120 mm - standard, 90 mm - opcja Ściany bez otworów - klasa odporności ogniowej REI 120
2	Żaluzje wentylacyjne IP 23D - standard , IP 43 - opcja W żaluzjach wentylacyjnych montowanych w ścianach z odpornością ogniową instalowane są klapy p.poż. np. EI 60 lub EIS 120 - opcja
3	Drzwi pełne lub z żaluzjami wentylacyjnymi bez odporności p.poż. IP 23D - standard , IP 43 - opcja Drzwi z odpornością ogniową np. EI 60 lub EI 120 - opcja
4	Transformator
5	Rozdzielnica nN
5a	Szafa AMI / Smart Grid / Telemechanika / potrzeby własne
5b	Bateria kondesatorów
6	Rozdzielnica SN
7	Pokrywa włazu kanału kablowego

Pola rozdzielnicy SN oraz nn wybraliśmy takie jak preferowane i uwzględnione na powyższej grafice tzn. typu Rotoblok 17,5 dla rozdzielnicy SN oraz RN-W dla rodzielnicy nn.

Rozdzielnica SN:

Dane elektryczne:	
	Rotoblok 17,5kV
Napięcie nominalne sieci	15 kV
Najwyższe napięcie urządzeń	17,5 kV
Częstotliwość znamionowa / Liczba faz	50 Hz / 3
Znamionowe wytrzymywalne napięcie krótkotrwałe częstotliwości sieciowej	55 kV / 63 kV
Znamionowe wytrzymywalne napięcie udarowe piorunowe 1,2/50 μs	95 kV / 110 kV
Prąd znamionowy ciągły	630 A / 1250 A
Prąd znamionowy krótkotrwały wytrzymywany	do 16 kA (1s)
Prąd znamionowy szczytowy wytrzymywany	do 40 kA
Klasa odporności na wewnętrzne zwarcie łukowe IAC	AF do 16 kA
Stopień ochrony	IP3X

Poprawność doboru została sprawdzona pod względem napięcia nominalnego sieci oraz częstotliwości, które są równe. Oprócz tego sprawdzone zostały również warunki na prąd znamionowy ciągły, prąd znamionowy krótkotrwały wytrzymywany i szczytowy wytrzymywany.

$$I_{Nr} \ge I_r$$
$$I_{Nk}^{"} \ge I_k^{"}$$
$$i_{pN} \ge i_p$$

Dla punktu T1:

 $1250A \ge 18,91A$

 $16kA \ge 4,751kA$

 $40kA \ge 6,890kA$

Dla punktu TC4:

 $1250A \ge 6,93A$

 $16kA \ge 0,927kA$

 $40kA \ge 1,353kA$

Pole linii zasilającej:

Schemat elektryczny

Przekrój - Widok z frontu

Pole pomiarowe:

Schemat elektryczny

Przekrój - Widok z frontu

Pole transformatorowe:

Schemat elektryczny

Przekrój - Widok z frontu

Rozdzielnica nn:

Dane elektryczne	
Napięcie znamionowe izolacji	1000 V
Napięcie znamionowe łączeniowe	400 V / 690 V
Napięcie probiercze udarowe wytrzymywane	8 kV
Częstotliwość znamionowa	50 Hz
Prąd znamionowy rozdzielnicy	1250 A / 1600 A / 2000 A
Prąd znamionowy krótkotrwały wytrzymywany	do 35 kA (1s)
Prąd znamionowy szczytowy wytrzymywany	do 77 kA

W tym przypadku podobnie jak i w poprzednim poprawność doboru została sprawdzona pod względem napięcia łączeniowego, które zgadza się z naszym. Oprócz tego sprawdzone zostały również warunki na prąd znamionowy ciągły, prąd znamionowy krótkotrwały wytrzymywany i szczytowy wytrzymywany.

$$I_{Nr} \ge I_r$$
$$I_{Nk}^{"} \ge I_k^{"}$$
$$i_{pN} \ge i_p$$

Dla punktu T1:

 $1250A \ge 709,3A$

 $35kA \ge 101,8kA$

 $77kA \ge 144,9kA$

Dla punktu TC4:

 $1250A \ge 259,8A$

 $35kA \ge 34,8, kA$

77kA ≥ 50,7kA

Jak można zauważyć dla punktu T1 warunki nie zostały spełnione dlatego zamieniliśmy w tym przypadku rozdzielnie nn na typu ZR-W tej samej firmy.

Dane elektryczne:			
Napięcie znamionowe izolacji	690 V / 1000 V / 1500 V ¹⁾ AC do 1500 V DC		
Napięcie znamionowe łączeniowe	400 V / 500 V / 690 V / 1000 V ²⁾ AC do 1200 V DC		
Odporność na działanie łuku wewnętrznego	100 kA / 0,3s		
Napięcie probiercze udarowe wytrzymywane	8 kV		
Częstotliwość znamionowa	50 Hz		
Prąd znamionowy rozdzielnicy	do 6300 A		
Prąd znamionowy krótkotrwały wytrzymywany	do 105 kA (1s)		
Prąd znamionowy szczytowy wytrzymywany	do 231 kA		

Sprawdziliśmy te same warunki dla nowo dobranej rozdzielnicy i okazała się ona poprawna.

Dla punktu T1: $6300A \ge 709,3A$ $105kA \ge 101,8kA$ $231kA \ge 144,9kA$

3. Zaproponowanie rozwiązanie komory transformatora i jego połączenia z rozdzielnicami

4. Dobranie aparatury rozdzielczej i zabezpieczeniowej w wybranych dwóch stacjach sieci

Punkt TC4:

W tym punkcie został dobrany transformator olejowy 100 kVA 15,75/0,42kV firmy Mingch.

Została dobrana następująca aparatura rozdzielcza oraz urządzenia zabezpieczające:

Po stronie niskiego napięcia:

Wyłącznik – Mitsubishi Electric NF1000-SEW 3P

Series	WS SERIES - MCCB
Туре	NF-S TYPE (STANDARD CLASS)
Rated Current (A)	1000
Rated Voltage (V)	690
Current Type	AC
Number of Poles	3
Breaking Capacity at 400V (kA)	85

Został on sprawdzony ze względu na następujące warunki:

 U_{Nwy} łącznika $\geq U_{Nsieci}$

 $690V \ge 400V$

 ${I_{Nk}}^{\prime\prime} \geq {I_k}^{\prime\prime}$

 $85kA \ge 34,8kA$

 ${\it Przekładnik prądowy-Abcelektro~MBS~300/5~A}$

Dobrany tak aby prąd po stronie wysokiej był wyższy od I_r.

 $300A \ge 259,8A$

Przekładnik napięciowy – Astat TT20 400√3/100√3

Dobrany tak aby napięcie po stronie wysokiej przekładnika zgadzało się z napięciem transformatora po stronie, na której jest montowany.

Bezpiecznik – ETI POLAM KOMBI- NH2/WT-2 gG 400A/500V

Dobrany tak aby jego znamionowe napięcie było wyższe od napięcia po stronie transformatora, na której jest montowana oraz aby w nie za dużym stopniu przekraczała płynący po danej stronie prąd.

Po stronie wysokiego napięcia:

Wyłącznik – Schneider Electric LF3

Napięcie znamionowe	[kV]	7,2; 12; 17,5
Poziom znamionowy izolacji:		
■ napięcie znamionowe wytrzymywalne o częstotliwość 50Hz/1min	[kV]	20; 28; 38
■ napięcie znamionowe wytrzymywalne udarowe piorunowe (1.2/50µs)	[kV]	60; 75; 95
Częstotliwość znamionowa	[Hz]	50
Prąd znamionowy ciągły	[A]	630; 1250; 2000; 2500; 3150
Prąd znamionowy wyłączalny zwarciowy (lsc)	[kA]	25; 31,5; 40; 50;
Prąd znamionowy krótkotrwały wytrzymywalny	[kA/3s]	Isc/3s
Prąd znamionowy szczytowy wytrzymywalny	[kA]	2,5 lsc
Prąd znamionowy załączalny wyłącznika	[kA]	2,5 lsc
Zgodność z normą	[-]	PN-EN 62271-100

Z powyższej tabelki wybraliśmy model pod napięcie znamionowe 17,5kV tak aby było wyższe od napięcia po stronie transformatora, na której jest podłączany dany wyłącznik. Sprawdziliśmy również warunki na prąd znamionowy ciągły, wyłączalny zwarciowy i szczytowy wytrzymywalny.

$$I_{Nr} \ge I_r$$
$$I_{Nk}^{"} \ge I_k^{"}$$

$$i_{pN} \geq i_p$$

Dla punktu TC4:

 $3150A \geq 6{,}92A$

 $50kA \ge 0.973kA$

 $125kA \ge 1,352kA$

Przekładnik prądowy – Astat ATB 20-3B

Тур	ATB 20-3B
Zastosowanie	Wnętrzowe
Napięcie znamionowe [kV]	24
Znamionowy prąd pierwotny [A]	52500
Znamionowy przełączalny prąd pierwotny [A]	2 x 5 - 2 x 600
Znamionowy prąd wtórny [A]	15
Klasa dokładności uzwojeń pierwotnych	0,2 - 0,2 S - 0,5 - 0,5 S - 1 - 3 - 5 zgodnie z IEC 60044-1
Klasy zabezpieczeniowe	5P - 10P; CI: PX zgodnie z IEC 60044-1

W powyższej tabelce widzimy, iż prąd znamionowy pierwotny, według którego dobieramy przekładnik, jest podany jako zakres, w którym zawiera się wartość prądu po stronie transformatora, na której jest montowany dany przekładnik.

Przekładnik napięciowy – ABB UMZ 24

Typ przekładnika	UMZ 24						
	UMZ 17						
	UMZ 12						
Znamionowy poziom izolacji	[kV]	1,2/6/-	3,6/10/40	7,2/20/60	12/28/75	17,5/38/95	24/50/125
Zakres znamionowych napięć pierwotnych	[kV]	1,0	2; 2,5; 3	3,3; 5; 5.5; 6	6,3; 6,6; 10	10,5; 11; 12; 12,5; 13; 13,2; 13,8; 14; 14,5	15; 16; 17,5 18; 20
Oznaczenie zacisków pierwotnych	-	A-B					
Częstotliwość znamionowa	[Hz]	50 lub 60					
Napięcie znamionowe (uzwojenie wtórne pomiarowe)	M	100; 110					
Napięcie znamionowe (uzwojenie wtórne do zabezpieczeń)	ſΛÌ	100; 110					
Oznaczenie zacisków uzwojeń wtórnych	-	konfiguracja oznaczeń – patrz Schematy elektryczne przekładnikow napięciowych					
Maksymalna liczba uzwojeń wtórnych	-	2					
Dopuszczalna moc znamionowa		•	•				
(sumaryczna)*/klasa (uzwojenie wtórne pomiarowe)	[VA]/-	20/02; 50/05; 100/1.0; 150/3,0					
Dopuszczalna moc znamionowa						•	
(sumaryczna)*/klasa (uzwojenie wtórne do zabezpieczeń)	[VA]/-	150/3P; 150/6P					
Dopuszczalny prąd termiczny	T	przy jednym uzwojeniu: 2					
	[A]	przy dwóch uzwojeniach: 1					
Współczynnik napięciowy	-	1,2/-					
Klasa izolacji	-	E					
Masa przekładnika	[kg]	•••••••••••••••••••••••••••••••••••••••	UMZ 12;	UMZ 17		UMZ	24
			≈ 19	÷ 23		≈ 30 ÷	- 35

Z powyższej tabelki z opcji dostępnych dla modelu UMZ 24 wybraliśmy tę pod znamionowy poziom izolacji 24kV oraz do zakresu napięć znamionowych 15kV.

Producent	SIBA		
Typ bezpiecznika	topikowy		
Prąd znamionowy	6,3A		
Napięcie min.	10kV		
Rodzaj bezpiecznika	przemysłowy		
Napięcie maksymalne	24kV		
Wymiar D	53mm		
Długość	292mm		
Prąd wyłączalny minimalny	22A		

Bezpiecznik nie posiadał zdjęcia poglądowego. W powyższej tabeli widzimy, napięcie strony transformatora, na którą podłączany jest bezpiecznik mieści się w zakresie. Prąd znamionowy jest minimalnie niższy od prądu na danej stronie transformatora jednak wartość wyłączalna jest wystarczająco wyższa.

Punkt T1:

Dla danego punktu dobrany został transformator suchy żywiczny EG 630kVA 15.75/0.42kV firmy EGsystem.

Aparatura rozdzielcza oraz urządzenia zabezpieczające zostały dobrane w dużej mierze takie jak do punktu TC4. Z wyjątkiem poniżej wymienionych różnic po stronie nn.

Bezpiecznik – EFEN 800A 500V

Został on dopasowany w taki sposób aby wartość prądu w miarę możliwości odpowiadała wartości po danej stronie transformatora oraz aby jego napięcie znamionowe było większe lub równe napięciu po danej stronie transformatora.

Przekładnik prądowy - Selec SPCT 1000/5A

Został on dopasowany w taki sposób, aby jego wartość prądu znamionowego po stronie pierwotnej była niewiele wyższa od występującego na danej stronie transformatora prądu.

 $1000A \ge 709,3A$