Package 'RNAetc'

August 3, 2021

Type Package
Title What the Package Does (Title Case)
Version 0.1.0
Author Kim Dill-McFarland
Maintainer Kim Dill-McFarland <kadm@uw.edu></kadm@uw.edu>
Description More about what it does (maybe more than one line) Use four spaces when indenting paragraphs within the Description.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports dplyr, edgeR, forcats, ggplot2, limma, magrittr, readr, tibble, tidyr, WGCNA
Depends R (>= 2.10)
R topics documented:
align_metrics 1 example.dat 2 example.kin 3 example.voom 4 filter_rare 5 make_modules 6 Index 7
align_metrics Extract and format cleaning and alignment metrics

Description

Extract data from FastQC trim settings, Picard, samtools flagstat, and featureCounts output by the RNA-seq fastq pipeline

2 example.dat

Usage

```
align_metrics(
  data.dir = NULL,
  trim = TRUE,
  bam = TRUE,
  picard = TRUE,
  bam.filter = TRUE,
  count = TRUE
```

Arguments

data.dir Character string of directory containing all associated files

trim Logical if should include FastQC trim settings

bam Logical if should include samtools flagstat for raw alignments

picard Logical if should include Picard for raw alignments

bam.filter Logical if should include samtools flagstat for filtered alignments count Logical if should include featureCounts total reads in genes

Value

Data frame cleaning and alignment metrics for all libraries

example.dat kimma example DGEList.

Description

An edgeR DGEList data set containing unnormalized RNA-seq counts. RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are unnormalized.

Usage

```
example.dat
```

Format

Formal class 'DGEList' [package "edgeR"] with 1 slot:

1. counts A matrix with 1000 rows and 6 columns

```
rownames character. ENSEMBL gene ID.
```

lib1 integer. Counts in library 1.

lib2 integer. Counts in library 2.

lib3 integer. Counts in library 3.

lib4 integer. Counts in library 4.

lib5 integer. Counts in library 5.

lib6 integer. Counts in library 6.

example.kin 3

2. **samples** A data frame with 6 rows and 7 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. Normalizatin factors. No normalization was completed. All = 1.

libID character. Unique library ID. Matches column names in counts.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus character. A for media samples with no virus. B for virus-infected samples.

3. genes A data frame with 1000 rows and 5 columns

hgnc_symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in counts.

Source

```
https://github.com/altman-lab/P259_pDC_public
```

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

example.kin

kimma example kinship.

Description

Matrix of pairwise kinship values between donor 1,2,3. Values are dummy data with 1 for self comparison, 0.5 for siblings, and 0.1 for unrelated.

Usage

example.kin

Format

A matrix with 3 rows and 3 variables:

rowname Donor ID. Same as column names

donor1 numeric kinship (0-1) with donor 1

donor2 numeric kinship (0-1) with donor 2

donor3 numeric kinship (0-1) with donor 3

4 example.voom

example.voom

kimma example EList.

Description

A limma EList data set containing normalized log2 RNA-seq counts. RNA-seq of human dendritic cells cultured with and without virus. Samples from 3 donors and a random subset of 1000 genes were selected. Counts are TMM normalized log2 counts per million (CPM).

Usage

example.voom

Format

Formal class 'EList' [package "limma"] with 1 slot:

1. genes A data frame with 1000 rows and 5 columns

hgnc_symbol character. Current approved HGNC symbol.

Previous symbols character. Previous HGNC symbols.

Alias symbols character. Alias HGNC symbols.

gene_biotype character. Gene product type. All = protein-coding.

geneName character. ENSEMBL gene ID. Matches row names in E.

2. targets A data frame with 6 rows and 7 columns

group factor. No grouping was provided. All = 1.

lib.size numeric. Total library size for this 1000 gene subset.

norm.factors numeric. TMM normalizatin factors.

libID character. Unique library ID. Matches column names in E.

donorID character. Donor ID.

median_cv_coverage numeric. Median coefficient of variation of coverage. Quality metric for sequencing libraries calculated from original full data set.

virus character. A for media samples with no virus. B for virus-infected samples.

3. E A matrix with 1000 rows and 6 columns

rownames character. ENSEMBL gene ID.

- **lib1** integer. log2 CPM in library 1.
- lib2 integer. log2 CPM in library 2.
- **lib3** integer. log2 CPM in library 3.
- lib4 integer. log2 CPM in library 4.
- **lib5** integer. log2 CPM in library 5.
- **lib6** integer. log2 CPM in library 6.
- 4. weights A matrix with 1000 rows and 6 columns
 - 1 numeric. limma gene weights for library 1.
 - 2 numeric. limma gene weights for library 2.
 - 3 numeric. limma gene weights for library 3.
 - 4 numeric. limma gene weights for library 4.
 - 5 numeric. limma gene weights for library 5.
 - 6 numeric. limma gene weights for library 6.
- 5. **design** A matrix with 6 rows and 1 column

GrandMean numeric. limma default design matrix.

filter_rare 5

Source

```
https://github.com/altman-lab/P259_pDC_public
```

References

Dill-McFarland et al. 2021. Eosinophil-mediated suppression and Anti-IL-5 enhancement of plasmacytoid dendritic cell interferon responses in asthma. J Allergy Clin Immunol. In revision

filter_rare

Filter rare and low abundance genes

Description

Filter genes at a minimum counts per million (CPM) in a minmum number or percent of total samples.

Usage

```
filter_rare(
  dat,
  min.CPM,
  gene.var = "geneName",
  min.sample = NULL,
  min.pct = NULL,
  plot = FALSE
)
```

Arguments

dat	DGEList output by edgeR::DEGList()
min.CPM	numeric minimum counts per million (CPM)
gene.var	character name for column with gene names in dat\$genes that matches names in expression data dat\$E. Default "geneName"
min.sample	numeric minimum number of samples
min.pct	numeric minimum percent of samples (0-100)
plot	logical if should plot mean variance trends

Value

DGEList object filtered to not rare genes

Examples

```
dat.filter <- filter_rare(dat = example.dat, min.CPM = 0.1, min.sample = 3)
dat.filter <- filter_rare(dat = example.dat, min.CPM = 0.1, min.pct = 10, plot = TRUE)</pre>
```

6 make_modules

make_modules

Construct WGCNA modules and associated data

Description

Make WGCNA modules from gene expression data with dynamic soft threshold selection. Also outputs mean module expression and DAVID formatted gene lists

Usage

```
make_modules(
  dat,
  genes = NULL,
  Rsq.min = NULL,
  sft.value = NULL,
  minModuleSize = 20,
  deepSplit = 3,
  nThread = 2
)
```

Arguments

dat	limma EList output by voom()
genes	Character vector of genes to used in module building. Must match rownames in dat. If not set, all genes in dat are used
Rsq.min	Numeric minimum R-squared for soft threshold selection. If set, sft.value is not used
sft.value	Numeric soft threshold. Set when minimum R-squared is no used
minModuleSize	Numeric minimum module size
deepSplit	Integer value between 0 and 4. Provides a simplified control over how sensitive module detection should be to module splitting, with 0 least and 4 most sensitive
nThread	Integer for number of threads to use

Value

List including:

- genes Character vector of genes used in module building
- sft Data frame with soft thresholding selected for module building. Includes power, minimum R-squared, and connectivity
- sft.plot ggplot object of soft thresholding topology and connectivity
- mods Data frame of genes in modules
- mods.voom Data frame of mean module expression in each library
- david DAVID formatted data frame of genes in modules

Examples

```
dat.mods <- make_modules(dat = example.voom, sft.value = 1)</pre>
```

Index

```
* datasets
    example.dat, 2
    example.kin, 3
    example.voom, 4

align_metrics, 1

example.dat, 2
    example.kin, 3
    example.voom, 4

filter_rare, 5

make_modules, 6
```