ECONOMICS 8100

GREG LEO

Part 1. Budget

1. Consumption Set X

Assumptions: (Universe of Choice Objects): X

Bundles: Elements of X. $x \in X$

Assumptions about X.

- 1. $\emptyset \neq X \subseteq \mathbb{R}^n_+$.
- 2. X is closed.
- 3. X is convex.
- 4. $0 \in X$.

FIGURE 1.1. Examples of a Convex/Non-Convex Set.

2. Budget Set B

Budget Set: $B \subseteq X$

X defines the scope of the model. B is what an $individual\ consumer\ chooses\ among.$

Example. Budget Set with Prices and Income

$$B = \{x | x \in X \& x_1 p_1 + x_2 p_2 \le m\}$$

Example. Ice Cream Bowls

Every ice cream bowl x has some non-negative number of scoops of Vanilla, Chocolate, Strawberry.

$$X = \mathbb{R}^3_+$$

Budget B is the set of bowls with no more than one scoop of ice cream.

$$B = \left\{ x | x \in R_+^3 \& \sum_{i=1}^3 x_i \le 1 \right\}$$

This is the unit-simplex in \mathbb{R}_3 .

 $(1,0,0) \in B$. (On the boundary.)

 $(0.5, 0.5, 0) \in B$. (On the boundary.)

 $(0.25, 0.25, 0.25) \in B$. (In the interior.)

 $(2,0,0) \notin B$

Part 2. Preference

3. The Preference Relation

Preference Relation is a **Binary Relation**.

Formally, a binary relation on set X is a subset of the Cartesian product X with itself.

$$\succeq \subseteq X \times X$$

Another way to denote an ordered pair is "in" the relation:

If $(x, y) \in \succeq$ we can also write $x \succeq y$.

Informally we say "x" is at least as good as "y", or "x" preferred "y".

Axioms of \succeq .

Axiom 0 (reflexive): $\forall x \in X, x \succeq x$. This is implied by axiom 1.

Axiom 1 (complete): $\forall x, x' \in X$, either $x \succeq x'$ or $x' \succeq x$ (or both).

The consumer has "some" preference over every pair of objects.

Axiom 2 (transitive): $\forall x, x', x'' \in X$ if $x \succ x'$ and $x' \succ x'' \Rightarrow x \succ x''$.

≥ is a "weak order" if it is complete and transitive.

4. Relations and Sets Related to ≥

Subrelations:

 \sim is the indifference relation. $x \succeq y$ and $y \succeq x \Leftrightarrow x \sim y$.

 \succ is the strict relation. $x \succeq y$ and not $y \succeq x \Leftrightarrow x \succ y$.

Related Sets:

 $\succeq (x)$ "upper contour set"

5. From Preferences to Choice

Choice Correspondence.

We will assume that from a budget set B a consumer "chooses" choice set C according to their preference \succeq . $C = \{x | x \in B \& \forall x' \in B, x \succeq x'\}$.

Informally, C is the set of objects that are at least as good as anything else in the set.

Example With Transitive Preferences

 $X = \{a, b, c\}. \ a \succeq b, c \succeq a, c \succeq b.$

$$C(\{a\}) = a, C(\{b\}) = b, C(\{c\}) = c$$

 $C(\{a,b\}) = a, C(\{a,c\}) = c, C(\{b,c\}) = c$

$$C\left(\{a,b,c\}\right)=c$$

- 6. Cycles Lead to Empty Choice Sets
- 6.1. The Problem with Intransitive Preferences. $X = \{a, b, c\}$. $a \succeq b, c \succeq a, b \succeq c$. This is intransitive!

Choice correspondence:

$$C: P\left(X\right)/\emptyset \to X$$

$$C\left(\left\{a\right\}\right) = a, C\left(\left\{b\right\}\right) = b, C\left(\left\{c\right\}\right) = c$$

$$C\left(\left\{a,b\right\}\right) = a, C\left(\left\{a,c\right\}\right) = c, C\left(\left\{b,c\right\}\right) = b$$

$$C\left(\left\{a,b,c\right\}\right) = \emptyset$$

This consumer cannot make a choice from the set $\{a, b, c\}$.

6.2. Cycles and Empty Choices. Notice in the previous example, $a \succ b, a \succ c, c \succ a$. We have proved (essentially) that if there is a cycle, there is an empty choice set.

In fact, suppose, there is an empty choice set $\mathbf{and}\ X$ is finite. There must be a cycle.

$$\forall x \in B, \# (\succsim (x)) < \# (B)$$

By completeness, $\forall x \exists x' \in X : x' \succ x$. Choose an x_1 , let x_2 be any element of $\succ (x_1)$. We have $x_2 \succ x_1$. If there is an $x_3 \in \succ (x_2)$ such that $x_1 \succ x_3$ we have identified a cycle. Otherwise, we continue with an inductive step. Suppose we have $x_n \succ \dots \succ x_1 . \succ (x_n)$ is non-empty. Either it contains an element x_{n+1} such that there is an $x_i \succ x_{n+1}$ in which case we have identified a cycle or it does not and we continue with another inductive step. Either we find a cycle or reach the N_{th} step

with $x_N \succ x_{n-1} \succ ... \succ x_1$. $\succ (x_N)$ is non-empty.

So, the cycle condition is equivalence to a non-empty choice set. Transitivity of \succeq implies transitivity of \succ which implies no cycles (try this last step at home). But do no-cycles imply transitivity of \succeq ? No. Here is a counter-example:

$$x \succ y, y \sim z, z \succ x$$

7. Intransitivity: Empty Choices, Incoherent Choices: Pick One.

So if no-cycles of the strict preference is equivalent to non-empty choice (in finite sets), and transitvity of \succeq is not equivelent to no-cycles, why do we assume it?

Finite non-emptyness: For any B with $\#(B) \in \mathbb{I}$, $C(B) \neq \emptyset$

Coherence: For every x, y and B, B' such that $x, y \in B \cap B'$, $x \in C(B) \land y \notin C(B) \Rightarrow y \notin C(B')$.

Suppose there is an intransitive \succeq . There exists either a B where $C(B) = \emptyset$ or there exists a x, y, B, B' where the choice correspondence is incoherent. By intransitivity:

1)
$$x \succ y, y \succ z, z \succ x$$

$$C(\{x, y, z\}) = \emptyset$$
2) $x \sim y, y \sim z, z \succ x$
3) $x \sim y, y \succ z, z \succ x$

For both of these we have incoherent choice from the following sets:

$$x \notin C(\{x, y, z\})$$

$$y \in C(\{x, y, z\})$$

$$x \in C(\{x, y\})$$

$$4) x \succ y, y \sim z, z \succ x$$

Can you find the incoherent choice?