Al Planning Heuristic Analysis Uninformed vs Informed Search Methods

Irene Sanz Vizcaíno Artificial Intelligence Nanodegree

In this report, the results obtained by 10 different strategies, 7 uninformed strategies and 3 informed strategies, when applied to 3 problems in the Air Cargo domain are compared. The problems have the same action schema, but different initial states and goals. The metrics that are going to be used to compare the results are: number of node expansions required, number of goal tests, time elapsed and optimality of solution (if the optimal path length is found).

Uninformed Search Strategies

Ctuatacia:	D.C. atuita	Air Cargo Problems		
Strategies	gies Metrics Probl		Problem 2	Problem 3
Breadth First Search	Node expansions	43	3343	14663
	Goal tests	56	4609	18098
	Time elapsed (s)	0.118	34.866	176.133
	Path length / Optimality	6 / Yes	9 / Yes	12 / Yes
	Node expansions	1458	-	-
Breadth First Tree Search	Goal tests	1459	-	-
	Time elapsed (s)	3.877	>600	>600
	Path length / Optimality	6 / Yes	-	-
Danth Finat	Node expansions	12	582	627
Depth First	Goal tests	13	583	628
Graph Search	Time elapsed (s)	0.036	14.345	14.005
Search	Path length / Optimality	12 / No	575 / No	596 / No
Danth	Node expansions	101	-	-
Depth Limited	Goal tests	271	-	-
Search	Time elapsed (s)	0.355	>600	>600
Search	Path length / Optimality	50 / No	-	-
	Node expansions	55	4853	18151
Uniform	Path length / Optimality 50 / No Node expansions 55 48	4855	18153	
Cost Search	Time elapsed (s)	0.150	50.223	210.013
	Path length / Optimality	6 / Yes	9 / Yes	12 / Yes
Doorraina	Node expansions	4229	-	-
Recursive	Goal tests	4230	-	-
Best First Search	Time elapsed (s)	11.658	>600	>600
	Path length / Optimality	6 / Yes	-	-
Greedy Best First Graph Search	Node expansions	7	998	5398
	Goal tests	9	1000	5400
	Time elapsed (s)	0.021	10.638	63.984
Search	Path length / Optimality	6 / Yes	21 / No	26/ No

The results of the algorithms applied to different problems show how the cost of their performance in terms of memory and time, and in some cases the accuracy, increase with the complexity of the problem. Nevertheless, optimal solutions were found for the three problems in an affordable time lapse with the algorithms Breath First Search and Uniform Cost Search.

On the other hand, if reducing the cost of the performance had priority over finding the optimal path length, both Depth First Graph Search and Greedy Best First Graph Search would be also plausible solutions, being the first one specially optimized in terms of time and the second one achieving path lengths which are not far from being optimal.

Some tests took too long to find a solution and had to be interrupted.

Informed Search Strategies

Stratogica	Metrics	Air Cargo Problems		
Strategies		Problem 1	Problem 2	Problem 3
A* Search	Node expansions	55	4853	18151
	Goal tests	57	4855	18153
	Time elapsed (s)	0.143	57.539	207.285
	Path length / Optimality	6 / Yes	9 / Yes	12 / Yes
A* Search (Ignore Preconditions)	Node expansions	41	1450	5038
	Goal tests	43	1452	5040
	Time elapsed (s)	0.148	19.511	70.244
	Path length / Optimality	6 / Yes	9 / Yes	12 / Yes
A* Search (Levelsum)	Node expansions	11	-	-
	Goal tests	13	-	-
	Time elapsed (s)	4.362	>600	>600
	Path length / Optimality	6 / Yes	-	-

Again, results show how time and memory consumed by the algorithms increase with the complexity of the problem. Also, the metrics of these resources are not far from the ones achieved with uninformed search strategies. On the other hand, none of the informed search strategies lost accuracy when increasing the complexity of the problem, finding the optimal path length for all the tests that could achieve a solution in less than 10 minutes. Some tests took too long to find a solution and had to be interrupted.

Among the informed search strategies tested, both in terms of resources and accuracy, the algorithm A* Search in combination with the heuristic for ignoring preconditions had the best results.

Results

According to the previous results, tests with the best performances have been run again and the sequences found for optimal path lengths with the preferred strategies were:

Air Cargo Problems	Problem 1	Problem 2	Problem 3
Strategy	Greedy Best First	A* Search (Ignore	A* Search (Ignore
	Graph Search	Preconditions)	Preconditions)
Result	Load(C1, P1, SFO)	Load(C1, P1, SFO)	Load(C1, P1, SFO)
	Load(C2, P2, JFK)	Fly(P1, SFO, JFK)	Fly(P1, SFO, ATL)
	Fly(P1, SFO, JFK)	Unload(C1, P1, JFK)	Load(C3, P1, ATL)
	Fly(P2, JFK, SFO)	Load(C2, P2, JFK)	Fly(P1, ATL, JFK)
	Unload(C1, P1, JFK)	Fly(P2, JFK, SFO)	Unload(C1, P1, JFK)
	Unload(C2, P2, SFO)	Unload(C2, P2, SFO)	Load(C2, P2, JFK)
		Load(C3, P3, ATL)	Fly(P2, JFK, ORD)
		Fly(P3, ATL, SFO)	Load(C4, P2, ORD)
		Unload(C3, P3, SFO)	Fly(P2, ORD, SFO)
			Unload(C2, P2, SFO)
			Unload(C3, P1, JFK)
			Unload(C4, P2, SFO)