Data Preprocessing and Analysis

Introduction à l'apprentissage automatique – GIF-4101 / GIF-7005

Professor: Christian Gagné

Week 12

12.1 Data preprocessing

Importance of preprocessing

- Learning algorithms are sensitive to input values
 - Scales of variables must be comparable
 - Larger scale variables are dominant in measures of similarity (e.g. Gaussian kernel) and distance (e.g. Euclidean, Manhattan)
 - High input values cause saturation of sigmoid neurons
 - Variables may sometimes be missing
 - Defective sensor, omissions during data collection, measurements added along the way
 - High dimensionality
 - Sensitivity of algorithms to dimensionality
 - Redundancy in measurements
- Data preprocessing is essential in practice
 - Rarely have access to well formatted and complete data, ready to be used
 - Important to understand the nature of the data in order to process it properly

Scaling

- Scale adjustment of variables
 - Common approach: bring the range of possible values back into [0,1]
 - Make scaling on each variable independently

$$x_i' = \frac{x_i - x_i^{min}}{x_i^{max} - x_i^{min}}, \quad i = 1, \dots, D$$

where:

$$x_i^{max} = \max_{t=1,\dots,N} x_i^t, \quad i = 1,\dots,D$$
$$x_i^{min} = \min_{t=1}^{N} x_i^t, \quad i = 1,\dots,D$$

- Scaling values calculated on a given dataset
 - New data could have value of variable X_i outside the domain $[x_i^{min}, x_i^{max}]$
- Simple approach that often does a reasonable job

Standardization

- Standardization: bring the distribution of each variable back to a reduced normal centered distribution, $x_i' \sim \mathcal{N}(0,1)$
 - Center the mean at zero and adjust for a unit standard deviation

$$x_i' = \frac{x_i - \mu_i}{\sigma_i}, \quad i = 1, \dots, D$$

- Less sensitive to outliers than a scaling
- Independent variables treatment
 - ullet Does not remove the covariance between the variables, $\Sigma
 eq {
 m I}$
 - Whitening transformation (presented later today) allows to obtain data according to a unit normal distribution, $\mathbf{x}' \sim \mathcal{N}_D(\mathbf{0},\mathbf{I})$

Imputation

- What to do if variable values are missing?
 - Remove data with missing values
 - Loss of data for learning
 - · Possible bias in removed data
 - Mark missing variables for the learning algorithm
 - Some learning algorithms can handle missing variables
 - Assign a default value to the missing variables (typically zero)
 - Randomly select from the other data and assign its value to the missing variable
 - Assign mean value of the variable, $x_i' = \bar{x}_i$
 - Reduces the measured variance of the variable in the dataset

Regression for imputation

- Replacing missing variables can distort the data
 - How to assign a plausible value to missing values?
- Use supervised learning to fill in missing values
 - For each variable, learn regression model to impute missing values

$$x'_{i} = f([x_{1} \ldots x_{i-1} x_{i+1}, \ldots, x_{D}]^{\top} | \theta_{i})$$

- The targets r^t used to learn parameterization θ_i correspond to the values x_i for the data where they are not missing
- Values more representative of the data, but can still reduce the variance as regression will capture the most likely values

12.2 Feature selection

Dimensionality reduction

- Dimensionality reduction
 - Go from a space with D dimensions to a space with K dimensions, where K < D

$$X_1,\ldots,X_D\mapsto X_1',\ldots,X_K'$$

- Possible approaches
 - Feature selection: choose K variables among the possible D variables

$$X_1, \dots, X_D \mapsto X_{v_1}, \dots, X_{v_K}$$

 $v_i \in \{1, \dots, D\} \mid v_i \neq v_j, \forall j \leq i$

Feature extraction: generate K variables as transformations of the original D variables

$$X_1,\ldots,X_D \mapsto f_1(X_1,\ldots,X_D),\ldots,f_K(X_1,\ldots,X_D)$$

6

Reasons for reducing dimensionality

- Curse of dimensionality
 - Adding a dimension exponentially increases mathematical space
 - 100 points equidistant by 0.01 in one dimension \Rightarrow 10²⁰ needed in 10 dimensions to keep the same density
 - High dimensionality: high computational and memory complexity
- Saving measurement costs
- The simpler a model is, the less variance there is
- Easier to explain with fewer variables: knowledge extraction
- Viewing data: analyzing results

Curse of dimensionality

Feature selection

- Objective: find a subset of K variables among $\{X_1, \ldots, X_D\}$, while preserving the performance
- Number of possible subsets: $\begin{pmatrix} D \\ K \end{pmatrix}$

$$\begin{pmatrix} 10 \\ 5 \end{pmatrix} = 252, \ \begin{pmatrix} 50 \\ 10 \end{pmatrix} \approx 10^{10}, \ \begin{pmatrix} 100 \\ 20 \end{pmatrix} \approx 10^{20}$$

- Heuristics: the art of inventing, of making discoveries
 - Algorithm that quickly provides (in polynomial time) a feasible, not necessarily optimal solution
 - As opposed to an exact algorithm that finds an optimal solution

Evaluations of subsets of features

- Filter approach
 - Calculate performance without a new training, with indirect measurement (proxy)
 - Not very demanding in calculation, but mixed results
- Wrapper approach
 - For each candidate set of features, train a new classifier
 - Empirical error assessment (training, validation, cross-validation, etc.)
 - Much more expensive in calculation time
- Embedded approach: feature selection integrated in model learning

Univariate selection

- Select according to performance measurement of individual features
 - Basic approach: select features for which variance exceeds a threshold
 - Assumes that the variance accurately describes the usefulness of each feature for classification
 - Good for filtering features of very low or zero variance (avoid singular covariance matrices)
- Selection according to other criteria
 - Correlation between features (keep set of decorrelated variables)
 - Mutual information between the feature and the target value

$$I(i) = \int_{X_i} \int_r p(X_i, r) \log \frac{p(X_i, r)}{p(X_i) p(r)} dr dX_i$$

Effect on empirical error, with imputation of unselected variables

Forward sequential selection

- Gradually build the feature set, adding the most promising variable
 - 1. Starting with an empty feature set
 - 2. Add the feature that improves the most (according to a certain criterion) the set of features
 - 3. Repeat step 2 as long as the stop criterion is not reached
- Greedy algorithm: making iterative local decisions
 - Does not account for complex relationships between variables
 - Example:
 - Variables X_a , X_b and X_c taken individually or in pairs \Rightarrow low gain
 - ullet The three variables taken together \Rightarrow high gain
- Algorithmic complexity O(KD)

Forward Sequential Selection Algorithm

- 1. Initialize the algorithm:
 - Create the set of selected features:

$$F^0 = \emptyset$$

• Create the set of unselected features:

$$G^0 = \{X_1, \ldots, X_D\}$$

- 2. For t = 1, ..., D, as long as the stop criterion is not reached:
 - 2.1 Determine the feature that reduces the most the error:

$$X_j = \operatorname*{argmin}_{X_i \in G^{t-1}} E(F^{t-1} + \{X_i\})$$

2.2 Select this feature by adding it to F and removing it from G:

$$F^{t} = F^{t-1} + \{X_{j}\}, \quad G^{t} = G^{t-1} \setminus \{X_{j}\}$$

3. Return the final subset F of selected features

Stopping criteria

- Possible stopping criteria
 - Stop when K features are selected
 - Stop when all features are selected
 - Return the set of features that lead to minimal empirical error
 - Stop when error reduction is below a threshold

$$E(F^t) - E(F^{t+1}) < \epsilon$$

Backward sequential selection

- Reverse approach: start with all variables and iteratively remove those that contribute the least.
- 1. Create the set of selected features:

$$F^D = \{X_1, \ldots, X_D\}$$

- 2. For $t = D 1, D 2, \dots, 1$, as long as the stop criterion is not reached:
 - 2.1 Determine the least contributing feature:

$$X_j = \operatorname*{argmin}_{X_i \in F^{t+1}} E(F^{t+1} \setminus \{X_i\})$$

2.2 Remove this feature from F:

$$F^t = F^{t+1} \setminus \{X_j\}$$

3. Return the final subset F of selected features

Other approaches for feature selection

- Add-*I*-remove-*r*
 - Hybrid between forward and backward sequential approaches, avoids some local minima
- Branch-and-bound
 - Organize features into trees, according to their similarities
 - Reduction by cutting into the tree to eliminate similar features
- Multi-objective evolutionary algorithm
 - Population-based stochastic optimization inspired by natural evolution
 - Global search: one individual = a subset of features
 - Optimization according to two objectives simultaneously: reducing the error and reducing the number of selected features

12.3 Principal component analysis

Feature extraction

- Feature selection
 - Advantage: allows to remove completely from the measurements
 - Drawback: sometimes several variables are poor in information when taken individually, but rich in information when taken collectively
 - Example: object recognition from image pixels
- Feature extraction
 - ullet Projection from a space with D dimensions to a space with K dimensions
 - Advantage: allows to compress the information to a space of reduced dimensionality
 - Drawback: requires taking all original D measurements

Reminder: linear transformations

• Translation in a space

$$y = x + u$$

• Linear transformation according to matrix **A** of size $K \times D$

$$y = Ax$$

• Rotation in a space (example in 2D)

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

• General formulation

$$y = A(x + u)$$

Principal component analysis

- Principal component analysis (PCA)
 - ullet Linear projection in a space with K dimensions, with minimal loss of information
 - Variance = information
 - Consists in extracting vectors in the directions of maximum variances
 - Unsupervised: uses only measurements, not class labels
- 1st principal component: direction of maximum variance
- 2nd principal component: direction of maximum variance orthogonal to the first component
- Linear transformation, centered on the mean vector

$$\mathsf{z} = \mathsf{W}^ op(\mathsf{x} - oldsymbol{\mu})$$

Illustration of PCA

12.4 PCA derivation

Lagrange multipliers

- Method for solving optimization problems under constraints
 - Example: maximize $f(\mathbf{x})$ under constraints that $g(\mathbf{x}) = 0$
 - ullet There is a parameter $\lambda \neq 0$ so that

$$\nabla f + \lambda \nabla g = 0$$

Corresponding equation with Lagrange multiplier

$$L(\mathbf{x},\lambda) \equiv f(\mathbf{x}) + \lambda g(\mathbf{x})$$

- Maximum obtained by finding $\nabla L(\mathbf{x},\lambda) = 0$
 - \bullet If we are only interested in $\mathbf{x},$ we can eliminate λ without having to evaluate it

Example with the Lagrange multiplier

- Maximize $f(x_1,x_2) = 1 x_1^2 x_2^2$ subject to constraint $g(x_1,x_2) = x_1 + x_2 1 = 0$
- Formulation with Lagrange multiplier

$$L(x_1,x_2,\lambda) = 1 - x_1^2 - x_2^2 + \lambda(x_1 + x_2 - 1)$$

• Resolution of $\nabla L(x_1,x_2,\lambda) = 0$

$$\frac{\partial L}{\partial x_1} = -2x_1 + \lambda = 0$$

$$\frac{\partial L}{\partial x_2} = -2x_2 + \lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = x_1 + x_2 - 1 = 0$$

• Solution to the system of equations: $x_1=0.5, x_2=0.5$ and $\lambda=1$

Example with the Lagrange multiplier

PCA derivation

• First principal component \mathbf{w}_1 : direction of the main variance

$$z_1 = \mathbf{w}_1^{\top} \mathbf{x}$$

- Only the direction is important, $\|\mathbf{w}_1\| = 1$
- If $Cov(\mathbf{x}) = \mathbf{\Sigma}$ then $Var(z_1) = \mathbf{w}_1^{\top} \mathbf{\Sigma} \mathbf{w}_1$

$$\mathbb{E}[\mathbf{w}^{\top}\mathbf{x}] = \mathbf{w}^{\top}\mathbb{E}[\mathbf{x}] = \mathbf{w}^{\top}\boldsymbol{\mu}$$

$$\operatorname{Var}(\mathbf{w}^{\top}\mathbf{x}) = \mathbb{E}\left[(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})^{2}\right]$$

$$= \mathbb{E}\left[(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})(\mathbf{w}^{\top}\mathbf{x} - \mathbf{w}^{\top}\boldsymbol{\mu})^{\top}\right]$$

$$= \mathbb{E}\left[\mathbf{w}^{\top}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\mathbf{w}\right]$$

$$= \mathbf{w}^{\top}\mathbb{E}\left[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}\right]\mathbf{w}$$

$$= \mathbf{w}^{\top}\boldsymbol{\Sigma}\mathbf{w}$$

First principal component

- ullet We look for the vector $oldsymbol{w}_1$ which maximizes $\mathrm{Var}(z_1)$, with constraint $oldsymbol{w}_1^{ op}oldsymbol{w}_1=1$
- Resolution by Lagrange method

$$L(\mathbf{w}_1, \alpha) = \mathbf{w}_1^{\top} \mathbf{\Sigma} \mathbf{w}_1 - \alpha \left(\mathbf{w}_1^{\top} \mathbf{w}_1 - 1 \right)$$
$$\frac{\partial L(\mathbf{w}_1, \alpha)}{\partial \mathbf{w}_1} = 2\mathbf{\Sigma} \mathbf{w}_1 - 2\alpha \mathbf{w}_1 = 0$$
$$\mathbf{\Sigma} \mathbf{w}_1 = \alpha \mathbf{w}_1$$

- By definition, $\Sigma \mathbf{w}_1 = \alpha \mathbf{w}_1$ is true when \mathbf{w}_1 is an eigenvector of Σ and that α is the associated eigenvalue
- We choose the eigenvector with the largest eigenvalue, $\alpha = \lambda_1$, given that:

$$\operatorname{Var}(\mathbf{w}_1^{\top}\mathbf{x}) = \mathbf{w}_1^{\top} \mathbf{\Sigma} \mathbf{w}_1 = \alpha \mathbf{w}_1^{\top} \mathbf{w}_1 = \alpha$$

Second principal component

- Vector \mathbf{w}_2 maximizes $Var(z_2)$
 - Constraint 1: \mathbf{w}_2 is unitary, $\mathbf{w}_2^{\top} \mathbf{w}_2 = 1$
 - Constraint 2: \mathbf{w}_2 is orthogonal to \mathbf{w}_1 , $\mathbf{w}_2^{\top} \mathbf{w}_1 = 0$
- Resolution by Lagrange method

$$L(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta) = \mathbf{w}_{2}^{\top} \mathbf{\Sigma} \mathbf{w}_{2} - \alpha \left(\mathbf{w}_{2}^{\top} \mathbf{w}_{2} - 1 \right) - \beta (\mathbf{w}_{2}^{\top} \mathbf{w}_{1} - 0)$$

$$\frac{\partial L(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta)}{\partial \mathbf{w}_{2}} = 2\mathbf{\Sigma} \mathbf{w}_{2} - 2\alpha \mathbf{w}_{2} - \beta \mathbf{w}_{1} = 0$$

$$\mathbf{w}_{1}^{\top} \frac{\partial L(\mathbf{w}_{1}, \mathbf{w}_{2}, \alpha, \beta)}{\partial \mathbf{w}_{2}} = 2\mathbf{w}_{1}^{\top} \mathbf{\Sigma} \mathbf{w}_{2} - 2\alpha \mathbf{w}_{1}^{\top} \mathbf{w}_{2} - \beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1} = 0$$

• Given that $\Sigma \mathbf{w}_1 = \lambda_1 \mathbf{w}_1$, then:

$$\mathbf{w}_{1}^{\top} \mathbf{\Sigma} \mathbf{w}_{2} = \mathbf{w}_{2}^{\top} \mathbf{\Sigma} \mathbf{w}_{1} = \lambda_{1} \mathbf{w}_{2}^{\top} \mathbf{w}_{1} = 0$$
$$2 \mathbf{w}_{1}^{\top} \mathbf{\Sigma} \mathbf{w}_{2} - 2\alpha \mathbf{w}_{1}^{\top} \mathbf{w}_{2} - \beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1} = -\beta \mathbf{w}_{1}^{\top} \mathbf{w}_{1} = 0 \Rightarrow \beta = 0$$

• So we simplify $2\Sigma \mathbf{w}_2 - 2\alpha \mathbf{w}_2 - \beta \mathbf{w}_1 = 0$

Second principal component

- $\Sigma \mathbf{w}_2 = \alpha \mathbf{w}_2$ implies that \mathbf{w}_2 is also an eigenvector of Σ
 - Since we want to maximize $Var(\mathbf{w}_2^{\top}\mathbf{x})$, we choose the eigenvector associated with the second largest eigenvalue, $\alpha = \lambda_2$
- We proceed in the same way for the other dimensions, by choosing as \mathbf{w}_i the eigenvectors, in decreasing order of associated eigenvalues
- Rotation matrix $\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_K]$ thus contains the $K \leq D$ first eigenvectors (with higher eigenvalues)
- Additional properties
 - \bullet Since Σ is symmetric, eigenvectors are orthogonal
 - ullet Since $oldsymbol{w}_i$ are unitary, they form an orthonormal base
 - If Σ is defined as positive $(\mathbf{x}^{\top}\Sigma\mathbf{x} > 0, \forall \mathbf{x} \neq 0)$, all eigenvalues are non-zero, $\lambda_i \neq 0, \forall \lambda_i$
 - ullet Otherwise, the rank of Σ gives the number of non-zero eigenvalues

Eigenvalues/eigenvectors and PCA

ACP as a linear transformation

12.5 Alternative PCA derivation

Alternative derivation

- Alternative PCA derivation
 - Search for a transformation $\mathbf{z} = \mathbf{W}^{\top} \mathbf{x}$, where variables of \mathbf{z} are uncorrelated
 - Consists in looking for **W** so that Cov(z) = D' is diagonal
- Suppose **C**, matrix $D \times D$, where column \mathbf{c}_i is *i*-th eigenvector of **S**, the estimator of Σ .
 - So $\mathbf{CC}^{\top} = \mathbf{C}^{\top}\mathbf{C} = \mathbf{I}$

$$\mathbf{S} = \mathbf{SCC}^{\top}$$

$$= \mathbf{S}[\mathbf{c}_{1} \ \mathbf{c}_{2} \ \cdots \ \mathbf{c}_{D}]\mathbf{C}^{\top}$$

$$= [\mathbf{Sc}_{1} \ \mathbf{Sc}_{2} \ \cdots \ \mathbf{Sc}_{D}]\mathbf{C}^{\top}$$

$$= [\lambda_{1}\mathbf{c}_{1} \ \lambda_{2}\mathbf{c}_{2} \ \cdots \ \lambda_{D}\mathbf{c}_{D}]\mathbf{C}^{\top}$$

$$= \lambda_{1}\mathbf{c}_{1}\mathbf{c}_{1}^{\top} + \lambda_{2}\mathbf{c}_{2}\mathbf{c}_{2}^{\top} + \cdots + \lambda_{D}\mathbf{c}_{D}\mathbf{c}_{D}^{\top}$$

$$= \mathbf{CDC}^{\top}$$

• Matrix **D** is diagonal, with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_D$

Spectral decomposition

- ullet CDC $^ op$ is the spectral decomposition of S
- Since C is orthogonal and $CC^{\top} = C^{\top}C = I$

$$S = CDC^{T}$$
 $C^{T}SC = C^{T}CDC^{T}C$
 $C^{T}SC = D$

- We know that $Cov(z) = W^TSW$ and that we want Cov(z) to be diagonal
 - We thus set $\mathbf{W} = \mathbf{C}$

12.6 PCA illustration

Proportion of variance

- Eigenvalue λ_i indicates the contribution of the component associated to the variance
- Proportion of the variance explained by the *K* principal components:

$$PoV = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_K}{\lambda_1 + \lambda_2 + \dots + \lambda_K + \dots + \lambda_D}$$

- High correlation between variables ⇒ few components with high eigenvalues
- Scree plot: plot of decreasing eigenvalue sorting

Scree plot

Example with PCA

Character reconstruction: 7 and 9

Character reconstruction: 1 and 7

PCA characteristics

- PCA explains the variance of datasets
 - However sensitive to outliers, which greatly influence the variance
- Very interesting to visualize data
- For high dimensionality (D large), calculations on $\bf S$ can be heavy ($O(D^2)$)
 - There are methods to reduce calculations to an order of O(KD)
- Loss of significance of variables
 - Construction of artificial variables corresponding to a linear combination of the original variables

Reconstruction error

- Data reconstruction
 - Projection in space of z

$$\mathbf{z}^t = \mathbf{W}^ op(\mathbf{x}^t - oldsymbol{\mu})$$

• Since **W** is orthogonal, $\mathbf{W}\mathbf{W}^{\top} = \mathbf{I}$

$$\mathbf{W}\mathbf{z}^t = \mathbf{W}\mathbf{W}^{\top}(\mathbf{x}^t - \mu)$$

 $\hat{\mathbf{x}}^t = \mathbf{W}\mathbf{z}^t + \mu$

• PCA minimizes reconstruction error

$$\mathrm{err}_{\mathrm{recon}} = \sum_t \|\hat{\mathbf{x}}^t - \mathbf{x}^t\|^2$$

ullet Reconstruction error depends directly on the number of components K used

Eigendigits

12.7 Whitening transformation

Whitening transformation

 Whitening transformation: center the mean of the data on the origin, remove all covariances and make the variance unitary.

$$\mathbf{z} \sim \mathcal{N}_D(oldsymbol{\mu}, oldsymbol{\Sigma}) \overset{ ext{ winder}}{\mapsto} \mathbf{z} \sim \mathcal{N}_D(\mathbf{0}, oldsymbol{\mathsf{I}})$$

• Linear transformation

$$\mathsf{z} = \mathbf{\Sigma}^{-0.5} (\mathsf{x} - oldsymbol{\mu})$$

Strong link with Mahalanobis distance

$$D_{M}(\mathsf{x}) = (\mathsf{x} - \boldsymbol{\mu})^{ op} \mathbf{\Sigma}^{-1} (\mathsf{x} - \boldsymbol{\mu})$$

- Mahalanobis distance corresponds to Euclidean distance squared in whitened space
- How to calculate $\Sigma^{-0.5}$?

Spectral decomposition

- ullet CDC $^ op$ is the spectral decomposition of $oldsymbol{\Sigma}$
- Since **C** is orthogonal and $\mathbf{CC}^{\top} = \mathbf{C}^{\top}\mathbf{C} = \mathbf{I}$

$$\Sigma = CDC^{\top}$$
 $C^{\top}\Sigma C = C^{\top}CDC^{\top}C$
 $C^{\top}\Sigma C = D$

- We know that $Cov(z) = \mathbf{W}^{\top} \mathbf{\Sigma} \mathbf{W}$ and that we want Cov(z) to be diagonal
 - We thus set $\mathbf{W} = \mathbf{C}$

Decomposition of the covariance matrix

• Decomposition of the covariance matrix

$$\boldsymbol{\Sigma} = \mathsf{WDW}^\top$$

Eigenvectors of the covariance matrix

$$\mathbf{W} = [\mathbf{w}_1 \ \mathbf{w}_2 \ \cdots \ \mathbf{w}_D]$$

• Eigenvalues of the covariance matrix

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D \end{bmatrix}$$

Square root of the covariance matrix

- ullet **W** is orthogonal, so $\mathbf{W}^{-1} = \mathbf{W}^{ op}$
- Development of $\Sigma^{0.5}$

$$\begin{split} \boldsymbol{\Sigma} &= & \mathbf{W} \mathbf{D} \mathbf{W}^{\top} = \mathbf{W} \mathbf{D}^{0.5} \mathbf{D}^{0.5} \mathbf{W}^{\top} \\ &= & (\mathbf{W} \mathbf{D}^{0.5} \mathbf{W}^{\top}) (\mathbf{W} \mathbf{D}^{0.5} \mathbf{W}^{\top}) = \boldsymbol{\Sigma}^{0.5} \boldsymbol{\Sigma}^{0.5} \\ \boldsymbol{\Sigma}^{-0.5} &= & (\mathbf{W} \mathbf{D}^{0.5} \mathbf{W}^{\top})^{-1} = \mathbf{W} \mathbf{D}^{-0.5} \mathbf{W}^{\top} \end{split}$$

Matrix **D** is diagonal, so

$$\mathbf{D}^{-0.5} = \begin{bmatrix} \lambda_1^{-0.5} & 0 & \cdots & 0 \\ 0 & \lambda_2^{-0.5} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D^{-0.5} \end{bmatrix}$$

Summary

Illustration of a whitening transformation

Illustration of a whitening transformation

12.8 Manifold learning

Manifold learning

- Manifold hypothesis: data are based on nonlinear space embedded in a higher dimensional space
 - Manifold learning aims at extracting this space
 - Non-linear methods of dimensionality reduction
- Example of the Swiss roll

By Olivier Grisel, CC-BY 3.0, https://commons.wikimedia.org/wiki/File:Lle_hlle_swissroll.png.

Multidimensional scaling

- Multidimensional scaling, MDS
 - Find projection to a space of lower dimensionality preserving as much as possible the values of distance $\|\mathbf{x}^i, \mathbf{x}^j\|$ between all the data pairs of the set $\mathcal{X} = \{\mathbf{x}^t\}_{t=1}^N$
- Sammon's method: determine nonlinear projection $g(\mathbf{x}|\theta)$ that minimizes

$$E(\theta|\mathcal{X}) = \sum_{t=1,\dots,N} \sum_{\substack{s=1,\dots,N\\s\neq t}} \frac{\left(\|\mathbf{g}(\mathbf{x}^t|\theta) - \mathbf{g}(\mathbf{x}^s|\theta)\| - \|\mathbf{x}^t - \mathbf{x}^s\|\right)^2}{\|\mathbf{x}^t - \mathbf{x}^s\|^2}$$

- $\theta^* = \operatorname{argmin}_{\theta} E(\theta|\mathcal{X})$
- \bullet g(x| θ) can be a polynomial regression, kernel regression, neural network, etc.
- ullet Measure of arbitrary distance $\|\cdot\|$, does not have to be Euclidean distance

Multidimensional scaling

• Position 128 North American cities based on road distances between them only

t-SNE (t-distributed Stochastic Neighbour Embedding) 1/2

- Determine projection of each data in low dimensionality by preserving the neighbourhood of the original space
 - In practice, useful to visualize data in a 2D or 3D space
- Determine probability to be neighbours between the pairs of the set $\mathcal{X} = \{\mathbf{x}^t\}_{t=1}^N$ in the original space
 - Probability $p_{j|i}$ of selecting \mathbf{x}^j as neighbour of \mathbf{x}^i

$$p_{j|i} = \frac{\exp(-\|\mathbf{x}^i - \mathbf{x}^j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}^i - \mathbf{x}^k\|^2 / 2\sigma_i^2)}$$

- Probability $p_{i,j} = \frac{p_{i|j} + p_{j|i}}{2N}$ that \mathbf{x}^j is selected as neighbour of \mathbf{x}^i according to a normal law centered on \mathbf{x}^i ($p_{i,i} = 0$)
- ullet σ_i^2 is adjusted locally for each data (bisection method)

t-SNE (t-distributed Stochastic Neighbour Embedding) 2/2

- Determining the probability of being neighbour between pairs of instances in low dimensional space
 - z^t is the projection of x^t in low dimensional space
 - Probability $q_{i,j}$ assuming a Student's Law

$$q_{i,j} = rac{(1-\|\mathbf{z}^i-\mathbf{z}^j\|^2)^{-1}}{\sum\limits_{k
eq i,\dots,N} (1-\|\mathbf{z}^i-\mathbf{z}^k\|^2)^{-1}}$$

• Learn projections $\mathbf{z} = g(\mathbf{x}|\theta)$ of the points in low dimensionality in order to minimize the divergence between these probabilities.

$$E(\theta|\mathcal{X}) = \mathit{KL}(P\|Q) = \sum_{t=1,...,N} \sum_{\substack{k=1,...,N \ k \neq t}} p_{t,k} \log \frac{p_{t,k}}{q_{t,k}|\theta}$$
 $\theta^* = \operatorname*{argmin}_{\theta} E(\theta|\mathcal{X})$

Manifold learning comparison

12.9 Preprocessing and data

analysis with scikit-learn

Scikit-learn: scaling, standardization and imputation

- Scaling and standardization
 - preprocessing.MinMaxScaler: adjust the scale according to minimum/maximum values
 - preprocessing.scale: standardization so that variables follow a normal centered-reduced law
- Imputation
 - impute.SimpleImputer: imputing values to a fixed value for each variable
 - strategy: strategy used for simple imputation, either a mean value (mean), a median value (median), a more frequent value (most_frequent), or a constant (constant)
 - impute.MissingIndicator: get a mask indicating missing variables of a dataset

Scikit-learn: feature selection

- Univariate selection
 - feature_selection.VarianceThreshold: select feature with variance greater than a given threshold
 - feature_selection.SelectKBest (SelectPercentile): retains the best K (top percentile) features according to a given performance measure
 - chi2: χ^2 test between features
 - f_classif: ANOVA test between features
 - mutual_info_classif: mutual information criterion
- feature_selection.RFE: backward selection according to model coefficients
 - estimator (object): learning model used for selection
 - n_features_to_select (int): total number of features to be selected
 - step (int or float)
 - If ≥ 1 , number of features removed at each iteration
 - If [0,1), ratio of the number of features removed at each iteration
- feature_selection.SelectFromModel: selection from a model (e.g. according to coefficients)

Scikit-learn: principal component analysis

- decomposition.PCA: principal component analysis
 - Parameters
 - n_components (int): number of components to keep, by default $K = \min(N,D)$
 - whiten (bool): normalizes by eigenvectors, thus performing a whitening transformation
 - Attributes
 - ullet components_ (array): vectors of the principal components (size $K \times D$)
 - explained_variance_ (array): variance explained by each component (vector of size K)
 - explained_variance_ratio_ (array): proportion of the variance explained by each component (vector of size K)

Scikit-learn: manifold learning

- manifold.MDS: multidimensional scaling
 - n_components (int): dimensionality of the destination space
 - metric (bool): metric or not
 - dissimilarity: measure of distance, i.e. euclidean (default) or precomputed
- manifold.TSNE: t-SNE
 - n_components (int): dimensionality of the destination space
 - perplexity (float): linked to the number of neighbours used (default: 30)
- Other non-linear manifold learning algorithms
 - manifold.Isomap: Isomap algorithm
 - manifold.LocallyLinearEmbedding: LLE algorithm
 - manifold.SpectralEmbedding: Laplacian eigenmaps algorithm