BLINKIT SALES ANALYSIS

BASIC DATA ANALYSIS TECHNIQUES*

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import math
import plotly.express as px
from wordcloud import wordcloud
from datetime import datetime
import warnings
warnings.filterwarnings('ignore')
df=pd.read_csv('/content/drive/MyDrive/blinkit_data.csv')
df
```

Out[1]:		Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Out
	0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supe
	1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supe
	2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Supe
	3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Supe
	4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supe
	•••			•••			•••	•••	
	8518	low fat	NCT53	Health and Hygiene	1998	OUT027	Tier 3	Medium	Supe
	8519	low fat	FDN09	Snack Foods	1998	OUT027	Tier 3	Medium	Supe
	8520	low fat	DRE13	Soft Drinks	1998	OUT027	Tier 3	Medium	Supe
	8521	reg	FDT50	Dairy	1998	OUT027	Tier 3	Medium	Supe
	8522	reg	FDM58	Snack Foods	1998	OUT027	Tier 3	Medium	Supe

8523 rows × 12 columns

```
In [2]:
        df.columns
Out[2]: Index(['Item Fat Content', 'Item Identifier', 'Item Type',
                 'Outlet Establishment Year', 'Outlet Identifier',
                 'Outlet Location Type', 'Outlet Size', 'Outlet Type', 'Item Visibility',
                 'Item Weight', 'Sales', 'Rating'],
               dtype='object')
In [3]: df.shape
Out[3]: (8523, 12)
In [4]:
        df.size
Out[4]:
         102276
In [6]: df.ndim
Out[6]: 2
In [5]:
        df.dtypes
Out[5]:
                                       0
                 Item Fat Content
                                   object
                   Item Identifier
                                   object
                       Item Type
                                   object
         Outlet Establishment Year
                                    int64
                  Outlet Identifier
                                   object
             Outlet Location Type
                                   object
                      Outlet Size
                                   object
                      Outlet Type
                                   object
                    Item Visibility float64
                     Item Weight float64
                            Sales float64
                          Rating float64
        dtype: object
```

In [7]: df.value_counts()

Out[7]:

Iten Fa Conten	t Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type
reç	FDZ59	Baking Goods	2011	OUT010	Tier 3	Small	Grocery Store
L	DRA12	Soft Drinks	2017	OUT035	Tier 2	Small	Supermarket Type1
	DRD12	Soft Drinks	2022	OUT018	Tier 3	Medium	Supermarket Type2
	DRD25	Soft Drinks	2022	OUT018	Tier 3	Medium	Supermarket Type2
reç	p FDW09	Snack Foods	2000	OUT013	Tier 3	High	Supermarket Type1
••		•••	•••	•••	•••	•••	•••
L	DRE48	Soft Drinks	2017	OUT035	Tier 2	Small	Supermarket Type1
	DRE37	Soft Drinks	2022	OUT018	Tier 3	Medium	Supermarket Type2
	DRE25	Soft Drinks	2020	OUT017	Tier 2	Medium	Supermarket Type1
	DRD60 Soft 2022 Drinks	OUT018	Tier 3	Medium	Supermarket Type2		
	DRD49	Soft Drinks	2010	OUT046	Tier 1	Small	Supermarket Type1

7060 rows × 1 columns

dtype: int64

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Item Fat Content	8523 non-null	object
1	Item Identifier	8523 non-null	object
2	Item Type	8523 non-null	object
3	Outlet Establishment Year	8523 non-null	int64
4	Outlet Identifier	8523 non-null	object
5	Outlet Location Type	8523 non-null	object
6	Outlet Size	8523 non-null	object
7	Outlet Type	8523 non-null	object
8	Item Visibility	8523 non-null	float64
9	Item Weight	7060 non-null	float64
10	Sales	8523 non-null	float64
11	Rating	8523 non-null	float64
	67 (4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

dtypes: float64(4), int64(1), object(7)

memory usage: 799.2+ KB

In [9]: df.describe(include='all')

-	P - 9	
Out		
out		

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	0
count	8523	8523	8523	8523.000000	8523	8523	8523	
unique	5	1559	16	NaN	10	3	3	
top	Low Fat	FDW13	Fruits and Vegetables	NaN	OUT027	Tier 3	Medium	Su
freq	5089	10	1232	NaN	935	3350	3631	
mean	NaN	NaN	NaN	2010.831867	NaN	NaN	NaN	
std	NaN	NaN	NaN	8.371760	NaN	NaN	NaN	
min	NaN	NaN	NaN	1998.000000	NaN	NaN	NaN	
25%	NaN	NaN	NaN	2000.000000	NaN	NaN	NaN	
50%	NaN	NaN	NaN	2012.000000	NaN	NaN	NaN	
75%	NaN	NaN	NaN	2017.000000	NaN	NaN	NaN	
max	NaN	NaN	NaN	2022.000000	NaN	NaN	NaN	

In [10]: df.describe()

Out	[10]
out	[TO]

	Outlet Establishment Year	Item Visibility	Item Weight	Sales	Rating
count	8523.000000	8523.000000	7060.000000	8523.000000	8523.000000
mean	2010.831867	0.066132	12.857645	140.992782	3.965857
std	8.371760	0.051598	4.643456	62.275067	0.605651
min	1998.000000	0.000000	4.555000	31.290000	1.000000
25%	2000.000000	0.026989	8.773750	93.826500	4.000000
50%	2012.000000	0.053931	12.600000	143.012800	4.000000
75%	2017.000000	0.094585	16.850000	185.643700	4.200000
max	2022.000000	0.328391	21.350000	266.888400	5.000000

NULL VALUE CHECK

```
In [11]: df.isnull().sum()
```

Out[11]:

· · · · · · · · · · · · · · · · · · ·	
	0
Item Fat Content	0
Item Identifier	0
Item Type	0
Outlet Establishment Year	0
Outlet Identifier	0
Outlet Location Type	0
Outlet Size	0
Outlet Type	0
Item Visibility	0
Item Weight	1463
Sales	0
Rating	0

dtype: int64

UNIVARIATE ANALYSIS

SALES INFORMATION

```
In [13]: # Total Sales
         total_sales = df['Sales'].sum()
         # Average Sales
         avg sales = df['Sales'].mean()
         # No of Items Sold
         no_of_items_sold = df['Sales'].count()
         # Average Ratings
         avg_ratings = df['Rating'].mean()
         # Display
         print(f"Total Sales: ${total_sales:,.0f}")
         print(f"Average Sales: ${avg_sales:,.0f}")
         print(f"No of Items Sold: {no of items sold:,.0f}")
         print(f"Average Ratings: {avg_ratings:,.0f}")
        Total Sales: $1,201,681
        Average Sales: $141
        No of Items Sold: 8,523
        Average Ratings: 4
         ITEM TYPE WISE SALES
In [14]: import matplotlib
         import importlib
         import matplotlib.pyplot as plt
         # reload the pyplot module to restore original functions
         importlib.reload(matplotlib.pyplot)
         # verify restored
```

```
import matplotlib
import importlib
import matplotlib.pyplot as plt

# reload the pyplot module to restore original functions
importlib.reload(matplotlib.pyplot)

# verify restored
print("plt.figure restored:", callable(plt.figure))

plt.figure restored: True

In [16]: dftop10=df.sort_values(by='Sales', ascending=False)

In [17]: sns.barplot(x='Item Type',y='Sales',data=dftop10)
plt.xticks(rotation=25)
plt.yticks(rotation=45)
plt.title('top 10 item type sales')
```


Item Type

```
In [21]: sns.boxplot(x='Item Fat Content',y='Item Type',data=df,color='green')
   plt.xticks(rotation=45)
   plt.yticks(rotation=45)
   plt.title('item type fat content')
```

Out[21]: Text(0.5, 1.0, 'item type fat content')

Out[22]: Text(0.5, 1.0, 'weighted item type sales')

weighted item type sales

Out[]: <Axes: xlabel='Outlet Establishment Year', ylabel='Sales'>

TOTAL SALES BY ITEM TYPE

```
plt.tight_layout()
plt.show()
```


OUTLET TIER BY ITEM FAT CONTENT

```
In [23]: grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].sum(
    grouped = grouped[['Regular', 'Low Fat']] # Optional filtering order

ax = grouped.plot(kind='bar', figsize=(8, 5), title='Outlet Tier by Item Fat Con
    plt.xlabel('Outlet Location Tier')
    plt.ylabel('Total Sales')
    plt.legend(title='Item Fat Content')
    plt.tight_layout()
    plt.show()
```


Total Sales By Outlet Establishment Year

```
In [25]: sales_by_year = df.groupby('Outlet Establishment Year')['Sales'].sum().sort_inde

plt.figure(figsize=(9, 5))
plt.plot(sales_by_year.index, sales_by_year.values, marker='o', linestyle='-')

plt.xlabel('Outlet Establishment Year')
plt.ylabel('Total Sales')
plt.title('Outlet Establishment')

for x, y in zip(sales_by_year.index, sales_by_year.values):
    plt.text(x, y, f'{y:,.0f}', ha='center', va='bottom', fontsize=8)

plt.tight_layout()
plt.show()
```


SALES BY OUTLET SIZE

Outlet Size

SALERS BY LOCATION

```
In [27]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_inde
         sales_by_location = sales_by_location.sort_values('Sales', ascending=False)
         plt.figure(figsize=(8, 3)) # Smaller height, enough width
         ax = sns.barplot(x='Sales', y='Outlet Location Type', data=sales_by_location)
         plt.title('Total Sales by Outlet Location Type')
         plt.xlabel('Total Sales')
         plt.ylabel('Outlet Location Type')
         plt.tight_layout() # Ensures Layout fits without scroll
         plt.show()
```

Total Sales by Outlet Location Type

Total Sales

300000

400000

200000

100000

Tier 3

Tier 1

Outlet Location Type Tier 2

In []:	
In []:	

In]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	