2013-2014 学年第二学期《复变函数与积分变换》课内考试卷(A)

题号	anua 8	_		总分	审核
题分	30	30	40		
得分					

得分	评卷人		

一、选择与填空(每小题3分,共30分)

1. 下列命题中正确的是

- (A) -1 的幅角主值是 $-\pi$ (B) 仅存在一个数 z,使 $z^{-1}=-z$
- (C) $\left|\sin z\right| \le 1$
- (D) $\frac{1}{i}\overline{z} = \overline{i}\overline{z}$
- 2. 设 $e^z = 1 i$,则Im z等于

()

2. 设 $e^z = 1 - i$,则Imz等于

()

- (A) $-\frac{\pi}{4}$ (B) $2k\pi \frac{\pi}{4}$ (C) $\frac{\pi}{4}$ (D) $2k\pi + \frac{\pi}{4}$
- 3. z=0 为本性奇点的函数是

- (A) $\frac{\sin z}{z}$ (B) $\frac{1}{z(z-1)^2}$ (C) $e^{\frac{1}{z}}$ (D) $\frac{1}{e^z-1}$
- ()

4. 下列变换中正确的是

- (A) $\mathcal{F}[\delta(t)] = 1$ (B) $\mathcal{F}[u(t)] = \frac{1}{iw} + \pi \delta(w)$
- (C) $\mathcal{F}^{-1}[2\pi\delta(w)] = 1$ (D) $\mathcal{F}^{-1}[\cos\omega_0(t)] = j\pi[\delta(w w_0) + \delta(w + w_0)]$
- 5. 若等式 $\frac{x+1+i(y-3)}{5+3i}=1+i$ 成立,则(x,y)的值是_____
- 6. 当 a=________ 时,函数 $f(z)=a\ln(x^2+y^2)+i\arctan\frac{y}{x}$ 在 x>0 内解析.
- 7. $\oint_{|z|=2} \frac{e^z}{(z-3)^{2014}} dz = \underline{\hspace{1cm}}$
- 8. $\int_0^z ze^z dz = \underline{\hspace{1cm}}$

	得分	评卷人	 计算题	(每小题 6分,	共30分)
L	-				

1. ∜-1+3*i*

2.
$$z = \frac{(\cos 3\theta - i \sin 3\theta)^2}{(\cos \theta + i \sin \theta)^3}$$
, 求 z 的指数表达式, 其中 θ 是实常数.

2.
$$z = \frac{(\cos 3\theta - i \sin 3\theta)^2}{(\cos \theta + i \sin \theta)^3}$$
, 求 z 的指数表达式, 其中 θ 是实常数.

3. 试判别级数 $\sum_{n=1}^{\infty} \frac{i^n}{n}$ 的收敛性和绝对收敛性.

4. 计算积分 $\oint_C \frac{e^z}{(z-1)^2 z} dz$ 的值,其中 C为负向圆周 |z|=2.

5. 把 $f(z) = z^2 \sin \frac{1}{z}$ 在 $0 < |z| < +\infty$ 内展开成洛朗级数,并计算 $\oint_{|z|=1} f(z) dz$ 的值.

5. 把 $f(z) = z^2 \sin \frac{1}{z}$ 在 $0 < |z| < +\infty$ 内展开成洛朗级数,并计算 $\oint_{|z|=1} f(z) dz$ 的值.

得分 评卷人

三、解答题 (每题 10 分, 共 40 分)

1. 在复平面上求解析函数 f(z) 使其虚部 $v(x,y) = 3x^2y - y^3 - 2y$.

2. 求函数 $f(z) = \frac{1}{(z-1)(z+2)}$ 分别在圆环域 (1) 0 < |z-1| < 3 (2) |z-1| > 3 内的洛朗 展开式.

3. 求函数 $te^{-4t} \sin 3t$ 的拉氏变换及 $\frac{1}{(s^2+1)(s^2-1)}$ 的拉氏逆变换.

3. 求函数 $te^{-4t} \sin 3t$ 的拉氏变换及 $\frac{1}{(s^2+1)(s^2-1)}$ 的拉氏逆变换.

4. 利用拉氏变换求微分方程 $y'' + 4y = \sin t$ 的满足 y(0) = y'(0) = 0 的特解.

2014-2015 学年第一学期《复变函数与积分变换 B》

课内考试卷(A卷)

1	授课班号	专业		学号	姓名_	
-	题号	-	=	Ξ	总分	审核
	得分					

-,	填空题	(每小题	3分,	共 24	分)
----	-----	------	-----	------	----

- 1. 复数 $\frac{2i}{-1+i}$ 的共轭复数的模为 $\frac{\sqrt{2}}{4}$ 辐角主值为 $\frac{\sqrt{2}}{2}$
- 2. $\sqrt[3]{-1-i} = \frac{1}{6} \left[los \frac{-\frac{3}{4}\pi + 2k\pi}{3} + \frac{1}{5} los \frac{-\frac{3}{4}\pi + 2k\pi}{3} \right]$ kzo. 1, 2.
- 3. $\oint_{|z|=2} \left(\frac{i}{z-i} + \frac{e^z}{z-3} \right) dz = \frac{-2\pi}{2}$ 4. $\oint_{|z|=2} \frac{1}{z^{n+1}} dz = \frac{2\pi}{2}$
- 5. $\lim_{n \to \infty} \frac{1 + 2ni}{1 3ni} = \frac{-\frac{2}{3}}{3}$
- 6. $f(z) = z^{-2} 在 z = 1$ 的泰勒级数为 $\frac{1 \lambda(z-1)}{1 + \lambda(z-1)} + \frac{\infty}{1 + \lambda(z-1)} + \frac{\omega}{1 + \lambda(z-1)} + \frac{\omega}{1$
- 7. Ln(-1-i) 的主值为 $\frac{1}{2}$ + $i(-\frac{3}{4}\pi)$
- 8. $\mathcal{L}^{-1}\left[\frac{1}{(s-1)^2+4}\right] = \frac{1}{2} e^{t} \sin t$
- 二、计算题(每小题 6 分, 共 36 分)
- 1. 解方程 sin iz = 0

2. 计算(1-i)1-i 的值

$$(1-i)^{1-i} = e^{(1-i)} \ln (-i)$$

= $e^{(1-i)} (\ln \sqrt{2} + i) (-\frac{2}{4} + \sqrt{2} + i)$

3. 设 $f(z) = x^2 + 2xyi$, 试讨论 f(z) 在何处可导, 何处解析

$$U(xy)=x^2$$
, $V(x,y)=Uxy$ $U(x=Uy)$ $U(x=Uy)$ $U(x=Uy)$ $U(x=Ux)$ $U(x=Ux$

4. 计算积分 $\int_{-\infty}^{\infty} z^3 e^{\frac{1}{z}} dz$ 的值.

$$e^{\frac{1}{2}} = 1 + \frac{1}{2} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1$$

5. 讨论级数 $\sum_{n=1}^{\infty} \frac{i^n}{\ln n}$ 的收敛性和绝对收敛性.

$$\frac{|\vec{v}|}{|\vec{h}|} = \frac{1}{|\vec{h}|} = \frac{1}{|\vec{h}|} = \frac{1}{|\vec{h}|} = \frac{1}{|\vec{h}|} + \frac{1}{|\vec{h}|}$$

6. 求 $F(s) = \frac{\sum_{n=2}^{\infty} \sum_{n=1}^{\infty} \frac{1}{\ln n}}{e^4 + 5c^2 + 4}$ 的拉氏逆变换 f(t)

$$\frac{1}{(s^2+1)(s^2+4)} = \frac{1}{3}(\frac{1}{s^2+1} - \frac{1}{s^2+4})$$

$$\therefore f(t) = \frac{1}{3} \left(\sin t - \frac{1}{2} \sin zt \right)$$

三、解答题(每小题 10 分, 共 40 分)

1. 在复平面上求解析函数 f(z) 使其虚部为 $v(x,y) = e^x \sin y + 3y$.

$$iz-: Ux = Uy = e^{x} lny + 3 \Rightarrow u(x,y) = e^{x} lny + 3x + C(y)$$

$$uy = -Vx \Rightarrow -e^{x} siny + (iy) = -e^{x} siny$$

$$\Rightarrow (iy) = 0 \Rightarrow (iy) = C$$

i.
$$u_{x}.y_{1} = e^{x} l_{x}y_{+} + c$$

$$\Rightarrow f_{(z)} = e^{x} l_{x}y_{+} + c + i (e^{x} s_{x}y_{+} + s_{y})$$

$$i\xi = i \qquad f_{(z)} = u_{x} + i v_{x} = u_{y} + i v_{x} = e^{x} l_{x}y_{+} + i (e^{x} s_{x}y_{+} + p)$$

$$= e^{z} + 3$$

$$i \cdot f_{(z)} = e^{z} + 3z + C$$

2. 求函数
$$f(z) = \frac{1}{z^2(z-1)}$$
 分别在圆环域 (1) $0 < |z| < 1$ (2) $|z-1| > 1$ 内的洛朗展开式.

$$\frac{1}{2^{-1}} = -\frac{1}{2^{-2}} = -(1+2+2+\cdots)$$

$$\frac{1}{2^{-1}} = -\frac{1}{2^{-1}} = -\frac{1}{2^{-1}} - \frac{1}{2^{-1}} = -\frac{1}{2^{-1}} = -\frac$$

$$= -(-1+212-1)-3(2-1)^{2}...)$$

$$= -(-1+212-1)-3(2-1)^{2}...$$

$$= \frac{1}{2-1}\cdot\frac{1}{2-1}=\frac{1}{2-1}-2+3(2-1)...$$

$$= \sum_{n=0}^{\infty} (-1)^{n+1}n(2-1)^{n-2}$$

3. 计算积分
$$\oint_C \frac{\sin z}{z^2(1-z)} dz$$
 的值, 其中 C 为负向圆周 $|z|=2$.

$$\int_{c} \frac{\sin t}{2^{2}(1-2)} dt = \int_{|t|=\frac{1}{2}} \frac{\sin t}{1-t} dt + \int_{|t|=\frac{1}{2}} \frac{-\frac{\sin t}{2^{2}}}{2^{2}(1-t)} dt \\
= \int_{\pi_{1}} \frac{\left(-\frac{\sin t}{1-t}\right)}{\left(-\frac{t}{1-t}\right)} dt + \int_{\pi_{1}} \frac{\cos t}{t} dt + \int_{\pi_{2}} \frac{\sin t}{t} dt \\
= \int_{\pi_{1}} \frac{\left(-\frac{\sin t}{1-t}\right)}{\left(-\frac{t}{1-t}\right)^{2}} dt + \int_{\pi_{2}} \frac{\sin t}{t} dt + \int_{\pi_{2}} \frac{\sin t}{t}$$

4. 用拉氏变换求微分方程
$$y'' - 2y' + y = 0$$
 的满足 $y(0) = 0, y'(0) = 1$ 的特解.

$$S^{2}Y(1) - 1 - 25Y(1) + Y(1) = 0$$

$$\Rightarrow Y(1) = \frac{1}{(5-1)^{2}}$$