Planche nº 19. Applications linéaires continues.

Normes subordonnées

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (*)

 $\mathrm{On\ munit}\ E=\mathbb{R}[X]\ \mathrm{de\ la\ norme}\ \|\ \|_{\infty}\ \mathrm{d\acute{e}finie\ par}: \forall P\in E,\ \|P\|_{\infty}=\mathrm{Sup}\left\{\left|\frac{P^{(n)}(0)}{n!}\right|,\ n\in\mathbb{N}\right\}.$

- 1) Vérifier que $\| \|_{\infty}$ est une norme sur E.
- 2) Soit f l'endomorphisme de E défini par $\forall P \in E$, f(P) = XP. Démontrer que l'application f est continue sur $(E, || \|_{\infty})$ et préciser |||f|||.

Exercice nº 2 (**)

On munit $E = \ell^{\infty}(\mathbb{C})$ le \mathbb{C} -espace vectoriel des suites bornées de la norme $\|u\|_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$.

On considère les endomorphismes Δ et C de $\ell^\infty(\mathbb{C})$ définis par :

$$\forall u \in E, \ \Delta(u) = \nu \text{ où } \forall n \in \mathbb{N}, \ \nu_n = u_{n+1} - u_n \text{ et } \forall u \in E, \ C(u) = w \text{ où } \forall n \in \mathbb{N}, \ w_n = \frac{1}{n+1} \sum_{k=0}^n u_k.$$

Montrer que Δ et C sont continus sur $(E, \| \|_{\infty})$ et préciser $\| \| \Delta \| \|$ et $\| \| C \| \|$.

Exercice no 3 (*** I)

On munit $E=C^0([0,1],\mathbb{R})$ de la norme $\|\ \|_1$ définie par $\forall f\in E,\ \|f\|_1=\int_0^1|f(t)|\ dt.$

On munit
$$E = C^{\circ}([0, 1], \mathbb{R})$$
 de la norme $\| \|_1$ definie pa
On pose $T : E \to E$
 $f \mapsto Tf : [0, 1] \to \mathbb{R}$
 $x \mapsto \int_0^x f(t) dt$

- 1) a) Démontrer que T est un endomorphisme de E.
 - **b)** T est-il injectif? surjectif?
 - c) Déterminer le spectre de T.
- 2) Démontrer que T est continu sur $(E, || \cdot ||_1)$.
- 3) Déterminer |||T|||.
- 4) Montrer que la borne supérieure n'est pas atteinte.

Exercice nº 4 (***)

On pose pour tout $X=(x_i)_{1\leqslant i\leqslant n}\in \mathscr{M}_{n,1}(\mathbb{R}), \ \|X\|_1=\sum_{i=1}^n|x_i|\ \mathrm{et}\ \|X\|_\infty=\max_{1\leqslant i\leqslant n}|x_i|.$

 $\operatorname{Pour} A \in \mathscr{M}_n(\mathbb{R}), \operatorname{d\acute{e}terminer} |||A|||_1 = \sup \left\{ \frac{\|AX\|_1}{\|X\|_1}, \ X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\} \right\} \operatorname{et} |||A|||_{\infty} = \sup \left\{ \frac{\|AX\|_{\infty}}{\|X\|_{\infty}}, \ X \in \mathscr{M}_{n,1}(\mathbb{R}) \setminus \{0\} \right\}.$

Exercice no 5 (** I)

Pour $X=(x_i)_{1\leqslant i\leqslant n}\in \mathcal{M}_{n,1}(\mathbb{R}),$ on pose $\|X\|_2=\sqrt{\sum_{i=1}^n x_i^2}.$ Pour $A\in \mathscr{S}_n(\mathbb{R}),$ on note $\rho(A)$ le rayon spectral de A c'est-à-dire $\rho(A)=\operatorname{Max}\{|\lambda|,\ \lambda\in\operatorname{Sp}(A)\}$ et on note $\||A|\|_2$ la norme sur $\mathscr{M}_n(\mathbb{R})$ subordonnée à la norme $\|\|\|_2$ sur $\mathscr{M}_n(\mathbb{R}).$ Montrer que $\forall A\in \mathscr{S}_n(\mathbb{R}),\ \||A|\|_2=\rho(A)$ (en particulier, l'application $A\mapsto \rho(A)$ est une norme sur $\mathscr{S}_n(\mathbb{R}).$