Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «ОТВЁРТКА» ДЛЯ «КОМПАС-3D» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

по дисциплине

«Основы разработки САПР» (ОРСАПР)

	Выполн	нил:		
	студент	гр. 581		
		Мир	ошник	ов А.В.
« <u></u>	_»	· · · · · · · · · · · · · · · · · · ·		2024 г.
	Провер	ил:		
	к.т.н.,	доцент	каф.	КСУП
		Кал	ентье	з А.А.
~	>>			2024

1 Описание САПР

1.1 Описание программы

КОМПАС-3D — это российская импортонезависимая система трёхмерного проектирования, ставшая стандартом для тысяч предприятий и сотен тысяч профессиональных пользователей.

КОМПАС-3D широко используется для проектирования изделий основного и вспомогательного производств в таких отраслях промышленности, как машиностроение (транспортное, сельскохозяйственное, энергетическое, нефтегазовое, химическое и т.д.), приборостроение, авиастроение, судостроение, станкостроение, вагоностроение, металлургия, промышленное и гражданское строительство, товары народного потребления и т. д.[1]

Данная САПР позволяет проектировать модели и сборки разного уровня сложности, благодаря разнообразному функционалу, включающего в себя работу как с 2-мерными эскизами, так и с 3D-моделями. В САПР есть возможность работать со всеми основными примитивами необходимыми для создания эскизов и моделей, а также существует достаточное количество инструментов для работы с 3D-моделями (вытягивание, вращение, вырезание и др.).

Компас 3D имеет множество прямых аналогов на рынке, среди них встречаются Autodesk Inventor, SOLIDWORKS и др.

В рамках дисциплины выбор данной САПР объясняется наличием описания АРІ на русском языке, доступность учебной версии САПР без необходимости получать одобрения от компании, а также большим количеством информации на сторонних ресурсах на русском языке, позволяющим детальнее узнать о возможностях работы с САПР.

1.2 Описание АРІ

АРІ (аббр. от англ. application programming interface, дословно интерфей с программирования приложения) — программный интерфейс, то есть описание способов взаимодействия одной компьютерной программы с другими.[2]

Для подключения и работы с API на C# потребуется выполнить ряд следующих действий:

- 1. Включить в свойствах проекта функцию Register for COM Interop;
- 2. Создать DLL-обёртку для TLB Компас API с помощью Tlblmp.exe;
- 3. Подключить созданный DLL к проекту;
- 4. Зарегистрировать библиотеку в системе КОМПАС (а именно реализовать статический метод типа .htmSample с рядом настроек)
- 5. Зарегистрировать библиотеку на компьютере пользователя, воспользовавшись утилитой RegAsm.exe

Таблица 1.1 – Используемые свойства класса (интерфейса) Application

Название	Тип данных	Описание
ActiveDocument	*ICompasDocument	Свойство, содержащее
		текущий активный
		документ
Documents	*IDocuments	Коллекция всех
		открытых документов
		в приложении
Math2D	*IMath2D	Интерфейс 2D
		математики

Таблица 1.2 – Используемые методы класса (интерфейса) Application

Название	Входные	Тип	Описание
	параметры	возвращаемы	
		х данных	
ExecuteCompasCommand	commandId,	bool	Выполнение
	post		команды
			системы
			КОМПАС
MessageBoxEx	Text, caption,	long	Выдача
	flags		всыплывающе
			го сообщения

Таблица 1.3 – Используемые свойства класса (интерфейса) IDocuments

Название	Тип данных	Описание
Item	*IKompasDocument	Документ, заданный
		по имени, ссылке или
		индексу

Таблица 1.4 – Используемые методы класса (интерфейса) IDocuments

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
Add	Type, Visible	*IKompaDocument	Создаёт новый
			документ
Open	PathName, Visible,	*IKompaDocument,	Открывает
	ReadOnly,	null	документ
	LoadCOmbinationIndex		(существующи
			й)

Таблица 1.5 – Используемые свойства класса (интерфейса) IProcess2D

Название	Тип данных	Описание
Angle	double	Угол отклонения в
		градусах
X	double	Координата Х
Y	double	Координата Ү

Таблица 1.6 – Используемые свойства класса (интерфейса) IProcess3D

Название	Тип данных	Описание
MateConstraintsObjects	Variant	Выбранные объекты
		для сопряжения
Placement	*IPlacement3D	Положение объекта
TakeProcessObject	*IModelObject	Объект, создаваемый в
		подпроцессе

Таблица 1.7 – Используемые методы класса (интерфейса) IProcess3D

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
RunTakeCr	ProcessType,	bool	Запустить
eateObject	TakeObject,		подчинённый
Process	NeedCreateTakeObj,		режим создания
	LostTakeObj		объектов

1.3 Обзор аналогов плагина

Первым аналогом является приложении «Разъёмные соединения» [3] для Компас-3D, позволяющее формировать и размещать в сборке набор крепёжных элементов. Данное приложение требует оплаты дополнительной

лицензии в размере 46 400 руб (+20% НДС) и позволяет создавать болтовые и винтовые соединения, а также шайбы/гайки для соединения. Данный аналог является прямым для разрабатываемого плагина «Отвёртка». Интерфейс взаимодействия представлен на рисунке 1.1.

Рисунок 1.1 – Интерфейс приложения «Разъёмные соединения»

Вторым аналогом является специализированный модуль к базовому приложению Компас-3D «Валы и механические передачи 3D. Зуборезный инструмент»[4]. Модуль позволяет рассчитать и построить модели модели червячных фрез для нарезания:

- цилиндрических зубчатых колес с эвольвентным профилем (черновые и чистовые фрезы);
- цилиндрических передач Новикова с двумя линиями зацепления;
- звездочек к приводным роликовым и втулочным цепям;
- червячных колес цилиндрической червячной передачи (черновые и чистовые фрезы);

- шлицевых валов с эвольвентным профилем;
- шлицевых валов с прямобочным профилем;

Лицензия является платной (216 000 руб.). Данный аналог является прямым к плагину «Отвёртка». Пользовательский интерфейс представлен на рисунке 1.2.

Рисунок 1.2 – Интерфейс приложения «Валы и механические передачи 3D. Зуборезный инструмент»

2 Описание предмета проектирования

Отвёртка — ручной слесарный и столярный монтажный инструмент, предназначенный для завинчивания и отвинчивания крепёжных изделий с резьбой.[5]

Рисунок 2.1 – Модель отвёртки

Изменяемые параметры для предмета проектирования (также все обозначения показаны на рисунке 2.1):

- Длина ручки отвёртки 1 (45-150мм);
- Длина наконечника отвёртки L (45-500мм, но не меньше ручки);
- Диаметр наконечника отвёртки D (2/10 (длины ручки+наконечника) +/- 2 мм);
 - Диаметр ручки d (1/4 длины ручки +/- 5 мм);
 - Форма ручки (шестиугольная призма/цилиндрическая);
 - Форма наконечника (крестообразная/плоская).

3 Проект системы

3.1 UML диаграмма классов

UML диаграмма классов для плагина «Отвёртка» представлена на рисунке 3.1.

Рисунок 3.1 – UML диаграмма классов для плагина «Отвёртка»

В таблицах ниже представленна информация о свойствах и методах каждого из классов.

Таблица 3.1 — Свойства класса MainForm

Название	Тип данных	Описание
_builder	Builder	Хранит в себе объект
		построения
_parameters	Parameters	Хранит в себе
		параметры для объекта
		построения

Таблица 3.2 – Методы класса MainForm

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
BuildModel	_	_	Запуск
			построения
			модели по
			заданным
			параметрам

Таблица 3.3 — Свойства класса Parameters

Название	Тип данных	Описание
Parameters	Dictionary <parametertype,< td=""><td>Хранит в себе словарь</td></parametertype,<>	Хранит в себе словарь
	Parameter>	с параметрами объекта
		построения

Таблица 3.4 – Свойства класса Builder

Название	Тип данных	Описание
_wrapper	Wrapper	Хранит в себе объект
		обёртки АРІ

Таблица 3.5 – Методы класса Builder

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
Build	Parameters	-	Построение
			модели по
			заданным
			параметрам
BuildRod	_	-	Построение
			стержня
			отвёртки
BuildHandle	_	-	Построение
			ручки отвёртки
BuildScredri	_	-	Построение
ver			наконечника
			отвёртки

Таблица 3.6 — Свойства класса Parameter

Название	Тип данных	Описание
MaxValue	double	Максимально
		допустимое значение
		параметра
MinValue	double	Минимально
		допустимое значение
		параметра
Value	double	Значение параметра

Таблица 3.7 — Методы класса Wrapper

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
CreateArc	Point, double, Point	_	Создание дуги
			по двум точкам
Rounding	Line, Line, double	_	Скругление
CreateLine	Point, Point	_	Создание
			линии
CreateSketch	_	_	Создание
			эскиза
Spin	Sketch, route	_	Вращение
			эскиза
Extrusion	Sketch, route	_	Выдавливание
			эскиза
CreateFie	string	_	Создание файла
OpenFile	string	-	Открытие
			файла
OpenCAD	_	_	Открытие
			Компас3D

Таблица 3.7 – Методы класса Validator

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
Validate	Parameter	bool	Проверка
			правильности
			значения

3.2 Макеты пользовательского интерфейса

На рисунках 3.2 и 3.3 представлены макет пользовательского интерфейса, а также валидация введённых значений.

Рисунок 3.2 – Макет пользовательского интерфейса

Рисунок 3.3 — Реакция системы на ошибки в введённых параметрах

4 Список источников

- 1. КОМПАС-3D [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/about/ (дата обращения 28.09.2024)
- 2. API [Электронный ресурс]. Режим доступа https://ru.wikipedia.org/wiki/API (дата обращения 28.09.2024)
- 3. Разъёмные соединения [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/threaded-connection/ (дата обращения 05.10.2024)
- 4. Валы и механические передачи 3D. [Электронный ресурс]. Режим доступа https://kompas.ru/kompas-3d/application/machinery/gear-cutting/ (дата обращения 05.10.2024)
- 5. Отвёртка [Электронный ресурс]. Режим доступа https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%B2%D1%91%D1%80%D https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%B2%D1%91%D1%80%D https://ru.wikipedia.org/wiki/%D0%9E%D1%82%D0%B2%D1%91%D1%80%D https://ru.wikipedia.org/wiki/%D0%B0 (дата обращения 20.09.2024)