Opracowanie zagadnień

Zagadnienia

Zielińska

- 1. Znajomość niżej wymienionych polimerów (nazwa, skrót, struktura)
 - 1. Polietylen PE
 - 2. Polipropylen PP
 - 3. Polistyren PS
 - 4. Poli(tereftalan etylenu) PET
 - 5. Poli(kwas mlekowy) PLA
 - 6. Poli(alkohol winylowy) PVA
 - 7. Poli(octan winylu) PVAc
 - 8. Poliakrylonitryl PAN
 - 9. Poli(metakrylan metylu) PMMA
 - 10. Poli(chlorek winylu) PVC
 - 11. Poliamid 6 PA6
 - 12. Poliamid 6.6 PA66
 - 13. Poli(tlenek etylenu) PEO
 - 14. Poliweglan PC
 - 15. Politetrafluoroetylen PTFE
- 2. Definicja mikroplastiku.
- 3. Rodzaje procesów degradacji zachodzących w tworzywach sztucznych.
- 4. Degradacja tworzyw semikrystalicznych i amorficznych porównanie.
- 5. Charakterystyka procesu biodegradacji.
- 6. Klasyfikacja polimerowych materiałów biodegradowalnych wraz z przykładami.
- 7. Polimery syntetyczne rozpuszczalne w wodzie przykłady i charakterystyka.
- 8. Polimery pochodzenia naturalnego przykłady i charakterystyka.
- 9. Skrobia termoplastyczna otrzymywanie i właściwości.
- 10. Metody otrzymywania porowatych materiałów polimerowych odlewanie z roztworu z wymywaniem poroforu, termicznie indukowana separacja faz.
- 11. Naprężenia w spoinach podział i omówienie.
- 12. Klasyfikacja teorii adhezji i sił wiązań adhezyjnych.
- 13. Mechanizmy przyczepności.
- 14. Praca adhezji definicja.
- 15. Klasyfikacja spoiw wraz z przykładami.
- 16. Elastomery podział, charakterystyka wybranych elastomerów ogólnego przeznaczenia.
- 17. Wybrane monomery dienowe struktura chemiczna i polimeryzacja (izopren, butadien, chloropren)
- 18. Wybrane kauczuki oznaczenia ASTM, nazwy pospolite i chemiczne wg tabeli 1.
- 19. Charakterystyka procesu wulkanizacji kauczuków dienowych i wpływ przebiegu tego procesu na właściwości gumy.
- 20. Wpływ masy cząsteczkowej i polidyspersyjności na właściwości polimeru.
- 21. Wpływ rodzaju połączeń międzyłańcuchowych na właściwości gumy.
- 22. Przykłady polimerów polarnych i niepolarnych.
- 23. Mechanizm polimeryzacji rodnikowej.
- 24. Charakterystyka poliaddycji i polikondensacji.
- 25. Czynniki wpływające na właściwości polimerów.
- 26. Wpływ chemicznej budowy łańcucha (grup funkcyjnych) na właściwości polimerów.
- 27. Konfiguracja, konformacja definicja.
- 28. Tworzywa sztuczne klasyfikacja.

Korbut

- 1. Podział włókien ze względu na pochodzenie
- 2. Przykłady włókien naturalnych oraz ich właściwości (co najmniej 3)
- 3. Różnica między włóknami syntetycznymi a sztucznymi
- 4. Nanowłókna (definicja, właściwości, kierunki zastosowań)
- 5. Metody formowania nanowłókien (wymienić i krótko opisać)
- 6. Etapy procesu wytwarzania włókien syntetycznych

- 7. Przykłady polimerów włóknotwórczych otrzymywanych w wyniku polikondensacji (wzór, właściwości, zastosowanie)
- 8. Przykłady polimerów włóknotwórczych otrzymywanych w wyniku poliaddycji (wzór, właściwości, zastosowanie)
- 9. Włókna węglowe (otrzymywanie, właściwości, zastosowanie)
- 10. Włókna polietylenowe o dużej wytrzymałości (otrzymywanie, właściwości, zastosowanie)

Opracowanie

Zielińska

1. Znajomość niżej wymienionych polimerów (nazwa, skrót, struktura)

- 1. Polietylen PE
- 2. Polipropylen PP
- 3. Polistyren PS
- 4. Poli(tereftalan etylenu) PET
- 5. Poli(kwas mlekowy) PLA
- 6. Poli(alkohol winylowy) PVA
- 7. Poli(octan winylu) PVAc
- 8. Poliakrylonitryl PAN
- 9. Poli(metakrylan metylu) PMMA
- 10. Poli(chlorek winylu) PVC
- 11. Poliamid 6 PA6
- 12. Poliamid 6.6 PA66
- 13. Poli(tlenek etylenu) PEO
- 14. Poliweglan PC
- 15. Politetrafluoroetylen PTFE

16. Elastomery – podział, charakterystyka wybranych elastomerów ogólnego przeznaczenia.

Podział ogólny:

- termoutwardzalne
- termoplastyczne

Podział ze względu na przeznaczenie:

- ogólnego przeznaczenia
 - kopolimer styren-butadien (SBR) -

, $T_g = -55^o C$, zawartość

styrenu 23%, powstaje w polimeryzacji emulsyjnej (wolnorodnikowej) lub polimeryzacji w roztworze

• poliizopren naturalny (NR) - kauczuk naturalny, , $T_g=-70^{\circ}C$, stabilizatory: amoniak, formaldehyd, siarczan sodu, wyróżniamy kauczuk naturalny odt $\frac{1}{2}$ uszczony, izomeryzowany, deproteinowany i epoksydowany.

Polibutadien (BR) -

, polimeryzacja anionowa

(90% 1,4 ; 10\$ 1,2) lub koordynacyjna + katalizator Zieglera-Natty (cis 1,4 - krystalizuje), dodatek aminy lub korozpuszczalnika powoduje wzrost udziału struktury 1,2. Mały udział 1,2 -> $T_g=-100^{\circ}C$, Duży udział 1,2 -> $T_g=0^{\circ}C$

- Poliizopren syntetyczny (IR) polimeryzacja anionowa (95% cis)/ polimeryzacja koordynacyjna + katalizator
 Zieglera-Natty (98% cis, mniejszy moduł sprężystości niż anionowy IR, większe wydłużenie przy zerwaniu niż NR)
- specjalne
 - dienowe
 - winylowe
 - silikonowe
 - pozostałę

18. Wybrane kauczuki - oznaczenia ASTM, nazwy pospolite i chemiczne wg tabeli 1.

Tabela 1 Oznaczenia, nazwy chemiczne i zwyczajowe wybranych kauczuków.

Oznaczenie ASTM	Nazwa zwyczajowa	Nazwa chemiczna
NR	Kauczuk naturalny	cis-poliizopren
IR	Kauczuk syntetyczny	cis-poliizopren
BR	Kauczuk butadienowy	cis-polibutadien
SBR	Kauczuk SBR	poli(butadien-co-styren)
IIR	Kauczuk butylowy	poli(izobutylen-co-izopren)
CIIR	Kauczuk chlorobutylowy	chlorowany poli(izobutylen-co-
		izopren)
BIIR	Kauczuk bromobutylowy	bromowany poli(izobutylen-co-
		izopren)
EPM	Kauczuk EPM	poli(etylen-co-propylen)
EPDM	Kauczuk EPDM	poli(etylen-co-propylen-co-
		dien)
CR	Neopren	polichloropren
NBR	Kauczuk nitrylowy	poli(butadien-co-akrylonitryl)
MQ	Kauczuk silikonowy	polidimetylosiloksan
VMQ	Kauczuk silikonowy	poliwinylometylosiloksan
PMQ	Kauczuk silikonowy	polifenylometylosiloksan
PVMQ	Kauczuk silikonowy	polifenylowinylometylosiloksan

20. Wpływ masy cząsteczkowej i polidyspersyjności na właściwości polimeru.

- Wpływa głównie na zakres topnienia i płynięcia
- ullet Właściwości w stanie stałym zależne od M_w ("ślizganie" łańcuchów)
- Długołańcuchowe, amorficzne polimery są sztywniejsze i odporniejsze chemicznie (splątania łańcuchów)
- Krótkołańcuchowe polimery są łatwiej formowane
- Długie łańcuchy podnoszą lepkość stopu i poprawiają stabilność właściwości chemicznych i mechanicznych w czasie
- Krótkie łańcuchy powodują ograniczenie stabilności czasowej
- ullet $M_w > M_V > M_n$ cokolwiek to znaczy

Polidyspersyjność P

Wagowo średnia masa cząsteczkowa \overline{M}_w Liczbowo średnia masa cząsteczkowa \overline{M}_n

$$P \ge 1 <=> \overline{M}_w > \overline{M}_n$$

23. Mechanizm polimeryzacji rodnikowej.

inicjacja -> propagacja -> terminacja

Mechanizmy terminacji:

$$R-CH_2-CH_2*+R-CH_2-CH_2*
ightarrow$$

1. Rekombinacja: $R-(CH_2)_4-R$

2. Dysproporcjonowanie: $R-CH_2-CH_3+R-CH=CH_2$

Związki takie jak metakrylan metylu (MMA) preferują drogę 2. Większość jednak terminuje drogą 1.

24. Charakterystyka poliaddycji i polikondensacji.

Poliaddycja

W ten sposób powstają poliuretany z dioli i diizocyjanianów.

$$HO-A-OH+O=C=N-B-N=C=O \rightarrow HO-A-O-CO-NH-B-NCO$$

Polikondensacja

grupa hydroksylowa + grupa karbonylowa -> polimer + woda

W ten sposób powstają: polikwas mlekowy (polilaktyt - PLA), poliester, poliamidy, poliwęglan

25. Czynniki wpływające na właściwości polimerów.

Termoplasty	Elastomery / Duroplasty
Masa cząsteczkowa	Stopień usieciowania
PDI	Długości sekwencji w kopolimerach
Stopień rozgałęzienia	Składniki niskocząsteczkowe
Taktyczność	
Pozostałości monomerów	
Pozostałości substancji pomocniczych	

26. Wpływ chemicznej budowy łańcucha (grup funkcyjnych) na właściwości polimerów.

Polarność (moment dipolowy) – stabilność chemiczna (W jaki sposób? Nie wiadomo.)

Temperatura zeszklenia jest związana z zawadą steryczną (mobilnością). Im mniejsza zawada (nieduże podstawniki) tym niższa temperatura zeszklenia.

Polimer	Temperatura zeszklenia ${}^o \! C$
PE	-100
PP	0
PS	80

27. Konfiguracja, konformacja - definicja.

- konfiguracja przestrzenne rozmieszczenie atomów i grup atomów
- konformacja przestrzenne warianty ułożenia cząsteczki o określonej konfiguracji

28. Tworzywa sztuczne - klasyfikacja

Tworzywa sztuczne

- termoplasty
 - tworzywa ogólne
 - semikrystaliczne
 - PE (HDPE, LDPE, LLDPE)
 - PP
 - amorficzne
 - PS
 - PCV
 - PMMA
 - tworzywa inżynierskie
 - tworzywa ogólnoinżynierskie
 - semikrystaliczne
 - PA
 - POM (Polyoxymethylene)
 - PBT (Polybutylene Terephtthalate)
 - amorficzne
 - PC (Polycarbonate)
 - PPO (Polyphenylene oxide)
 - tworzywa inżynierskie zaawansowane
 - semikrystaliczne
 - PI (Polyimide)
 - PPS (Polyphenylene Sulphide)
 - amorficzne
 - PSF (Polysulfone)
 - PES (Polyether Sulphone)
 - tworzywa łączone
 - PPO/PS
 - PA/PP
 - stopy, blendy itp.
- duroplasty
 - PF (żywice fenylowe)
 - EP (żywice epoksydowe)
 - SI (silikony)

Korbut

1. Podział włókien ze względu na pochodzenie

- naturalne
 - roślinne
 - zwierzęce
 - mineralne
- chemiczne
 - nieorganiczne
 - sztuczne
 - syntetyczne

2. Przykłady włókien naturalnych oraz ich właściwości (co najmniej 3)

Przykłady

- roślinne
 - bawełna
 - len
 - juta
- zwierzęce
 - wełna posiada charakterystyczne cechy (łuskowatość, lanolina, karbikowatość), właściwości termoregulacyjne,
 nie pochłania zapachów
 - jedwab wytwarzane przez gąsienice motyli jedwabników, najbardziej wytrzymałe spośród włókien naturalnych
 - bisior włókna powstające z szybko krzepnącej wydzieliny małżów morskich
- mineralne
 - azbest cienkie, miękkie i lśniące włókna o barwie białej lub szarej wytrzymałość na wysoką temperaturę, słabe przewodnictwo cieplne, słabe przewodnictwo elektryczne

Właściwości tkanin z włókien naturalnych:

- są wytrzymałe na wysoką temperaturę
- są odporne na czynniki chemiczne
- mają dobre właściwości termoizolacyjne
- są przewiewne
- są higroskopijne
- pochłaniają promieniowanie UV
- nie elektryzują się
- mają właściwości dźwiękochłonne

3. Różnica między włóknami syntetycznymi a sztucznymi

- Włókna syntetyczne to włókna chemiczne wytwarzane w różnych procesach technologii chemicznej z polimerów niewystępujących w przyrodzie otrzymywanych z monomerów w procesach polimeryzacji lub polikondensacji.
- Włókna sztuczne to włókna chemiczne, które są wytwarzane w procesach technologii chemicznej, modyfikujących strukturę naturalnych biopolimerów (np. włókna wiskozowe z celulozy, kazeinowe z białka) oraz surowców mineralnych (np. włókna szklane, włókna metaliczne)

4. Nanowłókna (definicja, właściwości, kierunki zastosowań)

Nanowłókna - włókna grubości poniżej 100 nm

Właściwości

- duża powierzchnia właściwa
- duży stosunek długości do przekroju
- występują w materiałach naturalnych (włókna kolagenowe) i wytworzonych przez człowieka

Kierunki zastosowań:

- militaria
- kosmetyka
- sensory
- filtry
- medycyna i inżynieria tkankowa
- inne

5. Metody formowania nanowłókien (wymienić i krótko opisać)

elektroprzędzenie - wykorzystanie sił elektrostatycznych działających na elektrycznie naładowany strumień roztworu
polimeru

• wyciąganie włókien z roztworu - zanurzenie mikropipety w kropli roztworu blisko powierzchni kontaktu

separacja faz - roztwór polimeru i rozpuszczalnika poddawany żelowaniu

 synteza według szablonu - zastosowanie specjalnego wzornika decydującego o kształcie i rozmiarach wytworzonych nanostruktur

• samoorganizacja molekularna - tworzenie się zorganizowanych struktur pod wpływem sił międzycząsteczkowych

6. Etapy procesu wytwarzania włókien syntetycznych

Proces wytwarzania włókien syntetycznych

- otrzymywanie monomerów
- prowadzenie procesu polimeryzacji (lub polikondensacji)
- przygotowanie płynów przędzalniczych (stapianie lub rozpuszczanie)
- formowanie włókien, np. wytłaczanie przez dysze przędzalnicze (filiery)
- wykończanie, czyli obróbka włókien, nadająca im pożądane właściwości (np. sieciowanie metodami poliaddycji, rozciąganie, karbikowanie, skręcanie, cięcie, karbonizowanie, barwienie).

7. Przykłady polimerów włóknotwórczych otrzymywanych w wyniku polikondensacji (wzór, właściwości, zastosowanie)

- Poliamidy
 - budowa polimery o budowie łańcuchowej , w których poszczególne segmenty węglowodorowe połączone są wiązaniami amidowymi -CO-NH-
 - właściwości
 - Niezbyt wysoka chłonność wielokrotnie niższy wynik zdolności absorbcji płynów od wełny czy lnu (ale wyższy od poliestru)
 - Sztywność poliamidu nie można pognieść
 - Bardzo wysoka odporność mechaniczna mało podatne na wycieranie czy rozdarcia
 - Niska odporność na promieniowanie UV- wystawione na długotrwałe działanie światła blakną lub żółkną oraz szybciej się starzeją
 - Skłonność do pillingu (mechacenia się)
 - zastosowania
 - Poliamid 66
 - pończochy
 - szczoteczki do zębów
 - liny cumownicze
 - spadochrony
- Włókna aramidowe
 - budowa polimery, które w łańcuchu głównym posiadają ugrupowania aromatyczne (im więcej, tym większa odporność mechaniczna, termiczna i pożarowa, ale gorsza rozpuszczalność)
 - właściwości
 - Wytrzymałość na rozrywanie
 - Odporność na pociski (pochłanianie i rozpraszanie siły uderzenia)
 - Odporność na przecięcie i przekłucie
 - Odporność na wysokie temperatury
 - Niska przewodność cieplna
 - Brak przewodności elektrycznej
 - Degradacja pod wpływem promieniowania UV
 - zastosowania
 - kamizeli kuloodporne
 - hełmy
 - pancerz pojazdów
 - środki ochrony indywidualnej (np. rękawice ochronne)
 - lotnictwo
 - motoryzacja
 - element wzmacniający światłowody
 - górnictwo
- włókna poliestrowe
 - budowa polimery zawierające wiązania estrowe w swoich łańcuchach głównych -C00-
 - właściwości
 - Duża wytrzymałość na rozerwanie, zginanie i ścieranie
 - Dobra odporność na działanie światła
 - Odporność na słabe kwasy i zasady
 - Są odporne biologicznie
 - Sa niehigroskopijne
 - Łatwo się elektryzują
 - Są skłonne do pillingu
 - Wysoka sprężystość
 - zastosowania

- dzianiny i tkaniny
 - polar
 - dakron
 - tergal (płótna żaglowe)
- liny

8. Jak się umie 7 to nie trzeba 8

9. Włókna węglowe (otrzymywanie, właściwości, zastosowanie)

• otrzymywanie - kontrolowana piroliza poliakrylonitrylu (PAN) i innych polimerów organicznych

właściwości

- Mała gęstość
- Wysoka wytrzymałość na rozciąganie
- Wysoki moduł Younga
- Wysoka wytrzymałość zmęczeniowa
- Wysoka wytrzymałość na pełzanie
- Dobrze tłumią drgania
- Duża odporność na ścieranie
- Duża stabilność wymiarowa
- Mała przewodność cieplna w niskich temperaturach
- Dobra przewodność elektryczna
- Odporność cieplna
- Niewielka udarność
- Mała odporność na utlenianie w podwyższonej temperaturze
- Niewielki stopień adhezji do polimerów i spoiw nieorganicznych
- Mała powierzchnia właściwa i niejednolita mikrostruktura
- zastosowanie
 - jako zbrojenie laminatów opartych na żywicach epoksydowych wysokiej jakości

- do produkcji łopat elektrowni wiatrowych
- do wytwarzania śmigieł i komponentów wzmacniających strukturę kadłuba i skrzydeł w konstrukcjach kosmicznych i lotniczych
- w produkcji jachtów do elementów szczególnie narażonych na duże obciążenia
- w przemyśle sportowym (rowery, wędki, łuki sportowe)
- w dziedzinie sportów ekstremalnych (pojazdy Formuły 1)
- Do konstrukcji mikroelektrod, elektrod do ogniw galwanicznych i paliwowych

10. Włókna polietylenowe o dużej wytrzymałości (otrzymywanie, właściwości, zastosowanie)

otrzymywanie

- z polietylenu o szczególnie dużym ciężarze cząsteczkowym UHMWPE (ultra high molecular weight poluethylene)
- z zastosowaniem nowych katalizatorów metalocenowych pozwalających wytwarzać polimery zawierające nawet do 250 000 jednostek monomerycznych i cechujące się bardzo wąskim rozkładem ciężarów cząsteczkowych
- Podczas przędzenia te długie łańcuchy polietylenu ulegają orientacji równolegle do osi włókna w ponad 95%, a stopień krystaliczności osiąga nawet 85%

właściwości

- Szczególnie mała gęstość wynosząca ok. 0.979 g/cm3
- Bardzo dobre właściwości mechaniczne odniesione do ciężaru właściwego
- Duża energia zniszczenia
- Znikoma nasiąkliwość wodą
- Duża odporność na ścieranie i mały współczynnik tarcia
- Odporność na działanie promieniowania UV
- Odporność na chemikalia i warunki korozyjne oraz mikroorganizmy
- Znakomite właściwości elektryczne

zastosowanie

liny cumownicze (pływają , nie nasiąkają wodą)