

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU

Projekat ML3 Analiza sentimenta i klasifikacija komentara na filmove

- Praktični projekat iz predmeta Veštačka inteligencija -

Milan Balabanović 347/21

Sadržaj

1. Uvod	3
2. Učitavanje i preprocessing podataka	4
3. Reprezentacija teksta	5
4. Modeli	6
1. Naive Bayes	6
2. SVM (Support Vector Machine)	7
3. Logistic regression	8
4. Random forest	9
5. Rezultati testiranja modela	
6. Zaključak	

1. Uvod

Projekat se bavi analizom sentimenta i klasifikacijom komentara ostavljenih na filmove u pozitivne i negativne. Razvijen je u Python-u uz korišćenje naprednih biblioteka kao što su pandas (2.2.2), scikit-learn (1.5.1), numpy (2.1.0), nltk (3.9.1) i transformers (4.32.0).

U okviru ovog projekta, implementirani su i testirani različiti modeli za klasifikaciju teksta, uključujući **Naive Bayes**, **SVM** (Support Vector Machines), **Logistic Regression**, i **Random Forest**. Svaki od ovih modela je primenjen na zadatak prepoznavanja pozitivnih i negativnih komentara, pri čemu su korišćene različite tehnike ekstrakcije karakteristika iz teksta, kao što su **Bag of Words**, **TF-IDF**, **Hashing**, kao i napredniji pristupi poput **DistilBERT** reprezentacije. Pre ekstrakcije karakteristika i treniranja modela, odradjen je preprocessing podataka kako bi se tekstovi očistili i doveli u stanje da budu spremni za dalju obradu.

Cilj ovog rada je bio da se uporede performanse ovih modela u kontekstu analize sentimenta.

2. Učitavanje i preprocessing podataka

Podaci u ovom projektu smešteni su u direktorijumu 'data', koji je dalje podeljen na dva poddirektorijuma: '2800' i '50000', u skladu sa brojem komentara koje sadrže. Učitavanje podataka izvršeno je čitanjem svakog tekstualnog dokumenta i dodavanjem pročitane sadržine u odgovarajuće liste (slika 2.1). Nakon toga, sproveden je preprocessing podataka koji obuhvata prebacivanje svih slova u mala, uklanjanje karaktera koji nisu alfanumerički, kao i brisanje stop reči (slika 2.2).

slika 2.1

```
def preprocess_text(text):
    tokens = word_tokenize(text.lower())
    tokens = [word for word in tokens if word.isalpha()]
    tokens = [word for word in tokens if word not in stopwords.words('english')]
    return ' '.join(tokens)
```

slika 2.2

3. Reprezentacija teksta

Reprezentacija teksta je ključni korak u procesu obrade prirodnog jezika (NLP) i predstavlja način na koji se tekstualni podaci pretvaraju u numerički format koji može biti korišćen za analizu i modeliranje. U osnovi, cilj je da se tekstu dodeli numerički format koji očuvava njegovu semantiku i značenje. Postoji nekoliko metoda za reprezentaciju teksta:

- 1. **Bag of Words (BoW)**: Bag of Words (BoW) je jedna od najosnovnijih metoda za reprezentaciju teksta. Ova tehnika pretvara tekst u vektor gde svaka pozicija odgovara određenoj reči u rečniku, a vrednost na toj poziciji predstavlja broj pojavljivanja te reči u dokumentu. BoW ne uzima u obzir redosled reči i ne pruža informacije o kontekstu reči, ali je jednostavna za implementaciju i često se koristi kao osnovna metoda za analizu teksta.
- 2. **Term Frequency-Inverse Document Frequency (TF-IDF)**: TF-IDF je naprednija metoda koja kombinuje frekvenciju reči u dokumentu sa brojem pojavljivanja te reči u celom skupu dokumenata. Frekvencija reči u dokumentu (TF) meri koliko često se reč pojavljuje u dokumentu, dok Inverse Document Frequency (IDF) meri koliko je reč retka u celokupnom skupu dokumenata. Kombinacija ovih faktora pomaže u identifikaciji reči koje su specifične za određeni dokument i koje imaju veću važnost za analizu.
- 3. **Kontekstualni Embedding**: Savremeni modeli kao što su BERT (Bidirectional Encoder Representations from Transformers) i DistilBERT pružaju kontekstualni embedding. Ovi modeli uzimaju u obzir kontekst reči u rečenici, omogućavajući generisanje dinamičnih vektora koji se menjaju u zavisnosti od konteksta u kojem se reč pojavljuje.

```
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from transformers import DistilBertTokenizer, DistilBertModel
import numpy as np
distilbert_tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
distilbert_model = DistilBertModel.from_pretrained('distilbert-base-uncased')
def extract_features(texts, method='tfidf'):
    if method == 'tfidf':
       vectorizer = TfidfVectorizer()
        return vectorizer.fit_transform(texts)
    elif method == 'bow':
       vectorizer = CountVectorizer()
        return vectorizer.fit_transform(texts)
    elif method == 'bert':
        def vectorize_text(text):
            inputs = distilbert_tokenizer(text, return_tensors='pt', truncation=True, padding=True)
            outputs = distilbert_model(**inputs)
            return outputs.last_hidden_state.mean(dim=1).squeeze().detach().numpy()
        feature_matrix = np.array([vectorize_text(text) for text in texts])
        return feature matrix
    else:
        raise ValueError(f"Unknown feature extraction method: {method}")
```

4. Modeli

1. Naive Bayes

Naive Bayes klasifikatori koriste Bayesov-u teoremu kako bi izračunali verovatnoću da jedan tekst pripada određenoj klasi na osnovu njegovih karakteristika (reči, u ovom slučaju).

Prednosti

- ☐ **Brzina**: Obuka i predikcija su veoma brzi, čak i za velike skupove podataka.
- □ **Efikasnost sa Malim Skupovima Podataka**: Dobro funkcioniše čak i kada je količina obučavajućih podataka mala.
- □ **Robustnost**: Osetljiv je na šum i greške u podacima, ali često i dalje daje dobre rezultate.

- □ **Pretpostavka Nezavisnosti**: Pretpostavka da su karakteristike nezavisne nije uvek tačna, što može dovesti do lošijih performansi u nekim slučajevima.
- Ograničena Fleksibilnost: Može biti manje efikasan u slučajevima kada su veze između karakteristika složene ili kada karakteristike nisu nezavisne.

2. SVM (Support Vector Machine)

SVM je zasnovan na konceptu pronalaženja optimalne hiperravnine koja razdvaja podatke u različite klase. Optimalna hiperravnina je ona koja maksimizuje marginu između klasa, tj. rastojanje između najbližih tačaka sa obe strane hiperravnine (poznate kao *support vectors*).

Prednosti

- □ **Efikasnost sa Visokodimenzionalnim Podacima**: SVM je vrlo efikasan u radu sa podacima visokih dimenzija i dobro funkcioniše čak i kada je broj karakteristika veći od broja uzoraka.
- □ **Robustnost na Overfitting**: Korišćenje pravila regularizacije i marginu omogućava SVM-u da se efikasno nosi sa prekomernim prilagođavanjem (overfitting).
- ☐ **Fleksibilnost**: Upotrebom različitih kernel funkcija, SVM može modelovati složene nelinearne odnose između karakteristika.

- Skaliranje: SVM može biti računski intenzivan i spor za veoma velike skupove podataka.
- Odabir Parametara: Odabir optimalnih vrednosti za hiperparametre, kao što su C (regularizacija) i gamma (za RBF kernel), može biti izazovan i zahteva pažljivo podešavanje.
- ☐ **Interpretabilnost**: SVM modeli mogu biti teži za interpretaciju u poređenju sa jednostavnim modelima poput logističke regresije.

3. Logistic regression

Logistička regresija je metoda koja predviđa verovatnoću pripadnosti uzorka određenoj klasi koristeći funkciju logističke funkcije (ili sigmoidnu funkciju). Ova funkcija pretvara bilo koji realan broj u vrednost između 0 i 1, što je idealno za modelovanje verovatnoće da uzorak pripada jednoj od dve klase.

Prednosti

- Jednostavnost: Logističku regresiju je lako implementirati i interpretirati. Dobro funkcioniše za probleme sa linearnim granicama između klasa.
- □ **Brza i Efikasna**: Ima brze algoritme za obuku, što je korisno za velike skupove podataka.
- □ **Probabilistička Predikcija**: Obezbeđuje verovatnoće za predikcije, što može biti korisno u mnogim aplikacijama gde je potrebna interpretacija neizvesnosti.

- Ograničena na Linearne Granice: Ako su odnosi između karakteristika i ciljne promenljive nelinearni, model može imati loše performanse bez dodatnih transformacija.
- Osetljivost na Neuravnotežene Klase: Može biti osetljiv na neuravnotežene skupove podataka, gde jedna klasa može biti znatno zastupljenija od druge.
- Ograničeno za Višeklasnu Klasifikaciju: Iako se može proširiti na višeklasnu klasifikaciju koristeći metode kao što je "one-vs-rest", logistička regresija je prirodno dizajnirana za binarnu klasifikaciju.

4. Random forest

Random Forest kombinuje rezultate više odlučujućih stabala kako bi se dobila konačna predikcija. Svako stablo u šumi daje svoju predikciju, a konačni rezultat se dobija glasanjem (za klasifikaciju) ili prosečnim vrednostima (za regresiju) svih stabala.

Prednosti

- Robusnost: Random Forest je manje osetljiv na overfitting u poređenju sa pojedinačnim odlučujućim stablima jer koristi ensemble tehniku.
- □ **Preciznost:** Obično postiže visoku tačnost i može se nositi sa velikim i složenim skupovima podataka.
- ☐ **Izdržljivost:** Može da se nosi sa nedostajućim vrednostima i šumom u podacima.
- □ **Automatska Selekcija Karakteristika:** Može automatski da oceni važnost karakteristika, što može biti korisno za selekciju atributa.

- Složenost: Model može postati složen i teško interpretirati zbog velikog broja stabala u šumi.
- Resursi: Može zahtevati dosta memorije i procesorske snage, posebno za velike skupove podataka i brojne karakteristike.
- □ **Potreba za Tuning-om:** Iako generalno robusno, Random Forest može zahtevati podešavanje hiperparametara (kao što su broj stabala i maksimalna dubina stabala) za postizanje optimalnih performansi.

5. Rezultati testiranja modela

Svo treniranje i testiranje bilo je odrađeno sa data set-om od 2800 instanci. Podela podataka za treniranje i testiranje bila je odradjena metodom **train_test_split(test_size=0.2, random state=42)** iz biblioteke **Scikit-learn**.

Za evaluaciju modela koričćena je metoda **evaluate model** (slika 5.1) koja vraća 4 metrike:

- □ **Tačnost** U klasifikaciji, ova funkcija računa tačnost skupa tako što podeli broj tačno klasifikovanih instanci sa ukupnim brojem instanci.
- □ **Preciznost** Preciznost intuitivno predstavlja sposobnost klasifikatora da ne označi uzorak kao pozitivan kada je on zapravo negativan.
- Odziv Odziv (recall) se računa kao odnos između broja pravih pozitivnih i zbir broja pravih pozitivnih i broja lažnih negativnih. Odziv meri sposobnost klasifikatora da pronađe sve pozitivne uzorke.
- □ **F1 skor** F1 skor, poznat i kao balansirani F1 skor ili F-merit, može se interpretirati kao harmonijska sredina preciznosti i odziva.

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

def evaluate_model(model, X_test, y_test):
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    precision = precision_score(y_test, y_pred)
    recall = recall_score(y_test, y_pred)
    f1 = f1_score(y_test, y_pred)
    return accuracy, precision, recall, f1
```

slika 5.1

Nakon testiranja svih modela sa svim tehnika reprezentacije teksta došli smo do sledećih rezultata:

Naziv model	Tehnika reprezentacije teksta	Tačnost	Preciznost	Odziv	F1
Naive bayes	Bag of words	0.9315	0.9275	0.9343	0.9309
	TF-IDF	0.9279	0.9209	0.9343	0.9275
	DistilBert	0.9281	0.9153	0.9250	0.9201
SVM	Bag of words	0.9784	0.9852	0.9708	0.9779
	TF-IDF	0.9640	0.9568	0.9708	0.9638
	DistilBert	0.9850	0.9916	0.9795	0.9855
Logistic regression	Bag of words	0.9820	0.9925	0.9708	0.9815
	TF-IDF	0.9441	0.9451	0.9416	0.9433
	DistilBert	0.9818	0.9850	0.9751	0.9795
Random forest	Bag of words	0.9423	0.9481	0.9343	0.9412
	TF-IDF	0.9495	0.9489	0.9489	0.9489
	DistilBert	0.9550	0.9602	0.9505	0.9553

6. Zaključak

Ovaj praktični zadatak ističe značaj izbora odgovarajućih modela i tehnika reprezentacije teksta u analizi sentimenta komentara na filmove. Analizom performansi različitih modela, uključujući Naive Bayes, SVM, Logistic Regression i Random Forest, u kombinaciji sa različitim tehnikama reprezentacije teksta kao što su Bag of Words, TF-IDF i DistilBert, dobili smo uvid u njihove prednosti i nedostatke.

SVM sa DistilBert pokazuje se kao najefikasniji model, pružajući najbolje rezultate u svim ključnim metrikama: tačnosti, preciznosti, odzivu i F1 skoru. Ovaj model se izdvaja zbog svoje sposobnosti da precizno identifikuje pozitivne i negativne komentare, što je od velikog značaja za analizu sentimenta. S druge strane, Logistic Regression sa Bag of Words takođe pokazuje visoke performanse, naročito u preciznosti, dok Random Forest sa DistilBert nudi stabilne rezultate sa visokom tačnošću i F1 skorom.

Naive Bayes, iako daje solidne rezultate, pokazuje nešto slabije performanse u poređenju sa SVM i Logistic Regression, ali i dalje predstavlja pouzdan izbor za određene primene. Korišćenje DistilBert kao tehnike reprezentacije teksta često dovodi do poboljšanja u rezultatima, što ukazuje na prednost u korišćenju naprednih modela za obuku u analizi teksta.

Dok SVM sa DistilBert pruža vrhunske rezultate, druge kombinacije kao što su Logistic Regression sa Bag of Words i Random Forest sa DistilBert takođe nude značajne prednosti i mogu biti korisne u zavisnosti od konteksta i zahteva projekta.