Deductive Reasoning

Description and Types of Inference

- Deductive reasoning is simply reaching conclusions based on premises that are known or assumed to be true.
- Premise A : All dogs are mammals

Premise B: Mammals are warm blooded

Conclusion: All dogs are warm blooded

- Usually happens by applying "rules of inference" or schema which are provided mostly by classical logic
- Examples of well-known rules of inference are as follows
- *Modus ponens*: if $P \to Q, P \vdash Q$ in sequent notation and $((P \to Q) \land P) \to P$ in propositional logic notation
 - where, P, Q and $P \rightarrow Q$ are statements (or propositions) in a formal language and \vdash is a metalogical symbol meaning that Q

is a syntactic consequence of and $P \rightarrow Q$ in some logical system.

• *Modus Tollens:* if $P \to Q$, $\neg Q \vdash \neg P$ in sequent notation and $((P \to Q) \land \neg Q) \to \neg P$ in propositional logic notation

Description and Types of Inference

- Hypothetical syllogism : if $P \vdash Q = Q \vdash R = 0$ in sequent notation and in propositional logic : $P \vdash R = ((P \to Q) \land (Q \to R)) \to (P \to R)$
- Validity and Soundness
- An argument is valid if it is impossible for the premises to be false if the conclusion is true.
- An argument is sound if it is valid and its premises are true.

Knowledge Graphs

Description and Uses

 A knowledge graph is a directed labelled graph that has domain specific meanings attached to it.

Description and Uses

- Used to structure knowledge and manipulate massive amounts of data using graph algorithms.
- Enterprises and social media use it to maintain customer relations
- In the context of AI, it is also called Semantic Networks, KGs are used for a wide range of tasks like knowledge representation, classification and Reasoning.
- World Wide Web Consortium (W3C) has standardized a family of knowledge representation languages
- These languages include the Resource Description Framework(RDF), the Web Ontology Language(OWL), and the Semantic Web Rule Language (SWRL)
- The authors have used RDF for their experiments

Knowledge Graph Embeddings

Methods of Embedding

- Syntactic Normalization which renames constants, variables, predicates, etc. to predefined syntactical names across all domains of normalisation. Used by the authors
- TransE : If the subject, object and relation holds, we can describe objectas as a vector addition of subject and relation assuming they are in the same vector space, \mathbb{R}^k .

Methods of Embedding

• TransR : Does not assume subject and relation to be in same vector space and thus having an entity space, $(h, t) \in \mathbb{R}^k$ and relations having a relation space \mathbb{R}^d where $d \neq k$ and we operate in the projection matrix of the two spaces $\mathbf{M}_r \in \mathbb{R}^{k \times d}$.

Memory Networks

Structure of Memory Networks

Memory Networks (MemNN)

Structure of Memory Networks

- It contains an indexed memory(m) and 4 modules which are namely
- *I* (input feature maps): Converts the incoming input to internal feature maps.
- *G*(generalization): Updates the old memory give a new set of inputs
- O(output feature map): produces a new output (in the feature representation space), given the new input and the current memory state.
- *R*(response): converts the output into the response format desired. For example, a textual response or an action

Inference of Memory Networks

 Core of inference is the Output features module and response. Where a scoring function is used to find the best supporting memory.

$$o_1 = O_1(x, \mathbf{m}) = \underset{i=1,...,N}{\operatorname{arg max}} \ s_O(x, \mathbf{m}_i)$$

 For the next iteration we use the same process but with an array of x and m1

$$o_2 = O_2(x, \mathbf{m}) = \underset{i=1,...,N}{\operatorname{arg \, max}} \ s_O([x, \mathbf{m}_{o_1}], \mathbf{m}_i)$$

Simplest example of a response model is given by

$$r = \operatorname{argmax}_{w \in W} s_R([x, \mathbf{m}_{o_1}, \mathbf{m}_{o_2}], w)$$

And the scoring function can be given by embedding functions

$$s(x, y) = \Phi_x(x)^\top U^\top U \Phi_y(y).$$

Training/Learning in Memory Networks

- For text inputs, training was done using the Margin ranking loss and Stochastic Gradient Descent.
- Minimizing the loss over the parameters Uo and Ur.

$$\sum_{\bar{f} \neq \mathbf{m}_{o_{1}}} \max(0, \gamma - s_{O}(x, \mathbf{m}_{o_{1}}) + s_{O}(x, \bar{f})) + \sum_{\bar{f}' \neq \mathbf{m}_{o_{2}}} \max(0, \gamma - s_{O}([x, \mathbf{m}_{o_{1}}], \mathbf{m}_{o_{2}}]) + s_{O}([x, \mathbf{m}_{o_{1}}], \bar{f}'])) + \sum_{\bar{r} \neq r} \max(0, \gamma - s_{R}([x, \mathbf{m}_{o_{1}}, \mathbf{m}_{o_{2}}], r) + s_{R}([x, \mathbf{m}_{o_{1}}, \mathbf{m}_{o_{2}}], \bar{r}]))$$

Logic Entailment

Problem Formulation

• Any logic $\mathcal L$ comes with an entailment relation

$$\models_{\mathcal{L}} \subseteq T_{\mathcal{L}} \times F_{\mathcal{L}}$$

where $F_{\mathcal{L}}$ is a subset of set of all logical formulas (or axioms) over \mathcal{L} , and $T_{\mathcal{L}}$ is the set of all theories over \mathcal{L} .

- T entails F or F is entailed by T if $T
 vert F_{\mathcal{L}}$
- Reframing the deductive reasoning problem as a classification task
- Train a model on a set of theories (T,F) to see if $(T,F) \in T_{\mathcal{L}} \times F_{\mathcal{L}}$ is a valid entailment
- If successful, transfer that learning to new theories over the same logic
- If not then $T \not\models_{\mathcal{L}} F$

Model Summary

Model Architecture

- Takes a discrete set G of normalized RDF triplets t₁,...t_n that are stored in memory, a query q, and outputs a "yes" or "no" answer
- normalized t_i and q contains symbols from general dictionary with V normalized words shared among all normalized RDF theories

Model Description

- Model stores the embeddings of the normalized triplets in our KG in an external memory component
- This component is defined as n x d tensor where
 - n = number of triplets
 - d = dimensionality of the embeddings
- Memory vector stores 2 continuous representations of m_i and c_i obtained from matrices A and C with size d x V, V = size of vocabulary
- Query q is embedded via a matric B to obtain internal state u

Model Description

 Attention mechanism for q over memory input is represented by a SoftMax

$$p_i = \text{Softmax}(u^T(m_i))$$
where
$$\text{Softmax}(a_i) = \frac{e^{(a_i)}}{\sum_i e^{(a_j)}}$$

- The above equation calculates probability vector p over the memory input
- The output vector o is a weighted sum of memory content ci with respect to corresponding probabilities pi

$$o = \sum_i p_i c_i$$

• The internal state of the query vector updates for next hop as $u^{k+1} = u^k + o^k$, and the process repeats K times

Syntactic Normalization

- Deductive reasoning requires the names of entities to be insubstantial
- Embeddings that are agnostic to the strings used as primitives in the KG are built
- Syntactic normalization renaming of primitives such as variables, constants, functions, predicates to a predefined entity names
- By random renaming, the network will learn the structure within the theory and not the actual names
- Helps in forgetting irrelevant label names
- Assists in transfer learning from one KG to the other

Cross KG entailment

- Resource Description Framework (RDF) is a widely used Web standard for data publishing and expressing KGs
- RDF KG stores any statement as triplets (e1,r,e2)
 - e1 Subject
 - e2 Object
 - r relation binding e1 and e2
- Syntactic normalization of the elements in triplets uses Position Encoding (PE)
- PE encodes position of each element within a triplet

Cross KG entailment

- jth element of ith triplet be t_{ij}
- Memory vector representation of each triplet is

$$m_i = \sum_j l_j \circ t_{i,j}$$

 $l_{k,j} = (1-j/3) - (k(1-2j/3)/d)$

k = number of hops

d = size of embeddings

3 = number of RDF elements

- Hence each memory slot is position-weighted summation of each triplet
- PE ensures the order of elements affects the encoding of each memory slot

Evaluation

Dataset

- Data collected from RDF datasets from <u>Linked Data cloud</u> and <u>Data</u>
 Hub
- Training dataset RDF KGs each of size 1000 triplets sampled from 20 Web Ontology Language(OWL)
- Test dataset Linked Data test set and custom created small dataset with long reasoning chains
- For each KG a finite set of inferred triplets were created with some positive and invalid class instances
- Invalid class method 1 random permutation and removing entailed triplets
- Invalid class method 2 called a one random element in each valid triplet is replaced with another random element based on position encoding

Training and Evaluation

- Training batch size of 100 triplets
- Final batch queries get zero-padded to reach maximum batch size of 100
- Dimensionality of embedding = 20
- Hence the matrices of A,B, and C are of size |V| x 20
- K = 10
- Evaluation metrics are average of precision, recall and f-measure over all the KGs
- Includes valid and invalid triplets with true negatives recall specifically counted

Evaluation

Non-normalized embedding version memory network is considered as baseline

Training Dataset	Test Dataset	Valid Triples Class			Invalid Triples Class			Accuracy
		Precision	Recall /Sensitivity	F-measure	Precision	Recall /Specificity	F-measure	Accuracy
OWL-Centric Dataset	Linked Data	93	98	96	98	93	95	96
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	88	91	89	90	88	89	90
OWL-Centric Dataset	OWL-Centric Test Set b	79	62	68	70	84	76	69
OWL-Centric Dataset	Synthetic Data	65	49	40	52	54	42	52
OWL-Centric Dataset	Linked Data ^a	54	98	70	91	16	27	86
OWL-Centric Dataset a	Linked Data ^a	62	72	67	67	56	61	91
OWL-Centric Dataset(90%) a	OWL-Centric Dataset(10%) a	79	72	75	74	81	77	80
OWL-Centric Dataset	OWL-Centric Test Set ab	58	68	62	62	50	54	58
OWL-Centric Dataset a	OWL-Centric Test Set ab	77	57	65	66	82	73	73
OWL-Centric Dataset	Synthetic Data ^a	70	51	40	47	52	38	51
OWL-Centric Dataset a	Synthetic Data ^a	67	23	25	52	80	62	50
Baseline								
OWL-Centric Dataset	Linked Data	73	98	83	94	46	61	43
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	84	83	84	84	84	84	82
OWL-Centric Dataset	OWL-Centric Test Set b	62	84	70	80	40	48	61
OWL-Centric Dataset	Synthetic Data	35	41	32	48	55	45	48

Results

- Big difference in training times for embedded matrices in the original and normalized cases
- Example Embedded matrices for normalized OWL-centric training dataset is 3033x20
- For non-normalized one is it 811,261x20
- Normalization reduces the space required for saving by 80 times(≈ 4GB)
- It is also 40 times faster to train than non-normalized ones
- Normalized model trained for a day and achieved better accuracy
- The non-normalized model took a week to train on a non-normalized dataset but still achieved less accuracy

Shortcoming and Future Work

- Poor performance when tested against a tricky version of Linked Data
- Tricky version has negative instances bear close resemblance with positive ones
- The model is not as good against a challenging synthetic data
- It is due to the difference in length distribution of original training data and the synthetic data reasoning hops
- It is concluded also from the previous studies that the reasoning chain length in real-world KGs is limited to 3 or 4
- For future work, the authors plan to investigate the model scalability and its adaptability to complex, synthetic datasets

References

- Ebrahimi M, Sarker MK, Bianchi F, Xie N, Eberhart A, Doran D, Kim H, Hitzler P. Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. InAAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering 2021 Mar 22.
- B. Makni, J. Hendler, Deep Learning for Noise-tolerant RDFS Reasoning, Ph.D. thesis, Rensselaer Polytechnic Institute, 2018.
- S. Sukhbaatar, J.Weston, R. Fergus, et al., End-to-end memory networks, in: Advances in neural information processing systems, 2015, pp. 2440–2448.
- W. Xiong, T. Hoang, W. Y. Wang, Deeppath: A reinforcement learning method for knowledge graph reasoning, arXiv preprint arXiv:1707.06690 (2017).