Numerieke Modellering en Benadering: Practicum 2

Ellen Anthonissen Marte Biesmans

donderdag 25 mei 2017

1 Bivariate kleinste-kwadraten veeltermbenadering

Opgave 1

Onderstaande funtie berekent de coëfficiëntenmatrix $C \in \mathbb{R}^{(n+1)} \times (m+1)$, gegeven de vectoren $x \in \mathbb{R}^M$ en $y \in \mathbb{R}^N$ als 2D meetpunten, de matrix $F \in \mathbb{R}^{N \times M}$ met functie- of meetwaarden en de parameters $m, n \in \mathbb{N}$ die respectievelijk de graad in x en y van de benaderende veeltermen.

```
function C = kkb(x,y,F,m,n)
   % Benader een oppervlak op basis van de functiewaarden F op een
        rechthoekig
   \% puntenrooster (x_i, y_i) met als benaderende functie een
        bivariate
   % veelterm van graad m in x en graad n in y.
   % x: vector met M waarden, interpolatiepunten op x—as
   % y: vector met N waarden
   % F: matrix met functiewaarden
   % m: graad in x van benaderende functie
   % n: graad in y van benaderende functie
11
   %construct A and B
   A = zeros(size(x,2),m+1);
13
   B = zeros(size(y,2),n+1);
14
   for k = 0:m
        A(:,k+1) = x'.^k;
16
17
   for l = 0:n
18
        B(:,l+1) = y'.^l;
19
   end
20
   %calculate C
   C = B \setminus F * pinv(A)';
21
   end
```

Er werd een kleine test op deze functie uitgevoerd. Hierbij is de input: $x=\begin{bmatrix}1&2&3\end{bmatrix}, y=\begin{bmatrix}1&2&3\end{bmatrix}, m=3, n=2$ en

$$F = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

De punten werden samen geplot met het benaderend oppervlak in figuur 1.

Figuur 1: test van het kkb algoritme

Opgave 2

 De

Figuur 2: veeltermbenadering van de functie $f(x,y)=sin((2x-1)^2+2y)$ (links) en F=membrane(1,15) (rechts)

O	pgave	3
---	-------	---

Opgave 4

Opgave 5

2 Interpolerente splinefuncties en -curven

Opgave 1

Opgave 2

Opgave 3

Opgave 4