Домашнее задание №3 **Исследование свойств матричных функций от** матриц

Для заданной матрицы выполнить следующие действия:

- 1. Вычислить A^{-1} с помощью теоремы Гамильтона-Кэли.
- 2. Вычислить матричную функцию от матрицы $f(A) = e^A$.
- 3. Вычислить матричную экспоненту методом диагонализации.
- 4. Вычислить матричную экспоненту с помощью преобразования Лапласа (для обращения матрицы использовать алгоритм Фадеева-Леверье).

Содержание отчета по домашнему заданию:

- 1. Результаты вычислений с комментариями;
- 2. В случае, если использовался MatLab, приложить программу с комментариями на русском языке.
- 3. Выводы по работе.

Примечание: в п.4 можно округлить собственные значения матрицы для упрощения вычислений.

Таблица «Варианты заданий»

Nº	Α	Nº	A	Nº	A
1	(11 -6 2)	10	(1 -16 3)	19	(11 -6 12)
	-6 10 -4		-6 1 -1		-6 10 -14
	$\begin{pmatrix} 2 & -4 & 6 \end{pmatrix}$		$\begin{bmatrix} -2 & -3 & 6 \end{bmatrix}$		$\begin{pmatrix} 2 & -4 & 6 \end{pmatrix}$
2	(7 -20 -3)	11	$\begin{pmatrix} -14 & 0 & -3 \end{pmatrix}$	20	(-8 2 5)
	-24 1 -9		_2 18 8		-3 -7 7
	$\begin{pmatrix} 6 & -3 & 8 \end{pmatrix}$		$\begin{bmatrix} 2 & -3 & 8 \end{bmatrix}$		$\begin{pmatrix} 0 & 8 & 4 \end{pmatrix}$
3	(7 –12 13)	12	(10 -2 3)	21	(11 -3 1)
	-6 2 -7		-12 6 -14		-3 11 -4
	$\begin{pmatrix} 8 & -3 & 7 \end{pmatrix}$		$\begin{bmatrix} 8 & -3 & 7 \end{bmatrix}$		$\begin{pmatrix} 2 & -4 & 6 \end{pmatrix}$
4	$\begin{pmatrix} -8 & 2 & 5 \end{pmatrix}$	13	(-6 1 1)	22	(7 2 3)
	-6 -16 6		-5 7 -5		-5 11 -4
	$\begin{pmatrix} 0 & -7 & 4 \end{pmatrix}$		3 -1 -4		2 -14 -8

5	$ \begin{pmatrix} 1 & -5 & 7 \\ -6 & 2 & -3 \\ 2 & -5 & 6 \end{pmatrix} $	$ \begin{vmatrix} 14 \\ -8 & -7 & -5 \\ 3 & -1 & -4 \end{vmatrix} = \begin{vmatrix} 23 \\ -1 & -4 & -5 \\ -1 & -1 & -4 \end{vmatrix} $
6	$ \begin{pmatrix} 8 & -8 & 3 \\ -6 & 2 & -7 \\ 2 & -3 & 7 \end{pmatrix} $	$ \begin{vmatrix} 15 \\ 2 \\ 3 \\ -3 \end{vmatrix} $
7	$ \begin{pmatrix} -4 & 2 & 12 \\ -2 & 7 & -5 \\ 3 & -1 & -4 \end{pmatrix} $	$ \begin{vmatrix} 16 \\ -5 & -8 & -5 \\ 2 & -1 & -4 \end{vmatrix} = \begin{vmatrix} 25 \\ -6 & -16 & 6 \\ 0 & -6 & 3 \end{vmatrix} $
8	$ \begin{pmatrix} 7 & 1 & 3 \\ -5 & 1 & -4 \\ 2 & -14 & -8 \end{pmatrix} $	$ \begin{array}{c cccc} 17 & 4 & 0 & 2 \\ -6 & 11 & -4 \\ 2 & -4 & -9 \end{array} $
9	$ \begin{pmatrix} -4 & -2 & -9 \\ -3 & -7 & 7 \\ 3 & 8 & 4 \end{pmatrix} $	$ \begin{array}{c cccc} 18 & 10 & -2 & 3 \\ -6 & 2 & -7 \\ 8 & -3 & 7 \end{array} $