Algorytmy genetyczne i sztuczne sieci neuronowe

Ćwiczenie 1

Zadanie 1. Wykonać wykres funkcji z wykładu $g(x) = (x^2 - 4x + 3)^2$ na przedziale [0,4] korzystając z **matplotlib** w notatniku **Jupyter**.

Zadanie 2. Napisać funkcję dekodującą ciąg wartości binarnych (podawanych w tablicy Numpy) na wartość dziesiętną w taki sposób, że:

- pierwsza wartość binarna koduje znak (1 oznacza "-", 0 oznacza "+"),
- kolejne wartości binarne opisują moduł liczby w naturalnym kodzie binarnym.

Przykład: ciąg wartości binarnych o długości 6: 101011. Pierwsza wartość "1" oznacza znak "-", natomiast kolejne wartości:

01011 (binarnie) = $0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$ (dziesiętnie) = 11 (dzisiętnie). Zatem ciąg bitów 101011 koduje liczbę -11 (w zapisie dziesiętnym).

Zadanie 3. Na podstawie powyższej funkcji utwórz zmodyfikowaną funkcję, w której:

- w podawanej tablicy Numpy nie ma kodowanego znaku cały ciąg binarny opisuje wartość (nieujemną) w kodzie binarnym,
- funkcja ma dwa dodatkowe parametry: *a* i *b*.

Liczba x zwracana przez funkcję ma być liczbą z przedziału ciągłego [a, b], proporcjonalną do wartości c reprezentowanej przez ciąg bitów, tj.:

$$x = a + \frac{c}{2^k - 1}(b - a)$$

gdzie *k* jest liczbą bitów w ciągu binarnym.

Przykład: Przedział [a, b] = [0,4]. Wylicz wartość x dla ciągów $c_1 = 000000$, $c_2 = 111111$ oraz $c_3 = 100000$.

$$x_1 = 0 + \frac{0}{2^6 - 1}(4 - 0) = 0 + \frac{0}{63}4 = 0,$$

$$x_2 = 0 + \frac{63}{2^6 - 1}(4 - 0) = \frac{63}{63}4 = 4,$$

$$x_3 = 0 + \frac{32}{2^6 - 1}(4 - 0) = \frac{32}{63}4 \approx 2,03.$$

Zadanie 4. Narysuj na wykresie funkcji z Zadania 1 kolorem czerwonym punkty dla współrzędnych *x* reprezentowanych ciągami binarnymi z przykładu w zadaniu 3. Narysuj kolorem zielonym 3 punkty dla wygenerowanych losowo ciągów binarnych (można skorzystać z **np.random.randint**).

Poniższe zadania dotyczą problemu **minimalizacji funkcji**

$$g(x) = \sin(x) + \sin\left(\frac{10}{3}x\right)$$

na przedziale [0, 10].

Zadanie 5. Utwórz funkcję, która dla zadanej liczby chromosomów oraz długości chromosomu tworzy losową populację początkową.

Zadanie 6. Utwórz funkcję, która wylicza dla zadanej populacji przystosowanie każdego chromosomu w populacji.

Zadanie 7. Utwórz funkcję, która dla zadanej populacji zwraca nową populację wybraną za pomocą mechanizmu ruletki.

Zadanie 8. Utwórz funkcję, która dla zadanej populacji oraz prawdopodobieństwa krzyżowania zwraca nową populację, dla której zastosowano krzyżowanie.

Zadanie 9. Utwórz funkcję, która dla zadanej populacji oraz prawdopodobieństwa mutacji zwraca nową populację, dla której zastosowano mutację.

Zadanie 10. Korzystając z funkcji z zadań 5-9, stwórz algorytm genetyczny rozwiązujący problem minimalizacji funkcji g(x) na przedziale [0,10]. Uruchom algorytm, a następnie narysuj na wykresie funkcji punkty odpowiadające wszystkim chromosomom z ostatniej populacji oraz (innym kolorem) najlepsze znalezione przez algorytm rozwiązanie.