Neural Networks

7. Self-Organizing Maps

Farkaš, Kuzma et al.

Center for Cognitive Science
Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics UKBA

March 27th, 2018

Self-Organizing Maps

Self-Organizing Map

■ inputs: *n* points in *k*-dimensional space:

$$\mathbf{x}_i \in \mathbb{R}^k$$
; $\forall 1 \leq i \leq n$

- **map**: $w \times h$ grid of neurons
 - other topologies possible, e.g. hex grid
- output: positions in this grid
- **parameters**: positions of neurons in the input space:

$$\mathbf{W} \in \mathbb{R}^{h \times w \times k}$$

Training: Parameter Schedule

- **•** fixed number of epochs: t_{max}
 - i.e. time is $t \in \{1, 2, ..., t_{max}\}$
- for first epoch, parameter value is $\alpha_1 = \alpha_s$ (start)
- for last epoch, parameter value is $\alpha_{t_{max}} = \alpha_f$ (finish)

Training: Parameter Schedule

- fixed number of epochs: t_{max}
 - i.e. time is $t \in \{1, 2, ..., t_{max}\}$
- for first epoch, parameter value is $\alpha_1 = \alpha_s$ (start)
- lacksquare for last epoch, parameter value is $lpha_{t_{max}}=lpha_f$ (finish)
- geometric schedule: parameter value for epoch *t* is:

$$\alpha_t = \alpha_s \cdot \left(\frac{\alpha_f}{\alpha_s}\right)^{\frac{t-1}{t_{max}-1}} \qquad \lambda_t = \lambda_s \cdot \left(\frac{\lambda_f}{\lambda_s}\right)^{\frac{t-1}{t_{max}-1}}$$

Training: Algorithm

- for each epoch t, for each input x:
 - find winner neuron i^* :

$$i^* = \arg\min_i \|\mathbf{w}_i - \mathbf{x}\|$$

■ k-means: adjust winner only:

$$\Delta \mathbf{w}_{i^*} = \alpha_t \cdot (\mathbf{x} - \mathbf{w}_{i^*})$$

- better E-M formulations of a k-means update exist (faster convergence, avoiding local minima)
- **SOM**: adjust a neighborhood:

$$\Delta \mathbf{w}_i = \alpha_t \cdot (\mathbf{x} - \mathbf{w}_i) \cdot q_t(i, i^*)$$

Training: Locality of Adjustments

- in grid distance between neurons:
 - $lack ext{current } i\mapsto (x_i,y_i) ext{ and winner } i^*\mapsto (x_{i^*},y_{i^*}) \ d=d(i,i^*)=dig((x_i,y_i),(x_{i^*},y_{i^*})ig)$
- limited neighbourhood (discrete):

$$q_t(i, i^*) = \begin{cases} 1 & \text{if } d(i, i^*) < \lambda_t \\ 0 & \text{otherwise} \end{cases}$$

- only adjust close-enough neurons
- gaussian neigbourhood (continuous):

$$q_t(i, i^*) = \exp\left(-\frac{d(i, i^*)^2}{\lambda_t^2}\right)$$

- adjust all neurons with a distance fall-off
- winner gets full adjustment:

$$d(i^*, i^*) = 0 \Rightarrow q_t(i^*, i^*) = 1$$

Training: Grid Distance Metrics

- L₂-norm Euclidean distance: $d = \left((x_i x_{win})^2 + (y_i y_{win})^2 \right)^{\frac{1}{2}}$
- L_1 -norm Manhattan distance:

$$d = |x_i - x_{win}| + |y_i - y_{win}|$$

■ L_{∞} -norm – axis-maximum distance:

$$d = \max(|x_i - x_{win}|, |y_i - y_{win}|)$$

- or in general, L_p -norm $d = \left(|x_i x_{win}|^p + |y_i y_{win}|^p\right)^{\frac{1}{p}}$
 - lacksquare only $1 \leq p$ is a norm, but $0 \leq p < 1$ gets used anyway