

Non-invertible reflections in quantum spin chains

Sal Pace, Gui Delfino, Ho Tat Lam, Ömer Aksoy arXiv:2406.12962

tl;dr

We gauge finite abelian modulated symmetries in \mathbb{Z}_N spin chains

$$G_{\text{total}} = A \rtimes_{\varphi} G_{\text{space}}$$

$$G_{\text{total}} = A \rtimes_{\varphi} G_{\text{space}}$$

$$G_{\text{total}} = A \rtimes_{\varphi^{\vee}} G_{\text{space}}$$

- ▶ Dual symmetry G_{total}^{\vee} can have different modulation (i.e., $\varphi^{\vee} \neq \varphi$)
- We establish sufficient conditions for the existence of an isomorphism between G_{total} and G_{total}^{\vee} , naturally implemented by lattice reflections.
 - Gives rise to non-invertible reflection symmetries, and for ordinaryreflection symmetric models, KW symmetries

Quantum lattice models of \mathbb{Z}_N qudits

We consider 1+1D Hamiltonian lattice models of \mathbb{Z}_N qudits

- ▶ Degrees of freedom labeled by $g \in \mathbb{Z}_N \ (N=2 \text{ is qubit})$: $\mathcal{H} = \bigotimes^{\mathbb{Z}} \mathbb{C}^N$
- ➤ Acted on by generalized Pauli operators

$$X|g\rangle = |g+1\rangle, \qquad Z|g\rangle = (e^{2\pi i/N})^g |g\rangle, \qquad X^N = Z^N = 1, \qquad ZX = e^{2\pi i/N} XZ$$

➤ Enforce periodic boundary conditions $X_j = X_{j+L}$, $Z_j = Z_{j+L}$.

Example: \mathbb{Z}_N clock model, $H_{\lambda} = -\sum_{j=1}^{N} (Z_j Z_{j+1}^{\dagger} + \lambda X_j) + \text{hc}$

- \blacktriangleright \mathbb{Z}_N symmetry $U = \prod^L X_j$, \mathbb{Z}_L translations, and \mathbb{Z}_2 reflections.
- \blacktriangleright At $\lambda = 1$, non-invertible symmetry (Kramers-Wannier symmetry)

$$\mathsf{D}_{\mathrm{KW}}\colon \ Z_{j}Z_{j+1}^{\dagger} \to X_{j}, \quad X_{j} \to Z_{j-1}Z_{j}^{\dagger}$$

A curious example with \mathbb{Z}_5 qudits

Consider \mathbb{Z}_5 qudits and $H_{\lambda} = -\sum_{i=1}^{\infty} (Z_i Z_{i+1}^{\dagger 2} + \lambda X_j) + \text{hc}$ * we assume $L \in 4\mathbb{Z}_{>0}$

- > \mathbb{Z}_5 symmetry* $U = \prod_{j=1}^{L} (X_j)^{3^j}$ $TUT^{-1} = U^3 \implies G_{\text{sym}} = \mathbb{Z}_5 \rtimes \mathbb{Z}_L$ > \mathbb{Z}_L translation symmetry T

Kramers-Wannier (KW) transformation $D_{KW}: Z_j Z_{j+1}^{\dagger 2} \to X_j, \quad X_j \to Z_{j-1}^2 Z_j^{\dagger}$

➤ Can find by gauging the \mathbb{Z}_5 symmetry using $G_j = X_j \, \mathcal{X}_{i-1,j}^{\dagger \, 2} \, \mathcal{X}_{j,j+1} = 1$

Under KW transformation $D_{KW}: H_{\lambda=1} \to MH_{\lambda=1}M$, with $M: j \to -j$

- \triangleright D_{KW} does not commute with $H_{\lambda=1}$ because $H_{\lambda} \neq MH_{\lambda}M$
- $ightharpoonup D_{\mathrm{M}} := M \, D_{\mathrm{KW}}$ does commute with $H_{\lambda=1} \Longrightarrow$ non-invertible reflection

$$D_{M}: Z_{j}Z_{i+1}^{\dagger 2} \to X_{-j}, \qquad X_{j} \to (Z_{-j}Z_{-i+1}^{\dagger 2})^{\dagger}$$

 D_{M} operator algebra (where $\mathsf{C}\colon X_j, Z_j \to X_i^\dagger, Z_i^\dagger$)

$$D_{M}D_{M} = C (1 + U + U^{2} + U^{3} + U^{4}),$$
 $D_{M}^{\dagger} = D_{M}^{\dagger}$

$$D_{M}U = UD_{M} = D_{M}$$

$$D_{M}T = T^{-1}D_{M}$$

Modulated symmetries

S is a modulated symmetry if its symmetry operators transform nontrivially under spatial symmetries.

$$\mathcal{S}_{\text{total}} = \mathcal{S} \times_{\varphi} \mathcal{S}_{\text{space}}, \quad \varphi \colon \mathcal{S}_{\text{space}} \to \text{Aut}(\mathcal{S})$$

- > S can be a generalized symmetry [Oh, SP, Han, You, Lee (2023)]
- > Symmetry defects are still topological defects

Gauging and Non-invertible reflections

How are finite abelian modulated symmetries gauged on the lattice?

- \triangleright Consider modulated symmetry operators $U_q = \prod_j (X_j)^{f_j^{(q)}}$ with nindependent lattice functions $f_i^{(q)} \in \mathbb{Z}_N$ closed under translations
- ➤ The bond algebra is an algebra of local symmetric operators

$$\mathscr{B} = \langle X_j, \prod_l Z_l^{\Delta_{j,l}^{(a)}} \rangle$$
 where $\sum_k \Delta_{j,k}^{(a)} f_k^{(q)} = 0 \mod N$

Despite the symmetry group being $\mathbb{Z}_{N_1} \times \cdots \times \mathbb{Z}_{N_n}$, when there is a single $\Delta_{i,l}$, it can sometimes be gauged using only \mathbb{Z}_N qudits and Gauss's law

$$G_j = X_j \prod_{l} \mathcal{X}_{l,l+1}^{\Delta_{j,l}^{\mathsf{T}}} = 1$$

- \triangleright We prove this is always true when N is a prime integer
- For general N, we prove a sufficient condition based on $\mathcal{F}_{ii}^{(r)} = f_i^{(i)}$, where $i = 1, \dots, n$ and $j = 1, \dots, r$, in terms of a generalized inverse $\mathcal{F}^{(r)} \cdot \mathcal{G}^{(r)} \cdot \mathcal{F}^{(r)} = \mathcal{F}^{(r)}$: determinantal rank $\rho(1 - \mathcal{G}^{(r)} \cdot \mathcal{F}^{(r)}) = r - n$

Gauging using G_i and then gauge fixing yields the dual bond algebra

$$\mathcal{B}^{\vee} = \langle \mathcal{Z}_{j,j+1}, \prod_{l} \mathcal{X}_{l,l+1}^{\Delta_{j,l}^{\mathsf{T}}} \rangle$$

▶ With lattice translation symmetry, $\Delta_{i,l} = \Delta_{0,l-i}$, and

$$\mathscr{B}^{\vee} = \langle \mathscr{Z}_{-j,-j+1}, \prod_{l} \mathscr{X}_{-l,-l+1}^{\Delta_{j,l}} \rangle \simeq M \mathscr{B} M$$

➤ Non-invertible reflections = Reflection × KW transformation

Non-invertible reflections in spin chains

Consider \mathbb{Z}_N qudits and $H_{\lambda} = -\sum \left(\prod Z_k^{\Delta_{j,k}} + \lambda X_j\right) + \text{hc with } \Delta_{j,k} \in \mathbb{Z}_N$

- 1. Translation invariance: $\Delta_{i,k} = \Delta_{0,k-i}$
- 2. Locality, finite range r: $\Delta_{0,k-j} = 0$ if k-j < 0 or k-j > r-1 $\Delta_{0,0}, \Delta_{0,r-1} \neq 0 \mod N$
- 3. Coprime condition: $gcd(\Delta_{0,0}, N) = gcd(\Delta_{0,r-1}, N) = 1$

Under these assumptions, we prove that:

 $\rightarrow H_{\lambda}$ has a modulated $\mathbb{Z}_{N}^{\times (r-1)}$ symmetry

$$U_f = \prod_i (X_j)^{f_j}$$
, where $f_j \in \mathbb{Z}_N$ and $\sum_k \Delta_{j,k} f_k = 0 \mod N$

 \blacktriangleright At $\lambda = 1$, H has the non-invertible reflection symmetry

$$D_{\mathrm{M}} \colon \prod_{j} Z_{k}^{\Delta_{j,k}} \to X_{-j} \qquad X_{j} \to \prod_{j} Z_{k}^{\dagger \Delta_{-j,k}}$$

➤ Satisfies operator algebra:

$$\mathsf{D}_{\mathsf{M}}\,\mathsf{D}_{\mathsf{M}} = \mathsf{C}\,\sum_{f}\,U_{\!f}, \quad \mathsf{D}_{\mathsf{M}}^{\dagger} = \mathsf{D}_{\mathsf{M}}\,\mathsf{C}, \quad \mathsf{D}_{\mathsf{M}}\,U_{\!f} = U_{\!f}\,\mathsf{D}_{\mathsf{M}} = \mathsf{D}_{\mathsf{M}}, \quad \mathsf{D}_{\mathsf{M}}\,T = T^{-1}\,\mathsf{D}_{\mathsf{M}}$$

If H_{λ} commutes with reflections M, then $\Delta_{j,-k} = \sigma \Delta_{-(j+r-1),k}$

 \blacktriangleright At $\lambda = 1$, H has the KW symmetry

$$\mathsf{D}_{\mathrm{KW}} := T^{-\lfloor r/2 \rfloor} M \, \mathsf{D}_{\mathrm{M}}$$

- \triangleright KW transformation related to gauging $\mathbb{Z}_N^{\times r-1}$
- ➤ Satisfies operator algebra

$$D_{KW} D_{KW} = C^{(1+\sigma)/2} T^{(r-1 \mod 2)} \sum_{f} U_f,$$