Comparison Networks

Wed 3/17 Michael Bender Lecturing

Notations.

Sorting Network [developed in 50s]

Sorted outputs

«Why does it sort?>>

Running time = depth = longest path of comparitors (=3)

Odd-Even Transposition Sort

Depth = N

Ky Low low can you go? >>

step3 - Sorting network = mergesort [Batcher]

Depth D(N) = D(N/2) + lg N= $\Theta(lg^2N)$

Size $S(N) = 2S(N/2) + \Theta(N/9N)$ = $\Theta(N/9^2N)$

Example:

Bitonic Sorting Network (Batcher) Step 1 Sort "bitonic" sequence det: A bitonic sequence: or cyclic rotation → 0-1 bitonic sequence: key subnetwork: half cleaner half output is clean (& bitonic) other half is bitorie top bottom Kother case &

Sort bitenic sequence

Depth:
$$D(N) = D(N/2) + 1$$

 $= \lg N$
 $Size$: $S(N) = ZS(N/2) + N/2$
 $= \Theta(N/2N)$.

Step 2: Construct merging network, one sorted up, other down.

Frequently drawn where I means I

Brew

Merging Circuit

le Hechively reversed Batchers arount.

ĺ

Batcher's Odd Even Merge sort

Step 1: build merger of A = ao...ang B= bo -. - bor

Proof: 0-1 Lemma.

$$\begin{array}{c|c}
\hline
 & O \\
\hline
 & D \\
 & D \\
\hline
 & D \\
 & D \\
\hline
 & D \\
 & D \\
\hline
 & D \\
\hline
 & D \\
\hline
 & D \\
 & D \\
\hline
 & D \\
 & D \\
 & D \\
 & D \\
\hline
 & D \\
 & D \\
 & D \\
 &$$

=> # 0's in each list differs by 1.

Merge
$$M(N) = M(N/2) + 1$$

 $= \Theta(N/2) + M(N)$
Sort= $S(N/2) + M(N)$
 $= \Theta(N \log^2 N)$.

Longstanding open question:

Does there exist sorting notwork with depth Ollgw?.
1983: Yea! AKS Sorting notwork (Ajtai, Komlos, Szemés

Dapth: N

comparitors = O(N/gN)

Unfortunately MERY large constants : Many Horizands L

Sorting on Mesh of Trees.

Defe Zdimensional meshaftres (MOT) Mz, N.

NXN Orid >. remove gridedges
- add tree above every row & column

Nodes: N (ZN-1) + N (N-1) = 3N2- ZN

diameter: 4/gN

bisechonwidth: N

recursive de composition: remove all roots => 4 separate Mz, N/2. Sort: N2 elists: 12(N) time (bisechia LB)

Sort N elints = D(lgn) time

- (1) pass Widlong its rows column
- (2) In hode pis (row i, columny) store (1, wiew;
- (3) Count # I's inj to the ⇒ rank of wij in sorkdorder
- (4) if rank(w)= is => Send wy to rts rowtice.

6) 1 8 2 D 3 5

2 War. Routing 1 >>

Note: O(k+1gN) bit steps for k bit #5.
Send MSB first.

Sort Nº elmts: D(N) time (bisection LB)
Sort N elmta: Wi, wz, ..., wn O(lgn) time

Idea: brûle face. Do all comparisons.

Given N k-bit #5, following but stepally sorts in 2k+ 5lgN ste

- (1) Hi, pars wi along ____ i its column & row (MSB frist) Store at root of each column tree.
- (2) For each leaf, biturie compare wiew;

 (Break ties with index i, j.)

 Leaf pij stones {1 if wiew;

 wizw;
- (3) His, count # 15 in leaves of jth column tree => rank of wy 16 sorted order.
- (4) If rank (wg) = r, send wy to root of its mother

Simulating Bipartite Graph/Ideal Computer on MOT

For large N, Knu not realistically implementable.

Simulate Knu by Mzn with 21gn delay

The catch: quadratic blance in space/hardware