

NASA CK 163, 122

KSC TR 51-2, Vol II of IV August 1980

NASA-CR-163122 19800019335

Nasa Contract Report 163122

A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation Systems at John F. Kennedy Space Center

Chemical Studies: Rainfall Soil Analysis

LIBRARY CODY

SEP 8 19F

The Continue of the

NF02068

National Aeronautics and Space Administration

John F. Kennedy Space Center

NASA

VOLUME II

OF THE

FINAL REPORT

TO THE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

JOHN F. KENNEDY SPACE CENTER

A CONTINUATION OF BASE-LINE STUDIES FOR ENVIRONMENTALLY

MONITORING SPACE TRANSPORTATION SYSTEMS (STS)

AT JOHN F. KENNEDY SPACE CENTER

CONTRACT NO. NAS 10-8986

VOLUME II OF IV: CHEMICAL STUDIES OF RAINFALL

AND SOIL ANALYSIS

PRINCIPAL INVESTIGATOR: B. C. MADSEN

AUGUST 21, 1979

UNIVERSITY OF CENTRAL FLORIDA P.O. BOX 25000 ORLANDO, FLORIDA 32816

> BIOMEDICAL OFFICE BIOSCIENCE OPERATIONS CODE MD-B JOHN F. KENNEDY SPACE CENTER NASA

> > N81-11627#

PREFACE

This document is part of a University of Central Florida contract report, "A Continuation of Base-Line Studies for Environmentally Monitoring Space Transportation Systems at John F. Kennedy Space Center."

The entire report consists of four volumes and an executive summary, all identified as KSC TR 51-2, NASA CR 163122:

Volume I: Terrestrial Community Analysis

Volume II: Chemical Studies of Rainfall and Soil Analysis

Volume III: Part I--Ichthyological Studies, Ichthylological Survey of Lagoonal Waters; Part II-Ichthyological Studies, Sailfin Molly Reproduction Study

Volume IV: Part 1--Threatened and Endangered Species of the Kennedy Space
Lenter: Marine Turtle Studies, Part II--Threatened and
Endangered Species of the Kennedy Space Center: Threatened and
Endangered birds and Other Threatened and Endangered Forms

Executive Summary

TABLE OF CONTENTS

	PAGE
Precipitation Chemistry	_
Introduction	. 2
Background	
Assessment of Precipitation Acidity	. 5
Studies in the Southeastern U. S	• 6
Studies in the Southeastern U. S	• 7
Existing KSC Air Quality	• 7
Typical Chemical Composition of Precipitation	• 7
Methods and Procedures	. 10
Precipitation Collectors	. 10
Precipitation Collection Sites	
Precipitation Collection	. 13
Sample Identification and Classification	. 13
Procedures for Handling and Chemical Analysis of	
Precipitation Samples	. 14
Evaluation of Sample Collection and Chemical	
Analysis Procedures	. 22
Data Management	. 24
Results	. 29
Precipitation Sample Collection	
Precipitation Collector Efficiency	
Evaluation of Factors Which Contribute to the	
Determined Composition of Samples	. 29
Contamination	29
Evaluation of the Reliability of Chemical	,
Analysis Procedures	30
Stability of Ionic Components Present	
in Precipitation	31
Analytical, Sampling, and Spatial Variability	
Chemical Composition of Precipitation Which Occurred	, 55
from July 1977 to March 1979	35
Characterization of Precipitation Composition	
Acidity	
Sea Salts	
Correlation Among Species	
Discussion	
Evaluation of Factors Which Contribute to the	
Composition of Precipitation	, 78
Sources of Variability	, /8
Sample Contamination	
Site Selection	
Presentation of Results	
Meteorology	
Chemical Composition of Precipitation	. 83
General Composition	83
Acidity	83
Characterization of Acidity	85
Deposition of Acid	. 88
Chloride, Sea Salt, and Assessment of Acid Rain	89

TABLE OF CONTENTS (Continued)

P.F.	AGE
Introduction	93 93 95 95
Soil pH, Chloride, Nitrate, Sulfate, and Ammonia Determination	97 98 98 98 100 100 120 125
Year of Quarterly Soil Sampling	.38 .38
	.42 .43
Appendix Tables	\-1

LIST OF TABLES

TABLE	Р	AGE
1	Ion chromatograph operational parameters	20
2	Typical spike recovery study on precipitation sample	30
3	The magnitude of sources of variability in Kennedy Space Center precipitation composition	32
4	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at all KSC sites during 1977-79	37
5	Volume weighted average chemical composition by month for clean precipitation samples collected at all KSC sites during 1977-79	38
6	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 01 during 1977-79	39
7	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 11 during 1977-79	40
8	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 12 during 1977-79	41
9	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 13 during 1977-79	42
10	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 14 during 1977-79	43
11	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 19 during 1977-79	44
12	Volume weighted average chemical composition by month for clean and slightly dirty precipitation samples collected at KSC Site 18 during 1977-79	45
13	Coefficients of linear correlation between selected components present in precipitation collected at the Kennedy Space Center	62
14	Soil sampling numbers and name designation, soil type, and plant community description for sites selected for use in the soil analysis program and plant community analysis program	102

LIST OF TABLES (Continued)

TABLE		PAGE
15	Summary results for selected nutrients based on general soil type.	121
16	Practical limits of detection imposed by sample treatment and analytical methods in nutrient monitoring studies	. 123
17	Precision of analytical methods utilized in nutrient monitoring expressed as relative standard deviation	. 124
18	Total metal concentrations in Merritt Island soils	126
19	Detection limits by plasma spectroscopy and atomic absorption spectroscopy for soil total cation determinations and hydrochloric acid leaching experiments. Concentrations are reported as parts per million and reflect the limits for the various techniques and soil dilution	

LIST OF FIGURES

FIGURE		PAGE
1	Location of precipitation collection sites	11
2	Precipitation chemistry data sheet	15
3	Flow diagram showing the chemical analysis sequence for precipitation samples	16
4	Potentiometric titration curve and gran plot functions for a precipitation sample	18
5	Data management options	25
6	"Raın" program print-out	26
7	Changes in the chemical composition of precipitation samples with time when stored at room temperature	34
8	Comparison of monthly volume weighted average pH for all clean plus slightly dirty and clean only precipitation samples collected at KSC	46
9	Comparison of monthly volume weighted average pH based on all samples collected at KSC with samples collected at UCF Site $18 \cdot$.	47
10	Comparison of monthly volume weighted average pH for precipitation samples collected at three neighboring KSC sites	48
11	Comparison of monthly volume weighted average and quarterly volume weighted average pH based on all samples collected at KSC. The insert shows pH for individual samples collected at KSC Site 01 during September 1978	49
12	Distribution of individual sample pH values for precipitation collected at KSC sites 01, 12, 13, 14, and 19	50
13	Comparison of nonvolatile free acid and strong acid concentra- tions in rainfall samples collected during July to September 1978 at KSC Site 01	52
14	Comparison of nonvolatile free acid and strong acid concentra- tions in rainfall samples collected during July to September 1978 at all KSC sites	53

FIGURE			PAGE
15	Comparison of free acid and titratable acidity concentrations in rainfall samples collected during July to September, 1978 at all KSC site		54
16	Comparison of free acidity with excess sulfate and nitrate concentrations for precipitation samples collected during July, 1978 at KSC site 01		55
17	Comparison of free acidity with excess sulfate and nitrate concentrations for precipitation samples collected during July, 1978 at UCF site 18		56
18	Comparison of monthly volume weighted average free acidity, nitrate concentrations, and excess sulfate concentration for precipitation collected at KSC site 01		57
19	Comparison of monthly volume weighted average free acidity, nitrate concentration, and excess sulfate concentration for precipitation samples collected at all KSC sites		58
20	Comparison of free acid and nitrate concentrations in rainfall samples collected during July to September, 1978 at all KSC sites		60
21	Comparison of free acid and excess sulfate concentrations in rainfall samples collected during July to September, 1978 at all KSC sites		61
22	Dependence of volume weighted average free acidity on volume weighted average nitrate concentrations by month for precipitation samples collected at KSC site 01		63
23	Dependence of volume weighted average free acidity on volume weighted average excess sulfate concentration by month precipitation samples collected at KSC site 01		64
24	Dependence of volume weighted average free acidity on volume weighted average nitrate, excess sulfate, and ammonium concentrations by month for precipitation samples collected at KSC site 01		65
25	Dependence of volume weighted average free acidity on volume weighted average nitrate, excess sulfate, and ammonium concentrations by month for precipitation samples collected at all KSC sites		66
		• •	00

FIGURE		PAGE
26	Comparison of monthly volume weighted average free acidity and amount of precipitation for samples collected at KSC site 01	67
27	Comparison of the amounts of free acid and rainfall received at KSC site 01	68
28	Comparison of the amounts of free acid and amounts of rainfall received during July to September, 1978 at all KSC sites	69
29	Comparison of monthly amounts of free acid deposited by precipitation at KSC site 01 and UCF site 18	70
30	Comparison of monthly volume weighted average sea salt concentrations in precipitation samples collected at sites in close proximity to the ocean. The distance of each site from the ocean is indicated in parentheses	73
31	Comparison of chloride concentrations and sodium concentrations in rainfall samples collected during July to September, 1978 at KSC site 01	74
32	Comparison of chloride concentrations and sodium concentrations in rainfall samples collected during July to September, 1978 at all KSC sites	75
33	Comparison of chloride concentrations and magnesium concentrations in rainfall samples collected during July to September, 1978 at all KSC sites	76
34	Flow diagram showing the sampling and analysis sequence utilized in the soil studies	96
35	Locations of soil sampling sites. Site descriptions are included in Table 14	101
3 6	Comparison of measured pH values for Merritt Island soils	106
37	Comparison of sodium concentrations in Merritt Island soils	107
38	Comparison of potassium concentrations in Merritt Island soils	108

FIGURE		PAGE
39	Comparison of calcium concentrations in Merritt Island soils	109
40	Comparison of magnesium concentrations in Merritt Island soils	110
41	Comparison of aluminum concentrations in Merritt Island soils	111
42	Comparison of ammonia concentrations in Merritt Island soils	112
43	Comparison of phosphorus concentrations in Merritt Island soils	113
44	Comparison of chloride concentrations in Merritt Island soils	114
45	Comparison of nitrate concentrations in Merritt Island soils	115
46	Comparison of sulfate concentrations in Merritt Island soils	116
47	Comparison of organic matter concentrations in Merritt Island soils	117
48	Comparison of ion exchange capacity in Merritt Island soils	118
49	Comparison of nitrogen concentrations in Merritt Island soils	119
50	Comparison of selected Merritt Island soil sample pH with ion exchange capacity and percent organic matter	122
51	Leaching characteristics of sodium from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	129
52	Leaching characteristics of calcium from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	130

FIGURE		PAGE
53	Leaching characteristics of magnesium from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	131
54	Leaching characteristics of aluminum from Merritt Island soil due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	132
55	Leaching characteristics of iron from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	133
56	Leaching characteristics of managanese from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit of the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	134
57	Leaching characteristics of nickel from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	135
58	Leaching characteristics of zinc from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	136
59	Leaching characteristics of cobalt from Merritt Island soils due to percolation of dilute HCl solutions through the soil. Curves represent a visual fit to the data. Variability for each data point based on triplicate determinations is presented in Appendix Tables 383-474	137
	Properties in appendix rubics operate	107

THE CHEMISTRY OF RAINFALL AND SOILS AT JOHN F. KENNEDY SPACE CENTER

The general objectives of this contract were as follows:

- (1) to characterize and quantify selected components of the environment,
- (2) to select from among the components studied those which would be appropriate for the detection and assessment of possible perturbations induced by future NASA operations;
- (3) to develop baseline data sufficient to define normal variation (i.e., changes not associated with NASA activities) in those selected environmental components; and
- (4) to determine the kinds and amounts of measurements required to detect and document environmental perturbations that might be caused by future NASA activities.

The results of a study which was designed to monitor, characterize, and evaluate the chemical composition of precipitation (rain) which fell at the Kennedy Space Center, Florida (KSC) during the period July, 1977, to March, 1979, are the subject of the first section of this report. In the second section results obtained from a soil sampling and associated chemical analysis program will be described.

PRECIPITATION CHEMISTRY

Introduction

Sampling and chemical analysis of precipitation were used to determine acidity, conductivity, and individual ionic species concentrations. Sample acidity was determined based on dissociated acid concentration (free acidity), strong acid concentration, and titratable acidity. Concentrations of sodium, potassium, calcium, magnesium, ammonium ion, chloride, fluoride, nitrate, orthophosphate, and sulfate were also determined regularly. No attempt was made to evaluate the composition of atmospheric deposition which occurred by means other than rainfall. Throughout this text, the term precipitation means only wet deposition in the form of rainfall, collected by a procedure which excludes dry deposition.

Objectives of this study were:

- 1. Determine and characterize the acidity of rain which fell on Merritt Island and KSC in a time period prior to the first Space Shuttle launch.
- 2. Determine concentrations of major contributors to the overall rainfall, including sodium, potassium, calcium, magnesium, ammonium, chloride, fluoride, nitrate, orthophosphate, sulfate, aluminum, and vanadium.

Once established, these prelaunch ambient data can be utilized in assessing long-term and short-term effects of Space Shuttle launches on the composition of precipitation. Such post-launch assessment of long-term effects can be attempted only if a post-launch precipitation monitoring program is operational. Post-launch assessment of significant episodic changes in precipitation composition depends on the ability to sample and chemically analyze a portion of the specific precipitation when it occurs.

No attempt was made to identify specific sources which contribute to the measured composition of rain at KSC. Experimental design emphasized determining existing composition and allowed only restricted conclusions which pertain to relationships among components in the rain to be drawn.

For several years, NASA has been evaluating potential environmental effects associated with launch of the Space Shuttle. One potential problem comes from solid rocket boosters (SRB) on the launch vehicle. The SRB propellant is approximately 70% ammonium perchlorate as oxidant, 16% powdered aluminum as fuel and stabilizer to control burning rate, 14% polybutadiene acrylic nitrile as binder, and minor constituents (NASA, 1978). The SRB exhaust products, by weight percent composition are HCl (21.2%), Al $_203$ (30.1%), CO (24.1%), CO2 (3.4%), H2 (2.1%), N2 (8.5%), H2O (9.3%), and FeCl2 (0.6%) (NASA, 1978). A diffusion model has been developed and is briefly summarized by Susko (1979). This model makes it possible to calculate downwind concentrations of exhaust products in the ground cloud. Each launch will generate and release approximately 10^5 ky HCl below 4 km altitude. Precipitation during or immediately after launch may lead to scavenging HCl and result in acid rain.

Predictions (Pellett, 1977) indicate that acid rain of pH less than 1.0 could occur in proximity to the launch site. Acid rain of pH less than 3.0 could occur at extended distances, depending on meteorology and exhaust cloud dynamics which occur during and after launch.

Precipitation collection at sites on or near KSC, latitude 80° 44' W, longitude 28° 38' N, began in July 1977. One site on the campus of UCF (University of Central Florida, latitude 81° 20' W, longitude 28° 33' N), was also utilized. One aspect of site selection was dictated by requirements to provide data from samples collected in proximity to a NASA ambient air quality monitoring network operated by the Booster Exhaust Study Test (BEST). In addition, several sites were selected in proximity to several locations used both as part of a soil chemistry program described in the second part of this volume, and as part of a terrestrial community analysis program (Stout, 1979).

Samples were obtained using collectors open to the atmosphere only during periods of precipitation. Rainfall was collected at 24-hour intervals Monday through Friday; exceptions which increased the intervals did sometimes occur. Samples were generally representative of precipitation which occurred during 24-hour periods ending on Tuesday though Friday, and 72-hour periods ending on Monday.

Several experiments were carried out to evaluate and account for the variability observed in precipitation data. Analytical, sampling, and spatial variability in precipitation data were measured. The quality of chemical analysis data was monitored routinely using the compositional anion/cation ratio, measured conductivity/predictive conductivity ratio, and predictive pH. Predictive conductivity was calculated by summing the ionic concentration and equivalent conductance product for each measured chemical species on a sample by sample basis. Predictive pH can be calculated from the sum of the anion, sum of the cation difference when contribution to the cation sum excludes hydrogen ion. Sample stability, storage conditions, and contamination problems were also studied.

Background

Acidity of precipitation has increased dramatically in some areas in the past 30 years. Precipitation with a pH less than 5.65 is considered to be acidic. The CO_2 - HCO_3 equilibrium in precipitation is such that rainwater in equilibrium with the accepted standard atmospheric CO_2 concentration of 316 ppm will contain concentrations of H_2CO_3 and HCO_3 which render it slightly acidic (Reuss, 1975). Precipitation, therefore, is not expected to have a neutral pH of 7.0 but is naturally somewhat acidic. The presence of HCO_3 in precipitation can be extremely important because it acts as a buffer to prevent significant increases in pH (Reuss, 1975) to the extent that basic or alkaline precipitation is rare. The introduction of acidic materials or acid precursors into the atmosphere and the ultimate incorporation into precipitation must occur to an extent which will significantly decrease HCO_3 concentrations (Reuss, 1975) before acid precipitation will occur.

Until the latter 1960's occurrences of acid precipitation in the U.S. were not documented extensively. During the past 10 years, several reports on the collection and chemical analysis of acid precipitation in the northeastern U.S. have appeared (Likens, 1976, Coubill and Likens, 1974; Likens and Bormann, 1974; Likens, Bormann, and Johnson, 1972). Only two nationwide sampling and precipitation chemistry programs have been performed. Each covered relatively short time periods (Junge and Werby, 1958, Junge, 1963, and Lodge, 1968) during the late 1950's and late 1960's. During the past year, the National Atmospheric Deposition Program became operational (Gallaway and Cowling, 1978) with sites located mostly in the eastern U.S. and a few scattered sites in the middle and western U.S. Many of the original U.S. studies emphasized determining major chemical species present in the precipitation and assessing the influence that precipitation would have on nutrient cycling in ecosystem studies. As the acidity of precipitation has increased, greater attention has been given to evaluating regional, national, and global sources of pollution which may contribute to creating acid precipitation. More recently, expanded interest and effort has been utilized to study the problem. In the U.S., Federal and state government agencies, private industry, and universities have participated in studies to monitor the composition of precipitation in the U.S. (Galloway and Cowling, 1978; Liljestrand and Morgan, 1978; McColl and Bush, 1978; Valiela, et. al., 1978, Jacobson, et al., 1976; Richardson, 1976, Cooper and Lopez, 1976. Miller, 1975).

Several detailed studies have been performed to evaluate methods of analysis, sample collector design, and sample handling (Galloway and Likens, 1978, 1976; Lewis and Grant, 1978; Slanina, et al., 1978, Volchok and Graveson, 1976). Because precipitation samples typically contain chemical species at parts per million and lower concentrations, extreme care must be exercised in collection, sample storage, and analysis. Sample storage options have recently been evaluated (Galloway and Likens, 1978, Peden and Skowron, 1978; Galloway and Likens, 1976). Chemical analysis methods involve a variety of techniques. Choice of the appropriate techniques has varied for individual programs. Several studies to evaluate individual techniques have been performed (Mulik, 1978). Recent developments in analytical instrumentation now make possible the

relatively rapid and routine analysis of precipitation samples for major chemical species and for many species present at trace concentrations.

A recent report (Likens, 1976) presents views and summarizes results of acid precipitation studies in the U.S. and Scandinavia during the past 25 years. As consumption of fossil fuels has increased on a global scale, the acidity of precipitation has been observed to increase. The consequences of this increase have far-reaching implications. The gradual erosion of manmade objects constructed from cement and marble has been occurring at accelerated rates and may be due to increases in concentrations of acidic compounds in the atmosphere and in precipitation. Systematic and detailed studies to evaluate the interactions and influences that acid precipitation may have on soils, rivers, and lakes, and plant and animal life are in their infancy. It is believed that some of these natural systems already are undergoing stress and gradual change due to acid precipitation (Likens, 1976). Several years or decades of study may be required to even partially assess the impact of acid precipitation on the environment.

The effects of acid precipitation on aquatic and terrestrial ecosystems was the subject of a recent literature review (Cornell University, 1976) and an international symposium (Dochinger and Seliga, 1976). Hornbeck, et al. (1977) analyzed the longest continuous set of precipitation data obtained in the U.S. and evaluated seasonal patterns in acidity of precipitation and their implications for forest stream ecosystems. Data for the northeastern U.S. from 1965 to 1973 were utilized. Gorham (1976) presented an overview of acid precipitation and its influence on aquatic ecosystems. The papers include extensive bibliographical information.

Although acid precipitation is increasing in the U.S., several European countries have experienced even greater acid precipitation. Recent reports summarize results and describe the magnitude of efforts which are occurring in Scandinavia, the Netherlands, and England to study this rapidly growing global problem (Granat, 1978; Vermeulen, 1978; Martin and Barker, 1978). Acid rain has been studied in Canada (Summers and Whelpdale, 1976). The southern Ontario region is particularly susceptible to these occurrences (Dillon, et al., 1978). Many of these programs are designed to assess sources for pollutants and transport of pollutants across national boundaries which cause the problem while others continue the attempt to assess the impact of increased pollution on the environment.

Assessment of Precipitation Acidity

Recent studies which have emphasized assessing acidity of precipitation samples or acidic components in atmospheric aerosols and particles have varied. Data are typically generated by titration of the sample while monitoring titration progress through measurement of pH when adding hydroxide ions. The hydroxide ion either is generated coulometrically within the sample or added as a dilute standard solution of sodium hydroxide. In most cases, evaluation of the potentiometric titration data is accomplished by linearization of selected portions of the titration curves. The original theory which is used as the basis for this

approach was introduced by Gran (1952). Liberti, et al. (1972) determined the nonvolatile acidity of rain water by a coulometric procedure where the data were treated by the Gran theory. Both strong acidity and nonvolatile weak acidity were determined. Strong acidity is a measure of the total concentration of the free hydrogen ion, present due to totally dissociated acids such as HCl, HNO3, and H2SO4. Weak acidity is a measure of the total concentration of undissociated acids which are present. Weak organic acids such as formic acid and acetic acid may be responsible. Galloway, Likens, and Edgerton (1976) identified several weak acids in precipitation which occurred at Ithaca, N.Y., and Hubbard Brook, N.H.

Askne and Brosset (1972) determined the strong acid component in precipitation by titrating samples with 0.001M NaOH and using the Gran plot treatment of data. Krupa, Coscio, and Wood (1976, 1976a) evaluated a coulometric titration procedure for detecting strong and weak acid components in rainwater and presented evidence for multiple hydrogen-ion donor systems in rain. Galloway and Likens (1979) considered the magnitude of error associated with measuring acidity and suggested a generalized procedure for analyzing pH and acidity in acid precipitation samples. Brosset (1978) evaluated water-soluble sulfur compounds in aerosols using a modified Gran plot technique. (NH4)2SO4, (NH4)3H(SO4)2, and NH4HSO4 were identified in the five particle sulfate phases. Jacobson, et al. (1976), concluded that samples collected in Yonkers, New York, in 1974, titrated as though they contained a monoprotic acid with an equivalence point pH near 7.

Seymour, Clayton, and Fernando (1977) used an iterative calculation to segment and linearize potentiometric titration curves. Modified Gran plots were obtained which allow both acid dissociation constants and concentrations to be determined for acidic components in the sample. Applications for the determination of acidic components in atmospheric condensates and rainwater were shown. Seymour, et al. (1978) then used the modified Gran plot technique to evaluate variations in the acid content of rainwater in the course of a single precipitation and concluded that strong acids, NH4 and dissolved CO2 represented the major acid components. These latter developments and refinements of techniques allow a clearer elucidation of specific acidic species in precipitation although their utilization would seen to be limited to research projects rather than routine analysis.

Studies in the Southeastern U.S.

Studies to evaluate the composition of precipitation in the south-eastern U.S. and Florida have been quite limited. The data of Junge (1963) and Junge and Werby (1958) include results obtained from samples collected near Palm Beach and Tampa, Florida. During the summer of 1973, the Florida Area Cumulus Experiment (FACE) was conducted in south Florida. The program measured the effects of cloud seeding on aerial rainfall. From this program emerged a two-year study (1974 to 1976) of precipitation composition (Wisniewski and Cotton, 1977). Haines (1976) reported acidity measurements from rain collected on the Georgia coast in 1975. More recently, a precipitation collection network of 26 sites

which extends from the Florida panhandle to the Keys has become operational (Brezonik and Edgerton, 1979). Most sites are sampled biweekly by collecting bulk precipitation.

Meteorology

Two recent publications have appeared which attempt to relate meteorological factors and acid precipitation. Both utilize interpretation of air-mass trajectories (NOAA, 1978) which are associated with precipitation which occurred in Ithaca, N.Y. (Miller, Galloway, and Likens, 1978) and metropolitan New York (Wolff, et al., 1978). Precipitation composition was related to air mass movement and location for several days prior to arrival at the sampling location. Seasonal differences were also noted.

Seasonal variations in precipitation composition have been observed in most studies which continued uninterruptedly for at least one complete year. Acidity is at a maximum during the summer. These maxima also correspond to increased levels for sulfate and nitrate in precipitation. The higher temperatures of summer can increase the rate of oxidation of SO₂ and nitroyen oxide to sulfuric acid and nitric acid respectively. The more stable summertime air mass results in increased residence time over the continental U.S. for potential acid precursors. These combined effects may account for the elevated acidity, sulfate, and nitrate levels present in precipitation during the summer months.

Existing KSC Air Quality
In a recent report, Thorpe (1978) summarized composition of the SRB ground cloud, ambient air quality, and monitoring programs in east central Florida and pollutant sources near KSC. Several sources may contribute to the composition of rainfall as measured in this study. Thorpe concludes that there are relatively few significant pollutant sources near KSC and ambient air quality is good. The major local sources of pollutants include two power plants operated by Florida Power and Light (FPL) and Orlando Utilities (OU). These plants are located approximately 22 km southwest of the Shuttle launch pad. Both plants burn natural gas and field oil. The FPL plant burns low sulfur fuel (1%) while th OU plant burns number 6 fuel oil with sulfur contents between 1% and 3%. The 1976 emission estimates for the FPL and OU plants were 12,000 tons SO2 for each and 13,000 and 36,000 tons NO2 respectively (Thorpe, 1978). Other sources of pollution which may be significant include asphalt and cement plants, some agricultural burning, and local automobile traffic. Combustion of fossil fuels in automobile engines can generate NO and NO₂ which can be oxidized to HNO3. Using catalytic converters to reduce auto emissions may be increasing H₂SO₄ concentrations near ground level (holden, 1975).

Typical Chemical Composition of Precipitation

The major chemical species observed to occur in precipitation are discussed below. Emphasis is placed on general sources of origin (Granat, 1972, Butcher, 1972) and the contribution that each has to the composition of precipitation in Florida.

Free Acidity. The measured acidity of precipitation based on pH is due primarily to the presence of strong acids such as HCl, HNO_3 , and H_2SO_4 . Sources of these strong acids are described in the following paragraphs when individual anions are considered.

Sodium. The predominant source is seawater. Sodium enters the atmosphere as sea spray. Anthropogenic source emissions may also introduce small amounts. In marine environments, incorporation of sea salt may have a slight neutralizing effect on precipitation. Sea water has a pH of about 8.5. Considerable sea salt exists in precipitation at KSC and at all coastal locations in Florida. Precipitation for all of inland peninsula Florida should be subjected to moderated levels of sea salt.

Potassium, Calcium, Magnesium. For coastal locations in Florida, sea spray provides a significant source for these species. Alternate sources include dust in the atmosphere resulting from soil erosion and anthropogenic emissions. The latter will contribute little compared to the other sources at KSC.

Ammonium. Ammonium ions in precipitation are produced by the reaction of NH3 with hydrogen ion present in precipitation. The NH3 can be generated by bacterial action on nitrogen compounds in the soil (Junge, 1963). The NH4 functions as a weak acid pka = 9.2 in precipitation (Seymour, Clayton, and Fernando, 1977). Several ammonium compounds in the atmosphere have been identified as (NH4) $_2$ SO4, (NH4) $_3$ H(SO4) $_2$ (Brosset, 1978).

Chloride. The predominant source of chloride is seawater. Chloride enters the atmosphere as sea spray. Anthropogenic sources introduce small quantities mainly as HCl. This is not, however, a significant source of chloride at coastal locations in Florida. It has been proposed (Mohnen and Yue, 1977) that HCl in the atmosphere is produced by the reaction of H2SO4 and NaCl. The latter originates in the ocean. This process simply generates HCl in place of H2SO4 and does not change the total amount of strong acid present. Similarly, the amount of Cl- is not affected by this process.

Sulfate. There are several potential sources of sulfur-containing compounds in the atmosphere. Anthropogenic emissions (predominantly sulfur dioxide), microbial processes in soils which produce sulfate hydrogen sulfide, and sea spray are all likely to contribute in the KSC area. Sulfur dioxide and hydrogen sulfide are oxidized to sulfate through a variety of postulated mechanisms. Sea spray is the predominant amount of "neutral" sulfate in coastal regions and is a significant source at KSC. The presence of SO4 in precipitation at concentration levels in excess of those predicted to be present due to sea spray (Granat, 1972) are often associated with the acid rain phenomenon. Significant excess SO_4^2 is present in certain precipitation events at KSC.

Nitrate. Nitrogen oxides enter the atmosphere from a variety of sources. These include bacterial action and combustion. The internal combustion engine produces nitrogen oxides by oxidizing nitrogen in the

atmosphere. Both NO and NO_2 are oxidized and can result in increased concentrations of nitrate and nitric acid in precipitation.

Fluoride. Fluoride as HF can be present in the atmosphere. Combustion of fluorine-containing fuels and certain industrial waste gases are sources (Israel, 1974). Producing phosphate fertilizers by the reaction of H_2SO_4 with phosphate rock containing considerable amounts of $Ca_5(PO_4)_3(F^-, Cl^-, or OH^-)$ generates HF. The phosphate industry in west central Florida is a potential regional source for HF in the atmosphere and, therefore, in precipitation.

Methods and Procedures

Precipitation Collectors

Samples were collected with Aerochem Model 201 automatic wet/dry precipitation collectors purchased by NASA. The collectors are an improved version of the A.E.C. collector designed by the Health and Safety Laboratory of the Atomic Energy Commission (Volchok and Graveson, 1976; Galloway and Likens, 1976). The collectors were manufactured by Webco Miami, Inc. The collectors were operated using 12V 7 ampere-hr. batteries from June 1977 to November 1977. Higher capacity 12V 30 ampere-hr. batteries were utilized for subsequent collections. The latter batteries gave reliable performance when replaced at two to fourweek intervals with recharged batteries. Precipitation samples were collected in polyethylene buckets which have (approximately) a 15-liter capacity. Dimensions are 28.6 cm diameter and 23.4 cm depth; this yields a collection surface of 640 cm².

Precipitation Collection Sites

Fifteen locations at or near KSC were utilized. One additional collector was located on the UCF campus. The specific location for each collector was established using a variety of criteria. Operational sites were located near some of the reference stands identified for study in the terrestrial community analysis program and some were at sites designated in the NASA/BEST program. In most cases, collectors were located in remote areas so the potential influence of heavy highway traffic could be minimized. Collectors were positioned so that no objects projected above the collector unless they fell below an imaginary 45-degree angle measured above the horizon in all directions. A map showing the location of sites and indicating when collector operation was initiated at each site is shown in Figure 1. A general description of each site follows.

- Site 01. The collector was 25 meters west of a large brackish lagoon and was located in a grass covered opening which was mowed periodically. The collector was circled by 15-meter high trees which were typically 20-30 meters removed from the collector. A moderately traveled dirt road is located within 25 meters of the site. The ocean is approximately 0.5 km to the east.
- Site 02. The collector was located on the grassy roadside of a moderately traveled paved road. There are trees approximately 20 meters west of the site.
- Site 03. The collector was located in a sandy field which had a sparse grass cover 20 meters from the taxiway at the Ti-Co Airport. The site is about four km north northwest of the Florida Power and Light and Orlando Utilities power plants.
- Site 05. The collector was in a grassy, cleared area encircled by trees at distances of from 50 to 200 meters. The grass which extends outward as far as 50 yards is mowed periodically. Mosquito Lagoon, a large body of brackish water, is 500 meters east of the site. State Road 3 travels north-south past the site at a distance of 50 meters.

Figure 1. Location of Precipitation Collection Sites

- Site 06. The site is near a paved, well-traveled road which provides a major entrance to the center. The collector sat in a grass-covered field that was mowed periodically. Bodies of water approach the site from east and west. Considerable industrial activity is present to the south and east of the site.
- Site 07. The collector was located at Dunn Airport, Titusville, in a grassy area that was mowed regularly and was approximately 750 meters from the airstrip. There are a few trees approximately 30-100 meters away. The site is adjacent to the Titusville recreational facility (Tennis/Handball Courts). The collector was located approximately 20 meters from a parachute club drop zone.
- Site 08. There is sparse vegetation and some grass that was mowed periodically. Trees partially shield the site from the Banana River, 300 meters east. There is some vehicular traffic on a paved access road to and from a nearby radar installation.
- Site 10. The site is encircled by 10-meter trees at a distance from 10 to 30 meters away. The distance to the ocean is approximately one km. The Banana River is about 500 meters west. There is abundant vegetation; the surrounding grass was moved periodically.
- Site 11. The collector sat on a beach dune about 50 meters from the ocean. The dune contours are irregular and extend above the collector to the west. Scattered scrub vegetation is present on the dunes. Access to the site is by a lightly traveled paved road.
- Site 12. The site is on a fire break with palmetto plants extending outward on all sides for a distance of 100 meters. The plants were below the horizontal plane of the collector top. Access is by a sparsely traveled dirt road.
- Site 13. There is scrub vegetation and uncovered soil but no grass in the cleared area where the collector was located. Tree setback is 25 meters on the east side which partially shelters the site from ocean effects. State Road 3 is 100 meters west and the NASA Causeway is 500 meters south of the site. These paved roads are the major access to the KSC industrial area from the south, west, and north.
- Site 14. This site is located in a sandy cleared area at the north end of the Shuttle runway. The average distance between the two-meter high bushes and the collector was three to five meters. The sparse grass near the collector was mowed periodically. Access is by a lightly traveled dirt road.
- Site 16. The collector was located in a cleared grass covered area which was mowed periodically. The collector was adjacent to Camera Site UC1. Four-meter trees to the east shelter the site from ocean effects. Access is by a dirt road from State Road 3.

Site 18. This site is located on the campus of UCF. The collector was located in a sandy grass covered area which was mowed periodically. The UCF physical plant complex is located within 50 meters. The collector was located near isolated pine trees which approached the 45° horizon-vegetation top criteria established for site location. Access is by a paved road. University service vehicle traffic was moderate within 100 meters of the collector.

Site 19. The collector was located in a grassy field and encircled by trees at distances that ranged from 50 to 200 meters on all sides. A major body of brackish water is located 200 meters west of the site. Access is by a dirt road.

Precipitation Collection

The polyethylene buckets used to collect precipitation samples and all laboratory ware which contacted the precipitation samples was thoroughly cleaned with dilute Alkonox solution and 3M HNO3. Each piece was then rinsed with deionized water until the conductivity of the final rinse water was less than 1.0 umho/cm.

Deionized water with a conductivity of less than 1.0 umho/cm was used during all procedures which involve cleaning operations. This water was obtained from a deionizing system which also included a carbon filter. All deionized water utilized for chemical analysis procedures was obtained from a Culligan SR deionizing system which delivered water with a conductivity of less than 0.07 umho/cm.

Collectors were typically checked between 8 a.m. and noon Monday through Friday. Sample pickups were made by UCF personnel on Monday, Wednesday, and Friday from July through September 1977, and intermittently thereafter. Beginning in October 1977, NASA/BEST personnel were responsible for daily pickups. A sample collection log was maintained for each day that precipitation collectors were checked. Several entries were made and included: 1) time of arrival at the site, 2) weather conditions during site visitation, 3) operation of collector, 4) visual inspection of the sample bucket, and amount of precipitation. If precipitation was present, the amount to the nearest 0.1 inch was estimated. Presence of dirt or insects in the sample was noted. A clean bucket was placed in the collector and the cover from the clean bucket placed tightly on the bucket which had been removed from the collector. In February 1979, several sites were equipped with standard Taylor 11-inch rain gauges. These gauges have an outer cylindrical funnel diameter of four inches and an inner measuring cylinder diameter which allows measurement of rainfall amount from a scale which yields a ten-fold increase in readability. These gauges measure rainfall to the nearest 0.01 cm.

Sample Identification and Classification

The sample identification was an 11-digit number and was assigned as follows:

Digit corresponding to entries on Precipitation Chemistry Data Sheet (see Figure 2).

1 and 2 3 and 4 5 and 6 7	Month (0112) Day (0131) Year (7779) Not used Represents the frequency of precipitation collector servicing. (09) values reflect the number of days that lapse between servicing with 0 indicating daily servicing
9 and 10	Collector Site Number (01)
11	Sample Type (09) This digit is defined as follows and classification was based on a subjective judgment: O Clean rainfall precipitation Battery/collector failure left rainfall sample uncovered and somewhat contaminated, analysis performed Rain sample contaminated, analysis performed (less than five insects, etc.) Rain sample contaminated, however, with no visual discoloration of sample; analysis performed
	8 Rain sample too contaminated for analysis

To facilitate data reduction, clean samples were those which received a "0." Slightly dirty samples were those classified as "5", "6", or "7."

Procedures for Handling and Chemical Analysis of Precipitation Samples The contents of the sample buckets were transferred into previously cleaned plastic graduated cylinders. Each sample volume was measured to the nearest ml and recorded. A portion of each sample was transferred to a previously cleaned 250 ml polypropylene or polyethylene bottle for storage until chemical analysis on the sample could be accomplished. Conductivity, pH, and titratable acidity were determined on a portion of each sample separate from that saved for additional analysis. Priority was given to the measuring of certain chemical parameters in the event that sample size was insufficient to allow measurements to be made for all chemical species. A flow diagram which summarizes the various chemical analyses performed is presented in Figure 3. Titratable acidity was determined only if sample volume exceeded 120 ml which represented about 0.2 cm of precipitation. If sample volume was less than 50 ml, determination of concentrations of individual ionic species was not attempted except in select samples where acidity was high and dilution of the

In general, sample volume and conductivity were measured shortly after samples arrived in the laboratory. Results were recorded directly onto a data sheet (Figure 2). Samples were refrigerated if chemical analysis was not performed within 24 hours. Measurement of pH, pHNV (pH after bubbling nitrogen gas through the sample), and titrations were typically performed within eight hours. Conductivity was measured to the nearest 0.1 umho/cm with a Yellow Springs Instrument Model 31 conductivity bridge. An electrode with a 1.00 cm⁻¹ cell constant was used.

sample would not jeopardize accuracy.

Figure 2. Precipitation Chemistry Data Sheet

Figure 3. Flow Diagram Showing the Chemical Analysis Sequence for Precipitation Samples

Sample pH was measured at ambient room temperature using a suitable glass and reference electrode pair or suitable combination electrode. Samples were not stirred when the measurement was made. An Orion Model 901 or Corning Model 130 pH meter was used after standardization with buffers of pH 7.00 and 4.01. Nitrogen gas saturated with water vapor was bubbled through the sample for 20 minutes to remove volatile components prior to measuring pHNV. Nitrogen gas was passed over the sample during pHNV measurement. Typically, 15 to 30 minutes was required for the pH reading to stabilize.

If sample pH was less than 4.7 and sufficient sample was available, a potentiometric titration was performed. A 50.00 ml portion of the sample used to determine pHNV was titrated with standardized 0.02 N NaOH under a nitrogen atmosphere. The NaOH was added in volume increments of 5.0 to 50.0 ul. The size of volume increments was selected to allow approximately 10 additions of NaOH to be made before the measured pH increased above 5.0. Sufficient NaOH was then added to increase the pH to above 9.0; 10 additional volumes of NaOH were then added in 20 ul increments. Titration data were treated by the Gran plot technique (Gran, 1952; Rossotti and Rossotti, 1965) to determine the strong acid concentration and total titratable acidity. The strong acid concentration was determined from data collected below pH 5.0, using the following relationship:

$$\psi = (V_0 + v) 10^{-ph}$$

where ψ is the Gran function, V_0 is sample volume, v is volume of NaOH added, and pH is the measured pH upon addition of v. An end point volume (Vep) in microliters for NaOH was determined by extrapolation of the ψ vs. v plot to ψ = 0. A linear least squares fit to the data was performed. Results were calculated as follows:

Strong acid (microequiv./]) =
$$\frac{\text{(Vep)(N NaOH)(1000)}}{V_0}$$

Total titratable acidity was determined from data collected above pH 9.0 using the following relationship:

$$\psi' = (V_0 + v) 10^{ph}$$

where ψ' is the Gran function and other terms are as previously described. An end point volume for NaOH was determined using ψ' in place of ψ (as previously described) and titratable acidity was calculated as follows:

Titratable acidity (microequiv. / 1.) =
$$\frac{\text{(Vep)(N NaOh)(1000)}}{\text{V}_{o}}$$

where Vep is the ψ' function end point volume. A typical Gran plot is shown in Figure 4. Results were recorded on the Precipitation Chemistry Data Sheet, Figure 2.

 μ 1 0.0200 M NaOH Added/50.00 ml Sample

Figure 4. Potentiometric Titration Curve and Gran Plot Functions for a Precipitation Sample Collected February 3, 1978, at UCF Site 18

)

1

The concentrations for the major anions F-, Cl-, NO_3 , SO_4^2 and PO_4^3 present in the precipitation samples and for the cations Na^+ , K^+ , and NH_4 were determined by ion chromatography (IC). The ion chromatographic technique was introduced in 1975 and promises to revolutionize chemical analysis at low concentrations for common ionic species such as F-, Cl-, NO_3 , and SO_4^2 (Mulik, 1978). The application of IC to the analysis of precipitation samples has been demonstrated (Mulik, 1978) and is of particular advantage for determining SO_4^2 where available methods are not sensitive enough.

A Dionex Model 14 Ion Chromatograph was used in these studies. The Model 14 is capable of dual-column operation, allowing both anions and cations to be determined. The IC was operated according to manufacturer's instructions (Dionex, 1976). Table 1 summarizes conditions used in routine operation of the IC for determining anions and cations.

Standard solutions for calibrating the IC were prepared fresh daily by diluting 1000 ppm stock solutions of each anion or cation. Chromatogram peaks were quantitated by measuring peak height, component identification was based on retention behavior. IC determinations were typically completed within one week of receipt of samples.

The anions are best determined from a single chromatogram obtained using an eluent composed of 0.003 M NaHCO $_3$ and 0.0024 M Na $_2$ CO $_3$. The elution is normally completed in about 18 minutes at a pump pressure of 35 percent. The normal water peak is overcome by preparing each sample and standard to contain exactly the same concentration of NaHCO $_3$ and Na $_2$ CO $_3$ as the eluent.

The monovalent cations are best determined on a single chromatogram by employing an eluent of $0.003~M~HNO_3$ at a pump pressure of 35 percent, the elution is complete in 17.5 minutes.

Prior to injecting the sample, the sample loop was rinsed with approximately two ml of deionized water. A sample volume of approximately one ml was required for anions and a sample volume of approximately two ml was required for cations. Each syringe was previously rinsed with the respective sample or standard.

When increased sensitivity is required, the IC detector attenuation can be changed from 30 to 10 to 3 micromho, etc. A limiting factor is encountered, however, because base-line noise increases. This interference was more noticeable in anion chromatograms.

initially, fluoride and chloride were separated and quantitated using an eluting solvent that contained 0.003 M NaHCO3. A flow rate of about 150 ml/nr. was utilized. A dual pen recorder operated to give relative sensitivity factors of one and two-tenths allowed chromatogram quantitation with sufficient accuracy and precision over the 0.01 and 5.0 ppm concentration range when the 10 micomho IC detector range was used.

Table 1. Ion Chromatograph operational parameters

A. Column Description

	Anie	on	Cati	on
Column	Dimensions	Ser. No.	Dimensions	Ser. No.
Precolumn (1)			6 x 250 mm	3316
Precolumn (2)	3 x 150 mm	2878	6 x 150 mm	27 27
Analytical	3 x 500 mm	2868	6 x 250 mm	2402
Suppressor	6 x 250 mm	2372	9 x 250 mm	2523

- (1) Located between eluent pump and injection valve
- (2) Located between injection valve and analytical column

B. Operating Conditions

Anions (1)	Retention Time, Min.	Concentration Range ppm 30umho Scale
F	2.5	0.01 - 1.50 (2)
C1	3.7	0.01 - 2.5 (2)
		2.5 - 6.0 (3)
		6.0 - 10.0 (3,4)
NO ₂	4.3	0.02 - 2.0
P04	6.4	0.1 - 25.0 (2)
Br	8.0	0.02 - 2.0
NO3	10.0	0.01 - 10.0 (2)
J		10.0 - 50.0 (2,4)
S0 ₄	14.0	0.01 - 12.0 (2)
Cations (5)		10umho Scale
Na	10.0	0.01 - 2.0 (2)
		2.0 - 4.0 (3)
		4.0 - 10.0 (3,6)
		10.0 - 100 (3,4)
NH4	13.2	0.01 - 2.0 (2)
K K	15.0	0.01 - 2.0 (2)
	• •	

- (1) Injection volume 250ul, eluent pump 35% which yields an eluent flow rate of about 150 ml/min. Eluent is .003M NaHCO3-.0024M Nap CO3
- (2) Utilizes either 100mv or 500 mv recorder scale (3) Utilizes 1000mv recorder scale
- (4) Appropriate sample dilution required
- (5) Injection volume 1.0 ml, eluent pump 35% which yields an eluent flow of about 150 ml/min; eluent is 0.003M HNO3
- (6) 30umho scale

Phosphate, nitrate, and sulfate were separated using an eluting solvent that contained 0.003 M NaHCO3 - 0.024 M Na2CO3. Other conditions were identical to those identified for fluoride and chloride. Beginning in November 1978, samples were run exclusively with the 0.003 M NaHCO3 - 0.024 M Na2CO3 eluent. All samples and standards were spiked with a quantity of 0.3 M NaHCO3 - 2.4 M Na2CO3 to match the eluent concentration. Phosphate concentrations were consistently below detection limits (approximately 0.1 ppm) of the IC procedure used and do not present a significant contribution to composition.

Base-line noise was found to be minimal for cations. When low concentrations of NH_4^+ were found in the presence of high concentrations of Na^+ , the resolution of NH_4^+ was greatly improved by a 1:5 dilution of the sample. The same observation applies to small concentrations of K^+ in the presence of large concentrations of NH_4^+ .

Concentrations of the major cations Na⁺, K⁺, Ca⁺², and Mg⁺² present in precipitation samples were determined by flame spectroscopy. This technique has been widely used for determining these species and is characterized by suitable accuracy and precision at expected cation concentration levels.

An Instrumentation Laboratory (IL) Model 751 Flame Spectrophotometer was used. Flame emission was utilized to determine Na $^+$ and K $^+$ while atomic absorption was utilized to determine Ca $^+$ 2 and Mg $^+$ 2 concentrations. This instrument is a dual-channel spectrophotometer which can be used to simultaneously determine two species.

Sodium and potassium were determined after sample and standard pretreatment to introduce 0.1% wt/wt cesium. Occasional dilution was required to decrease sample concentrations to within the concentration range of the calibration curves. The sodium calibration curve was established using five standard solutions which contained from 0.1 ppm to 2.5 ppm sodium. Solutions were prepared fresh daily by diluting a 1000 ppm stock solution. The potassium calibration curve was established using five standard solutions which contain from 0.05 to 0.5 ppm potassium. The IL 751 is microprocessor controlled and reduces data to allow direct concentration read-out based on the entered calibration curve; it operated according to manufacturer's specifications (IL, 1976). A "red" sensitive R955 photomultiplier tube was required to achieve sufficient sensitivity for potassium.

Calcium and magnesium were determined simultaneously by atomic absorption. Samples and standards were treated to contain 0.1% wt/wt lanthanum diluent. Calibration curves for calcium and magnesium covered the range 0.1 to 1.0 ppm and 0.005 to 0.6 ppm, respectively. Flame conditions were optimized for calcium which achieved maximum sensitivity for calcium and still allowed acceptable sensitivity for magnesium. Direct concentration read-out from both channels was made as previously described for sodium and potassium. Standard conditions (IL, 1976, 1977a) were used. Flame spectroscopy determinations were usually completed within ten days of sample receipt.

The concentration of Al and V in precipitation samples is quite low (Galloway, Likens, and Education, 1976). Therefore, it is not possible to utilize conventional flame spectroscopy to determine the concentration for these metals. A flameless atomization source is required to generate enough high atoms to result in a significant absorption signal when atomic absorption is used. An IL 555 controlled temperature furnace (CTF) was the flameless atomization source for the IL 751; it was operated according to manufacturer's directions (IL, 1977b). Several problems were experienced. Difficulty was encountered when temperature program cycles had to be optimized. Extreme difficulty was experienced when sample drying conditions were set. Erratic behavior was observed. During the sample atomization cycle, high temperatures are required for successful atomization of Al and V. At these temperatures, the functional lifetime of temperature sensors and the graphite sample cuvettes was so short that accurate calibration was impossible. Because of these problems, no meaningful results were obtained for Al and V.

Evaluation of Sample Collection and Chemical Analysis Procedures

Several experiments were performed to evaluate the compositional integrity of precipitation samples. Factors were evaluated based on chemical analysis of samples obtained or treated in a variety of ways. A description of each study follows.

Collection of precipitation in clean containers is required if the sample composition is to be representative and not influenced by the sampling container. Plastic containers are preferred for collecting precipitation samples to be analyzed for major inorganic ions; glass is preferred for collecting samples if organic species are to be determined (Galloway and Likens, 1976). A series of experiments was performed to evaluate the effects of time on sample bucket cleanliness when the lid on the collector does not open to expose the bucket to the atmosphere. Although during normal operations of the KSC precipitation network, exchange of buckets would normally occur each work day, several occasions arose where selected sites could not be visited for security reasons for several days. It was beneficial to know whether buckets would become contaminated to some extent during these extended time intervals. During February 1978, and again during March 1978, four operational collectors were utilized at Site 14 and outside the chemistry laboratory adjacent to the Apollo Warehouse at KSC. Clean buckets were placed in collectors at staggered intervals so that at the end of a seven-day period, one bucket at each site had resided in a collector for one, two, five, and seven days. An identical set of buckets was maintained in the laboratory. At the end of the study period, all buckets were returned to the laboratory and thoroughly rinsed with 200 ml of deionized water. The rinse water was analyzed to determine contamination levels by measuring conductivity and determining major anions and cations.

The quality of generated chemical analysis data was monitored throughout the study period. While gross errors in procedures could be recognized in such parameters as anion/cation ratio, the general reliability of data obtained was evaluated separately. Precision associated with each procedure for measuring chemical concentrations can be and was

evaluated by repeating procedures with several separate portions of a given sample. The magnitude of errors associated only with measuring chemical composition is referred to as analytical variability. It can be evaluated with as few as two analyses for each species in separate portions of the same sample. This was done on a semi-routine basis. In selected situations, six to ten replicate determinations were performed.

Spike recovery studies can be used to assess the quality and reliability of the methods used to determine chemical composition of samples. A known quantity of each analyte of interest is added to a portion of the sample. This addition increases the concentration of each analyte in the sample. The spiked sample and a portion of the original sample are then analyzed using the accepted procedure. Results obtained for each analyte in the two samples are compared and the difference for each analyte is compared to a value determined from the known quantity of each added analyte. Systematic errors can be detected in the experimental procedures or errors introduced by the presence of other chemical species or physical properties associated with the sample matrix. Steps can then be taken to minimize these errors. Spike recovery studies were performed at periodic intervals.

The compositional stability of precipitation samples is questionable and several investigators have assessed various conditions intended to retard changes (Galloway and Likens, 1978; Peden and Skowron, 1978). We also evaluated different sample storage conditions to determine whether significant differences in stability would be observed. Separate portions of a single sample were analyzed and stored at either room temperature (4°C) or frozen. At periodic intervals, portions of each sample were removed and subjected to chemical analysis again.

A series of experiments was performed to establish the contribution that different sources of variability have on determining the measured composition of precipitation samples. These experiments involved collecting precipitation samples and an analysis to determine the chemical composition of each. Analytical variability, as previously described was evaluated.

Sampling variability, which represents the difference in rainfall composition between samples collected at the same time in adjacent, identical collectors, was evaluated using five or six collectors placed approximately five meters from each other. Data were collected for at least ten rainstorms to evaluate this variable. Collectors were located at Site 14 and were used to perform this study during November and December of 1977, and again during June and July of 1978.

Spatial variability represents the difference in rainfall composition over a widespread area. The evaluation of this parameter was based on rainfall composition data obtained from samples of the entire collector network or from a smaller set of collection sites as was required for comparison purposes.

Data Management

During the study period, approximately 1500 precipitation samples were collected; most were subjected to chemical analysis. The data obtained as a result of these activities were initially summarized on the Precipitation Chemistry Data Sheet (Figure 2). These data were stored on computer disk as 80-character card images. Data storage, retrieval, and archiving were accomplished using a Harris minicomputer with a 256K CPU memory and a Hewlett-Packard minicomputer. The latter system, which has a 32K CPU memory, tape drive, disk drive, paper tape punch, printer, and plotter, is located at KSC and was used most extensively. Original Fortran IV programming was used in all aspects of data management. Access was by interactive RS232 type terminals.

A "rain" program manipulated the raw data from the card image format. The rain program output included raw data tabulation and associated calculation outputs. Calculation of various parameters was intended to allow evaluation of data quality and to assess various components of precipitation.

Disk files were created by month and by quarter from the rain program output. Other programs assessed results in individual rain program disk files. Figure 5 summarizes prominent features of the system.

The utilization of computer outputs varied. For example, anion/cation, Cl/Na, Na/Mg, acidity/predicted acidity, etc. were utilized to determine the reliability of the chemical analysis performed on each sample. In addition, Cl/Na, Na/Mg, and calculated sea salt were utilized to assess the contribution of sea salts to precipitation composition and more specifically to document Cl input from the ocean. Types of acidity in precipitation were documented through interpreting pH and titration measurements. A sample rain program printout is shown in Figure 6. A brief description for each parameter in the print-out follows.

"RAIN" PROGRAM LEGEND

RAW DATA	
AMT	Depth of precipitation (cm) mesured by an independent measuring
	device, e.g. rain guage located in close proximity to the pri- mary collector
V O L	Volume of precipitation (ml) in the primary collector
pН	Negative logarithm (base 10) of hydrogen ion activity in the
	precipitation sample. Measurement is made potentiometrically
	with a glass indicator electrode and suitable reference elect-
	rode. Accuracy is limited by the value of buffer solutions used
	for calibration, typically ± 0.01 pH unit, measurements are made
	at 25°C
VNHq	The same as pH except volatile weak acids, e.g. carbonic acid
•	(H ₂ CO ₃), have been removed from the sample by bubbling nitrogen
	gas through the sample prior to measurement.

OPTIONS THAT ALLOW SORTING OF DATA BASED
ON SAMPLE ID ARE PART OF EACH PROGRAM.

Figure 5. Data Management Options

	1D 07057803016 07057803070 07057803038 07057803086 07057803086 07057803117 07057803126 07057803136	ANT VOL 07 438 00 2148 00 115 00 278 00 208 00 970 00 980 00 1240 00 1020	PH PHNY 4 08 4 13 3 91 3 93 00 00 00 3 66 3 65 3 96 3 97 3 97 3 99 4 12 4 17 3 82 3 84	156 B 12 0 0 275 B 21 145 3 10 134 6 10	CID COND 2 5 43.2 2 7 61.5 0 0 0 6 4 3 106 0 6 5 52 4 1 2 52 8 0 35 1 6 8 70 2	.75 03 .	CR MC NH4 .17 .028 .22 .33 .100 .39 .00 .000 .00 .00 .000 .00 .55 .134 .55 .45 .000 .19 .12 .074 .19 .27 .035 .17 .22 .044 .45	.35 19 .00 00 00 00 1 21 07 1 03 04 1 07 04 38 03	0 2 33 2 10 00 0 1 94 5 03 00 0 00 00 00	A L 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	10 07057803016 07057303026 07057803038 07057803068 07057803086 07057803106 07057803117 07057503126 07057803136	00 00 36 52 5 33 47 2 27 82 1	CA 76 8 49 55 16 46 00 00 00 00 62 27 44 55 22 45 02 5 98 27 13.47 76 10 97	8 22 21 62 00 00 00 00 11 02 30 49 7 40 10 53 6 08 10 53 7 2 87 9 42	PATIOS CL 34 12 4 21 9 87 5 26 00 00 34 12 3 61 29.04 3 15 30.17 2.16 10.71 1.51 17 48 3.68	6 31 29 10 0 00 0 00 8 87 10 18 5 29 35 8 0 29 35 8 7 24 03 5	43 72 00 . 04.72 00 . 00 00 . 00 . 00 . 87 38 00 . 82 23 00 . 83 28 00	9 00 00 00 00 00 00 00 00 00 00 00 00 00 00		
26	1D 07957803016 07057702026 07057803038 07057803068 07057803106 07057803117 07057803126 07057803126	619 00 414 00 310 00 1 447 00 1 462 00 1 850 00	0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1	SCR A 19 6 133 5 51 1 180 1 0 0 0 0 112 2 329 8 43 7 186 0 44 9 159 6 87 3 115 0 82 8 205 1	CL/NA 85 1.04 83 1.19 00 00 00 00 94 .93 77 86 91 1 08 75 88 89 1 29	NA/MG SS 14.1 37 6 1 0 10 6 0 0 0 0 3 3 37 6 4 5 32 0 4 5 33 2 4 2 11 6 3 7 17 4	6 18 7 43 6 46 4 61 0 0 0 6 73 4 106 0 44 3 52 18 1 52 8 27 4 35	HND PCOND 3 2 41 2 5 58 1 0 0 0 0 107 0 14 53 6 18 51 4 11 35.5 12 70.3	COND/PCOND 1 046 1 057 000 000 930 976 1 025 987 998	
	1D 07057203016 07057203026 07057203038 07057203068 07057203106 07057203106 070572031.7 07057803126 07057803136	PACID PP 59 2 4 2 88 9 4 0 0 0 197 7 3 7 64 3 4 1 91 5 4 0 46 5 4 3 125 6 3 9	2 83 1 123 0 0 0 0 0 0 218 7 9 109.6 3 107 1 2 75 8	HNY TITRACID 74 1 124 9 117 4 156 8 0 0 0 223 8 275 8 107 1 145 3 102 3 134 6 67 6 0 144 5 203 3	78.5 122 7 .0	ACOMP WAF 50 7 -4 39 3 -5 0 . 0 51 9 9 38.1 32 2 1 6 59 7 -4	3 62 8 40.6 2 78 2 25 0 0 .0 .0 0 0 5 77.7 18 8 6 73 2 26.2 1 75 1 23 9	3 4 3 4 4 10 8 10 9	MTH AMTSA AMTTA 6 43 34 39 54 70 4 26 263 55 327 67 00 00 00 00 00 00 5 50 44 57 57 36 6 35 103 30 140 94 5 00 99 17 131 13 4 06 00 00 4 38 151 77 207 36	7 0 0 6 4 0
	ID 6000000000000000000000000000000000000	00 .0 00 0 90 5 0 58 2 0 65 4 61 1 2	4 7 21 -4 9 16 10 b 0 00 0 00 0 26 17 4 2 21 37 1 7 4 86 3 13 07		00 94.03 00 00 00 00 00 7 24 201 2 3 8 55 67 37 4 1 93 93 45 6 2 38 48 10 6	XPPH 4 19 4 02 00 00 5 69 4 17 4 02 5 31 8 88				

/

Figure 6. "Rain" Program Print-out

"RAIN" PROGRAM LEGEND (Continued)

DALLOATA	
RAW DATA	
TITRACID	Titratable or total acidity in the precipitation sample
	excluding volatile weak acids which were removed prior to
	this determination. Determination is accomplished by
	potentiometric titration of the precipitation sample using
	standardized 0.02N sodium hydroxide. The potentiometric
	titration data beyond the equivalence point is treated by the
	Gran plot method to determine the equivalence point. Units
	are microequivalents per liter.
STRACID	Contribution due to strong acids, e.g. sulfuric, nitric, and
311/1015	hydrochloric, on the total acidity of the sample. The strong
	acid contribution is determined by Gran plot treatment of the
	titratable acidity potentiometric titration data obtained
	prior to the equivalence point. Units are microequivalents
00110	per liter.
COND.	Conductivity of the precipitation sample. The conductivity
	represents contributions from all ionic species in the sample
	including dissociated acids. Units are micromhos/cm.
NA V	Measured concentration of each identified chemical species.
	Concentration units are micrograms per milliliter or parts
	per million (ppm).
DATA and RA	
NAV	Data for each identified chemical species expressed as micro-
	equivalents per liter (UEQ/L)
CMPPT	Tabulates precipitation depth based on volume collected and
	640 cm ² collection area
PVOL	Volume of precipitation that should have been collected in
	the wet bucket of the wet/dry collector based on measured AMT
COLEF	Collector efficiency as defined by:
	·
	COLEF = (VOL/PVOL) 100
	, ,
SAN	Sum of the anion concentrations present in the precipitation
	sample expressed as UEQ/L
SCA	Sum of the cation concentration present in the precipitation
	sample expressed as UEQ/L
A/C	Ratio of SAN/SCA
CL/NA	Concentration ratio for these two species; ratio of 1.165
CL/IVA	(eq/eq) is expected if sea salt represents the only source of
	Na and Cl
NA /rac	
NA/MG	Concentration ratio for these two species; ratio of 4.4
	(eq/eq) is expected if sea salt represents the only source of
	Na and Mg
SS	Sea salt (SS) contribution to the precipitation composition:
	1f CL/Na > 1.165, SS = NA (1.293)
	1f CL/Na <1.165, SS = CL (1.103)
NC	Neutralizing cation component including contributions of Na,
	K, Ca, Mg, NH4, or nonacidic cations corrected for sea salt
COND	Defined previously
PCOND	Predictive conductivity, this value indicates what the conduc
	tivity of precipitation sample should be based on the

determined concentrations of ionic species and the equivalent conductance of each:

$$PCOND = \frac{\Sigma}{1}(C_1) (\Lambda_1)$$

where C_1 is the concentration (microequivalents/liter) and is the specific conductance (micromhos/cm) of the 1 th chemical species; contributions from H, Na, K, Ca, Mg, NH₄,Cl, NO₃, SO₄, PO₄ are included.

COND/PCOND This ratio should equal one if all chemical species which are

present have been determined accurately

PACID Acidity (microequivalents/liter) of the sample predicted based on determination of cations and amons in the precipitation sample exclusive of hydrogen ion:

PACID =
$$\sum_{1}^{\Sigma} (A_1) - \sum_{j}^{\Sigma} (C_j)$$

where A_1 represents the anion (C1, NO3, SO4, PO4) concentrations corrected for that of sea salt origin and C_3 represents the cation (Na, K, Ca, My, NH4) concentrations corrected for that of sea salt origin

PPH Represents predicted pH based on PACID

H Hydrogen ion concentrations or sample free acidity as

calculated from the measured pH of the precipitation sample,

units are microequivalents/liter

HNV Hydrogen ion concentration as calculated from the measured

pHNV of the precipitation sample; units are

microequivalents/liter

TITRACID Described previously STRACID Described previously

WACOMP TITRACID minus HNV, an alternate way to express the weak acid component of precipitation after volatile acids have been

removed; units are microequivalents/liter

WAFA HNV minus STRACID and yields any dissociated nonvolatile weak

acid present in the precipitation sample; units are

microequivalents/liter

%HSA Strong acid components' contribution to total acidity,

determined by STRACID X (100)/TITRACID

%HWA Undissociated weak acid contribution to total acidity,

determined by (TITRACID - HNV) (100)/TITRACID

%wFA Dissociated nonvolatile weak acid contribution to the total

acidity, determined by (HNV - STRACID) (100)/TITRACID

AMTH Amount of free acid deposited, units are

microequivalents/640 cm²

AMTSA Amount of strong acid deposited, units are

microequivalents/640 cm²

AMTTA Amount of total acid deposited, units are

microequivalents/640 cm²

PACID/H Predicted acidity/free acid ratio

K-S...Na-S Represents the identified species concentration in excess of

that contributed by sea salt

XPACID Predicted acidity calculated by SAN-SCA+H

XPPH Predicted pH based on XPACID

Precipitation Sample Collection

Approximately 1500 precipitation samples were collected from July 1977 to March 1979 as part of a routine sampling schedule. In addition, approximately 200 samples were collected during additional studies. Routine chemical analysis was performed on these samples. The number of collection sites increased gradually during the program. The first site began operation in late June 1977 on the U.C.F. campus. In July 1977, four sites were established at KSC; the number increased as shown in Figure 1.

The justification and rationale used to locate collectors at specific sites as shown in Figure 1 has already been discussed. Within the constraints utilized, it appears that the composition of precipitation at only a few sites was significantly affected by local environment.

Precipitation Collector Efficiency

The specific design of a rain collector influences the efficiency of sample collection. For comparison purposes, precipitation amount received by the wet/dry collector and Taylor standard rain gauges was evaluated. In general, the efficiency of the wet/dry collector was slightly less than 100 percent compared to the standard rain gauge when small amounts of precipitation were received. The efficiency was close to 100 percent when amounts of precipitation exceeded 1 cm. The sensor which detects precipitation falling on the wet/dry collector consists of a metal grid with approximately one mm spacing. Rain intensity must be great enough to accumulate water across the spacing before the collector is activated and the wet bucket exposed to the rain. Therefore, the initial portion of a rain event may not be collected. When light showers occur, the portion of rain not collected represents a significant fraction of the total amount.

<u>Evaluation of Factors Which Contribute to the Determined Composition of Samples</u>

The methodology used to investigate several factors which may influence the measured composition of precipitation samples was described in the experimental section. The following describes the contribution which collector operation and sample bucket condition, the chemical analysis program, and natural variations in composition due to meteorological conditions have on the reported concentrations of individual ionic species.

Contamination. A series of experiments was performed to determine whether significant contamination of the sample bucket can occur when the bucket remains in a closed collector for various periods of time. During the first week of February 1978, and again during the first week of March 1978, an experiment (as described in the experimental section) was performed. Chemical analysis of the deionized water rinse from each bucket confirmed that the wet/dry collector will satisfactorily preclude the intrusion of contaminants into the sample bucket. The ionic composition of the deionized water rinse

solution was negligibly low and conductivity was below 1.0 umho/cm. Should circumstances require that a sample bucket not be replaced with a clean one for an extended period, contamination is unlikely unless the collector lid opens to expose the sample bucket. The study periods utilized in this experiment were selected because strong winds typically occur during these months and might be expected to cause contamination problems. Significant rainfall occurred during both study periods and may have helped minimize airborne contaminant levels which could have been introduced into the sample bucket.

Evaluation of the Reliability of Chemical Analysis Procedures. The results obtained in the evaluation of analytical variability are presented in the next section where evaluation of sampling variability and spatial variability are considered.

Typical results obtained in a spike recovery experiment are summarized in Table 2. The recoveries range from 80 to 120 percent. The magnitude of variability for the spike recovery determinations for

Table 2. Typical spike recovery study on precipitation sample

			PPM			
	Sample	Sp1ke	Recovery of Spike*	Anal. Var.**	% Recovery	
Na	0.48	0.46	0.49+0.01 (.02)	• 02	106	
K	0.05	0.27	0.23+0.01 (.04)	•04	85	
Ca	0.16	0.08	0.10+0.00 (.00)	•03	125	
Mg	0.056	0.243	0.243+0.006 (.02)	•02	100	
NH4	0.13	0.18	0.17		94	
C1	0.73	0.71	0.72		101	
NO3	0.69	0.85	0.99		116	
\$04	0.97	2.80	2.56		91	

^{*}Mean + average deviation of triplicate determinations. Relative average deviation is shown in parenthesis.

Note: Na and K determined by flame emission, Ca and Mg determined by atomic absorption, and NH4, Cl, NO3, SO4 determined by ion chromatography.

^{**}Analytical variability from Table 3.

cations is comparable to the variability or precision associated with the analytical methods used to determine concentrations for these analyses as summarized in Table 3. These data lend support to the hypothesis that errors introduced in the chemical analysis of samples contribute little to the variability associated with the determined concentrations of various species in rainfall.

We participated in the "MAP3S Precipitation Intercomparison Study" during summer of 1978. The study involved determining the chemical composition of eight precipitation samples. Approximately 35 private, state, university, federal government, and foreign laboratories submitted results. The program was conducted by the U.S. Department of Energy. Our results, which were not submitted in time for inclusion in the interim report (Bogen, et al., 1978), will be included in a final report from DOE. Our results agreed with those reported by several other program participants.

Stability of Ionic Components Present in Precipitation. One source of error in precipitation chemistry is associated with the ionic composition instability of dilute aqueous solutions. All procedures involved in the collection, handling, storage, and chemical analysis of precipitation samples can introduce contaminants or lead to loss of certain ionic components in precipitation samples through decomposition or other chemical processes such as absorption. Maienthal and Becker (1976) conducted an extensive literature review on sampling and storage of environmental water samples. Batley and Gardner (1977) critically reviewed sampling and storage of natural waters for trace metal analysis. These studies present many conflicting views. Studies directed specifically at precipition samples have been cited (Galloway and Likens, 1976, 1978; Peden and Skowron, 1978).

The contribution of the sampling bucket and collector as a source of contamination has been described. Contamination introduced through sample handling is most difficult to evaluate. It is possible to evaluate the effect that storage conditions have on sample compositional changes. It is likely that the presence of fine particulate matter or other debris that may enter a collected precipitation sample during the actual rain occurrence will contaminate the sample, will act as a surface upon which absorption and accompanying chemical change can occur, or can react with other components in the sample. Unless a precipitation sample can be obtained and all debris removed simultaneously with the occurrence of precipitation, it must be assumed that compositional changes are likely. When sampling locations are remote from the laboratory, it is not possible to collect samples and analyze in realtime. Typically, samples were received in the laboratory within 24 hours of precipitation. Compositional changes which may have occurred during this time period could not be avoided. Once samples reached the laboratory, procedures were employed to minimize further change. Various studies were performed to evaluate the ionic composition stability of samples once they were received in the laboratory. For those species which were part of the routine chemical analysis program, only pH, NO3 and Nh4 were observed to change concentration by an amount that could not be accounted for by

Table 3. Magnitude of sources of variability in Kennedy Space Center precipitation composition

Precipitation Analytica Parameter Nov. 77		Variability July 78	Sampling NovDec. 77	Variability June-July 78	Spatial Variability NovDec. 77 June-July 78				
					5 Sites	5 Sites	12 Sites		
cm			0.05	0.02	0.62	0.66	0.75		
Conductivity	0.05		0.04	0.03	0.54	0.32	0.42		
H	0.002	0.06	0.09	0.06	0.39	0.43	0.46		
Na	0.03	0.02	0.06	0.06	0.42	0.53	0.69		
K		0.04	0.51	0.30	0.90	0.38	0.86		
Ca	0.01	0.04	0.43	0.15	0.94	0.49	0.57		
Mg	0.02	0.02	0.06	0.05	0.43	0.52	0.72		
NH4	0.07	0.56	0.40	0.28	0.32	0.66	0.93		
C1 ·	0.04	0.03	0.07	0.05	0 .4 8	0.55	0.75		
N03	0.11	0.04	0.17	0.05	0.63	0.38	0.41		
S0 4	0.03	0.02	0.05	0.05	0.33	0.43	0.49		
Excess SO ₄			0.08	0.05	0.43	0.51	0.54		
Sum of Anions			0.06	0.03	0.32	0.37	0.52		
Free Acid Deposi	tion		0.09	0.06	0.44	0.64	0.70		

Variability is as previously described (Galloway and Likens, 1978). Sampling variability is based on data from five or six collectors located five meters apart at Site 14. The November-December 1977 Spatial Variability Study is based on the same 11 precipitation events that were sampled for the Sampling Variability Study. The June-July 1978 Sampling Variability and Spatial Variability studies are based on data from 10 precipitation events that occured during late June and early July 1978. Five sites (01, 12, 13, 14, 19) which cover 200 km² or 12 sites (01, 03, 05, 06, 08, 10, 11, 12, 13, 14, 16, 19) which cover 600 km² were utilized. Sampling Variability and Spatial Variability were calculated by summing the standard deviation/mean (relative standard deviation) for each parameter per event then dividing by the number of events. Analytical Variability is the relative standard deviation based on six to ten separate measurements.

32

analytical error. Stabilization of NO3 and NH4 concentrations was accomplished in most cases by storing the samples at 4°C until chemical analysis was complete. This procedure appears satisfactory for at least 60 days. Long-term stabilization and storage was accomplished by freezing the sample. Stabilization of sample acidity or pH could not generally be accomplished at either 4°C or by freezing of the samples. Those samples which were quite acidic with pH 4.2-4.3 or below were generally but not always self-stabilizing. Results of several sample stability studies are shown in Figure 7.

Analytical, Sampling, and Spatial Variability. Since the measured concentrations of chemical species present in precipitation may vary due to several factors, factors which can be controlled and minimized were continually evaluated. Three specific factors were documented: analytical variability, sampling variability, and spatial variability. These factors have been defined in the experimental section of this report. Every effort was made to insure that results obtained did indeed reflect the actual composition of precipitation and were influenced only slightly, if at all, by controllable factors. Results obtained for analytical variability, sampling variability, and spatial variability are presented in Table Specific experiments which were designed to evaluate both analytical variability and sampling variability were performed during November-December 1977, and again during June-July 1978. These time periods were selected because meteorological conditions would be at extremes during the two time periods and variability in precipitation composition could, therefore, be significantly different. Because precipitation composition data were available for the entire operational network, spatial variability was determined for comparable time periods to aid in the evaluation of the major sources of variability in measured precipitation composition. The results presented in Table 3 indicate that analytical variability did not change significantly during the two different time periods and probably contributed only a small amount to any variations observed in precipitation composition. Analytical variability was determined for each chemical species by performing each determination six to ten times on fresh portions of the same sample.

Sampling variability was determined from samples collected 5 meters apart at Site 14. Six collectors were used for the November-December 1977 study while five collectors were used for the June-July 1978 study. Samples from 11 precipitation events were analyzed to determine sampling variability in the November-December 1977 Samples from ten precipitation events were analyzed to determine sampling variability in the June-July 1978 study. Variation in precipitation composition that results from sampling as determined here also includes analytical variability. However, the magnitude of analytical variability has been shown to be considerably less that that observed for sampling variability. Only minor differences in sampling variability were observed between the two time periods evaluated. The 11 precipitation events which occurred during November-December 1977 were generated by movement of a cold front through central Florida and were generally characterized by strong gusty winds and precipitation which occurred during periods that ranged from about 1 hour to more than 24 hours of continuous

Figure 7. Changes in the chemical composition of precipitation samples with time when stored at room temperature

rain and mist. The ten precipitation events from June-July 1978 were a result of convective-type weather activity. Strong gusty winds usually occur during periods of convectional storm activity. Precipitation usually occurs over a short time period of two hours or less.

Spatial variability associated with precipitation composition which occurred during the same time periods utilized to evaluate analytical and sampling variability are also presented in Table 3. Spatial variability inherently includes both analytical variability and sampling variability. Results obtained for both the November-December 1977 and June-July 1978 periods show significant variations in precipitation composition. These variations cannot be accounted for by a consideration of analytical and sampling variability. The observed spatial variability in the concentration for each chemical species, as reported in Table 3, is quite typical of what occurs even on an event-by-event basis.

Chemical Composition of Precipitation Which Occurred from July 1977 to March 1979

Precipitation chemistry data were collected for several sites on KSC and on the UCF campus for a 21-month period. Ionic composition data were obtained from precipitation samples for the last 17 months while acidity, conductivity, and volume measurements were made during the entire 21-month period. In the following narrative, general observations based on data collected are described. No attempt is made to present all results available on a site and chemical parameter basis. Instead, representative data from selected sites which involve only a few of the more important chemical parameters will be utilized. Trends and variations in volume weighted average concentrations which occurred during the 21-month study for several chemical parameters will be considered. The term "volume weighted average" (VWA) or "weighted average" will be used when concentration data for individual chemical species are to be reported as averages and when precipitation sample sizes were not identical. Larger samples exert a greater influence on weighted average concentration. The weighted average is determined as follows:

$$VWA = \frac{\sum_{i}^{\sum_{i}^{j}} C_{i} V_{i}}{\sum_{i}^{\sum_{i}^{j}} V_{i}}$$

where C_1 represents the concentration and V_1 represents the volume of the 1th sample. The weighted average for most situations is calculated as described. However, parameters which are logarithmic functions of concentration cannot be treated directly. For example, pH values must be converted to hydrogen ion concentrations, then the weighted average hydrogen ion concentration is calculated and used to calculate weighted average pH.

Monthly weighted average pH, amount of precipitation, major ion concentrations as microequivalents/liter and total deposition amount of free acid measured as microequivalents/square meter are summarized for six individual sites located at KSC, the UCF site, and an average of all KSC sites in Tables 4-12. The values reported in Table 4 include contributions from all KSC sites. The units microequivalents/liter were selected for reporting of results in preference to units of parts per million (ppm) because the former allow direct intercomparison of acidity with other ionic concentrations. Units of ppm are based on weight and thus do not allow direct comparisons to be made. For example, in a dilute solution of sulfuric acid, one microequivalent of acid is present for each microequivalent of sulfate. By comparison, 1 ppm of acid (hydrogen ion) is present for each 48 ppm sulfate.

Results from both "clean" and "slightly dirty" samples are included in the average values reported. Clean samples were those which were colorless and contained no visible contamination such as dirt or insect remains. Slightly dirty samples contained dirt, insect remains, or other foreign matter while the liquid portion of the sample remained colorless. Results obtained as averages for "clean only" samples are reported for comparison purposes in Table 5. The weighted average concentrations based on clean and slightly dirty samples agree with the corresponding averages based on results from clean only samples except during the period December 1978, and January 1979. Clean samples accounted for less than ten percent of all samples collected during this two-month period. No clean samples were collected during February and March 1979. The variations in monthly weighted average pH for all KSC sites based on clean plus slightly dirty and for clean only samples is shown in Figure 8. The variations apparent in the December 1978, to March 1979, data have been explained above.

Tables 6 to 12 summarize the monthly averages considered previously in Tables 4 and 5 for individual KSC sites 01, 11, 12, 13, 14, and 19, and UCF Site 18. In all cases, considerable variation between months is observed for the chemical species measured. Site-to-site variations for individual chemical species is not as great as monthly variations. Figures 9 and 10 show variations observed when weighted average pH based on all KSC sites is compared to the UCF site and when weighted average pH at KSC sites 01, 12, and 14 are compared. The variation in the chemical composition of precipitation has been considered previously. The variation in measured sample pH based on all samples collected at a single site within a specified time period is substantial. Monthly and quarterly pH summaries presented as weighted averages are shown in Figure 11. The distribution and variability of sample pH is shown in Figure 12 and in Appendix Tables 1-21. Because of the variability in the chemical composition of rain monthly weighted averages should be utilized with caution and then only to indicate the relative average composition on a month-to-month basis.

SS PH CAPPT SU4 XSSU4 NA ĹA MG NH4 NU3 0.0 U . () 0.0 0.0 4.57 20.0 0.0 $\theta = 0$ 0.0 J . V 4.85 0.0 U.U U . " 0.0 U . U 45.5 30.7 16.4 c.4 y. d 36.5 U . 0 1.0 U . 1 6.0 7.0 12/17 4.64 U . U 50.3 0.0 01/78 4.61 15.0 10.1 26.0 1.1 0.19. y 0.8 36.1 02/78 U . U 11.2 0.6 44.4 10.2 03/14 0.0 30.8 U.5 30.5 26.8 73.0 04/78 4.58 0.0 20.4 05//8 16.5 **∂.** ∪ 30.Y 06/70 14.9 40.1 07/15 0.6 10.0 08/78 J. u 30.4 18.4 04/76 U. U 38.2 6.4 14.1 14.4 70.4 7.Ž 2.0 15.2 0.0 0.6 6.1 25.2 40. 35.1 0.9 53.5 11.0 38.0 100.7 0.0 10.7 174.0 188.2 12//8 10.5 37.0 U.9 24.4 10.1 () • () 5.1 5.2 14.1 01/79 U. U 0.6 5v.2 02/79 14.6 36.3 4.50 12.0 70.0 2.4 76.1 0.0 62.0 15.1 11.6 4.60 0.0 25.3 52.0 11.6

JEQ/LITER

Table 4. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at All KSC Sites During 1977-79

						U (_	W/ L I I L	rs.					0.5.4	/ U W & " *
MO/YR PH (MPPT	н	NA	ĸ	LA	MG	NH4	CL	F	NO3	S04 >	3504	SS	AMTH
07/77 4.55	U . U	29.১	0.0	U . (I	() • U	0.0	0.0	0.0	0.0	U . U	0.0	0.0	0.0	0.
08/7 <u>7</u> 4.48	U . U	33.1	J . U	0.0	U . U	0.0	Ú • U	0.0	U • 0	0.0	J.0	0.0	U • U	Ú.
09/17 4.55	9.0	54.5	0.0	₫• 0	U • U	U • U	∪ • 0	0.0	$0 \bullet 0$	0.0	U • Q	_ U • Ù	_ 0 • 0	0.
10/77 4.39	U . ! !	40.7	115.4	3.5	9.2	17.8	ರ•8	96.8	5.4	11.0	34.2	24.3	100.5	υ.
11/77 5.17	U • O	ئ • ھ	31.7	0.5	1.0	7.1	1.4	35.0	U . 1	3.0	7.6	4.5	30.5	Ű.
12/// 4.68	U 🕳 ()	25.4	56.1	1.1	4.0	12.1	3.4	54.0	0.5	1.7	26.4	21.0	58.3	U.
01/78 4.83	J • U	15.5	31. →	0 • 4	6. 0	7.4	5.7	31.0	0.1	0.3	19.3	16.2	35.7	0.
02/78 4.41	Ų • U	39.1	43.0	U.7	3.4	12.0	5.2	46.0	0.5	8.1	30.3	31.9	47.6	Ŷ.
03/78 4.51	t) • ()	31.9	35.5	0.9	5. /	4.5	7.2	38.U	U.H	10.2	28.2	24.5	39.0	0.
114/78 4.40	0.0	21./	5v.4	10.4	54.7	12.8	41.4	44.5	4.4	50.5	54.2	49.6	49.1	Ú.
05/19 4.44	U • 1)	30.3	30.0	1.4	13.9	9.1	19.0	40.9	0.7	10.5	40.0	36.5	44.7	Ú.
00/73 4.59	U • V	52.5	47.1	1.5	b./	11.5	3.9	54.0	0.2	9.7	20.0	20.5	59.1	0.
07/75 4.38	(((((((((((((((((((41.5	1/.5	0.5	つ・ラ	3.0	1.4	18.2	U.n	11.0	31.4	29.6	19.8	Ü.
08/18 4.40	U . U	34.4	14.4	J • K	4.0	3.8	3.0	17.3	0.4	9.8	31.1	29.5	17.9	0.
04/78 4.54	U • U	50.0	60.5	1.7	4.9	14.5	3.3	68.5	1.6	11.0	20.3	19.5	73.8	v.
19/78 4.72	0.0	10.7	00.5	ں ۔ ہے	5.7	15.0	4.1	72.3	0.6	6.4	21.1	13.7	79.1	0.
11//3 4.55	V • V	21.5	75.U	1.4	_6.8	10.0	0.5	11.6	4.5	15.4	14.8	12.4	78.7	Ų.
12/14 4.05	ું• ∪	04.1	444.0	9.0	29.1	101.3		474.5	4.4	35.9	120.0	71.2	523.0	0.
01/74 3.9/	0.0	106.9	45.1	3.2	55.4	15.5	36.3	43.9	8.5	53.7	121.7	117.2	48.4	υ.
05/13 0.00	U • 0	0 🗸 🗘	U. U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ų.
03/79 0.00	U • 6	0.11	U . U	0.0	0.0	U . U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.

UFD/I TIER

HEQ/SH. M.

Table 5. Volume Weighted Average Chemical Composition by Month for Clean Precipitation Samples Collected at All KSC Sites During 1977-79

Table 6. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 01 During 1977-79

													~ ~ ~	
MUZYR PH C	MPPI	Н	NA	ĸ	LA	Mb	NH4	CL	F	NO3	SU4 X	(3804	SS	AMTH
07/77 4.53	3.4	24.5	0.0	0.0	6.0	0.0	0.0	Ū.(I	0.0	0.0	0.0	0.0	0.0	999.
08//7 4.54	7.0	20.9	V. U	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2188.
09/77 4.82	9 4	15.3	J.U	0.0	Ü. Ü	Ū, Ŏ	0.0	Ů.Ú	0.0	0.0	0.0	0.0	0.0	1428.
10/77 4.51	6.6	30.15	202.0	5.8	ذ ۽ 1	25.4	9.1	175.7	2.6	6.4	41.9	23.8		2032.
11//7 5.34	15.5	4.6	40.0	1.6	5.0	21.4	1.3	110.1	0.0	2.4	13.2	5.3	120.0	710.
12/77 4.71	4 4	19.4	130.0	2.8	8.0	31.6	5.4	132.6	2.1	9.7	34.7	21.3	144.0	1814.
01/78 4.67	5.6	21.4	130.0	2.6	18.8	32.7		135.0	0.4	11.1	38.1	24.1	149.5	1196.
02//8 4.46	9.1	34.7	91.0	2.5	7.5	35.6		138.4	0.0	9.1	46.7	36.0	115.5	3152.
03/78 4.40	3.3	34.5	45.l	2.5	15.7	22.3		105.7	1.i	15.8	42.4	32.8	102.8	1129.
04/78 4.69	0.0	25.1	J.U	3.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.
U5/78 4.40	5.4	34.5	45.1	3.4	30.0	24.2	34.8	97.7	1.7	27.Ž	60.5	50.5	107.8	1872.
06/18 4.55	10.5	27.9	51.0	2.9	6.2	11.9	4.2	57.1	0.2	7.7	31.0	25.1	62.5	4611.
07/78 4.41	22.0	39.3	21.0	1.2	H.5	6.i	2.4	27.7	1.2	12.4	32.9	30.1	30.4	8635.
08/78 4.43	16.1	37.1	20.1	0.7	4.4	4.4	5.6	23.4	0.1	9.3	27.5	25.2	24.9	5986.
09/78 4.50	10.7	31.4	155.5	5.9	11.2	37.5		176.0	v.5	12.7	39.3	21.7	189.8	3354.
10/78 4.80	10.3	15.9	190.0	4.4	15.2	45.7	1.5	223.1	υ. Ž	0.9	35.5	13.0	241.0	1637.
11/78 4.41	1.7	36.9	319.1	9.5	22.8	72.0		348.6	Ŭ.7	15.6	64.8	29. u	384.5	672.
12/78 5.00	7.5	8.7	582.1	11.6	32.1	120.0		641.1	3.3	6.1	78.0		705.2	653.
01/79 4.82	18.2	15.0	130.1	3.3	41.0	34.5		154.3	1.1	5.7	29.5		170.2	2730.
02/79 4.53	3.3		194.5	4.6	18.8	40.4		225.6	2.5	15.5	57.0		248.9	962.
03/19 4.60	2.3	- ·	156.5	3.8	17.0	39.0		190.8	3.5	12.4	42.6		204.0	589.
		•	• -	- • -	• •				- • •	•				•

UEQ/LITER

UE0/30.4.

Table 7. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 11 During 1977-79

UEG/SO.M.

MUZYR PH_CMPPT H NA K CA MG NH4 CL F NUS SU4 XSSU4 SS	AMTH
	010
_07/77_4.573.4_2o.90.00.00.00.00.00.00.0	918.
	7743.
09/77 4.85 22.1 14.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3251.
10/77 4.30 3.0 50.5 65.2 2.4 8.4 13.8 8.5 57.0 1.8 15.7 30.8 25.1 60.9	1509.
11/77 5.17 16.0 6.5 17.7 0.1 1.2 4.0 1.4 18.9 0.1 3.3 6.6 4.7 20.8	1089.
12/77 4.56 7.8 27.7 39.8 1.0 3.3 9.1 2.6 41.1 0.9 9.9 28.3 24.2 44.2	2165.
01/78 4.56 6.9 27.8 37.1 0.6 8.4 8.7 7.8 34.2 0.0 10.5 30.5 27.1 36.8	1905.
02/78 4.42 12.4 38.2 20.1 0.6 4.6 7.1 6.8 29.9 1.3 9.4 33.7 30.7 32.0	4736.
03/76 4.58 7.8 20.3 20.1 0.9 8.0 7.3 8.0 30.6 0.8 11.5 20.2 25.3 30.9	2047:
04/78 4.75 0.4 17.9 51.2 4.4 54.2 14.9 55.1 57.1 3.5 29.2 79.1 73.2 62.6	71:
	4352.
	4325.
	4708.
	11467.
	1396.
09/78 4.58 11.4 20.1 20.0 1.0 4.2 0.0 2.5 33.0 0.2 10.4 19.7 16.5 35.2	2980.
$1\sqrt{78}$ 4.75 13.9 18.0 $4/./$ 1.4 3.5 11.7 2.1 48.9 0.4 5.9 17.9 12.9 53.8	2473.
11/78 4.66 4.7 21.0 132.1 3.1 10.4 29.5 0.4 141.4 0.2 8.0 32.3 17.8 155.8	1025.
12/78 4.42 9.0 12.0 150.0 3.5 8.8 31.0 2.6 158.0 1.6 5.8 26.9 10.5 174.9	1075.
01/19 4-11 20.3 19.4 45.0 2.2 4.0 8.9 2.4 42.9 0.8 6.6 19.1 14.6 47.4	3937.
02/79 4.59 3.3 25.7 53.0 1.5 11.2 12.0 11.4 50.4 2.1 13.2 30.1 30.4 61.7	835.
05/79 4.70 3.5 20.2 81.5 2.3 14.6 16.2 7.5 71.6 4.1 17.6 38.1 30.7 79.0	663.

UEB/LITER

Table 8. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 12 During 1977-79

UEQ/LITER													UEQ	/50.M.
MU/YR PH C		H	NA .	K	CĄ	MG		CĽ	F	NO3		3304	35	AMTH
07/77 0.00 08/77 5.08	11 . 7	0.0	J • 1)	0.0	U • U	0.0	0.0	0.0	0.0	0.0	ή. ή.	0.0	0.0	893.
08/77 5.0M	10.7	8.4 9.5	0.0	0.0 0.0	() . () () . ()	0.0 0.0	0.0	0 • 0 0 • 0	0.0	0.0 0.0	0.0	0.0	0.0 0.0	1329.
10/77 4.25	4.5	50.7	5č.4	ĭ.ö	5.0	10.8	š.ž	53.6	ĭ.š	12.ŭ	29.6	24.Ĭ	59. i	2560.
11/77 5.19	10.5	8.0	10.0	0.2	1.1	5.0	1.5	18.1	Ŭ.Ü	3.0	7.3	5.5	19.3	1481.
12/77 4.66	10.1	55. ú	30.1	0.0	₹•0	6.0	₹•7	31.5	٠.٥	6.9	21.7	18.5	34.1	\$553.
01/78 4.66	12.9	21./ 38.1	35.3 21.9	0.5	7.5 3.8	7.4 5.5	7.1	30.2	0.0	8.5 8.1	25.8 31.1	22.8	33.3	1045.
03/79 4.47	7.7	33.8	30.d	0.9	12.0	10.3	10.2	35.5	0.4	21.8	33. i	29.6	37.3	2599
04//8 4.74	0.4	18.2	47.8	4.7	59. i	15.6	50.6	59.6	3. d	31.1	88.2	82.3	63.4	76.
05/78 4.32	8.9	40.2	5+.2	2.5	16.3	0.1	34.3	28.1	1.8	23.1	55.7	52.9	24.7	3853.
U6/78 4.56	15.0	20.3	13.2	0.7	ے ۔ 10	3.0	۶٠۶	13.0	0.0	15.2	23.5	21.8	14.5	4157.
07/78 4.32 08/78 4.39	21.0	41.1	11.0	1.3	6.5	5.4	2.2 4.5	12.2	1.3	11.4	39.9 32.3	38.9	16.3	10077.
09/78 4.44	8.0	36.0	20.4	0.3	8.0	7.0	3.8	29:2	U.0	13.7	31.0	28.9	29.4	2944.
10/78 4.63	12.1	23.7	53.2	ĭ.3	Š.0	ڏ ڏي	3. Ü	56.7	کے۔ ن	78.5	23.1	17.3	62.6	2854.
11/78 4.50	۷.5	21.1	100.3	2.5	8.2	24.6	0.7 1	04.0	0.4	12.1	24.3	18.1	120.6	690.
12/78 5.00	y • ¢	10.0	119.5	2.8	1.3	23.4	<u> </u>	08.5	ج . پر	4.8	50.0	9.8	119.0	980.
01/19 4.75	14.4	17.6 43.1	4/.1 60.9	2.4	12.5	10.5	2.0 13.5	45.4 67.0	2.6	15.4	16.6 51.7	11.9	51.2 73.0	3421. 1182.
03/79 4.56	2.5	27.5	44.4	1.4	12.5	10.4	6.8	46.6	3.7	18.1	33.5	28.7	51.2	699
03/17 4.30	643	E1.3	44.4	1.4	16.3	10.7	0.0	40.0	3.1	10.1	22.2	20.1	71.6	077.

Table 9. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 13 During 1977-79

MUZYR PH CM	IPPT	H	NA	K	CA	MG	NH4	CL	F	NO3	SU4 X	\$\$04	SS	AMTH
07/77 0.00	0.0	0.0	0.0	0.0	J. U	J. U	0.0	0_0	U . U	U . ()	0.0	0.0	V. U	ΰ.
08/77 0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ú.Ů	Ŭ.Ŭ	0.0	ŏ.
09/77 0.00	نا 🕳 ل	0.0	U. U	0.0	U . U	U . U	0.0	U. U	0.0	Ŭ. Ŭ	Ŭ.Ŭ	Ü.Ü	0.0	ŏ.
10/77 0.00	0.0	U . ()	U . U	0.0	U . U	U . U	0.0	ÚĽU	0.0	0.0	0.0	0.0	Ŭ.Ŭ	
11/17 5.21	13.0	6.2	10.1	0.2	ს.8	3.4	0.9	17.2	0.0	2.4	5.5	3.8	16.2	807.
12/77 4.55	7.≥	٧.٦	51.5	1.4	4.1	11.5	5.0	55.0	0.0	7.2	30.5	25.0	59.1	2015.
01/78 4.58	5.7	26.2	31.5	0.5	1.2	7.5	0.5	28.8	0.0	9.1	29.9	27.i	30.3	1501.
02/78 4.40	11.0	40.1	24.4	0.5	4.0	0.2	6.6	27.5	0.5	6.5	34.9	32.1	29.8	4631.
03/78 4.36	5.4	43.7	14.7	0.4	4.5	4.3	5.3	16.5	0.0	33.5	1/.3	15.7	16.6	2592.
04/78 4.64	ں ۔ ح	55.4	41.5	4.6	24.9	11.1	47.1	42.0	3.7	19.0	53.9	49.6	46.3	54.
05/78 4.46	7.2	34.5	50.0	1.7	4.6	5.1	29.1	23.0	1.2	18.6	36.1	33.8	24.7	2500.
06/78 4.59	24.4	40.8	15.4	0.5	5.4	3.2	1.2	14.3	0.5	13.7	30.9	29.5	15.i	9947.
	29.5	65.2	14.1	0.6	4.5	2.0	4.9	12.8	6.7	17.8	47.4	46.1	14.1	18340.
08/78 4.34	7.9	45.9	12.0	0.9	5.1	3.4	2.3	14.6	0.0	13.9	30.4	34.9	15.5	3647.
09/78 4.08	5.4	83.0	10.4	0.8	4.0	4.7	11.4	23.2	0.9	19.9	54.1	51.9	24.1	4492
10/78 4.95	ğ. 6	11.5	6/.0	1.5	5.5	15.1	1.0	69.7	0.4	4.6	14.6	7.5	76.9	964.
11/78 4.70	3.2		164.1	4.0	9.7	38.0	0.5	164.7	1.8	8.3	34.5	17.6	161.3	641.
12/78 4.95	_გ.ა	11.0	155.4	5.5	9.1	32.2	3.4	160.5	1.0	5.9	20.8	10.3	176.0	937.
01/79 4.73	17.1	រូប.ប្	31.5	1.0	4.5	8.7	2.2	39.8	0.0	4.7	19.4	15.3	43.4	3197.
02/19 4.53	3.4	24.7	50.2	1.8	14.5	15.5	12.0	65.9	1.9	14.7	40.7	34.0	72.i	ĩôżź.
03/79 4.68	3.7	20./	45.4	3.U	12.0	10.2	19.5	50.8	3.9	17.1	32.5	27.4	55.0	767.

UEQ/LITER

UEG/SO.M.

Table 10. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 14 During 1977-79

UEQ/LITER (UEG	/\$0.M.
MUZYR PH	CMPPT	H	NA	K	CA	MG	NA4	CL	F	NO3	\$04_X		35	AMTH
01/17 4.6		24.0	0.0	0.0	0.0	Ų. Ņ	Q•ÿ	0.0	0.0	0.0	ŭ•0	0.0	0.0	311.
08/77 4.8		15.1	∀• ∀	0.0	0.0) • U	9 • 0	0.0	0.0	0.6	0.0	0.0	0.0	1894. 2377.
09/77 4.7	5 12.7 5 6.5	16.7	0.0	2.4	5.4	0.0 14.2	12.5	40.0	1.1	0.0	55.5	17.2	0.0 53.6	1050.
11/77 5.1		6.5	50.3	5.3	1.0	4.6	1.5	22.0	0.0	2.6	5.9	3.6	24.3	išži.
12/17 4.7		17.2	24.8	V.3	2.5	5.7	2.8	20.4	0.3	5.3	15.8	13.1	28.7	1657.
01/78 4.0		24.0	40.1	1.0	و. 9	11.4	7.2	47.4	0.1	9.0	32.0	27.1	52.5	1320.
02/78 4.3		45.0	3 v . 4	0.0	5./	1.9	7.6	30.5	1.0	11.5	3/.7	34.6	32.7	5774.
03/78 4.5		29.5 57.4	39.5	1.2	13.4	11.0	9.8 78.1 1	10.7	0.9 5.9	15.6	40.7 117.8	36.2	49.0	836. 165.
04/78 4.4		27.1	42.2	6.9 c.1	54.5 12.0	10.4	27.6	49.4	J•7 V•℃	36.6 17.0	33.3	28.3	54.1	2731.
06/78 4.6		25.1	25.2	ī.ö	5.7	5.5		26.1	Ŭ.Š	8.8	22.2	19.0	28.5	4550.
07/78 4.2		50.4	41.1	1.2	8.0	9.0	2.6	45.3	0.7	19.1	47.8	43.2	49.7	4550. 12330. 1452.
09/19 4.5	5.0	26.1	45.7	1.5	7.2	10.7	1.9	51.2	0.3	9.7	24.7	19.7	54.3	1452.
09/78 4.5		24.5	34.0	1.3	5.1	ع و ا	3. U	44.5	ပုံ • စု	12.9	25.2 25.5	20.7	48.1	3440.
10/75 4.5		54.5	153.3	1.5	13.0	12.7	3.2 0.5 1	62.2	0.5	7.3	33.7	19.2	67.1 179.1	3793. 601.
12/78 5:0		10.0	153.3	3.4	7.8	31.7		44.4	0.1	3.7	24.0	9.8	159.2	761:
01/79 4.7		17.2	47.5	3.5	5. 4	11.4		47.4	Ŭ. Ŭ	6.8	10.5	13.6	Š2.3	2780.
U2/79 4.4	2 2.4	31.8	n1.5	2.6	15.1	18.U		91.0	3.0	17.0	51.0	41.7	99.2	1084.
03/79 4.6	2 2.3	53° A	40.7	1.9	5.0	10.7	5.1	45.9	5.5	12.4	26.3	21.6	50.5	552.

Table 11. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at KSC Site 19 During 1977-79

MU/YR PH	CMPPT	H	NA	K	CA	MG	NH4	CL	F	NU3	S04 X	SS 04	S 3	AMTH
01/77 4.30	15.5	50.3	0.0	6.0	$(r \cdot 0)$	0.0	0.0	0.0	0.0	0.0	U_0	0.0	0.0	7761.
Ud/77 4.41	25.u	30.5	U.U	U . ()	1) . 0	U . U	0.0	0.6	O. U	0.0	0.0	0.0	U . U	9639.
U9/77 4.51	ے ۔ اے	24.5	0.0	1.0	0.0	U . U	0.0	0.0	U . J	0.0	0.0	0.0	0.0	5257.
10/77 4.40	1.2	39.4	U. U	0.0	9 - 0	0.0	0.0	U . ()	0.0	U.U	0.0	0.0	U . U	459.
11//7 4.92	6.3	12.2	10.0	0.3	5.4	3.1	3.2	18.4	0.0	6.6	11.1	9.3	19.9	766.
12/77 4.52	5.4	30.0	1/. 7	Ú.5	4.5	4.5	1.9	25./	V.5	y.1	10.0	16./	26.2	2527.
01/78 4.76	5.5	17.5	30.1	U.7	17.1	11.9	7.6	31.6	$\mathbf{v}_{\bullet}0$	10.0	23.4	20.7	34.8	971.
02/78 4.20		ر•5ق	1.5	0.9	4.3	2.5	9.7	9.7	υ . 5	9.4	34.3	38.4	4.4	8354.
03/75 4.47	b • 3	33.to	55.5	1.5	12.2	5.8	11.2	22.9	i.1	13.6	51.9	49.6	25.3	2126.
04/18 4.58		1.1ي	22.0	١ . ١	50.1	0.4	34.0	21.2	۷.1	21.6	41.8	39.6	23.3	226.
- U5/15 4.53	1.0	54.6	15.5	5.1	7.2	4.9	51.1	13.8	1.5	16.5	33.5	31.9	15.1	2255.
06/78 4.48	17.5	35.2	11.2	U.Y	5.7	≥.0	6. 8	11.9	6.1	12.2	24.9	28.7	15.4	5796.
- 07/78 4.57	50.9	50.9	o.i	0 • ರ	0.9	1.6	1.5	5.8	0.3	7.6	18.9	18.3	0.3	7232.
08/18 4.49	7.4	3c.1	د.15	1.0	8.0	4.4	3.7	10.5	U.9	13.0	21.3	19.7	17.0	3009.
09/73 4.35	15.6	44.4	4./	0.5	4.5	1.4	8.6	>・4	1.1	12.3	31.4	30.8	5.9	6918.
10/74 4.37	>. მ	43.0	61.3	1.5	1.4	13.4	8.3	63.3	0./	15.1	30.6	30.2	64.0	2510.
11/78 4.05	U . 1	55.4	13.3	1.0	10.5	5.4	4.4	16.4	J. Q	30.8	15.6	14.0	17.4	20.
15/19 4./5	15.0	10.4	30.9	0.9	4.4	7.1	2.1	34.6	د. ٥	b. U	25.0	18.5	30.5	2u78.
01/79 4.50	10.5	13.8	24.1	y.4	12.0	0.0	4.0	2 3. 0	0.9	6.4	16.5	13.9	25.5	2548.
02/79 4.35	4 • d	44.3	<77.8	5.6	53.2	60.1	26.4	347.4	2.5	43.7	143.0	109.0	350.5	2114.
03/79 4.40	6.5	39.4	14.2	0.B	4.7	3.0	8.0	18.9	5.1	15.3	34.2	32.5	18.3	2502.

UEQ/LITER UEQ/SU.M.

Table 12. Volume Weighted Average Chemical Composition by Month for Clean and Slightly Dirty Precipitation Samples Collected at UCF Site 18 During 1977-79

Figure 8. Comparison of Monthly Volume Weighted Average pH for All Clean Plus Slightly Dirty (.....) and Clean Only (______) Precipitation Samples Collected at KSC

Figure 9. Comparison of Monthly Volume Weighted Average pH based on All Samples Collected at KSC (_______) with Samples Collected at UCF Site 18 (.....)

Figure 10. Comparison of Monthly Volume Weighted Average pH for Precipitation Samples Collected at Three Neighboring KSC Sites

Figure 11. Comparison of Monthly Volume Weighted Average and Quarterly Volume Weighted Average pH Based on All Samples Collected at KSC. Insert Shows pH for Individual Samples Collected at KSC Site 01 During September 1978

_____ Monthly Weighted Average pH
----- Quarterly Weighted Average pH

30% Figure 12. pH Range Jul-Sept 77 Oct-Dec 77 less than 3.70 a 20% 3.70-3.99 b 4.00-4.09 С 4.10-4.19 d Distribution of Individual Collected at KSC Sites 01, 10% 4.20-4.39 е f 4.40-4.69 4.70-4.99 5.00 and greater 0% g h bcdefgh abcdefgh 30% Jul-Sept 78 Oct-Dec 78 Jan-Mar 78 Apr-June 78 20% PERCENT FREQUENCY 10% Sample pH Values for Precipitation 12, 13, 14, and 19 0% abcde fgh bc defgh bc defgh ab cdefgh 30% Jan-Mar 79 20% 10% 0% bcd efgh

Characterization of Precipitation Composition

Results of precipitation chemistry measurements based on monthly averages were presented previously. The trends in precipitation composition from month to month are not clearly defined in most cases; significant correlations do exist, however, among several of the chemical species present. Many of these correlations exist on a sample-by-sample and event-by-event basis as well. The results summarized below will emphasize those correlations which are useful in defining the composition of precipitation.

Acidity. The free acidity of samples was determined by converting the measured pH value to the corresponding hydrogen ion concentration which has units of microequivalents/liter. The pH of dilute aqueous samples which contain strong acids such as HNO3, H2SO4, and/or HCl is determined by the total acid concentration present unless acid neutralizing species or partially dissociated weak acids are present. The actual strong acid acidity can be determined by titration and Gran plot treatment of the titration data (Galloway and Likens, 1979). Total titratable acidity can be evaluated from the same titration data and includes the contribution of all acidic species (Galloway and Likens, 1979). Rain samples which gave initial pH readings of less than 4.7 were titrated to determine the total acidity and strong acid acidity. Figures 13 and 14 show the relationships that were observed between HNV (non-volatile free acidity) and strong acid acidity in precipitation samples that were collected at KSC site 01 and for all KSC samples collected from July to September 1978. The relationship which exists between HNV and strong acid acidity for samples collected at KSC site 01 and at all KSC sites indicate that strong acids in the samples account for sample free acidity once volatile acids have been removed and, therefore, are responsible for pH values which have been observed. Similar behavior has been observed during other time periods. Titratable acidity for samples collected during July to September 1978, is compared to sample acidity based on the initial pH measurement in Figure 15.

The free acidity of rainfall at KSC can be totally accounted for by the presence of H_2SO_4 , and HNO_3 when monthly averages are considered. This observation has also been made when only individual samples are considered. The actual concentrations of free acidity, NO_3 , and excess SO_4 (sulfate not of sea salt origin) in individual samples collected at KSC site 01 and UCF site 18 during July 1978, are shown in Figures 16 and 17, respectively. The additive concentrations of NO_3 plus excess SO_4 account for the acidity observed even when sample acidity changed drastically. Concentrations of NH_4 were very low in samples collected during July 1978.

The excess $S\overline{0}^24$ concentrations and $N0\overline{3}$ concentrations in rain samples expressed as monthly weighted averages are included in Tables 4 to 12. from Figures 18 and 19, it is apparent that the monthly weighted average acidity in samples corresponds closely to observed weighted average concentrations for both excess $S\overline{0}^24$ and $N0\overline{3}$. Only during April 1978, do these comparisons not hold. The concentrations of NH⁺4 in precipitation samples from April 1978,

Figure 13. Comparison of Nonvolatile Free Acid and Strong Acid Concentrations in Rainfall Samples Collected During July to September 1978, at KSC Site 01

Figure 14. Comparison of Nonvolatile Free Acid and Strong Acid Concentrations in Rainfall Samples Collected During July to September 1978, at All KSC Sites

Figure 15. Comparison of Free Acid and Titratable Acidity Concentrations in Rainfall Samples Collected During July to September 1978, at All KSC Sites

Figure 16. Comparison of Free Acidity () with Excess Sulfate (— — —) and Nitrate (————) Concentrations for Precipitation Samples Collected During July 1978 at KSC Site 01

Figure 17. Comparison of Free Acidity () with Excess Sulfate (— — —) and Nitrate (————) Concentrations for Precipitation Samples Collected During July 1978 at KSC Site 18

Figure 18. Comparison of Monthly Volume Weighted Average Free Acidity (.....), Nitrate Concentrations (....), and Excess Sulfate Concentration (______) for Precipitation Collected at KSC Site 01

Figure 19. Comparison of Monthly Volume Weighted Average Free Acidity (.....), Nitrate Concentration (_____), and Excess Sulfate Concentration (.....) for Precipitation Samples Collected at All KSC Sites

The excess $S\overline{0}^24$ concentrations and $N0\overline{3}$ concentrations in rain samples expressed as monthly weighted averages are included in Tables 4 to 12. From Figures 18 and 19, it is apparent that the monthly weighted average acidity in samples corresponds closely to observed weighted average concentrations for both excess $S\overline{0}^24$ and $N0\overline{3}$. Only during April 1978, do these comparisons not hold. The concentrations of NH $\overline{4}$ in precipitation samples from April 1978, were typically 2 to 50 times greater than those measured during other months in the study period. No conclusive reasons for this increase can be given. Atmospheric ammonia neutralizes acids in the atmosphere and this may account for the fact that acidity did not increase as in other months in proportion to the excess $S\overline{0}^24$ or $N0\overline{3}$ concentration.

When all samples collected at KSC during July to September 1978, are considered and the dependence of sample acidity on $N0\overline{3}$ or excess $S\overline{0}^24$ concentrations is evaluated, evidence as shown in Figures 20 and 21 indicates that both $N0\overline{3}$ and excess $S\overline{0}^24$ are significant contributors. The correlations of free acidity with $N0\overline{3}$ and excess $S\overline{0}^24$ concentrations from individual samples when evaluated on a month-by-month basis are presented in Table 13.

Figures 22 and 23, respectively, show the dependence of free acidity in samples collected at KSC site 01 on $N0\overline{3}$ and excess $S\overline{02}_4$ when monthly volume weighted average concentrations are considered. The reported correlation coefficients emphasize the existence of a strong dependence and lead to the conclusion that H_2SO_4 and $HNO\overline{3}$ are indeed responsible for the acidic character of precipitation. When the influences of excess $S\overline{02}_4$ and $NO\overline{3}$ are combined with the acid neutralization by ammonia, an even stronger correlation is observed—Figure 24. The relationship between free acidity and $NO\overline{3}$ plus excess $S\overline{02}_4$ minus NH^4_4 also holds when the average results obtained from samples collected at all KSC sites are considered—Figure 25.

Sample free acidity also appears to be dependent upon the amount of precipitation that occurs. Typical behavior that has been observed is shown in Figure 26. The total amount of acid deposited is also related to the amount of precipitation that occurs as shown in Figure 27 for KSC Site 01. The same general agreement is observed when the amount of free acid deposited and amount of precipitation are compared on a sample-by-sample basis. Typical results for samples collected at KSC from July to September 1978, are shown in Figure 28. A comparison by month between the amount of free acid deposited at KSC Site 01 and UCF Site 18 is shown in Figure 29.

Figure 20. Comparison of Free Acid and Nitrate Concentrations in Rainfall Samples Collected From July to September 1978, at All KSC Sites

Figure 21. Comparison of Free Acid and Excess Sulfate Concentrations in Rainfall Samples Collected from July to September 1978, at All KSC Sites

Table 13.

Coefficients of Linear Correlation Between Selected Components Present in Precipitation Collected at KSC

Month (Voor	No	u (NO.	H/excess	II /F	cc /u	C1 /NA	MC /NA	Mile Javanaa CO.	N.	(Minnes (M2) /om
Month/Year Jul. 77	No.	H/NO3	<u>S04</u>	H/F	SS/H	C1/NA	MG/NA	NH4/excess SO4	No. 7	(Microeq./M ²)/cm .945
Aug. 77									41	.694
Sep. 77									43	.789
Oct. 77	17	0.979	0.861	0.572	0.118n	0.979	0.805	0.824	25	0.267 n
Nov. 77	29	0.953	0.923	0.695	0.270n	0.991	0.992	0.859	34	0.903
Dec. 77	51	0.587	0.954	0.161n	0.014n	0.985	0.997	0.700	64	0.508
Jan. 78	32	0.943	0.947	0.338#	0.069n	0.997	0.995	0.879	33	0.358#
Feb. 78	34	0.765	0.816	0.050n	0.509*	0.990	0.996	0.117 n	48	0.938
Mar. 78	45	0.991	0.211	0.102n	0.211n	0.978	0.984	0.862	50	0.348*
Apr. 78	17	0.054n	0.133n	0.015n	-0.366 n	0.965	0.966	0.835	20	0.920
May 78	52	0.165n	0.595n	0.085n	-0.065n	0.982	0.970	0.262n	62	0.928
Jun. 78	95	0.933	0.966	0.330	0.361	0.996	0.693	0.599	99	0.862
Jul. 78	109	0.856	0.966	0.228#	-0.179#	0.994	0.968	0.492	113	0.802
Aug. 78	50	0.661	0.928	0.101n	-0.388*	0.991	0.989	0.380*	51	0.941
Sep. 78	81	0.865	0.947	0.398	0.177 n	0.994	0.997	0.890	85	0.640
0ct. 78	76	0.616	0.667	0.079n	0.152n	0.994	0.983	0.347*	88	0.544
Nov. 78	63	0.794	0.736	0.230n	0.419	0.993	0.997	0.742	69	0.612
Dec. 78	52	0.826	0.954	0.429*	0.599	1.000	0.999	0.713	56	0.944
Jan. 79	81	0.961	0.964	0.570	0.165n	0.999	0.999	0.934	81	0.910
Feb. 79	4 6	0.596	0.898	0.748	0.112n	0.998	0.995	0.682	47	0.562
Mar. 79	31	0.200n	0.024n	0.141n	0.190n	0.989	0.989	0.160n	38	0.970
Unweighted										
Average	18	.708	.749	.293	.118	.990	.962	. 626	21	.733
Std. Dev.		.324	.328	.203	.272	.009	.080	. 269		. 2 27

Correlation coefficients are significant at $\alpha \leq 0.001$ except as noted: *Significant at $\alpha \leq 0.01$. # significant at $\alpha \leq 0.05$. n not significant at $\alpha > 0.05$.

Figure 22. Dependence of Volume Weighted Average Free Acidity on Volume Weighted Average Nitrate Concentration by Month for Precipitation Samples Collected at KSC Site 01

Figure 23. Dependence of Volume Weighted Average Free Acidity on Volume Weighted Average Excess Sulfate Concentration by Month for Precipitation Samples Collected at KSC Site 01

Figure 24. Dependence of Volume Weighted Average Free Acidity on Volume Weighted Average Nitrate, Excess Sulfate, and Ammonium Concentrations by Month for Precipitation Samples Collected at KSC Site 01

Figure 25. Dependence of Volume Weighted Average Free Acidity on Volume Weighted Average Nitrate, Excess Sulfate, and Ammonium Concentrations by Month for Precipitation Samples Collected at All KSC Sites

Figure 27. Comparison of the Amounts of Free Acid and Raınfall Received at KSC Site 01

Figure 28. Comparison of the Amounts of Free Acid and Amounts of Rainfall Received from July to September 1978, at All KSC Sites

FREE ACID DEPOSITION
MICROEQUIVALENTS/SQUARE METER

Sea Salts. "Rainout of pollutants" refers to incorporation of the pollutant into the rain during formation of precipitation in a "Washout of pollutants" refers to the scavenging action of rain droplets as the travel through a mass of polluted air and dissolve or wash the pollutant from the air. Many pollutants exist as stoichiometric compounds in the atmosphere. The compounds thought to account for increased acidity of rain include H_2SO_4 and HNO_3 . Variations in sample acidity, whether occurring from rainout or washout of pollutants, should come about due to the presence of specific compounds. If H_2SO_4 and HNO_3 are responsible for increased acidity, then the concentrations of $S04^2$ and N03 in the precipitation samples should be indirect indicators of sample acidity provided other nonacidic sources of N03 and $S04^2$ do not exist. Sea salt contains considerable SO_4^{-2} and precipitation collected where the marine influence is strong will contain considerable nonacidic $50\overline{4}^2$ which arises from this influence. The $S0\overline{4}^2$ which exceeds the sea salt contribution may, therefore, be an indication of acidic $S0\overline{4}^2$. If Na+ and Cl- concentrations in precipitation are determined, then the concentration of excess $50\overline{4}^2$ in the sample can be determined (Granat, 1972). The determination of excess sulfate assumes that the concentration ratio of $SO_{\overline{A}}^2:Na^+$ or $SO_{\overline{A}}^2:Cl^-$ in precipitation is the same as that in sea water. It is common to assume that the only source of Na⁺ in precipitation is the sea. Therefore, the sea salt origin of K⁺, Ca⁺², Mg⁺², Cl⁻, and SO_4^{-2} in precipitation can be determined from the measured Na concentration and appropriate element:Na+ ratio. For situations where Cl- has no other source except the ocean it can be used to determine the sea salt contribution of each element when used in place of Na⁺ in the previous discussion. As will be shown later, it appears that sea salt contributes all of the Na⁺ and Cl⁻ determined to be present in precipitation at KSC. Therefore, either $\mathrm{Na^+}$ or $\mathrm{Cl^-}$ can be used to determine the sea salt contribution. Because slight variations were observed in the Cl-:Na+ ratio from sample to sample, all calculations of total sea salt concentration and excess $50\frac{1}{4}^2$, etc. were based on the sea salt ratio of 1.165 which represents microequivalents Cl-/microequivalents Na+. Chloride was used if the ratio was less than 1.165 which indicates excess Na⁺ and vice versa. The presence of sea salt in rain is due primarily to washout. The concentrations of sea salt in precipitation has been included in Tables 4-12.

The ionic species which have their origin in the ocean have been observed to account for a significant portion of the total ionic composition of precipitation samples collected at KSC. Sea salts represent about 75 percent of the total ionic composition in all rain samples collected when pH values are relatively high (low acidity) and as much as 25 percent to 35 percent when sample acidity is high. These observations can be drawn from results presented in Table 4. These same contributions are approximately 90 percent and 40 percent, respectively, at KSC Site 11 [on a beach dune (Table 7)] and are much lower at UCF Site 18 (Table 12). The effect of proximity to the ocean as it influences sea salt concentrations in the rain samples is shown in Figure 30, where monthly volume weighted average sea salt concentrations that were determined for samples collected at KSC sites 01, 11, 12, and 14 are presented. These four sites describe a progressively increasing distance from the ocean. The decrease in sea salt effect is apparent.

The ratios of Cl-:Na⁺ and Cl-:Mg⁺² have been observed to approximate closely the corresponding ratios as they exist in sea water. These ratios hold when individual samples are considered and variations typically are less than \pm 10% from the 1.165 ratio for Cl-:Na⁺. Typical behavior is shown in Figures 31 and 32. Agreement between measured Cl- and Mg⁺² with the theoretical ratio of 5.11 is shown in Figure 33. These observations are important for several reasons. Because existing Cl- concentrations can be accounted for by considering sea salt alone, it is apparent that HCl does not contribute to the observed acidity in rain. If no other sources of Na⁺ and/or Mg⁺² exist, then either can be used in determining excess SO $^{-2}$ concentrations and excess Cl- concentrations should the latter become significant in the future. Terrestrial sources may account for up to 10 percent of the Mg⁺² present in samples.

Correlation Among Species. The coefficients of linear correlation which have been determined for selected pairs of ionic species from samples collected during the 21-month period covered by this study are summarized by month in Table 13. The relationships that exist between selected species from July to September 1978, have already been described and presented graphically in Figures 20, 21, 31, 32, and 33. The results presented in Table 13 show that the pairs, acidity:nitrate, acidity: excess $S0\bar{a}^2$, C1: Na^+ , My^{+2} : Na^+ , $NH\bar{a}^+$: $S0\bar{a}^2$, and the amount of free acid:amount of precipitation, are generally highly correlated with few exceptions during individual months and, therefore, support the discussion presented in the previous section. For comparison purposes, the linear correlation behavior between acidity: F and sea salt:acidity are also presented in Table 13. These pairs are not significantly correlated.

Figure 30. Comparison of Monthly Volume Weighted Average Sea Salt Concentrations in Precipitation Samples Collected at Sites in Close Proximity to the Ocean (distance of each site from the ocean is indicated in parentheses)

Figure 31. Comparison of Chloride Concentrations and Sodium Concentrations in Rainfall Samples Collected from July to September 1978, at KSC Site 01

Figure 32. Comparison of Chloride Concentrations and Sodium Concentrations in Rainfall Samples Collected From July to September 1978, at All KSC Sites

Figure 33. Comparison of Chloride Concentrations and Magnesium Concentrations in Rainfall Samples Collected From July to September 1978, at All KSC Sites

Only during April 1978, May 1978, and March 1979, were significant correlations lacking for acidity:N03 and acidity:excess $S04^2$. Samples collected during these periods tended to contain greater quantities of foreign matter and the frequency of precipitation was much lower. Precipitation only occurred on two days in April 1978, and three days in March 1979. There were six days when precipitation occurred during May 1978. The presence of NH $\frac{7}{4}$ in precipitation in amounts proportional to excess SO_{4}^{2} was observed during these months of infrequent precipitation. As previously reported (Figures 24 and 25), the NH⁺4 is probably the neutralization product of the reaction between ammonia and acidity, due to HNO3 and H2SO4. Excellent correlation was observed between ionic species of sea salt origin. Specifically, $Cl^-:Na^+$ and $Mg^{+2}:Na^+$ correlations (Table 13) and, indirectly, $Cl^-:Mg^{+2}$, are important because they indicate no significant contribution by other sources of Na⁺, Mg+2, or Cl- to the ionic composition of collected precipitation. Determination of excess Cl- is feasible based on the measurement of C1- and either Na+ or Mg+2 concentrations. More extensive monthly weighted average concentrations, range of concentrations, and statistical summaries by month and for individual sites are presented in Appendix Tables 22-203. Evaluation of correlations which may exist among various species concentrations are summarized by month for individual sites in Appendix Tables 204-381.

Discussion

Evaluation of Factors Which Contribute to the Composition of Precipitation.

Evaluation of the existing quality of rain which fell during the time period included for this study can be made based on volume weighted average concentrations for chemical species of interest and the time interval desired. Before conclusions can be drawn, several factors that must be evaluated include: 1) Sources of variability in measured rainfall composition 2) Influence of foreign matter which may be present in the sample, e.g. insects and vegetation 3) Site selection and biases introduced 4) Period of time utilized for presentation of results 5) Meteorological conditions. Each of these factors was studied or evaluated to determine the influence that each could have when results of sampling and chemical analysis are reported.

Sources of Variability. The variability associated with measured rainfall composition can be accounted for by a number of factors. Analytical variability refers to the precision associated with the chemical methods of analysis that are utilized to determine individual ion concentrations. The analytical precision depends on the method of analysis utilized. It also depends on the concentration of the chemical species to be measured. When methods which are characterized by relatively poor sensitivity are utilized in attempts to measure small concentrations or when methods of high sensitivity are utilized to measure extremely low concentrations then precision is expected to be poor. When a sample is subjected to chemical analysis, precision may be good or poor for individual components based on selection of method and the actual concentration present for each individual chemical species. Results presented in Table 2 indicate relatively large ranges in precision for some individual species. Under the conditions utilized for routine chemical analysis of precipitation samples, concentrations of 0.01 ppm were typical of the lower concentration limits that were considered significant; no attempt was made to measure concentrations lower than this value. Certain species were typically present in samples at low concentrations. for example, many F^- , K^+ , Ca^{+2} , Mg+2, and NH4 concentrations were determined to be less than 0.1 ppm. Typical concentrations for other species were 2 ppm Na⁺, 3 ppm Cl., 0.5 ppm NO $\overline{3}$, and 1.5 ppm SO $\overline{4}^2$. For those species which were present at less than 0.1 ppm., an analytical variability of 0.01 (10 percent) was common and aceptable based on methodology used to determine concentration. The analytical variability observed for determining concentrations of other ions present at higher concentrations should be considerably less. These observations were verified; results are presented in Table 3.

Sampling variability is a measure of variability introduced into the measured precipitation composition due to the method of sample collection. This factor was evaluated by placing identical collectors side-by-side--simultaneously collecting precipitation from the same event in each and performing routine chemical analysis on each sample to determine any variability which may be present.

There is no way to physically separate variability due exclusively to sampling from that introduced by analytical variability. A qualitative comparison of the magnitude of analytical variability with that of sampling variability (Table 3) shows that sampling of precipitation does introduce variation into the measured chemical composition which cannot be accounted for by the analytical variability. Only small differences are observed when these comparisons are made between the two different time periods used to study these factors.

Spatial variability refers to the differences observed in measured precipitation composition from samples collected over a specified area. Evaluation of the magnitude of spatial variability is presented in Table 3 for time periods which coincided with those used to evaluate sampling variability. Five sites were utilized for the initial evaluation of spatial variability which occurred during November and December 1977. During June and July 1978, the same 5 sites were again utilized as well as a 12-site network. Variations measured for precipitation composition over the network are only somewhat accounted for by analytical and sampling variability. These observations hold for both time periods. Only minor differences are observed between variability in data from the 5-site and 12-site networks. Several factors account for the relatively large spatial variations observed and probably include local, regional, and long-range origin, meteorology, and transport of various chemical species. The variations in site-by-site and event-by-event precipitation composition are real and complicate assessment of origin and long-term trends associated with precipitation composition.

Analytical, sampling, and spatial variability have been evaluated by others (Galloway and Likens, 1978). The analytical variability for individual chemical species as determined in this study are similar to those reported previously (Galloway and Likens, 1978). The sampling variability associated with collection of bulk precipitation (Galloway and Likens, 1978) is similar to results obtained here for H+, K+, Ca+2, NO $\frac{1}{3}$, and SO $\frac{1}{4}$. Sampling variability associated with the determination of Na+, Mg+2, and Cl- in this study were considerably lower than those previously reported, that for NH $\frac{1}{4}$ was considerably larger. These differences can be explained when the actual concentrations are considered. KSC precipitation contains much higher concentrations of Na+, Mg+2, and Cl- because of proximity to the ocean. KSC precipitation has generally been characterized by very low NH $\frac{1}{4}$ concentrations.

When comparisons are made between the observed spatial variability in precipitation composition at KSC with results of similar studies, several conclusions can be drawn. Galloway and Likens (1978) measured spatial variabilities of less than 15 percent for precipitation amount, H⁺, Ca⁺², Mg⁺², NO $\bar{3}$, and S $\bar{0}^2$ 4 and up to 90 percent variability for other species. From a three- site network which covered approximately 20 km², sampling and spatial variability were essentially the same. They also reported results from an European study which was based on a 50-site network which

covered an area of 7600 km^2 . Variability for precipitation amount, Na⁺, NH4, NO3, and SO4² were 33 percent, 61 percent, 87 percent, 32 percent, and 29 percent, respectively, and was attributed to the much larger area covered. Greater variability was observed for most individual component concentrations in precipitation collected at KSC.

Analytical, sampling, and spatial variability studies were performed during two different time periods. It was initially believed that seasonal changes in precipitation composition and the different meteorological conditions which result in precipitation during two seasons would significantly alter any variability in composition. This apparently is not the case. Sampling variability was not significantly different when results obtained from samples collected during November-December 1977, are compared with those obtained during June-July, 1978. Similar observations were made for spatial variability. Although the composition of precipitation which occurred during these two time periods was dramatically different, variations due to sampling error and variations observed among individual sites were relatively unchanged. Apparently, complex local and regional meteorology and the processes which result in precipitation are extremely variable and result in significantly different precipitation composition even on a relatively small areal scale.

In addition to reporting sampling and spatial variability for individual chemical parameters or species, Table 2 also includes results for variabilities associated with determination of excess $50\frac{\pi^2}{100}$, sum of anions, and amount of free acid deposition. These three parameters are calculated by incorporating combinations of previously measured properties. Variability in determination of these parameters, therefore, reflects on any propagation of errors which may occur due to measured chemical composition. Excess $50\overline{a}^2$ values were determined from measured concentrations of $S0\overline{a}^2$ and either Na⁺ or Cl⁻. The sum of anions includes the contribution of all measured anions and includes F-, Cl-, NO $\overline{3}$, and SO $\overline{4}^2$. The amount of free acid was determined from measuring the amount of precipitation and the measured sample acidity based on pH. The magnitude of sampling variability expressed in terms of its influence on these three parameters is no greater than that observed for individual parameters. Spatial variability for excess $SO_{\overline{A}}^{2}$ and sum of the anions is no greater than the variability associated with the parameters used to calculate each. The spatial variability for amount of free acid deposited is considerably greater than that determined for either amount of precipitation or acidity. This result is expected because of the large observed variations in both parameters from which amount of free acid is determined.

The chemical analysis and sampling programs utilized have proved reliable, relatively efficient for handling a moderate number of samples, and do not contribute significantly to variability of precipitation composition. The results of the analytical variability and sampling variability studies, combined with other studies designed to evaluate quality of data and results, indicate that data used for interpretation of precipitation can be used with confidence.

Sample Contamination. The presence of foreign matter in the form of particulate washout from the atmosphere, wind-blown dust, soil, vegetation, and insect or bird droppings will alter the composition of individual precipitation samples. Samples which were seriously contaminated were discarded. Those which contained small amounts of debris were analyzed. On several occasions, only a few samples collected from a single event were contaminated to some degree. Comparisons were made between individual chemical species concentrations in clean and dirty samples. In most cases where contamination was not severe, differences in concentrations between samples were small. Monthly volume weighted average concentrations for clean and dirty samples and clean only samples are presented in Tables 4 and 5, respectively. During most months, 50-70 percent of all samples collected were clean. However, during December 1978, and January 1979, only 5-10 percent of the samples were clean; during February and March 1979, no totally clean samples were collected. Figure 8 compares monthly volume weighted pH based on clean and dirty samples with clean only samples. During the first three months of this study, clean samples were somewhat more acidic. Clean samples were somewhat less acidic during the middle months of the study. Because so few clean samples were collected from December 1978, to March 1979, comparisons are not justified. When individual comparisons are made for specific chemical species using results presented in Tables 4 and 5, small amounts of foreign matter do not appreciably influence the reported monthly average concentrations in most cases.

Based on these observations, subsequent discussions focus on results obtained from clean and dirty samples because they provide a larger and, hopefully, more representative data base.

The compositional stability of precipitation depends on several factors. As previously described, the presence of foreign matter can contribute to composition in several ways. Changes do occur which influence the concentration of several chemical species present in precipitation. Most notably, pH, NH4, and NO3 values seem susceptible to change with time as shown in Figure 7. Sample treatment and storage conditions can stabilize some of these changes to a certain extent. Refrigeration or freezing of samples is effective for all but pH.

Vegetation and insect contamination has been observed to increase concentrations of K^+ and NH_{Φ}^+ . It is likely that results presented and discussed here represent a small underestimate of sample acidity because of time dependent decreases in sample acidity which may be due to the presence of foreign matter or to other processes which neutralize a portion of the acidity.

Site Selection. The selection of individual sites can be important because localized sources of pollutants may influence composition of precipitation samples. Although this factor may contribute to some

extent to the observed spatial variability, it appears not to be a serious problem except at a few sites. The presence of sea salt in precipitation is influenced in large measure by proximity to the ocean and to meteorology. These cause "natural" variations and should not be considered a serious problem when site selection is determined. At least two sites utilized in this study have been found to yield results for certain species concentrations which can be considered somewhat different. Site 03, located at Ti-Co Airport, showed significantly elevated excess $SO_{\overline{A}}^{2}$ concentrations and significantly lower pH values than other sites when the low altitude winds blow from the southeast during precipitation. Under these conditions, the stack plumes from the FPL and OU power plants will cover this site. Washout of acidic material from the power plant plume may contribute to the increased acidity. At site 06, located near Port Canaveral, elevated Ca⁺² and Mg⁺² concentrations in samples were sometimes observed along with higher pH values. These variations may indicate the influence of nearby cement plants. Other sites including those located near heavily traveled roads do not show extreme variations in the concentration of the major ionic species. The overall site selection plan has been judged to be acceptable to allow precipitation of representative composition to be collected.

Presentation of Results. Extreme variations in sample composition from event-to-event and site-to-site make it difficult to assess long-term behavior or changes which may occur. Therefore, one month has been selected as the minimum data resolution period for use in documenting precipitation composition. Samples collected from individual events are analyzed and these individual results are used to calculate monthly weighted average concentrations. This approach has been used to obtain results presented in Tables 4-12. Selected portions of these results are plotted for easy comparison in Figures 8-10, 18, and 19. The extreme variations that are observed in event sample compositions are smoothed by this approach. However, it is possible to evaluate average seasonal variations in results. Compositional variability between months and seasons and for individual events and sites is discussed in more detail in later sections.

Meteorology. Local and regional meteorology has been observed to influence the composition of precipitation. The influence of proximity to the ocean is very apparent when concentrations of Na $^+$, Mg $^+$ 2, and Cl $^-$ in precipitation are evaluated. Onshore or offshore breezes can dramatically influence the concentration measured for these three species. The anomolous behavior observed for pH and SO $^-$ 2 concentrations in some samples collected at site 63 can be explained because of the location of site 03 with respect to the power plants and low altitude wind directions. The effect that regional and/or long-range atmospheric transport of pollutants produces cannot easily be analyzed. It is believed that most contributions to the deteriorating quality of precipitation arise from atmospheric transport of pollutants followed by rainout or washout

during the precipitation event. This conclusion is partially supported by results obtained from samples collected at the UCF site and from results obtained from samples collected in Gainesville, Florida during the same time period (Brezonik and Edgerton, 1979). Rainfall is definitely acidic at KSC, Orlando, and Gainesville.

Chemical Composition of Precipitation

General Composition. The composition of rainfall collected at KSC and on the UCF campus near Orlando, Florida has been presented in Tables 4-12. Tables 6-12 present the results for individual KSC sites and the UCF site. The major differences observed in composition of rainfall at the various sites occurs for Na+, Mg⁺², and Cl-. Sea salts are the principal source of these species and site distance from the ocean is very important when sea salt input into rainfall composition is considered. Appendix Tables 22-203 include more detailed statistical summaries of rainfall composition by month combining results from all KSC sites, and treating selected KSC sites and the UCF site individually.

The composition of rainfall determined in this study is similar to that determined for precipitation which occurs in other parts of the U.S. The major differences occur in the acid composition. Likens (1976) has reported the composition of precipitation which occurred during 1963-74 at the Hubbard Brook Experimental Forest, N.H. Liljestrand and Morgan (1978) reported the composition of precipitation based on 15 events which occurred during 1976-77 at Pasadena, Calif. The present acidity of rainfall at KSC is about one-third that reported at Hubbard Brook and Pasadena. Acidity at Pasadena is due to H_2SO_4 and HNO_3 in a 1:2 ratio. At KSC and in the northeastern U.S., acidity is due to H_2SO_4 and HNO_3 in a 2:1 ratio. The concentrations of K^+ , Ca^{+2} , and NH_4 are comparable in all areas. Concentrations of Na^+ , Mg^{+2} , and Cl^- are two to ten times greater at KSC than at Hubbard Brook or Pasadena. This is due to proximity of KSC sites to the ocean.

Acidity. The arithmetic means of monthly volume weighted acidity of precipitation samples collected at KSC and UCF during the 21 months yield mean pH values of 4.56 and 4.50, respectively. These values agree closely with pH values of 4.55 reported at Tallahassee, Florida, for 1974-76 and 4.53 at Gainesville, Florida, for 1976 (see Likens, 1976). The weighted mean pH for rainfall collected on an event basis in Gainesville, Florida, during late 1977 and the first 8 months of 1978 was 4.64 while rainfall collected on a weekly basis in west Orlando during the same time period was 4.62 (Brezonik and Edgerton, 1979). Wisnewski and Cotton reported the collection of rain in the Miami, Florida area during the summer of 1973 and measured pH values near 5.9. Using limited data from the southeastern U.S., Likens (1976) concluded that rainfall pH in central Florida was greater than 5.6 in 1966 and greater than 5.0 in 1972-73. these estimates are correct, then the acidity of rainfall in central Florida has increased at least three-fold in the past six years.

The monthly weighted average pH of rain collected at UCF Site 18 compared in Figure 9 with pH determined as a weighted average for all operational KSC sites. The variations from month to month are more severe at UCF Site 18. This may occur because far fewer samples contributed to the reported value. It is apparent that the acidity of rainfall in east central Florida undergoes variations which may be related to seasons of the year. Summertime acidity is as much as 10 times greater than that measured during early winter. For example, July 1978, compared to November 1977, yielded pH values of approximately 4.3 and 5.2 respectively.

Variations in monthly weighted average pH at KSC sites located relatively close together were most severe during spring and fall, 1978. These variations are compared in Figure 10 for Sites 01, 12, and 14. These three sites are located on a line which runs west-northwest from near the ocean (Figure 1). The distance separating Sites 01 and 14 is approximately 10 km. Site 12 is located approximately midway between Sites 01 and 14.

Although the use of monthly or quarterly weighted average pH is convenient when large amounts of data are to be compared for purposes of evaluating the changing composition of precipitation by season, it appears that they should be used with caution. Monthly and quarterly weighted average pH values are compared in Figure 11. The behavior exhibited stresses the smoothing effect that weighted averages have on results that are quite variable. It appears that the only strong seasonal (quarterly) patterns associated with precipitation acidity during the time period covered by this study occurs in the last quarters of 1977 and 1978 where pH was relatively high followed by decreases in subsequent quarters. The monthly weighted average pH for the individual months of October, November, and December which comprise the last quarter show greater variations than any other consecutive three-month period with the possible exception of the September-November 1977, time period. When monthly weighted average pH is considered, there is a pronounced decrease in pH which continues from November 1977, through September 1978. This may be indicative of a yearly cycle. More data are necessary before this tendency can be verified.

The variability in pH for individual samples collected in September 1978, at KSC Site 01 is also presented in Figure 11. These demonstrate the variability associated with acidity of samples which are used to calculate monthly or quarterly weighted averages. Individual pH values obtained from samples collected at individual sites and tabulated by month are presented in Appendix Tables 1-21. These results can be used to evaluate variability as in Figure 11.

The variability that was observed in individual sample pH is summarized in Figure 12. The frequency of occurrence for pH values within a specified range and expressed as a percentage are presented for individual three-month periods. The pH ranges were selected to represent approximately equal ranges of acidity for pH values

greater than 4.0. These results are based on the sites specified because these five sites were operational during most of the 21-month period. Samples with pH greater than 4.7 (acidity of less than 20 microequivalents/1) occur with highest frequency in all time periods and the frequency of occurrence then decreases as pH decreases. Typically, there are 20-50 percent of the samples that have pH less than 4.4.

Characterization of Acidity. In attempts to characterize the acidity of rainfall samples, several measurements that would add insight into acid composition were made on each sample. Measurement of sample pH was used as an indicator of sample free acidity. If volatile acids which contribute to sample acidity are present, it is sometimes possible to effect their removal by bubbling an inert gas such as nitrogen through the sample prior to measuring pH. Carbonic acid is a volatile weak acid which behaves in this manner. When the initial sample acidity is high, any contribution from H2CO3 should be minimal because it is a weak acid; it should not undergo significant ionization, therefore. If sample acidity is low, e.g. pH greater than 5.0, then H₂CO₃ may have a more important contribution. Reuss (1975) has discussed the effect that varying CO2 partial pressures have on pH. When pH is measured after removing CO2 from the sample, the pH change compared to initial pH measurement will depend on the initial sample pH and the CO₂ partial pressure associated with the original sample. Initial sample pH was always measured with the sample at approximately 25°C. No attempt was made to control CO2 partial pressure. Sample pH (PHNV) measured after purging with nitrogen gas was made under an inert nitrogen atmosphere and hopefully under conditions where CO2 removal from the sample was significant. The difference between the two measured pH values was small, typically less than 0.05 units when sample acidity was relatively high; the difference increased significantly in several cases when initial sample pH was greater than 5.0. It is felt that the removal of CO2 is largely responsible for the differences observed.

Further characterization of sample acidity was carried out on many samples which had initial pH values below 4.7. These samples were titrated as described previously to characterize both the strong acid component and total titratable acidity which include strong acids and weak acids which titrate under the conditions utilized. A typical though somewhat more detailed than usual titration curve obtained for a sample collected in February 1978, is shown in Figure 4. The initial sample pH was 4.38, while the pH after bubbling nitrogen through the sample was 4.44. Typical acidbase titration behavior is observed. It would be extremely difficult, however, to determine an equivalence point from the titration curve because of the gradual "break" which corresponds to the equivalence point. This is characteristic of titrations which involve dilute reagents. Titration data of this type have been treated by Gran theory (Gran, 1952, Rossotti and Rossotti, 1965). The Gran functions that were generated from the titration data are also shown in Figure 4. Comparison of sample acidity based on measurement of pH, pHNV, strong acidity, and total titratable acidity yield values

of 41.6, 36.3, 38.4, and 57.0 microequivalents/liter respectively. The agreement between the first three values indicates that the acidity of this sample which determines initial pH is due primarily to strong acids, and the contribution of volatile acids is quite small. The result for titratable acidity is considerably higher than the other values. This indicates that undissociated acids are present in the sample at a concentration of about one-half that of strong or dissociated acids.

Relationships that have been observed between acidity as determined from measured pH, PHNV, and the Gran functions are displayed in Figures 13, 14, and 15. Although only data for samples collected from July to September 1978 have been included, the results are typical of what was observed during the entire 21 months of the study. The slopes of the least squares correlation lines shown in Figures 13 and 14 are approximately 1.00 and the correlation coefficients approach 1.00 as well. Slopes of 1.00 are expected if the acidity is of common origin. Because data points are approximately equally scattered and the slope is near 1.00, it is believed that experimental error in measuring pH probably accounts for most deviations. An error of 0.01 units in the measurement of pH results in an error of 1.7 percent in acidity determinations. Several sources that may have contributed to an error of this magnitude have been described (Galloway and Likens, 1979). Much greater variability is observed when data obtained as a measure of initial sample acidity are compared to titratable acidity. Results presented in figure 15. which compare measured free acid concentration and titratable acidity, show this greater variability. Variations from a one-toone correlation are apparent and generally range between 10 and 50 percent. These variations indicate the presence of weak acids in addition to strong acids in the precipitation samples. Several anions which are conjugate bases of weak acids were determined in some of the precipitation samples collected. These include fluoride, orthophosphate, formate, and nitrite. No attempt was made to quantify all these anions in the precipitation samples nor to determine whether they constituted the full complement of weak acids in the samples. Ammonium ion titrates as a weak acid in titrations carried to a pH above 9.0. Rain sample titratable acidity consisted of approximately 65 percent strong acid free acidity and 35 percent weak acids. The latter did not contribute to the initial pH value. Ammonium ion concentrations were not large enough to account for the weak acid component as reported by Liljestrand and Morgan (1978).

Good agreement has been observed between acidity values determined from pH, pHNV, and strong acid determinations for individual precipitation samples. These results indicate that strong acids such as H_2SO_4 , HNO_3 , and/or HCl are responsible for the acidic properties which influence the pH of these samples. It is possible to assess the importance of each strong acid if detailed measurements are performed to determine concentrations for NO_3 , excess SO_4^2 , and excess Cl⁻. Excess Cl⁻ levels are of little consequence (to be discussed later). Concentrations of free acidity, NO_3 , and excess SO_4^2 are compared in figures 16 and 17 for samples collected at KSC Site 01 and UCF Site 18 in July 1978. The behavior is similar to

that observed in Figures 18 and 19 when monthly volume weighted averages are utilized. Data for individual samples are considerably more variable than monthly volume weighted averages. Changes in free acidity from sample to sample are followed closely by changes in $N0\overline{3}$ and excess $S0\overline{4}^2$ concentrations.

When the dependence of free acidity on either $N0\overline{3}$ or excess $50\overline{4}^2$ concentrations is evaluated (Figures 20 and 21 respectively), some scatter is shown. In data collected from July to September 1978, free acidity is more closely related to excess $50\bar{a}^2$ concen trations than to nitrate, the least square line in each case has a high correlation coefficient significant ata<0.001 in each case. These correlations are summarized by month for individual KSC sites and the UCF site in Appendix Tables 204-381. Correlations between free acidity and nitrate and excess 504^2 are summarized by month in Table 13. The free acidity: $N0\overline{3}$ and free acidity: excess $S0\overline{4}^2$ ratios are typically 2:1 and 5:4, respectively. There is sufficient NO3 and excess $50\overline{4}^2$ present to account for the entire sample free actualty. The presence of neutralizing cations is obviously important. Their presence indicates that portions of the NO-3 and excess $50\bar{4}^2$ were initially present as neutral salts of the neutralizing cations or were formed by partial neutralization of sample acidity. These results lead to the conclusion that present free acidity can be accounted for by the presence of HNO_3 and H_2SO_4 in the samples.

The observed acidity of precipitation is quite variable. This is particulary true when comparisons are made between individual events.

The presentation of results as monthly volume weighted averages tends to smooth the extreme variations to a considerable extent. However, significant differences have still been observed between individual months and particularly between seasons. If the presence of NO_3 , excess SO_4^{-2} , and/or Cl^{-1} are verified at concentrations which exceed those expected from introduction of sea salts and if the neutralizing cation concentrations are too low to account for the concentrations of excess $S0\overline{4}^2$, $N0\overline{3}$, and $C1^-$ and the sample is acidic, it is highly probable that sample acidity is due to the presence of at least one of the three strong acids. Neutralizing cations include Na $^+$, K $^+$, Ca $^{+2}$, Mg $^{+2}$, and NH $^+$ 4 which are present in the sample and have origins other than sea salt. They can be considered indicators of basic compounds e.g. CaO, NH3, which have neutralized some of the initial sample acidity. The Cl- concentrations in precipitation samples are due to the presence of sea salt. There is considerable excess $50\overline{4}^2$ and $80\overline{3}$ in samples. If monthly weighted average free acidity variations are compared to the changing concentrations of excess $50\overline{4}^2$ and $10\overline{3}$ as shown in Figures 18 and 19, it appears that the monthly changes in free acidity are followed by similar changes in both excess $50\frac{3}{4}^2$ and $80\frac{3}{3}$ concentrations. The behavior is similar when only samples from a single site (Figure 18) or when samples from all KSC sites (Figure 19) are compared. For the time period studied, $NO\bar{3}$ concentrations were typically less than one-half the free acidity concentrations, excess SO_2^2 concentrations tended to vary between 70 and 120 percent of the free acidity except

during April 1978, and to a lesser extent, May 1978. During these two months, the neutralizing cation concentrations and, in particular, NH⁺4 concentrations, were quite large and can account for the deviant behavior observed.

The results presented in Figure 18 for KSC Site 01 are displayed in somewhat different fashion in Figures 22 and 23. Figure 22 shows the dependence of free acidity on the concentration of NO_3 and, assumably, HNO_3 . When data for April and May 1978 are excluded, the least square line has a slope of 1.96. This indicates that free acidity is only partially accounted for by NO_3 . The correlation coefficient of 0.735 is significant at a<0.01. Figure 23 shows the dependence of free acidity on excess $SO^{-2}4$ concentration and, assumably, H_2SO_4 . The least square line data fit has a slope of 0.886. This indicates that all free acidity can be accounted for by excess SO^24 were it all present as H_2SO_4 . The correlation coefficient of 0.832 is significant at a<0.001. The total amounts of NO_3 and excess SO^24 are more than adequate to account for all free acidity observed.

The combined influence of concentrations of NO $\overline{3}$, excess $S\overline{0}^24$, and NH4 on free acidity (where NH4 is considered to be a neutralizing cation) is shown for KSC Site 01 and all KSC sites in figures 24 and 25, respectively. The correlation coefficients are significant at $\alpha<0.001$ in both cases. The slopes of the least square lines are greater than 0.8 in each case and indicate that free acidity would generally be overestimated from monthly volume weighted average NO $\overline{3}$ + excess $S\overline{0}^24$ - NH4 by about 20 percent.

The lack of any significant excess C1- in KSC rainfall samples and the presence of ample N0 $\overline{3}$ and excess S0 $\overline{4}^2$ can be interpreted to mean that present free acidity is due exclusively to the strong acids HN0 $\overline{3}$ and H2SO4. The relative concentrations of N0 $\overline{3}$ and excess S $\overline{0}^2$ 4 indicate that these two acids are present in an approximate 1:2 ratio.

Deposition of Acid. In addition to showing strong dependence on measured NO3, excess SO24 and NH4 concentrations, free acidity is also influenced by the amount of precipitation that occurs. By either rainout or washout, it would be expected that the initial rain will contain higher concentrations of pollutants. As the precipitation event continues, the pollutant content will decrease because rainout and washout will make the atmosphere cleaner. Therefore, it is expected that the initial portion of a rain sample or the entire volume will contain higher concentrations of pollutants when only small amounts of rain are received. Figure 26 shows the comparison of the free acidity behavior of rain samples with the total monthly amounts of rain received at KSC Site O1. Monthly weighted acidity is generally inversely related to total amount of rain during most months. Exceptions are the summer months in 1978 where high acidity and large amounts of rain occurred.

When assessing the long-term environmental impact of acid rain on soils and other terrestrial ecosystem parameters, the amount of acid deposited is probably more important than acidity associated with individual precipitation events. The total amount of free acid deposited for each month at six KSC sites and UCF Site 18 are presented in tables 6-12. Total free acid deposited related closely to the amounts of rain received. The only exceptions to this behavior occurred in November 1977, when all KSC sites received large amounts of high pH precipitation. Similarly, UCF Site 18 did not show the parallel increase in free acid deposited with the very large amount of rain received in July 1978. The behavior observed between total amount of free acid deposited and the amount of rain is significant because it appears that central Florida ecosystem loading with acid is related directly to the amount of rain received.

Although a small amount of rainfall generally results in a higher concentration of pollutants, the amount of each pollutant deposited is also a function of the amount of rain received. Results that support this observation can be seen in Figure 27 which compares the amount of free acid deposited per month to the amount of rain received. Individual sample behavior in Figure 28 also supports this observation. The deposits of free acid by month at KSC Site 01 and UCF Site 18 are compared in Figure 29.

Reported deposits are probably underestimated because contributions from very contaminated samples were not included. The total acidity deposited due to both strong and weak acids may be as much as 50 percent greater than amounts reported for free acidity.

Chloride, Sea Salt, and Assessment of Acid Rain. The presence of many ionic species in rain is not directly related to acidity. Specific examples include those ions commonly found in sea salt, including Na⁺, K⁺, Ca⁺², Mg⁺², Cl⁻, and $S\bar{0}^24$. Major terrestrial and anthropogenic sources of K⁺, Ca⁺², Mg⁺², $S\bar{0}^24$, and to a lesser degree Cl⁻, have been documented. When the acidity of precipitation is evaluated, concentrations of the anions SO_4 , Cl⁻, and NO_5 become important. For most studies, sea salts in precipitation are of little significance. When the assessment and evaluation of Cl-levels are important, however, Cl-which originates in the oceans must be carefully determined before the presence of excess Cl- can be ascertained. The generation of HCl as an exhaust product from utilization of SRM boosters on Space Shuttle launch vehicles will provide a source of acid and Cl-. To determine increased concentrations of Cl- in precipitation which are not due to sea salts (a greatly variable entity in precipitation) several assumptions and careful measurements must be made. Determination of total sea salt concentrations in rainfall were made by assuming that the contribution of sea salt can be based on the limiting concentration of Clor Na+ compared to the measured Cl/Na ratio in sea water. This implies that sea water is the only source of the limiting species, either Cl- or Na+. The sea salt contribution to total ionic composition of precipitation then can be assessed. Monthly variations for sea salt concentrations in rain at four KSC sites are shown in

Figure 30. Tabulated summaries are presented in Tables 4-12. The behavior shows considerable variability which can be accounted for when proximity to the ocean is considered. Diverse meteorology accounts for month to month variations at individual sites. Any episodic introduction of HCl into rainfall probably will not increase Cl-levels enough to allow precise determination of excess Cl- to be made when monthly averages are considered. However, as will be discussed later, it is possible to determine the presence of excess Cl- on a sample by sample basis, if the assumption is made that the only Na+ in the precipitation sample is of sea salt origin.

The direct impact that SRM launches will have on the acidity of rain will be due to the presence of HCl in the exhaust. Should acid rain occur, increased concentrations of acid and Cl- will be present. Present Cl concentrations in individual samples, if they originated exclusively from HCl with no other acids present, would yield acidities of 1-1000 and 5-4000 microequivalents/liter at UCF Site 18 and at KSC, respectively. These describe pH ranges of 6.0-3.0 and 5.3-2.4 respectively. Because of the tremendous variability associated with Cl- concentrations due solely to sea salt, sample-by-sample determination of Cl- due to sea salt must be possible before the acidity of rain in the form of HCl, HNU3, or HoSO4 can be accounted for. It appears that sea salts provide nearly 100 percent of the Na+, Mg+2, and Cl- present in rain. This conclusion is supported by ratios and correlation behavior of Cl/Na, Mg/Na, and Cl/Mg presented in Table 13 and figures 31, 32, 33. In addition, Appendix Tables 22-203 and 204-381 include both monthly ratios and linear correlations based on individual samples.

If increased acidity is observed in rain collected after a SRM firing, it should be possible to determine the Cl- concentration due to sea salts. Excess Cl- can then be attributed to HCl from the SRM exhaust if concentrations of NO_3^- and excess SO_4^- are not elevated enough to account for the increase in acidity.

Although correlation coefficients (Table 13) which relate the dependence of Na+, Mg+2, and Cl- are very high, it is important to consider the ratio of concentrations for individual species. The sea water ratios (eq/eq) of Cl/Na, Mg/Na, and Cl/Mg are 1.165, 0.243, and 5.11, respectively. Actual ratios can be calculated from results presented in tables 4-12 and also are included for a limited set of data in figures 31, 32, and 33. Ratios for Cl/Na and Cl/Mg determined from monthly weighted average concentrations of Na⁺, Mg+2, and Cl- are generally somewhat lower than those reported for sea water. The majority of values for the Cl/Na ratio are 1.0-1.1, for the Cl/Mg ratio, they are 4.0-4.7. Each indicates the presence of small amounts of Na⁺ and Mg⁺² in rain, which may be due to a source other than sea salt. when excess Cl- is present, the presence of Cl- due to sea salt can only be determined by assuming that the presence of Na^+ and/or Mg^{+2} is due exclusively to sea salt as follows:

> Excess $Cl^- = total [Cl^-] - 1.165 [Na^+] or$ Excess $Cl^- = total [Cl^-] - 5.11 [Mg+2]$

The error introduced into the determination of excess Cl- may be significant when the excess Cl- concentration is expected to be small. The calculation based on measured Na+ concentration may yield a value for sea salt Cl- which is 10-20 percent higher while the calculation based on Mg+2 concentration may yield a value for sea salt Cl- which is 25 percent higher. These errors are probably only significant when the total Cl- concentration and the Cl- concentration due to sea salt are similar.

Typical precipitation concentrations for Na⁺, Mg⁺², and Cl⁻ are 50, 12, and 55 microequivalents/liter (Table 4). Values of 58.2 and 61.3 are obtained when the values for Na⁺ and Mg⁺² are used to calculate the Cl- concentration due to sea salt. If a precipitation event of pH 3.0 due to HCl (1000 microequivalents Cl-/liter) occurs and also contains sea salt as just described, the excess Cl- based on measured Na⁺ and Mg⁺² is 997 and 994 microequivalents/liter, respectively. Error of less than -1 percent occurs in the determinations. Even when the concentration for sea salts is ten times greater than in the previous example, the error introduced into determination of excess C1- will be -2.2 percent based on Na $^+$ and -6.3 percent based on Mg $^{+2}$. These examples show the utility of using measured Na⁺ or My⁺² concentrations in individual samples for determining the presence of excess Cl-. Should increased acidity occur due to the presence of HCl, the acidity can be accounted for based on excess C1- (if present), NO3, and excess SO42. There is no evidence to show that existing Cl- concentrations in rain exceed those due to sea salt effects. There may be minor sources for Na⁺ and Mg⁺² in precipitation in addition to sea salts.

Increases in HCl concentrations in individual rainfall samples can be determined with very little error. Increases in HCl concentrations which may occur during extended time periods (weeks to months to years) will be much more difficult to determine. Should increases cause the lowering from existing levels of precipitation pH by several tenths of a unit, then these increases should be measurable if accompanied by HCl concentrations which increase total Cl- concentrations by at least 10-20 percent above levels due to sea salt.

Summary and Conclusions

The following conclusions can be drawn from nearly two years of activity in the collection and chemical analysis of rainfall:

- 1. A network for the collection of precipitation samples has been established and demonstrated to be effective and satisfactory.
- 2. The acidity of precipitation in east central Florida is moderately high; individual rain events can be very acidic. Acidity cannot be associated with operations at KSC.
- 3. Extensive day-to-day and site-to-site variation in precipitation occurs. Analytical and sampling variability do not contribute significantly to the observed spatial variability in rain composition.
- 4. Sulfuric and nitric acids account for the observed acidity of precipitation at the present time.
- 5. Sea salt represents a significant portion of the total ionic composition of precipitation at KSC. Because sea salt contains high concentrations of chloride, the sea salt contribution to precipitation composition must be determined and used to evaluate increased acidity if the presence of hydrochloric acid becomes an issue.
- 6. Use of monthly volume weighted averages for analysis of general trends associated with changes in precipitation composition can be beneficial. However, to evaluate local perturbations which may influence precipitation composition, event sampling is necessary.
- 7. Contamination of rain samples occurs; however, it was not a severe problem because the usual sampling period was 24 hours. Sample pickup at less frequent intervals will greatly increase the likelihood of many samples becoming too contaminated for meaningful chemical analysis.
- 8. The chemistry of rain falling in the vicinity of KSC has been characterized sufficiently to allow detection of changes in the future.

SUIL CHEMISTRY

Introduction

This study was designed to evaluate certain chemical parameters associated with representative soils collected at selected sites on Merritt Island and the Kennedy Space Center. The results of this study will be useful when attempts are made to evaluate effects of SRM exhaust on the terrestrial ecosystem. The 10 sites utilized were designated as reference stands in the terrestrial community analysis program (Stout, 1979). Soil samples were analyzed on a routine basis to establish the concentration of certain elements which are essential for plant growth. Samples were assayed for pH, Ca^{+2} , Mg^{+2} , Na^{+} , K^{+} , NH_4^{+} , Al^{+3} , NO_3 , Cl^{-} , SO_4^{-2} , P, ion exchange capacity, total nitrogen, and organic matter.

Leaching studies were performed on the same representative soil samples. Dilute solutions of HCl were used to leach cations from the soils. Total concentrations of leachable cations and concentrations leached were determined. The extent of acid leaching on the various soils which support the various plant communities was evaluated from the data obtained.

Reseach directed toward evaluation of pollution on soils and resulting changes in fertility and ability to support and sustain plant life is a relatively recent activity. The changing acidity of precipitation has been evaluated in Europe since the 1950's. Oden (1976) has summarized the results of selected studies and presented evidence to show that movements of air masses across the entire European continent complicate evaluation of the origin of the acidity. Oden also summarized the acid impact on surface waters. In general, pH of freshwaters is characterized by random, seasonal, and yearly variations and time trends. Parallel studies of the acid impact on soils included consideration of ground and surface water runoff and ultimate mixing in lakes. Increased soil acidity will lead to exchange of absorbed cations which will leach from the soil, and base saturation will decrease. Decreases in cation nutrients can lead in the long-term to changes in the plant community supported on the soil.

Norton (1978) has evaluated changes in chemical processes in soils caused by acid precipitation. These include pH insensitive reactions, pH sensitive reactions, Eh sensitive reactions, and the relative mobility of elements. Increased mobility of Al $^{+3}$ and consequential destruction of clay materials may decrease ion exchange capacity. In other situations, ion exchange capacity may increase. The general rate of removal of all cations including trace metals will increase, and this nutrient flux will result in increased nutrient concentrations in aquatic ecosystems below the soil zone.

Frick and Voight (1976) described the nature of acidity and potential effects of acid precipitation on soils in the humid temperate zone. As chemical weathering of soils become more complete and Na $^+$, K $^+$, Ca $^{+2}$, and Mg $^{+2}$ are removed, hydrogen and aluminum ions begin to dominate.

Soil acidity then is controlled by hydrolysis of Al^{+3} and soil pH can be represented by

$$pH = 5.0 + pA10H - pA1$$

and soils become buffered near pH 5. The relationship between soil pH and ion exchange capacity also was considered but interpretation is complex. They also described the role that the nitrogen cycle and sulfides have in production of acids in the soil. Oden (1976) showed a time sequence which illustrates soil acidification due to biological action, man-made acidity, and excess mineral acids. Mineral acids which contributed less than 20 percent to total acidification in the early 1950's, contributed about 50 percent in the early 1970's.

McFee, Kelly, and Beck (1977) described the effects of acid precipitation on soil pH and base saturation of exchange sites. Noting the resistance of most soil systems to pH change, they conclude that acid precipitation should not cause rapid soil degradation. They point out that it is difficult to evaluate these phenomena in the short-term. They present an example for 100 years of pH 4.0 acid precipitation (100 cm/year) and conclude that percent base saturation within the top 20 cm of a typical midwestern soil with 20 meq/100g ion exchange capacity will decrease by 20 percent. A pH decrease of 0.6 units would occur if no acid neutralizing materials were introduced by other deposition processes.

Overrein (1972) reported the effect of acid precipitation on Ca^{+2} levels in a Norwegian forest soil and considered the nutritional status of forest soils based on lysimeter studies. The leaching to Ca^{+2} from different soil types increased rapidly when the acidity of precipitation increased. Soil acidity was dependent on the amount and concentration of acid added, the nutrient element considered, and soil ion exchange capacity. In general, the leaching of Ca^{+2} was significantly greater at pH 3.0, compared to leaching at pH 4.3 which showed effects similar to those of distilled water. Below pH 3.0, greatly accelerated leaching occurred. All leaching of Ca^{+2} was characterized by a time delay of several days following acid treatment of soil.

The U.S. Environmental Protection Agency has supported studies to evaluate acid effects on soils. Reuss (1978) performed a simulation study to evaluate nutrient loss from non-calcareous soils due to acid rainfall. A model which predicts the most likely effect of acid precipitation on the leaching of cations was developed.

NASA has supported studies to characterize soil from a Cape Canaveral launch complex, post-launch pad debris particulates, and interaction of soil with aqueous HCl. Pellett, et al. (1979) will report results based on Titan III launches from Launch Complex 40 at KSC on March 11-12, 1975, and August 20, 1977. Soil composition near complex 40 contains considerable Ca⁺² and Mg⁺², occuring as carbonates from sea shells. Considerable acid neutralization should be provided in this soil. Soil slurries, which were titrated with HCl, were shown to consume considerable acid on a time-delay basis.

Methods and Procedures

Sampling and Sample Preparation

Collection of soil samples was accomplished during mid-July, early September, and early December of 1976 and during mid-March of 1977. Samples were collected from sites identified as reference stands in the Terrestrial Plant Community Analysis Program (Stout, 1979). Each sample consisted of between 30 and 40 cores, 15 cm deep by 2 cm in diameter, obtained with LaMotte, Hankinson-Hester type soil sampling tubes (Welcher, 1962). Samples were collected in random fashion along transects within each sampling area. The layer of ground litter was scraped away before each soil core was taken. The March sampling consisted of four independently collected subsamples, of 20-30 cores, from each site. Each subsample was processed as a separate entity. Samples were collected in zip-lok polyethylene bags for transport to the laboratory.

The soil samples were air-dried in the laboratory by spreading them on aluminum trays. Large clods of air-dried soils were broken up before samples were sieved through a 2.0 mm nylon sieve. Subsamples for all subsequent determinations were obtained by the technique of coning and quartering. Chemical analyses were performed. They are summarized in Figure 34, and are described below.

Double Acid Extraction Procedure and Analysis

Determination of Na⁺, K⁺, Ca⁺², Mg⁺², Al⁺³, and P in the soil samples was accomplished by using a double acid (0.05N HCl in 0.025N H₂SO₄) extraction reagent, followed by appropriate chemical methods (Soil Testing Lab, 1974). The K⁺ and Na⁺ were determined by flame emission spectroscopy, Ca⁺², Mg⁺², and Al⁺³ by flame atomic absorption spectroscopy, and phosphorus by the Vanado-molybdophosphoric acid colorimetric procedure. These determinations were performed by the Soil Testing Laboratory, University of Florida, Gainesville, under the direction of Dr. H. L. Breland. Air dried and sieved samples were submitted for analysis.

Organic Matter

Organic matter content of samples was determined by a gravimetric weight loss procedure. Five gram samples were placed in porcelain crucibles and ignited to constant weight at 900°C by heating initially for two hours, followed by subsequent heating for 30 minutes. Organic matter was determined from the following equation:

Organic Matter,
$$% = \frac{g \ loss \ on \ ignition}{g \ sample} \times 100$$

Figure 34. Flow Diagram Showing the Sampling and Analysis Sequence Utilized in the Soil Studies.

Soil pH, Chloride, Nitrate, Sulfate and Ammonia Determinations

Soil pH was determined by the soil Testing Laboratory, University of Florida. The pH was measured potentiometrically in a slurry prepared to contain a 1:2 ratio of soil:water.

The Cl-, NO3, $SO4^2$, and $NH4^+$ concentrations were determined after extraction of the soils with deionized water. Forty grams of air-dried soil was extracted by shaking the soil with 200 ml of deionized water in a 250 ml widemouth polyethylene bottle. Soil and extracting solution was thoroughly mixed, allowed to stand overnight then mixed again before gravity filtering through Whatman #42 filterpaper. Separate portions of the extract were analyzed for each species.

Chloride was determined potentiometrically with a chloride ion-selective electrode prepared as described by Olson et al. (1974) and Czaban and Rechnitz (1973). An Orion double junction reference electrode, model 90-02 was used. The method of standard additions (Eynon, 1970; Beckman, EC-7633; Beckman, EC-8148) was used to overcome possible matrix interference problems. A Beckman Expandomatic pH meter operated in the expanded scale millivolt mode was used. This procedure was used for samples collected during July, September, and December, 1976. The determination of chloride in samples collected in March, 1977 was accomplished through use of the ${\rm Hy}({\rm SCN})_2$ - ${\rm FE}({\rm III})$ method (Vogel, 1961).

Sulfate was determined turbidimetrically by following standard procedures (Standard Methods, 1975). Soil extract turbidity was compensated for by using a blank which contained all reagents except the BaCl₂ precipitating reagent. A spectronic 20 colorimeter, equipped with 1.17 cm lightpath cells and set to 420 nm, was used.

Nitrate was determined spectrophotometrically by using a method adapted from the Cd reduction standard procedure (Standard Methods, 1975a). Nitrate was determined by using Hach reagents. The procedure is outlined in a methods manual (Hach 1975).

A nitrate ion-selective electrode, Orion 93-07, was evaluated for use in the determination of soil nitrate concentrations. However, performance was not reliable even though several applications have been published (Smith, 1975; Orion, 1975a; Raveh, 1973; Mack and Sanderson, 1971, Oien and Selmer-Olsen, 1969, Mahendrappa, 1969; Myers and Paul, 1968; Bremner et al., 1968; Standard Methods, 1975).

Determination of NH₄, reported as NH₃, in the soil extract was performed with an Orion 95-10 ammonia electrode. (Orion, 1975a, McKenzie and Young, 1975, Beckett and Wilson, 1974; Banwart et al., 1972).

Ion Exchange Capacity

Ion exchange capacity of soil samples was determined by the ammonium acetate pH 7.0 procedure (Soil Survey Staff, 1972), except

that the NH $_4^+$ present in the NaCl-HCl leachate was determined using an Orion 95-10 ammonia electrode (Urion, 1975a, Busenberg, E., and Clemency, C. V., 1973).

Total Nitrogen

Semimicro Kjeldahl digestion of samples and measurement of generated ammonium ion with an Orion 95-10 ammonia electrode (Soil Staff Survey, 1972a; Bremner and Tabatabai, 1972; Orion, 1975a) was utilized to determine total nitrogen content of the soil samples.

Determination of Total Cations in Soils

A 3 g subsample of the air-dried and sieved soil sample from each site was taken for determination of total cations. Each sample was ground, using an agate mortar and pestle, until a fine powder was obtained. Separate one-gram subsamples were taken for subsequent treatment. Twelve elements were determined to be present in the soil samples. Silica was removed, and each sample was dissolved by treatment with hydrofluoric acid, usually in combination with a mineral acid, followed by heating to volatilize SiF4 (Dolezal, J. et al. 1968). Dissolution of silica samples in HF prior to extraction and atomic absorption spectrophotometry is commonly used (Sanzolone and Chao, 1976; Fuller and Whitehead, 1974; Fuller, 1973; Fuller, 1972, Ward, 1969). Treatment of soil samples involved ignition of the one gram samples at 900°C for 2 hours to remove organic matter, followed by treatment with HCl and HF in 20 ml teflon beakers. The procedure followed is described by Pawluk (1967).

Initially, the solutions obtained from the HCl/HF treatment of the soils were subjected to flame atomic absorption analysis for determination of Na+, K+, Ca+2, Mg+2, Mn+2, and Zn+2. The elements Al+2, Cu+2, Mo+2, Ni+2, Mn+2, and Pb+2 were determined by flameless atomization atomic absorption spectroscopy. A Perkin-Elmer 305B atomic absorption spectrophotometer, operated according to manufacturer directions, was used. An air-acetylene flame and a Perkin-Elmer HGA-2100 heated graphite atomization (HGA) sources were used. Flame absorption results were obtained from calibration curves generated from standard solutions and run under identical experimental conditions. Flameless atomic absorption results were obtained by using the method of standard additions. Ultimately, all samples were analyzed by plasma spectroscopy at the Institute of Ecology, University of Georgia. The laboratory was under the direction of Dr. Frank Golly.

Hydrochloric Acid Leaching of Cations from Soils

Samples of the air-dried and sieved soil samples were used to assess the extent to which various cations could be leached by HCl. Five 10 g subsamples, obtained by coning and quartering, were taken for soil subsamples from each site. These samples were placed in 25 ml-capacity gooch filtering crucibles with fine porosity fritted discs. Leaching was accomplished by adding 20 ml portions of 1.0, 10^{-1} , 10^{-2} , 10^{-3} , 10^{-4} M HCl (pH range 0 to 4) to separate portions

of each sample. The solution was allowed to percolate through the soil using sufficient vacuum to require a minimum of 25 minutes for the leaching. Additional 20 ml portions of acid were added to each soil, until a total of 100 ml had been used and a minimum total leaching time of 2 hours had elapsed. Concentrations of metals in the HCl leachates were determined as described above for total cations.

Results

Ten primary sites were established as part of the Terrestrial Plant Community Analysis Program (Stout, 1979). Figure 35 shows the location of plant communities where soil samples were taken. Site number designation in Figure 35 is that used for the reporting of all subsequent soil results. Nearby sites where collection of precipitation samples was performed are noted. Soil types and descriptions for each of the sites are presented in Table 14.

Results from the Quarterly Soil Sampling Program

Samples were collected from the ten primary areas identified in Figure 35 in mid-July 1976, early September 1976, early December . 1976, and mid-March 1977. Appendix Table 382 summarizes the data from individual sampling sites and sampling periods for the determination of pH, Na⁺, K⁺, Ca⁺², Mg⁺², Al⁺³, NH₃, P, Cl⁻, NO $\bar{3}$, SO $\bar{4}^2$, organic matter, ion exchange capacity, and total nitrogen. The mean annual concentration of individual soil nutrients, by site, is presented in Figures 36-49. These results are indicative of changes that may be occurring for the varous nutrients. However, presentations of mean and standard deviation are not sufficient for establishing trends. No attempt has been made to establish any seasonal trends, because of the limited data available and, in some cases, because of less than adequate analytical methods for determination of very low concentration levels for some of the nutrients. Figures 36-49 also show the mean and standard deviation for individual nutrient concentrations in the soil samples collected during March 1977. These results were obtained from quadruplicate sampling, sample processing, and sample analysis for the 14 nutrients as outlined in Figure 34. The precision associated with the measurement of concentration for each of the nutrients in the different soils represent contributions from collection of sample cores, coning and quartering to obtain subsamples of suitable size for each extraction and/or determination, and the analytical method itself. Comparisons based on the annual and March 1977 sampling have been presented for the 10 primary soils. In a few cases, no information is reported. This occurs when data for certain nutrients is reported as greater than a specified value but no actual concentration is reported. Nutrients involved are Ca^{+2} and, occasionally, Mg^{+2} , P, and NO_{3} .

Site selection resulted in the inclusion of several different soil types. For purposes of sampling, the single beach site was subdivided into three separate sections, based on dune profile and vegetation cover. Designations used are: front dune, middle dune, and back dune, based on proximity to the ocean. Two sites are located on Immokalee Sand and a third, the Pine Flatwoods, is of similar soil type. Three sites are located on Pomello Sand and three are supported on soils referred to as "Swamps" or "Copeland Complex". The latter are complex soils, and complete description of soil type has not been attempted. Sites designated as hammocks are supported on these soils.

Figure 35. Locations of Soil Sampling Sites. Site Descriptions are Included in Table 14.

Plant Community Description

The vegetative cover of the grid may best be referred to as Flatwoods without pines. The dominant element in the ground cover is wiregrass Aristida Stricta Smaller woody plants include St. Johns wort Hypericum reductum, Gaylussacia dumosa, and Vaccinium myrsinites. Taller shrubs (1-2 meters in height) are Quercus myrtifolia, Q. chapmanii, Lyonia lucida, L. fruticosa, Ilex glabra, Befaria racmosa, and Serenoa repens. A smaller oak Quercus minima is also very common.

Large live oaks Quercus virginiana var. virginiana are scattered throughout the hammock. Other canopy dominants include Sabal palmetto, Quercus laurifolia, red maple Acer rubrum; and elm Ulmus americana var. floridana. Subcanopy trees include hackberry Celtis laevigata, mulberry Morus rubra and lancewood Nectandra coriaces. Common shrubs are coffee Psychotria nervosa and P. sulzneri, Myrsine guianensis, and Ardisia escallonioides.

Table 14. Soil Sampling Site Numbers and name designation, soil type, and plant community description for sites selected for use in the soil analysis program and Plant Community Analysis Program.

i

Site No	Name	Soil Type ^a
04	Dune Scrubb	Pomello sand This is a nearly level, moderately well drained sandy soil on broad low ridges and low knolls. The water table is 30 to 40 inches below the surface for 2 to 4 months in most years and between 40 to 60 inches for more than 6 months. During dry periods, it is below 60 inches for short periods. Included with this soil in mapping are a few areas of Myakka and Immokalee soils. Also included are areas of fine sand, small sloping areas, and areas on the Atlantic Coastal Ridge where shell fragments are mixed with the sand beneath the weakly cemented, dark-colored layer is within a depth of 30 inches.
05	39 B Scrubb	Pomello Sand - See Site 04
06	Happy Creek Scrubb	Pomello Sand - See Site 04
07	Juniper Hammock	Swamp - See Site 02

Plant Community Description

A dense shrub cover 1-2 meters in height covers the area. Essentially no ground level cover is present, but a heavy litter layer has developed beneath the shrubs. Rosemary Ceraticla ericoides forms extensive, almost pure stands. Three oaks, live oak Quercus virginiana var. maritima, chapman oak, and myrtle oak are common. Spanish plum imenia americana, Lyonia ferruginea, and saw palmetto are scattered throughout the grid.

Table 14. Soil Sampling Site Numbers and name designation, soil type, and plant community description for sites selected for use in the soil analysis program and Plant Community Analysis Program. (Continued)

	Site No.	Hane	Soil Type ^a	Plant Community Description
104	09	Rt. 3 Hammock	Copeland complex This complex consists of several nearly level, very poorly drained soils on low flats. In most years the water table is within a depth of 10 inches for more than 6 months. In dry seasons it is between 10 and 30 inches. This soil is flooded for 7 days to a month once in 5 to 20 years. Some areas are underlain by copuina rock instead of limestone. The soils in this complex are so intermixed that it was impractical to map them separately. About 6 percent is Copeland loamy fine sand; 55 percent is a soil that is similar to Copeland loamy fine sand, but has limestone at a depth of about 20 inches and a subsoil of sandy loam; about 8 percent is an area where the black surface layer is underlain by hard limestone, generally within a depth of 10 inches; about 5 percent is a Wabasso soil; 10 percent is a soil similar to the Wabasso soil; but has limestone beneath the loamy layers; and 16 percent is scattered spots of Bradenton shallow variant, Chobee, Felda, Myakka, and St. Johns soils.	
	10	Headquarters Pinelands	Immokalee Sand - See Site 01	
	03	Beach Grid	Palm Beach sand This is a nearly level and gently sloping excessively drained soil on dunelike ridges that roughly parallel the Atlantic Ocean. It consists of mixed sand and shell fragments. Slopes are mostly 2 to 5 percent. The water table is at a depth of more than 10 feet. Included with this soil in mapping are narrow areas that have slopes of 5 to 8 percent and lead to included marrow low sloughs. Also included are areas of soils that contain only a very few shells in the upper 20 to 40 inches and that are brownish yellow to	Three obvious zones of vegetation run parallel with the beach and dune lines. The first zone and most seaward is covered with sea oats Uniola paniculata, Heterotheca hyssopifolia, and Ipomoea stolonifera and I. Pes-caprae. Some 14 other species of plants occur in zone 1. Zone 2 is between the beach and the major dune line. Much of this area is bare sand with clumps of palmetto Serenoa repens, occassional sea grape Coccoloba uvifera, and buckthorn Bumelia tenax. Gopher apple Licania michauxii forms extensive

Table 14. Soil Sampling Site Numbers and name designation, soil type, and plant community description for sites selected for use in the soil analysis program and Plant Community Analysis Program. (Continued)

- 1

	Site No.	Name	Soil Type ⁸	Plant Community Description
	03 (cont)	Beach Grid (continued)	strong brown, a few areas that have a slightly thicker surface layer, and some areas of coarse sand.	mats in some places Zone 3, behind the main dune line, is covered with a dense shrub layer Palmetto and sea grape are most abundant, while wax myrtle Myrica cerifera, buckthorn and Chiococca alba are common but scattered. Almost no ground cover exists beneath the shrubs, but a heavy litter is present
	91	Zone 1 ^b		
٠.	92	Zone 2 ^b	~	
2	93	Zone 3 ^b		
	0 8	Pine Flatwoods	Not available	

- a According to Soil Survey of Brevard County, Florida, 1974, United States Department of Agriculture, Soil Conservation Service
- b Subdivisions of the Beach Grid

105

Table 14. Soil Sampling Site Numbers and name designation, soil type, and plant community description for sites selected for use in the soil analysis program and Plant Community Analysis Program. (Continued)

Figure 36. Comparison of Measured pH Values for Merritt Island Soils.

Figure 37. Comparison of Sodium Concentrations in Merritt Island Soils

Figure 38. Comparison of Potassium Concentrations in Merritt Island Soils

Figure 39. Comparison of Calcium Concentrations in Merritt Island Soils

Figure 40. Comparison of Magnesium Concentrations in Merritt Island Soils

Figure 41. Comparison of Aluminum concentrations in Merritt Island Soils

Figure 42. Comparison of Ammonia Concentrations in Merritt Island Soils

Figure 43. Comparison of Phosphorus concentrations in Merritt Island Soils

Figure 44. Comparison of Chloride Concentrations in Merritt Island Soils

Figure 45. Comparison of Nitrate Concentrations in Merritt Island Soils

Figure 46. Comparison of Sulfate Concentrations in Merritt Island Soils

Figure 47. Comparison of Organic Matter Concentrations in Merritt Island Soils

Figure 48. Comparison of Ion Exchange Capacity in Merritt Island Soils

Figure 49. Comparison of Nitrogen Concentrations in Merritt Island Soils

The results presented in Appendix Table 382 and Figures 36-49. which summarize the routine monitoring of nutrients in soils, generally are what would be expected. the soils can be grouped on the basis of concentration levels of several of the nutrients monitored. Some variability of results is observed. However, the following parameters generally are useful for gross differentiation of soils based on chemical differences: pH, ion exchange capacity, total nitroyen, organic matter, calcium, sodium, and chloride. A summary of the concentrations found for these nutrients is presented in Table 15. The most logical grouping of sites is: sandy soils, 6 different sites; beach soils, one site; and hammock soils, 3 sites. The comparison of nutrient results presented in Figures 36-49 are arranged to reflect this grouping. Large amounts of calcium present in the hammock and beach soils and the relatively large ion exchange capacity for the hammocks undoubtedly explain higher pH values associated with these soil types. The hammocks are quite rich with respect to most nutrients monitored, while the sandy soils and beach soil are quite deficient. Figure 50 shows the observed annual mean pH at each site, compared to ion exchange capacity and organic matter content.

Table 16 lists the various analytical techniques and associated detection limits utilized for nutrient measurements. The detection limits represent the practical lower concentration limit measurable with each experimental procedure and analytical technique. Values generally correspond to measurements made at twice the background or noise level for each measurement.

Table 17 lists the precision of analytical measurements performed in the UCF laboratories. The degree of precision associated with the analytical measurements performed in the Soil Testing Laboratory. University of Florida. is not available.

Results presented in Figures 42 for NH3, 43 for P, 45 for NO $\overline{3}$, and 46 for SO $\overline{2}$ 4 show extremely large standard deviations for both the mean annual and quadruplicate March results. Detection limits presented in Table 16 show that when measurements are made at or near these limits, and on a relative basis, more error is likely for these four nutrients. Measurements for the other nutrients are made considerably above the detection limits of the various methods employed, and the deviations that can be attributed, at least in part, to the analytical method have been minimized.

Total Cation Concentrations of Soils

The total cation concentration for individual metals in the soil samples based on triplicate determinations are presented in Table 18. In general, these results differ from those obtained initially by atomic absorption spectroscopy by as much as 100 percent. The specific reason for these differences is not known, however, several of the samples submitted to the University of Georgia for plasma spectroscopic determination of metals actually were replicates (same sample; different bottle), spiked samples, and standard solutions

Table 15.
Summary Results for Selected Nutrients
Based on General Soil Type.

Chemical Parameter	General Soil Type					
	<u>Hammock</u>	Sandy	Beach			
рН	5.8-8.5	4.0-5.5	8.0-8.5			
Ion Exchange Capacity (milliequivalents/100g)	10-30	1-8	0.1-0.8			
Total Nitrogen (percent)	0.2-0.4	0.1-0.6	.01			
Organic Matter (percent carbon)	10-30	1-5	6			
Calcium (parts per million)	>7000	100-300	>7000			
Sodium (parts per million)	100-500	10-30	100			
Chloride (parts per million)	100-500	6-20	10			

Figure 50. Comparison of Selected Merritt Island Soil Sample pH with Ion Exchange Capacity and Percent Organic Matter.

Table 16.
Practical Limits of Detection Imposed by Sample Treatment and Analytical Methods in Nutrient Monitoring Studies.

Chemical Species	Analytical Technique (Detection Limit ppm unless otherwise noted)
Na	Flame Emission	0.3
K	Flame Emission	0.2
Ca	Atomic Absorption	10.0
Mg	Atomic Absorption	1.0
Αĩ	Atomic Absorption	2.0
Р	Spectrophotometry	0.3
NH4	Ion Selective Electro	des 0.5
C1	Spectrophotometry	0.5
S0 4	Turbidimetry	4.0
NO3	Spectrophotometry	2.0
N	Ion Selective Electro	de 0.003%
Ion Exchange Capacity	Ion Selective Electro	de 0.006meq/100g

Table 17.

Precision of Analytical Methods Utilized in Nutrient Monitoring Expressed as Relative Standard Deviation.

Precision is Evaluated Based on Repetitive Measurements on Standard Solutions.

Methods Utilizing the Ammonia Ion Selective Electrode

	ppm NH ₃	R.S.D., %
Soil Ammonia	0.1-0.5(7 Standards) 1.0-4.0(3 Standards)	9.0 9.8
Kjeldahl Nitrogen	0.4-1.0(3 Standards) 2.0-10.0(8 Standards)	12.0 3.4
Ion Exchange Capacity	10.0-50.0(5 Standards) 50.0-150.0(3 Standards)	1.6 9.7

Methods Utilizing Spectrophotometric Techniques

ppm Standard	Chloride,	R.S.D.,%	Nitrate,R	.S.D.,%	<u>Sulfate</u>	R.S.D.,%
1.0	3.7,	6	12.9,	5	76,	8
2.0			9.3,	6	21,	9
3.0	3.0,	6	8.0,	6	18,	5
4.0			7.0,	4		
5.0	2.8,	5	6.1,	7	15,	5
10.0	0.3,	2			18,	5

Note: Precision expressed as 3.7, 6 represents 3.7% R.S.D. based on 6 measurements.

prepared in the UCF laboratory. Results obtained from these "control" samples also showed considerable variation. It should be concluded that results presented here are, at best, semi-quantitative.

Hammock sites 02, 07, and 09 and beach site 03 consistently show higher total metal concentrations. Results presented in Table 18 show how total cation concentrations vary from site to site. Results from sites which have very sandy soil indicate that the total cation composition of these soils is similar. Hammock soils which differ significantly in concentration for individual metals also show significant variation from hammock to hammock.

Hydrochloric Acid Leaching of Cations from Soils

Results from the HCl leaching experiments are summarized graphically in Figures 51-59. Appendix Tables 383-474 provide a complete record pertaining to results for total cation and leaching experiments. Figures 51-59 show the leaching behavior of the 9 metals Na $^+$, Ca $^+$ 2, Mg $^+$ 2, Al $^+$ 3, Fe $^+$ 3, Mn $^+$ 4, Ni $^+$ 2, Zn $^+$ 2, Co $^+$ 2, from KSC soils. The leaching behavior of K $^+$, Cu $^+$ 2, and Pb $^+$ 2 has not been presented. Concentrations of K $^+$, Cr $^+$ 2, and Pb $^+$ 2 in the HCl leachates were generally lower than could be measured routinely with accuracy, and Cu concentration in the HCl leachate was typically 100 percent of the total concentration present. Limits of detection associated with the analytical methods used to determine metals are shown in Table 19. Because of the relatively large deviations in the data, these results should also be interpreted semi-quantitatively.

Discussion

Two distinct studies were performed to evaluate soil composition and to assess the effect that HC1 will have as a leaching agent for cations from soils. Both studies were performed on soil samples that were collected from reference sites in the Terrestrial Community Analysis Program (Stout, 1979). The soil composition studies initially were intended to continue for the entire three year contract period. Because of funding limitations and a NASA decision to emphasize precipitation chemistry studies, soil studies were terminated after the initial year of the contract. Soil composition results have been reported, but because of the short-term nature of collected data and, in some cases, because of resource and equipment limitations which restrict the usefulness of the results, detailed interpretation cannot be attempted. Results of the leaching experiments should be utilized in a semi-quantitative fashion. The reasons for this previously were explained in the results section.

Soil Composition, and Major Nutrients Based on One Year of Quarterly Soil Sampling.

Only limited results are available to use for evaluation of soil composition. Only the stationary pool of nutrients in the surface 15 cm of soil were considered. A more complete soil study should include determination of base-saturation of ion exchange sites and the assay of soil water based on lysimeter sampling, in addition to those determinations which were performed. The availability of more reliable instrumentation and a more frequent sampling program also could provide additional insight into the total nutrient status of Merritt Island soils.

Table 18.
Total Metal Concentrations in Merritt Island Soils.

Average of Triplicate Determinations and Average Deviation, PPM

<u>Site</u>	<u>Na</u>		<u>K</u>		<u>Ca</u>	<u>:</u>	<u>Mg</u>		<u>A1</u>		<u>Fe</u>	
01	80.2 <u>+</u>	5.2	128 <u>+</u>	10	179 <u>+</u>	10	81.7	<u>+</u> 3.9	258 <u>+</u>	8	236 <u>+</u>	<u> </u>
02	698	37	8 3 7	18	50,100	600	123	1	3,100	100	1,210	4 0
03	652	45	305	54	45,000	3,400	327	19	1,390	360	1,490	360
04	282	47	235	22	302	77	79.7	12.4	1,040	170	1,080	360
05	136	13	293	27	101	3.6	41.9	2.0	497	52	333	53
06	390	36	715	62	295	24	47.4	5.8	1,400	140	530	172
07	1,530	87	143	83	19,400	900	884	26	6,750	160	2,520	30
08	263	11	514	4	226	17	59.0	1.3	1,340	40	717	47
09	647	22	910	40	1,960	60	161	1	2,620	60	813	9
10	50.0	3.0	107	17	121	7	35.6	3.7	171	19	97	8

12

Table 18.
Total Metal Concentrations in Merritt Island Soils (Continued).

Average of Triplicate Determinations and Average Deviation, PPM

Site	<u> </u>	<u>Mn</u>	Nı		<u>Z</u>	<u>:n</u>	<u>Co</u>	_	<u>Cr</u>		<u>P</u>	<u>b</u>	<u>M</u>	<u>o</u>
01	6.32	<u>+</u> 0.75	11.0	<u>+</u> 0.1	3.25	<u>+</u> 1.0	0.60	<u>+</u> 0.01	14.2	<u>+</u> 0.8	90	<u>+</u> 2	3.3	<u>+</u> 1.0
02	59.9	1.5	3.9	2.6	4.9	0.2	10	10	26.1	0.9	99	1	7.6	5.0
03	51.9	21.6	5.8	0.4	3.7	0.3	0.76	0.76	25.5	1.1	100	0	10.7	0
04	79.2	32.6	9.0	1.7	5.8	1.2	16	10	14.8	1.8	81	1	6.3	1.5
05	14.0	3.3	10.5	8.0	2.6	0.6	2.1	1.3	10.7	0.3	84	1	4.5	0.4
06	18.8	8.2	9.8	0.5	2.9	0.6	2.3	1.2	15.7	1.7	98	2	5.8	1.0
07	77.1	4.7	5.2	0.2	13.2	0.5	1.6	1.6	27.1	2.2	89	6	17.5	1.1
08	15.1	3.9	9.8	0.1	2.8	0.6	1.0	0	17.8	5.0	88	3	7.3	0.8
09	23.2	8•0	9.7	0.2	5.4	0.7	1.3	0.1	76	2	76	2	9.8	0.6
10	3.7	0.3	11.4	0.4	2.8	0.9	1.0	0.1	9.9	1.2	81	4	5.0	1.0

Table 19.

Detection Limits by Plasma Spectroscopy and Atomic Absorption Spectroscopy for Soil Total Cation Determinations and Hydrochloric Acid Leaching Experiments. Concentrations are Reported as Parts per Million and Reflect the Limits for the Various Techniques and Soil Dilution.

Metal	Wavelength,nm.	<u>Total</u> Plasma Spectroscopy	l Cations Flame AA	HGA-AA	Leac Flame AA	hing* HGA-AA
Na	589.0	0.37	0.37		0.1	
K	766.5	35.	0.05		0.1	
Ca	422.7	0.20	0.5		1.0	
Mg	285.2	0.03	0.1		1.0	
Al	310.2	0.25				0.05
Cu	324.7	0.05		0.25		0.05
Fe	248.3	0.04	0.5		0.1	
Mn	279.5	0.011	0.1		0.02	
Nτ	232.0	0.2		0.25		0.05
Zn	213.9	0.012		0.5		0.1
Co		0.03				
Cr		0.54				
Pb		0.26				

^{*} Plasma Spectroscopy Detection Limits for Cation Leaching is 5 Times Lower Than That Reported for Total Cations.

Figure 51. Leaching Characteristics of Sodium from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 52. Leaching Characteristics of Calcium from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 53. Leaching Characteristics of Magnesium from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 54. Leaching Characteristics of Aluminum from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

- 1

Figure 55. Leaching Characteristics of Iron From Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 56. Leaching Characteristics of Manganese from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

pH of HCl Leachate

Figure 57. Leaching Characteristics of Nickel from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 58. Leaching Characteristics of Zinc from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Figure 59. Leaching Characteristics of Cobalt from Merritt Island Soils Due to Percolation of Dilute HCl Solutions Through the Soil. Curves Represent a Visual Fit to the Data. Variability for Each Data Point Based on Triplicate Determinations is Presented in Appendix Tables 383-474.

Soil composition is summarized in Table 15 and Figures 36-49. The summary results shown in Table 15 demonstrate the variability associated with soil composition. When the results shown graphically in Figures 36-49 are evaluated, while simultaneously considering analytical method sensitivity (Table 16) and precision (Table 17), it is difficult to unequivocally locate the major source(s) of error or variation. general, variation in results is smaller for the quadruplicate March 19/7 sampling of soils. Relative standard deviations are typically 10 percent or less, and reflect contributions due to soil sampling in the field. sample processing in the laboratory, and chemical analysis. Relative standard deviations for the annual mean concentrations based on quarterly values range from 10-100 percent. Concentrations for Na⁺, K⁺, Ca⁺², My^{+2} , Al^{+3} , Cl^{-} , ion exchange capacity, organic matter, and nitrogen concentration probably remained relatively constant. Sampling and chemical analysis variability probably accounted for variations observed. The variability in quarterly concentrations for NH3 (Figure 42) may be real. Variability in sampling and chemical analysis procedures based on guadruplicate samples collected in March, 1977, is considerably smaller than the variability in quarterly concentrations. Soil handling and treatment after collection of the sample can result in loss of NH3. Air-drying, the procedure used in this study, can result in NH3 loss from soils and lead to incorrect results. Similarly, P, $N0\overline{3}$, and $S0\overline{4}^2$ concentration variability is extremely large. Concentrations for these species were low and approached the lower practical concentration range for meaningful chemical analysis. This fact, even in the absence of other sources of error, could account for the variability observed. The concentrations reported for P, N03, and $S0a^2$ are not totally reliable for purposes of interpretation.

Soil pH, Figure 36, is related to other properties of individual soils. When sandy soils and hammock soils are considered, pH is related to both ion exchange capacity and organic matter content, Figure 50. Soil pH generally increases as values for these two parameters increase when hammock and sandy soils, but not the beach soil, are considered.

Total Cation Concentrations

The total concentrations of several cations which are present in Merritt Island soils are presented in Table 18. Average deviations in reported mean concentrations are presented for each. The reported mean concentrations were used to determine the extent to which leaching of each individual cation was achieved by HCl, as discussed in the next section.

Hydrochloric Acid Leaching of Cations from Soils and Evaluation of Leaching by Acid Rain from SRM Exhaust.

The leaching of Na⁺ from the soil samples collected and treated as described in the experimental section (Figure 51) was generally less than 100 percent efficient and showed a strong dependence on HCl concentration only for the soil sample collected from beach site 03. The leaching behavior of Na⁺ closely parallels that of Ca⁺² in the site 03 soil, as will be described later. For hammock soils 10-70 percent of the Na⁺ can be lost regardless of HCl concentration, while less than 20 percent of the Na⁺ is lost from the sandy soil samples studied. Except in the HCl

leachate from samples collected at sites 07 and 09, both hammocks, the concentrations of K^+ were below the reliable analysis sensitivity limit of 35 ppm and, therefore, provided no data to evaluate.

The leaching behavior observed for calcium, Figure 52, and for magnesium, Figure 53, are similar. Leaching of calcium and magnesium is nearly 100 percent efficient at the higher HCl concentrations, and decreases as the HCl concentration decreases. This would indicate that the calcium and magnesium present in the Merritt Island soils exist in an easily exchangeable form in the soils, or they are present as calcareous material that readily dissolves in mineral acids such as HCl. The latter reaction was observed readily during sample preparation. A significant decrease in the fraction of calcium or magnesium leached occurs as the HCl concentration decreases. For soil samples which have relatively large amounts of calcareous matter present (Hammocks and Beach) there was insufficient HCl present when a low HCl concentration leachate was used to result in 100 percent reaction with calcareous material. These soils exhibit very large capacity to neutralize added HCl, and the Ca⁺² present in the beach, hammock, and three sandy soils are 100 percent leached as HCl concentration approaches 1.0 M. However, soils 04, 06, and 08, which contain 200-300 ppm total Ca^{+2} , lose less than 50 percent of the Ca^{+2} originally present. Soils from sites 04, 06, and 08 consistently show greater resistance to leaching by HCl for all cations investigated. Hammock soil 02 and beach soil 03 contain enough calcareous material, based on total Ca^{+2} content, to consume all the HCl added until the HCl concentration exceeds 0.25 M. Hammock soil 07 could consume all the 0.1 M HCl (pH 1) added in this experiment. The Ca^{+2} leaching behavior shown in Figure 52 reflects the acid neutralizing capabilities of these soil samples.

Aluminum is partially leached from all soils at HCl solution pH of 0.0, and decreases to zero as the HCl solution pH increases to 3 or 4 (Figure 54). Aluminum is known to become more readily available and toxic to plants as soil pH decreases. It would, therefore, be expected that the presence of strong acids such as HCl could alter availability of Al⁺³ significantly and, consequently, alter plant growth.

In addition to Na⁺, K⁺, Ca⁺², Mg⁺², and Al⁺³, Fe is the only metal measured in this study consistently having a total concentration in Merritt Island soils greater than 100 ppm. The fraction of Fe leached, Figure 55, is small, and does not occur to any appreciable extent when the HCl concentration decreases below 10^{-2} M (pH 2).

Manganese also is leached by HCl. Results shown in Figure 56 generally indicate less than 50 percent of the total amount of manganese is leached. There is no significant occurence of leaching below 10^{-1} M HCl (pH 1).

For the metals N_1^{+2} , Z_1^{+2} , C_1^{+2} , C_1^{+2} , C_1^{+2} , and C_1^{+2} , leaching behavior becomes more erratic. Leaching characteristics for C_1^{+2} , C_1^{+2} , and C_1^{+2} are shown in Figures 57-59, respectively. The erratic behavior probably results because the actual concentrations of metals in the soils is quite small, and even smaller in leachate samples. Absolute precision

associated with analytical techniques begins to become more important at these low concentrations. In addition, the possibility of sample contamination becomes more likely. On a fractional basis, it appears that the leaching of these metals is similar to that of Fe and Mn at high HCl concentrations, but Ni+2, Zn+2, and Co+2 continue to leach at lower HCl concentrations.

It may be stated that under the experimental conditions utilized in this sequence of experiments, considerable leaching of metals did occur. Experimentally, 10 grams of soil was leached with 100 ml of acid added slowly over a period of two hours. In general, the extent of leaching was small until the pH of leachate decreased to below 3.0 and occured in very large volume. Even then, the relatively large amounts of calcareous material in some soils should be quite effective in neutralizing the acid, which, in turn, should inhibit the leaching effect.

The results of the leaching experiments can be evaluated to determine the effect that the occurrence of acid introduction into the soils would have on leachability of cations. If an area 1.0 m^2 is used as the basis for discussion, then 10g of soil, the sample size used in the leaching experiments, will represent a soil depth of 0.000074 cm based on soil density of 1.35 q/cc. The experimental 100 ml HCl treatment of soils would correspond to 0.01 cm of HCl solution, distributed equally over the 1.0 m² area. This corresponds to the addition of 100 meq. HCl. If a more convenient soil depth of 1.0 cm were considered, then scale-up of experimental conditions would correspond to 135 equip. HCl/m². Existing deposition of acids due to acid precipitation presently amounts to .03-.05 eq./m²/yr., based on results presented in Tables 6, 7, 9, and 10. The occurrence of acid rain from an SRM firing might, in a severe case, produce 1.0 cm of pH 1.0 precipitation (Pellett, 1977). This corresponds to the deposition of 1.0 equiv./m² of HCl. Therefore, 130-140 cm of pH 1.0 precipitation would be required to correspond to our worst case experimental leaching experiment, or 1-2 cm of pH 1.0 precipitation would correspond to the experimental leaching of 10 g soil with 100 ml of 0.01 M HCl (pH 2).

The yearly background deposition of acid at present is insignificant compared to that which could potentially be introduced from acid precipitation which might occur during or shortly after a SRM firing. Under the conditions described above leaching of Na⁺, K⁺, Ca⁺², Mg⁺², Al⁺³, Fe, Ni⁺², Zn⁺², and Co⁺² could occur as previously summarized. Leaching of most cations decreases significantly when the concentration of HCl leachate decreased to 0.01 M. This amount of acid more realistically corresponds to a single worst case acid rain event, and should initially result in only small amounts of leaching of most cations. Many of the soils on Merritt Island contain calcareous material which will consume considerable amounts of acid. The hammock soils have relatively high ion exchange capacity and organic matter content as well. While no attempt has been made to completely characterize these soil properties, it is possible that they may act further to neutralize or buffer the effect of added acid.

Summary and Conclusions

- 1. The leaching experiments were designed to evaluate very severe stress to soils due to the addition of HCl. The mobilization and subsequent loss of cations from the soils due to interaction with HCl can occur. Evaluation of leaching under laboratory conditions cannot duplicate in situ soil experiments or actual processes, and probably does not reflect the complex nature by which mobilization of ions in soils can occur.
- 2. No attempt was made to evaluate the role that soil properties such as organic matter content, or ion exchange capability have in influencing ion mobility. These considerations, when combined with the fact that the analytical data are of a semiquantitative nature in many cases, limit the extension of these results to interpretation of actual interactions between HCl and soils.
- 3. Based on experimental observations, projected acid rain occurrence, and limitations cited above which have the effect of tempering conclusion, leaching should not be severe in the short-term. Should several rain events with pH 1.0 occur on the same soil, then leaching, which amounts to greater than 30 percent of the original cation concentrations in the top 1.0 cm of soil, can occur.
- 4. It is not possible to predict whether the effect of several cumulative exposures of lower concentrations of HCl to soils will produce the same effect that a single high concentration treatment produced in this study.
- 5. It would only be possible to fully measure and understand the effect of acidification on Merritt Island soils following several years of exposure to SRM exhaust, if a long-term program were initiated to continuously study both the stationary and mobilized pool of nutrients and cations present.

Acknowledgements

Initial evaluation of the precipitation chemistry program and several valuable suggestions by Dr. James Galloway, University of Virginia, were extremely beneficial. Dr. Robert Todd, University of Georgia, made useful suggestions in the area of soil chemistry.

Most chemical analyses were performed by John Hogsett, Leonard Hutto, and Mark Carter. Students who provided assistance in sample collection and chemical analysis include Jim Hood, Chris Kohl, Anthony Mancusi, Karin Moore, and Charles Otis. Sandra Watson assisted in data processing. The reliable and conscientious efforts expended by each were vital to accomplishments achieved. The efficiency and organizational capabilities provided by Rosalie Creamer, who typed this report, is appreciated. Development of all computer software and considerable data processing were accomplished by Farley Place. His never-ending enthusiasm and achievements proved to be indispensable.

Assistance provided by the NASA Booster Exhaust Study Test (BEST) program directed by Mr. Hans Rudolph is acknowledged.

Literature Cited

Askne, C., and Brosset, C. 1972. Determination of Strong Acid in Precipitation, Lake-Water and Air-Borne Matter. Atmos. Environ. 6: 695-696.

Banwart, W.L., Tabatabai, M.A., and Bremner, J.M. 1972. Determination of Ammonium in Soil Extracts and Water Samples by an Ammonia Electrode. Comm. in Soil Sci. and Plant Analysis. 3: 449-58.

Batley, G.E., and Gardner, D. 1977. Sampling and Storage of Natural Waters for Trace Metal Analysis. Water Res. 11: 745-756.

Beckett, M.J., and Wilson, A.L. 1974. The Manual Determination of Ammonia in Fresh Waters Using an Ammonia-Sensitive Membrane-Electrode. Water Res. 8: 333-340.

Beckman Scientific Instruments Division. Ion-Selective Measurements with Gran's Ruler. Industrial Applications Research Data Sheet EC-7633. Fullerton, CA., 92634.

Beckman Scientific Instruments Division. Standard Addition Nomograph for use with Beckman Selection Electrodes. Product Data Sheet EC-7633. Fullerton, CA., 92634.

Bogen, D.C., Nagourney, S.J., and Welford, G.A. 1978. MAP3S Precipitation Chemistry Intercomparison Study. Department of Energy ELM-341. Interim Report.

Bremner, J.M., Bundy, L.G., Agarwal, A.L. 1968. Use of a Selective Ion Electrode for Determination of Nitrate in Soils. Anal. Letters. 1: 837-844.

Bremner, J.M., and Tabatabai, M.A. 1972. Use of an Ammonia Electrode for Determination of Ammonium in Kjeldahl Analysis of Soils. Comm. in Soil Sci. and Plant Analysis. 3: 159-165.

Brezonic, P., and Edgerton, E. 1979. Personal Communication.

Brosset, C. 1977. Water-Soluble Sulphur Compounds in Aerosols. Atmos. Environ. 12: 25-38.

Busenberg, E., and Clemency, C.V. 1973. Determination of the Cation Exchange Capacity of Clays and Soils Using an Ammonia Electrode. Clays and Clay Minerals. 21: 213.

Butcher, S.S., and Charlson, R.J. 1972. Introduction to Air Chemistry. Academic Press. N.Y.

Cogbill, C.V., and Likens G.E. 1974. Acid precipitation in the Northeastern United States. Water Resour. Res. 10: 1133-1137.

Cooper, Jr., H.B.H., and Lopez, J.A. 1976. Chemical Composition of Acid Precipitation on Central Texas. Water, Air, and Soil Poll. 6: 351-359.

- Cornell University, 1976. Literature Reviews on Acid Precipitation. EEp-2 The Center for Environmental Quality Management, and The Water Resources and Marine Sciences Center. Ithaca, N.Y.
- Czaban, J.D., and Rechnitz, G.A. 1973. Solid State Ion-Selective Microelectrodes for Heavy Metals and Halides. Anal. Chem. 45: 471-4.
- Dillon, P.J., Jeffries, D.S., Snyder, W., Reid, R., Yan, N.D., Evans, D., Moss, J., and Scheider, W.A. 1978. Acidic Precipitation in South-Central Ontario: Recent Observations. Journal Office Recherches Pecheries Canada. 35: 809-815.
- Dionex Corporation, 1976, Operation and Maintenance Manual Analytical Ion Chromatograph, Models 10 and 14. Palo Alto, CA.
- Dochinger, L.S., and Seliga, T.A., Eds. 1976. Proc. Int. Symp. Acid Precipitation For. Ecosystem. USDA For. Serv. Gen. Tech. Rep. NE-23.
- Dolezal, J., et. al., 1968. Decomposition Techniques in Inorganic Analysis. Elsevier Publishing Co., N.Y.
- Eynon, J.U., 1970. Known-Increment and Known-Decrement Methods of Measurement with Ion-Selective Electrodes. Amer. Lab. 59-65 (Sept).
- Frink, C.R., Voigt, G.K., 1976. Potential Effects of Acid Precipitation on Soils in the Humid Temperate Zone. USDA For. Serv. Gen. Tech. Rep. NE-23: 685-709.
- Fuller, C.W., and Whitehead, J. 1974. The Determination of Trace Metals in High Purity Sodium Calcium Silicate Glass, Sodium Borosilicate Glass, Sodium Carbonate and Calcium Carbonate by Flameless Atomic-Absorption Spectometry: Anal. Chem. Acta. 68: 407-413.
- Fuller, C.W., 1973. The Application of the Heated Graphite Furnace to the Determination of Trace Metal Impurities in some Refractory Materials. Atomic Absorption Newsletter. 12(2): 40-41.
- Fuller, C.W., 1972. The Determination of Iron and Copper in High Purity Silica by Flameless Atomic-Absorption Spectrometry. Anal. Chem. Acta. 62: 261-6.
- Galloway, J.W., and Likens, G.E. 1979. The Measurement of pH and Acidity in Acid Precipitation. Manuscript in Preparation.
- Galloway, J.N., Likens, G.E. 1978. The Collection of Precipitation for Chemical Analysis. Tellus. 30: 71-82.
- Galloway, J.N., and Cowling, E.B. 1978. The Effects of Precipitation on Aquatic and Terrestrial Ecosystems: A Proposed Precipitation Chemistry Network. Air Poll. Cont. Assoc. J. 28: 229-235.
- Galloway, J.N., and Likens, G.E. 1976. Calibration of Collection Procedures for the Determination of Precipitation Chemistry. Water, Air, and Soil Poll. 6: 241-258.

Galloway, J.N., Likens, G.E., and Edgerton, E.S. 1976. Acid Precipitation in the Northeastern United States: pH and Acidity. Science. 194: 722-724.

Galloway, J.N. 1975. Critical Factors in the Collection of Precipitation for Chemical Analysis. Proc/ 1st Specialty Symp. Atmos. Contrib. Chem. of Lake Waters. Internat. Assoc. Great Lakes Res. 9/28-10/1.

Gorham, E. 1976. Acid Precipitation and its influence upon Aquatic Ecosystems. An overview. Water Air Soil Poll. 6: 457-482.

Gran, G., 1952. Determination of the Equivalence Point in Potentiometric Titrations. Analyst. 77: 661-71.

Granat, L. 1977. Sulfate in Precipitation as Observed By the European Atmospheric Chemistry Network. Atmos. Environ. 12: 413-424.

Granat. L. 1972. On the Relation Between pH and the Chemical Composition in Atmospheric Precipitation. Tellus. 24: 550-560.

Hach Chemical Company, Ames Iowa. 1975. Procedures, Chemical Lists and Glassware for Water and Wastewater Analysis, 2nd Ed. 2-77.

Haines, E.B. 1976. Nitrogen Content and Acidity of Rain on the Georgia Coast. Water Resources Bull. 12: 1223-1231.

Holden, C. 1975. Auto Emissions: EPA Decision Due on Another Cleanup Delay. 187: 818-22.

Hornbeck, J.W., Likens, G.E., and Eaton, J.S. Seasonal Patterns in Acidity of Precipitation and Their Implications for Forest Stream Ecosystems. Water, Air, and Soil Poll. 7: 355-365.

Instrumentation Laboratories, Inc. 1977a, Operators Manual Model IL751 AA/AE Spectrophotometer. Analytical Instruments Division, Wilmington, MA.

Instrumentation Laboratories, Inc., 1977b. Atomic Absorption Methods Manual, Vol. 1, Standard Conditions for Flame Operation, Analytical Instruments Division, Wilmington, MA.

Instrumentation Laboratories, Inc., 1976. Atomic Absorption Methods Manual, Vol. 2, Flameless Operations, Analytical Instruments Division, Wilmington, MA.

Israel, H., and Israel, F.W. 1974. Trace Elements in the Atmosphere. Ann Arbor Science Publishers, Inc.

Jacobson, J.S., Heller, L.I., and Van Leuken, P. 1976. Acidic Precipitation at a Site Within the Northeastern Conurbation. Water, Air, and Soil Poll. 6: 339-349.

Junge, C.E. 1963. Air Chemistry and Radioactivity. Academic Press, New York.

Junge, C.E., and Werby, R.T. 1958. J. Meteorol. 15: 417-425.

Krupa, S., Coscio, Jr., M.R., and Wood, F.A. 1976. Evaluation of a Coulometric Procedure For the Detection of Strong and Weak Acid Components in Rainwater. Air Poll. Cont. Assoc. J. 26: 221-3.

Krupa, S.V., Coscia, Jr., M.R., and Wood, F.A. 1976. Evidence for Multiple Hydrogen-Ion Donor Systems in Rain. Water, Air, and Soil Poll. 6: 415-422.

Lewis, Jr., W.M., and Grant, M.C., 1978. Sampling and Chemical Interpretation of Precipitation for Mass Balance Studies. Water Resour. Res. 14: 1098-1104.

Liberti, A., Possanzini, M., and Vicedomino, M., 1972. The Determination of the Non-Volatile Acidity of Rainwater by a Coulometric Procedure. Analyst 97: 352-6.

Likens, G.E., 1976. Acid Precipitation. Chem. Eng. News. 54: 29-44.

Likens, G.E., Bormann, F.H. 1974. Acid Rain: A Serious Regional Environmental Problem. Science 184: 1176-1179.

Likens, G.E., Bormann, F.H., and Johnson, N.M. 1972. Acid Rain. Environment 14: 33-39.

Liljestrand, H.M., and Morgan, J.J. 1978. Chemical Composition of Acid Precipitation in Pasadena, Calif. Environ. Sci. Technol. 12: 1271-3.

Lodge, Jr., J.P., Page, J.B., Basbergill, W., Swanson, G.S., Hill, K.C., Lorange, E., and Lazrus, A.L. 1968. Chemistry of United States Precipitation. Final Report on the Nat. Precipitation Sampling Network. Nat. Center for Atmos. Res. Boulder, Colorado.

Mack, A.R., and Sanderson, R.B., 1971. Sensitivity of the Nitrate-Ion Membrane Electrode in Various Soil Extracts. Can. J. Soil Sci. 51: 95-104.

Mahendrappa, M.K., 1969. Determination of Nitrate Nitrogen in Soil Extracts Using a Specific Ion Activity Electrode. Soil Sci. 108: 132-6.

Maienthal, E.J., and Becker, D.A. 1976. A survey of Current Literature on Sampling, Sample Handling, for Environmental Materials and Long Term Storage. Interface 5: 499-562.

Mulik, J.D. 1978. Second National Symposium on Ion Chromatographic Analysis of Environmental Pollutants. Environmental Protection Agency. Research Triangle Park, North Carolina.

Martin, A., and Barber, F.R. 1978. Some O'servations of Acidity and Sulphur in Rainwater From Rural Sites in Central England and Wales. Atmos. Environ. 12: 1481-1487.

McColl, J.G., and Bush, D.S. 1978. Precipitation and Throughfall Chemistry in the San Francisco Bay Area. J. Environ. Quality 7:352-7.

McFee, W.W., Kelly, F.M., and Beck, R.H. 1977. Acid Precipitation Effects on Soil pH and Base Saturation of Exchange Sites. Water, Air Soil Poll. 7: 401-408.

McKenzie, L.R., and Young, P.N.W. 1975. Determination of Ammonia, Nitrate and Organic Nitrogen in Water and Waste Water with an Ammonia Gas-sensing Electrode. Analyst 100: 620-8.

Mohnen, V.A., and Yue, G.K. 1977. Free Hydrochloric Acid in the Atmosphere Resulting from Diffusion and Scavenging Processes. Precipitation Scanvenging Conference Proceedings. 208-22.

Myers, R.J.K., and Paul, E.A. 1968. Nitrate Ion Electrode Method for Soil Nitrate Nitrogen Determination. Can. J. Soil Sci. 48: 369-71.

Miller, J.M., Galloway, J.N., Likens, G.E. 1978. Origin of Air Masses Producing Acid precipitation at Ithaca, New York. A Preliminary Report. Geophys. Res. Lett. 5: 757-60.

Miller, J.N. 1975. The Collection and Chemical Analysis of Precipitation in North America. Water Reuse Conference of the American Institute of Chemical Engineers, May 7.

National Aeronautics and Space Administration. 1978. Environmental Impact Statement, Space Shuttle Program.

National Oceanographic and Atmospheric Administration. 1978. Miller, J.M., and Heffter, N. Personal Communication.

Norton, S.A. 1976. Changes in Chemical Processes in Soils Caused by Acid Precipitation. USDA For. Serv. Gen. Tech. Rep. NE-23: 711-724.

Oden. S. 1976. The Acidity Problem -- An Outline of Concepts. USDA For. Serv. Gen. Tech. Rep. NE-23: 1-36.

Oien, A., and Selmer-Olsen, 1969. Nitrate Determination in Soil Extracts with the Nitrate Electrode. Analyst. 94: 888-94.

Olsen, V.K., Hargens, R.D., Carr, J.D., and Larson, R.D. 1974. Ion Selective Electrodes from Broken Glass Electrodes. J. Chem. Educ. 51: 791.

Orion, 1975. Methods Manual 93 Series Electrodes, pp. 16-17. Orion Research Incorporated.

Overrein, L.N. 1972. Sulphur Pollution Patterns Observed, Leaching of Calcium in Forest Soil Determined. Ambio 145-7.

Pawluk, S. 1967. Soil Analysis by Atomic Absorption Spectrophotometry. Atomic Absorption Newsletter 6(3) 53-6.

Peden, M.E., and Skowron, L.M. 1978. Ionic Stability of Precipitation Samples. Atmos. Environ. 12: 2343-2349.

Pellett, G.L. 1977. Washout of HCl and Application to Solid Rocket Exhaust Clouds. Precipitation Scavenging Conference Proceedings, 437-65.

Pellett, G.L. 1979. Characterization of Soil From Cape Canaveral Launch Complex Postlaunch Pad Debris Particulates, and Interaction of Soil with Aqueous HCl. NASA Tech. Report in Preparation.

Reuss, J.O. 1978. Simulation of Nutrient Loss from Sols Due to Rainfall Acidity. EPA-600/3-78-053.

Reuss, John O. 1975. Chemical/Biological Relationships Relevant to Ecological Effects of Acid Rainfall. EPA-660/3-75-032.

Rossotti, F.J.C., and Rossotti, H. 1965. Potentiometric Titrations Using Gran Plots. J. Chem. Educ., 42: 375-378.

Ravch, A., 1973. The Adaption of the Nitrate-Specific Electrode for Soil and Plant Analysis. Soil Sci. 116: 388-9.

Richardson, C.J. 1976. The Chemical Composition of Atmospheric Precipitation from Selected Stations in Michigan. Water, Air, and Soil Poll. 6: 385-393.

Sanzolone, R.F., and Chao, T.T. 1976. Atomic Absorption Spectrometric Determination of Copper, Zinc, and Lead. Anal. Chem. Acta. 86: 163-8.

Seymour, M.D., Clayton, J.W., Jr., and Fernando., Q. 1977. Determination of pK_a Values of Acid Components in Atmospheric Condensates by Linearization of Segmented Titration Curves. Anal. Chem. 49: 1429-1432.

Seymour, M.D., Schubert, S.A., Clayton, J.W., Jr., and Fernando, Q. 1978. Variations in the Acid Content of Rain Water in the Course of a Single Precipitation. Water, Air, and Soil Poll. 10: 147-161.

Slania, J., Raaphorst, J.G.V., and Zijp, W.L. 1979. An Evaluation of the Chemical Composition of Precipitation Sampled with 21 Identical Collectors on a Limited Area. Intern. J. Environ. Anal. Chem. 6: 67-81.

Smith, G.R., 1975. Rapid Determination of Nitrate-Nitrogen in Soils and Plants with the Nitrate Electrode. Anal. Letters 8: 503-8.

Soil Survey Staff, 1975. Soil Survey Laboratory Methods and Procedures for Collecting Soil Samples. U.S. Dept. of Agriculture, Soil Conservation Service, U.S. Government Printing Office. Washington, D.C. 22-4.

Soil Survey Staff. 1975a. Ibid. 29-30.

Soil Testing Laboratory. 1974. University of Florida. Procedures Used by State Soil Testing Laboratories in Southern Region of the United States. Bulletin 190. Southern Cooperative Series. July.

Standard Methods. 1975. Standard Methods for the Examination of Water and Wastewater, 14th Ed., American Public Health Association, New York. 496-8.

Standard Methods. 1975a. Ibid. 423-7.

Standard Methods. 1975b. Ibid. 422-3.

Standard Methods. 1975c. Ibid. 476, 479-80.

Stout, I.J. 1979. Terrestrial Community Analysis. A Continuation of Baseline Studies for Environmentally Monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Contract report NAS10-8986. In Preparation.

Summers, P.W., and Whelpdale, D.M. 1976. Acid Precipitation in Canada. Water, Air, Soil Poll. 6: 447-56.

Susko, M. 1979. Electrets used in Measuring Rocket Exhaust Effluents from a Space Shuttle Model. J. Applied Meteor. 18: 48-56.

Thorpe, R.D. 1978. Definition of Air Quality Measurements for Monitoring Space Shuttle Launches. NASA Contract NAS1-14511.

Valuela, I., Teal, J.M., Volkmann, S., Shafer, D., and Carpenter, E.J. 1978. Nutrient and Particulate Fluxes in a Salt Marsh Ecosystem: Tidal Exchanges and Inputs by Precipitation and Groundwater. Limnol. Oceanogr. 23: 798-812.

Vermuelen, A.J. 1978. Acid Rain in the Netherlands. Environ. Sci. Technol. 12: 1017-21.

Vogel, A.I. 1961. A Textbook of Quantitative Inorganic Analysis. 3rd Ed. Longsman, Green, and Co. Ltd., London. 808-9.

Volchok, G.L., and Graveson, R.T. 1976. Wet/Dry Fallout Collection. Proc. 2nd Federal conf. on the Great Lakes, Argonne, IL, March 25-27, 259-264.

Ward, F.N. 1969. Atomic-absorption methods of analysis useful in geochemical exploration. U.S. Geological Survey Bulletin 1289-I.

Welcher, F.J. (ed.). 1963. Standard Methods of Chemical Analysis. D. Van Nostrand Lo., Inc. N.Y. Vol. II.B. 2310-2.

Wisniewski, J., and Cotton, W.R. 1977. Chemical Analysis of South Florida's Environment. Precipitation Scavenging Conference Proceedings, 611-625.

APPENDIX TABLES

Table 1.

KONTHLY RAINFALL SUMMARY JUL 1977

DATE									SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	19	19
052377	00	00	00	00	00	00	00	. 0 0	00	٥٥	• •	٥٥	00	• •	••	00	٥٥	4 23	90
062877	60	00	00	00	0.0	00	٥٥	00	00	00	00	00	00	00	. 00	00	00	4 24	00
002077	00	00	00	00	00	٥٥	00	00	00	. 00	.00	00	00	. 00	00	00	00	6 46	. 00
070177	00	00	.00	00	00	00	00	00	0 0	00	40	. 00	00	00	00	00	00	4 47	00
979577	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	0.0	00	4 23	00
070777	00	00	00	00	00	00	00	00	00	00	00	. 00	00	00	00	0.0	. 00	3 96	00
971177	00	00	.00	00	00	00	00	00	00	00	00	00	00	00	.00	00	00	4 25	ý n
071877	00	00	00	00	00	00	00	.00	00	00	00	00	00	.00	00	00	00	4 48	00
972177	00	00	.00	00	00	00	00	00	00	00	00	. • •	00	00	.00	00	0.5	4 74	00
072277	••	00	00	00	00	00	00	00	00	00	00	00	00	00	. 00	00	00	4 15	00
072677	4 57	00	00	00	00	00	00	00	00	00	4 61	4 61	00	. 00	00	.00	00	00	4 62
778270	4 12	00	00	00	00	00	00	.00	00	00	4 23	4 15	00	00	00	00	00	4 18	00
972977	00	00	• •	00	00	00	00	••	00	.00	00	00	0 0	00	00	00	00	4 08	00
VOLTOL	2785										2184	2182.						9910	831
HIGH	4 57	••	••	00	••	• •	00	00	00	00	4 61	4 61	• •	. 0 0	. • •	• •	00	6 46	4 62
LOW	4 12	00	• •	00	00	00	00	• •	• •	00	4 23	4 15	00	00	••	• •	00	3 96	4 62
YWA	4 17	00	00	00	00	00	00	• •	00	00	4 53	4 57	00	00	• •	• •	00	4 30	4 62
RSDH	67 3	00	• •	00	00	00	00	00	00	••	582	68 6	• •	00	••	• •	••	54 4	00
RSDPH	7 32	00	00	• •	••	• •	00	• •	00	00	6 08	7 43	.00	• •	. • •	00	00	14 9	00
ANTH	1484								•		399	918						7781	311
ti	2	٥	¢	٥	٥	٥	٥	•	0	•	2	2	٥	٥	0	٥	٥	12	1

VULTOL HL

H'CH, LOW, VWA PH

RIDH % PELATIVE STANDARD DEVIATION RSDPH % PELATIVE STANDARD DEVIATION

ANTH MICPO EQ /SQ METER

Table 2.

MONTHLY RAINFALL SUMMORY AUG 1977

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
080177	00	00	00	00	00	00	00	00	00	00	00	00	٥٥	00	00	٥٥	03	4 05	0.0
030277	4 18	00	00	00	00	00	00	00	00	00	4 11	4 13	00	00	00	00	00	4 92	4 53
0 10377	4 96	00	00	0.0	00	00	00	00	00	00	5 17	4 78	00	00	00	00	03	00	4 89
09'077	00	00	00	00	00	00	00	00	0 0	00	4 37	4 74	04	00	00	00	00	00	00
081277	4 82	00	00	00	00	00	00	00	00	00	4 42	4 88	4 90	.00	00	00	00	4 27	4 92
381577	5 06	00	00	00	0.0	00	00	00	00	00	5 20	5 27	6 82	00	00	00	00	4 81	5 36
031877	6 \$	00	00	00	00	00	00	00	00	00	4 86	.00	00	00	.00	00	00	4 28	4 63
081977	00	00	00	00	00	00	00	.00	00	00	00	4 03	00	00	00	00	00	30	00
092277	4 11	00	00	00	00	00	00	00	00	00	4 10	4 11	4 06	00	00	00	00	00	00
032377	5 77	00	00	00	00	00	00	00	.00	00	00	00	00	00	00	0 0	0.0	00	0.0
082477	٥٥	06	0 0	00	٥٥	00	0.5	00	00	00	00	00	00	00	00	00	00	4 33	00
v 32577	¢٥	00	00	00	00	00	00	0 0	00	00	4 46	00	4 61	00	00	00	00	5 04	4 91
082977	5 24	00	O O	00	00	00	00	00	00	00	5 32	00	5 35	00	00	00	00	4 63	5 42
083177	5 03	••	*	00	00	00	00	00	00	00	5 51	6 80	5 20	00	00	00	0.5	00	5 19
YOLTOL	8548										4847	10299	6840		•			16035	9240
нісн	5 77	•	00	00	00	• •	00	00	00	00	5 51	6 80	6 92	00	00	00	٥٥	5 04	5 42
FOM	4 11	••	• •	00	00	00	00	00	00	00	4 10	4.03	4 06	00	00	00	٥٥	4 05	4 53
VWA	4 50	00	00	00	00	00	00	00	00	. • •	4 54	4 32	5 08	٥٥	00	••	00	4 41	4 88
PSDH	1 23	60	00	00	00	00	0 0	00	• •	00	95 i	101	145	00	00	00	00	71 6	67 9
PSDPH	11 1	00	00	00	00	00	00	00	00	00	11 0	18 7	18 1	• •	.00	• •	٥٥	7 62	6 56
ANTH	4258										2188	7663	893.					9639	1994
н	8	٥	•	٥	٥	•	٥	•	٥	٥	10	8	6	0	•	٥	•	8	8

VOLTUL ML HIGH, LOW, YWA PH RSOH % RELATIVE STANDARD DEVIATION RSDPH % RELATIVE STANDARD DEVIATION ANTH MICRO EQ /SQ METER

Table 3.

HONTHLY RAINFALL SUMMARY SEP 1977

DATE								;	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
090177	• •	00	00	00	00	00	٥٥	٥٥	• •	.00	00	. • •	00	••	. 00	00	٥٥	4 97	• •
030277	5 56	00	00	00	0 0	00	00	• •	00	00	5 65	5 28	5 36	0.0	00	0 0	00	4 95	5 24
090677	4 80	6.0	00	00	00	00	00	• •	00	00	4 93	4 90	5 87	00	00	00	00	4 98	4 95
030877	3 86	90	00	00	00	00	00	00	00	00	3.60	. 00	4 02	00	00	00	00	00	00
091277	3 93	00	00	00	00	00	00	.00	. 00	00	4 55	4 77	3.87	.00	00	00	0.5	00	4 19
091677	00	00	00	00	00	00	00	00	00	00	00	. 00	4 19	.00	. 00	00	00	00	00
031977	4 83	00	00	00	00	00	00	00	00	00	4 50	4 71	4 93	. 00	00	00	03	4 65	4 73
072077	4 72	00	00	0.0	00	00	00	00	00	00	4 66	4.48	4 10	00	00	00	03	4 34	4 78
092177	٥o	00	.00	00	60	00	00	00	00	00	00	00	.00	00	00	00	03	30	4 55
0 32277	4 04	00	0 0	00	00	00	00	00	00	00	3 93	4 19	4 10	00	00	00	00	4 69	4 31
092677	0.0	00	00	00	00	00	00	00	00	00	00	4.67	4 90	00	00	٥٥	00	4 38	4 86
092777	4 12	• •	* •	00	00	00	00	• •	••	00	4 31	3 99	4 42	. • •	. 00	00	00	4 28	4 37
VOLTOL	10201										5996	14123.	9005					13565	8124
HIGH	5 5 5	• •	• •	00	00	00	00	00	0 0	00	5 65	5 28	5.87	00	00	.00	. 00	4 98	5 24
LOV	3 86	• •	••	00	00	••	• •	00	00	00	3 60	3 99	3 87	00	00	00	••	4 28	4 19
บผูล	4 79	••	• •	• •	٥٥	00	٥٥	• •	• •	00	4 82	4 83	5 02	٥٥	00	.00	00	4 61	4 73
RSDH	89 0	• •	. • •	• •	٥٥	00	••	• •	.00	00	130	95 3	86 1	• •	00	00	٥٥	63 9	71 8
PSDPH	13 2	00	••	00	• •	00	00	60	00	00	13 8	8 76	14 4	00	00	00	. 00	6 33	7 27
ARTH	2563				•						1428	. 3251	1329					5257	2377
н	8	٥	٥	•	•	٥	Ó	o	ø	٥	8	8	10	٥	٥	٥	٥	9	9

VOLTOL NL

RIGH, LOW, VUA PH

RSDH & RELATIVE STANDARD DEVIATION

PEOPH & RELATIVE STANDARD DEVIATION

AHTH MICRO EQ /SQ METER

Table 4.

MONTHLY RAINFALL SUMMARY OCT 1977

DATE								:	SITE											
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
101077	4 89	00	00	00	00	00	00	00	. 00	.00	4.87	4 70	4 76	00	00	00	00	. 30	00	
101177	3 47	0.0	.00	00	00	.00	00	.00	00	00	3 55	3.80	3 94	00	.00	.00	00	30	3 92	
101277	4 32	00	90	00	00	00	.00	00	.00	00	3 82	3 99	4 19	00	00	0.0	00	0.0	00	
101377	4 10	.00	.00	00	00	00	. 00	.00	00	.00	4 18	3 89	4 26	.00	.00	0.0	00	4 28	4 30	
1 22477	0.0	00	00	00	00	00	00	00	00	.00	.00	00	30	00	00	00	. 00	20	4 45	
102577	4.52	00	\$ \$	00	00	00	. 00	.00	00	00	4 77	00	4.70	00	00	00	00	5 20	5 20	
102677	00	00	\$	00	0.0	00	00	00	00	00	5.73	5 08	\$0	00	.00	00	03	4 48	00	
103177	00	00	00	00	00	.00	¢¢	\$ \$	0 0	.00	.00	60	00	• •	.00	00	00	4 05	90	
VOLTOL	4748.			•							4224.	1919.	2888.			•		747	4045	
нісн	4 89	00	• •	• •	• •	• •	00	00	. • •	. • •	5 73	5.08	4 76	00	. 00	00	00	5 20	5 20	
LOU	3 47	00	00	• •	00	• •	90	.00	00	••	3 55	3 80	3 94	00	.00	00	. 00	4 05	3 92	
VVA	4 39	••	. • •	٥ ٥	. 00	00	••	• •	• •	.00	4 51	4 3¢	4.25	.00	00	00	00	4 40	4_78	
RSDH	132	00	••	00	00	00	••	.00	00	.00	124	79 6	85.5	.00	.00	00	٥٥	77 0	91 2	
RSDPH	124	.00	. • •	0 0	00	00	00	.00	00	.00	17 8	13 2	8.79	.00	00	.00	00	11 0	12 0	
HIMA	3076							•	: .	•	2032.	1509.	2560.			•		459	1350	
н	5	٥	•	٥	0	٥	0	٥	٥	٥	6	5	5	٥	٥	٥	0	4	4	

YOLTOL ML
HIGH. LCW, YWA PH
PSOH % RELATIVE STANDARD DEVIATION
RSOPH % RELATIVE STANDARD DEVIATION

ANTH MICRO EQ /SQ METER

,

Table 5.

MONTHLY RAINFALL SUMMARY NOV 1977

DATE								;	SITE										
	1	2	3	4	5	6	7	8	9	10	i 1	12	13	1 4	15	16	17	18	19
110477	4 44	00	••	00	00	.00	00	• •	00	••	4 56	4 49	4.63	. • •	. • •	.00	٥٥	4 54	4 41
110777	4 47	.00	00	.00	00	.00	.00	.00	.00	. 00	4 97	4 70	4.64	.00	00	.00	00	4 70	4 57
111677	3 89	00	00	00	0 0	0 0	. 00	00	00	00	7 05	3 80	00	00	. 00	.00	. 00	. 00	00
111777	4 38	00	00	00	0 0	.00	00	00	00	90	00	.00	4 94	00	00	.00	00	30	00
112277	4.31	.00	00	00	00	00	00	00	00	00	00	00	.00	. 00	. 00	00	00	00	00
: 12377	5 02	.00	0 0	00	00	.00	0.0	00	.00	00	5 16	5 11	4.97	4 87	00	00	00	5 44	4 97
112377	5 31	00	00	00	0 Q	00	00	.00	00	.00	5 42	5.30	5.31	5 20	00	00	03	4 96	5 25
113077	5 2 6	00	* *	00	00	00	. 00	.00	00	00	5 43		5.16	5 28	00	.00	00	5 03	\$ 29
VOLTOL	10328.				•						9903	10230	11840	8336.				4033	14912
HIGH	2 31	00	.00	• •	••	.00	. 00	• •	• •	.00	7 05	5.41	5 31	5.28	. 00	.00	. 00	5 44	5 29
FON	3 88	00	.00	. • •	00	.00	.00	00	00	. 00	4 56	3.80	4.63	4 87	00	00	. 00	4 54	4 41
VWA	5 09	00	.00	. 00	. • •	• •	00	••	. • •	.00	5 34	5.17	5 10	5.21	. 00	00	00	4 92	5 19
RSDH	1 0 6	00	• •	. 0 0	• •	00	00	00	00	. 00	112	158	56 9	53.7	.00	• •	00	64 4	85 3
RSDPH	10 9	00	• •	. • •	00	.00	00	.00	00	.00	15.8	12.6	5 60	4.25	00	00	00	7 04	8 0 4
ANTH	1324		•	•					•		710	. 1089.	. 1481.	907.	•			766	1521
H	8	٥	•	٥	0	٥	0	•	•	٥	6	6	6	3	Ó	٥	٥	5	5

VOLTOL ML HIGH, LOW, YUA PH POOH % RELATIVE STANDARD DEVIATION RSDPH % RELATIVE STANDARD DEVIATION ANTH MICRO ER /SQ METER

Table 6.

MONTHLY RAINFALL SUMMARY DEC 1977

DATE								\$	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
120177	٥٥	00	00	• •	00	00	00	00	00	00	00	4 27	4 33	4.24	. 00	00	00	00	5 01
120277	4 41	00	00	00	00	.00	00	00	00	.00	00	00	00	00	00	.00	00	4 68	00
120577	00	00	00	00	00	00	00	00	٥٥	00	00	4 08	3.97	4.17	00	00	0.0	3 90	4 18
120677	4 70	00	00	٥¢	.00	.00	00	00	00	.00	4 77	4 66	4.72	5.06	. 00	00	00	4 68	4 88
120977	00	00	00	00	00	00	.00	00	. • •	.00	00	00	00	.00	00	0.0	00	4 78	00
121277	4 93	90	.00	0 0	.00	.00	.00	.00	. • •	00	4.91	4 61	4.87	4 4 4	. 00	. 0 0	. 00	20	4 72
121377	4 53	00	00	.00	00	00	00	00	.00	00	4 69	4 65	4 53	4.66	00	00	00	00	00
121477	5 26	00	0.0	00	00	00	0.5	00	00	.00	5 36	5 30	4 99	5 26	.00	00	00	4 96	5 2 5
121577	4 16	00	00	9 0	00	.00	00	.00	00	00	4.89	6 54	4 79	4 41	. 00	00	00	30	5 05
121677	4 56	00	90	00	00	00	00	00	00	.00	4 63	4.76	4 60	4.59	. 00	00	00	4 72	4 47
121977	4 50	00	.00	00	00	00	. 00	.00	00	.00	4 96	4 43	4 73	4.38	. 00	.00	00	4 86	4 72
122177	4 25	00	00	00	00	• •	00	00	00	00	.00	4 27	4 22	4.42	. 00	0.0	.00	20	00
122277	4 08	00	0 0	.00	00	00	00	.00	00	00	4 10	4.17	4 18	4.25	. 00	.00	.00	4 03	4 00
122877	4 66	• •	00	00	00	00	00	••	00	.00	4 52	4.59	4 62	4 57	. 00	.00	00	00	4 58
YOLTOL	4524	•						•	•		5981	5008	6464	4623	•			5400	7443
HICH	5 26	00	• •	• •	0 0	.00	00	. • •	. • •	.00	5 36	6.54	4.99	5 26	00	• •	••	4 36	5 25
FOA	4.08	. • •	. • •	. • •	00	00	••	.00	. • •	.00	4.10	4.08	3 97	4 17	. • •	.00	. 00	3 90	4 00
AAA	4 56	00	. • •	. • •	00	• •	00	.00	0.0	.00	4 71	4.56	4 66	4 55	. • •	00	00	4 52	4 65
RSDH	67 3	00	• •	• •	. 00	00	00	.00	. • •	00	95 2	73 5	79 2	53.7	. 00	.00	00	103	100
RSDPH	7 51	. • •	.00	.00	00	.00	,00	.00	.00	.00	7 26	14 2	6.81	7,23	.00	.00	••	8 58	8 36
читн	1931				•	•		•			1814	2165.	5553	2015				25 27	2632
11	11	٥	•	٥	0	•	σ	٥	0	٥	9	12	12	12	•	•	٥	8	10

VOLTOL NL

HIGH, LOW, YUR PH

POOH & RELATIVE STANDARD DEVIATION

PSDPH & RELATIVE STANDARD DEVIATION ANTH MICRO EQ /SQ.METER

Table 7.

MONTHLY RAINFALL SUNNARY JAN 1978

DATE									SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
010378	3 99	• •	00	00	00	• •	••	00	• •	00	4 00	3 94	4 05	3 95	00	00	٥٥	4 11	4 05
010979	4 83	90	00	0 0	٥٥	00	00	00	00	00	5 45	4 84	5 09	5 40	00	00	00	5 37	5 04
011378	00	00	00	00	00	00	00	0.0	00	00	0.0	00	00	00	00	0.0	00	4 91	00
011678	4 65	00	00	00	00	00	00	00	00	00	4 76	4 57	00	4.62	. 00	00	0.5	30	4 88
011873	4 28	00	.00	00	00	00	00	00	00	00	4 43	4.31	4 38	00	00	00	00	4 51	4 53
011978	00	00	00	00	00	00	00	٥٥	00	00	00	00	00	4 55	. 00	00	00	00	00
012078	4 93	00	.00	00	00	00	00	00	00	00	4 98	4 96	4 98	4 80	00	00	00	5 00	4 86
012578	00	00	00	00	00	00	00	00	• •	00	00	00	00	00	00	.00	. 00	4 93	.00
012678	4 76	00	00	• •	00	• •	00	• •	• •	00	4 87	4 89	٥٥	4 85	00	00	00	00	00
VOLTOL	3809										3578	4394.	3080	3660.				3547	3450.
HI GH	4 93	00	••	• •	00	0 0	• •	• •	00	00	5 45	4 96	5 09	5 40	.00	00	00	5 37	5 04
LOW	3 99	00	• •	• •	00	• •	00	00	00	00	4 00	3 94	4 05	3 95	00	.00	00	4 11	4 05
ANN	4 59	• •	• •	0 0	٥٥	• •	00	٥.	• •	00	4 67	4 56	4 66	4 58	00	00	03	4 76	4 61
RSDH	95 8	00	٥٥	• •	00	00	00	00	• •	00	119	105	101	120	.00	00	٥٥	106	108
PSDPH	7 95	00	• •	• •	00	• •	• •	• •	.00	00	104	8 67	10 7	10 1	00	00	00	9 00	8 43
ARTH	1523										1196	1905	1045	1501				971	1326
н	6	۰	٥	۰	0	٥	٥	٥	۰	٥	6	6	4	6	٥	٥	٥	6	5

VOLTOL ML
HIGH, LOW, VUA PH
RSDH % RELATIVE STANDARD DEVIATION
RSDPH % RELATIVE STANDARD DEVIATION
ANTH MICFO EQ /SQ METEP

Table 8.

MONTHLY RAINFALL SUMMARY FEB 1978

DATE									SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	1 4	15	16	17	18	1 9
020178	00	00	00	00	00	00	0.9	• •	00	00	00	3 95	4 02	3 99	. 00	00	٥٥	٥٥	• •
020278	4 17	00	00	0.0	00	00	00	00	00	00	4 13	4 18	4 15	4 16	00	00	00	4 05	4 14
020378	4 44	00	00	00	0 0	00	00	00	00	00	4 58	4 45	4 56	4 42	00	00	00	4 38	4 58
020978	4 53	00	00	00	00	00	00	00	00	00	4 57	4 55	4 48	4 49	00	00	00	4 36	4 48
921978	3 98	00	00	00	00	00	00	00	00	00	4 13	00	4 00	4 19	00	00	00	30	3 95
021678	4 35	00	00	60	00	00	00	00	00	00	4 39	4 47	4 07	4 17	00	00	00	00	00
021778	4 53	00	◊ ◊	00	00	00	00	00	00	00	4 51	4 43	4 48	4 39	00	00	00	4 33	4 37
022078	00	00	00	00	00	00	00	00	00	00	00	4 39	4 39	4 40	.00	00	00	4 21	4 23
022178	4 13	00	••	00	00	00	00	00	00	00	4 20	4 24	4 35	4 29	00	00	00	4 13	4 19
YOLTOL	6600				•						5807	7928	8284	7398				10192	8063
HICH	4 53	00	00	00	00	••	00	00	00	00	4 58	4 55	4 56	4 49	••	• •	00	4 38	4 58
LOW	3 98	00	00	• •	00	00	00	00	00	00	4 13	3 95	4 00	3 99	.00	00	٥٥	4 \$5	3 95
AUA	4 44	00	00	00	00	00	00	٥٥	00	••	4 46	4 42	4 42	4 40	00	00	••	4 28	4 34
R S D H	51 0	00	00	00	00	00	••	00	••	••	45 4	53 9	49 1	39 4	00	• •	٥٥	32 1	49 5
RSDPH	4 98	00	• •	00	00	00	00	00	.00	00	4 66	4 54	5 11	3 78	00	00	00	3 18	5 02
ANTH	3717										3152	4730	4932	4631				8354	5774
Ħ	7	٥	٥	٥	0	•	٥	•	•	Q	7	8	9	9	٥	٥	٥	6	7

VOLTOL ML

HIGH, LOW, YWA PH

RSDH % PELATIVE STANDARD DEVIATION RSDPH ? RELATIVE STANDARD DEVIATION

ANTH MICPO EQ /SO METER

Table 9.

HONTHLY RAINFALL SUMMARY MAR 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
930178	4 25	00	00	00	00	00	00	00	00	٥٥	3 98	4 23	4 18	• •	00	٥٥	00	4.28	4 41
030378	4 06	00	00	00	00	00	00	00	00	00	4 19	4 32	4 00	3 09	00	00	03	4 67	4 17
030678	4 79	00	• •	00	00	00	00	00	00	00	00	4 83	4 72	4 75	00	00	00	.00	00
030978	4 79	00	00	00	4 77	4 61	00	00	00	4 85	4 70	4 73	4 66	4 72	00	4 83	00	00	4 30
031078	4 6 1	02	0.0	40	4 39	4 89	00	90	00	4 89	4 72	4 67	4 79	4 76	.00	4 63	00	4 35	4 61
031678	4 22	00	00	00	4 45	00	00	00	00	00	00	4 46	00	00	00	4 51	00	0.0	00
032278	4 48	00	00	00	4 47	00	00	00	00	4 76	4 50	4 51	4 37	4 59	00	00	00	00	00
032978	4 34	00	00	00	00	00	00	00	00	00	00	4 16	4 41	00	00	00	00	00	00
033078	00	• •	00	00	٥٥	00	••	00	00	00	00	00	00	00	.00	00	••	00	4 31
VOLTOL	5250				1435	1250				1700	2095	4977	4919	3793		1418		4055	1915
HIGH	4 79	00	00	00	4 77	4 89	00	00	00	4 89	4 72	4 83	4 79	4 76	00	4 83	00	4 67	4 80
LOU	4 06	• •	. • •	00	4 39	4 61	• •	00	00	4 76	3 98	4 16	4 00	3 09	00	4 51	••	4 28	4 17
ANB	4 49	••	••	0 0	4 50	4 70	00	00	00	4 83	4 46	4 58	4 47	4 36	00	4 69	00	4 47	4 53
RSDH	58 4	00	• •	00	32 4	44 1	00	00	00	15 7	76 5	53 5	69 7	199	00	35 0	00	41 0	52 0
RSDPH	6 10	00	••	• •	3 76	4 17	00	00	00	1 38	7 35	5 41	6 59	16 6	00	3 47	00	4 69	5 57
ANTH	2635				708	386				397	1129	2047	2599.	2592		454		2128	336
N	8	٥	•	٥	4	2	٥	•	٥	3	5	8	7	5	0	3	•	3	5

VOLTOL ML
HIGH, LOW, VWA PH
RSDH % PELATIVE STANDARD DEVIATION
RSDPH % PELATIVE STANDARD DEVIATION
AMTH MICRO EQ /SQ METER

- 1

Table 10.

MONTHLY RAINFALL SUMMARY APR 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	1 0	11	12	13	14	15	16	17	19	19
041478	4 54	4 45	00	• •	4 59	4 77	00	00	.00	4 48	00	4.90	4.73	4 64	• •	4 64	. 03	4 65	4 28
041978	4 41	4 62	00	00	00	5 38	00	00	00	4 58	4 60	4 57	476	00	00	4 22	00	4 90	4 79
042078	00	••	00	0 0	4 78	00	00	00	00	.00	00	00	00	. • •	00	00	0.0	4 70	00
VOLTOL	316	773.		•	4 6 8	220.	•		•	192	16	235.	269.	150.		257		634	282
HIGH	4 54	4 62	.00	00	4 78	5.38	. 00	.00	. 0 0	4.58	4 60	4 90	4 76	4 64	••	4 64	\$ \$	4.90	4 79
LOV	4 41	4 45	00	00	4 59	4 77	00	• •	00	4.48	4 60	4 57	4 73	4.64	••	4 22	00	4 65	4 28
YNA	4 47	4 49	00	00	4 63	5 12	00	00	00	4.50	4 60	4 75	4.74	4 64	••	4 57	. 00	4 69	4 43
RSDH	21 0	27 3	.00	.00	30 5	85.7	00	• •	00	16.2	.00	51 3	4 88	00	. • •	63 5	00	27 9	74 6
RSDPH	2 05	2 65	00	00	2 87	8 50	••	.00	00	1.56	.00	4.93	4 5	00	. • •	6 70	00	2 79	7 95
ANTH	167	394.		•	170	26.	•	•	•	96.	6.	71	76.	54.	•	108		226	165
н	2	2	٥	٥	2	2	٥	•	٠	2	1	2	2	1	٥	2	•	3	2

YOLTOL ML
HIGH, LOW, YWA PH
R3DH % PELATIVE STANDAPD DEVIATION
RSDPH % PELATIVE STANDAPD DEVIATION
RMTH MICPO EO /SQ.METER

:

Table 11.

HONTHLY RAINFALL SUNMARY MAY 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	19	19
050278	4.50	4.33	00	00	00	4 77	00	00	00	4 69	4 8 9	4 54	4 43	7 00	.00	00	00	\$0	4 58
050478	.00	4 77	00	.00	4 90	4.84	00	00	0.0	5 28	00	5.05	6 79	4 89	. 00	5 63	00	5 69	4 91
050578	4 46	4 34	.00	00	4 31	4.44	. 00	00	0.0	4.43	4 4 4	4 49	4 38	4 41	. 00	4.31	00	4 51	4 48
V50878	4 32	4 29	00	00	4 55	4 55	00	00	00	4 51	4 47	4 29	4 31	4.45	.00	4 58	00	4 41	4 62
050978	.00	5 53	.00	.00	00	.00	. 00	00	00	4 81	4 4 9	00	00	00	. 00	00	00		. 00
051078	4 47	4 01	00	00	4 16	00	.00	.00	00	4 37	4 25	4 48	4 10	4.51	-00	4 29	00	.00	00
¢51878	4.51	4 32	0 0	00	4.04	4.57	00	.00	00	. 00	00	4 46	.00	4 48	.00	4.15	. 00	00	4 56
051978	00	00	90	.00	00	.00	0 0	.00	00	00	00	4 50	.00	. 00	.00	00	00	4 23	00
052678	00	90	• •	. 00	00	.00	00	• •	00	00	٥٥	00	4 22	.00	.00	00	00	30	00
YOLTOL	3783.	4083			2945.	5351				3643.	3490	8282.	5120	4635.		3110.		4873.	6450
HIGH	4 51	5.53	. • •	• •	4 90	4 84	. • •	00	00	5 28	4 88	5.05	6.79	7.00	. 00	5.63	. 00	5 69	4 91
FOA	4 32	4 01	00	• •	4 04	4 44	. • •	• •	.00	4.37	4 25	4.29	4.10	4 41	. 00	4 15	. 00	4 23	4 48
AAU	4 46	4 31	• •	00	4 29	4 56	• •	. • •	00	4 49	4 46	4.47	4.32	4 46	.00	4 31	••	4 53	4 57
PSDH	19 4	67 8	00	00	62 8	36 2	••	• •	. • •	55 7	44 5	39.3	59 4	60 6	.00	65.8	.00	77.0	31 1
RSDPH	1 72	11 1	00	• •	7.78	3 57	.00	.00	00	7.18	5 10	5.21	21.9	20 5	.00	13.1	••	13 8	3 56
ANTH	2040	3119.			2376.	2381			; .	1858.	1872.	4352.	3853.	2500.	•	2402		2255	2731
N	5	7	•	٥	5	5	•	•	٥	6	5	7	6	6	٥	5	0	4	5

VOLTOL ML
HIGH, LOW, VUA PH
RSDH % PELATIVE STANDARD DEVIATION
PSDPH % PELATIVE STANDARD DEVIATION
ANTH MICPO EQ /SQ METER

Table 12.

MONTHLY RAINFALL SUMMARY JUN 1978

D9~E									SI'E										
	:	2	3	4	5	8	7	3	5	10	11	: 2	13	14	: 5	16	17	\$ 1	19
060178	00	¢¢	.00	٥٥	0 9	• •	00	٥٥	00	00	٥٥	00	00	0 ¢	. 00	00	٥٥	3 53	٥٥
969278	3 68	4 46	00	00	00	3 84	00	3 80	0 0	3.68	3 56	3 76	3.76	3 86	.00	3 90	0.5	3 32	0.5
060578	4 53	4 59	00	00	4 45	4 61	00	4 56	0.0	4.58	4 54	4.47	4 62	4 58	00	4.54	. 00	4 60	4 55
050678	4 28	4 17	4 25	00	0.5	4 15	00	4 11	06	4 36	4 35	4.26	4 20	4 27	. 00	4 4 1	. 03	4 51	4 .4
0 6 6 9 7 9	4 3◊	4 64	4 19	Q Q	00	4 2.	.00	4 62	90	4 47	4 50	4 36	4.53	4 18	.00	4 49	. 00	4 77	00
9643 <u>78</u>	0 0	00	0 0	\$ \$	00	00	00	00	. 0 @	00	.00	. 00	00	٥٥	.00	00	00	4 55	90
061278	4 60	4 64	4 74	00	00	00	00	4 52	00	4.55	4 56	00	4 5 9	4 4 5	00	4 66	03	4 20	4 77
00.578	00	4 14	.00	00	00	4 28	¢ o	4.31	૦ ઉ	.00	.00	00	0.0	0.0	, 00	ÜÖ	00	50	4 34
051673	00	5 11	00	0.0	00	00	00	0.0	06	4 67	4 66	4 53	4 96	4 77	00	00	00	4 02	00
06.073	00	00	00	> c	0.0	4 9 1	22	4 9 1	0,0	0.0	00	¢ \$	00	00	00	00	0.0	4 70	5 04
V - 2 2 7 8	4 84	4 93	4 54	.00	4 54	5.46	00	5 💠 5	9 \$	4 97	4 86	4.20	5 80	4 72	0.0	4.60	. 00	30	4 85
002378	00	4 68	5.00	00	4 75	5,19	00	5 57	00	4.90	4 90	4 53	4 99	4 39	00	4 76	00	4 90	4 90
050678	90	4 49	OO	٥٥	00	4 74	00	4 85	0 4	0.5	0.0	0.0	0.0	3 99	00	00	. 00	4 55	4 78
062978	00	00	4 56	20	00	00	0 ¢	00	o c	.02	0 0	.00	4 46	¢o	00	00	.00	• • •	50
YULTOL	10987	. 12077	6820		6038	11446		10777		10746.	10590	7506.	10132	15619		10668		11179	12820
ਸਾਰਮ	य धन	5 i 1	5 90	, 00	4 75	5 46	. 00	5 97	4) (4.97	4.90	4 90	5 90	4.77	00	4 76	.00	4 90	5 04
t p v	3 88	4 06	4.19	00	4 45	3 84	ψψ	₹ 8¢	9.6	3 68	3 56	3 76	3 76	3,86	. 20	3,90	. 00	3 62	4 1 4
AUP	4 4 4	∢ 59	4 52	\$ \$	4.54	4,66	, 💠	4 38	, 0 9	4 54	4 55	4,40	4.58	4,39	. 00	4 50	00	4 48	4 64
4627	115	75 1	63 0	¢ o	32 7	103	00	. 13	òo	137	.56	102	126	74 1	.00	91 3	٥٥	111	81 4
930Ph	9 08	~ 31	6 56	00	3 36	11 5	.00	9 06	¢ ò	8 83	7 32	7 57	12 1	7 19	00	6 25	00	9 37	6 57
↑۲Th	6162	4897	3199		2756	3941.		4413		4847	4611	4708	4157	3947		5255		5796	4350
۶,	ç	. 0	6	ć	3	9	٥	10	٥	8	ε	7	9	9	٥	7	¢	11	9

VOLTOL YU.

HIGH, LOW, YER PH

RSOH & RELATIVE STATOORD DEVIATION RSOPH & PELATIVE STANDARD DEVIATION

מארה יוסאס במ עסט. חברים

Table 13.

MONTHLY RAINFALL SUMMARY JUL 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	19	19
070578	4 08	3 91	• •	00	00	00	00	3 66	00	3 96	3 97	4 12	3 92	4 18	00	4 21	٥٥	30	3 79
070678	3 97	4 15	4 18	00	00	00	00	4 0 1	00	3 98	3 91	4 25	4 46	4 09	.00	00	00	20	4 12
070778	00	3 82	4 06	00	00	4 09	00	4 04	00	00	00	3 97	00	4 04	.00	00	00	4 17	4 04
071078	4 43	4 07	4 15	00	00	00	00	00	00	00	4 47	4 06	4 23	4 20	00	4 51	00	4 48	4 26
071278	00	00	3 92	00	• •	00	00	00	00	00	00	••	00	4 08	00	00	00	00	00
071378	• •	3 79	00	00	00	00	00	• •	. 00	00	00	00	00	00	00	00	00	3.90	00
071478	• •	00	• •	00	00	0 0	00	00	00	00	00	4 54	00	4 50	00	4 36	00	00	00
071778	4 4 9	4 74	4 53	00	4 50	5 24	00	00	00	4 60	4 73	4 52	4 76	4 36	00	4 55	00	00	4 72
971878	4 48		4 75	00	4 67	00	00	4 71	00	4 70	4 82	4 58	4.62	4 76	00	4 68	00	4 68	9 0
071979	4 52		4 28	00	4 62	0 0	00	4 27	00	4 39	4 32	4 60	4 38	4 46	00	4 63	٥٥	4 36	4 46
072078	4 46	4.36	• •	00	4 59	4 14	00	4 16	00	4 37	4 68	4 39	4 39	4 27	٥٥	4 59	. 00	4 90	4 02
072178	• •	00	00	00	00	00	.00	. • •	00	00	00	00	00	00	.00	00	00	3 97	00
072478	••	00	00	00	00	, 0 0	00	. 🔷 🐧	00	00	00	00	00	00	.00	00	00	4 31	00
072678	00	00	00	0 0	00	00	00	00	00	00	00	00	00	00	.00	00	00	4 52	00
072778	00	4 19	4 28	00	00	00	00	• •	00	00	00	00	6 28	4 93	. 00	00	00	4 48	00
072878	4 54	4 58	4 56	00	4 46	4 74	00	.00	00	4 89	4 84	4 64	00	4 14	00	00	05	4 32	4 86
073178	4 37	00	4 54	00	4 31	4 53	00	00	00	4 41	4 43	4 40	00	4 37	.00	4 27	. 00	4 42	4 44
VOLTOL	14681	17688	13366		8418	7540		10836		11742	14071	15678	16116	18880		10630		17196	12386
HIGH	4 5 4	4 74	4 75	00	4 67	5 24	00	4 71	00	4 89	4.84	4.64	6 28	4 93	.00	4 68	••	4 32	4 86
LON	3 97	3 79	3 92	00	4 31	4 09	00	3 66	••	3 96	3 91	3 97	3 82	4 04	••	4 21	٥٥	3 97	3 79
YWA	4 38	4 15	4 21	00	4 49	4 29	00	4 12	00	4 34	4 41	4 33	4 34	4 21	••	4 47	00	4 57	4 21
RSDH	58 4	68 2	57 7	00	32 4	81 0	00	74 5	00	75 5	87 5	58 6	99 7	47 8	00	42 1	00	79 1	72 7
RSDPH	4 67	7 73	6 04	00	2 89	104	• •	8 36	00	7 37	7 75	5 39	15 8	6 23	00	3 89	••	6 97	8 12
ANTH	9552	19421	13566		4268	6053		12731		8414	8635	11467	11533	18340		5662		7232	12311
н	9	11	10	٥	6	5	٥	6	\$	8	9	11	8	13	0	8	•	12	9

VOLTOL ML
HIGH, LOW, VUA PH
RSOH % RELATIVE STANDAPD DEVIATION
RSOPH % RELATIVE STANDARD DEVIATION
JH MICRO EG /SQ METER

Table 14.

MONTHLY RAINFALL SUMMARY AUG 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
980178	4 37	4 51	4 42	00	4 56	4 72	00	4 56	00	4 37	4 43	4 46	4 52	4 44	00	4 57	00	4 51	4 46
090278	4 24	00	00	00	00	00	00	00	0 0	4 25	4 26	00	4 03	00	00	00	05	30	00
080378	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	3 48	0 0
090278	00	20	00	00	00	00	00	00	00	00	00	00	00	0 0	00	00	00	4 98	00
089478	00	00	00	00	00	00	00	00	0 0	00	00	00	00	4 04	00	00	00	20	00
080778	4 83	00	4 15	00	00	4 73	00	00	00	4 93	4 89	00	00	00	00	00	00	4 94	4 8 1
080878	٥ ٥	٥٥	00	00	00	00	00	.00	00	00	00	00	00	00	00	00	00	4 21	5 09
081078	00	00	00	00	4 69	00	00	00	00	00	00	00	00	4 63	00	4 74	00	4 60	00
081178	00	00	¢ ¢	00	4 77	00	00	00	00	00	00	00	00	00	00	4 79	00	00	00
981478	4 20	00	4 39	00	4 43	00	00	4 49	00	00	4 47	00	00	4 19	00	4 28	00	00	4 45
031578	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	4 39	00
081678	00	4 32	00	00	00	00	00	00	00	00	00	00	4 28	0 0	00	00	00	00	00
091778	00	00	00	0.0	00	0.0	00	00	0.0	00	00	00	00	00	00	00	00	3 56	00
001878	00	3 87	4 11	00	00	00	00	00	00	00	0 0	00	00	00	00	00	00	00	00
092178	00	00	3 91	0.0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
092278	00	00	00	00	00	00	. 00	00	.00	4 05	00	00	4 39	00	00	00	00	90	0 0
032378	00	00	00	00	00	4 47	00	00	0.0	00	00	00	00	00	00	00	00	00	4 79
002578	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	4 44	00
063178	4 69	00	00	00	4 68	00	00	••	00	00	00	4 56	00	4 63	00	4 95	00	5 24	00
YOLTOL	6493	4720	10757		5340	3290		5057		9284	10315	2588	6444	5087		6648		6006	3561
HIGH	4 83	4 51	4 42	00	4 77	4 73	••	4 56	00	4 93	4 99	4.56	4 52	4 63	00	4 95	00	5 24	5 09
LON	4 20	3 87	3 91	00	4 43	4 47	00	4 49	00	4 05	4 26	4 46	4 03	4 04	00	4 28	00	3 48	4 45
VLA	4 33	4 38	4 33	00	4 55	4 72	00	4 53	0.0	4 35	4 43	4 46	4 39	4 34	00	4 57	••	4 49	4 58
PSDH	54 4	78 3	49 2	٥٥	32 5	36 4	00	11 4	00	64 2	49 7	16 2	51 0	61 7	00	65 5	00	127	5& 2
PSOPH	6 27	7 76	5 04	00	2 87	3 17	00	1 09	00	8 57	5 93	1 57	4 33	6 03	00	5 46	00	124	5 71
ATTH	4757	3074	7887		2329	990		2329		6432	5986	1396	4141	3647		2789		3009	1452
H	5	3	5	٥	5	3	٥	2	•	4	4	2	4	5	•	5	٥	10	5

VOLTOL ML
HIGH, LOW, VWA PH
P3DH % RELATIVE STANDARD DEVIATION
R3DPH % RELATIVE STANDARD DEVIATION
ANTH MICRO EQ /SQ METER

Table 15.

HONTHLY RAINFALL SUMMARY SEP 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
090178	00	00	••	00	٥٥	.00	00	00	00	00	00	00	• •	• •	00	00	00	4 93	00
010578	4 17	4 13	4 05	00	00	4 22	00	.00	.00	00	4 26	4 13	4 15	4 02	. 00	3 98	00	4 23	4 28
030678	4 36	4 35	4 03	00	3 96	4.36	00	4 44	00	00	00	00	4 74	00	00	4 07	00	4 99	4 51
090778	00	• •	••	00	00	00	00	00	00	3 78	00	. 00	00	00	00	00	00	00	00
091178	4 71	4 56	4 29	00	4 58	4 80	00	5 00	0.0	4 85	4 72	4 70	4 58	4 60	00	4 67	03	4.93	4 69
091478	4 62	00	. • •	00	4 74	00	00	00	00	4 95	4 47	00	00	00	00	4 41	00	00	00
091578	00	00	4 06	00	00	3 86	00	3 86	0.0	4 18	3 89	00	4 13	00	00	00	00	00	4 10
091878	4 34	4 68	4 41	00	4 52	00	00	4 16	00	00	4 6 4	00	5 97	00	00	4 56	00	00	4 60
091978	00	00	4 61	00	00	4 53	00	4 44	00	00	90	00	4 97	00	00	00	00	00	4 90
032278	4 90	00	00	00	00	00	00	00	00	4 79	4 79	4 75	00	00	00	4 71	00	90	00
0 72 6 7 8	٥٥	4 78	90	00	4 78	4 77	00	4 46	00	4 92	4 84	5 06	00	00	00	00	00	30	4 87
092778	4 15	00	4 39	00	00	00	00	. 66	00	4 37	4 58	4 79	4 72	00	00	.00	00	00	4 41
092878	00	00	. 00	0.0	00	00	00	00	00	00	. 00	00	00	3 97	. 00	.00	00	4 40	4 27
092978	4 12	00	• •	00	4 33	00	00	00	00	00	4 27	00	00	00	00	4 58	00	00	00
VOLTOL	7077	6367	3745		3775	5385		4940		4629	6838	7311	5148	3465		5261		9963	7465
нрін	4 90	4 78	4 61	00	4 78	4 80	00	5 00	00	4 95	4 84	5 06	5 97	4 60	••	4 71	03	4 93	4 90
FOR	4 12	4 13	4 03	00	3 96	3 86	00	3 86	• •	3 78	3 89	4 13	4 13	3 97	. 00	3 98	00	4 09	4 10
YWA	4 37	4 51	4 15	00	4 45	4 51	00	4 52	0,0	4 72	4 50	4 58	4 44	4 08	••	4 20	••	4 35	4 53
PSDH	55 0	63 8	468	00	85 2	90 7	00	83 6	• •	120	27 9	96 8	90 1	58 5	00	74 3	••	71 5	60 9
RSDPH	6 57	5 81	5 24	00	6 78	8 06	00	8 61	00	9.86	6 84	7 27	12 3	B 34	00	6 57	00	8 21	6 12
ANTH	4705	3109	4169		2084	2576		2314		1381	3354	2980	2944	4492		5128		6918	3440
н	8	5	7	٥	6	6	٠	6	٥	7	9	5	7	3	٥	7	0	5	9

VOLTOL ML
HIGH, LOW, VNA PH
PSDH % RELATIVE STANDARD DEVIATION
RSDPH & RELATIVE STANDARD DEVIATION
ANTH MICRO EQ /SQ METER

)

Table 16.

MONTHLY RAINFALL SUMMARY OCT 1978

DATE								:	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	1 4	15	16	17	18	1 9
190278	4 04	4 31	4 00	00	3 95	4 27	00	4 43	٥٥	4 20	4 08	3.61	3 92	. 0 0	.00	00	. 00	3 99	4 33
100378	4 61	00	00	00	4 52	4 32	00	3 96	.00	4 78	4 85	4 60	.00	00	00	4 58	00	30	4 83
100478	4 08	3 98	00	00	00	00	00	4 32	0.0	4 06	4 14	4 42	.00	00	.00	00	. 00	00	4 40
191178	3 92	4 17	4 38	0 0	4 72	5 04	00	3 86	00	4.32	3 85	00	4 49	0 0	00	4.76	. 00	00	4 12
101278	00	00	00	90	00	00	00	00	00	.00	00	00	.00	00	. 00	00	. 00	4 68	00
101378	4.65	00	.00	00	00	00	00	.00	. 00	00	4 77	4.49	4.68	. 0 0	.00	00	. 00	30	4 75
101678	4 07	4 28	00	00	4 22	4.41	00	4 26	00	4 53	4 06	3 99	00	.00	00	00	00	50	00
100678	00	00	00	. 00	00	00	00	00	00	.00	00	00	4.13	00	00	00	00	00	00
101679	.00	00	00	00	00	.00	.00	.00	. 00	00	.00	00	.00	4 33	00	.00	. 00	4 58	3 93
101978	4 74	4 63	4 64	0.0	4.84	00	00	00	00	4.33	5 18	4 75	4.66	4 61	00	4.64	00	4 47	4 47
102078	00	4 48	4 16	00	00	00	00	00	00	00	00	.00	00	00	. 00	00	. 00	4 60	4 57
102378	00	3 86	3 90	00	00	3 46	00	3 62	00	.00	00	00	3.94	3 28	00	00	00	30	7 79
103078	5 12	5 10	5 05	00	5 26	5 14	00	5 14	.00	5 08	5 05	5 11	5 0 1	5 22	00	5.27	. 00	4 38	5 15
YOLTOL	4380.	8554	4635		10031	4993		8367		6037	6583.	8818	7718.	5466.		9547		3731	9033
HICH	5 12	5 10	5 05	. • •	5 26	5.14	. • •	5 14	.00	5.08	5.18	5.11	5 01	5.22	. 00	5.27	••	4 \$8	5 15
LOW	3 92	3 86	3 90	. • •	3 95	3 46	. • •	3.62	. • •	4.06	3 85	3.61	3 92	3.28	00	4 58	٥٥	3 99	3 79
VUA	4 71	4 63	4 58	• •	4.87	4 52	••	4 62	. 00	4 81	4.80	4 75	4 63	4 95	. • •	4.95	.00	4 37	4 57
RSDH	75 7	72 6	74 0	00	993	155.	. • •	87 5	. • •	63 8	91 9	126.	82 7	166.	.00	51.0	00	88 6	92 5
RSDFH	9 83	9 00	9 93	.00	10 1	13 7	00	11.7	. 00	7.93	11.5	11 2	9 46	18.6	.00	6 53	. 00	6 60	9 41
нтин	1322	3108	1915.		2101	2338		3137		1462.	1637.	2473	2854	964		1661		2510	3793
H	8	8	6	٥	6	6	Q	7	٥	7	8	7	7	4	Q	4	٥	6	10

VOLTOL ME AICH, LOW, VWA PH PSOH % PELATIVE STANDARD DEVIATION PSOPH % PELATIVE STANDARD DEVIATION ANTH MICRO EQ /SQ METER

Table 17.

MONTHLY RAINFALL SUMMARY NOV 1978

DATE								\$	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
110178	4 72	• •	4.71	00	4 92	4.74	. 00	4.51	. 00	4 96	. 0 0	4.87	4.74	4.87	. 00	• •	٥٥	٥٥	4 74
110378	4 15	4 11	.00	00	4.05	.00	. 00	.00	.00	4.00	4 23	4 62	4,22	.00	.00	00	00	90	4.10
110578	4 54	4 63	4.68	00	4 55	4 84	00	4 53	00	4 59	.00	4.50	4 71	4.25	00	4.44	00	00	4 66
110878	4 82	4 93	4 65	00	4 87	4 56	00	4 99	00	4 87	5.04	4.92	4 83	5 09	00	4 78	00	4 65	4 76
111373	4 4 9	4 48	4 37	0 0	4 26	3 74	.00	4 40	.00	4 43	4 47	4.24	4 35	4.23	0.0	00	00	.00	4 31
111578	4 28	00	00	00	00	00	00	00	00	3 89	3.98	4 23	4.14	00	. 00	4 04	00	00	4.31
111678	00	4 37	00	00	00	00	00	4 20	. 00	. 00	0.0	00	4.38	. 00	00	.00	00	00	00
111778	4 72	. 00	3 99	00	00	• •	00	• •	.00	4 82	4 84	00	00	. 00	. 00	. 0 0	00	00	. 00
YOLTOL	2363	926	927.		1946.	1742.		863		1998.	1106.	3008	1594.	2063	•	792.		58	1571.
HIGH	4 82	4 93	4 71	• •	4 92	4 84	• •	4 99	00	4 96	5 04	4 92	4 93	5 09	. 00	4.78	. 00	4 65	4 76
LOV	4 15	4 11	3 99	00	4 05	3 74	.00	4.20	00	3.89	3 98	4 23	4.14	4 23	.00	4.04	••	4 65	4 10
YWA	4 49	4 59	4 59	00	4 60	4 57	00	4.60	. 0 0	4 36	4.41	4.66	4.56	4 70	. 00	4 40	. 00	4 65	4 61
RSDH	60 4	66 5	84 9	• •	82 \$	134	00	55 3	00	102	88 3	63 4	57.7	79.3	. 00	80 5	. 00	.00	62 9
PSDPH	5 44	6 76	6 83	00	8 34	11 2	. • •	6 42	. 00	9 39	9.60	6 53	6 13	9 47	00	8 38	. 00	.00	6.16
ANTH	1195	376	370	•	758	737		339.	•	1355.	672	1025.	690.	641.		491		20	601
H	7	3	5	0	5	4	٥	5	0	7	5	6	7	4	٥	3	•	1	6

VOLTOL ME HIGH, LCW, VWA PH R3DH % PILATIVE STANDARD DEVIATION RSDPH % RELATIVE STANDARD DEVIATION HMTH MICRO EQ./SQ METER

Table 18.

MONTHLY RAINFALL SUMMARY DEC 1978

DATE								S	ITE										
	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	13	19
120478	4 71	• •	.00	00	5 12	00	00	4 52	. • •	4.51	4 56	4 83	4.59	4.88	.00	5 26	. 00	00	00
120178	00	. 00	.00	00	00	00	00	00	. 00	.00	.00	00	.00	.00	. 00	00	.00	4 58	00
120478	00	00	00	00	00	00	00	.00	.00	00	.00	00	00	00	.00	00	00	00	4 27
120678	4 72	4.49	4 85	00	4 69	00	00	• •	00	4.82	4 83	4 36	4 63	4 4 0	.00	4 34	00	30	00
120578	00	00	* *	40	00	00	00	00	00	.00	0 0	00	00	00	.00	00	00	4 76	00
121278	3 93	00	.00	00	4 12	4.25	00	00	.00	3 76	3 84	.00	00	.00	00	3 82	00	0.0	3 86
122278	99	4 74	00	00	3 91	00	00	4 52	.00	.00	00	00	00	00	00	3 71	00	2 93	4 55
122678	4 77	4 84	4 90	00	4 97	00	00	4 94	00	4.82	4 90	4 84	4 82	4 80	.00	4 93	0)	5 04	00
122978	4 96	4 88	5.01	.00	5 15	5 11	00	4 95	.00	5 10	5 32	5 01	5 09	5 06	00	5 07	00	5 00	5 10
VOLTOL	5505	3250	5940		6425	4293.		4243.	•	5864	4792	5752.	6264.	5456	•	5688		8078	4388
HICH	4 96	4 88	5 01	00	5 15	5 11	00	4.95	. 00	5 10	5.32	5 01	5 09	5.06	00	5 26	٥٥	5 06	5 10
LOV	3 93	4 49	4 85	.00	3 91	4 25	00	4.52	. • •	3.76	3.84	4.36	4.59	4.40	.00	3.71	00	2 88	3 85
YVA	4 87	4 85	4.97	00	4 94	5 08	. • •	4 93	. • •	4 92	5.06	4 92	5 00	4.96	. • •	4 97	• •	4 78	5 00
PSDH	123	45 0	18 2	.00	118	107	00	52.4	.00	145	143	75 ◊	44 5	71 8	. • •	119	.00	211	100
RSDPH	3 61	3 70	1 66	00	11 4	13 0	.00	5 19	60	11 2	11.7	3 86	4.77	5 83	. • •	14 7	. ••	20 3	11 7
HTMA	1150.	711.	997.		1159	553.		782.		1102.	653	1075	980.	937.		961.		2078	761
H	5	4	3	٥	6	2	٥	4	٥	5	5	4	4	4	0	6	٥	5	4

UDLTOL HL

HIGH, LOU, VUA PH

PSOH & RELATIVE STANDARD DEVIATION

RSDPH & RELATIVE STANDARD DEVIATION

ANTH MICRO EQ /SQ HETER

.

Table 19.

HONTHLY RAINFALL SUMMARY JAN 1979

DATE									SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
010279	4 33	00	4 29	. 0 0	00	00	00	4.42	٥٥	4 26	00	4 30	4 56	4 21	00	4.19	. 00	5.71	• •
010379	5 00	5 05	5 06	.00	5 09	00	00	5 14	00	5 08	5 16	5 02	5 13	5 07	00	5 26	. 00	5 33	00
010879	4 4 1	4 51	4.59	.00	4 30	4 40	00	4 34	. 00	4 41	4 47	4 23	00	4.33	. 00	4.21	. 00	4 55	4 47
011579	4 85	5 01	4 55	00	4 93	4 76	. 00	5 07	00	4.84	4 91	4 81	4 88		. 00	4.91	. 00	00	00
011279	00	00	.00	00	00	00	٥٥	• •	00	00	00	00	00	00	. 00	00	00	4.94	00
011579	00	00	00	00	0 0	00	00	00	. 0 0	.00	00	00	.00	00	. 00	.00	. 00	4.90	4 84
012279	4 74	4 72	4.71	.00	4 56	4 99	4 92	4 77	. 00	4 82	4 92	4 75	4 25	5 02	.00	4 90	00	4 91	00
012479	4 66	4 72	4 78	00	4 42	4 89	4 66	4.83	00	4.71	4 75	4 73	4 63	4 48	00	00	00	4 63	4 80
012979	00	00	••	00	00	00	.00	.00	0.0	00	00	00	00	. 00	. 00	00	. 00	4.00	00
013179	3 93	00	3 89	00	3 99	00	3 98	3 98	00	4 01	3 87	3 96	00		00	4 02	. 00	6 17	4 01
VOLTOL	12985	11402	11160		10290	9380	1526	12328		12573	11652	12998	12440	10977.		10134		11864	10332
HICH	5 00	5 05	5 06	00	5 09	4 99	4 92	5 14	. • •	5 08	5 16	5 02	5 13	5 07	. ••	5 26	••	6.17	4 84
F 0 A	3 93	4 51	3 89	. 0 0	3 99	4 40	3.98	3 98	00	4 01	3 87	3.96	4 25	3 97	. 00	4.02	. 00	4 00	4 01
VWA	4 74	4 91	4 57	00	4 77	4 77	4 50	4 89	00	4 76	4 82	4 71	4 75	4 73	. 00	4 82	••	4 96	4 76
PSDH	98 0	50 8	104	00	87 1	67 2	110	103	• •	89 7	136	90 ¢	74 0	88 8	00	88 0	00	136	96 8
RSDPH	7 97	4 70	8 23	00	8 95	5 42	10 7	9 04	٥٥	9 19	9 77	8 40	7 10	9 30	00	11 0	. 00	13 1	8 48
AMTH	3707	2203	4696		2708	2516	751	2494	•	. 3389	2730	3937	3421	3197.		2420		. 2548	2780
H	7	5	7	•	6	4	3	7	٥	7	6	7	5	7	•	6	0	9	4

VOLTOL ML
HIGH, LOW, VWA PH
RSDH % PELATIVE STANDARD DEVIATION
RSDPH % RELATIVE STANDARD DEVIATION
ANTH MICRO EQ /SQ METER

-)

Table 20.

MONTHLY RAINFALL SUMMARY FEB 1979

DATE								\$	SITE										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
020679	••	00	4 17	00	4 06	4 34	4 27	4 22	00	4 04	4 02	4 17	4 16	4 24	. 00	00	00	4 25	• •
020779	00	00	00	00	00	00	00	00	00	00	00	00	.00	00	.00	00	٥٥	4 55	00
929679	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	03	00	4 25
020979	4 12	0.0	4 54	00	00	4 23	4 45	4 32	00	4 38	4 4 9	4 30	4 20	4 23	. 00	4 64	00	00	4 28
022073	4 63	00	4 04	00	4 73	4 51	00	00	00	4 63	4 79	5 42	4 18	4 26	00	00	00	00	00
921979	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	3 91	00
022079	00	00	0 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	4 43
022679	4 88	4 95	4 97	00	4 74	4 82	4 91	4 76	00	4 93	4 79	5 02	4 78	4 76	••	4 70	00	4 68	4 73
VOLTOL	1608	1400	2592		2756	1595	2464	2102		2144	2080	2080	1756	2200		2290		3053	1938
HIGH	4 88	4 95	4 97	00	4 74	4 82	4 91	4 76	00	4 93	4 79	5 42	4 78	4 76	00	4 70	00	4 68	4 73
FOA	4 12	4 95	4 04	٥٥	4 06	4 23	4 27	4 22	00	4.04	4 02	4 17	4 16	4 23	00	4 64	00	3 91	4 25
V W A	4 52	4 95	4 61	00	4 66	4 48	4 71	4 45	• •	4 55	4 53	4 59	4 37	4 53	00	4 69	00	4 35	4 42
RSDH	89 7	00	73 6	00	96 0	50 1	61 3	52 7	00	83 4	94 1	94 8	46 3	42 3	. 00	9 75	00	95 0	41 6
RSDPH	8 53	00	9 43	00	8 64	5 75	7 26	6 48	00	3 40	8 04	12 6	6 94	5 92	••	91	00	8 93	4 97
аптн	755	245	1005		939	822	747	1170		940	962	835	1182	1022		731		2114	1 2 8 4
н	3	1	4	٥	3	4	3	3	•	4	4	4	4	4	0	2	•	4	4

VJLTOL ML HIGH, LOW, VWA PH

RSDH % RELATIVE STANDARD DEVIATION RSDPH % PELATIVE STANDARD DEVIATION AMTH MICRO EQ /SQ METER

Table 21.

MONTHLY RAINFALL SUMMARY MAR 1979

DATE								S	SITE										
	1	2	3	4	5	6	7	8	9	1 0	11	12	13	14	15	16	17	18	19
030579	4 18	4 52	4 35	00	00	4 71	4 34	4 70	00	4 86	4 43	6.46	4 16	4 33	.00	00	00	00	4 77
030779	4 60	4 77	4 57	00	4 47	4 60	4 60	4 67	00	4 62	4 62	4 63	4 58	4 62	.00	4 48	00	4 38	4 63
032379	00	00	3 67	. 00	00	0 0	00	00	00	00	00	00	00	00	. 00	00	00	.00	00
032779	4 60	5 27	7 01	00	4 75	6 34	4 43	5 07	00	00	00	4 93	5 06	5 44	. 00	4 72	00	4 60	
VOLTOL	1732	1309	2163		2190	1412.	3150	1881.		1470	1504	2105	1629	2372.		2910		4067	1486
HIGH	4 60	5 27	7 01	• •	4 75	6 34	4 60	5 07	00	4 86	4 62	6 46	5 06	5 44	. • •	4 72	٥٥	4 60	4 77
FOR	4 18	4 52	3 67	• •	4 47	4 60	4 34	4 67	00	4 62	4 43	4.63	4.16	4 33	. 00	4 48	. 00	4 38	4 32
YVA	4 59	4 79	4 56	• •	4 50	4 62	4 53	4 69	. • •	4 64	4 60	4 70	4 56	4.68	••	4 53	00	4 40	4 62
RSDH	61 0	70 9	1 3 5	00	44 1	86 0	28 7	42 5	• •	38 1	30 5	97 5	89.6	87.0	.00	38.1	••	35 1	55 3
RSDPH	5 44	7 87	29 8	00	4 29	18 7	2 96	4 63	• •	3 28	2 97	18 4	9 79	12 0	00	3 69	.00	3 46	5 04
ANTH	696	333	927		1076	527	1457	594		524	589	663.	699	767.		1336		2502	552
N	3	3	4	٥	2	3	3	3	٥	2	2	3	3	3	٥	2	•	2	3

YOLTOL ML
HIGH, LOW, VWA PH
RSON % PELATIVE STANDARD DEVIATION
PSOPH % PELATIVE STANDARD DEVIATION
HITH MICRO EQ /SQ HETER

- 1

Table 22.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSU SITES DURING 07/77.

	N	VOLMTAV	UEW/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	7	.4.53	0.00	4.36	_4.62	4.12	0.24	0.22
COND CMPPT	7	14.22	0.00	21.39	35.20	10.60	11.80	10.93
H	4	29.76	12.47	1.78	3.71 75.86	0.17 23.99	1.47 23.81	1.36
HNV	Ż	27.67	ŏ.ŏŏ	40.07	72.44	22.39	21.89	20.21
NA	Ò	0.00	0.00	0.00	0.00	0.00	0.00	Ŏ.ŌŮ
Ķ.	Ŏ	0.00	V.00	0.00	ó.úo	0.00	0.00	0.00
CA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG NH4	X	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL	ΰ	8.00	ÿ:00	0.00	0.00	0.00	0.00	0.00
r	ŏ	0.00	0,00	Ŏ.ŎŎ	0.00	0.00	0.00	ŏ.ŏŏ
NO3	0	0.00	J.00	0.00	0.00	0.00	0.00	0.00
\$04 804	Ŏ	0.00	0.00	0.00	Ň•ŇŎ	0.00	0.00	0.00
P04 xss04	γ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	ŏ	ŏ.ŏŏ	Ŭ . ŭ ŏ	ŏ.ŏŏ	0.00	0.00	ŏ.ŏŏ	ŏ.ŏŏ
ŞCA	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	Ů,	0.00	0.00	0.00	0.00	0.00	0.00	0.00
55	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŇČ	ŭ	ŏ.ŏŏ	Ŏ,ŎŎ	ŏ.ŏŏ	ŏ.ŏŏ	0.0Ŭ	ŭ.ŭŏ	ŏ.ŏŏ
CONDIP	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTH	7	0.00	3/11-94	530.28	999.23	123.89 112.99	317.85	294.33
VOHTPA	/	0.00	3451.34	493.05	932.54	112.99	301.09	278.81
AMTK	ď	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
AMTCA	ŏ	Ÿ . ŏŏ	Ÿ.Ÿŏ	0.00	0.00	ŏ.ŏŭ	ŭ.ŭŏ	ŏ.ŏŏ
AMTMG	Ō	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMINH4	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL	0	0.00	0.00	0.00	0.00	0.00	0 - 00	0.00
AMTNU3	Õ	0.00	0.00	0.00	0.00	0.0u 0.0u	0.00	0.00
AMTSU4	ŏ	ö.ŏŏ	ŭ.ŭŏ	ŏ.ŏŏ	0.00	ŏ.ŏŏ	v.ŏŏ	ŏ.ŏŏ
AMTPO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	Ö,	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS AMTNL	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMINE	Ų	0.00	v. u0	0.00	0.00	0.00	U. U0	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEGUIVALENTS/LITER EXCEPT FOR PH,
COND, LMPPT, AND RATIUS
UEG/SQ. M=MICROEGUIVALENTS/SQUARE METER
MEAN=UHALIGHTED AVERAGE
CMPPT IN ULN/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS ICTAL AMOUNT OF RAIN FOR
THE MONTH

Table 23.

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 08/77.

PH COND CMPPT	N 41 41 41	VOLWTAV 4.57 18.08	UEU/SQ.M 0.00 0.00	MEAN 4.59 22.37	HIGH 6.82 100.00	LOW 4.03 0.00	ST.DEV 0.64 19.92	95%C.L. 0.20 6.22 0.51
HNV NA K	41	0.00 26.61 21.88 0.00 0.00	63.79 0.00 0.00 0.00	25.54 21.55 0.00	7.30 93.32 81.28 0.00 0.00	0.03 0.15 0.13 0.00	28.62 25.83 0.00	8.94 8.07 0.00
CA MG NH4 CL	0	0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00
F N03 S04 P04	Ŏ O O	0.00 0.00 0.00 0.00	0 00 0 00 0 00 0 00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00
XSSO4 SAN SCA A/L	0 0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00
CL/NA NA/MG SS NC	0 0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0 • 0 0 0 • 0 0 0 • 0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00
COND/P AMTH AMTHNV AMINA	41 41 0	0.00 0.00 0.00 0.00	0.00 16974.66 13955.01 0.00	0.00 414.02 340.37 0.00	0.00 5409.25 4711.26 0.00	0.00 0.05 0.04 0.00	953.73 816.11 0.00	297.89 254.91 0.00
AMTK AMTCA AMTMG AMTNH4	0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
AMTCL AMTF AMTNO3 AMTSU4	0	0.00 0.00 0.00 0.00	0 00 0 00 0 00 0 00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00
AMTPU4 AXSSU4 AMTSS AMTNC	0 0 0	0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIUS

UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPI IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF HAIN FOR

THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL SITES DURING 09/77.

PH CUND CMPPT HNV NA K CA	N443333000	VOLWTAV 4.83 24.99 0.00 14.77 12.93 0.00 0.00	UEW/SQ.M 0.00 0.00 74.14 0.00 0.00 0.00	MEAN 4.328 35.582 47.433 6.80 0.00 0.00	HIGH 5.87 211.30 12.78 251.19 199.53 0.00 0.00	LOW 3.60 0.00 0.35 0.00 0.00	ST.DEV 0.52 41.62 50.22 41.46 0.00 0.00	95%C.L. 0.16 12.51 0.32 12.65 0.00 0.00
MG H MG H	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.00
A/C CL/NA NA/MG SS NC D / P AMTHNV AMTTNA AMTK	00000033000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 10946.69 9588.20 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 1609.06 1434.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 317.14 294.39	0.00 0.00 0.00 0.00 0.00 96.79 0.00
AMTCA AMTMG AMTNH4 AMTF U34 AMTSU4 AMTPU4 AMTSSS AMTNC	000000000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

Table 25.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 10/77.

	N	VOLWTAV	UEG/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%Ç.L.
PH COND	25 25	4.44 30.60	0.00	4.10 56.89	208.00 208.00	3.47 11.20	0.55 54.17	0.23 22.54
CMPPT	25	0.00	27.85	1.11	4.67	0.07	1.14	5.48
H HNV	25 25	36.72 33.81	0.00 0.00	78.89 75.47	338.84 338.84	1.86	85.58 84.73	35.60 35.25
NA	17	95.54	0.00	95.04 3.27	327.40	0.79 8.70	84.73 87.87	44.33 1.65 3.74
K C a	17	2.89 7.96	0.00	9 9 43 3	327.40 11.74 28.94	0.51 2.99	3.27 7.41	3.74
MG	īŻ	16.90	0.00	18.21	46.07	2.55	12.71	6.41
NH4 CL	17	16.90 9.15 81.12 2.44 9.77	0.00	182.51 182.51 183.51 163.57 3.57 3.57 31.59 145.15	34.93 279.18	2.55 2.55 7.90	12.71 77.55 77.55 14.95 27.35 27.35 23.68	6.41 5.01 39.12
CL F NO3	17	2.44	0_00	13.21	12.63 48.87	9.90	3.75	1.89
S04	17	31.07	0.00	39.93	122.84	9.00 2.74 15.41	27:35	13.80
P04 XSS04	17	1.36	0.00	2.27	7.90	0.00 11.69	2.94	11.48
SAN	<u>i ż</u>	22.74 125.76	ນຸ00	145.18	101.08 394.27	46.01	100.10	50.53
SCA A/C	17 17	162.95	0.00	188.357 0.877 5.05 89.40 51.95 40	480,17	74.26	116.64	58.84
CL/NA	17	0.85 5.65	0.00	ğ.87	1.54	0.56	0.22 1.99 84.85	0.11
NA/MG SS	17	89.24	0.00	5.05 89.40	10.61	0.50 8.71 16.13	84.85	1.00 42.80
SS NC	įŻ	89.24 43.21	0.00	51.32	170-00	16.13	29.95	15.11
CÔND/P AMTH	17 25	0.97 0.00	10227.26 9414.38	409.09	1197.70	2.12	323.39	0.11 134.53
AMTHNV	25	0.00	9414.38 23969.96	409.09 376.58 1410.00	1117.76 8722.26	0.9 <u>1</u> 112.03	323.39 312.44 2103.76	129.98
AMIK	i 7	0.00	725.51	42.68 117.50	278.85	6.25	66.21	134.53 129.98 1061.29 33.40
AMTCA AMTMG	17	0.00	725.51 1997.45 4238.97 2295.79	117.50 249.35	438,69	16.64 22.17	100.74	50.82 122.51 68.82 912.54
AMTNH4	17	0.00	2295.79	135.05 1197.10	821.80 543.92 7437.53	22.69	242.85 136.42	68.82
AMTCL AMTF	17	0.00	20350.67	1197.10 35.97	7437.53 130.26	73.41	1808.90 41.66	912.54
AMTNU3	įŹ	0.00	20350.67 611.42 2451.66 7794.34	144.22	423.19	8.56	104.06	21.02 52.50 182.81
AMTSU4 AMTPU4	17	0.00	7794.34	458.49	1580.77 134.65	31.56 0.00	362.37 36.00	18.16
AXSSU4	17	0.00	342.06 5705.78	20.12 335.63	815.45	18.12 80.97	211.16	106.53
AMTSS AMTNC	17	0.00	22388.35 10039.34	1316.90 637.61	8203.60 2176.16	60.95	1997.31 577.84	1007.59 291.50

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNNEIGHTED AVERAGE
CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSU SITES DURING 11/77.

	N	VULWTAY	UEQ/SQ.M	MEAN_	HIGH	LOW	SI.DEY	95%C.L.
PH COND	34 34	5.17 8.65	0.00	4.63 19.06	7.05 107.00	3.80 0.00	0.57 22.58	0.20 7.74
CMPPT	34	0.00	102.42	3.01	11-44	0.02	33.75	1.18
H HNV	34 34	6.77 5.10	0.00	23.19 17.39	158.49 97.72	0.09 0.04	33.75 21.99	11.58
NA	29	51.67	0.00	78.94	586.11	7.39	118.47	44.00
K C A	29 29	0.48 1.77	0.00	78.94 1.64 6.88	9.45	0.00	2.32	0.86
MG	29 29	7.10	0.00	1/ # 2	586.11 43.91 147.33 17.74 724.74	0.00 1.73	118.47 20.38 28.95 24.92 156.46	3.48 10.75 1.83
NH4	29	1.44 35.64	0.00	21.59 21.59 21.59 21.26	17.74	0.00 9.87	156.46	1.83 58.11
ÇL F	29 29	0.06	0.00	70.78	0.04	0.00	1.62	0.68
N03 Su4	29	0.06 3.01 7.64	0.00	9.19	31.78 87.86	0.64 2.08	9.34 23.93	3.47
PO4	29	0.09	0.00	0.26	7.58 49.34	0.00	1.41 13.39	8.89 9.52
XSSO4 San	28	4.49 46.44	0.00	13.14 126.88	49.34	0.56 13.50	13.39 182.33	5.06 67.71
SCA	29 29 29 29	49.10	0.00	124.03	819.38 793.71	16.59	164.20	60.98
A/C CL/NA	29	0.95 1.13	0.00	124.03 1.02 1.20	757.25	0.81 0.87	0.10 0.17	0.04
NA/MG	29	4.46	0.00	4.43	5.68	3.95	0.39	0.15
SS NC	26 29	38.49 5.29	0.00	96.26 14.44	757.25 57.46	9.55 0.12	153.48 14.86	57.00 5.83
COND/P	29	1.11		1.02	1.41	0.61	0.19	0.07
AMTH AMTHNV	34 34	0.00	6930.97	203.85 153.78 1114.37	643.18	0.04 0.02	162.41	0.07 55.71
AMTNA	29	0.00	32316.67	1114.37	396.58 5380.65	64.25	116.65 1245.10	40.01 462.42 7.73
AMTK AMTCA	59	0.00	489.23	16.87	79.78	0.00	20.81	7.73
AMTMG	29	0.00	928.51 928.51 32316.67 32316.67 1809.04 7241.37 1471.65 36365.47 3061.69	3)/I/O 7/N	1172.20 1172.23 190.23 5957.25 19.54 332.08	14.14	275.74	23.64 102.41 17.10
AMTNH4 AMTCL	29 29	0.00	1471.65	50.75	190.23	0.00 61.23	46.05 1424.09	17.10
AMTF	Ž9	0.00	61.30	2.11	19.54	0.00	4.97	528.89 1.85 27.32
AMTNU3 AMTSO4	29 29	0.00	3069.63	105.85	332.08	31.76	73.56 177.42	27.32
AMTPU4	53	0.00	7801.69 94.18	3.25	793.76 94.18	48.35 0.00	17.49	65.89 6.50
AXSSU4 AMTSS	28	0.00	94.18 4253.06 39274.86	1253.98 1253.98 1253.98 105.85 269.02 151.90	400.09	38,80	110.38	41./2
AMTNO	29 26	0.00	4196.08	1354.31 161.39	6570.85 513.75	67.54 8.34	1566.72 147.66	581.86 57.92

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SJ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

A-2

Table 27.

ī,

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 12/77.

D. I	Ņ	VOLWTAV	UEQ/ŞQ.M	MEAN	ніей"	FDM	ST.DEV	95%C.L.
PH COND	66 66	4.64 17.43	0.00	4.51 20.38	6.54 66.00	0.00	15.80	0.22 3.89
CMPPT H	66 66	0.00 23.05	51,20	0.78 31.26	107.15	0.00	23.76	0.16 5.85
HNV	06	20.21	0 00 0 00 V 00	26.04	100.00	0.00	20.72	5.10
NA K	51 51	50.26 1.09	0.00	56.22 1.35	321.32 6.64	4.35 0.00	20.72 72.32 1.67 7.19	20.25
CA	51	3.87	0.00	1.35 5.99	40.42	0.50	7.19	2.01
MG NH4	551 551 551 551 551 551 551	11.69 3.29 52.06	0.00	13.28 3.92	78.15 16.08	2.30 0.00	16.96 3.85 64.11 1.42 9.75	4.75 1.08
ÇL F	51	52.06	0.00	3.92 57.54 0.47	276.36 7.89	7.90 0.00	64.11	1.08 17.96
NO3	51	0.63 7.62 25.77	0.00	10.80	56.45	1.29	9.75	0.40 2.73 5.74
\$04 P04	51 51	25.77	3.00	30.05 0.45	77.03	3.54 0.00	CU.47	0.52
XSSO4 SAN	51	0.64 20.53 86.72	0.00	24.30	73.23 339.27	0.00 1.68 23.04	1.87 18.32	0.52 5.13 22.40
SCA	51 51	93.60	0.00	30.05 0.45 24.30 99.32 107.69	437.13	29.23	79.99 97.90	27.42
A/C CL/NA	51 51	0.93 1.04	0.00	1.02	1.24	0.69 0.79	0.11	0.03 0.07
NA/MG	51 51	4.30 56.21	0.00	4.23	4.01	1.89	0.64	0.18
SS NC	51	13.99	0 00 0 00 0 00	61.74 19.02	304.82 123.74	1.89 5.62 2.10 0.30	27.62	19.79 7.74
COND/P AMTH	51 66	0.97 0.00	11803 72	0.96 178.84 156.75	$\begin{array}{c} 1 \cdot 11 \\ 714 \cdot 80 \end{array}$	0.30 0.00	70.67 70.67 27.62 0.12 182.17 168.17 669.20	0.03
AMTIINV	66	0.00	10345.77	156.75	667-09	0.00	168.17	44.85 41.40 167.41
AMTNA AMTK	51 51	0.00	1184535 · 27 184535 · 27 1896 · 27 1896 · 27 1896 · 37 25517 · 33	483.01 10.49 37.18	3136.30 70.21 178.39	15.90 0.00 5.31	14.79 35.64	4.14
AMTCA AMTMG	51 51	0.00	1896.27	37.18 112.31	178.39 775.37	5.31 8.42	35.64	9.98 43.76
AMTNH4	Şį	0.00	1614.37	31.65	213.44	0.00	156,27 37.13 667.88	10.40
AMTCL	51	0.00	2551/.33 30/.61	500.34 6.03	3567.30 159.21	28.87 0.00	667.88 23.73	187.04
AMTNU3	5 Î 5 Î	0.00	307.61 3735.61	6.03 73.25 247.68	230.66	15,81	23.73 47.89	6.65 13.41
AMTPUT	51	0.00	12631.52 314.37 10063.73	197.33	156.17	18.46 0.00	189.31 26.90	53.02 7.53
AXSSU" AMTSS	51 51	0.00	10063.73 27550.73	197.33 540.21	629.31 3934.73	9.03	164.46	46.06 206.68
AMTNO	5i	ŏ:ŏŏ	6855.68	134.43	1110.76	20.54 7.45	181.74	50.90

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL SITES DURING 01/78.

PCCTHNKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NON NON THE TRANSPORT OF THE TRANSPORT O	VUL 1 04.73707 1 72.000000000000000000000000000000000000	MO0030000000000000000000000000000000000	M 2 338 1218 15 457 94 5371286 03.	H 9 1177 666836563342944080774069587815364166836563342944080777406958781165177665 431401379 718 82695910165478 4960165478	403592004720680458284323916071910056 W90056500078007700507714574110803003880 U370306013230390849742029280590 330002840742029280590	V14037519798183261448778586121664450633 0.1.3.993.888634966430262507683544850633 1.2.3.3.93.6979037238500029081282279371.133345000290812822748371.133	44785317769117130793047835555797700625 2070
AMTN03	32 32	0.00	33.47 3468.40 10766.81 487.18 8919.52 19808.59 9445.41		16.65 305.88	15.30	3.40 87.56	1.20 30.96

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SU. m=microequivalents/square meter
MEAN=UNWEIGHTED AVERAGE
LMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOH
THE MUNTH

A-29

Table 29.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 02/78.

	N_	VOLWTAV	UEQ/ŞQ.M	MEAN_	HIGH	ĽO₩_	ST.DEV	95%C.L.
PH COND	48 48	4.41 22.90	0.00	43.81	4.58 192.00	3.95 12.00	0.20 42.08	0.06 12.15
CMPPT	48	0.00	68.89	1.44	5.91 112.20	0.01	1.61	0.46
H HNV	48 48	39.12	0.00	55.85 44.79	89 17	26.30 0.00	25.82 21.01	7.45 6.07
NA	34	40.13	U_U0	72.92	919.60	2.17	192.26	65.95
K Ca	34 34	33.93 40.13 0.89 5.39	0.00	1.21	13.53	0.00	2.49 8.18	0.86 2.81
MG	34	11.1/	0.00	72.92 12.51 16.77 17.42	919.60 13.92 198.25 17.74	1.07	8.18 41.89	14.37
NH4 Cl	34 34	6.56 44.46	0.00	64.70	641.55	1.66 2.26	4.35 142.02 1.15	1.49
CL F	34	0.82	v.00	0.67	5. 68	0.00	1.15	0.40
N03 S04	34 34	9.05 36.11	0.00	13.87 45.14	68.88 208.20	0.00 14.99	13.08 36.22	4.49 12.42
P04	34	0.00	0.00	0.00	0.00	0.00	0.00 22.94	0.00 7.87
XSSO4 SAN	34 34	31.97 90.43	0.00	38.77 124.38	142.19	14.32 26.80	188.33	64.60
SCA	34	103.18	0.00	152.53	1282.11	37.60	254,62	87.33
A/C CL/NA	54 34	0.88 1.11	0.00	0.89	1.18 1.76	0.65 0.70	0.10	0.03
NA/MG SS	34	3.59	0,00	68.37	705.03	0.70 1.51 2.49	0.80 155.79	0.28 53.44
NC	34	44.41	0.00	35.94	5.03 707.63 469.77	1.65	90.03	30.88
COND/P AMTH	34 48	0.93	0.00 369/H 46	0.94 561.43	1.12 2134.56	0.80 8.27	0.07 563.81	0.02
AMTHNV	48	0.00	23371.00	486.90	1735.03	0.00 5.98	476.87	162.76 137.66
AMTNA AMTK	34	0.00	26785.06	787.80 17.48	4417.02 120.27	5.98 0.00	1093.41	375.04 7.09
AMTCA	34	0 . 00	0 • 0	105.87 219.35	627.80	0.00	140.28	a a 11
AMTMG AMTNH4	34 34	0.00	7457.86	219.35 128.80	1809.73 507.28	2.94 7.62	356.30 138.34	122.21
AMTCL	34	0.00		128.80 872.88	6815.13	6.70	138.34 1370.83	470.19
AMTF AMTNO3	34 34	0.00	546.54 6039.03	16.07	105.34 571.91	0.00	32.13 124.37	11.02
AMTS04	34	0.00	24101.19	708.86	2098.95	103.22	582.40	199.76
AMTPU4 AXSSU4	34 34	0.00	21340.58	627.66	0.001634.78	102.53	0.00 495.82	170.07
AMTSS	34	0.00	29641.71	871.82	5001.74	7.39	1215.37	416.87
AMTNC	34	0.00	13174.32	387.48	1460.38	17.19	415.90	142.65

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

РН	N 50	VOLHTAV 4.51	UEG/SQ.M	MEAN 4.29	нівн	FOM	ST.DEV	95%C.L.
COND CMPPT	50 50	20.57	0.00 0.00	34.22	340.00 340.00	3.09 7.80	47 05	13.56
HNV	50 50	30 7 ห	44.77 0.00	0.90 50.94	3.89 812.83	0.03 12.88	1 12 · 26 1 38 · 70 47 · 87	13.55 31.75 31.27 31.47 0.47
NA	45	29.21 34.33 1.15 10.17	0.00 0.00	51.75 50.52	1000.00	9.77 4.78	47.67	14.27
K CA	45	10:17	0.00	50.52 1.89 17.61	220.44 5.62 56.89	0.00	10.00	4.77
MG NH4	44444444444444444444444444444444444444	8.42	v . 00	14.25 12.68	42.13	1.40 1.66 5.36	13.05 11.54	3.44
ÇL F	45	39.22	0.00	12.68 57.68 0.89 37.58	57.34 42.13 321.20 4.74 807.15	0.00	60.84 1.12 118.70	18.14
N03 S04	3555555 44444	39.58 39.28 17.48 30.63	0.00	41./3	139.49	6.13 12.70	28.30	7944439405824 180.33405824 180.356.05824 460.4460
P04 X5504	45 45	0.00 26.82 88.12	0.00	0.00 36.11 137.89	133.69	0.00 12.02	0.00 25.65 155.58	0.00 7.65
SAN SCA	45	88.12 94.31	0.00	149.09	964.70 947.77	25.65	155.58 156.03	46.38 46.52
A/C CL/NA	45 45	94.31 0.93 1.14	V.00 V.00	0.92 1.14 3.54	1.53 1.65	28.71 0.71 0.89 2.33	156.03 0.13 0.19	0.02
NA/MG SS NC	45 45	3.58 41.00	0.00	60 46	4.66	2.33 5.91	0 - 55	17.77
COND/P	45 45	3.58 41.00 22.66 0.97		36.59 1.00 275.67 261.61 324.80	284.81 107.13 1.46	56.699 6.572	59.59 30.29 0.11	0.16 17.77 9.03 72.74 81.69 93.03
AMTH AMTHNV	50 50	0.00	13783.55 13080.43	275.67 261.61	1.46 1498.66 1843.75	8.69 6.59	0.11 257.19 288.83	72.74 81.69
AMTNA AMTK	45 45	0.00	14616.06	324.80 10.92	1843.75 1633.90	43.72	288.83 312.04 10.05 58.48	
AMTCA AMTMG	45	0.00 0.00 0.00	4329.07 4077.21	96.20 90.60	45.60 303.67 421.35	24.17 14.63	58.48 82.01	17.44
AMTNH4 AMTCL	45 45 45	0.00	3584.63 16697.81	79.66	282.05 1731.39	11.95 56.71	60.68	18.09
AMTE AMTNU3	45 45	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	371.06 7.38	40.95 1488.17	39.01	368.65 9.61 227.99	17.445 18.09 109.91 67.95
AMTS04 AMTP04	45 45	0.00	13039.72	165.45 289.77	1059.22	77.61	181.29	24.02
AXSSO4 AMTSS	45	0.00	0.00 11414.55 17453.18 9645.41	253.66 387.85	0.00 881.06	0.00 58.16	0.00 161.31	48.09
AMTNO	45 45	0.00	9645.41	214.34	1909.72 688.15	56.48 71.68	382.15 118.89	48.09 113.94 35.45

N=NUMBER OF SAMPLES
VOLNTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICKOEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MONTH

A-3

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSC SITES DURING 04/78.

PH COND CMPPI HNV NA K CA MG	N21117777777777777777777777777777777777	VOLWTAV 4.58 34.47 0.00 26.36 19.95 68.86 7.51 47.66 17.94	UEG/SQ.M 0.00 0.00 5.06 0.00 0.00 0.00	MEAN 0 6 4 2 2 1 8 9 6	HIGH 5.30 91.30 0.91 61.29 247.84 131.74 54.37	LUW 0.00 21.20 0.00 0.00 20.44 17.46 17.46 17.46 21.43	ST . DEV 1 0 . 04 1 8 . 53 0 . 19 1 4 . 00 1 2 . 59 68 . 48 1 5 . 01 3 1 . 39 1 3 . 40	95%C . 47 0 . 47 8 . 47 9 . 6 . 75 34 . 57 15 . 83 6 . 76
NH 34 P	17 17 17 17 17 17 17 17	17 94 47 06 47 06 65 38 75 07 73 70 67 027 21 0 77 21 0 95	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79.189 279.800 79.800 74.680 743.37 25.0.97 86.90	82.05 172.87 172.87 39.52 133.25 133.25 126.14 339.79 516.99 516.90	11.61 43.10 0.00 38.08 78.37 108.20 0.61	18.75 47.49 8.91 31.57 0.00 29.31 118.12 0.17	93.4920 93.4920 149.07759 150.7759 1359 00.08
NA/MS SS NC ND/P AMTHNV AMTINA AMTICA AMTMG AMTNH4	17 17 17 17 17 21 17 17	3.84 71.64 117.40 1.01 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 1333.38 1359.04 1359.62 2325.62 2496.97	3.97 86.96 140.01 63.49 197.59 136.88 135.37 187.31 68.52	5.54 190.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	23.648 0.80 0.00 0.07 84.93 626.07	31.57 0.31 9.81 2768.10 11.75 11.00 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	0.08 0.37 0.39 0.02 0.02 0.02 0.03
AMTCL AMTF AMTNO3 AMTSO4 AMTPO4 AXSSO4 AMTSS AMTNC	17 17 17 17 17 17	0.00 0.00 0.00 0.00 0.00 0.00	3184-17 165-02 1164-86 3598-33 0-00 3272-47 3495-26 5727-67	187.30 68.52 211.67 210.00 192.50 205.60 336.92	413.83 16.36 111.10 390.57 0.00 370.58 456.46 825.10	94.12 1.05 34.48 90.57 0.00 79.93 103.81 152.03	94.69 4.14 19.79 91.37 0.00 88.16 104.96 170.42	27.68 47.77 2.09 9.09 46.09 44.48 55.97

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL SITES DURING 05/78.

PCCHINKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NANANANANANANANANANANANANANANANANANANA	V310302998828580843943168000000000000000000000000000000000000	MOO300000000000000000000000000000000000	6994888590937205555359193534002324 N4126382121656201738164205686090312 N40145200011500950134115459974513 M4 334 2145 35 536 57 7163442422 M4 334 2145 35 536 57 44599745136	H 00020100641486609040940461122225989300 H70575290907001068424536551298976440 H 0 992 02314 871097001148 5316515575290 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	101007100130640654463132307188260 W0401007100130640654463132307188260 L4500090227100210987002130009360460 1120147	V274732718354510734079675412531589370 E5002254121390040514114351793220192380 D	*3415630495796007823542548270924987 C0405470616705707630014200445776218 ************************************
AMIMG AMINH4 AMICL	555555555555555555555555555555555555555	0.00	7691 01 27249 00 33557 13 1098 50 16808 63 34797 31 0 00 31454 05 35933 06 43439 48	147 90 524 02 524 5 12 645 12 823 12 80 0 18 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1555.09 2787.98 115.79 622.63 1849.40 1784.11 3083.51 2880.01	10.88 10.83 10	136.01 424.15 6123.98 173.89 173.87 45 23.87 45 23.87 468.91	1170.29 1170.29 48.07 125.88 117.52 1185.51

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

Table 33.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 06/78.

РН	N	VOLWIĀŽ	UEQ/SQ,M	MEAN	нĨеЙŸ	Ρομί	ST.DĘY	95%C.L.
COND	99 99	4.52 18.23	0.00	4.35 31.08	5.80 510.00	3.56 6.20	0.37 54.02	0.07 10.86
CMPPI	99 99	0.00	209.73	2.12	9.19	0.04 1.59	54.02 2.13 48.54	0.43 9.76
HNV	99	30.19 26.06	0.00	44.81 39.85	275.42 239.88	0.50	45.93	9.23
ŅĀ	95	20.57	0.00	32.30	(26 10	5.22	45.93 42.04	8.63
K CA	95 95	1.19 6.08	0.00	9.95	66.36	0.51 1.00 1.40	6.70 11.71	1.38
MG	95	4.82	0,00	2.30 9.95 7.14 11.78	41.21	1.40	7.20	1.48
NH4 CL	95 95	8.26 21.68	0.00	34.93	63.83 66.36 41.21 287.73	0.00 5.08	30.41 46.20	6.24 9.48
F	95	0.24	0.00	34.93 0.59 17.20	10.00	0.00	19.80	0.33
N03 S04	95 95	11.40 27.16	ŷ . 0 ô	5/-05	210.91	1.45	39.31	4.06 8.07
P04	95	0.00	0.00	0.00	0.00	6.04 0.00 4.73	39.31 0.00	0.00 7.59
XSSO4 SAN	45 95	24.95 60.48	0.00	34.11 90.37	201.16 625.16	19.10	36.97 91.84	18.84
SCA	95	70.99 0.85	0.00	104.38	898.87	25.88 0.63 0.82	91.84 111.85 0.10 0.15	18.84 22.95
A/C CL/NA	95 95	1.05	0.00	1.08	2.00	0.82	0.15	0.02
NA/MG	95	1.05	0.00	1.08	39,25	1.80	5.04	0.75
SS NC	95 95	23.69 17.23	0.00	36.07 25.41 1.05	374.81 379.52 2.34	5.60 2.36	50.66 42.33	10.39
COND/P AMTH	95	1.04	11 (11)	1.05	2.34	0.80	, Q . 15	0.03
AMTHNV	99 99	0.00	54663.10	639.61 552.15	2973.02	13.93	42.33 9.15 693.48 600.51	0.03 139.40 120.71 96.14 7.80
AMTNA AMTK	95 95	0.00	43097.17	453.65	2331.13	21.17	468 51	96.14
AMTCA	9 5	0.00 0.00	63321.29 54663.10 43097.17 2489.76 12743.76	26.21 134.14	795.90	0.80 13.83 5.76 21.17 1.31 8.19	135.87	27.88
AMTMG AMTNH4	95 95	0.00	10093.99	106.25 182.05 478.01	344 344 3183 3183 3183 3183 3183 3183 31	4.00	35.00 135.07 110.46 274.93 510.17	27.88 22.67 56.42
AMTCL	95	0.00	45410.65	478.01		0.00 17.34	510.17	104_69
AMTE	95	0.00	511.14	5.38	96.71	0.00	15.80 258.85	3.24
AMTNU3 AMTSO4	9 5 95	0.00	23876.67 56897.64	251.33 598.92	958.93 2272.96	15.88 14.60	615.75	53.12 126.35
AMTPO4	95	0.00	0.00	550.22	0.00	0.00	0.00	119.78
AXSSO4 AMTSS	95 95	0.00	0.00 52271.32 49633.04	522.45	2018.60 2875.23	11.58 19.13	583.72 561.67	115.25
AMTNO	95	0.00	36086.00	379.85	2125.74	19.13 27.52	445.47	91.41

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

PH COND	N 113 113	VOLWTAV 4.28 27.79	UEU/SQ.M 0.00 _ 0.00	MEAN 4.27 30.41	HIGH 6.28 106.00	L DW 3.66 8.00	37.DEV 0.35 17.27	95%C.L. 0.07 3.25
CMPPI HNV NA	113 113 113 109	0.00 52.46 49.09 21.48	267.86 0.00 0.00 0.00	2.37 53.19 49.57 29.51	12.31 218.78 218.87 223.87 235.66 15.83	0.02 0.52 0.55 3.48	2.09 38.55 38.15	0.39 7.25 7.18 6.15
K CA MG	109 109 109	0.99 6.94 5.02	0.00 0.00 0.00	10.468 6.76 5.18 32.01	15.83 34.93 40.23	0.00 0.00 0.99	38.15 32.13 1.99 6.27 6.88	0.38 1.20 1.32
NH4 CL F NO3	109 109 109 109	23.03 1.07	0.00 0.00 0.00 0.00	5.18 32.01 1.10 18.37	40.23 54.33 262.54 10.53	0.00 3.67 0.00 3.06	6.88 7.75 37.79	1.49 7.24 0.32
S04 P04 XSS04	109 109 109	14.93 42.43 0.00 40.11	0.00 0.00 0.00	42.86 0.00 39.63	87.10 187.38 0.00 183.87 323.64	7.50 0.00 6.60	13.54 29.92 0.00 30.21	2.59 5.73 0.79
SAN SCA A/C CL/NA	109 109 109 109	81.46 90.92 0.90 1.07 4.28	0.00 0.00 0.00	94.35 105.89 1.08 1.08 74.37	323.64 349.02 1.20 1.77	23.50 30.10 0.60 0.82	57.06 59.31	10.93
NA/MG SS NC	109 109 109	24.97 13.47	0.00 0.00 0.00 0.00	34.00 16.91	14.16 289.58	1.00 4.04 0.88	0.09 0.15 1.22 40.76 13.81	0.02 0.03 0.23 7.81 2.64
COND/P AMTH AMTHNV AMTNA	109 113 113	1.05 0.00 0.00	0.00 140516.34 131485.56 57481.93	1.04 1243.51 1163.59 527.36	75.92 1.37 5529.06 5280.21	0.89 0.35 0.37	1296.49	243 93 243 35 100 03 75 27
AMTK AMTCA AMTMG	109 109 109 109	0.00 0.00 0.00 0.00	2640.45 18581.77 13429.99	24.22	3900.97 229.05 1134.44 883.39	60.87 0.00 0.00 13.24	1240.28 522.17 27.54 167.85 119.73	100.03 5.27 32.16 22.94
AMTNH4 AMTCL AMTF	109 109 109	0.00 0.00 0.00	10/43.17 61635.48 2850.52	170.47 123.21 98.56 565.46 26.15	883.39 1680.87 4638.46 299.33	0.00 61.19 0.00	191.40 602.90 45.65	36.67 115.49 8.74 54.74
AMTNO3 AMTSO4 AMTPU4 AXSSO4	109 109 109 109	0.00	39963.75 113563.82 0.00 107339.19	366.64 1041.87 0.00	1447.26 4076.95 0.00	34.20 71.24 0.00	285.76 1061.08 0.00	203.27
AMISS AMINC	109 109	0.00	66831.65 36045.68	984.76 613.13 330.69	4026.38 5040.05 2348.68	43.79 67.50 14.07	1045.15 653.19 333.77	200.21 125.13 63.94

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER FXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SG.M=M1CROFQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT 1N UEQ/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF HAIN FOR
THE MON(H

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 08/78.

PH COND CMPPT H	N 51 51 51	VOLWTAV 4.42 19.72 0.00 38.38	UEU/SQ.M 0.00 0.00 119.62	MEAN 4.39 25.85 40.80	HIGH 73.50 11.20 134.90	LOW 3.87 9.40 0.02 8.13	ST.DEV 0.28 13.26 2.61 27.81	95%C.L. 0.08 3.71 0.73 7.79
HNV NA K CA MG NH4	51 50 50 50 50 50	35.22 15.80 0.89 5.03 4.06 2.51	0.00 0.00 0.00 0.00	40.699 40.799 40.797 40.137 40.137 40.54 40.54 40.54	128.63 182.62 16.59 32.43 40.31 29.38 205.01	6.61 2.17 0.25 2.00 1.23 0.00	27.33 40.461 2.61 6.25 7.16	7.65 11.44 0.74 1.72 2.02 12.64
CL F03 S04 P04 XSS04	50 50 50 50 50 50	18.39 0.27 10.04 29.70 0.00 27.90	0.00 0.00 0.00 0.00 0.00		205.01 1.58 47.10 109.10 105.99 278.72	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	44.68 0.45 10.10 21.11 21.61 54.64	5.97 0.00 6.11
SAN SCA A/C CL/NA NA/MG SS NC	50 50 50 50 50 50	58.39 66.67 0.88 1.16 39.27 9.02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7000228 702288 70333 70333 7033 7033 7033 7033 7033	278.72 296.70 1.49 26.13 291.98	37.71 0.81 1.76 2.68	57.49 0.08	15.45 16.26 0.02 0.04 0.27 13.77
COND/P AMTH AMTHNV AMTNA AMTK	50 51 51 50 50	9.02 1.02 0.00 0.00 0.00 0.00	0.00 0.00 0.00 45129 18091.68 1064.09 6018.18 4855.02 2999.86	1.01 900.08 826.07 377.83 21.28	91.98 1.63 4779.02 4460.04 1583.62 84.13 391.32	20425654080 2175654080 21756	0.145 0.70 16.94 10.147 10.47 947.64 17.87	263.97 263.97 28.33 5.79
AMTCA AMTMG AMTNH4 AMTCL AMTF AMTNU3	50 50 50 50 50	0.00 0.00 0.00 0.00 0.00	6018.18 4855.02 2999.96 21988.67 320.90 12005.54 35514.06	97.10 97.10 60.00 439.78 6.42 240.11	391.32 340.98 303.53 1777.86 1177.92 823.39 3848.61	7.30 5.28 0.08 0.08 0.52 15.23	100.37 79.30 78.17 393.72 18.48 210.99	28.39 22.43 22.11 111.36 59.68 220.51
AMTSO4 AMTPU4 AXSSO4 AMTSS AMTNC	50 50 50 50	0.00 0.00 0.00 0.00 0.00 0.00	35514.06 0.00 33371.05 23043.78 10785.15	710.28 0.00 667.42 460.88 215.70	3848.61 0.00 3734.83 1960.97 860.76	15.23 0.00 12.33 31.08 8.39	779.61 0.00 770.29 418.04 182.29	220.51 0.00 217.87 118.24 51.56

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

Table 36.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL SITES DURING 09/78.

PH COND	N 85 85	VOLWTAV	UEQ/SQ.M	MEAN 4.35	HIGH 5.87	LOW 3.78	ST.DEV	95%C.L. 0.08
CMPPT H HNV	85 85 85	24.96 0.00 38.25 34.86	0.00 111.58 0.00 0.00	33.49 1.31 44.49	158.00 5.80 165.96 154.88	6.60 0.354 1.350 3.025	24.52 1.26 34.47 31.10	0.27 7.48 6.75
NA K	81 81	47.23 1.40	0.00	39.81 80.20 2.37	648.72	3.04 0.25	109:11 2.76 17.22	2035-7758 2035-7758 2035-7758 2035-7758
CA MG NH4	81 81 81	6.00 11.41 4.71	0.00 0.00 0.00	10.20 19.14 6.73 90.51	153.00 37.14	0.50 1.15 0.00 5.92	25.90 7.97	5.75 1.77
ÇL F No3	81 81 81	53.81 1.19 14.11	0.00	18.03	128.74 128.00 137.14 748.99 25.26	0.00 4.03	125.32 125.32 125.31 16.67 32.18 26.36 155.46 156.61	27.85 0.78 3.70
S04 P04 XSS04	8 Î 8 Î 8 Î	31.08 0.00 25.70	0.00	39.85 0.00 30.80 149.84	0.00	7.91 0.00 4.36 25.27	32.18 0.00 26.36	7.15 0.00 5.86
SAN SCA A/C	81 81 81	100.31 108.98	0.00	162.45	106.35 1009.18 1027.78	25.27 26.81 0.39	155.46 158.66 0.11	0.00 5.85 34.526 35.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
CL/NA NA/MG	81 81	0.92 1.14 4.14 57.84 12.90	0.00 0.00 0.00	0 92 1 13 4 19 97 19 21 45	2.13 5.71 826.14	26.81 0.75 0.75 2.47 3.28	0.21 0.51 135.95 24.25	0.05 0.11 30.21 5.39
SS NC COND/P	81 81	1.02	0.00	21.45 1.01	1027.78 1.75 1.15 2.13 826.14 153.23 4115.42 4027	1.28 0.61 3.79	A 2A	5.39
AMTH AMTHNV AMTNA	85 85 81	0.00 0.00 0.00	0.00 42675.59 38898.02 52016.16	1.01 502.07 457.62 649.58	06/7400	0.95 23.91	685.90 647.63 845.83 900.23	148.79 140.49 187.96
AMTK AMTCA AMTMG	81 81 81	0.00 0.00 0.00	52616.16 1559.37 6679.98 12706.19	649.58 19.25 82.47 156.87	182.62 448.55 1608.34	1.44 0.87 4.19	2V0.3/	20.05 46.35
AMTNH4 AMTCL AMTF	81 81 81	0.00 0.00 0.00	12706.19 5242.43 59950.24 1327.30	740.13 16.39	1608.34 573.39 7588.44 431.57	19.77 0.00	98.18 988.51	219.67 219.67 219.67 219.67
AMTNO3 AMTSO4 AMTPO4	81 81 81	0.00 0.00 0.00	1327.30 15717.29 34630.38	194.04 427.54	968.82 2646.77 0.00	8.19 12.98 0.00	63.68 223.71 484.83	49.71 107.74 0.00
AXSSO4 AMTSS AMTNC	81 81	0.00 0.00 0.00	0.00 28632.97 64432.35 14371.77	0.00 353.49 795.46 177.43	2604.09 8113.24 889.82	6.48 21.81 5.40	0.00 467.24 1065.32 190.41	103.83 236.74 42.31

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/Su.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEO/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSL SITES DURING 10/78.

014	N	VOLWTAV	UEW/SO.M	MEAN	нұсн	FOM.	STADEY	95%C.L.
PH COND_	89 89	4.71 19.55	0.00	4.21 64.19	1230.00	0.00	135.37	28.70
CMPPT H	89 89	0.00 19.55	147.15 0.00	1.65 61.65	10.94 524.81	$\begin{smallmatrix}0&0&1\\0&0&0\end{smallmatrix}$	2.62 76.40	16.20
HNV NA	89 76	16.85 64.71	0.00	54.46 184.57	398.11 1778.77	0.00 3.91	76.40 64.20 284.62	13.61 65.16
K	76	1.96	0.00	6-17	102.63	0.51	13.19	3.02 7.12
CA MG	76 76	6.11 15.24	0.00	16.54 42.43	256.99 350.02 553.85	1.00	64.03	14.69
NH4 CL	76 76	4.14 70.43 0.57 7.16	0.00	16.28 200.38	553.85 2005.02	0.00 4.51	284.02 13.03 31.03 63.26 24.76 24.76 77.00	14.62 72.10
F NO3	76 76	0.57	0.00 0.00	1.67 23.62 62.42	2005.02	0.00	2.16	0.50 5.68
S 04	76	21.54	0.00	62.42	161.14 545.48	1.94 7.70	77:02	17.67
P04 XSS04	76 76	0.00 14.35 99.70	0.00	0.00 42.02 288.08	0.00 339.17 2717.96	0.00 4.22 16.92		0.00 11.68
SAN SCA	76 76	111.51	0 0 0 0 0 0	288.08 317.10	2717.96 2590.15	22.31	402.61	92.37 95.07
A/C CL/NA	76 76	0.89 1.09 4.25 77.17	0.00	0.91	1.10	0.65 0.90 2.83	0.08	\$0.02
NA/MG	76	4.25	0.00	1.09 4.35	5.72	2.83	0.46	0_11
SS NC	76 76	15.00	0.00	218.84 47.14	5.72 2211.54 653.38	4.98 2.54	0.46 343.58 88.28	78.82 20.25
COND/P AMTH	76 89	1.00	28763 67	0.95 323.19 278.47	1.52 2055.05	0.72 0.00	0 12 375 07 329 58	0.03 79.51
AMTHNV	89 76	0.00	24784.22	278.47	1831.57 9740.61	0.00	329.58	69.87
AMTK	76	0.00	24784.22 94893.70 2870.29 8960.76	1248.60 37.77	362.41	1.56	1444.91 51.12 147.74	69.87 331.48 11.73
AMTCA AMTMG	76 76	0.00	8960.76 22351.93	294.10	922.53 2214.08	19.10 1.56 7.37 4.76	147.74 336.53	33.89 77.21
AMTNH4 AMTCL	76 76	0.00	22351.93 6072.38 103273.73	79.90 1358.86	1955.77 11684.32	23.15	336.53 229.69 1654.28	52.69 379.52
AMTE	76	0.00	840.01	11.05	297.03	12.58	35.88 113.82	8.23
AMTNU3 AMTSU4	76 76	0.00	10501.26 31581.44	138.17 415.55	510.36 1505.68	26.18	336.22	26.11 77.13
AMTPU4 AXSSU4	76 76	0.00	0.00	0.00	1309.82	0.00 18.25	255.25	0.00 58.56
AMTSS	76 76	0.00	21035.03 113152.06 21997.01	276.78 1488.84 289.43	12584.86 2307.23	24.68 7.19	1800.83 329.61	413.14
AMINE	70	0.00	C1321 0 V1	207,43	£301.£3	1 4 1 7	367.01	13.06

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIH

)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSC SITES DURING 11/78.

	N	VOLWTAV	UEW/SQ.M	MEAN	HIGH	LOW	ST.DEY	95%C.L.
PH COND	69 69	4.55	0.00	4.39	5.09	3.74	0.32	0.08
CMPPT	69	33.98 0.00	0.00 32.65	39.85 0.47	140.50 2.34	6.20 0.04	28.74 0.46	6.92 0.11
H	69	28.32	0.00	40.30 35.86	181.97	8.13	0.46 32.49 27.81	7.82
HNV NA	69 63	26.35 146.74	0.00	156.42	134.90 864.82	6.76 5.22 0.25	173.09	6.70 43.61
K	63	3.77	0.00	156.42	864.82 21.70 57.39	Ŏ. 25	3.99	1.00 3.01
C A MG	63	10.73 33.70	0.00	14.16	204-01	2.00 1.40	173.09 3.99 11.95 40.83 4.47 176.56	10.29
NH4	63	0.91	0.00	36.39 1.87	204.01 21.07 897.32	0.00	4.47	1.13
ÇL F	63	153.57 2.31 11.01	0.00	162.56 2.25 18.56	20.00	7.05	1/6.56	1 13 44 49 1 02 6 43
NO3	63	11.01	0_00	18.56	195.17	0.00	25.50	6.43
\$04 P04	55555555555555555555555555555555555555	0.00	0.00	45.01 0.00	20.00 195.17 196.54	5.83	40.88	10.30
X\$\$04	63	22.24	0,00	28.32	160.36	0.00 4.73	26.02	_6.56
SAN SCA	66666533333333333333333333333333333333	17.97 70.24 20.24 204.64 20.95 1.95 1.97 204.64 1.95 1.95 1.95	0.00	28.32 28.38 228.38 252.11	1140.14 1265.93	192.172 0.855 0.454 0.699 14.89	20.88 20.00 26.02 218.62 247.47 0.08 0.13	55-36 55-36 0 0 0 3
A/C	63	0.92	0.00	n 01	1.09	- 0.77	0.08	20.02
CL/NA NA/MG	63	4.35	0.00	1.04	1.09 1.45 4.77	0.82 0.45	0.13	0.03
SS NC	63	108.72	0.00	178.93	989.75	6.74	0.54 194.82	49.09
CUND/P	63	0.96	0.00	1.04 1.30 178.93 34.18 0.94 134.06	270.64	1.49	// / J	11.65
AMTH	69	0.00	9249.98	134.06	609.38	14.89	112.66	27.12
AMTHNV AMTNA	69 63	0.00	9249.98 8603.95 46760.57	124.07	989.75 270.64 1.19 609.38 557.03 4422.73	14.22	0.10 112.66 113.40 964.78	27.30 243.10
AMTK	63	0.00	1201.20 3419.50	742.23 19.07	95.74 258.23	0.61	20.80	5.24
AMTCA AMTMG	63 63	0.00	3419.50 10737.82	54.28 170.44	258.23 989.05	14.22 12.47 0.61 0.95	20.80 53.42 216.99	14955320 1906013004 11077361246842378 1507736146842378 1507736146842378 1507736146842378
AMTNH4	63 63	0.00	290.13	170.44	989.05 34.30	0.00	8.48	2.14
AMTCL	63	0.00	10737.62 290.13 48937.72 735.75 3509.48	11.68	4289.48 230.49 243.97	16.26	1002.96	258.72
AMTNO3	63	0.00	3509.48	55.71	243.97	11.22	39.95 195.17	10.07
AMTSO4 AMTPU4	06653	0.00		192.08	835.03	21.96	195.17	49.18
AXSS04	63	0.00	7087.31 53767.14 8642.10	776.79 11.68 55.71 192.08 112.50 853.45 137.18	0.00 525.33 4731.30	10.50 16.12 10.52	109.12	27 50 277 28 277 28 50 44
AMTSS AMTNC	63	0.00	56/6/ 1/A	M L / / L	# 1 K 1 K A	141)	1100.43	777 70

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 39.

)

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN CUMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSU SITES DURING 12/78.

PH	N 56	VOLWTAV	UE4/\$Q.M 0.00	MEAN 4.44	HIGH 5.32	LOW 3.71	ST DEV	95%C.L. 0.11
COND	56	30.58	0.00	48.59	565.00	8.00	87.54	23.40
CMPPT H	56 56	0.00 11.07	106.81	$\frac{1.91}{36.00}$	7.81 194.98	0.02 4.79	2.49	0.67 12.34
HNV	56	9.42	0.00	30.93	162.18 3693.63	3.31	ZG 17	10.47
NA K	53	179.02	0.00	208.93 5.07 17.64	3693.63 68.16	6.09 0.51	540.42 10.13	149.89 2.81
CA	52	10.45	0.00	17.64	194.11 821.78	2.50 1.56	28.71	7.96 33.48
MG NH4	52	37.83	0,00	47.50	821.78 32.16	1.56 0.00	120.72	33.48 2.59
CL	うちがいかがいかいかんないと	2.68 188.16	0.00	47.50 10.28 222.09	3908.52	7.90	540.42 10.13 28.71 120.72 71.83 571.83	158.60
F	55	0.87	0.00	2.05	18.42	0.00	3.20 26.29	0.89 7.29
N03 S04	52	29.44	0.00	16.81 55.58	162.91 579.63	3.06 11.24	89_86	24.92
PO4	ŞŽ	0.00	0.00 0.00 0.00	32.84 297.12 321.05	0.00 177.44	0.00 2.73	39.24	0.00
XSS04 SAN	35	10.14 224.16	0.00	297.12	4657.07	24.50	682.10	10.88 189.18
SCA	ŞŽ	245.14	0.00	321.05	4941.63	24.50 29.29 0.79	726.90	201.61
A/C CL/NA	52	0.91 1.05 4.73	0.00	0.93 1.06	1.06 1.48	0.82	0.06	0.02
NA/MG	ŚŽ	4.73	0.00 0.00 0.00	4-40	5.07	2.58	0.61	0 - 1 7
SS NC	52 52	206.95 27.22	0.00	243.83 45.58	4311.10 485.99	7.87 6.43	631.04	175.02 20.48
COND/P	52	0.95	0.00	0.93	1.10	0.57	0.08	0.02
AMTH AMTHNV	56 56	0.00	110/14/	0.93 211.13 179.65	652.75 541.04	0.57 8.81 6.84	201.01	53.72 44.70
AMTNA	ŠŽ	0.00	10060 35 190993 70 4465 09 11148 19	3672-96 85-87 214-39 776-25 3860-54	39767.89	26.74	7167.19 154.63 1481.24 7689.86	1987.82
AMTK	52	0.00	4465.09	85.87	804.19	2.44	154.65	42.89
AMTCA AMTMG	52 52	0.00	40364 00	776.25	2077.09 8143.74	11.73 10.12	1481.24	97.69 410.82
AMTNH4	52	0.00	2858.05	54.96	153.24	27.92	33.84	410.82 2132.78
AMTCL	52 52	0.00	200748.04	3860.54 17.89	43569.46 236.84	0.00	42.93	11.91
AMTNU3	52 52	0.00	5461.59	T02.02	302.44	13.98	86.52	24.00
AMTSO4 AMTPO4	52 52	0.00	31409.29 0.00	604.02	4918.73	21.57	906.91	251.53 0.00
AXSSO4	52	0.00	10815.30	207.99	701.15	15.24	165.62	45.94
AMTSS AMTNC	52 52	0.00	250/88,50	4245.93	48167.42 2835.68	30.79 33.62	8486.71 824.21	2353.79 228.59
AMINU	26	0.00	29041.71	558.49	2033.00	33.02	054.51	220437

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

MONTHLY MAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT ALL KSL SITES DURING 01//9.

Рн	N 81	VOLWTAV 4.76	UEW/SQ.M 0.00	MEAN _ 4.45	HIGH	LOW 3.87	ST DEV	95%C.L. 0.08
COND CMPPT	8 i 8 i	13.86	0.00 234.66	37.55	336.00 13.83	6.00	53.68	11.93
HNV	81 81	17.45 16.07	0.00	2.90 35.76 32.12 151.68	134.90 131.83	0.09 5.50 3.09	4.16 33.31 31.09	7.40 6.91
NA K	81 81	50-18	0.00	151.68	2216.18	12.61	346.68	77.04
ĈA MG	81 81	2.07	0.00	3.70 21.65 34.38	115.77	0.51 1.50 3.13	26.10	1.30 5.80
NH4	81	11.69 2.71 54.55	0.00	8.43	38.29 115.77 482.04 52.11 2497.67	0.55	76.56 11.16	17.01 2.48
CL F	81 81	0.61 5.18	0.00	164.83	16.31	14.66 0.00	382.07 3.45 17.11	84.90 0.77 3.80
N03 SD4	81 81	19.69	0.00	14.98 51.44 0.00	16.31 70.33 343.95	2.26 8.12	1/.11 59.96	13.32
P04 X3504	81 81	14.13	0.00	34.51	1/1.44	9. 00 5. 39	59.96 0.00 38.21	0.00
SAN SCA	81 81	93.19	0.00	34.51 233.51 255.59	2884.79 2926.83	31.43 37.06	436.24 455.63 0.07	96.94 101.25
A/C CL/NA	81 81	19.69 14.13 80.35 93.19 0.86	0.00	0.91 1.09 4.41	1.06 1.48	0.64 0.80	0-11	0.02
NA/MG SS	81 81	59.71	0.00	181.55	1.48 22.60 2754.93	0.80 1.52 16.17 2.87	421.48	93.66
SS NC COND/P	80 81	16.08	0.00	38.87 0.89	1.05	0.69	44.01 0.07	9.84
AMTH	81 81	0.00		0.89 505.54 465.49	3258.75 3184.58	36.83 26.07	603.49 576.74 2539.15	134.11
AMTNA AMTK	81 81	0.00	117747.12	1453.67 59.87	19435.76 573.63	60.49 5.42	2539.15 109.42 746.95	564.26 24.31 165.99
AMICA AMIMG	81 81	0.00	37774 . 68 177747 . 12 4849 . 74 21332 . 18 27427 . 18 6356 . 39 128007 . 36	263.36 338.61	6/12R Q1	13.64 18.56 _2.15	746.95 623.12	165.99 138.47
AMTNH4 AMTCL	81 81	0.00	6356.39 128007.36	78.47 1580.34 17.73	4921.18 282.66 22241.34 187.49	54.86	623.12 67.12 2874.04	138.47 14.92 638.67 7.97
AMTF AMTNO3	81 81	0.00	1435.79 12147.69 46205.73	149.97	000.37	0.00 15.16	35.85 132.43	7.97 29.43
AMTSU4 AMTPU4	81 81	0.00	0.00	5/0.44	3358.79 0.00	95.15 0.00	0.00	29.43 141.35 0.00
AXSSU4 AMTSS	81 81	0.00	33143.33 140103.76	409.20 1729.68	2593.60 24532.20	31.15 60.51	442.46 3160.87	98.32 702.42
AMTNO	80	0.00	37649.17	470.61	6931.12	46.15	859.29	192.14

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UMWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

24

Table 41.

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL STIES DURING 02/79.

	rd_	VOLHTAV	UEW/SO.M	MEAN	нұвы	μο <u>Μ</u>	ST.DĘY	95%C.L.
COVD	47 47	4.56 22.38	0.00	4.39 43.07	5.42 180.00	4.02 8.40	0.33 40.53	0.10 11.82
1 44MJ	47	0.00	45.17	0.96	3.91	0.06	V.90	0.26
HNV H	47 47	27.54 24.37	0.00 0.00	40.30 35.14	95.50 87.10	3.80 3.31	25.68 22.74	7.49 6.63
NA	46	62.57	0.00	148,42	987.43	19.57	220.33	64.97
K C A	46 46	2.10 12.80	0.00 0.00	3.97 18.24	20.42 66.37	0.77 6.99	4.66 13.46	1.36
MG	46	15.13	0 . 0 0	33.60	230.33	5.02	48.88	14.41
NH4	46	11.65	0_00	14.40 162.21	29.94	5.54 23.41	5.74 245.79	1.69 72.48
ÇL F	46 46	70.62	0.00 0.00	3.35	1134.49	0.53	2.89	0.85
1403	46	12.95	0.00	16.65	41.13	6.77 11.24	7.29 42.51	2.15 12.54
\$04 P04	46 46	37.80 0.00	0.00 0.00	63.77	215.90 0.00	0.00	0.00	0.00
K\$\$(14	46	50.66	0.00	47.19	117.94	8.90	26.70	7.87
SAN SCA	46 46	123.74 131.79	0.00 0.00	246.52 259.13	1306.58 1330.07	42.80 52.45	286.35 289.17	84.59 85.27
A/C	46	0.94	0.00	0.95	1.06	0.78	0.08	0.02
CL/NA NA/MG	46 46	1.13	0.00	1.09	1.32 5.89	0.85 3.29	$\begin{smallmatrix}0.11\\0.41\end{smallmatrix}$	0.03
SS	46	76.68	0.00	177.81	1251.34	25.28	271.52	80.07
VČ COND/P	46 46	27.57 0.89	0.00	40.82 0.91	113.80 1.15	12.35 0.21	25.62 _0.15	7.55 0.04
AMIH	47	0.00	12439.70	264.67	710.82	6.77	159.58	46.55
AMIHNV AMINA	47 46	0.00	11008.09	234.21 613.67	514.94 2685.57	5.90 169.35	140.73 512.11	41.06 151.01
AMTK	46	0.00	28229.01 947.95 5772.73	20.61	61.19	7.28	13.15	3_88
AMICA AMIMG	46 46	0.00	5772.73 6827.27	125.49 148.42	345.95 647.62	23.58 39.52	90.09 124.73	26.57 36.78
AMT NH4	46	0.00	5254,17	114.22	328.38	10.92	71.91	21,21
AMICL AMTE	46 46	′ 0.00 0.00	31859.63 946.43	692.60 20.57	3145.62 72.10	185.39 1.88	603.68 15.18	178.08 4.48
AMTNU3	46	0.00	5841.94	127.00	336.73	24.13	86.47	25.50
AMISU4 AMIPU4	46 46	0.00	17050.75	370.67 0.00	894.61	104.78	173.77	51.24
AXSSU4	46	0.00	0.00 13030.15	300.66	741.88	_ 50.61	. 165.44	48.79
AMISS	46	0.00	34593.01	752.02	3469.76	204.48 17.92	659.15 156.25	194.37
AMINU	46	0.00	12438.13	270.39	702.90	11.76	170.53	40.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEUTIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPP1, AND RATIUS
UEU/SD.M=MICRUENUIVALENTS/SOUARE METER
MEAN=UMWEIGHTED AVERAGE
LMPP1 IN DEG/SG.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
TOF MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPUSITION AMOUNT FUR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT ALL KSL SITES DURING 03/79.

PH COND CMPPT HNV NA K	N 888888833331	VOLWTAV 4.60 21.41 0.00 25.27 21.65 52.59	UEQ/SQ.M 0.00 0.00 42.50 0.00 0.00 0.00	MEAN 52.97 1.12 30.59 27.25 133.58	HIGH 180.00 180.41 213.80 186.21 978.30 26.04	LOW 3.67 10.00 0.02 0.35 0.07 14.78 0.77	ST DEV 0.51 47.90 1.20 34.31 30.17 185.73 49.68	95%C.L. 0.16 15.54 0.39 11.13 9.79 66.72 17.85
CA MG 4 F 03 P 03 P 094 P X 98 04	31 31 33 31 31 31 31 31 31	11.22 11.92 9.37 54.87 4.16 15.58 0.690 27.09	0.00 0.00 0.00 0.00 0.00 0.00 0.00	40.77 15.79 135.89	164.67 257.23 90.37 1079.78 79.37 89.38 187.28 136.84 1302.96	0.50 1.73 0.00 14.66 1.58 9.03 17.49 0.00 15.52	48.36 16.30 197.77 1.61	17.37 5.86 71.04 0.58 8.13 18.13 12.86
SAN SCA A/C CL/NA NA/MG SS NC COND/P AMTH	31 31 31 31 31 31 31 31 31	108.29 112.01 0.97 1.04 4.41 60.02 26.94 0.96 0.00	0.00	1 49 . 25 77 . 27	1302.96 1429.29 1.36 17.37 1190.99 208.89 1.13 1107.22	46.03 51.20 0.60 0.67 3.07 20.50 0.30 0.30	50.47 70.46 38.07 247.71 271.29 0.11 0.12 2.46 2.18.14 73.70 329.22	88.98 97.45 0.04 0.88 78.36 26.47 106.81
AMTHNV AMTNA AMTK AMTCA AMTMG AMTNH4 AMTCH AMTCH AMTCH AMTCH AMTNO3	38111111111111111111111111111111111111	0 0	10740 - 36 92190 - 398 22785 - 22 4733 - 22 3953 - 53 1753 - 56 1753 - 75	22155227 156245 156247	964.35 1921.95 77.81 296.65 498.38 589.69 2389.55 586.85	0.06 145.79 10.45 20.78 20.70 157.17 27.01	79.22 281.72 281.72 281.79 16.54 79.81 128.49 128.49 156.86	1945.445 1945.445 245.445 246.445 256
AMTSO4 AMTPU4 AXSSO4 AMTSS AMTNC	31 31 31 31	0.00 0.00 0.00 0.00 0.00	13792-25 378-44 11432-15 25326-00 11367-99	444.91 12.21 368.78 816.97 366.71	1037.29 241.71 868.46 2483.16 1002.69	98.46 0.00 78.23 173.36 62.24	262.34 46.55 247.87 650.09 236.48	94.24 16.72 81.85 233.55 284.95

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 43.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 07/77.

PH COND	N 7	VOLWTAV 4.53 14.22	UEW/SO.M 0.00 0.00	MEAN 4.36 21.39	HIGH 4.62 35.20	LOW 4.12	ST.DEV 0.24 11.80	95%C.L. 0.22 10.93
CMPP1	7	0.00 29.76	12.47	1.78	3.71 75.86	10.60	1.47 23.81	10.93 1.36 22.05
HNV	7	27.67	0.00	43.65 40.07	72.44	23.99	21.89	20.27
K	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C A MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4 CL	0	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
F N03	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$04 P04	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
x\$\$04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŞAN ŞÇA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C CL/NA	ů ů	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NA/M6 SS	0	0.00	0 · 0 0	0.00	0.00	0.00	0.00	0.00
NC COND/P	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTH	Ž	0.00	3711.94	0.00 530.28	999.23	0.00 123.89 112.99	0.00 317.85	294.33
AMTHNV	ó	0.00	3451.34	493.05	932.54	0.00	301.09	278.81 0.00
AMTK AMTCA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
AMTCL	Ŏ	0.00	Ŏ . Ú Ŏ Q . Ú Ŏ	0.00	0.00	0.00	0.00	0.00
AMTNO3 AMTSU4	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTPU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4 AMISS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUN(H

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 08/77.

.	N_	VOLWTAV	UEU/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH COND	33	4.48 20 . 51	0.00	4.53 24.61	6.80 100.00	4.03 0.00	0.59 21.43	9.21
CMPPT	33 33	0.00	48.00	1.45	7.30	0.03	1.64	7.46 0.57
H HNV	33 33	33.08 27.80	0.00	29.84	93.32	0.16	30.23	10.52
NA	39	0.00	0.00	25.61 0.00	81.28	0.13	27.18 0.00	9.46
K Ca	Ŏ	0.00	0,00	0.00	0.00	0.00	0.00	0.00
MG	ŏ	0.00	V . 0 0	0.00	0.00	0.00	0.00	0.00
NH4	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL F	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO3	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$04 P04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
X S SO4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN SCA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTH	33 33	0.00	15881.03	481.24	5409.25	0.05	1050.35	365.69
AMTHNV AMTNA	35	0.00	13344.27	404.37	4711.26 0.00	0.04	898.73 0.00	312.90 0.00
AMTK	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTCA AMTMG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL AMTF	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3	Ŏ	0.00	0,00	0.00	0.00	0.00	0.00	0.00
AMTSŪ4 AMTPŪ4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	Ŏ	0.00	V.00	0.00	0.00	0.00	0.00	0.00
AMISS AMINC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
WILL LAC	V	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

A-4

Table 45.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 09/77.

O.U.	Ņ	VOLWTAY	UEW/ŞQ,M	MEAN	нїсн	FOM	ST.DEY	95%C.L.
PH COND	55 55	4.53 28.10	0.00	4.18 37.20	123.90	3.60 0.00	0.45 38.60	0.20 17.12
ČMPPT H	55 55 55 55	29.22	11.96	0.54 66.56	3.45 251.19	0.00 2.24	0.92 57.63	0.41 25.56
HNV	Σξ	24.81	0.00	47.89	199.53	0.00	47.86	21.23
NA K	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CA MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	ŏ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0_00	0.00	0.00	0.00	0.00	0.00
ĻL	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03 S04	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0_00
XŠSO4 SAN	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCA A/C	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA	Ŏ	0_00	0.00	0.00	0.00	0.00	0.00	0_00
NA/MG SS NC	0	0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC COND/P	0	0.00	0.00	0.00	0.00	0.00	0.00	0_00
AMTH	ŞŽ	0.00	3492.91 2965.43	158.77	657.98	0.88	192.43	0.00 85.33
AMTHNV AMTNA	0	0.00	0.00	134.79 0.00 0.00	611.97	0.00	0.00	76.76
AMTK AMTCA	0	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTF AMTNO3	0	0.00 0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTS04 AMTPU4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS AMTNC	^	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 46.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN CUMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 10/77.

	Ņ	VULWTAV	UEW/ŞQ.M	MEAN	HIGH	₽O₩_	ST.DEY	95%Ç.L.
PH CUND	21 21	4.39 34.34	0.00	4.09 59.85	5.73 208.00	3.47 11.20	ٕ56 56•96	0.25 25.86
CMPPT	21 21	0.00 40.65	20.09	0.96 81.65	2.75 338.84	0.07 1.86	0.92 90.28	40.98
HNV	يَزِغ	57.79	0 00	77.99	338.84	0.79	89.18	40.48
NA K	21 15 15	113.16	ÿ • 00 ÿ • 00	103.57 3.54	327.40 11.74	11.31 0.51	89.95 3.39	49.93 1.88
CA MG	15 15	3.30 9.23 17.83 8.79	0.00	103.57 3.54 11.98 19.30	28.94 46.07	2.99	3.39 7.36 13.49	4.08 7.49
NH4	į́Ş	8.79	0.00		34.93 279.18	2.33	10.46	5.81
ÇL F	15	96.81 2.89	0.00	3.61	12.65	9552 9523 9523 953	79.28 3.91 15.52	44.01 2.17
N03 S04	15 15 15 15 15 15	10.99	0 0 0 0 0 0 0 0 0	17.52	48.87	3.23 15.41	15.52	8_61
P04 XSS04	įį́	34.22 1.81 24.28	0.00	, 2.57	122.84	0.00 11.69	28.49	15.82 1.67 13.79
SAN	15	146.72	0.00	99.557 17.557 14.2266 150	101.08 394.27	46_01	24.84 101.48	56.33
SCA A/C	15 15 15	185.99 0.79	0.00	0.78	480.17	74.26 0.62	118.96	66.04 0.06
CL/NA NA/MG	15 15	0.86	0.00	9.88 97.63	1.64	0.65	0.24 1.74 86.95	0.13
SS	15	6.35 106.47	0.00	27.63	10.61 307.94	2.36 10.27	86.95	48.27
NC COND/P	15 15	45.85 0.91	0.00	0.93	126.66 1.29 1197.70	16.13 0.51	21.03	48.27 17.23 0.12
AMTH Amthny	21 21	0.00	8165.UB 7588.11	53.84 53.893 388.72 361.34 1422.37	1117-76	2.12	31.03 0.22 324.67 307.88	147.36
AMTNA AMTK	15 15	0.00	21335.55	1422.37	87 <u>2</u> 2.26 278.85	112.03	2203.93	1223.46
AMTCA	15	0.00	21335.55 622.12 1740.85	41.47	438.69	16.64	68.73 103.10 239.88	57.23
AMTMG AMTNH4	15 15	0.00	1656.59	224.12	821.80 351.09	22.17 22.69	239.88 92 . 55	133.17
AMICL	15 15	0.00	18251.10 545.80	1216.74 36.39	351.09 7437.53 130.26	73.41 0.00	92.55 1900.91 44.09	1055.25
AMTNO3	15	0.00	2071,52	138.10 430.03	423.19 1580.77	8.56	107.18	\$9.50
AMTSO4 AMTPO4	15 15	0.00	6450.41 342.06	430.03	134.65	31.56 0.00	371.29 37.62	208.11
AXSSU4 AMTSS	15 15	0.00	342.06 4577.89 20072.51	22.80 305.19 1338.17	815.45 8203.60	18.12 80.97	203.46 2094.02	1233-14-5 1233-15-17-1 1233-1-3-17-1 1233-1-3-17-1 1333-1-3-17-1 1333-1-3-17-1 1353-1-3-1 1353-1 135
AMINO	iś	ŏ.ŏŏ	8644.44	576.30	2176.16	60.95	530.80	294.66

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

MUNTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 11/77.

	N	VULWTAV	UEG/50.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	34	5.17	0.00	4.63	7.05	3.80	30.57	9.30
COND CMPPT	34 34	8.65 0.00	102.42	19.06	107.00 11.44	0.00	22.58	7.74 1.18
H	34	6.77	0.00	23.19	158.49 97.72	0.09	3.45 33.75	11.58
ΗΝΛ	34	5.10	0.00	17.39	27.72	0.04	21.99	7.54
NA K	29	51.67 0.48	v 00 v 00	78.94 1.64	586.11 9.45	7.39 0.00	118.47 2.32 9.38 28.95	44.00 0.86
ĈA	29	1:77	0.00	6.85	43.91	0.00	9.38	3.48
MG	ں ہے	7.10	0_00	1/-82	147.33	1.73	28.95	10.75
NH4	29 29	1.44 35.64	0.00	3.86 95.06	17.74 724.74	0.00 9.87	156.45	1.83 58.11
ÇL F	53	0.06	0.00	0.78	6.84	0.00	1.62	0.68
NO3	29	3.01	0,00	9.19	31.78	0.64	9.34	3.47
SQ4	29	7.64	0.00	21.59 0.26 13.14	87.86	5.08	156.46 156.46 156.84 23.93 13.37	8.89 0.52
P04 x\$\$04	29 28	0.09 4.49	0.00	13.14	49.34	0.00	13.39	5.06
SAN	29 29	46.44	U_UU	126.88	7.58 49.34 819.38	13.50	105.33	67.71
SCA	29	49.10	0.00	124.03	/95./1	16.59	164.20	60.98 0.04
A/C CL/NA	29 29	0.95 1.13	0.00	1.20	1.24	0.81 0.87	0.10 0.17 0.39 153.48	0.06
NA/MG	29	4.46	0.00	4.43	5.68	3,95	0.39	0.15
SS	29	38.49	0,00	4.43 96.26 14.44	757.25	9.55 9.12	153.48	57.00
NC COND/P	26 26	5.29 1.11	0.00	1.02	5.68 757.25 57.46	0.61	14.86	5.83 0.07
AMTH	34	0.00	6930.97	203.85	643.18	0-04	162-41	55.71
AMTHNV	34	0.00	5228.51	155./8	396.58	0.02	116.65	40.01
AMTNA AMTK	29 29	0.00	32316.67 489.23	1114.37	5380.65 79.78	64.25 0.00	50.81	40.01 462.42 7.73
AMTCA	29	ŏ .ŏ ŏ	1809.04	16.87 62.38 249.70	280.69	0.00	63.66	23.64
AMTMG	29	0.00	7241.37	249.70	1172.20	14.14	275.74	102.41
AMTNH4 AMTCL	29 29	0.00	1471.65	50.75 1253.98	190.23 5957.25	0.00	46.05	528.89
AMTE	29	0.00	36365.47 61.30	2.11	19.54	0.00	1424.09 4.97 73.56 177.42	528.89 1.85
AMTNO3	29	0.00	3069.63	105.85	332.08	31.76	73.56	27.32
AMTSO4 AMTPO4	29 29	0.00	7801.69	269.02 3.25	793.76 94.18	48.35 0.00	1 17:45	65.89
AXSS04	28	0.00	94.18	151.90	400.09	38.80	110.38	41.72
AMTSS	29	0.00	39274.86	1354.31	6570.85	67.54	1566.72	581.86
AMTNC	56	0.00	4196.08	161.39	513.75	8.34	147.66	57.92

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 48

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 12/77.

~	Ņ.	VOLHTAY	UEQ/ŞQ.M	MEAN	ніен	FOM	ST.DEV	95%C.L.
PH COND	95 95	4.62 17.85	0.00	4.49 20.87	6.54 66.00	0.00 0.00	16.18	0.23 4.11
CMPPT	95 95	0.00	46.53	0.75	2.75	0.00	0.65	0.17
H HNV	95 95	23.94 21.03	0.00	32.21 26.81	107.15 100.00	0.00	24.13 21.08	6.13 5.36
NA	48	52.10	0.00	58,49	321.32	4.35	73.98	21.36
K	48	1.09	0.00	1.36	6.64	0.00	1.70	0.49
C A MG	48 48	3.96 12.12	0.00	6.20 13.82	40.42 78.15	0.50 2.30	17.35	2.13 5.01
NH4	48	3.43 53.96 0.55	U_00	4 - 11	16.08	0.00	3.89 65.48	5.01 1.12
ÇL F	48 48	53.96	0.00	59.77 0.34	276.36 5.79	7.90 0.00	65.48 0.97	18.90 0.28
N03	48	/_/0	Ŏ. ŬŎ	11.04	56.45	1.29	10.00	2.89
\$04 P04	48 48	26.41 .0.68	0.00	51.02	77.03	3.54	10.00 20.73 1.93 18.62	5.99 0.56 5.38
X\$\$04	48	20.98	0.00	0.48 25.04 102.65	8.84 73.23	0.00 1.68	18.62	5.38
SAN	48	89.30	0.00	102.65	339.27	23.04	01.33	23.48
SCA A/C	48 48	96.30 0.93	0.00	111.30	437.13 1.24	29.23 0.69	99.84 0.11	28.82
CL/NA	48	1.04 4.30	0.00	0.92 1.02	1.82	0.79	0.24	0.07
NA/MG	48 48	4.30 58.28	0.00	4.23 64.15	304.81 304.82	1.69 5.62	0.66 72.19	0.19 20.84
SS NC	48	14-41	0.00	19.82	123.74	2.10	28.29	8.17
CONDIP	48	0.97	0.00	0.96	1.11	0.30	0.12	0.03
AMTH AMTHNV	62 62	0.00	11140.68 9784.22	0.96 179.69 157.81	714.80 667.09	0.00	186.89 172.55	47.47
AMTNA	48	0.00	24012.07	500.25	667.09 3136.30 70.21	15.90	685.79	197.97
AMTK AMTCA	48 48	0.00	1834-82	10 11	$\frac{70.21}{178.39}$	0.00 5.31	15.14 36.57	14.57
AMTMG	48	0.00	24012.07 501.62 1823.99 5585.10	38.00 116.94 132.18 518.94 517.35.63	775.37	8.42	160.18	197.97 4.37 10.56 46.24
AMTNH4	48	0.00	1581.19 24872.48	_32.94	213.44 3567.30 159.21	0.00	160.18	10.92
AMTCL AMTF	48 48	0.00	757.11	5.25	3507.30 159.21	28.87 0.00	684.47 23.34	197.39
AMTN03	48	0.00	3549.11	73.94	230.66	15.81	49.24	14.22
AMTSU4 AMTPU4	48 48	0.00	12174.29 314.37	253.63	663.12 156.17	18.46	192.31	55.58
AXSSÚ4	48	0.00	9670.59	6.55 201.47	629.31	9.03	167.50	1976-7229 1976-1976-1976-1976-1976-1976-1976-1976-
AMTSS	48	0.00	20002.10	559.63	3934.73	20.54	756.42	210.30
AMTNO	48	0.00	6642.02	138.38	1110.76	7.45	186.13	53.73

N=NUMBER OF SAMPLES
VÜLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 49.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN LOMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSC SITES DURING 01/78.

A LL	N_	VOLWTAV	UEQ/SQ.M	MEAN	HIGH	LUW	ST.DEV	95%Ç.Ļ.
PH COND	25 25	4.80 11.80	0.00	4.69 19.33	5.40 44.20	4.28 7.00	0.26 10.06	0.11
CMPPT	25	0.00	29.47	1.18	3.81	0.03	1.24	0.52
H HNV	25 25	15.77 13.58	0.00	20.58 17.13	52.48 48.98	3.98 3.47	12.76 12.65	5.31 5.26
NA	24	31.43 0.37	0,00	54.33 1.08	216.10	6.52	46.63	19.80
ĈA	24 24	0.37 6.58	0.00	15.68	216.10 4.59 44.91	0.00 1.00	1.47	0.62
MG	24	7.42 5.69	0,00	13.46	47.88	3.04	11.06	4 60
NH4 CL	24 24	31.01	0.00	13.46 9.59 54.18	44.91 47.88 23.28 202.19	13.82	44.50	2.80 18.90
F	24	0.07 6.27	0_00	0 04	70.53	0.00	0.15	
N03 S04	24 24	19.35	0.00	32-87	63.71	3.06 9.78	0.15 5.38 18.67	2.68
P04	24	19.35	0.00	9.43 32.87 0.62 27.35	14.65	0.00	5.05	2.28 7.93 1.29 6.76
XŠŠO4 SAN	24 24	16.21	ÿ. ŭ ö	27.35 97.14	57.56 269.45	8.04 34.55	15.93 61.50	26.76
SCA	24	58.35 67.24 0.87	0,00	114.40	14.65 57.56 269.45 333.92	39.08	75.06	26.11 31.87
A/C CL/NA	24 24	0.87 0.99	0.00	0.85 1.00	1.14	0.72 0.78 2.14	0.09	0.04
NA/M6	24	0.99 4.23	0_00	4_04	5.39	2.14	0.74	0.13 0.31
SS NC	24 24	33.67 17.81	0 0 0 0 0 0	59.14 35.00	2.12 5.39 223.02 97.41	8.43 4.52	49.67 27.98	21.09
COND/P	24	0.92	0.00	0.94	1.10	0.78	27.98 0.08	11.88 0.03
AMTH Amthny	25 25	0.00		185.85 160.05	443.28 404.27	7.49 5.55	151.79 137.23	63.15
AMTNA	24	0.00	92 5 2.75	385.53	1306.95	62.16	296.28 7.73	125.79
AMTK AMTCA	24 24	0.00	108.59	4.52 80.70	36.86 221.04	0.00 12.87	μ 7.73	63.15 57.09 125.79 3.28 21.14
AMTMG	24	0.00	40012.37 9 2002.37 9 2003.37 1936.37 2185.12 1676.83 9 129.99 1846.85	91.05	299.32 147.95	29.01	49.79 63.56	26.99 18.09 116.51
AMTNH4 AMTCL	24 24	0.00	1676.83	69.87 380.38	147.95 1207.02	128.01	42.61 274.42	18.09
AMTE	24	0.00	19.98	0.83	16.65	0.00	3.44	1.40
AMTNUS AMTSO4	24 24	0.00	1846.69	0.83 76.95 237.36	250.34 454.54	15.30 69.85	58.86 127.68	24.99
AMTP04	24	0.00	487.18	20.30	487.18	0.00	99.44	54.21 42.22
AXSS04	24	0.00	4/71.83	198.83	404.70	48.35	108.64	46.13
AMTSS AMTNC	24 24	0.00	9915.07 5244.77	413.13 218.53	1397.52 535.04	80.31 58.28	308.46 128.18	130.97

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME MEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

j~į

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSU SIVES DURING 02/78.

6.1	Ŋ	VOLMTÄÄ	UEQ/ŞQ.M	MEAN	HIGH	FOW	ST.DEV	95%Ç.L.
COND COND	34 34	22.86	0.00	4.28 36.94	4.58 182.00	3.98 12.00	0.19 37.97	0.06
CMPPT	34	0.00	5/.34	1.69 52.99	5.91	0.01	1.71	0.59
H HNV	34 34	39.09 34.30	0.00	43.99	104.71	26.30 0.00	22.86 20.27	7.84 6.95
NA	30	43.03	0.00	19.11	83.18 919.60	2.17	204.05	/4.51
K C A	30	0.92 3.89	0.00 0.00	1.62	13.53	0.00	2.64	0.46
МĜ	3ŏ	11.96 5.17	0_00	18.93	198.25	1:07	44.46	2.95 16.23
NH4 CL	30	5.17	0.00	4.49 70.36	13.86 641.55	1.66 2.26	2.90	1.06
F	30	48.00 0.46	0.00	0.37 13.75	2.63	0.00	150.54	54.97 0.31
NO3	30	8.05	0_00	13.75	68.88	0.00	13.90	5.07
S04 P04	30	36.29 0.00	0.00	46.59 0.00	208.20	14.99	38.34 0.00	14.00
X\$\$04	30	31.87	0_00	39.67	142.19	14.32	24.26	8.86
SAN SCA	30 30	92.81 104.02	0.00	131.06 160.16	920.20 1282.11	26.80 37.60	199.82 270.56	72.96 98.79
A/C	30	104.02	0_00	0.82	1.18 1.76	0.65	0.10	0.04
CL/NA NA/MG	30 30	1.12 3.60	0.00	0.88 4.22	5.03	0.70 1.51	0.28	0.10
SS	30	47.56	0.00	74.22	707.63 469.77	2.49	165.25	60.34
NC COND/P	30 30	17.42	0.00	36.40	469.77	1.63	95.96 0.07	35.04
AMTH	34	0.00	22419.72 19671.20	650 AA	2134.56	12.50	585.81	200.93
VANTMA	34 30	0.00	19671.28	578.57 820.34	1735.03 4417.02	9.00 5.98	585.81 492.72 1155.82	169.00
AMTK	30	0.00	24628.18 524.20 2227.67	578.57 820.94 17.47 74.26	120 27	0.00	21.85	7.98
AMTCA AMTMG	30 30	0.00 0.00	2227.67 6847.56	74.26	399.63 1809.73 347.71 6815.13	9.00	97.95 377.96	35.77 138.01
AMTNH4	30	ŏ.ŏŏ	2960.16	98.67	1347.71	2. 94 7.62	110.87	40.48 530.54
AMTCL AMTF	30 30	0.00	27472.49	915.75	6815.13	6.70 0.00	1452.93 25.46	530.54
AMTNO3	30	0.00	266.04 4607.44	153.58	333.63	0.00	100.82	9.30 36.81
AMTS04	30	0.00	20/72./9	278.25 298.47 915.87 153.58 692.43	2098.95	103.22	610.91	223.07
AMTPO4 AXSSU4	30 30	0.00	0.00 18238.11	0.00 607.94	0.00 1634.78	0.00 102.53	0.00 517.66	189.02
AMTSS	30	0.00	27217.72	907.26	5001.74	7.39	1286.89	469.90
AMINC	30	0.00	9970.05	332.33	1460.38	17.19	388.58	141.89

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPP], AND RATIUS UEG/SG.M=MICKUEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF HAIN FOR THE MUNTH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 03/78.

****	Ŋ	VOLWIAV	UEG/SQ.M	MEAN	нісн	FOM	ST.DEV	95%C.L.
PH COND	38 38	4.51 20.09	_0.00	4.25 36.44	$\frac{4.89}{340.00}$	3.09 7.80	0.35 54.58	$0.11 \\ 17.71$
CMPPT H	38 38	0.00 30.93	36.21 0.00	0.95 55.68	3.89 812.83	0.03 12.88	0.88 128.44	0.29 41.67
HNV	38	29.82	U_00	57.90	1000.00	10.00	158.82	51.53
NA K	34 34	33.49 V.91	0.00	53.81 1.73	220.44 5.62	4.78 0.00	51.84	17.78 0.59 5.39
C A MG	34 34	8.70	0_00	1.73 16.19 14.97	5.62 56.89 57.34	1.00	15.71 14.20	5.39 4.87
NH4	34	9.32 7.21	0.00	11.27	42.15	1.66	10.79	5.70
ÇL F	34 34	38.05 0.84	0.00	61.19 0.24	321.20 4.74	5.36 0.00	65.58 1.07	22.50 0.37
N03 S04	34 34	18.18 28.22	0.00	45.55	807.15	6.13 12.70	136.34 28.73	46.77 9.85
P04	34	0.00	0.00	39.79	139.49 0.00 133.69	0.00	25.22	0.00
XSSO4 San	34 34	24.51 85.29	0.00	33.82 145.46	133.69 964.70	12.02 25.65	175.56	8.65
SCA A/C	34 34	90.45	0.00	155.72	947.77	28.71 0.77	176.10	60.40
CL/NA	34	0.94 1.14	0.00	0.93 1.14 3.59	1.53	0.89 2.37	0.20	0.05
NA/MG SS	34 34	3.59 39.80	0.00	3.59 64.10	4.66 284.81	5.91	64.10	0.18 21.99
ŇČ COND/P	34 34	19.83	0.00	33.87	101.01	6.52 9.52	20 57	10 14
AMTH	38	0.96 0.00	11205.44	1.00 294.88	1498-66	8-69	205.723 205.85 205.85 322.9.85 617.85	92.70
AMTHNV AMINA	38 34	0.00	INMAI WO	284.25 335.65	1843.75 1633.90 41.33	6.59 43.72	327.85	104.87
AMTK	34 34	0.00 0.00	309.80	9.11	41.33	0.00 24.17	9.14	3.13
AMTML	34	0.00	11412-23 309-80 2965-86 3177-57 2457-24	264 . 25 335 . 11 87 . 23 93 . 46	421.35	14.63	01.63	100.7853221 100.48412991709 101.51.9991709 101.51.9991709 101.51.9991709
AMTNH4 AMTCL	34 34	0.00	12968.10	72.27 381.41	282.05 1731.39	11.95 56.71	60.96 378.64	129.87
AMTE AMTNO3	34 34	0.00	285.19	72.27 381.41 8.39 182.34	40.95 1488.17	0.00 39.01	10.20 260.57	3.50 89.37
AMTSU4	34	0.00	6199.43 9617.37	282.86	1059.22	77.61	195.47	67.05
AMTPU4 AXSS04	34 34	0.00	0_00	245.70	881.06	0.00 58.16	0.00	0.00 58.81
AMTSS	34	0.y0	8353.70 13565.97	399.00	1909.72	56.48	395.24 129.37	135.57 44.37
AMTNL	34	0.00	6756.78	198.73	688.15	71.68	167.31	44.3/

N=NUMBLR OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

١

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN LOMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSC SITES DURING 04/78.

45.4	N_	VOLŅTĀV	UEQ/SQ.M	MEAN.	HIGH_	LOW	ST.DEV	95%C.L.
PH COND	3	24.27	0.00	4.70 28.60	4.77 36.00	4.64 21.20	0.09 10.47	94.05
CMPPT	Š	0.00	0.45	0.23	0.36	0.09	0.19	1.68
HNV	٤	21.68 19.70	0.00	19.95 18.01	22.91 20.89	16.98 15.14	4.19	37.67 36.59
NA K	Š	50.42 10.37	0.00	83.48	140.01	26.96	19.94	718.42
CA	٤	34.66	0.00	20.68 47.65	38.29 69.86	3.06 25.45	24.91 31.40 16.00	282.23
MG NH4	5	12.76	0.00	47.65 19.37 50.45	30.68	8.06 34.93	16.00 21.95	143.76
ÇĽ	いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	34.66 12.76 41.37 44.52	0_00	50.45 65.14	30.68 65.97 100.39	29.89	49.85	728436039 1436-7336 1436-73
F N03	3	4.36 20.16	0.00	6.05 26.29	8.95 36.78	3.16 15.81	4.09 14.83	36.79 133.26
S04	Ž	54.20	0.00	69.85	96.61	43.10	37.84	7/A AA
PO4 X8804		0.00 49.62	0.00	0.00 63.15	0.00 86.27	40.02	0.00 32.71	2958 - 115 2958 - 15 2958
SAN SCA	5555	123.24	0.00	167.34	86.27 242.72	91.95	106.61	958.11
A/C	Ş	49.62 123.24 171.26 0.72	0.00	241.56	361.80 0.76	121.37	170.01	0.55
CL/NA NA/MG	3	9 88 3 95	0.00	0.78 4.31	1.11	0.72	0.28	2.49
SS	Ž	49.11	0.00	71.85 149.79	110.73	3.34 32.97	54.99	494.17
NC COND/P	5555	100.47	0.00	149.79	234.09	65.49 0.80	119.22	10/1-28
AMTH	Ž	0.00	0.00 98.25 89.27 228.13 46.91	49.12	82.33	15.92	46.96	422.02 386.98
AMTHNV AMTNA	٤	0.00	228.13	44.64 114.07	131.26	14.19 96.88	43.06 24.31	210.46
AMTK AMTCA	3	0.00	46.91	23.46 78.48	35.90	11.01	17.60 18.36	158.19 164.99
AMTMG	چ	0.00	156.95 57.74 187.37 201.54	28.87	825.38 131.26 135.90 91.46 28.97	28.76	0.15	404.62
AMTNH4 AMTCL	کے	0.00	187.37 201.54	93.69 100.77 9.87	125.52 107.42 11.35	61.85 94.12	45.02 9.41	404.62 84.57
AMTE	Ž	0.00	19.74	9.87	11.35	8.39	2.09 15.79	18_81
AMTNO3 AMTSU4	2222	0.00	245.45	45.64 122.72	56.81 154.88	34.48 90.57	45.48	141.91 408.72
AMTPO4 AXSSU4	Ž	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	٤	0.00	224.71 222.30	112.35 111.15	143.83 118.49	80.88 103.81	44.51 10.38	400.02
AMTNL	5	0.00	454.80	227.40	235.35	219.45	11.24	101.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.m=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.m COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MGNTHL. RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSC SITES DURING 05//8.

PH	N 23	VOLWTAV	UEG/SQ.M	MEAN 4.43	HIGH 6.79	LDW 4.01	ST.DEV 0.63	95%C.L. 0.27
COND CMPP I H	23 23 23	25.27 0.00 36.31	22.15 0.00	40.18 0.96 36.90	75.00 5.00 97.72	15.40 0.02 0.16	17.76 1.32 27.54	0.57
HNV NA	23 18	31.54 36.61	0.00 0.00 0.00	33,80	95.50 103.92	0.11	26.45 25.28	11.47
ĈA MG	18 18 18	1.43 13.90 9.06	0.00 0.00 0.00	45.73 2.14 27.33 12.12	6.38 100.80	0.51 7.98 2.88 13.31	1.51 27.99	0.74 13.72 3.43
NH4 CL	18 18	19.03 40.86	0.00 V.00	24.39 51.26	29.78 58.77 104.62	10.45	6.99 11.68 27.42	13.43 5.72 13.44
F N03 S04	18 18 18	0.68 18.50 40.62	0.00	0.94 30.17	2.11 88.72	0.00 12.26 27.90	0.80 19.19 35.78	0.39 9.41 17.54
P04 X8504	18 18	0.00 36.46	0.00 0.00 0.00	60.15 0.00 54.96	171.56 0.00 160.79	0.00 22.01	34-64	0.00 16.98
SAN SCA	18	101.03 116.52 0.87	0.00	144.39	367.00 390.84	50.59 74.43	71.96 72.91	35.28 35.75
A/C CL/NA NA/MG	18 18 18	1.12	0.00 0.00 0.00	1.12 1.12 3.77 55.73	1.10 1.69 4.28	0.67 0.86 3.35	0.18 0.32	0.05 0.09 0.16
93 NC	18 18	44.67 35.36	0.00 0.00 0.00	55.73 55.99	115.40 184.24	11.51	0.10 0.18 0.32 30.73	15.07 20.09
COND/P AMTH AMTHNV	18 23 23	0.99 0.00 0.00	0.00 8040.92 6985.39	349.61 303.71	1.37 1733.68 1285.20	0.82 0.03 20.02	424:71	0.08 184.20 147.16
AMTNA AMTK	18 18	0.00	8056.31 313.78	447.57	2276.99	39.47 3.31	543.13 17.53	26 6. 28
AMTCA AMTMG AMTNH4	18 18 18	0.00 0.00 0.00	8040 92 8040 92 8045 31 313 78 3058 95 4188 43 8990 67	793 793 793 793 777 777 777 779 779 779	471.55 547.39 831.60 2709.32	36.18 10.88 24.32	133.88 129.90 234.26	65.64 63.68 114.85
AMTCL AMTF	18 18	0.00	8990.67 150.00 4072.39		40.54	66.56 0.00	641.66 12.18	314.58 5.97
AMTNU3 AMTSO4 AMTPU4	18 18	0.00	8938.42	226.24 496.58	612.94 1394.94	64.06 58.09	34173.9.66 133.9.66 133.9.66 133.9.66 133.9.66 135.30 135.30 135.30	86.17 190.87
AXSSO4 AMTSS	18 18 18	0.00 0.00 0.00	0.00 8023.31 9829.59	0.00 445.74 546.09	0.00 1341.26 2941.87	0.00 50.06 51.00	350.63 699.55	0.00 171.90 342.96
AMTNO	18	0.00	7781.60	432.31	1446.33	119.76	389.13	190.78

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/Su.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

-)

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSC SITES DURING 06/78.

PH	55 N	VOLWTAV 4.59	UEQ/SQ.M	MEAN4.34	HIGH 5.11	LOW 3.76	ST.DEV	95%C.L. 0.18
COND	ŞŞ	21.73	0.00 0.00 14.99	31.85	95.80	8.40 0.04	0.40 25.28 0.54	11.21
H HNV	<u> </u>	`	0.00	46.16 40.65	95.80 2.02 173.78 169.82	7.76 7.08	50.54 52.35 52.35 1.53 12.47	23.14
NA K	5 0	49.90 1.53	0.00	53.85	100.51	15.65 0.51 1.50 4.03	39.30 1.53	18.28 0.71
CA MG	50 20	11.53	0.00 0.00 0.00	13.02	41.21 41.21 42.69 199.37	4.03		4.57
NH4 CL F	50	54.04	0.00 0.00 0.00	59.22	199.37	0.00 14.66	47.50	22.03
N03 S04	50	224161-9045045 134-9505	0,00	21.40 45.13	2.11 92.43 158.86	1.45 9.37	147.260 47.729 48.49 48.420	13.25
P04 XS304	Ž0	20.45	0.00	39.12	0.00 151.92	0.00 7.25	. <u>0</u> • <u>0</u> •	55.00
SAN SCA	NENE REPORT OF THE STATE OF THE	89.93 99.06	Ú.00 Ú.00	20.000 12.000 12.000 12.000 13.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.00000 10.	150.00 151.92 357.57 379.39 1.02	14.00 1.05 1.37 0.25 32.21 37.18 0.63	100.51	46.00
A/C CL/NA NA/MG	50	1.08	0.00 0.00 0.00	1.10	1.30	0.88 2.99	0.12	0.05
SS NC COND/P	20	59.08 14.50	Ŏ.ÖŎ	64.54	215.15 88.59	16.17 2.36	51.35 25.76	13270935200054538845 3270570325000700289191 3280645203202660003100 212244 215
AMTH	20025 2000 2000 2000	4936 4936 4936 4936 990 140 140 140 140 140 140 140 140 140 14	3825.59	1.12	1.50 2.150 2.150 2.150 2.150 3.150 4.150 4.150 1	2.99 16.17 2.36 13.83	0.29 114.89	50.95
AMTHNV	20	0.00	3386.18 7418.73	153.92 370.94	464.36 1535.18	29.35	110.14 370.31	172.23
AMTK AMTCA AMTMG	50 50 50	0.00 0.00 0.00 0.00	993.41	49.67 85.70	109.16 179.93	1.91 17.78 7.56	478-31 98-59 100-19 100-19 100-19 100-19 1100-19 1110-19 1	173.87 13.00 41.79
AMTNH4	50	0.00	586.73 8034.22	29.34 401.71	97.02 1837.98	27.50	25.35 442.16	11.79 205.65
AMTF AMTNO3	50	0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.47	379-93 97-98 1837-98 220-53 398-51	0.00 15.88	54.24	25.23
AMTS04 AMTP04 AXSS04	20 20 20	0.00 0.00 0.00 0.00	3857.44 0.00	192.87	398.51 0.00	23.03 0.00 20.20	54.24 54.24 103.95 877.04	48.35
AMISS AMINC	50 50	0.00 0.00	0.00 3039.69 8783.88 2156.47	251.892 173.992 1753.947 1753.74 195.371 4859.34 177.37 195.87 19	387.95 1983.46 280.20	30.33 34.38	477.64 62.89	205-040 250-400 400-455 400-455 400-455

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINTALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 07/78.

	N	VOLWTAV	UEQ/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	44	4.38	0.00	4.41	4.84	3.79	0.23	0.07
COND	44	21.68	0.00	22.07	76.40	8.00	12.45	3.75
CMPPT	44	0.00	106.49	2.42	12.31	0.33	2.49	0.75 8.12
Н	44	41.53	0.00	38.93	162.18	14.45	26.93	9.16
HNA	44	38.67	0.00	35.64	147.91	10.23	25.46	7.68 7.64
NA K	44	11.45	0.00	£0.45	138.70	3.91	~3•3£	0.72
ĈA	44	17.25 0.75 5.49	0.00	26.22 1.32 6.67	15.83 20.46	0.00	5.19	1.57
йĜ	44	5. HZ	Ŏ: ŎŎ	5.89	33.48	0.00	5.96	1.80
NH4	44	1.39 18.20 0.75	0.00	5.89 2.63 28.57	33.48 33.26	0.00	252-339 52-339 55-98 55-98	1.53 9.17
CL	44	18.20	0_00	28.57	169.20	5.08	30.42	9.17
F	44	0.75	0.00	0.69	5.79	0.00	1.28	0.39
NO3	44	10.96	0.00	12.72	55.16	3.06	9.06	2.73
\$ 04	44	31.44	V:00	29.66	99.10	7.50	20.10	6.06
P04 X S S04	44	29.59	0.00	26.77	97.59	0.00	0.00	0.00
SAN	44	61.34	0.00	71.65	219.89	23.50°	44.60	13.45
SCA	44	70.23	ဖွဲ့ <u>. ဖွဲ့</u> ဖွဲ့	81.66	212.32	30.10	44.47	13.41
ĂŽĈ	44	0.87	0.00	0.88	1.04	0.60	0.09 0.13 0.74	0.03
CL/NA	44	1.06	0.00	1.09	1.59	0.87	0.13	0.04
NA/MG	44	4.52	0.00	4.45	6.29 179.20	2.97	.0.74	0.55
SS	44	19.82	0.00	31.04	179.20	5.06	32.63 9.74	9.84
COMPAR	44	8.89	0.00	11.69	57.81	0.88 0.89	0.05	2.94
CÔND/P Amth	44	1.05	0.00 44221.11	1.04	5015.87	80.01	1228.97	0.02 370.55
AMTHNV	44	Ŏ . ŎŎ	41179.75	1935.90	4738.63	76.41	1228.97 1157.84	349.10
AMTNA	44	ŏ.ŏŏ	41179.75	417.50	1334.14	60.87	290.61	349.10 87.62
AMTK	44	0.00	801.77 5849.32	1005.03 935.90 417.50 18.92 132.94	1334.14	0.00	16.10	4.85
AMTCA	44	0.00	5849.32	132.94	1134.44	0.00	190.37	57.40
AMIMG	44	0.00	4064.70 1481.78 19383.28	76.30	277.37	13.24	96.48	18.84
AMTNH4	44	0.00	1481.78	33.68	112.27	0.00	28.71	8.66 94.45
AMTCL AMTE	44	0.00	793.79	440.53 18.04	1511.88 203.94	61.19	313.26 37.28 247.54	11:24
AMTNU3	44	0.00	11666 49	265.15	857.24	3 4. 20	247.54	74.64
AMTS04	44	ŏ.ŏŏ	11666 49 33477 56	760.85	3922.10	71.24	959.12	289.18
AMTPO4	44	0.00	0.00	0.00	0.00	0.00	947.56	285.70
AXSSO4	44	0,00	0.00 31510.80	0.00 716.15	3854.21	50.89	947.56	285.70
AMISS	44	0.00	21102.02	479.68	1667.60	67.50	342.76	103.55
AMTNC	44	0.00	9461.74	215.04	1275.23	14.07	223.85	67.49

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSC SITES DURING 08/78.

РН	N 27	VOLWTAV 4.40	UEW/SQ.M V.00	MEAN 4.34	HIGH _5.09	LOW 3.87	ST.DEV 0.31	95%C.L.
COND CMPPT	27 27	20.00	0.00 71.49	27.06 2.65	73.50	9.40	16.63	0.12 6.40
HNV	27 27	39.88 36.68	0.00	45.91	11.20 134.90	0.02 8.13	2.80 32.56	1.08 12.53
NA	26	14.41	0.00	41.55	128.83 182.62	6.61 3.91	32.15 36.12 0.87	14.17
K Ca	56 56	0.81 4.80	0.00	1.19	20.46	0.25 2.00	5.46	0.34 2.14
MG NH4	56 56	3.82 3.05	0.00	6.45 5.42 31.01	39.32 26.61 205.01	1.32	7.66	3.00
CL F	56 56	17.25	0.00	0.45	1.58	5.08 0.00	40.60 0.47	2.75 15.92 0.18
N03 S04	56 56	9.81 31.14	0.00	14.44 37.41	43.87 109.10	3.23 11.24	11.42 25.73	10.09
P04 XSS04	56 56	0.00 29.47	0.00	0.00 34.33 83.29	0.00	0.00	0.00 26.49	10.39
SAN SCA	56 56	58.63 66.77	0.00	94.33	105.99 238.02 252.60	42.97	50.75 53.59	19.91
A/C CL/NA	56 56	0.88 1.20 3.77	0.00	0.88 1.16	1.03	37.76 0.71 0.95	0.09	21.02 0.03 0.05
NA/MG SS	26 26	1/.91	0.00	4.14 33.13	1.49 5.22 226.13	2.31 5.06	0.97 44.74	0.58
NČ COND/P	56 56	8.98 1.00	0 00	1/1 てつ	45.83 1.63	8.68 0.62	10.99	17.55 4.31 0.07
AMTH	27 27	0.00	386NU 60	1055.91 971.06 395.97 22.13	4779.02 4460.04	4.15 2.56	0.17 1112.94 1036.16	428.37 398.82
AMTNA AMTK	<u>56</u>	0.00 0.00	10295.21	395.97	1583.62 76.83	27.55 1.44 7.30	409.55	160.64 7.41 39.90
AMTCA AMTMG	<u>5</u> 6	0.00	20218 - 57 20218 - 57 10295 - 25 3429 - 89 2731 - 32 2182 - 74 12324 - 61	131.92	391.32 340.98	7.30 5.28	18.89 101.73 94.47	39.90
AMTNH4 AMTCL	<u> 56</u>	0.00	2182.74	105.05 83.95 474.02	303.53 1777.86	0.00	99.87	37.06 39.17
AMTE AMTNU3	26 26	0.00	312.97 7009.53	12.04	117.92	28.18 0.00	469.86	184.30 9.61
AMTSU4	26	0.00	22251.92	855.84	813.18 3848.61	8.52 15.23	217.60 884.85	85.35 347.07
AMTPU4 AXSSU4	56 56	0.00	21061.96	0.00 810.08	3734.83	0.00 12.33	0.00 873.92	0.00 342.78
AMTSS AMTNC	59 59	0.00	12799.13 6415.29	492.27 246.74	1960.97 860.76	31.08 13.62	500.77 200.62	196.42 78.69

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNHEIGHTED AVERAGE
CMPPT IN UEG/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 57.

MONTHLY MAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 09/78.

PH	N 54	VOLWTAV	UEQ/SQ.M	MEAN 4.37	HIGH 5.06	LOW 3.78	81.DEV 0.33	95XC.L.
COND CMPPT	54 54	22.82	57.25	35.44 1.06	158.00 5.80	6.60	28.85 1.21	7.85 0.33
HNV	<u> </u>	28.78 25.78	0.00 0.00 0.00	42.99 38.27	165.96 154.88	8 • 7 1 7 • 4 1	37.55 33.55	10.55
NA	50	60.30	0.00	98.13	648.72	5.04	130.98 3.19 9.33 31.13	9.13 37.05
K Ca	50 50	1.67	0.00	98.13 2.79 8.48 23.25	13.79 52.39	0.25 1.50 1.23	3.19 9.33	0.90 2.64
MG NH4	50	4.95 14.49 3.34	0.00	23.25	153.00	1.23 0.00	31.13	2.64 8.81 2.40
ÇĽ	50 50 50 50	68.51	0 00 0 00 0 00	110.40 1.17 17.34	52.39 153.00 37.14 748.99	5.92	8.48 151.09	42.73
F N03	50 50	1.04		1.17	25.26 79.36	0.00	4.24 18.11	1.20 5.12
SĎ4 PO4	50 50	26.35	0.00	40.55	179.68	4.03 8.12	36.67	10.37
X S S04	50	0.00 19.48	0.00	0.00 29.47	106.35	0.00 4.36	28.79	8.14
SAN SCA	50 50	107.12 113.48	0.00	169.85 181.54	1009.18 1027.78	25.27 28.64	186.89 190.50	52.86 53.88
A/C	50	0.94	0.00	0.94	1.15	0.75	0.08 0.19 0.41 163.85	0.02
CL/NA NA/MG	50 50	1.14 4.16 73.85	0.00	1.12	1.95 5.71	0.83 2.47	0.41	0.05
SS NC	50 50	73.85 10.90	0 0 0 0 0 0 0 0 0	118.93	826.14 83.49	3.93 1.28	163.85 20.36	46.34 5.76
CONDIP	50	1.01	0,00		1.92	0.61 9.55	0.17 337.05	0.05
AMTH AMTHNV	54 54	0.00	16474.67 14756.04	273.26	1593.60 1453.38 6279.60	9.53 8.51 23.91	305.10	91.90 83.04 287.06
AMTNA AMTK	50 50	0.00	34421.80	305.09 305.09 273.26 688.44 19.11	6279.60 182.62	23.91 1.60	305.10 1014.92 28.86	287.06 8.16
AMTCA	50	0.00	14756.04 34421.80 955.69 2823.67 8271.99	70.4/	390.93	2.96	61.68 252.81	17.45
AMTMG AMTNH4	50 50	0.00	1904.35	165.42 38.09 782.20 11.90	1608.34 286.87	4.19 0.00	51.89 1193.81	71.50 14.68
AMTCL AMTE	50 50	0.00 0.00	1904 35 39109 97 594 93	782.20	286.87 7588.44 431.57	19.77	1193.81	14.68 337.66 17.25
AMTNO3	50	0.00	6301.31	126.03	520,80	11.04	12/.52	36.01
AMTSU4 AMTPO4	50 50	0.00	15041.62	300.83	1185.03	12.98	282.83	80.00 0.00
AXSSU4 AMTSS	50 50	0.00	11110.56	0.00 222.37 843.12	1142.64 8113.24	6.48	242.50	68.59 362.58
AMTNC	50	0.00	42155.79 6220.81	124.42	794.42	21.81 5.40	1281.91 142.12	40.20

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEG/SG.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

ı

MONTHLY RAINHALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 10//8.

PH COND CMPPT	N 68 68	VOLWIAV 4.72 19.51 0.00	UEQ/SQ.M 0.00 0.00 114.30	MEAN 4.20 72.22 1.68	HIGH 5.27 1230.00 10.94	L Dw 0.00 0.00 0.01	ST.DEV 0.71 153.82 2.66	95%C.L. 0.17 37.31 0.65
H HNV NA K	68 56 56	18.92 16.30 66.34 2.02	0.00 0.00 0.00 0.00	62.82 55.33 216.23 7.09	63/1 41	0.00 0.00 3.91 0.51	84.79	20.56 17.14 85.76 4.05
CA MG NH4 CL F	56 56 56 56	15.58 15.54 72.33 6.43 21.00	0 00	18.13 49.66 18.63 235.10	1778-77 1778-77 1702-99 2550-852 2005-92	1.00 0.99 0.00 4.51 0.00	325.99 325.99 724.95 355.42 355.42 355.42 355.42 355.42	19.824 19.65 95.145 77.33
N03 S04 P04 XSS04	56 56 56	13.69	0.00 0.00 0.00 0.00	235.40 235.75 22.38 67.64 0.00	545.14	1.94 7.70 0.00 4.22	0.00 56.78	
SAN SCA A/C CL/NA	56 56 56	100.48 112.42	0.00 0.00 0.00 0.00	326.87 358.49 0.91 1.09 4.35	339.17 2717.96 2590.15 1.10	16.92 22.31 0.65	457.87 469.98 0.09 0.10	15.18 122.61 120.03
NA/MG SS NC COND/P AMTH	56 56 56 56 68	1.09 4.26 79.15 14.60	0.00	256.60 53.15 0.96	1.10 1.137 5.72 2211.54 653.38	0.50 3.51 4.54 0.72	389.13 101.80 0.12 387.26	104.00
AMTHNV AMTNA AMTK AMTCA	68 56 56	0.00 0.00 0.00 0.00 0.00	216527.09 218633.38 75527.09 2303.07 6463.71 17733.71	318.02 274.02 1348.70 41.13 115.41	2055.057 9740.61 362.41	0.00 0.00 39.38 1.56 7.37	338.76 1522.87 55.99 146.11	03-26 982-096 987-096 140-05
AMTMG AMTNH4 AMTCL AMTE	56 56 56 56	0.00 0.00 0.00 0.00	17733.71 4709.27 82362.10 722.90 7314.49 23988.56	316.67 84.09 1470.75	1955.77 11684.32 297.03	10.05 0.00 49.86 0.00	352.59 261.22 1763.89 41.42	69.81 471.42 11.07
AMTNO3 AMTSO4 AMTPO4 AXSSU4	56 56 56 56	0.00 0.00 0.00 0.00	15590.28	130.62 428.37 0.00 278.40	413.89 1505.68 0.00 1309.82	12.58 26.18 0.00 18.25	101.30 332.41 0.00 249.45	27.07 88.84 0.00 66.67
AMTSS AMTNL	56 56	0.00	90114.22 16621.94	1609.18 296.82	12584.86	50.88 7.19	1915.61 344.81	511.97 92.15

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNKEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 11/78.

	N	VOLWTAV	UEW/SQ.M	MEAN	HIGH	FOM.	ST.DEV	95%C.L.
PH COND	18 18	4.56 22.67	0.00	26.72	4.96 86.00	3.74 6.20	0.30 19.05	0.15 9.34
Č MPPT H	18 18	0.00 27.26	6.44 0.00	0.36 39.80	1.68 181.97	0.06 10.97	0.37 38.40	0.18 18.83
HNV	18	22.86	0.00	32.36	134,90	9.12 5.22	28.39	13.92
NA K	17	73.00 1.85	0.00	62.15	359.58 9.70	0. 25	88.45 2.21	13.92 44.62 1.12
C A MG	17	6.85 16.75	0.00	8.95	36.93	2.00	2.21 7.68 20.29	3.87 10.23
NH4	17	0.50	0.00	14.29	36.93 83.33 400.44	0.00	0.90	0.45
ÇL F	17 17	0.50 71.57 4.47	0.00	0.49 65.19 2.07	400.44 13.68	7.05 0.00	97.17 3.20	49.02 1.61
N03 S04	17	15.36 19.78	0_00	28.15	195.17 53.09	4.19 6.25	44.51 10.84	22.46
P04	17	0.00	0.00	20.86	0.00	0.00	0.00	0.00
XSSD4 SAN	17	12.44 111.19	0.00	14.17 116.27	29.80 464.22	5.52 19.54	5.66 108.97	2.85 54.97
SCA A/C	17	125.95 0.88	0.00	126.61	505.65 1.08	19.54 22.10 0.79	115.26	58.15 0.04
CLINA	17	0.98	0.00	1.05	1.39	0.62 3.73	0.08	0.08
NA/MG SS	17	4.36 78.66	0.00	4.35 71.64	441.69 441.51	6.74	0.28 107.34	0.14 54.15
NČ COND/P	17	78.66 20.29 0.98	Λ ΛΛ	16.06	49.51	2.21 0.86	14.03	7.08
AMTH	iá	0.00	1755.98	0.98 97.55	306-51	23.49 19.99	69.95	34.25
AMTHNV	18 17	0.00	4658.28	81.81 274.02	266.95 2116.54 47.30	12.47	514.54	259:57
AMTK AMTCA	17 17	0.00	116.37	6.96 25.71	47.30 100.86	0.61 9.67	11.34	5.72
AMTMG	įż	0.00	1755-98 1472-64 4658-28 1187-08 1069-11 327-06 4585-66	62,89	486.33	3.24	69.953 514.34 112.58 117.99	3790729219 3799-7353688 2595-1992-1992-1992-1992-1992-1992-1992-
AMTNH4 AMTCL	17	0.00	4567.61	1.89 268.68	18.68 1852.48	0.00 16.26	461.25	232.69
AMTF AMTNU3	17 17	0.00	285.06 980.06	16.77 57.65	230.49 243.97	0.00 16.51	55.23 52.23	27.86 26.35
AMTS04	17	0.00	1261.42	74.23	406.80	21.96	90.63	26.35 45.72
AMTP04 AXSS04	17 17	0.00	793.67	0.00 46.69	0.00 216.18	0.00 19.31	45.76	23.08
AMTSS AMTNC	17 17	0.20	5020.03 1294.89	295.30 76.17	2043.28 726.43	16.12 10.70	509.30 170.89	256.93 86.21

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIH

Table 60.

MONTH! Y KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 12/78.

РН	15 15 N	VOLHTAV 4.05	UEQ/50.M 0.00	MEAN 3.98	HIGH 4.74	LOW 3.71	ST.DEV 0.37	95%C.L.
COND CMPPT	15	97.95 0.00	0.00	141.67	565.00 0.43	11.00	159.13	0.23 98.77 0.07 38.17
H HNV NA	1229999	89.08 76.77 443.99	0.00 0.00 0.00	103.68 88.18 744.47	194.98 162.18 3693.63	18.20 13.80 38.26	61.50 52.10	32.17 32.33 908.91
K CA	9	9.80 29.14	0.00	16.08 48.46	68.16	2.30	1180.40 21.39 59.52	16.47 45.83
MG NH4	9	101.31 14.93	0.00	169.48 20.02 785.90	821.78	10.20 6.65	204.45	202 BK
CL F	9 9 9	474.46 4.45 35.94	0.00	785.90 4.80	32.16 3908.52 7.89	45.40 0.00	1249.52 2.61 47.70	962-13 2-01 36-73 135-73
N03 S04 P04	9	119.97	0 0 0 0 0 0 0 0 0	4.80 53.30 172.27 0.00	162.91 579.63	14.68 27.07	1/6.2/	135.73
XSS04 SAN	9	0.00 71.21 635.96	0.00	91.43 1017.90 1098.68	0.00 177.44 4657.07	22.48 92.11	0.00 59.94 1467.58	0.00 46.16 1130.03
SCA A/C	9 9 9	685.94	0.00	0.45	4941-63	108.10	1558.34	1199.92
CL/NA NA/MG	9	0.93 1.07 4.38 523.05	0.00	1.06	0.99 1.19 4.63 4311.10	0.82 3.75	0.11 0.28 1378.30	0.08 0.21
SS NC COND/P	9 9 9	/6.15	0.00	131.79	400.77	49.44	150.41	1061.29
AMTH	12	0.86 0.00 0.00	950 97 950 97 819 52	0.86 79.25 68.29	0.95 324.77 289.45	0.57 10.38 8.41	0.11 84.81 75.67 658.83	0.09 52.64
AMTNA AMTK	9	0.00	4520.98	68.29 480.11 10.60	289.45 2135.38 39.41	40.65 2.44	658.83 11.67	46.97 507.30 8.98
AMTCA AMTMG	9 9 9	0.00	283.74 985.96	31.53	112.22	11.73 10.84	31.86 146.69	8 . 98 24 . 53 112 . 95 - 58
AMTNH4 AMTCL AMTF	9	0.00	283.74 985.96 145.60 4617.49	16.18 513.05	28.48 2259.61	6.70 48.24	7.25 698.92 5.20	550.17
AMTNO3 AMTSU4	9 9 9	0.00 0.00 0.00	43.35 350.23 1168.84	16.18 513.05 4.82 38.91 129.87	18.03 94.18 335.10	0.00 13.98 21.57	26.15 108.17	4.01 20.14 83.29
AMTPU4 AXSSU4	9 9	0.00 0.00	0.00	0.00 77.15	0.00	0.00 15.24	0.00 58.43	0.00
AMTSS AMTNC	9	0.00	5090.37 741.34	565.60 82.37	2492.35 280.96	52.53 33.62	770.93 79.90	44.99 593.62 61.52

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.m=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.m COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN SAMPLES COLLECTED AT ALL KSL SITES DURING 01/79.

Рн	NE	VOLWTAV 3.97	UEG/SQ.M	MEAN	HIGH 4.01	LDW 3.87	ST.DEV	95%C.L.
COND	5	57.79	0.00	3.96 60.14	90.50	50.00	17.18	21.36
CMPPT H	Š	0.00 106.91	1 . 46 0 . 00	108.87	$0.38 \\ 134.90$	0.20 97.72	0.07 14.82	18.43
HNV	Ş	99.24 45.71	0.00	101.23	131.83	83.18	18-43	22.91
NA K	3	3.20	0.00	56.00 3.63 57.48	188.27 8.94	20.87 2.04	73.97 2.97 19.52	91.96 3.70
CA MG	5	3.20 55.43 13.47 36.28	0.00	57.48 16.16	90.42	39.42	19.52 19.68	24.27
NH4	ź	36.28	0.00	37.70	51.33 52.11 185.27	6.25 27.17	73.37	12.03
ÇL F	5	43.92 8.32 53.73	0.00	54.09	16.51	18.05	13.31 4.96	12.03 91.22 6.17
N03 S04	Ž	53.73	0.00	54.84	70.33	2.63 45.49	4.96 9.93 37.17	12.35
PÖ4	ŝ	121.69	0.00	126.59	190.50	94.52	0.00	0_00
XŠSO4 San	Ş	117.17 227.65	0.00	121.02	171.44 455.05	91.97 172.96	30.06 119.09	37.37 148.05
SCA	5	201.00	0.00	279.84	525.86	200-08	148.08	171.67
A/C CL/NA	3	0.87 0.96	0.00		0.92 1.10	0.83 0.80	0.03 0.12 0.50 80.93	0.04
NA/MG SS	5	3.39 48.44	0.00	3.47	3.67 204.36	2.52 19.91	0.50	0.62 100.62
NC	<u> </u>	105.65	0.00	111.31	186.61	70:37	44.16	54.90
COND/P AMTH	かいいいいいかんかいかいいいいいいいいいい	0.91	1560.55	312.07	0.92 402.49	70.37 0.87 271.60 247.70	53.25	n n 4
AMTHNV AMTNA	٤	0.00	1448.38	0.97 3.47 59.66 111.31 0.91 312.07 289.68 133.43	402.49 393.33 382.42	247.70	58.91	73.24
AMTK	5	0.00	46,69	7.34	18.15	67.12	940-162-162-162-162-162-162-162-162-162-162	673 - 127 173 - 127 175 - 143 179 - 143
AMTCA AMTMG	5	0.00 0.00	809.07 196.59	161.81	222.49 104.26	117.03 18.56	41.98 36.53	52.19 45.41
AMTNH4	Ş	0.00	196.59	105.90 128.20	119.34	80.65	15.39	19.13
AMTCL AMTF	5 5	0.00	640.99 121.48	24.30	376.34 42.32	54.86 8.31	15.39 138.89 13.22	16.43
AMTNO3 AMTSO4	5 5 5	0.00	784.16 1776.08	156.83 355.22	213.28 443.35	138.87 280.61	31.65 62.89	39.35 78.18
AMTPO4	5	0.00	0.00	342.02	0.00	273.03	0.00	0.00
AXSSU4 AMTSS	5	0.00	1710.12	342.02 141.40	436.21 415.10	273.03 60.51	60.37 153.20	75.06 190.46
AMTNC	5 5	0.00	1542.00	308.40	380.26	208.92	153.20 72.96	190.46

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS IDTAL AMOUNT OF HAIN FOR
THE MUNTH

Table 62.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 07/77.

РН	No	VOLWTAY	UEQ/ŠO.M	MEAN	нїей	ĽOM (ST,DĘV	95%Ç.L,
COND	252	4.47 14.36	0.00	4.29 22.45	4.57 33.90	4.12	0.32 16.19	2.86 145.53
CMPPT H	5	34.10	4.35	22.45 2.18 51.39	3.71 75.86	0.64	2.17	19.54
HNV	Ž	32.07	0.00	48.78	72.44	26.91 25.12	34.61 33.46	311.03 300.75
NA K	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CA	Ŏ	0.00	U_U0	0.00	0.00	0.00	0.00	0.00
MG NH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇĽ	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
N03	0	0.00	y 00 00	0.00	0.00	0.00	0.00	0.00
S04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PO4 XSSO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
SCA A/C	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
LL/NA	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
NA/MG SS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
COND/P AMIH	9	0.00	1484.01	742 00	999.23	0.00 484.78	0.00	3269.36
AMTHNV	Ş	0.00	1 595 - 50	742.00 697.75	932.54	462.96	363.77 332.04	2984.17
AMTNA AMTK	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTF AMTNU3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSO4	0	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTPU4 AXSSU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	Ō	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND,CMPPT,AND RATIUS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNALIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 63.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 08/77.

COND 8 19.50 0.00 16.52 30.00 0.00 9.18 7. CMPPT 8 0.00 13.36 1.67 4.38 0.03 1.50 1. H 8 51.88 0.00 24.17 77.63 1.70 29.79 24. HNV 8 24.47 0.00 19.24 66.07 0.43 24.56 20.	462850000 462850000
CMPPT 8 0.00 13.36 1.67 4.38 0.03 1.50 1. H 8 51.88 0.00 24.17 77.63 1.70 29.79 24. HNV 8 24.47 0.00 19.24 66.07 0.43 24.56 20.	2850000 0000
HNV 8 24.47 0.00 24.1/ //.63 1.70 29.79 24. HNV 8 24.47 0.00 19.24 66.07 0.43 24.56 20.	.50 .00 .00
HNV 8 24.47 0.00 24.1/ //.63 1.70 29.79 24. HNV 8 24.47 0.00 19.24 66.07 0.43 24.56 20.	.50 .00 .00
NNV	.00 .00
	.00 .00
NA 0 0.00 V.00 0.00 0.00 0.00 0.00	.00
	.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • •
	OÙ
NH4 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	iŏŏ
CL 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
NO3 0 0.00 0.00 0.00 0.00 0.00	.00
	ŎŎ
	ŎŎ
X\$\$O4 0 0.00 0.00 0.00 0.00 0.00 0.00	ŎŎ
SAN 0 0.00 0.00 0.00 0.00 0.00	ŎŎ
ŞCÂ Ở Ở.ỞỞ V.ỞỞ Ở.ỞỞ Č.ỞỞ Č.ỞỞ Ö.	ÒŎ
A/C 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
CL/NA 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
NAZMG 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
SS 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
NC 0 0.00 0.00 0.00 0.00 0.00 0.00	.00
COND/P 0 0.00 0.00 0.00 0.00 0.00	.00
ĂMŢH, 8 0.00 4257.67 532.21 2890.53 2.63 971.85 810.	.89
ÂMTHNV 8 0.00 3267.53 408.44 2192.69 5.67 738.29 616.	• מְצַ
AMTNA 0 0.00 0.00 0.00 0.00 0.00	.00
AMTK 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.00
AMICA 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	
AMTMG 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Zŏŏ
ÂMICL 0 0.00 0.00 0.00 0.00 0.00	
ÂMIF 0 0.00 0.00 0.00 0.00 0.00 0.00	ŎŎ
ÂMĪNO3 Ŏ Ŏ.ŎŎ Ŏ.ŎŎ Ŏ.ŎŎ Ŏ.ŎŎ Ŏ.ŎŎ Ŏ.ŎŎ	ŎŎ
ĂMISU4 0 0.00 V.00 0.00 0.00 0.00 0.00	ŎŎ
AMTPU4 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.0 0
AXSSO4 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	.00
AMISS 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	.00
AMTNC 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUN(H

.

Table 64.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FUR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 09/77.

	N _	VOLNTAV	UEG/SG.M	MEAN_	нісн	FDW	ST.DEY	95%Ç.L.
PH CUND	8 8	4.79 17.39	0.00	4.23 31.60	5.56 105.70	3.86 0.00	0.59	0.49 30.71
CMPPT	ĕ	0.00	15.94	1.99	7.33	0.01	36.61	2.58
H	B	16.08	0.00	1.99 59.38	138.04	2.75	52.87	44.11
HNV NA	ğ	14.16	0.00	47.22	114.81	0.95	41.51	34.64
K	ŏ	ŷ.ºŏ	Ů . Ů Ů V . U Ů	0.00	0.00	0.00	0.00	0.00
CA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0_00
NH4 CL	ň	0.00	0 0 0 0 0 0	0.00	0.00	0.00	0.00	0.00
F	ŏ	0.00	0.00	0.00	0.00	ŏ.ŏŏ	0.00	0.00
N03	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
\$04 P04	Ŋ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XSS04	ŏ	ŏ.ŏŏ	0.00	Ŏ.ŎŎ	0.00	0.00	0.00	ŏ.ŏŏ
SAN	Ó	0.00	0_00	0.00	0.00	0.00	0.00	0.00
SCA A/C	χ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ĈĹŽNA	ŏ	0.00	ŭ: 00	0.00	0.00	0.00	0.00	0.00
NA/MG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	ŏ	0.00	0.00	_ 0.00	0.00	0.00	0.00	0.00
AMTH	š	0.00	2562.58	320.32	1161.43	15.10	394.97	329,56
AMTHNV	8	0.00	2562.58 2256.46	282.06	1109.16	6.74	372.71	310.98
AMTNA AMTK	o O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÂMTCA	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0100
AMTMG	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTNH4 AMTCL	Ŋ	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
AMTE	ŏ	ŏ.ŏŏ	0_00	0.00	0.00	0.00	0.00	0.00
AMTNO3	Ó	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTSU4 AMTPU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSO4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	Û	0.00	0.00	0.00	0.00	0.00	0.00	0_00
AMTNC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME MEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
LMPPT IN UEQ/SQ.M COLUMN HAS UNITS UF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUN(H

MONTHLY PAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE OF DURING 10/77.

	N_	VOLWTAV	UEB/SO.M	MEAN	HIGH	FOM_	ST.DEV	95%C.L,
PH COND	Ş	4.38	0.00	3.99 54.10	$\begin{array}{c} 4.89 \\ 150.00 \end{array}$	3.47 11.20	0.53 55.85	0.66
CMPPT	Ş	0.00	7.42	1.48	2.75 338.84	0.07 12.88	$1.00 \\ 134.75$	1.24
HNV HNV	5	41.47 38.81	0.00	101.84	338.84	11-48	135.87	168.92
NA K	4	59.17	0.00	74.68 1.98	211.31 5.87	11.31 0.51	92.40 2.61	146.92
CA	4	1.52	0_00	8,23	11.98	2.99	4.28	6.81
MG NH4	4	12.77	0.00	16.06 10.53	44.42	2.55	19.18	30.50 13.71
ζĽ	4	9.40 46.88	0,00	60 45	23.28 177.10	9.31	78.62 78.62	13.71
r N03	4	4.03 12.16	0.00	13.59	7.37 28.07	9.31 1.58 3.23	10.70	4.24 17.01
S04	4	28.69	0_00	3.95 13.59 33.94 1.03 27.73	58.09	15-41	19.69	31.31 32.73 22.73 145.63 175.34
P04 XSS04	4	0.84 23.87	0.00	27:73	4.11 39.87	0.00 11.69	2.05 14.29	22.73
SAN SCA	4	92.61	0.00	112.85 154.08	245.84 311.60	46.01 74.26	91.59 110.28	145.63
A/C	4	128.48 0.72 0.79	0.00	0.73	0.79	0.62	0.07	0.12
CL/NA NA/MG	4	0.79 4.63	0.00 0.00	0.81 4.65	0.84 4.76	0.70 3.95	0.07	0.11
SS	4	51.71	U_00	66.56	195.34	10.27	86./1	13/.08
NČ COND/P	4	38.21	0.00	44.92	86.06	16.13	30.53	48.55
AMTH AMTHNV	5	0.00	50/6-14	615.23	1197.70 1117.76	243.54 243.54	426.96 403.73	530.824 530.94 530.52 45.68 63.68 63.35
AMTNA	4	0.00	2878.47 4347.54	575.69 1086.88 27.90	2367.36	222.56	986.49	1568.52
AMTK AMTCA	4	0.00	111.62	27.90 129.80	65.78 180.58	7.70 82.33	26.84	42.68
AMTMG	4	0.00	936.09	234.52	497.65	82.33 50.20	40.15	322.35
AMINH4 AMICL	4	0.00	936.09 690.62 3444.77	172.65 861.19	351.09 1984.03	93.16 183.21 23.58	120.34 830.63	1320.70
AMTF	4	0.00	296.03	74_01	130.26	23.58	54.54	86.72 256.77
AMTNU3 AMTSO4	4	0.00	893.48 2106.10	223.37 527.02	423.19 650.76	88.72 405.80	161.49 130.20	207.01
AMTPŪ4 AXSSŪ4	4	0.00	61.92 1753.63	15.48	61.92 598.54	0.00 321.54	30.96 118.34	49.23 188.16
AMTSS	4	0.00	3/99.58	438 . 41 949 . 89	2188.38	202.08	916.18	1456.73
AMTNO	4	0.00	2807.49	701.87	964.15	317.60	274.17	435.93

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROFQUIVALENTS/LITER EXCEPT FOR PH,
CUMD, LMPPT, AND RATIUS
UEQ/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

)

Table 66.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 11/77.

	N	VOLWTAV	UEG/50.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	8	5.09	0.00	4 - 41	5.31	3.88	0.51	0.42
COND	8 8	8.40	16.14	20.75	51.70 6.88	0.00	18.73 2.87	15.63
H	8	ø•50	0.00	39.08	131.83	4.90	41.25	2.39 34.42
HNV NA	8	6.07 51.78	0.00	31.10	97.72	3.39 18.26	31.24	26.07
K	7	0.57	0.00	111.93 2.74	281.32 6.89	0.25	112.98 2.89	104.62
CA	7	1.93	0.00	10.62	26.95	0.50	9.82	9 09
MG NH4	4	7.16 1.83	0.00	24.02	71.24 17.74	4.44 0.55	25.34	23.46
ČL	7	36.19	0_00	149.50	452.02	18.61	25.34 7.23 178.37 2.48	23.46 6.70 165.17 2.30 12.45
F N03	7	0.21 3.44	U_00	1.95	6.84 31.78	0.00	2.48	3.30
S04	7	8.03	0.00	35.81	83.07	2.91	54.11	31.59
P04	7	0.00	0.00	0.00	0.00 49.34 538.93	0.00 0.56	0.00	0.00
XSSO4 SAN	7	4.54 47.87	0.00	203.33	538.93	24.92	21.25 220.24	203 95
SCA	Ž	51.34	0_00	23.10 203.33 182.58 1.11	433.71 1.24 1.54	29.46	169.89	19.68 203.95 157.32
A/C LL/NA	7	0.93 1.14	0.00	1.11	1.24	0.83 0.88	0.18	0.17
NA/M6	7	4.44	0.00	4.66	5.68	3.95	0.61	0.56 138.24
SS NC	7	4.44 37.50 5.78	0.00	146.84	363.46	20.53	149.29	138.24
COND/P	7	1.09	0.00	19.92 19.88 165.45 122.55 731.83	363.46 57.46 1.20 377.81	2.03	20.00	18.52
AMTH	ġ	0.00	1323.61	165.45	377.81	22.66	125.91	105.06
AMTHNV Amtna	7	0.00	5122.62	144.83	1464.73	16.80 112.16	467.00	482.48
AMTK	Ž	0.00	980 37 5122 62 91 65 311 31	13.07	243.93 1464.73 17.55	3.11	81.20 467.00 5.51 22.58	67.75 432.45 5.11 20.91
AMTCA AMTMG	7	0.00	, 321.31	44.47 164.82	85.92 316.70	3.11 23.31 23.39 12.39	22.58	20.91
AMTNH4	Ź	0.00	1295.00	42,14	105.34	12.39	109.37	101.28 31.10
AMICL	7	0.00	5832.89	833.27 _4.83	1570.39 13.90	99.67	503.20 5.97	465.97
AMTF AMTNU3	7	0.00	1153.71 1295.00 5832.89 584.63	79.23	144.62	0.00 36.74	40.23	465.97 5.52 37.25
AMTSU4	Ż	0.00	1274.20	184.90	273.20	49.48	85,29	18-98
AMTPU4 AXSSU4	7	0.00	731.65	104.52	28.052	38.80	0.00	0.00 62.32 515.80
AMTSS	7	0.00	6043.28	863.33	1/32.14	109.94	557.02	515.80
AMTNO	7	0.00	6043.28 931.21	133.03	341.16	22.69	119.90	111.03

N=NUMBER OF SAMPLES
VOLWTAY=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SO. M=MICRUCQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEW/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 67.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 01 DURING 12/77.

PH	N 12	VÜLWTAV 4.56	UEQ/SQ.M	MEAN 4.48	HIGH _5.26	LDW 0.00	ST.DEV	95%C.L. 0.84
COND	12	16.82	0100	23.20	52.00	0.00	16.29	10.11
CMPPT	12	0.00 27.29	7.07	0.59 32.94	1.30 83.18	0.01	0.52 25.29	$\frac{0.32}{15.70}$
HN V N A	12	24.11 37.11	0.00	26.81 58.81	77.63 274.36	0.00 9.13	21.98 87.81	13.64 73.27
K Ca	8 8	0.80	0.00	1.24	5.62 19.46	0.00 1.50	1.81	1.51
MG NH4	8 8	3.40 8.62	0.00	13.34	59.31	2.96	1.81 6.13 18.73 2.93	15.63
CL	8	3.79 37.54 0.27 7.50 28.04	0.00	13.34 3.88 54.18	9.98 216.58	0.55 13.54	00.00	15.63 2.45 55.62 0.47
F NO3	8 8 8	0.27 7.50	0.00	33.52 1.11 28.06	1.58 18.71	0.00 1.29	0.56 6.08	3.U/
\$04 P04	გ გ	28.04 1.50	V. UO V. OO	33.52	76.41 8.84	7.50	26.34	21.98 2.61 19.03
XSSO4 SAN	8 8	24.27 74.86	0.00	28.06	73.23	0.00 3.84 43.93	22.81 88.76	19.03
SCA	8	80.28	0.00	98.40 111.56	304.72 392.14	43.23	117.61	74.06 98.13
A/C CL/NA	8 8	0.93 1.01 4.30	0.00	88.0 9.92	1.10	0.79	0.10	0.09
NA/MG SS	8 8	4.30 40.49	0.00	4.41 58.56	4.68 238.88	3.08	0.54 74.11 40.43	0.45
NC COND/P	8 8	40.49 13.24 0.97	0.00 0.00 0.00	24.13	123.74	11.80 3.79 0.74	0.11	61.84 33.73
AMTH	1 Ž	0.00	1931.04	160.92	714_80	0.00	200.26	124.29
AMTNA	8	0.00	2557.51	160.92 142.14 319.69	667.09 540.14	32.10	171:43	124.29 116.08 143.04 3.47
AMTK AMTCA	8 8	0.00	1931.04 1935.657 2555.30 2555.37 594.35 2587.150	29.30	12.37	0.00 11.23	200°-26 187°-03 171°-43 4°-15 16°-13	15.46
AMTMG AMTNH4	8	0.00	594.35 261.32	74.29 32.67	116.76 _85.76	10.41	3004	30.74 25.81
AMTCL	8	0.00 0.00	2587.12	29.30 74.67 32.67 323.39 64.64 241.62	521.79 18.50	7.19 47.59 0.00	30.93 151.14 6.54	126.11 5.46 36.85
AMTNO3 AMTSO4	8	0.00	18.50 517.10 1932.96	64.64	160.80	16.73	44.16	36.85
AMTPU4	8	0.00	103.65	12.96	656.64 103.65	0.00	195.46	163.09 30.58
AXSSU4 AMTSS	8 8	0.00	2/90.28	348.78	629.31 575.53	49.79 41.47	193.26 172.53	161.25 143.96
AMTNO	8	0.00	912.57	114.07	243.62	28.40	69.28	57.80

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SW.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

- 1

0.1	N	VOLNTAN	UEG/SG.M	MEAN_	HÏGH	FOM	ST.DEV	95%C.L.
PH COND	6	4.59 17.35	0.00	28.25	4.93 58.00	3.99 7.90	0.36 18.26	0.38 19.16
CMPPT	6	0.00	5,95	0.99	3.61	0.14	1.29	1.36
H HNV	6	25.59 22.19	0.00	36.85 32.03	102.33 102.33	11.75 7.59	35.32 37.68	37.06 39.53
NA	6	38.36	0.00	66.09	131.31	20.00	43.90	46.06
K Ca	6	1.35	0.00	2.04	4.59 33.93	0.00 2.99	1.96	2.05 12.31
MG	6	8.51 10.55	0.00	18.45	36.44	5.18	12.89	13.52
NH4	6	9.51 42.73	0.00	14.78	36.44 26.06 152.00	3.8 8	8.39	54.32
ÇL F	6	0.15	0.00	74.54	1.58	22.00	51.77 0.64	0.68
N03 SD4	þ	12.09 31.41	0.00	16.40 52.40	1.58 44.52	6.94	14.39	15.10
PO4	6	0.00	0.00	0.00	122.42	10.41	39.50	0.00
XSSD4 SAN	6	27.06 86.39	0_00	44.80	110.38	8.15	36.36	38-15
SCA	6	93.87	0.00	143.60 154.77	286.65 286.95	39.34 44.83	94.97 93.30	99.64 97.89
A/C CL/NA	6	0.92 1.11	0.00	154.77 0.93 1.13 3.58	1.01 1.23 4.05 167.65	0.79	0.07	0.07
NA/MG	6	3.64	0.00	3.58	4.05	0.99 3.15	0.09 0.40	0.09
SS NC	6	3.64 46.73	0.00	01.32	167.65	24.26	56.90	59.70
COND/P	6	21.55	0.00	36.40	54.86 1.10	8.82 0.85	18.09	18.99
AMTH AMTHNV	6	0.00	1522.62	253.11	607.58	23.89	225.17 225.46	236.25
AMTNA	6	0.00	1320.19 2283.25	220.03 380.54	607.58 721.90	11.98 115.49	238.29	236.55
AMTK AMTCA	6	0.00	80.40	380.54 13.40	721.90 721.90 36.86 133.33 187.55 154.71	0.00	14.45	15.16
AMTMG	6	0.00	506.31 627.86	84.38 104.64	187.55	26.51 36.71	43.86 67.22	46.02 70.53
AMTNH4	ó	0.00	2543.23	94.34	154.71	13.72 142.32	52.67	55.27 282.78
AMTCL AMTE	6	0.00	9.38	423.87 1.56	793.92 9.38	142.32	52.67 269.52 3.83	282.78
AMTNO3	6	0.00	/19.46	119.91	264.33	15.30	109.51	114.90
AMTSO4	6	0.00	1869.25	311.54	726.88 0.00	69.85 0.00	235.11	246.67
AXSSO4	6	0.00	1610.24	268.37	655.37	48.35	214.22	224.76
AMTSS AMTNC	6	0.00	2781.16 1282.70	463.53 213.78	875.69 325.71	149.22 66.83	295.48 108.71	310.02 114.06

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEQ/SQ.m=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 01 DURING 02/78.

	N_	VULWTAV	UEU/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH COND	8 8	4.44	0.00	4.22 57.02	4.53 182.00	3.98 16.90	0.23 56.86	0.19 47.45
CMPPT	8	24.20 0.00	10.32	1.25	5.91	0.01	1.99	1.66
H	8	36.11	0.00	60.81	104.71	29.51	30.49	25.44
HNV NA	8 6	31.29 65.21	0.00	41.46 179.14	83.18 919.60	0.00 6.09	28.38 363.50	23.68 38 <u>1</u> .39
K	6	1.02	ŏ:ŏŏ	3.06	13.53	ŏ:77	5.13	5.38
CA	b	4.32	0.00	11 06	39.92	0.00	15.56	16.32
MG NH4	6	15.06 6.56	0.00	39.13 5.73 132.59 0.70	198.25 13.31 641.55	1.23	78.14 3.98	81.98
CL	6	58.41	0.00	132.59	641.55	5.36	250.27	262.58
F	6	0.54	0.00	0.70	2.65	0.00	1.14	1.19
N03 S04	6	9.57	0.00	22.21	68.88 208.20	4.35 27.90	23.78 69.82	24.95 73.26
P04	6	37.05 .0.00	0.00	67.39 0.00	0.00	0.00	0.00	0_00
X\$\$04	6	31.04	0.00	53.75 222.88 295.98	0.00	0.00 25.84 58.24	44.85	4/_06
SAN	þ	105.57	0.00	555.88	920.20	58.24	342.31 484.14	359.15 507.96
SCA A/C	6	128.18	0.00	0.76	1282.11	66.42 0.72	0.06	0.07
CL/NA	6	0.90	0.00	0.74	0.90 1.17	0.70	0.16	0.17
NA/M6	þ	4.33	V.00	4.58 146.24	4.93	3.55	0.47	0.49
SS NC	6	64.42 27.74	0.00	91.88	707.63 469.77	3.55 5.91 5.76	276.05 185.35	289.63 194.46
CONU/P	6	0.93	0.00	0.95	1.09	0.90	0.07	0_07
AMTH	ğ	0.00	3729.10	466 14	1743.06	11.87	568.99	4/4-/6
AMTHNV	8 6	0.00	3231 12 6704 85	403.09	1416.81 4417.02	0.00 18.17	467.25	389.87 1761.76
AMTK	6	Ŭ. 0 ŏ	105.19	17.53	45.24	3.05	14.66	15.38
AMTCA	6	0.00	105.19	403.89 1117.47 17.53 73.99 256.01	253.40	0.00	1/2.36	107.40
AMTMG AMTNH4	6	0.00	1548.05 674.53	258.01 112.42	1020.28	3.68 8.77	386.14 145.89	405.14 153.07
AMTCL	6	0.00	6006.07	1001.01	4063.97	15.99	145.89 1531.46	1606_80
AMTE	6	0.00	55.12	9.29	53.45	0.00	21.66	22.72
AMTNU3 AMTSU4	6	0.00	984.21	164.03 635.05	258.84 1992.08	37.07 161.55	97.14 684.08	101.92 717.73
AMIPÚ4	6	0.00	3810.29	0.00	0.00	0.00	0.00	0.00
AXSSU4	6	0.00	3192.50	0.00 532.08	1573.90	159.90	533.34	559.58
AMTSS	6	0.00	6624.22	1104.04	4482.56	17.64	1689.24	1772.34 527.26
AMTNC	6	0.00	2852.35	475.39	1327.42	17.19	502.54	261.60

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROFQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

,

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 01 DURING 03/78.

	N_	VOLHTAV	UEW/SO.M	MEAN_	HIGH	FOM	ST.DEV	95%C.L.
PH COND	8 8	4.49 21.76	0.00	4.37 33.26	4.79	4.06 8.60	0.27 21.89	0.23 18.27
CMPPT	ĕ	0.00	8.20	1.03	67.00 3.89 87.10 81.28	0.06	1.21 24.77	1.01
H HNV	8	32.12 29.96	0.00	42.42 38.32	87.10	16.22 15.85	24.77	20.67 18.72
NA	7	44.85	0_00	54.91	141.31	15.22	45.33	42.53
K Ca	7	44.85 1.25 10.33	0.00	1.86	141.31	15.22 0.25 2.00	22.43 45.93 1.42 17.95	1.31
MG	ŕ	12.15	0.00	19.46 15.70	36.44	4.28	12.21	16.62 11.31 13.47
NH4	7	8.81	0.00	15.70 13.46	53.89 36.44 41.58 149.74	1.66	12.21 14.54 48.56	13.47
ÇL F	7	48.79 0.95	0.00	58.54 1.20 27.03	3.65	17.20	1.45	1.34
NO3	7	0.95 17.52	0.00	27.03	66.94	7.74	22.19 31.66	44.97 1.34 20.55 29.32
\$04 P04	7	33.17	Ů . Ů Ö	44.20	$\begin{array}{c} 91.61 \\ 0.00 \end{array}$	16.24	0.00	0.00
XSSO4	Ž	28.24	0.00	38,20	80.30	14.41	28.36 88.49	26.26
SAN SCA	7	28.24 100.43 109.32	0.00 0.00	130.97 145.27	275.87 311.78	44.82 42.40	100.65	81.94 93.20
A/C	7	0.92	0.00	0.90	1.06	0.80	0.11	0-10
CL/NA NA/MG	7	3.69	0.00	0.90 1.07 3.50	4.13	0.94 2.72	0.11	0.10 0.50 49.83
SS	7	52.95	0.00	64.51	165-17	18.97	53.81 35.42	49.83
NC COND/P	7	0.90	0.00	41.09 0.95	107.13 1.09	0.32 28.0	35.42 0.08	32.80
AMTH	8	0.00	2635.49	329.44	1007.05	35.78	327.80	273.51
	7	0.00	2420.20 3652.98	307.20 521.85	1633.90	109-84	545.63	259.08 505.26
AMTK	7	0.00	101.87	14.55	41.33	1.84	13.65	12.64
AMILA	7	0.00	989.80	141.40	421.35	20.69 34.88	137.27	127.12
AMTNH4	7	0.00	717.69	102.53	282.05	11.95	95.69	88.61
	4	0.00	39/3.49	307.04 11.05	1/31.39	0.00	14.92	13.82
AMTNO3	Ż	0.00	1427.24	203.89	399.12	55.65	132.03	122.26
AMISU4	7	0.00	2/01.64	385.95 0.00	1059.22	156.18	340.59	313.37
AXSSO4	Ż	0.00	2299.67	328,52	881.06	123.45	285.43	264.31
	7	0.00	4312./1	616.10	1909.72	127.90	638.29 198.55	591.07
CONTHNA AMTICA A	7 7 8 8 7 7 7 7 7 7 7 7 7 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00	000 000 000 000 000 000 000 000 000 00	9544 94485520 2971.85520 30214.54534 12412.665 12412.665 1135.665 1135.665 1135.665 1135.665 1135.665 1135.665 1135.665 1135.665	1 0 0 9 1 0 0 9 1 0 0 7 0 8 3 0 1 0 2 1 0 2 1 0 2 1 0 1 2 1 0 1 2 1 0 1 0	115.95 0.00 55.65 136.18 0.00	0.08 327.80 310.50 545.65 13.666 1375.65 5814.92	2030-004 203

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF KAIN FOR

THE MUNTH

A-/

PH COND CMPPT H HNV	N N N N N N	VOLWTAV 4.47 43.26 0.00 33.81 28.99	UEG/SG.M 0.00 0.00 0.49 0.00 U.00	MEAN 4.47 43.30 0.25 33.87 29.06	HIGH 4.54 46.80 0.25 38.90 34.67	LUW 4.41 39.80 0.24 28.84 23.44	ST.DEV 0.09 4.95 0.00 7.12 7.94	95%C.L. 0.83 44.49 0.04 63.96 71.38
NA K CA MG NH4 CL	SON	85.93 70.62 22.82 67.70 88.07	0 • 00 0 • 00 0 • 00 0 • 00	86.31 70.36 70.36 22.87 67.64 88.41	117.83 5.62 91.82 27.15	54.78 3.83 48.90 18.59 62.65	44.58 1.26 30.34 6.05 7.06 39.28	400.66 11.36 272.72 54.37 63.42 353.05
F NO3 SO4 PO4 XSSO4 SAN SCA	NNNNNN	5.00 31.62 101.11 0.00 92.04 225.79 285.60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.00 31.61 101.08 0.00 91.98 226.10 285.77	116.18 5.26 32.26 103.06 0.00 951.52 259.26	4.74 30.97 99.10 0.00 87.15 200.69 272.27	0.37 0.91 2.80 0.84 35.95	701-3-6-6-37-7-3-4-0-3-2-5-3-8-5-0-4-0-4-5-9-5-3-8-5-0-4-5-9-5-3-7-3-7-3-7-3-7-3-7-3-7-3-7-3-7-3-7-3
A/C CL/NA NA/MG SS NC COND/P	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1.02 3.77 97.14 154.65	0.00 0.00 0.00	20.77 0.77 1.77 1.77 1.77 1.77 1.77 1.77	299.26 0.84 1.11 4.34 128.15 176.56	2.95 66.87 132.20	0.07 0.09 0.99 43.33 31.36 0.01 16.07	0.77 8.86 389.41 281.88
AMTH AMTHNV AMTNA AMTK AMTCA AMTMG AMTNH4	NNNNNN	0.00 0.00 0.00 0.00 0.00 0.00	000 003 100 100 100 100 100 100 100 100	71.56 212.09 11.69 174.37 56.32	2 14 - 57 2 18 3 - 2 2 14 - 57 18 3 - 8 2 18 3 - 8	72.10 58.61 136.96 9.33 119.20 46.48 152.70	18.324 10.324 78.922 713.417 93.417	144-4651244267 146499-1-144267 16529-153-6-2820 10000000000000000000000000000000000
AMTCL AMTF AMTNO3 AMTSO4 AMTPU4 AXSSO4 AMTSS	SSSSSS	0.00 0.00 0.00 0.00 0.00	434.77 24.67 156.14 499.21 0.00 454.47	174.37 1567.139 167.39 12.34 789.61 249.60 27.24	283.20 12.83 80.65 257.65 0.00 242.05	119.20 119.20 152.57 151.84 75.49 241.56 241.60 212.42	93.07 0.70 3.65 11.37 0.00 20.95	836.46 6.27 32.80 102.21 0.00 188.28

N#NUMBER OF SAMPLES
VOLWTAV#VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND,CMPPT,AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN#UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

7.7

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 01 DURING 05/78.

PH COND CMPPT H HNV	N 55555	VOLWTAV 4.46 31.59 0.00 34.50 30.90	UEW/SQ.M 0.00 0.00 5.91 0.00 0.00	MEAN 34.02 1.18 35.79 31.32	HIGH 40-51 50-10 47-86 38-90	LOW 4.32 27.80 0.56 30.90 24.55	ST.DEV 0.08 9.20 0.81 6.93 5.71	95%C.L. 0.10 11.43 1.00 8.61 7.10
NA NK A A G MRCL E	かりがかがかがかかかかがかがかがかがかが	49.11 3.06 20.18 13.10 39.02 59.08 1.32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49.91 3.78 24.45 13.84 43.80 59.78	69.57 6.64 57.88 17.60 91.48 79.81	36.52 1.79 9.48 9.46 13.86 45.10	20.77 13.73 20.01 20.77 14.74	17.07 24.88 3.61 35.77 18.32
NO3 SO4 PO4 XSSO4 SAN SCA	5555555	25.49 42.68 0.00 36.83 128.58 158.98	0.00 0.00 0.00 0.00	50.18 0.00 44.22 141.61 171.57	56.66 72.666 0.00 68.02 179.70 224.49 0.98	16.13 30.19 0.00 25.81	16.16 16.95 0.00 17.37 30.81	20.09 21.07 21.60 21.60 38.07 50.74
A/C CL/NA NA/MG SS NC COND/P AMTH	7555555	0.81 1.20 3.75 62.96 61.51 1.08 0.00	0.00 0.00 0.00 0.00 0.00 2039.54	0.83 1.20 3.61 64.12 71.66 407 407.91 365.33	1.27 4.01 86.03 115.39 842.46	129.03 0.75 1.15 2.83 47.19 23.68 1.00	0.09 0.050 0.508 17.580 265.20	0.07 0.62 21.23 49.11 0.11
AMTHNV AMTNA AMTK AMTCA AMTMG AMTNH4 AMTCL	うりりりりりりりり	0.00 0.00 0.00 0.00 0.00 0.00	1826-66 2902-85 181-08 1192-82 774-50 2306-39 3492-42	365.33 580.357 258.50 258.98 1461.48	786.23 1087.00 1087.00 428.83 428.06 889.03 1246.97	153.42 241.86 13.12 76.95 101.78 282.00	255.20 384.11 15.28 156.69 299.30 456.92	317.59 117.69 1943.107 117.68.59 117.68.59 177.68.59
AMTF AMTNO3 AMTSO4 AMTPU4 AXSSU4 AMTSS AMTNC	どううちゃうちゃ	0.00 0.00 0.00 0.00 0.00 0.00	78.18 1507.01 2523.05 0.00 2177.02 3721.48 3636.16	15.64 301.40 504.61 0.00 435.40 744.30 727.23	38.36 462.45 733.50 0.00 627.10 1375.41 1145.94	0.00 118.46 314.97 0.00 264.43 312.48 173.90	14.08 141.50 189.68 0.00 152.11 486.79 374.47	17.50 175.92 236.07 0.00 189.11 605.21 465.56

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

A 7

PH	N	VOLWTAV	UEQ/30.M	MEAN _4.20	HIGH 4.84	LOW 3.68	ST. DEV	95%C.L.
COND	ě	20_20	0.00	33.67	106.80	11.80	しょく しょうしょ	38.02
CMPPT H	6	0.00 35.89	17.17 0.00	33.67 2.86 63.44	7.09 208.93	0.12 14.45	72.78 72.32 25.33 25.33 20.55	3.06 76.36
HNV	6	31.77	U_ 00	59.33	204.17	10.72	72.32	75.87
ŅΑ	6	18.56	0.00	31.45	81.31	12.17	25.25	26.58 3.04
ĈA	6	6.05	0.00	59.35 31.35 32.32 16.32 8.32	8.17 56.89	2.99	20.55	3.04 21.56 8.38
MG NH4	6	6.05 4.39 8.38	0 00 0 00 0 00	8.32	24.18 54.33	2.8 0	7.99 19.13	20 08
CL	6	19-19	0.00	16.08 34.54	95.60	10.472 10.472 10.59 10.59 20.88 10.02 8.23 11.00 11.00	30-96	20.08 32.48
F	6	0.04 13.21	0.00	0.70	102.43	0.00	1.14 36.37	1.19 38.16 79.78
N03 S04	6	30.73	0.00	30.81 56.70	210.91	11.24	76.04	79:78
PÖ4	6	0.00	0.00	0.00 53.16 122.75 137.80	0.00	0.00 7.96	73.09 142.34 146.77	0.00
XSSD4 San	6	28.75 53.16	0.00	122.75	201.16 411.56	47.52	142.34	76.69 149.34
SCA	6	74.38 0.85	0,00	137.80	411.56 433.81	53.68 0.77	146.77	154.00
A/C CL/NA	6	1.03	0 00 0 00 0 00	0.89 1.10 3.78	0.95 1.18	0.77	0.06	0.06
NA/MG	6	4.23	Ŏ.ŎŎ	3.78	4.76	3.36	0.10	0.49
SS NC	6	21.16 17.32	0.00	38.04 36.33	195.05	0.96 9.35 13.28 13.28 9.55	33.99 41.91	0.49 35.66 43.97 0.10
COND/P	6	1.03	0_00	6 QA	1.06	0.83	0.09	0.10
AMTH	6	0.00	6162.41 5454.74	1027.07	2615.84	95.54 85.15	1092.30 954.58	1146.04
AMINA	6	0.00	3186.25	1027.07 909.12 531.04 31.51	1573.02	54.70	566-05	1001-55 593-89 35-26 196-83
AMTK AMTCA	þ	0.00	189.04	31.51	90.55	2.43	33.61	35.26
AMTMG	6	0.00	1039.24 753.60 1436.27 3294.53	173.21 125.60 239.71	26155.67 26155.67 1573.557 1573.557 367	35.75 854.49 354.13 3188.5	33.61 187.60 137.28	144.05
AMTNH4	6	0.00	1438.27	239.71	101.79	28.53	268.31 607.23	281.51 637.10
AMTC:	6	0.00	3274.33 6.09	549.09 1.02	1700.37 3.08	56.44	1.57	1.65
AMTNU3	6	0.00	2267.50 5275.46	377.92 377.92	915.38 1979.07	67.03	366.93	384.98
AMTSU4	6	0.00	0.00	879.24 0.00	0.00	50.80	893.13	937.07
AXSSU4	6	0.00	4936.56	822.76	1847.26	44.99	842.42 669.84	883.86
AMTSS AMTNC	6	0.00	3633.40 2973.00	605.57 495.50	1875.51 1412.06	62.26 70.82	518.24	702.80 543.73
A.11110	•	₩ • ♥ ♥	2713,00	773030	2710,00	, , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

N#NUMBER OF SAMPLES
VOLWTAV#VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

14

Table 74.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 07/78.

PH	Ng	VOLWTAV	UEQ/\$Q.M	MEAN 4-32	HIGH 4.54	LOW 3.97	ST.DEV	95%C.L.
COND CMPPT	9	26.51 0.00	22.94	4.32 31.84 2.55	55.40	16.40	14.30	11.01 1.79
HNV	9 9	41.64 39.21	0 00	2.55 47.70 44.08	107.15 97.72 235.66 23.45 40.23	0.61 28.84 27.54	2.33 27.86 24.80	21.45 19.09
NA K	9 9	41.34 1.26	0.00	61.11	235.66	17 91	68.05 1.68	52.40 1.29
ĈA MG	9 9 9	6.20 8.33	0.00	1.76 8.70	23.45	1.50	6.42 11.79	4.95 9.08
NH4 CL	9	45.27	0.00	11.06 5.67 66.55	14.97 262.54	10.51 1.50 2.30 0.55 12.13	5.24 76.87	4.03 59.19
F	9 9	0.60	0.00	1.11 17.01	4.21 39.20	0.00 7.42 16.45	1.33	1.02
N03 S04 P04	9 9 9	12.40 36.39	0.00	37.89	70.37	16.45	15.//	12.14
X\$\$04	9	0.00 31.78	0.00 0.00 0.00	37.89 0.00 31.06 122.56	65.09 323.64	14.39 47.08	0.00 15.65	12.05 65.32
SAN SCA	9	94.67 101.86	0.00	136.01	349.02	58.09 0.75 0.87	84.83 90.87 0.07	69.97
A/C CL/NA	9	0.93 1.10 4.96	0.00	0.90 1.09	0.99	0.87 4.42	0.10 3.06	0.05
NA/MG SS	9	49.61	0.00	73.28	14.16 289.58 30.60	13.38	84.78	25.33 65.33 707.80 78.77
NC COND/P	9	10.62	0.00	1.05	1.14	4.97 0.97	8.21 0.05 919.23	0.03
AMTHNV	9	0.00	9551.69 8993.36 9482.15 288.63 1423.26	999.26	2899.41 2705.88	193.77 166.97	881.52 1135.11	678.77
AMTNA AMTK	9	0.00	288.63	32.07	3900.97 121.47 576.58	223.18 5.24	34.69	26.87
AMTCA AMTMG	9	0.00	1911.03	212.34	883.39	50.29 15.76	262.14	201.84
AMTNH4	9	0.00	1911.03 709.12 10385.17	0.52050 1.5350 7.5350 1.535	4638.46	24.95 233.52	134.89 162.68 262.14 73.96 1376.62	874.04 26.87 125.27 201.84 56.95 1059.99
AMTE AMTNO3	9	0.00	138.47		883.39 2638.46 4638.46 781.31 781.31	0.00 82.14	243.58	187.55
AMTS04 AMTP04	9	0.00	8348.59 0.00 7289.53	927.62 0.00 809.95	3254.75 0.00 2787.03	180.50	995.87	766.82
AXSSU4 AMTSS	9	0.00	7289.53 11378.68 2435.50	1264.30	5040.05	120.64 257.57	884.84 1494.33	681.33 1150.63
AMTNC	9	0.00	2455.50	270.61	706.13	101.96	189,88	146.20

N=NUMBER OF SAMPLES
VOLWEAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 08/78.

РН	N_	VOLMTĀŸ	UEQ/ŞQ,M	MEAN	HIGH 4.83	LOW 4.20	ST.DEV 0.28	95%C.L.
COND	2	23.63	0.00	4.40 34.38	73.50 5.91	20.02	22.17	0.35 27.56
CMPPT H	5 5 5	0.00 46.89	10.14	2.03 39.70	63-10	14.79	21.60 23.20	26.89
HNV	4	44.46 15.81	0.00	36.96 28.04	61.66 79.57 2.55	14.79 12.59 7.83 0.77	<u>43.40</u> 34.42	28.84 54.73
K Ca	4	1.16	0.00	1.53 6.61	2.55 10.48	0.77 3.99	34.42 0.81 2.77 7.84	1.28
MG NH4	4	6.19 4.85 4.03	0.00	7.44 4.57	10.48 19.17 13.31	3.99 2.88 1.11 10.15	7.84 5.84	12.47 9.28 67.85
ÇL	4	21.19	0.00 0.00 0.00 0.00	36.904 36.904 36.904 4.903 6.447 36.267 36.267	13.31 99.83 1.05 18.55	10.15	5.84 42.67	67.85 0.84
N03 S04	4	12.19 35.13	0.00	14.07	18.55 40.60	10.00 8.71 15.82 0.28 6.28	0.53 4.45 10.96	0.84 7.07 17.43
P04 X3S04	4	70.00	0.00	74.00	70.00	0.00	0.00	0.00 23.83
SAN	4	0.00 33.24 68.75	0.00 0.00 0.00	82.22	0.00 39.19 127.91 128.22	63.56	14.99 30.78	48.94
SCA A/C	4	78.97 0.87	0_00	28.423 82.73 82.88 90.88 13.27 36.27	1.00	0.74	25.18 0.11	40.04
CL/NA NA/MG	4	0.87 1.34 3.26	0.00	1.28 3.77	1.41	1.26 2.72	0.06 0.65 44.47	0.10 1.03 70.71
SS NC	4	70.47	0.00 0.00 0.00	36.23 11.97	4.15 102.80 20.15	10.11	44.47 5.57	70.71 8.86
COND/P	4	11.61 1.00 0.00	4/56 41	951.39	1.08 2519.48	0.95 4.15	1029.53	0.09
AMTHNV	5 2	0.00	4510.64 1600.33 117.20	902.13	2297.80 770.41	2.56	948.24 292.23	1279.97 1178.91 464.64 33.28
AMTK AMTCA	4	0.00	1117:30	29.30	60.32	15.76	20.93	33.28
AMTMG	4	0.00	491.01	111.70 9333 9502.18 9502.55 12522.155 12036.55	383.14 262.36	1555 1556 1556 1556 1556 1566 1566 1566	154.34	245.40 156.56
AMTNH4 AMTCL	4	0.00	2145.40	102.13 536.35	303.53 1082.62 24.01	207.27	136.20 411.20 12.01	216.56 653.80 19.09
AMTF AMTNO3	4	0.00	626 - 24 491 - 52 498 - 52 2145 - 40 1234 - 40	6.00 308.60 889.26	24.01 514.45 2127.35	76.62	19/.60	314.18
AMTS04 AMTP04	4	0.00	3231.03	889.26 0.00	0.00	98.89 0.00	874.24	1390.05
AXSSU4 AMTSS	ů u	0.00	3365.15 2067.63	0.00 841.29 516.91	2034.98 995.37	39.27 199.07	0.00 852.29 377.56	1355.14
AMTNO	4	ŏ:ŏŏ	2067.63 1175.68	516.91 293.92	546.34	66.42	244.52	388.79

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 76.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 01 DURING 09/78.

PH COND CMPPT H HNV	N 88888	VOLWTAV 4.37 26.97 0.90 42.55 38.90	UEU/SQ.M 0.00 0.00 11.06 0.00 0.00	MEAN 37.35 31.38 44.96 41.13	HIGH 4.90 82.00 75.86 70.79	LOW 2 4.50 0.53 12.48	ST.DEV 0.29 24.98 1.49 24.71 22.07	95%C.L. 0.84 20.84 20.62 18.41
NA KCA MGH CL F. O.	7 7 7 7 7	38.90 39.098 10.19 6.533 44.338	0.00 0.00 0.00 0.00	9484250450 424765450450 4245791218	152.18 128.74 128.37 148.95 148.95 63.55	17.0352 0.0352 0.005 20.005	541 432 441 42.441 533.657 42.457 43.457 43.457 43.457	502-744 144-780 42-53-66 117-45
N03 S04 P04 XSS04 SAN SCA A/C	7 7 7 7 7	16.27 37.11 0.00 32.64 101.11 108.81 0.93	0.00 0.00 0.00 0.00 0.00	34.47 134.80 155.55 0.87	92.44 0.00 77.12 272.40	4.03 8.12 0.00 5.36 38.94 44.63	26.25 87.62 105.62	306 19 12 27 38 24 31 81 14 97 81
CLINA NAIMG SS NC CONDIP AMTH AMTHNV	77 77 78 8	0.93 1.14 4.07 47.95 18.36 1.02 0.00	0 00 0 00 0 00 0 00 4705 44 4301 33 4307 08	1.08 4.11 75.95 38.32 0.99 588.18 537.67	1.00 1.28 1.34 1.53 1.53 1.53 1.09 2762.43 2519.37	0.98 3.36 22.08 2.50 0.92 17.70	0.09 0.36 59.45 54.25 0.06 911.07 829.65	97 81 97 89 00 98 55 00 19 760 19 692 4
AMTNA AMTK AMTCA AMTMG AMTNH4 AMTCL AMTF	7 7 7 7 7 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00	4307.08 108.45 11259.36 1717.08 4890.40 1795.59 4094.42	615.30 15.49 160.76 151.34 102.44 698.61 53.20	1367.96 31.29 448.55 342.83 453.05 1590.08	165.63 7.22 14.35 39.02 3.98 184.18	484.05 9.94 183.72 119.80 160.96 556.44 137.75	28900255000 289002552000 289002552000 111957920086 111957920086
AMTNO3 AMTSU4 AMTPO4 AXSSO4 AMTSS AMTNC	7 7 7 7 7	0.00 0.00 0.00 0.00 0.00 0.00	1795.59 4094.42 0.00 3601.41 5290.75 2026.58	256.51 584.92 0.00 514.49 755.82 289.51	968.82 2194.79 0.00 2031.17 1753.86 889.82	28.98 58.36 0.00 36.46 203.15	323.45 747.56 0.00 700.09 601.10 318.33	299.525 692.00 648.62 556.62 294.78

N#NUMBER OF SAMPLES
VOLWTAV#VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEW/SQ.M#MICROEQUIVALENTS/SQUARE METER
MEAN#UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIFE 01 DURING 10/78.

PH	N 8	VOLWTAV	UEQ/SQ.M	MEAN 4.25	HIGH 5.12	10M	ST.DEV 0.43	95%C.L.
COND	8	21.16	0.00 0.00	45.94	115.00	13.20	32.46	27.08 27.08
CMPPT H	8 8	0.00 19.33	6.84 0.00	0.86 56.55	120.23	0.03 7.59	42.83	1.23
HNV NA	7	16.78 74.72	0.00	49.52 109.69	107.15 211.31	5.62 31.74	57.63	32.23 53.37
K C A	7	2.14 6.69	0.00	3.25 9.91	5.62	1.02 3.49 7.32	1.73	1.60 7.24 14.38
MG NH4	7	2.14 6.69 17.83 2.18	0.00	109.65 3.25 9.91 25.21	25.95 55.94 21.07	7.32 0.55	15.52	14.38 8.25
ζĽ	Ż	/5.05	0.00	108.81	190.35	33.84	1.47 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85	47.51 1.34
NO3	7	0.38 6.59 20.34	0.00	21.59	4.21	3.23	23.01	21.31
\$04 P04	7	0.00	0.00	21.59 37.30 0.00	92.86	11.66 0.00 5.96	27.85	25.79
XSSO4 SAN	7 7	12.62	0.00	26.13 169.13	82.61 237.26	5.96 52.20	26.86 75.49	24.88 69.90
SCA A/C	7	122.41	0.00	26.13 169.35 203.83 0.99	293.32 0.91	52.20 70.23 0.74	88.10	81.58
ĈĹŹNA NAZMG	Ż	0.84	0,00	0.99	1. 18 5. 35 209. 96 65. 17	0.90 3.78	0.10 0.47 56.46	0.09
SS	Ź	4.19 82.77	0.00	119.85	202.96	37.33	56.46	52.28
COND/P	7	20.80	0.00	119.85 36.05 0.97	1.12	8.36 0.81	22.29	20.64
AMTH	8 8	0.00	0.00 1322.06 1147.94	165.26 143.49 727.09 20.86	391.88 391.88 2682.17 89.99	36.38 31.68	0.12 141.11 129.63	117.74 108.16
AMTNA AMTK	7	0.00	5089.64 145.99	727.09 20.86	2682.17 89.99	103.88	943.56 31.09 107.71	873.75 28.79 99.74
AMTCA	7	0.00	5085.57 1455.89 1456.89 1214.189 51115.55 1485	65.08 173.54	307.82 627.05	12.01 20.47	107.71 225.57	99.74 208.88
AMTNH4	Ż	0.00	148.15	21.16	73.65	2.70	24.65	208.88 22.82
AMTCL AMTF	Ź	0.00	25.75	730.27 3.68	2795.77 11.02	109.41	24.65 972.14 3.90	900.22 3.61
AMTNO3 AMTSO4	7	0.00	1707.01	197.86	11.02 142.15 550.43	12.58 38.48	202.23	40.88 187.26
AMTPU4 AXSSU4	7 7	0.00	0.00 859.16	0.00	0.00 354.98	0.00 19.17	0.00	0.00
AMT SS AMT NC	7	0.00	5637.36 1416.78	122.74 805.34 202.40	3083.73 647.74	120.68 19.64	132.51 1072.38 228.94	993.04 212.00
	•	0.00	1410010	F 0 F • 7 0	041014	47404	220074	FIF . OA

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

)

Table 78.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN CUMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC 51 E 01 DURING 11/78.

PH COND	N 7 7 7 7	VOLWTAV 4.49 41.06	UEW/SQ.M 0.00 0.00	MEAN 4.47 39.29	HIGH 4.82 71.00	LOW 4.15 8.00	ST.DEV 0.25 24.01	95%C.L. 0.23 22.23
ČMPPT H HNV NA	7 7 7	0.00 32.38 28.32 1/8.48	0.00 0.00	303193 16920 16920 16920 19019 19017 12067	1.68 70.79 66.07 390.88	0.08 15.14 12.88 17.83	19.88 140.83 10.87	0.49 19.01 18.41 130.41 2.73
K CA MG NH4	7 7 7 <u>7</u>	4.29 12.16 40.73 0.87 206.36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.23 16.40 38.74	8.42 35.43 90.16	2.99 3.78 0.00	37.44	10.07 30.08
CL F N03 S04	7 7 7	206.357 98.57 48.00 28.19 26.26	0.00 0.00 0.00 0.00		428.08 8.42 23.23 89.94	20.59 0.00 5.97 8.33	1.61 158.53 3.17 6.29 28.26	146.81 2.94 5.83 26.17
PO4 XSSO4 SAN SCA	7 7 7	C00.70	0.00 0.00 0.00 0.00	25.31 249.97 264.46	0.00 51.84 504.25 534.36	0.00 6.21 34.88 40.51	0.00 17.64 183.20 188.97	0.00 16.33 169.64 174.99
A/C CL/NA NA/MG SS NC	7 7 7	0.99 1.16 4.38 223.13 13.39	0.00 0.00 0.00 0.00	V • 73	1.08 1.23 4.71 472.17 43.14	0.81 0.82 4.31 22.71	0.09 0.13 0.16 174.92 17.41	0.08 0.12 0.14 161.97
COND/P AMTH AMTHNV AMTNA	, , , ,	0.93 0.00 0.00	0.00 0.00 0.00 1195.49 1045.73	201.87 201.87 170.78 149.27 241.61 241.61		1.49 0.84 14.89 14.22 47.08	0.06	16.12 16.05 152.43 969.42 21.31
AMTK AMTCA AMTMG AMTNH4	7 7 7 7	0.00 0.00 0.00	1195.49 1045.73 1048.28 1588.28 449.13 1503.53 7617.70	22.61 64.16 214.79	483.498 4875.498 25859.498 133.498 5859.498 133.498 5859.498	1.67 14.50 10.12 0.00	164.63 131.13 1046.88 23.01 48.28 238.98	21.31 44.71 221.30
AMTCL AMTF AMTNU3 AMTSU4	7 7 7 7	0.00 0.00 0.00 0.00	7617.90 87.36 353.51 1807.55	214.79 4.57 1088.27 12.48 50.50 258.22	119.10	38.40 0.00 11.22 25.21	1245.41 17.54 34.84 289.86	221.30 7.39 1153.26 16.25 32.27 268.42
AMTPO4 AXSSO4 AMTSS AMTNC	7 7 7 7	0.00 0.00 0.00 0.00 0.00	0.00 1040.72 8237.28 494.49	0.00 148.67 1176.75 70.64	835.03 0.00 525.33 3337.18 229.16	0.00 10.50 42.36 12.90	0.00 161.65 1328.19 76.45	0.00 168.40 1229.92 70.79

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

0.11	N_	VOLMTAY	UEW/SO.M	MEAN	ніен	LOW	ST.DEV	95%C.L. 0.49
PH COND	3	4.87 31.76	0.00	72.12	27 8.96	3.93 11.80	0.40 115.54	143.64
CMPPT H	5555	0.00 13.36	8.60	1.72 36.80	5.95 117.49	0.02 10.97	115.54 2.44 45.24 37.36	3.03 56.24
HNV		11.05	0_00	31.22	97.72	8.71	37.36 98.50	46.45 156.61
NA K	4	176.78 4.35	0.00	88.05 2.36	234.36 5.62	20.44 1.02	2.20 3.24	3.50
CA MG	4	10.60 37.50	0.00	8.61 19.54	11.48 48.95	3.99 4.03	20.02	5.16 31.83
NH4	4	1.69	0,00	98.14	6-65	0.00	3.04	164.33
CL F	4	191.49 0.62	0.00	0.66	249.85 1.05	19.74 0.53	103.35	0.42
N03 S04	4	4.93 28.80	0.00	6.41 24.62	1.05 7.90 31.65	4.03 20.40	1.69 5.03	2.69
PO4	4	0.00	0.00	0.00	0_00	0.00	0.00	0.00
XSSO4 San	4	9.28 226.48	0.00	14.78 130.23	19.47 286.81	5.94 47.93	106.73	169.70
SCA A/C	4	244.00	0_00	120 61	311.36	55.63	116.07	184.55 0.11
CL/NA	4	1.08	0.00	1 0 9 3 1 • 1 1 4 • 5 1 1 0 5 • 5 6 1 7 • 4 2 2 9 • 9 2 1 9 0 • 2 1	1.36	0.86 0.97 3.65	0.17	0.26
NA/MG SS	4	209.26	0.00	105.56	1.36 5.07 275.59	21.//	0.65 115.05	182.93
NC COND/P	4	21.66	0_00	17.42	24.81	13.31	115.05 5.19 0.04	8.26
AMTH	5	0.92	1149.61	229.92 29.92	0.98 652.75	0.89 27.54	253.07	314.63 246.50
AMTHNV	5	0.00	951.05 15165.76	190.21 3791.44	518.49 13951.58	22.90 70.25	198.27 6780.63	10781.20
AMTK	4	0.00	3/3-14	3791.44 93.28 227.26	334.36 683.24	3.51 13.72	161.08 308.36	256.11
AMTCA AMTMG	4	0.00	909.04 3217.48	804.37	2913.74	13.86	1408.37	490.29
AMTNH4 AMTCL	4	0.00	144.66	36.17 4106.89	77.96 14874.00	0.00 67.86	33.12 7191.54	52.66 11434.55
AMTF	4	0.00	53.37 422.63	13.34	31.33	1.81	13.63	21.68
AMTNU3 AMTSU4	4	0.00	2470,49	105.66 617.62	240.06 1883.95	24.95 70.14	94.85 851.38	150.81 1353.69
AMTPU4 AXSSU4	4	0.00	796.24	199.05	353.41	0.00 63.15	125.77	199.97
AMTSS	4	0.00	17952.07	4488.02	16406.02	74.84	125.77 7955.91	12649.89 1078.07
AMTNC	4	0.00	1858.01	464.50	1476.90	49.36	678.03	1010.01

N=NUMBER OF SAMPLES
VDLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SD.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

<u>></u> در MUNTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 01 DURING 01/79.

PH COND	N 7 7 7 7	VOLWTAV 4.74 13.87	UEQ/50.M 0.00 0.00	MEAN 4.42 38.64 2.90	HIGH 5.00 130.00	LDW 3.93 8.00	ST.DEV 0.36 44.30	95%C.L. 0.34 41.02
CMPPT H HNV NA K	7 7 7 7	0.00 18.27 16.70 50.52	20.29	38 - 20 38 - 20 157 - 15 27 - 30 37 - 11	13.25 117.49 107.15 791.34	0.20 10.00 6.46 29.57 1.28	4.66 37.42 34.26 281.55 4.80	4.32 34.65 31.73 260.72 4.45
ĈA MG NH4 CL	7 7 7 7	50.52 1.53 6.55 11.78 2.78 55.99	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27.30 37.11 8.71 174.36	14.30 97.30 185.91 34.93 880.12	2.99 6.83 0.55 29.33	34.40 66.01 11.88 313.17	31.86 61.13 11.00 290.00
F N03 S04 P04	7 7 7 1	55.99 0.38 5.07 19.35 0.00	0.00 0.00 0.00	14.68 50.21 0.00	11.58 50.65 121.80	0.00 2.90 10.41 0.00 5.93	4.23 16.73 48.32 0.00	15.49 44.74
XSSU4 SAN SCA A/C	7 7 7 7	13.60 80.82 91.56 0.88	0.00 0.00 0.00 0.00	32.29 241.75 272.01 0.89 1.11	118.26 1016.68 1141.16	56.39 64.07 0.77	38.83 348.07 390.57 0.06	35.96 322.32 361.67 0.06
CL/NA NA/MG SS NC	7 7 7 7	1.11 4.24 61.64 11.65	0.00 0.00 0.00 0.00	192.06 41.75	1.21 4.41 970.78 123.61	0.99 3.23 32.35 4.91	0.07 0.41 345.55 45.95	0.07 0.38 319.98 42.55
COND/P AMTH AMTHNV AMTNA AMTK	7 7 7	0.83 0.00 0.00 0.00 0.00	3706.92 3387.14 10250.27	0.86 529.56 483.88 1464.32	0.94 1871.61 1746.69 5300.21	0.73 95.01 79.02 85.47	0.07 623.53 586.88 1770.94 56.40	577.40 543.45 1639.91
AMTCA AMTMG AMTNH4 AMTCL	7 7 7 7	0.00	1 3 6 9 . 4 1 2 4 1 8 . 1 4 4 1 5 6 3 . 3 7 7 . 4 6 1 3 9 2 5 . 5 9	189-92 345-45 80-43 1622-91	169.14 396.70 1264.34 254.03	71.18 26.44 11.26 91.39	110.49 422.81 82.30 1986.90	1639.33 1639.33 1639.33 1639.89 1839.89
AMTF AMTNU3 AMTSU4 AMTPO4	7 7 7 7	0.00 0.00 0.00 0.00	77.46 1027.61 3925.59	11.07 146.80 560.80 0.00	5941.04 30.76 384.70 1848.29	0.00 38.01 135.01 0.00	14.02 117.87 590.63 0.00	12.98 109.15 546.93
AXSSO4 AMTSS AMTNC	7 7 7	0.00 0.00 0.00	0.00 2759.06 12507.57 2363.08	394.15 1786.80 337.58	1236.96 6552.96 650.89	52.87 100.80 74.67	406.47 2193.55 216.29	376.40 2031.26 200.29

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

å

- |

Table 81.

MONTHLY MAINHALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRLY SAMPLES CULLECTED AT KSL STIF 01 DURING 02/79.

	is	VULWIAV	UEW/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH COND	3	4.52 25.07	0.00	4.45 48.73	4.88 93.00	4.12 14.20	0.39 40.29	100.03
CMPPI	3	0.00	≥.51	0.84	1.72	0.14	0.81	2.00
H HNV	3 3	50.04 29.17	0.00	37.49 35.59	75.86 75.86	13.18 12.30	33.62 35.01	83.46 86.92
N A	ž	15.43	0_00	190 44	475.24	40.00	246.77	612-63
K C A	3	2.77 14.90	6 0 0 9 0 0	19.29	17.36 33.93	1.53 7.96	6.99 13.29	22.33
in G	3	10.53	0.00	44.37	108.75	9.45	55.80	138.53
NH4 CL	3	11.53 07.00	U.U0 U.U0	13.86 206.99	16.UR 506.47	9.42 46.53	3.84 25 9.5 8	9.54 644.44
F 1103	3	1.22	0_00	1.40	1.58 24.19	1.05	0.30 6.07	0.75
504	3	14.09	0.00 0.00	74.67	109.30	22.28	46.15	15.08 114.58
PU4 X5504	3	0.00 56.62	U.U0 J.U0	0.00 53.46	87.05	0.00	0.00 36.19	0.00 89.86
SAN	3	147.76	0.01	300 . 60	642.55	104.52	297.20	737.82
SCA A/C	<u>۲</u>	153.20	0.00	312.43 9.90	674.80 1.02	111.10	314.46 v.v4	780.68 0.11
LLINA	3	1.15	0_00	1.09	1.21	1.07	0.07	0.16
NA/M6 SS	3	4.07 94.25	0.00 0.00	4.29 227.48	4.37 558.64	3.90 51.32	286.99	0.61 712.48
11C 10 10 / P	5	28.91 0.84	0.00	47,46	92.72	24.23	39.19	97.30
ÄITH	3	0 _ 0 0	754 . 99	0.91 251.66	1.02 495.45	0.79 32.97	23.56	0.28 576.61
ANTHIV ANT NA	ξ ξ	0.00	733.08 1893.59	244.36 6 31. 20	495.45 964.03	26.19 261.26	236.35 352.85	586.78 875.99
AMIK	3	() () ()	69.52	23.1/	35.10	10-00	12.60	31.27
AMICA	3	0.00	374.31 465.36	124.77 155.12	274.45	47.72 65.01	129.65	321.86 226.48
AMTCH4	3 7	0.00	284-60	96.53	161.99	22.61 303.90	70.08	226.48 173.97
AMIF	3 3	0.00	2184.22 30.02	728.07 10.21	1168.10	5.55	432.52	1073.27
A 41 NO 3 AM I SU 4	3 3	0.00	354.06 1140.36	118.02 380.12	277.33 603.75	34.02 153.71	99.11 225.03	246.05 558.67
AMEPU4	3	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXS5/4 AM155	5 5	0.00	450.51 5360.35	306.74 788.77	572.48 1245.53	80.42 335.20	248.39 455.17	616.65
AMTNE	Ś	ű lő ű	120.07	242.02	437.47	130.38	169.83	421.62

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 01 DURING 03/79.

PCCHHNKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	NANANANANANANANANANANANANANANANANANANA	VOL 2 225 142626380316004820000000000000000000000000000000000	M0011000000000000000000000000000000000	N4397752237397210618720615453530616 N439779480364960006909239187482725 E480886331491088501355021676552 M4808863314910885013550286808 M4808863314910885013550286808 M4808863314910885013550286808 M4808863314910885013550286808	H 9 650165 1 85 3676 1 483 0 7 6 5 3 5 8 7 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	804281382083150852525643861093010 W1001735900368150852525643861093010 L49057115 11 47204094095270150348093010 12 15 16 12 18 10 10 10 10 10 10 10 10 10 10 10 10 10	V4354436598041200307194342074565821 0.04436598041200307194342074565821 1.061370412003071943420745658201 1.061370412003071943420745658201 1.061370412003071943420745658201 1.061370412003071943420745658201 1.06137041200307194342074565821 1.06137041200307194342074565821 1.061370412003071943420074565821 1.061370412003071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.0613704120033071943420074565821 1.06137041200330745665821 1.06137041200330745665821 1.06137041200330745665821 1.06137041200330745665821 1.061370412003307456665821 1.06137041200330746665821 1.0613704120033074666821 1.06137041200330746821 1.06137041200330746821 1.06137041200330746821 1.06137041200330746821 1.0613704120033074821 1.061370	CO13.6409051 CO13.66746400882680077788776031875899999999999999999999999999999999999
AMTCA AMTMG AMTNH4	NANANANANANA	0.00 0.00 0.00	375 - 65 372 - 41 171 - 52 1410 - 42 165 - 53 761 - 83 0 00 616 - 70 1555 - 70 880 - 23	187.83 1685.721 1876.29 1780.90 1780.35 1780.35 1780.35 1770.12	631.37	144.09 48.23 0.00	61.86 166.85 121.28	1087.77

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MILROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

A-83

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 07/77.

	N	VOLWTAV	UEG/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH.	Š	4.53	0.00	4.38	_4.61	4.23	0.27	2.41
COND	Š	17.43	9.00	24.90	35.20	14.60	14.57	130.91
ČMPPT H	3	0.00 29.27	3.41	1.71	2.94 58.88	0.47 24.55	1.75 24.28	218.51
HNV	5	56.50	0.00	41.72 36.25	50.12	22:39	19.61	218.21 176.24
NA	ō	0.00	ŏ:ŏŏ	9.00	0.00	6.00	0.00	0_00
K	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CA	Ō	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	Q	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
ÇL	Ď	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03	V	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00
S 04	ŏ	ŏ.ŏŏ	ÿ:ÿŏ	0.00	0.00	0.00	0.00	ŏ.ŏŏ
P04	ŏ	0.00	0.00	0.00	ŏ.ŏŏ	0.00	0.00	0.00
XSS04	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	Õ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
ŞÇA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C CL/NA	Ŭ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NA/MG	ď	0.00	0.00	0.00	0.00	0.00	0.00	ŏ.ŏŏ
SS	ŏ	ŏ.ŏŏ	Ŏ . ŏŏ	ŏ:ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ
NC	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMIH	Š	0.00	998.62	499.31	722.60	276.02	315.78	2838.05
AMTHNV	Š	0.00	893.95	446.98	659.02	234.93	299.88	2695.10
AMTNA AMTK	X	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	ď	ŏ:ŏŏ	0.00	0.00	0.00	0.00	0.00	ŏ.ŏŏ
AMTMG	ŏ	ŏ.ŏŏ	ŭ . ŏ ŏ	Ŏ.ŎŎ	0.00	ŏ.ŏŏ	Ŏ.ŏŏ	ŏ.ŏŏ
AMTNH4	Ŏ	0.00	0.00	0.00	0.00	Ŏ.ŎŎ	0.00	0.00
AMTCL	Ģ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTE	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3 AMTSO4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTPO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSS04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	ŏ:ŏŏ
AMTSS	ŏ	ŏ.ŏŏ	ŏ.ŏŏ	Ŏ: ŎŎ	0.00	0.00	0.00	Ŏ. ŎŎ
AMTNO	Ŏ	0.00	ŭ.ŭŏ	0.00	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	0.00
	-			. • • •				= '

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

Table 84.

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 08/77.

	N_	VOLWTAV	UEW/SO.M	MEAN.	HIGH	FOM	ST.DEV	95%C.L.
PH COND	10 10	4.54 28 . 97	0.00	40.96	5.51 100.00	4.10	0.52 29.83	0.37 21.32
CMPPT	iŏ	0.00	7.57	0.76	3.22	0.03	1.02	0.73
H	10	28.89	0.00	30.72	79.43	3.09	29.21	20.87
HNV NA	10	26.17 0.00	0.00	26.96	74.13	1.32 0.00	27.92 0.00	19.95
K	ŏ	0.00	0,00	0.00	ŏ.ŏŏ	0.00	0.00	0.00
CA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG NH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL F	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
F	Q.	0.00	0_00	0.00	0.00	0.00	0.00	0-00
N03 S04	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
X\$\$04	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0-00
SAN SCA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
CL/NA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NA/MG SS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
CUND/P	, 0	0.00	0_00	0.00	0.00	0.00	436.30	707-00
AMTH AMTHNV	10 10	0.00	2187.59 1981.87	218.76 198.19	1406.95 1343.63	0.97 0.75	425.35 408.46	303.99 291.92
AMTNA	0	0.00	U_U0	0.00	0.00	0.00	0.00	0_00
AMTK	Q	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA AMTMG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTEL	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTF AMTNO3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTS04	Ŏ	0.00	0_00	0_00	0.00	0.00	0.00	0.00
AMTPU4	0	0.00	0_00	0_00	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU	ŏ	ŏ.ŏŏ	0.00	0.00	0.00	ŏ.ŏŏ	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIOS
UEQ/SQ.m=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

Table 85.

MONTHLY RAINFALL COMPOSITION AND I	SUMMARY INCL	UDING STATISTI	CAL EVALUATION	N OF VARIABILIT	YIN
COMPOSITION AND I	DEPOSITION AM	DUNT FOR CLEAR	AND SLIGHTLY	DIRTY SAMPLES	COLLEGI
KSC SITE 11 DURI	NG 09/77.				33.5 4 Jan 1 7 7

PCCHHNKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	N 8888000000000000000000000000000000000	VOLUMENTA STATE OF THE PROPERTY OF THE PROPERT	UE G/SO-000000000000000000000000000000000000	M421-144000000000000000000000000000000000	H503393000000000000000000000000000000000	00040000000000000000000000000000000000	E6247740000000000000000000000000000000000	
AMTSO4	0 0 0 0	0.00	0.00	0.00	0.00	0.00	0.00	.~~0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIJE 11 DURING 10/77.

PCCHHNKCMNCFNSPXSSACNS	_666666834888343888888888888888888888888	VOL 47.470 47.470 47.470 47.470 47.470 47.409 5.440 12.409	MO000000000000000000000000000000000000	M4463.694.865324050000000000000000000000000000000000	H 50 645 077 5 68 3 0 44 7 0 6 6 4 1 6 9 3 0 4 4 7 0 6 6 9 4 1 6 9 5 1	5016949864435705638929 W5216949864435705638929 L3201001754503403530051	V 0 8 1 . 2 6 2 4 9 1 9 6 . 3 9 1 9 6 . 3 9 1 9 6 . 4 9 1 9 1 1 1 1 2 9 1 1 1 2 9 1 1 2 1 2 1	95 815-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
A/C CL/NA NA/MG SS NC COND/P AMTH	ろろろろろろん	0.87 7.95 193.76 60.95 0.91	0.00 0.00 0.00	0.80 0.85 7.49 164.34 62.82	0.86 0.96 10.61 307.94 81.69 1.29	0.68 0.69 5.02 61.52 60.51 2.12	0.09 0.13 3.22 128.15 23.67 0.39 201.23	318.16 318.77 0.97 211.13
AMTHNV AMTNA AMTCA AMTMH AMTCL AMTCL AMTF	633333333	0.00 0.00 0.00 0.00 0.00 0.00 0.00	761.64 1570.59 560.98	309 - 63 4162 - 67 120 - 52 253 - 86 523 - 53 186 - 69 3618 - 69	8722.26 8722.26 278.85 438.69 8258.83 7437.53	0.91 741.54 16.48 128.80 147.12 118.16 514.74 13.65	184.67 4110.61 139.36 163.35 344.06 70.39 3516.33	0.33 8.06 167 188 193 193 193 1020
AMTNU3 AMTSU4 AMTPU4 AXSSU4 AMTSS AMTNC	333333	0.00 0.00 0.00 0.00 0.00	158.14 427.02 2588.43 172.51 1471.34 11974.25 3766.71	3618.69 52.71 142.34 862.81 57.50 490.45 3991.42 1255.57	116.44 211.15 1580.77 134.65 815.45 8203.60 2176.16	94.54 370.43 0.00 317.47 567.76 650.17	61.08 635.92 69.44 281.66 3878.51 810.35	151.64 1578.75 172.40 699.25 9628.81 2011.79

N=NUMBER OF SAMPLES

VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIUS

UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

A-8

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 11/77.

04	N,	VOLNTAV	UEQ/SQ _X M	MEAN	HĪCH	Ľ0ªŽ	ST.DEY	95%C.L.
PH COND	9	5.34 18.81	0.00	5.06 41.32	7.05	4.56 9.00	0.86 42.61	9.90 44.92
CMPPT	6	0.00	15.47	72.58	107.00	0.05	3.31	3.48
H	6	0.00 4.59 3.35	0.00	A 80	27.54	0.09	3.31	10.34
HWA	6	3.35	0.00	7.51	26.91	0.04	9.81	10.29
MA	4	95.99	0.00	221.10	586.11	64.35	245.90 3.91	390.96
ĈA	4	1.63	0.00	3.96 15.22	9.45	1.02	19.46	6.22 30.94
MG	Ž.	21.41	0.00	52.89	43.91 147.33	13.90	63.40	100.60
NH4	4	21.41 1.30 110.10	0,00	2.22	7.21	0.00	63.40	5.34
CL	4	110.10	0.00	263.04 263.04	7.21 724.74	75.58	309.73	492.46
F	4	0.00	0.00	0.00	0.00	0.00 1.13	0.00	7.28
NO3	4	12.43	0.00	33.99 1.90	10.97 87.86	1.15	4.58	59.13
304 P04	Ã	13.24	0.00	33.77	7.58	6.25	37.19 3.79 1.52	27.95
X3304	3	5.34	0.00	11.17	17.59	0.00 2.69	1.52	18.68
SAN	4	126.38	0.00	304.12 301.67	819.38 793.71	82.95	347.41 332.43	552.39
SCA	4	5.34 126.38 129.74	0.00	301.67	793.71	85.54	332.43	528.56
A/C	4	0.97 1.15 4.48	0.00	1.01	1.03	0.95	0.04	0.06
CL/NA NA/MG	4	1.13	0.00	1.19 4.18 279.54 21.56	1.64	1.06 3.14 6.59	0.08	0.12
SS SS	4	120.04	0.00	279.54	757.25 757.25 29.54	83.14	320.74	0.52 509.98
SS NC	3	11.37	0.00	21.56	29.54	6.59	320.74 12.98	36.66
COND/P	4	1.04	0.00	1.04	1.06 272.85	1.01	0.02	0.04
AMTH	6	0.00	/09.61	118,27	272.85	0.04	115.65	121.34
AMTHNV	6	0.00	518.53 14690.12	7673.62	193.14 5380.65	1836.35	82.64 1658.75	2637 41
AMTK	Ä	0.00	249.80	86.42 3672.53 62.45	79.78	44.28	17.56	2637.41 27.92
AMTCA	4	ŏ.ŏŏ	763.27	190-82	280.69	130.17	68.16	108.57
AMTMG	4	0.00	32/6.11	819.03	280.69 1172.20	392.38	348.34	553.86 61.72 2994.87
AMTNH4	4	0.00	199.54	49.89	89.53	0.00	38.82 1883.57	2061.72
AMTCL	4	0.00	16848.73	4212.18	5957.25	1944.15	1002.51	2774.07
AMTF AMTNO3	4	0.00	371.90	92.97	136.25	0.00 31.76	0.00 46.57	74.04
AMTS04	7	ŏ: ŏ ŏ	2026.37	506.59	793.76	362.07	195.47	310.79
AMTPU4	4	ŏ.ŏŏ	94.18	23.54	94,18	0.00	47.09	74.87
AXSSU4	3	0.00	94.18	141.74 4592.63	180.76	82.43	52.21	129.61
AMTSS	4	0.00	18370.52	4592.63	65/0.85	2144.40	2104.30	3345.84
AMTNC	5	0.00	905.03	301.68	411.78	138.48	144.18	357.94

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND,CMPPT,AND RATIOS
UEQ/SQ.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIH

Table 88.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 12/77.

PH COND CMPPT H HNV NA	N 10 10 10 10	VOLWTAV 4.71 24.82 0.00 19.40 16.77 130.80	UEU/SQ.M U.U0 0.00 9.35 U.00 0.00	MEAN 4.68 22.69 0.93 21.10 17.89 128.59	HIGH 55.36 55.20 79.43 74.13 321.32	LOW 0.00 0.00 0.00 0.00 0.00 13.48	ST.DEV 1.54 15.58 22.31 21.110	95%C.L. 1.10 11.13 0.58 15.95 15.08
K	8 8 8 8 8 8 8 8	2.85 8.02 31.24 5.37 132.65 2.10	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	128.59 8.48 31.34 43.7 128.06 0.72 11.07 36.30	16.47 78.15 9.36 276.39 19.52 75.78	0.00 1.00 4.11 0.55 16.64 0.00 4.84 18.32	12 1.17 12 1.17 14 1.15 10 1.1	15.08 10.05.05 10.05 10.05 10.05.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05
PÖ4 XSSO4 SSAN SCA A/C CL/NA CL/MG SS	888888888	34.71 0.00 21.28 179.12 201.15 0.89 1.01 4.19 144.04	0.00 0.00 0.00 0.00 0.00	23.45 176.16 201.45 0.87 1.00	70.88 70.88 339.27 437.13 1.02 1.31 4.63	9.00 9.35 48.11 51.99 9.77 0.86 3.28	20.28 113.11 154.14 0.10 0.18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NC COND/P AMTH AMTHNV AMTNA AMTK AMTCA	8 8 10 10 8 8	34.24 0.91 0.00 0.00 0.00 0.00	0.00 0.00 0.00 1813.99 1567.95 9935.72 216.72	137.90 137.72 0.89 181.36 156.79 1241.90 27.09	120.00 120.00 695.04 648.65 3136.30 70.21 178.39 775.44 3567.30	17.41 7.94 0.30 0.00 35.80 5.80	115.47 48.49 0.25 201.89 191.24 1319.93 63.88	40.46 0.21 144.28 136.67 1101.33 23.30
AMIMG AMINH4 AMICL AMIF AMINU3 AMISU4 AMIPU4 AXSSO4	88888888	0.00 0.00 0.00 0.00 0.00	2372.77 408.25 10076.19 159.21 733.90 2636.47 0.00 1616.51	296.60 51.03 1259.52 19.74 329.56 202.06	775.37 213.44 3567.30 159.21 230.66 663.12 0.00 620.24	10.93 1.47 44.20 33.85 53.20 30.06	312.02 71.28 1303.91 56.29 71.73 249.00 191.86	260.35 1087.96 46.97 59.85 207.78 0.00
AMTSS AMTNC	88	0.00	10941.02	1367.63 325.11	3934.73 1110.76	46.26 23.15	1446.92 401.26	1207.29 334.81

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

A-90

Table 89.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 01/78.

	N	VOLHTAY	UEG/SO.M	MEAN_	HIGH	ľ DM 🏻	ST.DEV	95%Ç.L.
PH	þ	34.67	0.00	4.52	5.45 94.30	4.00	0.49	37.95
COND CMPPT	8	28.93 0.00	9.00 5.59	44.85 0.93	94.30 3.16	11.00	36.17	1:16
H	6	21.40	0.00	30.34	100.00	3.55	35.95 34.39 241.65	37.72
HNV	6	19.33	0_00	27.08	93.32	0.69	34.39	36.09 253.54
ŊA	þ	136.03	0_00	216.39	651.33	26.96	241.65	253.54
ČA	þ	18.75	0.00	4.94	17.36 77.34	9.00 5.99	6.63 27.53	6.96 28.89
MĜ	6	32.66	V 00	30.69 51.65	166.91	6.50	61.38	64.40
NH4	6	7_81	Ŏ. ŎŎ	11.64	26.06	6.50 3.33	8.97	9.42
ĞĿ	6	135-61	0_00	214.88	657.06	31.87	241.71	253.61
F	6	0.36	0.00	0.18	0.53	0.00 5.81 14.37	0.27	10.58
N03 S04	Ď	11.08 38.08	0.00	15.57	44.20 130.96	13.67	14.47 45.15	15.18 47.37
P04	6	30.00	Ÿ: 00	59.79 0.00	0.00	13.00	70.00	70.00
X3504	ě	24.13	0_00	0.00 37.68	99.97	10.25	33.00	34.62
SAN	6	185.13	0.00	290.41	761.13	54.76	280.67	294.48
SCA	þ	219.22	0.00	345.64	913.53	62.92	336.05	352.58
A/C CL/NA	6	0.84	0.00	0.84 0.99	0.87 1.18	0.81 0.94	0.03	0.03
NA/MG	6	4.17	0_00	4.19	4.69	3.90	0.31	Ŏ.32
SS NC	6	4.17 149.55	0_00	230.40	724.74	34.83	266.66	279.78
NC	6	48.28	0.00	78.33	185.24	10.71	68.91	72.30
CUND/P AMTH	6	0.93	0.00	199.41	1.05	0.87	194.47	206.35
AMTHNV	Š	0.00	1196.49 1081.22	180.20	523.44 488.50	21.07 4.11	196.67 187.17	196.37
AMTNA	6	0.00	7604.71	180.20 1267.45	3867.27	170.59	1408_18	1477.46
AMTK	6	0.00	144_18	24.03 174.74	90.87	0.00	35.90 155.35	37.66
AMICA	6	0.00	1045.43	174.74	459.24	37.89	155.35	162.99
AMTM6 AMTNH4	2	0.00	1825.54 436.63	304.26	991.00 136.39	41.12 12.39	360.37 47.46	376.10 49.79
AMTCL	6	0.00	7581.44	72.77 1263.57	3901.29	201.65	1412.45	1481.94
AMTE	6	0.00	19.98	3.33	16.65	0.00	6.66	6.99
AMTNU3	6	0.00	619,54	103.26	231.34	17.19	85.01	89.19
AMTSU4	6	0.00	2129.08	354.85	685.48	98.41	243.87	255.86
AMTPO4 AXSSD4	6	0.00	1349.25	224.87	0.00 523.26	0.00 62.65	$\frac{0.00}{174.51}$	183.09
AMTSS	6	0.00	8360.31	1393.39	4303.13	220.40	1558.23	1634.90
AMTNC	6	ŏ.ŏŏ	2699.19	449.86	1099.88	67.79	389.80	408.98

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVFRAGE. UNITS ARE MICROEGUTVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 02/78.

PCCHHNKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	77777555555555555555555555555555555555	V 450442554422082062464700000000000000000000000000000000	M0070000000000000000000000000000000000	20037678128165070576740147614516 N303053339352320842899580346514516 E4018303875308507780036810347614516 M449 480 460 86 5144715023 18 16 460 86 51274 19 48 18 18 23 18 444 15 0	H 424-173950 H	30209520261002052180483170100392 W18039600365008012078196920360048 00100114050062800241086780483	V0321289428776708477718884994181978 0.0811.03849949303977118849994181978 0.0811.027345.03977118884994181978 0.0811.027345.03994181978 0.0811.0298 0.08	93003174404937041112611150164663 C0310982986093300076252211155611630 C0310982986093300076252211150086611630 C0310982986093300076252211150086633 C0310982986093300 C031098298609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C0310982988609300 C03109829898989899 C031098899899 C031098899989998999 C0310989999999999999999999999999999999999
AMTK AMTCA AMTMG AMTNH4	5555555555555	0.00 0.00 0.00	7203.30 187.72 1	111.14 525.45	1809.73 261.17	17.31 8.60 0.00 4.03 8.49	46.78 165.81 734.89 107.27	1893.61 58.16 206.14 913.66 133.36

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEG/SG. M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEG/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

A-91

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 11 DURING 03/78.

a u	N_	VOLHTAY	UEQ/30.M	MEAN	HÏGH	FOM	ST.DEV	95%Ç.L.
PH COND	3	4.46 31.26	0.00	40.70	4.72 71.00	3.98 11.40	25.44 25.44	0.40 31.62
CMPPT	5	0.00	5.27	0.65 47.98	1.12	0.24	0.33	0.41
HNV	ጀ	34.49 32.57	0.00	47.98 47.87	104.71 114.81	19.05	36.69 42.00	45.61 52.21
NA	5	85.13 2.50	0.00	98.79	220.44	15.49 19.13	77.58	96.45
K CA	5	2.50 15.71	0_00	47.87 98.79 3.11 21.66	5.62 42.41	0.51	77.58 2.00 15.49	96.45 2.48 19.25
MG	5	22.26	0.00 0.00	26.42	57.34	3.49 4.61	19.97	24.83
NH4	5	22.26	0.00	15.30	42.13	1.66	19.97 17.15 120.82	24.83 21.32
ξL	3	105.68	0.00	125.//	321.20 4.74	19.74	120.82	150.21
N03	<u> </u>	15.81	0_00	125.77 125.77 1.58 21.45	42.42	0.00	14.57	10.11
\$04 P04	5	42.36	0.00	60.29	139.49	15-62	48.61	60.43
XSS04	5	32.80	0.00	49.06	0.00 133.69	0.00 13.58	48.64	0.00 60.48
SAN SCA	5	164.98	0.00	209.10	421.27	41.81	145.07 132.42	180.36
ÄŽČ	5	169.31	0.00	213.26 0.98	398.64 1.06	50.68 28.0	0.11	164.63
CL/NA	Š	1.24 3.82	V.00	<u>i.27</u>	1.46	0.90	0.23	0.28
NA/MG SS	3	102.84	0.00	120 84	4.15 284.81	21.77	0.49	129-61
NC	かいかかかいかんかいかいかかんかんがんがん	31.99	0.00	1.27 3.74 120.84 44.44	97.49	0.90 2.95 21.77 9.85	103.93 32.81	129.21
COND/P AMTH	5	0.99 0.00	1129.10	225.83	1.04	0.96 152.76	0.0%	0.04
AMTHNV	3	0.00	1066.39	213.28	287.52 280.97	136.15	50.24 64.38 377.90	62.46 80.04
AMTNA AMTK	5	0.00	1066.39 2787.07 81.77	557.41	981.66	129.52	377.90	80.04 469.82 12.55
AMTCA	5 5 5 5	0.00	514.20	7 0 • 82 98 2 2 3 5 4 1 5 1 6 • 8 4 4 5 6 • 7 4 5 6 6 6 7 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	981.66 28.72 175.43 255.32	136.50 125.70 39.02 43.83 12.73	10.10	64.5/
AMTMG	5	0.00	728.71	145.74	255.32	43.83	98.25	122,15
AMTNH4 AMTCL	Š	0.00	302.23 3459.94	60.45	102.04	136.59	39.59 566.94	704.86
AMTF	<u> </u>	0.00	37.01	7.40	21.09	0.00	9.11	11.32
AMTNU3 AMTSO4	Ş	0.00	514 - 20 726 - 71 302 - 23 3459 - 94 37 - 01 517 - 71 1386 - 82	7.40 103.54 277.36	102.04 1430.33 21.09 137.23 367.44	72.08 174.45	29.06 82.49	11.32 36.13 102.56
AMTP04	5 5 5	0.00	V_U	0.00	0.00	0.00	0.00	0,00
AXSS04 AMTSS	5	0.00	10/3.90	0.00 214.78 673.35	323.78	151.76	76.39	94.98
AMTNC	Š 5	0.00	3366.74 1047.25	209.45	1268.31 252.44	150.66 110.03	500.23 56.87	621.92 70.70

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
LMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC 511E 11 DURING 04/78.

	N	VOLWTAV	UEW/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH.	1	91.50	0.00	4.60	4.60	4.60	0.00	0.00
COND	1	91.50	0.00	91.50	91.50	91.50	0.00	0.00
CMPPT	1	0.00	0.03	20.03	20.03	0.03	0.00	0.00
H HNV	•	25.12 9.12	0.00	25.12	25.12 9.12	25.12 9.12	0.00 0.00	0.00
NA	Ô	ó. ö ö	0.0 0	ó. ö ö	0.00	0.00	0.00	ŏ.ŏŏ
K	ŏ	ŏ.ŏŏ	ŭ.ŭŏ	ŏ.ŏŏ	ŏ.ŏŏ	Ŏ.ŏŏ	Ŏ. ŎŎ	ŏ.ŏŏ
CA	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	Q	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
<u>Č</u> L	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03	X	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S04	ŏ	0.00	0.00	Ŏ.ŎŎ	0.00	0.00	ŭ:00	0.00
PO4	ŏ	ŏ.ŏŏ	Ŏ.ŎŎ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ
PO4 XSSO4	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C CL/NA	X	0.00	0.00	0.00	ŷ•û0	0.00	0.00	0.00
NA/MG	ď	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS	ŏ	0.00	ŏ:ŏŏ	ŏ.ŏŏ	0.00	0.00	ŏ.ŏŏ	ŏ.ŏč
SS NC COND/P	Ŏ	0.00	Ŏ.ŎŎ	0.00	ŏ.ŏŏ	0.00	0.00	ŏ.ŏò
COND/P	Q	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTH	1	0.00	6.28	6.28	6.28	6.28	0.00	0.00
AMIHNV	1	0.00	85.5	2.28	2.28	2.58	0.00	0.00
AMTNA AMTK	V	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	ŏ	ğ.ğğ	0.00	0.00	0.00	0.00	0.00	0.00
AMTMG	ŏ	ŏ.ŏŏ	Ŏ.ŎŎ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ
AMTNH4	Ò	0.00	0.00	0.00	0.00	0.00	0.00	Ŏ.ŎŎ
AMTCL	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTE	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO3 AMTSO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTPO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	ŏ	0.00	ŭ:00	0.00	0.00	0.00	0.00	0.00
AMTSS	Ŏ	ŏ.ŏŏ	Ŏ.ŎŎ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ	ŏ.ŏŏ
AMTNO	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEP) FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

A-93

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 05/78.

РН	NE	VOLNTAV	UEO/SO.M	MEAN	HIGH _4.88	LOW 4.25	STADEY	95%C.L.
COND CMPPT	ş	41.80	9.00 9.00	42.58	56.00	33.10	9.23	11.52
H	かいいいかいかいかいかいかいかいかい	0.00 34.33	5.45 0.00	109994349398 1413303555 1339 3239	1.94 56.23	0.44 13.18	15.29	19.01
HNV NA	3	30.95 95.76 3.95 30.80 24.20	0.00	31.29 93.74	54.95 122.61	7.24 70.00	16.92	21.03 27.51 2.35
K Ca	٤	3.95	0.00	3.93	6.64	1 70	24.16 5.15 24.52	2.35
MG	ž	34.20	0,00	23.79	29.86	17.93	35.15	30.03 6.41 30.48
NH4 CL F	3	34.83 97.71	0.00	33.43	74.84 117.31 2.63	12.47 17.43 13.42 16.53 18.23	18.64	23.18
F N03	5	27.22	0.00	29.68	42.58	0.53 18.23	0.78 10.51	13.07
\$04 P04	Ž	0.00	0.00	59.25	87.44	30.73	20.42	25.39
X\$\$04	ž	50.51 187.22	0,00	49.43	78.80	29.53	0.00 21.01 30.19	26.12
SAN SCA	5	223.81	0.00	186.10	220.41 282.81	176.29	44.06	37.54 54.77
A/C CL/NA	5	0.84 1.02	0.00	1 0 2 2 3 2 2 3 3 3 3 7 4 5 3 3 7 7 7 8 3 3 7 7 7 8	0.97	0.76 0.93	0.08	0.10
NA/MG	Ž	1.02 3.95 107.77	0.00	3.94	1.12 4.27 129.40 133.44	3.52	20.32	26.39
SS NC	555555	81.72	0.00	183.91	133.44	31.25	24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2520.1797 2520.1797 3545
COND/P	3	0.00 0.00	0.00 1871.90 1689.82 5218.92 215.49 1679.52	374:38	703.46	141.57	282.96	351:79
AMTHNV		0.00	1689.82 5218.92	337.96 1043.78	648.29 2122.91 79.14	97.91 306.26	281.49 688.74	349.97 856.28
AMTK AMTCA	Ş	0.00	215.49	43.10	79.14	7.82	27.93	856.28 34.72
AMTM6	55555	0.00		1043.78 43.10 335.90 263.96 379.89	937.46 516.39	2496329537162771 030811.057162771 041.0571627 041.0571627 041.0571627	349.30 170.38 265.40	434.26 211.83
AMTNH4 AMTCL	5	0.00	1899.43	379.89 1065.65	741.16 2201.89	58.21 334.35 2.30	709.44	329.96 882.02 14.23
AMTF AMTNO3	Ę	0.00	94.36 1484.31	18.87 296.86	2201.89 30.59 507.96	2.30 128.44	11.44 153.59 412.30	14.23
AMTSU4	55555	0.00	3302.51	660.50	1181.86	170.33	412.30	215.60
AMTPU4 AXSS04	3	0.00	0.00 2754.23 5877.04	0.00 550.85 1175.41	1064.99	0.00 135.93 368.78	0.00 373.99 782.51	0.00 464.97
AMISS AMINC	Š	0.00	5877.04 4456.10	1175.41 891.22	2428.69 1803.55	368.78 260.93	782.51 668.52	972.86 831.14

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.m=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.m COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUN(H

Table 94.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 06/78.

PH	N 8	VOLWTAV	UE4/50.M	MEAN 4.24	HIGH 4.90	LDW 3.56	ST.DEV	95%C.L.
COND CMPPT	8 8	23.06 0.00 27.87	0.00 0.00 16.55	87.60 2.07	510.00 4.69	9.00	170.93 2.08	142.62
HNV	8 8	27.87 24.21	0.00 0.00 0.00 0.00	57.05 48.20	275.42 239.88	17.59 27.61 20.51 3.49 5.26	88.83 78.01	74.12 65.09 67.46 2.51
NA K CA	8 6 6 6	2.90	0.00 0.00	3.19 7.82	166.53 6.89 13.47	0.51	152.76 152.76 152.76 152.76	2.51
MG NH4	6	11.86	0.00	20.56	41.21	5.26 1.66	15.63	
ÇL F	666	57.09 0.20	Ů . Ö Ö	100.30 0.26	199.37	22.00 0.00 3.55	0.29	80.19 0.30
N03 SU4	6	27.00 21.00 21.00 20.17 11.80 57.20 90.72 30	0.00	10.00 31.68	14.68 41.22	3.55 10.41	4.66 12.35	80.19 0.30 4.89 12.90
P04 X\$\$04	666	25.13 25.13	0.00	21.50	0.00 38.55 245.55	10.41 0.00 7.28	0.00 13.21	0.00 13.86 84.21
SAN SCA A/C	6	25.13 25.13 27.96 103.23 1.12	0.00	147.50	246.81 1.02	35.96 46.13 0.78	80.26 80.13 0.09	84.07
ĈĹŹNA NA/MĜ	6	1.12	0.00	1.15	1.20		0.08	0.09 0.17
SS NC	6 6 6	4.30 62.54 13.58	0 . 0 0 0 . 0 0	109.41 13.20	4.54 215.15 22.96	24.26 5.79	0.16 82.92 7.40 0.05	86.99 7.77 0.05
COND/P AMTH	6 8	0.00	4610.99	576.37	1927.72	0.97 13.83	0.05 690.81	5/5 00
AMTHNV AMTNA AMTK	8 6 6	0.00	8390.74 8390.74	1398.46	22.96 1.10 1927.72 1603.41 2331.13	1032.04	495.61	520.00
AMTCA AMTMG	6	0.00	1014.86 1951.38	169.14	347 - 117	1 0 2 3 3 8 3 7 8 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	690.81 592.83 495.61 117.18 115.40 117.21	494.60 4920.94 1221.98 1222.98
AMTNH4 AMTCL	6	0.00	690.71 9393.35	115.12 1565.56	536.08 358.73 2606.74		131413	137.60 613.74
AMTF AMTNO3	6	0.00	33.07 1598.81	5.51 266.47	626.23	0.00 44.61	584.96 8.80 239.83	613.74 9.24 251.63 813.69
AMTSO4	6	0.00	5092.34	848.72 0.00	1905.30	214.71	775.54	0.00
AXSSO4 AMTSS AMTNC	6 6	0.00 0.00 0.00	00000000000000000000000000000000000000	5926906080040654103746043261720095 737030001227014931608995555680995 2 0 13 244 01 4931608995555680955 1 1 553 1315 28 673	1663.84 2875.23 1061.37	62.59 1137.26 60.60	751.71 643.63 371.26	788.69 675.30 389.52

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

Table 95.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 07/78.

	N_	VOLWTAV	UE0/\$0.M	MEAN	HIGH	FDM	ST.DEY	95%C.L.
PH COND	9	34.41	0.00	27.87	4.84	3.91	0.35	0.27
CMPPT	9	22.46 0.00	21.99	2.44	61.80 6.25	8.00 0.43	18.04 1.87	13.89
Ĥ	ģ	39.28 37.25 27.05 1.18	0,00	46.46	253.25 1238.783 1238.783 153.483 169.7928 169.7928	0.43 14.45	40.66	51.51
HNV	9	37.25	0.00	44.28	120.23	17 40	39.52	30.43
NA K	ď	1.18	0.00	41.64	130.70	10.44	39.18 1.11	30.16 0.86
ĈA	ģ	8.50	0,00	8.98	15.97	10.44 0.45 1.50 2.55 10.70	4.70	3.62
MG	9	6.11 2.39 27.67	0_00	9.55	33.48	\$.55	9.54	3.62 7.35
NH4 CL	ď	2.39	0.00	1 3 .02	10.53	10.55	3.43	2.64
F	9	1.25	0.00	1.23	5.79	0.00	49.34	37.99 1.43
NO3	9	12.41	0.00	9385233 9595233 93617 17	51.62	3.06	15.26	11.75
SO4	9	32.93	0.00	37.38 0.00 32.75	03460	9.99	26.58	20.47
P04 X SS 04	9	0.00 30.10	0.00	32.75	0.00 80.17	0.00 8.68	0.00 27.03	20.81
SAN	9	74.24	0_00	101.95	219.89	23.77	27.03 64.55	49.70
SCA	9	84,51	0.00	111.19	212.32	30.10 0.70 0.88	A2.50	48.13
A/C CL/NA	9	0.88 1.02 4.42	0.00	0.92 1.10	1.04	0.70	0.10 0.10 0.23 52.12 5.55	0.08 0.08
NA/MG	9	4.42	ŏ:ŏŏ	4.36	4.87	4-14	0.23	0.18
SS NC COND/P	9	30.38 14.85	0.00	49.86	179.20 24.78	11.82 3.14	5 2.12	40.13
NC COMD (B	9	14.85	0.00	14.87	24.78 1.14	3.14	6.55	5.04
AMTH	ğ	0.00	8634 ⁻ 74	1.02 959.42 909.89	1.14 2322.10 2269.24	0.92	747:06	0 05 575 24 551 37 257 67 18 88
AMTHNV	ģ	0.00	8189.05	909 89	2269.24	80.01 76.41	/16.0/	551.37
AMTNA AMTK	9	0.00	5946.83	660.76	1222.88	185.88	71/1 67	257.67
AMTCA	ď	0.00	5946.83 259.56 1867.72	660.76 28.84 207.52	85.78	4.55 26.66	202.35	156.58
AMTMG	ģ	0.00	1344.15	149.35 58.46 675.93 303.13	670.66 293.05 207.90	39.56	278.329 278.329 329.33	60.31
AMTNH4	9	0.00	526.18	58.46	207.90	9.53	73.29	60.31 56.43
AMTCL AMTF	ÿ	0.00	6083.38	6/5.93	1198.50 178.20	190.88	320.53 57.06	240.81
AMTN03	ğ	ŏ.ŏŏ	2728.20	303-13	595.50	54.59	201.68	155.30
AMTS04	9	0.00	271.17 2728.20 7239.04	804.54	2394.30	147.61	201.68 718.78	246.81 43.94 155.30 553.46
AMTP04	9	0.00	0.00	0.00	0.00	0.00	0.00	0.00 539.52 271.96
AXSS04 AMTSS	9	0.00	6616.72 6679.70	742-19	2270.97 1321.94	76.15 210.54	700.67 353.19	377.36
AMTNO	ģ	ŏ.ŏŏ	3264.73	735.19 742.19 362.75	867.18	55.99	309.03	237.95

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 96.

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 08/78.

	N	VOLWTAV	UEG/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH COND	4	4.43	0,00	4.46	4.89	4.26 17.80	0.27 7.67	12.20
CMPPT	4	20.19	0.00 16.12	24.70	34.80 9.55	0.87	3.88	6.17
H HNV	4	47 1 A	0.00	34.72 30.69	54.95 47.86	12.88	17.25 14.89	27.43 23.68
NA	4	20.13	0_00	54.8 <u>9</u>	182.62	12.02 5.22 0.25	85.67	136.21
K C A	4	33.45 20.13 0.67 4.39	0.00	54.89 1.47 6.36	4.08	0.25 2.99	1.77 3.63	136.21 2.82 5.77
MG	4	4.89	0.00	12.26	11.48 39.32	2.06	18.11	28.80
NH4 CL	4	4.89 2.58 23.36	0.00	4.85 62.11	14.97 205.01 0.53 18.23	0.55 7.33	6.78 95.74	28.80 10.78 152.23
ÇL F	4	0.09	0,00	0.26	0.53	0.00	0.30 5.60	0.48 8.91
103 504	4	0.09 9.33 27.51	0.00	10.93	52.69	6.45 22.28	4.39	6.98
PÖ4 XSSO4	4	0.00	0_00	0.00	0.00 32.06 238.02 252.60	0.00	0.00	0_00
SAN	4	25.19 60.29	0.00	21.10 100.73	238.02	4.93 43.52	12.00 91.89	19.08 146.11
SCA A/C	4	69.81	0.00	100.73 114.55 0.88 1.13	252.60	49.10 0.71	93.13 0.10	146.11
CLINA	4	1.16	0.00	1.13	0.94 1.41	1.09	0.16	0.16
NA/MG	4	24.12	0.00	4.48 67.88	4.66 226.13	2.44 6.74	1.15	1.82
SS NC	4	7.75	0.00	11.95	4.66 226.13 21.08	4.08	106.08	
COND/P AMTH	4	0.81 0.816 1.122 7.75 1.04 0.00	0.00 5986.24	11.95 1.03 1496.56 1347.71	3547.00	0.99 111.72	0.03 1458.22	2318-56
AMTHNV	4	0.00	5390.85	1347.71	3310.25	104.26	1458.22 1375.11	2186.42
AMTNA AMTK	4	0.00	108.46	811.16	39.09	97.83 9.57 93.56	629.19 13.26	21.09
AMTCA	4	0.00 0.00 0.00	5390 - 85 3244 - 63 108 - 46 708 - 15 788 - 40	177.04 197.10	3510.65 3510.65 3510.65 3510.65 285.88 285.88	93.56 40.10	13.26 95.81 123.21 119.21	152.33
AMTNH4	4	0.00	416.49 3764.81	104.12	280.66	19.23	119.21	189.54
AMTCL AMTF	4	0.00	3764.81	941.20		137.47	680.19 4.70	23186.422 100.49 152.93 195.59 1881.50 1081.50
AMTNO3	4	0.00	14.43 1504.52 4434.35	5/6-15	631.36	5 5. 95 225. 69	244.07	386.07
AMTSU4 AMTPO4	4	0.00	4454.35	1108.59	9 . 87 631 . 36 2742 . 97 0 . 00 2673 . 29	0.00	1119.80 0.00	388.07 1780.48 0.00 1822.29
AXSSU4	4	0.00	4069.03	0.00 1015.01	2673.29	0.00 42.74	1146.09	1822.28
AMTSS AMTNC	4	0.00	4060.03 4017.02 1249.11	1004.25 312.28	1960.97 395.34	126.40 117.81	770.42 131.50	1224.97

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 09/78.

	N_	VOLMTĀV	UEQ/SQ.M	MEAN	HIGH	FOM	STADEV	95%C.L.
PH COND	9	4.50 39.79	0.00	4.39 62.38	4.84 158.00	3.89 11.80	46.55	0.24 35.84
CMPPT	ģ	0.00	10.68	1.19	3.41	0.07	1.23	0.95
H HNV	9	31.40 27.50	0.00	41.14 36.96	128.83 114.81	14.45 10.00	36.17	27.85 24.98
NA	9	155.46	0.00	282.09	648.72	3 5. 22	32.44 222.37	171.23
K	9	3.87	0.00	6.67	13.79	35.22 1.02 4.49	, 5 • 3 <u>2</u>	4.11
CA MG	9	11.23 37.33	0.00	18.85 66.90	153.00	8.06	53.14	40.92
NH4	9	2.51 176.04	0.00	66.90 5.61 321.26	52.39 153.00 31.05 748.99	0.00	15.35 15.35 53.14 9.82	40.92
ÇL F	9 9	1/6.04	0.00	321.26 0.29	1.05	38.92 0.00	261.99 0.46	201.73 0.36
NO3	9	12.66	0.00	17.74	70.33	4.68	20.40	15.71
304 P04	9	39.32	0.00	63.13	179.68 0.00	14.16	52.87	40.71
X3504	9	21.66	0.00	30.74	102.61	0.00 7.01	30.82	23.73
SAN SCA	9	21.66 228.88	0.00	403.80 421.25	1009.18 1027.78	63.07 83.79	326.36	251.30 250.03
AZC	3	241.79 0.95	0.00	0.96	1_04	0.75	326.36 324.72 0.09 0.11 0.29	0.07
CL/NA	9	0.95 1.13	0.00	1.14 4.22 347.68 32.42	1.28	0.75 0.88 3.80	0.11	0.08 0.23 218.42 22.23
NA/MG SS	9	4.16 189.85	0.00	347.68	4.64 826.14	42.92	283.66	218.42
NC	9	20.55	0.00	32.42	83.49	6.98	283.66	52.53
COND/P	9	1.00	0.00 3354.12	372.68 372.68 326.37	1717.31	0.61 45.21	0.14 520.75	400.98
AMTHNV	9	0.00	2937:30	326.37	1530.56	40.29	461.43 1806.12	355.30
AMTNA AMTK	9	0.00	16605.80	1845.09	6279.60 182.62	275.15 7.98	1806.12	1390.71
AMTCA	3	0.00	2937.30 16605.80 413.34 1199.44	1845.09 45.93 133.27	390.93	34.58	119.41	91.94
AMTMG	9	0.00	570/.21	443.02	1608.34	62.98 0.00	464.83 60.66	357.92 46.71 1679.89
AMTNH4 AMTCL	9	0.00	268.16 18803.99	29.80 2089.33	190.57 7588.44	304.03	2181.67	1679.89
AMTE	9	0.00	51.51	5.72 150.27	32.89	0.00	11.77	9.07
AMTNU3 AMTSU4	9	0.00	1352.44 4200.58	150.27 466.73	690.57 1385.83	15.80 110.61	210.56 454.05	162.13
AMTPU4	9	0.00	0_00	257.09	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	9	0.00	2313.79	257.09 2253.23	1248.90 8113.24	45.36 335.35	383.42 2324.82	295.24 1790.11
AMTNO	9	ŏ:ŏŏ	2194.88	243.88	794.42	347.79	265.49	204.43

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 98.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 11 DURING 10/78.

PCCHHNKCMNLFNSPXSSACNSNCAAAAA	N 8888777777777777777777777777777777777	VO 480.0919473.04849203345540227188600000000000000000000000000000000000	UEG (SQ. WO O O O O O O O O O O O O O O O O O O	ME4513-79008883133060181977373973910088313306018197737391008831330601819773739739739739739739739739739739739739	H 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	\$5041614910505601290119752388 190661238010056020089508776678 100661238010056020089508776678 11200315033350	V2858587798888995641324645845845157.5560.00.00.00.00.00.00.00.00.00.00.00.00.0	25 3 43014139302406020440620837 25 3 4301413930226011140620837 25 3 4301413930226011140620837 26 57 1886 71 75155 30 57 1886 71 75155
COND/P AMTH AMTHNV AMTNA		$\begin{array}{c} 1.01 \\ 0.00 \\ 0.00 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	204 - 23 204 - 23 204 - 23 204 - 23 204 - 23 204 - 23 205	1.52 560.60 488.26	3.72 3.63	0.24 210.95 180.78 3254.14	0.22
AMTE AMTNO3 AMTSU4 AMTPU4 AXSSU4 AMTSS AMTNC	7 7 7 7 7 7	0.00 0.00 0.00 0.00 0.00	705.08 705.08 3635.02 0.00 1333.62 24741.75 2216.88	100.73 519.29 0.00 190.52 3534.54 316.70	192.95 192.95 1505.68 0.00 337.78 12584.86 929.36	50.58 68.09 50.58 189.09	57.82 476.50 476.50 109.70 4210.46 305.13	441 . 25 441 . 25 441 . 58 101 . 58 3898 . 94 282 . 55

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MONTH

Table 99.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 11/78.

	N_	VOLHTAV	UEO/SQ.M	MEAN_	HIGH	LOW 3.98	ST.DEY	95%C.L
PH COND	かかいかいかいかいかいかいかいかいかいかいかいかいかいかいかいかいかいかいかいか	4.41 57.92	0.00	4.35 68.10	140.50	14.00	0.43 53.57	66.60
CMPPT	Ź	0.00	1,/3	0.35	0.53	0.16	0.17	0.21
HNV	3	38.87 32.83	0.00	44.21 37.73	104.71 91.20	9.12 7.76	39.05 33.82	48.55 42.04
NA	Ž	32.83 316.75 9.79 22.77	0_00	384.54	864.82	50.87	33.82 351.83 7.42	477 A1
K CA	3	22.77	0.00	10.93 28.64	21.70 57.39	1.53	21 W/	27.32 102.29 7.22
MG	Ş	72.85	0,00	89-15	204.01	11.84	82.27	102.29
NH4 CL	3	72.85 1.57 348.58	0.00	2.99 416.91	204.01 13.31 897.32	0.00 51.32	82.27 82.81 373.32 13.59 77.53	464.14
F	Ž	0.67	0.00	1.26	5.79	0.00 5.97	2.54	3.16 16.89
N03 S04	3	15.62 64.82	0.00	18.42 78.62	40.49 196.54	12.49	77:53	96.39
P04 XSS04	5	0.00	0.00	0.00 35.72 515.21	0.00 104.21	0.00 6.19	0.00 41.25	51.29
SAN	5	28.95 429.68	0.00	515.21	1140.14	79-65	460.09	572.01
SCA A/C	5	462.60	0.00	560.46	1265.93 0.96	89.71	501.19 0.04	572.01 623.11 0.05 0.07
CL/NA	5	0.93 1.10 4.35	0.00	0.92 1.08	1.14	0.85 1.01 4.24	0.06	ŏ.ŏ7
NA/MG SS	5	384.48	0.00	4 - 51	989.75	4.24 56.61	0.07 411.78	0.08 511.94
NC	ź	39.25	0,00	459.85 56.40	171 47	13.10	66.00	82.05
COND/P AMTH	٤	0.93 0.00	0.00	0.91 134.35	279.70 279.35 2817.07 644.27	0.76 23.49	105-23	130.83
AMTHNV	<u> </u>	0.00	567.40	113.46	25.75	23.49 19.99	105.23 86.49	107.53
AMTNA AMTK	٤	0.00	5475.39 169.19	1095.08	2817.07 64.27	190.77	1111.70 23.30	1582-15
AMTCA	Ś	0.00	671.77 567.40 5475.39 169.19 393.70	113.48 1095.08 33.84 78.74	1/0.00	28.07	60.33	130.53 1302.53 1302.53 1302.59 130.42 130.42 130.83 1565.83 271.50
AMTMG AMTNH4	ξ	0.00	1259.33 27.23 6025.46	251.87 1205.09	636.51 24.53 3202.74	44.42	252.10 10.73	313.42
AMTCL	<u> </u>	0.00	6025.46	1205.09	3202.74	192.47	10.73	1560.23
AMTF AMTNU3	Ş	0.00	11.53 269.97	2.31 53.99	10.67	0.00 16.51	4.69 28.23	35-10
AMTS04	ź	0.00	1120.40	224.08	80.45 542.93	62.46	218.39	271.52
AMTPU4 AXSSU4	5	0.00	500.38	100.08	0.00 213.37 3532.63	$0.00 \\ 19.31$	94.39	117.35 1720.93 134.23
AMTSS	<u>Ş</u>	0.00	6646.08	1329.22 135.75	3532.63	212.29	1384.22	1720.93
AMTNC	5	0.00	678,77	135.75	316.14	56.71	107.97	154.25

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SG.M=MICROEQUIVALENTS/SQUARF METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

1

MONTHLY MAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 12/78.

T T T T T T T T T T T T T	ฺ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	VOLUMENTAL STATE OF THE PROPERTY OF THE PROPER	W0090000000000000000000000000000000000	N3005202977737840200577350178581502820 N3458868684380369020057350178581502820 N446106974503.690200573501425007660577991 N443215019 35 595 92 311760577991 N4803941 N4803941 N4803941 N4803941	H3034336118821113047366809735999476411 H555483842996997359994766399 H2964411149699973599947641115099735999 H577771114966399 H5777777777777777777777777777777777777	40697339712051065857122562891629044 080070339712051065857122562891629044 1350449134130300725004430109382180036 21 228 1218031	V55054111311466942050628.5505411311311466942050628.5505411311311311466942050628.550568	95 2 7640.5.279.840.6869.298.609.298.40.685.2778.40.685.2778.40.686.929.837.33.66.27.37.37.37.37.37.37.37.37.37.37.37.37.37
AMTCL AMTF	ういいいいいいいい	0.00	184.99 47998.58 247.90 455.60 5836.47 912.07 52795.69 3289.73	9599.72 49.58 91.12 1167.29 0.00 182.41 10559.14	43669.46 236.84	108.39 0.00 23.94 66.44 0.00 50.38	19069.93 104.70	150.17

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

10

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 01/79.

PH COND CMPPT H	N 6 6	VOLWTAV 4.82 25.02 0.00 15.00	UEQ/SQ.M 0.00 0.00 16.21 0.00	MEAN 4.44 34.47 3.03 36.30 33.82 129.28	HIGH 90.50 11.20 134.90	LDW 3.87 7.50 0.20 6.92	ST.DEV 0.46 31.73 4.06 49.19	95%C.L. 0.48 33.29 4.28 51.61
HNV NA K CA MG	6666	13.40 138.15 3.34	0.00 0.00 0.00 0.00	38.34	131.83 280.45 8.94 90.32	34.35 34.35 1.49 7.95 7.95	48.56 100.10 3.29 37.10 25.89	50.95 105.03 38.93 27.17 21.05 109.51
NH4 CL F NO3 SO4 PO4	66666	34.49 3.38 154.31 1.10 29.40	0.00 0.00 0.00 0.00	32.37 11.37 134.75 4.47 16.88 55.70	52.11 288.49 15.79 70.33 190.50	38.35 38.35 3.87 10.00 6.38	20.06 104.37 6.54 26.33 68.42	27.62 71.79
XSSD4 SAN SCA A/C CL/NA	06666	0.00 13.57 191.19 235.90 0.81 1.12	0.00 0.00 0.00 0.00	55.73 0.00 41.86 212.19 251.78 0.84 1.04	171.44 455.05 525.86 0.93 1.14	24.14	172.69 205.59	0.00 67.29 181.19 215.71 0.05 0.10
NA/MG SS NC COND/P AMTH	66666	170.20 50.70 0.81	0.00 0.00 0.00	1 . 0 4 1 . 0 4 3 . 9 9 1 48 . 63 66 . 85 0 . 86 455 . 0 4	4.63 318.20 186.61 0.98	90.90 90.90 90.97 47.91 0.75 119.99	0 . 35 1 15 . 21 6 0 . 54 465 . 54	0.37 120.79 72.61 0.09 488.44
AMTHNV AMTNA AMTK AMTCA AMTMG	66666	0.00 0.00 0.00 0.00 0.00	2730 • 26 2439 • 22 25149 • 96 608 • 34 7563 • 62 6279 • 62	406.54 4191.66 101.39	1228-40 19435-76 429-02 6428-91 4921-18	93.14 382.42 18.15 89.37 104.26	416.39 7512.93 161.64 2539.12 1908.85	436.87 7882.55 169.59 2664.04 2002.76
AMTNH4 AMTCL AMTF AMTNO3 AMTSO4 AMTPO4	66666	0.00 0.00 0.00 0.00 0.00 0.00	615.57 28092.89 200.47 1039.60 5361.16	1046.60 102.60 4682.15 33.41 173.27 893.50	248.44 22241.34 148.02 451.77 3358.79 0.00	376.34 0.00 63.03 180.55	8644.08 57.82 147.36	95.51 9069.35 60.67 154.61 1276.00
AXSSO4 AMTSS AMTNC	666	0.00	0.00 2470.40 30986.46 9230.64	0.00 411.73 5164.41 1538.44	1070.15 24532.20 6931.12	110.59 415.10 137.19	9534 42 9534 64 2657 64	351.94 10003.50 2788.39

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UMWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 102.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 11 DURING 02/79.

PH COND CMPPI H NV NA K CA MG NH4 CL	11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	VOLNIAV 45.84 0.00 29.60 29.58 199.51 18.81 16.87 11.87 225.62	UE 4/50. M 0.000 3.25 0.00 0.00 0.00 0.00 0.00 0.00	MEAN 445 78.817 78.8075 400.617 364.719 364.719 384.72 408.62	HIGH 4.79 179.00 1.84 95.50 87.10 987.43 18.64 630.33 18.85 1134.49	14.139 20.2239 16.33948 20.233 14.13948 88.833	ST.0EV 0.301 72.72 37.73 34.66 427.65 427.86 427.86 427.86 427.86 427.86 427.86	95%C.58 114.49 11.95 59.11 679.01 448.53 158.73 785.37
F 03 504 P04 x550 x550 x550 x550 x50 x50 x50 x50 x50	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.50 15.45 56.90 31.80 301.27 0.13 4.26 4.86 32.71	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.31 450.71 54.62	1.17 4.47 1251.34 113.80	1.05 13.558 0.051 17.584 109.884 0.95 109.884 0.95 47.90 13.20	4.09 4.09 5.00 5.00 6.69	6.70 80.70 80.090 80.47 442.70 86.70 86.70 870 870
CAMMINA AMITONIA AMIT	a a a a a a a a a a a a a a a a a a a	0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 961.82 963.82 6489.79 152.53 73.81 501.97 1550.02 73.81 501.97 1050.02 8084.81	16 352.497 16 352.497 16 352.497 18 952.497 18 952.497 18 18 18 18 18 18 18 18 18 18 18 18 18 1	373° 04 373° 04 340° 22 2685° 57 61197 647° 63 3145° 62 153° 64 261° 71 644° 90 351° 76 444° 52	0.90 39.99 33.99 15.881 289.73 15.82 626.53 36.77 36.77 36.82 37.00 371.42	0.40 143.60 1113.11 142.57 267.79 1326.56 13.11 127.00 1463.79	0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPI, AND RAILUS
UEU/SO. M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEO/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

.

	N	VOLWTAV	UEQ/ŞQ.M	MEAN	нісн	FOM_	ST.DEY	95%Ç.L.
PH COND	3	37.80	0.00	4.51 102.50	180.00	4.43 25.00	109.60	985.02 12.47
CMPPT	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	0.00	2,35	1.17	2.16	0.19	1.39 9.31 8.77	12.47 83.67
H HNV	ž	25.07 20.98	0.00	30.57 26.16	37.15 32.36	23.99 19.95	8: <u>7</u> 7	78.84
ŅĀ	Ž	162.54	0.00	533.72	32.36 978.30	19.95 89.13 1.79	628.74	5650.65 154.13
ĈA	٤	3.79 17.01	0.00	13.91 62.62	26.04 117.27	7.98	17.15 77.27	694.48
MG NH4	3	38.97	0.00	138.28	251.25	19.33 6.10	168.22	1511.83 45.81
ČĽ	ž	190.82	0.00	138.28 70 595.30	13.31 1079.78 7.37	110.83	168.22 5.10 685.15 2.98	6157.69
F NO3	5	190.82 3.51 12.43	0.00	19.03	7.37 26.94	3.16 11.13	11.18	26.75 100.45
\$ 04	چ	42.59	0.00	108_47	26.94 187.38	29.56	111.07	100.45
P04 XSS04	3	23.62	0.00	0.00 47.57	0.00 76.27 1302.96	0.00 18.88	40.58	364.74 7293.39
SAN	Ž	250.05	0.00	729.13	1302.96	155.30 148.32	811.52 905.78	7293.39 8140.56
SCA A/C	٤	254.07 0.98	0_00	788.81 0.92	1429.29	0.91	0.10	0.86
CL/NA NA/MG	ş	0.98 1.17 4.17	0.00	0.92 1.12 3.86 653.08	1.24	1.10	0.10 0.57	0.88 5.13
88	Ş	203.97	0.00	653.08	1190.99	3.80 115.16 9.17	760.73	6836.93 1219.97
NC COND/P	5	25.02 0.94	0.00 0.00 0.00 0.00	105.16	201.14	0.93	135.74	0.24
AMTH	Ž	0.00	589°-23 492°-92 3817°-41 88°-36 399°-36	2011 62	0.97 517.25	71.98 62.70 1895.46 38.53	314.85	2829.65
AMTHNV	ş	0.00	3817.41	246.46	430.23 1921.95 50.45 227.20	1895.46	259.88 18.74	2335.67 168.38 75.75
AMTK	2	0.00	88.99	44.47	50.45	38.53 172.16	8.43 38.92	75.75
AMTCA AMTMG	٤	0.00	915.20	199.68 457.60	470.30	416.83	57.66	349.82 518.25
AMTNH4 AMTCL	Ž	0.00	915.20 157.28	78.64 2240.88	131.50 2389.69	25.78 2092.07	74.75 210.45	671.83 1891.35
AMTE	٤	0.00	4481.76 82.37 292.17	41.18	68.09 239.98	14.28	38.05	341.99 1193.42
AMTNU3 AMTSU4	ろいというといる	0.00	292.17 1000.53	146.09 500.27	239.98 637.48	52.19 363.05	132.79 194.05	1744.02
AMTPU4	چ	0.00	0.00	0.00	0.00	0.00	0.00	0_00
AXSS04 AMTSS	2222	0.00	554.81 4790.71	0.00 277.41 2395.36	407.04 2483.16	147.77 2307.55	183.33 124.17	1647.63
AMTNO	בֿ	0.00	7587.52	293.76	389.72	197.80	135.70	1219.60

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

<u>_</u>,

j

Table 104.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 07/77.

	N_	VOLWTAV	UEQ/SO.M	MEAN_	HIGH	ĽOM_	ST.DEV	95%C.L.
PH COND	3	4.57	0.00	4.32	4.61	4.15	10.33	2.92 139.81
CMPPT	Š	11.73	9.40 3.41	21.60	32.60 3.23	10.60	15.56 2.16	19.44
H	Ž	26.92 25.55	0_00	47.67	70.79	24.55	32.70	293.91 261.34
HNV	Š	25.55	0.00	44.00	64.56	23.44	29.08	261.34
NA K	Ů	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CA	ŏ	0.00	0.00	0.00	ŏ.ŏŏ	ŏ.ŏŏ	0.00	0.00
MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4 CL	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F	ŏ	0.00	ŏ:ŏŏ	ŏ:ŏŏ	0.00	0.00	0.00	0.00
NO3	Ŏ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
\$04 P04	Ŏ	0.00	V. 00	0.00	0.00	0.00	0.00	0.00
XSS04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0_00
ŞÇA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C CL/NA	Ů	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NĀ/MG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS	Ò	0.00	0.00	0_00	0.00	0.00	0.00	0.00
NC COND/P	V	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTH	ž	ŏ . ŏŏ	917.83	458.92	193.94	123.89	473.80	4258.20
AMTHNV	Ž	0.00	871_20	458.92 435.60	758.21	123.89 112.99	456.24	4100.39
AMTNA AMTK	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	ŏ	0.00	Ŭ:00	0.00	0.00	0.00	0.00	0.00
AMTMG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4 AMTCL	Ŏ	0.00	V . 0 0	0.00	0.00	0.00	0.00	0.00
AMTE	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTN03	ŏ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
AMISO4	Ŏ	0.00	0_00	0,00	0.00	0.00	0.00	0.00
AMTPO4 AXSSO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	ŏ	0.00	0.00	0.00	Ŭ . Ŭ Ŏ	ŏ.ŏŏ	ŏ.ŭŏ	0.00
AMTNO	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIUS

UEG/SG.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWLIGHTED AVERAGE

CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF KAIN FOR

THE MUNTH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSATION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 08/77.

5	N	VOLWTAV	UEQ/SO.M	MEAN_	HIGH	ĽOM,	ST.DEV	95%Ç.Ļ,
PH COND	ğ	4.36 20.33	0.00	4.47 18.14	6.80 41.00	4.03 0.00	0.86 12.67	9:96 9:75
CMPPT	9	0.00	17.73	1.97	7.30	0.03	2.34	1.80
HNV	9	43.66 38.11	0.00	33.72 29.45	93.32 81.28	0.16 0.13	36.79 32.43	28.33 24.97
NA	ŏ	0.00	0_00	0_00	0.00	0.00	0.00	0.00
K	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
C A MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
ξL	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO3	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	ŏ:ŏŏ
804	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
P04 XSS04	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	ŏ	0.00	Ÿ. Ÿ Ŏ	0.00	ŏ.ŏŏ	0.00	0.00	0.00
SCA	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
A/C CL/NA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NA/MG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS NC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	ŏ	Ŏ.ŎŎ	0_00	0.00	0.00	0.00	0.00	0.00
AMTH	9	0.00	7745_18	860.35	5409.25	0.05	1753.85 1529.51	1350.47
AMTHNV AMTNA	ő	0.00	6758.73 V.00	750.97 0.00	4711.26	0.04	0.00	1177.73
AMTK	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA AMTMG	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4	ŏ	0.00	0_00	0.00	0.00	ŏ.ŏŏ	0.00	0.00
AMTCL	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTF AMTNO3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTS04	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTPU4 AXSSO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME MEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

Table 106

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED KSC SITE 12 DURING 09/77.

Det	N _o	VOLMTÄÄ	UEQ/ŞQ _* M	MEAN	нісн	Ļ0W	STOEY	95%Ç,
PH COND	8 8	4.83 22.74	0.00	4.46 33.41	5.28 109.90	3.99 9.40	0.41 34.02	28.
CMPPT	8	0.00 14.73	22.07	2.76	12.78	0.03 5.25	4.39	27.
H HNV	8 8	13.00	0.00	29.58	102.33	3.63	32.83 30.72	25.
NA K	Ŏ	0.00	0,00	0.00	0.00	0.00	0.00	- 0 ·
ĈA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0,
MG NH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.
CL F	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	Û,
F NO3	0	0.00	0_00	0.00	0.00	0.00	0.00	0. 0.
SÜ4	ŏ	0.00	0100	0.00	0.00	0.00	0.00	ŏ.
P04 X8S04	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.
SAN	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0,
SCA A/C	0	0.00	0.00	0.00	0.00	0.00	0.00	0.
CL/NA	ŏ	0.00	0,00	0.00	0.00	0.00	0.00	Q.
NA/MG SS	0	0.00	0.00	0.00	0.00	0.00	0.00	0. 0.
NC	Ò	0.00	0.00	0.00	0.00	0.00	0.00	ŏ:
COND/P AMTH	0 8	0.00	3250-63 3250-63	406.33	1609.06	0.00 5.31	0.00 512.87	427:
AMTHNV	ĕ	0.00	2060.30	358.54	1434.08	1.60	460.61	384.
AMTNA AMTK	O O	0.00	0.00	0.00	0.00	0.00	0.00	0.
AMTCA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.
AMTMG AMTNH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0;
AMTCL	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.
AMTF AMTNO3	0	0.00	0.00	0.00	0.00	0.00	0.00	0 0,
AMTS04	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0
AMTPO4 AXSSO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0. 0.
AMTSS	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.
AMTNC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT UF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 10/77.

0.11	N_	VOLWTAY	UEG/ŞQ.M	MEAN	HĪGH	rom .	ST.DEY	95%Ç.L.
PH COND	3	4.30 25.55	0.00	4.08	75.08 75.80	3.80 11.80	0.57 25.88	0.70 32.18
CMPPT	5	0.00	5,00	0.60	1.88	0.10	0.74	0.92
H HNV	3	50.30 47.49	0.00	83.58 80.79	158.49 154.88	8.32 5.13	66.56 66.76	82.76 83.00
NA	4	63.24	0_00	62.72	73.92	33.91	19.26	30.62
K C A	4	2.39	0.00	62.72 2.87 13.60	4.59 23.95	2.04	1.17	1.86 13.67
MG	4	13.84	0.00	16.75	31.26 31.60	7.24	10.16	16.16
NH4	4	63.24 8.39 13.84 57.01	0.00	15.94 65.21	31.60 121.54	3.91 3.04 7.24 27.64	12.05	19.16
ÇL F	4	1.02	0_00	3.29	10.00	9.90	4.62	7.34
NO3 SD4	4	15.74 30.80	0_00	22.90	41.62 76.20	5.32 20.40	20.14 26.38	32.03 41.94
PÕ4	4	0.68	0.00	1.82	7.27	0.00	27.87	5.78
XŠŠO4 San	4	25.12	0_00	34.85	71.12 184.43	11.96 88.58	27.87 41.57	44.32 66.09
SCA	4	106.05 142.80 0.74	0.00	32.095 240.85 41.85 133.87	274.43 1.03	112.79	70.01	111.31
A/C CL/NA	4	0.74 0.90	0.00		1.03 1.64	0.65 0.68	0.17	0.28 0.69
NA/MG	4	4.57	0.00	3.70	4_89	2.36	0.43 1.23	1.96
SS NC	4	60.86	0.00	1.04 3.70 62.29 49.79	95.50 91.17	30.48 24.10	27.19	43.23 45.22
COND/P	4	35.29 0.74	0.00	U.07	1:12	0-63	28.88	0.32
AMTH	5	0_00	1508.55	501./1	615.58	12.61	229.63	285.49
AMTHNV	4	0.00	1424.18	284.84 458.54	11.12 615.58 587.87 1320.70 43.08	112.03	219.13 576.30 17.36	28726-28 28726-28 28726-28 28726-28
AMTK	4	0.00	69.27	458.54 17.32	43.08	6.94	17.36	27.60
AMTCA AMTMG	4	0.00	401.32	60.83 100.33	269.92	16.64 40.48	113.09	179.82 52.78
AMTNH4	4	0.00	240.23	413.29	90.05	22.69	33.20	52.78
AMTE	4	0_00	52.88	13.52	<i>//</i> 1 4	0-00	11.37	18 08
AMTNO3	4	0.00	456.32	114_08	234.82	8.56	92.95	147.79
	4	0.00	17.13	4,94	19.75	0.00	9.88	15.70
AXSSU4	4	0.00	728.49	182.12	1262.32	18.12	113.61	180.63
AMINO	4	0.00	1023.29	255.82	1500.40	60.95	159.71	253.94
AMTCL AMTF AMTNO3 AMTSO4 AMTPU4 AXSSO4 AMTSS	444444444444444444444444444444444444444	0.00 0.00 0.00 0.00	1834-16 1834-11 2401-13237 2401-13237 2401-13237 2401-13237 253-1882 263-178-105 27653-17653	13.22 114.08 223.27 4.94	1 1 6 7 . 1 9 2 3 8 2 . 7 5 2 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	134.17 0.00 8.56 31.56 0.00 18.12 144.74	565.37	801.24

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 108.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 11/77.

PCCHHNKCMNCFNSPXSAC		VOLUMENT A 1790 22 4 20 27 21 1 2 3 7 3 1 4 4 5 4 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UE Q / SQ · M 0 · 00 15 · 90 0 · 00 0	N466978819003647060848 N4066973819003647060848 N40273903630182093600	H 10498628278236058597	08029140025409102470012017901119091	V0001773916050273015842 0.41173916050273015842 0.41073916050273015842	10000000000000000000000000000000000000
SS NC NTH NA AMTHA AMTKA A AMTCA AMTTOL AMTTOL AMTTOU AMTTOU AMTSOS AMTSOS AMTSOS AMTSOS AMTSOS AMTSOS AMTSOS AMTSOS AMTSOS AMTNO	56 65055555555555	1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	000 1092 1092 1092 1092 1092 1092 1093 1093 1093 1093 1093 1093 1093 1093	10.760843435127642099911580550 14.37.255042099911580550 18.56487.35.97980550 18.56487.35.99911580550	45.1412792656747928533576.08513999.130864141279265067479086414127926506747908641414127926506747908641414127926506747908641414141414141414141414141414141414141	14.93 99.98 99.76 99.76 90.87 90.80 90 90.80 90.80 90.80 90.80 90.80 90.80 90.80 90.80 90.	11.18 130.01 130.01 1192.98 28.64 71.77 50.90 14.77 340.73 130.65 1175.65	23.560 23.560 23.560 23.592.60 1287.60

N=NUMBER OF SAMPLES
VDLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIOS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 12/77.

5	N	VOLMTAV	UEB/ŞQ.M	MEAN	HÌCH"	LOW	ST.DEV 0.67	95%C.L. 0.41
PH COND	12 12 12 12 9	4.56 18.53	0.00	4.46 20.31	6.54 66.00	4.08 0.00	10.52 25.27 19.22 1.08 5.57 6.71	11.30
CMPPT	įį	0.00	9.89 7.82	0.65 34.38	1.48	0.01	26.52	18.32
H HNV	12	27.67 24.60	0.00	34.30 27.41	83.18 64.56	0.29	19.27	15.69 11.96
NA	• 9	39.84	0.00	39.42	94.79	8.26	30.22	23.27 0.83
K Ca	9	39.84 1.01 3.35 9.15 2.84	0.00	27.41 39.42 1.032 9.42	94.79 2.81 18.96	0.00	5.57	4,29
MĜ	3	9.15	0_00	9:27	21.22 14.97	2.88	6.7i	5.17
NH4	9	2.84	0_00	4.19 41.52 1.05 13.12	14.97	0.00	4.86 30.96	3.74 23.84 2.00
ÇL F	9	41.15 0.87	0.00	1.05	96.44 7.89	11.00	2.59	2.00
NO3	9	9.94	0.00	13.12	5/ 1/4	0.00 5.32 5.00	10.45	8.05
S04 P04	9	28.29 0.70	0.00	31.30 0.60 27.14 87.58	63.09 5.37	3.00	18.80 1.79	14.48
X3304	9	24.16	0.00	27.14	60.32	0.00 2.70	18.24	14.04 36.51
SAN SCA	9	80.95 83.49	0.00	87.58 89.88	154.02 161.05	34.58 37.87	47.41 47.98	36.94
A/C	3	0.97	0.00	6.97	101.10	34.58 37.87 0.88 0.84 2.87	47.98 0.07 0.22	0.05
CL/NA	9	1.03 4.36 44.22	0.00	0.97 1.05 4.25	1.10 1.49 4.73	0.84	_0.60 _0.60	0.17 0.46
NA/MG SS	9	44.22	0.00	44.5/	106.38	10.6/	34.78	26.78
NC	9	11.96	0.00	14.71	41.10	6.56	10.52	8.10
COND/P	12	0.99	2164.51	180.38	623.26 623.26	0.89 0.04	0.06 193.15	0.05 119.88
AMTHNV	12 12	0.00	1924.81	160.40	595.21	0.04	186.00	115.44
AMTNA AMTK	9	0.00	3088.11	543.12 8.70	910.84 22.08	32.79	317.10 9.66	244.17 7.44
AMTCA	ý	0.00	259.42	28.62	64.40	7.41	17.66 70.14	13.60 54.01 19.31 248.98
AMTMG AMTNH4	9	0.00	709.03	78.78	203.24	11.43	25.08	54.01
AMTCL	3	0.00	3189.43	354.38	76.66 926.77	43.65	323.35	246.98
AMTE	9	0.00	67.50	7.50	55.51	0.00	18.21	14.07
AMTNO3 AMTSO4	9	0.00	2194.51 1924.51 3088.32 759.94 2709.94 3187.556 7702.554	14.71 98 180.34 180.41 1863.70	195.30 581.56 54.54	42.46 63.24	189.52	38.72 145.93
AMTP04	9	0.00	7 54 54	208.12	54.54	0.00	18.18	14.00
AXSS04 AMTSS	9	0.00	1873.04 3427.24	208.12 380.80	556.09 1022.22	40.14 42.36	180.67 360.05	139.12 277.24
AMTNO	9	ŏ:ŏŏ	3927:59	103.07	179.10	36.40	51.42	39.60

N=NUMBER OF SAMPLES
VOLNTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SI+E 12 DURING 01/78.

	N	VOLWTAV	UEU/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH COND	6	4.56 16.74	0.00	24.50	<u>4.96</u>	3.94	0.40	18.91
CMPPT	6	0.00	0.87	1.14	58.00 3.81	7.60 0.22	18.03	1.40
H	Ų	27.75	0,00	38.17	114.81	10.97	40.15	42.12
HNV NA	6	25.45 37.11	U 00 0 00	34.70 59.93	107.15 114.79	7.59 6.52	38.60 44.69	40.50 46.89
K	6	0.61	0_00	1.40 16.88	3.57	0.00	1.55	1.62
CA MG	6	8.36 8.71 7.76	0_00	16.88	34.43	2.50	14.09	14.79
NH4	6	7:76	0.00	14.59 11.37 54.05	26.90 20.51	3.04	10.21	10.71
ÇL	6	34.1/	0_00	54.05	20.51	13.82	34.69	36.39
กับ3	6	0.00 10.45	0.00	0.00 15.38	45.00	0.00 4.35	0.00 15.13	0.00 15.87
SO4	6	30.55	0_00	48,44	110.14	10.41	35.14	36.86
P04 XSS04	6	0.00	0.00	42.99	0.00	0.00 8.41	32.31	33.90
SAN	6	27.12 75.17	0.00	117.87	252.15	34.55	79.88	83.81
ŞÇA	6	90.30 90.83 9.26 4.26 36.75	0_00	142.34	297.63	42.30 0.72 0.79	97.36	83.81 102.15
A/C CL/NA	6	0.93	0.00	0.83 0.90	0.95 2.12	0.72	0.99 0.50	0.09
NA/MG	6	4.26	0_00	4.11	4.91	2.14	0.94	0.99
SS NC	6	36.75 25.80	0.00	58.48 45.69	4.91 107.00 90.18	8.43 6.96	39.91 33.70	41.87
CONU/P	6	0.91	0_00	0.89	1.00	0.78	0.08	0.08
AMTH	6	0.00	1904.85 1747.16	0.89 317.46	780.38	28.99	2/3.62	0.08 287.08 272.91 327.03
AMTHNV	6	0.00	2547:19	291 19 424 53	728.30 861.99	17.07 62.16	260.12 311.69	2/2.71
AMTK	6	0.00	2547.19 42.18 574.05 597.98 532.45 2345.91	7.03	24.29 152.62	0.00	9.04	9.48 52.94
AMTCA AMTMG	6	0.00	574.05 597.98	95.68 99.66	152.62 175.63	23.78 29.01	50.45 61.60	52.94
AMTNH4	6	0.00	532.45	88.74	147.95	23.70	59.36	64.63
AMTCL	6	0.00	2345.91	390.98	741.84	131.70	251.11	263.46
AMTF AMTNU3	6	0.00	717.02	0.00 119.50	0.00 305.88	0.00 25.04	107.06	112.33
AMTSU4	6	0.00	2070.71	349.50	748.59	99.78	233.81	245.31
AMTPU4 AXSSU4	6	0.00	0,00	0.00	0.00	70.00	0.00	0_00
AMTSS	6	0.00	1861.67	310.28 420.43	680.75 818.24	78.89 80.31	214.40	224.95 305.62
AMTNL	6	0.00	1771.26	295.21	515.28	66.34	171.88	305.62 180.33

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEN/S9.M=MICROEGUIVALENTS/SQUARE METER

MEAQ-UNAEIGHTED AVERAGE

CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MUNTH

MUNTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIE 12 DURING 02//8.

	N	VOLWTAV	UEG/SQ.M	MEAN	HÏGH_	FOM	ST.DEV	95%C.L.
PH LUND	8 8	4.42 20.01	0.00	4.29 28.66	4.55 56.50	3.95 16.20	0.20 14.90	0.16 12.43
CMPPT	8	0.00	12.39	1.55	3.94	0.03	1.61	1.34 23.10
H HNV	8 8	38.18 32.73	0.00	51.41 42.36	112.20 89.13	28.18 19.50	27.69 23.40	19.52
NA	6	28.12	0.00	20.00	59.57	2.17	20.16	21.15
K CA	6	0.65 4.55	0.00	0.60 4.41	0.77 11.48	0.00	4.00	4.19
MG	6	7.11 6.85	0.00	5.52	14.15 14.41	0.00 1.07 2.77	4.59	4.81
NH4 CL	6	29.86	0.00	4.41 5.22 5.54 22.32	59.50	3.67	19.32	20.27
F NO3	6 6	1.34 9.36 33.71	0.00	0.68	20.97	0.00 4.68	1.36	1.43 5.92
\$04	6	33.71	0_00	10.86 35.67	45.18	25.19	8-29	8.70
P04 XSS04	6	0.00 30.72	0.00	0.00 33.50	0.00 44.92	0.00 23.51	0.00 8.53	0.00 8.95
SAN	6	74.21	0.00	69.73	101.86	50.26	20.99	22.02
SCA A/C	6	85.08 0.87	0.00	79.97 0.87	109.95	57.77 0.78	20.66 0.06	21.68
CL/NA	6	1.06	0.00	0.87 1.12	1.69	1.00	0.06 0.28 0.77 21.76 9.07	0.29 0.80
NA/MG SS	6	3.96 32.03	0.00	3.83 23.26 12.52	65.63	2.81	21.76	22.83
NC COND/P	6	15.27	0.00	12.52	29.24	4.24 0.83	9.07	9.52
AMTH	8	0.92	0.00 4729.89	0.93 591.24 506.84	0.98 1457.66	10.06	541.10	451.49 384.64
AMTHNV	8	0.00	4729.89 4054.69 3456.45	506.84 576.08	1212.43 2345.47 27.40	5.79	460.99 882.70	384.64 926.12
AMTK	6	0.00	80.36	13.39	27.40	5.98 0.70	10.70 12.87 207.47	11.23
AMTCA AMTMG	6	0.00	559 • 41 873 • 93 842 • 08 3670 • 04	93.23 145.66	308.44 557.11	0.00	207.47	118.42 217.68
AMTNH4	6	0.00	642.08	140.35	387.39 2342.89	7.62	150.16	157.54
AMTCL AMTF	6	0.00	3670.04 164.68	611.67 27.48	2342.89	$\begin{array}{c} 10.08 \\ 0.00 \end{array}$	868.38 43.21	911.10 45.34 135.62 553.12
AMTNU3	6	0.00	1150.00	191.67	94.16 355.47	23.95	43.21 129.26 527.18	135.62
AMTSO4 AMTPO4	6	0.00 0.00	4142.96	690.49 0.00	1483.81	124.24	0.00	0.00
AXSSU4 AMISS	6	0.00	0.00 3776.08	0.00 629.35 656.00	1242.73	123.53	452.71 965.03	474.98 1012.51
AMTNO	6	0:00	3936.01 1876.23	312.71	785.89	20.50	328.85	345.03

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 03//8.

5.1	N	VOLWTAY	UEW/ŚO.M	MEAN_	нівн	LOW	ST.DEV	95%C.L.
PH COND	8 8	4.58 17.46	0.00	4.43 25.86	4.83 46.50	4.16 7.80	0.24 15.26	12.73
CMPPT	8 8	0.00 26.33	7.78 0.00	Λ 97	3.27 69.18	0.27 14.79	0.96 19.82	0_80
HNV	8	23.89	0.00	37.04 32.99 38.04	57,54	14.79	17.07	16.54
NA K	8 8	25.12 0.86	0.00	38.04 1.50	87.39 3.32	5.65 0.00	29.50 1.20	24.62
C A MG	8	8.65 7.27	0.00	14.66	87.39 3.32 52.39 22.87	2.00	15.89	13.26
NH4	8	8_01	0.00	11.03 13.58	39.36	2.39 2.77	15.89 7.83 12.33 37.39	10.28 31.20
ÇL F	8	30.61 0.75	0.00	46.00 0.53	39.36 114.21 2.63	9.31 0.00	37.39	0.78
N03 S04	8	11.53 28.19	0_00	16.29 42.06	40.81 90.57	6.13 16.86	11.04 29.51	9.21 24.62
P04	8	0.00	0.00	0_00	0.00	0.00	0.00	20.00
XSSO4 SAN	8 8	25.31 71.07	0.00	37.66 104.88	86.30 209.73	16.19 33.35	27.20 66.54	0.00 22.69 55.52
SCA A/C	8 8	16.23	0.00	115.86	211.86 1.16	33.35 28.71 0.83 0.93	73.14	61.03
CL/NA	8	Ĭ.ŚŹ	0.00	ĭ.źį	1.65	0.93	0.24	0.20
NA/MG SS	8 8	3.46 30.94	0.00	1.21 3.45 47.27	3.94 112.91	2.33 7.30	0.64 38.28	0.54 31.94
SS NC COND/P	8 8	18.96	0.00	41.55	104.67	6.61 0.91	30.86 0.07	25.75
AMTH	8	71.023 0.233 1.222 30.94 18.96 0.98	2047.19 1857.76	1.01 255.90 232.22 244.18	483.02	145.48 135.77	116.51 116.07	97,21
AMTHNV	8 8	0.00	1955.45	232.22 244.18	483.02 572.31	135.77	175.44	96.85 146.38
AMTK AMTCA	8 8	0.00	66.98	8.37 84.06	22.98	70.32 0.00 26.82	7.10 48.06	5.92
AMTMG	8	0.00	672.48 565.23	70.65 77.85	48722-89 145722-89 145722-89 1456-93 1456-93 12054-31	19.09	42.03	145.320 405.107 259.159
AMTNH4 AMTCL	8 8	0.00 0.00	2380.25 2380.25	297.53 7.27	605.95	21.66 81.30	34.94 194.74 13.05	162.49
AMTF AMTNU3	8 8	0.00	58.14	7.27 112.03	34.37 200.16	39.01	13.05 51.58	10.07
AMTS04	8	0.00	896.24 2192.33	274.04	550.72	133.22	131-48	109.70
AMTPO4 AXSSO4	8 8	0.00	1968.51	246.06	0.00 528.59	124.85	0.00 125.69 213.46	104.88
AMISS	8 8	0.00	2406.52 1474.42	300.81 184.30	666.36 297.38	89.67 75.98	213.46 80.91	178.11 67.51

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPP1 IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC 51/E 12 DURING 04/78.

Ou	N	VOLWTAV	UEG/ŞQ.M	MEAN	нісн	LOW	ST.DEV	95%Ç.L.
PH COND	ځ	4.75 32.91	V.00	4.70 33.05 0.20	4.90 33.60	4.57 32.50	0.23 0.78	2.10 6.99
CMPPT H	3	0.00 17.92	0.40 0.00	19.75	0.25 26.91	0.15	0.07 10.13	0.65 91.04
HNV	کِ	7.90	0.00	8.86 57.18	12.59	35.13	32.28 32.20	47.41
NA K	5 5	51.21 4.44	0.00	5/.18 4.21	80.44 _5.11	33.91	1.26	295.66 11.36
CA MG	Ž	4.44 54.18	0.00	4.21 55.14	58.88	12.59 5.13 33.91 3.32 51.40	1.26 5.29	47.57
NH4	٤	14.93 55.10	0.00	16.16 52.11 62.89	20.98 63.76	40.47	6.81 16.46	147.98
ÇL F	VNNNNNNN	57.10 3.49	0.00	62.89	85.45 3.68	40.33	31.90	61.16 147.98 286.74 3.34 57.40
N03	ػۣ	29.17	0.00	30.32	34.84	25.81 75.58 0.00 71.51	6.39	57.40
\$04 P04	۶	79.06 _0.00	0.00	80.26	84.95 0.00	0.00	6.62 9.00 3.28	59.54 0.00
XSSO4 San		73.24	0 . 0 0 0 . 0 0 0 . 0 0	0.00 73.83 176.89	76.15 208.39	71.51	44.58	29.51 400.33
SCA	Ž	168.82 197.78	0.00	204.56	231.00	145.39 178.12 0.82	44.54 37.40	336.10
A/C CL/NA	NANNANANAN	1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	0.00	0.86 1.10	0.90 1.19 3.83	1.06	0.06	0.55 0.81
NA/MG SS	2	3.43	0.00	1.10 3.54 69.03	3.83 94.25	2.99 43.82	0.60 35.66	5.38 320.48
NC	Ž	117.29	0.00	69.03 115.77	121.71	43.82 109.84 0.90	8.39	75.43
COND/P AMTH	ž	0.00	0.00 71.42	1.08 35.71	39.95	31.4/	0.25	53.88
AMTHAV	Ž	0.00	31.51	15.75	18.69	12.82 84.79	4.15	37.27
AMTK	Ş	0.00	17.69	11.08 35.71 15.75 102.09	39.95 18.69 119.40 12.77	4.93	6.00 4.15 24.48 25.54	30.38 05.48 05.48 205.28 37 23.27 23.27 24.18 29.19 20.19
AMTCA AMTMG	کے	0.00 0.00	215.89 59.52	107.95 29.76	128.49 31.14	87.40 28.38	29.05 1.95 70.23	17.55
AMTNH4	2222	0.00	219.46	107.95 29.76 109.73 113.82	159.39	60.07	70.23	631.15
AMTCL AMTF	چ	0.00	13.90	6.95 58.12	126.83 9.21	100.82	18.40 3.20 9.05	631.15 165.35 28.74 81.36
AMTNU3 AMTSU4	3	0.00	71.519 204.169 215.569 215.465 217.690 217.690 217.690 116.000	58.12 157.52	64.52 188.94	51.72 126.09	9.05	
AMTPU4	Ž	0.00		0.00	0.00	0.00	0.00	0.00
AXSSU4 AMISS	NNNNNN	0.00	291.82	145.72	178.78 139.90	113.04	46.48 21.46	0.00 417.75 192.90
AMTNO	2	0.00	467.31	233.66	304.27	163.04	99.86	192.90 847.50

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

- 1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 05//8.

РН	N	VOLMTAY	UEG/ŞQ.M	MEAN	ніей	rom .	ST.DEV	95%C.L.
COND	Ź	4.47 20.82	0.00	4.50 35.37	5.05 68.20	4.29	0.24 23.03	95%C.L. 0.22 21.33
CMPPT	7	$0.0\overline{0}$ 33.63	12.94	1.85 31.54	5.00 51.29	0.02 8.91	1.81 12.40	1.68
HNV	Ź	28.07	0_00	26.47	41.69	7.59	10.29	9.53
NA K	6	18.78	0.00	26.16	45.22	12.17	13.32	13.98 3.66
CA	6	9.40	0,00	19.88	67.86	0.51 5.99	13.32 3.49 24.36	25.56
MG NH4	8	4.62 22.84	0.00	7.46 39.36	14.31 130.84	2.88 10.53	5.17 45.81	5.42 48.06 18.92
ČΓ	6	19.55	0_00	29.70	54.71	10.43	18.03	18.92
NO3	66	0.68 16.40	0.00	1.40 30.43	87.75	0.00	1.32 29.73	1.38
S04 P04	6	30.99	0.00	47.09	90.98	21.24	30.80	31.19 32.31
X S \$04	6	28.99 67.62	0.00 0.00	44-12	85.56	0.00 19.26	29.19	0.00 30.62
SAN SCA	6	90.70	8.00	108.63 131.07	236.07 273.65	50.59 72.74	76.98 82.03	80.76 86.07
A/C CL/NA	6 6	0.75	0.00	0.83	0.93	0.67	0.11	0.11
NA/MG	6	1.04	0.00	3.51	1.24	0.86 2.73	0.14 0.75	0.15
SS NC	6	21.43 35.60	0.00	3.51 31.95 63.80	58.42 163.95	11.51 19.97	0.75 18.75 58.49	19.68 61.37
COND/P	ĕ	0.99	0 00	1.07	1.35	0.83	0.17	0.18
AMTH	7	0.00	4352.27 3632.32 2426.46 174.92	621.75 518.90	1/33.68	1.81 1.54	614.83	569.34 448.71
AMTNA AMTK	é	0.00	2426.46	404-41	1 285.20 828.52	146.74	484.56 267.54 20.84	260.71
AMTCA	6	0.00	1214.99	29.99 202.50	65.96 399.20	10.69 78.90	115.59	446.71 260.71 21.86 119.17
AMTMG AMTNH4	6	0.00	1214 • 99 596 • 27 2950 • 60 2525 • 94	99.38 491.77	196.60 1074.32	46.94 118.50	58.74 381.52 275.18 15.37	400.29
AMTCL	6	0.00	2525.94	420.99	919.88	181.89	275.18	288.72
AMTF AMTNO3	6	0.00	2118.63	14.66 353.10	34.00 612.94	0.00 143.96	15.37 165.03	16.13 173.14 449.65
AMTS04	6	0.00	4003.54	353.10 667.26	1394.94	306.83	428.56	449.65
AMTPO4 AXSSU4	6	0.00	3745.46	0.00 624.24	1341.26	289 . 24	0.00 410.53	0.00
AMTSS	6	0.00	2/60,48	461.41	1014.63	189.60 375.07	306.58	430.73 321.96
WW LIAC	O	V.UV	4599.77	766.63	1446.33	2/2.0/	492.48	516.71

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 12 DURING 06/78.

D.H	N_	VOLWTAY	UEW/ŞQ.M	MEAN	ніен	Fom	ST DEV	95%C.L.
PH COND	7	4.40 22.51	0.00	4.27 30.13	4.80 84.90	3.76 12.20 0.27	25.03	23.18
CMPPT H	7	0.00 40.13	11.73	1.68 53.58	4.91 173.78 169.82	15.85	1.75 54.54 53.89	1.62 50.50
HNV NA	7 7	38.25 18.33	0.00	51.05 27.89	169.82 81.74	13.49 7.83	25.09	49.90 23.24
K C A	7 7	0.92	0.00	1.55	81.74 3.57 38.42	0.51	1.06 12.29	0.98 11.38
MG NH4	7	4.29 11.01	0.00	11.26 7.04	18.26	1.65	5.78 10.36	5.35
ÇĽ	Ź	18.94	0.00	9.74 29.61 0.45 23.37	29.94 87.14 2.11	4.49 1.65 0.55 9.31 0.00	26.88	5 35 9 59 24 89 0 77
NO3	7	18.94 0.09 16.92 33.81	0.00	23.37	80.65 145.74	6.45 16.45	0.83 26.06	24.13
\$04 P04	7	0.00	0.00	46.34	0.00	0.00	44.81 0.00 44.41	41.50
XSSO4 SAN	7	31.87 69.76	0.00	0.00 43.30 99.77	141.88 266.00	14.78 40.84	/9.11	41.12 73.26
SCA A/C	7 7	A1 20	0.00	110.96 1.96 324.70 1.05 672.89	290.38	42.52 0.79 0.95	85.20	78.89
CL/NA NA/MG	7 7	0.86 1.03 4.27 20.82	0.00	1.06	1.01 1.20 4.76	2.99	0.10 0.62 29.70 23.06	0 · 1 0 0 · 5 7
SS NC	7	20.82 20.33	0.00	32.58 24.70	76.11	10.11	29.70	27.50 31.35
COND/P	Ź	1.04	4707.66	1.05	1.19	0.96	710.22	0.07
AMTHNV	Ź	0.00 0.00 0.00	4486.21	U 4 V 4 U 7	1686.61	114.87	682.51 307.01	632.01
AMTNA AMTK	7	0.00	107.83	307.13 15.40	1725.90 1686.61 959.10 293.79 213.90	4.12	15.80	01557057819360293644 22 532444 6528444
AMTCA AMTMG	7	0.00	774.70 503.66	110.67 71.95	293.79 213.90	21.05 24.54	91.53 66.13	84.76 61.24
AMTNH4 AMTCL	7	0.00	4486 - 21 4486 - 21 21489 - 83 774 - 70 503 - 66 1291 - 25	184.44 317.32 1.53 283.58	816.01 940.82 775.55 1440.29	0.96 134.87 114.85 91.05 21.05 24.54 93.20	296.06	614.135 614.135 27752.445 2823.60
AMTF AMTNO3	77	0.00	10.69 1985.03 3965.44	281.53	775.55	0.00 30.24	305.02 576.24	282.43
AMTS04 AMTP04	7	0.00	3965.44	200-47	1440.29	140.06	576.24	533.60
AXS304	į	0.00	0.00 3737.85	0.00 533.98	0.00 1343.48 1037.73	0.00 123.88	0.00 555.55	0.00 514.45
AMTSS AMTNC	7	0.00	2442.05 2385.12	348.86 340.73	1296.03	102.82	328.37 441.70	304.08 409.02

N#NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

-)

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 12 DURING 07/78.

РН	Ņ	VOLWTAV 4.33	UEW/SO.M	MEAN.	HIGH,	LUW 3.97	ST DEV	95%C.L.
COND	ij	24.62	0.00	26.10	49.80	13.20	0.24 11.95	7:74
H	ij	0.00 46.81	24.50 0.00 0.00	42.11	5.41 107.15	1.06 22.91	1.35 28.78 27.77	0.87 18.66
HNV NA	11	44.38 18.04	0.00	45.97 22.37	104.71	20.89 8.70	22.53	18.00 14.61
K CA	11	0.81 6.79	0.00	0.93 7.30	2.55	0.25 1.50	22.53 0.65 5.45 5.12	0.42 3.54
MG NH4	1 1 1 1	4.27 3.02	0.00	5.11 2.87	19.82	1.89 0.55	5.12 2.77	3.32 1.80
ÇL F	11	18.57 1.35	0.00	23.66 0.96	104.06	8.18 0.00	5.12 2.77 27.74 1.52	1.80 17.98 0.99
NO3 SO4	1 1 1 1	14.56 35.85	0.00	37:1/	29.03 78.28	4.84	20.43	9.99 5.51 13.24
P04 XSS04	1 1 1 1	0.00 33.96	0_00	34.77	77.27	0.00 12.48	20.74	13.44
SAN SCA	1 1 1 1	70.33 79.74	0.00 0.00 0.00	77.37 87.70	158.18	34.51 42.51	39.40 38.30	25.54 24.83
A/C CL/NA	11	0.88	0.00	0.88 1.06	1.02 1.21 5.35 111.23 27.41	0.76 0.82 3.69	0.08 0.12 0.42 29.58	0.05
NA/MG SS	11	1.03 4.23 20.32	0.00	4.38 25.78	5.35 111.23	9.02	0.42 29.58	0.27 19.17
NC COND/P		12.61	0.00	12.61	27.41 1.10	3.11	1.25	4.68 0.03
AMTH AMTHNV	Ī Ī	0.00	11466.53	1042.41	2152.27	3.11 3.97 243.41 221.99	0.04 655.24 649.10	424.76 420.78
AMTNA	<u> </u>	0.00	4419.20 198.77	988.36 401.75 18.07	914.71	135.94	268.86 11.04	174.29 7.15
AMTCA AMTMG	ĪĪ	0.00	198 - 77 198 - 77 1663 - 34 1045 - 16 739 - 76 4547 - 49	151.21	2152.27 2152.27 914.71 41.41 377.68 235.70	135.94 4.02 23.58 29.80	109.47 68.84	70.97 44.63
AMTNH4	įį	0.00	739.76	95.01 67.25 413.41	182.61 1105.62 203.94	124.65	71.75 317.75	46.51 205.98
AMTE AMTNO3	ii	0.00	330 89 3567 00	30.08 324.27	203.94	102.33	59.11	38.32
AMTS04 AMTP04	įį	0.00	8/82.32	798.39	723.78 2093.58	208.46	210.00 572.43	371.08
AXSSU4 AMTSS	įį	0.00	0.00 8318.48	0.00 756.23	1997.89	169.61	0.00 563.13 342.36	0.00 365.05
AMTNC	11	0.00	4978.20 3088.03	452.56 280.73	1181.81 678.59	137.49 49.36	205.09	221.94 132.95

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF MAIN FOR
THE MONTH

MUNTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 12 DURING 08/78.

РН	N 2	VOLWTAV	UEQ/SQ.M	MEAN 4.51	HIGH 4.56	LOW 4.46	ST.DEV 0.07	95%C.L. 0.64
COND CMPPT	Ş	16.09	0.00 4.04	22.30 2.02 31.11	48.966337701980000 150.600000000000000000000000000000000000	15.80	9.19 2.73 5.04 8.57	82.61 24.54
HŅV	5555	4/1 51	0.00	26 56	34.67 31.62	19.50 19.55 0.51	5.04 8.57	45.32
NA K	Š	31.350 6.557 3.6.526 1.60 1.60	0.00	47.83 1.91 7.98	91.31 3.32	4.35 0.51	61.49 1.99 7.06	17.84
CA MG NH4	5	5.56 5.56	0.00	11.80	21.80	2.99 1.81 1.11	14.13	127.02
<u>Č</u> L	Ş	8.60	0.00 0.00 0.00		100.39	6.49	66.40 0.37	557.03 17.0842 1637.043 1238.75 596.77
N03 S04	とととととととと	1.06 3.49 24.52	0 0 0 0 0 0	32.37 32.37 26.95 96.24 104.80	15.00	6.49 1.05 24.15	8.33 11.63 0.00	74.83 104.53
P04 X S S04	<u>5</u>	9.90	0.00	0.00 26.95	0.00 30.27	0.00 23.63	4.69	0.00 42.19
SAN SCA	Š	37.68 48.12	0.00	96.24 104.80	157.57 164.15	23.63 23.63 34.92 45.45 0.77	86.73	42.19 779.47 754.36
A/C CL/NA	Š	0.78 1.36	0.00	0.92 1.12	0.96 1.49		83.94 0.14 0.28 1.26	754.36 1.22 2.50 11.35
NA/MG SS NC COND/P	5 5 5	27.68 40.178 1.78 1.79 7.92 1.00	0.00	1 0 0 9 2 1 0 1 2 4 0 0 5 5 8 0 1 7 1 5 0 5 1	10.007 157.15 16.007 157.16 1.199 1.00.173 10.000	25.40 25.40 25.49 25.49 27.67 247.67 217.67	74.33	000.00
COND/P	Ş	1.02	0.00 0.00 1.305 65	1.01	1.02	0.99 24.96	0.02	131.68
AMTHNV AMTNA	Ş	0.00 0.00 0.00	1267.76	697.83 633.88 127.31	1.02 1370.69 1250.09 171.88	17.67 82.75	871.45	7832.01
AMTK AMTCA	Ž	0.00	23.19 130.11	11.60 65.06	20.19 118.36	3.01 11.76	12.15 75.38	109.16
AMTMG AMTNH4	Ş	0.00	1367.63 1254.69 1367.63 1253.11 130.11 130.36 130.36 143.38 143.55	45.65 25.18 173.69	118.354 118.354 143.40 143.40 143.41	11.76 19.75 6.53 90.98	74.608 74.608 74.608 75.608 75.608 75.608 75.608 75.608 75.608 75.608 75.608	130.18 130.18 130.18 130.18 130.18 130.18 140.18 140.18 150.18 160.18
AMTCL AMIF	NNNNNNN	0.00	347.38 43.04	173.69 21.52 70.56	256.40 41.61	1.43	28.41	1051.24
AMTNO3 AMTSO4	Ş	0.00	991.52	495.76	954.73	13.60 36.79	80.56 649.08	5833.47
AMTPU4 AXSSU4	5	0.00	961.55 322.42 227.17	0.00 480.77	934.12	0.00 27.43	0.00 641.12	5762.00 5773.53
AMTSS AMTNC	5	0.00	227:17	161.21 113.59	222.07	100.35	86.07 127.47	1145.65

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/S9.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 12 DURING 09/78.

РН	N 5	VOLWTAV 4.58	UEQ/SQ.M	MEAN 4.56	HIGH _5.06	LOW 4.13	ST.DEV 0.34	95XC.L.
COND CMPPT	Š	16.80 0.00	11.42	18.56 2.28 27.36	33.10 5.80	9.40 0.23	8.80	en Da
HNA	5	26.09 23.08	0.00	24.28	74.13 64.56	8.71 7.41	26.49 22.94	7773123 779512
NA K	5	28.63	0.00	38.87	66.09 2.04	14.78 0.51	20.28 0.59	25.22 0.73
CA MG	5	4.19 6.77	0.00	9.20	8.98 15.71 7.76 73.88	2.00	2.90 4.57	3.60 5.68
NH4 CL F	5	2.52 32.97 0.23	0.00	4.59 9.27 44.27 40.21	73.68	19.74	22.75	28.28
N03 S04	りいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	10.41	0.00	10.07	1.05 25.32 50.38	0.00 4.84 8.54	0.47 8.66 16.72	0.59 10.77 20.79
PO4 xss04	<u>5</u>	20 00	0.00	0.00 16.79	0.00 48.61	0.00 5.92	0.00 17.89	0.00 22.25 31.23
SAN	5 5	63.38 69.21	0.00 V.00	75.89 83.96	97.75 110.62	39.08	27.91	34.70
A/C CL/NA	5	0.92 1.15	0.00	0.90 1.14	1.00	43.10 0.85 1.05	0.06	0.07 0.15
NA/MG SS NC	5	163-321 63-22 1-23-1 1-23-1 35-92	0.00	4.23 47.76 8.85	4.45 81.49 17.39 1.20	19.10	0.36 25.40 25.96 0.10 747.64 647	0.45 31.57 7.41 0.13
COND/P	Š	1.10 0.00	0.00 0.00 2980 06		1.20	19.10 1.28 0.93	0.10 747 60	0.13
AMTHNV AMTNA	5 5 5	0.00	2980.06 2636.96 3270.19	527.39 654.04	1876.44 1634.31 1386.26	37.00 32.97 150.77	649.76 578.56	929.51 807.82 719.29
AMTK AMTCA	5	0.00	116.33 478.67	23.27 95.73	74.00 227.36	4.66 9.51	28.95 92.24	719.29 35.99 114.68
AMTMG AMTNH4	5 5 5	0.00	110.33 478.67 773.32 288.24 3766.21	597.01 597.01 623.73 623.65	74.00 227.36 324.26 196.46	35.84 6.32 168.55	130.94 81.23	162.79
AMTCL	5	0.00	3/66.21 26.64 1189.47	753.24 5.33 237.89	26.64	0.00	646.32 11.92 255.85	803.54
AMTNO3 AMTSO4 AMTPO4	5 5 5	0.00	6630.63	451.25	641.02 1275.35	11.04	501.40	318.09 623.37
AXSSU4 AMTSS	5	0 . 0 0 0 . 0 0 0 . 0 0	1882.03 4021.59	0.00 376.41 804.32	0.00 1230.49 1622.78	0.00 24.93 185.91	0.00 496.29 703.60	0.00 617.01 874.76
AMTNO	5	ŏ:ŏŏ	905.15	181.03	440.13	25.34	206.33	256.52

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

MONTHLY MAIN-ALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 12 DURING 10/78.

0.1	N_	VOLWTAY	UEG/SQ.M	MEAN_	HŢĢĦ	FOM	ST.DEY	95%Ç.L.
PH COND	7	4.75 15.37	0.00	4.17 37.69	110.00	$\frac{3.61}{10.40}$	20.49	20.46
CMPPT	7	0.00	13.78	1.97	8.20	0.07	33.53 3.04 84.48	2.82
H	7	17.95	0.00	66.98	245.47 245.47	7.76	84.48	78.23
HNV NA	6	15.66 47.70	0.00	63.19 84.28	190.88	6.31 24.35	84.73 71.85	78.46 75.38
K	6	1.38	0.00	2.13 8.57	3.57 17.46	1.02	i .05	7.00
CA MG	6	3.49 11.70	0.00	8.57 21.35	17.46 54.13	2.00 5.51	19.78	20.76
NH4	6	2.14	٥٠٥٥	11.55	45.46	0.55	17.28	18.15
Ē٢	þ	48.84	0.00	83.05	176.25	25.38	64.12	67.28
N03	6	0.36 5.93	0.00	0.70 24.79	1.58 57.58	2.90	24.16	0.83 25.34
\$ 04	ě	17.94	0_00	56.98	205.91	10.41	73.72	77.34
P04 x s s04	6	0.00 12.92	0.00	0.00	190.56	0.00 6.09	70.16	0.00 73.61
SAN	6	73.07	0.00	48.46 165.51	407.99	51.12	135.01	141.65
ŞÇA	6	84.29	0.00	200.62	505.79	60.51	135.01 169.41	177.75
A/C CL/NA	6	0.87 1.02	0.00	0.83	0.92 1.27	0.77	0.06 0.12	0.06 0.13
NA/MG	ě	4.08	0.00	3.95	4.42	0.92 3.53	0.34	0.36
SS NC	6	55.84	0.00	91.13	194.40	27.99	71.17	74.67
COND/P	6	12.57 1.03	0.00	36.74 0.94	95.77 1.07	6.40 0.77	35.79 0.11	37.55 0.12 303.45
AMTH	Ž	0.00	2472.68	353.24	945.88	21.24	327.70	303.45
AMTHNV AMTNA	/	0.00	2156.58	308.08 1090.21	805.08 3210.05	19.37 39.38 2.20 20.27	274.43 1219.82	1279.84
AMTK	6	0.00	6541.26 189.35	31.56	83.77	2.20	33.07	34.70
AMTCA	6	0.00	478.55	31.56 79.76	245.60 742.27	20.27	86.48	90.74
AMTMG AMTNH4	6	0.00	292.84	267.43 48.81	125.26	10.05 5.24	295.29 43.07	309.82
AMTCL	ě	0.00	1604.60 292.84 6697.02	1116-17	3446.79	49.86	1286.42	45.19 1349.71
AMTF AMTNO3	6	0.00	44 47	8.32 135.47	39.64 238.17	0.00 77.71	15.65	10.42
AMTS04	8	0.00	812.84 2459.80	409.97	853.94	50.88	69.06 316.41	72.46 331.98
AMTPO4	6	0.00	0.00	0.00	0.00	0.00	226.15	237.28
AXSSO4 AMTSS	6	0.00	1771.09 7382.70	295.18 1230.45	630.78 3801.81	46.16 50.88	1419.60	1489.44
AMTNO	6	ŏ.ŏŏ	1723.92	287.32	604.57	42.12	237.67	249.37

N=NUMBER OF SAMPLES
VDLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIFE 12 DURING 11/78.

Pri	N	VULWTAV 4.66	UEG/SO.M	MEAN 4.48	HIGH 4.92	LUH 4.23	ST.DEV	95%C.L.
COND	6	29.45	0.00	29.87	49.00	6.20	13.74	14,42
CMPPT H	6	0.00 21.80	4.70 0.00	0.78 32.93	1.80 58.88	0.12	0.69 20.86	0.73 21.89
HNV	6	20.52	0.00	25.27	52.48	12.02	17.64	18.51
NA K	6	132.12	0.00	104.28	185.66	6.09	73.33	76.94
ĈA	6	3.12 10.42	0.00	29 · 27 104 · 28 2 · 77 12 · 72 23 · 51	4.59 29.94	0.51 2.00	1.56 10.11	10.60
MG	6	29.55	0.00	23.51	41.38	1.48	16.27	17.07
NH4 CL	6	0.37 141-38	0.00	112.75	198.81	0.00 8.46	79.80	2.58 83.72 3.32 15.62
F	ě	141.38	0.00	1.49	7.89 42.58	0.00	3.16 14.89	3.32
N03 S04	6	8.00 32.31	0.00	15.16 34.63	42.58 59.34	4.19 6.25	14.89 17.59	15.62
P04	6	0.00 17.78	0 7 0 0	0_00	0.00	0.00	0.00	18.46
XSSU4 San	6	17.78	0.00	23.05	41.49	5.52	0.00 13.70	14.37
SCA	6	181.93 197.39	0.00	164.04 177.32	262.60 292.53	19.54 22.10	90.92	95.39 104.84
A/C	6	0.92	0_00	0.93 1.08	0.98	0.88	0_04	0.04
CL/NA NA/MG	6	1.07 4.47	0.00	1.08	0.98 1.39 4.49	0.98 4.00	0.14 0.21	0.15
SS	6	155.79	0.00	124.12	219.29 42.36	7.87	88.40	0.22 92.75 15.08
NC COND/P	6	19.79	0.00	20.27 0.96	42.36	2.21 0.82	14.37	15.08
AMTH	6	0.00	1024.67	1/0_/8	1.02 344.83	58.24	0.08 117.96	0.08 123.76
AMTHNV	6	0.00	964.71	160.78	336.98	44.18	120,12	1353.89 28.55
AMTK	6	0.00	6208.92 146.74	1034.82	3336.07 68.81	29.48 1.72	1290.40	28.55
AMICA	6	0.00	146.74 489.75 1388.50 17.58	24.46	258.23	1.72 9.67	27.21 94.48	99.13
AMTMG AMTNH4	6	0.00	1300.50	231.42	743.49	7.17 0.00	287.32 4.60	301.46
AMTCL	6	0.00	0044_00	231.42 2.93 1107.35	3572.37	32.21	1375.01	1442.66
AMTF AMTNU3	6	0.00	11.28 376.14	1.88	9.87 134.48	0.00 23.44	3.95 40.37	4.15
AMTS04	6	0.00	1510.59	253.07	538.72	30.25	236.82	248.47
AMTPU4 AXSSO4	6	0.00	0.00 835.40	0.00	0.00	20.00	0.00	0.00
AMISS	6	0.00	7321.31	139.23 1220.22	369.36 3940.32	26.72 35.53	131.70 1517.74	138.17 1592.41
AMTNO	6	0.00	930.19	155.03	436.67	10.70	182.73	191.71

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN CUMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 12/78.

	N	VÖLWTAV	UE4/80.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
РH	'4	29.75 29.75	0_00	11 68	5.01	4.36	0.28	0.44
CUND CMPPT	4	29.75	0.00	22.25 20.67 18.50 82.61 13.60	39.00	8.00 0.21	16.60	<i>N</i> 37
H	4	0.00	8.99 0.00	20.67	6.11 43.65	0 77	15.49	1537.521 1537.521 1537.521 1537.521 1537.521 1537.521 1537.521 1537.521
HNV	4	10.73 150.03 3.53 8.76	0.00	18.50	38.90	8.71 10.00 0.51 2.50 2.22	15.49 13.77	21.89
ŅĀ	4	150.03	0.00 0.00 0.00 0.00	82.61	213.05 4.85 38.92	10.00	9 17 12 12 10 10 10	153.00
ĈA	4	8.76	0.00	13.60	38.92	2.50	17.30	27:50
MG	4	31.83	0.00	20.52	44.6/	žįžž	21.55	34.26
NH4	4	158.61	0.00	20.52 85.30	28.27 225.04	1.11	12.65	150.11
ÇL F	4	1.63	0.00	1.84	3.68	0.00	1.52	2.42
NO3	4	1.63 5.76	0.00	12.46 35.08	3.68 33.23	0.00 4.52	1.52	22.07
\$04 PU4	4	26.86 0.00 10.54 193.31 208.70	0.00	35.08	81.20	13.12	31.74	50.47
X \$ \$ 04	4	10.54	0.00	26.31 135.06 149.00	71.68	0.00 7.66	0.00 30.36	48.27
SAN	4	193.31	0.00	135.06	263.10	31.90	119.91	190.65
SCA A/C	4	208.70	0.00	149.00	263.10 283.93 0.97	31.90 33.81 0.87	133.51	190.65 212.28 0.07
ĈĹŽNA	4	1.06	0.00	0.91	1.18	n 95	A 11	0.18 1.26
NA/MG	4	4.71	0.00	4.03	4.77	2.97	0.79	1.26
SS NC	4	1/4.91 21.83	0.00	94.UZ	248.22 97.86	12.92	177.55	1/0.70
COND/P	9 4	1.00	ŏ.ŭŏ	70.94	1.04	2.97 12.92 6.43 0.82	0 . 7 9 1 1 4 3	176.56 68.89 0.15 378.16 337.37 10224.30
AMTH	4	1.00	1075.47	268.87	1.04 597.03 532.10 13016.15	411 - 11 -	237.63	378.16
AMTHNV	V 4	0.00	13484 22	2 41.14	13016 15	65.63	6430.38	10224.30
AMTK	4	0.00	316.93	79.23	296.35	5.03	144.76	230.17
AMICA	4	0.00	0.00 0.00 1075.47 13484.22 316.93 787.14 2860.73 2860.73	196.79	296.35 640.20 2728.89 78.22	80.24 65.63 16.37 14.57	296.76 1342.65	
AMTMG AMTNH4	4 4	0.00	2000.13	152.15	2120.09 78.22	29.11	21.12	2134.61 33.58 10796.01
AMTCL	4	0.00	14255.52	3563.88	15/48.29	29.11 77.73	A/RU U/I	10796.01
AMTE	. 4	0.00	146.57	36.64	128-62	0.00	61.47	97.74
AMTNO3		0.00	146.57 518.13 2414.11	129.53	275.92 1882.52	0.00 33.87 99.74	107.09 855.33	170.60
AMTP04	4 4	0.00	11 () ()	4.03 94.39 94.39 94.39 94.10 94.	0.00 467.82 15164.37	0.00 91.87	61.47 107.09 855.33 0.00 165.63 7489.94	170.28 1359.98 0.00 263.35
AXSSU4	4 4	0.00	947.74 15720.01	236.94	467.82	91.87	165.63	263.35
AMTSS	44	0.00	4 C 7 3 A 1 A 1	7070.00	15164.37	84.79	7/400 04	11909.01

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEU/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIH

-)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 12 DURING 01/79.

PH	N 7	VOLWTAV 4.71	UE@/50.M 0.00	MEAN 4.40	HIGH 5.02	LDW 3.96	ST.DEV 0.38	95%C.L. 0.35
COND	Ż	12.29	0.00	38.86	140.00	8.00	48.50	44.91
CMPPT H	7	0.00 19.39	20.31	2.90 40.01	13.83	0.30	4.89 36.03	4.53 33.36
HNV NA	7	17.56 43.64	0.00	5/-45	104.71	9.55 7.24	34.80	12.22
K	7	2:17	0.00	147.46 3.61	812.64	14.35 0.77	294.64 5.09	272.84 4.71 17.12
C A MG	7	4.59 8.86	0.00	15.68	43.91 176.04	2.00 3.29	18.49 63.61	17.12 58.90
NH4	Ź	2.44	0_00	32.60 7.52 163.52	32.16	0.55	11.04 335.52	310.70
(L F	4	42.94 0.79	0.00	163.52	921.01 3.16	14.66	335.52	310.70 1.08
NU3 SO4	7	6.62 19.06	0.00	18,25	46.78	0.00 3.39	19.08	17.67
PO4	7	0.00	0.00	51.25	141.37	9.37 0.00	55.19 0.00	51.10
XŠSO4 SAN	7	14.64 69.43	0.00	34.42 233.87	117.44 1084.44	6.47 32.69	38.97 381.19	36.09 352.99
SCA	Ż	81.08	0.00	246.89	1103.31	43.46	384.36	355.92
A/C CL/NA	4	0.86 0.98	0.00	0.95 1.11 4.52 180.36	0.98 1.13	0.75 0.88	0.08 0.10	0.07
NA/MG SS	7	4 . 9 2 47 . 3 7	0.00	180.36	\$.50 1015.88	3.08 16.17	0.72	342. <u>7</u> 0
ŇĊ	Ź	14.33	0.00	20.51	81.71	7.17	370.08 26.34	24.39
CÓND/P AMTH	7	0.77	3937.42	0.89 562.49	0.98	0.69	0.10 713.04 633.74 1687.78	0.09 65.09
AMTHNV	7	0.00	3300.40	509.57	2141.72 1908.81	104.45	633.74	586.85 1562.91
AMTK	7	0.00	8863.77	1266.25	4629.60 317.73	71.57	113.05	104,69
AMTCA AMTMG	7	0.00	931.80	133 · 11 257 · 15	414.01 841.75	38.20 23.25	130.04 310.02	120.42
AMTNH4	Ż	0.00	1800.04 495.34 8722.30	70.76	153.33	6.06	59.19	54.81
AMTCL AMTF	7	0.00	160.47	1246.04 22.92	4094.51 145.56	64.58 0.00	1560.06 54.23	1444.64
AMTNU3 AMTSU4	7	0.00	160.47 1343.74	191.96 553.01	602.23	37.05	200.42 643.12	185.59
AMTPU4	7	0.00	3871.06	0.00	1986.52	102.47	0.00	595.54 0.00
AXSSU4 AMTSS	7	0.00	2973.54 9620.70	424.79 1374.39	1565.20 4516.24	70.73 71.23	517.28 1720.75	479.01
AMTNE	7	ŏ.ŏŏ	2910.26	415.75	1840.18	78.48	632.52	1593.43 585.72

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
LMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

MUNITHLY KAINFALL SUMMAKY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 12 DURING 02/19.

A1.	14	VULWIAV	UEU/SO.M	MEAN	ніен	Ë NM T	ST.DEV	95%C.L.
PH COND	4 4	4.59 21.18	0.00 0.00	4.48 32.75	5.42 54.00	4.17 12.00	0.59 17.73	0.94 28.19
CMPPT	ù	0.00	3,25	0.81	2.00	0.18	0.81	1.29
H HNV	4	25.69 21.73	0.00	32.77 27.77	67.61 54.95	3.80 3.31	31.05 25.88	49.38 41.14
NA	4	53.63	0.00	106.85	294.79	33.91	126.10	200.50
r,	4	1.54	0.00	2.30	4.08	1 - 0 -2	1.35	2.15 8.91
CA MG	4 4	11.23	0.00	13.10	21.46 56.76	9.48 8.64	5.61 23.08	36.70
NH4	4	11.37	0.00	22.37 12.34	18.29	6.65	5.48	8./1
ĈΓ	4	59.43	0.00	99.76	251.26	40.04	101.67 2.89	161.66
ก็บร	4	2.15 13.17	0.00	$\frac{3.03}{13.67}$	6.84 16.45	0.53 12.26	1.94	3.09
SU4	4	36.15	0.00	53.82	07.66	17.90	24.01	38.17
P04 XSSU4	4	0.00 50.40	0 0 0 0 0 0	0.00 43.62	0.00	0.00 13.84	0.00 21 . 52	0.00 34.21
SAN	4	108.11	0.00	170.74	59.45 334.40	70.90	114.54	162.12
SCA	4	116.20	0.00	189.73	387.55	73.71	138.24	219.81
A/C CL/NA	4 4	0.93 1.05	0.00	0.90 0.93	1.00	0.86 0.85	0.06 0.17	0.10
NA/MG	4	4.19	ŭ.ŭŏ	4.76	5.19	3.62	0.68	1.08
န္သန္တ	4	61.73	0.00	109.45	277.14	43.82	112.59	179.02
NČ CONDZP	4	28.84 0.96	0.00	47.51	106.01	20.34 0.87	39.86 _0.12	63.38 0.20
AMTH	4	0.00	035.00	208.75	386.64	6.77	157.59	0.20 250.57
VMHTMA AMTMA	4	0.00	700.07	176.52 435.79	314.27 678.29	5.90 171.75	129.71 216.87	206.24 344.82
AMIK	4	0.00	1745.14 49.96	12.49	20.42	7.28	6.27	9.97
AMICA	4	0.00	49.96 365.11	12.49 91.28	20.42	38.22	85.98	136.71
AMTMG AMTNH4	4	0.00	416.05 369.51	104.01	187.55 177.41	43.19 11.85	60.77 67.65	96.63 107.56
AMTCL	4	0.00	1834 29 .69 95	92.38 458.57	800.88	210.09	248.93	395.80
AMTE AMTNU3	4	0.00 0.00	69 - 95	17.49 106.98	39.13 248.40	1.88 24.13	15.93 98.52	25.33 156.64
AMISU4	4	0.00	427.92 1174.76	293.69	378.63	120.53	118.25	187.94
AMTPU4	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	4	0.00 0.00	980.12 2006.36	247.03 501.59	339.96 876.35	74.47 221.90	118.02 274.67	187.65 436.72
AMTNO	4	0.00	937.41	234.35	400.89	139.5ĕ	118.09	187.76

N=NUMBER OF SAMPLES

VOLWIAV=VOLUME AEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, LMPPT, AND RATIUS

UEU/SQ. V=MICKUEQUIVALENTS/SHUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEU/SJ. M COLUMN HAS UNITS UF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MULTH

)

MGNTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 12 DURING 03,79.

.	N_	VOLWTAV	UEW/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH COND	<u> </u>	4.70 23.47	v.00	4.93 41.00	6.46 55.00	4.63 18.00	0.98 20.07	2.44 49.84
ČMPPT H	3	0.00	3.29	1.10	2.75	0.15	1 - 44	3.57
HNV	3	20.17 16.38	0.00	11.85	23.44 19.05	0.35 0.07	11.55	28.67 23.57 356.70
NA K	3	2.27	0.00	180.44	328.27 6.38	41.31	143.68	356.70
CA	3	14.63	0.00	62.37	146.71	4.49	/4./1	185.46
MG NH4	3	16.16	0.00	36.30 12.38	52.89 17.74	9.29 6.10	23.59 5.88	58.57 14.59
CL F	3	71.61	0.00	142.79	219.11	45.68 2.63	88.56	219.86
NO3	3	17.63	0.00	12.38 142.79 3.68 37.10	68.88	13.23	28.6 88.591 28.629	2.26 71.14
\$04 P04	3	38.08 3.00	0.00	89.39	150.53 25.27	24.15	14.79	71.14 157.12 36.22
XŠSU4 San	3	30.71 134.87	0.00	74.69	25.27 133.70 386.22	19.45 87.65	57.22	142.05 418.07
SCA	3	142.00	0_00	281.92 307.94	436.62	86.16	57.22 168.40 192.89 0.08	478.86
A/C CL/NA	3	0.95 0.88	0.00	0.92 0.79	1.02 1.11	0.85 0.67	0.08	0.21 0.55
NÃ/MG	3	78.98	0.00	4.97 157.49	6.21 241.68	3.68	97.68	3.22
SS NC	3	42.84	0.00	138.60	208.89	50.39 12.33	109.59	242.51 272.06
CONU/P AMTH	3	0.99	9.00 663.46	0.99 221.15	1.00	0.99 1.35	0.00 366.86	910.77
AMTHNV AMTNA	3	0.00	538.77	179.59 891.06	524.00	0.26 254.94	298.35 555.74	740.70 1379.68
AMTK	3	0.00	538.77 2673.17 74.54	24.85	524.00 1282.32 42.13 217.77	9-47	16.41	40.74
AMTCA AMTMG	3	0.00	481.81 531.59	160.54 177.20	21/.//	123.50 69.36	50.27 96.56 75.32 510.47	124.81
AMTNH4 AMTCL	3	0.00	246.02 2355.01	82.00 785.00	255.62 167.71 1256.31	26.33 242.78 3.91	75.32	186.99 1267.30
AMTE	3	0.00	136.14	45.38	115.79	3.91	61.30	152.17
AMTNO3 AMTSO4	3	0.00	580.01 1252.76	193.34 417.59 32.91	363.73 664.16	102.24 223.44	224 <u>-</u> 44	366.64 558.55
AMTPO4 AXSSU4	3	0.00	98.72	32.91 336.81	98.72 534.88	0.00	57.00 175.98 563.05	141.50
AMTSS	3	0.00	1010.43	865.86	1385.71	198.46 267.79	563.05	436.90 1397.83
AMTNC	3	0.00	1409.35	469.78	760.12	310.08	251.86	625.26

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RAIIOS
UEG/SQ.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UMWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIJE 13 DURING 08/77.

DT OT OT OT OT OT OT OT OT OT	2 6666600000000000000660000000000000000	VOLWTAV 5.408 11.17 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00	M 0 0 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 687539000000000000000000000000000000000000	H 6007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#042120000000000000000000000000000000000	V4430520000000000000000000000000000000000	\$5 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AMÍNA AMÍK AMÍCA AMÍNG	0 0 0 0	0.00 0.00 0.00 0.00	0.00 0.00 0.00	119.74 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00	128.70 0.00 0.00 0.00

N=NUMBER OF SAMPLES

VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUNU,CMPPT,AND RATIUS

UEU/SU.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MUNTH

)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 09/77.

OU	N	VOLWTAY	UEQ/SQ.M	MEAN	HIGH_	ΓOM_	ST.DEV	95%C.L.
PH COND	10	5.02 24.51	0.00	4.28 33.67	5.87 91.60	3.87 2.50	25.81 25.81	0.47 18.45
CMPPT	10	0.00	14.07	1.41	6.81	5.02	2.20	1.57
H Hnv	10	9.45	0.00	52,49	134.90	1.35	45.21	32.31
NA	10	7.11	v.00 v.00	35.04	83.18	0.00	34.24	24.47
K	Ŏ	0.00	0.00	0.00	0.00	ŏ.ŏŏ	0.00	ŏ.ŏŏ
CA MG	ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	ŏ	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
ÇL	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	ŏ.ŏŏ
r N03	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SU4	ŏ	Ÿ.00	Ŏ. ŎŎ	0.00	0.00	0.00	0.00	0.00
P04	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XSSO4 San	Ö	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS	ğ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
NC COND/P	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMIH	1 ŏ	0.00	1328.61	0.00 132.86	370.24	21.08	0.00 107.94	77.14
AMTHNV	10	0.00	1000.60	100.06	345.53	0.00	112.68	80.53
AMTNA AMTK	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	ŏ	0.00	0,00	0.00	0.00	0.00	0.00	0.00
AMTMG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4 AMTCL	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTE	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSO4 AMTPU4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS AMTNC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
APPING	v	0.00	0,00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH, COND, CMPPT, AND RATIOS UEG/SG.M=MICROEQUIVALENTS/SQUARE METER MEANEUNWEIGHTED AVERAGE CMPPT IN UEG/SU.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 10/77.

PH COND CMPPT HNV NA KA MG NH4	N N N N N N N N N N N N N N N N N N N	VOLWTAV 4-899 0-00 56-73 54-17 62-75 15-78 16-18	UE U/SQ . M 0.00 0.00 4.51 0.00 0.00 0.00 0.00 0.00	MEAN 24 40.94 30.98 60.61 67.2.91 14.79	HIGH 65.56 144.04 138.74 13.37 21.39	L3.84 10.3382 17.59420 27.290	ST. DEV 0.38 19.71 0.48 51.51 49.69 57.25 1.76 6.08	95%C.L.8 24.59 24.59 64.78 91.083 7.563
CL F 0 3 S 0 4 P 0 4 X 3 S 0 4 X 3 S C A X C		53.57 1.30 12.05 29.61 1.93 24.10 98.46 132.14	0 00 0 00 0 00 0 00 0 00 0 00 0 00	1466 6795 1462 1462 1382 1382 1392 1392 1392 1392 1392 1392 1392 139	121.26 23.07 34.14 50.42 169.25 196.86	0.00 5.97 19.57 0.00 13.74 56.31 100.14	50.16 50.16 70.19 70.93 70	79.76 4.94 12.59 10.12 4.77 77.55 0.21
CL/NA NA/MG SS NC COND/P AMTH AMTHA AMTK	4444NN44:	0.86 30.78 30.53 0.00 0.00 0.00 0.00	0 00 0 00 0 00 0 00 0 00 0 00 25644 35 2375 38 2375 48	044753653 5302884 5302884 548364	1 0 1 6 3 7 5 4 8 1 2 4 4 1 0 1 6 3 8 7 1 6 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.65 0.50 8.71 22.56 137.97 113.18	12.38 12.34 458.12 4487.37 713.93 14.78	0.19 4.19 87.69 87.69 19.35 10.35 11.33 11.33
AMTCA AMTMH4 AMTCL AMTF AMTSOU4 AMTPOS AMTPOS AMTNC	1444444444	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2049 2049 2049 458 2049 458 205 205 205 205 205 205 205 205 205 205	52.87 159.75 159.32 114.01 12.73 114.01 288.45 289.45 289.	269.29 269.29 1396.39 252.93 487.27 478.27 15494.06	31.50 7.50 7.51 7.51 7.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00	26.80 118.40 31.83 613.65 93.14 188.85 177.24 676.86 173.01	42.62 188.62 188.62 975.71 148.02 148.02 148.02 148.02 1076.08

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

-)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 15 DURING 11/77.

	N	VOLWTAV	UEW/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	6	5.10	0.00	4.86	5.31	4.63	85.0	0.29
CUND	6	6.64	0.00	11.27	19.30	3.60	5.95	6.24
CMPPT H	6	0.00	18.50	3.08	8.21	0.30	3.46	3.63
HNV	6	8.01 5.68	0.00	13.89	23.44 18.20	4.90 3.69	7.21	8.29 5.77
NA	6	16.03	0.00	10.18 30.87	49.13	7.39	5.50 20.24	21.23
Ŕ	6	.ŏ.žž	Ŏ.ŎŎ	0.77	1.79	ó. ō ó	0.70	0.74
CA	6	1.13	0.00	4.32	7.98	0.00	0.70 3.62 4.72	3.80
MG	6	3.64	0.00	7_0/	12.34	1.73	4.72	4.95
NH4	6	1.55	0.00	2.00	8.87	0.55	5.12	3.28
ČΓ	6	18.08	0.00	34.50	63.45	9.87	23.73	24.90
T	•	9.24	0.00	0.44	2.63	0.00	1.07	1.13
NO3 SU4	6	3.58 7.33	Ņ. 00	7.90	17.42	1.13	6.57	6.20
P04	6	0.00	0.00	14.30	28.31 0.00	2.50 0.00	9.34 0.00	9.60 0.00
x 5504	6	5.5 4	0.00	10.88	23.61	1.61	7.64	8.22
SAN	6	29.03	ŷ. ŏŏ	57.14	89.72	13.50	33.78	35.45
SCA	6	30.58	0.00	59.60	98.44	16.59	34.96	36.68
A/C	6	0.95 1.13	0.00	0.96 1.12	1.05	0.81	0.09	0.09
CL/NA	þ	1.13	0.00	1.12	1.34	0-94	0.17	0.18
NA/MG	þ	4.40	0_00	4.36	4.77	3.95	0.28	0.29
SS NC	6	19.25	0.00	36.65	62.92	9.55	24.85	26.07
COND/P	5	3.32 1.12	0.00	9.06	25.14	0.12	9.58	10.06
AMTH	6	0.00	1481.05	1.01 246.84	1.34 466.99	$\begin{array}{c} 0.71 \\ 70.69 \end{array}$	0.21 173.82	0.22 182.38
AMTHNV	6	ŏ.ŏŏ	1050.26	175.04	375.31	54.88	123.78	129.87
AMTNA	6	Ŭ. ÕÕ	2966.43	494.40	821.13	64.25	284.47	298.46
AMTK	6	0.00	59.86	6.64	18.25	0.00	7.21 35.35	7.56
AMTCA	6	0.00	208.82	34.80	92.74	0.00	35.35	37.09
AMIMG	þ	0.00	6/4_10	112.35 47.78 557.42	189.12	14.14	62.83	65.92
AMTNH4	þ	0.00	286.65	-47.78	126.82	8.36	49.85	52.30
AMTCL	0	0.00	3344.50	22/.45	903.04	61.23	303.76	318.71
AMTF AMTNU3	6	0.00	7.94 662.80	1.32	7.94 238.40	$0.00 \\ 41.37$	3.24	3.40
AMTSU4	6	0.00	1356.19	110.47 226.03	444.47	48.35	86.85 162.43	91.12 170.42
AMTP04	6	0.00	0.00	0.00	77.00	0.00	0.00	0.00
AXSSU4	6	ŏ.ŏŏ	1024.46	170.74	35 1. 55	42.04	137.45	144.21
AMTSS	6	0.00	3560.99	Š93 . Š0	996.05	67.54	336.06	352.59
AMTNO	6	0.00	614.86	170.74 593.50 102.48	359.46	8.34	129.67	136.05

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MUNTILLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 13 DURING 12/77.

5.4	N	VOLMTAV	UEU/SQ.M	MEAN	HIGH	ΓOΜ	ST.DEV	95%C.L.
PH COND	12 12	13.92	V.00	4.44 15.93	4.99	3.97 0.00	0.31 13.74	0.19 8.53
CMPPI	iā	0.00	10.10	0.84	2.14	0.01	0.75	0.47
H	15	22.01	0.00	36.37	107.15	10.53	28.80	17.88
HNV NA	12 10	19.84 30.11	0.00	31.22 42.83	100.00	9.33	26.79 37.25	16.63
K	10	0.56	0_00	1.17	4.08	0.00	1 - 48	1.05
C A MG	10 10	2.57 6.85	0.00	7.29	40.42	9.50	12.08	8.63 6.15
NH4	10	2.70	0.00	10.00	27.06 16.08	2.88 0.55	8.61 5.21	3.72
ÇL	ĨÜ	31.51	0.00	45.80	118.16	10.43	38.50	27.58
N03	10	0.30 6.88	0.00	0.53 13.27	2.63 56.45	0.00 2.74	0.89 16.08	0.64
SO4	iŏ	21.68	0.00	29.42	77.03	11.45	22.59	16.15
P04	10	1.55	0.00	0.88	8.84	0.00	2.80	2.00
X3504 San	$\begin{array}{c} 10 \\ 10 \end{array}$	18.50 61.91	0.00	24.80 89.90	64.88 251.65	8.46 34.41	19.88	14.21 50.35
SCA	iŏ	64.69	0.00	94.09	25/-4/	36.44 0.85	70.45	52.72
A/C CL/NA	10	0.96	0.00	0.96 1.07	1.14	0.85	0.10	0.07
NA/MG	$\frac{10}{10}$	1.05	0.00	4.28	4.69	0.89 2.11	0.75	0.17 0.54
SS NC	10	34.11	Q.00	49.53	130.33	7.87	43.01	30.73
COND/P	10 10	8.68 0.97	0.00	16.31	66.89	2.17 0.85	19.34	13.82
ÄMTH	iž	0.00	2223.30	185.27	567.78	2.92 1.57	168.27	104.41
AMTHNV	15	0.00	2003.76	166.98	529.89	,1.57	156.56	97.17
AMTK	10 10	0.00	3v32.03 56.24	302.30 5.62	591.12 16.70	24.73	5.13	145.64 3.67
AMICA	10	0.00	2233-30 2033-76 3035-84 259-50 6972-84	303.58 5.62 25.95	16.70 85.77 132.17	0.00 7.72	156.56 205.13 22.97 43.62	16.42
AMTMG AMTNH4	10	0.00	690.28	69.03 27.23	132.17	11.70 3.81	43.62 28.12	31.17
AMTCL	iŏ	0.00	272.34 3176.93 30.26 693.32	317.69	85.76 627.36	42.39	201.71	144.16
AMTE	10	0.00	30.46	3.03	10.44	20.00	4.19	144.16 2.99 26.50
AMTNU3 AMTSU4	10 10	0.00	2186.04	69.33 218.60	163.57 536.77	38.14 68.61	37.20 154.40	110.34
AMTP04	iŏ	ō.ŏŭ	156.17	15.62	156.17	0.00	49.39	35.30
AXSSÚ4 AMTSS	10 10	0.00	1865.51 3439.28	186.55	493.31	57.78	145.53	104_00
AMTNO	10	0.00 V.00	3434.52	343.93 87.49	691.98 162.12	31.95 14.90	223.36 48.35	159.63 34.55
		. •					- •	•

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUMD, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

- 1

Table 130.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN LUMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIFE 13 DURING 01/78.

Рн	N ₄	VOLWTAV 4.66	UEU/\$0.M	MEAN 4.43	HIGH 5.09	LUW 4.05	ST.DEV	95%C.L. 0.79
COND CMPPT	4	13.97	0.00 4.81	23.42 1.20	48.00 3.28	7.00 0.40	17.95 1.39	28.54 2.21
μЙΛ Н	4	21.71 19.31	0.00	37.35 33.75	89.13 83.18	8.13 5.75	37.75 35.85	60.03 57.00
NA K Ca	4	33.52 0.34 7.20	0.00 0.00 0.00	50.76 0.77 14.35	90.00 2.55 22.45	20.00	29.13 1.20 9.95	46.32 1.90 15.82
MG NH4	4	1.45	0 . 0 0 0 . 0 0	13 10	21.96 22.73	1.50 3.78 3.33	1.41	11.88
ÇL F	4	7.13 30.17 0.00 8.51	V.00 V.00	47.60 0.00	84.04 0.00 35.65	16.92 0.00	8.64 27.74 0.00	44.10 0.00 22.53
N03 S04	4	3.51 25.65	0.00	12.47 17.60 10.77 47.37 47.37	104.10	3.06 9.78	14.17 40.83 7.42	64 92
P04 X\$\$04 \$AN	4	25.85 10.12 22.75	0.00 0.00 0.00	42.45 114.64	14.85 95.45 223.78 248.33	0.00 8.04 44.62	38.03 77.73	11.80 60.47 123.58 139.69
SCA A/C	4	74.66 77.35 0.97	0.00	127.90 0.90	1 . 1 4	39.08 0.78	87.86	U.24
CL/NA NA/MG	4	0.90 4.50 33.28	0.00	ก งน	1.13 5.29 92.69	0.83 3.91	0.15 0.14 0.63	0.22
SS NC	4	22.36	0.00	4.16 52.72 37.82 0.90 261.18	66.51	18.66	(1) 50	48.64 38.68
CUND/P AMTH AMTHNV	4	0.89 0.00 0.00	0.00 1044.71 929.06	261.18 232.27	1.00 487.40 454.87	0.84 47.63 33.72	24.33 0.07 193.75 182.29 214.32	0.11 308.06 289.84
AMTNA AMTK	4	0.00	1612.97	403.24	656.28 13.96	171.51	A	340 - //
AMTCA AMTMG	4	0.00	346.49 358.56 342.99 1452.04	86.62	131.57	45.73 43.92 45.48	45.53 39.08 37.09 172.36	10.48 72.39 62.14
AMTNH4	4	0.00	342.99 1452.04	89.64 85.75 363.01	124.31 555.19	45.48 194.38 0.00	37.09 172.36	62.14 58.97 274.05
AMTF AMTNU3 AMTSU4	4	0.00 0.00 0.00	0.00 409.49 1244.21 487.18	0.00 102.37 311.05	0.00 194.95 569.30	52.93 164.69	0.00 65.13 185.36	0.00 103.55 294.72
AMTPO4 AXSSO4	4	0.00	1094.79	121.79 273.70	487.18 522.01	0.00 139.70	243.59 173.82	294.72 387.31 276.38
AMTSS AMTNC	4	0.00	1601.60 1075.90	400.40	612.37 363.75	214.40	190.11	302.27 176.56

NENUMBER OF SAMPLES VOLATAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH, CUND, CMPPT, AND RATIUS OLG/SG.M=MICROEQUIVALENTS/SJUARE METER MEAN=UMMEIGHTED AVERAGE CMPPT IN UER/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS FOTAL AMOUNT OF RAIN FOR THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 02/78.

PH	N	VOLWTAV 4.42	UEW/SQ.M	MEAN	HIGH 4.56	LOW	ST.DEV	95%C.L.
COND	9	18.68	0.00	4.23	102.00	4.00 12.60	34.42 34.42	0.17 26.50
CMPPT	9	0.00	12.94	1.44 58.95	5.23	0.02	1.80	1.38
H HNV	9	38.10	0.00	58.95	100.00	27.54	28.95	22.29
NA	6	33.39 21.24	0.00	48.38 14.78	77.63 37.39	25.12	21.17	16.30 12.63
K.	6	0.51	0,00	0.68	1.53	0.00	12.03	0.58
C A MG	6	3.78 5.52	0 _ 0 0	/A Q 1	10.98	0.00	4.00 2.63	4.19 2.75
NH4	6	9.50	0.00	74.025 15.55 15.55 10.99.44 31.44	8.72 13.86	1.73	4.50	4.72
CL	6	22.02	0.00	15.56	34.97	2.26	11.53	12.10
F 410.7	6	0.48	0_00	0.53	2.63	0.00	1.05 5.24 9.16	1.10
N03 SU4	6 6	8.12 31.14	0.00	31 44	17.10 43.10	3.55 14.99	3.54	5.50 9.61
PÕ4	6	0.00	0,00	0.00	0.00	0.00	0.00	ó.ŏö
X S S04	6	28.92 61.75	0_00	0.00 29.90 57.47	41.48	14.32	9.00	9.44
SAN SCA	6	75.75	0.00	71:50	79.09 98.34	26.80 41.16	18.98 20.87	19.91 21.90
ÄŽĈ	6	0.82	0.00	0.80	70.87	0.65	0.07	0.08
CL/NA	6	1.00	0.00	1.05	1.40	0.75	0.25 1.19	0.26
NA/MG SS	6	3.97 23.82	0.00	3.68	<u> </u>	1.51	13.19	1.25
NC NC	6	14.19	0.00	16.46 13.38	38.57 26.67	2.49 6.46	12.64 7.08	13.26
COND/P	6	0.92	0.00	0.93 548.03	1.01	0.83	0.07	7.43
AMTH AMTHNV	9	0.00	4932.26	548.93	1730.68	17.19	628.98	484.32
AMTNA	6	0.00	4932.26 4322.60 2621.36 64.98	480.29 470.23	1507.36 1954.36	13.34 7.75	557.16 736.85	484.32 429.02 773.10
AMTK	6	0.00	64.98	10.83	26.21	0.00	736.85 10.36 77.34	10.87
AMTCA AMTMG	6	0.00	400.37	81.06	181.82	0.00 5.13	77.34	81.14
AMTNH4	6	0.00	710.18 804.70	118.36 134.12	455.73 347.71	8.23	169.63 138.63	177.98 145.45
AMTCL	6	0.00	2831.08	471.85	1827.62 43.58	6.70	680.92	714.42
AMTE	6	0.00	804.70 2831.08 61.59 1043.77	10.27	,43.5 <u>8</u>	0.00	17.84	18.72
AMTNO3 AMTSU4	6	0.00	4004.16	173.96 667.36	353.25 1643.14	25.86 103.22	118.57 596.75	124.41
AMTP04	6	0.00	0.00	0.00	0.00	0.00	0.00	0_00
AXSSQ4	6	0.00	3/10./3	619.79	1455.07	102.53	534.21	560.49
AMISS AMINC	6	0.00	3062.77 1824.84	510.46 304.14	2015.87 794.09	7.39 32.25	754.41 292.88	791.52 307.29
77116	U	0.00	1054.04	304.14	174.07	35.60	272.00	301.67

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND,CMPPT,AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

Table 132.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 13 DURING 03/7%.

PCCHHNKCMNCFNSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	7777755555555555555555555555555	VOL 210.0.000000000000000000000000000000000	M0090000000000000000000000000000000000	6604739528210802179862612242307 N3615889890522308348014202643618 E40139913844040039701308114705648 M 3 435 2116 35 416 74 733413114	H 70702141607385000402527305329715 G-0207034505576000402527305329715 H 6 093 4525406700402527305329715 H 6 193 4424 98 813 18 668 32989	0082950099308002803770364920839 008324600893057005089338847708659 0083246008930800277088847708665 00832460099308002803770364920839 00832460099308002803770364920839 00832460099308002803770364920839	V91972151447393605207611423678430 D • • • • • • • • • • • • • • • • • • •	*7322970752462504489337151466248 L2091893350834802950362810501938 C010877253218 44 356 94 08551991 227 2218 44 356 94 0899139138 1188
AMTHNV AMTNA AMTK AMTCA AMTMG	775555555555555	0.00	23437.158 1731.158 1731.158 1758.150 578.150 574.17 2000.17 1266.005 1660.85 1670.41 1518.38	11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0.6 11.0 11.0	553.529 653.529 653.647 203.615 203.615 1997.49 177.22 177.22 106.49	129.44 119.70 119.00 140.00 140.57 140.00 140.57 140.00 14	24.63 11.77 117.78 124.53 104.53 104.53 104.53 104.53 104.62 109.77 109.77 109.77	208.01 195.01 195.01 119.34 119.38 119.88 1129

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MJN(H

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 13 DURING 04/78.

Du	N	VOLWTAY	UEW/SQ.M	MEAN,	нісн	ĽΟ₩,	ST.DEV	95%C.L.
PH COND	ۇ خ	4.74 36.09	0.00	4.74 34.50	4.76 39.80	4.73 29.20	0.02 7.50	0.19 67.36
CMPPT	Ž	0.00	0.42	0.21	0.27	0.15 17.38 9.55 39.57	0.09	0.80
HNV	ځ	18.19 14.38	0.00	18.00 13.27	18.62 16.98	17.38	9.88 5.26	7.90 47.23
NA	Ž	49.76	0.00	54.13	68.70	39.57	20.60	185.13
K Ca	کے	4.66 59.08	0.00	54.13 4.47 57.88	5.11 61.88	3.83 53.89	0.90 5.65 2.73	50.74
MG	Ž	15.83	0.00	16.41	18.34	14-48	2.73	24.57 133.89
NH4 CL	Ş	58.60 59.60	0.00	55.44 63.87	65.97 78.11	44.91 49.63	$\frac{14.90}{20.14}$	181_00
F NO3	Š	3.84	0.00	63.87 3.68	4.21	3.16	0.74	6.69
S04	٤	31.12 88.17	0.00	32.02 82.24	4.21 35.00 102.02	29.03 62.46	27.97	37.93 251.39
P04 X SS 04	5	0.00	0.00 0.00	75.85	97.27	0.00	0.00 30.30	0.00 272.32
SAN	ž	82.28 182.74	0.00	181.81	184.89	54.42 178.73	4.36	39.15
SCA A/C	5	206.12	0.00	206.33 0.85	207.05	205.62 0.86	1.01	9.07
CL/NA	چ	0.89 1.20	0.00	1.18	0.90 1.25 3.75	1.14	0.08	0.23
NA/MG SS	2	3.14 63-34	Ů . Ů Õ Q . Ų Õ	3.30 68.64	3.75	2.73 51.12	0.72 24.78	6.43
SS NC	Š	1.20 3.14 63.35 124.55	0.00	119.70	86.16 135.88	10 05.52 25.52	טא כנ	222.68 205.70
COND/P AMTH	5	1.13	76.44	1.09	50.92	0 • 95 25 - 52	17.95	1.80
AMTHNV	Ž	0.00	60.46	38.22 30.23	46.44	14.05	žž. 9ž	161.37 205.97
AMTNA AMTK	ځ	0.00	209.09 19.59	104.55 9.79 124.17	108.19	100.90	5.90	46.32 52.98
AMTCA AMTMG	Š	0.00	209 246 209 246 246 246 250	124.17	169.19	100.90 5.63 79.15 26.94	1255.95 1255.95 1255.967 1255.997 180.980	46.32 52.98 572.19 80.36 727.27
AMTNH4	5	0.00	246.35	33.27 123.18	39.59 180.40	07.40	80.92	727.27
AMTCL AMTF	5	0.00	250.44	125.22	135.71	114.73	14.04	133.34
AMTNO3	2	0.00	16.15	8.08	11.51 79.39	4.64 51.41	4.86	1//-02
AMTSO4 AMTPO4	5	0.00	370.69	185.35	278.95	91.74	132.38	1189.76
AXSSÕ4	Ş	0.00	345.91	172.96	265.98	79.93	0.00 131.56	0.00 1182.35
AMTSS AMTNC	5	0.00	266.33 523.58	133.16 261.79	139.78 371.55	126.55 152.03	9.36 155.22	84.11 1395.02
MIN FIRE	٤.	U • U V	262620	201017	311033	175.03	177455	1373.06

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

-)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 05/78.

РН	N 6	VOLWTAV 4.32	UEW/SQ.M	MEAN 4.35	HIGH _6.79	LOW 4.10	ST.DEV	95%Ç.L.
CÖND CMPP I	6	34.62	0.00	42.52	75.00	30.00	1.03 16.85	17.68
Н	6	0.00 48.17	8.00	1.33	2.09 79.43	0.02	0.93 26.52	0.98 27.82
HNV NA	6	42.43 24.55 16.27 16.71	V. 00	40.12 27.13	75.86 41.74	0.11	25.36 13.19	26.61
K	Ē	2.35	0_00	12.25	3.83	0.51	1.23 13.98	16.40 1.53 17.38
MG	5	6.71	0.00 0.00 0.00	7.50	39.92 10.78 70.41	0.51 4.99 2.96 7.21	4.01 23.08	4.98
NH4 CL	3	28.73	0.00	37.26 31.81	70.41 52.73	7.21 16.07	23.08 15.57	28.70 19.36
F NO3	も 555555555555555555555555555555555555	1.81 23.08	0.00	440.125.7 440.125.7 16.527 16.528 17.351 311.357 311.357 311.357	52.73 2.11 26.39 87.03	1.05	15.57 0.58	28.70 19.36 0.72 7.70
\$04	ž	22.66	0.00	50.71	87.03	37.89	6.19 19.81	24.05
P04 X3504	3	0.00 52.90	0.00	0.00 57.61	U _ U U	37.89 0.00 32.89	19.70	24.49
SAN SCA	5	109.28 137.45	0.00	118.14	82.70 158.77 174.60	84.23 91.40	29.02 31.45	36.08 39.10
A/C CL/NA	٤	52.90 109.28 137.45 0.80 1.17	Ŏ.ŎŎ	140.13.3.39 40.13.3.39 40.13.3.39 451.7.57 451.7.57 451.7.57	0.92	70.68	0.10	0.13 0.23
NA/MG	3	3.00	0.00 0.00 0.00	3.62	0.92 1.45 4.55	3.12	0.10 0.19 0.54	0.68
SS NC	3	29.65 59.50	0.00	33.37 57.33	53.93 85.89	0.68 0.93 3.12 16.85 13.73	16.79 28.54	20.87 35.48
COND/P AMTH	5 6	1.12	0.00	1.09	1.31 1176.87 1098.32	0.40	0.13	0.17
AMTHNV	6	0.00	3853.43 3393.61	565.64	1098.32	0.03	456.79 406.53	479.27 426.53
AMTNA AMTK	Š	0.00	1958.80 187.90 1298.76	391.76 37.58	714.16	95.86 .4.75	260.18 30.90	426.53 323.47 38.41 371.59
AMTCA AMTMG	5 5 5	0.00	1298.76	259.75 107.04	780.93 196.32	46.39 27.75	298.88 77.64 565.14 297.33	371.59
AMTNH4	5	0.00	535.18 3133.74 2292.35	626.75	1474.18	78.05	565.14	7062-658 7062-658 7062-658 2580
AMTCL AMIF	5 5	0.00	144.63 1841.56	458.47 28.93	902.25	78.05 112.36 2.80	17.20	369.65 21.38
AMTNO3 AMTSO4	5	0.00	1841.56 4441.35	368.31 888.27	584.26 1462.18	75.41 231.17	204.51 466.62	254.25
AMTPO4	<u>چ</u>	0.00	0.00	0.00	0.00	0.00	0.00	47 _ (J ()
AXSSO4	555555	0.00	4221.45 2366.27	844.29 473.25	1403.71 922.69	219.67 123.85	458.45 308.16	570.59 383.12
AMTNC	5	0.00	4748.11	949.62	1680.30	128.95	735.67	383.12 914.63

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
LMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 13 DURING 06/78.

PH	N 9	VOLWTAV 4.58	UEW/SQ.M	MEAN 4.38 25.71	HIGH 5.80	LOW 3.76	ST.DEV	95%C.L.
COND CMPPT H	9 9 9	17.15 0.00 26.26	0.00 15.83 0.00	1.76 41.62 36.35	95.80 7.25 173.78	7.20 0.09 1.59	27.20 2.15 52.53 47.70	20.94 1.66 40.45
HNV NA K	9 9 9	23.39 13.16 0.70	0.00	36.35 21.16	154-88 57-83 41-92 19-53	0.50 1.50 1.80	47.70 16.19 1.23	40.45 36.73 12.47
C A MG	999	10.17	0.00 0.00 0.00 0.00	14.30	41.92 10.53	1.50 1.81	1616	12.47 0.94 10.13 3.55
NH4 CL F	9 9	10.17 2.96 6.21 12.98	0.00	8.50 22.87	42.69	7-61	13.22	
N03 S04	9	0.01 12.48 23.17	0 00 0 00 0 00	15.36 14.30 15.82 15.82 15.82 20.33 20.33 20.33 236	4269 7529 2243 15886	0.00 2.26 8.95	4.61 13.22 21.20 0.70 27.87 47.89	21.46 36.88
PO4 X3SO4 SAN	9	0.00 21.84	0.00	33.99	0.00	0.00 7.24	0.00 46.27 94.46	0.00 35.63
SCA A/C	9	48.64 59.47 0.82	0.00 0.00 0.00	81.65 92.06 0.89 1.08	151.92 328.68 337.09 0.98	0.70 7.24 32.21 41.31 0.88 3.50	93.82 0.12 0.13	16.5468 16.5488 16.633 172.690 172.690
CL/NA NA/MG	9 9	0.99 4.44	0.00	1.08 4.05 24.30	1.30	0.88 3.50	0.13 0.54	0.10
SS NC COND/P	9	14.27 18.94 1.20	0.00	26.13 1.21 461.90	88.59 2.34	7.15 0.99	24.95	19.21
AMTH AMTHNV AMTNA	9 9 9	0.00	4157.14 3702.91	461.90 411.43 231.47	74.71 88.59 82.34 1739.15 1480.26 598.94	8.4159 18.70 18.75 18.75 1.91	570.77 505.59	439.49 389.30 137.93
AMTK	9	0.00 0.00 0.00 0.00	111.05	411.43 231.47 12.34 178.91 52.10	37.02 795.90	1.91 19.41 7.56	240.477 20.495 240.477 25079.139 25079.139 25079.139	169.349 169.34
AMTMG AMTNH4 AMTCL	9 9 9	0 00	000 000 000 157.19 1503.19 1610.286 1610.888 16108.530 16468.530		795.90 131.20 602.91 552.01	0.00 27.50	37.70 189.05 161.29	
AMTF AMTNO3	9	0.00 0.00 0.00 0.00	1975.56	219.51 407.56	1.91 958.93	29.29 23.03	0.64 291.82 493.18	124 19 0 49 224 70 379 75
AMTSÜ4 AMTPÜ4 AXSSÖ4	9	0.00	1975-56 3668-02 3668-03 3457-37 2258-57	407.56 0.00 384.15	1539.64 0.00 1482.84	23.03 0.00 20.20	493.18 0.00 481.50 178.85	0 00
AMTSS AMTNC	9 9	0.00	2258.34 2997.57	384-15 250-93 333-06	608.87 1557.10	30.33 35.73	178.85 471.65	370.76 137.71 363.17

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPP1, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

-)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 07/78.

РН	N 7	VOLWTAV 4.32	UEQ/SQ.M 0.00	MEAN 4.32	HIGH _6.28	LŪW 3.82	STORY	95%C.L.
COND	<u> </u>	23.34	0.00	29.71	70.20	11.80	0.78 20.72	0.72 19.19
CMPPT H	7	0.00 48.03	20.98	3.00	12.31	0.07	4.25	3.93
HNV	7	45.38	0.00	47.79 45.42	144.54	0.52 0.52 0.25	49.43 47.51	45.78 43.99
ŊA	é	9.00	0.00	12.83	18.26	5.22	4.51	4.73 0.37
ĈA	6	0.42 6.50	0.00	0.64	1.28 21.96	0.25	0.35 8.21	0.37
MG	ě	2.27	0.00	11.48 3.37 5.17	5.35	1.32	1.33	1.39
NH4 CL	6	6.55	0.00	15-17	25.35 24.97 24.13 24.13 11.0.94 11.30 11.30 11.30 11.30	0.00 5.36	40.535 8.337 6.920	8.61 1.39 10.25 7.19
F	6	1.34	0_00	15.37	4.21	0.00	1.92	2.02
N03 S04	6	1.34 11.44 39.87	0.00	18./9	46.13	5.48	1/.37	18-24
P04	6	0.00	0.00	45.56 0.00	113.33	14.16	37.09 0.00	38.92 0.00 38.76
X\$\$04	6	38.91	0.00	44.13	113.94	12-44	36.95	38.76
SAN SCA	6	62.40 68.58	0.00	81.21 89.16	205.15	33.20 44.75	56.00 61.63	58.75 64.67
A/C	6	0.91	0_00	0.91	0.99 1.67	0.74	0.09	0.09
CL/NA NA/MG	6	1.08 3.96	0.00	1.20 3.80	1.67	0.93 3.41	0.27 0.33	0.29 0.34 6.24
SS	6	10.27	0.00	15.32 18.17	23.02	5.91	5.95	6.24
NC COND/P	6	10.13	0.00	18.17	23.02 36.38	0.88	12.70	13.32
AMTH	7	1.03	10076.54	1439.51	5015.87	0.91 0.35	0.06 1792.92	1660.27
AMTHNV	7	0.00	10076.54 9520.41 1882.68	1560-05	4681.08	0.35 0.37 127.79	1679.70	1660 .27 1555 .42 233 .05
AMTNA AMTK	6	0.00	1882.68	313.78	642.42	127.79	222.12	10.06
AMTCA	6	0.00	1358 • 96 475 • 51 461 • 41 2038 • 42 279 • 51	226.49	5015-87 4681-08 642-42 789-04 162-05	0.00	285.82	299.89
AMTMG AMTNH4	6	0.00	475.51	79.25	162.05	33.70 0.00	285.82 51.92 157.53 159.27	299.89 54.48 165.28
AMTCL	6	0.00	2038.42	76.90 339.74	397.61 659.70	146.73	199.27	209.08
AMTE	6	0.00	279.51	46.59	151.31	0.00	54.25	62.15
AMTNO3	6	0.00	2392.83 8339.62	398.81 1389.77	735.23 3922.10	77.12 126.09	292.42 1437.58	306.81 1508.31
AMTPO4	6	0.00	0.00	0.00 1356.40	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	6	0.00	8138.43 2148.20	1356.40 358.03	3854.21 727.65	110.77 161.84	1418.00 232.09	1487.76
AMTNO	6	ŏ:ŏŏ	2118.33	353.06	919.54	108.25	329:76	243.51 345.99

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER

MEAN=UMWFIGHTED AVERAGE

CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

THE MONTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSL SITE 13 DURING 08/78.

	N	VOLWTAV	UEW/SQ.M	MEAN	HIGH_	μοΜ-	ST.DEV	95%Ç.L.
PH COND	4	4.39 21.11	0.00	4.27 28.87	4.52 49.90	4.03 14.60	0.21 15.69 2.72 27.63	0.33
CMPPI	4	0.00	10.07	28.87 2.52 54.19	6.59	1.13	* ž. 7 ź	24.94
Н	4	41.13	0.00	54.19	6.59 93.32 93.32	30.20	27.63	43.94 46.64 31.50 0.77
HNV NA	4	38.50 11.78	0.00	51.62 18.37	95.52 47 83	27.54	29.34 19.81	40.04
ĸ	4	1.25	0_00	13.21	1.53	6.09 0.51	29.34 19.81 0.48	31.50 0.77 8.75
CA	4	6.90 2.94	0.00	8.61	47.83 1.53 15.97 9.21	3.49	5.50	8.75
MG NH4	4	2.94	0.00	4.46 9.29	36.61	1.65	3.54 12.05	19.16
ÇL	4	12.23	0.00	17.91	26.61 39.76	7.35	14.83	23.58
	4	0.18	0_00	0.39 19.23	1.58	0.00 5.64 24.57	0.79 17.26	23.58 1.26 27.44
N03 S04	4	11.83 32.35	0.00	19.63	43.87 62.46	24.57	17.65	25.16
PO4	4	0.00	0_00	41.59	0.00	0.00	15.82	25.16 0.00 24.67
X\$\$04	4	31.13	0_00	49.80	61.01	21 8/1	15.52	24.67
SAN SCA	4	56.59 68.52	0.00	79.12	122.01 154.71	37.35	30.70	61.95
A/C	4	0.83	0.00	79.12 96.13 0.82 0.97	0.90	375-555 90-839 00-839 7-85	38.96 51.025 0.245	81.29 0.08
CLINA	4	1.04	0 _ 0 0	0.97	1 - 41	0.83	0.24	0.38
NA/MG SS	4	13.12	0.00	4 12	5.19 43.86	7.87	16.76	1 . 83 26 . 65 27 . 53
SS NC COND/P	4	14.28	0.00	19.2 <u>1</u> 22.73	45.83	7.19	17.31	27.53
CONDIP	4	1.03	0.00	1075.04	1.09	9.98 477.40	0.05	0.07
AMTH AMTHNV	4	0.00	4141.40	1035.35	1990.34 1815.21	415.80	683.26 626.05	1086.39
AMTNA	4	0.00	1186.39	296.60 31.36	560.48	86.62	626.05 223.45	355.28
AMTK	4	0.00	125.44	31.36	84.13 361.76	5 • 98 40 • 07	35.61	56.62
AMTCA AMTMG	4	0.00	3876 - 99 1186 - 39 1185 - 44 125 - 42 125 - 41 125 - 41 127 - 10	173.73 74.11 113.84 307.85	108-43	40.93 22.17	135.61 137.98 129.75 193.28	9955-428 3556-174 2196-30 206-30
AMTNH4	4	0.00	455.35	113.84	108.43 301.87 483.23	19.49	129.75	206.30
AMTCL	4	0.00	1231.41	307.85	483.23	122.27	193.28	307.31 14.24
AMTF AMTNO3	4	0.00	1191.10	297.78	17.91 497.69	107.74	1/1.94	273.38
AMTS04	ü	0.00	3257,27	814.32	1619.16	429.41	549,48	873.68
AMTPO4	4	0.00	0.00 3134.38	0.00	$\begin{array}{c} 0.00 \\ 1571.06 \end{array}$	0.00	0.00 538.88	0.00 856.83
AXSSU4 AMTSS	4	0.00	1320.62	783.59 330.15	518.33	419.03 111.91	216.38	344.04
AMTNO	4	ŏ.ŏŏ	1437.92	359.48	519.92	141.25	ī72.82	274.78

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROFGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SG.M=MICROEGUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

)

Table 138.

MONTHLY MAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT NSC SITE 13 DURING 09/78.

PH	N 7	VOLWTAV	UEW/SQ.M	MEAN 4.50	HIGH _5.87	LOW 4.13	ST.DEV	95%C.L. 0.54
COND	77	22.76	8.04	25.10 1.15	50.50 2.48	10.20 0.15	15.69	14.53
HNV	77	36.60 34.79	0.00	31.90 29.41	74.13 69.18	1.35	28.73 27.61	26.60 25.57
NA K	77	26.36 0.94	0.00	49.57	150.44 3.57	10.87	52.46	48.57
ĈA MG	7	8.03	0_00	16.40	76.35 33.40 13.86	2,00	26.65 11.34	24.68
NH4	7 7	7.00 3.78 29.22	0.00	12.28 4.59 51.49	13.86 141.00	3.21 0.55 12.13	5.08 48.84	10.50 4.70 45.22
CL F NO3	7	0.84 13.71	0.00	0.68 12.37	3.16 23.71	0.00	1.17 7.64	1.08
\$04 P04	Ź	31.59	0.00	32.78	75.58	4.52 11.66	25.48	7.08 23.60
XSS04 SAN	7	28,86	0.00	27.84 27.63	0.00 67.42	10.10	24.29	0.00 22.49
SCA A/C	7	75.48 82.70	0.00	116.25	188.67 224.7 <u>1</u>	37.57 40.17	71.75	59.45 66.44
ĈĹ/NA NA/MG	7	0.91 1.11 3.77	0.00	0.84 1.04 4.04	1.15 1.26	0.39 0.75 2.52 13.38	6475 7125 034 055 2755	0.21
SS NC	Ż	29.36	0.00	52.99 31.35	4.50 155.52	13.35	53.55	49.59
COND/P	7	16.74	0.00	1 10	78.79 1.23	0.98	V • V 0	25.46 0.07
AMTH	7	0.00	2798.45	399.78	1575.18 1539.32	3.79 0.95	539.18 528.76	499.29 489.64
AMTNA AMTK	7	0.00	2943.78 2798.45 2119.88 75.46	420.54 399.78 302.84 10.78 92.34	525.02 19.27	36.69 1.44	163.38	151.29
AMTCA AMTMG	7	0.00	562.81	80.40	222.06 163.18	1.44 15.39 14.57	86.10 46.61	81.59 43.16
AMTNH4 AMTCL	7	0.00	646.35 562.81 303.78 2350.08	80.40 43.40 335.73 9.60 157.49	148.02 805.68	1.56 61.07	237.58 237.58	50.08 220.00 15.07
AMIF AMINO3	7	0.00	1102.41	157.49	40.95 527.57	12.70	179.33	166.06
AMTS04 AMTP04	7	0.00	2541.30 0.00	363.04 0.00 331.62	1315.62	32.79 0.00	442.39	409.66
AXSS04 AMTSS	1/2	0.00	2321.32 2361.84	337.41	1287.85 678.33	28.39 47.40	441.14 201.29	408.50 186.40
AMTNO	7	0.00	1346,46	192.35	408,26	73.63	114.84	106.34

NANUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/50.H=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN ULG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
I'ME MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIJE 13 DURING 10/78.

0.4	N_	VOLWTAY	UEG/SO.M	MEAN	HĪGH.	FOM	STADEY	95%C.L.
PH COND	7	4.63 18.04	0.00	4.25 40.71	5.01 61.80	3.92 9.30	0.42 20.22	0.39 18.73
CMPPT	7	0.00	12.06	1.72 56.30	9.53 120.23	0.10 9.77	3.46 46.56	5.20
HNV	Ź	23.67 21.34	0.00	51.43	109.65	8.32	42.68	43.11 39.52
NA K	7	53.19 1.25	0.00	119.26 3.06	288.27 6.38	16.52 0.77	110.81 2.05	102.62
CA	7	5.61	0_00	11.69	16.97	5.49	4 88	4.52
MG NH4	7	12.25 3.00	0.00	27.66 8.79	71.32 22.18	4.11 0.55	25.81 8.52	23.90 7.89
<u>Ç</u> L'	Ż	56.74	0.00	123.76	314.71	20.02	25.81 111.13 1.42 15.29	102.90
NO3	7	0.19 8.47	0.00	1.28 24.38	3.68 45.33	9.00 3.23	15.29	14.16
\$ 04	7	23.12	0,00	24.38 52.67	103.27	9.99 0.00	54.10	51.65
P04 XSS04	7	$0.00 \\ 17.29$	0.00	39.95	93.57	6.22	33.21 125.87 131.50	0.00 30.75
SAN SCA	7	98.52 98.97	0.00	202.09 226.76	406.08 418.57	49.88 55.01	125.87	116.56 121.77
A/C	Ź	0.89	0.00	0.89	0.97 1.21	0.82	0.06	0.06
CL/NA NA/MG	7	1.07	0.00	1.04	4-69	0.91 4.02	0.10 85.0	0.10
SS NC	7	62.60	0.00	136.44	347.13	21.35	122,67	113.60 19.38
COND/P	7	12.70 0.96	0.00	34.03 0.93 407.67	74.56	4.80 0.83	20.93	0_0/
AMTH	7	0.00	2653.71	407.67 367.48	1076.39 1004.55	31.35 28.59	441.85 397.85	409.16 368.42
AMTNA	Ź	0.00	0.00 2653.71 2572.33 6412.77 150.83	916.11	3108-14	19.10	1117.54	1034.86 23.06 107.27
AMTK AMTÇA	7	0.00		21.55 96.65	73.00 332.93	2.36 12.09	115.84	107.27
AMTMG	7	0.00	1476.66 361.88	210.95	744.84	4.76	115.84 263.20 73.67	245-75
AMTNH4 AMTCL	Ź	0.00	0040.00	51.70 977.27	207.90 3494.16	3.55 23.15	1224.76	68.22 1134.14 3.53
AMTE AMTNO3	7	0.00	22.48 1021.35	3.21 145.91	9.87 375.02	0.00 25.16	3.82 139.57	120.53
AMTSU4	7	0.00	2/8/.3/	398.20	968.13	40.44	406.94	129.24
AMTPO4 AXSSU4	7	0.00	2083.77	297.68	877.22	0.00 29.94	329.20	0.00 304.84
AMTSS	Ż	0.00	7547.33	1078.19	3854.05	24.68	1350.99	1251.03 181.40
AMTNC	7	0.00	1531,39	218.77	477.62	35.90	195.89	101.40

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIFE 15 DURING 11/78.

PH COND	7 7	VOLWTAV 4.56 32.11	UEG/SG.M 0.00 0.00	MEAN 4.41 39.74	HIGH 4.83 62.00	L D W 4 • 1 4 7 • 2 0	ST.DEV 0.27 22.71	95%C.L. 0.25 21.03
CMPPI H HNV NA	7 7 7 5	0.00 27.69	2.49 0.00 0.00 0.00	0.36 38.79 34.29	0.66 72.44 57.54 230.01	0.06 14.79 13.80 7.83	0.21 22.39 18.79	20.74 17.40
K C A MG	かかかかがかがかがかがかがかがかがかが	1 0 8 . 29 2 . 46 8 . 20 2 4 . 58	0.00	25.66 78 25.93 0.55 116.92	17.96 51.41 2.77 224.75	0.25 2.50 2.06	106.24 2.30 6.01 23.55	132.09 2.86 7.48 29.28
NH4 CL F NO3	5555	0.71 109.62 0.44 12.07	0.00 0.00 0.00 0.00	0.55 116.92 0.74 17.78	2.77 224.75 2.11 44.84	0.00 10.15 0.00 5.97	104.27 0.88 17.08	129.63 129.63 21.23 39.14
SU4 PU4 XSSU4	555	29.34 0.00 18.10	0.00 0.00	36.14 0.00 24.13	88.90 0.00 65.77	9.16 0.00 8.22	31.48 0.00 23.51	(3 (14)
SAN SCA A/C CL/NA	7 555	151.48 168.44 0.90 1.01	0.00 0.00 0.00 0.00	171.57 185.01 0.93 1.02	360.60 347.03 1.04 1.30	26.73 27.42 0.79 0.94	139.89 143.92 0.11 0.14	29.22 173.92 178.93 0.13 0.17
NA/MG SS NC	555	120.57 23.67	0.00	128.74 24.79	247.90 63.76	3.81 10.11 2.52	0.28 115.28 25.98	143.33
COND/P AMTH AMTHNV AMTNA	7	0.96 0.00 0.00 0.00	0.00 689.73 625.37 2279.13	0.96 98.53 89.34	1.01 134.18 119.59	0.91 46.41 36.03 29.78	0.04 27.61 27.54 490.99	257 257 255.464 26102.447 264
AMTK AMTCA AMTMG	555	0.00 3.00 0.00	51.85 172.57 517.31	455.83 10.37 34.51 103.46	1239.89 26.15 69.94 277.15	1.09 16.37 7.22	10.19 21.30 109.43	12.67 26.49 136.04
AMTNH4 AMTCL AMTF AMTNU3	りいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	0.00 0.00 0.00 0.00	257-85 172-57 517-31 14-94 2307-06 254-15 617-61	2.99 461.41 1.87 50.83	14.94 1164.44 4.28 91.08	0.00 29.58 0.00 29.37	6.68 461.82 1.86 24.69	136.04 8.31 574.16 2.31
AMTS04 AMTP04 AXSS04	555	0.00 0.00 0.00	V _ U U	123.52 0.00 76.18	208.75 0.00 133.60	36.99 0.00 33.95	74.31 0.00 37.98	30 69 92 38 0 00 47 22
AMTSS AMTNC	5 5	0.00	380.91 2537.56 498.24	507.51 99.65	1284.38 343.69	32.63 16.55	510.92 138.52	635.20 172.22

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNITH

MUNTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 13 DURING 12/78.

011	N	VOLMTAV	UEW/SO.M	MEAN	нісн	ΓΟM	ST.DEY	95%C.L.
PH COND	4	20.80	0.00	4.74	25.09 27.00	4.59 13.00	0.23 6.52	10.36
CMPPT H	4	0.00	9.79 0.00	2.45 18.10	7.81	0.10 8.13	3.63 8.05	5.77 12.81
HMV	4	8.60	0.00	15.69	25.70 22.39	6.76	6.87	10.92
NA K	4	110.29 2.76	0.00	62.29 2.17	130.88	17.39 1.28	51.47 0.90	81.83
Ĉ A MĜ	4	7.33 23.20	0,00	12.97	28.44	6.49 4.19	10.48	16.67
NH4	4	2.15	0.00	14.85	26.98 26.61	1.11	10.41	16.56 18.10
ÇL F	4	108.54	0.00	67.61 1.58	126.62 3.68	21.71 0.00	47.55 1.55	75.61 2.46
N03	4	4.81	0.00	10.08	20.00	3.87	6.94	11.03
\$04 P04	4	20.84 0.00 9.75	0.00	30.76	53.30 0.00	19.99 0.00 7.17	15.67	24.92
XSSO4 San	4	9.75 1.46-04	0.00	23.96 110.34	44.64 162.21	7.17 61.04	16.10 54.67	25.59 86.92
SCA	4	136.04 155.74	0.00	120.50	176.64	63.37	62.91	100.03
A/C CL/NA	4	0.87 0.98 4.75	0.00	0.92 1.09	$\begin{array}{c} 0.96 \\ 1.31 \end{array}$	0.87 0.97 3.39	0.04	0.07 0.24
NA/MG SS	4	119.00	0.00	1.09 4.19 73.11	4.85 139.66	3.39	0.64 53.84 19.18	1.02 85.61
NC	4	26.73	0.00	29.28	56.53	22.47 15.20 0.93	19.18	30.49
COND/P AMTH	4	0.97 0.00	980.24	0.96 245.06	0.98 635.02	23.44	273.71	435.19
AMTHNV	4	0.00	842.23	245.06 210.56 268.55	635.02 528.19 10224.59 239.34	23.44 19.50 62.50	273.71 226.81 5020.35	360.63 7982.36 182.76
AMTK	4	0.00	269.95	2698.55 67.49	239.34	23.31	114.94 227.13	182.76
AMTCA AMTMG	4	0.00	10794-21 269-95 717-37 2471-15	567.79	506.80 2107.91	23.31 15.08	1028.08	361.14 1634.65
AMTNH4 AMTCL	4	0.00	210.34 10623.12	2655.78	86.63 9892.03	26.61 78.03	29.23 4829.63	46.47 7679.11
AMTE	4	0.00	130.82	32.70	123.35	0.00	60.46	96.13
AMTNU3 AMTSU4	4	0.00	471 09 2040 24	117.77 510.06	302.44 1577.77	20.00 53.30	130.56 719.86	207.59 1144.58
AMTP04	4	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSS04 AMISS	4	0.00	954.06 11646.85	238.51 2911.71	559.88 10910.91	44.64 80.75	231.33 5337.50	367.82 8486.62
AMTNO	4	0 . 00	2616.18	654.04	2254.36	54.61	1070.84	1702.63

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

•

Table 142.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 13 DURING 01/79.

PH COND CMPPT H HNV NA K CA	N 5555555	VOLWTAV 4.75 13.45 0.00 17.60 15.89 47.13	UEQ/SQ.M 0.00 0.00 19.44 0.00 0.00 0.00	MEAN 40.59 30.40 3.56 22.78 134.27	HIGH 95-130 136-23 552-15 559-96 30-44 122-57	1.50 25.00 0.73 7.41 25.22	ST.0EV 0.33 36.32 18.08 18.54 237.88	95XC0461280 46.5280 46.5280 2954.331
MRIC 34404 F 004409 P 004409 P 004409 P 004409	りかいかいかいかいかいかいかいかいかい	10.23 10.29 46.38 0.36 16.60 11.88 97.44	0.00	1 42 - 52 0 - 45 3 0 - 73 1 6 - 96 1 8 6 - 96	122.57 603.20 40.97 88.00 26.21 703.85	2.50 5.51 5.55 20.84 0.520 10.520 7.29	11.75 51.91 257.54 257.54 0.00 15.73 32.61 0.77 289.72	34419 34419 340055055 340055 34005 36005 36005
SCA A/C CL/NA NA/MG SS NC COND/P AMTHNV	555555555	83.66 0.88 0.98 4.58 51.16 14.90 0.00	0.00 0.00 0.00 0.00 0.00 0.00 3420.74 39862.53	205.57 0.91 1.06 4.52 157.20 0.93 684.15 617.61	751.329 1.8329 1.835 658.4013 658.4013 757.287 1636.875 1636.875 1636.875 1636.875	44.34 0.73 0.86 4.14 25.89 0.84 104.29	2000 710 710 710 710 710 710 710	380 . 60 0 . 137 3 . 165 3 . 165 8 15 . 19 2 . 175 . 69 177 . 69
AMTNA AMTK AMTCA AMTNH4 AMTCL AMTCL AMTNU3 AMTSO4	りいいいいいいいいいいい	0.00 0.00 0.00 0.00 0.00	9162.53 462.57 1999.83 390.33 9017.26 1236.89	1832.51 93.61 164.51 399.97 78.07 1803.00 247.38 647.44	4106.26 267 332.10 3330.37 908.70 442.0.33 1579.85	354.63 13.120 13.120 85.60 12.30 12.30 143.46	1830 - 43 139 - 80 1139 - 375 1830 - 18 1830 - 60 194 - 98 562 - 00	2275.69 173.81 140.89 480.85 1153.41 2280.41 698.71
AMTPU4 AXSSU4 AMTSS AMTNC	5 5 5 5	0.00 0.00 0.00 0.00 0.00	2309.34 9946.04 2897.26	0.00 461.87 1989.21 579.45	1266.94 4886.00 1656.33	101.43 419.52 68.78	475.03 2025.81 622.90	590.58 2518.60 774.43

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UED/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

MONTHLI KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN CUMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 13 DURING 02/79.

	N	VOLNTAY	UEW/SO.M	MEAN	HIGH	ĽŊŴ	ST. DEV	95%C.L.
PH COND	4 d	4.37 21.72	0.00	4.27 45.35	4.78 122.00	4.16 8.40	0.30 52.58	0.48 83.60
CMPPI	4	0.00	2.74	0.69	1.27	0.11	0.48	0.76
H HNV	4	43.08 59.90	0.00	53.74 47.87	69.18 61.66	16.60 15.85	24.88 21.62	39.57 34.38
NA	4	n0.89	0.00	164.57	526.98	35.22	241.70 3.87	384.31
K ČA	4	1.67	0.00	3.45	9.19 34.93	0.77 9.98	3.87 11.85	6.15 18.84
MG	4	12.52	0.00	17.59 37.96	119.01	9.05	54.44	86.56
NH4	4	13.53	0.00	13.86	23 ₋ 28	7.21	7.06	11.22
ÇL F	4	67.04 2.59	0.00	176.11 3.03	559.21 _6.32	40.04 0.53	255.47 2.45	406.20
NO3	4	15.35	0.00	19.44	30.65	11.29	8.10	12.88
S04 P04	4	51.93	0.00	77.87 0.00	143.03	16.03	52.98 0.00	84.23
X\$\$04	4	45.13	, 0,00	59.83	85.49 735.99	11.91	34.38	54.60
SAN SCA	4	13/.09 140.39	0.00	276.81 291.17	735.99 760.75	67.89 78.82	308.85 319.33	491.07 507.74
A/C	4	0.94	0.00	0.95 1.07	1.04	0.86	0.09	0.14
CL/NA NA/MG	4	1.10 4.14	0.00	1.07	1.24	$ \begin{array}{c} 0.97 \\ 3.81 \end{array} $	$0.11 \\ 0.34$	0.18 0.54
SS	4	13.02	0.00	193.42	616.80	44.17	282.31	448.88
NC CUND/P	4	30.28 V.75	0.00	44.01 0.79	83.88	18.05 _0.21	28.11 0.39	44.69
HTMA	4	ŏ:60	1182.26	295,57	487.02	72.26	189.39	301.14
VANTERA	4	0.00 0.00	1094.91	273.73	475.93 576.38	58.74 311.42	182.43 120.36	290.06 191.37
AMIK	4	0.00	1672.51	418.13	13.79	9.69	1.92	3.06
AMICA	4	0.00	343.48 403.95	85.87	126.31	38.20	43.68 27.06	69.45
AMIMG AMINH4	4	0.00	371.21	100.99 92.80	130.62 179.73	69.72 10.92	68.98	43.03 109.68
AMTCL	4	0.00	1841.51	460.38	611.63	302.97	150.93	208.19
AMTE AMTHU3	4	0.00	71.03 421.21	17.76 105.30	37.70 142.90	2.30 33.52	10.36	26.02 79.89
AMTSU4	4	0.00	1425.30	356.32	689.42	156.44	241.42	383.86
AMTPU4 AXSSU4	4	0.00	1238.39	0.00 309.60	0.00 648.78	0.00 93.51	0.00 250.50	0.00 398.30
AMISS	4	0.00	2005.76	501.44	674.63	334.18	147.55	234.61
AMTNE	4	0.00	831.12	207.78	302.84	91.74	87.42	139.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE DICRUEUUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEU/SQ.M=MICKUEUUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEU/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR

. . . .)

* **

Table 144.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 13 DURING 03/79.

Рн	N	VOLWTAV	UEW/SQ.M	MEAN	HĮGH	LOW	ST.DEY	95%C.L.
COND	3	21.00	V . 0 0	52.33	91.00	4.16 16.00	37.55 37.55	93.23
CMPPT H	3	0.00 27.47	2.55	0.85 34.73	2.31 69.18	0.12 8.71	1.27 31.11	77.22
HNV NA	3	24.32	0.00	29.75	58.88 360.88	6.92 24.35	26.55 172.60	65.91
K	3	44.45 1.41 12.54	0.00 0.00 0.00	170.44 5.45 72.69	12.51	0.77	6-22	428.49 15.45 187.89
C A MG	3	10.94	0.00	72.69 45.52	153.19 89.75	2.99 5.43	75.68 42.31	187.89 105.04
NH4	3	6.79	0.00	14.60 179.35	24.95 362.09	5.54	75.68 42.31 9.77 170.19	24.25 422.51
ÇL F	3	46.56	0.00	3.51	4.74	25.38 2.11	1.52	7.29
N03 S04	3	18.06 33.51	0.00	50.49 106.67	86.78 172.60	12.90 21.86	36.95 77.12	91.74 191.46
PO4	3	28.74	0.00	0.00 88.34	0-00	0.00 19.25	0.00	0.00
XSSD4 San	3	101.83	0.00	340.35	135.34 589.07	63.83	61.12 263.72 276.89	151.73 654.72
SCA A/C	3	103.61	0.00	340.35 343.42	619.15 1.06	65.38 0.95	276.89 0.06	687 40
CLINA	3	1.05	0.00	0.99 1.05 3.74	1.19	1.00	0.10	0.15 0.25 1.82 466.72 218.77
NA/MG SS	<u>\$</u>	4.06 51.21	0.00	196.76	4.48 399.38	3.05 27.99	187.99	466.72
NČ COND/P	3	24.93	0.00	196.76 111.93 0.97 233.13	174.12	11.09	88.12	218.77
AMTH	3	0.99	699.39	233.13	1.00 608.25 542.10	10.07	0.04 326.80	$0.11 \\ 811.30$
AMTHNV	3	0.00	619.11 1131.77	206.37 377.26	542.10 563.07	8.00	326.80 292.35 212.35 7.46	725.79 527.18
AMTK	ž	0.00	35.91	11.9/	17.71	145.79	7.46	527.18 18.51 152.35
AMTCA AMTMG	3	0.00	619.11 1131.77 35.91 318.88 278.56	106.29 92.85	177.13 125.55	69.24 47.84	61.37 40.29	100_03
AMTNH4 AMTCL	ş	0.00	172.83 1185.35	\$7.61 395.12	128.20 586.91	15.38 174.12	40.29 61.53 207.94	152.75 516.24
AMTE	3	0.00	93.14	31.05	85.20	2.47	46.92 127.36	116.48
AMTNU3 AMTSU4	3	0.00	93.14 459.42 852.96	153.14 284.32	298.41 505.54	60.68 145.16	193.69	316.18 480.87
AMTPO4 AXSSO4	3	0.00	0.00	0.00	0.00	0.00	0.00 175.04	0.00
AMTSS	3	0.00	731.42 1303.76	243.81 434.59	445.14 647.36	127.68 188.37	231.32	434.57 574.27
AMTNO	3	0.00	634.19	211.40	256.40	176.46	40.91	101.57

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEB/SU-M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEB/SJ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSL SITE 14 DURING 11/77.

	N	VOLWTAV	UEG/SG.M	MEAN	HIGH	LOW_	ST.DEV	95%C.L.
PH COND	3,	5.21	0.00	5.08	5.28	4.87	ÿ.22	0.54
CMPPT	3	5.13 0.00	0.00 13.02	8.83 4.34	17.60 6.85	3.80 0.61	7.62 3.29	18.92 8.17
H	3	6.19	0.00	8.35	13.49	5.25	4.48	11.13
HNV NA	3	5.09	0.00	7.12	12.02	3.98 10.87	4.30	10.67
K	3	15.14 0.19	0.00	35.22 0.51	82.18 1.28	0.00	40.68 0.68	100.98
CA	3	0.78 3.43 0.92	0.00	2.16	5.49	0.00	2.92	7.26
MG NH4	ş	3.43	0.00	2.16 7.87 1.29	18.26	2.47 0.55	9.00	22.35
ÇĹ	3	1/.1/	0.00	37.98	86.29	13.25	41.85	103.89
	3	0.00	0_00	0.00	0.00	0.00	0.00	0.00
N03 S04	ş	2.37 5.48	0.00	4.62	10.16 20.82	0.64 2.08	4.95 9.74	12.28 24.17
PO4	3	0.00 3.79	0_00	0.00	0.00	0.78	0.00	0.00
XSSD4 SAN	3	32.79	0.00	6.08 52.52	11.94	0.78 17.11	5.60	13.91
SCA	3	25.02 26.66	0.00	55.40	117.27 122.91	19.14	56.16 58.52	139.42 145.28
A/C	3	0.94	0.00	0.95	0.96	0.89	0.04	0.09
CL/NA NA/MG	<u> </u>	1.13	0.00	1.08	1.32 4.50	1.05	0.16	0.39 0.16
SS	3	18.16	0.00	4.48 41.28	95.18	14.04	46.68	115.89
NC COMD (B	کے	4.14	V_00	8.74	14,24	3.23	7.79	69.97
COND/P AMTH	3	1.01 0.00	806.74	0.98 268.91	1.04 432.11 367.78	0.91 82.62	0.06 175.88 147.07	436.65
AMTHNV	3	0.00	662,93	220.98	367.78	82.62 73.64 503.33	147.07	365.12
AMTNA AMTK	٤	0.00	1971.68	657.23 8.43	863.53 17.48	0.00	185.73	461.10
AMTCA	3	0.00	101-97	33.99	68.35	0.00	34.17	84_84
AMTMG	ş	0.00	446.34 120.36 2236.45	148.78	197.17	111.85	43.80 32.19 195.41	108.74
AMTNH4 AMTCL	٦	0.00	2236 45	40.12 745.48	75.93 907.69	13.58 528.54	195.41	79.93 485.14
AMTE	3	0.00	0.00	0.00	0.00	U.00	93.78	232.81
AMTNO3	3	0.00	308_02	102.67 237.96	209.88	35.90	93.78	232.81
AMTSO4 AMTPO4	3	0.00	713.69	0.00	470.53	115.84 0.00	201.49	500.22
AXSSU4	3	0.00	493.59 2365.58	164.53	377.13	43.33	184.72	458.58
AMTSS AMTNC	3	0.00	2365.58 308.52	788.53 154.26	1001.18	582.98 87.23	209.19 94.79	519.35 851.93
A.U.I.IAA	-	V • V V	JUU - JE	174.50	C 7	01053	/ 7 /	0340/3

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

-)

MUNTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPUSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIJE 14 DURING 12/77.

	N_	VOLHTAV	UEG/ŞQ.M	MEAN_	HIGH	LDW	ST.DEV	95%C.L.
PH COND	12	4.55 20.01	0.00	4.45 23.59	5.26 62.40	4.17 0.00	0.33	0.20 11.23
CMPPT	12 12 12 12 12	0.00	9.00	0.60	1.09	0.01	18.09 0.45	0.28
H	15	27.89	0_00	35.42	6/.61	5.50	19.01	11.80
HNV NA	15	23.87 51.26	0.00	29.32	\$7.54 183.00	4.27 4.35	15.96	9.91 42.47
K	ģ	1.36	0.00	1.42	3.83	0.00	1.33	1.02
CA	9	4.15 11.52 2.57	0_00	29.32 47.54 1.42 5.99	183.92 3.83 22.95	0.50	55.15 1.33 7.01 11.79 3.97 55.65	5.40
MG NH4	9	11.25	0.00	11.11	54.40	2.30 0.55	11.79	9.08
<u>Č</u> Ľ	999999	54.95 0.03 7.18	0.00	11.11 3.63 51.57	13.31	7.90	55.65	42.85 42.85
F NO3	9	9.03	0.00	0.06	0.53 34.03	0.00 1.45	0.10	9.14
SU4	3	30.54	0.00	10.45	55.59	3.54	9.78 19.55	7.53 15.05
PO4		30.54	0.00	32.73 0.00 27.57	0.00	0.00 1.68	0.00	0_00
XŠŠD4 SAN	9	55.03	0.00	27.57	257.00	1.68 23.04	16.74	12.89 56.57
SCA	9 9	25.03 92.69 98.33	ÿ . ÿ ŏ	94.82 98.69	48.36 253.94 275.60	29.23	73.47 78.34	60.32
AZC	9	0.94 1.07	0_00	0.96	1.16	0.69	78.34 0.12 0.31	0.10
CL/NA NA/MG	9	4.45	0.00	1.08	1.82	1.89	0.31	0.24 0.68
SS	9	59.08	0.00	4.28 55.34	4.67 207.78	5.62 4.35	62.23	47.92 10.52
NC COND/P	9	11.77		14.36	43.65	4.35	13.66	10.52
AMTH	12	0.97 0.00	0 · 0 0 0 1 4 · 6 7 1 7 2 3 · 6 3 3 3 6 4 5 · 7 1 3 6 4 5 · 7 1 2 9 5 · 9 7 1 8 2 · 7 1 3 9 0 7 · 4 4 2 1 0 · 6 2 2 1 0 · 6 2 2 1 7 2 6 2 1 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	0.97 167.89	1.03 500.83	0.88 7.19	0.05 170.57	0.04 105.86
AMTHNV	12	0.00	1723.83	143.65 405.04	436.21 1954.15	7.19 4.86	151 /7	94.20
AMTNA AMTK	9	0.00	3645.33	405.04 10.75	1954.15	15.90	601.33	463.92
AMTCA	ģ	0.00	295.25	32.81	111.34	0.00 5.36	601.33 12.66 31.75 127.57	94.20 463.02 7.75 24.45
AMTMG	9	0.00	818.97	91.00	418.65	8.42	127.57	70.23
AMTNH4 AMTCL	9	0.00	3907.44	20.30 434.16	2001.49	6.04 28.87	610.56	11.89 470.13
AMTE	9	0.00	1.92	0.21	1.92 114.83	0.00	0.64 31.74	0.49
AMTNU3 AMTSU4	9	0.00	2172.02	56.75	114.83	15.81	31.74	24.44 154.97
AMTPU4	3	0.00	0.00	241.34	581.79 0.00	38.55 0.00	201.27	0.00
AXSSU4	9	0.00	1/80.14	0.00 197.79	421.82	18.32	161.08	124.03
AMTSS AMTNC	9	0.00	4201.86 837.13	466.87 93.01	2207.65 334.86	20.54 30.13	677.87 93.38	521.96 71.90
	•	0.00	42.0	/ V A	374 ¢ 00	20042	, , , , ,	11.70

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RAILOS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MUNTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SILE 14 DURING 01/78.

Рн	N	VOLWTAV 4.58	UEQ/SQ.M	MEAN 48	HIGH 5.40	LOW 3.95	ST.DEV 0.47	95%C.L. 0.50
COND CMPPT	6	15.05	0.00	23.97	49-00	9.20 0.03	16.00	16.79
Н	6	26.23	5.72 0.00	70.95 33.05	2.80 112.20	3.98	39.67	41 63
HNV NA	<u> </u>	23.74 31.28	0.00	29.06 50.35 1.23 16.27	107.15 91.31 2.55 37.92	3.47 8.70	38.81 38.15	40.72 47.43 1.59 19.26
K	5	0.50 7.20	0.00	16.27	37.92	0.00	1.28	19.26
MG NH4	5 5	7.20 7.46 6.52 28.77	0.00	12.70	23.28 22.73	1.00 3.29 2.77	1.28 15.49 9.41 8.02 31.15	11.70 9.97 38.73
ÇL	5	28.77	0.00	45.57	80.93	15.79	31.15	38.73
N03 S04	かかかがかかかか	0.00 9.12 29.94	0.00	14.61 45.30	45.33 119.09	9.00 3.23 14.99	17.57	21.84 53.31
P04 X8\$04	Ś	29.94 0.00 27.11	0.00	40.73	0.00 110.76	13.13	42.88 0.00 40.24	50.02
SAN	5	67.83 79.17	0.00	105.49	245.35	37.23	87.46	108-74
SCA A/C	5555	0.86	0.00	105.49 124.44 0.85	270.64 1.02	39.75 0.75	99.06	123.16
CL/NA NA/MG	5	0.92 4.19	0.00	ў. 91 3.96	1.02 1.82 5.39 89.27	0.78 2.64	0.43	0.53
SS NC	5 5 5	30.33 22.62	0.00	3.96 49.03 41.38	03.04	11.24	1.00 35.91 34.28	44.65 42.61
COND/P AMTH	5 6	0.93 0.00	Λ 1) Λ	250.09 250.31 356.11	1.08	A 71	277.87 273.34 234.82 6.55	0.18 291.54
AMTHNV	6	0.00	1357.88	226.31 356.11	683.73 652.96 644.52	7.49 5.55 112.10 0.00	263.34	276.30
AMTK AMTCA	Ś	0.00 0.00	, 28.32 409.55	5.66 81.91	644.52 15.56 157.03	0.00 12.87	6.55 61.29	8.14
AMTMG AMTNH4	ş	0.00	1500 - 52 1557 - 58 1789 - 57 28 - 55 409 - 55 424 - 45 371 - 30 1637 - 81	84.89 74.26	131.84	39.28 19.65	42.83 49.50 169.12	40.184 91.5393 91.5394 91.5394 76.556 76.556 210.561
AMTCL	5	0.00	1637:81	327.56	138.51 504.78	128.01	169.12	510:56
AMIF AMINO3	5 5	0.00	519.36	0.00 103.87	276.20	21.50	0.00 102.75 247.95	0.00 127.74 308.26
AMTS04 AMTP04	5	0.00	1704.58 0.00 1543.55	340.92	725.71 _0.00	78.00 0.00	247.95 0.00 233.15	0.00
AXSSU4 AMTSS	5 5 5	0.00	1543.55 1726.80	308.71	674.96 556.77	64.82 141.19	203.76	289.87
AMTNC	5	0.00	1726.80	345.36 257.48	421.52	58.28	152.60	253.33 189.72

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUMD, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIT

Table 148.

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING U2/78.

POCHHNKOMNOFNSPXSSACNA	99999555555555555555555555555555555555	VOL 19006771500045408000665524 19006771500045588000665524 190067706670665524 2000670665524	UEQ/SG.M 0.00 11.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	N2170296983880778329 N2170296983880778329 N2170296983880778329 N2170296983880778329 N2170296983880778329 N2170296983880778329	H 4001 14 4001 14 4001 15 4001 10 4	090260310037800070742139 140.32000700742139 140.32000700742139	V 637 0 • 95 627 0 • 95 627 1 9 • • 527 1 12 • • • 527 1 12 • • • • • • • • • • • • • • • • • •	2 1 1 1 1 1 2 0 5 4 5 3 1 9 9 0 7 1 1 1 2 0 5 4 5 3 1 9 9 0 7 1 1 1 2 0 5 4 5 3 1 9 9 0 7 1 1 1 2 0 0 1 1
P V AMTHUR 3444 AMTTCF NOTH HINA A MTTCF NOTO SS S C AMTTCF NOTO SS S C AMTTCF NOTO SS S C AMTTCF NOTO ST S C AMTCF NOTO S C	うちゅういちかいいいいちがいちん	29.80 12.11 0.91 0.00 0.00 0.00 0.00 0.00 0.00 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 013-40 -97734104865927-900623 21 133440-8427-900623 54519405327-900-89 145217209-83 1452177-7627	21 24 54 54 78 10 78 12 10 10 10 10 10 10 10 10 10 10	11.80 17.41 0.80 13.69 101.09 101.09 101.09 10.09	6.97 6.97 6.97 6.97 6.97 6.97 6.97 7.43	8.60 9.60

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SQ.M=M1CROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
LMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 03/78.

PH	N ₅	VOLWTAV	UEW/\$Q.M	MEAN 3.75	HIGH 4.76	LOW 3.09	ST.DEV 0.73	95%C.L.
COND CMPPT	5	21.23	0.00 5.93	77.98 1.19	340.00	8.20 0.18	146.52	182.16
HNV HNV	5	43.68 47.83	0.00	178.55 214.18	812.83 1000.00	17.38 16.22 4.78	354.59 439.29	440.84 546.15
NA K	5	14.88	0.00	28.78 0.92	74.35 2.30	0.00	28.84	35.86 1.32
C A MG	5	4.30	0.00	7.98 7.96	15.47 20.65	1.00 1.40 3.33	6.24 7.76	7.76 9.64
NH4 CL	5	44.537 16.557 16.557 33.53	0.00	7.87 34.35	22.18 104.34	5.36	40.65	10.02 50.53
F NO3	5	3.57 33.53	0.00	0.84 169.14	807.15	$\begin{array}{c} 0.00 \\ 6.13 \end{array}$	0.96 356.67	1.19 443.43 19.56
\$04 P04	5	0.00	0.00	24.65	51.63	13.32	15.73	0.00
XSSO4 SAN	5	15./1 67.88	0 00 0 00 0 00	21.53 228.98 232.07	42.72 964.70	12.44 25.65	12.32	15.31 511.76
SCA A/C	5	73.05 0.93 1.11	0_00	0.49	947.77	30.54 0.76	400.80	498.29 0.13 0.35
CL/NA NA/MG	5	5.46	0.00	1.19 3.61 33.56	1.49 4.07	0.89 2.72	0.28 0.48 37.12	0.60
SS NC	5	16.59 12.78	0.00 0.00 0.00 2591.51	19.96	96.06 38.88	5.91 7.10	14.50	46.14
COND/P AMTH	5 5	0.99 0.00	2591.51	1.00 518.30 567.66	1498.66	0.84 162.26 154.96	557.11 720.72	692.63
AMTHNV AMTNA	5 5	0.00	2838.32 882.19	567.66 176.44	1843.75 333.23 15.22	77.35	720.72 95.39 _6.23	692.63 896.03 118.59 7.74
AMTK AMTCA	5 5	0.00	2838.32 8823.89 267.69 254.62	176.44 4.76 53.54	93.48	0.00 24.17	34.68	43.11
AMTMG AMTNH4	5 5	0.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	50.92 62.50	81.96 134.27	22.62 28.33	23.30 45.51	28.97 56.58
AMTCL AMTF	5 5	0.00	980.04 33.58	196.01	J95.37	86.65 0.00	86.62 8.17	107.69 10.15 759.53
AMTNU3 AMTSU4	5	0.00	980.04 33.58 1990.03 1022.73	398.01 204.55	17.43 1488.17 322.71	83.79 95.20	610.92 83.41	105./0
AMTPU4 AXSSO4	5 5	0.00	931.19	0.00 186.24	301.25	0.00	82.28	102.22
AMTSS	არნინინინინინინინინინინინინინინინინინინი	0.00	983.40 757.40	196.68 151.48	325.80 226.42	78.76 95.57 71.68	87.07 58.97	108.25 73.31

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF KAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIE 14 DURING 04/78.

	N	VOLWTAV	UEQ/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH	1	4.64	0.00	4.64	4.64	4.64	0.00	0.00
COND	1	25.00	0.00	25.00	25.00	25.00	0.00	0.00
CMPPT	1	0.00	0.23	0.23	0.23	0.23	0.00	0.00
H	1	22.91	0.00	22.91	22.91	22.91	0.00	0.00
μνν	ļ	1.95	0.00	1.95	1.95	1.95	0.00	0.00
ŅA	1	41.31	0.00	41.31	41.21	4121	0.00	0.00
K	ļ	30.04	0.00	4.59	41.31 4.59 29.94	4.59	0.00	0.00
CA MG	<u> </u>	29.94 11.10	0.00	29.94	27.74	29.94	0.00	0.00
NH4	i	47.12	0.00	47.12	47.12	47:12	ŭ:00	0.00
ĊĽ	i	42.02	Ŏ.ŎŎ	75.42	42.02	42.02	0.00	0. 00
F	i	3.68	ŏ.ŏŏ	42.02 3.68 19.03	3.68	3.68	ŏ.ŏŏ	0.00
N03	i	19.03	Ÿ.ŮŎ	19.03	19.03	19.03	ŏ.ŏŏ	ŏ.ŏŏ
S04	ī	53.92	0.00	53.92	53.92	53.92	Ŭ.ŬŎ	Ŏ.ŎŬ
P04	Ī	0.00	Ų.00	0_00	0.00	0.00	0.00	0.00
X\$\$04	1	49.60	0.00	49.60	49.60	49.60	0.00	0.00
SAN	1	118.66 156.98	0.00	115.66	118.66	118.66	0.00	0.00
ŞÇA	1	156.98	0.00	156.98	156.98	156.98	0.00	0.00
A/C	1	0.76	0.00	0.76	0.76	0.76	0.00	0.00
CLINA	1	1.02 3.72	0.00	1.02	1.02	1.02	0.00	0.00
NA/MG SS	1	47.1€	0.00	, 3 . 7 <u>2</u>	3.72	3.7 <u>2</u> 46.35 87.72	0.00	0.00
NC	1	46.35 87.72	0.00	46.35 87.72 0.99	46.35 87.72	40.33	0.00	0.00
COND/P	1	0.95	_0.00	04.42	0.99	0.99	0. 00	0.00
AMTH	i	ŏ.óó	53.69	53.69	53. 69	53.69	ŏ.ŏŏ	ŏ.ŏŏ
AMTHNV	i	ŏ.ŏŏ	4.57	53.69 4.57	4.57	4.57	Ŏ.ŎŎ	ŏ.ŏŏ
AMTNA	i	ŏ.ŏŏ	96.81	96.81	96.81	96.81	0.00	0.00
AMTK	ī	0.00	96.81 10.77	10.77	10.77	10.77	0.00	0.00
AMTCA	ī	0.00	70.17	70.17	70.17	70.17	0.00	0.00
AMTMG	1	0.00	26.03 110.45	26.03	26.03	26.03	ŭ.00	0.00
AMTNH4	1	0.00	110.45	110.45	110.45	110.45	0.00	0.00
AMTCL	1	0.00	98.48	98.48	98.48	98.48	0.00	0.00
AMIF	1	0.00	8.63	110.45 98.48 8.63 44.61	.8.63	.8.63	0.00	0.00
AMTNO3	ļ	0.00	44.61	44.01	44.61	44.61	0.00	0.00
AMTS04 AMTP04	1	0.00	126.38	126.38	126.38	126.38	0.00	0.00 0.00
AXSS04	1	0.00	0.00	0.00 116.25	0.00	116.25	0.00	0.00
AMTSS	ŧ	0.00	116.25	108.62	108.62	108.62	0.00	0.00
AMTNO	i	0.00	108.62 205.61	205.60	205.61	205.61	0.00	0.00
74: 1, 110	•	0.00			2001		3.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS (OTAL AMOUNT OF RAIN FOR THE MONTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 14 DURING 05/78.

	N	VOLWTAV	UEQ/SQ.M	MEAN	HIGH	LOW	ST.DEV	95%C.L.
PH	6	4.46 25.30	0.00	4.60	7.00	4.41	20.1	1.07
COND	6	25.30	0.00	40.93	70.00 3.27 38.90	20.00	21.49	22.55
GMPPT	þ	,0.20	7.24	25.23 20.66	79.67	0.03	1.38 15.30	1.45
HNV	2	34.52	0.00	52.52	30.70	0.10	13.17	16.05 13.82
NA	Ä	29.83 20.62	0.00	51.53	34.67	18.70	13.16	15.06
k	7	1.68	0.00	23.75	26.09 5.62	1.02	3.19 2.18	3.47
ĈA	4	9.64	0.00	21.52 2.43 11.65	16.97	7.48	3.98	6.33
MG	4	5.07	0.00	5.68	8.14	4.61	4 44	2.64
NH4	4	29.71	0.00	42.13 25.38 1.32 27.94	96.47	17.19	37.30 9.71	59.30
ÇL	4	23.01	0.00	25.38	38.92 2.63	16.36	9.71	15.43
F	4	1.16	0.00	1.32	2.63	0.00	1.10	1.74
NO3	4	18.61	0.00	27.94	61.94	15.48	22.70	36.10
SO4	4	36.10	0.00	39./1	51.84	33.31	8.32	13.23
P04 x\$\$04	7	0.00 33.81	0.00	39.71 0.00 37.34 94.35	48.71	0.00 30.81	0.00 7.87	12.51
SAN	Z	78 8A	0.00	34.33	48.71 155.33	67.44	40.95	65.11
ŠĈÄ	4	78.88 101.80	Ŏ.ŎŎ	118.21	155.33 188.76	85.91	48.44	77.02
AZC	4	0.77	0.00	0.80	0.92	0.68	0.10	65.11 77.02 0.16
CL/NA	4	1.12	0_00	0.80 1.18 3.79	1.49 4.28	0.87	0.26	0.42 0.75
NA/MG	4	4.06	0.00	3.79	4.28	3.20	0.47 6.58	.0.75
SS	4	24.68	0.00	25.51 58.10 1.13	33.71 119.57 1.31 1272.91	18.04	~6•3 ₫	10.46
NČ COND/P	4	42.04	0.00	26.17	114.3(31.67 1.00	41.37	65.78
AMTH	7	1.09	2499.64 2499.64	414.41	1273.91	0.10	514.25	539.55
ÄMTHNV	6	ŏ.ŏŏ	\$160.33	416.61 360.05 366.72	1134.48	ŏ.ôŏ	456.58	A79.04
AMTNA	4	Ŏ.ŎŎ	1466.89	366.72	1134.48 682.85	75.00	283.72	451.11
AMTK	4	0.00	119.27	29.82	66.82 267.71	10.21	25.53	451.11
AMTCA	4	0.00	686.13	29.82 171.53 90.23	267.71	48.78	103.10 67.60 462.30	165.95
AMTMG	4	0.00	360.93 2113.78	_90.23	169.56	23.41	,67.50	107.49
AMTNH4	4	0.00	2113./8	528.44 409.23	1197.19	171.86	494.30	735.05
AMTCL AMTF	4	0.00	1636.93	407.63	821.17 40.34 517.20	111.88	334.49 19.79	531.84 31.47
AMTNU3	ŭ	0.00	82.34 1324.00	20.59 331.00	517.20	154.85	191.05	てんて ファ
AMTS04	ā	0.00	2568.34	642.09	1089.93	149.05	460.15	731.64
AMTPO4	4	Ŏ.ŎŎ	0.00	0.00	0.00	0.00	0_00	0.00
AXSS04	4	0.00	2405.05	601.26	1008.05	140.05	427.02	678.96
AMTSS	4	0.00	1/55.55	438.88	882.25	96.90 343.78	367.43	584.21
AMTNC	4	0.00	2991.47	747.87	1479.08	343.78	533.10	847.63

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 06/78.

PH COND CMPPT	N 9 9	VOLWTAV 4.39 19.08 0.00	UEQ/SQ.M 0.00 0.00 24.40	MEAN 4.26 28.07 2.71	HIGH 4.77 65.80	LOW 3.86 10.00 0.57	ST.DEV 0.31 18.76 2.74	95%C.L. 0.24 14.45 2.11
H HNV NA K	9 9 9 9	40.76	0.00 0.00 0.00 0.00	55.52 49.68 21.60	138.04 120.23 48.26	16.98 13.18 6.96 0.51	40.98 36.16 15.71 0.55	31.56 27.84 12.10 0.42
CA MG NH4 CL F	999	130-36 5-38 5-221 14-31	0.00 0.00 0.00 0.00 0.00	1.05 7.32 7.36 8.91 24.91 17.56	20.96 11.52 33.82 53.30	2.99 1.65 0.55 8.46 0.00	5.66 3.67 9.98 17.61 0.38	4.36 2.68 7.68 13.529 11.20
N03 S04 P04 XSS04	9 9 9	13.67 30.89 0.00 29.49 59.36	0.00 0.00 0.00 0.00	43.65 0.00 41.26	49.84 99.94 0.00 97.64	4.03 15.41 0.00 12.14 29.59	14.55 27.95 0.00 27.69	11.20 21.52 0.00 21.32 36.69
SAN SCA A/C CL/NA NA/MG	9 9 9 9	59.36 70.71 0.84 1.07	0.00 0.00 0.00 0.00	86.36 99.18 0.87 1.15 4.06 25.64	173 43 219 99 0 97 2 00 4 63 58 79 57 24	29.52 9.74 9.78 9.88 9.19	47.65 56.92 0.08 0.33 0.43	43.83
SS NC COND/P AMTH	7 9 9	15.08 14.87 0.92 0.00	0.00 0.00 0.00 0.00 9947.14	25.64 18.22 0.98 1105.24	58.79 57.24 1.09 3185.64	8.99 5.21 0.80	19.16 15.41 0.09	0.26 0.33 14.75 11.87 705.46
AMTHNV AMTNA AMTK AMTCA	9999	0.00 0.00 0.00	7141.93 3261.83 185.83 1312.10 788.03 1760.63 3492.19	180.22 0.28 1105.77 362.36 145.79 87.56	1.09 3185.64 2973.02 798.94 46.91 366.76	161.33 125.23 169.57 7.66 28.44	916.18 867.77 205.13 13.99 111.77	705-46 705-46 668-18 157-95 10-77 86-07
AMTMG AMTNH4 AMTCL AMTF AMTNO3	9 9 9 9	0.00 0.00 0.00 0.00 0.00	1760.63 3492.19 118.38	195.63 388.02 13.15 370.72	188 • 94 509 • 35 777 • 26 96 • 71 933 • 63	43.60 18.09 213.17 0.00 38.31	46.86 194.51 169.74 31.82 311.31	36.08 149.77 130.70 239.71 431.51
AMTSU4 AMTPU4 AXSSU4 AMTSS	9 9 9	0.00 0.00 0.00	3536.49 7539.38 0.00 7196.48 3679.49	0.00 799.61 408.83	1951.09 0.00 1871.11 857.32	164.17 0.00 115.37 219.09	560.41 0.00 550.80 201.12	424.12 154.86
AMTNO	9	0.00	3628.34	403.15	1053.60	81.02	358.71	276,21

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 07/78.

РН	N 13	VOLWTAV 4.21	UE9/50.M	MEAN _4.27	HIGH _4.93	L DW 4.04	ST.DEV	95%C.L. 0.16
COND CMPPT	13	30.42 0.00	29.50	30.35 2.27 53.29	50.20 6.88	8.80 0.02	12.15	7 • 24 1 • 37
HNV	13	62.17 59.09	0.00	49.48	91.20 87.10	11.75	25.46 25.77	15.18 15.36
NA K Ca	15	12.13 0.64 4.33	0.00 0.00 0.00	18.41 2.00 6.49	64.78 15.83 17.96	0.00	15.61 4.40 4.93 3.79	15.36 9.69 2.73
MG NH4	12	2.81 4.90	0.00	6.49 4.30 6.61	15.05 33.26	1.00 1.65 1.11	8.83	3.06 2.35 5.47
ÇĽ	iž	12.83 0.68	0 00	19.69	74.45	8.18 0.00	18.50 0.93 9.19	11.48
N03 S04	12	17.78 47.38	0.00	18.15 43.34 0.00	<i>^ ^ ^ ^ ^ ^ ^ ^ ^ ^</i>	7.26 7.50	20.70 0.00	0.58 5.71 12.85
P04 X\$\$04	12	46.07	0.00	41.54	72.53	0.00 6.60	19.93	120-150 120-157 123-17 123-17
SAN SCA A/C	15	78.67 87.01 0.90	0.00 0.00 0.00	81.84 94.54 0.87	177:24	23.50 34.46 0.60 0.87	37.90 38.20	23.71
ĈĹŽNA NAZMĜ	12	1.06	0.00	1.07	79.95 79.99 176.33 177.29 1.27 1.27	0.87 3.12	38.20 0.12 0.13	0.57
SS NC	NANANANANANANANANANANANANANANANANANANA	14.07 10.74	0.00	21.46 16.34	57.81	38 - 69 9 30 - 69 7 30 - 69 7	20.24 14.76	12.57 9.18
COND/P AMTH	12	0.00	0 00	1.01 1410.80 1340.93	5529.06	0.89 2.57	1/02.55	1051-03
AMTHNV	13	0.00	18340 39 17432 04 3576 79 187 39 1275 66	298.07	5280.21 568.60	77.45	1700.19 180.18 13.42	111.83
AMTK AMTCA AMTMG	12 12 12	0.00 0.00 0.00	1275.66	15.62 106.31 69.00	568.60 52.43 274.76	20:27	86.24	53.53
AMTNH4 AMTCL	12	0.00	828.03 1443.85 3783.41	120.32	149.46 610.53 679.33	18.51 18.19 67.42	45.05 170.96 201.53	1013.83 1118.33 537.96 106.11
AMTF AMTNO3	12 12 12 12	0.00	5241.74	16.69 436.81	1447.26	0.00 34.20	25.25 446.06	276.85
AMTS04 AMTPU4	12	0.00	13966.34	1163.86	4076.95 0.00	76.12	1372.31	0.00
AXSSU4 AMTSS	12	0.00	13580.17	345.56	4026.38 734.63	66.99 74.36	1356.45	841.88 136.96
AMTNC	1 6	0.00	3164.97	263.75	867.06	64.05	244.88	151.99

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

•

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 08/78.

PH COND CMPPT HNV NA K	このいかいから	VOLWTAV 4.34 23.07 0.00 45.88 41.12 12.03	UEW/SQ.M 0.00 0.00 7.95 0.00 0.00 0.00	MEAN 2 30.76 47.79 42.70 44.49	HIGH 43.50 91.20 87.10 116.50	17.80 17.80 23.44 19.05 4.35	ST.DEV 0.26 10.29 20.51 27.74 46.18 6.80	95%C.L33 13.16 13.83 36.69 34.49 57.44
CA MG MH CL F 0004 S004 XS04	やいかがかがかがかがかがかがないがないがないがないがないがないがないがないがないがないがないがないがないが	105.3.7 14.0.94 136.0.9 136.0.9	0.00 0.00 0.00 0.00 0.00	8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	45.17.199 987.199 1169.997 1169.997 1290.79 1290.79	4.49 1.51 5.36 1.36 11.60 11.60 17.94	6.36 11.11 11.66 48.76 0.22 7.27 0.00 18.72	4985629790746 1160 820374 20374
SAN SCA ALLNA CLINA NAMG SS NC CUND/P	つからからかがから	34-94 94-94 95-94 9-92-94 13-94 18-94 18-94 18-94 18-94 18-94	0 0	0.90	0.00 68.558 196.158 1.059 1.059 1.33.445 1.33.445	16.3843 480.0782 12.560 00.000	54.25 68.09 0.10 0.65 52.69 30.66	0.11 0.12 0.81 65.75
AMTHNV AMTNA AMTK AMTCA AMTMG AMTNH4 AMTCL	うかかりかりがん	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3255.70 4685.77 4685.77 406.01 267.08 180.74 1178.60	44.04 54.60 46.60 46	2030 - 97 1768 - 90 1768 - 56 251 - 56 251 - 43 62 - 16 427 - 16	9.16 7.44 45.48 7.80 11.25 11.48 47.26	844.85 746.22 111.35 8.61 97.53	1050.74 1050.74 138.44 10.71 121.25 40.39
AMTE AMTNO3 AMTSO4 AMTPU4 AXSSU4 AMTSS AMTNC	いかいいいかいか	0.00 0.00 0.00 0.00 0.00 0.00	1107-96 2891-27 0.00 2777-27 1228-08 654-33	230.61 221.59 578.25 578.45 555.45 245.62	1642.11 1642.95 1642.38 358.21	20.33 20.33 15.47 52.13	24.38 145.36 1.36 261.81 677.33 0.00 672.62 146.14 134.65	180.88 1.69 325.49 842.09 836.24 181.69 167.40

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT UF RAIN FOR

A-155

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 09/78.

РН	N	VOLWTAV 4.08	UEQ/SQ.M	MEAN 4.12	HIGH 4.60	LOW 3.97	ST.DEV	95%C.L. 0.87
COND CMPPT	32	36.12	0_00	42.93	72.00	17.40	27.47 2.21	68.20 5.49
Ĥ	3	82,96	5.41 0.00	1.80 75.92	107.15 93.32	0.12 25.12 21.68	44.38 39.57	110.18 98.25
NA HNA	3	80.20 18.93	0.00	67.43 89.42	218.70	8.26 0.51	115.17	280.96
K CA	3	0.76 4.55	0.00	89.42 2.98 7.82	7.40 15.47	3.49	3.84 6.65	16.50
MG NH4	3	4.86 11.39	0.00	22.98 12.38	56.92 22.18	2.30	29.63 10.29	73.56 25.54
ÇL F	3	23.23 0.85	0.00	100.20 0.53 24.52	240.26 1.05 41.45	11.28	122.76	304.76
N03 S04	3	19.93 54.14	0.00	60.93	105.35	10.65 16.03	15.63 44.66	38.81 110.88
P04 XSS04	3	0.00 51.90	0.00	50.71	80.63	0.00	0.00 35.78	0.00 38.82
SAN SCA	3	98.16 123.45	0.00	186.35	388.09 027.83	75.74 82.31	174.99 188.52	434.43
A/C CL/NA	3	0.80 1.23 3.90	0.00	0.88 1.12	0.927	10.57 10.67 10.67	174.59 188.09 0.14	0.21
NA/MG	3	24.07	0.00	3.89	1265.01	3.59 10.67	136,20	0.84 338.13
98 NC COND/P	3	16.42	0.00	109.68 25.90 0.92	\265.01 0.99	3.82 0.85	136.20	66.45 0.17
AMTH AMTHNY	3	0.00 0.00	4491.00 4341.89 1025.74	1497-20	4115.42 4021.74	128 475 128 475 104 175 263 113 81 91 188 61	2268.22 2230.22 72.77 7.25 96.76	5631.09 5536.76
ANTNA AMTK	ž	0.00	1025.74	341.91	ሰነበፉ ፉ ነ	263/13	72.77	180.66
AMTCA AMTMG	3	0.00	C40.73	13.65 82.18 87.76	193.53 193.53 193.36	18.61	96.76	240.22 _41.70
AMTNH4 AMTCL	3	0.00	263.29 616.44 1258.18	87.76 205.48 419.39	573.39 486.10	68.477 28.000 477 28.000 477	16.80 318.66 112.88	791.11 280.22
AMTE AMTNO3	3	0.00	1079.15	15.33 359.72	45.36 924.49	, ģ. 00	26.01 489.87	64.57
AMTS04	3	0.00	2931.33	9//-11	2646.77	120.75	1446.06	1216.16
AMTPU4 AXSSU4	3	0.00	2810.15	0.00 936.72	2604.09	-97.00	1444.00	0.00 3584.88
AMTSS AMTNC	3	0.00	1304.14	434.71 296.28	525.33 784.23	318.84	1444.00 105.54 422.83	262.01 1049.73

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALEN\ /LITER EXCEPT FOR PH,
COND, CMPPT, AND RATIOS
UE9/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 14 DURING 10/78.

РН	N	VOLWTAV 4.95	UEW/SQ.M 0.00	MEAN 3.92	HIGH	LOW 0.00	ST DEV	95%C.L. 2.58
COND	5	15.24	0.00	16.54	47.00	0.00	20.67 2.84	25.70
CMPPT H	5	0.00 11.28	8.56 9.00	120-43	6.66 524.81	0.01	226.79	25.70 3.53 281.96
HNV	Ş	9.37	0.00	120.43 93.22 100.73	398.11	0.00	171.20	212.85
NA K	3	6.96 1.50	0.00	2.64	227.84 4.34	29.13 0.77	110.37 1.79	274.01
LA	3	5.49	0.00	10.51	14.47	2.99 7.07	6.36	15.78 57.08
MG NH4	3	15.06 1.02	0.00	22.43 4.43 105.09	48.86 11.64	0.55	22.99 6.25	57.08 15.51
ÇL F	3	69.70	0.00	105.09	232.37	51.50	110.69	274.80 274.80
NO3	3	0.45	0.00	15.27	2.11 36.45	2.90 0.00	1.10 18.43	2.72 45.76
\$04 P04	3	14.63	0.00	25.54	40-18	7.91 0.00	16.34	40.57
XSS04	3	7.46	0.00	0.00 14.73	23.21	4.69	9.36 122.10	23.23 303.13
SAN SCA	3	89.44 100.83	0.00	147.13 166.33	281.11 321.16	42.12 46.55	122.10	303.13 349.12
A/C	3	0.89	0_00	0.88	0.90	0.87	0.02	0.04
CL/NA NA/MG	3	1.04	0.00	1.04	1.14	1.02 3.98	0.06	0.15 0.89
SS	3	76.88	0.00 0.00 0.00	115.92 115.92 24.63	256.30	34.53	122.09	303.11 43.07
NC CUND/P	3	13.13 0.97	9.00	24.63 0.98	40.32	5.99 0.95	1/.35	43.07
AMTH	جِ	0.00	965.84	192.77 160.12 1904.12 42.74	401.08	0.00	127.39 17.35 192.26 161.53 1762.54	239.02
AMTHNV AMTNA	3	0.00	800.58 5712.35	1904.12	366.90 3648.92	0.00 124.35	1762.54	4375.71
AMIK Amtca	3	0.00	5712.35 128.21 468.10	42.74	20 51	124.35	31.71	78.72
AMTMG	3	0.00	1284.6/	156.03 428.22	23176 78256 3652 372172 19326	37.05 31.22 17.76	104.31 377.49 9.95 1791.95	4 3 9 0 0 7 2 2 3 9 5 7 5 9 3 7 1 5
AMTNH4 AMTCL	3	0.00	86.68 5946.97	28.89 1982.32	36.90	17.76 141.92	1791 45	24.69 4448.70 45.53 131.16
AMTE	3	0.00	38.06 396.84	132.28	33.75	0.00	18.34	45.53
AMTNO3 AMTSO4	ş	0.00	396.84 1248.60	132.28 416.20	193.26 643.55	100.25 78.44	52.83 298.30	131.16 740.55
AMTPU4	3	0.00	0.00	212.22	0.00	0.00	0.00	325.40
AXSSU4 AMTSS	3	0.00	636.66 6559.51	2186.50	312.22 4104.84	63.84 156.53	131.07 1976.52	325.40 4906.91
AMTNČ	3	ŏ.ŏŏ	1120.49	373.50	645.68	175.83	285.78	709.48

N=NUMBER OF SAMPLES

VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UEG/SQ.M=MICROEGUIVALENTS/SQUARE METER

MEAN=UNWEIGHTED AVERAGE

CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FJR

THE MUNTH

- 5

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 11/78.

PH	N	VOLWTAV 4.70	UE9/SQ.M	MEAN 4.47	HIGH 5.09	LOW 4.23	ST.DEV	95%C.L.
COND	4	32.28	0100	29,75	44.00	8-00	0.44 15.33 1.03 27.10	24.37
CMPPT H	4	0.00 19.91	3.22	0.81 34.18 32.31	2.34 58.88	0.13 8.13	27.10	1.64
HNV NA	4	18.79	0.00	32.31	54.95	6.76 13.91 1.79	26.25 99.36	41.74 157.99
K	4	164.14 3.98 9.71	0.00	108.16	199.14 5.87 13.97	1.79	1.92	3.05
CA MG	4	38-01	0.00	10.60	13.97 54.87	4.99 3.29	4.30 25.46	6.84 40.48
NH4 CL	4	38.01 0.51 164.73	0.00	116.54 13.72 19.57 26.69 178.77	54.87 2.77 236.32 14.74	4.99 3.29 0.00 15.79	25.46 109.89 7.21 18.49 27.53	40.48 42.10 174.73 11.46 29.40 43.77
F	4	1.85	0.00	3.95	14.74	0.00	7.21	11.46
NU3 SO4	4	8.30 34.53	0.00	19.72 38.57	45.81	4.19	18.49 27.53	29.40 43.77
PÖ4 X3304	4	0.00 17.63 209.39	0_00	0.00	75.99 0.00 52.12	9.99 0.00 8.37 35.30	0.00 20.31 134.57	0.00 32.30 213.97
SAN	4	209.39	0.00	178.77	346.40	35.30	134.57	213.97
SCA A/C	4	236.26	0.00	184.22 0.97 1.08	330.08 1.09	32.37 0.84 0.97 3.63 17.42 6.82	134.81	214.34
CL/NA	4	1.00 4.32 18 <u>1</u> .29	0.00	1.08	1.19	9.97	0.10	0.16
NA/MG SS	4	181.29	0.00	4.01 127.70 22.34	257.29 257.29	17.42	0.36 119.99 15.36	0.57 190.79 24.42
NC COND/P	4	35.06	8 86	22.34	43.15	6.82	15.36	n 20
AMTH	4	0.00	641.40	160.35	746 46	29.21 24.30	131.72	209.43
AMTHNV AMTNA	4	0.00	5290.65	160 - 35 160 - 35 151 - 66 1322 - 08 76	4422.73	40.04	2095.39	209.43 199.47 3331.67 68.90 155.08
AMTK Amtca	4	0.00	128.33	32.08 78.21	95.74	40.04 2.32 17.93	43.23	68.90
AMTMG	4	0.00	641.40 6405.29 5290.33 128.84 1225.159 5308.57	3UD - CD	2195.16 4495.74 2297.19 289.05 129.05 4289.48 4289.48	9.92	130.182 1315.49 1325.333 1325.	739.63
AMTNH4 AMTCL	4	0.00	5309:57	4 · 15 1327 · 39 14 · 73	4289.48	0.00 40.23	2017.32	3207.54
AMTF AMTNU3	4	0.00	58.93 267.51	14.73	57.56 98.29	34.20	28.56 27.00	3207.54 45.41 42.93 517.59
AMTSU4	4	0.00	1112.78	278.19	731.95	35.91	325.53	517.59
AMTPO4 AXSSU	4	0.00	0.00 568.14	142.04	290.57	0.00 30.08	0.00 126.50	201.14
AMTSS AMTNC	4	0.00	568.14 5843.30 1130.24	1460.82 282.56	4731.30 1011.42	44.37 24.50	2225.99 486.24	201 · 14 3539 · 33 773 · 11
717 F 14 C	-	0.00	1170054	EUE • 30	1011945	E4 . JV	400054	113011

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 12/78.

PH 4 4.96 0.00 4.71 5.06 4.40 0.28 COND 4 26.13 0.00 18.87 31.50 9.00 10.73 CMPPT 4 0.00 6.52 2.13 6.23 0.23 2.76 H 4 10.99 0.00 19.39 39.81 8.71 13.93 HNV 4 9.58 0.00 16.74 33.11 7.41 11.40	0.44 17.06 4.39 22.15 18.13 137.07
H 4 10.99 0.00 19.39 39.81 8.71 13.93 HNV 4 9.58 0.00 16.74 33.11 7.41 11.40	22.15 18.13 137.07 3.31
HNV 4 9.58 0.00 16.74 33.11 7.41 11.40	3.31
그만만하는 그는 그 그 그 그 보고 있다. 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	3.31
HNV 4 9.58 0.00 16.74 33.11 7.41 11.40 NA 4 152.95 0.00 77.07 200.44 13.91 86.21 K 4 3.56 0.00 2.81 4.85 0.77 2.08	~3.5¥
LA 4 9.11 0.00 15.10 52.45 5.99 15.08	20.80
MG 4 32.23 0.00 18.06 41.87 3.21 18.02	28.65
NH4 4 3.43 0.00 10.67 25.50 1.11 10.41 CL 4 160.46 0.00 83.19 209.24 15.51 88.86	16.56
F 4 0.95 0.00 4.87 18.42 0.00 9.04	14.37
NO3 4 5.86 0.00 14.40 39.20 4.19 16.60	26.40 28.11
PU4 4 0,00 0,00 0,00 0,00 0,00 0,00	0_00
P04 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00	27.75
SAN 4 194.51 0.00 132.56 243.32 39.50 101.96 SCA 4 212.27 0.00 141.09 265.95 43.38 108.22	162.12
A/C	0.06
CL/NA 4 1.05 0.00 1.08 1.22 1.04 0.07 NA/MG 4 4.74 0.00 4.27 4.79 3.26 0.65 SS 4 176.83 0.00 91.47 230.80 17.11 98.25	0.11
NA/MG 4 4.74 0.00 4.27 4.79 3.26 0.65 SS 4 176.83 0.00 91.47 230.80 17.11 98.25 NC 4 24.46 0.00 30.23 67.20 13.09 25.38	156.22
NL 4 (4.40 0.00 50.25 6/.20 15.09 (5.50	40.35
CUND/P 4 0.90 0.00 0.85 0.95 0.64 0.14 AMTH 4 0.00 936.95 234.24 542.99 90.82 209.68 AMTHNV 4 0.00 816.86 204.21 462.16 75.54 177.92	0.23 333.40 282.89 791.00
AMTHNV 4 0.00 616.86 204.21 462.16 75.54 177.92 AMTNA 4 0.00 13039.69 3259.92 12496.36 123.92 6157.86 9	282.89
AMIK // 11 11 11 11 12 15 16 17 17 18 18 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	791.00 206.47
AMILA 4 0.00 //0.65 194.10 591.08 55.55 693.6/	421.77 038.80
AMTMG 4 0.00 2748.21 687.05 2610.35 28.57 1282.26 2	038.80
AMTNH4 4 0.00 292.32 73.08 90.96 58.18 13.64 AMICL 4 0.00 13679.75 3419.94 13045.06 138.14 6417.16 10	21.69
AMTE 4 0.00 81.00 20.25 42.02 0.00 20.33	32.33
AMINUS 4 V.UU 477.32 124.00 201.40 30.US 72.34	295.05
AMIPO4 4 0.00 0.00 0.00 0.00 0.00 0.00	0.00
AXSSO4 4 0.00 875.87 218.97 448.90 106.73 155.94 AMISS 4 0.00 15075.28 3768.82 14388.70 152.36 7080.30 11	247.94
AMTSS 4 0.00 15075.28 3768.82 14388.70 152.36 7080.30 11 AMTNC 4 0.00 2085.01 521.25 1648.80 116.57 751.99 1	257.68 195.67

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MONTH

}

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 14 DURING 01/79.

D	N_	VOLHTAV	UEQ/SQ.M	MEAN	HĪGH_	LOW	ST.DEV	95%C.L.
PH COND	4	4.73 13.17	0.00	43.40	5.07 170.00	3.97 7.00	0.42 58.51	0.39 54.18
CMPPT	Ż	0.00	1/.15	43.39	12.20	0.23	35.69 35.69 31.79 357.46	4.01
HNV	7	18.64 17.46	0.00	40.17 34.59	107.15 97.72	8.51	\$5.59	33.05
NA	7	37.53	0_00	175.53	981.34	6.31 18.26	357.46	331.02
K	7	1.00 4.51	U_00	175.53 3.87 19.67	18.38	0.51	6.45 25.15	33.05 29.43 331.02
CA MG	7	4.31 8.70	0.00 0.00	40.41	64.87 222.93	2.00	80.89	23.29 74.90
NH4	7	2.24	0.00	8.87	31.60	4.44 0.55	10.78	9.99
Ç۲	7	39.85 0.04	0.00	187.17	1043.40	20.30	380.05 0.41	351.93 0.38
N03	7	4.72	0.00	0.23 15.74	48.07	0.00 2.58	17.44	16.15
\$04	7	19.39	0_00	54.96	153.86	9.16	22.45	16.15
P04 XSS04	7	0.00 15.29	0.00	0.00 35.71	106.49	0.00 5.88	34.82	0.00 32.24
SAN	Ż	64.02	0.00	258.36	1229.41	36.00	434.14	32.24 402.02 443.53
SCA A/C	7	72.61 0.88	0.00	288.53	1359.71	41.09 0.80	478.97 0.06	443.73
CL/NA	Ź	1.06	0.00	1.07	1.19	0.91	0.10	0.09
NA/MG	7	4.31	0.00	4.34 206.39	4.57	2.27	0.79	7.0.73
SS NC	7	43.95 10.03	0.00	41.96	1150.87 147.18	22.39 3.48 0.83	419.22 53.56	388.21 49.60
COND/P	7	0.92	0_00	0.92	1.03	0.83	53.56 0.06	0.05
AMTH AMTHNV	7	0.00	3196.99 2994.68	456.71 427.81	1763.89	104.45 86.76	591.29 600.47	547.54 556.04
AMTNA	7	0.00	6440 77	920.11	1.03 1763.89 1763.89 2334.60	61.92	600.47 972.55	900.60
AMTK	7	0.00	170.72	24.39	62.31	(6.92	20.54	19.02
AMTCA AMTMG	7	0.00	170 72 774 59 1492 80 383 65 6838 90	110.66	62.31 243.57 542.07	6.92 41.17 27.33 7.62	75.13 221.14 37.99 1035.26	204.78
AMINH4	Ž	0.00	383.65	54.81	10/.15	7.62	37.99	35.18
AMTCL AMTF	7	0.00	6030.30	976.97	2477.72 3.57	73.62 0.00	1033.60	958.67 1.45
AMTN03	<u>Ż</u>	0.00	808.83	115.55 475.18	314.94	33.52 125.96	96.73	89.58
AMTSU4	7	0.00	3326.23	475.18	1600.63	125.96	508.58 0.00	470.95 0.00
AXSS04	7	0.00	2022.67	374.67	0.00 1345.68 2732.93	80.88	444.35	411.48
AMTSS	7	0.00	7541.99	1077-43	2732.93	80.00	1142.07	1057.57
AMTNC	,	0.00	1720.54	245.79	517.28	47.92	156.21	144.65

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 160.

MONTHLY KAINFALL SUMMAKY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIF 14 DURING 02//9.

5344	κ,	VOLWTAV	UEU/SO.M	MEAN.	нівн	ĽŪM.	ST.DEV	95%C.L.
PH COND	4	4.53 23.27	0.00	$\frac{4.33}{47.13}$	$\begin{array}{c} 4.76 \\ 110.00 \end{array}$	4.23 16.50	0.26 42.97	0.41 68.32
ÇMPPT	4	0.00	3.44	() _ მხ	2.39	0.10	1.04	1.65
H HNV	4	29.72 26.71	0.00	47.19 40.32	58.88 54.95	17.38 16.98	19.94 16.32	31.71 25.95
NA	4	58.21	0_00	166.64	515.67	35.65	233.39	371.08
K Ca	4	1.81 14.33	0.00	$\frac{4.15}{18.71}$	10.98 37.43	1.28 9.98	4.58 12.61	7.29 20.06
МĜ	4	15.50	0.00	39.07	117.88	8 - 47	52.68	83.76
NH4	4	12.02	0.00	14.55	18.85	9.98	3.63 261.30	5.78
ÇL F	4	65.87 1.90	0.00 0.00	189.15 3.55	579.51 7.37	41.45 0.53	2.83	415.46
403	4	14.65	0.00	21.45	41.13	12.58	13.44	21.37
\$94 204	4	40.69	0.00	70.27	131.79	29.15 0.00	44.69 0.00	71.05
x\$504	4	53.97	0_00	50.91	72.16	24.68	21.22	33.75
SAN SCA	4	123.26 131.60	0.00	285.18 290.31	758.09 751.32	86.17 94.08	318.60 309.39	506.58 491.93
AZC	4	U.94	U_U 0	0.98	1.05	0.78	v.12	0.19
CL/NA NA/MG	4 4	1.13 3.76	0.00	1.14	1.22 4.38	$\frac{1.10}{3.29}$	0.05 0.49	0.08 0.78
SS	4	72.11	0.00	207.64	639.20	45.72	288.71	459.00
NC COND/P	4	29.76	0.00	35.48 0.90	57.17 0.97	26.34 0.70	14.52	23.09 0.21
HTMA	4	0.00	1021.55	255.39	415.44	56.67	148.22	235,66
VAHIMA AMTNA	4	0.00	918,06	229.52	405.99	47.14	147.97	235.27
AMIK	4	0.00	2001.67 62.29	500.42 15.57	945.89 30.52	169.35 8.49	331.81 10.08	527.57 16.02
AMICA	4	0.00	492.76 532.98 413.13	123.19 133.24	345.95	38.60	148./8	236.57
AMTMG AMTNH4	4	0.00	316.40 413.13	103.28	287.11 238.56	40.25 14.86	107.83 95.58	171.44 151.97
AMTCL	4	0.00	2264_98	566.24	1038.20	196.91	355.01	564-46
AMTF AMTNU3	4	0.00	65.38 503.74	16.34 125.93	34.54 312.34	3.26 42.42	13.14 125.76	20.90 199.96
AMTSU4	4	0.00	1398.82	349.71	696.82	135.91	245.96	391.07
AMTPO4 AXSSU4	4	0.00	1167.72	291.93	589.99 589.99	0.00 74.41	218.73	347.78
AMTSS	4	0.00	2479.68	619.92	1145.14	217.19	394.01	626.48
AMTNC	4	0.00	1023.15	255.79	702.90	5A.96	300.04	477.07

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPI, AND RATIUS
UEU/SO.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UMETGHTED AVERAGE
CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 14 DURING 03/79.

PCCH NA AGHL 34450 NA AGHL 00055AC/N	**************************************	VOLWTA686 4.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500 41.500	UE 4/50.M 0.00 3.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	134049111000253499283 N63285352943494689280 E46142262374381846601 M 4 226 2146 141846601	H 9 44027 H 9 44027 H 9 4418 H 9	W30432929343339066506 D3060042443339066506 D3366643267034289 190336643267031000	V80078406333612936033947	95216.99604778405.5969695944.997265.086848778465.596969544.87799521.596969696969696969696969696969696969696
NC NTH NA AMTH NA AMTH NA AMTT NO AMTT NO AMTT NO AMTT NO AMT NO	นนกรรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรรมการกรมการกรมการกรมการกรม	1.4998200000000000000000000000000000000000	0 000 0 000 0 000 7628 40 1608 54 1719 86 14475 71 1864 63 1447 81 1245 19 12015 19 12015 19	40.196720 40.196720 70.20521.19632 70.20521.19632 55.	93.94 94.04 94.04 10.40 10	49.63353960255360425514570.91425	0.1053 0.453 0.453 0.10	300.66 921.45 1005.87 1005.87 1005.87 3298.59 319.69 2873.3.45 2873.3.45 2873.3.19 2873.3

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRDEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICRDEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN DEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

ı

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SIJE 18 DURING 07/77.

ou.	N	VOLWTAV	UEW/SQ.M	MEAN.	HĮGH	FOM	ST.DEV	95%C.L.
PH COND	12 12	4.30 20.03	0.00	4.27 25.74	45.00	3.96 9.80	0.66 10.45	0.41 6.49
CMPPT	12	0.00	15.49	1.29 53.90	4.77	0.00	1.42	0.88
H	12	50.25 43.35	0.00	49.22	109.65 102.33	0.35 0.04	29.30 28.12	18.18 17.45
NA	Ď	0.00	0_00	0.00	0.00	0.00	0.00	0.00
K Ca	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SU4 PO4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XSS04	ŏ	0.00	0.00	0.00	ŏ.ŭŏ	0.00	ŏ:ŏŏ	0.00
SAN SCA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AZC	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NA/MG SS	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	12	0.00	7781 20	0.00 648.43	2064.67	0.00	0.U0 694.44	$\begin{array}{c} 0.00 \\ 431.01 \end{array}$
AMTHNV	iž	0.00	7781.20 6712.05	559.34	1840.14	0.00	594.16	368.77
AMTNA AMTK	Ó	0.00	U_00	0.00	0.00	0.00	0.00	0.00
AMTCA	ŏ	0.00	0.00	0.00	0.00	0:00	0.00	0.00
AMTMG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4 AMTCL	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTF	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3 AMTSU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTPU4	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSS04 AMISS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO	ŏ	0.00	V:00	0.0 0	0.00	0.00	0.00	8:80

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEU/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIJE 18 DURING 08/77.

РН	N 8	VOLWTAV 4.41	UEQ/SQ.M	MEAN 42	HIGH 5.04	LOW 4.05	ST.DEV 0.34	95%C.L. 0.29
COND CMPPT	8 8	22.01	0.00 25.05	19.87 3.13	37.00 8.16	8.30 0.31	9.04 2.60	7.54 2.17
H HNV	8 8	38.47 31.98	0.00	38.16 32.49	89.13 77.63	9.12 9.12	27.31 23.74	22.79 19.81
NA K	0		0.00		0.00	0.00	0.00	0.00
CA MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4 CL	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
F N03	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S04 P04	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XSSO4 SAN	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCA A/C	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	Ŏ	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
SS NC	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P AMTH	Ŏ	0.00	0.00 9635.80	0.00 1204.85	0.00 4407.51	0.00 28.50	0.00 1387.37	0.00 1157.60
AMTHNV AMTNA	ě	0.00	6013.38	1001.67	3838.78 0.00	28.50	1204.46	1004.98
AMTK AMTCA	ŏ	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL AMTE	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO3 AMTS04	Ŏ	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00
AMTPU4 AXSSU4	0	0.00	Ů.00 Ů.00	0.00 0.00	0.00	0.00	0.00	0.00
AMTSS AMTNC	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
***********	•	0.00		3,00				0,00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSATION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 09/77.

	N	VOLWTAV	UEQ/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH	8	4.61	0.00	4.57	4.98	4.28	0.29	0.25 5.17
COND CMPPT	8 8	13.73	21.19	16.30	22.40 _6.49	6.50	6.19	5.17 1.68
H	ĕ	24.80	0.00	2.65 26.89	52.48	0.64 10.47	2.01 17.18	14.34
HŅV	8	21.09	0_00	21.87	43.65	6.92	14.82	12.37
NA	Õ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K C A	Ö	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	ŏ	ŏ.ŏŏ	0.00	0.00	0.00	0.00	Ŏ:ŏŏ	0.00
NH4	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL F	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO3	ŏ	0.00	ŏ:ŏŏ	0.00	0.00	0.00	0.00	0.00
S04	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
P04 X S S04	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SAN	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SCA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AZC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	ů	0.00	0 0 0 0 0 0	0.00	0.00	0.00	0.00	0.00
SS	ŏ	0.00	Ŏ.ÖŎ	0.00	ŏ.ŏŏ	ŏ.ŏŭ	0.00	ŏ.ŏŭ
NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	8	0.00	0.00 5256.05	0.00 657.12	1828.63	0.00 68.64	0.00 601.72	0.00 502.06
AMTHNV	8	0.00	5256.95 4469.48 0.00	558.69	1520.98	44.32	532.24	444.09
AMTNA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTK AMTCA	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTMG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4	Ŏ	0.00	0,00	0.00	0.00	0.00	0-00	0.00
AMICL	0	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTF AMTNU3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTS04	ŏ	0.00	ŭ.ŏŏ	0.00	ŏ.ŏŏ	ŏ.ŏŏ	0.00	0.00
AMTP04	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AXSSÚ4 AMTSS	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNC	ŏ	0.00	0.00	8:00	0.00	0.00	8:00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPI IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1-16

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIVE 18 DURING 10/77.

DA	N.	VOLHTAV	UEQ/SQ.M	MEAN	нĨей	FOM	ST.DEV	95%Ç.L.
PH COND_	4	4.40 17.23	0.60	4.34 13.30	5.20 25.60	4.05 9.00	0.50 10.50	0.79
CMPPT	4	0.00	0.00	0.29	0.70	0.01	0.33	16.69 0.52 55.39 9.53
HNV	4	39.38 7.16	0.00	45.26 4.59	89.13 13.18	6.31 4. 00	34.84 5.99	9.53
NA	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K CA	ű	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ξ٢	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NO3 SO4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PĎ4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
XSSO4 San	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
SCA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTH	4	0.00	459,46	114.86	232.83	2.86	125.62	199.74
AMTHNV AMTNA	ő	0.00	83.53	20.88	53.76 0.00	0.00	25.85	41.10
AMŤK	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA AMTMG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL AMTF	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTS04 AMTP04	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSS04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNC	Û	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARF METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

)

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 11/77.

PH	NS	VOLWTAV 4.92	UEQ/SQ.M	MEAN A R2	HIGH 5.44	LOW 4.54	ST.DEV 0.35	95%C.L.
COND CMPPT	55555	8.16	0.00 6.30	4.82 8.72 1.26	11.10	6.60	1.82	0.43 2.27 0.69
HNA		12.15	0.00	15.11	28.84 282.39 20.44 0.51	3.63 1.82	9.73 8.10 7.07	12.10
NA K Ca	4	15.49 0.31	0.00	0.26	20.44 2.51	4.35 0.00	7.07 0.21 2.49	0.33
MG NH4	4	3.42 3.73 3.17	0.00 0.00 0.00	3.16 3.33	4.61 8.32	0.50 1.15 1.11	1.60 3.28	2.54
ÇL	4	18.37 0.00 6.57	0.00 0.00 0.00	13.91 0.22 3.13 3.47 16.43 0.00 7.20	25.69	5.08 0.00	8.39 0.00 3.56	13.33
N03 SU4	4	6.57 11.15 1.52	U . 00	7.26 11.92	0.00 10.32 19.99	2.90 4.58	3.56 6.37 2.05	5.66 10.13
P04 X\$\$04	4	1.52 9.30	0.00	11.92 1.03 10.25	18.42	0.00 2.14	6.83	101032536413063771305031050313050310050313050313050313050313050313050313050313050313050313050313050300300000000
SAN SCA A/C	4	9.30 37.62 36.21 1.04	0.00 0.00 0.00	36.63 35.76 1.02 1.18	45.22 49.68 1.23 1.22	28.10 23.02 0.85	8.28 10.93 0.20	17.38
CL/NA NA/MG	4	1.19 4.15	0.00 0.00	4.18	1.22	1.16 3.78 5.62	0.03 0.37	0.04
SS NC	4	4.15 19.94 6.19	0.00	17.91 6.18 1.03 153.20	26.13 12.88	0-61	0 14	14.40
COND/P AMIH	4 5 5	6.19 1.04 0.00	0.00 765.99	153.20	230.08	0 . 8 1 75 . 4 5 37 . 8 2 37 . 23	0.15 62.35	77.52
AMTHNV AMTNA AMTK) 4	0.00 0.00 0.00	866.47	126.82 217.12 4.36	4.60 26.13 12.88 1.15 230.08 195.83 370.46	37.23	151.68	241.17
AMTCA AMTMG	4	0 . 0 0 0 . 0 0 0 . 0 0	765.99 634.11 866.47 17.43 192.01 209.10 177.81	48.00 52.27		0.00 7.58 9.86	150-1555 658-648 1514-445 1514-457	78.58 59.36
AMTNH4 AMTCL	4	0.00	177.81 1030.07	48.00 52.27 44.45 257.52	114.07 95.73 95.89 451.24	16.84 43.46	183.04	13.3049 17.000.590 14.442.557 18.000.611.53.49 17.721.789.849 29.1000.000
AMTF AMTNU3	4	0.00	1030.07 0.00 368.48 625.12	92.12	120.67	0.00 44.10	0.00 34.99 79.35	55.64
AMTSÖ4 AMTPU4 AXSSÖ4	4	0.00 0.00 0.00	85.34 85.34	156.28 21.34 130.30	230.48 85.34 212.44	69.56 0.00 32.55	79.35 42.67 78.98	126.17 67.85
AMTSS AMTNC	744	0.00	85.34 521.18 1117.89 346.93	279.47 86.73	478.64 158.32	48.10 9.31	195.12	67.85 125.57 310.24 123.38

N=NUMBER OF SAMPLES
VDLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

10

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIJE 18 DURING 12/77.

PH	N _B	VOLWTAV 4.52	UEQ/SQ.M 0.00	MEAN 4.39	HIGH 4.86	LOW 3.90	ST.DEV	95%C.L.
COND	8	11.81	0-00 8-44	16.96	49.50 2.29	7.40 0.11	14.02	11.70 0.59
HNV	8	29.95 25.28	0 00 0 00	1035278563898 432 432 90 90 90	125.89 97.72	13.80	43.60 34.07	36.38 28.43
NA K	7 7	17.91 0.52	0.00	25.22 0.77	66-46	3.48 0.00	22.90	21.20
C A MG	7	4.46 4.48	0.00	5.28 6.05	1.53 13.97 14.97	0.00 1.65	0.64 4.95 4.95	0.59 4.58 4.59 2.96
NH4	77	1.88	0.00	2.46 30.13	14.97 9.42 72.76	0.00 8.74	3.20 24.23	22.44
CL F NO3	77	23.73 0.47 9.09	0.00	9.19	14.05	9.00 5.97	9.66 3.49	0.61
\$64 P04	77	9.09 18.76 0.00	0.06	20.28 0.00 17.45 59.99 66.11	5/.06	10.41 0.00 8.34	10.28	3.23 9.52 0.00
X3304 3AN	7 7	0.00 16.70 52.05	0.00 0.00 0.00	17.45 59.99	0.00 34.54 94.87	8.34 26.09	9.00 9.78 30.98	9,05
SEA A/C	7	52.05 57.97 0.90	0.00	66.11	155.85	26.09 23.47 0.60	48.71	28.68 45.11 0.20
CL/NA NA/MG	7	0.90 1.32 3.99	0.00	0.88 1.19 4.17	1 . 24 2 . 51 4 . 91	0.90 2.11	0.21 0.56 1.16	0.52 1.08
SS NC	7	22.17 7.10	0.00	9-30	80.25 32.09	0.60 0.90 2.11 4.49 1.18	1.16 27.74 10.46	25.68
COND/P	7 8	0.83 0.00	257 - 22 257 - 32 257 - 32 257 - 35 257 - 35 371 - 56 371 - 56	0.83 315.90	1 00	0.50 43.57 39.73	0.16 337.45 280.82	0.15 281.57 234.31 148.61 4.62 48.50
AMTHNV	8	0.00	2133.32	200.07	1092.20 908.45 483.41 12.35 128.74	39.73 62.10		234.31 148.61
AMTK	7	0.00	43.54	6.22	12.35	0.00	4.99 52.38	4.62
AMTMG AMTNH4	7	0.00	373.56	53.37		19.12	52.38 53.06 22.37 207.01	30.62 20.71
AMTCL	7	0.00	156.88 1976.49 39.13 757.04	282.36	582.05	102.25	207.01 10.13	191.69
AMTNO3	7	0.00	757.04 1562.93	16.121 53.41 553.41 282.359 108.158	582.05 582.46 179.47 382.72	19.85 49.94	60.26 122.28	55.81 113.23
AMTPO4 AXSSU4	7	0.00 0.00	0.00	0.00	338.17	0.00 26.31	0.00	0.00 101.70
AMTSS	7	0.00	1846.56	196.76 263.77	624.56	80.24	209.96	194.43
AMTNO	7	ŏ.ŏŏ	591.22	84.46	228.12	24.84	75.23	69.66

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SU.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN DEQ/SU.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

	N	VOLWTAV	UEQ/SQ.M	MEAN	HIGH_	ΡΌΜ̈́	ST.DEV	95%Ç.L.
PH COND	6	4.76 10.88	0.00	4.59 14.57	5.37 33.00	4.11 6.30	0.43	0.45 10.95
CMPPT	0	0.00	2.00 5.54	0.92	2.01	0.42	0.56	0.69
H	6	17.52	0.00	25.51	11.63	0.42 4.27	27.03	28.36 23.06 27.72 2.29 19.79
HNA	6	14.18	0.00	20.56	61.66	2.82	21.98	23.46
NA K	6	30.71	0.00	39.78	76.09 5.62	20.00	26.42	27.76
ĈA	6	17.15	0.00	1.45 19.71	44_41	0.00	18.86	19.79
MG	6	11.87	0_00	12.82	20.73	5.26	7.91	8.29 7.60
NH4	6	7.62	0.00	9.24	22.18	2.77	7.24	7.60
ÇL F	6	31.57	0.00	39.76 0.00	84.32	17.48 0.00	26.71	28.02
, NO3	6	10.00	0.00	13.52	38.71	6.13	12.57	13.18
S04	6	23.94	0_00	31.54	82.66	8.95	26.98	28.31
P04	6		0,00	0.00 27.45	_0.00	0.00 7.15	0.00 24.42	0.00
XSSD4 SAN	6	20.69 05.51	0.00	84.83	73.98 205.69	34.34	64.58	25.62 67.76
SCA	6	85.56	Ŏ.ŏŏ	108.51	246.15	44.80	76.92	80.70
A/C	6	0.77	0_00	0.78	0.89	0.58	76.92	0.12
CLINA	6	1.03	0_00	1.00 3.10 43.86	1.13	0.85	0.12 1.12 29.46	0.12
NA/MG SS	6	2.59 34.82	0.00	43.86	4.45	19.22	29.46	1.18 30.91
NC	6	33.22	0.00	59.14	93.00 75.53	19.28 10.03	28.82	30.24
COND/P	6	0.74	0_00	0.75	0.94	0.62	0.12	0.13
AMTH	6	0.00	971.13	161.86	345.6/	62.19	115.66	121.35
AMTHNV	6	0.00	786.08 1702.42	131.01 283.74	274.58 409.99	41.09 95.32	99.12 119.28	104.00
AMTK	6	0.00	CA AQ	6.45	25.01	0.00	9.70	10.18
AMICA	6	0.00	950 49 657 79 422 13 1749 85	158.41	443.74 302.20	0.00	160.63	168-53
AMTMG AMTNH4	6	0.00	657.19	109.63	302.20 113.15	25.09 13.21	100.04	104.96 43.15 143.87
AMTCL	6	0.00	1749.85	291.64	424.32	83.32	41.13	143.87
AMTE	6	0.00	9.00 554.53	92.42	172.39	0.00	0.00	0.00 53.16
AMTNO3	6	0.00	\$54.53	92.42	172.39	37.67	50.67	.53.16
AMTSO4 AMTPO4	6	0.00	1326.85	221.14 0.00	368.08 0.00	42.66	113.87	119.47
AXSSU4	6	0.00	1146.79	191.13	329.44	34.09	102.22	107.24
AMTSS	6	0.00	1950.09	321.68	468.03	91.90	151.25	158,69
AMTNC	6	0.00	1841.43	306.91	768.75	47.80	251.44	263.81

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIT

160

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SIJE 18 DURING 02/78.

54	N,	VOLMEAV	UEU/SQ.M	MEAN_	ніен	LOW	ST.DEV	95%Ç.Ļ.
PH COND	6	4.28	0.00	22.27	4.38 40.50	4.05 16-10	6.14 9.08	0.14 9.53
CMPPT	6	9.00	9.00 15.91	2.65 59.50	5.64	16.10	2.26	9.53 2.37 20.05
HNV	6	\$2.\$1 46.36	0.00	54.42	89.13 85.11	41.69 36.31	19.11 18.68	19.60
ŅA	6	7.35	0_0 0	6.09	9.57	1.30	2.96	2.11
ĈA	6	46.36 7.35 0.88 4.32	9.00	6.09 0.77 4.82 2.10	16.47	0.00	2.96 1.05 6.33	1.10
MG	ě	2.50	0.00	Ž. Į į	3.29	0.00 0.58	0.99	1.04
NH4 CL	6	9.68 9.67	9.00	6.93 8.51	85.11 95.157 2.81 16.47 11.64 11.56	1.66 3.67	4.28 2.94	4.49 3.09
F	6	0.48	0_00	8.51 0.35 11.69	2.11	0_00	0.86	0.90
N03 S04	6	9.90	0.00 9.00	11.69 30 A4	22.90	7.90 2 4. 36	5.60 12.95	5.87 13.59
P04	ě	39.33 0.00	0_40	39.84 _0.00	61.00 60.00 60.32 93.78 120.88	0.00	0.00	10.515 120.48 20.65
XSSD4 San	6	28-45	0.00	39.11	60.35	23.58	12.67 19.39	13.51
SCA	6	77.23 0.77 1.32 2.94	9,00	39.11 60.39 80.21 0.75	120.88	41.03 52.53 1.15 2.15 2.27	23.28 0.18 0.62 9.53 3.77	24.43
A/C CL/NA	6	0.77	0.00	0.75	1.03 2.81	9.53	6.18	0.18
NA/MG	6	2.94	0.00	1.40 2.90 7.83	3.45	2.27	ŏ.53	0.5 6
SS NC COND/P	6	7.44	0.00	13 21	12.13 24.45	2.16 2.69	3.77	3.36
COND/P	6	15.27 0.81	0.00	0.84	1.04 2813.21	0.61	8.85 0.19	6.20
AMTH	6	0.00	0.00 8354.11 7375.12 1169.43	1392.35	2813.21	231.66	1135.88 973.09	1191.76
AMTHNV AMTNA	6	0.00	1169.43	194.91	2394.43 490.51	201.77 4.08	194.22	203.78
AMTK	6	0.00	139.39	23.23	128.13	0.00	194.22	53.96
AMTCA AMTMG	6	0.00	1539 · 35 1539 · 35 1539 · 18 76 · 97 1575 · 52	13929 - 139 1229 - 139 1229 - 23 123 - 46 256 - 56	422.20 185.60	0.00 1.80	163.19 69.96 278.37 247.91	73.40
AMTNH4	6	0.00	1539.35	256.56	185.60 656.70	6.93	276.37	\$95.06
AMTCL AMTF	6	0.00	1539.18	256.53 12.83 262.59	652.17 7 6. 97	11.46 0.00	31.42	260-11
AMTNO3	6	0.00	1575.52	262.59	600.49	33.27	208.24	218.49
AMTS04 AMTP04	6	0.00	0630.00	1042.78	2454.45	111.26	927.32	972.94
AX\$304	ĕ	0.00	0.00 6117.u2	1019.50	0.00 2395.64 633.74	110.77	904.44	0.500.000.000.000.000.000.000.000.000.0
AMISS AMINC	6	0.00	1502.58 2429.70	250.43 404.95	633.74 1121.27	5.27 16.17	249.62 448.57	261.90 470.64
APP THE	U	0.00	2427.10	707.73	* * * * * * * * * * * * * * * * * * * *	10.11	770.31	710007

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SG.M=MICROEQUIVALENTS/SQUARF METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FUR
THE MUNIH

ţ

WONTHLY RAINFALL SHMMARY UN CHUBING STATISTICAL EXCLUATION DETY ARIABILITY UNCLUBING ON THE THE DURING ON THE DURING ON THE THE DURING ON THE DURING ON

nu	N	VULMTAY	UEW/SO.M	MEAN	нісн	LOM	ST.DEY	95%C.L.
PH COND_	3	4.47 19.60	0.00	24.03	4.67 36.00	4.28 13.80	11.20	0.52 27.81
CMPPT H	3	9.00 33.58	6.34 0.00	2.11 39.51	3.28 52.48	0.79 21.38	1.25	3.11 40.17
HNV	3	31.30	0_00	36-49	46.77	19.05	15.18	37.69
NA K	3	22.17 1.34	0.00	25.51 1.62 19.13	36.96 2.55	18.26 1.02	10.03	24.90
CA MG	3	12.15	0.00	19.13 7.49	41.42 12.59	7.98 4.61	19.30	47.92
NH4	3	5.84 11.24 22.90	0_00	16.26 26.60	31.60 38.35	7.21	13.36	11.00 33.16
ÇL F	3	1.09	0.00	0.70	2.11	20.59 0.00	10.18	25.26 3.02
N03 S04	おわれのわれ	13.58 51.93	0.00	18.44 55.80	33.07 74.12	9.35 34.98	12.79 19.69	31.75 48.88
P04 X3S04	3	0.00 49.57	0.00	0.00 53.06	0.00	0.00 32.83	0.00 18.87	0.00 46.84
SAN	<u> </u>	89.49	0.00	101.54	70.17 145.54	68.75	39.60	98.31
SCA A/C	3	86.31 1.04	0.00	109.51	177.60 1.42	63.76 0.79	60.11 0.35	149.24
CL/NA NA/MG	3	1.03	0.00	1.04 3.41	1 . 1 4	0.97 2.94	0.09	0.22
SS NC	3	3.80 25.26 27.47	0.00	29.34	4.63 42.30 82.81	2.94 22.71 19.49	11.23	27.87
COND/P	3	0.89	0.00	40.66	0.97	0.82	36.51 0.08	0.21
AMTH AMTHNV	3	0.00	0.00 2127.64 1983.28	709.21 661.09	1012.02	414.11 369.07	299.03 311.51	742.37 773.35
AMTNA AMTK	3	0.00	1404.44	468.15 28.39 256.56	699.08 _41.89	291.62 20.14	209.11 11.78	519.13
AMTCA	3	0.00	1404.44 85.17 769.67 369.74	256.56	326.81	180.89	73.11	270 - 27 900 - 37 7473 - 125 181 - 92 181 - 92
AMTMG AMTNH4	3	0.00	711.93 1450.89	123.25 237.31	151.15 249.35	99.31 226.09	73.11 26.15 11.65	28.93
AMTCL AMIF	3	0.00	69.08	483.63	675.48 69.08	302.62	186.66	28.93 463.41 99.01
AMTNU3 AMTSU4	3	0.00	860.24	23.03 286.75	306.97	260.91 584.85	23.54	58.43
AMTPO4	3	0.00	3290.15	1096.71	1912.84	0.00	714.36	58.43 1773.49 0.00 1728.40
AXSSO4 AMTSS	<u> </u>	0.00	3140.85 1600.33	1046.95 533.44	1843.33 745.05	553.71 333.79	696.21 205.89	1728.40 511.15
AMTNO	3	0.00	1740.61	533.44 580.20	653.44	441.64	120.06	511.15 298.06

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS IDTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 04/78.

PH COND	N 3	VOLWTAV 4.68 16.95	UEQ/SQ.M	MEAN 4.74	HIGH 4.90	LOW 4.65	ST.DEV	95%C.L. 0.33 24.05
ČMPPT H HNV	3	0.00 21.10 19.13	0.00 1.07 0.00 0.00	22.13 0.36 18.31	33.00 0.74 22.39	14.40 0.08 12.59	9.69 0.34 5.10 52.98 1.85 48.24	12.67
NA K	3	21.95 2.72	0.00	18.31 15.74 46.23	22.39 20.89 107.40	12.59 9.33 14.78 2.30 14.97	52.98 1.85	131.52
CA MG	3	26.15 .6.89	0.00	70. <i>54</i>	101.80	14.97	48.24 13.36	119.76 33.16
NH4 CL F	3	21.95 26.15 26.89 33.98 21.17	0.00 0.00 0.00	38.02 42.77	97.57	4.36 28.27 14.95	13.36 13.41 47.46	117.83
N03 S04	ジングラング	21.57 41.76 0.00	0.00	32.64 55.45	59.84 90.98	18.07 37.27	9.80 23.58 30.77	58.54 76.40
PO4 X3304 SAN	3	0.00 39.59 86.54	0.00 0.00 0.00	0.00 51.05	0.00 80.94	0.00 35.64 73.22	25.89 103.54	0.00 64.28
SCA A/C	33	39.59 86.56 112.78 0.77	0.00	142784505445051350051160036	101.83.757648 101.83.7576488 973.890.996 590.990.9963 1090.2361	86.38 0.72	10.09 10.09 10.05	309.46
CL/NA NA/MG	3	0.96 3.19 23.35 68.32	0.00 V.00	0.93 3.66	3.83	0.91 2.68 16.48	0.05 0.65	0.13 1.62
SS NC COND/P	3	68.32 0.97	0.00 0.00 0.00	100.05	107.62 189.01 1.03	49.01	77.32	191.96
AMTH AMTHNV	3	0.00	225.52 204.48	75.17 68.16	165.81	0.81 9.83 7.29	77.01	201.10
AMTNA AMTK AMTCA	333	0.00 0.00 0.00	29.04 279.57	9.68 93.19	18.91 162.61	7.29 41.31 4.39 37.43	34.44 8.02 63.70	19.91 158.15
AMTMG AMTNH4	3	0.00	234 - 70 234 - 70 279 - 57 73 - 63 363 - 17 226 - 40	3.66 47.18 47.18 100.90 758.12 678.28 93.19 93.19 121.43 757.88 148.81	109.49 18.91 162.61 40.82 250.47 110.69	42.01	8.72 63.70 15.13 112.99 35.61	37.57 280.50
AMTCL AMTF AMTNO3	333	0.00 0.00 0.00	220.40 22.01 230.55	75.47 7.34 76.85	110.69 15.59 133.80 282.18	39.48 2.47 46.75	35.61 7.19 49.34	17.85 122.50
AMTS04 AMTP04	3	0.00	445.44	0 00	0.00	71.08 0.00	116.03	288.06
AXSS04 AMTSS AMTNC	3 3	0.00 0.00 0.00	0.00 423.14 249.72 730.38	141.05 83.24 243.46	270.79 122.10 460.20	63.24 43.55 122.51	0.00 113.11 39.28 188.12	02966030400806732769091157015060023 65571380540264116992115915548500050 41493372860449001910115987087280077 13 1331 57 650 29 09815388128 896 11 21 21 22 4
ATT IT	,	V • V V	130.30	273070	40000	155071	100115	701,00

N=NUMBER OF SAMPLES
VOLHTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS FOTAL AMOUNT OF RAIN FOR
THE MUNITH

t

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIJE 15 DURING 05/78.

DP TOWN TA AGHL ODOSACVLASO OTHER CONTROL ODOSACVLASO	2 444444444444444444444444444444444444	VOL W159901233477113558840942088311960421157.1960	UEU/SQ.MO 0.001 70.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.	M 47.009670480388402487011 M 47.1.00967048038804024870010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.009670488038800010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.00967048038800010 M 47.1.0096704800388000010 M 47.1.0096704800388000010 M 47.1.0096704800388000010 M 47.1.00967048003880000000000000000000000000000000	H 2 552 3 52 35 502 12	W223004142086937009469900 1102111249009469900 111249009469900 111249009469900	V61651214598036010298055	9
CONTHNA AMTHNA AMTICA A AMTICA	4444444444444	0.600	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	130 49 130 49 150 0 6826 150 0 6826 150 0 6837 150 0 683 150	285-405-8 285-405-8 285-405-8 135-405-8 135-405-5-3 135-406-5-3 135-406-5-3 135-406-5-3 135-406-5-3 135-606-5-3 13	120 147.0891380546150070 147.077.2759700070 1437.7292.99370	240.1697 240.1697 240.1697 240.1697 240.1697 240.1699 240	1018.61 831.61 831.601 1451.601 1451.601 146.07 2516.97 408.00 408.00 10

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPPT, AND RATIUS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 06/78.

PH COND CMPPT H	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VOLHTAV 4.48 13.00 0.00 33.18 29.98 11.20 0.90	UEQ/SQ.M 0.00 0.00 17.47 0.00 0.00	MEAN 40.19 10.59 64.89 57.82	HIGH 4-90 56-00 6-60 239-88 218-78	LOW	ST. DEV 0.41 16.74 71.37 65.05	95%C.L.7 10.27 10.37 46.26 42.17
NA K CA MG NH4 CL	10 10 10 10 10	0.06 2.85 4.79	0.00 0.00 0.00 0.00 0.00 0.00	18.15898992530895 18.105920.00895 18.105920.00895 18.105920.00895	218.57 18.53.4 19.53.4 11.55.5 11.55.5 11.55.6 11.5	3.459 0.459 0.4742 0.482	21.60 0.845 4.85 47.839 25.54 13.67	15.44 6.44 6.44 55.57 18.57 18.77
1103 904 P04 XSS04 SAN SCA A/C	100100100100100	11.91 0.09 12.22 29.86 28.67 54.08 60.63	0.00 0.00 0.00 0.00	19.95 38.03 00.08 36.79 92.65 0.87	115.60 186.56 230.92	0.00 7.74 11.45 0.00 10.41 33.14 40.73	34.36 0.00 33.61 57.40	24.56 0.00 24.02 41.03 47.33
CL/NA NA/MG SS NC COND/P AMTH AMTHNV	10 10 10 10 11 11	9964627000 808657000 1325000	0.00 0.00 0.00 0.00 0.00 5796.29 5237.68	9901-171 9901-171 9901-171 30200-171 2200-171 2704-171 194	1.46 4.70 76.65 61.41 2048.72 1053.30	0.81 0.25 3.11 0.62 27.30 11.79 11.79	0 · 10 0 · 20 0 · 88 16 · 93 0 · 97 579 · 31	0.14 0.59 19.21 12.10 0.16 396.71 375.54
AMTNA AMTK AMTCA AMTMG AMTNH4 AMTCL AMTF	10 10 10 10 10	0.00 0.00 0.00 0.00 0.00	796.09 5796.08 1940.08 1157.06 1157.06 1157.08 11770.00 11770.00 1124.00 2124.00	115.77 49.48	395.40 241.77 366.08 1120.16	3.27 8.19 12.57	308.79 114.79 114.20 131.05 326.43 205.75	220.67 14.36 81.99 49.46 93.02 233.02
AMTNO3 AMTSO4 AMTPO4 AXSSO4 AMTSS AMTNC	10 10 10 10 10	0.00 0.00 0.00 0.00 0.00 0.00	2124-42 5193-25 0.00 4984-78 2236-46 2699.05	207 09 1 62 12 44 519 32 0 00 498 48 223 65 269 91	681.65 2323.36 0.00 2304.20 1235.53 902.08	0.00 27.66 22.19 0.00 20.89 13.86 23.21	205.75 697.76 0.00 695.73 361.21 274.38	147.04 498.67 0.00 497.22 258.14 196.10

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SO.M=MICROEQUIVALENTS/SOUARE METER
MEAN=UNNEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

PH.	N 12	VOLWTAV 4.57	UEU/\$0.M	MEAN 4.30	HIGH 4.82	LOW 3.87	ST.DEV 0.31	95%C.L. 0.19
COND CMPPT H	12 12 12	12.02 0.00 26.92	26.87 0.00	19.48 2.24 50.61	59.00 10.50 134.90	0.00 0.06 15.14	14.97 3.61 40.06	9.29 2.24 24.86
HNV NA	15	23.48 6.14 0.76	0.00	42.09 10.74 1.35	104.71 30.44	9.77 0.87	31.27	19.41
K C A MG	10	0.76 6.89	0.00	1.35 12.08	3.06 27.44 6.99	0.51 4.49	8 · 43 0 · 83 7 · 74 2 · 13	0.59 5.53
NH4 CL	1 0 1 0	6.89 1.59 1.52 5.78	0.00 0.00 0.00	12.08 3.10 2.94 10.91	9.42 30.17	0.25 0.55 0.56	7.00	0512535 12606
F N03 S04	10 10 10	0.30 7.63	0.00	29.31	3.68 114.04 47.68	0.00 4.03	1.20 35.84	23.01
PÕ4 XS\$04	10	18.94 0.00 18.35 32.65	0.00 0.00 0.00	25.50 0.00 24.40	45.65	5.41 0.00 5.24	15.17 0.00 14.54	10.84 0.00 10.39
SAN SCA A/C	10	32.65 43.56 0.75	0.00	66.46 73.09	183.92 174.17	13.40	50.18 43.52	35.87 31.10
CL/NA NA/MG	10 10 10	0.94 3.86	0.00 0.00 0.00	0.91 1.02 3.46	1.18 1.25 4.35 33.28	0.54 0.65 2.65 0.62	0.19 0.18 0.58	0.14 0.13 0.41
SS NC COND/P	10	6.35 10.55	0.00	11.84 18.37	35.49	7.80	9.74 9.67	6.96 6.91
AMTH AMTHNV	12 12 12	0.97 0.00 0.00	0.00 7232.02 6309.22	0.98 602.67 525.77	1.18 2767.50 2582.78	0.82 30.69 23.28	0.13 830.38 753.91	0.09 515.38 467.92
AMTNA AMTK	10	0.00	7232 02 6309 22 1643 21 202 93 1841 41	164.32	80.42	11.66 2.11	753.91 218.03 24.66	467.92 155.82 17.62
AMTCA AMTMG AMTNH4	1 0 1 0	0.00 0.00 0.00	426.27 407.49	184.14 42.63 40.75	628.74 158.31 131.95	14.41 3.11 0.78	219.18 51.75 44.19	156.64 36.99 31.58
AMTCL AMTF	10	0.00	1546.59 79.81 2039.90	154.66 7.98 203.99	568.54 62.63	14.54	44.19 202.99 19.53	143.07
AMTNO3 AMTSO4 AMTPO4	10 10 10	0.00 0.00 0.00	5064.73 0.00	203.99 506.47 0.00	423.41 2098.75 0.00	72.74 22.54 0.00	148.41 661.48 0.00	106.07 472.74 0.00
AXSSU4 AMTSS	10 10	0.00	4906.31 1699.01	490.63 169.90	2040.25 627.10	20.87 15.06	645.43 224.04	461.27 160.12
AMTNC	10	0.00	2822.30	282,23	865.88	18.13	306.63	219.14

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FUR
THE MUNITH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SITE 18 DURING 08/78.

РН	N 10	VOLWTAV 4.49	UEQ/SO.M	MEAN 4.04	HIGH 5.24	LDW 3.48	ST.DEV 0.54	95%C.L. 0.38
COND CMPPT	10	15.83 0.00	0.00 0.00 9.38	36.96 0.94	114.00	8.40	37.22 1.03	26.60 0.74
HNV	10 10	32.07 27.64	0.00	90.47 82.78	331.13 316.23	5.75	445 // //	82.24
NA K	°ğ 9	13.49	0.00	21.40	52.18	0.50 3.48 0.51	1087 - 29 1087 - 29 172-99 53-86 18-65	13.31 1.61 6.92 4.07
ĈA MG	9	7 QX	0.00	11.98 7.08	30.44 15.05	3.49 0.90	8.99 5.28	6.92 4.07
NH4 CL	9	4.40 3.72 16.45 0.85	0.00	5.98 25.04	7.194 7.445 7.445 1.52.81 1.52.81 1.52.82	3.49 0.90 0.55 4.51	3.86 18.65	2.97 14.36 0.62
F NO3	9	15.04	0.00	27.31	92.59	0.00 5.00	28.30	21.79
\$04 P04	9	21.27	0.00	47.05 0.00	198.21	5.83 0.00	60.82	21.79 46.83 0.00 46.26
XSSO4 SAN	9	19.69 51.61	0.00	44.58 100.40	195.03 325.97	00421584907 0042201145	60.08 93.22	/1./8
SCA A/C	9	51.61 60.93 0.85 1.22	0.00	112.01	331.90	32.41 0.65	91.29 0.11 0.15 1.08	70.30
CL/NA NA/MG	9	5-06	0.00	3.02	1.54 1.69 4.69 63.73	1.34	1.08 20.84	0.12 0.83
SS NC COND/P	9	16.96 13.66 0.99	0.00	112.90 1.2.90 1.17 3.02 26.54 21.74 0.95	39:73	5.20 0.77	12.80	16.05 9.85
AMTH AMTHNV	1 0 1 0	0.00 0.00	000 000 000 000 000 000 000 000	300.89 259.31 139.85	1.10 676.00 573.03	57.45	244.39	0.10 174.66 152.35 97.00 6.78
AMTNA AMTK	19	0.00 0.00	1258.64	139.85	676.00 573.02 397.43 26.47 303.91	5.00 6.96 15.97	244.39 213.17 125.98 8.81	97.00
AMTCA AMTMG	ģ	Ŭ . 0 ŭ	744.47	82.72 45.64	303.91 90.34	15.97 1.81	89.74 32.76	69.10
AMTNH4	9	Ŭ. 0 0 0. 0 0	346.65 1535.33	38.52 170.59	90.34 133.40 508.92 37.01	9.98	40.01 154.74	30.81 119.15
AMTF AMTNU3	9	0.00	79.29 1216.69	170.81 102.652 170.652 170.652 170.681 130.648	37.01 314.03	0.00	89.92	9.10 25.81 119.15 8.88 49.44
AMTSU4 AMTPU4	9	0.00 0.00	1216.69 1984.31 0.00	220.48 0.00	314.03 528.31 0.00	24.40 37.22 0.00	174.56 0.00 173.07	
AXSSTA AMTSS	ģ 9	0.00	0.00 1837.06 1582.91 1274.86	0.00 204.12 175.88	0.00 519.18 513.49 396.64	31.91 8.99 27.26	160.37	0 00 133 27 123 48 93 80
AMTNO	9	0.00	1274.86	141.65	396.64	27.26	121.82	93.80

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SN.M=MICROEQUIVALENTS/SQUARF METER
MEAN=UNAVEIGHTED AVERAGE
CMPPT IN JEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

ري ر Table 176.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIF 18 DURING 09/78.

PCCHHNKCMNCENSPXSSACNSNCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	\mathcal{Z}	V5990472777553580412245632000000000000000000000000000000000000	WOO770000000000000000000000000000000000	88104869043298029880117453738929 N311397989714360865819489547765487 E4331484248580420858013150326400291 M42 433 14 390 42 87440291 13 14 390 321 21	H 4881910003483275246337840711488191356 20 892 19 4062175911 1356 20 892 19 4062175911 19 406217591 19 4062175911 19 40621	W0775175041204009680741254434944990 W07175175041204009680741254434944990 L460182020120570781012230547840790 12	V7798255379414510341532519153401180 07399955723089034580001800250233040 127 3 312 83 357 52477 5 1 226 127 3 312 83 357 52477	1479728005921743093069385163169590 147972800455161011802532104079296 201366577181109011802532104079296 201366577181109011802477795628 2013665771811109011802477795628 2013665771811109011802477795628 2013665771811109011802477795628 2013665771811109011802477795628 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 2013665771811109011802532 20136657181109011802532 20136657181109011802532 20136657181109011802532 20136657181109011802532 2013665718011802532 2013665718011802532 201366571801802 201366571801802 201366571801802 201366571801802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 201366571802 20136671802 20136671802 20136671802 20136718
AMTK AMTCA AMTMG AMTNH4	5	0.00 0.00 0.00 0.00	753.04 753.38 212.11 909.43 176.64 1906.46 4884.71 4884.71 4799.89 1810.03	140.77 73892.05.29 140.52 140.52 149.83 149.	21.57 167.48 65.94 1069.90	24.79 20.94 37.94	20.31 448.01	253 253 253 253 253 253 253 253

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1-1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 10/78.

PH	N	VOLHTAV 4.37	UEG/\$0.M	MEAN 4.43	HIGH 4.88	LOW 3.99	ST DEV	95%C.L. 0.31
COND CMPPT	6	23.84	0 00 5 83	24.58 0.97	39.10	11.20 0.08	11.12	11.67
Н	6	43.05	U_00	36.95	102-33 95-50 207-40 3-83 27-94	13.18 11.75	32.74 31.71	34.35 33.27 76.72
HNV NA	6	39.07 61.76	0.00	31.94 80.80 2.30	207.40	19.57	73:12	76.72
K C A	6	61.76 1.47 7.94	0.00	11.56	27.94	19.57 0.77 2.99 3.95	73.12 1.28 9.77	10.25
MG NH4	6	13.37	0.00	16.63	39.49 31.05	1.11	13.71 12.69	14.39 13.31 69.74
ξĽ	, 6	13.37 8.25 03.27	0.00	80.60	39.49 31.05 188.09	18.89 0.00	66.47	69.74
NO3	6	13.00	0_00	1.40	48.39	8.23	16.00	10.78 10.78 120.60 23.60 27.83 89.83
804 P04	6	36.65	0.00	34.94	72.66	13.32 0.00 8.62	21.56	0.00
X\$\$D4 \$AN	6	30.17 115.72	0.00	26.69 136.17	70.72 247.21	67.23	22.52 63.89	67.03
SCA A/C	6	135.83 0.85	0 00 0 00	158.87	309.92	67.93 0.76	85.62 0.10	0.10
ĈĹŹNA NĀZMG	6	1.02	0 00	1.00	207.47 77.33	0.91 3.90	0.10 0.12 0.70	0.12
SS	6	69.58 23.21	0_00	88.60 33.32	207.47	20.84	73.29	76.90 30.80
NC COND/P	6	0.84	0.00	0.83	0.91	4.36 0.78	29.35	0.06
AMTH AMTHNV	6	0.00	2509.60 2277.60	418.27 379.60	1742.80 1626.47	22.19 14.66	655.34 616.50	687.58 646.83
AMTNA	6	0.00		379.60 600.10	1344.86	19.08 3.23	470.31 7.49	493.45
AMTCA	6	0.00	463.63	77.17	181.20	16.00	67.24	/0.55
AMTNH4	6	0.00	481.03	80.17	368.24	6.83	141.72	1/1/2 50
AMTF	6	0.00	42.98	7.16	20.18	0.00	7.34	7.70
AMTNU3 AMTSU4	6	0.00	6130.07	146.38 356.15	1237.52	20.38	445.73	467.66
AMTPU4	6	0.00	1758.72	0.00	0.00	0.00	0.00	473.67
AMTSS	6	0.00	4956.69	676.12	1345.30	19.42	501.35	526.02
AMTMG AMTNH4 AMTCL AMTF AMTNU3 AMTPU4 AXSSU	66666666	0.00 0.00 0.00 0.00 0.00 0.00 0.00	463 · 73 779 · 50 481 · 03 3688 · 98 478 · 25 2136 · 89 1758 · 69 1758 · 69 1353 · 23	14.29 77.17 129.92 80.17 614.78 7.16 146.38	23.93 181.20 256.03 368.24 1219.67 267.01 1237.01 1237.00 1204.41	3.23 16.00 3.35 6.83 17.61 0.00 40.83 20.38 0.00 18.57	67.24 94.18 141.72 454.20 77.16 45.73 45.73 451.46	70.33 98.81

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWI [GHIED AVERAGE
CMPPT IN JEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS JOTAL AMOUNT OF RAIN FOR
THE JUNIH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SIFE 18 DURING 11/78.

	N	VOLWTAV	UEG/SQ.M	MEAN_	HIGH_	LOW_	ST.DEV	95%Ç.L.
PH COND	1	4.65 8.00	0.00	4.65 8.00	4.65 8.00	4.65 8.00	0.00	0.00
CMPPT	i	0.00	0.09	0.09	0.09	0.09	0.00	0.00
HNV	1	22.39 20.42	0.00	22.39 20.42	22.39 20.42	22.39 20.42	0.00	0.00
NA	i	13.48	0.00	13.48	13.48	13.48	0.00	0.00
K	Ī	1.02	0.00	1.02	1.02	1.02	0.00	0.00
CA MG	1	10.48 3.95	0.00 0.00	10.48 3.95	10.48 3.95	10.48 3.95	0.00	0.00
NH4	î	4.43	0.00	4.44	4.44	4.44	0.00	0.00
ÇL F	1	16.36	0.00	16.36 0.00	16.36	16.36	0.00	0.00
NO3	i	30.81	ŏ:ŏŏ	30.81	30.81	30.81	0.00	0.00
\$04 P04	1	15.61 0.00	0.00	15.62	15.62 0.00	15.62	0.00	0.00
x 3 5 U 4	i	14.00	0.00	14.00	14.00	14.00	0.00	0.00
SAN	1	14.00 62.78	0.00	62.78	62.78	62.78	0.00	0.00
SCA A/C	i	55.75 1.13	0.00	55.75 1.13	55.75 1.13	55.75 1.13	0.00	0.00
CL/NA	į	1.21	0.00	וַבָּבוֹ וַ	1.21	1.21	0.00	0.00
NA/MG SS	i	3.41 17.41	0.00	17.41	17.41	17.41	0.00	0.00
SS NC	ĵ	15.95 0.55	0.00	15.25	15.95 0.55	15.95	0.00	0.00
COND/P AMTH	1	0.55	20.29	0.55 20.29	20.29	0.55 20.29	0.00	0.00
AMTHNV	ī	0.00	18.50	18.50	18.50	18.50	0.00	0.00
AMTNA AMTK	1	0.00	12.22	12.22	12.22	12.22	0.00	0.00
AMTCA	i	0.00	9.50	9.50	9.50	9.50	0.00	0.00
AMTMG	1	0.00	3.58	3.58	3.58	3.58 4.02	0.00	0.00
AMTNH4 AMTCL	1	0.00	4.02 14.82	4.02 14.82	4.02 14.82	14.82	0.00	0.00
AMTF	į	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3 AMTSU4	1	0.00	0.00 27.92 14.15	27.92 14.15	27.92 14.15	27.92 14.15	0.00	0.00
AMTPO4	į	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSO4 AMTSS	1	0.00	12.69 15.78	12.69 15.78	12.69 15.78	12.69 15.78	0.00	0.00
AMTNC	i	0.00	14.45	14.45	14.45	14.45	0.00	ŏ.ŏŏ

N=NUMBLR OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

-17

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT UCF SITE 18 DURING 12/78.

TOM NA AGHL ODDSACVLASSOMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMMMMMMMSSCHINKCHNSPSSACVLASSOMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM		V80044871759809508421385310000000000000000000000000000000000	MOO200000000000000000000000000000000000	0225943888678803667297458520109093302 0225943888678803667297458520109093302 0225943888678803667297458520109093302 0225943888678803667297458520109093302 0225943888678803667297458520109093302 0225943888678803667297458520109093302	H 6086908505245004009369530436552472901 H 876830433264270909369530436552472901 H 8770901 H 8770901 H 97709369530436552472901 H 127 2167 75 41151 1 1464 1 1464 1 1464 1 1464 1 1464 1 1464 1 1464 1 1464 1 1464	W82071037915807306797552851093286408701 W8207087985108508328050960003793508802 L2708070310803306860139408072921505202	V1601471639583600040792001013459914409 0000000000000000000000000000000000	1 33 39 9580 0 0 613 697554 60 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
AXSSUA AMTSS AMTNC	7555 5	0.00	2334.59 4840.43 1013.68	466.92 968.09 202.74	973.91 4046.51 519.29	62.21 47.93 47.94	417.39 1734.76 200.10	518.92 2156.75 248.78

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, LMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARF METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

ŀ

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SITE 18 DURING 01/79.

	N_	VOLWTAV	UEW/SQ.M	MEAN_	HIGH_	FOM	ST.DEV	95%Ç.L.
PH COND	9	4.86 9.39	0.00	4.65 20.09	6.17 41.20	4.00 4.20	0.65 15.09	0.50 11.62
CMPPT	ģ	0.00	18.54	20.09 2.06 22.42 19.43	41.20 7.55	0.19	15.09 2.32	1.79
HNV	9	13.75 11.96	0.00	22.42	100 00	0.68 0.01	30.56 27.34	23.55
NA	9	22.65 0.87	0.00	48.02	221.75	8.26	66.92	23.53 21.05 51.53
K C A	9	0.87 12.65	0_00	1.59	3.57	0.51 1.50	66.92 1.22 105.16 22.97	0.94 80.97
MĜ	9	6.84	0.00	44.97 17.48	63.26	2.14	22.97	17.68
NH4	9	6.84 4.76	0_00	10.66	2213-57 324-35 63-83 233-50	0.55	10.83 70.67	8.34
ÇL F	9	23.78 0.90	0.00	54.30 2.16	10.00	7.90 0.00	3.22	54.42 2.48
NO3	9	0.90 6.37	0,00	12.28 39.65	49.20	0.81	15.59	12.00
\$04 P04	9 9 9	16.29	0.00 0.00	39.65	114.30	6.25	40.80	31.42
XSS04	9	13.93	0_00		109.97	0.00 5.10 17.85	41.14	31.68 73.80
SAÑ SCA	9	13.93 47.43 61.52 0.77	0.00	108.63	271.38 455.11	21.42	95.84 147.27	113.39
A/C	9	0.77	0,00	1085-175 140-175 140-175 125-66 155-66 175-6	1.04 2.04 4.35 257.55	21.42 0.53	0.15 0.35 1.19 77.76	113.39 0.11 0.27 0.91
CL/NA NA/MG	9	1.05 3.31 25.45	0.00	3.75	2.04	0.90 0.57	0.55	0.27
SS	ģ	45.33	0.00	55.65	257.55	8.71	77.76	24.0/
NC COND/P	9	22.45 0.86	0.00	67.06	407.81	2.14 0.69	128.92	99.27
AMTH	9	0.00	2548.05 2217.23	283.12	866.86 772.59	3.12	280°52 249°88 349°84 12°46 470°96	216.00 192.41
AMTHNV	9	0.00	2217.23		1106 87	45.59	249.88 349.84	192.41
AMTK	9	0.00	161.38	466.55	38.55	4.38	12.46	9.60
AMTCA AMTMG	9	0.00	4198.92 161.38 2345.48 1268.75	260-61	38.55 1495.55 291.58 239.74 1122.71	34.24 12.39	470.96 96.97	362.64 74.66
AMTNH4	9	0.00	882.84	140.97 98.09 489.90	239.74	3.98	81.18	62.51
AMTCL AMTF	9	0.00	882.84 4409.09	489.20	1122.71	59.67	336.75 30.13	62.51 259.30 23.20
AMTNU3	9	0.00	166.58 1181.34	18.51 131.26	280.10	9.90	104.42	80.41
AMTS04	9	0.00	3019.64	335.52	582.57	118.97	188.35	80.41 145.03
AMTPU4 AXSSU4	9	0.00	2581.86 2581.86	0.00 286.87	522.04	0.00 32.62	$\begin{smallmatrix}0.00\\178.91\end{smallmatrix}$	0.00
AMTSS	9	0.00	4696.58	521.84	1238.35	58.90	384.97	296.43
AMTNC	9	0.00	4160.78	462.31	1879.75	70.56	574.43	442.31

N=NUMBER OF SAMPLES
VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

181

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SITE 18 DURING 02/79.

5).	N.	VOLWTAV	UEU/SO.M	MEAN	HĨĠĤŰ	FOM.	ST.DEV	95%C.L.
PH COND	4	4.35 26.61	0.00	4.19 42.03	4.68 119.00	3.81 9.00	0.39 51.87	0.61 82.48
CMPPT	4	0.00 44.32	4.77 0.00	1.19 65.05	2.82 154.88	0.58 20.89	1.09	1.73 98.26
HNV	4	39-46	0.00	58.71	144.54	17.78	58 . 98	93.78
NA K	3	277.77 5.56	0.00	281.46 5.62	803.08 15.06	19.57 0.77	451.73 _8.18	1121.48 20.31
CA	3	23.17	0_00	24.12	44.91	2.99	20.96	52.04
MG NH4	3	66.12 26.41	0.00	67.04 26.24	190.35 38.81	4.52 16.63	100.79	265.12 28.25
LL	3	347.87	0.00	352.59	1009.00	22.00	568.47	1411.28
F N03	<u> </u>	2.27 43.73	0.00	2.28 44.36	107.75	0.00 10.16	3.50 54.95	8.70 136.43
S04	3	143.03	0.00	145.18	348.74	33.52	176.56 0.00	438.32
P04 XSSU4	3	0.00 109.76	0.00	$\begin{smallmatrix}0.00\\\underline{1}11.47\end{smallmatrix}$	0.00 252.45	31.26	122.48	304_07
SAN SCA	3	537.23 4/7.21	0.00	544.75 484.25	1472.80 1247.09	66.20 79.57	803.84 661.05	1995.62 1641.13
A/C	3	1.13	0_00	1.12	1.18	0.76	0.23	0.56
CL/NA NA/MG	\$ \$	1.25	0.00	1.25 4.20	1.26 4.32	1.12 3.48	0.07 0.46	0.17 1.15
SS	3	358.50	0.00	363.31	1037.57	24.26 27.13	583.93	1449.68
IIC COND/P	3	40.53 0.70	0.00 0.00	$\begin{array}{c} 41.17 \\ 0.71 \end{array}$	54.63 0.86	0.53	13.76	34.16 0.41
HIMA VIHIMA	4	0.00	2113.53 1681.84	528.36 470.46	992-21	205.21 163.01	348.28 334.21	553.76
AMTNA	3	0.00	5413.53	1804.51	925.99 5144.70	126.36	2892.70	531.39 /181.44
AMTK AMTCA	3	0.00	105.38 451.63	36.13 150.54	287.70	4.45 21.80	52.30 133.15	129.84 330.56
AMIME	3	0.00	1286.71	429.57	1219.43	32.94	684.04	1698.20
AMTNH4 AMTCL	3	0.00	514.83 6779.76	171.61 2259.92	248.61 6463.88	96.67 155.72	75.99 3640.74	188.66 9038.52
AMTE AMTNU3	3	0.00	44.29 852.38 2787.95	14.76 284.13	40.46 690.26	0.00 73.99	22.34 351.79	55.45 873.37
AMTSU4	3	0.00	2787.95	929.32	2234.08	244.07	1130.44	2806.43
AMTPU4 AXSSU4	3	0.00	2139.47	$\begin{array}{c} 0.00 \\ 713.16 \end{array}$	0.00 1617.23	227.59	783.67	1945.55
AM185	<u> </u>	0.00	6986.87	2328.96	6646.96	163.26	3739.50	9283.71
AMTNC	3	0.00	790.21	263.40	349.99	197.53	78.31	194.42

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
COND, CMPPT, AND RATIOS
UEW/SN.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN ULG/SW.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT UCF SIE 18 DURING 03/79.

PH	٤,	VOLWTAV 4.40	UEG/SQ.M V.00	MEAN 4.48	HIGH 4.60	LUW 4.38	ST.DEV 0.16	95%C.L.
COND CMPPT	5	10.58 0.00	0.00 6.35	12.85 3.18 33.40	16.00 5.46	9.70 0.89 25.12	4.45 3.23	40.04 29.06 105.29
H HNV NA	55	39.36 34.08 14.17	0.00	28.36 12.61	41.69 36.31 14.78	20.42	11.72 11.24 3.07	100.99 27.63
K C A	Ş	0.80 4.66	0.00	A RQ	17.96	10.44 0.77 2.50 3.37	10.74	1.62 98.31 7.84
MG NH4 CL	5	3.55 8.04 18.88	0.00	13.03	4.61 19.96 20.02	3.37 6.10 11.84	0.87 9.80 5.78	88.08 51.97
F NO3	WWWWWWWW	5.12 15.34 34.24	0.00	13.93 13.93 15.93 15.42 16.61	20.02 5.79 18.39	1.05 14.84	95.35 3.51 5.74 0.00	30.10 22.55
S04 P04 XSS04	5	34.24 0.00	0.00 0.00 0.00	$\begin{array}{c} 37.16 \\ 0.00 \\ 35.67 \end{array}$	18.39 41.22 0.00	33.10 0.00 31.33	5.74 0.00 6.13	51.60 0.00 55.12
SAN SCA	5	0.00 32.55 73.58 70.59	0.00	37.16 37.16 35.13 74.15 0.26 1.18	40.01 73.75 79.10	72.51 69.20	0.88 7.00	57729359 60123359
A/C CL/NA NA/MG	5 5	1.04	0.00	0.99 1.26	79.10 1.07 1.35	0.92 1.13 2.27	0.11 0.15 1.50	1.39 13.46
SS NC	NNNNNNN	4.00 18.25 12.97	0.00	24.67	19.10 40.92	13.06	22.99	38.36
COND/P AMTH	Š	0.51 0.00	0.00 2501.51 2165.72	0.67 1250.76 1082.86	0.40	8.41 0.45 223.72	1452.46	13053.71
AMTHNV AMTNA AMTK	5	0.00 0.00 0.00	900.70	450.35 25.47	2277.60 1983.88 807.76 41.85	181.84 92.94 9.09	1274.23 505.46 23.16	13053.71 11451.96 4542.71 208.15
AMTCA AMTMG	5	0.00	296.32 225.31 510.97 1199.50	148.16 112.66 255.49	41.85 159.99 184.28 333.22	136.33 41.03 177.75	16./3 101.30	120-20
AMTNH4 AMTCL AMTF	5 5	0.00 0.00 0.00	1199.50 325.71	599.75 162.85	1094.01 316.33	105.49 9.38	109.93 699.00 217.05	910.40 987.99 6282.10 1950.71
AMTNU3 AMTSU4	25.25	0.00	974.61 2175.96	487.31 1087.98	810.85 1808.81	163.77 367.15	457.55 1019.41	4112.16 9161.77
AMTPU4 AXSSO4 AMTSS	5 5	0.00 0.00 0.00	0.00 2068.26 1159.98	0.00 1034.13 579.99	0.00 1711.96 1043.63	0.00 356.29 116.35	958.60 655.69	0.00 8615.28 5892.86
AMTNC	۶	0.00	1824.27	412.14	459.82	364.46	67.43	606.01

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIE 19 DURING 07/77.

РН	N,	VOLWTAV 4.62	UEU/SO.M	MEAN 4.62	HIGH 4.62	LOW 4.62	ST.DEV 0.00	95%C.L.
COND	i	11.80	0.00	11 A O	11.80	11.80	0.00	0.00
ČMPPT H	1	23.99	1.30	1.30 23.99 22.39	1.30 23.99	1.30	0.00	0.00
HŅV	i	22.39	0.00	22.39	22.39	23.99 22.39	0.00	0.00
ŅA	Ŏ	0.00	0.00	0_00	0.00	0.00	0.00	0.00
K Ca	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	Ů O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL F	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03 S04	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
P04	ŏ	0.00	0 0 0 0 0 0	0.00	8:00	0.00	0.00	0.00
X\$\$04	0	0.00	0,00	0.00	0.00	0.00	0.00	0.00
SAN SCA	Ü	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0_00	0_00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	Ŏ	0.00	0 . 0 0 0 . 0 0	0.00	0.00 0.00	0.00	0.00	0.00
3 S	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NC COND (B	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
COND/P AMTH	ĭ	0.00	0.00 311.47	0.00 311.47	0.00 311.47	311.47	0.00	0.00
AMTHNV	į	0.00	290.68	290.68	290.68	290.68	0.00	0.00
AMTNA AMTK	o O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCA	ŏ	U.00	0.00	0_00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTCL	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTE	Ó	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNU3 AMTS04	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTPÚ4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	Ů O	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00
AMTNC	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			=					

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS UF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

Table 184.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 08/77.

	N.	VOLWTAV	UEU/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH COND	8 8	4.88 13.40	0.00	4.87	5.42	4.53	0.33 9.55	0.27 7.96
CMPPT	ĕ	0.00	0.00	14.61	28.20 5.34	3.50 0.06	1.64	1:37
H	8	13.11	0,00	13.49	29.51	3.80	9.16	7.64 6.70
HNV NA	Ö	8.51 0.00	0.00	9.83	21.88 0.00	1.05	8.03 0.00	6:70
ĸ	ŭ	0.00	ŏ.ŏŏ	0_00	0.00	0.00	0.00	ŏ:ŏŏ
CA	ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MG NH4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL F	ŏ	0.00	0.00	0_00	ŏ.ŏŏ	0.00	0.00	0.00
	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N03 S04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
PO4	Ŭ	0.00	0_00	0.00	0.00	0.00	0_00	0.00
XSS04 San	O O	0.00	0,00	0.00	0.00	0.00	0.00	0.00
SCA	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A/C	Ų	0.00	0.00	0.00	0.00	0.00	0.00	0.00
CL/NA NA/MG	ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SS	ŏ	0.00	0100	0.00	0.00	0.00	0.00	0:00
NC	0	0.00	0_00	0_00	0.00	0.00	0.00	0.00
COND/P AMTH	8	0.00	1893.54	0.00 236.69	0.00 657.42	0.00	0.00 264.91	221.03
AMTHNV	ĕ	0.00	1228.42	153.55	414./3	12.27	171.56	143.14
AMTNA	0	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTK AMTCA	Ü	0.00	0 - 0 0 V - 0 0	0.00	0.00	0.00	0.00	0.00
AMTMG	ŏ	0.00	0_00	0.00	0.00	0.00	0.00	ŏ.ŏŏ
AMTNH4 AMTCL	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTE	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTNO3	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AMTSU4 AMTPU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTSS	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMINC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEW/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS UF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 09/77.

РН	N ₉	VOLWTAV 4.73	UEW/SO.M	MEAN	HĮGH,	LDW 4.19	ST.DEV 0.34	95%C.L.
COND	9	17.80	0.00	4.56	37:24 37:70	10.90	10.24	0.26 7.86
CMPPT H	9	0.00 18.73	12.69	27.82	5.66 64.56	0.16 5.75	1.74 19.96	1.34
HNV	9	17.27	0.00	25.60	60.26	3.89	19.33	14.86
ŊA	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.00
K Ca	ŏ	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00
MG	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NH4	ď	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ÇL F	ŏ	0.00	0100	0.00	0.00	0.00	0.00	0.00
N03 S04	Ŏ	0.00	0 0 0 0 0 0	0.00	0.00	0.00	0.00	0.00
P04	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.00
X\$\$04	0	0.00	0_00	0_00	0.00	0.00	0_00	0.00
SAN SCA	ů	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00
A/C	Ŏ	0.00	0_00	0100	0.00	0.00	0.00	0.0(
CL/NA NA/MG	ů 0	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
SS NC	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
NC COND/P	0	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
AMTH	9	0.00	2376.79	264.09	655.74	30.26	23/451	182.71
AMTHNV AMTNA	9	0.00	2192.61	243.62	611.97 0.00	28.24	229.75 0.00	176.91
AMTK	ŏ	0.00	0.00	0.00	0.00	0.00	0.00	ŏ.ŏĉ
AMTCA	Ò	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AMTMG AMTNH4	ŏ	0.00	0 . 0 0 0 . 0 0	0.00	0.00	0.00	0.00	0.0(
AMTCL	Ŏ	0.00	0_00	0.00	0.00	0.00	0.00	0.0(
AMTF AMTNÚ3	0	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
AMTSU4	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
AMTPU4 AXSSU4	0	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
AMTSS	Ŏ	0.00	0.00	0.00	0.00	0.00	0.00	0.0(
AMTNC	0	0.00	0.00	0.00	0.00	0.00	0.00	0.0(

N=NUMBER OF SAMPLES
VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SG.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

)

PCCHINKCMNCFNSPXSSACNSNCA	2 2	VOLUMENTA PROPERTY OF TARREST OF	MOOOZOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	M445017792380111852470747336 M461301887529111852470747336 M5130188752800111852470747336 M646130188752470747336 M6461301887795000497336 M6461301887795000497336	H 7 4098-1-94730674408-1-26-1-8-1-26-1-8-1-26-1-8-1-26-1-8-1-26-1-8-1-26-1-8-1-26-1-8-1-26-1-8-1-8-1-8-1-8-1-8-1-8-1-8-1-8-1-8-1-	2021284904054207261916055 W9313840406307309497716086 L3406232431212803400046802 1114 1 169 43 6	V45456769864492089418757050 082450673664692089418757050 12169123513500012020 121737637	95 4 76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SAN SCA	5	/6.65	0.00	285.57	480.17	64.42 90.96	2/5.21	2096.20
CL/NA	Š	0.81	0_00	0.80 0.87	0 82	$\begin{smallmatrix}0.71\\0.79\end{smallmatrix}$	0.08 0.07	0.72
SS	5 5	53.58 41.29	0.00	139.97	233.28 126.66	46.66	131.97 62.70	1186.02
AMTH	2	0.00	0 00 1050 23 809 46	262.56 202.36	1.21 476.78	0.85 62.65	172.30	273.95
AMTHNV AMTNA AMTK	2	0.00 0.00 0.00	6460.00	1463.34 58.26	>154.57	655.84 421.10 52.2.7	159.20 1463.99 52.55	13157.36 472.28
AMTCA	Š	0.00	116.52 261.82 689.98	130.91 344.99 303.34	209.81 607.21 543.92	52.01 82.77	111.59 370.83	1002.68 3332.77 3057.76
AMTNH4 AMTCL AMTF	5	0.00 0.00 0.00	2356.24	1178.12 27.42	19/0.20	82.77 62.76 380.04 5.67	340.23 1128.66 30.76	276.46
AMTNO3 AMTSO4	Ž	0.00	2356.24 2356.24 215.93 1076.69	107.96	128.11 855.96	87.82 220.73	28.49 449.18	4036.93
AMTPO4 AXSSO4 AMTSS	NNNNNNNNN	0.00 0.00 0.00	14 19 834 23 2598 93	538.34 7.10 417.11 1299.47	14.19 652.61 2179.75	0.00 181.62 419.18	10.03 333.04 1244.91	90.18 2993.15 11188.42
AMTNO	2	ŏ.ŏŏ	2002.14	1299.47 1001.37	1775.14	227.60	1094.28	9834.64

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUNU, CMPPT, AND RATIUS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF KAIN FOR
THE MUNTH

18

1

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 19 DURING 11/77.

РН	N_	VOLMTAN	UEQ/SQ.M	MEAN	нӏ҇ен	۲οพ	ST.DEV	95%C.L.
COND	5	5.19 6.70	0.00 0.00	4.76 15.28	25.00 25.00	4.41 4.60	0.40 9.74	0.49 12.11
CMPPT	5	0.00	23.30	4.66	11.44	0.16	5.52	6.86
HNV	٤	6.53 4.70	0.00	17.46 14.56	38.90 33.11	5.13 3.47	14.89 13.31	18.51 16.55
NA	4	20.48	0.00	45.76	86.96	13.91	35.17	56.87
K	4	0.26	0_00	9.96 3.62	2.30	0.00	35.77 1.05 3.89	1.67
CA MG	4	0.99 4.55	0.00	3.65	8.48 16.86	0.00 2.88	7.07	6.19 11.24
ŅH4	4	1.48	0.00	9.62 3.88	12.20	0.55	5.56	8.84
Ēr	4	22.00	0_00	46.53	75.86	16.07 0.00	33.72	53.61
N03	4	2.78	0.00	0.00	0.00 17.74	1.29	0.00 7.47	0.00 11.88
SO4	4	5.86	0.00	14,89	55-94	3.12	14.09	22.41
P04 x s su4	4	0.00 3.60	0.00	0.00 10.11	0.00 26.13	0.00	0.00	0.00 17.79
SAN	4	30.64	0_00	68.23	127.54	20.49	52.87	84_07
SCA	4	34.07	0_00	75.94	153.72	22.48	61.64	98.01
A/C CL/NA	4	0.90 1.07	0.00	0.90 1.02	1.01 1.17	0.83 0.87	0.08	0.12 0.22
NA/MG	4	4.50	0.00	1.02 4.75 51.27	5.16	4.17	0.43	0.69
SS NC	4 7	24.25 6.42	0.00	51.27	83.67 43.13	17.73 3.06	37 · 43 37 · 13 22 · 73	59.03 56.43
COND/P	4	1.12	0.00	16.89	1.14	0.96	5.09	0.14
AMTH	5	0.00	0.00 1520.55 1095.09	304.11	643.18 396.58	62.00	230.10	318.40
AMTHNV	74	0.00	4740.41	304.11 219.02 1185.10	2038.94	52.77 611.44	162.21 662.49	318.40 201.66 1053.36
AMTK	4	0.00	4740.41 59.52 229.15	14.00	29.20	0.00	11.95	19.01
AMTCA AMTMG	4	0.00	1053.18	57.29 263.30	114.15 489.24	0.00 118.57	46.63 166.33	74.15 264.47
AMTNH4	4	0.00	545.12	85.78	190.23	12.30	75.86	120.62
AMTEL	4	0.00	5090.36	85.78 1272.59	2128.75	533.38	723.09	1149.71
AMTF AMTNU3	4	0.00	9.00 643.51	0.00 160-88	0.00 332.08	59.05	0.00 118.45	0.00 188.33
AMTS04	4	0.00	1350.03	160.88 339.01	619.13	189.40	193.08	307.00
AMTPU4 AXSSU4	4	0.00	0.00	0.00	0.00	0.00	173.00	0.00
AMTSS	4	0.00	832.91 5612.23	208.23 1403.06	400.09 2348.01	103.80 588.31	132.00 798.06	209.89 1268.91
AMTNO	3	Ŏ.ŎŎ	850.98	283.66	513.75	33.98	240.48	597.03

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNITH

)

Table 188.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SI/E 19 DURING 12/77.

РН	N 8	VOLWTAV	UEW/ŞQ,M	MEAN,	нĬейТ	ĽĐŴ	ST.DEV	95%C.L.
COND	8	4.76 11.58	0.00	4.64 15.19	5.25 45.00 2.25	4.18 7.40	12.43	10.37
ČMPPT H	8 8	0.00 17.20	9.63	1.20 22.85	2.25 66.07	0.05 5.62	19.90	0.67 16.60
HNV NA	8	14.74	0.00	20.35	61.66	4.36	16.57	15.50
ĸ	Ż	24.76 0.33	0.00	65.25	35.22 0.77	7.83 0.00	9.00	8.34 0.25
C A MG	7	2.49 5.66	0.00	22.42 0.29 2.78 5.22	0.77 5.99 7.57 4.99	1.00	1.80	1.66
NH4 CL	7	2.82 26.94	0.00	2.78 5.22 2.61 25.86	4.99	0.55 11.56	1.53	1 41 9 99
F	7	0.32 5.33	0.00	0.23	42.30 1.58	0.00	10.79	0.55
N03 S04	7	15.78	0.00	6.04 14.76	9.68 27.27	1.77 5.20	3.07 8.67	2.84 8.03
P04 XSS04	7	$\begin{smallmatrix}0.00\\13.11\end{smallmatrix}$	0.00	0.00 12.35	25.50	0.00 2.55	0.00 9.14	0.00 8.47
SAN	Ż	48.36	0.00	46.91	61.77	34.81	10.03	9,29
SCA A/C	7	53.00 0.91	0.00	50.00 0.94 1.15	60.80 1.24	40.52 0.74	7.86 0.17	7.28 0.15
CL/NA NA/MG	7	1.09 4.37	0.00	1.15	1.69	0.90 2.64	0.30	0.28 0.68
SS NC COND/P	7	28.72 7.34	0.00	26.10	4.81 45.50 11.96	10.11	10.82	10.02
COND/P	7	1.00	0.00	7.23 0.99 207.08	1.10	2.10 0.90	3.94	10.02 3.65 0.07
AMTH	8 8	0.00	1050.01	177.47	648.57 539.46	34.07 31. 7 9	205.35 173.75	171.34
AMTNA AMTK	7	0.00 0.00 0.00	2371.30	338.76 4.53	792.42 11.73	42.56 0.00	258.25	144.98 239.14 4.73
AMTCA	Ż	0.00	2371-70 2371-70 238-80 542-23 269-81 2580-23 30-22 510-47	34.11 77.46	79.29	5.31	0755 0755 0756 1255 2555 2555 291	20.89
AMTMG AMTNH4	7	0.00	269.81	38.54 368.60	79.29 170.28 95.50 951.75	16.10 7.87	35.23	51.61 32.63
AMTCL AMTF	7	0.00	2580.23	368.60	951.75 30.22	62.87 0.00	291.44 11.42	32.63 269.88
AMTNU3	Ż	0.00	510.11	4.32 72.87 215.92	185.24	26.89	53.16	10.58
AMTS04 AMTP04	7	0.00		0.00 179.37	522.04	18.46	180.03	166.71
AXSSU4 AMTSS	7	0.00	0.00 1255.58 2751.05 702.82	179.37 393.01	488.12 1023.81	9.03 54.98	167.43 321.99	0.00 155.04 298.17
AMTNC	7	0.00	702.82	100.40	211.12	7.45	70.95	65.70

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND,CMPPT,AND RAILUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN ULQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIT

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 19 DURING 01/78.

014	N_	VOLWTAV	UEG/ŞQ.M	MEAN.	нісн	ĽOM _	STADEV	95%C.L.
PH COND_	3	17:57	0.00	4.51 24.56	49.40	4.05 9.50	0.39 16.15	20.08
CMPPT H	5 5 5	0.00 24.59	5.39 0.00	1.08 30.95	2.84 89.13	0.16 9.12 4.79	1.04 33.44	1.30
HNV NA	٤	22.70 48.06	0.00	28.76 70.09	89.13 119.14	24.78 24.78	34.71 36.65	43.15
K	ş	1.03	0.00	2.20	3.83	0.00	2.01	45.57 2.51 20.73
CA MG	3	9.29 11.35	0.00	18.66 16.99 12.31	44.41 27.15 23.28	3.99 6.09 3.33	16.68 9.02	11.21
NH4 CL	いかいいいいいいいいいいいいいいい	7.16 47.36 0.08	0.00	69.37	109-13	26.23	9.36 33.50	11.64
F N03	جِ	0.08 8.97	Ů . Ů Ö	0.11	29.52	0.00 4.19	0.24	0.29 14.67
804	ş	31.95	0.00	46.89	115.76	14-16	42.64	53.02
P04 XSS04	3	0.00 27.08 88.35	0.00	39.75	0.00 107.84 222.79	0.00 9.51 44.79	0.00 41.35	0.00 51.41
SAN SCA	5	101.47	0.00	130.59 151.20	240.88	51.99	74.84 83.26	93.05 103.52
A/C CL/NA	Ę	0.87 0.99	0.00	0.86	0.92	0.79 0.92	0.05	0.06
NA/MG	ร	4.23 52.23	0_00	74. į ź	4.95	28.93	0 S0	0.62 45.94
SS NC	555555	24.65	0.00	4.12 76.52 43.73	120.38	9.26	36.95 31.15 30.03 279.37 282.19	38.72
COND/P AMTH	5	0.91	0.00 1325.53 1223.88	0.91 265.11	0.95 696.29	0.87 46.11	279.37	0.04 347.32 350.83
AMTHNV	5	0.00	1223.88	244.78 518.20	696.29 704.78	46.11 25.43 122.97	282.19	350.83 294.04
AMTK	ş	0 _ 0 0	55.45 500.71	11.09	29.92	0.00 43.04	236.51 13.43 51.67	16.69
AMTCA AMTMG	3	0.00	611.92	100.14 122.38	179.33 173.11	34.06	57.52	64.24 71.51
AMTNH4 AMTCL	5	0.00	2591.00 555.45 500.71 611.92 386.00 2553.16	77.20 510.63	160.26 745.80	35.86 139.68	57.52 52.23 227.23	64.93 282.50
AMTF AMTNO3	5 5	0.00	4.11	96.70	230.61	0.00 37.81	1.84 81.67	282.50 2.29 101.54 417.10
AMTSO4	٤	0.00	483.52 1722.72	344,54	904.37	92.39	335.49 0.00	417.10
AMTPO4 AXSSO4	5	0.00	1460.00	292.00	0.00 842.48	78.02	324.50	403.43
AMTSS AMTNC	5	0.00	2816.13 1328.96	563.23 265.79	822.62 522.18	154.06 113.92	250.63 168.12	311.60 209.02

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME MEIGHTED AVERAGE. UNITS ARE MICRUERUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 190.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIJE 19 UURING 02/78.

O.A	N_	VOLWTAN	UEQ/ŞQ.M	MEAN	ніен	FOM	ST.DEV	95%Ç.L.
PH	7	22.39 22.39	0.00	4.23 37.09	4.58 121.00	3.95 12.00	0.21 37.48	0.20 34.71
CMPPT H	7	0.00 45.83	12.60	1.80 58.60	3.63	0.02 26.30	29.00	34.71 1.35 26.86
HNV	Ż	39.41	0.00	50.04	112.20	23.99	21 UZ	19.85
NA K	666	30.42 0.65 8.74	U.00 U.00	23.41	62.18 1.02	6.09 0.25	0.35	23.45 0.37
C A MG	6	7.91	0.00	0.64 7.32 6.05	21.96 14.81	0.00 1.65	7.79	8.18 5.55
NH4	ĕ	7.57 30.55	0.00	6.10	17.74	1.66	20.35 7.35 7.29 5.99	6.21
CL F	6	1.60	0.00	23.88 1.05	58.37 _3.68	4.51 0.00	1.66	6.21 21.27 1.75 7.39
N03 S04	6 6 6	- 11.53	0.00	12.31 38.20	21.94 48.51	0.00 5.32 16.45	7.04 11.72	7.39 12.30
PO4	6	37.65 0.00	0.00	0.00	0.00	0.00 15.63	0.00	0.00
XSSO4 SAN	6	34.60 81.32	0.00	35.84 75.45	48.05 103.50	29.67	11.95 27.31	12.53 28.65
SCA A/C	6	101.04	0 0 0	93.17 0.81	131.76	37.60 0.78	41 00	34.72
CL/NA	6	1.00	0.00	1.02 3.87	1.38	0.74	0.04 0.25 0.57 22.71	0.27
NA/MG SS	6	1.00 3.85 32.73 22.55	0 - 0 0 0 - 0 0	3.87 25.36	4.28 64.39	2.70 4.98	22.71	23.83
NČ COND/P	6	22.55	0 00	18.15	64.39 49.28 0.99	4.98 2.58 0.82	10.01	17.43
AMTH	Ž	0.00	5773.97 4964.88 3827.07	824.85 709.27	2134.56	17.53	725.63	671.94
AMTHNV AMTNA	6	0.00	4964.88 3827.07	709.27 637.84	1/35.03 2059.59	12.41	586.53 798.44	543.14 837.72
AMTK AMTCA	6	0.00	81.97 1099.83	637.84 13.66 183.31 165.79 158.82	2134.56 1735.03 2059.59 29.20 627.89	0.91 0.00	798.44 11.08 248.05	837.72 11.62
AMTMG	6	0.00	1994.73	165.79	440-47	5.86	191.20	260.25
AMTNH4 AMTCL	6	0.00	994.73 952.90 3843.43	040.7/	507.28 1933.64	11.85 16.07	190.24 733.60	199.60 769.69
AMTF AMTNU3	6	0.00	200.75	33.46 241.78	105.34	0.00 38.50	51.92	769.69 54.48 205.27
AMTSU4	6	0.00	1450.65 4737.67	789.61	105.34 571.91 1532.09	172.82	733.60 51.92 195.64 580.42	608.98
AMTPO4 AXSSU4	6	0.00	4353.79	725.63	1484.85	0.00 1/1.16	537.28	0.00 563.71
AMTSS	6	0.00	4118.51 2837.99	686.42 473.00	2132.80 1409.23	17.73	816.16	856.32 570.85
WILLIAC	()	0.00	2031.79	4/3.00	1407.63	38.35	544.08	214.02

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEW/SQ. M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ. M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN LOMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIF 19 DURING 03/78.

Dul	N	VOLWTAV	UEU/SQ.M	MEAN	HIGH	ΓOM_	ST.DEV	95%Ç.L.
PH COND	5	4.53 21.53	0.00 0.00	30.78	4.80 55.50	$\begin{smallmatrix} 4.17 \\ 10.00 \end{smallmatrix}$	0.25 18.47	0.31 22.96
CMPPT	5	0.00	2.84	0.57	1.06	0.07	0.44	0.55
HNV	5	29.47 28.02	0.00 0.00	39.18 38.13	67.61 61.66	15.85 15.14	20.39 19.33	25.35
ŊĂ	4	39.33	0.00	36.13 53.79 22.45 15.67	131.31	15.65	52.73	83.83
K C A	4	$\frac{1.18}{13.41}$	0.00	22.45	4.08 47.41	0.00	1.74	34.21
MG	4	10.96	0.00	15.67	47.41 37.10	3.95	15.01	23,86
NH4 CL	4	44.40	0.00	16.08 61.12	29.38 151.43	2.22 16.36	14.76 61.36	23.47 97.57
F	4	0.87	0.00	1.18	151.43 2.11	0.53	0.79	1.26
N03 S04	4	15.58 40.73	0.00	22.58 49.76	40.49	7.26 21.24	17.00 24.95	27.03 39.67
P04	4	0.00	0.00	0.00	13 1143	0.00	0.00	0 00
XSSO4 SAN	4	36.16 1v1.58	V.00 V.00	43.47 134.65	272-93	18.01	20.05	31.88 157.71
SCA	4	103.68	0.00	146.31	63.32 272.93 302.92 1.53	42.66	118.20	187.93 0.53
A/C CL/NA	4	0.98 1.13 3.59 48.97	0.00	0.92 1.14	1.53	0.82 1.05	0.33	0.08
NA/MG	4	, 3 . 5 9	0_00	1.14 3.42 67.42	4.00	2.67	0.64 67.68	1_01
SS NC	4	40.47 25.72	v. v 0 v. v 0	42.16	167.03	18.04 8.77	\$7.68 38.50	107.62
COND/P AMTH	4	25.72 0.93	0_00	N 95	82.02	0.83	20.09	0.14
AMTHNV	5	0.00	836.06 794.96	167.21 158.99 272.24 8.19	269.38 245.67 523.19	33.67 31.42	95.80 95.22 82.22	119.10
AMTNA	4	0.00	1088.94	272.24	523.19	121.17	1/9.86	102.22
AMTK AMTCA	4	0.00	371.33	92.83	145.18	0.00 39.92	6.84 54.02	10.87 85.90
AMTMG	4	0.00	1084 . 74 371 . 33 303 . 39 271 . 28 1229 . 28 431 . 41	92.83 75.85 67.89	16.27 145.18 147.82 117.07	41.95	49.38	10.87 15.90 78.52 66.75 33.82
AMTNH4 AMTCL	44	0.00	1229.22	307.30	603.37	23.56 139.04	211.21	335-82
AMTF	4	0.00	24.08	6.02 107.85	8.39	4.83	1.61	2.56
AMTNO3 AMTSO4	4	0.00	1127.21	281.80	161.31 418.09	72.58 182.36	37.89 107.00	170.13
AMTPO4	4	0.00	0_00	0.00	0.00	0.00	0.00	0.00
AXSSO4 AMTSS	4	0.00 0.00	1000.72 1355.82 712.16	250.18 338.96	400.21 665.52	168.05 153.36	106.71 232.96	169.67 370.41
AMTNO	4	ŬĮŎŬ	712.16	178.04	272.05	93.16	96.88	154.04

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

)

Table 192.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 04/78.

PCCH HNKCMNCE NSPXSSACNSNCAA	**************************************	VULW 4450 4	MO 000 000 000 000 000 000 000 000 000 0	ME4-2-3-0-3-2-6-2-4-1-2-4-5-0-5-2-6-2-4-1-2-4-5-0-5-2-6-2-4-1-2-4-5-0-5-2-6-3-7-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1-3-1	H 44 · · · · · · · · · · · · · · · · · ·	808222300358000014820545559 0.01272300358000014820545559 110560.65635601240031099 1155517631026714099	V6754906956824703096686714 02058613865321063800149077 2233 21 7 88 777	1224485376470350809508202332647 12244853764703508009508202332647 122211599534500551728326647 12221159953450035682047 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 12221159953450809508202332647 122211599534508095080809508208287 12221159953450809508080950888 12221159953450808 12221159953450808 12221159953450808 122211599534508 122211599534508 122211599534508 122211599534508 122211599534508 122211599534508 122211599534508 122211599534508 1222115995468 1222115995468 1222115995468 1222115995468 1222115995468 1222115995468 1222115995468 122211598 1222
COND/P AMTH	2222222	0.01	0.00 0.00 164.95 151.81 595.44	203.67 1.00 82.48 75.72 15.13 142.05	266.79 1.05 1.35.20 1.32.28 45.30.80 1.54.17 81.81	140.55	89.26 0.07 74.71 79.64 219.71 0.94	1974.57
AMINH4 AMTCL AMIF AMTNO3 AMTSO4 AMTPO4 AXSSS AMTNC	NNONNNNNNN	0.00 0.00 0.00 0.00 0.00 0.00	21444-10 21447-655 1447-655 1619-065 1619-065 1619-065 1619-065	172.15 172.15 243.80 12.93 80.65 259.61 0.00 234.82 266.25	211.51 316.02 16.36 90.24 301.13 0.00 284.06 348.57	132.77 171.58 71.06 218.09 0.00 185.57 183.93 362.36	24.86 55.70 102.14 13.56 13.56 50.64 116.42	154.00 1523.57 1523.57 143.58 1227.60 1227.60 1246.27

N=NUMBER OF SAMPLES

VULWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,

CUND, CMPPT, AND RATIOS

UFU/SQ.M=MICROEQUIVALENTS/SQUARE METER

MFAN=UNWEIGHTED AVERAGE

CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF HAIN FOR

THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SIFE 19 DURING 05/78.

PCCHINKCMNCFNSPXSSACNSNCAAAAAA		VO 221124 1124 13 280 112 541 100 00 00 00 00 00 00 00 00 00 00 00 0	UE Q 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N60059420656481605044680032349703 A60069034340519077388180061164275 E446248427111119005240136016793115 M 3 214 1135 14 313 55 4355062 1 325	H 7 326 41438 447026131989068497590117 79014384148406131989068497702617 7901450131989068497701717	80403890730091001003367180099394412367046001003387053846741809939441236742580013870538674267418099394418073346741809939441807338705386742674180993944180999441809944818099944180999441809994418099944180999441809944180994418099441809944180994418099441809944180994418099441809944180994418094480944	V6527937233552301208258348023787 001770075142540400006706706706788 7 2 1 12 2 244 22 265288 110	-0824614273220805863476580042081 -0605017245743606571082236461654 -0529930787838808430002400723753753753753753753753753753753753753753
AMTH AMTHNV AMTNA AMTK AMTCA	554 4 4	0.00 0.00 0.00 0.00	2/80 61	1053 1059 1059 1059 1059 1059 1059 1059 1059	1084.48 923.04 2276.99 70.37 471.55	90099394426749990060842 426749900060842 426749900060842 542600842	40.78 40	13 37

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEOUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN ULG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

į.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 06/78.

PH	N	VOLWTAV	UEW/SO.M	MEAN.	н <u>т</u> ен	ĽDW.	ST.DĘV	95%C.L.
COND	8	4.64 15.93	0.00	4.57 18.35	47.60	4.14 8.60	0.31 13.30	0.26
CMPPT H	8 8	22.72	20.03	2.50	6.64	0.47	1.93 21.85	1.61
HNV	- 8	19.21	0.00	26.85 23.51	72.44 69.18	9.12 7.08	20.77	18.23 17.33
NA K	8 8	25.21	0.00	29.35 1.08 5.05	65.65	16.52 0.77	15.51	12.94
ĈA	8	5.66	0_00	5. <u>0</u> 5	65.65 2.04 6.99 15.88	2.00 3.29	1.63	0.36 1.36 3.33
MG NH4	8 8	1.00 5.66 5.53 7.35	0.00	6.50 5.47	15.88 14.97	3.29 1.11	0.43 1.63 3.99	3.33 4.41
<u>Ĉ</u> Ĺ	8 8 8	20.00	0,00	31.30	80.37	15.79	21.07	17.58
N03	8	0.35 8.80	0.00	31.30 0.59 9.68	4.74 25.81	0.00	1.67	1.40
\$04 P04	8	22.23	0.00	24.15	25.81 62.04	9.37	18.00	15.02
X 5 5 0 4	8	0.00 19.58	0.00	20.97	0.00 54.17	0.00 7.40	0.00	0.00 13.75
SAN SCA	8	57.47 67.45	0_00	65.70	168.22	35.38	43.80	36.54
A/C	8	0.85	0.00	74.31 0.88	168.10	42.28 0.76	40.82	34.06 0.07
CL/NA NA/MG	8 8	1.03	0.00	1.07	1.00 1.22 5.07	0.89 4.13	0.12	0.10 0.28
SS	8 8	28.52	0.00	33.91 13.55	84.83	17.42	0.34 21.92 5.59	18.29
NC COND/P	8	16.22	0.00	13.55	25.52 1.13	9.20	5.59 0.06	4.67 0.05
AMTH	8	0.00	4 E 4 G 13 G	568.75	1871.58 1592.97	121.96	560.03	467.28
AMTNA	8	0.00	5049.54	480.90 631.19	1645.79	116.47 247.84	474.68 469.32	396.07 391.60
AMTK AMTCA	8 8	0.00	199.40	24.92	67.81	9.57	19./1	16.45
AMTMG	8	0.00	3847 • 23 5047 • 24 1199 • 54 1133 • 57 1107 • 31 5271 • 05 71 • 05 1453 • 05	141.70 138.46	463.91 382.38	28.07 49.36	146.45 110.35	16.45 122.20 92.07 278.02
AMTNH4 AMTCL	8 8	0.00	1471.31	183.91 652.91	994.02 1685.39	236.88	333.20 501.33	278.02 418.31
AMTE	8	0.00	71.05	8.88	71.05	0.00	25.12	20.96
AMTNU3 AMTSO4	8 8	0.00	1763.09 4453.53	220.39 556.69	771.22 2129.17	40.22 119.00	25.12 233.09 652.51	194.49 544.45
AMTP04	8	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AXSSU4 AMTSS	8 8	0.00	3921.36 5712.68	490.17 714.09	1955.74 1858.99	90.89 261.28	607.64 550.68	507.01 459.48
AMTNO	8	0.00	3248.81	406.10	1694.93	50.78	532.09	443.97

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MUNTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SITE 19 DURING 07/78.

PH DD T CMPP T HNA K A G	N 10 10 10 10 10 10 10	VOLW FAV 4.53 0.00 56.91 54.10 41.14 1.22 8.63 9.03	UEU/SQ.M 0.00 0.00 21.67 0.00 0.00 0.00 0.00	MEA-236 45-36 35-173 556-932 41-43 110-01	HIGH 80.028 162.18 162.74 18.96 14.50	LOW 79 18.80 18.80 130.35 14.59 2.10	ST.DEV 0.37 19.60 47.26 48.08 12.95 0.50	95%C.L. 14.01 1.07 33.77 34.36 9.36 9.36
NH4 CL 34 F 0044 D 04 P 050 X 04 X 04 X 04 X 04 X 04 X 04 X 04 X 0	10 10 10 10 10 10 10	2.61 45.30 19.11 47.80 0.00 432.95 119.53	0.00	5.10 47.80 0.89 23.94 50.41 0.00 45.52	21.07 70.50 3.68 59.52 133.00 128.66 238.46 261.01	0.55 2.41 10.81 17.90 10.84 10.84 84.24 90.88	10536-157 147-1655-177 147-1655-177 147-1655-177 147-1655-177	4.5846405324 10.45505324 10.45505324 2.45505324
CL/NA NA NA SS NC D / P AMTHNA AMTICA	10 10 10 10 10 10 10 10	1.10 4.56 49.68 12.95 1.06 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 1230.35 11722.35 8911.92 264.79 1868.88	130 1445 445 445 445 445 457 457 457	1.19 76.40 76.31 4816.56 4816.43 41.367	0.87 9.869 9.8699 9.80 9.81 9.81 9.81 9.81 9.81 9.81 9.81 9.81	18.98 14.125 1441.70 1443.89 515.08 110.87	0.266 130.035 100.351 10331 10331 10331 100.129
AMTMG AMTNH4 AMTCL AMTF AMTNO3 AMTPU4 AXSSO4 AMTSS AMTNC	10 10 10 10 10 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1956 - 30 1956 - 85 9814 - 95 158 - 88 4141 - 45 1035 0 - 00 9354 - 41 10762 - 90 2804 - 85	195.63 56.59 981.49 15.89 414.15 1035.68 935.29 1076.29	302.46 133.06 1630.31 70.98 1030.76 3837.45 0.00 3710.25 1766.74 540.19	30.77 21.83 119.76 92.75 114.51 86.94 132.10	111.78 33.69 602.21 21.56 286.93 113.0.90 1121.92 656.79 130.94	79.88 79.07 430.41 205.50 810.81 469.58

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF LM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

- 1

Table 196.

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 08/78.

044	N	VOLMTAN	UEQ/SQ.M	MEAN	нїен	ĽĴŴĘ	ST.DEY	95×C.L.
PH COND	3	4.58 16.56	0.00 0.00 5.57	4.66	23.20 23.19	4.45 11.80	0.27 4.53 0.77	0.33 5.63 0.96
CMPPT H	Š	26.10	5.57	1.11	2.19 35.48	0.12 8.13	0.77 12.36	0.96 15.36
HNV	<u> </u>	24.43	0,00	22.00 19.84	33.11	6-61	12.36 12.49	15.53
NA K	3	43.73	0.00	47.91 1.84	33.11 75.22 2.81 19.96	36.52 1.28	16.09 0.61	20.00 0.76 7.43
C A MG	5	1.64 7.18	0_00	10.28	19.96	36.52 1.28 4.49 7.32	5.97 4.01	7.43
NH4	5	10.69 1.87 51.21	0.00	47.84 10.83 11.85 11.85 11.85 10.87	18.01	0.55 38.07	1.59	1.9/
ÇL	5	51.21	0.00	55. 05	89.11 0.53	38.07 0.00	20.52	25.51 0.36
N03	<u>ج</u>	0.33 9.71	0,00	10.55	16.15	0.00 3.23	0.29 4.85 8.15	6.03 10.14
504 P04	3	24.71	0.00	23.15	33.73	13.95	0.00	0.00
XSSO4 SAN	5	19.66 85.96	0.00	17.62 88.70	28.72 114.71	0.00 7.22 57.46	0.00 8.92 21.69	11.09 26.97
SCA	いいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい	91.20	0.00	95.68	127 56	68.05	20.13	25.03
A/C CL/NA	3	91.20 0.94 1.17	0.00	0.93 1.15 4.23	11.03 1.28 4.99 97.18 25.84	0.84 1.04	20.13 0.07 0.10 0.52	0.09
NA/MG	5	4.09	0.00	4.23	4.99	1.04 3.79 41.99	0.52 22.38	Λ 6/1
SS NC	5 5 5 5 5	54.32 10.78	0.00	14.22	25.84	5.97 0.62	7.44	27.82 9.25 9.25 389.49 373.94
COND/P AMTH	5	0.90	0.00 1452.16	290.43	1.13 758.49 724.35	19.26	313.28 313.28	389.49
AMTHNV	ž	0.00	1359.44	271.29	724.35	13.32	300.77 302.80	373.94
AMTK	3	0.00	91.26	18.25	913.08 33.51	13.32 58.34 2.42	11.04	376.45 13.73
AMTCA AMTMG	5	0.00	399.24 594.73	79.85 118.95	106.70	25.70	32.99 81.84	41.01 101.74
AMTNH4	Ź	0.00	14552	4.42839 4.42839 51.400.489 51.400.895 6.89	241.13 41.84 1172.06 11.51 211.71	12.60 3.81	16.25	41.01 101.74 120.18 493.08 117.56
AMTCL AMTF	5	0.00	18.13	3.63	11.51	64.97 0.00	396.61 5.26	6.54
AMTNU3 AMTSO4	5 5 5	0.00	540.49 1374.78	108.10 274.96	211.71 737.81	15.71 32.88	94.55 278.91	117.56 346.76
AMTPO4	<u>5</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00 307.44
AXSSU4 AMTSS	5	0.00	0.00 1093.73 3022.28	218.75 604.46	628.33 1179.70	26.20 71.66	247.29 395.12	491.23
AMTNO	5	0.00	600.05	120.00	202.08	30.68	68.22	84.81

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=U.NEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MONTH

A-19

1

MONTHLY HAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIF 19 DURING 09/78.

	N _	VOLHTAV	UEW/SQ.M	MEAN	HIGH	ĽΟ₩Ţ	ST,DEV	95%C.L.
PH COND	9	4.53	0.00	34.44	4.90	4.10	0.28	9.32
CMPPT	3	21.31	11.67	26.81 1.30	48.20 4.06	12.60	12.10	1.25
Ĥ	9	29.49	0_00	36.34	79.43	12.59	22.14	17.05
HŅV	9	27.57	0_00	32.86	75.86	11.75	20.67	15.41
NA K	8	38.99	V . 00	60.11	99.13 3.83	30.00 51	28.91 1.07	24.13
ĈA	8	1.29 5.09 9.23	0.00	1.91	18.96	2.50	5.21	4.34
MG	Š	9.23	0_00	14.00	18.96 23.20	7.16	6.70	5.59
NH4	8 8 8 8 8 8	3.04	0_00	6.79 70.54	29.94 147.77	_0.5 <u>\$</u>	9.81	8.19
ÇL F	ğ	44.18 0.62	0.00	70.54	2.11	34.97 0.00	40.44	33.74
N03	ă	12.90	V . 0 0	0.26 17.62	58.23	7.26	17:11	14.27
\$04	ĕ	25.15	0.00	33.13	66.62	12.28	19.63	16.38
PO4	8	0.00	0.00	0.00	0.00	0.00	0.00 17.58	0.00
X\$\$04 S a n	8 8	20.68 82.91	0.00	26.33 122.82	54.74 282.40	7.99 61.28	73.47	14.67 61.30
SCA	8	87.08	Ÿ . 00	126.07	254.49	66.59	64.66	53.95
A/C	8	0.95	0_00	0.97 1.17	1.11	0.82	0.08	53.95 0.07
CL/NA	8	1.13	0.00	1.17	1.49	0.94	0.16	0.13
NA/MG SS	8 8	48.22	0.00	4.29	4.50 128.08	4.02 38.76	0.14 36.06	0.12 30.09
NČ	8	9.58	0.00	73.03 17.03	46.98	32.49	14.14	11.80
COND/P	8	1.07	0.00	0.99	1.13	0.82	0.11	0.09
AMTH	9	0.00	3440.12 3215.24	382.24	1804.02	25.53	574.82	442.61 422.45 464.91
AMTHNV AMTNA	9 8	0.00	4521.51	357.25 565.19	1686.95	21.73 49.57	548.64	426.40
AMTK	ĕ	ŭ.ŏŭ	149.22	18.65	1722.83 1536.75 72.60	1.91	557.18 24.36	20.33
AMTCA	Ä	0.00	590.85	73.86	2/4-45	5.75	93.45	20.33 77.97
AMTMG	8	0.00	1070.95	133.87	360.92	11.60	133.03	111.00 57.27
AMTNH4 AMTCL	8 8	0.00	352.94 5124.38	44.12 640.55	209.63 1695.52	4.16 73.88	69.48 625.02	521.51
AMTE	8	Ŏ . ŎŬ	72.37	9.05	72.37	0.00	25.59	21.35
AMTNO3	8	0.00	1496.58 2917.06	187.07	770.71	14.01	257.36	21.35 214.73 403.99
AMTS04	8	0.00	2917.06	364.63	1467.16	33.31	484.18	403.99
AMTPU4 AXSSO4	8 8	0.00	2397.95	299.74	1338.48	0.00 23.81	442.92	0.00 369.56
AMTSS	Ä	Ŏ. Ŏ Ŏ	5573.96	696.75	1870.16	64.04	685.54	5/2-00
AMTNO	કે	0.00	1111.50	138.94	558.58	22.04	190.73	159.14

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.m=mlcroequivalents/square meter
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.m COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNIT

1

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 10/78.

РН	N 10	VOLWTAV 4.57	UEG/\$Q.M	MEAN 4.27	HIGH 5.15	LDW 3.79	ST.DEV	95%C.L. 0.30
COND CMPPT H	10	19.61	0.00 14.11	40.66 1.41	85.00 3.95	7.00 0.04	28.54	20.40
HNV NA	10	26.88 22.98 54.84	0.00 V.00 V.00	54.26 47.48 144.26	162.18 147.91 454.37	7.08 6.03 3.91	50.17 45.49 170.96 3.67 8.82 37.71	35.86 32.51 131.64 2.82
K C A	9	54.84 1.54 6.62	0.00	144.26 3.57 12.25 32.21	454.37 9.70 27.44	$0.51 \\ 1.00$	3.67 8.82	6.79
MG NH4	9 9 9	12.69 3.23	0.00	32.21 7.08	102.33 22.18 510.14 5.26	0.99 1.11 4.51	37.71 7.13	29.03 5.49 143.32
CL F NO3	9	62.15 0.46 7.30	0.00 0.00 0.00	7.08 160.43 1.93 18.75	5.26 43.55	0.00	7.13 186.13 2.06 16.07	143.32 1.58 12.37 30.21
\$04 P04	9	25.49 0.00 19.23 95.40	0.00	55.31 0.00 38.95	43.55 108.68 0.00	2.42 9.99 0.00 9.53	49.24	0.00
XŠSO4 San Sca	9 9 9	19.23 95.40 105.77	0.00 0.00 0.00	236.41	100.15	16.92	0.00 32.27 219.62 225.68	24.85 169.10 173.78
A/C CL/NA	9	0.90 1.13	0.00	255.24 0.93 1.11	633.83 1.02 1.40	22.31 0.76 0.96	0.09	0.07 0.11
NA/MG SS	9	0.90 1.13 4.32 67.15 11.78	0.00 0.00 0.00	4.48 175.50	4.99 562.68 67.58	3 0//	0.14 0.56 206.01	158.63 16.17
NC COND/P AMTH	9 9 10	11.78 0.98 0.00	0.00 0.00 3793 31	23.87 0.93 379.33	67.58 1.05	2.54 0.78	21.00 0.11 457.61 394.21	16.17
AMTHNV AMTNA	10	0.00	3793-31 3242-76 7716-95 217-24	324.28 857.44	1.05 1565.45 1332.41 3145.44	4.95 4.95 4.95 4.95 17.425 16.22	396.21 946.97	0.08 327.04 278.87 729.17
AMTK	9	0.00	217.24 931.06	24.14 103.45	3145.44 80.74 493.15	11.23	946.97 23.27 149.34	114-99
AMTMG AMTNH4 AMTCL	9 9 9	0.00 0.00 0.00	931.06 1786.30 454.93 8745.18	198.48 50.55 971.69 7.20	760.93 204.11 3578.45	7.20 4.76 29.61	228.63 61.53 1073.60	176.04 47.38 826.67
AMTF AMTNU3	9	0.00	1027.22	114.14	26.64 299.69	$0.00 \\ 17.39$	10.06 87.35	7.74 67.26 251.54
AMTSU4 AMTPU4 AXSSU4	9 9 9	0.00	3585.76 0.00 2705.38	398.42 0.00	1066.13	66.85 0.00 25.84	326.67	0.00
AMTSS AMTNC	9	0.00 0.00 0.00	9448.46 1658.03	300.60 1049.83 184.23	968.42 3947.03 577.06	27.39 22.43	284.48 1183.15 180.42	219.05 911.03 138.92

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEG/SG.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWLIGHTED AVERAGE
CMPPT IN UEG/SG.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED AT KSC SIJE 19 DURING 11/78.

PH DD T CMPP T H NA A G MG	0666655555 N	VOLWTAV 4.61 33.91 24.62 153.37 12.97 14.57	UEG/SQ.M 0.00 0.45 0.00 0.00 0.00 0.00	MEAN 48.70 38.41 39.14 34.11 152.27 13.17 34.47	HIGH 4.76 71.00 1.12 79.43 69.18 333.49 24.45 75.35	13.08 17.85 15.28 18.29 14.61	ST . DEV 0 . 28 19 . 77 0 . 40 24 . 61 21 . 17 131 . 66 29 . 50	95%C.29 20.4422 20.4821 25.63 263.4329 163.643
NH 34 POSANA CL.	65555555555555555555555555555555555555	34.57 10.355 10.78 10.78 10.18 17.18 10.18 10.18 10.19 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 0 • 14 0 • 14 0 • 51 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 0 6 0	1.11 343.76 1.58 31.94 84.32 48.95 48.58 450.51 1.10 1.15	0.00 20.30 20.48 18.70 134.63 69.87 0.90	157.27 0.69 10.65 26.24 0.00 14.46 159.35	170.67 170.67 13.65 13.65 17.98 198.09 231.81 0.17
NA/MG SS NC COND/P AMTHNV AMTNA AMTCA AMTMG AMTNH4	いいいいん もいいいり	179.07 26.31 0.98 0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177.73 26.58 100.09 88.49 733.10 19.00 62.19	4.46 379.16 379.16 103 203.30 181.19 2482.12 195.12 195.12 12.39	3-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	1000.121197850190340 1520.5550190340 1520.55590340	1 2 3 5 4 1 1 1 2 7 6 8 8 9 7 6 9 7 6 9 7
AMTCL AMTF AMTNU3 AMTSO4 AMTPO4 AXSSO4 AMTSS AMTNC	うちちちちいちちち	0.00 0.00 0.00 0.00 0.00 0.00 0.00	12.39 3881.13 6.03 257.85 810.26 0.00 410.89 4280.89 528.96	165.29 776.23 776.23 51.57 162.00 82.18 856.18 125.79	2618.04 2.91 81.58 421.00 0.00 151.61 2887.70 413.11	37.43 0.00 24.13 40.31 0.00 56.45 41.29	1054.08 1.26 23.37 149.31 0.00 44.32 1162.65	1310.49 1.57 29.06 185.63 0.00 55.10 1445.47 204.21

N=NUMBER OF SAMPLES
VOLWIAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF KAIN FOR
THE MONTH

Table 200.

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPUSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 12/78.

PH	N _A	VOLMTAN	UEQ/SQ.M	ME AN	нТен	10W	STADEY	95%C.L.
COND	4	26.00 26.00	0.00	4.24 50.55	5.10 96.50 7.44	25.00	0.52 31.53	0.83 50.14
CMPPT H	4	0.00	7.64	1.91 56.97	138.04	0.03 7.94 6.76	3.69 57.20 47.79	5.86 90.95
HNV NA	3	9.96 8.49 153.35	0.00	48.39 187.40	114.81 320.88	89.13	47.79 119.82	75.98 297.47
K Ca	3	3.38 7.77	0.00	5.28 16.13	8.42 21.96	3.32 7.48 20.65	119.82 2.75 7.64	18.96
MG NH4	3	31.74	0_00	40.94	70.74	20.65	20.3 /	65.46
ČĽ	3	1.44	0.00	193.26	18.85 349.12	87.98	137.72 137.72 2.90	65.46 22.53 341.89
NO3	3	0.06 3.68	0.00	21.51	39.52	9.00 3.06	18.23	1.20
\$04 P04	3	24.63	0.00	93.27 0.00 73.39	179.26 0.00	22.28	79.56	45.26 197.51 0.00
XSSD4 SAN	Ž	0.00 9.77	0.00	73.39	143.34 574.03	0.00 7.59 168.53	0.00 67.97 228.51	0.00 168.73 567.30
SCA	ź	1/3.24 207.57	0.00	310.43 327.40	578.89	199.84	217.81	540.74
A/C CL/NA	3	0.83 0.94	0.00	0.95 1.03	0.99	0.83	0.08 0.08	0.21
NA/MG SS	3	4.83 159.24	0.00	4.58 213.17	4.84 385.07	4.32 97.05	0.26 151.90	0.66 377.11
NC COND/P	3	38.44 0.97	0.00	213.17 47.67 0.91	55.78 0.97	38.13 0.84	8.91	22.13
AMTH	4	0.00	761.37 648.84	190.34 162.21 3888.11	590.78 502.84	8.81	270.68 230.09	430.38 365.84
AMTNA	3	0.00	11664 34	3888.11	11318.39	75.21 75.21	6435.55	15976.93
AMIK	3	0.00	257.40 591.22 2414.22	85.80 197.07	246.84 556.70	3.45 16.00	139.48 311.45 1327.24	346.27 773.20
AMTMG AMTNH4	3	0.00	2414.22	804.74 36.53	255/-11	17.42 11.23	1327.24 39.85	3295.01 98.93 14949.75
AMTCL AMTF	3	0.00	109.60 10981.52 4.88	3660.51	82.47 10612.72 4.44	74.24 0.00	39.85 6021.80 2.45	14949.75
AMTNO3 AMTSU4	3	0.00	2/9./9	93.26	227.94 1656.88	18.51	116.87	290.13
AMTPO4	3	0.00	1874.18 0.00 744.19	624.73 0.00 248.06	0.00	66.05	894.89	2221.65
AXSSO4 AMISS	3	0.00	12112.02	4037.54	564.83 11705.83	58.41 81.88	276.11 6642.04	685.47 16489.58
AMTNC	3	0.00	2924.16	974.72	2835.68	41.42	1611.64	4001.06

N=NUMBER OF SAMPLES
VOLWTAY=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEU/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEG/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

MUNTHLY MAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 01/79.

	N	VULWTAV	UEG/SQ.M	MEAN	HIGH	LDW	ST.DEV	95%C.L.
PH	4	4.76	0.00	4.39	4.84	4.01	0.38	0.61
COND CMPPT	4	13.57	0.00 16.14	26.37 4.04	50.00 12.19	11.50	17.70	28.14 8.83
H	4	17.22	10.00	40.48	97 . 72	0.32 14.45	5.55 39.18 32.56	62.29
HNV	4	16.36	0.00	35.75	97.72 83.18	14.13	32.56	51.76
ŅA	4	49.46	0.00	35.75 51.85 2.55 16.59	95.92	21.74	30.38	48.31 1.85
K C A	ü	3.47 5.91	0.00	16.59	4.08	1.28	21.28	33.84
MG	4	11.42	0.00	15.04	22.38	8.64	6.31	10_03
NH4	4	.2.79	0.00	12.20 51.89	48.40 22.38 37.14 97.57	21.15	6.31 16.75 32.41	26.63 51.52
ÇL	7	47.43 0.05	V.00 V.00	0.66	77.63	0.00	1.32	5.09
NO3	4	6.82	ŭ.ŏŏ	17.58	2.63 45.49 110.14	9.00	18.86	29.98
SO4	4	18.51	0_00	45.91	110.14	1/1 00	44.36	70.53
P04 XSS04	4	0.00 13.63	0.00	0.00 40.57	0.00	10.00	0.00 45.83	0.00 72.87
SAN	4	75.67	Ŏ:ŭŏ	117.10	179,41	67.05	56.98	90.60
SCA	4	90.27	0.00	136./1	215.45	10.00 10.23 67.05 79.72	66.01	104.96
A/C CL/NA	4 4	0.84 0.96	0.00	0.86	0.91 1.04	0.83	0.04	0.06
NA/MG	4	4.33	ÿ:0ŏ	1.00 3.98	4.39	2.52	0.89	1.42
SS	4	52.32	0.00	57.23	107.62	0.94 2.52 23.33	0.89 35.74 37.41	56.83
NC COND/P	4	20.74	0.00	39.00	94.89	16.91	0.09	59.47
AMTH	4	0.00	2779.52	694.88	1761.63	0.81 248.84	716.73	0.14 1139.61
VAHTMA	4	0.00	2640.86	694.88	1761.63 1721.53	226.94	713.05	1133.75
AMTNA AMTK	4	0.00	7984.69	1996.17	5988.01	68.62 7.25	2703.79 238.72	4299.02 379.56
AMTCA	4	0.00	560.93 953.74 1844.31	140.23 238.44	5988.01 497.83 608.16 1363.46	62.30	249.47	396.65
AMTMG	4	0.00	1844.31	461.08	1363.46	27.26	611-05	971.54
AMTNH4	4	0.00	450.14 7657.31	112.53	161.12 5636.48	36.64	53.71 2527.23	85.39
AMTCL AMTF	4	0.00	0.31	1914.33	8.31	66.76 0.00	4.15	4018.29
AMTNO3	4	ŏ.ŏŏ	1101.24	2.08 275.31	668.39	92.39 299.68	265.50	422.15
AMTS04	4	0.00	2988.57	747.14	1826.95	299.68	725.73	1153.91
AMTPU4 AXSSO4	4	0.00	2200.64	0.00 550.16	0.00 1246.96	225.94	469.44	746.41
AMTSS	4	0.00	8446.02	2111.50	6217.03	73.63	2787.53	4432.18
AMTNO	4	0.00	3347.80	836.95	2375.57	181.36	1033.67	1643.53

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIOS
UEQ/SQ.M=MICROEQUIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPT IN UEQ/SQ.M COLUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR THE MUNTH

)

Table 202.

MONTHLY KAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 02//9.

PH	N A	VOL#1AV 4.42	UEG/SG.M G.00	4.39	HIGH 4.73	LUW 4.25	ST.DEV 0.22	95%C.L. 0.35
COND	4	32.05	0 2 0 0	50.13	111.50	22.00	41.28	65.63
CMPPT	4	0.00	≥.87	0.72	1.28	0.14	v.48	0.76
H HNV	4	37.76 35.57	0.00 0.00	41.12 38.49	56.23 53.70	18.62 17.38	17.12	27.22 26.10
IVA	4	ø1.5c	0.00	180.77	560.02	38.70	253.23	402.64
K	4	5.62	0_00	4,40	10.98	2.04 7.45	4.39	6.98
C A MG	4	15.06 18.05	0.00 0.00	17.96 33.71	32.43 95.01	7.48 8.72	10.83 41.08	17.21
NH4	4	14.38	0_00	14.83	21.62	10.53	5.01	65.31 7.96
ČΓ	4	91.01	0_00	203.69	631.96	36.94	285.97 3.29	454,69
r N03	/1	3.58 17.04	0 0 0 0 0 0	3.95 18.55	24.68	0.53 16.13	4.12	5.23 6.55
SÖ4	4	50.98	ŭ.ŭŏ	71.05	123.46	27.27	40.33	54.13
PQ4	4	0.00	0_00	0.00	0.00	0.00	0.00 21.99	0.00
x3504 5AN	4 4	41.73 162.97	0 00 0 00	50.21 297.99	70.05 785.04	18.92 118.75	352.53	34.97 517.11
ŠĈĀ	4	169.39	ប៉ ំបំប៉	292.79	747.24	129.21	303.11	481.95
A/C	4	0.96	0.00	1.02	1.06	0.89	0.09	0.14
CL/NA NA/MG	4 A	1.12 4.52	0.00	1.13 5.36	1.27 5.89	0.95 3.91	0.13	0.21 1.42
SS	4	99.17	0.00	223.42	697.05	40.75	316.39	503.06
NC	4	32.46	0.00	28.25	34.17	13.03	10.18	16.19
CUND/P AMTH	4	0.97	0.00 1084.41	271 . 10	1.02 481.51	0.93 51.09	0.04 178.43	283.70
VINTERA	4	0.00	1021_42	255.35	459.83	46.59	171.10	272.06
AMTNA	4	0.00	2343.52 75.31	585.88	935.91	306.23	315.92	502.32
AMIK AMICA	4	0.00	432.49	18.83 108.12	26.17 249.34	12.19	6.35	10.10
AMIMG	4	J.00	518.69	129.67	239.25	74.14	94.96 77.71	150.98 123.56
AMTNH4	4	0.00	412.94	103.24	134.96	16.01	58.20	92,54
AMICL AMIF	4	0.00	2616.34 102.76	654.09	1040.58	316.32 5.07	355.49 31.55	565.22 50.16
AMINU3	4	0.00	489.45	25.69 122.36	221.13	33.93	78.54	124.87
AMTS04	4	0.00	1464.28	366.07	490.25	169.76	143.89	228.76
AMTPU4 AXSSU4	4 4	0.00	0.00 1196.53	0.00 299.63	457.70	0.00 80.35	$0.00 \\ 173.58$	275.99
AMISS	4	0.00	2850.76	712.69	1147.76	348.90	401.06	637.68
AMINO	4	0.00	7932.19	233.05	437.87	17.92	174.30	277.13

NEMUMBER OF SAMPLES
VOLNTAV=VOLUME WEIGHTED AVERAGE. UNITS ARE MICROEGUIVALENTS/LITER EXCEPT FOR PH,
CUMU, CMPPI, AND RAILUS
UEU/SO. M=MICROEUDIVALENTS/SQUARE METER
MEAN=UNWEIGHTED AVERAGE
CMPPI IN UEG/SG. M CULUMN HAS UNITS OF CM AND REPRESENTS TOTAL AMOUNT OF RAIM FUR
THE MUNTH

MONTHLY RAINFALL SUMMARY INCLUDING STATISTICAL EVALUATION OF VARIABILITY IN COMPOSITION AND DEPOSITION AMOUNT FOR CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED AT KSC SITE 19 DURING 03/79.

0.4	N,	VOLWTAY	UEW/ŚQ*M	MEAN	нісн	Low	SIDEY	95%C.L. 0.57
PH COND	3	4.62 23.35	0.00	4.53 74.33 0.77	4.77	4.32 17.00	76.35	189.55
CMPP1 H	3	0.00 23.77	2.32	29.43	2.09 47.86	0.07 16.98	1.14 16.29	2.84
HNV NA	ۇ ق	19.22	0 0 0	34.64 120.44	44.67 213.05	16.60 27.83	15.66 130.97	38.88 1177.10
K C A	5	1.85 2.61	0.00	15.72	13.02 30.94	1.02	8.48 21.52	76.25 193.44
MG NH4	5	10.66	0.00	38.05	69.84 28.83 219.11	6.25 3.33	44 96	404.10 162.07
CL F	Ž	45.90 5.50 12.38	0.00	126.05	219.11 5.79	32.99 1.58 11.29	18.03 131.61 2.98 11.06	404.10 162.07 1182.79 26.75
NO3 SU4	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	12.38 26.29	0.00	16.08 126.05 3.68 19.11 51.22	5.79 26.94 80.16	11.29 22.28	40.95	99.43 367.83
P04 X3504	Š	0.00	0.00	78 28	9.00 57.61	0.00	0.00 27.34	245.74
SAN	5	21.62 70.10 63.88	0.00 0.00	200.32	0.00 57.61 328.29 372.66	18.94 72.35 62.37	180.97 219.41	1626.47
ĂŽĈ CL/NA	Ş	1.07	0.00	207.551 207.095 1.095 3.17 138.48 58.48 148	1.16	0.88 1.03	0.20	1971.91 1.77 1.00
NA/MG	Ş	3.81 50.22	0.00	3.17	4-45	3.05 35.95	0.99 145.47 78.50	8.90 1307.41 705.54
SS NC	Ş	10.67	0.00	158.48	241.68 113.99	2.97	178.50	1705.54
COND/P AMTH	<u> </u>	1.07 0.00	0.00 551.76		1.08 490.82 347.48	32.97 26.53 32.89 20.34	0.14 265.81	1.21 659.91 429.42 1587.08
AMTHNV	ş	0.00	446 - 23 915 - 53 41 - 73	148.74 457.76	202.03	332.89	265.81 172.97 176.59 0.73	1587.08
AMTK AMTCA	چ چ	0.00	5 X / U	20.86	21.30 48.34	10.45	/	240.81
AMTM6 AMTNH4	<u>ک</u>	0.00	240.02 114.69 1033.18 123.68	20.86 29.39 120.01 57.35	130.90	109.12 45.05 342.37	15.40 17.40 246.39 83.97 137.40	138.37 156.34 2214.37
AMICL AMIF	Š	0.00	1033.18 123.68	516.59 61.84	690.81 121.21	2.47	246.39 83.97	2214.37 754.63 1234.88
AMTNU3 AMTSU4	2	0.00	<i>C10.</i> 49	139.25 295.84	236.41 466.43	42.09 125.25	241.20	1234.88 2168.25
AMTPU4 AXSSU4	Ž	0.00	591.68 0.00 486.59	243.30	0.00 396.58	0.00	216.77	1948-18
AMTSS	2222	0.00	1130.39 240.36	565.19 120.18	752.76 178.12	90.02 377.63 62.24	265.26 81.94	2383.96 736.38

N=NUMBER OF SAMPLES
VOLWTAV=VOLUME MEIGHTED AVERAGE. UNITS ARE MICROEQUIVALENTS/LITER EXCEPT FOR PH,
CUND, CMPPT, AND RATIUS
UEU/SQ.M=MICRUEQUIVALENTS/SQUARE METER
MEAN=UNNEIGHTED AVERAGE
CMPPT IN UEU/SQ.M COLUMN HAS UNITS UF CM AND REPRESENTS TOTAL AMOUNT OF RAIN FOR
THE MUNTH

Table 204.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SW.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
Y/X H/NU3 H/SU4 H/XSSU4 H/XSSU4 H/NU3+XSSU4 H/F H/SA HNYTA XSCA/XSMG XSCA/XSMG XSCA/XSMG XSCA/XSSU4 XSCA/XSMG XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/	0.000 0.000	00000000000000000000000000000000000000	0.000 0.000	000007777000000700000000007000
MG/NA NH4/504	0.000	0.000	0.000 0.000	00000
NH4/XSSN4 NU3/S04 NU3/XSSN4 F/XSSN4 AMIH/CM AMINU3/CM AMIXSSU4/CM	0.000 0.000 0.000 0.000 203.821 0.000 0.000	0.000 0.000 0.000 0.000 157.126 0.000 0.000	0.000 0.000 0.000 0.000 0.945 0.000 0.000	0 0 0 7 0 0

Table 205.

LINEAR CURRELATION BASED ON Y=MX+B
BEIMEEN SELECTED RAIN COMPUNENTS. ALL UNIIS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 08/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CHRK. CUEF.	.OV
H/ND3	0.000	0.000	0.000	0
H/S04	0.000	0.000	0.000	Ü
H/XSS04 H/NO3+XSS04	0.000	0.000	0.000	0
H/F	0.000	0.000	0.000	Ü
H/SA	1.078	-0.628		19
HNV/SA	0.971	-1.642		ĪŸ
H/TA	0.805	-1.005		19
XSCA/XSk	0.000	0.000	0.000	0
XSCA/X5MG	0.000	0.000	0.000	0
XSCA/NU3	0.000	0.000	0.000	Ň
XSCA/XSSJ4	0.000	0.000	0.000	() ()
XSCA/F LUGH/LUGCM	0.000	0.000	0.000	4 ĭ
LOGNAZLOGCM	0.000	0.000	0.006	ð
LUGXSK/LUGCM	0.000	0.000	0.000	ŭ
LUGXCA/LUGCM	0.000	ŏ.uŭŭ	0.000	ŏ
LUGXMG/LUGCM	0.000	0.000	0.000	Õ
LUGF/LUGCM	0.000	0.000	0.000	0
LUGNU3/LUGCM	0.000	0.000	0.000	U
LXSSU4/LUGCM	0.000	0.000	0.000	Ü
SS/H	0.000	0.000	0.000	Ú
SSZF	0.000	0.000	0.000	9
35/X5504	0.000	0.000	0.000	Ú
SS/NU3 CUND/H	0.000 0.306	0.000 15.802	0.000 0.453	0 3 8
CUND/NU3	0.000	0.000	0.000	3 0
LUND/XSSU4	ŭ.ŭŭŭ	ŭ.ŏŏŭ	ο . οού	ŭ
CLZNA	0.000	0.000	0.000	()
MG/NA	0.000	0.000	0.000	()
м н4/ SU4	0.000	0.000	0.000	0
NH4/XSSO4	0.000	0.000	0.000	Ų
NU3/SU4	0.000	0.000	ψ . 0 υ υ	O
NO3/XS5U4	0.000	0.000	9.000	U
F/XSSU4 AMTH/CM	0.000	-221.589	0.000 0.694	0 4 1
AMTNUSZEM	408.538	0.000	0.074	4 1
BAT V C C LU C C C	0.000	0.000	0.000	ÿ
AMIXSSU47CM ;	0.00	0.000	V • V V V	•

Table 206.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF. NO.
H/N03	0.000	0.000	0.000 0
H/3U4 H/X5S04	0.000	0.000	0.000 0
H/NU3+XSS04	0.000	0.000	0.000 0
H/F	0.000	0.000	0.000 0
H/SA	1.081	-2.026	0.994 29
HNV/SA	1.033	-3.370	0.994 29 0.994 28 0.968 29
HITA	0.790	-3.021	0.968 29
XSCA/XSK	0.000	0.000	0.000 0
XSCA/XSM6	0.000	0.000	0.000 0
XSCA/NU3	0.000	0.000	0.000 0
XSCA/XSSU4	0.000	0.000	0.000 0
XSCA/F	0.000	0.000	0.000 0 -0.669 43
LUGH/LUGCM	-0.403	1.287	-0.669 43 0.000 0
LUGNAZLOGCM	0.000	0.000	0.000 0
LUGXSK/LUGCM LUGXCA/LUGCM	0.000	0.000	0.000
LUGXMG/LUGCM	0.000	0.000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
LUGF/LUGLM	Ŭ.ŎŎŎ	0.000	0.000 o
LUGNU3/LUGLM	ŏ.ŏŏŏ	o o o o o	0.000 0
LXSSU4/LUGCM	0.000	0.000	0.000 0
SS/H	0.000	0.000	0.000 0
\$\$/F \$\$/x\$\$U4	0.000	0.000	0.000 0
\$5/x5\$U4	0.000	0.000	
\$5/NU3	0.000	0.000	0.000 0
CUNDIH	0.510	14.792	0.615 40
CONDINUS	0.000	0.000	0.000 0
COND/X5SU4	0.000	0.000	0.000 0
CLINA	0.000	0.000	0.000 0
MG/NA	0.000	0.000	0.000 0
NH4/504 JH4/XSS04	0.000	0.000	0.000
NU3/504	0.000	0.000	0.000 ö
NU3/X5504	0.000	0.000	0.000
F/XSSU4	ŭ.ŭŭŏ	ŭ. 000	0.000
AMÎHZEM	95.643	89.667	ŭ.789 43
AMTNU3/CM	0.000	0.000	0.000 0
AMTX5SU4/CM	0.000	0.000	0.000 0

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MILRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF. NO.
H/NU3 H/SO4 H/XSSO4 H/NO3+XSSO4	2.634 1.045 1.462 1.003	4.003 5.891 1.458 -0.689	0.979 17 0.711 17 0.861 17 0.935 17
H/F H/SA HNV/SA H/TA XSCA/XSK	6.132 0.979 0.952 0.710 1.473	27.317 2.606 0.858 -2.097 5.335 7.848	0.572 17 0.997 22 0.996 22 0.987 22 0.452 17
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	0.046 0.412 0.239 1.076 -0.407	7.848 1.152 0.430 4.420 1.535	0.058 17 0.730 17 0.855 17 0.610 17 -0.408 25
LUGNA/LOGCM LUGXSK/LUGCM LUGXCA/LOGCM LUGXMG/LOGCM	-0.135 -0.505 -0.587 -0.327	1.803 0.042 0.749 0.492 0.321	-0.139 17 -0.499 17 -0.659 17 -0.362 17
LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F	-0.366 -0.582 -0.301 -0.250 -5.860	1.040 1.409 101.290 108.810	-0.366 17 -0.614 17 -0.475 17 -0.118 17 -0.259 17
SS/XSSU4 SS/NU3 CUND/H CUND/NU3 COND/XSSU4	1.191 -0.424 0.390 0.894 0.746	51.780 96.421 26.124 19.116 10.358	0.332 17 -0.075 17 0.016 25 0.641 17 0.846 17
CL/NA MG/NA NH4/SU4	0.864 0.116 0.263 0.346 0.402	1.005 7.745 2.084 1.664 0.515	0.979 17 0.805 17 0.724 17 0.824 17 0.736 17
NU3/XS504 F/XS5U4 AMTH/CM AMT NU3/CM AMIXSSU4/CM	0.552 0.063 75.671 9.825 126.217	-0.872 1.318 324.787 129.715 149.352	0.875 17 0.398 17 0.267 25 0.113 17 0.715 17

Table 208.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED HAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
UURING 11/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF. NO.
H/NO3 H/SO4 H/XSSO4 H/NU3+XSSO4 H/NU3+XSSO4 H/TA HNV/SA H/TA XSCA/XSK XSCA/XSMG XSCA/XSMG XSCA/XSSO4 XSCA/F	SLUPE 1.36884 10.85486 10.54864 10.54864 10.54864 10.5486 10.5	Y - IN 1 - 488 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.953 29 0.678 29 0.923 29 0.964 29 0.695 13 0.817 13 0.880 13 0.018 29 0.162 29 0.728 29 0.728 29
LUGHALUGEM LUGNA/LUGEM LUGXSK/LUGEM LUGXMG/LUGEM LUGF/LUGEM LUGNU3/LUGEM LUGNU3/LUGEM LXSSU4/LUGEM SS/H SS/F SS/F SS/NU3	-0.346 -0.546 -0.7168 -0.7553 -0.777 -0.247 -0.2470 4.619	1.04453 -0.7426 -0.155647 -0.1673 -0.1	-0.480 34 -0.694 29 -0.053 29 -0.907 29 -0.593 29 -0.593 29 -0.8866 29 -0.8854 29 0.270 29 0.496 29 0.481
CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA MG4/SD4 MH4/XSSU4 MH3/XSSU4 F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	-0.558 -0.5558	10.006 10.498 7.677 -8.231 -1.319 1.195 -0.1615 1.4924 75.8922 104.113	0.3481 0.381 0.398 0.405 0.569 0.569 0.992 0.859 0

Table 209.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED MAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 12/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-1N1.	CURR.CUEF. NU.
H/NO3 H/SO4 H/SO54 H/NO3+XSO4 H/NO3+XSO4 H/NO3+XSA H/SA HNIA XSCA/XSS XSCA/XSS XSCA/XSS XSCA/XSS LUGGNA/LUGGCM	1.787523252449520 1.787523252449520 1.787523252449520 1.98542881349791 1.000030000000000000000000000000000000	14.459544104688777793241115525441120287361433059476767676767676767676767676767676767676	0.857 0.8554 0.8554 0.8554 0.8554 0.8554 0.8555 0.8555 0.8551 0.8555 0.8551 0.8555
M6/NA NH4/504 NH4/XS504 NU3/XS504 F/XS504 AMTH/CM AMTNU3/CM AMTNU3/CM AMTX5S04/CM	0.4873 0.873 0.234 0.122 0.147 0.317 -0.0132 143.0308 99.592	8 443 0 144 0 245 0 352 1 202 2 237 0 828 70 919 40 274 101 610	0.997 51 0.652 51 0.700 51 0.667 51 0.662 51 -0.187 51 0.508 64 0.420 51 0.355 51

Table 210.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 01/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF. NU.
Y/X H/NU3 n/S04 H/XS504 H/XS504 H/XS504 H/XS504 H/KA H/KA H/KA H/KA H/KA H/KA H/KA H/KA	SL 499002055159 	-5.40575 -6.4025	0.943 0.943 0.943 0.953 0.953 0.953 0.572 0.0553 0.0575 0.0553 0.0575 0.0553 0.0575 0.055
CUND/H CUND/NU3 CUND/XSSU4 CL/NA Mb/NA Mb/NSU4 NH4/XSSU4 NU3/XSSU4 NU3/XSSU4 F/XSSU4 AMIH/CM AMINU3/CM AMINU3/CM	0.380 1.49943 0.23580 0.23580 0.2380 0.2380 0.2380 0.2380 746.0	59.844 15.379 9.978 -0.540 -0.099 3.363 -1.575 -0.591 -0.034 180.180 80.137 248.682	0.610 33 0.735 0.735 0.706 0.997 0.997 0.993 0.837 0.933 0.934 0.935 0.345 0.355 0.355 0.345 0.355 0.345 0.345 0.355

Table 211.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=M1CROEGUIVALENTS/SG.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-1N1.	CURR.CUEF. NU.
H/NO3 H/SO4 H/X8504	1.153 0.392 0.701	32.230 30.508 21.025 24.250	0.765 34 0.721 34 0.816 34
H/NU3+XSSU4 H/F H/SA	0.455 -0.851 0.848	48.789 8.460	0.815 34 -0.050 34 0.959 34 0.961 34
HNV/SA H/TA XSCA/XSK XSCA/XSMG	0.838 -0.002 1.471 0.087	4.255 46.259 3.695 3.997	0.961 34 -0.017 34 0.241 34 0.227 34
X5CA/NU3 X5CA/X5SU4 X5CA/F	0.191 0.087 3.274	1.810 1.072 2.278	0.449 34 0.361 34 0.680 34
LUGH/LUGCM LUGX5K/LUGCM	-0.151 0.071 -0.123	1.053 1.326 -0.267	-0.647 48 0.050 34 -0.137 34
LUGXLA/LUGLM LUGXMG/LUGCM LUGF/LUGLM LUGNU3/LOGCM	-0.138 0.019 0.095 -0.444	0.499 0.064 0.078 1.005	-0.129 34 0.012 34 0.215 34 -0.581 34
LXSSU4/LUGCM SS/H SS/F SS/XSSU4	-0.242 4.026 15.412 5.855 10.274	1.508	-0.555 34 0.509 34 0.114 34
\$\$/X5\$U4 \$\$/NU3 CUND/H CUND/NU3	5.855 10.274 0.871	58.112 -150.645 -74.154 -4.851 -2.870	0.862 34 0.863 34 0.535 48 0.928 34
CUND/X5SU4 CL/NA 4G/NA	0.731	-23.725 11.389	0.939 34 0.990 34 0.996 34
VH4/XS3()4 VH4/XS3()4 VU3/S()4	0.021 0.022 0.333	1.595 4.762 4.827 -1.166	0.171 34 0.117 34 0.923 34
NU3/XSSU4 F/XSSU4 AMTH/CM AMTNU3/CM	0.519 0.005 329.478 40.093	-0.260 0.463 80.584 98.910	0.911 34 0.104 34 0.938 48 0.521 34
AMTX3844/CM	294.101		0.958 34

Table 212.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NO.
H/NO3 H/SO4 H/SO4 H/SO5+XSO4 H/NO3+XSO4 H/NO3+XSO4 H/SA H/SA H/SA H/SA H/SA H/SA KSCA/XSO3 XSCA/XSO3 XSCA/XF LUGGCCM XSCA/XF LUGGCCM LUGGXSK/LUGCCM LUGGXSK/	823757587202177929584753773577470485895773117929584955445377357735773587470448383285455139849144838	14.5994240380018579969467901166.9525051842880018577996946790117240011724	45555444455555555555555555555555555555
NU3/5U4 NU3/XS5U4 F/XS5U4 AMIH/CM AMINU3/CM AMIXSSU4/CM	0.635 0.600 0.002 112.827 4.672 115.363	11.080 15.914 0.808 174.648 161.028 144.533	0.151 45 0.130 45 0.051 45 0.348 50 0.016 45 0.575 45

Table 213.

LINEAR CURRELATION BASED UN Y=MX+H
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 04/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF. NO.
H/NU3 H/SU4 H/SU4 H/XSSU4 H/KD3+XSO4 H/FA H/KA H/KA H/KA H/KA H/KA H/KA H/KA H/K	0.053822070 0.053822070 0.069377 0.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.0693777 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.06937 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377 1.069377	22762259 22762259 2200.495259	0.054 17 0.067 17 0.135 17 0.121 17 0.015 17 0.971 7 0.989 7 0.805 7 0.642 17 0.886 17 0.6332 17 0.6332 17 0.6332 17 0.6334 17 -0.634 17 -0.634 17 -0.637 17 -0.881 17 -0.881 17 -0.881 17 -0.881 17 -0.881 17 -0.881 17 -0.881 17 -0.886 17
35/H SS/F SS/X55U4	-1.702 4.986 0.710 0.8219 0.8219 0.8348 0.189 0.4754 0.52124 0.52124 0.925 0.925 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935 0.935	128.396 127.0457 33.9728 12.0590 12.0590 13.4597 13.4597 10.1231 -17.9337 111.398	-0.366 17 0.218 17 0.390 17 0.486 17 0.151 20 0.052 17 0.965 17 0.965 17 0.966 17 0.966 17 0.966 17 0.961 17 0.961 17 0.761 17 0.761 17 0.761 17 0.960 17

Table 214.

LINEAR CURRELATION BASED ON Y=AX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SU.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 05/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF. NO.
H/NU3 H/SU4 H/XS5U4 H/XS5U4 H/NU3+XS04 H/FA H/FA H/FA XSCA/XSS XSCA/XSSU4 XSCA/XSSU4 XSCA/XSSU4 XSCA/XSSU4 XSCA/XSUBGHA/LUGGUM LUGGXSCA/LUGGUM LUGGXSCA/LUGGUM LUGGXMG/LUGGUM LUGGXMG/LUGGUM LUGGXMG/LUGGUM LUGGXSUH LUGGXSUH LUGGSSUH LUGGSSUH LUGSSUH LUGSSUH LUGSSUH LUGSSUH LUGSSUH LUGSSUH LUGSSUH LUGSSUH SS/F SS/XS	954236323693469058294082 134249544413348487555241338 00000570070000000000000000000000000000	34.9233 19.333 19.333 41.9136 13.136 11.332 11.332 11.332 11.452 11.452 11.452 11.452 11.452 11.452 11.452 11.452 11.452 11.454 11.452	22222222222222222222222222222222222222
SS/H SS/F SS/XSSU4 SS/NU3 CUND/NU3 CUND/NA CUND/XSSU4 CL/NA MG/NA NH4/SOU4 NH4/SSU4 NU3/SU4 NU3/SU4 NU3/SU4 AMIH/CM AMIH/CM	-0.1138258692430953366	58.8547 47.347 40.347 40.347 45.6537 420.796 20.7063 20.7063 20.7063 10.3556 19.3556 19.3556 134.193	-0.065 522 0.165 552 247 0.247 0.165 552 247 0.166 552 247 0.166 20.166
AMIXSSU4/CM	275.074	184.445	0.787 52

Table 215.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 06/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.CUEF. NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4	1.875 0.964 1.040 0.690	8.653 4.616 5.427 5.491	0.933 95 0.952 95 0.966 95 0.969 95
H/F H/SA HNV/SA H/TA	1.040 0.690 8.137 0.968 0.946 0.608	36.083 2.500 -1.711 5.835	0.330 95 0.983 46 0.987 46
XSCA/XSK XSCA/XSMG XSCA/NU3 XSCA/XSSU4	0.468 10.555 10.487 0.288 10.288 10.355	6.861 8.893 0.325 0.237	-0.321 95 0.892 95 0.848 95
XSCA/F LOGH/LOGCM LOGNA/LOGCM LOGXSK/LOGCM LOGXCA/LOGCM	-0.283 -0.320 -0.355	5.491 36.500 -1.715.8351 5.8693 0.2377 1.498 1.375 -0.147	-0.425 99 -0.468 95 -0.405 95
LUGXMG/EUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGLM	-0.355 -0.379 -0.395 -0.130 -0.342 -0.225	-0.105 0.051 1.108 1.389	-0.441 95 -0.303 95 -0.490 95
SS/H SS/F SS/X5SU4 SS/NU3	0.460 4.279 0.615 1.173 0.888	1.389 19.264 35.532 17.895	-0.309 95 0.361 95 0.136 95 0.449 95 0.458 95
CUND/H CUND/NU3 CUND/XSSU4 CL/NA	0.888 1.026 0.566 1.094 0.119	-8.691 7.493 5.818 -0.413 3.311 -7.101	0.797 99 0.929 95 0.958 95 0.996 95 0.693 95 0.648 95 0.599 95
M6/NA NH4/SU4 NH4/XSSU4 NU3/SH4 NU3/XSSH4	0.501 0.493 0.470	-5 027	0.648 95 0.599 95 0.932 95 0.933 95
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.012 281.397 106.222 234.760	-0.484 0.155 0.190 43.470 17.095 32.536	0.271 95 0.862 99 0.873 95 0.855 95

Table 216.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 07/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.CUEF. NO.
H/NO3 H/SO4 H/XSS04 H/NO3+XSS04 H/F H/SA HNV/SA H/IA XSCA/XSK XSCA/XSK XSCA/XSMG XSCA/XSMG XSCA/XSMG	2.446 1.237 0.898 5.352 1.049 1.046 0.462 1.046 0.997 0.219 0.062	9.021 1.134 4.920 1.860 48.094 -0.152 -3.6737 6.887 3.482	0.856 109 0.953 109 0.966 109 0.973 109 0.228 109 0.293 84 0.994 84 0.787 84 0.334 109 0.335 109 0.335 109
XSCA/F LUGH/LUGLM LUGNA/LOGCM LUGXSK/LUGCM LUGXSK/LUGCM LUGXMG/LUGCM LUGXMG/LUGCM LUGNU3/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/NU3 CUND/H	0.643 0.166 -0.476 -0.5179 -0.3792 -0.2813 -0.1843 -0.1843 -0.1843 -0.298	6.8501 1.438 -0.8502 -0.067 1.4884 447.81404 447.81404 447.81404 447.81404 447.81404 447.81404	0.190 109 0.219 113 -0.487 109 -0.482 109 -0.389 109 -0.323 109 -0.323 109 -0.353 109 -0.093 109 -0.179 109 -0.179 109 -0.119 109 -0.140 109 0.086 109 0.888 113
CUND/NU3 CUND/XSSU4 CL/NA MG/NA NH4/SU4 NH4/XSSU4 NU3/SU4 NU3/SU4 F/XSSU4	1.130	8.801 -2.477 0.644 -0.501 0.163 2.3426 0.619 62.694 144.652	0.895 109 0.931 109 0.994 109 0.968 109 0.512 109 0.492 109 0.827 109 0.821 109 0.221 109

LINEAR CURRELATION BASED ON Y=MX+B BETWLEN SELECTED RAIN COMPUNENTS. ALL UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ. METER. CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED DURING 08/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COLF. NO.
H/NO3 H/SU4 H/XSSU4 H/XSSU4 H/NO3+XSU4 H/FA H/SA H/FA H/SA H/TA XSCA/XSG XSCA/XSCA/XSG XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/	1.195424892698126886336116695969596959695969596959695969596959	14.513 3.57965 2.43522 3.435325 11.53325 12.552721 11.53325 12.552721 12.63325 13.622	0.661 0.8625 0.8995 0.8997 0.8888 0.8825
SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA	-0.481 0.746 0.298 0.914 0.448	44.793 60.912 35.041 13.710 11.551 1.507 0.589	0.037 50 -0.213 50 0.155 50 0.1524 51 0.803 50 0.841 50 0.991 50 0.989 50
MG/NA NH4/504 NH4/XS504 NU3/S04 NU3/XS5U4 F/XS5U4 AMTH/CM AMTNU3/CM AMTNU3/CM	0.226 0.151 0.126 0.377 0.345 0.001 364.089 67.626 275.026	0.589 -0.185 1.244 1.198 3.817 0.140 78.356 9.582	0.445 50 v.380 50 v.789 50 0.739 50 v.025 50 v.941 51

Table 218.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 09/78 AT ALL KSC SITES ARE INCLUDED.

H/NU3	1 1 1 1 0 0 0 1 1
X\$CA/X\$SU4 X\$CA/F U.649 U.649 U.6246 U.140 81 LUGH/LUGCM -0.161 L.497 -0.273 82 LUGNA/LUGCM -0.449 L.618 -0.515 81 LUGXSK/LUGCM -0.311 -0.216 -0.395 81 LUGXCA/LUGCM -0.354 U.0509 -0.342 81 LUGXMG/LUGCM -0.354 U.011 -0.380 81 LUGNU3/LUGCM -0.001 0.044 -0.002 81 LUGNU3/LUGCM -0.218 L.309 -0.273 82 LUGNU3/LUGCM -0.198 1.309 -0.273 83 SS/H U.683 66.910 0.177 85 SS/K -3.780 101.121 -0.098 81 SS/XSSU4 1.393 CUND/NU3 CU	
NU3/S04 0.411 1.648 0.793 8: NU3/X55U4 0.538 1.450 0.651 6: F/XSSO4 0.044 -0.313 0.330 8: AMTH/CM 346.900 46.704 0.640 8: AMTNU3/CM 124.114 23.323 0.701 8: AMTXSSU4/CM 225.299 43.596 0.609 8:	1 1 0 1

Table 219.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUFE	Y-INI.	CORK.LDEF. NO.
H/NO3	1.169	23.505	0.616 76
H/SU4		31.923	0.504 76
H/XS504	0.615	25,254	0.667 76
H/NU3+XS504	0.434	22.649	0.674 76
H/F	1.715	48.252	0.079 76
H/SA	1.115	1,452	0.96/ 28
HNV/SA	1.084	-2.004	0.973 28
H/TA	0.707	-1.002	0.926 28
XSCA/XSK	0.058	8.997	0.020 76
XSCA/XSMG	-0.520	11.049	-0.323 76
XSCA/NU3	0.686	-7.049	0.782 76
XSCA/XSSU4	0.308	-3.782	0.721 76
XSCA/F	3.703	2.906	0.368 76
LOGH/LUGLM	-0.411	1.426	-0.598 88
LUGNA/LÖGCM	-0.394	1.902	-0.520 76
LUGXSK/LUGCM	-0.426		-0.476 76
LUGXLA/LUGLM	-0.385	0.594	-0.525 76
LOGXMG/LUGCM	-0.252	0.196	-0.280 76
LOGF/LUGCM	-0.208	0.157	-0.474 76
LUGNU3/LUGCM	-0.567	1.065	-0.838 76
LXSSU4/LUGCM	-0.470		-0.721 76
SS/H SS/F	1.111	162.069	0.152 76
SS/F	69.414	102.995	0.436 76
SS/X5SU4	4.783		0.709 76
SS/NU3	9.123	3.390	0.657 76
COND/H	0.205	55.445	0.074 86
COND/NU3	1.481	15.340	0.690 76
CUND/X5SU4	0.800	16.760	0.766 76
CL/NA	0.100	-2.689	0.994 76
MG/NA		1.530	0.985 76
NH4/SU4	0.290	-1.832	0.351 76
NH4/XSSO4	0.435	-1.943	0.347 76
NU3/5U4	0.267	6.942	0.d31 76
NO3/ASSO4	0.410	6.3dB	0.843 76
F/XSSU4	0.009	1.287	0.214 76
AMTH/CM	77.644	197-042	0.544 80
AMINU3/CM	26.240	87.546	0.633 76
AMIX5SU4/CM	48.915	182.347	0.526 76

Table 220.

LINEAR CORRELATION BASED UN Y=MX+B
BEIMEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NU.
H/NO3 H/SU4 H/XSSU4 H/NO3+XSSO4 H/FA H/SA HNV/SA H/TA XSCA/XSMG XSCA/XSCA/XSCA/XSMG XSCA/XSCA/XSCA/XSCA/XS	1.9447 0.5370 0.7715 0.7715 0.9949 0.5415 0.4417 0.	14.8100 16.8100 16.	0.794 0.655 0.755 0.755 0.955 0.9461 0.9461 0.9461 0.9461 0.9461 0.302 0.9461 0.5146 0.51
SS/F SS/F SS/XSSU4 SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA MH4/SU4 NH4/SU4 NH4/SU4 NH4/SU4 NU3/SSU4 AMINU3/CM AMINU3/CM AMINU3/CM	2.430 10.33 10.470 0.470 0.624 0.893 0.235 0.080 0.129 0.129 0.129 0.253 148.595	155.732 170.201 14.622 29.120 12.721 4.099 -0.404 -1.745 12.713 0.745 0.745 40.428 37.350	0.214 63 0.705 63 0.062 63 0.708 69 0.420 63 0.805 63 0.997 63 0.997 63 0.742 63 0.742 63 0.283 63 0.342 63 0.342 63

Table 221.

LINEAR CURRELATION BASED ON Y=MX+B BETWLEN SELECTED RAIN CUMPUNENTS. ALL UNITS ARL MICROEGUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ. METER. CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED DURING 12/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF. NO.
H/NO3 H/SU4 H/XSU3+ H/XSU3+ H/XSU3+ H/XSU3 H	76818093652901181125857069048389282 76854398492971181125857069048389282 2395419537315402448580296870855246893 1000510010001000009500121100000000000000	10.173666230 11.36167 11.36167 11.36167 11.36167 11.36167 11.36167 11.36167 11.37106502667 11.37106502667 11.37106502667 11.3710650267 11.371067 11.371	22222266622222262222222222222222222222
AMTH/CM AMTNU3/CM AMTXSSU4/CM	76.199 32.433 58.828	65.793 36.482 87.286	0.944 56 0.947 52 0.897 52

Table 222.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CDEF. NO.
H/NU3 H/SU4 H/XSSU4	1.870 0.401 0.841	7.738 15.111 0.746	0.961 81 0.723 81 0.964 81
H/NÔS+XSSO4 H/F H/SA	0.597 5.501 0.912 0.878 0.455	6.206 25.109 9.162	0.977 81 0.570 81 0.991 33 0.987 33 0.987 33
HNV/SA H/TA XSCA/XSK XSCA/XSMG	0.455 2.872	5.118 20.409 13.493	0.953 32 0.221 81 0.467 81
XSCA/NJ3 XSCA/XSSU4 XSCA/F	2.872 1.725 1.725 1.725 1.727 1.427 3.615 -0.431	13.493 11.696 1.927 0.766 8.511	0.777 81 0.818 81 0.625 81
LUGHZLUGCM LUGNAZLUGCM LUGXSKZLUGCM	-0.431 -0.454 -0.118	1.432	-0.662 81 -0.508 81 -0.200 81
LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM	-0.650 -0.464 -0.250	-0.116 0.916 0.163 0.226	-0.676 81 -0.538 81 -0.396 81
LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-0.600 -0.512 2.085	1.000 1.385 106.976	-0.790 81 -0.722 81 0.165 81
\$\$/F \$5/X\$\$U4 \$\$/NU3	-13.784 2.164 5.360 0.731 1.545	208.220 106.860 101.216 11.391	-0.113 81 0.196 81 0.218 81
COMO/ V2204	V.0/1	14.392 14.386 -2.237	0.454 81 0.493 81 0.478 81 0.999 81
MG/NA VH4/SU4 VH4/XSS(14	0.221	0.923 2.952 -0.987	0.999 81 0.572 81 0.934 81
4U3/5U4 4U3/XS5U4 F/XS5U4	0.210 0.418 0.054	4.162 0.566 0.058	0.737 81 0.933 81 0.602 81
AMTH/CM AMTNU3/CM AMTXSSU4/CM	132.010 24.700 94.053	123.111 78.415 136.731	0.910 81 0.776 81 0.884 81

Table 223.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEGULVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEGULVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/79 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	4-INT.	CORR.COEF. NO.
H/ND3	2.121	5.192	0.590 46
H/SD4	0.385	15.9/9	0.631 46
H/XSS04	0.672	-0.643	0.898 46
H/ND3+XSS04	0.709	-4.770	0.880 46
H/F	6.708	18.017	0.748 46
HÍSA HNY/SA H/TA XSCA/XSK XSCA/XSMG	0.789 0.774 0.460 0.381 0.505	16.661 10.618 20.885 11.830	0.924 22 0.945 22 0.740 22 0.067 45 0.337 46
XSCA/NU3	0.510	11.165	0.458 46
XSCA/XSSU4	0.111	3.727	0.365 46
XSCA/F	1.466	6.969	0.522 46
LUGH/LUGLM	-0.307	7.313	-0.419 47
LUGNA/LUGCM	-0.848	1.435	-0.780 46
LUGXSK/LUGLM	-0.376	-0.109	-0.438 46
LUGXLA/LUGLM	-0.150	0.991	-0.269 46
LUGXMG/LUGLM	-0.564	0.096	-0.480 46
LUGF/LUGLM	-0.492	0.266	-0.570 46
LUGNU3/LUGLM	-0.294	1.132	-0.746 46
LXSSU4/IUGCM	-0.510	1.491	-0.725 46
SS/H	1.172	130.359	0.112 46
SS/F	-2.763	167.075	-0.029 46
SS/XSSU4	3.402	17.209	0.335 46
SS/NU3	22.906	-203.636	0.015 46
LUND/H	0.519	22.156	0.529 47
COND/NU3	4.053	-25.225	0.726 46
COND/XSSU4	0.804	4.303	0.529 46
CL/NA	1.113	-2.949	0.990 46
MG/NA	0.221	0.854	0.995 40
NH4/SO4	0.054	10.956	0.400 46
NH4/XSSN4	0.147	7.487	0.682 46
NU3/SN4	0.137	7.895	0.801 46
NU3/XSSN4	0.189	7.737	0.692 46
F/XSSN4	0.063	0.393	0.579 46
AMIH/CM	190.168	168.413	0.562 47
AMINU3/CM	85.452	43.196	0.885 46
	190.168 85.452 98.766	168.413 43.196 203.746	

Table 224.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 03/79 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF. NO.
H/NO5 H/S04 H/S04 H/NO3+XS504 H/F H/SA HNV/SA H/TA XSCA/XSK XSCA/XSK	-0.117 0.0008 -0.014 1.163 0.9829 0.214 1.971 1.971 1.9724	26.264 21.309 22.538 24.098 18.540 4.931 4.218 19.479 18.781	-0.200 31 0.095 31 0.024 31 -0.061 31 0.141 31 0.794 10 0.775 10 0.826 10 0.470 31 0.508 31
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGA/LUGCM LUGXSK/LUGCM LUGXXK/LUGCM LUGXMG/LUGCM LUGXMG/LUGCM	-0.633 -0.667 -0.982 -1.210	19.479 19.479 19.351 -19.353 -20.436 1.782 1.782 1.010 0.153	0.960 0.863 -0.163 -0.022 38 -0.797 31 -0.747 31 -0.871 -0.839 0.216 31
LOGNU3/LUGLM LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/NU3 CUND/H LUND/NU3 CUND/XSSU4	-0.431 -0.510 3.125 45.571 2.530 2.512 0.658 0.594	1.782 0.002 0.190 0.1559 1.5419 77.419 77.4822 14.3947 79.8388 9.214	-0.852 31 -0.933 31 0.190 31 0.336 31 0.442 31 0.461 31 0.472 38 0.410 31
CL/NA MG/NA NH4/S04 NH4/XS504 NO3/S04 NU3/XS504 F/XSS04 AMIH/CM AMINU3/CM AMIXSSU4/CM	1.054 0.258 0.053 0.069 0.349 0.531 -0.010 265.897 122.295 168.540	-4.963 -0.911 10.206 10.132 4.496 -0.3339 -14.738 45.166 139.358	-0.200 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.021 -0.022

Table 225.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES CULLECTED
DURING 07/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	LUKR.CDEF.	NO.
H/NU3	0.000	0.000	0.000	U
H/SU4	0.000	0.000	0.000	Ö
H/XS504	0.000	0.000	0.000	0
H/NU3+XSSU4	0.000	0.000	0.000	0 0 7 7 7 0 0 0 0 0 0 7 0
H/F	0.000	0.000	0.000	Q
H/SA	1.015	2.442	0.998	<u> </u>
HUA\28	0.433	2.192	0.998	7
H/TA	0.733	2.084	0.995	/
XSCA/X5K	0.000	0.000	0.000	Ŏ
X S C A / X S M b	0.000	0.000	0.000	Ų
XSCA/NU3 XSCA/XSSO4	0.000	0.000	0.000	3
XSCA/F	0.000	0.000	0.000	N N
LUGH/LUGCM	-0.410	1.607	0.000 -0.873	ÿ
LUGNAZLOGEM	0.000	0.000	0.000	ó
LOGXSK/LUGCM	0.000	0.000	0.000	ŏ
LUGXCA/LUGCM	0.0 00	0.000	0.000	ŏ
LUGXMG/LUGCM	0.000	0.000	ŭ.000	0
LUGF/LUGCM	Ŭ.ŬŎŬ	0.000	0.000	ŏ
LUGNU3/LUGCM	0.000	0.000	0.000	Ü
LXSSU4/LUGCM	0.000	0.000	0.000	Ò
\$\$/H	0.000	0.000	0.000	0
\$5/F	0.000	0.000	0.000	Ü
\$3/x5\$U4	0.000	0.000	0.000	U
\$5/NU3	0.000	0.000	0.000	7
CUNDIH	0.475	0.659	0.758	7
LUND/NU3	0.000	0.000	0.000	Ų.
CUND/X58U4	0.000	0.000	0.000	Ú
CL/NA	0.000	0.000	0.000	Ŏ
MG/NA NH4/SN4	0.000	0.000	0.000	Ų
NH4/AS504	0.000	9.000	0.000	Ŏ
VU3/504	0.000	0.000	0.000	0
NO3/XS504	0.000	0.000	0.000 0.000	,
F/X8504	0.000	0.000	0.000	000000000000000000000000000000000000000
AMIHZCA	203.821	107.120	0.945	7
AMINU3/CM	0.000	0.000	Ű. 000	ó
AMIX58U4/CM	0.000	0.000	ŭ.ŭñő	ŏ

Table 226.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES CULLECTED
DURING 08/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-1NT.	CURR.COEF	. NO.
HZNO3	0.000	0.000	0.000	Q
11/5/14	0.000	0.000	0.000	<u>0</u>
H/XS504 H/NU3+XS504	0.000	0.000	0.000	Ü
H/F	0.000	0.000	0.000	
H/SA	1.083	-0.892	0.989	17
HIV / SA	0.963	-1.009	J. 988	17
HZIA	ŭ.799	-0.484	0.963	i 7
XSCA/XSK	0.000	ŭ. 000	0.000	Ô
XSCA/XSMG	0.000	0.000	0.000	Ŏ
XSCA/NJ3	0.000	0.000	0.000	Ü
XSCA/XSŠU4	0.000	0.000	0.000	0
XSLA/F	0.000	0.000	0.000	33
LÜGH/LUGLM	0.214	1.237	0.249	33
LUGNA/LUGCM	0.000	0.000	0.000	0
LUGXSK/LUGÇM	0.000	0.000	0.000	0
LUGXCA/LUGCM	0.000	0.000	0.000	Ü
LUGXMG/LUGCM	0.000	0.000	0.000	0
LUGF/LUGCM	0.000	0.000	0.000	0
LUGNUS/LUGLM	0.000	0.000	0.000	Ó
LXSS J4/LUGCM	0.000	0.000	0.000	Ó
\$\$/H	0.000	0.000	0.000	Õ
SS/F	0.000	0.000	0.000	0
5\$/X55U4	0.000	0.000	0.000	Ŏ
35/NU3	0.000	0.000	0.000	70
CUND/H CUND/HU3	0.2/2	18.246	9.397	30
CUND/X5SU4	0.000	0.000	0.000	0
CL/NA	0.000	0.000	0.000	ŭ
MG/NA	0.000	0.000	0.000	ŏ
NH4/504	0.000	3.000	0.000	ŏ
1H4/X5504	0.000	0.000	0.000	ŏ
1103/504	0.000	0.300	0.000	ŭ
NU3/X5504	0.000	ပ် 🕻 ပီပိုပို	0.000	ŭ
F/XS5U4	0.000	0.000	0.000	ŏ
AMTH/CM	489.280	-230.511	0.764	3 Š
AMTNU3/CM	0.000	0.000	0.000	
AM [XSSU4/CM	0.000	0.000	0.000	0

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES COLLECTED
DURING 09/77 AT ALL NSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CORK.COEF. NO.
H/N03	0.000	0.000	0.000 0
H/S04	0.000	0.000	U • U Q Q U
H/XS504 H/NU3+XS504	0.000	0.000	0.000 0
H/F	$0.000 \\ 0.000$	0.000	0.000 0
H/SA	1.114	-2.900	0.990 13
HNV/SA	1.058	-2.900 -4.730	0.988 12
H/FA	0.857	-4.118	0.000 0 0.990 13 0.988 12 0.964 13 0.000 0
XSCA/XSK	0.000	0.000	
XSCA/XSM6	0.000	0.000	0.000 0
XSCA/NU3 XSCA/XSSU4	0.000	0.000	0.000 0
XSCA/F	0.000	0.000	0.000 0 0.000 0
LUGEM	-0.263	1.431	-0.459 22
LUGNAZLOGEM	0.000	0.000	0.000 0
LUGXSK/LUGLM	0.000	0.000	0.000 0
LUGXCA/LUGCM	0.000	0.000	0.00 0 0
LUGXMG/LUGCM	0.000	0.000	0.000 0
LUGF/LUGCM	0.000	9.000	0.000 0
LUGNU3/LUGCM LXSSU4/LUGCM	0.000	0.000	0.000 0
33/H	0.000	0.000	0.000
SS/F	0.000	0.000	0.000 0
55/x3804	0.000	0.000	ŭ.ŭŭŭ ŭ
55/1103	0.000	0.000	U.UOU U
CUNDYH	V.381	17.693	0.582 19
CUND/NU3	0.000	0.000	9.000
COND/x5\$U4	0.000	0.000	0.000 0
CL/NA MG/NA	0.000	0.000	0.000 0
NH4/5114	0.000	0.000	0.000
WH4/XS504	ŏ.ŏŏŏ	ŏ . ö ö ö	000 0
ND3/504	0.000	ŏ.000	0.000
N13/xS5(14	0.000	0.000	0.000
F/XS5114	0.000	0.000	0.000 0
AMTH/CM	143.974	80.519	0.688 22
AMTNU3/CM AMTX5SU4/CM	0.000 0.000	0.000	0.000 0
A" (1 A U U U 4 / C P	0.000	0.000	0.000

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MFTER.
UNLY CLEAN SAMPLES CULLECTED
DURING 10/77 AT ALL KSC SITES ARE INCLUDED.

Y/A	SLOPE	Y-INT.	CURR.LOEF. NO.
H/NU3 H/SH4 H/XSS04 H/ND3+XSS04	2.619 1.031 1.433 0.991	3.372 6.009 2.198 -0.666	0.985 15 0.712 15 0.863 15 0.939 15
H/F H/SA HNV/SA H/TA	0.991 6.172 0.980 0.948 0.703 1.351	26.951 1.869 0.168 -2.023	0.585 15 0.998 19 0.997 19 0.989 19
X5CA/X5K X5CA/X5MG X5CA/NU3 X5CA/X5SU4	0.148 0.413 0.236	6.069 8.379 1.439 0.929	0.425 15 0.179 15 0.947 15 0.865 15
XSCA/F LUGH/LUGLM LUGNA/LUGCM LUGXSK/LUGCM	1.010 -0.339 -0.057 -0.582	5.024 1.540 1.863 0.036 0.754 0.403	0.583 15 -0.328 21 -0.063 15 -0.544 15
LUGXCA/LUGCM LUGX 4G/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM	-0.598 -0.517 -0.328 -0.549 -0.296	0.403 0.342 1.037 1.404	-0.637 15 -0.593 15 -0.309 15 -0.570 15 -0.440 15
55/H 55/F 55/X5504 55/NU3	-0.296 -7.656 1.121 -0.670	112.215 125.295 60.809 109.368	-0.141 15 -0.344 15 -0.320 15 -0.120 15
CUNDZH CUNDZNU3 CUNDZXSSU4 CEZNA	0.371 0.860 0.731 0.861	29.544 20.582 11.654	0.588 21 0.620 15 0.843 15 0.977 15
M6/NA NH4/5114 NH4/X55(14 N113/5(14	0.123 0.269 0.355 0.394 0.543	1.652 6.548 1.801 1.413 0.951	0.821 15 0.733 15 0.844 15 0.724 15
HU3/XSSH4 F/XSSH4 AMTH/CM AMTNU3/CM	0.060 135.549 20.623	-0.321 1.643 259.068 112.179	15555999955551555555555555555555555555
AMTX5SU4/CM	147.544	119.730	0.671 15

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES CULLECTED
DUKING 11/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF. NO.
H/NU3 H/SH4 H/XS504 H/NU3+XSS04 H/F H/SA H/IA X5LA/X5K XSLA/X5MG X	1.3668 0.56864 0.56864 0.56864 0.56864 0.56867 0.7110 0.36647 0.36647 0.36647 0.36647 0.36647 0.36647 0.36647 0.36647	2.778 5.6585 11.6137 -2.5381 10.6137 -2.5364 10.61367 -2.5364 10.6136	0.953 0.978 0.
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGLM	-0.558 -0.253 -0.749	-0.050 0.164	-0.593 29 -0.642 29 -0.886 29 -0.854 29
55/H 55/F 55/X55U4 55/NU3	-0.772 3.207 3.241 5.670 4.619	1.013 48.523 93.728 24.598 53.817	0.270 29 0.038 29 0.495 29 0.281 29
LUND/H CUND/NU3 CUND/X58U4 CL/NA 4G/NA	0.6/8 0.893 0.872 1.309 0.242	10.006 10.498 7.677 -8.231 -1.319	0.398 31 0.405 29 0.569 29 0.991 29 0.992 29
NH4/504 11H4/X5504 11H3/504 NU3/X8504	0.124 0.315 0.258 0.613	1.195 -0.121 3.615 1.446	0.600 29 0.859 29 0.661 29 0.880 29
F/XSSIJ4 AMEH/CM AMINU3/CM AMIXSSU4/CM	0.060 42.478 11.124 11.032	0.024 75.892 66.702 104.113	0.441 29 0.903 34 0.529 29 0.325 29

Table 230.

LINEAR CORRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMI=MICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES COLLECTED
DURING 12/77 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	A-TWL.	CHRR.COEF. NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4 H/F H/SA HNY/SA H/TA XSCA/XSK XSCA/XSMG	1.121 0.798 0.988 0.657 -3.268 0.415 0.659 4.345	14.951 2.577 2.581 3.629 28.4368 2.5901 4.929 2.731 3.348	0.584 48 0.862 48 0.959 48 0.900 48 -0.166 48 0.976 26 0.974 26 0.974 26 0.974 26 0.9444 48 0.221 48
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGLM LUGNA/LUGCM LUGXSK/LUGCM LUGXMG/LUGLM LUGXMG/LUGLM LUGKMG/LUGLM LUGF/LUGCM	0.2/7 0.590 0.217 -0.439 -0.169 -0.228 -0.998 -0.7048	-2.484 -1.394 4.178 1.526 -0.228 -0.050	0.923 48 0.631 48 -0.067 48 -0.274 60 -0.103 48 -0.634 48 -0.634 48 -0.411 48 0.103 48
LUGNU3/LUGLM LXSSU4/LUGLM SS/H SS/F SS/XSSU4 SS/NU3 CUND/H LUND/NU3 CUND/XSSU4	-0.721 -0.410 0.008 1.664 0.583 1.612 0.511 0.707 0.478	0.822 1.211 63.940 63.587 49.550 40.351	-0.703 48 -0.360 48 0.002 48 0.022 48 0.150 48 0.223 48 0.728 55 0.778 48
CL/NA MG/NA NH4/3014 NH4/X55014 NU3/X55014 F/XS5014 AMIH/CM AMINU3/CM AMINU3/CM	0.672 0.234 0.120 0.144 0.321 0.321 0.321 0.309 152.362 34.570 96.809	8.171 8.773 0.152 0.400 0.505 1.092 2.172 0.573 67.539 40.742 108.506	0.985 48 0.997 48 9.638 48 9.699 48 0.669 48 0.569 48 0.529 60 0.419 48 0.345 48

Table 231.

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED HAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PHECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES CULLECTED
DURING 01/78 AT ALL KSC SITES ARE INCLUDED.

Y/A	SLOPE	Y-INT.	CURR.COEF. NO.
H/NU3 H/SO4 H/XSS04 H/NU3+XSS04 H/F	1.488 0.417 0.574 0.433 -13.136	6.231 6.540 4.552 4.345 20.834	0.619 24 0.602 24 0.707 24 0.699 24 -0.151 24
H/SA HNY/SA H/TA XSCA/XSK XSCA/XSMG XSCA/NU3	0.000 0.000 0.000 10.443 4.339 1.570	0.000 0.000 12.534 0.748	0.000 0.000 0.000 0.000 0.053 0.6592 0.592 0.195
XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGCM LUGXCA/LUGCM	0.493 -17.676 -0.159 -0.544 -0.087	0.191 14.452 1.210 1.533 -0.073	44444544444444444444444444444444444444
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGLM LXSSU4/LUGCM SS/H SS/F	-1.021 -0.707 -0.032 -0.400 -0.511 -0.013	0.185 -0.028 0.854 1.286 59.416 60.930	-0.706 24 -0.187 24 -0.746 24 -0.816 24 -0.904 24
SS/XSSU4 SS/NU3 LUND/H CUNU/NU3 CUNU/XSSU4	1.549 4.163 0.394 1.398 0.536	16.779 19.887 11.228 5.460 3.996	-0.122 24 0.497 24 0.451 24 0.471 25 0.730 24 0.827 24
CL/NA MG/NA NH4/504 NH4/XS504 NU3/X5014 NU3/X55014	0.936 0.234 0.294 0.368 0.253 0.303	3.328 0.725 -0.066 -0.4/7 1.124	0.981 24 0.988 24 0.831 24 0.888 24 0.877 24 0.896 24
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	-0.003 103.557 40.618 60.504	0.121 63.778 27.122 124.598	0.845 25 0.857 24 0.692 24

Table 232.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES CULLECTED
DURING 02/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	.1W1-Y	CURR. LOEF. NU.
H/NU3 H/SU4 H/XSSU4 H/XSSU4 H/XSSU4 H/FA H/TA XSCA/XSMG LUGGXSMG LUGGXSMG LUGGXSMG LUGGXSMG LUGGXSMG LUGGXSMG XSCA/XSMG XSCA/XSSMG XSCA/XSSMG XSCA/XSSMG XSCA/XSSMG XSCA/XSSMG XSCA/XS	1.186 0.3994 0.4581 0.4825 0.8825 0.8825 0.8825 0.177 0.177 0.3947 0.1085 0.108	33.596.0 49.817	788 788 788 788 788 788 788 788
SS/H SS/F SS/XSSU4 SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA	4.021	1.566	30000000000000000000000000000000000000

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM#
CM PRECIPITATION AND AMT#MICROEQUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES CULLECTED
DURING 03/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NO.
H/NU3 H/SU4	0.988 1.144	14.740	0.992 34 0.242 34
H/XS504	1 207	16.934	0.224 34
H/NU3+X8S04 H/F	0.947 13.843 0.908 0.966 0.637 12.267	-15.480 44.686	0.992 34 0.110 34
H/SA	0.908	44.686 5.156 -0.270 1.556 5.793	0.765 16
HNV/SA H/TA	0.900	1.556	0.982 16 0.945 16
XSCA/XSK	13.266	5.793	0.795 34
XSCA/XSMG XSCA/NU3	0.009	13-612	0.793 34 0.089 34
XSCA/X5SU4	0.356	1.982	0.621 34
XSCA/F LUGH/LUGCM	-0.384	13.012 13.012 1.982 13.733 1.426 1.308	0.023 34 -0.485 38
LUGNA/LUGCM	3.257 0.356 0.356 0.384 -0.316	1.398	-0.668 34
LUGXSK/LUGCM	-1 187	-0.219 0.740	-0.216 34 -0.805 34
LUGXMG/LUGCM LUGF/LUGCM	-0.815 -0.219 -0.846 -0.501 0.103 14.704 1.298		+0.627 34 +0.326 34
LUGNU3/LUGCM	-0.846	0.018 1.375 58.135 50.216 20.201 60.558	-0.666 34
EXSSU4/EUGCM	-0.501	1.375	-0.651 34 0.219 34
SS/F	14.704	50.216	0.247 34
88/X85U4 85/NU3	1.298 0.081	20.201	0.247 34 0.511 34 0.173 34
CUND/H	0-413	13.453	3.972 38
CUNU/NU3 LUND/XSSU4	0.406	18.082	0.968 34 0.326 34
CL/NA	1.236	-5.321	ŭ.977 34
MG/NA NH4/304	0.270	0.422 -2.084	0.987 34 0.894 34
NH4/XS504	0.372	-1.299	0.869 34
NU3/304 NU3/XS5U4	0.336 0.372 0.767 0.775	-1.299 13.008 17.321	0.162 <u>34</u> 9.143 3 4
F/XS504	0.001	0.897 195.149	33333333333333333333333333333333333333
AMTH/CM AMTNU3/CM	104.661	145.149	0.003 34
AMTXSSU4/CM	116.927	128.509	0.615 34

Table 234.

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METEK.
UNLY CLEAN SAMPLES CULLECTED
DURING 04/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF.	NO.
H/NU3	-0.283	27.377	-1.000	5 5
H/SU4	-0.111	27.693	-1.000	
H/XSSU4	-0.128	28.038	-1.000	
H/NU3+XSSU4	-0.088	27.831	-1.000	ONENE
H/F	-1.024	25.142	-1.000	
H/SA	0.000	0.000	0.000	
HNV/SA H/TA	0.000	0.000	0.000 0.000	
XSCA/XSK	1.231	21.233	1.000	5 5
XSCA/XSMG	4.727	13.849	1.000	
XSCA/NU3	1.993	-7.162	1.000	
XSCA/XSSU4	0.903	-11.819	1.000	55
XSCA/F	7.217	1.542	1.000	
LUGH/LUGLM	0.223	1.459	1.000	
LUGNAZLOGCM	-1.229	0.884	-1.000	52
LUGXSKZLUGCM	-1.994	-0.486	-1.000	
LUGXLAZEDGCM	-0.746	1.054	-1.000	
LUGXMG/LUGCM	-1.199	-0.187	-1.000	5
LUGF/LUGCM	-0.777	0.154	-1.000	
LUGNU3/LOGCM LXSSU4/LUGCM SS/H	-0.630 -0.573 -13.120 13.433	0.919 1.347 333.532	-1.000 -1.000 -1.000	5
\$\$/F \$\$/x5\$U4 \$\$/NU3	1.681 3.708	-9.449 -34.316 -25.647	1.000 1.000 1.000	5 5
CUND/H	-2.497	78.405	-1.000	NINTONORDERNORDERNORDERNORDE C
CUND/NU3	0.706	19.043	1.000	
CUND/X5SU4	0.320	8.394	1.000	
CL/NA	0.624	13.080	1.000	55
MG/NA	0.200	2.666	1.000	
NH4/504	0.500	9.921	1.000	
NH4/XSSU4 NU3/SU4	0.571 0.392 0.453	580.1 -	1.000	5
NU3/XS504 F/XS504 AMTH/CM	0.125 250.592	-2.338 -1.851 -1.635	1.000 1.000 1.000	ځ
AMTNU3/CM AMTX5SU4/CM	84.264 237.528	20.557 58.554	1.000	5

LINEAR CORRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/9Q.
METER.
ONLY CLEAN SAMPLES COLLECTED
DURING 05/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	.TNI-Y	CURR.COEF. NO.
H/NO3 H/SU4 H/XS304 H/NU3+X3S04 H/F	0.492 0.577 0.612 0.351 3.853 0.934	30.266 10.426 11.539 41.513 -3.355 -3.430	0.372 18 0.813 18 0.834 18 0.706 18 0.121 18 0.987 15
HNV/SA H/TA XSCA/XSK XSCA/XSMG XSCA/NU3 XSCA/XSSU4	0.961 0.583 21.056 11.329 1.287 0.421	-3.355 -3.355 -0.314 -0.180 -13.378 -2.311	0.987 15 0.952 15 0.920 18 0.899 18
XSCA/F LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGCM LUGXLA/LUGCM LUGXMG/LUGCM	12.224 -0.493 -0.216 -0.458 -0.541 -0.506	14.016 1.578 1.549 -0.130 1.147 0.127	0.533 18 0.356 18 0.582 23 -0.400 18 -0.693 18 -0.773 18 -0.758 18
LUGF/LUGCM LUGF/LUGCM LXSSU4/LUGCM SS/H SS/F S5/XSSU4	0.011 -0.408 -0.301 0.076 11.155 0.321	0.127 1.343 1.626 52.305 45.297 38.007	0.035 18 -0.885 18 -0.682 18 0.063 18 0.290 18
SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA	0.7/4 -0.033 0.475 0.323	17.061 15.604 2.308	0.483 18 -0.051 23 0.739 18 0.909 18 0.987 18
NH4/X3504 NU3/504 NU3/X5504 F/X3504	0.273 0.278 0.288 0.427 0.435 0.008	-0.354 /.654 8.584 4.513 6.378 0.500	0.344 18
AMTH/CM AMTNU3/CM AMTX3SU4/CM	314.319 121.207 236.322	46.916 78.055 156.809	0.974 23 0.954 18 0.933 18

Table 236.

LINEAR CURRELATION BASED ON YEMX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CMM
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
DNLY CLEAN SAMPLES CULLECTED
DURING 06/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CHRR.COEF. NO.
H/NU3 H/504	1.856 1.112	7.780	0.967 20
H/XSSU4	1.148	-2.703 2.596 3.399	0.985 20 0.993 20 0.997 20 0.874 20 0.999 7
H/NU3+XSS04 H/F	0.729 66.698	17.41/	0.997 20 0.874 20
H/SA HNV/SA	0.963 0.963	3.840 -1.514	0.999 7 1.000 7
n/IA	0.696	-2.408	0.926 7
XSCA/XSK XSCA/XSMG	10.151	0.350 0.829	0.922 20 0.659 20
X5CA/NU3 X5CA/X5SU4	0.429	1.237	0.955 20 0.939 20 0.763 20
xSCA/F	13.640	4.680	0.763 ZX
LUGH/LUGCM LUGNA/LUGCM	0.429 0.254 13.640 -0.551 -0.106	1.282	-0.639 22 -0.136 20
LUGXSK/LUGCM	-0.928 -1.352	-0.495 0.318	-0.688 20 -0.683 20
LUGXM6/LUGCM	-0.509	-0.038	-0.514 20
LUGF/LUGCM LUGNU3/LUGLM	-0.251 -1.216	-0.062 0.706	-0.584 20 -0.845 20
LXSSU4/LUGCM SS/H	-0.8/3 0.142	1.141 57.815	-0.759 20 0.151 20
55/F 55/x5804	26.098	55.552	0.364 20 0.186 20
SS/NU3	0.202	56.656	0.105 20
EUND/H LUND/NU3	0.467 0.864	10.295	0.964 <u>22</u> 0.928 20
CUND/XSSU4 CL/NA	0.544	10.940	0.969 20
MG/NA	0.248	-5.498 -0.321	22222000000000000000000000000000000000
4H4/3U4 4H4/XSSU4	0.237	-2.472 -1.324	0.935 20 0.940 20
7U3/5U4 7U3/xS5D4	0.244 0.548 0.568	-1.324 -3.352 -3.829	0.932 20 0.943 20
F/X\$5U4	0.013 32.463	-v.096	0.872 20
AMTH/CM AMTNUS/CM	→ 24.838	151.776	-0.239 20
AMTXSSU4/CM	-3.559	154.630	-0.021 20

LINEAR CURRELATION BASED ON YEMX+B
BEINLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CME
CM PRECIPITATION AND AMTEMICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES COLLECTED
DURING 07/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	.TNI-Y	CURR. COEF. NO	
H/NU3 H/SÚ4	2.456	7.689 2.157	0.827 44 0.926 44	
H/XŠS04	1.289 0.951 -2.8649 0.966	4.421	0.953 44	
H/NU3+XSSU4 H/F	0.951	1.368	0.967 44	
H/SA	1.049	-0.197	-0.136 44 0.992 30 0.994 30	
HNV/SA	0.996	-0.854	0.992 30 0.994 30 0.904 30	
H/TA XSCA/XSK	(/ _ / 74	-3.410 5.337	0.176 44	
X5CA/XSMG	0.353 2.354	4.682 2.293 3.786 5.591	0.337 44	
XSCA/NJ3 XSCA/XSSU4	0.262	2.293	0.517 44	
XSCA/F	0.069	5.591	0.298 44 0.012 44	
LUGH/LUGLM	0.043	1.493	0.203 44	
LUGNA/LOGCM LUGXSK/LUGCM	-0.499 -0.531	1.394 -0.308	-0.554 44 -0.425 44	
LUGXCA/LUGLM	-0.309	0.686	-0.310 44	
LUGXMG/LOGLM	-0.110	-0.207	-0.133 44	
LUGF/LUĞÇM LUGNU3/LUGÇM	-0.131 -0.190	1.068	0.201 44 -0.272 44	
LXSSU4/LUGCM	0.155	1.297	v.201 44	
SS/H	-0.152	39.953	-0.125 44	
SS/F SS/X58U4	-3.401 -0.023	33.395 31.651 20.789	-0.135 44 -0.014 44	
88/NU3	0.806	20.789	0.224 44	
COND/H COND/NU3	0.430	5.529	0.930 44	
CUND/XSSU4	1.229	6.442 6.527	0.894 44 0.929 44	
CL/NA	1.196	-2.174	0.995 44	
MG/NA NH4/304	0.234 0.050	-0.251	0.492 44 0.198 44	
NH4/X\$504	0.047	-0.251 1.152 1.370	0.184 44	
NU3/804	0.047 0.350 0.342	2.321	U.777 44	
NU3/XS304 F/XS504	-0.011	5.577	0./50 44	
AMTH/LM	444.332	-/0.340	0.902 44	
AMINU3/CM	70.366	94.848	0.709 44	
AMTX5SU4/CM	340.435	-107.761	0.896 44	

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES CULLECTED
DURING 08/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF. NO.
H/NO3 H/SO4 H/XSSO4 H/NO3+XSSO4 H/F	2.596 1.217 1.201 0.881 5.896	9.369 1.375 5.675 3.908	0.904 26 0.954 26 0.970 26 0.984 26 0.086 26
H/SA HNV/SA H/TA XSCA/XSK ASCA/XSMG	0.967 0.963 0.562 2.829	3.775 44.347 7.317 3.524 4.741 6.125	0.874 18 0.862 18 0.831 18
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	1.217 1.201 0.896 0.965 0.965 0.528 0.743 0.016 0.016	1.694 26.569 1.281 -0.274	22222222222222222222222222222222222222
LUGXSK/LUGCM LUGXSK/LUGCM LUGXCA/LUGCM LUGF/LUGCM LUGF/LUGCM	-0.196 -0.370 -0.047 0.061	-0.086	-0.280 26 -0.041 26 -0.098 26 0.231 26
LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4	-0.259 -0.033 -0.373 -0.156 -0.439	1.093 1.424 50.628 33.193 48.201	-0.439 26 -0.053 26 -0.274 26 -0.002 26 -0.260 26
SS/NU3 CUND/H CUND/NU3 CUND/XSSO4 CL/NA	-0.483 0.391 0.391 0.421 0.107 0.107 0.361	50.628 33.193 48.202 12.235 9.527 9.626	-0.123 26 0.632 27 0.885 26 0.858 26 0.998 26
MG/NA NH4/SO4 NH4/XSSO4 4U3/SH4 VO3/XSSO4	0.211 0.107 0.107 0.375	1.060 0.822 1.395 1.732 0.411 2.014	0.995 26 0.394 26 0.405 26 0.845 26 0.840 26
F/XSSU4 AMIH/CM AMINU3/CM AMIXSSU4/CM	-0.001 373.412 60.121 290.414	0.446 67.230 104.338 11.795	-0.034 26 0.939 27 0.774 26 0.931 26

LINEAR CORRELATION BASED UN Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
ONLY CLEAN SAMPLES COLLECTED
DURING 09/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF. NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4	2.045 0.895 1.297 0.828	7.108 6.265 4.347 3.827	0.953 50 0.845 50 0.961 50 0.979 50 0.454 50
H/F H/SA HNV/SA H/TA XSCA/XSK	4.156 1.091 1.002 0.422	37.708 0.782 0.912 14.762	0.454 50 0.978 22 0.979 22 0.761 22
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F	20.29786 129286 12929 1293 10229 0254 0254 0254 0254	2.119 3.602 0.118 0.310 3.608	\$555552222000004000000000400000000000000
LUĞH/LUĞLM LUĞNA/LOĞCM LUĞXSK/LUĞCM LUĞXCA/LOĞCM LUĞXMĞ/LOĞCM	-0.261 -0.412 -0.319 -0.379 -0.340 -0.103	1.429 1.669 -0.233 0.412	-0.482 54 -0.470 50 -0.410 50 -0.513 50 -0.354 50
LUGF/LUGCM LUGNU3/LUGCM LX8804/LOGCM		0.4127 0.0276 1.0230 1.230 80.092 123.422 75.007	-0.176 50 -0.537 50 -0.429 50 0.216 50
\$\$/H \$\$/F \$\$/x\$\$U4 \$\$/NU3 CUND/H CUND/NU3	-0.321 -0.321 -0.845 -1.826 -2.533 -1.124	13.041	-0.099 50 0.321 50 0.280 50 0.678 54 0.707 50
CUND/XSŠU4 CL/NA MG/NA NH4/SĐ4	0.747 0.747 0.237 0.200 0.275 0.417	14.447 11.922 -2.170 -0.009 -1.812 -1.809	0.747 50 0.994 50 0.997 50 0.846 50
NH4/X5504 NU3/SU4 NU3/XS504 F/X8SU4 AMTH/CM		0.634 0.405 -0.483 136.387	0.935 50 0.834 50 0.913 50 0.381 50 0.568 54
AMTNU3/CM AMTXSSU4/CM	0.056 159.111 67.935 97.995	48.454	0.649 50 0.492 50

Table 240.

LINEAR CORRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METEH.
UNLY CLEAN SAMPLES COLLECTED
DUKING 10/78 AT ALL KSC SITES ARE INCLUDED.

Y/A	SLUPE	Y-INI.	CURR.COEF. NO.
H/NU3 H/SU4 H/SU4 H/XSSU4 H/XSSU4 H/XSA H/YA XSCA/XSSU4 XSCA/XSU3 XSCA/XSU3 XSCA/XSU4 LUGGNA/LUGCM LUGGXSK/LUGCM	1.26582461844090.53866514000.5739409922170056084410900.573940560844103	2961812682230689312682233068932633239747703050505050505050505050505050505050505	0.4950 0.4950 0.4950 0.6941 0.997777 0.997777 0.99777 0.997777 0.997777 0.997777 0.997777 0.9977777 0.9977777 0.9977777777 0.99777777 0.997777777777
CUND/X55U4 CL/NA MG/NA NH4/5U4 NH4/X55U4 NU3/X55U4 F/XS5U4 AMTH/CM AMTNU3/CM AMTX55U4/CM	0.812 1.103 0.221 0.454 0.457 0.417 0.408 83.486 23.750	19.267 -3.343 1.779 -1.306 3.9481 1.385 180.366 82.333 177.546	0.994 56 0.982 56 0.346 56 0.387 56 0.987 56 0.987 56 0.195 67 0.579 56

LINEAR CURRELATION BASED ON Y=MX+B
BEIMEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/80.
METER.
ONLY CLEAN SAMPLES CULLECTED
DURING 11/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF. NO.
H/NO3 H/SO4	0.878 0.273	14.206	0.992 17 0.075 17
H/X8504 H/N03+X8504	0.877959 0.8279529 0.88041377 0.88041528 0.8109529 0.83533738 0.83533738	33.220 -16.347 3.975 39.780 8.103	0.560 17 0.996 17
H/F H/SA	-0.419 0.837	39.780	0.975 4
HNV/SA H/TA XSCA/XSK	0.296	-6.227 20.889 1.948	0.826 4
XSCAZXSMG	0.359	5.757	0.158 17 0.158 17
XSLA/NU3 XSCA/XSSD4 XSCA/F	0.358 -0.339	5.757 5.755 1.455 7.233 1.154	0.977 0.826 0.789 17 0.158 17 0.238 17 0.393 17 -0.210
LUGH/LUGCM LUGNA/LOGCM	-0.339 -0.573 0.338	1.154	-0.638 18 0.190 17 -0.390 17
LUGXSK/LUGCM LUGXCA/LUGCM	-0 465	-0.587 0.182	-0.390 17 -0.780 17
LUGKMG/LUGCM LUGF/LUGCM	-0.925 0.359 0.554 -1.085 -0.314	0.499	0.207 17 0.492 17
LUGNU3/LOGEM LXSSU4/LOGEM	-0.314 -0.640	0.613 0.949 96.548	0.492 17 -0.757 17 -0.559 17 -0.235 17
55/H 55/F 55/X55U4	1.044	69-474	0.031 17 -0.130 17
SS/NU3 CUND/H	-0.434 0.362	106.690 83.865 12.322	0.031 17 -0.130 17 -0.180 17 0.729 18
COND/NU3 CUND/XSSU4	1.044 -0.443 -0.4362 0.3335 1.4394	16.960 6.036 -2.772	0.760 17 0.415 17
CL/NA MG/NA	1.094	-2.772 0.050	0.995 17 0.999 17 0.381 17
NH4/S04 NH4/XSS04	1.094 1.094 0.229 0.031 0.017 0.356 3.813	0.050 -0.167 0.245 20.721	9.109 17
NU3/304 NU3/XSS04 F/XSSU4	0.356 3.818 -0.002	-25.962 2.109 49.739	0.087 17 9.485 17 -0.004 17
AMTH/CM AMTNU3/CM	-0.002 133.666 -6.765	49.739 60.188	0.704 18 -0.048 17
AMTXSSU4/CM	116.950	2.816	0.951 17

Table 242.

LINEAR CURRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SO.
METER.
UNLY CLEAN SAMPLES CULLECTED
DURING 12/78 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF.	NO.
H/NU3 H/S04 H/S05+XS504 H/S05+XS504 H/SA H/SA H/SA H/SA H/SA H/SA H/SA H/SA	0.94569000016822662064892264769582266206489226489226489226335646206489226335676266767676767676767676767676767676767	00000000000000000000000000000000000000	0.659 0.701	N 99999111999992999999999999999999999999
	1.059 0.223 0.016 0.071 0.264	-2.131 3.378 17.293 13.574 /.825	1.000 1.000 0.328 0.497 0.976	9999
NU3/5U4 NU3/X55U4 F/X55U4 AMTH/CM AMTNU3/CM AMTX5SU4/CM	0.264 0.653 -0.006 703.051 63.785 365.835	7.825 -6.373 5.345 10.851 32.011 37.554	0.975 0.828 0.935 0.295 0.759	9 9 12 9

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
UNLY CLEAN SAMPLES COLLECTED
DURING 01/79 AT ALL KSC SITES ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/SU4 H/XSSU4 H/NO3+XSSU4 H/F	1.599 0.384 0.466 0.356	32.124 60.313 52.538 46.217	0.938 0.962 0.944 0.952 0.190	5555
H/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG	0.566 0.5623 0.1273 0.413 2.913 0.552	19.858 -18.304 58.305 30.606	0.841 0.948 0.530 0.907 0.952	155555
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LUGCM	1.617 0.552 0.494 -0.418 -3.395	103.9868 19.3096 19.3096 19.3096 30.8724 -33.3405 11.3403 -11.3403 -10.3617	0.944 0.975 0.144 -0.783 -0.851	55555
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-1.818 -0.669 -2.263 -0.938	1.365 -0.622 0.358	-0.886 -0.556 -0.629 -0.336 -0.056	うりいかいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい
LXSSU4/LOGLM SS/H SS/F SS/X5SU4 SS/NU3	-0.708 5.345 0.515 2.500 7.019	-52-335 -242-920 -325-249 -654-544	-0.731 0.979 0.032 0.929 0.861	55555 5
CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA	4.844	-65.144 -28.530 -7.070 -1.424 1.275		55555
NH4/304 NH4/XS504 NU3/504 NU3/XS504 F/XS504	0.991 0.266 0.240 0.301 0.251 0.313	-65.1440 -7.042752 -1.427620 -1.427620 1.626800 163.5060 103.5060	0.924 0.935 0.941 0.948 0.238	5 5 5 5 5 5
AMTH/CM AMTNU3/CM AMTX5SU4/CM	714.430 354.092 483.082	103.595 53.508 201.060	0.902 0.752 0.538	5 5 5

Table 244.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 07/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/N03	0.000	0.000	0.000	0
H/S04	0.000	0.000	0.000	0
H/XSS04	0.000	0.000	0.000	Ų
H/NO3+XSS04	0.000	0.000	0.000	Ò
H/F	0.000	9.900	0.000	ococcnococcoccocnnoo
H/SA HNV/SA	0.987 0.954	3.726	1.000	5
H/TA	0.676	6.026	1.000	5
XSCA/XSK	0.000	0.000	0.000	õ
XŠČĀ/XŠMG	0.000	ŏ.oŭŏ	0.000	ă
XSCA/NU3	0.000	0.000	0.000	ŏ
XSCA/XSSU4	0_000	0.000	Ŏ.ŎŎŎ	Ŏ
XSCA/F	0.000	0.000	0.000	Ŏ
LOGH/LUGCM	0.000 -0.589	1.765	-1.000	5
LOGNA/LOGCM	0.000	0.000	0.000	0
LUGXSK/LUGCM	0.000	0.000	0.000	Q
LOGXCA/LOGLM	0.000	0.000	0.000	0
LUGXMG/LUGLM	0.000	0.000	0.000	Ŏ
LUGF/LUGCM	0.000	0.000	0.000	Ŏ
LUGNO3/LOGCM	0.000	0.000	0.000	Ö
LXSSU4/LUGCM	0.000	0.000	0.000	Ň
\$\$/H \$\$/F	0.000 0.000	0.000	0.000	Ņ
33/X33U4	0.000	0.000	0.000	Ä
SS/NU3	0.000	0.000	0.000	ň
CONDIH	0.468	-1.593	1.000	ž
LUND/NU3	0.000	้อ. อังอี	0.000	ō
COND/X58U4	0.000	0.000	ő.ŏŏŏ	ŏ
CL/NA	0.000	0.000	0.000	Ŏ
MG/NA	0.000	0.000	0.000	0
NH4/504	0.000	0.000	v.000	Û
NH4/XSS()4	0.000	0.000	0.000	0
NO3/S04	0.000	0.000	0.000	0
N03/XSS04	0.000	0.000	0.000	0
F/XS504	0.000	0.000	0.000	0 5 0
AMTH/CM	10/.55/	377.837	1.000	ć.
AMINU3/CM	0.000	0.000	0.000	Ņ.
AMTX5SU4/CM	0.000	0.000	0.000	Ü

LINEAR CORRELATION BASED ON Y=MX+B
BETHLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3	0.000	0.000	0.000	0
H/S04	0.000	0.000	0.000	0
H/XSS04	0.000	0.000	0.000	Ŏ
H/NO3+XSS04 H/F	0.000	0.000	0.000	Ž.
H/SA	0.000 1.084	0.000	0.000 0.985	¥
HNV/SA	0.887	0.555	0.998	₹
HZTA	1.039	0.555 -9.176	ĭ.óóŏ	₹
XSCA/X5K	0.000	0.000	0.000	õ
XSCA/XSMG	0.000	0.000	0.000	Ō
XSCA/NU3	0.000	0.000	0.000	Ų
XSCA/XSSU4	0.000	0.000	0.000	Q
XSCA/F	0.000	V.000	0.000	Ŏ
LOGH/LUGCM	0.290	1.124	0.396	ğ
LOGNA/LÓGCM LOGXSK/LÓGCM	0.000	0.000	0.000	N N
LUGXCA/LUGCM	0.000	0.000	0.000	X
LUGXMG/LUGCM	0.000	0.000	0.000	ň
LUGF/LUGCM	0.000	ŏ.ŏŏŏ	0.000	ŏ
LOGNU3/EUGCM	ŭ.ŭōŏ	0.000	0.000	ŏ
LXSSU4/LOGCM	0.000	0.000	0.000	Ŏ
\$9/H \$9/F	0.000	0.000	0.000	Ō
\$8/F	0.000	0.000	0.000	0
\$\$/X\$\$U4	0.000	0.000	0.000	0
SS/NU3	0.000	0.000	0.000	Q
CONDIC	0.200	13.624	0.928	(
CUND/NU3 CUND/XSSU4	0.000	0.000	0.000	Ņ
CL/NA	0.000	0.000	0.000	Ņ
MG/NA	0.000	ö. ööö	0.000	ň
NH4/304	ŏ.ŏŏŏ	ŏ.ŏŏŏ	ŏ.ŏŏŏ	ŏ
NH4/XSSN4	ŏ.ŏŏŏ	ň.ŎŬň	0.000	ŏ
NO3/504	0.000	0.000	0.000	Ŏ
NU3/X8504	0.000	0.000	0.000	000035500000000000000000000000000000000
F/X3504	0.000	0.000	0.000	0
AMTH/CM	499.896	-302.366	0.770	ğ
AMINU3/CM	0.000	0.000	0.000	Ö
AMTXSSU4/CM	0.000	0.000	0.000	U

Table 246.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CORR.CUEF.	NO.
H/NU3	0.000	0.000	0.000	Q
H/S04	0.000	0.000	0.000	0
H/XS504 H/NB3+XSS04	0.000	0.000	0.000	0
H/F	0.000	0.000	0.000 0.000	Ŭ
H/SA	1.037	1.549	0.998	6
HNV/SA	1.006	-0.022	ŭ . 996	6
HZTA	0.765	1.400	ŭ.997	6
XSCA/X5K	0.000	0.000	0.000	6600
XSCA/X5MG	0.000	0.000	0.000	
XSCA/NU3	0.000	0.000	0.000	0 0 0 8
XSCA/X5SU4	0.000	0.000	0.000	Q
XSCA/F	0.000	0.000	0.000	Q
LOGH/LUGCM	-0.486	1.358	-0.780	Ö
LUGNA/LUGCM LUGXSK/LUGCM	0.000	0.000	0.000	0
LUGXLA/LUGLM	0.000	0.000	0.000	0
LUGXMG/LUGLM	0.000	0.000	0.000	ŭ
LUGF/LUGCM	0.000	0.000	0.000	ŏ
LUGNU3/LUGLM	0.000	ŭ.000	ŏ.ŏŏŏ	0
LXSSU4/LUGCM	0.000	0.000	0.000	ŏ
SS/H	0.000	0.000	0.000	0 0 0 0 7
SS/F	0.000	0.000	0.000	0
SS/XSSU4	0.000	0.000	0.000	0
\$\$/NU3	0.000	0.000	0.000	Q
CUNDIH	0.595	2.676	0.850	<i>I</i>
CUND/NU3	0.000	0.000	0.000	Ŏ
LUND/XSSU4 CL/NA	0.000	0.000	0.000	0
MG/NA	0.000	0.000	0.000	Ö
NH4/S04	0.000	0.000	0.000	ŏ
NH4/XS504	ň.ůŏŏ	0.000	ŭ.ŎŬŬ	ŏ
NU3/5U4	0.000	1.000	0.000	ŏ
v03/xSS04	0.000	J.000	0.000	Ō
F/X\$5U4	0.000	0.000	0.000	U
AMTH/CM	121.176	78.895	0.837	8
AMINUS/CM	0.000	0.000	0.000	0
AMTX5SU4/CM	0.000	0.000	0.000	0

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SG.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/N03 H/S04	2.647 0.399	6.622 29.038	0.997	4
H/XSS04 H/NO3+XSS04	1.152 1.090 5.294 1.034	9.823 -2.455 21.698	0.277 0.595 0.858	4
H/F	5.294	21.698	0.497	4
H/SA HNV/5A	1.034	- U - S26	0.999 0.999	4
H/TA	0.857	-1.182 -6.689	0.991	4
XSCA/XSK XSCA/XSMG	-0.855 -0.197	6.822	0.991 -0.253 -0.191	4
XSCA/NU3	0.981 0.857 -0.855 -0.197 0.371 0.193	0.445	0.991	4
XSCA/XSSU4 XSCA/F	11 - Inn	0.642	0.688 0.511	4
LUGH/LUGCM	-0.732 -1.682 -1.753	2.958	-0.586 -0.522	4444544
LUGNA/LOGCM LUGX5K/LUGLM	-1.682 -1.753	2.029	-0.565	4
LUGXCA/EUGCM	-1.337 -1.471	1.007	-0.638	
LUGXMG/LUGCM LUGF/LUGCM	-1.4/1 0.458	0.824	-0.528 0.193	4 4 4
LUGNO3/LUGLM	0.358 -1.252	0.430 1.314 1.745	0.193 -0.525	4
LXSSU4/LUGCM SS/H SS/F	-1.478 -1.149 -13.196	115.509	-0.949 -0.376	4
95/F 59/x55u4	-13.196	118.651	-0.406	4
SS/NU3	3.099 -3.164 0.397	109.561	0.511 -0.390 0.959	4
CUND/H CUND/NU3	0.397 0.465	13.629	0.959 0.275	4 5 4
CUND/XSSU4	1-176	-2.478	0.9 30	4
CL/NA MG/NA	0.850 0.207 0.184	-3.161 0.566	1.000	4
NH4/SU4	0.184	4.290	0.420	4
MH4/XSSD4 MU3/SU4	0.416 0.146	-0.997 8.647	0.589 0.268	4
N03/XSS04	0.442	1.339	0.590	4
F/XS5U4 AMTH/CM	0.041	440.140	0.219 0.275	5
AMTNU3/CM	118.000	334.263	-0.262 -0.692	4 4 5 4 4
AMIX5SU4/CM	-116.779	652.901	-0.072	-

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4 H/X8504 H/X8504 H/NU3+X8504 H/NU3+X8504 H/NU3+X8504 H/SA HNV/SA H/TA XSCA/X5MG LUGGCM LUGCM LUGGCM	4640335359236104736826 24924413110322583554147000 24857413110322583554147000 40108001055381470000 10000000000000000000000000000000	277987389 20689873899728045839 64.653389728045839 100.67.1500211.050336446582 -000.07.8648582 -1164.33	89102193365206082941856412 999473999623697698729941856412 000000000000000000000000000000000000	NO 7777773337777777777777777777777777777
5\$/X5\$U4 55/NU3	6.208 7.006 1.006	-6.553	0.884 0.631	7777777777777777877

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/80.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 12/77 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-1NT.	CURH.COEF. NU.	•
H/NU3 H/S04 H/XS504	3.130 0.725 0.956	-0.543 4.550 2.052	0.603 8 0.807 6 0.920 8	
H/NU3+X8S04 H/F	0.956 0.760 -12.389	0.407 31.311	0.911 8 -0.292 8	
H/SA HNV/SA H/[A	-12.389 0.810 0.778	9.501 6.933 5.763	0.982 5 0.984 5 0.947 5	
XSCA/XSK XSCA/XSMG	0.617 4.741 0.559	2.125	0.702 B	
XSCA/NU3 XSCA/XSSU4 XSCA/F	0.559 0.559 0.118 -1.630	-1.804 0.145 3.770	0.807 0.921 0.911 0.984 0.984 0.9847 0.9847 0.782 0.782 0.8362 0.6624 -0.571	
LÜĞHZLUĞCM LÜĞNAZLOĞCM LUĞXSKZLÜĞÇM	-0.336 -0.612 -0.626	1.304 1.452 -0.354		
LUGXLA/LUGLM LUGXMG/LUGCM	-1.602 -1.175	-0.016 -0.049	-0.430 -0.515 -0.752 -0.752 -0.752 -0.647 -0.451	
LUGF/LUGCM LUGNU3/LUGLM LXSSU4/LUGCM	0.066 -0.825 -0.601	0.034 0.751 1.231	0.277 8 -0.647 8 -0.451 8	
\$\$/H \$\$/F \$\$/X\$\$U4	-0.601 0.119 -25.278 1.296 5.826	55.121 63.553	0.038 -0.190 8	
55/X55U4 SS/NU3 CUND/H	U . 3 / I	3.820 11.969	0.399 8 0.478 8 0.588 11	
CUND/NU3 CUND/XSSU4 CL/NA	1.941 0.495 0.757	2.073 6.417 9.645	0.801 B 0.767 B 0.998 B	
MG/NA NH4/5U4	0.213 0.086 0.113	0.798 1.013	1.000 8 0.768 8	
NH4/XSSQ4 NU3/SQ4 NU3/XSSQ4	0.113 0.209 0.240	0.710 2.406 2.674	0.879 8 0.904 8 0.899 8	
F/XSSU4 AMTH/CM AMTNU3/CM	-0.007 176.126 8.985	2.674 0.396 62.364	-0.289 B	
AMTX55U4/CM	83.124	56.896 137.495	0.084 8 0.178 8	

Table 250.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
Y/X H/S04 H/S05+X H/S05+X H/S05+X H/S05+X H/S05+X H/S05+X H/S05+X H/S05	96645000043725511733047268350630020538967600004372551177330472683506300205389676000043725511773304726835063002053200320032003200320032003200320032	132270000162308924934161088252844444 43635000067964890249341610897226717215 264430000113089249341610897226717215 11100001130897226717215 111000011308972493414444	CURR 00000057302489742341589742480000057302488974234115897424892988757	N 60066111666666666666666666666666666666
F/XSSO4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.016 75.161 53.777 22.402	-0.439 179.223 66.573 246.155	0.884 0.432 0.635 0.135	6666

Table 251.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEOUTVALENTS/LITER EXCEPT CM#
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METEN.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.CDEF.	NU.
H/NU3 H/SU4	1.089 0.372	32.782 31.880 23.982	0.852 0.855	6
H/XSS04	0.614	23.982	U - 905	
M/NU5+X8804	0.614	20./13	0.893	66655566
H/F	0.491 0.934 0.953 0.826 4.780	56.620	0.018	6
H/SA HNV/SA	7.324	4.154	0.990 0.990	ξ
H/TA	V.826	-6.730	0.958	5
XS(A/X5K	4.780	3.004	0.958 0.459	6
ASCA/X5MG	0.162	3.982	0.580 0.745	
XSCA/NU3	0.255	y.450	0.745	b
XSCA/XSŠU4 XSCA/F	7.750	0.103	0.607 0.650	6
LUGH/LUGCM	-0.163	0.450 0.183 2.848 1.656	-0.566	8
LUGNA/LOGCM	0.1550 0.1550 0.1550 -0.1553 -0.3225 -0.3762	1 611	-0.266	b
LUGXSK/LUGCM	-0.556	-0.131 0.544	-0.459	6
LUGXCA/LUGCM	-0.515	0.544	-0.294	þ
LUGXMG/LOGCM LUGF/LUGCM	-0.3/0	-0.076 0.103	-0.163	666
TOGNUS/LOGEM	-0.003 -0.573	1.148	-0.007 -0.820	6
EXSSU4/EUGCM SS/H SS/F SS/XSSU4	-0.422 6.730 87.778	1-615	-0.852	6
SS/H	6.730	-23/.116	0.741	6
55/F	5.862	84.645	0.361 0.952	6
SS/NU3	11.034	-168.816 -98.775	0.951	6
CUND/H	1.466	-98.775 -32.137	0.951 0.786	0 6 0
CUND/NU3	2.659	-8.937	0.974	6
CUND/XSS04	1.425	-26.486	0.984	6
CL/NA MG/NA	0.688 0.215 -0.002	9.289	1.000	6
NH4/504	-0.002	5.890	-0.042	6
NH4/XS5(14	-0.038 0.332 0.514	5.890 6.159	-u.090	6
NU3/SU4	0.332	-0.141	0.974	6
NU3/XS504 F/X S SU4	0.514	-5.452	0.970	6
AMTH/CM	0.007 280.033 30.021 244.861	0.319 104.754	0.281 0.477	6
AMTNU3/CM	30.021	112.574	0.667	6
AMTXSSU4/CM	244.861	112.574	0.991	6

LINEAR CURRELATION BASED ON Y=MX+B
BETALEN SELECTED HAIN COMPONENTS. ALL UNITS
ARE MICRULQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES LOLLECTED
DURING 03/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.CUEF.	NO.
H/NU3 H/S04	0.670 0.766	21.763	0.581 0.948	777175557777778777777777777877777777777
H/XS504 H/NU3+XS504	0.815	8.760	0.903	7
H/F	0.485 -3.421	8.272 43.992 2.818 0.774	0.854 -0.194	7
H/SA	-3.421 0.952 0.913	2.818	0.990	5
HIV/SA H/TA	0.463	10.9/0	0.991 0.799	5
XSCA/XSK	17.963	2.930	0.912	7
XSCA/XSMG XSCA/NU3	3.436 0.549	2.437	0.675	7
XSCA/XSSU4	0.449	2.437 0.127 9.981	0.694	7
XŠLA/F Lugh/Lugcm	6.013 -0.270	9.981 1.497	0.500 -0.525	8
LUGNA/LÖGCM	-0.278	1.582	-0.269	ž
LUGXSK/LUGCM LUGXLA/LUGCM	-0.195 -1.255	-0.032	-0.294 -0.843	7
LUGXMG/LUGCM	-0.728	0.408	-0.592	7
LUGF/LUGCM LUGNU3/LOGCM	-0.365 -0.637	0.117	-0.551 -0.630	7
LXSSU4/LUGLM	-0.469	1.249	-0.554	7
SS/H SS/F	1.649	-9.418	0.880	7
SS/X5SU4	-21.594 1.151	90.284 20.335	-0.581 0.607	7
58/NU3	1.191	32.128	0.491	7
CUND/H CUND/NU3	0.805 0.561	-0.886 13.290	0.911 0.672	7
CUND/X55U4	ŷ.5 <u>6</u> 3	6.943	0.863	Ż
CL/NA MG/NA	0.563 1.055 0.258	6.943 0.590 1.523	0.998 J.971	7
NH4/5U4	0.416	-4.925 -5.106	0.906	7
NH4/X\$504 NU3/5U4	0.486 0.422	-5-106	0.946 0.602	1
NU3/XŠ504	0.458	8.377 9.538 9.765	0.585	7
F/XSSU4 AMTH/CM	0.011 151.597	173.974	0.224 0.560	7
AMINUS/CM	4/.069	149.122	0.441	7
AMTXSSU4/CM	113.651	196.283	0.493	7

LINEAR CORRELATION BASED ON Y=MX+B
BETALEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 04/78 AT KSC SITE 01 ARE INCLUDED.

```
Y/X
                               SLUPE
                                              Y-INT. CURR.COEF. NO.
H/ND3
                             -7.802
                                            280.545
                                                               -1.000
                                                                                 Ş
                                            291.046
129.594
147.347
-61.802
-123.1713
-23.293
-41.894
H/SÜ4
                             -2.544
                                                               -1.000
                            -1.041
-0.918
19.135
1.258
H/XS504
                                                               -1.000
                                                                                H/NU3+X8504
                                                                -1.000
H/F
                                                                 1.000
                                                                 1.000
H/SA
                             1.404
HNV/5A
                                                                 1.000
H/TA
                          -5.871 353.243
16.078 10.994
19.509 -41.894
34.874-1035.469
4651 -360.789
-85.527 -49.599
-31.525 -17.241
39.829 24.634
726 19.247
17.244 -11.211
-4.580 4.594
6.088 -108.704
                                                               -1.000
XSCA/XSK
                                                                 1.000
XSCA/XSMG
XSCA/NU3
XSCA/XSSU4
XSCA/F
                                                                 1.000
                                                                 1.000
                                                                 1.000
                                                               -1.000
LUGH/LUGCM
                                                               -1.000
LUGNA/LUGCM
LUGNA/LUGCM
LUGNCA/LUGCM
LUGNU3/LUGCM
LUGNU3/LUGCM
LUGNU3/LUGCM
LNGNU3/LUGCM
                                                               -1.000
                                                                 1.000
                                                                 1.000
                                                                 1.000
                                                               -1.000
                                                                 1.000
                                         4.594
-106.704
-484.956
680.259
1599.259
214.852
11.157
-187.347
-27.347
-1.347
10.002
                                                                 1.000
SS/H
                               6.088
                                                                 1.000
                           116.494
-6.335
-47.501
                                                                 1.000
SS/F
SS/X5SU4
                                                               -1.000
SS/NU3
                                                               -1.000
CUNDIH
                              0.695
                                                                1.000
                             -5.426
CUND/NU3
                                                               -1.000
CUND/XSSU4
                                                               -1.000
                               0.881
CLINA
                                                                1.000
                              0.136
2.522
1.032
MG/NA
                                                                 1.000
NH4/5U4
                                                                 1.000
NH4/x$$U4
                                                                 1.000
                              0.326
                                                                 1.000
NU3/SU4
403/x5504
                                                                 1.000
                                         10.002
1019.143
-134.433
-992.408
F/XS504
                             -0.054
                                                               -1.000
                       -3788.167
860.333
4437.833
AMTH/CM
                                                               -1.000
AMTNU3/CM
                                                                 1.000
AMTX5SU4/CM
                                                                 1.000
```

Table 254.

LINEAR CORRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 05/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	. INI-Y	CURR.COEF.	NO.
H/NU5 H/SU4	0.353 0.107 0.134 1.133 1.133 0.318 1.029 0.811 0.891 0.891	25.1644 31.0646 31.08446 31.08497 -12.08917 10.54247 10.54247 11.5485	0.824 0.256	らうかがいいいいいかかいいいいいいいいいいいいいいいいいいいいいいいいいいいいい
H/XS504	ŏ.io7	31.058	0.268 0.589 0.355 0.800 0.894 0.950	Ş
H/NU3+X\$504 H/F	0.134	25.862	y • 589	5
H/SA	1.231	-12-207	0.333	3
HNV/SA	i. 133	-12.867	0.894	5
H/TA	0.318	9.391	0.950	5
XSCA/XSK XSCA/XSMG	4.548	10.44/	0.500 0.865 0.183 0.772	ξ
XSCA/NU3	0.229	15.422	0.183	5
XSCA/XSSU4	0.894	-17.247	0.772	5
XSCA/F	7.315	10.744	0.330	5
LOGH/LUGLM LOGNA/LOGCM	-0.014	1.685	-0.416 -0.034	ξ
LOGXSK/LOGCM	-0.691	0.281	-0.452	5
LUGXCA/LUGCM	-n // ku	1.551	-0.364	5
LUGXMG/LÚGLM LUGF/LUGCM	-0.648 -0.371 -0.419 -0.527	1.685 0.281 1.221 0.331 0.227 1.433	-0.664 -0.654	ξ
LUGNU3/LOGCM	-0.419	1.433	-0.544	5
LXSSU4/LUGCM	-0.527	1.618	-0.862	5
\$\$/H	-0.485	1.618 81.479 86.162	-0.197	5
\$5/F \$5/X59U4	-0-302		-0.805 -0.308	ξ
55/NU3	-0.156	68.819	-0.148	5
LUND/H	1.208	-9.218	A 010	5
CUND/NU3 CUND/XSSU4	0.558	69.819 17.258 21.728 4.733 1.451	0.980 0.992 0.862	5
CL/NA	1.065	6.605	0.992	5
M6/NA	0.182	4.733	0.862	5
NH4/5U4 NH4/X5504	0.844	1.451	0.497	5
NU3/504	0.629	-1.492	0.510 0.660	3
VU3/XS5(14	0.611	4.733 1.451 6.482 -1.492 3.038	0.657	Ş
F/XS5U4	0.038	-4-112	0.675	5
AMTH/CM AMINU3/CM	363.373 141.305	1 14 . 15 3	0.986 0.805	3
AMTX55U4/CM	-0.5257 -0.49602688626886268886268888626888888888888	3.038 -0.112 23.228 134.353 236.301	0.893	5

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPUNENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 06/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.CUEF.	NO.
H/NO3 H/SU4	1.961	3.028	0.980 0.992	6 6
H/XS504	0.988	10.930	3,66.0	6
H/NU3+XSSU4	0.668 55.989	/_310	0.997 0.875	6
H/F	55.989	24.150	0.875	63336
H/SA HNV/SA	0.964	3.695 -3.729	1.000	۲
H/TA	A A A A	19.934	0.539	3
XSCA/XSK	7.965	1.619	0.964	6
XSCA/XSMG	9.514	-0.254	v-998	6
XSČA/NU3 XSČA/XSSU4	0.55%	-1.463 1.432	0.996	þ
XSCA/F	15.693	3:713	0.955 0.936	6666
LUĞH/LUGCM	-0.295	1-649	-0.569	6
LÚGNA/LÚGCM	-0.312	1.450	-0.833	6
LUGXSK/LOGCM	7.965 9.534 9.5354 15.995 -0.3167 -0.357	0.011	-0.631	6
LUGXCA/EUGCM LUGXMG/LUGCM	-0.539 -0.465	0.969	-0.868	þ
LUGF/LUGCM	-0.197	0.020	-0.844 -0.864	6
LUGNU3/LUGLM	-0-442	0.117	-0.831	6
LXSSU4/LUGCM	-0.242 0.434	1.505	~0.405	5
\$5/H	0.434	10.520	0.929	6
\$\$/F 3\$/x5\$U4	25.972 0.434	14.978	0.869 0.933	6
55/NU3	0.898	10.385	U.961	5
CUNDIA	0.497	2.139	ŏ.998	5
CUND/NUS	0.973	3-684	U.977	6
CUND/X58U4	0.494	7.401 -3.866	0.997	0
CL/NA MG/NA	1.221	-1.583	0.999 U.999	6
NH4/504	0.247	2.060	0.982	6
NH4/XS504	0.257	2.430	0.981	6
NU3/504	0.461	4.6/3	0.964	6
NU3/XS5(14 F/XS5()4	0.478	0.020	0.961	6
AMTH/CM	0.013 337.856	60.404	0.825 0.901	6
AMINUS/CM	120.756	32.414	ŭ.958	6
AMTXŠŠU4/CM	275.446	34.664	0.952	6

Table 256.

LINEAR CURRELATION BASED UN Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUNING 07/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-1M1.	CORR.COEF.	NO.
H/NU3	2.084	12.265	0.934	9
H/SU4	1.400	12.265 -5.342	0.792	9
H/X\$504	1.617	-2.516	0.908	9
m/NU3+XSS04	1.044	-2.503	0.985	9
H/F H/SA	10.050	36.503	0.480 0.995	99999
HNV/5A	1.170	-6.333 -4.084	0.997	3
H/IA	1.043 0.521 7.535 -0.741	9.883	ŭ.967	á
XSCA/XSK	7.535	2.082	0.793	ģ
XSCA/X5M6	-0.741	2.082	-0.749	
XSCA/NU3	0.157	3.907 5.307	0.443	9
XSCA/XSSU4	0.030	5.307	0.121	9
XSCA/F	_0.3/9	5.811	0.130 -0.231	y
LUGH/LUGLM LUGNA/LOGCM	-0.117 -0.509	5.811 1.657 1.753 -0.338	-0.571	9 9 9 9
LOGXSK/LUGCM	-0.279	1. 133	-0.276	3
LUGXCA/LUGUM	-0.574	0.823	-0.504	9999999
LUGXMG/LUGLM	-0.077	-0.013	-0.392	9
LUGF/LUGCM	-0.375	-0.013	-0.621 -0.568	9
LUGNUS/LUGCM	-0.385	1.238	-0.568	9
LXSSU4/LUGLM	0.041	1.439	0.083	9
55/H	-y.663	104.893	-0.218	9
\$5/F \$5/X\$5U4	-17.435	92.654 113.241	-0.273 -0.237	9
55/4U3	-1.286 -0.060	14.295	-0.009	3
CONDIA	0.355	14.910	0.692	ý.
LUNU/NU3	0.905	16.456	ŭ.790	ģ
CHND/X55U4	0.556	14.590	0.508	4
CLINA	1.129	-2.445	0.999	9
MEINA	0.171	0.616	0.986	9
NH4/504	0.154	-0.186	0.465	9
4H4/X35(14	0.032	4.662	0.097 0.731	3
MH3/5(14 MH3/XS5(14	0.591	-4.913 -1.337	0.745	3
F/XS5004	0.015	0.633	0.181	999999999999999
AMTHZCM	373.852	108.433	0.947	ý
AMTNU3/CM	8/-513	93.027	0.837	
AMTX5SU4/CM	358.300	-103.280	0.943	9

LINEAR CURRELATION HASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 08/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/N()5 H/S()4	2.903	3.668	0.597	4
4/X\$504	1.864 1.365	-14.842 5.627	0.945 0.947	4
H/N03+x8504	1.274	-9.709	ŭ. 996	4
n/F	16.488	40.182	0.402	4
H/SA	0.613	1/-525	0.999	3
HNY/5A	0.698	10.689	0.992	ş
H/TA XSCA/XSK	0.461 -2.483	7.722	0.875 -0.692	43334
XSCA/X5MG	2.789	2.450	U.656	4
XSCA/NU3	-0.203	8.250	-0.606	4
XSČA/XSŠU4	-0.081	2.450 8.250 7.716	-0.820	4
XSCA/F	-0.311 0.179	5.477	-0.110	4 5 4
LOGH/LUGCM	0.179	1.557	0.605	5
LUGNA/LUGCM LUGXSK/LUGCM	-0.751 -0.167	1.441	-0.689	4
LUGXCA/LUGLM	-0.015	-0.013 0.722	-0.392 -0.047	4
LUGX 16/LUGLM	ŏ.22ō	-0.054	J.574	4
LUGF/LUGCM	0.004	0.004	ŭ.158	4
LUGNU3/LOGCM	-0.153	1.170	-0.425	4
LXSSU4/LÜGCM	0.662	1.193	0.717	4
55/H SS/F	-1.908	121.166	-0.927	4
\$\$/X5SU4	-33.076	44.941	+0.392 -0.982	4
SS/NII3	-2.914 -3.210	81.414	-0.321	4
LUND/H	-0.389	49.810	-ŏ.379	4 5 4
COND/NU3	0.906	11.849	0.957	
CHND/X5SU4	0.159	50.068	y • 566	4
CL/NA	1.240	1.263	1.000	4
M6/NA NH4/504	0.228 0.108	1.061	0.499 0.203	4
1H4/XS5()4	V:100	1:733	0.256	4
105/504	ŭ. 123	10.155	0.303	4
VU3/XS504	0.092	11.451	0.310	4
F/XS5()4	0.009	0.016	0.247	4
AMIH/CM	433.401	72.015	0.979	5
AMINU3/CM AMIX5SU4/CM	73.365 360.404	-70.984	0.873 0.994	4
A = 1 × 3 3 0 4 7 C m	J00 - 404	-10.704	U • 774	~

Table 258.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT KSC SITE 01 ARE INCLUDED.

H/NU3 0.588 28.195 0.502 7 H/SU4 0.757 9.826 0.925 7	7 7 7
H/X\$\$04 0.840 12.314 0.912 7	
H/N(13+X9SU4 0.442 16.210 0.792 7 H/F 3.907 35.397 0.534 7 H/SA 1.201 -11.429 0.998 4 HNV/SA 0.995 -2.524 0.994 4	/ 7 4
HNV/SA 0.995 -2.524 0.994 4 H/TA +0.078 66.504 -0.215 4 X5CA/X5K 20.391 -2.476 0.716 7 X5CA/X5M6 8.107 4.095 0.406 7	4 4 7
XSCA/XSM6 8.107 4.095 0.406 7 XSCA/NU3 2.022 -23.150 0.902 7 XSCA/XSS04 0.631 0.058 0.358 7	7 7 7
XSCA/F	/ 8 7
LUGXSK/LUGCM -0.856 -0.072 -0.753 7 LUGXLA/LUGCM -0.475 0.736 -0.370 7 LUGXMG/LUGCM -0.676 -0.002 -0.544 7 LUGF/LUGCM 0.381 0.112 0.517 7 LUGNU3/LUGCM -0.309 1.172 -0.388 7	<i>i</i> 7 7
LUGNU3/LUGLM -0.309 1.172 -0.388 7 LXSSU4/LUGLM -0.080 1.394 -0.103 7 SS/H 1.515 13.428 0.616 7	, 7 7
95/H 1.515 13.428 0.616 7 55/F -3.973 81.929 -0.221 7 55/X55U4 1.200 34.591 0.530 7 55/NU3 0.793 58.318 0.276 7	, 7 7
CUND/H 0.901 -3.467 0.891 8 CUND/NJ3 0.557 18.242 0.621 7 CUND/X5SU4 0.647 8.326 0.917 7	, 7 <i>1</i>
CL/NA 0.991 6.409 0.996 7 MG/NA 0.227 1.065 0.995 7 NH4/SU4 0.254 -3.041 0.951 /	7 7 1
VH4/XS504 0.295 =2.634 0.979 7 VU3/S04 0.472 2.634 0.675 7 VU3/XS504 0.553 3.185 0.703 7	7 7 7
M/NU3	7 5 7

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-141.	CORR.LOLF.	NO.
H/NU3 H/SU4	1.345	18.421	0.837 0.784	777772227777778777717777787777777777877
H/X\$504	1.084	8.624 19.128	0.788	7
H/NI)3+XS504	0.884	5.289	0.483	7
H/F	8.117	35.863	0.310	Ţ
H/SA HNV/SA	0.900 0.949	6.737 2.106	1.000 1.000	5
HITA	0.601	6.035	1.000	ັ້
XSLA/X5K	5.330 -0.777	-0.911	0.895	7
XSCA/XSMG	-0.777	8.956	-0.677	7
XSCA/NU3 XSCA/XSSU4	0.307 0.027	-0.769 5.155	0.888 0.091	7
XSCA/F	1.460	3.775	0.266	7
LUGH/LUGLM	-0.526	1.316	-0.829	Ė
LUGNAZLOGEM	-0.529	1.888	-0.524	7
LUGXSK/LUGCM	-0.403 -0.304	-0.145 0.511	-0.663 -0.442	4
LIIGXMG/LUGLM	0.054	0.343	0.065	<i>'</i> ,
LUGF/LUGLM	-0.289	0.055	-0.752	7
LUGNU3/LUGCM	-0.665	0.838	-0.824	7
LXSSU4/LUGLM SS/H	-0.380 0.199	1.102	-0.589 U.13U	4
SS/F	15.510	97.688	0.398	7
55/X3SU4	V.196	114.732	0.093	7
\$5/NU3	0.403	111.148	0.164	7
- CUMD/H - CUMD/MU3	0.655 0.484	8.878 25.624	0.065	9
CUND/X5804	0.564	21.333	0.622 0.846	7
LL/NA	0.868	13.646	0.975	Ż
M6/NA	4.564	-3.750	0.980	7
MH4/5U4 MH4/x5504	0.223	-0.493	0.099	,
NU3/S()4	0.235 0.309	1.693	0./10 0.3/4	7
V03/XS504	0.305	13.622	ŭ.356	7
F/x85114	-0.007	1.606	-0.126	7
AMIHZEM AMINU3/CM	56.656 22.591	116.788	0.592 0.794	병
AMIXSSU4/EM	42.844	81.049	0.794	7

Table 260.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/S04	1.549	14.353	0.475 0.735	7
H/XS504	1.074	10.059	V.923	7
H/NU3+XSSU4	1.007	-4.286	0.923 0.972	7
H/F H/SA	-0.935	35.929	-0.145	/
HNV/SA	0.975 1.107	8.727 -1.095	0.807 0.867	3
H/TA	0.100	40.048	0.289	3
XSCA/XSK	6.550	40.048	U.375	7
XSCA/XSML XSCA/NJ3	0.45 <u>3</u> 0.473	8.536 3.350	0.108	4
XSCA/XSSU4	-0-061	10.885	$0.314 \\ -0.113$	7
XSCA/F	-0.061 -0.362	10.108	-ŏ.ižī	7
LUGH/LUGLM	0.049	1.491	0.084	7
LUGNA/LOGCM LUGXSK/LUGCM	0.178	2.116	0.147	7
LUGXSK/LUGCM	-0.254 -0.947	-0.286 0.361	-0.411 -0.871	7
LUGXMG/LUGCM	-0.041 0.366 -0.351 0.230 2.346	0.210	-0.060	7
LUGF/LUGCM	0.366	0.210	0.366	7
LUGNU3/LUGCM	-0.351	0.900	-0.662	7
LXSSU4/LUGCM SS/H	2 446	1.404	0.290 0.275	7
SS/F	29.464	146.612	0.534	7
58/X5SU4	3.815	112.057	0.385	7
\$\$/NU3	-4.668	201.176	-0.168	7
CUND/H CUND/NU3	-0.182 -0.182	20.542	0.472 -0.048	7
CUND/X55U4	V.779	19.560	0.573	7
CLINA	1.124	-0.517	ŭ. 998	7
16/VA	0.231	-0.455	1.000	7
4H4/3D4 4H4/x5SD4	0.015	0.500	0.269 -0.004	7
VU3/3U4	0.005	12.455	0.022	7
1U3/XS504	0.068	10.961	0.190	Ż
F/X55U4	0.005	1.985	0.026	7
AMIH/CM AMINUS/CM	269.537 58.702	28.661	0.873 0.898	4
AMTXSSU4/CM	314.806	19.549	0.923	777773337777777777777777777777777777777

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
LLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 12/78 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU3	2.271	2.065	0.979	4 4 4
H/S04	-0.692	33.659	-0.886	
H/X5504	0.635	7.244	0.993	
H/NU3+XSS04	0.497	6.097	0.991	
H/F	0.903	16.031	0.061	0 0
H/SA	0.000	0.000	0.000	
HNV/SA	0.000	0.000	0.000	
H/TA	0.000	0.000	0.000	Ŭ
XSCA/XSK	-5.862	8.684	-0.854	4
XSCA/XSMG	2.703	2.765	0.931	4
XSCA/NU3 XSCA/XSSU4 XSCA/F	1.152 0.301 4.192	0.591 2.285	0.700 0.664 0.396	4
LOGH/LUGCM LUGNA/LOGCM LOGXSK/LUGCM	-0.422 0.818 0.423	1.274 1.689 -0.390	-0.954 0.979 0.448	4 5 4 4
LUGXCA/LUGCM	-0.216	0.664	-0.428	4
LUGXMG/LUGCM	-0.411	-0.329	-0.348	4
LUGF/LUGCM	0.037	-0.207	0.130	4
LUĞNUĞ/LUĞLM	-0.224	0.814	-0.911	4
LXSSU4/LUĞCM	-0.416	1.166	-0.916	
SS/H	-28.813	584.582	-0.984	
\$\$/F	-95.106	168.119	-0.218	4 4 4 5
\$\$/x5\$U4	-18.113	373.279	-0.968	
\$\$/NU3	-63.867	515.064	-0.940	
CUND/H CUND/NU3 CUND/X5SU4 CL/NA	2.521 -6.312 -1.804	-20.635 61.124 47.312 5.990	0.987 -0.913 -0.947 0.997	7 4 4
MG/NA MM4/504 MM4/XS504	1.047 0.203 -0.552 0.488	1.687 18.014 -2.773	0.998 -3.914 0.987	1444
113/3(14	-0.265	12.948	-0.789	4
403/X\$5(14	0.274	2.359	0.995	
F/X\$504	0.003	0.619	0.061	
AMTH/CM	103.082	52.581	0.992	4544
AMTNU3/CM	36.270	27.867	0.990	
AMTXJSU4/C4	44.401	103.830	0.914	

Table 262.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLOPE	. TN1-Y	CURR.COEF.	NO.
H/NU5 H/SU4 H/XS5U4 H/NU3+XSSU4 H/F H/SA HNV/SA H/TA XSCA/XSK	2.216 0.659 0.946 0.668 8.177 0.879 0.601	5.674 5.109 7.642 6.8162 19.752 11.307 7.682 9.710 25.572	0.991 0.951 0.988 0.988 0.924 0.997 1.000 -0.524	777773337
XSCA/XSMG XSCA/NU3 XSCA/F XSCA/F LUGH/LUGLM LUGNA/LOGCM LUGXSK/LUGCM LUGXSK/LUGCM	4.467 0.341 2.282 -0.416 -0.219 -0.936	7.070 6.301 9.806 15.661 1.472 -0.154 -0.171	0.894 0.577 0.395 -0.7031 -0.583 -0.945	777777777777777777777777777777777777777
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/NU3 CUND/H	-0.589 -0.314 -0.581 -0.4524 -20.156 -20.1756 1.821	0.246 0.269 1.021 1.352 159.435 237.488 165.333 19.750	-0.677 -0.493 -0.643 -0.643 -0.246 -0.086 0.086	777777777777777777777777777777777777777
CUNU/NU3 CUND/X55U4 CL/NA MG/NA MH4/X55U4 NH4/X55U4 NU3/X55U4 F/X55U4 AMTNU3/CM AMTNU3/CM	1.287 0.378 1.112 0.234 0.169 0.292 0.292 0.1904 0.904 23.064	19.730 -0.4370 -0.967 -0.965 -1.179 150.1390 155.384	0.486 0.430 1.000 1.000 0.980 0.980 0.987 0.978 0.978 0.978	777773337777777777777777777777777777777

LINEAR CURRELATION BASED ON Y=MX+B
BEINGEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/79 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	. 1 M 1 - Y	CURR.CULF.	NO.
M/NU3 H/SU4	-1.587 0.345	54.796 11.750	-0.287 0.473	<u> </u>
H/X5504	0.832	-7.010	0.896	3
H/NU3+XS504	0.726	-13.834	0.814	3
H/F	69.329	-59.820	0.626	3
H/SA HNV/SA	0.000	0.000	0.000 0.000	1
HITA	0.000	0.000	0.000	1
ASCA/ASK	Ŭ.715	Ÿ.300	0.647	3
XSCA/X5MG	0.660	0.922	0.690 0.569 -0.715	3
XSCA/NU3 XSCA/XSSU4	0.440	4.032	0.569	ş
XSCA/F	-0.093 -5.493	19.318	-0.355	3
LUGH/LUGCM	-0.140	1.419	-0.198	3
LUGNA/LÖGCM	-0.925	1.763	-0.568	3
LUGX5K/LUGLM	-0.967	-0.032	-0.890	ş
LUGXLA/LÜĞÜM LUGXMG/LÜĞÜM	-0.090 -0.796	1.011	-0.238 -0.797	ş
LUGF/LUGCM	-0.147	0.100	-0.794	3
LUGNU3/LUGCM	-0.251	1.152	-0.959	3
LXSSU4/LUGCM	-0.448	1.511 354.261	-0.627	3
\$5/H \$\$/F	-3.381 442.042	334.261	-0.396 0.468	ş
\$5/x3504	0.415	-393.003 205.279	0.052	3
\$5/NU3	46.940	-580.141	ŭ.993	3
CUNDIA	-0.009	51.320	-v.v58	3
LUND/NU3	6.450	-02.337	0.973	3
CL/NA	0.436 1.052	25.443	0.391 1.006	3
MG/NA	0.226	1.302	1.000	3
VH4/504	0.082	7.750	0.983	ž
чн4/x\$504	0.096	8.713	0.907	ۼ
4U3/5U4 NI3/xS5U4	0.028	10.247	9.708 9.168	ې
F/XS504	0.008	0.997	0.907	3
AM TH/LM	65.754	146.583	0.228	3
AMINUS/CM	123.077	14.923	1.000	3
AMTXSSU4/CM	56.966	259.018	0.185	5

Table 264.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 03/79 AT KSC SITE 01 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NG3 H/SJ4 H/XSSJ4 H/RO3+XSSJ4 H/F H/SA HHYA ASCA/XSMG XSCA/XSMG XSCA/XSMG XSCA/XSJJ4 XSCA/XSSJJ4 XSCA/XSSJJ4 XSCA/F LUGHA/LUGCM LUGNA/LUGCM LUGXSK/LUGCM	0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.431 13.431 1.271 -0.142 -0.411 -0.836	25.119 25.119 25.119 25.119 0.000 0.000 -2.125 -10.438 -17.280 1.879 1.132	U.878 U.878 U.878 U.878 U.878 U.900 0.000 1.000 1.000 1.000 -1.000 -1.000	
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/XSSU4 SS/XSSU4 SS/XSSU4 CUND/NU3 LUND/Nu3 LUND/N	-0.5878 -0.6578 -0.5778 -0.5778 -0.5578 -0.5373 -0.5864 -0.5864 -0.58651 -0	0.487 0.4890 1.5846 1.57864 1.57864 1.57864 1.57864 1.7562 1.6656 1.6656 1.6666 1.6	-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000	NASCRENCERNONERRANDERRANDERRANDER

LINEAR CURRELATION BASED ON Y=MX+B
BFTWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/77 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3	0.000	0.000	0.000	0
H/SO4 H/XS504	0.000	0.000	0.000	0
H/NO3+X8504	0.000	0.000	ŭ.000	ŏ
H/F	0.000 1.050	0.000 2.916 4.917	0.000	Ŏ
H/SA	1.050	2.916	1.000	Š
HNV/SA	0.848 0.718	4.917	1.000	Ž
H/TA XSCA/XSK	0.000	4.146	0.000	~
XSCA/XSMG	0.000	0.000	0.000	ŏ
XSCA/NU3	ŏ.ŏŏŏ	ŏ.ŏŏŏ	ŏ.ŏŏŏ	ŏ
XSCA/XSSU4	0.000	0.000	0.000	Ŏ
xSCA/F	0.000	0.000	0.000	0
LUGH/LUGCM	-0.476	1.613	-1.000	Š
LUGNA/LUGCM LUGXSK/LUGLM	0.000	0.000	0.000	χ
LOGXCA/LUGCM	0.000	0.000	0.000	ň
LUGXMG/LUGCM	0.000	ő.őőő	0.000	ŏ
LUGF/LUGCM	0.000	0.000	0.000	Ŏ
LUGNU3/LUGLM	0.000	0.000	0.000	Ò
LXSSU4/LUGCM	0.000	0.000	0.000	Ŏ
SS/H	0.000	0.000	0.000	Ŏ
SS/F SS/XSSU4	0.000	0.000	0.000 0.000	Ņ
SS/NU3	0.000	0.000	0.000	ň
CUNDZH	0.600	-0.127	1.000	ž
CONDINUS	0.000	0.000	0.000	Ō
CUND/XSSU4	0.000	0.000	0.000	Q
CL/NA	0.000	0.000	0.000	Q
4G/NA NH4/504	0.000	0.000	0.000 0.000	Ň
NH4/X\$5(14	0.000	0.000	0.000	ň
NU3/504	0.000	ŏ.ŏŏŏ	Ŭ.00Ŭ	ŏ
NU3/X8S04	0.000	0.000	0.000	ŏ
F/x8504	0.000	0.000	0.000	CONOCCCCCCCCCCCCCCCCCCCCONNOCC
AMTH/CM	180.438	191.394	1.000	Š
AMINU3/CM	0.000	0.000	0.000	Ö
AM1X58U4/CM	0.000	0.000	0.000	U

Table 266.

LINEAR CURRELATION HASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIEK.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 08/77 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-1N1.	CURR.COEF. NO.
H/NO3 H/SO4	0.000	0.000	0.000 0
H/XS504	0.000	0.000	0.000
H/N03+XS504	0.000	0.000	0.000 0
H/F	0.000	0.000	0.000 0 0.995 6 0.997 6 0.989 6
H/SA	1.141	-4.708	0.995 6
HNV/SA	1.065	-4.144	V.997 6
H/TA XSCA/X5K	0.916	-6.603	0.989 6
XSCA/X5M6	0.000	0.000	0.000 0
XSCA/NU3	0.000	0.000	0.000
XSCA/XSSU4	ŏ.ŏŏŏ	ŏ.oŭŏ	0.000 0
XSCA/F	0.000	0.000	0.000 0
LUĞHZLUGCM	0.031	1.264	0.040 10
LOGNA/LOGCM	0.000	0.000	0.000 0
LOGXSK/LOGCM	0.000	0.000	0.000 0
LIIGXLA/LUGCM	0.000	0.000	0.000 Q
LUGXMG/LUGCM LUGF/LUGCM	0.000	0.000	0.000 0 0.000 0 0.000 0 0.000 0 0.000 0
LUGP/LUGCM	0.000	0.000	0.000 0
LXSSU4/EUGCM	0.000	0.000	0.000 0
SSZH	ŭ.ŭoŭ	0.000	0.000 0
SS/F	0.000	0.000	0.000 0
55/X5SU4	0.000	0.000	0.000 0 0.000 0
\$\$/NU3	0.000	0.000	0.000 0
CONDICH	0.184	39.298	0.194 9
CUND/NU3	0.000	0.000	0.000 0
CUND/XSSU4 CL/NA	0.000	0.000	0.000 0
16/NA	0.000	0.000	0.000
NH4/304	0.000	0.000	0.000
VH4/XS504	ŭ.ŭŭŭ	0.000	0.000 0
403/504	0.000	0.000	0.000 0
403/x8504	0.000	0.000	0.000 0
F/X8504	0.000	0.000	0.0 <u>0</u> 0 0
AMTH/CM	188.253	76.176	0.450 10
AMTNU3/CM	0.000	0.000	0.000 0
AMTXSSU4/CM	0.000	0.000	0.000 0

Table 267.

LINEAR CORRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/77 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CORR.CUEF.	NU.
H/NU3	0.000	0.000	0.000	0
H/SU4 H/XSSU4	0.000	0.000	0.000	Ü
H/NU3+X\$\$U4	0.000	0.000	ΰ . ἤ ở ở ở	Ü
ਸ/F	0.000	0.000	0.000	0
H/SA	1.051	-2.205	0.998	4
HNV/SA H/TA	1.038	-4.386 -0.555	() • 9 9 9 () • 9 9 7	4
XSCA/XSK	0.000	0.000	0.997	0
XSCA/XSM6	ŭ.000	0.000	0.000	ŏ
xSCA/NU3	0.000	0.000	0.000	Ö
XSCA/XSSU4	0.000	0.000	0.000	0 0 0 8 0
XSCA/F	0.000	0.000	0.000	0
LUGH/LUGCM LUGNA/LUGCM	0.000	1.257	-0.569 0.000	Š
LUGX5K/LUGCM	0.000	0.000	0.000	ő
LIGXCA/LUGCM	0.000	0.000	0.000	ŭ
LUGXMG/LUGLM	0.000	0.000	0.000	Ü
LUGF/LUGCM	0.000	0.000	0.000	0
LUGNU3/LUGCM	0.000	0.000	0.000	Ŏ
LXSSU4/LUGCM	0.000	0.000	0.000	0
\$5/H \$5/F	0.000	0.000	0.000	Ü
\$\$/x5804	0.000	0.000	0.000	ŏ
SS/NU3	0.000	ŭ.ŭŏŏ	0.000	ŏ
CUNDZH	0.446	49.141	0.571	6
CONDINUS	0.000	0.000	0.000	0
CUND/x5SU4	0.000	0.000	9.000	Ŏ
CL/NA Mb/NA	0.000	0.000	0.000 0.000	0
NH4/5(14	0.000	0.000	0.000	ŏ
NH4/X5504	0.000	0.000	0.000	ŏ
NU3/SU4	0.000	0.000	0.000	Ú
NU3/XS5U4	0.000	0.000	0.000	0
F/XS504	0.000	0.000	0.000	Ų
AMTH/CM AMTNU3/CM	105.938	54.444	0.825 0.000	Ō
AMTX5SU4/LM	0.000	0.000	0.000	0 8 0
			••••	•

Table 268.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMI=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF.	NO.
H/NO3 H/SU4 H/XSSU4 H/NO3+XSSU4	2.689 0.001 1.760 1.379	4.271 32.130 -13.638 -18.034	0.994 0.001 0.683 0.934	333
H/F H/SA HNV/SA H/TA	1.379 4.296 0.963 0.931 0.700	-18.034 11.830 2.966 2.046 -1.358	1.000 0.999 0.998 0.994	3555
XSCA/XSK XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F	-0.252 0.089 0.376 0.325 0.615	7.644 7.601 3.183 -1.389 4.169	-0.158 0.319 0.932 0.847 0.961	ふろうろいいいうべんろうろうろうろうろうろうろうろうろうろうろうろうろうろうろうろうしょうしょうしょうしょうじょうじょくしょうじょうじょうじょうじょうじょうじょうじょうじょうじょうじょうじょうじょうじょ
LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGLM LUGXLA/LUGLM	0.865 0.777 -0.921	1.446 1.930 -0.098 1.039	-0.181 0.720 0.375 -0.871	6333
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-1.420 -2.689 -1.652 -0.504 -2.835	0.654 1.002 1.303 1.514	-0.991 -0.973 -0.993 -0.575 -0.650	33337
35/F 55/x 55U4 55/NU3 LUND/H	-12.477	1.303 1.514 255.566 223.436 131.915 253.796 75.069	-0.666 0.111 -0.731	3336
CUND/NU3 LUND/XSSU4 LL/NA MG/NA	-8.621 0.319 -0.197 1.838 0.866 0.052	41.641 -8.236 -2.361 14.245	-0.077 0.754 0.994 0.932	333
NH4/5U4 NH4/XSSU4 NU3/5U4 NU3/XSSU4 F/XSSU4	-0.184 0.225 -0.069 0.569 0.400	19.056 5.604 13.228 -4.435 -5.685	-0.407 0.326 -0.110 0.597 0.667	5 5 5 7
AMTH/CM AMTHUS/CM AMTXSSU4/CM	71.194 -60.874 160.396	260.351 267.740 160.031	0.433 -0.983 0.562	6 3 3

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 11/77 AT KSC SITE 11 ARE INCLUDED.

Y/A	SLOPE	Y-1NT.	CURR.CDEF.	NO.
H/NU3 H/SU4	0.716	2.561 5.167	0.993 0.371	4
H/XS504	0.033 0.281 0.223 0.223	4.038	J.748	4
H/ND3+X8504	0.553	4.038 3.336 6.287	0.8 68	FFNNNFF
H/F H/SA	0-243	9.501	0.000	4
HNV/SA	0.402	7.505 3.103	1.000	ځ
H/1A	4 4 4 4 4 4 4	-16-089	1.000	2
XSCA/XSK	-3.805	3.394	- 0.759	4
XSCA/X5MG XSCA/NU3	-3.855 1.865 0.871 0.871 0.331	3.394 1.376 1.187 -1.164	0.987 U.466	4
XSCA/XSS04	0.87í	-1.164	v.878	4
XSCA/F	0.871	5.814	0.000	4
LUGH/LUGLM	0.331	0.613	0.345	6
LUGNA/LNGCM LUGXSK/LUGCM	-0.024	2.4 <u>21</u> 0.032	-0.950 -0.305	4
LUGXLA/LUGCM	-1.066	ŭ.856	-0.992	4
LUGXMG/LUGCM	-1.194	0.481	-0.815 -0.815	4
LUGF/LUGCM	0.000	0.000	-0.815	4
LUGNU3/LUGCM LXSSU4/LUGCM	-0.696	0.801	-0.869 -0.941	4
SS/H	20.953 20.953 23.374 29.134 22.890 23.890 23.890	1.045	0.241	4
SS/F	23.374	C/7.340	0.000	4
\$\$/x5\$U4	29.134	46.097	0.801	4
5\$/NU3	23.890	155.262	0.341	4
COND/H COND/NU3	Z. H49	28.147	0.479 0.403	5
CUND/X55U4	4.2í3	7.964	ŭ.8 3 9	4
LL/NA	4.213 1.259 0.258	-15.298	0.999	4
MG/NA	0.258	-4.089	1.000	4
NM4/504 NH4/XS504	-0.018	2.823	-0.197 0.285	4
NU3/504	0.058	1.347 3.241 1.785	0.468	4
NU3/XS5()4	0.426	1.785	0.820	4
F/XS5U4 AM1H/CM	0.000 33.597	0.000	0.820	4
AMINU3/CM	3.486	31.621 79.636	0.962 0.260	6
AMTX55U4/CM	-17.597	146.652	-0.463	4

Table 270.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 12/77 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.CUEF.	NO.
H/NU3 H/SU4	2.613 0.790	-3.094 -2.869	0.601	8
4/XS504	1.064 0.899 -2.934 1.073	0.866	0.955	8884
H/NU3+X8504 H/F	-2-934	-5.198 27.951	0.945 -0.266	8
HISA	1.073	1.048	0.993	
HIVYSA	1.000	-3.753	0.997	4
H/TA XSCA/X5K	0.879 -0.500	-2.611 4.110	0.941	
XSCA/XSMG	0.075 0.388 0.122	3.308	0.225	š
XSCA/NU3	V • 3 8 8	-0.463	0.584 0.717	8
XSCA/XSSU4 XSCA/F	-0.430	0.963	-0.255	Ř
LUGH/LUGLM	-0.3/9	1.206	-0.367	9
LUGNA/LUGCM	0.442	1.953	0.293	ğ
LUGXSK/LÜGCM LUGXCA/LÜGCM	-0.815 -0.571 -0.575 0.571 -0.302	-0.552 0.283	-0.429 -0.284	9898988888888889898989898
LUGXMG/LUGCM	-0.595	0.241 0.173 0.957 1.262	-0.268	š
LUGF/LUGCM	0.571	0.173	0.703	8
LUGNU3/LUGCM LXSSU4/LUGCM	-0.059	1.262	-0.457 -0.067	Ä
SS/H	-1.884	180.548	-0.369	š
\$\$/H \$\$/F	1.023	137.161	0.018	8 8
55/x55U4 55/NU3	-1.139 -3.423	164.611 175.787	-0.200 -0.154	B
COMDAH	0.253	19.283	u.398	š
CHNU/NU3	-0.341	30.135	-0.120	b
CUND/X5SU4 CL/NA	0.253 -0.341 0.298 0.830	19.377	0.410 0.983	5555555
MG/NA	0.243	0.041	ŭ. 499	š
NH4/5U4	0.043	2.818	0.252	8
9H4/X5504 9U3/304	0.075	6.558 5.606	0.429 0.505	B
NU3/XS504	0.125 0.155	1.439	0.604	8
F/XS504	-0.028 59.307 72.249	1.439	-0.281	8
AMTH/CM AMTNU3/CM	59.307 75.349	139.923	0.231 0.803	9
AMIX5SU4/CM	75.427	126.648	0.330	8

Table 271.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPUNENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-1111.	CURR.COEF.	NO.
H/NU3 H/SU4	2.379	-2.093 -2.093	0.957 0.681	6
H/XS5U4 H/NO3+X5S04	1.032	-8.532 -8.349 38.548	0.947 0.955 -0.354	6
H/F	-46.813 0.000	0 000	-0.354 0.000	6 1 1
HNV/5A H/TA	0.000	0.000	0.000	1
XSCA/XSK XSCA/XSMG	-0.827 1.170	0.000 0.000 23.525 11.385	-0.248	6
XSCA/NJ3 XSCA/XSSU4	0.140 0.076	20.499	0.887 0.106 0.132	6
XSCA/F LOGH/LUGLM	-49.966	19.802 31.437 1.209	-0.710 -0.166	6
LUGNA/LUGCM LUGXSK/LUGCM	-0.202 -0.591 0.094	1.942	-0.432 0.068	6
LUGXCA/LUGCM	-0.669	1.057	-0.634	6
LÜGXMG/LÜGCM LÜGF/LÜGCM	-0.568 -0.245 -0.282	0.442	-0.325 -0.690	Ь
LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-0.525	-0.145 1.017 1.339 241.354	-0.355 -0.586	6
\$5/F	-0.523 -0.145 -563.113	335.696 175.644	-0.020 -0.574	6
\$\$/x\$\$u4 \$\$/NU3	1.627	161-405	0.263 0.355	6
CUND/NU3	4.854 0.357 1.516	34.009 21.246 21.530	0.607	6
CUND/X5SU4 CL/NA	0.619 1.000	-1.4/1	0.565 0.999	6
MG/NA NH4/504	0.253	-3.099 3.189	0.995	6
NH4/XSS(14 NU3/SD4	0.249	2.258 -0.896 -0.579	0.916	6
11037×8504 F7×8504	0.428 -0.005	0.305	0.977 -0.612	b 6
AMIHZCM AMINU3ZCM	-0.005 63.463 38.278	140.278	0.357 0.498	6
AMTX5SU4/CM	48.741	179.456	0.309	6

Table 272.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 02/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/504 H/XX504	0.996 0.337 0.713 0.433 25.185 0.731	34.626 30.914 18.792	0.732 0.681 0.799	うじりじん しゅうじんかんていじん とうじんかいいん とうじんじんじん しゅうじん しゅうじん しゅうしん しゅうしん しょうしん しゅうしん しんりん しゅうしん しゅん しゅん しゅん しゅん しゅん しゅん しゅん しゅん しゅん し
H/NU3+X \$\$ 04 H/F H/SA	25.185 0.731	24.252 47.611 11.130	0.788 0.485 0.948	5
HNV/SA H/TA XSCA/XSK	0.685 0.686 0.909	10.157 0.975	0.930 0.949	665
XSCA/X5MG XSCA/NU3	-0.050 -0.061	10.157 0.975 1.817 2.838 3.213 2.978	0.526 -0.270 -0.307 -0.141	<u>5</u>
XSCA/XSSU4 XSCA/F LUGH/LUGCM	-0.018 -4.092 -0.106	C 4 7 7 U	-0.537 -0.397	37
LUGNA/LOGCM LUGX5K/LOGCM LUGXCA/LUGCM	-0.016 -0.365 0.364	1.613 1.830 -0.127 0.400	-0.010 -0.454 0.496	5
LUGXMB/LUGCM LUGF/LUGCM LUGNU3/LUGCM	0.265	0.669	0.148 -0.552 -0.695	5
LXSSU4/LUGCM 35/H S5/F	-0.553 -0.311 5.161 527.001 8.060	1.063 1.593 -86.559 75.558 -199.311	-0.579 0.497 0.979	5
55/x5804 55/NU3	13.352	-199.311 -58.548 27.797	0.870 0.946	<u>5</u>
CUND/H LUND/NU3 LUND/X58U4	13.352 0.880 2.762 1.736	-28.646	0.278 0.969 0.929 0.988	/ 5 5
CL/NA Mb/NA NH4/SU4	1.736 0.754 0.212 0.095 0.157	40.065 7.497 -0.860	u.991 U.939	5
904/XS504 903/504 903/XS504	0.157 0.351 0.604	-2.197 -4.520 -10.542	0.863 0.964 0.920	5 5 5
F/XS5U4 AMTH/CM	0.015 244.293 31.722	-0.505 133.697 87.713	0.870 V.941	Š Į
AMTNU3/CM AMTX3SU4/CM	328.957	45.655	0.695 0.972	3

LINEAR CURRELATION BASED ON Y=MX+B BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS ARE MICRUEQUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ. METER. CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED DURING 03/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
HZNU3	2.465	-4.905	0.979	いいいかんきょうかんかいいいいいいいかんかんかんかんかんかんかんかんかんかん
H/SU4 H/X5504	0.735 0.705	3.692	0.973 0.935	3
H/NU3+X8504	0.566	13.370 8.076 34.906 8.737	0.960	5
H/F	8.281	34.999	0.437	5
H/SA HNV/SA	0.803 0.955	-0.537	1.000	રૂ
H/ŤA	0.568 15.245	4.522	1.000	3
XSCA/XSK	15.245	9.381	0.983	5
XSCA/XSMG XSCA/NU3	4.083	-0.537 4.522 0.381 -3.171 -3.195	0.724 V.964	5
XSCA/X58U4	0.288	3.439	0.358	5
XSCA/F	0.288 1.511 -1.229 -0.564	15.205 1.290 1.734	0.200	Ş
LUGH/LUGCM LUGNA/LOGCM	-1.229	1.290	-0.965 -0.360	5
LUGXSK/LOGCM	-1.570	-0.487	-0.842	5
LUGXCA/LUGCM	-1.595	0.709	-0.895	5
LUGXMG/LUGLM	-1.178	0.323	-0.727	ځ
LUGF/LUGCM LUGNU3/LUGCM	-0.492	0.098	-0.454 -0.942	5
EXSSU4/EDGCM	-1.428	1:209	-0.964	5
SS/H SS/F	0.530	95.417	0.187	5
\$\$/F \$\$/x\$\$U4	41.264	55.657 131.678	0.768 -0.103	Ş
S5/NU3	2.184	73.998	0.306	5
CUND/H	0.502	12.766	0.840	5
CUND/NU3	2.184 0.582 1.558 0.332	7-284	0.892	5
CDNU/X5SU4 CL/NA	1.545	24.394 -26.804	0.636 0.992	3
MG/NA	0.256	1.141	0.994	5
NH4/504	1.545 0.256 0.339 0.328 0.292	-5.140	0.961	5
NH4/X\$504 NU3/S04	0.360	-0.816 3.824	0.932 0.976	5
NU3/X\$5U4	0.74	8.021	U.914	5
F/x\$5()4	0.005	1.341	0.122	5
AMTH/CM AMTNU3/CM	-87.380 -46.416	283.020	-0.579 -0.531	5
AMTX55U4/CM	-160.192	319.641	-0.698	ร์

Table 274.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 05/78 AT KSC SITE 11 ARE INCLUDED.

H/NU3 H/SU4 H/XSSU4 H/XSSU4 H/F H/SA H/SA H/SA H/SA H/SA H/SA H/SA H/SA	
H/NU3 H/SU4 H/X\$504 H/NU3+X\$S04 H/F H/F H/SA HNV/5A HN	,
H/NU3+XSS04 -0.297 57.854 -0.500 5	•
H/F -3.919 40.993 -0.200 5 H/SA 0.900 1.982 0.986 4 HNV/SA 0.955 -2.729 0.984 4 H/TA 0.264 20.698 0.647 4 XSCA/XSK 0.190 26.859 0.013 5)
HNV/5A 0.955 -2.729 0.984 4	
H/TA 0.264 20.698 0.647 4 XSCA/XSK 0.190 26.859 0.013 5	}
XSCA/X5K 0.190 26.859 0.013 5	9
XSCA/XSMG 5.292 0.167 0.658 5 XSCA/NU3 0.956 -1.111 0.409 5 XSCA/XSSU4 0.611 -2.933 0.523 5 XSCA/F -3.026 32.372 -0.096 5 LUGH/LUGCM -0.090 1.492 -0.107 5	
XSCA/NU3 0.956 -1.111 0.409 5 XSCA/XSSU4 0.611 -2.933 0.523 5	!
XSCA/XSSU4 0.611 -2.933 0.523 5 XSCA/F -3.026 32.372 -0.096 5	•
LUGH/LUGCM -0.090 1.492 -0.107 5 LUGNA/LUGCM 0.082 1.964 0.219 5)
LUGNA/LUGCM 0.082 1.964 0.219 5	!
LUGXCA/LUGCM -0.105 1.298 -0.076 5	•
LUGXMG/LUGCM -0.131 0.616 -0.102 5	•
LUGF/LUGCM 0.422 0.183 0.429 5 LUGNU3/LUGCM -0.299 1.442 -0.512 5	
LUGNU3/LUGLM -0.299 1.442 -0.512 5 LXSSU4/LUGLM 0.154 1.666 0.228 5	
\$\$/H 0.116 101.331 0.086 5	•
\$5/F 16.752 77.110 0.636 5 \$5/x5\$U4 =0.341 122.160 =0.348 5)
\$5/x5\$U4	,
CUND/H 0.063 40.39/ 0.105 5	,
CUND/NU3 0.448 29.286 0.508 5	•
CL/NA 0.012 41.970 0.028 5 CL/NA 0.805 20.028 0.955 5	
CL/NA 0.805 20.028 0.955 5 MG/NA 0.220 3.189 0.943 5 MH4/SU4 0.096 30.226 0.080 5 NH4/XS504 0.004 35.752 0.003 5	
NH4/304 0.096 30.226 0.080 5 NH4/XS504 0.004 35.752 0.003 5	
NH4/X\$504 0.004 35.752 0.003 5	
NU3/504 0.145 21.066 0.282 5 NU3/X5504 0.129 23.300 0.258 5	,
F/XSS04 0.018 0.817 0.472 5 AM[H/CM 335.220 8.654 0.729 5	•
F/XSS04 0.018 0.81/ 0.472 5 AM[H/CM 335.220 8.654 0.729 5 AM[NU3/CM 184.709 95.345 0.740 5	•
AMINU3/CM 184.709 95.345 0.740 5 AMIXSSU4/CM 397.512 117.161 0.654 5)

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 06/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4 H/XSSU4	1.277 0.700 0.812	12.116 2.700 7.425	0.504 0.733 0.909	6 6 6
H/NÚ3+XSSU4 H/F H/SA	0.679 24.623	3.503 18.411 -20.765	0.908 0.601 1.000	6
HNV/SA H/TA	24.623 1.632 1.119 1.522	-7.704 -44.669	1.000	92229
XSCA/XSK XSCA/XSMG XSCA/NU3	0.616 -0.004 0.245	3.274 4.136	0.669 -0.002 0.553	6 6 6
XSČA/XSŠU4 ASCA/F	-0.007 -4.710	1.697 4.291 5.370	-0.048 -0.662	b
LUGH/LUGCM LUGNA/LUGCM LUGX5K/LUGCM	-0.292 -0.976 -0.025	2.119	-0.574 -0.938 -0.016	8 6 6
LUGXCA/LUGCM LUGXMG/LUGCM	-0.023 -0.505	-0.227 0.581 -0.015	-0.042 -0.330	6
LUGF/LUGCM LUGNU3/LUGLM LX3SU4/LUGCM	0.128 -0.078 0.295	-0.180 0.969 1.157 176.323	0.316 -0.112 0.360	6 6 6
55/H 55/F 55/X55U4	0.295 -2.689 65.951 -2.502	176.323 92.070 163.205	0.360 -0.363 0.229 -0.399	6 6 6
SS/NU3 CUND/H	-0.470 1.910	114.113	-0.026 0.993	8
CUND/NU3 CUND/XSSU4 CL/NA	0.412 0.075 1.187	22.748 25.250 -3.229	0.175 0.091 0.998	6 6
M6/NA NH4/5(14 NH4/X55()4	0.243 0.111 0.103	-0.616 0.268 1.579	U.998 U.616 U.609	6 6 6
NU3/504 NU3/XS5(14	0.169	4.644	0.448 0.434	6
F/XS5U4 AMTH/CM AMINU3/CM	273.008 90.668	0.086 11.656 17.826	0.377 0.824 0.747	6 8 6
AMIXSSU4/CM	288.672	-102.636	0.759	6

Table 276.

LINEAR CURRELATION BASED ON Y=MX+B
BEINLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=M1CROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 07/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-1N1.	CORR.COEF.	NO.
H/NU3 H/SU4 H/XSU4 H/NU3+XSSU4	2.368 1.457 1.463 0.999	5.247 -8.017 -1.434 -3.656	0.889 0.953 0.972 0.990	9 9 9
H/F H/SA HNV/SA H/IA	1.042 1.029 0.740	36.243 -2.802 -4.981 0.111 3.500	0.381 0.980 0.986 0.969	9555
XSCA/XSK XSCA/XSMG XSCA/NU3 XSCA/XSSU4	1.486 0.036 0.008	3.500 6.201 6.684 7.046 7.228 1.552	0.858 0.261 0.134 0.052	9 9 9
XSCA/F LUGH/LUGCM LUGNA/LOGCM LUGXSK/LUGCM LUGXCA/LUGCM	0.060 -0.059 -0.636 -0.217 -0.066	1.552 1.662 -0.273 0.800	0.028 -0.064 -0.719 -0.177 -0.077	7 9 9 9
LUGAMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM	-0.220 0.035 -0.504 -0.021	-0.139 0.041 1.227 1.394	-0.202 0.038 -0.483 -0.022	9 9 9
88/H 88/F 88/X88U4 85/NU3	-0.254 -3.516 -0.351 0.267	61.652 54.173 61.336 45.207	-0.198 -0.126 -0.182	999955999999999999999999999999
CUND/H CUND/NU3 CUND/XSSU4 CL/NA	0.416 1.083 0.614 1.257 0.243 0.120	8.549 9.019 7.755 -6.416	0.937 0.916 0.920 0.998 0.999	9999
MG/NA NH4/3U4 NH4/XS3N4 NU3/3U4 NI3/, S3U4	0.120 0.117 0.474 0.450	-1.464 -0.801 -0.306	0.929 0.919 0.825	79999
F/XS5U4 AMTH/CM AMTNU3/CM AMTX5SU4/CM	0.024 290.135 49.532 302.613	250.649 182.133 -4.060	0.349 0.726 0.459 0.808	999

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 08/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLIPE	. TN1-Y	CURR.COEF.	NO.
11/4/15	2.482	7.546	0.806	4
H/504	2.498	-33.802	0.636	4
n/X\$504	1.373	5.759	0.955	4
H/N03+XSS04	1.079	0.169 35.519	0.999	4
rl/SA	-3.044 0.734	12.852	-0.054 0.968	ž
HINV/SA	0.607	12.808	0.905	43334
HZTA	0.607	10.340	1.000	3
XSCA/XSK	6.017	12.808 10.340 1.972	0.961	4
XSCA/XSM6	-0.004	4.069	-0.003	4
XSCA/NU3	0.141	2.532	0.774	4
XSCA/XSSU4	0.002	4.051	0.021	4
XSCA/F LUGH/LUGCM	0.872 0.335	3.037	0.260 0.555	4
LUGNAZLOGEM	-1.095	4.031 3.839 1.339 1.779	-0.679	4
LUGXSK/LUGCM	-0.384	-0.339	-0.635	4
LUGXLA/LUGLM	-0.134	0.658	-0.504	4
LUGXMG/LUGCM	-0.452	-0.168	-0.329	4
LUGF/LUGCM	0.319	-0.281	0.879	4
LUGNUS/LUGCM	-0.053 0.590	1.020	-0.107	4
LXSSU4/LUGCM - 35/H	-5.385	0.972	0.704 -0.876	4
\$\$/F	184.612	254.825	0.529	4
\$3/x58u4	-8.285	242.694	-0-937	4
53/MJ3	-10.100	19.330 242.694 178.253	-0.937 -0.533	4
COMONH	-0.223	32.432	-0.501	4
CONDYMUS	-0.110	25.900 33.684	-0.080	4
COND/X5SU4	-0.426	33.684	~ 0 • 6 6 6	4
CL/NA MG/NA	1.118	0.766	1.000	4
VH4/5U4	0.211	-27.256	1.000 J.758	4
4H4/X5504	0.299	-1.459	0.529	4
NU3/504	ŭ.542	-1.459 -3.936	ŭ.425	4
4U3/XS504	0.542	5.065	Ŭ . 595	4
F/X55(14	=0.006	5.065 0.397 2.117 155.157	-0.251	4
AMTH/CM	570.899	2.117	0.986	4
AMINU3/CM	54.843	155.15/	0.871	4
AMIX5SU4/CM	291.864	-160.985	0.988	4

Table 278.

LINEAR CURRELATION HASED ON Y=MX+B
HETNEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-141.	LURR.COEF.	ND.
H/NU3 H/SU4	1.730	10.448	0.976 0.859	9
H/XS50+	1.138	6.157	0.970	9
H/N03+X5504	0.705	0.960	0.985	9
HZF	53.827	25.404	0.691	9
H/SA	1.073	-0.535	0.867 0.880	4
HNV/5A H/IA	0.905 -0.544	2.978	-0.886	4
XSCA/XSK	-0.198	91.241 7.299 5.724 1.373	-0.037	9
XSCA/XSM6	ŭ.Żęŭ	5.724	-0.037 0.209	ģ
XSCA/NJ3	0.324	1.373	U.972	9
xSCA/XSŠU4	0.212 9.347 -0.316	0.595	0.963	9
XSCA/F	9.347	4.380	0.639	9
LUGH/LUGCM	-0.516	1.449	-0.566	ă
LUGNAZLUGCM	-0.575 0.066	2.182 -0.099	-0.696 0.082	3
LUGXSK/LUGCM LUGXCA/LUGCM	-0.382	0.675	-0.718	ပ်
LUGXMG/LUGCM	-0.422	0.420	-0.414	ģ
LUGF/LUGLM	-0.084	-0.041	-0.486	9999999999999999
EUGNJ3/EUGCM	-0.325	1.040	-0.519	9
LXSSU4/LUGLM	-0.415	1.242	+0.561	9
SS/H	4.596	158.600 325.714	0.586	7
\$\$/F	15.12/	363.714	0-123	3
\$\$/X55U4	0.4/2	148.738	0.703 0.589	9
SS/NU3 CDND/H	0.986 0.986	21.827	0.766	
CUND/NU3	1.743	31.457	ŭ.764	ģ
CUND/x5504	1.303	22.340	0.862	9
CLINA	1.169	22.340 =8.531	v.992	9
MG/NA	0.238	-0.200	0.995	9
NH4/504	0.167	-4.932	0.899	9
VH4/XSS()4	0.167 0.303 0.326	-3. 699 -2. 862	0.950	3
103/504 103/x5504	0.626	-1.485	0.945	á
F/X\$5114	0.010	-0.007	0-647	799999999999
AMTHICM	321.262	-8.729	0.758	9
AMTNU3/CM	132.683	-7.253	0.774	9
AMTXSSU4/CM	224,979	-10.015	0.721	9

LINEAR CURRELATION BASED ON Y=MX+H
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/78 AT KSC SITE 11 ARE INCLUDED.

Y/A	SLOPE	Y-INI.	CURR.COEF.	NO.
H/NU5 H/SU4	0.468	37.982	0.538 0.488	7
H/XSS04	0.126 0.126	58.379 40.866	0.504	7
H/NO3+X8504	0.146	39.551	v.52v	7 7 7
H/f	9.842	36.891	0.549	
H/SA HNV/SA	0.000	0.000	0.000	Ņ
H/IA	0.000	0.000	0.000	Ŏ
XSCA/XSK	4.906	16.517	ű. 27 <i>2</i>	Ĭ
XSCA/X5MG	-1.030	51.769	-0.60 8	7
XSCA/NU3	1.024	-13.128	0.897	7
XSCA/XSSU4 XSCA/F	0.486 15.747	-10.262 -1.640	0.908 0.670	7
LUGH/LUGCM	-0.301	1.344	-0.456	8
LUGNA/LÜGCM	-U_479	2.419	-0.691	7
LOGX5K/LUGCM	-0.502	0.212	-0.751	000/77778777777777777777777777777777777
LUGXCA/LUGCM LUGXMG/LUGLM	-0.727 -0.458	0.795 0.521	-0.783	4
LUGF/LUGCM	-0.310	0.192	-0.407 -0.677	7
LUGNU3/LUGLM	-0.310 -0.770 -0.774	1.033	-0.951	7
LXSSU4/LUGCM	-0.774	1.033	-0.930	7
SS/H SS/F	6.971	437.820	0.435	ļ
55/X5SU4	254.418	247.940	0.385 0.915	7
5\$/NU3	11.500	305.416	0.324	7
CONDIN	-2.059	395.937	-0.257	ġ
CUNDINUS	1.249	89.917	0.617	<u> </u>
CUND/X58U4 CL/NA	0.680 1.087	85.005 15.284	0.717 0.989	4
MG/NA	0.215	12.853	0.968	7
NH4/5114	0.215 0.150	-6.921	0.900	7
NM4/x8504	0.247	-4.196	0.940	7
NU3/504 NU3/xS504	0.274	-0.028 5.406	0.924 0.954	7
F/XSS04	0.018	0.635	0.734	7
AM [H/CM	88.479	90.807	0.901	8177777777877
AMINU3/CM	21.640 37.264	69.100	0.844	7
AMTXSSU4/CM	37.264	136.058	0.766	7

Table 280.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 11/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CORR.CUEF.	NO.
H/NU3 H/SU4	2.602 0.473	-5.724 7.006	0.906 0.940	ういいかいというかいいいいいいいいいいいいいいいいいいいいいいいいいいいいいい
H/XSS04	0.922	7.006 11.287 27.840 -180.5920 -127.920 12.829 6.214 7.7935 1.645	0.974	ร
H/NO3+X8S04 H/F	0.715	27.840	0.980 0.843	ξ
H/SA	12.962 6.579 4.829 0.420	-180.590	1.000	ž
HNV/SA H/TA	4.829	-127.920	1.000	3
XSCA/XSK	0.079	12.829	0.023	5
XSCA/XSM6	0.590	8.579	0.023 0.739 0.538	5
XSCA/NU3 XSCA/XSSU4	0.079 0.590 0.373 0.144	7.935	0.538 0.631	5
XSCA/F	2.509	9.797	0.631 0.702	Ş
LUĞH/LUĞCM LUĞNA/LUĞCM	-0.423	1.645	-0.232 -0.558	3
LUGXSK/LUGCM	-1.366 -0.319 -1.380 -2.156	1.645 0.205 0.297 -0.590 -0.114 0.867	-0.558 -0.172 -0.870	5
LUGXCA/LUGCM LUGXMG/LUGCM	-1.380 -2.156	0.297	-0.870 -0.828	ጀ
LUGF/LUGCM	-0.413	-0.114	-0.251	5
EUGNU3/EUGLM LXSSU4/EUGLM	-0.601 -0.762	0.867 0.930	-0.452 -0.362	5
SS/H	8,968	63.370	0.850 0.731	3
\$\$/H \$\$/F	118.467	310.227 141.187	0.731	5
\$\$/X3\$J4 \$\$/NU3	19.307	104.212	0.894 0.637	3
CUND/H	1.219	14.216	0.888	5
CUND/NJ3 CUND/XSSO4	1.195	25.417	0.698 0.980	3
CLINA	19.307 1.219 2.753 1.195 1.059 0.234	25.417 9.761	0.998	خَ
M6/NA NH4/3U4	0.063	-0./31 -1.99H	1.000 0.847	2
4114/XŠ3U4	0.128	-0.731 -1.998 -1.580	U.909	5
NU3/504 NU3/x\$504	0.137	7.657 8.124	0.781 0.875	5
F/X\$504	0.056	-0.751	v .91 6	5
AMTH/CM AMTNU3/CM	16.351	92.541 48.347	0.192	5
AMTXSSU4/CM	4.221	98.618	0.007	5

LINEAR CURRELATION BASED ON Y=Mx+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 12/78 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-1101.	CURR.COEF.	NO.
H/ND3 H/SO4 H/XSSU4	0.839 0.239 0.828	7.551 3.752 -3.029	0.990 0.976 0.995	いいかいいーー・かいいいかかいいいいいいいいいいいいいかいかんかんかんかいいいいいいかいかいかいかいかいかいかん
H/NU3+XSS04 H/F H/SA	0.418 -18.828 0.000	2.112 66.611	0.994 -0.543 0.000	5
HNV/5A H/TA	0.000	0.000	0.000 0.000	î 1
XSCA/XSK ASCA/XSMG	-10.439	0.000 15.379 9.659 7.478	-0.916 0.960	5
XSCA/NU3 XSCA/XSSU4 XSCA/F	0.673 0.254 0.247 -4.282	23.404	0.958 0.950 -0.395	5
LUGH/LUGCM LUGNA/LUGCM	-0.611 -0.215	23.404 1.118 2.295	-0.864 -0.191	5
LUGXSK/LUGCM LUGXCA/LUGCM LOGXMG/LUGCM	-0.303 -0.382 -0.789	-0.279 0.941 0.234 0.113 0.927 1.276 -124.409	-0.681 -0.659 -0.740	5
LUGF/LUGCM LUGNU3/LUGCM	0.191	0.113 0.927	0.391 -0.871	55
LXSSU4/LUGCM	-0.616	1.276	-0.942 0.953	5 5
SS/F 35/X3SU4 SS/NU3	24.703	-216.886	-0.291 0.950 0.974	25
CUND/H CUND/NU3	3.895 3.363	68.915 -12.694 12.952	0.965 0.983	<u>5</u>
CUNU/XSSU4 CL/NA MG/NA	3.233	-24.986 11.373 -1.307 7.947	0.962 1.000 1.000	5 2
NH4/5U4 NH4/XS5U4	-314.8733 -314.87032 -314.8963 -314.	0.71/	0.474 0.610	55
N03/504 N03/35304	ŭ.976	-4.725 -12.051	0.990 0.994	5
F/XSSU4 AMTH/CM AMTNU3/CM	-0.013 35.421 26.713	77.624 51.114 91.858	-0.532 0.908 0.889	25
AMTXSSU4/CM	60.467	9 1.8 58	0.976	5

Table 282.

LINEAR CURRELATION BASED ON Y=Mx+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CORR.CUEF.	NO.
H/4U5 H/8U4 H/XS5J4 H/NU3+X5804 H/F	1.858 0.715 0.765 0.543 3.710	4.929 -3.530 4.263 4.411 19.704	0.995 0.994 0.998 0.998 0.493	6 6 6 6 6
H/SA HIV/SA H/TA XSCA/XSK	0.986 1.025 0.566 12.999 4.992	9.223 1.302 17.190	1.000 1.000 1.000 0.775	92229
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	0.958 0.404 3.309 -0.622	11.540 3.231 17.138 10.385 18.512 1.442	0.934 0.745 0.766 0.639	56666
LUGNAZLÖGCM LUGXSKZLUGCM LUGXLAZLUGCM LUGXMGZLUGCM LUGFZLUGCM	-0.134 -0.635 -0.311 -0.426	2.006 0.154 1.264 0.555 0.547	-0.197 -0.969 -0.274 -0.374 -0.732	66666
LUGNU3/LUGCM LXSSU4/LOGCM SS/H SS/F	-0.689 -0.702 -0.745 0.879 13.815 0.590	1.071 1.465 116.736 66.828	-0.821 -0.833 0.375 0.784	b 6 6 6
55/X55U4 95/NU3 CUND/H CUND/NU3 CUND/X55U4	0.590 1.277 0.604 1.083 0.453	123.909 127.007 12.553 16.189 15.493	0.329 0.292 0.936 0.898 0.916	5 5 5 6 6
CL/NA M6/NA MH4/S()4 MH4/XS5()4	1.038 0.258 0.283 0.310	0.568 -0.966 -4.380 -1.593	0.995 0.997 0.964 0.990	6 6 6
NU3/504 9U3/X5504 F/XS5U4 AMTH/CH AMTNU3/CM	0.377 0.409 0.047 110.096 33.529	-4.131 -0.244 2.515 120.975 71.527	0.980 0.996 0.459 0.964 0.928	6666
AMTXSSU4/CM	77.002	178.084	0.936	6

LINEAR CURRELATION BASED ON Y=MX+B
BEIWLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
LM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLCAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/79 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SU4	6.381 0.178	-68.507 24.344	0.959 0.261	4
H/X5504	1.229	-16.694	0.965	4
H/NU3+XS504	1.057	-26.778	0.976	4
HZF	8.978	4.030	9.973	4
H/SA HNV/SA	0.945	8.445 3.278	1.000	5
H/IA	0.792	-5.984	1.000	42224
XSCA/XSK	1.530	18.409	0.166	
XSCA/XSMb	3.152	3.548	0.872	4
XSCA/NU3 XSCA/XSSU4	2.408	-22.025	0.860 0.870	4
ASCAZE	3.511	5.093	0.904	4
LUGH/LUGCM	-ő.259	1.421	-ŭ.273	4
LUGNA/LUGCM	-1.025	2.075	-0.063	4
LUGXSK/LUGCM	-0.797	-0.236	+0.763	4
LUGXCA/LUGCM LUGXMG/LUGCM	-1.225 -1.056	0.836 0.184	-0.921 -0.592	4
LUGH/LUGLM	-0.709	0.287	-0.565	4
LUGNU3/LUGCM	-0.132	1.187	-0.394	4
LXSSU4/LUGCM	-0.4/1	1.493	+0.656	4
55/H 55/F	-4.035 -7.398	612.412	-0.279	4
35/X3584	-2.565	479.911	-0.056 -0.139	4
55/NU3	-7.784	583.1/1	-0.081	4
CUNDIM	-0.162	64.125	-0.085	4
CUND/NU3	1.373	54.889	១.1.១៦	4
CUND/X5884 CL/NA	0.142 1.154	71.687	0.058 0.999	4
16/NA	0.233	-0.346	1.000	4
NH4/504	0.017	12.229	0.192	ů.
M44/X55114	0.149	0.831	0.908	4
NU3/504 NU3/XS304	0.042	13.288	0.411 0.905	4
F/xS504	0.132	9.014 -2.156	0.903 0.957	4
AMTHICH	15.974	178.721	0.383	4
AMINUS/CM	129.658	20.114	U.476	4
AMTX35U4/CM	81.682	208.167	0.463	4

Table 284.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEDUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 03/79 AT KSC SITE 11 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NI)3 H/SI)4 H/XSSU4 H/NI)3+XSSO4	0.833 0.083 0.229 0.180 3.127	14.718 21.522 19.658 18.591 14.112	1.000 1.000 1.000 1.000	2525
HISA HINV/SA H/TA XSCA/XSK XSCA/XSMG	0.000 0.000 0.000 11.225 1.547	0.000 0.000 0.000 5.272	0.000 0.000 0.000 1.000	1
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM LDGNA/LOGCM	4.610 1.270 17.310 -0.182 -0.995	5.623 -47.195 -19.852 -50.547 1.441 2.282	1.000 1.000 1.000 -1.000	nn a a a a a a a a a a a a a a a a a a
LUGXSK/LUGCM LUGXCA/LUGCM LUGK/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.770 -1.216 -1.591 -0.352 -0.367	0.257 1.020 0.531 0.617 1.169	-1.000 -1.000 -1.000 -1.000 -1.000	2222
LXSSU4/LUGCM 3S/H SS/F SS/XSSU4 SS/NU3	81.713- 255.543 18.745 68.061	-641.842 -238.683 -642.354	-1.000 1.000 1.000 1.000	といろと
CUND/H CUND/NU3 CUND/X59U4 CL/NA MG/NA	11.773 9.806 2.701 1.090 0.268	-257.405 -84.138 -25.980 13.694 -4.517 4.748	1.000 1.000 1.000 1.000	5555,
NH4/304 VH4/XS504 NU3/S04 NU3/XS504 F/XS504	0.046 0.126 0.100 0.275 0.073	3.727 8.169 5.931 1.773	1.000 1.000 1.000 1.000	2222
AMINU3/CM AMINU3/CM AMIX5SU4/CM	226.943 95.715 132.143	27.958 33.622 122.139	1.000 1.000 1.000	555

Table 285.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM#
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/NO3	0.000	0.000	0.000	0
H/S04 H/XS504	0.000	0.000	0.000	0
H/NO3+X8804	0.000	0.000	0.000	ď
HZF	0.000	ň.ŏŏŏ	0.000	ŏ
H/SA	1.068	-1.728	1.000	ž
HNY/5A	0.950	0.079	1.000	Ž
HZTA	0.800	-0.177 0.000	1.000	Ş
XSCA/XSK	0.000	0.000	0.000	0
XSLA/XSMG XSCA/NU3	0.000	0.000	0.000	Ŏ
XSCA/XSSU4	0.000	0.000	0.000	Ϋ́
XSCA/F	0.000	0.000	0.000	ň
LOGHZLUGCM	0.000	0.000	-1.000	ž
LUGNAZLOGCM	0.000	0.000	0.000	ō
LOGXSK/LUGCM	0.000	0.000	0.000	Ŏ
LUGXCA/LUGUM	0.000	0.000	0.000	0
LUGXMG/LUGCM	0.000	0.000	0.000	Ų
LUGF/LUGCM	0.000	0.000	0.000	Ŏ.
LUGNU3/LUGCM	0.000	0.000	0.000	Ď
LXSSU4/LUGCM	0.000	0.000	0.000	Ŋ,
SS/F	0.000	0.000	0.000	ň
\$\$/x5804	0.000	0.000	0.000	ň
SS/NU3	0.000	ŭ.ŏŏŏ	0.000	ŏ
CUNDIH	U_476	-1.077	1.000	ž
ÇUND/NU3	0.000	0.000	0.000	Ō
CUND/X5804	0.000	0.000	0.000	Ō
CLINA	0.000	0.000	0.000	Ŏ
MG/NA	0.000	0.000	0.000	0
NH4/S()4 NH4/XS5()4	0.000	0.000	0.000	X
NU3/504	0.000	0.000	0.000	ŏ
103/x8804	ŭ.ŏŏŭ	0.000	0.000	ŏ
F/X8504	0.000	0.000	0.000	ocnececococococococococonnnooc
AMIH/CM	219.044	d5.557	1.000	2
AMINU3/CM	0.000	0.000	0.000	Ų
AMTX5SU4/CM	0.000	0.000	0.000	0

Table 286.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/N03	0.000	0.000	0.000	0
H/S04	0.000	0.000	0.000	0
H/X9S04	0.000	0.000	0.000	000000000000000000000000000000000000000
H/N03+XSS04	0.000	0.000	0.000	Q .
H/F	0.000	0.000	0.000	ը
H/SA	1.012	2.135 2.741 5.506	0.986	څ
HNV/SA	0.876	2.741	0.985	5
HITA	0.668	2.200	0.962	2
XSCA/XSK XSCA/XSMG	0.000	0.000	0.000 0.000	<i>γ</i>
XSCA/NU3	0.000	0.000	0.000	Ň
XSCA/XSSU4	0.000	0.000	0.000	ŏ
XSCA/F	6.000	Ŏ . ŎŎŎ	0.000	ň
LUGH/LUGCM	0.000	1.140	0.609	ŏ
LUGNAZLOGEM	ŏ. úō ó	o o o o	0.000	á
LUGXSK/LUGCM	0.000	ŏ.ŏŏŏ	ŭ.ŭŏŭ	ŏ
LUGXCAZEUGCM	0.000	0.000	0.000	ŏ
LÜĞXMĞZLÜĞÜM	0.000	0.000	0.000	Ü
LUGF/LUGCM	0.000	0.000	0.000	0
LOGNU3/EUGCM	0.000	0.000	0.000	0
LXSSU4/LUGCM	0.000	0.000	0.000	0
\$S/H	0.000	0.000	0.000	Q
SS/F	0.000	0.000	0.000	Q
\$\$/X5\$U4	0.000	0.000	0.000	Ü
SS/NU3	0.000	0.000	0.000	0
CONDNH -	0.291	9.375	0.942	Ŗ
CUND/NU3	0.000	0.000	υ•0 0 0	Ö
COND/x5804	0.000	0.000	0.000	Ņ
CLINA	0.000	0.000	0.000	X
MG/NA NH4/504	0.000	0.000	0.000	V
4H4/XS504	0.000	0.000	0.000 0.000	N.
103/504	0.000	0.000	0.000	ŏ
403/XSS04	0.000	ŏ:ŏŏŏ	0.000	ă
F/x8504	<u>0.000</u>	0.000	0.000	ŏ
AMIHICM	639.854	-400.302	Ü.854	9
AHTNU3/CM	0.000	0.000		ó
AMTX58U4/CM	0.000	0.000	0.000	Ŭ

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 09/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURK.LOEF.	NO.
HINDS	0.000	0.000	9.000	Ŏ
H/SU4 H/XSS04	0.000	0.000	0.000	0
H/NO3+XS504	Ŭ:000 0	0.000	0.000	ŏ
H/F	0.000	0.000	0.000	0
H/SA	0.000	-5.201	0 .997	6
HNV/SA	1.087	-4.901	0.998	666
HITA	1.163	-18.158	0.977	6
XSCA/XSK XSCA/XSMG	0.000	0.000	0.000	0
XSCA/NU3	0.000	0.000	0.000	N N
ŠČĀZĀŠŠU4	0.000	ŏ.ŏŏŏ	ÿ.0ŏŏ	000000000000000000000000000000000000000
XSCA/F	0_000	0.000	Ŭ. Ö Ö Ö	ŏ
LUĞH/LUGCM	-0.198	1.345	-0.428	ě
LUGNAZLUGCM	0.000	0.000	0.000	Q
LUGXSK/LUGCM	0.000	0.000	0.000	Q
LOGXLA/LUGCM	0.000	0.000	0.000	Ö
LUGXMG/LUGCM	0.000	0.000	0.000	Ň
LUGF/LUGCM LUGNU3/LUGCM	0.000	0.000	0.000	Ä
LXSSU4/LUGLM	0.000	ŭ.ŏŏŏ	0.000	ŏ
SS/H	0.000	0.000	0.000	0000080
SS/F	0.000	0.000	0.000	Ŏ
\$\$/X5SU4	0.000	0.000	0.000	0
SS/NU3	0.000	0.000	0.000	Q
CUND/H	-0.096	36.718	-0.093	8
CUND/NU3 CUND/X5SU4	0.000	0.000	0.000	Ü
CL/NA	0.000	0.000	0.000 0.000	0 0 0
MG/NA	0.000	ŏ.ŏŏŏ	ŏ.0 ŏ 0	ŏ
NH4/5114	Ŭ.00Ŭ	Ŏ.ŬŬŎ	ŏ.ŏŏŏ	ŏ
NH4/XS504	0.000	0.000	0.000	Ŏ
103/5(14	0.000	0.000	0.000	0
MU37X8204	0.000	0.000	0.000	0 0 8 0
F/XS5()4	0.000	0.000	0.000	<u>Q</u>
A 4TH/CM AMTNU3/CM	0.000	105.642	0.933	Ŏ
AMIX5SU4/CM	0.000	0.000	0.000	ň
A-1 X00047 CM	0.000	0.000	0.000	v

Table 288.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4 H/F H/SA HNV/SA	2.930 2.143 2.073 1.259 11.180 0.995 0.996	-2.254 -22.388 -7.859 28.082 0.843 -2.067	0.988 0.946 0.967 0.994 0.864 0.993	444455
H/IA XSCA/XSK XSCA/XSMG XSCA/XSMG XSCA/XSSU4 XSCA/F LOGH/LUGCM	0.669 -0.218 -0.142 0.411 0.305 1.717 -0.273	-2.067 -3.776 11.896 12.336 0.858 5.848	0.992 -0.020 -0.092 0.915 0.941 0.877 -0.223	45554444454
LUGNA/LUGCM LUGXSK/LUGCM LUGXCA/LUGCM LUGF/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.334 -0.855 -0.734 -0.530 -0.184	0.848 1.7537 0.5857 0.5877 0.109 1.111	-0.210 -0.903 -0.713 -0.847 -0.450 -0.173	4 4 4 4
LXSSU4/LOGCM 5S/H SS/F 5S/X5SU4 5S/NU3 CUND/H CUND/NU3	-0.115 -0.361 -2.485 -0.608 -1.106 0.375 1.000	70.463 83.489 87.628	-0.145 -0.792 -0.422 -0.624 -0.820 0.946	444454
CUND/XSSU4 CL/NA MG/NA NH4/SU4 NH4/XSSU4 NU3/XSSU4	0.375 1.000 0.728 1.379 0.359 0.407 0.373 0.688	12.271 9.814 -21.259 -0.602 -0.439	0.953 0.661 0.681 0.891 0.963 0.901 0.927	444444444444444444444444444444444444444
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.670 0.159 127.946 15.831 92.021	-0.439 -2.264 224.968 102.599 115.384	0.962 0.412 0.135 0.640	4544

LINEAR CURRELATION HASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIEH.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUHING 11/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.LOEF.	NO.
H/N(15 H/S))4	1.258	2.554 -0.419 1.160	0.998 0.863	5
H/XS504 H/NO3+XS504	1.105 1.294 0.665 3.674	1.160 1.352 9.154	0.904 0.973	5
H/F H/SA	3.674 1.228	-5.964	0.851 1.000	5
HNV/SA H/TA	0.608	-4.037 -3.643	1.000	5
XSCA/XSK XSCA/XSMG	6.405 4.477 0.278	2.613 -0.322	0.843 0.808	5
XSCA/XSSU4	0.2/1	-0.119	0.942 0.806	5
XSCA/F LUGH/LUGCM	0.899 -0.604	1.233 1.152 1.499 -0.253	0.889 -0.956	5
LUGXSK/LOGCM	-0.604 -0.398 0.215 -0.717	-0.253	-0.780 0.407	5
LUGXCA/EUGEM LUGXMG/LUGEM	-0.63/	0.443 -0.249 0.277 0.902	-0.941 -0.719	5
LUGF/LUĞÇM LUGNU3/LÜGÇM LXSSU4/LUĞÇM	-0.462 -0.830	0.902	-0.742 -0.860	5
SS/H	-0.656 0.469 -0.318	0.978	-0.797 0.302	<u>ک</u>
55/F 55/X55U4 55/NU3	1-125	26.855 33.732 22.344 27.943	-0.047 0.505 0.308 0.837	Ş
CUND/H CUND/NU3	0.603 0.506	5.757 7.015	0.837	Ş
COND/XSSU4 CL/NA	0.641 0.778 0.984	5.148	0.898 0.967	5
M6/NA NH4/5()4	0.984 0.211 0.363	1.209 0.270 -1.566	0.991	Š
VH4/XS504 NU3/504	0.414 0.894	-0.936 -2.5/1	0.939 0.881	5
NU3/X5504 F/XS504	1.048 0.181 32.080	-1.294	0.922 0.546 0.767	5
AMTH/CM AMTNU3/CM	1.019	+0.505 96.109 102.501	0.045	ᠫᡰᡏᠫᠪ᠕᠙᠙᠙᠘᠙᠙᠘᠙᠙᠘᠙᠙᠘᠙᠙᠘᠙᠙᠘᠙᠙᠘᠙᠙᠙᠘᠙᠙᠙᠘᠙᠙᠘᠙᠙᠙᠘᠙
AMIXSSU4/CM	9.617	118.337	0.272	5

Table 290.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 12/77 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NU.
H/NU3 H/SU4	0.957 0.997	18.036	0.518 9 0.971 9
H/XS504	ĭ.050	2.087	ŭ. 992 9
H/NU3+XSS04	U.705	2.214 33.006	0.927 9
HZE	1.003	33.006	-0.307 9
H/SA	1.003	2.993	0.987 6
HNV/SA H/IA	1.004	-0.124	0.975 6 0.732 6
XSLA/XSK	0.585 -0.742 3.198 0.451	4.071	-v.120 9
A S C A / A S M G	3.198	-0.578	0.423 9
XSCA/NU3	0.451	-2.095 -1.217 3.973	0.874 9
X5CA/X5804	0.185	-1.217	
XSCA/F	-0.148	3.973	-0.071 9
LUGH/LUGCM	0.193	1.412	0.233 15
LUGNA/LUGCM LUGXSK/LUGCM	0.002	1.480 -0.197	0.002 9
LUGXLA/LUGCM	-1.282	0.112	0.232 12 0.002 9 0.286 9 -0.834 9 -0.299 9 -0.112 9 -0.761 9
LUGXMG/LUGCM	-0.207	ŭ. 053	-0.299 9
LUGF/LUGCM	-0.106	0.056	-0.112 9
LUGNU3/LUGCM	-0.630	0.932	-0.761 9
LXSSU4/LUGCM	-0.501	1.239	-0.432 9 0.050 9 -0.318 9
\$\$/H	0.090	41.816	0.050 9
55/F 55/x55U4	-4.272 U.168	49.069	-0.318 9 _0.088 9
58/NJ3	1.451	25.535	. 0 . 0 8 8 9 0 . 436 9
CUNDIH	0.619	2.164	0.889 10
CUND/NU3	0.644	11.295	0.705 9
CUND/X5SU4	0.435	7.930	0.831 9 0.988 9
CL/NA	1.012	1.614 0.550 -2.187	0.988 9
16/NA NH4/5U4	0.204	0.550	0.996 9 0.788 9
VH4/XS504	0.212	-1.575	0.197 9
VII3/3()4	ŭ.328	2.863	0.589 9
111 3/ X55()4	0.304	4.872	0.530 9
F/X85114	218.987	37.545	-0.387
AMIH/CM	218.987	5/.59/	0.592 12
AMTNUS/CM AMTXSSU4/EM	48.456 150.624	43.885 78.396	0.530 9 -0.387 9 0.592 12 0.406 9 0.351 9
AIII I AUGUAF CIII	1 30 . 064	10.310	V + J J + 7

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 01/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	2.514 1.043	-0.495 -12.379 -11.704	0.948 0.913	6
H/X5504	1.160	-11.704	0.934	6
H/NU3+X8S04 H/F	0.806 0.806	-8.875 38.168	0.945	6
H/SA	0_000	0.000	J.000	6 1 1 1 6 6
HNV/SA	0.000 0.000 7.240	0.000 0.000 11.723	0.000	Ī
HITA	0.000	0.000	0.000	1
XSCA/XOK XSCA/XSMG	1.451	0.329	0.584	6
XSCA/NU3	3.451 0.240 0.119 0.119 -0.105	11.211	ŭ.280	6
XSCA/XSSU4	0.119	11.211 9.794 14.905	0.280	6
XSCA/F	0.119	14.905	0.000	þ
LUGH/LUGCM LUGNA/LUGCM	-0.667	1.402	-0.107 -0.573	6
LUGXSK/LUGCM	-0.090	-0.078	-0.096	6 6
LUGXCA/LUGCM	-1.065	0.830	-0.820	6
LUGXMG/LUGCM	-0.899	0.377	-0.895	666
LUGF/LUGCM LUGNU3/LUGCM	0.000	U.000 U.994	-0.895 -0.451	5
LXSSU4/LUGCM	-0.592	1.446	-0.652	6
S\$/H	-0.592 0.509 0.509	39.037	0.513	6
SS/F	0.509	58.481	0 • 0 0 0	b
\$ 5/ X5\$U4 \$ \$/ NU3	1.921	19.5/6	0.733 0.728	6
CUND/H	0.426	19.576 28.942 8.237	0.949	6
CUND/NU3	0.905 1.921 0.426 1.175 0.555	6-428	0.986	6
CUND/X5\$04	0.555	0.645	0.995	6
CL/NA MG/NA	U = 107	7.976	0.991 0.996	6
NH4/SU4	0.228	2.155	0.909	6
NH4/XŠ504	0.506	0.953 2.155 2.502 -4.754 -4.052	0.406	6
1403/504	0.416	-4.754	V-965	6
NU3/XS504 F/XS504	0.452	4.052	v.965 v.965	6
AMTH/CM	54.433	0.000 255.177 91.230 292.351	V.265	6
AMTNU3/CM	24.704	91.230	0.265 0.307	6
AMTX5SU4/CM	15.664	292.351	0.097	6

Table 292.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE		CORR.COEF.	NÚ.
H/NO3 H/S04	1.886 1.232 1.399 1.092 -2.993 1.070 1.055	23.706	0.734 0.705	6
H/XS504	1.399	0.230 -2.673	0.623	6
H/N03+XSS04	1.092	-4.254	0.823 0.917	6
H/F	-2.993	46.819	-0.281	6
H/SA	1.0/0 1.055 0.995	0.533	0.993	6
HNV/SA H/TA	0.995	-4.677 -15.633 2.438 3.627	0.991 0.954	6
XSCA/XSK	5.576	-13.033	0.541 -0.001 0.577	6
XSCA/XSMG	-0.003	3.627	-0.001	b
XSCA/NU3	-0.003 0.430	-1.046 -1.804	0.577	6
xSCA/XSSU4	0.162	-1.804	0.329 0.5 <u>6</u> 4	6
XSCA/F LUGH/LUGCM	1.744	2.093	-0.451	8
LOGNA/LOGCM	-0.111 0.792	0.999	0.769	6
LUGXSK/LUGEM	ŭ.462	-0.463	0.841	6686666
LUGXCA/LUGCM	-0.119	U.476	-0-130	6
LUGXMG/LUGCM	0.374	-0.091	0.625 0.577 -0.288	6
LUGF/LUGCM	0.277	0.097	0.577	6
LUĞNU3/LÜGCM LXSSU4/LÜGCM	-0.139 -0.135	1.535	-0.200 -0.557	6
SSZH	-0.869	61.667	-0.557 -0.579	6
\$5/H \$\$/F	-0.869 -3.900	26.676	-0.243	6
SS/XSSU4	-0.598 -1.412	43.306	-0.235	6
55/NU3	-1.412	43.306 38.592 19.461	-0.235 -0.366 0.333 0.734	6
CUNDIA	0.179	19.461	0.335	8
CUND/NU3 CUND/X3804	0.691 0.521	15.826	0.837	6
LL/NA	0.950 0.227 -0.118	3.322	0.99i	b
MG/NA	0.227	9.680 9.758	0.991 0.998	6
NH4/504	-0.118	9.758	-0.217	6
WH4/XS5U4	-0.126 0.256	9.764	-0.238 0.376	5
1U3/5U4 1U3/xS504	0.300	1.732	0.378	6 6 6
F/X88U4	-0.062	2.971	-0.392	6
AMTH/CM	-0.062 322.434 58.891	2.971 91.947 71.030	-0.392 0.958	6
AMTNU3/CM	58.891	71.030	0.705	6
AMTX5SU4/CM	286.952	41.526	0.985	Ь

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED HAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NO3 H/SO4 H/XSS04	1.053 0.634 0.666	19.883 19.377 11.973 11.165 42.755 8.993 5.346	0.587 0.944 0.913	8 8
H/N03+XSS04 H/F		11.162	0.870 -0.511	8
H/SA HNV/SA	0.810	8.993 5.346 6.262	0.926	5
H/TA XSCA/XSK XSCA/XSMG	15.893	1.580	0.870 -0.511 -0.959 0.911 0.8938	8
XSCA/NU3 XSCA/XSSU4	-10.864 0.864 0.763 0.763 15.893 1.367 0.331 -4.508	-9.200 -1.678	0.674	8
XSCA/F LUGH/LUGCM LUGNA/LOGCM	-4.231 -0.608 -0.861	15.293	-0.250 -0.830 -0.681	8
LUGXSK/LUGLM LUGXCA/LUGCM	-0.087 -0.851	762044083612559 61.5826793612559 129.64317959 151.4317959	-0.043 -0.646	8
LUGXMG/LUGCM LUGF/LUGCM	-0.627 0.064 -0.556	0.205	-0.563 0.112	8
LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-0.686	1.395	-0.718 -0.815 0.847	8 8
LXSSU4/LOGCM SS/H SS/F SS/XSSU4	1.636 -16.477 0.861 0.762	0.029 1.063 1.395 -13.318 55.943 14.837	-0.402 0.612	8 8
SS/NU3 CUND/H CUND/NU3	(1 7 6 0	34.994	0.220 0.988 0.662	8 8 8
CUND/X5504 CL/NA	0.755 0.5255 0.5255 0.377 0.458 0.292	10.9551 6.7553 -1.6343 -2.1835 -2.1879 1579	0.905 0.988	8
MG/NA NH4/SU4 NH4/XSSU4	0.255 0.377	1.342	0.959 0.902 0.924	ර සි
NÜ3/504 NU3/XS504	0.258	5.425 5.279	0.690 0.720	8
F/XS5U4 AMTH/CM	101.467	1710601	-0.373 0.840	\$
AMTNU3/CM AMTX5SU4/CM	40.947 113.528	72.225	0.765	8

Table 294.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 04/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU3 H/S04 H/XSS04 H/N03+XSS04	1.586 1.529 3.086 1.048 -27.236 0.000	-28.342 -102.975 -208.055 -89.354 112.925	1.000 1.000 1.000 1.000 -1.000	2222 2222
H/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG XSCA/NU3	0.000 0.000 0.000 0.000	-28.3445 -3755 -1089.3525 -82.0000 -82.0000 -82.0000 -97.538 -38.933 -38.933 -38.933	0.000 0.000 0.000 -1.000 1.000	r r r r r r r r r r r r r r r r r r r
XSCA/XSSO4 XSCA/F LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGCM LUGXCA/LUGCM	0.639 1.970 -10.970 -1.449 -1.647 -1.738	38.9443 90.3237 0.2239 1.5688 1.573 0.743	1.000 -1.000 -1.000 -1.000 -1.000	ととととと
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-10.970 -1.4478 -1.7389 -0.32972 -0.52720 -0.52720 -95.868	1.102	-1.000 1.000 -1.000 -1.000	2222
\$\$/F \$\$/x\$\$U4 \$\$/NU3 CUND/H CUND/NU3 CUND/XV\$	-3.50 -3.872 -3.8863 -90.563 -90.1237 00.1237 00.2485	-0.499 -7.0199 -732.8996 -100.5337 -15.558 -7.4357 -4.337 -4.389 -4.27.389	-1.000 1.000 1.000 1.000 1.000	いとととと
LL/NA Mb/NA NH4/5U4 NH4/XS5U4 NU3/S04	0.013	7.435 4.337 251.589 422.384 -47.059	1.000 1.000 -1.000 -1.000	NANA
NU3/X55U4 F/X55U4 AMTH/CM AMTNU3/CM AMTX5SU4/CM	1.946 -0.113 -83.127 125.520 644.471	-47.059 -113.315 11.785 52.255 33.140 17.658	1.000 -1.000 -1.000 1.000	2222

Table 295.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 05/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.LDEF.	NO.
HANUS	0.230	28.329	0.847	6
H/SU4 H/XS5U4	0.142	28.643 28.726 27.802	0.542	6
H/N03+XS804	0.101	27.802	0.541 0.716	
H/F	1.726	32.894	9.282	6
ri/SA	0.934	1.706	J.948	6
HNV/5A	0.433	27.610	0.907 0.730	5
XSCA/XSK	0.190 1.886	3.216 21.870 14.334	0.254	6
XSCA/x5M6	10.7/8	-0.125	0.254 0.945	060666666676666666
XSCA/NU3	0.296 0.607 14.134	9.790 -7.996	0.368 0.740	6
xSCA/x55U4	0.607	-/.996	0.740	5
XSCA/F LOGH/LUGCM	0.208	-1.036 1.479	0.778 0.729	7
LUGNAZLOGOM	-0.411	1.432	-0.891	6
LUGXSK/LUGUM	-v.856	0.200	~ 0.732	6
LUGXLA/LUGCM	-0.760	1.1/3	-0.852	6
LUGXMG/LUGLM	-0.861	0.122 0.255	-0.777 -0.932	6
LUGF/LUGCM LUGNU3/LUGCM	-0.428 -0.644	1.451	-0.924	6
LXSSU4/LUGLM	-0.500	1.647	-0.897	6
\$5/H	1.189	-10.052	0.511	6
35/F	12.312	14.674	0.865	6
SS/XSSU4 SS/NU3	0.592 0.548	5.815 15.264	0.922	6
COND/H	-0.205	41.851	-0.111	6 7
CUND/NU3	0.654	9.989	ŭ.99î	6
CUND/XSSU4	0.654 0.575 1.351 0.377 1.145	4.535	v.d55	6
LL/NA	1.351	-5.647 -2.396	0.998	5
MG/NA NH4/5U4	1 145	-14.537	3.971 0.770	6 6
NH4/x55()4	1.200	-13.586	0.765	6
MU3/504	0.859	-10.017	0.890	6
NU3/X\$\$U4	0.904	-9.429	0.887	6
F/XS5U4 AMTH/CM	338.744	-0.379 -4.489	0.895 0.998	6
AMTNU3/CM	86.078	167.735	0.927	6
AMTXSSU4/CM	222.846	144.343	0.964	6

Table 296.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 06/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/S04 H/XS504 H/NO3+XSS04 H/F	2.072 1.211 1.227 0.775 55.326	5.161 -2.547 0.456 1.919 28.622	0.990 0.995 0.999 0.998 0.840	7 7 7 7
HYSA HNY/5A H/TA XSCA/X5K XSCA/X5M6	0.962 0.954 0.730 12.930 8.863	2.703 0.265 -10.279 -0.339 -1.096	1.000 1.000 0.943 0.982 0.913	555777
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LUGCM	0.460 0.263 11.458 -0.247 -0.427	-0.588 -1.205 4.993	0.978 0.951 0.774 -0.354	777777555777777777777777777777777777777
LUGXSK/LUGCM LUGXLA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.237 -0.339 -0.429 -0.141 -0.245	1.335 -0.243 0.803 0.080 0.051 1.208	-0.629 -0.316 -0.360 -0.785 -0.556 -0.310	7 7 7 1
EXSSU4/EUGLM SS/H SS/F S5/XSSU4 S5/NU3	-0.266 0.047 20.750 0.078	30.2229 30.2229 30.2229 32.3212 32.3212 32.3212 32.3212 32.3212	-0.394 0.087 0.579 0.116 0.008	7 7 7 7
CUNDZH CUNDZNU3 CUNDZXSSU4 CLZNA MGZNA	0.454 0.932 0.559 1.069 0.224	5.821 8.362 5.924 -0.204 0.789	0.988 0.970 0.992 0.998 0.973	7 7 1 7
NH4/504 NH4/X5504 	0.204 0.208 0.570 0.580 0.016	0.742 0.742 -3.032 -1.742 -0.243	0.885 0.891 0.980 0.988 0.860	7 7 1 1
AMTH/CM AMTNU3/CM AMTX38U4/CM	367.961 161.069 290.588	56.030 13.717 47.119	0.905 0.922 0.914	7 7 7

Table 297.

LINEAR CORRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CORR.CUEF. NO.
H/NU3 H/SU4 H/XSS04 H/NU3+XSS04 H/E	2.956 1.354 1.350 0.968 -3.248 1.058	3.077 -0.471 2.166 0.395 52.223	0.873 11 0.947 11 0.973 11 0.963 11
H/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG XSCA/NU3	1.058 1.040 0.990 11.516 2.190 0.176	-0.597 -2.441 -12.311 0.630 5.696	0.994 10 0.997 10 0.966 10 0.793 11 0.235 11 0.316 11
XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LOGCM LUGXSK/LUGCM	-0.001 -0.105 0.006 -0.573	1.628 1.397 -0.459	-0.034 11 0.006 11 -0.442 11
LUGXLA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM SS/H SS/F SS/XSSU4	0.336 0.369 -0.195 0.017 -0.313	0.675 -0.280 -0.095 1.182 1.467 41.160	0.022 11 0.281 11 0.301 11 -0.170 11 0.015 11
\$\$/F \$\$/x\$\$U4 \$\$/wU3 CUND/H CUND/NU3 CUND/X8\$U4	0.035 0.035	41.160 32.055 34.633 17.520 4.725	-0.305 11 -0.338 11 -0.179 11 0.152 11 0.927 11 0.977 11 0.957 11
LL/NA Mb/NA NH4/SU4 NH4/XS3()4 NU3/SU4	1.226 0.0557 0.0559 0.370	0.933 -3.767 0.051 0.748 0.921 1.070	0.996 11 0.995 11 0.421 11 0.420 11
HU3/XSSU4 F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.370 -0.019 310.519 100.588 286.126	2.697 1.613 350.859 100.254 118.996	0.903 11 -0.257 11 0.639 11 0.645 11 0.685 11

Table 298.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08//8 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU3 H/SO4 H/XSSO4 H/NO3+XSSO4 H/F	-0.606 -0.434 -1.074 -0.387 -13.559	36.628 45.146 60.059 45.076 48.952	-1.000 -1.000 -1.000 -1.000	2222
H/SA HNV/SA H/IA XSCA/XSK XSCA/XSMG	0.000 0.000 0.000 5.961	0.000 0.000 0.000 0.305 -1.084	0.000 0.000 0.000 1.000 1.000	5 1 1
XSCA/NU3 XSCA/XSSU4 XSCA/F LOGH/LUGCM LOGNA/LOGCM	4.748 0.546 0.968 12.213 0.061	1.045 -20.060 -10.055 1.504 1.120 -0.177 0.636	1.000 1.000 1.000 -1.000	2222
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.337 -0.316 -0.259 -0.107 -0.408	0.068 0.087 0.752	-1.000 -1.000 -1.000 -1.000 -1.000	2222
LXSSU4/LUGCM SS/H 5S/F 5S/X5SU4 SS/NU3	-0.066 -14.738 199.837 15.833 8.927	1.413 516.656 -204.810 -368.511 -23.180	-1.000 -1.000 1.000 1.000	20000
CUND/H CUND/NU3 CUND/XSSU4 CL/NA 1G/NA	-1.823 1.104 1.958 1.080 0.230	-368.510 -368.510 -23.180 79.003 12.238 -30.471 1.791 0.811 -7.845	-1.000 1.000 1.000 1.000 1.000	nnnnnnnnnnnnnnnnnnnnnnnnnnnn
NH4/3(14 NH4/XS5()4 1()3/5()4 NO3/XS5()4 F/XS5()4 AMTH/CM	0.371 0.919 0.716 1.774 0.079 348.455	-20.595 -14.064 -38.684 -0.819 -6.749	1.000 1.000 1.000 1.000	25555
AMTNU3/CM AMTX55U4/CM	29.501 234.771	10.910	1.000	Ş

Table 299.

.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NO3 H/SU4	3.029 1.566 1.473	-3.129 -5.888	0.991 0.988	5
H/X\$504 H/NU3+X\$504	1.473	2.630 0.563	0.995 0.997 0.987	5
H/F H/SA	0.998 55.522 0.000	15.666	0.987 0.000	Š
HNV/SA H/TA	0 000	0.000	0.800	į
XSCA/XSK	0.879	3.638 0.000	0.147	5
XSCA/XSMG XSCA/NU3	0.331	-y.333	0.147 0.154 0.906 0.947	5
XSCA/XSSU4 XSCA/F	0.000 0.879 0.863 0.331 0.170 6.363	0.155	V • 7 4 /	5
LÜĞHZLUĞCM LÜĞNAZLOĞCM	-0.311	-0.133 -0.133 1.639 1.5370 -0.187	0.026	Š
LUGXSK/LUGCM LUGXCA/LUGCM	0.071 0.159	-0.187 0.253	-0.694 0.284 0.189	Š
EUGXMG/EUGCM LUGF/LUGCM	-0.194 0.005	0.000	サリュタとう	Ę
LUGNU3/LUGCM LXSSU4/LUGCM	U.181	0.887	0.278 0.355 0.072	ِ ڏ
SS/H SS/F	0.044	1.080	-0.541	5
55/X5504	-34.018 -0.774	54.921 60.746	-0.631 -0.545	2
SS/NU3 CUND/H	-1.783 0.322	65.705 9.761 8.947	-0.608 0.968	5
CUND/NU3 CUND/X5SU4	0.322 0.955 0.471	10.647	0.940 0.959	5
CL/NA MG/NA	0.225	1.128	0.990	5
NH4/504 NH4/XS504	0.168	-0.790 0.138	0.965	5
VU3/3U4 VU3/x8504	0.157 0.501 0.477	-0.5/9 2.063	0.965 0.967 0.984	Š
F/XSSU4 AMTH/CM	0.026 103.315	359.958	0.994	ž
AMINU3/CM AMIXSS04/CM	57.968 70.952	105.448	0.308 0.505 0.319	ういいい ーー・かいいういいいいいいいいいいいいいいいいいいいいいいいいっかいいいいいいいいいい

Table 300.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COLF.	NO.
H/N(13 h/S()4	3.110 1.170	-4.339 0.067	0.825 0.948	6
H/x\$504	1.248 1.032 -18.561	12.268	0.962	6
H/N(I3+XSS04 H/F	1.032	-2.833 85.774	0.995 -0.162	92229
H/5A	1.122	-4.607	1.000	ž
HNV/SA H/1A	1.156 0.935	-9.254 -7.224	1.000	3
XSCA/XSK	7.401	0.865	0.488	6
XSCA/X5M6	-0.027 0.243	-0.531	-0.034 0.982	6
XSCA/NU3 XSCA/XSSU4	0.051	3.027	0.596	6
xSLA/F	0.855	4.886	0.113	ģ
LÜGH/LUGLM LUGNA/LOGCM	-0.463 -0.183	1.464	-0.731 -0.346	6 7 6
LUGXSK/LUGLM	-0.191	-0.334	-0.355	6
LUGXLA/LUGLM LUGXMG/LUGCM	-0.579 -0.303	0.451	-0.838 -0.349	6
LUGF/LUĞLM	-0.068	0.064	-0.491	6
LUGNU3/LUGLM	-0.715	1.111	-0.993	6
LXSSU4/LUGCM SS/H	-0.506 0.283	1.369	-0.833 0.362	6
55/F	-55.764	130.262	-0.621	6
\$\$/X5\$U4 \$\$/NU3	0.509	66.447	0.502 0.169	6
LUNDZH	0.497 0.379	78.809 12.313 12.355	v.955	6 7
CUND/NU3 CUND/X5SU4	1.095	12.365	0.727 0.974	6 6
CL/NA	0.892	7.907	0.999	6
MG/NA	0.892 0.273	-1.648	0.991 0.970	6
NM4/504 RM4/X5504	0.227	-1.404 -0.188	0.983	6
14113/5114	0.208	12.939	0.635	6
NU3/XS5(14 F/XSS(14	0.224 -0.004	13.923	0.651 -0.341	6
AMTHICH	76.526	0.868	0.711	7
AM [NU3/CM AM [X55U4/CM	20.277 52.819	89.130 174.464	0.941	6

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 11/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	ND.
HZNU3	1.209	14.587 4.859 1.752 2.323	0.863	6
H/SI14 H/X5S04	0.810	4.027	0.583 0.888	6
H/NU3+XSS04	ง. ฮงร์	3.435	0.980	99922999
H/F	4.609	26.0529 -3.5495 -3.547 -6.3385 4.3854	0.699	6
H/SA	1.075	-3.649	1.000	Ž
HNY/SA	1 051	-3.505	1.000	Š
H/TA	0.410 20.708 2.736 0.356 0.574	5.147	1.000 0.993 0.260 0.557	Š
X5CA/X5K	20.708	-6.338	0.993	6
XSCA/XSM6 XSCA/NU3	6.130	4.303	X•€ 5 4	2
XSCA/XSSU4	0-574	-4.709	v.826	6
XSCA/F		4.904	0.808	6
LUGH/LUGCM	-0.459	1.297	0.808 -0.766	6
LUGNA/LÖGCM	-0.459 0.357 -0.391 -0.737	4.904 1.297 1.914	0.299	6666
FNGX3K/FNGCW	-0.391	-0.346	-0.635	6
LUGXCA/LUGCM	-0.737	0.422	-0.594	6
LUGXMG/LUGCM	0.149	0.066	0.139	6
LUGF/LUGCM	-0.446	0.018	-0.608	6
LUGNU3/LUGCM	-0.647 -0.343	0.830	-0.824 -0.486	6
EXSSU4/EUGCM	-0.076	126.610	-0.400	6
ŠŠ/F	8.534	111.397	-0.018 0.306	5
\$\$/x5\$J4	1.533	88.791	0.238	6
\$\$/NU3	-2.192	157.360	-0.369	6
CUND/H	0.427	15.800	0.649	6
CUND/NU3	V - 313	25.117	0.339 0.755	6
CUND/X5SU4	-0.076 -0.0534 1.533 -2.192 0.427 0.3137	126.610 111.791 188.791 157.360 15.800 25.119	0.733	6
CL/NA MG/NA	1.087		1.000	6
NH4/SU4	0.095	-2.190	0.683	6
NH4/XS504	0.095	0.375 -2.190 -1.452	0.620	6
NU3/504	0.245	6-6/1	0.620	Ď
NU3/X\$504	0-646	0.277	0.594	6
F/X\$504	0.163	0.277 -2.259 59.572 30.557 37.533	0.594	6
AMTH/CM	141.965	59.572	0.835	þ
AMINU3/CM	41.021	\$4.53\	0.705	6
AMTXSSU4/CM	129.831	31.355	0.684	6

Table 302.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEUUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 12/78 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COLF.	NO.
H/NO3 H/SU4 H/XSU4 H/XSU3+XSU4 H/XSU3+XSU3 H/FA HNV/SA HNV	10509977000077089185932410800000000000000000000000000000000000	\$87771000021 \$8870771000021 \$88707710000021 \$1170000021 \$1170000021 \$1170000021 \$1170000021 \$1170000021 \$1170000021 \$1170000021 \$117000001 \$11000001 \$110000001 \$110000001 \$110000001 \$110000001 \$1100000001 \$1100000001 \$110000000000	4287300079769 99297300079769 9929770000699990 9929770000699990 992977000699990 992977000699990 9929770006999999999999999999999999999999	444411144444444444444444444444444444444
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.039 87.721 38.757 60.168	0.810 71.780 42.455 101.754	0.784 0.991 0.973 0.976	4 4 4 4

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CORR.COEF.	NU.
H/ND5 H/SD4	1.761	7.878 14.682	0.932 0.757	771773337717777777777777777777777777777
H/XS504	0.877	9.826	0.949	Ž
H/N/13+XSSU4 H/F	0.650 25.023	23.080	0.994 0.810	7
H/SA	0.881	12.219	0.995	3
HNV/SA	0.881 0.851 0.575	12.219 10.585 12.767	0.997	3
H/TA XSCA/XSK	2.659	7.897	0.987	7
XSLA/X5M6	2.054	8.288	0.227 0.345	Ż
XSCA/NU3	0.543	-0.320	0.749	7
XSCA/XSSU4 XSCA/F	0.350 10.683	-2.471 2.354	0.987 U.901	7
LUGH/LUGCM	-0.439	1.494	- 0.658	Ž
LUGNA/LOGCM LUGX5K/LUGCM	-0.490 0.068	1.719	-0.466 0.139	4
LUGXLA/LUGLM	-0.668	U.759	-0.769	7
LUGXMG/LUGCM	-0.526	0.021	-0.731	7
LUGF/LUĞCM LUGNU3/LUGCM	-0.088 -0.619	0.042	-0.217 -0.704	7
LXSSU4/EUGCM	-0.497	1.388	-0.672	7
\$\$/H	1.432	123.069	0.139	7
\$\$/F \$\$/x\$\$J4	-85.240 1.181	238.045 139.698	-0.268 0.124	7
\$5/NU3	2.080	142.404	0.107	Ż
CUND/H CUND/NU3	0.675	11.968	0.501	7
CUND/NU3 CUND/XSSU4	1.101	18.768 18.226	0.433	7
LL/NA	1 140	-4.399	1.000	7
MG/NA NH4/5U4	0.216	0.770	1.000	7
VH4/XS5U4	0.216 0.125 0.275 0.213 0.380	-1.954	0.972	7
103/804	0.213	7.351	0.615	7
NÚ3/XS5(14) F/XS5U4	0.056	5.172	0.776 0.859	7
AMTH/C 4	142.891	147.881	0.981	7
AMTNU3/CM AMTX55U4/CM	35.825	88.014 127.706	0.875	7
AM 1 400047 CM	102.388	161.100	0.969	1

Table 304.

LINEAR CURRELATION BASED ON Y=MX+B
BETNEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/79 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SH4 H/XSS04 H/NO3+XSS04 H/NO3+XSS04 H/SA HNV/SA H/IA XSCA/XSMG XSCA/	90.1261 10.3965327 10.3965327 10.3966327 10.396327 10.	-94.6491 -10.436278 -10.436278 -10.436278 -10.4362476 -10.4362476 -10.4362480	0.4638 0.4638 0.4638 0.47638 0	terreserventers
35/F SS/F SS/X5SU4 SS/NU3 LUND/H LUND/NA CUNND/X5 MG/NA M	-13.951 0.951 0.478 -0.017 4.074 0.412 0.805 0.185 0.185 0.187 0.043 0.107 20.869 120.869	174.6772 108.1316 108.2363 -22.943 14.791 13.607 2.818 11.646 11.646 11.647 11.646 187.607 202.913	-0.35967 -0.35967 -0.0316 -0.4400 1.5000 1.5000 1.37258 -44796 -4	14444444444444

LINEAR CURRELATION BASED ON Y=MX+B
BEIMEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CMM
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METEN.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUHING 03/79 AT KSC SITE 12 ARE INCLUDED.

Y/X	SLOPE	.TNI-Y	CURR.COEF.	NO.
H/NO3 H/S04 H/XSS04 H/NO3+XS504 H/F	-0.115 -0.101 -0.092 -0.054	16.116 20.879 18.726 17.896 11.507	-0.286 -0.554 -0.456 -0.401 0.007	3333
H/SA HNV/SA H/TA XSLA/XSK XSCA/XSMG	0.092 0.000 0.000 0.000 52.012	0.000 0.000 0.000 -46.802 -14.511	0.000 0.000 0.000 0.961	0003
XSCA/NU3 XSCA/XSSU4 XSCA/F LDGH/LUGCM LDGNA/LDGCM	0.00 0.00 0.00 52.05 21.	-37.434 -34.648 349.442	0.652 0.994 0.957 -0.985 0.338 -0.800	งกรมาย
LUGXSK/LUGCM LUGXLA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.537 -1.318 -1.329 0.138 -0.542	7 7 4 4 4	-0.999 -0.996 -0.972 0.755 -0.977	ろうろうべ
LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/NU3	-8.295 -21.768	0.075 0.995 0.224 0.5331 1.3585 755.757 78.180 98.530	-1.000 -0.981 -0.203 0.622 0.468	オカカカカ
CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA	1.595 -1.595 0.562 0.315 0.596 0.148	20.152 17.467 35.219	-0.801 0.802 0.898 0.967 0.903	ろろろん
NH4/S()4 NH4/XS5()4 N()3/S()4 N()3/XS5()4 F/XS5()4	0.093 0.101 0.433 0.492	9.559 4.109 4.854 -1.596 0.326 4.747	0.997 0.981 0.956 0.983 -0.893	3333
AMTH/CM AMTNU3/CM AMTX5SU4/CM	253.601 102.651 121.235	-57.098 80.797 203.897	0.994 0.999 0.990	3

Table 306.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
ME(ER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08/77 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/N05	0.000	0.000	0.000	0
H/SU4	0.000	0.000	0.000	U
H/XS504	0.000	0.000	0.000	Q
H/N03+X8S04	0.000	0.000	0.000	Q .
HZE	0.000	0.000	0.000	Q
H/SA	1.196	-4.395	1.000	Š
HNV/5A	1.154	-8.883	1.000	ځ
H/TA	1.007	-11.512	1.000	č
XSCA/XSK	0.000	0.000	0.000	Ň
XSCA/XSMG	0.000	0.000	0.000	,
XSCA/NU3 XSCA/XSSU4	0.000	0.000	0.000	,
XSCA/F	0.000	0.000	0.000	Ň
LUGHZLUGCM	0.000 -1.325	0.939	-0.709	Ä
LOGNAZLOGEM	0.000	0.000	0.000	ñ
LOGXSK/LOGCM	0.000	0.000	ñ.000	ň
LUGXCA/LUGCM	ŭ. ŭ ö ŭ	ŏ.ŏŏŏ	ŏ.ŏŏŏ	ň
LUGXMG/LUGCM	ŏ.ŏŏŏ	0.000	Ŏ.ŎŎŎ	ŏ
LUGF/LUGCM	0.000	0.000	ŭ.000	ŏ
LÖGNU3/LUGLM	Ŏ.ŎŎŬ	0.000	0.000	Ŏ
LXSSU4/LUGCM	0.000	0.000	0.000	Õ
\$\$/H \$\$/F \$\$/X\$\$J4	0.000	0.000	0.000	Ó
SS/F	0.000	0.000	0.000	Ó
58/X88J4	0.000	0.000	0.000	0
\$8/NU3	0.000	0.000	0.000	0
COND/H	0.361	7.699	0.983	6
CUNDINUS	0.000	0.000	0.000	0
COND/X58U4	0.000	0.000	0.000	0
CL/NA	0.000	0.000	0.000	Õ
MG/NA	0.000	0.000	0.000	Ů.
NH4/S04	0.000	0.000	0.000	Ň
NH4/XSSO4	0.000	0.000	0.000	Ü
403/504	0.000	0.000	0.000	Ň
NU3/XS804	0.000	0.000	0.000	Ž
F/XS504 AMTH/CM	0.000 14.123	0.000	0.000 0.140	Ž
AMINU3/CM	0.000	123.622	0.000	Ã
AMTX5SU4/CM	0.000	0.000	0.000	00100cc0000000000000000000000000000000
MIN 1 X 3 3 3 4 7 C M	0.000	0 • 0 0 0	0.000	v

Table 307.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/77 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
m/NU3 H/S04	$0.000 \\ 0.000$	0.000	0.000	0
H/XSS04	ŭ . ŏŏŏ	0.000	0.000	ŏ
H/N03+XS504	0.000	0.000	0.000	Ų
H/F	0.000	0.000	0.000	005450000
H/SA HNV/SA	1.143	-6.412 -6.253	0.990 0.986	7
H/IA	0.977	-16.948	0.983	3
XSCA/XSK	0.000	0.000	0.000	õ
XSCA/XSM6	0.000	0.000	0.000	Ö
XSCA/NU3	0.000	0.000	0.000	Ŏ
XSCA/XSSU4	0.000	0.000	0.000	Ü
XSCA/F LUGH/LUGCM	0.000 -0.706	0.000	0.000 -0.906	10
LOGNA/LOGCM	0.000	0.000	0.000	10
LUGXSK/LUGCM	0.000	0.000	ŭ.ŭŏŏ	ŭ
LUGXLA/LUGLM	0.000	0.000	0.000	Ü
LUGXMG/LUGCM	0.000	0.000	0.00v	000000000000000000000000000000000000000
LUGF/LUGCM	0.000	0.000	0.000	Ŏ
LUGNU3/LUGCM LX\$SU4/LUGCM	0.000	0.000	0.000	Ŭ
SS/H	0.000	0.000	0.000	Ä
SS/F	ŏ.ŏŏŏ	0.000	ŏ.ŏŏŏ	ŏ
\$\$/X5\$U4	0.000	0.000	0.000	Ü
SS/NU3	0,000	0.000	0.000	0
CUND/H	0.476	8.673	0.834	10
LÜND/NU3 LÜND/XSSU4	0.000	0.000	0.000 0.000	O
CL/NA	0.000	0.000	0.000	
MG/NA	ÿ.000	0.000	0.000	ŏ
NH4/S()4	0.000	0.000	0.000	Ö
WH4/x8504	0.000	0.000	0.000	Ų
1013/504	0.000	0.000	0.000	Ŏ
1903/x9504 F/x9504	0.000	0.000	0.000 0.000	000000
AMTHICM	7.971	121.646	0.162	1 ŏ
AMINU3/CM	0.000	0.000	ŏ.öŏŏ	0
AMTXSSU4/EM	0.000	0.000	0.000	Ŏ

Table 308.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	.TNI-Y	CURR.COEF.	NO.
H/NU3 H/SU4 H/SU4 H/XSS04 H/ND3+ASS04 H/ND3+ASS04 H/FA H/SA H/TA XSCA/XSMG X	274233513571037442343181737103744234318100700103744234318100735947	43.5884944244009114395884109004401568872484109004401589558410800011439595841063	26967449 6967748875999449156999999999999999999999999999999	**************************************
MG/NA NH4/SU4 NH4/XSSU4 NU3/SU4 NU3/XSSU4 F/XSSU4 AMTH/CM AMTNU3/CM AMTNU3/CM	0.059 0.099 0.405 0.480 0.868 0.815 446.190 137.989 311.851	10.963 3.929 -2.678 -0.599 -7.064 -2.339 -16.704 -67.516	0.557 0.111 0.528 0.386 0.811 0.511 0.464 0.792 0.930	444444544

Table 309.

LINEAR CURRELATION BASED ON Y=MX+B
BEIMEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEDUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/77 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/S04	1.167	4.669 3.879	0.970 0.827	6
H/XS504 H/NU3+XS504	0.894 0.557	4-164	0.886 0.969	66633366
H/F	4.357	3.433 11.979	0.592 0.877	6
H/SA HNV/SA	1.619	-6.173	0.877	3
HITA	1.619 1.193 0.552	-6.173 -5.532 -1.107	0.985 0.878	3
XSCA/X5K	6.486	2.036	U.879	6
XSCA/X5M6 XSCA/NU3	4.549 0.417	0.406	0.829 0.874	6
XSCA/XSSU4	0.308	-0,261	0.769	6
XSCA/F LUGH/LUGCM	1.660 -0.412	2.360 1.158	0.569	6
LUGNA/LOGCM	-0.449	1.468	-0.860 -0.694	6
LUGXSK/LUGLM	0.220	-0.190	0.682	b
LUGXLA/LUGCM LUGXMG/LUGCM	-0.615 -0.774	0.549	-0.928 -0.723	6
LUGF/LUGCM	-0.183	0.10/	-0.614	6
LUGNU3/EUGLM LXSSU4/EUGCM	-0.643 -0.559	$\frac{0.864}{1.016}$	-0.824 -0.767	6
\$\$/H	1.056	21.988	0.356	6
SS/F	1.056	39.501 17.263	-0.281	6
5\$/X55U4 \$\$/NU3	1.781	51.065	0.562 0.187	6 6
CUND/H	0.638	2.401	0.849	b
CUND/NU3 COND/X5SU4	0.693	5.788 3.566	0.760	b
CL/NA	0.708 1.136	-0.560	v.968	ь
MG/NA	0.231 0.277 0.358	-0.052	0.989	6
NH4/504 NH4/XSSO4	0.358	-1.274	0.826 0.899	6
NU3/504	0.210	0.505	0.735	6
NU3/XS3()4 F/X55()4	0.688 0.026	0.415	0.821 0.191	6
AMIH/CM	43.218	113.587	0.861	ь
AMTNU3/CM AMTX5SU4/CM	13.700 19.047	68.224	0.546 0.480	6
AWT KOODAY CM	170071	115.013	V • 400	5

Table 310.

LINEAR CURRELATION BASED ON Y=MX+B
BETNEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMTEMICRUEGUIVALENTS/SO.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 12/77 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	LORR.COEF. NO.
H/NU3 H/SU4 H/X3SU4 H/NU3+XSSU4	0.899 0.899 0.936 0.505	16.432 4.451 5.044 9.009	0.743 10 0.948 10 0.965 10 0.903 10
H/F H/SA HNV/SA	-3.889 0.947 0.929	211 2112	-0.180 10 0.994 4 0.994 4
H/TA ASLA/XSK XSCA/XSMG XSCA/NU3	0.672 10.040 7.673 0.682	7.459 4.107 6.297 2.019 -3.842	0.995 4 0.727 10 0.810 10 0.993 10
XSCA/XSSU4 XSCA/F LUGH/LUGCM	0.460 -0.800 -0.265	-5.799 6.033	0.828 10 -0.065 10 -0.730 12
LUGNA/LOGCM LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM	-0.420 -0.226 -1.092 -0.595	1.424 -0.073 0.282 -0.217	-0.450 10 -0.304 10 -0.890 10 -0.443 10
LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM	-0.176 -0.830	-0.018 0.822 1.233 14.399	-0.366 10 -0.893 10 -0.621 10
55/H \$5/F \$5/X5\$U4 \$5/NU3	-0.436 1.243 -8.715 1.344	54.115 16.190	0.556 10 -0.181 10 0.622 10 0.688 10
CUND/H CUND/NU3 CUND/X5SU4	1.344 1.841 0.571 0.684 0.579	25.089 2.998 10.038 4.756	0.862 10 0.862 10 0.902 10
CL/NA MG/NA NH4/504	0.230 0.230 0.204	1.685 0.164 -1.461	0.994 10 0.994 10 0.886 10
NH4/X5504 NU3/504 NU3/XS504 F/XS504	0.229 0.610 0.675 -0.006	-1.127 -4.664 -3.467 0.685	0.874 10 0.857 10 0.835 10 -0.142 10
AMÎH/CM AMÎNU3/CM AMÎXSSU4/CM	144.499 11.619 107.755	63.643 57.616 77.891	-0.142 10 0.647 12 0.223 10 0.528 10

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4 H/XSS04 H/XSS04 H/NU3+XSS04 H/NU3+XSA H/TA XSCA/XSMG XSCA/XSSU4 XSCA/XU3 XSCA/XU3 XSCA/XU3 XSCA/XUGCM LUGXXLA/LUGCM	20000000000000000000000000000000000000	441623 646523	0000005581087078851200003 9977700000558108707888900003 000000000000000000000000000000	
SS/NU3	0.786 2.1467 10.4267 10.4267 10.427 10.425 10.427 1	19.264 19.364 5.9704 3.5429 -0.788 -0.8201 -0.040 213.589	0.980	4

Table 312.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	2.064 1.381	21.132	0.697 0.815	6
H/XS504	1.453	-1.795	0.843	6
H/NU3+XSS04	1.006	-1.796 1.561 43.845	0.854	6
H/F	-4.149 1.102	43.845	-0.281 0.992	6
H/SA	1.102	-0.503 2.740	0.992	6
HNV/SA H/TA	0.874	45.227	0.988 -0.349	6666
XSCA/X5K	-0.019 -0.386	/ 5 00	-0.065	6
XSCA/X5M6	0.665	3.618 -2.043 -3.460 2.856	0.086	6
XSCA/NU3	0.644	-2.043	0.858	666696
XSCA/XSSU4	0.261 2.843 -0.196 0.743 0.372	-3.460	0.577	6
XSCA/F	2.843	1.641	_0.734	8
LUGH/LUGCM LUGNA/LOGCM	0.170	1 4 0 7 1	-0.855 0.855	7
LUGXSK/LUGCM	0.372	0.917 -0.342	V.448	6
LUGXLA/LUGCM	- 0_414	0.607	-0.421	6
LUGXMG/LUGCM	0.109	-0.022	0.212	6
LUGF/LUGCM	-0.085	0.038	-0.166	6
LUGNU3/LUGLM	-0.223	0.977	-0.374	þ
LXSSU4/EUGCM 3S/H	-0.059 -0.084	1.465	-0.163 -0.103	6
55/F	1.449	15.699	0.121	6
55/x5\$64	0.098	13.542	0.070	6 6 6
SS/NU3	-0.421	20.647	-0.175	6
CUND/H	1.085	-22.932	0.912	9
CUND/NU3	0.681	12.156	0.771	6
CUND/X5804	0.475	4.723	0.923 0.968	6
LL/NA Mb/NA	0.927	0.863	0.478	6
NH4/5U4	V. 056	3.703	Ů. 113	6
NH4/x55114	0.028	4.627	0.055	6
403/504	0.028	-1.810	0.653	6
4U3/xS5U4	0.401	-2.030	0.687	6
F/XS5U4 AMTH/CM	0.001 340.779	0.493 57.952	0.010	6
AMTNU3/CM	35.724	97.399	0.554	6
AMTXSSU4/CM	284.377	97.399 10.321	0.978	6

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEUUIVALENTS/SQ.
METEH.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NO3 H/SO4 H/XSSO4 H/NO3+X S SO4 H/F	0.889 0.869 0.902 0.603	18.390 5.004 9.285 1.747 41.648	0.928 0.836 0.771 0.991 0.280 0.973	55555
H/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG	33.096 1.096 1.089 0.771 12.521 2.852 0.368	-0.788 -3.738 -3.633	0.965 0.989 0.665 0.947	44455
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LOGCM	-0.485 -1.357	3.100 8.199 0.700 22.198 1.522 1.324	0.782 0.783 -0.055 -0.495 -0.716	55575
LUGXSK/LUGLM LUGXLA/LUGLM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGLM LXSSU4/LUGCM	-0.177 -1.909 -1.038 -0.284 -0.759	1.522 1.327 -0.1557 0.855 -0.157 1.276	-0.131 -0.900 -0.609 -0.664 -0.597 -0.603) 55555
SS/H SS/F S5/XSSU4 SS/NU3 CUND/H	1.53/ 41.244 1.129 1.648 0.706	-4.611 61.741 20.952 14.061 -0.103	0.733 0.162 0.461 0.820 0.945	55557
CUND/NU3 CUND/XSSU4 CL/NA MG/NA MH4/SU4	0.628 1.041	13.409 7.478 2.265 1.157	0.907 0.740 0.991 0.983 0.922	55555
NH4/XSSIJ4 NU3/XSSIJ4 NU3/XSSIJ4 F/XSSU4 AMTH/CM AM[NU3/CM]	0.265 0.301 0.657 0.601 -0.002 121.254	0.906 1.113 7.883 0.294 238.079 239.113	0.931 0.605 0.492 -0.199 0.535 0.031	らいいいちょくけんいいいいんしゅうじゅういいいんじょうしゅうじゅうじゅうしゅう
	121.254 5.984 93.764	238.079 239.113 228.423	0.535 0.031 0.595	7 5 5

Table 314.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIEH.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 04/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	.TMI-Y	CURR.COEF.	NO.
H/NU3 H/SÚ4	-0.208 0.031	24.668 15.415	-1.000	NNNNRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
H/XSSU4	0.029	15.799	1.000	Ž
H/NO5+XSS04 H/F	0.034 1.182	14.364	1.000	٤
H/SA	0.000	0.000	0.000	0
HNV/SA H/TA	0.000	0.000	0.000	ŏ
XSCA/XSK XSCA/XSMG	4.939	LO DAK	1.000	Š
XSCA/XSMG XSCA/NU3	4.939 3.840 -1.538	39.178 104.824 39.318 23.418 1.333	1.000	٤
XSCA/NU3 XSCA/XSSU4 XSCA/F	0.214	39.318	1.000	ξ
LÜGH/LUGCM	0.112	23.418	1.000	۶
LUGNA/LOGCM	3.549 3.549 -1.5214 8.727 0.112 -0.891		1.000 -1.000 1.000	Ž
LUGXSK/LUGCM LUGXCA/LUGCM	0.924	1.095 1.151 1.930 1.262 0.886 1.293 2.517 576.043	1.000	5
LUGXM6/LUGCM	0.930	i.262	1.000	کِّ
LUGNU3/LUGCM	0.464	V-886	1.000 -1.000 1.000	5
LXSSU4/LOGCM	0.938	2.517	1.300	Ž
SS/H S5/F	-28.190 -33.308	576.043	- (- 0 0 0	3
SS/xSS04	-0.818	191.347 130.661 -119.348 -118.995	-1.000 -1.000	Ş
SS/NU3 CUND/H	5.871	-119.348	1.000	5
CUND/NU3	-1.776	91.568	-1.000	٤
CUND/x5\$U4	0.247	15.738	1.000	ځ
CL/NA MG/NA	0.133	9.227	1.000	۶
NH4/5U4	0.4642 0.4642	11.641	1.000	ş
NH4/X\$504 NO3/\$U4	-0.151	18.150	$\frac{1.000}{-1.000}$	2
NU3/x\$\$()4	-0.151 -0.139	42.581	-1.000 -1.000	ځ
F/xS5U4 AMTH/CM	0.025 201.524 222.071 1476.595	1.822	1.000	٤
AM FNU3/CM	555.071	18.764 -137.128	1.000	<u>ج</u>
AMTX5SU4/CM	14/0.575	-13/.150	1.000	<

LINEAR CURRELATION BASED ON YEMX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 05/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COLF.	NO.
H/NO3 H/SU4	-0.067 0.460	55.112 25.544	-0.025 0.539	5
H/XS504 H/NO3+XS504 H/F	0.461 0.341 -25.892	26.964 25.662 97.109 0.572	0.536 0.458 -0.882	5
H/SA HNV/SA	0.947 1.000 0.555	-/./40	0.999 0.991	5
H/[A XSCA/XSK XSCA/XSMG	0.555 -1.081	17.280	0.565 -0.097 0.971	5
XSCA/NU3 XSCA/XSSU4	0.744 0.377	3.273 -2.355 -6.263 3.986	0.333 0.537 0.283 0.863	<u> </u>
XSCA/F LUGH/LUGCM LUGNA/LOGCM	-1.081 70.744 0.377 6.804 1.087 -0.289 0.120	3.986 1.501 1.416	0.283 0.863	5
LUGXSK/LUGCM LUGXCA/LUGCM		0.075	-0.460 0.102 -0.236	5
LUGXMG/LOGCM LUGF/LUGCM	-0.362 0.257 -0.126	0.159 0.174 1.378 1.766	-0-330	<u>5</u>
LUGNU3/LUGCM LXSSJ4/LUGCM SS/H	-0 241	1.766 29.188 29.766	0.602 -0.357 -0.594 0.079	5
55/F S5/x5SU4 S5/NU3	0.078 2.141 0.027 0.981	29.766 31.811 9.880 61.393	0.073 0.032 0.362	5
LOND/H CUND/NU3	-0.423	61.393	-0.666 0.738	5 5
CÛND/XSSU4 CL/NA MG/NA	0.156 1.128 0.296 -0.357	18.371 27.054 1.210 -0.534	0.496 0.955 0.975	5
NH4/SU4 NH4/XSSU4	#U_301	58.959	-0.307 -0.308 0.394	5
NU3/XXXU4 NU3/XXXU4 F/XXXU4	0.123 0.116 -0.013	16.463 17.282 2.449	0.394 0.368 -0.454	5 5
AMTH/CM AMTNU3/CM	460.410 225.890	2.449 28.358 7.792	0.941 0.835	うらいいんじょういんりん ものりんいいいいいん もいうかんじゅうじょ もいり
AMTX5SU4/CM	501.939	43.196	0.827)

Table 316.

LINEAR CORRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 06/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-1NT.	CORK.COEF.	NO.
H/ND5 H/SU4 H/X5S04 H/ND5+XSS04	1.798 1.086 1.124 0.715	1.546 2.255 3.441 1.373	0.954 0.990 0.993 0.993	9 9 9
H/F H/SA HHV/SA H/TA XSCA/XSK	70.629 0.976 1.016 0.774 10.846	1.545 3.4473 3.4473 21.345 4.845 3.4841 5.3489 3.4841 5.3489	0.998 1.000 0.982	744490
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	10.8493 0.337 0.182 13.853 -0.351	1 246	0.823 0.742 0.664 0.767	79999
LUGNA/LÜGCM LUGXSK/LÜGCM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM	-0.420 -0.728	1.231 -0.216 0.903 -0.331 0.034	-0.703 -0.783 -0.441 -0.611 -0.685	7 9 9 9
LÜĞNUĞ/LÜĞCM LXSSU4/LÜĞCM SS/H SS/F SS/XSSU4 SS/NUĞ	-0.132 -0.5183 -0.5183 -0.3342 0.345 0.5127 0.5127 1.288 0.577	0.034 1.117 1.303 10.398 18.002	-0.633 -0.376 0.842 0.907 0.833 0.845	999994449999999999999999999999999999999
CUND/H CUND/NU3 CUND/XSSU4 CL/NA	0.512 0.927 0.577 1.288	10.216 4.407 5.035 6.114 -4.371 -0.711	0.989 0.950 0.981 0.983	79999
M6/NA NH4/504 NH4/X5504 NJ3/S04 NU3/X5504	0.268 0.276 0.573 0.560 0.014 237.680	-0.711 -0.893 -0.623 -0.259 43.824	0.984 0.971 0.967 0.932 0.930 0.956	7 9 9 9 9
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	237.680 129.673 203.089	43.824 -8.588 26.918	0.936 0.896 0.956 0.907	7999

Table 317.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUNING 07/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURH.CUEF.	NÚ.
H/NO3	2.478 1.308 1.313 0.918 14.350	9.115 -3.907	0.877 0.988	5
H/\$04 H/x\$504	1.313	-2.285	0.988	6
H/NU3+XS5U4	0.918	-2.115	0.984	
H/F	14.350	34.276	0.562	064
H/SA	1.011 0.964 0.803 14.901 17.242 0.162	0.569	1.000 1.000 0.994	4
HNV/SA H/TA	0.964	-11.606	1.000	4
XSCA/X5K	14.901	5.208	0.508	7
XSCA/XSMG	11.242	-0.457	0.508 0.714	6
XSCA/NU3	0.162	7.910	0.350	6
XSCA/XSSU4	0.046 1.920	8.948	0.209	6
XSCA/F LUGH/LUGCM	1.920	8.098 1.256	0.350 0.209 0.459 0.784	9
LUGNA/LOGCM	-0.364	1.199	-0.799	6
LUGXSK/LUGCM	0.691 -0.364 -0.366 -0.792	1.199	-0.573	466666766
LUGXLA/LUGCM	-0.792	1-15/	-0.693	6
LUGXM6/LUGCM	→ () , (¬) ¬	-0.106 0.120 1.253	-0.690	6
LUGF/LUGCM LUGNU3/LUGCM	-0.043 -0.398 0.134	0.150	-0.046 -0.431	666666
LXSSU4/LUGCM	0-134	1.484	0.164	6
587H	0.030	13.661	0.246	6
\$3/H \$\$/F	0.030	14.888 13.477 11.298 14.524	0.094 v.260	6
\$5/x5\$U4 \$\$/NU3	0.042	13-477	ŭ-560	
CUND/H	0.214	11.530	0.626 0.758	5
CUND/NU3	1.102	6.920	0.676	6 7 6
CUND/XSSU4	0.244 0.218 0.218 0.3108 1.5278 0.235 0.235	1 - 629	0.995	6
CL/NA	1.272	-0.952 -0.280 -5.518	0.837	6
MG/NA	0.285	-0.580	0.968	6
NH4/504 NH4/x8504	0.235	-5.223	0.891 0.891	666
NU3/5U4	0.404	0.375	0.862	6
NU3/X\$504	0.403	1.005	v.856	5
F/XSSU4	0.035 389.405	-0.043 2/2.291 263.299	0.668	Ó
AMTH/CM	507.495	2/2.291	0.922	!
AMTNU3/CM AMTX5SU4/CM	38.874 293.176	334.442	0.589 0.916	6 7 6 6

Table 318.

LINEAR CURRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLLAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUMING 08/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-1N1.	CURR.COEF.	NO.
H/SD4 H/SD4 H/XSS04 H/NO3+XSS04	1.597 1.717 1.757 0.848 33.050	23.468 -17.241 -15.745 4.108	0.997 0.983 0.987 0.999 0.944	4444
H/F H/SA HNV/SA H/TA XSCA/XSK	-0.400 -0.441 -0.060	41.140 68.695 67.609 57.509	-0.143 -0.149 -0.028 0.716	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	5.028 0.302 0.307 6.319	2.616 2.157 -4.252 5.465 1.793	0.962 0.970 0.887 0.930 -0.702	44444
LUGNA/LOGCM LUGXSK/LUGCM LUGXCA/LUGCM LUGF/LUGCM LUGF/LUGCM	-0.264 -0.265 -0.723 -0.092	1.246 -0.161 0.880 -0.002 0.073	-0.525 -0.395 -0.265 -0.518 -0.350	4 4 4 4
LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F 35/XSSU4	-0.723 -0.355 0.095 -3.085 0.156	1.337 1.665 14.077 20.424 12.997	-0.707 -0.801 0.156 -0.145	4 4 4 4
SS/NU3 LUND/H CUND/NU3 LUND/XSSU4 CL/NA	0.152 0.561 0.898 0.980 0.747	16.274 -1.535 11.599 -10.141 4.189	0.157 0.989 0.988 0.970 0.998	4 4 4 4 4 4
MG/NA NH4/504 NH4/xS504 NH3/xH4 NU3/xS504	0.169 0.675 0.720 1.057 1.082	1.361 -18.774 -19.360 -24.743 -23.807	0.946 0.886 0.927 0.969 0.972	4 4 4 4 4
F/XSSD4 AMTH/LM AMTNU3/CM AMTXSSU4/CM	0.046 233.827 17.852 193.000	-1.450 446.750 252.839 297.766	0.911 0.929 0.282 0.973	4 4 4

LINEAR CURRELATION BASED ON Y=MX+B
BETHEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 09/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-1N1.	CORR.COEF.	NO.
H/NU3 H/SU4	3.722 1.048	-14.156 -2.439	0.990	777173337177777777777777777777777777777
H/XS504 H/NU3+XSS04	1.147 0.888	-0.036	$0.970 \\ 0.981$	1
H/F H/SA	5.579 1.054	-0.686 -0.686	0.226	3
HNV/5A H/TA	1.001	-0.894 -3.527	0.994 0.983	3
XSCA/XSMG	-12.546 -2.113	20.731	-0.262 -0.154	7
XSCA/NU3 XSCA/XSSU4	-1.336 -0.273	-0.894 -3.827 22.410 20.731 31.139 22.233 18.921	-0.377 -0.244 -0.274	7
XSCA/F LUGH/LUGCM	-12.546 -2.113 -1.336 -0.273 -6.375 -0.527	10333	0.418	7
LUGXSK/LUGCM	-0.156	1.423	-0.641 -0.226	7 7
LUGXLA/LUGCM LUGX MG/LUGCM	-0.581 -0.657 0.130	0.682	-0.467 -0.742	7 7
LOGF/LUGCM LOGNU3/LUGCM	0.165	0.049	0.260 0.283	7 7
EXSSU4/EUGLM SS/H	0.039	1.320 51.596	0.051 0.023	7 7
\$5/F \$\$/X5\$U4	-16.071 0.311 0.255	1.040 1.320 51.596 63.862 44.342	-0.350 0.141	7 7
SS/NU3 CUND/H	0.46/	10.214	0.036 0.854	7 7
CUND/NU3 CUND/X5SU4	1 759	3.33v 8.558	0.857 0.920	7
CL/NA MG/NA	0.594 0.905 0.214 0.187 0.182	6.610	0.97≥ 0.991	7
NH4/3U4 NH4/XS504	0.187 0.182	1.659 -1.536 -0.479	0.938 0.872	7
NU3/504 NU3/x\$504	0.278 0.304	3.249 3.911	0.928 0.966	7 7
F/XSSIJ4 AMTH/CM	0.003	0.601 -45.199	0.056 0.692	7 7
AMINU3/CM AMIXSSU4/CM	405.293 153.709 303.809	-19.147 -17.502	0.789 0.634	7

Table 320.

LINEAR CURRELATION BASED ON Y=MX+B
HETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10//8 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-101.	CURR.CUEF.	NO.
H/NU3 H/SU4 H/XSS04 H/NU3+XSS04 H/F H/SA H/IA XSCA/XSM6 XSCA/XSCA/XSM6 XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/XSCA/	72909985857565810001359978585656581000135997858565658100013001300130013001300130013001300130	1.7482241 1.747822441 1.747822441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.75424441 1.754244444 1.754244444 1.754244444 1.75424444 1.75424444 1.75444444 1.7544444 1.7544444 1.7544444 1.7544444 1.754444 1.754444 1.754444 1.754444 1.754444 1.7544 1.75444 1.75444 1.75444 1.75444 1.75444 1.75444 1.75444 1.7544	7704 7704	N 77717333717777777777777777777777777777
CUND/H CUND/NU3 LUND/XSSU4 LL/NA MG/NA NH4/SU4 NH4/XSSU4 JH3/SU4 NH3/XSSH4 F/XSSH4 AMTH/CM AMTNU3/LM AMTNU3/LM	0.245 0.734 0.449 0.994 0.231 0.237 0.237 -0.007 74.276 44.100	26.911 22.815 22.791 22.795 0.055 -2.008 -0.704 11.571 279.695 105.969 221.697	0.565 0.737 0.991 0.994 0.822 0.925 0.678 -0.581 0.574 0.463	777777777777777777777777777777777777777

Table 321.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 11/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF.	NO.
M/NU3 H/SU4	1.150	11.043	0.982 0.714	5 255533355555575554255555557 255555555755
4/x5504	0.712	14.298	0.337	5
11/NU3+XSSU4 H/F	0.466 21.748	11.962 15.458	0.921 0.957	کِ
4/5A	0.963	1.436	0.985	3
HNV/SA	1.021	-4.794	0.972	3
H/TA XSCA/XSK	0.353	22.885 3.146	0.964 0.473	3
XSCA/XSM6	4.294 0.157	4.940	V.155	5
X3CA/NU3 X3CA/X5SU4	0.191 0.108	2.836 2.836	₩•672 ₩•676	5
XSCA/F	3.433	2.524	0.925	5
LUGH/LUGLM	-0-722	2.529	-0.913	7
LUGNA/LUGCM LUGXSK/LUGCM	-0.382 -0.732	1.589 -0.730	-0.133 -0.402	2
LUGXLA/LUGLM	-1.260	U.093	-0.334	5
LUGX 16/LUGLM	-0.407	0.020	-0.160	5
LUGF/LUGCM LUGNU3/LUGLM	-0.595 -1.593	-0.239 0.417	-0.666 -0.942	5
LXSSU4/LUGUM	-1.039	0.820	-0.742	5
33/H 55/F	1.509	81.225	V.262 V.465	2
55/x8504	3.130	83.871 53.197	0.638	5
55/NU3	2.003	95.13/	0.297	5,
CUMOZH CUMOZNU3	0.724	11.004	0.714 0.646	5
CUND/XSSU4	0.809 0.785	12.285	0.364	Š
LL/NA 46/NA	0.222 0.222	5.000	0.795 1.000	2
VH4/504	0 - 0 0 2	0.489	0.046	5
704/x8504 103/504	-0.010	U.786 2.051	-0.182 0.771	5
903/304 903/355034	0.418 0.652	2.044	0.847	5
F/xS5U4	0.034	- 0.081	0.905	5
AMTH/CM AMTNUS/CM	36.407 -81.528	85.582 85.137	0.281 -0.670	[
AMTXSSU4/CM	-48.000	96.381	-0.256	5

Table 322.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 12/78 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	0.772	19.319	0.565	4
H/XS504	0.337 0.420	7.728	0.656	4
H/NU3+XSS04	0.280	8.032 8.576	0.840	4
H/F	1.656	15.488	0.319	4
H/SA	0.000	0.000	0.000	4 1 1 1 4
HNV/SA	0.000	0.000	0.000	ļ
HZTA	0.000	0.000	0.000	1
ASCA/XSK	46.494	-34.449	0.991	4
XSCA/X5M6	5.321	0.271	0.655	4
XSCA/NU3 XSCA/XSSU4	1.460 0.573	-4.206	0.989 0.894	4
XSCA/F	4.955	-3.528 855.5	0.743	4
LOGH/LUGUM	-0.261	2.686	-0.931	4
LUGNAZLOGEM	0.182	1.665	-0.931 0.377	4
LOGXSK/LUGCM	-0.105	-0.032	-0.909	4
LUGXCA/LUGCM	-0.518	U.795	-0.880	4
LUGXMG/EUGLM	0.087	0.138	0.137	4
LUGF/LUGCM	-0.164	0.182	-0.509	4
LUGNU3/LUGCM	-0.345	0.897 1.252	-0.963	4
LXSSU4/LUGCM	-0.415	1.252	-0.996	4
\$\$/H	-4.288	150.731	-0.641	4
\$\$/F	17.488	45.500	0.503	4
\$\$7,45504	-0.787	91.981 77.289	-0.235	4
\$\$/NJ3	-0.414	77.289 19.822	-0.053	4
CUND/H	-0.025 0.535	13.986	-0.030 0.568	4
CUND/NU3 CUND/X5804	0.1/6	15.149	0.435	4
CL/NA	0.917	10.496	0.993	4
MEZINA	ŏ. į 98	2.518	ŭ.978	4
WH4/SU4	ŭ.719	-12.012	0.991	4
6H4/XS304	0.680	-6.165	0.961	4
VU3/504	0.429	-3.108	U.969	4
%U3/XS5()4	0.414	0.155	0.961	4
F/XS3U4	_0.069	-0.007	0.714	4
AMTH/CM	74.530	62.686	0.988	4
AMINU3/CM	35.451	31.024	0.986	4
AMTXSSU4/CM	65.559	86.240	0.976	4

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 01/79 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SU4	1.160	9.964 22.283	0.964 0.184	らかかかかい こうかんかんかい かいかん かんかん かんかん かんかん かんかん かんかん かん
H/X5504	1.378	3.422	0.562	5
H/NU3+XS504	0.934	-2.006	0.981	٤
H/SA	1 - 1/0 /	25.563 2.796	1.000	ž
HNV/SA H/TA	0.038	0.455	1.000	Š
XSCA/X5K	-1.986	0.000 5.398	0.000 -0.824	5
XSCA/XSMG	1 456	1.648	0.900	5
XSCA/NU3 XSCA/XSSU4	0.101 0.309 0.309 -0.236	3.012	0.588 0.885	ž
XSCA/F	0.309	4.365	0.000	5
LUGH/LUGCM LUGNA/LUGCM	-0.236	3.012 -0.595 4.365 1.389	-0.342 -0.564	5
LOGXSK/LUGCM	-0.680 0.384	-0.240	0.659	5
LUGXLA/LUGLM	-0.486	0.731	-0.823	5
LÜGXMG/LÜGCM LÜGF/LÜĞCM	-0.310	0.240	-0.385 -0.385	2
LUGNU3/LUGCM	-0.604	0.000	-0.644	5
LXSSU4/LUGCM SS/H	0.943	1 270	-0.490 0.063	5
SS/F	0.943	133.107 157.203 -279.149 175.998 17.734	0.000	5
SS/XSSU4	27.162	-279.149	0.738	Š
SS/NU3 LUND/H	-1.397 0.495	17.754	-0.077 0.254	5
CUND/NU3	0.495 0.258	26.926	0.110	5
CUND/X5SU4 CL/NA	3.9/0	26.926 -33.384 -3.039 0.390 3.593	0.531 1.000	۶
MG/NA	U.219	0.390	1.000	Š
NH4/5U4	-0.012	3.593	-0.118	5
MH4/x8504 MU3/504	0.161	0.633	0.364 0.023	5
NU3/X\$504	0.740	1.567	0.363	5
F/XSSU4 AMTH/CM	0.000	237.289	0.363 0.932	3
AMINU3/CM	10.491	206.595	0.286	5
AMIX55J4/CM	87.119	123.183	0.975	5

Table 324.

LINEAR CURRELATION BASED UN Y=MX+B
BEIWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/79 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CORR.COEF.	NO.
H/NU3 H/SU4	2.052 0.354	13.853 26.185	0.668 0.753	4
H/XS304	0.647 0.537	15.049	0-893	4
H/NU3+XSS04	9.537	11.174	0.883	442224
H/F H/SA	7.444	31.208 323.214 1.704	-1.000	ž
HNV/SA	-4.058 0.935	1.704	-1.000	₹
HITA	-1.147	154.997	-1.000	2
XSCA/XSK XSCA/XSMG	0.937 -1.1273 -0.4277 0.0275 -0.3279	11.455	-0.466 0.627	4
XSCA/NU3	ŭ.277	5.662	0.701	4
X5CA/X55U4	0.075	6.544	0.808	4
XSCA/F LUGH/LUGCM	-0.323	12.029	-0.246 -0.583	4
LUGNA/LOGCM	-1.167	12.029 1.557 1.558	-0.985	4
LUGXSK/LUGLM	-0.910	-11	-0.589	4
LUGXCA/LUGLM		0.978 0.108 0.255 1.151	-0.615	4
LUĞXMG/LÜĞCM LUĞF/LUĞCM	-0.911 -0.9270 -0.367 -0.557 -27.147 4.224 32.433	0.108	-0.990 -0.274	4
LUGNU3/LUGCM	-0.367	1.151	-0.958	4
LXSSU4/EUGCM	-ŏ.557	1.507 -19.544	-0.635	4
\$\$/H	3.963	-19.544	0.349 -0.235 0.514	4
55/F 55/x55U4	-2/-14/	275.577 -59.308 -436.970	0.514	4
55/NU3	32.433	-436.970	0.930	4
CUNU/H	V = 0 0 V	-1.939	0.417	4
LUND/NU3	6.041 0.731	-72.065	0.931	4
CUND/X58U4 CL/NA	1.451	1.632 2.197 0.897	0.478 1.000	4
MG/NA	1.057 0.225 0.030	0.897	1.000	4
NH4/5U4	0.030	11.548	0.223	4
NM4/X55()4	0.126	6.345	0.612	4
NU3/5U4 NU3/X5504	0.147	8.642	0.960 0.766	4
F/XS5U4	0.026	1.459	ŭ.368	4
AMIH/CM	0.026	210.136	0.368 0.314	4
AMINU3/CM	95.996 85.502	39.448	0.913	4
AMTX5SU4/CM	02.76	250.944	0.163	4

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MILRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/79 AT KSC SITE 13 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/SO4 H/XSSO4	-0.214 0.210 0.218	45.512 12.359 15.495	-0.254 0.520 0.428	うわりょうしょうりょうりょうりょうりょうりゅうりゅうしゅうしゅう
H/NO3+XS504	-23-306	26.269	0.181 -0.993	3
H/SA HNY/SA H/TA	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	1 1
XSCA/XSK XSCA/XSMG	-4.454 3.783	75 A66	-0.193	Š
ASCA/NU3 ASCA/XSSU4 ASCA/F	1.958 0.722 32.456	25.598 -32.785 2.250 -47.831	0.972 0.593 0.578	3
LOGH/LUGCM LOGNA/LOGCM	0.025 -0.725	1.412	0.041 -0.921	<u> </u>
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM	-0.536 -1.246 -1.171	-0.320 0.764 0.096	-0.562 -0.968 -0.995	3
LUGF/LUGCM LUGNU3/LUGCM	0.051 - 0.552	0.096 0.547 1.311	0.212 -0.966	3
LXSSU4/EUGLM SS/H SS/F	-0.618 4.798 -101.311	1.510 30.128 552.229	-0.995 u.794 -0.714	3 3
58/X\$8U4 38/NU3 CHND/H	-101.311 2.736 1.968	-44.895 97.395 21.837	0.889 0.387 0.727	3
CUND/NU3 CUND/XSSU4	0.878 0.487 0.572 0.983	27.735 1.768	0.479 0.932	3
CL/NA MG/NA NH4/504	0.983 0.243 0.120	11.793 4.141 1.814	0.497 0.490 0.947	3
NH4/X\$504 NO3/SU4	0.145 0.333	1.787	0.908 0.694	3,
4U3/XS504 F/XS504 AMTH/CM	0.463 -0.007 256.181	14.999 9.585 4.111 15.719	0.766 -0.315 0.994	3
AMTNU3/CM AMTX5SU4/CM	99.196 137.497	68.956 127.118	0.988 0.996	3 3

Table 326.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARL MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUMING 11/77 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/SO4 H/XS504	0.899 0.457 0.760	4.193 3.817 3.729 3.900 8.349	0.992 0.992 0.950	3 3 3
H/NO3+XS504 H/F H/SA	0.416	0.000	0.974 0.000 0.000	3 1
HNV/5A H/TA XSCA/XSK	0.000 0.000 -3.036	0.000 0.000 0.251	0.000 0.000 -0.355	1 3
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F	0.000 0.000 -3.036 1.861 0.279 0.247 0.247	-0.270 -0.524 -0.735 0.767	0.988 0.994 0.997 0.000	3331
LUGH/LUGLM LUGNA/LUGCM LUGXSK/LUGCM	-0.361 -0.834 -1.042	1.731	-0.966 -0.990 -0.566	333
LUGXLA/LUGCM LUGXMG/LUGLM LUGF/LUGCM	-0.520 -0.446 0.000	0.25/ 0.071 0.000	-0.923 -0.719 -0.719	333
LUGNU3/LUGLM LXSSU4/LUGLM SS/H SS/F	-0.806 -0.697 10.345	0.802 0.888 -45.096 41.281	-0.780 -0.663 0.994	3
SS/XSSU4 SS/NU3 CUND/H	10.345 7.575 9.164 1.699	-4.742 -1.095 -5.349	0.000 0.909 0.971 0.999	3 3 3
CUND/NU3 COND/X5SU4 CL/NA	9.164 1.699 1.520 1.278 1.028	1.803 1.072 1.766	0.987 0.939 0.999	333
MG/NA NH4/504 NH4/XS504 NH3/504	0.28 0.221 0.087 0.150 0.508 0.867	0.075 0.433 0.380 -0.419	1.000 0.996 0.995 1.000	3334
NU3/X5504 F/X5504 AMTH/CM	52.210	-0-645	0.982 0.982 0.977	ŊŊŊŊŊ ਜ਼ਜ਼ਜ਼ਸ਼ਗ਼ਗ਼ਗ਼ਸ਼ਸ਼ਗ਼ਸ਼ਸ਼ਸ਼ ਖ਼ਸ਼
AMINU3/CM AMIX5SU4/CM	15.584 33.464	0.000 42.232 35.015 19.239	0.547 0.596	3

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 12/77 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF. NO.
H/NU3 H/S04 H/XS504 H/NO3+XS504 H/F H/SA HNV/SA	0.748 0.734 0.910 0.553 -4.447 0.857 0.810	21.185 4.871 3.890 7.982 29.254 8.653 4.745	0.455 9 0.892 9 0.948 9 0.836 9 -0.049 9 0.970 6
H/TA XSCA/XSK XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	0.625 3.935 0.34.62 0.2465 0.076	5.851 2.115 -1.638 -2.433 -2.023 4.032 1.328	0.960 9772 9772 9772 9772 99999999999999
LUGNA/LOGCM LUGXSK/LUGLM LUGXLA/LUGLM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-0.465 -1.276 -0.777 0.093	1.474 -0.181 -0.254 -0.015 0.671 24.894	0.051 9 -0.629 9 -0.806 9 -0.429 9 0.315 9 -0.745 9 -0.386 9
95/F 95/X95U4 95/NU3 CUND/H CUND/NU3 CUND/X55U4 EL/NA	-10.572 -10.50 -106.337 -106.337 -106.337 -10.358 -10.606	61.551 19.369 41.142 -0.416 13.367 4.076 3.747	0.214 9 0.840 11 0.523 9 0.794 9
MG/NA NH4/5114 NH4/X5504 NU3/X6504 NU3/X6504 F/X65014 AMTH/CM AMTNU3/CM AMTNU3/CM	0.213 0.106 0.143 0.313 0.384 -0.001 240.234 10.012 187.106	1.002 0.162 -0.317 0.139 -0.139 23.268 48.821 49.918	0.997 9.995 9.522 9.604 9.626 9.657 9.657 9.657 9.657 9.657 9.657 9.6597

Table 328.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	2.392	-0.933	U.949 0.942	٤
H/XS504	1.053	-10.059 -0.872 -6.531	0.957 0.956	څ
H/NO3+XSS04 H/F	0.733 0.733	34.029	0.000	5
H/SA	0.000	0.000	0.000	1
HNV/SA H/TA	0.000	0.000	0.000	i
XSCA/XSK	19.054	6.668	0.418	5
XSCA/X5MG XSCA/NU3	4.412	-3.096 10.151	0.978	ζ
XSCA/XSSU4	4.412 0.305 0.133 0.133	9.190	0.978 0.371 0.371	5
X5CA/F LUGH/LUGCM	-0.133 -0.096	14.610	0.000 -0.146	5
LUGNA/LUGCM	-0.683	1.491	-0.714	<u>Š</u>
LUGXSK/LUGCM LUGXLA/LUGCM	-0.074 -1.538	-0.080	-0.150 -0.831	ጀ
LUGXMG/LUGCM	-0.914	0.596 0.358	-0.929	5
LUGF/LUGCM LUGNU3/LUGCM	0.000 -0.568	0.000	-0.929 -0.560	5
LXSSU4/LUGCM	-0.460	1.428 33.385	-0.577	5
SS/H SS/F	0.460 0.460	33.395	0.567	5
\$\$/x\$\$U4	0.690 1.569	49.028 20.929 25.813	0.000	5
SS/NU3 CUND/H	1.589 0.330	25.613 13.057	0.777 0.818	5
CUNU/NU3	U.925	8.085	0.974	5
CUND/XS804	0.408 0.809	4.995	0.984	٤
CL/NA MG/NA	0.245	4.814	0.991	5
Nn4/5U4 NH4/XS504	0.181	1.655	0.969 0.958	5
103/3014	0.191	2.089 -3.843	0.994	5
MU3/XS5(14 F/X55U4	0.434	-3.080	0.995 0.995	5
AMTH/CM	128.162	127.927	0.467	6
AMINU3/CM AMIX5SU4/CM	3.485 42.749	99.905	0.034	ういういい キー・アックング もういう ういいいういいい もうのうりょうしょう もっち

LINEAR CURRELATION BASED ON Y=MX+B
BETNEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.CUEF.	NO.
H/NU3 H/SQ4	1.553	29.141 15.175	0.782 0.423	かかりかからかがからかかかかがかかかかかかかかかかかかかかかかがなかがないがないがないがないがないがないがないがないがないがないがないがないがないが
H/XS504 H/NU3+XS504	1.423	-1.754 0.289	0.615 0.831	5
M/F H/SA	-1.560 0.875	44.843	0.831 -0.127 0.990	5
HNV/SA H/TA	1.047 -1.560 0.875 0.939 0.745	-0.594	0.775	5
XSCA/X5K	0.607	3.245	0.968	5
XSCA/X5MG X5CA/NU3	1.641 0.311	0.575	0.110	5
XSCA/XSSU4 XSCA/F	-0.012	3.932	-0.015 0.803	Š
LUGHZLUGÇM	-0.123	44.8894554 47.359452 -1.22.1752 1.8667	-0.700	ğ
LUGNA/LÜĞÜM LUGXSK/LÜĞÜM	1.641 0.311 -0.012 -0.123 -0.241 -0.645 -0.240	-0.024	0.256 -0.607	5
LUGXCA/LUGCM LUGXMG/LUGCM	-0.240 0.142	0.491 -0.116	-0.177 0.304	5
LUGF/LUGCM LUGNU3/LUGCM	0.093 -1.030	0.060 1.104	0.304 0.169 -0.711	٤
LXSSU4/EUGCM	-0 01A	1.505 49.398	-0.067	ş
\$\$/H \$\$/F	-0.559 -3.238	26.495	-0.383 -0.181	2 2
\$\$/X\$\$U4 \$\$/NU3	1.431	26.495 -21.254 27.782	0.424 -0.108	5 5
CUND/H CUND/NU3	0.475 0.749	6.459	0.528 0.877	9
CUND/XSSU4	0.796	-4.417	0.801	ş
CL/NA MG/NA	1.078 0.228 -0.128	-4.417 0.876 0.554 10.384	0.989 0.992	<u>ي</u>
NH4/504 NH4/xS504	-0.205	12.584	-0.229 -0.315	5
VU3/5U4 VU3/XS5U4	0.341	-2.189	0.343 0.435	5
F/XSSU4 AMTH/LM	- 0.086	-6.702 3.298 57.527 145.953	-0.457 0.983	ş
AMTNU3/CM	355.808	145.953	0-010	၌
AMTXSSU4/CM	334.160	-29.851	0.977	7

LINEAR CURRELATION BASED UN Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 03/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SÖ4	0.994 21.659	10.408	1.000	ふうりうり チャーかうけいりいかかり うちりち ううりり ううりりりりり ううりょうりょうしょうしょ かんりょう アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア
m/xS504	21.659	-418.9/6	0.964	5
h/NO5+X\$\$04 H/F	158.974 0.000 0.000 0.000 7.339	-4.885 44.694	1.000	ζ
H/SA	0.000	0.000	0.000	ĩ
HNV/SA	0.000	0.000	0.000	1
H/TA XSCA/XSK	0.000 7.339 3.627	0.000 4.160	0.000 0.787	\$
XSCA/XSM6	3.0//	-0.521	0.937	5
XSCA/NU3	0.009	5.411	0.937 0.580 0.767	5
XSCA/XSSO4 XSCA/F	0.009 0.326 3.175 -1.561	-0.171 4.181	V:579	3
LUGH/LUGCM	-1.561	4.181 1.530	-0.916	5
LUGNA/LOGCM	-1.028	1.197	-0.887 0.204	٤
LUGXSK/LUGCM	0.144 -1.064	-0.142 0.571	-0.811	3
LIIGXMG/LUGCM	-0.706	0.571	-0.726	5
LUGF/LUGCM	-0.361	0.028	-0.671	5
EUGNU3/LUGCM EXSSU4/LUGCM	-1.922 -0.494	1.243	-0.930 -0.991	5
5S/H	0.099 14.599 2.986	1.259 15.914 21.272 -30.716	0.944	5
\$5/F	14.599	21.272	0.376	ځ
\$\$/x\$\$U4 \$\$/NU3	0.098	16.977	0.991 0.942	5
CUNDIA	0.413	4.211 5.516	1.000	5
CUND/NU3	0.411	5.516	1.000	ځ
CUNU/XSSU4 CL/NA	0.413 0.411 11.519 1.376 0.268	-170.029	0.968 0.976	ξ
MG/NA	0.268	-5.245 0.250 -3.729	0.996	5
NH4/504	0.471	-3.729	0.919	5
NH4/X5504 NU3/504	21.761	-5.117 -367.300 -431.380 0.081	0.922 0.960	3
40 3/x5504	27.892	-431.380	0.963	<u> 5</u>
F/XSS()4	0.471 0.603 21.761 27.892 0.035	0.081	0.455	5
AMTH/CM AMTNU3/CM	-453.619	910.924	-0.510 -0.609	5
AMTX55U4/CM	94.612	74.084	0.987	5

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 05/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SU4	0.020	54.041	0.133 -0.056	4
H/X\$504	-0.042	35.518 36.163 34.055	-0.096	4
H/ND3+X8804 H/F	0.008	34.055	0.074	4
H/SA	0.509	34.231 17.709	0.090 0.899	4
HNV/SA	0.621	8_091	0.934 0.915	4
H/TA XSCA/XSK	0.621 0.261 1.324	18.842	0.915 0.710	4
XSCA/XSMG	4.689	18.842 8.336 5.513	0.973	4
XSCA/NU3	0.142	7.025	0.829	4
XSCA/XSSU4 XSCA/F	0.446 1.677	-5.646 H 785	0.901	4
LUGH/LUGCM	0.662	7.025 -5.646 8.785 1.279 1.338	0.472 0.526	6
LUGNAZLIGEM	-0.087	1.338	-0.679	4
LUGXSK/LUGCM LUGXLA/LUGCM	-0.597 -0.312	0.200 1.049	-0.691 -0.932	4
LUGXMG/LUGCM	-0.651 -0.285 -0.516 -0.160 0.928	0.043 0.187 1.411	-0.967	4
LUGF/LUGCM LUGNU3/LUGCM	-0.205	0.167	-0.702 -0.857	4
LXSSU4/LUGCM	-0.160	1 5 8 1	-0.890	4
\$5/H	0.958	-6.603	0.483	4
\$\$/F \$\$/x\$\$04		2-918	0.909 0.724	4
SS/NU3	0.242	-6.602 18.327 2.918 18.742	0.836	4
CONDIA	-1.223	11.142	-0.871	6
CÜND/NU3 CUND/X5SU4	0.605 0.2423 -1.223 0.492 1.335	14.630	U.984 U.926	4
CL/NA	3.025 0.512	-21.483 -39.730 -5.351 -117.705	0.993 0.981	4
MG/NA NH4/SO4	0.512	-117-705	0.981 0.898	4
NH4/XS504	4.164	-115-54/	0.982	4
MU3/5U4	2.680	- 78.499	0.982	4
NU3/XS504 F/XS5U4	2.810	-76.980 -2.867	0.974 0.805	4
AMTH/CM	367.792	-2/.518	J.990	64
AMTNU3/CM AMTX5SU4/CM	133.164	94.169 53.277	0.958 0.991	4
· · · · · · · · · · · · · · · · · · ·		3300011	44//4	•

Table 332.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARL MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 06/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.CUEF.	NO.
H/NU3	5.648	8.101	0.954	9
H/SU4	1.412	-6.300	0.963	99997779999999999999
n/x3504 h/n03+x8804	1.436	-3.916 -1.617	0.970 0.981	3
H/f	0.968 17.880	51.139	0.167	ď
n/SA	17.880	-7.63ý	ŏ.983	Ź
HNV/5A	0 - 962	-3.223	U.981	7
HITA	0.526 10.990	14.109	0.663	7
XSCA/X5K	10.990	-0.550	0.925	9
XSCA/X5M6	7.759 0.315 0.173	0.280 0.811 -0.790	0.744 0.819	3
XSCA/NU3 XSCA/XSSU4	0 - 3 1 3 0 - 1 7 3	-0.790	0.855	3
XSCA/F	5.055	5.628	ŭ.Ž09	ģ
LUGH/LUGCM	-0.346	5.628	-0.435	9
LUGNA/LUGCM	-0.636	1.40/	-0.850	9
LUGX5K/LUGCM	-0.100 -0.184	-0.284 0.729	-0.116	3
LUGXCA/LUGCM	-0.104 -0.587	-0.102	-0.209 -0.505	ă
LUGXMG/LUGCM LUGF/LUGCM	0.027	-0.067	0.086	Ž,
LUGNUS/LUGCM	-0.201	1.176	-ŭ.227	ģ
LXSSJ4/LDGCM	-0.380	1.626	-0.490	ġ
\$5/H	-22.577	24.705	0.036	9
SS/F	-22.577	30.917	-0.451	9
35/x55J4	0.082	22.244	$0.119 \\ -0.141$	9
55/NU3 CUND/H	0.448	28.896 3.270	0.979	3
LUND/NU3	1.171	7.496	ŭ.908	ģ
CUND/X55U4	0.658	1.959	0.970	9
UL/NA	1.063	1.959	0.948	9
MG/NA	0.530	9.351	0.485	9
NH4/SU4 NH4/XSSU4	0.272 0.281	-3.185	0.762 0.780	3
NU3/3U4	0.473	-2.913 -3.083	0.909	3
1103/XSS(14	Ŭ.487	-2.529	ŭ.927	ģ
F/X35U4	0.001	0.177	0.099	999999999
AMIH/CM	288.588	322.685	0.862	9
AMINU3/CM	89.869	127.026	0.790	9
AMIX5SU4/CM	167.542	345.291	0.832	7

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUHING 0//78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NO.
H/NU3 H/SU4	2.059	19.383 13.330	0.817 12 0.895 12
n/xS504	1.071	12.475	0.921 12
H/NU3+X\$\$04 H/F	0.831 -1.994 0.961	1.361	0.963
H/SA	0.961	58.058 3.921	-0.080 12 0.995 11
HNV/SA		-0.495	0.992 11
H/TA XSCA/X5k	0.134 0.134 1.795	45.408 5.542	0.670 11
XSCA/XSMG	1.795	4.866	0.314 12
XSCA/NU3	0.228	1.625	0.475 12
XSCA/XSSU4 XSCA/F	0.088 1.181	2.113	0.399 12
LUGH/LUGCM	0.233	1.651	0.131 12 0.314 12 0.475 12 0.399 12 0.249 12 0.577 13
LUGNA/LOGUM	-0.390 -1.064	1.625 2.113 4.985 1.651 1.253	-y.658 12
LUGXSK/LUGCM LUGXLA/LUGCM	-0.482	-U.UOZ	-0.826 12 -0.564 12
LUGXM6/LUGUM	-0.974	-0.134 -0.028 1.527 16.622 23.971	-0.664 12
LUGF/LUGLM	-0.027	-0.058	-0.052 12
LUGNU3/LUGCM LXSSU4/LUGCM	0.014	1.527	0.029 12 12 851.0
SS/H SS/F	9.085 -3.824 0.379	16.622	0.098 12
SS/F SS/X55U4	-3.824	23.971	0.098 12 -0.175 12 0.373 12
\$\$/NU3	0.092	19.787	0.042 12
CUND/H	0.235	17.836	0.492 13
CUND/NU3 CUND/xSSU4	0.092 0.235 0.949 0.536	11.403	0.790 12 0.967 12
CL/NA	1.177	-1.964	ŭ.993 iž
MGZNA	0.236	-0.040 7.206	0.971 12
NH4/SU4 NH4/XSSO4	-0.014	7.509	-0.032 12 -0.049 12
103/504	V.201	7.509 5.959	V.633 12
NU3/XSS()4 F/XSS()4	0.302	5.6/1	11122222222222222222222222222222222222
AMIH/LM	-0.007 723.697 179.542	-231.492	-0.158 12 0.941 13
AMTNU3/CM	179.542	-4.249	0.920 12
AMTX5SU4/CM	566.089	-258.963	0.954 12

Table 334.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4 H/SU4 H/XSSU4 H/XSSU4 H/XSSU4 H/YSA H/YSA H/YSA H/YSA H/YSA H/YSA KXSCA/XSB XXSCA/XSU3 XXSCA/XSU3 XXSCA/XSU3 XXSCA/XSU4 XXSCA/F LUGHA/LUGCM LUGXXK/LUGCM LUGXXXIII SS/F SS//TUX	1.37113758585403854026641139858654026641111982865402664111198286540266411119828	72443305306129250324 72443305306129250324 72443305306129250324 72443305306129250324 72431561110000111716000111716000111716000111716000117160001720222	8815809375210702130824343 2758081998457210702130824343 2768081999845774130824343 0000000000000000000000000000000000	N 5555544455555555555555555555555555555
	0.188 0.468 1.0446 0.225 0.057 0.157 0.158 0.000 346.959 113.454	21.797 16.797 12.664 0.313 -1.099 5.815 11.5462 0.104 177.706 41.172 111.020	0.523 0.527 0.527 0.999 0.3526 0.333 0.998 0.998 0.998 0.998	うりいろうちょういんちゃ

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM#
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/ND3 H/5U4 H/XSS04	2.402 0.922 1.226	17.037 19.747 13.765	0.846 0.928 0.988	๚ฅ๚๛๛๛๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚
H/N03+XSS04 H/F H/SA	0.845 66.809 0.982	13.765 12.349 40.759 5.585	0.962 0.793 1.000	3 2
HNÝ/SA H/TA XSCA/XSK	0-446	2.048 6.924 2.560 2.773	1.000 1.000 0.891	25.
XSCA/XSMG XSCA/NU3 XSCA/XSSU4	0.377 0.151	2.773 0.402 0.796	0.868 0.984 0.974	3
XSCA/F LUGH/LUGCM	0.065 2.307 -0.077	2.899 1.796	-0.171	3
LUGXSK/LUGCM LUGXLA/LUGCM	-0.907 -0.671 -0.162	-0.342 0.538	-0.996 -0.771 -0.426	3
LUGXMG/LUGCM LUGF/LUGLM LUGNU3/LOGLM	-0.937 0.201 -0.215	-0.060 -0.066 1.304	-0.871 0.937 -0.570	3 3
EXSSU4/EUGCM SS/H SS/F	-0.139 1.466	1.564 -1.587 131.098	-0.233 0.478 -0.157	3
SS/XSSU4 SS/NU3 CUND/H	-40.685 2.311 7.603 0.542	-7.515 -76.728 1.773	0.607 0.873 0.876	3 3 3
CUND/NU3 CUND/X5SU4 CL/NA	7.6042 1.7544 0.722 1.085	-0.081 6.344 3.209	0.998 0.940 1.000	3
MG/NA NH4/SD4	0.262	-0.429 -1.621	1.000 0.998	3 3
NH4/XS504 NU3/S04 NU3/XS504	0.230 0.284 0.344 0.401	-2.015 3.536 4.181	0.987 0.984 0.918	333
F/XSSO4 AMTH/CM AMINU3/CM	0.010	-326.405 -35.988	0.689 0.986 0.990	3
AMTXSSU4/LM	640.841	-219.574	0.982	5

Table 336.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICRUEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-101.	CURR.CDEF.	NO.
H/NU3 H/S04	1.030 0.735 2.138 0.749	10.053	0.931	うりょうしんとうしゅうしょうしょうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅう
H/XS504	2.138	-5.708	0.589 0.981	3
H/NU5+XS504	0.749	3.326	0.983 0.683	3
H/F H/5A	12.725	5.169	1.000	3
HNV/SA	0.822 0.432	7.381	1.000	ج
H/1A	0.432	19.564	1.000	ş
XSCA/XSK XSLA/XSMG	4.413 0.035 0.251	10.155 10.159 7.381 10.564 3.191 6.3263	0.895 0.010	ş
XSCA/NU3	0.251	2.553	0.948	3
XSCA/XSSU4	0.506 2.875	-1.063	0.969	3
XSCA/F	2.875 =0.638	-1.063 2.862 1.380	0.644 -0.992	\$
LUGHZLUGCM LUGNAZLOGCM	-0.097	1.841	-0.143	3
LUGXSK/LUGUM	-0.743	-0.348 0.785	-0.794	3
LOGXLA/LUGCM	-0.571	0.785	-0.979	3
LUGXMG/LUGLM LUGF/LUGLM	-0.062 -0.131	0.215	-0.148 -0.559	٦
LUGNU3/LUGCM	-0.801	1 - 0 / 0	-0.989	3
LXSSU4/EUGLM	-0.490	1 150	-0.932	3
\$\$/H \$5/F	-0.490 0.236 84.305	109.840 12.390 71.090	0.039 0.756	ş
55/X5SU4	3.044	71.090	0.233	3
\$\$/NU3	-2.180	71.090 149.202 15.115	0.233 -0.329	3
HVOND	0.483	15.115	0.493	3
CUND/NU3 CHND/X5SU4	-2.180 0.483 0.153 1.394	25.238	0.141 0.653	3
CL/NA	1.003	4.007	1.000	3
MG/NA	0.200	1.451	1.000	3
NH4/504 NH4/X5504	0.077 0.542	2.464 -3.551	0.202 0.812	રૂ
1413/3114	0.285	7.997	ŭ.252	3
MU3/X85/14	1.65/	-9.137	v.841	ş
F/XS504 AMTH/CM	0.095 44.485	-0.1/3 145.975	0.812 0.749	<u>ې</u>
AMINU3/CM	15.467	88.287	0.986	3
AMIXSSU4/CM	30.974	88.287 124.119	u. 796	3

Table 337.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/78 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-1NT.	CURR.COEF.	NO.
H/N(15 H/S(14	1.193 0.741	10.667	0.814 0.753	4
H/XS504	1.221	1.608	0.915	4
H/NÜ3+XSS04	0.795	-2.132	0.994	4
H/F	2.251	25.301	0.599	1 1 4
H/SA HNV/SA	0.000	0.000	0.000	ł
H/14	0.000	0.000	0.000	i
XSCA/XSK	0.456	5.686	0.046	
XSCA/XSMG	-0.407	8.104	-0.392	4
XSCA/NUS XSCA/XSSU4	0.240	1.566	0.990 0.399	4
XSCA/F	-0.048	6.488	-0.077	4
LUGH/LUGCM	-0-448	1.237	-0.535	4
LUGNA/LOGCM	0.663	2.029	0.599	4
LUGXSK/LUGUM	0.663 -0.213 -0.507 0.578	0.034 0.552 0.521	-0.664	4
LUGXLA/LUGCM LUGXMG/LUGCM	-0.574	0.234	-0.928 0.400	4
LUGF/LUGLM	-0.109	Ŭ.26i	-0.098	4
LUGNU3/LUGCM	~ 0.788	0.867	-0.931	4
LXSSU4/EUGCM	-0.319	1.207	-0.450	4
58/H	0.856	98.424	0.193	4
\$\$/F \$\$/x5\$J4	11.615	81.850 50.430	0.698 0.490	4
SS/NU3	-2.449	175.989	-0.377	4
CUNDIH	0.396	16.202	0.701	4
CUND/NU3	0.230	25.223	0.277	4
CUND/XSSU4 CL/NA	0.230 0.584 1.092 0.253	14.155	0.774 0.988	4
MG/NA	0.253	-0.346	0.987	4
NH4/S04	-0.004	0.971	-ŭ.ú76	4
vH4/x55()4	0.010 0.155	0.573	0.149	4
VU3/504	0.155	13.738	0.231	4
NU3/XSSD4 F/XSSU4	0.474	7.068 -4.294	0.521 0.870	4
AMTH/CM	103.435	76.963	0.810	4
AMINU3/CM	20.143	50.642	0.770	4
AMTX5SU4/CM	99.945	61.480	0.815	4

Table 338.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 12/78 AT KSC SITE 14 ARE INCLUDED.

Y / X	SLOPE	Y-INI.	CORR.COEF.	NO.
H/NU3 H/SU4	0.833	7.399	0.993 0.876	4
H/X\$504	0.690 0.794	2.490	0.876 0.994	4
H/NU3+x8504	0.409	4.793	0.997	4
H/F	1.505	12.064	0.976	4
H/SA	0.000	0.000	0.000	1
HNV/SA	0.000	0.000	0.000	4 1 1 1
H/[A xSca/x5k	0.000 9.374 4.313 0.784	0.000 -2.177	J.998	À
XSCA/XSMG	4.313	650.5	Ŭ 968	4
XSCA/NJ3	0.784	-1.278	0.999	4
XSCA/X5SU4	0.737	-5.687	0.988	4
XSCA/F	1.430	3.046	0.992	4
LOGH/LUGCM	-0.443 0.370 -0.518	1.234	-0.937	4
LOGNA/LOGCM LUGX5K/LUGCM	-0.516	1.644	0.417 -0.784	4
LUGXCA/LOGUM	-0.831	0.778	-0.927	4
LUGXMG/LUGCM	-0.494	-0.270	-0.335	4
LUGF/LUGLM	-1.038	0.221	-0.830	4
LUGNU3/LOGCM	-0.646	1.006 1.252 119.255 91.255	-0.895	4
LXSSU4/LUGCM	-0.556	119.255	-0.981	4
SS/H SS/F	-1.433 0.044	114.555	-0.203 0.004	4
\$\$/x58U4	-1.340	120.000	-0.238	4
SS/NU3	-0.540	99.242	-0.091	4
CUNDIH	0_101	16.910	0.132	4
COMO/NU3	0.157	16.621	0.242	4
CUND/X3SU4	0.058 1.030	17.644	0.094	4
CL/NA MG/NA	1.030	3.786	1.000	4
NH4/5U4	0.205 0.480	-3.645	0.815	4
WH4/XS504	0.594	-1.982	ŭ.996	4
1103/504	0.871	-11.578	U.927	4
MU3/x5SU4	0.939	-5.603	0.987	4
F/XS5114	0.502 75.551	-5.823	0.970	4
AMTH/CM AMTNU3/CM	12.271 52.478	/3.218 55.662	0.996	4
AMTX58U4/CM	36.347	98.879	0.970 0.999	4
	2000	, , ,	• • • •	•

Table 339.

LINEAR CURRELATION HASED UN Y=MX+B
BETWEEN SELECTED RAIN CUMPUNENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU5 H/SIJ4	1.998	8.727 11.848	0.976 0.807	7 7 7 7 7
H/X\$504	1.013	4.014	v.988	Ż
H/NU3+XSS04 H/F	0.684 71.893 0.996	4.967	0.993 0.834	7
H/SA	0.996	23.956	0.993	
HNV/5A	0.908	-1.506 5.277 8.725	0.943	4
H/TA XSCA/XSK	0.653 8.620	8.725	0.994 0.360	7
XSCA/XSM6	1.231 0.938	1.9/8	0.506	Ž
XSCA/NU3 XSCA/X58U4	0.938 0.452	-2.072 -3.430	0.992 0.953	7
XSCA/F	30.364	5.847	0.762	7
LUGH/LUGCM	-0.493	1.442	-0.656	7
LUGNA/LOGCM LUGXSK/LUGCM	-0.654 -0.475	1.709	-0.581 -0.727	7
LÜGXLA/LÜĞÇM	-0.889 -0.733	-0.279 0.777	-0.865	Ž
LUGXMG/LUGCM LUGF/LUGCM	0.733	0.110 -0.037	-0.612 0.185	7
LUGNU3/LUGCM	-0.740	U.955	-0.830	7
LXSSU4/LUGLM SS/H	-0.523	1.378 76.571	-0.680 0.275	7
55/F	3.232 -213.005	254.442	-0.210	7
\$ 5 /x5\$u4	-213.005 1.704	145.557	0.141	7
SS/NU3 CUND/H	9.066 0.667	63.718	0.377 0.529	7
CUNU/NU3	2.062	10.941	0.614	7
CUND/X5SU4 CL/NA	0.687 1.063	18.843	0.409 1.000	7
MG/NA	0.226	0.699	1.000	7
VH4/504	0.128	1.830	0.664	1
NH4/XS504 NU3/504	0.308	-2.117 U.977	0.993 0.861	7
NU3/XS5U4	0.481	-1.425	0.960	7
F/XSOU4 AMTH/CM	0.011	132.083	0.890 0.970	477777777777777777777777777777777777777
AMTNU3/CM	19.690	67.304	0.881	7
AMTXSSU4/CM	98.241	133.962	0.957	7

Table 340.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMI=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 02/79 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-1N1.	CURR.CUEF.	NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4	0.505 0.244 0.731 0.389	56.347 30.042 9.954 19.016 29.145	0.341 0.547 0.778 0.642	444
H/F H/SA HNV/SA	5.080 -0.053 0.447	29.145 60.944 26.275 59.367	0.721 -1.000 1.000	442224
H/IA XSCA/XSK XSCA/XSMG	-0.016 -10.184 1.563	19.077 8.114	-1.000 -0.954 0.982	2444
XSCA/NU3 XSCA/XSSO4 XSCA/F	0.194 0.042 -0.478	7.540 9.566 13.394	0.786 0.268 -0.408	4444
LUGH/LUGCM LUGNA/LOGCM LUGXSK/LUGCM LUGXLA/LOGCM	-0.372 -0.807 0.030 -0.061	1.510 1.681 -0.162 1.036	-0.803 -0.836 0.087 -0.280	3 4 4 4
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM	-0.064	0.135 0.213 1.164	-0.067 -0.675 -0.843	444
LXSSU4/LOGCM SS/H SS/F	-0.361 -0.344 4.259 -1.757	1.564 6.639 213.885	-0.917 0.294 -0.017	4 4 4
\$\$/x5\$U4 \$\$/NU3 CUND/H	21.276 0.867	-289.757 -248.772 6.188	0.718 0.991 0.403	444
CUND/X5504 CL/NA	3.187 1.642 1.119	-21.244 -36.464 2.604	0.997 0.811 1.000	4444
M6/NA NH4/SU4 4H4/x5SU4 4U3/SU4	0.226 0.014 0.067 0.292	1.468 13.575 11.163 0.919	1.000 0.1/1 0.389 0.971	444
VU3/ASSN4 F/ASSU4 AMIH/CM	0.499 0.090 118.238	-3.957 -1.027 153.763	0.788 0.675 0.326	4 4
AMTNUS/CM AMTXSSU4/CM	120.706	117.801	0.994 0.959	4

Table 341.

LINEAR CORRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM#
CM PHECIPITATION AND AMT#MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/79 AT KSC SITE 14 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CORR.COEF.	NO.
H/ND3 H/S04 H/XS304 H/ND3+XSS04 H/F	-3.606 -0.741 -0.883 -0.710	82.156 44.500 44.626 52.010 -30.289	-1.000 -1.000 -1.000 -1.000	2222
M/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG	12.892 0.000 0.000 0.000 2.926 10.204	0.000 0.000 0.000 4.172	1.000 0.000 0.000 0.000 1.000	1 1 2
XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGLM LOGNA/LOGCM	1.294 -18.889 -0.247	4.870 -80.304 -25.317 84.444 1.114 1.838	1.000 1.000 -1.000 -0.403	nnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGLM LUGF/LUGLM	-0.585 -2.412 -1.271 -4.144 0.306 -0.195	0.565 1.301 -0.314	-1.000 -1.000 -1.000 -1.000	NSSS.
LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4	-0.1446 -2.324 -29.962 -2.053 8.381	1.301 1.301 102.3766 -1.337 -88.557 -9.574 8.800	-1.000 -1.000 -1.000 -1.000 -1.000	2222 2222
SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA	1.471	-88.557 9.851 -9.574 8.862 14.800 0.439	1.000 0.814 1.000 1.000	2525
MG/NA NH4/5U4 NH4/XSSO4 NU3/SO4 NU3/XSSO4	0.434 0.793 0.216 3.127 3.729 0.205 0.245	-82.151 -82.683	1.000 1.000 1.000 1.000 1.000	2222 3
F/XSSU4 AMTH/CM AMTNU3/CM AMTX5SU4/CM	-0.069 253.201 145.785 170.448	10.407 5.811 -57.229 46.732 190.486	-1.000 0.982 1.000 1.000	232

Table 342.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/77 AT UCF SITE 18 ARE INCLUDED.

Y/K	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU3	0.000	0.000	0.000	0
H/SU4	0.000	0.000	0.000	0 0
H/X\$504	0.000	0-000	0.000	0009990
イ/N()3+X\$804 H/F	0.000	0.000	0.000	λ
H/SA	1.056	4 686	0.996	ŏ
HNV/5A	0.997	4.686 0.191	0.991	ģ
HZTA	Ŭ.867	-ŭ.3óō	ŭ.986	ģ
XSCA/XSK	0.000	0.000	0.000	0
XSCA/X5M6	0.000	0.000	0.000	Ò
XSCA/NU3	0.000	0.000	0.000	Ů O
XSCA/X5SU4	0.000	0.000	0.000	Ö
XSCA/F	0.000	0.000	0.000	0
LUGH/LUGCM	0.760	1.501	0.495	10
LUGNA/LUGCM LUGXSK/LUGCM	0.000	0.000	0.000	0
LUGXCA/LUGCM	0.000	V.000	0.000	0
LUGXMG/LUGCM	0.000	ŏ.ŏŏŏ	0.000	ŏ
LUGF/LUGCM	0.000	0.000	0.000	ŭ
LUGNU3/LUGCM	0.000	0.000	U.000	0
LXSSU4/LUGCM	0.000	0.000	0.000	0
SS/H	0.000	0.000	0.000	0 0
SS/F	0.000	0.000	0.000	0
\$\$/x\$\$U4	0.000	0.000	0.000	9
35/NU3	0.000	0.000	0.000	Ų
CUNDIH	0.189	15.533	0.531	1 Š
CUNDINUS	0.000	0.000	0.000	Ú O
CUND/XSSU4 CL/NA	0.000	0.000	0.000	Ň
MG/NA	0.000	0.000	0.000	0 0 0
NH4/5U4	ŏ.ŏŏŏ	0.000	ŭ.000	ŏ
NH4/X55()4	0.000	0.000	0.000	Ŏ
NU3/5(14)	0.000	0.000	0.000	Ú
103/xS504	0.000	0.000	0.000	U
F/X85Q4	0.000	0.000	0.000	Ú
AMTH/CM	402.369	154.972		10
AMINU3/CM	0.000	0.000	0.000	0
AMTXSSU4/CM	0.000	0.000	0.000	U

Table 343.

LINEAR CURRELATION BASED ON Y=MX+8
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
LLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 08/77 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/ND3	0.000	0.000	0.000	Ó
H/SU4 H/XSSU4	0.000	0.000	0.000	0
H/N(13+XSS04	0.000	0.000	0.000	ŏ
H/F	0.000	0.000	0.000	0 7 7 7 7 0 0
H/SA	1.202	-6-142	0.959	7
HNY/5A	1.029	-5.015 -6.277	0.961	<u>7</u>
H/TA	0.881	-6.277	0.896	7
XSCA/XSK	0.000	0.000	0.000	Ö
XSCA/XSM6 XSCA/NU3	0.000	0.000	U.000 U.000	Ŋ
XSCA/XSSU4	0.000	ŏ: ŏŏŏ	0.000	ň
XSCA/F	0.000	ŏ.ŏŏŏ	ŭ.000	ŏ
LUGH/LUGLM	0.200	1.406	0.264	Š
LUGNA/LÑGCM	0.000	0.000	0.000	0
LOGXSK/LUGCM	0.000	0.000	0.000	000800000000000000000000000000000000000
LOGXLA/LUGLM	0.000	0.000	0.000	<u>0</u>
LUGXMG/LUGCM	0.000	0.000	0.000	Ŏ
LUGF/LUGCM LUGNU3/LUGCM	0.000	0.000	0.000	Ņ.
LXSSU4/LUGCM	0.000	0.000	0.000	ň
\$\$/H	0.000	0.000	0.000	ŏ
SS/F	ŏ.ŏŏŏ	0.000	0.000	ŏ
SS/XSSU4	0.000	0.000	0.000	Ŏ
SS/NU3	0.000	0.000	0.000	0
CONDIH	0.270	9.556	0.817	8
CIIND/NU3	0.000	0.000	0.000	Ŏ
CUND/XSSU4	0.000	0.000	0.000	0
CL/NA MG/NA	0.000	0.000	0.000 0.000	Ž
NH4/504	0.000	0.000	0.000	ŏ
NH4/X8504	0.000	0.000	ŭ.ŭŏŏ	ŏ
NU3/504	0.000	0.000	0.000	Ŏ
<u> 403/x8504</u>	0.000	0.000	0.000	000000000000000000000000000000000000000
F/X85U4	0.000	385.202	0.000	Õ
AMTH/CM	561.755	282.505	0.491	Ř
AMINU3/CM	0.000	0.000		Ž,
AMIXSSU4/CM	0.000	0.000	0.000	V

Table 344.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 09/77 AT UCF SITE 18 ARE INCLUDED.

Y/x	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/S04	0.000	0.000	0.000	0
H/XSS04	0.000	0.000	0.000	ŏ
H/N03+XSS04	01000	0.000	0.000	Ŏ
H/F	0.000 0.892 0.788 0.751	0.000	0.000	0
H/SA	0.892	4.250	0.909 0.941	6
HNV/SA H/TA	0.750	4.260 1.878 -3.010	0.972	5
XSCA/XSK	0.000	0.000	Ŏ. ŎŎŌ	ő
XSCA/XSMG	0.000	0.000	ŏ.ŏŏŏ	ŭ
XSCA/NU3	0_000	0.000	0.000	Ò
XSCA/XSSU4	0.000	0.000	0.000	0
XSCA/F	0.000	0.000	0.000	ŭ
LUĞH/LUĞLM LUĞNA/LÜĞCM	-0.087 0.000	0.000	-0.108 0.000	Ŋ
LUGXSK/LUGCM	0.000	0.000	0.000	ŏ
LUGXLA/LUGCM	0.000	0.000	0.000	ŏ
LUGXMG/LUGCM	0.000 0.000	0.000	0.000	Ü
LUGF/LUGCM	0.000	0.000	0.000	0
LUGNU3/LUGLM	0.000	0.000	0.000	Ö
LXSSU4/EUGCM SS/H	0.000	0.000	0.000	χ
\$\$/F	0.000	0.000	0.000	ň
55/x5SU4	0.000	ŏ.ŏŏŏ	ŭ.ŏ ŏ ŏ	ŏ
55/NU3	0.000	0.000	0.000	Ŏ
CUNDIH	0.164	11.884	0.456	8
COND/NU3	0.000	0.000	0.000	Ö
COND/XSSU4	0.000	0.000	0.000	Ņ
UL/NA MG/NA	0.000	0.000	0.000	Ď
NH4/504	0.000	0.000	ŭ.ŭŏŏ	ŏ
NH4/x8504	0.000	0.000	0.000	Ŏ
103/504	0.000	0.000	0.000	Ü
ND3/xSS(14	0.000	0.000	0.000	Ŏ
F/XS5U4 AMTH/CM	0.000 127.537	319.226	0.000 0.426	ŭ
AMINU3/CM	0.000	0.000	0.000	i)
AMTX55U4/CM	0.000	0.000	3.300	000066600000000000000000000000000000000

Table 345.

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM#
CM PRECIPITATION AND AMT*MICROEQUIVALENTS/SQ.
METEH.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/N03	0.000	0.000	0.000	0
H/S04	0.000	0.000	0.000	0
H/XSSU4	0.000	0.000	0.000	00001111000004
H/N03+X8504	0.000	0.000	0.000	0
H/F	0.000	0.000	0.000	0
H/SA	0.000	0.000	0.000	ļ
HNY/SA	0.000	0.000	0.000	ļ
H/TA XSCA/X5K	0.000	0.000	0.000	Å
XSCA/X5MG	0.000	0.000	0.000	Ų.
XSCA/NU3	0.000	ŏ:000	0.000	Ä
XSCA/XSSU4	ŭ:ŭŏŭ	ŏ.ŏŏŏ	0.000	ŏ
XSCA/F	ŏ.ŏŏŏ	0.000	0.000	ň
LUĞHZLUGLM	-0.017	1.481	-0.029	ŭ
LUGNAZLOGEM	0.000	0.000	0.000	õ
LUGXSK/LUGCM	0.000	0.000	0.000	ŏ
LIGXLA/LUGLM	0.000	0.000	0.000	Ŏ
LUGXMG/LUGCM	0.000	0.000	0.000	Õ
LUGF/LUGCM	0_000	0.000	0.000	0
LOGNU3/LOGEM	0.000	0.000	0.000	0
LXSSU4/LUGCM	0.000	0.000	0.000	Ü
SS/H	0.000	0.000	0.000	0
SS/F	0.000	0.000	0.000	Ų
\$\$/X5\$U4	0.000	0.000	0.000	0
SS/NU3	0.000	0.000	0.000	Õ
CUNDIA	0.215	11.151	0.723	چ
CONDINUS	0.000	0.000	0.000	Ň
CUND/X5SU4 CL/NA	0.000	0.000	0.000	Ŏ
MG/NA	0.000 0.000	0.000	0.000	Ň
NH4/5()4	0.000	0.000	0.000	N.
NH4/XS504	0.000	0.000	0.000	ŏ
NU3/504	ŭ.ŭŏŏ	0.000	ŏ.ŏŏŏ	ň
NU3/X8504	äiňŏŏ	0.000	ŏ.ŏŏŏ	ŏ
F/XSSN4	0.000	0.000	Ŭ.ŬŎŬ	000000000000000000000000000000000000000
AMTH/CM	363.545	8.800	0.949	4
AMINU3/CM	0.000	0.000	0.000	0
AMTXSSU4/CM	0.000	0.000	0.000	0

Table 346.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUNING 11/77 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NU.
H/NO3 H/SO4 H/XSSO4 H/NO3+XSSO4	1.345 0.802 0.761 0.507	1.916 2.115 3.877 2.801	0.593 0.740 0.753 0.747	4 4 4
H/F H/SA HNV/SA H/TA	0.507 0.507 -4.937 -3.003 -3.174	2.115 3.877 2.801 11.680 112.279 73.134 111.680 3.178	0.000 -1.000 -1.000 -1.000	422244
XSCA/XSK XSCA/XSM6 XSCA/NU3 XSCA/XSSO4 XSCA/F	16.976 6.832 0.289 0.231 0.231	1.368 0.419 0.142	0.899 0.830 0.416 0.640 0.000	4444
LUGH/LUGCM LUGNA/LOGCM LUGXCA/LUGCM LUGXCA/LUGCM	1.583 -2.092 0.846	2.515 1.196 0.883 0.039 0.255	-0.903 0.855 -0.786 0.397 0.757	4445444
LUGXMG/LUGCM LUGF/LUGLM LUGNU3/LUGCM LXSSU4/LUGCM SS/H	1.848 0.000 -0.980 -1.077 -0.666	-0.695 0.000 0.931 1.033 25.684	0.757 0.757 -0.625 -0.438 -0.508	4 4 4 4 4
55/F 55/X55U4 55/NU3 CUND/H	-0.666 -0.778 -2.206 0.186	17.908 25.890 33.918 5.907	0.000 -0.588 -0.867 0.993	44454
LUND/NU3 COND/XSSU4 CL/NA MG/NA	0.308 0.173 1.184 0.222	5.891 6.346 -0.042 0.249	0.760 0.823 0.998 0.981	4
NH4/5U4 NH4/X55Q4 NU3/SU4 NU3/X55Q4 F/X55U4	0.471 0.420 0.482 0.475	-2.144 -0.838 1.519 2.392	0.915 0.875 0.862 0.911 0.911	4 4 4 4
AMIHICM AMINUSICM AMIXSSU4/CM	0.000 -/1.045 11.967 12.574	242.730 75.348 112.674	-0.632 0.180 0.084	4544

Table 347.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CME
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUNING 12/77 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CORR.COEF.	NO.
H/NU3 H/S04	5.579 1.354 1.237 1.089	-22.959 0.877 6.746	0.676 0.483	7
H/XSSU4 H/ND3+XSSO4	1.237	6.746	0.420	Ž
H/F	-10.359 0.000	-0.673 32.233	0.494 -0.237	7
H/SA HNV/SA	0.000	0.000	0.000	1
H/TA	0.000	0.000	0.000	į
XSCA/XSK XSCA/XSMG	4.961 1.645	0.000 2.936 3.155	0.538 0.287	7
XSCA/NU3 XSCA/XSSU4	1.186 0.479	-6.660 -4.106	U.862 U.974	7
XSCA/F	0-260	4.150	0.036	7
LOGH/LUGCM LUGNA/LOGCM	-0.422 -1.244	1.389	-0.480 -0.716	7
LUGXSK/LUGCM LUGXLA/LUGCM	0.509 0.629	-0.189 0.352	0.469 0.290	7
LUGXMG/LUGCM	-0.040	-0.014	-0.062 0.336 0.110 0.118 0.335	Ż
ÜUĞF/LUĞLM LUGNU3/LUGCM	0.090	0.031	0.338 0.110	7
LXSSU4/LUGLM SS/H	0.099	0.937 1.186 21.335	0.118	7
SS/F	-10.207	34.303	-0.243	Ź
\$\$/X5\$U4 \$\$/NJ3	0.192 1.811	34.303 27.119 13.817	860.0 9.228	7
CUND/H CUND/NU3	0.292	5.135	0.907 0.757	ğ
CUND/X5804	0.375	6.818	0.585	7
CL/NA MG/NA	1.036 0.215	3.998 0.630	0.979 0.994	7
NH4/504 NH4/XS51)4	0.257	0.630 -2.757 -2.332	0.836	7
NU3/504	0.327 0.191 0.191 0.192 1.829 1.315 0.2157 0.257 0.3351 0.001	2.718	0.939	7
NU3/XS5U4 F/X3SU4	-0.331 -0.001	3.411 0.397 114.344	0.928 -0.018	7
AMIHZCM AMINU3/CM	-0.001 191.119 71.936	114.344	0.400 0.765	777771117777787777777777777777777777777
AMIXSSU4/CM	46.121	84.387	0.561	7

Table 348.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 01/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CORR.COEF.	NO.
H/NO3 H/SU4	2.118 0.932	-3.124 -3.895	0.965 0.431	6
H/XS504	1.042	-3.103	0.942	6
m/NU3+XSS04	0.709	-3.103 -3.536	0.963	
HIE	0.709	25.512	0.000	00000000000
H/SA	0.000	0.000	0.000	Ņ
HNV/SA H/TA	0.000	0.000	0.000	ň
XSCAZXSK	0.000 0.920 1.920 0.841 0.511 0.513	13.946	0.000 0.580 0.584 0.587	ě
XSCA/XSMG	1.920	8.541	ŭ.584	6
XSCA/NU3	0.841	8.541 6.859 4.196	0.587	6
XSCA/XSSU4	0.511	4.196	0.673	6
XSCA/F	0.511	18.227	0.000	9
LUGH/LUGCM LUGNA/LOGCM	-0.585	1.456	-0.630	6
LUGXSK/LUGLM	-0.232	0.044	-0.246	6
LUGXLA/LUGLM	0.021	0.905	0.008	6
LUGXMG/LUGCM	0.075	0.488	0.043	6
LUGF/LUGCM	0.000	0.000	0.043	6
LUGNU3/LUGCM LXSSU4/LUGCM	-0.641 -0.516	0.948	-0.617	6
\$5/H	-0.510	1.252	-0.419 0.770	6
55/F	0.839 0.839 1.116	22.450 43.657 13.210 17.163	ŭ.000	6
\$\$/x5804	1.116	13.210	0.926	6
\$5/NU3	1.9/3	17.163	0.841	6
CUNDIA	0.350 0.769	7.060	y.9 <u>97</u>	6
CUND/NU3	0.769	4.170	0.445	6
CUND/X58U4 CL/NA	0.418	3.092 0.679	0.925 0.978 0.972 0.705	666
MG/NA	0.982	4.430	0.705	6
NH4/5U4	Ŭ.246	1.489	0.916	6
и Н4/XS 504	0.246 0.275	1.691	0.927	6
'YU3/504	0.448	-0.606	0.962	6
NU3/XS5U4 F/XS5U4	0.498	-0.153	0.968 0.968	6
AMTH/CM	0.000	171,616	-0.060	
AMTNU3/CM	19.819	74.115	0.258	666
ANTXSSU4/CM	19.819 51.743	143.338	0.334	6

Table 349.

LINEAR CURRELATION BASED ON Y=MX+B BETWLEN SELECTED RAIN CUMPONENTS. ALL UNITS ARE MICRUEGUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEGUIVALENTS/80. METER. CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED DURING 02/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	Y-1N1.	CURR.CUEF.	NO.
H/NO3 H/SU4	2.624 0.832	28.824	0.768 0.564	6
H/XSS04	0.8528 0.8714 -9.0859 0.9590 0.6896 10.5945 10.0466	26.343 25.555 23.209 62.675 12.851 4.055	0.585	6
H/NU3+XSS04 H/F	0.714	53.535	0.665	6
H/SA	0.899	12.851	-0.406 0.838	5
HNV/SA	0.950	4.055	0.906 0.755	6
H/TA XSCA/XSK	-0.596	0.665 4.940	-0.101	6
XSCA/XSMG	10.503	-2.956	-0.101 0.726 0.923	6
XSČA/NU3 XSCA/XSSU4	1.045	-7.663 -11.321	0.925	6 6
XSCA/F	0.406 -2.833 -0.148	5.554 1.790	0.825 -0.384 -0.558	6
LUGH/LUGCM	-0.148	1.790	-0.558 0.746	666
LUGNA/LOGCM LUGXSK/LUGCM	0.461	-0.180	0.649	6
LUGXCA/LUGCM	0.005		0.006	6
LUGXMG/LUGCM LUGF/LUGCM	0.234	-0.269 0.035 1.070 1.574 15.357 6.966	0.431	66666
LUGNU3/LUGLM	0.085 -0.148	1.070	-0.454	6
LXSSU4/LUGCM SS/H	-0.005 -0.127 2.454	15.574	-0.017 -0.641	5
\$\$/F \$\$/x\$\$U4	2.454	6.966	0.559	66
\$\$/x\$\$U4	0.058	5.557	0.198	6
35/NU3 LUND/H	-0.058 -0.070 0.332	2.516	-0.104 0.699	6
CUND/NU3	1.611	5.557 8.648 2.516 3.426	0.993	6
CUND/X5SU4 CL/NA	0.592	-0.878 2.841 0.202 3.200	0.839	6
46/NA	0.311	0.202	0.937 0.931	6
NH4/504 NH4/xS504	0.931 0.311 0.094 0.090 0.355	3.200 3.407	0.284 0.271	6
NU3/5U4	ŏ:355	-2.434 -2.386	0.821	666
NU3/XSS(14 F/X S S(14	0.360	-2.380	0.828	6
AM[H/CM	0.011 486.079 88.291	-0.078 103.513	0.164 0.966	6
AMINU3/CM	88.291	28.482	0.957	6
AMIX5SU4/CM	385.636	-3.010	0.965	0

Table 350.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	1-1NI.	CURR.COEF.	NO.
H/NU3 H/S04 H/XS504 H/N03+XSS04 H/F	0.996 0.110 0.086 0.227	21.138 33.395 34.955 23.299 48.574	0.787 0.133 0.100 0.409	3333
H/SA HNV/SA H/TA XSCA/X5K	0.227 -12.919 1.013 0.940 0.743 28.989	0.161 0.001 -5.751 -14.699 0.595	-0.970 1.000 0.988 0.993 0.979 0.992	33333
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F LUGH/LUGCM	7.677 1.465 0.788 -7.781 -0.525	-8.680 -23.680 23.596 1.701 1.501	0.990 0.786 -0.500 -0.811	れられられられられられられられられられられられられられられられられられ
LUGNA/LUGCM LUGXSK/LUGCM LUGXLA/LUGCM LUGXMG/LUGCM LUGF/LUGCM	-0.449 -0.616 -1.295 -1.491 0.407	0.168 1.438 0.563 0.003	-0.895 -0.840 -0.968 -0.997 0.701	3333
LUGNUŠ/LUGCM LXSSU4/LUGCM SS/H SS/F S5/XSSU4	-0.887 -0.280 0.489 -4.729 0.462	1.428 1.776 10.038 32.659 4.814	-1.000 -0.531 0.704 -0.512	33331
\$\$/NU3 CUND/H CUND/NU3 CUND/X5\$U4	0.871 0.634 0.849 0.292	13.282 -1.007 8.383 8.533	0.992 0.915 0.969 0.492	33337
CL/NA MG/NA NH4/504 NH4/XS504 NU3/504	1.000 0.430 0.502 0.508 0.465	1.081 -3.488 -11.747 -10.674 -7.593	0.986 0.974 0.740 0.717 0.716	3333
NU3/XSSD4 F/XSSU4 AMIH/CM AMINU3/CM AMIXSSU4/CM	0.469 0.009 136.300 18.686 489.347	-6.452 0.212 421.349 247.284 13.449	0.692 0.143 0.571 0.995 0.881	333333

Table 351.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/80.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 04/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	.TNI-Y	CORR.CUEF.	NO.
H/NU3 H/SU4 H/XS5U4	-0.212 -0.160 -0.190	25.230 27.206 28.033	-0.980 -0.968 -0.967	3 3 3
H/NU3+X8804 H/F H/SA	-0.100 -5.328 0.000 0.000	26.714 30.460 0.000	-0.974 -0.840 0.000	3
HNV/5A H/TA X5CA/X5K	0 000	0.000 0.000 0.000 886.58	0.000 0.000 0.998	0 0 3
XSCA/XSM6 XSCA/NU3 XSCA/XSSU4	46.938 11.239 1.958 1.792	-3.444 -19.240 -46.831	0.996 0.993 0.998	3 3
XSCA/F LUGH/LUGLM LUGNA/LOGCM	0.257 -0.890	-82.831 1.408 0.927	0.967 0.951 -0.899	333
LUGXSK/LUGLM LUGXCA/LUGCM LUGXMG/LOGCM	-0.235 -0.688 -0.566	0.271 1.071 0.143	-0.764 -0.644	3
LUGF/LÜĞÇM LUGNU3/LÜĞCM LXSSU4/LUĞCM	-0.185 -0.537 -0.357 -9.987 61.336	0.227 1.116 1.455	-0.599 -0.910 -0.862	3 3 2
35/H 38/F 58/X55U4 55/NU3	2.021	230.032 -92.712 -56.002	-0.973 0.942 1.000 0.799	333
CUND/H CUND/NU3 CUND/X>SU4	2.219 -1.684 0.395 0.365	-25.242 52.965 9.250 3.501	-0.887 0.961 0.975	13.33
CL/NA MG/NA NH4/5U4	0.896 0.252 0.428	1.349	1.000 0.998 0.981	333
NH4/XSSQ4 NU3/SU4 NU3/XSSQ4	0.509 0.765 0.909	14.411 12.655 -9.789 -13.775	0.982 0.999 0.998	333
F/XSSU4 AMTH/CM AMTNU3/CM	0.030 235.436 139.974	0.774 -8.720 26.974	0.951 1.000 0.976	スライガタロロのカカカイカカカイカカカカカカカカカカカカカカカカカカカカカカカカカカカカ
AMTXSSU4/CM	325.619	25.016	0.990	5

Table 352.

LINEAR CURRELATION BASED ON YEMX+B
BEIMEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 05/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	0.668 0.674	14.341	0.297	4
H/XSS04 H/ND3+XSS04		19.899 21.7295 21.7295 62.8195 23.59449 23.59449 27.9797	0.364 0.336	
H/F	-29.969	66.585	-0.631	4
H/SA HNV/SA	0.995 0.908	-2.819 -3.505	-0.631 0.960 0.928 0.332	3
H/ŤA XSCA/XSK	0.301	15.942	0.332	3
XSCA/XSM6	9.862	-7.979 -10.087	-0.441 0.852	4
XSCA/NU3 XSCA/XSSU4	1.029	- 1 U - VO /	0.697 0.663	4
XSCA/F LUGH/LUGLM	12.072	1.422	0.388	4
LUGNA/LÖGCM	0.751 0.367 0.369 0.998 0.901 -2.462 1.0896 12.362 0.362 0.151	1.208	0.6668 0.3881 0.3595 0.8593	444777744444444444444444444444444444444
LUGXSK/LUGCM LUGXLA/LUGCM	7 7 2 2 7	-18.893 1.4270836 1.220836 1.220836 0.3345 0.35745 11.32 15.27718 11.32 11.33 11.33 11.33 11.33 11.33 11.33 11.33 11.33 11.33	-0.605	4
LUGXMG/LUGCM	0.030	0.331	-0.602 0.073 0.555 -0.701	44444
LUGF/LUGCM LUGNU3/LUGCM	-v.271	1.355	-0.701	4
EXSSU4/EUGCM	-0.085 -0.146	1.570	-0.580	4
\$\$/H \$\$/F \$\$/X5\$U4	2.311	15.755	-0.681 0.226 0.306	4 4
SS/NU3	0.136	12.797	0.308 0.469 0.78 <u>1</u>	4
CUND/H CUND/NU3	0.193	11.711	0.781 0.415	4
CUND/XSSU4	-0.533 -0.2178 -0.2178 -0.1313	11.711 6.338 2.343 5.810 0.122	0.815 0.781 0.897 0.956	4
CL/NA MG/NA	0.325	251.0	0.956	4
NH4/51)4 NH4/XS504	-0.688 -0.691	63.667 62.577	-0.485 -0.481	4
NU3/SO4	0.862	-9.690	0.954	4
NU3/XS504 F/XSS04	0.868 -0.002 234.300	-9.690 -8.425 1.260 117.536	0.947 -0.045	4
AMTH/CM AMTNU3/CM	234.380 90.659	117.536	0.935 0.872 0.974	4
AMTXSSU4/CM	248.846	134.214	0.974	4

Table 353.

LINEAR CURRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/8Q.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 06/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF. NO.
H/NU3 H/SU4 H/NU3+XSU4 H/NU3+XSU4 H/NU3+XSU4 H/FA HNV/SA HNTA XSCAXXSU3 XSCAXXSU3 XSCAXXSU3 XSCAXXSU4 LUGGXCAXXSUGGCM LUGGXCAXXSUGGCM LUGGXCAXILUGGCM LUGGXCAX	21.294700 52.767880974292470 52.294880971581694810727457369 60.00998007.00000000000000000000000000000	Y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0.791 10 0.797 10 0.981 10 0.982 10 0.986 10 0.996 10 0.996 10 0.9976 10 0.9981
CUND/NOS CUND/X>SU4 CL/NA MG/NA NH4/SU4 NH4/XS>U4 NU3/SU4 NU3/XSSN4 F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.471 1.121 0.173 0.181 0.296 -0.0620 267.620 894.690	23.29 -0.3337 -0.3351 -0.9351 -2.273 -2.273 -2.273 -101.979 -13.959	0.964 10 0.990 10 0.983 10 0.761 10 0.775 10 0.703 10 0.728 10 -0.107 10 0.921 11 0.933 10

Table 354.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 07/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF. NO.
H/SO4 H/SO4 H/SO4 H/XSS04 H/XSS04 H/YO3+XS04 H/F H/SA H/FA XSCA/XSMG XSCA/XSMG XSCA/XSU3 XSCA/XSU3 XSCA/F LUGXXGLUGCM LUGXXGLUGCM LUGXXMGLUGCM LUGXX	777635 11.66930 11.66	2490 54190 5	0.813 0.813 0.931 0.931 0.1968 0.9988 0.9988 0.6895 0.6895 0.6895 0.6895 0.6895 0.6895 0.6895 0.6895 0.6895 0.7658 0.9888 0.
SS/XSSU4 SS/NU3 CUND/H CUND/NU3 CUND/XSSU4 CL/NA MG/NA MG/NA MH4/SU4 NH4/SU4 NH4/SU4 NH3/XSSH4 F/XSSU4 AMTH/CM AMTH/CM AMTXSSU4/CM	0.455 0.484 0.446 0.360 0.806 1.048 0.235 0.017 1.127 0.007 209.941 30.651 147.829	10.535225 120.738522 120.73822 100.3347 100.55307 100.5594 100.559	0.680 10 0.308 10 0.979 11 0.856 10 0.778 10 0.929 10 0.929 10 0.075 10 0.457 10 0.457 10 0.457 10 0.457 10 0.912 12 0.790 10 0.876 10

Table 355.

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING U8/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF. NO.
H/NO3 H/SO4	2.729 1.293	-10.811 868.5	0.933 9 0.950 9
n/X\$\$04 H/ND3+X\$\$04	1.293 1.318 0.967	4.947 -5.767 57.121 -2.082	U.957 9
H/F	h h/45	57.121	0.065 9
H/SA HNV/SA	0.995	=2.238	1.000 6 1.000 6 0.998 6
H/TA XSC∆/X5K	1.086 0.995 0.917 -0.338 2.062	=2.238 -9.184 11.556	0.998 6 -0.069 9
XSCA/XSMG XSCA/NU3	2.062	6.158	-0.069 9 0.579 9
XSCA/X5SU4	-0.008	11.084	0.990 9 0.065 9 1.000 6 1.000 6 0.998 6 -0.069 9 0.579 9 0.057 9
XSCA/F LUGH/LUGCM	-0.008 2.789 -0.709	11.456 8.308 1.429	-0.057 9 0.253 9 -0.762 10
LÜGNA/LÖĞCM LÜGXSK/LÜGCM	-0.334 -0.525	1 007	-0.762 10 -0.396 9 -0.591 9
LUGXCA/LUGCM	-0.403	-0.189 0.833 0.139	-0.597 9
LOGXMG/EUGCM LUGF/LUGCM	-0.047 -0.223	-0.082 1.125	-0.042 9 -0.426 9 -0.755 9 -0.674 9 0.167 9 0.082 9 0.373 9 0.375 9 0.991 10
LUGNU3/LUGCM LXSSU4/LUGCM	-0.600 -0.650	1.125	-0.755 9 -0.674 9
\$\$/H \$\$/F \$\$/x5\$U4	0.042 2.111 0.129 0.019 0.321 0.854	1.239 23.865	0.167 9
\$\$/x5504	0.129	24.446 20.773 26.038 7.958	0.082 9 0.373 9
SS/NU3 CUND/H	0.321	7.958	0.025 9 0.991 10
CONDINUS CONDIXSSU4	W - 4 4 4	5.013 8.606	0.895 9 0.985 9
CL/NA MG/NA	0.444 1.075 0.274	5.013 8.606 2.036 1.213 5.343	0.895 9 0.985 9 0.998 9 0.812 9 0.192 9 0.307 9
NH4/504	0.015	5.343	0.212 9
NH4/X\$\$04 ND3/SQ4	0.012 0.375 0.384	5.424 9.655 10.179	0.192 9 0.307 9
NU3/X85N4 F/X8504	0.000	9.975	0.035 9
AMTH/ČM AMTNU3/CM	141.014 50.451	168.559	0.596 10
AMTXSSU4/CM	56.525	145.527	0.586 7 0.341 9

Table 356.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRELIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU3 H/S04	2.414	6.564	0.700 0.466	かいかいかんというかいかいかいかいかいかいかいかいかいかいかんかんかんかいかんかいかんかい
H/XS504	0.349	26.429 21.821 18.873 36.908 18.530 7.348 -637.521	0.563 0.593 0.333 1.000 1.000	Ş
H/NU3+XSSU4 H/F	0.422 10.440	18.873	0.595	ב
H/SA	0.889	18.530	1.000	ž
HNV/SA H/TA	10.440 0.889 1.021 6.788	7.348	1.000	Ş
XSCA/XSK	0.677	1.948	0.984	5
XSCA/XSMG	0.677 1.020 0.278 0.078	1.897	0.981 0.806 0.880 -0.301	5
XŠČA/NU3 XSCA/XSŠO4	0.278	-0.503	0.806	5
xSCA/F		3.887	-0.301	5
LUĞH/LUĞCM LUĞNA/LOĞCM	-0.058	1.517	-0.099 -0.958	٤
LUGXSK/LUGLM	-0.058 -1.144 -1.066	1.948 1.897 -0.553 3.887 1.150 0.054 0.550 -0.054	-0.967	Ś
LUGXLA/LUGCM	-0.429	0.550	-0.927	5
LUGXMG/LUGCM LUGF/LUGCM	-0.909 0.139		-0.938 0.608 -0.529	5
LUGNU3/LUGCM	-0.248	1.141	-0.529	Š
LXSSU4/LUGCM	=0.391 =0.084	44 AA7	-0.501	Ž
\$\$/H \$\$/F \$\$/X5\$U4	-0.084 -22.925 1.980	\$1.066 -35.444	-0.030 -0.265 0.804	5
SS/X5SU4 SS/NU3	1.980	-35.444	0.804	5
CUND/H	0.342	-53.553 9.048	0.692 0.577	5
CUND/NU3	2.019	-5.864	0.987	5
CUND/X5SU4 CL/NA	0.526 1.066 0.536	-5.864 2.770 1.046	0.996 1.000	2
MG/NA	0.250	0.193	1.000	5
7H4/5D4 4H4/XSSO4	0.536	-7.153	0.924	5
NU3/5U4	0.607	5.570	0.877 0.954	5
NU3/XS5(14	0.253	4.5/5	0.979	٥
F/XSSO4 AMIH/CM	0.207 0.253 0.002 590.109	2.770 1.0493 -7.1534 -7.834 5.570 4.575 0.362	0.054 0.924	5
AMTNU3/CM	140.2/3	~/~~.	0.946	5
AMTX59U4/CM	417.948	-341.332	0.915	5

LINEAR CURRELATION BASED ON Y=MX+B
BEIWLEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 10/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/SU4	U.599 1.373	25.435 -11.041	0.293	6 6
H/X\$504	1.422	-0.986	0.978	6
H/NN3+XS504 H/F	0.858 -6.791	-2.443 46.482	0.837 +0.255	6
H/SA	1.321	1.247	1.000	ž
HNV/SA	-6.791 1.321 1.261 1.339	-0.937	1.000	25.59
H/TA XSCA/XSK	2.612	-35.766 6.381	1.000 0.388	6
XSCA/XSM6	2.612 3.591	5197	0.408	6
XSCA/NU3 XSCA/X5SU4	0.512	2.571 6.796	0.565	6
XSCA/F	0.066	10.177	0.169 -0.160	6
LUGH/LUGCM	0.049	1.477	0.084	6
LUGNA/LUGCM LUGXSK/LUGLM	0.006 -0.791	1.753	0.005 -0.889	6
LUGXLA/LUGCM	-0.492	0.574	-0.460	6
LUGXMG/LUGLM	-0.021	-0.059	-0.028	6
LUGF/LUGCM LUGNU3/LUGCM	-0.350 -0.345	0.025	-0.538 -0.564	6
LXSSU4/LUGCM	-0.003	1.323	-0.006	6
55/H 55/F	-0.829 0.532	119.238 87.850	-0.370 0.669	6
S\$/X55U4	-0.945	113.821	-0.290	6 6
58/NU3	-2.590	138.382	- 0.565	6
COND/H COND/NU3	0.252	15.260 24.238	0.743 0.026	6
CUND/XSSU4	0.018 0.389	14.190	0.789	6
CL/NA	0.902	7.732	0.992	b
MG/NA NH4/SO4	0.187 0.216	1.536	1.996 0.368	6
NH4/XS5U4	0.296 0.142	3.064	0.526	6
NU3/504 NU3/X8504	0.142 0.252	14.245	v.192 v.355	6 6
F/X\$5U4	-0.018	1.890	-0.334	6
AMTH/CM	402.605	27.135	0.531	6
AMTNU3/CM AMTXSSU4/CM	134.377	15.828 29.345	0.695 0.520	6
	- - -			•

Table 358.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 12/78 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4 H/F	20.027 0.908 0.911 0.873 302.824	-180.170 -5.263 -2.171 -10.347 -170.349 0.000 0.000	0.981 1.000 1.000 1.000 0.975	55555
H/SA HNV/SA H/IA XSCA/XSK XSCA/XSMG	0.000 0.000 0.000	6.704	0.000 0.000 0.000	1115
XSCA/XSSU4 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGNA/LOGCM	-0.010 0.104 0.002 1.338 -0.795	8.891 8.828 8.145 6.933 1.410	-0.006 0.362 0.393 0.305 -0.779	55555
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/1UGCM	-0.179 -0.1941 -0.338 -0.387 -0.505 -0.830	-0.072 0.754 -0.261 0.040 1.042	-0.406 -0.435 -0.777 -0.815 -0.765 -0.918	55555
LXSSU4/LUGCM SS/H SS/F S5/X3SU4 SS/NU3	11.750 0.033 0.720	1.473 36.634 29.251 36.562 30.172 9.370 -42.428	-0.918 -0.813 0.630 0.662 0.629 0.616	からいいーユーいかくいんいいかいかいかいかんかいいいいかんしん
CUND/H CUND/NU3 CUND/XSSU4 LL/NA MG/NA	0.286 5.745 0.261 1.101 0.101	0.809 5.074	0.999 0.536	55555
NH4/5U4 NH4/X5SN4 NU3/SU4 NU3/XS5N4 F/XSSU4	0.037 0.037 0.044 0.044	8.668 8.794 9.258	0.951 0.951 0.982	555 5 5
AMTH/CM AMTNU3/CM AMTX58U4/CM	0.003 32.739 48.243 40.307	9.407 0.601 332.934 29.548 365.167	0.975 0.293 0.939 0.309	5 5 5

LINEAR CURRELATION BASED ON Y=MX+B BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS ARE MICROEQUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ. MEIER. CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED DURING 01/79 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CORR.CDEF.	NO.
H/N()3 H/SU4	0.316 0.351 0.376 0.230 8.878 0.000	18.542 8.516	0.161 0.468	9
H/XS504	0.376	9,453	0.506	ý
H/NU3+XSSU4 H/F	0.230 8.878	11.683 3.207 0.000	0.419	4
H/SA	0.000	0.000	0.000	į
HNV/SA H/TA	0.000	0.000	0.000	1
XSCA/XSK	74.144	-b-689	U - 752	Ġ
XSCA/X5MG XSCA/NU3	5.880	-1./55	0.998 0.902 0.711	9
XSCA/XSSU4	6.083 1.816 0.702	-31.594 -19.512	0.711	9
XSCA/F LUGH/LUGCM	0.702	41.567	0.021	4
LUGNAZLOGCM	0.014	1.006	0.011 -0.600	9
LUGX\$K/LOGCM	-0.444	-0.203 0.966	-0.544	9
LUGXCA/LUGCM LUGXMG/LUGCM	-1.015 -0.669	V. 400 V. 305	-0.689 -0.521	9
LDGF/LUGLM	-0.355 -0.360	0.291	-0.541	ģ
LUGNU3/LOGCM	-0.360 -0.685	0.839 1.324	-0.351 -0.716	9
LXSSU4/LUGEM	-0.607	59.258	- 0.2 3 9	ģ
\$5/F \$\$/x5\$U4	-4.830 -0.252	66.100	-0.200 -0.133	9
SS/NU3	- 0.532	62.180	-0.107	9
COND/H CUND/NJ3	0.188	15.882	0.380	9
CUND/X5SU4	0.671 0.291 1.040	11.853	0.693 0.794	9
CLINA	1.040	10.045 4.350 7.379	0.985	9
MG/NA NH4/5U4	0.210	0.785	0.613	9
NH4/XS504	0.254 0.344 0.346	1.891 -1.375 J.326	0.955	9
NU3/5U4 NU3/X8504	0.344	1.375	0.901 0.913	7
F/X\$5U4	0.055	0.278	0.700	Y991119999Y999999999999999999999999999
AMTH/CM AMTNU3/CM	105-045	70.867 73.493	0.852 0.623	9
AMTX55047CM	28.045 25.512	234.325	0.331	ģ

Table 360.

LINEAR CURRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/79 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4	1.194	26.799 25.712 19.738 21.918 38.237	0.986 0.988	ハイスカスカスカスカスカスカスカスカスカスカスカスカスカスカスカスカスカスカスカ
H/XSS04	0.535 0.371	19.738	0.491	3
H/NU3+X8504 H/F	0.371	21.918	0.990	3
H/SA	18.209 0.918 0.883 0.734	7.790	0.959 1.000	3
HNV/5A	0.883	3.081	1.000	3
H/TA XSCA/X5K	0.734	-5.679	0.999 0.037	3
XSCA/XSM6	-0.029	11.999	-0.010	3
XSCA/NU3	-0.020	12.071 11.999 12.817 12.600 13.476	-0.104	3
XSCA/XSSU4 XSCA/F	-0.006	12.600	-0.070 -0.223	કૂ
LÙGH/LUGCM	-0.686 -0.789	1.654	-0.658	4
LUGNAZLÖGCM	-1.848	1.470	-0.099 0.534	3
LUGXSK/LUGCM LUGXCA/LUGCM	2.821	0.292	-0.996	રૂ
LUGXMG/LUGCM	-10.626 -8.740	-1. <u>104</u> -1. <u>540</u>	() . hy fo fo	3
LUGF/LUGCM	- 4 6 5 1	-0.516 0.519 1.333 -321.390 -15.530 -166.577	-0.320 -0.231 -0.293 0.978 0.977	ş
LUGNU3/LUGCM LXSSU4/LUGCM	-2.830	1.333	-0.293	3
\$\$/H \$\$/F \$\$/x\$\$U4	-2.551 -2.830 8.584 106.109	-321.390	0.978	3
SS/XSS:14	4.754	-15.530 -166.577	0.997 0.997	ş
SS/NU3	10.616	-10/-000	u.999	3
CUNDIA	0.835	-12.291	0.995	4
CUND/NU3 CUND/X5SU4	1.044	6.721 0.718	0.997 0.999	3
CL/NA	1.258	-1.598	1.000	3
MG/NA NH4/5U4	0.236	0.505 17.460	1.000 0.938	5
NH4/X\$504	0.000	16.609	0.930	3
NU3/504	0.086	-0.830	1.000	3
NU3/XSSU4 F/XSSU4	0.448	-5.627 -0.871	V.999 V.988	<u>ي</u> 2
AMTH/CM	32.913	489.134	0.103	4
AMTNU3/CM	-596.928	672.131	-0.125	ş
- AMTXSSU4/CM -	-1568.194	1732.484	-0.148	>

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 03/79 AT UCF SITE 18 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/N()3 H/S()4	-4.670 -2.040	110.985	-1.000 -1.000	NRRNRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR
n/x\$\$04	-1.910	101.532	-1.000	Ž
H/N()3+XS504 H/F	-1.350 3.498	104.276	-1.000 1.000	ځ
H/SA	0.090	0.000	0.000	ī
HNV/SA H/IA	0.000	0.000	0.000 0.000	1
XSČA/X5K	44.263	-18-154	1.000	Ž
XSCA/XSMG XSCA/NU3	6.854	1.819 -63.685	1.000	Š
XSČA/XSŠU4	4.416	-54.744	1.000	5
XSCA/F	-3.308	21.006	-1.000	Ž
LOĞH/LJGCM LOĞNA/LOĞCM	0.192	1.414	1.000	ځ
LOGXSK/LUGCM	-0.319	-0.110	-1.000	Ž
LUGXCA/LUGCM LUGXMG/LUGCM	-3.008 0.3279 0.192 -0.319 -1.239 -3.379	1.181	-1.000 -1.000	3
LUGF/LUGCM	0.740	0.070 1.259 1.595 3.913	1.000	Σ
LUGNU3/LUGCM	-0.118 -0.135	1.259	-1.000 -1.000	3
SS/H	0.364	3.913	1.000	2
ŠS/F SS/XSSU4	1.274	11.722	1.000	ج
\$8/NU3	-1.701	44.346	-1.000 -1.000	٤
CONDIA	-0.380 1.776	25.552	-1.000	ž
CUND/NU3 LOND/X5SU4	0.726	-16.651 -13.056 -7.783	1.000	۶
LL/NA	1.881	-7.783	1.000	Ž
MG/NA NH4/504	-0.284 1.707	7.569 -50.407	-1.000 1.000	۶
NH4/XS5()4	1.598	-43.905	1.000	کّ
NU3/504 NU3/X8S04	0.437	0.315	1.000	3
F/X9504	-0.546	22.896	-1.000	ž
AMIH/CM AMINU3/CM	449.177	+176.501	1.000	۶
AMTXSSU4/CM	296.451	37.694 92.155	1.000	5

Table 362.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 08/77 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COLF.	NO.
H/NU3	0.000	0.000	0.000	0
H/SO4 H/XSSO4	0.000	0.000	0.000 0.000	0
H/N03+X9904	0.000	0.000	0.000	ŏ
H/F	0.000	ŏ.ŏŏŏ	ŭ.ŭŏŭ	ŏ
H/SA	0.000	-0.025	0.991	ž
HNV/SA	0.784	-0.009	0.989	3
H/TA	0.725	-1.283	0.998	3
XSCA/XSK	0.000	0.000	0.000	Ō
XSCA/XSM6	0.000	0.000	0.000	0
XSCA/NU3	0.000	0.000	0.000	0
XSCA/XSSO4	0.000	0.000	0.000	0
XSCA/F	0.000	0.000	0.000	<u>0</u>
LUGHZLUGCM	-0.138	1.036	-0.246	ğ
LOGNA/LOGCM LOGXSK/LOGLM	0.000	0.000	0.000	Ŭ
LUGXCA/LUGCM	0.000	0.000	0.000	Ä
LUGXMG/EUGCM	0.000	0.000	0.000	ň
LUGF/LUGCM	ŏ.ŭŏŭ	0.000	0.000	ň
LUGNU3/LUGLM	ŏ.ŏŏŏ	ö.ŏŏŏ	0.000	ŏ
LXSSO4/LOGCM	0.000	0.000	ŏ.ŏŏŏ	ŏ
\$\$/H \$\$/F \$\$/X\$\$U4	0.000	0.000	0.000	Ŏ
\$ \$ /F	0.000	0.000	0.000	Ò
\$\$/X5\$U4	0.000	0.000	0.000	0
\$\$/NU3	0.000	0.000	0.000	0
CONDIA	0.228	11.542	0.218	8
CUND/NU3	0.000	0.000	0.000	Ŏ
COND/X5SU4	0.000	0.000	0.000	Ŏ
CL/NA MG/NA	0.000	0.000	0.000	Ň
NH4/SH4	0.000	0.000	0.000 0.000	X
VH4/x55114	0.000	0.000	0.000	ň
NU3/804	0.000	ŏ.ŏŏŏ	0.000	ň
NU3/XS504	0.000	ŏ.ŏŏŏ	0.000	000333000008000000000000800000000000000
F/X8504	0.000	ŭ.ŭvõ	ŏ.ŏŏŏ	ŏ
AMTHICM	131.504	-0.639	Ŏ.815	ð
AMINU3/CM	0.000	0.000	0.000	Ū
AMTXSSU4/CM	0.000	0.000	0.000	Ó

Table 363.

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 09/77 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SO4	0.000	0.000	0.000	0
H/XSS04	0.000	0.000	0.000	Ŭ
H/ND3+X8S04	0.000	0.000	0.000	U
H/F	0.000	0.000	0.000	08880000099000
H/SA HNV/5A	1.030	-0.825 -2.044 -3.244	0.988	ğ
H/TA	0.996 0.775	-5.044	0.991 0.946	Ä
XSCA/XSK	ŏ:000	0.000	0.000	ŏ
XSCA/XSMG	0.000	0.000	0.000	ŭ
XSCA/NU3	0.000	0.000	0.000	Ŏ.
XSCA/XSSU4	0.000	0.000	0.000	0
XSCA/F LUGH/LUGCM	0.000 -0.326	0.000	0.000	ŏ
LUGNAZLOGEM	0.000	0.000	0.000	1
LUGXSK/LUGLM	ŏ.ŏŏŏ	0.000	ŭ.ŏŏŏ	ŭ
LOGXLA/LUGLM	0.000	0.000	0.000	Ú
LOGXMG/LUGCM	0.000	0.000	0.000	0
LOGF/LUGCM	0.000	0.000	0.000	0
LUGNU3/LUGCM LXSSU4/LUGCM	0.000	0.000	0.000 0.000	Ö
\$5/H	0.000	0.000	0.000	ŏ
ŠŠ/F	ŭ.ŏŏŏ	0.000	Ŭ.ŎŎŎ	ŏ
\$\$/X5\$U4	0.000	0.000	0.000	Ŭ
SS/NU3	0.000	0.000	0.00 0	0
CONDIA	0.403	8.365	0.785	9
COND/NU3 LOND/XSSU4	0.000	0.000	0.000 0.000	Ņ
CL/NA	0.000	0.000	0.000	000000000000000000000000000000000000000
MG/NA	0.000	ŏ.ŏŏŏ	0.000	ŏ
NH4/5(14	0.000	0.000	0.000	ŏ
NH4/X\$504	0.000	0.000	0.000	0
NO3/504	0.000	0.000	0.000	0
NU3/XS504 F/XSS04	0.000	0.000	0.000	0 0 0 9
AMTH/CM	82.096	148.287	204.0	ğ
AMTNU3/CM	Ü.000	0.000	0.000	Ú
AMTXSSU4/CM	0.000	0.000	0.000	Ú

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICHUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 10/77 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/S04 H/X\$504	2.469 1.090 1.308	-0.461 -13.660 -11.958 -7.978	1.000 1.000 1.000	555
H/NU3+XSS04 H/F H/SA	54.117 1.053	-7.978 -50.675 1.555 0.143 -0.911	1.000 1.000 0.996	23
HNV/5A H/TA XSCA/XSK XSCA/XSMG -	0.757 2.739 1813.995	-0.911 -0.574	0.996 0.999 1.000 -1.000	3
XSCA/NU3 XSCA/XSSU4 XSCA/F	0.393 0.208 8.618	1.835 0.004 -6.161	1.000	555
LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGCM	-0.459 -0.560	1.398 2.035 0.480	-0.876 -1.000 -1.000 -1.000	422
LOGXLA/EUGCM LOGXMG/LUGCM LOGF/LUGCM LOGNU3/LUGCM	-0.607 0.001 -0.337 -0.885	0.574 0.574 1.835 0.004 -6.161 1.398 0.871 0.674 0.248 1.030 1.552 -46.728 35.517	1.000	555
LYSSOMITOCEM	-0.608 1.638 88.659	1.552 36.319	-1.000 -1.000 1.000 1.000	555
SS/H SS/F SS/XSSU4 SS/NU3 CUND/H	2.143 4.046 0.577	16.728 35.564 5.817	1.000 1.000 0.984	224
CUND/NU3 CUND/XSSU4 CL/NA MG/NA	-0.608 1.6538 88.6547 10.771 0.7716 0.1227 0.2241	5.817 10.514 4.085 -6.668	1.000 1.000 1.000 1.000	555
NH4/504 NH4/X5504 ND3/504	0.223 0.267 0.441	3.427 7.560 7.908 -5.345	1.000	222
NU3/XS5N4 F/XS5U4 AMTH/CM	0.441 0.530 0.024 29.581 8.969	-4.656 0.715 215.813 86.206	1.000 1.000 0.367	rateren ender ende
AMTNU3/CM AMTXSSU4/CM	8.969 104.851	162.746	1.000	Ş

LINEAR CURRELATION BASED ON YEMX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CME
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 11/77 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	•	CORR.COEF.	NO.
H/NO3 H/SO4	1.350	2.835 8.530 8.530 8.530 12.855 12.737 11.7427 11.7433 11.7438	U.997 U.980	4
H/XS504	0.909	2.902	U-998	4
H/NO3+X8504	0.546	2.853	v.998	4
H/F H/SA	0.546 1.411	-11-735	0.000	A TURKE A TANNA
HNV/SA	1.074	-5.427	1.000	Σ
HZTA	0.844	-5.931	1.000	š
XSCA/XSK XSCA/XSMG	2.128	0.703	0.948 0.819	4
XSCA/NU3	0.362	-0.578	0.9//	4
XSCA/XSSU4 XSCA/F	0.245	-0.590	0.991	4
LUGH/LUGCM	1.074 0.074 0.815 0.128 0.245 0.245 0.480	-0.578 -0.590 1.888 1.212 1.838	0.000 -0.960	45
LUGNAZLOGCM	-0.063	i.838	-0.988	4
LUGXSK/LUGCM	0.020		0.677	
LUGXCA/LUGCM LUGXMG/LUGCM	-0.780	0.523 0.154 0.000 0.963 1.159	-0.913 -0.785	4
LUGF/LUGCM	-0.259 0.000	0.000	-0.785	4
LOGNU3/LOGCM		0.963	-0.881	4
LXSSU4/LUGEM SS/H	-0./09 2.785	1.159	-0.921 0.765	4
SS/F	2.785	51.268	0.000	4
SS/XSSU4	2.631	24.661	0.193	4
SS/NU3 COND/H	3.655	4.826	0.735 0.916	4
CONU/NU3	1.191	4.786	0.945	4 5 4
CUND/X5SU4	-0.671 -0.7895 -7855 -6599 1.191 0.191 0.191 0.196	4.642	0.970	4
LL/NA MG/NA	0.912	4.815 0.649	0.967 0.992	4
NH4/5(14	0.357	-1.429	0.904	4
NH4/XS504		-0.932	U.9 5 7	4
NU3/504 NU3/XSS04	0.515 0.665	-0.855	0.972	4
F/XS504	0.000	0.000	0.996 V.996	4
AMTH/CM	45.660	0.000 91.334 71.499	0.984	4 5 4
AMTNU3/CM AMTX58U4/CM	15.449 14.910	71.499 121.969	0.740 0.641	4
ATT A J J U 47 L IN	14.710	1614707	0.041	4

LINEAR CURRELATION BASED UN Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 12/77 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU3 H/SH4 H/X5504 H/NH3+X5504 H/F H/SA HNV/SA H/TA XSCA/XSMG XSCA/XSBU4 XSCA/XSBU4 XSCA/XSBU4 XSCA/KDBCM LUGXSK/LUGCM LUGXSK/LUGCM LUGXSK/LUGCM LUGXSK/LUGCM LUGXSK/LUGCM LUGXF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM LUGF/LUGCM	2.600 1.134 1.095 1.295 1.209	0.979 -0.089 3.171 13.083 103.0431 519.0829 0.72924 1.0897 1.1897 -0.2123 0.749	0.775 0.970 0.9772 0.9737 -1.000 -1.0	NO. 777777777777777777777777777777777777
LXSSU4/EUGCM SS/H SS/F S5/X5SU4 S5/N03 CUND/N03 CUND/X5SU4 CL/NA MG/NA NH4/S5U4 NH4/XSSU4 NU3/XSSU4 F/XSSU4 AMTH/CM AMTNU3/CM AMTNU3/CM AMTXSSU4/CM	0.436 -0.620 -5.170 -0.595 0.655 0.340 0.975 0.181 0.2213 0.2213 0.871 36.684 151.592	0.928 929 4264 367.257 41.972 4.0566 4.0566 870 1.5838 -2773 -28.07	0.331 -0.3390 -0.52811 -0.52811 -0.53630 -0.536000 -0.53600 -0.53600 -0.53600 -0.53600 -0.53600 -0.53600 -0.536	7777787777777777877

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-1N1.	CURR.COEF.	NO.
H/ND3 H/S04 H/XS504 H/ND3+XSS04	2.406 0.753 0.790	-3.283 -4.340 -0.433 -1.979	0.849 0.960 0.976 0.959	5 5 5
H/F H/SA HNV/SA H/TA	0.610 138.251 0.000 0.000 0.000 7.530	16.405 0.000 0.000	0.973 0.000 0.000	5
XSCA/XSK XSCA/XSMG XSCA/NU3	0.000 0.000 7.536 1.058 9.522 -0.231	0.000 9.049 3.939 1.130 8.208 15.073 1.299 1.747	0.700 0.700 0.606 0.782	5 5 5
XŠČA/XŠŠU4 XŠČA/F LOGH/LUGCM LUGNA/LOGCM	9.522 -0.204 -0.431 -0.207	15.073 1.299 1.726	0.516 0.141 -0.238 -0.739	255 <u>5</u>
LUGXSK/LUGLM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM	-0.990 -0.775 -0.011	0.841 0.154 -0.057	-0.558 -0.844 -0.512 -0.040 -0.706	5 5 5
LUĞNU3/LÜGCM LXSSU4/LÜGCM SS/H SS/F SS/XSSU4	-0.605 -0.514 0.177 19.959 0.302 1.494	0.931 1.342 71.046 74.418	-0.533 0.160	5 5 5 5
\$\$/X5\$U4 \$5/NU3 CUND/H CUND/NU3	0.302 1.494 0.439 1.283	64.509 55.265 10.969 6.314	0.127 0.338 0.477 0.909 0.937	555
CUNDIXSSU4 CLINA MGINA NH4/SU4	0.379 0.894 0.241 0.179 0.178	9.490 6.724 0.126 3.896	0.971 0.978 0.978	ういうか・
NH4/XSSD4 NU3/SD4 NU3/XSSD4	0.262	5.22/	0.817 0.787 0.946 0.935	2555
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	0.005 95.821 18.921 47.350	3.614 -0.103 161.810 76.307 240.958	0.920 0.358 0.242 0.152	> 5 5 5

LINEAR CORRELATION BASED ON Y=MX+B
BEINEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 02/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/NU3 H/SU4 H/XSSU4 H/NU3+XSSU4 H/F	1.549 1.280 1.348 0.912	30.586 0.749 1.334 5.748 49.778	0.593 0.815 0.875 0.851 -0.010	6 6 6 6 6
H/SA HNV/SA H/TA XSCA/XSK XSCA/XSMG XSCA/NU3	0.894 0.930 0.803 4.578 2.400 0.661	8.219 2.009 -2.727 5.455 2.726 -1.681	0.965 0.989 0.932 0.201 0.431	666666
XSCA/XSSO4 XSCA/F LUGH/LUGCM LUGNA/LUGCM LUGXSK/LUGCM LUGXSK/LUGCM	0.661 0.322 4.153 -0.191 0.662 -0.164	-5.087 2.092 1.708 1.074 -0.533	0.501 0.899 -0.744 0.646 -0.112 -0.103	66667666
LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H	-0.173 0.721 0.378 -0.114 -0.118 -0.521	10.1587 1.0552 1.0552 1.5243 23.5244 38.543	0.558 0.572 -0.176 -0.255 -0.422	6
SS/F 55/XSSU4 55/NU3 CUND/H CUND/NU3 CUND/XSSU4	1.696 -0.367 -0.011 1.143 0.705 0.469	23.574 38.521 25.496 -29.864 14.421 6.286	0.124 -0.193 -0.003 0.884 0.758 0.855	6666666766
CL/NA MG/NA NH4/504 NH4/XS504 NU3/504	0.897 0.235 0.155 0.106 0.374	2.871 0.544 0.172 2.286	0.989 0.993 0.307 0.215 0.623	9999999
N03/x55()4 F/x55()4 AM1H/CM AMTNU3/CM AM1XSSU4/LM	0.361 0.040 449.860 94.697 367.237	-0.618 -0.395 15.233 43.197 -44.463	0.612 0.290 0.907 0.654 0.924	66766

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 03/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURK.COEF.	NO.
H/NU3 H/SU4	1.211	9.386 -2.876	0.908 0.876	4
H/XSS04	0.887	-1.815	0.784	4
H/NO3+X8S04 H/F	0.533 27.299 0.735 0.740	1.532	0.856	4
H/SA	0.735	8.041	0.951 0.922	43334
HNV/SA	0.740	7.421	0.998	3
HAIA	0.4/3	7.001	0.803	3
XSCA/XSK XSCA/XSM6	22.151 4.980	5.229	0.817 0.853	4
XSCA/NU3	1.041	1.046	u.864	4
XSCA/XSSU4	0.809	-14.994	U-791	4
XSCA/F LUGH/LUGCM	20.803 -0.348	-4.456 1.397	0.801 -0.676	454
LOGNAZLÖĞÇM	-0.994	1.368	-0.703	
LUGXSK/LUGCM	-0.541 -2.116	-0.154	-0.698	4
LUGXCA/LUGCM LUGXMG/LOGCM	-2.116 -1.954	0.579 -0.090	-0.985 -0.969	4
LUGF/LUGCM	-1.082	-0.249	-0.945	4
LUGNU3/LUGUM	-1.342	0.938	-0.959	4
LXSSU4/LUGCM SS/H	-0.697	1.438	-0.787	4
55/F	2.898 74.339	-39.002 -20.598	0.971 0.867	4
\$ \$ /x\$\$U4	2.408	-37.262	0.713	4
SS/NU3	3.196	-4.747	0.803	4
CUND/H CUND/NU3	0.902	-4.562 2.817	V.996 V.943	5
COND/XSSU4	0.851	-8.474	0.832	4
CL/NA	1.164	-1.243	1.000	4
MG/NA NH4/SU4	0.282 0.527	0.570 -10.131	0.990 0.890	4
VH4/X\$504	0.647	-12-042	J.879	4
NU3/5U4	0.648	-9.078 -11.738	0.951	4
NU3/X5504 F/XSSU4	0.789	-11./58	0.431	4
AMTH/CM	0.036	97.054	0.913 0.570	454
AMTNU3/CM	-63.776	151.967 153.843	-0.665	
AMTXSSU4/CM	139.267	153.843	0.515	4

Table 370.

LINEAR CURRELATION BASED ON Y=MX+B
BEIWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
MEIEK.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 04/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.CUEF.	NO.
H/NO5 H/SU4 H/XS504	-9.368 -14.511 4.184	380.375 1747.366 -408.458	-1.000 -1.000 1.000	555
H/NÖ3+XSS04 H/F H/SA HNV/SA	-6.890 0.000 0.000	-1045.017 77.864 0.000 0.000	1.000 -1.000 0.000 0.000	211
H/TA XSCA/XSK XSCA/XSMG XSCA/NU3	-158.101 5.497	431 706	0.000 -1.000 1.000	1222
XŠČA/XŠŠU4 XSCA/F LUGH/LUGCM LUGNA/LOGCM	-3.447 5.678 3.419 -4.371 0.113	17.670 -222.185 427.820 27.086 3.732 -0.830	-1.000 1.000 1.000 -1.000	555
LUGXSK/LUGCM LUGXLA/LUGCM LUGXMG/LUGCM		0.762 0.852 -0.433	1.000 -1.000 -1.000	25.22
LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGLM SS/H	-1.996 -2.583 -0.305 0.239 -3.291	-0.954 1.364 2.182 244.038 -12.183	-1.000 -1.000 1.000 -1.000	5 5 5
\$\$7F 537X\$\$U4 557NU3 UUND7H	-13.766 30.826-	1588.110 1007.624 56.065	1.000 -1.000 1.000 -1.000	555
CUND/NU3 CUND/X5SU4 CL/NA MG/NA	0.904 -0.404 0.552 0.138 -3.772	19.353 95.489 36.073	1.000 -1.000 1.000 1.000	555
NH4/504 NH4/XS5H4 NU3/3U4 NU3/XS5H4	-3.772 1.087 1.549 -0.447	10.456 522.563 -37.750 -145.923 84.206	-1.000 1.000 1.000 -1.000	LRRR
F/XSSU4 AMTH/CM AMTNU3/CM AMTXSSU4/CM	-0.607 1408.707 255.66/ 1313.093	70.582 -228.144 24.278 -54.722	-1.000 1.000 1.000 1.000	ndna a a a a a a a a a a a a a a a a a a

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 05/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURR.COEF.	NO.
H/N03 H/S04	0.313	21.756 28.658	0.421 -0.141	4
H/XSS04	-0.023 -0.035	29.002	-0.222	
H/NU3+X\$\$04	-0.0244 -0.371072 -0.371072 -0.5735721 -0.513212	20.090	-0.113 -0.124	44433344
H/SA HNV/SA	0.341	19.811	0.865	3
H/TA	0.207	16.046	0.717	3
XSCA/X5K XSCA/X5MG	6.722	6.330	0.218	4
XSCA/NU3	2.555	-33.259 -33.259 -8.430	U. 789	4
XSCA/XSSU4 XSCA/F	0.672	-9.430	0.966 0.956	4
LUGH/LUGCM	0.180	3.699 1.371	0.884	4 5 4
LUGNA/LUGCM LUGX5K/LOGCM	-0.329	1.699	-0.313 -0.592	4
LOGXLA/LUGCM	-1.695	0.274 1.520 0.554 0.533	-0.756	4
LUGXMG/LUGCM	-2.760	0.554	-0.665	4
LUGF/LUGCM LUGNU3/LUGCM	-1.255 -0.436	1.418	-0.841 -0.983	4
LXSSU4/LUGCM SS/H	-0.767 5.424	1.756	-0.852	4
SS/F	-0.431	-94.444 56.685	0.791	4
\$\$/x5\$U4 \$\$/NU3	-0.049 1.362	57.768	-0.045	4
CUND/H	-2,272	57.768 29.968 92.075	0.267 -0.844	4 5
CUND/NU3 CUND/XSSU4	1.045	7.102	0.985	4
CL/NA	1.045 0.175 1.168	20.914 -0.369	0.770 0.999	4
MG/NA	0.243 0.317 0.337 0.165	1.666	0.949	4
NH4/5U4 NH4/x8504	0.337	10.466	0.745	4
NU3/5U4 NU3/XS5U4	$0.165 \\ 0.159$	12.3/1	0.767 0.740	4
F/XS504	0.087 259.283	12.371 13.433 -1.545 23.459	0.989	
AMTH/CM AMTNU3/CM	259.283 98.587	23.459 178.703	0.986 0.984	4 5 4
AMTXSSU4/CM	87.200	490.748	0.604	4

LINEAR CURRELATION BASED ON YEMX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MILRUEGUIVALENIS/LITEM EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIEM.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 06/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU5 H/SU4	2.885 1.188	-1.073 -1.804	0.966 0.978	8
H/XŠS04 H/ND3+XSS04	1.298	-1.804 -0.370 -1.042	0.979 0.983	55555AAAB855555555555555555555555555555
H/F H/SA	4.550	-1.042 24.157 -6.439	0.349 0.746	8
HNV/SA H/TA	1.041 1.192 0.605		0.818 0.948	ž
XSCA/XSK XSCA/XSMG	3.031	2.312	0.371 -0.116	ð
XSCA/NU3	-0.448 0.006	3.852	0.028	8
XSCA/XSSU4 XSCA/F	-0.007 -0.243 -0.315	4.152 4.053 1.415	-0.070 -0.258 -0.363	8
LUĞH/LUĞÇM LUĞNA/LUĞÇM	-0.309	1.415 1.517 -0.283	-0.602	8
LUGXSK/EUGCM LUGXCA/EUGCM	-0.062 0.314	0.461	-0.150 0.495	8 8
LUGXMG/LUGCM LUGF/LUGCM	-0.099	-0.203 0.108	=0.142	8 8
LUGNU3/LUGCM LXSSU4/LUGCM	-0.083 -0.206 -0.249	U.948	-0.123 -0.234 -0.280	8
\$\$/H \$\$/f	-0.2426 -0.7779 -3.9577 -0.603	14.416 36.266 13.843 10.192 2.152 1.112	0.724 -0.304 -0.720 0.818 0.991	Ď
55/x55J4 55/NU3	0.957	13.843	0.720	Š
CUND/NU3	0.503	2.155	0.991	8
CUND/X5SU4	0.794 1.352	1.708	0.980 0.984	B
CL/NA MG/NA	0.257	-1.046	0.995 0.998	8
4H4/5U4 4H4/x85U4	0.257 0.161 0.191 0.396 0.427	1.592	0.548 0.594	8
4U3/5U4 4U3/X\$5()4	0.396 0.427	0.130 0.720	0.973 0.962	8 8
F/XS3H4 AMTH/CM	0.029 256.390 111.367	-0.011 -73.253	0.28 <u>3</u> 0.885	5 5 5 5 8 8
AMTNU3/CM AMTXSSU4/CM	111.367	-58.477 -208.022	0.924	8

LINEAR CORRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 07/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF. NO.
H/NO3 H/SO4	2.853	-8.565 -3.963 3.150 -3.728	0.884 10 0.993 10
H/XS504 H/ND3+XS504 H/F	1.243 0.914 28.103 1.132	34.593	0.996 10 0.989 10 0.695 10
H/SA HNV/SA H/TA	1.106	-5.562 -9.670 -24.595 1.765	0.992 7 0.989 7 0.990 7
XSCA/XSK XSCA/XSMG	0.996 13.424 2.919 0.179	7 250	0.779 10 0.632 10
XSCA/NU3 XSCA/XSSU4 XSCA/F	2.255	5.071 8.143 7.340 1.676	0.490 10 0.189 10 0.491 10
LOGH/LUGCM LOGNA/LOGCM LOGX5K/LUGCM	-0.162 -0.084 -0.599	1.645	-0.176 10 -0.253 10 -0.741 10
LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM	-0.512 -0.535	-0.211 0.994 0.153	-0.682 10 -0.882 10 -0.413 10
LUGNU3/LUGCM LXSSU4/LUGCM	-0.291 -0.369 -0.185	1.394	-0.649 10 -0.203 10
SS/H SS/F SS/X5SU4	-0.190 -1.963 -0.217 -0.335	0.133 0.334 1.559 63.812 54.206 62.350	-0.474 10 -0.121 10 -0.434 10
SS/NU3 CUND/H CUND/NU3	-0.335 0.410 1.209	60.461 10.852 6.410	-0.258 10 0.989 10 0.903 10
CUND/XSSU4 CL/NA MG/NA	0.513 1.323	11.995 -10.684 -0.861	0.991 10 0.976 10 0.978 10
NH4/504 NH4/x5504	0.410 1.2093 1.2093 1.246 0.103 0.103 0.348 0.339 0.339	-0.352 0.392	0.652 10 0.636 10
NU3/SU4 NU3/XSSU4 F/XSSU4	0.348 0.339 0.021	6.418 8.508 -0.075	0.882 10 0.877 10 0.692 10
AMTH/CM AMTNJ3/CM AMTX5SU4/CM	785.596 159.406 598.664	-409.038 68.776 -361.625	0.813 10 0.829 10 0.796 10

LINEAR CURRELATION BASED ON Y=MX+B
BEIMEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 08/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
n/NO3 H/SH4	1.658	4.935 -3.593	0.651 0.729	ういういろとというかいいいいいかいいいういういういういううんりょういう
H/XS504	1.023	3.966	0.739	5
H/NU3+X8504	0.829	3.966 -1.147	0.809	5
n/F h/SA	-1.891 -0.149	27.396 39.396 39.113 41.077 -3.171 11.099	-0.044 -1.000	3
HNV/SA	ŏ.000	33.113	-1.000	ž
H/TA	0.000 -0.132 13.310	41.077	-1.000	Ž
XSCA/XSK XSCA/XSMG	-3.49b	11.099	0.615 -0.546	ξ
XSCA/NU3	-3.496 0.275	2.442	0.231	5
XSCA/XSSU4	-0.050	9.152	-0.077	5
XSCA/F LUGH/LUGCM	-10.886 0.169	10.566	-0.543 0.308	ξ
LUGNA/LIJGCM	-0.100	1.653	0.308 -0.378	5
LUGXSK/LUGUM	-0.183	-0.102	-0.668	5
LUGXLA/LUGCM LUGXMG/LUGCM	-0.566 0.143	0.777	-0.934 0.510	ξ
LUGF/LUGCM	-0.186	-0.132	-0.605	5
LUGNU3/LUGCM	-y.168	0.940	-0.305	5
LXSSU4/LUGCM SS/H	-0.002 -0.557	1.192	-0.003 -0.307	ટ્ર
SS/F	-53.485	66.506	-0.431	5
5\$/X5\$U4	-1.176	80.187	-0.469	5
SS/NU3 CUND/H	-0.215 0.154	61.670 14.097	-0.047 0.420	ζ
CUND/NU3	0.814	9.104	ŭ.872	5
LUNU/X5SU4	0.008	17.337	0.016	5
CL/NA MG/NA	1.256	-5.121 -0.158	0.984 0.961	3
NH4/504	-0.001	-0.158 2.360	-0.007	5
₁H4/X\$504 ⋈03/304	0.020	1.983 3.112	0.110 0.521	5
N13/XS5114	0.265	5.625	0.487	3
F/xS5U4	0.006	0.113	0.171	Ş
AMTH/CM AMTNU3/CM	359.973 95.988	-110.291	0.887 0.784	5
AMIX59U4/CM	243.123	-107.558	0.915	Š

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 09/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CORR.COEF.	NO.
H/NO3 H/SO4	1.200	14.865	0.868 0.977	8
H/XSS04 H/NU3+XSS04	1.1/7 1.37059 1.37059 1.9759 1.9759 1.9759 1.9759 1.0059 1.0059 1.0059	1.050 33.555 0.572 0.546 -7.228 1.778 4.950	0.987 0.980	8
H/F H/SA	8.939 1.018	33.065	0.281 1.000	5
HNV/SA H/TA	0.972 0.985	-7.228	1.000	5
XSCA/XSK XSCA/XSM6	4.203 -0.178	1.778 4.906	0 646	8
XSCA/NO3 XSCA/XSSU4	0.241 0.153	0.530 0.750	-0.032 0.897 0.585 0.163	8
XSCA/F LUGH/LUGCM	1.007 -0.165	0.530 0.750 4.508 1.429	TV.431	9
LUGXSK/LUGCM	-0.256 -0.166	1.673 -0.156 0.477 -0.021	-0.890 -0.444	8
LUGXCA/LUGCM LUGXMG/LUGCM	-0.216 -0.135	-0.021	-0.426 -0.346	8
LUGF/LUGCM LUGNU3/LUGCM	-0.205	1.083	0.428 -0.499	8
LXSSU4/LUGCM SS/H SS/F SS/XSSU4	0.830 -17.864	43.147	-0.495 0.544	8
\$\$/x\$\$J4	1.132	-0.056 1.056 1.0853 1.726 1.727 47.727 8.1625 8.1625 14.827 14.82	0.544 -0.369 0.552	8
SS/NU3 CUND/H CUND/NU3	0.513	8.168	0.551 0.939 0.948	9
CUND/X5SU4 CL/NA	0.679	7.774	0.948 0.948	8
MG/NA NH4/SU4	0.231	0.093 -7.515	0.999 0.864	8
1114/XS504 NO3/S04	-0.1357 -0.1357 -0.1357 -0.2156 -0.8334 -1.1513 -0.8150 -1.15159 -	-5.684 -5.684	0.841 0.807	8
NU3/XS504 F/XS504	0.775	-2.791	0.797	8
AMIH/CM AMINU3/CM	0.012 284.344 128.780	-0.060 13.663 0.342	0.290 0.770 0.795	######################################
AMTX58047CM	196.482	14.846	0.705	8

Table 376.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPUNENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DUKING 10/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INI.	CURK.LOEF.	NO.
h/NU3 H/S/14	2.988	-0.158 -1.590	0.907 0.770	9 9
H/XS504	1.607	-6.740	0.980	9
H/NO3+xSS04	1.066	-5.644	0.964	9933399999
H/F H/SA	-0.600 1.327 1.230	57.019	-0.023 0.996	9
HNV/SA	1.250	1.831	0.999	3
H/TA	0.9/2	-10.028	0.981	3
XSCA/X5K	-0.933	6.961	-0.103	9
XSCA/X5M6 XSCA/NJ3	-0.304 0.190	6.970	-0.197 0.652	ğ
XSCA/X5SU4	0.090	2.766 2.803 5.539 1.475	0.624	3
XSCA/F	0.407 -0.329	5.539	0.179	9
LUGHZLUGCM	-0.329	1.475	-0.572	10
LUGNA/L(IGCM LUGNSK/LUGCM	-0.553 -0.202	1.718 -0.277	-0.543 -0.517	ð
LUGXCA/LUGCM	-0.202 -0.376	0.595 -0.141	-0.586	99999999
LUGXMG/LUGCM	-0.419 -0.328	-0.141	-0.407	9
LUGF/LUGCM LUGNU3/LUGCM	-0.528 -0.574	0.186	-0.629 -0.841	3
LXSSU4/LUGLM	-0.413	1.385	-0.719	3
SS/H	-0.268 66.354	191.614	-0.074	9
\$57F	66.354	4/.400	0.665	9
5\$/X5\$U4 \$\$/NU3	0.657 3.515	149.897	0.103 0.274	9
CUNDZH	0.276	25.703	0.485	1 ó
CUND/NU3	1.355	17.094	0.734	9
CUND/X5SU4 CL/NA	0.569 1.087	20.308	0.620 0.996	9999999
MG/NA	1.087	0.426	0.499	3
NH4/5(14	0.220 0.154 0.218 0.378	-1.415	v.845	9
NH4/XS5(14	0.518	-1.411	0.987	9
NU3/504 NU3/XS504	0.370	-2.174 0.146	0.923 0.959	á
F/XS504	ŭ. 703	1.831	0.040	
AMTH/CM	161.057	151.999	0.581	10
AMTNU3/CM AMTX5SU4/CM	36.415 117.163	57.205 117.421	0.698 0.689	9
5 1700047Cm	11107	111.461	0.007	7

Table 377.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN COMPONENTS. ALL UNITS
ARE MICROEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 11/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-1NT.	CORR.COEF.	NO.
H/NU3 H/SU4 H/XSSU4 H/ND3+XSSU4	1.721 0.762 1.711 1.264	9.30/ 5.799 -3.136 -13.094	0.680 0.760 0.917 0.980	5 5 5 5
H/F H/SA HNV/SA H/TA XSCA/XSK	0.000 0.000 0.000	18.704 0.000 0.000 0.000	0.744 0.000 0.000 0.000	5000
XSCA/XSMG XSCA/NU3 XSCA/XSSU4 XSCA/F	1.869 0.879 0.093 0.155 1.512	4.819 4.556 5.657 3.510 6.209 1.219	0.381 0.894 0.307 0.694 0.321 -0.876	ひらかいじゅうじんじゅう もんかんかいかんかいじゃ もんらんじんじんじん もいじ
LOGH/LUGCM LOGNA/LOGCM LOGXSK/LOGCM LOGXLA/LUGLM	-0.340 -0.175	-0.106 0.737	0.021 -0.587 -0.332	6555
LUGXMG/LUGCM LUGF/LUGCM LUGNO3/LUGCM LXSSU4/LUGCM SS/H	-0.022 -0.114 -0.639 -0.477	0.315 -0.064 0.836 -1.104 79.066	-0.020 -0.265 -0.838 -0.871 0.473	ういろうい
SS/F SS/XSSU4 SS/NU3 CUND/H	2.654 -13.296 7.168 -4.332 0.597	180.129 8.857 247.888 15.352	-0.060 0.585 -0.305 0.742	5556
CUND/NU3 CUND/XSSU4 CL/NA MG/NA NH4/SU4	0.061 1.266 1.041 0.224	36.146 7.315 2.640 0.323	0.030 0.844 0.998 1.000	5 5 5 5
NH4/X5504 NH3/304 NU3/X5504 F/XS504	-0.001 -0.013 0.017 0.274 0.023	0.262 0.534 15.521 9.727 0.099	-0.052 -0.386 0.041 0.373 0.477	22555
AMTH/CM AMTNU3/CM AMTX5SU4/CM	130.050 30.681 106.686	46.926 36.912 31.203	0.920 0.533 0.976	655

Table 378.

LINEAR CURRELATION BASED ON Y=MX+B
BETWEEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEGUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
METER.
CLEAN AND SLIGHTLY DIRTY SAMPLES CULLECTED
DURING 12/78 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLOPE	Y-INT.	CURR.COEF.	NO.
H/SU4 H/SU4 H/SU4 H/XSS4 H/XSS4 H/YF H/SA H/YF H/SA H/TA XSCA/XSU3 XSCCA/XSU3 XSCCA/XSU3 XSCCA/XSU3 XSCCA/XSU3 LDUGGCM LDUGGCM LDUGGCM LDUGGCM LDUGGCM LDUGGSF/LSU4 LSS/F SS/F SS/XSU4 SSS/F SS/F SS/XSU4 CUU/XS CL/XS CUU/XS CUU/XS CL/XS CUU/	SL 59493000067254145970000137254144597000013725741454733114465700000000000000000000000000000000000	-10.41000036103333151961962971999999999999999999999999999999	203160000b1942951 909960000b1942951 9099760000571549399 9099000000000000000000000000000000	0 133333000333333433333333333343333333333
CL/NA MG/NA NH4/504 NH4/X5504 NU3/504 NU3/XS504	1.147 0.220 0.106 0.129 0.225 0.268	-21.649 -0.228 1.195 1.634 0.496 1.876	0.998 0.998 0.930 0.985 0.985	33333
F/XSSO4 AMIH/CM AMINU3/CM AMIXSSU4/CM	0.040 12.488 27.469 64.612	-0.977 51.946 23.619 84.249	0.924 0.987 0.998 0.994	3453

LINEAR CURRELATION BASED ON Y=MX+B
BETWLEN SELECTED RAIN CUMPONENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ.
METEH.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DURING 01/79 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CURR.COEF.	NO.
H/NU5 H/SU4 H/XSSU4 H/NU3+XSSU4 H/SA HNV/SA H/IA XSCA/XSK XSCA/XSMG XSCA/XSSU4 XSCA/XSSU4 XSCA/F LUGH/LUGCM LUGH/LUGCM	2.073 0.854 0.855 0.6011 1.0914 0.688 14.756 16.702 0.475 16.702	4.03387 4.03878 618864 75.3476 21.4952 10.033283 10.05715 1.685	0.998 0.999 0.999 0.999 0.997 1.000 1.000 0.1558 0.987 0.987	
LUGXSK/LUGCM LUGXCA/LUGCM LUGXMG/LUGCM LUGF/LUGCM LUGNU3/LUGCM LXSSU4/LUGCM SS/H SS/F SS/XSSU4 SS/NU3 CUND/H CUND/NU3 CUND/NU3 CUND/NA MG/NA NH4/SH4	0.139 -0.6327 -0.211 -0.6227 -0.2534 -0.492 -0.349 -0.349 -0.368	0.9454 0.945734 0.9457309 0.157309 1.55	0.260 450 450 450 400 400 400 400 400 400 40	, 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
NH4/X5504 NU3/304 NU3/X5504 F/X5504 AMTH/CM AMTNU3/CM AMTX5504/CM	0.360 0.423 0.411 0.028 128.374 47.441 83.421	-2.416 -1.835 0.899 -0.484 176.760 83.837 213.470	0.985 0.999 0.999 0.998 0.992 0.987	444444

LINEAR CURRELATION BASED ON Y=MX+B
HEIWEEN SELECTED HAIN CUMPUNENTS. ALL UNITS
ARE MICRUEQUIVALENTS/LITER EXCEPT CM=
CM PRECIPITATION AND AMT=MICROEGUIVALENTS/SQ.
MEIER.
CLEAN AND SLIGHTLY DIRTY SAMPLES COLLECTED
DUKING 02/79 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INI.	CUKK.CJEF.	• 0V
H/NU3 H/SU4 H/X55U4	-1.165 0.128 0.052	62.726 31.994	-0.280 0.303 0.837	4 4 4
H/NU3+XSS04 H/F	0.564 4.217	8.390 2.339 24.478	0.754 0.809	4
H/SA HNV/JA	2.887 3.635	-98.794 -141.476	1.000	47774444
HITA	0.111	44.333	1.000	چ
XSCA/XSK XSCA/XSM6	-1.361 0.079	11.391	-0.310 0.275	4
XSCA/NU3 XSCA/XSSU4	-0.127 -0.150	10.879 12.761 17.968	-0.119 -0.758	4
XSCA/F LUGH/LUGCM	-1.213	15.201	-0.913	4
LOGNAZLOGCM	-0.131 -1.101	1.543	-0.252 -0.885	4
LUGXSK/LUGLM	-0.073 0.130	-0.018 1.024	-0.145 0.310	4
LUGXMG/EUGCM	0.361 -0.456	0.216	U.009 -0.381	4
LUGNU3/LUGCM	-0.187	1.212	-0.892	4
LXSSH4/EUGCM	-0.345 -3.881	383.022	-0.570 -0.210	4
35/F 35/X5SU4	-11.107 3.014	267.261	-0.115	4
SS/NU3 CUND/H	/6.516- -0.060	1195.908 52.587 -129.362	0.997 -0.025	4
CUND/NU3	9.676	-125.362	0.956	4
CUND/XSSU4 CL/NA	0.646	15.195	0.371 1.000	4
46/11A 4114/5114	0.162	4.414	0.999 0.077	4
NH4/x5504 903/504	0.169	6.344	0.742	4
103/x5504 F/x5504	0.024	17.340	0.129 0.478	4
AMINICH	143.916	131.921	0.521	4
AMINU3/CM AMIXUSU4/CM	165.197	192.579	0.412	4

LINEAR CURRELATION BASED ON Y=MX+B BEINEEN SELECTED RAIN COMPONENTS. ALL UNITS ARE MICROEQUIVALENTS/LITER EXCEPT CM= CM PRECIPITATION AND AMT=MICROEQUIVALENTS/SQ. MEIER. LLEAN AND SLIGHTLY DIRIY SAMPLES CULLECTED DUHING 03/79 AT KSC SITE 19 ARE INCLUDED.

Y/X	SLUPE	Y-INT.	CURR.COEF.	NO.
H/NO3 H/SE4	-0.413 -0.112	28.104	-1.000 -1.000	NOWNER REPRESENTANT REPRESENTANCE ON PRICE
H/XS504	-0.16/	25.928 26.606 27.038	-1.000	ž
H/N(15+XS\$04 H/F	-0.119 1.534	27.038 14.559	-1.000 1.000	کے
H/5A	0.000	0.000	0.000	ō
HNV/54 H/1A	0.000	0.000	0.000 0.000	ņ
ASCA/XSK	2.729	-1.885	1.000	Š
KSCA/×SMG	v.867	-0.634	1.000	Ž
XSCA/NU3 XSCA/XSSU4	$\frac{1.500}{0.607}$	-17.649 -12.207	1.000	ζ
xSCA/F	-5.576	-12.207 31.569 1.358	-1.000	چ
LUGH/LUGCM LUGNA/LNGCM	-0.127 -0.784	1.358	-0.422 -1.000	3
LDGXSK/LUGUM	-1.172	0.011	-1.000	5
LUGXLA/LUGCM LUGX 4G/LUGCM	-1,203	0.386	-1.000	3
L/IGF/LUGCM	-1.269 0.500 -0.335	0.407 0.602	-1.000 1.000	چ
LUGNU3/LUGLM	-0.335	1.160	-1.000	ڲ
LXSSU4/LUGLM SS/H	-0.428 -31.847	782.504	-1.000 -1.000	5
S5/F	-48.867	318.844	-1.000	Ž
\$\$/X5\$U4 5\$/NU3	5.320 13.149	-64.818 -112.513	1.000	5
CONDIH	4.346	-53.568	0.927	3
COND/NU3 CDND/X5S04	1.790	-3.206	1.000	ટ્ર
CL/NA	1.005	5.033	1.000	ځ
MG/NA	0.343	-3.301	1.000	Ś
NH4/504 NH4/X8 5 04	0.441	-6.490 -9.166	$\frac{1.000}{1.000}$	ج
N13/5/14	0.270	5.269	1.000	Σ
NO3/X8504 F/X8504	0.405	3.627 7.851	1.000	3
AMTH/CM	232.063	7.851 4.304	0.999	3
AMINU3/CM AMIXSSU4/CM	100.266	26.447 05.339	1.000	5
11.17.400047.011	* 20 * 10 3	U / B J J /	1000	-

		per	100g,	and	perc	ent 1	vitro	gen.										
JATA		EXP																
	SITE	_	DATE	РΗ	NA	ĸ	CA	чG	AL	кни	ų	CL	N03	504	S ORG	IEC	% N	
	3	••	54,6		.,,	••		-,0	AL.	IVII	r		1103	304	• UNG	166		
U I	01	01	9/07/16	4.2	18	23.2	156	70.0	48	•50	1.68	7.5	• 0	15.0	4.37	8.45	.054	
31	31	J1	1/09/76	4.1	30	18.0	280	67.0	20	1.06	2.48	10.1	8.2	.0	4.85	6.33	.061	
91	01	υl	10/12/75	3.9	48	18.0	260	68.4	22	.63	1.00	12.1	9.4	.0	7.26	9.05	.067	
11	01	Ji	14/03/77	4.2	42	18.0	266	64.0	23	.19	•00	18.5	5.1	• 0	4.89	5.71	.066	
01	01	0.2	18/03/77	4.1	40	14.0	0258	60.0	14	.20	•00	17.0	.0	• 0	3.61	4.26	.043	
01	01	0.3	18/03/77	4.0	42	17.0	298	69.0	22	.23	.00	20.5	5.1	• 0	3.21	4.30	.047	
01	01	tl-4	14/03/17	3.9	42	18.0	126	77.0	24	.18	.60	16.3	5.7	• 0	6.28	5.18	.072	
J1	02	01	9/07/76	1.9	164	45.2	>1979	636.0	0	63.00	10.10	115.0		61.0	19.70	20.70	.361	
01	02	u I	1/09/16	8.5	210	22.0	>1999	>749.9		22.30	4.24	87.5	5.1	60.5	20.40	28.00	. 324	
01	حرر	01	10/12/16	H.0	218	19.0	21994	>799.9	4	1.83	6.30	107.0	19.8	29.4	25.50	23.80	.219	
9.1	37	31	14/03/77	8.4	156	17.0	21999	>/99.9	0.0	9.00	5.70	64.0	21.6	42.0	16.60	11.00	.245	
or l	0.5	15	18/03/77	H.3	142	19.0	21999	>199.9	0.0	12.80	7.60	89.0	22.2	67.3	35.10	15.00	. 325	
ปไ	υZ	0.3	18/03/17	8.5	230	18.0	21999	>799.9	00	10.40	5.70	136.0	22.8	60.5	33.00	13.20	.123	
01	9.2	04	18/03/77	8.6	195	16.0	21999	>199.9	0.0	7.72	9.60	148.0	19.8	59.2	22.40	9.72	.281	
01	04	91	9/07/16	4.6	50	11.2	168	19.6	8	3.00	1.68	10.5	2.5	.0	.96	1.00	.017	
91	04	01	1/09/76	4.3	34	11.0	135	23.0	4	.89	•76	10.7	7.0	.0	1.86	1.81	.020	
01	04	υl	10/12/76	5.5	52	14.0	100	18.A	6	•45	.70	8.7	11.2	.0	1.18	1.50	•008	
a į	Ð 🍁		18/03//7	5.7	33	8.0	150	18.0	6	•16	1.00	21.4	12.4	• 0	.88	.81	.011	
0.1	Ü4		18/03/77	4.5	33	10.0	176	23.0	8	.18	.00	13.5	17.3	.0	1.28	.81	.014	
01	04		14/03/77	4.4	38	9.0	160	20.0	6	• 56	•00	20.9	13.0	.0	1.16	•97	.017	
0.3	04		18/03/77	4.5	35	9.0	170	20.0	6	-14	•00	11.9	11.8	.0	1.23	.89	.015	
61	05	υl	9/07/76	4.1	18	8 • H	96	18.8	12	4.00	•48	7.0	• 0	80.5	2.30	3.21	.017	
91	05	01	1/09/76	4.0	35	10.0	100	24.0	4	•00	1.04	8.3	10.0	12.0	1.42	2.17	•076	
0.3	05		10/12/76	4.3	45	11.0	116	17.2	8	1.00	.30	11.1	14.3	• 0	1.32	2.22	.020	
91	05		14/03/77	3.9	40	10.0	142	57.0	12	.20	•00	10.3	15.7	.0	3.02	1.36	.021	
01	05		18/03/77	4.0	36	9.0	128	20.0	12	.18	•00	24.0	5.1	.0	1.55	1.78	.023	
0.1	05		18/03/77	3.8	38	9.0	126	23.0	8	.17	•00	10.8	9.4	• 0	•00	1.34	.024	
01	ÜD		18/03/77	4.1	30	9.0	114	20.0	10	.28	•00	11.7	10.6	• 0	1.29	1.09	.02H	
01	06		16/07/76	*•2	18	11.2	82	12.2	98	3.50	•76	8.0	.0	8.5	1.26	1.34	.018	
01		.01	1/09//6	4.1	58	10.0	94	15.0	16	1.19	.00	8.5	9.4	• 0	1.56	1.31	.009	
01	06		10/12/76	4.1	50	15.0	86	12.4	24	1.58	1.40	12.1	14.9	4.3	1.52	1.22	.023	
01	06		18/03/77	4.1	28	7.0	88	12.0	18	.14	5.10	7.8	20.4	• 0	5.10	•67	.017	
01	06		18/03/77	4.2	32	7.0	96	12.0	26	.16	1.50	8.1	12.4	• 0	1.19	• 75	.010	
01	06		18/03/17	4.0	35	9.0	96	14.0	50	.16	3.40	8.1	10.6	•0	1.47	1.29	.025	
01	06		18/03/17	4.1	35	7.0	88	12.0	50	.20	1.00	7.3	10.6	.0	3.20	•64	.009	
01	0 <i>7</i> 07	0 L 0 1	26/07/16	7.6			>1999			30.00	6.80	750.0	9.0	440.0	15.50	18.10	.372	
01	07		-	7.5			>1999			22.30	3.80	549.0	2.7	85.7	16.30	23.80	.390	
01	U 1		10/12/76	6.0 7.5	168 268		>1999 >1999		130	7.16	>55.99 .60	83.0		36.1	10.80	17.60	.249	
01 01	07		18/03/17	1.9	352		71999		00	7.30	.60	233.0	34.8	42.5 130.0	11.40	10.80	.206	
υl	07		18/03/17	7.5	310		21999		02	3.26	3.90	291.0	20.4 3.9		11.50	7.64	.205	
01	07		18/03/77	7.7			21999		95	7.14	1.50	412.0	34.4	168.0 42.5	26.50 36.70	11.00	.535 .545	
ÜÌ	09		26/07/76	5.3	48	20.8		172.0			>55.99	21.5	.0	1.5	6.72	13.40	.195	
01	09	01	1/09/76	6.7	430		>1999			25.10			>99.9	84.1	12.60	28.00	•538	1
01	09		10/12/76	6.7			>1999		4			490.0	83.8	151.0	12.40	14.00	.26A	
οi	09		18/03/77	9.5	97		>1999		114		>55.99		>99.9	.0	10.80	11.40	.186	ı
01	09		18/03/77	6.4	120		>1999		120		>55.99	83.8	5.7	.0	8.39	9.82	.195	
01	U9		14/03/17	5.7	82		>1999		120		>55.99	70.0	.0	.0	9.50	10.70	.153	
oi	09		18/03/77	5.8	110		>1999		124		>55.99		>99.9	.0	13.00	12.00	. 330	
ΰi	10		26/07/76	4.4	25	11.2	200	40.4	20	3.80	6.12	6.5	2.5	8.0	3.29	4.14	.04H	
- •				-			-		8	1.12	1.36							
01	10	10	1/09/76	4.5	32	A.O	1900	21.0		1016	1.30	6.9	8.2	• 0	1.66	2.55	.023	

Concentration of Various Nutrients Present in Soil Samples collected in July, 1976, September, 1976, Table 382. December, 1976, and March, 1977, from Merritt Island Plant Communities. Concentrations reported are parts per million(ppm) except for percent Organic matter, Ion Exchange Capacity in milliequivalents per 100g, and percent Nitrogen.

UATA		Exa															
TYPE	5116	40	DATE	PH	NA	K	CA	MG	AL	6ни	þ	CL	NO 3	504	S OHG	IEC	* N
0 }	10	01	18/03/77	4.2	44	11.0	242	45.0	18	.28	1.00	21.9	2.7	. 0	2.46	2.26	.026
0 1	10	02	18/83/17	4.1	35	10.0	312	48.0	20	.20	3.10	20.5	2.7	• 0	2.12	3.08	•055
03	10	υŧ	14/03/17	4.0	42	14.0	300	51.0	55	. 34	1.50	24.2	5.7	.0	2.71	3.31	.008
J i	13	0.4	18/03/77	4.0	40	10.0	278	53.0	16	.38	.60	18.9	.0	. 0	2.62	2.74	.028
υŢ	41	01	9/01/16	8.0	64	20.8	>1499	30.0	8	4.00	>55.99	16.5	1.6	. 0	5.70	.50	.016
υl	91	01	1/09/16	7.8	96	11.0	>1499	35.0	4	2.98	>55.49	18.5	33.2	. 0	5.16	.17	.019
0 1	31	0.1	10/12//6	1.2	105	A.u	>1399	30.0	8	2.51	>55.99	12.4	29.5	4.3	5.01	.30	.013
91	91	91	14/03/77	7.5	97	6.0	>1999	35.0	06	.69	34.80	8.5	12.4	. 0	4.93	. 27	.009
0.1	42	0.1	9/07/76	8.5	64	14.0	>1999	31.6	В	.50	42.40	7.5	• U	23.5	4.90	-14	.010
0.1	ج	0.1	1/09//6	4.5	42	4.0	>1999	33.0	4	2.51	>55.99	8.3	24.6	• 0	4.86	• 35	.016
υl	دو	υl	10/12/16	8.2	101	6.0	>1949	33.2	6	1.49	46.10	9.9	17.9	• ປ	4.70	.00	.01A
01	42	01	18/03/77	8.2	96	5.0	71999	40.0	04	.27	46.20	7.7	15.5	• 0	7.01	.21	.009
01	92	02	14/03/77	8.5	104	4.0	≥1999	40.0	04	.32	43.70	9.4	23.4	• 0	6.34	.33	.013
0.1	95	03	14/03/77	H.6	96	4.9	>1999	38.0	0.8	. 31	>55.99	7.7	22.2	• 0	6.43	.26	.011
01	92	34	18/03/77	H . 7	84	4.0	>1999	33.0	0.2	. 31	39.20	8.6	16.1	• 0	5.13	.30	.009
0 1	93	U l	9/07/76	4.5	72	11.2	>1,494	35.6	4	3.00	17.40	6.5	2.5	1.5	6.94	.16	.005
υl	93	01	1/09/16	8.6	92	3.0	×1999	40.0	Û	1.77	21.90	11.5	11.2	• 0	5.85	. 79	.00#
0 1	93	0 1	10/12/76	8.3	103	6.0	>1999	42.0	6	1.88	24.50	19.3	24.0	4.3	5.71	.19	.008
01	43	0.1	14/03/77	4.7	96	4.0	>1999	40.0	02	.21	45.00	11.6	. 0	. 0	6.38	• 26	.008
01	94	0.1	26/07/76	5.4	12	11.2	96	15.6	124	.50	H.60	16.5	. 0	.0	1.36	2.38	.018
01	44	οì	1/09/76	5.8	36	6.0	30	8.0	116	•56	7.88	6.5	16.1	8.0	1.21	1.72	.017
0.1	94	01	10/12/76	5 • l	40	6.0	80	10.0	120	1.33	10.50	9.4	12.4	• 0	1.27	1.98	.019
0.1	94	0.1	18/03/17	5.0	32	4.0	116	10.0	134	•24	15.10	5.1	10.6	• 0	1.01	.64	.014
01	44	0.2	18/03/77	4.8	35	4.0	116	11.0	138	.22	12.80	12.7	.0	- 0	2.05	.64	.012
0 1	94	03	19/03/17	4.7	32	4.0	116	12.0	132	. 25	12.20	7.3	14.9	• 0	1.51	1.03	.017
01	94	04	18/03/77	4.6	36	4.0	108	14.0	134	. 21	12.20	6.8	11.8	• 0	1.94	1.18	.022
PΊ	95	01	10/15/76	4.8	40	8.0	128	19.6	62	.00	3.50	8.6	13.0	• 0	1.30	.00	.000

79 RECORUS PRINTED

Table 383.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	= 0 1					ELE = NA
LEACI	HING, PPM	TOTAL CAT	ION, PPM	FRACT	ION LEACHE	0
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOW
12.17	2 2 2	80 17	5 22	1795	1518	1240
40 35	14 25	80 17	5 22	6811	5033	3256
18 83	1 31	80 17	5.22	2513	2349	2186
11.13	1 36	80 17	5 22	1558	1389	1220
11 07	2 69	80 17	5 22	1716	1380	1045

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0 0001M HCL

Table 384.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	=01					ELE=CA
LEACI	HING, PPM	TOTAL CAT	I ON, PPM	FRAC	TION LEACHE	
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOW
185 70	15 47	178 77	9 71	1 1253	1 0388	9523
199 57	11 84	178 77	9 71	1 1826	1 1164	1 0501
199 77	39 29	178 77	9 71	1 3372	1 1175	8977
51 27	7 09	178 77	971	3264	2868	2471
5.83	2 02	178.77	9 71	0439	0326	0213

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 385.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	= 0 1					ELE = MG
LEAC	HING, PPM	TOTAL CAT	ION, PPM	FRACT	ION LEACHE	D
MEAN	DEV	MEAN	DEA	HIGH	AVE	LOW
68 89	8 9 4	81 72	3 88	9524	8430	7336
66 63	2 11	81 72	3 88	8412	8154	7896
79 89	14 20	81 72	3 88	1 1515	9777	8039
54 00	182	81 72	3.88	6831	6608	6385
6 4 0	2 88	81 72	3 88	1136	0783	0431

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 386.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	= 0 1					ELE = AL
LEACI	HING, PPM	TOTAL CAT	TION, PPH	FRACT	ION LEACHE	. 0
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
69 20	8 27	257 77	7 11	3005	2685	2364
58 63	5 24	257 77	7 11	2478	2275	.2071
16 90	1 40	257 77	7.11	.0710	0656	0601
00	00	257 77	7.11	0000	0000	0000
0 0	00	257 77	7 11	0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 387.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	• 0 1					ELE=FE
LEACH	IING, PPM	TOTAL CAT	ION, PPN	FRACT	ION LEACHE	D
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
61 60	4.19	235 83	6.74	2790	2612	2434
20.16	61	235 83	6 74	0881	0855	0829
2 64	21	235 83	6 74	0121	0112	0103
00	00	235.83	6.74	0000	0000	0000
00	00	235 83	6 74	0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 388.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	= 0 1					ELE=NI
LEACH	ilng, ppm	TOTAL CAT	ION, PPH	FRACT	ION LEACHE	E D
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
1 52	1 02	11 04	1 2	2300	1380	0460
1 58	33	11.04	12	1721	1427	1132
2 08	38	11.04	12	. 2227	1881	1535
1 00	• •	11.04	12	.0906	0906	0906
97	97	11 04	1 2	1757	0879	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 389.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	• 0 1					ELE=ZN
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
11.69	4.63	3.25	.99	5.0174	3 5932	2 1691
6 12	2 6 1	3 2 5	99	2.6820	1 8801	1.0782
5 10	1 63	3.25	99	2 0673	1.5666	1.0659
2.75	1 75	3.25	99	1.3842	8453	3064
80	27	3.25	99	.3289	2459	1629

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0 0001M HCL

Table 390.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	=02					ELE = NA
LEAC	LEACHING, PPM TOTAL CATION, PPM		FRACT	O		
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
194 73	11 44	697 83	36 89	2955	2791	2627
165.37	17 78	697 83	36 89	2624	2370	2115
180 27	1 02	697 83	36 89	2598	2583	2569
285 23	178 04	697 83	36 89	6639	4087	1536
142 57	5 36	697 83	36 89	2120	2043	1966

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 391.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	E = 0 2					ELE = CA
LEAG	CHING, PPM	TOTAL CA	TION, PPM	FRAC	TION LEACH	ED
HEAN	DEV	MEAN	DEV	HIGH	AVE	LOU
69640 0	2120 00	50108 3	622 22	1.4321	1 3898	1 3475
22876.7	1535.56	50108 3	622 22	.4872	4565	. 4259
2202.33	104 22	50108 3	622.22	.0460	0440	0419
397.00	47 73	50108.3	622.22	.0089	.0079	0070
313.70	8 47	50108 3	622 22	0064	.0063	0061

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0 0001M HCL

Table 392.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	=02							ELE = MG
LEAC	HING, PPM	TOTAL CAT	ION, PPM	FRAC	TION	LEACH	ΕD	
MEAN	DEV	MEAN	DEV	HIGH		AVE		LOW
705 17	33 64	122.88	99	6 0123	5	7385	5	4647
470 10	87 87	122.88	99	4.5406	3	8256	3	1105
346 53	65 76	122.88	99	3 3551	2	8200	2	2849
97 93	10 36	122 88	99	8812		7970		7127
74 80	98	122 88	99	6167		6087		6007

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 393.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

	SITE=	02					ELE=AL
LEACHING, PPM		TOTAL CAT	TOTAL CATION, PPM		FRACTION LEACHED		
MEA	N	DEV	MEAN	DEV	HIGH	AVE	LOU
351	13	23.84	3105.83	99.56	1207	1131	1054
5	60	00	3105.83	99.56	.0018	0018	0018
	00	00	3105.83	99.56	. • • • •	0000	0000
	00	00	3105.83	99.56	0000	.0000	0000
	00	00	3105.83	99.56	0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 394.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

	SITE=	0 2						ELE=FE
	LEACHING, PPM TOTAL CATION, PPM		FRACT	ION LEACHE	D			
ME	AN	DEV		MEAN	DEV	HIGH	AVE	LOW
45	50	2 8	8	1213 00	45 00	0399	0375	0351
1	53	8	6	1213 00	45.00	0020	0013	0006
1	34	1 1	2	1213.00	45.00	0020	0011	0002
	00	0	٥	1213.00	45 00	0000	0000	0000
	64	٥	٥	1213 00	45 00	0005	0005	0005

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 395.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	• 0 2					ELE = MN
LEACHING, PPM TOTAL C		TOTAL CAT	ATION, PPM F		FRACTION LEACHED	
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOU
34.28	96	59 90	1.47	. 5883	. 5723	5564
4 40	1 58	59.90	1 47	0997	0734	0471
1 46	1.46	59.90	1 47	.0487	0244	0000
00	00	59.90	1 47	.0000	.0000	0000
6.6	٥٥	59 90	1 47	0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0 0001M HCL

)

Table 396

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	:02					ELE=NI
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		D
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
96	96	3.90	2 60	4902	2451	0000
5 4	5 4	3.90	2 60	. 2772	1386	0000
00	0 0	3.90	2.60	0000	0000	0000
76	76	3 90	2 60	3901	1950	0000
1 28	4 0	3 90	2 60	4311	3285	2258

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 397.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=02 ELE=ZN

LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED			
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW	
7.67	2 17	4 92	. 19	1 9991	1 5586	1 1180	
2 54	00	4 92	. 1 9	5159	5159	5159	
1.34	00	4 92	. 1 9	.2722	. 2722	.2722	
1 5	10	4.92	19	.0506	0298	0090	
28	19	4.92	19	0959	0575	.0192	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 398.

SITE=02

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

ELE = CO

LEACH	IING, PPM	TOTAL CA	TION, PPM	FRACT	ION LEACHE	:D
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
1 91	13	10 22	10 22	1994	1870	1746
00	. 0 0	10 22	10.22	.0000	0000	0000
1 1	11	10 22	10.22	0225	0113	0000
00	• •	10 22	10.22	0000	0000	0000
۸۸	Λ Λ	10 22	10 22	ስለሰለ	ዕለለለ	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 399.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	:02					ELE=PB
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOW .
6.31	. 6 3	99.63	. 48	.0697	.0634	.0571
.00	.00	99.63	.48	.0000	.0000	.0000
.00	.00	99.63	.48	.0000	.0000	.0000
.00	.00	99.63	. 48	.0000	.0000	.0000
. • •	. • •	99.63	. 48	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 400.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	:02					ELE=MO
LEACHING, PPM		TOTAL CATION, PPM		FRAC	D	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOU
3.82	.96	7 57	5.05	.6310	.5048	.3787
1.99	.00	7 57	5.05	.2628	.2628	.2628
4.52	4.52	7.57	5.05	1.1937	.5968	.0000
00	.00	7.57	5.05	.0000	.0000	.0000
. 00	.00	7.57	5.05	.0000	.0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL

Table 401.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN HERRITT ISLAND SOIL SAMPLES.

SITE	= 0 3				ELE=NA	
LEACHING, PPM		TOTAL CATION, PPM		FRAC	E D	
MEAN	DEY	MEAN	DEY	HIGH	AVE	LOW
530.07	20.11	652.17	45.22	.8436	.8128	.7819
232.53	5.69	652.17	45.22	.3653	.3566	.3478
36.30	3.27	652.17	45.22	.0607	.0557	.0507
14.00	3.47	652.17	45.22	.0268	.0215	.0162
5.33	.71	652.17	45.22	.0093	.0082	.0071

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 402.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SIT	E = 0 3					ELE = CA
LEA	CHING, PPM	TOTAL C	ATION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	L O B
59043 3	2815.55	44975 0	3423.33	1.3754	1.3128	1 2502
23373 3	817.78	44975 0	3423.33	.5379	.5197	.5015
3015.67	62.89	44975 0	3423.33	.0685	.0671	.0657
370.43	9.96	44975 0	3423.33	.0085	.0082	.0080
81 47	2 69	44975 0	3423 33	0019	0018	0018

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 403.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=03					ELE=MG
LEAC	HING, PPM	TOTAL CA	TION, PPM	FRACI	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
165.63	9.98	326.95	18.93	.5371	.5066	.4761
80.62	10.15	326.95	18.93	.2776	. 2466	.2155
31.58	4.68	326.95	18.93	.1109	. 0966	.0823
30.34	5.72	326.95	18.93	.1103	.0928	. 0753
8 84	.90	326.95	18.93	.0298	.0270	0243

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 404.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

, SITE=	: 0 3					ELE=AL	
LEACHING, PPM		TOTAL CA	TOTAL CATION, PPM		FRACTION LEACHED		
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOW	
77.30	6.47	1390.67	363.56	.0602	.0556	.0509	
1.95	1.95	1390.67	363.56	.0028	.0014	0000	
. • •	00	1390.67	363.56	. 0 0 0 0	0000	.0000	
.00	.00	1390.67	363.56	.0000	.0000	.0000	
. 0 0	. 0 0	1390 67	363.56	0000	0000	0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 405.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	03					ELE=FE
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED
MEAN	DEY	MEAN	DEV	- HIGH	AYE	- LOU
217.20	4.20	1492.33	356.44	. 1484	.1455	.1427
3.27	1.79	1492.33	356 44	.0034	.0022	.0010
. 65	. 0 4	1492.33	356.44	.0005	.0004	0004
.00	. 0 0	1492.33	356.44	.0000	.0000	.0000
.00	.00	1492.33	356.44	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 406.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 3					E L E = MN
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED .
MEAN	DEV	MEAN	DEA	HIGH	AVE	LOU
5.91	4 1	51.88	21.65	.1218	.1139	.1061
3 19	31	51.88	21.65	.0675	.0616	0556
.00	.00	51.88	21.65	.0000	.0000	.0000
. • •	.00	51.88	21.65	0000	.0000	.0000
.00	.00	51.88	21.65	0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 407.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	:03					ELE=NI
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRACT	TION LEACHI	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LON
. • •	. • •	5.81	. 4 4	.0000	.0000	.0000
.00	00	5.8i	. 4 4	.0000	.0000	.0000
.00	.00	5.81	. 4 4	.0000	.0000	.0000
1.02	.68	5.81	. 4 4	. 2928	.1757	.0586
1.29	.32	5.81	. 4 4	.2773	. 2222	.1670

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 408.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	:03					ELE=ZN
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	нісн	AVE	LON
9.45	3.72	3.66	. 28	3 5913	2.5775	1 5637
5.88	2.52	.3.66	28	2.2916	1.6053	.9189
4.67	4 08	3.66	. 28	2 3896	1.2751	.1607
25.13	7.75	3.66	. 28	8.9720	6.8577	4.7434
3.41	.32	3.66	. 28 ′	1.0156	.9295	.8434

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

FRACTION AVERAGE REPRESENTS (MEAN LEACHED/MEAN TOTAL CATION)
FRACTION HIGH REPRESENTS (MEAN LEACHED PLUS DEVIATION/MEAN TOTAL CATION)
AND FRACTION LOW REPRESENTS (MEAN LEACHED MINUS DEVIATION/MEAN TOTAL CATION).

) . .

Table 409.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	:03					EFE=C0
LEACH	IIHG, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE _	LOW
1.41	1.41	.76	.76	3.7105	1.8553	.0000
2 47	2.47	.76	.76	6.5132	3.2566	.0000
.00	. • •	.76	.76	.0000	.0000	.0000
. 1 1	.11	.76	.76	. 2763	.1382	.0000
. 1 2	. 1 2	.76	.76	.3158	. 1579	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 410.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	: 0 3					ELE=PB
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
MEAN	DEV	MEAN	DEV	HIGH	AVE	L O ⊎
5 25	. 88	99.99	00	.0613		0438
. • •	. • •	99.99	. • •	.0000	0000	0000
.00	.00	99.99	.00	.0000	.0000	.0000
.00	.00	99.99	• •	.0000	.0000	.0000
.00	.00	99.99	.00	.0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 411.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 3					ELE=MO
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
MEAN	DEY	MEAN	- DEY	HIGH	AVE	. FOA
2.29	.00	10.66	.00	.2148	.2148	.2148
. • •	.00.	.10.66	.00	.0000	.0000	.0000
.00	. • •	10.66	.00	.0000	.0000	.0000
.00	. • •	10.66	.00	.0000	.0000	.0000
. • •	.00	10.66	. • •	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 412.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

ELE=NA

	SITE=	04					ELE=
P	LEACH	ING, PPM	TOTAL CA	LION' bbw	FRAC	TION LEACHI	ED
7.	MEAN	DEY	MEAN	DEY	HIGH	AYE	LOU
	7.83	1.51	281 57	47.38	.0332	. 0278	.0225
	6.40	1.00	281.57	47.38	.0263	.0227	.0192
	8.93	3.44	281.57	47 38	0440	.0317	.0195
	6.43	2.98	281.57	47.38	0334	. 0228	.0123
	5 77	1 36	281.57	47.38	0253	.0205	.0157

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 413.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 4					ELE = CA
LEACI	HING, PPM	TOTAL CA	TIOH, PPM	FRACT	TION LEACH	ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	- LOW
60.93	2.51	302.50	76.93	.2097	.2014	.1931
117.73	30.04	302.50	76.93	. 4885	.3892	.2899
86.17	23.16	302.50	76.93	.3614	. 2848	.2083
46.27	6.09	302.50	76.93	. 1731	.1529	.1328
11.80	3.60	302.50	76.93	. 0 5 0 9	.0390	.0271

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 414.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	:04				•	ELE = MG	
LEACH	LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		
MEAN	DEY	MEAN	DEY	HIGH	AVE	LOW	
25.22	1.34	79.58	12.39	.3338	.3169	3001	
15.44	.02	79.58	12.39	. 1944	.1941	.1937	
18.78	3.64	79.58	12.39	.2818	.2360	.1902	
14.04	.74	79.58	12.39	.1858	1765	.1671	
13.29	5 25	79.58	12.39	.2330	.1670	1011	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 415.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 4					ELE=AL
LEACHING, PPM T		TOTAL CA	TOTAL CATION, PPM		FRACTION LEACHED	
MEAN	DEY	MEAH	DEV	HIGH	AYE	LOW
9.17	. 5 6	1040.50	171.33	.0093	.0088	.0083
8.07	. 18	1040.50	171.33	.0079	.0078	.0076
3.10	.00	1040.50	171.33	.0030	.0030	.0030
.00	.00	1040.50	171.33	.0000	.0000	.0000
.00	.00	1040.50	171.33	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 416.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	= 0 4					ELE=FE
LEACH	LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE	
MEAN	DEV	MEAN	DEV	нісн	AYE	. ୮୦୩
9.91	.50	1078.67	364.78	.0096	.0092	0087
5.79	96	1078.67	364.78	.0063	.0054	.0045
2.02	. 48	1078.67	364.78	.0023	0019	.0014
.00	.00	1078.67	364.78	.0000	.0000	.0000
ዕዕ	0.0	1078 67	764 78	ዕስዕዕ	ሰሰሰለ	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 417.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	: 0 4					ELE=NI	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEV	MEAN -	DEV	HIGH	AVE	LOW	
1.27	. 27	8.97	1.71	.1717	.1410	.1104	
1.53	4 0	8.97	1.71	.2152	.1706	.1260	
.72	.72	8.97	1.71	.1594	. 0797	.0000	
1.40	.27	8.97	1.71	.1867	. 1564	1262	
1.04	.70	8.97	1.71	.1939	.1163	.0388	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 418.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	0.4					ELE=ZN
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEY	MEAN	DEY	нісн	AYE	LOU
20.09	1 45	5.75	1 19	3.7455	3 4939	3.2423
18.35	9 1 1	5.75	1.19	4.7751	3 1913	1.6075
21.42	1.27	5.75	1.19	3.9461	3.7252	3 5043
4.84	1.44	5.75	1.19	1.0908	.8412	.5915
13.40	9.32	5.75	1.19	3.9527	2 3310	.7094

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 419.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	= 0 4					ELE=CO
LEACHING, PPM TO		TOTAL CAT	ION, PPM	FRACT	D	
MEAN	DEV	MEAN	DEV	нісн	AVE	LOW
5.48	22	15.96	9.94	.3572	.3434	3296
3.75	2.50	15.96	9.94	.3913	.2348	.0783
2.53	1.86	15 96	9.94	.2756	.1588	.0419
.00	. • •	15.96	9.94	.0000	.0000	0000
. 0 0	.00	15.96	9.94	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 420.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	÷ 0 4				ELE=0	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED
MEAN	DEY	MEAN	DEY	HIGH	AVE	LOU
. • •	.00	14.76	1.80	.0000	.0000	.0000
00	00	14.76	180	.0000	0000	0000
. • •	.00	14.76	1.80	.0000	.0000	.0000
.00	00	14.76	1.80	.0000	.0000	.0000
00	00	14.76	1.80	.0000	.0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 421.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	0.5					ELE=NA
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED .	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
15.40	6.67	136.00	12.80	.1623	.1132	.0642
9.00	3.40	136.00	12.80	.0912	.0662	.0412
12.70	4.67	136.00	12.80	.1277	.0934	. 0591
6,70	. 93	136.00	12.80	.0561	. 0493	0424
12.47	4.78	136.00	12.80	.1268	.0917	.0565

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 422.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	= 0 5					ELE=CA	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE			
MEAN	DEY	MEAN	DEY	нісн	AVE	LOU	
90.97	15 89	101.07	3.58	1.0573	.9001	.7429	
85.30	9.87	101.07	3.58	.9416	8440	7464	
95.60	26.73	101.07	3.58	1.2104	.9459	.6814	
62.97	6.71	101.07	3.58	.6894	.6230	5566	
13.33	6.04	101.07	3.58	.1917	.1319	.0721	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL

FRACTION AVERAGE REPRESENTS (MEAN LEACHED/MEAN TOTAL CATION)
FRACTION HIGH REPRESENTS (MEAN LEACHED PLUS DEVIATION/MEAN TOTAL CATION)
AND FRACTION LOW REPRESENTS (MEAN LEACHED MINUS DEVIATION/MEAN TOTAL CATION).

.)

Table 423.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	· 0 5					ELE=MG	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		:D	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW	
22.26	2.28	41.87	2.05	. 5859	.5316	.4772	
18.33	2.44	41.87	2.05	.4960	.4377	.3794	
21.31	6.61	41.87	2.05	.6667	.5090	.3512	
16.05	1.08	41.87	2.05	.4091	.3833	.3575	
3.92	0 5	41.87	2.05	. 0949	.0936	.0923	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 424.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	· 0 5					ELE=AL
LEACH	ING, PPM	TOTAL CA	TION, PPM	FRACT	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
22.53	1 31	497.47	52 36	.0479	.0453	.0427
14.77	2.18	497.47	52 36	.0341	0297	.0253
6.63	1.36	497.47	52.36	.0161	0133	.0106
8.60	.00	497.47	52.36	.0173	.0173	0173
. • •	.00	497 47	52 36	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 425.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

05					ELE=FE	
LEACHING, PPM		TOTAL CATION, PPH		FRACTION LEACHE		
DEV	MEAN	DEY	HIGH	AVE	LOW	
1.90	333.22	52.89	.0638	.0581	.0524	
1.20	333.22	52.89	.0289	.0253	.0217	
. 45	333.22	52.89	.0092	.0078	.0065	
.00	333.22	52.89	.0017	.0017	.0017	
.00	333.22	52.89	.0000	.0000	.0000	
	DEV 1.90 1.20 .45	DEV MEAN 1.90 333.22 1.20 333.22 .45 333.22 .00 333.22	DEV MEAH DEV 1.90 333.22 52.89 1.20 333.22 52.89 .45 333.22 52.89 .00 333.22 52.89	DEV MEAN DEV HIGH 1.90 333.22 52.89 .0638 1.20 333.22 52.89 .0289 .45 333.22 52.89 .0092 .00 333.22 52.89 .0017	DEV MEAN DEV HIGH AVE 1.90 333.22 52.89 .0638 .0581 1.20 333.22 52.89 .0289 .0253 .45 333.22 52.89 .0092 .0078 .00 333.22 52.89 .0017 .0017	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 426.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	05		ELE=N			
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
1.21	1.21	10.49	. 8 5	2307	. 1153	0000
1.74	5 i	10.49	. 85	2145	.1654	.1163
1.70	30	10.49	. 8 5	.1908	.1624	.1340
-1.51	. 49	10.49	. 8 5	.1907	.1439	.0972
. • •	.00	10.49	. 85	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 427.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	0.5					ELE=ZN
LEACH	II NG, PPM	TOTAL CATION, PPM		FRAC	ED	
MEAN	DEY	MEAN	DEY	HIGH	AVE -	- L09
10.94	1.15	2.60	. 5 7	4.6509	4.2090	3.7671
9.79	2.62	2.60	.57	4.7761	3.7667	2.7573
10.58	4.41	2.60	.57	5.7667	4.0692	2.3718
4.45	.53	2.60	.57	1.9145	1.7103	1.5060
2.11	1.00	2.60	.57	1.1966	.8128	. 4291

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 428.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	• 0 6					ELE = NA
LEACHING, PPM		TOTAL CATION, PPM		FRACI	ED	
MEAN	DEY	MEAN	DEY	HIGH	AYE	LOU
4.75	. 95	389.50	36.13	.0146	0122	.0098
3.20	.27	389.50	36.13	.0089	.0082	.0075
3.30	20	389.50	36.13	.0090	.0085	.0080
4.40	00	389.50	36.13	.0113	.0113	.0113
3.75	. 5 5	389.50	36.13	.0110	.0096	.0082

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL.

Table 429.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=06		ELE =			
LEACHING, PPM		TOTAL CATION, PPM		FRACT	ED	
MEAN	DEY	MEAN	DEA	нісн	AVE	LOW
105.43	28 78	295.80	24.40	.4537	. 3564	. 2591
58.30	. 1 0	295.80	24.40	. 1974	. 1971	.1968
50.10	6.60	295.80	24.40	.1917	.1694	1471
41.05	1.55	295.80	24.40	.1440	. 1388	.1335
17.77	15.82	295.80	24 40	.1136	.0601	0066

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 430.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

= 3 T L 3	06		ELE=1			
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED
HEAN	DEY	MEAN	DEY	HIGH	AVE	LOW
7.33	.99	47.41	5 76	1754	. 1546	.1338
9.53	67	47.41	5.76	. 2151	.2010	.1870
10.76	1.85	47.41	5.76	.2659	. 2269	1879
14.55	2.38	47.41	5.76	.3570	3068	.2567
4.02	17	47.41	5.76	.0885	. 0849	.0813

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 431.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	• 0 6				ELE=AL	
LEACHING, PPM		TOTAL CATION, PPM		FRACT	ED	
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOU
26 40	2.73	1399.17	141.22	.0208	.0189	0169
24.60	.93	1399.17	141.22	.0182	.0176	.0169
13 17	.76	1399.17	141.22	.0100	.0094	.0089
. • •	00	1399.17	141.22	.0000	.0000	.0000
00	00	1399.17	141.22	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 452.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	• 0 6				ELE=FE	
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOU
54.70	5.89	529.85	172.43	.1144	.1032	.0921
17.83	1.30	529.85	172 43	.0361	.0337	.0312
3.72	.07	529.85	172.43	.0072	.0070	.0069
. 69	. 1 5	529.85	172 43	0016	.0013	.0010
. 29	.29	529.85	172.43	.0011	.0005	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 433.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	• 0 6			E L E = N			
LEACH	IIHG, PPM	TOTAL CATION, PPM		FRAC	ED		
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW	
1.37	. 3 4	9.83	. 5 2	.1748	.1398	1047	
1.54	. 38	9.83	. 5 2	.1946	. 1564	.1182	
1.76	. 34	9.83	. 5 2	.2136	.1788	.1439	
1.68	3 1	9.83	. 5 2	.2022	.1710	.1398	
. • •	00	9.83	. 5 2	.0000	.0000	.0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 434.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=06					ELE=ZN
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
MEAH	DEY	MEAN	DEY	HIGH	AVE	FOA
13.30	6.70	2 90	. 5 5	6.9064	4.5926	2.2789
14.10	11.20	2.90	. 5 5	8.7346	4.8688	1 0031
2.91	160	2.90	. 5 5	1.5573	1,0058	. 4542
2.27	1.87	2.90	. 5 5	1.4281	.7837	.1392
6 79	7 46	2 9 6	55	1 7017	2 2 4 7 1	_ 7475

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0.0001M HCL.

Table 435.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	• 0 6		ELE=1			
LEACH	HING, PPM	TOTAL CATION, PPM		FRAC	E D	
HEAN	DEY	MEAN	DEY	HIGH	AVE	LOW
. • •	. • •	98.33	2.22	.0000	.0000	.0000
.00	.00	98.33	2 22	0000	.0000	0000
. • •	00	98.33	2.22	.0000	.0000	.0000
. 6 0	.00	98.33	2.22	.0000	.0000	.0000
. • •	.00	98.33	2.22	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 436.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE	=07				ELE=N	
LEACHING, PPH		TOTAL CATION, PPM		FRAC	E D	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LON
970.17	20.04	1533.17	86.78	.6459	.6328	.6197
1111.10	109 20	1533.17	86.78	.7959	.7247	.6535
1044.57	85.62	1533.17	86.78	.7372	.6813	.6255
1030.93	196 04	1533.17	86.78	.8003	.6724	.5446
973.43	96 76	1533.17	86.78	.6980	.6349	5718

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 437.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 7				ELE=K		
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEY	MEAH	DEY	HIGH	AVE	LOU	
253.83	43.98	1428.50	82 67	.2085	.1777	1469	
208.20	25.87	1428.50	82.67	1639	.1457	1276	
215.10	30 13	1428.50	82 67	, .1717	.1506	1295	
190.00	9.60	1428.50	82.67	.1397	.1330	.1263	
181.30	.00	1428.50	82.67	.1269	.1269	1269	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL

Table 438.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=07					ELE=C
LEAC	HING, PPM	TOTAL CATION, PPM		FRAC	IED	
MEAN	DEY	MEAN	DEV	нісн	AYE	LOW
20526.7	624.44	19418.3	922.22	1.0892	1.0571	1 0249
20540.0	.00	19418.3	922.22	1.0578	1 0578	1.0578
2141.50	48.50	19418.3	922.22	.1128	.1103	.1078
415.20	97 80	19418.3	922.22	.0264	.0214	.0163
299.13	22.84	19418.3	922.22	.0166	0154	0142

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 439.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=07					ELE=MG
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		D
MEAN	DEY	MEAN	DEV	HIGH	AVE	. FOA
580.43	25 51	884 50	26.33	.6851	.6562	6274
583.37	74.18	884 50	26.33	.7434	.6595	5757
540.23	32.69	884.50	26.33	6477	.6108	5738
162.93	18.78	884.50	26.33	.2054	.1842	.1630
119.53	9.02	884 50	26.33	. 1453	.1351	1249

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 440.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	=07					ELE=AL
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
1018.97	66.71	6748.33	157.78	1609	.1510	.1411
210.00	.00	6748.33	157.78	0311	.0311	.0311
.00	.00	6748.33	157.78	.0000	.0000	0000
. 0 0	00	6748.33	157.78	.0000	.0000	.0000
. • •	.00	6748.33	157.78	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 441.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	:07					ELE=FE
LEACHING, PPM		TOTAL CATION, PPM		FRACI	ED	
MEAN	DEY	MEAN	DEV	нісн	AVE	LOU
207.93	1 36	2522 83	27.56	0830	0824	0819
15.43	.00	2522.83	27.56	.0061	.0061	.0061
1 17	4 ◊	2522.83	27.56	.0006	.0005	.0003
. 75	.16	2522.83	27 56	.0004	0003	0002
.79	.20	2522.83	27.56	0004	.0003	0002

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 442.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	07					ELE=MN	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		. D	
MEAN	DEV	MEAN	DEV	нісн	AVE	LOW	
30.88	1.42	77.13	4.66	.4187	4003	.3819	
19.21	00	77.13	4.66	2490	.2490	. 2490	
. • •	.00	77.13	4.66	0000	0000	.0000	
.00	.00	77.13	4.66	.0000	.0000	0000	
.00	00	77.13	4.66	.0000	.0000	.0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0.0001M HCL.

Table 443.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	:07					EFE=NI	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOW	
75	.75	5.22	. 2 2	2891	1445	.0000	
.00	. • •	5.22	. 22	.0000	.0000	.0000	
.00	.00	5.22	. 2 2	.0000	0000	.0000	
1.00	. • •	5.22	22	.1914	.1914	.1914	
. 8 8	.60	5.22	. 2 2	. 2836	1691	0547	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 444.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRIT ISLAND SOIL SAMPLES

SITE	=07					ELE=ZN
LEACI	HING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
22.56	4 85	13.20	. 4 9	2.0768	1.7091	1.3414
11.85	2.20	13.20	4 9	1.0644	.8977	.7311
11.42	3 12	13.20	4 9	1.1016	8654	6292
13.66	13.13	13.20	. 4 9	2.0298	1.0348	0399
2.99	1.73	13.20	. 4 9	.3574	.2263	.0951

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 445.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	• 0 7					ELE=CO
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
1.58	1 58	160	1.60	1 9688	9844	0000
3.88	. • •	1.60	1.60	2.4250	2 4250	2 4250
.00	00	1.60	1 60	.0000	0000	.0000
.00	.00	1.60	1.60	.0000	.0000	0000
.00	.00	1.60	160	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 446.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

S	ITE=07					ELE = P
L	EACHING, PPM	TOTAL CAT	TOTAL CATION, PPM		FRACTION LEACHE	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
42.3	◊ 6.49	88.55	6.13	.5510	4777	.4045
3.3	1 .00	88.55	6.13	. 0374	0374	.0374
. 0	0 .00	88.55	6.13	.0000	.0000	.0000
. 0	0 .00	88.55	6.13	.0000	.0000	.0000
. 0	٥٥.٥٥	88.55	6.13	.0000	0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0H HCL TO 0.0001M HCL

Table 447.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	:07					ELE = M
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ED
MEAN	DEY	MEAN	DEV	HIGH	AVE	L O W
4.05	.71	17.49	1.10	. 2725	2318	1911
2.32	.00	17.49	1.10	.1327	.1327	1327
.00	.00	17 49	1.10	.0000	0000	0000
.00	.00	17.49	1.10	.0000	.0000	.0000
. • •	.00	17.49	1.10	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 448.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	8 •					ELE=NA	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEY	MEAN	DEA	HIGH	AVE	LON	
13.83	5.24	262.87	11.11	.0726	.0526	.0327	
6.90	.07	262.87	11.11	.0265	.0262	.0260	
9.10	3 13	262.87	11.11	.0465	0346	.0227	
10.47	7 09	262.87	11.11	.0668	.0398	.0128	
6.57	1.24	262.87	11.11	.0297	.0250	.0202	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 449.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS - PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 8					ELE = CA	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		: D	
MEAN	DEY	MEAN	DEV	HIGH	AYE	LOW	
162.93	31.76	226.47	16.62	8597	7195	.5792	
92.97	14.82	226.47	16.62	4760	.4105	3451	
96.77	13.56	226.47	16.62	.4871	.4273	3674	
56.57	29.71	226.47	16.62	.3810	. 2498	1186	
30 67	23 36	226 47	16.62	. 2385	1354	. 0323	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 450.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN HERRITT ISLAND SOIL SAMPLES.

SITE=	8 0					ELE=MG	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ED	
HEAN	DEV	MEAN	DEV	HIGH	AVE	L ០ ម	
13.82	2.38	59.02	1.28	.2745	. 2341	.1937	
10.81	38	59.02	1.28	.1896	.1832	.1767	
10.21	. 5 4	59.02	1.28	.1822	.1730	.1639	
10.30	3.03	59.02	1.28	. 2259	.1746	1233	
7.80	3.67	59.02	1.28	.1944	1322	.0699	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 451.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 8					ELE=AL
LEACHING, PPM		TOTAL CATION, PPM		FRACT	ED	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOU
204.27	11.02	1336.33	44.56	.1611	. 1529	.1446
144.70	7.73	1336.33	44.56	.1141	.1083	1025
71.47	6.11	1336.33	44.56	. 0 5 8 1	. 0535	.0489
4.45	35	1336.33	44.56	0036	.0033	.0031
3.10	3.10	1336.33	44 56	.0046	.0023	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 452.

SITE=	0 8					ELE=F
LEACHING, PPM		TOTAL CATION, PPM		FRAC	ED	
HEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
228.03	4.02	717.17	46.78	.3236	.3180	3124
66.74	1 30	717.17	46.78	.0949	.0931	0912
8.32	.10	717.17	46.78	.0117	.0116	.0115
1.67	.76	717.17	46.78	.0034	.0023	0013
. 39	. 39	717.17	46.78	.0011	.0005	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 453.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

SITE=	• ♦ 8					ELE=MN
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ED
MEAN	DEY	MEAH	DEY	HIGH	AVE	LOW
1.64	. 09	15.13	3.29	.1141	.1082	.1023
1.31	. 0 3	-15.13	3.29	.0888	0866	.0844
.00	.00	15.13	3.29	.0000	.0000	0000
. • •	00	15.13	3.29	.0000	.0000	.0000
.00	.00	15.13	3.29	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 454.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	8 0					ELE=NI	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ED	
MEAN	DEY	MEAN	DEV	HIGH	AVE	៤០ម	
. 91	60	9.79	. 1 4	. 1544	0926	.0309	
1.47	. 3 5	. 9.79	. 1 4	.1863	. 1502	,1141	
1.74	. 43	9.79	. 1 4	. 2 2 2 1	.1778	. 1335	
2 24	. 26	9.79	. 1 4	. 2554	.2284	.2013	
.86	.86	9.79	. 1 4	.1747	.0874	.0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 455.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 8					ELE = Z
LEACI	HING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEY	MEAN	DEY	нісн	AVE	LOW
22.71	12.05	2.88	. 6 4	12.0823	7.8946	3 7068
2.04	. 21	. 2.88	. 6 4	.7833	.7092	.6350
5.80	3.28	2.88	. 6 4	3.1560	2.0174	.8787
1.48	8 9	2.88	64	.8223	.5133	2043
1.91	8 4	2.88	. 64	.9556	6628	.3700

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 456.

SITE	• ♦ 8		ELE=				
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEY	MEAN	DEV	HIGH	AYE	LOW	
55	. 1 8	1 04	.00	.6966 \	5256	.3547	
.00	.00	, 1.04	.00	.0000	.0000	.0000	
. 0 0	. • •	1.04	.00	.0000	.0000	0000	
. • •	.00	1.04	.00	.0000	.0000	.0000	
. 0 .	.07	1.04	. • •	.1346	.0673	.0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0.0001M HCL

Table 457.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	8 0					ELE = CR
LEACH	ING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACHI	ED
MEAN	DEY	MEAN	DEV	HIGH	AVE	LOU
00	00	17.85	4 9 9	.0000	.0000	.0000
.00	.00	17.85	4.99	.0000	.0000	.0000
.00	.00	17.85	4.99	.0000	.0000	.0000
.00	00	17.85	4.99	.0000	.0000	0000
.00	.00	17.85	4.99	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 458.

SITE=	:09					ELE=NA	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		E D	
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW	
47.35	6.05	647.00	21.67	.0825	.0732	.0638	
45.27	2.11	647.00	21.67	.0732	.0700	.0667	
39.47	7.98	647.00	21.67	.0733	.0610	.0487	
29.73	1.29	647.00	21.67	. 0479	.0460	.0440	
36.07	4.36	647.00	21.67	.0625	.0557	.0490	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 459.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 9					ELE=K
LEAC	HING, PPM	TOTAL CA	TION, PPM	FRACT	TION LEACHI	ED
MEAN	DEV	MEAN	DEV	нісн	AYE	LOW
74 90	74 90	910.00	40 67	.1646	.0823	.0000
. • •	0 0	910.00	40.67	.0000	.0000	.0000
. • •	0 0	910.00	40.67	.0000	.0000	.0000
. • •	.00	910.00	40.67	.0000	.0000	.0000
. • •	0 0	910.00	40.67	.0000	.0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 460.

SITE=09

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

ELE=CA

0	. • •					
LEACHING, PPM		TOTAL CATION, PPH		FRACTION LEACHED		
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOU
2338 00	190.00	1965.17	62.56	1.2864	1.1897	1.0930
2217.67	262.22	1965.17	62.56	1.2619	1 1285	.9951
1396 00	105 33	1965.17	62.56	.7640	.7104	.6568
121.57	1 82	1965.17	62.56	.0628	.0619	.0609
39.60	2.07	1965.17	62.56	.0212	.0202	.0191

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 461.

SITE	= 0 9					ELE=MG	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ΞD	
HEAN	DEY	MEAN	DEY	HIGH	AVE	LOW	
129.45	8.15	160.62	.61	.8567	8060	.7552	
130.57	10.78	160.62	. 6 1	.8800	.8129	.7458	
106.05	12.46	160.62	.61	.7379	.6603	.5827	
30.37	1.08	160.62	. 61	.1958	.1891	.1823	
8.84	. 54	160.62	.61	.0584	. 0550	.0517	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0 0001M HCL

Table 462.

SITE	=09					ELE=AL
LEAC	HING, PPM	TOTAL CA	TIOH, PPM	FRACT	FION LEACH	ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
373.45	1.95	2624.50	58.67	.1430	.1423	.1416
300.03	16.91	2624.50	58.67	.1208	.1143	.1079
16.93	1.64	2624.50	58.67	.0071	.0065	.0058
.00	00	2624.50	58.67	.0000	.0000	.0000
90	.90	2624.50	58 67	.0007	.0003	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL.

Table 463.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 0 9					'ELE=FE
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHED		
MEAN	DEV	MEAN	DEY	HIGH	AYE	L ០ ម
226.20	15.90	812.83	9.44	.2978	.2783	.2587
31.38	.40	812.83	9.44	.0391	.0386	.0381
2.73	. 32	812.83	9.44	.0038	.0034	.0030
.74	. 1 1	812.83	9.44	.0010	.0009	0008
. 57	0 4	812.83	9.44	.0007	.0007	.0007

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 464.

SITE=	: ♦ 9					ELE=MN
LEACH	IING, PPM	TOTAL CAT	TON, PPM	FRACT	TION LEACH	E D
MEAN	DEY	MEAH	DEV	HIGH	AVE	LOW
7.45	54	23 24	. 8 4	.3438	3205	.2973
6.93	82	23.24	. 8 4	. 3334	.2980	.2626
3.32	.36	23.24	. 8 4	.1587	.1430	.1273
. • •	00	23.24	. 8 4	.0000	.0000	.0000
.00	.00	23.24	8 4	.0000	.0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL

Table 465.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	: 0 9					ELE=NI	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D _	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW	
. 00	00	9.77	. 1 5	.0000	.0000	.0000	
1.34	. 26	9.77	, 15	.1639	1375	.1111	
1.42	. • •	9.77	. 1 5	.1454	.1454	.1454	
1.41	4 5	9.77	. 15	.1909	.1447	0985	
1.52	. 34	9.77	. 15	.1904	1551	.1198	

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0.0001M HCL

Table 466.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES

2115=	Q 9					ELE=
LEACH	ING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
HEAN	DEV	MEAN	DEY	HIGH	AVE	LOU
15.98	1.87	5.42	. 74	3.2913	2.9465	2.6017
18.27	8.28	5.42	.74	4.8957	3.3694	1.8431
7.62	1 29	5.42	. 74	1.6425	1.4044	1.1664
2.58	91	5.42	.74	.6443	.4763	3083
32	.22	5.42	.74	.0994	.0596	0199

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL

Table 467.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	• 0 9					EFE=C0
LEACH	IING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEY	MEAN	DEY	HIGH	AVE	LOW
4.49	. 2 4	1.31	. 43	3.6107	3 4275	3 2443
2 85	2.85	1.31	. 03	4.3511	2.1756	.0000
5.39	. 26	1.31	.03	4.3070	4.1120	3.9169
0 0	00	1.31	. 0 3	.0000	.0000	.0000
ÓΟ	0.0	1.31	63	0000	0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 ON HCL TO 0.0001M HCL.

Table 468.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	0 9					ELE=P
LEACH	ING, PPM	TOTAL CAT	IOH, PPM	FRACT	TION LEACH	ED
HEAN	DEV	MEAN	DEY	нісн	AVE	LOW
1.87	1 87	75.82	2.08	.0492	.0246	.0000
.00	00	.75.82	2.08	.0000	.0000	.0000
.00	00	75.82	2.08	.0000	.0000	.0000
. • •	00	75.82	2.08	.0000	.0000	.0000
.00	00	75.82	2.08	.0000	0000	.0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 469.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	10					ELE=NA	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		D	
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW	
11.67	4.29	50.00	3.00	.3191	. 2333	1476	
14.80	6.33	50.00	3.00	.4227	2960	.1693	
14.43	4.38	50.00	3.00	.3762	. 2887	.2011	
13.67	4.76	50.00	3.00	.3684	. 2733	.1782	
7.90	. 93	50.00	3.00	.1767	.1580	.1393	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 470.

SITE	=10					ELE=0
LEAC	HING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOU
221 27	11 29	121.37	6.98	1.9161	1.8231	1.7301
219.10	20 60	121.37	6.98	1.9750	1.8053	1.6355
245.97	11 69	121.37	6.98	2.1230	2.0266	1 9303
106.77	25.89	121.37	6 98	1.0930	.8797	.6664
16.77	8.02	121.37	6.98	2042	. 1381	.0720

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 471.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE=	1 0					ELE = MG
LEACH	ING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN -	DEV	MEAN	DEV .	HIGH	AVE	LOU
34 51	85	35.64	3.68	.9921	.9683	.9445
41.20	4.40	35.64	3.68	1.2795	1.1560	1.0325
53.65	7.27	35.64	3.68	1.7091	1.5052	1.3013
32.87	3 57	35.64	3.68	1.0222	.9221	.8220
4.93	.07	35.64	3.68	.1402	.1382	.1362

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL

Table 472.

SITE=	:10					ELE=A	
LEACHING, PPM		TOTAL CATION, PPM		FRACTION LEACHE		ED	
MEAN	DEV	MEAN	DEY	HIGH	AVE	Lou	
27.13	1.71	170.90	18 67	1688	1588	.1488	
26.57	3 71	170.90	18.67	1772	.1555	.1337	
5.30	20	170.90	18.67	.0322	.0310	.0298	
.00	00	170.90	18.67	.0000	0000	.0000	
. • •	00	170.90	18.67	.0000	.0000	0000	

LEACHING RESULTS PRESENTED IN ORDER FOR 1 OM HCL TO 0.0001M HCL.

Table 473.

TOTAL CONCENTRATION, CONCENTRATION LEACHED AND FRACTION LEACHED FOR CATIONS PRESENT IN MERRITT ISLAND SOIL SAMPLES.

SITE	= 1 0					· ELE=NI
LEACH	HING, PPM	TOTAL CAT	ION, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEY	HIGH	AVE	LOW
1.34	39	11.35	36	. 1524	.1176	.0828
1.39	. 28	11.35	. 36	.1471	. 1 2 2 5	.0978
1.35	. 31	11.35	.36	.1460	.1189	.0919
.77	52	11.35	.36	.1136	.0681	.0227
0.0	. 0 0	11.35	. 36	.0000	.0000	0000

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL.

Table 474.

SIIE	:10					ELE=
LEACH	IING, PPM	TOTAL CAT	IOH, PPM	FRAC	TION LEACH	ED
MEAN	DEV	MEAN	DEV	HIGH	AVE	LOW
12 56	1 44	279	. 86	5.0123	4.4952	3.9781
4.46	2 98	2.79	. 86	2.6631	1.5979	5326
5 21	3 47	2.79	.86	3.1086	1.8652	.6217
6.67	.93	2.79	.86	2.7196	2.3878	2.0561
1 4 6	76	2 79	9.6	7761	5 0 2 4	2287

LEACHING RESULTS PRESENTED IN ORDER FOR 1.0M HCL TO 0 0001M HCL.

STANDARD TITLE PAGE									
1 Report No	2 Government Accession	on No. 3	. Recipient's Catalog	Na.					
CR-163122									
4 Title and Subtitle Vol. II of IV: A contin	nuation of Paco	1	Report Date						
for Environmentally Mor Systems at John F. Kenr	nitoring Space 1	ransportation							
7 Author(s)		8	8 Performing Organization Report No TR51-2, Vol. II of IV						
B. C. Madsen 9 Performing Organization Name and Addi	944		IKDI-Z, VOI. 1	1 OT 1V					
Department of Biologica		L							
University of Central I		1	1 Contract or Grant No.	•					
P.O. Box 25000, Orlando), Florida 32816	_	NAS 10-8986 13 Type of Report and Period Covered						
12 Sponsoring Agency Name and Address National Aeronautics ar			Environmental Base-Line July 1977 - March 1979						
Washington, D. C. 20546	,	1	14 Sponsoring Agency Code						
		1	MD-B						
chemical analysis are of determine the environment space activities. Note: This document was Office, Bioscience Open Office, Bioscience Open Acid rain; rain chemist	ental perturbati ns prepared unde rations, Dr. Wil	ons which might r the sponsor: liam M. Knott	ht be caused by	y NASA omedical Buchanan.					
	- 								
17 Bibliographic Control	I	18 Distribution							
STAR Category 51		Unlimited							
19 Security Classif (of this report) Unclassified	20 Security Classif (o None	f this page)	21. No of Pages	22 Price					

