2. Gün2. Ders:Salgın hastalığınaşamalarını anlamak

Bulaşıcı hastalık dinamiklerinin R'de modellenmesi üzerine kısa kurs

Ankara, Türkiye, Eylül 2025

Dr Juan F Vesga

Oturumun amaçları

- Salgınların ortaya çıkma nedenini anlamak
- Salgınların pik yapma nedenini anlamak
- Salgınların azalma nedenini anlamak
- Sürü bağışıklığı kavramını incelemek
- R₀ ve R_{eff}'yi anlamak

Salgınların ortaya çıkmasına neden olan etmenler nelerdir?

- Enfeksiyon oranı -> bulaşma!
- Fırsat penceresi -> enfeksiyon dönemi!

Genel anlamda salgın bir patojenin bu fırsat penceresinde yeterince hızlı bir şekilde bulaşabilmesi durumunda başlar

Virülans davranışları gibi başka faktörler de rol oynar.

Salgınların ortaya çıkmasına neden olan etmenler nelerdir?

Enfeksiyon başına ortalama 1 yeni vaka

R₀ (temel üreme numarası)

Tamamen duyarlı bir popülasyonda tek bir enfekte vakanın sebep olduğu sekonder enfeksiyonların ortalama sayısı

- R₀ > 1 ise salgın başlar
- R₀ < 1 ise salgın yok olur

Salgının üstel artışı

Aşamalar nelerdir?

Salgın artışı ve R₀

Kapalı popülasyonlu bir SIR modeli için RO'ın farklı varsayımları altında enfekte kişi sayısının davranışı

- R0'ın salgın artışında bir rol oynadığını biliyoruz.
- İkinci etmen bağışıklıktır

- R0'ın salgın artışında bir rol oynadığını biliyoruz.
- İkinci etmen bağışıklıktır
- Pik noktasında popülasyondaki duyarlı fraksiyon her bir enfekte vaka için R0'ı sağlamakta yetersizdir

- R0 tamamen duyarlı popülasyon için tanımlanır
- Bağışıklık bir rol oynadığında R_{eff}'i tanımlayabiliriz
- Duyarlılığın azalması salgının yol olmasına neden olur

R_{eff} belirli bir zamanda enfekte vakadan kaynaklanan sekonder vakaların ortalama sayısıdır

• Herkes enfekte olur mu?

• Hayır!

Sürü bağışıklığı

- Reff =1
- Aşılamayla yapay olarak arttırılabilir

SIR açısından bu nasıl açıklanabilir

t=0'da

$$R_0 = \beta D = \beta \frac{1}{\gamma} = \frac{\beta}{\gamma}$$

Toplam enfeksiyon dönemi boyunca sekonder enfeksiyonların ortalama sayısı

$Ve R_{eff}$?

 Duyarlı bölmesindeki azalmanın bir salgını azaltan şey olduğunu söylersek. Bu durumda R_{eff}, her bir t zamanında duyarlı kalan fraksiyonla orantılıdır

$$R_{eff} = R_0 \frac{S(t)}{N}$$

- Sürü bağışıklığı
- Salgını azaltmak için gerekli bağışık fraksivon

$$R_{eff}=1$$

$$R_0 \frac{S(t)}{N} = 1$$

$$\underbrace{\frac{S(t)}{N}} = \frac{1}{R_0}$$

Salgının azalmaya başladığı duyarlı fraksiyon eşiği R0=3 için örnek

$$\frac{S(t)}{N} = \frac{1}{R_0}$$

$$\frac{S(t)}{N} = \frac{1}{3} = 0.33$$

$$HIT = 1 - 0.33 = 0.66$$

Sürü bağışıklığı eşiği

Peki ya duyarlılık yenilenmesi söz konusu olursa?

Uzun vadeli dinamikler

Şimdiye kadar bilmemiz gerekenler

- Salgınların ortaya çıkma nedeni
- R0 ve Reff'in ne olduğu ve SIR modeliyle ilişkisi
- Sürü bağışıklığının ne olduğu
- R0'ı bilirsek HIT'nin hesaplanışı
- Demografik verileri dahil etmenin uzun vadeli dinamiklerin tablosunu nasıl değiştireceği