

二进制移相键控(2PSK)仿真实验报告

实验时间: 2024.4.28~2024.5.5

实验人员: 黄单德 21009100522

李攸阳 21009102261

张嘉航 21009101111

实验组队 ID: 2170

一、 实验内容

使用 SystemView 软件对二进制移相键控(2PSK)的调制与解调过程进行仿真。

二、实验目标

- 1. 获取系统各点时域波形,波形、坐标、标题等要清楚;滤波器的单位冲击相应和幅频特性曲线;
- 2. 获取主要信号的频谱;
- 3. 获取眼图;
- 4. 提取相干载波;

三、 实验原理

1. 2PSK 调制原理

如果两个频率相同的载波同时开始振荡,这个振荡将同时达到最大值和最小值,此时,称他们处于"同相";如果其中一个迟了,一个达到最大值,另一个达到最小值,则称为"反相"。此时,两个载波的相位差了180°,也就是反相。传输数据时,用"0"码控制0°相位,"1"码控制180°相位。这样,载波的初始相位就会产生变化,也就携带了信息。

2PSK 称为二进制相移键控,是相移键控的最简单的一种形式,它用两个初相相隔为 180° 的载波来传递二进制信息。相移键控是利用初始相位 0 和 π 的载波来分别表示二进制的 "0"和 "1",而振幅和频率保持不变。

通常 2PSK 信号的时域表达式为 $e_{2PSK}(t) = Acos(\omega_c t + \varphi_n)$, 其中

对应的相位
$$\varphi_n = \begin{cases} 0 & \text{信号码元为"0"} \\ \pi & \text{信号码元为"1"} \end{cases}$$

这种以载波的不同相位直接表示相应的二进制数字的调制方式,称 为二进制移相键控。典型的时间波形如图 1 所示。

图 1 移相键控波形图

调制方式:

1) 模拟调制法

2) 数字键控法

2. 2PSK 解调原理

比如生成的 $e_{2PSK}(t) = Acos(\omega_c t + \varphi_n)$,由基带信号 A 和载波信号 $cos(\omega_c t + \varphi_n)$ 组成,然后用生成的相干载波 $cos(\omega_c t + \varphi_n)$ 与调制信号相乘,得到 $Acos^2(\omega_c t + \varphi_n) = \frac{A}{2} + \frac{A}{2}cos(2\omega_c t + 2\varphi_n)$,然后再经过低通滤波器将高频信号滤除,即可得到原始基带信号 A。

3. 提取相关载波原理

这里所使用的方法是基于科斯塔斯环提取载波。通过锁相环,使用乘法 器和低通滤波器来实现,最后通过压控振荡器产生相干载波。

4. 位同步

通过 SystemView 里自带的"Bit Synchronizer",进行基带位同步。根据系统的要求,码元传输速率为 64kHz,因此,借助 SystemView 的 help 文件夹里的 Comm. pdf 文档,按照文档内推荐的参数设置即可。

The initial parameters for this token may be computed as follows. Using R as the data rate of the input signal, the following values are a good starting point for proper loop operation:

Matched filter integration time: TI = 1/R

Delay: T2 = 1/R

Loop filter constant: a = 0 (if the received data is also R)

Loop gain: $\mu = 0.5$

四、 实验步骤

1. 设置数字键控法元件参数

元件	参数	序号	功能
正弦信号产 生器	Source Library Sinusoid Amp = 1 v Freq = 40e+3 Hz Phase = 0 deg Output 0 = Sine t3 t18 t2 Output 1 = Cosine Max Rate (Port 0) = 1e+6 Hz Token 0	0	产生余弦信号作为载波信号
PN 序列产生 器	Source Library PN Seq Amp = 1 v Offset = 0 v Rate = 20e+3 Hz Levels = 2 Phase = 0 deg Max Rate = 1e+6 Hz Token 1	1	产生为 0, 1 的随机序列码 作为基带信号
单刀双掷开 关	SPDT Switch Delay = 0 sec Threshold = 500e-3 v Input 0 = t3 Output 0 Input 1 = t0 Output 1 Control = t1 Output 0 Max Rate = 1e+6 Hz Token 2	2	根据信号码元不同选择与不同的信号进行调制信号输出
反相器	Opp Operator Library Negate Max Rate = 1e+6 Hz Token 3	3	输出经相位移 动 180°后的 信号

2. 相干信号解调

元件	参数	序号	功能
乘法器	Multiplier Non Parametric Inputs from t10p1 t2p0 Outputs to 5 22 Max Rate = 1e+6 Hz Token 4	4	信号相乘
低通滤波器	Opp Operator Library Linear Sys Kaiser FIR Fc=20e+3 Hz Decimate By 1 Quant Bits = None Taps = 45 Init Cndtn = Transient DSP Mode Disabled Max Rate = 1e+6 Hz Token 5	5	去除信号中 高频分量
抽样器	Opp Operator Library Sampler Interpolating Rate = 20e+3 Hz Aperture = 0 sec Aperture Jitter = 0 sec Max Rate = 20e+3 Hz Token 6	6	去除毛刺信 号
保持器	OD Operator Library Hold Last Value Gain = 4 Out Rate = 1e+6 Hz Max Rate = 1e+6 Hz Token 7	7	实现相干解 调信号放大
缓冲器	Logic Library Buffer Gate Delay = 0 sec Threshold = 500e-3 v True Output = 1 v False Output = 0 v Rise Time = 0 sec Fall Time = 0 sec Max Rate = 1e+6 Hz Token 8	8	变为幅度只 取-1V,1V 的 信号

3. 科斯塔斯环提取相干载波

元件	参数	序号	功能
乘法器	Multiplier Non Parametric Inputs from t10p1 t2p0 Outputs to 12 Max Rate = 1e+6 Hz Token 9	9, 11, 15	信号相乘
VCO 压控 振荡器	Fin Function Library Freq Mod Amp = 1 v Freq = 40e+3 Hz Phase = 0 deg Mod Gain = 1 Hz/v Output 0 = Quadrature (Sin) t4 t21 t9 Output 1 = In-Phase (Cos) t11 Max Rate (Port 0) = 1e+6 Hz Token 10	10	生成相干载波
放大器	Gain Gain = 2 Gain Units = Linear Max Rate = 1e+6 Hz Token 13	13	参与实现 环路滤波 器
低通滤波 器	Om Operator Library Linear Sys Butterworth Lowpass IIR 3 Poles Fc = 20e+3 Hz Quant Bits = None Init Cndtn = Transient DSP Mode Disabled Max Rate = 1e+6 Hz Token 12 Om Operator Library Linear Sys Butterworth Lowpass IIR 3 Poles Fc = 300 Hz Quant Bits = None Init Cndtn = 0 DSP Mode Disabled Max Rate = 1e+6 Hz Token 14	12, 14, 16	参与实现 环路滤波 器,滤去 高频分量

4、位同步

元件	参数		序号	功能
采样保 持器	Om Operator Library Sample Hold Ctrl Threshold = 500e-3 v Signal = t5 Output 0 Control = t26 Output 0 Max Rate = 1e+6 Hz Token 27		27	根据控制信号 周期进行采样

5、系统时钟

根据采样定理,采样频率至少大于原信号频率的 2 倍 (PN 序列 20kHz, 载波信号 40kHz) 同时为了尽可能才更多的点以保证图像分辨率,选取 1000kHz 的采样频率,总采样点数为 1001 个。

五、 实验结果及分析

1. 整体电路图

2. 低通滤波器特性图

单位冲激响应:

频幅特性曲线:

可以看到, 当在截止频率 20KHz 之后, 输入信号开始失真。

3. 主要信号时域波形

A、基带信号

B、载波信号

C、调制信号,载波在码元变换处跳变,2PSK 信号相位翻转。

D、解调信号,还原出基波信号形状,但存在高频分量。

E、去除高频分量的解调信号,去除了高频分量,得到解调信号的包络,与基波信号相似。

F、经过位同步后的采样保持信号

G、最终解调信号

4. 主要信号频域波形

A、基波信号频谱,20kHz 的 PN 序列码频谱,纵轴单位为 dB。可见第一主瓣的宽度的一半为 20khz,满足 PN 序列码的频率。

B、载波信号频谱,40kHz 的正弦信号,纵轴单位为dB。频谱中心频率在40e+3处,和开始时载波设置的信号频率40kHz相符。

C、调制信号频谱,上下边带为 20kHz,60kHz,中心频率为 40kHz,中心频率符合我们设置的载波频率 40kHz。解调信号频谱,信号频率分布和基带信号大致相同。

5. 眼图

可以看到眼图几乎无失真。

6. 结果分析:

A、载波信号与相干载波信号对比: 载波信号与生成的相干载波信号相同,证明提取载波信号成功。

B、2PSK调制解调过程:

由载波信号和基波信号调制生成调制信号,与相干载波信号相乘,得到解调信号,可以发现整体波形与基波信号一致,不过包含了很多高频信号,再经过低通滤波器后,再进行位同步信号提取与采样,可以得到与基波信号一致的输出信号,只是信号相比原基波信号有一些延迟。

