几何选讲-2

例 1. 锐角 $\triangle ABC$ 中, AB > AC , CP, BQ 分别为 AB, AC 边上的高, P,Q 为垂足。直线 PQ 交 BC 于 X 。 $\triangle AXC$ 外接圆与 $\triangle PQC$ 外接圆再次相交于点 Y 。求证: PY 平分 AX 。

例 2. 四边形 ABCD 内接于 $\bigcirc O$,直线 CD 交 AB 于 M (MB < MA , MC < MD), K 是 $\bigcirc (AOC)$ 与 $\bigcirc (DOB)$ 除点 O 外的另一个交点。求证: $\angle MKO = \frac{\pi}{2}$ 。

例 3. 圆 ω 是 ΔABC 的外接圆,M是弧AB的中点,过A作 ω 的切线交直线BC于P,直线PM交 ω 于Q(异于M),过Q作 ω 的切线交AC于K。求证: $AB/\!\!/PK$ 。

例 4. 过以 AB 为直径的 $\bigcirc O$ 外一点 S 作该圆的切线 SP , P 为切点,直线 SB 与 $\bigcirc O$ 相交于 B 和 C ,过 B 作 PS 的平行线,分别与直线 OS ,PC 相交于 D 和 E , 延长 AE 与 $\bigcirc O$ 相交于 F 。求证: $PD/\!\!/BF$ 。

例 5. (加强的欧拉不等式) 求证: $在 \triangle ABC$ 中, 有

$$\frac{R}{r} \ge \frac{abc + a^3 + b^3 + c^3}{2abc} \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} - 1 \ge \frac{2}{3} \left(\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \right) \ge 2.$$

例 6. 设 $\odot O$ 是 $\triangle ABC$ 的外接圆,D 是弧 BC (不含 A)上的一点,S 是弧 BAC 的中点。P 为线段 SD 上一点,过 P 作 DB 的平行线交 AB 于点 E ,过 P 作 DC 的平行线交 AC 于点 F ,过 O 作 SD 的平行线交弧 BDC 于点 T 。已知 $\odot O$ 上的点 Q 满足 $\angle QAP$ 被 AT 平分,求证:QE = QF 。

例 7. 设四边形 APDQ 内接于圆 Γ ,过 D 作 Γ 的切线与直线 AP,AQ 分别交于 B,C 两点。延长 PD 交 $\triangle CDQ$ 的外接圆于点 X ,延长 QD 交 $\triangle BDP$ 的外接圆于点 Y 。设 $\triangle DXY$ 的外接圆交 BC 于点 D,E ,求证: BD=CE 。

例 8. 设凸四边形 ABCD 满足 $\angle ABC > \frac{\pi}{2}$, $\angle CDA > \frac{\pi}{2}$, $\angle DAB = \angle BCD$ 。记 E, F 分别 为点 A 关于直线 BC , CD 的对称点。设线段 AE , AF 分别与直线 BD 交于点 K , L 。求证: $\triangle BEK$ 和 $\triangle DFL$ 的外接圆相切。

例 9. 不等边 $\triangle ABC$ 的内切圆与边 BC, CA, AB 分别相切于点 D, E, F 。在 $\triangle ABC$ 外部构造 $\triangle APE$, $\triangle AQF$,使得 AP=PE, AQ=QF, $\angle APE=\angle ACB$, $\angle AQF=\angle ABC$ 。设 M 是 边 BC 的中点,请用 $\triangle ABC$ 的三个内角来表示 $\angle QMP$ 。

例 10. 设锐角 $\triangle ABC$ 的内心为 I ,点 A 所对的旁心为 I_A 。若 AB < AC ,设 D 为 $\triangle ABC$ 内切圆与边 BC 的切点,直线 AD 直线 BI_A , CI_A 分别交于点 E,F 。求证: $\bigcirc (AID)$ 与 $\bigcirc (I_AEF)$ 相切。

