บทที่ 5

สรุปผลการวิจัยและข้อเสนอแนะ

5.1 สรุปผลการวิจัย

จากการศึกษาการพยากรณ์ปริมาณการใช้ไฟฟ้าในมหาวิทยาลัยขอนแก่น โดยวิธีการทำให้เรียบและวิธี ของบ็อกซ์และเจนกินส์ ได้ผลดังตารางต่อไปนี้

ตารางที่ 5.1 ตัวแบบการพยากรณ์ โดยใช้วิธีการทำให้เรียบ

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
มหาวิทยาลัยขอนแก่น	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 461,410.10
	มีสมการพยากรณ์ คังนี้	MAE = 366,062.40
	$\hat{Z}_{t}(\tau) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 5.65
	$\hat{b}_{0t} = 0.1631 \left[Z_t - \hat{C}_{t-L} \right] + \left(1 - 0.1631 \right)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0130 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0130) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.7699 \left[Z_{t} - \hat{b}_{0t} \right] + \left(1 - 0.7699 \right) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 7,820,683.41$	
	$\hat{b}_{10} = 20,273.39$	
คณะเกษตรศาสตร์	วิธีการพยากรณ์ของโฮลท์ มีสมการพยากรณ์ คังนี้	RMSE = 49,459.43
	$\hat{Z}_{_{t+l}}=\hat{b}_{_{0t}}+\hat{b}_{_{1t}} au$	MAE = 38,880.42
	$\hat{b}_{0t} = 0.7489Z_t + (1 - 0.7489)(\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)})$	MAPE = 19.13
	$\hat{b}_{1t} = 0.1593 (\hat{b}_{0t} - \hat{b}_{0(t-1)}) + (1 - 0.1593) \hat{b}_{1(t-1)}$	
	$\hat{b}_{00} = 187,047.91$	
	$\hat{b}_{10} = 2,926.57$	

ตารางที่ 5.1 ตัวแบบการพยากรณ์ โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
คณะ	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 36,972.57
วิศวกรรมศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = $28,129.51$
	$\hat{Z}_{t}\left(\tau\right) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 15.54
	$\hat{b}_{0t} = 0.1408 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.1408)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0256 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0256) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.6018 \left[Z_{t} - \hat{b}_{0t} \right] + \left(1 - 0.6018 \right) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 181,552.20$	
	$\hat{b}_{10} = -394.29$	
คณะวิทยาศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 39,440.09
	มีสมการพยากรณ์ ดังนี้	MAE = 28,888.74
	$\hat{Z}_{t}(\tau) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 13.78
	$\hat{b}_{0t} = 0.2017 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.2017)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1-0)\hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.4114 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.4114) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 227,578.72$	
	$\hat{b}_{10} = 1,032.89$	
 คณะเทคโนโลยี	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 11,727.95
	มีสมการพยากรณ์ ดังนี้	MAE = 8,790.97
	$\hat{Z}_{t}(\tau) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 0,790.57
	$\hat{b}_{0t} = 0.1612 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.1612)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0366 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0366) \hat{b}_{1(t-1)}$	

ตารางที่ 5.1 ตัวแบบการพยากรณ์โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
	$\hat{C}_{t} = 0.4368 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.4368) \hat{C}_{t-L}$ $\hat{b}_{00} = 81,764.38$ $\hat{b}_{10} = 13.62$	
คณะศึกษาศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงคูณ มีสมการพยากรณ์ ดังนี้ $\hat{Z}_t(\tau) = \left(\hat{b}_{0t} + \hat{b}_{1t}\tau\right)\hat{C}_{t-L+\tau}$ $\hat{b}_{0t} = 0.0921 \left[\frac{Z_t}{\hat{C}_{t-L}}\right] + \left(1 - 0.0921\right)$ $\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$ $\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)}\right] + \left(1 - 0\right)\hat{b}_{1(t-1)}$ $\hat{C}_t = 0.4322 \left[\frac{Z_t}{\hat{b}_{0t}}\right] + \left(1 - 0.4322\right)\hat{C}_{t-L}$ $\hat{b}_{00} = 65,220.76$ $\hat{b}_{10} = 57.06$	RMSE = 17,077.78 MAE = 12,906.38 MAPE = 25.72
กณะ พยาบาลศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก มีสมการพยากรณ์ ดังนี้ $\hat{Z}_t(\tau) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$ $\hat{b}_{0t} = 0.1770 \Big[Z_t - \hat{C}_{t-L} \Big] + (1-0.1770)$ $\Big[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)} \Big]$ $\hat{b}_{1t} = 0.0084 \Big[\hat{b}_{0t} - \hat{b}_{0(t-1)} \Big] + (1-0.0084) \hat{b}_{1(t-1)}$ $\hat{C}_t = 0.2776 \Big[Z_t - \hat{b}_{0t} \Big] + (1-0.2776) \hat{C}_{t-L}$ $\hat{b}_{00} = 91,380.52$ $\hat{b}_{10} = -114.81$	RMSE = 16,785.56 MAE = 12,468.39 MAPE = 12.95

ตารางที่ 5.1 ตัวแบบการพยากรณ์โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
คณะแพทยศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 248,294.5
และ	มีสมการพยากรณ์ คังนี้	MAE = 188,207.4
รพ.ศรีนครินทร์	$\hat{Z}_{t}\left(\tau\right) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 8.16
	$\hat{b}_{0t} = 0.6104 \left[Z_t - \hat{C}_{t-L} \right] + \left(1 - 0.6104 \right)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0258 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0258) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.5953 \left[Z_{t} - \hat{b}_{0t} \right] + \left(1 - 0.5953 \right) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 2,453,857.99$	
	$\hat{b}_{10} = 6,000.49$	
คณะบริหารธุรกิจ	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 11,417.08
และการบัญชี	มีสมการพยากรณ์ ดังนี้	MAE = 8,364.88
	$\hat{Z}_{t}\left(au ight) = \hat{b}_{0t} + \hat{b}_{1t} au + \hat{C}_{t-L+ au}$	MAPE = 21.92
	$\hat{b}_{0t} = 0.0903 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.0903)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{\mathrm{l}(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0141 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0141) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.7871 \left[Z_{t} - \hat{b}_{0t} \right] + \left(1 - 0.7871 \right) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 56,047.43$	
	$\hat{b}_{10} = 155.67$	
คณะ	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 27,143.78
ทันตแพทยศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = $20,522.62$
	$\hat{Z}_{t}\left(\tau\right) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 13.48
	$\hat{b}_{0t} = 0.4131 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.4131)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{\mathrm{l}(t-1)}\right]$	
	$\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1-0)\hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.1859 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.1859) \hat{C}_{t-L}$	

$\hat{b}_{00} = 162, 214.34$	
$\hat{b}_{10} = 1,477.08$	

ตารางที่ 5.1 ตัวแบบการพยากรณ์ โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
คณะสถาปัตยกรรม	วิธีการพยากรณ์ของโฮลท์ มีสมการพยากรณ์ ดังนี้	RMSE = 15,054.84
ศาสตร์	$\hat{Z}_{t+l}=\hat{b}_{0t}+\hat{b}_{1t} au$	MAE = 10,026.79
	$\hat{b}_{0t} = 0.6765Z_t + (1 - 0.6765)(\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)})$	MAPE = 31.22
	$\hat{b}_{1t} = 0.1007 (\hat{b}_{0t} - \hat{b}_{0(t-1)}) + (1 - 0.1007) \hat{b}_{1(t-1)}$	
	$\hat{b}_{00} = 98,090.20$	
	$\hat{b}_{10} = 4,378.14$	
คณะ	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 15,989.91
สัตวแพทยศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = 11,934.64
	$\hat{Z}_{t}\left(\tau\right) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 13.65
	$\hat{b}_{0t} = 0.1564 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.1564)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1-0)\hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.4060 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.4060) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 105,288.31$	
	$\hat{b}_{10} = 556.08$	
คณะเภสัชศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงคูณ	RMSE = $20,739.13$
	มีสมการพยากรณ์ ดังนี้	MAE = 13,978.96
	$\hat{Z}_{t}\left(\tau\right) = \left(\hat{b}_{0t} + \hat{b}_{1t}\tau\right)\hat{C}_{t-L+\tau}$	MAPE = 18.05
	$\hat{b}_{0t} = 0.1510 \left[\frac{Z_t}{\hat{C}_{t-L}} \right] + (1 - 0.1510)$ $\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)} \right]$ $\hat{b}_{1t} = 0.0069 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0069) \hat{b}_{1(t-1)}$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0069 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0069) \hat{b}_{1(t-1)}$	

ตารางที่ 5.1 ตัวแบบการพยากรณ์โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
	$\hat{C}_{t} = 0.3464 \left[\frac{Z_{t}}{\hat{b}_{0t}} \right] + (1 - 0.3464) \hat{C}_{t-L}$ $\hat{b}_{00} = 122,165.1$ $\hat{b}_{10} = 752.77$	
คณะเทคนิค	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงคูณ	RMSE = 12,229.01
การแพทย์	มีสมการพยากรณ์ ดังนี้	MAE = 8,370.71
	$\hat{Z}_{t}\left(\tau\right) = \left(\hat{b}_{0t} + \hat{b}_{1t}\tau\right)\hat{C}_{t-L+\tau}$	MAPE = 15.04
	$\hat{b}_{0t} = 0.2965 \left[\frac{Z_t}{\hat{C}_{t-L}} \right] + (1 - 0.2965)$ $\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)} \right]$ $\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0)\hat{b}_{1(t-1)}$ $\hat{C}_t = 0.3682 \left[\frac{Z_t}{\hat{b}_{0t}} \right] + (1 - 0.3682)\hat{C}_{t-L}$ $\hat{b}_{00} = 83,408.24$ $\hat{b}_{10} = 268.51$	
คณะสาชารณสุข	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 8,456.90
ศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = 6,345.9
	$\hat{Z}_{t}(\tau) = \hat{b}_{0t} + \hat{b}_{1t}\tau + \hat{C}_{t-L+\tau}$	MAPE = 20.86
	$\hat{b}_{0t} = 0.1838 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.1838)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0228 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0228) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.4141 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.4141) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 35,343.56$	
	$\hat{b}_{10} = 31.43$	

ตารางที่ 5.1 ตัวแบบการพยากรณ์ โดยใช้วิธีการทำให้เรียบ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
คณะมนุษยศาสตร์	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงบวก	RMSE = 17,010.32
และสังคมศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = 12,954.47
	$\hat{Z}_{t}\left(au ight)=\hat{b}_{0t}+\hat{b}_{1t} au+\hat{C}_{t-L+ au}$	MAPE = 22.45
	$\hat{b}_{0t} = 0.1408 \left[Z_t - \hat{C}_{t-L} \right] + (1 - 0.1408)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1-0)\hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.8371 \left[Z_{t} - \hat{b}_{0t} \right] + (1 - 0.8371) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 54,919.01$	
	$\hat{b}_{10} = -384.91$	
คณะศิลปกรรม	วิธีการพยากรณ์ของวินเทอร์ ในตัวแบบเชิงคูณ	RMSE = 8,331.58
ศาสตร์	มีสมการพยากรณ์ ดังนี้	MAE = 6,022.35
	$\hat{Z}_{t}\left(\tau\right) = \left(\hat{b}_{0t} + \hat{b}_{1t}\tau\right)\hat{C}_{t-L+\tau}$	MAPE = 26.11
	$\hat{b}_{0t} = 0.0872 \left[\frac{Z_t}{\hat{C}_{t-L}} \right] + (1 - 0.0872)$	
	$\left[\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)}\right]$	
	$\hat{b}_{1t} = 0.0270 \left[\hat{b}_{0t} - \hat{b}_{0(t-1)} \right] + (1 - 0.0270) \hat{b}_{1(t-1)}$	
	$\hat{C}_{t} = 0.5471 \left[\frac{Z_{t}}{\hat{b}_{0t}} \right] + (1 - 0.5471) \hat{C}_{t-L}$	
	$\hat{b}_{00} = 50,093.94$	
	$\hat{b}_{10} = 335.55$	
คณะนิติศาสตร์	วิธีการพยากรณ์ของโฮลท์ มีสมการพยากรณ์ ดังนี้	RMSE = 10,458.82
	$\hat{Z}_{t+l} = \hat{b}_{0t} + \hat{b}_{1t}\tau$	MAE = 7,201.61
	$\hat{b}_{0t} = 0.1441Z_t + (1 - 0.1441)(\hat{b}_{0(t-1)} + \hat{b}_{1(t-1)})$	MAPE = 43.51
	$\hat{b}_{1t} = 0.0473 (\hat{b}_{0t} - \hat{b}_{0(t-1)}) + (1 - 0.0473) \hat{b}_{1(t-1)}$	

$\hat{b}_{00} = 31,007.20$	
$\hat{b}_{10} = 92.68$	

ตารางที่ 5.2 ตัวแบบการพยากรณ์ โดยใช้วิธีของบ็อกซ์และเจนกินส์

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
มหาวิทยาลัยขอนแก่น	<i>ARIMA</i> (1,1,1)(0,1,1) ₁₂	RMSE = 432,728.60
	$(1 - 0.2830B)(1 - B^{12})(1 - B)Z_t = (1 + 0.4011B^{12})$	MAE = 328,338.20
	$(1+0.9161B)a_t$	MAPE = 5.07
คณะเกษตรศาสตร์	<i>ARIMA</i> (1,1,1)	RMSE = 41,906.81
	$(1 - 0.2999B)(1 - B)Z_t = (1 + 0.8042B) + a_t$	MAE = 32,784.85
		MAPE = 16.26
คณะวิศวกรรมศาสตร์	<i>ARIMA</i> (0,1,1)(0,1,1) ₁₂	RMSE = 35,348.79
	$(1-B^{12})(1-B)Z_t = (1+0.4561B^{12})(1+0.8235B)$	$a_{\text{MAE}} = 25,928.25$
		MAPE = 14.28
คณะวิทยาศาสตร์	<i>ARIMA</i> (1,0,1)(0,1,1) ₁₂	RMSE = 37,511.66
	$(1 - 0.7886B)(1 - B^{12})Z_{t} = (1 + 0.5974B^{12})$	MAE = 25,779.52
	$(1+0.5381B)a_t$	MAPE = 12.04
คณะเทคโนโลยี	<i>ARIMA</i> (1,0,0)(0,1,1) ₁₂	RMSE = 10,870.41
	$(1 - 0.2910B)(1 - B^{12})Z_t = (1 + 0.5826B^{12})a_t$	MAE = 7,741.59
		MAPE = 10.20
คณะศึกษาศาสตร์	<i>ARIMA</i> (1,1,1)(1,0,0) ₁₂	RMSE = 16,305.74
	$(1-0.4430B^{12})(1-0.3415B)(1-B)Z_t$	MAE = 11,921.59
	$= (1 + 0.9667B)a_t$	MAPE = 24.34
คณะ	$ARIMA(1,1,1)(0,1,1)_{12}$	RMSE = 15,396.13
พยาบาลศาสตร์	$(1 - 0.2501B)(1 - B^{12})(1 - B)Z_t = (1 + 0.6862B^{12})$	MAE = 11,393.29
	$(1+0.9550B)a_t$	MAPE = 12.08
คณะแพทยศาสตร์และ	<i>ARIMA</i> (0,1,1)(1,1,1) ₁₂	RMSE = 191,820.80
รพ.ศรีนครินทร์	$(1-0.4055B^{12})(1-B^{12})(1-B)Z_t$	MAE = 139,059.00
	$= (1 + 0.9997B^{12})(1 + 0.4040B)a_t$	MAPE = 5.93
คณะบริหารธุรกิจและ	$ARIMA(0,0,1)(0,1,1)_{12}$	RMSE = 10,368.05
การบัญชี	$(1 - B^{12})Z_t = (1 + 0.3183B^{12})(1 - 0.3372B)a_t$	MAE = 7,485.60

ตารางที่ 5.2 ตัวแบบการพยากรณ์โดยใช้วิธีของบ็อกซ์และเจนกินส์ (ต่อ)

	ตัวแบบการพยากรณ์	ค่าคลาดเคลื่อน
คณะทันต	<i>ARIMA</i> (3,1,2)(0,1,1) ₁₂	RMSE = 24,702.15
แพทยศาสตร์	$(1-0.3998B+0.3161B^2+0.5389B^3)(1-B^{12})$	MAE = 17,612.07
	$(1-B)Z_t = (1+0.7153B^{12})$	MAPE = 11.32
	$(1+0.9672B-0.7539B^2)a_t$	
คณะสถาปัตยกรรม	<i>ARIMA</i> (1,1,1)	RMSE = 13,401.85
ศาสตร์	$(1 - 0.3863B)(1 - B)Z_t = (1 + 0.8071B)a_t$	MAE = 8,670.52
		MAPE = 26.72
คณะสัตว	<i>ARIMA</i> (0,1,1)(0,1,1) ₁₂	RMSE = 15,171.88
แพทยศาสตร์	$(1-B^{12})(1-B)Z_t = (1+0.5702B^{12})(1+0.7890B)a_t$	MAE = 10,815.02
		MAPE = 12.36
คณะเภสัชศาสตร์	<i>ARIMA</i> (0,1,1)(0,1,1) ₁₂	RMSE = 19,326.89
	$(1 - B^{12})(1 - B)Z_t = (1 + 0.7180B^{12})$	MAE = 11,915.79
	$(1+0.6876B)a_t$	MAPE = 14.83
คณะเทคนิคการแพทย์	<i>ARIMA</i> (2,1,1)(1,0,0) ₁₂	RMSE = 11,734.80
	$(1 - 0.4762B^{12})(1 - 0.3954B - 0.2973B^2)$	MAE = 8,224.72
	$(1-B)Z_t = (1+0.9565B)a_t$	MAPE = 15.32
คณะสาธารณสุข	$ARIMA(0,0,1)(0,1,1)_{12}$	RMSE = 7,609.23
ศาสตร์	$(1 - B^{12})Z_t = (1 + 0.6446B^{12})(1 - 0.2715B)a_t$	MAE = 5,505.04
		MAPE = 17.90
คณะมนุษยศาสตร์และ	<i>ARIMA</i> (1,0,2)(1,1,0) ₁₂	RMSE = 14,855.76
สังคมศาสตร์	$(1+0.4307B^{12})(1+0.7201B)(1-B^{12})Z_t$	MAE = 11,528.88
	$= (1 - 1.0496B - 0.4168B^2)a_t$	MAPE = 20.29
คณะศิลปกรรมศาสตร์	<i>ARIMA</i> (0,1,1)(1,0,1) ₁₂	RMSE = 8,189.91
	$(1 - 0.8472B^{12})(1 - B)Z_t = (1 + 0.4229B^{12})$	MAE = 5,716.91
	$(1+0.8908B)a_t$	MAPE = 24.15
คณะนิติศาสตร์	<i>ARIMA</i> (1,1,1)	RMSE = 10,312.82

$(1 - 0.2685B)(1 - B)Z_t = (1 + 0.8776B)a_t$	MAE = 6,888.52
	MAPE = 38.28

จากตารางที่ 5.1 และ 5.2 เมื่อนำตัวแบบของวิธีการทำให้เรียบ และตัวแบบของวิธีบ็อกซ์และเจนกินส์ มาเปรียบเทียบค่าความคลาดเคลื่อนโดยพิจารณาจากเกณฑ์รากที่สองของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE), ค่าสัมบูรณ์ของความเบี่ยงเบนเฉลี่ย (MAE) และค่าสัมบูรณ์ของเปอร์เซ็นต์ของความคลาดเคลื่อนเฉลี่ย (MAPE) พบว่า

- 1. การพยากรณ์ปริมาณการใช้ไฟฟ้าในมหาวิทยาลัยขอนแก่น โดยวิธีของวินเทอร์ในตัวแบบเชิงบวกให้ ค่า RMSE = 461,410.1, MAE = 366,062.4, MAPE = 5.65 และวิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 432,728.60, MAE = 328,338.20, MAPE = 5.07 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจน กินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 2. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะเกษตรศาสตร์ โดยวิธีของโฮลท์ ให้ค่า RMSE = 49,459.43, MAE = 38,880.42, MAPE = 19.13 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 41,906.81, MAE = 32,784.85, MAPE = 16.26 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่า คลาดเคลื่อนต่ำที่สุด
- 3. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะวิศวกรรมศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ ค่า RMSE = 36,972.57, MAE = 28,129.51, MAPE = 15.54 และ วิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 35,348.79, MAE = 25,928.25, MAPE = 14.28 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบีอกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สด
- 4. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะวิทยาศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ค่า RMSE = 39,440.09, MAE = 28,888.74, MAPE = 13.78 และ วิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 37,511.66, MAE = 25,779.52, MAPE = 12.04 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 5. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะเทคโนโลยี โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ค่า RMSE = 11,727.95, MAE = 8,790.97, MAPE = 11.86 และ วิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 10,870.41, MAE = 7,741.59, MAPE = 10.20 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 6. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะศึกษาศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงคูณ ให้ค่า RMSE = 17,077.78, MAE = 12,906.38, MAPE = 25.72 และวิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 16,305.74, MAE = 11,921.59, MAPE = 24.34 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบีอกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด

- 7. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะพยาบาลศาสตร์โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ ก่า RMSE = 16,785.56, MAE = 12,468.39, MAPE = 12.95 และวิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 15,396.13, MAE = 11,393.29, MAPE = 12.08 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบีอกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 8. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะแพทยศาสตร์และรพ.ศรีนครินทร์โดยวิธีของวินเทอร์ในตัว แบบเชิงบวก ให้ค่า RMSE = 248,294.5, MAE = 188,207.4, MAPE = 8.16 และวิธีของบ็อกซ์และเจนกินส์ ให้ ค่า RMSE = 191,820.80, MAE = 139,059.00, MAPE = 5.93 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของ บ็อกซ์ และเจนกินส์ เนื่องจากให้ค่ากลาดเคลื่อนต่ำที่สุด
- 9. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะบริหารธุรกิจและการบัญชีโดยวิธีของวินเทอร์ในตัวแบบเชิง บวก ให้ค่า RMSE = 11,417.08, MAE = 8,364.88, MAPE = 21.92 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 10,368.05, MAE = 7,485.60, MAPE = 20.04 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 10. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะทันตแพทยศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ค่า RMSE = 27,143.78, MAE = 20,522.62, MAPE = 13.478 และวิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 24,702.15, MAE = 17,612.07, MAPE = 11.32 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบีอกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 11. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะสถาปัตยกรรมศาสตร์ โดยวิธีของโฮลท์ ให้ค่า RMSE = 15,054.84, MAE = 10,026.79, MAPE = 31.22 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 13,401.85, MAE = 8,670.52, MAPE = 26.72คังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่า คลาดเคลื่อนต่ำที่สุด
- 12. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะสัตวแพทยศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ค่า RMSE = 15,989.91, MAE = 11,934.64, MAPE = 13.65 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 15,171.88, MAE = 10,815.02, MAPE = 12.36 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 13. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะเภสัชศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงคูณ ให้ค่า RMSE = 20,739.13, MAE = 13,978.96, MAPE = 18.05 และ วิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 19,326.89, MAE = 11,915.79, MAPE = 14.83 คังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด
- 14. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะเทคนิคการแพทย์โดยวิธีของวินเทอร์ในตัวแบบเชิงคูณ ให้ ค่า RMSE = 12,229.01, MAE = 8,370.71, MAPE = 15.04 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 11,734.80, MAE = 8,224.72, MAPE = 15.32 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด

15. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะสาธารณสุขศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงบวก ให้ค่า RMSE = 8,456.90, MAE = 6,345.9, MAPE = 20.86และวิธีของบีอกซ์และเจนกินส์ ให้ค่า RMSE = 7,609.23, MAE = 5,505.04, MAPE = 17.90 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบีอกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด

16. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะมนุษยศาสตร์และสังคมศาสตร์โดยวิธีของวินเทอร์ในตัว แบบเชิงบวก ให้ค่า RMSE = 17,010.32, MAE = 12,954.47, MAPE = 22.45 และวิธีของบ็อกซ์และเจนกินส์ ให้ ค่า RMSE = 14,855.76, MAE = 11,528.88, MAPE = 20.29คังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์ และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด

17. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะศิลปกรรมศาสตร์ โดยวิธีของวินเทอร์ในตัวแบบเชิงคูณ ให้ ค่า RMSE = 8,331.58, MAE = 6,022.35, MAPE = 26.11 และ วิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 8,189.91, MAE = 5,716.91, MAPE = 24.15 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ค่าคลาดเคลื่อนต่ำที่สุด

18. การพยากรณ์ปริมาณการใช้ไฟฟ้าในคณะนิติศาสตร์โดยวิธีของโฮลท์ ให้ค่า RMSE = 10,458.82, MAE = 7,201.61, MAPE = 43.51 และวิธีของบ็อกซ์และเจนกินส์ ให้ค่า RMSE = 10,312.82, MAE = 6,888.52, MAPE = 38.28 ดังนั้นตัวแบบที่เหมาะสมที่สุด คือ วิธีของบ็อกซ์และเจนกินส์ เนื่องจากให้ ค่าคลาดเคลื่อนต่ำที่สุด

สรุปตัวแบบการพยากรณ์ โดยวิธีของบ็อกซ์และเจนกินส์มีความเหมาะสมกับการพยากรณ์อนุกรมเวลา ปริมาณการใช้ ไฟฟ้าของมหาวิทยาลัยขอนแก่น, คณะเกษตรศาสตร์, คณะวิศวกรรมศาสตร์, คณะวิทยาศาสตร์, คณะเทค โนโลยี, คณะศึกษาศาสตร์, คณะพยาบาลศาสตร์, คณะแพทยศาสตร์และรพ.ศรีนครินทร์, คณะบริหารธุรกิจและการบัญชี, คณะทันตแพทยศาสตร์, คณะสถาปัตยกรรมศาสตร์, คณะเภสัชศาสตร์, คณะสัตว แพทยศาสตร์, คณะเทคนิคการแพทย์, คณะสาธารณสุขศาสตร์, คณะมนุษยศาสตร์และสังคมศาสตร์, คณะ ศิลปกรรมศาสตร์ และคณะนิติศาสตร์

5.2 อภิปรายผลการวิจัย

จากการเปรียบเทียบตัวแบบการพยากรณ์ระหว่างวิธีการทำให้เรียบและวิธีของบ็อกซ์และเจนกินส์ โดย เกณฑ์รากที่สองของค่าความคลาดเคลื่อนกำลังสองเฉลี่ย (RMSE), ค่าสัมบูรณ์ของความเบี่ยงเบนเฉลี่ย (MAE) และค่าสัมบูรณ์ของเปอร์เซ็นต์ของความคลาดเคลื่อนเฉลี่ย (MAPE) พบว่าตัวแบบการพยากรณ์ โดยวิธีของบ็อกซ์ และเจนกินส์มีความเหมาะสมกับการพยากรณ์อนุกรมเวลาปริมาณการใช้ไฟฟ้าของมหาวิทยาลัยขอนแก่น และ ทุกคณะในมหาวิทยาลัยขอนแก่น

ผลการวิจัยครั้งนี้ สอดคล้องกับผลการวิจัยของณัฐภัทร ก้อนเครือ และกัลยาบุญหล้า (2559) ที่ศึกษาการ พยากรณ์ปริมาณหน่วยจำหน่ายไฟฟ้าจังหวัดพิษณุโลก โดยศึกษาตัวแบบการพยากรณ์ด้วยวิธีการทำให้เรียบแบบ โฮลท์วินเตอร์เชิงผลคูณ และวิธีของบ็อกซ์และเจนกินส์ จากนั้นนำมาเปรียบเทียบจากค่า MAPE ต่ำที่สุดผลจาก การศึกษาพบว่า วิธีของบ็อกซ์และเจนกินส์เป็นวิธีที่เหมาะสมที่สุดสำหรับการพยากรณ์ปริมาณหน่วยจำหน่าย ไฟฟ้า มีตัวแบบ ARIMA (1,1,1) (0,1,1)12 ซึ่งมีค่าคลาดเคลื่อนกำลังสองเฉลี่ยเท่ากับ 8.863 และสอดคล้องกับ ผลการวิจัยของศศิประภา ตาลยงค์ (2560) ที่ศึกษาการเปรียบเทียบตัวแบบการพยากรณ์ปริมาณการใช้ไฟฟ้าของ ประเทศไทยโดยใช้ตัวแบบวินเทอร์ ตัวแบบอารีมา และตัวแบบวินเทอร์ที่มีความคลาดเคลื่อนเป็นตัวแบบอารีมา โดยใช้เกณฑ์ค่าเฉลี่ยของค่าสัมบูรณ์เปอร์เซ็นต์ความคลาดเคลื่อน (MAPE) ในการเปรียบเทียบการพยากรณ์ของ แต่ละตัวแบบ จากผลการวิจัยพบว่า ตัวแบบอารีมามีความเหมาะสมที่สุด

5.2.1 ประโยชน์ของสถิติที่ใช้ในการวิเคราะห์

วิธีการพยากรณ์ที่ใช้ในงานวิจัยนี้มี 2 วิธี คือ วิธีการทำให้เรียบ (Smoothing Method) และ วิธีของบ็อกซ์ และเจนกินส์ (Box-Jenkins's Method) ซึ่งการพยากรณ์ โดยใช้เป็นสถิติเป็นเครื่องมือที่มีความน่าเชื่อถือเพราะมี ค่าสถิติรองรับ และช่วยให้เข้าใจลักษณะการเคลื่อนใหวของข้อมูล เห็นแนวโน้มที่อาจเกิดขึ้นในอนาคต เพื่อใช้ใน การตัดสินใจในการวางแผนการคำเนินงานต่าง ๆ ให้เกิดประโยชน์มากที่สุดและจัดการทรัพยากรได้อย่างคุ้มค่า มากที่สุด

5.2.3 แนวทางในการจัดการข้อมูลและคุณภาพข้อมูล

ข้อมูลที่ใช้ในการวิจัยครั้งนี้เป็นข้อมูลทุติยภูมิรายเดือน ของปริมาณการใช้ไฟฟ้าในมหาวิทยาลัย ขอนแก่น และแต่ละคณะในมหาวิทยาลัยขอนแก่น เก็บรวบรวมจากหน่วยไฟฟ้า กองอาคารและสถานที่ มหาวิทยาลัยขอนแก่น ตั้งแต่เดือนมกราคม พ.ศ. 2551 ถึงเดือนพฤษภาคม พ.ศ. 2561 รวม 125 เดือน ก่อนการนำ ข้อมูลไปวิเคราะห์ต้องมีการตรวจสอบความสมบูรณ์ของข้อมูล เช่น ข้อมูลที่ได้ไม่มีค่าสูญหาย และได้ครบตามที่ ต้องการ ซึ่งผู้วิจัยใช้โปรแกรม R ในการวิเคราะห์ เพื่อหาตัวแบบที่เหมาะสมในการพยากรณ์ปริมาณการใช้ไฟฟ้า ในมหาวิทยาลัยขอนแก่น และแต่ละคณะในมหาวิทยาลัยขอนแก่น มีการตรวจสอบความเหมาะสมของตัวแบบ และคัดเลือกตัวแบบที่ให้ค่าคลาดเคลื่อนต่ำสุด เพื่อความแม่นยำในการพยากรณ์ ปริมาณการใช้ไฟฟ้าใน มหาวิทยาลัยขอนแก่น และแต่ละคณะในมหาวิทยาลัยขอนแก่น

5.2.4 การนำเสนอผลไปประยุกต์ใช้ในการบริหาร

สมการพยากรณ์ ปริมาณการใช้ไฟฟ้าในมหาวิทยาลัยขอนแก่นที่เหมาะสมที่สุด ที่ให้ค่าความ
กลาดเกลื่อนต่ำที่สุด สามารถนำไปใช้ในการพยากรณ์ ปริมาณการใช้ไฟ้ฟ้า เพื่อทราบแนวโน้มที่อาจจะเกิดขึ้นใน
อนาคต โรงผลิตไฟฟ้ามหาวิทยาลัยขอนแก่นและองค์กรที่เกี่ยวข้องสามารถนำไปใช้ประโยชน์สำหรับการ
ตัดสินใจ และการวางแผนการจัดการพลังงานไฟฟ้าให้เพียงพอต่อจำนวนนักศึกษา บุคลากร และอาคารสถานที่
ต่าง ๆ ในอนาคต และเมื่อเวลาผ่านไปจะต้องมีการปรับเปลี่ยนสมการพยากรณ์ เพราะลักษณะการเคลื่อนไหวของ
ข้อมูลปริมาณการใช้ไฟฟ้าในอนาคตอาจมีการเปลี่ยนแปลงไปไม่เหมือนเดิม

5.3 ข้อเสนอแนะ

- 5.3.1 การพยากรณ์ปริมาณการใช้ไฟฟ้ารายเดือนของมหาวิทยาลัยขอนแก่นอาจไม่ได้ขึ้นอยู่กับปัจจัย เพียงปัจจัยเคียว ดังนั้นในการวิจัยครั้งต่อไป ผู้วิจัยควรพิจารณาปัจจัยอื่น ๆ เช่น จำนวนผู้อยู่อาศัย อุณหภูมิ สภาพ อากาศ ขนาดที่อยู่อาศัย ประเภทที่อยู่อาศัย และจำนวนเครื่องใช้ไฟฟ้า เพื่อให้มีความแม่นยำมากขึ้นในการ พยากรณ์ปริมาณการใช้ไฟฟ้าในอนาคตต่อไป
- 5.3.2 ในการศึกษาครั้งต่อไป อาจเปรียบเทียบวิธีการทำให้เรียบและวิธีของบ็อกซ์และเจนกินส์ และ วิธีการพยากรณ์อื่น ๆ ที่นอกเหนือจากวิธีการพยากรณ์ในงานวิจัยนี้ เช่น การวิเคราะห์การถคถอยเป็นต้น
- 5.3.3 เนื่องจากการพยากรณ์ครั้งนี้ใช้เพียงข้อมูลที่เกิดขึ้นในอดีตเพียงอย่างเดียว ดังนั้นการพยากรณ์ด้วย วิธี การทำให้เรียบ และวิธีของบ็อกซ์และเจนกินส์ จะให้ค่าพยากรณ์ที่แม่นยำกีต่อเมื่อลักษณะสภาพการณ์ในอดีต และอนาคต มีความคล้ายคลึงกัน