STOR 455 STATISTICAL METHODS I

Jan Hannig

Recall Extra SS (Section 4.9)

- SSE(X₁, X₂, X₃, X₄, X₅) is the SSE for the *full* model
- SSE(X₁, X₂, X₃) is the SSE for the reduced model
- SSR(X_4 , X_5 | X_1 , X_2 , X_3) is the difference

```
SSR(X_4, X_5 | X_1, X_2, X_3) =
= SSE(X_1, X_2, X_3) - SSE(X_1, X_2, X_3, X_4, X_5)
= SSR(X_1, X_2, X_3, X_4, X_5) - SSR(X_1, X_2, X_3)
```

F test

- Numerator is relevant partial MSR
- Denominator is MSE of the full model
- F ~ F(df_R, df_E)
- Reject if the P value is small; in which case conclude that the extra variables are important.

10/25/10

F-test in SAS

```
*F-test;
proc reg data=fat;
  model fat=skinfold thigh midarm;
  test1: test thigh, midarm;
run;
```

Test test1 Results for Dependent Variable fat

		Mean		
Source	DF	Square	F Value	Pr > F
Numerator	2	22.35741	3.64	0.0500
Denominator	16	6.15031		

Type I and II SS

- Type I SS
 - $-SSR(X_1)$
 - $-SSR(X_2 \mid X_1)$
 - $-SSR(X_3|X_1,X_2)$
 - $-SSR(X_4|X_1, X_2, X_3)$

- Type II SS (sometimes called type III)
 - $-SSR(X_1 | X_2, X_3, X_4)$
 - $-SSR(X_2|X_1, X_3, X_4)$
 - $-SSR(X_3|X_1,X_2,X_4)$
 - $-SSR(X_4|X_1, X_2, X_3)$

F test

 $F = (SSR/1) / MSE(full) \sim F(1, n-p)$

```
*Type I and Type II sums of squares;

proc reg data=fat;

model fat=skinfold thigh midarm /ss1 ss2;

run;
```

Analysis of Variance

Mean Sum of DF Squares Square F Value Pr > F Source Model 396.98461 132.32820 21.52 < .0001 Error 98.40489 6.15031 19 495.38950 **Corrected Total**

Root MSE 2.47998 R-Square 0.8014
Dependent Mean 20.19500 Adj R-Sq 0.7641
Coeff Var 12.28017

Parameter Estimates

Parameter Standard Error t Value Pr > |t| Type I SS Type II SS Variable DF Estimate Intercept 1 117.08469 99.78240 1.17 0.2578 8156.76050 8.46816 skinfold 1 4.33409 3.01551 1.44 0.1699 352.26980 12.70489 thigh -2.85685 2.58202 -1.11 0.2849 7.52928 33.16891 midarm -2.18606 1.59550 -1.37 0.1896 11.54590 11.54590

```
proc glm data=fat;
    model fat=skinfold thigh midarm;
run;

(Prints type I and type III SS
    together with the corresponding F
    tests.)
```

The GLM Procedure Dependent Variable: fat

Sum of

 Source
 DF
 Squares
 Mean Square
 F Value
 Pr > F

 Model
 3
 396.9846118
 132.3282039
 21.52
 <.0001</td>

Error 16 98.4048882 6.1503055

Corrected Total 19 495.3895000

R-Square Coeff Var Root MSE fat Mean 0.801359 12.28017 2.479981 20.19500

 Source
 DF
 Type I SS
 Mean Square
 F Value
 Pr > F

 skinfold
 1
 352.2697968
 352.2697968
 57.28
 <.0001</td>

 thigh
 1
 33.1689128
 33.1689128
 5.39
 0.0337

 midarm
 1
 11.5459022
 11.5459022
 1.88
 0.1896

Source	DF	Type III SS	Mean Square	F Value	Pr > F
skinfold	1	12.70489278	12.70489278	2.07	0.1699
thigh	1	7.52927788	7.52927788	1.22	0.2849
midarm	1	11.54590217	7 11.5459021	7 1.88	0.1896

Standard Error t Value Pr > |t|Parameter Estimate Intercept 117.0846948 99.78240295 1.17 0.2578 skinfold 4.3340920 3.01551136 1.44 0.1699 thigh -2.8568479 2.58201527 -1.11 0.2849 -2.1860603 midarm 1.59549900 -1.37 0.1896

Partial correlations

- Measure the strength of a linear relation between two variables taking into account (or conditioning on) other variables.
- Coefficient of partial determination: squared partial correlation
- $r_{Y1,234}^2 = SSR(X_1 | X_2, X_3, X_4) / SSE(X_2, X_3, X_4)$
 - Different than the F statistics.
 - SAS option /PCORR1 /PCORR2

```
*Partial correlations;
proc reg data=fat;
  model fat=skinfold thigh midarm / pcorr1 pcorr2;
run;
```

Parameter Estimates

				Sq	uared	Squared	
	Pa	arameter S	Standard		Part	ial Parti	al
Variable	DF	Estimate	Error	t Value	Pr > t	Corr Type I	Corr Type II
					• •	٠.	
Intercept	1	117.08469	99.78240	1.17	0.2578	3 .	
skinfold	1	4.33409	3.01551	1.44	0.1699	0.71110	0.11435
thigh	1	-2.85685	2.58202	-1.11	0.2849	0.23176	0.07108
midarm	1	-2.18606	1.59550	-1.37	0.1896	0.10501	0.10501

Standardized Regression Model

- Numerical problem: roundoff errors
- Interpretation problems: is big coefficient really big?
- $Y = ... + \beta X + ...$ = ... + $(\beta(s_X/s_Y)) (s_Y) (X/s_X) + ...$
- SAS option /stb
- Choose unit for X_i wisely

```
*Standardized regression;

proc reg data=fat;

model fat=skinfold thigh midarm / stb;

run;
```

Parameter Estimates

	Pa	arameter	Standard	Standardized			
Variable	DF	Estimate	Error	t Value	Pr > t	Estimate	
Intercept	1	117.08469	99.78240	1.17	0.2578	0	
skinfold	1	4.33409	3.01551	1.44	0.1699	4.26370	
thigh	1	-2.85685	2.58202	-1.11	0.2849	-2.92870	
midarm	1	-2.18606	1.59550	-1.37	0.1896	-1.56142	

Productivity Example

- Response Variable: Productivity
- Explanatory Variable: Crew size and amount of bonus pay
- Designed experiment
- Size and Pay are uncorrelated by design

```
Obs Size Pay Prod
data crewprod;
  infile 'T:\...
                                                      42
  \Ch07ta06.txt';
                                                      39
                                                      48
  input Size Pay Prod;
                                                      51
run;
                                                      49
%include "T:\...
                                                  2 53
                                               6 3
  \scatter.sas";
                                                      61
                                                      60
% scatter (data = crewprod,
  var =Prod Size Pay);
proc print data=crewprod;
run;
```



```
*uncorrelated explanatory variables;
proc reg data = crewprod;
  model Prod = Size Pay /ss1 ss2;
  model Prod = Size;
  model Prod = Pay;
run;
```

Parameter Estimates

	Pa	rameter S	Standard				
Variable	DF	Estimate	Error	t Value	Pr > t	Type I SS	Type II SS
						, ·	7.
Intercept	1	0.37500	4.74045	0.08	0.9400	20301	0.02206
Size	1	5.37500	0.66380	8.10	0.0005	231.12500	231.12500
Pay	1	9.25000	1.32759	6.97	0.0009	171.12500	171.12500

Parameter Estimates

	Parameter		Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	23.50000	10.11136	2.32	0.0591
Size	1	5.37500	1.98300	2.71	0.0351

Parameter Estimates

	Pa	rameter S	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	27.25000	11.60774	2.35	0.0572
Pay	1	9.25000	4.55293	2.03	0.0885

Uncorrelated Explanatory Variables

- Simpler interpretation of regression coefficients
- Type I SS same as Type II SS
- Easier to add/remove variables in the model
- Possible in controlled experiments

Multicollinearity (Section 5.5)

- Strong linear correlation between explanatory variables
- Example: skin fold thickness and thigh circumference; amount of rainfall and hours of sunshine; SAT math, SAT veb and SAT total score
- Numerical and statistical problem

Body fat example

Analysis of Variance

Sum of Mean Square F Value Pr > F Source DF Squares Model 396.98461 132.32820 21.52 < .0001 Error 98.40489 6.15031 **Corrected Total** 19 495.38950

Root MSE 2.47998 R-Square 0.8014
Dependent Mean 20.19500 Adj R-Sq 0.7641
Coeff Var 12.28017

Parameter Estimates

Parameter Standard Variable DF Estimate Error t Value Pr > |t| Type I SS Type II SS Intercept 1 117.08469 99.78240 1.17 0.2578 8156.76050 8.46816 skinfold 1 4.33409 3.01551 1.44 0.1699 352.26980 12.70489 thigh 0.2849 -2.85685 2.58202 -1.11 33.16891 7.52928 midarm -2.18606 1.59550 -1.37 0.1896 11.54590 11.54590

Body fat example

- The P value for F(3, 16) is <.0001
- But the P values for the individual regression coefficients are 0.1699, 0.2849, and 0.1896
- None of these are near our standard of 0.05
- What is the explanation?

```
*compare different model informally;
proc reg data=fat;
   model fat=skinfold;
   model fat=thigh;
   model fat=skinfold thigh;
   model fat=skinfold midarm;
   model fat=thigh midarm;
   model fat=skinfold thigh midarm;
run;
```

Parameter Estimates

	Pa	rameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-1.49610	3.31923	-0.45	0.6576
skinfold	1 Pa	0.85719 rameter	0.12878 Standard	6.66	<.0001
Variable	DF		Error	t Value	Pr > t
Intercept	1	-23.63449	5.65741	-4.18	0.0006
thigh	1	0.85655	0.11002	7.79	<.0001
	_	rameter	Standard		5 111
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-19.17425	8.36064	-2.29	0.0348
skinfold	1	0.22235	0.30344	0.73	0.4737
thigh	1	0.65942	0.29119	2.26	0.0369
J	Pa	arameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	6.79163	4.48829	1.51	0.1486
skinfold	1	1.00058	0.12823	7.80	<.0001
midarm	1	-0.43144	0.17662	-2.44	0.0258

Parameter Estimates

Variable	Pa DF	arameter Estimate	Standard Error	t Value	Pr > t
Intercept thigh midarm	1 1 1	-25.99695 0.85088 0.09603	6.99732 0.11245 0.16139	-3.72 7.57 0.60	0.0017 <.0001 0.5597
Variable	Pa DF	arameter Estimate	Standard Error	t Value	Pr > t
Intercept skinfold thigh midarm	1 1 1 1	117.08469 4.33409 -2.85685 -2.18606	99.78240 3.01551 2.58202 1.59550	1.44 -1.11	0.2578 0.1699 0.2849 0.1896

R-Square 0.71, 0.77, 0.78, 0.79, 0.78, 0.80

Body fat example

- Fit models including different variables
- Regression coefficients for the same variable change dramatically in different models
- Including more variables in the model increases R²

10/25/10

Effects of multicollinearity

- Numerical problem: X'X is close to singular, difficult to invert accurately
- Type I SS and Type II SS will differ
- Type II SS and t-test may be misleading
- R² and predicted values are usually ok

10/25/10

Multicollinearity (2)

- Regression coefficients and its standard error can not be well estimated
- Difficult to interpret the regression coefficients
- Redundancy in the model

Multicollinearity (3)

- Extreme cases can help us to understand the problem
- Scatter plot and pair-wise correlation can detect some collinearity but not all
- More diagnostic and remedy of collinearity in Section 5.5

Variance Inflation Factor

- VIF = $1/(1 R^2_k)$
- R^2_k is the squared multiple correlation obtained in a regression where all other explanatory variables are used to predict X_k
- One suggested rule: a value of 10 or more indicates excessive multicollinearity
- Tolerance: TOL= $1/VIF=(1 R_k^2)$

Body fat example

```
* check collinearity using VIF/TOL;
proc reg data = fat;
  model fat = skinfold thigh midarm /
  VIF TOL;
run;
```

Parameter Estimates

```
        Variable
        DF
        Estimate
        Standard
        Variance

        Intercept
        1
        117.08469
        99.78240
        1.17
        0.2578
        .
        0

        skinfold
        1
        4.33409
        3.01551
        1.44
        0.1699
        0.00141
        708.84291

        thigh
        1
        -2.85685
        2.58202
        -1.11
        0.2849
        0.00177
        564.34339

        midarm
        1
        -2.18606
        1.59550
        -1.37
        0.1896
        0.00956
        104.60601
```

Regression Diagnostics Recommendations

- Examine the tolerance/VIF for each X
- If there are variables with low tolerance, you need to do some model building
 - Recode variables
 - Variable selection (coming later)