

ARDUINO Introduction (1)

Farouk MEDDAH

PLAN

INTRODUCTION

- Microcontrôleur, Microprocesseur
- Circuits à base de Microcontrôleur
- Arduino, Raspberry, ...

ARDUINO

- Caractéristiques
- Entrées/Sorties digitales
- Entrées/Sorties analogiques
- **PWM**
- Communication: SPI, I2C, ...

MICROPROCESSEUR

Un peut d'histoire

- Intel initialement produit des mémoires.
- En 1969 Busicom (ex Nippon Calculating Machine Corporation 1967) fabricant de calculatrices japonais, a demandé d'Intel de réaliser 12 Circuits intégrés pour ses machines.
- L'ingénieur Ted Hoff d'Intel proposa de concevoir un seul circuit qui englobe le tout.
- 1970: la naissance du 4004 (Le premier microprocesseur à 4 bits).
- 1971: Intel achète les droits du 4004 pour 60000\$

CIRCUITS A BASE DE MICROPROCESSEUR

Problème

- Pour concevoir un système à base de microprocesseur il faut au moins 5 circuits:
 - RAM
 - ►ROM (ou Eprom)
 - Décodeur
 - Interface (I/O)
 - Microprocesseur
 - -+ Autres...

Solution

Microcontrôleur.

MICROCONTROLEUR

COMPARAISON

Microprocesseur

- Multi-utilisation
 - O PC
 - O MAC
- Mémoire externe
- Extra circuits à l'extérieur (interfaces)
- Généralement contient un système OS (Windows/Linux).

Microcontrôleur

- Utilisation unique
 - Four Micro-onde
 - Commande TV
- Mémoire à l'intérieur
- Périphériques à l'intérieur (vers l'externe)
- Généralement ne contient pas un système OS.

CARTES D'INTERFACES

ARDUINO MEGA 2560

atMega 2560, 16MHz, **4** UART **54** digitals (**15** PWM) + **16** analogs 256Kb + 8Kb + 4Kb

ARDUINO DUE

ARM SAM3X, 84MHz, DMA, 4 UART 54 digitals (8 PWM) + 12 analogs + 2 DAC FLASH: 512Kb + RAM: 96Kb

CARACTERISTIQUES (1)

- 14 Digital I/O pins
- 6 Analogue inputs
- **6** PWM pins
- USB serial
- 16MHz Clock speed
- ■32KB Flash memory
- **2KB** SRAM
- 1KB EEPROM

CARACTERISTIQUES (2)

ENTREES/SORTIES DIGITALES

REMARQUES

Il faut faire attention au remarques suivantes:

Il faut toujours indiquer le type des pins Entrée ou Sortie avant de les utilisés.

[procédure setup()]

pinMode(N°pin, mode); pinMode(13, OUTPUT);

Mètre les pins non utilisées en entrée [Tous les pins sont mise en entrée lors du démarrage (pour des raisons de sécurité)].

ENTREES/SORTIES DIGITALES (1)

Un signal Digital ne peut avoir que 2 états

ON

- "1"
- True
- High
- 5V au pins des I/O

OFF

- "0"
- False
- Low
- 0V au pins des I/O

ENTREES/SORTIES DIGITALES (2)

Programmation des pins Digitaux digitalWrite(Pin, Valeur);

digitalWrite(3, HIGH); //Set Output #3 High Emettre 5V depuis le pin 3.

digitalWrite(7, LOW); //Set Output #7 Low Le pin 7 sera mise à 0V.

ENTREES/SORTIES DIGITALES (3)

Programmation des pins Digitaux

Valeur = digitalRead(Pin);

Valeur = digitalRead(3); //Read Pin #3 Lecture depuis le pin 3.

ENTREES/SORTIES ANALOGIQUES

ENTREES/SORTIES ANALOGIQUES (1)

Un signal Analogique varie dans des limites fixes.

Peut avoir n'importe quelle valeur dans un intervalle. Ex [0..5V]

ENTREES/SORTIES ANALOGIQUES (2)

Programmation des pins Analogiques

Valeur = analogRead(Pin);

Le résultat: $0 \le Valeur \le 1023$

Valeur = analogRead(1); //Read Pin #1 Lecture depuis le pin 1.

ENTREES/SORTIES ANALOGIQUES (3)

Programmation des pins Analogiques

analogWrite(Pin, Valeur); $0 \le \text{Valeur} \le 255$

analogWrite(2, 230);

Emettre 4.5V (5*230/255) depuis le pin 2.

PULSE WIDTH MODULATION

- La modulation de largeur d'impulsions
- Vitesse d'un moteur DC
- LED luminosité
- Potentiomètre

. . .

COMMUNICATION (1)

Synchrone: L'émetteur et le récepteur partagent une horloge commune.

Asynchrone: L'émetteur et le récepteur ne partagent aucune horloge commune.

COMMUNICATION (3)

- SPI: (Serial Peripheral Interface) Bus de données série synchrone [Motorola (Freescale)].
- Un maître et plusieurs esclaves.
- La communication est contrôlée par le maître.

COMMUNICATION (4)

- I2C: (Inter-Integrated Circuit) Nécessite seulement deux fils. [Philips 1982]. Appelé par fois TWI (Two Wire Interface).
- SCL: Serial CLock
- SDA: Serial DAta

CAPTEURS ET SHIELDS

CAPTEURS

Il existe une très vaste suite de capteurs soit séparés ou sous forme de kits. 7111111111 11111111

SHIELDS

Les (SHIELDS) sont des cartes d'extensions peuvent être placer au dessus de l'Arduino.

Exemples:

- Cartes réseaux
- GPS
- Écrans

/• ...

http://shieldlist.org/

