Eletromagnetismo

- 1. Campos Elétricos
- 2. A lei de Gauss
- 3. Potencial Elétrico
- 4. Capacidade e Dielétricos
- 5. Correntes e Resistência
- 6. Circuitos de Corrente Contínua
- 7. Campos Magnéticos
- 8. Fontes do Campo Magnético
- 9. A lei de Faraday
- 10. Indutância (??)

Bibliografia:

 Halliday, Resnick, Walker, Fundamentos de Física-vol3, 10ªEd LTC-Livros Técnicos e Científicos Editora Ltda., RJ, 2016 (cap 21 ao 31), (Fundamentals of Physics, 10ª edição, John Wiley& Sons Inc)

<u>Livro adoptado</u> que cobre a totalidade dos conteúdos programáticos da UC de Eletromagnetismo EE.

- Serway, J. Jewett, "Física EM e Ótica", vol.3 (Physics for Scientists and Engineers with Modern Physics, 6^a edição, Brooks/Cole).
- H. Young e R. Freedman, University Physics, 13^a edição, Addison-Wesley.
- P. Tipler, "Física para cientistas e engenheiros"
- Jaime E Villate, "Electromagnetismo"
- Jorge Dias de Deus, "Introdução à Física"

DATAS DE REALIZAÇÃO DOS TESTES E EXAME

- 1º Teste: 9 de abril de 2021 (online);
- 2º Teste: 27 de maio de 2021 (Presencial-hora a confirmar).

CLASSIFICAÇÃO FINAL

A classificação da avaliação por frequência terá que ser ≥ 9.5
 valores e é obtida a partir da seguinte expressão:

$$C_T = 0.5T_1 + 0.50T_2$$

sendo que a nota mínima nos testes (T_1 e T_2) para ter aprovação terá que ser ≥ 7.5 valores.

Capítulo 1. Campos Elétricos

- 1.1 Carga elétrica e suas propriedades
- 1.2 Isoladores e Condutores
- 1.3 Eletrificação de um corpo
- 1.4 A Lei de Coulomb
- 1.5 Principio de sobreposição
- 1.6 Campo Elétrico
- 1.7 Campos elétricos uniformes e não uniformes
- 1.8 Campo elétrico de uma Distribuição de Cargas
- 1.9 Linhas do Campo Elétrico
- 1.10 Movimento de partículas carregadas num campo elétrico uniforme

1.1 Carga elétrica e suas propriedades

Há duas espécies de cargas elétricas na natureza: positivas e negativas

Prop1. Cargas de sinal contrário atraem-se e cargas do mesmo sinal repelem-se. Franklin (1706-1790)

Prop2- A carga elétrica conserva-se (Franklin)

Prop3- A carga está quantizada: Q= N e (e é a carga elementar) (Millikan - 1909)

eletrão: - e

protão : +e

|e| = 1,6x10⁻¹⁹ C

Átomo é neutro: Q=0

Núcleo tem carga: Q= Z (+e) Eletrões têm carga: Q= Z (-e)

A unidade S.I. de carga elétrica é o Coulomb (C)

1.2 Condutores e Isoladores

- 1. Os <u>condutores</u> são materiais nos quais as cargas elétricas se podem movimentar livremente \Rightarrow cobre, alumínio, prata...
- 2. Os <u>isoladores</u> são materiais que **não** transportam, com facilidade, cargas elétricas ⇒ vidro, borracha, madeira...
- 3. <u>Semicondutores</u> a facilidade de transporte de carga é intermédia ⇒ silício, germânio, arsenieto de gálio.

PS: Quando um condutor está ligado à terra por um fio metálico diz-se que o condutor está <u>a um potencial nulo</u>.

1.3 Eletrização de um corpo

?Como se pode eletrizar um corpo?

Atrito: Os dois corpos (A e B) são neutros: $Q_A = Q_B = 0$.

Por atrito, alguns eletrões (carga móvel) de um dos corpos (ex. corpo A) são transferidos para o outro corpo (ex. corpo B).

Assim, o corpo que perdeu eletrões ficou com carga $\mathbf{Q}_{\Delta} \neq \mathbf{0} = +\mathbf{N}e$.

Como essa carga passou para o outro corpo, esse corpo ficou com carga $\mathbf{Q_B} \neq \mathbf{0} = -\mathbf{N}e$

$$Q_{Total}$$
{inicial} = 0; Q{Total} _{final} = 0

Contacto: Um dos corpos tem que ser de material condutor e estar com Q \neq 0 (ex: corpo B com carga $Q_B = -Ne$ e corpo A neutro: $Q_A = 0$).

Quando em contacto, eletrões do corpo B irão transitar para o corpo A de forma a que $Q_A = Q_B$ (atingir o equilíbrio).

Ex: Situação inicial: $Q_A = +4e \in Q_B = 0$

Situação final: $\mathbf{Q}_{A} = +2e$ (recebeu 2 eletrões do corpo B) e $\mathbf{Q}_{B} = +2e$

(deu 2 eletrões para o corpo A)

ELETRIZAÇÃO por CONTATO.

Corpo eletrizado positivamente.

Encosta-se o corpo A neutro no corpo B eletrizado positivamente.

Alguns elétrons do corpo A vão para B.

Separam-se os corpos.

O corpo A perdeu elétrons para B, e por isso A ficou com mais prótons, assim eletrizado positivamente. Corpo eletrizado negativamente

Encosta-se o corpo A neutro no corpo B eletrizado negativamente

Alguns elétrons do corpo B vão para A.

Separam-se os corpos.

O corpo A ganhou elétrons de B, e por isso A ficou com mais elétrons, assim eletrizado negativamente. Indução: Um dos corpos tem que estar eletrizado.

Os corpos não se tocam.

Ex: o corpo A (borracha na figura) eletrizado negativamente (recebeu eletrões num outro processo) está na proximidade do corpo B (neutro na figura).

Como cargas de igual sinal se repelem, os eletrões do corpo B deslocam-se, no corpo B, para longe do corpo A.

Se o corpo B for ligado à "terra" (figura b), os eletrões serão recolhidos e após desfeita esta ligação o corpo B fica carregado positivamente.

Neste processo os corpos terminam com cargas de sinais contrários, como no processo de atrito.

RESUMO: Eletrização de corpos

?? Será que a carga dos corpos é importante.....??

Corpos com mesma massa mas eletrizados com cargas diferentes

Força devido à massa <<< Força devido à carga

1.4 Lei de Coulomd

Consideremos 2 corpos que foram eletrizados (corpo 1 com carga q_1 e corpo 2 com carga q_2) na vizinhança um do outro.

A força (grandeza vetorial: magnitude, direção sentido e ponto de aplicação) que um corpo eletrizado (ex: corpo 1) sente devido a estar na vizinhança de um outro corpo também eletrizado (ex: corpo 2):

- Tem ponto de aplicação no corpo 1
- Está segundo a reta que une os 2 corpos
- Tem uma magnitude que depende diretamente do valor das cargas e inversamente do quadrado da distância entre elas
- É atrativa se as cargas forem de sinais diferentes e repulsiva se forem do mesmo sinal

$$\vec{F} = |\vec{F}|\hat{r}$$
 A unidade S.I. da força elétrica Newton (N)

Força que a carga 2 exerce na carga 1

Q de sinais opostos

Força que a carga 1 exerce na carga 2

Força que a carga 1 exerce na carga 2 e força que a carga 2 exerce na carga 1

?Magnitudes/módulo?

Magnitude a força de Elétrica

Módulo da força elétrica entre dois corpos eletrizados com cargas q_1 e q_2 , com dimensão << que a distância entre eles é:

$$K (SI) = 8.9875 \times 10^9 \text{ N m}^2/\text{C}^2$$

 $\cong 9.0 \times 10^9 \text{ N m}^2/\text{C}^2 \text{ (nossos cálculos)}$

A unidade S.I. de carga elétrica é o Coulomb (C)

Def.: Quando a corrente elétrica num fio condutor for de 1 A (Ampère, unidade de corrente elétrica no S.I.) a quantidade de carga que passa por uma secção do fio em 1s é 1 C.

$$m{K} = 1/4\pi m{arepsilon}_0$$
 Permitividade do vácuo

$$\varepsilon_0$$
 = 8.8542 X 10⁻¹² C² / Nm²

Carga de um eletrão ou de um protão (carga elementar):

$$|e| = 1.60219 \times 10^{-19} C$$

- \Rightarrow 1 C de carga = 6.3 x 10¹⁸ eletrões
- \Rightarrow 1 cm³ Cu $\Rightarrow \approx 10^{23}$ eletrões livres

Resumindo: Força elétrica- Lei de Coulomd

A força é uma grandeza vetorial

$$\overrightarrow{F_{ab}} = |\overrightarrow{F_{ab}}|\widehat{r_{ab}}$$

• A força elétrica de q_1 sobre q_2 , $\overrightarrow{F_{12}}$:

$$\vec{F}_{12} = K \frac{q_1 q_2}{r_{12}} r_{12}$$

Vector unitário dirigido de q₁ para q₂

A lei de Coulomb verifica a terceira lei de Newton:

 A lei de Coulomb é aplicada a cargas pontuais (corpos eletrizados com dimensão << que a distância entre eles) ou a partículas.

$$\overrightarrow{F_{ab}} = |\overrightarrow{F_{ab}}|\widehat{r_{ab}}$$

Ponto de aplicação: Corpo 2

$$\left| \overrightarrow{F_{12}} \right| = K \frac{|q_1||q_2|}{r_{12}^2}$$

Direção: da reta que une as cargas

Sentido: (atrativa ou repulsiva, dependendo do sinal das cargas

$$q_1 e q_2$$
 mesmo sinal $q_1 q_2 > 0$ Força Repulsiva

$$q_1 e q_2$$
 sinais opostos $q_1 q_2 < 0$ Força Atrativa

? Qual a força que uma carga sente se tiver na sua vizinhança mais do que uma carga?

1.5 Principio de sobreposição

Consideremos agora que temos mais do que duas cargas

Qual a força que q₁ sente?

Experimentalmente verificou-se que:

Principio de sobreposição

Qual a força que q₁ sente?

$$\overrightarrow{F_1} = \overrightarrow{F_A} + \overrightarrow{F_B}$$

Assim, para

Mais de duas cargas ⇒ principio da sobreposição

A força entre qualquer par de cargas é dada por

$$\vec{F}_{12} = K \frac{q_1 q_2}{r_{12}^2} r_{12}$$

 A força resultante sobre qualquer das cargas é igual à <u>soma vectorial</u> das forças devidas às cargas individuais.

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

1.6 Campo Elétrico

• O vetor campo elétrico, \vec{E} , num ponto do espaço define-se como a força elétrica, \vec{F} , que atua sobre uma carga de prova colocada nesse ponto, dividida pelo valor da carga de prova q_0 :

$$\overrightarrow{E_P} = \frac{\overrightarrow{F_{qo,P}}}{q_o} \tag{S.I. \Rightarrow N/C)}$$

Consideremos uma carga Q (positiva) numa região do espaço:

Para conhecer o \overrightarrow{E} num determinado ponto (P) coloco, nesse ponto, a carga de prova (qo) e determino $\overrightarrow{F_{qo,P}}$ (a força a que a carga sente).

Dividindo essa força pelo valor de carga, fica-se a saber uma propriedade do ponto:

$$\overrightarrow{E_P} = \frac{\overrightarrow{F_{qo,P}}}{q_o}$$

Assim, se uma outra carga for colocada nesse ponto sabe-se logo a força a que estará submetida!!!!!!!!!!!

$$\overrightarrow{F_{q2,P}} = q_2 \overrightarrow{E_P}$$

Então, se colocar a carga qz no ponto P3 (ou P1) sabe-se logo que essa carga vai sentir uma força

Condiremos uma carga Q (>,< 0) numa região do espaço. No ponto P, que dista r da carga Q é colocada uma carga $\frac{q}{s} > 0$.

Possui magnitude em todas as situações do esquema:

$$\left|\overrightarrow{F_{Qq}}\right| = K \frac{\lceil Q \rceil |q|}{r^2}$$

- Direção da reta que une as cargas
- Sentido dependente do sinal das cargas

A Força que a carga Q exerce na carga q: Possui magnitude em todas as situações do esquema:

$$\left|\overrightarrow{F_{Qq}}\right| = K \frac{\lceil Q \rceil |q|}{r^2}$$

O Campo elétrico (criado pela carga Q) no ponto onde está a carga q:
Possui igual magnitude em todas as situações do esquema
Sentido depende do sinal da carga q

$$\overrightarrow{E_P} = \frac{F_{Qq}}{q}$$

$$\left|\overrightarrow{E_P}\right| = \frac{\left|\overrightarrow{F_{Qq}}\right|}{\left|q\right|}$$

i) e ii): Cargas positivas criam campos elétricos que apontam para longe delas

- ii) $\overrightarrow{F_{Qq}}$ $\overrightarrow{E_P}$
- iii) e iv): Cargas negativas criam campos elétricos que apontam para elas

i) e iii): Força na carga e campo que a carga sente tem o mesmo sentido se carga for positiva

ii) e iv): Força na carga e campo que a carga sente têm sentidos opostos se carga for negativa

Campo elétrico criado por carga pontual:

 $q > 0 \Rightarrow$ campo radial, dirigido para longe dela

q < 0 ⇒ campo radial, dirigido para q

$$\vec{F} = K \frac{Qq_0}{r^2} \hat{r}$$

$$\vec{E} = \frac{\vec{F}}{q_0} = K \frac{Q}{r^2} \hat{r}$$

No ponto onde se colocaria a carga de prova

1.7 Campos Elétricos uniformes e não uniformes

Campo elétrico criado por carga pontual:

Este campo é não uniforme: O campo elétrico varia de ponto para ponto

Campos uniforme: O campo elétrico não varia de ponto para ponto. Módulo direção e sentido são os mesmos em qualquer ponto.

Campo elétrico numa região do espaço devido a várias cargas pontuais

 Princípio da sobreposição: Num determinado ponto do espaço, o campo elétrico total, devido a um grupo de cargas, é igual à soma vetorial dos campos elétricos de todas as cargas.

1.8 Campo elétrico de uma distribuição contínua de cargas

- 1. Dividimos a distribuição contínua de carga em pequeninos elementos Δ q.
- 2. Usamos a lei de Coulomb para calcular o campo elétrico em P devido a um desses elementos:

$$\Delta \vec{E} = K \frac{\Delta q}{r^2} \hat{r}$$

$$d\vec{E} = K \frac{dq}{r^2} \hat{r}$$

$$\vec{E}(r) = \frac{kq}{r^2} \hat{r}$$

Contribuição para o campo elétrico no ponto P, devido a Δq (dq)

3. Calculamos o campo total pela aplicação do princípio da sobreposição.

$$\overrightarrow{E} \cong K \sum_{i} \frac{\Delta q_{i}}{r_{i}^{2}} r_{i}$$

Se a separação entre os elementos de carga, na distribuição de cargas, for pequena em comparação com a distância a $P \Rightarrow a$ distribuição de carga pode ser considerada contínua.

Campo total em P:

$$\overrightarrow{E} = K \lim_{\Delta q_i \to 0} \sum_{i} \frac{\Delta q_i}{r_i^2} \overrightarrow{r}_i = K \int \frac{dq}{r^2} \overrightarrow{r}$$

Cargas <u>uniformemente</u> distribuídas

Densidades de carga:

Num volume
$$V \Rightarrow \rho \equiv \frac{Q}{V} \left(\frac{C}{m^3} \right)$$

$$\mathbf{Q}_{\text{total}} = \mathbf{\rho} \ \mathbf{V}$$

$$A \Rightarrow \sigma \equiv \frac{Q}{A} \left(\frac{C}{m^2} \right)$$

$$\mathbf{Q}_{\text{total}} = \mathbf{\sigma} \mathbf{A}$$

$$l \Rightarrow \lambda \equiv \frac{Q}{l} \left(\frac{C}{m} \right)$$
 $Q_{\text{total}} = \lambda L$

$$\mathbf{Q}_{\text{total}} = \lambda \mathbf{L}$$

Cargas NÃO uniformemente distribuídas:

$$ho = rac{dQ}{dV}; \sigma = rac{dQ}{dA}; \lambda = rac{dQ}{dl}$$

1.9 Linhas do Campo Elétrico

- 1. $m{E}$ é tangente, em cada ponto, à linha do campo elétrico que passa pelo ponto.
- 2. O número de linhas, por unidade de área, é proporcional ao valor (magnitude) do campo elétrico na região.

Regras para traçar as linhas do campo elétrico:

- 1. As linhas começam em cargas (+) e terminam em cargas (–), ou no ∞ , no caso de haver excesso de carga.
- 2. O número de linhas que saem de uma carga (+), ou que convergem para uma carga (–), é proporcional ao módulo da carga (ou seja da intensidade do campo).

 Não são entidades materiais!

3. As linhas do campo elétrico nunca se cruzam.

O campo é contínuo – existe em todos os pontos do espaço!!!

1.10 Movimento de Partículas Carregadas num Campo Elétrico Uniforme

Equivalente ao projétil num campo gravitacional uniforme.

Carga q (e massa m) colocada num campo elétrico $E \Rightarrow$

 \boldsymbol{a} cte \Rightarrow eqs da cinemática (movimento uniform. te variado)

Exemplo:

$$\left| \vec{F} \right| = |q| \left| \vec{E} \right|$$

$$\vec{F} = F_y(-\hat{j}) + 0 = |e| \left| \vec{E} \right| (-\hat{j}) = m \, a_y(-\hat{j})$$

$$\vec{a} = \frac{-eE}{m}j$$

Equações gerais do movimento:

$$\begin{cases} \upsilon_{x} = \upsilon_{0x} + \underline{a}_{x} t \\ \upsilon_{y} = \upsilon_{0y} + \underline{a}_{y} t \end{cases} \qquad \begin{cases} x = x_{0} + \upsilon_{0} t \\ y = y_{0} + \frac{1}{2} at^{2} \end{cases}$$

No exemplo em estudo:
$$v_{x0} = v_0$$
 e $v_{y0} = 0$

$$\begin{cases} v_x = v_0 = \text{cte} \\ v_y = \text{at} = \frac{eE}{m}t \end{cases}$$
 (1)
$$\begin{cases} x = v_0 t \\ y = \frac{1}{2} \frac{eE}{m}t^2 \end{cases}$$

Com
$$t = x/v_0$$
 (de 1) \Rightarrow (2) \rightarrow $y \cong x^2$ parábola

PS: Desprezamos a força gravitacional sobre o eletrão.