and

if
$$\left\{ \begin{aligned} \sum_{j=1}^{n} a_{ij} x_{j} &\leq b_{i} \\ \sum_{j=1}^{n} a_{ij} x_{j} &\geq b_{i} \\ \sum_{j=1}^{n} a_{ij} x_{j} &= b_{i} \end{aligned} \right\}, \quad \text{then} \quad \left\{ \begin{aligned} y_{i} &\geq 0 \\ y_{i} &\leq 0 \\ y_{i} &\in \mathbb{R} \end{aligned} \right\}.$$

Problem 47.4. Apply the procedure of Problem 47.3 to show that the dual of the (general) linear program

maximize
$$3x_1 + 2x_2 + 5x_3$$

subject to
$$5x_1 + 3x_2 + x_3 = -8$$
$$4x_1 + 2x_2 + 8x_3 \le 23$$
$$6x_1 + 7x_2 + 3x_3 \ge 1$$
$$x_1 \le 4, x_3 \ge 0$$

is the (general) linear program:

minimize
$$-8y_1 + 23y_2 - y_3 + 4y_4$$

subject to
$$5y_1 + 4y_2 - 6y_3 + y_4 = 3$$
$$3y_1 + 2y_2 - 7y_3 = 2$$
$$y_1 + 8y_2 - 3y_3 \ge 5$$
$$y_2, y_3, y_4 \ge 0.$$

Problem 47.5. (1) Prove that the dual of the (general) linear program

maximize
$$cx$$

subject to $Ax = b$ and $x \in \mathbb{R}^n$

is

minimize
$$yb$$

subject to $yA = c$ and $y \in \mathbb{R}^m$.

(2) Prove that the dual of the (general) linear program

maximize
$$cx$$

subject to $Ax \ge b$ and $x \ge 0$