- **3.** Let Q(x, y) be the statement "x has sent an e-mail message to y," where the domain for both x and y consists of all students in your class. Express each of these quantifications in English.
 - a) $\exists x \exists y Q(x, y)$
- **b**) $\exists x \forall y Q(x, y)$
- c) $\forall x \exists y Q(x, y)$
- **d**) $\exists y \forall x Q(x, y)$
- e) $\forall y \exists x Q(x, y)$
- **f**) $\forall x \forall y Q(x, y)$
- **9.** Let L(x, y) be the statement "x loves y," where the domain for both x and y consists of all people in the world. Use quantifiers to express each of these statements.
 - a) Everybody loves Jerry.
 - **b)** Everybody loves somebody.
 - **c)** There is somebody whom everybody loves.
 - **d**) Nobody loves everybody.
 - e) There is somebody whom Lydia does not love.
 - **f**) There is somebody whom no one loves.
 - g) There is exactly one person whom everybody loves.
 - h) There are exactly two people whom Lynn loves.
 - i) Everyone loves himself or herself.
 - j) There is someone who loves no one besides himself or herself.
- 11. Let S(x) be the predicate "x is a student," F(x) the predicate "x is a faculty member," and A(x, y) the predicate "x has asked y a question," where the domain consists of all people associated with your school. Use quantifiers to express each of these statements.
 - a) Lois has asked Professor Michaels a question.
 - **b)** Every student has asked Professor Gross a question.
 - c) Every faculty member has either asked Professor Miller a question or been asked a question by Professor Miller.
 - **d)** Some student has not asked any faculty member a question.
 - e) There is a faculty member who has never been asked a question by a student.
 - **f**) Some student has asked every faculty member a question.
 - **g**) There is a faculty member who has asked every other faculty member a question.
 - **h)** Some student has never been asked a question by a faculty member.

- 25. Translate each of these nested quantifications into an English statement that expresses a mathematical fact. The domain in each case consists of all real numbers.
 - a) $\exists x \forall y (xy = y)$
 - **b**) $\forall x \forall y (((x < 0) \land (y < 0)) \rightarrow (xy > 0))$
 - c) $\exists x \exists y ((x^2 > y) \land (x < y))$
 - **d**) $\forall x \forall y \exists z (x + y = z)$
- 27. Determine the truth value of each of these statements if the domain for all variables consists of all integers.
 - a) $\forall n \exists m (n^2 < m)$
- a) $\forall n \exists m(n^2 < m)$ b) $\exists n \forall m(n < m^2)$

 c) $\forall n \exists m(n + m = 0)$ d) $\exists n \forall m(nm = m)$

 e) $\exists n \exists m(n^2 + m^2 = 5)$ f) $\exists n \exists m(n^2 + m^2 = 6)$

- **g**) $\exists n \exists m (n + m = 4 \land n m = 1)$
- **h**) $\exists n \exists m (n + m = 4 \land n m = 2)$
- i) $\forall n \forall m \exists p (p = (m+n)/2)$
- **31.** Express the negations of each of these statements so that all negation symbols immediately precede predicates.
 - a) $\forall x \exists y \forall z T(x, y, z)$
 - **b)** $\forall x \exists y P(x, y) \lor \forall x \exists y Q(x, y)$
 - c) $\forall x \exists y (P(x, y) \land \exists z R(x, y, z))$
 - **d**) $\forall x \exists y (P(x, y) \rightarrow Q(x, y))$
- **39.** Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
 - a) $\forall x \forall y (x^2 = y^2 \rightarrow x = y)$
 - **b**) $\forall x \exists y (y^2 = x)$
 - c) $\forall x \forall y (xy \ge x)$