Week 1

Introduction to Groups

Definition of a group:

A **group** G is a nonempty set together with a multiplication $G \times G \to G$ satisfying

- 1. $(ab)c = a(bc) \forall a, b, c, \in G$, (Associativity)
- 2. there exists $e \in G$ such that $ea = ae = a \forall a \in G$, (Identity)
- 3. and for every $a \in G$ there exists $b \in G$ such that ab = ba = e. (Inverse)

Example of a group:

Let $\mathbb{R}^* = \mathbb{R}^\dagger = \{a \in \mathbb{R} : a \neq 0\}$ together with multiplication on \mathbb{R} .

Associativity is immediate.

The identity is $1 \in \mathbb{R}^*$.

For every $a \in \mathbb{R}^*$, $\frac{1}{a} \in \mathbb{R}$ and $a(\frac{1}{a}) = \frac{1}{a}(a) = 1$.

So \mathbb{R}^* is a group.

Remark: When we need to highlight the group multiplication we write a group as a pair of the set and the multiplication, e.g., $(\mathbb{R}, +), (\mathbb{R}, \cdot)$.

From now on, G is always a group.

Theorem 1.1

There is a unique identity element in G.

Theorem 1.2 Cancellation

Suppose ba = ca for $a, b, c \in G$. Then b = c

Proof. Let $d \in G$ be an inverse for a, i.e. da = ad = e. Multiplying on the right by d, we obtain

$$(ba)d = (ca)d \implies b(ad) = c(ad)$$

 $\implies be = ce$
 $\implies b = c.$

Theorem 1.3 Uniqueness of Inverses

For every $a \in G$ there is a unique element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

Proof. Suppose $a \in G$ and $b, b' \in G$ are inverses of a, then

$$ba = e = b'a \implies b = b'$$

(by theorem 1.2)

Example of inverses in different groups:

- 1. For $b \in \mathbb{R}^*$, $b^{-1} = \frac{1}{b}$.
 - 2. For $b \in \mathbb{R}$ under addition $b^{-1} = -b$.
 - 3. For $b \in \mathbb{Z}_n$, $b^{-1} = n b$.

Example of groups using a field F:

- 1. (F, +) is a group (Imitate $(\mathbb{R}, +)$).
- 2. (F^*,\cdot) where $F^*=F^\dagger=\{a\in F:a\neq 0\}$ is a group. In particular, if p is a prime number, then $\mathbb{Z}_p^*=\{1,\ldots,p-1\}$ is a group.
- 3. The set of $m \times n$ matrices with entries in F, $M_{mn}(F)$ is a group under addition. When n = 1, $M_{m1}(F) = F^m$.
- 4. The set of invertible $m \times n$ matrices with entries in F, $GL(n, F) = \{A \in M_{mn}(F) : \det(A) \neq 0\}$ together with matrix multiplication is called (rank n) general linear group (over F). The identity matrix $I \in GL(n, F)$ is the identity. $\det(A) \neq 0 \implies \exists A^{-1} \in GL(n, F)$ such that $AA^{-1} = A^{-1}A = I$.

Example of the symmetries of the equilateral triangle:

Let $\sigma = \text{flip}$ through the vertical axis. Let $\rho = \text{rotation}$ by $\frac{2\pi}{3}$.

We can compose two symmetries, e.g., $\sigma \rho = \sigma \cdot \rho$.

We can show that the symmetries given by σ and ρ under composition are $\{e, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$ where e = doing nothing.

We call this set D_3 . It forms a group under composition. Clearly $\rho^3 = \rho \rho \rho = e$, $\sigma^2 = \sigma \sigma = e$, and $\sigma \rho \sigma = \rho^2 = \rho^{-1}$.

Definition of a dihedral group:

The **dihedral group** of order 2n is defined by

$$D_n = \{e, \rho, \dots, \rho^{n-1}, \sigma, \sigma\rho, \dots, \sigma\rho^{n-1}\}\$$

where $p^n=e,\ \sigma^2=e,$ and $\sigma\rho\sigma=\rho^{-1}.$ This is a group with the multiplication given by $\sigma\rho\sigma=\rho^{-1}.$

Remark: D_n is the group of symmetries of a regular n-gon.