

DevOps

Software Development Lifecycle

Talk to customer and understand the requirements

DEFINING

Define the and stick to

SRS

DESIGNING

Design the solution with right approach

DDS

BUILDING

Development following guidelines

TESTING

Make sure that your code is working

DEPLOYMENT

Make your app available for rest of the world

Waterfall Model

Requirement Specification

System Design

Design Implementation

Verification & Testing

System Deployment

Software Maintenance

Entities involved

Responsibilities

Developers and Testers

language. CDE3, SDKs

Developers

- Develop the application
- Package the application
- Fix the bugs
- Maintain the application
- **Testers**
 - Thoroughly test the application manually or using test automation bols
- selenium, Jasmine,
 Jest, Cypress ex Report the bugs to the developer

Operations Team

- Deploy the application
- Maintain multiple environments
- Continuously monitor the application
- Manage the resources

Challenges

- The process is slow
- The pressure to work on the newer features and fix the older code
- Not flexible

Operations Team

- Uptime
- Configure the huge infrastructure
- Diagnose and fix the issue

Express: 4.2

Agile Development

Scrum Process

Waterfall Vs Agile

This project has got so big.
I am not sure I will be able to deliver it!

It is so much better delivering this project in bite-sized sections

Problems

- ream q developers
- Managing and tracking changes in the code is difficult
- Incremental builds are difficult to manage, test and deploy
- Manual testing and deployment of various components/modules takes a lot of time
- Ensuring consistency, adaptability and scalability across environments is very difficult task
- Environment dependencies makes the project behave differently in different environments

Solutions to the problem

- Managing and tracking changes in the code is difficult: SCM tools $\rightarrow git$
- Incremental builds are difficult to manage, test and deploy: Jenkins → CI/CD pipeline
- Manual testing and deployment of various components/modules takes a lot of time: Selenium

conjainerization

What is DevOps?

- DevOps is a combination of two words development and operations
- Promotes collaboration between Development and Operations Team to deploy code to production faster in an automated & repeatable way
- DevOps helps to increases an organization's speed to deliver applications and services
- It allows organizations to serve their customers better and compete more strongly in the market
- Can be defined as an alignment of development and IT operations with better communication and collaboration
- DevOps is not a goal but a never-ending process of continuous improvement
- It integrates Development and Operations teams
- It improves collaboration and productivity by
 - Automating infrastructure -> continuous configuration tools
 - Automating workflowCCICD
 - Continuously measuring application performance → continuous monitoring

Why DevOps is Needed?

- Before DevOps, the development and operation team worked in complete isolation
- Testing and Deployment were isolated activities done after design-build. Hence they consumed more time than actual build cycles.
- Without using DevOps, team members are spending a large amount of their time in testing, deploying, and designing instead of building the project.
- Manual code deployment leads to human errors in production
- Coding & operation teams have their separate timelines and are not in synchecausing further delays

Common misunderstanding

- DevOps is not a role, person or organization
- DevOps is not a separate team
- DevOps is not a product or a tool
- DevOps is not just writing scripts or implementing tools

Reasons to use DevOps

Predictability

DevOps offers significantly lower failure rate of new releases

Reproducibility

Version everything so that earlier version can be restored anytime

Maintainability

Effortless process of recovery in the event of a new release crashing or disabling the current system

Time to market

- DevOps reduces the time to market up to 50% through streamlined software delivery
- This is particularly the case for digital and mobile applications

Greater Quality

DevOps helps the team to provide improved quality of application development as it incorporates infrastructure issues

Reduced Risk

DevOps incorporates security aspects in the software delivery lifecycle. It helps in reduction of defects across the lifecycle

Resiliency

■ The Operational state of the software system is more stable, secure, and changes are auditable

DevOps Lifecycle

DevOps Lifecycle - Plan

■ First stage of DevOps lifecycle where you plan, track, visualize and summarize your project before you start working on it

Second stage where developer writes the code using favorite programming language

```
-> languages: (, (++, (#, Js, Ts, Ruby, Puthon, PHP, Perl, Rust, Go, Java
```

- -> platforms: Node, Net, Java
- -> IDE: visual studio, Eclipse, Pycharm, Webstorm

- SDK : C#SDK, JDK
- -> scm: git, svn, eus etc

DevOps Lifecycle -Build

- Integrating the required libraries
- **Compiling the source code**
- **Create deployable packages**

building = compiling + library integration + package creation

tools - Gradle, mayen, ant

package -> ios-ipa, andoid-apk. web- webpack, bundler, parcel

DevOps Lifecycle - Test

- Process of executing automated tests
- The goal here is to get the feedback about the changes as quickly as possible

```
unit testing > Jest, Jasmine, Pyunit, Nunit, Junit
end-to-end (eze) > Jasmine
web us > selenium, cypness, Jenst NG
```

JUnit Dunit

SE

APACHE
Meter

Testing

Stress & load testing - win Runner, Load Runner,
JMeter

DevOps Lifecycle - Release

■ This phase helps to integrate code into a shared repository using which you can detect and locate errors quickly and easily

DevOps Lifecycle - Deploy

Manage and maintain development and deployment of software systems and server in any computational environment

- toaditional deployment using physical machines
- vistualized deployment -> using um
- containence deployment using containers

test

DevOps Lifecycle - Operate

This stage where the updated system gets operated

configuration tools - chef, ansible, sultstack, puppet, vagrant, terratorm

DevOps Lifecycle - Monitor

- It ensures that the application is performing as expected and the environment is stable
- It quickly determines when a service is unavailable and understand the underlying causes

DevOps Terminologies

Responsibilities of DevOps Engineer

Skills of a DevOps Engineer

Skills	Description
Tools	 Version Control – Git/SVN Continuous Integration – Jenkins Virtualization / Containerization – Docker/Kubernetes Configuration Management – Puppet/Chef/Ansible Monitoring – Nagios/Splunk
Network Skills	General Networking SkillsMaintaining connections/Port Forwarding
Other Skills	 Cloud: AWS/Azure/GCP Soft Skills People management skill