

Figure 1: The test accuracy of the experiments conducted using a two-layer transformer for Task 1 and Task 2. The two-layer transformer model stacks two self-attention layers, parameterized by matrices  $V_1$ ,  $W_1$  and  $V_2$ ,  $W_2$  respectively. All parameters are initialized as independent Gaussian random variables from  $N(0, \sigma^2)$  with  $\sigma = 0.01$ . The learning tasks are the same as experiments in Figure 5 in the paper. The learning rate is set as  $\eta = 0.1$ . (a) gives the result of learning random walks, and (b) shows the result of learning deterministic walks.



Figure 2: The results of experiments conducted using a two-layer transformer for Task 3 and Task 4: (a) and (b) correspond to Task 3; (c) and (d) correspond to Task 4. The two-layer transformer model stacks two self-attention layers, parameterized by matrices  $V_1$ ,  $W_1$  and  $V_2$ ,  $W_2$  respectively. All parameters are initialized as independent Gaussian random variables from  $N(0, \sigma^2)$  with  $\sigma = 0.01$ . The learning tasks are the same as experiments in Figure 7 in the paper. The learning rate is set as  $\eta = 0.1$ .



Figure 3: The results of experiments conducted using a two-layer transformer for Task 5 and Task 6: (a) and (b) correspond to Task 5; (c) and (d) correspond to Task 6. The two-layer transformer model stacks two self-attention layers, parameterized by matrices  $V_1$ ,  $W_1$  and  $V_2$ ,  $W_2$  respectively. All parameters are initialized as independent Gaussian random variables from  $N(0, \sigma^2)$  with  $\sigma = 0.01$ . The learning tasks are described in detail in the response to reviewers. The learning rate is set as  $\eta = 0.1$ .