Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining

Apriori algorithm [Agrawal & Srikant @VLDB'94]

Idea: First determine frequent 1-itemsets, then frequent 2-itemsets and so on

level —wise search (breadth-first search)

- Method overview:
 - 1. Initially, scan DB once to get frequent 1-itemset
 - 2. Generate length (k+1) candidate itemsets from length k frequent itemsets
 - 3. Test the candidates against DB (one scan)
 - 4. Repeat from Step 2. Terminate when no frequent or candidate set can be generated

Apriori property

- Naïve approach: Count the frequency of all k-itemsets X from I
 - generate $\sum_{k=1}^{|I|} {|I| \choose k} = 2^{|I|} 1$ itemsets, i.e., $O(2^{|I|})$.
 - for each candidate itemset X, the algorithm evaluates whether X is frequent
 - → To reduce complexity, the set of candidates should be as small as possible!!!
- Downward closure property / Monotonic property/Apriori property of frequent itemsets:
 - □ If X is frequent, all its subsets $Y \subseteq X$ are also frequent.
 - e.g., if {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
 - similarly for {diaper, nuts}, {beer, nuts}

- On the contrary: When X is not frequent, all its supersets are not frequent and thus they should not be generated/tested!!! \rightarrow reduce the candidate itemsets set
- e.g., if {beer, diaper} is not frequent, {beer, diaper, nuts} would not be frequent also

Illustration of the Apriori property

Figure 6.3. An illustration of the *Apriori* principle. If $\{c,d,e\}$ is frequent, then all subsets of this itemset are frequent.

Let us consider the following transaction database

Transaction Database {Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

and a minSupport threshold minSupp = 2

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

Transaction Database

{Chips, Pizza} {Beer, Chips} {Chips, Pizza, Wine} {Wine}

minSupport s = 2

■ Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

■ Border itemsets X: all subsets $Y \subset X$ are frequent, all supersets $Z \supset X$ are not frequent

Positive border-itemsets

Positive border: *X* is also frequent {}:4 Negative border: *X* is not frequent {Bier}:1 {Pizza}:2 {Wine}:2 {Chips}:3 Pizza,Wine}:1 {Bier,Chips}:1 {Bier,Pizza}:0 {Bier,Wine}:1 {Chips,Pizza}:2 {Chips,Wine}:1 **Transaction Database** {Chips, Pizza} {Bier,Chips,Pizza}:0 {Bier,Chips,Wine}:0 {Bier,Pizza,Wine}:0 {Chips,Pizza,Wine}:1 {Beer, Chips} {Chips, Pizza, Wine} {Wine} minSupp = 2{Bier,Chips,Pizza,Wine}:0

minSupport s = 2

Negative border-itemsets

Frequent itemsets generation: From L_{k-1} to C_k to L_k L_k : frequent itemsets of size k; C_k : candidate itemsets of size k

A 2-step process:

- Join step: generate candidates C_k
 - L_k is generated by self-joining $C_k = L_{k-1} \bowtie L_{k-1}$, $C_k := Set$ of candidates in L_k
 - Two (k-1)-itemsets p, q are joined, if they agree in the first (k-2) items
- Prune step: prune C_k and return L_k
 - C_k is superset of L_k
 - Naïve idea: count the support for all candidate itemsets in C_k $|C_k|$ might be large!
 - □ Use Apriori property: a candidate k-itemset that has some non-frequent (k-1)-itemset cannot be frequent
 - Prune all those k-itemsets, that have some (k-1)-subset that is not frequent (i.e. does not belong to L_{k-1})
 - Due to the level-wise approach of Apriori, we only need to check (k-1)-subsets
 - For the remaining itemsets in C_k, prune by support count (DB)

Example: Let L₃={abc, abd, acd, ace, bcd}

- Join step: C₄=L₃*L₃ C₄={abc*abd=abcd; acd*ace=acde}
- Prune step (apriori-based): acde is pruned since cde is not frequent
- Prune step (DB-based): check abcd support in the DB

Apriori algorithm (pseudo-code)

Subset function:

- For each transaction T in DB, the subset function must check all candidates in the candidate set C_k whether they are part of the transaction T
- Organize candidates C_k in a hash tree

Example

Apriori overview

- Advantages:
 - Apriori property
 - Easy implementation (in parallel also)
- Disadvantages:
 - It requires up to |/| database scans
 - It assumes that the DB is in memory
- Complexity depends on
 - minSupport threshold
 - Number of items (dimensionality)
 - Number of transactions
 - Average transaction length

Outline

- Introduction
- Basic concepts
- Frequent Itemsets Mining (FIM) Apriori
- Association Rules Mining