Accelerating Applications in the Fast-moving Devices with Proactive Provisioning

HyunJong (Joseph) Lee*, HeeWon Lee§, Moo-Ryong Ra‡, Yu Xiang§, Jason Flinn*^
* University of Michigan §AT&T Labs - Research ‡Amazon ^ Facebook

Motivation

- Emerging applications in fast-moving devices
 - latency-sensitive & computation-heavy
 - stateful
- Edge-nodes at celll towers are densely populated
- Migrating previous to current nearby edge node is essential to retain low latency benefit of edge

Problem

- Migrating the app state just-in-time, on-demand
 - incurs downtime
 - degrades overall user-experience
- Fast-moving devices frequently switch edge-node
- Difficult to precisely predict next edge-node due to random mobility pattern and various use-cases

Proposed Solution: Proactive Provisioning

- Forecast next edge nodes based on only current context
 - → construct projectory from location and velocity
 - the next node prediction algorithm is device-agnostic
 - o no need for ISPs to expose strategy-sensitive info.
- Employ redundant proactive provisioning on multiple nodes
 - \rightarrow selectively choose nodes by computing estimated utility
 - latency benefit by migrating to future forecasted node(s)
 - o resource cost (extra BW) to provision ahead-of-time
- Throughout the proactive provisioning stage, the state of applications on current edge nodes continues to change
- provisioning too early wastes resource to sync the state
 - o provisioning too late results in high downtime
- \rightarrow must provision as late as possible but before switching
- Decouple control plane from mechanism plane allows
 - o fine-grained control on where and when to provision
 - easy to support use-case specific provisioning algs.

Preliminary Evaluation

- Augmented Reality (AR) navigation application hosted on simulated moving vehicle
- Simple proactive provisioning scheme initiated 10 mins prior, in comparison to just-in-time provisioning, reduces
 - o median latency by 50ms
 - tail latency by 20%

