Theorem: Set P, $U \in IR^n$, the straight line satisfies the shortest curve. Straight line: I = P + t(R - P), $t \in IR$.

If parameterized curve $I : IR^n > IR^n$ satisfies $t \in IR^n > t(R) = I$, $t \in IR^n > t(R) = I$.

proof: For curve $r(t) = (x^{(i)}(t), ..., x^{(ii)}(t))$ geodesic formula is $\frac{d^2x^2}{dt^2} + \int_{jk}^{1} \frac{dx^j}{dt} \frac{dx^k}{dt} = 0$ In R^n , $\int_{jk}^{1} = 0$ $X^{(i)} = 0$ $X^{$

•

0

••••