SystemFI: A Core Language for Delegation-based Programming

December 10, 2014

Abstract

This paper ...

1 Introduction

Intersection types are useful for functional programming. In particular for extensibility and allowing new forms of composition.

We show a polymorphic language with intersection types and records, and how this language can be used to solve various common tasks in functional programming in a nicer way.

We have a formalization + implementation + proofs.

Prototype-based programming is one of the two major styles of object-oriented programming, the other being class-based programming which is featured in languages such as Java and C#. It has gained increasing popularity recently with the prominence of JavaScript in web applications. Prototype-based programming supports highly dynamic behaviors at run time that are not possible with traditional class-based programming. However, despite its flexibility, prototype-based programming is often criticized over concerns of correctness and safety. Furthermore, almost all prototype-based systems rely on the fact that the language is dynamically typed and interpreted.

This paper introduces System F_{IR} Inheritance based

2 Overview

There should be a section informally describing the language (System FI) through various examples.

Mention properties informally via examples:

- 2.1 Algebras
- 2.2 Lenses
- 2.3 Embedded DSLs
- 3 System FI

Syntax + Type System

Talk about properties of the languages (commutativity of intersection types, ...)

4 Type-Directed Translation to System F

Type-Directed Translation to System F. Main results: type-preservation + coherence.

5 Implementation

Talk about the implementation + extensions not in the formalization.

6 Case Study?

7 Properties

Commutative $A \wedge B = B \wedge A$

 $A = A \wedge A$

Idempotent

Source subtyping

Exclusion of 0-ary intersection =; dynamic typing subtyping of the arrow

Algebra's & mixins lenses

8 Case Studies

9 Related work

Write a paragraph.

Dunfield: no records The idea of encoding records using intersection types is due to ... Reynolds and Castagna. The issue of coherence. Make a note about how part of this problem is mitigated.

Nystrom et. al. OOPSLA 06

Applications:

- Object/Fold Algebras. How to support extensibility in an easier way.

See Datatypes a la Carte

- Mixins
- Lenses? Can intersection types help with lenses? Perhaps making the types more natural and easy to understand/use?
- Embedded DSLs? Extensibility in DSLs? Composing multiple DSL interpretations?

Proof. By structural induction on the types and the corresponding inference rule.

(SubVar)

(SubFun)

(SubForall)

(SubAnd1)

(SubAnd2)

(SubAnd3)

(SubRcd)

Lemma 2. If

$$\Gamma \vdash_{get} \tau; l = C; \tau_1$$

then

$$|\Gamma| \vdash C : |\tau| \rightarrow |\tau_1|$$

Proof. By structural induction on the type and the corresponding inference rule.

(Get-Base)
$$\Gamma \vdash_{get} \{l:\tau\}; l = \lambda(x:|\{l:\tau\}|).x; \tau$$

By the induction hypothesis

$$|\Gamma| \vdash \lambda(x : |\{l : \tau\}|).x : |\{l : \tau\}| \to |\tau|$$

(Get-Left)

http://www.cs.ox.ac.uk/jeremy.gibbons/publications(GentbeRight)pdf

 $|\tau| = T$

 $|\alpha| = \alpha$ $|\tau_1 \to \tau_2| = |\tau_1| \to |\tau_2|$ $|\forall \alpha.\tau| = \forall \alpha.|\tau|$ $|t_1 \& t_2| = \langle |\tau_1|, |\tau_2| \rangle$ $|\{l:\tau\}| = |\tau|$

Lemma 3. If

$$\Gamma \vdash_{mut} \tau; l; E = C; \tau_1$$

then

$$|\Gamma| \vdash C : |\tau| \to |\tau|$$

Proof. By structural induction on the type and the corresponding inference rule.

(Put-Base)

(Put-Left)

Lemma 1. If

$$\Gamma \vdash \tau_1 \mathrel{<:} \tau_2 \hookrightarrow C$$

then

$$|\Gamma| \vdash C : |\tau_1| \to |\tau_2|$$

(Put-Right)

Lemma 4. If

$$\Gamma \vdash \tau$$

then

$$|\Gamma| \vdash |\tau|$$

Proof. Since

$$\Gamma \vdash \tau$$

It follows from (FI-WF) that

$$\operatorname{ftv}(\tau) \subseteq \operatorname{ftv}(\Gamma)$$

And hence

$$ftv(|\tau|) \subseteq ftv(|\Gamma|)$$

By (F-WF) we have

$$\Gamma \vdash \tau$$

Theorem 1 (Type preserving translation). If

$$\Gamma \vdash e : \tau \hookrightarrow E$$

then

$$|\Gamma| \vdash E : |\tau|$$

Proof. By structural induction on the expression and the corresponding inference rule.

(TrVar) $\Gamma \vdash x : \tau \hookrightarrow x$

It follows from (TrVar) that

$$(x:\tau)\in\Gamma$$

Based on the definition of $|\cdot|$,

$$(x:|\tau|)\in |\Gamma|$$

Thus we have by (F-Var) that

$$|\Gamma| \vdash x : |\tau|$$

(TrAbs)
$$\Gamma \vdash \lambda(x:\tau_1).e:\tau_1 \rightarrow \tau_2 \hookrightarrow \lambda x:|\tau_1|.E$$

It follows from (TrAbs) that

$$\Gamma, x : \tau_1 \vdash e : \tau_2 \hookrightarrow E$$

And by the induction hypothesis that

$$|\Gamma|, x : |\tau_1| \vdash E : |\tau_2|$$

By (TrAbs) we also have

$$\Gamma \vdash \tau_1$$

It follows from Lemma ?? that

$$|\Gamma| \vdash |\tau_1|$$

Hence by (F-Abs) and the definition of $|\cdot|$ we have

$$|\Gamma| \vdash \lambda x : |\tau_1| . E : |\tau_1 \rightarrow \tau_2|$$

(TrApp)
$$\Gamma \vdash e_1e_2 : \tau_2 \hookrightarrow E_1(CE_2)$$

From (TrApp) we have

$$\Gamma \vdash \tau_3 \mathrel{<:} \tau_1 \hookrightarrow C$$

Applying Lemma ?? to the above we have

$$|\Gamma| \vdash C : |\tau_3| \rightarrow |\tau_1|$$

Also from (TrApp) and the induction hypothesis

$$|\Gamma| \vdash E_1 : |\tau_1| \rightarrow |\tau_2|$$

Also from (TrApp) and the induction hypothesis

$$|\Gamma| \vdash E_2 : |\tau_3|$$

Assembling those parts using (F-App) we come to

$$|\Gamma| \vdash E_1(CE_2) : |\tau_2|$$

(TrTAbs) $\Gamma \vdash \Lambda \alpha.e : \forall \alpha.\tau \hookrightarrow \forall \alpha.E$

From (TrTAbs) we have

$$\Gamma \vdash e : \tau \hookrightarrow E$$

By the induction hypothesis we have

$$|\Gamma| \vdash E : |\tau|$$

Thus by (F-TAbs) and the definition of $|\cdot|$

$$\Gamma \vdash \Lambda \alpha . E : |\forall \alpha . \tau|$$

(TrTApp)
$$\Gamma \vdash e \ \tau : [\alpha := \tau] \tau_1 \hookrightarrow E \ |\tau|$$

From (TrTApp) we have

$$\Gamma \vdash e : \forall \alpha.\tau_1 \hookrightarrow E$$

And by the induction hypothesis that

$$|\Gamma| \vdash E : \forall \alpha. |\tau_1|$$

Also from (TrTApp) and Lemma ?? we have

$$|\Gamma| \vdash |\tau|$$

Then by (F-TApp) that

$$|\Gamma| \vdash E |\tau| : [\alpha := |\tau|] |\tau_1|$$

Therefore

$$|\Gamma| \vdash E |\tau| : |[\alpha := \tau]|\tau_1||$$

(TrMerge)
$$\Gamma \vdash e_1, e_2 : \tau_1 \& \tau_2 \hookrightarrow \langle E1, E2 \rangle$$

From (TrMerge) and the induction hypothesis we have

$$|\Gamma| \vdash E_1 : |\tau_1|$$

and

$$|\Gamma| \vdash E_2 : |\tau_2|$$

Hence by (F-Pair)

$$|\Gamma| \vdash \langle E_1, E_2 \rangle : \langle |\tau_1|, |\tau_2| \rangle$$

Hence by the definition of $|\cdot|$

$$|\Gamma| \vdash \langle E_1, E_2 \rangle : |\tau_1 \& \tau_2|$$

(TrRcdIntro)
$$\Gamma \vdash \{l = e\} : \{l : \tau\} \hookrightarrow E$$

From (TrRcdIntro) we have

$$\Gamma \vdash e : \tau \hookrightarrow E$$

And by the induction hypothesis that

$$|\Gamma| \vdash E : |\tau|$$

Thus by the definition of $|\cdot|$

$$|\Gamma| \vdash E : |\{l : \tau\}|$$

(TrRcdElim)
$$\Gamma \vdash e.l : au_1 \hookrightarrow CE$$

From (TrRcdElim)

$$\Gamma \vdash e : \tau \hookrightarrow E$$

And by the induction hypothesis that

$$|\Gamma| \vdash E : |\tau|$$

Also from (TrRcdEim)

$$\Gamma \vdash_{get} e; l = C; \tau_1$$

Applying Lemma?? to the above we have

$$|\Gamma| \vdash C : |\tau| \rightarrow |\tau_1|$$

Hence by (F-App) we have

$$|\Gamma| \vdash CE : |\tau_1|$$

(TrRcdUpd)
$$\Gamma \vdash e \text{ with } \{l = e_1\} : \tau \hookrightarrow CE$$

From (TrRcdUpd)

$$\Gamma \vdash e : \tau \hookrightarrow E$$

And by the induction hypothesis that

$$|\Gamma| \vdash E : |\tau|$$

Also from (TrRcdUpd)

$$\Gamma \vdash_{put} t; l; E = C; \tau_1$$

Applying Lemma ?? to the above we have

$$|\Gamma| \vdash C : |\tau| \to |\tau|$$

Hence by (F-App) we have

$$|\Gamma| \vdash CE : |\tau|$$