

 $R = 10 k\Omega$

C = 1 μF

Vo = 5V

tentukan grafik dVc/dt!

Menggunakan analisis mesh:

$$-Vo + V_R + Vc = 0$$

$$I. R + Vc - 5 = 0$$

$$(C \frac{dVc}{dt}). R + Vc - 5 = 0$$

$$\frac{dVc}{dt} + \frac{1}{R.C}Vc - \frac{5}{R.C} = 0$$

$$\frac{dVc}{dt} + \frac{1}{10^4 \cdot 10^{-6}}Vc - \frac{5}{10^4 \cdot 10^{-6}} = 0$$

$$\frac{dVc}{dt} + 100Vc - 500 = 0$$

```
#include<stdio.h>
#define dt 0.0001
float v(float t)
  float c;
  if (t \le 0)
    c = 0;
  }
  else
    c = (v(t-dt) + ((5/(10*0.00001))*dt))/(1+(1/(10*0.00001)*dt));
  }
  return c;
}
void main()
  float t;
  FILE*infile;
  infile = fopen("tran.csv","w");
  for (t = 0; t < 0.0023; t+=dt)
    fprintf(infile,"%f, %f\n", t, v(t));
  fclose(infile);
}
```

Program di atas akan menunjukkan data hubungan Vc dengan waktu, dan grafik akan dibuat secara manual dengan Microsoft excel

Tabel Hubungan Tegangan di Kapasitor Dengan Waktu

t	Vc
0	0
0.0001	2.5
0.0002	3.75
0.0003	4.375
0.0004	4.6875
0.0005	4.84375
0.0006	4.921875
0.0007	4.960938
0.0008	4.980469
0.0009	4.990234
0.001	4.995117
0.0011	4.997559
0.0012	4.998779
0.0013	4.99939
0.0014	4.999695
0.0015	4.999847
0.0016	4.999924
0.0017	4.999962
0.0018	4.999981
0.0019	4.99999
0.002	4.999995
0.0021	4.999998
0.0022	4.999999
0.0023	5

Grafik step response dari data yang didapat dengan sumbu X adalah waktu dan sumbu Y adalah tegangan di kapasitor.

