Московский государственный технический университет им. Н.Э. Баумана Факультет «Радиоэлектроника и лазерная техника (РЛ)» Кафедра «Технология приборостроения (РЛ6)»

Домашняя работа №2

по дисциплине «Устройства генерирования и формирования сигналов»

Выполнил ст. группы РЛ6-71 Филимонов С. В.

Преподаватель Дмитриев Д. Д.

Цель работы:

Изучение физических принципов построения частотных детекторов, особенностей реализации и технических характеристик дробного детектора, машинное моделирование дробного детектора на основе принципиальной схемы в среде Micro-Cap, изучение технических особенностей настройки и эксплуатации и определение его основных технических характеристик с использованием системы схемотехнического моделирования Micro-Cap.

Ход работы:

По заданию первым действием собираем схему(транзистор должен быть проинвертирован, ниже будет исправленная схема):

А так же параметры транзистора и диода:

Перейдем к выполнению пункта 2.2.1, построим график АЧХ каскада УПЧ без влияния детектора:

Как видно из рисунка, резонансная частота отлична от 10,7 Влияние контура детектора сказывается появлением выброса на АЧХ первичного

контура. Разностное напряжение в узлах 8 и 10 (V(8,10)) определяет резонансную характеристику вторичного контура.

Вычислим с помощью функции Stepping уточненное значение L1. При L1 = 2.59 мкФ, резонансная частота УПЧ каскада будет верна с погрешностью в 5к Γ ц, что приемлемо:

Выполним задание 2.2.2, построив АЧХ и ФЧХ на выходных зажимах фазосдвигающего трансформатора:

Построим график для задания 2.2.3, где АЧХ нагруженного каскада усилителя промежуточной частоты (УПЧ) для случаев расстроенного и настроенного контура ЧД:

Задание 2.2.4, в котором форма напряжения на коллекторе транзистора каскада УПЧ и на нагрузке детектора при воздействии на входе частотномодулированного (ЧМ) сигнала:

Выразим спектр амплитуд:

Результатом 2.2.2, 2.2.3, 2.2.4 являются данные:

L2, мкФ	fp, MГц	Ph(f = fp)	fcp, МГц	Ph(f = fcp)	П	Kr
1.64	10.760	-319,342	10.73	-301,062	7.308-13.218	4.6
1.658	10.7	-317,804	10,67	-300,69	7.310-13.205	7.65

Задания 2.2.5 и 2.2.6 схожи между собой, в них амплитуда выходного напряжения:

Зависимость амплитуды выходного напряжения и коэффициента гармоник от величины коэффициента связи согласующей индуктивности и катушки контура каскада УПЧ и характеристика подавления амплитудной модуляции:

Изменяющийся параметр	Значение параметра	Амплитуда вых.	
		напряжения, мВ	
	0.99	14.11	
Vandadayyyayın angay I 1 I I	0.9	12.85	
Коэффициент связи L1 – L4	0.8	11.22	
	0.7	9.83	
	10.7	13,86	
	10.75	13,05	
	10.8	12,81	
Частота несущего колебания f,	10.85	12, 34	
МГц	10.9	12,01	
	10.95	11,82	
	11.0	11,53	
	11.05	11,26	

Для задания 2.2.7 определим дискретные отсчёты выходного напряжения:

Вывод:

В данной работе были изучены основные характеристики частотного детектора с использованием экспериментальной установки, состоящей из генератора, усилителя, фазосдвигающего каскада и детектора. В ходе выполнения работы были получены следующие результаты:

- 1. Амплитудно-частотная характеристика оконечного каскада усилителя показала, что при отсутствии влияния последующих схем, усилитель обладает хорошей амплитудной характеристикой, обеспечивая передачу сигнала с минимальными искажениями.
- 2. Амплитудно-частотные и фазочастотные характеристики фазосдвигающего трансформатора подтвердили его способность точно настраивать контуры и обеспечивать необходимый фазовый сдвиг между сигналами.
- 3. Амплитудно-частотные характеристики усилителя промежуточной частоты показали, что расстроенный контур ЧД приводит к снижению полосы пропускания каскада, в то время как настроенный контур обеспечивает более высокую пропускную способность.
- 4. Форма напряжения на коллекторе транзистора и нагрузке детектора показала хорошее качество работы детектора при воздействии частотно-модулированных сигналов. Нелинейные искажения сигнала были минимальными.