Relações de Recorrência

Marcelo Keese Albertini Faculdade de Computação Universidade Federal de Uberlândia

23 de Março de 2018

Aula de hoje

Nesta aula veremos

- Conceitos de Relações de Recorrência
- Resolução de Recorrências
- Recorrências de divisão e conquista

O que são recorrências

Def. uma recorrência é uma equação que recursivamente define uma sequência.

Recorrências modelam custos em programas

Fibonacci:
$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

$$F_0 = 0$$
, $F_1 = 1$ e para $N \ge 2$:

$$F_{N}=F_{N-1}+F_{N-2}$$

Quicksort:
$$0, 2, 5, 8 + 2/3, 12 + 5/6, 17 + 2/5, ...$$

$$C_0 = 0, N > 1$$

$$C_N = N + 1 + \sum_{0 \le k \le N-1} \frac{1}{N} (C_k + C_{N-k-1})$$

Análise de algoritmos e resolução de recorrências: passos

- Implementar algoritmo
- 2 Identificar quantidade de interesse (trocas, comparações ...)
- 3 Instrumentalizar algoritmo e observar sequência
- Propor relação de recorrência
- Occupator primeiros valores e comparar com observações
- Resolver recorrência com uma função eficiente
 - Técnicas de resolução de recorrências
- Verificar empiricamente a função encontrada

Computar primeiros valores

Usar programas recursivos: tempo exponencial

```
int fibRec(int N) {
   if (N == 0 N == 1) return N;
   return fibRec(N-1)+fibRec(N-1);
}
```

 Usar memorização: programação dinâmica – força-bruta inteligente

Exemplo: memorização para resolver Fibonacci

• Programação Dinâmica Simplificada

```
int [] memo = int [Nmax];
int fibPD(int N) {
   if (N < 2) return memo[N];

if (memo[N] == 0) // ainda tem muita recursão
   memo[N] = fibPD(N-1) + fibPD(N-2);

return memo[N];
}</pre>
```

Quicksort

Quais são as quantidades de interesse?

```
void quicksort(int[] a, int lo, int hi) {
2
3
4
     if (hi <= lo) return;</pre>
     int i = lo -1, j = hi;
5
6
7
8
     int t, v = a[hi];
     while (true) {
       while (a[++i] < v):
9
       while (v < a[--i]) if (i = lo) break;
10
11
      if (i >= i) break;
12
      t = a[i]; a[i] = a[i]; a[i] = t;
13
     t = a[i]; a[i] = a[hi]; a[hi] = t:
14
15
16
     quicksort (a, lo, i-1);
17
     quicksort(a, i+1, hi);
18|}
```

Resolver recorrências

- Quicksort (comparações médias): $NC_N = (N+1)C_{N-1} + 2N$
- Para obter valores para C_N :

```
1 c[0] = 0;
2 for (N = 1; N <= Nmax; N++) {
3    c[N] = (N+1)*c[N-1]/N+2;
4    System.out.println(c[N]);
5 }</pre>
```

Técnicas de resolução de recorrências: Expansão

- Analisar recorrência usando expansão para uma soma
- ullet Objetivo: obter fórmula mais simples para sequências em função de N

Exemplo 1

Com
$$a_0=0$$

$$a_n=a_{n-1}+n$$
 Expandir equação para $n-1$:
$$a_n=a_{n-2}+(n-1)+n$$
 Iterar:
$$a_n=a_{n-3}+(n-2)+(n-1)+n$$
 Iterar mais e obter soma:
$$a_n=\sum_{1\geq k\geq n}k$$
 Avaliar soma:
$$a_n=\frac{(n+1)n}{2}$$

Técnicas de resolução: somas elementares

Convolução de Vandermonde:

Séries geométricas:
$$\sum_{0 \leq k < n} x^k = \frac{1 - x^n}{1 - x}$$
 Séries aritméticas:
$$\sum_{0 \leq k < n} k = \frac{n(n-1)}{2} = \binom{n}{2}$$
 Binomial superior:
$$\sum_{0 \leq k \leq n} \binom{k}{m} = \binom{n+1}{m+1}$$
 Teorema binomial:
$$\sum_{0 \leq k \leq n} \binom{n}{k} x^k y^{n-k} = (x+y)^n$$
 Números harmônicos:
$$\sum_{1 \leq k \leq n} \frac{1}{k} = H_n$$
 ção de Vandermonde:
$$\sum_{0 \leq k \leq n} \binom{n}{k} \binom{m}{t-k} = \binom{n+m}{t}$$

Expansão de recorrências

Exemplo 2

Com
$$a_0=0$$

$$a_n=2a_{n-1}+2^n$$
 Dividir por 2^n ,
$$\frac{a_n}{2^n}=\frac{a_{n-1}}{2^{n-1}}+1$$
 Expandir para uma soma:
$$\frac{a_n}{2^n}=\sum_{1\geq k\geq n}1=n$$
 Resolução:
$$a_n=n2^n$$
 Verificar:
$$n2^n=2(n-1)2^{n-1}+2^n$$

Técnicas de resolução: fator de soma

Qual é o fator da soma para $a_n = x_n a_{n-1} + \dots$?

(AoA3ed Teorema 2.1) O fator é $x_n x_{n-1} x_{n-2} \dots x_1$. Resolver a_n dividindo a recorrência por esse fator.

Exemplo 3

Verificar solução de Exemplo 3

- Verificar valores iniciais fazer algumas contas
 - $a_n = (1 + \frac{1}{n})a_{n-1} + 3$ para n > 0 com $a_0 = 0$
 - $a_1 = 2a_0 + 2 = 2$
 - $a_2 = \frac{3}{2}a_1 + 2 = 5$
 - $a_3 = \frac{4}{3}a_2 + 2 = 26/3$
- Prova que $a_n = 2(n+1)(H_{n+1} 1)$ (indução):

$$a_n = \frac{n+1}{n} \underbrace{2n(H_n - 1)}_{a_{n-1}} + 2 = 2(n+1)(H_n - 1) + 2$$
$$= 2(n+1)(H_n + 1/(n+1) - 1)$$
$$= 2\underbrace{(n+1)(H_{n+1} - 1)}_{a_{n-1}}$$

Exercício

Resolver a recorrência:

$$na_n = (n-2)a_{n-1} + 2$$
 para $n > 1$ com $a_1 = 1$

Forma difícil:

Usar fator de soma: $\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \frac{n-5}{n-3} \dots = \frac{1}{n(n-1)}$

Forma fácil:

 $2a_2 = 2$ então $a_2 = 1$, portanto $a_n = 1$

Tipos de recorrências

Ordem 1	Linear:	$a_n = na_{n-1} - 1$
	Não-linear:	$a_n = 0.5(a_{n-1} + 2/a_{n-1})$
Ordem 2	Não-linear:	$a_n = a_{n-1}a_{n-2} + \sqrt{a_{n-2}}$
	Coef. variáveis:	$a_n = na_{n-1} + (n-1)a_{n-2} + 1$
Ordem t		$\overline{a_n = f(a_{n-1}, a_{n-2}, \ldots, a_{n-t})}$
Histórico completo		$a_n = n + a_{n-1} + a_{n-2} \ldots + a_1$
Divisão e conquista		$a_n = a_{\lfloor n/2 \rfloor} + a_{\lceil n/2 \rceil} + n$

Recorrências lineares de alta ordem

(AoA Teorema 2.2) Recorrências lineares com coeficientes constantes

- Seja $a_n = x_1 a_{n-1} + x_2 a_{n-2} + \dots x_t a_{n-t}$ para $n \ge t$
- Soluções são combinações lineares de $n^{j}\beta^{n}$ onde
- β são raízes de $q(z) = z^t x_1 z^{t-1} x_2 z^{t-2} \dots x_t$
- $0 \le j < v$ se raiz β tem multiplicidade v

Recorrências lineares de alta ordem: exemplo

Exemplo 4	
Com $n \ge 2$ e $a_0 = 0$, $a_1 = 1$	$a_n = 5a_{n-1} - 6a_{n-2}$
Fazer $a_n = x^n$	$x^n = 5x^{n-1} - 6x^{n-2}$
Dividir por x^{n-2}	$x^2 - 5x + 6 = 0$
Fatorar:	(x-2)(x-3)=0
Forma da solução é:	$a_n = c_0 3^n + c_1 2^n$
Usar $a_0 = 0$	$a_0 = 0 = c_0 + c_1$
Usar $a_1=1$	$a_1 = 1 = 3c_0 + 2c_1$
Coeficientes:	$c_0=1$ e $c_1=-1$
Solução:	$a_n = 3^n - 2^n$

Recorrências lineares de alta ordem: exemplo

Sequência de Fibonacci

•
$$a_n = a_{n-1} + a_{n-2}$$
 para $n \ge 2$ com $a_0 = 0$ e $a_1 = 1$

- Definir que $a_n = x^n$
 - $x^n = x^{n-1} + x^{n-2}$
- Dividir por x^{n-2}

•
$$x^2 - x - 1 = 0$$

• Resolver equação quadrática $(x - \phi)(x - \phi') = 0$

•
$$\phi = \frac{1+\sqrt{5}}{2}$$
 e $\phi' = \frac{1-\sqrt{5}}{2}$

- Forma da solução deve ser: $a_n = c_0 \phi^n + c_1 {\phi'}^n$
- Usar condições iniciais para encontrar coeficientes

$$a_0 = 0 = c_0 + c_1$$
 e $a_1 = 1 = \phi c_0 + \phi' c_1$

• Solução: $a_n = \frac{\phi^n}{\sqrt{5}} - \frac{{\phi'}^n}{\sqrt{5}}$

Exercícios

- Resolver $a_n = 2a_{n-1} a_{n-2}$ para n > 2, $a_0 = 1$, $a_1 = 2$
- Resolver $a_n = 2a_{n-1} a_{n-2}$ para $n \ge 2$, $a_0 = 1$, $a_1 = 1$
- Em quais condições iniciais a seguinte recorrência é constante, exponencial ou flutuante? $a_n = 2a_{n-1} + a_{n-2} 2a_{n-3}$ para n > 3
- Quais valores de a_0 e a_1 para $a_n = 5a_{n-1} 6a_{n-2}$, n > 1 temos que $a_n = 2^n$? Existem condições iniciais tal que a solução é $a_n = 2^n 1$?

Recorrências de divisão e conquista

Análise de divisão e conquista

Programas recursivos são mapeados diretamente para recorrências.

Exemplos clássicos

- Busca binária
- Mergesort
- Multiplicação de Karatsuba
- Multiplicação de matrizes de Strassen