1. perceptron with margin algorithm ⇒ ω(i+1) = ω(i) + zixi [ω(i) zixi-b<0] use error measure $E(i) = \| \underline{W}(i) - \underline{A} \underline{W} \|_{2}^{2}$, a is adjustable $W(i+1) - aW = W(i) - aW + Z^{i}X^{i}$

 $\Rightarrow \| w(i+1) - aw \|_{2}^{2} = \| w(i) - aw \|_{2}^{2} + 2(w(i) - aw)^{T} Z^{i} X^{i} + \| z^{i} x^{i} \|_{2}^{2} \qquad (w(i)z^{i} X^{i} < 2b)$ < || w(i) - aw||2 - 2aw|| zixi + 2b + || xi||2

Let $C \triangleq \min_{j} \{\widehat{w}^T \ge j \ge j\} > 0$, $d^2 \triangleq \max_{j} \| x_j \|_2^2 = \text{length of the longest data point.}$

 $\Rightarrow \| \underline{W}(i+1) - \underline{a}\underline{w} \|_{2}^{2} \leq \| \underline{w}(i) - \underline{a}\underline{w} \|_{2}^{2} - 2\underline{a}\underline{c} + 2\underline{b} + \underline{d}^{2}$ choose $a = \frac{b+d^2}{a}$

> 0 (E(i+1) ≤ E(i) - d² ∀i

For some io, we would have E(io) < d2

so that 0 < E(io+1) < E(io)-d2 <0 which is impossible.

Therefore, iteration must cease at i=io-1 (or sooner)

⇒ Algorithm converges at a solution weight vector at (io-1)th iteration or sooner. $2^{(a)}\{(0,1,-1,2)\}\in S_1, \{(1,1,1,1),(2,1,1,1)\}\in S_2, \{(-1,1,0,-1)\}\in S_3$

 $\underline{W}^{(1)}(0) = -1$, $W^{(2)}(0) = 1$, $W^{(3)}(0) = 0$,

 $W^{(1)T}(0) \cdot [1,0,1,-1,2]^T = -3$ $W^{(2)T}(0) \cdot [1,0,1,-1,2]^T = 3$ $\frac{W^{(3)}(0) \cdot [1,0,1,-1,2]}{W^{(3)}(1) = W^{(3)}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}}$ $\mathcal{W}^{(1)}(1) = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$ $\mathcal{W}^{(2)}(1) = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 2 \end{bmatrix}$

 $\frac{\mathcal{W}^{(1)} \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}} = -2}{\mathcal{W}^{(1)}(2) = \mathcal{W}^{(1)}(1)}$ $W^{(2)}$, [1111] = 2

 $\frac{W^{(3)}(1) \cdot [1 + 1 + 1]^{T} = 0}{W^{(3)}(2) = W^{(3)}(1)}$ $W^{(2)}(2) = W^{(2)}(1)$ $W'(2)^{T} \cdot [12111]^{T} = -3$ $W_{(2)}^{(2)} \cdot [12111]^{T} = (3)$ $W^{(3)}(z) \cdot [1211] = 0$

 $W^{(2)}(3) = W^{(2)}(2)$ $W^{(1)}(3) = W^{(1)}(2)$ $W^{(3)}(3) = W^{(3)}(2)$

 $W^{(1)}(3)$, [1-1]0-1 = 0 $W^{(3)} \cdot [1 - | 1 - |] = 0$ $W^{(2)}$, [1-110-] = 0

 $W^{(2)}(4) = W^{(2)}(3) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$ $\Rightarrow g^{(1)}(x) = -\hat{x}_2 - 2\hat{x}_3 + 2\hat{x}_4 - 1$ $\Rightarrow g^{(2)}(x) = x_1 + 2x_3 - x_4$ $\Rightarrow g^{(3)}(x) = -\chi_1 + \chi_2 - \chi_4 + 1$

(b) $\underline{x} = (1, x_1, x_2, 0, 0)$

 $g^{(1)}(\underline{\mathsf{X}}) = -\chi_2 - 1$ $g^{(2)}(\underline{x}) = \chi_1$ $g^3(\underline{x}) = -\chi_1 + \chi_2 + 1$

 $g'(\underline{x}) = g^{(2)} \Rightarrow \chi_1 = -\chi_2 - | \Rightarrow \chi_1 + \chi_2 = -|$ $g^{2}(x) = g^{3}(x) \Rightarrow x_{1} = -x_{1} + x_{2} + 1 \Rightarrow 2x_{1} - x_{2} = 1$

 $g^{3}(x) = g''(x) \Rightarrow -x_2 - 1 = -x_1 + x_2 + 1 \Rightarrow x_1 - 2x_2 = 2$

3. (a)
$$J(\underline{w}) = \frac{1}{N} \| \underline{x}\underline{w} - \underline{b} \|_{2}^{2} + \lambda \| \underline{w} \|_{2}^{2}$$

$$= \frac{1}{N} (\underline{w}^{T}\underline{x}^{T}\underline{w} - \underline{w}^{T}\underline{b} - \underline{b}^{T}\underline{x}\underline{w} + \underline{b}^{T}\underline{b}) + \lambda \underline{w}^{T}\underline{w}$$

$$\nabla_{\underline{w}} J(\underline{w}) = \frac{1}{N} (\underline{x}^{T}\underline{x}\underline{w} + \underline{x}^{T}\underline{x}\underline{w} - \underline{x}^{T}\underline{b} - \underline{x}^{T}\underline{b}) + \lambda (\underline{w} + \underline{w})$$

$$= \frac{N}{5} (\overline{X}_{1} \overline{X} \overline{M} - \overline{X}_{1} \overline{P}) + 5 \sqrt{M}$$

$$= \frac{N}{5} (\overline{X}_{1} \overline{X} \overline{M} - \overline{X}_{1} \overline{P}) + 5 \sqrt{M}$$

$$= \frac{N}{5} (\overline{X}_{1} \overline{X} \overline{M} + \overline{X}_{1} \overline{X} \overline{M} - \overline{X}_{1} \overline{P} - \overline{X}_{1} \overline{P}) + \sqrt{(M+M)}$$

$$\nabla_{\underline{W}} J(\underline{w}) = \frac{2}{N} (\underline{x} \underline{x} \underline{w} - x^T b) + 2\lambda \underline{w} = 0$$

$$\Rightarrow \left(\frac{2}{N} \underline{X}^{\mathsf{T}} \underline{X} + 2\lambda \underline{\mathbf{I}}\right) \underline{W} = \frac{2}{N} X^{\mathsf{T}} \underline{b}$$

$$\Rightarrow (X_{X} + NYI)M = X_{P}$$

$$\Rightarrow M = (X_X + NYI)_X P$$

In Pseudoinverse solution $W = (XX)^T X^T b$

if $(XX+N\lambda I)$ is non-singular. By comparison, we can find that there's an additional term $N\lambda I$ in the inverse matrix.

4. (a)
$$J(\underline{w}) = \sum_{n=1}^{N} J_n(\underline{w}) = \sum_{n=1}^{N} \left[\underline{w}^T z_n \underline{x}_n - \underline{b}_n \right]^2$$

$$J_n(\underline{w}) = \left[\underline{w}^T z_n \underline{x}_n - \underline{b}_n \right]^2$$

 $\nabla_{\underline{w}} J_n(\underline{w}) = 2[\underline{w}^T z_n \underline{x}_n - \underline{b}_n] z_n \underline{x}_n \longrightarrow 2^n \text{ can be absorbed in } \gamma(i)$ $W(i+1) = W(i) - \eta(i) \nabla_{W} J_{n}(\underline{W})$ 7(i) 20, w(o) = arbitrary

$$\Rightarrow W(i+1) = W(i) + \eta(i) [bn - W^T z n \times n] z n \times n$$

which is the same with the result of Widrow-Hoff learning algorithm.