18.335 Take-Home Midterm Exam: Spring 2020

Posted 4:30pm Friday April 10, due 4:30pm Saturday April 11.

Problem 0: Honor code

Copy and sign the following in your solutions:

I have not used any resources to complete this exam other than my own 18.335 notes, the textbook, running my own Julia code, and posted 18.335 course materials.

your signature

Problem 1: (20+5 points)

For an ordinary least-squares problem with an $m \times n$ matrix A of rank $n \le m$, that is computing the function $f(b) = \hat{x} = \text{minimizer of } \|b - Ax\|_2^2$, we showed via $A = \hat{Q}\hat{R}$ factorization in class that the condition number (in the L_2 norm) of $f(b) = \hat{R}^{-1}\hat{Q}^*b$ is bounded above by $\kappa(\hat{R}) = \kappa(A) = \sigma_1/\sigma_n$ where the σ_k are the singular values of A. [Recall that the condition number of f(b) = Bb is bounded above by $\kappa(B)$; this is a "tight" bound that is hit when b is a singular vector of B.]

(a) Now, instead, consider the "regularized" least-square problem

$$g(b) = \hat{x} = \text{minimizer of } ||b - Ax||_2^2 + \alpha ||x||_2^2$$

where $\alpha > 0$ is some constant. Give a similar (tight) upper bound on the condition number of g(b) in the L_2 norm, in terms α and the singular values of A? You should find that a larger α gives a smaller condition number. (*Hint*: try to write g in terms of an ordinary least-square problem for a new matrix.)

(b) If A is a badly conditioned matrix, a larger α therefore trades off _____ for ____ in trying to find a "best-fit" \hat{x} .

Problem 2: (15+5+5 points)

Let $f(x) = \sqrt{1+x^2} - 1$, and consider its computation in floating-point arithmetic.

(a) Explain the difficulty of naively computing f(x) accurately for a small value of |x| and show how the difficulty can be circumvented.

To get full marks, do *not* use an infinite series like a Taylor expansion—your method to compute f should ideally involve a fixed number of $\{\sqrt{,\pm,\times,\div}\}$ operations regardless of the precision.

- (b) Show that f(x) is *not* ill-conditioned for small |x|.
- (c) Reconcile your answers from (a) and (b): if f is well-conditioned, how can there be a difficulty in computing it? (Don't write a long essay, just a few words.)

Problem 3: (10+10+5 points)

(a) Let A be a 6×6 real-symmetric matrix with eigenvalues $\{3, -3, 2, -2, 1, -1\}$. Suppose we perform the usual unshifted QR iteration $[A^{(0)} = A, A^{(k)} = R^{(k-1)}Q^{(k-1)}]$ where $Q^{(k-1)}R^{(k-1)}$ is the QR factorization of $A^{(k-1)}$]. What is the **nonzero pattern** of the matrix $A^{(k)}$ for a large value k? **Why**?

- (b) Suppose that unshifted QR iteration on a Hermitian matrix A produces $A^{(k)}$ after k iterations. If we compute the eigenvalues of any $d \times d$ block D along the diagonal of $A^{(k)}$, explain why the eigenvalues of D are a form of Ritz value of A corresponding to a Rayleigh-Ritz procedure for a certain subspace.
- (c) Explain how you could use the answer from part (b) to accurately compute all the eigenvalues of A from part (a) using a small (finite) number of $\{\sqrt{\pm}, \pm, \pm\}$ operations, given $A^{(k)}$ for a large k.

Problem 4: (10+15 points)

Suppose that we compute the transpose of a square matrix A in-place using obvious algorithm

```
function my_transpose!(A::Matrix)
  m, n = size(A)
  m == n || error('my_transpose! requires a square matrix'')
  for i = 1:m
        for j = i+1:m
              A[i,j], A[j,i] = A[j,i], A[i,j] # swap ij and ji entries
        end
  end
end
```

- (a) If we have an ideal cache of size *Z*, with cache-line length *L*, give the asymptotic (large *m*) cache complexity ("big O", i.e. ignoring constant factors) as a function of *m*, *Z*, *L*. (Loading a *whole cache line* into cache = 1 miss. As discussed in class, a Julia matrix *A* is stored in column-major order, i.e. with contiguous columns in memory.)
- (b) Describe a modified algorithm with better cache performance, and give its asymptotic cache complexity.