Ejemplos

Luca Di Bene

4 de agosto de $2025\,$

${\rm \acute{I}ndice}$

1.	Vectores y Operaciones
	1.1. Producto escalar
	1.2. Producto vectorial
	1.3. Diagrama con vectores (TikZ)
2.	Gráficas de funciones
3.	Fórmulas útiles
	3.1. Cinemática
	3.2. Energía cinética
	3.3. Integrales y derivadas
4.	Unidades y tablas
5.	Referencias cruzadas

Apuntes Luca Di Bene - Física I

1. Vectores y Operaciones

Un vector se puede expresar como:

$$\vec{v} = v_x \hat{i} + v_y \hat{j}$$

1.1. Producto escalar

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$$

1.2. Producto vectorial

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

1.3. Diagrama con vectores (TikZ)

Figura 1: Suma de vectores

2. Gráficas de funciones

Figura 2: Gráfico de funciones

Apuntes Luca Di Bene - Física I

3. Fórmulas útiles

3.1. Cinemática

$$x(t) = x_0 + v_0 t + \frac{1}{2}at^2$$

3.2. Energía cinética

$$E_k = \frac{1}{2}mv^2$$

3.3. Integrales y derivadas

$$\int_0^T a(t) dt = v(T) - v(0) \qquad \frac{dE}{dt} = -P$$

4. Unidades y tablas

■ Masa: 5,0 kg

■ Longitud: 2,0 m

■ Tiempo: 1,5 s

Cantidad	Unidad	Símbolo
Masa	kilogramo	kg
Longitud	$_{ m metro}$	m
Tiempo	segundo	s

Cuadro 1: Unidades del SI

5. Referencias cruzadas

La fórmula de energía cinética fue introducida en la sección 5, y es clave en mecánica.