BAYESIAN NON-PARAMETRICS PRIORS WITH DENSITY ESTIMATION

Andi Wang Kaspar Märtens Ho Chung Leon Law

12th February 2016

INTRODUCTION

Why non-parametrics, i.e. infinite-dimensional parameters?

INTRODUCTION

Why non-parametrics, i.e. infinite-dimensional parameters? Less assumptions involved.

INTRODUCTION

Why non-parametrics, i.e. infinite-dimensional parameters? Less assumptions involved.

Bayesian non-parametrics: prior on these objects.

$$G \sim \text{Prior}$$

is a random measure

$$X_1,\ldots,X_n|G \stackrel{iid}{\sim} G$$

$$G \sim \text{Prior}$$

is a random measure

$$X_1,\ldots,X_n|G\stackrel{iid}{\sim}G$$

Want a conjugate prior for G.

$$G \sim \text{Prior}$$

is a random measure

$$X_1,\ldots,X_n|G\stackrel{iid}{\sim}G$$

Want a conjugate prior for G.

One solution: Dirichlet process, parameters $\alpha_0 > 0$, G_0 , a probability measure.

$$\pi_k' \stackrel{iid}{\sim} \text{Beta}(1, \alpha_0) \text{ and } \phi_k \stackrel{iid}{\sim} G_0$$

$$\pi_k' \stackrel{iid}{\sim} \text{Beta}(1, \alpha_0) \text{ and } \phi_k \stackrel{iid}{\sim} G_0$$

$$\pi_k = \pi_k' \prod_{l=1}^{k-1} (1 - \pi_l')$$

$$\pi'_k \stackrel{iid}{\sim} \text{Beta}(1, \alpha_0) \text{ and } \phi_k \stackrel{iid}{\sim} G_0$$

$$\pi_k = \pi'_k \prod_{l=1}^{k-1} (1 - \pi'_l)$$

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

DIRICHLET PROCESS CONJUGACY

$$G \sim \mathrm{DP}(\alpha_0, G_0)$$

$$X_1,\ldots,X_n|G\stackrel{iid}{\sim}G$$

DIRICHLET PROCESS CONJUGACY

$$G \sim \mathrm{DP}(\alpha_0, G_0)$$

$$X_1,\ldots,X_n|G\stackrel{iid}{\sim}G$$

$$G|X_1,\ldots,X_n \sim \mathrm{DP}(\hat{\alpha},\hat{G})$$

DIRICHLET PROCESS CONJUGACY

$$G \sim \mathrm{DP}(\alpha_0, G_0)$$

$$X_1, \dots, X_n | G \stackrel{iid}{\sim} G$$

$$G | X_1, \dots, X_n \sim \mathrm{DP}(\hat{\alpha}, \hat{G})$$

$$\hat{\alpha} = \alpha + n$$

$$\hat{G} = \hat{\alpha}^{-1} \left(\alpha G_0 + \sum_{i=1}^n \delta_{X_i} \right)$$

Idea: use the Dirichlet process as a prior on the parameters of a mixture model.

Idea: use the Dirichlet process as a prior on the parameters of a mixture model.

$$G \sim \mathrm{DP}(\alpha_0, G_0)$$

 $\phi_i \mid G \sim G$
 $x_i \mid \phi_i \sim F(\phi_i)$

where F is a parametric distribution with density $p(x|\phi)$.

Recalling

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

the Dirichlet process mixture specifies

$$p(x) = \sum_{k=1}^{\infty} \pi_k \, p(x|\phi_k)$$

Recalling

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

the Dirichlet process mixture specifies

$$p(x) = \sum_{k=1}^{\infty} \pi_k \, p(x|\phi_k)$$

DIRICHLET PROCESS MIXTURE: FITTED TO DATA

When data is generated from a finite mixture,

When data is generated from a finite mixture,

Dirichlet process mixture is a misspecified model

When data is generated from a finite mixture,

Dirichlet process mixture is a misspecified model and it is inconsistent for the number of components

When data is generated from a finite mixture,

Dirichlet process mixture is a misspecified model and it is inconsistent for the number of components

PÒLYA TREE

Generalisation of the Dirichlet process.

PÒLYA TREE

Generalisation of the Dirichlet process.

Able to place positive mass on continuous measures.

PÒLYA TREE

Generalisation of the Dirichlet process.

Able to place positive mass on continuous measures.

Popular in survival analysis, where censored data is common.

PÓLYA TREE DIAGRAM

PÓLYA TREE DIAGRAM

P on Ω have a Pólya tree distribution, with parameters $(\Pi = \{\Pi_m; m = 0, 1, \dots\}, \mathcal{A})$ is written $P \sim \text{PT}(\Pi, \mathcal{A})$

We must specify: a set of nested partitions Π and constants \mathcal{A} for the beta random variables.

We must specify: a set of nested partitions Π and constants \mathcal{A} for the beta random variables.

Wish to center the tree around a specific G_0 , with cdf $F_0: \mathbb{R} \to [0,1]$.

We must specify: a set of nested partitions Π and constants \mathcal{A} for the beta random variables.

Wish to center the tree around a specific G_0 , with cdf $F_0: \mathbb{R} \to [0, 1]$.

Take the beta parameters \mathcal{A} to be constant on each level, with value $c \rho(m)$ on level m.

We must specify: a set of nested partitions Π and constants \mathcal{A} for the beta random variables.

Wish to center the tree around a specific G_0 , with cdf $F_0: \mathbb{R} \to [0, 1]$.

Take the beta parameters \mathcal{A} to be constant on each level, with value $c \rho(m)$ on level m.

If $\rho(m)$ increases sufficently fast, the distribution is continuous.

We must specify: a set of nested partitions Π and constants \mathcal{A} for the beta random variables.

Wish to center the tree around a specific G_0 , with cdf $F_0: \mathbb{R} \to [0, 1]$.

Take the beta parameters \mathcal{A} to be constant on each level, with value $c \rho(m)$ on level m.

If $\rho(m)$ increases sufficently fast, the distribution is continuous.

When $\rho(m) = 2^{-m}$ we obtain the Dirichlet process.

PARAMETERS

One choice of Π is $dyadic\ quantiles,$ of the form

$$\left(F_0^{-1}\bigg(\frac{j-1}{2^m}\bigg),F_0^{-1}\bigg(\frac{j}{2^m}\bigg)\right]$$

PARAMETERS

One choice of Π is dyadic quantiles, of the form

$$\left(F_0^{-1}\left(\frac{j-1}{2^m}\right), F_0^{-1}\left(\frac{j}{2^m}\right)\right]$$

We showed this is valid if and only if F_0 is strictly increasing on \mathbb{R} .

PARAMETERS

One choice of Π is dyadic quantiles, of the form

$$\left(F_0^{-1}\bigg(\frac{j-1}{2^m}\bigg),F_0^{-1}\bigg(\frac{j}{2^m}\bigg)\right]$$

We showed this is valid if and only if F_0 is strictly increasing on \mathbb{R} . With this choice, we have that for each B, $\mathbb{E}[P(B)] = G_0(B)$, where $P \sim \text{PT}(\Pi, \mathcal{A})$.

POSTERIOR UPDATE

Let us assume the following:

$$x|P \sim P$$
 $P \sim PT(\Pi, A)$ (1)

POSTERIOR UPDATE

Let us assume the following:

$$x|P \sim P$$
 $P \sim PT(\Pi, A)$ (1)

Then the posterior is given by a Pólya tree, $P|x \sim PT(\Pi, \mathcal{A}^*)$ with:

$$\alpha_{\epsilon}^* = \begin{cases} \alpha_{\epsilon} + 1, & \text{if } x \in B_{\epsilon} \\ \alpha_{\epsilon}, & \text{otherwise} \end{cases}$$
 (2)

FINITE PÓLYA TREE DIAGRAM

DENSITY ESTIMATION WITH PÓLYA TREE

Figure: Pólya trees with two base measures, $G_0 = \mathcal{N}(0, 3^2)$ (left) and $G_0 = \mathcal{N}(0, 10^2)$ (right) with $\alpha_{\epsilon} = \alpha m^2$, where $\alpha \sim \Gamma(1, 0.01)$.

SUMMARY

We have explored Bayesian non-parametric approaches for density estimation:

- 1. Dirichlet process mixtures
- 2. Pólya trees