NT :	A	// .
Name:	_ A=	#:

MAE 3440: HW #9

Due March 25, 2020

- 1. Water enters a tube at 27°C with a flow rate of 450 kg/h. The heat transfer from the tube wall to the fluid is given as q'_s (W/m)= ax, where the coefficient a is 20 W/m² and x (m) is the axial distance from the tube entrance.
 - (a) Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution $T_m(x)$ of the water.
 - (b) What is the mean outlet temperature of the water for a heated section of 30 m long?
 - (c) Sketch the mean fluid temperature, $T_m(x)$, and the tube wall temperature, $T_s(x)$, as a function of distance along the tube for fully developed and developing flow conditions.
 - (d) What value of a uniform wall heat flux, q''_s (instead of $q'_s = ax$), would provide the same fluid outlet temperature as that determined in part (b)? For this type of heating, repeat part (c).

Name:	

Α#.	
$\Lambda + + \cdot$	_

2. SAE 30 oil (k = 0.15 W/m-K) is heated by flowing through a circular tube of diameter D = 50 mm and length L = 25 m and whose surface is maintained at 150°C. If the flow rate and inlet temperature of the oil are 0.5 kg/s and 20°C, what is the outlet temperature $T_{m,o}$? What is the total heat transfer rate q for the tube?

Name:	
Traille.	

Λ -//•	
A#:	

3. To cool a summer home without using a vapor-compression refrigeration cycle, air is routed through a plastic pipe (k=0.15 W/m-K, $D_i=0.15$ m, $D_o=0.17$ m) that is submerged in an adjoining body of water. The water temperature is nominally at $T_{\infty}=17^{\circ}\text{C}$, and a convection coefficient of $h_o=1500$ W/m²-K is maintained at the outer surface of the pipe. If air from the home enters the pipe at a temperature of $T_{m,i}=29^{\circ}\text{C}$ and a volumetric flow rate of $V_i=0.025$ m³/s, what pipe length is needed to provide a discharge temperature of $T_{m,o}=21^{\circ}\text{C}$?

Name:	

A#:	
$\Lambda + + \cdot$	

4. Air at 4×10^{-4} kg/s and 27° C enters a triangular duct that is 20 mm on a side and 2 m long. The duct surface is maintained at 100° C. Assuming fully developed flow throughout the duct, determine the air outlet temperature.