MA 372 : Stochastic Calculus for Finance July - November 2021

Department of Mathematics, Indian Institute of Technology Guwahati TEST I

September 2, 2021 Duration: 35 min

- Answer all questions.
- Justify all your answers. Answers without justification carry no marks.
- 1. Find two sigma-algebras \mathcal{F}_1 and \mathcal{F}_2 on $\Omega = \{1, 2, 3, 4\}$ such that their union $\mathcal{F}_1 \cup \mathcal{F}_2$ is not a sigma-algebra.
- 2. Let $\Omega = [0,1]$ and $\mathcal{F} = \mathcal{B}([0,1])$. Let \mathbb{P} be the probability measure which assigns to each interval its length and

$$Z(w) = \begin{cases} 2 & \text{if } 0 \le w \le 1/2 \\ 0 & \text{if } 1/2 < w \le 1 \end{cases}$$

For $A \in \mathcal{B}([0,1])$, define $\tilde{\mathbb{P}}(A) = \int_A Z(w) d\mathbb{P}(w)$. Are $\tilde{\mathbb{P}}$ and \mathbb{P} equivalent probability measure on \mathcal{F} ?

3. Let $\Omega = \mathbb{N}$ (the set of natural numbers) and let \mathcal{F} be the family of all subset of Ω . Is

$$\mathbb{P}(A) = \liminf_{n \to \infty} \frac{\#(A \cap \{1, 2, \cdots, n\})}{n}$$

(#B denotes the number of elements in B) a probability measure on \mathcal{F} ? [5]

- 4. Let $\Omega = [0, 1]$ and $\mathcal{F} = \mathcal{B}([0, 1])$. Let \mathbb{P} be the probability measure which assigns to each interval its length. Let $A \in \mathcal{B}([0, 1])$ and $\mathbb{P}(A) = 1/2$. Let $f : [0, 1] \to \mathbb{R}$ be the function defined by $f(x) = \mathbb{P}(A \cap [0, x])$.
 - (a) Is this function f continuous on [0,1]?
 - (b) Is it possible to find a set $B \subset A$ such that $\mathbb{P}(B) = 1/4$?

[4+3]

5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let X(w) = 1 for $w \in A$, X(w) = -2 for $w \in B$ and X(w) = 2 otherwise, where $A, B \in \mathcal{F}$, $\mathbb{P}(A) = 1/3$, $\mathbb{P}(B) = 1/2$ and $A \cap B = \phi$. Find the distribution function F_X of the random variable X.

[3]