

State Finished Completed on Sunday, 18 February 2024, 3:30 PM Time taken 24 mins 12 secs Marks 6.00/7.00 Grade 8.57 out of 10.00 (85.71%)	Started on	Sunday, 18 February 2024, 3:06 PM
Time taken 24 mins 12 secs Marks 6.00/7.00	State	Finished
Marks 6.00/7.00	Completed on	Sunday, 18 February 2024, 3:30 PM
	Time taken	24 mins 12 secs
Grade 8 57 out of 10 00 (85 71%)	Marks	6.00/7.00
5.57 Sat 51 15.55 (55.7 175)	Grade	8.57 out of 10.00 (85.71 %)

Question 1

Correct

Mark 1.00 out of 1.00

Recursion Tree is one way to analyze recursive functions. Consider a function with following time complexity.

$$T(n) = T(n/3) + T(2n/3) + n$$

Following figure shows the first 3 levels of the recursion tree.

What is/are the number(s) which can not be appear in the next (4th) level in this recursion tree?

- a. n/27
- b. 2n/27
- ✓ c. 16n/27
 ✓
- d. 8n/27

The correct answer is: 16n/27

Question 2

Incorrect

Mark 0.00 out of 1.00

Select the asymptotic upper and lower bounds for T(n) in the following recurrence. Assume that T(n) is constant for $n \le 3$. Make your bounds as tight as possible.

$$T(n) = 3T(n/5) + lg^2(n)$$

$$^{\circ}\ ^{\mathrm{a.}}\ T(n)\!=\!(n^{\log_5(3)})$$

• b.
$$T(n) = (lg^2(n)) \times$$

$$T(n) = (n^{\log_3(5)})$$

$$\circ$$
 d. $T(n) = (l \circ g_2(n))$

The correct answer is:
$$T(n) = (n^{\log_5(3)})$$

Question 3

Correct

Mark 1.00 out of 1.00

Solve the following Recursive Algorithm:

$$T(n)\!=\! \left\{ \! \! \begin{array}{l} \! 1 \!\!\!\! \begin{array}{l} \! if \!\!\!\! & \!\!\! n=1 \\ \! 2T(\frac{n}{2})\!+\!F'(n) \!\!\!\! \end{array} \right. \!\!\!\! if \!\!\!\! n>1 \!\!\!\!$$

Note: $F^{\,\prime}(n)$ function is in the order of O(n)

$$\circ$$
 a. $T(n) = O(n^2)$

$$\circ$$
 b. $T(n) = O(n)$

$$\circ \circ T(n) = O(\log(n))$$

The correct answer is: $T(n) = O(n \log n)$

12:41 PM	Quiz 4: Attempt rev
Question 4	
Correct	
Mark 1.00 d	out of 1.00
	the number of Recursive Calls are made when computing the sum of [3,5,4,8,1]?
a.	4 🗸
O b.	3
O C.	6
O d.	5
The cor	rect answer is: 4
Question 5	
Correct	
Mark 1.00 d	out of 1.00
shou l d	set 'S' of n integers and another integer x, an algorithm determine whether or not there exists two elements in S whose sum is x . A possible algorithm for this task is described below.
1) Sort	the elements in S using any efficient sorting algorithm.
2) Rem	ove the last element from S. Let y be the value of the removed element.
3) If S is	s non-empty, look whether an element z exist in S where z=x-y
	contains such an element z, then stop, since we have found y and z such y+z; otherwise repeat Step 2.
5) If S is	s empty, then no two elements in S sum to x.
Select t	he correct statement(s) regarding above approach.
✓ a.	Step 1 can be acheived through merge sort with $\Theta(n \lg n)$ time complexity.
□ b.	There are algorithms which can solve this task with better time complexity than above described algorithm
✓ c.	Time complexity of this algorithm is $\Theta(\text{nlg n})$.
_ d.	Best time complexity to do Step 3 is $\Theta(n)$.
	rect answers are: Step 1 can be acheived through merge sort with $\Theta(\text{nlg})$

Question 6 Correct					
Mark 1.00 out of 1.00					
For the following recurrence, select the correct expression for run time T(n) if the recurrence can be solved using Master Theorem, Otherwise, indicate that the Master Theorem does not apply.					
$T(n) = 7T(n/3) + n^2$					
b. T(n) =Θ(n)					
c. Master Theorem does not apply.					
$\bigcirc d. T(n) = \Theta(n^2 \log(n))$					
The correct answer is: $T(n) = \Theta(n^2)$					
Question 7					
Correct					
Mark 1.00 out of 1.00					
Order the steps involved in the Substitution Method in Solving Recurrences.					
Guess the form of the solution	Step 1	\$	•		
Solve for constants	Step 3	\$	•		
Verify by induction	Step 2	\$	~		
The correct answer is: Guess the form of the solution \rightarrow Step 1, Solve for					
constants \rightarrow Step 3, Verify by induction \rightarrow Step 2					