

Attention is not Explanation

2023.04.04

- Attention mechanism(attention)
 - Attention?
 - <u>자연어처리(machine translation)</u>분야에서 처음으로 고안되어 많은 영역에서 사용됨
 - <u>긴 시퀀스에서의 입력시퀀스의 정보를 보존하기 위한 기법, Bahdaunau, Loung가 처음으로 고안</u>
 - <u>현재는 Model transparency</u>을 높이기 위해서 사용되고 있음

Figure 1. Key developments in attention Seq2Seq Visual attention Self attention **BERT** Cho et al. (2014) Xu et al. (2015) Vaswani et al. (2017) Devlin et al. (2018) Sutskever et al. (2014) 0 2014 2016 2015 2017 2018 2019 2020 (2022)Align & Translate Hierarchical attention ViT, SwinTransformer Bahdanau et al. (2015) Yang et al. (2016) Luong et al. (2015)

© 2023 3billion, Inc. All rights reserved.

개요

- Attention mechanism(attention)
 - Preliminary

- Model input: $X \in \mathbb{R}^{T \times |V|}$
 - T: timestamp
 - |V|: dimension of one-hot vector (one-hot encoded words)
- Embedding matrix $\mathbf{E} \in \mathbb{R}^{|V| \times d}$
- Dense token : $x_e \in \mathbb{R}^{T \times d}$
- Hidden states : $\mathbf{h} = Enc(x_e) \in \mathbb{R}^{T \times m}$
- Similarity function (alignment function) $\phi: (\mathbf{h} \in \mathbb{R}^{T \times m}, Q \in \mathbb{R}^m \to \mathbb{R}^T)$
 - Hidden representation: *Q*
 - Additive : $v^T \tanh(W_1 \mathbf{h} + W_2 Q)$ (v, W_1 , W_2 : trainable param) [2]
 - Scaled Dot product : $\frac{hQ}{\sqrt{m}}$ [3]
- Attention weight: $\hat{\alpha} = \operatorname{softmax}(\phi(h, Q)) \in \mathbb{R}^T$.
- Dec
 - $\hat{y} = \sigma(\boldsymbol{\theta} \cdot h_{\alpha})$
 - $h_{\alpha} = \sum_{t=1}^{T} \hat{a}_t \cdot h_t$
 - σ : activation function
 - $|\mathcal{Y}|$: label set size

[2]: Bahdanau et al, 2014

[3]: Vaswani et al 2017

- [2]: Bahdanau et al, 2014
- [3]: Vaswani et al 2017

3billion

Interpretation

$$\hat{y} = wc + b$$

$$= w\sum a_t h_t + b$$

$$= w(a_1 h_1 + \dots + a_t h_t) + b$$

$$= w(a_1 x_{e,1} + \dots + a_t x_{e,t}) + b$$

3billion

© 2023 3billion, Inc. All rights reserved.

motivation

동일한 입력 시퀀스를 넣었을 때, 결과는 같은데 attention weight이 다르면 어떻게 될까요?
 (계산을 어찌어찌나오지만, 진짜 해석이 맞는가?)

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

original
$$\alpha$$

$$f(x|\alpha,\theta)=0.01$$

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

adversarial
$$\tilde{\alpha}$$

 $f(x|\tilde{\alpha},\theta) = 0.01$

Ref seq: A T A C
Input seq: A T G C
Attention weight1: 0.1 0.1 0.5 0.3 Pathogenicity Prediction: 0.855
Attention weight2: 0.0 0.0 0.3 0.7 Pathogenicity Prediction: 0.855

Figure 1: Heatmap of attention weights induced over a negative movie review. We show observed model at-

- 이미 잘 알려진 Explanation 방법론과 Correlation이 없다면 어떨까요?
 - 예 1) Permutation feature importance와 attention weight의 R^2 이 0.5정도밖에 안된다면?
 - 예 2) Leave one out (LOO)와 attention weight R^2 이 0.5정도밖에 안된다면?

1. Introduction

- Attention을 주로 다음과 같이 이용
 - Y(model output) 에 대해 large attention weights을 주는 입력 값을 탐색
 - "Attention provides an important way to explain the workings of neural models" [1]
 - 많은 연구에서 모델의 해석을 위해서 사용.
- 저자:
 - <u>"Attention을 해석으로 주요 가정은 높은 가중치가 부여된 입력이 모델의 출력에 지대한 영향"</u>
 - 그런데 과연 이 가정을 평가해본 적 있나?
- Research questions
 - 1. Gradient 방법론과 LOO(Leave-one-out)방법론과 상관관계가 있나?
 - 2. Attention weights가 다르면, 필연적으로 다른 결과값을 나타내는 것인가? (매번 attention weights가 다름에도 결과가 동일하다면 = adversarial attention)
 - => 심지어 permutational attention weigh을 준경우도, 결과가 비슷함. 과연 믿을 수 있나?

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

original
$$lpha$$
 $f(x|lpha, heta) = 0.01$

after 15 minutes watching the movie i was asking myself what to do leave the theater sleep or try to keep watching the movie to see if there was anything worth i finally watched the movie what a waste of time maybe i am not a 5 years old kid anymore

adversarial
$$\tilde{\alpha}$$
 $f(x|\tilde{\alpha},\theta)=0.01$

Figure 1: Heatmap of attention weights induced over a negative movie review. We show observed model attention (left) and an adversarially constructed set of attention weights (right). Despite being quite dissimilar, these both yield effectively the same prediction (0.01).

2. Datasets and Task

- 다양한 시퀀스, 테스크에서 Research question의 실험
 - **1.** Binary text classification
 - SST (Standford Sentiment Treebank): 1~5점의 ratin인데, (1,2): 부정, (4, 5): 긍정 라벨링을 함.
 - IMDB: sentiment
 - 20 Newsgroups (hockey vs baseball)
 - AG NewCorpus (world vs business)
 - MIMIC ICD9 (diabetes): ICU dataset.
 - X= discharge summaries
 - Y= ICD9 code for diabetes
 - MIMIC ICD9 (Chronic vs Acute Anemia)
 - X= discharge summaries (patient with anemia)
 - Y=acute vs chronic

2. Question Answering

- CNN News articles: '뉴스단락(본문)'->'질문'->'답변'
- bAbI:
 - *Task 1)* single supporting fact
 - Task 2)
- 3. NLI(Natural language infenrece)
 - *SNLI* dataset:
 - Entailment, contradictory, neutral 관계를 분류

Q1. Attention weight \cong alternative measures (e.g. feature importance)?

- alternative measures: Leave one out, gradient based
 - Kendall- τ correlation

Q2. Attention weight이 다르다면, 예측치도 많이 변하는가?

- counterfactual attention을 생성. (=adversarial attention)
- Change of output distribution: Total Variation Distance (TVD)
- Quantify the difference b/t tow attention distribution: Jensen-Shannon divergence

11

• Kendall- τ correlation

Eq 1. Kendall rank correlation

$$au = rac{ ext{(number of concordant pairs)} - ext{(number of discordant pairs)}}{ ext{(number of pairs)}}$$

- Change of output distribution: Total Variation Distance (TVD)
 - $TVD(\hat{y}_1, \hat{y}_2) = \frac{1}{2} \sum_{i=1}^{|y|} |\hat{y}_{1i} \hat{y}_{2i}|$
- Quantify the difference b/t tow attention distribution
 - Jensen-Shannon divergence
 - JSD(α_1, α_2) = $\frac{1}{2}KL[\alpha_1||(\alpha_1 + \alpha_2)/2] + \frac{1}{2}KL[\alpha_2||(\alpha_1 + \alpha_2)/2]$

Figure 1. Kendall rank correlation

- Correlation b/t attention Feature Importance measure (Algorithm 1)
 - Feature importance: Gradient based au_g
 - Model output change: LOO au_{loo}
 - Disconnect the computation graph at attention module (not flow through this layer)

Algorithm 1 Feature Importance Computations

$$\mathbf{h} \leftarrow \text{Enc}(\mathbf{x}), \, \hat{\alpha} \leftarrow \text{softmax}(\phi(\mathbf{h}, \mathbf{Q}))$$

$$\hat{y} \leftarrow \text{Dec}(\mathbf{h}, \alpha)$$

$$g_t \leftarrow |\sum_{w=1}^{|V|} \mathbb{1}[\mathbf{x}_{tw} = 1] \frac{\partial y}{\partial \mathbf{x}_{tw}} |, \forall t \in [1, T]$$

$$\tau_g \leftarrow \text{Kendall-}\tau(\alpha, g)$$

$$\Delta \hat{y}_t \leftarrow \text{TVD}(\hat{y}(\mathbf{x}_{-t}), \hat{y}(\mathbf{x})), \forall t \in [1, T]$$

$$\tau_{loo} \leftarrow \text{Kendall-}\tau(\alpha, \Delta \hat{y})$$

Table2

- 1. gradient 방법론과는 moderate ~ high correlation
- 2. BiLSTM의 경우는 correlation이 0.5을 못 넘음
- BiLSTEM: Bidrectional LSTM
- Average: Linear -> Relu-> Average 하는 엠베딩 방식

		Gradient (BiLSTM) $ au_g$		Gradient (Average) τ_g		Leave-One-Out (BiLSTM) τ_{loo}	
Dataset	Class	Mean \pm Std.	Sig. Frac.	Mean \pm Std.	Sig. Frac.	Mean \pm Std.	Sig. Frac.
SST	0	0.40 ± 0.21	0.59	0.69 ± 0.15	0.93	0.34 ± 0.20	0.47
	1	0.38 ± 0.19	0.58	0.69 ± 0.14	0.94	0.33 ± 0.19	0.47
IMDB	0	0.37 ± 0.07	1.00	0.65 ± 0.05	1.00	0.30 ± 0.07	0.99
	1	0.37 ± 0.08	0.99	0.66 ± 0.05	1.00	0.31 ± 0.07	0.98
ADR Tweets	0	0.45 ± 0.17	0.74	0.71 ± 0.13	0.97	0.29 ± 0.19	0.44
	1	0.45 ± 0.16	0.77	0.71 ± 0.13	0.97	0.40 ± 0.17	0.69
20News	0	0.08 ± 0.15	0.31	0.65 ± 0.09	0.99	0.05 ± 0.15	0.28
	1	0.13 ± 0.16	0.48	0.66 ± 0.09	1.00	0.14 ± 0.14	0.51
AG News	0	0.42 ± 0.11	0.93	0.77 ± 0.08	1.00	0.35 ± 0.13	0.80
	1	0.35 ± 0.13	0.81	0.75 ± 0.07	1.00	0.32 ± 0.13	0.73
Diabetes	0	0.47 ± 0.06	1.00	0.68 ± 0.02	1.00	0.44 ± 0.07	1.00
	1	0.38 ± 0.08	1.00	0.68 ± 0.02	1.00	0.38 ± 0.08	1.00
Anemia	0	0.42 ± 0.05	1.00	0.81 ± 0.01	1.00	0.42 ± 0.05	1.00
	1	0.43 ± 0.06	1.00	0.81 ± 0.01	1.00	0.44 ± 0.06	1.00
CNN	Overall	0.20 ± 0.06	0.99	0.48 ± 0.11	1.00	0.16 ± 0.07	0.95
bAbI 1	Overall	0.23 ± 0.19	0.46	0.66 ± 0.17	0.97	0.23 ± 0.18	0.45
bAbI 2	Overall	0.17 ± 0.12	0.57	0.84 ± 0.09	1.00	0.11 ± 0.13	0.40
bAbI 3	Overall	0.30 ± 0.11	0.93	0.76 ± 0.12	1.00	0.31 ± 0.11	0.94
SNLI	0	0.36 ± 0.22	0.46	0.54 ± 0.20	0.76	0.44 ± 0.18	0.60
	1	0.42 ± 0.19	0.57	0.59 ± 0.18	0.84	0.43 ± 0.17	0.59
	2	0.40 ± 0.20	0.52	0.53 ± 0.19	0.75	0.44 ± 0.17	0.61

Table 2: Mean and std. dev. of correlations between gradient/leave-one-out importance measures and attention weights. *Sig. Frac.* columns report the fraction of instances for which this correlation is statistically significant; note that this largely depends on input length, as correlation does tend to exist, just weakly. Encoders are denoted parenthetically. These are representative results; exhaustive results for all encoders are available to browse online.

• Result 2

=> 오히려 Gradient와 LOO와의 상관성이 더 높다

Figure 3: Mean difference in correlation of (i) LOO vs. Gradients and (ii) Attention vs. LOO scores using BiLSTM Encoder + Tanh Attention. On average the former is more correlated than the latter by $>0.2 \tau_{loo}$.

Figure 4: Mean difference in correlation of (i) LOO vs. Gradients and (ii) Attention vs. Gradients using BiLSTM Encoder + Tanh Attention. On average the former is more correlated than the latter by $\sim 0.25~\tau_g$.

3billion

- Attention weight을 shuffling하는 경우 어느정도의 예측값이 달라지나?
- Attention weight가 큰 경우, shuffling 하면 예측값이 많이 달라지겠지?

Algorithm 2 Permuting attention weights

$$\mathbf{h} \leftarrow \operatorname{Enc}(\mathbf{x}), \, \hat{\alpha} \leftarrow \operatorname{softmax}(\phi(\mathbf{h}, \mathbf{Q}))$$

$$\hat{y} \leftarrow \operatorname{Dec}(\mathbf{h}, \hat{\alpha})$$

$$\mathbf{for} \ p \leftarrow 1 \ \text{to} \ 100 \ \mathbf{do}$$

$$\alpha^p \leftarrow \operatorname{Permute}(\hat{\alpha})$$

$$\hat{y}^p \leftarrow \operatorname{Dec}(\mathbf{h}, \alpha^p) \qquad \triangleright \operatorname{Note} : \mathbf{h} \ \text{is not changed}$$

$$\Delta \hat{y}^p \leftarrow \operatorname{TVD}[\hat{y}^p, \hat{y}]$$

$$\mathbf{end} \ \mathbf{for}$$

$$\Delta \hat{y}^{med} \leftarrow \operatorname{Median}_p(\Delta \hat{y}^p)$$

3billion

Predicted as positive

Predicted as negative

- 일단, attention이 변경되는 경우 결과가 얼마나 바뀌는지 확인해보자.
 가정 "Attention 최대값이 높으면, 결과도 크게바뀔 것"
- X축 model output 차이
 - Max Attention 이 큼에도 불구하고, output difference도 크지 않다
- Y축 원본 attention의 최대값

Figure 6: **Median change in output** $\Delta \hat{y}^{med}$ (x-axis) densities in relation to the **max attention** ($\max \hat{\alpha}$) (y-axis) obtained by randomly permuting instance attention weights. Encoders denoted parenthetically. Plots for all corpora and using all encoders are available online.

© 2023 3billion, Inc. All rights reserved.

- Adversarial attention weight: Prediction결과는 그대로, attention weight은 다른
- Adversarial attention weigh을 찾고, 원래의 분포랑 어느정도 차이나는지 확인해보자.
 - 그래도 분포가 비슷하면 ... attention weight으로 해석 인정.

$$\begin{array}{ll}
\text{maximize} & f(\{\alpha^{(i)}\}_{i=1}^k) \\
\text{subject to} & \forall i \text{ TVD}[\hat{y}(\mathbf{x}, \alpha^{(i)}), \hat{y}(\mathbf{x}, \hat{\alpha})] \leq \epsilon \\
\text{there } f(\{\alpha^{(i)}\}_{i=1}^k) \text{ is:} \\
\end{cases}$$

Where $f(\lbrace \alpha^{(i)} \rbrace_{i=1}^k)$ is:

$$\sum_{i=1}^{k} JSD[\alpha^{(i)}, \hat{\alpha}] + \frac{1}{k(k-1)} \sum_{i < j} JSD[\alpha^{(i)}, \alpha^{(j)}]$$
(2)

Algorithm 3 Finding adversarial attention weights

$$\begin{array}{l} \mathbf{h} \leftarrow \operatorname{Enc}(\mathbf{x}), \hat{\alpha} \leftarrow \operatorname{softmax}(\phi(\mathbf{h}, \mathbf{Q})) \\ \hat{y} \leftarrow \operatorname{Dec}(\mathbf{h}, \hat{\alpha}) \\ \alpha^{(1)}, ..., \alpha^{(k)} \leftarrow \operatorname{Optimize Eq 1} \\ \textbf{for } i \leftarrow 1 \text{ to } k \textbf{ do} \\ \hat{y}^{(i)} \leftarrow \operatorname{Dec}(\mathbf{h}, \alpha^{(i)}) & \rhd \text{ h is not changed} \\ \Delta \hat{y}^{(i)} \leftarrow \operatorname{TVD}[\hat{y}, \hat{y}^{(i)}] \\ \Delta \alpha^{(i)} \leftarrow \operatorname{JSD}[\hat{\alpha}, \alpha^{(i)}] \\ \textbf{end for} \\ \epsilon\text{-max JSD} \leftarrow \max_{i} \mathbb{1}[\Delta \hat{y}^{(i)} \leq \epsilon]\Delta \alpha^{(i)} \end{array}$$

• Figure 8: 결과가 그대로인데, att wt 분포가 다른 경우가 꽤 많더라. 결과에 대한 잘못된 해석을 할 수도 있다.

Figure 8: Densities of **maximum JS divergences** (ϵ -max **JSD**) (x-axis) as a function of the **max attention** (y-axis) in each instance for obtained between original and adversarial attention weights.

© 2023 3billion, Inc. All rights reserved.

4. Discussion

- Feature importance와 Attention의 상관성이 약함을 제시함.
- Counterfactual attention weight을 해봐도 동일한 결과가 나오니, 해석시 각각의 해석이 발생할 수 있다.
 - NLP task에서 투명한 모델로 가는데 있어선 최선이지만…

Thank You

Web. 3billion.io

Order. portal.3billion.io

Email. support@3billion.io