RENDICONTI

DEL

SEMINARIO MATEMATICO

DELLA

UNIVERSITÀ DI PADOVA

(ESTRATTO)

ROBERTO MAGARI

Su una questione riguardante le chiusure di Moore

PADOVA

CEDAM - CASA EDITRICE DOTT. ANTONIO MILANI

1967

SU UNA QUESTIONE RIGUARDANTE LE CHIUSURE DI MOORE

ROBERTO MAGARI*)

Sunto: Sia $\langle E,K \rangle$ un C.G. (Cfr. [4]) 4) e G,X sottoinsiemi di E. Si studiano condizioni affinchè sia $K(G\cap KX)\supseteq X$.

1. Premessa.

Sia W un insieme non vuoto e sia $F_W = \bigcup_{0 \le i < \omega} W^{W^i}$ il clono (cfr. [1] cap. III) delle operazioni finitarie su W.

Allo scopo di affrontare un problema riguardante la classe equazionale di algebre « associata » a $\langle W, F \rangle$ dove F sia un fissato sottoinsieme di F_W , (cfr. [5] premessa), è opportuno caratterizzare gli elementi $f \in F_W$ che risultano, parlando imprecisamente, « esprimibili » mediante le operazioni binarie a loro volta « esprimibili » mediante f. In termini più precisi, tenuto conto del fatto che l'operatore K definito da :

(1)
$$KX = \text{clono generato da } X \qquad (X \subseteq F_W)$$

è un operatore di Moore (cfr. [1] cap. I e [2] cap. III) 1), ossia, secondo la terminologia di [4], $\langle F_W, K \rangle$ è un C.G., si tratta di caratteriz-

^{*)} Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca del C.N.R. (gruppo n. 37 del Comitato per la Matematica) per l'anno 66-67.

Indirizzo dell'A.: Istituto Matematico, Università, Firenze.

¹⁾ ved. anche il successivo n. 2.

Su una questione riguardante le chiusure di Moore

191

zare quegli elementi f di F_W per cui è :

$$(2) f \in K(W^{W^2} \cap K\{f\}).$$

In questa breve nota ho raccolto alcune semplici osservazioni preliminari sulla questione che hanno una portata più generale e che precisamente si inquadrano nel problema seguente:

sia $\langle E, K \rangle$ un C.G. e $G \subseteq E$. Si chiede di studiare l'insieme degli $X \subseteq E$ per cui è:

$$(3) X \subset K(G \cap KX).$$

Il problema ora esposto presenta interesse anche per il seguente motivo. Sia E l'insieme delle espressioni di un linguaggio logico e K l'operatore conseguenza, ossia l'operatore che ad ogni insieme X di espressioni associa l'insieme KX delle espressioni che sono conseguenza di X. È ben noto che $\langle E, K \rangle$ è allora un C.G. (cfr. ad esempio [4]). Se X è una teoria (ossia un chiuso di $\langle E, K \rangle$) e G è un insieme di espressioni, la condizione (3) (equivalente, come si vedrà più oltre, alla: $K(G \cap KX) = KX$ e quindi, se X è un chiuso, alla $K(G \cap X) = X$) esprime la circostanza che è possibile reperire in G un sistema di assiomi per X.

2. Richiami sui C.G.

Per comodità del lettore ricordo che un C.G. è un sistema $\langle E,K \rangle$ in cui :

- (4,1) E è un insieme
- (4,2) K è un'applicazione da $\mathcal{P}(E)$ a $\mathcal{P}(E)$ tale che:

$$(4,21) X \subseteq KX (X \in \mathcal{P}(E))$$

$$(4,22) K^2 = K$$

$$(4,23) K(X \cup Y) \supseteq KX (X, Y \in \mathcal{P}(E)).$$

Se ne deducono immediatamente le:

$$(4,24) \qquad K(X \cup Y) \supseteq KX \cup KY^{2})^{3})$$

$$(4,25) \qquad \text{se } X \subseteq Y \text{ allora } KX \subseteq KY^{2})$$

$$(4,26) \qquad K(X \cap Y) \subseteq KX \cap KY^{3})$$

$$(4,26)$$

Se $\langle E, K \rangle$ è un C.G., K si dice un C.G.-operatore o operatore di Moore su E.

Ricordo ancora che, detto C l'insieme dei « chiusi » di un C.G.

$$\begin{split} \langle \, E, K \, \rangle &\quad (\mathcal{C} = \{ X \, \epsilon \, \mathcal{P}(E) \, \colon X = KX \} = \\ &\quad = \{ X \, \epsilon \, \mathcal{P}(E) \colon \text{ esiste un } Y \, \epsilon \, \mathcal{P}(E)) \text{ con } X = KY \}) \end{split}$$

si ha:

(5,1) C è chiuso rispetto alle intersezioni (anche infinite) 4)

(5,2)
$$KX = \bigcap_{\substack{Y \in \mathcal{C} \\ X \subseteq Y}} Y \qquad (X \in \mathcal{P}(E)).$$

Viceversa se E è un insieme e $\mathcal{C} \subseteq \mathcal{P}(E)$ soddisfa la (5,1) esiste uno e un sol operatore di Moore K su E (quello appunto definito dalla (5,2)), per cui \mathcal{C} è l'insieme dei chiusi di $\langle E,K \rangle$.

²) Per un qualunque $K\colon \mathcal{P}(E)\to \mathcal{P}(E)$ le (4,23), (4,24), (4,25), (4,26) sono ovviamente equivalenti.

³⁾ Più in generale valgono le:

⁴⁾ La proposizione va intesa secondo la convenzione per cui $\bigcap_{X\in\emptyset}X=E$, U $X=\varnothing$. X $\in\emptyset$

Sarà utile nel seguito la seguente:

Def. 1. Sia $\langle E, K \rangle$ un C.G. e $Y \subseteq E$. Si dirà operatore relativo a Y l'applicazione K_Y da $\mathcal{P}(Y)$ a $\mathcal{P}(Y)$ definita da :

$$(6) K_Y X = Y \cap KX (X \subseteq Y).$$

Facilmente si verifica che $\langle Y, K_Y \rangle$ è un C.G.

3. Ora e nel seguito $\langle E,K \rangle$ indicherà sistematicamente un C.G. e \ominus l'insieme dei suoi chiusi.

Si ha ovviamente:

PROP. 1. Se X, $G \in \mathcal{P}(E)$, sono equivalenti le condizioni :

$$(3) K(G \cap KX) \supseteq X$$

$$(3,1) K(G \cap KX) = KX.$$

DIM.

da (3) segue (3,1). Valga la (3), allora è:

(7)
$$K(G \cap KX) = KK(G \cap KX) \supseteq KX$$

e anche:

$$G \cap KX \subset KX$$

da cui:

(8)
$$K(G \cap KX) \subseteq KKX = KX$$

e dalle (7) e (8) segue la (3,1).

Che dalla (3,1) segua la (3) è ovvio.

Prop. 2. Sono equivalenti le condizioni:

$$(9,1) KX \cap KG \supseteq X$$

$$(9,2) KX \cap KG \supseteq KX$$

$$(9,3) KG \supseteq KX$$

$$(9,4) KG \supset X$$

$$(X, G \in \mathcal{P}(E))$$

e ciascuna di esse è condizione necessaria per la validità della (3).

DIM. L'equivalenza fra le (9,1), (9,2), (9,3), (9,4) è ovvia. Valga la (3).

Si ha:

$$K(KX \cap G) \subseteq KKX \cap KG = KX \cap KG$$

e dalla (3) segue ora la (9,1).

Che le (9) non siano in generale sufficienti per la validità della (3) è mostrato dal seguente:

Esempio a.

Sia \langle E, \leq \rangle un insieme totalmente ordinato avente almeno tre elementi distinti a, b, c (e supponiamo a < b < c) e K sia definito da:

(10) $KX = \{ y \in E : \text{ esiste almeno un } x \in X \text{ con } x \leq y \} \quad (X \subseteq E).$

 $\langle E, K \rangle$ è ovviamente un C.G. e posto $G = \{a\}, X = \{b\}$ si ha ovviamente $b \in KG$ cioè $X \subseteq KG$, ossia la (9, 4), mentre è:

$$K(G \cap KX) = K(\{a\} \cap \{y \in E : y \ge b\}) = K \varnothing = \varnothing \ni b$$

Fissato G prendiamo ora in considerazione i due insiemi:

$$\mathcal{F}_G = \{ X \in \mathcal{P}(E) : X \subseteq K (KX \cap G) \}$$

$$\overline{\mathcal{F}}_G = \{X \in \mathcal{C} : X \subseteq K (KX \cap G)\} = \{X \in \mathcal{C} : X \subseteq K (X \cap G)\} = \{X \in \mathcal{C} : X = K (X \cap G)\}$$

Ovviamente è:

(11)
$$X \in \mathcal{F}_G$$
 se e solo se $KX \in \overline{\mathcal{F}}_G$.

Si ha:

PROP. 3. FG è chiuso rispetto alle unioni (anche infinite).

$$K(G\cap K\underset{X}{\bigcup}\xi\cap\mathcal{M}X)\supseteq K(G\cap\underset{X}{\bigcup}\xi\cap\mathcal{M}KX)=K\underset{X}{\bigcup}(G\cap KX)\supseteq$$

$${\supseteq}_X {\underset{\varepsilon \ \, \cap \mathcal{M}}{\mathsf{U}}} K(G \cap KX) {\,\supseteq}_X {\underset{\varepsilon \ \, \cap \mathcal{M}}{\mathsf{U}}} X$$

cioè

$$\bigcup_{X\in\mathcal{M}}X\in\mathcal{F}_G$$
.

Minore interesse ha lo studio degli insiemi:

$$\mathcal{G}_X = \{G \in \mathcal{P}(E) : X \subseteq K(KX \cap G)\}; \ \overline{\mathcal{G}}_X = \{G \in \mathcal{C} : X \subseteq K(KX \cap G)\},\$$

ottenuti fissando X.

Banalmente si ha:

PROP. 4. G_X è permesso rispetto all'unione, ossia:

(12) se
$$G \in \mathcal{G}_X$$
 e $H \subseteq E$, $G \cup H \in \mathcal{G}_X$.

Quanto a $\overline{\mathcal{G}}_X$ si ha:

$$\overline{\mathcal{G}}_X = \{G \in \mathcal{C} : X \subseteq G\}$$

ossia se G è un chiuso le (9) sono sufficienti per la validità della (3). (In altri termini si ha:

(14) se
$$G \in \mathcal{C}$$
 allora $\mathcal{F}_G = \{X \in \mathcal{P}(E) : X \subseteq G\}$.

DIM. ovvia).

4. Allo scopo di facilitare, nei casi particolari, lo studio dell'insieme \mathcal{F}_G sarà utile considerare l'insieme:

$$\mathcal{R}_G = \{G \cap KX \colon X \in \mathcal{F}_G\}.$$

Sia poi C_G l'insieme dei chiusi di $\langle G, K_G \rangle$.

PROP. 5. Si ha:

$$(15) \qquad \mathcal{C}_G = \mathcal{R}_G = \{G \cap KX \colon X \subseteq E\} = \{G \cap X \colon X \in \overline{\mathcal{F}}_G\}.$$

DIM. Sia $F = G \cap KX$ con $X \subset E$. Si ha:

$$K_G F = K_G (G \cap KX) = G \cap K(G \cap KX) \subseteq G \cap KG \cap KX = G \cap KX = F$$

e poichè $\langle G, K_G \rangle$ è un C.G. si ha addirittura $K_G F = F$ ossia $F \in \mathcal{C}_G$. Sia $F \in \mathcal{C}_G$ cioè $(F \subseteq G \ e) F = K_G F$. È allora:

 $F = G \cap K F$ e quindi $F \subseteq K(G \cap KF)$ cioè $F \in \mathcal{F}_G$ onde $F \in \mathcal{R}_G$.

È poi ovvio che è $\mathcal{R}_G \subseteq \{G \cap KX : X \subseteq E\}$ onde i primi tre insiemi scritti coincidono. Dalla (11) segue poi che

$$\mathcal{R}_G = \{G \cap X \colon X \in \overline{\mathcal{F}}_G\}.$$

Sia ora $F \in \mathcal{C}_G$ e indichiamo con \mathcal{C}_F l'insieme $\{X \in \overline{\mathcal{F}}_G : G \cap X = F\}$ Facilmente si ha:

Prop. 6.
$$\overline{\mathcal{F}}_g = \bigcup_{F \in \mathcal{C}_g} \mathcal{E}_F$$
 .

DIM. Poichè per definizione è $\mathcal{E}_F \subseteq \overline{\mathcal{F}}_G$ basterà dimostrare che è $\overline{\mathcal{F}}_G \subseteq \bigcup_{F \in \mathcal{C}_G} \mathcal{E}_F$. Sia $X \in \overline{\mathcal{F}}_G$, posto $F = G \cap X$ segue dalla prop. 5 che F è un chiuso di $\langle G, K_G \rangle$ e si ha $X \in \mathcal{E}_F$. Ne segue la proposizione.

D'altronde è subito visto che per ogni $F \in \mathcal{C}_G$ è :

$$\mathcal{E}_F = \{KF\}.$$

Sia infatti $x \in \mathcal{E}_F$, cioè $X \in \overline{\mathcal{F}_G}$ e $X \cap G = F$. La (3,1) diviene, tenuto conto del fatto che X è chiuso:

$$(17) K(G \cap X) = X$$

cioè appunto X = KF.

Viceversa si ha:

$$G \cap KF = K_G F = F$$

e anche

$$K(G \cap KF) = KK_G F = KF$$

e da queste segue $KF \in \mathcal{E}_F$.

Su una questione riguardante le chiusure di Moore

197

Si arriva così alla seguente:

Prop. 7.
$$\overline{\mathcal{F}}_G = \{KF : F \in \mathcal{C}_G\}.$$

La prop. 7 è notevolmente utile perchè riduce lo studio di $\overline{\mathcal{F}}_{\!\mathit{G}}$ a quello di $\mathcal{C}_{\!\mathit{G}}$.

D'altra parte \mathcal{F}_G è legato a $\overline{\mathcal{F}}_G$ dalla:

(18)
$$\mathcal{F}_G = \{ X \in \mathcal{P}(E) : KX \in \overline{\mathcal{F}}_G \}.$$

5. La condizione (3) e l'equivalenza associata a K.

Ricordo che, secondo la terminologia di [4] (al quale rimando per maggiori dettagli) dato un C. G. $\langle E, K \rangle$ il preordine, \leq , e l'equivalenza R associati a K sono così definiti:

(19)
$$x \leq y$$
 se e solo se $y \in K\{x\}$

(20)
$$xRy$$
 se e solo se $x \le y$ e $y \le x$ (se e solo se,
$$\text{quindi,} \quad K\{x\} = K\{y\})$$

Indichiamo ora con Q il quantore su E associato alla R (cfr. [3]) definito, ricordo, da:

 $(21) \qquad QX = \{ y \in E : \text{ esiste un } x \in X \text{ con } yRx \} \qquad (X \subseteq E).$

Ovviamente è:

(22) Q è più fine di K, cioè:

(22,1)
$$QX \subseteq KX$$
 $(X \subseteq E)$ inoltre,

 $QKX = KX (X \subseteq E)$

cioè:

(23,1) ogni chiuso di $\langle E, K \rangle$ è unione di elementi di E/R.

$$(24) KQX = KX.$$

Indichiamo ora con ϱ , σ , k, le relazioni binarie definite su $\mathcal{P}(E)$ dalle :

$$(25) \qquad X \varrho \ Y \ \text{se e solo se} \ QX = QY$$

$$(26) \qquad G \ \sigma \ X \ \text{se e solo se} \ G, \ X \ \text{soddisfano la} \ (3)$$

$$(X, Y, G \in \mathcal{P}(E)).$$

(27) X k Y se e solo se KX = KY

Si verifica facilmente che:

PROP. 8.

- (i) ϱ , k sono di equivalenza
- (ii) ρ è più fine di k, cioè:

(ii, 1) se
$$X \varrho Y$$
 allora $X k Y$ $(X, Y \in \mathcal{P}(E))$.

Vale la seguente

Prop. 9. Sia $G_1 \varrho \ G_2$, $X_1 k \ X_2$, $(G_1, G_2, X_1, X_2 \in \mathcal{P}(E))$ allora è: $G_1 \sigma \ X_1$ se e solo se $G_2 \sigma \ X_2$. In particolare sono equivalenti le seguenti condizioni:

DIM. Tenuto conto delle considerazioni precedenti basterà dimostrare che sono equivalenti le (28,1), (28,2), (28,4).

L'equivalenza fra la (28,1) e la (28,4) segue dalla (11). Valga la (28,2) sia cioè:

$$K(QG \cap KX) = KX$$

allora è 5):

$$K(G \cap KX) = KQ(G \cap KX) = KQ(G \cap QKX) =$$

$$=K(QG \cap QKX) = K(QG \cap KX) = KX,$$

vale cioè la (28,1). Che poi la (28,1) implichi la (28,2) segue immediatamente dalla $G \subseteq QG$, tenuto conto della prop. 4.

TESTI CITATI

- [1] P. M. Cohn, Universal Algebra, New York 1965.
- [2] P. Dubreil, M. L. Dubreil Jacotin, Leçons d'algèbre moderne, Paris 1961.
- [3] P. R HALMOS, Algebraic Logic, New York 1962.
- [4] R. Magari, Calcoli generali e spazi V_a (Calcoli generali I). Le Matematiche Vol. XXI, Fasc. 1 (1966) pagg. 83-108.
- [5] R. MAGARI, Su una classe equazionale di algebre.

Manoscritto pervenuto in redazione il 6-3-1967

⁵⁾ Ricordo che vale per Q la: $Q(X \cap QY) = QX \cap QY$ $(X, Y \in \mathcal{P}(E))$. Cfr. P. R. Halmos [3]).