

Exercise 1C

Question 3:

Let X'OX be a horizontal line, taken as the x-axis and let O be the origin. Let O represent 0.

Take OA = 1 unit and draw BA \perp OA such that AB = 1 unit, join OB. Then,

OB =
$$\sqrt{OA^2 + AB^2}$$

= $\sqrt{1^2 + 1^2} = \sqrt{2}$ units

With O as centre and OB as radius, drawn an arc, meeting OX at P.

Then,
$$OP = OB = \sqrt{2}$$
 units

Thus the point P represents $\sqrt{2}$ on the real line.

Now draw BC \(\text{OB} \) OB such that BC = 1 units

Join OC. Then,

OC =
$$\sqrt{\text{OB}^2 + \text{BC}^2}$$

= $\sqrt{\left(\sqrt{2}\right)^2 + 1^2}$ = $\sqrt{3}$ units

With O as centre and OC as radius, draw an arc, meeting OX at Q. The,

$$OQ = OC = \sqrt{3}$$
 units

Thus, the point Q represents $\sqrt{3}$ on the real line.

Now draw CD ⊥ OC such that CD = 1 units

Join OD. Then,

$$OD = \sqrt{OC^2 + CD^2}$$

$$=\sqrt{(\sqrt{3})^2+1^2}=\sqrt{4}=2$$
 units

Now draw DE \(\text{OD} \) OD such that DE = 1 units

Join OE. Then,

$$OE = \sqrt{OD^2 + DE^2}$$

$$=\sqrt{2^2+1^2}=\sqrt{5}$$
 units

With O as centre and OE as radius draw an arc, meeting OX at R.

Then, OR = OE =
$$\sqrt{5}$$
 units

Thus, the point R represents $\sqrt{5}$ on the real line.

********* END *******