

Annotation and filtering: hands on

Precision Oncology Course

Coral Fustero Torre
Bioinformatics Unit,

Structural Biology Programme.

cfustero@cnio.es | bioinformatics.cnio.es

Tumor type: hepatic met – colon adenocarcinoma

- Sequencing: Illumina
- Panel: HiSeq 2500
- Tumor control paired sample
- <u>File with somatic variants</u>: variants detected in tumor sample but not in the corresponding control
- Assembly version: hg19

tumor_passlable_filtered.vcf

File with somatic variants that have passed the defined filters

Execution of VEP through the web page

- **1.** Go to:
- http://www.ensembl.org/info/docs/tools/vep/index.html
- 2. We want to obtain the annotations using the ensembl transcript set
- **3.** We want in the output the following annotations:
 - HUGO gene symbol
 - The HGVS identifiers for coding DNA and protein
 - The Global Minor Allele Frequency of 1000 genomes project
 - gnomAD frequencies
 - SIFT and PolyPhen prediction and score
 - Condel prediction and score
- **4.** You can choose any other parameters to explore the results

HINTS: Remember to use the same assembly used in the variant detection.

Further info: http://www.ensembl.org/info/docs/tools/vep/online/input.html

Answer the following questions

- How many variants were in the input file?
- How many of them are not known in the database?
- How many genes and transcripts are affected by the variants?
- Is there any regulatory region overlapping some variant?
- Which is the most represented consequence category?
- Which is the most represented coding sequence consequence?
- How many variants fall in a coding region in some gene?
- What do the HGVS identifiers mean in each case?
- Does the prediction tool agree in the prediction of functional impact?
- Is there any clear polymorphism within the data?

... and explore the results

Download the file

- 1. Save the file in vcf format
- **2.** Check that the following annotations have been added to the INFO field:
 - Consequence
 - Existing_variation
 - Feature
 - PolyPhen
 - Condel
 - SIFT
 - SYMBOL
 - Protein_position
 - Amino_acids
 - HGVSc

- HGVSp
- AF
- CDS_position
- Allele
- Gene
- Feature_type
- cDNA_position
- Codons
- gnomAD_AF
- gnomAD_NFE_AF
- ExAC

Tumor type: hepatic met – colon adenocarcinoma

- Sequencing: Illumina
- Panel: HiSeq 2500
- Tumor control paired sample
- <u>File with somatic variants</u>: variants detected in tumor sample but not in the corresponding control
- Assembly version: hg19

Link to exercise file:

https://fundacioncnio-

my.sharepoint.com/:x:/g/personal/epineiro_cnio_es/EfnzQT8TszRAibwh_tK21MUBe7zTZ8Uah-Tr6qD5EU_I4Q?e=BQJiaw

- 1. Go to: pandrugs.org/
- 2. Upload the vcf file @ Genomic variants section
- 3. Download the results

Databases versions

Cosmic Release v82 - hg19

Selection of principal isoform:

PRINCIPAL:1 - Transcript(s) expected to code for the main functional isoform based solely on the core modules in the APPRIS database

PRINCIPAL:2 - Where the APPRIS core modules are unable to choose a clear principal variant (approximately 25% of human protein coding genes), the database chooses two or more of the CDS variants as "candidates" to be the principal variant

PRINCIPAL:3 - Where the APPRIS core modules are unable to choose a clear principal variant and more than one of the variants have distinct CCDS identifiers, APPRIS selects the variant with lowest CCDS identifier as the principal variant **PRINCIPAL:4** - Where the APPRIS core modules are unable to choose a clear principal CDS and there is more than one variant with a distinct (but consecutive) CCDS identifiers, APPRIS selects the longest CCDS isoform as the principal variant

PRINCIPAL:5 - Where the APPRIS core modules are unable to choose a clear principal variant and none of the candidate variants are annotated by CCDS, APPRIS selects the longest of the candidate isoforms as the principal variant **REST** (ALTERNATIVE:1 (Candidate transcript(s) models that are conserved in at least three tested non-primate species), ALTERNATIVE:2 (Candidate transcript(s) models that appear to be conserved in fewer than three tested non-primate species), NO LABEL (Non-candidate transcripts are not flagged and are considered as "MINOR" transcripts))

Reduced to relevant isoforms if PRINCIPAL

Open the results file and check the results

Try to answer the following questions:

- Which fields indicate polymorphisms?
- Which fields have information about the effect in the sequence?
- Which fields have information about the effect in the protein?
- Which fields give specific information about the pathology under study?
- In which processes are involved APC and FBXW7 gene?
- Is the gene KRAS frequently mutated in the same tumor type?
- Which variant has been reported more times in tumors?
- Should ATM gene be inhibited?
- Name 3 candidates as relevant variants in the disease

Thanks!

Credits for many class materials to:

Héctor Tejero: htejero@cnio.es

Elena Piñeiro: epineiro@cnio.es

Javier Perales-Patón: jperales@cnio.es

