

 unlikely that polynomialtime algorithms exist

NP-hard

Polynomially solvable

 efficient (polynomial time) algorithms exist

Running time is bounded by a polynomial in input size:

 $O(n^2)$ - the number of steps grows as Cn^2

O(nm) - the number of steps grows as Cnm

O(n logn) - the number of steps grows as Cnlogn

Living with NP-hard Problems

Problem 1 $r_i \mid \Sigma C_i$

 $1|r_j$, Pmtn $|\Sigma C_j$ and $1|r_j|\Sigma C_j$

SRPT

Schrage (1965)

2-approximation

Philips, Stein & Wein (1995)

Algorithm A (modification of the SRPT algorithm)

- 1. Solve the preemptive version of the problem using SRPT-rule.
- 2. Sequence the jobs non-preemptively in the order that they complete in the solution of the preemptive problem.

$1|r_j$, Pmtn $|\Sigma C_j|$ and $1|r_j|\Sigma C_j$

Proof. Let us renumber the jobs in the order they are completed in S_A . Then the completion time of each job j in schedule S_A is

$$C_{j}(S_{A}) = r_{u} + \sum_{k=u}^{j} p_{k}$$
 (1)

where \boldsymbol{u} is the nearest job that precedes job \boldsymbol{j} and starts at $\boldsymbol{r}_{\boldsymbol{u}}$.

Denote the completion time of job j in the preemptive schedule by $C_i(S_{Pmtn})$.

$$\begin{cases} r_u < C_u(S_{Pmtn}) < C_j(S_{Pmtn}) \\ \sum_{k=u}^{j} p_k \leq C_j(S_{Pmtn}) \end{cases} \longrightarrow \sum_{j=1}^{n} C_j(S_A) \leq 2\sum_{j=1}^{n} C_j(S_{Pmtn}).$$

The observation that $\Sigma C_j(S_{Pmtn})$ is a lower bound on the optimal value of the total completion time for the nonpreemptive schedule $\Sigma C_j(S_{OPT})$ provides the ratio guarantee of 2.