Kapitola 10 - Síť RBF a Iris data

Demonstrace použití RBF sítě na datech z databáze UCI.

Načtení knihovny NeuralNetworks

Nejdříve načteme knihovnu neuronových sítí.

In[37]:=

<< NeuralNetworks`

Pokud pracujete v Mathematice 8.0, vypněte ještě zobrazování chybové hlášky Remove::rmnsm. Tuto hlášku vyhazují funkce knihovny NeuralNetworks. Na funkci knihovny toto nemá žádný vliv.

In[38]:=

Off[Remove::rmnsm]

Import dat

Načtení dat ze souboru

Nastavíme si pracovní adresář na ten, kde máme uložen aktuální notebook, načítaná data musejí být ve stejném adresáři.

In[39]:=

SetDirectory[NotebookDirectory[]]

Out[39]=

D:\Dokumenty\BP

A načteme data.

In[40]:=

data = Import["iris.data"];

Načtení dat přímo z internetu

Jiná možnost je importovat data přímo z internetu - příklad pro UCI databázi (stejná data jako v předchozím příkladu - načtení dat ze souboru).

In[41]:=

data :

Import["http://ftp.ics.uci.edu/pub/machine-learning-databases/iris/iris.data"];

Předzpracování dat

Předzpravování dat provedeme pomocí stejného postupu, který je popsán v kapitole 5 - Dopředná síť a Iris data.

2 10-rbf-iris.nb

```
data2 = Drop[data, -1];
inData = data2[[All, 1;; 4]];(*vstupní parametry*)
outDataTmp = data2[[All, 5]];(*výstupní parametr*)
outVal = Tally[outDataTmp][[All, 1]];
encode = MapIndexed[#1 -> Normal[SparseArray[#2 -> 1, {Length[outVal]}]] &, outVal];
outData = Flatten[outDataTmp] /. encode;
```

Zpracování dat neuronovou sítí

Inicializace sítě - zadáme trénovací množinu, rozdělenou na vstupní a výstupní data, počet neuronů, případně můžeme zadat i aktivační funkci neuronu. Počet neuronů se zadává jako kladné celé číslo.

Vytvořenou síť si uložíme do proměnné "net".

Můžeme si nechat zobrazit nějaké další informace o vytvořené síti.

```
Out[49]:=

NetInformation[net]

Out[49]:

Radial Basis Function network. Created 2011-5-23 at 0:31.

The network has 4 inputs and 3 outputs. It consists of 4 basis functions of Sigmoid type. The network has a linear submodel.
```

Natrénujeme síť pomocí funkce "NeuralFit", které zadáme naší síť (proměnná "net"), trénovací množinu ("inData" a "outData") a počet učících kroků.

Funkce NeuralFit vyprodukuje naučenou síť a záznam o průběhu učení - obě tyto návratové hodnoty si ukládáme (do proměnné "net2" a "record").

```
[n[50]:=
{net2, record} = NeuralFit[net, inData, outData, 20];
```


Máme síť naučenou a můžeme se podívat na to, jak odpovídala během učení. Síť má 3 výstupy, proto

10-rbf-iris.nb

následující příkaz vyprodukuje 3 grafy. Kadždý graf ukazuje počet správně a špatně klasifikovaných dat dané třídy v průběhu učení.

Můžeme se podívat na klasifikaci pomocí "data/model" diagramu. Graf je interaktivní - pomocí myši ho můzeme otáčet, posouvat (Shift + myš) a zoomovat (Ctrl + myš). Čím víšší hodnoty jsou na diagonále, tím vyšší je úspěšnost klasifikace.

4 10-rbf-iris.nb

Síť je možné si nechat symbolicky vyhodnotit - pro větší sítě je to ale už zcela nepřehledné, nicméně aktivační funkce tam zcela jistě poznáte.

Síť funguje v *Mathematic*e jako klasická funkce, takže ji můžeme dávat parametry - včetně symbolů.

10-rbf-iris.nb 5

```
net2[{x1, x2, x3, x4}]
Out[53]=
                         \{1.99266 +
                                                                                                                                                             15.1068
                                   1 + e^{0.0971394 \ (-6.78163+x1)^2 + 0.0971394 \ (-2.95348+x2)^2 + 0.0971394 \ (-3.57257+x3)^2 + 0.0971394 \ (-2.50002+x4)^2}
                                                                                                                                                16.0859
                                   1 + e^{0.12748 (-5.87704 + x1)^2 + 0.12748 (-2.78839 + x2)^2 + 0.12748 (-4.62212 + x3)^2 + 0.12748 (-1.96525 + x4)^2}
                                                                                                                                                  2.57865
                                   1 + e^{0.37472(-5.71108+x1)^2 + 0.37472(-2.7526+x2)^2 + 0.37472(-5.35046+x3)^2 + 0.37472(-1.58289+x4)^2}
                                                                                                                                                       0.549714
                                   \frac{1+e^{0.751278 (-6.26069+x1)^2+0.751278 (-3.20722+x2)^2+0.751278 (-4.76204+x3)^2+0.751278 (-0.530066+x4)^2}}{1+e^{0.751278 (-6.26069+x1)^2+0.751278 (-0.530066+x4)^2}}
                                  0.499497 \times 1 - 0.0312294 \times 2 + 0.433139 \times 3 - 0.347379 \times 4, -1.13228 - 0.347379 \times 4
                                                                                                                                                             22.7775
                                  1 + e^{0.0971394 (-6.78163+x1)^2 + 0.0971394 (-2.50002+x4)^2} + e^{0.0971394 (-6.78163+x1)^2 + 0.0971394 (-2.50002+x4)^2}
                                                                                                                                                  25.4697
                                   1 + e^{0.12748 (-5.87704 + x1)^2 + 0.12748 (-2.78839 + x2)^2 + 0.12748 (-4.62212 + x3)^2 + 0.12748 (-1.96525 + x4)^2}
                                                                                                                                                  6.51487
                                   \frac{1 + e^{0.37472 (-5.71108 + x1)^2 + 0.37472 (-2.7526 + x2)^2 + 0.37472 (-5.35046 + x3)^2 + 0.37472 (-1.58289 + x4)^2}{1 + e^{0.37472 (-5.71108 + x1)^2 + 0.37472 (-2.7526 + x2)^2 + 0.37472 (-5.35046 + x3)^2 + 0.37472 (-1.58289 + x4)^2}}
                                                                                                                                                         3.73049
                                   \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-3.20722 + x2)^2 + 0.751278 (-4.76204 + x3)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-0.530066 + x4)^2}} + \frac{1}{1 + e^{0.7
                                  0.669871 x1 + 0.101667 x2 - 0.841274 x3 + 0.409786 x4, 0.13962 +
                                                                                                                                                             7.6707
                                   1 + e^{0.0971394 (-6.78163+x1)^2 + 0.0971394 (-2.95348+x2)^2 + 0.0971394 (-3.57257+x3)^2 + 0.0971394 (-2.50002+x4)^2}
                                                                                                                                                  9.38387
                                   1 + e^{0.12748 (-5.87704 + x1)^2 + 0.12748 (-2.78839 + x2)^2 + 0.12748 (-4.62212 + x3)^2 + 0.12748 (-1.96525 + x4)^2} + 1 + e^{0.12748 (-5.87704 + x1)^2 + 0.12748 (-2.78839 + x2)^2 + 0.12748 (-4.62212 + x3)^2 + 0.12748 (-1.96525 + x4)^2}
                                                                                                                                                 3.93623
                                   1 + e^{0.37472 (-5.71108 + x1)^2 + 0.37472 (-2.7526 + x2)^2 + 0.37472 (-5.35046 + x3)^2 + 0.37472 (-1.58289 + x4)^2}
                                                                                                                                                          3.18078
                                   \frac{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-3.20722 + x2)^2 + 0.751278 (-4.76204 + x3)^2 + 0.751278 (-0.530066 + x4)^2}}{1 + e^{0.751278 (-6.26069 + x1)^2 + 0.751278 (-3.20722 + x2)^2 + 0.751278 (-4.76204 + x3)^2 + 0.751278 (-0.530066 + x4)^2}}
                                  0.170374 \times 1 - 0.070438 \times 2 + 0.408135 \times 3 - 0.0624069 \times 4
```

V následující kapitole se podíváme podrobněji na metody učení sítě.

Prohlášení

Tento text je součástí bakalářské práce Adama Činčury "Demonstrační aplikace pro podporu kurzu neuronových sítí" na FEL ČVUT 2011. Vznikl úpravou textu Petra Chlumského.