Double COM-Poisson models: modelling mean and dispersion in the analysis of count data.

Eduardo Elias Ribeiro Junior ^{1 2} Clarice Garcia Borges Demétrio ²

¹Statistics and Geoinformation Laboratory (LEG-UFPR) ²Department of Exact Sciences (ESALQ-USP)

24th May 2018

jreduardo@usp.br | edujrrib@gmail.com

Outline

- 1. Introduction
- 2. Double COM-Poisson models
- 3. Data analysis
- 4. Final remarks

1

Introduction

Standard regression models

Generalized Linear Models (GLM) (Nelder & Wedderburn 1972):

Let (y_i, x_i) a cross-section data set where y_i 's are iid realizations of Y_i according to the exponential family (EF) distribution. The GLM is specified as follow

$$\begin{array}{ccc} Y_i \sim \mathrm{EF}(\mu_i, \phi) & \Longrightarrow & \mathrm{E}(Y_i) = \mu_i \\ g(\mu_i) = \boldsymbol{x}_i^\top \boldsymbol{\beta} & \Longrightarrow & \mathrm{Var}(Y_i) = \phi V(\mu_i). \end{array}$$

Main limitations

- The exponential family is often restrictive (variance function);
- ▶ The only choice for count data analysis is the Poisson distribution;
- Only the mean parameter is allowed to depend on covariates.

1.1

Introduction **Motivating data set**

Assessing toxicity of nitrofen in aquatic systems

Implication in Biology

- Nitrofen is a herbicide that was used extensively for the control of broad-leaved and grass weeds in cereals and rice;
- It is also acutely toxic and reproductively toxic to cladoceran zooplankton;
- ▶ Nitrofen is no longer in commercial use in the U.S.

Experimental study

- Assess the reproductive toxicity on a species of zooplankton (*Ceriodaphnia dubia*);
- Fifty animals were randomized into batches of ten;
- Each batch was put in a solution with a concentration level of nitrofen;
- ► The number of live offspring was recorded.

Descriptive analysis

Figure: (a) Number of live offsprings observed for each nitrofen concentration level and (b) scatterplot of the sample means against sample variances.

2

Double COM-Poisson models

COM-Poisson distribution

Probability mass function Shmueli et al. (2005) takes the form

$$\Pr(Y = y \mid \lambda, \nu) = \frac{\lambda^y}{(y!)^{\nu} Z(\lambda, \nu)}, \qquad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}},$$

where $\lambda > 0$ and $\nu \geq 0$.

- ▶ Moments are not available in closed form;
- Expectation and variance can be approximated by

$$\mathrm{E}(\mathrm{Y}) pprox \lambda^{1/\nu} - \frac{\nu-1}{2\nu}$$
 and $\mathrm{Var}(\mathrm{Y}) pprox \frac{\lambda^{1/\nu}}{\nu}$.

Reparametrized COM-Poisson

Following Ribeiro Jr et al. (2018), we use the mean-parametrized COM-Poisson, introducing the new parameter μ by means of the approximation,

$$\mu = \lambda^{1/\nu} - \frac{\nu - 1}{2\nu} \quad \Rightarrow \quad \lambda = \left(\mu + \frac{(\nu - 1)}{2\nu}\right)^{\nu}.$$

Model parameters:

- $\mu \in \mathbb{R}_+$, the mean parameter;
- ▶ $\nu \in \mathbb{R}_+$, the dispersion parameter $(\nu < 1 \implies \text{over- and } \nu > 1 \implies \text{underdispersion}).$

Orthogonality property

Figure: Deviance surface contour plots under original and proposed parametrization for four simulated data sets. $\phi = \log(\nu)$.

Regression models for mean and dispersion

Double COM-Poisson regression models (DCMP)

Let (y_i, x_i, z_i) a data set where y_i 's are iid realizations of Y_i according to the COM-Poisson distribution distribution and x_i and z_i are sub-vectors of the covariates vector. The DCMP is specified as follow

$$Y_i \sim \text{CMP}_{\mu}(\mu_i, \nu_i), \quad \text{where} \quad g(\mu_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta} \quad \text{and} \quad g(\nu_i) = \boldsymbol{z}_i^{\top} \boldsymbol{\gamma}.$$

Log-likelihood function

$$\ell(\boldsymbol{\beta}, \boldsymbol{\gamma}; \boldsymbol{y}) = \sum_{i=1}^{n} \left\{ \nu_{i} \log \left(\mu_{i} + \frac{\nu_{i} - 1}{2\nu_{i}} \right) - \nu_{i} \log(y_{i}) - \log[Z(\mu_{i}, \nu_{i})], \right\}$$

where
$$\mu_i = g^{-1}(\boldsymbol{x}_i^{\top}\boldsymbol{\beta})$$
 and $\nu_i = g^{-1}(\boldsymbol{z}_i^{\top}\boldsymbol{\gamma})$

Estimation and inference

- Parameters estimates are obtained by numerical maximization of the log-likelihood function (by BFGS algorithm)
- Standard errors for regression coefficients (for mean and dispersion) are obtained based on the observed information matrix

$$V_{\beta|\gamma} = V_{\beta} - (V_{\beta,\gamma}V_{\gamma}^{-1})^{\top}V_{\beta,\gamma}$$
 and $V_{\gamma|\beta} = V_{\gamma} - (V_{\gamma,\beta}V_{\beta}^{-1})^{\top}V_{\gamma,\beta}$.

Strategies

- ▶ **Joint:** Estimate $(\hat{\beta}^{\top}, \hat{\gamma}^{\top})^{\top}$ using the complete log-likelihood function;
- ▶ **Fixed:** Set the $\hat{\beta}$ in the Poisson MLE, estimate γ (with fixed β) and then estimate the Hessian matrix for $(\hat{\beta}^{\top}, \hat{\gamma}^{\top})^{\top}$.

3

Data analysis

Model specification

For mean:

Cubic:
$$\log(\mu_i) = \beta_0 + \beta_1 \operatorname{dose}_i + \beta_2 \operatorname{dose}_i^2 + \beta_3 \operatorname{dose}_i^3$$

For dispersion:

Constant: $\log(\nu_i) = \gamma_0$,

Linear: $\log(\nu_i) = \gamma_0 + \gamma_1 \mathsf{dose}_i$,

Quadratic: $\log(\nu_i) = \gamma_0 + \gamma_1 \mathsf{dose}_i + \gamma_2 \mathsf{dose}_i^2 e$

Cubic: $\log(\nu_i) = \gamma_0 + \gamma_1 \operatorname{dose}_i + \gamma_2 \operatorname{dose}_i^2 + \gamma_3 \operatorname{dose}_i^3$.

Table: Estimates and standard errors.

		Estimate (Erro Padrão)						
Parameter	Constant	Linear	Quadratic	Cubic				
$egin{array}{c} eta_0 \ eta_1 \ eta_2 \ eta_3 \end{array}$	2.981 (0.035) ^a -3.952 (0.287) ^a -2.131 (0.260) ^a -0.543 (0.221) ^a	2.978 (0.042) ^a -3.980 (0.365) ^a -2.161 (0.311) ^a -0.573 (0.212) ^a	2.972 (0.049) ^a -4.041 (0.447) ^a -2.218 (0.351) ^a -0.604 (0.206) ^a	2.975 (0.047) ^a -4.013 (0.418) ^a -2.197 (0.330) ^a -0.597 (0.195) ^a				
γ ₀ γ ₁ γ ₂ γ ₃	0.048 (0.205) - - -	0.295 (0.211) -5.244 (1.363) ^a -	0.243 (0.259) -7.013 (2.307) ^a -3.984 (2.444)	0.353 (0.227) -5.729 (1.844) ^a -2.918 (1.904) 1.522 (1.412)				

Est $(EP)^a$ indicates |Est/EP| > 1,96.

Table: Model fit measures and comparisons.

	D.f	Deviance	AIC	χ^2	$\Pr(>\chi^2)$
Constant	45	288.127	298.127	_	_
Linear	44	274.111	286.111	14.0163	0.0002
Quadratic	43	270.493	284.493	3.6179	0.0572
Cubic	42	269.503	285.503	0.9898	0.3198

Fitted mean and dispersion values

Figure: (a) Fitted values and confidence bands of 95% for de dispersion and (b) mean and variances obtained from the fitted model.

Comparison of the strategies for fitting

Figure: Comparison of (a) maximized likelihoods, estimates and standard errors and (b) computational times.

4

Final remarks

Concluding remarks

Summary

- We show how to allow mean and dispersion parameters to depend on covariates in the COM-Poisson regression model;;
- Estimation and inference can be done based on the likelihood paradigm;
- Using the orthogonality property in the fixed strategy for fitting is faster.

Future work

- Perform a simulation study to evaluate estimators properties;
- ► Compare the results with others approaches, DGLM's (Lee & Nelder 2006) and GAMLSS (Rigby & Stasinopoulos 2005).

Extended abstract is available on ResearchGate (in portuguese)

https://www.researchgate.net/publication/316880329

All codes (in R) and source files are available on GitHub https://github.com/jreduardo/rbras2018

Acknowledgments

National Council for Scientific and Technological Development (CNPq), for their support.

References

- Lee, Y. & Nelder, J. A. (2006), 'Double hierarchical generalized linear models (with discussion)', *Journal of the Royal Statistical Society. Series C (Applied Statistics)* **55**, 139–185.
- Nelder, J. & Wedderburn, R. (1972), 'Generalized linear models', *Journal of the Royal Statistical Society. Series A (Statistics in Society)* **135**, 370–384.
- Ribeiro Jr, E. E., Zeviani, W. M., Bonat, W. H., Demétrio, C. G. B. & Hinde, J. (2018), 'Reparametrization of COM-Poisson regression models with applications in the analysis of experimental data', arXiv (Statistics Applications and Statistics Methodology).
- Rigby, R. A. & Stasinopoulos, D. M. (2005), 'Generalized additive models for location, scale and shape (with discussion)', *Journal of the Royal Statistical Society. Series C (Applied Statistics)* **54**, 507–554.
- Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. & Boatwright, P. (2005), 'A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution', *Journal of the Royal Statistical Society. Series C: Applied Statistics* **54**(1), 127–142.