EINFÜHRUNG IN DIE KOMPLEXE ANALYSIS Blatt 2

Jendrik Stelzner

21. April 2014

Aufgabe 1 (Konjugierte Nullstellen)

Bekanntermaßen handelt es sich bei der Konjugation um einen \mathbb{R} -Algebraautomorphismus von \mathbb{C} (dem einzigen neben der Identität $\mathrm{id}_{\mathbb{C}}$). Inbesondere ist $\bar{x}=x$ für alle $x\in\mathbb{R}$. Es ist daher für alle $\rho\in\mathbb{C}$

$$\overline{P(\rho)} = \sum_{k=0}^{n} a_k \rho^k = \sum_{k=0}^{n} a_k \bar{\rho}^k = P(\bar{\rho}).$$

Also ist für alle $\rho \in \mathbb{C}$

$$0 = P(\rho) \Leftrightarrow 0 = \overline{P(\rho)} \Leftrightarrow 0 = P(\overline{\rho}).$$

Aufgabe 2 (Niveaulinien komplexwertiger Funktionen)

Für $z=x+iy\in\mathbb{C}$ ist

$$z^2 = (x + iy)^2 = x^2 - y^2 + i2xy,$$

also

$$\Re(z^2) = x^2 - y^2 \text{ und } \Im(z^2) = 2xy.$$

Für die Niveaulinie von $\Re\left(z^2\right)$ für $c\in\mathbb{R}$ ergibt sich, dass $x^2-y^2=c$ für $x^2< c$ keine Lösung besitzt, und sonst, dass $y=\pm\sqrt{x^2-c}$. Für die Niveulinienen von $\Im\left(z^2\right)=2xy$ ergibt sich für c=0 die Vereinigung von reeler und imaginärer Achse, und für $c\neq 0$ gerade y=2/(cx). Für ein Bild der Niveulinien siehe Abbildung 1 auf Seite 2

Für $z=x+iy\in\mathbb{C}$ ist

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{x}{x^2+y^2} + i\frac{-y}{x^2+y^2},$$

also

$$\Re\left(\frac{1}{z}\right) = \frac{x}{x^2 + y^2} \text{ und } \Im\left(\frac{1}{z}\right) = \frac{-y}{x^2 + y^2}.$$

Abbildung 1: Niveulinien von $\Re\left(z^2\right)$ (links) und $\Im\left(z^2\right)$ (rechts).

Um die Niveulinien von $\Re(f)$ für $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}, z \mapsto z^{-1}$ zu bestimmen bemerken wir zunächst, dass f involutiv ist. Es ist daher für alle $c \in \mathbb{R}$ und $z \in \mathbb{C} \setminus \{0\}$

$$\Re(f(z)) = c \Leftrightarrow f(z) \in \{c + i\lambda : \lambda \in \mathbb{R}\} \setminus \{0\}$$
$$\Leftrightarrow z \in f^{-1}(\{c + i\lambda : \lambda \in \mathbb{R}\} \setminus \{0\})$$
$$\Leftrightarrow z \in f(\{c + i\lambda : \lambda \in \mathbb{R}\} \setminus \{0\}).$$

Wir bestimmen also $f(\{c+i\lambda:\lambda\in\mathbb{R}\}\setminus\{0\})$. Für c=0 erhalten wir so, dass

$$\Re(f(z)) = 0 \Leftrightarrow z \in i\mathbb{R} \setminus \{0\}.$$

Wir behaupten, dass für $c \in \mathbb{R}, c \neq 0$

$$f(\left\{c+i\lambda:\lambda\in\mathbb{R}\right\}) = \left\{z\in\mathbb{C}\setminus\left\{0\right\}: \left|z-\frac{1}{2c}\right| = \frac{1}{2|c|}\right\}.$$

Dies ergibt sich daraus, dass die Abbildung $\mathbb{R} \to S^1 \setminus \{1\}, \lambda \to (i\lambda + 1)/(i\lambda - 1)$ eine Bijektion ist, und für $c \in \mathbb{R}, c \neq 0$.

$$\begin{split} &f(\{c+i\lambda:\lambda\in\mathbb{R}\})=f(\{c-i\lambda:\lambda\in\mathbb{R}\})=\left\{\frac{1}{c-i\lambda}:\lambda\in\mathbb{R}\right\}\\ &=\left\{\frac{1}{c-i\lambda}-\frac{1}{2c}:\lambda\in\mathbb{R}\right\}+\frac{1}{2c}=\left\{\frac{c+i\lambda}{2c(c-i\lambda)}:\lambda\in\mathbb{R}\right\}+\frac{1}{2c}\\ &=-\frac{1}{2c}\left\{\frac{i\lambda+c}{i\lambda-c}:\lambda\in\mathbb{R}\right\}+\frac{1}{2c}=-\frac{1}{2c}\left\{\frac{i\frac{\lambda}{c}+1}{i\frac{\lambda}{c}-1}:\lambda\in\mathbb{R}\right\}+\frac{1}{2c}\\ &=-\frac{1}{2c}\left\{\frac{i\lambda+1}{i\lambda-1}:\lambda\in\mathbb{R}\right\}+\frac{1}{2}=-\frac{1}{2c}\left(S^1\smallsetminus\{1\}\right)+\frac{1}{2c}\\ &=\left\{z\in\mathbb{C}\setminus\{0\}:\left|z-\frac{1}{2c}\right|=\frac{1}{2|c|}\right\}. \end{split}$$

Die Niveulinien von $\Re(1/z)$ sind also die imaginäre Achse ohne 0 und die Kreise mit Radius 1/(2|c|) um den Mittelpunkt 1/(2c) für $c \in \mathbb{R}, c \neq 0$.

Für die Niveulinien von $\Im(1/z)$ bemerken wir, dass $\Im(1/z)=\Re(1/(iz))$. Die Niveulinien von $\Im(1/z)$ ergeben sich also aus denen von $\Re(1/z)$ durch Rotation um $\pi/2$.

Skizziert sehen die Niveulinien aus wie in Abbildung 2 auf Seite 3.

Abbildung 2: Niveulinien von $\Re(1/z)$ und $\Im(1/z)$.

Aufgabe 3 (Real- und Imaginärteil quadratischer Funktionen)

Wir behaupten, dass $p(x,y)=ax^2+bxy+cy^2$ mit $a,b,c\in\mathbb{R}$ genau dann Realteil des komplexen Polynoms $P(z)=Az^2+Bz+C$ ist, wenn c=-a.

Ist c=-a, so ist für beliebiges $b\in\mathbb{R}$

$$p(x,y) = ax^{2} + bxy - ay^{2} = \Re\left(\left(a - \frac{1}{2}bi\right)(x + iy)^{2}\right).$$

Sei andererseits $p = \Re(P)$. Da

$$\Re(C) = \Re(P(0)) = p(0,0) = 0$$

ist $p=\Re(Az^2+Bz)$, wir können also o.B.d.A. davon ausgehen, dass C=0. Da für alle $z=x+iy\in\mathbb{C}$

$$0 = p(x, y) - p(-x, -y) = \Re(P(z)) - \Re(P(-z))$$

= $\Re(P(z) - P(-z)) = \Re(Bz - B(-z)) = \Re(2Bz) = 2\Re(Bz)$

ist $\Re(Bz)=0$ für alle $z\in\mathbb{C}$. Da $0=\Re(B\bar{B})=\Re(|B|^2)=|B|^2$ folgt daraus, dass B=0. Also ist $P(z)=Az^2$ für $A=x_A+iy_A\in\mathbb{C}$. Es ist daher

$$p(x,y) = \Re(Az^2) = \Re((x_A + iy_A)(x + iy)^2) = x_A x^2 - 2y_A xy - x_A y^2,$$

was die Behauptung zeigt.

Man bemerke noch, dass p genau dann Imaginärteil eines komplexen Polynoms vom Grad n ist, wenn p Realteil eines komplexen Polynoms vom Grad n ist, denn $p = \Im(P) \Leftrightarrow p = \Re(-iP)$, bzw. $p = \Re(P) \Leftrightarrow p = \Im(iP)$ für jedes komplexe Polynom P. Also ist p genau dann Imaginärteil eines Polynoms $P(z) = Az^2 + Bz + C$, wenn a = -c.

Aufgabe 4 Betrag der Exponentialabbildung

Für alle $z\in\mathbb{C}$ ist

$$|e^z| = \left|e^{\Re(z) + i\Im(z)}\right| = \left|e^{\Re(z)}e^{i\Im(z)}\right| = \left|e^{\Re(z)}\right| \left|e^{i\Im(z)}\right| = e^{\Re(z)}.$$