

CERCA PER A SATISFACCCIÓ DE RESTRICCIONS

Resolució de problemes de presa de decisió per exploració d'alternatives

Coneixement, Raonament i Incertesa.

Exemple: Assignar valors a les següents lletres, de manera que es verifiqui la següent suma:

s'han de trobar valors del conjunt: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

que assignats a les variables: {D, E, Y, N, R, O, S, M}

Verifiquin la suma donada

Solució:
$$\{D=4, E=5, Y=9, N=5, R=0, O=0, S=9, M=1\}$$

Problema de satisfacció de restriccions: és un problema en el que a partir d'un conjunt de variables:

Variables=
$$\{X_1, X_2, \dots, X_n\}$$

i a partir d'un domini de valors que poden prendre aquestes variables:

$$Domini = \{v_1, v_2, \dots, v_k\}$$

es vol trobar un conjunt d'assignacions de totes les variables amb valors del domini que verifiquin un conjunt de

Restriccions del problema

Arbre de satisfacció de restriccions: és una representació de coneixement que és un arbre semàntic amb les següents particularitats:

Lèxic: restriccions, conjunt de variables, variables assignades i no-assignades, domini de les variables,

Estructural:

b=#Domini de les variables (factor d'expansió)

d=#Conjunt de variables (profunditat de l'arbre)

Semàntica: Node= Comprovació de restriccions sobre les variables assignades.

Branca = Assignació d'un valor del domini a una variable.

Procedimental:

- Proc. Backtracking.
- Proc. Backtracking amb forward checking.
- Proc. comproven les restriccions sobre un conjunt de variables assignades.

Arbre de satisfacció de restriccions: b=k, prof.=n

Exercici: Descriviu el problema de resoldre un puzzle com un problema de satisfacció de restriccions.

Variables= $\{X_1, X_2, \dots, X_n\} = ?$

Domini = $\{v_1, v_2, \dots, v_k\} = ?$

Restriccio ns?

Exercici: Descriviu el problema de la construcció d'un quadrat màgic, com un problema de satisfacció de restriccions

Variables=
$$\{X_1, X_2, \dots, X_n\} = ?$$

$$Domini = \{v_1, v_2, \dots, v_k\} = ?$$

Restriccio ns?


```
Funcio Backtracking(LVA,LVNA,R,D)
    <u>Si</u> (LVNA és buida) llavors Retornar(LVA) <u>fSi</u>
    Var=Cap(LVNA);
    Per a cada (valor del Domini(Var, D) que podem assignar a Var) fer
        <u>Si</u> (SatisfaRestriccions([Var valor],LVA,R)) <u>llavors</u>
             Res=Backtracking(Insertar([Var, valor],LVA),Cua(LVNA),R,D);
             Si (Res és una solució completa) <u>llavors</u>
                 Retornar(Res);
             Fsi
        Fsi
    Fper
    Retornar(Falla)
FFuncio
```

SatisfaRestriccions(A,LVA,R): Retorna cert si l'assignació A afegida la llista d'assignacions LVA satisfan les restriccions R.

Domini(V,D): Retorna un valor del domini D per a la variable V.

Insertar(e,L):Retorna la llista resultant d'afegir e al principi de L.

Cua(L) i Cap(L): Retornen la cua i el cap de L, respectivament.

Tipus de restriccions

- Restriccions unaries: una única variable involucrada.
 - e.g. *X≠ verd*
- Restriccions binaries: dues variables involucrades.
 - e.g. $X \neq Y$
- Restriccions ordre superior: 3 o més variables involucrades.
 - e.g. restriccions criptoaritmetiques.
- Preferencies (soft constraints) e.g. vermell és millor que el verd. Sovint es representa per una funció de cost d'assignació per a cada variable → problemes de d'optimizació restringida.

Exemple: Descripció del problema de les N reines sobre una taulell de NxN com un problema de satisfacció de restriccions.

Variables=
$$\{X_1, X_2, \dots, X_N\} = V$$

X_i:Representala reina de la fila i

Domini =
$$\{1,...,N\} = D$$

k: Columna on es posa la reina

Restriccio ns:

$$\forall X_i, X_j \in V: j > i \Rightarrow \begin{cases} X_i \neq X_j \\ X_j \neq X_i + (j-i) \\ X_j \neq X_i - (j-i) \end{cases}$$

L'arbre que generarà el *backtracking* pel problema de les 4 reines

Sobre l'eficiència de la representació del coneixement

- Formulació 1:

Força bruta

$$\binom{64}{8}$$
 = 4.426.165.368 92 solucions

 Formulació 2: Donat que no pot haver-hi més d'una reina per fila, podem replantejar el problema com:

"col·locar una reina en cada fila del taulell de forma que no s'amenacin". En aquest cas, per a veure si dues reines s'amenaçen només cal veure si comparteixen columna o diagonal.

Per tant, tota solució del problema pot representar-se amb una 8-tupla $(x_1,...,x_8)$ en la que x_i és la columna en la que es col·loca la reina que està en la fila i del taulell.

L'espai de solucions consta de 88 8-tuples (**16.777.216** 8-tuples)

• restriccions explícites:

$$C_i = \{1,2,3,4,5,6,7,8\} \ 1 \le i \le 8$$

• restriccions implícites:

No pot haver-hi dues reines en la mateixa columna o en la mateixa diagonal

- **Formulació 3:** Donat que no pot haver-hi més d'una reina per columna, només fa falta que considerem les 8-tuples $(x_1,...,x_8)$ que siguin permutacions de (1,2,...,8) L'espai de solucions consta de 8! 8-tuples (**40.320** 8-tuples)

Representació del problema Graf de restriccions

- Variables: FTUWRO
- Dominis: {0,1,2,3,4,5,6,7,8,9}
- Restriccions: Alldiff(F,T,U,W,R,O)

$$-O+O=R+10\cdot X_1$$

$$-X_1 + W + W = U + 10 \cdot X_2$$

$$- X_2 + T + T = O + 10 \cdot X_3$$

$$- X_3 = F, T \neq 0, F \neq 0$$

$$X_1 X_2 X_3$$

$$\{0,1\}$$

Anem a pintar

Millora de l'eficiència de CSP (constraint satisfaction problem)

- Introducció d'heurisitques
- Per a CSPs alguns metodes generals poden augmentar l'eficiencia en CPU.,
 - Quina variable és la següent a ser assignada?
 - En quin ordre hem de triar els valors que provem?
 - Podem detectar fallades abans?
 - Podem aprofitar l'estructura del problema?


```
Podem ordenar LVNA
Funcio Backtracking(LVA,LVNA,R,D)
                                                        de forma diferent?
    Si (LVNA és buida) llavors Retornar(LVA) fSi
    Var=Cap(LVNA);
    <u>Per a cada</u> (valor del Domini(Var, D) que podem assignar a Var) <u>fer</u>
        <u>Si</u> (SatisfaRestriccions([Var valor],LVA,R)) <u>llavors</u>
            Res=Backtracking(Insertar([Var, valor],LVA),Cua(LVNA),R,D);
            Si (Res és una solució completa) <u>llavors</u>
                 Retornar(Res);
            Fsi
        Fsi
    Fper
    Retornar(Falla)
FFuncio
```

SatisfaRestriccions(A,LVA,R): Retorna cert si l'assignació A afegida la llista d'assignacions LVA satisfan les restriccions R.

Domini(V,D): Retorna un valor del domini D per a la variable V.

Insertar(e,L):Retorna la llista resultant d'afegir e al principi de L.

Cua(L) i Cap(L): Retornen la cua i el cap de L, respectivament.

Minimum remaining values (MRV)

- És a dir: heruística de la variable més 'restringida'
- Regla Heuristica: triar la variable amb menys moviments legals
 - Detectarà fallades de forma inmediata si X no té moviments possibles sense explorar primer les altres variables

Heurística de grau de variable

 Regla Heurística: seleccionar la variable que està involucrada en el major número de restriccions sobre altres variables no assignades.

Però en quin ordre hem de provar els valors de les variables?


```
Podem ordenar els valors
Funcio Backtracking(LVA,LVNA,R,D)
                                                      de forma diferent?
    <u>Si</u> (LVNA és buida) llavors Retornar(LVA) <u>fSi</u>
    Var=Cap(LVNA):
    Per a cada (valor del Domini(Var, D) que podem assignar a Var) fer
        Si (SatisfaRestriccions([Var valor],LVA,R)) llavors
            Res=Backtracking(Insertar([Var, valor],LVA),Cua(LVNA),R,D);
            Si (Res és una solució completa) <u>llavors</u>
                Retornar(Res);
            Fsi
        Fsi
    Fper
    Retornar(Falla)
FFuncio
```

SatisfaRestriccions(A,LVA,R): Retorna cert si l'assignació A afegida la llista d'assignacions LVA satisfan les restriccions R. Domini(V,D): Retorna un valor del domini D per a la variable V. Insertar(e,L):Retorna la llista resultant d'afegir e al principi de L. Cua(L) i Cap(L): Retornen la cua i el cap de L, respectivament.

Ordre de valor per menys restrictiu

Permet 1 valor per a SA

Permet 0 valors per a SA

- Heurística de valor menys restrictiu
- Regla Heurística: donada una variable triem el valor que menys restingeix les altres variables
 - deixa la màxima flexibilitat per a assignacions següents

Millora de l'eficiència de CSP (constraint satisfaction problem)

- Introducció d'heurisitques
- Per a CSPs alguns metodes generals poden augmentar l'eficiencia en CPU.,
 - Quina variable és la següent a ser assignada?

– En quin ordre hem de triar els valors que provem?

- Podem detectar fallades abans?
- Podem aprofitar l'estructura del problema?

- Podem detectar una fallada inevitable abans?
- Idea del *Forward checking:* mantenim la traça del valors legals que queden per a cada variable no assignada.

Acabem la cerca (de la branca) quan una variable dins LVNA es queda sense valors.

- Assignar {WA=vermell}
- Efectes sobre altres variables connectades per restriccions a WA
 - NT no pot tenir vermell
 - SA no pot tenir vermell

- Assignar {Q=verd}
- Efectes sobre altres variables connectades per restriccions a Q
 - NT no pot ser verd
 - NSW no pot ser verd
 - SA no pot ser verd

- Assignar {V=blau}
- Efectes sobre altres variables connectades per restriccions a V
 - NSW no pot ser blau
 - SA és buida
- FC ha detectat que les assignacions parcials són inconsistents amb les restriccions i és produeix bactracking.


```
<u>Funcio</u> BackForwardChecking(LVA,LVNA,R,DA)
    Si (LVNA és buida) llavors Retornar(LVA) fSi
    Var=Cap(LVNA);
    Per a cada (valor del Domini(Var, DA) que podem assignar a Var) fer
        Si (SatisfaRestriccions('(Var valor),LVA,R)) i
          (DA=ActualitzarDominis(('(Var valor), LVNA,R)<>fals) <u>llavors</u>
            R= BackForwardChecking (Insertar('(Var valor), LVA), Cua(LVNA), R, DA);
            Si (R és una solució completa) llavors
                Retornar(Resultat);
            Fsi
        Fsi
    Fper
    Retornar(Falla)
FFuncio
```

ActualitzarDominis('(X v),L,R): Retorna la llista dels dominis per a les variables no assignades de L considerant les restriccions de R despres d'assignar X amb v, retorna fals si algun domini actualitzat és buit.

Exemple: Aplicació del Backtracking amb *forward-checking* al problema de les 6 reines.

Propagació de Restriccions (CP)

- CP va més enllà del FC forçant repetidament restriccions localment
 - Necessita ser més ràpid que fer la cerca per a ser efectiva

 La consistencia d'Arcs (Arc-consistency: AC) és un procediment sistemàtic per a la propagació de restriccions.

- Un Arc X → Y és consistent si
 per a cada valor x de X hi ha algun valor y de Y consistent amb x
 (notar que és una propietat dirigida)
- Considerem l'estat de cerca desprès d'assignar WA i Q:

 $SA \rightarrow NSW$ és consistent si SA=blau i NSW=vermell

- Un Arc X → Y és consistent si per a cada valor x de X hi ha algun valor y de Y consistent amb x
- NSW → SA és consistent si
 NSW=vermell i SA=blau
 NSW=blau i SA=???

- Podem forçar la consitència:
 - Un Arc es pot fer consitent eliminant les x que no tenen consitencia amb y

En el cas: eliminant blau de NSW

- Continuem propagant restriccions....
 - − Comprovar $V \rightarrow NSW$
 - No consistencia per V = vermell
 - Eliminem vermell de V

Continuem propagant restriccions....

- $SA \rightarrow NT$ no és consistent
 - I no es pot fer consistent sense deixar el domini vuit!!!
- L'Arc consistency detecta fallada abans que FC

Comprovació d'Arc consistency

- S'executa com a preprocess o desprès de cada assignació
- AC s'ha de correr repetidament fins que no hi ha inconsistencies
- Compromís
 - Requereix sobrecarrega però generalment és més efectiu que la cerca directa
 - Pot eliminar grans parts (inconsistents) de l'espai d'estats més efectivament que ho fa la cerca
- Necessitem un mètode sistemàtic per la comprovació d'arcs
 - Si X perd un valor, els veïns de X han de ser recomprobats:
 - i.e. els arcs entrants podern convertirse en inconsistents de nou (els sortints es mantenen consistents).

Algorisme d'Arc consistency (AC-3)

```
funcio AC-3(LVNA,R,D) retorna D

variables locals: A, inicialment la cua dels arcs del problema

mentre A no es buida fer

(X, Y) \leftarrow CAP(A)

A = cua(A)

si ELIMINAR-VALORS-INCONSISTENTS (X, Y, ref D)

per tot Z en VEINS[X]-Y fer

A = [A \mid (Z, X)]

retorna D
```

```
funcio ELIMINAR-VALORS-INCONSISTENTS(X, Y, D) retorna veritat sii eliminen algun valor
    eliminat← fals
    per tot x in D[X] do
        si cap valor y de D[Y] permet (x,y) satisfer la restricció entre X and Y
        llavors eliminar x de D[Y]; eliminat← cert
    retorna eliminat
```

(Mackworth, 1977)

Cerca Local per a CSPs

- Usa una representació de "estat complet"
 - Estat inicial = totes les variables tenen assignades un valor
 - Estat successor = canviar 1 (o més) valors
- Per a CSPs
 - Permetre estats amb restricions no completes (al contrari de backtracking)
 - Les operacions (a cada pas) reassignem valors de variables
 - Ex: hill-climbing en n-reines
- Selecció de Variable: selecció aletatoria entre les variables conflictives (no compleixen alguna restricció)
- Selecció de valor: heuristica min-conflicts
 - Seleccionar el nou valor que resulti en un número de conflictes minim amb les alters variables

Cerca local per a CSPs

exemple Min-conflicts

Usem la heurística min-conflicts amb hill-climbing.

exemple 2 Min-conflicts

- Una solució de "dos passos" per al problema de les 8-reines amb heurística min-conflicts
- A cada pas es tria una reina per a la reassignació en la seva columna
- L'algorisme mou la reina en la casella de min-conflict. Els empats es resolen aleatoriament.

Comparativa d'algorismes CSP en diferents problemes

Problem	Backtracking	BT+MRV	Forward Checking	FC+MRV	Min-Conflicts
USA	(> 1,000K)	(> 1,000K)	2K	60	64
n-Queens	(> 40,000K)	13,500K	(> 40,000K)	817K	4K
Zebra	3,859K	1K	35K	0.5K	2K

USA: 4 colorejat

n-queens: n = 2 to 50

Zebra: https://en.wikipedia.org/wiki/Zebra_Puzzle

Exemples de Problemes de satisfacció de restriccions:

- 1. Problema de la criptoaritmètica.
- 2. Problema de les N reines.
- 3. Problema de la construcció d'un quadrat màgic.
- 4. Problema de la resolució d'un puzzle.
- 5. Problema de la correspondència de grafs.
- 6. Problema de la interpretació 3D d'imatges 2D.
- 7. Problemes d'assignació: p.ex. Qui explica que
- 8. Problemes d'horaris:p.ex: quan s'ofereix una assignatura i on
- 9. Gestió de transport
- 10. Gestió de producció

Fig. 8 (a) Triangular and tetrahedral meshes of another trabecular bone structure. (b) One local region with some tetrahedral elements removed. (c) and (d) show zoom-in details of a local region with topology ambiguity (the red circle). The green...

Yongjie Zhang, Jin Qian

Dual Contouring for domains with topology ambiguity

Computer Methods in Applied Mechanics and Engineering Volumes 217?220 2012 34 - 45 http://dx.doi.org/10.1016/j.cma.2012.01.004

Constraint Programming

"Constraint programming represents one of the closest approaches computer science has yet made to the Holy Grail of programming: the user states the problem, the computer solves it."

Eugene C. Freuder, Constraints, April 1997