- (A) da trato igualitario a los votantes: si dos cambian sus votos, la decisión colectiva queda igual.
- (N) da trato igualitario a las altenativas: revierte todos los votos, cambiando cada 1 por -1 y cada -1 por 1, la decisión colectiva queda igual.
- (E) aporta decisividad: si hubiera empate y algunos abstencionistas votaran 1, ceteris paribus, basta para romperlo en favor de 1.

Sin estas propiedades, la regla sesgaría la decisión colectiva en pro de algunos votantes o alternativas, o sería gratuitamente indecisiva.

Demostración del teorema de May de Schwartz

Supón que f cumple las propiedades (A), (N) y (E).

(a) Si $(x_1, ..., x_n)$ tiene tantos 1s como -1s y $(-x_1, ..., -x_n)$ cambia el 1^{er} 1 por el 1^{er} -1, el 2^{do} 1 por el 2^{do} -1, etc. entonces por (A) no cambia el resultado:

$$f(x_1,...,x_n) = f(-x_1,...,-x_n) \text{ por (A)}$$

= $-f(x_1,...,x_n) \text{ por (N)}$

Y dado que 0 es su propio negativo:

$$f(x_1, ..., x_n) = 0$$

- (b) Si $(x_1,...,x_n)$ tiene k más 1s que -1s y $(x'_1,...,x'_n)$ remplaza los primeros k 1s por 0s entonces $(x'_1,...,x'_n)$ tiene tantos 1s como -1s y por (a) $f(x'_1,...,x'_n) = 0$ por (E) $f(x_1,...,x_n) = 1$
- (c) Si $(x_1, ..., x_n)$ tiene menos 1s que -1s entonces $(-x_1, ..., -x_n)$ tiene más 1s que -1s y por (b) $f(-x_1, ..., -x_n) = 1$ por (N) $-f(x_1, ..., x_n) = 1$ y plt $f(x_1, ..., x_n) = -1$
- (a)+(b)+(c) define la regla de mayoría QED