

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

МАТЕРИАЛЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Технологии хранения в системах кибербезопасности

	(наименование дисциплины (модуля) в соответствии с учебным планом)	
Уровень	специалитет	
	(бакалавриат, магистратура, специалитет)	
Форма обучения	пиная	
	(очная, очно-заочная, заочная)	
Направление(-я)		
подготовки	говки 10.05.04 Информационно-аналитические системы безопасности	
	(код(-ы) и наименование(-я))	
Институт	Кибербезопасности и цифровых технологий (ИКБ)	
	(полное и краткое наименование)	
Кафедра	КБ-2 «Информационно-аналитические системы кибербезопасности»	
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))	
Лектор	к.т.н., Селин Андрей Александрович, Бугаев Александр Александрович	
(сокращенно – ученая степень, ученое звание; полностью – ФИО)		ученое звание; полностью – ФИО)
Используются в данной редакции с учебного года 2024/2025		2024/2025
		(учебный год цифрами)
Проверено и согласовано «»2024 г А.А. Б		А.А. Бакаев
	_	(подпись директора Института/Филиала
		с расинфровкой)

ПРАКТИЧЕСКАЯ РАБОТА № 7

«Знакомство с объектным хранилищем MinIO и графовой СУБД Neo4j»

Цель работы – получение практических навыков развертывания и использования объектного хранилища MinIO и графовой СУБД Neo4j.

Задание:

- 1. Запустите Unix-подобную систему (например, Debian 12.6.0 64-bit¹).
- 2. Создайте пользователя с именем формата **fio_nn**,

где f – первая буква фамилии на латинице;

- і первая буква имени на латинице;
- о первая буква отчества на латинице (при наличии),
- nn двузначный номер по списку в группе.

Добавьте его в группу sudo. Все дальнейшие действия необходимо выполнять от имени созданного пользователя.

- 3. Запустите терминал и установите Docker и Docker Compose.
- 4. Создайте каталог для нового проекта и сформируйте файл **docker-compose.yml** для развертывания **MinIO** (https://hub.docker.com/r/minio/minio) в режиме Single-Node Single-Drive (1 сервер, 1 диск).

Требования к запускаемым сервисам:

- последние 2 цифры номера порта, на котором будет развернут сервис, должны соответствовать номеру по списку в группе (например, для 15-12315, 8015, 9915 и т.п.);
- имя контейнера должно заканчиваться на символ подчеркивания и инициалы ФИО (например, для Иванова Петра Дмитриевича minio_ipd).

¹ Можно скачать готовый образ виртуальной машины по ссылке https://sourceforge.net/projects/osboxes/files/v/vb/14-D-b/12.6.0/64bit.7z/download

Пример файла docker-compose.yml:

5. Разверните MinIO с помощью Docker Compose.

- 6. Изучите веб-консоль MinIO (https://min.io/docs/minio/container/index.html):
- 6.1. Добавьте разделы (buckets). **Названия разделов должны заканчиваться на** дефис и инициалы ФИО (например, для Иванова Петра Дмитриевича pcap-ipd, reports-ipd, и т.п.).

Пример загрузки файлов:

6.2. Изучите, как работает **версионирование**. Для этого загрузите несколько различных версий файла с одинаковым названием в один и тот же раздел (в разделе должно быть включено версионирование).

- 6.3. Добавьте пользователей с различными правами. Проанализируйте, как для них работает веб-консоль.
- 7. Установите MinIO Client (https://min.io/docs/minio/linux/reference/minio-mc.html). Пример установки и проверки работоспособности:

curl https://dl.min.io/client/mc/release/linux-amd64/mc \

- --create-dirs \
- -o \$HOME/minio-binaries/mc

chmod +x \$HOME/minio-binaries/mc

export PATH=\$PATH:\$HOME/minio-binaries/

mc --help

8. Создайте алиас (alias) в mc (авторизуйтесь). Пример: mc alias set minio http://localhost:7007 ipd_07 qwerty123 mc admin info minio

- 9. Изучите команды MinIO Client (https://hub.docker.com/r/minio/mc/). Попрактикуйтесь в выполнении основных:
 - создание, удаление разделов;
 - добавление, обновление, удаление файлов;
 - поиск объектов;
 - отображение содержимого файлов;
 - другие команды (не менее 2).
- 10. Напишите скрипт/программу для работы с MinIO. Минимальный функционал:
 - создание и удаление разделов;
 - загрузка файлов в раздел;
 - скачивание файлов;
 - удаление файлов;
 - просмотр списка файлов в разделе.

Например, можно использовать библиотеку minio для Python.

Продемонстрируйте работу всех функций. **Названия разделов должны** заканчиваться на инициалы **ФИО** (например, files_ipd), а названия файлов – начинаться на них (ipd_01, ipd_02, ...).

11. Разверните MinIO в режиме Multi-Node Multi-Drive (не менее **2 серверов и 4 дисков**) и проверьте его работоспособность.

Пример файла docker-compose.yml:

Дополнительно: разверните MinIO в режиме Multi-Node Multi-Drive (не менее 2 серверов и 4 дисков) с использованием прокси-сервера Nginx для балансировки нагрузки на серверы MinIO и проверьте его работоспособность.

12. Создайте каталог для проекта и сформируйте файл **docker-compose.yml** для развертывания **Neo4j** (https://hub.docker.com/_/neo4j). Пример файла docker-compose.yml:

13. Разверните Neo4j с помощью Docker Compose.

14. Изучите функционал пользовательского интерфейса.

15. Изучите синтаксис написания запросов Cypher Query Language с использованием команды «:help cypher».

16. Изучите основные операции и возможности в Neo4j на примере графа «Movie Graph», выполняя последовательные действия в интерактивном режиме.

17. Сформируйте тестовый набор данных в формате CSV для импорта и создания графа в Neo4j (например, на сайте https://sqldatagenerator.com/generator). Поместите файл в каталог **import**.


```
"id", "firstName", "lastName", "phone", "email", "companyName"
"1", "Sammy", "Auer", "688-937", "Rhea.Wehner@gmail.com", "Company_1"
"2", "Jayden", "Padberg", "708-760", "Kraig_Ruecker@hotmail.com", "Company_2"
"3", "Eryn", "Rau", "503-796", "Tyreek83@hotmail.com", "Company_3"
"4", "Jett", "Gutmann", "682-250", "Sonia_Cummings@yahoo.com", "Company_1"
"5", "Dorthy", "Von", "479-969", "Nathaniel12@yahoo.com", "Company_2"
"6", "Nola", "Aufderhar", "130-851", "Pierce.Dickinson71@gmail.com", "Company_3"
"7", "Greyson", "Thiel", "120-983", "Avery_Heaney@gmail.com", "Company_1"
```

18. Импортируйте данные в Neo4j. Пример:

```
1 LOAD CSV WITH HEADERS FROM "file:///data.csv" as row
2 MERGE (n:Person_ipd {id: row.id, firstName: row.firstName, lastName: row.lastName, companyName: row.companyName, phone: row.phone, email: row.email} )

Added 499 labels, created 499 nodes, set 2994 properties, completed after 216 ms.

1 LOAD CSV WITH HEADERS FROM "file:///data.csv" as row 2 MERGE (c:Company_ipd {name: row.companyName})
```

Added 3 labels, created 3 nodes, set 3 properties, completed after 50 ms.

19. Создайте связи между двумя сущностями.

```
1 MATCH (p:Person_ipd), (c:Company_ipd)
2 WHERE p.companyName = c.name
3 CREATE (p)-[:WORK_IN]->(c)

Created 499 relationships, completed after 27 ms.
```

20. Проанализируйте полученный граф.

- 21. Выполните в созданном графе операции:
 - поиска, добавления, удаления узлов;
 - добавления, удаления свойств.
- 22. Добавьте новые сущности и атрибуты в ваш граф. Сформируйте новые связи. Проанализируйте полученные группы объектов.

