Quiz Part B - Question 4

Upload your typed/written solution to Quiz Part B - Question Four.

Question Four

Let $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2}, \dots, \mathbf{X_n})$ be i.i.d. random variables, each with a density

$$f(x, \theta) = \begin{cases} \frac{1}{\sqrt{2\pi}x\theta} \exp\left(-\frac{1}{2}\left[\frac{\log(x)}{\theta}\right]^2\right), & x > 0 \\ 0 & \text{elsewhere} \end{cases}$$

where $\theta > 0$ is a parameter.

- a) Prove that the family $L(\mathbf{X}, \theta)$ has a monotone likelihood ratio in $T = \sum_{i=1}^n (\log X_i)^2$.
- **b)** Argue that there is a uniformly most powerful (UMP) α size test of the hypothesis

$$H_0: \theta \leq \theta_0$$
 against $H_1: \theta > \theta_0$

and write down its structure.

c) Using the density transformation formula (or otherwise) show that

$$Y_i = \log X_i$$

has a $N(0, \theta^2)$ distribution.

Note: Density transformation formula: For Y=W(X):

$$|f_Y(y) = f_X(W^{-1}(y))|rac{dW^{-1}(y)}{dy}| = f_X(x)|rac{dx}{dy}|.$$

d) Using c) (or otherwise), find the threshold constant in the test and hence determine completely the uniformly most powerful α — size test φ^* of

$$H_0: heta \leq heta_0 \quad ext{versus} \quad H_1: heta > heta_0.$$

e) Calculate the power function $E_{\theta} \varphi^*$ and sketch a graph of the power function as precisely as possible.