Why should social scientists care about supervised learning?

Malte Schierholz & Christoph Kern

University of Mannheim, MZES Institute for Employment Research (IAB)

Malte.Schierholz@iab.de c.kern@uni-mannheim.de

February 6 and 7, 2018

Prediction Problems

A small selection of prediction problems:

- Predictive Policing: Calculate probability of future crimes to be committed
 - → Police can take precautionary actions
- Targeted Advertising: Predict interest in a product based on personal characteristics
 - ullet \rightarrow Advertising costs decrease
- Telematics auto insurance: Predict risk of car accident based on personal driving behavior
 - ullet ightarrow Safe drivers pay less for their insurance

Prediction Problems

Applied econometric perspective (Kleinberg et al. (2015) and Mullainathan et al. (2017)):

- Make use of new, high-dimensional data sources (text, images)
 - Predict future harvest or local poverty level from satellite images?
 - Predict hygiene of restaurants from restaurant reviews found online?

Prediction Problems

Applied econometric perspective (Kleinberg et al. (2015) and Mullainathan et al. (2017)):

- Make use of new, high-dimensional data sources (text, images)
 - Predict future harvest or local poverty level from satellite images?
 - Predict hygiene of restaurants from restaurant reviews found online?
- Classical statistical procedures involve prediction
 - First stage in instrumental variable estimation
 - Heterogenous treatment effects in causal inference
 - Other inference tasks may be seen to involve prediction implicitly
- More policy prediction problems

Model Misspecification

Model Misspecification

Model Misspecification

Standard model assumption: $f(x) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

What if ...

- this assumption of linearity does not hold?
- there are interactions between covariates?
- → Model misspecification!

But how do we know?

Model Misspecification

Standard model assumption: $f(x) = \beta_0 + \beta_1 x_1 + ... + \beta_p x_p$

What if

- this assumption of linearity does not hold?
- there are interactions between covariates?
- → Model misspecification!

But how do we know?

- Boosting (and other methods) estimates more flexible functions f(x) and thus makes predictions that are similar or better.
- Compare predictive performance (e.g., out-of-sample R^2 , MSE, ...) from standard model with boosted model?
- Large difference would suggest a misspecified model

Model Misspecification: An Example

Or maybe we should estimate and interpret f(x) directly, without ever making the linear assumption?

A political science replication study taken from Hainmueller and Hazlett (2014)

Model Misspecification: An Example

Setting:

- ullet N = 126 political instability events (internal wars / regime changes)
- What factors can predict if a genocide will happen?

Key differences between original and replication study

- automatic model selection vs. extensive human specification search for an appropriate model
- Automatic method is less susceptible to misspecification bias
- Higher predictive power: R^2 similar (32% vs. 34%) but automatic method has significant higher ROC-AUC

Model Misspecification: An Example

Table 4 Predictors of genocide onset: OLS versus KRLS

Estimator	OLS	KRLS				
		$\partial y/\partial x_{ij}$				
	β	Average	1st Qu.	Median	3rd Qu	
Prior upheaval	0.009*	0.002	-0.001	0.002	0.004	
1	(0.004)	(0.003)				
Prior genocide	0.263*	0.190*	0.137	0.232	0.266	
	(0.119)	(0.075)				
Ideological char. of elite	0.152	0.129	0.086	0.136	0.186	
	(0.084)	(0.076)				
Autocracy	0.160*	0.122	0.092	0.114	0.136	
	(0.077)	(0.068)				
Ethnic char. of elite	0.120	0.052	0.012	0.046	0.078	
	(0.083)	(0.077)				
Trade openness (log)	-0.172*	-0.093*	-0.142	-0.073	-0.048	
	(0.057)	(0.035)				
Intercept	0.659					
-	(0.217)					

Note. Replication of the "structural model of genocide" by Harff (2003). Marginal effects of predictors from OLS regression and KRLS regression with standard errors in parentheses. For KRLS, the table shows the average of the pointwise derivative as well as the quartiles of their distribution to examine the effect heterogeneity. The dependent variable is a binary indicator for genocide onsets. N = 126. $^{+9}_{-9} < 0.05$.

- Similar marginal effects on most variables except for "prior upheaval"
- With log(prior upheaval) the OLS effect goes away
 - → misspecification in OLS model (taken from Hainman)

(taken from Hainmueller and Hazlett, 2014, p. 165)

Occupation Coding

Assign verbatim answers into an official classification

How to find the most appropriate category efficiently?

Two approaches to automation:

- Automated coding: Computer assigns codes by itself (requires top-category)
- Computer-assisted coding: Computer suggests possible codes to a human coder who is responsible for the final decision (requires category ranking)

Different algorithms can suggest possible codes. Key idea of machine learning:

- Use coded data from the past to predict future codes
- Possible algorithms: SVM, Regression, Nearest Neighbor, Boosting, ...

Different algorithms can suggest possible codes. Key idea of machine learning:

- Use coded data from the past to predict future codes
- Possible algorithms: SVM, Regression, Nearest Neighbor, Boosting, ...

Practical challenges (what makes my research difficult):

- Prediction problem is high-dimensional (1200 categories in target variable, 25.000 variables (words) in predictor matrix), but my training data is comparatively small (90.000 observations)
 - ullet ightarrow specialized algorithm needed
- Even human coders often disagree about the correct code
 - ullet ightarrow ask respondents during the interview for more details

(see Schierholz et al. 2018 for details)

Performance of automated coding (ALWA data, $N_{train} = 29,740$, $N_{test} = 3,189$)

The Common Task Framework

Speech Recognition, Natural Language Processing and the Common Task Framework

The following discussion is based on Liberman (2015) on Donoho (2017)

Speech Recognition (e.g. Amazon Echo) is essentially a prediction problem:

Speech (digital audio signal) \rightarrow written words

- Difficult problem without obvious solution
- How to ensure that algorithms improve (and money is not spent for nothing)?

Ingredients of the Common Task Framework:

- Training dataset with features and class label is publicly available
- Well-defined metric for evaluation
- Competing groups with the common task to infer a prediction rule from the data
- Automatic evaluation of prediction rules at the end of the competition on separate test data that is not published

Ingredients of the Common Task Framework:

- Training dataset with features and class label is publicly available
- Well-defined metric for evaluation
- Competing groups with the common task to infer a prediction rule from the data
- Automatic evaluation of prediction rules at the end of the competition on separate test data that is not published

A culture developed around the CTF:

- Famous example: Netflix competition (\$1 million for the winning team)
- https://www.kaggle.com/ hosts several competitions on real data
- New algorithms are tested on published data with published algorithms at conferences

.....

Speech recognition algorithms improved indeed. (Word Error Rates shown)

Liberman (2015) summarizes the general experience with CTF:

- 1. Error rates decline by a fixed percentage each year, to an asymptote depending on task and data quality
- 2. Progress usually comes from many small improvements; a change of 1% can be a reason to break out the champagne.
- 3. Shared data plays a crucial role and is re-used in unexpected ways.

Most Machine learning products we know today benefited from the CTF framework!

Sampling Theory and Statistical Learning

Relates to Generalized Regression (GREG) estimators (not discussed here)

The following is based on Breidt and Opsomer (2017).

Setting:

- Finite population U (size = N), variable y_i , i = 1, ..., N, not observed
- Goal: calculate population total $t_y = \sum_{i \in U} y_i$
 - Only chosen for simplicity, others targets are possible
- Draw sample S at random with inclusion probabilities π_i known

Setting:

- Finite population U (size = N), variable y_i , i = 1, ..., N, not observed
- ullet Goal: calculate population total $t_y = \sum_{i \in U} y_i$
 - Only chosen for simplicity, others targets are possible
- Draw sample S at random with inclusion probabilities π_i known

Horwitz-Thompson estimator

$$\hat{t}_{y,HT} = \sum_{i \in S} \frac{y_i}{\pi_i}$$

is unbiased.

It still can be improved if we have auxiliary variables x_i , i = 1, ..., N available for the complete population U (as in administrative data)

Imagine a "method" $f(\cdot)$ for predicting y_i from x_i

• May be known in advance or estimated from survey data

Imagine a "method" $f(\cdot)$ for predicting y_i from x_i

• May be known in advance or estimated from survey data

Consider the difference estimator

$$\hat{t}_{y,Diff} = \underbrace{\sum_{i \in U} f(x_i)}_{\text{Predicted total in population}} + \underbrace{\sum_{i \in S} \frac{y_i - f(x_i)}{\pi_i}}_{\text{Estimated difference}}$$

Key results:

- $\hat{t}_{y,Diff}$ is unbiased regardless of the quality of f
- $Var(\hat{t}_{v,Diff})$ becomes smaller, the better f predicts y

Predicting Panel Drop-outs

The challenge: Nonresponse in panel studies

- Panel attrition reduces sample sizes and can introduce bias due to systematic dropout patterns
- Standard approach: Construct weights based on regression models

However, machine learning techniques can also be utilized...

- Modeling nonresponse and constructing weights (e.g. Buskirk & Kolenikov 2015)
- Predicting panel nonresponse (Kern 2017, Klausch 2017)
- \rightarrow Potential of moving from post- to "pre-correction" of panel dropouts through ML?

German Socio-Economic Panel Study (2013–2014) Sample: Respondents 2013 (mode \neq by mail)

Table: Description of variables

(a) Outcome

	Variable	Categories	Ye ar
<i>y</i> 1	G_Response	Interview/temp. Ref./final. Ref.	2014
<i>y</i> ₂	$D_Response$	Interview/temp. or final. Ref.	2014

(b) Features

Variables	Year
SOEP years	1984-2013
Interviewer Contacts	2013
Mode	2013
Refusal in HH	2013
Contact information	2013
Response	2012
Missing ratio (items)	2013
Interviewer: Gender, age, exp.,	
RR, mean int. length	2013
SOEP Sample	1984-2013
Inverse Staying Probability	2013
Demographic variables	2013

Figure: Small ctree (training set; y_1)

Table: Confusion matrices (test set; y_1)

(a) Random Forest

		Reference		
Prediction	Interview	temp. Ref.	final Ref.	Sum
Interview	4224	295	278	4797
temp. Ref.	24	41	5	70
final Ref	9	3	33	45
Sum	4257	339	316	4912
Sensitivity	0.992	0.121	0.104	
Precision	0.881	0.586	0.733	
Null Rate	0.8667			
Accuracy	0.875			
Kappa	0.178			

(b) Gradient Boosting

		Reference		
Prediction	Interview	temp. Ref.	final Ref.	Sum
Interview	4184	276	239	4699
temp. Ref.	43	57	11	111
final Ref.	30	6	66	102
Sum	4257	339	316	4912
Sensitivity	0.983	0.168	0.209	
Precision	0.890	0.514	0.647	
Null Rate	0.8667			
Accuracy	0.8768			
Kappa	0.267			

Figure: ROC curves (test set; y_2)

	Accuracy	Карра	Sens.	Spec.	AUC
Logit1	0.867	0.007	0.005	1.000	0.707
Logit 2	0.855	0.102	0.101	0.971	0.691
ctree	0.866	0.010	0.008	0.998	0.708
RF	0.881	0.239	0.171	0.991	0.822
GBM	0.878	0.315	0.270	0.972	0.803

Preliminary conclusion

- Model specification
 - Conditional Inference Trees enable exploration of subgroups with high dropout risks
- Prediction
 - Ensemble methods (RF, GBM) outperform parametric models and single trees
 - However, accuracy of (current) RF and GBM only slightly above no information rate
- \rightarrow Potentially improved prediction with extended set of predictors in longitudinal setup

Missing Data Imputation

Random forests have a build-in imputation routine

- 1 Do a rough (mean) imputation of missings in the feature set
- Grow forest on the mean imputed data
- Update the imputed values by the (corresponding) average of the non-missing cases weighted by proximities

RF proximity matrix

- Represents distances between observations based on random forest
- For each tree, pairs of OOB cases in the same terminal node get their proximity increased by one

MissForest approach (Stekhoven & Bühlmann 2012)

- Use RF to predict missing values directly
- Averaging over multiple trees mimics multiple imputation
- Makes few assumptions about missing mechanism
- Make initial guess for the missing values
- Sort variables according to the amount of missingness
- Iteratively predict missing values with RFs trained on the complete part(s) of the data

Figure: Imputation error of KNNimpute (grey), MICE (white) and missForest (black)

References

Breidt, F. Jay and Opsomer, Jean (2017)

Model-Assisted Survey Estimation with Modern Prediction Techniques. *Statistical Science* **32**(2). p. 190–205.

Buskirk, Trent D. and Kolenikov, Stanislav (2015)

Finding Respondents in the Forest: A Comparison of Logistic Regression and Random Forest Models for Response Propensity Weighting and Stratification. Survey Insights: Methods from the Field. Retrieved from http://surveyinsights.org/?p=5108.

Donoho, David (2017)

50 Years of Data Science. *Journal of Computational and Graphical Statistics* **26**(4). p. 745–766.

Hainmueller, Jensm Hazlett, Chad (2014)

Kernel Regularized Least Squares: Reducing Messpecification Bias with a flexible and interpretable machine learning approach. *Political Analysis* **22**. p. 143–168

References

Kern, Christoph (2017)

Data-driven prediction of panel nonresponse. ESRA Conference Presentation.

Klausch, Thomas (2017)

Predicting panel attrition using panel-metadata: A machine learning approach. ESRA Conference Presentation.

Kleinberg, Jon, Ludwig, Jens, Mullainathan, Sendhil, Obermeyer, Ziad (2015) Prediction Policy Problems. *American Economic Review* **105**(5). p. 491–495

Liberman, Mark (2015)

Reproducible Research and the Common Task Method. Simmons Foundation Lecture, April 1, 2015: https://www.simonsfoundation.org/event/reproducible-research-and-the-common-task-method/

Mullainathan, Sendhil, Spiess, Jann (2017)

Machine Learning: An Applied Ecnonometric Approach. *Journal of Economic Perspectives* **31**(2). p. 87–106.

References

Pallett, David (2003)

A look at NIST'S benchmark ASR tests: past, present, and future. IEEE Workshop on Automatic Speech Recognition and Understanding, 2003. ASRU '03. 2003.

Schierholz, Malte, Gensicke, Miriam, Tschersich, Nikolai, Kreuter, Frauke (2018) Occupation coding during the interview. *J. R. Statist. Soc. A* **181**. p. 379–407.

Stekhoven, Daniel J. and Bühlmann, Peter (2012)

MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics 28(1). p. 112-118,