

Programa de Pós-graduação em Sistemas de Informação

SIN5007 - Reconhecimento de Padrões (2023)

Censo da Educação Superior - Cursos 2021

MSc. Leonardo Cunha dos Santos Gabriel Francisco dos Santos Silva

São Paulo / 2023

Agenda

- 1 Descrição do dataset e análise exploratória
- 2 Pré-processamento e PCA
- 3 Seleção de características
- Maive Bayes Classifier
- 6 Estimação de desempenho
- 6 Estimação de desempenho e comparação entre classificadores
- Stacking Classifier
- Considerações finais

Descrição do dataset e análise exploratória

Pré-processamento de dados

Cursos de tecnologia

Variáveis numéricas: 05 | Variáveis categóricas: 22 + 1 (ID:ANO) 34 cursos | Instâncias: 19158 | 558 cursos distintos

Análise exploratória

Análise exploratória

Correlações - matriz | rede Pública | Presencial

Pré-processamento e PCA

One-hot encoding

Utilização do pacote Pandas: get_dummies


```
categories = ['NO_REGIAO', 'NO_UF', 'IN_CAPITAL_DEPARA', 'NO_CURSO_DEPARA',
              'TP_CATEGORIA_ADMINISTRATIVA_DEPARA']
encoded_data = pd.get_dummies(df[categories], prefix=categories, prefix_sep='_')
encoded data = encoded data.apply(lambda x: x.astype(bool).astype(int))
<u>|encoded_data = encod</u>ed_data.merge(df[['QT_VG_TOTAL','QT_INSCRITO_TOTAL','QT_ING',
```

StandardScaler


```
print(f' Normalização de variáveis '.center( _width: 80 , _fillchar: '#'))
scaler = StandardScaler()
normalized data = scaler.fit transform(encoded data[columns])
normalized_data = pd.DataFrame(normalized_data, columns=columns)
print(normalized_data)
```

Dimensões do conjunto de dados

Após a padronização

- Variáveis qualitativas (binárias): 69
- Variáveis quantitativas (padronizadas): 5
- Alvo: TP_REDE_DEPARA
- Total de variáveis no result set: 75
- Instâncias: 19158

PCA

Principal Component Analysis

PCA

Principal Component Analysis


```
Número de Componentes Principais para 95% de Variância: 22
PC2
                              PC3
                                           PC20
                                                     PC21
                                                              PC22
      0.190351
                3.345125 -0.140522
                                   ... -1.051111 -1.318289 -0.026662
      -0.271789
                0.161091 -0.924383
                                   ... -1.180369 -1.477429 -0.046666
                0.141671
                                   ... -1.032111 -1.547045 -0.003615
     -0.309983
                         0.358834
     -0.309983
                0.141671
                         0.358834
                                   ... -1.032111 -1.547045 -0.003615
      1.720391
                17.651678 -0.612151
                                   ... -0.292294 -0.570287 -0.030889
19153 -0.535000
                -0.050070
                          0.392255
                                       -0.039530 -0.041791
                                                          0.950386
19154 -0.439304
                          0.916337
                -0.069639
                                        0.018221 -0.060235
                                                          0.949860
19155 -0.392884
                -0.077730
                          0.929753
                                   ... -0.017430 -0.033971
                                                          0.951916
19156 -0.447089
               -0.046038
                          0.713141
                                        0.101151
                                                 0.011569
                                                          0.959502
19157 -0.535000
               -0.050070
                         0.392255
                                   ... -0.039530 -0.041791
                                                          0.950386
[19158 rows x 22 columns]
```


Seleção de características

RELIEF (Kira and Rendell, 1992)

Tipo filtro: seleção de características independente do classificador

```
def relief(X, y):
    X = X.to_numpy()
    y = y.to_numpy()
    print(f'Dimensões da entrada X: {X.shape}')
    print(f'Dimensões da entrada y: {y.shape}')
    num_samples, num_features = X.shape
    weights = np.zeros(num_features)

for i in range(num_samples):
    current_instance = X[i, :]

    nearest_hit = None
    nearest_miss = None
    min_hit_distance = float("inf")
    min_miss_distance = float("inf")
```


Conjunto de dados Total


```
NO_REGIAO_Centro-Oeste NO_REGIAO_Nordeste ... OT_CONC TP_REDE_DEPARA
                           ... -0.20961
                                      Pública
                          ... -0.20961
                                      Pública
                          ... -0.20961
                                      Pública
                                      Pública
                         0 ... -0.20961
                         0 ... -0.20961
                                      Pública
[5 rows x 75 columns]
Acurácia do modelo Naive Bayes: 1.0
```

Conjunto de dados PCA


```
PC1
                         PC3
                                      PC21
                                               PC22
                                                     TP_REDE_DEPARA
0 -0.271789
           0.161091 -0.924383
                              ... -1.477637 -0.047432
                                                            Pública
  0.190351
           3.345125 -0.140522
                              ... -1.318910 -0.022477
                                                            Pública
 -0.245303 0.359979 -0.920680
                              ... -1.464840 -0.046929
                                                           Pública
                                                           Pública
           3.408979 -0.922878
                              ... -1.264806 -0.039676
4 -0.284295
           0.157172 -0.929598
                              ... -1.490612 -0.019619
                                                            Pública
[5 rows x 23 columns]
(19158, 23)
############################# Naive Bayes Classifier ############################
Acurácia do modelo Naive Bayes: 0.9835594989561587
```



```
NO_UF_Rondônia ... TP_REDE_DEPARA
                        Pública
                        Pública
                        Pública
                        Pública
                        Pública
[5 rows x 23 columns]
(19158, 23)
############################## Naive Bayes Classifier ###########################
Acurácia do modelo Naive Bayes: 0.9191022964509394
```


Estimação de desempenho

EACH | Escola de Artes, Ciências e Humanidades Universidade de São Paulo

Validação cruzada estratificada

- Estratégia: grid-search
- Maximização: F1-score
- Valor de k: 5
- Modelo: Naive Bayes
- Valores de hiperparâmetros testados:

'var $_$ smoothing': np.logspace(0, -15, num = 100)

^{*} var_smoothingfloat, default=1e-9 Suavização à estimativa da variância.

Validação cruzada estratificada

Médias	F1-score	Acurácia	Revocação	Precisão	var_smoothing(avg)
Total	0.9998	0.9997	0.9997	0.9999	5.3e-04
PCA	0.9958	0.9921	0.9939	0.9977	5.1e-01
Relief	0.9634	0.9296	0.9876	0.9404	8.0e-01
RUS	0.9986	0.9974	0.9975	0.9998	1.0e-01
ROS	0.9998	0.9997	0.9997	0.9999	7.4e-05

Valores obtidos com os conjuntos de teste

Médias	F1-score	Acurácia	Revocação	Precisão
Total	0.9999	0.9998	0.9999	0.9999
PCA	0.9952	0.9911	0.9934	0.9971
Relief	0.9629	0.9287	0.9868	0.9402
RUS	0.9985	0.9972	0.9972	0.9999
ROS	0.9999	0.9998	0.9999	0.9999

Resultados utilizando o conjunto de teste

Estimação de desempenho e comparação entre classificadores

Comparativo do experimento

Resultados com o conjunto de teste

Utilizando Stacking Classifier

- Classificadores:
 - Naive Bayes
 - Decision Tree
 - Neural Network (Keras)

- Classificador final:
 - Logistic Regression

Comparativo do experimento

EACH Escola de Artes, Ciências e Humanidade Universidade de São Paulo

Resultados – Amostra de teste + resample

Comparativo do experimento

Resultados - Amostra de calibração do cross validation

- O pré-processamento e a seleção de atributos foram de fundamental importância para o entendimento sobre o conjunto de dados;
- As técnicas de redução de dimensionalidade auxiliaram na diminuição do tempo de processamento e no entendimento sobre a variabilidade dos dados;
- A retirada de atributos (in_gratuito e categoria_administrativa) melhorou a performance de indicadores quando aplicado o modelo de árvore de decisão;
- A utilização do Pipeline ajudou na execução de vários modelos com diferentes configurações, de modo simples e eficiente;
- A abordagem com o StackingClassifier apresentou melhores resultados para os indicadores investigados. A maior variabilidade detectada ocorreu na medio precisão.

- O pré-processamento e a seleção de atributos foram de fundamental importância para o entendimento sobre o conjunto de dados;
- As técnicas de redução de dimensionalidade auxiliaram na diminuição do tempo de processamento e no entendimento sobre a variabilidade dos dados;
- A retirada de atributos (in_gratuito e categoria_administrativa) melhorou a performance de indicadores quando aplicado o modelo de árvore de decisão;
- A utilização do Pipeline ajudou na execução de vários modelos com diferentes configurações, de modo simples e eficiente;
- A abordagem com o StackingClassifier apresentou melhores resultados para o indicadores investigados. A maior variabilidade detectada ocorreu na media precisão.

- O pré-processamento e a seleção de atributos foram de fundamental importância para o entendimento sobre o conjunto de dados;
- As técnicas de redução de dimensionalidade auxiliaram na diminuição do tempo de processamento e no entendimento sobre a variabilidade dos dados;
- A retirada de atributos (in_gratuito e categoria_administrativa) melhorou a performance de indicadores quando aplicado o modelo de árvore de decisão;
- A utilização do Pipeline ajudou na execução de vários modelos com diferentes configurações, de modo simples e eficiente;
- A abordagem com o Stacking Classifier apresentou melhores resultados para os indicadores investigados. A maior variabilidade detectada ocorreu na medida de precisão.

- O pré-processamento e a seleção de atributos foram de fundamental importância para o entendimento sobre o conjunto de dados;
- As técnicas de redução de dimensionalidade auxiliaram na diminuição do tempo de processamento e no entendimento sobre a variabilidade dos dados;
- A retirada de atributos (in_gratuito e categoria_administrativa) melhorou a performance de indicadores quando aplicado o modelo de árvore de decisão;
- A utilização do Pipeline ajudou na execução de vários modelos com diferentes configurações, de modo simples e eficiente;
- A abordagem com o StackingClassifier apresentou melhores resultados para os indicadores investigados. A maior variabilidade detectada ocorreu na medida de precisão.

- O pré-processamento e a seleção de atributos foram de fundamental importância para o entendimento sobre o conjunto de dados;
- As técnicas de redução de dimensionalidade auxiliaram na diminuição do tempo de processamento e no entendimento sobre a variabilidade dos dados;
- A retirada de atributos (in_gratuito e categoria_administrativa) melhorou a performance de indicadores quando aplicado o modelo de árvore de decisão;
- A utilização do Pipeline ajudou na execução de vários modelos com diferentes configurações, de modo simples e eficiente;
- A abordagem com o StackingClassifier apresentou melhores resultados para os indicadores investigados. A maior variabilidade detectada ocorreu na medida de precisão.

Obrigado!

Thanks! / ¡Gracias!

Leonardo Cunha dos Santos lattes.cnpq.br/5620610314140397 leonardo.cunha.santos@usp.br

Gabriel Francisco dos Santos Silva gabfssilva@gmail.com