HW4

Shane Drafahl

18 September ,2017

1. Use the pumping lemma to prove that L = $\{ ww : w \in \{ 0, 1 \}^* \}$ is nonregular.

We will prove this by proof of contradition and assume that L is a regular language. So therefore for L, $\exists_n \in N$ such that $\forall_x \in L$, if $|x| \geq n$, then x can be decomposed into three strings $\exists_{u,v,w} \in \{0,1\}^*$. Where $\mathbf{x} = \mathbf{x}\mathbf{y}\mathbf{z}$. $|xy| \leq n, |y| > 0$ such that $\forall_k \in N, xy^kz \in L$.

We know that the length of L is 2*|w|. We will say the pumping length will be n so the language must be w^nw^n . We will split w_1w_2 into $w_1w_2 = xyz$ where $xy = w_1$ and $w_2 = z$. We know that y^i where y is some value i > 0. If $xy^0z = w^{n-i}w^n$. This word should exist in the language L but is a contradiction because one w is greater than the other.

2. Prove that $L = \{ w \in \{ a, b \}^* : |w|_a \neq |w|_b \}$ is not regular.

We will prove this by proof of contradition and assume that L is a regular language. So therefore for L, $\exists_n \in N$ such that $\forall_x \in L$, if $|x| \geq n$, then x can be decomposed into three strings $\exists_{u,v,w} \in \{0,1\}^*$. Where $\mathbf{x} = \mathbf{x}\mathbf{y}\mathbf{z}$. $|xy| \leq n, |y| > 0$ such that $\forall_k \in N, xy^kz \in L$.

We will say that $w=xy\cdot z$ and that $y=a^ib^i$. i is some natural number greater than 0. So we could say $w=xy^1\cdot z=b^ta^fb^gb^d$ where f+g=i and $t+i\leq n$ and $n\leq t+i+d$. We can also assume that w=xyz where $y=a^i$ and i is some natural number greater than 0. So $xy^1z=b^ta^ib^d$ where ba=xy, and z=b. $t+i\leq n$. In both cases k=1 and both of their lengths are the same and they are part of the language L so therefore by contradiction L is not regular.