The Structural Power of Reconfigurable Circuits in the Amoebot Model

Átprogramozható Áramkörök Szerkezeti Ereje az Amőba Modellben

KÉSZÍTETTE: BÉRES GÁBOR KRISTÓF, TÓTH BOTOND, WERNER BENDEGÚZ

Bevezetés az amőbamodellbe

- Az amőbamodell egy programozható anyagot ír le, amely apró, robotikus egységekből (amőbotokból) áll.
- Ezek az egységek egy végtelen háromszög rácsra helyezkednek el, és képesek mozogni tágulás és összehúzódás révén.
- A cél a kollektív viselkedés vizsgálata és optimalizálása.

Fő kutatási kérdések a cikkben

- Stripe problem vagy Csík probléma
- Globális maximum probléma
- Csontváz-probléma
- Spanning tree létrehozása
- Szimmetria detektálás

Problem	Required pins	Runtime	
Stripe Global maxima	2	$O(\log n)$ $O(\log^2 n)$ w.h.p.	
Canonical skeleton	4	$O(\log^2 n)$ w.h.p.	
Spanning tree	4	$O(\log^2 n)$ w.h.p.	
Symmetry detec- tion	4	$O(\log^5 n)$ w.h.p.	

Alkalmazások és jelentőség

- Az amőbamodell és az átprogramozható áramkörök gyors alakváltásra, energiahatékony adatátvitelre, és szerkezeti monitorozásra használhatók.
- Az új megközelítések polilogaritmikus időbonyolultságot érnek el, jelentős teljesítményjavulást kínálva.

Modell felépülése

- Végtelen háromszög gráf rács
- Helyi mozgások (összehúzódás, tágulás)
- Minden csúcson legfeljebb 1 amoebot
- Közös irány orientáció
- Minden amoebot összehúzodott
- Összefüggőek

Áramköri kiterjesztés

- Külső kapcsolatok: Minden amoebot között k db él
- Csapok egységesek (k ≥ 1)
- Csapkészlet felosztása diszjunkt halmazokra
- Áramkörök alakulnak ki
- Primitív jelküldés partíciókon

Hatszögletű mozaik

PASC algoritmus

- Láncok -> amoebotok rendezett sorozata (u_i és u_{i+1} szomszédok)
- Vezetőválasztás
- Lánc meghatározása
- Algoritmus célja: azonosítók kiszámítása

Azonosítók lánc mentén - előkészületek

- Referencia amoebot
- Minden amoebot aktív vagy passzív
- Két áramkör létrehozása
- Elsődleges és másodlagos partíció halmaz
- Összekötés:
 - Aktív: elsődleges -> elődje másodlagos másodlagos -> elődje elsődleges
 - Passzív: elsődleges -> elődje elsődleges másodlagos -> elődje másodlagos

Azonosítók lánc mentén - folyamat

- Referencia amoebot aktíválja az elsődleges áramkört (jelzés)
- Aki a másodlagoson kapott jelzést, a 2.körben a másodlagoson jelez, majd passszív lesz
- Addig tart, amíg a 2.kör csendes

Azonosítók lánc mentén - azonosítók

- Minden körben minden amoebot az egyik áramkörén kap jelzést
- Elsődleges áramkör: 0
- Másodlagos áramkör: 1
- Minden jelzés egy bit, visszafele kell jegyezni: (x_{k-1},...,x₀), x_i körben 1 vagy 0
- k az iterációk száma (0≤i<k)</p>

Példa:

S	P	S	P	S
P	-SP	S	S	P
P	P	S	S	S

0	1	0	1	0
10	11	00	01	10
110	111	000	001	010

Azonosítók lánc mentén - bitek

- Kettes komplemens ábrázolás
- Pozitív és 0
 - **>** 000: 0
 - **>** 001: 1
 - **>** 010: 2
- Negatív

bitek invertálása	0		0	1	0
1 hozzáadása	O				
► 111 -> 000 -> 001: -1	10	11	00	01	10
► 110 -> 001 -> 010: -2	110	111	000	001	010

Térbeli azonosítók

- Adott egy d irány és egy egy 90°-al elforgatott d' irány
- ▶ pl.: d=E -> d'=N
- Diszjunkt csíkokra partícionálás
- Minden csík ismeri az elődjét és utódját
- Csíkok összekötése

Térbeli azonosítók

- Adott egy d irány és egy egy 90°-al elforgatott d' irány
- ▶ pl.: d=E -> d'=N
- Diszjunkt csíkokra partícionálás
- Minden csík ismeri az elődjét és utódját
- Csíkok összekötése
- PASC algoritmus a csíkok halmazán

Stripe problem

- Probléma: Egy adott u amoebot és X tengely
 - Összes, a tengelyes áthaladó amoebot meghatározása
- Fontos a konfliktusok elkerüléséhez, gyors alakváltás
- PASC algoritmus megoldja

Globális maximum probléma

- Probléma: Egy adott amoebot halmaz globális maximumának meghatározása
- PASC algoritmus által kiosztott azonosítók meghatározzák a szélsőértékeket egy tengely mentén

Köszönjük a figyelmet!