PROBABILITY THEORY

- 1) Today's agenda
 - · History
 - · Interpretation
 - · Probability theory
 - . Counting
- 2 History

- 3 Interpretations
 - Classical $P(A) = \frac{NA}{N}$ mutually exclimately equally likely $\begin{cases} Rain, no \ Rain \end{cases}$
 - · Frequentist:

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

. Bayesian: Subjective

- · Expesiment
- · Sample space (22)

· Power set (4)

- · Event : subset of U
- · Native definition

$$P(A) = \frac{NA}{N}$$

. Axioms

$$P(\bigcup_{i=1}^{\infty} A_i) = \underset{i=1}{\overset{\infty}{\leq}} P(A_i)$$

· Permutation

without

$$=\frac{n!}{(n-k)!}=\frac{n}{k}$$

n-obj , k-d saws, replacement , does not matter

$$= \frac{N(N-1)...(N-k+1)}{k!} = \frac{k!}{N!} \frac{(N-k)!}{1} = \frac{k!}{N!} \frac{(N-k)!}{1} = \frac{1}{N} \frac{1}{N$$

· Sampling table

	oxdex matters	Oxdex does not mattex	
with replacement	n k	ntk-I	
without replacement	^Pk	^c <u>k</u>	

n-obj, k-draw/.