Les dangers de l'électricité

1.1 Catégories de tension

Tab. 1.1: Domaines de tensions

Domaine d	e tension	Courant alternatif ¹	Courant continu
Très Basse Tension	TBT	$U_n \leq 50 \mathrm{V}$	$U_n \leq 120 \mathrm{V}$
Basse Tension	BT	$50V < U_n \le 1000V$	$120V < U_n \le 1500V$
Haute Tension ²	HTA	$1000V < U_n \le 50kV$	$1500V < U_n \le 75kV$
	HTB	$U_n > 50 \text{kV}$	$U_n > 75 \text{kV}$

¹ Tension nominale exprimée en valeur efficace U_n ;

1.2 Action du courant électrique sur le corps humain

Les dégâts provoqués au corps humain par un choc électrique sont directement corrélés à l'énergie dissipée par ce choc. Cette énergie dissipée est définie par la loi de Joule.

$$W = R \cdot I^2 \cdot t \tag{1.1}$$

ÉQ 1: Loi de Joule

Avec:

Grandeur dans l'ISQ	Unité SI de	e mesure	Description
R: résistance	hhm	(Ω)	
I: courant électrique	milliampère	(mA)	
t: durée	seconde	(s)	

La présence d'une tension électrique entraine toujours un risque de choc électrique mais il est peu aisé de déterminer un seuil de tension pour lequel le choc est dangereux car ce sont l'intensité du courant I traversant le corps et la $dur\'ee\ t$ du choc électrique qui permettent de déterminer la probabilité de décès.

$$I = \frac{116}{\sqrt{t}} \tag{1.2}$$

ÉQ 2: Valeur statistique du courant entrainant la mort en fonction de la durée

² Les basses tensions ne sont plus divisées en deux catégories depuis 2010, seule la haute tension conserve cette caractéristique.

Avec:

	Grandeur dans l'ISQ	Unité SI de	mesure	Descript	ion
I:	courant électrique	milliampère	(mA)	Courant traversan	t le corps
t :	durée	seconde	(s)	Durée du choc élec	ctrique d'une
				durée (8ms $< t \le 5$	(s)
116:	constante	/	(/)	Constante	empi-
				rique	déterminée
				statistiquement Wil	diSybille 2014

En plus de l'intensité du courant et de la durée de passage du courant dans le corps, la surface de contact et la susceptibilité spécifique à chaque personne sont d'autres facteurs de gravité d'un contact électrique. Plus de précisions sur la prévention du danger électrique en ?? page ??.

1.2.1 Effet du courant alternatif

Les effets du courant alternatif entre 15 Hz et 100 Hz sont décrit en ??.

Fig. 1.1: Effets du courant alternatif sur le corps humain

1.2.1.1 Cas particuliers

Pour le courant alternatifs d'une fréquence supérieures à 100 Hz :

- Plus la fréquence du courant augmente, plus les risques de fibrillation ventriculaire diminue ;
- Plus la fréquence du courant augmente, plus les risques de brûlures augmentent;
- Plus la fréquence du courant augmente, plus l'impédance du corps humain diminue ;
- Il est généralement considéré que les conditions de protection contre les contacts indirects sont identiques que ça soit sous une fréquence de 50 Hz (réseau électrique domestique en Europe) où 400 Hz (réseau électrique des bateaux, avions, batmobile...).

1.2.2 Effet du courant continu

Les effets du courant continus sont décrits en ??.

Fig. 1.2: Effets du courant continu sur le corps humain

- Il est moins difficile de lâcher les parties tenues à la main sous un courant continu ;
- Le seuil de fibrillation ventriculaire est plus élevé.

1.3 Paramètres influençant les risques électriques

L'intensité de contact I_c , la durée de contact t, la tension de contact U_c et la résistance du corps humain R sont autant de paramètres à prendre en compte lors de l'évaluation des risques électriques.

Fig. 1.3: Courbe de l'intensité de contact I_c en fonction du temps $t=f(I_c)^{\text{IEC:60479-2007}}$

- Aucune réaction physiologique ;
- Aucun effet physiologique dangereux ;
- Aucun dommage corporel. Possibilité de difficultés respiratoires et de contractions musculaires, de troubles réversibles de la formation et de la conduite des impulsions cardiaques (y compris fibrillation des oreillettes et arrêts cardiaques momentanés sans fibrillation ventriculaire). Phénomènes augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire augmentant jusqu'à 5%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque,

- un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition ;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire augmentant jusqu'à 50%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque, un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition ;
- Même effets que ceux de la zone avec une probabilité de fibrillation ventriculaire dépassant 50%. Possibilité d'effets physiopathologiques, tels qu'un arrêt cardiaque, un arrêt respiratoire ou des brûlures, augmentant proportionnellement avec l'intensité du courant i_c et le temps t d'exposition.

Si une personne subit un choc électrique sans en succomber, il s'agit d'une électrisation. Si la personne décède suite au choc électrique, il s'agit d'une électrocution.

Fig. 1.4: Courbe de la tension de contact U_c en fonction du temps de coupure maximal $t = f(U_c)$

La peau constitue l'isolant contre la pénétration du courant dans le corps humain, et sa résistance électrique varie selon son état de surface et son épaisseur. Pour une peau sèche et fine, on peut estimer que la barrière isolante cède au-delà d'une tension d'environ $50\,\mathrm{V}$, et le courant pourra dès lors pénétrer de manière plus importante dans le corps humain.

En règle générale, on considère la résistance moyenne du corps humain entre $300\,\Omega$ et $1000\,\Omega$ mais cela peut varier selon les conditions de contact. Delahaye2015

Fig. 1.5: Courbe de la tension de contact U_c en fonction de la résistance du corps humain $R = f(U_c)$

1.4 Nature des contacts

1.4.1 Contact direct

1.4.1.1 Définition

Contact des personnes avec les parties actives du matériel électrique (pièces ou conducteurs sous tension). La personne rentre en contact direct avec un élément sous tension suite à une négligence ou un non-respect des consignes de sécurité. Dans ce cas, l'électrocution ou l'électrisation sont la conséquence de cette maladresse ou négligence.

1.4.1.2 Catégories

Contact entre deux phases ou la phase et le neutre

Contact le moins fréquent mais le plus dangereux car la résistance pied/sol n'intervient pas. La personne qui touche les deux est alors soumise à la tension simple V ou composée U du réseau. La résistance globale du corps devient alors très faible et le courant en est d'autant plus élevé.

Dans ce cas, le corps humain se comporte comme un récepteur et aucun appareil de coupure ne peut détecter ce contact comme provoquant un défaut, seule une intervention externe pourra couper le courant.

Si la personne est soumise à une tension de contact U_c de 230 V et que l'on estime la résistance résultante R des résistance main/fil + résistance des bras à environ 1,5 k Ω , on peut calculer l'intensité du courant traversant le corps comme suit :

$$I = \frac{U_c}{R}$$
$$= \frac{230}{1500}$$
$$= 150 \,\mathrm{mA}$$

En se référençant au tableau ?? page ??, on peut constater que le temps de réaction de coupure (venant d'une intervention externe) doit être très court. Effectivement, après une seconde, le risque de fibrillation ventriculaire dépasse déjà les 50%, ce qui augmente sensiblement le risque d'arrêt cardiaque.

Contact entre la phase et la terre Contact relativement plus fréquent et moins dangereux que le précédent car la résistance pied/sol et la détection de courant de fuite interviennent. Ce contact direct est rendu possible lorsque le neutre est relié à la terre ($régime\ TT$ et $régime\ TN$) et soumet la personne à la tension simple V du réseau.

La résistance pied/sol augmente donc la résistante résultante R comprenant donc la résistance main/fil + résistance des bras + résistance pied/sol. Si l'on estime cette résistance à $16\,\mathrm{k}\Omega$ et que l'on conserve la tension de contact U_c de $230\,\mathrm{V}$, on peut calculer l'intensité du courant traversant le corps comme suit :

$$I = \frac{U_c}{R} = \frac{230}{16000} = 14.4 \text{ mA}$$

En se référençant au tableau ?? page ??, on peut constater cette fois-ci que la situation présente moins de danger que précédemment si le contact ne dépasse toutefois pas les deux secondes. Cette résistance dépend évidement de la nature des semelles, et dans le cas où la personne serait pied nu, la résistance pied/sol baissera au point de considérer le contact comme un contact phase/neutre.

Dans cette configuration-là, le corps entraine également une fuite du courant électrique vers la terre. Cette spécificité est exploité par un appareil de protection dédié à la détection de fuite de courant, le dispositifs différentiel résiduel (DDR), ou différentiel.

1.4.1.3 Protection contre les contacts directs

Tab. 1.2: Moyen de protection contre les contacts directs

Catégorie	Principe	Moyen
Contact phase/neutre	Mise hors de portée des pièce sous tensions	 Capotage, isolement, mise sous enveloppe; Respect de l'indice de protection (IP) minimal¹.
	Utilisation d'une tension non dan- gereuse	Alimentation des circuits en TBT ²
Contact phase/neutre et phase/terre	Isolement par rapport au réseau TT	Transformateur d'isolement 3
	Contrôle du courant de fuite I_f (ne devant pas dépasser quelques dizaines de mA	DDR de basse sensibilité (10 mA ou $30\mathrm{mA}^4$

¹ Informations complémentaires sur les IP en ?? page ?? ;

1.4.2 Contact indirect

1.4.2.1 Définition

Contact indirect Contact des personnes avec les masses métalliques mises accidentellement sous tension, généralement suite à un défaut d'isolement (déconnexion des fils, vieillissement ou rupture des isolants...). Dans ce cas, la responsabilité de la personne n'est pas mise en jeu et l'électrisation (et électrocution) est la conséquence d'un défaut imprévisible.

Masse Partie conductrice susceptible d'être touchée et manipulée par une personne et normalement isolée des éléments sous tension, qui peut toutefois être accidentellement portée à un potentiel dangereux.

1.4.2.2 **Principe**

Ce type de contact peut apparaitre lorsque le neutre est relié à la terre (régime TT et régime TN) et qu'une masse métallique est mise accidentellement sous tension. Si cette masse est reliée à la terre, un courant de fuite I_f va faire son apparition et sera potentiellement détecté par un DDR selon sa sensibilité, si celui-ci est présent et fonctionnel. À cause de la résistance de la prise de terre R_t , le courant de fuite I_f et le potentiel des masses métalliques augmenteront progressivement avec le temps.

Le risque devient de plus en plus élevé, d'autant que le contact

indirect est accidentel et les masses métalliques généralement manipulées franchement. À cela s'ajoute le fait que les conditions de contact peuvent également être défavorables (zones humides, pieds nus...), ce qui peut augmenter dangereusement l'intensité du courant traversant le corps.

² Informations complémentaires sur les différentes TBT en ?? page ?? ;

³ Informations complémentaires sur le transformateur d'isolement en ?? page ?? ;

 $^{^4}$ Détails sur le DDR en .

1.4.2.3 Protection contre les contacts indirects

Il existe différents moyens de protections contre les contacts indirects qui varient selon les schémas de liaison à la terre (SLT), qui seront détaillé en ?? page ??. Le principal moyen pour ce faire en régime TT et TN est d'installer un DDR, associé obligatoirement à une prise de terre du transformateur de l'installation électrique et une mise à la terre (MALT) des matériels et structures conducteurs susceptibles d'être accidentellement mis sous tension. Ces deux spécificités de l'installation électrique permettront au courant de s'échapper vers la terre via la mise à la terre et former une boucle jusqu'à la prise de terre. Cela formera une boucle de courant de défaut I_d qui sera détecté par le DDR, qui, selon le type de protection exigé, jouera un rôle de protection des personne (signalement de défaut et/ou sectionnement de l'installation en défaut).

En régime IT, la protection contre les contacts indirects s'effectue de manière similaire mais supervisée par un service technique.

L'usage d'appareils électriques de classe II ou III est également un autre moyen de protection contre les contacts indirects. Plus de détails sur ces différentes solutions en ?? page ??.

