📭 반려동물 질병 진단 虜

- 주제 선정 배경
- 데이터셋 & 전처리
- 모델
- 모델 결과값
- **한계점**
- 활용방안

의료 AI를 통해서 폐질환을 찾는 영상판독

		영상 <mark>의학</mark> 과 의사 단독 판독	인공지능 시스템 보조 판독
초응급 질환	진단 정확도	29.2%(7/24)	70.8%(17/24)
(기嘉, 기복증, 대동맥 박리)	판독 대기 소요 시간	3371 本	640 초
응급 질환 (폐렴, 폐부종, 활동성 결핵, 간질성 폐질환, 패권질, 흡수, 종객등 종양, 녹골 골절)	진단 정확도	78.2%(244/312)	82.7%(258/312)
	판독 대기 소요 시간	2127 초	1840 초
비응급 질환/ 정상	진단 정확도	91.4%(801/876)	93.8%(822/876)
	판독 대기 소요 시간	2815 초	3267 초

2021 ~ 2023년 동안 반려동물 치료비 & 연령별 치료비 비율

인수공통감염병 링웜(Ringworm)

2021 ~ 2023년 반려동물 치료비 지출처 비율

주2) 반려견 2021 n=512, 2023 n=510, 반려묘 2021 n=91, 2023 n=165

데이터 셋

반려동물 안구질환

구분	촬영위치	장비	절환	885	이미지 수
	안검행 안검동당 안검 네번증 유무유	연점증당	연감염	유	8,600
				무	8,600
			안검 내변증	유	6,000
				무	6,000
				유	12,000
				무	12,000
				유	12,000
		44-8	무	12,000	
			색소점착성각막염	유	9,900
	표면		41848448	무	8,800
			궤양성	무	8,600
		검안경 및 일반 카메라	각막질환	상	9,600
		20/144		하	8,600
			액경화 골막염	유	12,000
반려건	반려건			무	12,000
		ziekdi		#	12,000
				무	12,000
				상	6,000
			비궤양성 각막질환	하	6,000
				꾸	6,000
				초기	8,600
			백내장	비성숙	8,600
	내면		극내경	성숙	9,600
	462			무	8,600
		0+7 ± 9 ml	백내장	유	9,600
		안구 초음파		무	8,600
	후면 양재 카메라 유리제반성 연구 초음파		상	10,000	
			유리체변성	하	10,000
				무	10,000

반려동물 피부질환

구분	장비	중상	증상 여부	이미지 수		
	일번 카메라 스마드는 카메라	구진플라크	유증상	40,600		
			무증상	40,600		
		비듬,각질 상피성잔고리	유증상	67,300		
			무증상	67,900		
		태선화,과다색소침착	유증상	67,300		
			무증상	67,900		
	(피부질환 이미지)	농포여드름	유증상	15,000		
반려건			무증상	15,000		
		미란궤양 -	유증상	15,000		
			무증상	15,000		
		결천종괴	유증상	15,000		
			무증상	15,000		
	장비	질병	질병구분	이미지 수		
	현미경용 디지털카메라	감염성 피부염	감염성	3,000		
	(cytology)		비갑염성	3,000		
구분	장비	중상	증상 여부	이미지 수		
	일번 카메라 스마트폰 카메라 (피부원환 이미지)	농포여드름 -	유증상	8,460		
한러모			무증상	8,460		
		바듬,각원,	유증상	8,460		
		상피성잔고리	무중상	9,460		
		관현 종리	유증상	8,460		
			무증상	8,460		
	장비	질병	절병구분	이미지 수		
	현미경용 디지털카메라	감염성 피부염	감염성	1,420		
	(cytology)	880478	바감염성	1,420		

데이터 전처리

데이터 샘플링 source_folder = "C:/kkm/pet_eyes" disease_folders = [folder for folder in os.listdir(source_folder) if os.path.isdir(os.path.join(source_folder, folder)] os.makedirs(train_folder, exist_ok=True) .makedirs(val folder, exist ok=True) for folder name in disease folders: disease_folder = os.path.join(source_folder, folder_name) disease files = os.listdir(disease folder) image_files = [file for file in disease_files if any(file.lower().endswith(ext) for ext in image_extensions)] random.shuffle(image_files) train_files - image_files[:split_index] val files = image files[split index:] src_path = os.path.join(disease_folder, train_file) dst_path = os.path.join(train_folder, train_file) shutil.copy(src_path, dst_path) src path = os.path.join(disease folder, val file) dst_path = os.path.join(val_folder, val_file)

- 질병 폴더안에 json 파일과 같은 이름의 이미지 파일 몇개인지 추출
- 8대2 비율로 train,val 폴더 생성

```
label 전처리
lef convert_bbox_to_yolo(label_bbox, image_width, image_height):
  x1, y1, x2, y2 = map(float, label_bbox)
  bbox width = x2 - x1
  bbox_height = y2 - y1
  x_center = (x1 + bbox_width / 2) / image_width
  y_center = (y1 + bbox_height / 2) / image_height
  bbox_width = bbox_width / image_width
  bbox_height = bbox_height / image_height
  return [x_center, y_center, bbox_width, bbox_height]
 convert_json_to_txt(json_folder_path, txt_folder_path, class_label):
  for filename in os.listdir(json folder path):
      if filename.endswith('.json'):
          json_path = os.path.join(json_folder_path, filename)
          txt_path = os.path.join(txt_folder_path, f'{os.path.splitext(filename)[0]}.txt')
          with open(json_path, 'r') as f:
             data = json.load(f)
          image_width, image_height = map(int, data['images']['meta']['width_height'])
          label bbox = data['label']['label bbox']
          yolo_bbox = convert_bbox_to_yolo(label_bbox, image_width, image_height)
          with open(txt_path, 'w') as txt_file:
              txt_file.write(f'{class_label} {" ".join([format(coord, ".6f") for coord in yolo_bbox])}\n')
```

- json파일 x, y, width, height 좌표추출
- yolo라벨 형식에 맞게 txt파일 생성

모델설명: YOLOv5

<모델특징>

- 1. 높은 FPS
- 2. bbox를 이용한 객체 탐지

<모델구조>

- Backbone CSPDarknet
 - cnn 학습능력강화
 - 연산 bottleneck 제거
 - 메모리 cost감소
- Neck PANet
 - 낮은레벨의 피처와와 높은레벨의 피처를 섞어서 성능 향상 시킴
- Head YOLO layer
 - Neck으로 부터 추출된 피처를 바운딩박스 파라미터, 객체 확률로 반환

81

yolov5 사용코드

1. github 다운

```
%cd /content
|git clone https://github.com/ultralytics/yolov5.git
%cd /content/yolov5/
|pip install -r requirements.txt
|
import torch
from |Python.display import | mage, clear_output
```

2. yolov5s.yaml

```
nc: 7 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
 - [10.13, 16.30, 33.23] # P3/8
 - [30.61, 62.45, 59.119] # P4/16
 - [116.90, 156.198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
#[from, number, module, args]
 [[-1, 1, Conv, [64, 6, 2, 2]], # O-P1/2
  [-1, 1, Conv. [128, 3, 2]], # 1-P2/4
   [-1, 3, C3, [128]],
  [-1, 1, Conv. [256, 3, 2]], # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv., [512, 3, 2]], # 5-P4/16
   [-1, 9, 03, [512]],
  [-1, 1, Conv., [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]].
  [-1, 1, SPPF, [1024, 5]], # 9
# YOLOv5 v6.0 head
head:
 [[-1, 1, Conv. [512, 1, 1]].
   [-1, 1, nn.Ubsample, [None, 2, 'nearest']].
   [[-1, 6], 1, Concat, [1]], # cat backbone P4
   [-1, 3, C3, [512, False]], # 13
   [-1, 1, Conv. [256, 1, 1]].
   [-1, 1, nn.Upsample, [None, 2, 'nearest']].
   [[-1, 4], 1, Concat, [1]], # cat backbone P3
   [-1, 3, C3, [256, False]], # 17 (P3/8-small)
   [[-1, 14], 1, Concat, [1]], # cat head P4
   [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]], # cat head P5
   [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
  [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
```

3. train

```
lpython train.py --img 640 --batch 8 --epochs 20 #
--data <u>/content/drive/MyDrive/project</u>/고인메리호/yolov5/labels.yaml #
--weight <u>/content/drive/MyDrive/project</u>/고인메리호/yolov5/runs/train/exp32/weights/last.pt
```

<Hyper Parameter>

```
IrO: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
Irf: 0.01 # final OneCycleLR learning rate (IrO * Irf)
momentum: 0.937 # SGD momentum/Adam betal
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_Ir: 0.1 # warmup initial bias Ir
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obi: 1.0 # obi loss gain (scale with pixels)
obi_pw: 1.0 # obi BCELoss positive_weight
iou_t: 0.20 # loU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output laver (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: N.N. # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)
copy_paste: 0.0 # segment copy-paste (probability)
```


🔪 🞥 모델 결과 - yolov5 🚅

mAP50-95: 100% 25/25 [02:04<00:00, 4.97s/it] Class mAP50 Images Instances 0.435 all 0.329 0.813 0.429

■ 모델설명: EfficientNetB0 🔳

1x1xCxM

<모델특징>

1. Swish Activation 으로 구성된 MBConv 블록 사용

Swish

2. MBConv 블록에 Depthwise Separable Convolution 0 포함되어 있어 계산량과 파라미터 수를 줄임 **Depth-wise Separable Convolution** KxKxC

M - Feature Map $= (K \times K \times C) + (C \times M)$


```
if not data already created:
   # 데이터세트를 분할 및 복사하는 코드는 'if not data_already_created' 블록 내에 위치
    for classification_dir in classification_dirs:
        for category, base_path in [('negative', negative_base_path), ('positive', positive_base_path)]:
            src_dir = base_path + classification_dir
            files = os.listdir(src dir)
           random.shuffle(files)
           train count = int(split ratio[0] * len(files))
           test_count = int(split_ratio[1] * len(files))
           train_files = files[:train_count]
           test files = files[train count:train count + test count]
           val_files = files[train_count + test_count:]
           train_classification_path = train_base_path + classification_dir + '/'
           test_classification_path = test_base_path + classification_dir + '/'
            val_classification_path = val_base_path + classification_dir + '/'
           # 데이터를 복사합니다.
           for dataset, dataset_path, dataset_files in [('train', train_classification_path, train_files),
                                                       ('test', test_classification_path, test_files),
                                                       ('val', val_classification_path, val_files)]:
               dest dir = os.path.join(dataset path, category)
               os.makedirs(dest_dir, exist_ok=True)
               for file in dataset_files:
                   shutil.copy(os.path.join(src_dir, file), os.path.join(dest_dir, file))
# 나머지 코드 (EfficientNet 모델 생성, 적합 및 훈련)는 이전과 동일합니다.
# 강아지 양성 폴더 파일 갯수 확인
# import os
path = '/content/drive/MyDrive/kijae_yunho_hwijae/dog/test'
# Function to count files recursively in a directory
def count_files(directory):
   for root, dirs, files in os.walk(directory):
       file_count += len(files)
   return file count
# Get a list of all subdirectories in the path
subdirectories = [os.path.join(path, folder) for folder in os.listdir(path) if os.path.isdir(os.path.join(path, folder))]
# Print the count of files in each subdirectory
for subdir in subdirectories:
   file_count = count_files(subdir)
   print(f"Number of files in {subdir}: {file count}")
```

train, test, val 폴더를 만들어서 데이터를 저장

모델 훈련

```
num_classes = len(classification_dirs)
base_model = EfficientNetB0(weights="imagenet", include_top=False)
x = base model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation="relu")(x)
predictions = Dense(num_classes, activation="softmax")(x)
model = Model(inputs=base model.input, outputs=predictions)
for layer in base_model.layers:
   layer.trainable = False
optimizer = Adam(learning rate=0.001)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
 from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
 train_datagen = ImageDataGenerator(
   preprocessing function-preprocess input.
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom range=0.2.
   horizontal_flip=True,
   fill_mode="nearest",
train_generator = train_datagen.flow_from_directory
    train_base_path,
   target size=(224, 224),
   batch size=BATCH SIZE,
   class_mode="categorical"
val_datagen = ImageDataGenerator(preprocessing_function=preprocess_input)
val_generator = val_datagen.flow_from_directory(
   target_size=(224, 224),
   batch_size=BATCH_SIZE,
   class_mode="categorical"
TRAIN_STEPS = train_generator.__len__()
VAL_STEPS = val_generator.__len__()
print(f"Updated steps_per_epoch: {TRAIN_STEPS}")
print(f"Updated validation_steps: {VAL_STEPS}")
# 모델 체크포인트
checkpoint_filepath = "/content/drive/MyDrive/disease_classifier_checkpoint.h5
   checkpoint_filepath, monitor="val_loss", verbose=1, save_best_only=True, mode="min", save_weights_only=True
```

- imagenet으로 pretrain된 efficinetnetb0를 불러옴
- 이미지 사이즈즈 224*224, batch_size : 32 epoch:10

모델 결과 - EfficientNetB0

Epoch 1/10
448/448 [============] - 1110s 2s/step - loss: 1.6719 - accuracy: 0.3034 - val_loss: 1.6765 - val_accuracy: 0.2988
Epoch 2/10
448/448 [==========] - 1132s 3s/step - loss: 1.6212 - accuracy: 0.3297 - val_loss: 1.7208 - val_accuracy: 0.2896
Epoch 3/10
448/448 [===========] - 1114s 2s/step - loss: 1.5723 - accuracy: 0.3540 - val_loss: 1.7047 - val_accuracy: 0.3136
Epoch 4/10
448/448 [===========] - 1114s 2s/step - loss: 1.5295 - accuracy: 0.3833 - val_loss: 1.6862 - val_accuracy: 0.3132
Epoch 5/10
448/448 [=============] - 1130s 3s/step - loss: 1.4851 - accuracy: 0.4001 - val_loss: 1.6979 - val_accuracy: 0.3229
Epoch 6/10
448/448 [============] - 1128s 3s/step - loss: 1.4478 - accuracy: 0.4224 - val_loss: 1.7357 - val_accuracy: 0.3279
Epoch 7/10
448/448 [===================================
Epoch 8/10
448/448 [======] - 1145s 3s/step - loss: 1.3646 - accuracy: 0.4604 - val_loss: 1.7885 - val_accuracy: 0.3223
Epoch 9/10
448/448 [=======] - 1174s 3s/step - loss: 1.3235 - accuracy: 0.4810 - val_loss: 1.8319 - val_accuracy: 0.3347
Epoch 10/10
448/448 [=======] - 1169s 3s/step - loss: 1.2680 - accuracy: 0.5118 - val_loss: 1.8332 - val_accuracy: 0.3345

한계점

1. 많은 이미지 분류모델 사용

<vision transformer>

<VGG 16>

<EfficientNetB0>

<Yolo>

2. 데이터 바운딩 박스 좌표

<안구 바운딩박스>

<피부 바운딩박스>

한계점

3. 주어진 데이터의 한계

1) 다른 질병이지만 비슷한 특성을 지니고 있다.

궤양성각막질환

비궤양성각막질환

색소침착성각막염

2) 같은 질병이지만 공통된 특성이 없다.

유루증

유루증

유루증

펫밀리

활용방안

안구 질병 분류

피부 질병 분류

ex) 백내장(초기) 탐지

ex) 과다 색소침착 탐지

활용방안

<분류 질병 선택>

Petmily

반려동물 피부질환 예측 모델

이미지를 선택해주세요...

Drag and drop file here

Limit 200MB per file • JPG, JPEG, PNG

Browse files

<질병 분류>

■ 감사합니다

