Parallel Programming

Part 1: Introduction

Parallel Processing: The Origins

- Electronic Structure ComputationF(C)C = SCE
- Ab initio molecular dynamics
- Density Functional Theory
- MPI version
- Limited to Scientific Applications that required lots of computations and data.
- for brave people

Parallel Processing Becomes Mainstream

- Parallel processing became mainstream
 - Sony Playstation 3 (2005)
- Multi-core architectures
 - Nr. of transistors double every 12 to 18 months

Intel MIC processor with 60+ x86 cores

AMD Trinity APU with 4 CPU cores and 384 stream processors

Why Parallel Computers?

- Performance growth of single processors cannot be sustained indefinitely:
 - speed of light
 - limits of miniaturization (nr. of transistors per chip)
 - economic limitations
 - thermodynamics
 - DRAM latency
 - wire delays
 - diminishing returns on more instruction level parallelism
- Connecting multiple off-the-shelf processors is a logical way to gain performance beyond that of a single processor.
- Or putting multiple cores onto a single chip

Unicores are on the verge of extinction Multicores dominate

Grand Challenge Problems

One that cannot be solved in a reasonable amount of time with today's computers. Obviously, an execution time of 10 years is always unreasonable.

Examples

- Modeling large DNA structures
- Global weather forecasting
- Modeling motion of astronomical bodies.

Motivating Example: Modeling Motion of Astronomical Bodies

- Each body attracted to each other body by gravitational forces. Movement of each body predicted by calculating total force on each body.
- With N bodies, N 1 forces to calculate for each body, or approx. N^2 calculations. (N $\log_2 N$ for an efficient approx. algorithm.)
- After determining new positions of bodies, calculations repeated.

- A galaxy might have, say, 10^{11} stars.
- Even if each calculation done in 1 ms (extremely optimistic figure), it takes 10⁹ years for one iteration using N² algorithm and almost a year for one iteration using an efficient N log₂ N approximate algorithm.

 Scaling is very hard

Why use Parallel Computing?

- save time wall clock time
- overcoming memory constraints
- solve larger problems
- possible better fault tolerance
- cost savings
- scientific interest

Speedup Factor

$$S(p) = \frac{Execution\ time\ with\ 1\ processor}{Execution\ time\ with\ n\ processors} = \frac{t_s}{t_p}$$

where t_s is execution time on a single processor and t_p is execution time on a multiprocessor.

S(p) gives increase in speed by using multiple processors.

Use best sequential algorithm with single processor system instead of parallel program run with 1 processor for t_s . Underlying algorithm for parallel implementation might be (and is usually) different.

Maximum Speedup

Maximum speedup is usually *p* with *p* processors (linear speedup).

Possible to get superlinear speedup (greater than p) but usually a specific reason such as:

- Extra memory in multiprocessor system
- Nondeterministic algorithm

Maximum Speedup Amdahl's law

Speedup factor is given by:

$$S(p) = \frac{t_s}{ft_s + (1 - f)t_s/p} = \frac{p}{1 + (p - 1)f}$$

This equation is known as Amdahl's law

Speedup against number of processors

Even with infinite number of processors, maximum speedup limited to 1/f.

Example: $f = 5\% \Rightarrow$ maximum speedup is 20, $f = 10 \% \Rightarrow$ maximum speedup is 10, $f = 20 \% \Rightarrow$ maximum speedup is 5 irrespective of number of processors.

Superlinear Speedup example - Searching

(a) Searching each sub-space sequentially

x indeterminate

(b) Searching each sub-space in parallel

x indeterminate

Speed-up then given by

$$S(p) = \frac{x - \frac{t_s}{p} + \Delta t}{\Delta t}$$

Worst case for sequential search when solution found in last sub-space search. Then parallel version offers greatest benefit, i.e.

$$\frac{p-1}{p}t_s + \Delta t$$

$$S(p) = \frac{p}{\Delta t} \to \infty$$

as Δt tends to zero with p as low as 2

Least advantage for parallel version when solution found in first sub-space search of the sequential search, i.e.

$$S(p) = \frac{\Delta t}{\Delta t} = 1$$

Actual speed-up depends upon which subspace holds solution but could be extremely large.

Hardware Diversity 2022

Intel processors

Alder Lake chips will

allow users to max turbo

boost the processor up to

5.2 GHz and as many as 16

cores and 24 threads.

AMD RYZEN™ IN 2022

CONSUMER NOTEBOOK PROCESSOR LINEUP

H-SERIES

FOR GAMERS & CREATORS

II-SEDIES

U-SERIES

AMD Model			Cores/ Threads	Max Boost (Base)	L2+L3 Cache	GPU Cores (Max Boost)	Node	TDP		
RYZEN" 9 6980HX	"Zen 3+"	RDNA 2	8/16	5.0 (3.3)	20MB	12 (2.4GHz)	6nm	45W+		
RYZEN™ 9 6980HS	"Zen 3+"	RDNA 2	8/16	5.0 (3.3)	20MB	12 (2.4GHz)	6nm	35W		
RYZEN™ 9 6900HX	"Zen 3+"	RDNA 2	8/16	4.9 (3.3)	20MB	12 (2.4GHz)	6nm	45W+		
RYZEN™ 9 6900HS	"Zen 3+"	RDNA 2	8/16	4.9 (3.3)	20MB	12 (2.4GHz)	6nm	35W		
RYZEN™ 7 6800H	"Zen 3+"	RDNA 2	8/16	4.7 (3.2)	20MB	12 (2.2GHz)	6nm	45W		
RYZEN* 7 6800HS	"Zen 3+"	RDNA 2	8/16	4.7 (3.2)	20MB	12 (2.2GHz)	6nm	35W		
RYZEN™ 5 6600H	"Zen 3+"	RDNA 2	6/12	4.5 (3.3)	19MB	6 (1.9GHz)	6nm	45W		
RYZEN™ 5 6600HS	"Zen 3+"	RDNA 2	6/12	4.5 (3.3)	19MB	6 (1.9GHz)	6nm	35W		
AMD Model			Cores/ Threads	Max Boost (Base)	L2+L3 Cache	GPU Cores (Max Boost)	Node	TDP		
RYZEN™ 7 6800U	"Zen 3+"	RDNA 2	8/16	4.7 (2.7)	20MB	12 (2.2GHz)	6nm	15-28W		
RYZEN™ 5 6600U	"Zen 3+"	RDNA 2	6/12	4.5 (2.9)	19MB	6 (1.9GHz)	6nm	15-28W		
RYZEN™ 7 5825U	"Zen 3"	Vega	8/16	4.5 (2.0)	20MB	8 (1.8GHz)	7nm	15W		
RYZEN™ 5 5625U	"Zen 3"	Vega	6/12	4.3 (2.3)	19MB	7 (1.6GHz)	7nm	15W		
DV7ENT 3 542511	"7en 3"	Vega	4/8	41/27)	10MB	E (1 ECH2)	7nm	151/		

* See endnotes: GD-1

Unlocked 12th Gen Intel® Core™ Desktop Processors

				Processor Turbo Frequency			Processor Base Frequency											
Processor Number	Processor Cores (P+E) ³	Processor Threads ⁴	Intel® Smart Cache (L3)	Total L2 Cache	Intel® Turbo Boost Max Technology 3.0 Frequency (GHz)4	P-core Max Turbo Frequency (GHz) ⁵	E-core Max Turbo Frequency (GHz) ⁵	P-core Base Frequency (GHz) ⁵	E-core Base Frequency (GHz) ⁵	Unlocked ¹	Processor Graphics	Total CPU PCle Lanes	Max Memory Speed ²	Memory	Maximum Memory Capacity ²	Processor Base Power (W)	Maximum Turbo Power (W)	RCP Pricing (USD IK)
Socket LGA 1700 Performance																		
i9-12900K	16 (8P+8E)	24	30MB	14MB	Up to 5.2	Up to 5.1	Up to 3.9	3.2	2.4	V	Intel® UHD Graphics 770		DDR5 4800 MT/s DDR4 3200 MT/s	2	128GB	125	241	\$589
i9-12900KF	16 (8P+8E)	24	30MB	14MB	Up to 5.2	Up to 5.1	Up to 3.9	3.2	2.4	V	n/a	20	DDR5 4800 MT/s DDR4 3200 MT/s		128GB	125	241	\$564
i7-12700K	12 (8P + 4E)	20	25MB	12MB	Up to 5.0	Up to 4.9	Up to 3.8	3.6	2.7	V	Intel® UHD Graphics 770		DDR5 4800 MT/s DDR4 3200 MT/s		128GB	125	190	\$409
i7-12700KF	12 (8P+4E)	20	25MB	12MB	Up to 5.0	Up to 4.9	Up to 3.8	3.6	2.7	V	n/a	20	DDR5 4800 MT/s DDR4 3200 MT/s		128GB	125	190	\$384
i5-12600K	10 (6P + 4E)	16	20MB	9.5MB	n/a	Up to 4.9	Up to 3.6	3.7	2.8	¥	Intel® UHD Graphics 770		DDR5 4800 MT/s DDR4 3200 MT/s	2	128GB	125	150	\$289
i5-12600KF	10 (6P+4E)	16	20MB	9.5MB	n/a	Up to 4.9	Up to 3.6	3.7	2.8	1	n/a	20	DDR5 4800 MT/s DDR4 3200 MT/s		128GB	125	150	\$264

AMD processors

AMD Ryzen 6000H series is entirely made of Zen3+ SKUs. The lists featured up to Ryzen 9 6980HX with a boost clock up to 5.0 GHz and TDP at 45W+.

Parallel Architectures

Parallelism Granularity

- **Microoperations:** parallelism within an instruction exploited by control unit.
- **Instructions:** parallelism between instructions exploited by pipeline, superscalar architectures.
- **Basic Blocks:** in practice parallelism between loop iterations exploited via multithreading, multiple processors/cores.
- **Program modules**: functional parallelism exploited by multiple processors.

Regularity versus Irregularity (1)

• Data Structures: dense vectors/matrices versus sparse (stored as such) matrices

Source: D. Harder, Univ. of Waterloo

Source: Derek Greene

Regularity versus Irregularity (2)

- Data access: regular vector access (with strides) versus indirect access (scatter/gather).
- Computation: uniform computation on a grid versus highly dependent upon grid point computation.
- Communication: regular communication versus highly irregular graphs.

source: A. Bhatele, Urbana Champaign

Supercomputer Nr. 5 on Top 500

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband

Specifications and Features

Processor: IBM POWER9™ (2/node)

GPUs: 27,648 NVIDIA Volta V100s (6/node)

Nodes: 4,608 Node Performance: 42TF Memory/node: 512GB DDR4 + 96GB HBM2 NV Memory/node: 1600GB

Total System Memory: >10PB DDR4 + HBM + Non-volatile

Interconnect Topology: Mellanox EDR 100G InfiniBand, Non-blocking Fat Tree

Peak Power Consumption: 13MW

2,4 M cores

Peak perf.: 200 Pflops

HPL: 148 Pflops

Power: 10 MWatt

Smartphone, PC, Supercomputer

Smartphone

PC

16

128 GByte

95 Watt

550 FP2 Gflops

Intel Core i9-9900K

134 Gflops

Energy consumption 18 Watt

Costs

Cores

Memory

Performance

iPhone 11 max pro

6(2High+4Light)

4 Gbyte RAM

>1000 Euro

590 Euro

Supercomputer

Summit - IBM Power System AC922, IBM POWER9 22C

2,414,592

2.801 PB

200.795 PFlop/s

12 MWatt

325 Mio USD

all parallel computers, programmed in a similar style

Supercomputer and a Human Brain

Towards Exascale

Horst Simon, Deputy Director, Lawrence Berkeley National Laboratory

Parallel Processing at the Distributed and Parallel Systems Group, UIBK dps.uibk.ac.at

- Insieme: an optimizing compiler based on machine learning for MPI/OpenMP/OpenCL/SYCL C/C++ codes
- Celerity compiler and runtime system for SYCL based GPUs (clusters)
- Performance Tools and Technologies
 - SCALEA, SCALEA-G, Aksum, PerformanceProphet, Zenturio, P3T+
- Programming Paradigms and Environments
 - AllScale, Celerity, OpenMP+, libWater, JavaSymphony, AFCL
- Runtime Environment
 - Scheduling, Resource Brokerage, multi-objective optimization
- Parallelisation of real-world Applications
 - Material Science, Finance Modeling, Photonics, Astrophysics, River
 Modeling, Simulation of semiconductor devices, games

Celerity, Insieme, Askalon

www.insieme-compiler.org www.askalon.org

Application Development, Analysis, Optimization, Execution for Computational

Books

- Parallel Programming in C with MPI and OpenMP Michael J. Quinn, McGraw Hill
- Parallel Computer Architecture: A
 Hardware/Software Approach
 David E. Culler, Jasweinder Pal Singh, Anoop Gupta,
 Morgan Kaufmann, 1999
- Designing and Building Parallel Programs
 Ian Foster, www.mcs.anl.gov/dbpp

Sources for Slides (Acknowledgements)

- S. Amarasinghe, MIT
- R. Buyya, University of Melbourne, Australia
- J. Dongarra, University of Tennessee, USA
- F. Ercal, University of Missouri-Rolla
- T. Fahringer, University of Innsbruck, Austria
- Ian Foster, Argonne National Lab, USA
- M. Gerndt, Department of Computer Science, TU Munich, Germany
- W. Jalby, University de Versailles, France
- K. Kennedy, Rice University, USA
- M. J. Quinn, Oregon State University, Corvallis, USA
- X. Sun, Illinois Inst. of Technology, USA
- M. Voss, University of Toronto, Canada
- B. Wilkinson and M. Allen, University of North Carolina, USA