

IBM Data Science Capstone Project

Schäfer, Dennis

November 01st, 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

Methodologie

- Data Collection
- Data Wrangling
- Data Analysis
- EDA with SQL
- Predictive Analysis

Results

- Exploratory Data Analysis with Data Visualization
- Interactive map with Folium
- Predictive Analysis

Project backround

- We are working for the company SpaceY and are analysing the data of the company SpaceX adverstised on its website
- The Falcon 9 rocket launches costs around 100 million dollars less throught SpaceX can reuse the first stage
- The goal is to predict if the Falcon 9 will land successfully

Problems

- What influences the success of the rocket landing?
- Under what conditions does the rocket launch has the best success rate?
- What is the best model to predict further rocket launches

Data Collection

- Web Scrapping Wikipedia using BeautifulSoup
- SpaceX REST API
 - Using the following URL: https://api.spacexdata.com/v4/launches/past
 - Provides data about rocket launches including detailed information
- Normalize the data into a .csv file for further analysis

Data Wrangling

- Convert a succeed and failed landing with numeric for futher steps
- Create a new column named "Class"
- If the landing succeed assign 1 to the column "Class", otherwise assign 0

Data Analysis

- Exploratory Data Analysis with Data Visualization
- Using scatter graphs, bar graph and line graph
- Creating an interactive map with Green and Red markers assigned from the column "Class"
- Creating an interactive dashboard to access filtered information

Predictive Analysis

- Building the model with a 20% test data set
- Check the accuracy for each model
- Plot Confusion Matrix

Launch Site vs Flight Number

- The the flight number scales with the success rate
- CCAFS SLC 40 has a lower success rate

Launch Site vs Pay Load Mass (kg)

- Higher Pay Load Mass has a higher success rate
- For KSC LC 39A a very low Pay Load Mass has a higher success rate

Orbit vs Pay Load Mass (kg)

The Pay Load Mass inbetween one Orbit does not have a significant difference.

Mean of the Orbits success rate

- ES-L1, GEO, HEO and SSO has the best success rate
- SO has a very poor success rate

Success rate vs Year

The success rate is increasing nearly till 2020.

EDA with SQL

November 01st, 2022

Results

Unique launch sites

%sql SELECT

DISTIONCT(LAUNCH_SITE)

FROM SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

5 records with "CCA" launch sites beginning

%sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE "CCA%" LIMIT 5

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total mass carried by booster launched by NASA (CRS)

%sql SELECT SUM(PAYLOAD_MASS_KG)
FROM SPACEXTBL
WHERE CUSTOMER = "NASA (CRS)"

Average payload mass carried by boster version F9 v1.1

%sql SELECT AVG(PAYLOAD_MASS_KG) FROM SPACEXTBL WHERE BOOSTER_VERSION = "F9 v1.1"

Date of the first successful landing outcome in ground pad was acheived

%sql SELECT MIN(DATE)
FROM SPACEXTBL
WHERE LANDING__OUTCOME =
"SUCCESS (ground pad)"

2015-12-22

Booster versions with successes and a payload mass between 4000 and 6000

%sql SELECT BOOSTER_VERSION FROM SPACEXTBL WHERE LANDING__OUTCOME = "SUCCESS (drone ship)" AND PAYLOAD_MASS_KG > 4000 AND PAYLOAD_MASS_KG < 6000

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total number of successful and failure mission outcomes

%sql SELECT COUNT(MISSION_OUTCOME)
FROM SPACEXTBL
WHERE MISSION_OUTCOME = "Success"
OR MISSION_OUTCOME = "Failure (in flight)"

Booster_versions which has carried maximum payload mass

%sql SELECT BOOSTER_VERSION FROM SPACEXTBL WHERE PAYLOAD_MASS_KG = (SELECT MAX(PAYLOAD_MASS_KG) FROM SPACEXTBL)

F9 B5 B1049.7

Landing_outcomes between the date 2010-06-04 and 2017-03-20 in desc order

%sql SELECT * FROM SPACEXTBL WHERE LAUNCH_OUTCOME LIKE "Success%" AND (DATE BETWEEN "2010-06-04" AND 2017-03-20") ORDER BY DESC

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2017- 02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2017- 01-14	17:54:00	F9 FT B1029.1	VAFB SLC- 4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
2016- 08-14	05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016- 07-18	04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2016- 05-27	21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)
2016- 05-06	05:21:00	F9 FT B1022	CCAFS LC- 40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016- 04-08	20:43:00	F9 FT B1021.1	CCAFS LC- 40	SpaceX CRS-8	3136	LEO (ISS)	NASA (CRS)	Success	Success (drone ship)
2015- 12-22	01:29:00	F9 FT B1019	CCAFS LC- 40	OG2 Mission 2 11 Orbcomm- OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground pad)

Interactive map with Folium

November 01st, 2022

Results

All launch sites

Success und fail landing marks

Green marks a succeed landing and Red marks a failed landing.

Success und fail landing marks

Distance to the closest Highway, coast, rails and airport

Dashboard – Pie Chart

Success rate all Launches

KSC LC-39A success rate

Dashboard – Scatter Plot

Light Payload max 4000 kg

1 0.8 0.6 0.6 0.4 0.2 0.2 0.0 2500 3000 3500 Payload Mass (kg)

Heavy Payload min 4000 kg

Predictive analysis

Classification models

Classification accuracy using models

- Performing accuracy tests on the following models
 - K-nearest Neighbors (KNN)
 - Support Vector Machine
 - Linear Model (Logistic Regression classifier)
 - Decision Tree Model
- The Decision Tree has the highest accuracy

Confusion Matrix for the tree

After Examination we see problems in the row "did not land" for the actual values.

Conclusion

- Higher Pay Load Mass performs better than lighter Pay Load Mass, except for KSC LC 39A
- Orbits ES-L1, GEO, HEO and SSO has the best success rate
- Success rate of SpaceX increases with time in years
- The Decision Tree Model works the best for this dataset

Thank You!

November 01st, 2022 40