Лекция 10

Свойства функций, непрерывных на отрезке

1-я теорема Больцано–Коши (о существовании нуля функции). Если функция f(x) непрерывна на отрезке [a,b] и имеет на его концах значения разных знаков (т.е. f(a)f(b) < 0), то существует точка $c \in (a,b)$ такая, что f(c) = 0.

◄Доказательство. Разделим отрезок [a,b] пополам его серединой $\frac{a+b}{2}$. Если $f\left(\frac{a+b}{2}\right) = 0$, то $c = \frac{a+b}{2}$ и теорема доказана; в противном случае обозначим через $[a_1,b_1]$ ту из его половин, для которой $f(a_1)f(b_1)<0$. Разделим пополам отрезок $[a_1,b_1]$ и вновь, либо его середина является нулем функции и теорема доказана, либо выберем ту из его половин $[a_2,b_2]$, для которой $f(a_2)f(b_2)<0$. Продолжим этот процесс. Тогда, либо после некоторого числа шагов середина очередного отрезка либо функции, нулем последовательность окажется ПОЛУЧИМ $[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset ...\supset [a_n,b_n]\supset ...$ вложенных отрезков, причем $f(a_n)f(b_n) < 0$ и $b_n - a_n = \frac{b-a}{2^n} \to 0$. $\exists c \in [a,b]: a_n \to c, b_n \to c$, тогда переходя к пределу в неравенстве $f(a_n)f(b_n) < 0$ с учетом непрерывности функции в точке c, получим $[f(c)]^2 \le 0$. Так как строгое неравенство невозможно, то f(c) = 0.

Замечание. В доказательстве этой теоремы фактически описан процесс нахождения корня уравнения f(x) = 0 с заданной точностью *методом деления отрезка пополам*. Иначе этот процесс называется *бисекцией* или *дихотомией*.

2-я теорема Больцано–Коши (о промежуточных значениях). Если функция f(x) непрерывна на отрезке [a,b], A = f(a), B = f(b), $u A \neq B$, то для любого числа C между A u B существует точка $c \in (a,b)$ такая, что f(c) = C.

◄Доказательство. Пусть для определенности A < B, так что A < C < B. Положим F(x) = f(x) - C. Эта функция непрерывна на отрезке [a,b] и на его концах имеет значения разных знаков: F(a) = A - C < 0, F(b) = B - C > 0. Следовательно, по 1-й теореме Больцано–Коши $\exists c \in (a,b) : F(c) = 0$, т.е. f(c) - C = 0 или f(c) = C. ▶

Замечание. 1-я теорема Больцано–Коши является, в свою очередь, частным случаем 2-й теоремы: если числа A и B — разных знаков, то при C = 0 получаем утверждение 1-й теоремы.

Следствие (из 2-й теоремы Больцано—Коши). Если функция f непрерывна на промежутке I (конечном или бесконечном) и не является постоянной, то множество f(I) ее значений также является промежутком.

1-я теорема Вейерштрасса (об ограниченности). Если функция непрерывна на отрезке, то она на нем ограничена.

Определение. Пусть функция f(x) определена на множестве D. Пусть точки $\alpha, \beta \in D$ таковы, что $f(\alpha) \le f(x) \le f(\beta) \ \forall x \in D$. Тогда число $m = f(\alpha)$ называется

наименьшим, а число $M = f(\beta)$ соответственно наибольшим значением функции на множестве D.

Обозначения: $m = \min_{D} f(x)$, $M = \max_{D} f(x)$.

2-я теорема Вейерштрасса (о существовании наименьшего и наибольшего значений). Если функция непрерывна на отрезке, то существуют ее наименьшее и наибольшее значения на этом отрезке.

Следствие (из 2-й теоремы Вейерштрасса). Если функция f(x) непрерывна на отрезке [a,b]=I, то множество f(I) ее значений есть отрезок [m,M], где $m=\min_{[a,b]}f(x),\,M=\max_{[a,b]}f(x).$

Дифференциальное исчисление функций одной переменной

Пусть функция y = f(x)определена в некоторой окрестности U точки x_0 .

$$\frac{M_o(x_o, y_o)}{M(x, y)}$$
 — точки графика функции $y = f(x)$.

Придадим аргументу x_0 произвольное приращение Δx такое, что точка $x_0 + \Delta x$ также принадлежит U . Функция получит приращение $\Delta y = f\left(x_0 + \Delta x\right) - f\left(x_0\right)$.

Определение. Касательной к линии ℓ в точке M_o называется прямая M_oT , т.е. предельное положение секущей M_o M, когда точка M стремится к M_o вдоль данной линии произвольным образом.

Пусть α — угол, образованный секущей с осью ох.

$$\Delta M_o NM$$
: $tg \alpha = \frac{MN}{M_o N} = \frac{\Delta y}{\Delta x}$.

Пусть $M \to M_o$ вдоль графика y = f(x), тогда $\Delta x \to 0$. φ — угол наклона касательной к оси 0x, тогда

 $tg \ \alpha \to tg \ \varphi$ при $\Delta x \to 0$

$$k = tg \, \varphi = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Определение. *Производной* функции y = f(x) в точке x_0 называется (конечный) предел при $\Delta x \to 0$ отношения приращения Δy функции в этой точке к приращению аргумента Δx :

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}.$$

В других обозначениях

$$f'(x_0) = \lim_{x \to x_0} \frac{\Delta y}{\Delta x} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Производная функции y = f(x), рассматриваемая на множестве тех точек, где она существует, сама является функцией. Процесс нахождения производной называют $\partial u \phi \phi$ ренцированием функции.

Обозначения производной:
$$f'(x)$$
, $y'(x)$, $\frac{dy}{dx}$, $y'_x(x)$.

Касательная и нормаль к кривой.

Мы показали, что

$$\operatorname{tg} \varphi = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = f'(x_0).$$

И показали, что существование производной функции f(x) в точке x_0 эквивалентно существованию касательной к графику этой функции в точке $(x_0, f(x_0))$, непараллельной оси у.

Геометрический смысл производной: производная функции $f'(x_0)$ равна угловому коэффициенту касательной к графику этой функции в точке $(x_0, f(x_0))$.

Определение. Прямая, проходящая через точку касания $(x_0, f(x_0))$, перпендикулярно касательной, называется *нормалью* к графику функции f(x) в точке $(x_0, f(x_0))$.

Определение. Углом между кривыми $y = f_1(x)$ и $y = f_2(x)$ в их общей точке (x_0, y_0) называется угол между касательными к этим кривым в точке (x_0, y_0) .

Вывод уравнений касательной и нормали к графику функции

Пусть $M\left(x_0,y_0\right)$ — точка графика функции $y=f\left(x\right),\ y_0=f\left(x_0\right)$. Уравнение прямой, проходящей через данную точку $M\left(x_0,y_0\right)$ с данным угловым коэффициентом k имеет вид $y-y_0=k\left(x-x_0\right)$. Поскольку угловой коэффициент касательной к графику равен $f'\left(x_0\right)$, то получаем уравнение касательной

$$y - y_0 = f'(x_0)(x - x_0)$$

Поскольку нормаль перпендикулярна касательной, то ее угловой коэффициент равен $-1/f'(x_0)$, $f'(x_0) \neq 0$. Получаем уравнение нормали

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

Так же уравнение нормали имеет вид

$$f'(x_0)(y-y_0)+(x-x_0)=0$$

Если $f'(x_0) = 0$, то касательная параллельна оси x и имеет уравнение $y = y_0$, а нормаль параллельна оси y и имеет уравнение $x = x_0$.

Пример. Написать уравнения касательной и нормали к графику функции $y = x^2 + 4x$ в точке $x_0 = 1$.

Замечание. Если $f'(x_0) = +\infty$ или $f'(x_0) = -\infty$, то в точке $(x_0, f(x_0))$ имеем вертикальную касательную, задаваемую уравнением $x = x_0$.

Механический смысл производной

Предположим, что материальная точка M движется вдоль оси x, $s(t_0)$ – координата точки M в момент времени t_0 , $s(t_0 + \Delta t)$ — координата точки M в момент времени $t_0 + \Delta t$. Средняя скорость движения точки на промежутке времени $t_0, t_0 + \Delta t$ равна

$$v_{cpe \partial ext{H} ext{Я} ext{Я}} = rac{\Delta s}{\Delta t} = rac{s \left(t_0 + \Delta t
ight) - s \left(t_0
ight)}{\Delta t},$$

а мгновенная скорость в точке t_0

$$v = \lim_{\Delta t \to 0} v_{cpe \partial HSS} = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = s'(t_0).$$

Таким образом, скорость есть производная от пройденного пути по времени.

По аналогии производную $f'(x_0)$ произвольной функции f(x) можно считать скоростью изменения функции в точке x_0 .

Примеры.

1)
$$f(x) = C$$
, $C = \text{const.}$

2)
$$f(x) = x$$
, $f'(x) = 1$.

3)
$$f(x) = x^2$$
, $f'(x) = 2x$.

4)
$$f(x) = \frac{1}{x}$$
, $f'(x) = -\frac{1}{x^2}$.

5)
$$f(x) = \sin x$$
, $f'(x) = \cos x$.

6)
$$f(x) = \ln x$$
, $f'(x) = \frac{1}{x}$.

Теорема. Если функция f(x) имеет производную в точке x_0 , то функция f(x) непрерывна в точке x_0 .

◄Доказательство. Поскольку существует $\lim_{\Delta x \to 0} \frac{f\left(x_0 + \Delta x\right) - f\left(x_0\right)}{\Delta x} = f'(x_0)$, то $\frac{f\left(x_0 + \Delta x\right) - f\left(x_0\right)}{\Delta x} = f'(x_0) + \alpha(\Delta x),$

где $\alpha(\Delta x)$ — б.м. при $\Delta x \to 0$. Значит,

$$\Delta y = f(x_0 + \Delta x) - f(x_0) = (f'(x_0) + \alpha(\Delta x)) \Delta x$$

Следовательно, $\Delta y \to 0$ при $\Delta x \to 0$, и функция f(x) непрерывна в точке x_0 .

Обратное утверждение неверно!!!!

Пример. f(x) = |x|. Производная в точке $x_0 = 0$ не существует.

Действительно,
$$\Delta y = |\Delta x| = \begin{cases} \Delta x, \, \Delta x > 0, \\ -\Delta x, \, \Delta x < 0 \end{cases}$$
, $\frac{\Delta y}{\Delta x} = \begin{cases} 1, \, \Delta x > 0, \\ -1, \, \Delta x < 0 \end{cases}$, $\lim_{x \to 0} \frac{\Delta y}{\Delta x}$ существует.