Table for Fundamentals of Series: Part I: Basic Properties of Series and Products

August 19, 2011

1 Binomial Identities

Remark 1.1 Throughout these tables, we assume, unless specified, that n, j, k, α and r represent non-negative integers. Furthermore, we reserve x, and y for arbitrary real(complex) numbers.

1.1 Basic Identities

Pascal's Formula

Committee/Chair Identity

$$(n+1)\binom{r}{n+1} = r\binom{r-1}{n} \tag{1.2}$$

Cancelation Identity

$$\binom{n}{r+a}\binom{r+a}{r} = \binom{n}{r}\binom{n-r}{a} \tag{1.3}$$

$$\binom{n}{r}\binom{n+r}{r} = \binom{n+r}{n-r}\binom{2r}{r} = \binom{n+r}{2r}\binom{2r}{r} = \frac{(n+r)!}{(r!)^2(n-r)!}$$
(1.4)

$$\binom{n}{r} \binom{2n}{n} = \binom{n+r}{r} \binom{2n}{n-r} \tag{1.5}$$

-1 Transformation

$$\binom{-x}{r} = (-1)^r \binom{x+r-1}{r} \tag{1.6}$$

$$\binom{n+r}{r} = \binom{n+r}{n} = (-1)^n \binom{-r-1}{n} \tag{1.7}$$

$$\frac{\binom{-x+\alpha-1}{n+r}\binom{x}{\alpha-r-n}}{\binom{x}{\alpha}} = (-1)^{n+r} \binom{\alpha}{n+r}$$
(1.8)

 $\frac{-1}{2}$ Transformation

$$\binom{\frac{-1}{2}}{n} = (-1)^n \binom{2n}{n} \frac{1}{2^{2n}} \tag{1.9}$$

 $\frac{1}{2}$ Transformation

$$\binom{\frac{1}{2}}{n} = (-1)^{n+1} \binom{2n}{n} \frac{1}{2^{2n}(2n-1)}$$
 (1.10)

$$\binom{\alpha}{n+1} \binom{\alpha-n-1}{\alpha-j} \binom{n+1}{j-k} = \binom{\alpha}{j} \binom{j}{k} \binom{k}{j-n-1}$$
 (1.11)

1.2 Binomial Identities From the Gamma Function

Identities from $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$

$$n!(-1-n)! = \frac{\pi}{\sin(n+1)\pi}$$
 (1.12)

$$(-n - \frac{1}{2})!(n - \frac{1}{2})! = (-1)^n \pi$$
(1.13)

Identities from Duplication Formula: $\Gamma(2x) = \frac{2^{2x-1}}{\sqrt{\pi}}\Gamma(x)\Gamma\left(x+\frac{1}{2}\right)$

$$(n - \frac{1}{2})! = \frac{\sqrt{\pi}(2n)!}{2^{2n}n!}$$
 (1.14)

$$\frac{2^{2n}(n!)^2}{(2n+1)!} = \frac{n!\sqrt{\pi}}{2(n+\frac{1}{2})!}$$
(1.15)

$$\left(\frac{n}{2}\right)! \left(\frac{n-1}{2}\right)! = \frac{n!\sqrt{\pi}}{2^n} \tag{1.16}$$

$$\binom{n}{\frac{1}{2}} = \frac{2^{2n+1}}{\pi \binom{2n}{n}} \tag{1.17}$$

$$\binom{k}{\frac{1}{2}} \binom{n-k}{\frac{1}{2}} = \frac{2^{2n+2}}{\pi^2 \binom{2k}{k} \binom{2n-2k}{n-k}}$$
(1.18)

$$\binom{n}{\frac{n}{2}} = \frac{2^{2n}(\frac{n-1}{2})!}{n!\pi} = \frac{2^{2n}}{\pi(\frac{n}{\frac{n-1}{2}})}$$
(1.19)

1.3 Limit Formulas

$$\lim_{n \to \infty} {2n \choose n}^{\frac{1}{n}} = \lim_{n \to \infty} \sqrt[n]{\frac{(2n)!}{(n!)^2}} = 4$$
 (1.20)

$$\lim_{n \to \infty} \frac{n+1}{\sqrt[n]{n!}} = \lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}} = e$$
(1.21)

$$\lim_{n \to \infty} \frac{\left(\frac{n}{e}\right)^n \sqrt{2\pi n}}{n!} = 1 \tag{1.22}$$

2 Series: The Basic Properties

2.1 Indices Properties

Remark 2.1 In this chapter, we assume a is a nonnegative integer. We also let [x] denote the floor of x, i.e. the greatest integer less than or equal to x.

$$\sum_{k=a}^{n} f(k) = \sum_{k=0}^{n} f(k) - \sum_{k=0}^{a-1} f(k)$$
(2.1)

$$\sum_{j=k_0+1}^{k_m} f(j) = \sum_{i=0}^{m-1} \sum_{j=k_i+1}^{k_{i+1}} f(j), \qquad 1 \le m \le \infty$$
(2.2)

$$2\sum_{k=\left[\frac{a+1}{2}\right]}^{\left[\frac{n}{2}\right]} f(2k) = \sum_{k=a}^{n} f(k) + \sum_{k=a}^{n} (-1)^{k} f(k), \qquad n \ge a+1$$
 (2.3)

$$2\sum_{k=\left[\frac{a+2}{2}\right]}^{\left[\frac{n+1}{2}\right]} f(2k-1) = \sum_{k=a}^{n} f(k) - \sum_{k=a}^{n} (-1)^k f(k), \qquad n \ge a+1$$
 (2.4)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{2k+1} x^{2k} = \frac{1}{2} \frac{(1+x)^n - (1-x)^n}{x}, \qquad n \ge 1$$
 (2.5)

2.1.1 Bifurcation Formulas

Bifurcation Formula

$$\sum_{k=a}^{n} f(k) = \sum_{k=\left[\frac{a+1}{2}\right]}^{\left[\frac{n}{2}\right]} f(2k) + \sum_{k=\left[\frac{a+2}{2}\right]}^{\left[\frac{n+1}{2}\right]} f(2k-1), \qquad n \ge a+1$$
 (2.6)

Let $i = \sqrt{-1}$ in the following two equations.

$$\sum_{k=0}^{n} i^{k^2} f(k) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} f(2k) + i \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} f(2k+1), \qquad n \ge 1$$
 (2.7)

$$\sum_{k=0}^{n} (-1)^{\left[\frac{k}{2}\right]} i^{k^2} f(k) = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k f(2k) + i \sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^k f(2k+1), \qquad n \ge 1$$
 (2.8)

Generalized Bifurcation Formulas

$$\sum_{k=0}^{rn-1} f(k) = \sum_{j=0}^{r-1} \sum_{k=0}^{n-1} f(rk+j), \qquad r \ge 1$$
 (2.9)

$$\sum_{k=a}^{n} f(k) = \sum_{j=0}^{r-1} \sum_{k=\left[\frac{a+r-1-j}{r}\right]}^{\left[\frac{n-j}{r}\right]} f(rk+j), \qquad n-a+1 \ge r$$
 (2.10)

$$\sum_{k=a}^{n} f(k) = \sum_{k=\left[\frac{a+2}{3}\right]}^{\left[\frac{n}{3}\right]} f(3k) + \sum_{k=\left[\frac{a+1}{3}\right]}^{\left[\frac{n-1}{3}\right]} f(3k+1) + \sum_{k=\left[\frac{a}{3}\right]}^{\left[\frac{n-2}{3}\right]} f(3k+2), \qquad n \ge a+2$$
 (2.11)

$$\sum_{k=a}^{n} f(k) = \sum_{k=\left[\frac{a+3}{4}\right]}^{\left[\frac{n}{4}\right]} f(4k) + \sum_{k=\left[\frac{a+2}{4}\right]}^{\left[\frac{n-1}{4}\right]} f(4k+1) + \sum_{k=\left[\frac{a+1}{4}\right]}^{\left[\frac{n-2}{4}\right]} f(4k+2) + \sum_{k=\left[\frac{a}{4}\right]}^{\left[\frac{n-3}{4}\right]} f(4k+3), \quad (2.12)$$

where $n \geq a + 3$.

Alternating Bifurcation Formula

$$\sum_{k=a}^{n} (-1)^k f(k) = \sum_{k=\left[\frac{a+1}{2}\right]}^{\left[\frac{n}{2}\right]} f(2k) - \sum_{k=\left[\frac{a+2}{2}\right]}^{\left[\frac{n+1}{2}\right]} f(2k-1), \qquad n \ge a+1$$
 (2.13)

Generalized Alternating Bifurcation Formula

$$\sum_{k=a}^{n} (-1)^{k} f(k) = \sum_{j=0}^{r-1} \sum_{k=\left[\frac{a+r-1-j}{r}\right]}^{\left[\frac{n-j}{r}\right]} (-1)^{rk+j} f(rk+j), \qquad n \ge a+r-1$$
 (2.14)

$$\sum_{k=a}^{n} (-1)^k f(k) = \sum_{k=\left[\frac{a+2}{3}\right]}^{\left[\frac{n}{3}\right]} (-1)^k f(3k) - \sum_{k=\left[\frac{a+1}{3}\right]}^{\left[\frac{n-1}{3}\right]} (-1)^k f(3k+1) + \sum_{k=\left[\frac{a}{3}\right]}^{\left[\frac{n-2}{3}\right]} (-1)^k f(3k+2), \quad (2.15)$$

where $n \ge a + 2$.

$$\sum_{k=a}^{n} (-1)^{k} f(k) = \sum_{k=\left[\frac{a+3}{4}\right]}^{\left[\frac{n}{4}\right]} f(4k) - \sum_{k=\left[\frac{a+2}{4}\right]}^{\left[\frac{n-1}{4}\right]} f(4k+1) + \sum_{k=\left[\frac{a+1}{4}\right]}^{\left[\frac{n-2}{4}\right]} f(4k+2) - \sum_{k=\left[\frac{a}{4}\right]}^{\left[\frac{n-3}{4}\right]} f(4k+3),$$
(2.16)

where $n \geq a + 3$.

2.1.2 Basic Telescoping Identities

$$\sum_{k=1}^{n} (f(k) - f(k+r)) = \sum_{k=1}^{r} (f(k) - f(k+n))$$
 (2.17)

Let $\Delta_{k,r}f(k)=rac{f(k+r)-f(k)}{r}$. Then,

$$\frac{1}{n} \sum_{k=1}^{n} \Delta_{k,r} f(k) = \frac{1}{r} \sum_{k=1}^{r} \Delta_{k,n} f(k)$$
 (2.18)

2.1.3 Greatest Integer Function Identities

$$\sum_{k=1}^{n} f(k) = \frac{1}{2} \sum_{k=1}^{2n} f\left(\left[\frac{k+1}{2}\right]\right)$$
 (2.19)

$$\sum_{k=1}^{n} f(k) = \frac{1}{2} \sum_{k=1}^{2n-1} f\left(\left[\frac{k}{2}\right] + 1\right)$$
 (2.20)

$$\sum_{k=1}^{n} (-1)^{k-1} f(k) = \frac{1}{2} \sum_{k=1}^{2n-1} (-1)^{\left[\frac{k}{2}\right]} f\left(\left[\frac{k}{2}\right] + 1\right)$$
 (2.21)

2.2 Expansions of $(1+i)^n$ and $(1-i)^n$

Remark 2.2 In Section 2.2, we let $i = \sqrt{-1}$.

Variation of Bifurcation Formula

$$\sum_{k=a}^{n} i^{k} f(k) = \sum_{k=\left[\frac{a+1}{2}\right]}^{\left[\frac{n}{2}\right]} (-1)^{k} f(2k) + i \sum_{k=\left[\frac{a+2}{2}\right]}^{\left[\frac{n+1}{2}\right]} (-1)^{k-1} f(2k-1)$$
(2.22)

Variation of Alternating Bifurcation Formula

$$\sum_{k=a}^{n} (-i)^k f(k) = \sum_{k=\left[\frac{a+1}{2}\right]}^{\left[\frac{n}{2}\right]} (-1)^k f(2k) - i \sum_{k=\left[\frac{a+2}{2}\right]}^{\left[\frac{n+1}{2}\right]} (-1)^{k-1} f(2k-1)$$
(2.23)

2.2.1 Expansion of $(1+i)^n$

$$(1+i)^n = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} - i \sum_{k=1}^{\left[\frac{n+1}{2}\right]} (-1)^k \binom{n}{2k-1}$$
 (2.24)

2.2.2 Expansions Involving $(1-i)^n$

$$(1-i)^n = \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} + i \sum_{k=1}^{\left[\frac{n+1}{2}\right]} (-1)^k \binom{n}{2k-1}$$
 (2.25)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} = \frac{(1+i)^n + (1-i)^n}{2}$$
 (2.26)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} = (\sqrt{2})^n \cos\left(\frac{n\pi}{4}\right)$$
 (2.27)

$$\sum_{k=0}^{2n} (-1)^k \binom{4n}{2k} = (-1)^n 2^{2n}$$
 (2.28)

$$\sum_{k=0}^{n} (-1)^k \binom{2n}{2k} = (-1)^{\left[\frac{n}{2}\right]} \left(1 + (-1)^n\right) 2^{n-1} \tag{2.29}$$

$$\sum_{k=1}^{\left[\frac{n+1}{2}\right]} (-1)^{k-1} \binom{n}{2k-1} = \frac{(1+i)^n - (1-i)^n}{2i}$$
 (2.30)

$$\sum_{k=1}^{\left[\frac{n+1}{2}\right]} (-1)^{k-1} \binom{n}{2k-1} = \sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^{k-1} \binom{n}{2k+1} = (\sqrt{2})^n \sin\left(\frac{n\pi}{4}\right)$$
(2.31)

$$\sum_{k=0}^{2n-1} (-1)^k \binom{4n}{2k+1} = 0 \tag{2.32}$$

$$\sum_{k=0}^{n-1} (-1)^k \binom{2n}{2k+1} = (-1)^{\left[\frac{n}{2}\right]} \left(1 - (-1)^n\right) 2^{n-1} \tag{2.33}$$

$$\sum_{k=0}^{n} (-1)^k \binom{2n+1}{2k+1} = (-1)^{\left[\frac{n}{2}\right]} 2^n \tag{2.34}$$

$$\sum_{k=0}^{n} (-1)^k \binom{2n+1}{2k} = (-1)^{\left[\frac{n+1}{2}\right]} 2^n \tag{2.35}$$

2.2.3 Expansions of $\left(\cos\left(\frac{\pi}{3}\right) \pm i\sin\left(\frac{\pi}{3}\right)\right)^n$

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} 3^k = 2^n \cos\left(\frac{n\pi}{3}\right)$$
 (2.36)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^k \binom{n}{2k+1} 3^k = \frac{2^n \sqrt{3}}{3} \sin\left(\frac{n\pi}{3}\right)$$
 (2.37)

2.2.4 Expansions of $\left(\cos\left(\frac{\pi}{6}\right) \pm i\sin\left(\frac{\pi}{6}\right)\right)^n$

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n}{2k} \frac{1}{3^k} = \left(\frac{2\sqrt{3}}{3}\right)^n \cos\left(\frac{n\pi}{6}\right)$$
 (2.38)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} (-1)^k \binom{n}{2k+1} \frac{1}{3^k} = \sqrt{3} \left(\frac{2\sqrt{3}}{3}\right)^n \sin\left(\frac{n\pi}{6}\right)$$
 (2.39)

2.3 Index Shift Formula with Applications

2.3.1 Index Shift Formula

Index Shift Formula: Version 1

$$\sum_{k=a}^{n} f(k) = \sum_{k=0}^{n-a} f(n-k), \qquad a \ge 0$$
 (2.40)

Index Shift Formula: Version 2

$$\sum_{k=a}^{n} f(k) = \sum_{k=a}^{n} f(a+n-k), \qquad a \ge 0$$
 (2.41)

2.3.2 Applications of Index Shift Formula

$$\sum_{k=0}^{n} {2n \choose k} = 2^{2n-1} + \frac{1}{2} {2n \choose n} \tag{2.42}$$

$$\sum_{k=0}^{n} \binom{2n}{k} = 2^{2n-1} + \binom{2n-1}{n}, \qquad n \ge 1$$
 (2.43)

$$\sum_{k=1}^{n} {2n \choose n-k} = \sum_{k=1}^{n} {2n \choose n+k} = 2^{2n-1} - \frac{1}{2} {2n \choose n}$$
 (2.44)

$$\sum_{k=1}^{n} {2n \choose n-k} = \sum_{k=1}^{n} {2n \choose n+k} = 2^{2n-1} - {2n-1 \choose n}, \qquad n \ge 1$$
 (2.45)

$$\sum_{k=0}^{n} {2n-1 \choose k} = 2^{2n-2} + {2n-1 \choose n}, \qquad n \ge 1$$
 (2.46)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{2n}{2k} = 2^{2n-2} + \frac{1 + (-1)^n}{2} \binom{2n-1}{n},\tag{2.47}$$

otherwise, if n = 0, the sum equals 1.

$$\sum_{k=0}^{n} \binom{4n}{2k} = 2^{4n-2} + \binom{4n-1}{2n} \tag{2.48}$$

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} {2n \choose 2k+1} = 2^{2n-2} + \frac{1-(-1)^n}{2} {2n-1 \choose n}, \qquad n \ge 1$$
 (2.49)

$$\sum_{k=0}^{n-1} {4n \choose 2k+1} = 2^{4n-2} = 4^{2n-1}, \qquad n \ge 1$$
 (2.50)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {2n \choose n-2k} = \sum_{k=0}^{\left[\frac{n}{2}\right]} {2n \choose n+2k} = 2^{2n-2} + \frac{1}{2} {2n \choose n}$$
 (2.51)

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} {2n \choose n-2k} = \sum_{k=0}^{\left[\frac{n}{2}\right]} {2n \choose n+2k} = 2^{2n-2} + {2n-1 \choose n}$$
 (2.52)

$$\sum_{k=0}^{n} {4n \choose 2n-2k} = \sum_{k=0}^{n} {4n \choose 2n+2k} = 2^{4n-2} + \frac{1}{2} {4n \choose 2n}$$
 (2.53)

$$\sum_{k=0}^{n} \binom{4n}{2k} = \sum_{k=0}^{n} \binom{4n}{4n-2k} = 2^{4n-2} + \frac{1}{2} \binom{4n}{2n}$$
 (2.54)

Variation of Index Shift Formula

$$\sum_{k=1}^{n} f(k) = \sum_{k=1}^{\left[\frac{n}{2}\right]} (f(k) + f(n-k+1)) + \frac{1 - (-1)^{n}}{2} f\left(\left[\frac{n+1}{2}\right]\right), \qquad n \ge 2 \quad (2.55)$$

$$\sum_{k=0}^{n} f(k) = \sum_{k=1}^{\left[\frac{n-1}{2}\right]} (f(k) + f(n-k)) + \frac{1 + (-1)^n}{2} f\left(\left[\frac{n}{2}\right]\right), \qquad n \ge 1$$
 (2.56)

$$\sum_{k=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{k} = 2^{n-1} - \frac{1 + (-1)^n}{4} \binom{n}{\left[\frac{n}{2}\right]}, \qquad n \ge 1$$
 (2.57)

$$\sum_{k=0}^{n} \binom{2n+1}{k} = 2^{2n}, \qquad n \ge 0$$
 (2.58)

Application of Index Shift Formula with -1 Transformation

$$\sum_{k=n}^{r+n} {n-1-k \choose k} f(k) = (-1)^n \sum_{k=0}^r (-1)^k {n+2k \choose k} f(k+n), \qquad r, n \ge 0$$
 (2.59)

2.3.3 Iterated Index Shift Formula

$$\sum_{k=0}^{n} \sum_{j=0}^{k} f(k,j) = \sum_{j=0}^{n} \sum_{k=0}^{j} f(n-k, n-j)$$
 (2.60)

2.4 Series Properties of Periodic Functions

In the following identity, suppose $f(x) = f(\pi - x)$.

$$\sum_{k=0}^{n-1} f\left(\frac{2k+1}{4n}\pi\right) = \sum_{k=0}^{n-1} f\left(\frac{4k+1}{4n}\pi\right), \qquad n \ge 1$$
 (2.61)

In the following identity, suppose $f(x) = -f(\pi - x)$.

$$\sum_{k=0}^{n-1} (-1)^k f\left(\frac{2k+1}{4n}\pi\right) = \sum_{k=0}^{n-1} f\left(\frac{4k+1}{4n}\pi\right), \qquad n \ge 1$$
 (2.62)

In the following identity suppose $f(x) = -f(2\pi - x)$

$$\sum_{k=0}^{2n-1} (-1)^k f\left(\frac{2k+1}{4n}\pi\right) = \sum_{k=0}^{2n-1} f\left(\frac{4k+1}{4n}\pi\right), \qquad n \ge 1$$
 (2.63)

3 Calculus Operations on Series

3.1 Four Basic Integral Formulas

Remark 3.1 In Section 3.1, we assume a and b are nonnegative integers. We assume p is a positive integer. Furthermore, we assume that $a_b \le a_{b+1} \le ... \le a_n \le a_{n+1} \le a_{n+2} \le a_{n+3}$. Lastly, recall the [x] is the greatest integer in x.

3.1.1 First Integral Formula

$$\sum_{r=b}^{n} \varphi(r) \int_{a_r}^{a_{r+1}} f(x) \, dx = \varphi(b) \int_{a_b}^{a_{n+1}} f(x) \, dx + \sum_{r=b+1}^{n} (\varphi(r) - \varphi(r-1)) \int_{a_r}^{a_{n+1}} f(x) \, dx$$
(3.1)

Applications of First Integral Formula

$$\sum_{r=a}^{n} (\varphi(r) - \varphi(r-1))(n+1-r) = \sum_{r=a}^{n} \varphi(r) - (n-a+1)\varphi(a-1)$$
 (3.2)

$$\sum_{r=a}^{n} ((-1)^r - (-1)^{r-1})(n-r+1) = \sum_{r=a}^{n} (-1)^r - (-1)^{a-1}(n-a+1)$$
 (3.3)

$$\sum_{r=0}^{n} (-1)^r (n_r + 1) = \frac{(-1)^n + 2n + 3}{4}$$
(3.4)

$$\sum_{r=0}^{n} \left(\binom{n}{r} - \binom{n}{r-1} \right) (n-r+1) = \sum_{r=0}^{n} \binom{n}{r}$$
(3.5)

$$\sum_{r=0}^{n} \binom{n}{r} r = n2^{n-1} \tag{3.6}$$

$$\sum_{r=1}^{n} f(r) = nf(n) - \sum_{r=1}^{n-1} r \left(f(r+1) - f(r) \right)$$
 (3.7)

$$\sum_{k=1}^{n} \frac{f(k)}{k} = \frac{nf(n+1)}{n+1} - \sum_{k=1}^{n} k \left(\frac{f(k+1)}{k+1} - \frac{f(k)}{k} \right)$$
 (3.8)

$$\sum_{r=1}^{n} r! = nn! - \sum_{r=1}^{n-1} r^2 r!$$
 (3.9)

$$\prod_{k=1}^{n} \left(\frac{f(k+1)}{f(k)} \right)^k = \frac{(f(n+1))^n}{\prod_{k=1}^n f(k)}$$
(3.10)

$$\sum_{k=1}^{n} (k^p - (k-1)^p) f(k) = n^p f(n+1) - \sum_{k=1}^{n} k^p (f(k+1) - f(k))$$
 (3.11)

$$\sum_{k=1}^{n} (k^{p} - (k-1)^{p}) f(k) = \sum_{j=1}^{p} (-1)^{j} {p \choose j} \sum_{k=1}^{n} k^{p-j} f(k)$$
(3.12)

$$\prod_{k=1}^{n} \left(\frac{f(k+1)}{f(k)} \right)^{k^{p}} = (f(n+1))^{n^{p}} \prod_{k=1}^{n} (f(k))^{(k-1)^{p} - k^{p}}$$
(3.13)

3.1.2 Second Integral Formula

$$\sum_{r=b}^{n} \int_{a_r}^{a_{r+1}} f(x) \, dx = \int_{a_b}^{a_{n+1}} f(x) \, dx \tag{3.14}$$

Applications of Second Integral Formula

$$\sum_{r=0}^{n} \frac{2r+3}{(r+1)^2(r+2)^2} = 1 - \frac{1}{(n+2)^2}$$
 (3.15)

$$\sum_{r=0}^{n} \frac{2r+5}{(r+2)^2(r+3)^2} = \frac{1}{4} - \frac{1}{(n+3)^2}$$
 (3.16)

$$\sum_{r=0}^{n} \frac{2r + 2a + 1}{(r+a)^2(r+a+1)^2} = \frac{1}{a^2} - \frac{1}{(n+a+1)^2}, \qquad a \ge 1$$
 (3.17)

$$\sum_{r=0}^{n} \frac{3r^2 + 9r + 7}{(r+1)^3(r+2)^3} = 1 - \frac{1}{(n+1)^3}$$
 (3.18)

$$\sum_{r=1}^{\infty} \frac{3r^2 + 3r + 1}{r^3(r+1)^3} = 1 \tag{3.19}$$

$$\sum_{r=0}^{n} (r^2 + 2r)(r!)^2 = (n+1)! - 1$$
(3.20)

$$\sum_{r=0}^{n} ((r+1)^{p} - 1) (r!)^{p} = ((n+1)!)^{p} - 1$$
(3.21)

$$\sum_{r=0}^{n} rr! = (n+1)! - 1 \tag{3.22}$$

$$\sum_{r=0}^{n} \frac{r}{(r+1)!} = 1 - \frac{1}{(n+1)!}$$
 (3.23)

$$\sum_{r=0}^{n} \frac{r^2 + 2r}{(r+1)^2 (r!)^2} = 1 - \frac{1}{((n+1)!)^2}$$
 (3.24)

$$\sum_{n=0}^{n} \left(1 - \frac{1}{(r+1)^p} \right) \frac{1}{(r!)^p} = 1 - \frac{1}{((n+1)!)^p}$$
 (3.25)

$$\sum_{r=0}^{n} \left(1 - \frac{1}{\sqrt{r+1}} \right) \frac{1}{\sqrt{r!}} = 1 - \frac{1}{(\sqrt{(n+1)!})}$$
 (3.26)

$$\sum_{r=1}^{\infty} \frac{r - \sqrt{r}}{r\sqrt{(r-1)!}} = 1 \tag{3.27}$$

3.1.3 Third Integral Formula

$$\sum_{r=b}^{n} (-1)^r \int_{a_r}^{a_{r+2}} f(x) \, dx = (-1)^b \int_{a_b}^{a_{b+1}} f(x) \, dx + (-1)^n \int_{a_{n+1}}^{a_{n+2}} f(x) \, dx \qquad (3.28)$$

Applications of Third Integral Formula

$$\sum_{r=b}^{n} (-1)^{r} \left(F(r+2) - F(r) \right) = (-1)^{b} \left(F(b+1) - F(b) \right) + (-1)^{n} \left(F(n+2) - F(n+1) \right)$$
(3.29)

$$\sum_{k=0}^{n} (-1)^k (k^2 + 3k + 1)k! = (-1)^n (n+1)(n+1)!$$
(3.30)

$$\sum_{k=0}^{n} (-1)^k \frac{1}{(k+1)(k+3)} = \frac{1}{4} + \frac{(-1)^n}{2(n+2)(n+3)}$$
(3.31)

$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{(k+1)(k+3)} = \frac{1}{4}$$
 (3.32)

$$\sum_{k=0}^{n} (-1)^k \frac{k^2 + 3k + 1}{(k+2)!} = (-1)^n \frac{n+1}{(n+2)!}$$
(3.33)

$$\sum_{k=0}^{\infty} (-1)^k \frac{k^2 + 3k + 1}{(k+2)!} = 0$$
(3.34)

3.1.4 Fourth Integral Formula

$$\sum_{r=0}^{n} (-1)^{r} \int_{a_{r}}^{a_{r+3}} f(x) dx = \sum_{r=2}^{n} (-1)^{r} \int_{a_{r}}^{a_{r+1}} f(x) dx + \int_{a_{0}}^{a_{1}} f(x) dx + (-1)^{n} \int_{a_{n+2}}^{a_{n+3}} f(x) dx$$
(3.35)

Applications of Fourth Integral Formula

$$\sum_{r=0}^{n} (-1)^r \left(F(r+3) - F(r) \right) = \sum_{r=2}^{n} (-1)^r \left(F(r+1) - F(r) \right) + F(1) - F(0)$$

$$+ (-1)^n \left(F(n+3) - F(n+2) \right) \tag{3.36}$$

$$\sum_{r=0}^{n} (-1)^r = \frac{1 + (-1)^n}{2} \tag{3.37}$$

$$\sum_{r=0}^{n} (-1)^r r = \frac{(2n+1)(-1)^n - 1}{4} = (-1)^n \left[\frac{n+1}{2} \right]$$
 (3.38)

$$\sum_{r=0}^{n} (-1)^r r^2 = (-1)^n \frac{n^2 + n}{2}$$
(3.39)

3.2 Three Integration by Parts Formulas

3.2.1 First Integration by Parts Formula

$$\sum_{k=1}^{n} f(k)(\varphi(k) - \varphi(k-1)) = f(n)\varphi(n) - f(1)\varphi(0) - \sum_{k=1}^{n-1} \varphi(k)(f(k+1) - f(k))$$
(3.40)

Applications of First Integration by Parts Formula

$$\sum_{k=1}^{n} \frac{f(k)}{k(k+1)} = f(1) - \frac{f(n)}{n+1} - \sum_{k=1}^{n-1} \frac{f(k) - f(k+1)}{k+1}$$
(3.41)

$$\sum_{k=1}^{\infty} \frac{2k+1}{k^2(k+1)^3} = \sum_{k=1}^{\infty} \frac{1}{k^3(k+1)}$$
 (3.42)

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)^2} = 1 - \sum_{k=1}^{\infty} \frac{1}{k^2(k+1)} = 2 - \frac{\pi^2}{6}$$
 (3.43)

3.2.2 Second Integration by Parts Formula

Assume a is a nonnegative integer. Let $S_n = \sum_{i=0}^n a_i$.

$$\sum_{k=a+1}^{n} a_k b_k = \sum_{k=a+1}^{n} S_k (b_k - b_{k+1}) + S_n b_{n+1} - S_a b_{a+1}$$
 (3.44)

3.2.3 Third Integration by Parts Formula

$$\int \prod_{i=0}^{n-1} u_i \, du_n = \prod_{i=1}^n u_i - \sum_{k=1}^{n-1} \int \left(\prod_{i=1}^n u_i \right) \frac{1}{u_k} \, du_k \tag{3.45}$$

3.3 Taylor's Theorem

Remark 3.2 Let $f(x) = \sum_{i=0}^{n} a_i x^i$, where the a_i are independent of x. Let $f^{(k)}(x)$ denote the k^{th} derivative of f(x). Let $f^{(k)}(y)$ be the k^{th} derivative with respect to x evaluated at y.

Taylor's Theorem

$$f(x) = \sum_{k=0}^{n} \frac{(x-y)^k}{k!} f^{(k)}(y)$$
 (3.46)

Two Variations of Taylor's Theorem

$$f(x+y) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(y)$$
(3.47)

$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0)$$
 (3.48)

3.4 Taylor's Theorem for Real Valued Functions of Several Variables

Let φ be a real valued function of n variables, say $(x_1, x_2, ..., x_n)$. Let $\frac{\partial^{j_i}}{\partial x_i}$ be the partial derivative (with respect to the variable x_i) of $\varphi(x_1, ..., x_n)$ taken j_i times. Then,

$$arphi(x_1+h_1,x_2+h_2,...,x_n+h_n)=$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} \sum_{\substack{\forall j, 0 \le j_i \le k, \\ \sum_{i=k}^{n} k}} \frac{k!}{j_1! j_2! ... j_n!} \left(h_1^{j_1} \frac{\partial^{j_1}}{\partial x_1} h_2^{j_2} \frac{\partial^{j_2}}{\partial x_2} ... h_n^{j_n} \frac{\partial^{j_n}}{\partial x_n} \right) \varphi(x_1, ..., x_n)$$
(3.49)

3.5 Leibnitz Formula: Generalized Product Rule for Differentiation

Remark 3.3 In Section 3.5, we assume u and v be r-times differentiable functions of x, where $r \ge 0$ and integral.

Leibnitz Formula

$$\frac{d^r}{dx^r}(uv) = \sum_{k=0}^r \binom{r}{k} \frac{d^{r-k}u}{dx^{r-k}} \frac{d^kv}{dx^k}$$
(3.50)

3.5.1 Applications of Leibnitz Formula

$$\sum_{k=0}^{n} {k \choose r} x^k = \frac{x^r}{(1-x)^{r+1}} - x^{n+1} \sum_{k=0}^{\infty} {n+1+k \choose r} x^k, \qquad |x| < 1$$
 (3.51)

$$\sum_{k=1}^{\infty} {2n+k \choose n} \frac{1}{2^k} = 2^{2n} \tag{3.52}$$

$$\sum_{k=0}^{n} {k \choose r} x^k = \frac{x^r}{(1-x)^{r+1}} + {n \choose r} x^n - \frac{n!}{r!} x^n \sum_{k=0}^{r} {r \choose k} \frac{k!}{(k-r+n)!} \frac{x^k}{(1-x)^{k+1}}$$
(3.53)

$$\sum_{k=0}^{2n} {k \choose n} x^k = \frac{x^n}{(1-x)^{n+1}} + {2n \choose n} x^{2n} - x^{2n} \sum_{k=0}^{n} {2n \choose k+n} \frac{x^k}{(1-x)^{k+1}}$$
(3.54)

$$\sum_{k=0}^{n} {k+n \choose n} x^k = \frac{1}{(1-x)^{n+1}} + {2n \choose n} x^n - \sum_{k=0}^{n} {2n \choose k+n} \frac{x^{k+n}}{(1-x)^{k+1}}$$
(3.55)

3.6 Three Versions of the Generalized Chain Rule

Remark 3.4 In Section 3.6, we will let D_z represent differentiation with respect to z. Hence, $D_z^n f(x)$ is the n^{th} derivative of f(x) with respect to z, i.e. $D_z^n f(x) = D_z D_z ... D_z f(x)$, where the product contains n factors. We will let D_x represent differentiation with respect to x. We also assume that x is a function of z, i.e. x = x(z). Finally, we let, α , unless otherwise specified, denote a nonnegative integer.

3.6.1 Version 1: Hoppe Form of Generalized Chain Rule

$$D_z^n f(x) = \sum_{\alpha=0}^n D_x^{\alpha} f(x) \frac{(-1)^{\alpha}}{\alpha!} \sum_{j=0}^n (-1)^j \binom{\alpha}{j} x^{\alpha-j} D_z^n x^j$$
 (3.56)

Applications of Version 1

$$D_z^n f(x)|_{z=a+bx} = \frac{1}{b^n} D_x^n f(x), \qquad b \neq 0$$
 (3.57)

Remark 3.5 In the following identity, α is any real number. Also, we assume u = u(x).

$$D_x^n u^{\alpha} = \sum_{k=0}^n (-1)^k \binom{\alpha}{k} \sum_{j=0}^k (-1)^j \binom{k}{j} u^{\alpha-j} D_x^n u^j$$
 (3.58)

Remark 3.6 In the following identity, let $x = e^z$. Then, $D_z^n = (xD_x)^n$.

Gunnert's Formula

$$D_z^n f(x) = (x D_x)^n f(x) = \sum_{\alpha=0}^n D_x^{\alpha} f(x) e^{\alpha z} \frac{(-1)^{\alpha}}{\alpha!} \sum_{j=0}^n (-1)^j {\alpha \choose j} j^n$$
 (3.59)

Derivatives of Reciprocal Functions

$$D_z^n \left(\frac{1}{x}\right) = \sum_{\alpha=0}^n \sum_{j=0}^\alpha (-1)^j {\alpha \choose j} \frac{1}{x^{j+1}} D_z^n x^j$$
 (3.60)

$$D_z^n \left(\frac{1}{x}\right) = \sum_{j=0}^n (-1)^j \binom{n+1}{j+1} \frac{1}{x^{j+1}} D_z^n x^j$$
 (3.61)

$$D_x^n \left(\frac{1}{f(x)}\right) = \sum_{\alpha=0}^n \sum_{j=0}^n (-1)^j {\alpha \choose j} \frac{1}{(f(x))^{j+1}} D_x^n (f(x))^j$$
(3.62)

$$D_x^n \left(\frac{1}{f(x)}\right) = \sum_{j=0}^{\alpha} (-1)^j \binom{n+1}{j+1} \frac{1}{(f(x))^{j+1}} D_x^n \left(f(x)\right)^j \tag{3.63}$$

Remark 3.7 In the following identity, assume $f(x) = \sum_{i=0}^{\infty} a_i x^i$, with $f(0) = a_0 \neq 0$. Note that all a_i are independent of x. Furthermore, assume for a nonnegative integer β , $(f(x))^{\beta} = \sum_{j=0}^{\infty} b_j^{(\beta)} x^j$. Once again, all $b_j^{(\beta)}$ are independent of x.

$$\frac{1}{f(x)} = \sum_{j=0}^{\infty} \frac{x^j}{j!} \sum_{k=0}^{j} (-1)^k {j+1 \choose k+1} \frac{b_j^{(k)}}{a_0^{k+1}}$$
(3.64)

Remark 3.8 In the following two identities, both u and x are functions of z.

$$D_z^n \left(\frac{u}{x}\right) = \sum_{k=0}^n \binom{n}{k} D_z^{n-k} u \sum_{\alpha=0}^k \sum_{j=0}^\alpha (-1)^j \binom{\alpha}{j} \frac{1}{x^{j+1}} D_z^k x^j$$
 (3.65)

$$D_z^n \left(\frac{u}{x}\right) = \sum_{k=0}^n \binom{n}{k} D_z^{n-k} u \sum_{j=0}^k \binom{k+1}{j+1} \frac{(-1)^j}{x^{j+1}} D_z^k x^j$$
 (3.66)

Remark 3.9 In the following two identities, assume f is any n-times differentiable function. Also assume a is independent of x

$$\frac{(a-x)^{n+1}}{n!}D_x^n\left(\frac{f(x)}{a-x}\right) = \sum_{k=0}^n \frac{(a-x)^k}{k!}D_x^k f(x)$$
 (3.67)

$$\frac{(a-x)^{n+1}}{n!}D_x^n\left(\frac{f(a)-f(x)}{a-x}\right) = f(a) - \sum_{k=0}^n \frac{(a-x)^k}{k!}D_x^k f(x)$$
(3.68)

Remark 3.10 In the following identity, due to G. H. Halphen, we assume f and ϕ are n-times differentiable functions. We also let $\phi^{(k)}\left(\frac{1}{x}\right)$ denote the k^{th} derivative of $\phi\left(\frac{1}{x}\right)$ with respect to $\frac{1}{x}$.

$$D_x^n \left(f(x) \phi \left(\frac{1}{x} \right) \right) = \sum_{k=0}^n (-1)^k \binom{n}{k} \frac{1}{x^k} \phi^{(k)} \left(\frac{1}{x} \right) D_x^{n-k} \left(\frac{f(x)}{x^k} \right)$$
(3.69)

Remark 3.11 The following identity is a generalization of the Version 1 due to R. Most. He assumes that both f and ϕ are (n+m-)times differentiable functions, where m is an arbitrary nonnegative integer.

$$D_z^n f(x) = \sum_{k=0}^{n+m} \frac{(-1)^k}{k!} D_x^k (f(x)\phi(x)) \sum_{j=0}^k (-1)^j \binom{k}{j} x^{k-j} D_z^n \left(\frac{x^j}{\phi(x)}\right)$$
(3.70)

Remark 3.12 *In the following identity, due to R. Most,* α *and* β *are arbitrary real numbers.*

$$D_z^n x^\alpha = (\alpha + \beta) \binom{n + m - \alpha - \beta}{n + m} \sum_{j=0}^{n+m} (-1)^j \binom{n+m}{j} \frac{x^{\alpha+\beta-j}}{\alpha + \beta - j} D_z^n x^{j-\beta}$$
(3.71)

3.6.2 Version 2: Operator Form of Generalized Chain Rule

$$D_z^n f(x) = \sum_{j=0}^n A_j^n(z) D_x^j f(x), \tag{3.72}$$

where $A_i^n(z)$ are independent of f and calculated by

$$A_j^n(z) = \frac{1}{i!} D_t^j \left(e^{-tx} D_z^n e^{tx} \right) |_{t=0}$$
 (3.73)

3.6.3 Version 3: Faa di Bruno's Formula for the Generalized Chain Rule

$$D_z^n f(x) = \sum_{k=1}^n D_x^k f(x) \frac{1}{k!} \sum \frac{n!}{j_1! j_2! ... j_{\alpha}!} \left(\frac{1}{k_1!} D_z^{k_1} x \right)^{j_1} ... \left(\frac{1}{k_{\alpha}!} D_z^{k_{\alpha}} x \right)^{j_{\alpha}}, \quad (3.74)$$

where the inner sum is extended over all partitions such that $\sum_{i=1}^{\alpha} j_i = k$ and $\sum_{i=1}^{\alpha} j_i k_i = n$.

4 Iterative Series

Remark 4.1 In this chapter, recall that [x] is the greatest integer in x.

4.1 First Example of an Iterative Series

$$\sum_{r=0}^{n} \sum_{k=0}^{\left[\frac{r}{2}\right]} A_{r,k} = \sum_{k=0}^{\left[\frac{n}{2}\right]} \sum_{2k}^{n} A_{r,k}$$
(4.1)

4.1.1 Applications of the First Iterative Series

$$\sum_{r=0}^{n} \left[\frac{r}{2} \right] = n \left[\frac{n}{2} \right] - \left[\frac{n}{2} \right]^2 \tag{4.2}$$

$$\sum_{r=0}^{n} \left[\frac{r}{2} \right] f(r) = \left[\frac{n}{2} \right] \sum_{r=0}^{n} f(r) - \sum_{k=1}^{\left[\frac{n}{2} \right]} \sum_{r=0}^{2k-1} f(r)$$
 (4.3)

$$\sum_{r=0}^{n} (-1)^r \left[\frac{n}{2} \right] = \frac{1 + (-1)^n}{2} \left[\frac{n}{2} \right]$$
 (4.4)

$$\sum_{r=0}^{n} \binom{n}{r} \left[\frac{r}{2} \right] = \left[\frac{n}{2} \right] 2^n - \sum_{k=1}^{\left[\frac{n}{2} \right]} \sum_{r=0}^{2k-1} \binom{n}{r}$$

$$\tag{4.5}$$

$$\sum_{r=0}^{n} \left[\frac{r}{2} \right]^2 = \left[\frac{n}{2} \right] \frac{1 + 3n\left[\frac{n}{2}\right] - 4\left[\frac{n}{2}\right]^2}{3} \tag{4.6}$$

Remark 4.2 In the following identity, assume $\{a_n\}_{n=0}^{\infty}$ is a sequence which obeys the Fibonacci recurrence, i.e. $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$

$$\sum_{r=0}^{n} \sum_{k=0}^{\left[\frac{r}{2}\right]} {r-k \choose k} = \sum_{r=0}^{n} a_r = a_{n+2} - 1$$
 (4.7)

$$\sum_{r=0}^{n} 2^{r} \cos\left(\frac{r\pi}{3}\right) = \frac{2^{n+1}\sqrt{3}}{3} \sin\left(\frac{(n+1)\pi}{3}\right)$$
 (4.8)

Generalization of First Iterative Series

$$\sum_{k=a}^{n} \sum_{i=a}^{\left[\frac{k}{r}\right]} A_{i,k} = \sum_{i=a}^{\left[\frac{n}{r}\right]} \sum_{r}^{n} A_{i,k}, \tag{4.9}$$

where r and a are integers such that $r \ge 1$ and $a \ge 0$.

4.2 Second Example of an Iterative Series

$$\sum_{k=1}^{n} \sum_{i=1}^{[\sqrt{k}]} A_{i,k} = \sum_{i=1}^{[\sqrt{n}]} \sum_{k=i^2}^{n} A_{i,k}$$
(4.10)

4.2.1 Applications of the Second Iterative Series

$$\sum_{k=1}^{n} [\sqrt{k}] f(k) = \sum_{i=1}^{[\sqrt{n}]} \sum_{k=i^{2}}^{n} f(k)$$
(4.11)

$$\sum_{k=1}^{n} [\sqrt{k}] = [\sqrt{n}] \left(n + 1 - \frac{2[\sqrt{n}]^2 + 3[\sqrt{n}] + 1}{6} \right)$$
 (4.12)

$$\sum_{k=1}^{n} \frac{[\sqrt{k}]}{2^k} = 2\sum_{i=1}^{[\sqrt{n}]} \frac{1}{2^{i^2}} - \frac{[\sqrt{n}]}{2^n}$$
(4.13)

$$\sum_{k=1}^{\infty} \frac{[\sqrt{k}]}{2^k} = \sum_{i=1}^{\infty} \frac{1}{2^{i^2 - 1}}$$
 (4.14)

4.3 Third Example of an Iterative Series

$$\sum_{i=1}^{n} \sum_{k=1}^{2^{i}-1} A_{i,k} = \sum_{k=1}^{2^{n}-1} \sum_{i=1+\lceil \log_{2} k \rceil}^{n} A_{i,k}$$
(4.15)

4.3.1 Applications of the Third Iterative Series

$$\sum_{k=1}^{2^{n}-1} [\log_{2} k] f(k) = n \sum_{k=1}^{2^{n}-1} f(k) - \sum_{k=1}^{n} \sum_{k=1}^{2^{k}-1} f(k)$$
(4.16)

$$\sum_{k=1}^{2^{n}-1} [\log_2 k] = (n-2)2^n + 2 \tag{4.17}$$

$$\sum_{k=1}^{2^{n}-1} [\log_2(2k)] = (n-1)2^n + 1$$
(4.18)

$$\sum_{k=1}^{2^{n-1}} [\log_2(2k-1)] = (n-2)2^{n-1} + 1 \tag{4.19}$$

$$\sum_{k=1}^{2^{n}-1} (-1)^{k} [\log_2 k] = 0$$
(4.20)

$$\sum_{k=1}^{2^{n}} (-1)^{k} [\log_2 k] = n \tag{4.21}$$

$$\sum_{i=1}^{n} \sum_{k=1}^{2^{i}-1} f(i) = \sum_{k=1}^{2^{n}-1} \sum_{i=1+\lceil \log_{2} k \rceil}^{n} f(i)$$
(4.22)

4.4 Standard Interchange Formula for Iterative Series

Remark 4.3 In Section 4.4, we assume a is a nonnegative integer with $a \leq n$.

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{i=a}^{n} \sum_{k=i}^{n} A_{i,k}$$
(4.23)

4.4.1 Variations of Standard Interchange Formula

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{k=0}^{n-a} \sum_{i=a}^{n-k} A_{i,n-k}$$
(4.24)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{i=a}^{n} \sum_{k=0}^{n-i} A_{i,k+i}$$
(4.25)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{i=0}^{n-a} \sum_{k=n-i}^{n} A_{n-i,k}$$
(4.26)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{i=0}^{n-a} \sum_{k=0}^{i} A_{n-i,k+n-i}$$
(4.27)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{k=0}^{n-a} \sum_{i=k}^{n-a} A_{n-i,k+n-i}$$
(4.28)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{k=a}^{n} \sum_{i=k-a}^{n-a} A_{n-i,k-a+n-i}$$
(4.29)

$$\sum_{k=a}^{n} \sum_{i=a}^{k} A_{i,k} = \sum_{k=a}^{n} \sum_{i=k}^{n} A_{n-i+a,k+n-i}$$
(4.30)

4.4.2 Applications of Standard Interchange Formula

$$\sum_{k=0}^{n} \sum_{i=0}^{2n-k} A_{i,k} = \sum_{i=0}^{2n} \sum_{k=0}^{i} A_{i-k,k} - \sum_{i=n+1}^{2n} \sum_{k=n+1}^{i} A_{i-k,k}$$
(4.31)

$$\sum_{k=a}^{n} \sum_{j=a}^{k} f(j) = \sum_{j=a}^{n} \sum_{k=j}^{n} f(j)$$
(4.32)

$$\sum_{j=a}^{n} jf(j) = (n+1)\sum_{j=a}^{n} f(j) - \sum_{k=a}^{n} \sum_{j=a}^{k} f(j)$$
(4.33)

$$\sum_{k=1}^{n} k \left[\frac{x + 2^{k-1}}{2^k} \right] = \sum_{k=1}^{n} \left[\frac{x}{2^k} \right] - (n+1) \left[\frac{x}{2^n} \right] + [x]$$
 (4.34)

$$\sum_{k=0}^{n} k \binom{k}{m} = \frac{mn+n+m}{m+2} \binom{n+1}{m+1}$$
 (4.35)

where m is a nonnegative integer

4.5 Fourth Example of an Iterative Series

Remark 4.4 In Section 4.5, we assume a and r are integers such that $0 \ge a \ge n$ and $r \ge 1$.

$$\sum_{k=a}^{n} \sum_{i=a}^{rk} A_{i,k} = \sum_{i=a}^{rn} \sum_{k=\left[\frac{i+r-1}{2}\right]}^{n} A_{i,k}$$
(4.36)

4.5.1 Applications of the Fourth Iterative Series

$$\sum_{k=1}^{n} \sum_{i=1}^{2k} A_{i,k} = \sum_{i=1}^{2n} \sum_{k=\left[\frac{i+1}{2}\right]}^{n} A_{i,k}$$
(4.37)

$$\sum_{k=1}^{n} \sum_{i=1}^{3k} A_{i,k} = \sum_{i=1}^{3n} \sum_{k=\left[\frac{i+2}{3}\right]}^{n} A_{i,k}$$
(4.38)

$$\sum_{i=1}^{rn} \left[\frac{i-1}{r} \right] = \frac{rn(n-1)}{2} \tag{4.39}$$

$$\sum_{k=0}^{n} \sum_{i=k}^{2k} A_{i,k} = \sum_{i=0}^{2n} \sum_{k=\lceil \frac{i+1}{n} \rceil}^{i-\lceil \frac{i}{n+1} \rceil(i-n)} A_{i,k}$$
(4.40)

$$\sum_{k=0}^{\infty} \sum_{i=k}^{2k} A_{i,k} = \sum_{i=0}^{\infty} \sum_{k=\left[\frac{i+1}{2}\right]}^{i} A_{i,k}$$
(4.41)

$$\sum_{k=0}^{\infty} \sum_{i=k}^{3k} A_{i,k} = \sum_{i=0}^{\infty} \sum_{k=\lceil \frac{i+2}{2} \rceil}^{i} A_{i,k}$$
(4.42)

$$\sum_{k=1}^{\infty} \sum_{i=k}^{2k} A_{i,k} = \sum_{i=1}^{\infty} \sum_{k=0}^{\left[\frac{i}{2}\right]} A_{i,i-k}$$
(4.43)

4.6 Fifth Example of an Iterative Series

Remark 4.5 *In Section 4.6, we assume* p *is a positive integer.*

$$\sum_{k=1}^{n} \sum_{i=1}^{k^{p}} A_{i,k} = \sum_{i=1}^{n^{p}} \sum_{k=1+\lceil \frac{p}{i-1} \rceil}^{n} A_{i,k}$$
(4.44)

4.6.1 Applications of the Fifth Iterative Series

$$\sum_{k=1}^{n} \sum_{i=1}^{k^2} A_{i,k} = \sum_{i=1}^{n^2} \sum_{k=1+\lceil \sqrt{i-1} \rceil}^{n} A_{i,k}$$
(4.45)

$$\sum_{k=1}^{n} \sum_{i=1}^{k^3} A_{i,k} = \sum_{i=1}^{n^3} \sum_{k=1+\lceil \sqrt[3]{i-1} \rceil}^{n} A_{i,k}$$
(4.46)

$$\sum_{k=2}^{\infty} \sum_{i=2k}^{k^2} A_{i,k} = \sum_{i=2}^{\infty} \sum_{k=1+\lceil \sqrt{i-1} \rceil}^{\left[\frac{i}{2}\right]} A_{i,k}$$
(4.47)

4.7 Two Special Iterative Series

Remark 4.6 In the following identity, we define $!^{-1}$ as the inverse function of !. That is, x! = n if and only if $!^{-1}n = x$. Furthermore, we assum $!^{-1}1 = 1$.

$$\sum_{k=2}^{n} \sum_{i=2}^{k!} A_{i,k} = \sum_{i=2}^{n!} \sum_{k=1+[1-1(i-1)]}^{n} A_{i,k}$$
(4.48)

Remark 4.7 In the following identity, we assume g(x) is a function such that $x^x = z$ if and only if x = g(z).

$$\sum_{k=2}^{n} \sum_{i=2}^{k^2} A_{i,k} = \sum_{i=2}^{n^n} \sum_{k=1+\lceil q(i-1)\rceil}^{n} A_{i,k}$$
(4.49)

4.8 Iterations of the Hockey Stick Identity

Let

$$\sum_{(r)_{k_1}} f(k_1) \equiv \sum_{k_r=0}^n \sum_{k_{r-1}=0}^{k_r} \sum_{k_{r-2}=0}^{k_{r-1}} \dots \sum_{k_1=0}^{k_2} f(k_1)$$

be the r-fold iterated sum of $f(k_1)$.

Iterated Hockey Stick Identity

$$\sum_{(r)_j}^n \binom{j}{k} = \binom{n+r}{k+r}, \qquad r \ge 1 \qquad n, k \ge 0$$
 (4.50)

4.9 Iterated Sums with Deleted Terms

$$\sum_{j=0}^{n} \sum_{i=0}^{n} A_{i,j} - \sum_{i=0}^{n} A_{i,i} = \sum_{j=0}^{n} \sum_{\substack{i=0\\i\neq j}}^{n} A_{i,j} = \sum_{i=0}^{n} \sum_{\substack{j=0\\j\neq i}}^{n} A_{i,j}$$
(4.51)

4.9.1 Applications of Deleted Terms Identity

Remark 4.8 In the following identities, let $A_{i,j} = u_i v_j$.

$$\sum_{j=0}^{n} v_j \sum_{\substack{i=0\\i\neq j}}^{n} u^i = \sum_{j=0}^{n} \sum_{i=0}^{n} u_i v_j - \sum_{i=0}^{n} u_i v_j$$
(4.52)

$$\sum_{j=0}^{n} \sum_{\substack{i=0\\i\neq j}}^{n} u^{i} = n \sum_{i=0}^{n} u_{i}$$
(4.53)

$$\sum_{k_r=0}^{n} \sum_{\substack{k_{r-1}=0\\k_r \neq k_r}}^{n} \dots \sum_{\substack{k_1=0\\k_1 \neq k_2}}^{n} u_{k_1} = n^{r-1} \sum_{j=0}^{n} u_j, \tag{4.54}$$

where the left hand side is an r-fold iterated sum for fixed positive integers r and n.

$$\prod_{\substack{j=0\\i\neq j}}^{n} \prod_{\substack{i=0\\i\neq j}}^{n} u_i = \left(\prod_{i=0}^{n} u_i\right)^n \tag{4.55}$$

$$\prod_{k_r=0}^{n} \prod_{\substack{k_r-1=0\\k_r\neq k_r}}^{n} \dots \prod_{\substack{k_1=0\\k_1\neq k_2}}^{n} u_{k_1} = \left(\prod_{j=0}^{n} u_j\right)^{n^{r-1}}$$
(4.56)

where the left hand side is an r- iterated product, for r and n fixed positive integers.

$$\sum_{j=0}^{n} \sum_{\substack{i=0\\i\neq j}}^{n} (j+1)u_i = \frac{n^2 + 3n}{2} \sum_{i=0}^{n} u_i - \sum_{i=0}^{n} iu_i$$
 (4.57)

$$\sum_{j=0}^{n} \sum_{\substack{i=0\\i\neq j, n-j}} u_i = (n-1) \sum_{i=0}^{n} u_i + \frac{(-1)^n + 1}{2} u_{\left[\frac{n}{2}\right]}$$
(4.58)

$$\sum_{j=0}^{n} \sum_{i=0}^{n} A_{i,j} - \sum_{i=0}^{n} A_{i,n-i} = \sum_{j=0}^{n} \sum_{\substack{i=0\\i\neq n-j}}^{n} A_{i,j}$$
(4.59)

5 Three Convolution Formulas for Finite Series

5.1 First Convolution Formula

$$\sum_{j=1}^{n} \sum_{i=1}^{n} f(i)\varphi(j) = \left(\sum_{i=1}^{n} f(i)\right) \left(\sum_{j=1}^{n} \varphi(j)\right)$$

$$= \sum_{k=1}^{n} f(k)\varphi(k) + \sum_{j=1}^{n-1} \sum_{i=1}^{n-j} \left(f(i)\varphi(i+j) + f(i+j)\varphi(i)\right), \quad n \ge 2$$
(5.1)

5.1.1 Applications of First Convolution Formula

$$\left(\sum_{i=0}^{n} A_i\right) \left(\sum_{j=0}^{n} B_j\right) = \sum_{k=0}^{n} A_k B_k + \sum_{r=1}^{n} \sum_{k=0}^{n-r} \left(A_k B_{k+r} + A_{k+r} B_k\right), \ n \ge 1$$
 (5.2)

$$\left(\sum_{i=1}^{n} f(i)\right)^{2} = \sum_{k=1}^{n} (f(k))^{2} + 2\sum_{r=1}^{n-1} \sum_{k=1}^{n-r} f(k)f(k+r), \ n \ge 2$$
 (5.3)

$$\left(\sum_{k=1}^{n} \frac{1}{k!}\right)^{2} = \sum_{k=1}^{n} \frac{1}{(k!)^{2}} + 2\sum_{r=1}^{n-1} \sum_{k=1}^{n-r} \frac{1}{k!(k+r)!}, \ n \ge 2$$
 (5.4)

$$\sum_{r=1}^{\infty} \sum_{k=r+1}^{\infty} \frac{1}{k^2 (k-r)^2} = \sum_{k=2}^{\infty} \sum_{r=1}^{k-1} \frac{1}{k^2 (k-r)^2} = \frac{\pi^4}{120}$$
 (5.5)

$$\left(\sum_{k=1}^{n} f(k)\right) \left(\sum_{k=1}^{n} \frac{1}{f(k)}\right) = n + \sum_{r=1}^{n-1} \sum_{k=r+1}^{n} \frac{(f(k-r))^{2} + (f(k))^{2}}{f(k-r)f(k)}, \ n \ge 2$$
 (5.6)

$$\sum_{j=1}^{n} \frac{1}{j} = \frac{1}{n-1} \sum_{r=1}^{n-1} \sum_{k=1}^{n-r} \left(\frac{1}{k+r} + \frac{1}{k} \right), \ n \ge 2$$
 (5.7)

5.2 Cauchy Convolution Formula

Remark 5.1 In this Section 5.2, we let [x] denote the greatest integer in x.

$$\left(\sum_{k=0}^{n} f(k)\right)^{2} = \sum_{k=0}^{2n} \sum_{i=\left[\frac{k}{n+1}\right](k-n)}^{k-\left[\frac{k+1}{n+1}\right](k-n)} f(i)f(k-i)$$
(5.8)

5.2.1 Applications of Cauchy Convolution Formula

Vandermonde Convolution

$$\sum_{i=0}^{k} \binom{n}{i} \binom{n}{k-i} = \binom{2n}{k} \tag{5.9}$$

$$\sum_{i=0}^{k} {r \choose i} {q \choose k-i} = {r+q \choose k}, \tag{5.10}$$

where k, r, and q are nonnegative integers.

$$\sum_{i=0}^{n} \binom{n}{i}^2 = \binom{2n}{n} \tag{5.11}$$

$$\left(\sum_{i=0}^{n} \binom{n}{i} x^{i} f(i)\right) \left(\sum_{j=0}^{n} \binom{n}{j} x^{j} \varphi(j)\right) = \sum_{k=0}^{2n} x^{k} \sum_{i=0}^{k} \binom{n}{i} \binom{n}{k-i} f(i) \varphi(k-i)$$
 (5.12)

$$\left(\sum_{k=0}^{\infty} a_k x^k\right)^2 = \sum_{k=0}^{\infty} \sum_{i=0}^{k} a_i a_{k-i} x^k$$
 (5.13)

$$e^{2x} = \sum_{k=0}^{\infty} \frac{(2x)^k}{k!} = \sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{i=0}^k \binom{k}{i}$$
 (5.14)

$$(\cosh x)^2 = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \sum_{j=0}^{k} {2k \choose 2j} = \frac{1}{2} \cosh(2x) + \frac{1}{2}$$
 (5.15)

$$\left(\sum_{k=0}^{\infty} \frac{x^k}{(k!)^2}\right)^2 = \sum_{k=0}^{\infty} \frac{(2k)!}{(k!)^4} x^k$$
(5.16)

Companion Binomial Theorem: Let n be a positive integer

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{infty} {k+n-1 \choose k} x^k = \left(\sum_{i=0}^{\infty} x^i\right)^n, \qquad |x| < 1$$
 (5.17)

5.2.2 r^{th} Power of an Infinite Series

Let r be a positive integer. Assume $f(x) = \sum_{i=0}^{\infty} a_{1,i} x^i$. Then,

$$(f(x))^r = \sum_{k=0}^{\infty} a_{r,k} x^k,$$
 (5.18)

where

$$a_{r,k} = \sum_{i=0}^{k} a_{r-1,i} a_{1,k-i}$$

5.3 Third Formula Convolution Formula

Remark 5.2 *In Section 5.3, we let* [x] *denote the greatest integer in* x.

$$\sum_{i=0}^{n} a_i a_{n-i} = 2 \sum_{i=0}^{\left[\frac{n-1}{2}\right]} a_i a_{n-i} + \frac{1 + (-1)^n}{2} a_{\left[\frac{n}{2}\right]}^2, \qquad n \ge 1$$
 (5.19)

Variation of Third Convolution Formula

$$\sum_{i=1}^{n} a_i a_{n-i+1} = 2 \sum_{i=1}^{\left[\frac{n}{2}\right]} a_i a_{n-i+1} + \frac{1 - (-1)^n}{2} a_{\left[\frac{n+1}{2}\right]}^2, \qquad n \ge 2$$
 (5.20)

5.3.1 Applications of Third Convolution Formula

$$\sum_{i=1}^{2n} a_i a_{2n-i+1} = 2 \sum_{i=1}^{n} a_i a_{2n-i+1}, \qquad n \ge 1$$
(5.21)

$$\sum_{i=1}^{2n+1} a_i a_{2n-i+2} = 2 \sum_{i=1}^{n} a_i a_{2n-i+2} + a_{n+1}^2, \qquad n \ge 1$$
 (5.22)

$$\sum_{k=1}^{n-1} a_k a_{2n-1-k} = \frac{a_{2n-1}}{2} \tag{5.23}$$

$$\sum_{i=0}^{\left[\frac{n-1}{2}\right]} \binom{n}{i}^2 = \frac{1}{2} \binom{2n}{n} - \frac{1+(-1)^n}{4} \binom{n}{\left[\frac{n}{2}\right]}^2, \qquad n \ge 1$$
 (5.24)

$$\sum_{i=0}^{n-1} {2n \choose i}^2 = \frac{1}{2} {4n \choose 2n} - \frac{1}{2} {2n \choose n}^2, \qquad n \ge 1$$
 (5.25)

$$\sum_{i=0}^{n} {2n+1 \choose i}^2 = \frac{1}{2} {4n+2 \choose 2n+1}, \qquad n \ge 1$$
 (5.26)

6 Finite Products: Elementary Properties

Remark 6.1 In this chapter, we assume, unless otherwise specified, that a and p are nonegative integers.

6.1 Basic Properties

6.1.1 Communativity Property

$$\prod_{k=a}^{n} f(k)\varphi(k) = \prod_{k=a}^{n} f(k) \prod_{k=a}^{n} \varphi(k)$$
(6.1)

Applications of Communativity Property

$$\prod_{k=a}^{n} (f(k))^{p} = \left(\prod_{k=a}^{n} f(k)\right)^{p}, \qquad p \ge 1$$
(6.2)

$$\prod_{k=0}^{n} f(2k)f(2k+1) = \prod_{k=0}^{2n+1} f(k), \qquad n \ge 0$$
(6.3)

$$\prod_{k=0}^{n} \frac{f(2k)}{f(2k+1)} = \prod_{k=0}^{2n+1} (f(k))^{(-1)^k}$$
(6.4)

$$\prod_{k=0}^{\infty} \frac{f(2k)}{f(2k+1)} = \prod_{k=0}^{\infty} (f(k))^{(-1)^k}$$
(6.5)

6.1.2 Exponent Property

$$\prod_{k=a}^{n} \alpha^{f(k)} = \alpha^{\sum_{k=a}^{n} f(k)}$$

$$\tag{6.6}$$

Applications of Exponent Property

$$\prod_{k=a}^{n} \alpha = \alpha^{n-a+1} \tag{6.7}$$

$$\prod_{k=a}^{n} \alpha^k = \alpha^{\frac{n_n^2 - a^2 + a}{2}} \tag{6.8}$$

$$\prod_{k=0}^{n} x^{(-1)^k \binom{n}{k}} = 1, \qquad n \neq 0, \qquad x \neq 0$$
(6.9)

otherwise, the previous product equals x, when n = 0.

$$\prod_{k=0}^{n} x^{\binom{n}{k}} = x^{2^n} \tag{6.10}$$

6.1.3 Logarithm of Product Property

$$\log_b \prod_{k=a}^n (f(k))^p = p \sum_{k=a}^n \log_b f(k)$$
 (6.11)

6.1.4 Product as an Exponential Function

$$\prod_{k=a}^{n} f(k) = e^{\sum_{k=a}^{n} \ln f(k)}$$
(6.12)

$$\prod_{k=a}^{n} (1+f(k)) = e^{\sum_{k=a}^{n} f(k)} e^{\sum_{k=a}^{n} \sum_{j=2}^{\infty} (-1)^{j-1} \frac{(f(k))^{j}}{j}}, |f(x)| < 1, \ a \le x \le n$$
 (6.13)

6.1.5 Factorial as a Finite Product

$$\prod_{k=1}^{n} k = n! \tag{6.14}$$

Remark 6.2 In the following identity, we assume b is a nonnegative integer. If the reader wants to let b be an arbitrary complex number, then he or she must use the convention $\Gamma(b) = (b-1)!$.

$$\prod_{k=a}^{n} (k+b) = \frac{(n+b)!}{(b+a-1)!}$$
(6.15)

Remark 6.3 In the following identity, we assume b is a positive integer greater than n. Otherwise, the reader must use the fact that $\Gamma(b) = (b-1)!$ whenever b is a complex number which is not a negative integer.

$$\prod_{k=a}^{n} (b-k) = \frac{(b-a)!}{(b-n-1)!}$$
(6.16)

Remark 6.4 In the next eight identities, x is any complex number for which the corresponding factorial expression will be defined via the Gamma function (see Remark 6.2).

$$\prod_{j=0}^{n} (2j+x) = 2^{n+1} \frac{\left(n+\frac{x}{2}\right)!}{\left(\frac{x}{2}-1\right)!}, \qquad n \ge 0$$
(6.17)

$$\prod_{i=0}^{n} (2j - x) = 2^{n+1} \frac{\left(n - \frac{x}{2}\right)!}{\left(-\frac{x}{2} - 1\right)!}, \qquad n \ge 0$$
(6.18)

$$\prod_{j=0}^{n} (4j^2 - x^2) = 2^{2n+2} \frac{\left(n + \frac{x}{2}\right)! \left(n - \frac{x}{2}\right)!}{\left(\frac{x}{2} - 1\right)! \left(-\frac{x}{2} - 1\right)!}, \qquad n \ge 0$$
(6.19)

$$\prod_{j=0}^{n} (2j+1+x) = 2^{n+1} \frac{\left(n + \frac{x+1}{2}\right)!}{\left(\frac{x+1}{2} - 1\right)!}, \qquad n \ge 0$$
(6.20)

$$\prod_{j=0}^{n} (2j+1-x) = 2^{n+1} \frac{\left(n + \frac{-x+1}{2}\right)!}{\left(\frac{-x+1}{2} - 1\right)!}, \qquad n \ge 0$$
(6.21)

$$\prod_{i=0}^{n} \left((2j+1)^2 - x^2 \right) = 2^{2n+2} \binom{n + \frac{x+1}{2}}{n+1} \binom{n - \frac{x-1}{2}}{n+1} ((n+1)!)^2, \qquad n \ge 0$$
 (6.22)

$$\prod_{j=0}^{n} (x^2 - j^2) = \frac{x(x+n)!}{(x-n-1)!}, \qquad n \ge 0$$
(6.23)

$$\prod_{i=0}^{n} (j^2 - x^2) = (-1)^{n+1} \frac{x(x+n)!}{(x-n-1)!}, \qquad n \ge 0$$
(6.24)

Remark 6.5 In the following identity, we assume b is a positive integer. The resulting factorial expressions are evaluated by use of the Gamma function (see Remark 6.2).

$$\prod_{k=1}^{n} (1 + bk) = \frac{b^n \left(n + \frac{1}{b}\right)!}{\left(\frac{1}{b}\right)!}$$
(6.25)

$$\prod_{k=1}^{n} (2k+1) = \frac{(2n+1)!}{2^{n} n!}, \qquad n \ge 1$$
 (6.26)

$$\prod_{k=1}^{n} 2k = 2^{n} n!, \qquad n \ge 1 \tag{6.27}$$

$$\prod_{k=1}^{n} (1+k)^p = ((n+1)!)^p \tag{6.28}$$

6.1.6 Binomial Coefficient as Finite Product

$$\prod_{k=1}^{n} \left(1 + \frac{a}{k} \right) = \prod_{k=1}^{a} \left(1 + \frac{n}{k} \right) = \binom{n+a}{a}, \qquad n \ge 1, \qquad a \ge 1$$
 (6.29)

$$\prod_{k=1}^{n-1} \left(1 + \frac{1}{k} \right)^p = n^p, \qquad n \ge 1$$
 (6.30)

$$\prod_{k=1}^{n} \left(1 + \frac{n}{k} \right) = \frac{(2n)!}{(n!)^2}, \qquad n \ge 1$$
(6.31)

$$\prod_{k=1}^{n-1} \left(1 - \frac{n}{k} \right) = (-1)^{n+1}, \qquad n \ge 2$$
 (6.32)

Remark 6.6 In the following three identities, we assume a is a positive integer. The corresponding factorials are evaluated via the Gamma function (see Remark 6.2).

$$\prod_{k=1}^{n} \left(1 \pm \frac{1}{ak} \right) = \binom{n \pm \frac{1}{a}}{n}, \qquad n \ge 1$$
 (6.33)

$$\prod_{k=1}^{n} \left(1 - \frac{1}{a^2 k^2} \right) = \frac{\left(n + \frac{1}{a} \right)! \left(n - \frac{1}{a} \right)!}{\left(\frac{1}{a} \right)! \left(\frac{-1}{a} \right)! (n!)^2}, \qquad n \ge 1$$
 (6.34)

$$\prod_{k=1}^{\infty} \left(1 - \frac{1}{a^2 k^2} \right) = \frac{1}{\left(\frac{1}{a}\right)! \left(\frac{-1}{a}\right)!} = \frac{\sin\left(\frac{\pi}{a}\right)}{\frac{\pi}{a}} \tag{6.35}$$

$$\prod_{j=1}^{k-1} \left(1 - \frac{n^2}{j^2} \right) = \frac{(-1)^{k-1}}{2^{2k}} \frac{k^2}{n^2} {2k \choose 2j} \sum_{j=0}^k {2n \choose 2j} {n-j \choose k-j}$$
(6.36)

$$\prod_{j=1}^{n-1} \left(1 - \frac{n^2}{j^2} \right) = \frac{(-1)^{n-1}}{2} {2n \choose n}, \qquad n \ge 1$$
 (6.37)

6.1.7 Index Shift Formula

$$\prod_{k=a}^{n} f(k) = \prod_{k=a}^{n} f(n-k+a)$$
 (6.38)

Applications of Index Shift Formula

$$\prod_{k=1}^{n} k^2 = (n!)^2, \qquad n \ge 1$$
(6.39)

$$\prod_{k=1}^{n-1} (kn - k^2) = ((n-1)!)^2, \qquad n \ge 2$$
(6.40)

$$\prod_{k=1}^{n} \left(\frac{n+1}{k} - 1 \right) = 1, \qquad n \ge 1$$
 (6.41)

$$\prod_{k=0}^{n} k! = \prod_{k=0}^{n-1} (k+1)^{n-k} = \prod_{k=0}^{n-1} (n-k)^{k+1} = \prod_{k=0}^{n} (n-k)!$$
 (6.42)

$$\prod_{k=1}^{n} \frac{1}{k!} = \prod_{k=0}^{n-1} n^{-(k+1)} \prod_{k=0}^{n-1} \left(1 - \frac{k}{n}\right)^{-(k+1)}, \qquad n \ge 1$$
 (6.43)

6.1.8 Two Cancellation Properties

$$\prod_{k=a}^{n} \frac{f(k+1)}{f(k)} = \frac{f(n+1)}{f(a)}$$
 (6.44)

$$\prod_{k=a}^{n} \frac{f(k-1)}{f(k)} = \frac{f(a-1)}{f(n)}, \qquad a \ge 1$$
 (6.45)

Applications of the Cancellation Properties

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^p = (n+1)^p, \qquad n \ge 1$$
 (6.46)

$$\prod_{r=1}^{n} \prod_{k=1}^{r} \left(1 + \frac{1}{k} \right)^{p} = \prod_{r=1}^{n} (r+1)^{p} = ((n+1)!)^{p}, \qquad n \ge 1$$
 (6.47)

$$\prod_{k=0}^{n} \left(1 + \frac{1}{k} \right)^p = \left(\frac{n+1}{a} \right), \qquad a \ge 1$$
 (6.48)

$$\prod_{k=a}^{n} \left(1 - \frac{1}{k}\right)^p = \left(\frac{a-1}{n}\right)^p, \qquad a \ge 2 \tag{6.49}$$

$$\prod_{n=1}^{n} \left(1 - \frac{1}{k^2} \right)^p = \left(\frac{a-1}{a} \left(1 + \frac{1}{n} \right) \right)^p, \qquad a \ge 2$$
 (6.50)

$$\prod_{k=a}^{\infty} \left(1 - \frac{1}{k^2}\right)^p = \left(\frac{a-1}{a}\right)^p, \qquad a \ge 2$$
(6.51)

$$\prod_{k=2}^{n} \frac{k+1}{k-1} = \frac{n^2+n}{2} = \sum_{k=1}^{n} k, \qquad n \ge 2$$
 (6.52)

$$\sum_{k=2}^{n} \ln(k+1) - \sum_{k=2}^{n} \ln(k-2) = \ln \sum_{k=1}^{n} k = \ln \left(\frac{n^2 + n}{2}\right), \qquad n \ge 2$$
 (6.53)

$$\prod_{k=1}^{n} \frac{(1+k)^{2p}}{k^p} = (n+1)^{2p} (n!)^p, \qquad n \ge 1$$
(6.54)

$$\prod_{k=1}^{n} \left(\frac{r+k}{k} \right)^k = \frac{1}{(n!)^r} \prod_{j=1}^{r} (n+j)^{n-r+j}, \qquad r, n \ge 1$$
 (6.55)

Remark 6.7 In the following identity, we assume r is a positive integer such that $r \ge n + 1$, for fixed integer $n \ge 1$. If the reader prefers to let r represent an arbitrary complex number, the factorials must be evaluated by the Gamma function (See Remark 6.2).

$$\prod_{k=1}^{n} \frac{r-k}{k+1} = \frac{\binom{r}{n+1}}{\binom{r}{1}} = \frac{(r-1)!}{(n+1)!(r-n-1)!}$$
(6.56)

Remark 6.8 In the following identity, we assume r = 0 or r = 1. If the reader prefers to let r be any complex number which is not a positive integer greater than or equal to 2, he or she should ignore the binomial coefficient representation and evaluate the factorial by the Gamma function (See Remark 6.2).

$$\prod_{k=1}^{n} \frac{k+1}{k+1-r} = \frac{\binom{n+1}{r}}{\binom{1}{r}} = \frac{(n+1)!(1-r)!}{(n+1-r)!}, \qquad n \ge 1$$
 (6.57)

6.1.9 Three Product Identities From Identity (3.7)

$$\prod_{k=a}^{n} \left(1 + \frac{1}{k} \right)^k = \frac{(a-1)!(n+1)^n}{a^{a-1}n!}, \qquad a \neq 1$$
 (6.58)

$$\prod_{k=1}^{n} k^{2k-1} = (n+1)^{n^2} \prod_{k=1}^{n} \left(\frac{k}{k+1}\right)^{k^2}, \qquad n \ge 1$$
 (6.59)

$$\prod_{k=1}^{n} k^{2k-1} \prod_{k=1}^{n} \left(1 + \frac{1}{k} \right)^{k^2} = (n+1)^{n^2}, \qquad n \ge 1$$
 (6.60)

6.1.10 Iterative Product Formula

$$\prod_{i=0}^{n} \prod_{k=0}^{i} f(k) = \prod_{k=0}^{n} (f(k))^{n-k+1} = \prod_{k=0}^{n} (f(n-k))^{k+1}$$
(6.61)

Applications of Iterative Product Formula

$$\prod_{k=1}^{n} k^{k} k! = (n!)^{n+1}, \qquad n \ge 1$$
(6.62)

$$\prod_{k=1}^{n} k^{k-1} k! = (n!)^n, \qquad n \ge 1$$
(6.63)

6.2 Trigometric Products

Remark 6.9 In Section 6.2, we assume the reader is familiar with the Weirstrass Factorization Theorem. The reader may find this important theorem on the Wikkipedia website.

Product for $sin(\theta)$

$$\sin(\theta) = \theta \prod_{k=1}^{\infty} \left(1 - \frac{\theta^2}{k^2 \pi^2} \right) \tag{6.64}$$

Product for $cos(\theta)$

$$\cos(\theta) = \prod_{k=1}^{\infty} \left(1 - \frac{4\theta^2}{(2k-1)^2 \pi^2} \right)$$
 (6.65)

7 Intermediate Level Calculations Involving Products

Remark 7.1 In the following chapter, we assume, unless otherwise specified, that r and n are positive integers.

7.1 Defining n! as a Product Limit

$$\lim_{r \to \infty} \frac{r^n n!}{(r+1)(r+2)...(n+r)} = n! \tag{7.1}$$

$$\lim_{r \to \infty} \frac{r^n r!}{(n+1)(n+2)...(n+r)} = n! \tag{7.2}$$

$$\lim_{r \to \infty} r^n \prod_{k=1}^r \frac{1}{\left(1 + \frac{n}{k}\right)} = n! \tag{7.3}$$

$$\lim_{r \to \infty} r^{-n} \prod_{k=1}^{r} \left(1 + \frac{n}{k} \right) = \frac{1}{n!}$$
 (7.4)

7.2 Products From a Recursive Sequence

Remark 7.2 In Section 7.2, we assume a such that $a \ge 2$. We assume n is a nonnegative integer. We define the sequence $(u_{0,n})_{n=0}^{\infty}$ by the recursive definition $(an-1)u_{0,n}=u_{0,n+1}$ with $u_{0,1}=1$.

$$u_{0,n+1} = u_{0,n-r+1} \prod_{k=0}^{r-1} (an - ka - 1)$$
(7.5)

$$u_{0,n+1} = u_{0,0} \prod_{k=0}^{n} (an - ka - 1)$$
(7.6)

Remark 7.3 In the following four identities, we let a=2. Also, any noninteger factorial is evaluted by the Gamma function, i.e. $\Gamma(x+1)=x$, for all complex numbers x, except negative integers.

$$u_{0,n} = \frac{2^{n-1}}{\sqrt{\pi}} \Gamma\left(\frac{2n-1}{2}\right) \tag{7.7}$$

$$\prod_{k=0}^{n} (2n - 2k - 1) = -\frac{2^n}{\sqrt{\pi}} \left(n - \frac{1}{2} \right)! \tag{7.8}$$

$$\prod_{k=0}^{r-1} (2n - 2k - 1) = 2^r \frac{\left(n - \frac{1}{2}\right)!}{\left(n - r - \frac{1}{2}\right)!}$$
 (7.9)

$$\prod_{k=0}^{n} (2k+1) = \frac{2^{n+1}\sqrt{\pi}}{(-1)^{n+1}\left(-n-\frac{3}{2}\right)!}$$
 (7.10)

7.3 Applications of Binomial Coefficient as Product Formula

$$\binom{n + \frac{2r+1}{2}}{n} = \frac{1}{2^{2n}} \binom{2n}{2} \prod_{k=0}^{r} \frac{2n + 2k + 1}{2k + 1},\tag{7.11}$$

where n is a positive integer and r is a nonnegative integer.

$$\binom{n+\frac{1}{2}}{n} = \binom{2n}{n} \frac{2n+1}{2^{2n}} \tag{7.12}$$

$$\binom{n+\frac{3}{2}}{n} = \binom{2n}{n} \frac{(2n+1)(2n+3)}{3*2^{2n}} \tag{7.13}$$

$$\binom{n+\frac{5}{2}}{n} = \binom{2n}{n} \frac{(2n+1)(2n+3)(2n+5)}{3*5*2^{2n}}$$
(7.14)

$$\binom{n+\frac{7}{2}}{n} = \binom{2n}{n} \frac{(2n+1)(2n+3)(2n+5)(2n+7)}{3*5*7*2^{2n}}$$
(7.15)

Remark 7.4 In the following three identities, any non integer factorials are evaluated via the Gamma function (see Remark (7.3))

$$\binom{n+\frac{\alpha}{2}}{n} = \frac{(2n+\alpha)! \left(\frac{\alpha-1}{2}\right)!}{2^{2n}\alpha! n! \left(n+\frac{\alpha-1}{2}\right)!},\tag{7.16}$$

where n is a positive integer and α is a nonnegative integer.

$$\binom{n+k}{n} = \frac{(2n+2k)! \left(\frac{2k-1}{2}\right)!}{2^{2n}(2k)! n! \left(n+\frac{2k-1}{2}\right)!},\tag{7.17}$$

where n is a positive integer and k is any real number.

$$\binom{2n+2k}{2n} \binom{2n}{n} = 2^{2n} \binom{n+k}{n} \binom{n+\frac{2k-1}{2}}{n},$$
 (7.18)

where n is a nonnegative integer and k is any real number.

Remark 7.5 In the following three identities x is an arbitrary complex number, h is any nonzero complex number and n is a positive integer.

$$\prod_{k=0}^{n-1} (x+kh) = h^n n! \binom{\frac{x}{h} + n - 1}{n}$$
 (7.19)

$$\prod_{k=0}^{n-1} (x - kh) = h^n n! \binom{\frac{x}{h}}{n}$$

$$\tag{7.20}$$

$$\lim_{h \to 0} h^n n! \binom{\frac{x}{h}}{n} = x^n \tag{7.21}$$

7.4 Induction on Three Product Expansions

Remark 7.6 In Section 7.4, we let [x] denote the greatest integer in x.

7.4.1 First Product Expansion

$$\prod_{k=2}^{n} k^{2k-1} = \prod_{k=1}^{n^2 - 1} (1 + [\sqrt{k}]), \qquad n \ge 2$$
 (7.22)

$$([\sqrt{n}] + 1)^{n - [\sqrt{n}]^2 + 1} \prod_{k=2}^{[\sqrt{n}]} k^{2k - 1} = \prod_{k=1}^{n} (1 + [\sqrt{k}]), \qquad n \ge 2$$
 (7.23)

7.4.2 Second Product Expansion

$$\prod_{k=1}^{n} \left(1 + \frac{(-1)^{k-1}}{k} \right) = 1 + \frac{1 - (-1)^n}{2n}, \qquad n \ge 1$$
 (7.24)

$$\prod_{k=2}^{n} \left(1 - \frac{(-1)^k}{k} \right) = \frac{1}{2} + \frac{1 - (-1)^n}{4n}, \qquad n \ge 2$$
 (7.25)

$$\prod_{k=1}^{\infty} \left(1 + \frac{(-1)^{k-1}}{k} \right) = 1 \tag{7.26}$$

7.4.3 Third Product Expansion

$$\prod_{k=2}^{n} \left(1 + \frac{(-1)^k}{k} \right) = 1 + \frac{1 + (-1)^n}{2n}, \qquad n \ge 2$$
 (7.27)

7.5 Three Product Functions

7.5.1 First Product Function

$$\prod_{i=1}^{n} (1+x^{i})(1-x^{2i-1}) = \prod_{j=n+1}^{2n} (1-x^{j}) = \prod_{j=1}^{n} (1-x^{j+n})$$
 (7.28)

7.5.2 Second Product Function

$$\prod_{i=1}^{n} (1 - x^{2i})(1 - x^{2i-1}) = \prod_{j=1}^{2n} (1 - x^{j})$$
(7.29)

7.5.3 Third Product Function

$$\prod_{i=1}^{n} (1+x^{2i})(1+x^{2i-1}) = \prod_{j=1}^{n} (1+x^{j})$$
(7.30)

7.6 The Product Functions $\prod_{k=0}^n x^{a^k}$ and $\prod_{k=0}^n (1+x^{a^k})$

Remark 7.7 In Section 7.6, we assume a is any nonzero real number, except 1. Also, we may assume that x is any nonzero complex number for which the products and resulting functions are defined.

$$\prod_{k=0}^{n} x^{a^k} = x^{\frac{a^{n+1}-1}{a-1}} \tag{7.31}$$

$$\prod_{k=0}^{n} \left(1 + \frac{1}{x^{2^k}} \right) = \frac{x}{x-1} \left(1 - \frac{1}{x^{2^{n+1}}} \right) \tag{7.32}$$

$$\prod_{k=0}^{n} \left(1 + x^{2^k} \right) = \frac{x^{2^{n+1}} - 1}{x - 1} \tag{7.33}$$

$$\prod_{k=0}^{n-1} \left(1 + x^{2^k} \right) = \frac{1 - x^{2^n}}{1 - x} \tag{7.34}$$

$$\sum_{k=1}^{n} x^{2^k} \left(x^{2^k} - 1 \right) = x^2 - x^{2^{n+1}}, \qquad n \ge 1$$
 (7.35)

$$\sum_{k=1}^{n} \frac{1}{x^{2^k}} \left(1 - \frac{1}{x^{2^k}} \right) = \frac{1}{x^2} - \frac{1}{x^{2^{n+1}}}, \qquad n \ge 1$$
 (7.36)

$$\sum_{k=1}^{\infty} \frac{1}{x^{2^k}} \left(1 - \frac{1}{x^{2^k}} \right) = \frac{1}{x^2}, \qquad |x| \ge 1$$
 (7.37)

Remark 7.8 In the following four identities, we let x = 2.

$$\prod_{k=0}^{n} 2^{2^k} = 2^{2^{n+1}-1} \tag{7.38}$$

$$\prod_{k=0}^{n} \left(1 + \frac{1}{2^{2^k}} \right) = 2 \left(1 - \frac{1}{2^{2^{n+1}}} \right) \tag{7.39}$$

$$\prod_{k=0}^{n} \left(1 + 2^{2^k} \right) = 2^{2^{n+1}} - 1 \tag{7.40}$$

$$\prod_{k=0}^{\infty} \left(1 + \frac{1}{2^{2^k}} \right) = 2 \tag{7.41}$$

7.6.1 Product Identities Involving Geometric Series

$$\prod_{k=1}^{n} \sum_{i=0}^{r-1} x^{ir^{k-1}} = \sum_{i=0}^{r^n-1} x^j = \frac{1-x^{r^n}}{1-x}, \qquad n, r \ge 1, \ x \ne 1$$
 (7.42)

$$\prod_{k=1}^{n} \left(1 + x^{3^{k-1}} + x^{2*3k-1} \right) = \frac{1 - x^{3^n}}{1 - x}, \qquad n \ge 1, \ x \ne 1$$
 (7.43)

8 Relationships Between Finite Series and Finite Products

8.1 Series as a Product

$$\sum_{k=1}^{n} f(k) = f(1) \prod_{k=2}^{n} \left(1 + \frac{f(k)}{\sum_{i=1}^{k-1} f(i)} \right), \qquad n \ge 2$$
 (8.1)

8.1.1 Applications of Series as Product Formula

$$\sum_{k=1}^{n} \frac{1}{2^{k-1}} = \prod_{k=2}^{n} \left(1 + \frac{1}{2^k - 2} \right) = 2 - \frac{1}{2^{n-1}}$$
 (8.2)

$$\prod_{k=2}^{\infty} \left(1 + \frac{1}{2^k - 2} \right) = 2 \tag{8.3}$$

$$2\sum_{k=1}^{n} \frac{1}{k(k+1)} = \prod_{k=2}^{n} \left(1 + \frac{1}{k^2 - 1}\right) = \frac{2n}{n+1}$$
 (8.4)

$$\prod_{k=2}^{\infty} \left(1 + \frac{1}{k^2 - 1} \right) = 2 \tag{8.5}$$

$$\sum_{k=1}^{n} \frac{1}{k(k+2)} = \frac{1}{3} \prod_{k=2}^{n} \left(1 + \frac{4(k+1)}{(k-1)(k+2)(3k+2)} \right) = \frac{1}{4} \frac{n(3n+5)}{(n+1)(n+2)}$$
(8.6)

$$\prod_{k=2}^{\infty} \left(1 + \frac{4(k+1)}{(k-1)(k+2)(3k+2)} \right) = \frac{9}{4}$$
 (8.7)

$$2\sum_{k=1}^{n} \frac{k}{(k+1)!} = \prod_{k=2}^{n} \left(1 + \frac{k}{(k+1)! - k - 1}\right) = 2 - \frac{2}{(n+1)!}$$
(8.8)

$$\prod_{k=2}^{\infty} \left(1 + \frac{k}{(k+1)! - k - 1} \right) = 2 \tag{8.9}$$

$$\sum_{k=1}^{n} \frac{k(k+2)}{(k+1)^{2}(k!)^{2}} = \frac{3}{4} \prod_{k=2}^{n} \left(1 + \frac{k(k+2)}{(k+1)^{2}((k!)^{2} - 1)} \right) = 1 - \frac{1}{((n+1)!)^{2}}$$
(8.10)

$$\prod_{k=2}^{\infty} \left(1 + \frac{k(k+2)}{(k+1)^2((k!)^2 - 1)} \right) = \frac{4}{3}$$
 (8.11)

8.2 Product as a Series

$$\prod_{k=1}^{n} (1+f(k)) = 1 + f(1) + \sum_{k=2}^{n} f(k) \prod_{i=1}^{k-1} (1+f(i))$$
 (8.12)

8.2.1 Applications of Product as Series Formula

Remark 8.1 In the following five identities, we assume r and n are positive integers.

$$\sum_{k=1}^{n} {k+r-1 \choose r} \frac{1}{k} = \frac{1}{r} {n+r \choose r} - \frac{1}{r}$$
 (8.13)

$$\lim_{r \to \infty} \frac{1}{r^{n-1}} \sum_{k=1}^{n} \binom{k+r-1}{r} \frac{1}{k} = \frac{1}{n!}$$
 (8.14)

$$\sum_{k=1}^{n} {k+r \choose k} \frac{1}{k+r} = \frac{{n+r \choose r} - 1}{r}$$
 (8.15)

$$\lim_{r \to \infty} \frac{1}{r^{n-1}} \sum_{k=1}^{n} {k+r \choose r} \frac{1}{k+r} = \frac{1}{n!}$$
 (8.16)

$$\lim_{r \to 0} \frac{\binom{n+r}{r} - 1}{r} = \sum_{k=1}^{n} \frac{1}{k}$$
 (8.17)

Remark 8.2 In the following two identities, we assume $0^0 = 1$.

$$\sum_{k=0}^{n} \frac{(1+k)^k - k^k}{k!} = \frac{(n+1)^n}{n!}$$
 (8.18)

$$\lim_{n \to \infty} \left(\sum_{k=0}^{n} \frac{(1+k)^k - k^k}{k!} \right)^{\frac{1}{n}} = e$$
 (8.19)

8.3 Schlomilch Series to Product Identity

$$\sum_{i=0}^{n} u_i = \frac{u_0}{1} \prod_{k=0}^{n-1} \frac{\sum_{i=0}^{k+1} u_i}{\sum_{i=0}^{k} u_i}$$
(8.20)

8.4 Schlomilch Product to Series Identity

$$\prod_{j=0}^{n} v_{j} = v_{0} + v_{0}(v_{1} - 1) + v_{0}v_{1}(v_{2} - 1) + \dots + v_{0}v_{1}v_{2}\dots v_{n-1}(v_{n} - 1)$$
(8.21)