the Dataset was gotten from Kaggle on Omicron daily cases by country (COVID-19 variant) the last update and download for this execerise was on 03/02/2022


```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

In [2]: cvd=pd.read_csv('covid-variants.csv')

In [49]: cvd.head()
```

```
Out[49]:
             location
                      variant num_sequences perc_sequences num_sequences_total month year day
              Angola
                                          0
                       Alpha
                                                       0.0
                                                                           3
                                                                                  7 2020
                                                                                             6
              Angola B.1.1.277
                                          0
                                                       0.0
                                                                           3
                                                                                  7 2020
                                                                                             6
              Angola B.1.1.302
                                          0
                                                       0.0
                                                                           3
                                                                                  7 2020
                                                                                             6
              Angola B.1.1.519
                                                       0.0
                                                                           3
                                                                                  7 2020
                                                                                             6
              Angola
                                          0
                                                       0.0
                                                                           3
                                                                                   7 2020
                                                                                             6
                      B.1.160
In [22]:
          cvd.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 100416 entries, 0 to 100415
          Data columns (total 6 columns):
               Column
                                    Non-Null Count
                                                      Dtype
           0
               location
                                    100416 non-null object
           1
               date
                                    100416 non-null datetime64[ns]
           2
                                    100416 non-null object
               variant
           3
               num sequences
                                    100416 non-null int64
               perc sequences
                                    100416 non-null float64
              num sequences total 100416 non-null int64
          dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
          memory usage: 4.6+ MB
 In [5]:
          cvd.variant.value counts()
          Alpha
                            4184
 Out[5]:
          B.1.1.277
                            4184
          others
                            4184
          S:677P.Pelican
                            4184
          S:677H.Robin1
                            4184
          Omicron
                            4184
          Mu
                            4184
          Lambda
                            4184
          Kappa
                            4184
          Iota
                            4184
          Gamma
                            4184
          Eta
                            4184
```

```
Epsilon
                           4184
        Delta
                           4184
                           4184
        Beta
        B.1.620
                           4184
        B.1.367
                           4184
        B.1.258
                           4184
        B.1.221
                           4184
        B.1.177
                           4184
        B.1.160
                           4184
        B.1.1.519
                           4184
        B.1.1.302
                           4184
        non who
                           4184
        Name: variant, dtype: int64
In [6]:
         cvd.num sequences.value counts()
                 84173
Out[6]:
                 2753
        2
                 1405
        3
                   905
        4
                   631
        1690
                    1
        1719
                    1
        2156
                    1
        1184
                     1
        862
                    1
        Name: num sequences, Length: 1563, dtype: int64
In [7]:
         cvd.isnull().any()
        location
                                False
Out[7]:
                                False
        date
        variant
                                False
        num sequences
                                False
                                False
        perc_sequences
                                False
        num_sequences_total
        dtype: bool
In [8]:
         cvd.describe()
```

Convid_19Data_set

Out[8]:

	num_sequences	perc_sequences	num_sequences_total
count	100416.000000	100416.000000	100416.000000
mean	72.171676	6.154355	1509.582457
std	1669.262169	21.898989	8445.291772
min	0.000000	-0.010000	1.000000
25%	0.000000	0.000000	12.000000
50%	0.000000	0.000000	59.000000
75%	0.000000	0.000000	394.000000
max	142280.000000	100.000000	146170.000000

The Exploratort Data Analysis [EDA]

In [10]: # Let's check the variant wise with top 10 countries with maximum virus

C:\Users\BUSINE~2\AppData\Local\Temp/ipykernel_18476/186801648.py:9: RuntimeWarning: More than 20 figures have been opened. Figure s created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).

COUNTRIES HAVE MORE B.1.1.277 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.1.302 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.1.519 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.160 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.177 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.221 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.258 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.367 CASES THAN OTHERS

COUNTRIES HAVE MORE B.1.620 CASES THAN OTHERS

COUNTRIES HAVE MORE BETA CASES THAN OTHERS

COUNTRIES HAVE MORE DELTA CASES THAN OTHERS

COUNTRIES HAVE MORE EPSILON CASES THAN OTHERS

COUNTRIES HAVE MORE ETA CASES THAN OTHERS

COUNTRIES HAVE MORE GAMMA CASES THAN OTHERS

COUNTRIES HAVE MORE IOTA CASES THAN OTHERS

COUNTRIES HAVE MORE KAPPA CASES THAN OTHERS

COUNTRIES HAVE MORE LAMBDA CASES THAN OTHERS

COUNTRIES HAVE MORE MU CASES THAN OTHERS

COUNTRIES HAVE MORE OMICRON CASES THAN OTHERS

COUNTRIES HAVE MORE S:677H.ROBIN1 CASES THAN OTHERS

COUNTRIES HAVE MORE S:677P.PELICAN CASES THAN OTHERS

COUNTRIES HAVE MORE OTHERS CASES THAN OTHERS

COUNTRIES HAVE MORE NON_WHO CASES THAN OTHERS


```
sns.histplot(data=cvd,x='perc_sequences',hue='variant')
plt.title('perc_sequences')
```

Out[12]: Text(0.5, 1.0, 'perc_sequences')


```
plt.figure(figsize=(13,9))
sns.histplot(data=cvd,x='num_sequences',hue='variant')
```

```
plt.title('num_sequences')
```

```
Out[13]: Text(0.5, 1.0, 'num_sequences')
```



```
In [14]:
    plt.figure(figsize=(30,15))
    plt.xticks(rotation=89, horizontalalignment='right', fontsize=12)
    plt.tight_layout()
    #sns.histplot(data=cvd,x='location',bins=50)
```

```
#sns.set_context('notebook')
sns.countplot(data=cvd,x='location',color='Red')
plt.title('location')
```

Out[14]: Text(0.5, 1.0, 'location')


```
In [37]: #cvd['start date'] =pd.to_datatime(cvd['start date'])
```

```
#cvd['date'] = pd.to_datetime(cvd['date'], errors='ignore')
cvd
```

Out[37]:		location	variant	num_sequences	perc_sequences	num_sequences_total	month	year	day
	0	Angola	Alpha	0	0.0	3	7	2020	6
	1	Angola	B.1.1.277	0	0.0	3	7	2020	6
	2	Angola	B.1.1.302	0	0.0	3	7	2020	6
	3	Angola	B.1.1.519	0	0.0	3	7	2020	6
	4	Angola	B.1.160	0	0.0	3	7	2020	6
	•••								
	100411	Zimbabwe	Omicron	0	0.0	6	11	2021	1
	100412	Zimbabwe	S:677H.Robin1	0	0.0	6	11	2021	1
	100413	Zimbabwe	S:677P.Pelican	0	0.0	6	11	2021	1
	100414	Zimbabwe	others	0	0.0	6	11	2021	1
	100415	Zimbabwe	non_who	0	0.0	6	11	2021	1

100416 rows × 8 columns

```
In [48]: # Seprate date with apply function

#cvd['month'] = cvd['date'].apply(lambda date: date.month)
#cvd['year'] = cvd['date'].apply(lambda date: date.year)
#cvd['day'] = cvd['date'].apply(lambda date: date.day)

# We will drop date column as we don't need keep it in our dataframe

#cvd.drop('date',axis=1, inplace=True)
cvd.head()
```

Out[48]:

	OOHVII_15Data_3Ct							
	locatio	n variant	num_sequences	perc_sequences	num_sequences_total	month	year	day
0	Angol	a Alpha	0	0.0	3	7	2020	6
1	Angol	в.1.1.277	0	0.0	3	7	2020	6
2	Angol	в.1.1.302	0	0.0	3	7	2020	6
3	Angol	в.1.1.519	0	0.0	3	7	2020	6
4	Angol	a B.1.160	0	0.0	3	7	2020	6
[47]: c	vd.head	()						
t[47]:	locatio	n variant	num_sequences	perc_sequences	num_sequences_total	month	year	day
0	Angol	a Alpha	0	0.0	3	7	2020	6
1	Angol	в.1.1.277	0	0.0	3	7	2020	6
2	Angol	a B.1.1.302	0	0.0	3	7	2020	6
_	Α Ι	D 1 1 E 1 O	0	0.0	3	7	2020	6
3	Angol	a B.1.1.519	U	0.0		,		

sns.barplot(x='Month', y='Number of Cases',data=cvd_val1);

plt.title('Monthly Cases Ratio Of All Summed Variant',fontweight="bold");

Monthly Cases Ratio Of All Summed Variant

Daily Cases Ratio Of All Summed Variant

Over All Cases Ratio With Year Of All Variant

Now Let's check the Omicron variant

```
cvd_val1 = cvd.loc[cvd["variant"]== 'Omicron'].groupby('month')['num_sequences'].agg('sum').sort_values(ascending=False)
cvd_val1 = pd.DataFrame({'Month':cvd_val1.index, 'Number of Cases':cvd_val1.values})

plt.figure(figsize=(14,8))
sns.barplot(x='Month', y='Number of Cases',data=cvd_val1);
plt.title('Omicron Cases Montly Ratio',fontweight="bold");
```

Omicron Cases Montly Ratio

Days

year

Omicron Cases Year Ratio


```
cvd_val1 = cvd.loc[cvd["variant"]== 'Omicron'].groupby('location')['num_sequences'].agg('sum').sort_values(ascending=False)[:12]
cvd_val1 = pd.DataFrame({'Location':cvd_val1.index, 'Number of Cases':cvd_val1.values})

plt.figure(figsize=(16,8))
sns.barplot(x='Location', y='Number of Cases',data=cvd_val1);
plt.title('Highest Omicron Cases Location',fontweight="bold");
plt.xticks(rotation=90);
```

Highest Omicron Cases Location

