

OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

CLASE 8 - PRUEBAS DE CONTRASTE

Dr. José Gallardo

Abril 2021

Contenidos de la clase

- Repaso pruebas de hipótesis
- Pruebas de contraste no paramétrico para:
 - 1) 2 muestras independientes.
 - 2) 2 muestras pareadas.
 - 3) múltiples muestras independientes.
- Interpretar resultados R
- Guía de ejercicios.

Repaso pruebas de hipótesis

Repaso pruebas de hipótesis

Para cualquier prueba necesitas lo siguiente:

- Tus datos¹.
- Una hipótesis nula ².
- La prueba estadística ³ que se aplicará
- La <u>distribución</u> de la prueba estadística³ respecto de la cual evaluas la hipótesis nula² con el <u>estadístico</u> que estimas de tus datos¹.

Repaso hipótesis

La hipótesis nula (H0) es una afirmación, usualmente de igualdad, contraria a la hipótesis alternativa (H1).

La H1 es una afirmación que se deduce de la observación previa o de los antecedentes de literatura y el investigador cree que es verdadera.

Repaso prueba estadística

La prueba estadística tiene como propósito someter a prueba la hipótesis nula con la <u>intensión de rechazarla</u>.

¿Por qué no simplemente aceptar la alternativa? ¿Por qué 2 hipótesis?

<u>Karl Popper</u> dijo "We cannot conclusively affirm a hypothesis, but we can conclusively negate it"

Ej. Pueden existir otros fenómenos no conocidos o no considerados que posteriormente permitan a otro investigador rechacar nuestra hipótesis alternativa.

Prueba de hipótesis simplificado

Mi hipótesis

H0: Igual proporción

H1: Distinta proporción

Baja probabilidad

Rechazo HO

Pruebas de contraste no paramétrico

Problema de comparación de 2 muestras independientes.

Prueba de Wilcoxon para comparación de 2 muestras independientes (suma de rangos).

Datos originales

Tratamiento	Control			
9	0			
12	4			
13	6			

Hipótesis

 H_0 : Tratamiento = Control

H₁: Tratamiento > Control

Probabilidad de rechazo

Menor o = a 0.05

Rangos

Sujeto	Tratamiento	Control	Dif.
1	4	1	-
2	5	2	-
3	6	3	-
Suma	15	6	W=9

¿Cuántas combinaciones son posibles en la población?

Fuente: Clifford and Taylor, 2008

Distribución muestral y probabilidad

	Т	С	Т	С	Т	С	Т	C	Т	С	Т	С	Т	С
ĺ	1	4	1	3	1	3	1	3	1	2	1	2	1	2
	2	5	2	5	2	4	2	4	3	5	3	4	3	4
	3	6	4	6	5	6	6	5	4	6	5	6	6	5
	Т	С	Т	С	Т	С	Т	C	T	С	Т	C	Т	C
	1	2	1	2	1	2	2	1	2	1	2	1	2	1
	4	3	4	3	5	3	3	5	3	4	3	4	4	3
	5	6	6	5	6	4	4	6	5	6	6	5	5	6
ĺ														
	Т	С	Т	С	Т	С	Т	C	Т	C	Т	С		
	2	1	2	1	3	1	3	1	3	1	4	1	p =	1/20
	4	3	5	3	4	2	4	2	5	2	5	2	<i>p</i> = 0.05	
	6	5	6	4	5	6	6	5	6	4	6	3	No rechazo	

Problema de comparación de 2 muestras pareadas.

Prueba de Wilcoxon para comparación de 2 muestras pareadas.

Datos originales

Sujeto	Pre- tratamiento	Post- tratamiento	d	Rangos con <u>signo</u>
1	95	99	4 (99-95)	2
2	111	120	9 (120-111)	4
3	97	102	5 (102-97)	3
4	132	130	-2 (132-130)	-1

Hipótesis

 H_0 : Promedio_d = 0

 H_1 : Promedio_d > 0

Probabilidad de rechazoMenor a 0,05

¿Cuántas combinaciones de signos (+ o -) son posibles?

 $2^4 = 16$

Fuente: Clifford and Taylor, 2008

Distribución muestral y probabilidad

T1	T2	T5	T4	T5	T6	T7	T8
-2	-2	2	2	-2	-2	-2	-2
-4	-4	-4	-4	-4	4	-4	4
-3	-3	-3	-3	3	-3	3	-3
-1	1	-1	1	-1	-1	1	1
-10	-8	-6	-4	-4	-2	-2	0
T9	T10	T11	T12	T13	T14	T15	T16
T9 2	T10 2	T11 2	T12 -2	T13	T14	T15	T16
2	2	2	-2	2	-2	2	2
2 -4	2	2 -4	-2 4	2 4	-2 4	2	2
2 -4 3	2 4 -3	2 -4 3	-2 4 3	2 4 -3	-2 4 3	2 4 3	2 4 3

 H_1 : Promedio_d > 0

p = 2/16p = 0.125No rechazo

Problema de comparación de múltiples muestras independientes.

Prueba de Kruskal-Wallis para comparación de muestras independientes múltiples.

Datos originales

Grupo 1	Grupo 2	Grupo 3
4	-1	7
9	0	12

Hipótesis

H₀: La distribución de los k grupos son iguales

H₁: Al menos 2 grupos son distintos.

Fuente: Clifford and Taylor, 2008

Valor crítico de K-W test se compara con distribución Chi-²

g.l. = 3 tratamientos – 1 = 2

X² obtenido = 3,71,

X² valor crítico de aceptación o rechazo = 5,991

p = 0,15; p significancia= 0,05

Conclusión: No se rechaza la hipótesis nula y por lo tanto concluimos que no hay diferencia en los tratamientos.

Fuente: Clifford and Taylor, 2008

Interpretar resultados R

Prueba de Wilcoxon en R (wilcox.test)

wilcox.test {stats} R Documentation Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one- and two-sample Wilcoxon tests on vectors of data; the latter is also known as 'Mann-Whitney' test.

Usage

```
wilcox.test(x, y = NULL, alternative =
c("two.sided","less", "greater"), mu = 0,
paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)
```

Prueba de Wilcoxon en R (wilcox.test)

```
t <- c(9, 12, 13)
c <- c(0,4,6)
wilcox.test(t, c, alternative = "g", paired = FALSE)
```

```
Wilcoxon rank sum test
```

```
data: t and c
W = 9, p-value = 0.05
alternative hypothesis: true location shift is greater than 0
```

Prueba de Wilcoxon en R (wilcox.test)

```
before <- c(95, 111, 97, 132)
after <- c(99,120,102,130)
wilcox.test(after - before, alternative = "greater") # no es necesario indicar
muestras pareadas pues estamos haciendo la resta en la función.
```

```
Wilcoxon signed rank test

data: after - before

V = 9, p-value = 0.125

alternative hypothesis: true location is greater than 0
```

wilcox.test(before, after, alternative = "g", paired = TRUE) # mismo resultado de probabilidad, distinto estimado de diferencia de signo, solo hay un evento más grande que el evento obtenido.

```
Wilcoxon signed rank test data: before and after V=1, p-value = 0.125 alternative hypothesis: true location shift is less than 0
```

Prueba de Kruskal Wallis en R (kruskal.test)

kruskal.test {stats} R Documentation Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, g, ...)

Prueba de Kruskal Wallis en R (kruskal.test)

```
g1 <- c(4, 9) # Grupo 1
g2 <- c(-1, 0) # Grupo 2
g3 <- c(7, 12) # Grupo 3
kruskal.test(list(g1, g2, g3))
```

Kruskal-Wallis rank sum test

```
data: list(g1, g2, g3)
Kruskal-Wallis chi-squared = 3.7143, df = 2, p-value =
0.1561
```

Resumen de la clase

- Revisión teoría pruebas de hipótesis
- Revisión pruebas de contraste no paramétrico para:
 - 1) Wilkoxon muestras independientes
 - 2) Wikoxon muestras pareadas
 - 3) Kruskal Wallis
- Interpretación resultados análisis de datos con R