Isabelle/HOL Exercises Arithmetic

Magical Methods (Computing with Natural Numbers)

A book about Vedic mathematics describes three methods to make the calculation of squares of natural numbers easier:

 \bullet *MM1*: Numbers whose predecessors have squares that are known or can easily be calculated. For example:

Needed: 61^2

Given: $60^2 = 3600$

Observe: $61^2 = 3600 + 60 + 61 = 3721$

• MM2: Numbers greater than, but near 100. For example:

Needed: 102^2

Let h = 102 - 100 = 2, $h^2 = 4$

Observe: $102^2 = (102 + h)$ shifted two places to the left $+h^2 = 10404$

• *MM3*: Numbers ending in 5. For example:

Needed: 85²

Observe: $85^2 = (8 * 9)$ appended to 25 = 7225

Needed: 995²

Observe: $995^2 = (99 * 100)$ appended to 25 = 990025

In this exercise we will show that these methods are not so magical after all!

• Based on MM1 define a function sq that calculates the square of a natural number.

```
primrec sq :: "nat \Rightarrow nat" where

"sq 0 = 0"

| "sq (Suc n) = (sq n) + n + (Suc n)"
```

• Prove the correctness of sq (i.e. sq n = n * n).

```
theorem MM1[simp]: "sq n = n * n"
by (induct_tac n, auto)
```

- Formulate and prove the correctness of *MM2*. Hints:
 - Generalise MM2 for an arbitrary constant (instead of 100).
 - Universally quantify all variables other than the induction variable.

```
lemma aux[rule_format]: "!m. m \le n \longrightarrow sq \ n = ((n + (n-m))* \ m) + sq \ (n-m)" apply (induct_tac n, auto) apply (case_tac m, auto) done theorem MM2:" 100 \le n \implies sq \ n = ((n + (n - 100))* 100) + sq \ (n - 100)" by (rule aux)
```

- Formulate and prove the correctness of *MM3*. Hints:
 - Try to formulate the property 'numbers ending in 5' such that it is easy to get to the rest of the number.
 - Proving the binomial formula for $(a+b)^2$ can be of some help.

```
theorem MM3: "sq((10 * n) + 5) = ((n * (Suc n)) * 100) + 25"
by (auto simp add: add_mult_distrib add_mult_distrib2)
```