# Challenges of Physics-Based Approaches

- Computational Intensity: Demanding molecular dynamics simulations.
- Incomplete Modeling: Often neglects complex environmental interactions.

L

# Nature's Blueprint

- Evolutionary optimization: Natural proteins are optimized to the physical diffusion limits.
- Homology Modeling: Borrowing structures from evolutionarily related proteins.
- Evolutionary Couplings: Pinpointing residues crucial for function.
- Advantages:
  - Sidestep computational hurdles.
  - Tap into nature's tried-and-tested designs.

How to extract these fined-tuend proteins, and what to do?

# Given a target natural function, search for natural counterparts

# Typical approach

- Search natural counterparts for a targeted function.
- Extract statistical signature from the collection of natural sequences.
- Use the statistical signature to sample novel sequences.

1

# Multiple Sequence Alignments (MSAs) - the data

- Definition: Aligning multiple sequences to identify regions of similarity.
- Importance in bioinformatics:
  - Studying phylogenetics and evolutionary processes.
  - Identifying protein domains.



- Information extraction from MSAs:
  - Phylogenetic trees: Tracing evolutionary pathways.
  - Functional domains & conserved motifs: Identifying patterns.
  - Critical residues for protein function or stability.
- Popular tools & databases for MSAs:
  - Clustal: Widely used for sequence alignment.
  - Pfam: Database of protein families based on MSAs.
  - Uniprot: Comprehensive protein database.



MSA is discrete qualitative data type

### How to use them?

## Encoding

• One-hot:

$$A \to \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \\ 0 \end{pmatrix}, C \to \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \\ 0 \end{pmatrix}, \dots Y \to \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \\ 0 \end{pmatrix}, W \to \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{pmatrix}.$$

- Random projection
- Deep learning embeddings

7

Let's look at the distribution of sequences

Since we have numerical data, we can also use dimensionality reduction techniques

# Singular Value Decomposition (SVD) for Protein Data

- Application: Extracting meaningful patterns from vast protein datasets.
- Dimensionality Reduction: Simplifies complex data, retaining essential information.
- Pattern Recognition: Reveals underlying structures and relationships in protein data.



## Mathematics behind SVD

## Introduction

- Fundamental technique in linear algebra.
- Decomposes a matrix into three other matrices.
- Widely used in data compression, noise reduction, and more.

## Mathematical Representation

• Given a matrix MSA:

$$MSA = U\Sigma V^T$$

#### Where:

- *U* Left singular vectors (orthogonal matrix).
- Σ Diagonal matrix of singular values.
- $V^T$  Transpose of right singular vectors (orthogonal matrix).

# What's in those singular vectors ?

• The right singular vectors correspond to compositional motifs (in terms of sequences).



Sample compositional motifs

Sample the compositional motifs observed in the MSA to form novel sequences

# Sequence Generation using SVD

 Concept of reverse mapping: Generating functional sequences from reduced-dimensional data.



Introduce a Gaussian blank noise to sample the PCs:

$$ilde{U} = U + \mathcal{N}(0, 1) \ ilde{MSA} = ilde{U} \Sigma V^T$$

13

A pairwise model borrowed from statistical physics

# Direct coupling analysis

F. Morcos et al, PNAS 2011

## Markov Random Field for Protein Analysis

- Parametrize a probability distribution describing the distribution of sequences.
- Decompose the complex distribution of sequences into a pairwise potential — the Potts model.



## Mathematics behind Random Markov Fields

## MSA probabilistic model [Morcos et al, PNAS, 2011]

• Probability associated to a Sequence given a MSA:

$$P_{\mathcal{H}}(S) \propto \exp\{-\beta \times \mathcal{H}(S)\}$$

• Energy of a sequence (Potts models):

$$\mathcal{H}(S) = \sum_{i} h_i(S_i) + \sum_{i < j} J_{ij}(S_i, S_j)$$

- Energy parameters:
  - $\mathcal{H} = \{h_i; J_{ij}\}$  (lookup table)
  - Parameter space:  $5 \times L + 5^2 \times \frac{L \times (L-1)}{2} = 464165$

# Initial applications of DCA

Contact predictions based on coupling terms  $J_{ij}$ :

$$F_{ij} = \sqrt{\sum J_{ij}(A,B)^2} \quad \rightarrow \quad F_{ij}^{APC} = F_{ij} - rac{F_{i.}F_{.j}}{F_{..}}$$

# DCA learning technique

## Turn into an optimization procedure

• Fit low-order statistics such as  $f_i$  and  $f_{ij}$ : Find  $\mathcal{H}$  such that:

$$\hat{f}_i(A) = f_i(A)$$
 ;  $\hat{f}_{ij}(A, B) = f_{ij}(A, B)$ 

Boltzmann machine learning [Figliuzzi et al, Mol. Biol Ev., 2018; Cuturello et al, RNA, 2020]

Initialize with a guess for  $\mathcal{H}$  (could be zeros)

- $oldsymbol{1}$  Generate a sample given  $\mathcal{H}$  (MCMC) and compute  $\hat{f}_i,\hat{f}_{ij}$
- ${f 2}$   ${\cal H}$  parameters are updated following the log-likelihood

$$h_i(A) \leftarrow h_i(A) + \eta(\hat{f}_i(A) - f_i(A))$$

## Sequence Generation using Random Markov Field

- Sampling sequences: sampling new protein variants.
- Ensuring biological relevance: Satisfying coevolutionary constraints.

Perform mutations:



Select using the parametrized distribution:

$$P_{\mathcal{H}}(S) \propto \exp\{-\beta \times \mathcal{H}(S)\}$$