Vector Spaces

Helwig Hauser et al., UiB Dept. of Informatics

Looking Back & Forth

Last time: linear systems

- linear operations, linear equation systems
- Gauss elimination, LU decomposition

Repetition: left- vs. right-multiplication

Today: vector spaces

- basis of a vector space
- standard basis
- basis of a sub-space
- coordinates wrt. a basis
- changing the basis
- changing the basis of a mapping
- projections

Repetition: Left-, Right-Multiplication

Matrix multiplication in order to execute an operation:

- left-multiplication of A with M, i.e., B = MA:
 - matrix M represents the operation executed on A
 - M tells, how A's rows are linearly recombined into B's rows
 - **B**'s row #i is a linear comb. of **A**'s rows, coefficients: **M**'s row #i
- right multiplication of A with M, i.e., A M = B:
 - matrix **M** represents the operation executed on **A** (as above)
 - M tells, how A's columns are linearly recombined into B's cols.
 - **B**'s col. #i is a linear comb. of **A**'s cols., coefficients: **M**'s col. #i

Illustration

Left-multiplication of M with C, i.e., C M:

- the new row i =
 - $c_{i,1} \cdot \text{old row 1} + c_{i,2} \cdot \text{old row 2}$
 - + $c_{i,m}$ · old row m

$$\begin{bmatrix} \vdots \\ \text{new row } i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ c_{i,1} & c_{i,2} & \cdots & c_{i,m} \\ \vdots & \vdots & & \text{old row } m \end{bmatrix} \begin{bmatrix} \text{old row 1} \\ \text{old row 2} \\ \vdots \\ \text{old row } m \end{bmatrix}$$

Right-multiplication of M with C, i.e., M C:

- the new col. i =
 - $c_{1,i}$ · old col. 1 + $c_{2,i}$ · old col. 2
 - + $c_{m,i}$ · old col. m

$$\begin{bmatrix} c_{1,i} \\ \cdots \\ c_{2,i} \\ \cdots \\ c_{m,i} \end{bmatrix} = \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}$$

Operations: Examples (left-mult.)

Swapping equations (permutation operation)

- operation Π : swapping rows 1 and 4 \Rightarrow left-multiplication with **P**

Eliminate a variable (elimination operation)

– operation Λ : use pivot row 2 to ... \Rightarrow left-multiplication with **E**

Operations: Examples (left-mult.)

Eliminate a variable (elimination operation)

– operation Λ : use pivot row 2 to ... \Rightarrow left-multiplication with **E**

Update ("undo" elimination operation)

– operation Λ' : compensate $\Lambda \Rightarrow$ left-multiplication with E'

$$\mathbf{E'} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{array}\right) \xrightarrow{\text{"keep row #1 in place"}} \text{"keep the pivot row #2"} \\ \xrightarrow{\text{"subtract twice the pivot row"}} \text{"subtract 3* the pivot row"}$$

Operations: Examples (right-mult.)

Do a linear combination of vectors v_i

– operation $\Lambda_{\bf c}$ (coeffs. ${\bf c}$) \Rightarrow right-multiplication with ${\bf c}$

$$\mathbf{\Lambda_c V} = \mathbf{V c} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \\ 3 & -1 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

"add col. #1 and twice col. #2"

Introduction

Vector spaces...

- ... are **omnipresent in visual computing** (and elsewhere!)
 - the 2D / 3D "world" in which objects "live"
 - the camera space in computer graphics
 - etc.
- ... **transformations** (in particular linear transformations) map between spaces
 - affine transformations like rotation, scaling, ...
 - viewing transformation, projection
 - etc.

Vector Spaces

A vector space (a space) is

a set of vectors
 such that every possible,
 specific lin. comb. of them
 is also in the same space

Properties:

Axiom

AXIOIII	meaning
Associativity of addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
Commutativity of addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Identity element of addition	There exists an element $0 \in V$, called the zero vector, such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
Inverse elements of addition	For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the <i>additive inverse</i> of \mathbf{v} , such that $\mathbf{v} + (-\mathbf{v}) = 0$.
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v}$
Identity element of scalar multiplication	$1\mathbf{v} = \mathbf{v}$, where 1 denotes the multiplicative identity in F .
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

Meaning

Vectors Spanning a Vector Space

Given some vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$:

- they **span a vector space**, encompassing all possible (specific) linear combinations of them: $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_n$

Basis of a Vector Space

Vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \in \mathbb{R}^m$:

- form a *basis* of a vector space Ω ,
 - if they are linearly independent
 - and if they span Ω
- such a basis
 - is orthogonal, if $\mathbf{v}_i^\mathsf{T} \mathbf{v}_j = 0 \quad \forall i \neq j$
 - is *orthonormal*, if $\mathbf{v}_i^\mathsf{T} \mathbf{v}_j = \delta_{i,j}$ (Kronecker delta $\delta_{i,j}$), for ex., the *standard basis* ($\mathbf{e}_1 \ \mathbf{e}_2 \ ... \ \mathbf{e}_n$) more in the following
- any vector \mathbf{v} (in vector space $\mathbf{\Omega}$, spanned by \mathbf{v}_i , i=1...n)
 - can be written as $\mathbf{v} = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n) \ \mathbf{c}$
 - with the **c** being called the *coordinates* of **v** with respect to basis $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$
- basis $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ (set of vectors) vs. basis-matrix $\mathbf{V} = (\mathbf{v}_1 \mathbf{v}_2 ... \mathbf{v}_n)$

Basis – example

Vectors $\mathbf{v}_1 = (1 \ 2)^{\top}$ and $\mathbf{v}_2 = (2 \ 1)^{\top}$ form a basis of \mathbb{R}^2 – they are linearly independent, since equation $(\mathbf{v}_1 \ \mathbf{v}_2) \ \mathbf{c} = \mathbf{0}$ can only be solved for $\mathbf{c} = \mathbf{0}$,

and they span all of \mathbb{R}^2 , i.e., equation $(\mathbf{v}_1 \ \mathbf{v}_2) \ \mathbf{c} = \mathbf{d}$ can be solved (for \mathbf{c}) for any \mathbf{d}

Not a Basis – example 1

Vectors $\mathbf{v}_1 = (1\ 2)^{\top}$, $\mathbf{v}_2 = (2\ 1)^{\top}$, and $\mathbf{v}_3 = (1\ 1)^{\top}$ do *not* form a basis of \mathbb{R}^2 ,

since the first condition (linear independency of all \mathbf{v}_i) is violated:

it is possible to find a non-trivial $\mathbf{c} \neq \mathbf{0}$ such that $(\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3) \ \mathbf{c} = \mathbf{0}$, for ex. $\mathbf{c}^* = (1 \ 1 \ -3)^\top$:

$$\mathbf{v}_1 + \mathbf{v}_2 - 3\mathbf{v}_3 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix} - 3\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1+2-3 \\ 2+1-3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Not a Basis – example 2

Vector $\mathbf{v}_1 = (1\ 2)^{\top}$ does not form a basis of \mathbb{R}^2 , since the second condition (all \mathbf{v}_i must span $\mathbf{\Omega} = \mathbb{R}^2$) is violated:

we can find a vector $\mathbf{d} \in \mathbf{\Omega} = \mathbb{R}^2$ that cannot be written as a linear combination of all \mathbf{v}_i , for ex. $\mathbf{d}^* = (2\ 1)^\top$:

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $c = \mathbf{d}^* = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ cannot be solved for any c

In other words:

a basis of an *n*-dimensional vector space must consist of *n* vectors

Standard Basis of \mathbb{R}^n

Often implicitly, we "per default" assume the standard basis E (of \mathbb{R}^n):

– the basis vectors \mathbf{e}_i of \mathbf{E} are given as:

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

- matrix **E**, representing **E**, is then, of course, the identity matrix **I**
- accordingly, the standard basis \mathbf{E} is then also orthonormal, in particular is $\mathbf{E}^{-1} = \mathbf{E}^* = \mathbf{E}$

Basis of a Sub-Space

A basis $B = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\}$ with all $\mathbf{v}_i \in \mathbb{R}^n$, i=1...m, can span

- either all of \mathbb{R}^n then m=n
- or a sub-space of \mathbb{R}^n which is m-dimensional (m < n), including the origin (**0**)

Examples

- standard basis $\mathbf{E}_n = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ spans all of \mathbb{R}^n
- the basis $\mathbf{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ with

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$$

spans a two-dimensional sub-space of \mathbb{R}^3 , i.e., a plane in 3D

Coordinates wrt. a Basis

Given a basis $B = \{v_1, v_2, ..., v_n\}$ of a vector space Ω

- and its according matrix $\mathbf{B} = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n)$,
- we can write any $\mathbf{v} \in \mathbf{\Omega}$ as $\mathbf{v} = \mathbf{B} \mathbf{c}$
- with cbeing v's coordinates wrt. basis B

Coordinates – example 1

Whenever we write a vector $\mathbf{v} \in \mathbb{R}^n$ in coordinate form, i.e., as $\mathbf{v} = (v_1 \ v_2 \ \dots \ v_n)^\top$,

we implicitly assume that the v_i are the n coordinates of \mathbf{v} wrt. the standard basis \mathcal{E} with $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ and $\mathbf{E} = (\mathbf{e}_1 \ \mathbf{e}_2 \ \dots \ \mathbf{e}_n) = \mathbf{I}_n$.

Then, clearly, \mathbf{v} can be written as

$$\mathbf{v} = \mathbf{I} \, \mathbf{v} = \mathbf{E} \, \mathbf{v} = \begin{pmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

$$= v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + \cdots + v_n \mathbf{e}_n$$

Coordinates – example 2 (a)

Given two linearly independent, three-dimensional vectors $\mathbf{v}_1 = (1 \ 1 \ 1)^{\top}$ and $\mathbf{v}_2 = (2 \ 1 \ 0)^{\top}$, they form a basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ of a plane $\mathbf{\Pi}$ in 3D $(\mathbf{B} = (\mathbf{v}_1 \ \mathbf{v}_2))$.

Any vector \mathbf{v} in plane $\mathbf{\Pi}$ can then be written as

$$\mathbf{v} = \mathbf{B} \mathbf{c} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

with $\mathbf{c} = (c_1 \ c_2)^{\top}$ being the (2D) coordinates of \mathbf{v} wrt. basis \mathcal{B} .

Coordinates – example 2 (b)

Any vector \mathbf{v} in plane $\mathbf{\Pi}$ can then be written as

$$\mathbf{v} = \mathbf{B} \mathbf{c} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

with $\mathbf{c} = (c_1 \ c_2)^{\top}$ being the (2D) coordinates of \mathbf{v} wrt. basis \mathcal{B} .

Considering vector $\mathbf{v} = (4\ 3\ 2)^{\top} \in \mathbf{\Pi}$,

v can be written

- either wrt. the standard basis $\mathcal{E}_3 = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$
- or wrt. basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$:

$$\mathbf{v} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \mathbf{I}_3 \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Notation for "wrt. to basis B"

When working with a particular basis (B)

- it seems appropriate to indicate this explicitly (otherwise, it can be *very* confusing very easily!)
- one notation to do so, is to use subscripts to indicate
 with respect to which basis the coordinates are to be interpreted:

$$\mathbf{v} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}_{\mathcal{E}_3} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}_{\mathcal{B}}$$

- Note that we are only considering one vector **v** here –
- just with different coordinates wrt. two different bases

Changing the Basis (1)

We can change the basis of a vector v:

- we need to know, how to get
 - from \mathbf{v} 's coordinates wrt. basis \mathbf{B} , i.e., $(c_i)_{\mathbf{B}}$
 - to **v**'s coordinates wrt. basis **C**, i.e., $(d_i)_{\mathbf{C}}$, so that $(c_i)_{\mathbf{B}} = (d_i)_{\mathbf{C}}$
- by now,
 we know, how to get from basis **B** to the standard basis **E**:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}_{\mathcal{E}_n} = \mathbf{B} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}_{\mathcal{B}}$$

this means:
 if we know v's coordinates wrt. B (and matrix B, of course),
 we can get v's standard coordinates

Changing the Basis (2a)

Of course, we also need to get back (from **E** to **B**), if possible:

– let's start with an example:

Again, we consider the plane $\mathbf{\Pi} \in \mathbb{R}^3$, spanned by $\mathbf{v}_1 = (1 \ 1 \ 1)^{\top}$ and $\mathbf{v}_2 = (2 \ 1 \ 0)^{\top}$, as above.

We now consider a vector \mathbf{v} in this plane with the following standard coordinates: $\mathbf{v} = (5\ 3\ 1)^{\top}$.

What are \mathbf{v} 's coordinates $(c_j)_{\mathcal{B}}$ wrt. basis $\mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2}$?

Changing the Basis (2b)

Of course, we also need to get back (from **E** to **B**), if possible:

– let's start with an example:

```
What are \mathbf{v}'s coordinates (c_j)_{\mathcal{B}} wrt. basis \mathcal{B} = {\mathbf{v}_1, \mathbf{v}_2}?
We know that (v_i)_{\mathcal{E}} = \mathbf{B}(c_j)_{\mathcal{B}}.
Accordingly, we can solve (v_i)_{\mathcal{E}} = \mathbf{B}(c_j)_{\mathcal{B}} for the c_j:

(it's a system of linear equations, after all)
```

Changing the Basis (2c)

Of course, we also need to get back (from E to B), if possible:

– let's start with an example:

Accordingly, we can solve $(v_i)_{\mathcal{E}} = \mathbf{B}(c_j)_{\mathcal{B}}$ for the c_j :

$$\begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}_{\mathcal{E}} = \mathbf{B} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}_{\mathcal{B}}$$

leading to the augmented matrix

$$\left(\begin{array}{cc|c}
1 & 2 & 5 \\
1 & 1 & 3 \\
1 & 0 & 1
\end{array}\right)$$

Changing the Basis (2d)

Of course, we also need to get back (from **E** to **B**), if possible:

– let's start with an example:

Gaussian elimination leads to

$$\left(\begin{array}{cc|cc}
1 & 2 & 5 \\
0 & -1 & -2 \\
0 & -2 & -4
\end{array}\right)$$

first, and then to

$$\left(\begin{array}{cc|c}
1 & 2 & 5 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right)$$

Changing the Basis (2e)

Of course, we also need to get back (from E to B), if possible:

– let's start with an example:

first, and then to

$$\left(\begin{array}{cc|c}
1 & 2 & 5 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right)$$

Accordingly,

$$-c_2 = -2 \ (\Rightarrow c_2 = 2) \text{ and } c_1 + 2c_2 = 5 \ (\Rightarrow c_1 = 1),$$

giving $(c_j)_{\mathcal{B}}$ from $(v_i)_{\mathcal{E}}$.

Changing the Basis (3)

If n = m, i.e., if the n-dim. basis vectors \mathbf{v}_i span all of \mathbb{R}^n , we can use the inverse of $\mathbf{B} = (\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n)$, i.e., \mathbf{B}^{-1} , to convert standard coordinates to \mathcal{B} -coordinates:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}_{\mathcal{E}} = \mathbf{B} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}_{\mathcal{B}} \qquad \Rightarrow \qquad \mathbf{B}^{-1} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}_{\mathcal{E}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}_{\mathcal{B}}$$

If basis \mathcal{B} is orthonormal (as \mathcal{E}), then $\mathbf{B}^{-1} = \mathbf{B}^*$, which makes going back and forth even easier:

$$(v_i)_{\mathcal{E}} = \mathbf{B}(c_j)_{\mathcal{B}}$$
 and $(c_j)_{\mathcal{B}} = \mathbf{B}^*(v_i)_{\mathcal{E}}$

Changing the Basis of Mappings (1)

Assume we have a linear mapping \mathcal{M} from \mathbb{R}^n to \mathbb{R}^m , i.e., $\mathcal{M}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathcal{M}(\mathbf{v}) = \mathbf{A} \mathbf{v}$ (in standard coordinates).

The left-multiplication with which matrix \mathbf{D} performs the same transformation $\mathcal{M}: \mathbb{R}^n \to \mathbb{R}^m$, if we consider \mathbf{v} in terms of \mathcal{B} -coordinates

instead of standard coordinates?

note that the mapping stays the same irrespective of which coordinates are used

Changing the Basis of Mappings (2)

Using the above solution for a change of the basis, we can achieve the same mapping \mathcal{M} by first changing the basis (back) to the standard basis, before then using \mathbf{A} to do the transformation:

$$(v_i)_{\mathcal{E}} = \mathbf{B}(c_j)_{\mathcal{B}}$$

leading to

$$\mathcal{M}(\mathbf{v}) = \mathbf{A}(v_i)_{\mathcal{E}} = \mathbf{A} \mathbf{B}(c_i)_{\mathcal{B}} = \mathbf{D}(c_i)_{\mathcal{B}}$$

Changing the Basis of Mappings (3)

If we wish to consider $\mathcal{M}(\mathbf{v})$ in terms of another basis \mathcal{G} , we can use the other solution to convert $\mathcal{M}(\mathbf{v})_{\mathcal{E}}$ into $\mathcal{M}(\mathbf{v})_{\mathcal{G}}$:

$$(c_j)_{\mathcal{G}} = \mathbf{G}^{-1}(v_i)_{\mathcal{E}}$$

leading to

$$\mathcal{M}(\mathbf{v})_{\mathcal{G}} = \mathbf{G}^{-1} \mathcal{M}(\mathbf{v})_{\mathcal{E}} = \mathbf{G}^{-1} \mathbf{A} \mathbf{B} (c_j)_{\mathcal{B}} = \mathbf{D} (c_j)_{\mathcal{B}}$$

Realizing $\mathcal{M}(\mathbf{v})$, based on considering \mathbf{v} in \mathcal{B} -coordinates and the result, $\mathcal{M}(\mathbf{v})$, in \mathcal{G} -coords., $\mathcal{M}((c_j)_{\mathcal{B}})_{\mathcal{G}}$ amounts to the left-multiplication of $(c_j)_{\mathcal{B}}$ with $\mathbf{D} = \mathbf{G}^{-1}\mathbf{A}\mathbf{B}$.

Changing the Basis of Mappings (4)

Accordingly, we can also do it the other way 'round:

We could first consider \mathbf{v} in \mathcal{B} -coordinates, then applying a linear mapping (by left-multiplying with \mathbf{D}) to end up at a result in \mathcal{G} -coordinates, before reverting to standard coordinates from there.

This means that we can then write

$$\mathcal{M}((v_i)_{\mathcal{E}})_{\mathcal{E}} = \mathbf{A}(v_i)_{\mathcal{E}} = \mathbf{G} \mathbf{D} \mathbf{B}^{-1}(v_i)_{\mathcal{E}}$$

and we read it in the following way: first, we change the basis of \mathbb{R}^n (to \mathcal{B} -coordinates), then, we left-multiply with \mathbf{D} , giving a result in \mathbb{R}^m (in \mathcal{G} -coordinates), before we eventually change back to standard coordinates.

Illustration (1)

T maps from \mathbb{R}^n to \mathbb{R}^m ... $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ in std. coords. \mathbf{E}_n , \mathbf{E}_m

... B_n : alternative basis of \mathbb{R}^n , ergo $[\mathbf{v}]_{E_n} = \mathbf{B}_n [\mathbf{v}]_{B_n}$ B_m : alternative basis of \mathbb{R}^m , ergo $[\mathbf{v}]_{E_m} = \mathbf{B}_m [\mathbf{v}]_{B_m}$

$$\Rightarrow [\mathbf{T}(\mathbf{v})]_{E_m} = \mathbf{B}_m \mathbf{D} \mathbf{B}_n^{-1} [\mathbf{v}]_{E_n}$$

Illustration (2)

T maps from \mathbb{R}^n to \mathbb{R}^m ... $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ in std. coords. \mathbf{E}_n , \mathbf{E}_m

... B_n : alternative basis of \mathbb{R}^n , ergo $[\mathbf{v}]_{E_n} = \mathbf{B}_n [\mathbf{v}]_{B_n}$ B_m : alternative basis of \mathbb{R}^m , ergo $[\mathbf{v}]_{E_m} = \mathbf{B}_m [\mathbf{v}]_{B_m}$

$$\Rightarrow [\mathbf{T}(\mathbf{v})]_{E_m} = \mathbf{B}_m \mathbf{D} \mathbf{B}_n^{-1} [\mathbf{v}]_{E_n}$$

Illustration (3)

T maps from \mathbb{R}^n to \mathbb{R}^m ... $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ in std. coords. \mathbf{E}_n , \mathbf{E}_m

... \boldsymbol{B}_n : alternative basis of \mathbb{R}^n , ergo $[\mathbf{v}]_{\boldsymbol{E}_n} = \mathbf{B}_n [\mathbf{v}]_{\boldsymbol{B}_n}$ \boldsymbol{B}_m : alternative basis of \mathbb{R}^m , ergo $[\mathbf{v}]_{\boldsymbol{E}_m} = \mathbf{B}_m [\mathbf{v}]_{\boldsymbol{B}_m}$

$$\Rightarrow [\mathbf{T}(\mathbf{v})]_{E_m} = \mathbf{B}_m \mathbf{D} \mathbf{B}_n^{-1} [\mathbf{v}]_{E_n}$$

Illustration (4)

T maps from \mathbb{R}^n to \mathbb{R}^m ... $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ in std. coords. \mathbf{E}_n , \mathbf{E}_m

... \boldsymbol{B}_n : alternative basis of \mathbb{R}^n , ergo $[\mathbf{v}]_{\boldsymbol{E}_n} = \mathbf{B}_n [\mathbf{v}]_{\boldsymbol{B}_n}$ \boldsymbol{B}_m : alternative basis of \mathbb{R}^m , ergo $[\mathbf{v}]_{\boldsymbol{E}_m} = \mathbf{B}_m [\mathbf{v}]_{\boldsymbol{B}_m}$

$$\Rightarrow [\mathbf{T}(\mathbf{v})]_{\boldsymbol{E}_m} = \mathbf{B}_m \, \mathbf{D} \, \mathbf{B}_n^{-1} \, [\mathbf{v}]_{\boldsymbol{E}_n}$$

Mapping Example (1)

 $\mathbf{p}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \mathbf{p}_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$

Assume a plane p with basis p_1 and p_2 in 3D:

- assume further that the left-multiplication with **A** (in std. coords.) should amount to mirroring 3D-vectors **v** about plane **p**:

now find A

es this straight-forward!

 \mathbf{b}_3 orthogonal to \mathbf{b}_1 and \mathbf{b}_2

of
$$\mathbf{B}$$
, $\mathbf{b}_3 = \mathbf{b}_1 \times \mathbf{b}_2 = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \mathbf{B} = \begin{pmatrix} 1 & 0 & 5 \\ 2 & -1 & -1 \\ 3 & 1 & -1 \end{pmatrix}$$

Mapping Example (1)

Assume a plane p with basis p_1 and p_2 in 3D:

- assume further that the left-multiplication with $\bf A$ (in std. coords.) should amount to mirroring 3D-vectors $\bf v$ about plane $\bf p$: ${\bf p}_1=\begin{pmatrix}1\\2\\3\end{pmatrix},\ {\bf p}_2=\begin{pmatrix}0\\-1\\1\end{pmatrix}$
- now find A

A change of the basis makes this straight-forward!

- let's assume a basis \mathbf{B} of \mathbb{R}^3 (with matrix \mathbf{B}) that is "aligned" with \mathbf{p} , i.e., $\mathbf{b}_1 = \mathbf{p}_1$, $\mathbf{b}_2 = \mathbf{p}_2$, and \mathbf{b}_3 orthogonal to \mathbf{b}_1 and \mathbf{b}_2
- given vectors v in terms of B,
 mirroring about plane p
 is equal to negating the 3rd B-coordinate!

- thus
$$\mathbf{A} = \mathbf{B} \mathbf{M} \mathbf{B}^{-1}$$
 with $\mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

b₃ =
$$\mathbf{b}_1 \times \mathbf{b}_2 = \begin{pmatrix} 5 \\ -1 \\ -1 \end{pmatrix}$$

Mapping Example (2, computing B⁻¹)

$$\mathbf{M}_{\mathrm{aug}} = \begin{pmatrix} 1 & 0 & 5 & | & 1 & 0 & 0 \\ 2 & -1 & -1 & | & 0 & 1 & 0 \\ 3 & 1 & -1 & | & 0 & 0 & 1 \end{pmatrix} \qquad \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ 5 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 5 & | & 1 & 0 & 0 \\ 0 & -1 & -11 & | & -2 & 1 & 0 \\ 0 & 1 & -16 & | & -3 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 5 & | & 1 & 0 & 0 \\ 0 & 1 & 11 & | & 2 & -1 & 0 \\ 0 & 0 & -27 & | & -5 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 5 & | & 1 & 0 & 0 \\ 0 & 1 & 11 & | & 2 & -1 & 0 \\ 0 & 0 & 1 & | & 5/27 & -1/27 & -1/27 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 2/27 & 5/27 & 5/27 \\ 0 & 1 & 0 & | & -1/27 & -16/27 & 11/27 \\ 0 & 0 & 1 & | & 5/27 & -1/27 & -1/27 \end{pmatrix}$$

Mapping Example (3, computing A, etc.)

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 5 \\ 2 & -1 & -1 \\ 3 & 1 & -1 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ 5 & -1 & -1 \end{pmatrix}$$

Finding A was easier via B

we "test" **A** with $v = 2b_1 + b_2$:

$$\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2 = \begin{pmatrix} 2+0\\4-1\\6+1 \end{pmatrix} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

think first – what to expect?

$$\mathbf{T}(\mathbf{v}) = \mathbf{A}\,\mathbf{v} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

next, we "check"
$$\mathbf{w} = \begin{pmatrix} 17 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}_{E}$$

$$\mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ -5 & 1 & 1 \end{pmatrix}$$

$$\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2 = \begin{pmatrix} 2+0 \\ 4-1 \\ 6+1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 7 \end{pmatrix}$$

$$\mathbf{A} = \mathbf{B} \mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} -23 & 10 & 10 \\ 10 & 25 & -2 \\ 10 & -2 & 25 \end{pmatrix}$$

$$\mathbf{T}(\mathbf{w}) = \begin{pmatrix} -13 \\ 6 \\ 10 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}_{\mathbb{R}}$$

Mapping Example (3, computing A, etc.)

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 5 \\ 2 & -1 & -1 \\ 3 & 1 & -1 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ 5 & -1 & -1 \end{pmatrix}$$

Finding A was easier via B

we "test" **A** with $v = 2b_1 + b_2$:

$$\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2 = \begin{pmatrix} 2+0\\4-1\\6+1 \end{pmatrix} = \begin{pmatrix} 2\\3\\7 \end{pmatrix} \qquad \mathbf{A} = \mathbf{B} \,\mathbf{M} \,\mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} -23 & 10 & 10\\10 & 25 & -2\\10 & -2 & 25 \end{pmatrix}$$

$$\mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ -5 & 1 & 1 \end{pmatrix}$$

$$\mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} -23 & 10 & 10 \\ 10 & 25 & 2 \end{pmatrix}$$

$$\mathbf{T}(\mathbf{v}) = \mathbf{A}\,\mathbf{v} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

next, we "check"
$$\mathbf{w} = \begin{pmatrix} 17 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}_B$$
 $\mathbf{T}(\mathbf{w}) = \begin{pmatrix} -13 \\ 6 \\ 10 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}_B$

$$\mathbf{T}(\mathbf{w}) = \begin{pmatrix} -13 \\ 6 \\ 10 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}_{B}$$
think again – what to 8

think again – what to expect?

Mapping Example (3, computing A, etc.)

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 5 \\ 2 & -1 & -1 \\ 3 & 1 & -1 \end{pmatrix} \quad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ 5 & -1 & -1 \end{pmatrix}$$

Finding A was easier via B

we "test" **A** with $v = 2b_1 + b_2$:

$$\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2 = \begin{pmatrix} 2+0\\4-1\\6+1 \end{pmatrix} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$
 $\mathbf{A} = \mathbf{B} \mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} -23 & 10 & 10\\10 & 25 & -2\\10 & -2 & 25 \end{pmatrix}$

$$\mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} 2 & 5 & 5 \\ -1 & -16 & 11 \\ -5 & 1 & 1 \end{pmatrix}$$
$$\mathbf{M} \mathbf{B}^{-1} = \frac{1}{27} \begin{pmatrix} -23 & 10 & 10 \\ 10 & 25 & -2 \end{pmatrix}$$

$$\mathbf{T}(\mathbf{v}) = \mathbf{A}\,\mathbf{v} = \begin{pmatrix} 2\\3\\7 \end{pmatrix}$$

next, we "check"
$$\mathbf{w} = \begin{pmatrix} 17 \\ 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}_{\mathbb{R}}$$
 $\mathbf{T}(\mathbf{w}) = \begin{pmatrix} -13 \\ 6 \\ 10 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}_{\mathbb{R}}$

Projection

Projecting some data D onto some (sub)space Ω ...

... means to "talk about **D** in terms (coordinates) of Ω (only)"— obviously, this reminds us of bases and the change of a basis!

Formal definition of projection

– a projection **P** is a linear operation that fulfills $\mathbf{P}^2 = \mathbf{P}$, i.e., if applied a 2nd time, nothing changes anymore

Example:

- projection onto a line with \mathbf{u} as a unit vector: $\mathbf{P}_{\mathbf{u}} = \mathbf{u} \mathbf{u}^{\mathsf{T}}$

$$\mathbf{v} = (\mathbf{u} \ \mathbf{u}_{\perp}) \ (c_1 \ c_2)^{\top}$$

$$\mathbf{P}_{\mathbf{u}} \ \mathbf{v} = \mathbf{P}_{\mathbf{u}} \ (c_1 \mathbf{u} + c_2 \mathbf{u}_{\perp}) = \mathbf{P}_{\mathbf{u}} \ c_1 \mathbf{u} + \mathbf{P}_{\mathbf{u}} \ c_2 \mathbf{u}_{\perp} = c_1 \mathbf{P}_{\mathbf{u}} \ \mathbf{u} + c_2 \mathbf{P}_{\mathbf{u}} \ \mathbf{u}_{\perp} = c_1 \mathbf{P}_{\mathbf{u}} \ \mathbf{u} + c_2 \mathbf{P}_{\mathbf{u}} \ \mathbf{u}_{\perp} = c_2 \mathbf{u}_{\perp} = c_2$$

- generalizes, accordingly: given orthonormal $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \dots \mathbf{u}_k)$ defines a subspace of \mathbb{R}^n , then $\mathbf{P}_{\mathbf{A}} = \mathbf{A} \mathbf{A}^{\mathsf{T}}$ projects from \mathbb{R}^n onto \mathbf{A}

$$c_1 \mathbf{u} \underbrace{\mathbf{u}^\mathsf{T} \mathbf{u}}_1 + c_2 \mathbf{u} \underbrace{\mathbf{u}^\mathsf{T} \mathbf{u}_\perp}_0 =$$

outer product

Projection Example (1)

Assume, we are in \mathbb{R}^2 :

- assume further, we have vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \in \mathbb{R}^2$, given also a matrix $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n)$ - ex.: $\mathbf{V} = \begin{pmatrix} 180 & 183 & 183 & 182 & 177 \\ 72 & 95 & 80 & 80 & 66 \end{pmatrix}$

Projection Example (2)

Assume, we are in \mathbb{R}^2 :

- assume further, we have vectors \mathbf{v}_1 , \mathbf{v}_2 , ..., $\mathbf{v}_n \in \mathbb{R}^2$, given also a matrix $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n)$ $-\text{ex.: } \mathbf{V} = \begin{pmatrix} 180 & 183 & 183 & 182 \\ 72 & 95 & 80 & 80 \end{pmatrix}$
- further, we assume $\mathbf{d} = (2 \ 1)^T$ a 1D subspace (a line \mathbf{I}), defined by $s \mathbf{d}$, $s \in \mathbb{R}$
- $-L = \{d'\}$ is an orthonormal basis of I with d' = d/|d|and **L** = **d'** the corresponding "matrix"

Assume

- the projection onto **I** is defined by
$$\mathbf{P_l} = \mathbf{d'd'}^{\mathsf{T}}$$

$$- \mathbf{P_l} = \mathbf{d'd'}^{\mathsf{T}} = \begin{pmatrix} 0.8944 \\ 0.4472 \end{pmatrix} \begin{pmatrix} 0.8944 & 0.4472 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.4 \\ 0.4 & 0.2 \end{pmatrix}_{\text{75}}$$
- projecting **V**

then means to compute $P_i V$ as

$$\mathbf{P}_{\mathbf{I}}\mathbf{V} = \begin{pmatrix} 172.8 & 184.4 & 178.4 & 177.6 & 168.0 \\ 86.4 & 92.2 & 89.2 & 88.8 & 84.0 \end{pmatrix}$$

Projection Example (3)

Illustration:

- assume further, we have vectors \mathbf{v}_1 , \mathbf{v}_2 , given also a matrix $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2 \ ... \ \mathbf{v}_n)$

$$\mathbf{V} = \begin{pmatrix} 180 & 183 & 183 & 182 & 177 \\ 72 & 95 & 80 & 80 & 66 \end{pmatrix}$$

$$\mathbf{P_IV} = \begin{pmatrix} 172.8 & 184.4 & 178.4 & 177.6 & 168.0 \\ 86.4 & 92.2 & 89.2 & 88.8 & 84.0 \end{pmatrix}$$

Outlook

Next:

- singular-value decomposition, SVD
- eigenanalysis
- principal component analysis, PCA
- more examples

Reading and Related Material

In the book:

- chapter 2 (on linear systems), mostly section 2.1, and related parts
- chapter 15 (on SVD, etc.): coming soon! :–)

Course notes:

section 4

An interactive online-book:

http://lmmersiveMath.com/,
 chapters (1–4 &) 5 (on Gaussian elimination)
 and 6 (on The Matrix)

On Wikipedia:

many good pages