PRACTICAL 6

Aim :-To study the characteristics of PN Junction diode under forward and reverse bias conditions.

Apparatus Required

- 1. R.P.S (0-30)V
- 2. Diode IN4001
- 3. Ammeter (0–30)mA
- 4. Resistor 1k
- 5. Bread Board
- 6. Voltmeter(0–1)V
- 7. connecting Wires

Theory:

A PN junction diode is a two terminal semiconducting device. It conducts only in one direction (only on forward biasing).

Forward Bias

On forward biasing, initially no current flows due to barrier potential. As the applied potential exceeds the barrier potential the charge carriers gain sufficient energy to cross the potential barrier and hence enter the other region. The holes, which are majority carriers in the P-region, become minority carriers on entering the N-regions, and electrons which are the majority carriers in the N-region, become minority carriers on entering the P-region. This injection of minority carriers results in the current flow, opposite to the direction of electron movement.

Reverse Bias

On reverse biasing, the majority charge carriers are attracted towards the terminals due to the applied potential resulting in the widening of the depletion region. Since the charge carriers are pushed towards the terminals no current flows in the device due to majority charge carriers. There will be some current in the device due to the thermally generated minority carriers. The generation of such carriers is independent of the applied potential and hence the current is constant for all increasing reverse potential. This current is referred to as Reverse Saturation Current (IO) and it increases with temperature. When the applied reverse voltage is increased beyond the certain limit, it results in breakdown. During breakdown, the diode current increases tremendously.

Procedure

Forward Bias

- 1. Connect the circuit as per the diagram.
- 2. Vary the applied voltage V in steps of 0.1V.
- 3. Note down the corresponding Ammeter readings I.
- 4. Plot a graph between V & I

Observations

- 1. Find the d.c (static) resistance = V/I.
- 2. Find the a.c (dynamic) resistance $r = V / I (r = \Delta V / \Delta I) =$
- 3. Find the forward voltage drop [Hint: it is equal to 0.7 for Si and 0.3 for Ge]

Reverse Bias

- 1. Connect the circuit as per the diagram.
- 2. Vary the applied voltage V in steps of 1.0V.
- 3. Note down the corresponding Ammeter readings I.
- 4. Plot a graph between V & I
- 5. Find the dynamic resistance $r = \Delta V / \Delta I$.

Circuit Diagram

Forward Bias

Reverse Bias

Specification for 1N4001: Silicon Diode

Peak Inverse Voltage: 50V

 $I_{dc} = 1A$.

Maximum forward voltage drop at 1 Amp is 1.1 volts

Maximum reverse current at 50 volts is 5µA

Observation Table

*	Forward	Blass-	
	supplied voltage	voltage across	current flow.
	0	0	0
	0.15.V	149.457aV	527.356nA
	0.30 V	291.136 mV	8.882 UA
	0.45 V	389.947 mV	60.0634A
3	0.60 V	440.473mV 469.641mV	159.65 uA 280.331 uA
	0.90V	480.384 mV	910.56 MA
	1.05V	504 118 mV	546.008 MA

r Tibe		_/_/
1.20 V	515.806 mV	684.341 UA
1.35 V	525. 463 mV	824.452 MA
1.50Y	533.677 mV	966.116 MAV
1.65 V	540.815 mV	1.109mA
1.80 ~	547.122 mV	1.253 mA
1.95V	552.769 my	1.398 mA
2.10 V	557.879mV	1.541 mA
2.25V	562.544mV	1.688 mA
2.40V	566.835 mV	1.833mA
2.55V	570.806 mV	J.979mn
2.70V	574.501mV	2-125 mA
2.85 V	577.956 mV	2.272 MA
3.00 V	581.200 mV	2.419 mA
		1
	3	A 1-

			//_
		19 9	
*	Roverse B	ias	Large Contract
	Supplied voltage	voltage across	current
-	OV	Omv	OA
	0.15 V	1.49.97 mV	OA
	0.30 V	299,968 mV	OA
X	0.45V	449,968mV	OR
	0.60	591.	
	OV	Oml	OA
	3.5 V	3.5 ANV	OA
	7\1	TMV	OA
	10.5 V	10.5 V	OA
	14 V	141	OA
	17.5 V	17.51	OA
	21 V	21V	OA
	24.50	24.50	OA
	28V	280	OA
walled .	31.5V	31.5 V	OA
7 7	35 V	35 V	04
	38.5V	38.5V	OA
	42	421	take 7. 1417 (OA
	45.5	45.50	OA
-	49	490	OA
	52.5	52.6 N	OA
	56	U 53.087	2.89 mA
	59.5 V	53.10811	6.381 m A
E .	63 V	~ 53.119 V	9.877mA
	66.61	~ 53.127V	13.387mA
in the second	70 V	53.133 V	16,868mA

ь

Reverse Bias

Graph: -

For 1st quadrant X-axis: 1 unit = 0.15 V Y-axis: 1 Unit=100 MA For 3od quadrant

X-ancis: lunit: @3.5V Y-ancis: lunit: 0.8 mA

Calculation: -
Forward Resistance(DC)= (Vd /Id)
Forward Resistance(AC)= Δ Vd/ Δ Id

Conclusion: -