Convergence in Probability Theory

Objective: To understand the different notions of convergence used in probability theory, and how they relate to one another.

Warm-up: Limits of Sequences and Functions:

- 1. Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Define what it means for a_n to converge to a limit L as n tends to infinity.
- 2. Let (a_n) and (b_n) be sequences of real numbers, with $a_n \to A$ and $b_n \to B$ as $n \to \infty$. Prove that $a_n + b_n \to A + B$ and $a_n b_n \to AB$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Define what it means for f(x) to tend to a limit L as x tends to some constant a.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Prove that $f(x) \to L$ as $x \to a$ if and only if for every sequence (x_n) with $x_n \to a$, we have $f(x_n) \to L$.

Probabilistic Convergence:

Let (X_n) be a sequence of (real-valued) random variables, and X a random variable. Give the definition of each of the following types of convergence:

$$X_n \xrightarrow{d} X$$

$$X_n \xrightarrow{P} X$$

$$X_n \xrightarrow{L_n} X$$

Relationships between Different Types of Convergence:

1. First we prove that convergence in probability implies convergence in distribution:

$$\left(X_n \xrightarrow{P} X\right) \quad \Rightarrow \quad \left(X_n \xrightarrow{d} X\right).$$

(a) First a Lemma. Prove that, for random variables Y and Z, and constants $a \in \mathbb{R}$ and $\epsilon > 0$:

$$P(Y \le a) \le P(Z \le a + \epsilon) + P(|Y - Z| > \epsilon).$$

Hint: show that $\{Y \leq a\} \subseteq \{Z \leq a + \epsilon\} \cup \{|Y - Z| > \epsilon\}.$

- (b) Let $a \in \mathbb{R}$ be such that F_X is continuous at a. We need to show that $F_{X_n}(a) \to F_X(a)$.
 - i. Use the Lemma to show that

$$P(X \le a - \epsilon) - P(|X_n - X| > \epsilon) \le P(X_n \le a) \le P(X \le a + \epsilon) + P(|X_n - X| > \epsilon).$$

Hint: Use the Lemma twice—once with Y = X, once with $Y = X_n$.

ii. Hence conclude that

$$F_X(a-\epsilon) \le \lim_{n \to \infty} F_{X_n}(a) \le F_X(a+\epsilon).$$

- iii. Hence conclude that $X_n \xrightarrow{d} X$.
- 2. Next we show that convergence in mean implies convergence in probability:

$$\left(X_n \xrightarrow{L_1} X\right) \quad \Rightarrow \quad \left(X_n \xrightarrow{P} X\right).$$

(a) First we need $\mathbf{Markov's}$ $\mathbf{Inequality}$: if Y is a non-negative random variable, then

$$P(Y \le a) \ge \frac{E(Y)}{a}.$$

Prove this by writing out the definition of E(Y) and relating it to $P(Y \ge a)$.

(b) Now suppose that $X_n \xrightarrow{L_1} X$ and fix $\epsilon > 0$. Show that

$$P(|X_n - X| > \epsilon) \to 0$$

as $n \to \infty$; *i.e.*, that $X_n \xrightarrow{P} X$.

3. As a bonus, conclude that convergence in mean implies convergence in distribution:

$$\left(X_n \xrightarrow{L_1} X\right) \quad \Rightarrow \quad \left(X_n \xrightarrow{d} X\right).$$

The Weak Law of Large Numbers:

Let (X_n) be a sequence of i.i.d. random variables with finite mean μ , and let \bar{X}_n be the sample mean:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

The Weak Law of Large Numbers (WLLN) states that

$$X_n \xrightarrow{P} \mu$$
.

To prove this, we assume that the X_i have finite variance σ^2 , though the result holds (with a harder proof) without this assumption. Assuming finite variance allows us to prove **Chebyshev's Inequality**: for a random variable X with mean μ and variance σ^2 , and for any $\lambda > 0$, we have

$$P(|X - \mu| \ge \lambda \sigma) \le \frac{1}{\lambda^2}.$$

Prove Chebyshev's Inequality by applying Markov's Inequality (see previous page) to the random variable $(X - \mu)^2$, with $a = (\lambda \sigma)^2$.

Apply Chebyshev's Inequality to \bar{X}_n to prove the WLLN.