Mini project 2 - Estimating Market Penetration rate for Connected Vehicle Data in Iowa Miguel Diaz

First, I defined the data format and field types to map this into Athena in AWS.

1 - CV data Inspection and Analysis

Variable	Description	Wejo-Specific Description	Field Type	
datapointid	Unique identifier for the data point	ID associated with Wejo's connected vehicle data point	varchar(50)	
journeyid	Unique identifier for the journey	ID representing a unique journey within Wejo's dataset	varchar(50)	
capturedtimestamp	Timestamp when the data was captured	Time recorded for vehicle data collection in Wejo system	timestamp	
latitude	Latitude coordinate of the data point	Vehicle's latitude recorded in Wejo data	double	
longitude	Longitude coordinate of the data point	Vehicle's longitude recorded in Wejo data	double	
route_id	Identifier for the route	Route identifier in Wejo's connected vehicle data	varchar(50)	
segment_start_mea sure	Starting measure of the route segment	Measure indicating the starting point of the vehicle route segment	double	
hour	Hour of the day	Hour extracted from the timestamp, useful for temporal aggregation		

2 - Wavetronix Sensor data and location data Inspection and Analysis

Variable	Description	Field Type		
device_id	Unique identifier for the Wavetronix sensor	varchar(50)		
lane_id	Unique identifier for each lane monitored	varchar(50)		
lane_count	Count of vehicles in the lane	int		
link_direction	Direction of the monitored traffic link	varchar(50)		
parsed_cst_time	Timestamp in Central Standard Time	timestamp		

Variable	Description	Field Type		
device_id	Unique identifier for the Wavetronix sensor	varchar(50)		
routeid	Route identifier associated with the sensor	varchar(50)		
latitude	Latitude coordinate of the sensor	float		
longitude	Longitude coordinate of the sensor	float		

3 - Reading the data in AWS and reading data in Athena

Initial CV data format

datapointid	▽	journeyid	∇	capturedtimestamp	∇	latitude	▽	longitude ▽	route_id	▽	segment_start_mea
"68b0984a-4845-471c-b0ba-a4c93fff707c"		"cedacf9ea3b75f26d11bcb36c421aff8905ed36	1"	"2023-05-02 14:06:19.000		*41.630116	5"	"-93.759828"	"M787546530W	/ =	"2.903"

Reading process

```
CREATE EXTERNAL TABLE IF NOT EXISTS `miniproject 2 miguel`.`CV Data` (
    `datapointid` varchar(50),
    `journeyid` varchar(50),
    `capturedtimestamp` string,
   `latitude` string,
   `longitude` string,
    `route id` varchar(50),
   `segment_start_measure` string,
   `hour` string
COMMENT "Miguel miniproject 2 SQL AWS"
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES ('field.delim' = ',')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://reactorlab/Miguel/CV_data/'
TBLPROPERTIES ('classification' = 'csv',
    'skip.header.line.count' = '1');
```

Data reformatting

```
CREATE TABLE "miniproject_2_miguel"."miguel_cv_data"
WITH (
    external_location = 's3://reactorlab/Miguel/miguel_cv_data/',
    format = 'PARQUET'
) AS
SELECT REPLACE(datapointid, '"', '') AS datapointid,
  REPLACE(journeyid, '"', '') AS journeyid,
  CAST(REPLACE(capturedtimestamp, '"', '') AS timestamp) AS capturedtimestamp,
  CAST(REPLACE(latitude, '"', '') AS double) AS latitude,
 CAST(REPLACE(longitude, '"', '') AS double) AS longitude,
  REPLACE(route_id, '"', '') AS route_id,
  CAST(
  REPLACE(segment start measure, '"', '') AS double
  ) AS segment_start_measure,
  CAST(REPLACE(hour, '"', '') AS int) AS hour
FROM (
   SELECT *
    FROM "miniproject 2 miguel"."cv data"
    WHERE TRY_CAST(REPLACE(latitude, '"', '') AS double) IS NOT NULL
     AND TRY_CAST(REPLACE(longitude, '"', '') AS double) IS NOT NULL
     AND TRY_CAST(
       REPLACE(segment_start_measure, '"', '') AS double
      ) IS NOT NULL
      AND TRY_CAST(REPLACE(hour, '"', '') AS int) IS NOT NULL
  ) AS filtered_data;
```

4 - Athena table data column types

Wavetronix location data

```
CREATE EXTERNAL TABLE IF NOT EXISTS `miniproject_2_miguel`.`Wavetronix_locations_Miguel` (
    `device_id` varchar(50),
    `routeid` varchar(50),
    `latitude` float,
    `longitude` float
) COMMENT "Miguel miniproject 2 SQL AWS"
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES ('field.delim' = ',')
STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://reactorlab/Miguel/Wavetronix_locations/' --s3://reactorlab/Miguel/Wavetronix_locations/
TBLPROPERTIES ('classification' = 'csv',
    'skip.header.line.count' = '1');
```

Wavetronix sensors data

# 🗸	da	tapointid		▼	journeyid		▼	capturedtimestan	np 🔻
1	36	60438c9-93a6-400	00-88d1-36fc0)227f74e	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:44.000
2	03	58cb37-82a8-491	1a-9b5a-2781	23332a4c	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:47.000
3	ab	32ae3c-7700-4c2	b-9ecd-cbd73	3d60377	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:50.000
4	83	ac2da0-cfc1-41d	4-9758-7f1ee2	2d06cce	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:53.000
5	38	9e2ece-b57e-44a	f-ab2b-4dc57	9d0aca0	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:56.000
6	7 c	d47c90-22c8-47f	e-a5f3-fc0dc1	5ead8a	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:46	:59.000
7	90	7c9a7b-2cb1-423	1-b297-928b	06b5d778	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:47	:02.000
8	1d	lc8fdd7-6fc8-4de0	0-850c-22d33	ef11cd7	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:47	:05.000
9	10	063c909-4591-405	57-b7f7-0691	0844d2fb	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:47	:08.000
10	cc2	260c87-a7c8-4fdf	-8d3b-653cd1	ld78bbf	cbbe3fc4d1d7a7ffa	a0129947f8e0ce9b8	52e3557	2023-05-02 22:47	:11.000
▼	7	capturedtimesta	amp ▽	latitude ▽	longitude ▽	route_id ▽	segment_st	tart_measure ▽	hour ▽
2e3557	7	capturedtimesta 2023-05-02 22:4	•	latitude ▼ 41.67879	longitude ♥ -93.737347	route_id ▼ M382746870E	segment_st	tart_measure ▼	hour ♥
	7	•	46:44.000			10000210		tart_measure ▼	
2e3557	7	2023-05-02 22:4	46:44.000 46:47.000	41.67879	-93.737347	M382746870E	0.21	tart_measure ▼	22
2e3557	7	2023-05-02 22:4	46:44.000 46:47.000 46:50.000	41.67879 41.678741	-93.737347 -93.737745	M382746870E M382746870E	0.21	tart_measure ▼	22
i2e3557 i2e3557 i2e3557	7	2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4	46:44.000 46:47.000 46:50.000 46:53.000	41.67879 41.678741 41.67863	-93.737347 -93.737745 -93.738123	M382746870E M382746870E M382746870E	0.21 0.192 0.162	tart_measure ▼	22 22 22
2e3557 2e3557 2e3557		2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4	46:44.000 46:47.000 46:50.000 46:53.000 46:56.000	41.67879 41.678741 41.67863 41.678478	-93.737347 -93.737745 -93.738123 -93.738504	M382746870E M382746870E M382746870E M382746870E	0.21 0.192 0.162 0.063	tart_measure ▼	22 22 22 22
i2e3557 i2e3557 i2e3557 i2e3557 i2e3557		2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4	46:44.000 46:47.000 46:50.000 46:53.000 46:56.000 46:59.000	41.67879 41.678741 41.67863 41.678478 41.67831	-93.737347 -93.737745 -93.738123 -93.738504 -93.738896	M382746870E M382746870E M382746870E M382746870E M382746870E	0.21 0.192 0.162 0.063 0.063	tart_measure ▼	22 22 22 22 22 22
i2e3557 i2e3557 i2e3557 i2e3557 i2e3557		2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4	46:44.000 46:47.000 46:50.000 46:53.000 46:56.000 46:59.000 47:02.000	41.67879 41.678741 41.67863 41.678478 41.67831 41.678135	-93.737347 -93.737745 -93.738123 -93.738504 -93.738896 -93.739303	M382746870E M382746870E M382746870E M382746870E M382746870E M382746870E	0.21 0.192 0.162 0.063 0.063	tart_measure ▼	22 22 22 22 22 22 22
i2e3557 i2e3557 i2e3557 i2e3557 i2e3557 i2e3557		2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4 2023-05-02 22:4	46:44.000 46:47.000 46:50.000 46:53.000 46:56.000 46:59.000 47:02.000	41.67879 41.678741 41.67863 41.678478 41.67831 41.678135 41.677966	-93.737347 -93.737745 -93.738123 -93.738504 -93.738896 -93.739303 -93.739709	M382746870E M382746870E M382746870E M382746870E M382746870E M382746870E M382746870E	0.21 0.192 0.162 0.063 0.063 0.063	tart_measure ▼	22 22 22 22 22 22 22 22

Wavetronix sensors data parsed string to timestamp

```
CREATE TABLE "miniproject_2_miguel"."Wavetronix"
WITH (
    external_location = 's3://reactorlab/Miguel/Wavetronix/',
    format = 'PARQUET'
) AS
SELECT
    device_id,
    lane_id,
    lane_count,
    link_direction,
    date_parse(cst_time, '%Y-%m-%d-%H-%i-%s') AS parsed_cst_time
FROM "miniproject_2_miguel"."wavetronix_filtered_miguel";
```

- 5 Identification of CVs within a 2-mile buffer of each sensor
 - A WITH clause (cv_with_sensor) is used to join cv_data (CV data) and wavetronix_locations (sensor locations) based on the route_id.
 - It calculates the approximate distance between CVs and sensors using the formula:

```
distance = \sqrt{\text{(latitude difference)}^2 + \text{(longitude difference)}^2}
```

```
-- Step 1: Identify CVs within 2-mile buffer of each sensor
WITH cv_with_sensor AS (
   SELECT
       cv.datapointid,
       cv.journeyid,
       cv.capturedtimestamp,
       cv.latitude AS cv_latitude,
       cv.longitude AS cv_longitude,
       cv.route_id,
       cv.hour,
       wl.device id AS sensor device id,
       wl.latitude AS sensor latitude,
       wl.longitude AS sensor longitude,
       -- Approximation for buffer (2-mile ~ 0.03 latitude/longitude difference)
       sqrt(power(cv.latitude - wl.latitude, 2) + power(cv.longitude - wl.longitude, 2)) AS distance
   FROM
       raghu_cv_data AS cv
   JOIN
        raghu_wavetronix_locations AS wl
       cv.route_id = wl.route_id
```

6 - Aggregation of Wavetronix vehicles count by hour and sensor

Grouping and Aggregation

Data grouped by:

- device_id: The unique identifier of each Wavetronix sensor.
- hour: Extracted from the timestamp field (cst_time) in the data.

A SUM(lane_count) is performed to aggregate the vehicle counts across all lanes for each sensor-hour combination.

Field Selection

- device_id: The unique identifier of the sensor.
- hour: The time of data capture, derived from the timestamp.
- total_vehicle_count: The sum of vehicle counts across all lanes for the sensor-hour combination.

Output

(wavetronix_hourly_count) is generated with the following fields:

- device_id: The unique identifier of the sensor.
- hour: The hour of data capture.
- total_vehicle_count: The total number of vehicles detected across all lanes for the specified sensor and hour.

7 - Penetration Rate calculation

Data Sources

Combines the outputs from Step 2 (cv_hourly_count) and Step 3 (wavetronix_hourly_count).

- cv_hourly_count: Contains the count of unique CV journeys (cv_count) per sensor and hour.
- wavetronix_hourly_count: Contains the total number of vehicles (total_vehicle_count) per sensor and hour.

Joining Tables

- A join is performed between the two tables on:
- device_id: The unique identifier of the sensor.
- hour: The hour of data capture.
- This ensures that penetration rates are calculated for corresponding sensor-hour combinations.

Penetration Rate Formula

Penetration Rate (%):

```
 \bullet \quad \begin{cases} \left(\frac{\text{CV Count}}{\text{Total Vehicle Count}}\right) \times 100, & \text{if Total Vehicle Count } > 0 \\ 0, & \text{if Total Vehicle Count } = 0 \end{cases}
```

Output

(penetration_rate) is generated with the following fields:

- **device_id**: The unique identifier of the sensor.
- hour: The hour of data capture.
- **cv_count**: The total number of CVs detected.
- total_vehicle_count: The total number of vehicles detected by the sensor.
- **penetration_rate_percentage**: The penetration rate of CVs as a percentage of total vehicles.

```
-- Step 4: Calculate Penetration Rate
penetration_rate AS (
   SELECT
       cv.device_id,
       cv.hour,
       cv.cv_count,
       wt.total_vehicle_count,
       -- Penetration Rate Calculation
       IF(wt.total_vehicle_count > 0,
           (CAST(cv.cv_count AS DECIMAL(10, 4)) / CAST(wt.total_vehicle_count AS DECIMAL(10, 4))) * 100,
           0) AS penetration rate percentage
   FROM
       cv_hourly_count AS cv
   JOIN
       wavetronix_hourly_count AS wt
       cv.device_id = wt.device_id
       AND cv.hour = wt.hour
```

```
-- Step 5: Output Results

SELECT

device_id,
hour,
cv_count,
total_vehicle_count,
penetration_rate_percentage

FROM
penetration_rate

ORDER BY
device_id, hour;
```

8 – Results

Average penetration rates patterns in time

- The highest peak for the penetration rate is presented at around 15:00 hours.
- The highest counted portion is presented during the morning hours

Average penetration rates patterns in time by device ID

Locations with the highest penetration rates

- The highest penetration rates appear to be concentrated in areas around Des Moines, Iowa.
- The second location with high penetration was identified around Omaha limits with lowa.

Sensors with average penetration rate at each location

- The highest penetration rates appear to be concentrated in areas around Des Moines, Iowa.
- The smallest penetration rates are int the Sioux City region.

Routes spatial penetration distribution

Spatial locations Route Id

Spatial locations Route Id

Spatial locations Route Id

• Highest penetration rates along routes located around Des Moines city

Lane count spatial distribution

Highest count in lines located around Des Moines city

Lane count by Route ID

9 - Conclusion

- 1. The penetration rate shows significant peaks around specific hours of the day, particularly around 8-9 AM and 3-4 PM, as indicated in the penetration rate time series.
- 2. These peaks likely correspond to morning and afternoon traffic rush hours, indicating a higher proportion of connected vehicles.
- 3. The highest penetration rates are concentrated in the Des Moines metropolitan area, as shown on the spatial map and supported by the bar chart of penetration percentage by Route ID.
- 4. Des Moines is a significant hub for connected vehicle traffic, suggesting advanced adoption or implementation of connected vehicle technology in this area.
- 5. Specific routes, such as S001910008W, show significantly higher penetration rates than others. These routes may be critical corridors for connected vehicle operations, possibly due to traffic density, infrastructure, or technology adoption along these paths.
- 6. Route S001910035N has the highest lane count among the routes, indicating it is a major regional arterial road. Spatial distribution maps align this route with high-traffic volume areas near Des Moines. Higher lane counts correlate with increased vehicle detection, providing robust traffic and penetration rate analysis data.
- 7. Regions like Cedar Rapids, Iowa City, and Dubuque have moderate penetration rates compared to Des Moines, with penetration declining as we move toward rural areas.
- 8. Urban areas show greater adoption of connected vehicle technology than rural areas, likely due to better infrastructure and higher vehicle density.
- 9. Higher adoption in metropolitan areas like Des Moines suggests these locations could serve as testing grounds for future connected vehicle initiatives.