Inlämningen innehåller två uppgifter, där varje uppgift finns i två exemplar. Gör uppgifterna motsvarande ditt laborationsgruppnummer

Uppgift 1 (jämnt laborationsgruppnummer)

Fem tillgängliga ambulanshelikoptrar är just nu lokaliserade i Degerfors, Eskilstuna, Finspång, Göteborg och Halmstad. Tre större aktuella olyckor -- i Jönköping, Kungsör och Linköping – kräver att ambulanshelikoptrar flygs in. Avstånden (fågelvägen, i km) mellan de olika kommunerna framgår i tabellen nedan. Bestäm vilka helikoptrar som ska flyga till vilken olycka så att det totala flygavståndet minimeras. Lös problemet som ett tillordningsproblem. Ange optimallösningen.

Redovisa endast följande utdata från LINGO: Optimalt målfunktionsvärde och endast beslutsvariabler som antar värdet ett.

	Jönköping	Kungsör	Linköping
Degersfors	163	97	115
Eskilstuna	223	24	118
Finspång	140	82	34
Göteborg	130	306	229
Halmstad	146	360	254

Uppgift 1 (udda laborationsgruppnummer)

Fem tillgängliga ambulanshelikoptrar är just nu lokaliserade i Degerfors, Eskilstuna, Finspång, Göteborg och Växjö. Tre större aktuella olyckor -- i Jönköping, Kungsör och Linköping – kräver att ambulanshelikoptrar flygs in. Avstånden (fågelvägen, i km) mellan de olika kommunerna framgår i tabellen nedan. Bestäm vilka helikoptrar som ska flyga till vilken olycka så att det totala flygavståndet minimeras. Lös problemet som ett tillordningsproblem. Ange optimallösningen.

Redovisa endast följande utdata från LINGO: Optimalt målfunktionsvärde och beslutsvariabler som antar värdet ett.

	Jönköping	Kungsör	Linköping
Degersfors	163	97	115
Eskilstuna	223	24	118
Finspång	140	82	34
Göteborg	130	306	229
Växjö	108	398	177

Uppgift 2 (jämnt laborationsgruppnummer)

Ronny och Roger ska tvätta fem bilar. De har uppskattat tiden (i minuter) det skulle ta för varje person att tvätta varje bil, se tabell 1. Ronny måste bli klar på högst två timmar och Roger på högst tre timmar. Bestäm vilka bilar varje person ska tvätta så att den totala tvättiden minimeras. Lös problemet som ett generaliserat tillordningsproblem. Ange optimallösningen.

Redovisa endast följande utdata från LINGO: Optimal förtjänst och beslutsvariabler som antar värdet ett

	Bil 1	Bil 2	Bil 3	Bil 4	Bil 5
Ronny	45	40	55	30	50
Roger	45	50	60	50	35

Tabell 1

Uppgift 2 (udda laborationsgruppnummer)

Ronny och Roger ska tvätta fem bilar. De har uppskattat tiden (i minuter) det skulle ta för varje person att tvätta varje bil, se tabell 1. Ronny måste bli klar på högst två timmar och Roger på högst tre timmar. Bestäm vilka bilar varje person ska tvätta så att den totala tvättiden minimeras. Lös problemet som ett generaliserat tillordningsproblem. Ange optimallösningen.

Redovisa endast följande utdata från LINGO: Optimal förtjänst och beslutsvariabler som antar värdet ett

	Bil 1	Bil 2	Bil 3	Bil 4	Bil 5
Ronny	45	40	55	30	50
Roger	45	50	45	40	35

Tabell 1