

STATG019 – Selected Topics in Statistics 2015

Lecture 1

An Introduction to Kernels

Scope of the course

Part 1: Kernel Methods (Franz)

Hands-on crash course on kernels

Focus on "data analysis" part

Selection of practical kernel methodology

Complements well topics in COMPGI13

(by Arthur Gretton, focus on learning theory and hypothesis testing)

Part 2: Spatial Point Processes (Simon)

Replace "kernels" above with "spatial point processes"

Course organization

On-line course

moodle ID 16602

on-line activities, course info and materials

Lecture

Wednesdays, 9 - 11 am

Attendance is **mandatory**

First lecture Jan 14, last lecture Mar 25 (no lecture in reading week)

Slides and course script available on moodle

Lecture is videotaped and availble on Lecturecast/moodle

Feel free to suggest content you want to learn about

Tutorials and/or practical sessions

Thursday, 11am - 1pm

location varies

May take place irregularly, depending on demand

Attendance is **non-compulsory**

Discussion of theoretical or practical exercises, group presentations, etc...

Your choice.

Table of contents

Lecture 1: Introduction to kernels

Main concepts and theoretical results, learning guarantees Kernel PCA and kernel ridge regression Some notes on R and kernlab

Lecture 2: the kernel support vector machine

The linear support vector machine, duality
Hard- and soft-margin two-class SVM
The one-class SVM
Support vector regression

Lecture 3: Gaussian processes and kernel learning

Potential further lecture topics:

Outlier detection, novelty detection

Algorithms: kernel discriminants, kernel k-means, kernel quantile regression kernel CCA, kernel MMD, kernel relevance vector machine Large-scale learning with kernels, subset methods and Nyström-approximation Combinatorial kernels: string kernels, graph kernels
Invariance kernels

Vapnik-Chervonenkis learning theory

On-line kernel learning

An informal overview of things to come

Problem types in Statistical Machine Learning

Supervised

Some data is labelled by expert/oracle (mostly, training data)

Problem types in Statistical Machine Learning

Unsupervised

Data is not pre-labelled

What is Kernel Learning?

Most scalable algorithms employ linear principles

Most data exhibit non-linear features

Kernels allow to make linear algorithms work on non-linear features

Idea: replace scalar product in algorithm by "kernel product"

(this is neo-classical: Schölkopf 2002 – Learning with Kernels)

Example kernels:

$$k(x,y) = \langle x, y \rangle$$

"linear kernel" (nothing replaced)

$$k(x,y) = \exp\left(-\frac{1}{2\sigma^2}||x - y||^2\right)$$

"Gauss kernel" (measures closeness)

$$k(x,y) = \langle x, y \rangle^d$$

"homogenous polynomial kernel

$$k(x,y) = (\theta \langle x, y \rangle + 1)^d$$

"inhomogenous polynomial kernel

(measures shape)

The Kernel Trick

(classical, Aizerman et al 1964; Vapnik, 1995)

Kernel function is composition of "feature map" with scalar product

$$k(x,y) = \langle \phi(x), \phi(y) \rangle \qquad \phi: \mathbb{R}^n \to \mathcal{F}$$

$$kernel \ feature \ map} \qquad \phi$$

$$f(x) = \operatorname{sgn} \left(b + \sum_{i=1}^N \alpha_i k(x_i, x) \right)$$

$$f(x) = \operatorname{sgn} \left(b + \langle w, \phi(x) \rangle \right)$$

Trick = linearization of algorithms operating with scalar products "kernelization"

Example:
$$k(x,y) = \langle x,y \rangle^2$$
 $\phi : (x_1, x_2) \mapsto (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

"homogenous polynomial kernel"

"Veronese map"

Kernelization

Kernels allow to make linear algorithms work on non-linear features ldea: replace scalar product in algorithm by "kernel product"

Example: (ridge) regression

Input: $x_1, \ldots, x_N \in \mathbb{R}^n, y_1, \ldots, y_N \in \mathbb{R}$

Output: regressor function

$$f(x) = y^{\top} \cdot X \left(\lambda I + X^{\top} X \right)^{-1} \cdot x$$
$$X = (x_{i,j})_{ij} \in \mathbb{R}^{N \times n}$$

"Kernelized" variant:

$$f(x) = y^\top \cdot (\lambda I + K)^{-1} \cdot \kappa(x)$$

$$K = (k(x_i, x_j))_{ij} \qquad \qquad \kappa(x) = (k(x_i, x))_i$$
 "kernel evaluation vector"

Kernelization

Example: support vector machine

Input:
$$x_1, \ldots, x_N \in \mathbb{R}^n, y_1, \ldots, y_N \in \{-1, +1\}$$

Output: separator/decision function

$$f(x) = \operatorname{sgn}\left(b + w^{\top}x\right)$$

$$w = \sum_{i=1}^N \alpha_i y_i x_i$$
 solves a QP involving $X^\top X$ $\alpha_i, 1 \leq i \leq N$ are "dual" variables

"Kernelized", non-linear variant:

$$f(x) = \operatorname{sgn}\left(b + \sum_{i=1}^{N} \alpha_i k(x_i, x)\right) = \alpha^{\top} \kappa(x)$$

 α solves a QP involving kernel matrix

$$K = (k(x_i, x_j))_{ij}$$

The kernel trick

Most scalable algorithms employ linear principles

Most data exhibit non-linear features

Naïve idea to make non-linear algorithms:

Suppose we are given data points $x_1, \ldots, x_N \in \mathbb{R}^n$

Apply a non-linear "feature map" $\phi: \mathbb{R}^n \to \mathbb{R}^m$ to all data points

Run your favourite *linear* algorithm on $\phi(x_1), \ldots, \phi(x_N)$.

This idea (with a bit of care) works, and is at the basis of a considerable part of modern statistics!

E.g., non-linear Tikhonov-regularized least-squares regression:

$$f(x) = y^{\top} \cdot X \cdot (\lambda I + X^{\top} X)^{-1} \cdot x$$
 $X = (\phi(x_i)_j)_{ij} \in \mathbb{R}^{N \times m}$

But there are issues with this approach:

Even for rather simple feature maps, m becomes quickly large.

In polynomial regression of degree d, one has $m = \Theta(n^d)$.

This causes: bad scaling/high runtime overfitting (even with regularization) badly conditioned matrices

Also, the right choice of φ remains an issue.

The kernel trick (classical, Aizerman et al 1964; Vapnik, 1995)

uses feature map $\phi: \mathbb{R}^n \to \mathbb{R}^m$

Observation 1 (easy):

If all the algorithm needs is scalar products of the form $\langle \phi(x_i), \phi(x_i) \rangle$

Write
$$k(x,y) := \langle \phi(x), \phi(y) \rangle$$

This k(x,y) may be much easier to compute than $\phi(x)$

costs O(n)

 $\langle \phi(x), \phi(y) \rangle$ costs $O(n^2)$

Observation 2 (difficult):

Many classical algorithms may be recast in scalar products only

Example 1: principal components **Example 2:** ridge regression

$$\begin{array}{ll} \text{eig}\left(X^{\top}X\right) & & f(x) = y^{\top} \cdot X \cdot \left(\lambda I + X^{\top}X\right)^{-1} \cdot x \\ \text{(plus centering)} & X = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \in \mathbb{R}^{N \times n} \end{array}$$

Bad news:

entries of $X^{\top}X$ are not inner products

Good news:

they are very closely related

Theorem (Singular Value Decomposition):

Every real matrix $M \in \mathbb{R}^{N \times n}$ admits a decomposition

$$M = U \cdot S \cdot V^{\top}$$

$$M = U \cdot S \cdot V^{\top}$$
 with $U \in \mathbb{R}^{N \times N}$ orthogonal

$$V \in \mathbb{R}^{n \times n}$$
 orthogonal

$$S \in \mathbb{R}^{N \times n}$$
 diagonal

$$S = \mathsf{diag}(\sigma_1, \ldots, \sigma_{\min(n,N)})$$

 σ_i are non-negative

(and usually ordered descendingly)

animation from Wikimedia Commons

which is unique up to

orthogonal action on row-/column spaces (if all σ_i are distinct, flipping sign in i-th column of U and V)

columns of U, V: "left/right singular vectors"

 σ_i : "singular values"

Corollary (by "uniqueness"):

eigenvectors of $M^{\top}M$ = right singular vectors of M

left singular vectors of $M = \text{eigenvectors of } MM^{\perp}$

eigenvalues of $M^{\top}M = (\text{singular values})^2$ of M = eigenvalues of MM^{\top}

Inner product matrix!

This flavour of duality is at the core of "kernelization".

Kernelizing principal component analysis

Principal Component Analysis: for data x_1, \ldots, x_N

- **1.** compute: sample mean $\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$ sample covariance matrix $\widehat{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})(x_i - \widehat{\mu})^{\top}$
- **2.** $\operatorname{eig}(\widehat{\Sigma}_N)$ yields eigenpairs $(\lambda_1, v_1), \ldots, (\lambda_n, v_n)$ λ_i : "*i*-th principal value" v_i : "*i*-th principal vector"
- "Principal scores": $\tau_i(x) = v_i^\top (x \widehat{\mu}) / \sqrt{\lambda_i}$

Kernel Principal Component Analysis: Observe:
$$\widehat{\Sigma} = X_{\mu}^{\top} X_{\mu}$$
 where $X_{\mu} = (I - \mathbb{1}_{N}) X$ and $X = \begin{pmatrix} x_{1} \\ \vdots \\ x_{N} \end{pmatrix} \in \mathbb{R}^{N \times n}$

 $\mathbb{1}_N$ the $(N \times N)$ matrix with entries $\frac{1}{N}$

By SVD theorem, λ_i are the eigenvalues of

$$K_{\mu} := X_{\mu} X_{\mu}^{\top} = (I - \mathbb{1}_N) \cdot X X^{\top} \cdot (I - \mathbb{1}_N) = (I - \mathbb{1}_N) \cdot K \cdot (I - \mathbb{1}_N)$$
 where $K = (\langle x_i, x_j \rangle)_{ij}$ is the Gram matrix of the data. easy kernelization via "kernel matrix" $K = (k(x_i, x_j))_{ij}$

By SVD theorem, v_i are right singular vectors of X_{μ}

So
$$\tau_i(x) = u_i^\top \left(X_\mu x - X_\mu X^\top \cdot \mathbb{1}/N \right) / \lambda_i$$
 where u_i is the corresponding left singular vector $= u_i^\top \left(\kappa(x) + (\mathbb{1}_N - I) \cdot K \cdot \mathbb{1}/N \right) / \lambda_i$ or equivalently, the corresponding eigenvector of K_μ where $\kappa(x) = (\langle x, x_i \rangle)$ is a cross-Gram vector and $\mathbb{1}$ is a vector of ones easy kernelization via "empirical kernel vector" $\kappa(x) = (k(x, x_i))_i$

Kernelizing ridge regression

Ridge regression = Tikhonov-regularized OLS: for data
$$x_1, \ldots, x_n$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix} \in \mathbb{R}^{N \times n}$$

compute:
$$\widehat{\beta} = (\gamma I + X^{\top}X)^{-1}X^{\top} \cdot y$$

Prediction:
$$f(x) = \widehat{\beta}^{\top} x$$

Prediction: $f(x) = \widehat{\beta}^{\top} x$ minimizes $R(\beta) = \|y - X\beta\|_F^2 + \gamma \|\beta\|_2^2$ $(\gamma \in \mathbb{R}_{>0} \text{ regularization parameter})$

Kernel ridge regression:

Note: If (λ, v) is eigenpair of $A \in \mathbb{R}^{n \times n}$ then $(\lambda + \gamma, v)$ is eigenpair of $A + \gamma I$

Consider the singular value decomposition $USV^{\top} = X$ with $S = \text{diag}(\sigma_1, \sigma_2, \ldots)$

with this,
$$(\gamma I + X^{\top}X)^{-1}X^{\top} = V \cdot S_{\gamma} \cdot U^{\top}$$

where S_{γ} is diagonal with entries $\frac{\sigma_i}{\gamma + \sigma_i^2}$

By symmetry of the expression, $(\gamma I + XX^{\top})^{-1}X = U \cdot S_{\gamma} \cdot V^{\top}$

So
$$\widehat{\beta} = X^{\top} \left(\gamma I + X X^{\top} \right)^{-1} \cdot y = X^{\top} \left(\gamma I + K \right)^{-1} \cdot y$$

$$f(x) = x^{\top} \cdot X^{\top} \cdot (\gamma I + K)^{-1} \cdot y = \kappa(x)^{\top} \cdot (\gamma I + K)^{-1} \cdot y$$
 kernelization via $K = (k(x_i, x_j))_{ij}$ and $\kappa(x) = (k(x, x_i))_i$

As usual, $\widehat{\beta} \to \widehat{\beta}_{OLS}$ when $\gamma \to 0$ (Theorem) if $m \geq N$, the limit $\gamma \rightarrow 0$ fits an *exact* regressor, i.e., $f(x_i) = y_i$

The Reproducing kernel Hilbert space formalism

The kernel trick in RKHS-generality

Previously: feature map $\phi: \mathbb{R}^n \to \mathbb{R}^m$ $k(x,y) = \langle \phi(x), \phi(y) \rangle$ positive definite kernel matrix $K = (k(x_i, x_j))_{ij}$ e.g. $k(x,y) = \langle x, y \rangle^d$

Observation 3: existence of ϕ has not been used in kernelization

All that is required is a well-behaved k that yields K

For example, $k(x,y) = \exp\left(-\frac{1}{2\sigma^2}\|x-y\|^2\right)$ always gives positive semi-definite K and works very nicely for clustering. but there is no feature map $\phi:\mathbb{R}^n\to\mathbb{R}^m!$

Definition: A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (usually $\mathcal{X} \subseteq \mathbb{R}^n$) is called *positive definite kernel* if (often required for technical reasons: $k \in L_2(\mathcal{X}^2)$ or $k \in L_\infty(\mathcal{X}^2)$) every possible kernel matrix is symmetric and positive semi-definite. (sic)

Theorem (Moore-Aronszajn, 1950):

For every positive definite kernel k, there is (up to isomorphism) a unique feature map $\phi:\mathcal{X}\to\mathcal{H}$

into a unique Hilbert space \mathcal{H} , the so-called RKHS. (one way to imagine \mathcal{H} is $\mathbb{R}^{\mathbb{N}}$)

More precisely, $\phi(x) = (z \mapsto k(x,z))$ and $\langle k(x,.), f(.) \rangle_{\mathcal{H}} = f(x). \forall f \in \mathcal{H}$. "reproducing (kernel Hilbert space) property"

A (non-exhaustive) list of popular kernels

$$k(x,y) = x^{\top}Ay$$
 linear kernels

$$k(x,y) = \rho(\|x - y\|)$$

 $k(x,y) = f(\langle x,y \rangle)$

Radial basis function kernels

Dot-product kernels

$$k(x,y) = \langle x, y \rangle^d$$

$$k(x,y) = (\theta \langle x, y \rangle + 1)^d$$

$$k(x,y) = \tanh (\sigma \langle x, y \rangle - \vartheta)$$

homogenous polynomial kernel

inhomogenous polynomial kernel

(both polynomial kernels measure "shape")

sigmoid kernel (measures "contours") not positive definite

$$k(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$$
 $k(x,y) = \exp\left(-\frac{\|x-y\|}{\sigma}\right)$ $k(x,y) = \left(1 + \frac{\|x-y\|^2}{\sigma^2}\right)^{-1}$

$$k(x, y) = \exp\left(-\frac{\|x - y\|}{\sigma}\right)$$

$$k(x,y) = \left(1 + \frac{\|x - y\|^2}{\sigma^2}\right)^{-1}$$

Gaussian kernel

Laplacian kernel

Cauchy kernel

(these three measure "soft closeness", with increasing long-range interaction/heavy tails from left to right)

Proposition:

For positive definite kernels k_1, k_2, \ldots , and $\alpha_i \in \mathbb{R}_{>0}$,

a k defined by k(x,y) = as any below is a positive definite kernel:

$$k_3(x,y) + \alpha_{42}$$

$$\alpha_1 \cdot k_1(x,y) + \alpha_2 \cdot k_2(x,y)$$

$$k_1(x,y) \cdot k_2(x,y)$$

$$\sum_{\nu=1}^{\infty} \alpha_{\nu} \langle x, y \rangle^{\nu}$$

$$\lim_{\nu \to \infty} k_{\nu}(x, y)$$

$$\frac{k_1(x,y)}{\sqrt{k_1(x,x)\cdot k_1(y,y)}}$$

(in case of convergence)

Example: polynomial feature map

$$k(x,y) = \langle x, y \rangle^2 \qquad \phi : (x_1, x_2) \mapsto \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2\right)$$
$$k(x,y) = \langle \phi(x), \phi(y) \rangle \qquad \phi : \mathbb{R}^n \to \mathcal{F}$$

Empirical risk minimisation and learning bounds

UCL

Recall: ridge regression finds a regressor function $f(x) = \widehat{\beta}^{\top} x$ where $\widehat{\beta}$ minimizes $R(\beta) = \|y - X \cdot \beta\|_F^2 + \gamma \|\beta\|_2^2$ "empirical risk" "regularizer"

Similarly, kernel ridge regression finds a regressor $f(x) = \widehat{\alpha}^{\top} \kappa(x)$ where $\widehat{\alpha}$ minimizes $R(\alpha) = \|y - K \cdot \alpha\|_{F,\mathcal{H}}^2 + \gamma \cdot \alpha^{\top} K \alpha$

One can show that we cannot do better under these circumstances:

Theorem (Kimeldorf-Wahba, 1971) "Representer Theorem":

Let $(x_1, y_1), \ldots, (x_N, y_N) \in \mathbb{R}^n \times \mathbb{R}$ be data points.

Let k be a positive definite kernel with RKHS \mathcal{H} .

Let $L: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ be any loss function,

for example squared loss $L(x_i, y_i, f(x_i)) = (y_i - f(x_i))^2$

Let $\Omega:[0,\infty)\to\mathbb{R}$ strictly monotonously increasing. for example $\Omega(x)=\gamma\cdot x^2$

Then, there is a minimizer to $R(f) = \sum_{i=1}^{N} L(x_i, y_i, f(x_i)) + \Omega(\|f\|_{\mathcal{H}})$ of the type $f(x) = \alpha^{\top} \kappa(x)$.

Statistical Learning Theory (Vapnik-Chervonenkis) quantifies

when and how $R_{emp}(f_{opt}) \to R(f_{opt})$ for $N \to \infty$.

VC = quantiative form of Occam's razor

kernlab

Working with kernlab under R

If you have not worked with R before or not much:
look at STAT7001 materials or e.g. Dalgaard, introductory statistics with R
 or type help.start() and click "an introduction to R"

type install.packages(kernlab) to install the kernlab package
After that library(kernlab) or require(kernlab) to use functions
Documentation: http://cran.r-project.org/web/packages/kernlab/kernlab.pdf
Try help(functionname) or example(fuctionname)

Outlook

Lecture 1: Introduction to kernels

Main concepts and theoretical results, learning guarantees Kernel PCA and kernel ridge regression Some notes on R and kernlab

Lecture 2: the kernel support vector machine

The linear support vector machine, duality Hard- and soft-margin two-class SVM The one-class SVM Support vector regression

Lecture 3: Gaussian processes and kernel learning

Potential further lecture topics:

Algorithms: kernel discriminants, kernel k-means, kernel quantile regression kernel CCA, kernel MMD, kernel relevance vector machine Large-scale learning with kernels, subset methods and Nyström-approximation Combinatorial kernels: string kernels, graph kernels Invariance kernels Vapnik-Chervonenkis learning theory Outlier detection, novelty detection

On-line kernel learning

Next week: the Support Vector Machine

