Міністерство освіти і науки України
Національний технічний університет України «Київський політехнічний інститут імені
Ігоря Сікорського"
Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант<u>29</u>

Виконав студент <u>ІП-13 Романюк Діана Олексіївна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив Вечерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)

Лабораторна робота 5 Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 29

Постановка задачі:

Знайти всі чотирьох значні (числа від 1000 до 9999) паліндроми (числа, які у віддзеркаленому вигляді дорівнюють самі собі).

Побудова математичної моделі:

Таблиця імен зміннних

Змінна	Тип	Ім'я	Призначення
Лічильник, число- паліндром	Цілий	Num	Проміжні/вихідні дані
Лічильник для обчислення зворотнього вигляду числа Num	Цілий	Num2	Проміжні дані
Зворотній вигляд змінної Num	Цілий	RevsNum	Проміжні дані

Num – число від 1000 до 9999, що змінюється на одиницю під час виконування зовнішнього циклу.

Задаємо новій змінній **Num2** значення Num1 для обчислення зворотнього числа. Задаємо цикл для Num 2 > 0:

RevsNum – відзеркалене число Num

% - остача від ділення;

\ - ціла частина від ділення;

RevsNum = RevsNum*10 + Num2%10;

Num2 = Num2 $\setminus 10$ запишемо як Num2 /= 10;

Наступним циклом виконується перевірка Num = RevsNum, якщо твердження вірне, то виводимо число, оскільки якщо воно дорівнює зворотньому вигляду самого себе то ε паліндромом.

Задача:

Вивести всі палідроми у порміжку від 1000 до 9999;

Розв'язання

- Крок 1. Визначимо основні дії
- Крок 2. Деталізуємо дію задання умови першого циклу для перевірки входження числа у заданий проміжок.
- Крок 3. Деталізуємо дію ініціалізації проміжних змінних.
- Крок 4. Деталізуємо дію задання умови циклу для знаходження зворотнього числа.
- Крок 5. Деталізуємо дію обчислення зворотнього числа.
- Крок 6. Деталізуємо зміну значення лічильника.
- Крок 7. Деталізуємо дію перевірки умови циклу для визначення чи дорівнює поточне число зворотньому.

Псевдокод алгоритму:

Крок 1

початок

задання умови першого циклу ініціалізація проміжних змінних задання умови циклу для знаходження зворотнього числа обчислення зворотнього числа зміна значення лічильника задання циклу для перевірки рівності поточного числа зворотньому виведення Num

кінець

Крок 2

початок

повторити для Num від 1000 до 9999

ініціалізація проміжних змінних

задання умови циклу для знаходження зворотнього числа

обчислення зворотнього числа

зміна значення лічильника

задання циклу для перевірки рівності поточного числа зворотньому виведення Num

все повторити

кінець

```
Крок 3
початок
   повторити для Num від 1000 до 9999
           RevsNum = 0;
           Num2 = Num:
           задання умови циклу для знаходження зворотнього числа
           обчислення зворотнього числа
           зміна значення лічильника
           задання циклу для перевірки рівності поточного числа зворотньому
           виведення Num
   все повторити
кінець
Крок 4
початок
   повторити для Num від 1000 до 9999
           RevsNum = 0;
           Num2 = Num;
           повторити
                  обчислення зворотнього числа
                  зміна значення лічильника
           поки Num2 > 0
           задання циклу для перевірки рівності поточного числа зворотньому
           виведення Num
   все повторити
кінець
Крок 5
початок
   повторити для Num від 1000 до 9999
           RevsNum = 0;
           Num2 = Num;
           повторити
                  RevsNum = RevsNum*10 + Num2%10;
                  зміна значення лічильника
           поки Num2 > 0
           задання циклу для перевірки рівності поточного числа зворотньому
           виведення Num
   все повторити
```

кінець

```
Крок 6
початок
   повторити для Num від 1000 до 9999
           RevsNum = 0;
           Num2 = Num;
           повторити
                  RevsNum = RevsNum*10 + Num2%10;
                 Num2 \geq 10;
           поки Num2 > 0
           задання циклу для перевірки рівності поточного числа зворотньому
           виведення Num
   все повторити
кінець
Крок 7
початок
   повторити для Num від 1000 до 9999
           RevsNum = 0;
           Num2 = Num;
           повторити
                  RevsNum = RevsNum*10 + Num2%10;
                 Num2 \geq 10;
           поки Num2 > 0
           якщо Num = RevsNum
                 то виведення Num
           все якщо
   все повторити
кінець
```

Блок-схема:

Крок 1

Крок 2

Крок 3

Крок 4

Крок 5

Крок 6

Крок 7

Випробування алгоритму:

Блок	Дія	
	Початок	
	Вивід	
	1001	
	1111	
	1221	
	1331	
	1441	
	1551	
	1661	
	1771	
	1881	
	1991	
	2002	
	2112	
	2222	
1	2332	
1	2442	
	2552	
	2662	
	2772	
	2882	
	2992	
	3003	
	3113	
	3223	
	3333	
	3443	
	3553	
	3663	
	3773	
	3883	

Основи програмування – 1. Алгоритми та структури даних

3993
4004
4114
4224
4334
4444
4554
4664
4774
4884
4994
5005
5115
5225
5335
5445
5555
5665
5775
5885
5995
6006
6116
6226
6336
6446
6556
6666
6776
6886
6996
7007
7117
7227
7337
7447

Основи програмування – 1. Алгоритми та структури даних

Кінець
9999
9889
9779
9669
9559
9449
9339
9229
9119
9009
8998
8888
8778
8668
8558
8448
8338
8228
8118
8008
7997
7887
7777
7667
7557

Висновки:

Під час виконання лабораторної роботи досліджено особливості роботи складних циклів. Отримано практичні навички їх використання під час складання лінійних програмних специфікацій. Побудовано математичну модель задачі та таблицю імен змінних. Розроблено псевдокод вирішення даної математичної задачі. Умовно розбито виконання коду на кроки, а також описано його виконання за допомогою створення відповідної блок-схеми. Перевірено умовне виконання коду за допомогою випробування алгоритму.