Day_02_Data Representation

💢 Story to Begin With

Imagine you are a class monitor in a class of 50 students.

- There are 20 girls and 30 boys.
- You want to show this information to your teacher in a clear way.

But how do you represent the data?

That's where Statistics helps us!

Data Types

- 1. Categorical Data 🙌
 - Data in labels or categories.
 - Example: Gender, Blood Group, Movie Genre.
- 2. Numerical Data 🔢
 - Data in numbers.
 - Example: Marks, Age, Height.

Representation of Categorical Data

1. Frequency Table

Let's organize the class data 👇

Gender	Frequency
Boys	30
Girls	20

2. Relative Frequency (Percentage Form)

We can also represent the data in fractions or percentages.

$$Relative Frequency = \frac{Class Frequency}{Total Students}$$

• Girls:

$$\frac{20}{50} = 0.4 = 40\%$$

• Boys:

$$\frac{30}{50} = 0.6 = 60\%$$

Class Name	Class Frequency	Relative Frequency
Girls	20	0.4 (40%)
Boys	30	0.6 (60%)

3. Graphical Representation

- - X-axis → Class names (Boys, Girls)
 - Y-axis → Frequency
- Pie Chart
 - Girls = 40% of the circle
 - Boys = 60% of the circle
- These visuals help us understand data faster than raw numbers.

Representation of Numerical Data

Now suppose we collect the marks of 10 students:

Marks → 15, 10, 21, 35, 27, 12, 31, 24, 18, 33

Raw numbers are hard to read \(\varphi\), so we group them into **intervals (ranges)**.

1. Frequency Distribution Table

Class Interval	Class Frequency
10 – 15	3
15 – 20	1
20 – 25	2
25 – 30	1
30 – 35	3

This table shows how many students fall into each range of marks.

2. Why Do We Use Intervals?

- Easier to summarize large data
- Quickly see patterns & trends
- Example: Most students here scored between 30-35 marks

3. Graphical Representation of Numerical Data

- Frequency Polygon / (line graph joining class frequencies)

6 Key Takeaways

- Categorical Data → Represent with frequency tables, bar graphs, pie charts.
- Numerical Data → Represent with frequency distribution tables, histograms, polygons.
- Relative frequency helps in comparing percentages.
- Grouping into intervals makes data more meaningful.