

<u>Home</u> <u>Gameboard</u> Chemistry Physical Energetics Candle Calorimetry

Candle Calorimetry

A giant candle of paraffin wax, weighing $1377 \, \mathrm{pounds}$ ($1 \, \mathrm{pound} = 0.454 \, \mathrm{kg}$), was placed in a calorimeter and melted. Paraffin wax is a mixture of different long-chain hydrocarbons and so it does not have well-defined thermodynamic properties, because these depend on the relative proportions of components.

The melting point of wax is between $44\,^{\circ}\mathrm{C}$ and $60\,^{\circ}\mathrm{C}$, with an average of $52\,^{\circ}\mathrm{C}$.

The average heat capacity is $2.5\,\mathrm{J\,K^{-1}\,g^{-1}}$ (between $2.1\,\mathrm{J\,K^{-1}\,g^{-1}}$ and $2.9\,\mathrm{J\,K^{-1}\,g^{-1}}$) and a typical average enthalpy of fusion is $200\,\mathrm{J\,g^{-1}}$.

Part A Energy for heating

Calculate the energy needed to heat the candle from room temperature ($25\,^{\circ}\mathrm{C}$) to its melting point at $52\,^{\circ}\mathrm{C}$, assuming the average values apply exactly for this candle. Give your answer to two significant figures.

Part B Energy for melting

Calculate the heat needed to melt the candle, once it has reached its melting temperature. Again assume the average values apply, and give your answer to 3 significant figures

Used with permission from the Cambridge Chemistry Challenge: C3L6

Home Gameboard Chemistry Physical Kinetics A Rusty Carillon

A Rusty Carillon

An excavated Chinese ancient bronze musical instrument, carillon, was covered entirely by rust. Chemical analysis showed that the rust contains CuCl, Cu_2O and $Cu_2(OH)_3Cl$. Simulation experiments showed that CuCl was formed first under the action of both air and Cl containing aqueous solution and then $Cu_2(OH)_3Cl$ produced in the following way:

$$Cu \longrightarrow CuCl \longrightarrow Cu_2(OH)_3Cl$$

Rate constants k_c for this reaction were measured at various temperatures in a simulation experiment in order to obtain its kinetic parameters. The results of the experiment are given below.

Temperature I $^{\circ}\mathrm{C}$	k_c / $\mathrm{mol}\mathrm{dm}^{-3}\mathrm{s}^{-1}$
25	$1.29 imes 10^{-4}$
40	$2.50 imes 10^{-4}$

Part A Activation energy

Find the value of the activation energy of this reaction.

Adapted from the International Chemistry Olympiad, Beijing 1995, Problem 1.2

Home Gameboard

Chemistry

Physical

Energetics Discovering Phosphorus

Discovering Phosphorus

White phosphorus is an allotrope of phosphorus which burns very easily. This makes it useful in smoke grenades and in other smoke producing applications.

White phosphorus is burned in a sufficient supply of oxygen to give product X in the unbalanced equation below.

$$P_{(s)} + O_{2(g)} \longrightarrow X_{(s)}$$

Figure 1: Diagram of the bonding in white phosphorus. The phosphorus atoms are arranged in a tetrahedron.

Part A Empirical formula

In a sample of $22\,\mathrm{g}$ of X, there is $9.6\,\mathrm{g}$ of phosphorus.

The empirical formula for X is of the form P_aO_b . Type your answer in the form ab, such that if a=3 and b=2 the answer would be 32.

Part B Molecular formula

It is found that there is approximately $0.26\,\mathrm{mol}$ of X in $73\,\mathrm{g}$. What is the molecular formula for X?

The molecular formula for X is of the form P_aO_b . Type your answer in the form ab, such that if a=3 and b=2 the answer would be 32.

Part C Enthalpy change of formation

Given that the standard state of P is P_4 (white phosphorus), and using the bond enthalpy data given in the table below, calculate the enthalpy change of formation of compound X?

The enthalpy of vaporisation of P_4 is $51.9\,\mathrm{kJ}\,\mathrm{mol}^{-1}$ and that of X is $93.52\,\mathrm{kJ}\,\mathrm{mol}^{-1}$.

Bond	Bond dissociation enthalpy $/\mathrm{kJmol^{-1}}$
P-P	+201
P-O	+376
P=O	+460
0=0	+495

Part D Red phosphorus

Figure 3: The structure for Red Phosphorus

Red phosphorus burns less easily in air and is has a less exothermic combustion enthalpy.

Why does red phosphorus have a less exothermic combustion enthalpy than white phosphorus?

-	
	Extra bonds in red phosphorus which need to be broken
	More intermolecular forces which needs to be overcome
	Less bond strain in red phosphorus
	Higher rate constant for red phosphorus burning
	Lower activation energy for white phosphorus burning

Created for isaacphysics.org by Maria-Andreea Filip and Richard Simon

Home

Gameboard

Chemistry

Physical

Energetics Chlorate Decomposition

Chlorate Decomposition

 $10\,\mathrm{g}$ of $KClO_3$ decomposes by the following reaction:

$$2\operatorname{KClO}_3(s) \longrightarrow 2\operatorname{KCl}(s) + 3\operatorname{O}_2(g)$$

Part A **Enthalpy change**

The enthalpies of formation at $298\,\mathrm{K}$ of the species involved in the reaction are:

$$\Delta_{\mathsf{f}} H^{\scriptscriptstyle \oplus}(\mathrm{KCl}(\mathrm{s})) = -437\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

$$\Delta_{\mathsf{f}} H^{\scriptscriptstyle \oplus}(\mathrm{KClO}_3(\mathrm{s})) = -391\,\mathrm{kJ}\,\mathrm{mol}^{-1}$$

What is the enthalpy change in the reaction of the $10\,\mathrm{g}$ of potassium chlorate above, to appropriate precision?

Part B Final volume

The pressure, temperature and volume of a number of moles of gas are related by the ideal gas law, pV=nRT.

The reaction above takes place in a constant pressure calorimeter with an initial volume of $1.0\,{\rm dm^3}$ air at atmospheric pressure.

If the heat evolved by the reaction is used to heat up the products and the calorimeter and the air it contains, from a starting temperature of $298\,\mathrm{K}$, what will be the final volume of the enclosed gases?

The constant pressure molar heat capacity of oxygen is $\frac{7}{2}R$. The heat capacity of the calorimeter is $50.0\,\mathrm{J\,K^{-1}}$ and the molar heat capacity of KCl is $51.8\,\mathrm{J\,K^{-1}\,mol^{-1}}$.

Created for isaacphysics.org by Maria-Andreea Filip and Richard Simon

Home Gameboard Chemistry Physical Energetics Baffling Benzene

Baffling Benzene

Substance	$\Delta H^{\circ}(\mathrm{combustion})/\mathrm{kJmol^{-1}}$
Benzene	-3268
Cyclohexane	-3920
Cyclohexene	-3754
Hydrogen	-286

Part A Hydrogenation of cyclohexene

Calculate the enthalpy change of hydrogenation of cyclohexene using the data in the table.

Part B Hydrogenation of benzene

Calculate the enthalpy change of hydrogenation of benzene, assuming it is hydrogenated all the way to cyclohexane.

Part C Predicted ratio

0.50		
3		
2		
0.33		
<u> </u>		

Adapted with permission from UCLES, A Level Chemistry, June 1989, Paper 1, Question 2.

Home Gameboard Chemistry Foundations Gas Laws Fireworks!

Fireworks!

Alongside being used in weaponry, gunpowder is also the most important component of fireworks.

It is a mixture of an oxidizing agent, KNO_3 and fuel, C and S. The most effective ratio of potassium nitrate to carbon to sulfur is 75:15:10 by mass (not the stoichiometric ratio for the reaction below).

The reaction between these components forms a mixture of products, the most important being the gaseous ones, N_2 and CO_2 . Assume these can be treated as ideal gases. One simplified form of the reaction can be written as:

$$10\,\mathrm{KNO_3} + 8\,\mathrm{C} + 3\,\mathrm{S} \longrightarrow 2\,\mathrm{K_2CO_3} + 3\,\mathrm{K_2SO_4} + 6\,\mathrm{CO_2} + 5\,\mathrm{N_2}$$

Part A Limiting reagent

\mathbf{C}		
S		
KNO_3		

Part B Pressure reached

This reaction can heat up to temperatures as high as $1000\,^{\circ}\mathrm{C}$. How high would the pressure in a firework container (cylinder of diameter $d=7.0\,\mathrm{cm}$ and height $h=50\,\mathrm{cm}$) with $100\,\mathrm{g}$ of gunpowder become, if it did not explode?

Home Gameboard Chemistry Physical Energetics Glass Calorimeter

Glass Calorimeter

 $500\,\mathrm{g}$ of ice at $-20\,^\circ\mathrm{C}$ is placed in a glass calorimeter (which is at the same temperature as the ice) of mass of $1.2\,\mathrm{kg}$. The whole system (including the calorimeter) is heated up to $20\,^\circ\mathrm{C}$.

The specific heat capacity of ice is $2.1\,J\,K^{-1}\,g^{-1}$, while that of water is $4.2\,J\,K^{-1}\,g^{-1}$. The enthalpy of fusion of water is $335\,J\,g^{-1}$.

The molar heat capacity of SiO_2 is $42 \, J \, K^{-1} \, mol^{-1}$.

Part A Moles of glass

The molar mass of silicon, Si, is $28 \,\mathrm{g} \,\mathrm{mol}^{-1}$ and the molar mass of oxygen, O, is $16 \,\mathrm{g} \,\mathrm{mol}^{-1}$.

Assuming the glass is made out of pure silicon dioxide, how many moles of ${
m SiO_2}$ are there in the calorimeter? Give your answer to 2 significant figures.

Part B Energy input

How much energy is necessary for the heating to occur? Give your answer to 2 significant figures.

Created for isaacphysics.org by Maria-Andreea Filip and Richard Simon

Home Gameboard Chemis

Chemistry Physical

Kinetics

Temperature Variation

Temperature Variation

Two substances, X and Y, react in an inert solvent according to the following equation:

$$X + 2Y \longrightarrow XY_2$$
.

The following experiments were run to determine the order of the reaction between X and Y, at $20\,^{\circ}C.$

Experiment number	Initial concentration of $\rm X/moldm^{-3}$	Initial concentration of $\rm Y/moldm^{-3}$	Initial rate of formation of $\rm XY_2/moldm^{-3}min^{-1}$
1	0.10	0.10	0.0010
2	0.10	0.20	0.0040
3	0.10	0.30	0.0090
4	0.15	0.10	0.0010
5	0.20	0.20	?

Part A Order of the reaction

What is the order of the reaction with respect to \boldsymbol{X} and \boldsymbol{Y} , respectively?
2; 1
1; 0
1; 2
O; 2
O; 1
Part B Rate constant
Calculate the numerical value for the rate constant k .
Part C Initial rate of experiment 5
Decidies the note of formation of WW in according at 5
Predict the rate of formation of XY_2 in experiment 5.

Part D Greatest reaction rate

The rate constant has an Arrhenius dependence on temperature. Knowing that the activation energy for the reaction is $53 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$, which of the following sets of conditions will give the greatest rate of reaction?

- $[X] = 0.1 \,\mathrm{mol}\,\mathrm{dm}^{-3}, [Y] = 0.2 \,\mathrm{mol}\,\mathrm{dm}^{-3}, T = 40 \,\mathrm{^{\circ}C}.$
- $[X] = 0.1 \,\mathrm{mol}\,\mathrm{dm}^{-3}, \, [Y] = 0.3 \,\mathrm{mol}\,\mathrm{dm}^{-3}, \, T = 30 \,\mathrm{^{\circ}C}.$
- $[X] = 0.2 \, \mathrm{mol} \, \mathrm{dm}^{-3}, \, [Y] = 0.2 \, \mathrm{mol} \, \mathrm{dm}^{-3}, \, T = 30 \, ^{\circ} \mathrm{C}.$
- $[X] = 0.3 \, \mathrm{mol} \, \mathrm{dm}^{-3}, \, [Y] = 0.1 \, \mathrm{mol} \, \mathrm{dm}^{-3}, \, T = 30 \, ^{\circ}\mathrm{C}.$
- $[X] = 0.3\,\mathrm{mol\,dm^{-3}},\,[Y] = 0.1\,\mathrm{mol\,dm^{-3}},\,T = 20\,^{\circ}\mathrm{C}.$

Adapted with permission from UCLES, A Level Chemistry, June 1988, Paper 3, Question 12 and A Level Chemistry, June 1986, Paper 2, Question 2.

Home Gameboard Chemistry Physical Kinetics Ceriously Cringeworthy

Ceriously Cringeworthy

Cr and Ce undergo the following redox reaction:

$$\operatorname{Cr}(\operatorname{III}) + 3\operatorname{Ce}(\operatorname{IV}) \longrightarrow \operatorname{Cr}(\operatorname{VI}) + 3\operatorname{Ce}(\operatorname{III})$$

The rate of this reaction varies as follows:

$ m [Cr(III)] \slash /moldm^{-3}$	$[{ m Ce(IV)}] \ /{ m moldm}^{-3}$	$[{ m Cr(VI)}] \ /{ m moldm^{-3}}$	$[{ m Ce(III)}] \ /{ m moldm^{-3}}$	$ m Rate \ /moldm^{-3}s^{-1}$
0.050	0.020	0.040	0.025	$1.0 imes 10^{-6}$
0.100	0.020	0.040	0.025	$2.0 imes10^{-6}$
0.050	0.040	0.040	0.025	$4.0 imes10^{-6}$
0.050	0.020	0.020	0.025	$1.0 imes 10^{-6}$
0.050	0.020	0.020	0.050	$5.0 imes10^{-7}$

Part A Partial reaction orders

What are the partial reaction orders with respect to Cr(III), Ce(IV), Cr(VI) and Ce(III)?

- () 1, 3, -1, -3
- 1, 2, 0, 0
- 1, 3, 0, 0
- 1, 1, 0, 0
- 1, 2, 0, -1

Part B	Overall order of reaction
Wh	nat is the overall reaction order?
Part C	Rate constant
Ca	Iculate the rate constant for the reaction.
Adapted with	permission from Oxford and Cambridge School Examination Board, Chemistry, June 1989, Question 4
	All materials on this site are licensed under the <u>Creative Commons license</u> , unless stated otherwise.