CS2006D DISCRETE STRUCTURES

Renjith P.

FRIENDS AND ENEMIES

In a group of n peoples, there exist three mutual friends or 3 mutual enemies.

- 1 Is the above statement true when n=6?
- 2 What about n=5?

Königsberg Bridge Problem

Figure 98. Geographic Map: The Königsberg Bridges.

THREE HOUSES AND THREE UTILITIES

COLORING THE INDIA MAP

A graph $G\left(V\right)$, $E\left(V\right)$ consists of V, a nonempty set of vertices (or nodes) and E, a set of edges

- * A graph with an infinite vertex set or an infinite number of edges is called an infinite graph
- * A graph with a finite vertex set and a finite edge set is called a finite graph
- A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph

6 / 22

- ⋆ In a simple graph, each edge is associated to an unordered pair of vertices, and no other edge is associated to this same edge
- * Graphs that may have multiple edges connecting the same vertices are called multigraphs
- \star When there are m different edges associated to the same unordered pair of vertices $\{u,v\}$, we also say that $\{u,v\}$ is an edge of multiplicity m

- * Edges that connect a vertex to itself are called loops
- * Undirected graphs have no direction on their edges

A directed graph (or digraph) (V , E) consists of a nonempty set of vertices V and a set of directed edges (or arcs) E

- ★ Each directed edge is associated with an ordered pair of vertices
- Directed graphs that may have multiple directed edges from a vertex to a second (possibly the same) are called directed multigraphs

* When there are m directed edges, each associated to an ordered pair of vertices (u, v), we say that (u, v) is an edge of **multiplicity** m

- * When a directed graph has no loops and has no multiple directed edges, it is called a simple directed graph
- A graph with both directed and undirected edges is called a mixed graph

Type	Edges	Multiple Edges Allowed?	Loops Allowed?
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixed graph	Directed and undirected	Yes	Yes

Graph Terminologies

- * Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G if u and v are endpoints of an edge e of G
- \star The set of all neighbors of a vertex v of G(V, E), denoted by N(v), is called the neighborhood of v
- * The degree of a vertex in an undirected graph is the number of edges incident with it, and is denoted by deg(v)
- * A vertex of degree zero is called isolated
- * A vertex is pendant if and only if it has degree one

THE HANSHAKING THEOREM

Let G (V , E) be an undirected graph with m edges. Then
$$2m = \sum_{v \in V} deg(v)$$

- 1 How many edges are there in a graph with 10 vertices each of degree six?
- 2 What is the sum of the degree of vertices in G?

An undirected graph has an even number of vertices of odd degree

Let V_1 and V_2 be the set of vertices of even degree and the set of vertices of odd degree, respectively, in an undirected graph G (V , E) with m edges. Then

$$2m = \sum_{v \in V} deg(v) = \sum_{v \in V_1} deg(v) + \sum_{v \in V_2} deg(v)$$

DIRECTED GRAPH TERMINOLOGIES

- * Consider a directed edge from u to v. The vertex u is called the initial vertex of (u, v), and v is called the terminal or end vertex of (u, v)
- * In a graph with directed edges the in-degree of a vertex v, denoted by deg⁻(v), is the number of edges with v as their terminal vertex
- * The out-degree of v, denoted by deg +(v), is the number of edges with v as their **initial vertex**
- * In a directed graph G(V,E), $\sum_{v \in V} deg^-(v) = \sum_{v \in V} deg^+(v) = |E|$

SPECIAL SIMPLE GRAPHS

* A complete graph on n vertices, denoted by K_n , is a simple graph that contains exactly one edge between each pair of distinct vertices

* A cycle C_n , $n \ge 3$, consists of n vertices $v_1, v_2, ..., v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, ..., \{v_{n-1}, v_n\}$, and $\{v_n, v_1\}$

SPECIAL SIMPLE GRAPHS

* We obtain a wheel W_n when we add an additional vertex to a cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n , by new edges

SPECIAL SIMPLE GRAPHS

* An n-dimensional hypercube, or n-cube, denoted by Q_n , is a graph that has vertices representing the 2^n bit strings of length n.

* Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position

REPRESENTING GRAPHS

Adjacency Lists

Vertex	Adjacent Vertices
а	b, c, e
b	а
c	a, d, e
d	c, e
e	a, c, d

Initial Vertex	Terminal Vertices
а	b, c, d, e
b	b, d
c	a, c, e
d	
e	b, c, d

Adjacency Matrices

- ⋆ Suppose that G (V , E) is a simple graph where |V| = n
- * Suppose that the vertices of G are listed arbitrarily as v_1, v_2, \dots, v_n
- * Adjacency matrix is $A = [a_{ij}]$ where

$$a_{ij} = \begin{cases} 1 \text{ if } \{v_i, v_j\} \text{ is an edge of G} \\ 0 \text{ otherwise} \end{cases}$$

Γ ₀	1	1	1
1	0	1	1 0 0
1	1	0	0
_1	0	0	0

_			_
0 1 1 0	1	1	0 1 1 0
1	0	0	1
1	0	0	1
0	1	1	0

* The adjacency matrix for an undirected graph is symmetric

Adjacency Matrices

- Adjacency matrices can also be used to represent undirected multigraphs
- Such matrices are not zero—one matrices when there are multiple edges connecting two vertices

_			_
0 3 0 2	3	0	2 1 2 0
3	3 0	1	1
0	1	1	2
2	1	2	0

- * Zero-one matrices could be used to represent directed graphs
- * For the directed graph, Adjacency matrix is $A = [a_{ij}]$ where

$$a_{ij} = \begin{cases} 1 \text{ if } (v_i, v_j) \text{ is an edge of G} \\ 0 \text{ otherwise} \end{cases}$$

* The adjacency matrix for a directed graph does not have to be symmetric

PRACTICE QUESTIONS

- * Trade-Offs: When a simple graph contains relatively few edges, that is, when it is sparse, it is usually preferable to use adjacency lists rather than an adjacency matrix to represent the graph **Practice Ouestions**
- 1 Represent each of these graphs with an adjacency matrix K5 C6 W5 Q3
- 2 Draw graphs with the following adjacency matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	1	1	0
0	0	1	0
1	0	1	0
L 1	1	1	0_

Incidence Matrices

- * Let G (V, E) be an undirected graph
- * Suppose that v_1, v_2, \dots, v_n are the vertices and e_1, e_2, \dots, e_m are the edges of G

Then the incidence matrix with respect to this ordering of V and E is the n × m matrix M = $[m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 \text{ when edge } e_j \text{ is incident with } v_i \\ 0 \text{ otherwise} \end{cases}$$

	e_1	e_2	e_3	e_4	e_5	e_6
v_1	T 1	1	0	0	0	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$
v_2	0	0	1	1	0	1
v_3	0	0	0	0	1	1
v_4	1	0	1	0	0	0
v_5	0	1	0	1	1	0

INCIDENCE MATRICES

PRACTICE QUESTIONS

- 1 True or False: If every vertex of a simple graph G has degree 2, then G is a cycle.
- 2 True or False: Every n-vertex graph with at least n edges contains a cycle.
- 3 How can you obtain the degree of vertices from adjacency / incidence matrices?
- 4 Does there exists a graph G for which the incidence matrix of G is symmetric?
- 5 An arbitrary $n \times n$ matrices (binary matrix) may not represent a valid simple undirected graph. Given n, how many different $n \times n$ adjacency matrices can be constructed which corresponds to a valid simple undirected graph.