Examenul de bacalaureat naţional 2018 Proba E. d) **Fizică**

Filiera tehnologică – profilul tehnic și profilul resurse naturale și protecția mediului

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

B. ELEMENTE DE TENDINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

A. MECANICA

Simulare

Se consideră accelerația gravitațională $g = 10 \,\text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Despre energia mecanică a unui sistem se poate afirma că este:
- a. o mărime fizică de proces;
- **b.** o mărime fizică de stare;
- c. întotdeauna mai mare decât energia cinetică a sistemului;
- d. întotdeauna egală cu lucrul mecanic efectuat de greutate.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relația de definiție a vectorului accelerație medie este:

- **a.** $\vec{a}_{med} = \frac{\Delta \vec{v}}{\Delta t}$ **b.** $\vec{a}_{med} = \frac{\vec{v}}{\Delta t}$ **c.** $\vec{a}_{med} = \frac{\vec{d}}{\Delta t}$ **d.** $\vec{a}_{med} = \frac{d}{\Delta t}$
 - (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură a constantei elastice *k* este:
- a. N·m
- **b.** N⁻¹ · m
- **c.** N·m⁻¹
- (3p)
- 4. Un corp de masă $m = 2,5 \,\mathrm{kg}$ este lăsat să alunece liber de-a lungul suprafeței unui plan înclinat care formează un unghi $\alpha = 60^{\circ}$ cu orizontala. Coeficientul de frecare la alunecare dintre corp și plan este μ = 0,4 . Forța de frecare la alunecare dintre corp și suprafața planului are valoarea:
- **b.** 10 N
- c. 8 N
- (3p) 5. Asupra unui corp care se deplasează rectiliniu acționează, pe direcția și în sensul **F**(N) miscării, o forță constantă. Dependența forței de coordonata x la care se află corpul este reprezentată în figura alăturată. Lucrul mecanic efectuat de forță în timpul mișcării
- **a.** 16J
- **b.** 12J
- c. 8 J
- **d**. 4 J

II. Rezolvați următoarea problemă:

corpului pe distanța de 4m are valoarea:

(15 puncte)

(3p)

Se consideră sistemul mecanic din figura alăturată. Masele celor trei corpuri sunt $m_1 = 2 \,\mathrm{kg}\,, \ m_2 = m_3 = 3 \,\mathrm{kg}\,.$ Firele sunt suficient de lungi, inextensibile, de masă neglijabilă, iar scripeții S_1 și S_2 sunt fără frecări și lipsiți de inerție. Sistemul este lăsat liber. Corpul de masă m_3 coboară cu accelerația $a = 0.5 \,\mathrm{m/s^2}$. Mișcarea corpului de masă m_2 pe suprafața planului orizontal are loc cu frecare.

- **a.** Reprezentați toate forțele care acționează asupra corpului de masă m_2 .
- **b.** Calculați valoarea tensiunii din firul care leagă corpul de masă m_2 de corpul de masă m_3 .
- **c.** Determinați valoarea forței de frecare dintre corpul de masă m_2 și suprafața planului orizontal.
- **d.** Determinați valoarea coeficientului de frecare dintre corpul de masă m_2 și suprafața planului orizontal.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp, considerat punctiform, este lansat vertical în sus de la nivelul solului. Forța de frecare cu aerul este neglijabilă. În graficul din figura alăturată este reprezentată dependența energiei potențiale a corpului de înălțimea la care se află, din momentul lansării și până la atingerea înălțimii maxime. Determinati:

- a. înălțimea maximă atinsă de corp, exprimată în unități S.I.;
- **b.** masa corpului;
- c. lucrul mecanic efectuat de greutate din momentul lansării corpului până în momentul în care acesta atinge înălțimea maximă;
- d. viteza cu care a fost lansat corpul.

Examenul de bacalaureat naţional 2018 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Simulare

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol. K}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol. K}}$. Între

parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. În procesul de destindere la temperatură constantă a unei cantități de gaz ideal:
- a. energia internă a gazului crește
- b. gazul nu schimbă căldură cu mediul exterior
- c. presiunea gazului variază direct proporțional cu volumul
- d. gazul cedează lucrul mecanic mediului exterior.

(3p)

- **2.** O cantitate dată ν de gaz ideal se destinde la presiune constantă de la temperatura T_1 la temperatura T_2 . Variația energiei interne a gazului în acest proces este:
- **a.** $\Delta U = \nu C_p(T_2 T_1)$ **b.** $\Delta U = \nu C_V(T_2 T_1)$ **c.** $\Delta U = \nu R(T_2 T_1)$ **d.** $\Delta U = 0$
- (3p)
- 3. Unitatea de măsură în S.I. a mărimii fizice exprimate prin produsul dintre capacitatea calorică și variația temperaturii unui corp este:
- **b.** $\frac{J}{\text{mol} \cdot K}$

- (3p)
- **4.** O masă m=1 kg de apă $\left(c_a=4180\frac{\mathsf{J}}{\mathsf{kg}\cdot\mathsf{K}}\right)$ este încălzită cu $\Delta t=10^\circ\mathrm{C}$. Căldura necesară încălzirii apei

este:

- a. 41,8 kJ
- **b.** 20,4 kJ
- c. 15,8 kJ
- **d.** 5,6 kJ
- (3p)
- 5. O cantitate constantă de gaz ideal descrie procesele termodinamice reprezentate în coordonate p-V în graficul din figura alăturată. Relația dintre lucrurile mecanice efectuate de gaz în cele trei procese este:
- **a.** $L_{AB} = L_{AD} > L_{AC}$
- **b.** $L_{AB} < L_{AC} = L_{AC}$
- c. $L_{AB} > L_{AD} > L_{AC}$
- **d.** $L_{AB} > L_{AC} > L_{AD}$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

O incintă de volum $V=16,62\,\mathrm{dm^3}$ conține o cantitate de heliu $\left(\mu_{\mathrm{He}}=4\,\mathrm{g/mol}\right)$ la temperatura $t_{\mathrm{I}}=-23\,^{\circ}\mathrm{C}$ și la presiunea $p_1 = 5.10^4 \,\text{N/m}^2$. Aerul exterior se află la presiune atmosferică normală $p_0 = 10^5 \,\text{N/m}^2$. Incinta este prevăzută cu robinet (R) care se deschide automat când presiunea gazului din incintă devine cu $\Delta p = 0.25 \cdot 10^5 \,\text{N/m}^2$ mai mare decât presiunea atmosferică. Determinați:

- a. cantitatea de gaz din incintă;
- **b.** numărul de atomi de heliu din incintă;
- c. densitatea heliului din incintă;
- d. temperatura minimă la care trebuie încălzit heliul din incintă astfel încât robinetul să se deschidă.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate $v = 4.81 \text{mol} \left(= \frac{40}{8.31} \text{mol} \right)$ de gaz ideal poliatomic $(C_V = 3R)$

parcurge procesul ciclic reprezentat în graficul din figura alăturată. Temperatura gazului în starea 1 este $T_1 = 300 \,\mathrm{K}$, iar $T_2 = 2T_1$. Se consideră ln2 = 0.7.

- **a.** Reprezentați grafic procesul ciclic în coordonate p-V.
- b. Calculați energia internă a gazului în starea 2.
- **c.** Calculați căldura cedată de gaz în transformarea $3 \rightarrow 1$.
- **d.** Calculați lucrul mecanic efectuat de gaz în transformarea $2 \rightarrow 3$.

Examenul de bacalaureat naţional 2018 Proba E. d)

Fizică

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,

 B. ELEMENTE DE TENDINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Simulare

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. La bornele unei baterii este conectat un reostat. Când rezistența electrică a reostatului este egală cu rezistența interioară a bateriei:
- a. intensitatea curentului electric prin baterie este nulă
- b. puterea furnizată de baterie reostatului este maximă
- c. puterea furnizată de baterie reostatului este minimă
- d. intensitatea curentului electric prin baterie este maximă

(3p)

- 2. Un consumator alcătuit din n rezistoare identice înseriate, având fiecare rezistența electrică R, este conectat la bornele unui generator electric cu tensiunea electromotoare E și rezistența interioară r. Intensitatea curentului electric debitat de generator este:
- E _ $\overline{nR+r}$
- **b.** $\frac{nE}{nR+r}$
- (3p)
- 3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul $\frac{U^2}{R}$ este:
- $b. V^2$

- (3p)
- **4.** O baterie cu rezistența interioară $r = 2\Omega$ alimentează un consumator. Randamentul transferului de putere de la baterie la consumator este 80%. Valoarea rezistenței electrice a consumatorului este:
- **a.** $0,5 \Omega$
- **b.** 2Ω
- c. 8Ω
- **d.** 10Ω
- (3p)
- 5. În graficul din figura alăturată este reprezentată dependența de timp a intensității curentului electric ce trece prin secțiunea transversală a unui conductor în timp de 20 s. Sarcina electrică ce străbate secțiunea conductorului în primele 10 s este:
- a. 0,4C
- **b.** 0,8C
- **c.** 4C

II. Rezolvaţi următoarea problemă:

(15 puncte)

În circuitul electric prezentat în figura alăturată se cunosc rezistențele electrice: $r = 2\Omega$, $R_1 = 8\Omega$,

 $R_2 = 15\Omega$ și $R_3 = 30\Omega$. Ampermetrul ideal montat în circuit $(R_A \cong 0\Omega)$ indică intensitatea $I_A = 0.6 \,\mathrm{A}$ când întrerupătorul K este deschis. Determinați:

- **a.** valoarea tensiunii la bornele rezistorului R_2 ;
- b. valoarea tensiunii electromotoare a generatorului;
- c. rezistența electrică a circuitului exterior după închiderea întrerupătorului K;
- d. intensitatea curentului electric indicat de ampermetru după închiderea întrerupătorului K.

III. Rezolvaţi următoarea problemă:

(15 puncte)

În circuitul electric prezentat în figura alăturată generatorul electric are tensiunea electromotoare E = 11V și rezistența interioară $r=1,5\Omega$, iar cele două becuri au rezistențele electrice $R_{\rm b1}=3\Omega$ și $R_{\rm b2}=5\Omega$.

Ampermetrul ideal montat în circuit $(R_A \cong 0 \Omega)$ indică curentul electric cu intensitatea $I_A = 1A$, iar cele două becuri din circuit funcționează la parametri nominali. Determinați:

- **a.** puterea nominală a becului cu rezistența electrică R_{b1} ;
- **b.** energia electrică consumată de cele două becuri în timpul $\Delta t = 1$ minut;
- c. puterea absorbită de rezistența interioară a generatorului;
- d. puterea electrică dezvoltată de rezistorul R.

Examenul de bacalaureat national 2018 Proba E. d) **Fizică**

- Filiera tehnologică profilul tehnic și profilul resurse naturale și protecția mediului

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

 Timpul de lucru efectiv este de 3 ore. D. OPTICA

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Imaginea unui object real formată de o lentilă divergentă este:
- c. virtuală, răsturnată d. dreaptă, micsorată a. virtuală, mărită **b.** reală, micsorată
- (3p) 2. Simbolurile mărimilor fizice fiind cele utilizate în manuale de fizică, semnificația fizică a expresiei

$$\frac{fx_2}{f - x_2}$$
 este:

a. β

b. β^{-1}

(3p)

Simulare

3. Simbolurile mărimilor fizice și ale unităților de măsură fiind cele utilizate în manuale de fizică, unitatea de măsură a mărimii exprimate prin produsul hv este:

a. J

b. $J \cdot s^2$

c. J⁻¹

4. O rază de lumină este incidentă pe suprafața unei oglinzi plane, astfel încât unghiul dintre rază și suprafața oglinzii este de 35°. Unghiul de reflexie are valoarea:

b. 90°

 $d.55^{\circ}$

(3p)

5. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată. Lucrul mecanic de extracție al materialului din care e confecționat catodul are valoarea de aproximativ:

a. $1.3 \cdot 10^{-19}$ J

b. $3.0 \cdot 10^{-19}$ J

c. 5,9 · 10⁻¹⁹ J

d. $8.9 \cdot 10^{-19}$ J

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

O lentilă subtire are distanta focală $f = 20 \,\mathrm{cm}$. La distanta de 70 cm de lentilă se asază, perpendicular pe axa optică principală, un obiect luminos liniar. Imaginea clară a obiectului, obtinută pe un ecran, are înălțimea $|y_2| = 1$ cm.

- a. Realizați un desen în care să evidențiați construcția imaginii prin lentilă.
- b. Determinați convergența lentilei.
- c. Determinați distanța dintre lentilă și ecran.
- d. Determinați înălțimea obiectului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un vas de formă cilindrică conține apă $\left(n_{apă} = \frac{4}{3}\right)$. Deasupra apei din vas se află aer $\left(n_{aer} \cong 1\right)$. O sursă

punctiformă S de lumină monocromatică se află într-un punct situat la contactul dintre baza vasului și peretele lateral al acestuia. O rază de lumină ajunge la suprafata apei sub unghiul $i = 37^{\circ}$ (sin $37^{\circ} \approx 0.6$) față de verticală, ca în figura alăturată. După refracția din

CD = 12 cm. Determinati:

a. viteza de propagare a luminii prin apă;

b. valoarea sinusului unghiului de refractie r, format de raza AB cu verticala;

punctul A, raza de lumină atinge peretele vertical al vasului în punctul B, aflat la distanța BC = 3 cm deasupra nivelului apei. Înălțimea apei din vasul cilindric este

- c. lungimea SA a drumului parcurs de raza de lumină prin apă;
- d. diametrul SD al bazei vasului.

