Construcción de la Medida y el Proceso de Wiener*

Airam Aseret Blancas Benítez Universidad Autónoma de Sinaloa

Agosto de 2009

Contenido

T	Introduccion	1
2	Álgebra de cilindros	2
3	Medida de Wiener en los cilindros	3
4	$\sigma\text{-aditividad}$ de la Medida de Wiener	4
5	Construcción del Proceso de Wiener	8
6	Propiedades de Trayectoria del Proceso de Wiener	9
7	Soporte de la Medida de Wiener	10

Resumen

El objetivo del presente trabajo es mostrar una aplicación del Teorema de Carathéodory a la construcción de la medida de Wiener, a partir de lo cual construimos de manera natural el proceso de Wiener mediante un procedimiento canónico.

1 Introducción

Recordemos que el teorema de extensión Carathéodory establece que dada una medida μ definida en una álgebra \mathcal{A} de subconjuntos de un conjunto Ω , existe una σ -álgebra \mathcal{F} y una única medida \mathbb{P} definida en \mathcal{F} tal que $\mathcal{A} \subset \mathcal{F}$ y $\mathbb{P}(A) = \mu(A)$ si $A \in \mathcal{A}$.

^{*}Trabajo realizado en el Verano del 2008 en el CIMAT, bajo la dirección de Víctor Pérez-Abreu, y con el apoyo del Programa del Verano de la Ciencia de la Academia Mexicana de Ciencias

En este trabajo tomaremos Ω como el espacio de las funciones continuas con la topología de la norma del supremo y la σ -álgebra de Borel $\mathcal{B}(\mathcal{C})$.

En la Sección 2 consideramos el álgebra de cilindros de $\mathcal{C} = \mathcal{C}[0,1]$, la cual demostramos genera a $\mathcal{B}(\mathcal{C})$, para lo cual usamos el hecho de que \mathcal{C} es un espacio métrico separable. En la Sección 3 construimos la medida de Wiener μ sobre el álgebra de cilindros, teniendo como herramienta principal a las distribuciones Gaussianas multivariadas. En la Sección 4 usamos el Teorema de Carathéodory para extender la medida μ a σ -álgebra $\mathcal{B}(\mathcal{C})$, siendo posible dicha extensión gracias al Teorema de Ascoli-Arzela.

Dado el espacio de probabilidad $(C, \mathcal{B}(C), \mu)$, en la Sección 5 construimos el proceso de Wiener y estudiamos sus principales propiedades distribucionales, mientras que en la Sección 6 se analizan las propiedades de sus trayectorias. En particular damos la prueba de la no diferenciabilidad de las trayectorias del proceso de Wiener. Finalmente, en la Sección 7 concluimos con consecuencias sobre soporte de la medida de Wiener, mostrando en particular el subconjunto de las funciones diferenciables en C tiene medida de Wiener cero.

2 Álgebra de cilindros

Sea \mathcal{C} el conjunto de todas las funciones x(t) reales, continuas y cuyo dominio es el intervalo [0,1] con x(0)=0.

Observe que \mathcal{C} es un espacio de Banach con la norma supremo

$$||x|| = \sup_{0 \le t \le 1} |x(t)|.$$

Un subconjunto I de \mathcal{C} de la forma

$$I = \{x \in \mathcal{C} : (x(t_1), x(t_2), ..., x(t_n)) \in E\},\$$

donde $0 < t_1 < t_2 < \cdots < t_n \le 1$ y E un conjunto de Borel de \mathbb{R}^n , lo llamaremos conjunto cilindro.

La colección \mathcal{R} de conjuntos cilindros de \mathcal{C} es una álgebra, pero no una σ -álgebra.

Sea $\mathcal{B}(\mathcal{C})$ la σ -álgebra generada por los abiertos en \mathcal{C} con la norma supremo. Probaremos que la σ -álgebra generada por \mathcal{R} es la σ -álgebra de Borel $\mathcal{B}(\mathcal{C})$, lo que se consigue verificando que la bola cerrada unitaria está en $\sigma(\mathcal{R})$ ya que \mathcal{C} con la norma supremo es separable y si X un espacio métrico separable, entonces todo conjunto abierto en X es la unión numerable de bolas abiertas.

Se cumple que

$$\{x: ||x|| \le 1\} \in \sigma(\mathcal{R}).$$

El resultado se sigue de inmediato pues,

$${x: ||x|| \le 1} = \bigcap_{n=1}^{\infty} \left\{ x: |x(t)| \le 1 \ \forall t = \frac{k}{2^n}, \ k = 1, 2, ..., 2^n \right\}.$$

3 Medida de Wiener en los cilindros

Sea I el conjunto cilindro dado antes. Definimos

$$\mu(I) = \left[(2\pi)^n t_1 (t_2 - t_1) \dots (t_n - t_{n-1}) \right]^{-\frac{1}{2}}$$

$$\times \int_E \exp \left\{ -\frac{1}{2} \left[\frac{u_1^2}{t_1} + \frac{(u_2 - u_1)^2}{t_2 - t_1} + \dots + \frac{(u_n - u_{n-1})^2}{t_n - t_{n-1}} \right] \right\} du_1 du_2 \dots du_n.$$

 μ es llamada la medida de Wiener en \mathcal{C} . La integral en \mathcal{C} con respecto a μ es conocida como la integral de Wiener.

Si f es una función Wiener integrable, su integral la denotaremos por

$$E_{\mu}[f] \equiv \int_{\mathcal{C}} f(x) \,\mu(dx).$$

 μ es aditiva finita en el álgebra \mathcal{R} . Observe que si $0 < t \le 1$, entonces

$$\mu(\{x(t): a \le x(t) \le b\}) = \frac{1}{\sqrt{2\pi t}} \int_a^b e^{-\frac{x^2}{2t}} dx,$$

y por tanto, x(t) tiene distribución normal con media 0 y varianza t.

Más aún, si $0 < s < t \le 1$ son fijos y $E = \{(x, y) : a \le x - y \le b\}$, entonces de la definición de μ ,

$$\mu\left(\left\{x: a \le x\left(t\right) - x\left(s\right) \le b\right\}\right) = \mu\left(\left\{x: \left(x\left(s\right), x\left(t\right)\right) \in E\right\}\right)$$

$$= \frac{1}{\sqrt{(2\pi)^{2}s(t-s)}} \int \int_{E} \exp\left\{-\frac{1}{2} \left[\frac{v^{2}}{s} + \frac{(u-v)^{2}}{t-s}\right]\right\} du dv$$

$$= \frac{1}{\sqrt{(2\pi)^{2}s(t-s)}} \int_{-\infty}^{\infty} \int_{v+a}^{v+b} \exp\left\{-\frac{1}{2} \left[\frac{v^{2}}{s} + \frac{(u-v)^{2}}{t-s}\right]\right\} du dv.$$

Haciendo el cambio de variable $u-v=\tau_1$ y $v=\tau_2$, obtenemos que

$$\mu\left(\left\{x: a \le x\left(t\right) - x\left(s\right) \le b\right\}\right) = \frac{1}{\sqrt{(2\pi)^{2}s(t-s)}} \int_{-\infty}^{\infty} \int_{a}^{b} \exp\left\{-\frac{1}{2} \left[\frac{\tau_{2}^{2}}{s} + \frac{\tau_{1}^{2}}{t-s}\right]\right\} d\tau_{1} d\tau$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{a}^{b} e^{-\frac{\tau_{1}^{2}}{t-s}} d\tau_{1} \frac{1}{\sqrt{2\pi s}} \int_{-\infty}^{\infty} e^{-\frac{\tau_{2}^{2}}{2s}} d\tau_{2}$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{a}^{b} e^{-\frac{\tau_{1}^{2}}{t-s}} d\tau_{1}.$$

Es decir, si t > s, x(t) - x(s) tiene distribución normal con media 0 y varianza t - s.

σ -aditividad de la Medida de Wiener 4

Dedicaremos esta sección a probar que μ tiene una extensión σ -aditiva en la σ -álgebra generada por el conjunto de los cilindros, pero antes de ello introducimos la siguiente notación:

- 1. $\mathcal{S} = \text{números racionales binarios en } [0, 1].$
- 2. $C_{\alpha} = \{x \in \mathcal{C} : \exists \ a = a(x) \text{ tal que } |x(t) x(s)| \le a |t s|^{\alpha} \ \forall t, s\}$
- 3. $B_{\alpha} = \{x \in \mathcal{C} : \exists \ a = a(x) \ \text{tal que } |x(t) x(s)| \le a|t s|^{\alpha} \ \forall t, s \in \mathcal{S}\}.$
- 4. $H_{\alpha}[a] = \{x \in \mathcal{C} : \exists s_1, s_2 \in \mathcal{S} \text{ tal que } |x(t) x(s)| > a |t s|^{\alpha} \}.$
- 5. $H_{\alpha} = \{x \in \mathcal{C} : \forall a > 0, \exists s_1, s_2 \in \mathcal{S} \text{ tal que } |x(t) x(s)| > a |t s|^{\alpha} \}.$ 6. $I_{\alpha,a,k,n} = \{x \in \mathcal{C} : |x(\frac{k}{2^n}) x(\frac{k-1}{2^n})| > a(\frac{1}{2^n})^{\alpha} \}, k = 1, 2, 3, ..., 2^n.$
- 7. $\mu^* = \text{la medida exterior de } \mu$.

Observe que $H_{\alpha}[a]$ es abierto, $I_{\alpha,a,k,n}$ es un cilindro y si $x \in C_{\alpha}$, x es Lipschitz de orden α .

- a) $0 < \alpha < \beta \Rightarrow C_{\alpha} \subset C_{\beta} \subset C$,
- b) $C_{\alpha} = B_{\alpha}, \ \alpha > 0,$

c)
$$H_{\alpha} = \bigcap_{a>0} H_{\alpha}[a] = \bigcap_{n=1}^{\infty} H_{\alpha}[a_n], a_n > 0, a_n \nearrow \infty,$$

d) $H_{\alpha} = \mathcal{C} \setminus \mathcal{B}_{\alpha}.$

- a) Es claro que $\mathcal{C}_{\beta} \subset \mathcal{C}$, probemos entonces la otra contención, para ello suponga que $x \in \mathcal{C}_{\alpha}$, es decir, existe a = a(x) tal que para todo t y s, $|x(t) - x(s)| \le a |t - s|^{\alpha}$.

Luego, $|x(t) - x(s)| \le a |t - s|^{\beta}$ para todo t y s, ya que $\alpha < \beta$. Así $x \in \mathcal{C}_{\alpha}$ y por tanto $\mathcal{C}_{\alpha} \subset \mathcal{C}_{\beta}$.

- b) Dado que es trivial que $B_{\alpha} \subset \mathcal{C}_{\alpha}$, probaremos que $\mathcal{C}_{\alpha} \subset B_{\alpha}$.
- c) La primera igualdad es clara.
- d) Veamos,

$$C \setminus B_{\alpha} = C \cap B_{\alpha}$$

$$= \{x \in C : \forall a = a(x) | |x(t) - x(s)| > a |t - s|^{\alpha} \text{ para algún } s, t \in \mathcal{S}\}$$

$$= H_{\alpha}$$

Se
a $\alpha>0$ y a>0.Si $x\in\mathcal{C}$ satisface para todo
 $k=0,1,...,2^n$ y para todo n=1,2,... que

$$\left| x\left(\frac{k}{2^n}\right) - x\left(\frac{k-1}{2^n}\right) \right| \le a\left(\frac{1}{2^n}\right)^{\alpha},$$

entonces

$$|x(s_1) - x(s_2)| \le 2a \frac{1}{1 - 2^{-\alpha}} |s_1 - s_2|^{\alpha} \ \forall s_1, s_2 \in \mathcal{S}.$$

Si $s_1 = 0$ y $s_2 = 1$,

$$|x(1) - x(0)| \leq |x(1) - x(\frac{2^{n} - 1}{2^{n}})| + |x(\frac{2^{n} - 1}{2^{n}}) - x(\frac{2^{n} - 2}{2^{n}})| + \dots + |x(\frac{1}{2^{n}}) - x(0)|$$

$$\leq a(\frac{1}{2^{n}})^{\alpha} + a(\frac{1}{2^{n}})^{\alpha} + \dots + a(\frac{1}{2^{n}})^{\alpha} \leq 2a\sum_{k=0}^{n} (\frac{1}{2^{k}})^{\alpha}$$

$$\leq 2a\frac{1}{1 - 2^{-\alpha}}.$$

Supongamos ahora que $s_1 < s_2$ y $[s_1, s_2] \neq [0, 1]$. Observe que todo $s \in \mathcal{S}$ se puede expresar de forma única como $\frac{k}{2^n}$ con k impar y más aún, existe un único $s_0 \in \mathcal{S}$ con $s_1 \leq s_0 \leq s_2$ y $s_0 = \frac{q}{2^n}$ (q impar). Ahora bien, si $s_0 \neq s_1$, entonces

$$s_0 - s_1 = \frac{1}{2^{m_1}} + \frac{1}{2^{m_2}} + \dots + \frac{1}{2^{m_j}}, m_1 < m_2 < \dots < m_j$$

y si $s_0 \neq s_2$, entonces

$$s_2 - s_0 = \frac{1}{2^{n_1}} + \frac{1}{2^{n_2}} + \dots + \frac{1}{2^{n_k}}, n_1 < n_2 < \dots < n_k.$$

Considere los siguientes intervalos,

$$\left[s_1, s_1 + \frac{1}{2^{m_j}}\right], \left[s_1 + \frac{1}{2^{m_j}}, s_1 + \frac{1}{2^{m_{j-1}}} + \frac{1}{2^{m_j}}\right], ..., \left[s_0 - \frac{1}{2^{m_1}}, s_0\right]$$

 \mathbf{y}

$$\left[s_0, s_0 + \frac{1}{2^{n_1}}\right], ..., \left[s_0 + \frac{1}{2^{n_1}} + ... + \frac{1}{2^{n_{k-1}}}, s_2\right]$$

Sea $p = \min(m_1, n_1)$ y $q = \max(m_j, n_k)$, entonces

$$|x(s_{1}) - x(s_{2})| \leq |x(s_{1}) - x(s_{0})| + |x(s_{0}) - x(s_{2})| \leq \left|x\left(s_{1} + \frac{1}{2^{m_{j}}}\right) - x(s_{1})\right| + \left|x\left(s_{1} + \frac{1}{2^{m_{j-1}}} + \frac{1}{2^{m_{j}}}\right) - x\left(s_{1} + \frac{1}{2^{m_{j}}}\right)\right| + \cdots + \left|x(s_{0}) - xs_{0} - \frac{1}{2^{m_{1}}}\right| + \left|x\left(s_{0} + \frac{1}{2^{n_{1}}}\right) - x(s_{0})\right| + \cdots + \left|x(s_{2}) - x\left(s_{0} + \frac{1}{2^{n_{1}}} + \dots + \frac{1}{2^{n_{k-1}}}\right)\right| \leq a\left(\frac{1}{2^{m_{j}}}\right)^{\alpha} + a\left(\frac{1}{2^{m_{j-1}}}\right)^{\alpha} + \cdots + a\left(\frac{1}{2^{m_{1}}}\right)^{\alpha} + a\left(\frac{1}{2^{n_{1}}}\right)^{\alpha} + \cdots + a\left(\frac{1}{2^{n_{k}}}\right)^{\alpha} + \cdots + a\left(\frac{1}{2^{n_{k}}}\right)^{\alpha} \leq 2a\sum_{k=1}^{q} \left(\frac{1}{2^{k}}\right)^{\alpha} \leq 2a\frac{\left(\frac{1}{2^{p}}\right)^{\alpha}}{1 - 2^{-\alpha}} \leq 2a\frac{1}{1 - 2^{-\alpha}}(s_{1} - s_{2})^{\alpha}.$$

$$\mu(I_{\alpha,a,k,n}) \le \sqrt{\frac{2}{\pi}} \frac{1}{a} 2^{n(\alpha - \frac{1}{2})} e^{-\frac{a^2}{2} \cdot 2^{n(1 - 2\alpha)}}.$$

Recordemos que para t > s, x(t) - x(s) tiene distribución normal con media 0 y varianza t - s, además que $I_{\alpha,a,k,n}$ es un cilindro, luego,

$$\mu(I_{\alpha,a,k,n}) = \frac{2}{\sqrt{2\pi \frac{1}{2^n}}} \int_{a(\frac{1}{2^n})^{\alpha}}^{\infty} e^{-\frac{\tau^2}{2\frac{1}{2^n}}} d\tau,$$
$$= \sqrt{\frac{2}{\pi}} \int_{a(\frac{1}{2^n})^{\alpha-\frac{1}{2}}}^{\infty} e^{-\frac{\tau^2}{2}} dt.$$

donde para obtener la igualdad anterior hemos hecho $t^2 = 2^n \tau^2$. Por otro lado,

$$\int_{b}^{\infty} e^{-\frac{\tau^{2}}{2}} d\tau \leq \int_{b}^{\infty} \left(\frac{\tau}{b}\right) e^{-\frac{\tau^{2}}{2}} d\tau$$
$$= \frac{1}{b} e^{-\frac{b^{2}}{2}} \operatorname{para} b > 0.$$

Así,

$$\mu(I_{\alpha,a,k,n}) \le \sqrt{\frac{2}{\pi}} \frac{1}{a} \cdot 2^{n(\alpha - \frac{1}{2})} e^{-\frac{a^2}{2} \cdot 2^{n(1 - 2\alpha)}}.$$

Para $\alpha > 0$ y a > 0, tenemos que

$$\mu^* \left(H_{\alpha} \left[2a \frac{1}{1 - 2^{-\alpha}} \right] \right) \le \sqrt{\frac{2}{\pi}} \frac{1}{a} \sum_{k=0}^{\infty} 2^{k \left(\alpha + \frac{1}{2}\right)} e^{-\frac{a^2}{2} \cdot 2^{k(1 - 2\alpha)}}.$$

Del Lema 7 y de la definición de $I_{\alpha,a,k,n}$ se tiene que

$$\bigcap_{n=0}^{\infty} \bigcap_{k=1}^{2^n} I_{\alpha,a,k,n}^c \subset H_{\alpha} \left[2a \frac{1}{1-2^{-\alpha}} \right]^c.$$

Así,

$$H_{\alpha}\left[2a\frac{1}{1-2^{-\alpha}}\right] \subset \bigcup_{n=0}^{\infty} \bigcup_{k=1}^{2^n} I_{\alpha,a,k,n},$$

y por lo tanto,

$$\mu^* \left(H_{\alpha} \left[2a \frac{1}{1 - 2^{-\alpha}} \right] \right) \leq \sum_{n=0}^{\infty} \sum_{k=1}^{2^n} \mu \left(I_{\alpha, a, k, n} \right)$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=1}^{2^n} \sqrt{\frac{2}{\pi}} \frac{1}{a} 2^{n \left(\alpha - \frac{1}{2} \right)} e^{-\frac{a^2}{2} \cdot 2^{n \left(1 - 2\alpha \right)}}$$

$$= \sqrt{\frac{2}{\pi}} \frac{1}{a} \sum_{n=0}^{\infty} 2^{n \left(\alpha + \frac{1}{2} \right)} e^{-\frac{a^2}{2} \cdot 2^{n \left(1 - 2\alpha \right)}}.$$

Observación 1 La serie anterior diverge para $\alpha \geq \frac{1}{2}$ y converge cuando $0 < \alpha < \frac{1}{2}$. En efecto, sea $\delta = \frac{1}{2} - \alpha$, eligiendo N lo suficientemente grande de modo que $N > \frac{1-\delta}{2\delta}$, se sigue que $e^{-x} \leq \frac{N!}{x^N}$ para x grande. Así la serie esta dominado por

$$\sum_{k=k_0}^{\infty} \left(2^{1-\delta-2\delta N}\right)^k \text{ para alg\'un } k_0.$$

y por tanto, la serie es convergente.

Sin embargo, podemos mostrar un poco más.

Lema 2 Sea a > 0 y $0 < \alpha < \frac{1}{2}$. Si I es un conjunto cilindro contenido en $H_{\alpha}\left[2a\frac{1}{1-2^{-\alpha}}\right]$ entonces $\mu\left(I\right) \leq \sqrt{\frac{2}{\pi}} \frac{1}{a} \frac{1}{1-2^{1-\delta}e^{-a^2\delta/2}}$, donde $\delta = \frac{1}{2} - \alpha$.

Demostración. Usando el hecho de que, $2^Y \ge \frac{Y}{2}$, $(y \ge 0)$, se tiene que

$$\sum_{k=0}^{\infty} 2^{k(1-\delta)} e^{-\frac{a^2}{2} 2^{2\delta k}} \leq \sum_{k=0}^{\infty} 2^{k(1-\delta)} e^{-\frac{a^2}{2} \delta k}$$

$$= \sum_{k=0}^{\infty} \left(2^{(1-\delta)} e^{-\frac{a^2}{2} \delta} \right)^k$$

$$= \frac{1}{1 - 2^{1-\delta} e^{-a^2 \delta/2}}.$$

Observación 3 Observe que $\lim_{a\to\infty} \frac{1}{a} \frac{1}{1-2^{1-\delta}e^{-a^2\delta/2}} = 0$.

Teorema 4 (Wiener) μ es una medida en la σ -álgebra generada por \mathcal{R} .

Demostración. Sabemos que si μ es una función aditiva y continua por arriba al vacío, entonces μ es σ -aditiva en el álgebra de cilindros de \mathcal{C} . Luego, por el Teorema de Carathéodory podemos extender μ a $\sigma(\mathcal{R})$.

Dado que μ es aditiva por el Teorema 1, es suficiente probar que $\lim_{n\to\infty} \mu(I_n) = 0$, donde I_n es una sucesión decreciente de conjuntos cilindros cuya intersección es vacío. Sea

$$I_{n} = I_{n} \left(t_{1}^{(n)}, t_{2}^{(n)}, ..., t_{S_{n}}^{(n)}; E_{n} \right)$$

$$\equiv \left\{ x \in \mathcal{C} : \left(x \left(t_{1}^{(n)} \right), x \left(t_{2}^{(n)} \right), ..., x \left(t_{S_{n}}^{(n)} \right) \right) \in E_{n} \subset \mathbb{R}^{S_{n}} \right\}$$

Paso 1: Elijamos un conjunto $G_n \subset E_n$ tal que $\mu(I_n \setminus K_n) < \frac{\varepsilon}{2^{n+1}}$ donde

$$K_n = K_n \left(t_1^{(n)}, t_2^{(n)}, ..., t_{S_n}^{(n)}; G_n \right).$$

Sea $L_n = \bigcap_{j=1}^n K_j \in \mathcal{R}$, entonces, L_n es un cilindro y además $L_n \subset K_n \subset I_n$. Así, $\mu(I_n) = \mu(I_n \setminus L_n) + \mu(L_n)$, pero como

$$I_n \setminus L_n = I_n \setminus \bigcap_{j=1}^n K_j = \bigcup_{j=1}^n (I_n \setminus K_j) \subset \bigcup_{j=1}^n (I_j \setminus K_j),$$

se tiene que, $\mu\left(I_n\setminus L_n\right)\leq \sum_{j=1}^n\frac{\varepsilon}{2^{j+1}}\leq \frac{\varepsilon}{2}$ y por lo tanto,

$$\mu(I_n) \leq \frac{\varepsilon}{2} + \mu(L_n)$$
 para todo n .

Paso 2: Ahora mostraremos que existe n_0 tal que $\mu(L_n) < \frac{\varepsilon}{2}$ siempre que $n \geq n_0$, para obtener que $\mu(I_n) < \varepsilon$ siempre que $n \geq n_0$, lo que significa que $\lim_{n\to\infty} \mu(I_n) = 0$, que es justamente lo que queríamos probar.

Sea $b = 2a\frac{1}{1-2^{-\alpha}}$, donde $0 < \alpha < \frac{1}{2}$. Por el lema 11, podemos elegir un b lo suficientemente grande para que $\mu(I) < \frac{\varepsilon}{2}$ cuando $I \subset H_{\alpha}[b]$, entonces $\mu(L_n \cap H_{\alpha}[b]) < \frac{\varepsilon}{2}$. Resta probar que existe un n_0 tal que

$$M_n \equiv L_n \cap H_\alpha [b]^c = \emptyset, \forall n \ge n_0.$$

Observe que $M_n \setminus y \cap_{n=1}^{\infty} M_n = \emptyset$. Suponga que $M_n \neq \emptyset$ para todo n. Para cada n elijamos $x_n \in M_n$ y consideremos la sucesión $\{X_n\}_{n \in \mathbb{N}}$ en \mathcal{C} . $\{X_n\}$ es equicontinua porque $x_n \in H_\alpha[b]^c$. Más aún, $\{X_n\}_{n \in \mathbb{N}} \subset \mathbb{R}$ es acotada para cada t porque $|x_n(t)| \leq bt^\alpha$.

Dado que $\{X_n\}_{n\in\mathbb{N}}\subset\mathcal{C}$ que es un precompacto, por el Teorema de Ascoli-Arzela, se tiene que existe una subsucesión, tal que $x_n\to x_0\in\mathcal{C}$ uniformemente, y así $x_0\in H_\alpha\left[b\right]^c$.

Fijemos ahora n_0 , entonces $x_n \in M_{n_0} \ \forall n \geq n_0$, ya que M_{n_0} es compacto, se sigue que $x_0 \in M_{n_0}$. Así, $x_0 \in M_n$ para todo n y por lo tanto, $x_0 \in \cap_{n=1}^{\infty} M_n$, lo cual es una contradicción, pues $\cap_{n=1}^{\infty} M_n = \emptyset$.

Finalmente, recordemos que M_n es decreciente para la cual hemos probado que es imposible tener que $M_n \neq \emptyset$ para todo n. Así que $M_{n_0} = \emptyset$ para algún n_0 y por tanto $M_{n_0} = \emptyset$, para todo $n \geq n_0$.

5 Construcción del Proceso de Wiener

Consideremos el espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$, donde $\Omega = \mathcal{C}$, \mathcal{F} es la σ -álgebra generada por los cilindros y \mathbb{P} es la medida de Wiener en \mathcal{F} . Definimos la familia de variable aleatorias $\{W_t : 0 \le t \le 1\}$ que llamaremos Proceso de Wiener, de la siguiente manera: Para $t \in [0, 1]$, se define la variable aleatoria $W_t : \Omega \to \mathbb{R}$ como $W_t(x) = x(t)$, $x \in \Omega$.

A continuación presentamos algunas propiedades de esta familia de variables aleatorias.

Lema 5 a) $W_0 = 0$.

- b) W_t tiene distribución normal con media 0 y varianza t.
- c) Si s < t, $W_t W_s$ tiene distribución normal con media 0 y varianza t s.
- d) Si $0 \le t \le s \le v \le u \le 1$, $W_s W_t$ y $W_u W_v$ son independientes.

Demostración. Dado que a) es inmediato, tanto b) como c) se siguen de las observaciones hechas en la Sección 2, probemos únicamente d). ■

Corolario 6 a) Si p es un número par

$$E_v \left(W_t - W_s \right)^p = 0,$$

en otro caso,

$$E_{\mu} |W_t - W_s|^p = \frac{1}{\sqrt{\pi}} \sqrt{2^p (t - s)^p} \Gamma\left(\frac{p}{2} + \frac{1}{2}\right),$$

donde Γ es la función gamma.

b)
$$E_{\mu}[W_tW_s] = \min(t, s)$$
.

Demostración. a) Se sigue del inciso (b) del lema anterior.

b) Considere ahora la variable aleatoria W_tW_s con $t \leq s$, entonces

$$W_t W_s = W_t \left(x \left(s \right) - W_t \right) + W_t^2,$$

así que, $E_{\mu}[W_t W_s] = E_{\mu}[W_t (W_s - W_t)] + E_{\mu}[W_t^2]$. Pero como,

$$E_{\mu} [W_t (W_s - W_t)] = E_{\mu} [(W_t - W_0) (W_s - W_t)]$$

$$= E_{\mu} [W_t - W_0] E_{\mu} [W_s - W_t]$$

$$= 0$$

y $E_{\mu}[W_t^2] = t$, se tenemos que $E_{\mu}[W_tW_s] = t$. Similarmente podemos obtener que, $E_{\mu}[W_tW_s] = t$ cuando $s \leq t$. \blacksquare Del lema se sigue que

Teorema 7 La familia de variable aleatorias $\{W_t : 0 \le t \le 1\}$ define un proceso de Wiener.

 $E_{\mu}[W_tW_s] = \min(t,s)$, se conoce como la función covarianza del proceso de Wiener.

6 Propiedades de Trayectoria del Proceso de Wiener

Recordando que C_{α} es el conjunto de las funciones Lipschitz de orden α , el siguiente teorema estable que las trayectorias del proceso de Wiener son continuas casi seguramente para $0 < \alpha < \frac{1}{2}$, así mismo que el conjunto de trayectorias diferenciables tiene medida cero para $\alpha > \frac{1}{2}$.

Teorema 8 a)
$$\mu(C_{\alpha}) = 1$$
 si $0 < \alpha < \frac{1}{2}$.
b) $\mu(C_{\alpha}) = 0$ si $\alpha > \frac{1}{2}$.

Demostración. a) Por el Lema

$$C_{\alpha} = B_{\alpha} \text{ (inciso b)}$$

 $= H_{\alpha} \text{ (inciso d)}$
 $= \bigcup_{n=1}^{\infty} H_{\alpha}^{c} [a_{n}] \text{ (inciso c)}$

donde $a_n > 0$ y $a_n \to \infty$ cuando $n \to \infty$.

Así
$$\mu\left(\mathcal{C}_{\alpha}\right) = \lim_{n \to \infty} \mu\left(H_{\alpha}^{c}\left[a_{n}\right]\right) = 1 - \lim_{n \to \infty} \mu\left(H_{\alpha}\left[a_{n}\right]\right) = 1 - 0 = 1.$$

b) Sea

$$J_{\alpha,a,n} = \left\{ x \in \mathcal{C} : \left| x \left(\frac{k}{2^n} \right) - x \left(\frac{k-1}{2^n} \right) \right| \le a \left(\frac{1}{2^n} \right)^{\alpha} \text{ para todo } k = 1, 2, ..., 2^n \right\}.$$

Por otro lado, tenemos que $H^c_{\alpha}[a] \subset J_{\alpha,a,n}$ para todo n = 1, 2, 3,Veamos ahora que las variables aleatorias $x\left(\frac{k}{2^n}\right) - x\left(\frac{k-1}{2^n}\right)$, $k = 1, 2, ..., 2^n$, son independientes con distribución normal con media 0 y varianza $\frac{1}{2^n}$,

$$\mu(J_{\alpha,a,n}) = \prod_{k=1}^{2^{n}} \mu\left\{x \in \mathcal{C} : \left| x\left(\frac{k}{2^{n}}\right) - x\left(\frac{k-1}{2^{n}}\right) \right| \le a\left(\frac{1}{2^{n}}\right)^{\alpha}\right\}$$

$$= \prod_{k=1}^{2^{n}} \int_{-a\left(\frac{1}{2^{n}}\right)^{\alpha}}^{a\left(\frac{1}{2^{n}}\right)^{\alpha}} \frac{1}{\sqrt{2\pi \frac{1}{2^{n}}}} e^{-\frac{\tau^{2}}{2\frac{1}{2^{n}}}} d\tau$$

$$= \prod_{k=1}^{2^{n}} \sqrt{\frac{2}{\pi}} \int_{0}^{a\left(\frac{1}{2^{n}}\right)^{\alpha}} e^{-\frac{\tau^{2}}{2}} d\tau$$

$$\le \prod_{k=1}^{2^{n}} \sqrt{\frac{2}{\pi}} a\left(\frac{1}{2^{n}}\right)^{\alpha-\frac{1}{2}}$$

$$= \left(\sqrt{\frac{2}{\pi}} a\left(\frac{1}{2^{n}}\right)^{\alpha-\frac{1}{2}}\right)^{2^{n}}$$

$$= e^{2^{n}\left\{\log\sqrt{\frac{2}{\pi}}a - (\alpha - \frac{1}{2})n\log 2\right\}} \to 0, \text{ cuando } n \to \infty.$$

Así, $\lim_{n\to\infty} \mu\left(J_{\alpha,a,n}\right) = 0$ para cada $a>0, \ \alpha>\frac{1}{2}$ y por tanto, $\mu\left(H_{\alpha}\left[a\right]\right) = 0$ para cada a>0 y $\alpha>\frac{1}{2}$.

Finalmente del Lema 6 se tiene que $\mu\left(C_{\alpha}\right)=0$ para $\alpha>\frac{1}{2}$.

7 Soporte de la Medida de Wiener

Sea $\mathcal{G} = \{G \subset \mathcal{C} : G \text{ es abierto y } \mu(G) = 0\}$, entonces el abierto más grande de medida cero es $\mathcal{U} = \bigcup_{\gamma} G_{\gamma}$ donde $G_{\gamma} \in \mathcal{G}$. El complemento de \mathcal{G} es llamado soporte de μ . Observe que \mathcal{G} es el cerrado más pequeño cuyo complemento tiene medida cero.

Sea $\mathcal{H} = \{x \in \mathcal{C} \text{ no diferenciables}\}\ y \ \mathcal{K} = \{x \in \mathcal{C} \text{ continuas}\}\$, del Teorema 17 se sigue que el soporte de μ está contenido en \mathcal{H} y \mathcal{K} .

References

[1] H.H. Kuo (2006). Gaussian Measures in Banach Spaces. Lecture Notes in Mathematics 463, Springer-Verlag. 2nd Edición.