Jacobi-Felder (Verbindung Geometrie–Krümmung)

6.1. Jacobi-Gleichung

Sei $(M, \langle \cdot, \cdot \rangle)$ eine Riemann'sche Mannigfaltigkeit. Für $v \in T_pM$ sei \exp_p definiert. Wir betrachten die parametrisierte Fläche $f(t,s) \coloneqq \exp_p(tv(s))$ mit $0 \le t \le 1$ und $-\varepsilon \le s \le \varepsilon$, wobei v(s) eine Kurve in T_pM mit ||v(s)|| = ||v(0)||, v(0) = v, v'(0) = w ist.

Es gilt (vergleiche Beweis Gauß-Lemma):

$$d \exp_p |_v w = \frac{\partial l}{\partial s}(1,0) = T_{\exp_p(v)} M$$
.

 $||d\exp_p|_v w||$ ist ein Maß dafür, wie schnell die Geodätischen $t\mapsto f(t,s)$ auseinanderlaufen.

Betrachte dazu das Vektorfeld $d\exp_p|_{tv}tw=\frac{\partial f}{\partial s}(t,v)$ längs $\gamma(t)\coloneqq\exp_p(tv),\ 0\le t\le 1$. Wir halten fest: Da γ eine Geodätische ist, gilt für alle t,s: $\frac{D}{\partial t}\frac{\partial f}{\partial t}(t,s)=0$.

Lemma 6.1

$$f: \frac{A \subset \mathbb{R}^2 \to M}{(u,v) \mapsto f(u,v)}$$

sei eine parametrisierte Fläche und V(u, v) sei ein Vektorfeld längs f. Dann gilt:

$$\frac{D}{\partial V}\frac{D}{\partial U}V - \frac{D}{\partial U}\frac{D}{\partial V}V = R(\frac{\partial f}{\partial U}, \frac{\partial f}{\partial V})V$$

wobei $\frac{D}{\partial U} = D_{\frac{\partial f}{\partial U}}$.

Beweis

Betrachte Karte (U, φ) . Dann sind die Basisfelder also $V = \sum_{i=1}^{n} v^{i} X_{i}, \ v^{i} = v^{i}(u, v), \ \frac{D}{\partial U} V = \frac{D}{\partial U} \left(\sum_{i=1}^{n} u^{i} x_{i} \right) = \sum_{i=1}^{n} \frac{\partial u^{i}}{\partial U} x_{i} + \sum_{i=1}^{n} v^{i} \frac{D}{\partial u} x_{i}. \ \frac{D}{\partial u} \left(\frac{D}{\partial U} V \right) = \sum_{i=1}^{n} \frac{\partial^{2} u^{i}}{\partial v \partial u} x_{i} + \sum_{i=1}^{n} \frac{\partial v^{i}}{\partial u} \frac{D}{\partial v} x_{i} + \sum_{i=1}^{n} \frac{\partial u^{i}}{\partial v} \frac{\partial D}{\partial u} x_{i} = \frac{D}{\partial u} \frac{D}{\partial v} v - \frac{D}{\partial u} \frac{D}{\partial v} v = \sum_{i=1}^{n} v_{i} \left(\frac{D}{\partial v} \frac{D}{\partial u} x_{i} - \frac{D}{\partial u} \frac{D}{\partial v} x_{i} \right)$ (+) (Bitte auf v- und u-Verwechsler prüfen!)

Berechne $\frac{D}{\partial v} \frac{D}{\partial u} x_i$: Für $f(u, v) = (x^1(u, v), \dots, x^n(u, v))$ ist $\frac{\partial f}{\partial u} = \sum_{j=1}^n \frac{\partial x^j}{\partial u} x_j$; $\frac{\partial f}{\partial v} = \sum_{k=1}^n \frac{\partial x^k}{\partial u} x_k$ und $\frac{D}{\partial u} x_i = D_{\frac{\partial f}{\partial u}} x_i = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_j$. $\frac{D}{\partial v} \frac{D}{\partial u} v_i = \sum_{j=1}^n = \frac{\partial^2 x^j}{\partial v \partial u} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{\frac{\partial f}{\partial u}} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial^2 x^j}{\partial u \partial v} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_i + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_j + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_j + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_i) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} D_{x_j} x_j + \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x_j) = \sum_{j=1}^n \frac{\partial x^j}{\partial u} (D_{x_j} x$

Weiter gilt:

$$0 = \frac{D}{\partial s} (\frac{D}{\partial t} \frac{\partial f}{\partial t}) \overset{\text{Lemma 1}}{=} \frac{D}{\partial t} (\frac{D}{\partial s} \frac{\partial f}{\partial t}) - R(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t}) \frac{\partial f}{\partial t}$$

$$\overset{\text{Lemma 3 Kap 4}}{=} + \overset{\text{schiefsym.}}{=} \frac{D}{\partial t} (\frac{D}{\partial t} \frac{\partial f}{\partial s}) - R(\frac{\partial f}{\partial t}, \frac{\partial f}{\partial s}) \frac{\partial f}{\partial t}$$

Wir setzen $\gamma(t)=\exp_p(tv)=f(t,0)$ und $J(t)\equiv J(\gamma(t)):=\frac{\partial f}{\partial s}(t,0)$ ein Vektorfeld längs γ . Dann gilt die Jacobi-Gleichung:

$$\frac{D}{\partial t}\frac{D}{\partial t}J(t) + R(\gamma'(t), J(t))\gamma'(t) = 0$$

mit der Kurzschreibweise

$$\frac{D}{\partial t}\frac{D}{\partial t}J(t) =: J''(t)$$

Definition

Sei $\gamma:[0,a]\to M$ eine Geodätische. Ein Vektorfeld J längs γ heißt Jacobi-Feld, falls J für alle $t\in[0,a]$ die Jacobi-Gleichung erfüllt.

Es gilt: Ein Jacobi-Feld ist eindeutig bestimmt durch die Anfangsbedingungen J(0) und $J'(0) := D_{\gamma'}J(0)$.

Begründung: Betrachte orthonormale Parallelfelder $E_1(t), \ldots, E_n(t)$, wobei $E_i(t) = E_i(\gamma(t))$, längs γ . Dann kann man schreiben: $J(t) = \sum_{i=1}^n f_i(t)E_i(t)$ mit $f_i \in C^{\infty}$. Also $J'(t) = D_{\gamma'}J(t) = \sum_{i=1}^n D_{\gamma'}D_{\gamma'}(f_iE_i) = \sum_{i=1}^n (f_i'E_i + f_i)\sum_{j=0}^n f_j'(t)E_j(t)$ und $J''(t) = \sum_{i=1}^n f_i''(t)E_i(t)$.

Weiter sei $a_{ij}(t) \coloneqq \langle R(\gamma'(t), E_i(t))\gamma'(t), E_j(t)\rangle_{\gamma(t)}$. Dann gilt $R(\gamma', J)\gamma' = \sum_j \langle R(\gamma', J)\gamma', E_j\rangle E_j = \sum_{j=1}^n \sum_{i=1}^n f_i \langle R(\gamma'E_i)\gamma', E_j\rangle E_j = \sum_{j=1}^n \sum_{i=1}^n f_i a_{ij}(t) E_j(t)$

Damit ist die Jacobi-Gleichung äquivalent zum System linearer Differentialgleichungen 2. Ordnung

$$f_j''(t) + \sum_{i=1}^n a_{ij}(t)f_i(t) = 0, \quad j = 1, \dots, n$$

Die Lösungen bilden einen Vektorraum der Dimension 2n, wobei $n = \dim M$. Zu gegebener Anfangsbedingung J(0), J'(0) bzw. $f_1(0), \ldots, f_n(0), f'_1(0), \ldots, f'_n(0)$ existiert genau ein Jacobi-Feld längs ganz γ , also eine Lösung des obigen Differentialgleichungssystems für alle $t \in [0, a]$.

Folgerung: Längs der Geodätischen $\gamma:[0,a]\to M$ existieren 2n linear unabhängige Jacobi-Felder, wobei $n=\dim M.$

Bemerkung: Gewisse Jacobi-Felder kann man direkt angeben: $J(t) := \gamma'(t)$ ist ein Jacobi-Feld, da $J'' + R(\gamma', J)\gamma' = \gamma''' + R(\gamma', \gamma')\gamma' = D_{\gamma'}\gamma'' + 0 = D_{\gamma'}D_{\gamma'}\gamma' = 0$.

Ansatz: $J(t) := a(t)\gamma'(t)$ für $a: I \to \mathbb{R}$ ist Jacobi-Feld, genau dann, wenn a(t) linear ist. Also: $J'' = a''\gamma'$, $R(\gamma', J)\gamma' = R(\gamma', a\gamma')\gamma' = aR(\gamma', \gamma')\gamma' = 0$. Das heißt die Jacobi-Gleichung gilt $\iff a''\gamma' = 0 \iff a'' = 0 \iff a(t) = \alpha + t\beta$, $\alpha, \beta \in \mathbb{R}$.

Folgerung: $J_1(t) := \gamma'(t)$ und $J_2(t) := t\gamma'(t)$ sind verschieden, da $J_1(0) = \gamma'(0) \neq J_2(0) = 0$, und spannen einen 2-dimensionalen Untervektorraum des Vektorraumes alles Jacobi-Felder längs γ auf.

Es genügt dann den 2(n-1)-dimensionalen Untervektorraum aller Jacobi-Felder orthogonal zu γ' zu verstehen.

Beispiel (Jacobi-Felder für Riemann'sche Mannigfaltigkeiten konstanter Krümmung) Sei $(M, \langle \cdot, \cdot \rangle)$ eine Riemann'sche Mannigfaltigkeit mit konstanter Schnittkrümmung k_0 , etwa $(\mathbb{R}^2, \text{kan}) : k_0 = 0, (S^2, \text{kan}) : k_0 = 1, (H^2\mathbb{R}, \text{kan}) : k_0 = -1.$

Weiter sei $\gamma:[0,a]\to M$ eine normale Geodätische und J ein Jacobi-Feld längs γ , so dass $J(t)\perp\gamma'(t)$.

Für ein beliebigs Vektorfeld X längs γ gilt die Formel (vgl. 5.2):

$$\langle R(\gamma',J)\gamma',X\rangle = k_0(\underbrace{\langle \gamma',\gamma'\rangle}_{=1}\langle J,X\rangle - \langle \gamma',X\rangle\underbrace{\langle J,\gamma'\rangle}_{=0}) = k_0\langle J,X\rangle$$

also

$$R(\gamma', J)\gamma' = k_0 J$$

Die Jacobi-Gleichung lautet hier:

$$J'' + k_0 J = 0 \quad (*)$$

Es sei E(t) ein Parallelfeld längs γ mit $||E(t)||_{\gamma(t)}=1$ und $\langle E(t),\gamma'(t)\rangle_{\gamma(t)}=0$ für alle t. Dann ist

$$J(t) \coloneqq \begin{cases} \frac{1}{\sqrt{k_0}} \cdot \sin(t\sqrt{k_0}) \cdot E(t), & k_0 > 0\\ t \cdot E(t), & k_0 = 0\\ \frac{1}{\sqrt{-k_0}} \cdot \sinh(t\sqrt{-k_0}) \cdot E(t), & k_0 < 0 \end{cases}$$

eine Lösung von (*) mit Anfangsbedingung J(0) = 0 und J'(0) = E(0).

Satz 6.1

Sei $\gamma:[0,a]\to M$ eine normale Geodätische (also $\|\gamma'\|=1$) und J ein Jacobi-Feld längs γ mit J(0)=0 und $J'(0)=\frac{D}{\partial t}J(0)=(D_{\gamma'}J)(0)=:w.$ Schließlich sei $v:=\gamma'(0)$.

Wir betrachten w als Element von $T_{av}(T_{\gamma(0)}M)$ und wählen Kurve v(s) in $T_{\gamma(0)}M$ mit $v(0)=av,\ v'(0)=aw.$ Für die parametrisierte Fläche $f(t,s)\coloneqq\exp_{\gamma(0)}(\frac{t}{a}v(s)),\ |s|<\varepsilon,$ $0\leq\frac{t}{a}\leq 1$ ist $\bar{J}(t)\coloneqq\frac{\partial f}{\partial s}(t,0)$ ein Jacobi-Feld längs γ mit $J(t)=\bar{J}(t)$ für alle $t\in[0,a]$.

Beweis

Jacobi-Feld is durch Anfangsbedingungen vollständig bestimmt, das heißt es genüg zu zeigen: $J(0) = \bar{J}(0)$ und $J'(0) = \bar{J}'(0)$.

Es ist einfach zu sehen, dass $\bar{J}(0) = \frac{\partial f}{\partial s}(0,0) = 0$.

Weiter gilt

$$\begin{split} \bar{J}'(t) &= \frac{D}{\partial t} \frac{\partial f}{\partial s}(t,0) = \frac{D}{\partial t} (d \exp_p |_{\frac{t}{a}v(0)} \cdot \frac{t}{a}v'(0)) = \frac{D}{\partial t} (d \exp_p |_{tv}tw) \\ &= \frac{D}{\partial t} (td \exp_p |_{tv}w) = 1 \cdot d \exp_p |_{tv}w + t \frac{D}{\partial t} (d \exp_p |_{tv}w) \,. \end{split}$$

Daher ist
$$\bar{J}'(0) = d \exp_n |_{0} w = w = J'(0).$$

Bemerkungen: (1) Es gilt folgende Formel für ein Jacobi-Feld längs einer normalen Geodätischen $\gamma: [0, a] \to M$ mit J(0) = 0:

$$J(t) = d \exp_{p} |_{t\gamma'(0)}(tJ'(0)), \quad t \in [0, a]$$

(2) Eine analoge Konstruktion (Jacobi-Felder erzeugen durch Variation einer Geodätischen) gilt auch für Jacobi-Felder mit Anfangsbedingung $J(0) \neq 0$.

6.2. Jacobi-Felder und Schnittkrümmung

Satz 6.2

Sei $p \in M$, $\gamma : [0, a] \to M$ eine normale Geodätische mit $\gamma(0) = p$, $\gamma'(0) = v$ und $w \in T_v(T_pM) \cong T_pM$ mit ||w|| = 1. Weiter sei $J(t) = d \exp_p |_{tv}(tw)$, $0 \le t \le a$ ein Jacobi-Feld längs γ .

Dann gilt für die Taylorentwicklung von $||J(t)||_{\gamma(t)}^2 = \langle J(t), J(t) \rangle_{\gamma(t)}$ bei t = 0:

$$||J(t)||_{\gamma(t)}^2 = t^2 - \frac{1}{3} \langle R(v, w)v, w \rangle_p t^4 + o(t^4)$$

Beweis

Es ist J(0) = 0, J'(0) = w, ||w|| = 1. Für die ersten drei Koeffizienten der Taylorreihe in t folgt:

- (0) $||J(p)||_p^2 = \langle J, J \rangle(0) = 0$
- (1) $\langle J, J \rangle'(0) = 2\langle J', J \rangle(0) = 0$
- (2) $\langle J, J \rangle''(0) = 2\langle J'', J \rangle(0) + 2\langle J', J' \rangle(0) = 0 + 2||w||^2 = 2$
- (3) $\langle J, J \rangle'''(0) = 2 \langle J''', J \rangle(0) + 2 \langle J'', J' \rangle(0) + 4 \langle J'', J' \rangle(0) = 0 + 6 \langle -R(\gamma', J)\gamma', J' \rangle(0) = 6 \langle -R(\gamma', 0)\gamma', J' \rangle(0) = 6 \langle 0, J' \rangle(0) = 0$
- (4) $\langle J, J \rangle''''(0) = 2 \langle J'''', J \rangle(0) + 2 \langle J''', J' \rangle(0) + 6 \langle J''', J' \rangle(0) + 6 \langle J'', J'' \rangle(0) = 8 \langle J''', J' \rangle(0) = -8 \langle R(\gamma', J')\gamma', J' \rangle(0) = -8 \langle R(v, w)v, w \rangle_n$

Nebenrechnung für $J''' = -\frac{D}{\partial t}R(\gamma',J)\gamma'$. Dazu betrachten wir ein beliebiges Vektorfeld Z mit $Z' = \frac{D}{\partial t}Z = D_{\gamma'}Z$. Es ist

$$\begin{split} \langle \frac{D}{\partial t} R(\gamma',J) \gamma',Z \rangle &= \frac{d}{dt} \langle R(\gamma',J) \gamma',Z \rangle - \langle R(\gamma',J) \gamma',Z' \rangle \\ &= \frac{d}{dt} \langle R(\gamma',Z) \gamma',J \rangle - \langle R(\gamma',J) \gamma',Z' \rangle \\ &= \langle \frac{D}{dt} R(\gamma',Z) \gamma',J \rangle + \langle R(\gamma',Z) \gamma',J \rangle' - \langle R(\gamma',J) \gamma',Z' \rangle \,. \end{split}$$

Für t = 0 ist J(0) = 0, also:

$$\langle \frac{D}{\partial t} R(\gamma', J) \gamma', Z \rangle(0) = 0 + \langle R(\gamma', Z) \gamma', J \rangle'(0) - 0$$
$$= \langle R(\gamma', J') \gamma', Z \rangle(0)$$

Da Z beliebig war, gilt $J'''(0) = -\frac{D}{\partial t}R(\gamma',J)\gamma'(0) = -R(\gamma',J')\gamma'(0)$

Korrolar

Falls $\langle v, w \rangle_p = 0$, (v, w) also orthonormiert) gilt: $\langle R(v, w)v, w \rangle_p = K(p, \sigma) = \text{Schnittkrümmung der von } v$ und w aufgespannten Ebene σ , also

$$||J(t)||_{\gamma(t)}^2 = t^2 - \frac{1}{3}K(p,\sigma)t^4 + o(t^4)$$

sowie

$$||J(t)||_{\gamma(t)} = t - \frac{1}{6}K(p,\sigma)t^3 + o(t^3)$$

Beweis

Die Formel für $||J(t)||_{\gamma(t)}$ folgt aus einem Koeffizientenvergleich der Taylorreihen:

$$f(t) = a + bt + ct^2 + dt^3 + \cdots$$
$$(f(t))^2 = a^2 + 2abt + \cdots$$

Anwendung Länge von geodätischen Kreisen. $p \in M$, $v, w \in T_pM$, $v \perp w$, ||v|| = ||w|| = 1, $f(r,\theta) := \exp_p(r(\cos\theta \cdot v + \sin\theta \cdot w))$. Für ein festes r heißt $K_r(\theta) = f(r,\theta)$ für $0 \le \theta \le 2\pi$ ein geodätischer Kreis von Radius r.

Die Länge von K_r ist $L(K_r) := \int_0^{2\pi} \|\frac{d}{d\theta} K_r(\theta)\| d\theta = \int_0^{2\pi} \|\frac{\partial f}{\partial \theta}\| d\theta$, wobei $\frac{\partial f}{\partial \theta}$ ein Jacobi-Feld längs $\gamma_{\theta}(r) = \exp_p(rv(\theta))$ ist. Daher

$$L(K_r) = \int_0^{2\pi} \left[r - \frac{1}{6}K(p,\sigma)r^3 + o(r^3)\right]d\theta = 2\pi r \left(1 - \frac{1}{6}K(p,\sigma)r^2 + o(r^2)\right).$$

Das ist die klassiche Formel von Betrand-Puiseux (1848) für Flächen in \mathbb{R}^3 .

Umgekehrt hat man $K(p,\sigma) = \frac{3}{\pi r^3} (2\pi r - L(K_r) + \sigma(r^3))$ oder

$$K(p,\sigma) = \lim_{r\to 0} \frac{3}{\pi r^3} (2\pi r - L(K_r)).$$

Im euklidischen ist $L(K_r) = 2\pi r$, also $K(p,\sigma) = 0$. Im sphärischen ist $L(K_r) = 2\pi \sin r = 2\pi (r - \frac{r^3}{3!} + \cdots)$, also $K(p,\sigma) = +1$. Im hyperbolischen ist $L(K_r) = 2\pi \sinh r = 2\pi (r + \frac{r^3}{3!} + \cdots)$, also $K(p,\sigma) = -1$.