定义. $\{x_n\}$ 以某一确定的数a为极限是指,对于任意固定的 $\varepsilon > 0$,都存在一个与此 ε 相对应的 $N(=N(\varepsilon))$,使得对所有的n>N,都有 $|x_n-a|<\varepsilon$ 成立. 记作 $\lim_{n\to\infty}x_n=a$,此时称 $\{x_n\}_{n=1}^{\infty}$ 有极限,否则称为无极限.

关于数列极限的定义的符号描述:

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0, \exists N, \ s.t. \ \forall n > N, \ |x_n - a| < \varepsilon$$

 $\forall \varepsilon > 0, \exists N, \ s.t. \ |x_n - a| < \varepsilon \quad \forall n > N$

 $\lim_{n\to\infty} x_n = a \quad \text{\mathbb{L} } \text{Π } \text{M } \text{R } \text{:}$

如果存在a, 使得 $\lim_{n\to\infty} x_n = a$, 则称数列 $\{x_n\}$ 是收敛的, 否则称为发散的.

如数列
$$\left\{\frac{(-1)^n}{n}\right\}$$
, $\left\{\frac{1}{n}\right\}$ 等是收敛的, 数列 $\{(-1)^n\}$ 与 $\{n^2\}$ 是发散的.

但有些时候我们也会说数列{n²}的极限为无穷大

(但不会说它收敛!), 记作 $\lim_{n\to\infty} n^2 = \infty$.