Lec 15: Square Linear Systems – Analysis

Efficiency

Notation: Big-O and Asymptotic

Let f, g be positive functions defined on \mathbb{N} .

- $f(n) = O\left(g(n)\right)$ ("f is big-O of g") as $n \to \infty$ if
 - $\frac{f(n)}{g(n)} \leqslant C$, for all sufficiently large n.
- $f(n) \sim g(n)$ ("f is asymptotic to g") as $n \to \infty$ if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1.$$

Timing Vector/Matrix Operations – FLOPS

- One way to measure the "efficiency" of a numerical algorithm is to count the number of floating-point arithmetic operations (FLOPS) necessary for its execution.
- The number is usually represented by $\sim cn^p$ where c and p are given explicitly.
- We are interested in this formula when n is large.

FLOPS for Major Operations

Vector/Matrix Operations

Let $x, y \in \mathbb{R}^n$ and $A, B \in \mathbb{R}^{n \times n}$. Then

- (vector-vector) x^Ty requires $\sim 2n$ flops.
- (matrix-vector) Ax requires $\sim 2n^2$ flops.
- (matrix-matrix) AB requires $\sim 2n^3$ flops.

Cost of PLU Factorization

Note that we only need to count the number of *flops* required to zero out elements below the diagonal of each column.

- For each i > j, we replace R_i by $R_i + cR_j$ where $c = -a_{i,j}/a_{j,j}$. This requires approximately 2(n-j+1) flops:
 - 1 division to form c
 - n-j+1 multiplications to form cR_j
 - n-j+1 additions to form R_i+cR_j
- Since $i \in \mathbb{N}[j+1,n]$, the total number of *flops* needed to zero out all elements below the diagonal in the jth column is approximately 2(n-j+1)(n-j).
- Summing up over $j \in \mathbb{N}[1, n-1]$, we need about $(2/3)n^3$ flops:

$$\sum_{j=1}^{n-1} 2(n-j+1)(n-j) \sim 2\sum_{j=1}^{n-1} (n-j)^2 = 2\sum_{j=1}^{n-1} j^2 \sim \frac{2}{3}n^3$$

Cost of Forward Elimination and Backward Substitution

Forward Elimination

- The calculation of $y_i = \beta_i \sum_{j=1}^{i-1} \ell_{ij} y_j$ for i > 1 requires approximately 2i flops:
 - 1 subtraction
 - i-1 multiplications
 - i-2 additions
- Summing over all $i \in \mathbb{N}[2, n]$, we need about n^2 flops:

$$\sum_{i=2}^{n} 2i \sim 2\frac{n^2}{2} = n^2.$$

Backward Substitution

• The cost of backward substitution is also approximately n^2 flops, which can be shown in the same manner.

Cost of G.E. with Partial Pivoting

Gaussian elimination with partial pivoting involves three steps:

- PLU factorization: $\sim (2/3)n^3$ flops
- Forward elimination: $\sim n^2$ flops
- Backward substitution: $\sim n^2$ flops

Summary

The total cost of Gaussian elimination with partial pivoting is approximately

$$\frac{2}{3}n^3 + n^2 + n^2 \sim \frac{2}{3}n^3$$

flops for large n.

Application: Solving Multiple Square Systems Simultaneously

To solve two systems $A\mathbf{x}_1 = \mathbf{b}_1$ and $A\mathbf{x}_2 = \mathbf{b}_2$.

Method 1.

- Use G.E. for both.
- It takes $\sim (4/3)n^3$ flops.

Method 2.

- Do it in two steps:
 - 1 Do PLU factorization PA = LU.
 - 2 Then solve $LU\mathbf{x}_1 = P\mathbf{b}_1$ and $LU\mathbf{x}_2 = P\mathbf{b}_2$.
- It takes $\sim (2/3)n^3$ flops.

```
%% method 1

x1 = A \ b1;

x2 = A \ b2;
```

```
%% method 2

[L, U, P] = lu(A);

x1 = U \ (L \ (P*b1));

x2 = U \ (L \ (P*b2));
```

```
%% compact implementation
X = A \ [b1, b2];
x1 = X(:, 1);
x2 = X(:, 2);
```

Vector and Matrix Norms

Vector Norms

The "length" of a vector \mathbf{v} can be measured by its **norm**.

Definition 1 (p-Norm of a Vector)

Let $p \in [1, \infty)$. The p-norm of $\mathbf{v} \in \mathbb{R}^m$ is denoted by $\|\mathbf{v}\|_p$ and is defined by

$$\|\mathbf{v}\|_p = \left(\sum_{i=1}^m |v_i|^p\right)^{1/p}.$$

When $p = \infty$,

$$\|\mathbf{v}\|_{\infty} = \max_{1 \le i \le m} |v_i| .$$

The most commonly used p values are 1, 2, and ∞ :

$$\|\mathbf{v}\|_1 = \sum_{i=1}^m |v_i|, \quad \|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^m |v_i|^2}.$$

Vector Norms

In general, any function $\|\cdot\|:\mathbb{R}^m\to\mathbb{R}^+\cup\{0\}$ is called a **vector norm** if it satisfies the following three properties:

- $2 \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any constant α and any $\mathbf{x} \in \mathbb{R}^m$.
- 3 $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. This is called the *triangle inequality*.

Unit Vectors

- A vector \mathbf{u} is called a **unit vector** if $\|\mathbf{u}\| = 1$.
- Depending on the norm used, unit vectors will be different.
- For instance:

Matrix Norms

The "size" of a matrix $A \in \mathbb{R}^{m \times n}$ can be measured by its **norm** as well. As above, we say that a function $\|\cdot\|:\mathbb{R}^{m \times n} \to \mathbb{R}^+ \cup \{0\}$ is a **matrix norm** if it satisfies the following three properties:

- **1** ||A|| = 0 if and only if A = 0.
- 2 $\|\alpha A\| = |\alpha| \|A\|$ for any constant α and any $A \in \mathbb{R}^{m \times n}$.
- 3 $\|A+B\| \le \|A\| + \|B\|$ for any $A,B \in \mathbb{R}^{m \times n}$. This is called the *triangle inequality*.

Matrix Norms (Cont')

• If, in addition to satisfying the three conditions, it satisfies

$$||AB|| \le ||A|| \, ||B||$$
 for all $A \in \mathbb{R}^{m \times n}$ and all $B \in \mathbb{R}^{n \times p}$,

it is said to be **consistent**.

If, in addition to satisfying the three conditions, it satisfies

$$\|A\mathbf{x}\| \leqslant \|A\| \|\mathbf{x}\|$$
 for all $A \in \mathbb{R}^{m \times n}$ and all $\mathbf{x} \in \mathbb{R}^n$,

then we say that it is **compatible** with a vector norm.

Induced Matrix Norms

Definition 2 (*p*-Norm of a Matrix)

Let $p \in [1, \infty]$. The p-norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$\|A\|_p = \max_{\mathbf{x} \neq 0} \frac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p} = \max_{\|\mathbf{x}\|_p = 1} \|A\mathbf{x}\|_p \ .$$

- The definition of this particular matrix norm is induced from the vector p-norm.
- By construction, matrix p-norm is a compatible norm.
- Induced norms describe how the matrix stretches unit vectors with respect to the vector norm.

Induced Matrix Norms

The commonly used p-norms (for $p = 1, 2, \infty$) can also be calculated by

$$||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|,$$

$$||A||_{2} = \sqrt{\lambda_{\max}(A^{T}A)} = \sigma_{\max}(A),$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

In words,

- The 1-norm of A is the maximum of the 1-norms of all column vectors.
- The 2-norm of A is the square root of the largest eigenvalue of $A^{T}A$.
- The ∞ -norm of A is the maximum of the 1-norms of all row vectors.

Non-Induced Matrix Norm - Frobenius Norm

Definition 3 (Frobenius Norm of a Matrix)

The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is given by

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2}.$$

- This is not induced from a vector *p*-norm.
- However, both p-norm and the Frobenius norm are consistent and compatible.
- For compatibility of the Frobenius norm, the vector norm must be the 2-norm, that is, $\|A\mathbf{x}\|_2 \leqslant \|A\|_F \|\mathbf{x}\|_2$.

Norms in MATLAB

Vector p-norms can be easily computed:

• The same function norm is used to calculate matrix *p*-norms:

To calculate the Frobenius norm:

```
norm(A, 'fro') % = sqrt(A(:)'*A(:))
% = norm(A(:), 2)
```