Summary: Lecture 10

Summary for the chapters 11.1 up to page 245 and 11.2 (page 258 optional). [5, 1]

Randomized algorithms

Algorithms based on randomization.

(The algorithm employs a degree of randomness as part of its logic or procedure.)

Bipartite matching

Bipartite Graph

A graph G = (U, V, E) is called bipartite if the vertices can be divided into two disjoint and independent sets U and V. (There are no edges between two elements of U or two elements of V).

Figure 1: Examples of bipartife graphs with U and V marked in red and blue [2]

Problem: BipartiteMatching

Given: Bipartite graph G = (U, V, E).

Is there a perfect matching $M \subseteq E$ such that for any two edges (u, v) and (u', v') in M $u \neq u'$ and $v \neq v'$.

I other words: A matching in a Bipartite Graph is a set of the edges chosen in such a way that no two edges share an endpoint. The matching M is called perfect if for every node in V there is some edge in M. [3, 5, 4]

- construct bipartite graph with n nodes as $n \times n$ matrix A
- the element $A_{i,j}$ is a variable $x_{i,j}$ if $(i,j) \in E$
- the element $A_{i,j}$ is 0 if $(i,j) \notin E$

Example:

$$A = \begin{pmatrix} 0 & x_{1,2} & 0 & x_{1,4} \\ x_{2,1} & 0 & x_{2,3} & 0 \\ 0 & x_{3,2} & 0 & x_{3,4} \\ x_{4,1} & 0 & x_{4,3} & 0 \end{pmatrix}$$

Questions:

Is EVERY node cotained in the subset M when it is a perfect matching? Does a perfect matching then only exist with an even number of vertices and |U| = |V|?

Determinant calculation

Leibniz-formula:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \qquad |A| = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b$$

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$|B| = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 7 \cdot 5 \cdot 3 - 8 \cdot 6 \cdot 1 - 9 \cdot 4 \cdot 2 = 0$$

$$|A| = \sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}$$

- $\sigma(\pi)$ decides if + or -
- leads to n! summands
- Example: n = 3 3! = 6 summands 6 permutations for π

+1:
$$(123) (231) (312)$$

-1: $(321) (213) (132)$
 $\rightarrow |A| = A_{1,1} \cdot A_{2,2} \cdot A_{3,3} + A_{2,1} \cdot A_{3,2} \cdot A_{1,3} + ...$

Gaussian elimination:

- Gauß algorithm for solving LSE (linear systems of equations)
- allowed operations:
 - addition of rwos
 - subtraction of rows
 - multiply row with integer x
 - divide row by integer x
 - switch to rows
- wanted: upper triangular form (all entries below the diagonal 0)
- determinant is the product of the diagonal entries
- Example:

$$\begin{pmatrix} 1 & 3 & 2 & 5 \\ 1 & 7 & -2 & 4 \\ -1 & -3 & -2 & 2 \\ 0 & 1 & 6 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & 4 & -4 & -1 \\ 0 & 0 & 0 & 7 \\ 0 & 1 & 6 & 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & 4 & -4 & -1 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 7 & 2\frac{1}{4} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & 4 & -4 & -1 \\ 0 & 0 & 7 & 2\frac{1}{4} \\ 0 & 0 & 0 & 7 \end{pmatrix}$$

Figure 2: Examples gaussian elimination [5]

Symbolic Determinants

Symbolic matrix:

- matrix with variables instead of numerical entries
- Example:

$$\begin{pmatrix} x & w & z \\ z & x & w \\ y & z & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} x & w & z \\ 0 & \frac{x^2 - zw}{x} & \frac{wx - z^2}{x} \\ 0 & \frac{zx - wy}{x} & -\frac{zy}{x} \end{pmatrix} \Rightarrow$$

$$\begin{pmatrix} x & w & z \\ 0 & \frac{x^2 - zw}{x} & \frac{wx - z^2}{x} \\ 0 & 0 & -\frac{yz(xz - xw) + (zx - wy)(wx - z^2)}{x(x^2 - zw)} \end{pmatrix}$$

Figure 3: Examples gaussian elimination with symbolic matrix [5]

- subdeterminants have exponentially many terms
- wanted result: know if determinant is 0

Monte Carlo algorithm

Check if determinant of symbolic matrix is 0:

- use arbitrary integers for the variables
 → numerical matrix
- calculate determinant of numerical matrix:
 - if not 0:
 determinant of symbolic matrix is not 0
 - if 0:
 determinant of symbolic matrix is probably 0
 - * numbers could be chosen such that the numrical determinant is 0 even though the symbolic one is not 0

Monte Carlo algorithm

Randomized algorithm for deciding if a graph G has a perfect matching with calculating the determinant of the corresponding matrix A to G.

- choose m random integers $i_1, ..., i_m$ between 0 and 2m
- compute the determinant $|A|(i_1,...,i_m)$ with the Gaussian elimnation
- if $|A|(i_1,...,i_m) \neq 0$ reply G has a perfect matching
- if $|A|(i_1,...,i_m)=0$ reply G has probably no perfect matching
- if perfect matching found: decision is reliable and final
- if perfect matching not found: possibility of false negative

Monte Carlo algorithm

(Algorithm above) decides whether a symbolic matrix is **not** indentically to zero.

Reducing chance of false negatives:

- perform many independent experiments
- chose each time random integers (independently)
- \bullet repeat k times the evaluation of the determinant of the symbolic matrix
 - answer always zero: chance that G hs no perfect matching is higher $(1-(\frac{1}{2})^k)$
 - answer different from zero once: perfect matching exists

Monte Carlo algorithm:

- Monte Carlo algorithm has no false positives
- probability of false negatives is bounded
- time needed always polynomical

Randomized complexity classes

Monte Carlo Turing Machine

A polynomial Monte Carlo Turing Machine M that decides a language L is a nondeterministic Turing Machine with exactly two choices in each step and the following conditions:

- if $x \in L$ then at least half of the computations on x halt with yes
- if $x \notin L$ then all computations halt with no
- randomized algorithms can be modeled with an ordinary non-deterministic Turing Machine with different interpretation of the meaning of accepting the input
- no false positive answers+
- probability of false negatives is at most $\frac{1}{2}$

RP

Complexity class of all languages that are decided with polynomial Monte Carlo Turing Machines is denoted as RP.

• RP lies between P and NP ($P \subseteq RP \subseteq NP$)

ZPP

LasVegas algorithm

The LasVegas algorithm as a Monte Carlo algorithm and its complement (one has no false positives and one has no false negatives). It runs k independent experiments on both and the right answer will come up. (Either a positive answer from the one with no false positives or a negative answer from the one with no false negatives.)

- RP: no false positive answers but false negative answers possible
- coRP: no false negative answers but false positive answers possible
- $RP \cap coRP$ seems interesting:
 - problem in this class has two Monte Carlo algorithms:
 - * one has no false positives
 - * one has no false negatives
 - run enough experiments on both: right answer will come up (either a positive answer from the one with no false positives or a negative answer from the one with no false negatives)
 - correct answer will be known for sure
 - execute both algorithms independent k times: probability that the correct answer is not obtained is $\frac{1}{2k}$
 - \rightarrow called LasVegas algorithm

ZPP

 $RP \cap coRP$

Complexity class of all languages that are decided with LasVegas algorithms is denoted as RP.

PР

Problem: MAJSAT

Given: Boolean expression φ

Is it true that the majority of the 2^n truth assignments to its variables satisfy it?

- MajSat is probably not in NP
- MajSat is probably not in RP
- MajSat is in PP

PP

The class PP contains all languages L, such that there is a nondeterminsic polynomial Turing Machine M such that for all inputs x:

 $x \in L$ only if more than half of the computations end up accepting (yes).

M decides L by majority.

- PP is a syntactic class (not a semantic class)
- $NP \subseteq PP$

Syntactic class:

- has a complete language L
- P and NP

Semantic class:

- no complete problems
- there is no easy way to tell whether a machine always halts with a certified output

BPP

Answers (yes and no) are correct with probability $\frac{3}{4}$.

- $\bullet\,$ unclear whether BPP \subseteq NP
- BPP is closed under complement: coBPP = BPP
- BPP is a semantic class

Relations between randomized complexity classes

$$\mathsf{RP}\subseteq\mathsf{NP}\subseteq\mathsf{PP}$$

Figure 4: Relations between classes from the lecture slides [1]

• unclear whether BPP \subseteq NP

$$\mathbf{P}\subseteq\mathbf{ZPP}\bigvee_{\leqslant \mathbf{coRP}}^{\mathsf{CPP}}\bigvee_{\mathsf{P}}^{\mathsf{RP}}\mathbf{BPP}=\mathbf{coBPP}\subseteq\mathbf{PP}$$

Figure 5: Relations between classes from the lecture slides [1]

- $RP \subseteq BPP$:
 - every language in RP has a BPP algorithm:
 - * run algorithm twice to assure that the probability of false negatives is less than $\frac{1}{4}$
 - * probability of false positives is 0 $(0 \le \frac{1}{4})$
- BPP \subseteq PP:
 - majority of PP: $> \frac{1}{2}$
 - majority of BPP: $> \frac{3}{4}$
- $\rightarrow RP \subseteq BPP \subseteq PP$

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Bipartite graph image source. https://en.wikipedia.org/wiki/Bipartite_graph.
- [3] GeeksforGeeks. Maximum Bipartite Matching. https://www.geeksforgeeks.org/maximum-bipartite-matching/, last opened: 09.12.22.
- [4] Swastik Kopparty. Bipartite Graphs and Matchings. https://sites.math.rutgers.edu/~sk1233/courses/graphtheory-F11/matching.pdf, last opened 09.12.22. 2011.
- [5] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.