Axiom of Choice

Equivalents, Consequences, and Independence

Travor Liu, Yi Liu, Daya Singh, Tairan Wang

Department of Mathematics University College London

June 6, 2023

Table of Contents

Well-Ordering Theorem, Axiom of Choice, and Zorn's Lemma

Applications of Zorn's Lemma

Banach-Tarski Paradox

Independence of the Axiom of Choice

Partial Order

Definition

A relation R is a partial order on a set S iff

- ▶ Reflexivity: aRa for any $a \in S$.
- Anti-symmetry: If aRb and bRa, then a = b.
- Transitivity: If aRb and bRc, then aRc.

Examples

- 1. (\mathbb{R}, \leq) , where \leq is the usual order.
- 2. (\mathbb{N}, \leq) , where $a \leq b$ iff a|b, called ordering by divisibility.

Totally Ordered Set and Well-Ordered Set

Definition

- 1. Let (S, \leq) be partially ordered. S is totally ordered iff $\forall a, b \in S$ either $a \leq b$ or $b \leq a$.
- 2. Let (S, \leq) be totally ordered. S is well-ordered iff every non-empty subset of S has a least element.

Examples

Let < be the usual order. Then

- 1. (\mathbb{R}, \leq) is totally ordered but not well-ordered.
- 2. (\mathbb{N}, \leq) is well-ordered.

Maximum and Maximal Element

Definition

Let (S, \leq) be a partially ordered set.

- 1. $m \in S$ is a maximal element of S iff m is greater than or equal to all elements comparable with m.
- 2. $M \in S$ is the maximum of S iff $\forall x \in S, x \leq M$.

Examples Let (\mathbb{N}, \leq) be defined such that $a \leq b$ iff b|a. Then

- 1. 1 is the maximum of (\mathbb{N}, \leq) .
- 2. Prime numbers are the maximal elements of $(\mathbb{N} \setminus \{1\}, \leq)$.

Chain and Upper Bound

Definition

Let (S, \leq) be a partially ordered set and $S' \subseteq S$.

- 1. $u \in S$ is an upper bound for S' iff $\forall x \in S', x \leq u$.
- 2. S' is a chain iff (S', \leq) is a totally ordered.

Examples

Let $S = \mathbb{N}$, and $a \leq b$ iff. a|b.

- 1. $S_1 = \{1, 2, 3, 5, 12, 15\}$: 60 is an upper bound.
- 2. $S_2 = \{2^n | n \in \mathbb{N}\}$ is a chain.

Equivalence

The following statements are equivalent:

- 1. **Well-Ordering Theorem:** For any set S, there exists a relation R on S such that (S, R) is well-ordered.
- 2. **Axiom of Choice:** Let $\{A_i\}_{i\in I}$ be a family of non-empty sets indexed by I. Then there exists some f such that $f(A_i) \in A_i$ for all $i \in I$.
- 3. **Zorn's Lemma:** Let *S* be a non-empty partially ordered set. If every chain in *S* has an upper bound in *S*, then *S* contains a maximal element.

Applications to Linear Algebra

Theorem 2.1

Every nonzero vector space V contains a basis.

Proof.

Let S be the set of linearly independent subsets in V.

- S is non-empty.
- \triangleright (S,\subseteq) is partially ordered.
- Every chain of S has an upper bound in S.
- ightharpoonup Zorn's Lemma \implies S has a maximal element \mathcal{B} .
- \triangleright \mathcal{B} is a basis for V.

Applications to Linear Algebra

Corollary 2.2

Every spanning set of a nonzero vector space V contains a basis of V.

Proof.

Let S be a spanning set of V. Consider the set S' of linearly independent subsets of S.

- ▶ S' is nonempty. (S', \subseteq) is partially ordered. Every chain of S' has an upper bound in S'.
- ightharpoonup Zorn's lemma \implies S' has a maximal element \mathcal{B} .
- ▶ Show that \mathcal{B} is a basis of V by showing \mathcal{B} spans S which spans V.

Applications to Linear Algebra

Corollary 2.3

Every linearly independent subset of a nonzero vector space V can be extended to a basis of V. In particular, every subspace W of V is a direct summand: $V = W \oplus U$ for some subspace U of V.

Corollary 2.4

There exists some $f: \mathbb{R} \to \mathbb{R}$ satisfying f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ and not of the form f(x) = cx for some $c \in R$.

Corollary 2.5

As abelian groups, the vector space \mathbb{R}^n with + is isomorphic to the group $(\mathbb{R},+)$ for every n > 1.

The Banach Tarski Paradox

The Banach Tarski Principle is a demonstration of how the axiom of choice can use volume preserving transformations (such as rotations) to duplicate the volume of an object.

Terrence Tao's Proof

Terrence Tao proved a smaller version of the paradox; which works off a line instead of a sphere.

Terrence Tao's Proof

Theorem 3.1

There exists an (uncountably large) subset of [0,2], breaking it up into a countable number of disjoint subsets, and translating each subset to form $\mathbb R$

▶ Define \sim over [0,1] to be an equivalence relation where $x \sim y$ iff $x-y \in \mathbb{Q}$, creating uncountable equivalence classes countably large.

- ▶ Define \sim over [0,1] to be an equivalence relation where $x \sim y$ iff $x-y \in \mathbb{Q}$, creating uncountable equivalence classes countably large.
- ▶ Use the AC to create a new set *X* by selecting an arbitrary element from each equivalence class

- ▶ Define \sim over [0,1] to be an equivalence relation where $x \sim y$ iff $x y \in \mathbb{Q}$, creating uncountable equivalence classes countably large.
- ► Use the AC to create a new set *X* by selecting an arbitrary element from each equivalence class
- Note that X + q is disjoint for any $q \in \mathbb{Q} \cap [0,1]$. Let Y be the union of these sets; this is an uncountably large subset of [0,2] made up of a countable number of disjoint subsets.

- ▶ Define \sim over [0,1] to be an equivalence relation where $x \sim y$ iff $x-y \in \mathbb{Q}$, creating uncountable equivalence classes countably large.
- ▶ Use the AC to create a new set *X* by selecting an arbitrary element from each equivalence class
- Note that X + q is disjoint for any $q \in \mathbb{Q} \cap [0,1]$. Let Y be the union of these sets; this is an uncountably large subset of [0,2] made up of a countable number of disjoint subsets.
- Let f be a mapping from all rationals in [0,1] (which exists as both sets are countably infinity) to the entirety of \mathbb{Q} . Translate all of X + q to X + f(q). This is \mathbb{R} .

Formal Theory

A **theory** T is a collection of logical statements.

Example

Let T_G be consisted of the following:

- 1. Closure: $\forall a, b \in G \quad a * b \in G$,
- 2. Associativity: $\forall a, b, c \in G$ a * (b * c) = (a * b) * c,
- 3. Identity: $\exists e \in G \forall a \in G \quad a * e = e * a = a$,
- 4. Inverse: $\forall a \in G \exists b \in G \quad a * b = b * a$.

Then T_G is a theory for groups.

Zermelo-Fraenkel Set Theory

ZF denotes the Zermelo-Fraenkel axioms excluding AC:

- 1. Extensionality: $\forall A, B[\forall x(x \in A \iff x \in B)] \iff A = B$.
- 2. Regularity: $\forall A[A \neq \emptyset \implies \exists x \in A(x \cap A = \emptyset)]$.
- 3. Separation: $\{x \in A : \phi(x)\}\$ defines a set.
- 4. Pairing: $\{x, y\}$ is a set.
- 5. Union: Let \mathcal{F} be a set of sets. Then $\{x: \exists A \in \mathcal{F}(x \in A)\}$ is a set.
- 6. Replacement: If $\forall x \in A \exists ! y [\phi(x, y)]$, then $\{y : \exists x \in A [\phi(x, y)]\}$ is a set.
- 7. Infinity: \mathbb{N} is a set.
- 8. Power set: $\{X : X \subseteq A\}$ is a set.

Consistency of Formal Theories

T is **consistent** iff no contradiction can be proved from T.

For any proposition p and any consistent T,

- ▶ T proves p iff $T \cup \{\neg p\}$ is inconsistent.
- ▶ $T \cup \{p\}$ and $T \cup \{\neg p\}$ cannot be both inconsistent.
- ▶ p is independent from T when p can neither be proved nor disproved from T.

WOT, AC, and ZL Applications of ZL Banach-Tarski Paradox Independence of AC

Independence of AC from ZF

Theorem 4.1

If ZF is consistent, then

- ▶ Kurt Gödel (1938): $ZF \cap \{AC\}$ is consistent.
- ▶ Paul Cohen (1963): $ZF \cap \{\neg AC\}$ is consistent.

Kurt Gödel

Paul Cohen

Ideas of Independence Proofs

A group (G,*) is said to be abelian iff it satisfies T_G and

► Commutativity: $\forall a, b \in G$ a * b = b * a.

Theorem 4.2

Commutativity is independent from T_G .

Proof.

Note that $(\mathbb{Z},+)$ and (S_3,\circ) are both groups:

- ▶ If commutativity can be disproved from T_G , then $(\mathbb{Z}, +)$ is not abelian.
- ▶ If commutativity can be proved from T_G , then (S_3, \circ) must be abelian.
- Contradiction in both cases!

Models for Set Theory

Mathematics is a game played according to certain simple rules with meaningless marks on paper. —— David Hilbert

- ▶ $(\mathbb{Z},+)$ and (S_3,\circ) are **models** for $(T_G,G,*)$.
- ▶ When T is a collection of axioms for set theory, a model for (T, V, \in) specifies the collection of sets V and defines \in so that all statements in T are true.
- ▶ Soundness: *T* is consistent if it has a model.
- ▶ Gödel found a model for $(ZF \cup \{AC\}, V, \in)$.
- ▶ Cohen found a model for $(ZF \cup \{\neg AC\}, V, \in)$.

Bibliography

Paul Cohen (1966).

Keith Conrad.

Set Theory and the Continuum Hypothesis

Zorn's Lemma and Some Applications

https://kconrad.math.uconn.edu/blurbs/zorn1.pdf

Kenneth Kunen (1980).

Set Theory: An Introduction To Independence Proofs

Terence Tao.

The axiom of choice and Banach-Tarski paradoxes

https://www.math.ucla.edu/~tao/resource/general/121.1.00s/ tarski.html