Apache Spark

INF 55x Wensheng Wu

Roadmap

- Spark
 - History, features, RDD, and installation

- RDD operations
 - Creating initial RDDs
 - Actions
 - Transformations
- Examples
- Shuffling in Spark
- Persistence in Spark

History

Apache took over Hadoop

Characteristics of Hadoop

- Acyclic data flow model
 - Data loaded from stable storage (e.g., HDFS)
 - Processed through a sequence of steps
 - Results written to disk

- Batch processing
 - No interactions permitted during processing

Problems

- Ill-suited for iterative algorithms that requires repeated reuse of data
 - E.g., machine learning and data mining algorithms such as k-means, PageRank, logistic regression
- Ill-suited for interactive exploration of data
 - E.g., OLAP on big data

Spark

- Support working sets (of data) through RDD
 - Enabling reuse & fault-tolerance

10x faster than Hadoop in iterative jobs

- Interactively explore 39GB (Wikipedia dump) with sub-second response time
 - Data were distributed over 15 EC2 instances

Spark

- Provides libraries to support
 - embedded use of SQL
 - stream data processing
 - machine learning algorithms
 - processing of graph data

Spark

 Support diverse data sources including HDFS, Cassandra, HBase, and Amazon S3

RDD: Resilient Distributed Dataset

RDD

- Read-only, partitioned collection of records
- Operations performed on partitions in parallel
- Maintain lineage for efficient fault-tolerance
- Methods of creating an RDD
 - from an existing collection (e.g., Python list/tuple)
 - from an external file

RDD: Resilient Distributed Dataset

Distributed

- Data are divided into a number of partitions
- & distributed across nodes of a cluster to be processed in parallel

Resilient

- Spark keeps track of transformations to dataset
- Enable efficient recovery on failure (no need to replicate large amount of data across network)

Architecture

- SparkContext (SC) object coordinates the execution of application in multiple nodes
 - Similar to Job Tracker in Hadoop MapReduce

Components

- Cluster manager
 - Allocate resources across applications
 - Can run Spark's own cluster manager or
 - Apache YARN (Yet Another Resource Negotiator)
- Executors
 - Run tasks & store data

Spark installation

- http://spark.apache.org/downloads.html
 - Choose "pre-built for Hadoop 2.7 and later"
- Direct link (choose version 2.4.5):
 - https://downloads.apache.org/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz

Spark installation

- tar xvf spark-2.4.5-bin-hadoop2.7.tgz
 - This will create "spark-2.4.5-bin-hadoop2.7" folder
 - Containing all Spark stuffs (scripts, programs, libraries, examples, data)

Prerequisites

 Make sure Java is installed & JAVA_HOME is set

Accessing Spark from Python

- Interactive shell:
 - bin/pyspark
 - A SparkContext object sc will be automatically created
- bin/pyspark --master local[4]
 - This starts Spark on local host with 4 threads
 - "--master" specifies the location of Spark master node

Accessing Spark from Python

- Standalone program
 - Executed using spark-submit script
 - E.g., bin/spark-submit wc.py
- You may find many Python Spark examples under
 - examples/src/main/python

wc.py

from pyspark import SparkContext from operator import add

```
sc = SparkContext(appName="inf551")
lines = sc.textFile('hello.txt')
counts = lines.flatMap(lambda x: x.split(' ')) \
       .map(lambda x: (x, 1)) \
       .reduceByKey(add)
output = counts.collect()
for v in output:
  print '%s, %s' % (v[0], v[1])
```

Make sure you have this file under the same directory where wc.py is located

hello.txt

hello world hello this world

Suppress verbose log messages

- cd conf
- cp log4j.properties.template log4j.properties

- edit log4j.properties
 - change first line to:
 - log4j.rootCategory=ERROR, console
 - Or to:
 - log4j.rootCategory=WARN, console

Install Python packages

- Example:
 - sudo pip install numpy

Roadmap

- Spark
 - History, features, RDD, and installation
- RDD operations

- Creating initial RDDs
- Actions
- Transformations
- Examples
- Shuffling in Spark
- Persistence in Spark

Creating an initial RDD

- From an external file
 - textFile(<path-to-file>, [# of partitions])
 - lines = sc.textFile("hello.txt", 2)

- From an existing Python collection (e.g., list, tuple, and dictionary)
 - data = sc.parallelize([1, 2, 3, 4, 5], 2)
 - create two partitions from given list

Creating RDD from an external file

- lines = sc.textFile("hello.txt") # lines is an RDD
 - Return a collection of lines
 - Spark does not check if file exists right away
 - Nor does it read from the file now

Action

- Perform a computation on an RDD
 - Return a final value (not an RDD) to client
- Usually the last operation on an RDD
- E.g., reduce(func)
 - aggregates all elements in the RDD using func
 - returns aggregated value to client

Actions

- getNumPartitions()
- foreachPartition(func)
- collect()
- take(n)
- count(), sum(), max(), min(), mean()
- reduce(func)
- aggregate(zeroVal, seqOp, combOp)
- takeSample(withReplacement, num, [seed])
- countByKey()

getNumPartitions()

How many partitions does an RDD have?

```
E.g., lines.getNumPartitions()=> 1
```

E.g., data.getNumPartitions()=> 2

foreachPartition(func)

What are in each partition?

```
    def printf(iterator): in the partition
    par = list(iterator)
    print 'partition:', par
```

sc.parallelize([1, 2, 3, 4, 5], 2).foreachPartition(printf)

```
=> partition: [3, 4, 5] partition: [1, 2]
```

collect()

- Show the entire content of an RDD
- sc.parallelize([1, 2, 3, 4, 5], 2).collect()
- collect()
 - Fetch the entire RDD as a Python list
 - RDD may be partitioned among multiple nodes
 - collect() brings all partitions to the client's node
- Problem:
 - may run out of memory when the data set is large

take(n)

take(n): collect first n elements from an RDD

- I = [1,2,3,4,5]
- rdd = sc.parallelize(l, 2)
- rdd.take(3)

=> [1,2,3]

count()

- Return the number of elements in the dataset
 - It first counts in each partition
 - Then sum them up in the client
- I = [1,2,3,4,5]
- rdd = sc.parallelize(l, 2)
- rdd.count()

=> 5

sum()

Add up the elements in the dataset

- I = [1,2,3,4,5]
- rdd = sc.parallelize(l)
- rdd.sum()

=> 15

reduce(func)

Use func to aggregate the elements in RDD

- func(a,b):
 - Takes two input arguments, e.g., a and b
 - Outputs a value, e.g., a + b
- func should be commutative and associative
 - Applied to each partition (like a combiner)

reduce(func)

- func is continually applied to elements in RDD
 - -[1, 2, 3]
 - First, compute func(1, 2) => x
 - Then, compute func(x, 3)

• If RDD has only one element x, it outputs x

Similar to reduce() in Python

Recall Python example

def add(a, b): return a + b

reduce(add, [1, 2, 3])⇒ 6

Or simply reduce(lambda a, b: a + b, [1, 2, 3])

Spark example

def add(a, b): return a + b

• data = sc.parallelize([1, 2, 3], 2)

data.reduce(add)

 \Rightarrow 6

Or simply: data.reduce(lambda a, b: a + b)

Implementation of reduce(func)

- Suppose [1, 2, 3, 4, 5] => two partitions:
 - -[1, 2] and [3, 4, 5]
- rdd = sc.parallelize([1, 2, 3, 4, 5], 2)
- Consider reduce(add)

Local reduction

- Apply add to reduce each partition locally
 - Using mapPartition(func) (see transformations)
- Func: apply 'add' function to reduce a partition
 - E.g., using Python reduce function
 - reduce(add, [1, 2]) => 3
 - reduce(add, [3, 4, 5]) => 12

Global reduction

- Collect all local results
 - using collect()
 - => res = [3, 12]
- Use Python reduce to obtain final result
 - reduce(add, res) => reduce(add, [3, 12]) =15

Example: finding largest integers

- data = [5, 4, 4, 1, 2, 3, 3, 1, 2, 5, 4, 5]
- pdata = sc.parallelize(data)

pdata.reduce(lambda x, y: max(x, y))⇒5

Or simply: pdata.reduce(max)

aggregate(zeroValue, seqOp, combOp)

But note reduce here is different from that in Python: zeroValue can have different type than values in p

- For each partition p (values in the partition),
 - "reduce"(seqOp, p, zeroValue)
 - Note if p is empty, it will return zeroValue
- For a list of values, vals, from all partitions, execute:
 - reduce(combOp, vals, zeroValue)

seqOp and combOp

- seqOp(U, v):
 - how to aggregate values v's in the partition into U
 - U: accumulator, initially U = zeroValue
 - Note: U and v may be of different data type
- combOp(U, p):
 - how to combine results from multiple partitions
 - U: accumulator, initially U = zeroValue
 - p: result from a partition

Python reduce() w/o initial value

reduce(func, list)

- If list is empty => ERROR
- Else if list contains a single element v, return v
- Otherwise, set accumulator x = list[0]
 - for each of remaining element list[i]
 - x = func(x, list[i])
 - Return final value of x

Python reduce() with initial value

reduce(func, list, initialValue)

- Same as:
 - reduce(func, [initialValue] + list)
- Note: list can be empty now
 - reduce() will return initialValue when list is empty

reduce(f) vs aggregate(z, f1, f2)

- func in reduce(func) needs to be commutative and associative
 - While f1 and f2 in aggregate(z, f1, f2) do not need to be
 - f1: similar to the combiner function in Hadoop
- Need to specify initial value for aggregate()
 - & it can be of different type than values in RDD

Example

- data = sc.parallelize([1], 2)
- data.foreachPartition(printf)
 - P1: []
 - P2: [1]
- data.aggregate(1, add, add)
 - $-P1 \Rightarrow [1] \Rightarrow after reduction \Rightarrow 1$
 - $-P2 \Rightarrow [1] + [1] = [1, 1] \Rightarrow 2$
 - final: [1] + [1, 2] => [1, 1, 2] => 4

Example

- data.aggregate(2, add, lambda U, v: U * v)
 - -P1 => 2
 - -P2 => 3
 - Final: [2] + [2, 3] => 2 * 2 * 3 = 12 (where [2] is zeroValue, [2,3] is the list of values from partitions)

Implementing count() using aggregate()

data = sc.parallelize([1, 2, 3, 4, 5])

•

Implementing mean() using aggregate()

data = sc.parallelize([1, 2, 3, 4, 5])

•

takeSample(withReplacement, num, [seed])

- Take a random sample of elements in rdd
- withReplacement: True if with replacement
- num: sample size
- optional seed: for random number generator

Useful in many applications, e.g., k-means clustering

Example

data = sc.parallelize(xrange(10))

data.takeSample(False, 2, 1)

-[8,0]

countByKey()

- Only available on RDDs of type (K, V)
 - i.e., RDD that contains a list of key-value pairs,e.g., ('hello', 3)

- Return a hashmap (dictionary in Python) of (K, Int) pairs with count for each unique key in RDD
 - Count for key k = # of tuples whose key is k

Example

- d = [('hello', 1), ('world', 1), ('hello', 2), ('this', 1), ('world',0)]
- data = sc.parallelize(d)

- data.countByKey()-> (!thic!: 1 | !world!: 2 | !hollo!: 2
- => {'this': 1, 'world': 2, 'hello': 2}

Roadmap

- Spark
 - History, features, RDD, and installation
- RDD operations
 - Creating initial RDDs
 - Actions
 - Transformations

- Examples
- Shuffling in Spark
- Persistence in Spark

Transformation

Create a new RDD from an existing one

- E.g., map(func)
 - Applies func to each element of an RDD
 - Returns a new RDD representing mapped result

Lazy transformations

- Spark does not apply them to RDD right away
 - Just remember what needs to be done
 - Perform transformations until an action is applied

Advantage

- Results of transformations pipelined to the action
- No need to return intermediate results to clients
- => more efficient

Avoid re-computation

- However, this means that the same RDD may be recomputed multiple times if it is used in multiple actions
 - => All transformations need to be redone
 - => Consequence: costly
- Solution: allow caching of RDDs in memory
 - May also persist them on disk

Transformations

- map(func)
- filter(func)
- flatMap(func)
- reduceByKey(func, [numTasks])
- groupByKey([numTasks])
- sortByKey([asc], [numTasks])
- distinct([numTasks])
- mapPartitions(func)

Specify # of reduce tasks

Transformations

- join(rdd, [numTasks])
 - leftOuterJoin
 - rightOuterJoin
 - fullOuterJoin
- aggregateByKey(zeroValue, seqOp, combOp, [numTasks])
- mapValues(func)
- flatMapValues(func)
- union/intersection/subtract
- subtractByKey

map(func)

- map(func): Apply a function func to each element in input RDD
 - func returns a value (could be a list)

 Output the new RDD containing the transformed values produced by func

Example

lines = sc.textFile("hello.txt")

lineSplit = lines.map(lambda s: s.split())=> [['hello', 'world'], ['hello', 'this', 'world']]

lineLengths = lines.map(lambda s: len(s))=> [11, 16]

filter(func)

- filter(func): return a new RDD with elements of existing RDD for which func returns true
- func should be a boolean function
- lines1 = lines.filter(lambda line: "this" in line)
 ⇒ ['hello this world']
- What about: lines.filter(lambda s: len(s) > 11)?

Notes

- data = sc.parallelize([1, 2, 3, 4, 5, 1, 3, 5], 2)
- data.map(lambda x: x if x % 2 == 0 else None).collect()

```
Result
```

data.map(f).collect()

Produce the same result as above

Python filter

• I = [1, 2, 3, 4, 5, 1, 3, 5]

filter(lambda x: x % 2 == 0, l)
 - [2, 4]

Spark implementation of filter

- def even(x): return x % 2 == 0
- data.filter(even)

Implemented as follows:

- def processPartition(iterator): return filter(even, iterator)
- data.mapPartitions(processPartition)

mapPartitions(func)

- Apply transformation to a partition
 - input to func is an iterator (over the elements in the partition)
 - func must return an iterable (a list or use yield to return a generator)
- Different from map(func)
 - func in map(func) applies to an element

Implementing aggregate()

- rdd.aggregate((0,0), combFunc, reduFunc)
- def combFunc(U, x): return (U[0] + x, U[1] + 1)
- def reduFunc(U, V): return (U[0] + V[0], U[1] + V[1])
- def sumf(iterator):
 return [reduce(combFunc, iterator, (0, 0))]
- rdd.mapPartitions(sumf).reduce(reduFunc)

Exercise

- Implement count() using mapPartitions() and reduce() only
 - rdd = sc.parallelize([1, 1, 2, 3, 3, 3], 2)
 - rdd.count() => 6

flatMap(func)

- flatMap(func):
 - similar to map
 - But func here **must** return a list (or generator) of elements
 - & flatMap merges these lists into a single list

- lines.flatMap(lambda x: x.split())
- =>rdd: ['hello', 'world', 'hello', 'this', 'world']

reduceByKey()

- reduceByKey(func)
 - Input: a collection of (k, v) pairs
 - Output: a collection of (k, v') pairs
- v': aggregated value of v's in all (k, v) pairs with the same key k by applying func
- func is the aggregation function
 - Similar to func in the reduce(func, list) in Python

reduceByKey(func)

- It first performs partition-site reduction & then global reduction
 - By executing the same reduce function
- In other words, func needs to be commutative and associative
- More details:
 - http://spark.apache.org/docs/latest/api/python/pysp ark.html

Example

rddp = sc.parallelize([(1,2), (1,3), (2,2), (1,4), (3,5), (2, 4), (1, 5), (2, 6)], 2)

- def printf(part):print list(part)
- rddp.foreachPartition(printf)
 - Partition 1: [(1, 2), (1, 3), (2, 2), (1, 4)]
 - Partition 2: [(3, 5), (2, 4), (1, 5), (2, 6)]

Example

- from operator import add
- rddp.reduceByKey(add)

- It will first execute local reduce:
 - Partition 1: [(1, 2), (1, 3), (2, 2), (1, 4)] => (1, 9), (2,2)
 - Partition 2: [(3, 5), (2, 4), (1, 5), (2, 6)] => (3, 5), (1, 5), (2, 10)

Example

Final reduce at reducer side

$$-(1, 9), (1, 5) \Rightarrow (1, 14)$$

$$-(2, 2), (2, 10) => (2, 12)$$

$$-(3,5) => (3,5)$$

- Note that if there are two reducers, then:
 - Some keys, e.g., 1, may be reduced by one reducer
 - Others, e.g., 2 and 3, by the other

reduceByKey() vs. reduce()

- reduceByKey() returns an RDD
 - Reduce values per key

- reduce() returns a non-RDD value
 - Reduce all values!

Exercise

- Implement countByKey using reduceByKey
 - rddp = sc.parallelize([(1,2), (1,3), (2,2), (1,4), (3,5), (2,4), (1,5), (2,6)], 2)
 - $rddp.countByKey() => \{1: 4, 2: 3, 3: 1\}$

aggregateByKey

- aggregateByKey(zeroValue, combOp, reduOp)
 - Input RDD: a list of (k, v) pairs
 - Aggregate values for each key
- Return a value U for each key
 - Note that U may be a tuple
 - zeroValue: initial value for U
 - combOp(U, v): (function for) local reduction
 - reduOp(U1, U2): global reduction

Computing group averages

- rdd1 = rddp.aggregateByKey((0,0), lambda
 U,v: (U[0] + v, U[1] + 1), lambda U1,U2: (U1[0] + U2[0], U1[1] + U2[1]))
 [(2, (12, 3)), (1, (14, 4)), (3, (5, 1))]
- rdd1.map(lambda (x, (y, z)): (x, float(y)/z))
 [(2, 4.0), (1, 3.5), (3, 5.0)]

Example: aggregateByKey

data = sc.parallelize([(1, 1), (1,2), (1,3)], 2)

data.foreachPartition(printf)

```
-[(1, 1)]
```

$$-[(1, 2), (1, 3)]$$

data.aggregateByKey(1, add, add).collect()

$$-[(1, 8)]$$

Compared with aggregate()

• data = sc.parallelize([1, 2, 3], 2)

- data.foreachPartition(printf)
 - -[1]
 - -[2,3]
- data.aggregate(1, add, add)
 - **-**9

aggregateByKey vs. aggregate

- zeroValue in aggregateByKey
 - Used only combOp (i.e., reduction within a partition)
- zeroValue in aggregate
 - Used in both combOp and reduOp
 - E.g., data.aggregate(1, add, add) => 9

aggregateByKey vs. reduceByKey

- aggregateByKey more general than reduceKey
 - Can specify different functions for combiner and reducer
 - can specify initial value for U, the accumulator
 - aggregated value may have different type than that of value v of input RDD
- E.g., in previous example:
 - v is an integer, while U is a tuple (sum, count)

Exercise

Implement reduceByKey(add) using aggregateByKey()

- rddp = sc.parallelize([(1,2), (1,3), (2,2), (1,4), (3,5), (2, 4), (1, 5), (2, 6)], 2)
 - rddp.reduceByKey(add) => [(2, 12), (1, 14), (3, 5)]

groupByKey()

- groupByKey()
 - Similar to reduceByKey(func)
 - But without func & returning (k, Iterable(v)) instead

- rddp.groupByKey()
- \Rightarrow [(2, <iterable>), (1, ...), (3, ...)]

Example

- rddp.groupByKey().map(lambda x: (x[0], list(x[1]))).collect()
 - map converts iterable into a list

=> [(2, [2, 4, 6]), (1, [2, 3, 4, 5]), (3, [5])]

sortByKey(True/False)

- sortByKey([asc])
 - Sort input RDD with (k, v) pairs by key
 - Ascending if asc (a boolean value) is True
- rddp.sortByKey(False).collect()

```
=> [(3, 5), (2, 2), (2, 4), (2, 6), (1, 2), (1, 3), (1, 4), (1, 5)]
```

distinct()

Return an RDD with distinct elements of source RDD

- data = [5, 4, 4, 1, 2, 3, 3, 1, 2, 5, 4, 5]
- pdata = sc.parallelize(data, 2)

pdata.distinct().collect()

$$=> [2, 4, 1, 3, 5]$$

Exercise

 Implement distinct() using reduceByKey()/groupByKey()

- rdd = sc.parallelize([3, 1, 2, 3, 1, 3, 3, 2])
- rdd.distinct()

join(rdd)

- rdd1.join(rdd2)
 - Joining tuples of two RDDs on the key
 - rdd1: an RDD containing a list of (k, v)'s
 - rdd2: another RDD containing a list of (k, w)'s
- Output an RDD containing (k, (v, w))'s
 - That is, (k, v) joins with (k, w) => (k, (v, w))

Example

- ds1 = sc.parallelize([(1,2), (2,3)])
- ds2 = sc.parallelize([(2,4), (3,5)])

- ds1.join(ds2)
 - -[(2,(3,4))]

Outer joins

- Also retain dangling tuples
- ds1.leftOuterJoin(ds2)
 - [(1, (2, None)), (2, (3, 4))]
- ds1.rightOuterJoin(ds2)
 - [(2, (3, 4)), (3, (None, 5))]
- ds1.fullOuterJoin(ds2)
 - [(1, (2, None)), (2, (3, 4)), (3, (None, 5))]

mapValues

- mapValues(func)
 - For each key, apply func to each value of the key
- x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])])
- x.mapValues(lambda l: len(l)).collect()
 [('a', 3), ('b', 1)]

flatMapValues(func)

- mapValues part
 - For each key k, apply func to its value, return a list [i1, i2, ...]
- flatMap part
 - flatten the ∫ists into a single list but retain the key
 - => [(k, i1), (k, i2), ..., (k', i1'), (k', i2'), ...]

Example

- rdd = sc.parallelize([(1, "hello world"), (2, "hello this world")])
 - For example, 1 and 2 may be document id's

- rdd2 = rdd.flatMapValues(lambda s: s.split())
 - [(1, 'hello'), (1, 'world'), (2, 'hello'), (2, 'this'), (2, 'world')]

Exercise

 Use mapValues() and flatMap() implement flatMapValues() in the previous slide

union(rdd)

- rdd1.union(rdd2)
 - Returns all elements in rdd1 and rdd2
 - Does not remove duplicates (so bag union)
- rdd1 = sc.parallelize([1, 1, 2, 3, 3, 3], 2)

 2 partitions
- rdd2 = sc.parallelize([1, 2, 2, 5], 2)
- rdd1.union(rdd2)4 partitions
 - -[1, 1, 2, 3, 3, 3, 1, 2, 2, 5]

2 partitions

intersection(rdd)

- rdd1.intersection(rdd2)
 - Returns elements in both rdd1 and rdd2
 - Duplicates will be removed! (so set-semantics)

- rdd1 = sc.parallelize([1, 1, 2, 3, 3, 3])
- rdd2 = sc.parallelize([1, 2, 2, 5])
- rdd1.intersection(rdd2)
 - -[2, 1]

subtract(rdd)

- rdd1.subtract(rdd2)
 - Return values in rdd1 that do not appear in rdd2
 - Note: neither set nor bag semantics!
- rdd1 = sc.parallelize([1, 1, 2, 3, 3, 3])
- rdd2 = sc.parallelize([1, 2, 2, 5])
- rdd1.subtract(rdd2)
 - -[3, 3, 3]
 - Note: 1 not included in result (unlike bag difference)

subtractByKey(rdd)

- rdd1.subtractByKey(rdd2)
 - Return each (key, value) pair in rdd1 that has no pair with matching key in rdd2
- rdd1 = sc.parallelize([1, 1, 2, 3, 3, 3]).map(lambda x: (x, 1))
- rdd2 = sc.parallelize([1, 2, 2, 5]).map(lambda x: (x, 1))
- rdd1.subtractByKey(rdd2)
 - -[(3, 1), (3, 1), (3, 1)]

Roadmap

- Spark
 - History, features, RDD, and installation
- RDD operations
 - Creating initial RDDs
 - Actions
 - Transformations
- Examples

Shuffling in Spark

WordCount

- from operator import add
- lines = sc.textFile("hello.txt")
- counts = lines.flatMap(lambda x: x.split(' ')) \
 .map(lambda x: (x, 1)) \
 .reduceByKey(add)
- counts.collect()

```
=> [(u'this', 1), (u'world', 2), (u'hello', 2)]
```

Word length histogram

long: if > 4 letters

short: otherwise

```
    def myFunc(x):
        if len(x) > 4:
            return ('long', 1)
        else:
            return ('short', 1)
```

Word length histogram

```
sc.textFile("hello.txt") \
      .flatMap(lambda x: x.split(" ")) \
      .map(myFunc) \
      .reduceByKey(add) \
      .collect()
  => [('short', 1), ('long', 4)]
```

Adding ratings for each person

Ratings.txt

```
(patrick, 4)
(matei, 3)
(patrick, 1)
(aaron, 2)
(aaron, 2)
(reynold, 1)
(aaron, 5)
```


(aaron, 9) (patrick, 5)

• • •

Adding ratings for each person

```
sc.textFile("ratings.txt") \
       .map(lambda s: s[1:-1].split(",")) \
       .collect()
                                   Strip off ()
=>
   [[u'patrick', u'4'], [u'matei', u'3'], [u'patrick', u'1'],
   [u'aaron', u'2)'], [u'aaron', u'2'], [u'reynold', u'1'],
   [u'aaron', u'5']]
```

Adding ratings for each person

```
sc.textFile("ratings.txt") \
      .map(lambda s: s[1:-1].split(",")) \
      .map(lambda p: (p[0], int(p[1])))
      .reduceByKey(lambda a, b: a + b) \
      .collect()
=> [(u'patrick', 5), (u'aaron', 9), (u'reynold', 1),
(u'matei', 3)]
```

Execution steps

Note that reduceByKey requires shuffling

Roadmap

- Spark
 - History, features, RDD, and installation
- RDD operations
 - Creating initial RDDs
 - Actions
 - Transformations
- Examples
- Shuffling in Spark

Persistence in Spark

Shuffling

- Data are essentially repartitioned
 - E.g., reduceByKey repartitions the data by key
- A costly operation: a lot of local & network
 I/O's

Another example: sortByKey

- Sampling stage:
 - Sample data to create a range-partitioner
 - Ensure even partitioning
- "Map" stage:
 - Write (sorted) data to destined partition for reduce stage
 Data are shuffled between Map and Reduce stage
- "Reduce" stage:
 - get map output for specific partition
 - Merge the sorted data

Transformations that require shuffling

- reduceByKey(func)
- groupByKey()
- sortByKey([asc])
- distinct()

Transformations that require shuffling

- join(rdd):
 - leftOuterJoin
 - rightOuterJoin
 - fullOuterJoin
- aggregateByKey(zeroValue, seqOp, combOp)
- intersection/subtract
- subtractByKey

Transformations that do not need shuffling

- map(func)
- filter(func)
- flatMap(func)
- mapValues(func)
- union
- mapPartitions(func)

Roadmap

- Spark
 - History, features, RDD, and installation
- RDD operations
 - Creating initial RDDs
 - Actions
 - Transformations
- Examples
- Shuffling in Spark
- Persistence in Spark

RDD persistence

rdd.persist(<storageLevel>)

- Store the content of RDD for later reuse
 - storageLevel specifies where content is stored
 - E.g., in memory (default) or on disk
- rdd.persist() or rdd.cache()
 - Content stored in main memory

RDD persistence

Executed at nodes having partitions of RDD

Avoid re-computation of RDD in reuse

Example

```
    ratings = sc.textFile("ratings.txt") \
        .map(lambda s: s[1:-1].split(",")) \
        .map(lambda p: (p[0], int(p[1]))) \
        .cache()
```

- ratings.reduceByKey(lambda a, b: a + b).collect()
 - ratings RDD will be computed for the first time & result cached

Example

- ratings.countByKey()
 - It will use cached content of "ratings" rdd

Automatic persistence

 Spark <u>automatically persists</u> intermediate data in shuffling operations (e.g., reduceByKey)

This avoids re-computation when node fails

K-means clustering

- Find k clusters in a data set
 - k is pre-determined
- Iterative process
 - Start with initial guess of centers of clusters
 - Repeatedly refine the guess until stable (e.g., centers do not change much)
- Need to use data set at each iteration

K-means clustering

- Assign point p to the closest center c
 - Distance = Euclidean distance between p and c

Re-compute the centers based on assignments

- Coordinates of center of a cluster =
 - Average coordinate of all points in the cluster
 - E.g., (1, 1, 1) (3, 3, 3) => center: <math>(2, 2, 2)

K-means clustering


```
sc = SparkContext(appName="PythonKMeans")
   lines = sc.textFile(sys.argv[1])
   data = lines.map(parseVector).cache()
                                                  Persist data points in memory
   K = int(sys.argv[2])
   convergeDist = float(sys.argv[3])
   kPoints = data.takeSample(False, K, 1)
   tempDist = 1.0
                                                       Initial centers
   while tempDist > convergeDist:
       closest = data.map(
           lambda p: (closestPoint(p, kPoints), (p, 1)))
       pointStats = closest.reduceByKey(
           lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
       newPoints = pointStats.map(
           lambda st: (st[0], st[1][0] / st[1][1])).collect()
New centers
       tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoints)
       for (iK, p) in newPoints:
           kPoints[iK] = p
                                                        Sum of distances
                                                      between new and old
   print("Final centers: " + str(kPoints))
                                                            centers
   sc.stop()
```

Parse input & find closest center

```
def parseVector(line):
    return np.array([float(x) for x in line.split(' ')])

def closestPoint(p, centers):
    bestIndex = 0
    closest = float("+inf")
    for i in range(len(centers)):
        tempDist = np.sum((p - centers[i]) ** 2)
        if tempDist < closest:
            closest = tempDist
            bestIndex = i
    return bestIndex</pre>
```

kmeans-data.txt

- A text file contains the following lines
 - -0.00.000
 - -0.10.10.1
 - -0.20.20.2
 - -9.09.09.0
 - -9.19.19.1
 - -9.29.29.2

ec2-user@ip-172-31-52-194 spark-2.0.1-bin-hadoop2.7]\$ cat kmeans-data.t

Each line is a 3-dimensional data point

Parse & cache the input dataset

"data" RDD is now cached in main memory

```
>>> lines = sc.textFile("kmeans-data.txt")
>>> lines.collect()
[u'0.0 0.0 0.0', u'0.1 0.1 0.1', u'0.2 0.2 0.2', u'9.0 9.0 9.0', u'9.1 9
.1 9.1', u'9.2 9.2 9.2']
>>>
>>> def parseVector(line):
...    return np.array([float(x) for x in line.split(' ')])
...
>>> data = lines.map(parseVector).cache()
>>> data.collect()
[array([ 0.,  0.,  0.]), array([ 0.1,  0.1,  0.1]), array([ 0.2,  0.2,  0.2]), array([ 9.,  9.,  9.]), array([ 9.1,  9.1]), array([ 9.2,  9.2,  9.2])]
```

Generating initial centers

- Recall takeSample() action
 - False: sample without replacement
 - -K = 2

```
>>> kPoints = data.takeSample(False, K, 1)
>>> kPoints
[array([ 0.1,  0.1,  0.1]), array([ 0.2,  0.2,  0.2])]
```

Assign point to its closest center

- Center 0 has points: (0, 0, 0) and (.1, .1, .1)
- Center 1 has the rest: (.2, .2, .2), (.9, .9, .9), ...

Getting statistics for each center

- pointStats has a key-value pair for each center
- Key is center # (0 or 1 for this example)
- Value is a tuple (sum, count)
 - sum = the sum of coordinates over all points in the cluster
 - Count = # of points in the cluster

```
>>> pointStats = closest.reduceByKey(lambda p1_c1, p2_c2: (p1_c1[0] + p2_c2[0], p1_c1[1] + p2_c2[1]))
>>> pointStats.collect()
[(0, (array([ 0.1,  0.1,  0.1]), 2)), (1, (array([ 27.5,  27.5,  27.5]), 4))]
```

Computing coordinates of new centers

- Coordinate = sum of point coordinates/count
 - E.g., center 0: [.1, .1, .1] /2 = [.05, .05, .05]

```
>>> newPoints = pointStats.map(lambda st: (st[0], st[1][0] / st[1][1])).
collect()
>>> newPoints
[(0, array([ 0.05,  0.05,  0.05])), (1, array([ 6.875,  6.875,  6.875]))
]
```

Can use map Values here too:

newPoints1 = pointStats.mapValues(lambda stv: stv[0]/stv[1]).collect()

Distance btw new & old centers

- Old center: [.1, .1, .1] and [.2, .2, .2]
- New center: [.05, .05, .05] and [6.875, 6.875,
 6.875]

- Distance = $(.1-.05)^{2*}3 + (6.875-.2)^{2*}3 \sim 133.67$
 - To be more exact, it is sqrt(133.67) = 11.56

```
>>> tempDist = sum(np.sum((kPoints[iK] - p) ** 2) for (iK, p) in newPoin
ts)
>>> tempDist
133.6743749999994
```

RDD operations

- A complete list:
 - http://spark.apache.org/docs/latest/api/python/pyspark.html

Resources

- Spark programming guide:
 - https://spark.apache.org/docs/latest/
- Lambda, filter, reduce and map:
 - http://www.python-course.eu/lambda.php
- Improving Sort Performance in Apache Spark: It's a Double
 - http://blog.cloudera.com/blog/2015/01/improvingsort-performance-in-apache-spark-its-a-double/

Readings

 Spark: Cluster Computing with Working Sets, 2010.

 Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, 2012.

References

- Functional programming in Python
 - https://docs.python.org/2/howto/functional.html
- Learning Spark by Matei Zaharia, et. Al. O'Reilly, 2015
 - https://www.safaribooksonline.com/library/view/l earning-spark/9781449359034/

References

- Sort-based shuffle implementation
 - https://issues.apache.org/jira/browse/SPARK-2045
- Sort-Based Shuffle in Spark
 - https://issues.apache.org/jira/secure/attachment/12655884/Sort-basedshuffledesign.pdf

References

- Pyspark source code:
 - Path-to-dir\spark-2.1.0-binhadoop2.7\python\pyspark\rdd.py (and others)