6 Limiti

6.1 Intorni

Definizione 6.1.1 (Intorno). Dato $x_0 \in \mathbb{R}$ si dice **intorno** di x_0 un insieme del tipo $(x_0 - \epsilon, x_0 + \epsilon)$ dove $\epsilon \in \mathbb{R}$, $\epsilon \in \mathbb{R}$. Inoltre ϵ si dice raggio dell'intorno

- Un insieme del tipo $[x_0, x_0 + \epsilon]$ si dice **intorno destro** di x_0 .
- Un insieme del tipo $[x_0 \epsilon, x_0]$ si dice **intorno sinistro** di x_0 .

Definizione 6.1.2. Se $x_0 = +\infty$ un intorno di x_0 è un insieme del tipo $(a, +\infty)^5$ dove $a \in \mathbb{R}$

Definizione 6.1.3 (Punto di accumulazione). Dato $A \subset \mathbb{R}$ e $x_0 \in \overline{R}$ x_0 si dice **punto di accumulazione** per A se \forall U intorno di x_0 risulta che $U \cap A \setminus \{x_0\} \neq 0$

Questa definizione vuol dice che "vicino" a x_0 ci sono altri punti di A oltre a x_0 (x_0 potrebbe anche non appartenere ad A).

Esempio 6.1.1. Prendiamo un intervallo A = (2, 3).

Se prendiamo un punto x_0 che appartiene a A, quindi $x_0 \in (a, b)$, allora ogni intorno di x_0 interseca A in infiniti punti, quindi x_0 è un punto di accumulazione di A.

Definizione 6.1.4 (Intorno bucato). Se invece non andiamo a considerare x_0 nel suo intorno si dice *Intorno bucato* e si scrive come $\{x_0 - \epsilon, x_0 + \epsilon\} \setminus \{x_0\}$

Ora andiamo a dimostrare come tutti i punti $[2,3] \in \operatorname{acc}(A)$. Se poniamo per esempio $x_0 = 2$. Se andiamo a prendere un intorno di x_0 nonostante il ϵ possa essere piccolissimo esisteranno sempre infiniti punti nell'intersezione fra U intorno e A ($U \cap A \setminus \{x_0\}$) perché qualsiasi sia l'epsilon $2 + \epsilon$ rientrerà sempre in A.

Questo anche con $x_0 = 3$.

Figure 28: Punto di acc $x_0 = 2$ dell'intervallo A

Note 6.1.1. Nota che oltre a tutto $[2,3] \in A$ non esisto altri punti di accumulazione di un intervallo A.

Definizione 6.1.5 (Punto isolato). Dato un insieme $A, x_0 \in A$ si dice **punto isolato** di A se esiste un U intorno di x_0 tale che $U \cap A = \{x_0\}$

Esempio 6.1.2. Facciamo un osservazione con un intorno spezzato per vedere un caso di punto isolato.

Figure 29: Punto di acc $x_0 = 5$ dell'intervallo C

Se prendiamo un punto $C = (2,3) \cup \{5\}$ non possiamo dire che tutti i punti dell'intervallo C siano punti di accumulazione perché se prendiamo $x_0 = 5$ possono esistere dei casi in cui il suo intorno non interseca C (con U intorno di $x_0 = 5$, $U \cap C \setminus 5 = \emptyset$).

Diciamo quindi che in questo caso acc(c) = [2,3]

Esempio 6.1.3. Esempio in cui verifichiamo come, dato un insieme $D = (3, +\infty)$, sia $+\infty \in acc(D)$. Come prima cosa prendiamo un U intorno di $x_0 = +\infty$. Quindi $U = (a, +\infty)$.

Definiamo ora il punto maggiore fra 3 ed a, $b = \max(3, a)$, questo punto sarà l'estremo sinistro dei punti di accumulazione. Facciamo ora l'intersezione:

$$U \cap D \setminus \{x_0\} = (2, +\infty) \cap (a, +\infty) \setminus +\infty = (b, +\infty) \neq \emptyset.$$

Vediamo dunque che $+\infty$ è un punto i accumulazione di D, quindi $acc(D) = [b, +\infty]$.

 $^{^5(}a,+\infty)$ è una semiretta

Esempio 6.1.4. Esempio prendendo come insieme $E = \mathbb{N}$.

Se osserviamo l'immagine 30 vediamo chiaramente come tutti gli elemento di $\mathbb N$ sia punti isolare e quindi non siano punti di accumulazione. Ma, per l'esempio visto sopra, $+\infty$ è l'unico punto di accumulazione di $\mathbb R$. $\mathrm{Acc}(\mathbb N)=+\infty$.

Figure 30: Insieme \mathbb{N}

Note 6.1.2. Allo stesso modo prendendo in considerazione l'insieme \mathbb{Z} i suoi punti di accumulazione sono $\mathrm{acc}(\mathbb{Z}) = \{-\infty, +\infty\}$

Definizione 6.1.6. Dato un insieme $A \subset \mathbb{R}$, ed un $x_0 \in A$, si dice x_0 punto interno ad A se esiste un U interno di x_0 tale che $U \subset A$. L'insieme dei punti interni si indica con int(A).

Esempio 6.1.5. Dato un A = [3, 5] i punti intesi sono (3,5) e non [3,5] perché se prendiamo $x_0 = 3$ o $x_0 = 5$ essendo che l'intorno di x_0 è $[x_0 - \epsilon, x_0 + \epsilon]$ rimarrà sempre una parte fuori, in particolare quella di sinistra per $x_0 = 3$, e quella di destra per $x_0 = 5$.

6.1.1 Minimi e massimi locali

Definizione 6.1.7 (Minimi e massimi locali e locali stretti). Dato un insieme $A \subset \mathbb{R}$, una funzione $f: A \longrightarrow \mathbb{R}$ ed un punto $x_0 \in A$ si dice che x_0 è:

- Minimo locale (o relativo) se esiste un U intorno di x_0 tale che $f(x) \ge f(x_0) \ \forall \ x \in U \cap A$
- Minimo locale stretto se esiste un U intorno di x_0 tale che $f(x) > f(x_0) \ \forall \ x \in U \cap A \setminus \{x_0\}$
- Massimo locale (o relativo) se esiste un U intorno di x_0 tale che $f(x) \leq f(x_0) \ \forall \ x \in U \cap A$
- Massimo locale stretto se esiste un U intorno di x_0 tale che $f(x) < f(x_0) \, \forall \, x \in U \cap A \setminus \{x_0\}$

Questa definizione vuol dire che se andiamo a prendere un intorno di x_0 , il punto x_0 può essere definito minimo o massimo di quel determinato intorno se è il punto più "in basso" o più "in alto" rispetto a tutti gli altri punti dell'intorno.

(a) Minimo e massimo locale

(b) Minimo e massimo locale stretto

Come si può vedere dalle immagini [31a] [31b] noi andiamo a considerare solo i punti all'interno dell'intorno di x_0 , infatti esisterebbero altri punti esterni a U intorno maggiori o minori, ma non li consideriamo.

Note 6.1.3. Nota che se x_0 è punto di minimo allora è anche punto di minimo locale, qualsiasi sia l'intorno che prendiamo in considerazione.

6.1 Intorni 28

6.2 I limiti

Definizione 6.2.1 (Limite). Dato un $A \subset \mathbb{R}$, una $f : A \longrightarrow \mathbb{R}$, ed un x_0 punto di accumulazione per A, si dice che $l \in \mathbb{R}$ è il limite per x che tende a x_0 di f(x) se \forall V intorno di l, $\exists U$ intorno di x_0 t.c. $x \in U \cap A \setminus \{x_0\} \Longrightarrow f(x) \in V$

Questa definizione dice che un valore l per essere definito come limite di una funzione con x che tende a x_0 bisogna che per qualsiasi intorno che andiamo a prendere di l deve esistere una intorno di x_0 chiamato U tale che, se una x appartiene ad U allora la f(x) apparterrà all'intorno di l.

Se ci rifacciamo alle definizioni di intorno vediamo che $x \in U \cap A \setminus \{x_0\}$ vuol dire che $|x - x_0| < \delta$ e che $f(x) \in V$ vuol dire che $l - \epsilon < f(x_0) < l + \epsilon$.

Questa definizione può essere scritta in altre parole dicendo che:

$$\lim_{x\to x_0} f(x) = l^6 \iff \forall \epsilon > 0 \ \exists \delta > 0 \ \text{tale che} \ x \in A, |x-x_0| < \delta \land x \neq x_0 \Longrightarrow |f(x)-f(x_0)| < \epsilon$$

Esempio 6.2.1. Alcuni esempi di limiti:

- $\lim_{x \to x_0} f(x) = \pm \infty$ $V = (a, \pm \infty)$ $f(x) \in V$ se e solo se f(x) > aIl risultato di questo limite è $\pm \infty$ se $\forall a \in \mathbb{R} \exists \delta > 0$ t.c. $|x - x_0| < \delta, x \in A, x \neq x_0 \Longrightarrow f(x) > a$
- $\lim_{x \to \pm \infty} f(x) = l$ se $l \in \mathbb{R}$ se e solo se $x \to \infty$ Il risultato del limite è un valore appartenete a \mathbb{R} se $\forall \epsilon > a \; \exists a \in \mathbb{R} \; \text{t.c.} \; x > a \Longrightarrow |f(x) - l| < \epsilon$
- $\lim_{x \to +\infty} f(x) = \pm \infty$ se e solo se $\forall a \in \mathbb{R} \exists b \in \mathbb{R} \text{ t.c. } x > b \Longrightarrow f(x) > a$

Teorema 6.2.1 (Unicità dei limiti). Se esiste un limite di $f \operatorname{con} x \to x_0$, questo limite è unico.

6.3 Continuità con i limiti

Rivediamo le definizioni di limiti (con il limite che sia un numero finito) e continuità accanto:

- 1. $\lim_{x\to x_0} f(x) = l \text{ con } x_0 \in A, \ l \in \mathbb{R}$ è vera se e solo se $\forall \epsilon > 0 \ \exists \delta > 0$ t.c. $x \in A, x \neq x_0$ è $|x-x_0| < \delta \Longrightarrow |f(x)-l| < \epsilon$
- 2. f è continua in x_0 se e solo se $\forall \epsilon > 0 \ \exists \delta > 0$ t.c. $|x x_0| < \delta$ con $x \in A \Longrightarrow |f(x) f(x_0)| < \epsilon$

Notiamo subito che fra la definizione (1) e la (2) c'è come unica differenza che nella prima c'è l mentre nella seconda c'è f(x). Possiamo dunque trarre una serie di osservazioni.

Osservazione 6.3.1. Data una funzione f(x) essa è continua in $x_0 \Longrightarrow \lim_{x \to x_0} f(x) = l$

Osservazione 6.3.2. Una funzione è sempre continua nei punti isolati.

Osservazione 6.3.3. Nella definizione di limite non serve che x_0 sia nel dominio di una funzione, basta che sia un punto di accumulazione per il dominio.

Esempio 6.3.1. Esempio di continuità con i limiti:

$$f(x) = \begin{cases} 3 & se \quad x \neq 0 \\ 2 & se \quad x = 0 \end{cases}$$

 $\lim_{x \to 0} f(x) = 3$, senza considerare f in x = 0.

Secondo la definizione di continuità di una funzione vista sopra (dove andiamo a guardare il valore del limite in x_0):

$$|x-x_0| < \delta, x \in A, x \neq x_0 \text{ allora } |f(x)-l| < \epsilon.$$

Se andiamo però a vedere $\lim_{x\to 0} f(x) = 3$ mentre f(0) = 2 e ovviamente $2 \neq 3$ quindi f non è continua in x_0 .

Figure 32: $\lim_{x \to 0} f(x) = 3$

6.2 I limiti 29

⁶La notazione $\lim_{x\to x_0} f(x)$ è quella con cui andiamo a scrivere i limiti e vuol dire limite di f(x) con x che tende a x_0 è uguale a l valore del limite

6.4 Limite destro e sinistro

Definizione 6.4.1 (Limite destro e sinistro). Se dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, un $x_0 \in \mathbb{R}$ (x_0 deve essere un numero finito), ed $f: A \to \mathbb{R}$, allora si dice che $l \in \overline{\mathbb{R}}$ è il limite di f(x) per x che tende a x_0 da **destra** (si scrive come $\lim_{x \to x_0^+} f(x) = l$) se:

$$\forall V \ interno \ di \ l \ \exists \ \delta > 0 \ t.c. \ x_0 < x < x_0 + \delta, \ x \in A \Longrightarrow f(x) \in V$$

Si dice limite **sinistro** (si scrive come $\lim_{x \to x_0^-} f(x) = l$) se:

$$\forall V \ interno \ di \ l \ \exists \ \delta > 0 \ t.c. \ x_0 - \delta < x < x_0, \ x \in A \Longrightarrow f(x) \in V$$

Esempio 6.4.1. Se prendiamo una
$$f: (-\infty, 0) \cup (0, +\infty) \to \mathbb{R}, f(x) = \begin{cases} -1 & se & x < 0 \\ 1 & se & x > 0 \end{cases}$$

Il $\lim_{x\to 0^+} f(x) = 1$ mentre $\lim_{x\to 0^-} f(x) = -1$. Ciò perché andiamo nel caso del limite destro a guardare il valore "alla destra" di 0 e nel limite sinistro il valore "alla sinistra".

Osservazione 6.4.1. $\lim_{x\to x_0^+}=l$ se e solo se $\lim_{x\to x_0^+}=l_1$, $\lim_{x\to x_0^-}=l_2$ e $l_1=l_2$. Cioè per far in modo che il limite di una funzione che tende ad un valore x_0 sia unico bisogna che il limite destre e quello sinistro siano uguali. Nell'esempio precedente infatti possiamo notare che non esiste un unico limite perché i valori del destro e del sinistro sono diversi.

6.5 Limite da sopra e da sotto

Dato un $A \subset \mathbb{R}$, una $f: A \to \mathbb{R}$, ed un $x_0 \in Acc(A)$

Definizione 6.5.1. Si dice che $\lim_{x\to x_0} f(x) = l^+$ (con $l \in \mathbb{R}$) se $\lim_{x\to x_0} f(x) = l$ ed esiste un U intorno di x_0 t.c. $x \in U \cap A \setminus \{x_0\} \Longrightarrow f(x) > l$

Definizione 6.5.2. Mentre analogamente si dice che $\lim_{x\to x_0} f(x) = l^-$ (con $l \in \mathbb{R}$) se $\lim_{x\to x_0} f(x) = l$ ed esiste un U intorno di x_0 t.c. $x \in U \cap A \setminus \{x_0\} \Longrightarrow f(x) < l$

Queste due definizione vogliono dire che la funzione può tendere ad un valore "da sopra" nel caso del + e "da sotto" nel caso del -.

(a) Limite che tende da sopra

(b) Limite che tende sa sotto

Esempio 6.5.1. Un esempio è con $f(x) = \frac{1}{x}$ dove $\lim_{x \to x_0} f(x) = 0^+$

6.6 Permanenza del segno

Teorema 6.6.1 (Permanenza del segno). Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$ se esiste $\lim_{x \to x_0} f(x) = l$, dove $l \in \mathbb{R}$ e $l \neq 0$ allora esiste un intorno U di x_0 t.c se $x \in U \cap A \setminus \{x_0\}$ allora f(x) ha lo stesso segno di l.

Esempio 6.6.1.
$$f:(0,+\infty)\to \mathbb{R}$$
 $f(x)=\frac{1}{x}$ $\lim_{x\to 0^+}f(x)=+\infty$

Quindi visto che $+\infty > 0$ se prendiamo un intorno di x_0 qualsiasi f(x) con x appartenente all'intersezione fra il dominio e l'intorno (escluso x_0) tornerà che f(x) > 0.

6.7 Non esistenza di un limite

Ci sono casistiche di funzioni nel quale un limite non esiste, e quindi no può essere calcolato. Per verificare ciò vediamo alcuni esempi.

Esempio 6.7.1. $\lim_{x\to x_0} \sin(x)$ Non esiste. Vediamo perché.

Figure 34: Limite che non esiste

Supponiamo per assurdo che:

 $\lim_{x \to \infty} \sin(x) = l$

⁷Prendiamo ora un valore $\epsilon < \frac{1}{2}$.

Se esistesse il limite $l \in \mathbb{R}$ allora dovrebbe esistere a>0 t.c. $x>a \Longrightarrow l-\epsilon < \sin x < l+\epsilon$ ma questo assurdo perché vorrebbe dire che $\sin x$ oscilla con ampiezza minore di 2ϵ mentre $\sin x$ oscilla con ampiezza 2.

Note 6.7.1. Nota che nell'immagine 34 le parti rosse escono dall'intervallo $[l - \epsilon, l + \epsilon]$.

6.8 Continuità destra e sinistra

Definizione 6.8.1 (Continuità destra e sinistra). Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$:

- se $\lim_{x \to x_0^+} f(x) = f(x_0)$ allora si dice che f è **continua a destra** in x_0 .
- $se \lim_{x \to x_0^-} f(x) = f(x_0)$ allora si dice che f è **continua a sinistra** in x_0 .

Esempio 6.8.1. Data una
$$f(x)=$$

$$\begin{cases} 1 & se & x\geq 0\\ -1 & se & x<0 \end{cases}$$
 Il $\lim_{0+} f(x)=1$ mentre $\lim_{0-} f(x)=-1$

Questo esempio ci dice, come spiegato nella definizione sopra (6.8.1), che la funzione è continua a destra nel caso di 0^+ mentre con 0^- la funzione non è continua a sinistra perché il risultato del limite $l \neq f(x_0)$.

Osservazione 6.8.1. Nel esempio sopra possiamo vedere che la funzione è continua in x_0^+ ma non in x_0^- . Sin può osservare infatti come una funzione f è continua in un punto x_0 se e solo se è continua sia a destra che ha sinistra, perché ciò vorrebbe dire che entrambi i limiti, quello da x_0^- e x_0^+ , avrebbero uno stesso risultato:

$$\lim_{x \to x_0^+} f(x) = l_1 \quad \lim_{x \to x_0^-} f(x) = l_2 \quad l_1 = l_2 = f(x_0)$$

6.9 Teorema di confronto

Teorema 6.9.1 (Teorema di confronto). Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(x)$, e due funzioni $f, g: A \to \mathbb{R}$. Se esiste un $\lim_{x \to x_0} f(x) = l_1$ e $\lim_{x \to x_0} g(x) = l_2$ e se esiste un U intorno di x_0 t.c. $x \in U \cap A \setminus \{x_0\}$ e $f(x) \leq g(x)$ allora $l_1 \leq l_2$.

Questo teorema in maniera sintetica dice che se una funzione "sta sotto" l'altra a sua volta anche il limite della prima starà sotto il secondo, detto in altre parole la disuguaglianza passa ai limiti:

Se
$$f(x) \leq g(x)$$
 allora $\lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$

Osservazione 6.9.1. Se però esiste f(x) < g(x) non potrei dire che $\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$. Perché:

⁷Ricorda che per la definizione di limite la f(x) deve essere compresa fra $f(x_0) + \epsilon$ e $f(x_0) - \epsilon$ qualsiasi sia il valore di ϵ

Se prendiamo come esempio due funzioni una $f(x) = -\frac{1}{x}$ e una $g(x) = \frac{1}{x}$ vediamo che f(x) < g(x) ma se calcoliamo i limiti $\lim_{x \to x_0} f(x) = 0$ e $\lim_{x \to x_0} g(x) = 0$ e quindi i limiti sono uguali. Possiamo dunque dire che le disuguaglianze passano al limite ma diventano sempre deboli:

Se
$$f(x) < g(x)$$
 allora $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$

6.10 Teorema somma e prodotto

Teorema 6.10.1 (Teorema somma e prodotto). Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, e due funzioni $f, g: A \to \mathbb{R}$. Supponiamo che esistano i limiti $\lim_{x \to x_0} f(x) = l_1$ e $\lim_{x \to x_0} g(x) = l_2$ con $l_1, l_2 \in \overline{\mathbb{R}}$.

- Se ha senso $l_1 + l_2$ allora esiste $\lim_{x \to x_0} (f + g)(x) = l_1 + l_2$.
- Se ha senso $l_1 \cdot l_2$ allora esiste $\lim_{x \to x_0} (f+g)(x) = l_1 \cdot l_2$.

Note 6.10.1. Sono esclusi i casi $l_1 = +\infty$ e $l_2 = -\infty$ (o viceversa) per il prodotto. Sono invece esclusi i casi $l_1 = 0$ e $l_2 = \pm \infty$ (o viceversa) per la somma. Questi casistiche sono dette indeterminate e non possono essere calcolate in maniera diretta.

6.11 Teorema dei carabinieri

Teorema 6.11.1 (Teorema dei carabinieri). Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, e due funzioni $f, g, h : A \to \mathbb{R}$. Se esiste $\lim_{x \to x_0} f(x) = l$ e $\lim_{x \to x_0} h(x) = l$ (i due limiti hanno lo stesso risultato) e se esiste un intorno U di x_0 t.c. $x \in A \cup U \setminus \{x_0\}$, se $f(x) \leq g(x) \leq h(x)$ allora esiste $\lim_{x \to x_0} g(x) = l$.

Il teorema dei carabinieri dice in maniera sintetica che se due funzioni hanno lo stesso limite ed una è inferiore all'altra se esiste una g(x) in mezzo a queste due funzioni avrà lo stesso limite per uno stesso x_0 , quindi dall'esistenza dei limiti di f e h (uguali) deduco l'esistenza del limite di g

Esempio 6.11.1. Facciamo un esempio prendendo $\lim_{x\to +\infty} \frac{2+\sin{(x)}}{x}$. Prendendo due funzioni $f(x)=\frac{1}{x}$ e $h(x)=\frac{3}{x}$ sapiamo che $\frac{1}{x}\leq \frac{2+\sin{(x)}}{x}\leq \frac{3}{x}$. Se poi andiamo a calcolare i limiti per $x\to +\infty$ di f(x) e di h(x) vediamo che $\lim_{x\to +\infty} f(x)=0$ e $\lim_{x\to +\infty} h(x)=0$. Allora per il teorema dei carabinieri $\lim_{x\to +\infty} \frac{2+\sin{(x)}}{x}=0$

Alcune conseguenze del teorema dei carabinieri visto sopra:

Proposizione 6.11.1. Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, e due funzioni $f, g : A \to \mathbb{R}$:

- Se $f
 ilde{e} lim$. inferiormente in intorno di x_0 e $\lim_{x \to x_0} g(x) = +\infty \Longrightarrow \lim_{x \to x_0} (f+g)(x) = +\infty$.
- Se $f
 ilde{e} lim$. superiormente in intorno di x_0 e $\lim_{x \to x_0} g(x) = -\infty \Longrightarrow \lim_{x \to x_0} (f+g)(x) = -\infty$.
- Se $f
 in limitata in un interno di <math>x_0$ e $\lim_{x \to x_0} g(x) = 0 \Longrightarrow \lim_{x \to x_0} (f \cdot g)(x) = 0$.

Esempio 6.11.2. Prendiamo il $\lim_{x\to +\infty} x + \sin(x)$

 $\lim_{x \to +\infty} x = +\infty \qquad \lim_{x \to +\infty} \sin(x) \text{ non esiste.}$

Data l'inesistenza del secondo limite non posso applicare il teorema sul limite della somma ma $\sin(x)$ è limitata inferiormente quindi: Per il teorema dei carabinieri $x-1 \le x+\sin(x) \le x+2$, e visto che $\lim_{x \to +\infty} x-1 = +\infty \text{ e } \lim_{x \to +\infty} x+2 = +\infty \text{ possiamo dire che } \lim_{x \to +\infty} \sin(x) = +\infty$

6.12 Limitatezza funzione con i limiti

Teorema 6.12.1. Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, e $f: A \to \mathbb{R}$. Se esiste $\lim_{x \to x_0} f(x) = l$ e $l \in \mathbb{R}$ (quindi l non è $\pm \infty$) allora f è limitata in un intorno di x_0 cioè $\exists U$ intorno di x_0 e $\exists M \in \mathbb{R}$ con M > 0 t.c. $x \in U \cap A \Longrightarrow |f(x)| \leq M$.

Questo teorema dice che se prendiamo una funzione che ha un limite per $x \to x_0$ che è un valore diverso da $\pm \infty$ e prendiamo un intorno di x_0 esisterà un valore M dove per qualsiasi $x \in U \cap A$ il $|f(x)| \le M$ che corrisponderebbe a $-M \le f(x) \le M$ quindi la funzione sarà limitata nell'intorno selezionato.

Esempio 6.12.1. Se prendiamo $f(x) = \frac{1}{x}$ è limitata in un intorno di $+\infty$ perché $\lim_{x \to x_0} f(x) = 0$.

Definizione 6.12.1. Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, $e \ f : A \to \mathbb{R}$ possiamo dire che:

- Se $\lim_{x\to x_0} f(x) = 0$ allora si dice che f è **infinitesima** per x che tende a x_0 .
- Se $\lim_{x\to x_0} f(x) = +\infty$ allora si dice che f è diverge positivamente per x che tende a x_0 .
- Se $\lim_{x\to x_0} f(x) = -\infty$ allora si dice che f è diverge negativamente per x che tende a x_0 .
- $Se \lim_{x \to x_0} f(x) = l$ ed $l \in \mathbb{R}$ (l è finito) allora si dice che f è **converge** in l per x che tende a x_0 .

6.13 Forme indeterminate

[1]
$$(+\infty) + (-\infty)$$
 [2] $(-\infty) + (+\infty)$ [3] $0 \cdot (\pm \infty)$
[4] $(\pm \infty)^0$ [5] $(0^+)^0$ [6] $(1)^{\pm \infty}$

Table 5: Forme indeterminate

Dimotrazione 6.13.1. Dimostriamo come la forma [1] e la [2] siano indeterminate (facciamo un esempio considerandone una, ma sono equivalente).

Prendiamo un f(x) = 2x e g(x) = -x e facciamo i limiti di entrambi, ed il limite della somma.

$$\lim_{x\to +\infty} f(x) = +\infty \text{ e } \lim_{x\to +\infty} g(x) = -\infty, \text{ la somma } \lim_{x\to +\infty} (f+g)(x) = 2x-x = x = +\infty$$
 In questo cosa il limite di $(+\infty) + (-\infty)$ torna $+\infty$.

Ora prendiamo invece altre due funzioni $f(x) = \frac{x}{2}$ e g(x) = -x e calcoliamo come prima i limiti di entrambi ed il limite della loro somma.

$$\lim_{x\to +\infty} f(x) = +\infty \text{ e} \lim_{x\to +\infty} g(x) = -\infty, \text{ la somma } \lim_{x\to +\infty} (f+g)(x) = (\tfrac{x}{2}-x) = -\tfrac{x}{2} = -\infty$$
 In questo caso invece il limite di $(+\infty) + (-\infty)$ torna $-\infty$.

Alla domanda, quale scegliamo? La risposta è nessuna delle due, infatti non potendo avere un risultato fisso diciamo che questa è una forma indeterminata.

Nota che questa dimostrazione è valida anche per la forma $0 \cdot (\pm \infty)$.

Per le forme [4], [5] e [6] possiamo tramite dei calcoli algebrici spiegarle riconducendoci alle prime 3 forme.

Possiamo infatti vederle come $f(x)^{g(x)} = e^{\log(f(x)^{g(x)})} = e^{g(x) \cdot \log(f(x))}$ e quindi possiamo analizzare i casi in cui $\lim_{x \to x_0} g(x) \cdot \lim(f(x))$ è indeterminato:

- 4. Con $g \to 0$ e $f \to +\infty \Longrightarrow \log(f(x)) \to +\infty = 0 \cdot +\infty$ (quindi $(+\infty)^0$ è indeterminata).
- 5. Con $g \to 0$ e $f \to +0^+ \Longrightarrow \log(f(x)) \to -\infty = 0 \cdot -\infty$ (quindi $(0^+)^0$ è indeterminata).
- 6. Con $g \to \pm \infty$ e $f \to 1 \Longrightarrow \log(f(x)) \to 0 = 0 \cdot \pm \infty$ (quindi $(1)^{\pm \infty}$ è indeterminata).

6.14 Calcolo dei limiti

Proposizione 6.14.1. Dato un $A \subset \mathbb{R}$, un $x_0 \in Acc(A)$, $e \ f : A \to \mathbb{R}$ possiamo vedere che nel calcolare alcuni limiti si verificano delle situazioni ricorrenti:

- $Se \lim_{x \to x_0} f(x) = 0^+ \Longrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = +\infty.$
- $Se \lim_{x \to x_0} f(x) = 0^- \Longrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = -\infty.$
- $Se \lim_{x \to x_0} f(x) = +\infty \Longrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = 0^+$.
- $Se \lim_{x \to x_0} f(x) = -\infty \Longrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = 0^-$.
- $Se \lim_{x \to x_0} f(x) = l \ con \ l \neq 0, \pm \infty \Longrightarrow \lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{l}$.

Note 6.14.1. Nota che se abbiamo $\lim_{x\to x_0} f(x) = 0$ (non 0^+ o 0^-) non si conclude nulla su $\lim_{x\to x_0} \frac{1}{f(x)}$

Proposizione 6.14.2. Dati due valori $a, b \in \overline{\mathbb{R}}$, una $f:(a,b) \to \mathbb{R}$ con f debolmente crescente. Allora esistono $\lim_{x \to a^+} f(x) = \inf(f(x))$ quando $x \in (a,b)$ e $\lim_{x \to b^-} f(x) = \sup(f(x))$ con $x \in (a,b)$. (Analogamente con f debolmente crescente)

Esempio 6.14.1.
$$f:(9,-\infty)\to\mathbb{R}$$
 con $f(x)=-\frac{1}{x}$
Se calcoliamo i limiti viene che $\lim_{x\to 0^+}-\frac{1}{x}=+\infty=\sup(f)$ mentre $\lim_{x\to 0^-}-\frac{1}{x}=0=\inf(f)$

6.14.1 Limiti fondamentali

$\lim_{x \to +\infty} x^n = +\infty$	$\lim_{x \to +\infty} \frac{1}{x^n} = \frac{1}{+\infty} = 0$	$\lim_{x \to +\infty} a^x = +\infty \text{ e } \lim_{x \to -\infty} a^x = 0^+ \text{ se } a \ge 1$
$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x \to -\infty} e^x = 0^+$	$\lim_{x \to +\infty} a^x = 1 \text{ e } \lim_{x \to -\infty} a^x = 1 \text{ se } a = 1$
$\lim_{x \to 0^+} \log(x) = -\infty$	$\lim_{x \to +\infty} \log(x) = +\infty$	$\lim_{x \to +\infty} a^x = 0^+ \text{ e } \lim_{x \to -\infty} a^x = +\infty \text{ se } 0 < a < 1$

Table 6: Limiti fondamentali

Questi limiti scritti sopra sono alcuni dei limiti fondamentali (considera quando c'è n come $n \in \mathbb{N}$)

6.14.2 Limiti di polinomi

Se prendiamo una funzione generale così definitiva:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
 con $a_0, a_1, ..., a_n \in \mathbb{R}$, n è il grado del polinomio $n \in N$ è possibile trovare una standardizzazione per la risoluzione di $\lim_{x \to +\infty} p(x)$

Esempio 6.14.2. Prendiamo in $\lim_{x\to +\infty} 3x^2 - 7x + 1$.

Questa è una forma indeterminata $\lim_{x\to+\infty} 3x^2 - 7x + 1 = +\infty - \infty + 1$, per risolvere si raccogliere:

$$\lim_{x \to +\infty} 3x^2 \left(1 - \frac{7x}{3x^2} + \frac{1}{3x^2}\right) = \lim_{x \to +\infty} +\infty \cdot \left(1 - \frac{7x}{+\infty} + \frac{1}{+\infty}\right) = \lim_{x \to +\infty} +\infty \cdot \left(1 - 0 + 0\right) = +\infty$$

Come regola generale presa la funzione p(x) scritta sopra risolviamo il limite tendente a $\pm \infty$ raccogliendo:

$$\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_n x^n \left(1 + \frac{a_{n-1}}{a_n} \cdot \frac{x^{n-1}}{x^n} + \dots + \frac{a_1}{a_n} \cdot \frac{x}{x^n} + \frac{a_0}{a_n} \cdot \frac{1}{x^n}\right)$$

Poi visto che i vari $\frac{x^{n-1}}{x^n},\,\frac{x}{x^n}$ ecc. si annullano e quindi:

$$\lim_{x \to \pm \infty} a_n x^4 + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \lim_{x \to \pm \infty} a_n x^n$$

6.14 Calcolo dei limiti 34

6.14.3 Funzioni razionali

Se prendiamo una situazione $\frac{p(x)}{q(x)}$ con p,q due polinomi quindi

$$p(x) = a_n x^n + \dots + a_1 x + a_0$$
 $q(x) = b_m x^m + \dots + b_1 x + b_0$

Possiamo sviluppare il limite seguendo la logica vista nei singoli limiti di polinomi:

$$\lim_{x \to \pm \infty} = \lim_{x \to \pm \infty} \frac{a_n x^n (1 + \frac{a_{n-1}}{a_n} \cdot \frac{x^{n-1}}{x^n} + \ldots + \frac{a_0}{a_n} \cdot \frac{1}{x^n})}{b_n x^n (1 + \frac{b_{n-1}}{b_n} \cdot \frac{x^{n-1}}{x^n} + \ldots + \frac{b_0}{b_n} \cdot \frac{1}{x^n})} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^n}$$

Esempio 6.14.3.
$$\lim_{x \to +\infty} \frac{7x^4 + 5x^2}{-2x^3 + x} = \lim_{x \to +\infty} \frac{7x^4}{-2x^3} = \lim_{x \to +\infty} \frac{7x}{-2} = -\infty$$

6.14.4 Limiti notevoli

In tabella 7 alcuni limiti notevoli, cioè limiti che all'apparenza possono sembrare il risultato ma che in realtà tornano un risultato finito.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1$$

Table 7: Limiti notevoli

Dimotrazione 6.14.1. Dimostriamo $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$.

- 1. $\lim_{x \to 0} \frac{1 \cos(x)}{x^2} = \frac{1}{2} = \frac{(1 \cos(x)) \cdot (1 + \cos(x))}{x^2 \cdot (1 + \cos(x))}$ Moltiplico e divido per $(1 + \cos(x))$.
- 2. $\lim_{x \to 0} \frac{(1 \cos(x)) \cdot (1 + \cos(x))}{x^2 \cdot (1 + \cos(x))} = \frac{1 \cos^2(x)}{x^2 \cdot (1 + \cos(x))} = \frac{\sin^2(x)}{x^2 \cdot (1 + \cos(x))}$ Utilizzo le formule goniometriche.
- 3. $\lim_{x \to 0} \frac{\sin^2(x)}{x^2 \cdot (1 + \cos(x))} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{\sin(x)}{x} \cdot \frac{1}{1 + \cos(x)}$ Spezziamo la divisioni in 3 parti.
- 4. $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ $\lim_{x \to 0} \frac{1}{1 + \cos(x)} = \frac{1}{1 + 1}$ Facciamo il limite dei singoli pezzi.
- 5. $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = 1\cdot 1\cdot \frac{1}{2} = \frac{1}{2}$ Dimostrazione finita.

6.14.5 Logaritmi e potenze

Vediamo una serie di casi di calcolo di limiti con logaritmi e potenze.

• $\lim_{x \to +\infty} \frac{\log(x)}{x} = \frac{+\infty}{+\infty}$ forma indeterminata. Eseguiamo un cambio di variabili con $y = \log(x)$ e $x = e^y$. Se $x \to +\infty \Longrightarrow y = \log(x) \to +\infty$

Torna che
$$\lim_{x \to +\infty} \frac{\log(x)}{x} = \lim_{y \to +\infty} \frac{y}{e^y} = 0$$

 $\lim_{x\to +\infty} \frac{(\log(x))^\beta}{x^\alpha} \text{ con } \alpha,\beta\in\mathbb{R} \text{ e } \alpha,\beta>0$ Possiamo risolvere con un cambio di variabile $y=\log(x),\,x=e^y$ e se $x\to +\infty\Longrightarrow y\to +\infty$

Quindi $\lim_{x \to +\infty} \frac{(\log(x))^{\beta}}{x^{\alpha}} = \lim_{y \to +\infty} \frac{y^{\beta}}{(e^{y})^{\alpha}} = \lim_{y \to +\infty} \frac{y^{\beta}}{e^{y \cdot \alpha}} = 0$ (l'esponenziale cresce più velocemente).

 $\lim_{x\to 0^+} x \log(x) = 0 \cdot (-\infty)$ forma indeterminata. Facciamo il cambio di variabile $y = \log(x)$, e $x = e^y \text{ con } x \to 0^+ \Longrightarrow y \to -\infty$.

6.14 Calcolo dei limiti 35

 $\lim_{x\to 0^+} x \log(x) = \lim_{y\to -\infty} e^y \cdot y = 0^+ \cdot (-\infty) \text{ ancora indeterminata}.$

Possiamo fare un altro cambio di varibile con z=-y, e y=-z e se $y\to-\infty \Longrightarrow z\to+\infty$

$$\lim_{y \to -\infty} e^y \cdot y = \lim_{z \to +\infty} e^{-z} \cdot (-z) = \frac{-z}{e^z} = 0$$

• $\lim_{x \to 0^+} x^{\alpha} \cdot \log(x)$ con $\alpha > 0$.

Cambio di variabile con $y=x^{\alpha},$ e $x=y^{\frac{1}{\alpha}}$ e con $x\to 0^+\Longrightarrow y\to^+$

 $\lim_{x\to 0^+} x^\alpha \cdot \log(x) = \lim_{y\to 0^+} y \cdot \log(y^{\frac{1}{\alpha}}) = \lim_{y\to 0^+} \frac{y}{\alpha} \cdot \log(y) = \frac{1}{\alpha} \lim_{y\to 0^+} y \cdot \log(y) = 0$ per l'esempio sopra.

6.15 Limite della composizione di funzioni

Teorema 6.15.1 (Limite della composizione di funzioni). Dati $A, B \subset \mathbb{R}$, una $f: A \to B$, ed una $g: B \to \mathbb{R}$, un punto $x_0 \in Acc(A)$. Se esiste $\lim_{x \to x_0} f(x) = y_0$ e $y_0 \in Acc(B)$ e $\exists \lim_{x \to x_0} g(y) = l \in \overline{\mathbb{R}}$ e se verifichiamo almeno delle seguenti ipotesi:

- 1. $y_0 \in B$ e g è continua in y_0 .
- 2. Esiste U intorno di x_0 t.c. se $x \in U \cap A \setminus \{x_0\} \Longrightarrow f(x) \neq y_0$

Allora $\lim_{x \to x_0} (g \circ f)(x) = l$. Cioè:

$$\lim_{x \to x_0} (g \circ f)(x) = \lim_{y \to y_0} g(y)$$

Esempio 6.15.1. Facciamo un esempio andando a calcolare il $\lim_{x \to -\infty} \arctan(x^2)$.

Questo limite è una composizione fra $f(x) = x^2$ e $g(y) = \arctan(y)$, che può essere scritto come $(g \circ f)(x) = g(f(x)) = g(x^2) = \arctan(x^2)$.

Noi abbiamo che $x_0 = -\infty$ mentre $t_0 = \lim_{x \to x_0} f(x) = \lim_{x \to -\infty} x^2 = +\infty$.

Vediamo dunque che l'ipotesi (1) non è verificata perché $y_0 = +\infty$ e non appartiene al dominio di g. Mentre possiamo vedere che l'ipotesi (2) è ovviamente verificata perché chiedo che $f(x) \neq y_0$ cioè $f(x) \neq +\infty$ che è ovviamente sempre vero. Possiamo dunque applicare il teorema: $\lim_{y \to y_0} g(y) = \lim_{y \to +\infty} \arctan(y) = \frac{\pi}{2} \Longrightarrow \lim_{x \to -\infty} \arctan(x^2) = \frac{\pi}{2}$

Osservazione 6.15.1. Quello che osserviamo nel teorema del limite della composizione di funzioni + un teorema di cambiamento di variabili. Infatti andando a prendere l'esempio di prima vediamo che:

Da
$$\lim_{x\to +\infty} \arctan(x^2)$$
 cambiamo variabile e ponto $y=x^2, \lim_{y\to +\infty} \arctan(y)=\frac{\pi}{2}$

Nel caso $x \to -\infty$ dobbiamo vedere a quanto tende y, quindi $\lim_{x \to -\infty} = \lim_{x \to -\infty} x^2 = +\infty$

Osservazione 6.15.2. Un altra osservazione è del perché è inserita l'ipotesi (2) nel teorema. Facciamo un esempio per capire il suo scopo.

Prendiamo $f: \mathbb{R} \to \mathbb{R}$, definita come $f(x) = 1 \forall x \in \mathbb{R}$.

Poi prendiamo anche una $g: \mathbb{R} \to \mathbb{R}$ definita come $g(x) = \begin{cases} 3se & y = 1 \\ 5se & y \neq 1 \end{cases}$. Facciamo la composizioni di

queste due funzioni e valutiamo il limite con $x \to 0$.

$$(g \circ f)(x) = g(f(x)) = g(1) = 3 \forall x \in \mathbb{R} \Longrightarrow \lim_{x \to 0} (g \circ f)(x) = 3.$$
 Ma $\lim_{y \to y_0} g(y) = \lim_{y \to 1} g(y) = 5.$ $y_0 = \lim_{x \to x_0} f(x) = \lim_{x \to 0} f(x) = 1.$

Vediamo dunque che $\lim_{x \to x_0} \neq \lim_{y \to y_0} g(y)$.

Ma infatti in questo esempio non abbiamo considerato che non vale l'ipotesi (2) e nemmeno la (1).

6.16 Teorema di Weirstrass generalizzato

Teorema 6.16.1 (Teorema di Weirstrass generalizzato). Siano $a, b \in \mathbb{R}$ e $f:(a, b) \to \mathbb{R}$ continua t.c. $\exists \lim_{x \to a} f(x) = l_1 \in \exists \lim_{x \to b} f(x) = l_2$, valgono i seguenti risultati:

- 1. f è limitata inferiormente $\iff l_1 \neq -\infty$ e $l_2 \neq -\infty$.
- 2. f è limitata superiormente $\iff l_1 \neq +\infty$ e $l_2 \neq +\infty$.
- 3. $f \in \text{limitata} \iff l_1 \in \mathbb{R} \in l_2 \in \mathbb{R}$.
- 4. f ha minimo $\iff \exists x_0 \in (a,b) \text{ t.c. } f(x_0) \leq \min\{l_1,l_2\}.$
- 5. f ha massimo $\iff \exists x_0 \in (a,b) \text{ t.c. } f(x_0) \geq \max\{l_1,l_2\}.$

Osservazione 6.16.1. I risultati precedenti valgono anche nel caso $a \in \mathbb{R}$ e $f: [a,b) \to \mathbb{R}$ oppure $b \in \mathbb{R} \text{ e } f:(a,b] \to \mathbb{R} \text{ (f sempre continua)}.$

Figure 35: Massimi e minimi con Weirstrass

Come possiamo vedere nella figura 35 se la funzione sale sopra il limite maggiore dovrà necessariamente scendere e quindi si andrà a creare un massimo.

Ugualmente se la funzione scende sotto il limite minore vuol dire che poi risalirà creando dunque un minimo.

Esempio 6.16.1. Prendiamo $f(x) = \frac{1}{x-x^2}$ definita in $f:(0,1) \to \mathbb{R}$ e calcoliamo il limite agli estremi:

$$\lim_{x \to 0^+} \frac{1}{x \cdot (1-x)} = \frac{1}{0^+ \cdot 1} = \frac{1}{0^+} = +\infty \qquad \lim_{x \to 1^-} \frac{1}{x \cdot (1-x)} = \frac{1}{1 \cdot (1-1)} = \frac{1}{1 \cdot 0^+} = \frac{1}{0^+} = +\infty$$

In questo caso per il teorema visto la funzione f(x) ha minimo.

Esempio 6.16.2. Con
$$f(x) = \frac{x^2 + x|x| + x}{1 + x^2}$$
 che va da $f : \mathbb{R} \to \mathbb{R}$ verifichiamo se c'è massimo e o minimo.
$$f(x) = \begin{cases} \frac{2x^2 + x}{1 + x^2} & \text{se } x \ge 0 \\ \frac{x}{1 + x^2} & \text{se } x < 0 \end{cases} \quad \lim_{x \to +\infty} \frac{x^2 + x|x| + x}{1 + x^2} = 2 \quad \lim_{x \to -\infty} \frac{x^2 + x|x| + x}{1 + x^2} = 0$$

Quello che ci dobbiamo domandare è se $\exists x_0$ t.c. $f(x) \le 0$ e o $f(x) \ge 2$.

Se $x < 0 \Longrightarrow f(x) = \frac{2x^2 + x}{1 + x^2} < 0 \forall x < 0$ quindi f ha minimo. Mentre se $x \ge 0 \Longrightarrow f(x) = \frac{x}{1 + x^2} \ge 0 \Longrightarrow 2x^2 + x \ge 2 + 2x^2 \Longrightarrow x \ge 2$ quindi f ha anche massimo.