Modelo Examen - TUP

Enunciado del ejercicio:

Realizar un programa que permita:

- 1. Cargar una matriz de números decimales (double) A de tamaño MXN y mostrar los datos cargados. El tamaño de la matriz debe ser solicitado e ingresado por el usuario, indicando un valor entero para las filas y un valor entero para las columnas, el valor mínimo valido debe ser de 3x2, crear la matriz y solicitar los valores numéricos para cargar de datos en cada posición. (2 ptos)
- 2. Mostrar la matriz resultante por pantalla en formato de matriz (filas y columnas). (0.5 ptos)
- 3. Generar una nueva matriz de N filas por 1 columna que contenga en cada celda de la columna la sumatoria de las celdas de cada una de las filas de la matriz cargada en el punto 1. (2 ptos)
- 4. Mostrar la matriz resultante por pantalla. (0.5 ptos)
- 5. Generar una nueva matriz de tamaño N filas por 2 columnas donde la primer columna contenga los valores calculados en el punto 3 pero ordenados de Mayor a Menor, y en la segunda columna asignar el valor de la fila que poseía originalmente en la matriz del punto 3. (3 ptos)
- 6. Mostrar la matriz resultante por pantalla. (0.5 ptos)
- 7. Finalmente sume los elementos de la columna 1 de la matriz del punto 5 y muestre el resultado de la sumatoria por pantalla. (1.5 pto)

Ejemplo:

1. Cargar una matriz de números decimales (double) A de tamaño MXN y mostrar los datos cargados. El tamaño de la matriz debe ser solicitado e ingresado por el usuario, indicando un valor entero para las filas y un valor entero para las columnas, el valor mínimo valido debe ser de 3x2, crear la matriz y solicitar los valores numéricos para cargar de datos en cada posición. (2 ptos)

"Indique el tamaño de la matriz"

Se ingresa Filas-> 5

Se ingresa Columnas-> 4

"Ingrese los valores"

Se ingresan y se muestra la matriz

2. Mostrar la matriz resultante por pantalla en formato de matriz (filas y columnas). (0.5 ptos)

4	66	78	33
98	65	23	43
12	23	34	56
7	7	6	66
7	66	6	67

3. Generar una nueva matriz de N filas por 1 columna que contenga en cada celda de la columna la sumatoria de las celdas de cada una de las filas de la matriz cargada en el punto 1. (2 ptos)

4+66+78+33 = 181
229
125
86
146

4. Mostrar la matriz resultante por pantalla. (**0.5 ptos**)

	181
	229
	125
	86
Ī	146

5. Generar una nueva matriz de tamaño N filas por 2 columnas donde la primer columna contenga los valores calculados en el punto 3 pero ordenados de Mayor a Menor, y en la segunda columna asignar el valor de la fila que poseía originalmente en la matriz del punto 3. (3 ptos)

229	2
181	1
146	5
125	3
86	4

6. Mostrar la matriz resultante por pantalla. (**0.5 ptos**)

229	2
181	1
146	5
125	3
86	4

7. Finalmente sume los elementos de la columna 1 de la matriz del punto 5 y muestre el resultado de la sumatoria por pantalla. (**1.5 pto**)

229
181
146
125
86

La suma de los elementos es igual a 767