Примеры линейных нормированных пространств функции

 $1)L^p(a,b), 1 \leq p < \infty$ — так обозначается пространство функций, для которых сходится интеграл $\int_a^b |f(x)|^p dx$, норма в этом пространстве определяется

$$||f|| = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

при $p = \infty$

$$||f|| = \sup_{x \in (a,b)} |f(x)|$$

как и для пространств последовательностей наиболее употребительным здесь является $L^2(a,b)$, реже бывают востребованы пространства $L^1(a,b)$ и $L^\infty(a,b)$, остальные пространства шкалы обычно играют вспомогательную роль.

Проверка свойств нормы требуется только для неравенства треугольника Так же как для пространств l^p для $p=1,\;p=\infty$ –неравенства очевидны, для p=2 оно следует из неравенства Коши-Буняковскогою

Для остальных показателей (для пространств l^p и $L^p(a,b)$) нужно усилить неравенство Коши-Буняковского — доказать неравенство Гельдера. В основе доказательства лежит арифметическое неравенство

Пусть p и q вещественные числа, большие единицы и такие, что

$$\frac{1}{p} + \frac{1}{q} = 1$$

Тогда для любых чисел a и b справедливо неравенство

$$|ab| \le \frac{|a|^p}{p} + \frac{|b|^q}{q}.$$

Доказательство.

Рассмотрим вспомогательную функцию $\phi(x) = x^m - mx, x > 0, 0 < m < 1.$

Так как $\phi'(x) = m(x^{m-1} - 1)$, то $\phi(1) \ge \phi(x)$ при всех положительных x.

Последнее неравенство можно переписать в виде $x^m - 1 \le m(x - 1)$.

Положим теперь $m=\frac{1}{p},\,x=\frac{|a|^p}{|b|^q}.$

Тогда
$$|a| \cdot |b|^{-q/p} - 1 \le \frac{|a|^p |b|^{-q} - 1}{p}$$
.

Если домножить неравенство на $|b|^q$ и учесть, что $q - \frac{q}{p} = 1$, то получится требуемое неравенство.

Следствие (дискретное неравенство Гельдера)

$$\sum_{n} |x_n y_n| \le \left(\sum_{n} |x_n|^p\right)^{1/p} \left(\sum_{n} |y_n|^q\right)^{1/q}$$

Следствие (неравенство Гельдера для функций)

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{1/p} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{1/q},$$

здесь $f \in L^p(a,b)$ и $g \in L^q(a,b)$.

Доказательство обоих неравенств приведено в методичке. Оно легко сводится к доказанному арифметическому неравенству.

Еще один важный пример – пространство непрерывных функций на отрезке.

$$C[a,b] = \{f(x) \text{ непрерывные функции на } [a,b], ||f|| = \max\{|f(x)| : a \le x \le b\}\}$$

Проверьте, что это равенство задает норму.

Вернемся к обсуждению фундаментальных последовательностей. Крайне неудобно работать с пространствами, у которых фундаментальная последовательность может не иметь предела в том же пространстве.

Рассмотрим пример. В пространстве C[a,b] можно ввести норму порожденную скалярным произведением из $L^2(a,b)$, при этом возникнут фундаментальные последовательности не сходящиеся в исходной метрике, но из свойств интеграла Римана нетрудно получить, что пределами в метрике скалярного произведения окажутся функции из $L^2(a,b)$. Не всегда так легко описать пространство фундаментальных последовательностей, но можно показать, что оно всегда образует линейное нормированное пространство, в котором любая фундаментальная последовательность сходится к элементу того же пространства.

Определение

Линейное нормированное пространство называется **полным**, если в нем любая фундаментальная последовательность сходится к элементу того же пространства.

Всякое линейное нормированное пространство можно пополнить. Эта технически сложная процедура состоит в объяснении того, что после пополнения снова получится линейное пространство.

Определение

Линейное нормированное пространство называется **банаховым пространством**, если оно полно

Среди линейных нормированных пространств особенно важны те, норма которых похожа не евклидову, точнее там должна быть определена ортогональность элементов. Это пространства, где задано скалярное произведение, порождающее норму. В общей ситуации скалярное произведение, как и норма, должно определяться аксиоматически.

Определение

Говорят, что в линейном пространстве X задано скалярное произведение, если для любых двух элементов пространства $x, y \in X$ определено комплексное число (x, y), которое называется их скалярным произведением, и при этом выполнены следующие условия:

- 1) (kx, y) = k(x, y);
- 2) $(x_1 + x_2, y) = (x_1, y) + (x_2, y);$ 3) (x, y) = (y, x);
- 4) $(x, x) \ge 0$, причем равенство (x, x) = 0 влечет x = 0.

В любом пространстве со скалярным произведением выполнено неравенство Коши-Буняковского $(x, y)^2 \le (x, x)(y, y)$.

Легко проверить, что скалярное произведение в пространстве l^2 можно задать соотношением

$$(x,y) = \sum_{n} x_n \overline{y_n}$$

Аналогичным образом можно задать скалярное произведение в $L^{2}(a,b)$:

$$(f,g) = \int_{a}^{b} f(x)\overline{g(x)}dx.$$

Скалярное произведение всегда порождает норму по следующему правилу

$$||x||^2 = (x, x).$$

Пространства со скалярным произведением сохраняют еще одно важное свойство евклидовых пространств – равенство параллелограмма

$$2(||x||^2 + ||y||^2) = ||x + y||^2 + ||x - y||^2.$$

Задача

Проверьте, что норма в пространствах l^1 , l^∞ , $L^1(a,b)$, $L^\infty(a,b)$, C[a,b] не может быть задана с помощью скалярного произведения (приведите примеры нарушения равенства параллелограмма).

Определение

Линейное пространство со скалярным произведением называется гильбертовым про-

странством, если оно является полным в метрике порожденной скалярным произведением.

Всюду в дальнейшем мы рассматриваем только полные нормированные пространства.

Возвращаясь к описанию линейных нормированных пространств в целом, следует заметить, что после введения нормы и проверки ее свойств всегда остается вопрос о полноте пространства.

Множества с конечным числом элементов могут образовывать линейное пространство, например, поле вычетов по модулю простого числа, но аппарат функционального анализа ориентирован на бесконечные объекты. При этом невозможно ограничиться грубой градацией, в которой множество может быть либо конечным, либо бесконечным. Необходимость сравнения бесконечных множеств требует дополнительных определений.

Определение

Два множества называются равномощными, если существует функция, взаимно однозначно отображающая одно множество на другое.

Это естественное определение часто приводит к неожиданным, на первый взгляд, результатам.

Примеры

- 1) Множество натуральных чисел N равномощно множеству четных чисел 2N.
- 2) Множество натуральных чисел N равномощно множеству целых чисел Z.
- 3) Множество натуральных чисел N равномощно множеству рациональных чисел Q.

Однако, предположение о том, что всякое множество можно перенумеровать неверно

4) Множество точек отрезка [0,1] имеет большую мощность, чем множество натуральных чисел.

Доказательство имеется в методичке

Несложно показать, что для бесконечного множества множество всех его подмножеств имеет большую мощность, чем исходное множество. Тем самым шкала мощностей не ограничена. Немецкий математик Кантор в конце XIX века впервые обнаружил, что множество натуральных чисел «меньше» множества точек на отрезке. После этого он поставил вопрос о существовании множеств промежуточной мощности между натуральными числами и отрезком.

В прикладных вопросах, связанных с вычислениями, важную роль играет понятие ϵ -сети, позволяющее заменить работу с бесконечным множеством точек рассмотрением специальным образом построенного конечного множества. Однако в бесконечномерном пространстве не может быть конечной ϵ -сети. Некоторой заменой этому понятию для банаховых пространств является понятие всюду плотного множества.

Определение

Подмножество банахова пространства X называется **всюду плотным** в X, если для любого элемента x из X найдется последовательность элементов $\{a_n\}$ из A такая, что $\lim_{n\to\infty} a_n = x$. В этом случае говорят, что множество X является **замыканием** множества A.

Пример

Множество рациональных чисел Q всюду плотно в банаховом пространстве вещественных чисел R.

Для решения многих задач важно гарантировать, что в банаховом пространстве есть счетное всюду плотное подмножество

Определение

Банахово пространство, обладающее счетным всюду плотным подмножеством, называется сепарабельным.

Почти все приведенные примеры – это сепарабельные банаховы пространства. Для доказательства достаточно знать, что

Предложение

Счетное объединение счетных множеств счетно.

Это, противоречащее интуиции утверждение, доказывается по той же схеме, что и доказательство счетности множества рациональных чисел.

Но даже простое, на первый взгляд, пространство может оказаться несепарабельным. Например, L^{∞} , l^{∞}

Доказательство этого утверждения имеется в методичке.