```
In [1]: import pandas as pd
import numpy as np
from sklearn import linear_model
```

```
In [2]: df = pd.read_csv('bedroom.csv')
df
```

Out[2]:

	area	bedrooms	age	price
0	2600.0	3.0	20.0	550000.0
1	3000.0	4.0	15.0	565000.0
2	3200.0	NaN	18.0	610000.0
3	3600.0	3.0	30.0	595000.0
4	4000.0	5.0	8.0	760000.0
5	4100.0	6.0	8.0	810000.0
6	NaN	NaN	NaN	NaN

```
In [4]: newdf=df.drop('price',axis='columns')
    newdf
```

Out[4]:

	area	bedrooms	age
0	2600.0	3.0	20.0
1	3000.0	4.0	15.0
2	3200.0	NaN	18.0
3	3600.0	3.0	30.0
4	4000.0	5.0	8.0
5	4100.0	6.0	8.0
6	NaN	NaN	NaN

```
In [6]: price=df.price
price
```

```
Out[6]: 0 550000.0
1 565000.0
2 610000.0
3 595000.0
4 760000.0
5 810000.0
6 NaN
```

Name: price, dtype: float64

```
In [13]: price.median()
Out[13]: 602500.0
In [14]: price.fillna(price.median())
Out[14]: 0
               550000.0
          1
               565000.0
          2
               610000.0
          3
               595000.0
          4
               760000.0
          5
               810000.0
               602500.0
          Name: price, dtype: float64
In [17]: | newdf.bedrooms.median()
Out[17]: 4.0
          newdf.bedrooms = df.bedrooms.fillna(newdf.bedrooms.median())
In [21]:
          newdf
Out[21]:
               area
                    bedrooms
                              age
           0 2600.0
                         3.0 20.0
             3000.0
                         4.0 15.0
           2 3200.0
                         4.0 18.0
           3 3600.0
                         3.0 30.0
           4 4000.0
                         5.0
                              8.0
           5 4100.0
                         6.0
                              8.0
               NaN
                         4.0 NaN
In [10]:
          newdf.age.median()
```

Out[10]: 16.5

```
In [22]: newdf.age = df.age.fillna(newdf.age.median())
newdf
```

Out[22]:

	area	bedrooms	age
0	2600.0	3.0	20.0
1	3000.0	4.0	15.0
2	3200.0	4.0	18.0
3	3600.0	3.0	30.0
4	4000.0	5.0	8.0
5	4100.0	6.0	8.0
6	NaN	4.0	16.5

```
In [24]: | newdf.area.median()
```

Out[24]: 3400.0

In [25]: newdf.area = df.area.fillna(newdf.area.median())
 newdf

Out[25]:

	area	bedrooms	age
0	2600.0	3.0	20.0
1	3000.0	4.0	15.0
2	3200.0	4.0	18.0
3	3600.0	3.0	30.0
4	4000.0	5.0	8.0
5	4100.0	6.0	8.0
6	3400.0	4.0	16.5

```
In [28]: price.median()
```

Out[28]: 602500.0

In [35]: price=price.fillna(price.median())
price

```
Out[35]: 0 550000.0
```

- 1 565000.0
- 2 610000.0
- 3 595000.0
- 4 760000.0
- 5 810000.0
- 6 602500.0

Name: price, dtype: float64

```
In [37]:    reg = linear_model.LinearRegression()
    reg.fit(newdf,price)

Out[37]:    v LinearRegression
    LinearRegression()

In [38]:    reg.predict(newdf)

Out[38]:    array([511357.12356788, 597599.47604163, 611589.11793099, 592257.78565509, 749906.1499924 , 794354.37961529, 635435.96719673])

In [39]:    reg.score(newdf,price)

Out[39]:    0.9348241332988168

In []:
```