Name: Solutions

Problem 0 (2 points). State the Fundamental Theorem of Arithmetic.

Every integer $n \neq 0, 1, -1$ can be written as a postuct of primes. this factorisation is unique: if $R_1, \dots, P_s, q_1, \dots, q_n$ are primes such that $n = P_1 \dots P_s = q_1 \dots q_n$, then n = s and $q_1 = \pm q_1, \dots, q_n = \pm q_n$, up to possibly relabling the q's.

Problem 1 (4 points). Let a and n be positive integers. Prove that if $[a] = [1] \mod n$ then (a, n) = 1.

By definition, [a] = [1] means that $a = g_n + 1$ for some $g \in \mathbb{Z}$. Suppose d(a) and d(n) then $d(a-g_n) = 1$, implying $d = \pm 1$. Then ± 1 are the only common divisors g(a) and g(a,n) = 1.

Problem 2 (4 points). True or false? Justify your answer with a proof if it is true or a counterexample if it is false.

Given positive integers a and n, if (a, n) = 1, then $[a] = [1] \mod n$.

False. Take a=2 and n=3. We do have (2,3)=1, but $2 \not\equiv 1 \pmod{3}$.