

Machine Learning

Regression

Regression

- Regression refers to supervised learning problems where the target output is one or more continuous values
 - Continuous output values imply that outputs can be interpolated and that they can be (at least partially) ordered
 - Training data: $D = (x^{(i)}, y^{(i)}) : i \in \{1..n\}$
 - The task is to learn a function (hypothesis), h, such that that $h(x^{(j)})$ is a "good" predictor for

Regression

- Regression is often better formulated as a discriminative learning task
 - Continuous output would require learning a conditional probability density function with continuous conditions for the generative scenario
 - For discriminative learning, we explicitly form a representation for the the function h estimating the MLE/MAP value for the input x
 - Lower dimensional function
 - Does not need to represent the full distribution, only the estimate

Linear Regression

- The simplest representation for regression is a linear function with a set of parameters
 - In a linear representation, the function is linear in terms of the function parameters θ but not necessarily in the features of the input x

 $h_{\theta}(x) = \sum_{i=1}^{n} \theta_{i} \phi_{i}(x)$ • A special dase of this is the traditional linear representation in the original data features

$$h_{\theta}(\mathbf{X}) = \theta_0 + \sum_{i \neq j}^m \theta_i \mathbf{X}_j$$
This represents a limit in the original feature space

Linear Regression

Often we will write this in vector/matrix notation

$$h_{\theta}(\mathbf{X}) = \sum_{j} \theta_{j} \phi_{j}(\mathbf{X}) = \theta^{T} \Phi(\mathbf{X})$$

- Since we do not have a probabilistic representation we do need a different performance function
 - Squared error $E(\theta) = \sum_{i=1}^{n} E(\theta, (x^{(i)}, y^{(i)})) = \sum_{i=1}^{n} \frac{1}{2} (h_{\theta}(x^{(i)}) y^{(i)})^{2}$

© Manfred Huber
$$= \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})^{2}$$

Error Minimization

- There are different ways we can minimize an error (or other performance) function
 - Analytic optimization
 - Photogrameters where the derivative is 0
 - Ensure it is a minimum and not a maximum
 - Batch gradient descent

2021

Stochaetichia Erennentia in Er

Linear Regression

Using the Least Square error function we can derive a stochastic gradient descent $\mathfrak{P} \stackrel{\text{ethod}}{=} \partial_{\alpha} \frac{\partial}{\partial \theta} E(\theta, (x^{(i)}, y^{(i)})) = \theta - \alpha \frac{\partial}{\partial \theta} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \\
= \theta - \alpha \frac{1}{2} 2 (h_{\theta}(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta} h_{\theta}(x^{(i)}) = \theta - \alpha (h_{\theta}(x^{(i)}) - y^{(i)}) \frac{\partial}{\partial \theta} \theta^{T} \phi(x^{(i)}) \\
= \theta - \alpha (h_{\theta}(x^{(i)}) - y^{(i)}) \phi(x^{(i)})$

- This is also called the Widrow-Hoff learning rule
- Converting this to batch gradient descent $\theta := \theta \alpha \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) y^{(i)}) \phi(x^{(i)})$

© Manfred Huber 2021

Linear Regression Example

Example from Andrew Ng.

Using simple representation linear in the

features

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
i:	:

Linear Regression Example

Using batch gradient descent

Linear Regression Example

Resulting in a linear predictor

Least Square Error and Maximum Likelihood

- Why is least square a good performance function for Linear regression?
 - Under certain assumption least square for linear regression leads to the maximum likelihood parameters for a linear function
 - Assume that the real function is linear with noise $\mathbf{y}^{(i)} = \boldsymbol{\theta}^T \phi(\mathbf{x}^{(i)}) + \boldsymbol{\varepsilon}^{(i)}$
 - Assume that the noise is normally distributed $\varepsilon^{(i)} \sim N(0,\sigma^2)$

Least Square Error and Maximum Likelihood

Under these assumptions we can express the likelihood of the parameters

$$L(\theta) = p_{\theta}(y|X) = \prod_{i=1}^{n} p_{\theta}(y^{(i)}|X^{(i)})$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(y^{(i)} - \theta^{T} \phi(x^{(i)})\right)^{2}}{2\sigma^{2}}}$$
• Converting this to log likelihood

$$\log L(\theta) = \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(y^{(i)} - \theta^{T} \phi(x^{(i)})\right)^{2}}{2\sigma^{2}}} \right)$$

$$= n \log \frac{1}{\sqrt{2\pi\sigma}} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^T \phi(x^{(i)}))^2$$
Maximum likelihood is the same as least squares

2021

 To simplify notation we convert data and target values into matrices

$$\Phi(X) = \begin{pmatrix} \phi_{1}(X^{(1)}) & \phi_{2}(X^{(1)}) & \phi_{3}(X^{(1)}) & \cdots & \phi_{m}(X^{(1)}) \\ \phi_{1}(X^{(2)}) & \phi_{2}(X^{(2)}) & \phi_{3}(X^{(2)}) & \cdots & \phi_{m}(X^{(2)}) \\ \phi_{1}(X^{(3)}) & \phi_{2}(X^{(3)}) & \phi_{3}(X^{(3)}) & \cdots & \phi_{m}(X^{(3)}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \phi_{1}(X^{(n)}) & \phi_{2}(X^{(n)}) & \phi_{3}(X^{(n)}) & \cdots & \phi_{m}(X^{(n)}) \end{pmatrix} ; Y = \begin{pmatrix} Y^{(1)^{T}} \\ Y^{(2)^{T}} \\ Y^{(2)^{T}} \\ \vdots \\ Y^{(n)^{T}} \end{pmatrix}$$

 Using this the vector of predicted values h(X) can be computed as

$$h(X) = \Phi(X)\theta$$

The squared error function can then be rewritten as

$$E(\theta) = \frac{1}{2} (h(X) - Y)^{T} (h(X) - Y)$$

- To optimize we have to calculate the derivative
 - Derivative of a matrix is the matrix of its partial derivatives with respect to all the parameters

This is also called its Jacobian
$$\frac{\partial E}{\partial \theta_{1,1}}$$
 \cdots $\frac{\partial E}{\partial \theta_{1,k}}$

$$\nabla_{\theta} E(\theta) = \begin{array}{ccc} & \vdots & \ddots & \vdots \\ & \frac{\partial E}{\partial \theta_{m1}} & \cdots & \frac{\partial E}{\partial \theta_{mk}} \end{array}$$

 For linear regression the derivative can be derived

be derived
$$\nabla_{\theta} E(\theta) = \nabla_{\theta} \frac{1}{2} (h(X) - Y)^{T} (h(X) - Y) = \nabla_{\theta} \frac{1}{2} (\Phi(X)\theta - Y)^{T} (\Phi(X)\theta - Y)$$

$$= \Phi(X)^{T} \Phi(X)\theta - \Phi(X)^{T} Y$$

This leads to an analytic solution

$$\Phi(X)^{T}\Phi(X)\theta - \Phi(X)^{T}Y = 0$$

$$\to \Phi(X)^{T}\Phi(X)\theta = \Phi(X)^{T}Y \leftarrow \text{These are the Normal Equations of the Least Squares problem}$$

$$\to \theta = (\Phi(X)^{T}\Phi(X))^{-1}\Phi(X)^{T}Y = \Phi(X)^{T}Y$$

A+ is called the Moore-Penrose Pseudoinverse

- Using Pseudoinverse poses challenges
 - Computation the Pseudoinverse for matrices with a large number of rows can be numerically unstable
 - Pseudoinverses can be ill-conditioned, leading to numerically unstable/incorrect results
 - Results should always be verified
- There are more stable ways to solve this optimization problem
 - E.g. use of extended system and QR factorization
 - Incremental optimization

Linear Regression

- Choosing feature functions $\phi(x)$ allows linear regression to represent non-linear functions
 - Still linear in the learned parameters
 - Can not learn the type of non-linearity (only choose it)
 - Adding many feature functions leads to overfitting

Locally Weighted Linear Regression

- Different ways to increase the types of relations that linear regression can form exist
 - Locally weighted linear regression combines ideas of linear regression with ideas from nonparametric representations
 - Error is weighted squared error where the weight determines influence of a point and is based on $sE(\theta, x^{(i)}, y^{(i)}) = \frac{1}{2} \sum_{i=1}^{n} w^{(i)}(x) \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^{2}$

 Weights are not parameters to be learned but fixed functions of the point for which the error is calculated

Locally Weighted Linear Regression

Common weights are local to the point,

e.g.:
$$(x^{(i)}-x)^2$$

 $w^{(i)}(x)=e^{-\frac{(x^{(i)}-x)^2}{2y^2}}$

- Since weights are positive they can be pulled into the design matrix $\Phi(X)$ and the target output Y
- Can be solved the same way as linear regression once the data point x is known

Locally Weighted Linear Regression

- For each point weights can be computed, reducing it to a weighted least squares problem with fixed weights
 - Corresponds to optimizing a different Error function for each query
- Locally linear regression forms one regression line for each data point, leading to a smooth regression curve using linear regression
 - Can have problems when there is limited data for which the weight function is sufficiently large

Overfitting

- Locally linear regression addresses overfitting by allowing a function to be approximated with fewer features
- Another method to address overfitting is regularization
 - Introduce penalty term for the factor introducing overfitting: complexity of the representation
 - Penalize large coefficients as a measure of complexity
 - L1 regularization: Add penalty $\mathbf{A}_{i}^{j} \| \theta \|_{1}$
 - L2 regularization: Add penalty $\mathbf{A}_{i}^{t} \|\theta\|_{2}$

2021

Linear Regression

- Linear regression is a powerful technique to build Maximum Likelihood predictors for regression problems
 - Has only to be linear in the learning parameters and can thus represent limited non-linear function in terms of the input
 - Choice of feature functions is important for its expressiveness
 - Analytic solution can be computed but is sometimes numerically unstable