## Max Entropy Theorems

## Samuel Epstein

February 17, 2025

**Theorem 1 (Epstein)** Let  $(X \times Y, \mu \times \nu)$  be a product computable measure space. Let  $A : \mathbb{N} \to X$ ,  $B : \mathbb{N} \to Y$  be injective functions with  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . For  $s \in \mathbb{N}$ , m < s, there exists  $2^{s-m}$  indices  $t < 2^s$  with  $\max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < -m + O(\log s)$ .

**Theorem 2 (Epstein)** Let L be the Lebesgue measure over  $\mathbb{R}$ ,  $(\mathcal{X}, \mu)$ ,  $(\mathcal{Y}, \nu)$  be non-atomic computable measure spaces. Let  $A:[0,1] \to \mathcal{X}$  and  $B:[0,1] \to \mathcal{Y}$  be continuous. Let  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . There is a constant c with  $L\{t \in [0,1] : \max\{\mathbf{G}_{\mu}(A(t)), \mathbf{G}_{\nu}(B(t))\} < \log \mu(X) - n\} > 2^{-n-\mathbf{K}(n)-c}$ .

**Theorem 3**  $(\mathcal{X}, \mu)$ ,  $(\mathcal{Y}, \nu)$ , and  $(\mathcal{Z}, \rho)$  be non-atomic computable measure spaces. Let  $A: \mathcal{Z} \to \mathcal{X}$  and  $B: \mathcal{Z} \to \mathcal{Y}$  be continuous. Let  $\mathbf{I}(\langle A, B \rangle : \mathcal{H}) < \infty$ . There is a constant c with  $\rho\{\alpha: \max\{\mathbf{G}_{\mu}(A(\alpha)), \mathbf{G}_{\nu}(B(\alpha))\} < \log \mu(X) - n\} > 2^{-n-\mathbf{K}(n)-c}$ .