Package 'ssdtools'

October 21, 2024

Title Species Sensitivity Distributions

Version 2.1.0

Description Species sensitivity distributions are cumulative probability distributions which are fitted to toxicity concentrations for different species as described by Posthuma et al.(2001) <isbn:9781566705783>. The ssdtools package uses Maximum Likelihood to fit distributions such as the gamma, log-logistic, log-normal and log-normal log-normal mixture. Multiple distributions can be averaged using Akaike Information Criteria. Confidence intervals on hazard concentrations and proportions are produced by parametric bootstrapping.

License Apache License (== 2.0) | file LICENSE

URL https://github.com/bcgov/ssdtools,
 https://bcgov.github.io/ssdtools/

BugReports https://github.com/bcgov/ssdtools/issues

Depends R (>= 4.1)

Imports abind, chk, furrr, generics, ggplot2, glue, goftest, graphics, grid, lifecycle, parallel, plyr, purrr, Rcpp, rlang, scales, ssddata, stats, stringr, tibble, TMB, universals, utils, withr

Suggests actuar, covr, doFuture, dplyr, EnvStats, extraDistr, fitdistrplus, foreach, future, grDevices, knitr, latex2exp, magrittr, mle.tools, patchwork, R.rsp, readr, reshape2, rmarkdown, testthat (>= 3.0.0), tidyr, tidyselect, tinytex, VGAM

LinkingTo Rcpp, RcppEigen, TMB

VignetteBuilder knitr, R.rsp

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

2 Contents

RoxygenNote 7.3.2
NeedsCompilation yes
Author Joe Thorley [aut, cre] (https://orcid.org/0000-0002-7683-4592), Rebecca Fisher [aut], David Fox [aut], Carl Schwarz [aut], Angeline Tillmanns [ctb], Seb Dalgarno [ctb] (https://orcid.org/0000-0002-3658-4517), Kathleen McTavish [ctb], Heather Thompson [ctb], Doug Spry [ctb], Rick van Dam [ctb], Graham Batley [ctb], Tony Bigwood [ctb], Ali Azizishirazi [ctb], Nadine Hussein [ctb] (https://orcid.org/0000-0003-4470-8361), Sarah Lyons [ctb] (https://orcid.org/0000-0002-6745-6796), Stephanie Hazlitt [ctb], Hadley Wickham [ctb], Sergio Ibarra Espinosa [ctb], Andy Teucher [ctb], Emilie Doussantousse [ctb], Nan-Hung Hsieh [ctb], Province of British Columbia [fnd, cph], Environment and Climate Change Canada [fnd, cph], Australian Government Department of Climate Change, Energy, the Environment and Water [fnd, cph]
Maintainer Joe Thorley <joe@poissonconsulting.ca></joe@poissonconsulting.ca>
Repository CRAN
Date/Publication 2024-10-21 13:30:08 UTC
Contents
augment.fitdists

augment.fitdists	4
autoplot.fitdists	5
boron_pred	5
coef.fitdists	6
comma_signif	7
dgompertz	7
dist_data	
dlgumbel	
estimates.fitdists	9
geom_hcintersect	
geom_ssd	
geom_ssdpoint	13
geom_ssdsegment	16

Contents 3

geom_xribbon	18
glance.fitdists	20
is.fitdists	21
is_censored	21
params	22
pgompertz	27
plgumbel	27
predict.fitburrlioz	28
predict.fitdists	29
ggompertz	30
qlgumbel	31
rgompertz	31
rlgumbel	32
scale_colour_ssd	32
ssdtools-ggproto	33
ssd_censor_data	34
ssd_data	34
ssd_dists	35
ssd_dists_all	36
ssd_dists_bcanz	36
ssd_eburrIII3	37
ssd_ecd	38
ssd_ecd_data	39
ssd_exposure	40
ssd_fit_bcanz	41
ssd_fit_burrlioz	41
ssd_fit_dists	42
ssd_gof	44
ssd_hc	45
ssd_hc_bcanz	48
ssd_hc_burrlioz	49
ssd_hp	50
ssd_hp_bcanz	52
ssd_is_censored	53
ssd_label_comma	54
ssd_licensing_md	54
ssd_match_moments	55
ssd_min_pmix	56
ssd_pal	56
ssd_pburrIII3	57
ssd_plot	62
ssd_plot_cdf	64
ssd_plot_cf	65
ssd_plot_data	65
ssd_qburrIII3	67
ssd_rburrIII3	72
 ssd_sort_data	77
ssd wag he	78

4 augment.fitdists

Index		84
	tidy.fitdists	83
	subset.fitdists	82
	stat_ssd	80
	ssd_wqg_burrlioz	79

augment.fitdists

Augmented Data from fitdists Object

Description

Get a tibble of the original data with augmentation.

Usage

```
## S3 method for class 'fitdists' augment(x, ...)
```

Arguments

x The object.

... Unused.

Value

A tibble of the agumented data.

See Also

```
ssd_data()
Other generics: glance.fitdists(), tidy.fitdists()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
augment(fits)</pre>
```

autoplot.fitdists 5

autoplot.fitdists

Plot a fitdists Object

Description

```
A wrapper on ssd_plot_cdf().
```

Usage

```
## S3 method for class 'fitdists'
autoplot(object, ...)
```

Arguments

```
object The object. ... Unused.
```

Value

A ggplot object.

See Also

```
ssd_plot_cdf()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
autoplot(fits)</pre>
```

boron_pred

Model Averaged Predictions for CCME Boron Data

Description

A data frame of the predictions based on 1,000 bootstrap iterations.

Usage

boron_pred

Format

An object of class tbl_df (inherits from tbl, data.frame) with 99 rows and 11 columns.

6 coef.fitdists

Details

```
proportion The proportion of species affected (int).
est The estimated concentration (dbl).
se The standard error of the estimate (dbl).
lcl The lower confidence limit (dbl).
se The upper confidence limit (dbl).
dist The distribution (chr).
```

Examples

```
## Not run:
    fits <- ssd_fit_dists(ssddata::ccme_boron)
    set.seed(99)
    boron_pred <- predict(fits, ci = TRUE)
## End(Not run)
head(boron_pred)</pre>
```

coef.fitdists

Turn a fitdists Object into a Tidy Tibble

Description

```
A wrapper on tidy.fitdists().
```

Usage

```
## S3 method for class 'fitdists'
coef(object, ...)
```

Arguments

```
object The object. ... Unused.
```

See Also

```
tidy.fitdists()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
coef(fits)</pre>
```

comma_signif 7

			٠	_
comma	S1	gn	1	t

Comma and Significance Formatter

Description

Comma and Significance Formatter

Usage

```
comma_signif(x, digits = 3, ..., big.mark = ",")
```

Arguments

x A numeric vector to format.

digits A whole number specifying the number of significant figures.

... Unused.

big.mark A string specifying used between every 3 digits to separate thousands on the

x-axis.

Value

A character vector.

See Also

```
ssd_label_comma()
```

Examples

```
## Not run:
comma_signif(c(0.1, 1, 10, 1000, 10000))
## End(Not run)
```

 ${\tt dgompertz}$

Gompertz Probability Density [Deprecated]

Description

Gompertz Probability Density [Deprecated]

Usage

```
dgompertz(x, llocation = 0, lshape = 0, log = FALSE)
```

8 dist_data

Arguments

x A numeric vector of values.

location location parameter on the log scale.

lshape shape parameter on the log scale.

logical; if TRUE, probabilities p are given as log(p).

Value

A numeric vector.

dist_data

Distribution Data

Description

A data frame of information on the implemented distributions.

Usage

dist_data

Format

An object of class tbl_df (inherits from tbl, data.frame) with 10 rows and 4 columns.

Details

```
dist The distribution (chr).
```

npars The number of parameters (int).

tails Whether the distribution has both tails (flag).

stable Whether the distribution is numerically stable (flag).

bcanz Whether the distribution belongs to the set of distributions approved by BC, Canada, Australia and New Zealand for official guidelines (flag).

See Also

```
Other dists: ssd_dists(), ssd_dists_all()
```

Examples

dist_data

dlgumbel 9

dlgumbel

Log-Gumbel (Inverse Weibull) Probability Density [Deprecated]

Description

Log-Gumbel (Inverse Weibull) Probability Density [Deprecated]

Usage

```
dlgumbel(x, locationlog = 0, scalelog = 1, log = FALSE)
```

Arguments

x A numeric vector of values.

locationlog location on the log scale parameter.

scale log scale parameter.

logical; if TRUE, probabilities p are given as log(p).

Value

A numeric vector.

estimates.fitdists

Estimates for fitdists Object

Description

Gets a named list of the estimated weights and parameters.

Usage

```
## S3 method for class 'fitdists'
estimates(x, all_estimates = FALSE, ...)
```

Arguments

x The object.

all_estimates A flag specifying whether to calculate estimates for all implemented distribu-

tions.

... Unused.

Value

A named list of the estimates.

10 geom_hcintersect

See Also

```
tidy.fitdists(), ssd_match_moments(), ssd_hc() and ssd_plot_cdf()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
estimates(fits)</pre>
```

geom_hcintersect

Species Sensitivity Hazard Concentration Intersection

Description

Plots the intersection between each xintercept and yintercept value.

Usage

```
geom_hcintersect(
  mapping = NULL,
  data = NULL,
    ...,
  xintercept,
  yintercept,
  na.rm = FALSE,
  show.legend = NA
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula $(e.g. \sim head(.x, 10))$.

. . .

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

geom_ssd 11

• Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.

- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

xintercept The x-value for the intersect yintercept The y-value for the intersect.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

See Also

```
ssd_plot_cdf()
Other ggplot: geom_ssdpoint(), geom_ssdsegment(), geom_xribbon(), scale_colour_ssd(),
ssd_pal()
```

Examples

```
ggplot2::ggplot(ssddata::ccme_boron, ggplot2::aes(x = Conc)) +
  geom_ssdpoint() +
  geom_hcintersect(xintercept = 1.5, yintercept = 0.05)
```

geom_ssd

Species Sensitivity Data Points [Deprecated]

Description

```
geom_ssd() has been deprecated for geom_ssdpoint().
```

12 geom_ssd

Usage

```
geom_ssd(
  mapping = NULL,
  data = NULL,
  stat = "ssdpoint",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data. frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).

stat

The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

- A Stat ggproto subclass, for example StatCount.
- A string naming the stat. To give the stat as a string, strip the function name of the stat_prefix. For example, to use stat_count(), give the stat as "count".
- For more information and other ways to specify the stat, see the layer stat documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

geom_ssdpoint 13

. . .

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through
 This can be one of the functions described as key glyphs, to change the
 display of the layer in the legend.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

Examples

```
## Not run:
ggplot2::ggplot(ssddata::ccme_boron, ggplot2::aes(x = Conc)) +
   geom_ssd()
## End(Not run)
```

geom_ssdpoint

Species Sensitivity Data Points

Description

Uses the empirical cumulative distribution to create scatterplot of points x.

14 geom_ssdpoint

Usage

```
geom_ssdpoint(
  mapping = NULL,
  data = NULL,
  stat = "ssdpoint",
  position = "identity",
    ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).

stat

The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

- A Stat ggproto subclass, for example StatCount.
- A string naming the stat. To give the stat as a string, strip the function name of the stat_prefix. For example, to use stat_count(), give the stat as "count".
- For more information and other ways to specify the stat, see the layer stat documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

geom_ssdpoint 15

. . .

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

See Also

```
ssd_plot_cdf()
Other ggplot: geom_hcintersect(), geom_ssdsegment(), geom_xribbon(), scale_colour_ssd(),
ssd_pal()
```

Examples

```
ggplot2::ggplot(ssddata::ccme_boron, ggplot2::aes(x = Conc)) +
  geom_ssdpoint()
```

16 geom_ssdsegment

geom_ssdsegment

Species Sensitivity Censored Segments

Description

Uses the empirical cumulative distribution to draw lines between points x and xend.

Usage

```
geom_ssdsegment(
  mapping = NULL,
  data = NULL,
  stat = "ssdsegment",
  position = "identity",
  ...,
  arrow = NULL,
  arrow.fill = NULL,
  lineend = "butt",
  linejoin = "round",
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. $^{\sim}$ head(.x, 10)).

stat

The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

- A Stat ggproto subclass, for example StatCount.
- A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".

geom_ssdsegment 17

 For more information and other ways to specify the stat, see the layer stat documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

arrow

specification for arrow heads, as created by grid::arrow().

arrow.fill

fill colour to use for the arrow head (if closed). NULL means use colour aesthetic.

lineend

Line end style (round, butt, square).

linejoin

Line join style (round, mitre, bevel).

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

18 geom_xribbon

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

See Also

```
ssd_plot_cdf()
Other ggplot: geom_hcintersect(), geom_ssdpoint(), geom_xribbon(), scale_colour_ssd(),
ssd_pal()
```

Examples

```
ggplot2::ggplot(ssddata::ccme_boron, ggplot2::aes(x = Conc, xend = Conc * 2)) +
  geom_ssdsegment()
```

geom_xribbon

Ribbon on X-Axis

Description

Plots the x interval defined by xmin and xmax.

Usage

```
geom_xribbon(
  mapping = NULL,
  data = NULL,
  stat = "identity",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

geom_xribbon 19

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula $(e.g. \sim head(.x, 10))$.

stat

The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

- A Stat ggproto subclass, for example StatCount.
- A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".
- For more information and other ways to specify the stat, see the layer stat documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer.
 An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

. . .

20 glance.fitdists

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

See Also

```
ssd_plot_cdf()
Other ggplot: geom_hcintersect(), geom_ssdpoint(), geom_ssdsegment(), scale_colour_ssd(),
ssd_pal()
```

Examples

```
gp <- ggplot2::ggplot(boron_pred) +
  geom_xribbon(ggplot2::aes(xmin = lcl, xmax = ucl, y = proportion))</pre>
```

glance.fitdists

Get a tibble summarizing each distribution

Description

Gets a tibble with a single row for each distribution.

Usage

```
## S3 method for class 'fitdists'
glance(x, ...)
```

Arguments

x The object.

.. Unused.

Value

A tidy tibble of the distributions.

See Also

```
ssd_gof()
```

Other generics: augment.fitdists(), tidy.fitdists()

is.fitdists 21

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
glance(fits)</pre>
```

is.fitdists

Is fitdists Object

Description

Tests whether x is a fitdists Object.

Usage

```
is.fitdists(x)
```

Arguments

Х

The object.

Value

A flag specifying whether x is a fitdists Object.

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
is.fitdists(fits)</pre>
```

is_censored

Is Censored [Deprecated]

Description

Deprecated for ssd_is_censored().

Usage

```
is_censored(x)
```

Arguments

Χ

A fitdists object.

Value

A flag indicating if the data is censored.

See Also

ssd_is_censored()

params	Parameter Descriptions for ssdtools Functions	

Description

Parameter Descriptions for ssdtools Functions

Arguments

	Unused.
add_x	The value to add to the label x values (before multiplying by $shift_x$).
all	A flag specifying whether to also return transformed parameters.
all_dists	A flag specifying whether all the named distributions must fit successfully.
at_boundary_ok	A flag specifying whether a model with one or more parameters at the boundary should be considered to have converged (default = FALSE).
average	A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
bcanz	A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
big.mark	A string specifying used between every 3 digits to separate thousands on the x-axis.
breaks	A character vector
bounds	A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values.
chk	A flag specifying whether to check the arguments.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
censoring	A numeric vector of the left and right censoring values.
color	A string of the column in data for the color aesthetic.
computable	A flag specifying whether to only return fits with numerically computable standard errors.
conc	A numeric vector of concentrations to calculate the hazard proportions for.
control	A list of control parameters passed to stats::optim().
data	A data frame.
delta	A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.

digits A whole number specifying the number of significant figures.

dists A character vector of the distribution names.

fitdists An object of class fitdists.

hc A value between 0 and 1 indicating the proportion hazard concentration (or

NULL).

label A string of the column in data with the labels.

left A string of the column in data with the concentrations.

level A number between 0 and 1 of the confidence level of the interval.

linecolor A string of the column in pred to use for the line color.

A string of the column in pred to use for the linetype.

llocation location parameter on the log scale.

location location parameter.

locationlog location on the log scale parameter.

locationlog1 locationlog1 parameter.
locationlog2 locationlog2 parameter.

log logical; if TRUE, probabilities p are given as log(p).log.p logical; if TRUE, probabilities p are given as log(p).

1scale scale parameter on the log scale.
1shape shape parameter on the log scale.
1shape1 shape1 parameter on the log scale.
1shape2 shape2 parameter on the log scale.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

meanlog mean on log scale parameter.
meanlog1 mean on log scale parameter.
meanlog2 mean on log scale parameter.

min_pboot A number between 0 and 1 of the minimum proportion of bootstrap samples that

must successfully fit (return a likelihood) to report the confidence intervals.

min_pmix A number between 0 and 0.5 specifying the minimum proportion in mixture

models.

npars A whole numeric vector specifying which distributions to include based on the

number of parameters.

all_estimates A flag specifying whether to calculate estimates for all implemented distribu-

tions

ci_method A string specifying which method to use for estimating the bootstrap values.

Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the

weighted arithmetic means of the lower and upper confidence limits.

multi_est A flag specifying whether to treat the distributions as constituting a single dis-

tribution (as opposed to taking the mean) when calculating model averaged es-

timates.

na.rm A flag specifying whether to silently remove missing values or remove them

with a warning.

n positive number of observations.

nboot A count of the number of bootstrap samples to use to estimate the confidence

limits. A value of 10,000 is recommended for official guidelines.

nrow A positive whole number of the minimum number of non-missing rows.

nsim A positive whole number of the number of simulations to generate.

object The object.

parametric A flag specifying whether to perform parametric bootstrapping as opposed to

non-parametrically resampling the original data with replacement.

p vector of probabilities.

percent A numeric vector of percent values to estimate hazard concentrations for. Soft-

deprecated for proportion = 0.05.

pmix Proportion mixture parameter.

proportion A numeric vector of proportion values to estimate hazard concentrations for.

pvalue A flag specifying whether to return p-values or the statistics (default) for the

various tests.

pred A data frame of the predictions.

q vector of quantiles.

range_shape1 A numeric vector of length two of the lower and upper bounds for the shape1

parameter.

range_shape2 shape2 parameter.

reweight A flag specifying whether to reweight weights by dividing by the largest weight.

rescale A flag specifying whether to rescale concentration values by dividing by the

geometric mean of the minimum and maximum positive finite values.

ribbon A flag indicating whether to plot the confidence interval as a grey ribbon as

opposed to green solid lines.

right A string of the column in data with the right concentration values.

save_to NULL or a string specifying a directory to save where the bootstrap datasets and

parameter estimates (when successfully converged) to.

samples A flag specfying whether to include a numeric vector of the bootstrap samples

as a list column in the output.

scalescale parameter.scalelog1scalelog1 parameter.scalelog2scalelog2 parameter.

scalelog scale on log scale parameter.

sdlog standard deviation on log scale parameter.

sdlog1	standard deviation on log scale parameter.	
sdlog2	standard deviation on log scale parameter.	
select	A character vector of the distributions to select.	
shape	shape parameter.	
shape1	shape1 parameter.	
shape2	shape2 parameter.	
shift_x	The value to multiply the label x values by (after adding add_x).	
silent	A flag indicating whether fits should fail silently.	
size	A number for the size of the labels.	
suffix	Additional text to display after the number on the y-axis.	
tails	A flag or NULL specifying whether to only include distributions with both tails.	
trans	A string which transformation to use by default "log10".	
weight	A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.	
x	The object.	
xbreaks	The x-axis breaks as one of:	
	NULL for no breaks	
	waiver() for the default breaks	
	A numeric vector of positions	
xintercept	The x-value for the intersect	
xlab	A string of the x-axis label.	
yintercept	The y-value for the intersect.	
ylab	A string of the x-axis label.	
burrIII3.weight		
burrIII3.shape1	weight parameter for the Burr III distribution.	
builitis.snape	shape1 parameter for the Burr III distribution.	
burrIII3.shape2		
	shape2 parameter for the Burr III distribution.	
burrIII3.scale	scale parameter for the Burr III distribution.	
gamma.weight	weight parameter for the gamma distribution.	
gamma.shape	shape parameter for the gamma distribution.	
gamma.scale	scale parameter for the gamma distribution.	
gompertz.weight		
	weight parameter for the Gompertz distribution.	
gompertz.locati	lon location parameter for the Gompertz distribution.	
gomnertz shane	shape parameter for the Gompertz distribution.	
invpareto.weight		
	weight parameter for the inverse Pareto distribution.	

invpareto.shape

shape parameter for the inverse Pareto distribution.

invpareto.scale

scale parameter for the inverse Pareto distribution.

lgumbel.weight weight parameter for the log-Gumbel distribution.

lgumbel.locationlog

location parameter for the log-Gumbel distribution.

lgumbel.scalelog

scale parameter for the log-Gumbel distribution.

llogis.weight weight parameter for the log-logistic distribution.

llogis.locationlog

location parameter for the log-logistic distribution.

llogis.scalelog

scale parameter for the log-logistic distribution.

llogis_llogis.weight

weight parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.locationlog1

locationlog1 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.scalelog1

scalelog1 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.locationlog2

locationlog2 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.scalelog2

scalelog2 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.pmix

pmix parameter for the log-logistic log-logistic mixture distribution.

lnorm.weight weight parameter for the log-normal distribution.

lnorm.meanlog meanlog parameter for the log-normal distribution.

lnorm.sdlog sdlog parameter for the log-normal distribution.

lnorm_lnorm.weight

weight parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog1

meanlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog1

sdlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog2

meanlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog2

sdlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.pmix

pmix parameter for the log-normal log-normal mixture distribution.

weibull.weight weight parameter for the Weibull distribution.

weibull.shape shape parameter for the Weibull distribution.

weibull.scale scale parameter for the Weibull distribution.

pgompertz 27

pgompertz	Cumulative Distribution Function for Gompertz Distribution [Deprecated]
-----------	---

Description

Cumulative Distribution Function for Gompertz Distribution [Deprecated]

Usage

```
pgompertz(q, llocation = 0, lshape = 0, lower.tail = TRUE, log.p = FALSE)
```

Arguments

a	vector of quantiles.
ч	vector or quantities.

location location parameter on the log scale.

lshape shape parameter on the log scale.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

plgumbel Cumulative Distribution Function for Log-Gumbel Distribution [Deprecated]

Description

Cumulative Distribution Function for Log-Gumbel Distribution [Deprecated]

Usage

```
plgumbel(q, locationlog = 0, scalelog = 1, lower.tail = TRUE, log.p = FALSE)
```

Arguments

q vector of quantiles.

locationlog location on the log scale parameter.

scale log scale parameter.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

28 predict.fitburrlioz

predict.fitburrlioz Predict Hazard Concentrations of fitburrlioz Object

Description

A wrapper on ssd_hc() that by default calculates all hazard concentrations from 1 to 99%.

Usage

```
## S3 method for class 'fitburrlioz'
predict(
  object,
  percent,
  proportion = 1:99/100,
  ci = FALSE,
  level = 0.95,
  nboot = 1000,
  min_pboot = 0.95,
  parametric = TRUE,
)
```

Arguments

object	The object.
percent	A numeric vector of percent values to estimate hazard concentrations for. Soft-deprecated for proportion = 0.05 .
proportion	A numeric vector of proportion values to estimate hazard concentrations for.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
level	A number between 0 and 1 of the confidence level of the interval.
nboot	A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
min_pboot	A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
parametric	A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
	Unused.

Details

It is useful for plotting purposes.

See Also

```
ssd_hc() and ssd_plot()
```

predict.fitdists 29

Examples

```
fits <- ssd_fit_burrlioz(ssddata::ccme_boron)
predict(fits)</pre>
```

predict.fitdists

Predict Hazard Concentrations of fitdists Object

Description

A wrapper on ssd_hc() that by default calculates all hazard concentrations from 1 to 99%.

Usage

```
## S3 method for class 'fitdists'
predict(
 object,
 percent,
 proportion = 1:99/100,
  average = TRUE,
  ci = FALSE,
  level = 0.95,
  nboot = 1000,
 min_pboot = 0.95,
 multi_est = TRUE,
 ci_method = "weighted_samples",
  parametric = TRUE,
  delta = 9.21,
  control = NULL,
)
```

Arguments

object	The object.
percent	A numeric vector of percent values to estimate hazard concentrations for. Soft-deprecated for proportion = 0.05 .
proportion	A numeric vector of proportion values to estimate hazard concentrations for.
average	A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
level	A number between 0 and 1 of the confidence level of the interval.
nboot	A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
min_pboot	A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.

30 agompertz

multi_est A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged es-

timates.

ci_method A string specifying which method to use for estimating the bootstrap values.

Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the

weighted arithmetic means of the lower and upper confidence limits.

parametric A flag specifying whether to perform parametric bootstrapping as opposed to

non-parametrically resampling the original data with replacement.

delta A non-negative number specifying the maximum absolute AIC difference cutoff.

Distributions with an absolute AIC difference greater than delta are excluded

from the calculations.

control A list of control parameters passed to stats::optim().

... Unused.

Details

It is useful for plotting purposes.

See Also

```
ssd_hc() and ssd_plot()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
predict(fits)</pre>
```

qgompertz

Quantile Function for Gompertz Distribution [Deprecated]

Description

Quantile Function for Gompertz Distribution [Deprecated]

Usage

```
qgompertz(p, llocation = 0, lshape = 0, lower.tail = TRUE, log.p = FALSE)
```

qlgumbel 31

Arguments

p vector of probabilities.

llocation location parameter on the log scale.

lshape shape parameter on the log scale.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

qlgumbel

Quantile Function for Log-Gumbel Distribution [Deprecated]

Description

Quantile Function for Log-Gumbel Distribution [Deprecated]

Usage

```
qlgumbel(p, locationlog = 0, scalelog = 1, lower.tail = TRUE, log.p = FALSE)
```

Arguments

p vector of probabilities.

locationlog location on the log scale parameter.

scale log scale parameter.

lower.tail logical; if TRUE (default), probabilities are $P[X \le x]$, otherwise, P[X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

rgompertz Random Generation for Gompertz Distribution [Deprecated]

Description

Random Generation for Gompertz Distribution [Deprecated]

Usage

```
rgompertz(n, llocation = 0, lshape = 0)
```

Arguments

positive number of observations.
 llocation location parameter on the log scale.
 lshape shape parameter on the log scale.

32 scale_colour_ssd

rlgumbel

Random Generation for log-Gumbel Distribution [Deprecated]

Description

Random Generation for log-Gumbel Distribution [Deprecated]

Usage

```
rlgumbel(n, locationlog = 0, scalelog = 1)
```

Arguments

n positive number of observations.
locationlog location on the log scale parameter.
scalelog scale on log scale parameter.

scale_colour_ssd

Discrete color-blind scale for SSD Plots

Description

Discrete color-blind scale for SSD Plots

Usage

```
scale_colour_ssd(...)
scale_color_ssd(...)
scale_fill_ssd(...)
```

Arguments

... Arguments passed to ggplot2::discrete_scale().

Functions

- scale_color_ssd(): Discrete color-blind scale for SSD Plots
- scale_fill_ssd(): Discrete color-blind scale for SSD Plots

See Also

```
Other ggplot: geom_hcintersect(), geom_ssdpoint(), geom_ssdsegment(), geom_xribbon(), ssd_pal()
```

ssdtools-ggproto 33

Examples

```
ssd_plot(ssddata::ccme_boron, boron_pred, shape = "Group") +
scale_colour_ssd()
```

ssdtools-ggproto

ggproto Classes for Plotting Species Sensitivity Data and Distributions

Description

ggproto Classes for Plotting Species Sensitivity Data and Distributions

Usage

StatSsdpoint

StatSsdsegment

GeomSsdpoint

GeomSsdsegment

GeomHcintersect

GeomXribbon

Format

An object of class StatSsdpoint (inherits from Stat, ggproto, gg) of length 4.

An object of class StatSsdsegment (inherits from Stat, ggproto, gg) of length 4.

An object of class GeomSsdpoint (inherits from GeomPoint, Geom, ggproto, gg) of length 1.

An object of class GeomSsdsegment (inherits from GeomSegment, Geom, ggproto, gg) of length 1.

An object of class GeomHcintersect (inherits from Geom, ggproto, gg) of length 5.

An object of class GeomXribbon (inherits from Geom, ggproto, gg) of length 6.

See Also

```
ggplot2::ggproto() and ssd_plot_cdf()
```

34 ssd_data

ssd_censor_data

Censor Data

Description

Censor Data

Usage

```
ssd_censor_data(data, left = "Conc", ..., right = left, censoring = c(0, Inf))
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

... Unused.

right A string of the column in data with the right concentration values.

censoring A numeric vector of the left and right censoring values.

Value

A tibble of the censored data.

Examples

```
ssd_censor_data(ssddata::ccme_boron, censoring = c(2.5, Inf))
```

ssd_data

Data from fitdists Object

Description

Get a tibble of the original data.

Usage

```
ssd_data(x)
```

Arguments

Х

The object.

Value

A tibble of the original data.

ssd_dists 35

See Also

```
augment.fitdists(), ssd_ecd_data() and ssd_sort_data()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_data(fits)</pre>
```

ssd_dists

Species Sensitivity Distributions

Description

Gets a character vector of the names of the available distributions.

Usage

```
ssd_dists(bcanz = NULL, tails = NULL, npars = 2:5)
```

Arguments

bcanz	A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
tails	A flag or NULL specifying whether to only include distributions with both tails.
npars	A whole numeric vector specifying which distributions to include based on the number of parameters.

Value

A unique, sorted character vector of the distributions.

See Also

```
Other dists: dist_data, ssd_dists_all()
```

Examples

```
ssd_dists()
ssd_dists(bcanz = TRUE)
ssd_dists(tails = FALSE)
ssd_dists(npars = 5)
```

36 ssd_dists_bcanz

ssd_dists_all

All Species Sensitivity Distributions

Description

Gets a character vector of the names of all the available distributions.

Usage

```
ssd_dists_all()
```

Value

A unique, sorted character vector of the distributions.

See Also

```
Other dists: dist_data, ssd_dists()
```

Examples

```
ssd_dists_all()
```

ssd_dists_bcanz

BCANZ Distributions

Description

Gets a character vector of the names of the distributions adopted by BC, Canada, Australia and New Zealand for official guidelines.

Usage

```
ssd_dists_bcanz(npars = c(2L, 5L))
```

Arguments

npars

A whole numeric vector specifying which distributions to include based on the number of parameters.

Value

A unique, sorted character vector of the distributions.

See Also

```
ssd_dists()
```

ssd_eburrIII3 37

Examples

```
ssd_dists_bcanz()
ssd_dists_bcanz(npars = 2)
```

ssd_eburrIII3

Default Parameter Estimates

Description

Default Parameter Estimates

Usage

```
ssd_eburrIII3()
ssd_egamma()
ssd_egompertz()
ssd_einvpareto()
ssd_elgumbel()
ssd_elgumbel()
ssd_ellogis_llogis()
ssd_ellogis()
ssd_elnorm_lnorm()
ssd_elnorm()
ssd_emulti()
ssd_eweibull()
```

Functions

- ssd_eburrIII3(): Default Parameter Values for BurrIII Distribution
- ssd_egamma(): Default Parameter Values for Gamma Distribution
- ssd_egompertz(): Default Parameter Values for Gompertz Distribution
- ssd_einvpareto(): Default Parameter Values for Inverse Pareto Distribution
- ssd_elgumbel(): Default Parameter Values for Log-Gumbel Distribution
- ssd_elgumbel(): Default Parameter Values for log-Gumbel Distribution

38 ssd_ecd

• ssd_ellogis_llogis(): Default Parameter Values for Log-Logistic/Log-Logistic Mixture Distribution

- ssd_ellogis(): Default Parameter Values for Log-Logistic Distribution
- ssd_elnorm_lnorm(): Default Parameter Values for Log-Normal/Log-Normal Mixture Distribution
- ssd_elnorm(): Default Parameter Values for Log-Normal Distribution
- ssd_emulti(): Default Parameter Values for Multiple Distributions
- ssd_eweibull(): Default Parameter Values for Log-Normal Distribution

See Also

```
ssd_p and ssd_q
```

Examples

```
ssd_eburrIII3()
ssd_egamma()
ssd_egompertz()
ssd_einvpareto()
ssd_einvpareto()
ssd_elgumbel()
ssd_ellogis_llogis()
ssd_ellogis()
ssd_elnorm_lnorm()
ssd_elnorm()
ssd_emulti()
ssd_eweibull()
```

Empirical Cumulative Density

Description

ssd_ecd

Empirical Cumulative Density

```
ssd_ecd(x, ties.method = "first")
```

ssd_ecd_data 39

Arguments

x a numeric, complex, character or logical vector.

ties.method a character string specifying how ties are treated, see 'Details'; can be abbrevi-

ated.

Value

A numeric vector of the empirical cumulative density.

Examples

```
ssd_ecd(1:10)
```

ssd_ecd_data

Empirical Cumulative Density for Species Sensitivity Data

Description

Empirical Cumulative Density for Species Sensitivity Data

Usage

```
ssd_ecd_data(
  data,
  left = "Conc",
  right = left,
  bounds = c(left = 1, right = 1)
)
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

right A string of the column in data with the right concentration values.

bounds A named non-negative numeric vector of the left and right bounds for uncen-

sored missing (0 and Inf) data in terms of the orders of magnitude relative to the

extremes for non-missing values.

Value

A numeric vector of the empirical cumulative density for the rows in data.

See Also

```
ssd_ecd() and ssd_data()
```

40 ssd_exposure

Examples

```
ssd_ecd_data(ssddata::ccme_boron)
```

ssd_exposure

Proportion Exposure

Description

Calculates average proportion exposed based on log-normal distribution of concentrations.

Usage

```
ssd_exposure(x, meanlog = 0, sdlog = 1, nboot = 1000)
```

Arguments

x The object.

meanlog The mean of the exposure concentrations on the log scale.

sdlog The standard deviation of the exposure concentrations on the log scale.

nboot The number of samples to use to calculate the exposure.

Value

The proportion exposed.

```
## Not run:
    fits <- ssd_fit_dists(ssddata::ccme_boron, dists = "lnorm")
    set.seed(10)
    ssd_exposure(fits)
    ssd_exposure(fits, meanlog = 1)
    ssd_exposure(fits, meanlog = 1, sdlog = 1)
## End(Not run)</pre>
```

ssd_fit_bcanz 41

	c · ·	
224	+ 1+	bcanz

Fit BCANZ Distributions

Description

Fits distributions using settings adopted by BC, Canada, Australia and New Zealand for official guidelines.

Usage

```
ssd_fit_bcanz(data, left = "Conc", dists = ssd_dists_bcanz())
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

dists A character vector of the distribution names.

Value

An object of class fitdists.

See Also

```
ssd_fit_dists()
Other BCANZ: ssd_hc_bcanz(), ssd_hp_bcanz()
```

Examples

```
ssd_fit_bcanz(ssddata::ccme_boron)
```

ssd_fit_burrlioz

Fit Burrlioz Distributions

Description

Fits 'burrIII3' distribution. If shape1 parameter is at boundary returns 'lgumbel' (which is equivalent to inverse Weibull). Else if shape2 parameter is at a boundary returns 'invpareto'. Otherwise returns 'burrIII3'

42 ssd_fit_dists

Usage

```
ssd_fit_burrlioz(
  data,
  left = "Conc",
  rescale = FALSE,
  control = list(),
  silent = FALSE
)
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

rescale A flag specifying whether to rescale concentration values by dividing by the

geometric mean of the minimum and maximum positive finite values.

control A list of control parameters passed to stats::optim().

silent A flag indicating whether fits should fail silently.

Value

An object of class fitdists.

See Also

```
ssd_fit_dists()
```

Examples

```
ssd_fit_burrlioz(ssddata::ccme_boron)
```

ssd_fit_dists

Fit Distributions

Description

Fits one or more distributions to species sensitivity data.

```
ssd_fit_dists(
  data,
  left = "Conc",
  right = left,
  weight = NULL,
  dists = ssd_dists_bcanz(),
  nrow = 6L,
```

ssd_fit_dists 43

```
rescale = FALSE,
reweight = FALSE,
computable = FALSE,
at_boundary_ok = TRUE,
all_dists = FALSE,
min_pmix = ssd_min_pmix(nrow(data)),
range_shape1 = c(0.05, 20),
range_shape2 = range_shape1,
control = list(),
silent = FALSE
)
```

Arguments

data	A data frame.
left	A string of the column in data with the concentrations.
right	A string of the column in data with the right concentration values.
weight	A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.
dists	A character vector of the distribution names.
nrow	A positive whole number of the minimum number of non-missing rows.
rescale	A flag specifying whether to rescale concentration values by dividing by the geometric mean of the minimum and maximum positive finite values.
reweight	A flag specifying whether to reweight weights by dividing by the largest weight.
computable	A flag specifying whether to only return fits with numerically computable standard errors.
at_boundary_ok	A flag specifying whether a model with one or more parameters at the boundary should be considered to have converged (default = FALSE).
all_dists	A flag specifying whether all the named distributions must fit successfully.
min_pmix	A number between 0 and 0.5 specifying the minimum proportion in mixture models.
range_shape1	A numeric vector of length two of the lower and upper bounds for the shape1 parameter.
range_shape2	shape2 parameter.
control	A list of control parameters passed to stats::optim().
silent	A flag indicating whether fits should fail silently.

Details

By default the 'gamma', 'lgumbel', 'llogis', 'lnorm', 'lnorm_lnorm' and 'weibull' distributions are fitted to the data. For a complete list of the distributions that are currently implemented in ssdtools see ssd_dists_all().

If weight specifies a column in the data frame with positive numbers, weighted estimation occurs. However, currently only the resultant parameter estimates are available.

If the right argument is different to the left argument then the data are considered to be censored.

ssd_gof

Value

An object of class fitdists.

See Also

```
ssd_plot_cdf() and ssd_hc()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
fits
ssd_plot_cdf(fits)
ssd_hc(fits)</pre>
```

ssd_gof

Goodness of Fit

Description

Returns a tbl data frame with the following columns

```
dist The distribution name (chr)
```

aic Akaike's Information Criterion (dbl)

bic Bayesian Information Criterion (dbl)

and if the data are non-censored

aicc Akaike's Information Criterion corrected for sample size (dbl)

and if there are 8 or more samples

ad Anderson-Darling statistic (dbl)

ks Kolmogorov-Smirnov statistic (dbl)

cvm Cramer-von Mises statistic (dbl)

In the case of an object of class fitdists the function also returns

delta The Information Criterion differences (dbl)

weight The Information Criterion weights (dbl)

where delta and weight are based on aic for censored data and aicc for non-censored data.

```
ssd_gof(x, ...)
## S3 method for class 'fitdists'
ssd_gof(x, pvalue = FALSE, ...)
```

ssd_hc 45

Arguments

x The object.
 ... Unused.
 pvalue A flag specifying whether to return p-values or the statistics (default) for the various tests.

Value

A tbl data frame of the gof statistics.

Methods (by class)

```
• ssd_gof(fitdists): Goodness of Fit
```

See Also

```
glance.fitdists()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_gof(fits)
ssd_gof(fits)</pre>
```

ssd_hc

Hazard Concentrations for Species Sensitivity Distributions

Description

Calculates concentration(s) with bootstrap confidence intervals that protect specified proportion(s) of species for individual or model-averaged distributions using parametric or non-parametric bootstrapping.

```
ssd_hc(x, ...)
## S3 method for class 'list'
ssd_hc(x, percent, proportion = 0.05, ...)
## S3 method for class 'fitdists'
ssd_hc(
    x,
    percent,
    proportion = 0.05,
    average = TRUE,
    ci = FALSE,
```

46 ssd_hc

```
level = 0.95,
 nboot = 1000,
 min_pboot = 0.95,
 multi_est = TRUE,
 ci_method = "weighted_samples",
 parametric = TRUE,
 delta = 9.21,
  samples = FALSE,
  save_to = NULL,
 control = NULL,
)
## S3 method for class 'fitburrlioz'
ssd_hc(
 Х,
 percent,
 proportion = 0.05,
 ci = FALSE,
 level = 0.95,
 nboot = 1000,
 min_pboot = 0.95,
 parametric = FALSE,
  samples = FALSE,
 save_to = NULL,
)
```

Arguments

X	The object.
	Unused.
percent	A numeric vector of percent values to estimate hazard concentrations for. Soft-deprecated for proportion = 0.05 .
proportion	A numeric vector of proportion values to estimate hazard concentrations for.
average	A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
level	A number between 0 and 1 of the confidence level of the interval.
nboot	A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
min_pboot	A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
multi_est	A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged estimates.

ssd_hc 47

ci_method	A string specifying which method to use for estimating the bootstrap values. Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the weighted arithmetic means of the lower and upper confidence limits.
parametric	A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
delta	A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
samples	A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
save_to	NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
control	A list of control parameters passed to stats::optim().

Details

Model-averaged estimates and/or confidence intervals (including standard error) can be calculated by treating the distributions as constituting a single mixture distribution versus 'taking the mean'. When calculating the model averaged estimates treating the distributions as constituting a single mixture distribution ensures that ssd_hc() is the inverse of ssd_hp().

If treating the distributions as constituting a single mixture distribution when calculating model average confidence intervals then weighted specifies whether to use the original model weights versus re-estimating for each bootstrap sample unless 'taking the mean' in which case weighted specifies whether to take bootstrap samples from each distribution proportional to its weight (so that they sum to nboot) versus calculating the weighted arithmetic means of the lower and upper confidence limits based on nboot samples for each distribution.

Distributions with an absolute AIC difference greater than a delta of by default 7 have considerably less support (weight < 0.01) and are excluded prior to calculation of the hazard concentrations to reduce the run time.

Value

A tibble of corresponding hazard concentrations.

Methods (by class)

- ssd_hc(list): Hazard Concentrations for Distributional Estimates
- ssd_hc(fitdists): Hazard Concentrations for fitdists Object
- ssd_hc(fitburrlioz): Hazard Concentrations for fitburrlioz Object

References

Burnham, K.P., and Anderson, D.R. 2002. Model Selection and Multimodel Inference. Springer New York, New York, NY. doi:10.1007/b97636.

48 ssd_hc_bcanz

See Also

```
predict.fitdists() and ssd_hp().
```

Examples

```
ssd_hc(ssd_match_moments())
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_hc(fits)
fit <- ssd_fit_burrlioz(ssddata::ccme_boron)
ssd_hc(fit)</pre>
```

ssd_hc_bcanz

BCANZ Hazard Concentrations

Description

Gets hazard concentrations with confidence intervals that protect 1, 5, 10 and 20% of species using settings adopted by BC, Canada, Australia and New Zealand for official guidelines. This function can take several minutes to run with recommended 10,000 iterations.

Usage

```
ssd_hc_bcanz(x, nboot = 10000, min_pboot = 0.95)
```

Arguments

x The object.

nboot A count of the number of bootstrap samples to use to estimate the confidence

limits. A value of 10,000 is recommended for official guidelines.

min_pboot A number between 0 and 1 of the minimum proportion of bootstrap samples that

must successfully fit (return a likelihood) to report the confidence intervals.

Value

A tibble of corresponding hazard concentrations.

See Also

```
ssd_hc().
Other BCANZ: ssd_fit_bcanz(), ssd_hp_bcanz()
```

```
fits <- ssd_fit_bcanz(ssddata::ccme_boron)
ssd_hc_bcanz(fits, nboot = 100)</pre>
```

ssd_hc_burrlioz 49

ssd_hc_burrlioz

Hazard Concentrations for Burrlioz Fit [Deprecated]

Description

Deprecated for ssd_hc().

Usage

```
ssd_hc_burrlioz(
    X,
    percent,
    proportion = 0.05,
    ci = FALSE,
    level = 0.95,
    nboot = 1000,
    min_pboot = 0.95,
    parametric = FALSE
)
```

Arguments

x	The object.
percent	A numeric vector of percent values to estimate hazard concentrations for. Soft-deprecated for proportion = 0.05 .
proportion	A numeric vector of proportion values to estimate hazard concentrations for.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
level	A number between 0 and 1 of the confidence level of the interval.
nboot	A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
min_pboot	A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
parametric	A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.

Value

A tibble of corresponding hazard concentrations.

50 ssd_hp

ssd_hp

Hazard Proportion

Description

Calculates proportion of species affected at specified concentration(s) with quantile based bootstrap confidence intervals for individual or model-averaged distributions using parametric or non-parametric bootstrapping. For more information see the inverse function ssd_hc().

```
ssd_hp(x, ...)
## S3 method for class 'fitdists'
ssd_hp(
 х,
 conc = 1,
  average = TRUE,
  ci = FALSE,
  level = 0.95,
  nboot = 1000,
 min_pboot = 0.95,
 multi_est = TRUE,
 ci_method = "weighted_samples",
  parametric = TRUE,
  delta = 9.21,
  samples = FALSE,
  save_to = NULL,
  control = NULL,
)
## S3 method for class 'fitburrlioz'
ssd_hp(
 Х,
  conc = 1,
  ci = FALSE,
  level = 0.95,
  nboot = 1000,
 min_pboot = 0.95,
 parametric = FALSE,
  samples = FALSE,
  save_to = NULL,
)
```

ssd_hp 51

Arguments

x	The object.
	Unused.
conc	A numeric vector of concentrations to calculate the hazard proportions for.
average	A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
ci	A flag specifying whether to estimate confidence intervals (by bootstrapping).
level	A number between 0 and 1 of the confidence level of the interval.
nboot	A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
min_pboot	A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
multi_est	A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged estimates.
ci_method	A string specifying which method to use for estimating the bootstrap values. Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the weighted arithmetic means of the lower and upper confidence limits.
parametric	A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
delta	A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
samples	A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
save_to	NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
control	A list of control parameters passed to stats::optim().

Value

A tibble of corresponding hazard proportions.

Methods (by class)

- ssd_hp(fitdists): Hazard Proportions for fitdists Object
- ssd_hp(fitburrlioz): Hazard Proportions for fitburrlioz Object

See Also

ssd_hc()

52 ssd_hp_bcanz

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_hp(fits, conc = 1)

fit <- ssd_fit_burrlioz(ssddata::ccme_boron)
ssd_hp(fit)</pre>
```

ssd_hp_bcanz

BCANZ Hazard Proportion

Description

Gets proportion of species affected at specified concentration(s) using settings adopted by BC, Canada, Australia and New Zealand for official guidelines. This function can take several minutes to run with recommended 10,000 iterations.

Usage

```
ssd_{p_c} = 1, nboot = 10000, min_{pboot} = 0.95
```

Arguments

x The object.

conc A numeric vector of concentrations to calculate the hazard proportions for.

nboot A count of the number of bootstrap samples to use to estimate the confidence

limits. A value of 10,000 is recommended for official guidelines.

min_pboot A number between 0 and 1 of the minimum proportion of bootstrap samples that

must successfully fit (return a likelihood) to report the confidence intervals.

Value

A tibble of corresponding hazard concentrations.

See Also

```
ssd_hp().
Other BCANZ: ssd_fit_bcanz(), ssd_hc_bcanz()
```

```
fits <- ssd_fit_bcanz(ssddata::ccme_boron)
ssd_hp_bcanz(fits, nboot = 100)</pre>
```

ssd_is_censored 53

ssd_is_censored

Is Censored

Description

Tests if an object has censored data.

Test if a data frame is censored.

Test if a fitdists object is censored.

Usage

```
ssd_is_censored(x, ...)
## S3 method for class 'data.frame'
ssd_is_censored(x, left = "Conc", right = left, ...)
## S3 method for class 'fitdists'
ssd_is_censored(x, ...)
```

Arguments

x The object.
... Unused.
left A string of the column in data with the concentrations.
right A string of the column in data with the right concentration values.

Value

A flag indicating whether an object is censored.

```
ssd_is_censored(ssddata::ccme_boron)
ssd_is_censored(data.frame(Conc = 1, right = 2), right = "right")
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_is_censored(fits)</pre>
```

54 ssd_licensing_md

ccd	label	comma

Label numbers with significant digits and comma

Description

Label numbers with significant digits and comma

Usage

```
ssd_label_comma(digits = 3, ..., big.mark = ",")
```

Arguments

digits A whole number specifying the number of significant figures.

... Unused.

big.mark A string specifying used between every 3 digits to separate thousands on the

x-axis.

Value

A "labelling" function that takes a vector x and returns a character vector of length(x) giving a label for each input value.

See Also

```
scales::label_comma()
```

Examples

```
ggplot2::ggplot(data = ssddata::anon_e, ggplot2::aes(x = Conc / 10)) +
  geom_ssdpoint() +
  ggplot2::scale_x_log10(labels = ssd_label_comma())
```

ssd_licensing_md

Licensing Markdown

Description

A string of markdown code indicating the licensing of the code and documentation

Usage

```
ssd_licensing_md()
```

```
ssd_licensing_md()
```

ssd_match_moments 55

ssd_match_moments

Match Moments

Description

Gets a named list of the values that produce the moment values (meanlog and sdlog) by distribution and term.

Usage

```
ssd_match_moments(
  dists = ssd_dists_bcanz(),
  meanlog = 1,
  sdlog = 1,
  nsim = 1e+05
)
```

Arguments

dists A character vector of the distribution names.

meanlog The mean on the log scale.

sdlog The standard deviation on the log scale.

nsim A positive whole number of the number of simulations to generate.

Value

a named list of the values that produce the moment values by distribution and term.

See Also

```
estimates.fitdists(), ssd_hc() and ssd_plot_cdf()
```

```
moments <- ssd_match_moments()
print(moments)
ssd_hc(moments)
ssd_plot_cdf(moments)</pre>
```

56 ssd_pal

ssd_min_pmix

Calculate Minimum Proportion in Mixture Models

Description

Calculate Minimum Proportion in Mixture Models

Usage

```
ssd_min_pmix(n)
```

Arguments

n

positive number of observations.

Value

A number between 0 and 0.5 of the minimum proportion in mixture models.

See Also

```
ssd_fit_dists()
```

Examples

```
ssd_min_pmix(6)
ssd_min_pmix(50)
```

ssd_pal

Color-blind Palette for SSD Plots

Description

Color-blind Palette for SSD Plots

Usage

```
ssd_pal()
```

Value

A character vector of a color blind palette with 8 colors.

See Also

```
Other ggplot: geom_hcintersect(), geom_ssdpoint(), geom_ssdsegment(), geom_xribbon(), scale_colour_ssd()
```

ssd_pburrIII3 57

Examples

```
ssd_pal()
```

ssd_pburrIII3

Cumulative Distribution Function

Description

Cumulative Distribution Function

```
ssd_pburrIII3(
 q,
  shape1 = 1,
  shape2 = 1,
  scale = 1,
 lower.tail = TRUE,
 log.p = FALSE
ssd_pgamma(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
ssd_pgompertz(q, location = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
ssd_pinvpareto(q, shape = 3, scale = 1, lower.tail = TRUE, log.p = FALSE)
ssd_plgumbel(
 locationlog = 0,
  scalelog = 1,
 lower.tail = TRUE,
 log.p = FALSE
ssd_pllogis_llogis(
  locationlog1 = 0,
  scalelog1 = 1,
  locationlog2 = 1,
  scalelog2 = 1,
  pmix = 0.5,
  lower.tail = TRUE,
  log.p = FALSE
)
ssd_pllogis(q, locationlog = 0, scalelog = 1, lower.tail = TRUE, log.p = FALSE)
```

58 ssd_pburrIII3

```
ssd_plnorm_lnorm(
 meanlog1 = 0,
  sdlog1 = 1,
 meanlog2 = 1,
  sdlog2 = 1,
  pmix = 0.5,
  lower.tail = TRUE,
  log.p = FALSE
)
ssd_plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
ssd_pmulti(
  q,
  burrIII3.weight = 0,
  burrIII3.shape1 = 1,
  burrIII3.shape2 = 1,
  burrIII3.scale = 1,
  gamma.weight = 0,
  gamma.shape = 1,
  gamma.scale = 1,
  gompertz.weight = 0,
  gompertz.location = 1,
  gompertz.shape = 1,
  invpareto.weight = 0,
  invpareto.shape = 3,
  invpareto.scale = 1,
  lgumbel.weight = 0,
  lgumbel.locationlog = 0,
  lgumbel.scalelog = 1,
  llogis.weight = 0,
  llogis.locationlog = 0,
  llogis.scalelog = 1,
  llogis_llogis.weight = 0,
  llogis_llogis.locationlog1 = 0,
  llogis_llogis.scalelog1 = 1,
  llogis_llogis.locationlog2 = 1,
  llogis_llogis.scalelog2 = 1,
  llogis_llogis.pmix = 0.5,
  lnorm.weight = 0,
  lnorm.meanlog = 0,
  lnorm.sdlog = 1,
  lnorm_lnorm.weight = 0,
  lnorm\_lnorm.meanlog1 = 0,
  lnorm_lnorm.sdlog1 = 1,
  lnorm_lnorm.meanlog2 = 1,
```

ssd_pburrIII3 59

```
lnorm\_lnorm.sdlog2 = 1,
      lnorm\_lnorm.pmix = 0.5,
      weibull.weight = 0,
      weibull.shape = 1,
      weibull.scale = 1,
      lower.tail = TRUE,
      log.p = FALSE
    )
    ssd_pmulti_fitdists(q, fitdists, lower.tail = TRUE, log.p = FALSE)
    ssd_pweibull(q, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
                      vector of quantiles.
    shape1
                      shape1 parameter.
    shape2
                      shape2 parameter.
    scale
                      scale parameter.
    lower.tail
                     logical; if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].
                      logical; if TRUE, probabilities p are given as log(p).
    log.p
    shape
                      shape parameter.
                      location parameter.
    location
    locationlog
                      location on the log scale parameter.
                      scale on log scale parameter.
    scalelog
    locationlog1
                      locationlog1 parameter.
    scalelog1
                      scalelog1 parameter.
    locationlog2
                      locationlog2 parameter.
    scalelog2
                      scalelog2 parameter.
                      Proportion mixture parameter.
    pmix
    meanlog1
                      mean on log scale parameter.
                      standard deviation on log scale parameter.
    sdlog1
    meanlog2
                      mean on log scale parameter.
    sdlog2
                      standard deviation on log scale parameter.
    meanlog
                      mean on log scale parameter.
    sdlog
                      standard deviation on log scale parameter.
    burrIII3.weight
                      weight parameter for the Burr III distribution.
    burrIII3.shape1
                      shape1 parameter for the Burr III distribution.
    burrIII3.shape2
                      shape2 parameter for the Burr III distribution.
```

60 ssd_pburrIII3

burrIII3. scale scale parameter for the Burr III distribution. gamma.weight weight parameter for the gamma distribution. gamma.shape shape parameter for the gamma distribution. gamma.scale scale parameter for the gamma distribution. gompertz.weight weight parameter for the Gompertz distribution. gompertz.location location parameter for the Gompertz distribution. gompertz.shape shape parameter for the Gompertz distribution. invpareto.weight weight parameter for the inverse Pareto distribution. invpareto.shape shape parameter for the inverse Pareto distribution. invpareto.scale scale parameter for the inverse Pareto distribution. lgumbel.weight weight parameter for the log-Gumbel distribution. lgumbel.locationlog location parameter for the log-Gumbel distribution. lgumbel.scalelog scale parameter for the log-Gumbel distribution. llogis.weight weight parameter for the log-logistic distribution. llogis.locationlog location parameter for the log-logistic distribution. llogis.scalelog scale parameter for the log-logistic distribution. llogis_llogis.weight weight parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.locationlog1 locationlog1 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.scalelog1 scalelog1 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.locationlog2 locationlog2 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.scalelog2 scalelog2 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.pmix pmix parameter for the log-logistic log-logistic mixture distribution. lnorm.weight weight parameter for the log-normal distribution. lnorm.meanlog meanlog parameter for the log-normal distribution. lnorm.sdlog sdlog parameter for the log-normal distribution. lnorm_lnorm.weight weight parameter for the log-normal log-normal mixture distribution.

ssd_pburrIII3 61

Functions

fitdists

- ssd_pburrIII3(): Cumulative Distribution Function for BurrIII Distribution
- ssd_pgamma(): Cumulative Distribution Function for Gamma Distribution

An object of class fitdists.

- ssd_pgompertz(): Cumulative Distribution Function for Gompertz Distribution
- ssd_pinvpareto(): Cumulative Distribution Function for Inverse Pareto Distribution
- ssd_plgumbel(): Cumulative Distribution Function for Log-Gumbel Distribution
- ssd_pllogis_llogis(): Cumulative Distribution Function for Log-Logistic/Log-Logistic Mixture Distribution
- ssd_pllogis(): Cumulative Distribution Function for Log-Logistic Distribution
- ssd_plnorm_lnorm(): Cumulative Distribution Function for Log-Normal/Log-Normal Mixture Distribution
- ssd_plnorm(): Cumulative Distribution Function for Log-Normal Distribution
- ssd_pmulti(): Cumulative Distribution Function for Multiple Distributions
- ssd_pmulti_fitdists(): Cumulative Distribution Function for Multiple Distributions
- ssd_pweibull(): Cumulative Distribution Function for Weibull Distribution

See Also

```
ssd_q and ssd_r

Examples
ssd_pburrIII3(1)
ssd_pgamma(1)
ssd_pgompertz(1)
```

62 ssd_plot

```
ssd_pinvpareto(1)
ssd_plgumbel(1)
ssd_pllogis_llogis(1)
ssd_pllogis(1)
ssd_plnorm_lnorm(1)
ssd_plnorm(1)
# multi
ssd_pmulti(1, gamma.weight = 0.5, lnorm.weight = 0.5)
# multi fitdists
fit <- ssd_fit_dists(ssddata::ccme_boron)
ssd_pmulti_fitdists(1, fit)
ssd_pweibull(1)</pre>
```

ssd_plot

Plot Species Sensitivity Data and Distributions

Description

Plots species sensitivity data and distributions.

```
ssd_plot(
 data,
 pred,
 left = "Conc",
 right = left,
 label = NULL,
  shape = NULL,
  color = NULL,
  size = 2.5,
  linetype = NULL,
  linecolor = NULL,
 xlab = "Concentration",
 ylab = "Species Affected",
 ci = TRUE,
  ribbon = TRUE,
 hc = 0.05,
  shift_x = 3,
  add_x = 0,
```

ssd_plot 63

```
bounds = c(left = 1, right = 1),
big.mark = ",",
suffix = "%",
trans = "log10",
xbreaks = waiver()
)
```

Arguments

A data frame. data pred A data frame of the predictions. left A string of the column in data with the concentrations. right A string of the column in data with the right concentration values. Unused. . . . label A string of the column in data with the labels. shape A string of the column in data for the shape aesthetic. color A string of the column in data for the color aesthetic. A number for the size of the labels. size linetype A string of the column in pred to use for the linetype. linecolor A string of the column in pred to use for the line color. xlab A string of the x-axis label. ylab A string of the x-axis label. ci A flag specifying whether to estimate confidence intervals (by bootstrapping). ribbon A flag indicating whether to plot the confidence interval as a grey ribbon as opposed to green solid lines. hc A value between 0 and 1 indicating the proportion hazard concentration (or NULL). The value to multiply the label x values by (after adding add_x). shift_x add_x The value to add to the label x values (before multiplying by $shift_x$). bounds A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values. A string specifying used between every 3 digits to separate thousands on the big.mark suffix Additional text to display after the number on the y-axis. A string which transformation to use by default "log10". trans xbreaks The x-axis breaks as one of:

· NULL for no breaks

waiver() for the default breaksA numeric vector of positions

64 ssd_plot_cdf

See Also

```
ssd_plot_cdf() and geom_ssdpoint()
```

Examples

```
ssd_plot(ssddata::ccme_boron, boron_pred, label = "Species", shape = "Group")
```

ssd_plot_cdf

Plot Cumulative Distribution Function (CDF)

Description

Generic function to plots the cumulative distribution function (CDF).

Usage

```
ssd_plot_cdf(x, ...)
## S3 method for class 'fitdists'
ssd_plot_cdf(x, average = FALSE, delta = 9.21, ...)
## S3 method for class 'list'
ssd_plot_cdf(x, ...)
```

Arguments

x The object.

... Additional arguments passed to ssd_plot().

average A flag specifying whether to provide model averaged values as opposed to a

value for each distribution or if NA provides model averaged and individual

values.

delta A non-negative number specifying the maximum absolute AIC difference cutoff.

Distributions with an absolute AIC difference greater than delta are excluded

from the calculations.

Methods (by class)

- ssd_plot_cdf(fitdists): Plot CDF for fitdists object
- ssd_plot_cdf(list): Plot CDF for named list of distributional parameter values

See Also

```
ssd_plot()
estimates.fitdists() and ssd_match_moments()
```

ssd_plot_cf 65

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
ssd_plot_cdf(fits)
ssd_plot_cdf(fits, average = NA)

ssd_plot_cdf(list(
    llogis = c(locationlog = 2, scalelog = 1),
    lnorm = c(meanlog = 2, sdlog = 2)
))</pre>
```

 ssd_plot_cf

Cullen and Frey Plot [Deprecated]

Description

Plots a Cullen and Frey graph of the skewness and kurtosis for non-censored data.

Usage

```
ssd_plot_cf(data, left = "Conc")
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

Details

Soft deprecated for direct call to fitdistrplus::descdist().

ssd_plot_data

Plot Species Sensitivity Data

Description

Plots species sensitivity data.

66 ssd_plot_data

Usage

```
ssd_plot_data(
  data,
  left = "Conc",
  right = left,
  ...,
 label = NULL,
  shape = NULL,
  color = NULL,
  size = 2.5,
 xlab = "Concentration",
 ylab = "Species Affected",
  shift_x = 3,
  add_x = 0,
 big.mark = ",",
suffix = "%",
  bounds = c(left = 1, right = 1),
 trans = "log10",
 xbreaks = waiver()
)
```

Arguments

xbreaks

data	A data frame.
left	A string of the column in data with the concentrations.
right	A string of the column in data with the right concentration values.
	Unused.
label	A string of the column in data with the labels.
shape	A string of the column in data for the shape aesthetic.
color	A string of the column in data for the color aesthetic.
size	A number for the size of the labels.
xlab	A string of the x-axis label.
ylab	A string of the x-axis label.
shift_x	The value to multiply the label x values by (after adding add_ x).
add_x	The value to add to the label x values (before multiplying by $shift_x$).
big.mark	A string specifying used between every 3 digits to separate thousands on the x-axis.
suffix	Additional text to display after the number on the y-axis.
bounds	A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values.
trans	A string which transformation to use by default "log10".

The x-axis breaks as one of:

ssd_qburrIII3 67

- · NULL for no breaks
- waiver() for the default breaks
- A numeric vector of positions

See Also

```
ssd_plot() and geom_ssdpoint()
```

Examples

```
ssd_plot_data(ssddata::ccme_boron, label = "Species", shape = "Group")
```

ssd_qburrIII3

Quantile Function

Description

Quantile Function

```
ssd_qburrIII3(
 p,
  shape1 = 1,
  shape2 = 1,
  scale = 1,
 lower.tail = TRUE,
 log.p = FALSE
)
ssd_qgamma(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
ssd_qgompertz(p, location = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)
ssd_qinvpareto(p, shape = 3, scale = 1, lower.tail = TRUE, log.p = FALSE)
ssd_qlgumbel(
 р,
 locationlog = 0,
  scalelog = 1,
  lower.tail = TRUE,
 log.p = FALSE
)
ssd_qllogis_llogis(
 locationlog1 = 0,
```

68 ssd_qburrIII3

```
scalelog1 = 1,
  locationlog2 = 1,
  scalelog2 = 1,
  pmix = 0.5,
  lower.tail = TRUE,
 log.p = FALSE
)
ssd_qllogis(p, locationlog = 0, scalelog = 1, lower.tail = TRUE, log.p = FALSE)
ssd_qlnorm_lnorm(
 p,
 meanlog1 = 0,
  sdlog1 = 1,
 meanlog2 = 1,
  sdlog2 = 1,
  pmix = 0.5,
  lower.tail = TRUE,
  log.p = FALSE
ssd_qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
ssd_qmulti(
  burrIII3.weight = 0,
  burrIII3.shape1 = 1,
 burrIII3.shape2 = 1,
 burrIII3.scale = 1,
  gamma.weight = 0,
  gamma.shape = 1,
  gamma.scale = 1,
  gompertz.weight = 0,
  gompertz.location = 1,
  gompertz.shape = 1,
  invpareto.weight = 0,
  invpareto.shape = 3,
  invpareto.scale = 1,
  lgumbel.weight = 0,
  lgumbel.locationlog = 0,
  lgumbel.scalelog = 1,
  llogis.weight = 0,
  llogis.locationlog = 0,
  llogis.scalelog = 1,
  llogis_llogis.weight = 0,
  llogis_llogis.locationlog1 = 0,
  llogis_llogis.scalelog1 = 1,
  llogis_llogis.locationlog2 = 1,
```

ssd_qburrIII3 69

```
llogis_llogis.scalelog2 = 1,
      llogis_llogis.pmix = 0.5,
      lnorm.weight = 0,
      lnorm.meanlog = 0,
      lnorm.sdlog = 1,
      lnorm_lnorm.weight = 0,
      lnorm\_lnorm.meanlog1 = 0,
      lnorm_lnorm.sdlog1 = 1,
      lnorm\_lnorm.meanlog2 = 1,
      lnorm_lnorm.sdlog2 = 1,
      lnorm_lnorm.pmix = 0.5,
      weibull.weight = 0,
      weibull.shape = 1,
      weibull.scale = 1,
      lower.tail = TRUE,
      log.p = FALSE
    )
    ssd_qmulti_fitdists(p, fitdists, lower.tail = TRUE, log.p = FALSE)
    ssd_qweibull(p, shape = 1, scale = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
                     vector of probabilities.
    shape1
                     shape1 parameter.
    shape2
                     shape2 parameter.
    scale
                     scale parameter.
    lower.tail
                     logical; if TRUE (default), probabilities are P[X \le x], otherwise, P[X > x].
    log.p
                     logical; if TRUE, probabilities p are given as log(p).
    shape
                     shape parameter.
    location
                     location parameter.
    locationlog
                     location on the log scale parameter.
    scalelog
                     scale on log scale parameter.
    locationlog1
                     locationlog1 parameter.
    scalelog1
                     scalelog1 parameter.
    locationlog2
                     locationlog2 parameter.
    scalelog2
                     scalelog2 parameter.
    pmix
                     Proportion mixture parameter.
    meanlog1
                     mean on log scale parameter.
    sdlog1
                     standard deviation on log scale parameter.
                     mean on log scale parameter.
    meanlog2
    sdlog2
                     standard deviation on log scale parameter.
```

70 ssd_qburrIII3

mean log scale parameter.

sdlog standard deviation on log scale parameter.

burrIII3.weight

weight parameter for the Burr III distribution.

burrIII3.shape1

shape1 parameter for the Burr III distribution.

burrIII3.shape2

shape2 parameter for the Burr III distribution.

burrIII3.scale scale parameter for the Burr III distribution.

gamma.weight weight parameter for the gamma distribution.

gamma.shape scale parameter for the gamma distribution.

scale parameter for the gamma distribution.

gompertz.weight

weight parameter for the Gompertz distribution.

gompertz.location

location parameter for the Gompertz distribution.

gompertz.shape shape parameter for the Gompertz distribution.

invpareto.weight

weight parameter for the inverse Pareto distribution.

invpareto.shape

shape parameter for the inverse Pareto distribution.

invpareto.scale

scale parameter for the inverse Pareto distribution.

 ${\tt lgumbel.weight} \ \ weight \ parameter \ for \ the \ log-Gumbel \ distribution.$

lgumbel.locationlog

location parameter for the log-Gumbel distribution.

lgumbel.scalelog

scale parameter for the log-Gumbel distribution.

llogis.weight weight parameter for the log-logistic distribution.

llogis.locationlog

location parameter for the log-logistic distribution.

llogis.scalelog

scale parameter for the log-logistic distribution.

llogis_llogis.weight

weight parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.locationlog1

locationlog1 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.scalelog1

scalelog1 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.locationlog2

locationlog2 parameter for the log-logistic log-logistic mixture distribution.

llogis_llogis.scalelog2

scalelog2 parameter for the log-logistic log-logistic mixture distribution.

ssd_qburrIII3 71

llogis_llogis.pmix

pmix parameter for the log-logistic log-logistic mixture distribution.

lnorm.weight weight parameter for the log-normal distribution.

lnorm.meanlog meanlog parameter for the log-normal distribution.

lnorm.sdlog sdlog parameter for the log-normal distribution.

lnorm_lnorm.weight

weight parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog1

meanlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog1

sdlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog2

meanlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog2

sdlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.pmix

pmix parameter for the log-normal log-normal mixture distribution.

weibull.weight weight parameter for the Weibull distribution.

weibull.shape shape parameter for the Weibull distribution.

weibull.scale scale parameter for the Weibull distribution.

fitdists An object of class fitdists.

Functions

- ssd_qburrIII3(): Quantile Function for BurrIII Distribution
- ssd_qgamma(): Quantile Function for Gamma Distribution
- ssd_ggompertz(): Quantile Function for Gompertz Distribution
- ssd_qinvpareto(): Quantile Function for Inverse Pareto Distribution
- ssd_qlgumbel(): Quantile Function for Log-Gumbel Distribution
- ssd_qllogis_llogis(): Cumulative Distribution Function for Log-Logistic/Log-Logistic Mixture Distribution
- ssd_qllogis(): Cumulative Distribution Function for Log-Logistic Distribution
- ssd_qlnorm_lnorm(): Cumulative Distribution Function for Log-Normal/Log-Normal Mixture Distribution
- ssd_qlnorm(): Cumulative Distribution Function for Log-Normal Distribution
- ssd_qmulti(): Quantile Function for Multiple Distributions
- ssd_qmulti_fitdists(): Quantile Function for Multiple Distributions
- ssd_qweibull(): Cumulative Distribution Function for Weibull Distribution

See Also

ssd_p and ssd_r

72 ssd_rburrIII3

Examples

```
ssd_qburrIII3(0.5)
ssd_qgamma(0.5)
ssd_qgompertz(0.5)
ssd_qlnvpareto(0.5)
ssd_qlgumbel(0.5)
ssd_qllogis_llogis(0.5)
ssd_qllogis(0.5)
ssd_qlnorm_lnorm(0.5)
ssd_qlnorm(0.5)
# multi
ssd_qmulti(0.5, gamma.weight = 0.5, lnorm.weight = 0.5)
# multi fitdists
fit <- ssd_fit_dists(ssddata::ccme_boron)
ssd_qmulti_fitdists(0.5, fit)
ssd_qweibull(0.5)</pre>
```

ssd_rburrIII3

Random Number Generation

Description

Random Number Generation

```
ssd_rburrIII3(n, shape1 = 1, shape2 = 1, scale = 1, chk = TRUE)
ssd_rgamma(n, shape = 1, scale = 1, chk = TRUE)
ssd_rgompertz(n, location = 1, shape = 1, chk = TRUE)
ssd_rinvpareto(n, shape = 3, scale = 1, chk = TRUE)
ssd_rlgumbel(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rllogis_llogis(
    n,
```

ssd_rburrIII3 73

```
locationlog1 = 0,
  scalelog1 = 1,
  locationlog2 = 1,
  scalelog2 = 1,
  pmix = 0.5,
 chk = TRUE
)
ssd_rllogis(n, locationlog = 0, scalelog = 1, chk = TRUE)
ssd_rlnorm_lnorm(
 n,
 meanlog1 = 0,
 sdlog1 = 1,
 meanlog2 = 1,
  sdlog2 = 1,
 pmix = 0.5,
  chk = TRUE
)
ssd_rlnorm(n, meanlog = 0, sdlog = 1, chk = TRUE)
ssd_rmulti(
  n,
 burrIII3.weight = 0,
  burrIII3.shape1 = 1,
 burrIII3.shape2 = 1,
  burrIII3.scale = 1,
  gamma.weight = 0,
  gamma.shape = 1,
  gamma.scale = 1,
  gompertz.weight = 0,
  gompertz.location = 1,
  gompertz.shape = 1,
  invpareto.weight = 0,
  invpareto.shape = 3,
  invpareto.scale = 1,
  lgumbel.weight = 0,
  lgumbel.locationlog = 0,
  lgumbel.scalelog = 1,
  llogis.weight = 0,
  llogis.locationlog = 0,
  llogis.scalelog = 1,
  llogis_llogis.weight = 0,
  llogis_llogis.locationlog1 = 0,
  llogis_llogis.scalelog1 = 1,
  llogis_llogis.locationlog2 = 1,
  llogis_llogis.scalelog2 = 1,
```

74 ssd_rburrIII3

```
llogis_llogis.pmix = 0.5,
  lnorm.weight = 0,
  lnorm.meanlog = 0,
  lnorm.sdlog = 1,
  lnorm_lnorm.weight = 0,
  lnorm_lnorm.meanlog1 = 0,
  lnorm_lnorm.sdlog1 = 1,
  lnorm\_lnorm.meanlog2 = 1,
  lnorm_lnorm.sdlog2 = 1,
  lnorm\_lnorm.pmix = 0.5,
 weibull.weight = 0,
 weibull.shape = 1,
 weibull.scale = 1,
  chk = TRUE
)
ssd_rmulti_fitdists(n, fitdists, chk = TRUE)
ssd_rweibull(n, shape = 1, scale = 1, chk = TRUE)
```

Arguments

n positive number of observations.

shape1 shape1 parameter. shape2 shape2 parameter. scale scale parameter.

chk A flag specifying whether to check the arguments.

shape shape parameter.

location location parameter.

locationlog location on the log scale parameter.

scalelog scale on log scale parameter.

locationlog1 locationlog1 parameter.

scalelog1 scalelog1 parameter.

locationlog2 locationlog2 parameter.

scalelog2 scalelog2 parameter.

pmix Proportion mixture parameter. meanlog1 mean on log scale parameter.

sdlog1 standard deviation on log scale parameter.

meanlog2 mean on log scale parameter.

sdlog2 standard deviation on log scale parameter.

meanlog mean on log scale parameter.

sdlog standard deviation on log scale parameter.

ssd_rburrIII3 75

burrIII3.weight weight parameter for the Burr III distribution. burrIII3.shape1 shape1 parameter for the Burr III distribution. burrIII3.shape2 shape2 parameter for the Burr III distribution. burrIII3. scale scale parameter for the Burr III distribution. weight parameter for the gamma distribution. gamma.weight shape parameter for the gamma distribution. gamma.shape scale parameter for the gamma distribution. gamma.scale gompertz.weight weight parameter for the Gompertz distribution. gompertz.location location parameter for the Gompertz distribution. gompertz. shape shape parameter for the Gompertz distribution. invpareto.weight weight parameter for the inverse Pareto distribution. invpareto.shape shape parameter for the inverse Pareto distribution. invpareto.scale scale parameter for the inverse Pareto distribution. lgumbel.weight weight parameter for the log-Gumbel distribution. lgumbel.locationlog location parameter for the log-Gumbel distribution. lgumbel.scalelog scale parameter for the log-Gumbel distribution. llogis.weight weight parameter for the log-logistic distribution. llogis.locationlog location parameter for the log-logistic distribution. llogis.scalelog scale parameter for the log-logistic distribution. llogis_llogis.weight weight parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.locationlog1 locationlog1 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.scalelog1 scalelog1 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.locationlog2 locationlog2 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.scalelog2 scalelog2 parameter for the log-logistic log-logistic mixture distribution. llogis_llogis.pmix pmix parameter for the log-logistic log-logistic mixture distribution.

76 ssd rburrIII3

lnorm.weight weight parameter for the log-normal distribution.lnorm.meanlog meanlog parameter for the log-normal distribution.lnorm.sdlog sdlog parameter for the log-normal distribution.

lnorm_lnorm.weight

weight parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog1

meanlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog1

sdlog1 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.meanlog2

meanlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.sdlog2

sdlog2 parameter for the log-normal log-normal mixture distribution.

lnorm_lnorm.pmix

pmix parameter for the log-normal log-normal mixture distribution.

weibull.weight weight parameter for the Weibull distribution.

weibull.shape shape parameter for the Weibull distribution.

weibull.scale scale parameter for the Weibull distribution.

fitdists An object of class fitdists.

Functions

- ssd_rburrIII3(): Random Generation for BurrIII Distribution
- ssd_rgamma(): Random Generation for Gamma Distribution
- ssd_rgompertz(): Random Generation for Gompertz Distribution
- ssd_rinvpareto(): Random Generation for Inverse Pareto Distribution
- ssd_rlgumbel(): Random Generation for log-Gumbel Distribution
- ssd_rllogis_llogis(): Random Generation for Log-Logistic/Log-Logistic Mixture Distribution
- ssd_rllogis(): Random Generation for Log-Logistic Distribution
- ssd_rlnorm_lnorm(): Random Generation for Log-Normal/Log-Normal Mixture Distribution
- ssd_rlnorm(): Random Generation for Log-Normal Distribution
- ssd_rmulti(): Random Generation for Multiple Distributions
- ssd_rmulti_fitdists(): Random Generation for Multiple Distributions
- ssd_rweibull(): Random Generation for Weibull Distribution

See Also

ssd_p and ssd_q

ssd_sort_data 77

Examples

```
set.seed(50)
hist(ssd_rburrIII3(10000), breaks = 1000)
set.seed(50)
hist(ssd\_rgamma(10000), breaks = 1000)
set.seed(50)
hist(ssd_rgompertz(10000), breaks = 1000)
set.seed(50)
hist(ssd_rinvpareto(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlgumbel(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis_llogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rllogis(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm_lnorm(10000), breaks = 1000)
set.seed(50)
hist(ssd_rlnorm(10000), breaks = 1000)
# multi
set.seed(50)
hist(ssd_rmulti(1000, gamma.weight = 0.5, lnorm.weight = 0.5), breaks = 100)
# multi fitdists
fit <- ssd_fit_dists(ssddata::ccme_boron)</pre>
ssd_rmulti_fitdists(2, fit)
set.seed(50)
hist(ssd_rweibull(10000), breaks = 1000)
```

 ssd_sort_data

Sort Species Sensitivity Data

Description

Sorts Species Sensitivity Data by empirical cumulative density (ECD).

Usage

```
ssd_sort_data(data, left = "Conc", right = left)
```

78 ssd_wqg_bc

Arguments

data A data frame.

left A string of the column in data with the concentrations.

right A string of the column in data with the right concentration values.

Details

Useful for sorting data before using geom_ssdpoint() and geom_ssdsegment() to construct plots for censored data with stat = identity to ensure order is the same for the various components.

Value

data sorted by the empirical cumulative density.

See Also

```
ssd_ecd_data() and ssd_data()
```

Examples

```
ssd_sort_data(ssddata::ccme_boron)
```

ssd_wqg_bc

Water Quality Guideline for British Columbia

Description

Calculates the 5% Hazard Concentration for British Columbia after rescaling the data based on the log-logistic, log-normal and gamma distributions using the parametric bootstrap and AICc model averaging.

Usage

```
ssd_wqg_bc(data, left = "Conc")
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

Details

Returns a tibble the model averaged 5% hazard concentration with standard errors, 95% lower and upper confidence limits and the number of bootstrap samples as well as the proportion of bootstrap samples that successfully returned a likelihood (convergence of the bootstrap sample is not required).

ssd_wqg_burrlioz 79

Value

A tibble of the 5% hazard concentration with 95% confidence intervals.

See Also

```
ssd_fit_dists() and ssd_hc()
Other wqg: ssd_wqg_burrlioz()
```

Examples

```
## Not run:
ssd_wqg_bc(ssddata::ccme_boron)
## End(Not run)
```

ssd_wqg_burrlioz

Water Quality Guideline for Burrlioz

Description

Calculates the 5% Hazard Concentration (after rescaling the data) using the same approach as Burrlioz based on 10,000 non-parametric bootstrap samples.

Usage

```
ssd_wqg_burrlioz(data, left = "Conc")
```

Arguments

data A data frame.

left A string of the column in data with the concentrations.

Details

Returns a tibble the model averaged 5% hazard concentration with standard errors, 95% lower and upper confidence limits and the number of bootstrap samples as well as the proportion of bootstrap samples that successfully returned a likelihood (convergence of the bootstrap sample is not required).

Value

A tibble of the 5% hazard concentration with 95% confidence intervals.

See Also

```
ssd_fit_burrlioz() and ssd_hc_burrlioz()
Other wqg: ssd_wqg_bc()
```

80 stat_ssd

Examples

```
## Not run:
ssd_wqg_burrlioz(ssddata::ccme_boron)
## End(Not run)
```

stat_ssd

Plot Species Sensitivity Data [Deprecated]

Description

Uses the empirical cumulative density/distribution to visualize species sensitivity data.

Usage

```
stat_ssd(
  mapping = NULL,
  data = NULL,
  geom = "point",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)
```

Arguments

mapping

Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data. A function can be created from a formula (e.g. \sim head(.x, 10)).

geom

The geometric object to use to display the data for this layer. When using a stat_*() function to construct a layer, the geom argument can be used to override the default coupling between stats and geoms. The geom argument accepts the following:

• A Geom ggproto subclass, for example GeomPoint.

stat_ssd 81

• A string naming the geom. To give the geom as a string, strip the function name of the geom_ prefix. For example, to use geom_point(), give the geom as "point".

• For more information and other ways to specify the geom, see the layer geom documentation.

position

A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

- The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.
- A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".
- For more information and other ways to specify the position, see the layer position documentation.

Other arguments passed on to layer()'s params argument. These arguments broadly fall into one of 4 categories below. Notably, further arguments to the position argument, or aesthetics that are required can *not* be passed through Unknown arguments that are not part of the 4 categories below are ignored.

- Static aesthetics that are not mapped to a scale, but are at a fixed value and apply to the layer as a whole. For example, colour = "red" or linewidth = 3. The geom's documentation has an **Aesthetics** section that lists the available options. The 'required' aesthetics cannot be passed on to the params. Please note that while passing unmapped aesthetics as vectors is technically possible, the order and required length is not guaranteed to be parallel to the input data.
- When constructing a layer using a stat_*() function, the ... argument can be used to pass on parameters to the geom part of the layer. An example of this is stat_density(geom = "area", outline.type = "both"). The geom's documentation lists which parameters it can accept.
- Inversely, when constructing a layer using a geom_*() function, the ... argument can be used to pass on parameters to the stat part of the layer. An example of this is geom_area(stat = "density", adjust = 0.5). The stat's documentation lists which parameters it can accept.
- The key_glyph argument of layer() may also be passed on through This can be one of the functions described as key glyphs, to change the display of the layer in the legend.

na.rm

If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.

show.legend

logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes

If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

. . .

82 subset.fitdists

See Also

```
geom_ssdpoint()
```

Examples

```
## Not run:
ggplot2::ggplot(ssddata::ccme_boron, ggplot2::aes(x = Conc)) +
    stat_ssd()
## End(Not run)
```

subset.fitdists

Subset fitdists Object

Description

Select a subset of distributions from a fitdists object. The Akaike Information-theoretic Criterion differences are calculated after selecting the distributions named in select.

Usage

```
## S3 method for class 'fitdists'
subset(x, select = names(x), delta = Inf, ...)
```

Arguments

x The object.

select A character vector of the distributions to select.

delta A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.

... Unused.

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
subset(fits, c("gamma", "lnorm"))</pre>
```

tidy.fitdists 83

tidy.fitdists

Turn a fitdists Object into a Tibble

Description

Turns a fitdists object into a tidy tibble of the estimates (est) and standard errors (se) by the terms (term) and distributions (dist).

Usage

```
## S3 method for class 'fitdists'
tidy(x, all = FALSE, ...)
```

Arguments

x The object.

all A flag specifying whether to also return transformed parameters.

... Unused.

Value

A tidy tibble of the estimates and standard errors.

See Also

```
coef.fitdists()
Other generics: augment.fitdists(), glance.fitdists()
```

Examples

```
fits <- ssd_fit_dists(ssddata::ccme_boron)
tidy(fits)
tidy(fits, all = TRUE)</pre>
```

Index

* BCANZ	borders(), 13, 15, 18, 20, 81 boron_pred, 5
<pre>ssd_fit_bcanz, 41 ssd_hc_bcanz, 48</pre>	boi oii_pi eu, 3
	coef.fitdists,6
ssd_hp_bcanz, 52	coef.fitdists(), 83
* boron	comma_signif, 7
boron_pred, 5	
* datasets	dgompertz, 7
boron_pred, 5	dist_data, 8, 35, 36
<pre>dist_data, 8 ssdtools-ggproto, 33</pre>	dlgumbel, 9
* dists BCANZ	
	estimates.fitdists,9
ssd_dists_bcanz, 36	estimates.fitdists(), 55, 64
* dists	
dist_data, 8	fitdistrplus::descdist(), 65
ssd_dists, 35	fortify(), 10, 12, 14, 16, 18, 80
ssd_dists_all, 36	h-i-t 10 15 19 20 22 56
* generics	geom_hcintersect, 10, 15, 18, 20, 32, 56
augment.fitdists,4	geom_ssd, 11 geom_ssdpoint, 11, 13, 18, 20, 32, 56
glance.fitdists, 20	geom_ssdpoint(), 64, 67, 78, 82
tidy.fitdists,83	geom_ssdsegment, 11, 15, 16, 20, 32, 56
* ggplot2	geom_ssdsegment(), 78
stat_ssd, 80	geom_xribbon, 11, 15, 18, 18, 32, 56
* ggplot	GeomHcintersect (ssdtools-ggproto), 33
geom_hcintersect, 10	GeomSsdpoint (ssdtools-ggproto), 33
geom_ssdpoint, 13	GeomSsdsegment (ssdtools-ggproto), 33
geom_ssdsegment, 16	GeomXribbon (ssdtools-ggproto), 33
geom_xribbon, 18	ggplot(), 10, 12, 14, 16, 18, 80
scale_colour_ssd, 32	ggplot(), 10, 12, 14, 10, 10, 00 ggplot2::discrete_scale(), 32
ssd_pal,56	ggplot2::ggproto(), 33
* wqg	glance.fitdists, 4, 20, 83
ssd_wqg_bc, 78	glance.fitdists(), 45
ssd_wqg_burrlioz,79	grid::arrow(), 17
	g: 1aai / ow(), 1/
aes(), 10, 12, 14, 16, 18, 80	is.fitdists, 21
args (params), 22	is_censored, 21
arguments (params), 22	
augment.fitdists, 4, 20, 83	key glyphs, 11, 13, 15, 17, 19, 81
augment.fitdists(), 35	
autoplot.fitdists, 5	layer geom, 81

INDEX 85

layer position, <i>12</i> , <i>14</i> , <i>17</i> , <i>19</i> , <i>81</i>	ssd_fit_burrlioz(),79
layer stat, 12, 14, 17, 19	ssd_fit_dists,42
layer(), 10, 11, 13, 15, 17, 19, 81	ssd_fit_dists(), 41, 42, 56, 79
	ssd_gof, 44
parameters (params), 22	ssd_gof(), 20
params, 22	ssd_hc, 45
pgompertz, 27	ssd_hc(), 10, 28-30, 44, 48-51, 55, 79
plgumbel, 27	ssd_hc_bcanz, 41, 48, 52
predict.fitburrlioz, 28	ssd_hc_burrlioz,49
predict.fitdists, 29	ssd_hc_burrlioz(),79
<pre>predict.fitdists(), 48</pre>	ssd_hp, 50
	ssd_hp(), 48, 52
qgompertz, 30	ssd_hp_bcanz, 41, 48, 52
qlgumbel, 31	ssd_is_censored, 53
	ssd_is_censored(), 21, 22
rgompertz, 31	ssd_label_comma, 54
rlgumbel, 32	ssd_label_comma(),7
	ssd_licensing_md, 54
scale_color_ssd (scale_colour_ssd), 32	ssd_match_moments, 55
scale_colour_ssd, 11, 15, 18, 20, 32, 56	ssd_match_moments(), 10, 64
scale_fill_ssd (scale_colour_ssd), 32	ssd_min_pmix, 56
scales::label_comma(), 54	ssd_p, 38, 71, 76
ssd_censor_data, 34	ssd_p (ssd_pburrIII3), 57
ssd_data, 34	ssd_pal, 11, 15, 18, 20, 32, 56
ssd_data(), 4, 39, 78	ssd_pburrIII3, 57
ssd_dists, 8, 35, 36	ssd_pgamma (ssd_pburrIII3), 57
ssd_dists(), 36	ssd_pgompertz (ssd_pburrIII3), 57
ssd_dists_all, 8, 35, 36	ssd_pinvpareto (ssd_pburrIII3), 57
ssd_dists_all(), 43	ssd_plgumbel (ssd_pburrIII3), 57
ssd_dists_bcanz, 36	ssd_pllogis (ssd_pburrIII3), 57
ssd_e (ssd_eburrIII3), 37	ssd_pllogis_llogis (ssd_pburrIII3), 57
ssd_eburrIII3, 37	ssd_plnorm(ssd_pburrIII3), 57
ssd_ecd, 38	ssd_plnorm_lnorm(ssd_pburrIII3), 57
ssd_ecd(), 39	ssd_plot, 62
ssd_ecd_data, 39	ssd_plot(), 28, 30, 64, 67
ssd_ecd_data(), 35, 78	ssd_plot(), 28, 30, 04, 07 ssd_plot_cdf, 64
ssd_egamma (ssd_eburrIII3), 37	
ssd_egompertz (ssd_eburrIII3), 37	ssd_plot_cdf(), 5, 10, 11, 15, 18, 20, 33, 44
ssd_einvpareto(ssd_eburrIII3), 37	55, 64
ssd_elgumbel (ssd_eburrIII3), 37	ssd_plot_cf, 65
ssd_ellogis (ssd_eburrIII3), 37	ssd_plot_data, 65
ssd_ellogis_llogis (ssd_eburrIII3), 37	ssd_pmulti (ssd_pburrIII3), 57
ssd_elnorm(ssd_eburrIII3), 37	ssd_pmulti_fitdists(ssd_pburrIII3), 57
ssd_elnorm_lnorm(ssd_eburrIII3), 37	ssd_pweibull (ssd_pburrIII3), 57
ssd_emulti(ssd_eburrIII3),37	ssd_q, 38, 61, 76
ssd_eweibull (ssd_eburrIII3), 37	ssd_q (ssd_qburrIII3), 67
ssd_exposure, 40	ssd_qburrIII3,67
ssd_fit_bcanz, 41, 48, 52	ssd_qgamma (ssd_qburrIII3), 67
ssd_fit_burrlioz,41	ssd_qgompertz(ssd_qburrIII3),67

86 INDEX

```
ssd_qinvpareto(ssd_qburrIII3), 67
ssd_qlgumbel(ssd_qburrIII3),67
ssd_qllogis (ssd_qburrIII3), 67
ssd_qllogis_llogis (ssd_qburrIII3), 67
ssd_qlnorm(ssd_qburrIII3), 67
ssd_qlnorm_lnorm(ssd_qburrIII3), 67
ssd_qmulti(ssd_qburrIII3),67
ssd_qmulti_fitdists(ssd_qburrIII3), 67
ssd_qweibull(ssd_qburrIII3),67
ssd_r, 61, 71
ssd_r (ssd_rburrIII3), 72
ssd_rburrIII3, 72
ssd_rgamma (ssd_rburrIII3), 72
ssd_rgompertz (ssd_rburrIII3), 72
ssd_rinvpareto (ssd_rburrIII3), 72
ssd_rlgumbel (ssd_rburrIII3), 72
ssd_rllogis (ssd_rburrIII3), 72
ssd_rllogis_llogis (ssd_rburrIII3), 72
ssd_rlnorm(ssd_rburrIII3), 72
ssd_rlnorm_lnorm (ssd_rburrIII3), 72
ssd_rmulti (ssd_rburrIII3), 72
ssd_rmulti_fitdists(ssd_rburrIII3), 72
ssd_rweibull (ssd_rburrIII3), 72
ssd_sort_data, 77
ssd_sort_data(), 35
ssd_wqg_bc, 78, 79
ssd_wqg_burrlioz, 79, 79
ssdtools-ggproto, 33
stat_ssd, 80
stats::optim(), 22, 30, 42, 43, 47, 51
StatSsdpoint (ssdtools-ggproto), 33
StatSsdsegment (ssdtools-ggproto), 33
subset.fitdists, 82
tidy.fitdists, 4, 20, 83
tidy.fitdists(), 6, 10
```