

# SIA TP2: Algoritmos Genéticos



## Integrantes



Julián Francisco Arce



Ignacio Agustín Manfredi



Gian Luca Pecile



## Introducción





## ¿Qué hicimos?

#### **Implementación**

 A través de la teoría de algoritmos genéticos desarrollamos un motor de soluciones parametrizable.

#### **Optimización**

 Configuración ideal con el objetivo de maximizar el fitness para el problema de la mochila.



## Desarrollo





## Discusiones

- Estructura genotipo.
- Penalización función aptitud.
- Selección de padres
- Elementos repetidos.
- Mutación multigen.
- Reposición en métodos de selección.



## **Estructura Genotipo**

 Para representar cada solución (configuración de la mochila), se utilizaron strings de 1's y 0's que indican si el elemento i-ésimo del archivo que posee los pesos y beneficios de cada uno, se encuentra o no.



## Función de Aptitud

$$f(i) = \sum_{i=1}^{n} i * b_i \quad con b_i el beneficio del i - ésimo elemento, si w \leq w_{max}$$

$$f(i) = \sum_{i=1}^{n} \frac{(i * b_i)}{w_i} \quad \text{con } b_i y w_i \text{ el beneficio y peso del } i - \text{ésimo} \\ \text{elemento respectivamente, si } w > w_{max}$$



#### Selección de Padres

- Los padres son seleccionados de manera **aleatoria**.
- Luego se realiza la **cruza** y **mutación** con ellos.
- Por último se aplica el **método de selección**.



## **Elementos repetidos**

- No permitimos elementos repetidos. Todos los individuos son únicos.
- Alta diversidad.
- Uso de dict para encontrar rápidamente los repetidos y eliminarlos.



## Mutación Multigen

- Todos los genes pueden mutar.
- La probabilidad de mutación se encuentra parametrizada.



## Reposición en Selección

- Los métodos de selección funcionan sin reposición,
- Se debe a que no permitimos individuos repetidos.



## Resultados





#### **Parámetros Usados**

- Población: 500
- Probabilidad de mutación: 0.01 (1%)
- Criterios de corte
  - o Tiempo límite: 1000 s.
  - Máxima cantidad de generaciones: 500
  - Máxima cantidad de mejor fitness igual: 500
  - Generaciones "iguales" a la anterior: 500
  - Porcentaje de igualdad en las generaciones: 0.9 (90%)
- En la cruza múltiple la cantidad de puntos es: 3



# Agrupaciones por algoritmo de selección







Elite

















**///** 



## Agrupaciones por algoritmo de cruza















## Agrupaciones por algoritmo de selección (variando parámetros)













## Conclusiones





## **Observaciones Generales**

#### Población inicial

Inicialmente de forma totalmente aleatoria y distribución uniforme.

Luego se optó por agrega un elemento a la mochila con probabilidad **0.1**, y de esta forma se obtuvieron **mejores resultados**.

#### Selección

Se seleccionan individuos sin reposición, por lo que la diversidad de individuos es alta siempre.

No existen individuos idénticos.

Existen 2100 individuos.

#### **Aleatoriedad**

La **aleatoriedad** juega un papel muy importante.

Mientras menos aleatoria sea la selección, los resultados mejoran notablemente.



#### **Observaciones Mutación**

#### Mutación Multigen Uniforme

Valores muy altos de mutación hacen que sean necesarias muchas más generaciones para llegar a soluciones.

Se terminó optando con probabilidad de 0.01 (1%) para hacer las pruebas.



## **Observaciones Selección**

#### Ruleta

Ofrece buenos resultados pero con **grandes variaciones**.

Esto se debe a la aleatoriedad del método.

Una vez que se generan individuos con buenos fitness, comienza a mejorar notablemente.

#### Rank

Es más **suave** que ruleta, es decir, llega a buenos resultados de manera más lenta.

Puede tener mayores variaciones debido a que los mejores fitness no tienen probabilidades tan altas como en ruleta.

#### Competitiva

Si *u* es igual a **0.5**, se vuelve **demasiado aleatorio** y no devuelve buenas soluciones, pues la probabilidad de elegir el más o menos apto es la misma.

Si se va a aumentando *u* el algoritmo mejora, ya que va seleccionando los más aptos.



## Observaciones Selección

#### **Truncado**

Cuando **k** es **similar** al tamaño de la **población** tiende a dar resultados similares a **elite**.

Si k es igual a la población resulta ser igual que a elite.

#### **Boltzmann**

Inicia con peor probabilidad de resultados aptos y mejora con más iteraciones.

Actúa **similar** al método **ruleta**. Se vuelve más elitista a medida que disminuye la temperatura y se acerca a t<sub>c</sub>

#### **Elite**

Da los **mejores resultados** por la naturaleza del algoritmo.

En particular, la diversidad de población inicial y el tamaño de la misma, no recae en máximos locales.



## iGracias!

#### ¿Preguntas?

- <u>juarce@itba.edu.ar</u>
- imanfredi@itba.edu.ar
- gpecile@itba.edu.ar