10.1 Grundlegende Zusammenhänge der Vierpoltheorie

(Band 3, S.171-174)

Elektrische Schaltungen zur Übertragung von Energien oder zur Verarbeitung von Informationen sind in den meisten Fällen "Zweitore" oder "Vierpole", also Schaltungen mit zwei Eingangsklemmen und zwei Ausgangsklemmen.

Diese Richtungsdefinitionen sind in der nachrichtentechnischen Literatur üblich:

Dem normalen Vorwärtsbetrieb ist stets eine Rückwirkung vom Ausgang zum Eingang überlagert, die auch zu Störungen bei der Signalübertragung führen kann.

10.2 Vierpolgleichungen, Vierpolparameter und Ersatzschaltungen

(Band 3, S.175-185)

Leitwertform der Vierpolgleichungen:

$$\underline{\mathbf{I}}_{1} = \underline{\mathbf{Y}}_{11} \cdot \underline{\mathbf{U}}_{1} + \underline{\mathbf{Y}}_{12} \cdot \underline{\mathbf{U}}_{2} \\
\underline{\mathbf{I}}_{2} = \underline{\mathbf{Y}}_{21} \cdot \underline{\mathbf{U}}_{1} + \underline{\mathbf{Y}}_{22} \cdot \underline{\mathbf{U}}_{2}$$

$$oder \qquad \left(\underline{\mathbf{I}}_{1} \atop \underline{\mathbf{I}}_{2}\right) = \left(\underline{\underline{\mathbf{Y}}}_{11} \quad \underline{\underline{\mathbf{Y}}}_{12} \atop \underline{\underline{\mathbf{Y}}}_{22}\right) \cdot \left(\underline{\underline{\mathbf{U}}}_{1} \right)$$

Kurzschluss-Eingangsleitwert:

$$\underline{Y}_{11} = \left(\frac{\underline{I}_1}{\underline{U}_1}\right)_{\underline{U}_2 = 0} = (\underline{Y}_{in})_{\underline{Y}_{a = \infty}} \qquad \qquad \underline{Y}_{12} = \left(\frac{\underline{I}_1}{\underline{U}_2}\right)_{\underline{U}_1 = 0} = (\underline{Y}_{iir})_{\underline{Y}_{i = \infty}}$$

Kurzschluss-Übertragungsleitwert vorwärts:

$$\underline{Y}_{21} = \left(\frac{\underline{I}_2}{\underline{U}_1}\right)_{\underline{U}_2 = 0} = (\underline{Y}_{uf})_{\underline{Y}_{a = \infty}}$$

Kurzschluss-Ausgangsleitwert:

Kurzschluss-Übertragungsleitwert

rückwärts:

$$\underline{\mathbf{Y}}_{22} = \left(\frac{\underline{\mathbf{I}}_2}{\underline{\mathbf{U}}_2}\right)_{\mathbf{U}_1 = 0} = (\underline{\mathbf{Y}}_{\text{out}})_{\underline{\mathbf{Y}}_{i = \infty}}$$

Widerstandsform der Vierpolgleichungen

$$\begin{array}{ll} \underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \end{array} \qquad \text{oder} \quad \begin{pmatrix} \underline{U}_1 \\ \underline{U}_2 \end{pmatrix} = \begin{pmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{I}_1 \\ \underline{I}_2 \end{pmatrix}$$

Leerlauf-Eingangswiderstand:

$$\mathbf{R}_{\mathbf{M}} = \underline{Z}_{11} = \left(\frac{\underline{U}_1}{\underline{I}_1}\right)_{\underline{I}_2 = 0} = (\underline{Z}_{in})_{\underline{Y}_{a=0}} \qquad \qquad \mathbf{R}_{\mathbf{U}} = \underline{Z}_{12} = \left(\frac{\underline{U}_1}{\underline{I}_2}\right)_{\underline{I}_1 = 0} = (\underline{Z}_{\ddot{u}r})_{\underline{Y}_{i=0}}$$

Leerlauf-Übertragungswiderstand vorwärts:

$$\mathbf{R}_{2a} = \underline{Z}_{21} = \left(\frac{\underline{U}_2}{\underline{I}_1}\right)_{\underline{I}_2 = 0} = (\underline{Z}_{uf})_{\underline{Y}_{a=0}} \qquad \mathbf{R}_{2a} = \underline{Z}_{22} = \left(\frac{\underline{U}_2}{\underline{I}_2}\right)_{\underline{I}_1 = 0} = (\underline{Z}_{out})_{\underline{Y}_{i=0}}$$

Leerlauf-Ausgangswiderstand:

Leerlauf-Übertragungswiderstand

$$\mathbf{R}_{\mathbf{L}} = \underline{Z}_{22} = \left(\frac{\underline{\mathbf{U}}_2}{\underline{\mathbf{I}}_2}\right)_{\underline{\mathbf{I}}_1 = \mathbf{0}} = (\underline{Z}_{\text{out}})_{\underline{Y}_{i=0}}$$

Reihen-Parallel-Form der Vierpolgleichungen

$$\underline{\mathbf{U}}_{1} = \underline{\mathbf{H}}_{11} \cdot \underline{\mathbf{I}}_{1} + \underline{\mathbf{H}}_{12} \cdot \underline{\mathbf{U}}_{2}
\underline{\mathbf{I}}_{2} = \underline{\mathbf{H}}_{21} \cdot \underline{\mathbf{I}}_{1} + \underline{\mathbf{H}}_{22} \cdot \underline{\mathbf{U}}_{2}$$
oder
$$\left(\underline{\mathbf{U}}_{1}\right) = \left(\underline{\mathbf{H}}_{11} \quad \underline{\mathbf{H}}_{12} \\ \underline{\mathbf{H}}_{21} \quad \underline{\mathbf{H}}_{22}\right) \cdot \left(\underline{\mathbf{I}}_{1} \\ \underline{\mathbf{U}}_{2}\right)$$

Kurzschluss-Eingangswiderstand:

$$\underline{H}_{11} = \left(\frac{\underline{U}_1}{\underline{I}_1}\right)_{\underline{U}_2 = 0} = (\underline{Z}_{in})_{\underline{Y}_{a = \infty}} \qquad \qquad \underline{H}_{12} = \left(\frac{\underline{U}_1}{\underline{U}_2}\right)_{\underline{I}_1 = 0} = (\underline{V}_{ur})_{\underline{Y}_{i = 0}}$$

Kurzschluss-Stromübersetzung vorwärts:

$$\underline{\mathbf{H}}_{21} = \left(\frac{\underline{\mathbf{I}}_2}{\underline{\mathbf{I}}_1}\right)_{\underline{\mathbf{II}}_2 = 0} = (\underline{\mathbf{V}}_{if})_{\underline{\mathbf{Y}}_{a=\infty}}$$

Leerlauf-Ausgangsleitwert:

Leerlauf-Spannungsrückwirkung:

$$\underline{\mathbf{H}}_{22} = \left(\frac{\underline{\mathbf{I}}_2}{\underline{\mathbf{U}}_2}\right)_{\underline{\mathbf{I}}_1 = 0} = (\underline{\mathbf{Y}}_{\text{out}})_{\underline{\mathbf{Y}}_1 = 0}$$

Parallel-Reihen-Form der Vierpolgleichungen

$$\begin{array}{l} \underline{I}_1 = \underline{C}_{11} \cdot \underline{U}_1 + \underline{C}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{C}_{21} \cdot \underline{U}_1 + \underline{C}_{22} \cdot \underline{I}_2 \end{array} \qquad \text{oder} \quad \begin{pmatrix} \underline{I}_1 \\ \underline{U}_2 \end{pmatrix} = \begin{pmatrix} \underline{C}_{11} & \underline{C}_{12} \\ \underline{C}_{21} & \underline{C}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{U}_1 \\ \underline{I}_2 \end{pmatrix}$$

Leerlauf-Eingangsleitwert:

$$\underline{C}_{11} = \left(\frac{\underline{I}_1}{\underline{U}_1}\right)_{\underline{I}_2 = 0} = (\underline{Y}_{in})_{\underline{Y}_{a=0}}$$

Leerlauf-Spannungsübersetzung vorwärts:

$$\underline{\mathbf{C}}_{21} = \left(\frac{\underline{\mathbf{U}}_2}{\underline{\mathbf{U}}_1}\right)_{\mathbf{I}_2 = \mathbf{0}} = (\underline{\mathbf{V}}_{\mathrm{uf}})_{\underline{\mathbf{Y}}_{a=0}}$$

Kurzschluss-Stromrückwirkung:

$$\underline{C}_{12} = \left(\frac{\underline{I}_1}{\underline{I}_2}\right)_{U_1 = 0} = (\underline{V}_{ir})_{\underline{Y}_{i = \infty}}$$

Kurzschluss-Ausgangswiderstand:

$$\underline{\mathbf{C}}_{22} = \left(\frac{\underline{\mathbf{U}}_2}{\underline{\mathbf{I}}_2}\right)_{\mathbf{U}_1 = \mathbf{0}} = (\underline{\mathbf{Z}}_{\text{out}})_{\underline{\mathbf{Y}}_{i = \infty}}$$

Kettenform der Vierpolgleichungen

$$\underline{\mathbf{U}}_1 = \underline{\mathbf{A}}_{11} \cdot \underline{\mathbf{U}}_2 + \underline{\mathbf{A}}_{12} \cdot (-\underline{\mathbf{I}}_2)$$

$$\underline{\mathbf{I}}_1 = \underline{\mathbf{A}}_{21} \cdot \underline{\mathbf{U}}_2 + \underline{\mathbf{A}}_{22} \cdot (-\underline{\mathbf{I}}_2)$$

reziproke Leerlauf-Spannungsübersetzung vorwärts:

$$\underline{\mathbf{A}}_{11} = \left(\frac{\underline{\mathbf{U}}_1}{\underline{\mathbf{U}}_2}\right)_{\underline{\mathbf{I}}_2 = 0} = \left(\frac{1}{\underline{\mathbf{V}}_{\mathrm{uf}}}\right)_{\underline{\mathbf{Y}}_{a=0}}$$

reziproker Leerlauf-Übertragungswiderstand vorwärts:

$$\underline{A}_{21} = \left(\frac{\underline{I}_1}{\underline{U}_2}\right)_{\underline{I}_2 = 0} = \left(\frac{1}{\underline{Z}_{\ddot{u}f}}\right)_{\underline{Y}_{a=0}}$$

oder $\begin{pmatrix} \underline{\mathbf{U}}_1 \\ \underline{\mathbf{I}}_1 \end{pmatrix} = \begin{pmatrix} \underline{\mathbf{A}}_{11} & \underline{\mathbf{A}}_{12} \\ \underline{\mathbf{A}}_{21} & \underline{\mathbf{A}}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{\mathbf{U}}_2 \\ -\underline{\mathbf{I}}_2 \end{pmatrix}$

negativer reziproker Kurzschluss-Übertragungsleitwert vorwärts:

$$\underline{\mathbf{A}}_{12} = \left(\frac{\underline{\mathbf{U}}_1}{-\underline{\mathbf{I}}_2}\right)_{\underline{\mathbf{U}}_2 = 0} = \left(\frac{1}{-\underline{\mathbf{Y}}_{\ddot{\mathbf{u}}f}}\right)_{\underline{\mathbf{Y}}_{\mathbf{a} = \infty}}$$

negative reziproke Kurzschluss-Stromübersetzung vorwärts:

$$\underline{A}_{22} = \left(\frac{\underline{I}_1}{-\underline{I}_2}\right)_{\underline{\underline{U}}_2 = 0} = \left(\frac{1}{-\underline{V}_{if}}\right)_{\underline{Y}_{a = \infty}}$$

Definition der A-Parameter mittels Kettenschaltung

Umrechnung der Vierpolparameter von einer Form in eine andere

	<u>Y</u> ₁₁	<u>Y</u> ₁₂	$\frac{\underline{Z}_{22}}{\det \underline{Z}}$	$\frac{-\underline{Z}_{12}}{\det \underline{Z}}$	$\frac{1}{\underline{\mathrm{H}}_{11}}$	$\frac{-\underline{H}_{12}}{\underline{H}_{11}}$	$\frac{\det \underline{C}}{\underline{C}_{22}}$	$\frac{\underline{C}_{12}}{\underline{C}_{22}}$	$\frac{\underline{A}_{22}}{\underline{A}_{12}}$	$\frac{-\det\underline{A}}{\underline{A}_{12}}$
(Y)	<u>Y</u> ₂₁	<u>Y</u> ₂₂	$\frac{-\underline{Z}_{21}}{\det \underline{Z}}$	$\frac{\underline{Z}_{11}}{\det \underline{Z}}$	$\frac{\underline{H}_{21}}{\underline{H}_{11}}$	$\frac{\det \underline{H}}{\underline{H}_{11}}$	$\frac{-\underline{C}_{21}}{\underline{C}_{22}}$	$\frac{1}{\underline{C}_{22}}$	$\frac{-1}{\underline{A}_{12}}$	$\frac{\underline{A}_{11}}{\underline{A}_{12}}$
(Z)	$\frac{\underline{Y}_{22}}{\det \underline{Y}}$	$\frac{-\underline{Y}_{12}}{\det\underline{Y}}$	<u>Z</u> ₁₁	<u>Z</u> ₁₂	$\frac{\det \underline{H}}{\underline{H}_{22}}$	$\frac{\underline{H}_{12}}{\underline{H}_{22}}$	$\frac{1}{\underline{C}_{11}}$	$\frac{-\underline{C}_{12}}{\underline{C}_{11}}$	$\frac{\underline{A}_{11}}{\underline{A}_{21}}$	$\frac{\det \underline{A}}{\underline{A}_{21}}$
(2)	$\frac{-\underline{Y}_{21}}{\text{det}\underline{Y}}$	$\frac{\underline{Y}_{11}}{\det \underline{Y}}$	<u>Z</u> ₂₁	<u>Z</u> ₂₂	$\frac{-\underline{\mathrm{H}}_{21}}{\underline{\mathrm{H}}_{22}}$	$\frac{1}{\underline{\mathrm{H}}_{22}}$	$\frac{\underline{C}_{21}}{\underline{C}_{11}}$	$\frac{\det\underline{C}}{\underline{C}_{11}}$	$\frac{1}{\underline{\mathbf{A}}_{21}}$	$\frac{\underline{\mathbf{A}}_{22}}{\underline{\mathbf{A}}_{21}}$
(II)	$\frac{1}{\underline{Y}_{11}}$	$\frac{-\underline{Y}_{12}}{\underline{Y}_{11}}$	$\frac{\det \underline{Z}}{\underline{Z}_{22}}$	$\frac{\underline{Z}_{12}}{\underline{Z}_{22}}$	<u>H</u> ₁₁	<u>H</u> ₁₂	$\frac{\underline{C}_{22}}{\det \underline{C}}$	$\frac{-\underline{C}_{12}}{\det \underline{C}}$	$\frac{\underline{A}_{12}}{\underline{A}_{22}}$	$\frac{\det \underline{A}}{\underline{A}_{22}}$
(H)	$\frac{\underline{Y}_{21}}{\underline{Y}_{11}}$	$\frac{\det\underline{Y}}{\underline{Y}_{11}}$	$\frac{-\underline{Z}_{21}}{\underline{Z}_{22}}$	$\frac{1}{\underline{Z}_{22}}$	<u>H</u> ₂₁	<u>H</u> ₂₂	$\frac{-\underline{C}_{21}}{\det\underline{C}}$	$\frac{\underline{C}_{11}}{\det \underline{C}}$	$\frac{-1}{\underline{\mathbf{A}}_{22}}$	$\frac{\underline{\mathbf{A}}_{21}}{\underline{\mathbf{A}}_{22}}$
(C)	$\frac{\det \underline{Y}}{\underline{Y}_{22}}$	$\frac{\underline{Y}_{12}}{\underline{Y}_{22}}$	$\frac{1}{Z_{11}}$	$\frac{-\underline{Z}_{12}}{\underline{Z}_{11}}$	$\frac{\underline{\mathrm{H}}_{22}}{\det \underline{\mathrm{H}}}$	$\frac{-\underline{H}_{12}}{\det \underline{H}}$	<u>C</u> ₁₁	<u>C</u> ₁₂	$\frac{\underline{A}_{21}}{\underline{A}_{11}}$	$\frac{-\det\underline{A}}{\underline{A}_{11}}$
(C)	$\frac{-\underline{Y}_{21}}{\underline{Y}_{22}}$	$\frac{1}{\underline{Y}_{22}}$	$\frac{\underline{Z}_{21}}{\underline{Z}_{11}}$	$\frac{\det \underline{Z}}{\underline{Z}_{11}}$	$\frac{-\underline{H}_{21}}{\det \underline{H}}$	$\frac{\underline{H}_{11}}{\det \underline{H}}$	<u>C</u> ₂₁	<u>C</u> ₂₂	$\frac{1}{\underline{\mathbf{A}}_{11}}$	$\frac{\underline{A}_{12}}{\underline{A}_{11}}$
(A)	$\frac{-\underline{Y}_{22}}{\underline{Y}_{21}}$	$\frac{-1}{\underline{Y}_{21}}$	$\frac{\underline{Z}_{11}}{\underline{Z}_{21}}$	$\frac{\det \underline{Z}}{\underline{Z}_{21}}$	$\frac{-\det \underline{H}}{\underline{H}_{21}}$	$\frac{-\underline{H}_{11}}{\underline{H}_{21}}$	$\frac{1}{\underline{C}_{21}}$	$\frac{\underline{C}_{22}}{\underline{C}_{21}}$	<u>A</u> ₁₁	<u>A</u> ₁₂
	$\frac{-\text{det}\underline{Y}}{\underline{Y}_{21}}$	$\frac{-\underline{Y}_{11}}{\underline{Y}_{21}}$	$\frac{1}{\underline{Z}_{21}}$	$\frac{\underline{Z}_{22}}{\underline{Z}_{21}}$	$\frac{-\underline{\mathbf{H}}_{22}}{\underline{\mathbf{H}}_{21}}$	$\frac{-1}{\underline{H}_{21}}$	$\frac{\underline{C}_{11}}{\underline{C}_{21}}$	$\frac{\det \underline{C}}{\underline{C}_{21}}$	<u>A</u> ₂₁	<u>A</u> ₂₂

Formeln für Vierpoldeterminanten:

$$\begin{split} \det \underline{Y} &= \underline{Y}_{11} \underline{Y}_{22} - \underline{Y}_{12} \underline{Y}_{21} = \frac{1}{\det \underline{Z}} = \frac{\underline{H}_{22}}{\underline{H}_{11}} = \frac{\underline{C}_{11}}{\underline{C}_{22}} = \frac{\underline{A}_{21}}{\underline{A}_{12}} \\ \det \underline{Z} &= \frac{1}{\det \underline{Y}} = \underline{Z}_{11} \underline{Z}_{22} - \underline{Z}_{12} \underline{Z}_{21} = \frac{\underline{H}_{11}}{\underline{H}_{22}} = \frac{\underline{C}_{22}}{\underline{C}_{11}} = \frac{\underline{A}_{12}}{\underline{A}_{21}} \\ \det \underline{H} &= \frac{\underline{Y}_{22}}{\underline{Y}_{11}} = \frac{\underline{Z}_{11}}{\underline{Z}_{22}} = \underline{H}_{11} \underline{H}_{22} - \underline{H}_{12} \underline{H}_{21} = \frac{1}{\det \underline{C}} = \frac{\underline{A}_{11}}{\underline{A}_{22}} \\ \det \underline{C} &= \frac{\underline{Y}_{11}}{\underline{Y}_{22}} = \frac{\underline{Z}_{22}}{\underline{Z}_{11}} = \frac{1}{\det \underline{H}} = \underline{C}_{11} \underline{C}_{22} - \underline{C}_{12} \underline{C}_{21} = \frac{\underline{A}_{22}}{\underline{A}_{11}} \\ \det \underline{A} &= \frac{\underline{Y}_{12}}{\underline{Y}_{21}} = \frac{\underline{Z}_{12}}{\underline{Z}_{21}} = -\frac{\underline{H}_{12}}{\underline{H}_{21}} = -\frac{\underline{C}_{12}}{\underline{C}_{21}} = \underline{A}_{11} \underline{A}_{22} - \underline{A}_{12} \underline{A}_{21} \end{split}$$

Ersatzschaltungen von Vierpolen

π-Ersatzschaltung:

T-Ersatzschaltung:

U-Ersatzschaltungen:

10.3 Vierpolparameter passiver Vierpole

(Band 3, S.186-188)

Längswiderstand	()	<u>Y</u>)	((<u>Z</u>)
<u>Z</u>	$ \frac{1}{\underline{Z}} $ $ -\frac{1}{\underline{Z}} $	$-\frac{1}{\underline{Z}}$ $\frac{1}{\underline{Z}}$	(Matrixel	stiert nicht emente sind ndlich)
(<u>A</u>)	(1	<u>H</u>)	(<u>C</u>)	
1 <u>Z</u> 0 1	<u>Z</u> – 1	1 0	0 1	– 1 <u>Z</u>
Querwiderstand	(<u>Y</u>)		$(\underline{\mathbf{Z}})$
<u>Z</u>	(Y) existiert nicht (Matrixelemente sind unendlich)		<u>Z</u>	<u>Z</u>
•			<u>Z</u>	<u>Z</u>
(<u>A</u>)	(<u>H</u>)		(<u>C</u>)	
1 0	0	1	$\frac{1}{Z}$	– 1
$\frac{1}{\underline{Z}}$ 1	- 1	$\frac{1}{\underline{Z}}$	1	0
Γ-Vierpol I	(<u>Y</u>)		(<u>Z</u>)	
$\overline{Z_2}$	$\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2}$	$-\frac{1}{\underline{Z}_2}$	<u>Z</u> 1	<u>Z</u> 1
• • • • • • • • • • • • • • • • • • • •	$-\frac{1}{\underline{Z}_2}$	$\frac{1}{\underline{Z}_2}$	<u>Z</u> 1	$\underline{Z}_1 + \underline{Z}_2$
(<u>A</u>)	(<u>H</u>)		(<u>C</u>)	
1 <u>Z</u> 2	$\frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{1}{Z_1}$	– 1
$\frac{1}{\underline{Z}_1} \qquad 1 + \frac{\underline{Z}_2}{\underline{Z}_1}$	$-\frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{1}{\underline{Z}_1 + \underline{Z}_2}$	1	<u>Z</u> 2

Γ-Vierpol II		(<u>Y</u>)	C	\mathbf{Z})
$\underline{\underline{z}_1}$	$\frac{1}{Z_1}$	$-\frac{1}{\underline{Z}_1}$	$\underline{Z}_1 + \underline{Z}_2$	<u>Z</u> ₂
	$-\frac{1}{\underline{Z}_1}$	$\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2}$	<u>Z</u> ₂	<u>Z</u> 2
(<u>A</u>)		(<u>H</u>)		<u>C</u>)
$1 + \frac{\underline{Z}_1}{\underline{Z}_2} \qquad \qquad \underline{Z}_1$	<u>Z</u> 1	1	$\frac{1}{\underline{Z}_1 + \underline{Z}_2}$	$-\frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
$\frac{1}{Z_2}$ 1	- 1	$\frac{1}{\underline{Z}_2}$	$\frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z_1} \cdot \underline{Z_2}}{\underline{Z_1} + \underline{Z_2}}$
T-Schaltung		(<u>Y</u>)		<u>Z</u>)
$\overline{\underline{z}_1}$ $\overline{\underline{z}_3}$ $\overline{\underline{z}_2}$	$\frac{\underline{Z}_2 + \underline{Z}_3}{\underline{K}}$	$-\frac{\underline{Z}_2}{\underline{K}}$	$\underline{Z}_1 + \underline{Z}_2$	<u>Z</u> 2
$ \begin{array}{c} \text{mit} \\ \underline{K} = \underline{Z}_1 \underline{Z}_2 + \underline{Z}_1 \underline{Z}_3 + \underline{Z}_2 \underline{Z}_3 \end{array} $	$-\frac{\underline{Z}_2}{\underline{K}}$	$\frac{\underline{Z}_1 + \underline{Z}_2}{\underline{K}}$	<u>Z</u> ₂	$\underline{Z}_2 + \underline{Z}_3$
(<u>A</u>)		(<u>H</u>)		<u>C</u>)
$1 + \frac{\underline{Z_1}}{\underline{Z_2}} \qquad \underline{Z_1} + \underline{Z_3} + \frac{\underline{Z_3}}{\underline{Z_1}}$	$\frac{\underline{Z}_3}{\underline{Z}_2} \qquad \frac{\underline{K}}{\underline{Z}_2 + \underline{Z}_3}$	$\frac{\underline{Z}_2}{\underline{Z}_2 + \underline{Z}_3}$	$\frac{1}{\underline{Z}_1 + \underline{Z}_2}$	$-\frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
$\frac{1}{\underline{Z}_2} \qquad 1 + \frac{\underline{Z}_3}{\underline{Z}_2}$	$-\frac{\underline{Z}_2}{\underline{Z}_2 + \underline{Z}_3}$	$\frac{1}{\underline{Z}_2 + \underline{Z}_3}$	$\frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\underline{Z}_3 + \frac{\underline{Z}_1 \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
π-Schaltung		(<u>Y</u>)		\mathbf{Z})
Z_1 Z_2 Z_3	$\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2}$	$-\frac{1}{\underline{Z}_2}$	$\frac{\underline{Z}_1(\underline{Z}_2 + \underline{Z}_3)}{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}$	
• • • • • • • • • • • • • • • • • • • •	$-\frac{1}{\underline{Z}_2}$	$\frac{1}{\underline{Z}_2} + \frac{1}{\underline{Z}_3}$	$\frac{\underline{Z}_1\underline{Z}_3}{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}$	$\frac{\underline{Z}_3(\underline{Z}_1 + \underline{Z}_2)}{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}$
(<u>A</u>)		(<u>H</u>)		<u>C</u>)
$1 + \frac{\underline{Z}_2}{\underline{Z}_3} \qquad \qquad \underline{Z}_2$	$\frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}{\underline{Z}_1(\underline{Z}_2 + \underline{Z}_3)}$	$-\frac{\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3}$
$\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_3} + \frac{\underline{Z}_2}{\underline{Z}_1 \underline{Z}_3} \qquad 1 + \frac{\underline{Z}_2}{\underline{Z}_1}$	$-\frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}{\underline{Z}_3(\underline{Z}_1 + \underline{Z}_2)}$	$\frac{\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3}$	$\frac{\underline{Z}_2\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3}$

Umpole	er	C	<u>Y</u>)	(2	<u>Z</u>)
		existiert nicht		existiert nicht	
(<u>A</u>)		(<u>I</u>	<u>H</u>)	(<u>C</u>)	
- 1	0	0	– 1	0	1
0	– 1	1	0	– 1	0
Symmetrische X	-Schaltung	(2	<u>Y</u>)	(2	<u>Z</u>)
<u>Z</u> 2	Ž ₁	$\frac{1}{2} \left(\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} \right)$	$\frac{1}{2} \left(\frac{1}{\underline{Z}_1} - \frac{1}{\underline{Z}_2} \right)$	$\frac{1}{2}(\underline{Z}_1 + \underline{Z}_2)$	$\frac{1}{2}(\underline{Z}_1 - \underline{Z}_2)$
22		$\frac{1}{2} \left(\frac{1}{\underline{Z}_1} - \frac{1}{\underline{Z}_2} \right)$	$\frac{1}{2} \left(\frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} \right)$	$\frac{1}{2}(\underline{Z}_1 - \underline{Z}_2)$	$\frac{1}{2}(\underline{Z}_1 + \underline{Z}_2)$
(<u>A</u>)		(<u>H</u>)		(<u>C</u>)	
$\frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_1 - \underline{Z}_2}$		$\frac{2 \cdot \underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1 - \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{2}{\underline{Z}_1 + \underline{Z}_2}$	$-\frac{\underline{Z}_1 - \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
$\frac{2}{\underline{Z}_1 - \underline{Z}_2}$	$\frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_1 - \underline{Z}_2}$	$-\frac{\underline{Z}_1 - \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{\underline{Z}_1 - \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$	$\frac{2 \cdot \underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
Symmetrischer 1		(<u>Y</u>)			
		$\frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_1^2 + 2 \cdot \underline{Z}_2}$	$\frac{2}{1 \cdot \underline{Z}_2} + \frac{1}{\underline{Z}_3}$	$-\left(\frac{\underline{Z}_2}{\underline{Z}_1^2 + 2 \cdot \underline{Z}_2}\right)$	$\left(\underline{Z_1} \cdot \underline{Z_2} + \frac{1}{\underline{Z_3}}\right)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-\left(\frac{\underline{Z}_2}{\underline{Z}_1^2 + 2 \cdot \underline{Z}_1 \cdot \underline{Z}_2} + \frac{1}{\underline{Z}_3}\right)$		$\frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_1^2 + 2 \cdot \underline{Z}_1 \cdot \underline{Z}_2} + \frac{1}{\underline{Z}_3}$	
•		(<u>Z</u>)			
		$\frac{\underline{Z_1}^2 + \underline{Z_1} \cdot \underline{Z_3}}{2 \cdot \underline{Z_1} + \underline{Z_3}} + \underline{Z_2}$		$\frac{\underline{Z_1}^2}{2 \cdot \underline{Z_1} + \underline{Z_3}} + \underline{Z_2}$	
		$\frac{\underline{Z_1}^2}{2 \cdot \underline{Z_1} +}$	$\overline{\underline{Z}_3} + \overline{\underline{Z}}_2$	$\frac{\underline{Z_1}^2 + \underline{Z_1}}{2 \cdot \underline{Z_1} +}$	$\frac{\cdot \underline{Z}_3}{\underline{Z}_3} + \underline{Z}_2$

10.4 Betriebskenngrößen von Vierpolen

(Band 3, S.189-202)

Kenngrößen eines Vierpols im Vorwärtsbetrieb

Betriebskenngröße		Leerlauf	Kurzschluss
Eingangsleitwert	$\underline{\mathbf{Y}}_{\text{in}} = \frac{\underline{\mathbf{I}}_1}{\underline{\mathbf{U}}_1}$	<u>C</u> ₁₁	<u>Y</u> ₁₁
Eingangswiderstand	$\underline{Z}_{in} = \frac{\underline{U}_1}{\underline{I}_1}$	<u>Z</u> ₁₁	<u>H</u> ₁₁
Übertragungsleitwert vorwärts	$\underline{Y}_{\bar{\mathbf{u}}\mathbf{f}} = \frac{\underline{\mathbf{I}}_2}{\underline{\mathbf{U}}_1}$	0	$\underline{\mathbf{Y}}_{21} = -\frac{1}{\underline{\mathbf{A}}_{12}}$
Übertragungswiderstand vorwärts	$\underline{Z}_{\bar{\mathbf{u}}\mathbf{f}} = \frac{\underline{\mathbf{U}}_2}{\underline{\mathbf{I}}_1}$	$\underline{Z}_{21} = \frac{1}{\underline{A}_{21}}$	0
Spannungsübersetzung vorwärts	$\underline{V}_{uf} = \frac{\underline{U}_2}{\underline{U}_1}$	$\underline{\mathbf{C}}_{21} = \frac{1}{\underline{\mathbf{A}}_{11}}$	0
Stromübersetzung vorwärts	$\underline{V}_{if} = \frac{\underline{I}_2}{\underline{I}_1}$	0	$\underline{\mathbf{H}}_{21} = -\frac{1}{\underline{\mathbf{A}}_{22}}$

Kenngrößen eines Vierpols im Rückwärtsbetrieb

Betriebskenngröße		Leerlauf	Kurzschluss
Ausgangsleitwert	$\underline{\mathbf{Y}}_{\text{out}} = \frac{\underline{\mathbf{I}}_2}{\underline{\mathbf{U}}_2}$	<u>H</u> ₂₂	<u>Y</u> ₂₂
Ausgangswiderstand	$\underline{Z}_{\text{out}} = \frac{\underline{U}_2}{\underline{I}_2}$	<u>Z</u> ₂₂	<u>C</u> ₂₂
Übertragungsleitwert rückwärts	$\underline{Y}_{\ddot{u}r} = \frac{\underline{I}_1}{\underline{U}_2}$	0	<u>Y</u> ₁₂
Übertragungswiderstand rückwärts	$\underline{Z}_{\ddot{u}r} = \frac{\underline{U}_1}{\underline{I}_2}$	<u>Z</u> ₁₂	0
Spannungsrückwirkung	$\underline{V}_{ur} = \frac{\underline{U}_1}{\underline{U}_2}$	<u>H</u> ₁₂	0
Stromrückwirkung	$\underline{V}_{ir} = \frac{\underline{I}_1}{\underline{I}_2}$	0	<u>C</u> ₁₂

Kenngrößen des beschalteten Vierpols im Vorwärtsbetrieb

	(<u>Y</u>)	(<u>Z</u>)	(<u>H</u>)	(<u>C</u>)	(<u>A</u>)
Yin	$\frac{\det \underline{Y} + \underline{Y}_{11} \cdot \underline{Y}_a}{\underline{Y}_{22} + \underline{Y}_a}$	$\frac{1 + \underline{Z}_{22} \cdot \underline{Y}_{a}}{\underline{Z}_{11} + \underline{Y}_{a} \cdot \det \underline{Z}}$	$\frac{\underline{H}_{22} + \underline{Y}_a}{\det \underline{H} + \underline{H}_{11} \cdot \underline{Y}_a}$	$\frac{\underline{C_{11}} + \underline{Y}_a \cdot \det \underline{C}}{1 + \underline{C_{22}} \cdot \underline{Y}_a}$	$\frac{\underline{A}_{21} + \underline{A}_{22} \cdot \underline{Y}_a}{\underline{A}_{11} + \underline{A}_{12} \cdot \underline{Y}_a}$
Zin	$\frac{\underline{Y}_{22} + \underline{Y}_a}{\det \underline{Y} + \underline{Y}_{11} \cdot \underline{Y}_a}$	$\frac{\underline{Z}_{11} + \underline{Y}_{a} \cdot \det \underline{Z}}{1 + \underline{Z}_{22} \cdot \underline{Y}_{a}}$	$\frac{\det \underline{H} + \underline{H}_{11} \cdot \underline{Y}_a}{\underline{H}_{22} + \underline{Y}_a}$	$\frac{1 + \underline{C}_{22} \cdot \underline{Y}_a}{\underline{C}_{11} + \underline{Y}_a \cdot \det \underline{C}}$	$\frac{\underline{A}_{11} + \underline{A}_{12} \cdot \underline{Y}_a}{\underline{A}_{21} + \underline{A}_{22} \cdot \underline{Y}_a}$
Yüf	$\frac{\underline{Y}_{21} \cdot \underline{Y}_a}{\underline{Y}_{22} + \underline{Y}_a}$	$\frac{-\underline{Z}_{21} \cdot \underline{Y}_{a}}{\underline{Z}_{11} + \underline{Y}_{a} \cdot \det \underline{Z}}$	$\frac{\underline{H}_{21} \cdot \underline{Y}_{a}}{\det \underline{H} + \underline{H}_{11} \cdot \underline{Y}_{a}}$	$\frac{-\underline{C}_{21} \cdot \underline{Y}_a}{1 + \underline{C}_{22} \cdot \underline{Y}_a}$	$\frac{-\underline{Y}_a}{\underline{A}_{11} + \underline{A}_{12} \cdot \underline{Y}_a}$
Züf	$\frac{-\underline{Y}_{21}}{\det\underline{Y} + \underline{Y}_{11} \cdot \underline{Y}_a}$	$\frac{\underline{Z}_{21}}{1 + \underline{Z}_{22} \cdot \underline{Y}_{a}}$	$\frac{-\underline{H}_{21}}{\underline{H}_{22} + \underline{Y}_{a}}$	$\frac{\underline{C}_{21}}{\underline{C}_{11} + \underline{Y}_a \cdot \det \underline{C}}$	$\frac{1}{\underline{\mathbf{A}}_{21} + \underline{\mathbf{A}}_{22} \cdot \underline{\mathbf{Y}}_{\mathbf{a}}}$
<u>V</u> uf	$\frac{-\underline{Y}_{21}}{\underline{Y}_{22} + \underline{Y}_a}$	$\frac{\underline{Z}_{21}}{\underline{Z}_{11} + \underline{Y}_{a} \cdot \det \underline{Z}}$	$\frac{-\underline{H}_{21}}{\det \underline{H} + \underline{H}_{11} \cdot \underline{Y}_{a}}$	$\frac{\underline{C}_{21}}{1 + \underline{C}_{22} \cdot \underline{Y}_a}$	$\frac{1}{\underline{\mathbf{A}}_{11} + \underline{\mathbf{A}}_{12} \cdot \underline{\mathbf{Y}}_{\mathbf{a}}}$
<u>V</u> if	$\frac{\underline{Y}_{21} \cdot \underline{Y}_a}{\det \underline{Y} + \underline{Y}_{11} \cdot \underline{Y}_a}$	$\frac{-\underline{Z}_{21} \cdot \underline{Y}_{a}}{1 + \underline{Z}_{22} \cdot \underline{Y}_{a}}$	$\frac{\underline{H}_{21} \cdot \underline{Y}_a}{\underline{H}_{22} + \underline{Y}_a}$	$\frac{-\underline{C}_{21}\cdot\underline{Y}_a}{\underline{C}_{11}+\underline{Y}_a\cdot det\underline{C}}$	$\frac{-\underline{Y}_a}{\underline{A}_{21} + \underline{A}_{22} \cdot \underline{Y}_a}$

Kenngrößen des beschalteten Vierpols im Rückwärtsbetrieb

	(<u>Y</u>)	(<u>Z</u>)	(<u>H</u>)	(<u>C</u>)	(<u>A</u>)
Yout	$\frac{\det\underline{Y} + \underline{Y}_{22} \cdot \underline{Y}_i}{\underline{Y}_{11} + \underline{Y}_i}$	$\frac{1 + \underline{Z}_{11} \cdot \underline{Y}_{i}}{\underline{Z}_{22} + \underline{Y}_{i} \cdot \det \underline{Z}}$	$\frac{\underline{H}_{22} + \underline{Y}_{i} \cdot \det \underline{H}}{1 + \underline{H}_{11} \cdot \underline{Y}_{i}}$	$\frac{\underline{C}_{11} + \underline{Y}_i}{\det \underline{C} + \underline{C}_{22} \cdot \underline{Y}_i}$	$\frac{\underline{A}_{21} + \underline{A}_{11} \cdot \underline{Y}_i}{\underline{A}_{22} + \underline{A}_{12} \cdot \underline{Y}_i}$
Zout	$\frac{\underline{Y}_{11} + \underline{Y}_i}{\det \underline{Y} + \underline{Y}_{22} \cdot \underline{Y}_i}$	$\frac{\underline{Z}_{22} + \underline{Y}_i \cdot \det \underline{Z}}{1 + \underline{Z}_{11} \cdot \underline{Y}_i}$	$\frac{1 + \underline{H}_{11} \cdot \underline{Y}_{i}}{\underline{H}_{22} + \underline{Y}_{i} \cdot \det \underline{H}}$	$\frac{\det \underline{C} + \underline{C}_{22} \cdot \underline{Y}_i}{\underline{C}_{11} + \underline{Y}_i}$	$\frac{\underline{A}_{22} + \underline{A}_{12} \cdot \underline{Y}_i}{\underline{A}_{21} + \underline{A}_{11} \cdot \underline{Y}_i}$
<u>Y</u> ür	$\frac{\underline{Y}_{12} \cdot \underline{Y}_{i}}{\underline{Y}_{11} + \underline{Y}_{i}}$	$\frac{-\underline{Z}_{12} \cdot \underline{Y}_i}{\underline{Z}_{22} + \underline{Y}_i \cdot \det \underline{Z}}$	$\frac{-\underline{H}_{12}\cdot\underline{Y}_{i}}{1+\underline{H}_{11}\cdot\underline{Y}_{i}}$	$\frac{\underline{C}_{12} \cdot \underline{Y}_i}{\det \underline{C} + \underline{C}_{22} \cdot \underline{Y}_i}$	$\frac{-\underline{Y}_{i} \cdot \det \underline{A}}{\underline{A}_{22} + \underline{A}_{12} \cdot \underline{Y}_{i}}$
<u>Z</u> ür	$\frac{-\underline{Y}_{12}}{\det \underline{Y} + \underline{Y}_{22} \cdot \underline{Y}_{i}}$	$\frac{\underline{Z}_{12}}{1 + \underline{Z}_{11} \cdot \underline{Y}_i}$	$\frac{\underline{H}_{12}}{\underline{H}_{22} + \underline{Y}_{i} \cdot \det \underline{H}}$	$\frac{-\underline{C}_{12}}{\underline{C}_{11} + \underline{Y}_{i}}$	$\frac{\det\underline{A}}{\underline{A}_{21}+\underline{A}_{11}\cdot\underline{Y}_{i}}$
<u>V</u> ur	$\frac{-\underline{Y}_{12}}{\underline{Y}_{11} + \underline{Y}_{i}}$	$\frac{\underline{Z}_{12}}{\underline{Z}_{22} + \underline{Y}_i \cdot \det \underline{Z}}$	$\frac{\underline{H}_{12}}{1 + \underline{H}_{11} \cdot \underline{Y}_i}$	$\frac{-\underline{C}_{12}}{\det\underline{C} + \underline{C}_{22} \cdot \underline{Y}_{i}}$	$\frac{\det\underline{A}}{\underline{A}_{22}+\underline{A}_{12}\cdot\underline{Y}_{i}}$
<u>V</u> ir	$\frac{\underline{Y}_{12} \cdot \underline{Y}_i}{\det \underline{Y} + \underline{Y}_{22} \cdot \underline{Y}_i}$	$\frac{-\underline{Z}_{12} \cdot \underline{Y}_i}{1 + \underline{Z}_{11} \cdot \underline{Y}_i}$	$\frac{-\underline{H}_{12} \cdot \underline{Y}_{i}}{\underline{H}_{22} + \underline{Y}_{i} \cdot \det \underline{H}}$	$\frac{\underline{C}_{12} \cdot \underline{Y}_i}{\underline{C}_{11} + \underline{Y}_i}$	$\frac{-\underline{Y}_{i} \cdot \det \underline{A}}{\underline{A}_{21} + \underline{A}_{11} \cdot \underline{Y}_{i}}$