МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра вычислительной техники

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Алгоритмы и структуры данных»

Тема: Деревья

Студент гр. 9305	 Николаенко К. Н.
Преподаватель	 Манирагена В.

Санкт-Петербург

2020

Цель работы.

Исследование алгоритмов для работы с двоичным деревом.

Задание.

Нужно вычислить высоту левого поддерева относительно корня.

Обоснование выбора представления дерева.

Исходя из 1 и 2 лабораторной работы, можно сделать вывод, что удобнее всего работать со списками, так как в них можно осуществить достаточно большой функционал, Так же не маловажно что списки используют указатели на свои соседние элементы, что при работе с памятью более удобно, чем массив, ну и списки могут ветвится.

Тестовый пример.

```
0)Random
1)Manually
Input mode: 1
Node(a,0) 1/0:1
Node(a,1) 1/0:1
Node(a,2) 1/0:0
Node(a,2) 1/0:1
Node(a,3) 1/0:1
Node(a,4) 1/0:1
Node(a,5) 1/0:0
Node(a,5) 1/0:0
Node(b,4) 1/0:0
Node(c,3) 1/0:0
Node(e,1) 1/0:1
Node(e,2) 1/0:0
             .....h....h....h....
Node(e,2) 1/0:1
            .d....g....g
Node(e,3) 1/0:1
             Node(e,4) 1/0:0
Node(e,4) 1/0:0
Node(f,3) 1/0:0
```

Контрольные тесты.

0)Random
1)Manually
Input mode: 0
gg
ff
ee
ad
b.
Double Circle according for a disk Dancad accord 7
Depth-first search:g f e a d c b Passed nodes: 7
Height of the left subtree = 4
@\Random
0)Random
1)Manually
1)Manually Input mode: 0
1)Manually Input mode: 0h
1)Manually Input mode: 0hg.
1)Manually Input mode: 0hg.
1)Manually Input mode: 0hged
1)Manually Input mode: 0 fged
1)Manually Input mode: 0hged
1)Manually Input mode: 0 fged
1)Manually Input mode: 0fgedbc.
1)Manually Input mode: 0 fggdd
1)Manually Input mode: 0 fggdd

Результаты измерения времени обработки каждым из способов.

№	функция	временная сложность
1	создание дерева	O(V)
2	обход в глубину	O(V)
3	вывод	O(V)

Где V - количество вершин (множество вершин)

Выводы о результатах испытания алгоритмов обхода дерева.

Проделав данную работу, я пришел к выводу, что алгоритм в глубину является достаточно хорошим для обхода дерева, обход в ширину тоже не плох, но мне почему то ближе алгоритм обхода в глубину. Мне понравилась реализация стека и очереди. Так же хочу отметить, что оба алгоритма достаточно простые для понимания.

В общем, хочу сказать, что работа была достаточно интересная, особенно процесс создания дерева, однако вывод дерева был не сразу понятен мне, но я все же разобрался.

Список использованных источников.

1. Пользовательские структуры данных. Методические указания по дисциплине «Алгоритмы и структуры данных, часть 1» П. Г. Колинько, 2020.

Приложение А.

Ссылка на гитхаб с кодом:

https://github.com/NikolaenkoKonstantin/AiSD/tree/main/lab_3