

Ayudantía 11 - Elementos en órdenes y funciones

24 de octubre de 2025

Manuel Villablanca, Elías Ayaach, Caetano Borges

Resumen

Función

Sea $f \subseteq A \times B$ diremos que f es una función de A en B si dado cualquier elemento $\forall a \in A \exists b \in B$ tal que:

$$afb \land afc \Longrightarrow b = c$$

Sea $f: A \to B$. Diremos que f es

- Inyectiva si la función es uno a uno, esto es $\forall x,y \in A$ se tiene que $f(x)=f(y)\Longrightarrow x=y$.
- \bullet Sobreyectiva si $\forall b \in B. \exists a \in A$ tal que b = f(a)
- Biyectiva si es inyectiva y sobreyectiva a la vez.

Función invertible

Dada una función f de A en B, diremos que f es invertible si su relación inversa f^{-1} es una función de B en A.

Composición de funciones

Dadas relaciones R de A en B y S de B en C, la composición de R y S es una relación de A en C definida como

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B \text{ tal que } aRb \wedge bSc\}$$

Como las funciones son relaciones, esta definición se extiende naturalmente.

Principio del palomar

Si se tiene una función $f: \mathbb{N}_m \to \mathbb{N}_n$ con m > n, la función f no puede ser inyectiva. Es decir, necesariamente existirán $x, y \in \mathbb{N}_m$ tales que $x \neq y$, pero f(x) = f(y).

1. Verdadero y Falso

Sea A un conjunto no vacío y $\preceq \subseteq A \times A$ un orden parcial. En esta pregunta refiérase siempre a este orden parcial y responda verdadero o falso según corresponda. En caso de ser verdadero, demuéstrelo, y en caso de ser falso, dé un contraejemplo y explíquelo.

- 1. Si S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$, entonces \leq es un orden total.
- 2. Si \leq es un orden total, entonces S tiene un mínimo para todo $S \subseteq A$ con $S \neq \emptyset$.
- 3. Para todo $S \subseteq A$, si existe x que es minimal y maximal de S, entonces S tiene un único elemento.

2. La mezcla

Sea A un conjunto no vacío, $\simeq \subseteq A \times A$ una relación de equivalencia y $\preceq \subseteq A \times A$ un orden parcial, ambos sobre A. Considere el conjunto cuociente A/\simeq y defina la siguiente relación $\ll \subseteq (A/\simeq) \times (A/\simeq)$:

$$(S_1, S_2) \in \ll$$
 si, y solo si, existe $a \in S_1$ tal que $\forall b \in S_2$ se cumple que $a \leq b$

La clausura refleja de una relación R aplicada sobre el conjunto A se define como la relación refleja más pequeña aplicada sobre A que contiene a R. Esta se denota como R^r y cumple las siguientes propiedades:

- 1. $R \subseteq R^r$
- 2. R^r es refleja
- 3. Si R' es una relación refleja tal que $R \subseteq R'$, entonces $R' \subseteq R'$

Dicho de forma sencilla, a la relación R le añadimos las relaciones necesarias para que sea refleja.

- 1. Demuestre que \ll^r es un orden parcial sobre A/\simeq donde \ll^r es la clausura refleja de \ll .
- 2. ¿Es verdad que A tiene un elemento minimal según \leq si, y solo si, A/\simeq tiene un elemento minimal según \ll^r ? Demuestre su afirmación.

3. Funciones

Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f: A \to B$ es *creciente* si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).

- 1. Demuestre que si f es creciente, entonces es inyectiva.
- 2. ¿Es cierto que si $f:A\to B$ y $g:B\to C$ son crecientes, entonces $f\circ g$ es creciente? Demuestre o de un contraejemplo.

3. ¿Es cierto que si $f\circ g$ es creciente, entonces f es creciente y g es creciente? Demuestre o de un contraejemplo.