1. Show that $n^{1/n} \to \infty$ as $n \to \infty$.

By Problem Sheet 5, Question 1, $1 + \sqrt{n} = 1 + n \frac{1}{\sqrt{n}} \le \left(1 + \frac{1}{\sqrt{n}}\right)^n$. So

$$1 \le 1^{1/n} \le (\sqrt{n})^{1/n} \le (1 + \sqrt{n})^{1/n} \le \left(\left(1 + \frac{1}{\sqrt{n}}\right)^n\right)^{1/n} = 1 + \frac{1}{\sqrt{n}}$$

Since $1 \to 1$ and $1 + \frac{1}{\sqrt{n}} \to 1$, so does $n^{1/n} \to \infty$.

2. Let $PL(a_n)$ be the set of all limits of convergent subsequences of (a_n) , i.e.,

 $PL(a_n) = \{ L \in \mathbb{R} \mid \text{there is some subsequence}(a_{n_k}) \text{ such that } a_{n_k} \to L \text{ as } k \to \infty \}.$

Elements of $PL(a_n)$ are also called partial limits of (a_n) .

(a) For each one of the following items, give an example, without proof, of a sequence (a_n) such that $PL(a_n) = S$.

i.
$$S = \{1, ..., m\}.$$

- ii. $S = \mathbb{N}$.
- (b) Is there a sequence (a_n) such that $PL(a_n) = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$? You are not required to justify your answer, just come up with an answer yes or no. You will prove the correct answer in a further question.
- (a) i. $1, \ldots, m, 1, \ldots, m, 1, \ldots, m, \ldots$ ii. $1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, \ldots$
- (b) No, because of Question 4.
- 3. Let (a_n) be a sequence, $L \in \mathbb{R}$. Prove that $L \in PL(a_n)$ if and only if for every $\epsilon > 0$, the set $\{ n \in \mathbb{N} \mid L \epsilon < a_n < L + \epsilon \}$ is infinite.
 - \Longrightarrow If $L \in PL(a_n)$, then there is a subsequence (a_{n_k}) such that $a_{n_k} \to L$ as $k \to \infty$. So for every $\epsilon > 0$, there is some $N \in \mathbb{N}$ such that $\forall k > N \mid a_{n_k} L \mid < \epsilon$. So n_{N+1}, n_{N+2}, \ldots is infinite and contained in $\{ n \in \mathbb{N} \mid L \epsilon < a_n < L + \epsilon \}$.

$$|a_{n_k} - L| < 1/k < 1/N < \epsilon.$$

¹Hint: Problem Sheet 5, Question 1

4. Prove that if (a_n) is a sequence and there is a sequence L_n of partial limits of $PL(a_n)$ such that $L_n \to L$, then L is also a partial limit of (a_n) .

Let (L_m) be a sequence of partial limits such that $L_m \to L$ as $m \to \infty$. By Question 1, it suffices to show that for every $\epsilon > 0$, the set $\{n \in \mathbb{N} \mid L - \epsilon < a_n < L + \epsilon\}$ is infinite. Let $\epsilon > 0$. Since $L_m \to L$, there is some $m \in \mathbb{N}$ such that $|L_m - L| < \epsilon/2$. In particular,

$$\{ n \in \mathbb{N} \mid L - \epsilon < a_n < L + \epsilon \} \supseteq \{ n \in \mathbb{N} \mid L_m - \epsilon/2 < a_n < L_m + \epsilon/2 \}.$$

So, as the right hand side is infinite, so is the left hand side.

5. In this question we give yet another definition of \limsup Let (a_n) be a sequence. Show that

$$\lim_{m \to \infty} \left(\sup_{n \ge m} a_n \right) = \sup(PL(a_n))$$

in the sense that if one exists, so does the other and they are equal.

• Assume $L := \lim_{m \to \infty} \left(\sup_{n \ge m} a_n \right)$ exists. Let $L' \in PL(a_n)$, so there is a subsequence (a_{n_k}) such that $a_{n_k} \to L'$. Since $n_k \ge k$, it follows that $\sup_{n \ge k} a_n \ge a_{n_k}$ for all $k \in \mathbb{N}$. So $L \ge L'$. As $L' \in PL(a_n)$ was arbitrary, $PL(a_n)$ is bounded above by L. In particular,

$$\lim_{m \to \infty} \left(\sup_{n > m} a_n \right) = L \ge \sup(PL(a_n)).$$

- Assume $S = \sup(PL(a_n))$ exists. Then by Question 4, $S \in PL(a_n)$. Let (a_{n_k}) be a subsequence such that $a_{n_k} \to S$. Then $\{a_{n_k} | k \in \mathbb{N}\}$ is bounded. Since Since $n_k \geq k$, it follows that $\sup_{n \geq k} a_n \geq a_{n_k}$ for all $k \in \mathbb{N}$. So $\{\sup_{n \geq m} a_n | m \in \mathbb{N}\}$ is bounded below, and it is also descending, so it converges.
- It is left to show that if both sides of the equation exist, then

$$\lim_{m \to \infty} \left(\sup_{n > m} a_n \right) \le \sup(PL(a_n)).$$

For that it suffices to find some subsequence a_{n_k} such that $a_{n_k} \to \lim_{m \to \infty} (\sup_{n > m} a_n)$.

- Let $n_1 \ge 1$ be such that $|a_{n_1} \sup_{n \ge 1} a_n| < 1$.
- Let $n_2 \ge n_1 + 1$ be such that $|a_{n_2} \sup_{n \ge (n_1 + 1)} a_n| < 1/2$
- Assume $n_1 < n_2 < \cdots < n_k$. Let $n_{k+1} \ge n_k + 1$ be such that $|a_{n_{k+1}} - \sup_{n \ge (n_k + 1)} a_n| < 1/k$.

To prove $a_{n_k} \to \lim_{m \to \infty} \left(\sup_{n \ge m} a_n \right)$, let $\epsilon > 0$ and let $N_1 \in \mathbb{N}$ be such that $\forall m > N, \left| \sup_{n \ge m} a_n - \lim_{m \to \infty} \left(\sup_{n \ge m} a_n \right) \right| < \epsilon/2$. Let $N_2 := 2/\epsilon$. So for every $k > N_2$,

$$\left| a_{n_k} - \sup_{n \ge (n_k + 1)} a_n \right| < 1/k < 1/N_1 = \epsilon/2.$$

Let $N := \max(N_1, N_2)$. So, if k > N, clearly also $n_k \ge k > N$ and, by the triangle inequality,

$$\left|a_{n_k} - \lim_{m \to \infty} \left(\sup_{n \ge m} a_n\right)\right| \le \left|a_{n_k} - \sup_{n \ge (n_k + 1)} a_n\right| + \left|\sup_{n \ge (n_k + 1)} a_n - \lim_{m \to \infty} \left(\sup_{n \ge m} a_n\right)\right| < \epsilon/2 + \epsilon/2.$$