数字信号处理

Dirichlet

2024年3月14日

前言

由于上学期末整理信号与系统笔记的窘境(两个星期时间需要对五、六门科目进行期末复习),在这学期初就萌生了一边上课,一边做数字信号处理(以下简称 DSP)的笔记的想法。这份笔记一是为了当期末复习的提纲,不至于复习起来决无头绪;二来也是一份献给 GPNU 智科学弟学妹们的礼物。如果这本书能对你们的智科生涯有哪怕一丝一毫的帮助,都是对我极大的鼓励和慰藉。

去年由于信号与系统的复习和押题不到位,错过了许多 PowerPoint 上的原题,今年会更注重 PowerPoint 上例题的选择。另外还会增加一些课本里的原题和各个高校的期末试题。所以这份复习提纲的例题会比较简单,笔者建议在做这些题目时,尽量控制在三分钟以内。

本笔记根据的教材是西安电子科技大学出版社,由高西全、丁玉美编著的数字信号处理 (第五版)。参考教材是 Alan V.Oppenheim 和 Ronald W.Schafer 编著的 Discrete-Time Signal Processing(Third Edition)。

由于只有笔者一个人在写这份 DSP 笔记,文中难免有错漏,欢迎各位读者指正。(如果你有其他好的建议,或者想加入贡献者的行列,欢迎邮件Cdy33643@163.com)

正文中蓝色为仅需了解,红色为重要考点及公式。

Dirichlet 2024 年 3 月 14 日

请作者喝下午茶

本书的内容是完全开源免费的,如果你觉得该笔记对你真的有帮助,可 以请作者喝一杯下午茶。

支支付宝

图 1: 一键

图 2: 三连

目录

第一章	离散时间信号与系统	1
1.1	时域离散信号	2
	1.1.1 常用的典型序列	2
	1.1.2 序列的运算	4
1.2	时域离散系统	4
	1.2.1 基本性质及判定	4
	1.2.2 系统卷积	5
1.3	线性常系数差分方程	6
1.4	模拟信号数字处理方法	6
	1.4.1 采样定理	6
1.5	离散非周期信号的傅里叶变换 DTFT	7
	1.5.1 离散时间傅里叶变换 DTFS	7
	1.5.2 常用的 DTFT 变换	7
	1.5.3 DTFT 的性质	7
1.6	小结	8
第二章	Z 变换	9
2.1	z 变换的定义	9
2.2	常用的 Z 变换	9
	2.2.1 Z 变换收敛域性质	0

目录		II
	2.2.2 Z 变换的性质	10
	2.2.3 求 LCCDE(线性常系数差分方程) 的系统函数	11
2.3	Z 的反变换	11
	2.3.1 Z 变换解差分方程	13
2.4	频响特性分析	15
	2.4.1 频率响应函数和系统函数	15
	2.4.2 系统频响特性	15
2.5	单边 Z 变换	16
	2.5.1 两个重要性质	16
2.6	小结	18
第三章	bullets	19
第四章	离散傅里叶变换 DFT	21
4.1	离散周期序列傅里叶级数 DFS	21
4.2	周期序列的傅立叶级数	22
	4.2.1 定义	22
	4.2.2 周期延拓	23
	4.2.3 性质	23
4.3	对频域采样	24
第五章	快速傅里叶变换 FFT	2 5
第六章	离散时间系统结构	2 6
第七章	滤波器的设计	27
7.1	低通滤波器	27
7.2	全通滤波器	27
7.3	带通滤波器	27

目录		III
附录 A	卷积代码	29
附录 B	循环卷积代码	30
附录 C	DFT 代码	31

第一章 离散时间信号与系统

本章的重点有常见序列、卷积、时域离散信号的傅里叶变换、周期序列的傅里叶级数和傅里叶变换、时域离散信号与模拟信号的关系、Z变换、Z变换分析频响特性。

在开始之前,需要各位牢牢记住一张图,这是我们信号与系统(或者说数字信号处理)研究的根本问题。

图 1.1: 最重要的一张图

在学习完本章之后,相信你会有一个不错的结果!

先让我们搞清楚几个概念。即模拟信号、数字信号、时域连续信号、时域离散信号。我们一般认为模拟信号即是连续信号,注意是连续信号,而不是时域连续信号或频域连续信号。

定义 1.0.1. 模拟信号: 载荷消息的信号参量取值是无穷多的,并不一定在时间上连续,比如未经量化的采样信号就是一种模拟信号。

定义 1.0.2. 数字信号: 载荷消息的信号参量只有有限个取值,注意这个参量不仅仅是指信号的幅值,还可以是信号的频率、相位,但绝对不是时间,也就是说数字信号时间轴上未必是离散的。

定义 1.0.3. 时域连续信号: 在时间轴上的取值是连续的信号称为时域连续信号。

定义 1.0.4. 时域离散信号: 在时间轴上的取值是离散的信号成为离散时间信号。

这一章的内容和信号与系统高度重合,整章难度相对简单。主要重点有:常用的典型序列、周期序列的判断、序列的运算、LTI 和因果稳定的判断、离散卷积运算。

1.1 时域离散信号

1.1.1 常用的典型序列

1. 单位脉冲序列

$$\delta[n] = \begin{cases} 1, n = 0 \\ 0, n \neq 0 \end{cases}$$
 (1.1)

2. 单位阶跃序列

$$u[n] = \begin{cases} 1, n \ge 0 \\ 0, n < 0 \end{cases}$$
 (1.2)

推论 1.1.1. 单位阶跃序列和单位脉冲序列的关系:

$$\delta[n] = u[n] - u[n-1] \tag{1.3}$$

第一章 离散时间信号与系统

$$u[n] = \sum_{m = -\infty}^{+\infty} \delta[m] \tag{1.4}$$

3. 矩形序列 $R_N(n)$

$$R_N[n] = \begin{cases} 1, 0 \le n \le N - 1 \\ 0, other \end{cases}$$
 (1.5)

推论 1.1.2. 单位阶跃序列和矩形序列的关系:

$$R_N[n] = u[n] - u[n - N] (1.6)$$

4. 实指数序列

$$x[n] = a^n u[n] \tag{1.7}$$

5. 复指数序列

$$x[n] = e^{(\sigma + j\omega_0)n} \tag{1.8}$$

6. 正弦序列

$$x[n] = \sin(\omega n) \tag{1.9}$$

推论 1.1.3. 数字频率 ω 和模拟角频率 Ω 的关系:

$$\omega = \Omega T \tag{1.10}$$

7. 周期序列

$$x[n] = x[n+mN] \quad m为整数 \tag{1.11}$$

推论 1.1.4. 自变量系数有 π 则有周期, 周期取最小正整倍数, 没有则无。

1.1.2 序列的运算

本部分运算在信号与系统中已经学过过,在此不再赘述。序列的基本运算包括:相加、相乘、倍数、移位、反褶、抽取、内插。

1.2 时域离散系统

1.2.1 基本性质及判定

定义 1.2.1. 线性系统:输入输出之间满足线性叠加性的系统。

判定方法:

$$T[ax_1(n) + bx_2(n)] = ay_1(n) + by_2(n)$$
(1.12)

推论 1.2.2. 系统中带有绝对值、高次项、常数项、非线性运算则为非线性系统

定义 1.2.3. 时不变系统:输入输出不随时间的变化而变化。

判定方法:

$$y(n - n_0) = T[x(n - n_0)] (1.13)$$

推论 1.2.4. 系统中带有变系数、反转、尺度则为时变系统

定义 1.2.5. 因果系统: n 时刻的输出只取决于 n 时刻和 n 时刻之前的输入。

线性时不变系统判定因果性的方法:

$$h(n) = 0 \quad n < 0 \tag{1.14}$$

推论 1.2.6. 系统中带有 u(n) 则为因果系统

定义 1.2.7. 稳定系统:输入输出都是有界的。

线性时不变系统判定稳定性的方法:

$$\sum_{n=-\infty}^{+\infty} |h(n)| < \infty \tag{1.15}$$

1.2.2 系统卷积

这本教材在介绍卷积计算时,介绍了三种方法:图解法、解析法、利用 matlab 语言的函数工具箱计算法。前两种方法的本质其实都是离散卷积公式。主要有以下四个步骤: 1. 翻转 2. 时移 3. 相乘 4. 相加。但笔者认为书中对图解法的精简方法————列表法,描述的较为模糊,所以在这里主要讲解列表法的做法,实际上列表法适用于所有的离散卷积题目。下面用一道例题来说明列表法的操作步骤:

例 1.2.8. 若 $h[n] = (\underline{2}, 1, 0.5, 0, 0), x[n] = (-1, 0, \underline{0}, 1, 0, 2, 0), 求 h[n] * x[n]$ 。

解: 我们利用列表法有:

	2	1	0.5	0	0						
-1	-2	-1	-0.5	0	0						
0		0	0	0	0	0					
0			0	0	0	0	0				
1				2	1	0.5	0	0			
0					0	0	0	0	0		
2						4	2	1	0	0	
0							0	0	0	0	
	-2	-1	-0.5	2	1	4.5	2	1	0	0	

图 1.2: 列表法

则 y[n] = h[n] * x[n] = (-2, -1, -0.5, 2, 1, 4.5, 2, 1, 0, 0, 0)

1.3 线性常系数差分方程

形如以下形式的方程我们称为线性常系数差分方程。

$$\sum_{i=0}^{N} a_i y[n-i] = \sum_{i=0}^{N} b_i x[n-i]$$
 (1.16)

一般我们有三种解法: 经典时域法、归纳递推法、Z 变换法。经典时域法我们已经在信号与系统中学习过,而且过程较为复杂,网上的视频教学也最多。归纳递推法则最为自然,是我们从小学的奥数就所熟悉的一种解法。所以以上两种解法我们在此都不做过多 X 赘述。我们解线性常系数差分方程的主要手段还是 Z 变换法,但由于本书的安排,我们在第一章还未能实现,所以我们将线性常系数差分方程的求解问题留待第二章讨论。

需要注意的是,本节还有一个考点是根据系统流图写出差分方程。鉴 于期末考试的题目不会太难,所以此处也不做赘述。

1.4 模拟信号数字处理方法

1.4.1 采样定理

采样定理是沟通连续量和离散量的桥梁,也即能让模拟量和数字量相 互转换。我们在处理模拟信号的时候需要用到大量的滤波器。有趣的是,人 的感官是天然的低通滤波器。

定义 1.4.1. 若 x(t) 带限信号 (Band Limited Signal), 即 $X(j\omega) = 0$, 当 $|\omega| > \omega_M$ 时,若采样频率 $\omega_S > 2\omega_M$, $(\omega_S = \frac{2\pi}{T})$,则 x(t) 可以由 x[n] = x[nT] 唯一确定。

其公式表示形式如下:

$$\hat{x}_a(t) = \sum_{n = -\infty}^{+\infty} x_a[nT]\delta[t - nT]$$
(1.17)

1.5 离散非周期信号的傅里叶变换 DTFT

1.5.1 离散时间傅里叶变换 DTFS

定义 1.5.1. Fourier 变换:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
(1.18)

存在 Fourier 变换的条件:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty \tag{1.19}$$

1.5.2 常用的 DTFT 变换

离散序列	傅里叶变换
$\delta[n]$	1
u[n]	$2\pi\delta(\omega) + \pi \sum_{k=-\infty}^{+\infty} \delta(\omega - 2k\pi)$
$a^n u[n]$	$rac{1}{1-ae^{-j\omega}}$
$e^{j\omega_0 n}$	$2\pi \sum_{k=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi k)$
$cos[\omega_0 n]$	$\pi \sum_{k=-\infty}^{+\infty} [\delta(\omega - \omega_0 - 2k\pi) + \delta(\omega + \omega_0 - 2k\pi)]$
$sin[\omega_0 n]$	$-j\pi \sum_{k=-\infty}^{+\infty} [\delta(\omega - \omega_0 - 2k\pi) - \delta(\omega + \omega_0 - 2k\pi)]$
$a^{ n }u[n]$	$\frac{1-a^2}{1-2acos(\omega)+a^2}$
<u> </u>	

1.5.3 DTFT 的性质

性质 1.5.2. 线性性质: $ax_1(n) + bx_2(n) \stackrel{F}{\to} aX_1(j\omega) + bX_2(j\omega)$

性质 1.5.3. 时移性质: $x(n-n_0) \stackrel{F}{\rightarrow} X(j\omega)e^{-j\omega n_0}$

性质 1.5.4. 频移性质: $x(n)e^{j\omega_0n} \stackrel{F}{\to} X(e^{j(\omega-\omega_0)})$

性质 1.5.5. 时域卷积性质: $x(n)*h(n) \stackrel{F}{\to} X(e^{j\omega})H(e^{j\omega})$

性质 1.5.6. 调制性质: $x(n)h(n) \stackrel{F}{\to} \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e)^{j\theta} Y(e^{j(\omega-\theta)}) d\theta$

性质 1.5.7. 频域微分性质: $nx(n) \stackrel{F}{\rightarrow} j \frac{dX(e^{j\omega})}{d\omega}$

性质 1.5.8. 尺度性质: $x[-n] \stackrel{F}{\rightarrow} X(e^{j\omega})$

性质 1.5.9. 能量守恒性质: $\sum_{-\infty}^{+\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$

性质 1.5.10. 共轭性质: $x^*(x) \stackrel{F}{\rightarrow} X^*(e^{-j\omega})$

性质 1.5.11. 周期性: $X(e^{j\omega}) = X(e^{j(\omega+2k\pi)})$

1.6 小结

本章讨论了有关离散时间信号与系统的几个基本定义,包括几个基本 序列的定义,等等。

本章的重点是傅里叶变换表示的性质,以及有用的傅里叶变换对。

由于我们已经学习了傅里叶变换,那么 Z 变换从形式上来说就变得相当简单.我们只需要将 $e^{j\omega}$ 用 z 替换就是 Z 变换了,我们可以简单地将 Z 变换看作离散形式的傅里叶变换。

2.1 z 变换的定义

定义 2.1.1. Z 变换: $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$

定义 2.1.2. Z 变换的逆变换: $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$

2.2 常用的 Z 变换

前两个变换最为重要,后续的变换都可以根据欧拉公式变成前两个变换的组合.无论如何,前两个变换是要记住的.

Z 变换
$\frac{1}{1-az^{-1}} z > a $
$\frac{1}{1-az^{-1}} z < a $
$\frac{1}{2} \frac{1 - z^{-1} \cos \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}} z > 1$
$\frac{\sin(\omega_0)z^{-1}}{1-2\cos(\omega_0)z^{-1}+z^{-2}} z > 1$
1 R

2.2.1 Z 变换收敛域性质

收敛域性质可以帮助我们更好地求出收敛域的范围,或者反过来根据 收敛域范围判断原信号的方向.

性质 2.2.1. 有限长序列收敛于全平面

性质 2.2.2. 右边序列收敛于某圆外

性质 2.2.3. 左边序列收敛于某圆内

性质 2.2.4. 双边序列收敛于圆环

性质 2.2.5. 因果序列即是右边序列,所以收敛于某圆外

性质 2.2.6. 稳定序收敛域包含单位圆

2.2.2 Z 变换的性质

Z 变换的性质基本和傅里叶变换的性质相同,在这里我们只列举性质, 不做过多的解释.

性质 2.2.7. 线性性质: $ax[n] + by[n] \stackrel{Z}{\rightarrow} aX[z] + bY[z]$ $R_1 \cap R_2$

性质 2.2.8. 移位性质: $x[n-n_0] \stackrel{Z}{\to} X(z)z^{-n_0}$ R

性质 2.2.9. 序列线性加权 (Z 域微分性质 $)nx[n] \stackrel{Z}{\rightarrow} -z \frac{dX(z)}{dz}$ R

性质 2.2.10. 序列指数加权 $a^n x[n] \stackrel{Z}{\to} X(\frac{z}{a})$ aR

性质 2.2.11. 时域扩展性质 $x_{(k)}[n] \stackrel{Z}{\to} X(z^k)$ $R^{\frac{1}{k}}$

注: $x_{(k)}[n]$ 为每个 x[n] 中间补 k-1 个 0。

性质 2.2.12. 卷积性质 $x[n]*h[n] \stackrel{Z}{\rightarrow} X(z)H(z)$ $R_1 \cap R_2$

性质 2.2.13. 累加性质 $\sum_{k=-\infty}^n x[k] \stackrel{Z}{\to} \frac{X(z)}{1-z^{-1}}$ $R \cap (|z| > 1)$

2.2.3 求 LCCDE(线性常系数差分方程) 的系统函数

通过前面的学习我们已经知道,输入函数卷积上系统函数可以得到输出函数。显然的,我们可以很轻松的求得输入函数的傅里叶变换或 Z 变换。那么,系统函数的傅里叶变换和 Z 变换怎么求呢,或者说有没有更方便的求法。

系统函数的定义是 $H(z)=\frac{Y(z)}{X(z)}$,但是由于众所周知的原因,我们求出来的 X(z) 和 Y(z) 都是分数。这就导致我们显示出来的最后的结果,在外观上看起来像是 $H(z)=\frac{X(z)}{Y(z)}$,<mark>注意这只是外观看起来像!</mark>

笔者试着用 Z 变换的例子来讲述这一问题。

例 2.2.14. 若 y[n] + y[n-1] - 6y[n-2] = x[n-1], 求系统函数.

分析:根据定义已知系统函数是一个分数的形式。学习到上面的介绍以后,我们只需要在分子写上 X 的 Z 变换,在分母写上 Y 的 Z 变换即是结果。

解: 显然,
$$H(z) = \frac{z^{-1}}{1+z^{-1}-6z^{-2}}$$

例 2.2.15. 若 y[n] + y[n-1] - 6y[n-2] = x[n-2] + x[n-1] + x[n], y[n] + y[n-1] - 6y[n-2] = x[n+2] + x[n+1] + x[n], 分别求它们的系统函数.

分析: 需要注意的是 X[n-1] 和 X[n+1] 的 Z 变换并不一致。 X 的 延时决定了 Z 的幂次方。

解: 显然,
$$H(z) = \frac{z^{-2} + z^{-1} + z}{1 + z^{-1} - 6z^{-2}}, H(z) = \frac{z^2 + z^1 + z}{1 + z^{-1} - 6z^{-2}}$$

2.3 Z 的反变换

我们在前面已经学习了 Z 变换的常用公式, Z 的反变换实际上还是对这几个公式的利用。一般地, 解 Z 的反变换的题目中都有一步最为重要的,

就是把一个含 Z 的多项式转换成几个独立的分式。这一步我们一般有两种方法: 留数法和长除法。

留数法

留数法的理论基础是留数定理,但留数定理的表示形式较为复杂。笔者只试着讲清楚留数法的使用方法,对其具体原理感兴趣的同学可以自行学习留数定理。

例 2.3.1. 若
$$X(z) = \frac{10z}{z^2 - 3z + 2}, |z| > 2$$
, 求 $x[n]$.

法一: 依题意,
$$X(z) = \frac{10z^{-1}}{1-3z^{-1}+2z^{-2}} = \frac{10z^{-1}}{(1-2z^{-1})(1-z^{-1})} = \frac{10}{1-2z^{-1}} + \frac{-10}{1-z^{-1}}$$
则 $x[n] = 10 \cdot 2^n u[n] - 10u[n]$

法二:
$$\frac{X(z)}{z} = \frac{10}{z^2 - 3z + 2} = \frac{10}{(z - 1)(z - 2)} = \frac{-10}{z - 1} + \frac{10}{z - 2}$$
 则 $X(z) = -\frac{10}{1 - z^{-1}} + \frac{10}{1 - 2z^{-1}}$ 所以 $x[n] = 10 \cdot 2^n u[n] - 10 u[n]$

分析: 我们可以看到,不论是法一还是法二,在对分母进行因式分解之后,都将这个二阶分式拆分成两个一阶分式相加。那么具体的实现过程便是运用了留数法。我们以法一为例。本题中我们将 $\frac{10z^{-1}}{(1-2z^{-1})(1-z^{-1})}$ 拆分成 $\frac{10}{1-2z^{-1}}+\frac{-10}{1-z^{-1}}$ 。简单地,我们先拆分成 $\frac{10}{1-2z^{-1}}+\frac{-10}{1-z^{-1}}$ 。简单地,我们先拆分成 $\frac{1}{1-2z^{-1}}+\frac{1}{1-z^{-1}}$,但具体的分子项和相加还是相减我们现在并不知道。我们使用留数法,我们现在将要求 $\frac{1}{1-2z^{-1}}$ 的分子项,我们将这个分式的分母置零求得零点 $z^{-1}=\frac{1}{2}$ 代入到原分式中除了 $\frac{10\cdot\frac{1}{2}}{1-\frac{1}{2}}=10$ 。同理地,我们要求 $\frac{1}{1-z^{-1}}$ 的部分可得 $\frac{10\cdot1}{1-2^{-1}}=10$ 。 至此我们已经运用留数法解出了这道题中最重要的一步。

例 2.3.2. 若 $X(z) = \frac{2z+4}{(z-1)(z-2)^2}, |z| > 2$, 求 x[n]。

解:
$$\frac{X(z)}{z} = \frac{2z+4}{z(z-1)(z-2)^2} = \frac{-1}{z} + \frac{6}{z-1} + \frac{-5}{z-2} + \frac{4}{(z-2)^2}$$

$$X(z) = -1 + \frac{6}{1-z^{-1}} - \frac{5}{1-2z^{-1}} + \frac{4z^{-1}}{(1-2z^{-1})^2}$$

$$x[n] = -\delta[n] + 6u[n] - 5 \cdot 2^{n}u[n] + n2^{n+1}u[n]$$

分析: 本题中关于 z 的多项式来到了三阶。在拆分时, 我们一样可以运用留数法, 但与二阶时不同, 三阶多项式使用留数法时将拆分成四项相加。

长除法

相信善于观察思考的读者已经注意到,在留数法的一节中我们所举的题目无一不是分母的幂次方比分子高。那么,如果分子的幂次方比分母高我们该如何解决呢?恰好,我们初中学习过的长除法就能解决这个问题。

例 2.3.3.

2.3.1 Z 变换解差分方程

利用 Z 变换解差分方程是我们常用的解差分方程的手段。下面我们用 两道例题来学习 Z 变换法解差分方程。

本节默认所举的例子皆是因果系统.

例 2.3.4. 题型 1: 若 y[n] + y[n-1] - 6y[n-2] = x[n-1], 求单位样值响应. 注: 单位样值响应即输入 $x[n] = \delta[n]$ 时, 输出 y[n].

解: 由题,
$$H(z) = \frac{z^{-1}}{1+z^{-1}-6z^{-2}}$$

所以
$$Y(z)=H(z)X(z)=rac{z^{-1}}{1+z^{-1}-6z^{-2}}=rac{z^{-1}}{(1+3z^{-1})(1-2z^{-1})}=rac{-rac{1}{5}}{1+3z^{-1}}+rac{rac{1}{5}}{1-2z^{-1}}$$

所以
$$y[n] = -\frac{1}{5}(-3)^n u[n] + \frac{1}{5}2^n u[n]$$
.

例 2.3.5. 题型 2: 若 y[n] - 3y[n-1] + 2y[n-2] = x[n] - x[n-1], 已知 $x[n] = 2^n u[n]$, 求 y[n].

解: 由题,
$$H(z) = \frac{1-z^{-1}}{1-3z^{-1}+2z^{-2}} = \frac{1}{1-2z^{-1}}$$

所以
$$Y(z) = H(z)X(z) = \frac{1}{(1-2z^{-1})^2}$$

所以
$$y[n] = (n+1)2^n u[n+1].$$

例 2.3.6. 题型 3: 已知 $H(z) = \frac{1-a^2}{(1-az^{-1})(1-az)}, 0 < a < 1$, 分析其因果性和稳定性。

分析: 求系统函数的极点,我们只需要令分母等于零,求出来的值即为极点。让我们思考一下,让分子等于零的点是什么呢?没错,就是零点。注意的是,极点和零点都不是点,只是一个值。

解: 由题, H(z) 的极点为, $z = a, z = a^{-1}$.

我们由性质 2.4.7 和性质 2.4.8 有,

- 1) 当收敛域为 $a^{-1} < |z| < \infty$, 系统是因果系统, 不是稳定系统。
- 2) 当收敛域为 0 < |z| < a, 系统不是因果系统也不是稳定系统。
- 3) 当收敛域为 $a < |z| < a^{-1}$, 系统是稳定系统,不是因果系统。

2.4 频响特性分析

2.4.1 频率响应函数和系统函数

我们知道,信号与系统或数字信号处理最基本的模型,就是输入函数 卷积系统函数得到输出函数。也就是下图所表示的。

图 2.1: 输入函数、系统函数、输出函数的关系

我们在前面已经分别学习了傅里叶变换和 Z 变换。但我们还想试着进一步找到它们俩之间的关系。所以在这里,我们将系统函数 h(n) 的傅里叶变换记为 $F(e^{j\omega})$,Z 变换记为 H(Z)。我们注意到,当 $Z=e^{j\omega}$ (即在单位圆上的系统函数) 时,系统函数的傅里叶变换等价于 Z 变换。有了这个条件,自然地,我们就能根据系统函数的 Z 变换或者傅里叶变换中的一个求出另外一个。

2.4.2 系统频响特性

定义 2.4.1. $H(e^{j\omega}) = |H(e^{j\omega})| e^{j\varphi(\omega)}$

其中 $|H(e^{j\omega})|$ 是 $H(e^{j\omega})$ 的模, $\varphi(\omega)$ 是 $H(e^{j\omega})$ 的辐角。

2.5 单边 Z 变换

到此为止,我们目前所使用的 Z 变换称为双边 Z 变换。单边 Z 变换在分析具有初始条件的 LCCDE 时具有很好的效果 (即 LCCDE 的条件不是松弛的)。那么,我们会很自然地思考:单边 Z 变换和双边 Z 变换有什么区别呢?事实上,单边 Z 变换只在非负数域上求和 (即只关心大于等于 0 的部分)。那我们就应该想到,x(n)的单边 Z 变换应该等价于 x(n)u(n)的双边 Z 变换。更自然地,如果一个序列在负半轴总是等于零,那么这个序列的单边 Z 变换和双边 Z 变换是等价的。我们根据性质 2.3.7, x(n)u(n) 总是收敛于某圆外。

2.5.1 两个重要性质

在运用单边 Z 变换解非松弛 LCCDE 时,我们经常用到时移性质。

性质 2.5.1. 时移性质:
$$x(n-k) \stackrel{Z^+}{\to} \sum_{n=1}^k x(-n) + z^{-k}X(z)$$

我们在这里用作图来理解这个性质,因为实际上这个性质理解起来并不乐观。我们以因果系统 f(n) 为例,f(n) 向右平移两个单位得到 f(n-2)。即如图所示:

图 2.2: 有时间我就画上去

我还得再下面写上一些说明,让你们便于理解。不过我暂时懒得画图。

定理 2.5.2. 初值定理: 若 x[n] 为因果信号,则 $x[0] = \lim_{x \to +\infty} X(z)$

定理 2.5.3. 终值定理: 若 x[n] 为因果信号,则 $lim_{n\to+\infty}=x[+\infty]=lim_{z\to 1}(z-1)X(z)$

下面我们用一道例题来熟悉刚刚学习的单边 Z 变换时移性质。

例 2.5.4. 例: 若 $y(n)-\frac{1}{2}y(n-1)=x(n)$,已知 $x(n)=(\frac{7}{10})^nu(n)$,且 y(-1)=1.5,求 y(n)。

法一: 对两边单边
$$Z$$
变换得到 $Y(z)-0.5(z^{-1}Y(z)+y(-1))=\frac{1}{1-0.7z^{-1}}$ 则 $Y(z)-0.5z^{-1}Y(z)-0.75=\frac{1}{1-0.7z^{-1}}$ $Y(z)(1-0.5z^{-1})=\frac{1}{1-0.7z^{-1}}+0.75$

法二: 由题
$$\lambda-0.5=0$$
,解得 $\lambda=0.5$
$$H(z)=\frac{1}{1-0.5z^{-1}}\quad X(z)=\frac{1}{1-0.7z^{-1}}$$

$$Y_{zs}(z)=H(z)X(z)=\frac{1}{(1-0.5z^{-1})(1-0.7z^{-1})}=\frac{-\frac{5}{2}}{1-0.5z^{-1}}+\frac{\frac{7}{2}}{1-0.7z^{-1}}$$

$$y_{zs}(n)=-\frac{5}{2}(0.5)^nu[n]+\frac{7}{2}(0.7)^nu[u]$$
 设特解为 $y_{zp}=A(0.5)^n$ 则 $y(n)=y_{zs}(n)+y_{zp}(n)=-\frac{5}{2}(0.5)^nu[n]+\frac{7}{2}(0.7)^nu[u]+A(0.5)^n$ 将 $y(-1)=1.5$ 代入解得 $A=\frac{3}{4}$ 所以 $y(n)=y_{zs}(n)+y_{zp}(n)=-\frac{7}{4}(0.5)^nu[n]+\frac{7}{2}(0.7)^nu[u]$

2.6 小结

本章定义了序列的 z 变换,并指出它和傅里叶变换的关系。本章重点讨论了 z 变换的性质,以及求一个序列 z 变换的方法,或者反之。对收敛域的深入理解是正确运用 z 变换的关键,特别是在确定由给定的 z 变换求相应的序列,即求 z 逆变换的各种方法时。大部分有关收敛域的讨论都放在有理函数 z 变换上。对于这类函数,给出了基于 X(z) 留数法求逆变换的方法。

本章的一个重要部分是讨论 z 变换的多种性质,这些性质在分析离散时间信号与系统时非常有用。

第三章 bullets

- •A difference equation specifies a constraint between a system input and output but is not a mapping from input to output.
- •A system constrained by a linear, constant-coefficient difference equation (LCCDE) is not necessarily an LTI system.
- •For a given LCCDE and system input the output is not uniquely specified since a homogeneous solution can always be added.
- Auxiliary conditions such as initial rest or initial conditions can specify the homogeneous solution in which case the output would be unique.
- •If the system input and output are constrained by a linear constant-coefficient difference equation and the system is specified to be LTI, the response for a given input is still not unique. Additional information is needed.
- •If a system input and output satisfy a LCCDE, and the system is known to be LTI and causal (or LTI and stable) then the response is unique for a given input.
- •An LTI system can be FIR or IIR depending on whether the impulse response is finite length or infinite length. An FIR system is also IIR but with only a finite number of non-zero values.
- •The difference equation for an FIR system can be recursive or non-recursive.

•A non-recursive difference equation always corresponds to an FIR system. A recursive difference equation does not necessarily imply that the system is IIR.

第四章 离散傅里叶变换 DFT

由于我们的计算机系统都是数字系统,所以并不能直接处理模拟信号。 所以我们在模拟时域进行采样得到离散时域。然后对离散时域进行 DTFT 得到连续频域 (这是因为 DTFT 的过程是对频域的不断复制)。此时,计算 机系统仍然不能直接分析连续的频域,所以我们要再对连续频域进行采样 得到离散频域。

这过程就像曲线救国一样,所以我们需要离散傅里叶变换 (DFT) 的出现来连续离散时域和离散频域。

4.1 离散周期序列傅里叶级数 DFS

我们在 x 的头上加上一条波浪线来表示以 N 为周期的周期序列。也即

$$\widetilde{x}(n) = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kn}$$
 (4.1)

则 $\tilde{x}(n)$ 的离散傅里叶级数系数为

$$\widetilde{X}(k) = \sum_{n=0}^{N-1} \widetilde{x}(n)e^{-j\frac{2\pi}{N}kn}$$
(4.2)

为了方便表示, 常常利用复数量来写这两个式子:

$$W_N = e^{-j\frac{2\pi}{N}} \tag{4.3}$$

这样 DFS 分析-合成对可表示为

$$\widetilde{X}[k] = \sum_{n=0}^{N-1} \widetilde{x}[n] W_N^{kn}$$
(4.4)

$$\widetilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}[k] W_N^{-kn}$$
 (4.5)

下面我来看一道课本的原题

例 4.1.1. 设 $x(n) = R_4(n)$, 将 x(n) 以 N=8 为周期进行周期延拓, 求离散 傅里叶级数。

解:

4.2 周期序列的傅立叶级数

4.2.1 定义

通常 DFT 的分析式和合成式为

$$X[k] = \sum_{n=0}^{N-1} x[n]W_N^{kn}, \quad 0 \le k \le N-1$$
 (4.6)

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}. \quad 0 \le n \le N - 1$$
 (4.7)

也就是说,这意味着一个事实: 对于在区间 $0 \le k \le N-1$ 之外的 k, X[k] = 0。而且,对于在区间 $0 \le nN-1$ 之外的 n, x[n] = 0,但这一点并不总明显地说出来。

例 4.2.1. 已知 $x(n)=R_4(n)$, x(n) 4 DFT

解:
$$X(k) = \sum_{n=0}^{3} \delta(n) W_4^{nk} = \sum_{n=0}^{3} \delta(n) e^{-j\frac{\pi}{2}nk} = 1$$

4.2.2 周期延拓

周期延拓一般分为两种,一种是将非周期信号延拓是周期信号,一种是将周期信号继续延拓成周期信号。我们一般只研究第一种。

在这里, 我们将周期性延拓表示为

$$\widetilde{x}(n) = x((n))_N \tag{4.8}$$

这条式子意为将序列 x(n) 延拓为周期为 N 的周期序列 $\tilde{x}(n)$

- 一般的,周期延拓会遇到三种情况 (长度为 M 的序列 x(n) 做周期为 N 的周期延拓):
 - (1)M < N, 在序列的最后面补零, 补到满足 N 的长度再做周期延拓。
- $(2)N \le M$,先进行 N 点周期延拓,最后取混叠部分形成的周期序列。 因为周期延拓最后是形成周期序列的,所以非周期的部分被舍弃了。
 - (3)N = M, 直接进行周期延拓。

例 4.2.2. 序列 x(n) = 1, 1, 3, 4

- (1) 求
- (2) 求
- (3) 求

4.2.3 性质

性质 4.2.3. 线性性质: $ax_1[n] + bx_2[n] \stackrel{DFT}{\to} aX_1[n] + bX_2[n]$

性质 4.2.4. 循环移位性质: $x[((n-m))_N], \quad 0 \le n \le N-1 \stackrel{DFT}{\to} e^{-j\frac{2\pi k}{N}m}X[k] = W_N^m X[k]$

性质 4.2.5. 循环卷积性质: $x_1[n] \mathbb{O} x_2[n] \stackrel{DFT}{\rightarrow} X_1[k] X_2[k]$

性质 4.2.6. 对偶性质: $X[n] \stackrel{DFT}{\to} Nx[((-k))_N], \quad 0 \le k \le N-1$

性质 4.2.7. 对称性质: $x^*[n] \stackrel{DFT}{\to} X^*[((-k))_N], \quad 0 \le n \le N-1$ 和 $x^*[((-n))_N] \stackrel{DFT}{\to} X^*[k], \quad 0 \le n \le N-1$

我们可以根据上面的性质互相组合出更复杂的性质。

4.3 对频域采样

第五章 快速傅里叶变换 FFT

第六章 离散时间系统结构

第七章 滤波器的设计

毫无疑问,LCCDE 系统函数的频率选择性最直接的概念就是系统的频率响应,根据频率响应的特点,可以对系统进行分类,比如低通滤波器、全通滤波器、带通滤波器等,这种分类本身也是对系统功能的一种定性描述。

- 7.1 低通滤波器
- 7.2 全通滤波器
- 7.3 带通滤波器

后记

历时一个月,笔者终于将这份 DSP 笔记写完。由于这份笔记的体量过于庞大,笔者已无力检查错漏,但已先交由 GPT4TURBO 检阅。以下是GPT4TURBO 的原话:

For someone who has already studied signals and systems and is now self-studying digital signal processing, this document should be quite useful. It consolidates many important concepts and techniques that are integral tounderstanding digital signal processing and seems to be well-suited for reviewand self-study purposes. If there are anyerrors or unclear explanations within the document, it would need a close examination to identify them, which is something I can not do directly. However, as a study aid, it seems to be on point for reinforcing priorknowledge and aiding in the understanding of digital signal processing.

尽管如此,书中仍有许多不够详尽的地方,这与笔者的初衷有相悖之处,但由于笔者学业繁忙,请各位读者原谅。

自习专业知识始终要依靠自己,相信在不久的将来,你也能写出这么一份笔记方便后来者学习,为 GPNU 的学习环境添砖加瓦。

Dirichlet 2024 年 4 月 16 日

附录 A 卷积代码

```
\begin{split} &function C = convNew(A,B)\\ &C = 2\text{eros}(1,\text{length}(A) + \text{length}(B) - 1)\\ &\text{for i} = 1:\text{length}(A)\\ &C = C + [2\text{eros}(1,\text{i}-1),A(\text{i})*B,2\text{eros}(1,\text{length}(A-\text{i})];\\ &\text{end}; \end{split}
```

附录 B 循环卷积代码

附录 C DFT 代码

```
x = ones(1,8);
N1=8;N2=16;
x2=[x,zeros(1,8)];
X1=1ydspch3_dft(x,N1);
X2=1ydspch3_dft(x2,N2)
magx1=abs(X1);phax1=angle(X1)*180/pi;
magx2=abs(X2);phax2=angle(X2)*180/pi;
figure;
subplot(121);stem(magx1);hold on;plot(magx1.'r');
subplot(122);stem(magx2);hold on;plot(magx2.'r');
```