20x - HMV2.

Classical Mechanics (I): Midterm 2017

Classical Mechanics (2)
November 3, 2017
Useful integrals: $ \frac{a^2 + a \sqrt{a^2 + 4}}{2} $
Problem 1 20% $e^{7\theta} + e^{7\theta} \cdot \int \frac{dx}{x(a^2 + x^2)} = \frac{1}{2a^2} \ln \left(\frac{x^2}{a^2 + x^2} \right)$ $\int e^{ax} dx = \frac{e^{ax}}{a} \qquad (-\chi^2 + (\chi^2 - \chi^2)^2) = \frac{1}{2a^2} \ln \left(\frac{x^2}{a^2 + x^2} \right)$
Problem 1 20% $ (40) - 77 - 67 \times 70 $
(a) Explain briefly the following terms: (i) quality factor of resonance (ii) limit cycle (iii) overdamped motion (iv) Lyapunov exponent (b) Write down one example of non-linear oscillation and a distinct feature for non-linear
oscillations. (No reasoning needs to be given for this problem.)
Problem 2 Consider a particle of mass m that moves on a helix with the trajectory at the moment t being given by $\vec{r} = (3\cos\phi(t), 3\sin\phi(t), 4\phi(t))$, where $\phi(t)$ is some function of
time t .
(a) 7% At $t = 0$, $\phi(0) = \phi_0$, if the speed of the particle is fixed to be v /find $\phi(t)$ (assuming $\phi(t) > 0$ for $t > 0$) and the acceleration $\vec{q}(t)$ of the particle at $t > 0$. (b) 8% Now suppose that the helix is frictionless and the net force that acts on the particle is $(0,0,-F)$ with F being a positive constant. If at $t=0$, $\phi(0)=\phi_0$ and $\frac{d\phi(0)}{dt}=0$ find $\phi(t)$ and the speed $v(t)$ of the particle at a later time $t>0$.
Froblem 3 A particle of mass m is subject to a force with the potential energy $V(x) = \frac{ax}{x^2 + a^2}$, where a is a positive constant. (a) 6% Find the position of stable equilibrium and the period of small oscillation about it. (b) 9% If the particle starts to move from the stable equilibrium point with velocity v , find the range of v for which the particle (i) oscillates, (ii) escapes to $x = -\infty$ (iii) escapes
to $x = +\infty$ (c) 5% Sketch the phase diagram of this system. $\begin{array}{ccccccccccccccccccccccccccccccccccc$

