Independent and dependent variables

- Independent variable:
 - Unaffected by other data
 - Vitamin C supplementation

- Dependent variable:
 - Affected by other data
 - Birth gender ratio

Commonly used to describe hypothesis test results

Advertising as a treatment

What is the effect of an advertisement on the number of products purchased?

- Treatment: advertisement
- Response: number of products purchased

Controlled experiments

- Participants are assigned to either the treatment group or the control group
 - *Treatment group* sees the advertisement
 - Control group does not see the advertisement
- Groups should be comparable to avoid introducing bias
- If groups are not comparable, this could lead to drawing incorrect conclusions

Relationships between two variables

Costs for monthly gym membership vs. a bottle of water

Linear relationships

• Linear = proportionate changes between dependent and independent variables

0.99 (very strong relationship)

0.99 (very strong relationship)

0.75 (strong relationship)

0.56 (moderate relationship)

0.56 (moderate relationship)

0.21 (weak relationship)

0.04 (no relationship)

 Knowing the value of x doesn't tell us anything about y

Sign = direction

0.75: as x increases, y increases

-0.75: as x increases, y decreases

Gym costs vs. water costs

Costs for monthly gym membership vs. a bottle of water

Adding a trendline

Costs for monthly gym membership vs. a bottle of water

Life expectancy vs. cost of a bottle of water

Life expectancy (years) vs. cost of a bottle of water (£)

Sampling distribution

Different samples

Sampling distribution of mean life expectancy

Sampling distribution of mean life expectancy

p-value

- p
 - Probability of achieving this result, assuming the null hypothesis is true

Sampling distribution of Chicago mean life expectancy

p-value

Sampling distribution of mean life expectancy

Significance level (α)

- To reduce the risk of drawing a false conclusion:
 - Set a probability threshold for rejecting the null hypothesis
- ullet Known as lpha or significance level
- Decided before data collection to minimize bias:
 - \circ Otherwise they could choose a different lpha to serve their interests
- A typical threshold is 0.05
 - 5% chance of wrongly concluding that Chicago residents live longer than Bangkok residents
- If $p \leq \alpha$, reject the null hypothesis
- These results are said to be statistically significant

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null hypothesis	Type I Error	
Accept null hypotheis		

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null hypothesis	Type I Error	
Accept null hypotheis		Type II Error

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null hypothesis	Type I Error	
Accept null hypotheis	Correct conclusion	Type II Error

	Null hypothesis is TRUE	Null hypothesis is FALSE
Reject null hypothesis	Type I Error	Correct conclusion
Accept null hypotheis	Correct conclusion	Type II Error

Drawing a conclusion

Sampling distribution of mean life expectancy

