Sandeep Kumar Routray

MS IN MACHINE LEARNING | CARNEGIE MELLON UNIVERSITY

□(+1) 412-450-2068 | Soutra2@andrew.cmu.edu | # sroutray.github.io | □ sroutray | □ sandeep-routray

Education

Carnegie Mellon University

Pittsburgh, PA

MASTER OF SCIENCE, MACHINE LEARNING

August 2024 - Present

Indian Institute of Technology, Kanpur

Kanpur, India

BACHELOR OF TECHNOLOGY, MAJOR IN ELECTRICAL ENGINEERING WITH MINOR IN MACHINE LEARNING

July 2017 - May 2021

- GPA: 9.8/10
- Awarded Academic Excellence Award 2017-18, 2018-19, 2019-20 Equivalent to Dean's List
- Awarded Prof. Samares Kar Memorial Gold Medal for the best undergraduate project in Electrical Engineering

Interests

Areas: Deep Learning, Machine Learning, Computer Vision, Self/Weakly-Supervised Learning, Reinforcement Learning, Robotics

Publications

CONFERENCE PROCEEDINGS

[1] S. R. Dash^{*}, <u>S. Routray</u>^{*}, P. Varshney^{*} and A. Modi, "CS-NET at SemEval-2020 Task 4: Siamese BERT for ComVE", in *Proceedings of the Fourteenth Workshop on Semantic Evaluation, International Committee for Computational Linguistics (ICCL)*, Dec 2020. **[Paper]**

[2] N. V. Deshpande^{*}, S. Routray^{*} and A. K. Gupta, "Spectral Efficiency in Poisson Cluster Based HetNets with Users-Basestations Correlation", in *IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS)*, Dec 2020. [Paper], [Video]

Work Experience

Machine Learning Engineer [Press]

Seoul, South Korea

SMARTTHINGS TEAM, SAMSUNG ELECTRONICS

Sep 2021 - Jun 2024

- Pioneered development of deep learning and vectorization stages of *Map View* engine to convert home layouts in wild (brochures, LiDAR, CAD, hand-drawn, etc.) to interactive 3D model. The engine was unveiled at CES 2024 and has been deployed across 400,000 homes globally.
- Designed a ConvNeXt based model and trained using focal loss to identify rooms, walls, doors and junctions in layouts. Performed integer quantization and deployed in Android and iOS devices using TF Lite C API achieving 4x reduction in size and 3x increase in inference speed.
- · Worked on 3D reconstruction from single image by training a neural radiance field (NeRF) on multi-views generated from a diffusion model.

Research Fellow

Toronto, Canada

Prof. Sanja Fidler's Lab, Vector Institute of Artificial Intelligence

Oct 2020 - July 2022

- Researched ways to leverage inter-image relationships for object-centric self-supervised learning. Designed an image-context aware score function to mine positives/negatives from a queue of images for contrastive loss. Obtained 1 % mIoU improvements over existing benchmarks.
- Experimented ways to incorporate geometrical cues from 2D-mesh decomposition of image and perform hierarchical grouping to discover object-part relationships in a dense feature self-supervised feature learning framework.

Intern [Report] Seoul, South Korea

6G RESEARCH TEAM, SAMSUNG RESEARCH

May 2020 - Jul 2020

• Implemented a reinforcement learning based resource scheduler for LTE system using Deep Deterministic Policy Gradient (DDPG) algorithm.

- In the first the analysis of the second control of the second cont
- Devised two reward mechanisms to maximize throughput while maintaining QoS requirements of delay and fair allocation among users.
- Achieved lower delay (upto 80% lower) and better scalability than the prevalent Proportional Fair scheduler without compromising data rates.

Research Experience ____

Minimax Optimization in Non-Euclidean Space Using Bregman Divergence [Slides]

IIT Kanpur, India

Undergraduate Project, Prof. Ketan Rajawat

Aug 2020 - Dec 202

- Designed an $\mathcal{O}(1/k^4)$ algorithm for minimizing smooth and strongly convex functions in non-Euclidean norm space using Nesterov's Accelerated Gradient Descent Algorithm (AGD) and a novel restarting strategy.
- Designed an $\mathcal{O}(1/k^2)$ conceptual algorithm for smooth minimax optimization in non-Euclidean norm space using the above result.
- Proposed an inexact and implementable version of the above algorithm; but attempts at a proof of convergence was unsuccessful.

AUGUST 27, 2024 SANDEEP KUMAR ROUTRAY

^{*} indicates equal contribution

Common Sense Validation And Explanation [Paper]

Undergraduate Project, Prof. Ashutosh Modi

IIT Kanpur, India Jan 2020 - May 2020

- Designed a Siamese architecture and incorporated various transformer-based text encoders like BERT, RoBERTa, ALBERT.
- Enabled efficient inter-relational information extraction among input sentences and eliminated logical fallacies in output.
- Achieved an accuracy of 94.8% for Validation task and 89% for Explanation task. Results published in SemEval-2020.

Throughput Analysis of HetNets Using Poisson Cluster Process [Slides] [Video]

IIT Kanpur, India

Undergraduate Project, Prof. Abhishek Gupta

Mar 2020 - Dec 2020

- Used Poisson Point Process (PPP) and Poisson Cluster Process (PCP) to model base stations and users correlation in a K-tier HetNet.
- · Derived an expression for the Laplace Transform of the interference and used it to calculate the average throughput.
- Verified theoretical predictions using Monte Carlo simulations of throughput for special cases of Thomas and Matern Cluster Process.

Other Projects_

A Bayesian Approach to Semi-Supervised Learning (Report)

IIT Kanpur, India Jan 2021 - May 2021

Course Project, **Prof. Piyush Rai**

- Extended a standard latent variable model to jointly train discriminative (θ_d) and generative (θ_q) model in a Bayesian framework.
- Introduced a shared prior of form $p(\theta_d, \theta_g) = p(\theta_g)p(\theta_d|\theta_g)$ to couple discriminator and generator, training done using ELBO loss.

Height Invariant Object Detection Using Unsupervised Domain Adaptation (Report)

IIT Kanpur, India

SUMNER INTERN, PROF. VINAY NAMBOODIRI

May 2019 - July 2019

- Created a dataset for the study by stimulating height variations on aerial images using traditional and GAN based approach.
- Established the need for height invariancy by benchmarking the performance of YOLOv3-tiny model on the dataset.
- Augmented the base model with an adversarial domain classifier to learn height invariant features with minimal supervision.

Atari Playing Agent Using Reinforcement Learning

IIT Kanpur, India

SUMMER PROJECT, PROGRAMMING CLUB

May 2018 - July 2018

- Studied various reinforcement learning concepts like Markov Decision Process, Monte Carlo, SARSA, Deep Q Learning (DQN).
- Designed an Atari Playing Agent which used a multi-input convolutional neural network for estimating action value of state.
- · Used DQN enhanced by memory replay for training the agent and obtained human level performance for Pong game agent.

Relevant Courses_

Machine Learning Fundamentals of Machine Learning, Probabilistic Machine Learning, Natural Language Processing

Optimization Convex Optimization, Optimization Algorithms Design & Analysis

EECS FundamentalsData Structures & Algorithms, Signals, Systems & Networks, Digital Signal Processing, Control Systems, Microelectronics,

Digital Electronics, Analog & Digital Communication Systems, Antenna Theory & Transmission Lines

Mathematics Probability & Statistics, Partial Differential Equations, Complex Analysis Basics, Linear Algebra, Differential Equations

Skills

Programming Languages Python, MATLAB, C/C++

Software/Tools CUDA, PyTorch, Keras, TensorFlow, OpenCV, SQL