Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе N=2

По дисциплине «Моделирование» (семестр 5)

Студенты:

Дениченко Александр Р3312 Балин Артём Р3312 Кобелев Роман Р3312 Практик: Мартынчук Илья Геннадьевич

Цель работы

Изучение метода марковских случайных процессов и его применение для исследования простейших моделей – систем массового обслуживания (СМО) с однородным потоком заявок.

1 Исходные данные

Система 1:

- Кол-во приборов: 2
- Ёмкость накопителей: 2/1 (для первого/второго приборов)

Система 2:

- Кол-во приборов: 1
- Закон распределения длительности обслуживания: гиперэкспоненциальный с коэф-том вариации v = 1.5
- Ёмкость накопителя: 2

Критерий эффективности: минимальные потери заявок

Параметры загрузки (12 группа):

- интенсивнось потока: $\lambda = 0.7 \ c^{-1}$
- средняя длительность обслуживания: $b=5\ c$
- вероятность занятия первого прибора: $p_1 = 0.8$
- вероятность занятия второго прибора: $p_2 = 0.2$

Интенсивность обслуживания: $\mu = \frac{1}{b} = 0.2 \ c^{-1}$

2 Выполнение

Состояния системы 1

Комбинация	Обозначение	Вероятность
0/0/0/0	S_1	0.013593
1/0/0/0	S_2	0.038061
1/0/1/0	S_3	0.106570
1/0/2/0	S_4	0.298397
0/1/0/0	S_5	0.009515
0/1/0/1	S_6	0.006661
1/1/0/0	S_7	0.026643
1/1/1/0	S_8	0.074599
1/1/2/0	S_9	0.208878
1/1/0/1	S_{10}	0.018650
1/1/1/1	S_{11}	0.052219
1/1/2/1	S_{12}	0.146214

Таблица 1: Система 1

Результат: Сумма вероятностей: 1.000000

Граф переходов системы 1

Матрица интенсивностей переходов системы 1

	S_1	S_2	S_3	S_4	S_5	S_6	S_7	S_8	S_9	S_{10}	S_{11}	S_{12}
$\overline{S_1}$	-0.70	0.56	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S_2	0.20	-0.90	0.56	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.00
S_3	0.00	0.20	-0.90	0.56	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00
S_4	0.00	0.00	0.20	-0.34	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00
S_5	0.20	0.00	0.00	0.00	-0.90	0.14	0.56	0.00	0.00	0.00	0.00	0.00
S_6	0.00	0.00	0.00	0.00	0.20	-0.76	0.00	0.00	0.00	0.56	0.00	0.00
S_7	0.00	0.20	0.00	0.00	0.20	0.00	-1.10	0.56	0.00	0.14	0.00	0.00
S_8	0.00	0.00	0.20	0.00	0.00	0.00	0.20	-1.10	0.56	0.00	0.14	0.00
S_9	0.00	0.00	0.00	0.20	0.00	0.00	0.00	0.20	-0.54	0.00	0.00	0.14
S_{10}	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.00	0.00	-0.96	0.56	0.00
S_{11}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.20	-0.96	0.56
S_{12}	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.00	0.20	-0.40

Таблица 2: Матрица интенсивностей переходов

Характеристика системы 1

Характеристика	Прибор	Значение	Формула расчета
	П1	2.8000	$\rho_1 = \frac{\lambda p_1}{\mu} = \frac{0.7 \cdot 0.8}{5} \cdot 20 = 2.8$
Нагрузка	П2	0.7000	$\rho_2 = \frac{\chi p_2}{\mu} = \frac{0.7 \cdot 0.2}{5} \cdot 20 = 0.7$
	Сумм		$\rho = \rho_1 + \rho_2$
	П1	0.9702	$Y_1 = 1 - P_1 - P_5 - P_6$
Загрузка	П2	0.5434	$Y_2 = 1 - P_1 - P_2 - P_3 - P_4$
	Сред	0.7568	$Y = \frac{Y_1 + Y_2}{2}$
	П1	1.5404	$L_1 = (P_3 + P_8 + P_{11}) + 2(P_4 + P_9 + P_{12})$
Длина очереди	П2	0.2237	$L_2 = P_6 + P_{10} + P_{11} + P_{12}$
	Сумм	1.7641	$L = L_1 + L_2$
	П1	2.5106	$M_1 = L_1 + Y_1$
Число заявок	П2	0.7671	$M_2 = L_2 + Y_2$
	Сумм	3.2777	* ' *
	П1	2.7507	$W_1 = \frac{L_1}{\lambda p_1}$
Время ожидания	П2	1.5981	$W_2 = \frac{L_2}{\lambda n_2}$
	Сумм	2.5202	$W = \frac{L}{\lambda}^{T_2}$
	П1	7.7507	$U_1 = \hat{W}_1 + \frac{1}{\mu}$
Время пребывания	П2	6.5981	$U_2 = W_2 + \frac{r}{u}$
	Сумм	14.3488	$U = U_1 + U_2$
	П1	0.3660	$e_1 = (P_4 + P_9 + P_{12}) \cdot p_1$
Вероятность потери	П2	0.0313	$e_2 = (P_6 + P_{10} + P_{11} + P_{12}) \cdot p_2$
	Сумм	0.3973	$e = e_1 + e_2$
	П1	0.3551	$A_1 = \lambda p_1 (1 - e_1)$
Производительность	П2	0.1356	$A_2 = \lambda p_2 (1 - e_2)$
	Сумм	0.4907	$A = A_1 + A_2$

Таблица 3: Характеристики системы массового обслуживания с формулами расчета

Состояния системы 2

Комбинация	Обозначение	Вероятность
0/0	S_1	0.0347
1(1)/0	S_2	0.0380
1(2)/0	S_3	0.0362
1(1)/1	S_4	0.0915
1(2)/1	S_5	0.0755
1(1)/2	S_6	0.0304
1(2)/2	S_7	0.0937

Таблица 4: Система 2

Граф переходов системы 2

Рис. 1: Граф переходов системы 2

Матрица интенсивностей переходов системы 2

	1	2	3	4	5	6	7
1	-0.7000	0.2800	0.4200	0.0000	0.0000	0.0000	0.0000
2	0.1016	-0.8016	0.0000	0.7000	0.0000	0.0000	0.0000
3	0.5642	0.0000	-1.2642	0.0000	0.7000	0.0000	0.0000
4	0.0000	0.0406	0.0610	-0.8016	0.0000	0.7000	0.0000
5	0.0000	0.2257	0.3385	0.0000	-1.2642	0.0000	0.7000
6	0.0000	0.0000	0.0000	0.0406	0.0610	-0.1016	0.0000
7	0.0000	0.0000	0.0000	0.2257	0.3385	0.0000	-0.5642

Таблица 5: Матрица интенсивностей переходов системы 2

Характеристика системы 2

Характеристика	Прибор	Значение	Формула расчета
Нагрузка	П1	3.5000	$\rho = \lambda b$
Загрузка	П1	0.9653	$Y = 1 - P_1$
Длина очереди	П1	1.6152	$L = (P_4 + P_5) + 2(P_6 + P_7)$
Число заявок	П1	2.5805	M = L + Y
Время ожидания	П1	2.3074	$W = \frac{L}{\lambda}$
Время пребывания	П1	7.3074	$U = W + q \cdot t_1 + (1 - q) \cdot t_2$
Вероятность потери	П1	0.5069	$e = \lambda \cdot (P_6 + P_7)$
Производительность	П1	0.3452	$A = \lambda \cdot (1 - e)$

Таблица 6: Характеристики системы массового обслуживания

$$t_1 = \left(1 + \sqrt{\frac{1-q}{2q}(v^2 - 1)}\right) \cdot b = 9.8412$$
$$t_2 = \left(1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right) \cdot b = 1.7725$$

⁻ времена обслуживания для двух разных путей (при гиперэкспоненциальном распределении), где q=0.4 - вероятность выбора первого пути, v=1.5 - параметр, характеризующий степень гиперэкспоненциальности.

3 Сравнение систем

Характеристика	Система 1	Система 2	Разница (%)
Нагрузка	3.5000	3.5000	0.00
Загрузка	0.7568	0.9653	21.60
Длина очереди	1.7641	1.6152	8.44
Число заявок	3.2777	2.5805	21.27
Время ожидания	2.5202	2.3074	8.44
Время пребывания	14.3488	7.3074	49.07
Вероятность потери	0.3973	0.5069	21.62
Производительность	0.4219	0.3452	18.18

Таблица 7: Сравнение характеристик систем

Рис. 2: Сравнение характеристик систем

Нагрузка не включена в график, так как она одинакова для обеих систем (3.5).

Вывод

На основе сравнительного анализа характеристик функционирования двух систем массового обслуживания можно сделать следующие выводы:

- 1. При одинаковой нагрузке (3.5) система 2 показывает более высокую загрузку (0.9653 против 0.7568), что говорит о более эффективном использовании ресурсов прибора.
 - 2. Система 1 демонстрирует более высокие показатели:
 - длины очереди (1.7641 против 1.6152)
 - числа заявок в системе (3.2777 против 2.5805)
 - времени пребывания заявок (14.3488 против 7.3074)
- 3. Система 2, несмотря на более простую структуру (один прибор), имеет более высокую вероятность потери заявок (0.5069 против 0.3973), что является её основным недостатком.

4. По критерию минимальных потерь заявок система 1 (двухканальная) оказывается более эффект имеет меньшую вероятность потери заявок и более высокую производительность (0.4219 против 0.3452).	ивной, так кан