Sistemas Electónicos Programables

Práctica 1:

Máquina de Vending (Refrescos)

Curso 2020-2021

Grado en Ingeniería Mecatrónica

Profesor Dr. Diego Antolín Cañada dantolin@unizar.es

Problema

- Programación de una máquina de vending refrigerada:
 - Refrigeración bi-zona y seleccionable
 - Detección de caída de objeto
 - Detector de monedas
 - Selección de producto mediante teclado

Escuela Universitaria Politécnica - La Almunia Centro adscrito **Universidad** Zaragoza

Descripción del diseño

- Monitorizar la temperatura a la que se encuentra el producto en cada zona y activar o desactivar el refrigerador según corresponda.
- La máquina va a tener dos zonas y diferentes productos que servir al cliente. En esta práctica nos centraremos solo en una Zona.
- Hay que controlar la humedad de las zonas para no estropear los productos. (Excluido)

Descripción del diseño

- Detectar la caída de producto
- Detectar el importe introducido por el usuario y devolver el cambio
- Sistema de supervisión de alimentación, que al bajar de 12V durante más 100ms activa una señal de error y para la máquina

Diagrama de Bloques

Escuela Universitaria Politécnica - La Almunia Centro adscrito

Universidad Zaragoza

Diagrama de Bloques (Simulación Sistema)

Centro adscrito

Universidad Zaragoza

- Introducción del importe
 - Las selectores de monedas son subsistemas independientes a las máquinas
 - En este caso su funcionamiento se simula con la pulsación de un botón (LOW) de manera que cada 500ms pulsado corresponden a 5 céntimos. (El importe acumulado se mostrará por pantalla).
 - Contar tiempos para la conversión a moneda con la función millis()

- Devolución del cambio
 - De manera similar se hace la devolución en este caso activando un LED, es decir, poniendo una salida en nivel alto con la misma correspondencia temporal. (Imprimir por pantalla).
 - Contar tiempos para la conversión a moneda con la función millis()

Componente (PIN)	Relación Tiempo/€	Nivel
Botón (D13)	500ms-5cts	LOW
LED (D12)	500ms-5cts	HIGH

- Selección de producto
 - Mediante el teclado se seleccionara el producto deseado con la siguiente tabla:

El producto seleccionado y el precio se mostrará por pantalla
 Producto Código Precio

Producto	Código	Precio
Refresco de cola	A35	1,50€
Refresco de naranja	A36	1,50€
Refresco de limón	A37	1,50€
Zumo	A38	2,50€
Agua con gas	A39	1,25€
Agua mineral	A40	1,00€

- Supervisión del sistema de alimentación (UPS)
 - Suponiendo que la electrónica se encuentra alimentada a partir de una fuente de 12V de continua se debe monitorizar de forma constante el correcto funcionamiento de la misma
 - Un tiempo mayor a 500ms por debajo de 10V significará que hay un problema grave y la máquina debe detenerse

Tensión de la fuente	Tensión de entrada al ADC	
12V	4,5V	
0V	0V	50

- Activación de motores
 - Los motores se activan mediante un tren de pulsos de ciclo simétrico Ton=Toff=500ms
 - Tiempo de activación del tren de pulsos para la caída del producto es de 5s

- Detección de caída de producto
 - Una vez finalizada la activación del motor se abrirá una ventana de tiempo de 20s para detectar la caída del producto
 - La caída se pulse durante 1s el pulsador conectado en D11

- Interfaz del control de errores
 - Error de temperatura demasiado alta
 - Error en la alimentación del sistema

TIPO DE ERROR	LED ROJO	(PIN D10)
TEMPERATURA	ON	OFF
	1 s	1 s
ALIMENTACIÓN	ON	OFF
	1 s	5 s

- Lectura temperatura
 - Función que lea la temperatura con su correspondiente calibración.
 - Debe realizarse de forma ininterrumpida.
 - Función bascula de Schmitt, ajustada a las directrices, control de temperatura a 15°C)

Recta de Calibración del Sensor de Temperatura

Monitorización Temperatura

Ininterrumpida

Temperatura Objetivo	Histéresis	
15 °C	0,75°C	

 Si la parte refrigerada alcanza una temperatura de 25°C durante 6s o más se activará la señal de error (D10)

Monitorización Temperatura

 Ejemplo de Histéresis en la monitorización de temperatura (ajustar al problema propuesto):

Diagrama de Actividad

Escuela Universitaria Politécnica - La Almunia Centro adscrito

Universidad Zaragoza