Algoritmos e Lógica de Programação Matrizes

Profa. Eliane Oliveira Santiago

Matriz

Uma matriz é um conjunto de informações de um mesmo tipo de dados, podendo ser organizada com múltiplas dimensões.

Note que matriz é um nome particular dado à matriz multidimensional, seja ela de dimensão dois ou mais. Por exemplo, uma matriz bidimensional pode conter informações dispostas em duas coordenadas x e y, ou seja, linha e coluna; uma matriz tridimensional pode conter informações dispostas em três coordenadas x, y e z, ou seja, linha, coluna e altura e assim por diante. Neste capítulo, nos preocuparemos em estudar as matrizes bidimensionais.

Exemplo de matriz

Mat	
0	
1	
2	
3	
4	
5	
6	
7	
8	

0	1	2	3	4
carteira1	carteira2	carteira3	carteira4	carteira5
carteira6	carteira7	carteira8	carteira9	carteira10
carteira11	carteira12	carteira13	carteira14	carteira15
carteira16	carteira17	carteira18	carteira19	carteira20
carteira21	carteira22	carteira23	carteira24	carteira25
carteira26	carteira27	carteira28	carteira29	carteira30
carteira31	carteira32	carteira33	carteira34	carteira35
carteira36	carteira37	carteira38	carteira39	carteira40
carteira41	carteira42	carteira43	carteira44	carteira45
carteira46	carteira47	carteira48	carteira49	carteira50

Neste exemplo, possuímos uma matriz chamada **Mat**, com dimensão, ou tamanho da matriz, igual a 10 por 5, ou seja, 10 linhas e 5 colunas, com cinqüenta posições: 0x0, 0x1, 0x2, 0x3, 0x4, 1x0, 1x1, 1x2, 1x3, 1x4, 2x0, 2x1, 2x2, 2x3, 2x4, 3x0, 3x1, 3x2, 3x3, 3x4, 4x0, 4x1, 4x2, 4x3, 4x4, 5x0, 5x1, 5x2, 5x3, 5x4, 6x0, 6x1, 6x2, 6x3, 6x4, 7x0, 7x1, 7x2, 7x3, 7x4, 8x0, 8x1, 8x2, 8x3, 8x4, 9x0, 9x1, 9x2, 9x3 e 9x4. Na posição 0x0 da matriz **Mat**, temos a carteira1; na posição 0x1 da matriz **Mat**, temos a carteira50.

Declaração de matriz

Sintaxe:

<nome da matriz> [<nro de linhas>] [<nro de colunas>] <tipo dos elementos matriz>;

Exemplo

Var

Mat_exemplo [0..9][0..4] : **inteiro**;

Neste exemplo, declaramos uma matriz chamada **Mat_exemplo** com 10 linhas e 5 colunas totalizando 50 elementos do tipo inteiro.

Exemplo de matriz

	1° Bim	2° Bim	3° Bim	4° Bim	Média Final
posições	0	1	2	3	4
0	9.0	8.0	8.5	9.0	8.5
1	5.0	6.0	7.0	8.0	6.5
2	7.5	7.5	7.5	7.5	7.5
3	5.0	9.0	3.0	7.0	6.0
4	8.0	6.0	6.0	7.0	7.0
5	9.0	8.0	9.0	10.0	9.0
6	8.0	8.0	8.0	8.0	8.0
7	8.5	6.0	7.5	6.0	7.0
8	9.5	8.5	8.5	9.5	9.0
9	5.0	6.5	7.0	7.5	6.5
	0 1 2 3 4 5 6 7	posições 0 9.0 9.0 1 5.0 2 7.5 3 5.0 4 8.0 5 9.0 6 8.0 7 8.5 8 9.5	posições 0 1 0 9.0 8.0 1 5.0 6.0 2 7.5 7.5 3 5.0 9.0 4 8.0 6.0 5 9.0 8.0 6 8.0 8.0 7 8.5 6.0 8 9.5 8.5	posições 0 1 2 0 9.0 8.0 8.5 1 5.0 6.0 7.0 2 7.5 7.5 7.5 3 5.0 9.0 3.0 4 8.0 6.0 6.0 5 9.0 8.0 9.0 6 8.0 8.0 8.0 7 8.5 6.0 7.5 8 9.5 8.5 8.5	posições 0 1 2 3 0 9.0 8.0 8.5 9.0 1 5.0 6.0 7.0 8.0 2 7.5 7.5 7.5 7.5 3 5.0 9.0 3.0 7.0 4 8.0 6.0 6.0 7.0 5 9.0 8.0 9.0 10.0 6 8.0 8.0 8.0 8.0 7 8.5 6.0 7.5 6.0 8 9.5 8.5 8.5 9.5

- **notas** é o nome da matriz;

a matriz **notas** possui 10 linhas e 5 colunas, totalizando 50 informações.

Por isso, tem tamanho 10x5, ou seja, 50 posições: de 0x0 até 9x4;
- a posição 0x0 da matriz,

- notas[0][0], possui a nota 9.0;
- a posição 0x1 da matriz, notas[0][1], possui a nota 8.0; e assim por diante.

int
$$x = 10$$
;
int valor = 5;
 $x = x - 1$; \Leftrightarrow $x -= 1$;
 $x = x + 5$; \Leftrightarrow $x +=5$;
valor = valor * x; \Leftrightarrow valor *= x;
notas[linha][4] = notas[linha][4] + notas[linha][coluna];

notas[linha][4] += notas[linha][coluna];

Atribuição

Sintaxe:

<nome da matriz> [<nro. da linha>] [<nro. da $coluna>] \leftarrow$ <valor>;

Exemplos:

notas $[0][0] \leftarrow 9.0$;

notas $[2] \leftarrow \{\{9.0, 10.0, 8.5, 9.0, 10.0\}\}$: real;

Neste exemplo, declaramos uma matriz chamada **notas** de tamanho 2x3, ou seja, de 6 posições, de forma que a posição 0x0 da matriz possua o valor 9.0, a posição 0x1 da matriz possua o valor 10.0, a posição 0x2 da matriz possua o valor 8.5, a posição 1x0 da matriz possua o valor 5.5, a posição 1x1 da matriz possua o valor 5.0 e a posição 1x2 da matriz possua o valor 7.5.

Mostrar os elementos de uma matriz

Sintaxe:

```
escreva(<nome da matriz>[<nro. da linha>][<nro. da coluna>]);
escreva(notas [0][0])
escreva("A nota é: ", notas[0][0])
```

Exemplo

```
Algoritmo Mostrar
var
     Mat [0..4][0..4], i : inteiro
Inicio
   para i de 0 até 4 passo + 1 faça
       para j de 0 até 4 passo + 1 faça
                      escreva ("Digite um valor inteiro"); // mensagem ao usuário
                      leia(Mat[i][j]); // entrada de dados
                      escreva(Mat[i][i]); // saída de resultados
     fim_para;
    fim_para;
 fim_algoritmo.
```


1. Desenvolva um algoritmo que receba e mostre 120 valores alfanuméricos numa matriz 10x12.

2. Desenvolva um algoritmo que receba 20 valores numéricos inteiros numa matriz A de dimensões 10x2 e 20 valores numéricos inteiros numa matriz B de dimensões 10x2. Construa uma matriz C com dimensões 10x2, onde cada posição possua a soma dos elementos das matrizes A e B em suas respectivas posições. Mostre os elementos das três matrizes.

A	0	1
0	1	2
1	9	8
2	10	15
3	25	30
4	15	10

В	0	1
0	5	6
1	1	2
2	20	30
3	2	45
4	5	5

U	0	1
0	6	8
1	10	10
2	30	45
3	27	75
4	20	15

3. Desenvolva um algoritmo que receba 50 valores reais numa matriz X de dimensões 5x10 e 30 valores reais numa matriz Y de dimensões 3x10. Construa uma matriz Y de dimensões Y

Desenvolva um algoritmo que receba 50 valores reais numa matriz X de dimensões 5x10 e 30 valores reais numa matriz Y de dimensões 3x10. Construa uma matriz Z de dimensões 8x10 com a concatenação das matrizes X e Y, ou seja, os elementos das 5 primeiras linhas são os mesmos elementos da matriz X e os elementos das três últimas linhas são os mesmos da matriz Y. Mostre os elementos das três matrizes.

Х		0	1		2	3		4	5		6	7	8	9		Z	0	1	2	3	4	5	6	7	8	
0		1	2		3	4		5	6		7	8	9	10		0	1	2	3	4	5	6	7	8	9	İ
1		11	12	!	13	14	4	15	10	5	17	18	19	20		1	9	8	7	6	5	4	3	2	1	l
2		21	22	2	23	24	<u>4</u>	25	20	5	27	28	29	30		2	1	2	3	4	5	6	7	8	9	ŀ
3		31	32	2	33	34	4	35	30	5	37	38	39	40												L
4		41	42	2	43	44	4	45	40	5	47	48	49	50		3										
Υ	0	1	2	3	4	5	6	7	8	9				<u> </u>	1	4										
'	0	'	2	3	4	3	٥		0	7						5	1	2	3	4	5	6	7	8	9	t
0	1	2	3	4	5	6	7	8	9	9																
1	9	8	7	6	5	4	3	2	1	0						6	9	8	7	6	5	4	3	2	1	
2	1	2	3	4	5	6	7	8	9	9						7	1	2	3	4	5	6	7	8	9	

Х	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	9
1	9	8	7	6	5	4	3	2	1	0
2	1	2	3	4	5	6	7	8	9	9
3	9	8	7	6	5	4	3	2	1	0
4	9	8	7	6	5	4	3	2	1	0

Y	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	9
1	9	8	7	6	5	4	3	2	1	0
2	1	2	3	4	5	6	7	8	9	9

Z	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	9
1	9	8	7	6	5	4	3	2	1	0
2	1	2	3	4	5	6	7	8	9	9
3										
4										
5	1	2	3	4	5	6	7	8	9	9
6	9	8	7	6	5	4	3	2		ıra pa
7	1	2	3	4	5	6	7	8		

Lin Col Z[lin,col]

0 0 Z[0,0]←X[0,0]
: Z[5,0]←Y[0,0]
10

1 0
: 10

2 0
: 10

Para lin de 0 ate 7 passo 1 faca
para col de 0 ate 9 passo 1 faca
se(lin<3) entao
Z[lin,col]←X[lin,col]
Z[lin+5,col]←Y[lin,col]
senao
Z[lin,col]← X[lin,col]

fimse fimpara fimpara

4. Desenvolva um algoritmo que receba 50 valores numéricos reais numa matriz 10x5, calcule e armazene numa segunda matriz os 50 valores da primeira matriz multiplicados por 7. Mostre os valores das duas matrizes.

5. Desenvolva um algoritmo que calcule a tabuada dos números de 1 a 10 e armazene numa matriz de dimensões 10x10 o resultado da tabuada. Mostre os elementos da matriz. Na primeira coluna da matriz, armazene a tabuada da número 1, na segunda coluna da matriz, armazene a tabuada do número 2 e assim por diante, até a última coluna da matriz, armazene a tabuada do número 10.

6. Desenvolva um algoritmo que receba 49 valores numéricos inteiros numa matriz de dimensões 7x7, calcule e mostre os números pares, suas posições e a soma dos números pares, bem como os números ímpares, suas posições e a quantidade de números ímpares.

7. Desenvolva um algoritmo que receba 15 valores inteiros numa matriz X de dimensões 3x5, receba 15 valores inteiros numa matriz Y de dimensões 3x5 e concatene alternadamente os elementos das matrizes X e Y numa terceira matriz Z de dimensões 3x10.

Os elementos das colunas pares da matriz Z são os mesmos da matriz X e os elementos das colunas ímpares da matriz Z são os mesmos da matriz Y. Mostre os elementos das três matrizes.

7. Desenvolva um algoritmo que receba 15 valores inteiros numa matriz X de dimensões 3x5, receba 15 valores inteiros numa matriz Y de dimensões 3x5 e concatene alternadamente os elementos das matrizes X e Y numa terceira matriz Z de dimensões 3x10. Os elementos das colunas pares da matriz Z são os mesmos da matriz X e os elementos das colunas ímpares da matriz Z são os mesmos da matriz Y. Mostre os elementos das três matrizes.

X	0	1	2	3	4
0	0	2	4	6	8
1					
2					

Υ	0	1	2	3	4
0	1	3	5	7	9
1	11				
2					

Z	0	1	2	3	4	5	6	7	8	9
0		Υ	Χ	Υ	Х	Υ	Χ	Υ	Х	Υ
1	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ
2	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Х	Υ

8. Desenvolva um algoritmo que receba 75 valores numa matriz de dimensões 15x5, armazene estes valores numa segunda matriz de dimensões 15x5 a partir do centro para a primeira e a última posições e de modo alternado, ou seja, o primeiro elemento da primeira matriz estará na posição do meio da segunda matriz, o segundo elemento da primeira matriz estará na posição à esquerda da posição do meio da segunda matriz, o terceiro elemento da primeira matriz estará na posição à direita da posição do meio da segunda matriz e assim por diante. Mostre os elementos das duas matrizes.

is the easiest way to "Teach Yourself C++ in 21 Days".

Bibliografias

BÁSICA

- GOMES, Ana Fernanda A. Campos, Edilene Aparecida V. Fundamentos da Programação de Computadores Algoritmos, Pascal e C/C++. Prentice Hall, 2007.
- CARBONI, Irenice de Fátima. Lógica de Programação. Thomson.
- □ XAVIER, Gley Fabiano Cardoso. Lógica de Programação Cd-rom. Senac São Paulo 2007.

COMPLEMENTAR

- □ FORBELLONE, André Luiz Villar. Eberspache, Henri Frederico. Lógica de Programação A construção de Algoritmos e Estrutura de Dados. Makron Books, 2005.
- LEITE, Mário Técnicas de Programação Brasport 2006.
- □ PAIVA, Severino Introdução à Programação Ed. Ciência Moderna 2008.
- □ PAULA, Everaldo Antonio de. SILVA, Camila Ceccatto da. Lógica de Programação –Viena 2007.
- CARVALHO, Fábio Romeu, ABE, Jair Minoro. Tomadas de decisão com ferramentas da lógica paraconsistente anotada: Método Paraconsistente de Decisão (MPD), Editora Edgard Blucher Ltda. - 2012.