HS 133: Introduction to Phonetics

Instructor: Priyankoo Sarmah

Fricative Acoustics

- Turbulence is the source of the fricatives
- Characterized by the continuant noisy aperiodic component
- The characteristics of the noise are the result of:
 - position of the constriction,
 - the shape of the orifice
 - the aerodynamic forces of the airstream
 - Obstacles
- Dental, alveolar and post alveolar fricatives:
 - front teeth contribute to the quality
 - deflect the airflow, additional turbulence.

Fricative Acoustics

Fricatives

- Fricatives can be divided into high and low energy sounds:
- Sibilants [s] [z] [ʃ] [tʃ] [dʒ] [ʒ]: High energy
- Non-Sibilants [f], [v], [h]: Low energy
- Sibilants the orifice is circular (more efficient)
- Non-sibilants elliptical shaped orifice.

Fricatives

• Sibilants:

Concentration of energy in one band in the 1.5 -8kHz range

- Non sibilants:
- labiodental: even concentration of energy throughout the 1 -8kHz
- Dental: intensification in the 8-16kHz range
- /h/ formant bands in lower frequency

Place and Sibilants

- /s/ has its lower boundary of noise at about 4kHz peaking at about 5.5kHz
- For the palatoalveolars (e.g. /ʃ/):
 - main resonance occurs at a lower frequency
 - due to the longer cavity in front of the constriction
 - The main resonance occurs at about 2.5kHz

Place and non-sibilants

- The **distribution of energy** in the 7-16kHz range is used in distinguishing /f/ from /θ/.
- /f/ main resonance around 10-12kHz (shorter front cavity)
- /e/ main resonance around 8kHz

- Formant transitions major cue non-sibilants
- /f/ rising F2 and F3
- /e/ falling F2 and F3

Acoustics of consonants | Nasals

- Nasal cavity has more surface area allowing dampening of soundwaves
- In nasal production, the oral cavity acts as a side cavity
- But the cavity is closed hence, the resonating frequency components are not transmitted
- These frequencies are anti-resonances or antiformants
- The cavity for /m/ is about 8 cm

Acoustics of consonants | Nasal formants

Vowels and Consonants | Sounds and Shapes

Which one below is **Kiki** and which one is **Bouba**?

2. Ramachandran, VS & Hubbard, EM (2001b). "Synaesthesia: A window into perception, thought and language"

Laterals

- Airstream is passed along the sides of the tongue
- Blocked in the middle
- Tongue touches the alveolar ridge or teeth

@⊕@	2020	TDA
\odot	2020	IFA

	Bilabial	Labiodental	Dental	Alveolar	Postalveolar	Retrof	lex	Pala	atal	Ve	lar	Uv	ular	Phary	ngeal	Glo	ttal
Plosive	p b			t d		t	q	С	Ŧ	k	g	q	G			3	
Nasal	m	m		n		1	η		ŋ		ŋ		N				
Trill	В			r									R				
Tap or Flap		V		ſ		1	r										
Fricative	φβ	f v	θð	s z	∫ 3	ş	Z.	ç	j	X	γ	χ	R	ħ	ſ	h	ĥ
Lateral fricative				1 k													
Approximant		υ		I			J		j		щ						
Lateral approximant				1			l		λ		L						

Lateral acoustics

- Laterals also have a side branch the pocket behind the tongue tip is a side branch to the main tube(s) passing around the side(s) of the tongue.
- Laterals are thus also characterized by zeroes the lowest appears between F2 and F3, often significantly reducing the amplitude of F2.
- The presence of zeroes and the coronal constriction reduce the intensity of laterals compared to most vowels.
- On spectrograms, laterals look similar to nasals, but differ in the location of formants and zeros, and in their effects on neighboring vowels.

Articulation of vowels | Height, backness and roundness

VOWELS

Where symbols appear in pairs, the one to the right represents a rounded vowel.

Acoustics of vowels | Vocal tract

- Filtered source signals filter out certain harmonics and allows certain harmonics
- The peaks formed by 'allowed' harmonics are called F1, F2 and F3 etc.
 - F1 is inversely proportionate to tongue height
 - F2 is related to vowel backness
 - F3 is related to vowel rounding

Source: Fitch, W. T. Evolution of Speech: A Comparative Review. Elsevier Science,

	<u>F1</u>	F2		<u>F1</u>	<u>F2</u>
[i]	280	2250	[u]	310	870
[1]	400	1920	[ʊ]	450	1030
[ε]	550	1770	[0]	590	880
[æ]	690	1660	[a]	710	1100

