Description of R codes for Most Predictable Component of a Linear Stochastic Model

This Github site contains the codes for generating figures in the paper "The Most Predictable Component of a Linear Stochastic Model" by DelSole and Tippett (2023). Below is a brief description of each file.

NDim.master.R Generates figure 1: APT versus eigenvalue spacing Δ of the APT-optimal for dimensions D=2,3,4,5, as well as the associated optimal projection vectors at small Δ .

NDim.timeseries.R Generates figure 2: time series of eigenmodes and the APT-optimals, as well as the predictability P_{τ} and autocorrelation functions.

NDim. GenPascal. R Generates figure 3: maximum APT as a function of Δ and exponent p.

rank1.ERSST.R Generates figure 4, 5, 6: maximum APT for various stochastic models as a function of EOF truncation D, and the associated P_{τ} 's. The three figures are obtained by choosing area.name = NASST, NPSST, PACICIF30S30N. Users should change dir.ersst to the directory containing ERSSTv5 data.

Auxiliary Codes

gev. R function solves generalized eigenvalue problem $Aq = \lambda Bq$ with real matrices A and B.

gev.complex.R function solves generalized eigenvalue problem $\mathbf{Aq} = \lambda \mathbf{Bq}$ with complex matrices \mathbf{A} and \mathbf{B} .

pdf.eps.R function for printing figures in PDF format

lyap. R function for solving the Lyapunov equation

index.climate.v2.R function for identifying a domain in gridded data sets. Points inside the domain are set to TRUE, points outside the domain to FALSE.

plot_eof. R function for plotting the spatial structure and time series of an EOF.

eof.latlon.R function for computing EOFs given gridded data.

plot_latlon_contour function for generating shaded plots with contours

plot_latlon_v4 function for generating shaded plots

References

DelSole, T. and M. K. Tippett, 2023: The most predictable component of a linear stochastic model. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, submitted.