

IPSec: IP security protocol

- · IP heeft zelf geen beveiliging
- IP-pakketten
 - adres kan worden vervalst
 - payload kan bekeken worden
 - payload kan aangepast worden
 - kan opnieuw worden verstuurd
- beveiliging moet zorgen voor
 - echtheid van adres van de afzender
 - echtheid van de inhoud van IP-Pakket
 - geheimhouding van inhoud (en adres?)

IPSec 2

IPSec: IP security protocol (2)

- boven op IP
- zowel voor IPv4 (optioneel) als voor IPv6 (verplicht)
- onder transportlaag (TCP/UDP), dus transparant voor toepassingen en gebruikers

IPSec: IP security protocol (3)

- · end-to-end beveiliging op basis van cryptografie
 - toegangscontrole
 - authenticatie van data-oorsprong
 - integriteit van de boodschap (wijzigen)
 - beveiliging tegen herhaling (replay)
 - geheimhouding
 - beperkte beveiliging tegen analyse van netwerkverkeer
- geen overhead op lokaal netwerk indien geïmplementeerd in router of firewall

IPSec

IPSec: toepassingen

- veilig netwerkverkeer tussen bedrijfsafdelingen over het Internet
- veilig netwerkverkeer van gebruiker naar bedrijfsnetwerk via ISP en Internet
- opzetten van intranet-extranet verbindingen met partners (authenticering, confidentialiteit, sleuteluitwisseling)
- verbetert beveiliging van E-commerce
- samengevat:
 - voor elke applicatie kan alle trafiek geëncrypteerd en geauthenticeerd worden op IP-niveau

IPSec 6

IPSec: specificatie (1)

- vrij complex
- · gedefinieerd in verschillende RFC's
 - incl. RFC 2401 (→ 4301) / 2402 / 2406 / 2408 + andere
- · categorieën:
 - architectuur
 - algemene concepten, definities, vereisten i.v.m. veiligheid, mechanismen, ...
 - ESP en AH
 - algemeen gebruik en pakketinfo
 - welke diensten en formaat van hoofdingen
 - geen transformaties
 - encryptiealgoritmen
 - welke en hoe te gebruiken bij ESP
 - authenticatiealgoritmen
 - welke en hoe te gebruiken bij ESP en AH

IPSe

7

IPSec: specificatie (2)

- categorieën (vervolg):
 - sleutelbeheer
 - IKE maakt sleutels voor alle IPSec-protocollen ook voor OSPF (routing protocol)
 - generische payload
 - geen onderhandeling van parameters (vb. initialisatievectoren)
 - Domain of Interpretation (referenties naar andere documenten)
 - onderhandeling over parameters in # protocollen
 - Policy
 - kunnen entiteiten via IPSec communicieren?
 - als ja → welke transformaties (AH, ESP, algo's) nodig?
 - beschrijft voorstelling: hoe beleid opslaan en bevragen
 - beschrijft implementatie: hoe beleid uitvoeren via transformaties

IPSec 9

Bestanddelen van IPSec (1)

IPSec bestaat uit volgende drie protocollen:

- Authentication Header (AH)
 - authenticatie van gegevensoorsprong
 - connectieloze data-integriteit
 - ontvanger van een IP-pakket kan verifiëren dat
 - de oorsprong ervan authentiek is
 - het pakket tijdens de overdracht niet is gewijzigd
- Encapsulating Security Payload (ESP)
 - beveiliging van gegevens (encryptie)
 - voorziet optioneel ook in authenticatie
- •

IPSec

11

Bestanddelen van IPSec (2)

IPSec derde protocol:

- IKE (Internet Key Exchange):
 - raamwerk voor onderhandeling van
 - SA's (security associations)
 - cryptografische sleutels (+ uitwisseling)
 - gebruikt onderdelen van
 - Internet Security Association and Key Management Protocol (ISAKMP)
 - Oakley
 - SKEME
- IKE alleen gebruikt om ESP en AH te kunnen definiëren en gebruiken

IPSec 12

Overzicht IPSec-diensten

	АН	ESP (encr)	ESP (encr+auth)
Toegangscontrole (zie volgende slide)	•	•	•
Gegevensintegriteit	•		•
Authenticatie van de gegevensoorsprong	•		•
Verwerpen van heruitgezonden pakketten	•	•	•
Confidentialiteit		•	•
Beperkte bescherming van analyse trafficflow		•	•

IPSec 13

Toegangscontrole IPSec

- AH en ESP pas bruikbaar na toegangscontrole
- gebeurt tijdens distributie van sleutels in IKE
- publieke-sleutelcrytografie alleen tijdens IKE
- te traag voor encryptie en authenticatie per pakket
- AH gebruikt HMAC
- ESP gebruikt symmetrische encryptie

IPSec 14

Security Association (SA)

- belangrijk concept voor zowel AH als ESP
- is een unidirectionele verbinding (relatie) tussen twee IPSec-systemen (zender en ontvanger, 2 eindpunten)
 - overeenkomst tussen 2 partijen
 - bepaalt welke veiligheidsdiensten ze zullen gebruiken en hoe
- twee SA's indien beveiligde uitwisseling noodzakelijk in de 2 richtingen tussen die 2 eindpunten
 - A beschikt over SA1_{in} en SA2_{uit}
 - B beschikt over SA1_{uit} en SA2_{in}
- SA is protocolspecifiek: één SA geldt voor
 - ofwel AH
 - ofwel ESP
 - niet beide samen

IPSec 15

SA gegevensbanken

- steeds aanwezig bij elke implementering van IPSec
- SAD (association) en SPD (policy)
- verborgen door de gebruikersinterface
- beide geraadpleegd om beveiliging pakket te kennen
- beleid (policy) bepaalt
 - protocol (AH, ESP) en mode (transport, tunnel)
 - transformaties
 - hoe pakket moet worden behandeld, i.f.v.
 - bron- en bestemmingsadres (IP)
 - en protocol en poort op transportniveau (TCP)
- bij ontvangst
 - transportgegevens beschikbaar na verwerking van IPSec
 - dus ...

IPSec

16

Identificatie SA

- → SA + policy identificeren zonder transportgegevens
- SA geïdentificeerd door 3 parameters, uniek bij ontvanger
 - Security Parameter Index (SPI)
 - 32 bits
 - identificeert SA in lokale inkomende SAD
 - uniek voor ontvanger, door hem bepaald bij "onderhandeling"
 - IP-adres van bestemming bij ontvanger (unicast)
 - Security Protocol Identificatie (AH of ESP)
- IP-pakket bevat IPSec-hoofding (AH of ESP)
- SPI maakt deel uit van IPSec-header
- SPI + bestemmingsadres bepalen SA
 - → ontvanger weet hoe pakket moet worden behandeld

IPSec 17

SA gegevensbanken (2)

- consultatie bij inkomend verkeer
 - pakket bevat SPI, bestemmingsadres en protocol (AH/ESP)
 - SPD en SAD worden geconsulteerd om te weten hoe het pakket moet worden behandeld
 - zie verder
- consultatie bij uitgaand verkeer
 - SPD bepaalt welke SA moet worden gebruikt voor pakketbehandeling
 - SA info wordt uit SAD gehaald

IPSec 18

Security Association Database (1)

- bevat entry voor elke SA
- ingang bevat o.a.
 - informatie over het protocol (AH of ESP)
 - algoritmen, sleutels + levensduur
 - sequentienummer
 - waarde in te vullen in header van het pakket
 - nr++ bij verzending van elk volgend pakket
 - gebruikt bij ontvangst voor controle op heruitzenden
 - overflow sequentienummer
 - boolean: true == nummer is te groot geworden
 - gebruikt bij verzenden van pakketten
 - policy zegt: verder pakketten sturen of overdracht stoppen

— ..

IPSec

19

Security Association Database (2)

- ingang bevat o.a. (vervolg ...)
 - mode waarin protocol is gebruikt:
 - transport of tunnel
 - levensduur van de SA
 - # overgedragen bytes of tijdsduur
 - indien overschreden → SA niet meer gebruiken
 - kernel kan zorgen dat tijd voordien nieuwe SA wordt opgezet
 - PMTU (path max transmission unit)
 - max grootte van pakket voor pad zonder fragmentatie
 - anti-replay window
 - gebruikt samen met sequentienummer
 - bepaalt of pakket eventueel reeds vroeger werd ontvangen

IPSec 20

Beleid en SPD

- IPSec-beleid kan vb. bepalen
 - verkeer tussen lokaal onbeveiligd subnet en net van een andere router: encryptie (AES) + authenticatie (HMAC-MD5)
 - telnet-verkeer naar mailserver op ander subnet: encryptie (3DES) + authenticatie (HMAC-SHA)
 - web-verkeer naar andere server: encryptie (IDEA) + authenticatie (HMAC-RIPEMD)
 - ander verkeer onbeveiligd
- beleid vastgelegd in Security Policy Database (SPD)
- elke entry definieert trafiek en legt vast
 - bescherming of niet
 - hoe
 - met welke netwerkentiteit bescherming gemeenschappelijk is

IPSec 21

Security Policy Database SPD (1)

- bevat vergelijkbare regels als die van firewall of packetfilter
- bepaalt manier waarop bepaalde IP-trafiek wordt beveiligd
 - afhankelijk van
 - bron en bestemming
 - · inkomend of uitgaand verkeer
- 1 entry bevat subset van IP-verkeer incl. transportinfo
- SPD legt relatie tussen IP-verkeer en SA's
 - 1 entry (of meer) → geen SA
 - 1 entry → 1 SA
 - meerdere ingangen → 1 SA
 - 1 ingang → meerdere SA's

IPSec 22

Security Policy Database SPD (2)

- policy-entry bevat o.a.
 - IP-adressen van bron en bestemming
 - 1 adres, lijst, bereik, wildcard
 - protocol transportlaag
 - NextHeader field IPv6, Protocol IPv4
 - 1 nummer, lijst, bereik
 - TCP of UDP poorten van bron en bestemming
 - aparte poortnummers, lijst, wildcard
 - userID
 - gebruikt bij IKE
 - actie
 - verwijzing naar al dan niet beveiliging via SA('s)
 - ...

IPSec 23

Security Policy Database SPD (3)

- mogelijke acties
- DISCARD
 - pakket wordt gedropt, mag niet binnen of buiten
- BYPASS
 - uitgaand pakket → geen beveiliging
 - inkomend pakket → er zou geen IPSec mogen toegepast zijn
- PROTECT
 - entry verwijst naar SA of SA-bundel in SAD
 - uitgaand pakket → gepaste IPSec-beveiliging wordt toegepast
 - inkomend → controle nadien of pakket gepaste beveiliging had

IPSec 24

Security Policy Database SPD (4)

- aparte ingangen op elke interface voor
 - inkomend verkeer
 - uitgaand verkeer
 - ofwel twee aparte SPD's (afh. van implementatie)
- · verwerking uitgaand verkeer:
 - vergelijk velden in pakket om SPD-ingang te vinden
 - bepaal SA (of geen) en SPI
 - voer IP-Sec bewerking uit (AH of ESP)
- ingang bepaalt of trafiek al dan niet
 - moet verwerkt worden door IPSec
 - of moet worden tegengehouden

IPSec 25

SPD (5): een voorbeeld (Stallings)

Protocol	Local IP	Port	Remote IP	Port	Action	Comment
UDP	1.2.3.101	500	*	500	BYPASS	IKE
ICMP	1.2.3.101	*	*	*	BYPASS	Error messages
*	1.2.3.101	*	1.2.3.0/24	*	PROTECT: ESP intransport-mode	Encrypt intranet traffic
TCP	1.2.3.101	*	1.2.4.10	80	PROTECT: ESP intransport-mode	Encrypt to server
TCP	1.2.3.101	*	1.2.4.10	443	BYPASS	TLS: avoid double encryption
*	1.2.3.101	*	1.2.4.0/24	*	DISCARD	Others in DMZ
*	1.2.3.101	*	*	*	BYPASS	Internet

IPSec 26

IPSec verwerking: uitgaand verkeer

- pakket van transportlaag wordt door IP-laag verwerkt
- IP consulteert SPD (is IPSec vereist? zo ja hoe?)
- mogelijke resultaten
 - laat pakket vallen (drop, actie==DISCARD)
 - geen IPSec vereist (actie == BYPASS)
 - IP-header toegevoegd
 - pakket doorgegeven naar netwerklaag
 - wel IPSec vereist (actie == PROTECT) → zie verder hieronder
- zoek SA in SAD
 - indien niet bestaand → stel nieuwe SA op (via IKE)
- voeg AH en/of ESP toe zoals SA voorschrijft
- bij routering nog extra stappen (zie verder)

IPSec 27

IPSec verwerking uitgaand router

- consultatie SPD van interface waar pakket is ontvangen
- routeren? → routetabel → SPD andere interface

IPSec verwerking: inkomend verkeer

- indien geen IPSec header aanwezig
 - check policy in SPD
 - == discard → drop pakket
 - == protect doch geen ISec dus geen SA's → drop pakket
 - anders: pakket wordt doorgegeven naar hogere laag
- indien wel IPSec headers ->
 - pakket verwerkt door IPSec-laag
 - <SPI + destination addr + protocol> bepalen SA in SAD
 - AH of ESP laag behandelen payload
 - SPD wordt geconsulteerd om policy te bepalen
 - is SA correct gebruikt (vb. komen adressen overeen met die van policy, gebruikte beveiliging==die van SPD)? (fig. existing spi?)
 - zo ja → payload doorgegeven naar hogere laag
 - zo neen → drop pakket

IPSec

30

IPSec werkingsmodi

- AH en ESP protocols werken beide op twee manieren
- transport-mode
- tunnel-mode

IPSec 34

IPSec: transport-mode (2)

- biedt bescherming voor
 - payload
 - = protocols in bovenlagen (TCP, UDP, ICMP)
- beschermt typisch end-to-end communicatie
- AH of ESP komen ná IP-hoofding en pakken slechts de rest van pakket in
- ESP encrypteert (+authenticeert) IP-payload, niet IPheader
- AH authenticeert IP-payload, gedeeltelijk IP-header
- pakketten moeten worden geïnterpreteerd door de ontvanger

IPSec 36

IPSec: tunnel-mode (1)

- biedt bescherming aan het gehele IP-pakket
- · origineel pakket wordt volledig in nieuw pakket ingebed
- nieuw pakket wordt beveiligd door IPSec in transportmode
- indien origineel pakket wordt geëncrypteerd (ESP), kan oorspronkelijke bestemming of oorsprong niet worden achterhaald

IPSec 37

IPSec: tunnel-mode (2)

- laat uitwisseling van pakketten toe met private adressen over publiek netwerk
- Voorbeeld:
 - host A maakt pakket met adresB voor host B op ander netwerk
 - wordt verzonden naar veilige router op de grens van netwerk A
 - router filtert uitgaande pakketten en bepaalt de nood aan behandeling door IPSec
 - router pakt oorspronkelijk IP-pakket in een nieuw pakket in:
 - bron IP-adres = router A
 - bestemming IP-adres = router netwerkB
 - pakket wordt geleid naar router netwerkB
 - router netwerkB stript IP-header en past IPSec toe
 - oorspronkelijk pakket wordt aan B geleverd

IPSec

38

Anti-Replay voorziening (1)

- replay
 - aanvaller krijgt kopie van geauthenticeerd pakket
 - verstuurt het later opnieuw naar zelfde bestemming
 - ontvangst kan dienst onderbreken of ...
- IPSec bevat teller (Sequence Number) in hoofding
- opzetten van nieuwe SA impliceert teller=0
- bij elk verzonden pakket:
 - teller++ in veld van protocol-hoofding en in SAD-entry
- als teller==(2³²-1)
 - nieuwe SA opzetten (indien anti-replay)
- IP is connectieloos → pakketten komen niet allemaal toe (in volgorde)
- IPSec voorziet glijdend venster

IPSec

Anti-Replay voorziening (2)

- controle bij ontvangst van pakketten:
 - glijdend venster van W=64 (of ...) pakketten
 - N is hoogste ontvangen pakketnummer
 - is bij ontvangst van een pakket
 - N < nummer
 - → nieuw pakket, controle van authenticiteit
 - → indien OK : venster wordt aangepast (N=nummer)
 - → pakket aangeduid als ontvangen
 - N-W < nummer <= N
 - → drop indien reeds ontvangen
 - → anders controle authenticiteit
 - → indien OK : pakket aangeduid als ontvangen
 - pakket verworpen en melding als
 - authenticiteit niet OK
 - nummer <= N-W

42

41

Zijsprong: IP-spoofing

- · Source address spoofing
- aanvaller zendt pakketten met incorrect bronadres
- antwoorden worden naar verkeerd adres gestuurd, niet noodzakelijk naar de aanvaller
- drie mogelijkheden:
 - de aanvaller kan de antwoorden onderscheppen en zo een onbeperkte gekaapte verbinding in stand houden
 - de aanvaller hoeft de antwoorden niet te zien, bijvoorbeeld bij een denial of service aanval
 - de aanvaller wil de antwoorden niet zien
 - er worden antwoorden gestuurd naar een ander slachtoffer door een nietsvermoedende afzender
 - adres van afzender en bron is zelfde, computer hangt

IPSec 44

AH: Authentication Header (1)

- voorziet in ... van IP-datagrams
 - integriteit
 - authenticatie
 - optioneel: bescherming tegen replay
 - vermijdt IP-spoofing
- geen authenticatie van veranderbare velden in IP header
 - type of service
 - flags
 - fragment offset
 - time to live
 - header checksum
- anders tunnel-mode gebruiken

IPSec 45

AH: Authentication Header (2)

- protocolnummer = 51 (of NextHeader in IPv6)
 - vervangt protocol in originele IP-header
- werkt alleen in op niet gefragmenteerde pakketten
- IPSec-pakket kan nadien
 - wel worden gefragmenteerd verzonden
 - opnieuw geassembleerd worden
 - vooraleer IPSec opnieuw wordt toegepast
- pakketten met niet geslaagde authenticatie worden niet naar hogere lagen doorgegeven

IPSec 46

AH hoofding (2)

- Next Header
 - 8 bits identificeren het type header dat vlak na de AH komt
 - overgenomen van protocolnummer van IP-header
 - dit laatste wordt nadien 51
- Payload Length (lengte van de AH in 32bit woorden)
- reserved
 - voor gebruik in de toekomst (?)
 - -16 bits = 0
- SPI (security parameter index, identificeert SA)
- ...

IPSec 49

AH hoofding (3)

- Sequence number
 - 32-bitwaarde van teller die monotoon stijgt
 - bescherming tegen anti-replay (optioneel)
 - niet gebruikt met manuele sleuteluitwisseling of oude RFC
- Authentication Data
 - bevat Integrity Check Value (ICV)
 - berekende MAC volgens afspraken in SA
 HMAC-SHA1-96 (moet) of HMAC-MD5-96 (mag) of
 AES-XCBC-MAC-96 (zou moeten) berekend over:
 - immutable IP header fields (mutable=0 voor de berekening)
 - AH header zonder authentication data (auth data = 0 voor de berekening)
 - gegevens van bovenliggende protocols (vb. TCPsegment)
 - meestal beperkt tot eerste 96 bits

IPSec 50

IPSec 51

Encapsulating Security Payload

- voorziet in ... van IP-datagrams
 - confidentialiteit (eigenlijk ook optioneel)
 - optioneel: integriteit en authenticatie (gaan altijd samen)
 - optioneel: bescherming tegen replay
- aanbeveling: encryptie nooit alleen gebruiken (cryptanalyse mogelijk door het vervalsen van pakketten)
- werkt alleen op niet gefragmenteerde pakketten (cf. AH)
- pakketten met verkeerde authenticatie worden niet gedecrypteerd (vermindert werklading)
- protocolnummer = 50 (of NextHeader in IPv6)

IPSec 53

ESP pakket (2)

- SPI: security parameter index identificeert SA
- Sequence Number (zie AH)
- Payload Data
 - segment op transportniveau indien transportmode of
 - IP-pakket in tunnelmode
 - bevat ook indien nodig initialisatievectoren voor encryptiealgoritme
 - geëncrypteerd volgens afspraken in SA (RFC 4835 / 2007)

MUST NULL (1)

MUST- TripleDES-CBC [RFC2451]

MUST AES-CBC with 128-bit keys [RFC3602]

SHOULD AES-CTR [RFC3686]

SHOULD NOT DES-CBC [RFC2405] (3)

IPSec 56

ESP pakket (3)

- Padding uitlijning nodig voor
 - encryptie-algoritme (geheel aantal blokken)
 - plaats van PadLength en Next Hdr in pakket (rechts uitgelijnd)
 - extra vertrouwelijkheid: door opvullen werkelijke lengte van payload verbergen.
- Next Header
 - identificeert data in payload (vb TCP-info); cf. AH
- Authentication Data
 - cf. AH
 - IP-header niet in rekening genomen!

IPSec 57

ESP in transport-mode

- geen authenticatie van IP-header
- geen encryptie van IP-header
- nadeel: valse pakketten kunnen aangeboden worden vóór verwerking door ESP + analyse van trafiek mogelijk
- voordeel: weinig overhead
- alleen gebruikt bij hosts, niet bij gateways

IPSec 58

Authenticatie op 2 manieren?

- · Waarom bestaat AH?
- Waarom bij ESP geen authentisering van IP-header?

Geen officieel antwoord, maar:

- ESP vereist sterke cryptografe algoritmen, niet in alle landen toegelaten; er zijn geen restricties voor authenticatie
- soms alleen authenticering gewenst, dan is AH performanter dan ESP (complexere opbouw)
- ESP en AH kunnen ook worden gecombineerd met voordelen van beide

IPSec 60