ECE36800 Data structures

Insertion sort and Shell sort Chapter 6 (pp. 253-300)

Lu Su

School of Electrical and Computer Engineering Purdue University

Overview

- Sorting background
- Insertion sort
- Shell sort

• Reference pages: pp. 253-300

Sorting background

- Why sorting at all?
 - Necessary if need to process items in sorted order (e.g., priority queue)
 - If set of items is sorted, one can
 - Find items faster
 - Find particular items in constant time (e.g., min, max, median)
 - Find identical items faster
- Trade off:
 - Faster searching after slow sorting
 - Slow searching without sorting

Sorting records

Sorting pointers

- Instead of records, pointers (or indices) to them are sorted (based on keys of records)
 - More efficient than copying records, but at higher memory requirement

Simple insertion sort

- Insert an item into an already sorted array
- Compare item with items in the sorted array from largest to smallest
 - If reverse order, swap items
- Continue until all items are sorted

Insertion sort: algorithm

Sort *n* integers r[0] to r[*n*-1] in ascending order

```
for j \leftarrow 1 to n-1

for i \leftarrow j downto 1

if r[i-1] > r[i]

r[i-1] \leftrightarrow r[i]

else

break
```

Insertion sort: example

Insertion sort: example

Insertion sort: example

Insertion sort comments

- Only neighbors are swapped and identical items are never exchanged
 - Thus, insertion sort is stable, i.e.,the relative positions of identical items do not change
- The algorithm builds up a sorted subarray at the start and successively inserts items into it
- Move up array to find proper position to insert

Insertion sort: move vs. swap

Move larger items down the array to make room, insert new record into correct position

```
for j \leftarrow 1 to n-1

temp\_r \leftarrow r[j]

for i \leftarrow j downto 1

if \ r[i-1] > temp\_r

r[i] \leftarrow r[i-1]

else

break

r[i] \leftarrow temp\_r
```

Insertion sort: while-loop vs. for-loop

Use while instead of for in inner loop and combine the checking of sortedness

```
for j \leftarrow 1 to n-1 i > 0 often tested but temp_r \leftarrow r[j] seldom false while i > 0 and r[i-1] > temp_r  r[i] \leftarrow r[i-1]  i \leftarrow i-1  r[i] \leftarrow temp_r
```

Insertion sort: using sentinel

```
for j \leftarrow n-1 downto 1
                                          Find min item
    if r[j] < r[j-1]
         r[j] \leftrightarrow r[j-1]
for j \leftarrow 2 to n-1
    temp r \leftarrow r[j]
    i \leftarrow j
    while r[i-1] > temp_r
         r[i] \leftarrow r[i-1]
                                          r[0] ≤ temp_r
         i \leftarrow i-1
                                           guaranteed
    r[i] \leftarrow temp r
```

Insertion sort: efficiency

- Memory:
 - In-place sort, O(1)
- Time: examine critical operations
 - Swaps or moves
 - Comparisons
 - O(n) for finding the sentinel

Insertion sort: time – best case

Best case: array already sorted

```
for j ← 1 to n-1
   temp_r ← r[j]
   i ← j
   while i > 0 and r[i-1] > temp_r
       r[i] ← r[i-1]
       i ← i-1
   r[i] ← temp_r
```

Insertion sort: time – best case

Best case: array already sorted

- For the items 1 to *n*-1
 - O(1) copy operation or assignment operation
 - O(1) comparison
- Result: O(n) (both copy and compare)

Insertion sort: time – worst case

Worst case: array sorted in descending order

```
for j ← 1 to n-1
   temp_r ← r[j]
   i ← j
   while i > 0 and r[i-1] > temp_r
       r[i] ← r[i-1]
       i ← i-1
   r[i] ← temp_r
```

Insertion sort: time – worst case

Worst case: array sorted in descending order

For the *i*-th item (*i* from 1 to *n*-1), dominated by *i* comparisons and *i* moves or copy operations

$$(n-1) + (n-2) + ... + 1 = (n-1)*((n-1) + 1) / 2$$

= $n^2/2$ - $n/2$ comparisons or copy operations

• Result: $O(n^2)$ (both copy and compare)

Insertion sort: time – average case

Average case: array in random order

```
for j ← 1 to n-1
   temp_r ← r[j]
   i ← j
   while i > 0 and r[i-1] > temp_r
       r[i] ← r[i-1]
       i ← i-1
   r[i] ← temp_r
```

Insertion sort: time – average case

Average case: array in random order

- For the *i*-th record (*i* from 1 to *n*-1)
 - On average *i* / 2 positions from the correct one
 - On average (1+i)/2 comparisons and copy operations

$$((n) + (n-1) + ... + 3 + 2) / 2 = (n+1)*(n)/4 - 1/2$$

= $n^2/4$ - $n/4$ - $1/2$ comparisons/copies

• Result: $O(n^2)$ (both copy and compare)

Insertion sort: summary

- Memory complexity: O(1), in-place
- Time complexity:
 - Perfectly sorted: *O*(*n*)
 - Average input: very poor $O(n^2)$
 - On average $n^2/4$ comparisons and moves
- Advantages:
 - Easy to implement
 - One of the best sorts for sorted input and/or small input sizes

Shortcomings of insertion sort

- Perform comparisons between adjacent neighbors
 - O(n²) comparisons (worst-case and average-case)
- Perform swaps/moves between adjacent items
 - Take several swaps/moves to correct one inversion (pair of integers out of order)
 - O(n²) swaps/moves

Shell sort: improving insertion sorts

- Allow comparisons and swaps between non-adjacent neighbors
- Perform insertion sort on k subarrays of original array
 - Subarray 0: r[0], r[k], r[2k], r[3k], ...
 - Subarray 1: r[1], r[1+k], r[1+2k], r[1+3k], ...
 - ...
 - Subarray k-1: r[k-1], r[2k-1], r[3k-1], r[4k-1], ...
- The adjacent item in a subarray is k positions away in the original away, allowing items to move far
- Iterate the process, use a smaller k in each pass
- In the last pass, use k = 1

Example

- Given array
 - -37905168420615734982
- Arrange into a 2-D array with k = 7 rows (filling in one column at a time)
 - Subarray 0: $387 \rightarrow 378$
 - Subarray 1: $743 \rightarrow 347$
 - Subarray 2: 9 2 4 \rightarrow 2 4 9
 - Subarray 3: $009 \rightarrow 009$
 - Subarray 4: 5 6 8 \rightarrow 5 6 8
 - Subarray 5: $112 \rightarrow 112$
 - Subarray 6: 65 \rightarrow 56
- Put it back: 3 3 2 0 5 1 5 7 4 4 0 6 1 6 8 7 9 9 8 2

Example

- Arrange [3 3 2 0 5 1 5 7 4 4 0 6 1 6 8 7 9 9 8 2] into a 2-D array with k = 3 rows (filling in one column at a time)
 - Subarray 0: 3 0 5 4 1 7 8 \rightarrow 0 1 3 4 5 7 8
 - Subarray 1: $3570692 \rightarrow 0235679$
 - Subarray 2: 2 1 4 6 8 9 \rightarrow 1 2 4 6 8 9
- Put it back: 0 0 1 1 2 2 3 3 4 4 5 6 5 6 8 7 7 9 8
 9
- Apply insertion sort (k = 1) in the last pass

Modify Insertion sort to Shell sort

```
for j \leftarrow 1 to n-1

temp_r \leftarrow r[j]

i \leftarrow j

while i > 0 and r[i-1] > temp_r

r[i] \leftarrow r[i-1]

i \leftarrow i-1

r[i] \leftarrow temp_r
```

Shell sort: example

Shell sort: example

No more swaps in the remainder of insertion sort

Shell sort: algorithm

```
for each k (in descending order)
  for j ← k to n-1
    temp_r ← r[j]
    i ← j
    while i ≥ k and r[i-k] > temp_r
        r[i] ← r[i-k]
        i ← i-k
    r[i] ← temp_r
```

Shell sort: choosing *k*

- Sequence $\{1, 4, 13, ..., 3h(k-1) + 1, ...\}$
- Define recursively
 - h(1) = 1 h(i + 1) = 3 * h(i) + 1
- Let x be the smallest integer such that $h(x) \ge n$
- Set the number of passes to be x 1
- For pass j, use k = h(x j)

Shell sort: complexity

- Analysis is quite sophisticated, will skip that for this course
- Sequence of integers of the form 2^p3^q (< n):

```
1 2 3 Bottom to top
4 6 9 Right to left
8 12 18 27
```

- $-O(n(\log n)^2)$
- Sequence $\{1, 3, 7, 15, ..., 2^k 1, ...\}$: $O(n^{1.5})$
- Sequence $\{1, 4, 13, ..., 3h(k-1) + 1, ...\}$: $O(n^{1.5})$