Математический анализ. Неофициальный конспект

Лектор: Сергей Витальевич Кисляков Конспектировал Леонид Данилевич Редактировал Максим Лаунер

IV семестр, весна 2024 г.

Оглавление

1	Ком	плексный анализ
	1.1	Интеграл от дифференциальной формы вдоль кусочно-гладкого пути
		1.1.1 Про дифференциальные формы
		1.1.2 Про интегрирование
		1.1.3 Интеграл от дифференциальной формы вдоль пути
		1.1.4 Сумма путей
		1.1.5 Альтернативное определение
		1.1.6 (Не)зависимость от параметризации
	1.2	Условия существования первообразной у дифференциальной формы
	1.3	Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$
		1.3.1 Связь с голоморфными функциями
	1.4	Гармонические функции
	1.5	Первообразная от замкнутой формы вдоль непрерывного пути
		1.5.1 Наводящие предположения
		1.5.2 Требуемые свойства
		1.5.3 О гомотопности путей
	1.6	Ряды Лорана
	1.7	Изолированные особенности голоморфных функций
	1.8	Вычеты
		1.8.1 Как вычислять вычеты
		1.8.2 Индекс замкнутого пути относительно точки
		1.8.3 Обобщение интеграла $\frac{\sin x}{x}$
		1.8.4 2-я формула замены переменной
		1.8.5 О логарифме
		1.8.6 Ветвь аргумента и целочисленность индекса
	1.9	Принцип аргумента и теорема Руше
	1.10	Сходимость аналитических функций
		1.10.1 Нормальные семейства
		1.10.2 Про монтелевые пространства
	1.11	Однолистные функции. Теорема Римана
		1.11.1 О дробно-линейных отображениях
		1.11.2 Теорема Римана
		1.11.3 Автоморфизмы односвязных областей
	1.12	Построение целых функций с заданными нулями
		1.12.1 Множители Вейерштрасса общего вида
		1.12.2 Упрощённый вид множителей Вейерштрасса
		1.12.3 Разложение синуса в произведение
		1.12.4 Г-функция Эйлера
		1.12.5 Эйлеров интеграл
		1.12.6 Формула Стирлинга
	1.13	Аналитическое продолжение
		1.13.1 Принцип симметрии Римана — Шварца
		1.13.2 Методы аналитического продолжения
	1 14	Рациональные и полиномиальные приближения

Глава 1

Комплексный анализ

Лекция I

16 февраля 2024 г.

Пусть $f:G\to\mathbb{C}$, где открытое $G\subset\mathbb{C}$.

Определение 1.0.1 (f голоморфна в $z_0 \in G$). $\exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \stackrel{def}{=} f'(z_0)$.

Во втором семестре мы проверяли, что f=u+iv (где $u,v:G\to\mathbb{R}$) голоморфна в $z_0\iff f=f(x+iy)$ дифференцируема в вещественном смысле, и выполняются уравнения Коши — Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Определение 1.0.2 (f аналитична в G). $\forall z_0 \in G : \exists c_j \in \mathbb{C}$:

$$f(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^j$$
 (*)

где ряд сходится не только при $z=z_0$.

Теорема 1.0.1. f аналитична в $G \iff f$ голоморфна во всех точках G.

Доказательство.

- ⇒. Доказали во втором семестре, несложно.
- ⇐. Скоро займёмся, время пришло.

Степенные ряды типа (*) можно дифференцировать почленно: $f'(z) = \sum_{j=1}^{\infty} j c_j (z-z_0)^{j-1}$. В частности, отсюда получается, что $f'(z_0) = c_1$, и вообще $f^{(n)}(z_0) = j! \cdot c_j$.

Вскоре мы увидим, что ситуация разительно отличается от вещественной: в вещественном случае были разные классы — дифференцируемые функции, C^1 , C^∞ , аналитичные, и множество промежуточных классов.

В комплексном же случае, если функция хотя бы один раз дифференцируема, то окажется, что этого достаточно, чтобы она была не просто дифференцируема, а непрерывно дифференцируема, бесконечно дифференцируема, и даже аналитична.

1.1 Интеграл от дифференциальной формы вдоль кусочно-гладкого пути

1.1.1 Про дифференциальные формы

Определение 1.1.1 (Линейная функция $l: \mathbb{R}^n \to \mathbb{C}$). $\forall \alpha, \beta \in \mathbb{R}, x, y \in \mathbb{R}^n : l(\alpha x + \beta y) = \alpha l(x) + \beta l(y)$.

Определение 1.1.2 (Линейная форма на множестве $G \subset \mathbb{R}^n$). Функция двух переменных $\phi : G \times \mathbb{R}^n \to \mathbb{C}$, линейная по второму аргументу.

В пространстве \mathbb{R}^n имеется базис (e_i) : $h = e_1 h_1 + \cdots + e_n h_n$.

Тем самым,
$$\phi(x,h) = \sum_{j=1}^{n} \underbrace{\phi(x,e_{j})}_{=:q_{j}(x)} h_{j} = \sum_{j=1}^{n} g_{j}(x) h_{j}.$$

Введём базисные линейные формы $\mathrm{d}x_j(u,h) = h_j$, игнорирующую первую координату, и возвращающая j-ю компоненту второго аргумента. Теперь $\phi(x,h)$ разложилась в сумму $\sum_{j=1}^n g_j \, \mathrm{d}x_j$.

Пример. Пусть $f: G \to \mathbb{C}$ — дифференцируемая в G функция. Заметим, что её дифференциал $\mathrm{d}_f(x,_)$ — в точности линейная форма на G.

При разложении по базису получится $d_f(x, _) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) dx_i$.

Вскоре мы увидим, что далеко не всякая линейная форма является чьим-то дифференциалом.

Если
$$\phi = \sum_{j=1}^n g_j \, \mathrm{d} x_j$$
 — дифференциал функции f , то непременно $g_j = \frac{\partial f}{\partial x_j}$.

Тот факт, что ϕ является дифференциалом f, можно сказать наоборот: f является первообразной ϕ .

1.1.2 Про интегрирование

Рассмотрим монотонную функцию $\Phi:\langle a,b\rangle\to\mathbb{R}$. Как и при определении стилтьесовой длины, будем считать, что Φ определена на некотором открытом множестве, содержащем $\langle a,b\rangle$. Обозначим за l_Φ стилтьесову длину, отвечающую функции Φ .

Пускай λ_{Φ} — продолжение стилтьесовой длины l_{Φ} по Лебегу — Каратеодори.

Она, как водится, определена на некоторой Σ -алгебре, в которой есть борелевские множества, но измеримы могут быть и какие-то другие множества, зависящие от конкретной функции Φ .

Примеры.

• Так, функция $\phi(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geqslant 0 \end{cases}$ порождает дельта-меру δ_0 , относительно которой все множества измеримы.

Кроме того, эта мера сингулярна относительно стандартной меры Лебега.

• Может показаться, что так происходит из-за разрывности ϕ , но это не так.

Рекурсивно определим канторову лестницу $C:[0,1] \to [0,1]$:

Построив по данной функции стилтьесову длину λ_C , мы получим меру, сосредоточенную на канторовом множестве меры нуль.

Её носитель — само канторово множество, так как на всех отрезках вне канторова множества λ_C равна нулю. Она сингулярна относительно стандартной меры Лебега на \mathbb{R} , и её измеримые множества разительно отличаются от измеримых множеств меры Лебега.

По мере Стилтьеса можно интегрировать: если v является λ_Φ измеримой (в частности, измерима по Борелю и неотрицательна), то определён интеграл $\int\limits_{\langle a,b\rangle}v\,\mathrm{d}\lambda_\Phi$ Иногда пишут просто $\int\limits_{\langle a,b\rangle}v\,\mathrm{d}\Phi.$

Теперь пусть I=[a,b], и $\Psi:[a,b]\to\mathbb{R}$ — функция ограниченной вариации. В таком случае $\Psi=\Phi_1-\Phi_2$, где некие Φ_1,Φ_2 возрастают. Можно определить знакопеременную меру $\lambda_\Psi\stackrel{def}{=}\lambda_{\Phi_1}-\lambda_{\Phi_2}$, понятно, что определение корректно.

1.1.3 Интеграл от дифференциальной формы вдоль пути

Пускай $\gamma:[a,b]\to G\subset\mathbb{R}^n$ — спрямляемый путь (путь конечной длины). Пускай $U=\sum\limits_{j=1}^n u_j\,\mathrm{d}x_j$ — дифференциальная форма в области G. Если не сказано противное, будем считать, что u_j — непрерывные функции.

Определение 1.1.3 (Интеграл от
$$U$$
 вдоль пути γ). $\int\limits_{\gamma}U\stackrel{def}{=}\sum\limits_{j=1}^{n}\int\limits_{[a,b]}u_{j}(\gamma(t))\,\mathrm{d}\gamma_{j}(t).$

Здесь $\gamma=(\gamma_1,\ldots,\gamma_n)$. Так как путь спрямляем, то все γ_j — ограниченной вариации, каждая порождает свою меру Стилтьеса, и определение интегрирует композицию $U\circ\gamma$ по данной мере.

1.1.4 Сумма путей

Пускай имеются два отрезка [a,c] и [c,d], и на них заданы пути $\gamma_1:[a,c]\to G,\ \gamma_2:[c,d]\to G.$ Предположим, что $\gamma_1(c)=\gamma_2(c).$

Тогда можно устроить путь
$$\gamma=\gamma_1\oplus\gamma_2:[a,d]\to G,\ \gamma(t)\stackrel{def}{=} \begin{cases} \gamma_1(t), & t\in[a,c]\\ \gamma_2(t), & t\in[c,d] \end{cases}$$

Замечание. Интеграл аддитивен по множеству, поэтому: $\int\limits_{\gamma_1\oplus\gamma_2}U=\int\limits_{\gamma_1}U+\int\limits_{\gamma_2}U.$

1.1.5 Альтернативное определение

Далее мы не интересуемся никакими чудесами вроде канторовых лестниц, и считаем, что Φ такова, что λ_{Φ} абсолютно непрерывна относительно стандартной меры Лебега.

4

A раз так, то по теореме Радона — Никодима \exists суммируемая $w:[a,b] \to \mathbb{R}$, такая, что

$$\lambda_{\Phi}(e) = \int_{e} w(x) \, \mathrm{d}x \tag{+}$$

Факт 1.1.1. Формула (+) заведомо верна, если Φ непрерывно дифференцируема на [a,b], тогда $w=\Phi'$.

Доказательство. Введём меру $\nu(e) = \int\limits_e \Phi'(x) \,\mathrm{d}x$, заданную на измеримых по Лебегу множествах. Φ' непрерывна, и, следовательно, измерима.

Если
$$\langle c,d \rangle \subset [a,b]$$
, то $\nu(\langle c,d \rangle) = \int\limits_{\langle c,d \rangle} \Phi'(x) \,\mathrm{d}x = \Phi(d) - \Phi(c) = l_\Phi(\langle c,d \rangle).$

Таким образом, из теоремы единственности, продолжение l_Φ по Лебегу — Каратеодори совпадает с $\int\limits_{a}\Phi'(x)\,\mathrm{d}x$.

Замечание. Утверждение (факт 1.1.1) сохраняет силу, если Φ непрерывна и кусочно-непрерывно дифференцируема.

Пускай теперь $\Phi:[a,b] \to \mathbb{R}$ — функция ограниченной вариации, кусочно-непрерывно дифференцируемая: $\exists a=a_0 < a_1 < \cdots < a_k=b$, такие, что Φ непрерывно дифференцируема на $[a_s,a_{s+1}]$ при $0\leqslant s< k$. Введём $\rho(e)=\int\limits_{a}^{\infty}\Phi'(x)\,\mathrm{d}x$ — это знакопеременная вещественная мера.

У данной меры возникают (из разложения Хана) положительная и отрицательная части $\rho_+(e) \stackrel{def}{=} \int\limits_e (\Phi')_+(x) \,\mathrm{d} x$ и $\rho_-(e) \stackrel{def}{=} \int\limits_e (\Phi')_-(x) \,\mathrm{d} x$

Если обозначить за $\Phi_+(t) = \int\limits_0^t (\Phi')_+(x) \,\mathrm{d}x$ и $\Phi_-(t) = \int\limits_0^t (\Phi')_-(x) \,\mathrm{d}x$, то окажется, что соответствующие меры Стилтьеса совпадают с ρ_+ и ρ_- .

Более того, $\Phi = \Phi_+ - \Phi_-$ — получили разложение функции ограниченной вариации в положительную и отрицательную части.

Замечание. Это разложение экономнее, чем то, которое было получено ранее — ранее в качестве Φ_+ выбиралась вариация Φ_-

Если всё, что написано выше, собрать вместе, то получится

$$\int_{[s,t]} v \, d\Phi = \int_{[s,t]} v(x) \Phi'(x) \, dx$$

Далее «гладкий» используется, как синоним к непрерывно-дифференцируемому.

Следствие 1.1.1 (Можно считать определением). Если $U = \sum_{j=1}^n u_j \, \mathrm{d} x_j - \partial u \phi$ ференциальная форма в G с непрерывными коэффициентами, а $\gamma = (\gamma_1, \ldots, \gamma_n) : [a,b] \to G$ — спрямляемый кусочно-гладкий путь, то

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} u_{j}(\gamma(t)) \gamma_{j}'(t) dt$$

1.1.6 (Не)зависимость от параметризации

Пускай $\gamma:[a,b]\to G$ — кусочно-гладкий путь, $\psi:[c,d]\to [a,b]$ — гладкий гомеоморфизм. Теперь $\widetilde{\gamma}=\gamma\circ\psi$ — перепараметризация $\gamma.$

Лемма 1.1.1. Для всякой формы U:

$$\int\limits_{\widetilde{\gamma}} U = \pm \int\limits_{\gamma} U$$

Знак "+" выбирается, если ψ возрастает, и "- " — если убывает.

Доказательство. Предположим, что γ — гладкий путь, иначе применяем к кусочкам гладкости по отдельности

$$\int_{\widetilde{\gamma}} U = \sum_{j=1}^{n} \int_{c}^{d} u_{j}(\gamma(\psi(t))) \gamma_{j}'(\psi(t)) \cdot \psi'(t) dt = \left\| \begin{array}{c} \tau = \psi(t) \\ d\tau = \psi'(t) dt \end{array} \right\| = \sum_{j=1}^{n} \int_{\psi(c)}^{\psi(d)} u_{j}(\gamma(\tau)) \gamma_{j}'(\tau) d\tau = \pm \int_{\gamma} U \quad \Box$$

Про ψ также можно считать, что он не гладкий, а лишь кусочно-гладкий.

Тем самым, можно определить сумму путей для несоприкасающихся отрезков: для двух путей $\gamma_1:[a,b]\to G, \gamma_2:[c,d]\to G$ (при условии $\gamma_1(b)=\gamma_2(c)$) можно один их отрезков-прообразов линейным возрастающим преобразованием перевести в отрезок, соприкасающийся со вторым (например, $t\mapsto t+(b-c)$).

Также есть понятие обратного пути $\gamma^-(t) = \gamma(a+b-t)$. Для любой формы U:

$$\int\limits_{\gamma\oplus\gamma^-}U=\int\limits_{\gamma}U+\int\limits_{\gamma^-}U=\int\limits_{\gamma}U-\int\limits_{\gamma}U=0$$

1.2 Условия существования первообразной у дифференциальной формы

Теорема 1.2.1. Если у дифференциальной формы U в открытом множестве $G \subset \mathbb{R}^n$ имеется первообразная F, то для всякого кусочно-гладкого пути $\gamma:[a,b] \to G$

$$\int_{\gamma} U = F(\gamma(b)) - F(\gamma(a))$$

 \mathcal{Q} оказательство. $U=\sum\limits_{j=1}^ng_j\,\mathrm{d}x_j$, где $g_j(w)=rac{\partial}{\partial x_j}F(w)$. Считаем, что путь гладкий.

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} \frac{\partial}{\partial x_{j}} F(\gamma(t)) \gamma_{j}'(t) dt = \int_{a}^{b} \frac{d}{dt} (F \circ \gamma)(t) dt = F(\gamma(b)) - F(\gamma(a))$$

Если же путь всего лишь кусочно-гладкий, то надо разбить отрезок на подотрезки гладкости, и сложить. \Box

Следствие 1.2.1. Если у дифференциальной формы U есть первообразная, то её интегралы по всем путям с данными началом и концом, равны.

Оказывается, верно и обратное.

Лекция II 26 февраля 2024 г.

Лемма 1.2.1. Пусть G — область в \mathbb{R}^n , тогда любые две её точки можно соединить ломаной (кусочно-линейным путём).

Доказательство. Выберем $x_0 \in G$, положим $U = \{ y \in G | \text{существует ломаная в } G \text{ с началом в } x_0 \text{ и концом в } y \}.$

Покажем, что U открыто. Пусть $y \in U$, тогда найдётся шарик $B_{\varepsilon}(y) \subset G$, и $B_{\varepsilon}(y) \subset U$ — можно добавить одно звено к ломаной $x_0 \rightsquigarrow y$.

Покажем, что U замкнуто. Пусть $z \in G$ — предельная точка для U. Найдётся $B_{\varepsilon}(z) \subset G$, так как z — предельная, то $\exists y \in B_{\varepsilon}(z) \cap U$. Значит, $z \in U$ — можно добавить одно звено $y \to z$.

Замечание. Имея кусочно-линейный путь $\gamma:[a,b]\to G$, соединяющий $A,B\in G$, несложно получить бесконечно дифференцируемый путь, соединяющий их:

Пусть
$$\gamma_1:[a-1,b+1] \to G, \gamma_1(t)= \begin{cases} \gamma(a), & t\in[a-1,a]\\ \gamma(t), & t\in[a,b]\\ \gamma(b), & t\in[b,b+1] \end{cases}$$
 . Теперь, сворачивая γ_1 с аппроксиматив-

ной единицей с достаточно малым компактным носителем, получим бесконечно дифференцируемый путь, соединяющий A и B.

Теорема 1.2.2. Пусть $\Phi = \sum_{j=1}^{n} f_j(x) dx_j$ — непрерывная дифференциальная форма в G (то есть коэффициенты непрерывны в G). Следующие условия эквивалентны.

- 1. У Φ есть первообразная F, то есть функция $F \in C^1(G)$: $\mathrm{d}F = \Phi$ (иными словами, $\forall j: \frac{\partial}{\partial x_i} F = f_j$).
- 2. Для всех кусочно-гладких путей γ с фиксированными началом и концом $\gamma(a)=\gamma_a, \gamma(b)=\gamma_b$: $\int\limits_{\gamma}\Phi$ не зависит от γ (а только от начала и конца).
- 3. Для любой кусочно-гладкой петли (то есть замкнутого пути) γ в G: $\int\limits_{\gamma}\Phi=0$.

Доказательство. Мы уже доказали ранее цепочку импликаций $(1) \Rightarrow (3) \Rightarrow (2)$. Далее доказываем $(2) \Rightarrow (1)$.

Предъявим кандидат в первообразную. Зафиксируем $x_0 \in G$, выберем $x \in G$, пусть γ — произвольный кусочно-гладкий путь с началом в x_0 и концом в x. Определим $F(x) \stackrel{def}{=} \int\limits_{\gamma} \Phi$. Согласно посылке, F корректно определена — не зависит от выбора пути.

Покажем, что частные производные F существуют, и равны f_j . Тогда они получатся непрерывными, то есть F — дифференцируемой, и окажется, что F — первообразная Φ .

Пусть e_1,\dots,e_n — стандартные базисные орты в \mathbb{R}^n . Рассмотрим $\frac{F(x+te_j)-F(x)}{t}$

При малых t: отрезок между x и $x+te_j$ лежит внутри G. Пусть γ_1 — путь, соединяющий x_0 и x, l — отрезок от x до $x+te_j$.

$$\frac{F(x+te_j) - F(x)}{t} = \frac{1}{t} \left(\int_{\gamma_1 \oplus l} \Phi - \int_{\gamma_1} \Phi \right) = \frac{1}{t} \int_{l} \Phi = \frac{1}{t} \int_{0}^{t} f_j(x+\tau e_j) d\tau \xrightarrow[t \to 0]{} f_j(x) \qquad \Box$$

Определение 1.2.1 (Прямоугольник на плоскости). Множество вида $[a,b] imes [c,d] \subset \mathbb{R}^2$.

Область G на плоскости будем называть $y \partial o \delta h o \check{u}$, если $\exists x_0 \in G : \forall y \in G : \exists$ прямоугольник $P \subset G$, содержащий точки x и y.

Примеры (Удобные области).

• Int Q, если Q — прямоугольник. В качестве центра x_0 подойдёт любая точка.

• $B_r(x_0) = \{x \in \mathbb{R}^2 \big| |x - x_0| < r\}$. В качестве *центра* x_0 стоит взять центр круга, иначе не получится:

Определение 1.2.2 (Ориентированная граница прямоугольника P). Петля γ , обходящая границу $P = [a,b] \times [c,d]$ против часовой стрелки, то есть вот так:

 $\gamma = \gamma_1 \oplus \gamma_2 \oplus \gamma_3 \oplus \gamma_4.$

Для прямоугольника P будем обозначать за ∂P в зависимости от контекста либо границу P, как топологического подмножества \mathbb{R}^2 , либо путь, обходящий границу P против часовой стрелки.

Следствие 1.2.2 (Дополнение к (теорема 1.2.2)). Если G-yдобная область на плоскости, то к трём эквивалентным условиям (теорема 1.2.2) можно добавить

4.
$$\forall P \subset G : \int_{\partial P} \Phi = 0.$$

Доказательство. $(3) \Rightarrow (4)$ ясно, докажем $(4) \Rightarrow (1)$.

Пусть $x_0 \in G$ — центр удобной области, определим $F(x) = \int\limits_{\delta} \Phi$, где δ — это либо $\delta_1 \coloneqq \gamma_1 \oplus \gamma_2$ либо $\delta_2 \coloneqq \gamma_4^- \oplus \gamma_3^-$ (вне зависимости от выбора δ получится одно и то же).

Далее, чтобы проверить $\frac{\partial}{\partial x_1}F=f_1$ и $\frac{\partial}{\partial x_2}F=f_2$, воспользуемся подходящим представлением: пусть орты расположены так:

тогда для проверки $\frac{\partial}{\partial x_1}F=f_1$ удобно воспользоваться определением F через δ_1 , для проверки $\frac{\partial}{\partial x_2}F=f_2$ — определением через δ_2 . Далее повторяем рассуждение из (теорема 1.2.2).

Пусть $\Phi = \sum_{j=1}^n f_j(x) \, \mathrm{d} x_j$ — непрерывная дифференциальная форма в области $G \subset \mathbb{R}^n$.

Определение 1.2.3 (Форма Φ точна). Существует первообразная F в $G: \mathrm{d}F = \Phi$.

Определение 1.2.4 (Форма Φ замкнута). Форма Φ локально точна ($\forall x_0 \in G : \exists U \ni x_0 : \Phi|_U$ точна).

Понятно, что точная форма замкнута, но точность из замкнутости не следует: чуть позднее мы определим $\mathrm{d}z$, и покажем, что $\frac{\mathrm{d}z}{z}$ — замкнутая, но не точная форма на $\mathbb{C}\setminus\{0\}$.

Теорема 1.2.3. Пусть Φ — дифференциальная форма в области $G \subset \mathbb{R}^n$. Следующие условия эквивалентны:

- Ф замкнута.
- 2. $\forall x_0 \in G: \exists V \ni x_0: \forall$ кусочно-гладкого замкнутого пути γ с носителем в $V: \int\limits_{\gamma} \Phi = 0.$

Если n=2, то дополнительно появляются ещё два условия:

3.
$$\forall z \in G : \exists V_z \subset G : \forall P \subset V_z : \int_{\partial P} \Phi = 0.$$

4.
$$\forall P \subset G : \int_{\partial P} \Phi = 0$$
.

Доказательство. Докажем, что $(3) \Rightarrow (4)$, остальное уже доказано выше.

Заметим, что границу прямоугольника P можно представить, как сумму границ четырёх прямоугольников вдвое меньшего диаметра:

Таким образом, чтобы доказать, что интеграл по границе большого прямоугольника P нулевой, разобьём его на достаточно маленькие прямоугольники, по ним-то интеграл нуль. Чтобы это формализовать, вспомним лемму Лебега о покрытии:

Теорема 1.2.4 (Лемма Лебега). Пусть K — компакт в метрическом пространстве, $\{U_j\}_{j\in J}$ — открытое покрытие компакта K. Тогда $\exists \delta > 0 : \forall A \subset K : \operatorname{diam} A < \delta \Rightarrow \exists j \in J : A \subset U_j$.

Применяя лемму Лебега для покрытия P окрестностями $\{V_z\}_{z\in P}$, получим такое число δ . Теперь надо разбить границу прямоугольника P в сумму границ прямоугольников диаметра меньше δ , а посылка теоремы говорит, что интеграл по ним уже нуль.

1.3 Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$

Как известно, $\mathbb{C}=\{x+iy|x,y\in\mathbb{R}\}$, то есть $\forall z\in\mathbb{C}:z=x+iy$, аналогично $\overline{z}=x-iy$.

Рассмотрим z и \overline{z} , как функции $\mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x \pm iy$. Теперь $\mathrm{d}z = \mathrm{d}x + i\,\mathrm{d}y$ и $\mathrm{d}\overline{z} = \mathrm{d}x - i\,\mathrm{d}y$ образуют базис в пространстве дифференциальных форм (тех, которые не зависят от точки), обратное преобразование выглядит так:

$$\begin{cases} dx = \frac{dz + d\overline{z}}{2} \\ dy = \frac{dz - d\overline{z}}{2i} \end{cases}$$

Рассмотрим форму $\Phi: \mathbb{R}^2 \to \mathbb{C}, \Phi(x,y) = \alpha(x,y) \, \mathrm{d}x + \beta(x,y) \, \mathrm{d}y$. Перепишем её в новом базисе:

$$\Phi(x,y) = \frac{\alpha(x,y)}{2}(\mathrm{d}z + \mathrm{d}\overline{z}) + \frac{\beta(x,y)}{2i}(\mathrm{d}z - \mathrm{d}\overline{z}) = \frac{\alpha(x,y) - i\beta(x,y)}{2}\,\mathrm{d}z + \frac{\alpha(x,y) + i\beta(x,y)}{2}\,\mathrm{d}\overline{z}$$

Теперь пусть Φ — точная форма, то есть $\Phi = \mathrm{d}F$, и тогда $\alpha(x,y) = \frac{\partial}{\partial x}F(x,y)$ и $\beta(x,y) = \frac{\partial}{\partial y}F(x,y)$. Теперь

$$dF = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right) d\overline{z}$$

Определение 1.3.1 $(\frac{\partial F}{\partial z})$. Коэффициент, стоящий перед $\mathrm{d}z$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}-i\frac{\partial F}{\partial y}\right)$.

Определение 1.3.2 $(\frac{\partial F}{\partial \overline{z}})$. Коэффициент, стоящий перед $d\overline{z}$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}+i\frac{\partial F}{\partial y}\right)$.

Иначе говоря, мы ввели операторы $\frac{\partial}{\partial z}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ и $\frac{\partial}{\partial \overline{z}}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial}{\partial x}+i\frac{\partial}{\partial y}\right)$ так, что

$$\mathrm{d}F = \frac{\partial}{\partial z} F \, \mathrm{d}z + \frac{\partial}{\partial \overline{z}} F \, \mathrm{d}\overline{z}$$

1.3.1 Связь с голоморфными функциями

Пусть F = u + iv, где $u, v : \mathbb{R}^2 \to \mathbb{R}$. Запишем

$$\frac{\partial F}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \right) = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right)$$

В правой части равенства получились выражения из уравнений Коши — Римана.

Факт 1.3.1. Вещественные функции u,v удовлетворяют уравнениям Коши — Римана $\Leftrightarrow \frac{\partial (u+iv)}{\partial \overline{z}} \equiv 0.$

Факт 1.3.2. F голоморфна \iff $\mathrm{d}F = \frac{\partial F}{\partial z}\,\mathrm{d}z$. При этом $\frac{\partial F}{\partial z}$ есть производная F по комплексному аргументу.

Доказательство. Функция дифференцируема по комплексному аргументу \iff её дифференциал — умножение на комплексное число. □

В основном нас будут интересовать дифференциальные формы вида $\phi(z)\,\mathrm{d}z$, где ϕ — произвольная функция.

Выясним, когда у формы $\phi(z)\,\mathrm{d}z=\phi(z)\,\mathrm{d}x+i\phi(z)\,\mathrm{d}y$ имеется первообразная, то есть функция $g:\frac{\partial g}{\partial x}=\phi,\frac{\partial g}{\partial y}=i\phi.$ Заметим, что $\frac{\partial g}{\partial z}=\frac{1}{2}(\phi-i(i\phi))=\phi$ и $\frac{\partial g}{\partial \overline{z}}=\frac{1}{2}(\phi+i(i\phi))=0.$

Утверждение 1.3.1. Форма $\phi \, dz$ имеет первообразную $g \iff g$ голоморфна, и $g' = \phi$.

Теорема 1.3.1 (Коши). Если $g: G \to \mathbb{C}$ — голоморфная функция (область $G \subset \mathbb{C}$), то форма $g(z) \, \mathrm{d} z$ замкнута (но не факт, что точна).

Доказательство. Потом (теорема 1.3.4).

Контример (Глобально первообразной может не быть). Пусть $G = \mathbb{C} \setminus \{0\}, g: G \to \mathbb{C}, g: z \mapsto \frac{1}{z}$.

По теореме Коши у g имеется локальная первообразная — комплексный логарифм — но глобально определить не получится. Пусть $\Gamma = \partial \mathbb{T}$ — комплексная окружность, ориентируем её против часовой стрелки, а именно, рассмотрим стандартный обход окружности $\alpha: [0,2\pi] \to \mathbb{C}, \, \alpha: \phi \mapsto e^{i\phi}$. Теперь убедимся, что форма не точна:

$$\int_{\Omega} \phi = \int_{\Omega} \frac{\mathrm{d}z}{z} = \int_{0}^{2\pi} \frac{\left(e^{it}\right)'}{e^{it}} \, \mathrm{d}t = \int_{0}^{2\pi} i \, \mathrm{d}t = 2\pi i \neq 0$$

Для будущих применений также определим ориентированную против часовой стрелки границу $B_r(z_0)$, это путь $\beta(t)=z_0+re^{it}$ для $t\in[0,2\pi]$.

Пример. Пусть $z_0, w \in \mathbb{C}, r \in \mathbb{R}_{>0}, \ |w-z_0| \neq r$, пусть путь γ обходит границу $B_r(z_0)$ против часовой стрелки:

Тогда, оказывается, (посчитаем чуть позже):

$$\int_{\gamma} \frac{\mathrm{d}z}{z - w} = \begin{cases} 0, & |z - w| > r \\ 2\pi i, & |z - w| < r \end{cases} \tag{0}$$

Грубой силой этот интеграл посчитать непросто, так как w находится где угодно — внутри или снаружи круга — а интеграл, оказывается, зависит только от этих двух альтернатив.

Теорема 1.3.2 (Основная оценка интеграла вдоль пути). Пускай $\Phi = \sum_{j=1}^n f_j \, \mathrm{d} x_j$ — непрерывная дифференциальная форма в области $G \subset \mathbb{R}^n$, а $\gamma: [a,b] \to G$ — кусочно-гладкий путь, $K \coloneqq \mathrm{Im}(\gamma) \subset G$.

Тогда
$$\left|\int\limits_{\gamma}\Phi\right|\leqslant \sup_{x\in K}\left(\sum_{j=1}^{n}|f_{j}(x)|^{2}\right)^{1/2}\cdot l(\gamma).$$
 $=:A$

 $\ \ \,$ Доказательство. Считаем, что γ — гладкий путь, иначе нужно разбить на кусочки гладкости.

$$\left| \int_{\gamma} \Phi \right| = \left| \int_{a}^{b} \sum_{j=1}^{n} f_{j} \left(\gamma(t) \right) \gamma_{j}'(t) \, \mathrm{d}t \right| \leqslant \int_{KBIII}^{b} \int_{a}^{b} \left(\sum_{j=1}^{n} |f_{j}(\gamma(t))|^{2} \right)^{1/2} \cdot \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t \leqslant \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \, \mathrm{d}t \leqslant \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t \leqslant \left(\sum$$

Лекция III

1 марта 2024 г.

Рассмотрим дифференциальную форму $\Phi=F(z)\,\mathrm{d} z$, где F — непрерывная функция в $G\subset\mathbb{C}$. Пусть $\gamma:[a,b]\to G$ — плоский путь.

Расписав $\Phi(z) = F(z) \, \mathrm{d} x + i F(z) \, \mathrm{d} y$ и применив основную оценку интеграла вдоль пути, получаем

$$\left| \int\limits_{\gamma} \Phi \right| \leqslant \max_{z \in K} \sqrt{|F(z)|^2 + |F(z)|^2} \cdot l(\gamma) = \sqrt{2} \max_{z \in K} |F(z)| \cdot l(\gamma)$$

Эта оценка вызывает некоторую неудовлетворённость: кажется, что $\sqrt{2}$ здесь лишний. И это действительно правда: можно расписать интеграл аккуратнее.

Пусть $\gamma = \gamma_1 + i\gamma_2$, тогда по определению

$$\int_{\gamma} \Phi = \int_{a}^{b} F(\gamma(t)) \cdot \gamma_{1}'(t) + iF(\gamma(t)) \cdot \gamma_{2}'(t) dt = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

Таким образом, интеграл от комплексной формы вдоль пути имеет более простое представление, и оно легко поддаётся более плотной оценке:

$$\left| \int_{\gamma} \Phi \right| \leqslant \int_{a}^{b} |F(\gamma(t))| \cdot |\gamma'(t)| \, \mathrm{d}t \leqslant \max_{z \in K} |F(z)| \underbrace{\int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t}_{l(\gamma)}$$

Посчитаем анонсированный на предыдущей лекции интеграл (\circ). Пусть $z_0, w \in \mathbb{C}, r > 0$.

• Сначала рассмотрим случай $|w-z_0| < r$. Заметим, что, согласно основной оценке интеграла, если коэффициенты равномерно стремятся к какому-то значению и интегралы ограничены, то предельный интеграл тоже сходится.

Запись ниже $\int\limits_{|z-z_0|=r}$, и вообще все аналогичные записи, которые встретятся в дальнейшем,

по умолчанию означают, что граница соответствующего множества (в данном случае — круга) обходится стандартным образом, то есть против часовой стрелки.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0 - (w-z_0)} = \int_{|z-z_0|=r} \frac{1}{z-z_0} \frac{1}{1 - \frac{w-z_0}{z-z_0}} \, \mathrm{d}z =$$

$$= \int_{|z-z_0|=r} \frac{1}{z-z_0} \left(1 + \frac{w-z_0}{z-z_0} + \left(\frac{w-z_0}{z-z_0}\right)^2 + \dots\right) \, \mathrm{d}z =$$

На слагаемые из ряда имеется равномерная по z оценка: $\left|\frac{w-z_0}{z-z_0}\right| \leqslant \frac{|w-z_0|}{r} < 1$, и по теореме Вейерштрасса функциональный ряд сходится. Значит, сумму можно вынести из-под интеграла

Первое слагаемое мы умеем брать, а у каждого слагаемого из остальной суммы имеется первообразная: $\frac{1}{(z-z_0)^{j+1}}=-\frac{1}{j}\left(\frac{1}{(z-z_0)^j}\right)'$

• Теперь разберёмся со случаем $|w - z_0| > r$.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0-(w-z_0)} = -\frac{1}{w-z_0} \int_{|z-z_0|=r} \frac{\mathrm{d}z}{1-\frac{z-z_0}{w-z_0}} = -\frac{1}{w-z_0} \sum_{j=0}^{\infty} \int_{|z-z_0|=r} \frac{(z-z_0)^j}{(w-z_0)^j} \, \mathrm{d}z$$

Аналогично предыдущему случаю, ряд сходится абсолютно, поэтому сумму опять можно вынести из под интеграла, и в данном случае всё ещё проще: каждое слагаемое имеет первообразную, там нет отрицательных степеней z, поэтому вся сумма обращается в нуль.

Пусть $\Phi = f_1 \, \mathrm{d} x_1 + \dots + f_n \, \mathrm{d} x_n$ — непрерывная дифференциальная форма в некоторой области $G \subset \mathbb{R}^n$.

Теорема 1.3.3. Если все функции $f_j \in C^1$, то следующие условия эквивалентны:

- Ф замкнута.
- $\forall 1\leqslant i,j\leqslant n: \frac{\partial f_i}{\partial x_j}=\frac{\partial f_j}{\partial x_i}$ «накрест взятые частные производные равны».

Доказательство.

- \Rightarrow Выберем $x \in G$, так как форма замкнута, то $\exists U \ni x : \Phi$ имеет первообразную $F: U \to \mathbb{R}$. Тем самым, $f_i = \frac{\partial F}{\partial x_i}$, и так как $f_i \in C^1$, то действительно $\frac{\partial f_j}{\partial x_i} = \frac{\partial^2 F}{\partial x_i \partial x_j} = \frac{\partial^2 F}{\partial x_j \partial x_i} = \frac{\partial f_i}{\partial x_j}$.
- \Leftarrow Сначала приведём доказательство случая n=2. В таком случае $\Phi=f\,\mathrm{d} x+g\,\mathrm{d} y$.

Согласно посылке, $h:=\frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}.$ Кстати, равенство слева равносильно одному из уравнений Коши — Римана.

Рассмотрим произвольный $P=[a,b] imes [c,d]\subset G$, и докажем, что $\int\limits_{\partial P}\Phi=0$.

То, что мы увидим сейчас, является первым заходом на формулу Остроградского — Гаусса. Функция h непрерывна, и можно записать от неё интеграл Лебега: $\int\limits_P h(x,y)\,\mathrm{d}x\,\mathrm{d}y$. Теперь, применяя теорему Фубини, раскладываем двумя способами интеграл в сумму повторных:

$$\int_{P} h(x,y) \, \mathrm{d}x \, \mathrm{d}y = \begin{cases} = \int_{a}^{b} \left(\int_{c}^{d} \frac{\partial f}{\partial y} \, \mathrm{d}y \right) \, \mathrm{d}x = \int_{a}^{b} \left[f(x,d) - f(x,c) \right] \, \mathrm{d}x = \int_{\gamma_{3}^{-}} f(_,d) \, \mathrm{d}x + \int_{\gamma_{1}^{-}} f(_,c) \, \mathrm{d}x \\ = \int_{c}^{d} \left(\int_{a}^{b} \frac{\partial g}{\partial x} \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{c}^{d} \left[g(b,y) - g(a,y) \right] \, \mathrm{d}y = \int_{\gamma_{2}} g(b,_) \, \mathrm{d}y + \int_{\gamma_{4}} g(a,_) \, \mathrm{d}y \end{cases}$$

Итого,
$$\int\limits_{\gamma_3^-} f(\underline{\ },d)\,\mathrm{d}x + \int\limits_{\gamma_1^-} f(\underline{\ },c)\,\mathrm{d}x = \int\limits_{\gamma_2} g(b,\underline{\ })\,\mathrm{d}y + \int\limits_{\gamma_4} g(a,\underline{\ })\,\mathrm{d}y$$
, откуда действительно $\int\limits_{\gamma} \Phi = 0$.

 \leftarrow Теперь приведём альтернативное доказательство индукцией по n.

<u>База:</u> Случай n=1 тривиален: теорема Ньютона — Лейбница говорит, что у непрерывной функции есть первообразная.

<u>Переход:</u> Пусть n>1, и для n-1 теорема доказана. Рассмотрим $a=(a_1,\ldots,a_n)\in G$, и возьмём прямоугольный параллелепипед P со сторонами, параллельными осям координат такой, что $a\in \mathrm{Int}\,P$. Докажем, что на P у Φ есть первообразная.

Построим
$$g(x_1,\ldots,x_n)=\int\limits_{a_1}^{x_1}f_1(t,x_2,\ldots,x_n)\,\mathrm{d}t.$$
 Обозначим $\phi_j:=\frac{\partial g}{\partial x_j}.$ Заметим, что $\phi_1=\frac{\partial g}{\partial x_j}=f_1.$

Теперь рассмотрим форму $\Psi(x_1, \dots, x_n) = \phi_1 dx_1 + \dots + \phi_n dx_n$. Эта форма имеет первообразную g на параллелепипеде P.

Теперь посмотрим на $\Phi - \Psi =: h_1 \, \mathrm{d} x_1 + \dots + h_n \, \mathrm{d} x_n$. По построению $h_1 = 0$. По условию накрест взятые частные производные равны у Φ , и они равны у Ψ , так как у неё есть первообразная. Значит, это же верно и для разности, в частности, $\frac{\partial h_i}{\partial x_1} = \frac{\partial h_1}{\partial x_i} = 0$. Иными словами, $\forall i:h_i$ не зависит от x_1 .

А раз так, то на $\Phi - \Psi$ можно смотреть, как на форму (n-1)-й переменной, и применить индукционное предположение.

3амечание. Тут есть некоторый обман: производные $\frac{\partial \phi_i}{\partial x_i}$ могут просто не существовать.

Попробуем обойти его так: пусть $\beta \in C^{\infty}$, с компактным носителем. Выберем аппроксимативную единицу $\beta_t(x) = \frac{1}{t^n} \beta(\frac{x}{t})$.

Назначим
$$f_k^{(t)} = f_k * \beta_t, f_k^{(t)} \underset{t \to 0}{\Longrightarrow} f_k.$$

Далее, согласно рассуждению выше, у формы $\Phi^{(t)}$ коэффициенты $h_k^{(t)}$ не зависят от x_1 . А раз коэффициенты Φ равномерно стремятся к h_k , то и они не зависят от x_1 .

Чтобы это увидеть, заключим окрестность точки a в большой параллелепипед Q, а внутри него выберем параллелепипед поменьше P. На Q коэффициенты Φ ограничены. При достаточно малых t, таких, что при вычислении коэффициентов $\Phi^{(t)}$ не просиходит выхода за Q, коэффициенты формы $\Phi^{(t)}$ равномерно по P стремятся к Φ .

Теорема 1.3.4 (Коши). Пусть F — голоморфная функция в открытом множестве $G \subset \mathbb{C}$. Тогда дифференциальная форма F(z) dz замкнута, то есть локально $\exists S : S'(z) = F(z)$.

Замечание. Теорема совсем проста, если заранее предположить, что F'(z) непрерывна (а так в итоге и должно получиться, так как F — аналитична). В таком случае имеется следующее более простое доказательство.

Доказательство. Поскольку $F(z)\,\mathrm{d}z=F(z)\,\mathrm{d}x+iF(z)\,\mathrm{d}y$, утверждение эквивалентно (согласно (теорема 1.3.3)) тому, что $\forall z\in\mathbb{C}: \frac{\partial F}{\partial y}(z)=i\frac{\partial F}{\partial x}(z)$. Пусть F(x+iy)=u(x,y)+iv(x,y) для вещественных x,y и вещественнозначных u,v. И правда,

$$\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \stackrel{?}{=} i \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right)$$

то есть $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ и $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$ — это в точности уравнения Коши — Римана.

Теперь докажем теорему Коши вне предположения непрерывности производной.

Доказательство. Докажем от противного: пусть форма $F(z)\,\mathrm{d}z$ не замкнута, $\exists P_0\subset G:\alpha=\int\limits_{\partial P_0}F(z)\,\mathrm{d}z\neq 0.$

Будем потихонечку делить этот прямоугольник на четыре равные части: пусть $P_0 = Q_1 \cup Q_2 \cup Q_3 \cup Q_4$.

Модуль интеграла по границе по крайней мере одного из Q_i хотя бы $\frac{|\alpha|}{4}$. Назовём этот прямоугольник P_1 , и продолжим процесс. Получим систему вложенных замкнутых прямоугольников $P_0 \supset P_1 \supset \dots$, таких, что $\left|\int\limits_{\partial P_i} F(z) \,\mathrm{d}z\right| \geqslant \frac{|\alpha|}{4^k}$. При этом $l(\partial P_k) = 2^{-k} l(\partial P_0)$, и $\mathrm{diam}(P_k) = 2^{-k} \mathrm{diam}(P_0)$.

Имеется ровно одна точка z_0 в пересечении $\bigcap_{k\geqslant 0} P_k$. Воспользуемся условием того, что F голоморфна в точке z_0 : $F(z)=F(z_0)+F'(z_0)(z-z_0)+\underbrace{\psi(z)}_{o(|z-z_0|)}$

Зафиксируем $\varepsilon>0$. $\exists \delta>0: |z-z_0|<\delta \Rightarrow |\psi(z)|\leqslant \varepsilon|z-z_0|$. Пусть k настолько велико, что diam $P_k<\delta$.

$$\int_{\partial P_h} F(z) dz = \int_{\partial P_h} \left[F(z_0) + F'(z_0)(z - z_0) \right] dz + \int_{\partial P_h} \psi(z) dz$$

Первый интеграл обнуляется, так как это линейная функция по z, у неё есть первообразная. Оценивая второй интеграл, получаем

$$\frac{|\alpha|}{4^k} \leqslant \left| \int_{\partial P_k} \psi(z) \, \mathrm{d}z \right| \leqslant \varepsilon \operatorname{diam} P_k \cdot l(\partial P_0) = \varepsilon \cdot 2^{-k} \operatorname{diam} P_0 \cdot 2^{-k} l(\partial P_0) = 4^{-k} \varepsilon \cdot \operatorname{diam} P_0 \cdot l(\partial P_0)$$

Выбирая довольно маленький ε , получаем, что $|\alpha|$ меньше любого положительного числа.

Теорема 1.3.5 (Об устранимой особенности замкнутой дифференциальной формы). Пускай $\Phi = f \, \mathrm{d} x + q \, \mathrm{d} y$ — непрерывная дифференциальная форма в области $G \subset \mathbb{C}$.

Если $z_0 \in G$, и Φ замкнута в $G \setminus \{z_0\}$, то Φ замкнута в G.

Доказательство. Докажем, что $\forall P\subset G:\int\limits_{\partial P}\Phi=0.$ Рассмотрим случаи.

- Если $z_0 \notin P$, то интеграл нуль по условию.
- Если $z_0 \in \operatorname{Int} P$, то данный случай сводится к следующему: разобьём прямоугольник на два так, чтобы z_0 оказалось на границе:

• Если $z_0\in\partial P$, то отступим на arepsilon, интеграл по границе $P_arepsilon$ будет нулём: $\int\limits_{\partial P_arepsilon}\Phi=0.$

$$P_{\varepsilon}$$

Заметим, что $\int\limits_{\partial P_{\varepsilon}}\Phi \xrightarrow[\varepsilon \to 0]{}\int\limits_{\partial P}\Phi$, так как коэффициенты дифференциальной формы равномерно непрерывны в некоторой окрестности P (интегралы по сторонам P_{ε} стремятся к интегралам по соответствующим сторонам P). Значит, $\int\limits_{\partial P}\Phi=0$.

Теорема 1.3.6 (Малая интегральная формула Коши). Пусть f — голоморфна в области G, $B = B(z_0, r)$ — круг, $\overline{B} \subset G$. Тогда $\forall z \in B$:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \,d\zeta$$

Доказательство. Докажем для некоего фиксированного $z \in B$.

Рассмотрим функцию $g(\zeta)=\frac{f(z)-f(\zeta)}{z-\zeta}$. g голоморфна в области $G\setminus\{z\}$. Тем самым, $g(\zeta)\,\mathrm{d}\zeta$ — замкнутая форма в $G\setminus\{z\}$, а по теореме об устранимой особенности $g(\zeta)\,\mathrm{d}\zeta$ замкнута в G (доопределим по непрерывности $g(z)\coloneqq f'(z)$).

Но так как круг — удобная область, то у g имеется первообразная в некотором круге $B(z_0,r(1+\varepsilon))$ (где $\varepsilon>0$ настолько мал, что $B(z_0,r(1+\varepsilon))\subset G$). Тем самым, $\int\limits_{|\zeta-z_0|=r} \frac{f(z)-f(\zeta)}{z-\zeta}\,\mathrm{d}\zeta=0,$ откуда

$$\int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \int_{|\zeta - z_0| = r} \frac{f(z)}{\zeta - z} \, \mathrm{d}\zeta = f(z) \cdot \int_{|\zeta - z_0| = r} \frac{1}{\zeta - z} \, \mathrm{d}\zeta = 2\pi i \cdot f(z)$$

Следствие 1.3.1 (Теорема Коши). Если f голоморфна в области $G \subset \mathbb{C}$, то $\forall z_0 \in G$ функция f (в некоторой окрестности) раскладывается в некоторый степенной ряд $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, причём радиус сходимости хотя бы $\operatorname{dist}(z_0, \partial G)$.

Доказательство. Пусть $r\in (0, \mathrm{dist}(z_0,\partial G))$. Рассмотрим $B=B_r(z_0)$. Так как $B\subset G$, то для точки $z\in B$ получаем

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} \, d\zeta =$$

$$= \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} f(\zeta) \, d\zeta = \frac{1}{2\pi i} \sum_{j=0}^{\infty} (z - z_0)^j \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} \, d\zeta$$

Абсолютная равномерная сходимость в круге радиус r при $r < \operatorname{dist}(z_0, \partial G)$ имеется по тем же причинам, что и при доказательстве (\circ).

Таким образом, мы получили степенной ряд, и так как коэффициенты степенного ряда, раз определены, не зависят от радиуса круга $(c_j = \frac{f^{(j)}(z_0)}{j!})$, то радиус сходимости данного ряда хотя бы $\operatorname{dist}(z_0, \partial G)$.

Лекция IV

12 марта 2024 г.

Замечание. Интегральную форму Коши можно спокойно дифференцировать: так,

$$\frac{\mathrm{d}}{\mathrm{d}z}f(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta \right) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z)^2} \,\mathrm{d}\zeta$$

В общем случае

$$\frac{\mathrm{d}^k}{\mathrm{d}z^k} f(z) = \frac{\mathrm{d}^k}{\mathrm{d}z^k} \left(\frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta \right) = \frac{k!}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{(\zeta - z)^{k+1}} \, \mathrm{d}\zeta$$

Определение 1.3.3 (Целая (entire) функция). Голоморфная функция, заданная в С.

Выберем $z_0=0$. Согласно (следствие 1.3.1), получаем $f(z)=\sum_{j=0}^{\infty}c_jz^j$ (ряд Маклорена), где $c_j=\frac{1}{2\pi i}\int\limits_{|\zeta|=r}\frac{f(\zeta)}{\zeta^{j+1}}\,\mathrm{d}\zeta$, причём имеется абсолютная сходимость везде в $\mathbb C$.

Теорема 1.3.7. Если f целая, и $|f(z)|=\mathcal{O}(z^N)$ при $|z|\underset{z\to\infty}{\longrightarrow}\infty$, то f — многочлен степени не более N.

Доказательство. Из определения $\mathcal{O}:\exists C,a\in\mathbb{R}:|f(z)|\leqslant C|z|^N$ при |z|>a.

Выберем r>a, и оценим: $|c_j|=\left|\frac{1}{2\pi i}\int\limits_0^{2\pi}\frac{f\left(re^{i\theta}\right)}{(re^{i\theta})^{j+1}}ire^{i\theta}\,\mathrm{d}\theta\right|\leqslant \frac{1}{2\pi}\int\limits_0^{2\pi}\frac{Cr^N}{r^j}\,\mathrm{d}\theta=\frac{Cr^N}{r^j}.$ Получается, при $j>N:|c_j|$ меньше любого наперёд заданного положительного числа.

Следствие 1.3.2 (Теорема Лиувилля). Ограниченная целая функция постоянна.

Следствие 1.3.3 (Основная теорема алгебры). $\forall p \in \mathbb{C}[z]: \deg p > 0 \Rightarrow \exists z_0 \in \mathbb{C}: p(z_0) = 0.$

Доказательство. Пусть $p(z)=\sum\limits_{j=0}^{N}c_{j}z^{j}$, где N>0 и $c_{N}\neq 0$.

Пойдём от противного: пусть $\forall z \in \mathbb{C} : p(z) \neq 0$.

Рассмотрим $f(z) \coloneqq \frac{1}{p(z)}$.

- С одной стороны, это целая функция: $\frac{\mathrm{d}}{\mathrm{d}z}f(z)=-\frac{p'(z)}{p(z)^2}.$
- С другой стороны, f ограничена: оценим $|p(z)| \geqslant |z^N| \left(|c_N| \sum_{j=0}^{N-1} \frac{|c_j|}{|z|^{N-j}} \right)$, откуда для достаточно больших $|z|: |p(z)| \geqslant \frac{|c_N|}{2} |z|^N$.

Тем самым, $p(z) \underset{|z| \to \infty}{\longrightarrow} \infty$, то есть $f(z) \underset{|z| \to \infty}{\longrightarrow} 0$. А при малых |z|:f ограничена, как непрерывная функция на компакте.

• Тем самым, по теореме Лиувилля, $f \equiv \mathrm{const}$, то есть $p \equiv \mathrm{const}$. Противоречие, мы предполагали $\deg p > 0$.

Теорема 1.3.8 (Теорема о среднем). Пусть $z_0 \in G, f: G \to \mathbb{C}$ голоморфна в G. Выберем $r < \mathrm{dist}(z_0, \partial G)$. Тогда

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt$$

Доказательство. Посчитаем $f(z_0)$ по интегральной формуле:

$$f(z_0) = \frac{1}{2\pi i} \int_{|\zeta - z_0| = r} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{it})ire^{it}}{re^{it}} dt = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt \qquad \Box$$

Это действительно среднее в обычном смысле: f проинтегрирована по окружности по мере Лебега, и интеграл поделили на меру окружности.

Теорема 1.3.9 (Принцип максимума модуля). Пусть $f:G\to \mathbb{C}$ — непостоянная голоморфная функция. Тогда $|f|:z\mapsto |f(z)|$ не может достигать наибольшего значения при $z\in G$.

Доказательство. Пойдём от противного: пусть $\exists z_0 \in G: \forall z \in G: |f(z)| \leqslant |f(z_0)|$. Выберем $r>0: B(z_0,r) \subset G$, и докажем, что |f| постоянна в $B(z_0,r)$. Пусть $\rho < r$, по теореме о среднем $|f(z_0)| = \frac{1}{2\pi} \left| \int\limits_0^{2\pi} f(z_0 + \rho e^{it}) \, \mathrm{d}t \right| \leqslant \frac{1}{2\pi} \int\limits_0^{2\pi} \underbrace{|f(z_0)|}_{\leqslant |f(z_0)|} \, \mathrm{d}t$, причём равенство достигается только если

 $\forall t \in [0,2\pi]: |f(z_0+\rho e^{it})| = |f(z_0)|$ (если $\exists t_0 \in (0,2\pi): |f(z_0+\rho e^{it_0}| < |f(z_0)|)$, то по непрерывности $\exists \varepsilon > 0: \forall t \in (t_0-\varepsilon,t_0+\varepsilon): |f(z_0+\rho e^{it}| < |f(z_0)|-\varepsilon$, то есть на промежутке $(t_0-\varepsilon,t_0+\varepsilon)$ интеграл строго меньше требуемого значения).

Лемма 1.3.1. Пусть $f: G \to \mathbb{C}$ голоморфна, $u \exists z_0 \in G: f'(z_0) \neq 0$. Тогда $\exists U \ni z_0: f(z_0) \in \operatorname{Int} f(U)$.

Доказательство леммы.

Теорема об обратной функции.

Тем самым, $\forall z \in B(z_0, r) : f'(z) = 0$ (так как |f(z)| — максимум).

Далее применяем теорему единственности, доказанную во II семестре: f и константа, равная $|f(z_0)|$ совпадают на множестве с предельной точкой, значит, они совпадают везде в G.

Следствие 1.3.4. Пусть G — ограниченная область, $f:\overline{G}\to\mathbb{C}$ голоморфна в G. Тогда $\forall z\in G:|f(z)|\leqslant \max_{\zeta\in\partial G}|f(\zeta)|.$

Доказательство. f достигает своё наибольшее значение на компакте \overline{G} , но согласно принципу максимума, это значение достигается не внутри G.

1.4 Гармонические функции

Запишем теорему о среднем для $f:G\to\mathbb{C}$:

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt$$

Пусть f = u + iv, где u, v — вещественные функции в G. Теорема о среднем говорит, что

$$u(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} u(z_0 + re^{it}) dt \qquad v(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} v(z_0 + re^{it}) dt$$

Так как f аналитична, то в вещественном смысле $u, v \in C^{\infty}(G)$.

Запишем уравнения Коши — Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Дифференцируя второй раз, получаем

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 v}{\partial x \partial y} \\ \frac{\partial^2 u}{\partial y^2} = -\frac{\partial^2 v}{\partial x \partial y} \end{cases}$$

Это так называемое ypashehue $\mathcal{J}annaca:$ $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$

Обобщим. Пусть $G \subset \mathbb{R}^n$ — область, пусть $f: G \to \mathbb{R}, f \in C^2(G)$.

Определение 1.4.1 (f — гармоническая функция в G). $\frac{\partial^2 u}{\partial x_1^2} + \cdots + \frac{\partial^2 u}{\partial x_n^2} = 0$.

Оператор $\Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$ называется *оператором Лапласа*, и понятно, что гармонические функции — в точности такие u, что $\Delta u = 0$.

Утверждение 1.4.1. Если гармоническая функция $u: G \to \mathbb{R}, u \in C^2(G)$, где область $G \subset \mathbb{R}^2$, то локально существует голоморфная $f: u = \Re f$. Иными словами, $\forall z_0 \in G: \exists U \ni z_0, \exists$ аналитическая $f: U \to \mathbb{C}: u = \Re f$.

 \mathcal{A} оказательство. Положим $\phi \coloneqq \frac{\partial u}{\partial x}, \psi \coloneqq -\frac{\partial u}{\partial y}$. Тогда $\frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial y} = 0$, то есть $\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$ везде в G.

Раз накрест взятые частные производные совпадают, то дифференциальная форма $\phi \, \mathrm{d}y + \psi \, \mathrm{d}x$ замкнута, значит, локально имеется первообразная.

Зафиксируем точку $z_0 \in G$, имеется некоторый шарик $B \ni z_0$, в котором есть первообразная v:

$$\frac{\partial v}{\partial x} = \psi = -\frac{\partial u}{\partial y}$$
 $\frac{\partial v}{\partial y} = \phi = \frac{\partial u}{\partial x}$

Это уравнения Коши — Римана, значит, $f\coloneqq u+iv$ голоморфна в B.

Теорема 1.4.1 (Морера). Пусть $f:(G\subset \mathbb{C})\to \mathbb{C}$ непрерывна. Следующие условия эквивалентны.

- 1. f голоморфна в G.
- 2. f аналитична в G.
- 3. Дифференциальная форма f(z) dz замкнута.

Доказательство. (1) \iff (2) уже доказано: (теорема 1.0.1) и (следствие 1.3.1).

 $(1) \Rightarrow (3)$ доказано тоже: (теорема 1.3.1).

Докажем (3) \Rightarrow (2). Пусть F — первообразная формы f(z) dz в круге $D := B(z_0, r) \subset G$. F голоморфна в $B(z_0, r)$, и $\forall z \in D : F'(z) = f(z)$.

Значит, F раскладывается в степенной ряд $F(z) = \sum_{j=0}^{\infty} a_j (z-z_0)^j$. Отсюда $f(z) = \sum_{j=1}^{\infty} j a_j (z-z_0)^{j-1}$.

1.5 Первообразная от замкнутой формы вдоль непрерывного пути

1.5.1 Наводящие предположения

Пусть f dx + g dy — непрерывная дифференциальная форма в G, предположим, что она точная: имеется первообразная F.

Пусть $\gamma:[a,b]\to G$ — кусочно-гладкий путь. Ранее было получено, что $\int\limits_{\gamma}f\,\mathrm{d}x+g\,\mathrm{d}y=F(\gamma(b))-F(\gamma(a)).$

Давайте обобщим интеграл вдоль пути: пусть $\gamma:[a,b]\to G$ — произвольный непрерывный путь. Положим по определению $\int\limits_{\gamma} f\,\mathrm{d}x + g\,\mathrm{d}y \stackrel{def}{=} F(\gamma(b)) - F(\gamma(a)).$

Теперь пусть $f\,\mathrm{d} x + g\,\mathrm{d} y$ всего лишь замкнута. Выберем $a=t_0 < t_1 < \dots < t_k = b$ так, что $\forall j: \gamma([t_j,t_{j+1}])$ лежит в области G_j , в которой у формы $f\,\mathrm{d} x + g\,\mathrm{d} y$ есть первообразная F_j . Попробуем определить

$$\int_{\gamma \mid_{[t_j,t_{j+1}]}} f \, \mathrm{d}x + g \, \mathrm{d}y \stackrel{def}{=} F_j(\gamma(t_{j+1})) - F_j(\gamma(t_j))$$

И

$$\int_{\gamma} f \, \mathrm{d}x + g \, \mathrm{d}y \stackrel{def}{=} \sum_{j=0}^{k-1} F_j(\gamma(t_{j+1})) - F_j(\gamma(t_j))$$

Проблема в том, чтобы доказать, что определение корректно — не зависит от выбора разбиения $a=t_0<\dots< t_k=b.$

1.5.2 Требуемые свойства

Пусть $\Phi = f \, \mathrm{d} x + g \, \mathrm{d} y$ — замкнутая форма в области $G \subset \mathbb{C}$, и $\gamma : [a,b] \to G$ — путь.

Определение 1.5.1 (Первообразная формы Φ вдоль пути γ). Такая функция $v:[a,b]\to G$:

ullet $\forall t \in [a,b]: \exists U \ni \gamma(t), arepsilon > 0$ и найдётся первообразная F для Φ на U, такая, что

$$\forall \tau \in (t - \varepsilon, t + \varepsilon) : v(\tau) = F(\gamma(\tau))$$

Факт 1.5.1. Функция v, если существует, непрерывна на [a,b].

Доказательство. Непрерывность в какой-то конкретной точке следует из непрерывности композиции $F\circ\gamma$.

Теорема 1.5.1. Первообразная замкнутой дифференциальной формы вдоль пути γ всегда существует, и любые две отличаются на константу.

Доказательство. Сначала докажем существование. Для всех $t \in [a,b]$ выберем окрестность $U_t \coloneqq B(\gamma(t),r_t)$, где r_t настолько мал, что в U_t есть первообразная.

Семейство $\{U_t\}_{t \in [a,b]}$ образуют открытое покрытие $\gamma([a,b])$. По лемме Лебега $\exists \varepsilon > 0: \forall t \in [a,b]: B(\gamma(t),\varepsilon)$ содержится в каком-то $U_{t'}$. Применяя теорему Кантора о равномерной непрерывности, получаем существование разбиения $a=t_0 < \cdots < t_k = b$, такое, что $\gamma([t_j,t_{j+1}])$ лежит в одном из U_t .

Произвольно выберем v(a). Построим $v\big|_{[t_j,t_{j+1}]}$ индукцией по j.

<u>База:</u> Пусть $\gamma([t_0,t_1])\subset U_0$, и имеется первообразная F_0 на U_0 . Определим $v(\tau)=F_0(\gamma(\tau))$ при $\tau\in[t_0,t_1].$

Переход: Пусть $\gamma([t_j,t_{j+1}])\subset U_j, F_j$ — первообразная Φ на U_j . Найдётся такое $\delta>0:\gamma([t_j-\overline{\delta,t_{j+1}}])\subset U_j$, значит, $U_j\cap U_{j-1}\neq\varnothing$. Это пересечение связно, на нём имеются две первообразные, F_{j-1} и F_j .

Добавим константу к F_j так, чтобы $F_j \equiv F_{j-1}$ при $t \in [t_j - \delta, t_j]$, и определим $v(\tau) = F_j(\gamma(\tau))$ при $\tau \in [t_j, t_{j+1}]$. Окрестность U_j захватывает отрезок $[t_j - \delta, t_{j+1}]$, значит, для точек во внутренности выполнено условие из определения первообразной.

Докажем единственность: рассмотрим точку $t \in [a,b]$. Найдутся два круга $U,V \ni \gamma(t)$, и первообразные F,H формы Φ в этих окрестностях, такие, что $u(\tau) = F(\gamma(\tau))$ и $v(\tau) = H(\gamma(\tau))$ при τ , достаточно близких к t.

Тем самым, u-v локально постоянна, но локально постоянная функция на связном множестве — константа (прообраз любого элемента из образа открыто-замкнут).

${\displaystyle \prod_{15\ { m марта}}V}$

Теперь определим интеграл $\int\limits_{\gamma} \Phi = v(b) - v(a)$, где v — первообразная для Φ вдоль пути γ , получившаяся из (теорема 1.5.1). Теперь интеграл определён для любой замкнутой формы вдоль пути (однако для кусочно-гладкого пути интеграл (определение 1.1.3) был определён для необязательно замкнутой формы).

Свойства (Свойства первообразной вдоль пути).

- Аддитивность по дифференциальной форме: $\int\limits_{\gamma} (\Phi + \Psi) = \int\limits_{\gamma} \Phi + \int\limits_{\gamma} \Psi.$
- Аддитивность вдоль пути: $\int\limits_{\gamma_1\oplus\gamma_2}\Phi=\int\limits_{\gamma_1}\Phi+\int\limits_{\gamma_2}\Phi.$
- ullet Если γ кусочно-гладкий путь, то определение совпадает со старым.

Доказательство. γ' существует везде, кроме, может быть, конечного множества.

При помощи леммы Лебега разобьём отрезок точками $a=t_0<\cdots< t_k=b$ так, что $\forall j< k:\exists U_j\supset \gamma([t_j,t_{j+1}])$ такая, что на U_j найдётся первообразная H_j :

$$\forall \tau \in [t_i, t_{i+1}] : F(\tau) = H_i(\gamma(\tau))$$

И старый, и новый интегралы аддитивны вдоль пути. Несложно видеть, что в обеих определениях $\int \Phi$ совпадают. \Box $\gamma \Big|_{[t_j,t_{j+1}]}$

- Так как путь γ необязательно дифференцируем (а если даже и так, то необязательно спрямляем), то основную оценку интеграла вдоль пути распространить на новое определение проблематично: длины может не существовать.
- ullet Пусть $\phi:[a,b] o [c,d]$ гомеоморфизм, $\gamma:[a,b] o G$ путь, тогда

$$\int\limits_{\gamma}\Phi=\pm\int\limits_{\gamma\circ\phi}\Phi$$

где знак зависит от того, возрастает ϕ , или убывает.

Причина. Если F — первообразная Φ вдоль пути γ , то $F\circ\phi$ — первообразная для Φ вдоль пути $\gamma\circ\phi$.

1.5.3 О гомотопности путей

Пусть $K = [0, 1] \times [a, b]$ — квадрат гомотопии.

Определение 1.5.2 (Гомотопия). Непрерывное отображение $\Gamma: K \to \mathbb{C}$.

Положим $\gamma_s \coloneqq \Gamma(s,_)$. Как водится, γ_0,γ_1 — два пути $[a,b] \to \mathbb{C}$, и существование Γ по определению влечёт гомотопность этих путей.

Пути $\gamma_0, \gamma_1: [a,b] \to G$ гомотопны в G, если найдётся гомотопия $\Gamma: K \to G$.

Будем говорить о гомотопности двух замкнутых путей γ_1 и γ_2 при условии существования гомотопии $\Gamma: K \to G$, соединяющей γ_1 и γ_2 в классе замкнутых путей: $\forall s \in [0,1]: \Gamma(s,a) = \Gamma(s,b)$.

Гомотопность путей — отношение эквивалентности, так же как и гомотопность замкнутых путей.

Определение 1.5.3 (Односвязная область). Область, в которой всякий замкнутый путь гомотопен постоянному. Иными словами, фундаментальная группа тривиальна.

Определение 1.5.4 (Звёздная область $A \subset \mathbb{R}^n$). Такая область, что для некоторого *центра* $z_0 \in A$: $\forall z \in A : \{z_0 + s(z-z_0) | s \in [0,1]\} \subset A$.

Факт 1.5.2. Всякая звёздная область А односвязна.

Доказательство. Прогомотопируем путь $\gamma:[a,b]\to A$ в постоянный при помощи

$$\Gamma: [0,1] \times [a,b] \to K$$

$$\tau, t \mapsto z_0 \tau + (1-\tau)\gamma(t)$$

Пример (Неодносвязная область). Пусть A — звёздная область, выкинем точку $w_0 \in A$.

Интеграл $\frac{\mathrm{d}z}{z-w_0}$ по маленькой окружности ω , обходящей w_0 , равен $2\pi i$, значит, путь не стягиваем (поскольку интеграл не ноль, см. теорема 1.5.3).

Теорема 1.5.2 (Первообразная вдоль гомотопии). Пусть $K = [0,1] \times [a,b]$ — «квадрат», $\Gamma: K \to G$ — гомотопия, и $\Phi = f \, \mathrm{d} x + g \, \mathrm{d} y$ — замкнутая дифференциальная форма в G. Тогда $\exists F: K \to \mathbb{C}$ — первообразная формы Φ вдоль гомотопии Γ , то есть такая функция, что $\forall (s,t) \in K: \exists U \ni \Gamma(s,t): U \subset G, \exists \delta > 0: \exists H: U \to \mathbb{C}$ — первообразная формы Φ , такая, что

$$\begin{cases} |\sigma - s| < \delta \\ |\tau - t| < \delta \end{cases} \Rightarrow F(\sigma, \tau) = H(\Gamma(\sigma, \tau))$$

Доказательство. Покроем множество $\Gamma(K)$ кругами $U\subset G$, такими что в каждом круге U у Φ есть первообразная H_U .

По лемме Лебега и теореме Кантора $\exists \rho>0: \forall e\subset K: \mathrm{diam}(e)<\rho\Rightarrow e$ лежит в одном из кругов данного покрытия.

Разобьём квадрат гомотопии K на прямоугольники диаметра меньше ρ :

Аналогично доказательству (теорема 1.2.2), в каждом горизонтальном прямоугольнике найдётся первообразная F_j , а дальше их надо сшить. Сшить несложно: вдоль горизонтального отрезка — пересечения прямоугольничков — $F_j\big|_{\dots} = F_{j+1}\big|_{\dots}$. Так как это — первообразные вдоль одного и того же пути, то они отличаются на константу. Значит, можно изменить все F_j на константы так, чтобы их склейка была непрерывной функцией.

Дальше надо проверить, что действительно получилась первообразная на квадрате. Выберем точку $(s,t) \in K$. Если точка попала внутрь какого-то прямоугольничка, то можно выбрать окрестность, лежащую внутри прямоугольничка, иначе чуть сложнее, но несильно.

Теорема 1.5.3. Интегралы от замкнутой формы Φ по гомотопным замкнутым путям равны.

Доказательство. Определим $w(t)\coloneqq\int\limits_{\gamma_t}\Phi$ для всех $t\in[0,1].$

Пусть F — первообразная для формы Φ вдоль гомотопии Γ . Понятно, что w(t) = F(t,b) - F(t,a).

Докажем, что w локально постоянна на [0,1], следствием будет, что w постоянна, что и требуется доказать.

 $\forall (\alpha, \beta) \in [0, 1] \times [a, b]$: $\exists \delta > 0$, круг U и первообразная H_U , такие, что

$$\begin{cases} |\alpha - \alpha'| < \delta \\ |\beta - \beta'| < \delta \end{cases} \Rightarrow F(\alpha', \beta') = H_U(\Gamma(\alpha', \beta'))$$

Пусть U_1, U_2 — такие шары для (t,b) и (t,a) соответственно. Тогда для τ , достаточно близких к t, выполнено $w(t) = H_{U_1}(\Gamma(t,b)) - H_{U_2}(\Gamma(t,a))$. H_1, H_2 — две первообразные в одной окрестности, они отличаются на константу, а $\Gamma(t,a) \equiv \Gamma(t,b)$, поэтому w локально постоянна.

Замечание. Если очень хочется, то можно соединить пути $\gamma_0:[a_0,b_0]\to \mathbb{C}$ и $\gamma_1:[a_1,b_1]\to \mathbb{C}$ гомотопией $\Gamma:K\to \mathbb{C}$, где $K:=\{(t,s)|t\in [0,1],s\in [a_t,b_t]\}$ $(a_t,b_t-$ какие-то непрерывные функции от t, такие, что $a_t< b_t$).

1.6 Ряды Лорана

Pяд Лорана f(z) — ряд вида $f(z) = \sum\limits_{n \in \mathbb{Z}} c_n (z-z_0)^n.$

Говорят, что ряд Лорана сходится в точке z, если оба ряда $f_+(z) = \sum\limits_{n\geqslant 0} c_n(z-z_0)^n$ и $f_-(z) = \sum\limits_{n< 0} c_n(z-z_0)^n$ сходятся.

Первый ряд степенной, имеется некий радиус сходимости r_+ , такой, что $|z-z_0| < r_+ \Rightarrow f_+$ сходится. При замене переменной $w \coloneqq \frac{1}{z-z_0}, \ f_-(z_0+1/w)$ становится степенным рядом от w, сходящимся при $w < \frac{1}{r}$.

Таким образом, ряд сходится абсолютно внутри «кольца» $\{z \in \mathbb{C} | r_- < |z-z_0| < r_+ \}$:

Теорема 1.6.1. Пусть $0 \leqslant r_- < r_+ \leqslant \infty$, функция f голоморфна в «кольце» $K := \{z \in \mathbb{C} | r_- < |z| < r_+ \}$. Тогда f представима в K сходящимся рядом Лорана.

Доказательство. Пусть $z \in K$. Определим $\phi_z: K \to \mathbb{C}, \phi_z(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z}, & \zeta \neq z \\ f'(z), & \zeta = z \end{cases}$

Согласно (теорема 1.3.5), форма $\phi_z(\zeta) d\zeta$ замкнута в K.

Выберем $r,R\in\mathbb{R}$ так, что $r_-< r<|z|< R< r_+$. Для $\rho\in\mathbb{R}$ определим $\gamma_\rho:[0,2\pi]\to K, \gamma_\rho(t)\coloneqq \rho e^{it}$. Пути γ_R и γ_r гомотопны, значит, $\int\limits_{\gamma_r}\phi_z(\zeta)\,\mathrm{d}\zeta=\int\limits_{\gamma_R}\phi_z(\zeta)\,\mathrm{d}\zeta$. А именно,

$$\int_{\gamma_R} \frac{f(\zeta) - f(z)}{\zeta - z} \,d\zeta = \int_{\gamma_r} \frac{f(\zeta) - f(z)}{\zeta - z} \,d\zeta$$

Преобразовывая, получаем

$$\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} \, d\zeta = f(z) \int_{\underbrace{\gamma_R}} \frac{1}{\zeta - z} \, d\zeta - f(z) \int_{\underbrace{\gamma_r}} \frac{1}{\zeta - z} \, d\zeta$$

Тем самым, получили малую интегральную форму Коши для кольца:

$$f(z) = \frac{1}{2\pi i} \left(\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} d\zeta - \int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} d\zeta \right)$$

Осталось преобразовать дроби в ряды:

$$\int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta = \int_{\gamma_R} \frac{1}{\zeta - z_0} \frac{f(\zeta)}{1 - \frac{z - z_0}{\zeta - z_0}} d\zeta = \sum_{j=0}^{\infty} \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} d\zeta \cdot (z - z_0)^j$$

$$\int_{\gamma_r} \frac{f(\zeta)}{\zeta - z} d\zeta = \int_{\gamma_r} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta = -\frac{1}{z - z_0} \int_{\gamma_r} \frac{f(\zeta)}{1 - \frac{\zeta - z_0}{z - z_0}} d\zeta = -\frac{1}{z - z_0} \sum_{k=0}^{\infty} \int_{\gamma_r} f(\zeta)(\zeta - z_0)^k d\zeta \cdot \frac{1}{(z - z_0)^k}$$

Сходимость степенная, имеется признак Вейерштрасса, можно поменять местами сумму и интеграл, поэтому все преобразования законны.

При замене j = -k - 1, второе выражение преобразуется в форму

$$-\sum_{j=-1}^{-\infty} \int_{\gamma_r} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} d\zeta \cdot (z - z_0)^j$$

Теперь можно заметить, что интегралы вдоль γ_r и γ_R равны, так как особенностей у интегралов — слагаемых в ряде — в кольце нет. Окончательно получаем

$$f(z) = \sum_{j \in \mathbb{Z}} c_j (z-z_0)^j$$
, где $c_j = \int\limits_{|z-z_0|=
ho} rac{f(\zeta)}{(\zeta-z_0)^{j+1}} \,\mathrm{d}\zeta$ для любого $ho \in (r_-,r_+)$

Лекция VI

22 марта 2024 г.

Ряд Лорана $g(z) = \sum\limits_{j \in \mathbb{Z}} c_j (z-z_0)^j$ принято раскладывать на две части — регулярную $\sum\limits_{j \geqslant 0} c_j (z-z_0)^j$ и главную $\sum\limits_{i < 0} c_j (z-z_0)^j$.

Если ряд Лорана изучать в маленькой окрестности z_0 , то главная часть асимптотически больше.

1.7 Изолированные особенности голоморфных функций

Пусть область $G \subset \mathbb{C}, z_0 \in G$, f задана и аналитична в $G \setminus \{z_0\}$. Тогда говорят, что f имеет изолированную особенность в z_0 .

Возможны случаи:

- 1. f ограничена вблизи z_0 . Точка z_0 называется gстранимой особенностью, так как в силу (теорема 1.7.1) $\exists \lim_{z \to z_0} f(z)$.
- $2. \lim_{z \to z_0} |f(z)| = \infty.$

Точка z_0 называется полюсом.

3. f не имеет предела в z_0 .

Точка z_0 называется существенно особой точкой.

Теорема 1.7.1. В первом случае — f ограничена вблизи $z_0 - f$ единственным образом продолжается до аналитической функции в области G.

Доказательство. Выберем R>0 такой, что $\overline{B(z_0,R)}\subset G.$ f разложится в некоторый ряд Лорана при $0<|z-z_0|< R.$

Запишем $c_j = \frac{1}{2\pi i} \int\limits_0^{2\pi} f(z_0 + \rho e^{it}) (\rho e^{it})^{-j-1} \cdot \rho i e^{it} \, \mathrm{d}t$ и грубо оценим коэффициенты главной части (j < 0). Пусть $|f| \leqslant C$ внутри круга $B(z_0, R)$ для некоторой константы C.

$$|c_j| \leqslant \frac{C}{2\pi} \int_{0}^{2\pi} \rho^{-j} dt = C\rho^{-j}$$

Устремляя ho o 0, получаем $c_j = 0$. Тем самым, f раскладывается в ряд Тейлора в окрестности z_0 .

Запишем несколько другую классификацию особенностей точки, опирающуюся на ряд Лорана $f(z) = \sum\limits_{j \in \mathbb{Z}} c_j (z-z_0)^j.$

I При всяком j < 0: $c_j = 0$.

II Множество $\mathcal{A} \coloneqq \{j < 0 | c_j \neq 0\}$ конечно.

III Множество $\mathcal{A} \coloneqq \{j < 0 | c_j \neq 0\}$ бесконечно.

Понятно, что I эквивалентно 1.

Теорема 1.7.2. На самом деле, II \iff 2, III \iff 3.

Доказательство.

 $II \Rightarrow 2$ Пусть $k = -\min A$.

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k+1}}{(z - z_0)^{k-1}} \dots + c_0 + \sum_{j>0} c_j (z - z_0)^j =$$

$$= \frac{1}{(z - z_0)^k} (c_{-k} + c_{-k+1} (z - z_0) + \dots) = \frac{g(z)}{(z - z_0)^k}$$

При этом $g(z_0) \neq 0$ и g(z) аналитична. Тем самым, $\lim_{z \to z_0} |f(z)| = \infty$.

 $2\Rightarrow$ II Положим $h(z)\coloneqq \frac{1}{f(z)}$ в некоторой окрестности z_0 .

h аналитична при $z \neq z_0$, и $\lim_{z \to z_0} h(z) = 0$, значит, h имеет устранимую особенность в z_0 . Пусть k — наименьший номер, такой, что $b_k \neq 0$, где b_k — коэффициент из разложения h в ряд Тейлора:

$$h(z) = b_k(z - z_0)^k + b_{k+1}(z - z_0)^{k+1} + \dots + \dots = (z - z_0)^k (b_k + b_{k+1}(z - z_0) + \dots) = (z - z_0)^k \cdot u(z)$$

u аналитична вблизи z_0 , и $u(z_0) = b_k \neq 0$.

$$f(z) = \frac{1}{(z - z_0)^k} \frac{1}{u(z)} = \frac{1}{(z - z_0)^k} (c_0 + c_1(z - z_0) + \cdots)$$

Почленно деля, действительно получаем, что f(z) имеет конечное число ненулевых членов в разложении в ряд Лорана. \Box

Пусть z_0 — полюс $f, k := -\min\{j < 0 | c_j \neq 0\}$. Число k называется порядком полюса z_0 .

Если же g аналитична в $z_0, g(z_0)=0, g\not\equiv 0$, то $g(z)=\sum\limits_{j\geqslant 0}a_j(z-z_0)^j$, положим $l\coloneqq\min\{j|a_j\not=0\}.$ Число l-nopядок нуля $z_0.$

Факт 1.7.1. f имеет полюс порядка k в $z_0 \iff \frac{1}{f}$ имеет ноль порядка k в z_0 .

Интересный факт (Теорема Пикара). Пусть z_0 — существенно особая точка аналитической функции f. Тогда $\forall \varepsilon > 0$: $f(\{z | 0 < |z - z_0| < \varepsilon\})$ есть \mathbb{C} , кроме, может быть, двух точек.

Мы докажем более простой вариант теоремы Пикара.

Теорема 1.7.3 (Сохоцкий). Пусть z_0 — существенно особая точка аналитической функции f. Тогда $\forall \varepsilon > 0: \mathcal{B} \coloneqq f(\{z|0 < |z-z_0| < \varepsilon\})$ плотно в \mathbb{C} .

Доказательство. От противного: пусть $\exists w_0 \notin \overline{\mathcal{B}}$, то есть $\exists \delta > 0 : B(w_0, \delta) \cap \mathcal{B} = \emptyset$.

Определим

$$h: B(z_0, \varepsilon) \setminus \{z_0\} \to \mathbb{C}$$

$$z \mapsto \frac{1}{f(z) - w_0}$$

Хотя h и имеет особенность при $z=z_0$, но h ограничена (модуль знаменателя больше δ), то есть особенность устранима. $f(z)=\frac{1}{h(z)}+w_0$, и так как h аналитична в z_0 , то особенность в z_0 — то ли тоже устранимая особенность, то ли полюс, но уж никак z_0 — не существенно особая точка. \square

Пример. Возьмём $\int\limits_0^\infty \frac{\sin x}{x} \, \mathrm{d}x$. У подынтегральной функции в нуле особенность устранимая, а с бесконечностью есть некоторые проблемы. Впрочем, избавимся и от нуля в области интегрирования:

$$\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x = \lim_{\varepsilon \to 0, R \to \infty} \int_{\varepsilon}^{R} \frac{\sin x}{x} \, \mathrm{d}x =$$

Запишем формулу Эйлера $e^{ix}=\cos x+i\sin x$. Интегрируя по всей оси $\frac{\cos x}{x}$, мы получим нуль из-за нечётности, поэтому можно продолжить равенство так:

Теперь перейдём к функции, аналитической в комплексной плоскости без нуля: $\phi(z) \coloneqq \frac{e^{iz}}{z}$. Введём замкнутый путь Γ , полученный склейкой двух отрезков и двух полуокружностей:

$$\int\limits_{\gamma_{\varepsilon}} \phi(z) \,\mathrm{d}z = -\int\limits_{0}^{\pi} \underbrace{\frac{e^{i\varepsilon e^{i(\pi-t)}}}{\varepsilon e^{i(\pi-t)}} \varepsilon i e^{i(\pi-t)}}_{\varepsilon e^{i(\pi-t)}} \,\mathrm{d}t = -\int\limits_{0}^{\pi} i e^{i\varepsilon e^{i(\pi-t)}} \,\mathrm{d}t \xrightarrow{\text{подынтегральное выражение равномерно сходится к } i. -i\pi$$

$$\int\limits_{\gamma_{R}} \phi(z) \,\mathrm{d}z = \int\limits_{0}^{\pi} \frac{e^{iRe^{it}}}{Re^{it}} Rie^{it} \,\mathrm{d}t = i\int\limits_{0}^{\pi} e^{iRe^{it}} \,\mathrm{d}t$$

Оценим $e^{iRe^{it}}=e^{iR\cos t-R\sin t}=e^{iR\cos t}\cdot e^{-R\sin t}$. По теореме Лебега о мажорируемой сходимости интеграл по γ_R будет стремиться к нулю при больших R.

Так как путь Γ стягиваем, то из равенства $\int\limits_{\Gamma}\phi(z)\,\mathrm{d}z=0$ сразу следует

$$\int_{-R}^{-\varepsilon} \phi(x) \, \mathrm{d}x + \int_{\varepsilon}^{R} \phi(x) \, \mathrm{d}x \xrightarrow[R \to \infty]{\varepsilon \to 0} i\pi$$

Искомый интеграл в 2i раз меньше:

$$\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$$

Этот интеграл получилось так взять, так как у ϕ была особенность в нуле, и мы её обошли. А иногда особенности находятся внутри пути интегрирования, в таком случае пригождается формула в вычетах.

1.8 Вычеты

Пусть f задана и голоморфна в $G\setminus\{z_0\}$, где G — область, $z_0\in G$ — изолированная особенность.

Вблизи z_0 функция f раскладывается в ряд Лорана $f(z) = \sum\limits_{i \in \mathbb{Z}} c_j (z-z_0)^j.$

Определение 1.8.1 (Вычет функции f в точке z_0). Коэффициент c_{-1} , обозначается $\mathrm{Res}_{z_0} f$.

Этот коэффициент так важен, так как у $c_j(z-z_0)^j$ при $j\neq -1$ имеется первообразная в G, и при интегрировании по окружности, обходящей z_0 , пропадут все коэффициенты ряда Лорана, кроме вычета.

1.8.1 Как вычислять вычеты

У нас есть формула для вычисления коэффициентов ряда Лорана, но она получается интегрированием, а мы как раз и хотим использовать вычеты, чтобы уметь удобно интегрировать. Поэтому иногда пригождаются следующие частные случаи:

• Пусть z_0 — полюс функции f степени k:

$$f(z) = \frac{c_{-k}}{(z - z_0)^k} + \frac{c_{-k+1}}{(z - z_0)^{k-1}} + \dots + \frac{c_{-1}}{(z - z_0)} + f_+(z)$$

где f_+ — аналитическая вблизи z_0 .

Домножая f на $(z-z_0)^k$, получаем аналитическую

$$(z-z_0)^k f = c_{-k} + c_{-k+1}(z-z_0) + \dots + c_{-1}(z-z_0)^{k-1} + (z-z_0)^k \cdot f_+(z)$$

Теперь можно найти $\operatorname{Res}_{z_0} f$ по формуле: $\operatorname{Res}_{z_0} f = \frac{1}{(k-1)!} \cdot \left(\frac{\mathrm{d}}{\mathrm{d}z}\right)^{k-1} \left[(z-z_0)^k f(z) \right] \Big|_{z=z_0}$.

ullet Пусть k=1 — у f имеется полюс первого порядка. Тогда дифференцировать не надо, и формула вырождается в

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z)$$

• Возьмём ещё более частный случай: $f(z) = \frac{g(z)}{h(z)}$, где g,h аналитичны в окрестности z_0 , $g(z_0) \neq 0$, а h имеет простой нуль в z_0 (нуль кратности 1).

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} \frac{g(z)(z - z_0)}{h(z)} = \lim_{z \to z_0} g(z) \frac{z - z_0}{h(z) - h(z_0)} = \frac{g(z_0)}{h'(z_0)}$$

1.8.2 Индекс замкнутого пути относительно точки

Пусть $G \subset \mathbb{C}$ — область, Φ — замкнутая дифференциальная форма в G. Пусть $\gamma_1, \ldots, \gamma_n$ — какието замкнутые пути с носителем в G. Обозначим $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$.

Определим интеграл от формы Φ по данной совокупности путей $\int\limits_{\Gamma}\Phi\stackrel{def}{=}\sum\limits_{j=1}^{n}\int\limits_{\gamma_{j}}\Phi.$

Назовём систему путей Γ *правильной*, если для всякой аналитической функции f в G: $\int\limits_{\Gamma} f(z) \,\mathrm{d}z = 0$.

Примеры (Правильные системы путей).

- $|\Gamma| = 1$. Если γ_1 гомотопен тождественному, то Γ , конечно, правильная.
- В частности, любой замкнутый путь в односвязной области формирует правильную систему из одного пути.
- Пусть в кольце имеются два пути γ_1, γ_2 , обходящие концентрические окружности в противоположных направлениях. Тогда $\{\gamma_1, \gamma_2\}$ — правильная система, так как $\gamma_1 \sim \gamma_2^-$.

• Рассмотрим область с двумя дырками, ограниченную синими линиями. В ней система из красных путей правильная, так как можно разложить их в сумму двух зелёных стягиваемых путей:

Пусть γ — петля в \mathbb{C} , $z_0 \notin \operatorname{Im}(\gamma)$.

Определение 1.8.2 (Индекс пути γ относительно z_0). Значение интеграла $\frac{1}{2\pi i} \int\limits_{\gamma} \frac{\mathrm{d}z}{z-z_0}$. Обозначается $\mathrm{Ind}_{z_0} \gamma$.

Индекс означает число раз, которые мы обошли вокруг данной точки с учётом ориентации, но пока непонятно даже, почему индекс — целое число.

Это определение очевидным образом распространяется на систему путей: $\forall \gamma_j \in \Gamma: z_0 \notin \operatorname{Im}(\gamma_j) \Rightarrow$ определён $\operatorname{Ind}_{z_0} \Gamma \stackrel{def}{=} \sum_{j=1}^n \frac{1}{2\pi i} \int\limits_{\gamma_j} \frac{\mathrm{d}z}{z-z_0}$

Свойства (Свойства индекса, докажем потом (подраздел 1.8.6)).

- $\operatorname{Ind}_{z_0} \gamma \in \mathbb{Z}$.
- ullet Функция $[z_0\mapsto\operatorname{Ind}_{z_0}\gamma]$ постоянна на каждой компоненте связности $\mathbb{C}\setminus\operatorname{Im}(\gamma).$
- На неограниченной компоненте связности $\mathbb{C} \setminus \operatorname{Im}(\gamma)$ индекс равен нулю.

Теорема 1.8.1 (Формула вычетов). Пусть $G\subset \mathbb{C}$ — область, Γ — правильная система путей в G, $f:G\setminus \{z_1,\ldots,z_k\}\to \mathbb{C}$ — аналитическая функция, и z_1,\ldots,z_k — особенности. Если все точки z_j не лежат на носителе системы путей Γ , то

$$\int_{\Gamma} f(z) dz = 2\pi i \left(\sum_{j=1}^{k} \operatorname{Res}_{z_{j}} f \cdot \operatorname{Ind}_{z_{j}} \Gamma \right)$$

Доказательство. Положим $H \coloneqq G \setminus \{z_1, \dots, z_k\}$. Для каждой точки z_j имеется r_+ , такой, что $B(z_j, r_+) \setminus \{z_j\} \subset H$. Тем самым, в окрестности точки z_j функция f разложима в ряд Лорана, и его главная часть сходится везде кроме z_j .

Пусть g_1, \ldots, g_k — главные части рядов Лорана для f в точках z_1, \ldots, z_k соответственно. Функция $h(z) \coloneqq f(z) - g_1(z) - \cdots - g_k(z)$ — аналитическая функция в области G, так как она имеет конечное число особых точек, в которых ограничена.

Так как Γ — правильная, то $\int\limits_{\Gamma}h(z)\,\mathrm{d}z=0.$ Тем самым, мы получили

$$\int_{\Gamma} f(z) dz = \sum_{j=1}^{k} \int_{\Gamma} g_j(z) dz$$

Посчитаем $\int\limits_{\Gamma}g_{j}(z)\,\mathrm{d}z$. Распишем

$$g_j(z) = \frac{\text{Res}_{z_j} g}{z - z_j} + \underbrace{\frac{a_1}{(z - z_j)^2} + \dots + \frac{a_{s-1}}{(z - z_j)^s} + \dots}_{h_j(z)}$$

У h_j имеется первообразная, так как ряд Лорана можно интегрировать и дифференцировать почленно — доказательство аналогично оному для степенных рядов.

Значит,
$$\int\limits_{\Gamma}g(z)\,\mathrm{d}z=(\mathrm{Res}_{z_j}\,f)2\pi i\cdot\mathrm{Ind}_{z_0}\,\Gamma$$
 (очевидно, $\mathrm{Res}_{z_j}\,g_j=\mathrm{Res}_{z_j}\,f).$

Лекция VII

29 марта 2024 г.

1.8.3 Обобщение интеграла $\frac{\sin x}{x}$

Обозначим $\mathbb{C}_+ \stackrel{def}{=} \{x + iy | x \in \mathbb{R}, y \in \mathbb{R}_{>0} \}.$

Пусть f аналитична в $\{x+iy|y>-\varepsilon\}$, кроме конечного числа особых точек в \mathbb{C}_+ , назовём их z_1,\ldots,z_n . В $\{x+iy|-\varepsilon< y\leqslant 0\}$, получается, у f особенностей нет.

Предложение 1.8.1. Пусть при $\theta \in [0,\pi], R>0$: $|f(Re^{i\theta})R|$ ограничена в \mathbb{C}_+ , причём $\forall \theta \in [0,\pi]: \lim_{R \to \infty} f(Re^{i\theta})R = 0.$

Например, $f(z) = \frac{g(z)}{h(z)}$, где g, h — многочлены, $\deg g < \deg h$.

Тогда $\int\limits_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 2\pi i \sum_{j=1}^{n} \mathrm{Res}_{z_{j}} f$. Здесь $\int\limits_{-\infty}^{\infty} = \lim_{R \to \infty} \int\limits_{-R}^{R}$, то есть особенности несобственного интеграла на плюс-минус бесконечностях могут сокращать друг друга.

Доказательство. Проинтегрируем f по синему пути, где полуокружность — радиуса R:

Пусть R — настолько большое, что все особые точки в \mathbb{C}_+ содержатся во внутренней области, отсекаемой данным путём. Оценим интеграл по верхней полуокружности:

$$\int\limits_{0}^{\pi}f(Re^{it})iRe^{it}\,\mathrm{d}t\stackrel{\text{теорема Лебега о мажорируемой сходимости }}{\underset{R\to\infty}{\longrightarrow}}0$$

Далее применяем формулу в вычетах.

Из гомотопности зелёной окружности и синего пути в $\mathbb{C}_+\setminus\{z_j\}$ получаем, что их индексы равны 1 — ведь интеграл $\frac{\mathrm{d}z}{z-z_0}$ по окружности мы знаем.

1.8.4 2-я формула замены переменной

Пусть $\Phi = f\,\mathrm{d} x + g\,\mathrm{d} y$ — замкнутая дифференциальная форма в $G,\,\gamma:[a,b]\to G$ — путь, рассмотрим интеграл $\int\limits_{\gamma}\Phi$. Изменение параметризации для $\gamma=1$ -я формула замены переменной.

Теперь пусть $g:G_1\to G_2$ — голоморфная функция, f — голоморфная функция в $G_2,\,\gamma:[a,b]\to G_1$ — непрерывный путь. Тогда

$$\int_{g \circ \gamma} f(z) dz = \int_{\gamma} (f \circ g)(z)g'(z) dz$$

Наводящее соображение: пусть путь γ — кусочно-гладкий, $\rho(t)\coloneqq g(\gamma(t))$. Тогда

$$\int_{\rho} f(z) dz = \int_{a}^{b} f(\rho(t))\rho'(t) dt = \int_{a}^{b} f(g(\gamma(t)))g'(\gamma(t))\gamma'(t) dt = \int_{\gamma} (f \circ g)(z) \cdot g'(z) dz$$

Но нам эта формула пригодится в случае негладкого пути.

Пусть $\rho = g \circ \gamma$ – путь в области G_2 , ϕ — первообразная для формы f(z) dz вдоль ρ .

Рассмотрим $t_0 \in [a,b]$. $\exists U \ni \rho(t_0)$ — окрестность, такая, что на ней есть первообразная Φ для $f(z) \, \mathrm{d} z$. Значит, $\exists \delta > 0 : \forall t \in (t_0 - \delta, t_0 + \delta) : \phi(t) = \Phi(\rho(t))$.

Положим $z_0 \coloneqq \gamma(t_0)$. $\exists V \ni z_0 : g(V) \subset U$ из непрерывности $g. \ \forall w \in U : \Phi'(w) = f(w)$. Запишем

$$\forall z \in V : (\Phi \circ g)'(z) = \Phi'(g(z)) \cdot g'(z)$$

Тем самым, $\Phi \circ g$ есть первообразная для $(\Phi' \circ g) \cdot g'$ в V. Значит, $\phi \circ g$ — первообразная для формы $f(g(z)) \cdot g'(z) \, \mathrm{d} z$ вдоль пути γ .

Пусть γ — замкнутый путь, не проходящий через z_0 . По определению

$$\operatorname{Ind}_{z_0} \gamma = \frac{1}{2\pi i} \int\limits_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

Применим функцию $[z \mapsto z - z_0]$. Согласно 2-й формуле замены переменной,

$$\operatorname{Ind}_{z_0} \gamma = \frac{1}{2\pi i} \int_{\gamma - z_0} \frac{\mathrm{d}z}{z} = \operatorname{Ind}_0(\gamma - z_0)$$

Следствие 1.8.1. Индекс пути γ относительно z_0 — локально постоянная функция от z_0 .

Доказательство. Пусть z_0 — точка вне носителя γ . Выберем настолько маленькое $\delta > 0$, что $B(z_0, \delta) \cap \gamma([a, b]) = \varnothing$.

Рассмотрим $z_1 \in B(z_0, \delta)$, и докажем, что $\operatorname{Ind}_{z_0} \gamma = \operatorname{Ind}_{z_1} \gamma$. Определим гомотопию путей $\gamma - z_0$ и $\gamma - z_1$:

$$\Gamma(t,\tau) := (1-\tau)(\gamma(t) - z_0) + \tau(\gamma(t) - z_1) = \gamma(t) - ((1-\tau)z_0 + \tau z_1)$$

Эта гомотопия не проходит через 0, значит, интегралы по $\gamma-z_0$ и $\gamma-z_1$ равны. \square

Следствие 1.8.2. Индекс постоянен на каждой компоненте связности $\mathbb{C} \setminus \gamma([a,b])$.

Следствие 1.8.3. $\operatorname{Ind}_{z_0} \gamma = 0$ на неограниченной компоненте связности $\mathbb{C} \setminus \gamma([a,b])$.

Доказательство. Оценим $\int\limits_{\gamma-z_0} \frac{\mathrm{d}w}{w}$ при достаточно большом $|z_0|$. Для такого z_0 носитель пути $\gamma-z_0$ лежит в некоторой полуплоскости, не содержащей нуля. Полуплоскость односвязна, это даже звёздная область, в ней путь стягиваем, значит, интеграл равен нулю.

1.8.5 О логарифме

Логарифм — это функция, обратная к экспоненте, а экспонента имеет период $2\pi i$.

Пусть $w \in \mathbb{C}$.

- 1. Логарифм w любое $z \in \mathbb{C}$: $e^z = w$.
- 2. У w=0 логарифма нет; если z одно из значений логарифма w, то все остальные значения имеют вид $\{z+2\pi ik|k\in\mathbb{Z}\}.$
- 3. Для $w \neq 0$: $w = |w|e^{i\theta}$, где $\theta \in \mathbb{R}$. Комплексное число $\log |w| + i\theta$ одно из значений логарифма, и все значения получаются при различных θ , подходящих по условию выше.

Пусть G — область.

Определение 1.8.3 (Функция ϕ в G — ветвь логарифма в G). ϕ непрерывна в G, и $e^{\phi(z)}=z$ для $z\in G$.

Факт 1.8.1. Всякая ветвь логарифма обязательно голоморфна в G, и $\phi'(z) = \frac{1}{z}$.

Доказательство. Рассмотрим $z_0 \in G, U \coloneqq \{z \in \mathbb{C} | |z-z_0| < \delta\} \subset G$. Так как производная экспоненты (как вещественной функции $\mathbb{R}^2 \to \mathbb{R}^2$) невырождена, то при достаточно малом δ у экспоненты имеется обратная $\psi : e^{\psi(z)} = z$ при $z \in U$.

С другой стороны, $e^{\phi(z)}=z$ при $z\in U$. Значит, $\phi-\psi$ — непрерывная функция, принимающая значения в дискретном множестве $\{2\pi ik|k\in\mathbb{Z}\}$. Значит, это константа.

Тем самым, ϕ дифференцируема, и $\phi'(z) = \frac{1}{z}$.

Теорема 1.8.2. Во всякой односвязной области $G: 0 \notin G \Rightarrow \exists$ непрерывная ветвь логарифма.

Доказательство. Напрямую следует из (теорема 1.8.3) для тождественного отображения.

Пусть $F: G \to \mathbb{C}$ — аналитическая.

Определение 1.8.4 (Аналитическая $\Phi: G \to \mathbb{C}$ — ветвь логарифма функции F). $\forall z \in G: e^{\Phi(z)} = F(z)$.

Замечание. В определении можно требовать лишь непрерывности Φ , аналитичность получится автоматически.

Теорема 1.8.3. Если G — односвязная область, $\forall z \in G : F(z) \neq 0$ и F аналитична в G, то в G существует ветвь логарифма для F.

Доказательство. Функция $\frac{F'(z)}{F(z)}$ — голоморфна в G. Форма $\frac{F'(z)}{F(z)}\,\mathrm{d}z$ замкнута в G, значит, имеется первообразная ψ — голоморфная в G функция, такая, что $\psi'(z)=\frac{F'(z)}{F(z)}$.

$$\left(\frac{e^{\psi(z)}}{F(z)}\right)' = \frac{e^{\psi(z)} \cdot \psi'(z)F(z) - F'(z)e^{\psi(z)}}{F(z)^2}$$

По построению ψ числитель равен нулю. Тем самым, $e^{\psi(z)} = c \cdot F(z)$ ($c \neq 0$). $\exists a \in \mathbb{C} : c = e^a$. Положим $\phi \coloneqq \psi - a$, это искомая ветвь логарифма.

Замечание. Не всякая первообразная для $\frac{F'}{F}$ есть ветвь логарифма — логарифмы отличаются на целые кратные $2\pi i$, а первообразные — на произвольную константу. Однако если ψ — первообразная $\frac{F'}{F}$, и $\exists z_0 \in \mathbb{C} : e^{\psi(z_0)} = F(z_0)$, то ψ — ветвь логарифма для F.

Замечание. Если ψ — ветвь логарифма, то все ветви логарифма имеют вид $\{\psi + 2\pi i k | k \in \mathbb{Z}\}$.

Данная функция $\frac{F'}{F}$ называется логарифмической производной функции F.

Пусть G — область, $f:G\to\mathbb{C}$ — голоморфна, $\gamma:[a,b]\to G$ — путь, $\forall z\in\gamma([a,b]):f(z)\neq0.$

Определение 1.8.5 (Ветвь логарифма вдоль пути γ). Функция $\phi:[a,b]\to\mathbb{C}$, такая что $\forall t_0\in[a,b]:$ $\exists \delta>0, \exists U\ni\gamma(t_0),$ и существует ветвь логарифма ψ функции f в U, такая, что

$$\forall t \in (t_0 - \delta, t_0 + \delta) : \phi(t) = \psi(\gamma(t))$$

Теорема 1.8.4. При сделанных предположениях существует ветвь логарифма f вдоль пути γ . При этом любые две ветви отличаются на $2\pi i k, k \in \mathbb{Z}$.

Доказательство. Рассмотрим функцию $\frac{f'}{f}$, аналитическую в некоторой окрестности $\gamma([a,b])$. Пусть ϕ — первообразная для $\frac{f'}{f}$ вдоль γ .

 $orall t_0 \in [a,b]: \exists \delta > 0, \exists U
i \gamma(t_0)$ вместе с первообразной ψ функции $rac{f'}{f}$:

$$\forall t \in (t_0 - \delta, t_0 + \delta) : \phi(t) = \psi(\gamma(t))$$

Существует c, вообще говоря, зависящая от t, такая, что $e^{\psi(z)}=cf(z)$. При $|t-t_0|<\delta:e^{\phi(t)}=e^{\psi(\gamma(t))}=cf(\gamma(t))$. Значит, $\frac{e^{\phi(s)}}{f(\gamma(s))}$ локально постоянна на [a,b], то есть оказалось, что c всё-таки не зависит от t.

Найдётся $a\in\mathbb{C}$: $c=e^a$. Теперь $\widetilde{\phi}\coloneqq\phi-a$ — тоже первообразная для $\frac{f'}{f}$ вдоль γ , причём $e^{\psi(\gamma(t))-a}=f(\gamma(t))$. Так как $\psi-a$ — тоже первообразная в U для $\frac{f'}{f}$, то $\widetilde{\psi}$ — ветвь логарифма. \square

В частности, для $f(z)=z-z_0$, и пути γ , не проходящего через z_0 , получается ветвь логарифма $z-z_0$ вдоль γ .

1.8.6 Ветвь аргумента и целочисленность индекса

Пусть $w \in \mathbb{C}$. Все значения логарифма спрятаны в формуле $\log w = \log |w| + i \operatorname{Arg} w$, где $\operatorname{Arg} w \stackrel{def}{=} \left\{\theta \left| e^{i\theta} = \frac{w}{|w|} \right.\right\}$.

Пусть $0 \notin G$.

Определение 1.8.6 (Непрерывная ветвь аргумента в области G). Непрерывная функция $v:G \to \mathbb{R}: \forall z \in G: v(z) \in \operatorname{Arg}(z)$

Факт 1.8.2. В области G существует непрерывная ветвь логарифма \iff в G существует непрерывная ветвь аргумента.

Определение 1.8.7 (Ветвь аргумента вдоль пути γ). Функция $\phi:[a,b]\to G$, такая что $\forall t_0\in[a,b]:$ $\exists \delta>0, \exists U\ni \gamma(t_0),$ и существует ветвь аргумента ψ функции f в U, такая, что

$$\forall t \in (t_0 - \delta, t_0 + \delta) : \phi(t) = \psi(\gamma(t))$$

В качестве ветви аргумента всегда можно выбрать мнимую часть ветви логарифма.

Пусть $\gamma:[a,b]\to G$ — путь, $f:G\to\mathbb{C}$ — аналитическая, предположим, что $f(z)\neq 0$ на $\gamma([a,b])$.

Пусть u — ветвь логарифма для f вдоль γ .

Определение 1.8.8 (Приращение логарифма вдоль γ). u(b) - u(a).

Определение 1.8.9 (Приращение аргумента вдоль γ). $\Im(u(b) - u(a))$.

Пусть теперь γ — петля. Тогда $\Re(u(b)-u(a))=0$, и вообще, $u(b)-u(a)=2\pi i k$ для некоторого $k\in\mathbb{Z}$

Тем самым, $\frac{1}{2\pi i} \int\limits_{\gamma} \frac{f'(z)}{f(z)} \,\mathrm{d}z$ есть целое число. В частности, для $f(z) = z - z_0$, $\mathrm{Ind}_{z_0} \, \gamma \in \mathbb{Z}$. Это показывает, что индекс петли есть целое число.

Лекция VIII 5 апреля 2024 г.

32

1.9 Принцип аргумента и теорема Руше

Пусть $\gamma:[a,b]\to\mathbb{C}$ — простой (без самопересечений) замкнутый путь, $\gamma(a)=\gamma(b)$. Положим $D:=\gamma([a,b]).$

Интересный факт (Теорема Жордана). $\mathbb{C} \setminus D$ состоит из двух компонент связности. Одна из них -G — ограничена, и $\forall z \in G : \operatorname{Ind}_z \gamma = \pm 1$.

Если $\operatorname{Ind}_z \gamma = 1$, то γ называют положительно ориентированным, иначе — отрицательно ориентированной.

Определение 1.9.1 (Жорданова область). Ограниченная область, граница которой — простой замкнутый путь.

Чтобы избежать трудностей, связанных с доказательством теоремы Жордана, подменим посылку и следствие: будем доказывать теоремы для жордановых областей.

Теорема 1.9.1 (Принцип аргумента). Пусть G — жорданова область, ∂G — носитель простого замкнутого пути γ , ориентированного положительно.

f — аналитическая в окрестности \overline{G} , кроме, может быть, конечного числа полюсов внутри G. Более того, $\forall w \in \partial G: f(w) \neq 0$.

Тогда

$$\frac{1}{2\pi}\cdot ($$
приращение аргумента f вдоль $\gamma)=($ число нулей f в $G)-($ число полюсов f в $G)$

Нули и полюса надо учитывать с кратностью.

Доказательство. Левая часть есть $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz$. Это интеграл по простому замкнутому пути; посчитаем его с помощью вычетов f внутри G.

Рассмотрим $z_0 \in G$. Пусть вблизи $z_0 : f(z) = (z-z_0)^k \cdot g(z)$, где $k \in \mathbb{Z}$ (отвечает нулю или полюсу), а g аналитична вблизи z_0 , причём $g(z_0) \neq 0$.

$$f'(z) = k \cdot (z - z_0)^{k-1} g(z) + (z - z_0)^k g'(z) \quad \Rightarrow \quad \frac{f'(z)}{f(z)} = \frac{k}{z - z_0} + \frac{g'(z)}{g(z)}$$

 $\frac{g'(z)}{g(z)}$ аналитична в окрестности z_0 , тем самым, вычет логарифмической производной $\frac{f'(z)}{f(z)}$ в z_0 равен k.

Пусть u_1,\ldots,u_s — нули f внутри G кратностей b_1,\ldots,b_s соответственно; пусть v_1,\ldots,v_t — полюса f кратностей l_1,\ldots,l_t соответственно. Суммируя вычеты, получаем $\frac{1}{2\pi i}\int\limits_{\gamma}\frac{f'(z)}{f(z)}\,\mathrm{d}z=\sum\limits_{j=1}^sk_j-\sum\limits_{j=1}^tl_j.$

Теорема 1.9.2 (Теорема Руше). Пусть G — жорданова область с положительно ориентированной границей — носителем замкнутого пути γ .

Функции f,g аналитичны в окрестности \overline{G} . Пусть $\forall z \in \partial G: |f(z)| > |g(z)|$. В частности, $\forall z \in \partial G: |f(z)| \neq 0, |(f+g)(z)| \neq 0$.

Тогда f и f+g имеют одинаковое число нулей в G.

Доказательство. Согласно принципу аргумента, число нулей (f+g) в G равно $\frac{1}{2\pi}\int\limits_{\gamma} \frac{f'(z)+g'(z)}{f(z)+g(z)}\,\mathrm{d}z$.

В то же время, f имеет внутри G ровно $\frac{1}{2\pi}\int\limits_{\gamma}\frac{f'(z)}{f(z)}\,\mathrm{d}z$ нулей.

Надо доказать, что интегралы равны, вычтем их:

$$\frac{1}{2\pi i} \int_{\gamma} \left(\frac{f'(z) + g'(z)}{f(z) + g(z)} - \frac{f'(z)}{f(z)} \right) dz$$

Теперь преобразуем выражение в скобках:

Обозначим $\Phi(z)\coloneqq 1+\frac{g(z)}{f(z)}$. Тем самым, надо доказать, что $\frac{1}{2\pi i}\int\limits_{\gamma}\frac{\Phi'(z)}{\Phi(z)}\,\mathrm{d}z=0$. При этом, $\forall z\in\partial G:\frac{|g(z)|}{|f(z)|}<1$. Из непрерывности $\exists \delta>0:\frac{|g(z)|}{|f(z)|}<1-\delta$.

Применим к интегралу формулу замены переменной: $\frac{1}{2\pi i}\int\limits_{\gamma}\frac{\Phi'(z)}{\Phi(z)}\,\mathrm{d}z=\frac{1}{2\pi i}\int\limits_{\Phi\circ\gamma}\frac{\mathrm{d}w}{w}$. При этом носитель пути $\Phi\circ\gamma$ лежит внутри $B(1,1-\delta)$, значит, путь гомотопен тождественному, и гомотопия не задевает нуля. В результате $\frac{1}{2\pi i}\int\limits_{\Phi\circ\gamma}\frac{\mathrm{d}w}{w}=0$.

1.10 Сходимость аналитических функций

Пусть $G\subset\mathbb{C}$ — открытое множество. Пускай $\{h_n\}_{n\in\mathbb{N}}$ — последовательность функций $h_n:G\to\mathbb{C}$.

Равномерная сходимость на компактах

Пусть $h:G\to\mathbb{C}$ — ещё функция. Говорят, что h_n сходятся κ h равномерно на компактах $(h_n \xrightarrow[n\to\infty]{} h)$, если \forall компакта $K\subset G$: $h_n\big|_K \rightrightarrows h\big|_K$.

В дальнейшем, говоря о сходимости аналитических функций, будем подразумевать именно равномерную сходимость на компактах.

Теорема 1.10.1 (Вейерштрасс, 1-я). Пусть все $h_n:G\to\mathbb{C}$ — аналитичны, и $h_n\underset{n\to\infty}{\longrightarrow} h$. Тогда h аналитична в G.

Доказательство. Достаточно доказать, что \forall прямоугольника $\overline{P} \subset G: \int\limits_{\partial P} h(z) \, \mathrm{d}z = 0$. Это ясно из равномерной сходимости на компактах:

$$\left| \int_{\partial P} (h(z) - h_n(z)) \, dz \right| \leq \sup_{z \in \partial P} |h_n(z) - h(z)| \cdot l(\partial P)$$

Далее достаточно применить теорему Мореры (теорема 1.4.1).

Теорема 1.10.2 (Вейерштрасс, 2-я). Пусть все $f_n:G\to\mathbb{C}$ — аналитичны, и $f_n\underset{n\to\infty}{\longrightarrow} f$, где аналитичная $f:G\to\mathbb{C}$. Тогда $f'_n\underset{n\to\infty}{\longrightarrow} f'$.

Доказательство. Пусть $K=B(w_0,r)$ — круг, $\overline{K}\subset G$. Понятно, $\exists R>r:\overline{B(w_0,R)}\subset G$. Рассмотрим $z\in K$.

$$f'_n(z) = \frac{1}{2\pi i} \int_{|\zeta - w_0| = R} \frac{f_n(\zeta)}{(\zeta - z)^2} d\zeta \xrightarrow[n \to \infty]{} \frac{1}{2\pi i} \int_{|\zeta - w_0| = R} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta = f'(z)$$

К пределу под интегралом можно перейти, так как сходимость равномерна в \overline{K} , знаменатель отделён от нуля числом R-r. Более того, видно, что сходимость равномерна в \overline{K} .

Пусть $S \subset G$ — компакт. $\forall s \in S : \exists K_s$ — круг с центром в s, такой, что $\overline{K}_s \subset G$. Внутренности этих кругов покрывают S, выберем конечное подпокрытие.

На каждом из кругов конечного подпокрытия имеется равномерная сходимость. Стало быть, имеется равномерная сходимость на S.

Лемма 1.10.1. Пусть f_n , f — аналитические функции в области G, $f_n \underset{n\to\infty}{\longrightarrow} f$, f не равна тождественному нулю.

Пусть D- круг, $D\subset G$, предположим, что f имеет нуль B D. Тогда для всех достаточно больших n: f_n имеет нуль B круге D.

Доказательство. Пусть $f(z_0)=0$. Уменьшая D, можем считать, что $D=B(z_0,r)$ — круг, такой, что $\overline{D}\subset G$.

По теореме единственности f не постоянна в D.

Разложим f в ряд Тейлора в D:

$$f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$

Ряд сходится в некоторой окрестности \overline{D} . $a_0 = 0$, но не все коэффициенты равны нулю. Распишем

$$f(z)=(z-z_0)^k\cdot g(z),\quad g(z_0)
eq 0$$
, где g аналитична в окрестности \overline{D}

Пусть $\rho\leqslant r$ выбрано так, что $\forall z:|z-z_0|\leqslant \rho\Rightarrow |g(z)|>\delta>0.$ Оценим f при $|z-z_0|=\rho:|f(z)|=|z-z_0|^k\cdot |g(z)|\geqslant \rho^k\delta.$

Разложим $f_n(z)=f(z)+(f_n(z)-f(z)).$ При достаточно больших $n:|f_n(z)-f(z)|<\rho^k\delta,$ по теореме Руше f_n имеет нуль внутри D.

Определение 1.10.1 (Однолистная функция $f:G\to\mathbb{C}$). Инъективная аналитическая функция f.

Теорема 1.10.3. Пусть f_n — последовательность однолистных функций в области G, $f_n \underset{n \to \infty}{\longrightarrow} f$. Тогда либо $f \equiv \text{const}$, либо f — тоже однолистна.

Доказательство. Предположим, что $\exists z_0, z_1 \in G: z_0 \neq z_1$ и $w := f(z_0) = f(z_1)$. Построим $g(z) := f(z) - w, g_n(z) := f_n(z) - w$. Сходимость сохранилась.

Пусть U_0, U_1 — круги с центрами в z_0 и z_1 соответственно, $U_0 \cap U_1 = \varnothing, U_0, U_1 \subset G$. Функция g имеет нуль в каждом из U_1, U_2 . Предположим, что $g \not\equiv 0$, значит, при достаточно большом $n:g_n$ имеет нуль как в U_1 , так и в U_2 . Но g_n однолистна, значит, всё же $g \equiv 0$.

Теорема 1.10.4 (Риман). Пусть $G \subset \mathbb{C}$ — область. Следующие условия эквивалентны:

- 1. G односвязна, $G \neq \mathbb{C}$.
- 2. \exists однолистная $\phi: G \rightarrow \mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}.$

Доказательство. Потом (теорема 1.11.1).

1.10.1 Нормальные семейства

Пусть дано множество A аналитичных функций в области G.

Определение 1.10.2 (Нормальное множество A). Такое A, что \forall компакта $K \subset G : \exists C \in \mathbb{R} : \forall z \in K, \forall f \in A : |f(z)| \leq C$.

Лекция IX

12 апреля 2024 г.

Теорема 1.10.5 (Монтель). Следующие условия эквивалентны:

- 1. Множество A нормально.
- 2. $\forall \{f_n\}_{n\in\mathbb{N}}, f_n\in A$: найдётся сходящаяся подпоследовательность $n_1< n_2<\dots$: для некоторой аналитической $f\colon f_{n_j} \underset{i\to\infty}{\longrightarrow} f$.

Доказательство.

 $(2)\Rightarrow (1)$ Предположим противное: $\exists K\subset G: \forall m\in\mathbb{N}: \exists f_m\in A: \sup_{z\in K}|f_m(z)|>m.$

Согласно посылке, существует сходящаяся подпоследовательность $\{m_k\}_{k\in\mathbb{N}}$, такая, что $\exists f: f_{m_k} \underset{k\to\infty}{\Longrightarrow} f$ равномерно на K. f ограничена на K, значит, начиная с некоторого места, f_{m_k} тоже ограничены. Противоречие.

 $(1) \Rightarrow (2)$ **Лемма 1.10.2.** Рассмотрим счётный набор последовательностей

$$\begin{cases} x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots \\ x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, \dots \\ x_1^{(3)}, x_2^{(3)}, x_3^{(3)}, \dots \\ \dots \dots \dots \end{cases}$$

Пусть каждая последовательность ограничена: $\forall n \in \mathbb{N}: \exists M^{(n)}: \forall j: |x_j^{(n)}| < M^{(n)}$. Тогда $\exists k_1 < k_2 < \ldots -$ подпоследовательность индексов, такая, что $\forall n \in \mathbb{N}: \exists x_{k_j}^{(n)}: x_{k_j}^{(n)} \xrightarrow[j \to \infty]{} x^{(n)}$.

Иными словами, каждая последовательность ограничена, значит, из каждой можно выбрать сходящуюся подпоследовательность, но оказывается, что можно так выбрать индексы этой подпоследовательности, чтобы она сходилась во всех строчках.

Доказательство леммы.

Пусть $\{k_j^{(1)}\}_{j\in\mathbb{N}}$ — такая подпоследовательность индексов, что $\exists x^{(1)}: x_{k_j^{(1)}} \xrightarrow[j\to\infty]{} x^{(1)}$. Выберем из этой последовательности индексов подпоследовательность индексов $\{k_j^{(2)}\}_{j\in\mathbb{N}}$, что $\exists x^{(2)}: x_{k_j^{(2)}} \xrightarrow[j\to\infty]{} x^{(2)}$. И так далее.

Тем самым, мы получим счётное количество последовательностей индексов, таких, что $k^{(n+1)}$ — подпоследовательность $k^{(n)}$, и $\forall n \in \mathbb{N}: \exists x^{(n)}: x_{k_j^{(n)}} \overset{\longrightarrow}{\longrightarrow} x^{(n)}.$

A теперь возьмём диагональ: $k_j \coloneqq k_j^{(j)}$.

Пусть $\{f_n\}_{n\in\mathbb{N}}$ — какая-то последовательность функций из A, выберем из неё сходящуюся подпоследовательность.

1. Рассмотрим компактный замкнутый круг $\overline{B_r(z_0)} \subset G$. Выберем $R \in (r, \operatorname{dist}(z_0, \partial G))$. Разложим все функции f_n в степенные ряды с центром в z_0 , эти ряды будут сходиться уж точно в круге радиуса R:

$$\begin{cases}
f_1(z) = c_0^{(1)} + c_1^{(1)}(z - z_0) + c_2^{(1)}(z - z_0)^2 + \dots \\
\vdots \\
f_n(z) = c_0^{(n)} + c_1^{(n)}(z - z_0) + c_2^{(n)}(z - z_0)^2 + \dots \\
\vdots
\end{cases}$$
(o)

Так как семейство нормально, то $\exists d>0: |z-z_0|\leqslant R \Rightarrow \forall n: |f_n(z)|\leqslant d.$

Распишем формулы для коэффициентов Тейлора: $c_j^{(n)} = \frac{1}{2\pi i} \int\limits_{|z-z_0|=R} \frac{f_n(\zeta)}{(\zeta-z_0)^{j+1}} \,\mathrm{d}\zeta$, откуда

$$\left| c_j^{(n)} \right| \leqslant \frac{1}{2\pi} \int_0^{2\pi} \frac{\left| f_n \left(z_0 + e^{i\theta} \right) \right|}{R^{j+1}} R \, \mathrm{d}\theta \leqslant \frac{d}{R^j}$$

Получили равномерную по n оценку на $c_j^{(n)}$, значит согласно (лемма 1.10.2) имеется подпоследовательность строк $c^{(n)}$ в (\circ), такая, что в каждом столбце коэффициенты сходятся. Без потери общности эта последовательность совпадает с исходной: $\forall j: c_j^{(n)} \longrightarrow c_j$.

Дальше хочется написать ряд $\sum\limits_{j\geqslant 0}c_j(z-z_0)^n$, доказать, что он сходится, где положено, и что он является пределом какой-то подпоследовательности f_n .

- Первое просто: $|z-z_0|\leqslant r\Rightarrow \sum\limits_{j=0}^{\infty}|c_j(z-z_0)^j|\leqslant \sum\limits_{j=0}^{\infty}r^j\cdot \frac{d}{R^j}=d\sum\limits_{j=0}^{\infty}\left(\frac{r}{R}\right)^j$. Тем самым, $\overline{f}(z)=\sum\limits_{j=0}^{\infty}c_j(z-z_0)^j$ функция в \overline{B} , аналитичная в B.
- Рассмотрим начальные куски рядов $f_{n,k}(z) \coloneqq \sum\limits_{j=0}^k c_j^{(n)}(z-z_0)^j$, и запишем аналогичный многочлен для $\overline{f}:\overline{f}_k(z)\coloneqq \sum\limits_{j=0}^k c_j(z-z_0)^j$. Это конечные суммы, и так как коэффициенты сходятся, то $\lim\limits_{n\to\infty} f_{n,k}=f_k$ равномерно во всём круге \overline{B} .

Теперь покажем, что сходимость $f_{n,k} \xrightarrow[k \to \infty]{} f_n$ равномерна по n:

$$|f_{n,k}(z) - f_k(z)| \le \sum_{j=k+1}^{\infty} |c_j^{(n)}| |z - z_0|^j \le d \sum_{j=k+1}^{\infty} \left(\frac{r}{R}\right)^j$$

- По теореме о перестановке предельных переходов имеется искомая сходимость:

$$\overline{f}(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^j = \sum_{j=0}^{\infty} \lim_{n \to \infty} c_j^{(n)} (z - z_0)^j = \lim_{n \to \infty} \sum_{j=0}^{\infty} c_j^{(n)} (z - z_0)^j = \lim_{n \to \infty} f_n(z)$$

- 2. Теперь покажем, что для любого компакта $K \subset G$ тоже найдётся подпоследовательность f_{n_j} , сходящаяся на K. Пусть $w \in K$, положим $r_w \coloneqq \frac{1}{2}\operatorname{dist}(w,\partial G)$. Семейство $\{B_{r_w}(w)\}_{w \in K}$ открытое покрытие K, значит, имеется конечное подпокрытие: K покрывается кругами B_1, \ldots, B_s , такими, что $\overline{B}_s \subset G$.
 - s раз выбирая сходящуюся подпоследовательность (каждый раз в соответствии с предыдущим пунктом), получаем такую подпоследовательность f_n , что она сходится во всех кругах B_1, \ldots, B_s .
- 3. Пусть $K_1 \subset K_2 \subset \ldots$ исчерпывающая последовательность компактов для G.

В соответствии с предыдущим пунктом найдётся подпоследовательность $f_1^{(1)}, f_2^{(1)}, \ldots$, равномерно сходящаяся на K_1 . Далее из неё выбирается новая подпоследовательность $f^{(2)}$, равномерно сходящаяся на K_2 .

И так далее, на s-м шаге выберется подпоследовательность $f_1^{(s)}, f_2^{(s)}, \ldots, f_s^{(s)}, \ldots$, сходящаяся на K_s . Диагональ $\{f_s^{(s)}\}_{s=1}^\infty$ подходит: функции в этой последовательности сходятся на любом компакте K_s .

1.10.2 Про монтелевые пространства

Через $\mathcal{H}(G)$ обозначим пространство всех функций, голоморфных в G. На этом пространстве имеется сходимость, которую мы только что изучали, отвечающая некоторой топологии.

 $\mathcal{H}(G)$ можно превратить в локально выпуклое пространство, в котором топология задаётся полунормами $p_K: f\mapsto \max_{z\in K}|f(z)|$, где $K\subset G$ — компакты в G. Несложно видеть, что это как раз топология равномерной сходимости на компактах.

Несложно видеть, что если $\{K_j\}_{j=1}^\infty$ — исчерпывающая последовательность компактов для G, то $p_j \coloneqq p_{K_j}$ — определяющий набор полунорм. А раз имеется счётный определяющий набор полунорм, то пространство метризуемо. Одна из возможных метрик имеет вид

$$\rho(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{p_j(f-g)}{1 + p_j(f-g)}$$

Из самой формулы видно, что всё пространство лежит в шаре радиуса 1, тем не менее, в локально выпуклом пространстве есть понятие ограниченного множества — это множество, ограниченное по всем полунормам. В $\mathcal{H}(G)$ ограниченные множества — нормальные семейства.

Тем самым, теорема Монтеля на языке функционального анализа звучит так: всякое ограниченное множество в $\mathcal{H}(G)$ относительно компактно.

Как известно, в бесконечномерных банаховых пространствах это неверно, откуда видно, что одной нормой топологию на $\mathcal{H}(G)$ не описать.

В честь Монтеля, доказавшего теорему об аналитических функциях, все пространства, в которых ограниченные множества относительно компактны, называются монтелевыми.

1.11 Однолистные функции. Теорема Римана

Рассмотрим функцию $f: z \mapsto (z-z_0)^k$, где $k \in \mathbb{N}$. Если k=1, то функция линейна и, следовательно, однолистна. Если же $k \geqslant 2$, то $\forall w \neq 0$ найдётся k значений корня $\sqrt[k]{w}$, и, следовательно, f не однолистна ни в какой окрестности z_0 .

Лемма 1.11.1. Если $f: G \to \mathbb{C}$ однолистна, то $\forall z \in G: f'(z) \neq 0$.

Доказательство. Пусть $f'(z_0)=0$. Разложим $f(z)=c_0+c_1(z-z_0)+c_2(z-z_0)^2+\dots$ Так как $f'(z_0)=0$, то $c_1=0$.

Так как f однолистна, то $f \not\equiv \text{const}$, то есть имеется некоторое наименьшее $k>0: c_k \not\equiv 0$. Можно записать $f(z)=c_0+(z-z_0)^k\cdot g(z)$, где $g(z)\not\equiv 0$ в некоторой окрестности z_0 . Скажем, эта окрестность имеет вид круга $B_r(z_0)$.

Пусть $\phi: B_r(z_0) \to \mathbb{C}$ — ветвь логарифма g, то есть $\forall z \in B_r(z_0): e^{\phi(z)} = g(z)$. Тогда $f(z) = c_0 + \left((z-z_0)\,e^{\frac{\phi(z)}{k}}\right)^k$.

Обозначим $\psi(z)=(z-z_0)e^{\frac{\phi(z)}{k}}$, прямое вычисление показывает $\psi'(z_0)\neq 0$. По теореме об обратной функции $\psi(B_r(z_0))\supset B_\delta(0)$ для некоторого $\delta>0$.

Если $u\in\mathbb{C}$, причём $|u-c_0|\in(0,\delta)$, то уравнение f(z)=u имеет хотя бы k решений, возникающих из уравнений $\psi(z)=\sqrt[k]{u-c_0}$ (k значений у корня k-й степени). Противоречие с инъективностью f.

Обратное неверно, контрпримером может служить, например, экспонента. Это верно только локально: если $f'(z) \neq 0$ вблизи z_0 , то по теореме об обратной функции f однолистна в некоторой окрестности z_0 .

Факт 1.11.1. Если $f:U\to\mathbb{C}$ такова, что $\forall z\in U:f'(z)\neq 0$, то f(U) открыто.

Доказательство. Это тоже следует из вещественной теоремы об обратной функции.

1.11.1 О дробно-линейных отображениях

Введём расширенную комплексную плоскость $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$. Базой $\widehat{\mathbb{C}}$, как топологического пространства, являются круги $\{B_r(z_0)|z_0\in\mathbb{C}, r>0\}$, и «бесконечно удалённые круги» $\Big\{\widehat{\mathbb{C}}\setminus\overline{B_r(0)}\Big|r>0\Big\}$.

Это одноточечная компактификация C.

Для аналитической функции $f:(\Omega\subset\mathbb{C})\to\mathbb{C}$, заданной и аналитичной в проколотой окрестности ∞ , будем говорить, что она аналитична в точке ∞ , если $f\left(\frac{1}{z}\right)$ аналитична в окрестности нуля. Например, для ряда Лорана $f(z)=\sum_{n\in\mathbb{Z}}a_nz^n$: f аналитична в ∞ , если для всех n>0: $a_n=0$.

Определение 1.11.1 (Дробно-линейное отображение). Отображение вида $\phi: z \mapsto \frac{az+b}{cz+d}$, где $a,b,c,d \in \mathbb{C}$ и |c|+|d|>0 (чтобы получалось поделить).

Если $c \neq 0$, то функция определена и аналитична в бесконечности, равна там пределу $\frac{a}{c}$, и в точке $-\frac{d}{c}$ имеется полюс. Если же c=0, то функция тоже аналитична в $\widehat{\mathbb{C}}$ за исключением одного полюса, на этот раз этот полюс находится в точке ∞ .

Если ad=bc, то ситуация не особо интересная: $\phi\equiv\frac{a}{c}\equiv {\rm const.}$ Иначе же, при $ad-bc\neq 0$, дробно линейные преобразования обратимы: можно разрешить уравнение $\frac{az+b}{cz+d}=w$ относительно z, полученная функция z(w) тоже будет дробно-линейной. В матрицах это записывается так:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} w \\ 1 \end{bmatrix} \iff \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} w \\ 1 \end{bmatrix}$$

Квадратные скобки значат фактор по скалярным преобразованиям (гомотетиям).

Аналогичная выкладка показывает, что обратимые дробно-линейные преобразования образуют группу относительно композиции, и эта группа изоморфна $\mathrm{PGL}(n,\mathbb{C}) \stackrel{def}{=} \mathrm{GL}(n,\mathbb{C})/\mathbb{C}^*E$ (где \mathbb{C}^*E — скалярные матрицы вида $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, \lambda \in \mathbb{C}^*$).

Преобразования Мёбиуса

Преобразованиями Мёбиуса называются дробно-линейные преобразования вида $\phi: z \mapsto c \frac{z-a}{1-\overline{a}z}$, где $|c|=1, a \in \mathbb{D}$. Функция такого вида имеет полюс в $\frac{1}{\overline{a}}$, и уж точно определена в круге \mathbb{D} .

Факт 1.11.2. Оказывается, $\phi(\mathbb{D}) = \mathbb{D}$.

Доказательство. Заметим, что $\forall z: |z|=1 \Rightarrow |\phi(z)|=\left|c\frac{z-a}{z(\overline{z}-\overline{a})}\right|=1$, откуда ϕ переводит окружность в окружность. По принципу максимума модуля $\forall z\in\mathbb{D}: |\phi(z)|<1$.

С другой стороны, не просто $\phi(\mathbb{D}) \subset \mathbb{D}$, но на самом деле $\phi(\mathbb{D}) = \mathbb{D}$, так как ϕ^{-1} — тоже преобразование Мёбиуса:

$$\begin{bmatrix} c & -ca \\ -\overline{a} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & ca \\ \overline{a} & c \end{bmatrix} = \begin{bmatrix} c^{-1} & a \\ c^{-1}\overline{a} & 1 \end{bmatrix}$$

то есть $\psi:z\mapsto c^{-1}rac{z+ac}{1-\overline{ac}z}$ — обратное к ϕ преобразование Мёбиуса.

Факт 1.11.3. Преобразования Мёбиуса образуют подгруппу в группе дробно-линейных преобразований.

Как отобразить полуплоскость на круг

Пусть $\Pi:=\{z\in\mathbb{C}|\Re z<0\}$. Выберем $\alpha\in\mathbb{C}:\Re\alpha<0$, и устроим преобразование $\theta(z):=\frac{z-\alpha}{z+\overline{\alpha}}$. У него полюс в точке $-\overline{\alpha}$.

Факт 1.11.4. Оказывается, $\theta(\Pi) \subset \mathbb{D}$.

Доказательство. Пусть $z=a+ib, \alpha=\gamma+i\delta$, где $a,b,\gamma,\delta\in\mathbb{R}$ $(a,\gamma<0)$.

Сосчитаем
$$|\theta(z)|^2 = \left|\frac{(a-\gamma)+i(b-\delta)}{(a+\gamma)+i(b-\delta)}\right|^2 = \frac{(a-\gamma)^2+(b-\delta)^2}{(a+\gamma)^2+(b-\delta)^2} < 1.$$

Упражнение 1.11.1. Убедиться, что $\theta(\Pi) = \mathbb{D}$.

1.11.2 Теорема Римана

Теорема 1.11.1 (Риман, о конформном отображении). Пусть $G \subset \mathbb{C}$ — область. Следующие условия эквивалентны:

- 1. G односвязна, $G \neq \mathbb{C}$.
- 2. \exists однолистная сюръекция $\phi: G \to \mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}.$

Доказательство.

- $(2)\Rightarrow (1)$ Это просто, если $\phi(G)=\mathbb{D}$, где ϕ как в посылке, то ϕ гомеоморфизм, откуда G тоже односвязна. Факт о том, что $G\neq \mathbb{C}$, называется теоремой Лиувилля.
- $(1)\Rightarrow (2)$ Можно считать, что область не содержит некоторого круга:

Выберем $z_0 \in \mathbb{C} \setminus G$, в области G найдётся ϕ — ветвь логарифма функции $z-z_0$. Функция ϕ однолистна, и без потери общности можно работать с $\phi(G) =: G_1$ вместо G.

Пусть $K \subset G_1$ — какой-то круг. Заметим, что $(K+2\pi i) \cap G_1 = \emptyset$:

Доказательство. Пусть $w \in (K+2\pi i) \cap G_1$. Тогда $w = u+2\pi i$, где $u \in K$, и одновременно $w = \phi(v), \ u = \phi\left(\widetilde{v}\right)$, где $v, \widetilde{v} \in G$. Так как $v = e^{\phi(v)} = e^w = e^{u+2\pi i} = e^u = \widetilde{v}$. Тем самым, $v = \widetilde{v}$, значит, $w = \phi(v) = \phi(\widetilde{v}) = u$, противоречие $(w = u + 2\pi i)$.

- Можно считать, что область ограничена:

Устроим $\psi:G_1 \twoheadrightarrow G_2, z\mapsto \frac{1}{z-z_0}$, теперь так как $\forall z\in G_1:|z-z_0|$ отделён от нуля, то область G_2 ограничена. При помощи сдвига и гомотетии $(z\mapsto az+b)$ можно заменить G_2 на G_3 так, что $0\in G_3$ и $G_3\subset \mathbb{D}$.

- Отныне $0 \in G \subset \mathbb{D}$. Введём $\mathcal{A} \coloneqq \{f: G \to \mathbb{D} | f \text{ однолистна, но необязательно сюръекция, } f(0) = 0\}.$ По определению \mathcal{A} — нормальное семейство.

Пусть $C \coloneqq \sup_{f \in \mathcal{A}} |f'(0)|$ (пока не факт, что $C < \infty$).

Пусть $A_1 := \{ f \in \mathcal{A} | |f'(0)| \ge 1 \}$. Очевидно, что супремум можно вычислять по функциям из A_1 (оно непусто, $\mathrm{id} \in \mathcal{A}_1$).

* Этот супремум конечен: $C<+\infty$.

(второго быть не может, $C \geqslant 1$).

Пусть это не так, тогда $\forall n \in \mathbb{N} : \exists f_n \in \mathcal{A}_1 : |f'_n(0)| > n.$

Так как семейство нормально, то можно выбрать подпоследовательность $f_{n_j} \underset{j \to \infty}{\longrightarrow} f$. Так как f_{n_j} аналитичны, и сходятся к f, то f тоже аналитична, и $f'_{n_j} \underset{j \to \infty}{\longrightarrow} f$. Но $|f'_{n_j}(0)|$ не может иметь предела.

* Аналогичное рассуждение показывает, что он достигается $(\exists f \in \mathcal{A} : |f'(0)| = C)$: Выберем $f_n \in \mathcal{A} : |f'_n(0)| \geqslant C - \frac{1}{n}$. Выберем подпоследовательность $f_{n_j} \xrightarrow[j \to \infty]{} f$.

Так как f_{n_j} аналитичны, и сходятся к f, то f тоже аналитична, и $f'_{n_j} \underset{j \to \infty}{\longrightarrow} f'$. Тем самым, |f'(0)| = C, и согласно (теорема 1.10.3), f однолистна либо константа

Лекция X 19 апреля 2024 г.

Тем самым, существует $f\in\mathcal{A}$, такая, что |f'(0)| максимально. Далее покажем, что $f:G\to\mathbb{D}$ — сюръекция.

– Пойдём от противного: пусть $\exists a \in \mathbb{D} : a \notin \mathrm{Im}(f)$. Введём $\phi \coloneqq v \circ f$, где $v(w) \coloneqq \frac{w-a}{1-\overline{a}w}$ некоторое преобразование Мёбиуса. $\phi(z) \coloneqq \frac{f(z)-a}{1-\overline{a}f(z)}$.

К сожалению, пока $\phi \notin \mathcal{A}: \phi(0) \neq 0$, и вообще $\phi(z) \neq 0$ везде. Но раз так, то у ϕ имеется ветвь логарифма Φ . Так как $\Re \log(u) = \log |u|$, то $\forall z \in G: \Re \Phi(z) < 0$. При помощи другого дробно-линейного преобразования переведём левую полуплоскость обратно в $\mathbb{D}: g(z) \coloneqq \frac{\Phi(z) - \Phi(0)}{\Phi(z) + \overline{\Phi}(0)}$. Утверждается, что $g \in \mathcal{A}$: g(0) = 0, и преобразование $w \mapsto \frac{w-a}{w+\overline{a}}$ однолистно стреляет в круг \mathbb{D} .

- Осталось получить противоречие, получив в результате вычислений, что |g'(0)| > |f'(0)|.

$$\begin{split} g'(z) &= \left(1 - \frac{2\Re\Phi(0)}{\Phi(z) + \overline{\Phi(0)}}\right)' = \frac{2\Re(\Phi(0))}{(\Phi(z) + \overline{\Phi(0)})^2} \Phi'(z) = \frac{2\Re(\Phi(0))}{(\Phi(z) + \overline{\Phi(0)})^2} \frac{\phi'(z)}{\phi(z)} = \\ &= \frac{2\Re(\Phi(0))}{(\Phi(z) + \overline{\Phi(0)})^2} \frac{1}{\phi(z)} \cdot \frac{(1 - \overline{a}f(z)) \cdot f'(z) + \overline{a} \cdot f'(z)(f(z) - a)}{(1 - \overline{a}f(z))^2} \end{split}$$

Подставляя 0, получаем

$$g'(0) = \frac{2\Re\Phi(0)}{(2\Re\Phi(0))^2} \frac{1}{-a} \cdot \frac{f'(0)(1-|a|^2)}{1}$$

Тем самым, $|g'(0)|=\frac{1}{2\log\left(\frac{1}{|a|}\right)}\frac{1-|a|^2}{|a|}\cdot|f'(0)|$. Осталось убедиться, что для $t:=|a|\in(0,1)$ выполнено неравенство $\frac{1-t^2}{2t\log\left(\frac{1}{t}\right)}>1$. Это эквивалентно неравенству $\frac{1-t^2}{t}-2\log\left(\frac{1}{t}\right)>0$. При t=1 левая часть равняется нулю, и производная левой части $\left(\frac{1}{t}-t+2\log\left(t\right)\right)'=-\frac{1}{t^2}-1+\frac{2}{t}=-\left(\frac{1}{t}-1\right)^2<0$.

1.11.3 Автоморфизмы односвязных областей

Пусть $f_1, f_2: G \to \mathbb{D}$ — возможно различные однолистные отображения. Тогда $f_2^{-1} \circ f_1$ — однолистное отображение круга \mathbb{D} на себя. Например, это может быть каким-то преобразованием Мёбиуса, но оказывается, что ими всё и исчерпывается.

Определение 1.11.2 (Автоморфизм области G). Однолистное отображение G woheadrightarrow G.

Вообще практически все односвязные области эквивалентны (при помощи однолистной сюръекции) кругу, как говорит только что доказанная теорема Римана, но есть ещё две области — $\mathbb C$ и $\widehat{\mathbb C}$, имеющие другую природу.

Сначала займёмся автоморфизмами С.

Теорема 1.11.2. Автоморфизмы \mathbb{C} — линейные функции $z\mapsto az+b$ при $a\neq 0$.

Доказательство. Пускай $f:\mathbb{C} \twoheadrightarrow \mathbb{C}$ — ещё какой-то автоморфизм \mathbb{C} . Тем самым, f — целая, то есть $f=a_0+a_1z+\dots$

Если $a_j \neq 0$ для бесконечного множества индексов j, то ∞ — существенно особая точка (в ряду Лорана $f\left(\frac{1}{z}\right)$ бесконечно много ненулевых членов). Так как $\forall z \in \mathbb{C}: f'(z) \neq 0$, то f — открытое отображение. Отсюда $f(\mathbb{D})$ открыто. С другой стороны, по теореме Сохоцкого (теорема 1.7.3) $f(\{z \in \mathbb{C} | |z| > 1\})$ всюду плотно в \mathbb{C} . Значит, $\exists w \in f(\mathbb{D}) \cap f(\{z \in \mathbb{C} | |z| > 1\})$, и это противоречие с однолистностью f.

Тем самым, f — многочлен, и если $\deg f\geqslant 2$, то f' имеет корень, опять-таки противоречие с однолистностью. Получается, f — линейная функция, или константа, но константа не подходит. \square

3амечание. $\hat{\mathbb{C}}$ односвязна, так как топологически это — сфера, что видно из стереографической проекции.

Теорема 1.11.3. Автоморфизмы $\widehat{\mathbb{C}}$ — дробно-линейные отображения $z\mapsto rac{az+b}{cz+d}$ при ad-bc
eq 0.

Доказательство.

Лемма 1.11.2 (О действии групп). Пусть группа Γ действует на множестве X; $H \leqslant \Gamma$ — подгруппа. Если $\exists x \in X : H \supset \Gamma_x$ ($\Gamma_x \stackrel{def}{=} \{ \gamma \in \Gamma | \gamma x = x \}$ — стабилизатор x), $u \ H$ действует на X транзитивно ($\forall x, y \in X : \exists \gamma \in H : \gamma x = y$), то $H = \Gamma$.

Доказательство леммы.

Рассмотрим какой-то $\gamma \in \Gamma$. Пусть $\gamma(x) = y$. Из транзитивности $\exists \delta \in H : \delta y = x$. Тем самым, $\delta \gamma x = x$, то есть $\delta \gamma \in H \Rightarrow \gamma \in H$.

Введём в качестве Γ группу всех однолистных отображений $\widehat{C} \twoheadrightarrow \widehat{C}$, и в качестве $H \leqslant \Gamma$ — подгруппу дробно-линейных отображений.

Легко видеть, что H действует на $\mathbb C$ транзитивно: скажем, любая точка лежит в одной орбите с ∞ : $\forall z_0 \in \mathbb C: \frac{1}{z-z_0}\Big|_{z=z_0} = \infty$. $\mathbb C$ другой стороны, стабилизатор ∞ — автоморфизмы $\mathbb C$, и так как они лежат в H, то $H=\Gamma$.

Лемма 1.11.3 (Шварц). Пусть $f: \mathbb{D} \to \mathbb{D}$ — аналитическая функция, такая, что f(0) = 0. Тогда $\forall z \in \mathbb{D}: |f(z)| \leqslant |z|$. При этом если $\exists z \in \mathbb{D} \setminus \{0\}: |f(z)| = |z|$, то $\exists c \in \mathbb{C} (|c| = 1): f(z) = cz$.

Доказательство.

• Пусть дополнительно f задана и аналитична в круге радиуса R>1 с центром в 0. Рассмотрим $g(z):=\frac{f(z)}{z}$ — она аналитична в круге $\{z\in\mathbb{C}||z|< R\}$, так как в нуле — устранимая особенность.

При $|z|=1:|g(z)|=\frac{|f(z)|}{|z|}\leqslant \frac{1}{1}=1.$ Согласно принципу максимума модуля (теорема 1.3.9), $|g|\leqslant 1$ везде.

- Теперь такого предположения о f не имеется. Выберем R>1. Определим $f_R(z)\coloneqq f\left(\frac{z}{R}\right)$. Согласно предыдущему пункту $\forall z\in\mathbb{D}:|f_R(z)|\leqslant |z|$. Устремляя $R\to 1$, получаем искомое неравенство.
- Осталось разобраться со случаем равенства внутри круга. Пусть $\exists z_0 \in \mathbb{D} \setminus \{0\} : |f(z_0)| = |z_0|$. Тем самым, $g(z) \coloneqq \frac{f(z)}{z}$ достигает своё наибольшее значение внутри круга, то есть $g \equiv c = \text{const.}$ Подставляя z_0 , получаем |c| = 1.

Пусть Γ — группа всех автоморфизмов круга \mathbb{D} . Вычислим стабилизатор $0 \in \mathbb{D}$. Пусть $\phi \in \Gamma_0$ — аналитическая биекция, такая, что $\phi(0) = 0$. То же верно и для ϕ^{-1} .

По лемме Шварца $|\phi(z)| \leqslant |z|$, но применяя её же к ϕ^{-1} , получаем $z=\phi^{-1}(\phi(z)) \Rightarrow |z|=|\phi^{-1}(\phi(z))| \leqslant |\phi(z)|$. Тем самым, $|\phi(z)|=|z|$ во всех точках, и по лемме Шварца ϕ — гомотетия с коэффициентом c (|c|=1).

Группа преобразований Мёбиуса $\left\{w\mapsto c\cdot \frac{w-a}{1-\overline{a}w}\Big|a\in\mathbb{D},|c|=1\right\}$ содержит при a=0 гомотетии с данными коэффициентами, и действует транзитивно на \mathbb{D} : любая $a\in\mathbb{D}$ переводится соответствующим преобразованием в нуль.

Упражнение 1.11.2. Проверить, что группа Мёбиуса — действительно группа, то есть замкнута относительно умножения и взятия обратного.

Факт 1.11.5 (Конформность однолистного отображения). Пусть G — область, $z_0 \in G$, $\Phi: G \to \mathbb{C}$ — однолистное отображение. Пусть $\gamma_1, \gamma_2: (-\varepsilon, \varepsilon) \to G$ — два регулярно параметризованных гладких пути $(\gamma_1' \neq 0, \gamma_2' \neq 0)$, причём $\gamma_1(t_1) = \gamma_2(t_2) = z_0$. Проводя касательные к носителям γ_1, γ_2 в z_0 , получаем угол, его косинус можно посчитать по формуле $\frac{\langle \gamma_1'(t_1), \gamma_2'(t_2) \rangle}{|\gamma_1'(t_1)| \cdot |\gamma_2'(t_2)|}$.

Подействуем при помощи Φ на данную картинку. $\widetilde{\gamma}_j \coloneqq \Phi \circ \gamma_j$ при $j \coloneqq 1, 2$. Несложно посчитать, что $\widetilde{\gamma}_i'(t_j) = \Phi'(z_0) \cdot \gamma_i'(t_j)$, что действительно сохраняет косинус угла.

Такие отображения, сохраняющие углы, называют конформными. В силу исторических причин, говоря про однолистные отображения, часто добавляют слово «конформные», а сама наука зовётся теорией конформных отображений, хотя, как мы только что видели, однолистность сильнее.

1.12 Построение целых функций с заданными нулями

Определение 1.12.1 (Целая функция). Аналитическая $\mathbb{C} \to \mathbb{C}$.

1.12.1 Множители Вейерштрасса общего вида

Пусть $f \not\equiv 0$ — целая, $N \coloneqq \{a \in \mathbb{C} | f(a) = 0\}$. По теореме единственности N не имеет предельных точек. В частности, все нули изолированы, откуда множество нулей не более, чем счётно.

Нули удобно считать с учётом кратности, получая при этом мультимножество N.

Пронумеруем $N = \{a_0, a_1, a_2, \dots\}$, удобно считать, что $|a_0| \leqslant |a_1| \leqslant \dots$

Теорема 1.12.1 (Вейерштрасс). Существует целая функция f, мультимножество нулей которой совпадает с данным мультимножеством $N=\{a_0,a_1,\dots\}$. Считаем $|a_0|\leqslant |a_1|\leqslant \dots$ Дополнительно предполагается, что $|a_j|\underset{j\to\infty}{\longrightarrow} \infty$. Это, кстати, необходимое и достаточное условие того, что у N нет предельных точек.

Доказательство. Если бы нулей было конечное количество, то многочлен $(z-a_0)\cdot\ldots\cdot(z-a_N)$ подошёл бы, но нулей, увы, бесконечно. Предположим, что $0\notin N$ (это не ограничивает общность: выкинем 0 из N, построим f, потом домножим на нужную степень z^k), и заметим, что произведение $\left(1-\frac{z}{a_0}\right)\cdot\ldots\cdot\left(1-\frac{z}{a_N}\right)$ тоже решает задачу в случае конечного N.

В бесконечном же случае стоит озаботиться вопросом сходимости. Во втором семестре мы проверяли, что сходимость $\prod\limits_{j=0}^{\infty}a_j$ не к нулю эквивалентна сходимости ряда $\sum\limits_{j=0}^{\infty}\log(a_j)$, где $\log:$ $(\mathbb{C}\setminus(-\infty,0])\to\mathbb{C}$ — главная ветвь логарифма.

Рассмотрим бесконечное произведение $\prod_{j=0}^{\infty}u_j(z)$, где u_j — аналитические функции. Будем говорить, что данное *произведение сходится*, если \forall компакта $K\subset G:\exists M\in\mathbb{N}:\forall j\geqslant M,z\in K:u_j(z)\neq 0$, и произведение $\prod_{j>N}u_j(z)$ сходится на K равномерно.

Определим множители Вейерштрасса:

$$u_j(z) := \left(1 - \frac{z}{a_j}\right) \cdot \exp\left(\frac{z}{a_j} + \frac{1}{2}\left(\frac{z}{a_j}\right)^2 + \dots + \frac{1}{j-1}\left(\frac{z}{a_{j-1}}\right)^{j-1}\right)$$

Показатель экспоненты подогнан так, чтобы при взятии логарифма много чего сократилось (а $\log(1-w)=-w-\frac{w^2}{2}-\frac{w^3}{3}-\dots$ при |w|<1, например, потому что этот ряд совпадает с рядом для вещественного логарифма на $\mathbb{R}_{>0}$, и имеется теорема единственности)

Осталось показать, что произведение $\prod\limits_{j=0}^{\infty}u_{j}(z)$ сходится равномерно на компактах, и её нули — в точности a_{j} с учётом кратности.

Определим компакт $K\coloneqq \Big\{z\in \mathbb{C}\Big||z|\leqslant \frac{|a_N|}{2}\Big\}$, и покажем, что $\prod_{j>N}u_j(z)$ сходится равномерно на K.

$$u_j(z) = \exp\left(\log\left(1 - \frac{z}{a_j}\right) + \frac{z}{a_j} + \dots + \frac{1}{j-1}\left(\frac{z}{a_j}\right)^{j-1}\right) = \exp\left(-\sum_{s\geqslant j} \frac{1}{s}\left(\frac{z}{a_j}\right)^s\right)$$

При этом $\log\left(1-rac{z}{a_j}
ight)$ определён, так как $|z|<|a_j|$. Оценим

$$\left| \sum_{s \geqslant j} \frac{1}{s} \left(\frac{z}{a_j} \right)^s \right| \leqslant \left| \sum_{s \geqslant j} \left(\frac{z}{a_j} \right)^s \right| \leqslant \left| \sum_{s \geqslant j} \left| \frac{a_N}{2a_j} \right|^s \right| \leqslant \left(\frac{1}{2} \right)^j$$

Убедимся, что ряд из логарифмов равномерно сходится:

$$\left| \sum_{j>N} \sum_{s \geqslant j} \frac{1}{s} \left(\frac{z}{a_j} \right)^s \right| \leqslant \sum_{j>N} \left(\frac{1}{2} \right)^j \leqslant 1$$

Получатся, данное произведение $\prod\limits_{j\geqslant 0}u_j(z)$ подходит.

Лекция XI 26 апреля 2024 г.

1.12.2 Упрощённый вид множителей Вейерштрасса

Если известно, насколько быстро происходит стремление $|a_j| \underset{j \to \infty}{\longrightarrow} \infty$, то можно утверждать наличие сходимости и при множителях Вейерштрасса более простого вида.

1. Если $\sum_{n\geqslant 0} rac{1}{|a_n|} < \infty$, то никаких премудростей не надо: $\prod_{j=1}^\infty \left(1-rac{z}{a_j}
ight)$ сходится.

 \mathcal{A} оказательство. Зафиксируем $N\in\mathbb{N}$, и рассмотрим компакт $K\coloneqq\left\{z\in\mathbb{C}\Big||z|\leqslant\frac{1}{2}a_N\right\}$. Надо доказать, что $\sum\limits_{j\geqslant N}\log\left(1-\frac{z}{a_j}\right)$ сходится.

Под логарифмом стоят выражения вида 1-t, где $|t|\leqslant \frac{1}{2}$. Разложим в ряд и оценим: $|\log(1-t)|=\left|t+\frac{t^2}{2}+\frac{t^3}{3}+\dots\right|=\left|t\left(1+\frac{t}{2}+\frac{t^2}{3}+\dots\right)\right|\leqslant |t|\cdot C$, где $C:=\sum_{n\geqslant 1}\frac{(^{1/2})^{n-1}}{n}$. Этой оценки достаточно: $\sum_{j\geqslant N}\left|\log\left(1-\frac{z}{a_j}\right)\right|\leqslant \sum_{j\geqslant N}C\left|\frac{z}{a_j}\right|$, что сходится равномерно по $z\in K$.

 $2. \;\;$ Если $\sum\limits_{n\geqslant 0}rac{1}{|a_n|^2}<\infty$, то хватит первого члена при разложении логарифма в ряд: $\prod\limits_{j=1}^{\infty}\left(1-rac{z}{a_j}
ight)e^{rac{z}{a_j}}$ сходится.

 \mathcal{A} оказательство. Зафиксируем $N\in\mathbb{N}$, и рассмотрим компакт $K\coloneqq\left\{z\in\mathbb{C}\Big||z|\leqslant \frac{1}{2}a_N
ight\}$. Надо доказать, что $\sum\limits_{j\geqslant N}\log\left(1-\frac{z}{a_j}\right)+\frac{z}{a_j}$ сходится.

Разложим в ряд и оценим: $|\log(1-t)+t|=\left|\frac{t^2}{2}+\frac{t^3}{3}+\frac{t^4}{4}+\ldots\right|=t^2\left|\frac{1}{2}+\frac{t}{3}+\frac{t^2}{4}+\ldots\right|\leqslant t^2\cdot C,$ где $C\coloneqq\sum_{n\geqslant 0}\frac{(^1\!/_2)^n}{n+2}.$ Этой оценки достаточно: $\sum_{j\geqslant N}\left|\log\left(1-\frac{z}{a_j}\right)\frac{z}{a_j}\right|\leqslant\sum_{j\geqslant N}C\left|\frac{z}{a_j}\right|^2,$ что сходится равномерно по $z\in K.$

Замечание. Понятно, что целая функция с данным мультимножеством нулей не единственна — можно взять любую другую целую функцию без нулей (скажем, экспоненту), и домножить на неё.

Следствие 1.12.1. Пусть $f: \mathbb{C} \to \mathbb{C}$ — целая функция с бесконечным числом нулей, и g — произведение Вейерштрасса по нулям функции f (неважно, общего вида, или с упрощёнными множителями).

Тогда \exists целая $h: \mathbb{C} \to \mathbb{C}$: $f = ge^h$.

Доказательство. $\frac{f}{g}$ — целая функция (там, где у g нули, у f — нули той же кратности, поэтому все особенности устранимы). По той же причине $\forall z \in \mathbb{C} : \frac{f}{g}(z) \neq 0$. Тем самым, у неё есть ветвь логарифма, выберем какую-то ветвь h, она как раз подходит.

Пусть G — область, f аналитична в G кроме некоторого множества полюсов. Такая функция называется *мероморфной в G*. Так как полюса по определению изолированы, то их не более, чем счётное количество.

Мероморфную в $\mathbb C$ функцию называют *мероморфной* (без указания области).

Следствие 1.12.2. f мероморфна $\iff \exists$ целые $g_1, g_2 : f = \frac{g_1}{g_2}$.

Доказательство. Рассмотрим функцию $\frac{1}{f}$. Она не равна тождественно нулю.

Пусть $g_2 \coloneqq g$ — произведение Вейерштрасса по нулям функции $\frac{1}{f}, g_1 \coloneqq g \cdot f$ — целая функция. \square

1.12.3 Разложение синуса в произведение

Разложим синус в произведение, построив произведение Вейерштрасса по его нулям. А где нули синуса? $\sin z = \frac{e^{iz} - e^{-iz}}{2}$.

$$\sin z = 0 \iff e^{iz} = e^{-iz} \iff e^{2iz} = 1 \iff z \in \{i \cdot \pi | i \in \mathbb{Z}\}\$$

Как видим, сумма обратных квадратов нулей сходится, поэтому можно записать произведение Вейерштрасса в виде

$$z \cdot \prod_{j \in \mathbb{Z} \setminus \{0\}} \left(1 - \frac{z}{j\pi} \right) e^{\frac{z}{j\pi}}$$

где произведение берётся в порядке возрастания модулей *j*. Иными словами,

$$z \cdot \lim_{N \to \infty} \prod_{\substack{|j| \leqslant N \\ j \neq 0}} \left(1 - \frac{z}{j\pi} \right) e^{\frac{z}{j\pi}} = z \cdot \lim_{N \to \infty} \prod_{j=1}^{N} \left(1 - \frac{z^2}{j^2 \pi^2} \right) = z \prod_{j=1}^{\infty} \left(1 - \frac{z^2}{j^2 \pi^2} \right)$$

Как мы выяснили, \exists целая $h:\mathbb{C}\to\mathbb{C}:\sin(z)=e^{h(z)}z\prod_{j=1}^{\infty}\left(1-rac{z^2}{j^2\pi^2}
ight)$

Факт 1.12.1. $h \equiv 0$ подойдёт (понятно, что если это правда, то $h \equiv 2\pi i k$ для $k \in \mathbb{Z}$ тоже подойдёт).

Доказательство.

Замечание (О логарифмической производной). Пусть ϕ — аналитическая функция, как известно, её логарифмическая производная $\frac{\phi'}{\phi}$. Как видно из записи, она не зависит от того, какая ветвь логарифма где взята.

Если $\phi = \phi_1 \cdot \ldots \cdot \phi_k$, то несложно посчитать, что $\frac{\phi'}{\phi} = \frac{\phi'_1}{\phi_1} + \cdots + \frac{\phi'_n}{\phi_n}$. Утверждается, что формула сохраняется и для бесконечного произведения.

Пусть произведение $\prod_{j=1}^{\infty} \phi_j(z)$ сходится равномерно на любом компакте, не содержащем нулей функций ϕ_j . Пусть K — такой компакт, то есть $(\phi_1 \cdot \ldots \cdot \phi_n)(z) \Rightarrow \phi(z)$ равномерно. Тогда $(\phi_1 \cdot \ldots \cdot \phi_N)'(z) \Rightarrow \phi'(z)$ на этом же компакте, и как следствие, $\frac{\phi_1'(z)}{\phi_1(z)} + \cdots + \frac{\phi_N'(z)}{\phi_N(z)} = \frac{(\phi_1 \cdot \ldots \cdot \phi_N)'(z)}{(\phi_1 \cdot \ldots \cdot \phi_N)(z)} \Rightarrow \frac{\phi'(z)}{\phi(z)}$

• Возьмём логарифмическую производную обеих частей равенства $\sin(z) = e^{h(z)} \cdot z \cdot \lim_{\substack{N \to \infty \\ j \neq 0}} \prod_{\substack{|j| \leqslant N \\ j \neq 0}} \left(1 - \frac{z}{j\pi}\right)$:

$$\frac{\cos z}{\sin z} = h'(z) + \frac{1}{z} - \lim_{\substack{N \to \infty \\ j \neq 0}} \sum_{\substack{|j| \leqslant N \\ j \neq 0}} \frac{1}{j\pi} \frac{1}{1 - \frac{z}{j\pi}} = h'(z) + \frac{1}{z} + \lim_{\substack{N \to \infty \\ j \neq 0}} \sum_{\substack{|j| \leqslant N \\ j \neq 0}} \frac{1}{z - j\pi}$$

Отлично, у нас имеется равномерная сходимость на компактах, продифференцируем ещё раз:

$$1 - \operatorname{ctg}(z)^{2} = h''(z) - \frac{1}{z^{2}} - \lim_{\substack{N \to \infty \\ j \neq 0}} \frac{1}{(z - j\pi)^{2}}$$

• Проведём окружность Γ_k с центром в нуле, и радиусом $\pi\left(k+\frac{1}{2}\right)$, и докажем, что h'' ограничена на Γ_k некоторой константой C, не зависящей от k.

Понятно $\frac{1}{|z|^2}\leqslant \frac{4}{\pi^2}$, оценим при $z\in \Gamma_k: \frac{1}{|z-j\pi|^2}\leqslant \frac{1}{(k+\frac{1}{2}-|j|)^2\pi^2}$:

Осталось оценить котангенс:

$$\operatorname{ctg}(z) = \frac{\cos z}{\sin z} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}$$

Раскладывая z = x + iy, получаем

$$|\operatorname{ctg}(z)| = \left| \frac{e^{-y}e^{ix} + e^{y}e^{-ix}}{e^{-y}e^{ix} - e^{y}e^{-ix}} \right|$$

Выберем $\varepsilon < \frac{\pi}{4}$, и оценим котангенс вблизи вещественной оси (на красных дужках Γ_k) при помощи периодичность и непрерывность котангенса в круге радиуса 2ε , там он ограничен, и при $|y| \geqslant \varepsilon$ на синих дужках:

$$\left|\frac{e^{-y}e^{ix} + e^{y}e^{-ix}}{e^{-y}e^{ix} - e^{y}e^{-ix}}\right| \leqslant \frac{e^{y} + e^{-y}}{|e^{-y} - e^{y}|} = \frac{e^{y} + e^{-y}}{e^{|y|} - e^{-|y|}} = \frac{e^{2|y|} + 1}{e^{2|y|} - 1} = 1 + \frac{2}{e^{2|y|} - 1} \leqslant 1 + \frac{2}{e^{2\varepsilon} - 1}$$

• Тем самым, на Γ_k : h'' ограничена C, по принципу максимума h'' ограничена внутри круга этой же константой, значит, h'' вообще ограничена.

Согласно теореме Лиувилля, $h''={
m const.}$ тем самым, $h(z)=A+Bz+Cz^2$ для некоторых $A,B,C\in\mathbb{C}.$

• Подставим $h(z) = A + Bz + Cz^2$:

$$\frac{\cos z}{\sin z} = B + 2Cz + \lim_{N \to \infty} \sum_{|j| \le N} \frac{1}{z - j\pi}$$

Здесь все слагаемые 2π -периодичны, кроме 2Cz. Вывод один: C=0

- Теперь подставим $\frac{\sin z}{z}=e^{A+Bz}\prod_{j=1}^{\infty}\left(1-\frac{z^2}{j^2\pi^2}\right)$. В силу чётности B=0.
- Обозначим $D := e^A$. $\frac{\sin z}{z} = D \prod_{j=1}^{\infty} \left(1 \frac{z^2}{j^2 \pi^2}\right)$. Сопоставляя значения в 0, получаем D = 1. \square

Ура,

$$\sin z = z \prod_{j=1}^{\infty} \left(1 - \frac{z^2}{j^2 \pi^2} \right)$$

Попутно мы выяснили, что

$$ctg(z) = \lim_{N \to \infty} \sum_{|j| \le N} \frac{1}{z - j\pi} = \frac{1}{z} + \sum_{j=1}^{\infty} \frac{2z}{z^2 - j^2\pi^2}$$

Ещё немного преобразуем:

$$\frac{\operatorname{ctg} z - \frac{1}{z}}{2z} = \sum_{i=1}^{\infty} \frac{1}{z^2 - j^2 \pi^2}$$

Устремим в этой формуле $z \to 0$. Слева оказывается $\frac{z\cos z - \sin z}{2z^2\sin z} = \frac{z - \frac{z^3}{2} - z + \frac{z^3}{6} + \mathcal{O}(z^5)}{2z^3 + \mathcal{O}(z^5)} = -\frac{1}{6} + o(1)$, а справа $-\frac{1}{\pi^2}\sum_{i=1}^{\infty}\frac{1}{j^2} + o(1)$, образуя знаменитую формулу, выведенную Эйлером

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

1.12.4 Г-функция Эйлера

Хотим обобщить факториал в комплексной плоскости.

Построим аналитическую функцию f в некоторой области G (где G хочется побольше), такую, что

- 1. $z \in G \Rightarrow z + 1 \in G$.
- 2. f(z+1)=zf(z) эта формула отличается от той, что у факториала, сдвигом на 1. В таком виде ответ будет более каноничным.
- $3. 1 \in G$ и f(1) = 1.

Для удовлетворяющей таким условиям функции f можно заметить, что $\forall n \in \mathbb{N}: f(n) = (n-1)!.$

Дополнительно потребуем $\forall z \in G: f(z) \neq 0$, например, чтобы можно было спокойно писать $z = \frac{f(z+1)}{f(z)}$.

К сожалению, не всё возможно в этой жизни. Заведомо $0 \notin G$: если $0 \in G$, то $f(1) = f(0+1) = 0 \cdot f(0) = 0$. Далее первое условие влечёт, что $-1, -2, -3, \ldots \notin G$.

Положим $G \coloneqq \mathbb{C} \setminus \{0, -1, -2, \dots\}$, и построим в этой области функцию с указанными свойствами, имеющую простые полюса в выколотых точках. Она не единственна, но сейчас мы увидим наиболее естественный кандидат.

Пусть f — такая. Положим $g\coloneqq \frac{1}{f}$ — целая функция с простыми нулями в $\{0,-1,-2,\dots\}$. Построим g, используя множители Вейерштрасса (h — какая-то целая):

$$g(z) = ze^{h(z)} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$

Теперь удовлетворим функциональное уравнение: $g(z+1) = \frac{g(z)}{z}$.

$$\begin{split} g(z) &= z e^{h(z)} \lim_{N \to \infty} \prod_{n=1}^N \frac{n+z}{n} e^{-\frac{z}{n}} \\ g(z+1) &= (z+1) e^{h(z+1)} \lim_{N \to \infty} \prod_{n=1}^N \frac{1+n+z}{n} e^{-\frac{z}{n}-\frac{1}{n}} \\ \frac{g(z+1)}{g(z)} &= \frac{z+1}{z} e^{h(z+1)-h(z)} \lim_{N \to \infty} \frac{N+1+z}{1+z} e^{-1-\frac{1}{2}-\frac{1}{3}-\dots-\frac{1}{N}+\log N} e^{-\log N} \end{split}$$

Как доказывалось во II семестре, $1+\frac{1}{2}+\cdots+\frac{1}{N}-\log N \underset{N\to\infty}{\longrightarrow} \gamma-$ постоянная Эйлера — Маскерони. Итак, от функции h хочется свойства

$$\frac{1}{z} = \frac{z+1}{z} e^{h(z+1) - h(z)} \lim_{N \to \infty} \frac{N+1+z}{N(1+z)} e^{-\gamma} = \frac{1}{z} e^{h(z+1) - h(z)} e^{-\gamma}$$

Самым простым решением будет взять линейную функцию $h(z) = \gamma z$. Получили

$$g(z) = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$

Проверим, что g(1) = 1:

$$g(1) = e^{\gamma} \prod_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) e^{-\frac{1}{n}} = e^{\gamma} \lim_{N \to \infty} \frac{2 \cdot 3 \cdot \dots \cdot (N+1)}{N!} e^{-1 - \frac{1}{2} - \dots - \frac{1}{N}} =$$

$$= e^{\gamma} \lim_{N \to \infty} \frac{(N+1)!}{N! \cdot N} e^{-1 - \frac{1}{2} - \dots - \frac{1}{N} + \log N} = e^{\gamma} \lim_{N \to \infty} \frac{N+1}{N} e^{-1 - \frac{1}{2} - \dots - \frac{1}{N} + \log N} = 1$$

Чудесным образом ничего подкручивать не пришлось.

Лекция XII

3 мая 2024 г.

Итак, определили

$$\Gamma(z) \stackrel{def}{=} \frac{1}{z} e^{-\gamma z} \frac{1}{\prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}} \tag{*}$$

Замечание. Пусть ϕ — целая функция с периодом 1 и $\phi(1)=1$. Тогда $\Gamma\cdot\phi$ тоже подходит, как функция, удовлетворяющая трём условиям из (подраздел 1.12.4), однако, при некотором дополнительном условии мы можем получить «единственность» (см. теорема 1.12.2).

Немного преобразовав выражение для гамма-функции, можно получить следующее:

$$\Gamma(z) = e^{-\gamma z} \frac{1}{z} \lim_{N \to \infty} \frac{N!}{(1+z) \cdot \dots \cdot (N+z)} e^{z(1+\dots + \frac{1}{N})} = \lim_{N \to \infty} \frac{N! \cdot e^{z \log N}}{z \cdot (1+z) \cdot \dots \cdot (N+z)} = \lim_{N \to \infty} \frac{N! \cdot N^z}{z(1+z) \cdot \dots \cdot (N+z)}$$

Также имеется так называемая формула дополнения:

$$\Gamma(z)\Gamma(-z) = -\frac{1}{z^2} \frac{1}{\prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2}\right)} = -\frac{1}{z} \frac{\pi}{\sin(\pi z)}$$

Часто её записывают немного в другом виде, домножив на z, и воспользовавшись функциональным уравнением: $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin(\pi z)}$. Кстати, отсюда видно, чему равен «факториал» от $-\frac{1}{2}$:

$$\Gamma\left(\frac{1}{2}\right)^2 = \pi$$

Определим $g(z) \coloneqq \frac{1}{\Gamma(z)}$, это целая функция с нулями в целых неположительных точках. Значит, у g имеется непрерывная ветвь логарифма в $\mathbb{C} \setminus (-\infty; 0]$. Одна из них равна

$$\log g(z) = \log z + \gamma z + \sum_{n=1}^{\infty} \left(\log \left(1 + \frac{z}{n} \right) - \frac{z}{n} \right)$$

Про эту ветвь даже можно утверждать, что она главная, так как у неё, как и у гамма-функции, значения на вещественной оси вещественные. Дифференцируя $\log g(z)$, получаем

$$(\log g(z))' = \frac{1}{z} + \gamma + \sum_{n=1}^{\infty} \left(\frac{\frac{1}{n}}{1 + \frac{z}{n}} - \frac{1}{n}\right) = \frac{1}{z} + \gamma + \sum_{n=1}^{\infty} \left(\frac{1}{n+z} - \frac{1}{n}\right)$$

Таким образом, $\left(\log\Gamma(z)\right)'=-rac{1}{z}-\gamma-\sum_{n=1}^{\infty}\left(rac{1}{n+z}-rac{1}{n}
ight)$, и

$$(\log \Gamma(z))'' = \frac{1}{z^2} + \sum_{n=1}^{\infty} \frac{1}{(n+z)^2} = \sum_{n=0}^{\infty} \frac{1}{(n+z)^2} \tag{*}$$

Следствие 1.12.3. *На* $\mathbb{R}_{>0}$: $\log \Gamma(z)$ *есть выпуклая функция.*

Теорема 1.12.2. Пусть ϕ — непрерывная положительная функция на $\mathbb{R}_{>0}$, $\phi(1)=1$, и ϕ удовлетворяет функциональному уравнению: $\forall x \in \mathbb{R}_{>0}: x\phi(x)=\phi(x+1)$. Если $\log \phi$ выпукла, то $\forall x>0: \phi(x)=\Gamma(x)$.

Доказательство. В положительных целых точках $\phi(n)=(n-1)!$, и достаточно доказать, что $\phi(x)=\Gamma(x)$ при всех $x\in(0,1)$, функциональное уравнение влечёт равенство в остальных точках.

Определим $g(x)\coloneqq\log\phi(x)$, тогда функциональное уравнение переписывается в виде $g(x+1)-g(x)=\log x$. Из выпуклости $\forall n\in\mathbb{N}, n>1, \forall x\in(0,1)$:

$$\underbrace{\frac{g(n-1)-g(n)}{(n-1)-n}}_{\log(n-1)} \leqslant \underbrace{\frac{g(n+x)-g(n)}{(n+x)-n}}_{\log(n)} \leqslant \underbrace{\frac{g(n+1)-g(n)}{(n+1)-n}}_{\log(n)}$$

Преобразуем средний член неравенства:

$$g(x+n) - g(n) = \sum_{k=0}^{n-1} \left(g(x+k+1) - g(x+k) \right) + g(x) - g(n) = \sum_{k=0}^{n-1} \log(x+k) + g(x) - \log\left((n-1)!\right)$$

Выражая g(x), получаем

$$x\log(n-1) - \sum_{k=0}^{n-1}\log(x+k) + \log((n-1)!) \leqslant g(x) \leqslant x\log(n) - \sum_{k=0}^{n-1}\log(x+k) + \log((n-1)!)$$

Разность между левой и правой частями $x \log(n-1) - x \log(n) \underset{n \to \infty}{\longrightarrow} 0$. Понятно, что $g(x) = \log \Gamma(x)$ подходит, так как удовлетворяет посылке теоремы, и так как разность между пределами стремится к нулю, то в пересечении всего одна точка. Тем самым, g(x) определена однозначно.

1.12.5 Эйлеров интеграл

Определим

$$\Psi(z) = \int_{0}^{\infty} e^{-t} t^{z-1} dt, \quad z \in \mathbb{C}$$

Когда Ψ определена, а интеграл сходится? Разложим z=x+iy, где $x,y\in\mathbb{R}$. Теперь $\Psi(z)=\int\limits_0^\infty e^{-t}t^{x-1}t^{iy}\,\mathrm{d}t$. На $+\infty$ экспонента мажорирует остальные члены, в нуле имеется особенность, и интеграл суммируем, если x>0.

Тем самым, $\Psi(z)$ определена при $\Re z > 0$.

Теорема 1.12.3. $\Psi(z) = \Gamma(z)$ при z > 0.

Доказательство.

- Ясно, что $\Psi(z) > 0$ при $z \in \mathbb{R}_{>0}$.
- Ψ аналитична при $\Re z>0$, так как можно продифференцировать под знаком интеграла: производная суммируема.
- $\Psi(1) = \int_{0}^{\infty} e^{-t} dt = (-e^{-t}) \Big|_{0}^{\infty} = 1.$
- Убедимся, интегрируя по частям, что $x\Psi(x) = \Psi(x+1)$

$$\Psi(x+1) = \int_{0}^{\infty} e^{-t} t^{x} dt = -\int_{0}^{\infty} t^{x} d(e^{-t}) = -\left(t^{x} e^{-t}\right) \Big|_{0}^{\infty} + \int_{0}^{\infty} x t^{x-1} e^{-t} dt = x \Psi(x)$$

• Убедимся, что $\log \Psi$ выпукла на вещественной оси: $\forall x,y \in \mathbb{R}_{>0}, \forall \alpha,\beta \in [0,1], \alpha+\beta=1$:

$$\begin{split} \log \Psi(\alpha x + \beta y) \leqslant \alpha \log \Psi(x) + \beta \Psi(y) \\ \Psi(\alpha x + \beta y) \leqslant \Psi(x)^{\alpha} \Psi(y)^{\beta} \\ \int\limits_{-\infty}^{\infty} t^{\alpha x + \beta y - 1} e^{-t} \, \mathrm{d}t = \int\limits_{-\infty}^{\infty} (t^{x - 1})^{\alpha} \cdot (t^{y - 1})^{\beta} e^{-t} \, \mathrm{d}t \end{split}$$

что верно по неравенству Гёльдера.

• Согласно теореме единственности (теорема 1.12.2), $\Psi(z) = \Gamma(z)$ при $\Re z > 0$.

В частности, получаем интеграл Гаусса:

$$\sqrt{\pi} = \int_{0}^{\infty} e^{-t} t^{-\frac{1}{2}} dt = \left\| \begin{array}{c} t = x^{2} \\ dt = 2x dx \end{array} \right\| = 2 \int_{0}^{\infty} e^{-x^{2}} dx = \int_{-\infty}^{\infty} e^{-x^{2}} dx$$

1.12.6 Формула Стирлинга

На первом курсе мы доказали, что $\exists c \in \mathbb{R} : n! \sim c\sqrt{n}n^ne^{-n}$. Так как гамма-функция определена со сдвигом, то будем преобразовывать выражение для (n-1)!:

$$(n-1)! \sim c\sqrt{n-1}(n-1)^{n-1}e^{-n+1} = ce\frac{1}{\sqrt{n-1}}(n-1)^n e^{-n} =$$

$$= ce\frac{1}{\sqrt{n}}\sqrt{\frac{n}{n-1}}\left(1 - \frac{1}{n}\right)^n n^n e^{-n} \sim c\frac{1}{\sqrt{n}}n^n e^{-n}$$

Теорема 1.12.4. Пусть $\phi > 0$. Для $\{z \in \mathbb{C} | \arg z \in (-\pi + \phi, \pi - \phi) \}$, то есть из области без угла:

$$\Re \log(\Gamma(z)) = \log \sqrt{2\pi} + \log \frac{1}{z^{\frac{1}{2}}} - z + z \log z + \mathcal{O}\left(\frac{1}{|z|}\right)$$

Здесь логарифм и корень определены в $\mathbb{C}\setminus(-\infty,0]$, вещественные на вещественной оси. Потенцируя, получаем $\Gamma(z)\sim\sqrt{2\pi}\frac{1}{z^{\frac{1}{2}}}e^{-z}e^{z\log z}$

Доказательство. Будем использовать (*). Положим $\phi(t) \coloneqq \frac{1}{(t+z)^2}$, и приблизим $\sum_{n=1}^{\infty} \phi(n)$ интегралом. Оценим, что при замене погрешность не очень большая:

$$\phi(n) - \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \phi(t) dt = \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} (\phi(n) - \phi(t)) dt = \int_{0}^{\frac{1}{2}} (2\phi(n) - \phi(n+t) - \phi(n-t)) dt$$

Тем самым, $\phi(n) = \int\limits_{n-\frac{1}{2}}^{n+\frac{1}{2}} \phi(t) \, \mathrm{d}t + \int\limits_{0}^{\frac{1}{2}} (2\phi(n) - \phi(n+t) - \phi(n-t)) \, \mathrm{d}t$, и согласно (*):

$$(\log \Gamma(z))'' = \frac{1}{z^2} + \underbrace{\sum_{n=1}^{\infty} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{1}{(t+z)^2} \, dt}_{\int_{1/2}^{\infty} \frac{1}{(t+z)^2} \, dt = \frac{1}{1/2+z}} + \sum_{n=1}^{\infty} \int_{0}^{\frac{1}{2}} \left(\frac{2}{(n+z)^2} - \frac{1}{(n+z+t)^2} - \frac{1}{(n+z+t)^2} - \frac{1}{(n+z-t)^2} \right) dt$$

Дважды почленно возьмём первообразную обеих частей, пока не заботясь вопросами сходимости:

$$(\log \Gamma(z))' \stackrel{?}{=} A - \frac{1}{z} + \log \left(z + \frac{1}{2}\right) + \sum_{n=1}^{\infty} \int_{0}^{\frac{1}{2}} \left(\frac{1}{n+z+t} + \frac{1}{n+z-t} - \frac{2}{n+z}\right) dt$$
$$\log(\Gamma(z)) \stackrel{?}{=} B + Az - \log z + \log \left(z + \frac{1}{2}\right) \left(z + \frac{1}{2}\right) - z + \sum_{n=1}^{\infty} \int_{0}^{\frac{1}{2}} \log \frac{(n+z)^{2} - t^{2}}{(n+z)^{2}} dt$$

Так как z бегает в области без угла, то $|n+z|\geqslant n\sin(\phi)$. Таким образом, $\log\left(1-\frac{t^2}{(n+z)^2}\right)$ оценивается сверху, и ряд $\sum_{n=1}^\infty\int\limits_0^{\frac12}\log\left(1-\frac{t^2}{(n+z)^2}\right)$ сходится абсолютно и равномерно. В частности, сходится равномерно на компактах, значит, его можно дважды продифференцировать почленно, получится $(\log\Gamma(z))''$. Вопросы сходимости решены, $\frac{?}{}$ можно заменить на =. Оценим остаток:

$$\sum_{n=1}^{\infty} \int_{0}^{\frac{1}{2}} \log \left(1 - \frac{t^2}{(n+z)^2} \right) dt \leqslant C_1 \sum_{n=1}^{\infty} \frac{1}{(n+|z|)^2} \leqslant C_2 \int_{1}^{\infty} \frac{ds}{(s+|z|)^2} \leqslant C_3 \frac{1}{|z|}$$

Заметим, что $\log\left(z+\frac{1}{2}\right)-\log\left(z\right)=\log\left(1+\frac{1}{2z}\right)=\frac{1}{2z}+\mathcal{O}(\frac{1}{|z|^2})$, и преобразуем

$$\left(z + \frac{1}{2}\right) \log \left(z + \frac{1}{2}\right) = \frac{1}{2} + z \log z + \frac{1}{2} \log z + \mathcal{O}\left(\frac{1}{|z|}\right)$$

Тем самым,

$$\log(\Gamma(z)) = B + Az - \frac{1}{2}\log z + z\log z + \mathcal{O}\left(\frac{1}{|z|}\right)$$

Осталось выяснить, чему равны константы A и B. Так как мы знаем для натуральных n, что $\Gamma(n)=(n-1)!\sim ce^{-n}\frac{1}{\sqrt{n}}n^n$ при $n\to\infty$, то A=-1.

Теперь запишем формулу дополнения $\Gamma(z)\Gamma(-z)=-\frac{\pi}{z\sin(\pi z)}$. Так как Γ вещественна на вещественной оси, или из интегральной формулы, видно, что $\Gamma(z)=\overline{\Gamma(\overline{z})}$. Тем самым, при $y\in\mathbb{R}$:

$$|\Gamma(iy)|^2 = -\frac{\pi}{iy\sin(\pi iy)} = -\frac{2\pi}{y(e^{-y\pi} - e^{y\pi})} \sim \frac{2\pi}{ye^{y\pi}}$$

С другой стороны, $\Gamma(iy) \sim e^B e^{-iy} e^{-\frac{1}{2}\left(\log y + \frac{\pi}{2}i\right)} e^{iy\left(\log y + \frac{\pi}{2}i\right)}$, откуда $|\Gamma(iy)| = e^B \frac{1}{\sqrt{y}} e^{-\frac{\pi}{2}y}$. Тем самым, $e^{2B} = 2\pi$, и так как $B \in \mathbb{R}$, то $B = \log \sqrt{2\pi}$

Лекция XIII 10 мая 2024 г.

1.13 Аналитическое продолжение

Ещё с первого курса мы знаем, что аналитическая функция однозначно задаётся своими значениями на множестве, содержащем предельную точку. Допустим, мы знаем функцию в маленьком кусочке С, пусть даже в маленькой открытой области. А как (и можно ли) узнать её «целиком»? Примеры.

- Ряд $1+z+z^2+\ldots$ сходится в единичном круге $\mathbb D$, но на самом деле сумма равна $\frac{1}{1-z}$, и эта функция аналитична в множестве $\widehat{\mathbb C}\setminus\{1\}$.
- На предыдущей лекции мы поняли, что $\Gamma(z) = \int\limits_0^\infty e^{-t} t^{z-1} \, \mathrm{d}t$, где интеграл сходится при $\Re z > 0$. А про саму Γ мы знаем, что она определена в $\mathbb{C} \setminus \{-n | n \in \mathbb{N}_0\}$.
- Про ζ -функцию Римана $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ легко показать, что ряд сходится при $\Re s > 1$. Тем не менее, её тоже можно продолжить почти на всю комплексную плоскость ($\mathbb{C} \setminus \{1\}$).

Пусть $G_1,G_2\subset\mathbb{C}$ — области. Пусть $f_1:G_1\to\mathbb{C}$ аналитична, и предположим, что $G_1\cap G_2$ непусто.

Определение 1.13.1 (Аналитическое продолжение f_1 в область G_2). Такая аналитическая f_2 : $G_2 \to \mathbb{C}$, что $f_1\big|_{G_1 \cap G_2} = f_2\big|_{G_1 \cap G_2}$.

Здесь существенно, что не факт, что $G_1\subset G_2$. Так, при продолжении функции с G_1 на G_2 , с G_2 на G_3 , с G_3 на G_4 , а с G_4 на G_1 может получиться так, что на пересечении $G_1\cap G_4$: $f_1\neq f_4$.

Также может не наблюдаться связности пересечения $G_1 \cap G_2$.

Несложно придумать функцию, которая не продолжается за пределы данной области (скажем, круга D).

Теорема 1.13.1 (Адамар, «естественная граница аналитичности»). Нельзя продолжить $f(z)=\sum\limits_{n=1}^{\infty}z^{n!}$ ни в какую область G, такую, что $G\setminus\overline{\mathbb{D}}$ непусто.

Доказательство. Пусть f продолжается в некоторую область G, как в условии.

Значит, на выделенной дуге (какой-то дуге из пересечения) f должна быть непрерывна, и для любой ζ на дуге должен существовать предел $\lim_{r\to 1-0} f(r\zeta)$. Запишем $\zeta=e^{2\pi i\theta}$, и выберем такое ζ , чуть подвинув в случае надобности, что $\theta\in\mathbb{Q}$. Пусть $\theta=\frac{k}{l}$, где $k\in\mathbb{Z}, l\in\mathbb{N}$. Теперь

$$f(r\zeta) = \sum_{n=0}^{\infty} r^{n!} e^{2\pi i \theta n!} = \sum_{n=0}^{l} r^{n!} e^{2\pi i \theta n!} + \sum_{n=l+1}^{\infty} r^{n!} e^{2\pi i \frac{k}{l} n!} = \sum_{n=0}^{l} r^{n!} e^{2\pi i \theta n!} + \sum_{n=l+1}^{\infty} r^{n!} e^{2\pi i \theta n!} = \sum_{n=0}^{l} r^{n!} e^{2\pi i \theta n!} = \sum_{n=l+1}^{\infty} r^{n!} e^{2\pi i \theta n!} = \sum_{n=0}^{\infty} r^{n!} e^{2\pi i \theta$$

Так как $r^{n!} \xrightarrow[r \to 1 \to 0]{} 1$, то сумма расходится. Тут, кстати, можно применить теорему Леви: $\sum_{n=l+1}^{\infty} r^{n!}$ — интеграл от $r^{n!}$ по $n \in \mathbb{N}$ и считающей мере — сходится к сумме единиц $\sum_{n=l+1}^{\infty} 1$ при $r \to \infty$. Впрочем, и без неё всё видно.

Пусть $f:\mathbb{C}\to\mathbb{C}$ — целая функция. Рассмотрим другую функцию $z\mapsto \overline{f(\overline{z})}$. Она целая: так, если $f(z)=\sum\limits_{n=0}^{\infty}a_nz^n$, то новая функция задаётся рядом $\sum\limits_{n=0}^{\infty}\overline{a}_nz^n$.

Следствие 1.13.1. Если $f:\mathbb{C}\to\mathbb{C}$ — целая, и $f(\mathbb{R})\subset\mathbb{R}$, то $\overline{f(\overline{z})}=f(z)$ по теореме единственности.

Если же $f:(G\subset\mathbb{C})\to\mathbb{C}$, то $z\mapsto\overline{f(\overline{z})}$ задана и аналитична в $\{\overline{z}|z\in G\}$. Это видно из того, что если $w_0\in\{\overline{z}|z\in G\}$, то $\overline{w}_0\in G$, и можно разложить $f(z)=\sum\limits_{n=0}^\infty a_n(z-\overline{w}_0)^n$ вблизи \overline{w}_0 , откуда $\overline{f(\overline{z})}=\sum\limits_{n=0}^\infty \overline{a}_n(z-w_0)^n$.

1.13.1 Принцип симметрии Римана — Шварца

Теорема 1.13.2. Пусть область $G\subset \mathbb{C}_+\stackrel{def}{=}\{z\in\mathbb{C}|\Im z>0\}$, такова, что $\overline{G}\cap\mathbb{R}\eqqcolon I$ — отрезок ненулевой длины. Пусть $f:\overline{G}\to\mathbb{C}$ аналитична в G, непрерывна в \overline{G} , и $f\left(\overline{G}\cap\mathbb{R}\right)\subset\mathbb{R}$.

Пусть $\widetilde{G} \coloneqq G \cup I \cup \{\overline{z} | z \in G\}$. Тогда $\exists ! \widetilde{f} : \widetilde{G} \to \mathbb{C} : \widetilde{f}$ — аналитическое продолжение f на \widetilde{G} , и \widetilde{f} задаётся формулой $\forall z \in G \cup I : \begin{cases} \widetilde{f}(z) = f(z) \\ \widetilde{f}(\overline{z}) = f(z) \end{cases}$.

 ${\cal A}$ оказательство. Очевидно, что так определённая $\widetilde f$ аналитична в $\{\overline z|z\in G\}$, и надо убедиться, что аналитичность имеет место на I. Несложно проверить, что $\widetilde f$ непрерывна на I: $\widetilde f|_{\overline G}=f|_{\overline G}$ непрерывна и $\widetilde f|_{\{\overline z|z\in \overline G\}}$ тоже, а $\overline G\cup\{\overline z|z\in \overline G\}$ — фундаментальное покрытие $\widetilde G$.

Теперь проверим, что дифференциальная форма $\widetilde{f}(z)\,\mathrm{d}z$ замкнута в \widetilde{G} , показав тем самым аналитичность \widetilde{f} .

Всякий прямоугольник либо лежит в $G \cup I$, либо в $\{\overline{z} | z \in G\} \cup I$, либо разбивается в сумму двух таких. Интеграл формы по такому прямоугольнику равен нулю, так как можно чуть-чуть отойти от вещественной оси, и использовать непрерывность \widetilde{f} .

В данной формулировке принцип симметрии имеет не наибольшую общность. Во-первых, достаточно требовать, чтобы $\overline{G} \cap \mathbb{R}$ было не отрезком, а лишь содержало некоторый отрезок.

Во-вторых, в качестве кривой, относительно которой происходит отражение, может выступать не вещественная прямая, а ещё что-то. В этом случае условия вещественности f на вещественной оси заменяются на некоторые «условия сопряжения», которые получаются из условий вещественности применением однолистного отображения, переводящего кривую отражения в \mathbb{R} .

1.13.2 Методы аналитического продолжения

«В этом месте обычно делают такой заголовок, но собственно методов там и нет, кроме одного».

1. Переразложение в степенной ряд.

Пусть $z_0,z_1\in G,\ f:G\to\mathbb{C}$ аналитична. Тогда можно переразложить f в ряд точке $z_1,$ и может так получиться, что радиус сходимости будет больше, чем $\mathrm{dist}(z_0,\partial G),$ то есть получится существенное продолжение f. Скажем, если $1+z+z^2+\cdots=\frac{1}{1-z}$ ($z_0=0$) переразложить в ряд в $z_1=-\frac{1}{2},$ то радиус сходимости будет уже $\frac{3}{2}.$

2. Продолжение вдоль цепочки областей.

Пусть G_1,\dots,G_n — области, $G_j\cap G_{j+1}$ непусты и связны, и заданы f_1,\dots,f_n , где $f_j:G_j\to\mathbb{C}$ аналитична. Конечно, предполагается согласованность $f_j\big|_{G_j\cap G_{j+1}}=f_{j+1}\big|_{G_j\cap G_{j+1}}$. Говорят, что f_n является продолжением f_1 вдоль цепочки областей G_1,\dots,G_n .

3. Продолжение вдоль пути.

На самом деле, этот метод эквивалентен предыдущему.

Определение 1.13.2 (Элемент аналитической функции в точке z_0). Пара (f, B_{z_0}) , где B_{z_0} — открытый круг с центром в z_0 и $f: B_{z_0} \to \mathbb{C}$ аналитична.

Пусть f определена и аналитична в точке z_0 . Её можно разложить в ряд с центром в точке z_0 , и рассмотреть радиус сходимости.

Определение 1.13.3 (Естественный элемент в точке z_0). Такой элемент (f, B_{z_0}) , что B_{z_0} – круг максимально возможного радиуса.

Центр и радиус круга B_{z_0} элемента (f,B_{z_0}) называются *центром и радиусом* элемента. Далее везде считаем, что у f есть особенности где-то в $\mathbb C$, значит, все круги из естественных элементов имеют конечный радиус. Иначе f целая, и в любой точке естественный элемент определён на всей плоскости.

Пусть $\gamma:[a,b]\to\mathbb{C}$ — путь без задержек (нет невырожденных отрезков, на которых путь постоянен). Условие необязательное, но его всегда можно добиться, стягивая отрезки, на которых путь постоянен, до одной точки.

Пусть $A = \gamma(a), B = \gamma(b)$. Не исключено, что A = B — путь может иметь самопересечения и прочее.

Пусть $\forall t \in [a,b]$ задан естественный элемент $(f_t,B_{\gamma(t)})$ аналитической функции. Эти элементы должны быть некоторым образом связаны: пусть $\phi:[a,b] \to \mathbb{C}$ — связывающая функция, такая, что $\forall t \in [a,b]: \exists \delta > 0: |s-t| < \delta \Rightarrow \phi(s) = f_t(\gamma(s))$.

Замечание. Такая ϕ автоматически непрерывна: из условия следует непрерывность в каждой точке: γ непрерывна, а f_t даже аналитична.

Говорят, что $(f_b, B_{\gamma(b)})$ — аналитическое продолжение элемента $(f_a, B_{\gamma(a)})$ вдоль пути γ .

При продолжении некоторого элемента вдоль разных путей получится большой набор элементов, заметающих некоторую область. Совокупность таких элементов называется полной аналитической функцией, а объединение всех кругов, составляющих элементы — естественной областью определения аналитической функции.

Пример. Пусть $f(z) = \sqrt{z} = e^{\frac{1}{2}\log(z)}$, где в качестве \log выбрана главная ветвь логарифма (вещественная на вещественной оси, определённая на $\mathbb{C}\setminus (-\infty,0]$).

Естественный элемент f в точке 1 имеет радиус 1 — расстояние до ближайшей особенности, которая имеет место в нуле.

Продолжим f вдоль пути $\gamma(t)=e^{2\pi it}$, где $t\in[0,1]$. Понятно, что связывающая точка в точке t должна принимать одна из значений корня $\gamma(t)$, подойдёт $\phi(t)=e^{2\pi i\frac{t}{2}}$. Продлевая f вдоль пути γ , получим ветвь корня, равную -1 в 1. Обходя вдоль пути γ ещё раз (продлевая вдоль пути $\gamma\oplus\gamma$), мы получим старую ветвь корня.

Если бы f была корнем кубическим, то надо было бы три раза обойти вокруг нуля, чтобы получить прежнюю ветвь корня. А у логарифма всякий раз при обходе вдоль нуля аргумент будет увеличиваться на $2\pi i$, и при продолжении по пути ненулевого индекса относительно нуля мы не получим прежнюю ветвь.

Утверждение 1.13.1. Отношение «элемент аналитической функции β есть продолжение элемента α вдоль некоторого пути» является отношением эквивалентности.

Доказательство. Очевидно.

Имея в виду это утверждение, получаем, что полная аналитическая функция — класс эквивалентных элементов. Полная аналитическая функция, построенная по корню из примера — набор функций вида $e^{\frac{1}{2}\log z}$, и значения зависят от того, какая ветвь логарифма выбрана, в каждой точке — два варианта. Естественная область определения корня — $\mathbb{C}\setminus\{0\}$.

Утверждение 1.13.2. Методы продолжения вдоль цепочки областей и вдоль пути эквивалентны.

В одну сторону понятно, как сводиться: пусть есть цепочка областей G_1,G_2,\ldots,G_n , выберем по точке $t_j\in G_j\cap G_{j+1}$, и соединим последовательные точки t_j и t_{j+1} путём, проходящим по области

 G_{j+1} , получив путь от G_1 до G_n :

В другую сторону хочется нарисовать подобную картинку, но будем чуть сложнее, так как путь может иметь самопересечения, и надо области получить такими, чтобы соседние пересекались, и содержали нужный отрезок пути в себе.

Лемма 1.13.1. Пусть $\gamma:[a,b]\to\mathbb{C}$ — путь без задержек, и $(f_t,B_{\gamma(t)})$ — естественные элементы в точках $\gamma(t)$ соответственно, реализующие аналитическое продолжение элемента (f_a,B_A) в элемент (f_b,B_B) со связывающей функцией ϕ .

Пусть r(t) — радиус естественного элемента $(f_t, B_{\gamma(t)})$ $(r(t) < \infty)$.

Тогда r непрерывна на [a,b].

Доказательство. Пусть имеются два круга $B(z_1, r_1)$ и $B(z_2, r_2)$, и пусть $z_2 \in B(z_1, r_1)$:

Предположим, что g аналитична в $B(z_1,r_1)\cup B(z_2,r_2)$. Если $B(z_1,r_1)$ и $B(z_2,r_2)$ — естественные элементы g, то g заведомо аналитична в $B(z_2,r_1-|z_1-z_2|)$, откуда $r_2\geqslant r_1-|z_1-z_2|$. Иными словами, $r_1-r_2\leqslant |z_1-z_2|$.

При этом, если $|z_1-z_2|<\frac{r_1}{2}$, то $r_2\geqslant r_1-|z_1-z_2|\geqslant r_1-\frac{r_1}{2}=\frac{r_1}{2}$, в частности $|z_1-z_2|< r_2$. Тем самым, верна и аналогичная оценка $r_2-r_1\leqslant |z_1-z_2|$, тем самым, $|r_1-r_2|\leqslant |z_1-z_2|$ (при $|z_1-z_2|<\frac{r_1}{2}$).

Теперь пусть $t_0 \in [a,b]$, и r_0 — радиус элемента $(f_{t_0},B_{\gamma(t_0)})$. Выберем $\delta>0$ так, что $|t-t_0|<\delta \Rightarrow |\gamma(t)-\gamma(t_0)|<\frac{r_0}{2}$. Тогда из проделанной выше выкладки: $|r(t)-r(t_0)|\leqslant |\gamma(t)-\gamma(t_0)|$.

Лекция XIV

17 мая 2024 г.

Почему продолжение вдоль пути можно заменить продолжением вдоль цепочки областей?

Функция $t\mapsto r(B_t)$ непрерывна, и всегда положительна, значит, $s\coloneqq \min_{t\in [a,b]} r(B_t)>0$. Выберем

 $\delta > 0$, и поделим отрезок точками $a = t_0 < t_1 < \dots < t_n = b$ таким образом, что $\operatorname{osc}_{[t_j, t_{j+1}]} \stackrel{def}{=} \sup \{ |\gamma(x) - \gamma(y)| | x, y \in [t_j, t_{j+1}] \} < \delta$. Пусть δ настолько мало, что $|\gamma(u) - \gamma(v)| < \delta \Rightarrow |r(u) - r(v)| < \frac{s}{10}$.

Тогда цепочка кругов B_0, \ldots, B_n с центрами в $\gamma(t_j)$ такова, что $B_j \cap B_{j+1} \neq \varnothing$. Понятно, что продолжения вдоль пути γ , и вдоль цепочки кругов B_0, \ldots, B_n совпадают.

Теорема 1.13.3 (Продолжение вдоль пути единственно). Пусть D_t — элементы аналитических функций, образующие аналитическое продолжение вдоль γ с направляющей функцией ϕ . Аналогично \widetilde{D}_t — элементы вдоль γ с функцией $\widetilde{\phi}$.

Если $D_a = \widetilde{D}_a$, то $\forall t \in [a,b]: D_t = \widetilde{D}_t$ и $\phi(t) \equiv \widetilde{\phi}(t)$.

Доказательство. Покажем, что $\forall t \in [a,b]: \phi(t) = \widetilde{\phi}(t)$. Так как $(B_a,f_a) = D_a = \widetilde{D}_a = (\widetilde{B}(a),\widetilde{f}_a)$, то при τ , достаточно близких к a: $\phi(\tau) = f_a(\gamma(\tau)) = \widetilde{f}_a(\gamma(\tau)) = \widetilde{f}_a(\gamma(\tau))$, то есть в некоторой окрестности a: $\phi = \widetilde{\phi}$.

Пусть $\eta = \sup \Big\{ \tau_0 \in [a,b] \Big| \forall \tau \in [a,\tau_0) : \phi(\tau) = \widetilde{\phi}(\tau) \Big\}$. Покажем, что $\eta = b$ от противного. Рассмотрим элементы $D_{\eta} = (B_{\eta},f_{\eta})$ и $\widetilde{D}_{\eta} = (\widetilde{B}_{\eta},\widetilde{f}_{\eta})$. При достаточно близких $\tau < \eta$: $\phi(\tau) = \widetilde{\phi}(\tau)$. Это множество — кусочек отрезка, имеющий предельную точку — значит, $f_{\eta} = \widetilde{f}_{\eta}$, и $\phi = \widetilde{\phi}$ в некоторой окрестности η . Тем самым, η не супремум.

Пусть D = (B, f) — элемент аналитической функции в точке ζ .

Определение 1.13.4 ($z_0 \in \mathbb{C}$ — точка ветвления для полной аналитической функции, порождённой элементом D). Такая точка $z_0 \in \mathbb{C}$, что $\exists \gamma : [a,b] \to \mathbb{C}$ — путь с началом и концом в ζ , такой, что $\mathrm{Ind}_{z_0} \, \gamma \neq 0$, и имеется аналитическое продолжение элемента D вдоль γ в элемент $\widetilde{D} \neq D$.

1.14 Рациональные и полиномиальные приближения

Будем приближать функцию рациональными функциями, то есть элементами $\mathbb{C}(t)$. Нам будет достаточно правильных дробей, то есть частных многочленов $\frac{p}{q}$, где $\deg p < \deg q$. Используя разложение на простейшие дроби, можно показать, что любая функция раскладывается в сумму дробей вида $\frac{C_j}{(z-z_j)^k}$. Однако для приближений достаточно таких дробей, в которых степень знаменателя равна 1, так как можно немножко пошевелить множители в знаменателе, сделав их различными.

Определение 1.14.1 (Рациональная дробь). Рациональная функция $\sum\limits_{j=1}^{N} rac{C_{j}}{z-z_{j}}$.

Теорема 1.14.1 (Рунге). Пусть K — компакт на плоскости, f аналитична в окрестности K. Тогда она приближается рациональными дробями: $\forall \varepsilon > 0 : \exists R(z) = \sum\limits_{j=1}^N \frac{C_j}{z-z_j}$ — рациональная дробь, такая, что все $z_j \notin K$, и $\sup_{z \in K} |f(z) - R(z)| \leqslant \varepsilon$.

Если $\mathbb{C}\setminus K$ связно, то $\forall \varepsilon>0:\exists p\in\mathbb{C}[z]$ — многочлен, точно так же приближающий $f:\sup_{z\in K}|f(z)-p(z)|\leqslant \varepsilon$, но это мы доказать не успели.

 \mathcal{Q} оказательство. Напомним, что для дифференцируемой функции $g:\mathbb{R}^2 \to \mathbb{C}$ определены операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}:\frac{\partial}{\partial \overline{z}}g=\frac{1}{2}\left(\frac{\partial g}{\partial x}+i\frac{\partial g}{\partial y}\right)$ и $\frac{\partial}{\partial z}g=\frac{1}{2}\left(\frac{\partial g}{\partial x}-i\frac{\partial g}{\partial y}\right)$.

Лемма 1.14.1 (Формула Помпейю, формула Грина,...). Пусть $\phi \in \mathcal{D}(\mathbb{C})$ — бесконечно дифференцируемая (в вещественном смысле) функция с компактным носителем. Тогда $\forall z \in \mathbb{C}$:

$$\phi(z) = \frac{1}{\pi} \int_{\Gamma} \frac{\frac{\partial \phi}{\partial \overline{\zeta}}(\zeta)}{z - \zeta} \, \mathrm{d}\lambda_2(\zeta)$$

Доказательство леммы.

Например, если ϕ — целая, то так как она из $\mathcal{D}(\mathbb{C})$, то по теореме Лиувилля она нуль, и интеграл тоже берётся от нуля.

Зафиксируем $z\in\mathbb{C}$. Пусть R>0 настолько велико, что $\mathrm{supp}\,\phi\subset B(z,R)$. Введём полярные координаты с центром в z: $\zeta-z=\rho e^{i\theta}$, где $\theta\in[0,2\pi]$, $\rho\in[0,R]$. (Имеется некоторая неоднозначность, но она на множестве меры нуль, что не вносит никакого вклада). Пусть $F(\rho,\theta)=\phi(\zeta)=\phi(z+\rho e^{i\theta})$. Продифференцируем:

$$\frac{\partial \phi}{\partial \overline{\zeta}} = F_{\rho}' \cdot \frac{\partial \rho}{\partial \overline{\zeta}} + F_{\theta}' \cdot \frac{\partial \theta}{\partial \overline{\zeta}}$$

Выразим $\overline{\zeta}-\overline{z}=\rho e^{-i\theta}$, откуда $\rho^2=(\zeta-z)(\overline{\zeta}-\overline{z})$, и $e^{2i\theta}=\frac{\zeta-z}{\overline{\zeta}-\overline{z}}$. Теперь посчитаем производные $\frac{\partial\theta}{\partial\overline{\zeta}}$ и $\frac{\partial\rho}{\partial\overline{\zeta}}$, дифференцируя по $\overline{\zeta}$ эти равенства:

$$2ie^{2i\theta}\frac{\partial\theta}{\partial\overline{\zeta}} = \frac{\partial}{\partial\overline{\zeta}}\left(\frac{\zeta-z}{\overline{\zeta}-\overline{z}}\right) = -\frac{(\zeta-z)}{(\overline{\zeta}-\overline{z})^2} \quad \Rightarrow \quad \frac{\partial\theta}{\partial\overline{\zeta}} = \frac{1}{2}ie^{-2i\theta}\frac{\zeta-z}{(\overline{\zeta}-\overline{z})^2} = \frac{1}{2}ie^{-2i\theta}\frac{\zeta-z}{\rho^2e^{-2i\theta}} = \frac{i}{2}\frac{\zeta-z}{\rho^2}$$
$$2\rho\frac{\partial\rho}{\partial\overline{\zeta}} = \zeta-z \quad \Rightarrow \quad \frac{\partial\rho}{\partial\overline{\zeta}} = \frac{e^{i\theta}}{2}$$

Теперь осталось записать интеграл:

$$\phi(z) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{\frac{\partial}{\partial \overline{\zeta}} \phi(\zeta)}{z - \zeta} d\lambda_{2}(\zeta) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{F'_{\rho}}{z - \zeta} \frac{\partial \rho}{\partial \overline{\zeta}} + \frac{F'_{\theta}}{z - \zeta} \frac{\partial \theta}{\partial \overline{\zeta}} d\lambda_{2}(\zeta) =$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{R} F'_{\rho} \frac{e^{i\theta}}{2(z - \zeta)} \rho d\rho d\theta + \frac{1}{\pi} \int_{0}^{R} \int_{0}^{2\pi} F'_{\theta} \cdot \frac{i}{2\rho^{2}} \rho d\theta d\rho$$

Второй интеграл обращается в нуль, как интеграл производной по периоду: $\int\limits_0^{2\pi} F_{\theta}' \, \mathrm{d}\theta = 0.$

Первый же обращается в
$$\frac{1}{\pi} \int\limits_0^{2\pi} \int\limits_0^{R} \frac{F_{\rho}'}{2} \,\mathrm{d}\rho \,\mathrm{d}\theta = -\frac{1}{\pi} \int\limits_0^{2\pi} \frac{\phi(z + Re^{i\theta}) - \phi(z)}{2} = \frac{1}{2\pi} \int\limits_0^{2\pi} \phi(z) \,\mathrm{d}\theta = \phi(z).$$

f аналитична в окрестности K, то есть на открытом $U\supset K$. \exists компактное $V\subset U:K\subset \mathrm{Int}\,V$:

Введём функцию $h:V\cup(\mathbb{C}\setminus U)\to\mathbb{C}$, такую, что $h\big|_V=f,h\big|_{\mathbb{C}\setminus U}\equiv 0$, и продолжим её по теореме Титце — Урысона (лемма 1.14.2) до некоторой непрерывной функции $g:\mathbb{C}\to\mathbb{C}$. Подправим g до дифференцируемой: $\widetilde{g}:=g*\alpha_t$, где α_t — стандартная аппроксимативная единица, построенная по $\alpha\in\mathcal{D}(\mathbb{C})$.

При достаточно малом t функция \widetilde{g} аналитична в окрестности K: можно продифференцировать $\int g(w-z)\alpha_t(z)\,\mathrm{d}z$ по w под знаком интеграла. Выберем $\varepsilon>0$, и будем считать, что $\sup_K |f-\widetilde{g}|<\varepsilon$.

Запишем формулу (лемма 1.14.1):

$$\widetilde{g}(z) = \frac{1}{\pi} \int_{\mathbb{C}} \frac{\frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta)}{z - \zeta} d\lambda_2(\zeta)$$

Возьмём носитель подынтегрального выражения — некоторое компактное множество S, отделённое от K некоторым расстоянием d.

Покроем $S=\coprod_{j=1}^N S_j$, где $\dim S_j<\varepsilon$, и выберем произвольно $\zeta_j\in S_j$, дальше положим $\lambda_j=\frac{1}{\pi}\int\limits_{S_j}\frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta)\,\mathrm{d}\lambda_2(\zeta)$. Утверждается, что $\sum\limits_{j=1}^N\frac{\lambda_j}{z-\zeta_j}$ хорошо приближает \widetilde{g} на K:

$$\left| \widetilde{g}(z) - \sum_{j=1}^{N} \frac{\lambda_{j}}{z - \zeta_{j}} \right| = \left| \frac{1}{\pi} \sum_{j=1}^{N} \int_{S_{j}} \left[\frac{\frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta)}{z - \zeta} - \frac{\frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta)}{z - \zeta_{j}} \right] d\lambda_{2}(\zeta) \right| \leq$$

$$\leq \frac{1}{\pi} \sum_{j=1}^{N} \int_{S_{j}} \left| \frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta) \right| \cdot \frac{|\zeta - \zeta_{j}|}{|z - \zeta| \cdot |z - \zeta_{j}|} \lambda_{2}(\zeta) \leq \underbrace{\frac{1}{\pi} \max_{\zeta \in S} \left| \frac{\partial \widetilde{g}}{\partial \overline{z}}(\zeta) \right| \sum_{j=1}^{N} |S_{j}|}_{\text{const}} \underbrace{\frac{\varepsilon}{d^{2}}}$$

при этом d тоже фиксировано. Выбирая достаточно малый ε , получаем достаточно хорошее приближение.

Лемма 1.14.2 (Теорема Титце — Урысона). Пусть X — нормальное топологическое пространство, замкнутое $Y \subset X$. Всякая ограниченная непрерывная функция $f: Y \to \mathbb{R}$ продолжается до непрерывной ограниченной (можно той же константой) $\widetilde{f}: X \to \mathbb{R}$. (При этом можно заменить \mathbb{R} на \mathbb{C} , разбив функцию на вещественную и мнимую части, и, применив теорему для них отдельно, склеить их обратно.)

Доказательство. Можно считать, что $-1\leqslant f\leqslant 1$ всюду $(|f|\leqslant 1).$

Пусть $F_1 \coloneqq \left\{x \in Y \middle| f(x) \geqslant \frac{1}{3}\right\}$ и $F_{-1} \coloneqq \left\{x \in Y \middle| f(x) \leqslant -\frac{1}{3}\right\}$. По лемме Урысона, $\exists g: X \to \mathbb{R}$ — непрерывная функция, такая, что $g(x) = \begin{cases} \frac{1}{3}, & x \in F_1 \\ -\frac{1}{3}, & x \in F_{-1} \end{cases}$, и всюду $-\frac{1}{3} \leqslant g \leqslant \frac{1}{3}$.

Рассмотрим f-g на Y. На F_1 значения лежат в $\left[0,\frac{2}{3}\right]$, на F_2 значения лежат в $\left[-\frac{2}{3},0\right]$, а на $Y\setminus (F_1\cup F_2)$ — по неравенству треугольника значения лежат в $\left[-\frac{2}{3},\frac{2}{3}\right]$. Тем самым, $\sup_{t\in Y}|f(t)-g(t)|\leqslant \frac{2}{3}$. С другой стороны, $\sup_{t\in X}|g(t)|\leqslant \frac{1}{3}$.

Обозначим $g_1 \coloneqq g$, и начнём итерироваться. Сначала найдётся g_2 , такая, что $|f(t) - g_1(t) - g_2(t)| \leqslant \left(\frac{2}{3}\right)^2$ на Y, и $|g_2(t)| \leqslant \frac{1}{3} \cdot \frac{2}{3}$ на X.

По индукции получим последовательность $g_j: |g_j(t)| \leqslant \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{j-1}$ и $|f(t) - g_1(t) - \dots - g_j(t)| \leqslant \left(\frac{2}{3}\right)^j$.

Видно, что
$$g(t)\coloneqq\sum_{j\geqslant 1}g_j(t)$$
 подойдёт — ряд сходится равномерно, и $|g(t)|\leqslant \frac{1}{3}\sum_{k\geqslant 0}\left(\frac{2}{3}\right)^k=1.$

 $\mathit{Интересный}\ \phi a \kappa m$ (Формула Коши — Грина). Имеется область G с гладкой границей — набором путей $\Gamma = \{\gamma_j\}$, таких, что при обходе область остаётся слева.

Пусть ϕ — гладкая функция в окрестности G. Тогда $\forall z \in G: f(z) = \frac{1}{2\pi i} \int\limits_{\Gamma} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta + \frac{1}{\pi} \int\limits_{C} \frac{\overline{\partial} f(\zeta)}{z - \zeta} \,\mathrm{d}\lambda_2(\zeta)$