برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
1	عا كنّ	1 بنیادی<
1	ينيادى اكائياں	1.1
1	غيرستى	1.2
2	سمتير	1.3
3		1.4
3	1.4.1 كار تىبى محددى نظام	
5	1.4.2 نگلی محددی نظام	
7	سمتيررقبر	1.5
9	ر قبه عمودی تراش	1.6
10	برقی اور مقناطیسی میدان	1.7
10	1.7.1 برقی میدان اور برقی میدان کی شدت	
11	1.7.2 مقناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

11	طلح اور خجمی کثافت	1.8	
11	1.8.1 عظی کثافت	l	
12	ئمى كثافت	1.9	
13	مليبي ضرب اور ضرب نقطه	1.10	
13	1.10.1 صلیبی ضرب	I	
15	1.10.2 نقطى ضرب	2	
18	غرق اور جزوی تفرق	7 1.11	
18	نظى كلمل	3 1.12	
19	طح تمل	1.13	
20	ر حلی سمتیی	1.14	
25	وار	مقناطيسىاد	2
2525	وار زاحمت اور بچکچا بٹ		2
		2.1	2
25	زاحمت اور نچکچاېث	2.1	2
2526	زاحمت اور بیچکیابٹ	2.1 2.2 2.3	2
252628	زاحمت اور بچکچاہٹ	2.1 2.2 2.3 2.4	2
25262830	زاحمت اور انچکچا به شد. ثافت برتی ر واور برتی میدان کی شدت	2.1 2.2 2.3 2.4 2.5	2
2526283031	زاحمت اور بنچکچاې ^ن ثبافت ِ برقی رواور برقی میدان کی شدت تی اد وار تناطیسی دور حصه اول ثبافت ِ مقناطیسی بهاواور متناطیسی میدان کی شدت	 2.1 2.2 2.3 2.4 2.5 2.6 	2
25 26 28 30 31 34	زاحمت اور بیکچاپ ش ثبافت برتی رواور برتی میدان کی شدت رقی او وار میناطیسی دور حصه اول ثبافت میناطیسی بهاواور متناطیسی میدان کی شدت ثناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6 2.7	2

عـــنوان

55		ٹرانسفار	3
56	ٹرانسفار مر کی اہمیت	3.1	
59	ٹرانسفار مرکے اقسام	3.2	
60	المالى برقى د ياو	3.3	
62	هیجان انگیز برقی رواور قالبی ضیاع	3.4	
65	تبادله برقی د باواور تبادله برقی روکے خصوصیات	3.5	
68	ثانوى جانب بوجه كاابتدائي جانب اثر	3.6	
69	ٹرانسفار مرکی علامت پر نقطوں کامطلب	3.7	
70	ر کاوٹ کاتبادلہ	3.8	
75	ٹرانسفار مر کے وولٹ -ایمپیئر	3.9	
77	﴾ ٹرانسفار مر کے امالہ اور اس کے مساوی دور	3.10	
77	3.10.1 کچھے کی مزاحمت اوراس کی متعاملہ علیحدہ کرنا		
78	3.10.2 رِشَالِلْهِ		
79	3.10.3 ثانوى برقى رواور قالب كے اثرات		
80	3.10.4 څانوی کچھے کی امالی بر تی د باد		
81	3.10.5 ثانوى کچھے کی مزاحمت اور متعاملہ کے اثرات		
81	3.10.6 ركاوك كاابتدائي ياثانوى جانب تبادله		
84	3.10.7 ٹرانسفار مرکے سادہ ترین مساوی دور		
85	﴾ كللے دورمعائنہ اور کسرِ دورمعائنہ	3.11	
86	3.11.1 كطي دور معائنه		
88	3.11.2 كىردورمعائنە		
92	﴾ تنین مرحله ٹرانسفار مر	3.12	
99	ُ ٹرانسفار مریالو کرتے لحہ زیادہ محر کی برتی رو کا گزر	3.13	

vi

يكانى توامائى كا بابمى تبادله	بر قی اور	4
مقناطيسي نظام مين قوت اور قوت مر وڑ	4.1	
تبادله توانائی والاایک کچھے کا نظام	4.2	
توانائي اورېمه توانائي	4.3	
متعدد کچھوں کامتناطبی نظام	4.4	
ثین کے بنیاد ی اصول 125	گھومتے ^م	5
تانونِ فيرادُ ہے	5.1	
معاصر مثین معاصر مثین معاصر مثین	5.2	
محرک برقی دباو	5.3	
کھیے اور سائن نمامقناطیسی دباو	5.4	
5.4.1 برلتي رووالے مثين		
مقناطيسي د باو کی گھومتی موجيں	5.5	
5.5.1 ایک دورکی لپیمی مشین		
5.5.2 تين دور کي کپڻي مشين کا تخليل تجربيه		
5.5.3 تين دورکي کپڻي مشين کاتر سيمي تجربيه		
محرک برقی دباو	5.6	
5.6.1 بدلتي روبر تي جزيئر		
5.6.2 کیک سمتی روبر قی جزیئر		
هموار قطب مشينول مين قوت مرور گري	5.7	
5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حماب		
5.7.2 مقاطييي براد سرم كاني قوية مي وژكاحياب		

vii

6

ن، بر قرار چالو معاصر مثين	يكسال حال
متعدد مر حله معاصر مشین	6.1
معاصر مشين كے اماله	6.2
6.2.1 خوداماله	
6.2.2 مشتر که اماله	
6.2.3 معاصراءاله	
معاصر مشين كامساوى دوريارياضى نمونه	6.3
ىرقى طاقت كى نتقلى	6.4
كيسال حال، بر قرار چالومشين كے خصوصيات	6.5
6.5.1 معاصر جزیئر: برقی یو جھ بالمقابل <i>I</i> _m کے خطوط	
193	
کھلے دوراور کسرِ دور معائنہ	6.6
6.6.1 گھلے دور معائنہ	
6.6.2 کېږ دور معائنه	

207	امالی مشیرز	7
ساكن كىچھوں كى گھومتى مقناطىيى موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تیمرہ	7.2	
ساكن كچھوں ميں امالى بر تى د باد	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی ہرقی دباو	7.4	
گھومتے کچھوں کی گھومتی متناطبی دیاو کی موج	7.5	
گھومتے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كا مساوى برقى دور	7.7	
مساوی بر قی د و ریه غور	7.8	
المالي موشر كا مساوى تقونن دوريارياضي نمونه	7.9	
چنجرانماامالی موٹر	7.10	
بے پوچھ موٹراور جامد موٹر کے معائنہ	7.11	
7.11.1 بي بي جمه موثر كامعائند		
7.11.2 جامد موثر کامعا نند		
رومشين 241	يك سمتى	8
ميكاني ست كاركي بنيادى كاركر دگى	8.1	
8.1.1 ميكاني ست كاركي تفصيل		
ىك ستى جزير كى برقى دباو	8.2	
قوت مرور الله الله الله الله الله الله الله الل	8.3	
يېر وني بيجان اور خود بيجان يک سمتي جزير	8.4	
يک سمتی مشين کی کار کرد گی کے خط	8.5	
8.5.1 حاصل برتی د باو بالتقابل برتی بوجه		
8.5.2 رفتار بالمقابل قوت مرور مرور 8.5.2		
265	ل	فرہنگا

عـــنوان

إب2

مقناطيسى ادوار

2.1 مزاحمت اور ہچکچاہٹ

شکل 2.1 میں ایک سلاخ و کھائی گئی ہے جس کی لمبائی کی ست میں مزاحمہ

$$(2.1) R = \frac{l}{\sigma A}$$

ج جہاں σ موصلیتے 2 کو ظاہر کرتی ہے اور A=wh رقبہ عمودی تراش ہے۔ اس سلاخ کی ہیکھاہے 3 ورج

شكل 2.1:مزاحمت اور جيكيا ہٹ

resistance¹ conductivity²

باب2. مقن طبیسی ادوار

 μ مقناطیسے متقالے μ کہلاتا ہے۔ μ

$$\Re = \frac{l}{\mu A}$$

مقناطیسی مستقل μ کو عموماً خلاء کی مقناطیسی مستقل $\mu_0=4\pi\,10^{-7}$ بنسبت سے لکھا جاتا ہے کینی

$$\mu = \mu_r \mu_0$$

جہاں μ_r جزومقناطیسے متقلے کہلاتا ہے۔ ہیکیاہٹ کی اکائی ایمپیر۔ چکر فیے ویبر ہے جس کی وضاحت جلد کی جائے گ

 $h=3\,\mathrm{cm}$ مثال $\mu_r=2000$ مثال $\mu_r=2000$ مثال الماخ کی انتیکیاہٹ معلوم کریں $2.1\,\mathrm{cm}$ مثال الماخ کی بنیکیاہٹ معلوم کریں $w=2.5\,\mathrm{cm}$ اور $w=2.5\,\mathrm{cm}$

عل:

$$\begin{split} \Re &= \frac{l}{\mu_r \mu_0 A} \\ &= \frac{10 \times 10^{-2}}{2000 \times 4\pi \times 10^{-7} \times 2.5 \times 10^{-2} \times 3 \times 10^{-2}} \\ &= 53\,044\,\mathrm{A} \cdot \mathrm{turns/Wb} \end{split}$$

2.2 کثافت برقی رواور برقی میدان کی شدت

اس سلاخ کے سروں پر برقی دباو v (شکل 2.2) لا گو کرنے سے اس میں برقی روi گزرے گا جس کو اوہم کے قانون v سے حاصل کرتے ہیں۔

$$(2.4) i = \frac{v}{R}$$

 $\begin{array}{c} {\rm reluctance^3} \\ {\rm permeability,\ magnetic\ constant^4} \\ {\rm Ohm's\ law^5} \end{array}$

شكل 2.2: كثافت برقى رواور برقى د باوكى شدت

درج بالا مساوات کو مساوات 2.1 کی مدد سے

$$(2.5) i = v\left(\frac{\sigma A}{l}\right)$$

يا

$$\frac{i}{A} = \sigma\left(\frac{v}{l}\right)$$

یا

$$(2.7) J = \sigma E$$

کھا جا سکتا ہے جہاں J اور E کی تعیرف درج ذیل ہے۔

$$(2.8) J = \frac{i}{4}$$

$$(2.9) E = \frac{v}{l}$$

شکل 2.2 میں سمتیہ J کی مقدار J ہو اور سمتیہ E کی مقدار E لیتے ہوئے مساوات 2.7 کو درج ذیل لکھا جا سکتا ہے

$$(2.10) J = \sigma E$$

جو قانون اوہم کی دوسری روپ ہے۔ J اور E دونوں کا رخ $a_{
m y}$ ہے۔

شکل 2.2 سے ظاہر ہے کہ برقی روi سلاخ کی رقبہ عمودی تراث A سے گزرتی ہے للذا مساوات 2.8 کے تحت J برقی رو کی کثافت کو ظاہر کرتی ہے للذا J کو کثافت برقی روJ کہتے ہیں۔ اس طرح مساوات 2.9 سے واضح ہے کہ J

current density⁶

28 باب2. مقت طبیسی ادوار

برتی دباو فی اکائی لمبائی کو ظاہر کرتی ہے للذاE کو برقہ میدال کے شدھے 7 یا (جہاں متن سے مقناطیسی میدان واضح ہو) مخصراً میدانی شدھے کہتے ہیں۔

بالکل اسی طرح کی مساواتیں مقناطیسی متغیرات کے لئے حصہ 2.5 میں لکھی جائیں گی۔

2.3 برقی ادوار

 $\sigma=5.9\times10^7\,rac{\mathrm{S}}{\mathrm{m}}$ رقی دور میں برقی دباوہ v^8 وجہ سے برقی رو v^{11} انہیدا ہوتی ہے۔ تانباکی موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے جو بہت بڑی مقدار ہے۔ $\frac{\mathrm{S}}{\mathrm{m}}$ موصلیت کی مقدار بہت بڑی ہونے کی بنا اس سے بنی تارکی مزاحمت v^{13} عموماً قابل نظر انداز ہو گی۔ تار میں برقی رو v^{13} گرزنے سے تارکے سروں کے پھی برقی دباو کے گھیاو کی مزاحمت v^{13} بیدا ہو گا جس کو v^{13} کی بنا نظر انداز کیا جا سکتا ہے۔ یوں تانبے کی تار میں برقی دباو کے گھیاو کو رد کیا جا سکتا ہے۔ یعنی ہم v^{13} میں برقی دباو کے گھیاں۔

شکل 2.3-الف میں ایک ایسا ہی برتی دور دکھایا گیا ہے جس میں تانبے کی تارکی مزاحمت کو اکٹھے کر کے ایک ہی جگہ ہر ہے دکھایا گیا ہے۔ اس دور کے لئے درج ذیل کھا جا سکتا ہے۔

$$(2.11) v = \Delta v + v_L$$

تار میں برقی گھٹاو Δv نظرانداز کرتے ہوئے

$$(2.12) v = v_I$$

حاصل ہوتا ہے۔اس کا مطلب ہے کہ اگر تار میں برقی دباو کا گھٹاو قابل نظرانداز ہو تب لا گو برقی دباو جوں کا توں مزاحمت R_L تک پنچتا ہے۔ برقی ادوار حل کرتے ہوئے یہی حقیقت بروئے کار لاتے ہوئے تار میں برقی دباو کے گھٹاو کو نظرانداز کیا جاتا ہے۔ شکل 2.3-الف میں ایبا کرنے سے شکل 2.3-ب حاصل ہوتا ہے۔ یہاں یہ سمجھ لینا ضروری ہے کہ برقی تارکو اس غرض سے استعال کیا جاتا ہے کہ لاگو برقی دباو کو مقام استعال تک بغیر گھٹائے پہنچایا حائے۔

electric field intensity⁷

electric voltage⁸

⁹ برتی د باوکی اکائی وولٹ ہے جو اٹلی کے الیانڈر ووولٹا کے نام ہے جنہوں نے برتی بیٹری ایجاد کی۔ electric current ¹⁰

¹¹ بر تی رو کی اکائی ایمپیئر ہے جو فرانس کے انڈر میر ایمپیئر کے نام ہے جن کا بر تی و مقناطیسی میدان میں اہم کر دار ہے۔

copper¹² 1³مز انست کی اکا گی او ہم ہے جو جر ممنی کے جارج سائنس او ہم کے نام ہے جنہوں نے قانون او ہم دریافت کیا۔

2.3. برتی ادوار

شکل 2.4: کم مزاحمتی راه میں برقی رو کی مقدار زیادہ ہو گی۔

عن طبیمی ادوار باب 2. مقت اطبیمی ادوار

شکل2.5: مقناطیسی دور

شکل 2.4 میں ایک اور مثال دی گئی ہے۔ یہاں ہم دیکھتے ہیں کہ برتی رو اس رائے زیادہ ہوتی ہے جس کی مزاحمت کم ہو۔ لہذا اگر $R_1 < R_2$ ہو تب $R_1 < R_2$ ہو گا۔

2.4 مقناطيسي دور حصه اول

ا گرے اگر نظرانداز کرنا ممکن نہ ہو تب بالکل سلسلہ وار مزاحمتوں کی طرح ہم دو سلسلہ وار بچکچاہٹوں کا مجموعی بچکچاہٹ & استعال کر کے برقی رو حاصل کریں گے، یعنی

$$\Re_s = \Re_a + \Re_c$$

magnetomotive force, $\mathrm{mmf^{14}}$

 $flux^{15}$

 $[\]rm reluctance^{16}$

2.5 كثافت مقناطيسي بهاواور مقناطيسي ميدان كي شدت

حصہ 2.2 میں برقی دور کی مثال دی گئی۔ یہاں شکل 2.6 میں دکھائے گئے مقناطیسی دور پر غور کرتے ہیں۔ مقناطیسی قالب کی $\mu_r = \infty$ قالب کی پچکچاہٹ $\mu_r = \infty$ صفر ہو گی۔ حصہ 2.2 میں تانبا کی تار کی طرح یہاں مقناطیسی قالب کو مقناطیسی دباو τ ایک مقام سے دوسری مقام تک منتقل کرنے کے لئے استعال کیا گیا ہے۔ شکل 2.6 میں مقناطیسی دباو کو خلائی درز کی پچکچاہٹ μ_a تک پہنچایا گیا ہے۔ لہذا یہاں کل پچکچاہٹ صرف خلائی درز کی پیکچاہٹ میں متناطیسی دباو کو خلائی درز کی پیکچاہٹ μ_a تک پہنچایا گیا ہے۔ لہذا یہاں کل پیکچاہٹ صرف خلائی درز کی پیکچاہٹ میں متناطیسی دباو کو خلائی درز کی پیکچاہٹ میں کی پیکچاہٹ ہیں ہے تینی دباو کو خلائی درز کی پیکچاہٹ میں ہیں ہیں دباو کو خلائی درز کی پیکچاہٹ میں ہیں ہیں دباو کو خلائی درز کی پیکچاہٹ ہیں دباو کو خلائی درز کی پیکچاہٹ ہیں ہیں دباو کو خلائی درز کی پیکچاہٹ ہیں دباو کی درز کی پیکچاہٹ ہیں دباو کو خلائی درز کی پیکچاہٹ ہیں دباو کو خلائی درز کی بیکچاہٹ ہیں دباو کو خلائی درز کی بیکچاہٹ ہیاں میں دباو کو خلائی درز کی بیکچاہٹ ہیں دباو کو خلائی درز کی بیکچاہٹ ہی دباو کو خلائی درز کی بیکچاہٹ ہیں دباو کو خلائی درز کی بیکچاہٹ ہی دباو کو خلائی درز کی بیکچاہٹ ہیں دباو کی درز کی دباو کی دباو کی دباو کی درز کی دباو کی درز کی دباو کی دباو

$$\Re_a = \frac{l_a}{\mu_0 A_a}$$

Henry per meter¹⁷

relative permeability, relative magnetic constant 18 magnetic core 19

laminations²⁰

با___2.مقن اطيسي ادوار 32

شکل 2.6: کثافت مقناطیسی بهاواور مقناطیسی میدان کی شد ت_

اگر خلائی درز کی لمبائی $l_a \ll b$ قالب کے رقبہ عمودی تراش کے اضلاع b اور w سے بہت کم ہوں، لینی $l_a \ll b$ اور تب خلائی درز کے رقبہ عمودی تراش A_a کو قالب کے رقبہ عمودی تراش \Re کے برابر لیا جاتا ہے، لیخی: $l_a\ll w$

$$(2.17) A_a = A_c = wb$$

اں کتاب میں جہاں بتلایا نہ گیا ہو وہاں $l_a \ll b$ اور $w \gg l_a \ll b$ کیا جائے گا۔

مقناطیسی دیاو 🕝 کی تعریف درج ذبل مساوات پیش کرتی ہے۔

یوں برقی تار کے چکر ضرب تارییں برقی رو کو مقطاطیسی دیاو کہتے ہیں۔ مقناطیسی دیاو کی اکائی ایمپییر- چکر²¹ ہے۔ بالکل حصه 2.2 كى طرح ہم مساوات 2.15 كو يوں لكھ سكتے ہیں۔

$$\phi_a = \frac{\tau}{\Re_a}$$

مقناطیسی بہاو کی اکائی 22 ویر 23 ہے اور بھی چاہٹ کی اکائی ایمپیر - چکر فرے ویر 24 ہے۔ اس سلسلہ وار دور کی خلائی درز میں مقناطیسی بہاو ϕ_a اور قالب میں مقناطیسی بہاو ϕ_c ایک دوسرے کے برابر ہوں گے۔درج بالا مساوات کو مساوات 2.2 کی مدد سے

$$\phi_a = \tau \left(\frac{\mu_0 A_a}{l_a} \right)$$

 $\rm ampere\text{-}turn^{21}$

²³ یہ اکائی جرمنی کے ولیم اڈور ڈویبر کے نام ہے جن کا برقی و مقناطیسی میدان میں اہم کر دار رہاہے ampere-turn per weber²⁴

١

$$\frac{\phi_a}{A_a} = \mu_0 \left(\frac{\tau}{l_a}\right)$$

کھ سکتے ہیں جہاں درزکی نشاندہی زیر نوشت میں a کھ کرکی گئی ہے۔ اس مساوات میں بائیں ہاتھ مقناطیسی بہاو فی اکائی رقبہ کو کثافتے مقناطیسی بہاو²⁵ B_a اور دائیں ہاتھ مقناطیسی دباو فی اکائی لمبائی کو مقناطیسی میدالنے کی شدھے B_a کا کھا جا سکتا ہے، یعنی:

$$(2.21) B_a = \frac{\phi_a}{A_a}$$

$$(2.22) H_a = \frac{\tau}{l_a}$$

کثافتِ مقناطیسی بہاو کی اکائی ویبر فی مربع میٹر ہے جس کو ٹسلا²⁷ کا نام دیا گیا ہے۔مقناطیسی میدان کی شدت کی اکائی ایمپیئر فی میٹر²⁸ ہے۔ یوں مساوات 2.20 کو درج ذیل لکھا جا سکتا ہے۔

$$(2.23) B_a = \mu_0 H_a$$

جہاں متن سے واضح ہو کہ مقناطیسی میدان کی بات ہو رہی ہے وہاں مقناطیسی میدان کی شدت کو مختراً میدانہ شدہ ہوت کے ہے شکل 2.6 میں ہم و کیھتے ہیں کہ خلائی درز میں مقناطیسی بہاو کا رخ اکائی سمتیہ کہ خلائی درز میں مقناطیسی و باو اکائی سمتیہ للذا ہم کثافتِ مقناطیسی بہاو کو $B_a = -B_a a_z$ لکھ سکتے ہیں۔ اسی طرح خلائی درز میں مقناطیسی و باو کی شدت کو a_z کی الٹ رخ و باو ڈال رہا ہے للذا ہم مقناطیسی و باو کی شدت کو a_z کی الٹ رخ و باو ڈال رہا ہے للذا ہم مقناطیسی و باو کی شدت کو درج و ڈیل کھا جا سکتے ہیں۔ یوں درج بالا مساوات کو درج ذیل کھا جا سکتا ہے۔

$$(2.24) B_a = \mu_0 H_a$$

اگر خلاء کی جگه کوئی اور ماده ہو تب ہم اس مساوات کو درج ذیل لکھتے۔

$$(2.25) B = \mu H$$

مثال 2.2: شکل 2.6 میں خلائی ورز میں کثافت مقناطیسی بہاو 0.1 ٹسلا ورکار ہے۔ قالب کی $\mu_r = \infty$ ہثال 2.2: شکل 2.6 میں خلائی ورز کی لمبائی 1 ملی میٹر ہے۔ اگر قالب کے گرد برتی تار کے 100 چکر ہوں تب درکار برتی رو i کتنا ہو گا۔

magnetic flux density²⁵

magnetic field intensity²⁶

Tesla:²⁷ بيا کائي سربيا کے نِکولا ٹسلا کے نام ہے جنہوں نے بدلتی روبر قی طاقت عام کرنے میں اہم کر دارادا کیا

ampere per meter²⁸

field intensity²⁹

با___2.مقت طبيبي اووار

عل:

$$\tau = \phi \Re$$

$$Ni = \phi \left(\frac{l}{\mu_0 A}\right)$$

$$\frac{\phi}{A} = B = \frac{Ni\mu_0}{l}$$

للذا

$$0.1 = \frac{100 \times i \times 4\pi 10^{-7}}{0.001}$$
$$i = \frac{0.1 \times 0.001}{100 \times 4\pi 10^{-7}} = 0.79567 \,\text{A}$$

برتی رو خلائی درز میں $B=0.1\,\mathrm{T}$ کثافت مقناطیسی بہاو پیدا کرے گا۔ $i=0.795\,67\,\mathrm{A}$

2.6 مقناطیسی دور حصه دوم

شکل 2.7 میں ایک سادہ مقناطیسی نظام دکھایا گیا ہے جس میں قالب کی مقناطیسی مستقل کو محدود تصور کرتے ہیں۔ مقناطیسی دباو $\tau=Ni$ مقناطیسی قالب میں مقناطیسی بہاو ϕ_c پیدا کرتا ہے۔ قالب کا رقبہ عمود کی تراش $\tau=Ni$ ہیں۔ مقناطیسی بہاو کا رخ فلیمنگے $\tau=Ni$ واکس ہاتھ کے جگہ ایک کیساں ہے اور قالب کی اوسط لمبائی t_c ہاتوں کو دو طریقوں سے بیان کیا جا سکتا ہے۔ قالب میں عانون سے معلوم کیا جا سکتا ہے۔ اس قانون کو دو طریقوں سے بیان کیا جا سکتا ہے۔

- اگرایک لچھے کو دائیں ہاتھ سے یوں پکڑا جائے کہ ہاتھ کی چار انگلیاں کچھے میں برتی رو کے رخ لیٹی ہوں تب انگوٹھا اُس مقناطیسی بہاو کے رخ ہو گا جو اس برتی رو کی وجہ سے وجود میں آیا ہو۔
- اگر ایک تارجس میں برقی رو کا گزر ہو کو دائیں ہاتھ سے یوں پکڑا جائے کہ انگوٹھا برقی رو کے رخ ہو تب باقی چار انگلیاں اُس مقناطیسی بہاو کے رخ لیٹی ہوں گی جو اس برقی رو کی وجہ سے پیدا ہوگا۔

2.6. مقن طيسي دور حصبه دوم

شکل 2.7: ساده مقناطیسی دور ـ

ان دو بیانات میں پہلا بیان کچھے میں مقناطیسی بہاو کا رخمعلوم کرنے کے لئے زیادہ آسان ثابت ہوتا ہے جبکہ سید تھی تار کے گرد مقناطیسی بہاو کا رخ دوسرے بیان سے زیادہ آسانی سے معلوم کیا جا سکتا ہے۔

قالب میں مقناطیسی بہاو گھڑی کے ست میں ہے۔ مقناطیسی بہاو ہ کو شکل 2.7 میں تیر والے ہلکی سیابی کے کیر سے ظاہر کیا گیا ہے۔ قالب کی بھکیاہٹ

$$\Re_c = \frac{l_c}{\mu_c A_c}$$

لکھتے ہوئے مقناطیسی بہاو

$$\phi_c = \frac{\tau}{\Re_c} = Ni \left(\frac{\mu_c A_c}{l_c} \right)$$

ہو گا۔اس طرح ہم تمام نا معلوم متغیرات حاصل کر پائے ہیں۔

مثال 2.3: شکل 2.8 میں ایک مقناطیسی قالب و کھایا گیا ہے جس کی معلومات ورج ذیل ہے۔

(2.26)
$$\psi \mathbf{\ddot{v}} = \left\{ \begin{array}{ll} h = 20 \, \mathrm{cm} & m = 10 \, \mathrm{cm} \\ n = 8 \, \mathrm{cm} & w = 2 \, \mathrm{cm} \\ l_a = 1 \, \mathrm{mm} & \mu_r = 40 \, 000 \end{array} \right.$$

قالب اور خلائی درز کی ہیکیاہٹیں حاصل کریں۔

Fleming's right hand rule³⁰

اب 2. مقت طبیمی ادوار

شكل 2.8: خلائى در زاور قالب كے بچكچاہٹ۔

حل:

$$b = \frac{m-n}{2} = \frac{0.1 - 0.08}{2} = 0.01 \,\mathrm{m}$$

$$A_a = A_c = bw = 0.01 \times 0.02 = 0.0002 \,\mathrm{m}^2$$

$$l_c = 2(h+n) - l_a = 2(0.2 + 0.08) - 0.001 = 0.559 \,\mathrm{m}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 A_c} = \frac{0.559}{40000 \times 4\pi 10^{-7} \times 0.0002} = 55\,598\,\text{A} \cdot \text{t/Wb}$$

$$\Re_a = \frac{l_a}{\mu_0 A_a} = \frac{0.001}{4\pi 10^{-7} \times 0.0002} = 3\,978\,358\,\text{A} \cdot \text{t/Wb}$$

ہم و کھتے ہیں اگرچہ قالب کی لمبائی خلائی ورز کی لمبائی سے 559 گنا زیادہ ہے تب بھی خلائی ورز کی انچکچاہٹ 71 گنا زیادہ ہے۔ یوں $\Re_a\gg\Re_c$ ہو گا۔

مثال 2.4: شکل 2.9 سے رجوع کریں۔خلائی درز 5 ملی میٹر لمبا ہے اور گھومتے حصہ پر 1000 چکر ہیں۔خلائی درز مثال کی درز میں۔ خلائی درز میں۔ درز میں کا 0.95 کثافتِ برقی بہاو حاصل کرنے کی خاطر درکار برقی رو معلوم کریں۔

حل: اس شکل میں گھومتے مشین، مثلاً موٹر، کی ایک سادہ صورت دکھائی گئی ہے۔ ایسی مشینوں کا ہیرونی حصہ ساکن رہتا ہے لہذا اس جصے کو مشین کا ساکھنے صعبہ 31 کہتے ہیں۔ ساکن حصے کے اندر مشین کا گھومتا حصہ پایا جاتا ہے لہذا اس جصے کو مشین کا گھومتا حصہ 32 کہتے ہیں۔ اس مثال میں ان دونوں حصوں کا $m_r = \infty$ ہے لہذا ان کی ہمچکچاہٹ صفر

 $^{{\}rm stator}^{31} \\ {\rm rotor}^{32}$

2.6 مقت طيسي دور حصب دوم

ہو گی۔ مقناطیسی بہاو کو ہلکی سیاہی کی کلیر سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو کی ایک مکمل چکر کے دوران مقناطیسی بہاو دو خلائی درزوں سے گزرتا ہے۔ یہ دو خلائی درز ہر لحاظ سے ایک جیسے ہیں لہذا ان دونوں خلائی درز کی انچکچاہٹ جس ایک دوسرے کے برابر ہوں گی۔ مزید دونوں خلائی درزوں کی انچکچاہٹ سلسلہ وار ہیں۔ شکل 2.9 میں مقناطیسی بہاو کو گھومتے حصہ، ساکن حصہ اور دو خلائی درزوں سے گزرتا ہوا دکھایا گیا ہے۔خلائی درز کی لمبائی l_a بہت کم ہے لہذا خلائی درز کا عمودی رقبہ تراش l_a وہی ہو گا جو گھومتے حصہ کا ہے لیمنی l_a ہو گا۔

ایک خلائی درز کی ہیکھاہٹ

$$\Re_a=rac{l_a}{\mu_0A_a}=rac{l_a}{\mu_0A_c}$$
 - پالمذا دو سلسله وار خلائی درزوں کی کل پنچکچاہٹ درج ذبیل ہو گ $\Re_s=\Re_a+\Re_a=rac{2l_a}{\mu_0A_c}$

خلائی درز میں مقناطیسی بہاو ϕ_a اور کثافتِ مقناطیسی بہاو B_a درج ذیل ہوں گے۔

$$\begin{split} \phi_a &= \frac{\tau}{\Re_s} = (Ni) \left(\frac{\mu_0 A_c}{2l_a} \right) \\ B_a &= \frac{\phi_a}{A_a} = \frac{\mu_0 Ni}{2l_a} \end{split}$$

اس مساوات میں اعداد استعال کرتے ہیں۔

$$0.95 = \frac{4\pi 10^{-7} \times 1000 \times i}{2 \times 0.005}$$
$$i = \frac{0.95 \times 2 \times 0.005}{4\pi 10^{-7} \times 1000} = 7.56 \,\text{A}$$

با___2.مقن اطيسي ادوار 38

شکل 2.10: قالب میں مقناطیسی بہاومیں تبدیلی کیچے میں برقی دباو پیدا کرتی ہے۔

موٹر اور جزیٹروں کی خلاء میں تقریباً ایک ٹسلا کثافت برقی بہاو ہوتی ہے۔

خوداماله، مشتر که اماله اور توانائی

مقناطیسی بہاو کی وقت کے ساتھ تبدیلی برقی دباو کو جنم دیتی ہے۔ للذا شکل 2.10-ا کے قالب میں مقناطیسی بہاو ϕ کی تبدیل کی بنا کیجے میں برقی دباو e پیدا ہو گا جو کیجے کے سروں پر نمودار ہو گا۔ اِس طرح پیدا ہونے والی برتی دباد کو امالی برقی دباو 33 کہتے ہیں۔ قانون فیراڈے 34 کے تحت 35 درج زیل ہو گا۔

$$(2.27) e = N \frac{\partial \phi}{\partial t} = \frac{\partial \lambda}{\partial t}$$

امالی برقی دیاو کو منبع برقی دیاو تصور کریں۔

امالی برقی دباو کی سمت کا تعین یوں کیا جاتا ہے کہ اگر دیئے گئے کچھے کی سروں کو کسر دور 36 کیا جائے تو اِس میں برقی رواُس رخ ہو گی جو مقناطیسی بہاو کی تبدیلی کو روئے۔ یوں اگر شکل 2.10-امیں بہاو کی سمت گھڑی کی سوئیوں . کے گھومنے کے رخ ہو اور اگر بہاو بڑھ رہا ہو تب بہاو کی تبدیلی کے مخالف بہاو پیدا کرنے کی خاطر کیجھے کا بالائی سر مثبت دباویر ہو گا۔شکل 2.10-ب میں لچھے کے سروں کے نیج مزاحمت نب کیا گیا ہے۔ لچھے کو منبع دباو تصور کرتے ہوئے آپ دیکھ سکتے ہیں کہ مزاحمت میں رو کی سمت قالب میں گھڑی کی الٹ رخ بہاو 🕜 پیدا کرے گا۔

induced voltage³³

Faraday's law³⁴

³⁵ مانکل فیر اڈے انگلتانی سائنسدان تھے جنہوں نے محرک برقی د باودریافت کی

short circuit³⁶

قالب میں مقناطیسی بہاو ϕ کچھے کے تمام چکروں کے اندر سے گزرتا ہے۔ $N\phi$ کو کچھے کی ارتباط بہاو λ^{37} ہیں جس کی اکائی ویبر جھر λ^{38} ہیں جس کی اکائی ویبر چکر λ^{38} ہیں جس

$$(2.28) \lambda = N\phi$$

جن مقناطیسی ادوار میں مقناطیسی مستقل μ کو اٹل مقدار تصور کیا جا سکے یا جن میں خلائی درز کی آپکچاہٹ قالب کی آپکچاہٹ سے بہت زیادہ ہو $\Re_a\gg\Re_c$ ان میں لیھے کی امالہ L^{39} کی تعریف درج ذیل ہے۔

$$(2.29) L = \frac{\lambda}{i}$$

 $\phi = B_c A_c$ ، $\lambda = N \phi$ اوالہ کی اکائی و بیر - چکر فی ایمپیئر ہے جس کو ہیزی H^{40} کا نام H^{40} دیا گیا ہے۔ یوں $\phi = \frac{N c}{\Re c}$ اور $\phi = \frac{N i}{\Re c}$ پر کرتے ہوئے درجی ذیل حاصل ہوتا ہے

(2.30)
$$L = \frac{N\phi}{i} = \frac{NB_c A_c}{i} = \frac{N^2 \mu_0 A_a}{l_a}$$

جہاں قالب کا رقبہ عمودی تراش A_c اور درز کا رقبہ عمودی تراش A_a ایک دوسرے کے برابر لیے گئے ہیں۔ مثال 2.5 شکل 2.11 میں مشال 2.5 شکل 2.11 میں مشال 2.5 شکل 2.11 میں دو صور توں میں لیجھے کی امالہ تلاش کریں۔ اوسط لمبائی $l_c=30\,\mathrm{cm}$ نے بیل دو صور توں میں لیجھے کی امالہ تلاش کریں۔

- $\mu_r=\infty$ قالب کی •
- $\mu_r = 500$ قالب کی •

حل: (۱) قالب کی
$$\mu_r = \infty$$
 کی بنا قالب کی بنگچاہٹ نظرانداز کی جاسکتی ہے۔یوں امالہ درج ذیل ہو گئی۔

$$\begin{split} L &= \frac{N^2 \mu_0 w b}{l_a} \\ &= \frac{1000^2 \times 4 \pi 10^{-7} \times 0.04 \times 0.05}{0.003} \\ &= 0.838 \, \mathrm{H} \end{split}$$

flux linkage³⁷ weber-turn³⁸ inductance³⁹

⁴¹ مر کی سائنسدان جوزف بینری جنبول نے مانگل فیراڈے سے علیحدہ طور پر محرک برقی د باودریافت کی

40 پائے 2, مقت طبیمی ادوار

شكل 2.11: اماليه (مثال 2.5)

(+) کی صورت میں قالب کی بھیچاہٹ قابل نظر انداز نہیں ہو گی۔خلاء اور قالب کی ہیکچاہٹ دریافت کرتے ہیں۔

$$\Re_a = \frac{l_a}{\mu_0 w b} = \frac{0.003}{4\pi 10^{-7} \times 0.04 \times 0.05} = 1\,193\,507\,\text{A} \cdot \text{t/Wb}$$

$$\Re_c = \frac{l_c}{\mu_r \mu_0 w b} = \frac{0.3}{500 \times 4\pi 10^{-7} \times 0.04 \times 0.05} = 238\,701\,\text{A} \cdot \text{t/Wb}$$

يوں درج ذيل ہو گا۔

$$\begin{split} \phi &= \frac{Ni}{\Re_a + \Re_c} \\ \lambda &= N\phi = \frac{N^2i}{\Re_a + \Re_c} \\ L &= \frac{\lambda}{i} = \frac{N^2}{\Re_a + \Re_c} = \frac{1000^2}{1\,193\,507 + 238\,701} = 0.698\,\mathrm{H} \end{split}$$

مثال 2.6: شکل 2.12 میں ایک پیچپرار گچھا 42 و کھایا گیا ہے جس کی جسامت درج ذیل ہے۔ $N=11, r=0.49~\mathrm{m}, l=0.94~\mathrm{m}$

یچپرار کچھے کے اندر مقناطیسی بہاو ϕ کا بیشتر حصہ محوری رخ ہوتا ہے۔ کچھے کے بار یہی بہاو پوری کا نئات سے گزرتے ہوئے واپس کچھے میں داخل ہوتا ہے۔ چونکہ پوری کا نئات کا رقبہ عمودی تراش A لا متناہی ہے للذا کچھے کے باہر کثافت مقناطیسی بہاو $B=\frac{\phi}{A}$ کی مقدار قابل نظرانداز ہوتی ہے۔ کچھے کے اندر محوری رخ مقناطیسی شدت

 $spiral coil^{42}$

درج ذیل ہو گی۔

$$H = \frac{Ni}{l}$$

اس کھیے کی خود امالہ حاصل کریں۔

عل:

$$B = \mu_0 H = \frac{\mu_0 Ni}{l}$$

$$\phi = B\pi r^2 = \frac{\mu_0 Ni\pi r^2}{l}$$

$$\lambda = N\phi = \frac{\mu_0 N^2 i\pi r^2}{l}$$

$$L = \frac{\lambda}{i} = \frac{\mu_0 N^2 \pi r^2}{l}$$

عددیr، اور l کی قیمتیں پر کرتے ہوئے درج ذیل امالہ حاصل ہو گا 43 L

$$L = \frac{4\pi 10^{-7} \times 11^2 \times \pi \times 0.49^2}{0.94} = 122 \,\mu\text{H}$$

 i_1 ور اس میں برقی رو رکھایا گیا ہے۔ ایک کچھے کے چکر N_1 اور اس میں برقی رو رکھایا گیا ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے N_2 ور مرا کچھا کے اور اس میں برقی رو i_2 ہے۔ دونوں کچھوں میں مثبت برقی رو قالب میں ایک جیسے N_2 میں استعمال کیا ہے۔ N_2 میں استعمال کیا ہے۔ N_3 میں استعمال کیا ہے۔ N_3 میں استعمال کیا ہے۔ N_4 میں میں استعمال کیا ہے۔ N_4 میں میں میں میں کیا ہے۔ N_4 میں میں میں میں کیا ہے کہ کیا ہے۔ N_4 میں میں میں میں میں کیا ہے۔ N_4 میں میں میں کیا ہے کہ کیا ہے۔ N_4 میں میں میں میں میں کیا ہے کہ کیا ہے

با___2.مقن طیسی ادوار 42

رخ مقناطیسی دیاویپدا کرتے ہیں۔ اگر قالب کا ہے۔ قابل نظرانداز ہو تب مقناطیسی بہاو &درج ذیل ہو گا۔

(2.31)
$$\phi = (N_1 i_1 + N_2 i_2) \frac{\mu_0 A_a}{l_a}$$

دونوں کیچھوں کے مجموعی مقناطیسی دباو یعنی $N_1 i_1 + N_2 i_2$ سے پیدا ہونے والا مقناطیسی بہاو ϕ ہے۔ اس مقناطیسی

شكل 2.13: د و لحصے والا مقناطيسي دور۔

بہاو کا پہلے کچھے کے ساتھ ارتباط

(2.32)
$$\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_a}{l_a} i_1 + N_1 N_2 \frac{\mu_0 A_a}{l_a} i_2$$

لعيني

$$\lambda_1 = L_{11}i_1 + L_{12}i_2$$

ے جہاں L_{11} اور L_{12} سے مراد درج ذیل ہے۔

$$(2.34) L_{11} = N_1^2 \frac{\mu_0 A_a}{l_a}$$

$$(2.35) L_{12} = N_1 N_2 \frac{\mu_0 A_a}{l_a}$$

یہلے کچھے کی خودامالہ ⁴⁴ ہے اور $L_{11}i_1$ اس کچھے کی اپنے برقی رو i_1 سے پیدا مقناطیسی بہاو کے ساتھ ارتباط بہاو L_{11} $=i_2$ ساتھ i_2 المالہ 46 ہے اور $L_{12}i_2$ بین L_{12} ان دونوں کچھوں کا مشرکہ المالہ 46 ہے اور 45 کہتے ہیں L_{12} ان دونوں کجھوں کا مشرکہ المالہ 46

self inductance⁴⁴

 $[\]rm self~flux~linkage^{45}$ $\mathrm{mutual}\ \mathrm{inductance^{46}}$

پیدا بہاو کے ساتھ ارتباط بہاو ہے جسے مشترکہ ارتباط بہاو⁴⁷ کہتے ہیں ۔ بالکل ای طرح ہم دوسرے کیھے کے لئے درج ; مل لکھر سکتے ہیں

$$\lambda_2 = N_2 \phi = N_2 N_1 \frac{\mu_0 A_a}{l_a} i_1 + N_2^2 \frac{\mu_0 A_a}{l_a} i_2$$
 (2.36)
$$= L_{21} i_1 + L_{22} i_2$$

جہال L_{22} اور L_{21} سے مراد درج ذیل ہے۔

$$(2.37) L_{22} = N_2^2 \frac{\mu_0 A_a}{l_a}$$

(2.38)
$$L_{21} = L_{12} = N_2 N_1 \frac{\mu_0 A_a}{l_a}$$

ی خود امالہ اور $L_{21}=L_{12}$ دونوں کچھوں کی مشتر کہ امالہ ہے۔امالہ کا تصور اس وقت کار آمد ہوتا ہے L_{22} جب مقناطیسی مستقل μ کو اٹل تصور کرنا ممکن ہو۔

مباوات 2.29 کو مباوات 2.27 میں پر کرتے ہیں۔

(2.39)
$$e = \frac{\partial \lambda}{\partial t} = \frac{\partial (Li)}{\partial t}$$

اگر امالہ کی قیت اٹل ہو جیبا کہ ساکن مشینوں میں ہوتا ہے تب ہمیں امالہ کی جانی پیچانی مساوات

$$(2.40) e = L \frac{\partial i}{\partial t}$$

ملتی ہے۔ اگر امالہ بھی تبدیل ہو جیسا کہ موٹرول اور جزیٹرول میں ہوتا ہے تب درج ذیل ہو گا۔

(2.41)
$$e = L \frac{\partial i}{\partial t} + i \frac{\partial L}{\partial t}$$

تواما کر 48 کی اکائی جاوار 49 J 50 ہے اور طاقتے 51 کی اکائی 52 حاول فی سینڈ یا والے 53 W ہے۔

mutual flux linkage⁴⁷

⁵⁰ جیس پریسقوٹ جاول انگلتانی سائنسدان جنہوں نے حرارت اور میکانی کام کارشتہ دریافت کیا

⁵² کا ٹلینڈ کے جیمزواٹ جنہوں نے بخارات پر چلنے والے انجن پر کام کیا Watt⁵³

باب2. مقت طبيسي ادوار

اس کتاب میں توانائی یا کام کو W سے ظاہر کیا جائے لیکن طاقت کی اکائی واٹ W کے لئے بھی یہی علامت استعال ہوتی ہے۔امید کی جاتی ہے کہ متن سے اصل مطلب جاننا ممکن ہو گا۔

وقت کے ساتھ توانائی کی تبدیلی کی شرح کو طاقت کہتے ہیں۔اس طرح درج ذیل لکھا جا سکتا ہے۔

$$(2.42) p = \frac{\mathrm{d}W}{\mathrm{d}t} = ie = i\frac{\partial\lambda}{\partial t}$$

مقناطیسی دور میں لمحہ t_1 تا t_2 مقناطیسی توانائی کی تبدیلی کو تکمل کے ذریعہ حاصل کیا جا سکتا ہے:

(2.43)
$$\Delta W = \int_{t1}^{t2} p \, \mathrm{d}t = \int_{\lambda 1}^{\lambda 2} i \, \mathrm{d}\lambda$$

اگر مقناطیسی دور میں ایک ہی لیچھا ہو اور دور میں امالہ کی قیمت اٹل ہو تب درج ذیل ہو گا۔

(2.44)
$$\Delta W = \int_{\lambda_1}^{\lambda_2} i \, \mathrm{d}\lambda = \int_{\lambda_1}^{\lambda_2} \frac{\lambda}{L} \, \mathrm{d}\lambda = \frac{1}{2L} \left(\lambda_2^2 - \lambda_1^2 \right)$$

ا گر لمحہ t_1 پر $t_1=0$ تصور کیا جائے تب کسی دیئے گئے کہ پر مقناطیسی توانائی درج ذیل ہو گی۔ $\Delta W = \frac{\lambda^2}{2L} = \frac{Li^2}{2}$ (2.45)

2.8 مقناطیسی مادہ کے خصوصیات

قالب کی استعال سے دو فوائد حاصل ہوتے ہیں۔ قالب کے استعال سے کم مقناطیسی دباو، زیادہ مقناطیسی بہاو پیدا کرتا ہے اور مقناطیسی بہاو کو پیند کی راہ پابند کیا جا سکتا ہے۔ ایک مرحلہ ٹرانسفار مروں میں قالب کی استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ تمام کچھوں میں یکسال بہاو پایا جاتا ہو۔ موٹروں میں قالب کی استعال سے مقناطیسی بہاو کو یوں پابند کیا جاتا ہے کہ زیادہ سے زیادہ قوت پیدا ہو جبکہ جزیئروں میں زیادہ سے زیادہ برقی دباو حاصل کرنے کی نیت سے بہاو کو پابند کیا جاتا ہے۔ مقناطیسی مواد کی B اور H کا تعلق ترسیم کی صورت میں پیش کیا جاتا ہے۔

شکلB - H:2.14 خطوط یا مقناطیسی جال کے دائرے

لوہا نما مقناطیسی مادے کی B-H ترسیم شکل 2.14-الف میں دکھائی گئی ہے۔ایک لوہا نما مقناطیسی مادہ جس میں مقناطیسی اثر نہیں یایا جاتا ہو کو نقطہ a سے ظاہر کیا گیا ہے۔اس نقطہ پر

$$H_a = 0$$

$$B_a = 0$$

ہیں۔

ایسے مادہ کو کچھے میں رکھ کر اس پر مقناطیسی دباو لا گو کی جا سکتی ہے۔ مقناطیسی میدان کی شدت H لا گو کرنے سے لوہ نما مقناطیسی مادے میں کثافت مقناطیسی بہاو B پیدا ہو گی۔میدانی شدت بڑھانے سے کثافت مقناطیسی بہاو a بیدا ہو گی۔اس عمل کو نقطہ a تک بڑھایا گیا ہے۔میدانی شدت کو نقطہ a تک بڑھایا گیا ہے جہاں یہ غیر سمتیں a اور a بیں۔

اگر اس نقط تک پنچنے کے بعد میدانی شدت کم کی جائے تو دیکھا یہ گیا ہے کہ واپی کا خط مختلف راستہ اختیار کرتا ہے۔ یوں نقطہ b سے میدانی شدت کم کرتے ہوئے صفر کرنے سے لوہا نما مادہ کی کثافتِ مقاطیسی بہاہ کم ہو کر نقطہ c کی تخیفی ہے۔ نقطہ d سے نقطہ c تک نوکدار خط اس عمل کو ظاہر کرتا ہے۔ اس نقطہ پر بیرونی میدانی شدت صفر ہے کین لوہا نما مادے کی کثافتِ مقاطیسی بہاہ صفر نہیں ہے۔ یہ اب ایک مقاطیس بن گیا ہے جس کی کثافتِ مقاطیسی بہاہ صفر نہیں ہے۔ یہ اب ایک مقاطیس بن گیا ہے جس کی کثافتِ مقاطیسی بہاہ d ہے۔ اس مقدار کو بقایا کثافی مقاطیسی بہاہ میں d کی مقاطیس اس طرح بنایا جاتا ہے۔

magnetic flux!residual⁵⁴

46 باب_2 مقت طبيسي ادوار

شكل 5:2.15 كاسٹىل كى 0.3048 ملى ميٹر موٹى پترى كاخط-ميدانى شدت كاپياندلاگ ہے۔

یہاں سے میدانی شدت منفی رخ بڑھانے سے B کم ہوتے ہوتے آخر کار ایک مرتبہ دوبارہ صفر ہو جائے گا۔ اس نقطہ کو D سے ظاہر کیا گیا ہے۔مقاطیعیت ختم کرنے کے لئے درکار میدانی شدت کی مقدار D کو مقاطیعیت ختم کرنے والی شدت یا غاتم شدھے D کہتے ہیں۔

منفی رخ میدانی شدت بڑھانے سے نقطہ e حاصل ہوتا ہے جہاں سے منفی رخ کی میدانی شدت کی مقدار ایک مرتبہ پھر کم کی جاتی ہے۔ یوں نقطہ f حاصل ہوتا ہے جہاں میدانی شدت صفر ہونے کے باوجود کثافتِ مقناطیسی بہاو صفر نہیں۔ اس نقطہ پر لوہا نما مادہ اُلٹ رخ مقناطیس بن چکا ہے اور E بقایا کثافتِ مقناطیسی بہاو ہے۔ اس طرح اس رخ مقناطیسیت ختم کرنے کی شدت E اس ہے۔ میدانی شدت بڑھاتے ہوئے ہم نقطہ E کی بجائے نقطہ E بینچتے ہیں۔

اگر برتی شدت کو متواتر اس طرح پہلے ایک رخ اور پھر اس کے الٹ رخ ایک خاص حد تک لے جایا جائے تو آخر کار B-H خط ایک بند دائرہ کی صورت اختیار کر لیتا ہے جے شکل B-H-ب میں دکھایا گیا ہے۔شکل B-H-ب کو مقناطیہ پالے کا دائرہ 56 کہتے ہیں۔

مختلف H کے لئے شکل 2.14-ب حاصل کر کے ایک ہی کاغذ پر کھینچنے کے بعد ان تمام کے b نقطے جوڑنے سے شکل 2.15 میں رکھایا H – H خط حاصل ہوتا ہے۔ شکل 2.15 میں ٹرانسفار مروں میں استعال ہونے والی 0.3048 ملی میٹر موثی M5 قالب کی پتری کا H6 H8 خط دکھایا گیا ہے۔ اس خط میں موجود مواد جدول 2.1 میں بھی دیا گیا ہے۔ عموماً مقاطیعی مسائل حل کرتے ہوئے شکل 2.14 کی جگہ شکل 2.15 طرز کا خط استعال کیا جاتا ہے۔دھیان رہے کہ اس خط میں H6 پیانہ لاگے H7 میں دکھایا گیا ہے۔

 $\begin{array}{c} {\rm coercivity^{55}} \\ {\rm hysteresis~loop^{56}} \end{array}$

 $[\]log^{57}$

لوہا نما مقناطیسی مادے پر لا گو مقناطیسی شدت بڑھانے سے کثافتِ مقناطیسی بہاو بڑھنے کی شرح بتدر تکے کم ہوتی جاتی ہے حتی کہ آخر کار یہ شرح خلاء کی شرح میں رہ جاتی ہے یعنی

$$\frac{\Delta B}{\Delta H} = \mu_0$$

اس اثر کو سیرابیدے 58 کہتے ہیں جو شکل 2.15 میں واضح ہے۔

شکل 2.14 سے واضح ہے کہ H کی کسی بھی قیت پر B کے دو مکنہ قیمتیں ہوں گی۔ بڑھتے مقناطیسی بہاو کی صورت میں ترسیم میں نیچے سے اُوپر جانے والا خط B اور H کا تعلق پیش کرے گا جبکہ گھٹے ہوئے مقناطیسی بہاو کی صورت میں اوپر سے نیچے جانے والا خط B تعلق کو پیش کرے گا۔ چونکہ B/H ہے لہٰذا B کی مقدار تبدیل ہوئے سے وجود اِس کے ہم مقناطیسی ادوار میں μ کو ایک مستقل تصور کرتے ہیں۔ یہ تصور کر لینے سے عموماً جواب پر زیادہ اثر نہیں پڑتا۔

مثال 2.7: شکل 2.15 یا اس کے مساوی جدول 2.1 میں دیئے گئے مواد کو استعال کرتے ہوئے شکل 2.6 کی خلاء میں ایک ٹسلا اور دو ٹسلا کثافت ِ مقناطیسی بہاو حاصل کرنے کے لئے درکار برقی رو معلوم کریں۔اس شکل میں

 $b = 5 \,\mathrm{cm}, w = 4 \,\mathrm{cm}, l_a = 3 \,\mathrm{mm}, l_c = 30 \,\mathrm{cm}, N = 1000$

ہیں۔ قالب اور خلاء کا رقبہ عمودی تراش ایک دوسرے جتنا لیں۔

حل: ایک ٹسلاکے لئے۔

جدول 2.1 سے ہم دیکھتے ہیں کہ قالب میں 1 ٹسلا حاصل کرنے کے لئے قالب کو 11.22 ایمپیئر - چکر فی H میٹر درکار ہوں گے۔ درکار ہے۔ یوں 30 سم لمبے قالب کو 3.366 عن 3.30 ایمپیئر چکر درکار ہوں گے۔

خلاء کو

$$H = \frac{B}{\mu_0} = \frac{1}{4\pi 10^{-7}} = 795\,671$$

ایمپیئر- چکر فی میٹر درکار ہیں۔ للذا 3 ملی میٹر کمبی خلاء کو 2387 = 795671 × 0.003 ایمپیئر چکر درکار ہوں گے۔ یوں کل ایمپیئر- چکر 2390.366 = 2387 + 3.366 ہیں جن سے

$$i = \frac{2390.366}{1000} = 2.39 \,\mathrm{A}$$

 ${\rm saturation}^{58}$

В	H	B	H	B	H	B	H	B	H	B	Н
0.000	0	0.700	9	1.480	30	1.720	200	1.852	1000	1.998	9000
0.040	2	0.835	10	1.540	40	1.752	300	1.900	2000	2.000	10000
0.095	3	1.000	11.22	1.580	50	1.780	400	1.936	3000	2.020	20000
0.160	4	1.100	12.59	1.601	60	1.800	500	1.952	4000	2.040	30000
0.240	5	1.200	14.96	1.626	70	1.810	600	1.968	5000	2.048	40000
0.330	6	1.300	17.78	1.640	80	1.824	700	1.975	6000	2.060	50000
0.440	7	1.340	20	1.655	90	1.835	800	1.980	7000	2.070	60000
0.560	8	1.400	23.77	1.662	100	1.846	900	1.985	8000	2.080	70000

جدول 2.1: مقناطيسي بهاو بالتقابل شدت

حاصل ہوتا ہے۔

حل: دو ٹسلا کے لئے۔

جدول 2.1 ہے ہم دیکھتے ہیں کہ قالب میں 2 ٹسلا حاصل کرنے کے لئے قالب کو 10000 ایمپیئر - چکر فی میٹر H درکار ہے۔یوں 30 سم لمبے قالب کو 3000 $= 3000 \times 10000$ ایمپیئر چکر درکار ہیں۔خلاء کو

$$H = \frac{B}{\mu_0} = \frac{2}{4\pi 10^{-7}} = 1591342$$

ایمپیئر- چکر فی میٹر درکار ہیں۔للذا 3 ملی میٹر کمبی خلاء کو 4774 = 1591342 × 0.003 ایمپیئر چکر درکار ہیں۔یوں کل دائمپیئر- چکر 7774 = 4774 + 3000 ہیں جن سے

$$i = \frac{7774}{1000} = 7.774 \,\mathrm{A}$$

حاصل ہوتا ہے۔

اس مثال میں مقاطیسی سیرابیت کے اثرات واضح ہیں۔

2.9. ہیجبان شدہ کچھ

2.9 ہیجان شدہ کیھا

عموماً بدلتی رو بجل میں برقی دباو اور مقناطیسی بہاو سائن نما ہوتے ہیں لینی یہ وقت کے ساتھ sin w یا sin w کا تعلق رکھتے ہیں۔ اِس سبق میں ہم بدلتی رو سے کچھے کو ہیجان کرنا اور اس سے نمودار ہونے والے برقی توانائی کے ضیاع کا تذکرہ کریں گے۔ ہم فرض کرتے ہیں کہ قالب میں کثافتِ مقناطیسی بہاو درج ذیل ہے۔

$$(2.48) B = B_0 \sin \omega t$$

یوں قالب میں بدلتا مقناطیسی بہاو $\,arphi$ درج ذیل ہو گا۔

(2.49)
$$\varphi = A_c B = A_c B_0 \sin \omega t = \phi_0 \sin \omega t$$

اس مساوات میں مقناطیسی بہاو کا حیطہ $+\phi_0$ اور $+\phi_0$ کا حیطہ $+\phi_0$ بیں۔ $+\phi_0$ قالب کا رقبہ عمودی تراش ہے جو ہر جگہ کیساں ہے $+\phi_0$ تعدد ہے۔

فیراڈے کے قانون لینی مساوات e(t) کے تحت اس مقناطیسی بہاو کی وجہ سے کچھے میں e(t) برقی دباہ پیدا ہو

(2.50)
$$e(t) = \frac{\partial \lambda}{\partial t}$$
$$= \omega N \phi_0 \cos \omega t$$
$$= \omega N A_c B_0 \cos \omega t$$
$$= E_0 \cos \omega t$$

جس کا حیطہ

(2.51)
$$E_0 = \omega N \phi_0 = 2\pi f N A_c B_0$$

ے۔e(t) کو امالھ برقھ دباو e^{59} کہتے ہیں۔

ہم برلتی رو مقداروں کے مربع کی اوسط کے جذر میں ولچین رکھتے ہیں جو ان مقداروں کی موثر 60 قیت ہوتی $1/\sqrt{2}$ ہے۔ جیسا صفحہ 19 پر مساوات 1.42 میں دیکھا گیا ہے، ایک سائن نما موج کی موثر قیت اس کے حیطہ کے $1/\sqrt{2}$ گنا ہوتی ہے لہٰذا امالی برتی دباو کی موثر قیت E_{rms} درج ذیل ہو گی۔

(2.52)
$$E_{rms} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N A_c B_0}{\sqrt{2}} = 4.44 f N A_c B_0$$

 $\begin{array}{c} \text{induced voltage}^{59} \\ \text{root mean square, rms}^{60} \end{array}$

باب_2.مقت طبيسي ادوار

یہ مساوات بہت اہمیت رکھتی ہے جس کو ہم بار بار استعال کریں گے۔بدلتی برقی دباویا بدلتی برقی رو کی مقدار کا جب بھی ذکر ہو، یہ ان کی مربع کی اوسط کے جذر یعنی اس کی موثر قیمت کا ذکر ہوتا ہے۔پاکستان میں گھر یلو برقی دباو کی موثر قیمت 220 وولٹ ہے۔ چونکہ یہ سائن نما ہے لہذا اس کی چوئی $\sqrt{2} \times 220 = 311$

مثال 2.8: شکل 2.7 میں 27 چکر ہیں۔ قالب کی لمبائی 30 سم جبکہ اس کا رقبہ عمودی تراش 229.253 مربع سم ہے۔ کچھے میں گھریلو 220 وولٹ موثر برقی دباوسے پیجان پیدا کیا جاتا ہے۔جدول 2.1 کی مدد سے مختلف برقی دباو پر محرک برقی رو معلوم کریں اور اس کا خط کھیچیں۔

حل: گھر ملو برقی دباو 50 ہر ٹزکی سائن نما موج ہوتی ہے یعنی:

(2.53)
$$v = \sqrt{2} \times 220 \cos(2\pi 50t)$$

ماوات 2.52 کی مدد سے ہم کثافتِ مقناطیسی بہاو کی چوٹی حاصل کرتے ہیں:

(2.54)
$$B_0 = \frac{220}{4.44 \times 50 \times 27 \times 0.0229253} = 1.601 \,\mathrm{T}$$

یوں قالب میں کثافتِ مقناطیسی بہاو صفر تا 1.601∓ٹسلا تبدیل ہوتی رہتی ہے لہٰذا قالب میں کثافتِ مقناطیسی بہاو کی مساوات درج ذیل ہو گی۔

$$(2.55) B = 1.601 \sin \omega t$$

ہم فہرست کی مدد سے کثافتِ مقناطیسی بہاو کا 0 تا 1.601 ٹسلا مختلف قیمتوں پر درکار محرک برقی رو $_{i_{\phi}}$ معلوم کرنا چاہتے ہیں۔ہم مختلف B پر جدول 2.1 سے قالب کی H حاصل کریں گے جو کہ ایک میٹر لمبی قالب کے لئے درکار ایمپیئر-چکر دیتی ہے۔اس سے 30 سم لمبی قالب کے لئے درکار ایمپیئر-چکر حل کر کے برقی رو حاصل کریں گے۔

جدول 2.2 مختلف کثافتِ متناطیسی بہاو کے لئے درکار محرک برقی رو دیتی ہے۔جدول میں ہر B کی قیمت پر ωt مساوات 2.55 کی مدد سے حاصل کی گئی ہے۔ ωt بالمقابل محرک برقی رو کا خط شکل ωt میں دیا گیا ہے۔ ωt

برتی کچھ میں برتی دباو سے بیجان پیدا کیا جاتا ہے۔ بیجان شدہ کچھ میں برتی رو کی بنا قالب میں مقناطیسی بہاو پیدا ہوتا ہے۔ اس برتی رو i_{φ} کو ہیجان انگیزبرتی رو i_{φ} کا میجان انگیزبرتی رو i_{φ} کا میکن کے میکن اس برتی رو i_{φ} کا میکن کے کے میکن ک

excitation current⁶¹

2.9 ييجبان شده لچھ

ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$	ωt	B	H	0.3H	$i_{\varphi} = \frac{0.3H}{27}$
0.675	1.000	11.22	3.366	0.125	0.000	0.000	0	0.000	0.000
0.757	1.100	12.59	3.777	0.140	0.025	0.040	2	0.600	0.022
0.847	1.200	14.96	4.488	0.166	0.059	0.095	3	0.900	0.033
0.948	1.300	17.78	5.334	0.198	0.100	0.160	4	1.200	0.044
0.992	1.340	20	6.000	0.222	0.150	0.240	5	1.500	0.056
1.064	1.400	23.77	7.131	0.264	0.208	0.330	6	1.800	0.067
1.180	1.480	30	9.000	0.333	0.278	0.440	7	2.100	0.078
1.294	1.540	40	12.000	0.444	0.357	0.560	8	2.400	0.089
1.409	1.580	50	15.000	0.556	0.453	0.700	9	2.700	0.100
1.571	1.601	60	18.000	0.667	0.549	0.835	10	3.000	0.111

جدول2.2: محرک برقی رو

شکل 5:2.16 میتری کے قالب میں 1.6 شلاتک پیجان پیدا کرنے کے لئے در کار بیجان انگیز برتی رو۔

52 باب_2,مقناطيسي ادوار

شكل 2.17: ہيجان انگيز برقى رو۔

مثال 2.8 میں بیجان انگیز برتی رو معلوم کی گئی جے شکل 2.16 میں دکھایا گیا۔اسے حاصل کرتے وقت مقناطیسی چالے 62 کو نظر انداز کیا گیا۔شکل 2.17 میں بیجان انگیز برتی رو ء دکھائی گئی ہے جو مقناطیسی چال کو مدِ نظر رکھ کر حاصل کی گئی ہے۔ اس کو سمجھنا نہایت ضروری ہے۔ شکل 2.17-الف میں مقناطیسی چال کا خط ہے۔چونکہ

(2.56)
$$Hl = Ni$$

$$\varphi = BA_c$$

ہیں للذا مقناطیسی چال کے خط کو $\varphi-i_{\varphi}$ کا خط کھا جا سکتا ہے۔ شکل 2.17ب قالب میں سائن نما مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتی ہے۔ لحمہ t_1 پر اس کی مقدار φ ہے۔ مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتی ہے۔ لحمہ t_1 پر اس کی مقدار ہجان انگیز برقی رو i_1 شکل-الف سے حاصل کی جا سکتی ہے۔ اسی بیجان انگیز برقی رو کھا یا گیا ہے۔ کو شکل-ب میں لمحہ t_1 پر دکھا یا گیا ہے۔

دھیان رہے کہ لمحہ t_1 پر مقناطیسی بہاو بڑھ رہا ہے لمذا مقناطیسی چال کے خط کا صحیح حصہ استعال کرنا ضروری ہے۔ شکل 2.17-الف میں $\varphi - i_{\varphi}$ کے خط میں گھڑی کی سوئیوں کے الٹ رخ گھومتے ہوئے یوں نیچے سے اوپر جاتا ہوا حصہ استعال کیا گیا ہے۔ مقناطیسی بہاو بڑھنے کی صورت میں شکل 2.14-ب میں نیچے سے اوپر جاتے ہوئے حصہ رہتا ہوا نشان صحیح حصہ دیتا ہے۔ ای طرح مقناطیسی بہاو گھنے کی صورت میں اوپر سے نیچے جاتے ہوئے حصے پر تیر کا نشان صحیح حصہ دیتا ہے۔ ای طرح مقناطیسی بہاو گھنے کی صورت میں اوپر سے نیچے جاتے ہوئے حصے پر تیر کا نشان صحیح حصہ دیتا ہے۔

 $\rm hysteres is^{62}$

2.9. بيجبان شده لچھ ا

شکل 2.18: پیچاس ہر ٹزیر 0.3 ملی میٹر موٹی پتری کے لئے در کار موثر وولٹ - اپنیئر فی کلو گرام قالب

لمحہ t_2 پر مقناطیسی بہاو گھٹ رہا ہے۔اس لمحہ پر مقناطیسی بہاو φ_2 ہے اور اسے حاصل کرنے کے لئے درکار بیجان انگیز برقی رو i_2 ہے۔

اسی طرح مختلف کمات پر درکار بیجان انگیز برتی رو حاصل کرنے سے شکل 2.17ب میں دکھایا گیا i_{φ} کا خط ماتا ہے۔ یہ ایک غیر سائن نما خط ہے۔

 $e=N rac{\mathrm{d} arphi}{\mathrm{d} t}=N \phi_0 \omega \cos \omega t$ ہو تب برقی دباو کہ $\varphi=\phi_0 \sin \omega t$ ہو گا۔ شکل آپ جانتے ہیں کہ مقناطیسی بہاو برقی دباو کے بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کے بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کے بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کو بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کو بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کے بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کو بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی بہاو برقی دباو کو بھی دکھایا گیا ہے۔آپ دیکھ سکتے ہیں کہ مقناطیسی کہا دباو کے بھی دکھایا گیا ہے۔آپ دیکھ کے دباو کے دباو کے دباو کے دباو کے دباو کی دباو کو بھی دکھایا گیا ہے۔آپ دیکھایا گیا ہے۔آپ دیکھایا گیا ہو دباو کو بھی دکھایا گیا ہو دباو کے دباو کے دباو کی دباو کے دباو کے دباو کی دباو کی

 $H_{c,rms}$ کی موثر قیمتوں کی موثر نما ہوں گے جن کی موثر قیمتوں $B=B_0\sin\omega t$ اور i_{φ} ما اور i_{φ} کا تعلق درج ذیل ہو گا۔

$$(2.57) Ni_{\varphi,rms} = l_c H_{c,rms}$$

مساوات 2.52 اور مساوات 2.57 سے درج ذیل ملتا ہے۔

(2.58)
$$E_{rms}i_{\varphi,rms} = \sqrt{2\pi}fB_0H_{c,rms}A_cl_c$$

یہاں $A_c l_c$ قالب کا حجم ہے۔ للذا یہ مساوات جمیں $A_c l_c$ حجم کی قالب کو B_0 کثافت مقاطیسی بہاو تک جیجان کرنے $E_{rms}i_{\varphi,rms}$ دیت ہے۔ ایک مقاطیسی قالب جس کا حجم $A_c l_c$ اور میکانی کثافت P_c ہو کی کیت

ا_2, مقت طبيسي ادوار

ہو گی۔ یوں ایک کلو گرام قالب کے لئے مساوات 2.58 درج ذیل ککھی جا کتی ہے۔ $m_c =
ho_c A_c l_c$

$$(2.59) P_a = \frac{E_{rms}i_{\varphi,rms}}{m_c} = \frac{\sqrt{2}\pi f}{\rho_c} B_0 H_{c,rms}$$

 $H_{c,rms}$ ویکھا جائے تو کسی ایک تعدد f پر g کی قیمت صرف قالب اور اس میں g یعنی چونی ہو تکہ عمور ہے، چونکہ خود g پر منحصر ہے۔ یکی وجہ ہے کہ قالب بنانے والے اکائی کمیت کے قالب میں مختلف چونی پر کی بیدا کرنے کیلئے ورکار g بین g کی ترسیم مہیا کرتے ہیں۔ قالب کی g کی میٹر موٹی پر کی کے لئے ایسا ورکار g بین کی گیا ہے۔ g کی ترسیم مہیا کرتے ہیں۔ قالب کی g کی میٹر موٹی پر کی کے لئے ایسا ترسیم شکل g کی درکھایا گیا ہے۔

باب.2.مقن طیسی ادوار

فر ہنگ

earth, 94 eddy current loss, 62 eddy currents, 62, 126 electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61 Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64 generator ac, 159 ground current, 94 ground wire, 94	ampere-turn, 32 armature coil, 131, 251 axle, 161 carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55 secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108 core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5 delta connected, 92 design, 195 differentiation, 18
ground wire, 94	differentiation, 18
harmonic, 142	dot product, 15
harmonic components, 64	E,I, 62

ئىرىنگ

parallel connected, 253	Henry, 39				
permeability, 26	hunting, 178				
relative, 26	hysteresis loop, 46				
phase current, 94					
phase difference, 23	impedance transformation, 71				
phase voltage, 94	in-phase, 69				
phasor, 21	induced voltage, 38, 49, 61				
pole	inductance, 39				
non-salient, 140					
salient, 140	Joule, 43				
power, 43					
power factor, 23	lagging, 22				
lagging, 23	laminations, 31, 62, 126				
leading, 23	leading, 22				
power factor angle, 23	leakage inductance, 79				
power-angle law, 188	leakage reactance, 79				
primary	line current, 94				
side, 55	line voltage, 94				
	linear circuit, 226				
rating, 96, 97	load, 98				
rectifier, 164	Lorentz law, 136				
relative permeability, 26	Lorenz equation, 102				
relay, 101					
reluctance, 25	magnetic constant, 26				
residual magnetic flux, 45	magnetic core, 31				
resistance, 25	magnetic field				
rms, 49, 164	intensity, 11, 33				
rotor, 36	magnetic flux				
rotor coli, 104	density, 33				
rpm, 155	leakage, 78				
	magnetizing current, 64				
saturation, 47	mmf, 30				
scalar, 1	model, 81, 207				
self excited, 251	mutual flux linkage, 43				
self flux linkage, 42	mutual inductance, 42				
self inductance, 42					
separately excited, 251	name plate, 97				
side	non-salient poles, 177				
secondary, 55					
single phase, 23, 59	Ohm's law, 26				
slip, 209	open circuit test, 86				
slip rings, 176, 229	orthonormal, 3				

ف رہنگ ____

unit vector, 2	star connected, 92
	stator, 36
VA, 75	stator coil, 104, 127
vector, 2	steady state, 175
volt, 137	step down transformer, 58
volt-ampere, 75	step up transformer, 58
voltage, 137	surface density, 11
DC, 164	synchronous, 130
transformation, 66	synchronous inductance, 184
,	synchronous speed, 155, 176
Watt, 43	synchronous speed, 190, 170
Weber, 32	Tesla, 33
winding	theorem
distributed, 140	maximum power transfer, 229
winding factor, 147	Thevenin theorem, 226
,	three phase, 59, 92
	time period, 100, 142
	torque, 165, 209
	- · · · · ·
	pull out, 178
	transformer
	air core, 59
	communication, 59
	ideal, 65
	transient state, 175

كنربنگ 268

پتریاں،62	ابتدائی
يورابوجھ،197	جانب،55
نیچیے،80	لچھا، 55
يىپ پېش زاويە ، 22	ار تباط بهاو، 39
•	اضافی
تاخير ي زاويه، 22	زاويا کي رفتار، 212
تار کی بر تی د باو،94	اکائی سمتیه، 2
تار کی بر تی رو،94	اماله، 39
تانبا،28	امالى بر تى د ياو، 49، 38 ، 61
تبادله	اوېم ميٹر،237
ر کاوٹ، 71	ايك'، تين پتريال، 62
منختی،97	ایک مرحله، 59
تدریجی تفرق،113	ايتمپيئر-َ ڪِکر،32
تعدد،130	.,,
تعقب،178	136.
تفرق،18	بر قرارچالو،175،100
جزوی،18	ېر تې ېږ، 136، 136
تلمل،18	بر تي د باد، 28، 137
تكوني جوڙ،92	تبادله، 66،56
توانائی،43	مخرک،137
تين مر حله ،92،59	يجاني، 185
اد بأ د ا	يك ستى،164
ٹرانسفار مر قب سے 50	ېر تې رو، 28
برقی د باووالا، 59	بھنور نما،126
بوجھ بردار،68 نندگر سال	تبادله،66
خلائی قالب،59	ېيجان انگيز ، 50
د باوبڑھاتا،58 د باو گھٹاتا،58	ېر قى سكت، 59
د باو هنانا، 36 ذرائع ابلاغ، 59	برقی میدان،10
دران ابلان 39. رووالا، 59	شدت،10،28
کامل،65 کامل،65	ې <i>ڭ،</i> 177
ئ ن.دى ئىلا، 33	بناوٹ،86
شناری طھنڈی تار،94	بنیادی برزو، 142،64
y 100000	بو چے، 98
ثانوی جانب، 55	بھٹی،114
	بچنورنما :
جاول،43	برقرو،62
97.	فياع،62
يھيلاو،147	بهنور نمابر قی رو،126
جزوطاقت،23 پيشر	بِ بِو جِمِه، 60
پي <i>ڻ،</i> 23	10/01/4
تاخيرى،23	پ <i>ر</i> ی، 31، 126

ف رہنگ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقیاتی،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ***	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
ر تبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردي العربي . زمين ،94
64.9.7.	ريين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

منربنگ

,	
مر حلی فرق،23	قطب
مرکب جزیٹر،253	ا بھر ہے، 140، 177
مزاحمت، 25	بموار،140،177
مساوات لورينز،102	قوت مر وژه ٔ 209،165
مستلب	انتہائی،178
تھونن،226	قوى البكٹر انگس، 241، 207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى کچھے، 251
مشتر كه ارتباط اماله ، 43	
مشتر که اماله، 42	كارين بش، 177
معاصر،130	کار گزاری،200
معاصراماله،184	كېيىر،194
معاصر ر فتار ، 176،155	كثافتُ
معائنه	برتي رو، 27
کھلے دور ، 86 مقناطیس	كثافت مقناطيسي ببهاو
مقناطيس	بقایه 45
برتى،131	کسر دور ، 38
چال كادائره، 46	
غاتم شدت،46	گرم تار، 94
مقناطیسی بر تی رو، 64	گھومتاحصہ،36
مقناطیسی بہاو،30	گومتالچھا،104
رتا،78	
كثافت،33	ليجها
مقناطيسي چال،52	ابتدائی،55
مقناطيسي د باو، 30	پچياي، 140
مفنا " ی د باو، 30 سمت، 141	يېچىدار، 40
متناطیسی قالب،55،31	ئانى، <u>5</u> 5
مقاندی قانب، ۱۲،۶۶	زياده بر ٿي د باو، 56
مقناطیسی مستقل،166،26	ساكن،104
جزو،31،26 من طیسی	ست،133
مقناطیسی میدان شد 11 - 22	قوی، 131
شدت، 33،11	گم بر تی د باو، 56
موژ،49،19 نه ثر قر 1.44	گومتا،104
موثر قیت ،164 موثر قیت ، 1،42	ميداني، 131
موسيقائي جزو، 142،64	
موصلیت،25 میدانی لچھے،251	محد د رینه م
میدای چے، 231	کار تی سی، 4 نگ
42	ىكى . 5
واث،43 وولك،137	م <i>رک بر</i> قی د باو، 61 میر که در 161
وونٹ، 13 وولٹ-ایمپییئر،75	محور، 161 مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21

39، چکر، 39 نگلچاب ، 30،25 بم قدم، 69 بم قدم، 61 چیان، 13 خود، 251 پیچان انگیز برتی دو، 16 برتی دو، 16