CS 575

Project #3

Name: Chi Wen ID: 933-276-677

Email: wench@oregonstate.edu

1. Tell what machine you ran this on

School server, flip1.

2. Create a table with your results.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Fix1_1	314.	290.	299.	286.	286.	293.	303.	291.	291.	288.	289.	290.	289.	300.	318.	289
thread	3	03	89	92	43	35	44	96	18	71	35	11	94	48	4	28
Fix1_2	451.	374	617.	592.	593.	592.	614.	578.	588.	576.	583.	571.	577.	570.	624.	588
threads	13		52	56	13	74	66	3	49	77	23	44	35	23	3	26
Fix1_4	359.	339. 99	390.	376.	356.	365.	476.	622	579.	476.	541.	558.	1158	1135	1176	114
threads	83		48	28	81	2	97		36	04	21	62	.65	.85	.26	.53
Fix2_1	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290.	290
thread	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82	82
Fix2_2	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583.	583
threads	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Fix2_4	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	1163	116
threads	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39	.39

3. Draw a graph. The X axis will be NUM, i.e., the amount of integers used to pad the structure. The Y axis will be the performance in whatever units you sensibly choose. There should be at least 6 curves shown together on those axes:

1-3: Using padding with 1, 2, and 4 threads.

4-6: Using a private variable with 1, 2, and 4 threads

4. What patterns are you seeing in the performance?

The three curves indicate Fix#1's 1, 2 and 4 threads, and the yellow, light blue and green straight lines are from Fix#2 program. 1 thread's performance is similar to the fix#2's 1 thread. However, we can see that the other two curves all have a really low performance at the beginning, but as the padding increases, they went up quickly at one point. For 2 threads, it quickly raised up as the pads increased to 3, and it remained its performance, similar to fix#2's 2 threads. When using 4 threads, it went up quickly when the padding is 13; however, 15 pads will get the highest performance.

5. Why do you think it is behaving this way?

1 thread doesn't need to share the cache line with others. Because there was no false sharing, its performance is close to the fix#2's 1 thread's performance. As for 2 and 4 threads, it is because I ran this on flip, which will have a lot students using and running programs at that time, the cache line might not be empty, so it might have some effect on the results.