ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия»

УТВЕРЖДЕНО

СОГЛАСОВАНО

Инв.№ дубл.

Взам. инв.№

Научный руководитель, старший преподаватель департамента больших данных и информационного поиска	Академический руководитель образовательной программы «Программная инженерия», старший преподаватель департамента программной инженерии
В. В. Куренков	Н. А. Павлочев
«»2025 г.	«» 2025 г.
ВСТРОЕННЫМ ЯЗЫКОМ ПРОГРАМ	МЕТРИЧЕСКИХ ЧЕРТЕЖЕЙ СО ИМИРОВАНИЯ И ВОЗМОЖНОСТЬЮ ММНОГО УПРАВЛЕНИЯ
Техничес	кое задание
ЛИСТ УТВ	верждения
RU.17701729.12	.17-01 81 01-1-ЛУ
	Исполнитель:
	Студент группы БПИ233
	/ С. А. Чубий /
	« » 2025 r.

УТВЕРЖДЕН

RU.17701729.12.17-01 81 01-1-ЛУ

СИСТЕМА ПОСТРОЕНИЕ ГЕОМЕТРИЧЕСКИХ ЧЕРТЕЖЕЙ СО ВСТРОЕННЫМ ЯЗЫКОМ ПРОГРАММИРОВАНИЯ И ВОЗМОЖНОСТЬЮ УДАЛЕННОГО ПРОГРАММНОГО УПРАВЛЕНИЯ

Техническое задание

RU.17701729.12.17-01 81 01-1

Листов 8

Инв.№ подп Подп. и дата Взам. инв.№ Инв.№ дубл. Подп. и дата

СОДЕРЖАНИЕ

1.	ВВЕДЕНИЕ	3
	1.1. Наименование программы	
	1.2. Краткая характеристика области применения программы	
	1.3. Документ(ы), на основании которых ведется разработка	
	1.4. Наименование темы разработки	3
2.	НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	
	2.1. Функциональное назначение	🛚
	2.2. Эксплуатационное назначение	🛚
3.	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	5
	3.1. Постановка задачи на разработку программы	5
	3.2. Описание алгоритма и функционирования программы	5
	3.3. Описание и обоснование выбора метода организации входных данных	8
	3.4. Описание и обоснование выбора состава технических и программных средств	8
4.	ОЖИДАЕМЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ	9
	4.1. Предполагаемая потребность	9
	4.2. Сравнение с аналогичными решениями	<u>ç</u>

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

1. ВВЕДЕНИЕ

1.1. Наименование программы

Наименование программы — «Система построение геометрических чертежей со встроенным языком программирования и возможностью удаленного программного управления»

Наименование программы на английском языке — «Geometric Drawing System with a Built-in Programming Language and a Remote Program Control Capability»

Краткое наименование программы — «Geometrica»

1.2. Краткая характеристика области применения программы

«Geometrica» — это десктоп-приложение, которое позволяет пользователю строить и изменять геометрические чертежи, используя графический интерфейс (GUI), интерфейс командной строки (CLI) или библиотеку для языка программирования Rust.

1.3. Документ(ы), на основании которых ведется разработка

Разработка ведётся на основании учебного плана подготовки бакалавров по направлению 09.03.04 «Программная инженерия» и утвержденной академическим руководителем программы темы курсового проекта.

1.4. Наименование темы разработки

Наименование темы разработки: «Система построение геометрических чертежей со встроенным языком программирования и возможностью удаленного программного управления».

Условное обозначение темы разработки – «Geometrica».

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

2.1. Функциональное назначение

Программный продукт позволяет пользователю строить и автоматически перестраивать геометрические чертежи. Производить расчеты на основе построенного чертежа.

2.2. Эксплуатационное назначение

Продукт состоит из трех исполняемых файлов для ОС Linux и одной библиотеки для языка программирования Rust:

- Сервера;
- Графического (GUI) клиента;
- Клиента командной строки (CLI);
- Клиента-библиотеки (lib).

Целевой аудиторией являются:

- Школьники, изучающие геометрию (5–11 классы);
- Школьные учителя, преподающие геометрию (5–11 класс);
- Студенты ВУЗов, изучающие вычислительную геометрию;
- Преподаватели ВУЗов, преподающие вычислительную геометрию.

Продукт будет полезен как для проведения занятий, так и для индивидуальной работы.

CLI- и lib-клиенты в первую очередь нацелены на студентов и преподавателей ВУЗов. GUI клиент будет интересен всем представителям целевой аудитории.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1. Постановка задачи на разработку программы

Цель работы — реализовать все компоненты описанной выше системы, а именно:

- Сервер;
- Графический (GUI) клиент;
- Клиент командной строки (CLI);
- Клиент-библиотеку (lib).

3.2. Описание алгоритма и функционирования программы

3.2.1. Краткое описание крейтов¹ и взаимодействия между ними

Программный продукт разделен на несколько крейтов:

- Клиентская сторона:
 - GUI графический клиент. Поставляется пользователю, как часть программного продукта.
 - CLI клиент командной строки. Поставляется пользователю, как часть программного продукта.
 - Client клиент-библиотека. Поставляется пользователю, как часть программного продукта, а также используется в реализации крейтов CLI и GUI.
 - **Parser** отвечает за парсинг встроенного языка программирования. Является частью внутренней реализации, пользователю **не** поставляется.
- Серверная сторона:
 - Server сервер. Поставляется пользователю, как часть программного продукта.
 - Executor выполняет основную часть вычислений. Является частью внутренней реализации, пользователю не поставляется.
- Общее:
 - **Types** содержит объявления структур, используемых как на серверной, так и на клиентской стороне.

Более подробное описание некоторых из крейтов содержится в последующих пунктах.

Отношения между крейтами можно увидеть на Рис. 1.

3.2.2. Крейт Туреѕ

¹Крейт (crate) единица компиляции в Rust. Ближайший аналог в других языках программирования — пакет.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

Рис. 1. Взаимодействие между крейтами.

Все крейты также зависят от крейта Types. Эти связи не изображены в целях упрощения рисунка.

Бинарные крейты (binary crates) выделены **жирным**, крейты-библиотеки (library crates) выделены *курсивом*.

Обычными стрелками показаны библиотечные зависимости, пунктирными — зависимости других типов.

Крейт Туреs содержит в себе объявления некоторых струкур (и связанных с ними функций и методов), используемых как серверной, так и клиентской сторонами. Среди них:

- структуры, описывающие типы встроенного языка программирования: Value, ValueType, Pt, Line и д.р.;
- структуры, описывающие синтаксис встроенного языка программирования: Statement, Definition, Expr и д.р.;
- структуры, описывающие api: api::items::get_all::Request, api::items::get_all::Response, api::set::Request, api::set::Response и д.р.

Предполагается, что этот крейт должен быть настолько компактным, насколько это возможно. С этой целью в нем применяется техника условной компиляции (conditional compilation), благодаря которой часть функционала крейта можно не компилировать, если в ней нет необходимости, что позволит

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

уменьшить размер результирующего файла, путем отключения ненужного кода и ненужных зависимостей.

3.2.3. Крейт Parser

Крейт Parser реализует логику, связанную с парсингом встроенного языка программирования. Он предоставляет пользователю несколько методов для парсинга тех или иных языковых конструкций: script, expr, statement и д.р., а также трейт² ParseInto<T> с аналогичным назначением.

Для парсинга используется библиотека ред.

3.2.4. Крейт Client

Крейт Client реализует логику клиентской стороны приложения.

Основной структурой данного крейта является Client. Он предоставляется набор методов (command, eval, get_all_items и д.р.) для взаимодействия с сервером.

3.2.5. Крейт GUI

Крейт GUI содержит реализацию графического клиента.

Он использует библиотеку iced для отрисовки интерфейса и крейт Client для взаимодействия с сервером.

3.2.6. **Крейт CLI**

Крейт CLI содержит реализацию клиента командной строки.

Он может работать в нескольких режимах:

- Скриптовый режим будет запущен, если передать имя некоторого файла, в качестве аргумента командной строки. Тогда этот файл будет обработан, как скрипт на встроенном языке программирования. Результат выполнения скрипта будет напечатан на стандартный вывод.
- **Режим стандартного ввода** будет запущен, если передавать данные на стандартный ввод через ріре. Тогда входные данные будут обработаны, как код на встроенном языке программирования. Результат выполнения скрипта будет напечатан на стандартный вывод.
- Интерактивный режим будет запущен, если в остальных случаях (если не передавать аргументов командной строки и не использовать pipe). В этом режиме пользователь может интерактивно вводить код на встроенном языке программирования и сразу получать результат его выполнения.

3.2.7. **Крейт Executor**

²Ближайшим аналогом **трейта (trait)** из Rust в других языка программирования является интерфейс.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

Крейт Executor выполняет основную часть вычислений, а именно, исполняет код на встроенном языке программирования и поддерживает нынешнее состояние чертежа.

Для хранения чертежа служит структура Node (вершина). Вершина может содержать либо некоторое фиксированное значение; либо функцию и набор её аргументов (список других вершин), на основе которых это значение можно вычислить. Вершина также хранит список вершин, которые зависят от неё, — это упрощает процесс пересчета.

Процесс выполнения кода происходит следующим образом:

- Из строкового представления код парсится в Vec<Statement>. На этом этапе структурные преобразования минимальны. Структура Statement очень похожа на синтаксис встроенного языка.
- Далее возможно два случая:
 - Если очередное выражение (Statement) является командой (Command; то есть оно может менять структуру дерева), то оно обрабатывается особым образом. Например, команда set изменяет значение вершины, eval вычисляет значение выражения и т.д.
 - Иначе, если очередное выражение (Statement) является объявлением (FunctionDefinition или ValueDefinition), то в списке функций или вершин соответственно, создается новый элемент. Тело функции или значение выражения, представленное в виде Expr, обрабатывается описанным ниже образом (парсинг уже был выполнен, поэтому первый пункт в списке пропускается).

Процесс обработки Expr (также смотри):

- Из строкового представления выражение парсится в Expr. Сказанное выше про Statement верно и для Expr: структура Expr максимально приближена к синтаксису встроенного языка программирования. Это полезно, при выводе Expr на экран (превращении Expr обратно в строку).
- Expr компилируется в CExpr (от Compiled Expr). На этом этапе происходит разрешение имен переменных и функций, происходят упрощение структуры выражения. Так, если структура Expr похожа на синтаксис языка и удобна для ввода/ вывода, то структура CExpr оптимизирована для простоты вычислений.

3.3. Описание и обоснование выбора метода организации входных данных

3.4. Описание и обоснование выбора состава технических и программных средств

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата

4. ОЖИДАЕМЫЕ ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ

- 4.1. Предполагаемая потребность
- 4.2. Сравнение с аналогичными решениями

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.12.17-01 81 01-1				
Инв. № подл.	Подп. и дата	Взам. Инв. №	Инв. № дубл.	Подп. и дата