<матан, 4 сем>

Лектор: А. А. Лодкин Записал :ta_Xus

27 февраля 2017 г.

Оглавление

1	Теория меры и интегралы по мере		
	§ 1	Системы множеств	4
Δ	Обознач		

Глава 1: Теория меры и интегралы по мере

§1 Системы множеств

Определение 1. Пусть здесь (и дальше) X — проивольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

E.g.
$$X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n \ ($$
это количество элементов, если что $)$

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- 2. $X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$

Глава А: Обозначения

- 🛠 ещё правится. Впрочем, относится почти ко всему.
- □ · · · — начало и конец доказательства теоремы
- ▼ · · · ▲ начало и конец доказательства более мелкого утверждения
- :set aflame набирающему зело не нравится билет
- <+что-то+> тут будет что-то, но попозже
- $a \dots b \quad -$ для $a,b \in \mathbb{Z}$ это просто $[a;b] \cap \mathbb{Z}$
- ≡ штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.