Exercicis Introducció a la Matemàtica discreta

1. Donats els conjunts $A = \{a, b, c, d, e\}, B = \{a, b, d, f, g\}, C = \{b, c, e, g, h\}$ i $D = \{d, e, f, g, h\}$, trobau:

$$A \cup B$$
; $B \cap C$; $C - D$; $A \cap (B \cup D)$; $B - (C \cup D)$;

$$B \cap C \cap D$$
; $(A \cap D) \cup B$; $(C - A) - D$.

- 2. Provau, mitjançant un contra exemple, que de la igualtat $A\cap B=A\cap C$ no es dedue ix que B=C :
- **3.** Donau tres conjunts A, B, C tals que $A \cup (B \cap C) \neq (A \cup B) \cap C$.
- 4. Provau les lleis d'absorció:

$$A \cup (A \cap B) = A; \quad A \cap (A \cup B) = A.$$

- **5.** Provau que: $A \cap (B C) = (A \cap B) (A \cap C)$.
- 6. Aplicau les propietats de les operacions de conjunts per a provar:
 - a) $A \cap B$) $\cup (A \cap B^c) = A$.
 - b) $A \cap B^c$) \cup $(A^c \cap B) \cup (A \cap B) = A \cup B$.
 - c) $A \cup B = B \cup (A B)$ i $B \cap (A B) = \emptyset$.
 - d) $A = (A B) \cup (A \cap B)$ i $(A B) \cap (A \cap B) = \emptyset$.
 - e) $(A B) \cup (B A) = (A \cup B) (A \cap B)$.
 - f) $(A B) = A (A \cap B)$.
 - g) $A \cup B = A \cup (A^c \cap B)$.
 - h) $B = (A^c \cap B) \cup (A \cap B)$.
- 7. Siguin A i B subconjunts d'un univers U, demostrau:
 - a) $A \cup B = A \cap B \iff A = B$.
 - b) $A \cap B = A \iff A \subseteq B$.
- 7. Donau en forma canònica disjuntiva les funcions següents:
 - 1. $f_1(x, y, z) = x\overline{(\overline{y}z)}$
 - 2. $f_2(x, y, z) = z(\overline{x} + y) + \overline{y}$
 - 3. $f_3(x, y, z) = \overline{(\overline{x} + y)} + \overline{x}y$
 - 4. $f_4(x, y, z) = x(x\overline{y} + \overline{x}y + \overline{y}z)$
 - 5. $f_5(x, y, z) = (x + \overline{y}z)(y + \overline{z})$
 - 6. $f_6(x, y, z) = \overline{(\overline{x} + y)} + \overline{y}z$
 - 7. $f_7(x, y, z) = \overline{(\overline{xy})}(\overline{x} + xy\overline{z})$
 - 8. $f_8(x,y,z) = \overline{(x+y)} \ \overline{(x\overline{y})}$
 - 9. $f_9(x, y, z) = y\overline{(x + yz)}$.

8. En aquest exercici, per a cada expressió booleana es dóna l'expressió conjuntista equivalent. Simplificau les expressions:

1.
$$(a+b)\overline{a}\ \overline{b}; \quad (A\cup B)\cap A^c\cap B^c$$
 (Sol: $0;\emptyset$)
2. $abc+\overline{a}+\overline{b}+\overline{c}; \quad (A\cap B\cap C)\cup A^c\cup B^c\cup C^c$ (Sol: $1;U$)
3. $ab+[c(\overline{a}+\overline{b})]; \quad (A\cap B)\cup [C\cap (A^c\cup B^c)]$ (Sol: $ab+c; (A\cap B)\cup C$)
4. $(a+\overline{a}b)(b+bc); \quad [A\cup (A^c\cap B)]\cap [B\cup (B\cap C)]$ (Sol: $ab+c; (A\cap B)\cup C$)
5. $\overline{[(\overline{a}\ \overline{b})+c](a+\overline{b})}; \quad [(A^c\cap B^c)^c\cup C]\cap (A\cup B^c)^c$ (Sol: $\overline{a}b; A^c\cap B$)
6. $(a+\overline{b})(\overline{a}+b)(\overline{a}+\overline{b}); \quad (A\cup B^c)\cap (A^c\cup B)(A^c\cup B^c)$ (Sol: $\overline{a}\ \overline{b}; (A^c\cup B^c)$

9. Simplificau les funcions booleanes donades a la taula següent:

x	y	z	F_1	F_2	F_3	F_4
1	1	1	0	0	1	1
1	1	0	1	1	0	0
1	0	1	0	1	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
0	1	0	0	1	0	0
0	0	1	0	1	1	1
0	0	0	1	1	0	0