Graded

This document has 10 questions.

Statement

Assume that for a certain linear regression problem involving 4 features, the following weight vectors produce an equal amount of mean square error:

Which of the weight vector is likely to be chosen by ridge regression?

Options

(a)

 w_1

(b)

 w_2

(c)

 w_3

(d)

 w_4

Answer

(d)

Solution

Total error = MSE + $\lambda ||w||^2$

If MSE for all the given weights is same, the weight vector whose squared length is the least will be chosen by Ridge Regression.

Statement

Assuming that in the constrained version of ridge regression optimization problem, following are the weight vectors to be considered, along with the mean squared error (MSE) produced by each:

$$w_1$$
 = [2, 2, 3, 1], MSE = 3

$$w_2$$
 = [1, 1, 3, 1], MSE = 5

$$w_3$$
 = [3, 2, 4, 1], MSE = 8

$$w_4$$
 = [1, 2, 1, 1], MSE = 9

If the value of θ is 13, which of the following weight vectors will be selected as the final weight vector by ridge regression?

Note: heta is as per lectures. That is, $||w||^2 \leq heta$

Options

(a)

 w_1

(b)

 w_2

(c)

 w_3

(d)

 w_4

Answer

(b)

Solution

We need to minimize MSE such that $||w||^2 \leq \theta$

$$||w_1||^2=18, ||w_2||^2=12, ||w_3||^2=30, ||w_4||^2=7$$

$$||w||^2 \leq 13$$
 for w_2 and w_4 .

However, the MSE for w_2 is lesser than w_4 .

Hence, w_2 will be chosen.

Statement

Consider the following piece-wise function as shown in the image:

$$y(x) = egin{cases} x^2 & x \leq 0 \ 2x & 0 \leq x \leq 2 \ 4x - 4 & 2 \leq x \end{cases}$$

How many sub-gradients are possible at points a_1 , a_2 , a_3 and a_4 ?

Options

(a)

 $a_1: Many, a_2: One, a_3: Many, a_4: One$

(b)

 $a_1: One, a_2: Many, a_3: Many, a_4: One$

(c)

 $a_1: One, a_2: Many, a_3: One, a_4: Many$

 $a_1: Many, a_2: One, a_3: One, a_4: Many$

Answer

(c)

Solution

 a_1 lies on the part of the function which is differentiable. For a differentiable function (subpart), only one sub-gradient is possible which is the gradient itself.

 a_2 lies at the intersection of two x^2 and 2x. The function is not differentiable at this point (as left slope is different from right slope). Hence there are multiple sub-gradients possible at a_2 .

 a_3 lies on the part of the function which is differentiable. For a differentiable function (subpart), only one sub-gradient is possible which is the gradient itself.

 a_4 lies at the intersection of two 2x and 4x-4. The function is not differentiable at this point (as left slope is different from right slope). Hence there are multiple sub-gradients possible at a_2

Statement

For a data set with 1000 data points and 50 features, 10-fold cross-validation will perform validation of how many models?

Options

(a)

10

(b)

50

(c)

1000

(d)

500

Answer

(a)

Solution

In 10-fold cross validation, the data will be divided into 10 parts. In each of ten iterations, a model will be built using nine of these parts and the remaining part will be used for validation. Hence, in total, ten models will be validated.

Statement

For a data set with 1000 data points and 50 features, assume that you keep 80% of the data for training and remaining 20% of the data for validation during k-fold cross-validation. How many models will be validated during cross-validation?

Options

(a)

80

(b)

20

(c)

5

(d)

4

Answer

(c)

Solution

If 20% of the data is used for validation, that means, 1/5th part is used for validation, which means, 5-fold cross validation is being performed. In each iteration, one model will be validated. Hence, total 5 models will be validated.

Statement

For a data set with 1000 data points and 50 features, how many models will be trained during Leave-One-Out cross-validation?

Options

(a)

1000

(b)

50

(c)

5000

(d)

20

Answer

(a)

Solution

In leave one out cross-validation, only one data point is used for validation in each iteration, and the remaining n-1 data points are used for training. Hence a total of n=1000 models will be trained.

Statement

The mean squared error of \hat{w}_{ML} will be small if

Options

(a)

The eigenvalues of XX^{T} are small.

(b)

The eigenvalues of $(XX^T)^{-1}$ are large.

(c)

The eigenvalues of XX^T are large.

(d)

The eigenvalues of $(XX^T)^{-1}$ are small.

Answer

(c), (d)

Solution

Mean Squared error of $\hat{w}_{ML}=\sigma^2 trace(XX^T)^{-1}$. Trace of a matrix = sum of eigenvalues.

If the eigenvalues of XX^T are large, the eigenvalues of $(XX^T)^{-1}$ will be small. Hence, trace will be small and in turn MSE will be small.

Statement

The eigenvalues of a 3×3 matrix A are 2, 5 and 1. What will be the eigenvalues of the matrix A^{-1}

Options

(a)

4, 25, 1

(b)

2, 5, 1

(c)

0.5, 0.2, 1

(d)

0.6, 0.9, 0.1

Answer

(c)

Solution

If the eigenvalues of A are a, b and c, then the eigenvalues of A^{-1} will be 1/a, 1/b and 1/c.