MAT 3007 Optimization: Tutorial 10

Guxin DU

July 8, 2025

Recap: Optimality Conditions for Unconstrained Problems

Theorem 1 (First-Order Necessary Condition).

If f is continuously differentiable and \mathbf{x}^* is a local minimizer of $f(\cdot)$ for an unconstrained problem, then we must have $\nabla f(\mathbf{x}^*) = 0$.

Theorem 2 (Second-Order Necessary Condition).

If f is second-order continuously differentiable \mathbf{x}^* is a local minimizer of $f(\cdot)$ for an unconstrained problem, then we must have

- 1. $\nabla f(\mathbf{x}^*) = 0$;
- 2. $\nabla^2 f(\mathbf{x}^*)$ is positive semi-definite.

Theorem 3 (Second-Order Sufficient Condition).

If f is second-order continuously differentiable. If \mathbf{x}^* satisfies:

- 1. $\nabla f(\mathbf{x}^*) = 0$;
- 2. $\nabla^2 f(\mathbf{x}^*)$ is positive definite.

Then \mathbf{x}^* is a local minimizer of f.

Recap: Optimality Conditions for Unconstrained Problems

Tips:

1. Check if a matrix is positive definite/semi-definite;

$$det(A) = \prod_i \lambda_i$$
; $tr(A) = \sum_i \lambda_i$

- 2. When to check sufficiency/necessity
 - Find candidates for optimal solutions or prove a point x is not a local optimum
 - Prove a point x is a local optimum
- 3. Understand the insights behind those conditions.

Exercise 1

Find all local minimizer, local maximizer and saddle points of f.

$$f(x) = x_1^4 + 2(x_1 - x_2)x_1^2 + 4x_2^2$$

4 / 12

Guxin DU MAT3007 July 8, 2025

Recap: Optimality Conditions for Linear Constrained Problems

The linear constrained optimization problem is

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $A\mathbf{x} \ge (=) b$.

Theorem 4 (Equality Constraint).

If \mathbf{x}^* is the minimizer, then there must exist \mathbf{y} such that $A^{\top}\mathbf{y} = \nabla f(\mathbf{x}^*)$.

Theorem 5 (Inequality Constraint).

If \mathbf{x}^* is the minimizer, then there must exist $\mathbf{y} \geq 0$ such that

$$A^{\top}\mathbf{y} = \nabla f(\mathbf{x}^*),$$

 $y_i(a_i^{\top}\mathbf{x}^* - b_i) = 0, \forall i.$

where a_i^{\top} is the ith row of A.

Recap: Optimality Conditions for Linear Constrained Problems

Tips:

- 1. Check the sign in the constraint (= or \geq);
- 2. Carefully check the matrix transpose;
- 3. Understand the derivation of the two theorems:
 - ▶ Find the feasible direction set S_F and descent direction set S_D ;
 - ▶ Write the condition $S_F \cap S_D = \emptyset$;
 - Use dual feasibility to construct the alternative systems;

6/12

 Guxin DU
 MAT3007
 July 8, 2025

Exercise 2

Find the distance from the origin $(0,0)^{\top}$ to the polyhedron $S = \{(x_1, x_2)^{\top} | x_1 + x_2 \ge 4, 2x_1 + x_2 \ge 5\}.$ Note that the problem is equivalent to solve the following problem:

min
$$x_1^2 + x_2^2$$

s.t. $x_1 + x_2 \ge 4$
 $2x_1 + x_2 \ge 5$

7 / 12

Guxin DU MAT3007

Exercise 3

Consider the following problem:

$$\min_{\substack{x_1, x_2 \\ \text{s.t.}}} (x_1 - 3)^2 + (x_2 - 2)^2$$

$$\text{s.t.} 2x_1 + x_2 - 6 \le 0$$

$$x_1 + 2x_2 - 6 \le 0.$$
(1)

▶ Prove that $x_1 = 11/5$ and $x_2 = 8/5$ is a local minimizer.

8 / 12

 Guxin DU
 MAT3007
 July 8, 2025

Triangle Inequality for p Norm

p norm: For $p \ge 1$, the p-norm of a vector $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$ is defined as

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}.$$

Particularly, for $p = \infty$, the infinity norm is defined as

$$\|\mathbf{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|.$$

Triangle Inequality: For any vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and any $p \ge 1$ (∞ included), the triangle inequality states that

$$\|\mathbf{x} + \mathbf{y}\|_{p} \le \|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}.$$

The inequality above is also known as Minkowski's inequality.

◆ロト ◆個ト ◆差ト ◆差ト 差 めのぐ

 Guxin DU
 MAT3007
 July 8, 2025
 9 / 12

Proof of Triangle Inequality for p Norm

For p = 1, the triangle inequality follows directly from $|x_i + y_i| \le |x_i| + |y_i|$ for each $1 \le i \le n$.

For $p = \infty$, we have

$$\max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} (|x_i| + |y_i|) \le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i|,$$

For $1 , we first assume that <math>x \neq 0$ and $y \neq 0$. Otherwise the inequality would be trivial. Then we consider the function $\phi(t) = t^p$ defined on $t \in (0,\infty)$. $\phi(t)$ is convex as $\phi''(t) = p(p-1)t^{p-2} > 0$ for t > 0. By the convexity of ϕ , we have for any s,t>0 and $\lambda \in [0,1]$,

$$(\lambda s + (1 - \lambda)t)^p \le \lambda s^p + (1 - \lambda)t^p.$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q @

Guxin DU MAT3007

10 / 12

Proof of Triangle Inequality for p Norm (continued)

For any $1 \leq i \leq n$, we let $s = \frac{|x_i|}{\|\mathbf{x}\|_\rho}$, $t = \frac{|y_i|}{\|\mathbf{y}\|_\rho}$, $\lambda = \frac{\|\mathbf{x}\|_\rho}{\|\mathbf{x}\|_\rho + \|\mathbf{y}\|_\rho}$ and $1 - \lambda = \frac{\|\mathbf{y}\|_\rho}{\|\mathbf{x}\|_\rho + \|\mathbf{y}\|_\rho}$, by the above inequality, we have

$$\left(\frac{|x_i| + |y_i|}{\|\mathbf{x}\|_p + \|\mathbf{y}\|_p}\right)^p \le \frac{\|\mathbf{x}\|_p}{\|\mathbf{x}\|_p + \|\mathbf{y}\|_p} \left(\frac{|x_i|}{\|\mathbf{x}\|_p}\right)^p + \frac{\|\mathbf{y}\|_p}{\|\mathbf{x}\|_p + \|\mathbf{y}\|_p} \left(\frac{|y_i|}{\|\mathbf{y}\|_p}\right)^p.$$

Sum the above inequality over all i from 1 to n, we obtain

$$\frac{\sum_{i=1}^n (|x_i|+|y_i|)^p}{(\|\mathbf{x}\|_p+\|\mathbf{y}\|_p)^p} \leq \frac{\|\mathbf{x}\|_p}{\|\mathbf{x}\|_p+\|\mathbf{y}\|_p} \frac{\|\mathbf{x}\|_p^p}{\|\mathbf{x}\|_p^p} + \frac{\|\mathbf{y}\|_p}{\|\mathbf{x}\|_p+\|\mathbf{y}\|_p} \frac{\|\mathbf{y}\|_p^p}{\|\mathbf{y}\|_p^p} = 1.$$

Therefore, we have

$$\|\mathbf{x} + \mathbf{y}\|_{p} \leq \|\mathbf{x}\|_{p} + \|\mathbf{y}\|_{p}.$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト . 差 . か Q (C)

11 / 12

 Guxin DU
 MAT3007
 July 8, 2025

Coercive

Definition 6.

A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be **coercive** if

$$\lim_{\|x\|\to\infty}f(x)=+\infty.$$

i.e. , $\forall B > 0$, $\exists r > 0$ such that if $||x|| \ge r$ then f(x) > B.

Theorem 7.

Let f be a continuous and coercive function. Then for all $\alpha>0$, the level set

$$L_{\leq \alpha} := \{x : f(x) \leq \alpha\}$$

is compact and f has at least one global minimizer.