3^a Prova de F 228

Turmas do Diurno	
Segundo Semestre de 2012	
26/11/2012	

1.	
2.	
2	

4.____ Nota:

110111011 01111011	Nome:	RA:	Turma:
--------------------	-------	-----	--------

Sempre que necessário, use $g = 10 \text{ m/s}^2 \text{ e}$ $\pi = 3 \text{ e } v_{som} \text{ (no ar)} = 340 \text{ m/s}$

- 1) O pêndulo da figura abaixo é formado por uma haste de comprimento \boldsymbol{L} e uma chapa quadrada também de lado \boldsymbol{L} , presos no ponto O de maneira que os conjunto possa se movimentar. Tanto a haste quanto a chapa são uniformes e possuem massa \boldsymbol{M} . Os momentos de inércia em torno dos centros de massa de uma haste e de uma chapa quadrada são, respectivamente, $I_H = (\boldsymbol{M} \ L^2)/12$ e $I_C = (\boldsymbol{M} L^2)/6$.
- a) Calcule a distância entre o ponto O e o centro de massa desse conjunto haste + chapa.
- b) Se este pêndulo é posto pra oscilar em torno do ponto O com ângulo pequeno, qual será o período de oscilação?

- 2) Uma corda de $L_c = 20$ cm de comprimento tem densidade linear de massa = 10 g/m.
- a) Qual deve ser a tensão da corda se seu segundo harmônico tiver a mesma freqüência que o segundo modo de ressonância de um tubo de $L_T=1,5\,$ m de comprimento aberto em apenas uma extremidade?
- b) Considere a corda estiver vibrando em um modo estacionário descrito pela equação,

$$y(x,t) = (0.01 \text{ m}) \text{sen}(20\pi x) \cos(640\pi t)$$

sendo x dado em metros e t em segundos. Quantos antinodos podem ser observados na corda?

- 3) Durante uma aula, um professor emite um som com uma potência sonora de 1,2. 10^{-9} W. Dado que o limiar de audibilidade corresponde a $I_0 = 10^{-12}$ W/m² e admitindo que o som se distribua uniformemente em todas as direções:
- a) calcule o nível sonoro β (em dB) que um aluno situado a 1,0 m de distância do professor detecta.
- b) Qual a distância entre o professor e aluno, a partir da qual, se o aluno se afastar, ele certamente não ouvirá a voz do professor.
- c) Explique o que aconteceria com o valor encontrado no item a) se a amplitude da voz do professor aumentasse um fator 10. Seja β ' esse novo nível sonoro. Calcule a diferença β ' β entre os níveis sonoros.

- 4) Na figura abaixo dois alto-falantes, separados por uma distância de 3,00 m emitem ondas sonoras em fase. Suponha que as amplitudes do som vindo dos alto-falantes são aproximadamente as mesmas na posição de um ouvinte, que está a 4,00 m em linha reta em frente de um dos alto-falantes.
- a) Para que frequências na faixa de 1,0 kHz a 2,0 kHz o ouvinte escutará um sinal máximo?
- b) Para que frequências nesta faixa ele escutará um sinal mínimo?
- c) Suponha agora que o alto-falante mais distante do ouvinte seja desligado e que o ouvinte comece a andar em direção ao outro alto-falante com velocidade 1,7 m/s. Se o alto-falante esta emitindo ondas com frequência $f_0 = 2$ kHz, que frequência escutará o ouvinte?

