Job No.:
 2405053 - 2
 Address:
 270 Mt Heslington Road, Brightwater, New Zealand
 Date:
 22/07/2024

 Latitude:
 -41.403304
 Longitude:
 173.101144
 Elevation:
 82 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N0	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	2	Subsoil Category	D	Exposure Zone	В
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3.6 m
Wind Region	NZ2	Terrain Category	2.0	Design Wind Speed	40.91 m/s
Wind Pressure	1 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	High	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Gable Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.67 m Cpe = -0.9272 pe = -0.84 KPa pnet = -0.84 KPa

For roof CP,e from 2.67 m To 5.34 m Cpe = -0.8864 pe = -0.80 KPa pnet = -0.80 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 19.6 m Cpe = 0.7 pe = 0.63 KPa pnet = 0.63 KPa

For side wall CP,e from 0 m To 5.34 m Cpe = pe = -0.59 KPa pnet = -0.59 KPa

Maximum Upward pressure used in roof member Design = 0.84 KPa

Maximum Downward pressure used in roof member Design = 0.28 KPa

Maximum Wall pressure used in Design = 0.63 KPa

Maximum Racking pressure used in Design = 0.91 KPa

Design Summary

Purlin Design

Purlin Spacing = 700 mm Purlin Span = 4850 mm Try Purlin 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.43 S1 Downward =11.27 S1 Upward =26.03

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.69 Kn-m	Capacity	2.23 Kn-m	Passing Percentage	323.19 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.95 Kn-m	Capacity	2.97 Kn-m	Passing Percentage	152.31 %
$M_{0.9D\text{-W}nUp}$	-1.27 Kn-m	Capacity	-1.59 Kn-m	Passing Percentage	125.20 %
$V_{1.35D}$	0.57 Kn	Capacity	9.65 Kn	Passing Percentage	1692.98 %

Second page

 $V_{1.2D+1.5L\;1.2D+Sn\;1.2D+WnDn}$ 1.15 Kn Capacity 12.86 Kn Passing Percentage 1118.26 % $V_{0.9D-WnUp}$ -1.04 Kn Capacity -16.08 Kn Passing Percentage 1546.15 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 13.00 mm

Limit by Woolcock et al, 1999 Span/240 = 20.00 mm

Deflection under Dead and Service Wind = 13.87 mm

Limit by Woolcock et al, 1999 Span/100 = 48.00 mm

Reactions

Maximum downward = 1.15 kn Maximum upward = -1.04 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 5000 mm Internal Rafter Span = 5650.017755156393 mm Try Rafter 2x300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 6.81 S1 Upward = 6.81

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{1.35D}$	6.73 Kn-m	Capacity	10.08 Kn-m	Passing Percentage	149.78 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	13.47 Kn-m	Capacity	13.44 Kn-m	Passing Percentage	99.78 %
$M_{0.9D\text{-W}nUp}$	-12.27 Kn-m	Capacity	-16.8 Kn-m	Passing Percentage	136.92 %
V _{1.35D}	4.77 Kn	Capacity	28.94 Kn	Passing Percentage	606.71 %
$V_{1.2D+1.5L\ 1.2D+Sn\ 1.2D+WnDn}$	9.53 Kn	Capacity	38.6 Kn	Passing Percentage	405.04 %
$ m V_{0.9D ext{-}WnUp}$	-8.69 Kn	Capacity	-48.24 Kn	Passing Percentage	555.12 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 16.37 mm

Limit by Woolcock et al, 1999 Span/240 = 24.17 mm

Deflection under Dead and Service Wind = 19.405 mm

Limit by Woolcock et al, 1999 Span/100 = 58.00 mm

Reactions

Maximum downward = 9.53 kn Maximum upward = -8.69 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 100 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 21.67 Kn > -8.69 Kn

Rafter Design External

External Rafter Load Width = 2500 mm

External Rafter Span = 5131 mm

Try Rafter 300x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 0.94

K8 Upward =0.94 S1 Downward =13.93 S1 Upward =13.93

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	2.78 Kn-m	Capacity	4.72 Kn-m	Passing Percentage	169.78 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	5.55 Kn-m	Capacity	6.30 Kn-m	Passing Percentage	113.51 %
$M_{0.9D\text{-W}nUp}$	-5.06 Kn-m	Capacity	-7.87 Kn-m	Passing Percentage	155.53 %
V _{1.35D}	2.16 Kn	Capacity	14.47 Kn	Passing Percentage	669.91 %
V _{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn	4.33 Kn	Capacity	19.30 Kn	Passing Percentage	445.73 %
V0.9D-WnUp	-3.94 Kn	Capacity	-24.12 Kn	Passing Percentage	612.18 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 11.22 mm
Deflection under Dead and Service Wind = 11.97 mm

Limit by Woolcock et al, 1999 Span/240= 21.42 mm Limit by Woolcock et al, 1999 Span/100 = 51.40 mm

Reactions

Maximum downward = 4.33 kn Maximum upward = -3.94 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters = J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

 $V = phi \times k1 \times k4 \times k5 \times fs \times b \times ds \dots (Eq 4.12) = -25.20 \text{ kn} > -3.94 \text{ Kn}$

Single Shear Capacity under short term loads = -10.84 Kn > -3.94 Kn

Intermediate Design Front and Back

Intermediate Spacing = 2500 mm

Intermediate Span = 754 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.28

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 0.045 mm

Limit byWoolcock et al, 1999 Span/100 = 7.54 mm

Reactions

Maximum = 0.59 kn

Intermediate Design Sides

Intermediate Spacing = 2570.01993076681 mm

Intermediate Span = 2776 mm

Try Intermediate 2x150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 1.00 S1 Downward = 9.63 S1 Upward = 0.53

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 0.78 Kn-m
 Capacity
 4.2 Kn-m
 Passing Percentage
 538.46 %

 V0.9D-WnUp
 1.12 Kn
 Capacity
 24.12 Kn
 Passing Percentage
 2153.57 %

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 8.245 mm

Limit by Woolcock et al, 1999 Span/100 = 27.76 mm

Reactions

Maximum = 1.12 kn

Girt Design Front and Back

Girt's Spacing = 1300 mm

Girt's Span = 2500 mm

Try Girt 150x50 SG8 Dry

281.25 %

1182.35 %

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.86 S1 Downward = 9.63 S1 Upward = 16.05

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mwind+Snow 0.64 Kn-m Capacity 1.80 Kn-m Passing Percentage V_{0.9D-WnUp} 1.02 Kn Capacity 12.06 Kn Passing Percentage

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.42 mm

Limit by Woolcock et al, 1999 Span/100 = 25.00 mm

Sag during installation = 2.37 mm

Reactions

Maximum = 1.02 kn

Girt Design Sides

Girt's Spacing = 1300 mm

Girt's Span = 2570 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward = 0.85 S1 Downward = 9.63 S1 Upward = 16.28

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Mw $_{\text{ind+Snow}}$ 0.68 Kn-m Capacity 1.78 Kn-m Passing Percentage 261.76 % V0.9D-WnUp 1.05 Kn Capacity 12.06 Kn Passing Percentage 1148.57 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 4.94 mm

Limit by Woolcock et al. 1999 Span/100 = 25.70 mm

Sag during installation = 2.65 mm

Reactions

Maximum = 1.05 kn

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

Ks (Lateral Earth Pressure Coefficient) for cast into place concrete piles = 1.5

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1600) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1600)

Skin Friction = 20.68 Kn

Weight of Pile + Pile Skin Friction = 24.34 Kn

Uplift on one Pile = 17.84 Kn

Uplift is ok