ZHUONAN HAO

Ph.D. Candidate in Mechanical Engineering

CONTACT Email: znhao@g.ucsd.edu

Phone: +1 (858) 214-0049

Website: https://zhuonan-hao.github.io/Homepage/

EDUCATION University of California, Los Angeles

United States

Doctor of Philosophy, Mechanical and Aerospace Engineering

Jul. 2021 - Now

Advisor: M. Khalid Jawed

University of California, San Diego

United States

Master of Science, Mechanical and Aerospace Engineering Sep. 2019 - Jun. 2021 Thesis: Design principles for locomotion synchronization in undulatory robot groups Advisor: Nicholas Gravish GPA: 3.97/4.00

University of Wollongong

Australia

Exchange, Mechatronics and Materials Engineering Jul. 2018 - Jul. 2019 Thesis: A novel semi-active vehicle suspension with a stiffness variable self-powered MR damper Advisor: Weihua Li GPA: 3.25/4.00

Beijing Institute of Technology

China

Bachelor of Science, Vehicle Engineering
Undergraduate Research Honors
Sep. 2015 - Jul. 2019
GPA: 3.71/4.00

TEACHING

Teaching Assistant, UC San Diego

Course: Computer-Aided Design

Sep. - Dec. 2020

Jul. 2021 - Now

RESEARCH

Structures-Computer Interaction Lab, UC Los Angeles

Research Assistant

Gravish Lab, UC San Diego

Mar.2020 - Jun.2021

Research Assistant

Collective behaviors in swarm robotics system

- Designed the group of snake-like robot system that move through lateral body undulation with n links and n-1 controllable joints.
- Introduced the theory of collective gait compatibility taking inspiration from the physics of granular materials and swarm robotics.
- Demonstrated compatible configuration arise passively through intermittent collision events and proposed principles for robot design to achieve compatibility in proximity.

Synchronization of phase oscillator under weak coupling condition

- Proposed a methodology for phase oscillator design under weak coupling condition to achieve phase convergence through self-feedback signal.
- Employed adaptive Hopf oscillator with central pattern generator for robot joint control to realize specific locomotion pattern.
- Explored the applications on swarm robotics system, including the group behavior of snake-like robot for undulatory locomotion and the simple 2-leg robot for tug of war.

Dynamics and Vibration Control Lab, UOW

Dec. 2018 - Jul. 2019

Research Assistant

Application of Magnetorheological Fluid on vehicle suspension

- Modelled a semi-active suspension with a stiffness variable self-powered MR damper.
- Estimated parametric Bouc-Wen model for suspension dynamic and developed the stiffness controller through Short Time Fourier Transform (STFT).
- Compared with passive system, the MR damper can reduce the acceleration and displacement of the sprung mass by 16.8% and 21.44% respectively.

Published & in review

- PUBLICATIONS 6. Z.N. Hao, W. Zhou, N. Gravish. Synchronized swimming: adaptive gait synchronization through mechanical interactions instead of communication [C]. Adaptive Motion in Animals and Machines. 2021.
 - 5. W. Zhou, Z.N. Hao, N. Gravish. Collective synchronization of undulatory movement through contact [J]. Physics Review X. 2021.
 - 4. W. Zhou, JD Peralta, Z.N. Hao, N. Gravish. Lateral contact yields longitudinal cohesion in active undulatory systems [J]. Physics Review E. 2021. In review.
 - 3. W. Zhou, JD Peralta, Z.N. Hao, N. Gravish. Synchronized swimming: collisions drive gait compatibility in undulatory robots [C]. Bulletin of the American Physical Society. 2021.
 - 2. X.J. Zhu, D.H. Ning, Z.N. Hao, W.H. Li, et al. Modelling and experimental evaluation of a variable stiffness MR suspension with self-powering capability [J]. Journal of Intelligent Material Systems and Structures. 2020.
 - 1. L.L. Ren, **Z.N. Hao**. A Simple Fix for Convolutional Neural Network via Coordinate Embedding [J]. arXiv, pp.arXiv-2003. 2020.

MANUSCRIPT In prep

1. **Z.N. Hao**, W.Zhou, N. Gravish. Design principles for emergent synchronization in robot groups through mechanical contact. 2021. In prep.

HONORS & AWARDS

Honorable mention for outstanding poster in AMAM 2021

2021

Virtual poster competition winner, AMAM2021 Virtual Organizing Committee

Outstanding Undergraduate

2019

Awarded for the exemplary student, Beijing Institute of Technology

China Scholarship Council Scholarships (AUD \$20,000)

2018-2019

National scholarship for studying abroad, China Scholarship Council

Honorable Mention of Mathematical Contest in Modeling Top 25% team, COMAP

2018

National Scholarship (CNY ¥8,000)

2017

Top 1 student in School of Mechanical Engineering, Ministry of Education of P.R. China

National College Students' innovation and entrepreneurship training program (CNY ¥10,000)

Undergraduate research funds, Ministry of Industry and Information Technology

Annual Merit Undergraduate

2016, 2017

Best undergraduate student, Beijing Institute of Technology

First Prize of the People's Scholarship (CNY ¥1,100) 2016, 2017, 2018 Top 5% in School of Mechanical Engineering, Beijing Institute of Technology

Grand Prize of Capital College Students' Summer Holiday Social Practices 2016 Collections (Selected as an editors suggestion)

Coauthor to the best student paper, Beijing Municipal Education Commission

SKILLS

Languages: Matlab, Python, C/C++, HTML

Software: LaTeX, SolidWorks, CAD, ANSYS, COMSOL

Packages: ROS, Simulink, Pybullet, Pychrono, Tensorflow, Keras