Definition: A maximal ideal of a commutative ring R is a proper ideal M of R such that if there exists an ideat I satisfying M c I c R, then either I = M or I = R.

Theorem: Let R be a commutative ring with identity M an ideal in R. Then M is a maximal ideal if and only if R/M is a field.

Proof: Suppose M is a maximal ideal in R. We want to show that R/M is a field. Since R is a commutative ring with identity, then R/M is also commutative ring with identity. It remains to show that for every $a + M \neq 0R + M$, there exists $ab \in R$ such that $(a+M)(b+M) = 1R + M \Rightarrow ab + M = 1R + M$.

Let $I = \bigcup_{f \in R} (ar + M) = \frac{1}{2} ar + m : r \in R_1 m \in M_1$. We want to show that $M \subseteq I$ and we also show that I is an ideal of R. For the first, let $m \in M$ be arbitrary. Then $m = a \cdot 0_R + m \in I \implies M \subset I$. Now let $a \in R \setminus M$. Then $a = a \cdot 1_R + 0_R \in I \implies M \not= I \implies M \not= I$. Next, we show that $I \triangleleft R$. We use the subring test:

- · OR = a.OR + OR EI
- $(\alpha r_1 m_1) (\alpha r_2 m_2) = \alpha (r_1 r_2) (m_1 m_2) \in I$.
- · YseR, ar, meI => s(ar, m) = a(sr)+sm eI => I is an ideal.

Since M is a maximal ideal $I = R \Rightarrow 1_R \in I$, i.e there exists a beR such that 1 = ab + m for some meM. Therefore, R/m is a field.

On the other hand, assume that P/M is a field. Let IAR such

that MCICR. If I=M, then we are done. We now want to show that I=R. Let $\alpha \in I\setminus M$. Then $\alpha+M\neq 0+M=0_{R/M}$. Because R/I is a field, there exists a b&M such that $(\alpha+M)(b+M)=ab+M=1+M$. Thus, there exists an $m\in M$ such that ab+m=1, and $1\in I$. Therefore, I=R, so M is the maximal ideal of R.

Polynomial Rings and The Division Algorithm.

Theorem (Division Algorithm): Let f(x) and g(x) be polynomials in F[x] where F is a field and g(x) is a nonzero polynomial. Then there exists unique polynomials g(x), $r(x) \in F[x]$ such that f(x) = g(x)g(x) + r(x)

where either deg(r(x)) < deg(g(x)), or r(x) is the zero polynomial.

Example: Let $\alpha \in F$ and let $g(x) = x - \alpha$. Let $f(x) \in F[x]$. Then by the Division Algorithm, there exists $g(x) \cdot r(x)$ such that $f(x) = g(x)(x - \alpha) + r(x)$ and either r(x) = 0, or

deg(r(x)) < deg(g(x)). If r(x) = b for some $b \in F$, then substituting e, we have $f(a) = g(a)(a-a) + b \Rightarrow f(a) = b$, where f(a) is

the remainder. This is called the Remainder Theorem.

The Remainder Theorem: Let F be a field and let $p(x) \in F(x)$. When p(x) is divided by a polynomial ax-b, then the remainder is $p(\frac{b}{a})$.

Definition: Let f(x), g(x) & F[x] be polynomial.

· We say that glx) divides f(x), i.e g(x) f(x) or g(x) is a

factor of f(x) if there exists a h(x) = F[x] such that f(x) = g(x) h(x)

- A root α of f(x) has multiplicity n if $(x-a)^n | f(x)$, but $(x-a)^{n+1} | f(x)$.
- The Factor Theorem: Let F be a field. An element aGF is a zero of p(x)GF(x) if and only if x-a is a factor of p(x)GF(x).
- Proof: By the remainder theorem, α is a root of p(x) if and only if $p(\alpha) = 0$ if and only if $p(x) = q(x)(x-\alpha)$ if and only if $x-\alpha|p(x)$.
- Corollary: Let F be a field. A nonzero polynomial p(x) of degree n in F[x] can have at most n distinct zeros in F
- Proof: We will use induction on p(x). If deg(p(x)) = 0, then p(x) is a constant polynomial with no roots. Let deg(p(x)) = n > 0. If p(x) has no roots, then we are done. On the other hand, if a is a zero of p(x), with multiplicity $k \ge 1$. Then $p(x) = (x-\alpha)^k h(x)$ where $deg(h(x)) = n k = (x-\alpha)^k h(x)$. If p(x) has no other root that it has roots $\alpha, \alpha, \dots, \alpha$ (k times), then we are done.
- Otherwise, p(x) has a root $\beta \neq \alpha$. By the Factor Theorem, we have

$$p(\beta) = (\beta - \alpha)^{k} h(\beta) = 0$$

$$\beta - \alpha \neq 0_{F} \Rightarrow (\beta - \alpha)^{k} \neq 0_{F}$$

Multiply $(\beta - \alpha)^k \Rightarrow h(\beta) = 0 \Rightarrow \beta$ has root of h(x).

By the inductive hypothesis, h(x) has at most n-k roots and so p(x) has at most k+(n-k)=n roots.