

AllLife Bank Study

Unsupervised Learning Project Credit Card Customer Segmentation

August 4, 2023

By: Yolanda OMalley

Contents / Agenda

- Executive Summary
- Business Problem Overview and Solution Approach
- EDA Results
- Data Preprocessing
- K-Means Clustering
- Hierarchical Clustering
- Appendix

Objective:

To identify different segments in the existing customer, based on their spending patterns as well as past interaction with the bank, using clustering algorithms, and provide recommendations to the bank on how to better market to and service these customers.

Conclusions:

We will look into clusters 0, 1, and 2 only because cluster 3 have only 1 custoomer in it. Both Hierarchical Clustering & K-means Clustering are very similar except for a small change in cluster 2 on Total visit Online & Average Credit Limit.

- **Cluster 0**

There are 223 customers in this cluster.

The average credit limit of customers is low with 12156.95

Total credit cards are low with 2 credit cards.

Total visits at the bank are low, but the Total visits online are moderate with 4

Total calls made to the bank are high with 7

Conclusions:

- **Cluster 1**

There are 50 customers in this cluster.

The average credit limit of customers is high with 141040.00

Total credit cards are high with 9 credit cards.

Total visits at the bank are low, but the Total visits online are high with 11

Total calls made to the bank are low with 1

- **Cluster 2**

There are 387 customers in this cluster.

The average credit limit of customers is moderade with 33744.19

Total credit cards are high with 6 credit cards.

Total visits at the bank are moderade, but the Total visits online are low with 1

Total calls made to the bank are 2

Recomendations:

AllLife bank have to build a clustering algorithms obtained by K-means Clustering with 3 clusters to provide recommendations to the bank on how to get a better market and give better service to these customers.

Recomendations:

- Cluters 0 customers are good places for AllLife Bank to focus on marketing campaigns to target customers with low Total credit cards & Total visits at the bank to increse customers service & upsell existing customers at the bank based on cluster profiling done.
- Cluters 1 customers are good places for AllLife Bank to focus on marketing campaigns to target customers with low Total visits at the bank to increse customers service at the bank and to target new customers based on cluster profiling done.
- Cluters 2 customers are good places for AllLife Bank to focus on marketing campaigns to target customers with low Total visits online at the bank to increse customers service at the bank based on cluster profiling done.

Business Problem Overview and Solution Approach

We will be focusing on:

- AllLife Bank credit card customer base in the next financial year by identifying different segments in the existing customer, based on their spending patterns as well as past interaction with the bank.

- Way to target new customers as well as upsell existing customers using the marketing department.

- We will use data preprocessing and EDA using descriptive statistics and visualizations

- We will use clustering algorithms to do customer segmentation and analyze these segments to gain insights.

Univariate Analysis – Customer Key & Avg Credit Limit

Observations:

Avg credit limit has right-skewed distributions with upper outliers, which indicates the presence of customers with very high credit limit.

Univariate Analysis – Total credit cards & Total visits bank

Observations:

The average total credit cards is 5 & the avg total visit bank is 2.

Univariate Analysis – Total visits online& Total calls made

Observations:

Total visit online have right-skewed distributions with upper outliers, which indicates the presence of customers with very high credit limit & visit online.

Univariate Analysis – Total credit cards & Total visits bank

Observations:

- 22.9% of the customers of the bank have 4 credit cards
- 23.9% of the customers of the bank have 2 total visits to the bank

Univariate Analysis – Total visits online & Total calls made

Observations:

28.6% bank customers have 2 total visit online

16.4% bank customers have 4 total calls made

Univariate Analysis – Numerical variables

Observations:

- 90% of bank customers have 75000 average credit card limit
- 95% of bank customers have 8 credit cards
- 75% bank customers have 4 visits to the bank
- The maximum visit online is 15

Great Learning

Bivariate Analysis

- Average credit limit and total credit cards have a high to moderate correlation
- Total calls made and total credit cards have a negative correlation.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Data Preprocessing

Duplicate value check:

Only Customer_Key has duplicate values Missing value treatment: There are no missing values in the data Outlier check:
Avg credit limit
and total visit
online have
right-skewed
distributions
with upper
outliers.

z-score with a threshold of 3 was used. No treatment needed.

Data preparation for modeling:

The data was scale before proceed with clustering

K-Means Clustering Summary

Great Learning

Optimal Number of clusters using K-Means

The plot shows that all the clusters meet the requirements. All the clusters have crossed Avg silhouette score, all the clusters have different silhouette scores and have different width sizes. So, let's take 4 as the appropriate no. of clusters(K) as the silhouette score is high enough for all the 4-clusters(above average silhouette score), and there is a Knick at 4 in the elbow curve

Cluster Profiling

Link to Appendix slide on K-Means Clustering

K-Means Clustering Summary - Cluster Profiling

G	Great Lear	at ning
	POWER	AHEAD

HC_	Cluste rs	Customer _Key	t_Limit	dit_Cards	l otal_visit s_bank	s_online	otal_calls _made	
	0	55252.730	12156.950	2.403587	0.928251	3.556054	6.883408	223
	1	56708.760	141040.00	8.740000	0.600000	10.900000	1.080000	172
	2	54791.406	33564.766	5.520725	3.492228	0.987047	2.010363	50
	3	87073.000	100000.00	2.000000	1.000000	1.000000	0.000000	215

Cluster 0: There are 223 customers in this cluster. Total credit cards are low with 2 credit cards. Total visits at the bank are low, but the Total visits online are moderate with 4. Total calls made to the bank are high with 7.

Cluster 1: There are 172 customers in this cluster. Total credit cards are high with 9 credit cards. Total visits at the bank are low, but the Total visits online are high with 11. Total calls made to the bank are low with 1.

Cluster 2: There are 50 customers in this cluster. Total credit cards are high with 6 credit cards. Total visits at the bank are moderate, but the Total visits online are low with 1. Total calls made to the bank are 2.

Cluster 3: There are 215 customers in this cluster. Total credit cards are low with 2 credit cards. Total visits at the bank & the Total visits online are low with 1 each.

Hierarchical Clustering Summary

 Optimal Number of clusters using Hierarchical Clustering

The cophenetic correlation is highest for average and centroid linkage methods. 4 appears to be the appropriate number of clusters from the dendrogram for Average linkage.

Dendrogram (Average Linkage)

chical Clustering

Hierarchical Clustering Summary - Cluster Profiling

Great Learning

count in

пс	_segme nts	Customer_ Key	Avg_Credi t_Limit	Total_Cred it_Cards	Total_visit s_bank	Total_visit s_online	Total_calls _made	
	0	55252.730	12156.950	2.403587	0.928251	3.556054	6.883408	223
	1	56708.760	141040.00	8.740000	0.600000	10.900000	1.080000	50
	2	54791.406	33564.766	5.520725	3.492228	0.987047	2.010363	386
	3	87073.000	100000.00	2.000000	1.000000	1.000000	0.000000	1

Cluster 0: There are 223 customers in this cluster. Total credit cards are low with 2 credit cards. Total visits at the bank are low, but the Total visits online are moderate with 4. Total calls made to the bank are high with 7.

Cluster 1: There are 50 customers in this cluster. Total credit cards are high with 9 credit cards. Total visits at the bank are low, but the Total visits online are high with 11. Total calls made to the bank are low with 1.

Cluster 2: There are 386 customers in this cluster. Total credit cards are high with 6 credit cards. Total visits at the bank are moderade, but the Total visits online are low with 1. Total calls made to the bank are 2.

Cluster 3: There are 1 customers in this cluster. Total credit cards are low with 2 credit cards. Total visits at the bank & the Total visits online are low with 1 each.

APPENDIX

Data Background and Contents

The data provided is of various customers of a bank and their financial attributes like credit limit, the total number of credit cards the customer has, and different channels through which customers have contacted the bank for any queries (including visiting the bank, online and through a call center). Sl_No: Primary key of the records

Customer Key: Customer identification number

Average Credit Limit: Average credit limit of each customer for all credit cards

Total credit cards: Total number of credit cards possessed by the customer

Total visits bank: Total number of Visits that customer made (yearly) personally to the bank

Total visits online: Total number of visits or online logins made by the customer (yearly)

Total calls made: Total number of calls made by the customer to the bank or its customer service department (yearly)

 Please update regarding application of K-Means Clustering:

In Number of Clusters 4 the Average Distortion is 1309.51, which is lower than cluster 3.

 Observations using Elbow Curve along with visuals:

Appropriate value for k seems to be 3, 4, 5 or 6.

 Observations from Silhouette scores for different number of clusters:

Silhouette score for 3 is higher than that for 4 and 5. So, we can take 3 as value of k, but we can visualize the silhouette scores for different number of clusters to find the optimal no. of clusters.

 Observations from Silhouette scores for different number of clusters:

Silhouette score for 3 clusters: cluster with label 1 has a big number of observations (Width), and label 2 has a very small number of observations so k=3 will not be an appropriate value.

 Observations from Silhouette scores for different number of clusters:

Silhouette score for 4 clusters: clusters meet the requirements. All the clusters have crossed Avg silhouette score, all the clusters have different silhouette scores and have different width sizes. So. let's take 4 as the appropriate no. of clusters(K) as the silhouette score is high enough for all the 4clusters (above average silhouette score), and there is a knick at 4 in the elbow curve

 Observations from Silhouette scores for different number of clusters:

Silhouette score for 5 clusters: all the clusters have crossed Avg silhoutte score, all the clusters have different silhoutte score and have different width size, but the silhoutte score is low.

 Observations from Silhouette scores for different number of clusters:

Silhouette score for 6 clusters: all the clusters have crossed Avg silhouette score, all the clusters have different silhouette scores and have different width sizes, but there is no elbow at K=6, so k=6 will not be an appropriate value.

Hierarchical Clustering Technique

 Please update regarding application of Hierarchical Clustering:

The cophenetic correlation is maximum with Euclidean distance and average linkage with 0.8684

Observations using different linkage methods:

Highest cophenetic correlation is 0.8684, which is obtained with average linkage and Euclidean distance.

	Linkage	Cophenetic Coefficient				
4	ward	0.706719				
0	single	0.715826				
1	complete	0.833336				
5	weighted	0.864225				
3	centroid	0.865643				
2	average	0.868423				

Hierarchical Clustering Technique

 Dendrograms for linkage methods used and their observations:
 Dendrogram with average linkage shows distinct and separate cluster tree.

The cophenetic correlation is highest for average and centroid linkage methods.

We will move ahead with Average linkage.

4 appears to be the appropriate number of clusters from the dendrogram for Average linkage.

Dendrogram (Single Linkage

Hierarchical Clustering Technique

Distance	Linkage	Cophenetic correlation
Euclidean	single	0.7158
Euclidean	complete	0.8333
Euclidean	average	0.8684
Euclidean	weighted	0.8642
Chebyshev	single	0.6993
Chebyshev	complete	0.7832
Chebyshev	average	0.8628
Chebyshev	weighted	0.8345

Distance	Linkage	Cophenetic correlation
Cityblock	single	0.7109
Cityblock	complete	0.8375
Cityblock	average	0.8648
Cityblock	weighted	0.8583
Mahalanobis	single	0.6829
Mahalanobis	complete	0.6051
Mahalanobis	average	0.7754
Mahalanobis	weighted	0.7777

Observations from Cophenetic correlation for different combinations of distance and metrics:

Highest cophenetic correlation is 0.8684, which is obtained with Euclidean distance and average linkage Proprietary content. © Great Learning, All Rights Reserved. Unauthorized use or distribution prohibited.

12156.9506

141040.000

33564.7668

100000.000

55252.7309

56708.7600

54791.4067

87073.0000

223

172

50

215

6.883408

1.080000

2.010363

0.000000

HC_Cluster s	Customer_ Key	Avg_Credit _Limit	Total_Cred it_Cards	Total_visit s_bank ne	Total_visit s_online	Total_calls _made	count_in_e ach_segm ent

0.928251

0.600000

3.492228

1.000000

3.556054

10.900000

0.987047

1.000000

On the Hierarchical cluster profiles, cluster 1 has the lowest customers with 50 customers and on the

2.403587

8.740000

5.520725

2.000000

K-means cluster profiles cluster 2 has the lowest customers with 50 customers.

Customer

55252.7309

Key

Avg Credit Total Cred

Limit

12156.9506

HC_segme

nts

Total calls

made

count in e

ach_segm

ent

0	42	73	2.403587	0.928251	3.556054	6.883408	223	
1	56708.7600 00	141040.000 000	8.740000	0.600000	10.900000	1.080000	50	
2	54791.4067 36	33564.7668 39	5.520725	3.492228	0.987047	2.010363	386	
3	87073.0000 00	100000.000 000	2.000000	1.000000	1.000000	0.000000	1	
Eventhough on Hierarchical cluster profiles cluster 3 has only one and on the K-means cluster profiles								

it Cards

Total_visit

s bank

Total_visit

s online

cluster 3 has 215 the average credit limit, total credit card, total visit at the bank, total visit online and total call made to the bank are the same. Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

K_means_ segments	Customer_ Key	Avg_Credi t_Limit	Total_Cred it_Cards	Total_visit s_bank	Total_visit s_online	Total_calls _made	count_in_e ach_segm ent
0	55412.7623 32	12143.4977 58	2.403587	0.928251	3.551570	6.883408	223
1	56708.7600 00	141040.000 000	8.740000	0.600000	10.900000	1.080000	50
2	54782.6072 35	33744.1860 47	5.511628	3.485788	0.989664	2.005168	387

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

⁻ After combining cluster 3 & 1 from Kmean segments in cluster 2. It became more homogeneous clusters, with more variability between clusters.

⁻ Both Hierarchical Clustering & K-means Clustering are very similar except for a small change in cluster 2 on Total visit Online & Average Credit Limit.

- After combining cluster 3 & 1 from Kmean segments in cluster 2. It became more homogeneous clusters, with more variability between clusters.
- Both Hierarchical Clustering & K-means Clustering are very similar except for a small change in cluster 2 on Total visit Online & Average Credit Limit.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Happy Learning!

