CQL 的實際應用 Grammatical Collocations

HOCOR 2020

廖永賦 台大語言所

Why Build Corpora with Corpus Engines?

- Tools: <u>BlackLab</u>, <u>(No)Sketch Engine</u>, <u>CWB</u>
- 預建功能 (Concordance, Collocation, Word Frequency Lists, ...)
- 搜尋速度快(建立索引)
- Query Language (e.g., CQL)

除了找 Concordance, CQL 還可以?

- 找出 concordance 後, (除了人工檢視外) 還能有許多應用...
- 中研院<u>中文詞彙特性速描系統 (Chinese Word Sketch)</u> (Huang et al., 2005)

喝	21	14	7	0	-7	-14	-21	吃									
Sen	tObj	ect_o	f 1287	4841	4.9	7.5	Mod	ifier	5396	16648	3.6	4.5	Object	t 19 7 99 4	10340	4.5	3.7
喜歡	7		215	750	59.7	72.8	少		<u>114</u>	<u>493</u>	47.0	64.4	酒	<u>6001</u>	<u>18</u>	108.7	9.1
試			<u>34</u>	465	34.9	71.7	多		<u>362</u>	<u>1567</u>	47.5	62.8	牛奶	<u>440</u>	<u>24</u>	66.7	18.5
愛			<u>236</u>	<u>798</u>	58.0	69.9	一起		<u>188</u>	412	42.8	46.2	東西	<u>22</u>	<u>830</u>	12.6	55.3
嗜			<u>11</u>	<u>89</u>	29.5	58.4	不		1037	2191	45.3	45.9	奶	<u>138</u>	<u>183</u>	48.3	47.8
拒			<u>13</u>	186	23.3	56.3	常		<u>116</u>	<u>238</u>	41.5	44.5	稀飯	<u>24</u>	<u>50</u>	34.0	41.6
顧不	上		<u>12</u>	<u>69</u>	31.5	54.9	天天		<u>35</u>	<u>92</u>	35.5	43.9	碗	<u>26</u>	<u>100</u>	23.8	37.6
敢			<u>44</u>	227	33.6	50.4	沒		<u>93</u>	<u>352</u>	31.7	42.7	水	<u>381</u>	<u>16</u>	37.3	1.9
請			<u>53</u>	243	27.7	39.8	邊		<u>43</u>	<u>176</u>	28.5	41.2	習慣	<u>194</u>	<u>209</u>	35.8	31.4
喜愛	5		27	<u>51</u>	31.7	33.6	連		<u>24</u>	<u>205</u>	19.3	39.8	奶水	<u>23</u>	<u>19</u>	35.5	29.6
怕			<u>10</u>	<u>58</u>	18.0	33.1	只		<u>163</u>	454	32.9	38.6	母奶	<u>23</u>	<u>26</u>	34.3	32.7
涉嫌	ŧ		<u>45</u>	<u>11</u>	28.7	8.8	不要		<u>125</u>	<u>259</u>	35.7	37.9	母乳	<u>39</u>	<u>43</u>	31.1	28.5
知道	ĺ		<u>30</u>	<u>74</u>	24.2	27.8	給他		<u>16</u>	<u>71</u>	23.4	37.6	酸奶	<u>20</u>	<u>10</u>	31.0	19.5

Chinese Word Sketch 的概念 (以 Modifier + V 為例)

¹ CKIP tag set ² PTT 語料庫

³ CQL 範例

https://github.com/ckiplab/ckiptagger/wiki/POS-Tags

http://140.112.147.132:9898/concordance

Mod:[pos="D.*" & pos!="DE"] [word="地"]? V:[pos="V.*" & pos!="VH.*"] [pos!="DE"]

BlackLab API

```
"summary": {...}, // 17 items
                                                                                   "captureGroups": [
"hits": Γ
                                           hits: concordance
                                                                                                              CQL Label name
                                                                                            "name": "Mod"
       "docPid": "M.1546281742.A.844",
                                                                                            "start": 10,
       "start": 10,
                                                                                                              Position
       "end": 12,
                                                                                            'end": 11
                                                                                                              in corpus
                                            captureGroups
       "captureGroups": [...], // 2 items
       "left": {
                                            left: context
        ▶ "punct": [...], // 3 items
                                                                                           "name": "V",
        ▶ "pos": [...], // 3 items
        ▶ "word": [...] // 3 items
                                                                                           "start": 11,
                                                                                           "end": 12
       "match": {
                                            match:
        ▶ "punct": [...], // 2 items
                                             keywords
                                                                                   ],
        ▶ "pos": [...], // 2 items
                                             matching CQL
        ▶ "word": [...] // 2 items
       'riaht": {
                                            right: context
        "punct": [...], // 3 items
        ▶ "pos": [...], // 3 items
        "word": [...] // 3 items
 ▶ {...}, // 7 items
 ▶ {...} // 7 items
                                                                                     BlackLab API 回傳 JSON 格式:bit.ly/blacklap-api
                                                                    API 搜尋參數:https://inl.github.io/BlackLab/blacklab-server-overview
"docInfos": { ... } // 2 items
                              CQL: Mod: [pos="D.*" & pos!="DE"] [word="地"]? V: [pos="V.*" & pos!="VH.*"] [pos!="DE"]
```

程式手作: Collostructional Analysis

Collostructional Analysis

- Collexeme analysis (Stefanowitsch & Gries, 2003)
 - 衡量句式與其 lexical slot 內的詞彙的共現傾向 e.g.,「把」字句中之**動詞**使用偏好

	L _j	٦L _j
С	а	b
¬C	c	d

- Distinctive collexeme analysis (Gries & Stefanowitsch, 2004)
 - 比較兩種 (or 多種) 句式中, 相應位置之 lexical slot 的偏好 e.g.,「把」字句 vs.「將」字句, 句中之動詞使用偏好

	Lj	¬L _j
C ₁	а	b
C ₂	c	d

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的資語與動作,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:**把 時間**(slot1) **花**(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	С	d

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:**把 時間**(slot1) **花**(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心
置	1	
□置		

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:**把 時間**(slot1) **花**(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心
置	1	
□置		

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:**把 時間**(slot1) **花**(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1		1
置			

2

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
一置			

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
□置	1		

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
一置	1		

4

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
一置	1		3
	2		

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
□置	1		3
	2	2	4

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個lexical slots 內的詞彙的共現傾向
 e.g.,「把」字句中的N與V,如:把時間(slot1) 花(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	重心	¬重心	
置	1	0	1
一置	1	2	3
	2	2	4

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:**把 時間**(slot1) **花**(slot2) 在...

	L _{Slot 1}	¬L _{Slot 1}
L _{Slot 2}	а	b
¬L _{Slot 2}	c	d

	心思	¬心思
放	1	1
¬放	0	2

	重心	¬重心
放	1	1
¬放	1	1

	重心	⋾重心
置	1	0
っ置	1	2

	時間	¬時間
花	1	0
¬花	0	3

Attraction for each (N, V) pair is calculated by $-\log(p)$, where p is the p-value of a Fisher's exact test performed on the contingency table

Attraction for each (N, V) pair is calculated by $-\log(p)$, where p is the p-value of a Fisher's exact test performed on the contingency table

- Co-varying collexeme analysis (Stefanowitsch & Gries, 2005)
 - 衡量同一句式下的兩個 lexical slots 內的詞彙的共現傾向 e.g.,「把」字句中的 N 與 V, 如:把 時間(slot1) 花(slot2) 在...

(by Fisher's exact test) 0

text

Attraction

你要<u>把重心置</u>於家人身上, 而不是<u>把重心放</u>在工作。 整天<u>把心思放</u>在工作卻不管家人實在很糟 應該多<u>把時間花</u>在有意義的事情上

marginal freguency

	心思	¬心思
放	1	1
¬放	0	2

	重心	「重心
放	1	1
¬放	1	1

	重心	¬重心
置	1	0
一置	1	2

0

	時間	¬時間
花	1	0
¬花	0	3

Co-varying Collexeme Analysis in Python

- 1. Compute contingency table
- 2. Compute attraction stats (association measures)

¹ GitHub repo: https://github.com/lopentu/hocor2020-GramColl

² 對照 collostructional_analysis.ipynb: "1. Covarying Collexeme Analysis (CCA)" (view on web)

³ search(), cca(), rank_collo() 說明文件見 https://opentu.github.io/hocor2020-GramColl, 程式碼見 APIsearch.py 與 collo_measures.py

References

- Desagulier, G. (2017). *Corpus Linguistics and Statistics with R*. Springer. Retrieved from https://doi.org/10.1007/978-3-319-64572-8
- Gries, S. T., & Stefanowitsch, A. (2004). Extending collostructional analysis: A corpus-based perspective onalternations'. *International Journal of Corpus Linguistics*, *9*(1), 97–129.
- Huang, C.-R., Kilgarriff, A., Wu, Y., Chiu, C.-M., Smith, S., Rychlỳ, P., ... Chen, K.-J. (2005). Chinese Sketch Engine and the extraction of grammatical collocations. *Proceedings of the Fourth SIGHAN Workshop on Chinese Language Processing*.
- Stefanowitsch, A., & Gries, S. T. (2003). Collostructions: Investigating the interaction of words and constructions. *International Journal of Corpus Linguistics*, *8*(2), 209–243.
- Stefanowitsch, A., & Gries, S. T. (2005). Covarying collexemes. *Corpus Linguistics and Linguistic Theory*, *1*(1), 1–43.