CS 310 - Winter 2001 - Midterm Exam (solutions)

SOLUTIONS

1. (Logic)

(a) Prove the following logical equivalence by using Laws of Logic (Algebra of Propositions):

$$p \to (q \to r) \Leftrightarrow (p \land q) \to r$$
.

(Assume that ' \rightarrow ' is defined by " $p \rightarrow q \Leftrightarrow \neg p \lor q$ ".)

Solution:

$$\begin{array}{ccc} p \to (q \to r) & \stackrel{\text{(Def. of } '\to ')}{\Longleftrightarrow} & \neg p \lor (\neg q \lor r) & \stackrel{\text{(Associative)}}{\Longleftrightarrow} & (\neg p \lor \neg q) \lor r \\ & \stackrel{\text{(DeMorgan's)}}{\Longleftrightarrow} & \neg (p \land q) \lor r & \stackrel{\text{(Def. of } '\to ')}{\Longleftrightarrow} & (p \land q) \to r \end{array}$$

(b) Determine the truth value of each of the following statements:

S1: $\exists x \forall y \exists z (x = y + z)$

S2: $\forall x \forall y \exists z (x = y + z)$

S3: $\forall x \exists y [(x < y) \land \forall z (x < z \rightarrow y \le z)]$

in the universe of discourse indicated by the header of each column of the following table (write your answers in the table):

Solution:

	$\{0, 1, 2\}$	N	\mathbb{Z}	Q
S1	1	0	1	1
S2	0	0	1	1
S3	0	1	1	0

Remarks: S2 basically means that the difference x-y of any two elements of $\mathbb U$ (universe of discourse) is also in $\mathbb U$ —this is true in $\mathbb Z$ and $\mathbb Q$, but it is false in $\mathbb N$ and $\{0,1,2\}$. S1 means the same but just for some x—so we may take say x=0 and see that the statement is true in $\mathbb Z$ and $\mathbb Q$. However it is false in $\mathbb N$ because $x-y\not\in\mathbb N$ if x< y. On the other hand, taking x=2 we see that it is true in $\{0,1,2\}$. Here S3 can be interpreted as "every element has an immediate successor"—true in $\mathbb N$ and $\mathbb Z$, but false in $\{0,1,2\}$ (2 has no successor) and $\mathbb Q$ (the order in $\mathbb Q$ is dense, i.e., between two rational numbers there is always another rational number.)"

2. (Relations) On \mathbb{C} (set of complex numbers) we define the relations

$$x \Re y \Leftrightarrow \exists n \in \mathbb{N}, x + n = y$$

and

$$x \, \mathbb{S} \, y \Leftrightarrow \exists n \in \mathbb{Z}, \, x + n = y$$

- (a) Prove that \mathcal{R} is a partial order.
- (b) Prove that S is an equivalence relation.

Solution:

- (a) \Re is a partial order:
 - Reflexive: $x + 0 = x \Rightarrow x \Re x$.
 - Antisymmetric: We have:

$$x \Re y \Leftrightarrow \exists n \in \mathbb{N}, x + n = y$$

and

$$y \Re x \Leftrightarrow \exists n' \in \mathbb{N}, y + n' = x$$

Adding the last equations we get n + n' = 0, but since they must be natural numbers, we conclude n = n' = 0, which implies x = y.

• Transitive:

$$\left. \begin{array}{l} x \, \Re \, y \Rightarrow \exists n \in \mathbb{N}, \, x+n=y \\ y \, \Re \, z \Rightarrow \exists n' \in \mathbb{N}, \, y+n'=z \end{array} \right\} \Rightarrow x+n+n'=z \Rightarrow x \, \Re \, z \, .$$

- (b) S is an equivalence relation:
 - Reflexive: $x + 0 = x \Rightarrow x \, \$ \, x$.
 - Symmetric: $x \otimes y \Rightarrow \exists n \in \mathbb{Z}, x + n = y \Rightarrow y + (-n) = x \Rightarrow y \otimes x$.
 - Transitive:

$$\left. \begin{array}{l} x \, \$ \, y \Rightarrow \exists n \in \mathbb{Z}, \, x+n=y \\ y \, \$ \, z \Rightarrow \exists n' \in \mathbb{Z}, \, y+n'=z \end{array} \right\} \Rightarrow x+n+n'=z \Rightarrow x \, \$ \, z \, .$$

- **3.** (Functions) For each one of the following functions, determine if it is one-to-one (but not onto), onto (but not one-to-one), or a one-to-one correspondence. If it is a one-to-one correspondence, find its inverse.
 - (a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1.
 - (b) $f: \mathbb{Q} \to \mathbb{Q}$, f(x) = 2x + 1.
 - (c) $f: \mathbb{Z} \to \mathbb{N}$, f(x) = |x| = "absolute value of x".

Solution:

- (a) One-to-one (but not onto): $f(x) = f(y) \Rightarrow 2x + 1 = 2y + 1 \Rightarrow x = y$, so f is one-to-one. But f(x) = 2x + 1 takes only odd values, $f(\mathbb{Z})$ does not contain even numbers, so f is not onto.
- (b) One-to-one correspondence: the inverse is $f^{-1}(x) = (x-1)/2$. In fact $f^{-1} \circ f(x) = f^{-1}(f(x)) = ((2x+1)-1)/2 = 2x/2 = x = \mathrm{id}_{\mathbb{Q}}(x)$, and $f \circ f^{-1}(x) = f(f^{-1}(x)) = 2((x-1)/2) + 1 = (x-1) + 1 = x = \mathrm{id}_{\mathbb{Q}}(x)$. Since f has an inverse, it is indeed a one-to-one correspondence.
- (c) Onto but not one-to-one. If $y \in \mathbb{N}$ we must prove that there is some $x \in \mathbb{Z}$ such that f(x) = |x| = y. This can be accomplished by taking x = y, since for any $x \in \mathbb{N}$, f(x) = |x| = x. On the other hand it is not one-to-one, since there are different elements in \mathbb{Z} with the same image, e.g., f(1) = |1| = 1, f(-1) = |-1| = 1, so f(1) = f(-1).

4. (Functions and Sets) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function f(x,y) = (2x+y,2x-y), and let D be the following subset of \mathbb{R}^2 :

$$D = \{(a, a) \mid a \in \mathbb{R}\}.$$

Find (a) f(D), (b) $f^{-1}(D)$, (c) $f(D) \cap f^{-1}(D)$.

Solution:

- (a) $f(D) = \{f(a, a) \mid a \in \mathbb{R}\} = \{(3a, a) \mid a \in \mathbb{R}\}.$ Another way to express the solution is $f(D) = \{(x, y) \in \mathbb{R}^2 \mid x = 3y\}.$
- (b) We have: $(x,y) \in f^{-1}(D) \Leftrightarrow f(x,y) \in D \Leftrightarrow (2x+y,2x-y) \in D \Leftrightarrow 2x+y=2x-y \Leftrightarrow y=0$. Hence:

$$f^{-1}(D) = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}.$$

or

$$f^{-1}(D) = \{(x,0) \mid x \in \mathbb{R}\}.$$

(c) $(x,y) \in f(D) \cap f^{-1}(D) \Leftrightarrow x = 3y$ and $y = 0 \Leftrightarrow (x,y) = (0,0)$, hence:

$$f(D) \cap f^{-1}(D) = \{(0,0)\}.$$

5. (Operations) Find the properties (commutative, associative, existence of identity element, existence of inverse) verified by the following operation defined on the real interval $[1, \infty)$:

$$x * y = \sqrt{x^2 + y^2 - 1}$$
.

Solution:

• Commutative property:

$$x * y = \sqrt{x^2 + y^2 - 1} = \sqrt{y^2 + x^2 - 1} = y * x$$
.

• Associative property:

$$(x*y)*z = \sqrt{\left(\sqrt{x^2 + y^2 - 1}\right)^2 + z^2 - 1} = \sqrt{x^2 + y^2 + z^2 - 2},$$

$$x*(y*z) = \sqrt{x^2 + \left(\sqrt{y^2 + z^2 - 1}\right)^2 - 1} = \sqrt{x^2 + y^2 + z^2 - 2},$$

hence (x * y) * z = x * (y * z).

• Identity element. The identity element is 1:

$$1 * x = x * 1 = \sqrt{x^2 + 1 - 1} = x$$
.

• Inverse element: Given an $x \in [1, \infty)$, its inverse x' must verify:

$$1 = x * x' = \sqrt{x^2 + x'^2 - 1}$$

hence,

$$x^2 + x'^2 = 2.$$

Since $x, x' \ge 1$, necessarily x = x' = 1. So the only invertible element is 1.

6. (Counting) Consider the following equation:

$$x_1 + x_2 + x_3 = 15.$$

- (a) How many non negative integer solutions does it have?
- (b) How many of those solutions are strictly positive?
- (c) How many non negative solutions consist of numbers divisible by three only?
- (d) How many non negative solutions verify that x_1 is a multiple of 5 (including 0)?

Do not try to find the solutions, just compute their number.

Solution:

(a)
$$\binom{3+15-1}{15} = \binom{17}{15} = 136$$
.

(b) Calling $x_1 = y_1 + 1$, $x_2 = y_2 + 1$, $x_3 = y_3 + 1$, the equation becomes:

$$y_1 + y_2 + y_3 = 15 - 3 = 12$$
.

Its non negative solutions correspond to strictly positive solutions to the original equation. Their number is $\binom{3+12-1}{12} = \binom{14}{12} = 91$.

(c) Calling $x_1 = 3z_1$, $x_2 = 3z_2$, $x_3 = 3z_3$, the equation becomes:

$$z_1 + z_2 + z_3 = 5.$$

Its non negative solutions correspond to non negative multiple of three solutions to the original equation. Their number is $\binom{3+5-1}{5} = \binom{7}{5} = 21$.

(d) The possible values of x_1 are 0, 5, 10 and 15, so the problem requires to count the number of solutions to the following equations:

$$0 + x_2 + x_3 = 15$$
 or $x_2 + x_3 = 15$
 $5 + x_2 + x_3 = 15$ or $x_2 + x_3 = 10$
 $10 + x_2 + x_3 = 15$ or $x_2 + x_3 = 5$
 $15 + x_2 + x_3 = 15$ or $x_2 + x_3 = 0$

The answer is $\binom{16}{15} + \binom{11}{10} + \binom{6}{5} + \binom{1}{0} = 16 + 11 + 6 + 1 = 34$.

6