ASMLibrary 5.0

Generated by Doxygen 1.6.1

Wed May 19 18:16:29 2010

Contents

1	Clas	s Index			1
	1.1	Class l	List		 1
2	File	Index			3
	2.1	File Li	st		 3
3	Clas	ss Docu	mentation	1	5
	3.1	asm_e	dge Struct	Reference	 5
	3.2	asm_n	nodel Clas	ss Reference	 6
		3.2.1	Detailed	Description	 6
		3.2.2	Construc	ctor & Destructor Documentation	 6
			3.2.2.1	asm_model	 6
			3.2.2.2	~asm_model	 ϵ
		3.2.3	Member	Function Documentation	 6
			3.2.3.1	Build	 6
			3.2.3.2	Fit	 7
			3.2.3.3	GetMeanShape	 7
			3.2.3.4	GetModesOfModel	 7
			3.2.3.5	GetReferenceWidthOfFace	 7
			3.2.3.6	ReadModel	 7
			3.2.3.7	WriteModel	 7
		3.2.4	Member	Data Documentation	 8
			3.2.4.1	classical_tdm	 8
			3.2.4.2	lbp_tdm	 8
	3.3	asm_p	rofile Clas	ss Reference	 9
		3.3.1	Detailed	Description	 9
		3.3.2	Construc	ctor & Destructor Documentation	 10
			3.3.2.1	asm_profile	 10
			3 3 2 2	asm profile	10

ii CONTENTS

		3.3.2.3	asm_profile	10
	3.3.3	Member	Function Documentation	10
		3.3.3.1	CalcProfile1D	10
		3.3.3.2	CalcProfileLBP	10
		3.3.3.3	Clear	11
		3.3.3.4	CopyFrom	11
		3.3.3.5	CopyFrom	11
		3.3.3.6	CopyTo	11
		3.3.3.7	GetData	11
		3.3.3.8	GetProfile	12
		3.3.3.9	NLength	12
		3.3.3.10	Normalize	12
		3.3.3.11	operator*	12
		3.3.3.12	operator*=	12
		3.3.3.13	operator+	12
		3.3.3.14	operator+=	12
		3.3.3.15	operator	12
		3.3.3.16	operator-=	12
		3.3.3.17	operator/	13
		3.3.3.18	operator/=	13
		3.3.3.19	operator=	13
		3.3.3.20	operator=	13
		3.3.3.21	operator[]	13
		3.3.3.22	operator[]	13
		3.3.3.23	Read	13
		3.3.3.24	Resize	14
		3.3.3.25	Write	14
3.4	asm_sl	hape Class	Reference	15
	3.4.1	Detailed	Description	16
	3.4.2	Construc	tor & Destructor Documentation	16
		3.4.2.1	asm_shape	16
		3.4.2.2	asm_shape	16
		3.4.2.3	~asm_shape	16
	3.4.3	Member	Function Documentation	16
		3.4.3.1	AlignTo	16
		3.4.3.2	AlignTransformation	16

CONTENTS

3.4.3.3	CalcBisector	17
3.4.3.4	CalcNormalVector	17
3.4.3.5	Centralize	17
3.4.3.6	Clear	17
3.4.3.7	COG	17
3.4.3.8	CopyFrom	18
3.4.3.9	CopyTo	18
3.4.3.10	GetHeight	18
3.4.3.11	GetLeftRight	18
3.4.3.12	GetNorm2	18
3.4.3.13	GetWidth	18
3.4.3.14	MaxX	18
3.4.3.15	MaxY	19
3.4.3.16	MinX	19
3.4.3.17	MinY	19
3.4.3.18	Normalize	19
3.4.3.19	NPoints	19
3.4.3.20	operator*	19
3.4.3.21	operator*	19
3.4.3.22	operator*=	19
3.4.3.23	operator+	19
3.4.3.24	operator+=	19
3.4.3.25	operator	20
3.4.3.26	operator-=	20
3.4.3.27	operator/	20
3.4.3.28	operator/=	20
3.4.3.29	operator=	20
3.4.3.30	operator=	20
3.4.3.31	operator[]	20
3.4.3.32	operator[]	20
3.4.3.33	Read	21
3.4.3.34	ReadAnnotations	21
3.4.3.35	ReadFromASF	21
3.4.3.36	ReadFromPTS	21
3.4.3.37	Resize	21
3.4.3.38	Rotate	21

iv CONTENTS

		3.4.3.39 Scale	22
		3.4.3.40 ScaleXY	22
		3.4.3.41 TransformPose	22
		3.4.3.42 Translate	22
		3.4.3.43 Write	22
3.	5 asmbu	tilding Class Reference	23
	3.5.1	Detailed Description	23
	3.5.2	Constructor & Destructor Documentation	23
		3.5.2.1 asmbuilding	23
		3.5.2.2 ~asmbuilding	23
	3.5.3	Member Function Documentation	23
		3.5.3.1 BuildDetectMapping	23
		3.5.3.2 Train	24
		3.5.3.3 Write	24
3.	6 asmfit	ting Class Reference	25
	3.6.1	Detailed Description	25
	3.6.2	Constructor & Destructor Documentation	25
		3.6.2.1 asmfitting	25
		3.6.2.2 ~asmfitting	25
	3.6.3	Member Function Documentation	25
		3.6.3.1 ASMSeqSearch	25
		3.6.3.2 Draw	26
		3.6.3.3 Fitting	26
		3.6.3.4 Fitting2	26
		3.6.3.5 GetMappingDetShape	26
		3.6.3.6 GetMeanFaceWidth	26
		3.6.3.7 Read	26
3.	7 lbp_ci	rcle_table Struct Reference	28
	3.7.1	Detailed Description	28
	3.7.2	Member Data Documentation	28
		3.7.2.1 multipliers	28
		3.7.2.2 nsamples	28
		3.7.2.3 offsets	28
		3.7.2.4 points	28
3.	8 profile	e_lbp_model Struct Reference	29
	3.8.1	Detailed Description	29

CONTENTS

		3.8.2	Member Data Documentation	29
			3.8.2.1 m_asm_meanprofile	!9
			3.8.2.2 mapping	29
			3.8.2.3 nbins	!9
			3.8.2.4 nblocklength	9
			3.8.2.5 nlevels	29
			3.8.2.6 nsamples	29
			3.8.2.7 predicate	80
			3.8.2.8 table	80
			3.8.2.9 type	80
	3.9	profile	_Nd_model Struct Reference	1
		3.9.1	Detailed Description	1
		3.9.2	Member Data Documentation	1
			3.9.2.1 m_asm_meanprofile	1
			3.9.2.2 m_buffer	1
			3.9.2.3 m_G	1
			3.9.2.4 m_P	1
	3.10	scale_p	param Struct Reference	2
		3.10.1	Detailed Description	32
		3.10.2	Member Data Documentation	32
			3.10.2.1 left	2
			3.10.2.2 right	12
1	File 1	Docum	entation 3	33
	4.1	D:/asm	library-4.0/src/asmbuilding.h File Reference	3
		4.1.1	Detailed Description	3
	4.2	D:/asm	library-4.0/src/asmfitting.h File Reference	34
		4.2.1	Detailed Description	34
	4.3	D:/asm	library-4.0/src/asmlibrary.h File Reference	35
		4.3.1	Detailed Description	86
		4.3.2	Typedef Documentation	86
			4.3.2.1 detect_func	86
		4.3.3	Enumeration Type Documentation	86
			4.3.3.1 ASM_PROFILE_TYPE	86
			4.3.3.2 LBP_MAPPING_TYPE	37
		4.3.4	Function Documentation	37
			4.3.4.1 CalcChiSquareDist	37

Vi

		4.3.4.2	CalcMahalanobisDist	37
		4.3.4.3	DrawEdges	37
		4.3.4.4	DrawPoints	38
		4.3.4.5	GetBilinearPixel	38
		4.3.4.6	GetOriPixel	38
		4.3.4.7	GetX	38
		4.3.4.8	GetY	39
		4.3.4.9	InitShapeFromDetBox	39
		4.3.4.10	LBP_CalcFeatureVector	39
		4.3.4.11	LBP_CalcTransformedImage	40
		4.3.4.12	LBP_FreeMapping	40
		4.3.4.13	LBP_FreeTable	40
		4.3.4.14	LBP_GetMapSize	40
		4.3.4.15	LBP_InitMapping	41
		4.3.4.16	LBP_InitTable	41
		4.3.4.17	LBP_onecount	41
		4.3.4.18	LBP_rotmin	41
		4.3.4.19	LBP_transitions	42
		4.3.4.20	ReadAllShapes	42
		4.3.4.21	ReadCvMat	42
		4.3.4.22	WriteCvMat	42
4.4	D:/asm	nlibrary-4.0	0/src/demo_build.cpp File Reference	43
	4.4.1	Detailed	Description	43
4.5	D:/asm	nlibrary-4.0	0/src/demo_fit.cpp File Reference	44
	4.5.1	Detailed	Description	44
4.6	D:/asm	nlibrary-4.0	0/src/video_camera.cpp File Reference	45
	4.6.1	Detailed	Description	45
	4.6.2	Function	Documentation	45
		4.6.2.1	close_camera	45
		4.6.2.2	close_video	45
		4.6.2.3	open_camera	45
		4.6.2.4	open_video	46
		4.6.2.5	read_from_camera	46
		4.6.2.6	read_from_video	46
4.7	D:/asm	nlibrary-4.0	0/src/video_camera.h File Reference	47
	4.7.1	Detailed	Description	47

CONTENTS vii

	4.7.2	Function	Documentation	47
		4.7.2.1	close_camera	47
		4.7.2.2	close_video	47
		4.7.2.3	open_camera	47
		4.7.2.4	open_video	48
		4.7.2.5	read_from_camera	48
		4.7.2.6	read_from_video	48
4.8	D:/asn	nlibrary-4.	.0/src/vjfacedetect.cpp File Reference	49
	4.8.1	Detailed	Description	49
	4.8.2	Function	Documentation	49
		4.8.2.1	destory_detect_cascade	49
		4.8.2.2	detect_all_faces	49
		4.8.2.3	detect_one_face	50
		4.8.2.4	free_shape_memeory	50
		4.8.2.5	init_detect_cascade	50
4.9	D:/asn	nlibrary-4.	.0/src/vjfacedetect.h File Reference	51
	4.9.1	Detailed	Description	51
	4.9.2	Function	Documentation	51
		4.9.2.1	destory_detect_cascade	51
		4.9.2.2	detect_all_faces	51
		4.9.2.3	detect_one_face	52
		4.9.2.4	free_shape_memeory	52
		4.9.2.5	init_detect_cascade	52

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_edge	. 5
_model	. 6
_profile	. 9
_shape	. 15
building	. 23
fitting	. 25
_circle_table	. 28
ile_lbp_model	. 29
ile_Nd_model	. 31
e param	. 32

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

D:/asmlibrary-4.0/src/asmbuilding.h
D:/asmlibrary-4.0/src/asmfitting.h
D:/asmlibrary-4.0/src/asmlibrary.h
D:/asmlibrary-4.0/src/demo_build.cpp
D:/asmlibrary-4.0/src/demo_fit.cpp
D:/asmlibrary-4.0/src/ resource.h
D:/asmlibrary-4.0/src/video_camera.cpp
D:/asmlibrary-4.0/src/video_camera.h
D:/asmlibrary-4.0/src/vjfacedetect.cpp
D:/asmlibrary-4.0/src/vjfacedetect.h

4 File Index

Chapter 3

Class Documentation

3.1 asm_edge Struct Reference

Public Attributes

- int **ind1**
- int **ind2**

The documentation for this struct was generated from the following file:

• D:/asmlibrary-4.0/src/asmbuilding.cpp

3.2 asm_model Class Reference

#include <asmlibrary.h>

Public Member Functions

- asm model ()
- ∼asm_model ()
- bool Build (const char **image_lists, int n_images, const asm_shape *shape_datas, int n_shapes, bool binterpolate, int halfwidth, double percentage, int level_no, ASM_PROFILE_TYPE type)
- bool Fit (asm_shape &shape, const IplImage *grayimage, int max_iter=30, const scale_param *param=NULL)
- void WriteModel (FILE *f)
- void ReadModel (FILE *f)
- const asm_shape & GetMeanShape () const
- const int GetModesOfModel () const
- const double GetReferenceWidthOfFace () const

3.2.1 Detailed Description

Class for active shape model.

3.2.2 Constructor & Destructor Documentation

3.2.2.1 asm_model::asm_model()

Constructor

3.2.2.2 $asm_model::\sim asm_model()$

Destructor

3.2.3 Member Function Documentation

3.2.3.1 bool asm_model::Build (const char ** image_lists, int n_images, const asm_shape * shape_datas, int n_shapes, bool binterpolate, int halfwidth, double percentage, int level_no, ASM_PROFILE_TYPE type)

Build active shape model.

Parameters:

image_lists the lists of image files
n_images the number of image files
shape_datas the lists of shape point data
n_shapes the number of shape data
binterpolate will sample pixel by bilinear interpolate or not?
halfwidth the half-side width of profile

```
percentage the fraction of shape variation to retain during PCA
level_no the number of pyramid level
type the type of sampling profile
```

Returns:

false on failure, true otherwise

3.2.3.2 bool asm_model::Fit (asm_shape & shape, const IpIImage * grayimage, int max_iter = 30, const scale_param * param = NULL)

Image alignment/fitting with an initial shape.

Parameters:

```
shape the point features that carries initial shape and also restores result after fitting grayimage the gray image resource
max_iter the number of iteration
param the left and right index for x-direction in the shape (Always set NULL)
```

Returns:

false on failure, true otherwise

3.2.3.3 const asm_shape& asm_model::GetMeanShape() const [inline]

Get mean shape of model.

3.2.3.4 const int asm_model::GetModesOfModel() const [inline]

Get modes of shape distribution model (Will be calculated in shape's PCA)

3.2.3.5 const double asm_model::GetReferenceWidthOfFace () const [inline]

Get the width of mean shape [Identical to *m_asm_meanshape.GetWidth()*].

3.2.3.6 void asm_model::ReadModel (FILE * f)

Read model data from file stream.

Parameters:

f stream to read from

3.2.3.7 void asm_model::WriteModel (FILE * f)

Write model data to file stream.

Parameters:

f stream to write to

3.2.4 Member Data Documentation

3.2.4.1 struct profile_Nd_model* asm_model::classical_tdm [read]

1d/2d profile model

3.2.4.2 struct profile_lbp_model* asm_model::lbp_tdm [read]

lbp profile model

The documentation for this class was generated from the following files:

- D:/asmlibrary-4.0/src/asmlibrary.h
- D:/asmlibrary-4.0/src/asm_model.cpp

3.3 asm_profile Class Reference

#include <asmlibrary.h>

Public Member Functions

- asm profile ()
- asm_profile (int length)
- asm_profile (const asm_profile &v)
- const double operator[] (int i) const
- double & operator[] (int i)
- const double * GetData () const
- asm_profile & operator= (const asm_profile &p)
- asm_profile & operator= (double value)
- const asm_profile operator+ (const asm_profile &p) const
- asm_profile & operator+= (const asm_profile &p)
- const asm_profile operator- (const asm_profile &p) const
- asm_profile & operator== (const asm_profile &p)
- const asm_profile operator* (double value) const
- asm_profile & operator*= (double value)
- const asm_profile operator/ (double value) const
- asm_profile & operator/= (double value)
- void Clear ()
- void Resize (int length)
- void Write (FILE *f)
- void Read (FILE *f)
- const int NLength () const
- void GetProfile (const IplImage *image, const asm_shape &shape, int ipoint, void *whole_profile, int offset=0)
- void CalcProfileLBP (const asm_shape &shape, int ipoint, const int *lbp_img, int nrows, int ncols, int nblocklength, int xoffset, int yoffset, const int *mapping)
- void Normalize ()
- void CopyFrom (const CvMat *mat)
- void CopyFrom (const int *hist, int nbins)
- void CopyTo (CvMat *mat) const

Static Public Member Functions

• static void CalcProfile1D (const IpIImage *image, const asm_shape &shape, int ipoint, int nwidth, bool binterpolate, int displace_offset, void *whole_profile, double *cos_alpha=NULL, double *sin_alpha=NULL)

3.3.1 Detailed Description

Class for profile.

3.3.2 Constructor & Destructor Documentation

3.3.2.1 asm_profile::asm_profile()

Null Constructor

3.3.2.2 asm_profile::asm_profile (int length)

Constructor

Parameters:

length Width of profile

3.3.2.3 asm_profile::asm_profile (const asm_profile & v)

Copy Constructor

3.3.3 Member Function Documentation

3.3.3.1 void asm_profile::CalcProfile1D (const IplImage * image, const asm_shape & shape, int ipoint, int nwidth, bool binterpolate, int displace_offset, void * whole_profile, double * cos_alpha = NULL, double * sin_alpha = NULL) [static]

Pre-Calculate 1D-profiles of all possible locations at one certain point vertex. Note: Use this before calling *GetProfile()*.

Parameters:

```
image the image resource
shape the shape information
ipoint the index of point vertex
nwidth the width of profile
binterpolate will sampling pixel by bilinear interpolate or not?
displace_offset how long will the profile be calculate?
whole_profile the buffer that store the entire profile (actually its length is width + 2 * displace_offset)
cos_alpha the normal vector in x-direction
sin_alpha the normal vector in y-direction
```

3.3.3.2 void asm_profile::CalcProfileLBP (const asm_shape & shape, int ipoint, const int * lbp_img, int nrows, int ncols, int nblocklength, int xoffset, int yoffset, const int * mapping)

Calculate LBP-profiles of all possible locations at one certain point vertex. Note: Use this before calling *GetProfile()*.

Parameters:

shape the shape information

```
ipoint the index of point vertex
lbp_img the target image processed with LBP
nrows the height of lbp_img
ncols the width of lbp_img
nblocklength the width/height of recentage for sampling profile
xoffset the offset in x-direction away from the center shape[ipoint]
yoffset the offset in y-direction away from the center shape[ipoint]
mapping the mapping look-up table initialized by LBP_InitMapping()
```

3.3.3.3 void asm_profile::Clear ()

Release memory.

3.3.3.4 void asm_profile::CopyFrom (const int * hist, int nbins)

Convert from LBP histogram to class asm_profile.

Parameters:

```
hist the histogramnbins the dimension of histogram
```

3.3.3.5 void asm_profile::CopyFrom (const CvMat * mat)

Convert from OpenCV's CvMat to class asm_profile.

Parameters:

mat CvMat that converted from

3.3.3.6 void asm_profile::CopyTo (CvMat * mat) const

Convert from class asm_profile to OpenCV's CvMat.

Parameters:

mat CvMat that converted to

3.3.3.7 const double* asm_profile::GetData () const [inline]

Access raw ptr of profile data.

Returns:

Raw ptr of profile data

3.3.3.8 void asm_profile::GetProfile (const IpIImage * image, const asm_shape & shape, int ipoint, void * whole_profile, int offset = 0)

Get the profile for one certain point vertex at the offset

Parameters:

```
image the image resource
shape the shape point information
ipoint the index of point vertex
whole_profile the buffer that store the entire profile (actually its length is width + 2 * displace_offset)
offset the offset bias from the point Shape[iPoint]
```

3.3.3.9 const int asm_profile::NLength () const [inline]

Get the width of profile.

3.3.3.10 void asm_profile::Normalize ()

Normalize the profile so that its L1-norm is 1.

3.3.3.11 const asm_profile asm_profile::operator* (double value) const

Override of operator *

3.3.3.12 asm_profile & asm_profile::operator*= (double *value*)

Override of operator *=

3.3.3.13 const asm_profile asm_profile::operator+ (const asm_profile & p) const

Override of operator +

3.3.3.14 asm_profile & asm_profile::operator+= (const asm_profile & p)

Override of operator +=

3.3.3.15 const asm_profile asm_profile::operator- (const asm_profile & p) const

Override of operator -

3.3.3.16 asm_profile & asm_profile::operator-= (const asm_profile & p)

Override of operator -=

3.3.3.17 const asm_profile asm_profile::operator/ (double value) const

Override of operator /

3.3.3.18 asm_profile & asm_profile::operator/= (double *value*)

Override of operator /=

3.3.3.19 asm_profile & asm_profile::operator= (double *value*)

Override of operator =

3.3.3.20 asm_profile & asm_profile::operator= (const asm_profile & p)

Override of operator =

3.3.3.21 double& asm_profile::operator[] (int i) [inline]

Access profile elements.

Parameters:

i Index of profile

Returns:

Value at the certain index

3.3.3.22 const double asm_profile::operator[] (int i) const [inline]

Access profile elements.

Parameters:

i Index of profile

Returns:

Value at the certain index

3.3.3.23 void asm_profile::Read (FILE *f)

Read profile data from file stream.

Parameters:

f stream to read from

3.3.3.24 void asm_profile::Resize (int *length*)

Allocate memory.

Parameters:

length Width of profile

3.3.3.25 void asm_profile::Write (FILE *f)

Write profile data into file stream.

Parameters:

f stream to write to

The documentation for this class was generated from the following files:

- D:/asmlibrary-4.0/src/asmlibrary.h
- D:/asmlibrary-4.0/src/asm_profile.cpp

3.4 asm_shape Class Reference

#include <asmlibrary.h>

Public Types

• enum { LU, SVD, Direct }

Public Member Functions

- asm_shape ()
- asm_shape (const asm_shape &v)
- ∼asm_shape ()
- const CvPoint2D32f operator[] (int i) const
- CvPoint2D32f & operator[] (int i)
- const int NPoints () const
- asm_shape & operator= (const asm_shape &s)
- asm_shape & operator= (double value)
- const asm_shape operator+ (const asm_shape &s) const
- asm_shape & operator+= (const asm_shape &s)
- const asm_shape operator- (const asm_shape &s) const
- asm_shape & operator-= (const asm_shape &s)
- const asm shape operator* (double value) const
- asm_shape & operator*= (double value)
- double operator* (const asm_shape &s) const
- const asm_shape operator/ (double value) const
- asm_shape & operator/= (double value)
- void Clear ()
- void Resize (int length)
- bool ReadAnnotations (const char *filename)
- void ReadFromASF (const char *filename)
- void ReadFromPTS (const char *filename)
- void Write (FILE *f)
- void Read (FILE *f)
- const double MinX () const
- const double MinY () const
- const double MaxX () const
- const double MaxY () const
- void GetLeftRight (int &ileft, int &iright) const
- const double GetWidth (int ileft=-1, int iright=-1) const
- const double GetHeight () const
- void COG (double &x, double &y) const
- void Centralize ()
- void Translate (double x, double y)
- void Scale (double s)
- void Rotate (double theta)
- void ScaleXY (double sx, double sy)
- double Normalize ()

• void AlignTransformation (const asm_shape &ref_shape, double &a, double &b, double &tx, double &ty, int method=SVD) const

- void AlignTo (const asm_shape &ref_shape, int method=SVD)
- void TransformPose (double a, double b, double tx, double ty)
- CvPoint2D32f CalcBisector (int i, int j, int k) const
- double GetNorm2 () const
- void CalcNormalVector (double &cos_alpha, double &sin_alpha, int i) const
- void CopyFrom (const CvMat *mat)
- void CopyTo (CvMat *mat) const

3.4.1 Detailed Description

Class for 2d shape data.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 asm_shape::asm_shape()

Constructor

3.4.2.2 asm_shape::asm_shape (const asm_shape & v)

Copy Constructor

3.4.2.3 asm_shape::∼asm_shape ()

Destructor

3.4.3 Member Function Documentation

3.4.3.1 void asm_shape::AlignTo (const asm_shape & ref_shape, int method = SVD)

Align the shape to the reference shape.

Parameters:

ref_shape the reference shape
method method of similarity transform

3.4.3.2 void asm_shape::AlignTransformation (const asm_shape & ref_shape , double & a, double & b, double & tx, double & ty, int method = SVD) const

Calculate the similarity transform between one shape and another reference shape. Where the similarity transform is:

```
T(a, b, tx, ty) = [a - b Tx; b \ a \ Ty; 0 \ 0 \ 1].
```

Parameters:

ref_shape the reference shape

```
m{a} will return s 	imes cos(theta) in form of similarity transform m{b} will return s 	imes sin(theta) in form of similarity transform m{tx} will return Tx in form of similarity transform m{ty} will return Ty in form of similarity transform
```

method Method of similarity transform

3.4.3.3 CvPoint2D32f asm_shape::CalcBisector (int i, int j, int k) const

Calculate the angular bisector between two lines Pi - Pj and Pj - Pk.

Parameters:

```
i the index of point vertexj the index of point vertex
```

k the index of point vertex

Returns:

Angular bisector vector in form of $(cos(x), sin(x))^T$

3.4.3.4 void asm_shape::CalcNormalVector (double & cos_alpha, double & sin_alpha, int i) const

Calculate the normal vector at certain vertex around the shape contour.

Parameters:

```
cos_alpha the normal vector in x-directionsin_alpha the normal vector in y-directioni the index of point vertex
```

3.4.3.5 void asm_shape::Centralize ()

Translate the shape to make its center locate at (0, 0).

3.4.3.6 void asm_shape::Clear ()

Release memory.

3.4.3.7 void asm_shape::COG (double & x, double & y) const

Calculate center of gravity for shape.

Parameters:

- \boldsymbol{x} Value of center in x-direction
- y Value of center in y-direction

3.4.3.8 void asm_shape::CopyFrom (const CvMat * mat)

Convert from OpenCV's CvMat to class asm_shape

Parameters:

mat CvMat that converted from

3.4.3.9 void asm_shape::CopyTo (CvMat * mat) const

Convert from class asm_shape to OpenCV's CvMat.

Parameters:

mat CvMat that converted to

3.4.3.10 const double asm_shape::GetHeight() const [inline]

Calculate height of shape.

3.4.3.11 void asm_shape::GetLeftRight (int & ileft, int & iright) const

Calculate the left and right index for x-direction in the shape.

Parameters:

ileft the index of points in x-direction which has the minimum xiright the index of points in x-direction which has the maximum x

3.4.3.12 double asm_shape::GetNorm2 () const

Calculate the Euclidean norm (L2-norm).

Returns:

Euclidean norm

3.4.3.13 const double asm_shape::GetWidth (int ileft = -1, int iright = -1) const

Calculate width of shape.

Parameters:

ileft Index of points in x-direction which has the minimum xiright Index of points in x-direction which has the maximum x

3.4.3.14 const double asm shape::MaxX () const

Calculate maximum x-direction value of shape.

3.4.3.15 const double asm_shape::MaxY () const

Calculate maximum y-direction value of shape.

3.4.3.16 const double asm_shape::MinX () const

Calculate minimum x-direction value of shape.

3.4.3.17 const double asm_shape::MinY () const

Calculate minimum y-direction value of shape.

3.4.3.18 double asm_shape::Normalize ()

Normalize shape (zero_mean_unit_length) so that its center locates at (0, 0) and its L2-norm is 1.

Returns:

the L2-norm of original shape

3.4.3.19 const int asm_shape::NPoints() const [inline]

Get the number of points.

Returns:

Number of points

3.4.3.20 double asm_shape::operator* (const asm_shape & s) const

Override of operator *

3.4.3.21 const asm_shape asm_shape::operator* (double value) const

Override of operator *

3.4.3.22 asm_shape & asm_shape::operator*= (double *value*)

Override of operator *=

3.4.3.23 const asm_shape asm_shape::operator+ (const asm_shape & s) const

Override of operator +

3.4.3.24 asm shape & asm shape::operator+= (const asm shape & s)

Override of operator +=

3.4.3.25 const asm_shape asm_shape::operator- (const asm_shape & s) const

Override of operator -3.4.3.26 asm_shape & asm_shape::operator== (const asm_shape & s) Override of operator -= 3.4.3.27 const asm_shape asm_shape::operator/ (double value) const Override of operator / 3.4.3.28 asm_shape & asm_shape::operator/= (double *value*) Override of operator /= 3.4.3.29 asm_shape & asm_shape::operator= (double *value*) Override of operator =. 3.4.3.30 asm_shape & asm_shape::operator= (const asm_shape & s) Override of operator = 3.4.3.31 CvPoint2D32f& asm_shape::operator[](int i) [inline] Access elements by CvPoint2D32f pt = shape[i] to get i-th point in the shape. **Parameters:** *i* Index of points **Returns:** Point at the certain index 3.4.3.32 const CvPoint2D32f asm_shape::operator[] (int i) const [inline] Access elements by CvPoint2D32f pt = shape[i] to get i-th point in the shape. **Parameters:** *i* Index of points **Returns:**

Point at the certain index

3.4.3.33 void asm_shape::Read (FILE *f)

Read shape data from file stream.

Parameters:

f stream to read from

3.4.3.34 bool asm_shape::ReadAnnotations (const char * *filename*)

Read points from file.

Parameters:

filename the filename the stored shape data

Returns:

true on pts format, false on asf format, exit otherwise

3.4.3.35 void asm_shape::ReadFromASF (const char * filename)

Read points from asf format file.

Parameters:

filename the filename the stored shape data

3.4.3.36 void asm_shape::ReadFromPTS (const char * filename)

Read points from pts format file.

Parameters:

filename the filename the stored shape data

3.4.3.37 void asm_shape::Resize (int *length*)

Allocate memory.

Parameters:

length Number of of shape points

3.4.3.38 void asm_shape::Rotate (double theta)

Rotate shape by anti clock-wise.

Parameters:

theta Angle to be rotated

3.4.3.39 void asm_shape::Scale (double *s*)

Scale shape by an uniform factor.

Parameters:

s Scaling factor

3.4.3.40 void asm_shape::ScaleXY (double sx, double sy)

Scale shape in x and y direction respectively.

Parameters:

- sx Scaling factor in x-direction
- sy Scaling factor in y-direction

3.4.3.41 void asm_shape::TransformPose (double a, double b, double tx, double ty)

Transform Shape using the similarity transform T(a, b, tx, ty).

3.4.3.42 void asm_shape::Translate (double x, double y)

Translate the shape.

Parameters:

- x Value of translation factor in x-direction
- y Value of translation factor in y-direction

3.4.3.43 void asm_shape::Write (FILE *f)

Write shape data into file stream.

Parameters:

f stream to write to

The documentation for this class was generated from the following files:

- D:/asmlibrary-4.0/src/asmlibrary.h
- D:/asmlibrary-4.0/src/asm_shape.cpp

3.5 asmbuilding Class Reference

#include <asmbuilding.h>

Public Member Functions

- asmbuilding ()
- ∼asmbuilding ()
- bool Train (const char **imagelists, int n_images, const char **shapelists, int n_shapes, bool binterpolate=true, int halfwidth=8, double percentage=0.975, int level_no=4, ASM_PROFILE_TYPE type=PROFILE_1D)
- void BuildDetectMapping (const char **imagelists, int n_images, const char **shapelists, int n_shapes, detect_func my_func)
- bool Write (const char *filename)
- const asm_model * GetModel () const

3.5.1 Detailed Description

Wrapped Class for building of active shape face model

3.5.2 Constructor & Destructor Documentation

3.5.2.1 asmbuilding::asmbuilding()

Constructor

3.5.2.2 asmbuilding::~asmbuilding()

Destructor

3.5.3 Member Function Documentation

3.5.3.1 void asmbuilding::BuildDetectMapping (const char ** imagelists, int n_images, const char ** shapelists, int n_shapes, detect_func my_func)

Generate map relation between the face box and shape data groundtruth.

Parameters:

```
imagelists the lists of image files
n_images the number of image files
shapelists the lists of shape point files
n_shapes the number of shape data
my_func your implementing function for detecting only one object
```

3.5.3.2 bool asmbuilding::Train (const char ** imagelists, int n_images, const char ** shapelists, int n_shapes, bool binterpolate = true, int halfwidth = 8, double percentage = 0.975, int level_no = 4, ASM_PROFILE_TYPE type = PROFILE_1D)

Build active shape model for human face.

Parameters:

```
imagelists the lists of image files
n_images the number of image files
shapelists the lists of shape point files
n_shapes the number of shape data
binterpolate will sample pixel by bilinear interpolate or not?
halfwidth the halfside width of profile
percentage the fraction of shape variation to retain during PCA
level_no the number of pyramid level
type the type of sampling profile
```

Returns:

false on failure, true otherwise

3.5.3.3 bool asmbuilding::Write (const char * filename)

Write active shape model for human face to file.

Parameters:

filename the filename the model writes to

Returns:

false on failure, true otherwise Get raw ptr of asm_model.

The documentation for this class was generated from the following files:

- D:/asmlibrary-4.0/src/asmbuilding.h
- D:/asmlibrary-4.0/src/asmbuilding.cpp

3.6 asmfitting Class Reference

#include <asmfitting.h>

Public Member Functions

- asmfitting ()
- ∼asmfitting ()
- void Fitting (asm_shape &shape, const IpIImage *image, int n_iteration=30)
- void Fitting2 (asm_shape *shapes, int n_shapes, const IpIImage *image, int n_iteration=30)
- bool ASMSeqSearch (asm_shape &shape, const IplImage *image, int frame_no=0, bool bopticalflow=false, int n_iteration=30)
- const asm shape GetMappingDetShape () const
- const double GetMeanFaceWidth () const
- const asm_model * GetModel () const
- bool Read (const char *filename)
- void Draw (IplImage *image, const asm_shape &shape)

3.6.1 Detailed Description

Wrapped Class for face alignment/tracking using active shape model

3.6.2 Constructor & Destructor Documentation

3.6.2.1 asmfitting::asmfitting()

Constructor

3.6.2.2 asmfitting::~asmfitting()

Destructor

3.6.3 Member Function Documentation

3.6.3.1 bool asmfitting::ASMSeqSearch (asm_shape & shape, const IplImage * image, int frame_no = 0, bool bopticalflow = false, int n_iteration = 30)

Process face tracking on video/camera.

Parameters:

shape the point features that carries initial shape and also restores result after fitting
image the image resource
frame_no one certain frame number of video/camera
bopticalflow whether to use optical flow or not?
n_iteration the number of iteration during fitting

Returns:

false on failure, true otherwise. Get the Average Viola-Jone Box.

3.6.3.2 void asmfitting::Draw (IplImage * image, const asm_shape & shape)

Draw point and edge on the image.

Parameters:

```
image the image resource
shape the shape after fitting
```

3.6.3.3 void asmfitting::Fitting (asm_shape & shape, const IplImage * image, int $n_iteration = 30$)

Process face alignment on image. (Only for one face box)

Parameters:

```
shape the point features that carries initial shape and also restores result after fittingimage the image resourcen_iteration the number of iteration during fitting
```

3.6.3.4 void asmfitting::Fitting2 (asm_shape * shapes, int n_shapes , const IplImage * image, int $n_iteration = 30$)

Process face alignment on image. (For multi-face boxes)

Parameters:

```
shapes all shape datas that carry the fitting resultn_shapes the number of human faceimage the image resourcen_iteration the number of iteration during fitting
```

3.6.3.5 const asm_shape asmfitting::GetMappingDetShape () const [inline]

Get the width of mean face.

3.6.3.6 const double asmfitting::GetMeanFaceWidth() const [inline]

Get raw ptr of asm_model.

3.6.3.7 bool asmfitting::Read (const char * filename)

Read model data from file.

Parameters:

filename the filename that stores the model

Returns:

false on failure, true otherwise

The documentation for this class was generated from the following files:

- D:/asmlibrary-4.0/src/asmfitting.h
- D:/asmlibrary-4.0/src/asmfitting.cpp

28 Class Documentation

3.7 lbp_circle_table Struct Reference

#include <asmlibrary.h>

Public Attributes

- int nsamples
- CvPoint * points
- CvPoint2D32f * offsets
- double * multipliers

3.7.1 Detailed Description

"Circular neighborhood" is used to denote a situation where, instead of the traditional rectangular one, neighborhood pixels are defined to be the ones that lie at a certain distance from the center. The distance is also called "predicate". The number of samples at this distance and the predicate itself can be dynamically changed. In digital images, all pixels in a circular neighborhood do not necessarily match the pixel grid. Pixel values at these positions are obtained with bilinear interpolation or, if the interpolation flag is set to false, from the pixel nearest to the exact position.

3.7.2 Member Data Documentation

3.7.2.1 double* lbp_circle_table::multipliers

Precalculated values for interpolation multiplication.

3.7.2.2 int lbp_circle_table::nsamples

Number of neighborhood samples

3.7.2.3 CvPoint2D32f* lbp_circle_table::offsets

A precalculated table of interpolation offsets.

3.7.2.4 CvPoint* lbp_circle_table::points

A precalculated table of interpolation points.

The documentation for this struct was generated from the following file:

3.8 profile_lbp_model Struct Reference

#include <asmlibrary.h>

Public Attributes

- asm_profile ** m_asm_meanprofile
- int nsamples
- int predicate
- int nblocklength
- LBP_MAPPING_TYPE type
- int * mapping
- struct lbp_circle_table * table
- int nbins
- int nlevels

3.8.1 Detailed Description

Profile distribution model for ASM_PROFILE_1D and ASM_PROFILE_2D

3.8.2 Member Data Documentation

3.8.2.1 asm_profile** profile_lbp_model::m_asm_meanprofile

the mean histogram for all landmark

3.8.2.2 int* profile_lbp_model::mapping

the look-up table

3.8.2.3 int profile_lbp_model::nbins

the dimension of feature vector

3.8.2.4 int profile_lbp_model::nblocklength

the width/height of block that for sampling profile

3.8.2.5 int profile_lbp_model::nlevels

the pyramid level

3.8.2.6 int profile_lbp_model::nsamples

the number of neighborhood samples

30 Class Documentation

3.8.2.7 int profile_lbp_model::predicate

the radius of the neighborhood

3.8.2.8 struct lbp_circle_table* profile_lbp_model::table [read]

the precalculated circular local sampler instance

3.8.2.9 LBP_MAPPING_TYPE profile_lbp_model::type

the type of LBP mapping

The documentation for this struct was generated from the following file:

3.9 profile_Nd_model Struct Reference

#include <asmlibrary.h>

Public Attributes

- CvMat *** m P
- asm_profile ** m_asm_meanprofile
- CvMat *** m_G
- double * m_buffer

3.9.1 Detailed Description

Profile distribution model for ASM_PROFILE_1D and ASM_PROFILE_2D

3.9.2 Member Data Documentation

3.9.2.1 asm_profile** profile_Nd_model::m_asm_meanprofile

mean of profile data

3.9.2.2 double* profile_Nd_model::m_buffer

pre-allocated buffer for calculate profile

3.9.2.3 CvMat*** profile_Nd_model::m_G

inverted covariance matrix of profile data

3.9.2.4 CvMat*** profile_Nd_model::m_P

mean of profile data

The documentation for this struct was generated from the following file:

32 Class Documentation

3.10 scale_param Struct Reference

#include <asmlibrary.h>

Public Attributes

- int left
- int right

3.10.1 Detailed Description

Left and Right index in x-direction of shape

3.10.2 Member Data Documentation

3.10.2.1 int scale_param::left

Index of points in x-direction which has the minimum x

3.10.2.2 int scale_param::right

Index of points in x-direction which has the maximum x

The documentation for this struct was generated from the following file:

Chapter 4

File Documentation

4.1 D:/asmlibrary-4.0/src/asmbuilding.h File Reference

```
#include "asmlibrary.h"
```

Classes

• class asmbuilding

4.1.1 Detailed Description

Classes for implementing building active shape model for face alignment/tracking.

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Version:

5.0-2010-5-20

4.2 D:/asmlibrary-4.0/src/asmfitting.h File Reference

#include "asmlibrary.h"

Classes

• class asmfitting

4.2.1 Detailed Description

Classes for implementing face alignment/tracking using active shape model.

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Version:

5.0-2010-5-20

4.3 D:/asmlibrary-4.0/src/asmlibrary.h File Reference

```
#include <stdio.h>
#include <cv.h>
#include <highqui.h>
```

Classes

- struct lbp_circle_table
- class asm_shape
- class asm_profile
- struct scale_param
- struct profile Nd model
- struct profile_lbp_model
- · class asm model

Typedefs

- typedef unsigned char uchar
- typedef bool(* detect_func)(asm_shape &shape, const IplImage *image)

Enumerations

- enum ASM_PROFILE_TYPE { PROFILE_1D, PROFILE_2D, PROFILE_LBP }
- enum LBP_MAPPING_TYPE { MAP_UNIFORM, MAP_ROTMIN, MAP_UNIFORM_-ROTMIN, MAP_NONE }

Functions

- ASMLIB double GetX (double x, int offset, double cos alpha)
- ASMLIB double GetY (double y, int offset, double sin_alpha)
- ASMLIB void WriteCvMat (FILE *f, const CvMat *mat)
- ASMLIB void ReadCvMat (FILE *f, CvMat *mat)
- ASMLIB uchar GetBilinearPixel (const IplImage *image, double x, double y, int width, int height)
- ASMLIB uchar GetOriPixel (const IpIImage *image, double x, double y, int width, int height)
- ASMLIB double CalcMahalanobisDist (const CvMat *M, const double *x)
- ASMLIB double CalcChiSquareDist (const double *h, const double *H, int nbins)
- ASMLIB void InitShapeFromDetBox (asm_shape &shape, const asm_shape &det_shape, const asm_shape &ref_shape, double refwidth)
- ASMLIB void DrawPoints (IpIImage *image, const asm_shape &shape)
- ASMLIB void DrawEdges (IpIImage *image, const asm_shape &shape, int *edge_start, int *edge_end, int n_edges)
- ASMLIB bool ReadAllShapes (asm_shape *shapes, int n_shapes, const char **shape_lists, const char **simage_lists)
- ASMLIB int LBP_onecount (unsigned int c, int bits=8)
- ASMLIB int LBP_transitions (unsigned int c, int bits=8)
- ASMLIB unsigned int LBP_rotmin (unsigned int c, int bits=8)
- ASMLIB int * LBP_InitMapping (int nsamples, LBP_MAPPING_TYPE type)

- ASMLIB void LBP_FreeMapping (int *mapping)
- ASMLIB int LBP_GetMapSize (int nsamples, LBP_MAPPING_TYPE type)
- ASMLIB struct lbp_circle_table * LBP_InitTable (int nsamples, double predicate)
- ASMLIB void LBP_FreeTable (struct lbp_circle_table *table)
- ASMLIB int LBP_CalcTransformedImage (const IpIImage *grayimage, const struct lbp_circle_table *table, int nsamples, int predicate, LBP_MAPPING_TYPE type, int *result, CvRect *rect=NULL)
- ASMLIB void LBP_CalcFeatureVector (const int *result, int nrows, int ncols, const int *mapping, int *hist, int nbins)

4.3.1 Detailed Description

Functions, structures, classes for implementing active shape model.

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.3.2 Typedef Documentation

4.3.2.1 typedef bool(* detect_func)(asm_shape &shape, const IplImage *image)

You can define your own face detector function here

Parameters:

shapes Returned face detected box which stores the Top-Left and Bottom-Right points, so its NPoints() = 2 here.

image Image resource.

Returns:

false on no face exists in image, true otherwise.

4.3.3 Enumeration Type Documentation

4.3.3.1 enum ASM PROFILE TYPE

Predefined local texture (profile) types.

- PROFILE_1D: use only the pixels along the normal vector in the contour.
- PROFILE_2D: use the pixels located at the recentage.
- PROFILE_LBP: use the pixels processed with LBP-operator.

4.3.3.2 enum LBP_MAPPING_TYPE

Predefined mapping types.

- MAP_UNIFORM: use only patterns that have at most two 1-to-0 or 0-to-1 transitions. Junk the rest in one value.
- MAP_ROTMIN: rotate patterns to their minimum values.
- MAP_UNIFORM_ROTMIN: use only uniform patterns and rotate them to their minimum values.
- MAP_NONE: no mapping

4.3.4 Function Documentation

4.3.4.1 ASMLIB double CalcChiSquareDist (const double * h, const double * H, int nbins)

```
Calculate Chi square measure d(H', H) = \sum_{i=1,...,n} i = 1,...,n(H'(k) - H(k))^2/(H'(k) + H(k)).
```

Parameters:

```
h the testing point's histogramH the mean histogramnbins the dimension of histogram
```

Returns:

Chi square measure

4.3.4.2 ASMLIB double CalcMahalanobisDist (const CvMat *M, const double *x)

Calculate Mahalanobis distance $d(x, M) = x' \times M \times x$.

Parameters:

```
M the covariance matrix
```

x the vector used to calculate the M-distance

Returns:

Mahalanobis distance

4.3.4.3 ASMLIB void DrawEdges (IplImage * image, const asm_shape & shape, int * edge_start, int * edge_end, int n_edges)

Draw the fitting shape edge onto the image.

Parameters:

```
image the image resourceshape the shape dataedge_start the starting index of edgesedge_end the ending index of edgesn_edges the number of edges
```

4.3.4.4 ASMLIB void DrawPoints (IplImage * image, const asm_shape & shape)

Draw the fitting shape points onto the image.

Parameters:

```
image the image resourceshape the shape data
```

4.3.4.5 ASMLIB uchar GetBilinearPixel (const IplImage * *image*, double x, double y, int *width*, int *height*)

Image pixel at the location (x, y) using bilinear interpolate.

Parameters:

```
image the image resource
x the grid value in x-direction
y the grid value in y-direction
width the width of image
height the height of image
```

Returns:

```
the pixel value at (x, y)
```

*

4.3.4.6 ASMLIB uchar GetOriPixel (const IplImage * *image*, double x, double y, int *width*, int *height*)

Image pixel at the location (x, y) using no interpolation.

Parameters:

```
image Image resource
x the grid value in x-direction
y the grid value in y-direction
width the width of image
height the height of image
```

Returns:

```
the pixel value (x, y)
```

4.3.4.7 ASMLIB double GetX (double x, int offset, double cos_alpha) [inline]

Parameters:

x the coordinate in x-direction of source object.

offset the length from the source object to the target objectcos_alpha the value of cosine angle between the horizontal line and source-target line

Returns:

the coordinate in x-direction of target object

4.3.4.8 ASMLIB double GetY (double y, int offset, double sin_alpha) [inline]

Parameters:

```
y the coordinate in y-direction of source object.
offset the length from the source object to the target object
sin_alpha the value of sine angle between the horizontal line and source-target line
```

Returns:

the coordinate in y-direction of target object

4.3.4.9 ASMLIB void InitShapeFromDetBox (asm_shape & shape, const asm_shape & det_shape, const asm_shape & ref_shape, double refwidth)

Initialize shape from the detected box.

Parameters:

```
shape the returned initial shape

det_shape the detected box calling by asm_vjfacedetect::Detect()
ref_shape the average mean shape
refwidth the width of average mean shape
```

4.3.4.10 ASMLIB void LBP_CalcFeatureVector (const int * result, int nrows, int ncols, const int * mapping, int * hist, int nbins)

Calculate the feature vector from the image that has been transformed by LBP-operator.

Parameters:

```
result the transformed image with LBP
nrows the height of image
ncols the width of image
mapping the mapping look-up table initialized by LBP_InitMapping()
hist the histogram of feature vector
nbins the dimension of feature vector (identity to LBP_GetMapSize(nsamples, type))
```

4.3.4.11 ASMLIB int LBP_CalcTransformedImage (const IpIImage * grayimage, const struct lbp_circle_table * table, int nsamples, int predicate, LBP_MAPPING_TYPE type, int * result, CvRect * rect = NULL)

Transform the source image using the LBP-operator.

Parameters:

```
grayimage the source image resource that must be 8-depth table the precalculated circular local sampler instance nsamples the number of neighborhood samples (e.g. 8u) predicate the radius of the neighborhood (e.g. 1.5) type the type of mapping result the target image processed with LBP rect the recentange for the masked image (if possible)
```

Returns:

-1 on failure, 0 otherwise

4.3.4.12 ASMLIB void LBP_FreeMapping (int * *mapping*)

Free memory of the mapping look-up table.

Parameters:

mapping the ptr of mapping look-up table

4.3.4.13 ASMLIB void LBP_FreeTable (struct lbp_circle_table * table)

Release the memory of the precalculated point value tables.

Parameters:

table the ptr of precalculated point value tables

4.3.4.14 ASMLIB int LBP_GetMapSize (int nsamples, LBP_MAPPING_TYPE type)

Get the number of distinct values (bins) the given mapping type can produce. This is useful in determining the length of the resulting feature vector when the mapping is in use.

Parameters:

```
nsamples the number of neighborhood samples
type the type of mapping
```

Returns:

the maximum value of the mapping (alway plus one for handling the case of outside or on the boundary)

4.3.4.15 ASMLIB int* LBP_InitMapping (int nsamples, LBP_MAPPING_TYPE type)

Calculate a mapping look-up table for the given mapping type. The returned value is a newly allocated array of integers in which each item represents the index the particular LBP code should be mapped to. The returned array will take up 2^{samples} *sizeof(int) bytes of memory.

Parameters:

```
nsamples the number of neighborhood samples
type the type of mapping
```

Returns:

a look-up table

4.3.4.16 ASMLIB struct lbp_circle_table* LBP_InitTable (int nsamples, double predicate) [read]

Update the precalculated point value tables.

Parameters:

```
nsamples the number of neighborhood samples (e.g. 8u) predicate the radius of the neighborhood (e.g. 1.5)
```

Returns:

A new Circular Local Sampler instance

4.3.4.17 ASMLIB int LBP_onecount (unsigned int c, int bits = 8)

Get the number of ones in a binary number.

Parameters:

c the number

bits the number of bits to consider

4.3.4.18 ASMLIB unsigned int LBP_rotmin (unsigned int c, int bits = 8)

Rotate a binary number to its minimum value.

Parameters:

c the number

bits the number of bits to consider

4.3.4.19 ASMLIB int LBP_transitions (unsigned int c, int bits = 8)

Get the number of 0-to-1 or 1-to-0 transitions in a binary number.

Parameters:

```
c the numberbits the number of bits to consider
```

4.3.4.20 ASMLIB bool ReadAllShapes (asm_shape * shapes, int n_shapes, const char ** shape_lists, const char ** image_lists)

Read the whole shape datas from the file lists

Parameters:

```
shapes all shape datas
n_shapes the number of shape data
shape_lists the lists of shape point files
image lists the lists of image files
```

Returns:

false on failure, true otherwise

4.3.4.21 ASMLIB void ReadCvMat (FILE * f, CvMat * mat)

Read CvMat data from file stream.

Parameters:

```
f the stream to read from.

mat the CvMat that will be read.
```

4.3.4.22 ASMLIB void WriteCvMat (FILE * f, const CvMat * mat)

Write CvMat data to file stream.

Parameters:

```
f the stream to write to.mat the CvMat that will be wrote.
```

4.4 D:/asmlibrary-4.0/src/demo_build.cpp File Reference

```
#include "asmbuilding.h"
#include "vjfacedetect.h"
#include <iostream>
#include <string>
#include <vector>
#include <stdlib.h>
#include <dirent.h>
#include <sys/types.h>
#include <sys/stat.h>
```

Typedefs

• typedef vector< string > **filelists**

4.4.1 Detailed Description

A demo show how to build a active shape model

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.5 D:/asmlibrary-4.0/src/demo_fit.cpp File Reference

```
#include <vector>
#include <string>
#include <iostream>
#include "asmfitting.h"
#include "vjfacedetect.h"
#include "video_camera.h"
```

Functions

• int main (int argc, char *argv[])

4.5.1 Detailed Description

A demo show how to do image alignment (face tracking) using active shape model

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.6 D:/asmlibrary-4.0/src/video_camera.cpp File Reference

```
#include "video_camera.h"
#include <stdio.h>
```

Functions

- int open_video (const char *filename)
- void close_video ()
- IplImage * read_from_video (int frame_no)
- bool open_camera (int index)
- void close_camera ()
- IplImage * read_from_camera ()

4.6.1 Detailed Description

Implemention for handling camera and avi-video

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.6.2 Function Documentation

4.6.2.1 void close_camera ()

Close camara and release memory.

4.6.2.2 void close_video ()

Close avi and release memory.

4.6.2.3 bool open_camera (int index)

Capture from live camera.

Parameters:

index camara index

Returns:

false on failure, true otherwise

4.6.2.4 int open_video (const char * filename)

Open an AVI file.

Parameters:

filename the video file located in

Returns:

-1 on failure, frame count of the video otherwise

4.6.2.5 IplImage* read_from_camera ()

Get one certain frame of live camera.

Returns:

Internal IplImage ptr

4.6.2.6 IplImage* read_from_video (int frame_no)

Get one certain frame of video.

Parameters:

frame_no which frame

Returns:

Internal IplImage ptr

4.7 D:/asmlibrary-4.0/src/video_camera.h File Reference

```
#include "asmlibrary.h"
```

Functions

- int open_video (const char *filename)
- IplImage * read_from_video (int frame_no)
- void close_video ()
- bool open_camera (int index)
- IplImage * read_from_camera ()
- void close_camera ()

4.7.1 Detailed Description

Routines for handling camera and avi-video

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.7.2 Function Documentation

4.7.2.1 void close_camera ()

Close camara and release memory.

4.7.2.2 void close_video ()

Close avi and release memory.

4.7.2.3 bool open_camera (int index)

Capture from live camera.

Parameters:

index camara index

Returns:

false on failure, true otherwise

4.7.2.4 int open_video (const char * filename)

Open an AVI file.

Parameters:

filename the video file located in

Returns:

-1 on failure, frame count of the video otherwise

4.7.2.5 IplImage* read_from_camera ()

Get one certain frame of live camera.

Returns:

Internal IplImage ptr

4.7.2.6 IplImage* read_from_video (int frame_no)

Get one certain frame of video.

Parameters:

frame_no which frame

Returns:

Internal IplImage ptr

4.8 D:/asmlibrary-4.0/src/vjfacedetect.cpp File Reference

```
#include "vjfacedetect.h"
```

Functions

- bool init_detect_cascade (const char *cascade_name)
- void destory_detect_cascade ()
- bool detect_all_faces (asm_shape **Shapes, int &n_shapes, const IplImage *image)
- void free_shape_memeory (asm_shape **shapes)
- bool detect_one_face (asm_shape &Shape, const IplImage *image)

4.8.1 Detailed Description

Implemention for Viola and Jones's AdaBoost Haar-like Face Detector

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.8.2 Function Documentation

4.8.2.1 void destory_detect_cascade ()

Release the memory of adaboost cascade face detector

4.8.2.2 bool detect all faces (asm shape ** shapes, int & n shapes, const IplImage * image)

Detect all human face from image.

Parameters:

```
shapes return face detected box which stores the Top-Left and Bottom-Right points, so its NPoints()
= 2 here
n_shapes the numbers of faces to return
image the image resource
```

Returns:

false on no face exists in image, true otherwise

4.8.2.3 bool detect_one_face (asm_shape & shape, const IpIImage * image)

Detect only one face from image, and this human face is located as close as to the center of image

Parameters:

```
shape return face detected box which stores the Top-Left and Bottom-Right points, so its NPoints() = 2 hereimage the image resource
```

Returns:

false on no face exists in image, true otherwise

4.8.2.4 void free_shape_memeory (asm_shape ** shapes)

Release the shape resource allocated by detect_all_faces().

Parameters:

```
shapes the ptr of asm_shape []
```

4.8.2.5 bool init_detect_cascade (const char * cascade_name = "haarcascade_frontalface_alt2.xml")

Load adaboost cascade file for detect face.

Parameters:

cascade_name Filename the cascade detector located in

Returns:

false on failure, true otherwise

4.9 D:/asmlibrary-4.0/src/vjfacedetect.h File Reference

```
#include "asmlibrary.h"
```

Functions

- bool init_detect_cascade (const char *cascade_name="haarcascade_frontalface_alt2.xml")
- void destory_detect_cascade ()
- bool detect_one_face (asm_shape &shape, const IplImage *image)
- bool detect_all_faces (asm_shape **shapes, int &n_shapes, const IpIImage *image)
- void free_shape_memeory (asm_shape **shapes)

4.9.1 Detailed Description

Routines for Viola and Jones's AdaBoost Haar-like Face Detector

Copyright (c) 2008-2010 by Yao Wei <njustyw@gmail.com>, all rights reserved.

Please cite the following or equivalent reference in any publicly available text that uses asmlibrary:

YAO Wei. Research on Facial Expression Recognition and Synthesis. *Master Thesis, Department of Computer Science and Technology, Nanjing University*, Feb 2009. http://code.google.com/p/asmlibrary

Version:

5.0-2010-5-20

4.9.2 Function Documentation

4.9.2.1 void destory_detect_cascade ()

Release the memory of adaboost cascade face detector

4.9.2.2 bool detect all faces (asm shape ** shapes, int & n shapes, const IplImage * image)

Detect all human face from image.

Parameters:

```
shapes return face detected box which stores the Top-Left and Bottom-Right points, so its NPoints()
= 2 here
n_shapes the numbers of faces to return
image the image resource
```

Returns:

false on no face exists in image, true otherwise

4.9.2.3 bool detect_one_face (asm_shape & shape, const IpIImage * image)

Detect only one face from image, and this human face is located as close as to the center of image

Parameters:

```
shape return face detected box which stores the Top-Left and Bottom-Right points, so its NPoints() = 2 hereimage the image resource
```

Returns:

false on no face exists in image, true otherwise

4.9.2.4 void free_shape_memeory (asm_shape ** shapes)

Release the shape resource allocated by detect_all_faces().

Parameters:

```
shapes the ptr of asm_shape []
```

4.9.2.5 bool init_detect_cascade (const char * cascade_name = "haarcascade_frontalface_alt2.xml")

Load adaboost cascade file for detect face.

Parameters:

cascade_name Filename the cascade detector located in

Returns:

false on failure, true otherwise

Index

~asm_model	operator/, 12
asm_model, 6	operator/=, 13
~asm_shape	operator=, 13
asm_shape, 16	Read, 13
~asmbuilding	Resize, 13
asmbuilding, 23	Write, 14
~asmfitting	ASM_PROFILE_TYPE
asmfitting, 25	asmlibrary.h, 36
	asm_shape, 15
AlignTo	\sim asm_shape, 16
asm_shape, 16	AlignTo, 16
AlignTransformation	AlignTransformation, 16
asm_shape, 16	asm_shape, 16
asm_edge, 5	asm_shape, 16
asm_model, 6	CalcBisector, 17
\sim asm_model, 6	CalcNormalVector, 17
asm_model, 6	Centralize, 17
asm_model, 6	Clear, 17
Build, 6	COG, 17
classical_tdm, 8	CopyFrom, 17
Fit, 7	CopyTo, 18
GetMeanShape, 7	GetHeight, 18
GetModesOfModel, 7	GetLeftRight, 18
GetReferenceWidthOfFace, 7	GetNorm2, 18
lbp_tdm, 8	GetWidth, 18
ReadModel, 7	MaxX, 18
WriteModel, 7	MaxY, 18
asm_profile, 9	MinX, 19
asm_profile, 10	MinY, 19
asm_profile, 10	Normalize, 19
CalcProfile1D, 10	NPoints, 19
CalcProfileLBP, 10	operator*, 19
Clear, 11	operator*=, 19
CopyFrom, 11	operator+, 19
CopyTo, 11	operator+=, 19
GetData, 11	operator-, 19
GetProfile, 11	operator-=, 20
NLength, 12	operator/, 20
Normalize, 12	operator/=, 20
operator*, 12	operator=, 20
operator*=, 12	Read, 20
operator+, 12	ReadAnnotations, 21
operator+=, 12	ReadFromASF, 21
operator-, 12	ReadFromPTS, 21
operator-=, 12	Resize, 21
operator, 12	NESIZE, 41

D 21	1 111 22
Rotate, 21	asmbuilding, 23
Scale, 21	CalcBisector
ScaleXY, 22	asm_shape, 17
TransformPose, 22	CalcChiSquareDist
Translate, 22	asmlibrary.h, 37
Write, 22	CalcMahalanobisDist
asmbuilding, 23	
~asmbuilding, 23	asmlibrary.h, 37 CalcNormalVector
asmbuilding, 23	
BuildDetectMapping, 23	asm_shape, 17
Train, 23	CalcProfile1D
Write, 24	asm_profile, 10
asmfitting, 25	CalcProfileLBP
~asmfitting, 25	asm_profile, 10
asmfitting, 25	Centralize
ASMSeqSearch, 25	asm_shape, 17
Draw, 25	classical_tdm
Fitting, 26	asm_model, 8
Fitting2, 26	Clear
GetMappingDetShape, 26	asm_profile, 11
GetMeanFaceWidth, 26	asm_shape, 17
Read, 26	close_camera
asmlibrary.h	video_camera.cpp, 45
ASM_PROFILE_TYPE, 36	video_camera.h, 47
CalcChiSquareDist, 37	close_video
CalcMahalanobisDist, 37	video_camera.cpp, 45
detect_func, 36	video_camera.h, 47
DrawEdges, 37	COG
DrawPoints, 37	asm_shape, 17
GetBilinearPixel, 38	CopyFrom
GetOriPixel, 38	asm_profile, 11
GetX, 38	asm_shape, 17
GetY, 39	СоруТо
InitShapeFromDetBox, 39	asm_profile, 11
LBP_CalcFeatureVector, 39	asm_shape, 18
LBP_CalcTransformedImage, 39	– 1
LBP_FreeMapping, 40	D:/asmlibrary-4.0/src/asmbuilding.h, 33
LBP_FreeTable, 40	D:/asmlibrary-4.0/src/asmfitting.h, 34
LBP_GetMapSize, 40	D:/asmlibrary-4.0/src/asmlibrary.h, 35
LBP_InitMapping, 40	D:/asmlibrary-4.0/src/demo_build.cpp, 43
LBP_InitTable, 41	D:/asmlibrary-4.0/src/demo_fit.cpp, 44
LBP_MAPPING_TYPE, 36	D:/asmlibrary-4.0/src/video_camera.cpp, 45
LBP_onecount, 41	D:/asmlibrary-4.0/src/video_camera.h, 47
LBP rotmin, 41	D:/asmlibrary-4.0/src/vjfacedetect.cpp, 49
LBP_transitions, 41	D:/asmlibrary-4.0/src/vjfacedetect.h, 51
ReadAllShapes, 42	destory_detect_cascade
ReadCvMat, 42	vjfacedetect.cpp, 49
WriteCvMat, 42	vjfacedetect.h, 51
ASMSeqSearch	detect_all_faces
•	vjfacedetect.cpp, 49
asmfitting, 25	vjfacedetect.cpp, 49 vjfacedetect.h, 51
Build	detect_func
asm_model, 6	asmlibrary.h, 36
BuildDetectMapping	detect_one_face
DunaDetectiviapping	ucicci_UIIC_Iacc

*C1-44	1'1
vjfacedetect.cpp, 49 vjfacedetect.h, 51	asmlibrary.h, 39
Draw	LBP_CalcFeatureVector
asmfitting, 25	asmlibrary.h, 39
DrawEdges	LBP_CalcTransformedImage
asmlibrary.h, 37	asmlibrary.h, 39
DrawPoints	lbp_circle_table, 28
asmlibrary.h, 37	multipliers, 28
	nsamples, 28
Fit	offsets, 28
asm_model, 7	points, 28
Fitting	LBP_FreeMapping
asmfitting, 26	asmlibrary.h, 40
Fitting2	LBP_FreeTable
asmfitting, 26	asmlibrary.h, 40
free_shape_memeory	LBP_GetMapSize asmlibrary.h, 40
vjfacedetect.cpp, 50 vjfacedetect.h, 52	LBP_InitMapping
vjiacedetect.ii, 32	asmlibrary.h, 40
GetBilinearPixel	LBP_InitTable
asmlibrary.h, 38	asmlibrary.h, 41
GetData	LBP_MAPPING_TYPE
asm_profile, 11	asmlibrary.h, 36
GetHeight	LBP_onecount
asm_shape, 18	asmlibrary.h, 41
GetLeftRight	LBP_rotmin
asm_shape, 18	asmlibrary.h, 41
GetMappingDetShape	lbp_tdm
asmfitting, 26	asm_model, 8
GetMeanFaceWidth	LBP_transitions
asmfitting, 26	asmlibrary.h, 41
GetMeanShape	left
asm_model, 7	scale_param, 32
GetModesOfModel	m sam maannrafila
asm_model, 7 GetNorm2	m_asm_meanprofile profile_lbp_model, 29
	profile_Nd_model, 31
asm_shape, 18 GetOriPixel	m_buffer
asmlibrary.h, 38	profile_Nd_model, 31
GetProfile	m G
asm_profile, 11	profile_Nd_model, 31
GetReferenceWidthOfFace	m_P
asm_model, 7	profile_Nd_model, 31
GetWidth	mapping
asm_shape, 18	profile_lbp_model, 29
GetX	MaxX
asmlibrary.h, 38	asm_shape, 18
GetY	MaxY
asmlibrary.h, 39	asm_shape, 18
into descriptions of	MinX
init_detect_cascade	asm_shape, 19
vjfacedetect.cpp, 50 vjfacedetect.h, 52	MinY
Vjiacedetect.n, 32 InitShapeFromDetBox	asm_shape, 19 multipliers
ппопарет топпостол	manuphers

lbp_circle_table, 28	points
nbins	lbp_circle_table, 28
profile_lbp_model, 29	predicate
nblocklength	profile_lbp_model, 29
profile_lbp_model, 29	profile_lbp_model, 29
NLength	m_asm_meanprofile, 29
asm_profile, 12	mapping, 29 nbins, 29
nlevels	nblocklength, 29
profile_lbp_model, 29	nlevels, 29
Normalize	nsamples, 29
asm_profile, 12	predicate, 29
asm_shape, 19	table, 30
NPoints	type, 30
asm_shape, 19	profile_Nd_model, 31
nsamples	m_asm_meanprofile, 31
lbp_circle_table, 28	m_buffer, 31
profile_lbp_model, 29	m_G, 31
prome_top_model, 29	m_P, 31
offsets	m_1 , 31
lbp_circle_table, 28	Read
open_camera	asm_profile, 13
video_camera.cpp, 45	asm_shape, 20
video_camera.h, 47	asmfitting, 26
open_video	read_from_camera
video_camera.cpp, 45	video_camera.cpp, 46
video_camera.h, 47	video_camera.h, 48
operator*	read_from_video
asm_profile, 12	video_camera.cpp, 46
asm_shape, 19	video_camera.h, 48
operator*=	ReadAllShapes
asm_profile, 12	asmlibrary.h, 42
asm_shape, 19	ReadAnnotations
operator+	asm_shape, 21
asm_profile, 12	ReadCvMat
asm_shape, 19	asmlibrary.h, 42
operator+=	ReadFromASF
asm_profile, 12	asm_shape, 21
asm_shape, 19	ReadFromPTS
operator-	asm_shape, 21
asm_profile, 12	ReadModel
asm_shape, 19	asm_model, 7
operator-=	Resize
asm_profile, 12	asm_profile, 13
asm_shape, 20	asm_shape, 21
operator/	right
asm_profile, 12	scale_param, 32
asm_shape, 20	Rotate
operator/=	asm_shape, 21
asm_profile, 13	0.1
asm_shape, 20	Scale
operator=	asm_shape, 21
asm_profile, 13	scale_param, 32
asm_shape, 20	left, 32

```
right, 32
ScaleXY
    asm_shape, 22
table
    profile\_lbp\_model, 30
Train
    asmbuilding, 23
TransformPose
    asm_shape, 22
Translate
    asm_shape, 22
type
    profile_lbp_model, 30
video_camera.cpp
    close_camera, 45
    close_video, 45
    open_camera, 45
    open_video, 45
    read_from_camera, 46
    read_from_video, 46
video camera.h
    close_camera, 47
    close_video, 47
    open_camera, 47
    open_video, 47
    read_from_camera, 48
    read_from_video, 48
vjfacedetect.cpp
    destory_detect_cascade, 49
    detect_all_faces, 49
    detect_one_face, 49
    free_shape_memeory, 50
    init_detect_cascade, 50
vjfacedetect.h
    destory_detect_cascade, 51
    detect_all_faces, 51
    detect_one_face, 51
    free_shape_memeory, 52
    init_detect_cascade, 52
Write
    asm_profile, 14
    asm_shape, 22
    asmbuilding, 24
WriteCvMat
    asmlibrary.h, 42
WriteModel
    asm_model, 7
```