

Data Handling: Import, Cleaning and Visualisation

Lecture 11:

Visualisation and Dynamic Documents

Prof. Dr. Ulrich Matter 10/12/2020

Updates

Week 12

- Thursday, 17 December
 - Wrap up
 - Exam info
 - Feedback
 - Q&A (send questions until tomorrow! ulrich.matter@unisg.ch)!
- Friday, 18 December
 - Decentral exam for exchange students!
 - See Canvas for details on place/time.

Reminder: Course evaluation

- · Deadline extended until 11 December 2020.
- · Please fill in the evaluation form (via Canvas) today (if not done so yet)!

Data Display

Data display

- Formatting data values for publication.
- · Typical: String operations to make numbers and text look nicer.
 - Before creating a table or figure...

Data display

Problems?

Data display: round numeric values

```
swiss_summary_rounded <- round(swiss_summary, 2)
swiss_summary_rounded

## avg_education avg_fertility N
## 1 10.98 70.14 47</pre>
```

Data display: detailed formatting of numbers

- · Coerce to text.
- String operations.
- Decimal marks, units (e.g., currencies), other special characters for special formats (e.g. coordinates).
- format()-function

Data display: format() example

See also the helpful functions for formatting text-strings

- Uppercase/lowercase: toupper()/tolowe().
- Remove white spaces: trimws(),

```
string <- "AbCD "
toupper(string)

## [1] "ABCD "

tolower(string)

## [1] "abcd "

trimws(tolower(string))

## [1] "abcd"</pre>
```

Data Visualisation with R (ggplot2)

Data visualisation

- Final step of data pipeline/data science procedure!
 - Convincingly communicating insights from data.
- R is a very powerful tool to do this!
 - (Very powerful graphics engine)

Data visualisation in R

Three main approaches:

1. The original graphics package ((R Core Team 2018); shipped with the base R installation).

Data visualisation in R

Three main approaches:

- 1. The original graphics package ((R Core Team 2018); shipped with the base R installation).
- 2. The lattice package (Sarkar 2008), an implementation of the original Bell Labs 'Trellis' system.

Data visualisation in R

Three main approaches:

- 1. The original graphics package ((R Core Team 2018); shipped with the base R installation).
- 2. The lattice package (Sarkar 2008), an implementation of the original Bell Labs 'Trellis' system.
- 3. The **ggplot2** package (Wickham 2016), an implementation of Leland Wilkinson's 'Grammar of Graphics'.

ggplot2

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

1. The data must be stored in a data.frame/tibble (in tidy format!).

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().
- 3. The first line of plot code declares the data and the 'aesthetics' (e.g., which variables are mapped to the x-/y-axes):

Using ggplot2 to generate a basic plot in R is quite simple. Basically, it involves three key points:

- 1. The data must be stored in a data.frame/tibble (in tidy format!).
- 2. The starting point of a plot is always the function ggplot().
- 3. The first line of plot code declares the data and the 'aesthetics' (e.g., which variables are mapped to the x-/y-axes):

```
ggplot(data = my_dataframe, aes(x= xvar, y= yvar))
```

Example data set: swiss

```
# load the R package
library(tidyverse) # automatically loads ggplot2
# load the data
data(swiss)
# get details about the data set
# ?swiss
# inspect the data
head(swiss)
```

##	Fertility	Agriculture	Examination	Education	Catholic	Infant.Mortalit
## Courtelary	80.2	17.0	15	12	9.96	22.
## Delemont	83.1	45.1	6	9	84.84	22.
## Franches-Mnt	92.5	39.7	5	5	93.40	20.
## Moutier	85.8	36.5	12	7	33.77	20.
## Neuveville	76.9	43.5	17	15	5.16	20.
## Porrentruy	76.1	35.3	9	7	90.57	26.

Add indicator variable

Code a province as 'Catholic' if more than 50% of the inhabitants are catholic:

Data and aesthetics

ggplot(data = swiss, aes(x = Education, y = Examination))

Geometries (~the type of plot)

Facets

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    facet_wrap(~Religion)
```


Additional layers and statistics

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    geom_smooth(method = 'loess') +
    facet_wrap(~Religion)
## `geom_smooth()` using formula 'y ~ x'
```


Additional layers and statistics

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point() +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion)

## `geom_smooth()` using formula 'y ~ x'
```


Additional aesthetics

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point(aes(color = Agriculture)) +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion)
## `geom_smooth()` using formula 'y ~ x'
```


Change coordinates

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point(aes(color = Agriculture)) +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion) +
    coord_flip()

## `geom_smooth()` using formula 'y ~ x'
```


Themes

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point(aes(color = Agriculture)) +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion) +
    theme(legend.position = "bottom", axis.text=element_text(size=12))
## `geom_smooth()` using formula 'y ~ x'
```


Themes

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point(aes(color = Agriculture)) +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion) +
    theme_minimal()
## `geom_smooth()` using formula 'y ~ x'
```


Themes

```
ggplot(data = swiss, aes(x = Education, y = Examination)) +
    geom_point(aes(color = Agriculture)) +
    geom_smooth(method = 'lm') +
    facet_wrap(~Religion) +
    theme_dark()
## `geom_smooth()` using formula 'y ~ x'
```


Dynamic Documents

Q&A

References

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Sarkar, Deepayan. 2008. Lattice: Multivariate Data Visualization with R. New York: Springer. http://lmdvr.r-forge.r-project.org.

Wickham, Hadley. 2016. **Ggplot2: Elegant Graphics for Data Analysis**. Springer-Verlag New York. http://ggplot2.org.