

- √ Vetores e matrizes;
- ✓ Laços encadeados.

Introdução à Lógica de Programação

2 / 15

Vetores e matrizes

Neste capítulo aprenderemos a utilizar as variáveis indexadas em programação. Variáveis indexadas são um conjunto de variáveis que apresentam o mesmo nome, são do mesmo tipo, mas são diferentes no valor de seu índice.

As variáveis indexadas podem ter várias dimensões:

Vetores: uma dimensão;

• Matrizes: n dimensões.

VET	<u>OR</u>			<u>M</u>	ATRI.	<u>Z</u>	
Y			Z	1	2	3	4
1			1				
2			2				
3			3				
4			4				
5			5				
6			6				
7			7				
8			8				
9			9				
10			10				

Dados dois números inteiros positivos \mathbf{m} e \mathbf{n} , chama-se matriz $\mathbf{m} \times \mathbf{n}$ a tabela formada por \mathbf{m} .n números reais, dispostos em \mathbf{m} linhas (horizontais) e \mathbf{n} colunas (verticais).

Importante: Cada elemento é indicado por \mathbf{a}_{ij} , em que \mathbf{i} indica a linha e \mathbf{j} , a coluna, às quais \mathbf{a}_{ij} pertence.

Introdução à Lógica de Programação

3 / 15

Um elemento de uma tabela pode ser referenciado de duas formas: **Implícita** e **Explícita**. Vejamos a seguinte tabela:

• Referência implícita: Usamos o índice para nos referenciar a um certo elemento da tabela. A seguir, temos um exemplo de referência implícita, considerando a tabela de dias da semana mostrada anteriormente:

$$A = 2 \rightarrow DIA[A] = Terça-feira$$

• Referência explícita: Referenciamo-nos diretamente ao elemento desejado. A seguir, temos um exemplo de referência explícita, considerando nossa tabela de dias da semana:

Introdução à Lógica de Programação

4 / 15

Vejamos estes outros exemplos:

• Exemplo 1

• Exemplo 2

Exemplo 3

Introdução à Lógica de Programação

6 / 15

• Exemplo 4

A seguir, temos o algoritmo e o teste de mesa do exemplo 4:

Algoritmo

```
INÍCIO
Declara GH[1:6], J numéricas
GH[1] = 1
GH[2] = 1
Para J = 3 até 6 passo + 1
GH[J] = GH[J - 1] + GH[J - 2]
Próximo J
FIM
```

Teste de Mesa

```
GH[3] = GH[3-1] + GH[3-2]

GH[2] + GH[1]

2

GH[4] = GH[4-1] + GH[4-2]

GH[3] + GH[2]

3

GH[5] = GH[5-1] + GH[5-2]

GH[4] + GH[3]

5

GH[6] = GH[6-1] + GH[6-2]

GH[5] + GH[4]

8
```

Introdução à Lógica de Programação

7 / 15

A seguir, temos um algoritmo e o fluxograma correspondente que verifica se um número digitado é encontrado num vetor. Será exibida uma mensagem informando se o número foi encontrado ou não. Como vetor, vamos considerar **VET [1:10]**.

```
INÍCIO

Declara VET [ 1:10 ], NUM, L numéricas, MSG alfanumérica

MSG = "Não encontrou"

NUM = 0

Ler NUM

Para L = 1 até 10 passo + 1

Se VET [ L ] = NUM

Então MSG = "Número encontrado"

L = 10

Fim Se

Próximo L

Exibir MSG

FIM
```


9 / 15

Laços encadeados

Laços ou Loops encadeados são laços executados dentro de outros laços. No caso do comando PARA, o primeiro a ser criado é o último a ser fechado. O comando PRÓXIMO fecha o laço. O último comando PARA aberto é o primeiro a ser fechado com o comando PRÓXIMO, ou seja, o último loop criado é o primeiro a ser fechado. Vejamos um exemplo de laço encadeado a seguir:

```
INÍCIO
Declara A, B numéricas
Para A = 1 até 9 passo + 3
Para B = 5 até 10 passo + 2
Exibir A, " - ", B
Próximo B
Próximo A
Exibir A, " - ", B
```


Teste de									
mesa									
A - B									
1	1 - 5								
1	-	7							
1	-	9							
4	-	5							
4	-	7							
4	-	9							
7	-	5							
7	-	7							
7	9								
10	-	11							

Introdução à Lógica de Programação

10 / 15

Neste outro exemplo, temos um algoritmo que preenche a matriz conforme a figura utilizando apenas um laço (loop):

Matriz LIN


```
LINHA
Declara C numérica, LIN[ 1:10,1:10 ] alfanumérica
Para C = 2 até 9 passo + 1
LIN[ 5, C ] = "X"
Próximo C
FIM
```

Note que foram preenchidas as posições, na linha 5, da coluna 2 até a 9.

Introdução à Lógica de Programação

12 / 15

FIM

A seguir, temos um algoritmo que preenche a matriz conforme a figura utilizando laço (loop) encadeado:

Matriz

Q

	1	2	3	4	5	6	7	8	9	0
1										
2		Х	X	X	X	X	Х	Х		
3		X	X	X	X	X	X	X		
4		Х	X	X	X	X	Х	Х		
5		X	X	X	X	X	X	X		
6		X	X	X	X	X	X	X		
7		Х	X	Х	X	X	Х	Х		
8		X	X	X	X	X	Х	Х		
9										
0										

```
QUADRADO
Declara L, C numéricas, Q[1:10,1:10] alfanumérica
Para L = 2 até 8 passo + 1
Para C = 2 até 8 passo + 1
Q[L, C] = "X"
Próximo C
Próximo L
```

Introdução à Lógica de Programação

13 / 15

Vejamos o teste de mesa do último exemplo. Considerando que a variável L está sendo usada para a posição da linha e a variável C está sendo usada para a posição da coluna, veja, na tabela a seguir, que foi preenchida toda a matriz, desde a posição [2,2] até a posição [8,8].

L	С	L	С	L	C	L	С	L	С	L	С	L	С
2	2	3	2	4	2	5	2	6	2	7	2	8	2
2	3	3	3	4	3	5	3	6	3	7	3	8	3
2	4	3	4	4	4	5	4	6	4	7	4	8	4
2	5	3	5	4	5	5	5	6	5	7	5	8	5
2	6	3	6	4	6	5	6	6	6	7	6	8	6
2	7	3	7	4	7	5	7	6	7	7	7	8	7
2	8	3	8	4	8	5	8	6	8	7	8	8	8

A seguir, temos um algoritmo que preenche a matriz conforme a figura utilizando dois laços:

Matriz TR

	1	2	3	4	5	6	7	8	9	0
1										
2										
3					X					
4				Х		X				
5			X				X			
6		X	X	X	X	X	X	X		
7										
8										
9										
0										

Introdução à Lógica de Programação

14 / 15

```
TRIANGULO
Declara L, C, D numéricas, TR[ 1:10,1:10 ] alfanumérica
C = 4
D = 6
Para L = 4 até 6 passo + 1
    TR[ L, C ] = "X"
    TR[ L, D ] = "X"
    C = C - 1
    D = D + 1
Próximo L
Para C = 3 até 7 passo + 1
    TR[ 6, C ] = "X"
Próximo C
TR[ 3, 5 ] = "X"
FIM
```


Introdução à Lógica de Programação

15 / 15

Considerando o exemplo do triângulo na matriz TR, observe, a seguir, as linhas e colunas preenchidas pelos valores das variáveis L, C e D:

LINHA (L)	COLUNA (C)
4	4
5	3
6	2

LINHA (L)	COLUNA (D)
4	6
5	7
6	8

Note que, se somarmos os valores das variáveis L e C, o resultado é sempre 8 (oito), portanto C = 8 - L. Após encontrarmos essa solução matemática, não será mais preciso utilizar a variável C no primeiro loop.

Perceba, também, que, se subtrairmos dos valores da variável \mathbf{D} os valores da variável \mathbf{L} , o resultado é sempre $\mathbf{2}$ (dois), portanto $\mathbf{D} = \mathbf{2} + \mathbf{L}$. Após encontrarmos essa solução matemática, não será mais preciso utilizar a variável \mathbf{D} .

L	+	С	=	8
4	+	4	=	8
5	+	3	_	8
6	+	2	_	8

D		L	=	2
6	-	4	=	2
7	-	5	=	2
8	-	6	=	2

Veja, a seguir, como ficou o algoritmo que preenche a matriz TR:

```
TRIANGULO
Declara L, C numéricas, TR[1:10,1:10] alfanumérica
Para L = 4 até 6 passo + 1
    TR[L, 8 - L] = "X"
    TR[L, 2 + L] = "X"
Próximo L
Para C = 3 até 7 passo + 1
    TR[6, C] = "X"
Próximo C
TR[3, 5] = "X"
FIM
```