UNIMODALITY IDEAS

AARON LANDESMAN

1. Directions to move

- (1) Look at generalising p_i^r for general r.
- (2) Generalizing to q analog of cyclic group.
- (3) Try relating p_i, q_i .
- (4) Coding which groups G we have $p_i = q_i$.
- (5) When are $p_i = q_i$.
- (6) Try to compute q_i .
- (7) Look at simple groups, and maybe solvable groups, try quotienting by normal subgroups?
- (8) Are there any ways to combine G_1, G_2 where G_i are groups with $p_i = q_i$.
- (9) Are there some characterisations of groups with q_i, p_i .
- (10) How to use sage, what can we do with groups?
- (11) Which edge poset definition do we want? Do we include edges containing y or exclude them?
- (12) Look at $B_n(q)$.
- (13) Look at generalizing $F_r(B_n)$ to arbitrary posets
- (14) Try relating Wilson's Normal Form to our posets?

2. Edge Functor

Remark 2.0.1. We assume all posets are ranked posets, and G actions are rank preserving, order preserving actions.

Definition 2.0.2. A poset is B_k full if whenever it contains a vertex v and p vertices above v, then it contains a p dimensional hypercube containing v.

Lemma 2.0.3. B_n is B_k full for all k. Quotients of B_n are B_k full.

Proof.

Definition 2.0.4. Define the poset category \mathcal{P}_r , where $P \in \mathcal{P}_r$ is a ranked poset, and the morphisms Mor(P,Q) are rank preserving, order preserving maps, which send all B_{r+1} to other B_{r+1} .

Definition 2.0.5. Define the Faces functors (there is one for each r) \mathcal{F}_r : $\mathcal{P}_r \to \mathcal{P}_r$, which takes a poset to the poset of its i faces. That is, for each B_k subalgebra of P_r , we associate a point. We say a point p < q if p and q are nonintersecting boolean subalgebras, and the bottommost point of the cube representing p is right below the bottommost point of the cube representing p. It takes a map of posets to the induced map on cubes, by definition of the morphisms in \mathcal{P}_r . For ease of notation, we shall use \mathcal{F} for \mathcal{F}_1 .

3. The Picture for B_n

Theorem 3.0.6. For B_n the boolean algebra, $\mathfrak{F}(B_n)$ is unitary peck.

Proof. $\mathcal{F}(B_n)$ is actually just a disjoint union of n copies of B_{n-1} , where each copy is indexed as corresponding to the set of pairs $B_{n-1} \cong (\mathcal{F}(B_n))_{(i)} = \{(y,x)|y > x, y/x = i\}$, where $i \in [n]$.

Notation 3.0.7. Let $\Delta(G) \subset G \times G$ denote the diagonal subgroup. Define $X_G(P) = Ind_{\Delta(G)}^{G \times G}(\mathfrak{F}(V(P)))/(G \times G)$

Notation 3.0.8. Let V(P) denote the graded vector space with basis $p \in P$. The grading is given by the rank of p.

Theorem 3.0.9. We then have an isomorphism of graded vector spaces $\mathfrak{F}(V(P)/G) \cong X_G(P)$.

Proof. The basis for F(V(P)/G) is exactly given by the edges of V(P)/G. By definition, we have an edge (Gx, Gy) in V(P)/G if and only if and $\exists g, h \in G$ with $gx \lessdot hy$. Next, $Ind_{\Delta(G)}^{G \times G}(\mathcal{F}(V(P)))$ is precisely the set of all edges of the form gx, hy for $g, h \in G$. And hence, we have a natural $G \times G$ action on it. Then, by definition, if we quotient by the $G \times G$ action, we obtain the exact same set of edges as in $\mathcal{F}(V(P)/G)$. Since ranks are always preserved under these maps, we obtain the claimed isomorphism of graded vector spaces.

Lemma 3.0.10. The poset corresponding the the graded vector space $Ind_{\Delta(G\times G)}^{G\times G}(F(V(P)))$ is unitary peck.

Proof. First, by 3.0.6, we know $\mathcal{F}(V(P))$ is unitary peck. Then, induction simply makes |G| disjoint copies of F(V(P)). Therefore, we can take the corresponding block diagonal raising operators for each disjoint copy, and they obviously provide isomorphisms from level i to n-i.

Theorem 3.0.11. (Stanley) The quotient of a unitary peck poset by an order preserving, rank preserving group action G, is peck.

Corollary 3.0.12. The $X_G(P)$ are vector spaces with an underlying peck poset structure.

Proof. By 3.0.10, we have $Ind_{\Delta(G)}^{G\times G}(\mathfrak{F}(V(P)))$ is unitary peck. But then, since $X_G(P)=Ind_{\Delta(G)}^{G\times G}(\mathfrak{F}(V(P)))/(G\times G)$, by 3.0.11 we obtain the poset corresponding to $X_G(P)$ is peck.

Corollary 3.0.13. The poset of edges $\mathfrak{F}(V(P)/G)$ is unitary peck.

Proof. By 3.0.12 we know $X_G(P)$ is peck, but by 3.0.9 we have $\mathfrak{F}(V(P)/G) \cong X_G(P)$, and so $\mathfrak{F}(V(P)/G)$ is peck as well.

Notation 3.0.14. For any poset P, define p_i to be the number of edges from the ith level set P_i to the i + 1th level set P_{i+1} ,

Corollary 3.0.15. The sequence p_i is unimodal and symmetric.

Proof. By definition, the rank of the ith level set of $\mathcal{F}(V(P)/G)$ is exactly the number of edges from levels i to i+1 of P. That is $\dim(\mathcal{F}(V(P)/G)_i) = p_i$. Since by 3.0.13, $\mathcal{F}(V(P)/G)$ is peck, it is in particular symmetric and unimodal, and so the p_i are symmetric and unimodal.