1 Sheaves Stuff

Question: does there exists an fpqc torsor for a reasonable group not representable by an algebraic space?

Lemma 1.0.1. Descent holds along a τ -cover for sheaves in the τ -topology. Explicitly, let \mathcal{C}_{τ} be a site and consider the natural map

$$\operatorname{Shv}_S(\mathcal{C}_{\tau}) \to \operatorname{DD}_{S'/S}(\operatorname{Shv}_{S'}(\mathcal{C}_{\tau}))$$

is an equivaence of categories.

Remark. Note that $\operatorname{Shv}_S(\mathcal{C}_\tau)$, the slice category of sheaces on \mathcal{C}_τ over the representable h^S (in presheaves if h^S is not a τ -sheaf), is equivalent to $\operatorname{Shv}(\mathcal{C}_{\tau/S})$ the sheaves on the slice category over S. Indeed, the map $\varphi: F \to S$ gives a map $F(T) \to \operatorname{Hom}(T,S)$ so it lives over the slice category already. Conversely, given a sheaf G on the slice category we define F via

$$T \mapsto \{(\alpha, \beta) \mid \alpha : T \to S \text{ and } \beta \in G(\alpha : T \to S)\}$$

Proof. This is just unwinding definitions. For full faithfulness, we need to show that

$$\operatorname{Hom}_{S}(F,G) \to \operatorname{Hom}_{S'}(F_{S'},G_{S'}) \rightrightarrows \operatorname{Hom}_{S'\times_{S}S'}(F_{S'\times_{S}S'},G_{S'\times_{S}S'})$$

is an equalizer. This is exactly the sheaf condition for Hom (F, G). Indeed, let's prove it. Let $\varphi, \psi : F \to G$ be S-morphisms that become equal upon pulling back to S'. For any $T \to S$ consider the cover $T_{S'} \to T$ then $\varphi_{T_{S'}} = \psi_{T_{S'}}$ so by local uniqueness: $\varphi_T = \psi_T$. Now suppose that $\varphi' : F_{S'} \to G_{S'}$ is equalized. Let φ be defined as follows: $\varphi_T(x) \in G(T)$ is obtained by gluing $\varphi_{T_{S'}}(x|_{T_{S'}})$ along $T_{S'} \to T$ which exists because of the overlap condition on φ_T .

Now we prove essential surjectivity. Let (G, α) be a descent datum. We produce a sheaf F as follows. Base changing along $T \to S$ we can replace S by any T so it suffices to produce F(S). Define F(S) as the limit (equalizer) of the diagram

2 Accessible Categories

Lurie works only with ∞ -categories that are sets basically by definition since an ∞ -category is a simplicial set. To differentiate between "small" and "large" he fixes a regular cardinal κ (meaning it is not a limit over less than κ smaller cardinals, eg. an inaccessible limit cardinal) and lets the "small" simplicial sets be those in the corresponding Grothendieck universe of sets of rank $\leq \kappa$ in the Von Neumann hierarchy.

Definition 2.0.1. An ∞ -category \mathcal{C} is κ -accessible if it is closed under κ -filtered colimits and there exists a κ -small subcategory $\mathcal{C}^0 \subset \mathcal{C}$ such that the natural map

$$\operatorname{Ind}_{\kappa}(\mathcal{C}^0) \to \mathcal{C}$$

is an equivalence.

Usually people say " \mathcal{C} is accessible if it is generated by \mathcal{C}^0 under κ -filtered colimits" which is true but confusing since it is really a stronger property than "everything is a colimit". The natural map being an equivalence says that \mathcal{C} really is the category of Ind-objects not just a quotient of it. For example, the category of free R-modules is not accessible. It is obviously generated under colimits by the trivial module R but it is not isomorphic to the ind-objects since filtered colimits produce all flat R-modules. These is a filtered colimit of frees that gives a non-free finite projective and we are required to have this as well. The definition is equivalent to:

Lemma 2.0.2. An ∞ -category \mathcal{C} is κ -accessible if and only if it is

- (a) locally small
- (b) closed under κ -filtered colimits
- (c) the full subcategory $\mathcal{C}^{\kappa} \subset \mathcal{C}$ of κ -compact objects is essential small
- (d) C^{κ} generates C under small, κ -filtered colimits

3 Stable Motivic Homotopy Theory

Stable category: natural home for compatible sequences of spaces. Natural source for cohomology theories

Naive way: sequential spectra: a sequence of spaces $\{X_n\}_{n\geq 0}$ and bonding maps $\sigma_n: \Sigma X_n \to X_{n+1}$.

Definition 3.0.1. If \mathcal{C} is a category and $F: \mathcal{C} \to \mathcal{C}$ is a functor then define

$$\operatorname{Sp}^{\mathbb{N}}(\mathcal{C}, F) := \operatorname{colim}\left(\mathcal{C} \xrightarrow{F} \mathcal{C} \xrightarrow{F} \mathcal{C} \to \cdots\right)$$

The problem is it is hard to preserve nice properties of \mathcal{C} under this construction. Nice properties:

- (a) presentable
- (b) symmetric monoidal structure

Issue with presentability: $\Pr^L \subset \operatorname{Cat}_{\infty}$ is not closed under colimits. However, there is a hacky trick.

Proposition 3.0.2. If \mathcal{C} is presentable and G is a right adjoint to F then

$$\operatorname{Sp}^{\mathbb{NN}}(\mathscr{G}, F) \xrightarrow{\sim} \lim \left(\cdots \to \mathcal{C} \xrightarrow{G} \mathcal{C} \xrightarrow{G} \mathcal{C} \right)$$

in particular it is presentable since $Pr^R \subset Cat_{\infty}$ is limit-closed.

Example 3.0.3. Say we want to invert Σ on Spaces. Instead of the colimit of iterating Σ we use the right adjoint Ω to form spectra via a limit.

More generally if C is pointed and has limits then there is an endofunctor

$$\Omega: \mathcal{C} \to \mathcal{C}$$

given by taking the limit of the diagram

Then

$$\operatorname{Sp}(\mathcal{C}) = \lim \left(\cdots \to \mathcal{C} \xrightarrow{\Omega} \mathcal{C} \xrightarrow{\Omega} \mathcal{C} \right)$$

Definition 3.0.4. An object $X \in \mathcal{C}$ in a symmetric monoidal category is *symmetric* if for some $n \geq 2$ the n-cycle

$$(12 \dots n): X^{\otimes n} \to X^{\otimes n}$$

is homotopic to the identity.

Theorem 3.0.5. If \mathcal{C} is presentably symmetric monoid, and $X \in \mathcal{C}$, then there is a natural functor

$$\operatorname{Sp}^{\mathbb{N}}(\mathcal{C}, X \otimes -) \to \mathcal{C}[X^{-1}]$$

is an equivalence if X is symmetric.

Corollary 3.0.6. The category of spectra, as a presentably symmetric monoidal category, can be modeled in three equivalent ways:

- (a) colim $(S_* \xrightarrow{\Sigma} S_* \xrightarrow{\Sigma} S_* \to \cdots)$
- (b) $\lim (\cdots \to S_* \xrightarrow{\Omega} S_* \xrightarrow{\Omega} S_*)$
- (c) $S_*[(S^1)^{-1}]$

Proof. The first two are by adjunction. For the last, we need check that S^1 is symmetric. Indeed,

$$(1\,2\,3):S^1\wedge S^1\wedge S^1\to S^1\wedge S^1\wedge S^3$$

is homotopic to the identity as a self-map of S^3 .

We get a natural adjunction:

$$\Sigma^{\infty}: \mathcal{C} \to \operatorname{Sp}(\mathcal{C}): \Omega^{\infty}$$

3.1 Motivic Spectra

Could take $PSh(Sm_k)$ and stabilize it, we would get $Fun(Sm_k^{op}, Sp)$. Could look at the presheaves that are Nisnevich sheaves of spectra. Denote this by

$$\operatorname{Sp}(k) = \operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}_k, \operatorname{Sp}) = \operatorname{Sp}(\operatorname{Shv}_{\operatorname{Nis}}(\operatorname{Sm}_k))$$

Example 3.1.1. For any sheaf of abelian groups A, get a reoresenting object $HA \in \operatorname{Sp}(k)$, defined as $\{K(A,n)\}_{n\geq 0}$ along with the maps $K(A,n) \xrightarrow{\sim} \Omega K(A,n+1)$.

Proposition 3.1.2 (representability of cohomology). For $X \in Sm_k$ and $n \geq 0$

$$H_{\mathrm{Nis}}^{n}(X,A) = [\Sigma^{-n}\Sigma_{+}^{\infty}X, HA]_{\mathrm{Sp}(k)}$$

Proof.

$$\begin{split} [\Sigma_{+}^{\infty}\Sigma^{n}X, HA]_{\mathrm{Sp}(k)} &\cong [\Sigma^{n}X_{+}, \Omega^{\infty}HA]_{\mathrm{Shv}} \\ &\cong [\Sigma^{n}X_{+}, K(A, 0)] \\ &\cong [X_{+}, \Omega^{n}K(A, 0)]_{\mathrm{Shv}_{*}} \\ &\cong [X_{+}, K(A, n)]_{\mathrm{Shv}_{*}} \\ &= [X, K(A, n)]_{\mathrm{Shv}} \\ &= H^{n}(X, A) \end{split}$$

Definition 3.1.3. For $E \in \operatorname{Sp}(k)$, can define $\pi_n(E)$ to be the sheafifcation of the presheaf

$$U \mapsto [\Sigma_+^{\infty} \Sigma^n U, E]_{\mathrm{Sp}(k)}$$

Example 3.1.4.

$$\pi_n H A = \begin{cases} 0 & n \neq 0 \\ A & n = 0 \end{cases}$$

This induces a t-structure such that

$$\operatorname{Sp}(k) = \operatorname{\mathbf{Ab}}(\operatorname{Shv}(\operatorname{Sm}_k)_{<0})$$

Notation: Denote by $\operatorname{Sp}_{\mathbb{A}^1}(k) \subset \operatorname{Sp}(k)$ the full subcategory of \mathbb{A}^1 -invariant sheaves of spectra, i.e. those $E \in \operatorname{Sp}(k)$ for which $X \times \mathbb{A}^1 \to X$ induces an equivalence

$$E(X) \xrightarrow{\sim} E(X \times \mathbb{A}^1)$$

for every X.

Remark. In the literature $S^1(k)$ or $S^1(k)$ or $S^1(k)$ for $Sp_{\mathbb{A}^1}(k)$ called motivic S^1 -spectra. Here only S^1 has been inverted not \mathbb{G}_m .

Remark. $\operatorname{Sp}_{\mathbb{A}^1}(k) = HI(k)$ the strongly invariant sheaves.

Want: invert all motivic spheres not just S^1 .

Proposition 3.1.5. \mathbb{P}^1 is symmetric

Proof. I can identify $\mathbb{P}^1 \wedge \mathbb{P}^1 \wedge \mathbb{P}^1 \cong \mathbb{A}^3/(\mathbb{A}^3 \setminus 0)$ and the cycle (123) becomes the map

$$\mathbb{A}^3/(\mathbb{A}^3 \setminus 0) \to \mathbb{A}^3/(\mathbb{A}^3 \setminus 0) \quad (x, y, z) \mapsto (y, z, x)$$

hence given by the matrix

 $\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ this is a product of elementary matrices and any elementary matrix is homotopic to

the identity through invertible maps.

Definition 3.1.6. The stable motivic category is

$$(k) = (k)_*[(\mathbb{P}^1)^{-1}]$$

This is presentably symmetric monoidal because \mathbb{P}^1 is symmetric.

3.2 Eilenberg-Maclane Spaces

How to build HA. If we have some A = K(A, 0) we need a delooping of it

$$\Omega_{\mathbb{P}^1}K(\mathbb{A}^1,1) = K(A,0)$$

but this is

$$\Omega^{1,1}\Omega^{1,0}K(A',1) = \Omega^{1,1}K(A',0) = K((A')_{-1},0)$$

Therefore, we want A' should be the "decontraction". Hence we need A to be an infinite contraction. In other words, need A_* to be a homotopy module.

Proposition 3.2.1. Any homotopy module gives rise to an eilenberg-Maclane spectrum in (k) and in fact

$$(k) \cong (k)$$

Now for any A_* and k, n

$$H_{\mathrm{Nis}}^{n}(X, A_{-n}) = [\Sigma^{\infty} X, \Sigma^{n+k,k} H A]_{(k)}$$

Definition 3.2.2. For $a, b \in \mathbb{Z}$ can define homotopy groups of $E \in (k)$ to be the sheafifcation of

$$U \mapsto [\Sigma^{\infty} \Sigma^{a,b} U, E]_{(k)}$$

3.3 Representability of K-Theory

Goal: show algebraic K-theory is represented by $\in (k)$.

What is group completetion? Given a monoid M then its group completetion M is the initial group with a map from M.

Example 3.3.1. $\mathbb{N} = \mathbb{Z}$.

Given a monoid M in a category \mathcal{C} , then it has some data $M \times M \to M$ and a unit $1 \to M$ and there is associativity relations.

Let be the category of finite sets, and () the category with

- (a) objects: finite sets
- (b) morphisms are roofs $X \leftarrow Z \rightarrow Y$ maps of finite sets

to form compositions we take fiber products.

In a monoid M, can

- (a) add x + y
- (b) perform iterated addition $x + \cdots + x = n \cdot x$

hence can build, evaluate, and compose systems of linear mulivariate polynomials.

We can encode these operations in spans and composition of spans. We use a set with n elements to mean M^n and use repedition along the first map and grouping along the second map to represent addition.

Definition 3.3.2. If \mathcal{C} is an ∞ -category, the category of commutative monoids

$$(\mathcal{C}) = \operatorname{Fun}^{\times}((), \mathcal{C})$$

is the product-preserving functors $() \to \mathcal{C}$.

Example 3.3.3. The span $\{x,y\} \leftarrow \{x,y\} \rightarrow \{f\}$ maps to the multiplication map $M^2 \rightarrow M$.

4 Nov. 21 - Monoids

Definition 4.0.1. We define the full subcategory

$$\mathbf{Ab}(\mathcal{C}) \subset (\mathcal{C})$$

of "abelian group objects" as those for which the distinguished span $z \leftarrow z \rightarrow z$ is an equivalence.

Proposition 4.0.2. If C is presentable then

- (a) (C) and $\mathbf{Ab}(C)$ are presentable
- (b) the inclusion $\mathbf{Ab}(\mathcal{C}) \subset (\mathcal{C})$ preserves limits and filtered colimits, and admits a right adjoint

$$(-):(\mathcal{C})\to\mathbf{Ab}(\mathcal{C})$$

Example 4.0.3. For C = then this is classical group completion.

Example 4.0.4. If $F: \mathcal{C} \to \mathcal{D}$ preserves finite products get a diagram

$$\mathbf{Ab}(\mathcal{C}) \longrightarrow (\mathcal{C})$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbf{Ab}(\mathcal{D}) \longrightarrow (\mathcal{D})$$

Main case: category S of spaces. In this case a commutative monoid is a commutative group iff it is a loop space.

Example 4.0.5. $B\mathbb{N} = B\mathbb{Z}$.

Given $M \in (\mathcal{C})$, a candidate for its delooping is BM and we consider

$$M \to \Omega BM$$

this is a super interesting map, we can study it at the level of homology (McDull-Segal).

Definition 4.0.6. Take a collection of generators for $\pi_0 M$ and denote by M the colimit of multiplying by these generators infinitely many times on M. More precisely,

$$\langle I \rangle = \pi_0 M$$

then for any $S \subset I$ finite we produce

$$M_{\infty} = \underset{S \subset I}{\text{colim}} \operatorname{colim} \left(M \xrightarrow{\prod S} M \xrightarrow{\prod S} M \to \cdots \right)$$

In this setting

$$M_{\infty} = M[(\pi_0 M)^{-1}]$$

The map

$$M \to \Omega BM$$

has target a group and therefore we get a factorization

$$M_{\infty} \to \Omega BM$$

Theorem 4.0.7. The map $M_{\infty} \to \Omega BM$ is a plus construction.

Remark. The plus construction

- (a) abelianizes π_1 (since if it is a group it must be abelian)
- (b) fixes homology to agree with the input space
- (c) totally messes up π_{\bullet} .

Example 4.0.8. $(B\operatorname{GL}_{\infty}(R) \times \mathbb{Z})^+ = K(R)$.

There is a natural map

$$B\Sigma_n \to (M^{\times n})_{h\Sigma_n} \to M$$

inducing a homomorphism

$$\Sigma_n = \pi_1(B\Sigma_n) \to \pi_1(M)$$

Theorem 4.0.9. The following are equivalent:

- (a) the natural map $M_{\infty} \to B\Omega M$ is an equivalence
- (b) the cyclic permutation (123) is in the kernel of

$$\Sigma_3 \to \pi_1(M) \to \pi_1(M_\infty)$$

Definition 4.0.10. For a ring R, let (R) be the groupoid of finitely generated projective R-modules. Then algebraic K-theory is the group completion in S

$$K(R) = (R)$$

Note: (-) as a functor can be extended to

$$(-): \operatorname{Sm}_{k}^{\operatorname{op}} \to \hookrightarrow S$$

is a fppf sheaf.

Recall: finitely generated modules of rank r are classified by maps into r in the sheaf topos. There is an equivalence of categories of groupoids

$$(0) \rightarrow \sqcup_{r>0r}$$

in $Shv_{Nis}(Sm_k)$. Idea: do the group completion operation as above

Notation:

$$= \underset{r \to \infty}{\operatorname{colim}} r$$

along the stabilization maps $E \mapsto E \oplus \mathcal{O}$. Each r is connected so

$$\pi_0 =_0 \sqcup_{r \ge 0r} = \mathbb{N}$$

The +1 map is given by the stabilization maps inducing "shifts"

$$\sqcup_{r\geq 0r} \to \sqcup_{r\geq 1r} \subset \sqcup_{r\geq 0r}$$

Proposition 4.0.11. $_{\infty} = \times \mathbb{Z}$

Proof. Can pull disjoint union out of the colimit of shift maps

$$\operatorname{colim}\left(\sqcup_{r\geq 0r}\to\sqcup_{r\geq 0r}\to\cdots\right)=\sqcup_{n\in\mathbb{Z}}\operatorname{colim}\left({}_{n}\to_{n}\to\cdots\right)=\sqcup_{n\in\mathbb{Z}}=\times\mathbb{Z}$$

Since K = the factorization

$$\rightarrow_{\infty}\rightarrow$$

gives

$$\to \times \mathbb{Z} \to K$$

Theorem 4.0.12. $\times \mathbb{Z} \to K$ is a motivic equivalence.

Proof. Since L prserves finite product it also preserves commutative monoids and abelian group objects. Also L is a left adjoint so it commutes with limits and therefore it commutes with $(-)_{\infty}$ and as a left adjoint preserving monoids and groups so it commutes with (-). We're trying to show that

$$L(_{\infty} \rightarrow)$$

is an equivalence. This is the same as showing that

$$(L)_{\infty} \to (L)$$

is an equivalence. We apply the theorem to L. This means we need to show that the permutation (123) on the bundle $\mathcal{O}^{\oplus 3}$ is homotopic to the identity. This is true because the associated matrix is a product of elementary matrices.

4.1 Algebraic K-theory is a Nisnevich sheaf

Theorem 4.1.1 (Thomason-Trobaugh). Algebraic K-theory i a Nisnevich sheaf of spectra.

Sketch: given a Nisnevich distinguished square

$$\begin{array}{ccc} W & \longrightarrow & V \\ \downarrow & \downarrow & \downarrow p \\ U & \longrightarrow & X \end{array}$$

such that p is étale and $p^{-1}(X \setminus U) \xrightarrow{\sim} X \setminus U$ is an isomorphism. We want to show that

$$\begin{array}{ccc} K(W) & \longrightarrow & K(V) \\ \downarrow & & \downarrow \\ K(U) & \longrightarrow & K(X) \end{array}$$

is a pullback square of spectra. Taking the category of perfect complexes

$$: \operatorname{Sm}_k^{\operatorname{op}} \to \operatorname{Cat}_{\infty}^{\operatorname{st}}$$

is an fppfsheaf. Then there is a diagram

$$Z(V) \longrightarrow (W) \longrightarrow (V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z(X) \longrightarrow (U) \longrightarrow (X)$$

where the kernels are complexes "supported on Z" and the equivalence comes from the square being a pullback. In order to show K-theory is a Nisnevich sheaf, we have to argue it "preserves fiber sequences"

$$K: \operatorname{Cat}_{\infty} \to \operatorname{Sp}$$

this follows from K being a localizing invariant.

4.2 Algebraic K-theory is \mathbb{A}^1 -invariant

Fundamental theorem of algebraic K-theory

Theorem 4.2.1 (Quillen). If R is a regular Noetherian ring, then

$$K(R) \to K(R[t])$$

is an equivalence.

Sketch: G-theory ($\mathbf{Mod}_{fg(-)}$) is \mathbb{A}^1 -invariant on Noetherian rings, and exploit a devisage argument and commutative algebra to show K(R) = G(R) for R regular noetherian.

Theorem 4.2.2. If X is a regular noetherian scheme then

$$K(X) \to K(X \times \mathbb{A}^1)$$

is an equivalence.

Corollary 4.2.3. $K: \operatorname{Sm}_k^{\operatorname{op}} \to \operatorname{Sp}$ is \mathbb{A}^1 -invariant.

4.3 Projective Bundle Formula

 $K(\mathbb{P}^n_R) = K(R)[x]/(x^{n+1})$ can use this to get \mathbb{P}^1 -bonding maps of $\times \mathbb{Z}$ to itself to get a \mathbb{P}^1 -spectrum $\in (k)$