Einführung in die Algebra

BLATT 11

Jendrik Stelzner

9. Januar 2014

Aufgabe 11.1.

Es bezeichne $f \in \mathbb{Q}[X]$ das Minimalpolynom von $z = \sqrt{3} + i \in \mathbb{C}$ über \mathbb{Q} . Dieses existiert, denn $\sqrt{3}$ und i sind algebraisch über \mathbb{Q} , also auch z.

Da z eine Nullstelle von f ist, und $z \notin \mathbb{R}$, ist auch $\bar{z} \neq z$ eine Nullstelle von f. Folglich hat f in $\mathbb{C}[X]$ die beiden Linearfaktoren $X-z, X-\bar{z} \in \mathbb{C}[X]$ und es ist deg $f \geq 2$.

$$(X-z)(X-\bar{z}) = X^2 - (z+\bar{z})X + |z|^2 = X^2 - 2\sqrt{3}X + 4 \notin \mathbb{Q}[X]$$

ist sogar deg f > 2.

Es ist auch $\deg f>3$: Wäre $\deg f=3$, so hätte f zusätzlich zu z und \bar{z} noch eine reelle Nullstelle (denn jedes Polynom ungeraden Gerades in $\mathbb{R}[X]$, und damit auch in $\mathbb{Q}[X]\subseteq\mathbb{R}[X]$, hat eine reelle Nullstelle), es gäbe also ein $\alpha\in\mathbb{R}$ mit

$$f = (X - z)(X - \bar{z})(X - \alpha) = (X^2 - 2\sqrt{3}X + 4)(X - \alpha)$$

= $X^3 - (2\sqrt{3} + \alpha)X^2 + (4 + 2\sqrt{3}\alpha)X - 4\alpha \in \mathbb{Q}[X].$

Da $4\alpha \in \mathbb{Q}$ wäre bereits $\alpha \in \mathbb{Q}$ und wegen $2\sqrt{3} + \alpha \in \mathbb{Q}$ damit auch $\sqrt{3} \in \mathbb{Q}$. Dies ist offenbar ein Widerspruch. Also muss deg f > 3.

Da z eine Nullstelle des Polynoms

$$(X-z)(X-\bar{z})(X+z)(X+\bar{z}) = X^4 - 4X^2 + 16 \in \mathbb{Q}[X]$$

ist, folgt aus dem obigen Beobachtungen, dass

$$f = X^4 - 4X^2 + 16.$$

Wäre nämlich f nicht das Minimalpolynom von z über \mathbb{Q} , so wäre f wegen der offensichtlichen Normiertheit reduzibel. Dann gebe es ein normiertes Polynom $g \in \mathbb{Q}[X]$ vom Grad $1 \leq \deg g \leq 3$ mit $g \mid f$ und g(z) = 0, was den obigen Beobachtungen widerspricht.