

bartak@ktiml.mff.cuni.cz

http://ktiml.mff.cuni.cz/~bartak

Od automatu ke gramatice

Pro jednostavový ZA, stačí reverzní proces k BKG→ZA. Pro více-stavový ZA:

- převést na jednostavový ZA
- přímo na gramatiku

Převod více-stavového ZA na gramatiku:

pravidla gramatiky zachycují všechny možné výpočty neterminální symboly: [q,Z,p], kde p,q∈Q, Z∈Y

q je stav automatu těsně před tím, než se Z přepíše

p je stav automatu, když začínáme počítat pod Z

pravidla gramatiky:

 $S \rightarrow [q_0,Z_0,p]$ nastartování výpočtu (p - nevíme, kde skončí) $[q,A,p] \rightarrow a [q_1,B_1,q_2] [q_2,B_2,q_3]... [q_m,B_m,p]$ $\delta(q,a,A) \ni (q_1,B_1B_2...B_m)$ $q_2,...,q_m,p$ libovolné stavy - nevíme, jak výpočet vypadá speciálně: $[q,A,p] \rightarrow a$, pro $\delta(q,a,A) \ni (p,\lambda)$

Automaty a gramatiky, Roman Bartá

Od automatu ke gramatice

Pro jednostavový ZA, stačí reverzní proces k BKG→ZA.

p je stav automatu, když začínáme počítat pod Z

pravidla gramatiky:

 $S \rightarrow [q_0, Z_0, p]$ nastartování výpočtu (p - nevíme, kde skončí) $[q,A,p] \rightarrow a [q_1,B_1,q_2] [q_2,B_2,q_3]... [q_m,B_m,p]$ $\delta(q,a,A) \ni (q_1, B_1 B_2... B_m)$ $q_2,..., q_m,p$ libovolné stavy - nevíme, jak výpočet vypadá

speciálně: $[q,A,p] \rightarrow a$, pro $\delta(q,a,A) \ni (p,\lambda)$

Automaty a gramatiky, Roman Barta

Výpočet automatu → derivace

$$(q,w,A) \mid --^* (p,\lambda,\lambda) \Rightarrow [q,A,p] \Rightarrow^* w$$

indukcí dle délky výpočtu

k=1

 $w \in X \cup \{\lambda\}, \ \delta(q, w, A) \ni (p, \lambda), \ tj. \ mame \ pravidlo \ [q, A, p] \rightarrow w$

k>1 (pro výpočty kratší než k platí)

 $(q,au_1...u_l,A) \models (q_1, u_1...u_l, B_1...B_l), l \ge 1$ první krok výpočtu dle přechodu $\delta(q,a,A) \ni (q_1, B_1, B_2...B_l)$

u, jsou slova nutná ke zpracování zásobníkového symbolu B,

tj. (q_i, u_i, B_i) |—* $(q_{i+1}, \lambda, \lambda)$, pro vhodná q_i $(q_{i+1}=p)$

tyto výpočty jsou nutně kratší než k

tj. dle indukčního předpokladu $[q_i, B_i, q_{i+1}] \Rightarrow^* u_i$ dohromady:

$$[q,A,p] \rightarrow a [q_1,B_1,q_2] [q_2,B_2,q_3]... [q_1,B_1,p]$$

 $[q,A,p] \Rightarrow^* a u_1 u_2 ... u_1$

Automaty a gramatiky, Roman Barták

Derivace → výpočet automatu

$$[q,A,p] \Rightarrow^* W \Rightarrow (q,w,A) | ---^* (p,\lambda,\lambda)$$

indukcí dle délky (levé) derivace

k=1

jediné pravidlo $[q,A,p] \rightarrow w$ muselo vzniknout z $\delta(q,w,A) \ni (p,\lambda)$

k>1 (pro derivace kratší než k platí)

$$[q,A,p] \rightarrow a [q_1,B_1,q_2] [q_2,B_2,q_3]... [q_1,B_1,p]$$
 první použité pravidlo vzniklo z přechodu $\delta(q,a,A) \ni (q_1,B_1B_2...B_1)$

potom w = a
$$u_1...u_l$$
, kde $[q_i, B_i, q_{i+1}] \Rightarrow^* u_i \quad (q_{l+1}=p)$

tyto derivace jsou nutně kratší než k

tj. dle indukčního předpokladu (q_i,u_i,B_i) |—* $(q_{i+1},\lambda,\lambda)$

dohromady: "slepíme" výpočty a dostaneme $(q,w,A) \mid - (q_1, u_1...u_l, B_1 B_2... B_l) \mid - (p,\lambda,\lambda)$

Derivace vždy začíná nějakým pravidlem $S \rightarrow [q_0, Z_0, q], tj. L(G)=N(M)$

Automaty a gramatiky, Roman Bartá

Deterministické zásobníkové automaty

Jak je to s nedeterminismem zásobníkových automatů?

- Je nutný!
- Pro rozpoznání ww^R potřebujeme nedeterministicky uhádnout střed.

Kde je skryt nedeterminismus zásobníkového automatu?

- množina možných přechodů
- opracování zásobníku bez čtení vstupu (λ-přechod)

Definice: Říkáme, že zásobníkový automat M=(Q,X,Y,δ,q₀,Z₀,F), je deterministický, jestliže platí:

- ∀p∈Q, ∀a∈X∪{ λ }, ∀Z∈Y $|\delta(p,a,Z)|$ ≤1
- \forall p∈Q, \forall Z∈Y (δ (p,λ,Z)≠Ø ⇒ \forall a∈X δ (p,a,Z)=Ø)

Každý krok výpočtu je přesně určen.

Automaty a gramatiky, Roman Bartá

Příklad převodu automatu na gramatiku

$$\delta(q,x,A)\ni\{(q_1,B^1..B^m)\}\qquad \qquad \dots \\ \qquad {}_{q}A_{p}\rightarrow x\;[_{q_{s}}B^1_{q_{s}}]\;\dots\;[_{q_{s}}B^m_{\;\;p}]$$

Příklad: L = $\{0^{n}1^{n} | n \ge 0\}$

Automat	Gramatika
	$S \rightarrow {}_{p}Z_{p} \mid {}_{p}Z_{q}$
$\delta(p,\lambda,Z) = \{(p,\lambda)\}$	$_{\rm p}Z_{\rm p} \rightarrow \lambda$
$\delta(p,0,Z) = \{(p,A)\}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\delta(p,0,A) = \{(p,AA)\}$	$pA_p \rightarrow 0 pA_p pA_p + 0 pA_q qA_p$ $pA_q \rightarrow 0 pA_p pA_q + 0 pA_q qA_q$
$\delta(p,1,A) = \{(q,\lambda)\}$	$_{p}A_{q} \rightarrow 1$
$\delta(q,1,A) = \{(q,\lambda)\}$	$_{q}A_{q} \rightarrow 1$

$$S \Rightarrow_{g} Z_{g} \Rightarrow 0_{g} A_{g} \Rightarrow 00_{g} A_{g} \Rightarrow 0011_{g} A_{g} \Rightarrow 0011_{g}$$

Automaty a gramatiky, Roman Barták

Příklady zásobníkových automatů

Deterministický zásobníkový automat (prázdný zásobník)

$$L = \{0^n1^n \mid n>0\}$$

 $\delta(p,0,Z) = \{(p,A)\}$... čte první symbol 0

 $\delta(p,0,A) = \{(p,AA)\}$... čte další symboly 0

 $\delta(p,1,A) = \{(q,\lambda)\}$... čte první symbol 1

 $\delta(q,1,A) = \{(q,\lambda)\}$... čte další symboly 1

(Klasický) zásobníkový automat (prázdný zásobník)

 $L = \{ww^{R} \mid w \in \{0,1\}^{*}\}$

 $\delta(p,0,X) = \{(p,NX)\}$... čte 0 v první půlce (uschovává na zásobníku)

 $\delta(p,1,X) = \{(p,JX)\}$... čte 1 v první půlce (uschovává na zásobníku)

 $\delta(p,\lambda,X) = \{(q,X)\}$... překlopení do druhé půlky (nedeterminismus)

 $X \in \{Z,N,J\}$

 $\delta(q,0,N) = \{(q,\lambda)\}$... čte 0 symetricky v druhé půlce

 $\delta(q,1,J) = \{(q,\lambda)\}$... čte 1 symetricky v druhé půlce

 $\delta(q,\lambda,Z) = \{(q,\lambda)\}$... ukončuje výpočet (není nedeterminismus)

Automaty a gramatiky, Roman Barták

Deterministické a bezprefixové jazyky

Již "víme", že determinismus je u ZA slabší než nedeterminismus (ww^R).

Jak je to s příjímáním slov?

Deterministické bezkontextové jazyky jsou jazyky rozpoznávané DZA koncovým stavem.

Tvrzení: Regulární jazyk je deterministický BKJ. Zásobník nemusíme využívat.

Bezprefixové bezkontextové jazyky jsou jazyky rozpoznávané DZA prázdným zásobníkem.

Pozorování: M je DZA, u∈N(M) ⇒ ∀w∈X+ uw∉N(M) P H Jakmile jednou vyprázdníme zásobník (po přečtení u, které je přijato), nemůže výpočet pokračovat (čtením w).

Tvrzení: Bezprefixový BKJ je deterministický BKJ.
Převod nepřidává nedeterminismus.

Automaty a gramatiky, Roman Barták

Jak na bezprefixové jazyky?

Jak se od deterministického jazyka dostaneme k bezprefixovému? Co nám vadí?

po přečtení prefixu, který patří do jazyka, máme prázdný zásobník. Řešení:

přidáme speciální znak na konec slova (až po přečtení tohoto znaku vyprázdníme zásobník)

Nechť L⊆X* je deterministický jazyk a #∉X, potom L# je bezprefixový jazyk.

opraví nedeterministické λ -kroky při převodu automatů

Příklad: {0ⁿ1^m# |0<n≤m}

 $\delta(q_{OK}, \#, Z) = \{(q_{OK}, \lambda)\}$

 $\delta(p,0,Z) = \{(p,AZ)\} \qquad \qquad \text{i.i. čte první symbol 0}$ $\delta(p,0,A) = \{(p,AA)\} \qquad \qquad \text{i.i. čte další symboly 0}$ $\delta(p,1,A) = \{(q,\lambda)\} \qquad \qquad \text{i.i. čte první symbol 1}$ $\delta(q,1,A) = \{(q,\lambda)\} \qquad \qquad \text{i.i. čte další symboly 1}$ $\delta(q,\lambda,Z) = \{(q_{OK},Z)\} \qquad \qquad \text{i.i. nyní se počet 0 a 1 vyrovnal}$ $\delta(q_{OK},1,Z) = \{(q_{OK},Z)\} \qquad \qquad \text{i.i. dále čteme jen 1}$

Automaty a gramatiky, Roman Barták

... na konci vyprázdníme zásobník

Koncové stavy vs. prázdný zásobník

Je také každý deterministický jazyk bezprefixový? NE!

Z vlastnosti M je DZA, u∈N(M) ⇒ ∀w∈X⁺ uw∉N(M) snadno sestrojíme příslušný jazyk.

Potřebujeme:

základní deterministický jazyk, který obsahuje slovo, jež je prefixem jiného přijímaného slova

Například {0ⁿ1^m |0<n≤m} (uděláme DZA, q_F je koncový stav).

$$\begin{split} \delta(p,0,Z) &= \{(p,AZ)\} & \dots \text{ \'cte prvn\'i symbol 0} \\ \delta(p,0,A) &= \{(p,AA)\} & \dots \text{ \'cte dal\'s\'i symboly 0} \\ \delta(p,1,A) &= \{(q,\lambda)\} & \dots \text{ \'cte prvn\'i symbol 1} \\ \delta(q,1,A) &= \{(q,\lambda)\} & \dots \text{ \'cte dal\'s\'i symboly 1} \\ \delta(q,\lambda,Z) &= \{(q_F,Z)\} & \dots \text{ nyn\'i se po\'cet 0 a 1 vyrovnal} \\ \delta(q_F,1,Z) &= \{(q_F,Z)\} & \dots \text{ d\'ale \'cteme jen 1} \end{split}$$

to už "prázdný zásobník" nemůže

Automaty a gramatiky, Roman Barták

Jazyky a automaty - přehled

Greibachové normální forma

Co nám vadí při analýza slova?

Nevíme, jaké pravidlo vybrat!

Speciálně vadí pravidla tvaru A→Au (levá rekurze).

Definice: Říkáme, že gramatika je v Greibachové normální formě (tvaru), jestliže všechna pravidla mají tvar:
A → au, kde a∈V_T, u∈V*_N.

K čemu je tento tvar dobrý?

Srovnáním terminálu na pravé straně pravidel a čteného symbolu můžeme zjistit, jaké pravidlo použít, pokud je ovšem takové pravidlo jediné.

Věta: Ke každému bezkontextovému jazyku L existuje bezkontextová gramatika G v Greibachové normální formě taková, že $L(G) = L - \{\lambda\}$.

Automaty a gramatiky, Roman Barták

Převod na Greibachové NF

Věta: Libovolnou bezkontextovou gramatiku lze převést na gramatiku v Greibachové normální formě.

Důkaz:

spojování pravidel a odstraňování levé rekurze

- 1) neterminály libovolně očíslujeme {A₁,..., A_n}
- 2) povolíme rekurzivní pravidla pouze tvaru A_i→A_ju, kde i<j postupnou iterací od 1 do n

A_i→A_ju pro j<i odstraníme spojováním pravidel pro j=i odstraníme levou rekurzi

získáme pravidla tvaru A_i→A_iu (i<j), A_i→au (a∈V_T), Z_i→u

- 3) pravidla s A_i (původní neterminály) pouze tvaru A_i→au postupným spojováním pravidel od n do 1 (pro n již platí) A P H J
- pravidla s Z_i (nové neterminály) pouze tvaru Z_i→au žádné pravidlo Z_i pro nezačíná vpravo Z_j buď je v požadovaném tvaru nebo se spojí z pravidlem A_j→au
- 5) odstranění terminálů uvnitř pravidel

Automaty a gramatiky, Roman Bartál

Spojení pravidel a odstranění levé rekurze

Lemma (spojení pravidel):

Nechť $A \rightarrow uBv$ je pravidlo gramatiky G a $B \rightarrow w_1, ..., B \rightarrow w_k$ jsou všechna pravidla pro B. Potom nahrazením pravidla $A \rightarrow uBv$ pravidly $A \rightarrow uw_1v, ..., A \rightarrow uw_kv$ dostaneme ekvivalentní gramatiku.

Důkaz:

$$A\Rightarrow uBv\Rightarrow^* u'Bv\Rightarrow u'w_iv$$
 v původní gramatice $A\Rightarrow uw_iv\Rightarrow^* u'w_iv$ v nové gramatice

Lemma (odstranění levé rekurze):

Nechť $A \rightarrow Au_1, ..., A \rightarrow Au_k$ jsou všechna levě rekurzivní pravidla gramatiky G pro A a $A \rightarrow v_1, ..., A \rightarrow v_m$ jsou všechna ostatní pravidla pro A. Potom nahrazením všech těchto pravidel pravidly:

1)
$$A \rightarrow v_i$$
, $A \rightarrow v_i Z$, $Z \rightarrow u_i$, $Z \rightarrow u_i Z$, nebo

2)
$$A \rightarrow v_i Z$$
, $Z \rightarrow u_i Z$, $Z \rightarrow \lambda$

(Z je nový neterminál) dostaneme ekvivalentní gramatiku.

Důkaz:

$$A \Rightarrow Au_{i_n} \Rightarrow \dots \Rightarrow Au_{i_1} \dots u_{i_n} \Rightarrow v_j u_{i_1} \dots u_{i_n}$$

$$(G)$$

$$A \Rightarrow v_j Z \Rightarrow v_j u_{i_1} Z \Rightarrow \dots \Rightarrow v_j u_{i_1} \dots u_{i_{n-1}} Z \Rightarrow v_j u_{i_2} \dots u_{i_n}$$

$$A \Rightarrow v_i Z \Rightarrow v_i u_{i_2} Z \Rightarrow \dots \Rightarrow v_i u_{i_4} \dots u_{i_n} Z \Rightarrow v_i u_{i_4} \dots u_{i_n}$$
(2)

Automaty a gramatiky Roman Barták

Příklad převodu na Greibachové NF

Původní gramatika

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$

Odstranění levé rekurze

$$T \rightarrow F \mid FT'$$

 $T' \rightarrow *F \mid *FT'$

$$F \rightarrow (E) \mid a$$

(téměř) Greibachové normální forma

$$E \rightarrow (E) | a | (E)T' | aT' | (E)E' | aE' | (E)T'E' | aT'E'$$

$$T \rightarrow (E) \mid a \mid (E)T' \mid aT'$$

$$F \rightarrow (E) \mid a$$

Automaty a gramatiky, Roman Barták