Verschiedene Konvergenzarten Wir betrachten den Wahrscheinlichkeitsraum ([0,1], $\mathcal{B}([0,1]), P$), wobei P das Lebesgue-Maß λ eingeschränkt auf [0,1] sei. Wir betrachten die Folge von Zufallsvariablen

$$X_1 \equiv 0, \ X_n = \sqrt{n} \, \mathbb{1}_{(\frac{1}{n}, \frac{2}{n})}.$$

Untersuchen Sie diese auf 1. stochastische Konvergenz, 2. P-fast-sichere Konvergenz, 3. L^2 -Konvergenz und 4. gleichgradige Integrierbarkeit.

1, 4. Wir prüfen L^1 -Konvergenz. Es gilt $E[|X_n|] = \frac{\sqrt{n}}{n} \to 0$. Benutze Konvergenzsatz von Vitali – Stochastisch konvergent gegen 0 und gleichgradig integrierbar. 2. Zu zeigen ist, dass für alle $\omega \in [0,1]$ gilt, dass $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \geq N X_n(\omega) < \varepsilon$, bis auf P-Nullmengen. Zeige Aussage für $\omega \in (0,1)$. Das reicht, denn $\{0\}$ und $\{1\}$ sind P-Nullmengen. Wähle N so, dass $\frac{2}{n} < \varepsilon$, also $N > \frac{2}{\varepsilon}$, dann ist $\mathbb{1}_{(\frac{1}{n},\frac{2}{n})} = 0$ und somit $X_n(\omega) = 0$ für alle $n \geq N$. Also Konvergenz fast sicher gegen 0. 3. L^2 -Konvergenz folgt stochastische Konvergenz, also Grenzwert 0 wenn konvergent. $E[|X_n|^2] = \frac{\sqrt{n^2}}{n} = 1$. Also nicht konvergent.

Wir betrachten den Wahrscheinlichkeitsraum ([0,1] $\mathcal{B}([0,1]),P$). Das Maß P sei absolut stetig bezüglich des Lebesgue-Maßes $\lambda|_{[0,1]}$ mit Dichte $f(\omega)=\frac{1}{2}\omega^{-1/2}$. Es gelte $X_n(\omega)=\omega^{1/n}$. Zeigen Sie oder widerlegen Sie 1. P-Konvergenz, 2. f.s. Konvergenz, 3. L^1 -Konvergenz, 4. gleichgradige Integrierbarkeit. 2. Für alle $\omega\in(0,1]$ gilt $\omega^{1/n}\to 1$. $\{0\}$ ist Nullmenge, also f.s. Konvergenz. 1. folgt aus 2. 3. Es gilt $\omega^{1/n} \le 1$, also $E[|X_n-1|]=E[|1-X_n|]=\int_0^1 (1-\omega^{1/n})\frac{1}{2}\omega^{-1/2}=1+\int_0^1 \frac{1}{2}\omega^{1/n-1/2}=1-\frac{n}{n+2}\omega^{\frac{n+2}{2n}}\Big|_0^1=\frac{2}{n+2}\to 0$, also L^1 -Konvergenz. 4. folgt aus 2. mit Vitali.

Für jede Zahl $n \in \mathbb{N}$ gibt es eine eindeutige Darstellung $n = 2^{k_n} + m_n$ mit $0 \le m_n < 2^{k_n}$. Es sei P die Gleichverteilung auf $([0,1], \mathcal{B}([0,1]))$ – das heißt, P hat Lebesgue-Dichte $\mathbb{1}_{[0,1]}$ – und außerdem $X_n \colon [0,1] \to \mathbb{R}, \omega \mapsto k_n$ für $\frac{m_n}{2^{k_n}} \le \omega \le \frac{m_n+1}{2^{k_n}}$ und $\omega \mapsto 0$ sonst. Untersuchen Sie die Folge der X_n

bezüglich P auf schwache, stochastische, fast sichere und L^p -Konvergenz für $p \ge 1$ sowie auf gleichgradige Integrierbarkeit.

Es gilt $X_n = k_n \mathbbm{1}_{\left[\frac{m_n}{2^{k_n}}, \frac{m_n+1}{2^{k_n}}\right]}$, also $X_1 = 1, X_2 = 1\mathbbm{1}_{\left[0,\frac{1}{2}\right]}, X_3 = 1\mathbbm{1}_{\left[\frac{1}{2},1\right]},$ $X_4 = 2\mathbbm{1}_{\left[0,\frac{1}{4}\right]}, X_5 = 2\mathbbm{1}_{\left[\frac{1}{4},\frac{1}{2}\right]}, \ldots, L^p$ -Konvergenz: finde zunächst den Kandidaten für den Grenzwert. Da die Folge (X_n) also bezüglich der L^1 -Norm konvergiert, ist sie nach Theorem 22 auch gleichgradig integrierbar. Folge wird immer kleiner, also Kandidat 0. Es gilt $E[|X_n|^p] = \int_0^1 X_n(\omega)^p = \frac{k_n^p}{2^{k_n}} \to 0$ mit L'Hospital. Damit L^p , stochastische, schwache Konvergenz und gleichgradige Integrierbarkeit. Für f.s. müsste Grenzwert auch 0 sein. Möchte Divergenz zeigen, also P(A) > 0 für $A = \{\omega \in \Omega \mid \forall c \in \mathbb{R} \exists N \in \mathbb{N} \\ \mathbb{N} \\ V > NX_n > c\}$. Sei $\omega \in \Omega$ und $c \in \mathbb{R}$ gegeben, wähle N so, dass $k_N > c$ und $\frac{m_n}{2^{k_n}} \le \omega \le \frac{m_n+1}{2^{k_n}}$. Dann gilt $X_n(\omega) > c$, also $\omega \in A$. Da ω beliebig war, gilt $A = \Omega$ und $P(X_n$ konvergiert nicht) = 1.