Die kMC Simulationen mit (VSSM) können mit drei Programmen durchgeführt werden.

- *A*) ctp_run / kmc_run (VOTCA),
- B) *kmc_multigeo_V4* (Python Jim, *on-the-fly* modus)
- C) *charge_transport_package*, (Fortran Tobias, *a priori* modus)
- z.B. charge_transport_package KMC_FOR_MULTIPLE_CHARGES_xml option.xml state.sql Ein Großteil der Optionen kann mit options_charge_transport_package.xml oder options_VOTCA.xml gesetzt werden. Die Optionen werden für den jeweiligen Block bestimmt.

Bei der Durchführung der kMC Simulationen hilft das *run_kmc_votca_multiple_V3.sh* Skript. Es erzeugt für jede Simulation einen neuen Ordner und kann mir GNU parallel mehrere Simulationen starten.

Modus=[single,singleUx,singleUy,singleUz,UxUyUz,xy-plane,yz-plane,xz-plane,increasing_small_steps,increasing_small_stepsUx,increasing_small_stepsUy,increasing_small_stepsUz,multidirection,multidirection_scaled,temperature_increasing]

Usage: ./run_kmc_votca_multiple_V3.sh options statefile Modus U_ext Example: ./run_kmc_votca_multiple_V3.sh options.xml statefile.sql singleUx 1.0E+7

Es müssen einige Optionen in *run_kmc_votca_multiple_V3.sh* angepasst werden.

Für Simulationen mit unterschiedlichen externen Feldstärken / Feldrichtungen / Temperaturen müssen die Raten für jede Konfiguration neu bestimmt werden. Der index **nach** _U nummeriert dabei die Konfiguration und _N die kMC-Simulationsnummer und _G ist in Bezug auf den jeweiligen Frame der Morphologie .

Es wird z.B. ./my_rates_to_votca_sql.out und xtp_createStatefile_fromtxt_t_koch08.py benötigt, um neue statefile.sql zu erzeugen.

sub-KMC-VOTCA kann die kMC Rechnungen in Batch und auf Moria starten lassen.

Um Berechnungen an mehreren Morphologien frames aus der *.gro Datei zu simulieren kann multi_morphologies_votca_prepare_kMC.sh

für P3HT:DIPBI verwendet werden . Es geht viele der nötigen Schritte zu Beginn durch.

- 1) Einteilung der P3HT in sites. Erstellung indexed.gro
- 1a) Einteilung in Hopping-sites theta [in degree]

- 1b) Einteilung der P3HT in sites. Erstellung indexed.gro
- 1c) Referenze Datei for theta=0.0 erzeugen
- 1d) Einteilung in Hopping-sites 90.0 [in degree]
- 2) Erstellung der Center-of-Mass.xyz Datei (COM.xyz)
- 3) Alles in die Box schieben, sodass nichts herausragt, => no_box.xyz
- 4) Erstellung der lambda_list (für lambda_out Nachbarn in kmc_multigeo_V4)
- 5) Erstellung einer sortierten Nachbarschaftsliste
- 6) Schwefelcounter (unnötig)
- 7) new_sorted_neighbours; Erstellung der Nachbarschaftesliste für theta_cut anhand der Abstände, die im 0 Grad Referenzdatei für theta=0 berechnet wurden
- 8) Erzeugung des statefile.sql über enumerated_qro_to_VOTCA_DIPBI_P3HT_prepare_V5
- ../enumerated_gro_to_VOTCA_DIPBI_P3HT_prepare_V5 gro_to_VOTCA indexed_G1.gro out_indexed_G1.gro **1** new_sorted_neighbours_1.ngh
- ! Indexverschiebung von 1 da *.gro bei Resid 0 und VOTCA bei index 1 startet
- 10) Run setup DIPRO

Sammeln der DIPRO |J_AB| Ladungstransferintegrale mit hilfe von

kmc_multigeo_V4 expected: [distances.ngh] [COM.xyz] [morphology.gro] [debug = True/False]
[lambda_out_neighbour_list] optional: [old matrix elem List] [old hole matrix elem List]

/usr/bin/python ./kmc_multigeo_V4 new_sorted_neighbours_G1.ngh no_box_G1.xyz indexed_G1.gro False new_sorted_neighbours_G1.ngh "

Erzeuge Datenauswertung_SAB_H0_H0_Jab_H0_H0_SAB_L0_L0_Jab_L0_L0_G0.dat Datei.

Mit Überlapp for die Löcher SAB_H0_H0 (HOMO A nach HOMO B),

Ladungsransferintegral Jab_H0_H0

Für Elektronen SAB_L0_L0 und Jab_L0_L0 und einer Liste von geometrischen Parametern COM (Center-of-Mass),

MA (Minimaler Abstand),

MMA (Mittlerer Minimalabstand),

COM S MA (Abstand der Zentren zweier Thiophenringe).

Dies Erzeugung der Datei für mit den DIPRO/PM3 Rechnungen für alle Ladungstransferpaare Datenauswertung_ SAB_H0_H0_Jab_H0_H0_SAB_L0_L0_Jab_L0_L0_G0.dat für einen gesamten Frame kann einige Tage dauern.

- 12) Run kmc local
- 13) sub-KMC-VOTCA mit run_kmc_votca_multiple_V3.sh

Schritte um mit VOTCA Simulationen zu machen bzw.

Es müssen *.mps Dateien mit den Partialladungen erzeugt werden.

Dazu sind 3 Rechnungen pro Segment nötig mit g09 SCF single Point Rechnungen (neutral, positiv, negativ). => z.B. DIPBI_n.mps, DIPBI_e.mps

Die g09.log Datei muss im options.xml angegeben werde.

create mps files

ctp_tools -e log2mps -o options.xml and ctp_tools -e molpol -o options.xml

Folgende Rechnungen mit VOTCA sind nach der Verwendung von
enumerated_gro_to_VOTCA_DIPBI_P3HT_prepare_V5

1) create GROMACS *.tpr

/opt/gromacs-5.0.4-d-WP/bin/grompp_d -c out_DIPBI_P3HT.gro -p fake_topology_DIPBI_P3HT.top -f gromp.mdp

2) GROMACS *.tpr

/opt/gromacs-5.0.4-d-WP/bin/mdrun_d -s topol.tpr -x DIPBI_P3HT.xtc

3a) Mapping

ctp_map -t topol.tpr -c DIPBI_P3HT.xtc -s map_DIPBI_P3HT.xml -f statefile.sql

3b) System.xml

cp map_DIPBI_P3HT.xml system.xml

4) Neighbor list

ctp_run -e neighborlist -o neighbours_constrained.xml -f statefile.sql

5) Site energies

ctp_run -e emultipole -o ./options_VOTCA.xml -f statefile.sql -t 72

ctp_run -e einternal -o ./options_VOTCA.xml -f statefile.sql -t 72

```
ctp_run -e eoutersphere -o ./options_VOTCA.xml -f statefile.sql -t 72
 ### 6) Transfer integrals
 ctp_run -e izindo -o ./options_VOTCA.xml -f statefile.sql -t 72
 ### 7) Rates
 ctp_run -e rates -o ./options_VOTCA.xml -f statefile.sql -t 72
 ### 9) Charge Transport
 # kmc_run -e kmcmultiple -o ./options_VOTCA.xml -f statefile.sql
 ### optional: pewald3D
 # where required: create mps files ctp_tools -e log2mps -o options.xml and ctp_tools -e molpol -o
options.xml
 ### 10) stateserver
 # ctp_run -e stateserver -o options_stateserver.xml -f statefile.sql
 ### 11) jobwriter
 # ctp_run -e jobwriter -o options_jobwriter.xml -f statefile.sql
 ### 12) ewald3D background polarization
 # ctp_run -e ewdbgpol -o options_ewdbgpol.xml -f statefile.sql -t 72
 ### 13) pewald3D
 # ctp_parallel -e pewald3d -o options_pewald3d.xml -f /absolute/path/to/state.sql -s 0 -t 72 -c 8
 ### 14) xgmultipole
 # xtp_parallel -e xqmultipole -f statefile.sql -o xqmultipole.xml -s 0 -t 1 -c 1000 -j "run" >
xqmultipole.log
 ### 15) xmultipole
 xtp_run -e xmultipole -o ./options_VOTCA.xml -f statefile.sql
Mehr Informationen zu ctp Rechnungen mit VOTCA:
V. Ruehle, A. Lukyanov, F. May, M. Schrader, T. Vehoff, J. Kirkpatrick, B. Baumeier,
and D. Andrienko, 'Microscopic simulations of charge transport in disordered organic
semiconductors', J. Chem. Theory Comput. 7, 3335-3345 (2011).
```

lambda_out_dE_out

lambda out

lambda_in

Das charge_transport_package hilft bei der Durchführung von kMC Simulationen zur Berechnung des Ladungstransportes in amorphen Materialien.

Das charge transport package kann folgende Unterprogramme ausführen.

In der Kommandozeile kann jeweils ein Unterporgramm über die jeweilige Unterprogrammkodierung/method aufgerufen werden.

Nähere Informationen für den Input können abgerufen werden, wenn das charge_transport_package mit der jeweiligen Methode aufgerufen wird.

```
charge_transport_package method
Unterprogrammkodierung / list of methods:
calc_pathway
Dijkstra_kmcNetwork
Dijkstra_newNetwork
Dijkstra_loadNetwork
KMC_FOR_MULTIPLE_CHARGES
KMC_FOR_MULTIPLE_CHARGES_xml
                                        use votca optionsfile for kmc run options
gro_to_VOTCA
rates_to_VOTCA_sqlfile
calc_current_I
calc_current_I_from_sql
calc_current_I_xml
DIPRO
DIPRO_pair
DIPRO_xyz
```

lambda_in_oniom
rate_calculator
data_analysis
reduce_kmc_xyz

calc_pathway Dijkstra_kmcNetwork

Berechnung von Pfaden mit minimalem lokalen Widerstand mit dem Dijkstra Algorithmus zwischen zwei Zonen (Elektroden).

Die Auswahl der Richtung erfolg über das eingestellte externe Feld in options.xml, sowie die Zonendicke.

Use: Dijkstra_kmcNetwork with

charge_transport_package Dijkstra_kmcNetwork options.xml statefile.sql

Dijkstra_newNetwork

Dijkstra_loadNetwork

KMC_FOR_MULTIPLE_CHARGES

Berechnung von kmc Simulationen mit einem oder mehreren Ladungsträgern im Fortran Programm.

KMC_FOR_MULTIPLE_CHARGES votca_sql_name carriertype[h/e] numberofcharges KMC_FOR_MULTIPLE_CHARGES state.sql h 1

KMC_FOR_MULTIPLE_CHARGES_xml

Lese den Input für die kmc-Simulationen aus der options.xml

KMC_FOR_MULTIPLE_CHARGES_xml kMC_options_filename votca_sql_name KMC_FOR_MULTIPLE_CHARGES_xml options.xml state.sql

gro_to_VOTCA

Erzeugt aus einem grofile.gro nötige inputdateinen, um in VOTCA das Setup für kMC-Simulationen zu starten.

Für jeden neuen Molekültyp müssen hier im Quellcode Anpassungen gemacht werden, da die Implemetierung bisher nur für P3HT, DIPBI, PBDT-TS1 und PPDI erfolgt ist!

Das grofile.gro muss dabei schon die Einteilung in Hoppingsites über unterschiedliche Resids (erste Spalte) besitzen.

Der übergebbare index shift wurde bisher aus 1 gesetzt, da die Zählung in VOTCA bei Resid 1 beginnt, aber das kmc.python Programm und VMD standardmäßig bei 0 beginnen.

charge_transport_package gro_to_VOTCA grofile.gro out_grofile.gro 1
new_sorted_neighbourlist.ngh

rates_to_VOTCA_sqlfile

Berechnung der Raten (rate_type=Marcus, Jortner, Weiss-Dorsey) für eine bestimmte Konfiguration des externen Feldes (Ux, Uy, Uz) [V/m] (1.0E+7 0.0 0.0) und [Temperatur Temp) [K] (300.0).

Die Nachbarn werden für die zwölf nächsten Nachbarn in der sorted_neigbour_list_file.ngh erzeugt.

Die no_box_COM.xyz enhält die Zentren der Hopping-sites, sodass alle Zentren mit periodischen Randbedingungen innerhalb der simulationsbox liegen.

In der J_AB_file.dat werden die Ladungstransferintegrale für alle Paare zur Verfügung gestellt, wie sie vom DIPRO programm erzeugt werden.

Für lambda_in, lambda_out, dE_in, dE_out wird auf Dateien im data Ordner zugegriffen.

Bsp: Die Datei enhält als 32x32 Matrix die lambda_in Werte für den Lochtransport für P3HT:DIPBI

data/lambda_in_matrix/Mat_lambda_in_lo_P3MT_S1_S32_B3LYP_6-311Gss.dat Analog wird lambda_in für den Elektronentransport abgelegt in: data/lambda_in_matrix/Mat_lambda_in_el_P3MT_S1_S32_B3LYP_6-311Gss.dat

Die interne site Energie differenz aus dem 4-Punkte Schema der Reorganisationsenergie (ohne den -q*F*d_{AB} -Term) dE_in für Elektronen und Loch Transfer

data/lambda_in_matrix/Mat_dE_in_el_P3MT_S1_S32_B3LYP_6-311Gss.dat data/lambda_in_matrix/Mat_dE_in_lo_P3MT_S1_S32_B3LYP_6-311Gss.dat

Es können viele Optionen im Quellcode gesetzt oder in der options.xml und eingelesen werden.

z.B. ob die dE_out, lambda_out daten für ein referenz P3HT 32mer verwendet werden.

Es können für Paare zweier Resids die Daten für lambda_out vom VOTCA Programm eingelesen werden.

Die erzeugten Dateien können dann mit *xtp_createStatefile_fromtxt_t_koch08.py* in eine *.sql Datei umgewandelt werden.

calc_current_I

calc_current_I_from_sql

calc_current_I_xml

DIPRO

DIPRO_pair

DIPRO_xyz

Die DIPRO Inputdateien werden für g09 für jeweils ein Paar erstellt, deren Koordinaten in *.xyz Dateien angegeben werden. Die calculation_method beschreibt nur den Ordner, der neu erstellt wird für die g09 Inputdateien. Die Methode wird in Anführungszeichen gesetzt "g09inputline ", wie in g09 spezifiziert z.B. für DFT "PBE0/6-31G* SCF(XQC,MaxConventionalCycles=400,MaxCycle=800) " oder einfach nur "PM3 " für die semiempirische PM3-Methode.

!! Use: DIPRO_xyz monomerA.xyz residA typeA monomerB.xyz residB typeB calculation_method GeoStep Number sub_g09 g09inputline

!! Examples: DIPRO_xyz DIPBI_A.xyz 38 DIPBI DIPBI_B.xyz 449 DIPBI PBE0_6_31Gs 1 1 false "PBE0/6-31G*"

lambda out dE out

nur eingeschränkt nutzbar: verwende VOTCA.

lambda_out

nur eingeschränkt nutzbar: verwende VOTCA.

lambda_in

Erzeugung der nötigen g09 Inputdateien für die Berechnung der Reorganisationsenergie und der inneren Site-Energie Differenz. Es werden Dateien sowohl für den Lochtransfer also auch für den Elektronentransfer erzeugt.

lambda_in grofile.gro residA resnameA residB resnameB methodfolder_name N G sub_g09 "g09 intputline "

lambda_in grofile.gro 38 DIPBI 449 DIPBI PBE0_SDD 1 1 true " PBE1PBE/SDD "

lambda_in_oniom

Optimierung in einer Höhle aus fixierten Nachbaratomen.

Nur für P3HT:DIPBI implementiert.

Erstellung der g09 inputdateien für ONIOM Rechnungen.

Patrialladungen müssen dazu aus Dateien eingelesen werden (Hier aus ordner 6-31Gs_ChelpG).

Dort müssen die Partialladungen für die Atome eines Moleküls (mit absättigenden Wasserstoffatomen für Segmente) hinterlegt sein.

Die "g09inputline" steht wieder in Anführungszeichen.

Für Elektronentransfer [el] für Lochtransfer [lo]

Die Anzahl der Nachbarmoleküle in der Umgebung (hier 6)

Die Liste für Resids für Nachbarmoleküle müssen angegeben werden. (45 43 50 638 752 1104)

lambda_in_oniom grofile.gro residA resnameA residB resnameB methodfolder_name N G sub_g09 " g09 intputline "

lambda in oniom grofile.gro 38 DIPBI 449 DIPBI PBE0 6-31Gs UFF 11 true

" oniom(PBE0/6-31G*:UFF(QEq)) Opt(Tight,MaxMicroiterations=50000)" 6-31Gs_CHelpG el 6 45 43 50 638 752 1104

rate_calculator

Berechnung der Ladungstransferraten für Marcus, Jortner, Weiss-Dorsey rates

Calculates a charge transfer rate for Marcus, Jortner or Weiss-Dorsey rates

rate_calculator= [marcus, jortner, weiss-dorsey, all]

Reads: Charge transfer integral: |J_AB| (eV) Value is not squared!

internal reorganization energy: lambda_in (eV)

internal site energy difference: dE_in (eV)

outer-sphere reorganization energy: lambda_out (eV)

outer-sphere energy difference: dE_out_AB (eV)

external field energy $-e^*F \land \{ext\} * d = dE U ext (eV)$

hole / electron transfer rates

 $rate_calculator \ marcus \ |J_AB| \ lambda_in \ dE_in \ lambda_out \ dE_out_AB \ dE_U_ext \\ [1/+1,index_S_A,index_S_B]$

data_analysis

Ermöglicht die Datenauswertung in einer Datei mit einer Spalte an Daten.

AVERAGE

SIGMA

MEDIAN

MAXVAL

MINVAL

SUM

AVERAGE_LOG10_ABS

AVERAGE_ABS

data_analysis AVERAGE data.dat

reduce_kmc_xyz

Reduziert die Anzahl der Sprünge in kmc.xyz.

Wenn zu viele Hin-und-Her-Sprünge keinen Fortschritt in der Trajektorie ergeben.

reduce_kmc_xyz kmc_trajectory.xyz

charge_transport_package methods

!! method: DIPRO Creates the input files for a charge transfer integral evaluation using the

!! DImer PROjection Method (DIPRO).

!! DIPRO Reads the input from the command line and the coordinates from gro_inputfile.gro

!! DIPRO_pair Reads the data from an options.xml file.

!! DIPRO_xyz Reads the data from *.xyz file.

!! lambda_out_dE_out Calculate the outer-sphere reorganization energies and electrostratic contributions based on the distribution of partial charges as a sum.

!! lambda_out outer-sphere reorganization energy

!! lambda_in Calculate the internal reorganization energy for a charge transfer complex.

!! lambda_in_oniom Calculate the internal reorganization energy inside a fixed cavity of molecules.