Kun Chen

EDUCATION

Harbin Institute of Technology, Shenzhen Shenzhen, China Bachelor of Engineering in Automation Sep. 2021 - present

• **GPA:** 3.781/4.000, **Rank:** 22/256(8.59%)

• Honors:

 Best Bachelor Thesis Award of HITsz in Automation 2025 - Outstanding Graduates 2025 National Scholarship 2024 National Scholarship for Encouragement 2022,2023 - First Class Academic Scholarship 2022 Outstanding Student Cadre 2022

• Major Courses:

Digital Image Processing (98), Machine Vision (91), Probability Theory (96), Complex Analysis (96), Automatic Control Theory: Part A (95) Part B (98), Signal Analysis and Processing (93), etc.

- Language Proficiency: IELTS 6.5 (L6.5 R8.0 W5.5 S5.5).
- Research Interests: My research is primarily focused on autonomous navigation for mobile robots, like planning algorithms. Currently, I am engaged in research with embodied robot-manipulation, robotic planning and robotic perception.

COMPETITION AWARD

• RoboMaster University Technical Challenge	National First Prize	2022.08
• Siemens Cup China Intelligent Manufacturing Challenge	Provincial Second Prize	2023.08
• National Undergraduate Smart Car Contest	Provincial Third Prize	2023.07

PUBLICATIONS

Li Yuxiang*, Chen Kun*, Chen Haoyao (2024). "Collaborative Autonomous 3D Reconstruction for Heterogeneous Multiple UGVs in Complex Environments". In: 2024 International Annual Conference on Complex Systems and Intelligent Science (CSIS-IAC). IEEE, pp. 858–865.

Li Yuxiang, Chen Kun, Wang Yifei, Zhang Weifan, Wang Jiancheng, Chen Haoyao, Liu Yunhui (2025). "Real-Time Multilevel Terrain-Aware Path Planning for Ground Mobile Robots in Large-Scale Rough Terrains". In: IEEE Transactions on Robotics 41, pp. 4159-4179. DOI: 10.1109/TRO.2025.3577015.

EXPERIENCE

• Research on Embodied Robot-Manipulattion with Dexterous Hand Jul. 2025 - present Harbin Institute of Technology, Shenzhen nROS-Lab Advisor: Prof. Haoyao Chen Department of Mechanical Engineering and Automation.

- Introduction: Built robotic manipulation simulation environments in MuJoCo and explored learning-based control methods, including diffusion policy, for grasping tasks.
- Involvement:
 - * Developed a robotic arm grasping environment in MuJoCo and collected expert demonstration

^{*} indicates equal contribution.

datasets through keyboard teleoperation.

* Trained a Diffusion Policy with joint states and object positions as inputs, enabling the model to generate action sequences for grasping tasks.

• Research on Cross-Floor Autonomous Exploration

Nov. 2024 - Jul. 2025

nROS-Lab Harbin Institute of Technology, Shenzhen Advisor: Prof. Haoyao Chen Department of Mechanical Engineering and Automation.

 Introduction: Developed a cross-floor autonomous exploration framework for complex building environments, addressing inefficiencies and incomplete reconstructions in traditional multi-floor robotic exploration.

- Involvement:

- * Proposed a robust and efficient stair detection method by fitting stair step edges from point cloud data, with a maintained stair set and semantic integration into the map to support dynamic semantic updates.
- * Proposed a priority-driven task planning scheme: formulated the Sequential Ordering Problem (SOP) using OR-Tools for global task sequencing, while employing Traveling Salesman Problem (TSP) optimization for efficient local planning.
- Research on Heterogeneous Multiple UGVs nROS-Lab

Apr. 2024 - Aug. 2025

nROS-Lab Harbin Institute of Technology, Shenzhen Advisor: Prof. Haoyao Chen Department of Mechanical Engineering and Automation.

- Introduction: Proposed a hierarchical view planning framework to achieve near-optimal task allocation, effectively coordinating the view tasks of robots with different capabilities.

- Involvement:

- * Introduced map frontier, highly sparse grid cell, and occupied grid cell with observation angles exceeding thresholds as Incomplete Surface Elements (ISE). Then, classify and aggregate these ISEs.
- * Modeled the viewpoint allocation problem for heterogeneous multi-robot systems in complex environments and solved it using the Genetic Algorithm.
- * Improved supervoxel segmentation algorithm that achieves both geometric semantic representation and data compression.
- * Introduced gimbal encoder-based odometry information as an observation model to correct the state estimation of the Kalman filter during the horizon LiDAR SLAM process, effectively addressing the SLAM drift issue.
- Outcome: Wrote the paper Collaborative Autonomous 3D Reconstruction for Heterogeneous Multiple UGVs in Complex Environments (as the co-first author) and currently preparing another journal manuscript targeting submission to IEEE Transactions on Field Robotics.
- Research on Path Planning of Articulated Tracked Robot Jan. 2024 Sep. 2024 nROS-Lab Harbin Institute of Technology, Shenzhen Advisor: Prof. Haoyao Chen Department of Mechanical Engineering and Automation.
 - Introduction: Proposed a real-time multi-level terrain-aware path planning framework to improve efficiency and success rates for autonomous robots navigating large-scale rough terrains.

- Involvement:

- * Integrating terrain roughness, slope, and sparsity as terrain complexity, used as cost, deploy A* for the robot's global path planning.
- * Participated in the assembly and maintenance of articulated tracked robots and set up physical and simulation experiment environments.
- * Analyzed and processed experimental data, drew paper pictures, and wrote papers.
- Outcome: Wrote the paper Real-Time Multi-Level Terrain-Aware Path Planning for Ground Mobile Robots in Large-Scale Rough Terrains (as the second author), which was

accepted to IEEE Transactions on Robotics (TR-O).

$S \\ KILLS$

Programming C, C++, Python, MATLAB, LATEX

Tools ROS, Gazebo, SolidWorks, Git, Altium Designer