Course Code:	CST252							
Third Semester BE (Computer Science and Engineering) Examination								
Data Structure and Algorithm								
Time: 2 Hours		[Max. Marks: 40						

Instructions to Candidates:

- All questions are compulsory.
 Stepwise explanation will be appreciated

Question		Description of Question		СО
1	(a)	Consider a structure Array is declared as: struct Array { int *A; int length; int size; } "A" stores array of integers, "length" stores number of elements in the array and "size" stores memory allocated to array. Write a C function to delete all the duplicate entries from the above specified array.	3	CO1
	(b)	Consider array stores marks of 30 students in 4 subjects. Row represents subjects and Columns represents students. Base Address of the array is 2500. Lower bound for row and column is 0. a. Compute the address of marks[3][5] in row major order. b. Compute the address of marks[2][20] in column major order.	3	CO1
2	(a)	Consider a Stack ADT is already created. Write a function to check whether the parentheses are balance or not. Balanced Parentheses: (()()(()) Unbalanced Parentheses: (()()(())		CO1, CO2
	(b)	Design a C program for storing two queues stored in one array. Queue1 grows from left to right and Queue2 grows from right to left. Properly specify the overflow and underflow conditions for both the queues.	4	CO2
3	(a)	Consider an integer linked list is already created. Write a C function to delete all the negative numbers from the linked list.	4	CO2
	(b)	Write an algorithm to interchange the k th and the (k+1) th node of a doubly linked list. Ensure that the nodes are swapped and not just values. Note: k th node cannot be the last node.	3	CO2

4	(a)	A company maintains an array of employees which stores employee name, employee id and salary. The array is always kept in sorted order according to employee ID . Design a C function which will search and display the details of a particular employee when the employee ID is specified.					3	CO3
	(b)	Consider a hash table with size = 11. Using double hashing, insert the keys 27, 72, 63, 42, 44, 36, 38 and 101 into the table. Take h1 = k mod 10 and h2 = k mod 8.					3	CO3
5	(a)	Construct a B+ tree of order 5. The numbers are inserted in the sequence given below: 80, 40, 15, 25, 30, 90, 35, 50, 60, 70					3	CO4
	(b)	Consider a Binary t check whether the ro	ı to	4	CO4			
6	(a)	Consider four cities: (4) Bangalore, and a shown in the following construct a graph. Upath to each node from	nd	5	CO4			
		Flight No.	Origin	Destination	Cost			
		101	1	4	5			
		102	4	1	4			
		103	1	2	2			
		104	1	3	6			
		105	3 2	1 2	3			
		106 107	3	3 4	1			
		108	4	3	12			
				-				
	(b)	Explain the followin	g terms:				2	CO4
		a) Complete Graph						
		b) Strongly connected directed graph						