CSCI971 Advance Computer Security: Homework #7

Mei Wangzhihui 2019124044

Problem 1

AE-secure \Leftrightarrow semantically secure under CPA and CI.

For the first cipher, assume an attacker who can perform CPA. He intercept the ciphertext $c = E_1(k, m) = (E(k, m), H_1(m))$, He can perform as many as CPA. We assume in CPA attack game. Adversary \mathcal{A} first send m_0, m_0 to challenger \mathcal{C} , he get the ciphertext $c = (E(k_0, m_0), H_1(m_0))$. Then \mathcal{A} send m_0, m_1 to \mathcal{C} , as E is CPA secure, so key has to be changed. \mathcal{A} get the ciphertext $c = (E(k_1, m_0), H_1(m_0))$ or $c = (E(k_1, m_1), H_1(m_1))$ based on b. Then if b = 1, \mathcal{A} can easily differ the plaintext from the tag $H_1(m_b)$. So $Adv_{CPA}(\mathcal{A}, \mathcal{E}) = 1/2$ is not negligible. Cipher1 is not CPA-secure, so it's not AE-secure.

For the second cipher, attacker can intercept the ciphertext $(c, H_2(c))$, so he can learn the mapping model of H_2 function. So in CI attack game, Adversary \mathcal{A} can easily generate an valid ciphertext-tag pair $(c_{atk}, H_2(c_{atk}))$. Then Decryptor $D_2(k, (c_{ack}, H_2(c_{ack}))) \neq \bot$. So $Adv_{CI}(\mathcal{A}, \mathcal{E})$ is not negligible. Cipher1 does not safisfy CI, so it's not AE-secure.

Problem 2

```
Addition \mathcal{Z}_{6}^{*} is a cyclic group.

\mathcal{Z}_{6}^{*} = \{0, 1, 2, 3, 4, 5, 6\} 0 generate \{0\},

1 generate \{0,1,2,3,4,5\}

2 generate \{0,2,4\}

3 generate \{0,3\}

4 generate \{0,4\}

5 generate \{5,4,3,2,1,0\}

So the generators of \mathcal{Z}_{6}^{*} is 0 and 5.
```

Problem 3

```
Group under multiplication \mathbb{Z}_{13}^* is a cyclic group.

<0>=\{0\}
```

subgroup is 2,4,6,7,11.