9. 设 * 为有理数集 Q 上的二元运算, $\forall x,y \in Q$ 有 x * y = x + y - xy,说明 * 运算是否适交换律、结合律和幂等律,并求出 Q 中关于 * 运算的单位元、零元及所有可逆元素的逆元.

$$\forall i$$
) 逆元: $x * x^{-1} = x * x^{-1} - x \cdot x^{-1} = e = 0$

$$x^{-1}(x-1) = x \Rightarrow x^{-1} = \frac{x}{x-1} = x \neq 1$$

- 16. 代数系统 V₁ = ⟨Z₃, ⊕₃⟩, V₂ = ⟨Z₂, ⊕₂⟩, 其中 ⊕₃ 和 ⊕₂ 分别为模 3 和模 2 加法.
- (1) 给出积代数 $V_1 \times V_2$ 的运算表; (2) 求出积代数 $V_1 \times V_2$ 的单位元和每个可逆元素的逆元.

(1)
$$\textcircled{+}$$
 $\langle 0,0\rangle$ $\langle 0,1\rangle$ $\langle 1,0\rangle$ $\langle 1,1\rangle$ $\langle 2,0\rangle$ $\langle 2,1\rangle$ $\langle 2,0\rangle$ $\langle 2,1\rangle$ $\langle 0,0\rangle$ $\langle 0,0\rangle$ $\langle 0,1\rangle$ $\langle 1,0\rangle$ $\langle 1,0\rangle$ $\langle 1,1\rangle$ $\langle 2,0\rangle$ $\langle 2,1\rangle$ $\langle 2,0\rangle$ $\langle 2,1\rangle$ $\langle 0,1\rangle$ $\langle 0,1\rangle$ $\langle 0,0\rangle$ $\langle 1,0\rangle$ $\langle 1,0\rangle$

く0,07-1=く0,07, く1,07与く2,07発 と0,17-1=く0,17, く1,17与く2,17至流

18. 设
$$V_1$$
 是复数集 C 关于复数加法和复数乘法构成的代数系统, $V_2=\langle B,+,\cdot\rangle$,其中
$$B=\left\{\left(\begin{array}{cc}a&b\\-b&a\end{array}\right| a,b\in R\right\},$$

+ 和・分別为矩阵加法和乘法. 证明 V₁ 同构于 V₂.

$$V_1 = \langle C, +, \cdot \rangle$$

$$\stackrel{\sim}{\sim} \int : V_1 \rightarrow V_2, \quad \int (a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \quad \forall a,b \in \mathbb{R}$$

7)下证于为双射:

① 单射: 若
$$\begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix} = \begin{pmatrix} a_2 & b_2 \\ -b_2 & a_2 \end{pmatrix}$$
 $\begin{cases} a_1 = a_2 \\ b_1 = b_2 \end{cases}$

EP atbii = az +bzi

②满射:
$$\forall \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in B$$
, $\exists a+b; s.t. f(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

即于为双射。

ii)下证 f为同态映射:
$$f(c_1+c_2) = f(a_1+b_1+a_2+b_2i) = f((a_1+a_2)+(b_1+b_2)i)$$

$$= \begin{pmatrix} a_1 + a_2 & b_1 + b_2 \\ -(b_1 + b_2) & a_1 + a_2 \end{pmatrix} = f(c_1) + f(c_2)$$

$$f(c_1 \cdot c_2) = f((a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i)$$

$$= \begin{pmatrix} a_1 a_2 - b_1 b_2 & a_1 b_2 + a_2 b_1 \\ -(a_1 b_2 + a_2 b_1) & a_1 a_2 - b_1 b_2 \end{pmatrix} = f(c_1) \cdot f(c_2)$$

敌 存在 Vi到Vi的 双射同态映射,即 Vi 呈Vi

24. 设 $V_1=\langle C,\cdot\rangle,V_2=\langle R,\cdot\rangle$ 是代數系统,· 为普通乘法. 下面哪个函数 φ 是 V_1 到 V_2 的同态?如果 φ 是同态,求出 V_1 在 φ 下的同态像.

(1)
$$\varphi$$
; $C \to R$, $\varphi(z) = |z| + 1$, $\forall z \in C$;
(2) φ ; $C \to R$, $\varphi(z) = |z|$, $\forall z \in C$;
(3) φ ; $C \to R$, $\varphi(z) = 0$, $\forall z \in C$;
(4) φ ; $C \to R$, $\varphi(z) = 2$, $\forall z \in C$.

(2)
$$\varphi(C_1 \cdot C_2) = |C_1 \cdot C_2| = |(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1);|$$

$$= \sqrt{(a_1 a_2 - b_1 b_2)^2 + (a_1 b_2 + a_2 b_1)^2} = \sqrt{(a_1^2 + b_1^2)(a_2^2 + b_2)^2}$$

$$\varphi(C_1) \cdot \varphi(C_2) = |C_1| \cdot |C_2| = \sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}$$

 \Rightarrow φ (G·G·) = φ (C·)· φ (G·) , 是同态,同态像为 R-P-

(4) φ(c1·C1)=2 ≠ φ(c1)·φ(c2)=4, 不是同态

27. 设 $V = \langle Z, + \rangle$,判断下面给出的二元关系 R 是否为 V 上的同余关系,并说明理由,

- (1) $\forall x, y \in Z$, $xRy \iff x \vdash y \exists y \exists x = y = 0$; (2) $\forall x, y \in Z$, $xRy \iff x y \mid < 5$;
- (3) $\forall x, y \in Z$, $xRy \iff x = y = 0$ of $x \neq 0$, $y \neq 0$; (4) $\forall x, y \in Z$, $xRy \iff x \geqslant y$.
- (2) ② x₁Rx₂, y₁Ry₂, ▷]

 (x₁+y₁) R (x₂+y₂) ←> | (x₁-x₁) + (y₁-y₂) | <5

 取 x₁-x₂ = y₁-y₂=4,且 | 4+4|<5 不成 t, ty不是同余类形
- (4) 仅不是等价关系,好不是同余关系

 $\varphi: Z \to Z_2, \ \varphi(a) = (a) \mod 2, \ \forall a \in Z.$

证明 φ 是 V₁ 到 V₂ 的同态;

今

- (2) 给出 φ 在 V_1 上导出的划分.
- (1) y(ax) = (x+1) mod 2 = (xmod 2 +1) mod 2 = 四(x mod 2) = 四(y(x)) 即 y是v,到V2的同态

30. 设 $V_1 = \langle A_{\star}, - \rangle, V_2 = \langle A_{\infty}, + \rangle$,其中

 $A_j = \{x \mid x \in Z \perp x \geqslant j\}, \quad j,k,m,n \in N, \quad nk \geqslant m,$

- + 为普通加法. 令 φ . $A_{n} \rightarrow A_{m}$, $\varphi(x) = nx$, $\forall x \in A_{k}$.
 - (1) 证明 φ 是 V_1 到 V_2 的同态;
- (2) 令 ~ 表示由 φ 导出的 V₁ 上的同余关系, 试描述商代数 V₁/~(给出集合和运算表).

$$V(a_1,a_2) \in Ak$$
, $na_1 > nk > m$, $na_1 = y(a_1) \in Am$
$$y(a_1 + a_2) = n(a_1 + a_2) = na_1 + na_2 = y(a_1) + y(a_2)$$
 即 y是以到以前同意

- (2) y(x) = y(y) €7 nx=ny

 - ii) $5n \ne 0$ 时, $y(x) = y(y) \iff x = y$, 同余关系为恒等关系 $V_1 / \sim = \{Ak, +\}$

+	k	kн	k+2	
(<	2k	2k+1	华+ 2	•••
k+(241	华12	2k+3	
			2k+4	
• • •	,	• •	. • •	• • •