Дополнительная лекция

Вектора и операции над ними. Операции с матрицами. Производная и градиент. Градиентный спуск. Матричные разложения. Понижение размерности.

Даниил Корбут

Специалист по Анализу Данных

Векторы

Вектор — упорядоченный конечный список чисел. Вектора обычно записываются как вертикальный список, например:

$$\begin{bmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{bmatrix} \qquad \begin{pmatrix} -1.1 \\ 0.0 \\ 3.6 \\ -7.2 \end{pmatrix}$$

Вектор может быть записан также в следующем виде:

$$(-1.1, 0.0, 3.6, -7.2)$$

Скалярное произведение векторов

Скалярное произведение векторов (dot product по англ.) - это скаляр (число), полученное в результате перемножения длин векторов на косинус угла между ними.

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot cos(\alpha)$$

Если известны координаты векторов, то скалярное произведение можно посчитать по формуле:

$$\vec{a}\vec{b} = x_a \cdot x_b + y_a \cdot y_b$$

где
$$\vec{a}(x_a;y_a)$$
 и $\vec{b}(x_b;y_b)$ вектора в двумерном простравнстве

Проекция одного вектора на другой

Длина вектора x, полученного в результате проекции вектора а на вектор b, равна делению скалярного произведения вектора **a** на вектор **b** на длину b.

Транспонирование матрицы

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

 $egin{bmatrix} 1 & 2 \ 3 & 4 \ 5 & 6 \end{bmatrix} = egin{bmatrix} 1 & 3 & 5 \ 2 & 4 & 6 \end{bmatrix}$ Транспонирование матри — это замена строк на Транспонирование матрицы столбцы.

Транспонирование матрицы можно рассматривать как отображение матрицы относительно главной диагонали.

Обратная матрица

Обратная матрица к данной — это матрица при перемножении которой с текущей матрицей получается единичная матрица.

$$AA^{-1} = I$$

Например:

$$B = \begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix} \quad B^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{bmatrix}$$
$$B \cdot B^{-1} = \begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{I}$$

Перемножение матриц

Даны 2 матрицы: А и В. Умножение матрицы А на В можно выполнить, если количество столбцов матрицы А равно количеству строк матрицы В.

$$A \cdot B = \begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 4 + 2 \cdot 3 + 2 \cdot 1 & 1 \cdot 2 + 2 \cdot 1 + 2 \cdot 5 \\ 3 \cdot 4 + 1 \cdot 3 + 1 \cdot 1 & 3 \cdot 2 + 1 \cdot 1 + 1 \cdot 5 \end{pmatrix} = \begin{pmatrix} 12 & 14 \\ 16 & 12 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 4 & 2 \\ 3 & 1 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 \cdot 1 + 2 \cdot 3 & 4 \cdot 2 + 2 \cdot 1 \\ 3 \cdot 1 + 1 \cdot 3 & 3 \cdot 2 + 1 \cdot 1 & 3 \cdot 2 + 1 \cdot 1 \\ 1 \cdot 1 + 5 \cdot 3 & 1 \cdot 2 + 5 \cdot 1 & 1 \cdot 2 + 5 \cdot 1 \end{pmatrix} = \begin{pmatrix} 10 & 10 & 10 \\ 6 & 7 & 7 \\ 16 & 7 & 7 \end{pmatrix}$$

Масштабирование

$$egin{bmatrix} m{S_1} & m{0} & m{0} & m{0} \ 0 & S_2 & 0 & 0 \ m{0} & m{0} & m{S_3} & m{0} \ 0 & 0 & 0 & 1 \end{bmatrix} \cdot m{x} \ y \ z \ 1 \end{pmatrix} = m{S_1 \cdot x} \ S_2 \cdot y \ S_3 \cdot z \ 1 \end{pmatrix}$$

Сдвиг

$$egin{bmatrix} egin{bmatrix} 1 & oldsymbol{0} & oldsymbol{0} & oldsymbol{T_x} \ 0 & 1 & 0 & T_y \ oldsymbol{0} & oldsymbol{0} & 1 & oldsymbol{T_z} \ 0 & 0 & 0 & 1 \end{bmatrix} \cdot egin{pmatrix} x \ y \ z \ z \ 1 \end{pmatrix} = egin{pmatrix} x + oldsymbol{T_x} \ y + T_y \ z + oldsymbol{T_z} \ 1 \end{pmatrix}$$

Матрица вращения вокруг оси X:

Матрица вращения вокруг оси Z:

$$egin{bmatrix} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \cdot egin{bmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{bmatrix} \cos heta \cdot x - \sin heta \cdot y \ \sin heta \cdot x + \cos heta \cdot y \ z \ 1 \end{pmatrix}$$

Матрица вращения вокруг оси Z:
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ \cos\theta \cdot y - \sin\theta \cdot z \\ \sin\theta \cdot y + \cos\theta \cdot z \\ 1 \end{pmatrix}$$
 Матрица вращения вокруг оси Y:

$$egin{bmatrix} \cos heta & \mathbf{0} & \sin heta & \mathbf{0} \ 0 & 1 & 0 & 0 \ -\sin heta & 0 & \cos heta & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \cdot egin{pmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{pmatrix} \cos heta \cdot x + \sin heta \cdot z \ y \ -\sin heta \cdot x + \cos heta \cdot z \ 1 \end{pmatrix}$$

Чтобы получить зеркальное отображение объекта по горизонтали следует установить значение а = -1, по вертикали d = -1. Изменение обеих значений применяется для одновременного отображения по горизонтали и вертикали.

$$\begin{pmatrix}
 -1 & \theta & \theta \\
 \theta & -1 & \theta \\
 \theta & \theta & 1
 \end{pmatrix}$$

Собственные векторы и собственные значения

Собственный вектор преобразования А

$$AX = \lambda X$$

X - собственный вектор (ненулевой!) lambda - собственное значение

У матрицы **n x n** не более **n** собственных значений

Собственные векторы и собственные значения: применение

- 1. Собственные векторы направления, в которых матрица лишь растягивает или сжимает векторы, но не поворачивает
- 2. Показывают направления наибольшего изменения
- 3. Возникают при уменьшении размера матрицы

Матричные разложения (спектральное разложение)

Разложение матрицы - представление в виде произведения некоторых других, обладающих интересными свойствами.

Пример: спектральное разложение Х

$$X = S^T \cdot D \cdot S$$

X - симметричная, S - ортогональная, D - диагональная из собственных значений X.

Часто встречаются квадратичные формы

$$f(y) = y^T X y$$

с помощью спектрального разложения приводим к более простому виду:

$$f(y) = y^T \cdot S^T \cdot D \cdot S \cdot y = (S \cdot y)^T \cdot D \cdot (S \cdot y) = z^T \cdot D \cdot z = \sum_{i=1}^n \lambda_i z_i^2,$$

Матричные разложения (сингулярное разложение)

Но это была симметричная матрица, что в случае произвольной?

Матричные разложения (сингулярное разложение)

Сингулярное разложение представляет линейное преобразование в виде композиции: вращения, растяжения по осям, вращения.

Матричные разложения (приближение матрицей меньшего ранга)

- Матрица задаёт отображение, ранг в какой-то степени мера "сложности" отображения
- Ранг максимальное количество линейно независимых столбцов или строк
- Ранг максимальный размер подматрицы с ненулевым определителем
- ! rank(X) <= min(n, m), если X матрица m x n

Пусть X = AB, A размера (m, k), B размера (k, n) Пусть также k < m, k < n**Что можно сказать о ранге X?**

Матричные разложения (приближение матрицей меньшего ранга)

Зачем приближать матрицу матрицей меньшего ранга?

Мы предполагаем, что матрица преобразования X на самом деле более простая.

Что значит приблизить

$$X \approx X' = UV^T$$

$$U-m\times k, V-n\times k$$

Просто найлучшее приближение по норме: $||X-UV^T|| o min$

Матричные разложения (приближение матрицей меньшего ранга)

Что значит приблизить

$$X \approx X' = UV^T$$

$$U-m\times k, V-n\times k$$

Просто найлучшее приближение по норме: $||X-UV^T|| o min$

$$||X||_F = \sqrt{\sum\limits_{i,j} x_{ij}^2}$$

Итоговая задача выглядит так:

$$U,V = \mathop{\mathrm{argmin}}\limits_{U \in \mathbb{R}^{m imes k}, V \in \mathbb{R}^{n imes k}} \sum\limits_{i,j} \left(x_{ij} - u_i^T v_j
ight)^2$$

Матричные разложения (пример применения)

- **)** Пусть X матрица признаков объектов
- $oldsymbol{U}$ матрица новых признаков
-) При k < n преобразование признаков понижает размерность пространства
-) По U с максимальной возможной точностью восстанавливаются исходные признаки X

Матричные разложения (пример применения)

- **)** Пусть X матрица с оценками x_{ij} , поставленными пользователем i фильму j
-) Некоторые значения матрицы неизвестны
-) $x_{ij} \approx \widehat{x_{ij}} = u_i v_j$, где u_i отражает интересы пользователя, а v_j признаковое описание фильма
-) Идея: настроим u_i и v_j на известных x_{ij} , а неизвестные спрогнозируем
- Будем рекомендовать фильмы, для которых спрогнозирована высокая оценка

Что делать с пропущенными значениями?

Матричные разложения (пример применения)

-) Пусть X матрица с оценками x_{ij} , поставленными пользователем i фильму j
-) Некоторые значения матрицы неизвестны
-) $x_{ij} \approx \widehat{x_{ij}} = u_i v_j$, где u_i отражает интересы пользователя, а v_j признаковое описание фильма
-) Идея: настроим u_i и v_j на известных x_{ij} , а неизвестные спрогнозируем
- Будем рекомендовать фильмы, для которых спрогнозирована высокая оценка

$$U, V = \operatorname*{argmin}_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} \sum_{i,j: x_{ij} \neq 0} \left(x_{ij} - u_i^T v_j\right)^2$$

Матричные разложения (связь SVD и низкорангового приближения)

$$\hat{X} = \underset{\text{rg } \hat{X} \leq k}{\operatorname{argmin}} \|X - \hat{X}\| \qquad X = U \cdot D \cdot V^T$$

Усечённый SVD

Матричные разложения (связь SVD и низкорангового приближения)

Оказывается, Xk - наилучшее приближение матрицы X матрицей ранга <= k по норме Фробениуса!

$$egin{aligned} X_k &= U_k D_k V_k^T \ \hat{X}_k &= rgmin_{||X - \hat{X}||_F} \ _{rg(\hat{X}) \leq k} \ &||X - \hat{X}||_F = \sqrt{\sum\limits_{i,j} (x_{ij} - \hat{x}_{ij})^2} \end{aligned}$$

Матричные разложения (рекомендательные системы)

-) Вариант 1 (не очень правильно, но просто): сделать SVD, матрицу $U_k D_k$ использовать как матрицу профилей пользователей, а матрицу V_k как матрицу профилей фильмов, произведение профилей прогноз оценки фильма
-) Вариант 2 (более правильно, но нужно более глубоко вникнуть в метод): Не будем никак использовать SVD, а просто подберем U и V, минимизируя функционал

Понижение размерности: РСА

Один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации.

Понижение размерности: РСА

- 1) Вычисляем матрицу ковариаций признаков
- 2) Находим собственные вектора матрицы ковариаций
- 3) Первые k векторов соответствующих k максимальным собственным значениям компоненты нашего разложения

 $\underline{https://medium.com/@sadatnazrul/the-dos-and-donts-of-principal-component-analysis-7c2e9dc8cc48}$

Плюсы: возможность регуляции получаемой размерности (добавлении компонент по одной в зависимости от объяснённой дисперсии); скорость алгоритма; интерпретация

Минусы: линейность, предположение об ортогональности

Производная функции

Производная - мгновенная скорость роста функции в заданной точке.

$$\frac{f(x+\Delta x)-f(x)}{\Delta x}=k.$$

Давайте посмотрим на линейную функцию y=kx+b

Как понять скорость роста для произвольной функции? Предел!

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Гладкие функции - функции, производная которых непрерывна.

Экстремум функции и производная

В точках локальных экстремумов производная (если она определена (!), пример дальше) обязана равняться нулю. Это **необходимое** условие.

Экстремум функции и производная

Однако равенство нулю производной не является достаточным условием локального экстремума. Также производная может быть вовсе не определена в точках локальных экстремумов.

Градиент и линии уровня функции

Если f(x1, . . . , xn) — функция n переменных x1, ..., xn, то n-мерный вектор из частных производных:

grad
$$f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

называется градиентом функции.

Линией уровня функции называется множество точек, в которых функция принимает одно и то же фиксированное значение. Оказывается, что **градиент перпендикулярен линии уровня**.

Градиент в задачах оптимизации

Задачей оптимизации называется задача по нахождению экстремума функции, например минимума:

$$f(x_1,...,x_n) \to \min$$

Такая задача часто встречается в приложениях, например при выборе оптимальных параметров рекламной компании, а также в задачах классификации.

Градиент в задачах оптимизации

Но не всегда задачу можно решать аналитически. В таком случае используется численная оптимизация. Наиболее простым в реализации из всех методов численной оптимизации является метод градиентного спуска.

Рис. 2: Функция двух переменных достигает минимума в начале координат.

Градиентный спуск

Это итерационный метод. Решение задачи начинается с выбора начального приближения $ec{x}^{[0]}$

После вычисляется приблизительное значение $ec{x}^1$

Затем $ec{x}^2$

и так далее...

 $ec{x}^{[j+1]} = ec{x}^{[j]} - \gamma^{[j]} \nabla F(ec{x}^{[j]}),$ где $\gamma^{[j]}$ — шаг градиентного спуска.

Идея: идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом $-\nabla F$

Градиентный спуск

Рис. 3: Градиентный спуск

