

FIG.I

FIG.2B

F16.2A

FIG. 3A

In Vitro

In Vivo

FIG. 3B

F16.4A

FIG. 4B

FIG.5C

· ·								
GST	GSTcJ(1-223)	GSTcJ(11-223)	GSTcJ(22-223)	GSTcJ(33-223)	GSTcJ(43-223)	GSTcJ(56-223)	GSTcJ(1-93)	GSTcJ(1-79)
GST	GSTcJ(1-223)	GSTವ(11-223) GSTವ(22-223)	GSTcJ(33-223)	GSTcJ(43-223) GSTcJ(56-223)		GSTcJ(1-79)		
1012								

Protein Gel

FIG.6A

32_{P-Immobilized} Substrate

FIG.6B

32_{P-Exogenous} Substrate

FIG.6C

FIG.9B

	FIG.IOA
561	AAA CAG AGC ATG ACC CTG ACC CTG GCC CCA GTG GGG AGC CTG AAG Lys Gln Ser Met Thr Leu Asn Leu Ala Asp Pro Val Gly Ser Leu Lys 35
513	CTC CCC TCC GAG AGG GGA CCT TAT GGC TAC AGT AAC CCC AAG ATC CTG Leu Pro Ser Glu Arg Gly Pro Tyr Gly Tyr Ser Asn Pro Lys Ile Leu 20
765	GCA AAG ATG GAA ACG ACC TTC TAT GAC GAT GCC CTC AAC GCC TCG TTC Ala Lys Met Glu Thr Thr Phe Tyr Asp Asp Ala Leu Asn Ala Ser Phe 5
417	AACTIGIGCG CGCACGCCAA ACTAACCICA CGTGAAGIGA CGGACIGIIC I AIG ACT Met Thr 1
360	STCAAAGGCT CCGGGGGGG CGGGTGTCCC CCGCTTGCCA CAGCCCTGTT GCGGCCCCGA
300	SAGGAGGGCG CACGGGACG ACAGCCAGCG GGTGCGTGCG CTCTTAGAGA AACTTTCCCT
240	rcgacaagta agagtgcggg aggcatctta attaaccctg cgctccctgg agcagctggt
180	SCGCACGAAG AGCCGTCAGT GAGTGACCGC GACTTTTCAA AGCCGGGTAG GGCGCGGGAG
120	STCCGCGGA GAGCCGCTGC TCTGGGAAGT CAGTTCGCCT GCGGACTCCG AGGAACCGCT
09	SAATTCCGGG GCGCCAAGA CCCGCCGCCG GCCGGCCACT GCAGGGTCCG CACTGATCCG

i ga

609	657	705	753	801	678	897
GTG Val	CAG Gln	CIG	TTC Phe	GTC Val 130	GCG Ala	AGC
GAC Asp 65	ATC	TTC Phe	660 61y	AGC	CCC Pro 145	GCC Ala
CCC Pro	ATA Ile 80	CAG Gln	GAG Glu	CCC Pro	GCT	AGC Ser 160
TCG Ser	CTG Leu	ACC Thr 95	GCC Ala	CTG Leu	GTG	TTC
ACC Thr	CGC Arg	CCC	TTC Phe 110	ACG	ATG	660 61y
CIC	GAG Glu	ACC	666 61y	AAC Asn 125	GGC Gly	GGC Gly
CTC Leu 60	CTG Leu	CCG	GAG	CAG Gln	GCA Ala 140	AGC
GAC Asp	GAG Glu 75	ACG Thr	CAG Gln	AGC	GGG	GGC Gly 155
TCG	CCC Pro	ACC Thr 90	GAG Glu	CAC	AAC Asn	AGC Ser
AAC Asn	TCG	ACC	GAT Asp 105	CTG Leu	GTC Val	GGC Gly
AAG Lys	GCG Ala	ATC	ACA	GAA Glu 120	CCG	GGG G1y
GCC Ala 55	CTG Leu	CAC His	GTG Val	GCC Ala	CAG Gln 135	GCA Ala
CGC	AAG Lys 70	666 Gly	AAC Asn	CTG Leu	GCG Ala	GTG Val 150
CTC Leu	CTC Leu	AAC Asn 85	AAG Lys	GCC	GCG Ala	TCG Ser
CAC	CTG Leu	AGC	CCC Pro 100	CGC Arg	TCG Ser	GCC Ala
CCG	666 61y	TCC	TGC Cys	GTG Val 115	ACG Thr	GTA Val

F16.10B

945	866	1041	1089	1137	1185	1233
AGC AAC TTC AAC CCA Ser Asn Phe Asn Pro 175	TAC GGC GCG GCC GGC Tyr Gly Ala Ala Gly 190	CAG CCG CCG CAC CAC Gln Pro Pro His His 210	CTG CAG GCC CTG AAG Leu Gln Ala Leu Lys 225	GAG ACA CCG CCC CTG Glu Thr Pro Pro Leu 240	AAG GCG GAG AGG AAG Lys Ala Glu Arg Lys 255	CGA AAA AGG AAG CTG Arg Lys Arg Lys Leu 270
GCA AAC CTC Ala Asn Leu	GCG CCC TCC Ala Pro Ser	CAG CAG CAG Gln Gln Gln 205	CAC CCG CGG His Pro Arg 220	ATG CCC GGC Met Pro Gly 235	GAG CGC ATC Glu Arg Ile	TCG AAG TGC Ser Lys Cys
GCG GTC TAC Pro Val Tyr 170	C GGC GGC GGG r Gly Gly Gly 185	GAA CCC CAG Gln Pro Gln 200	GCC GTG CAG Pro Val Gln	GTG CCC GAG Val Pro Glu	Gag TCC CAG Glu Ser Gln 250	Tarc GCT GCC Ile Ala Ala 265
C AGC GAG CCG S Ser Glu Pro 165	G CTG AGC AG a Leu Ser Se 0	CC TTT CCC GCG la Phe Pro Ala	CCC CAG CAG ATG Pro Gln Gln Met 215	AG CCT CAG ATA lu Pro Gln Ile 230	C ATC GAC ATG o Ile Asp Met 245	IG AGG AAC CGC et Arg Asn Arg
CTG CA Leu Hi	GGC GC Gly Al	CTG GC Leu Al 195	CTG CC Leu Pr	GAG GA Glu G]	TCC CC Ser Pr	CGC ATA

F1G. 10C

1281	1329	1377	1424	1484	1544	1604	1664	1724	
GAG AGA ATC GCC CGG CTG GAG GAA AAA GTG AAA ACC TTG AAA GCT CAG Glu Arg ile Ala Arg Leu Glu Glu Lys Val Lys Thr Leu Lys Ala Gln 275	AAC TCG GAG CTG GCG TCG ACG GCC AAC ATG CTC AGG GAA CAG GTC GCA Asn Ser Glu Leu Ala Ser Thr Ala Asn Met Leu Arg Glu Gln Val Ala 300	CAG CTT AAA CAC AAA GTC ATG AAC CAC GTT AAC AGT GGG TGC CAA CTC Gln Leu Lys His Lys Val Met Asn His Val Asn Ser Gly Cys Gln Leu 310	ATC CTA ACG CAG TTG CAA ACA TTT TGAAGAGAG CCGTCGGGGG Ile Leu Thr Gln Gln Leu Gln Thr Phe 325	CIGAGGGCA ACGAAGAAA AAATAACAC AGAGAGAGA ACTIGAGAAC TIGACAAGTT	GCGACGGAGA GAAAAAAAAA GTGTCCGAGA ACTAAAGCCA AGGGTATCCA AGTTGGACTG	GGIICGGICI GACGGCGCC CCAGIGIGCA CGAGIGGGAA CCACCIGGIC GCGCCCICCC	TIGGCGICGA GCCAGGGAGC GGCCGCCIGG GGGCIGCCCC GCTTIGCGGA CGGGCIGICC	CCGCGCGAAC GGAACGTTGG ACTTTCGTTA ACATTGACCA AGAACTGCAT GGACCTAACA	FIG. IOD

プロエイフマー プロー	TOTALDATTOO TTOTOTAGTA OTOCTTAAGA ACACAAAGOG GGGGGAGGGI IGGGGAAGGG	CTCCTTAAGA	ACACAAAGCG	てらららいからららい	りりりりなりりりりて	† 0 1
	117 0177 0 10 1					
						190/
CGGCAGGAGG	CGGCAGGAGG GAGGTTTGTG AGAGCGAGGC IGAGCCIACA GALGAACICI IIVIGGGGL	AGAGCGAGGC	IGAGCCTACA	CALGARCICI	0100001011	1
						100
CTTTCGTTAA	CTITCGITAA CIGIGIAIGI ACATAIAIAI AITITITAAI TIGAITAAAG CIGALIACIG	ACATATATAT	ATTTTTAAT	TTGATTAAAG	CIGALIACIG	730t
	TO AT A A A A A COTT OF THE TATES A COTT ATTICTIBLY TOTTIGITIE GGAICCIGCC	TTTCTAACTT	ATTTCTTGTT	TGTTTGTTTG	GGATCCTGCC	202
יייייייייייייייייייייייייייייייייייייי		4 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		! !		
				That Your	TAATAAACTA	2087
CAGTGTTGTT	CAGTGTTGTT TGTAATAAG AGATTIGGAG CACICIGAGI ILACCALLIG IMITEMIA	AGAITIGGAG	CACICICAGI	TIRCORTI	ייי פיאאיזייין	1
						ò
TO THE STATE OF	£-£-					707

F16.10E

FIG.11A

FIG.11B

F16.14

FIG.16A

FIG. 16B

