

Europäisches Pat ntamt

European Patent Office

Office européen des brevets

(1) Publication number:

0 337 896 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication of patent specification: 28.07.93 (51) Int. Cl.5: C12Q 1/68, C07H 21/00
- (21) Application number: 89401045.3
- 2 Date of filing: 14.04.89
- Hybridization probes for detecting neisseria strains.
- @ Priority: 15.04.88 EP 88400929
- (3) Date of publication of application: 18.10.89 Bulletin 89/42
- (4) Publication of the grant of the patent: 28.07.93 Bulletin 93/30
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited:

EP-A- 0 155 359

EP-A- 0 237 737

EP-A- 0 245 129

EP-A- 0 250 662

EP-A- 0 272 009

FEMS MICROBIOLOGY LETTERS, vol. 43, 1987, Amsterdam (NL); G.HAUN et al., pp. 187-193*

CHEMICAL ABSTRACTS, vol. 104, no. 25, 23 June 1986, Columbus, OH (US); R.ROSSAU, p. 326, no. 221758w*

BIOLOGICAL ABSTRACTS/RRM, vol. 35, 1988; R.ROSSAU et al., no. 35069014* BIOLOGICAL ABSTRACTS/RRM, vol. 35, 1988; M.E.HARPER et al., no. 35049041*

- 73 Proprietor: N.V. INNOGENETICS S.A. Industriepark Zwijnaarde 7, Box 4 B-9710 Gent(BE)
- (2) Inventor: Rossau, Rudi Wilgehoevestraat 45 B-2070 Ekeren(BE)

Inventor: Van Heuverswijn, Hugo

Colmanstraat 62 B-9288 Laarne(BE)

Representative: Grosset-Fournier, Chantal
Catherine et al
SC Ernest Gutmann/Yves Plasseraud 67 boulevard Haussmann
F-75008 Parls (FR)

337 896 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

The invention relates to hybridization probes for detecting Neisseria strains and isolates belonging to the genus Neisseria and related taxa. Hereafter, the word strains also encompasses isolates or organisms contained in a biological sample.

Most of the probes known so far and which can be either total genomic deoxyribonucleic acid (DNA), indigenous plasmids, cloned DNA fragments, or synthetic oligonucleotides, target the DNA of the organism to be detected.

It has been suggested in a few occurences to target the ribosomal ribonucleic acid (rRNA), by means of a rRNA derived probe. Targeting the ribosomal ribonucleic acid would increase the sensitivity of a diagnostic test, because ribosomes are very abundant in a cell.

Yet and in contrast, the high sequence conservation observed among rRNA cistrons and accordingly, the absence of specificity of a rRNA derived probe are important drawbacks which are an obstacle to the use of a rRNA derived probe for selecting related taxa. In fact rRNA derived probes known so far are mainly used to detect large groups of organisms such as Legionella (Wilkinson et al., 1986; Edelstein, 1986) or the Pseudomonas fluorescens group (Festl et al., 1986), or to differentiate relatively distantly related species such as Mycoplasma (Goebel et al., 1987) and Chlamydia species (Palmer et al., 1986) from one another. One report described the differentiation between the species Proteus vulgarus and Proteus mirabilis (Haun and Goebel, 1987). Both species have a DNA homology value of about 50 %; for the moment this is the highest specificity which could be reached using rRNA derived probes without the use of Southern-blot analysis.

EP 0 272 009 discloses a method for preparing probes, as well as several probes for use in qualitative or quantitative hybridization assays. The method comprises constructing an oligonucleotide that is sufficiently complementary to hybridize to a region of rRNA selected to be unique to a non-viral organism or group of non-viral organisms sought to be detected, said region of rRNA being selected by comparing one or more variable region rRNA sequences of said non-viral organism or group of non-viral organisms with one or more variable region rRNA sequences from one or more non-viral organisms sought to be distinguished. A sequence disclosed in relation to Neisseria is TCA TCG GCC GCC GAT ATT GGC.

Therefore it was unexpected, as found by the inventors of the present invention, that specific rRNA derived probes could be devised which could not only differentiate between highly related bacterial species but also between taxa related at the subspecies level using a simple direct hybridization format. In particular, Neisseria gonorrhoeae strains could be discriminated from other Neisseria strains, including N. meningitidis strains, by means of a dot-spot hybridization assay by some of the probes described herein.

Thus an object of the invention is to provide rRNA-related probes for detecting one or more Neisseria strains.

Another object of the invention is to provide rRNA-related probes for differentiating Neisseria gonor-rhoeae from other bacterial species and in particular from other Neisseria species and from Neisseria meningitidis.

A further object of the invention is to provide probes for detecting one or more Neisseria strains by a simple hybridization test, such as a dot-spot hybridization test, without resorting to any complementary analysis, such as the Southern-blot analysis.

Still another object of the invention is to provide a probe and a simple method for the in vitro diagnosis of one or more Neisseria strains.

"rRNA-related" as used herein refers to the fact that the probes concerned hybridize with sequences normally present in ribosomal RNAs, no matter whether said probes are themselves formed of DNA or RNA fragments, or whether they consist of cloned fragments (in the case of DNA) or of synthetic oligonucleotides.

The word "Neisseria" as used herein not only refers to bacteria named Neisseria but also to named or unnamed taxa, such as Kingella, Eikenella, Simonsiella, Alysiella and the CDC groups EF-4 and M-5, which are highly interrelated with bacteria belonging to the genus Neisseria. These taxa are found within a Tm(e) range of approximately 6 °C versus ribosomal RNA of flavescens ATCC 13120. Tm(e) is defined in Rossau, R., A. Van Landschoot, W. Mannheim, and J. De Ley. 1986. Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323-332.

It should be noted that misnamed bacteria, which are not found within the delta Tm(e) range indicated, such as Neisseria caviae, Neisseria cuniculi, Neisseria ovis, Neisseria catarrhalis (Branhamella (Moraxella) catarrhalis), Kingella indologenes and Alysiella sp., do not belong to the Neisseria group.

A hybridization probe of the invention for detecting one or more Neisseria strains contains :

 either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes itself of from 10 to the maximum number of nucleotides of the selected nucleic acid

_	Group 4:	
5	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTT	CCCTGACAAAAGTCC
		(4)
	GGUACCGUCAUCGCCGCCGAUAUUGGCAACAGCCUUUUCUU	ICCCUGACAAAAGUC
10		(4bis)
	GGACTTTTGTCAGGGAAGAAAAGGCTGTTGCCAATATCGGCC	
	GONCITITOTCHOOONAGAAAAGGCTGTTGCCAATATCGGGG	(4ter)
15	GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGC	
	•	(4quater)
	Group 5:	
20	ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA	(5)
	ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA	(5bis)
25		
30		
35		
40		
45		
50		
55		

	TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT	(5ter)
	UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU	(5quater)
5	Group 6:	
	ATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTAC	TATCCCCCAC
		(6)
	AUACCGUGGUAAGCGGACUCCUUGCGGUUACCCUACCUAC	UAUCCCCCAC
10		(6bis)
	GTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTT	ACCACGGTAT
		(6ter)
15	GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUU	ACCACGGUAU
		(6quater)
	Group 7:	
20	TCAGTCCGATTTCCGCCGGACCTAGGT	(7)
20	UCAGUCCGAUUUCCGCCGGACCUAGGU	(7bis)
	ACCTAGGTCCGGCGAAATCGGACTGA	(7ter)
	ACCUAGGUCCGGCGAAAUCGGACUGA	(7quater)
25	Group 8:	
	TCAGTCCGATTTCCGACCGGACCTAGGT	(8)
	UCAGUCCGAUUUCCGACCGGACCUAGGU	(8bis)
30	ACCTAGGTCCGGTCGGAAATCGGACTGA	(8ter)
30	ACCUAGGUCCGGUCGGAAAUCGGACUGA	(8quater)
	Group 9 :	
	CGCCACCCGAGAAGCAAGCTTCCCTGTGCTGC	(9)
35	CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC	(9bis)
	GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG	(9ter)
	GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG	(9quater)
40	Group 10:	
	CGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATA	(10)
	CGGGGCUUACGGAGCAAGUCCUUAACCUUAGAGGGCAUA	(10bis)
	TATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCG	(10ter)
45	UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG	(10quater)
	Group 11:	
	GCGGAATCATAGCTTTATTGCCAGCTCCCCCCC	(11)
50	GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCGC	(11bis)
	GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC	(11ter)

	GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC	(11quater)
	Group 12:	
	GACACTCGAGTCACCCAGTTCAGAAC	(12)
5	GACACUCGAGUCACCCAGUUCAGAAC	(12bis)
	GTTCTGAACTGGGTGACTCGAGTGTGTC	(12ter)
	GUUCUGAACUGGGUGACUCGAGUGUGUC	(12quater)
10	Group 13 :	•
	TGCTTTCCCTCTCAAGACGTATGC	(13)
	UGCUUUCCCUCUCAAGACGUAUGC	(13bis)
	GCATACGTCTTGAGAGGGAAAGCA	(13ter)
15	GCAUACGUCUUGAGAGGGAAAGCA	(13quater)
	Group 14:	
	TCTCGACAGTTATTACGTACA	(14)
20	UCUCGACAGUUAUUACGUACA	(14bis)
	TGTACGTAATAACTGTCGAGA	(14ter)
	UGUACGUAAUAACUGUCGAGA	(14quater)
	Group 15 :	
25	TTTCGTACGCTTAGTACCGCTGTTGAGA	(15)
	UUUCGUACGCUUAGUACCGCUGUUGAGA	(15bis)
	TCTCAACAGCGGTACTAAGCGTACGAAA	(15ter)
30	UCUCAACAGCGGUACUAAGCGUACGAAA	(15quater)
	Group 16 :	
	GTGGTATCGGTTGCTTCGTGTCCGTAGACA	(16)
	GUGGUAUCGGUUGCUUCGUGUCCGUAGACA	(16bis)
35	TGTCTACGGACACGAAGCAACCGATACCAC	(16ter)
	UGUCUACGGACACGAAGCAACCGAUACCAC	(16quater)
	Group 17:	
40	AAGCTATTCCAACAGCTTGCCAACCTAA	(17)
	AAGCUAUUCCAACAGCUUGCCAACCUAA	(17bis)
	TTAGGTTGGCAAGCTGTTGGAATAGCTT	(17ter)
	UUAGGUUGGCAAGCUGUUGGAAUAGCUU	(17quater)
45	Group 18 :	•
	TGGTGGGCCTTTACCCCGCCAACCAGCT	(18)
	UGGUGGGCCUUUACCCCGCCAACCAGCU	(18bis)
50	AGCTGGTTGGCGGGGTAAAGGCCCACCA	(18ter)
30		
55	AGCUGGUUGGCGGGGUAAAGGCCCACCA	(18quater)
JU		

in which the letters mean the following nucleotides : A: adenylic residue,

C: cytidylic residue,

G: guanidylic residue,

- T: thymidylic residue,
- U: uracylic residue,
- provided that the probe does not consist of the following sequence:

TCA TCG GCC GCC GAT ATT GGC

- or a variant sequence which differs from any of the preceding sequences (4) to (18)
 - . either by addition to or removal from any of their respective extremities of one or several nucleotides,
 - or changing within any of said sequences of one or more nucleotides,
 - . or both.

5

10

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

Under the expression "target" is meant a sequence complementary to any of the sequences of groups 4 to 18 as herein before defined. This in case where the probe of the invention would comprise nucleic acid elongations on either side or both of said above defined sequences-- e.g. nucleic acid fragments of a cloning vector or linker fragments resulting from the cleavage of said probe out of said cloning vector-- it is understood that such elongations should be selected such as to avoid the possibility that they could themselves hybridize with any other corresponding complementary nucleic acid sequence outside of the above target in a DNA of any microorganism likely to be tested by the process of this invention as later defined. Such hybridization would be of a parasitical nature and reduce the specificity of the probe.

Preferred probes consist of nucleic acid fragments formed of any of the sequences under (4) to (18), said fragments containing from 10 to the maximum number of nucleotides of the relevant nucleic acid sequence.

It is understood that in the above nucleotide sequences (and in the other ones referred to hereafter), the left end of the formulae always corresponds to a 5' extremity and the right end to a 3' extremity of the sequence concerned.

When reference is further made therein to a "probe of group "x"" - with "x" from 1 to 18 - it should be understood that such probe has a sequence included in one of the nucleic acids belonging to that group as defined above or further defined hereafter.

It is also understood that the word "nucleotide" as used herein refers indistinctly to ribonucleotides and deoxyribonucleotides and modified nucleotides such as inosine unless otherwise specified. The expression "nucleotides" also encompasses those which further comprise modification groups, e.g. chemical modification groups which do not affect their hybridization capabilities. Such modification groups aim, for instance, at facilitating their coupling, either directly or indirectly, with suitable markers or labels for the subsequent detection of the probes so marked or labeled, particularly in their hybridization products with the relevant rRNA or DNA strand, e.g. that or those initially contained in a biological sample together with other DNA(s) and/or RNA(s).

For instance, such modification groups are recognizable by antibodies which, in turn, can be recognized specifically by other antibodies carrying a suitable enzymatic or fluorescent or chemiluminescent label. Possible labeling procedures will further be examplified later herein.

The invention also relates to probes having any of the sequences defined above and in which some nucleotides are different, provided that the different nucleotide(s) do(es) not alter the specificity of the probes defined above. Some probes may consist of one of the nucleic acids belonging to any of the groups 4 to 10 which are set forth above or of part thereof, said probes however including nucleotidic elongation on either sides thereof to the extent that such elongations do not alter the specificity of said probes with the genetic material of Neisseria as discussed hereafter.

Most of these probes, can be caused to hybridize with a large number if not all Neisseria. However the probes of group 4, 5, 9, 11, 13 and 18 are capable of hybridizing more selectively with corresponding regions of the RNAs or DNAs of Neisseria gonorrhoeae, and in some instances under controlled hybridization conditions - not with other Neisseria.

This applies particularly to subgroups selected from the probes of group 4, which subgroups are hereafter generally designated as groups 1 to 3, each of said groups comprising more specific probes (still normally containing at least ten nucleotides) whose probes contain:

 either a sequence belonging to a nucleic acid selected from th following groups of nucleic acids and which includes itself of from 10 to the maximum number of nucleotides of the selected nucleic acid

	Group 1:	
	TCGGCCGCCGATATTGGCAACAGCCTT	(1)
	UCGGCCGCCGAUAUUGGCAACAGCCUU	(1bis)
5	AAGGCTGTTGCCAATATCGGCGGCCGA	(1ter)
	AAGGCUGUUGCCAAUAUCGGCGGCCGA	(1quater)
	Group 2:	
10	TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG	(2)
	UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG	(2bis)
15		
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA (2ter)	
	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (2quater)	
20	Group 3:	(2)
	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG	(3)
	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG	(3bis)
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC	(3ter)
25	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC	(3quater)

provided that the probe does not consist of the following sequence:

TCA TCG GCC GCC GAT ATT GGC

- or a variant sequence which differs from any of the preceding sequences (1) to (3)

- . either by addition to or removal from any of their respective extremities of one or several nucleotides.
- . or changing within any of said sequences of one or more nucleotides,
- . or both,

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or 35 DNA target as the corresponding unmodified sequence.

The invention thus provides for probes which are either replicas (those designated by numbers followed by "ter" or "quater") in terms of nucleotide sequence of sequences contained in the rRNAs of most Neisseria, with occasionnally a few insignificant differences in nucleotide sequences or formed of sequences, those designated by bare numbers or by numbers followed by "bis", complementary to sequences included in the natural rRNAs of Neisseria.

More particularly, it should be appreciated that the target sequences in the rRNAs concerned consist in any of the following successive sequences present in most, if not all, Neisseria, subject to possible insignificant natural differences from one Neisseria to another, whereby such natural differences are not likely to affect the hybridization specificity of the probes of this invention with such targets :

50

•	(5') AAGGCUGUUGCCAAUAUCGGCGGCCGA (3') (10	quater)
	(5') CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (3	') (2quater)
5	(5') CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGA	
		(3quater)
	GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCC	BAUGACGGUACC
10	(5')	(3')
		(4quater)
	(5') UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU (3')	(5quater)
	GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUU	JACCACGGUAU
15	(5')	(3')
		(6quater)
	(5') ACCUAGGUCCGGCGGAAAUCGGACUGA (3')	(7quater)
20	(5') ACCUAGGUCCGGUCGGAAAUCGGACUGA (3')	(8quater)
	(5') GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG (3')	(9quater)
	(5') UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG(3	
25	(5') GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC (3')	(11quater)
25	(5') GUUCUGAACUGGGUGACUCGAGUGUGUC (3')	(12quater)
	(5') GCAUACGUCUUGAGAGGGAAAGCA (3')	(13quater)
	(5') UGUACGUAAUAACUGUCGAGA (3')	(14quater)
30	(5') UCUCAACAGCGGUACUAAGCGUACGAAA (3')	(15quater)
	(5') UGUCUACGGACACGAAGCAACCGAUACCAC (3')	(16quater)
	(5') UUAGGUUGGCAAGCUGUUGGAAUAGCUU (3')	(17quater)
35	(5') AGCUGGUUGGCGGGGUAAAGGCCCACCA (3')	(18quater)

The differences in hybridization capability of the nucleotide sequences of the different probes (or of (8quater), (9quater), (10quater) the related rRNA sequences) from one probe to another are of a sufficiently reduced magnitude as to ensure the selectivity of the sequences of groups (4)-(18) as regards the detection and identification of Neisseria (such as N. lactamica, N. mucosa, N. subflava, N. flavescens, N. elongata, etc...) in a biological sample suspected to contain same, yet to distinguish them from other taxa. However, within group (4) (and all the more so in groups 3, 2 and 1) and also in group 5, 9, 11, 13 and 18, these differences are becoming of sufficient magnitude to enable Neisseria gonorrhoeae strains to be differentiated from other Neisseria strains in some instances even under less stringent hybridization conditions (which will be referred to herein more accurately later), and in the presence of other DNAs or RNAs or both present in the sample studied, e.g. a sample originating from mammals, particularly humans. It will be mentioned later that the hybridizations may be carried out e.g. using dot-spot proceeding, if need be upon appropriately adjusting the hybridization conditions and subsequent washing conditions of the hybrids formed.

It will be appreciated that the above mentioned specificities, be it for the whole Neisseria taxon or for the Neisseria gonorrhoeae subtaxon tend to become lost when the number of nucleotides in the probes used fall below 10. Nevertheless and particularly in groups 1, 2, 3, 4, 5, 9, 11, 13 and 18 best results are obtained when the number of nucleotides does not grow beyond large numbers (bearing in mind a maximum number which is fixed in groups 4 to 18 by the maximum lengths of th sequences concerned). For the selective identification of Neisseria gonorrhoeae versus other Neisseria most preferred probes hav sequences comprising from 15 to 27 nucleotides, said sequences being fully included in any of the sequences of group 1. Selectivity for N. gonorrhoeae is still retained with probes whose sequences overlap regions of corresponding nucleic acids of groups 1 and either 2 or 3 (or are specifically contained in

sequences belonging to the nucleic acids of group 2 or 3 only), (or are specifically contained in sequences contained in the nucleic acids of group 3 only), yet subject to adjusting the hybridization and washing conditions more stringently.

The preferred probes are those which are complementary to the natural rRNAs concerned for they hybridize both with said RNAs and the corresponding DNA.

Yet, those which have sequences included in said rRNAs, therefore which will only hybridize with the relevant natural DNAs and therefore are less sensitive as the preceding ones, are also part of the invention.

Other groups of probes of the invention are constituted by those which are specific for Neisseria strains yet considered globally (as specified above) consist of groups 6, 7, 8, 10, 12, 14, 16 and 17 as above defined, if need be under appropriate adjustment of the hybridizing and washing conditions of the hybrid possibly formed.

The probes according to the invention can be formed by cloning of recombinant plasmids containing inserts including the corresponding nucleotide sequences, if need be cleaving the latter out from the cloned plasmids upon using the adequate nucleases and recovering them, e.g. by fractionation according to molecular weights.

The probes according to the invention can also be synthetized chemically, for instance by the conventional phospho-triester method.

Among the variants defined hereabove are included hybridization probes for detecting one or more Neisseria strains which target one of the sequences defined hereunder or the corresponding complementary sequence, when the hybridization medium or the wash medium or both as appropriate are the following

hybridization medium: containing about 3xSSC,

(SSC = 0.15M NaCl, 0.015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA,

wash medium: containing about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide, wherein said target sequences and the corresponding relevant hybridization temperatures (HT) and wash temperatures (WT) respectively are as follows:

30

35

45

50

AAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 55°C

- CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA
 - HT and/or WT : about 60°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

- HT and/or WT : about 60°C 10
 - GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 65°C

- UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU 15
 - HT and/or WT : about 55°C to about 60°C

GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAU

HT and/or WT : about 65°C to about 70°C

- 20 ACCUAGGUCCGGCGGAAAUCGGACUGA
 - HT and/or WT : about 55°C

ACCUAGGUCCGGUCGGAAUCGGACUGA

25 HT and/or WT : about 55°C to about 60°C GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

- HT and/or WT : about 55°C to about 60°C
- UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG

HT and/or WT : about 60°C to about 65°C,

GCGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

- HT and/or WT : about 55°C,
 - GUUCUGAACUGGGUGACUCGAGUGUGUC

HT and/or WT : about 55°C to about 60°C,

GCAUACGUCUUGAGAGGGAAAGCA

- HT and/or WT : about 45°C,
 - **UGUACGUAAUAACUGUCGAGA**

HT and/or WT : about 40°C to about 45°C.

UCUCAACAGCGGUACUAAGCGUACGAAA 45

HT and/or WT : about 50°C to about 55°C,

UGUCUACGACACGAAGCAACCGAUACCAC

HT and/or WT : about 50°C to about 60°C, 50

UUAGGUUGGCAAGCUGUUGGAAUAGCUU

HT and/or WT : about 50°C to about 55°C,
AGCUGGUUGGCGGGGUAAAGGCCCACCA

HT and/or WT : about 45°C.

It should be emphasized that the indicated temperatures are valid only under the conditions mentioned above. Other hybridization or wash media can be used as well. However, when modifications are introduced, be it either in the probes or in the media, the temperatures at which the probes can be used to obtain the required specificity, should be changed according to known relationships, such as those described in the following reference: B.D. Hames and S.J. Higgins, (eds.). Nucleic acid hybridization. A practical approach, IRL Press, Oxford, U.K., 1985.

Among the variants defined hereabove are included hybridization probes for detecting one or more Neisseria gonorrhoeae strains which target one of the sequences defined hereunder or the corresponding complementary sequence, when the hybridization medium or the wash medium or both as appropriate are the following ones:

hybridization medium: containing about 3xSSC, (SSC = 0.15M NaCl, 0.015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, wash medium: containing about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide,

wash medium: containing about 3,550, 25 this phospitate bullet privit, and 20% distributions temperatures (HT) and wash temperatures (WT) respectively are as follows:

25

5

AAGGCUGUUGCCAAUAUCGGCGGCCGA HT and/or WT : about 50°C to about 65°C

30

35

ΔN

45

55

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 60°C to about 70°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 65°C to about 70°C

GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 70°C to about 75°C

UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU

HT and/or WT : about 65°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

HT and/or WT : about 65°C

GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

50 HT and/or WT : about 65°C

GCAUACGUCUUGAGAGGGAAAGCA

HT and/or WT : about 50°C to about 55°C

AGCUGGUUGGCGGGGUAAAGGCCCACCA

HT and/or WT : about 60°C.

Preferred probes of the invention for detecting Neisseria gonorrhoeae strains are those of groups (1) to (4), provided that the probe does not consist of the following sequence: TCA TCG GCC GCC GAT ATT GGC

The invention also relates to probes of the above mentioned sequences which can discriminate between organisms with DNA:DNA hybridization homology values between about 55% to about 75%.

In view of the evolution of rRNA molecules, it seems reasonable that rRNA derived hybridization probes, which allow discrimination between highly related taxa (more than 55 % DNA homology) other than those found within the Neisseria group (e.g. in Bordetella), can be constructed also.

It is conceivable that these highly specific probes can be obtained from the sequences found in the same regions of the rRNA molecules than those in which specific sequences for Neisseria gonorrhoeae were found (e.g. regions I, II and III in Fig. 1, in the case of 16S rRNA). These regions can be easily located after proper alignment of the total or partial rRNA sequence of the organism concerned with the rRNA sequence of E. coli. These regions will correspond to the regions found between nucleotides :

(i) 69 to 99 for region I

15

20

25

- (ii) 432 to 488 for region II
- (iii) 825 to 858 for region III

in the 16S rRNA molecule of E. coli, in which the numbering refers to the 16S rRNA sequence of E. coli shown in Fig. 8, and between nucleotides: 77 to 109

in the 23S rRNA molecule of E. coli, in which the numbering refers to the partial 23S rRNA sequence of E. coli shown in Fig. 9.

However it should be emphasized that :

- (i) highly specific probes can be constructed from other regions as well, and
- (ii) some of these regions can be absent in the rRNA molecules of certain taxa (due to mutations during evolution).

The invention also relates to a process for detecting Neisseria strains in a biological sample, wherein said process comprises contacting said biological sample in which the nucleic acids (DNAs and RNAs) have been made accessible to hybridization, if need be under suitable denaturation conditions, with a probe of the invention under conditions enabling hybridization between the probe and complementary nucleic acids of the Neisseria strains, which may be present in the sample, and detecting the hybrids possibly formed.

The process relates to the detection of Neisseria strains being directly in the sample of after the strain has been cultured.

The detection of a hybrid can be interpreted as meaning that a Neisseria infection was present in the biological sample, when any of the probes of groups 1 to 18 is being used, and even more specifically that a Neisseria gonorrhoeae infection was present when the probe used had a sequence belonging to a nucleic acid of groups 4, 5, 9, 11, 13 or 18, possibly under suitable hybridizing conditions, and even more so when the probe had a sequence belonging to a sequence of group 3, group 2 or even more preferably group 1.

According to an advantageous embodiment of the invention, in the process for detecting Neisseria strains, the probes used are the ones hybridizing both with DNA globally and RNA of the Neisseria strains which may be present in the biological sample.

The hybridization conditions can be monitored relying upon several parameters, e.g. hybridization temperature, the nature and concentration of the components of the media, and the temperature under which the hybrids formed are washed.

The hybridization temperature is limited in upper value, according to the probe (its nucleic acid composition, kind and length) and the maximum hybridization temperature of the probes described herein is about 55 °C to 75 °C. At higher temperatures duplexing competes with the dissociation (or denaturation) of the hybrid formed between the probe and the target.

The hybridization temperature is preferably comprised from about 45°C to about 70°C, particularly from about 45 °C to about 65 °C.

A preferred hybridization medium contains about 3xSSC, (SSC = 0,15 M NaCl, 0,015 M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, and 20% deionized formamide, 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA.

The washing temperature is comprised in the range from about 50 °C to about 75 °C.

The process for detecting Neisseria strains generally, according to the invention can be carried out by suitably adjusting the hybridization temperature to a value at which hybridization is specific, and in such a case washing under more stringent conditions is not necessary.

According to another embodiment of the process of the invention, the hybridization temperature needs not necessarily be adjusted to the value at which hybridization is specific and in particular can be lower than the temperature at which hybridization is specific, provided washing is carried out at a temperatur

corresponding to the value at which hybridization is specific.

20

In a process embodiment for detecting Neisseria strains generally (and for distinguishing them from other bacterial taxa) with a probe of group 6, the hybridization temperature is suitably adjusted to range of about 65 °C and/or the wash temperature to range from about 65 °C to about 70 °C, the media being those above defined.

In another process embodiment for detecting Neisseria strains generally the probe used is anyone of group 7 above defined, the hybridization temperature is suitably adjusted to range of about 55 °C and/or the wash temperature to range of about 55 °C.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 1 above defined.

The hybridization temperature is suitably adjusted to range of about 55 °C, preferably of about 53 °C, and/or the wash temperature to range of about 55 °C, preferably of about 53 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 2 above defined.

The hybridization temperature is suitably adjusted to range of about 60 °C and/or the wash temperature to range of about 60 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 3 above defined.

The hybridization temperature is suitably adjusted to range of about 60 °C and/or the wash temperature to range of about 60 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 4 above defined.

The hybridization temperature is suitably adjusted to range of about 65°C and/or the wash temperature 25 to range of about 65 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 5 above defined.

The hybridization temperature is suitably adjusted to range of about 55 °C and/or the wash temperature to range of about 55 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 8 above defined.

The hybridization temperature is suitably adjusted to range of about 55 °C and/or the wash temperature to range of about 55 °C to about 60 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 9 above defined.

The hybridization temperature is suitably adjusted to range of about 60 °C and/or the wash temperature to range of about 60 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 10 above defined.

The hybridization temperature is suitably adjusted to range of about 55 °C and/or the wash temperature to range of about 55 °C to about 60 °C, the hybridization medium being the one above defined. In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of

group 11 above defined.

The hybridization temperature is suitably adjusted to range of about 55 °C and/or the wash temperature 45 to range of about 55 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 12 above defined.

The hybridization temperature is suitably adjusted to range of about 55°C to about 60°C and/or the wash temperature to range of about 55°C to about 60°C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 13 above defined.

The hybridization temperature is suitably adjusted to range of about 45 °C and/or the wash temperature to rang of about 45 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 14 above defined.

The hybridization temperature is suitably adjusted to range of about 40 °C to about 45 °C and/or the wash temperature to range of about 40 °C to about 45 °C, the hybridization medium being the one above defined.

30

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 15 above defined.

The hybridization temperature is suitably adjusted to range of about 50 °C to about 55 °C and/or the wash temperature to range of about 50 °C to about 55 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 16 above defined.

The hybridization temperature is suitably adjusted to range of about 50 °C to about 60 °C and/or the wash temperature to range of about 50 °C to about 60 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 17 above defined.

The hybridization temperature is suitably adjusted to range of about 50 °C to about 55 °C and/or the wash temperature to range of about 50 °C to about 55 °C, the hybridization medium being the one above defined.

In a further process embodiment for detecting Neisseria strains generally, the probe used is anyone of group 18 above defined.

The hybridization temperature is suitably adjusted to range of about 45 °C and/or the wash temperature to range of about 45 °C, the hybridization medium being the one above defined.

The invention further relates also to a process for detecting Neisseria gonorrhoeae strains from other Neisseria strains in a biological sample, and advantageously for differentiating Neisseria gonorrhoeae strains from highly related taxa such as N. meningitidis, wherein said process comprises contacting said biological sample, in which the nucleic acids (DNAs and RNAs) have been made accessible to hybridization, if need be, under suitable denaturation conditions, with a probe of the invention specific for Neisseria gonorrhoeae strains and selected from groups 1 to 5, 9, 11, 13 and 18, whenever required, under hybridization and washing conditions adjusted such as to ensure specific hybridization with complementary nucleic acids of the Neisseria gonorrhoeae strains, which may be present in the sample, yet not with complementary DNA or RNA of other Neisseria species, and detecting the hybrids possibly formed.

The other Neisseria strains from which the N. gonorrhoeae strains can be specifically differentiated are for instance N. lactamica, N. mucosa, N. subflava, N. flavescens, and N. elongata.

In this respect, the hybridization temperature is preferably comprised from about 50 °C to about 75 °C.

A preferred hybridization medium contains about 3xSSC, (SSC = 0.15M NaCl, 0.015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, and 20% deionized formamide, 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, and a preferred wash medium contains about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide.

The wash temperature is comprised from about 50 °C to about 70 °C.

In a process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 2 above defined, the hybridization temperature is suitably adjusted to range about 60°C, and/or the wash temperature to range from about 65°C to about 70°C, preferably about 65°C, the medium being the one above defined.

In a process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 3 above defined, the hybridization temperature is suitably adjusted to range of about 60 °C, and/or the wash temperature to range from about 65 °C to about 70 °C, preferably about 65 °C, the medium being the one above defined.

In another process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 4 above defined, the hybridization temperature is suitably adjusted to range of about 65 °C, and/or the wash temperature for range from about 70 °C to about 75 °C, preferably about 70 °C.

In a further preferred embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 5 above defined, the hybridization temperature is suitably adjusted to range of about 60 °C, and/or the wash temperature to range of about 65 °C.

In a further preferred embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 9 above defined, the hybridization temperature is suitably adjusted to range of about 60 °C to about 65 °C, and the wash temperature to range of about 65 °C.

In another process embodiment for detecting Neisseria gonorrhoeae, the probe used belong to group 11, the hybridization temperature and/or the wash temperature is suitably adjusted to about 65 °C.

In a process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 13 above defined, the hybridization temperature is suitably adjusted to range about 50 °C to about 55 °C, and/or the wash temperature to range from about 50 °C to about 55 °C, the medium being the one above

In a process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 18 above defined, the hybridization temperature is suitably adjusted to range about 60°C, and/or the wash temperature to range about 60 °C, the medium being the one above defined.

According to another particularly preferred process embodiment for detecting Neisseria gonorrhoeae, the probe used belongs to group 1 above defined, the hybridization temperature is suitably adjusted to range of about 55 °C, preferably of about 53 °C, and/or the wash temperature to range from about 55 °C to about 65 °C, preferably from about 53 °C to about 65 °C, more preferably of about 53 °C.

In a preferred process of the invention for detecting N. gonorrhoeae, the probe used belongs to anyone of groups (1) to (4), provided that the probe does not consist of the following sequence: TCA TCG GCC GCC GAT ATT GGC

The invention also relates to a kit for the detection in vitro of a large number, preferably all Neisseria strains in a biological sample containing:

- at least one probe selected among any of those which have been defined above;
- the buffer or components necessary for producing the buffer enabling an hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria to be carried out,
- when appropriate means for detecting the hybrids resulting from the preceding hybridization.

The invention further relates to a kit for detecting specifically N. gonorrhoeae strains containing :

- at least one probe selected among any of those that are specific for N. gonorrhoeae as above defined, e.g. a probe of groups (2), (3), (4), (5), (9), (11), (13) or (18), preferably a probe of group (1);
- the buffer or components necessary for producing the buffer enabling an hybridization reaction between these probes and only the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out.

In a preferred kit for detecting N. gonorrhoeae strains, the probe belongs to groups (1) to (4), provided that the probe does not consist of the following sequence:

TCA TCG GCC GCC GAT ATT GGC

5

20

25

35

40

The invention relates to a kit for detecting a large number, preferably all Neisseria strains and specifically Neisseria gonorrhoeae strains containing:

- at least one probe selected among any of those that have been above defined, e.g. a probe of groups (1) to (18), more preferably a probe of groups (6), (7), (8), (10), (12), (14), (15), (16) or (17);
- the buffer ready for use or components in appropriate proportions necessary for producing the buffer enabling an hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Neisseria to be carried out,
- at least one probe selected among any of those that are specific for Neisseria gonorrhoeae as above defined, e.g. a probe of groups (2), (3), (4), (5), (9), (11), (13) or (18) or more preferably a probe of group (1);
- the buffer ready for use or components necessary in appropriate proportions for producing the buffer enabling an hybridization reaction between these probes and only the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out.

In a preferred kit for detecting Neisseria strains and specifically N. gonorrhoeae strains, the probe used for detecting N. gonorrhoeae strains belongs to groups (1) to (4) provided that the probe does not consist of the following sequence:

TCA TCG GCC GCC GAT ATT GGC

CONDITIONS OF THE USE OF PROBES:

The probes of the invention are advantageously labeled. Any conventional label can be used. The probes can be labeled by means of radioactive tracers such as ³²P, ³⁵S, ¹²⁵I, ³H and ¹⁴C.

The radioactive labeling can be carried out according to any conventional method such as terminal labeling at the 3' or 5' position with the use of a radio-labeled nucleotide, a polynucleotide kinase (with or without dephosphorylation by a phosphatase) or a ligase (according to the extremity to be labeled). On of the probes of the invention can be the matrix for the synthesis of a chain consisting of several radioactive nucleotides or of several radioactive and non radioactive nucleotides. The probes of the invention can also be prepared by a chemical synthesis using one or several radioactive nucleotides. Another method for radioactive labeling is a chemical iodination of th probes of the invention which leads to the binding of several 125 l atoms on the probes.

If one of the probes of the invention is made radioactive to be used for hybridization with a non radioactive RNA or DNA, the method of detecting hybridization will depend on the radioactive tracer used. Generally, autoradiography, liquid scintillation, gamma counting or any other conventional method enabling one to detect an ionizing ray issued by the radioactive tracer can be used.

Non radioactive labeling can also be used by associating the probes of the invention with residues having: immunological properties (e.g. antigen or hapten), a specific affinity for some reagents (e.g. ligand), properties providing a detectable enzymatic reaction (e.g. enzyme, co-enzyme, enzyme substrate or substrate taking part in an enzymatic reaction), or physical properties such as fluorescence or emission or absorbtion of light at any wave length. Antibodies which specifically detect the hybrids formed by the probe and the target can also be used.

A non-radioactive label can be provided when chemically synthesising a probe of the invention, the adenosine, guanosine, cytidine, thymidine and uracyl residues, thereof being liable to be coupled to other chemical residues enabling the detection of the probe or the hybrids formed between the probe and a complementary DNA or RNA fragment. However, the nucleotide sequence of the probe when modified by coupling one or more nucleotides to other chemical residues, would be the same as the nucleotidic sequence of one of the probes of the invention.

The invention also relates to processes for detecting by hybridization RNA and/or DNA with the probes of the invention, which have been labeled and can be detected as described above. In this regard, conventional methods of hybridization can be used.

For detecting cells coming from or being themselves living organisms, the RNA and/or DNA of these cells if need be, is made accessible by partial or total lysis of the cells, using chemical or physical processes, and contacted with one or several probes of the invention which can be detected. This contact can be carried out on an appropriate support such as a nitrocellulose, cellulose, or nylon filter in a liquid medium or in solution. This contact can take place under sub-optimal, optimal conditions or under restrictive conditions (i.e. conditions enabling hybrid formation only if the sequences are perfectly homologous on a length of molecule). Such conditions include temperature, concentration of reactants, the presence of substances lowering the optimal temperature of pairing of nucleic acids (e.g. formamide, dimethylsulfoxide and urea) and the presence of substances apparently lowering the reaction volume and/or accelerating hybrid formation (e.g. dextran sulfate, polyethyleneglycol or phenol).

The elimination of probe of the invention which has not hybridized can be carried out by washing with a buffer solution of appropriate ionic strength and at an appropriate temperature, with or without treatment with S1 nuclease or any other enzyme digesting single strand DNA or RNA but not digesting DNA-RNA hybrids or double strand DNA.

In a liquid medium, the hybrids of the probes of the invention paired to the cellular DNA or RNA fragments can be separated from the rest of the liquid medium in different ways, e.g. by chromatography over hydroxyapatite.

Then the hybridized probes are detected by means of the label on the probe.

In order to target the Neisseria chromosomal DNA fragments carrying the genes coding for the RNA fragments from which the labeled probes of the invention derive, after treating DNA by one or several enzymes and denaturation of DNA fragments (i.e. separation of both chains), one of the probes of the invention is contacted with the DNA fragments under the conditions enabling hybridization and after the time necessary to get to the end of the hybridization, the non-hybridized fragments are separated from the hybridized fragments and the label is detected as it has been described above for the detection of the cells.

Generally speaking, the different probes of the invention can also be contained in recombinant DNA enabling their cloning, if the presence of a heterologous DNA is not a nuisance for the specificity of the probes in the encompassed uses.

More precisely, the examples hereafter relate to the preparation of the probes of the invention respectively corresponding to the sequences (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17) and (18) above described and hereafter mentioned respectively as probes n^* 1, n^* 2, n^* 3, n^* 4, n^* 5, n^* 6, n^* 7, n^* 8, n^* 9, n^* 10, n^* 11, n^* 12, n^* 13, n^* 14, n^* 15, n^* 16, n^* 17 and n^* 18.

MATERIAL AND METHODS

1) Organisms and media used:

The following strains were cultured as described by Rossau et al. (1986): Neisseria gonorrhoeae NCTC 8375^T, Neisseria meningitidis NCTC 10025^T, Neisseria lactamica NCTC 10617^T, Neisseria mucosa CIP

59.51^T, Neisseria subflava ATCC 10555, Neisseria flavescens ATCC 13120^T, Neisseria elongata ssp. elongata NCTC 10660^T, and Morax IIa (Branhamella) catarrhalis NCTC4103. Eight randomly chosen N. gonorrhoeae strains and nine N. meningitidis strains (from different serotypes) were cultured overnight on blood agar plates at the Institute of Tropical Medicine, Antwerp, Belgium. The identity of the strains was checked by conventional methods. Purified genomic DNA from the remaining strains was provided by J. De Ley (Lab. Microbiology, State University Gent, Belgium).

2) DNA preparations:

15

20

High-molecular weight genomic DNA was prepared essentially by the method described by Marmur (1961). Plasmid DNA was isolated by the method described by Kahn at al. (1979) and purified by CsCl-gradient centrifugation.

3) Fixation of denatured DNA on nitrocellulose membranes :

The DNA solution was heated for 10 min. at 95 °C, put on ice, and adjusted to 6XSSC (SSC: 0.15M NaCl, 0.015M sodium citrate, pH 7.0). The appropriate amount of solution was applied to a BA85 membrane (Schleicher & Schuell, W.-Germany) in a dot-spot manifold. After air drying, the membrane was baked at 80 °C for 2 h.

4) Construction of pNGD1 and pNGK3:

The plasmids pNGD1 and pNGK3 contain the probes n° 3 and n° 6 as an insert respectively. They were constructed from pNG4 and pNG3 respectively, which are pTZ18R (Pharmacia, Sweden) derived recombinant plasmids which contain part of the 16S rRNA gene of Neisseria gonorrhoeae NCTC 8375^T. In the case of pNGD1, a 71 basepair Stul-KpnI fragment was subcloned and 25 basepairs beginning from the Stul site were subsequently removed by Exonuclease III (Stratagene, U.S.A.) and mung bean nuclease (Stratagene, U.S.A.) treatment. For the construction of pNGK3, 63 basepairs were likewise removed from the 3' end of the insert of pNG3. The resulting plasmid was cleaved with SphI and BstXI, followed by blunting of the sticky-ends and intramolecular ligation. The restriction enzymes were purchased from Boehringer Mannheim (W.-Germany) or Bio Labs (U.S.A.) and used as recommended by the suppliers.

5) DNA sequence determination :

The inserts of pNGD1 and pNGK3 were sequenced by the dideoxy chain-termination method on supercoiled plasmid DNA as described in the GemSeq K/RT™ Sequencing System technical manual (Promega, U.S.A.).

6) Oligonucleotide synthesis and purification:

The oligonucleotides were synthetized by the phosphite-triester method on a Gene Assembler 18-5800-01 (Pharmacia, Sweden) or a Cyclone 8400 (New Brunswick, U.S.A.). The deprotected oligonucleotides were purified on a 15% polyacrylamide gel in 7M ureum. After overnight elution, they were desalted on a Sephadex® G-25 (Pharmacia, Sweden) column.

7) Probe labeling:

The synthetic oligonucleotides used as probes were labeled using T4-polynucleotide kinase (Pharmacia, Sweden) and gamma-³²P-dATP (Amersham, U.K.) (Maniatis et al., 1982).

To eliminate interference due to vector sequences during hybridization, the inserts of pNGD1 and pNGK3 were cut out using restriction enzymes and purified by agarose gel electrophoresis. The purified inserts were labeled by filling in the sticky-ends with alpha-32P-dATP (Amersham, U.K.) using Klenow enzyme (Boehringer Mannheim, W.-Germany) (Maniatis et al., 1982). Unincorporated label was removed using a Bio-Gel® P-6DG (Bio-Rad Laboratories, U.S.A.) spin-column.

55

40

8) Hybridizations:

A general hybridization protocol was followed in all experiments except that the conditions were adapted to the nature of the probes used. Prehybridization was usually performed in plastic bags in 3xSSC, 25 mM phosphate buffer pH 7.1 (FB), 20% deionized formamide (FA), 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and 0.1mg/ml sheared, denatured salmon sperm DNA at the same temperature as the hybridization for 30 min. to 4 h. Hybridizations were performed during 1 h to overnight in the same solution to which approximately 0.5 to 1 x 10⁶ cpm/ml ³²P-probe was added. The hybridization temperature (HT) varied from experiment to experiment. Following a brief rinse in 3xSSC, 25mM FB and 20% FA at room temperature, the membranes were washed for 15 to 30 min. in 3xSSC, 25mM FB and 20% FA at the wash temperature (WT) indicated in the figures. Afterwards the membranes were rinsed in 1.5xSSC at room temperature for approximately 10 min., dried and autoradiographed.

RESULTS:

15

1) Probes used:

In order to select Neisseria gonorrhoeae specific probes, one of the rRNA cistrons of the type strain of N. gonorrohoeae was cloned and sequenced. Evolutionarily less-conserved regions within the cistron were identified by alignment with known sequences. Some of the regions were subcloned (probes n * 3 and 6) or chemically synthesized (probes n * 1, 2, 4, 5, 7, 8, 9, 10, 11 12, 13, 14, 15, 16, 17 and 18) and used as hybridization probes. Fig. 1 represents the allocations of the regions for which DNA-probes were constructed and used on the 16S rRNA secondary structure of Escherichia coli (Woese et al., 1983). These regions are indicated by an heavy bar and numbered by Roman numerals. Probe n * 9 was derived from region I, probes n * 1 to 4 were derived from region II, and probes n * 5 and 6 from regions III and IV respectively.

In Fig. 2 the complementary sequences of the probes according to the invention n° 1, n° 2, n° 3, n° 4, n° 5, n° 6 and n° 9 are aligned with the corresponding sequences of Pseudomonas testosteroni ATCC 11996 (Yang et al., 1985), the closest phylogenetic neighbour of Neisseria from which the 16S rRNA sequence is published and with the corresponding sequences of Escherichia coli (Brosius et al., 1978).

In Fig. 3 the complementary sequences of probes n° 7, n° 8, n° 10 and n° 11 derived from the 23S rRNA gene are aligned with the corresponding Escherichia coli sequences (Brosius et al., 1980).

From region II (in Fig. 1) of the 16S rRNA, four probes with different lengths (27, 37, 47 and 57 bases for probes n° 1, n° 2, n° 3 and n° 4 respectively) were tested. The probes n° 7 and n° 8 were derived from the same region in the 23S rRNA. The sequence of probe n° 8 is identical to the sequence of probe n° 7, except that in probe n° 8 an adenosine residue was inserted (see Fig. 3). From all other regions one probe only was used in the experiments.

Figure 11 represents the allocations of the regions from which probes of the invention were constructed on the presumptive 16S rRNA recombinant structure of Neisseria gonorrhoeae.

These regions are indicated by heavy bars and numbered by Roman numerals. The corresponding probe-number is indicated between brackets.

Figure 12 represents the allocation of the regions from which probes of the invention were constructed on the 23S rRNA secondary structure of Escherichia coli (Noller, Ann. Rev. Biochem. 53: 119-162, 1984).

These regions are indicated by heavy bars and numbered by Roman numerals. The corresponding probe-number is indicated between brackets.

2) Specificity of the probes:

50

a.1) Study of probes n • 1 to n • 11:

The criterion for specificity was the ability to differentiate between Neisseria gonorrhoeae and N. meningitidis strains. Several independent studies (Kingsbury, 1967; Elwell and Falkow, 1977; Hoke and Vedros, 1982; Riou at al., 1983; Guibourdenche et al., 1986) have shown that, despite their distinct pathogenic character both species are genotypically extrem ly highly related. The DNA:DNA hybridization homology values reported between representatives of both species range between 64 and 93%. These

values are most often found among members of the same species, being recalled that a consensus on the definition of a species has been reached (Wayne et al., 1987) which states that "a species generally would include strains with approximately 70% or greater DNA-DNA relatedness and with 5 °C or less delta Tm".

According to this definition N. gonorrhoeae and N. meningitidis should be considered as subspecies of one and the same species (Guibourdenche et al., 1986).

In a first series of experiments, 1 µg of denatured DNA of Neisseria gonorrhoeae NCTC 8375^T (NG), Neisseria meningitidis NCTC 10025^T (NM), and Escherichia coli B (EC) was spotted onto membranes and hybridized at the temperature (HT:i.e. hybridization temperature) and with the probes indicated in Fig. 4. Following hybridization the membranes were washed for 15 min. at different wash temperatures (WT), dried and autoradiographed for 24 h with an intensifying screen at -70 °C. From the autoradiographs in Fig. 4, it is clear that all probes derived from regions I, II and III (Fig. 1) of the 16S rRNA (probes n° 1 to 5 and probe nº 9) and one probe (nº 11) of the 23S rRNA are specific for N. gonorrhoeae at the appropriate wash 10 temperature, i.e.

- at a wash temperature of 55, 60 and 65 °C for probe n ° 1,
- at a wash temperature of 60, 65 and 70 °C for probe n ° 2,
- at a wash temperature of 65 °C for probe n ° 3,
- at a wash temperature of 70 and 75 °C for probe n ° 4,
- at a wash temperature of 65 °C for probe n ° 5.

15

- at a wash temperature of 65 °C for probe n ° 9.
- at a wash temperature of 65 °C for probe n ° 11.

By comparison, the autoradiographs in Fig. 4 show that probes n * 6, n * 7, n * 8 and n * 10 are not specific for N. gonorrhoeae.

The hybridization results of probes n° 1, n° 5 and n° 9 with genomic DNA from randomly chosen N. gonorrhoeae and N. meningitidis strains are presented in Fig. 5. One ug denatured DNA from nine Neisseria gonorrhoeae strains (row A, B and C, 1 to 3), ten Neisseria meningitidis strains (row D, E and F, 1 to 3 and row G, 1), and one strain each of Pseudomonas testosteroni (row G, 2) and Escherichia coli (row G, 3) were spotted onto nitrocellulose, hybridized with probe n° 1 (panel A), probe n° 5 (panel B) and probe n • 9 (panel C) at 50 • C, 55 • C, and 60 • C respectively and washed at the temperature indicated. The autoradiographs in Fig. 5 show that the probes n $^{\circ}$ 1, n $^{\circ}$ 5 and n $^{\circ}$ 9 duplex with the DNA from all \underline{N} . gonorrhoeae strains tested. Probes N • 5 and n • 9 were specific for N. gonorrhoeae strains at high stringencies only (for instance hybridization temperature of 55 °C, wash temperature of 65 °C, in the case of probe n° 5) whereas probe n° 1 remained specific at low stringency conditions (hybridization temperature of 50 °C, wash temperature of 50 °C or 55 °C). In view of the sequence conservation within rRNA cistrons, it seems unlikely that the latter probe will not form stable duplexes with the nucleic acid from other N. gonorrhoeae strains under these non-stringent conditions.

If a taxon-specific rRNA-derived DNA-probe does not detect nucleic acid from closely related organisms, the probability that it will detect nucleic acid from more remotely organisms can considered to be very small. This is shown by Fig. 6 corresponding to an experiment in which probes n° 3, n° 5, n° 6 and n* 7 were hybridized with genomic DNA of seven Neisseria species and some other Gram-negative bacteria. More precisely, Fig. 6 represents hybridization results of selected rRNA-derived DNA-probes with one µg of denatured DNA of Neisseria gonorrhoeae NCTC 8375^T (row A,1), N. meningitidis NCTC 10025^T -(row B,1), N. lactamica NCTC 106171 (row C,1), N. mucosa CIP 59.511 (row D,1), N. subflava ATCC 10555 (row E,1), N. flavescens ATCC 13120^T (row F,1), N. elongata ssp. elongata NCTC 10660^T (row A,2), Chromobacterium violaceum NCTC 9757NT (row B,2), Pseudomonas testosteroni ATCC 17407 (row C,2), Haemophilus ducreyi CIP 542 (row D,2), Moraxella (Branhamella) catarrhalis NCTC 4103 (row E,2), and Escherichia coli B (row F,2), spotted on nitrocellulose, hybridized at the temperature and with the probe indicated and washed at the temperature indicated. Under the conditions used, probes n . 3 and 5 did not form stable duplexes with any of the DNAs tested, except for N. gonorrhoeae DNA. Even the less-specific probes (n ° 6 and 7) did not produce a detectable signal with non-neisserial DNA. It should be mentioned that probe n° 6 did hybridize with DNA from the type strain of Simonsiella crassa at 60°C in 3SSC and

From the results shown in Fig. 4, 5 and 6, it is obvious that the specificity of the probes is highly dependent on the hybridization and wash conditions used. For instance, by simply altering the wash temperature, the detection-range of the probes can be extended, so that one and the same probe can be used to detect N. gonorrhoeae specifically, or a larger group of organisms. This is illustrated in Fig. 7 in which 1 µg of dot-spotted denatured DNA from Neisseria gonorrhoeae NCTC 8375^T (NG), N. meningitidis NCTC 10025^T (NM), N. elongata ssp. longata NCTC 10660 (NE), Chromobacterium violaceum NCTC 9575^T (CV), Pseudomonas testosteroni ATCC 17407 (PT), and Escherichia coli B (EC) was hybridized at 50 °C with 32P-labeled probe n ° 3 in the absenc of formamide. Afterwards the membranes were washed at 50, 60, 70 and 80 °C respectively in 3SSC and 25mM FB. The membranes were dried and autoradiographed overnight at -70 °C with an intensifying scr en. It results from this figure that the specificity of the probe decreases when wash temperatures are lowered. At 80 °C, probe n ° 3 is specific for N. gonorrhoeae DNA. At 70 °C, this probe duplexes with N. gonorrhoea and N. meningitidis DNA, and at 60 °C with DNA from the three Neisseria species tested. However, even non-neisserial DNA could be detected when the wash temperature was 50 °C.

Table I below summarizes the temperature range in which the probes of the invention are specific for N. gonorrhoeae. For each probe this temperature range is between Ts and Td. Ts is the lowest temperature at which the probe is still specific for N. gonorrhoeae and Td is the temperature at which the probe-target duplex is completely dissociated. These values were obtained under the following conditions: 3 SSC, 25 mM FB pH 7.1 and 20% FA. If these conditions the nature of the probe or the target are changed, the temperatures will change accordingly. The temperatures were experimentally determined using intervals of 5 °C, hence the delta 5 °C range of Ts and Td. It is to be noted that probe n ° 1 may also be specific at a temperature lower than 45-50 °C and that probes n ° 6, n ° 7, n ° 8 and n ° 10 are not specific for Neisseria gonorrhoeae.

TABLE I

15

Probe Ts(°C) Td(°C) 45-50 1 65-70 2 55-60 70-75 3 60-65 70-75 4 65-70 75-80 5 60-65 65-70 6 70-75 7 55-60 8 60-65 9 60-65 65-70 10 65-70 11 60-65 65-70

30

35

20

25

a.2) Results concerning probe n 1:

Probe n • 1 was extensively tested using 202 N. gonorrhoeae strains and 84 N. meningitidis strains. The following method was used:

A few colonies of each strain were applied to Biodyne A membranes which were placed for 3 minutes on Whatman® 3MM paper saturated with 10% SDS. After drying, the membranes were baked for 2 h. at 80 °C and hybridized for 1 to 2 h. at 53 °C in hybrididization mixture to which about 10⁶ cpm/ml ³²P-labeled probe (n ° 1) was added.

The results are illustrated in Figure 15. In Figure 15, each number represents either a Neisseria gonorrhoeae or a N. meningitidis strain. The N. meningitidis strains are boxed.

All N. gonorrhoeae strains gave an unequivocal positive signal after 3 h. exposure (at -80 °C with intensifying screen). None of the N. meningitidis strains gave a positive results even after overnight exposure. The presence of a detectable amount of rRNA in the N. meningitidis spots was afterwards confirmed using a non-specific rRNA-derived probe.

Other experiments showed that probe n • 1 also hybridized to DNA of Neisseria species strain ATCC 43831 (see Fig. 16). In Figure 16, the hybridization results with probe n • 1 and DNA of Neisseria species strain ATCC 43831 are represented: the hybridization and wash temperature was 52.5 • C (in 3SSC, 25 mM PB, pH 7.1 and 20% FA).

This ATCC 43831 strain is an unclassified strain with intermediate characteristics between N. gonor-rhoeae and N. menigitidis.

As shown in Figure 17, probe n 1 did not cross-hybridize with DNA of a variety of other bacteria.

In Figure 17, the hybridization results of probe n°1 with 1 microgram of dot spotted genomic DNA of a variety of bacterial strains are represented: the location of the strains is given in Table II hereafter given and the hybridization and wash temperature was 52.5°C (in 3SSC, 25 mM PB, pH 7.1 and 20% FA).

TABLE II

	Strain Name	Culture	Collection
5	n°	en en Pro-en	n°
		- -	N MCTC* 8375*
40	1. <u>Neisseria gonorrhoeae</u>		ITG 4339
10	2. Neisseria gonorrhoeae		ITG 4085
	3. <u>Neisseria gonorrhoeae</u>		ITG 4308
	4. <u>Neisseria gonorrhoeae</u>		ITG 3939
15	 Neisseria gonorrhoeae 		ITG 4363
	6. <u>Neisseria gonorrhoeae</u>		4.11
	7. <u>Neisseria gonorrhoeae</u>		ITG 4367
	8. <u>Neisseria gonorrhoeae</u>	• • •	ITG 4401
20	9. <u>Neisseria gonorrhoeae</u>	•	ITG 4437
	10. <u>Neisseria</u> <u>meningitidis</u>		NACTC 10025
	11. <u>Neisseria</u> <u>meningitidis</u>		ITG 3342
	12. Neisseria meningitidis		ITG 3343
25	13. Neisseria meningitidis		ITG 3345
	14. Neisseria meningitidis		ITG 3346
	15. Neisseria meningitidis	•	ITG 3348
30	16. Neisseria meningitidis	7.	ITG 3349
	17. Neisseria meningitidis		ITG 3350
	18. <u>Neisseria</u> meningitidis		ITG 3357
	19. <u>Neisseria</u> meningitidis		ITG 3362
35	20. <u>Neisseria</u> polvsaccharea		CIP N462T
	21. <u>Neisseria láctamica</u>		NACTC 10616
	22. <u>Neisseria lactamica</u>		NMCTC 10617
	23. Neisseria lactamica		ITG 3689
40	24. Neisseria lactamica		ITG 3690
	25. <u>Neisseria cinerea</u>		N MCTC 10294
	26. Neisseria mucosa		CIP 59.51 [†]
45	27. Neisseria mucosa	•	CIP 59.48
	28. Neisseria mucosa		CIP 59.47

50

	TABLE II (continued)	٠.
	29. <u>Neisseria</u> macacae	CIP N4176
5	30. <u>Neisseria</u> <u>flavescens</u>	ATCC 13120*
	31. <u>Neisseria</u> <u>subflava</u>	ATCC 10555
	32. <u>Neisseria</u> <u>subflava</u>	ITG 3821
10	33. <u>Neisseria sicca</u>	ITG 3882
	34. <u>Neisseria elongata</u> subsp. <u>elon</u>	gata WMCTC 10660
	35. <u>Neisseria elongata</u> subsp. <u>qlyc</u>	
	36. <u>Neisseria</u> <u>canis</u>	ATCC 146871
15	37. <u>Neisseria</u> <u>animalis</u>	N NCTC 102127
	38. <u>Neisseria</u> <u>denitrificana</u>	ATCC 146867
	39. CDC group M-5	CCUG 4007
20	40. CDC group EF-4a	CDC T-191/78
	41. Kingella denitrificana	N NCTC 10995
	42. Kingella denitrificana	NNCTC 10997
25	43. <u>Kingella</u> <u>kingae</u>	NMCTC 10529
25	44. <u>Simonsiella muelleri</u>	ATCC 29452
	45. <u>Simonsiella</u> <u>crassa</u>	ATCC 15533T
	46. <u>Simonsiella steedae</u>	ATCC 27398
30	47. <u>Simonsiella</u> species	ATCC 27381
	48. Alvsiella filiformis	CCUG 3710 ¹
	49. Eikenella corrodens	N MCTC 105961
35	50. Eikenella corrodens	н мім 801-1
	51. Chromobacterium violaceum	NACTO 9757
	52. Chromobacterium fluviatile	LMG 6574
40	53. Aquaspirillum dispar	ATCC 27650
40	54. <u>Pseudomonas</u> <u>testosteroni</u>	ATCC 17407
	55. Oligella urethralis	LMG 6227
	56. <u>Haemophilus</u> <u>ducrevi</u>	CIP 542
45	57. <u>Kingella indologenes</u>	N NCTC 10717
	58. Moraxella (Branhamella) catarrh	elis NACTC 4103
	59. <u>Escherichia</u> <u>coli</u> .	В
- 0		

LOCATION OF THE STRAINS ON FILTER I &

1	20	24	⁷ 28	32	36
7	21	··25	29	33	37
10	22	- 26	30	34	38
17	23	-27 -	-31	35	51

FILTER I

5

10

15

20

30

55

			· .		. 	
	1	40	44	48	52	56
Ì	10	41	45	49	53	57
	20	42	46	50	54	58
	39	43	47	51	55	59
			l	1		

FILTER II

In conclusion, under the conditions used, probe n°1 proved to be 100% specific and 100% reliable for N. gonorrhoeae as compared to conventional identification techniques. The probe also proved to be more reliable than the cryptic plasmid probe initially described by Totten et al., J. Infect. Dis., 148:462-471, 1983 (results not shown).

a.3) Results concerning probe n . 10:

Probe n° 10 was hybridized with a great variety of bacterial DNAs. The results are shown in Figure 18. In Figure 18, the hybridization results of probe n * 10 with 1 microgram dot-spotted genomic DNA from a variety of bacterial strains are represented.

The hybridization temperature was 55°C (in 3SSC, 25 mM PB, pH 7.1 and 20% FA). The wash temperatures are indicated (the same medium was used). The location of the strains is given in Table II.

Probe n • 10 hybridizes to DNA of almost all Neisseria strain. At 60 • C weak crossreactions are observed also with DNA from Simonsiella and Alysiella strains, which are close relatives of the neisseriae (Rossau et al., IJSB, 1989 in press).

b) Study of probes n * 12 to n * 18:

The specificity of probes n°12 to n° 18 was tested as described hereabove (same method, same media). The hybridization (HT) and wash temperature (WT) used, are indicated in Figure 13.

In Figure 13, the specificity of the probes at different wash temperature is determined as follows:

Following hybridization at the temperature (HT) and with the probe indicated, the membranes, on which 1 µg of denatured DNA of Neisseria gonorrhoeae NCTC 8375T (NG), Neisseria meningitidis NCTC 10025T (NM), Escherichia coli B (EC) and Branhamella catarrhalis ITG 4197 (BC) was spotted, were washed for 15 min. at the indicated wash temperature, dried and autoradiographed for 24 h. with an intensifying screen at 70 ° C.

It is clear from the results shown on Figure 13 that probes n° 12, 14 and 17 are not specific for Neisseria gonorrhoeae. They can be used to detect one or more Neisseria strains at the following hybridization temperature (HT) and wash temperature (WT):

probe n * 12: HT and WT between about 55 * C and about 60 * C

probe n° 14: HT and WT between about 40°C and about 45°C

probe n * 17: HT and WT between about 50 * C and about 55 * C

Although probes n° 15 and 16 do not hybridiz with DNA of the type strain of N. meningitidis under stringent conditions (see Figure 13), further experiments showed that they are not sufficiently specific for N. gonorrhoeae as they crosshybridize to som other Neisseria strains, mainly N. meningitidis strains. Both

probes can thus be used only to detect one or more Neisseria strains at the following HT and WT:

probe n * 15: HT and WT b tween about 50 * C and about 55 * C

probe n * 16: HT and WT between about 50 * C and about 60 * C.

Under highly stringent conditions probes n • 13 and 18 hybridized to all N. gonorrhoeae strains tested and not with any of the N. meningitidis strains tested at the following HT and WT:

probe n * 13: HT and WT from about 50 to about 55 * C

probe n * 18: about 60 * C

15

20

25

45

An example is given with respect to the hybridization results with probe n° 18 in Figure 14.

Probe n • 18 was hybridized with 1 µg denatured dot-spotted DNA from 9 N. gonorrhoeae strains (row 70 A, B and C, 1 to 3), 10 N. meningitidis strains (row D, E and F, 1 to 3 and row G, 1) and two reference strains not related to Neisseria (row G, 2 and 3). The hybridization and wash temperature was 60 • C.

Table III below summarizes the temperature range in which the probes n° 12 and n° 18 of the invention are specific for N. gonorrhoeae. In this Table, Ts and Td have the meaning above explained under the conditions hereabove detailed (cf. Table I).

TABLE III

Probe Ts(°C) Td(°C) 12 60-65 13 50-55 55-60 14 45-50 15 55-60 16 60-65 17 55-60 18 55-60 60-65

The probes of the invention can be used in a sandwich hybridization system which enhances the specificity of a nucleic acid probe based assay.

The principle and the use of sandwich hybridizations in a nucleic acid probe based assay have been already described (e.g.: Dunn and Hassel, Cell, 12: 23-36, 1977; Ranki et al., Gene 21, 77-85, 1983). Although direct hybridization assays have favourable kinetics, sandwich hybridizations are advantageous with respect to a higher signal to noise ratio. Moreover sandwich hybridizations can enhance the specificity of a nucleic acid probe based assay. If properly designed, a sandwich hybridization assay indeed maximizes the specificity of a nucleic acid probe based test when using two probes recognizing two different nucleic acid stretches of one and the same organism. The only demands which must be met are that both probes (i) hybridize to nucleic acid of the target organism and (ii) do not hybridize to the same non-target organisms.

For two given probes I and II, the sandwich hybridization system can be described as follows:

Probe n • I hybridizes to nucleic acid from organisms A and B (not with C).

Probe nº II hybridizes to nucleic acid from organisms A and C (not with B).

Since it is absolutely required that both probes hybridize to the target nucleic acid, a detectable signal will be generated only if nucleic acid from organism A is present in the sample.

In Figure 10, a sandwich hybridization assay with enhanced specificity is represented:

- Probe I hybridizes with nucleic acid from organisms A and B and is fixed to the solid support.
- Probe II hybridizes with nucleic acid from organisms A and C and is labeled.

The test will be positive only if the labeled probe (probe II) will become indirectly fixed to the support, i.e. if nucleic acid from organism A is present.

More particularly, on the first drawing of figure 10, probe I and probe II hybridize with the target nucleic acid (A). The labeled probe is fixed. The test is positive.

On the second drawing of figure 10, probe I hybridizes with nucleic acid from organism B, but probe II does not. The labeled probe is not fixed. There will be no signal; the test is negative.

On the third drawing of figur 10, nucleic acid from organism C is not fixed. Consequently the labeled probe is not fixed. There will be not signal; the test is negative.

Some of the probes of the invention can be combined in a sandwich hybridization assay which is highly specific for Neisseria gonorrhoeae. Advantageous combinations of probes of the invention which maximize the specificity for N. gonorrhoeae are:

- probe of group 9 and anyone of the probes of the following groups: 1, 2, 3, 5 and 13.

- probe of group 13 and anyone of the probes of the following groups: 1, 2, 3 and 5.
- probe of group 18 and anyone of the probes of the following groups: 1, 2, 3, 5, 9 and 13.
- probe of group 5 and anyone of the probes of the following groups: 1, 2 and 3.

Advantageous combinations of probes of the invention which are specific for N. gonorrhoeae are the following ones:

probe of groupe 13 and anyone of the probes of the following groups 5, 9 and 18.

Preferred combinations of probes of the invention which are specific for N. gonorrhoeae are the following ones:

- probe of group 9 and of group 5.
- probe of group 18 and one of the probes of the following groups: 5 and 9.

These combinations have the 16S rRNA molecule as target. Combinations between 16S rRNA- and 23S rRNA-derived probes (e.g. probe of group 11 and probe of group 13 or group 18) are only possible if the genomic DNA is the target-molecule.

In the sandwich hybridization process for detecting N. gonorrhoeae, the probes can be added simultaneously or not, to the biological sample in which the target DNA or RNA is sought.

The advantageous approximate hybridization temperature and wash temperature for the above mentioned combinations are given in the following Table IV:

Table IV

20

25

Number of the probe	1	2	3	5	9	13	18
1	*						
2	-	*					
3	-	-	*				
5	53	60	65	١ *			
9	55	55	65	65	١ .	1	. !
13	52	52	52	52	52	'	
18	53	60	60	60	60	52	*

30

35

45

50

This Table represents preferred approximate hybridization and wash temperatures (in °C) for the different combinations of probes in a sandwich hybridization assay. The combinations indicated by "-" should not be used.

For instance,

- an assay in which probes n * 1 and n * 5 are combined should be performed at about 53 * C, and
- an assay in which probes n° 18 and n° 9 are combined should be performed at about 60°C.

The invention also relates to a kit for sandwich hybridization assay, for the detection in vitro of Neisseria gonorrhoeae strains in a biological sample, said kit containing :

- at least two probes specific for N. gonorrhoeae as above selected from the following combinations:
- probe of group 9 and anyone of the probes of the following groups: 1, 2, 3, 5 and 13.
- probe of group 13 and anyone of the probes of the following groups: 1, 2, 3 and 5.
- probe of group 18 and anyone of the probes of the following groups: 1, 2, 3, 5, 9 and 13.
- probe of group 5 and anyone of the probes of the following groups: 1, 2 and 3 and particularly from the following combination:
- probe of group 13 and anyone of the probes of the following groups: 5, 9 and 18 and more particularly from the following combinations:
- probe of group 9 and of group 5.
- probe of group 18 and one of the probes of the following groups: 5 and 9
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out, when appropriate means for detecting the hybrids resulting from the preceding hybridization.

The fact that Neisseria gonorrhoeae and Neisseria meningitidis strains can be distinguished from each other by some of the probes of the invention has some widespread implications on the use of rRNA-derived probes in general, because both taxa are genotypically related at the subspecies level. Hence, the probes according to the invention cannot be used xclusively to detect large groups of organisms, but can be used also to differentiate between organisms at the subspecies lev I. There is no r ason to believe that this should be the cas in Neisseria only, and not in other taxa. Provided that the probe sequence and the hybridization conditions are carefully chosen, differentiation at the subspeci s level can be accomplished in

a simple direct hybridization format, making the tedious Southern-blot analysis obsolete.

The specific probes of the invention, in particular probes n° 1 to n° 5, n° 9, n° 11, n° 13 and n° 18 should find application in the culture confirmation of Neisseria gonorrhoeae and the diagnosis of N. gonorrhoeae in all types of clinical samples, since no interference is to be expected from other microorganisms under the appropriate conditions.

Moreover, the probes of the invention can be used for taxonomic or epidemiological investigations based on restriction fragment length polymorphism analysis (Grimont and Grimont, 1986), or to identify and classify related microorganisms.

There follows a bibliography by way of articles which belong to the background of this invention.

BIBLIOGRAPHY

10

20

35

- 1. Brosius, J., T.J. Dull, and H.F. Noller. 1980. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 77:201-204.
- 15 1a. Brosius, J., J.L. Palmer, J.P. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75:4801-4805.
 - 2. Edelstein, P.H. 1986. Evaluation of the Gen-Probe DNA probe for the detection of legionellae in culture. J. Clin. Microbiol. 23: 481-484.
 - 3. Elwell, L.P., and S. Falkow. 1977. Plasmids of the genus Neisseria. p. 138-154. In: Roberts R.B., (ed.). The gonococcus. John Wiley and Sons. New York.
 - 4. Festl, H., W. Ludwig, adn K.H. Schleifer. 1986. DNA hybridization probe for the Pseudomonas fluorescens group. Appl. Env. Microbiol. 52:1190-1194.
 - 5. Gobel, U.B., A. Geiser, and E.J. Stanbridge. 1987. Oligonucleotide probes complementary to variable regions of ribosomal RNA discriminate between Mycoplasma species. J. Gen. Microbiol. 133: 1969-1974.
 - 6. Grimont, F., and P.A.D. Grimont. 1986. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann. Microbiol. (Inst. Pasteur) 137B: 165-175.
 - 7. Guibourdenche, M., M.Y. Popoff, and J.Y. Riou. 1986. Deoxyribonucleic acid relatedness among Neisseria gonorrhoeae, N. meningitidis, N. lactamica, N. cinearea and "Neisseria polysaccharea". Ann. Microbiol. (Inst. Pasteur). 137B:177-185.
- 8. Haun, G., and U. Gübel, 1987. Oligonucleotide probes for genus-, species- and subspecies-specific indetification of representatives of the genus Proteus. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Lett. 43:187-193.
 - 9. Hoke, C., and N.A. Vedros. 1982. Taxonomy of the neisseriae: deoxyribonucleic acid base composition, interspecific transformation, and deoxyribonucleic acid hybridization. Int. J. Syst. Bacteriol. 32:57-66.
 - 10. Kahn, M., R. Kolter, C. Thomas, D. Figurski, R. Meyer, E. Remaut, and D.R. Helinski. 1979. Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, RK2. Methods Enzymol. 68:268.
 - 11. Kingsbury, D.T. 1967. Deoxyribonucleic acid homologies among species of the genus Neisseria. J. Bacteriol. 94:870-874.
- 40 12. Maniatis, T., E.F. Fritsch, and J. Sambrook (ed.). 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York.
 - 13. Marmur, J.A. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3:208-218.
- Palmer, L., S. Falkow, and L. Klevan. 1986. 16S ribosomal RNA genes of Chlamydia trachomatis. p. 89-91. In.: D. Oriel, G. Ridgway, J. Schachter, D. Taylor-Robinson, and M. Ward (ed.). Chlamydia infections. Cambridge University Press, Cambridge, U.K.
 - 15. Riou, J.Y., M. Guibourdenche, and M.Y. Popoff. 1983. A new taxon in the genus Neisseria. Ann. Microbiol. (Inst. Pasteur) 134B:257-267.
 - 16. Rossau, R., A. Van Landschoot, W. Mannheim, and J. De Ley. 1986. Inter- and intrageneric similarities of ribosomal ribonucleic acid cistrons of the Neisseriaceae. Int. J. Syst. Bacteriol. 36:323-332. 17. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr, and H.G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37:463-464.
 - 18. Wilkinson, H.W. J.S. Sampson, and B.B. Plikaytis. 1986. Evaluation of a commercial gene prob for identification of Legionella cultures. J. Clin. Microbiol. 23:217-220.
 - 19. Woese, C.R., E. Gutell, R. Gupta, and H.F. Noller. 1983. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47:621-669.

20. Yang, D., Y. Oyaizu, H. Oyaizu, G.J. Olsen, and C.R. Woese. 1985. Mitochondiral Origins. Proc. Natl. Acad. Sci. U.S.A. 82:4443-4447.

Claims

5

25

30

40

45

- 1. Probe for detecting one or more Neisseria strains, containing :
 - either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes itself of from 10 to the maximum number of nucleotides of the selected nucleic acid
- 10 GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTGACAAAAGTCC (4)
- GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUGACAAAAGUCC 15 (4bis)
- GGACTTTTGTCAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC (4ter)
- GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC 20

	(4quater)
ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA	(5)
ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA	(5bis)
TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT	(5ter)
UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU	(5quater)

(6bis)

GTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCACGGTAT (6ter)

GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAU (fanatar)

		(6quater)
	TCAGTCCGATTTCCGCCGGACCTAGGT	(7)
	UCAGUCCGAUUUCCGCCGGACCUAGGU	(7bis)
	ACCTAGGTCCGGCGAAATCGGACTGA	(7ter)
i	ACCUAGGUCCGGCGAAAUCGGACUGA	(7quater)
	TCAGTCCGATTTCCGACCGGACCTAGGT	(8)
	UCAGUCCGAUUUCCGACCGGACCUAGGU	(8bis)
)	ACCTAGGTCCGGTCGGAAATCGGACTGA	(8ter)
	ACCUAGGUCCGGUCGGAAAUCGGACUGA	(8quater)

55

	CGCCACCCGAGAAGCAAGCTTCCCTGTGCTGC	(9)
	CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC	(9bis)
5	GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG	(9ter)
	GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG	(9quater)
	CGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATA	(10)
10	CGGGGCUUACGGAGCAAGUCCUUAACCUUAGAGGGCAUA	(10bis)
-	TATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCG	(10ter)
	UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG	(10quater)
	GCGGAATCATAGCTTTATTGCCAGCTCCCCCGC	(11)
15	GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCGC	(11bis)
	GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC	(11ter)
	GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC	(llquater)
	GACACACTCGAGTCACCCAGTTCAGAAC	(12)
20	GACACUCGAGUCACCAGUUCAGAAC	(12bis)
	GTTCTGAACTGGGTGACTCGAGTGTGTC	(12ter)
	GUUCUGAACUGGGUGACUCGAGUGUGUC	(12quater)
25	TGCTTTCCCTCTCAAGACGTATGC	(13)
	UGCUUUCCCUCUCAAGACGUAUGC	(13bis)
	GCATACGTCTTGAGAGGGAAAGCA	(13ter)
	GCAUACGUCUUGAGAGGGAAAGCA	(13quater)
30	TCTCGACAGTTATTACGTACA	(14)
	UCUCGACAGUUAUUACGUACA	(14bis)
	TGTACGTAATAACTGTCGAGA	(14ter)
35	UGUACGUAAUAACUGUCGAGA	(14quater)
•	TTTCGTACGCTTAGTACCGCTGTTGAGA	(15)
	UUUCGUACGCUUAGUACCGCUGUUGAGA	(15bis)
	TCTCAACAGCGGTACTAAGCGTACGAAA	(15ter)
40	UCUCAACAGCGGUACGAAA	(15quater)
	GTGGTATCGGTTGCTTCGTGTCCGTAGACA	(16)
	GUGGUAUCGGUUCGUGUCCGUAGACA	(16bis)
	TGTCTACGGACACGAAGCAACCGATACCAC	(16ter)
45	UGUCUACGGACACGAAGCAACCGAUACCAC	(16quater)
	AAGCTATTCCAACAGCTTGCCAACCTAA	(17)
	AAGCUAUUCCAACAGCUUGCCAACCUAA	(17bis)
50	TTAGGTTGGCAAGCTGTTGGAATAGCTT	(17ter)
	UUAGGUUGGCAAGCUGUUGGAAUAGCUU	(17quater)

	TGGTGGGCCTTTACCCCGCCAACCAGCT	(18)
	UGGUGGGCCUUUACCCCGCCAACCAGCU	(18bis)
5	AGCTGGTTGGCGGGGTAAAGGCCCACCA	(18ter)
Ü	AGCUGGUUGGCGGGGUAAAGGCCCACCA	(18quater)

provided that the probe does not consist of the following sequence:

TCA TCG GCC GCC GAT ATT GGC

- or a variant sequence which distinguishes of any of the preceding sequences (4) to (18)
- . either by addition to or removal from any of their respective extremities of one or several nucleotides.
- or changing within any of said sequences of one or more nucleotides,

10

15

20

45

50

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- 2. The probe of claim 1, containing:
 - either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes itself of from 10 to the maximum number of nucleotides of the selected nucleic acid

	TCGGCCGCCGATATTGGCAACAGCCTT (1)	
25	UCGGCCGCCGAUAUUGGCAACAGCCUU (1k	ois)
	AAGGCTGTTGCCAATATCGGCGGCCGA (1t	er)
	AAGGCUGUUGCCAAUAUCGGCGGCCGA (10	guater)
30	TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (2)	İ
	UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (2)	ois)
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA (2	ter)
35	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (20	quater)
	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCC	rg (3)
	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCC	UG (3bis)
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTA	cc (3ter)
40	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUA	CC(3quater)

provided that the probe does not consist of the following sequence: TCA TCG GCC GCC GAT ATT GGC

- or a variant sequence which distinguishes of any of the preceding sequences (1) to (18)
 - . either by addition to or removal from any of their respective extremities of one or several nucleotides,
 - or changing within any of said sequences of one or more nucleotides,

yet provided that in any of the above circumstances said probe still hybridises with the same RNA or DNA target as the corresponding unmodified sequence.

Probe for detecting one or more Neisseria strains, which targets on of the sequ nces defined hereunder or the corresponding complementary sequenc , when the hybridization medium or the wash 55 medium or both as appropriate are th following ones: hybridization medium: containing about 3xSSC, (SSC = 0.15M NaCl, 0.015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide 0.02% ficoll, 0.02% bovin serum

albumin, 0.02% polyvinylpyrrolidon , and about 0.1 mg/ml sheared, denatured salmon sperm DNA, wash medium : containing about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide

wherein said target sequences and the corresponding relevant hybridization temperatures (HT) and wash temperatures (WT) respectively are as follows:

AAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 55°C

5

10

15

20

25

30

35

40

45

50

55

CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 60°C

CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 60°C

GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 65°C

5 UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU

HT and/or WT : about 55°C to about 60°C

GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAU

HT and/or WT : about 65°C to about 70°C

ACCUAGGUCCGGCGGAAAUCGGACUGA

HT and/or WT : about 55°C

ACCUAGGUCGGUCGGAAAUCGGACUGA

HT and/or WT: about 55°C to about 60°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

HT and/or WT : about 55°C to about 60°C

UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG

HT and/or WT : about 60°C to about 65°C

GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

HT and/or WT : about 55°C

GUUCUGAACUGGGUGACUCGAGUGUGUC

HT and/or WT : about 55°C to about 60°C,

GCAUACGUCUUGAGAGGGAAAGCA

30 HT and/or WT: about 45°C,

UGUACGUAAUAACUGUCGAGA

HT and/or WT: about 40°C to about 45°C,

UCUCAACAGCGGUACUAAGCGUACGAAA

HT and/or WT : about 50°C to about 55°C,

UGUCUACGGACACGAAGCAACCGAUACCAC

HT and/or WT : about 50°C to about 60°C,

UUAGGUUGGCAAGCUGUUGGAAUAGCUU

HT and/or WT : about 50°C to about 55°C,

AGCUGGUUGGCGGGGUAAAGGCCCACCA

45 HT and/or WT : about 45°C.

4. Probe for detecting one or more Neisseria gonorrhoeae strains from other bacterial strains, and in particular from other Neisseria strains, containing

 either a sequence belonging to a nucleic acid selected from the following groups of nucleic acids and which includes itself of from 10 to the maximum number of nucleotides of the selected nucleic acid

55

```
TCGGCCGCCGATATTGGCAACAGCCTT
                                                 (1)
          UCGGCCGCCGAUAUUGGCAACAGCCUU
                                                 (lbis)
          AAGGCTGTTGCCAATATCGGCGGCCGA
5
                                                 (1ter)
          AAGGCUGUUGCCAAUAUCGGCGGCCGA
                                              (1quater)
    TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG
                                             (2)
    UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (2bis)
    CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA (2ter)
    CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (2quater)
    GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (3)
15
    GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCCUCCCUG (3bis)
    CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC (3ter)
    CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC(3quater)
    GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTGACAAAAGTCC
20
                                                     (4)
    GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUGACAAAAGUCC
                                                     (4bis)
25
    GGACTTTTGTCAGGGAAGAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC
                                                     (4ter)
    GGACUUUUGUCAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC
30
                                                   (4quater)
    ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA
                                                   (5)
    ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA
                                                   (5bis)
    TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT
35
                                                  (5ter)
    UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU
                                                  (5quater)
    CGCCACCCGAGAAGCAAGCTTCCCTGTGCTGC
                                                  (9)
    CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC
                                                  (9bis)
    GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG
                                                  (9ter)
    GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG
                                                  (9quater)
    GCGGAATCATAGCTTTATTGCCAGCTCCCCGC
                                                  (11)
45
    GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCGC
                                                  (11bis)
    GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC
                                                  (11ter)
    GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC
                                                  (llquater)
    TGCTTTCCCTCTCAAGACGTATGC
                                                  (13)
   UGCUUUCCCUCUCAAGACGUAUGC
                                                  (13bis)
```

	GCATACGTCTTGAGAGGGAAAGCA	(13ter)
	GCAUACGUCUUGAGAGGGAAAGCA	(13quater)
5	TGGTGGGCCTTTACCCCGCCAACCAGCT	(18)
•	UGGUGGCCUUUACCCCGCCAACCAGCU	(18bis)
	AGCTGGTTGGCGGGGTAAAGGCCCACCA	(18ter)
	AGCUGGUUGGCGGGUAAAGGCCCACCA	(18quater)

provided that the probe does not consist of the following sequence: TCA TCG GCC GCC GAT ATT GGC

- or a variant sequence which distinguishes of any of the preceding sequences (1) to (18)
 - . either by addition to or removal from any of their respective extremities of one or several nucleotides,
 - . or changing within any of said sequences of one or more nucleotides,
 - . or both,

yet provided that in any of the above circumstances said probe still hybridizes with the same RNA or DNA target as the corresponding unmodified sequence.

- 5. Probe for detecting one or more Neisseria gonorrhoeae strains from other bacterial strains, and in particular from other Neisseria strains, which target one of the sequences defined hereunder or the corresponding complementary sequence, when the hybridization medium or the wash medium or both as appropriate are the following ones:
 - hybridization medium : containing about 3xSSC, (SSC = 0.15M NaCl, 0.015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, wash medium: containing about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% delonized
 - formamide wherein said target sequences and the corresponding relevant hybridization temperatures (HT) and wash temperatures (WT) respectively are as follows:

35

10

15

20

25

30

40

45

50

AAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 50°C to about 65°C

CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA

HT and/or WT : about 60°C to about 70°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 65°C to about 70°C

GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCAAUAUCGGCGGCCGAUGACGGUACC

HT and/or WT : about 70°C to about 75°C

UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU

HT and/or WT : about 65°C

5

20

25

40

45

50

55

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

HT and/or WT : about 65°C

GCGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

HT and/or WT : about 65°C

GCAUACGUCUUGAGAGGGAAAGCA

HT and/or WT : about 50°C to about 55°C

AGCUGGUUGGCGGGGUAAAGGCCCACCA

HT and/or WT : about 60°C.

- 30 6. Process for detecting Neisseria strains in a biological sample from other bacterial strains, wherein said process comprises contacting said biological sample in which the nucleic acids (DNAs and RNAs) of the strains have been made accessible to hybridization, if need be, under suitable denaturation conditions with a probe according to any one of claims 1 to 5 under conditions enabling hybridization between the probe and complementary nucleic acids of the Neisseria strains, which may be present in the sample, and detecting the hybrids possibly formed.
 - 7. Process for detecting Neisseria strains from other bacterial strains in a biological sample, according to claim 6, wherein the probes used are the ones hybridizing both with DNA and RNA of Neisseria strains which may be present in the biological sample.
 - 8. Process for detecting Neisseria strains from other bacterial strains, according to claim 6 or 7, wherein the hybridization medium contains about 3xSSC, (SSC = 0,15M NaCl, 0,015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, or the wash medium contains about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide, and

wherein the probe used is

anyone of the probes (1), (1bis), (1ter) or (1quater) of claim 2, the hybridization temperature being suitably adjusted to the range of about 55 °C, preferably of about 53 °C, and/or the wash temperature to the range of about 55 °C, preferably of about 53 °C, or anyone of the probes (2), (2bis), (2ter) or (2quater) of claim 2, the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 60 °C, or anyone of the probes (3), (3bis), (3ter) or (3quater) of claim 2, the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 60 °C, or anyone of the probes (4), (4bis), (4ter) or (4quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 65 °C and/or the wash temperature to the range of about 65 °C, or anyone of the probes (5), (5bis), (5ter) or (5quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 55 °C and/or the wash temperature to the range of about 55 °C, or anyone of the probes (9), (9bis), (9ter) or

5

10

15

20

30

50

55

(9quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 60 °C, or anyone of the probes (6), (6bis), (6ter) or (6quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 65 °C and/or the wash temperature to the range of about 65 °C to about 70 °C,

or anyone of the probes (7), (7bis), (7ref) or (7 quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 55°C and/or the wash temperature to the range of about 55°C, or anyone of the probes (8), (8bis), (8ter) or (8quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 55°C and/or the wash temperature to the range of about 55°C to about 60°C, or anyone of the probes (10), (10bis), (10ter) or (10quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 55°C and/or the wash temperature to the range of about 55°C to about 60°C

or anyone of the probes (11), (11bis), (11ter) or (11quater) of claim 1, the hybridization temperature being suitably adjusted to about 55 °C and/or the wash temperature to about 55 °C.

or anyone of the probes (12), (12bis), (12ter) or (12quater) of claim 1, the hybridization temperature being suitably adjusted to range of about 55 °C to about 60 °C and/or the wash temperature to range of about 55 °C to about 60 °C.

or anyone of the probes (13), (13bis), (13ter) or (13quater) of claim 1, the hybridization temperature being suitably adjusted to range of about 45 °C and/or the wash temperature to range of about 45 °C. or anyone of the probes (14), (14bis), (14ter) or (14quater) of claim 1, the hybridization temperature

being suitably adjusted to range of about 40 °C to about 45 °C and/or the wash temperature to range of about 40 °C to about 45 °C.

or anyone of the probes (15), (15bis), (15ter) or (15quater) of claim 1, the hybridization temperature being suitably adjusted to range of about 50 °C to about 55 °C and/or the wash temperature to range of about 50 °C to about 55 °C.

or anyone of the probes (16), (16bis), (16ter) or (16quater) of claim 1, the hybridization temperature being suitably adjusted to range of about 50 °C to about 60 °C and/or the wash temperature to range of about 50 °C to about 60 °C.

or anyone of the probes (17), (17bis), (17ter) or (17quater) of claim 1, the hybridization temperature being suitably adjusted to range of about 50 °C to about 55 °C and/or the wash temperature to range of about 50 °C to about 55 °C.

or anyone of the probes (18), (18bis), (18ter) or (18quater) of claim 1, the hybridisation temperature being suitably adjusted to range of about 45 °C and/or the wash temperature to range of about 45 °C.

- 9. Process for detecting Neisseria gonorrhoeae strains from other bacterial strains and particularly from other Neisseria strains, wherein said process comprises contacting said biological sample, in which the nucleic acids (DNAs and RNAs) have been made accessible to hybridization, if need be, under suitable denaturation conditions, with a probe of the invention specific for Neisseria gonorrhoeae strains and selected from the probes (1), (1bis), (1ter), (1quater), (2), (2bis), (2ter), 2(quater), (3), (3bis), (3ter), (3quater), (4), (4bis), (4ter), (4quater), (5), (5bis), (5ter), (5quater), (9), (9bis), (9ter), (9quater), (11), (11bis), (11ter), (11quater), (13), (13bis), (13ter), (13quater), (18), (18bis), (18ter) and (18quater) of claims 1 or 2, whenever required under hybridization and washing conditions adjusted such as to ensure specific hybridization with complementary nucleic acids of the Neisseria gonorrhoeae strains, which may be present in the sample, yet not with complementary DNA or RNA of other Neisseria species, and detecting the hybrids possibly formed.
 - Process for detecting N. gonorrhoeae strains from other bacterial strains and in particular from other Neisseria strains, according to claim 9,

wherein the hybridization medium contains about 3xSSC, (SSC = 0,15M NaCl, 0,015M sodium citrate, pH 7.0) about 25mM of phosphate buffer pH 7.1, 20% deionized formamide, 0.02% ficoll, 0.02% bovine serum albumin, 0.02% polyvinylpyrrolidone, and about 0.1 mg/ml sheared, denatured salmon sperm DNA, or the wash medium contains about 3XSSC, 25 mM phosphate buffer pH 7.1, and 20% deionized formamide, and

wherein the probe used is anyone of the probes (1), (1bis), (1ter) or (1quater) of claim 2,

the hybridization temp rature being suitably adjusted to the range of about 55°C, preferably of about 53°C, and/or the wash temperature to the range from about 55°C to about 65°C, preferably from about 53°C to about 65°C and preferably of about 53°C, and the probe used is

anyone of the probes (2), (2bis), (2ter) or (2quater) of claim 2, the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 65 °C

to about 70 °C, or anyone of the probes (3), (3bis), (3ter) or (3quater) of claim 2,

5

10

25

35

40

45

50

the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 65 °C to about 70 °C,

or anyone of th probes (4), (4bis), (4ter) or (4quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 65 °C and/or the wash temperature to the range of about 70 °C to about 75 °C,

or anyone of the probes (5), (5bis), (5ter) or (5quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 60 °C and/or the wash temperature to the range of about 65 °C, or anyone of the probes (9), (9bis), (9ter) or (9quater) of claim 1, the hybridization temperature being suitably adjusted to the range of about 60 °C to about 65 °C and/or the wash temperature to the range of about 65 °C,

or more preferably anyone of the probes (1), (1bis), (1ter) or (1quater) of claim 2,

the hybridization temperature being suitably adjusted to the range of about 55 °C and/or the wash temperature to the range of about 55 °C to about 65 °C

or anyone of the probes (11), (11bis), (11ter) or (11quater) of claim 1, the hybridization temperature being suitably adjusted to about 65 °C and/or the wash temperature to about 65 °C or anyone of the probes (13), (13bis), (13ter) or (13quater) of claim 1, the hybridization temperature being suitably adjusted to range about 50 °C to about 55 °C and/or the wash temperature to range about 50 °C to about 55 °C.

or anyone of the probes (18), (18bis), (18ter) or (18quater) of claim 1, the hybridization temperature being suitably adjusted to about 60 °C and/or the wash temperature to about 60 °C.

- 11. Kit for the detection in vitro of Neisseria strains in a biological sample, said kit containing :
 - at least one probe selected among any of those according to claims 1 to 4;
 - the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a large number, preferably all strains of Neisseria to be carried out;
 - when appropriate means for detecting the hybrids resulting from the preceding hybridization.
- 12. Kit for the detection in vitro of Neisseria gonorrhoeae strains in a biological sample, said kit containing :
 - at least one probe specific for N. gonorrhoeae as above defined, e.g. a probe selected from the probes (2), (2bis), (2ter), (2quater), (3), (3bis), (3ter), (3quater), (4), (4bis), (4ter), (4quater), (5), (5bis), (5ter), (5quater), (9), (9bis), (9ter), (9quater), (11), (11bis), (11ter), (11quater), (13), (13bis), (13ter), (13quater), (18), (18bis), (18ter) and (18quater), according to claims 1 or 2, or more preferably a probe selected from anyone of the probes (1), (1bis), (1ter) or (1quater) according to claim 2;
 - the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out,
 - when appropriate means for detecting the hybrids resulting from the preceding hybridization.
 - 13. Process for detecting N. gonorrhoeae strains from other bacterial strains and in particular from other Neisseria strains, wherein said process comprises contacting said biological sample, in which the nucleic acids (DNA and RNAs) have been made accessible to hybridization, if need be, under suitable denaturation conditions, with two probes of anyone of claims 1 to 5, which are specific for Neisseria gonorrhoeae strains and are respectively not able to hybridize to the same non-target strains, and in particular, selected from the following combinations:
 - probe of group 9 and anyone of the probes of the following groups: 1, 2, 3, 5 and 13.
 - probe of group 13 and anyone of the probes of the following groups: 1, 2, 3 and 5.
 - probe of group 18 and anyone of the probes of the following groups: 1, 2, 3, 5, 9 and 13.
 - probe of group 5 and anyone of the probes of the following groups: 1, 2 and 3, and more particularly, selected from the following combinations:
 - probe of group 9 and one of group 5.
 - probe of group 18 and one of the probes of the following groups: 5 and 9,

whenever required under hybridization and washing conditions adjusted such as to nsur specific hybridization with complementary nucleic acids of the Neisseria gonorrhoeae strains, which may be present in the sample, yet not with complementary DNA or RNA of other Neisseria species, and detecting the hybrids possibly formed.

14. Kit for sandwich hybridization assay, for the detection in vitro of Neisseria gonorrhoeae strains in a biological sample,

said kit containing:

- at least two probes specific for N. gonorrhoeae selected from the following combinations:
- probe of group 9 and anyone of the probes of the following groups: 1, 2, 3, 5 and 13.
- probe of group 13 and anyone of the probes of the following groups: 1, 2, 3 and 5.
- probe of group 18 and anyone of the probes of the following groups: 1, 2, 3, 5, 9 and 13.
- probe of group 5 and anyone of the probes of the following groups: 1, 2 and 3. and more particularly from the following combinations:
- probe of group 9 and one of group 5.
- probe of group 18 and one of the probes of the following groups: 5, and 9
- the buffer or components necessary for producing the buffer enabling hybridization reaction between these probes and the DNAs and/or RNAs of a strain of Neisseria gonorrhoeae to be carried out,
- when appropriate means for detecting the hybrids resulting from the preceding hybridization. 15

Patentansprüche

10

20

- 1. Sonde zum Nachweisen eines oder mehrerer Neisseria-Stämme, umfassend:
 - entweder eine Sequenz, die zu einer Nucleinsäure aus den folgenden Gruppen von Nucleinsäuren gehört, und welche 10 bis zur maximalen Anzahl von Nucleotiden der ausgewählten Nucleinsäure umfasst:

	\sim
25	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTGACA
	AAAGTCC
	(4)
30	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUGACA
	AAAGUCC
	(4bis)
35	GGACTTTTGTCAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGA
30	CGGTACC
	(4ter)
	GGACUUUUGUCAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGA
40	CGGUACC
	(4quater)
	ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA
45	(5)
	ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA
	(5bis)
50	TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT
	(5ter)
	UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU
	(5quater)

	ATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCTAC
	CCCCAC
5	(6)
	AUACCGUGGUAAGCGGACUCCUUGCGGUUACCCUACCUAC
	CCCCAC
10	(6bis)
	GTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGAGTCCGCTTACCA
	CGGTAT
15	(6ter)
	GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCA
	CGGUAU
	(6quater)
20	TCAGTCCGATTTCCGCCGGACCTAGGT
	(7)
	UCAGUCCGAUUUCCGCCGGACCUAGGU
25	(7bis)
	ACCTAGGTCCGGCGGAAATCGGACTGA
	(7ter)
30	ACCUAGGUCCGGCGAAAUCGGACUGA
	(7 quater)
	TCAGTCCGATTTCCGACCGGACCTAGGT
	(8)
35	UCAGUCCGAUUUCCGACCGGACCUAGGU
	(8bis)
	ACCTAGGTCCGGAAATCGGACTGA
40	(8ter)
	ACCUAGGUCCGGAAAUCGGACUGA
	(8quater)
45	CGCCACCCGAGAAGCAAGCTTCCCTGTGCTGC
	(9)
	CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC
	(9bis)
50	GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG
	(9ter)

	GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG
	(9quater)
5	CGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATA
v	(10)
	CGGGGCUUACGGAGCAAGUCCUUAACCUUAGAGGGCAUA
	(10bis)
10	TATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCG
	(10ter)
	UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG
15	(10quater)
	GCGGAATCATAGCTTATTGCCAGCTCCCCCGC
	(11)
20	GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCCGC
	(11bis)
	GCGGGGAGCTGGCAATAAAGCTATGATTCCGC
or.	(11ter)
25	GCGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC
	(llquater)
	GACACACTCGAGTCACCCAGTTCAGAAC
30	(12)
	GACACACUCGAGUCACCCAGUUCAGAAC
	(12bis)
35	GTTCTGAACTGGGTGACTCGAGTGTGTC
	(12ter)
	GUUCUGAACUGGGUGACUCGAGUGUGUC
40	(12quater)
40	TGCTTTCCCTCTCAAGACGTATGC
	(13)
	UGCUUUCCCUCUCAAGACGUAUGC
45	(13bis)
	GCATACGTCTTGAGAGGGAAAGCA
	(13ter)
50	GCAUACGUCUUGAGAGGGAAAGCA
	(13quater)

	TCTCGACAGTTATTACGTACA
	(14)
5	UCUCGACAGUUAUUACGUACA
	(14bis)
	TGTACGTAATAACTGTCGAGA
10	(14ter)
	UGUACGUAAUAACUGUCGAGA
	(14quater)
4-	TTTCGTACGCTTAGTACCGCTGTTGAGA
15	(15)
	UUUCGUACGCUUAGUACCGCUGUUGAGA
	(15bis)
20	TCTCAACAGCGGTACTAAGCGTACGAAA
	(15ter)
	UCUCAACAGCGGUACUAAGCGUACGAAA
25	(15quater)
	GTGGTATCGGTTGCTTCGTGTCCGTAGACA
	(16)
30	GUGGUAUCGGUUGCUUCGUGUCCGUAGACA
30	(16bis)
	TGTCTACGGACACGAAGCAACCGATACCAC
	(16ter)
35	UGUCUACGGACACGAAGCAACCGAUACCAC
	(16quater)
	AAGCTATTCCAACAGCTTGCCAACCTAA
40	(17)
	AAGCUAUUCCAACAGCUUGCCAACCUAA
	(17bis)
45	TTAGGTTGGCAAGCTGTTGGAATAGCTT
	(17ter)
	UUAGGUUGGCAAGCUGUUGGAAUAGCUU
	(17quater)
50	TGGTGGGCCTTTACCCCGCCAACCAGCT
	(18)

UGGUGGGCCUUUACCCCGCCAACCAGCU (18bis) AGCTGGTTGGCGGGGTAAAGGCCCACCA 5 (18ter) AGCUGGUUGGCGGGGUAAAGGCCCACCA (18quater) 10 unter der Voraussetzung, dass die Sonde nicht aus der folgenden Sequenz: TCA TCG GCC GCC GAT ATT GGC besteht, oder eine Sequenzvariante, die sich von irgendeiner der vorhergehenden Sequenzen (4) bis (18) entweder durch Hinzufügung oder Entfemung eines oder mehrerer Nucleotide von einem ihrer 15 entsprechenden Enden oder durch Ändern eines oder mehrerer Nucleotide innerhalb irgendeiner der Sequenzen oder durch beides unterscheidet, jedoch unter der Voraussetzung, dass bei jeder der zuvor beschriebenen Tatsachen die Sonde noch mit der gleichen Ziel-RNA- oder -DNA wie die entsprechende unmodifizierte Sequenz hybridisiert. 2. Sonde nach Anspruch 1, umfassend: entweder eine Sequenz, die zu einer Nucleinsäure aus den folgenden Gruppen von Nucleinsäuren gehört, und die 10 bis zur maximalen Anzahl von Nucleotiden der ausgewählten Nucleinsäure umfasst: 25 TCGGCCGCCGATATTGGCAACAGCCTT (1) UCGGCCGCCGAUAUUGGCAACAGCCUU (1bis) AAGGCTGTTGCCAATATCGGCGGCCGA (1ter) 30 AAGGCUGUUGCCAAUAUCGGCGGCCGA (1quater) TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (2) UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (2bis) CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA (2ter) 35 CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA (2quater) 40 GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (3)GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG 45 (3bis) CAGGGAAGAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC (3ter) CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC 50 (3quater) unter der Voraussetzung, dass die Sonde nicht aus der nachfolgenden Sequenz: TCA TCG GCC GCC 55

oder eine Sequenzvariante, die sich von irgendeiner der vorhergehenden Sequenzen (1) bis (18) entweder durch Hinzufügung oder Entfernung eines oder mehrerer Nucleotide von einem ihrer entspre-

GAT ATT GGC besteht,

chenden Extremitäten oder durch Ändern eines oder mehrerer Nucleotide innerhalb irgendeiner der Sequenzen oder durch beides unterscheidet, jedoch unter der Voraussetzung, dass bei jedem der zuvor beschriebenen Sachverhalte die Sonde noch mit der gleichen Ziel-RNA oder -DNA wie die entsprechende unmodifizierte Sequenz hybridisiert.

3. Sonde zum Nachweisen eines oder mehrerer Neisseria-Stämme, welche eine der im nachfolgenden definierten Sequenzen oder die entsprechende Komplementärsequenz zum Ziel hat, wenn das Hybridisierungsmedium oder das Waschmedium oder beides, wenn angemessen, folgende sind: Hybridisierungsmedium: enthält etwa 3 x SSC, (SSC = 0,15 M NaCl, 0,015 M Natriumcitrat, pH 7,0), etwa 25 mM Phosphatpuffer pH 7,1, 20 % entionisiertes Formamid, 0,02 5 Ficoll, 0,02 % Rinderserumalbumin, 0,02 % Polyvinylpyrrolidon und etwa 0,1 mg/ml zerkleinerte, denaturierte Lachsspermium-

Waschmedium: enthält etwa 3 x SSC, 25 mM Phosphatpuffer pH 7,1, und 20 % entionisiertes Formamid, wobei die Zielsequenzen und die entsprechenden relevanten Hybridisierungstemperaturen (HT) und Waschtemperaturen (WT) folgende sind:

AAGGCUGUUGCCAAUAUCGGCGGCCGA

20 HT und/oder WT : etwa 55°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA

HT und/oder WT : etwa 60°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT und/oder WT : etwa 60°C

GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGA

CGGUACC

" HT und/oder WT : etwa 65°C

UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU

HT und/oder WT : etwa 55°C bis etwa 60°C

35 GUGGGGAUACCAGAAGUAGGUAACCGCAAGGAGUCCGCUUACCA

CGGUAU

HT und/oder WT : etwa 65°C bis etwa 70°C

40 ACCUAGGUCCGGCGAAAUCGGACUGA

HT und/oder WT : etwa 55°C

ACCUAGGUCCGGUCGGAAUCGGACUGA

HT und/oder WT : etwa 55°C bis etwa 60°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

HT und/oder WT : etwa 55°C bis etwa 60°C

55

50

45

10

15

25

	UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG
	HT und/oder WT : etwa 60°C bis etwa 65°C
5	GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC
	HT und/oder WT : etwa 55°C
	GUUCUGAACUGGGUGACUCGAGUGUGUC
10	HT und/oder WT : etwa 55°C bis etwa 60°C
	GCAUACGUCUUGAGAGGGAAAGCA
	HT und/oder WT : etwa 45°C
	UGUACGUAAUAACUGUCGAGA
15	HT und/oder WT : etwa 40°C bis etwa 45°C
	UCUCAACAGCGGUACUAAGCGUACGAAA
	HT und/oder WT : etwa 50°C bis etwa 55°C
20	UGUCUACGGACACGAAGCAACCGAUACCAC
	HT und/oder WT : etwa 50°C bis etwa 60°C
	UUAGGUUGGCAAGCUGUUGGAAUAGCUU
25	HT und/oder WT : etwa 50°C bis etwa 55°C
	AGCUGGUUGGCGGGGUAAAGGCCCACCA
	HT und/oder WT : etwa 45°C
30	O
	4. Sonde zum Nachweisen eines oder mehrerer Neisseria ghonorrhoeae-Stämme aus anderen Bakterien stämmen und insbesondere aus anderen Neisseria-Stämmen, enthaltend
	entweder eine Seguenz, die zu einer Nucleinsäure aus den folgenden Gruppen von Nucleinsaurei
35	gehört und welche 10 bis zur maximalen Anzahl an Nucleotiden der ausgewählten Nucleinsäure umfasst:
	umass.
	TCGGCCGCCGATATTGGCAACAGCCTT (1)
40	UCGGCCGCCGAUAUUGGCAACAGCCUU (1bis)
	AAGGCTGTTGCCAATATCGGCGGCCGA (1ter)
	AAGGCUGUUGCCAAUAUCGGCGGCCGA (lquater)
45	TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (2)

	UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (2bis)
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA (2ter)
5	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (2quater)
	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG
	(3)
10	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCCUCCCUG
70	(3bis)
	CAGGGAAGAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC
	(3ter)
15	CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC
	(3quater)
	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTGACA
20	AAAGTCC
	(4)
	GGUACCGUCAUCGGCCGAUAUUGGCAACAGCCUUUUCUUCCCUGACA
	AAAGUCC
25	(4bis)
	GGACTTTTGTCAGGGAAGAAAGGCTGTTGCCAATATCGGCGGCCGATGA
	CGGTACC
30	(4ter)
	GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGA
	CGGUACC
	(4quater)
35	ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA (5)
	ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA (5bis)
	TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT (5ter)
40	UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU (5quater)
	CGCCACCCGAGAAGCAAGCTTCCCTGTGCTGC (9)
	CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC (9bis)
	GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG (9ter)
45	GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG (9quater)
	GCGGAATCATAGCTTTATTGCCAGCTCCCCCGC (11)
	GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCGC (11bis)
50	GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC (11ter)
	GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC (11quater)

	TGCTTTCCCTCTCAAGACGTATGC (13)
	UGCUUUCCCUCUCAAGACGUAUGC (13bis)
	GCATACGTCTTGAGAGGGAAAGCA (13ter)
5	GCAUACGUCUUGAGAGGGAAAGCA (13quater)
	TGGTGGGCCTTTACCCCGCCAACCAGCT (18)
	UGGUGGGCCUUUACCCCGCCAACCAGCU (18bis)
10	AGCTGGTTGGCGGGGTAAAGGCCCACCA (18ter)
	AGCUGGUUGGCGGGGUAAAGGCCCACCA (18quater)

unter der Voraussetzung, dass die Sonde nicht aus der folgenden Sequenz: TCA TCG GCC GCC GAT ATT GGC besteht,

oder eine Sequenzvariante, die sich von irgendeiner der vorhergehenden Sequenzen (1) bis (18) entweder durch Hinzufügung oder Entfernung eines oder mehrerer Nucleotide von einem ihrer entsprechenden Enden oder durch Ändern eines oder mehrerer Nucleotide innerhalb irgendeiner der Sequenzen oder durch beides unterscheidet, jedoch unter der Voraussetzung, dass bei jedem der vorher beschriebenen Sachverhalte die Sonde noch mit der gleichen Ziel-RNA oder -DNA wie die entsprechende unmodifizierte Sequenz hybridisert.

 Sonde zum Nachweisen eines oder mehrerer Neisseria gonorrhoeae-Stämme aus anderen Bakterienstämmen und insbesondere aus anderen Neisseria-Stämmen, welche eine der im nachfolgenden definierten Sequenzen oder die entsprechende

Komplementärsequenz zum Ziel hat, wenn das Hybridisierungsmedium oder das Waschmedium oder beides, wenn angemessen, folgende sind:

Hybridisierungsmedium: enthält etwa 3 x SSC, (SSC = 0,15 M NaCl, 0,015 M Natriumcitrat, pH 7,0), etwa 25 mM Phosphatpuffer mit pH 7,1, 20 % entionisiertes Formamid, 0,02 % Ficoli, 0,02 % Rinderserumalbumin, 0,02 % Polyvinylpyrrolidon und etwa 0,1 mg/ml zerkleinerte, denaturierte Lachspermium-DNA,

Waschmedium: enthält etwa 3 x SSC, 25 mM Phosphatpuffer mit pH 7,1 und 20 % entionisiertes Formamid, wobei die Zielsequenzen und die entsprechenden relevanten Hybridisierungstemperaturen (HT) und Waschtemperaturen (WT) folgende sind:

40

30

35

20

45

50

AAGGCUGUUGCCAAUAUCGGCGGCCGA

HT und/oder WT : etwa 50°C bis etwa 65°C CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA
HT und/oder WT : etwa 60°C bis etwa 70°C

CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

HT und/oder WT : etwa 65°C bis etwa 70°C
GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCAAUAUCGGCGGCCGAUGAC

GGUACC

20

25

45

HT und/oder WT : etwa 70°C bis etwa 75°C UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU

HT und/oder WT : etwa 65°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

HT und/oder WT : etwa 65°C

GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

HT und/oder WT : etwa 65°C GCAUACGUCUUGAGAGGGAAAGCA

HT und/oder WT : etwa 50°C bis etwa 55°C

AGCUGGUUGGCGGGGUAAAGGCCCACCA

HT und/oder WT : etwa 60°C.

- 6. Verfahren zum Nachweisen von Neisseria-Stämmen in einer biologischen Probe aus anderen Bakterienstämmen, wobei das Verfahren Inkontaktbringen der biologischen Probe, in der die Nucleinsäuren (DNAs und RNAs) der Stämme, erforderlichenfalls unter geeigneten Denaturierungsbedingungen der Hybridisierung zugänglich gemacht worden sind, mit einer Sonde gemäss einem der Ansprüche 1 bis 5 unter Bedingungen, die Hybridisierung zwischen der Sonde und komplementären Nucleinsäuren der Neisseria-Stämme, die in der Probe vorhanden sein können, ermöglicht, und Nachweisen der möglicher Hybride umfasst.
 - 7. Verfahren zum Nachweisen von Neisseria-Stämmen aus anderen Bakterienstämmen in einer biologischen Probe gemäss Anspruch 6, wobei die verwendeten Sonden derartige sind, die sowohl mit DNA wie auch mit RNA von Neisseria-Stämmen, welche in der biologischen Probe vorhanden sein können, hybridisieren.
 - 8. Verfahren zum Nachweisen von Neisseria-Stämmen aus anderen Bakterienstämmen gemäss einem der Ansprüche 6 oder 7, wobei das

Hybridisierungsmedium etwa 3 x SSC (SSC = 0,15 M NaCl, 0,015 M Natriumcitrat, pH 7,0), etwa 25 mM Phosphatpuffer mit pH 7,1, 20 % entionisiertes Formamid, 0,02 % Ficoll, 0,02 % Rinderserumalbumin, 0,02 % Polyvinylpyrrolidon und etwa 0,1 mg/ml zerkleinerte denaturierte

Lachsspermium-DNA enthält, oder das Waschmedium etwa 3 x SSC, 25 mM Phosphatpuffer mit pH 7,1, und 20 % entionisiertes Formamid enthält, und wobei die verwendete Sonde folgende ist: irgend in der Sonden (1), (1bis), (1ter) od r (1quat r) des Anspruchs 2, wobei di Hybridisierungstemp ratur geeignetermassen auf den Bereich um etwa 55 °C, vorzugsweise um twa 53 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 55 °C, vorzugsweise etwa 53 °C, eingestellt wird, oder irgendeine der Sonden (2), (2bis), (2ter) oder (2quater) des Anspruchs 2, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 60 °C eingestellt wird,

5

10

30

35

40

45

50

55

und/oder die Waschtemperatur auf den Bereich um etwa 60°C eingestellt wird, oder irgendeine der Sonden (3), (3bis), (3ter) oder (3quater) des Anspruchs 2, wobei die Hybridisierungstemperatur

geeignetermassen auf den Bereich um etwa 60 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 60 °C eingestellt wird, oder irgendeine der Sonden (4), (4bis), (4ter) oder (4quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 65 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 65 °C eingestellt wird, oder irgendeine der Sonden (5), (5bis), (5ter) oder (5quater) des Anspruchs 1, wobei die Hybridisierungstemperatur

- geeignetermassen auf den Bereich um etwa 55 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 55 °C eingestellt wird, oder irgendeine der Sonden (9), (9bis), (9ter) oder (9quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 60 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 60 °C eingestellt wird, oder irgendeine der Sonden (6), (6bis), (6ter) oder (6quater) des Anspruchs 1, wobei die Hybridisierungstemperatur
- geeignetermassen auf den Bereich um etwa 65°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 65°C bis etwa 70°C
 - eingestellt wird, oder irgendeine der Sonden (7), (7bis), (7ter) oder (7quater) des Anspruchs 1, wobei die Hybridisierungstemperatur
- geeignetermassen auf etwa 55 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 55 °C eingestellt wird, oder irgendeine der Sonden (8), (8bis), (8ter) oder (8quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 55 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 55 °C bis etwa 60 °C
 - eingestellt wird, oder irgendeine der Sonden (10), (10bis), (10ter) oder (10quater) des Anspruchs 1, wobei die Hybridisierungstemperatur
- geeignetermassen auf den Bereich um etwa 55°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 55°C bis etwa 60°C
 - eingestellt wird, oder irgendeine der Sonden (11), (11bis), (11ter) oder (11quater) des Anspruchs 1, wobei die Hybridisierungstemperatur
 - geeignetermassen auf den Bereich um etwa 55 °C eingestellt wird, und/oder die Waschtemperatur auf etwa 55 °C eingestellt wird, oder irgendeine der Sonden (12), (12bis), (12ter) oder (12quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 55°C bis etwa 60 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 55 °C bis etwa 60°C eingestellt wird, oder irgendeine der Sonden (13), (13bis), (13ter) oder (13quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 45°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich um etwa 45 °C eingestellt wird, oder irgendeine der Sonden (14), (14bis), (14ter) oder (14quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 40 °C bis etwa 45 °C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 40 °C bis etwa 45 °C eingestellt wird, oder irgendeine der Sonden (15), (15bis), (15ter) oder (15quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 50°C bis etwa 55°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 50°C bis etwa 55°C eingestellt wird, oder irgendeine der Sonden (16), (16bis), (16ter) oder (16quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 50°C bis etwa 60°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 50°C bis etwa 60°C eingestellt wird, oder irgendeine der Sonden (17), (17bis), (17ter) oder (17quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 50°C bis etwa 55°C eingestellt wird, und/oder die Waschtemperatur auf den Bereich von etwa 50 °C bis etwa 55 °C eingestellt wird, oder irgendeine der Sonden (18), (18bis), (18ter) oder (18quater) des Anspruchs 1, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 45°C eingestellt wird, und/oder die
 - 9. Verfahren zum Nachweisen von Neisseria gonorrhoeae-Stämmen aus anderen Bakterienstämmen und insbesondere aus anderen Neisseria-Stämmen, wobei das Verfahren umfasst: Inkontaktbringen der biologischen Probe, in d r di Nucleinsäuren (DNAs und RNAs), rforderlichenfalls unter geeigneten Denaturierungsbedingungen d r Hybridisierung zugänglich gemacht worden sind, mit einer Sond gemäss der Erfindung, di spezifisch für Neisseria gonorrhoeae-Stämme ist und aus den Sonden (1), (1bis), (1ter), (1quater), (2), (2bis), (2ter), (2quater), (3), (3bis), (3ter), (3quater), (4), (4bis), (4ter), (4quater), (5), (5bis), (5ter), (5quater), (9), (9bis), (9ter), (9quater), (11), (11bis), (11ter), (11quater), (13),

Waschtemperatur auf den Bereich von etwa 45 °C eingestellt wird.

5

10

20

25

30

50

(13bis), (13ter), (13quater), (18), (18bis), (18ter) und (18quater) der Ansprüche 1 oder 2 ausgewählt ist, wann immer erforderlich, unter Hybridisierungs- und Waschbedingungen, die so eingestellt sind, dass sie spezifische Hybridisierung mit komplementären Nucleinsäuren der Neisseria gonorrhoeae-Stämme, die in der Probe vorhanden sein können, jedoch nicht mit kompl mentärer DNA oder RNA anderer Neisseria-Arten gewährleisten, und Nachweisen der möglicherweise gebildeten Hybride.

- 10. Verfahren zum Nachweisen von N. gonorrhoeae-Stämmen aus anderen Bakterienstämmen und insbesondere aus anderen Neisseria-Stämmen gemäss Anspruch 9, wobei das Hybridisierungsmedium etwa 3 x SSC (SSC = 0,15 M NaCl, 0,015 M Natriumcitrat, pH 7,0), etwa 25 mM Phosphatpuffer mit pH 7,1, 20 %-iges entionisiertes Formamid, 0,02 % Ficoll, 0,02 % Rinderserumalbumin, 0,02 % Polyvinylpyrrolidon und etwa 0,1 mg/ml zerkleinerte denaturierte Lachsspermium-DNA enthält, oder das Waschmedium etwa 3 x SSC, 25 mM Phosphatpuffer mit pH 7,1, und 20 %-iges entionisiertes Formamid enthält, und wobei die verwendete Sonde irgendeine der Sonden (1), (1bis), (1ter) oder (1quater) des Anspruchs 2 ist, wobei die Hybridisierungstemperatur
- geeignetermassen auf den Bereich um etwa 55°C, vorzugsweise um etwa 53°C eingestellt ist, und/oder die Waschtemperatur auf den Bereich von etwa 55°C bis etwa 65°C, vorzugsweise etwa 53°C bis etwa 65°C und bevorzugter etwa 53°C, eingestellt ist, und wobei die verwendete Sonde irgendeine der Sonden (2), (2bis), (2ter) oder (2quater)
 - des Anspruchs 2 ist, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 60°C eingestellt ist, und/oder die Waschtemperatur auf den Bereich von etwa 65°C bis etwa 70°C eingestellt ist, oder irgendeine der Sonden (3), (3bis), (3ter) oder (3quater) des Anspruchs 2 ist, wobei die
 - Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 60°C eingestellt ist, und/oder die Waschtemperatur auf den Bereich von etwa 65°C bis etwa 70°C eingestellt ist, oder irgendeine der Sonden (4), (4bis), (4ter) oder (4quater) des Anspruchs 1 ist, wobei die
 - Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 65 °C eingestellt ist, und/oder die Waschtemperatur auf den Bereich von etwa 70 °C bis etwa 75 °C eingestellt ist, oder irgendeine der Sonden (5), (5bis), (5ter) oder (5quater) des Anspruchs 1 ist, wobei die
 - Hybridisierungstemperatur geeignetermassen auf den Bereich um etwa 60 °C eingestellt ist, und/oder die Waschtemperatur auf einen Bereich um etwa 65 °C eingestellt ist, oder irgendeine der Sonden (9), (9bis), (9ter) oder (9quater) des Anspruchs 1 ist, wobei die Hybridisierungstemperatur
 - geeignetermassen auf den Bereich von etwa 60°C bis etwa 65°C eingestellt wird, und/oder die Waschtemperatur auf einen Bereich um etwa 65°C eingestellt ist, oder bevorzugter irgendeine der Sonden (1), (1bis), (1ter) oder (1quater) des Anspruchs 2 ist, wobei die
- Hybridisierungstemperatur geeignetermassen auf einen Bereich um etwa 55 °C eingestellt ist, und/oder die Waschtemperatur auf den Bereich um etwa 55 °C bis etwa 65 °C eingestellt ist, oder irgendeine der Sonden (11), (11bis), (11ter) oder (11quater) des Anspruchs 1 ist, wobei die Hybridisierungstemperatur geeignetermassen auf etwa 65 °C eingestellt ist, und/oder die Waschtemperatur auf etwa 65 °C eingestellt ist, oder irgendeine der Sonden (13), (13bis), (13ter) oder (13quater) des Anspruchs 1 ist, wobei die Hybridisierungstemperatur geeignetermassen auf den Bereich von etwa 50 °C bis etwa 55 °C eingestellt ist, und/oder die Waschtemperatur auf den Bereich von etwa 50 °C bis etwa 55 °C eingestellt ist, oder irgendeine der Sonden (18), (18bis), (18ter) oder (18quater) des Anspruchs 1 ist, wobei die Hybridisierungstemperatur geeignetermassen auf etwa 60 °C eingestellt ist, und/oder die Waschtemperatur auf etwa 60 °C eingestellt ist.
 - 11. Kit zum in vitro-Nachweis von Neisseria-Stämmen in einer biologischen Probe, wobei das Kit umfasst: mindestens eine Sonde, ausgewählt aus denjenigen gemäss Ansprüchen 1 bis 4; den Puffer oder die Komponenten, die erforderlich sind, um den Puffer herzustellen, der die Durchführung der Hybridisierungsreaktion zwischen diesen Sonden und den DNAs und/oder RNAs einer grossen Anzahl, vorzugsweise sämtlicher Stämme von Neisseria ermöglicht; wenn angemessen, Mittel zum Nachweisen der aus der vorhergehenden Hybridisierung stammenden Hybride.
- 12. Kit zum in vitro-Nachweis von Neisseria gonorrhoeae-Stämmen in einer biologischen Probe, wobei das
 Kit enthält:
 mindestens eine im Hinblick auf N. gonorrhoeae spezifische Sonde, wie zuvor definiert, d.h. eine Sonde
 aus den Sonden (2), (2bis), (2ter), (2quater), (3), (3bis), (3ter), (3quater), (4), (4bis), (4ter), (4quater), (5),
 (5bis), (5ter), (5quater), (9), (9bis), (9ter), (9quater), (11), (11bis), (11quater), (13), (13bis),

(13ter), (13quater), (18), (18bis), (18ter) und (18quater) gemäss Ansprüchen 1 oder 2, oder bevorzugter eine Sonde aus irgendeiner der Sonden (1), (1bis), (1ter) oder (1quater) gemäss Anspruch 2; den Puffer oder die Komponenten, die erforderlich sind, um den Puffer herzustellen, der die Durchführung der Hybridisierungsreaktion zwischen diesen Sonden und den DNAs und/oder RNAs eines Stammes von Neisseria gonorrhoeae ermöglicht, wenn angemessen, Mittel zum Nachweisen der aus der vorhergehenden Hybridisierung stammenden Hybride.

- 13. Verfahren zum Nachweisen von N. gonorrhoeae-Stämmen aus anderen Bakterienstämmen und insbesondere aus anderen Neisseria-Stämmen, wobei das Verfahren umfasst: Inberührungbringen der biologischen Probe, in der die Nucleinsäuren (DNA und RNAs), erforderlichenfalls unter geeigneten Denaturierungsbedingungen der Hybridisierung zugänglich gemacht worden sind, mit zwei Sonden 10 gemäss irgendeinem der Ansprüche 1 bis 5, die im Hinblick auf Neisseria gonorrhoeae-Stämme spezifisch sind und dementsprechend nicht dazu geeignet sind, an die gleichen Nicht-Ziel-Stämme zu hybridisieren, und die insbesondere aus den folgenden Kombinationen ausgewählt sind:
- Sonde der Gruppe 9 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3, 5 und 13; 15 Sonde der Gruppe 13 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3 und 5; Sonde der Gruppe 18 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3, 5, 9 und 13; Sonde der Gruppe 5 und irgendeine der Sonden der folgenden Gruppen: 1, 2 und 3; und die bevorzugter aus den folgenden Kombinationen ausgewählt sind:
- Sonde der Gruppe 9 und eine der Gruppe 5; 20 Sonde der Gruppe 18 und eine der Sonden der folgenden Gruppen: 5 und 9; wann immer erforderlich, unter Hybridisierungs- und Waschbedingungen, die so eingestellt sind, dass sie spezifische Hybridisierung mit komplementären Nucleinsäuren der Neisseria gonorrhoeae-Stämme, die in der Probe vorhanden sein können, jedoch nicht mit komplementärer DNA oder RNA anderer Neisseria-Arten ermöglichen, und Nachweisen der möglicherweise geformten Hybride. 25
 - 14. Kit für Sandwich-Hybridisierungs-Assay für den in vitro-Nachweis von Neisseria gonorrhoeae-Stämmen in einer biologischen Probe, wobei das Kit enthält:

mindestens zwei für N. gonorrhoeae spezifische Sonden aus den folgenden Kombinationen:

- Sonde der Gruppe 9 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3, 5 und 13; 30 Sonde der Gruppe 13 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3 und 5;
 - Sonde der Gruppe 18 und irgendeine der Sonden der folgenden Gruppen: 1, 2, 3, 5, 9 und 13;
 - Sonde der Gruppe 5 und irgendeine der Sonden der folgenden Gruppen: 1, 2 und 3;

und bevorzugter aus den folgenden Kombinationen:

- Sonde der Gruppe 9 und eine der Gruppe 5;
 - Sonde der Gruppe 18 und eine der Sonden der folgenden Gruppen: 5 und 9;
 - den Puffer oder die Komponenten, die erforderlich sind, um den Puffer herzustellen, der die Durchführung der Hybridisierungsreaktion zwischen diesen Sonden und den DNAs und/oder RNAs eines Neisseria gonorrhoeae-Stammes ermöglicht,
- wenn angemessen, Mittel zum Nachweisen der aus der vorhergehenden Hybridisierung stammenden 40 Hybride.

Revendications

- 1. Sonde pour détecter une ou plusieurs souches de Neisseria, contenant :
 - soit une séquence appartenant un acide nucléique choise dans les groupes suivants d'acides nucléiques et qui comprend elle-même de 10 au nombre maximum de nucléotides de l'acide nucléique sélectionné :

50

35

5

	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTT	TTCTTCCCTGACAAAAGTCC
		(4)
5	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUU	UUCUUCCCUGACAAAAGUCC
		(4bis)
	GGACTTTTGTCAGGGAAGAAAGGCTGTTGCCAATAT	CGGCGGCCGATGACGGTACC
10		(4ter)
,,	GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAU	CGGCGGCCGAUGACGGUACC
	>	(4quater)
	ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA	(5)
15	ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA	(5bis)
	TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT	(5ter)
	UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU	(5quater)
20	ATACCGTGGTAAGCGGACTCCTTGCGGTTACCCTACCT	PACTTCTGGTATCCCCCAC
		(6)
	AUACCGUGGUAAGCGGACUCCUUGCGGUUACCCUACCU	JACUUCUGGUAUCCCCCAC
25		(6bis)
23	GTGGGGGATACCAGAAGTAGGTAGGGTAACCGCAAGGA	GTCCGCTTACCACGGTAT
		(6ter)
	GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGA	GUCCGCUUACCACGGUAU
3 0		(6quater)
	TCAGTCCGATTTCCGCCGGACCTAGGT	(7)
	UCAGUCCGAUUUCCGCCGGACCUAGGU	(7bis)
35	ACCTAGGTCCGGCGAAATCGGACTGA	(7ter)
	ACCUAGGUCCGGCGAAAUCGGACUGA	(7quater)
	TCAGTCCGATTTCCGACCGGACCTAGGT	(8)
40	UCAGUCCGAUUUCCGACCGGACCUAGGU	(8bis)
40	ACCTAGGTCCGGAAATCGGACTGA	(8ter)
	ACCUAGGUCCGGAAAUCGGACUGA	(8quater)

0

	CGCCACCGAGAAGCAAGCTTCCCTGTGCTGC	(9)
	CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC	(9bis)
5	GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG	(9ter)
ŭ	GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG	(9quater)
	CGGGGCTTACGGAGCAAGTCCTTAACCTTAGAGGGCATA	(10)
	CGGGGCUUACGGAGCAAGUCCUUAACCUUAGAGGGCAUA	(10bis)
10	TATGCCCTCTAAGGTTAAGGACTTGCTCCGTAAGCCCCG	(10ter)
	UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG	(10quater)
	GCGGAATCATAGCTTTATTGCCAGCTCCCCCGC	(11)
	GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCCGC	(llbis)
15	GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC	(11ter)
	GCGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC	(11quater)
	GACACACTCGAGTCACCCAGTTCAGAAC	(12)
20	GACACACUCGAGUCACCCAGUUCAGAAC	(12bis)
	GTTCTGAACTGGGTGACTCGAGTGTGTC	(12ter)
	GUUCUGAACUGGGUGACUCGAGUGUGUC	(12quater)
	TGCTTTCCCTCTCAAGACGTATGC	(13)
25	UGCUUUCCCUCUCAAGACGUAUGC	(13bis)
	GCATACGTCTTGAGAGGGAAAGCA	(13ter)
	GCAUACGUCUUGAGAGGGAAAGCA	(13quater)
30	TCTCGACAGTTATTACGTACA	(14)
	UCUCGACAGUUAUUACGUACA	(14bis)
	TGTACGTAATAACTGTCGAGA	(14ter)
	UGUACGUAAUAACUGUCGAGA	(14quater)
35	TTTCGTACGCTTAGTACCGCTGTTGAGA	(15)
	UUUCGUACGCUUAGUACCGCUGUUGAGA	(15bis)
	TCTCAACAGCGGTACTAAGCGTACGAAA	(15ter)
40	UCUCAACAGCGGUACUAAGCGUACGAAA	(15quater)
40	GTGGTATCGGTTGCTTCGTGTCCGTAGACA	(16)
	GUGGUAUCGUUCGUGUCCGUAGACA	(16bis)
	TGTCTACGGACACGAAGCAACCGATACCAC	(16ter)
45	UGUCUACGGACACGAAGCAACCGAUACCAC	(16quater)
	AAGCTATTCCAACAGCTTGCCAACCTAA	(17)
	AAGCUAUUCCAACAGCUUGCCAACCUAA	(17bis)
F0	TTAGGTTGGCAAGCTGTTGGAATAGCTT	(17ter)
50	UUAGGUUGGCAAGCUGUUGGAAUAGCUU	(17quater)

	TGGTGGGCCTTTACCCCGCCAACCAGCT	(18)
	UGGUGGCCUUUACCCCGCCAACCAGCU	(18bis)
5	AGCTGGTTGGCGGGGTAAAGGCCCACCA	(18ter)
	AGCUGGUUGGCGGGGUAAAGGCCCACCA	(18quater)
10	à condition que la sonde ne consiste pas en la séquence suivante TCA TCG GCC GCC GAT ATT GGC	
	 soit une séquence variante qui se distingue de l'une quelconque à (18): 	des séquences précédentes (4)
	 par l'addition ou l'élimination d'un ou de plusieurs nucléotides de leurs extrémités respectives; 	au niveau de l'une quelconque
15	 ou par le changement d'un ou de plusieurs nucléotides à l'in ces séquences, 	térieur de l'une quelconque de
	. ou par les deux,	
20	à condition encore que dans l'une quelconque des circonstances de encore avec la même cible ARN ou ADN que la séquence non	modifiée correspondante.
	2. Sonde suivant la revendication 1, contenant :	
	 soit une séquence appartenant à un acide nucléique choisi parmi nucléiques et qui comprend elle-même de 10 au nombre maxin nucléique choisi : 	i les groupes suivants d'acides num de nucléotides de l'acide
25		
	TCGGCCGCCGATATTGGCAACAGCCTT	(1)
	UCGGCCGCUAUUUGGCAACAGCCUU	(lbis)
30	AAGGCTGTTGCCAATATCGGCGGCCGA	(lter)
	AAGGCUGUUGCCAAUAUCGGCGGCCGA	(lquater)
	TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG	(2)
	UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG	(2bis)
35	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGA	(2ter)
	CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA	(2quater)
	GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTC	CCTG (3)
40	GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUC	CCUG (3bis)
	CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGG	TACC (3ter)
	CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGG	UACC(3quater)
45		
	à condition que la sonde ne consiste pas en la séquence suivante : TCA TCG GCC GCC GAT ATT GGC	
	 soit une séquence variante qui se distingue de l'une quelconque d à (18): 	es séquences précédentes (1)
50	 par l'addition ou l'élimination d'un ou de plusieurs nucléotides a de leurs extrémités respectives; 	
	. ou par le changement d'un ou de plusieurs nucléotides à l'inté	rieur de l'une quelconque de

à condition encore que dans l'une quelconqu des circonstances ci-dessus, cette sond s'hybri-

de encore avec la même cible ARN ou ADN que la séquence non modifiée corr spondant .

ces séquences, . ou par l s deux,

3. Sonde pour détecter une ou plusieurs souches de Neisseria, qui cible l'un des séquences définies pas la suite ou la séquence complémentaire correspondante, lorsque le milieu d'hybridation ou le milieu de lavage ou les deux selon ce qui convient, sont les suivants :

milieu d'hybridation : contenant environ 3xSSC, (SSC = NaCl 0,15 M, citrate de sodium 0,015 M, pH 7,0), environ 25 mM de tampon au phosphate pH 7,1, 20% de formamide désionisé, 0,02% de ficoll, 0,02% d'albumine de sérum bovin, 0,02% de polyvinylpyrrolidone et environ 0,1 mg/ml d'ADN de sperme dénaturé, cisaillé,

milieu de lavage : contenant environ 3xSSC, dutampon au phosphate 25 mM, pH 7,1, et 20% de formamide désionisé, dans laquelle ces séquences cibles et les températures d'hybridation (TH) et les températures de lavage (TL) applicables correspondantes, sont respectivement les suivantes :

AAGGCUGUUGCCAAUAUCGGCGGCCGA

TH et/ou TL: environ 55°C

10

15

20

25

30

35

40

45

50

55

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA

TH et/ou TL: environ 60°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

TH et/ou TL: environ 60°C

GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

TH et/ou TL: environ 65°C

UUAGCUGUUGGCAACUUGAUUGCUUGGUAGCGU

5 TH et/ou TL: environ 55°C à environ 60°C

GUGGGGGAUACCAGAAGUAGGUAGGGUAACCGCAAGGAGUCCGCUUACCACGGUAU

TH et/ou TL: environ 65°C à environ 70°C

ACCUAGGUCCGGCGGAAAUCGGACUGA

TH et/ou TL: environ 55°C

ACCUAGGUCGGUCGGAAUCGGACUGA

TH et/ou TL: environ 55°C à environ 60°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

TH et/ou TL: environ 55°C à environ 60°C

UAUGCCCUCUAAGGUUAAGGACUUGCUCCGUAAGCCCCG

TH et/ou TL : environ 60°C à environ 65°C GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

TH et/ou TL: environ 55°C

GUUCUGAACUGGGUGACUCGAGUGUGUC

TH et/ou TL: environ 55°C à environ 60°C

GCAUACGUCUUGAGAGGGAAAGCA

TH et/ou TL: environ 45°C

UGUACGUAAUAACUGUCGAGA

TH et/ou TL: environ 40°C à environ 45°C

UCUCAACAGCGGUACUAAGCGUACGAAA

TH et/ou TL: environ 50°C à environ 55°C

UGUCUACGACACGAAGCAACCGAUACCAC

TH et/ou TL: environ 50°C à environ 60°C

UUAGGUUGGCAAGCUGUUGGAAUAGCUU

TH et/ou TL: environ 50°C à environ 55°C

AGCUGGUUGGCGGGGUAAAGGCCCACCA

TH et/ou TL: environ 45°C.

4. Sonde pour détecter une ou plusieurs souches de Neisseria gonorrhoeae parmi d'autres souches bactériennes, et en particulier parmi d'autres souches de Neisseria, contenant :

- soit une séquence appartenant à un acide nucléique choisi parmi les groupes suivants d'acides nucléiques et qui comprend elle-même de 10 au nombre maximum de nucléotides de l'acide nuclélque sélectionné :

55

```
(1)
        TCGGCCGCCGATATTGGCAACAGCCTT
                                               (lbis)
        UCGGCCGCCGAUAUUGGCAACAGCCUU
        AAGGCTGTTGCCAATATCGGCGGCCGA
                                               (lter)
5
        AAGGCUGUUGCCAAUAUCGGCGGCCGA
                                            (lquater)
   TCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG
                                           (2)
   UCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (2bis)
   CAGGGAAGAAAGGCTGTTGCCAATATCGGCGGCCGA (2ter)
   CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGA (2quater)
   GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTG (3)
   GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUG (3bis)
   CAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC (3ter)
   CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC(3quater)
   GGTACCGTCATCGGCCGCCGATATTGGCAACAGCCTTTTCTTCCCTGACAAAAGTCC
20
                                                    (4)
   GGUACCGUCAUCGGCCGCCGAUAUUGGCAACAGCCUUUUCUUCCCUGACAAAAGUCC
                                                    (4bis)
   GGACTTTTGTCAGGGAAGAAAAGGCTGTTGCCAATATCGGCGGCCGATGACGGTACC
                                                    (4ter)
   GGACUUUUGUCAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC
                                                  (4quater)
30
   ACGCTACCAAGCAATCAAGTTGCCCAACAGCTAA
                                                  (5)
   ACGCUACCAAGCAAUCAAGUUGCCCAACAGCUAA
                                                  (5bis)
   TTAGCTGTTGGGCAACTTGATTGCTTGGTAGCGT
                                                  (5ter)
                                                  (5quater)
   UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGU
                                                  (9)
   CGCCACCGAGAAGCAAGCTTCCCTGTGCTGC
                                                  (9bis)
   CGCCACCCGAGAAGCAAGCUUCCCUGUGCUGC
                                                  (9ter)
   GCAGCACAGGGAAGCTTGCTTCTCGGGTGGCG
   GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG
                                                  (9quater)
    GCGGAATCATAGCTTTATTGCCAGCTCCCCCGC
                                                  (11)
   GCGGAAUCAUAGCUUUAUUGCCAGCUCCCCGC
                                                  (llbis)
                                                  (llter)
    GCGGGGGAGCTGGCAATAAAGCTATGATTCCGC
    GCGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC
                                                  (11quater)
                                                  (13)
    TGCTTTCCCTCTCAAGACGTATGC
```

	UGCUUUCCCUCUCAAGACGUAUGC	(13bis)
5	GCATACGTCTTGAGAGGGAAAGCA	(13ter)
	GCAUACGUCUUGAGAGGGAAAGCA	(13quater)
	TGGTGGGCCTTTACCCCGCCAACCAGCT	(18)
	UGGUGGGCCUUUACCCCGCCAACCAGCU	(18bis)
	AGCTGGTTGGCGGGGTAAAGGCCCACCA	(18ter)
	AGCUGGUUGGCGGGGUAAAGGCCCACCA	(18quater)

à condition que la sonde ne consiste pas en la séquence suivante :

TCA TCG GCC GCC GAT ATT GGC

- soit une séquence variante qui se distingue de l'une quelconque des séquences précédentes (1)
 à (18):
 - par l'addition ou l'élimination d'un ou de plusieurs nucléotides au niveau de l'une quelconque de leurs extrémités respectives;
 - ou par le changement d'un ou de plusieurs nucléotides à l'intérieur de l'une quelconque de ces séquences,
 - . ou par les deux,

15

20

30

35

40

45

50

55

à condition encore que dans l'une quelconque des circonstances ci-dessus, cette sonde s'hybride encore avec la même cible ARN ou ADN que la séquence non modifiée correspondante..

5. Sonde pour détecter une ou plusieurs souches de Neisseria gonorrhoeae parmi d'autres souches bactériennes, et en particulier parmi d'autres souches de Neisseria, qui cible l'une des séquences définies pas la suite ou la séquence complémentaire correspondante, lorsque le milieu d'hybridation ou le milieu de lavage ou les deux selon ce qui convient, sont les suivants :

milieu d'hybridation : contenant environ 3xSSC, (SSC = NaCl 0,15 M, citrate de sodium 0,015 M, pH 7,0), environ 25 mM de tampon au phosphate pH 7,1, 20% de formamide désionisé, 0,02% de ficoll, 0,02% d'albumine de sérum bovin, 0,02% de polyvinylpyrrolidone et environ 0,1 mg/ml d'ADN de sperme de saumon dénaturé, cisaillé.

milieu de lavage : contenant environ 3xSSC, du tampon au phosphate 25 mM, pH 7,1, et 20% de formamide désionisé, dans laquelle ces séquences cibles et les températures d'hybridation (TH) et les températures de lavage (TL) applicables correspondantes sont respectivement les suivantes :

AAGGCUGUUGCCAAUAUCGGCGGCCGA

TH et/ou TL: environ 50°C à environ 65°C

CAGGGAAGAAAGGCUGUUGCCAAUAUCGGCGGCCGA

TH et/ou TL : environ 60°C à environ 70°C

CAGGGAAGAAAAGGCUGUUGCCAAUAUCGGCGGCCGAUGACGGUACC

TH et/ou TL : environ 65°C à environ 70°C

10 GGACUUUUGUCAGGGAAGAAAAGGCUGUUGCAAUAUCGGCGGCCGAUGACGGUACC

TH et/ou TL: environ 70°C à environ 75°C

UUAGCUGUUGGGCAACUUGAUUGCUUGGUAGCGL

TH et/ou TL: environ 65°C

GCAGCACAGGGAAGCUUGCUUCUCGGGUGGCG

TH et/ou TL: environ 65°C

GCGGGGGAGCUGGCAAUAAAGCUAUGAUUCCGC

20 TH et/ou TL: environ 65°C

5

15

25

40

45

50

55

GCAUACGUCUUGAGAGGGAAAGCA

TH et/ou TL: environ 50°C à environ 55°C

AGCUGGUUGGCGGGGUAAAGGCCCACCA

TH et/ou TL: environ 60°C.

- 50 6. Procédé pour détecter des souches de Neisseria dans un échantillon biologique parmi d'autres souches bactériennes, dans lequel ce procédé comprend la mise en contact de cet échantillon biologique dans lequel les acides nucléiques (ADN et ARN) des souches ont été rendus accessibles à une hybridation, si besoin est, dans des conditions dénaturantes convenables, avec une sonde suivant l'une quelconque des revendications 1 à 5, dans des conditions permettant une hybridation entre la sonde et les acides nucléiques complémentaires des souches de Neisseria, qui peuvent être présentes dans l'échantillon, et la détection des hybrides éventuellement formés.
 - 7. Procédé pour détecter des souches de Neisseria dans un échantillon biologique parmi d'autres souches bactériennes suivant la revendication 6, dans lequel les sondes utilisées sont celles qui s'hybrident à la fois avec l'ADN et l'ARN des souches de Neisseria qui peuvent être présentes dans l'échantillon biologique.
 - 8. Procédé pour détecter des souches de Neisseria parmi d'autres souches bactériennes suivant les revendications 6 ou 7, dans lequel le milieu d'hybridation contient environ 3xSSC, (SSC = NaCl 0,15M, citrate de sodium 0,015 M, pH 7,0), environ 25 mM de tampon au phosphate pH 7,1, 20% de formamide désionisé, 0,02% de ficoll, 0,02% d'albumine de sérum bovin, 0,02% de polyvinylpyrrolidone et environ 0,1 mg/ml d'ADN de sperme de saumon dénaturé, cisaillé, ou le milieu de lavage contient environ 3xSSC, du tampon au phosphate 25 mM, pH 7,1, et 20% de formamide désionisé, et
 - dans lequel la sonde utilisée est l'une quelconque des sondes (1), (1 bis), (1 ter) ou (1 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55 °C, de préférence d'environ 53 °C et/ou la température de lavage dans la gamme d'environ 55 °C, de préférence d'environ 53 °C, ou l'une quelconque des sondes (2), (2 bis), (2 ter) ou (2 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60 °C et/ou la température d lavage dans la gamme d'environ 60 °C, ou l'un quelconque des sondes (3), (3 bis), (3 ter) ou (3 quater) de la r vendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60 °C, ou l'une quelconque des sondes (4), (4 bis), (4 ter) ou (4 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la

5

10

15

20

25

30

35

température de lavage dans la gamme d'environ 65°C, ou l'une quelconque des sondes (5), (5 bis), (5 ter) ou (5 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55°C et/ou la température de lavage dans la gamme d'environ 55°C, ou l'une quelconque des sondes (9), (9 bis), (9 ter) ou (9 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 80 °C et/ou la température de lavage dans la gamme d'environ 60°C, ou l'une quelconque des sondes (6), (6 bis), (6 ter) ou (6 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température de lavage dans la gamme d'environ 65 °C à environ 70 °C, ou l'une quelconque des sondes (7), (7 bis), (7 ter) ou (7 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55°C et/ou la température de lavage dans la gamme d'environ 55°C, ou l'une quelconque des sondes (8), (8 bis), (8 ter) ou (8 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55 °C, et/ou la température de lavage dans la gamme d'environ 55 °C à environ 60 °C, ou l'une quelconque des sondes (10), (10 bis), (10 ter) ou (10 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55°C et/ou la température de lavage dans la gamme d'environ 55°C à environ 60°C, ou l'une quelconque des sondes (11), (11 bis), (11 ter) ou (11 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55 °C et/ou la température de lavage dans la gamme d'environ 55 °C, ou l'une quelconque des sondes (12), (12 bis), (12 ter) ou (12 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55 °C à environ 60 °C et/ou la température de lavage dans la gamme d'environ 55 °C à environ 60 °C, ou l'une quelconque des sondes (13), (13 bis), (13 ter) ou (13 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 45°C et/ou la température de lavage dans la gamme d'environ 45 °C, ou l'une quelconque des sondes (14), (14 bis), (14 ter) ou (14 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 40°C à environ 45°C, et/ou la température de lavage dans la gamme d'environ 40 ° C à environ 45 ° C, ou l'une quelconque des sondes (15), (15 bis), (15 ter) ou (15 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 50°C à environ 55°C, et/ou la température de lavage dans la gamme d'environ 50°C à environ 55 °C, ou l'une quelconque des sondes (16), (16 bis), (16 ter) ou (16 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 50 °C à environ 60°C et/ou la température de lavage dans la gamme d'environ 50°C à environ 60°C, ou l'une quelconque des sondes (17), (17 bis), (17 ter) ou (17 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 50 °C à environ 55 °C et/ou la température de lavage dans la gamme d'environ 50 °C à environ 55 °C, ou l'une quelconque des sondes (18), (18 bis), (18 ter) ou (18 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 45 °C et/ou la température de lavage dans la gamme d'environ 45 ° C.

- Procédé pour détecter des souches de Neisseria gonorrhoeae parmi d'autres souches bactériennes et en particulier parmi d'autres souches de Neisseria, lequel procédé comprend la mise en contact de cet échantillon biologique, dans lequel les acides nucléiques (ADN et ARN) des souches ont été rendus accessibles à une hybridation, si besoin est, dans des conditions dénaturantes convenables, avec une sonde selon l'invention spécifique pour des souches de Neisseria gonorrhoeae et choisie parmi les sondes (1), (1 bis), (1 ter), (1 quater), (2), (2 bis), (2 ter), (2 quater), (3), (3 bis), (3 ter), (3 quater), (4), (4 bis), (4 ter), (4 quater), (5), (5 bis), (5 ter), (5 quater), (9), (9 bis), (9 ter), (9 quater), (11), (11 bis), (11 ter), (11 quater), (13), (13 bis), (13 ter), (13 quater), (18), (18 bis), (18 ter) et (18 quater) selon les revendications 1 ou 2, chaque fois qu'il est nécessaire, dans des conditions d'hybridation et de lavage ajustées de façon à assurer une hybridation spécifique avec les acides nucléiques complémentaires des souches de Neisseria gonorrhoeae, qui peuvent être présentes dans l'échantillon, mais non avec l'ADN ou l'ARN complémentaire d'autres espèces de Neisseria, et la détection des hybrides éventuellement formés.
- 10. Procédé pour détecter des souches de Neisseria gonorrhoeae parmi d'autres souch s bactériennes et en particulier parmi d'autres souches de Neisseria, suivant la revendication 9, dans lequel le milieu d'hybridation contient environ 3xSSC, (SSC = NaCl 0,15 M, citrate de sodium 0,015 M, pH 7,0), environ 25 mM de tampon au phosphate pH 7,1, 20% de formamide désionisé, 0,02% de ficoll, 0,02% d'albumine de sérum bovin, 0,02% de polyvinylpyrrolidone tenviron 0,1 mg/ml d'ADN de sperm de

5

10

15

20

25

30

35

40

45

50

saumon dénaturé, cisaillé, ou le milieu de lavage contient environ 3xSSC, du tampon au phosphate 25 mM, pH 7,1, et 20% de formamide désionisé, et

dans lequel la sonde utilisée est l'une quelconque des sondes (1), (1 bis), (1 ter) ou (1 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55 °C, de préférence d'environ 53 °C et/ou la température de lavage dans la gamme d'environ 55 °C à environ 65°C, de préférence d'environ 53°C à environ 65°C et de préférence d'environ 53°C, ou l'une quelconque des sondes (2), (2 bis), (2 ter) ou (2 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60 °C et/ou la température de lavage dans la gamme d'environ 65 ° C à environ 70 ° C, ou l'une quelconque des sondes (3), (3 bis), (3 ter) ou (3 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60°C et/ou la température de lavage dans la gamme d'environ 65°C à environ 70 °C, ou l'une quelconque des sondes (4), (4 bis), (4 ter) ou (4 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température de lavage dans la gamme d'environ 70°C à environ 75°C, ou l'une quelconque des sondes (5), (5 bis), (5 ter) ou (5 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60 °C et/ou la température de lavage dans la gamme d'environ 65 ° C, ou l'une quelconque des sondes (9), (9 bis), (9 ter) ou (9 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60°C à 65°C et/ou la température de lavage dans la gamme d'environ 65 °C, ou plus avantageusement l'une quelconque des sondes (1), (1 bis), (1 ter) ou (1 quater) de la revendication 2, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 55°C et/ou la température de lavage dans la gamme d'environ 55 °C à environ 65 °C, ou l'une quelconque des sondes (11), (11 bis), (11 ter) ou (11 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 65 °C et/ou la température de lavage dans la gamme d'environ 65 °C, ou l'une quelconque des sondes (13), (13 bis), (13 ter) ou (13 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 50 °C à environ 55 °C et/ou la température de lavage dans la gamme d'environ 50°C à environ 55°C, ou l'une quelconque des sondes (18), (18 bis), (18 ter) ou (18 quater) de la revendication 1, la température d'hybridation étant convenablement ajustée dans la gamme d'environ 60 °C et/ou la température de lavage dans la gamme d'environ 60 ° C.

- 11. Trousse pour détecter in vitro des souches de Neisseria dans un échantillon biologique, cette trousse contenant:
 - au moins une sonde choisie parmi l'une quelconque de celles qui sont définies dans les revendications 1 à 4;
 - le tampon ou les composants nécessaires pour produire le tampon permettant la réalisation de la réaction d'hybridation entre ces sondes et les ADN et/ou ARN d'un grand nombre, de préférence de toutes les souches de Neisseria;
 - lorsque cela est approprié, des moyens pour détecter les hybrides résultant de l'hybridation précédente.
- 12. Trousse pour détecter in vitro des souches de Neisseria gonorrhoeae dans un échantillon biologique, cette trousse contenant:
 - au moins une sonde spécifique pour N. gonorrhoeae telle que définie plus haut, par exemple, une sonde choisie parmi les sondes (2), (2 bis), (2 ter), (2 quater), (3), (3 bis), (3 ter), (3 quater), (4), (4 bis), (4 ter), (4 quater), (5), (5 bis), (5 ter), (5 quater), (9), (9 bis), (9 ter), (9 quater), (11), (11 bis), (11 ter), (11 quater), (13), (13 bis), (13 ter), (13 quater), (18), (18 bis), (18 ter) et (18 quater) suivant les revendications 1 ou 2, ou plus avantageusement, une sonde choisie parmi l'une quelconque des sondes (1), (1 bis), (1 ter), (1 quater), selon la revendication 2;
 - le tampon ou les composants nécessaires pour produire le tampon permettant la réalisation de la réaction d'hybridation entre ces sondes et les ADN et/ou ARN d'une souche de Neisseria gonorrhoeae;
 - Torsque cela est approprié, des moyens pour détecter les hybrides résultant de l'hybridation précédente.
- 13. Procédé pour détecter des souches de Neisseria gonorrhoeae parmi d'autres souches bactériennes et en particulier parmi d'autres souches de Neisseria, lequel procédé comprend la mise en contact de cet échantillon biologique dans lequel les acides nucléiques (ADN et ARN) des souches ont été rendus

accessibles à une hybridation, si besoin est, dans des conditions dénaturantes convenables, avec deux sondes suivant l'une quelconque des revendications 1 à 5, qui sont spécifiques pour les souches de Neisseria gonorrhoeae et ne sont pas respectivement capables de s'hybrider aux mêmes souches non cibles, et en particulier choisies parmi les combinaisons suivantes:

- une sonde du groupe 9 et l'une quelconque des sondes des groupes suivants : 1, 2, 3, 5 et 13;
- une sonde du groupe 13 et l'une quelconque des sondes des groupes suivants : 1, 2, 3 et 5;
- une sonde du groupe 18 et l'une quelconque des sondes des groupes suivants : 1, 2, 3, 5, 9 et 13;
- une sonde du groupe 5 et l'une quelconque des sondes des groupes suivants : 1, 2 et 3; et plus particulièrement, choisies parmi les combinaisons suivantes :
- une sonde du groupe 9 et l'une du groupe 5;

5

10

15

20

25

30

35

40

50

55

- une sonde du groupe 18 et l'une quelconque des sondes des groupes suivants : 5 et 9;

chaque fois que cela est nécessaire, dans des conditions d'hybridation et de lavage ajustées de façon à assurer une hybridation spécifique avec les acides nucléiques complémentaires des souches de Neisseria gonorrhoeae, qui peuvent être présentes dans l'échantillon, mais non avec l'ADN ou l'ARN complémentaire d'autres espèces de Neisseria, et la détection des hybrides éventuellement formés.

- 14. Trousse pour un essai d'hybridation sandwich pour la détection in vitro de souches de Neisseria gonorrhoeae dans un échantillon biologique, cette trousse contenant :
 - au moins deux sondes spécifiques pour N. gonorrhoeae choisies parmi les combinaisons suivantes :
 - une sonde du groupe 9 et l'une quelconque des sondes des groupes suivants : 1, 2, 3, 5 et 13;
 - une sonde du groupe 13 et l'une quelconque des sondes des groupes suivants : 1, 2, 3 et 5;
 - une sonde du groupe 18 et l'une quelconque des sondes des groupes suivants : 1, 2, 3, 5, 9 et 13;
 - une sonde du groupe 5 et l'une quelconque des sondes des groupes suivants : 1, 2 et 3; et plus particulièrement, choisies parmi les combinaisons suivantes :
 - une sonde du groupe 9 et l'une du groupe 5;
 - une sonde du groupe 18 et l'une quelconque des sondes des groupes suivants : 5 et 9;
 - le tampon ou les composants nécessaires pour produire le tampon permettant la réalisation d'une réaction d'hybridation entre ces sondes et les ADN et/ou ARN d'une souche de Neisseria gonorrhoeae;
 - lorsque cela est approprié, des moyens pour détecter les hybrides résultant de l'hybridation précédente.

ය **ස** ය **ස** ය ပ∎ပ∎ပ **V** 9 u ယ္မာတ္ လ ယ္ 🛢 ယ しまい ပ ပ S **⇒** 🛢 ⇒ 9 484 Ø ය 🛢 ය ပ∎ပ CAA ಲ ≣ ಲ **□ ■ □ ■ □** ပ **5 ■ 5 ■** 5 0 A U に発出

FIG 20

ມ **⊐**≣⊃ 9 A 9 ധ ⊃≣⊃ **७1 5** ⊃ ယ္မွာ ယုမ္မွာ ယ A B A B A しゅしゅし **∪ □ □ □** A . A . A > = > = > **3** | 3 | 3

UE UE U

0 I 0 I 0

しゅしゅし

တ္ပ ပ္ ၁ ပ္

5 5 5 5 5 5

VEVEV

७ ७ ७ ७ ७

ABA 0

ABA U

n u n

ພ∰ ບ∰ ບ

しゅ しゅし

AB AB A

AS AS A **-=-=**

ט ט ט

0 M 0 M 0

VEVEV

>= >= >

७ ■ **७** ■ **७**

□ ■ □ ■ □

VEVEV

5 5 5 5 5 VEVEV

A S A S A

VEVEV

ST C UEU A

ABA

ں 🖰 D 4 9 ပ ပ ာ **_ _ _** _ _ **5 5 5 5 5**

∵ 5 **5 5 5 ७ ७ ७ ७ ७** ひ コョコ **□ ■ □ ■ □** 出 铝 出

9

J

೧ # ∪ **#** ∪ しましまし A O A **5 € 5 € 5** コミコミコ **6** 6 6 0 **2 0 2 0** ပ ပ 🗩 **>=** ၁ ာ コ**ョ**コ い 4 **38**3 ယ္ျပ **5 5 5 5 5 5 6 ン ⊃≣**⊃ > **3** > **3** > ں∎ں \Rightarrow ယ∎ယ ပ **VEV** -O AMA **□ ■ □ ■ □** A O A DA A O ပ္ A B A ມ≣ ພ≣ບ A D A ABABA **၁ ၁ ၁** ය **ක** ය **ක** ය L S C

UGAA

Probe n°7

ယ္မွာလ ပ ⋖ V ယ **८** ■ **८** 9 Y ပ∎ပ V I V V U A B A ယ 🚆 ယ ယာ 🖪 ယ ပ 🛢 ပ =ದಾ 🛢 ದಾ **၁** 🛢 ပ ၂ ၁ ပေ 🖀 ပ ပ = \Rightarrow ⋖ **4 4 > = -**ပ

Probe nº 8

5 3 5 S 4 Ç A B A د 🔻 A B A ယ 🛢 ယ က 🖀 က ധ 🛢 ധ ය **ම** ය 4 **V E V** \Rightarrow \blacksquare \Rightarrow ပ္ 🛢 ပ ပ

robe n° 10

V I V ⋖ ت \Rightarrow G \Rightarrow ပ U A ပ ဌ = ပ U_BU <u>ය</u> 🖺 ය ပ \Rightarrow \Rightarrow ပ ပ Ø \Rightarrow ယ 🛢 ယ 9 A B A ပ $\Rightarrow \blacksquare \Rightarrow$ **७ ■** ७ V . V \Rightarrow d ပ **> :** > V \supset V S \Rightarrow ပ္ 🛢 ပ ပ A B A

Probe nº 1

9K

4 A . A 4 ပ ပ A B A A B A 9 9 4 4

WASH TEMPERATURE (°C)

FIG.7

E.coli 16S rRNA

10 AAAUUGAAGA	GUUUGAUCAU	30 GGCUCAGAUU	GAACGEUGGC	GGCAGGCCUA	ALALAUGUNA
70 SUCGAACGGU	BO AACAGGAAGA	90 AGCUUGCUCU	100 UUGCUGACGA	110 GUGGCGGACG	120 GGUGAGUAAU
130 GUCUGGGAAA	CUGCCUGAUG	150 GAGGGGGAUA	ACUACUGGAA	ACGGUAGCUA	HUHCCOCHON
190 ACGUCGCAAG	ACCAAAGAGG	210 GGGACCUUCG	GECCULOUGE	CHOCGOHOGO	00007.000
GAUUAGCUAG	UAGGUGGGGU	270 AACGGCUCAC	CUAGGCGACG	HUCCCOHOCO	000000
GAUGACCAGC	CACACUEGAA	330 CUGAGACACG	GUCCAGACUC	COHCOGORGO	CHOCK AGE ==
GAAUAUUGCA	CAAUGEECGC	390 AAGCCUGAUG	CAGCCAUGCC	GCGUGUAUGA	AGAACCCCC
430 CGGGUUGUAA	AGUACUUUCA	450 GCGGGGA6GA	AGGGAGUAAA	GUUHHUHCCU	0000007.000
490 ACGUUACCCO	CAGAAGAAGC	510 ACCGGCUAAC	: UCCGUGCCAG	CAGCLGCGGG	днонсоолоо
SSC GUGCAAGCGI) 560 J UAAUCGGAAL	570 J UACUGGGCGL	JAAAGCGCACG	590 CAGGCGGUUU	600 GUUAAGUCAG
AUGUGAAAU) CCCGGGCUCA) 630 A ACCUGGGAAC	UGUAULUGAL	, ACOGOCIA-OC	, 000, 2000
67 UAGAGGGG	G UAGAAUUCC	A GGUGUAGCG(3 UGAAAUGCGI) AGAGAUCUGO	720 AGGAAUACCG
73 GUGGCGAAG	o 740 G CGGCCCCCU	g gacgaagaci	J GACGCUCAG	3 UGCBHHHGC	780 UGGGGAGCAA
79 ACAGGAUUA	O 80 G AUACCOUGG	0 810 U AGUCCACGC	O 820 C GUAAACGAU	o 830 G UCGACUUGG	9 840 GGUUGUGCCC

FIG.8a

850 UTIGAGGGGIA	860	870	980) B90	900
DOGREGE	BLUULLIGAG	CUAACGCGUL	J AAGUCGACC	CCUGGGGAGL	ACGGCCGCAA
910	920	930	940	950	960
GGOOAAAACC	LAAAUGAAUL	J GACGGGGGCC	CGCACAAGC	GUGGAGCAUG	UGGUUUAAUU
970		990	1000	1010	1020
CGAUGCAACG	CGAAGAACEL	UACCUGGUCU	UGACAUCCAC	GGAAGUUUUC	AGAGAUGAGA
1030		1050	1060	1070	1080
AUGUGCCUUC	GGGAACCGUG	AGACAGGUGC	UGCAUGGCUG	UCGUCAGCUC	GUGUUGUGAA
	1100	1110	1120	1130	1140
AUGUUGGGUU	AAGUCCCECA	ACGAGCGCAA	CCCUUAUCCU	UUGUUGCCAG	CGGUCCGGCC
1150	1160	1170	1180	1190	1200
GGGAACUCAA	AGGAGACUGC	CAGUGAUAAA	CUGGAGGAAG	GUGGGGAUGA	CGUCAAGUCA
1210	1220	1230	1240	1250	1260
UCAUGGCCCU	UACGACCAGG	GCUACACACG	UGCUACAAUG	GCGCAUACAA	AGAGAAGCGA
					•
1270	1280	1290	1300	1310	1320
CCUCGCGAGA	GCAAGCGGAC	CUCAUAAAGU	GCGUCGUAGU	CCGGAUUGGA	GUCUGCAACU
1330	1340	1350	1360	1370	1780
CGACUCCAUG	AAGUCGGAAU	CGCUAGUAAU	CGUGGAUCAG	AAUGCCACGG	UGAAUACGUU
1390	1400	1410	1420	1430	1440
ccceeccuu	GUACACACCG	CCCGUCACAC	CAUGGGAGUG	GGUUGCAAAA	GAAGUAGGUA
1450	1460	1470	1480	1490	1500
GCUUAACCUU	CGGGAGGGCG	CUUACCACUU	UGUGAUUCAU	GACUGGGGUG	AAGUCGUAAC
		1530			
	UAGGGGAACC	UGCGGUUGGA	UCACCUCCUU	A	

FIG.8b

FIG 9

E. coli 23S rRNA (partial)

6 GITAAGCGAC TAAGCGTACA COGTGDATGC CCTGGCAGTC

AGABGCGATG AAGGACGTGC TAATCTGCBA TAAGCGTCGG TAAGGTGATA TGAACCGTTA

161 TAACCGGCGA TTTCCGAATG GGGAAACCCA GTGTGTTTCG ACACACTATC ATTAACTGAA

TCCATAGGIT AATGAGGCGA ACCGGGGGAA CTGAAACAIC TAAGTACCCC GAGGAAAGA

281 AATCAACCBA GATTCCCCCA GTAGCGGCGA GCGAACGGGG AGCAGCCCAG AGCCTGAATC

FIG.14

5 T	6	2	œ	6	e	7	_	7	7	<u>د</u>	_	T	.~	_			~	_	_				_
837	433	4085	4308	393	4363	4367	4401	4437	572	3043	4383	10025	3342	334	334	3346	3348	3349	3350	3357	3362	17407	4197
NCTC	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ATCC	NCTC	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ITG	ATCC	ITG
a)	Neisseria gonorrhoeae	isse	Neisseria gonorrhoeae	seria		Neisseria meningitidis	Neisseria	Neisseria	eisseria	Neisseria meningitidis	ria	isse		Neisseria meningitidis	sendomon	Branhamella catarrhalis							
<u>.</u> ;	7	m .	4 ·	٠,	9	.,	∞ (ۍ ج	2 :	= (12.	E ;	14	15,	16.	17.	χ.	19.	20.	$\frac{21}{2}$	$\frac{22}{5}$.	23.	. 47

FIG. 16

FILTER I

FILTERI

FIG.17

FIG.18