

Exercícios do Wooldridge 01

Variáveis Instrumentais e o

Método de Mínimos Quadrados em 2 Estágios (TSLS)

Vítor Wilher Mestre em Economia analisemacro.com.br

Pacotes

```
### Pacotes
library(foreign)
library(AER)
library(stargazer)
```

1 Introdução

Variáveis instrumentais são uma poderosa ferramenta para identificar e estimar relações causais. Para ilustrar, considere o modelo simples de regressão linear abaixo especificado

$$y = \beta_0 + \beta_1 x + u \tag{1}$$

O estimador de MQO para o parâmetro de inclinação é dado por

$$\hat{\beta}_1^{MQO} = \frac{Cov(x, y)}{Var(x)} \tag{2}$$

Se supormos, por suposto, que o regressor x é correlacionado com o termo de erro u, esse estimador será viesado e inconsistente. Se tivermos um instrumento válido z, nós podemos estimar β_1 de forma consistente usando o estimador de variáveis instrumentais

$$\hat{\beta}_1^{IV} = \frac{Cov(z, y)}{Cov(z, x)} \tag{3}$$

Isto é, um instrumento válido é correlacionado com o regressor x, o que implica que o denominador de 3 é diferente de zero. Ele também deve ser não correlacionado como o termo de erro u.

2 Retorno da educação para mulheres casadas

Para ilustrar a implementação de variáveis instrumentais no **R**, vamos considerar o Exemplo 15.1 de Wooldridge (2013), sobre o retorno da educação para mulheres casadas.

Exemplo 15.1 do Wooldridge (2013)

Utilizamos os dados sobre mulheres casadas que trabalham contidos no arquivo mroz.raw para estimar o retorno da educação no modelo de regressão simples

$$ln(salário_h) = \beta_0 + \beta_1 educ + u \tag{4}$$

O código de R abaixo lê o arquivo Stata mroz. dta, utilizando para isso o pacote foreign.

mroz <- read.dta("http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta")</pre>

Se o leitor observar o *data frame*, vai ver que há *missing values* nas observações de salários. Tratamos o problema com o comando abaixo.

```
amostra <- subset(mroz, !is.na(wage))</pre>
```

Feito isso, podemos passar para a estimação de β_1 . Faremos a mesma de duas formas. Via MQO normal e via IV, tomando a educação do pai como instrumento para a educação das mulheres da amostra. Para a estimação via instrumentos, utilizaremos a função ivreg do pacote AER. Isso é feito abaixo.

```
reg.ols <- lm(log(wage) ~ educ, data=amostra)</pre>
reg.iv <- ivreg(log(wage) ~ educ | fatheduc, data=amostra)</pre>
```

Os resultados das estimações estão postos na tabela 1. A equação ivreg implementa variáveis instrumentais por mínimos quadrados em dois estágios. Observe, por suposto, a diferença de β_1 nos dois métodos. Enquanto no estimador de MQO, o retorno da educação no salário é de 11% para um ano adicional de estudo, no estimador IV, passa a ser de 5.9%, um pouco mais da metade.

Tabela 1

	Dependent variable:	
	OLS	instrumental variable
	(1)	(2)
educ	0.109***	0.059*
	(0.014)	(0.035)
Constant	-0.185	0.441
	(0.185)	(0.446)
Observations	428	428
R^2	0.118	0.093
Adjusted R^2	0.116	0.091
Residual Std. Error (df = 426)	0.680	0.689
F Statistic	56.929*** (df = 1; 426)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

4

Referências

Wooldridge, J. M. Introductory Econometrics: A Modern Approach. Editora Cengage, 2013.