

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Computación

Seguimiento de Objetos en Secuencias de Imágenes RGB-D

Tesis presentada para optar al título de Licenciado en Ciencias de la Computación

Mariano Bianchi

Director: Francisco Roberto Gómez Fernández

Buenos Aires, 2014

SEGUIMIENTO DE OBJETOS EN SECUENCIAS DE IMÁGENES RGB-D

Acá iría el abstract en español (aprox. 200 palabras).

Palabras claves: español, abstract, acá (no menos de 5).

OBJECT TRACKING USING RGB-D IMAGE SEQUENCES

Escribir acá el abstract IN ENGLISH ;) (aprox. 200 palabras).

 $\bf Keywords:$ Escribir, ENGLISH, acá (no menos de 5).

AGRADECIMIENTOS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce sapien ipsum, aliquet eget convallis at, adipiscing non odio. Donec porttitor tincidunt cursus. In tellus dui, varius sed scelerisque faucibus, sagittis non magna. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Mauris et luctus justo. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Mauris sit amet purus massa, sed sodales justo. Mauris id mi sed orci porttitor dictum. Donec vitae mi non leo consectetur tempus vel et sapien. Curabitur enim quam, sollicitudin id iaculis id, congue euismod diam. Sed in eros nec urna lacinia porttitor ut vitae nulla. Ut mattis, erat et laoreet feugiat, lacus urna hendrerit nisi, at tincidunt dui justo at felis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Ut iaculis euismod magna et consequat. Mauris eu augue in ipsum elementum dictum. Sed accumsan, velit vel vehicula dignissim, nibh tellus consequat metus, vel fringilla neque dolor in dolor. Aliquam ac justo ut lectus iaculis pharetra vitae sed turpis. Aliquam pulvinar lorem vel ipsum auctor et hendrerit nisl molestie. Donec id felis nec ante placerat vehicula. Sed lacus risus, aliquet vel facilisis eu, placerat vitae augue.

Índice general

	Introducción	1
	1.1. Objetivos įva?	2
	Desarrollo	3
	2.1. Trabajo relacionado	
	2.2. Alignment prerejective	
	2.3. Iterative Closest Point (ICP)	3
	2.4. Esquema de seguimiento	
	2.5. Método propuesto	3
3	Experimentación	5
4	Discusión	6
5	Conclusiones	7

1. INTRODUCCIÓN

En la actualidad, las posibles aplicaciones de métodos de seguimiento o tracking son muchas y van desde el uso en la industria hasta juegos de consola. Un ejemplo de ello es la fabricación de barcos y autos mediante el uso de robots. Estas tareas se caracterizan por la necesidad de posicionar de manera precisa una herramienta sobre una pieza de trabajo. A través del uso de métodos de tracking se puede conocer la posición y pose de la pieza que se desea utilizar con respecto a la pose de la cámara y de esta forma saber cómo ubicar la herramienta necesaria para trabajar sobre la pieza en cuestión.

Otra área en donde se utiliza tracking de objetos es para la generación de estadísticas durante un partido de fútbol, tanto de jugadores como de un equipo, aunque las posibles aplicaciones en este contexto son mucho más amplias, como por ejemplo análisis de tácticas, verificación de las decisiones del árbitro, resúmenes automáticos de un partido, etc.

Actualmente existen sensores de profundidad que en conjunto con una cámara RGB pueden ser utilizados para detectar y seguir a una o más personas en tiempo real. De esta manera, mediante un sistema que procese las imágenes RGB-D de estos sensores, las personas puedan utilizar su cuerpo y sus movimientos para interactuar naturalmente con un dispositivo.

La utilización de sensores RGB-D se ha popularizado en los últimos años, cobrando un gran interés científico el estudio de aplicaciones y métodos capaces de procesar y entender la información que los mismos proveen.

La información de profundidad que nos provee un sensor RGB-D es un dato fundamental que nos posibilita encontrar la distancia de un objeto al sensor pudiendo recuperar su información 3D (tridimensional) junto a su textura RGB en tiempo real: 30 cuadros por segundo. El video RGB-D que se obtiene provee una gran ayuda al mejoramiento y desarrollo de nuevas técnicas de procesamiento de imágenes y video ya conocidas. En particular, es de interés en esta tesis, el seguimiento de objetos en secuencias de imágenes RGB-D.

Un sistema de seguimiento se puede dividir en tres etapas bien definidas:

- 1. Entrenamiento
- 2. Detección
- 3. Seguimiento cuadro a cuadro

La etapa de entrenamiento consiste en obtener una representación del objeto al cuál se pretende seguir. Para llevarla a cabo se puede utilizar un patrón (template) ya conocido o aprenderlo de imágenes capturadas del mismo objeto. Este template luego se utiliza en la detección para ubicar la representación del objeto dentro de una imagen cualquiera. Una vez conocido el template no se requiere de una nueva ejecución del entrenamiento.

La segunda etapa, la de detección, radica en encontrar dentro de un frame del video al objeto en cuestión utilizando el método de detección deseado, valiéndose de la información registrada en la etapa de entrenamiento. Esta etapa se ejecuta, con el propósito de encontrar en la imagen el objeto a seguir, al comienzo del sistema de seguimiento y cuando el seguimiento cuadro a cuadro falla. Dado que la etapa de detección suele ser la

más costosa en términos de desempeño computacional es deseable que se ejecute la menor cantidad de veces posible.

Finalmente, la tercera etapa consiste en seguir cuadro a cuadro el objeto detectado en la etapa anterior. Es decir, teniendo la ubicación del objeto en un cuadro de video se desea identificar la posición del mismo objeto en el siguiente frame. Esta etapa es la más importante ya que es la que se ejecuta en cada frame del video. La eficiencia del método de seguimiento es lo que determinará que todo el sistema de seguimiento se consiga realizar eficientemente. Si la técnica de seguimiento tiene una efectividad baja, es decir, no logra identificar la nueva posición del objeto en el siguiente cuadro, se debe volver a la etapa de detección cuyo desempeño computacional es mayor.

1.1. Objetivos įva?

El objetivo principal de esta tesis es la implementación, estudio y evaluación de un sistema de seguimiento de objetos en secuencias de imágenes RGB-D, con las siguientes características:

- Performance Real-time: procesamiento de imágenes mayor a 10 cuadros por segundo
- Seguimiento de objetos tridimensionales con forma conocida previamente y de objetos aprendidos mediante una fase de entrenamiento previa
- Funcionamiento en sensores de profundidad de bajo costo (Kinect, XTion, etc.)

2. DESARROLLO

2.1. Trabajo relacionado

En el artículo [PLW11] se implementan las tres etapas de un sistema de seguimiento nombradas anteriormente. Cada una de estas etapas es abordada de distintas maneras según la literatura actual. La etapa de entrenamiento consiste en obtener una representación tridimensional del objeto al cuál se pretende seguir. En el artículo [DC99] se utiliza un entrenamiento off-line que consiste en obtener un modelo CAD (computer-aided design) del objeto que se desea seguir. Luego, en el artículo [PLW11] se presenta una etapa de entrenamiento novedosa que se realiza de manera on-line, en donde utiliza un marcador conocido para definir las coordenadas de los objetos y calibrar la cámara.

La etapa de detección tiene como objetivo obtener la ubicación del objeto a seguir en un frame dado. En el artículo [PLW11] utilizan el método propuesto en [HLI+10] para detección de objetos en imágenes 2D y lo extienden para estimar la pose 3D. Otros métodos conocidos en la literatura son los propuestos en [Bru09, KRTA13].

La etapa de seguimiento 3D cuadro a cuadro es la más importante y de la que depende el éxito o fracaso de todo el sistema de seguimiento. En el artículo [PLW11] utilizan el algoritmo "Iterative Closest Point" (ICP) propuesto en [Zha94, BM92], refinando el resultado con datos de bordes tomados durante la fase de entrenamiento. El método utilizado por [DC99] se basa en la detección de bordes para realizar el seguimiento frame a frame.

2.2. Alignment prerejective

2.3. Iterative Closest Point (ICP)

2.4. Esquema de seguimiento

Cosas a escribir:

- cómo separé las etapas en el código y por qué
- cómo se comunican"

2.5. Método propuesto

Tomando como base las etapas antes mencionadas, proponemos distintos métodos para cada una de ellas. La primera etapa del sistema puede ser prescindible si contamos con el modelo 3D del objeto a seguir y una cámara calibrada. Este es el caso de estudio de esta tesis, ya que, con el propósito de poder evaluar cuantitativamente el seguimiento de objetos en secuencias de imágenes RGB-D, utilizaremos la base de datos [LBRF11] la cual nos provee de información de ground truth sobre el posicionamiento de los objetos cuadro por cuadro en video RGB-D. Cosas a escribir:

- que imagen tomo como entrenamiento
- una posibilidad que se barajó: armar un modelo más completo alineando varias imágenes

2. Desarrollo

La detección se realizó utilizando [BKK⁺13] y corrigiendo con ICP. Cosas a escribir:

- qué sucedió al tratar de detectar en toda la escena
- cómo se hizo para dividir la escena en partes y detectar en cada una
- elección de parámetros

La utilización del algoritmo ICP [Zha94, BM92] para realizar el seguimiento resulta natural e intuitiva. Por ello, es que en esta tesis se estudiará el algoritmo ICP y sus variantes [EBW04, SHT09], con el fin de evaluar cómo sus parámetros afectan cuantitativamente al sistema de seguimiento y la performance computacional del mismo. Asimismo, se evaluará la adaptabilidad del filtro de Kalman [WB95] para seguimiento de objetos 3D en imágenes RGB-D con posibilidad de desempeño en tiempo real. El filtro de Kalman es un filtro muy popular y estudiado extensivamente en la literatura [JU97, WVDM00] debido a su gran desempeño para realizar seguimiento en imágenes 2D. Por lo tanto, su aplicación en seguimiento de objetos 3D resulta de especial interés.

Cosas a escribir:

• elección de parámetros

3. EXPERIMENTACIÓN

4. DISCUSIÓN

5. CONCLUSIONES

Bibliografía

- [BKK+13] A.G. Buch, D. Kraft, J.-K. Kamarainen, H.G. Petersen, and N. Kruger. Pose estimation using local structure-specific shape and appearance context. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 2080–2087, May 2013.
- [BM92] P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 14(2):239–256, 1992.
- [Bru09] Roberto Brunelli. Template matching techniques in computer vision: theory and practice. Wiley. com, 2009.
- [DC99] Tom Drummond and Roberto Cipolla. Real-time tracking of complex structures with on-line camera calibration. In *BMVC*, pages 1–10. Citeseer, 1999.
- [EBW04] Raúl San José Estépar, Anders Brun, and Carl-Fredrik Westin. Robust generalized total least squares iterative closest point registration. In *Medical Image Computing and Computer-Assisted Intervention-MICCAI 2004*, pages 234–241. Springer, 2004.
- [HLI⁺10] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Pascal Fua, and Nassir Navab. Dominant orientation templates for real-time detection of texture-less objects. In *Computer Vision and Pattern Recognition (CVPR)*, 2010 IEEE Conference on, pages 2257–2264. IEEE, 2010.
- [JU97] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter to nonlinear systems. In *AeroSense'97*, pages 182–193. International Society for Optics and Photonics, 1997.
- [KRTA13] S. Korman, D. Reichman, G. Tsur, and S. Avidan. Fast-match: Fast affine template matching. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 2331–2338, 2013.
- [LBRF11] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view rgb-d object dataset. In *Robotics and Automation (ICRA)*, 2011 IEEE International Conference on, pages 1817–1824. IEEE, 2011.
- [PLW11] Youngmin Park, Vincent Lepetit, and Woontack Woo. Texture-less object tracking with online training using an rgb-d camera. In *Mixed and Augmented Reality (ISMAR)*, 2011 10th IEEE International Symposium on, pages 121–126. IEEE, 2011.
- [SHT09] Aleksandr Segal, Dirk Haehnel, and Sebastian Thrun. Generalized-icp. In *Robotics: Science and Systems*, volume 2, page 4, 2009.
- [WB95] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

Bibliografía 9

- [WVDM00] Eric A Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, pages 153–158. IEEE, 2000.
- [Zha94] Zhengyou Zhang. Iterative point matching for registration of free-form curves and surfaces. *International Journal of Computer Vision*, 13(2):119–152, 1994.