ISIMA 1^{ère} année
25 juin 2002
Durée : 2 heures

Documents autorisés

AUTOMATES

note l'ensemble des entiers relatifs. On appelle trajectoire dans l'ensemble ², toute suite (P_i) $i \ge 0$ d'éléments de ² telle que $P_0 = (0, 0)$ et $\forall i > 0$, $P_{i+1} = (x_{i+1}, y_{i+1})$ se déduit de $P_i = (x_i, y_i)$ à partir de l'un des 4 déplacements élémentaires, e, n, o, s, suivants :

$$\begin{cases} x_{i+1} = x_i + 1 \\ y_{i+1} = y_i \end{cases} \text{ (e) } ; \begin{cases} x_{i+1} = x_i \\ y_{i+1} = y_i + 1 \end{cases} \text{ (n) } ; \begin{cases} x_{i+1} = x_i - 1 \\ y_{i+1} = y_i \end{cases} \text{ (o) } ; \begin{cases} x_{i+1} = x_i \\ y_{i+1} = y_i - 1 \end{cases} \text{ (s).}$$

Les trajectoires ainsi définies peuvent être décrites comme des mots sur le vocabulaire $V = \{ e, n, o, s \}$.

On considère les sous ensembles suivants de 2:

$$C = \{ (x, y) \in {}^{2} : |x| \le 1 \text{ et } |y| \le 1 \} ;$$

$$B_{0} = \{ (x, y) \in {}^{2} : y = 0 \} ; B_{1} = \{ (x, y) \in {}^{2} : |y| \le 1 \} ; B_{2} = \{ (x, y) \in {}^{2} : |y| \le 2 \} ;$$

Question 1

a) Montrer que l'ensemble de toutes les trajectoires dans l'ensemble ² est un langage régulier.

Solution:

Ce langage est V^* qui est représenté par l'expression régulière (e + n + o + s)*, et qui est donc régulier.

b) Montrer que l'ensemble des trajectoires qui restent à l'intérieur de C est un langage régulier.

Ce langage étant accepté par l'AFD ci-dessous, il est donc régulier.

Question 2

Soit L_0 (respectivement L_1 , L_2) l'ensemble des trajectoires qui restent à l'intérieur de B_0 (respectivement de B_1 , B_2) et qui sortent de C sans ne jamais y retourner.

a) Montrer que :

$$\exists K \in IN \text{ t.q. } \forall m \in L_0 : m > K \Rightarrow (\exists (x, u, y) \in D_3(m) \text{ t.q. } \forall n \in IN^*, xu^ny \in L_0),$$
 avec $D_3(m) = \{(x, u, y) \in V^* \times V^+ \times V^* \text{ t.q. } m = xuy \}.$ Ou'en concluez vous?

Solution:

 $\forall m \in L_0$ tel que m > 2, si m correspond à une trajectoire sur $I\!N$, m contient au moins un "e", donc $\exists (x, u, y) \in D_3(m)$ tel que u = e, donc $\forall n \in I\!N *, xu^n y \in L_0$.

De même $\forall m \in L_0$ tel que m > 2, si m correspond à une trajectoire sur \bar{m} , m contient au moins un "o", donc $\exists (x, u, y) \in D_3(m)$ tel que u = 0, donc $\forall n \in IN *, xu^n y \in L_0$.

Il n'y a rien à conclure de ceci, puisque dans le théorème du gonflement pour les langages réguliers, cette proposition n'est que la conclusion de l'implication.

b) Déterminer un APND A_0 acceptant L_0 .

Solution:

 L_0 est un langage hors contexte car il est accepté par l'APND suivant (f est l'état accepteur) :

	e	0	n	S	ε
q_0	$(q_0,e,\epsilon)(q_1,E)$	$(q_0,o,\epsilon)(q_{-1},O)$			
q_1	$(q_1,e,\epsilon)(q_{\geq 1},E)$	$(q_1,o,E)(q_0,\varepsilon)$			
$q_{\geq 1}$	$(q>1,e,\epsilon)(q>1,E)$	$(q_{>1}, o, E^3) (q_{>1}, E^2)$			$(q_{\geq 1}, \varepsilon, \varepsilon) (f, \varepsilon)$
q_{-1}	$(q_{-1},e,O)(q_0,\varepsilon)$	$(q_{-1}, o, \varepsilon) (q_{<-1}, O)$			
$q_{\leq -1}$	$(q_{<-1},e,O^3)(q_{<-1},O^2)$	$(q_{-1},0,\epsilon)(q_{-1},0)$			$(q_{<-1}, \varepsilon, \varepsilon) (f, \varepsilon)$

c) Indiquer comment déduire de A_0 un APND A_1 acceptant L_1 . Il n'est pas demandé d'expliciter cet automate, mais simplement de décrire de manière informelle, mais suffisamment précise, quels sont les états de A_1 (plus précisément comment ils se déduisent des états de A_0), et quel est leur comportement.

Le principe consiste à créer 3 versions de chacun des états q_0 , q_1 , q_{-1} , q_{-1} et q_{-1} de A_0 en rajoutant un second indice égal à 0, 1 ou -1 selon que l'ordonnée du point courant de la trajectoire est égal à 0, 1 ou -1.

Lorsqu'on lit des "e" ou des "o", le comportement de ces trois versions est identique au comportement de l'état de A_0 dont ils sont issus.

Lorsqu'on lit un "n", on effectue une transition de $q_{x,-1}$ vers $q_{x,0}$ ou de $q_{x,0}$ vers $q_{x,1}$.

Lorsqu'on lit un "s", on effectue une transition de $q_{x,1}$ vers $q_{x,0}$ ou de $q_{x,0}$ vers $q_{x,-1}$.

d) Indiquer comment déduire de A_0 et de A_1 un APND A_2 acceptant L_2 . Il n'est pas demandé d'expliciter cet automate, mais simplement de décrire de manière informelle, mais suffisamment précise, quels sont les états qu'il faut rajouter à A_1 , et quel est leur comportement, et quelles modifications doivent être effectuées sur les états de A_1 .

Ce sont maintenant 5 versions de chacun des états q_0 , q_1 , q_{-1} , q_{-1} et q_{-1} de A_0 qu'il faut créer, en rajoutant un second indice égal à 0, 1, -1, 2 ou -2 selon que l'ordonnée du point courant de la trajectoire est égal à 0, 1, -1, 2 ou -2.

Les trois versions 0, 1, et -1 sont identiques à celles de l'automate A_1 , à la simple différence qu'il faut rajouter les transitions de $q_{x,1}$ vers $q_{x,2}$ par lecture d'un "n", et de $q_{x,-1}$ vers $q_{x,-2}$ par lecture d'un "s".

Les versions 2 et -2 ont un comportement analogue aux versions 0, 1 et -1, mais avec les différences suivantes :

- lorsqu'on lit un "o", on effectue une transition de $q_{>1,2}$ vers $q_{1,2}$ (respectivement de $q_{>1,-2}$ vers $q_{1,-2}$) quand il y a deux "E" dans la pile ;
- lorsqu'on lit un "e", on effectue une transition de $q_{<-1,2}$ vers $q_{-1,2}$ (respectivement de $q_{<-1,-2}$ vers $q_{-1,-2}$) quand il y a deux "O" dans la pile.
- lorsqu'on lit un "n", on effectue une transition de $q_{x,-2}$ vers $q_{x,-1}$ uniquement pour $x \in \{<-1, >1\}$;
- lorsqu'on lit un "s", on effectue une transition de $q_{x,2}$ vers $q_{x,1}$, uniquement pour $x \in \{<-1, >1\}$;
- e) Soit L_{∞} l'ensemble des trajectoires de 2 qui sortent de C sans ne jamais y retourner. Pour quelle raison peut-on supposer, de manière informelle, que L_{∞} n'est pas hors contexte ?

Solution:

Les questions précédentes montrent que, dans la mesure où l'on ne dispose que d'une seule pile, la seule solution pour mémoriser l'ordonnée du point courant est de la mémoriser en créant autant de versions des états de A_0 qu'il y a de valeurs possibles de l'ordonnée. Pour accepter L_{∞} un APND devrait donc avoir un nombre infini d'états, ce qui est exclu.

Question 3:

Le but de cette question est d'écrire une machine de Turing qui accepte L_{∞} . Le principe de cette machine est de gérer deux piles, l'une pour l'abscisse, l'autre pour l'ordonnée. Le ruban contient initialement un mot de $(e + n + o + s)^*$ précédé du symbole ">".

a) Ecrire une machine de Turing M qui écrit, à la suite du mot initialement contenu dans le ruban, autant de symboles "-" qu'il y a de lettres "e", "n", "o" ou "s" dans ce mot, en les encadrant entre deux symboles "|". A la fin de l'exécution, M doit positionner sa tête de lecture sur la première lettre du mot. Si par exemple le contenu initial du ruban est ">sonos", son contenu final doit être ">sonos|-----|", et la tête de lecture doit être positionnée sur le premier "s".

	>	$x \in \{e,n,o,s\}$	X∈ {E,N,O,S}		-	#
q_0	\rightarrow	\rightarrow				$(q_1, , \leftarrow)$
q_1	(q_3, \geq, \rightarrow)	(q_2, X, \rightarrow)	←	←	←	
q_2			\rightarrow	\rightarrow	\rightarrow	$(q_1, -, \leftarrow)$
q_3			(q_3, x, \rightarrow)	\rightarrow	\rightarrow	$(q_5, , \leftarrow)$
q_4	(f, \geq, \rightarrow)	←		←	←	

f est l'état final.

La partie du ruban placée entre les symboles "|" peut être utilisée comme une pile permettant de connaître l'abscisse x du point courant de la trajectoire : si x = 0, elle est vide ; si x > 0, elle contient x symboles "E" ; si x < 0, elle contient (-x) symboles "O". Le reste du ruban, à la droite du second symbole "|" peut être utilisé, suivant le même principe, comme une pile permettant de connaître l'ordonnée du point courant de la trajectoire.

b) Déduire de la machine M, une machine de Turing M ' qui accepte toutes les trajectoires sur 2 et qui permet de connaître, suivant le principe indiqué ci-dessus, la position des points de cette trajectoire. Sur l'exemple précédent, le contenu du ruban à la fin de l'exécution devra donc être ">sonos|OO---|S".

Remarques:

- comme le principe d'empilement ou de dépilement est le même quel que soit le symbole lu, on se contentera de donner les états correspondant au traitement d'un symbole "e".
- \bullet comme dans le tableau de M, on pourra, lorsque plusieurs symboles sont traités de manière indépendante de leur valeur, n'écrire qu'une seule colonne pour ceux-ci.

Solution:

En reprenant M à partir de l'état q_4 , on obtient les états suivants de M' pour le traitement d'un symbole "e":

	>	e	Е	O	n,o,s		-
q_4	(q_5, \geq, \rightarrow)	←				\leftarrow	\leftarrow
q_5		(q_{6E}, E, \rightarrow)			(q_{6X}, X, \rightarrow)	$(f, , \leftarrow)$	
q_{6E}		\rightarrow	(q_{7E}, E, \rightarrow)	(q_{8E}, O, \rightarrow)	\rightarrow	\rightarrow	(q_{10E}, E, \leftarrow)
q_{7E}			\rightarrow				(q_{10E}, E, \leftarrow)
q_{8E}				\rightarrow			(q _{9E} , -, ←)
q _{9E}				$(q_{10E}, -, \leftarrow)$			
q _{10E}			-	←	_	$(q_{11E}, , \leftarrow)$	
q_{11E}			(q_5, E, \rightarrow)		←		

f est l'état final.

Pour accepter les trajectoires de L_{∞} , la machine de Turing doit refuser certaines transitions. Par exemple, elle doit refuser un "e" si la première pile contient deux "O" et si la seconde pile est vide, ou bien ne contient qu'un seul "N", ou bien ne contient qu'un seul "S".

c) Modifier la solution de la question précédente pour tester si la transition sur un "e" est acceptable ou non.

C'est à partir de l'état q_{8E} qu'il faut effectuer des modifications, puisqu'on est dans le cas où la première pile contient un ou plusieurs "O":

	>	e	Е	О	n,o,s		-	N,S
q_4	$(q_5, >, \rightarrow)$	←				←	←	
q_5		(q_{6E}, E, \rightarrow)			(q_{6X},X,\to)	$(f, , \leftarrow)$		
q_{6E}		\rightarrow	(q_{7E}, E, \rightarrow)	(q_{8E}, O, \rightarrow)	\rightarrow	\rightarrow	(q_{10E}, E, \leftarrow)	
$q_{7\mathrm{E}}$			\rightarrow				(q_{10E}, E, \leftarrow)	
q_{8E}				$(q'_{8E}, O, \rightarrow)$			$(q_{9E}, -, \leftarrow)$	
q' _{8E}				$(q^{"}_{8E}, O, \rightarrow)$			$(q_{12E}, -, \rightarrow)$	
q" _{8E}				$(q^{"}_{8E}, O, \rightarrow)$			$(q_{9E}, , \leftarrow)$	
q _{9E}				$(q_{10E}, -, \leftarrow)$				
q _{10E}			←	←		$(q_{11E}, , \leftarrow)$		
q_{11E}			(q_5, E, \rightarrow)		\leftarrow			
q_{12E}						$(q_{13E}, , \rightarrow)$	\rightarrow	
q_{13E}								$(q_{14E}, X, \rightarrow)$
q _{14E}				(q _{10E} , -, ←)		←	←	←

- q_{8E} lit le symbole après le premier "O" :
- si c'est un "-", il n'y a qu'un seul "O" dans la pile, M ' peut donc transiter en q_{9E} qui va supprimer ce O et continuer comme dans la solution précédente.
- si c'est un "O", il y a au moins deux "O" dans la pile, et M' transite en q'8E.
- q'_{8E} lit le symbole après le deuxième "O" :
- si c'est un "-", il y a exactement deux "O" dans la pile, et M' transiter donc en q_{12E} pour continuer le test.
- si c'est un "O", il y a plus de deux "O" dans la pile, et M ' transite en q''_{8E} qui va continuer le traitement comme le faisait l'état q_{8E} de la solution précédente.
- q_{12E} déplace la tête de lecture jusqu'au début de la seconde file, et M' transite en q_{13E} .
- q_{13E} lit le premier symbole de cette pile, et M ' transite en q_{14E} . Notons que si cette pile est vide, M ' reste bloqué en q_{13E} , et la trajectoire est donc refusée, ce qui est souhaité.
- q_{14E} lit le second symbole de cette pile, et retourne jusqu'au dernier "O" de la première pile, qu'il peut supprimer, et M ' transite en q_{10E} pour continuer comme dans la solution précédente. Notons que si la seconde pile ne comporte qu'un seul symbole, M ' reste bloqué en q_{14E} , et la trajectoire est donc refusée, ce qui est souhaité.