FICHE DE COURS 13

CIRCUITS ÉLECTRIQUES EN RSF

Ce que je dois être capable de faire après avoir appris mon cours

Ц	Appliquer le théorème d'équivalence pour réécrire les lois de Kirchhoff en RSF
	Définir l'impédance d'un dipôle en convention récepteur
	Donner les expressions des impédances associées à un conducteur ohmique, à un condensateur et à une bobine supposés idéaux
	Connaître et justifier les équivalents à basses fréquences (BF) et hautes fréquences (HF) de ces trois dipôles
	Donner et établir les règles d'association d'impédances en série et en parallèle
	Énoncer et démontrer les relations de diviseur de tension et de diviseur de courant
	Exprimer la puissance moyenne reçue par un dipôle en fonction des valeurs efficaces de tension et de courant ainsi que du facteur de puissance
	Décrire le principe d'amélioration du rendement en puissance d'une installation domestique puissance

Les relations sur lesquelles je m'appuie pour développer mes calculs

\Box Impédance

 \star Définition :

$$\underline{Z} = \underline{\underline{u}}$$

 \star Module et argument :

$$Z_m = |\underline{Z}| = \frac{U_m}{I_m} = \frac{U_{\text{eff}}}{I_{\text{eff}}}$$
 et $\varphi = \arg(\underline{Z}) = \varphi_u - \varphi_i$

★ Cas usuels :

$$\underline{Z}_R = R$$
 ; $\underline{Z}_C = \frac{1}{jC\omega}$; $\underline{Z}_L = jL\omega$

- $\hfill \square$ Dipôles équivalents :
 - \star Cas d'une bobine :

 \star Cas d'un condensateur :

 $\hfill \square$ Diviseur de tension :

$$\underline{u}_1 = \frac{\underline{Z}_1}{\underline{Z}_1 + \underline{Z}_2} \ \underline{u}_{\text{tot}}$$

 $\hfill \square$ Diviseur de courant :

$$\underline{i}_1 = \frac{\underline{Y}_1}{\underline{Y}_1 + \underline{Y}_2} \ \underline{i}_{\text{tot}}$$

 $\hfill \square$ Puissance moyenne :

$$\mathcal{P} = U_{\text{eff}} \ I_{\text{eff}} \ \cos \varphi$$