

Développement de systèmes critiques avec la méthode B

Les concepts de base de la méthode B

3A Cursus Ingénieurs - Dominante Informatique CentraleSupelec - Université Paris-Saclay - 2021/2022

Présenté par :

Idir AIT SADOUNE

idir.aitsadoune@centralesupelec.fr

1 Présentation de la méthode B

- 1 Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles

- 1 Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

- Présentation de la méthode B
 - La modélisation avec la méthode B
 - Le preuve d'un modèle B
 - L'Atelier B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

• Notions communes à toute **approche formelle** spécification, vérification, preuve

- Notions communes à toute approche formelle spécification, vérification, preuve
- Processus de développement complet spécification, raffinement, génération de code

- Notions communes à toute approche formelle spécification, vérification, preuve
- Processus de développement complet spécification, raffinement, génération de code
- Outil et méthode permettant le passage à l'échelle composition des spécification, vérification incrémentale ...

- Notions communes à toute approche formelle spécification, vérification, preuve
- Processus de développement complet spécification, raffinement, génération de code
- Outil et méthode permettant le passage à l'échelle composition des spécification, vérification incrémentale ...
- Applications industrielles et processus métier Atelier B, Rodin IDE, ProB, ...

Le développement avec la méthode B

• Le **développement** d'un projet selon la **méthode B** comporte deux activités :

Le développement avec la méthode B

- Le **développement** d'un projet selon la **méthode B** comporte deux activités :
 - 1 l'écriture de textes formels (la **modélisation**)

Le développement avec la méthode B

- Le **développement** d'un projet selon la **méthode B** comporte deux activités :
 - 1 l'écriture de textes formels (la modélisation)
 - 2 la **preuve** de ces mêmes textes

- 1 Présentation de la méthode B
 - La modélisation avec la méthode B
 - Le preuve d'un modèle B
 - L'Atelier B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

• La modélisation consiste à rédiger des **spécifications formelles** avec un formalisme mathématique de haut niveau.

- La modélisation consiste à rédiger des **spécifications formelles** avec un formalisme mathématique de haut niveau.
- Une spécification B comporte :

- La modélisation consiste à rédiger des **spécifications formelles** avec un formalisme mathématique de haut niveau.
- Une spécification B comporte :
 - un état (des données, des ensembles, des relations, ...)

- La modélisation consiste à rédiger des **spécifications formelles** avec un formalisme mathématique de haut niveau.
- Une spécification B comporte :
 - un état (des données, des ensembles, des relations, ...)
 - des propriétés invariantes (logique des prédicats du premier ordre)

- La modélisation consiste à rédiger des **spécifications formelles** avec un formalisme mathématique de haut niveau.
- Une spécification B comporte :
 - un état (des données, des ensembles, des relations, ...)
 - des propriétés invariantes (logique des prédicats du premier ordre)
 - des services (initialisation et opérations) pour faire évoluer l'état (substitutions)

Exemple

```
1 MACHINE M<sub>1</sub>
 2 CONSTANTS AA, BB
 3 PROPERTIES
 4 AA \in NAT \wedge BB \in NAT
 5 VARIABLES aa, bb, cc
 6 TNVARTANT
 7 aa \in NAT \land bb \in NAT \land cc \in NAT
 8 INITIALISATION
   \mathtt{aa} := \mathtt{AA} \mid\mid \mathtt{bb} := \mathtt{BB} \mid\mid \mathtt{cc} := \mathtt{0}
10 OPERATIONS
11 add =
   CHOICE
13
   cc := aa + bb
14
    OR.
    cc := (aa + bb) - MAXINT
16
    END
17 END
```


• Le développement d'une spécification abstraite se poursuit par des **étapes** successives de raffinement.

- Le développement d'une spécification abstraite se poursuit par des **étapes** successives de raffinement.
- Raffiner une spécification consiste à l'enrichir et à la reformuler par une autre spécification plus concrète.

Raffinement des données (états)

Raffinement du comportement (opérations)

Exemple

```
1 REFINEMENT M<sub>1</sub>_r
2 REFINES M<sub>1</sub>
3 VARIABLES aa, bb, cc
4 INITIALISATION
5 aa := AA || bb := BB || cc := 0
6 OPERATIONS
  add =
8 BEGIN
    cc :(
    ((aa+bb \le MAXINT) \land (cc = aa+bb)) \lor
         ((aa+bb > MAXINT) \land (cc = aa+bb-MAXINT))
13
    END
14 END
```


• L'implémentation est le dernier niveau de raffinement d'une spécification B.

- L'implémentation est le dernier niveau de raffinement d'une spécification B.
- L'implémentation est une spécification qui ne manipule que des définitions ayant un équivalent dans un langage informatique.

- L'implémentation est le **dernier niveau de raffinement** d'une spécification B.
- L'implémentation est une spécification qui ne manipule que des définitions ayant un équivalent dans un langage informatique.
- Les définitions de l'implémentation constituent un langage de programmation informatique similaire à un langage impératif.

Exemple

```
1 IMPLEMENTATION M<sub>1</sub>_i
2 REFINES M<sub>1</sub>_r
3 VALUES
4 \quad AA = 40 : BB = 85
5 CONCRETE_VARIABLES aa, bb, cc
6 INTITALISATION
7 aa := AA ; bb := BB ; cc := 0
8 OPERATIONS
  add =
   VAR ss IN
   ss := aa + bb;
12
   IF (ss < MAXINT) THEN
13
   cc := ss
14
   ELSE
   cc := ss - MAXINT
15
16
   END
    END
18 END
```


• Une implémentation peut s'exécuter après fabrication d'un exécutable :

- Une implémentation peut s'exécuter après fabrication d'un exécutable :
 - soit à l'aide d'un compilateur dédié

- Une implémentation peut s'exécuter après fabrication d'un exécutable :
 - soit à l'aide d'un compilateur dédié
 - soit en passant par une étape de génération de code (Ada, C ou Java).


```
1 #define M1__AA 40
 2 #define M1__BB 85
 3
4 static int32_t M1__aa:
 5 static int32_t M1__bb;
 6 static int32_t M1__cc;
8 void M1__INITIALISATION(void)
9 {
10
      M1_aa = M1_AA:
      M1 bb = M1 BB:
11
      M1_{-cc} = 0:
12
13 }
```

```
15 void M1 add(void)
16 {
17
  int32 t ss:
18
      ss = M1_aa+M1_bb;
19
      if(((ss) <= (2147483647)))
20
21
           M1 cc = ss:
22
      else
23
24
           M1_{cc} = (ss-2147483647):
25
26
27 }
```


- Présentation de la méthode B
 - La modélisation avec la méthode B
 - Le preuve d'un modèle B
 - L'Atelier B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

• L'activité de **preuve en B** consiste à réaliser un certain nombre de **démonstrations** pour vérifier la **consistance d'une spécification B**.

- L'activité de **preuve en B** consiste à réaliser un certain nombre de **démonstrations** pour vérifier la **consistance d'une spécification B**.
- Les assertions à démontrer (obligations de preuve OP) expriment les propriétés suivantes :

- L'activité de preuve en B consiste à réaliser un certain nombre de démonstrations pour vérifier la consistance d'une spécification B.
- Les assertions à démontrer (obligations de preuve OP) expriment les propriétés suivantes :
 - l'appel d'une opération **conserve** les propriétés **invariantes**.

- L'activité de **preuve en B** consiste à réaliser un certain nombre de **démonstrations** pour vérifier la **consistance d'une spécification B**.
- Les assertions à démontrer (obligations de preuve OP) expriment les propriétés suivantes :
 - l'appel d'une opération conserve les propriétés invariantes.
 - le raffinement constitue une **reformulation valide** de la spécification.

- L'activité de **preuve en B** consiste à réaliser un certain nombre de **démonstrations** pour vérifier la **consistance d'une spécification B**.
- Les assertions à démontrer (obligations de preuve OP) expriment les propriétés suivantes :
 - l'appel d'une opération conserve les propriétés invariantes.
 - le raffinement constitue une **reformulation valide** de la spécification.
 - le code généré conforme à la spécification initiale.

Les OP de préservation de l'invariant

```
1 MACHINE M<sub>1</sub>
 2 CONSTANTS AA, BB
 3 PROPERTIES
 4 AA \in NAT \wedge BB \in NAT
 5 VARIABLES aa, bb, cc
 6 TNVARTANT
     aa \in NAT \land bb \in NAT \land cc \in NAT
 8 INTITALISATION
    aa := AA \mid\mid bb := BB \mid\mid cc := 0
10 OPERATIONS
     add =
    CHOICE
   cc := aa + bb
14
       OR.
    cc := (aa + bb) - MAXINT
16
     END
17 END
```

Préservation de l'invariant par add

Les OP de préservation de l'invariant

```
1 MACHINE M<sub>1</sub>
 2 CONSTANTS AA, BB
 3 PROPERTIES
 4 AA \in NAT \wedge BB \in NAT
 5 VARIABLES aa, bb, cc
 6 TNVARTANT
     aa \in NAT \land bb \in NAT \land cc \in NAT
 8 INTITALISATION
    aa := AA \mid\mid bb := BB \mid\mid cc := 0
10 OPERATIONS
     add =
    CHOICE
   cc := aa + bb
14
       OR.
    cc := (aa + bb) - MAXINT
16
     END
17 END
```

Préservation de l'invariant par add

```
\begin{array}{l} {\rm NAT} \ = \ {\rm O..MAXINT} \ \land \\ {\rm aa} \ \in \ {\rm NAT} \ \land \ {\rm bb} \ \in \ {\rm NAT} \ \land \ {\rm cc} \ \in \ {\rm NAT} \\ \Rightarrow \\ {\rm NAT} \ = \ {\rm O..MAXINT} \ \land \\ {\rm aa} \ \in \ {\rm NAT} \ \land \ {\rm bb} \ \in \ {\rm NAT} \ \land \\ {\rm (aa} \ + \ {\rm bb} \ \in \ {\rm NAT} \ \lor \ {\rm aa} \ + \ {\rm bb} \ - \ {\rm MAXINT} \ \in \ {\rm NAT}) \end{array}
```


Les OP de reformulation valide

```
1 REFINEMENT M<sub>1</sub>_r
 2 REFINES M<sub>1</sub>
 3 VARIABLES aa. bb. cc
 4 INTITALISATION
     aa := AA \parallel bb := BB \parallel cc := 0
 6 OPERATIONS
     add =
    BEGIN
        cc :(
10
          ((aa+bb < MAXINT) \land
         (cc = aa+bb))
13
          ((aa+bb > MAXINT) \land
14
          (cc = aa+bb-MAXINT))
15
     END
17 END
```

Reformulation valide de add

```
(aa+bb \leq MAXINT \wedge cc = aa+bb) \vee (aa+bb > MAXINT \wedge cc = aa+bb-MAXINT) \Rightarrow (cc = aa+bb \vee cc = aa+bb-MAXINT)
```


Les OP de reformulation valide

```
1 IMPLEMENTATION M<sub>1</sub>_i
2 REFINES M<sub>1</sub>_r
3 VALUES
4 \quad AA = 40 ; BB = 85
5 CONCRETE_VARIABLES aa, bb, cc
6 INTITALISATION
  aa := AA ; bb := BB ; cc := 0
8 OPERATIONS
    add =
   VAR ss IN
   ss := aa + bb:
   IF (ss < MAXINT) THEN
13
      cc := ss
14
   ELSE
15
   cc := ss - MAXINT
16
     END
    END
18 END
```

Reformulation valide de add

```
ss = aa+bb \land ss \leq MAXINT \land cc = ss \Rightarrow (aa+bb \leq MAXINT \land cc = aa+bb) \lor (aa+bb > MAXINT \land cc = aa+bb-MAXINT)
```


Les OP de reformulation valide

```
1 IMPLEMENTATION M<sub>1</sub>_i
2 REFINES M<sub>1</sub>_r
3 VALUES
4 \text{ AA} = 40 : BB = 85
5 CONCRETE_VARIABLES aa, bb, cc
6 INTITALISATION
    aa := AA ; bb := BB ; cc := 0
8 OPERATIONS
    add =
   VAR ss IN
   ss := aa + bb;
   IF (ss < MAXINT) THEN
13
       cc := ss
14
     ELSE
15
      cc := ss - MAXINT
16
      END
    END
18 END
```

Reformulation valide de add

```
\begin{array}{l} \mathtt{ss} = \mathtt{aa+bb} \wedge \mathtt{ss} \leq \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{ss} \\ \Rightarrow \\ (\mathtt{aa+bb} \leq \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{aa+bb}) \vee \\ (\mathtt{aa+bb} > \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{aa+bb-MAXINT}) \\ \\ \mathtt{ss} = \mathtt{aa+bb} \wedge \mathtt{ss} > \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{ss-MAXINT} \\ \Rightarrow \\ (\mathtt{aa+bb} \leq \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{aa+bb}) \vee \\ (\mathtt{aa+bb} > \mathtt{MAXINT} \wedge \mathtt{cc} = \mathtt{aa+bb-MAXINT}) \end{array}
```

• La **génération des obligations de preuve** est complètement automatique.

- La **génération des obligations de preuve** est complètement automatique.
- La démonstration des obligations de preuve peut être :

- La **génération des obligations de preuve** est complètement automatique.
- La démonstration des obligations de preuve peut être :
 - → automatique (démonstrateurs de l'Atelier B).

- La **génération des obligations de preuve** est complètement automatique.
- La **démonstration** des obligations de preuve peut être :
 - → automatique (démonstrateurs de l'Atelier B).
 - → **semi-automatique** (démonstrateur interactif de l'Atelier B).

- Présentation de la méthode B
 - La modélisation avec la méthode B
 - Le preuve d'un modèle B
 - L'Atelier B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

• Gestionnaire de projets

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B
- Vérificateur de la cohérence des types

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B
- Vérificateur de la cohérence des types
- Générateur d'obligations de preuve

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B
- Vérificateur de la cohérence des types
- Générateur d'obligations de preuve
- Démonstrateur automatique

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B
- Vérificateur de la cohérence des types
- Générateur d'obligations de preuve
- Démonstrateur automatique
- Démonstrateur interactif

- Gestionnaire de projets
- Analyseur de la syntaxe des modèles B
- Vérificateur de la cohérence des types
- Générateur d'obligations de preuve
- Démonstrateur automatique
- Démonstrateur interactif
- Générateur de code (C et Ada)

- 1 Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
 - La logique du 1^e ordre
 - La théorie des ensembles
 - Les types de données prédéfinis
 - Les séquences
- 3 La synthèse

- Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
 - La logique du 1^e ordre
 - La théorie des ensembles
 - Les types de données prédéfinis
 - Les séquences
- 3 La synthèse

Définition

Les expressions logiques dénotent des prédicats qui ont une interprétation dans le domaine des valeurs de vérité : btrue et bfalse.

$$x = y$$

$$\begin{array}{rcl} x & = & y \\ x+3 & > & y-2 \end{array}$$

$$\begin{array}{rcl}
x & = & y \\
x+3 & > & y-2 \\
f(x) & \leq & \pi
\end{array}$$

$$\begin{array}{rcl} x & = & y \\ x+3 & > & y-2 \\ f(x) & \leq & \pi \\ \text{FALSE} & \neq & \text{TRUE} \end{array}$$

Symbole	Signification	Définition
\land	et logique	

Symbole	Signification	Définition
\wedge	et logique	
	négation	

Symbole	Signification	Définition
\wedge	et logique	
_	négation	
V	ou logique	$a \lor b \stackrel{def}{=} \neg (\neg a \land \neg b)$

Les connecteurs logiques

Les opérateurs permettant de combiner des prédicats sont les connecteurs usuels de la logique :

Symbole	Signification	Définition
\land	et logique	
	négation	
V	ou logique	$a \lor b \stackrel{def}{=} \lnot (\lnot a \land \lnot b)$
\Rightarrow	implication	$a \Rightarrow b \stackrel{def}{=} \neg a \lor b$

Les connecteurs logiques

Les opérateurs permettant de combiner des prédicats sont les connecteurs usuels de la logique :

Symbole	Signification	Définition
\land	et logique	
	négation	
V	ou logique	$a \lor b \stackrel{def}{=} \lnot (\lnot a \land \lnot b)$
\Rightarrow	implication	$a\Rightarrow b\stackrel{def}{=} \neg a\lor b$
\Leftrightarrow	équivalence	$a \Leftrightarrow b \stackrel{def}{=} (a \Rightarrow b) \land (b \Rightarrow a)$

$$x = y \quad \wedge \quad x > 0$$

$$x = y \quad \land \quad x > 0$$

$$x = y \land x > 0 \quad \Rightarrow \quad y > 0$$

$$\begin{array}{cccc} x = y & \wedge & x > 0 \\ x = y \wedge x > 0 & \Rightarrow & y > 0 \\ x \in \mathbb{N} & \Leftrightarrow & x \in 0..MAXINT \end{array}$$

Symbole	Signification	Syntaxe
\forall	pour tout	\forall Id_liste \cdot (Predicat \Rightarrow Predicat)

Symbole	Signification	Syntaxe
\forall	pour tout	\forall Id_liste \cdot (Predicat \Rightarrow Predicat)
3	il existe	$\exists Id_liste \cdot (Predicat)$

Symbole	Signification	Syntaxe
\forall	pour tout	\forall Id_liste \cdot (Predicat \Rightarrow Predicat)
3	il existe	$\exists Id_liste \cdot (Predicat)$

$$\exists x \cdot (P) \stackrel{def}{=} \neg \forall x \cdot (\neg P)$$

 $\forall n. (n \in \{0,1\} \Rightarrow factorial(n) = 1)$

$$\forall n. (n \in \{0, 1\} \Rightarrow factorial(n) = 1)$$

$$\forall n. (n \in \mathbb{N} \land n > 1 \Rightarrow factorial(n) = n \times factorial(n - 1))$$

$$orall n.(n \in \{0,1\} \Rightarrow factorial(n) = 1)$$

 $orall n.(n \in \mathbb{N} \land n > 1 \Rightarrow factorial(n) = n \times factorial(n-1))$
 $\exists x.(x \in \mathbb{Z} \land x^2 + 4 \times x + 4 = 0)$

- Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
 - La logique du 1^e ordre
 - La théorie des ensembles
 - Les types de données prédéfinis
 - Les séquences
- 3 La synthèse

Symbole	Signification	Syntaxe
Ø	ensemble vide	

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\{x_1,x_2,\ldots\}$	ensembles définis en extension	{Expression_liste}

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\overline{\{x_1,x_2,\ldots\}}$	ensembles définis en extension	{Expression_liste}
$\{x P\}$	ensembles définis en compréhension	{Id_liste Predicat}

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\overline{\{x_1,x_2,\ldots\}}$	ensembles définis en extension	{Expression_liste}
$\overline{\{x P\}}$	ensembles définis en compréhension	{Id_liste Predicat}
\mathbb{P}	ensemble des sous-ensembles	$\mathbb{P}(\textit{Ensemble})$

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\overline{\{x_1,x_2,\ldots\}}$	ensembles définis en extension	{Expression_liste}
$\{x P\}$	ensembles définis en compréhension	{Id_liste Predicat}
\mathbb{P}	ensemble des sous-ensembles	$\mathbb{P}(\textit{Ensemble})$
\mathbb{P}_1	ensemble des sous-ensembles non vides	$\mathbb{P}_1(\textit{Ensemble})$

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\overline{\{x_1,x_2,\ldots\}}$	ensembles définis en extension	{Expression_liste}
$\overline{\{x P\}}$	ensembles définis en compréhension	{Id_liste Predicat}
$\overline{\mathbb{P}}$	ensemble des sous-ensembles	$\mathbb{P}(\textit{Ensemble})$
\mathbb{P}_1	ensemble des sous-ensembles non vides	$\mathbb{P}_1(\textit{Ensemble})$
\mathbb{F}	ensemble des sous-ensembles finis	$\mathbb{F}(\textit{Ensemble})$

Symbole	Signification	Syntaxe
Ø	ensemble vide	
×	produit cartésien	Ensemble $ imes$ Ensemble
$\{x_1,x_2,\ldots\}$	ensembles définis en extension	{Expression_liste}
$\{x P\}$	ensembles définis en compréhension	{Id_liste Predicat}
\mathbb{P}	ensemble des sous-ensembles	$\mathbb{P}(\textit{Ensemble})$
\mathbb{P}_1	ensemble des sous-ensembles non vides	$\mathbb{P}_1(\textit{Ensemble})$
\mathbb{F}	ensemble des sous-ensembles finis	$\mathbb{F}(Ensemble)$
\mathbb{F}_1	ensemble des sous-ensembles finis non vides	$\mathbb{F}_1(\textit{Ensemble})$ CentraleSu
		univer

$$X = \{1, 2, 3\}$$
 et $Y = \{4, 5\}$

$$X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}$$

 $X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}$

$$X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}$$

$$X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}$$

$$\mathbb{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$


```
X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}
X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}
\mathbb{P}(X) = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}
\mathbb{P}_1(X) = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}
```



```
X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}
X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}
\mathbb{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}_1(X) = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}(X) = \mathbb{F}(X)
```



```
X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}
X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}
\mathbb{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}_1(X) = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}(X) = \mathbb{F}(X)
\mathbb{P}_1(X) = \mathbb{F}_1(X)
```



```
X = \{1, 2, 3\} \text{ et } Y = \{4, 5\}
X \times Y = \{(1 \mapsto 4), (1 \mapsto 5), (2 \mapsto 4), (2 \mapsto 5), (3 \mapsto 4), (3 \mapsto 5)\}
\mathbb{P}(X) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}_1(X) = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}
\mathbb{P}(X) = \mathbb{F}(X)
\mathbb{P}_1(X) = \mathbb{F}_1(X)
\{x \mid x \in X \land x \bmod 2 = 1\} = \{1, 3\}
```


Symbole	Signification	Syntaxe

Symbole	Signification	Syntaxe
\in	appartient à	

Symbole	Signification	Syntaxe
\in	appartient à	
∉	n'appartient pas à	$x \not\in s \stackrel{def}{=} \neg (x \in s)$

Symbole	Signification	Syntaxe
\in	appartient à	
∉	n'appartient pas à	$x \not\in s \stackrel{def}{=} \neg (x \in s)$
\subseteq	est inclus dans	$s\subseteq t\stackrel{\mathit{def}}{=}s\in \mathbb{P}(t)$

Symbole	Signification	Syntaxe
\in	appartient à	
∉	n'appartient pas à	$x \not\in s \stackrel{def}{=} \neg (x \in s)$
\subseteq	est inclus dans	$s\subseteq t\stackrel{def}{=}s\in \mathbb{P}(t)$
⊈	n'est pas inclus dans	$s \not\subseteq t \stackrel{def}{=} \neg (s \subseteq t))$

Symbole	Signification	Syntaxe
\in	appartient à	
∉	n'appartient pas à	$x \not\in s \stackrel{def}{=} \neg (x \in s)$
\subseteq	est inclus dans	$s\subseteq t\stackrel{\mathit{def}}{=} s\in \mathbb{P}(t)$
⊈	n'est pas inclus dans	$s \not\subseteq t \stackrel{def}{=} \neg (s \subseteq t))$
\subset	est strictement inclus dans	$s \subset t \stackrel{def}{=} (s \subseteq t \land s \neq t)$

Symbole	Signification	Syntaxe
\in	appartient à	
∉	n'appartient pas à	$x \not\in s \stackrel{def}{=} \neg (x \in s)$
\subseteq	est inclus dans	$s\subseteq t\stackrel{\mathit{def}}{=}s\in \mathbb{P}(t)$
⊈	n'est pas inclus dans	$s \not\subseteq t \stackrel{def}{=} \neg (s \subseteq t))$
\subset	est strictement inclus dans	$s \subset t \stackrel{def}{=} (s \subseteq t \land s \neq t)$
¢	n'est pas strictement inclus dans	$s \not\subset t \stackrel{def}{=} \neg (s \subset t)$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Le produit cartésien assiciatif à gauche: $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Le produit cartésien assiciatif à gauche: $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

L'inclusion: $s \in \mathbb{P}(t) \Leftrightarrow \forall x \cdot (x \in s \Rightarrow x \in t)$


```
Définition d'une paire (x \mapsto y): x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)
```

Le produit cartésien assiciatif à gauche : $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

L'inclusion: $s \in \mathbb{P}(t) \Leftrightarrow \forall x \cdot (x \in s \Rightarrow x \in t)$

L'égalité des ensembles : $\forall x \cdot (x \in s \Leftrightarrow x \in t) \Leftrightarrow s = t$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Le produit cartésien assiciatif à gauche : $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

L'inclusion: $s \in \mathbb{P}(t) \Leftrightarrow \forall x \cdot (x \in s \Rightarrow x \in t)$

L'égalité des ensembles : $\forall x \cdot (x \in s \Leftrightarrow x \in t) \Leftrightarrow s = t$

La réflexivité de l'inclusion: $s \subseteq s$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Le produit cartésien assiciatif à gauche : $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

L'inclusion: $s \in \mathbb{P}(t) \Leftrightarrow \forall x \cdot (x \in s \Rightarrow x \in t)$

L'égalité des ensembles : $\forall x \cdot (x \in s \Leftrightarrow x \in t) \Leftrightarrow s = t$

La réflexivité de l'inclusion : $s \subseteq s$

La transitivité de l'inclusion : $s \subseteq t \land t \subseteq u \Rightarrow s \subseteq u$

Définition d'une paire $(x \mapsto y)$: $x, y \in E_1 \times E_2 \Leftrightarrow (x \in E_1 \land y \in E_2)$

Le produit cartésien assiciatif à gauche : $E_1 \times E_2 \times E_3 = (E_1 \times E_2) \times E_3$

L'inclusion: $s \in \mathbb{P}(t) \Leftrightarrow \forall x \cdot (x \in s \Rightarrow x \in t)$

L'égalité des ensembles : $\forall x \cdot (x \in s \Leftrightarrow x \in t) \Leftrightarrow s = t$

La réflexivité de l'inclusion : $s \subseteq s$

La transitivité de l'inclusion : $s \subseteq t \land t \subseteq u \Rightarrow s \subseteq u$ L'anti-symétrie de l'inclusion : $s \subseteq t \land t \subseteq s \Rightarrow s = t$

Symbole	Signification	Syntaxe
U	union	$s_1 \cup s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \lor x \in s_2)\}$

Symbole	Signification	Syntaxe
U	union	$s_1 \cup s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \lor x \in s_2)\}$
\cap	intersection	$s_1 \cap s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \land x \in s_2)\}$

Symbole	Signification	Syntaxe
U	union	$s_1 \cup s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \lor x \in s_2)\}$
\cap	intersection	$s_1 \cap s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \land x \in s_2)\}$
_	différence	$s_1 - s_2 \stackrel{def}{=} \{x x \in t \land (x \in s_1 \land x \notin s_2)\}$

Symbole	Signification	Syntaxe
union	union généralisée	union(Ensemble)

Symbole	Signification	Syntaxe
union	union généralisée	union(Ensemble)
inter	intersection généralisée	inter(Ensemble)

Symbole	Signification	Syntaxe
union	union généralisée	union(Ensemble)
inter	intersection généralisée	inter(Ensemble)
U	union quantifiée	\bigcup Id_liste \cdot (Predicat Ensemble)

Symbole	Signification	Syntaxe
union	union généralisée	union(Ensemble)
inter	intersection généralisée	inter(Ensemble)
U	union quantifiée	\bigcup Id_liste \cdot (Predicat Ensemble)
\bigcap	intersection quantifiée	\bigcap Id_liste \cdot (Predicat Ensemble)


```
union(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) = \{1,2,3,4,5\}
```



```
\begin{array}{ll} \textit{union}(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) &= \{1,2,3,4,5\} \\ \textit{inter}(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) &= \{2\} \end{array}
```



```
union(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) = \{1,2,3,4,5\}inter(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) = \{2\}\bigcup x \cdot (x \in \{2,4\} | \{y|y \in \mathbb{N} \land x - 1 \le y \le x + 1\}) = \{1,2,3\} \cup \{3,4,5\}
```



```
union(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) = \{1,2,3,4,5\}
inter(\{\{1,2\},\{1,2,3\},\{2,4,5\}\}) = \{2\}
\bigcup x \cdot (x \in \{2,4\} | \{y | y \in \mathbb{N} \land x - 1 \le y \le x + 1\}) = \{1,2,3\} \cup \{3,4,5\}
= \{1,2,3,4,5\}
```


Relations

Les relations sont un cas particulier de construction d'ensembles. Il s'agit d'ensembles de couples d'éléments.

Relations

Les relations sont un cas particulier de construction d'ensembles. Il s'agit d'ensembles de couples d'éléments.

Symbole	Signification	Syntaxe
\leftrightarrow	relation entre deux ensembles	$E_1 \leftrightarrow E_2 \stackrel{def}{=} \mathbb{P}(E_1 \times E_2)$

Condition	Expression	Définition
$r \in E_1 \leftrightarrow E_2$	dom(r)	$\{x x\in E_1\wedge\exists y\cdot (y\in E_2\wedge (x\mapsto y)\in r)\}$

Condition	Expression	Définition
$r \in E_1 \leftrightarrow E_2$	dom(r)	$\{x x\in E_1\wedge\exists y\cdot(y\in E_2\wedge(x\mapsto y)\in r)\}$
$r \in E_1 \leftrightarrow E_2$	ran(r)	$\{y y\in E_2\wedge\exists x\cdot(x\in E_1\wedge(x\mapsto y)\in r)\}$

Condition	Expression	Définition
$r \in E_1 \leftrightarrow E_2$	dom(r)	$\{x x\in E_1\wedge\exists y\cdot(y\in E_2\wedge(x\mapsto y)\in r)\}$
$r \in E_1 \leftrightarrow E_2$	ran(r)	$\{y y\in E_2\wedge\exists x\cdot(x\in E_1\wedge(x\mapsto y)\in r)\}$
$r \in E_1 \leftrightarrow E_2 \land F \subseteq E_1$	r[F]	$\{y y\in E_2 \land \exists x\cdot (x\in F\land (x\mapsto y)\in r)\}$

Remarque

Les opérations sur les ensembles s'appliquent évidemment aux relations (qui sont des ensembles de couples).

Symbole	Signification	Syntaxe	
id	relation identité	id(Ensemble)	

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	Relation ⁻¹

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	$Relation^{-1}$
;	composition séquentielle	Relation; Relation

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	$Relation^{-1}$
;	composition séquentielle	Relation; Relation
\otimes	produit direct	Relation \otimes Relation

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	$Relation^{-1}$
;	composition séquentielle	Relation; Relation
\otimes	produit direct	Relation \otimes Relation
	produit parallèle	Relation Relation

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	$Relation^{-1}$
;	composition séquentielle	Relation; Relation
\otimes	produit direct	Relation \otimes Relation
	produit parallèle	Relation Relation
prj_1	première projection	$prj_1(Ensemble, Ensemble)$

Symbole	Signification	Syntaxe
id	relation identité	id(Ensemble)
-1	inverse d'une relation	$Relation^{-1}$
;	composition séquentielle	Relation; Relation
\otimes	produit direct	Relation \otimes Relation
	produit parallèle	Relation Relation
prj_1	première projection	$prj_1(Ensemble, Ensemble)$
prj ₂	deuxième projection	$prj_2(Ensemble, Ensemble)$

$$id({1,2,3}) = {(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)}$$

$$id(\{1,2,3\}) = \{(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)\}$$

$$R_1 = \{(0 \mapsto 2), (1 \mapsto 5), (2 \mapsto 5), (2 \mapsto 7)\}$$


```
 \begin{array}{ll} \textit{id}(\{1,2,3\}) &= \{(1\mapsto 1), (2\mapsto 2), (3\mapsto 3)\} \\ R_1 &= \{(0\mapsto 2), (1\mapsto 5), (2\mapsto 5), (2\mapsto 7)\} \\ R_1^{-1} &= \{(2\mapsto 0), (5\mapsto 1), (5\mapsto 2), (7\mapsto 2)\} \end{array}
```



```
id(\{1,2,3\}) = \{(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)\}
R_1 = \{(0 \mapsto 2), (1 \mapsto 5), (2 \mapsto 5), (2 \mapsto 7)\}
R_1^{-1} = \{(2 \mapsto 0), (5 \mapsto 1), (5 \mapsto 2), (7 \mapsto 2)\}
R_2 = \{(0 \mapsto 0), (2 \mapsto -1), (5 \mapsto 8), (6 \mapsto 9)\}
```



```
 \begin{aligned} id(\{1,2,3\}) &= \{(1\mapsto 1), (2\mapsto 2), (3\mapsto 3)\} \\ R_1 &= \{(0\mapsto 2), (1\mapsto 5), (2\mapsto 5), (2\mapsto 7)\} \\ R_1^{-1} &= \{(2\mapsto 0), (5\mapsto 1), (5\mapsto 2), (7\mapsto 2)\} \\ R_2 &= \{(0\mapsto 0), (2\mapsto -1), (5\mapsto 8), (6\mapsto 9)\} \\ R_1; R_2 &= \{(0\mapsto -1), (1\mapsto 8), (2\mapsto 8)\} \end{aligned}
```



```
 \begin{aligned} id(\{1,2,3\}) &= \{(1\mapsto 1), (2\mapsto 2), (3\mapsto 3)\} \\ R_1 &= \{(0\mapsto 2), (1\mapsto 5), (2\mapsto 5), (2\mapsto 7)\} \\ R_1^{-1} &= \{(2\mapsto 0), (5\mapsto 1), (5\mapsto 2), (7\mapsto 2)\} \\ R_2 &= \{(0\mapsto 0), (2\mapsto -1), (5\mapsto 8), (6\mapsto 9)\} \\ R_1; R_2 &= \{(0\mapsto -1), (1\mapsto 8), (2\mapsto 8)\} \\ R_1 \otimes R_2 &= \{(0\mapsto (2\mapsto 0)), (2\mapsto (5\mapsto -1)), (2\mapsto (7\mapsto -1))\} \end{aligned}
```



```
 \begin{split} id(\{1,2,3\}) &= \{(1\mapsto 1), (2\mapsto 2), (3\mapsto 3)\} \\ R_1 &= \{(0\mapsto 2), (1\mapsto 5), (2\mapsto 5), (2\mapsto 7)\} \\ R_1^{-1} &= \{(2\mapsto 0), (5\mapsto 1), (5\mapsto 2), (7\mapsto 2)\} \\ R_2 &= \{(0\mapsto 0), (2\mapsto -1), (5\mapsto 8), (6\mapsto 9)\} \\ R_1; R_2 &= \{(0\mapsto -1), (1\mapsto 8), (2\mapsto 8)\} \\ R_1\otimes R_2 &= \{(0\mapsto (2\mapsto 0)), (2\mapsto (5\mapsto -1)), (2\mapsto (7\mapsto -1))\} \\ R_3 &= \{(4\mapsto 5), (3\mapsto 2)\} \end{split}
```



```
 \begin{aligned} id(\{1,2,3\}) &= \{(1\mapsto 1), (2\mapsto 2), (3\mapsto 3)\} \\ R_1 &= \{(0\mapsto 2), (1\mapsto 5), (2\mapsto 5), (2\mapsto 7)\} \\ R_1^{-1} &= \{(2\mapsto 0), (5\mapsto 1), (5\mapsto 2), (7\mapsto 2)\} \\ R_2 &= \{(0\mapsto 0), (2\mapsto -1), (5\mapsto 8), (6\mapsto 9)\} \\ R_1; R_2 &= \{(0\mapsto -1), (1\mapsto 8), (2\mapsto 8)\} \\ R_1 \otimes R_2 &= \{(0\mapsto (2\mapsto 0)), (2\mapsto (5\mapsto -1)), (2\mapsto (7\mapsto -1))\} \\ R_3 &= \{(4\mapsto 5), (3\mapsto 2)\} \\ R_4 &= \{(11\mapsto 12), (21\mapsto 22)\} \end{aligned}
```



```
id(\{1,2,3\}) = \{(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)\}
                                                                                  R_1 = \{(0 \mapsto 2), (1 \mapsto 5), (2 \mapsto 5), (2 \mapsto 7)\}
                                                                      R_1^{-1} = \{(2 \mapsto 0), (5 \mapsto 1), (5 \mapsto 2), (7 \mapsto 2)\}
                                                                                   R_2 = \{(0 \mapsto 0), (2 \mapsto -1), (5 \mapsto 8), (6 \mapsto 9)\}
                                                    R_1: R_2 = \{(0 \mapsto -1), (1 \mapsto 8), (2 \mapsto 8)\}
                                   R_1 \otimes R_2 = \{(0 \mapsto (2 \mapsto 0)), (2 \mapsto (5 \mapsto -1)), (2 \mapsto (7 \mapsto -1))\}
                                                                                   R_3 = \{(4 \mapsto 5), (3 \mapsto 2)\}
                                                                                   R_A = \{(11 \mapsto 12), (21 \mapsto 22)\}
                                                 R_3||R_4| = \{((4 \mapsto 11) \mapsto (5 \mapsto 12)), ((4 \mapsto 21) \mapsto (5 \mapsto 22)), ((4 \mapsto 22) \mapsto (5 \mapsto 22))
                                                                                                                              ((3 \mapsto 11) \mapsto (2 \mapsto 12)), ((3 \mapsto 21) \mapsto (2 \mapsto 22))
```



```
id(\{1,2,3\}) = \{(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)\}
                                                                                                                           R_1 = \{(0 \mapsto 2), (1 \mapsto 5), (2 \mapsto 5), (2 \mapsto 7)\}
                                                                                                                 R_1^{-1} = \{(2 \mapsto 0), (5 \mapsto 1), (5 \mapsto 2), (7 \mapsto 2)\}
                                                                                                                            R_2 = \{(0 \mapsto 0), (2 \mapsto -1), (5 \mapsto 8), (6 \mapsto 9)\}
                                                                                                 R_1: R_2 = \{(0 \mapsto -1), (1 \mapsto 8), (2 \mapsto 8)\}
                                                                                  R_1 \otimes R_2 = \{(0 \mapsto (2 \mapsto 0)), (2 \mapsto (5 \mapsto -1)), (2 \mapsto (7 \mapsto -1))\}
                                                                                                                            R_3 = \{(4 \mapsto 5), (3 \mapsto 2)\}
                                                                                                                            R_A = \{(11 \mapsto 12), (21 \mapsto 22)\}
                                                                                               R_3||R_4| = \{((4 \mapsto 11) \mapsto (5 \mapsto 12)), ((4 \mapsto 21) \mapsto (5 \mapsto 22)), ((4 \mapsto 21) \mapsto (5 \mapsto 22))
                                                                                                                                                                  ((3 \mapsto 11) \mapsto (2 \mapsto 12)), ((3 \mapsto 21) \mapsto (2 \mapsto 22))
pri_1(\{1,2\},\{3,4\}) = \{((1 \mapsto 3) \mapsto 1), ((1 \mapsto 4) \mapsto 1), ((2 \mapsto 3) \mapsto 2), ((2 \mapsto 4) \mapsto 2)\}
```

universite PARIS-SACLAY

```
id(\{1,2,3\}) = \{(1 \mapsto 1), (2 \mapsto 2), (3 \mapsto 3)\}
                                                                                                             R_1 = \{(0 \mapsto 2), (1 \mapsto 5), (2 \mapsto 5), (2 \mapsto 7)\}
                                                                                                   R_1^{-1} = \{(2 \mapsto 0), (5 \mapsto 1), (5 \mapsto 2), (7 \mapsto 2)\}
                                                                                                              R_2 = \{(0 \mapsto 0), (2 \mapsto -1), (5 \mapsto 8), (6 \mapsto 9)\}
                                                                                      R_1: R_2 = \{(0 \mapsto -1), (1 \mapsto 8), (2 \mapsto 8)\}
                                                                          R_1 \otimes R_2 = \{(0 \mapsto (2 \mapsto 0)), (2 \mapsto (5 \mapsto -1)), (2 \mapsto (7 \mapsto -1))\}
                                                                                                              R_3 = \{(4 \mapsto 5), (3 \mapsto 2)\}
                                                                                                              R_A = \{(11 \mapsto 12), (21 \mapsto 22)\}
                                                                                    R_3||R_4| = \{((4 \mapsto 11) \mapsto (5 \mapsto 12)), ((4 \mapsto 21) \mapsto (5 \mapsto 22)), ((4 \mapsto 21) \mapsto (5 \mapsto 22))
                                                                                                                                               ((3 \mapsto 11) \mapsto (2 \mapsto 12)), ((3 \mapsto 21) \mapsto (2 \mapsto 22))
pri_1(\{1,2\},\{3,4\}) = \{((1 \mapsto 3) \mapsto 1), ((1 \mapsto 4) \mapsto 1), ((2 \mapsto 3) \mapsto 2), ((2 \mapsto 4) \mapsto 2)\}
pri_2(\{1,2\},\{3,4\}) = \{((1 \mapsto 3) \mapsto 3), ((1 \mapsto 4) \mapsto 4), ((2 \mapsto 3) \mapsto 3), ((2 \mapsto 4) \mapsto 4)\}
```


Symbole	Signification	Syntaxe
r ⁿ	itération <i>n</i> fois de <i>r</i>	$r^n \stackrel{\text{def}}{=} r; r^{n-1} \sin n > 0$
		$r^0 \stackrel{def}{=} id(s)$

Symbole	Signification	Syntaxe
r ⁿ	itération <i>n</i> fois de <i>r</i>	$r^n \stackrel{\text{def}}{=} r; r^{n-1} \operatorname{si} n > 0$
		$r^0 \stackrel{def}{=} id(s)$
r ⁺	ferméture transitive	$r^+\stackrel{def}{=}\bigcup n\cdot (n\in\mathbb{N}_1 r^n)$

Symbole	Signification	Syntaxe
r ⁿ	itération <i>n</i> fois de <i>r</i>	$r^n \stackrel{def}{=} r; r^{n-1} \operatorname{si} n > 0$
		$r^0 \stackrel{def}{=} id(s)$
r ⁺	ferméture transitive	$r^+\stackrel{def}{=}\bigcup n\cdot (n\in\mathbb{N}_1 r^n)$
r*	ferméture réflexive transitive	$r^*\stackrel{def}{=}\bigcup n\cdot (n\in \mathbb{N} r^n)$

$$R = \{(0 \mapsto 2), (1 \mapsto 0), (2 \mapsto 1)\}$$

$$\begin{array}{ll} R &= \{(0\mapsto 2), (1\mapsto 0), (2\mapsto 1)\} \\ R^2 &= \{(0\mapsto 1), (1\mapsto 2), (2\mapsto 0)\} \end{array}$$


```
\begin{array}{ll} R &= \{(0\mapsto 2), (1\mapsto 0), (2\mapsto 1)\} \\ R^2 &= \{(0\mapsto 1), (1\mapsto 2), (2\mapsto 0)\} \\ R^3 &= \{(0\mapsto 0), (1\mapsto 1), (2\mapsto 2)\} \end{array}
```



```
R = \{(0 \mapsto 2), (1 \mapsto 0), (2 \mapsto 1)\}
R^{2} = \{(0 \mapsto 1), (1 \mapsto 2), (2 \mapsto 0)\}
R^{3} = \{(0 \mapsto 0), (1 \mapsto 1), (2 \mapsto 2)\}
R^{4} = R
```



```
egin{array}{ll} R &= \{(0\mapsto 2), (1\mapsto 0), (2\mapsto 1)\} \ R^2 &= \{(0\mapsto 1), (1\mapsto 2), (2\mapsto 0)\} \ R^3 &= \{(0\mapsto 0), (1\mapsto 1), (2\mapsto 2)\} \ R^4 &= R \ R^* &= \{(0\mapsto 0), (0\mapsto 1), (0\mapsto 2), (1\mapsto 0), (1\mapsto 1), (1\mapsto 2), \ (2\mapsto 0), (2\mapsto 1), (2\mapsto 2)\} \end{array}
```


Signification	Expression	Définition
restriction sur le domaine	$E \lhd R$	$\{x,y (x\mapsto y)\in R\land x\in E\}$

Signification	Expression	Définition
restriction sur le domaine	$E \lhd R$	$\{x,y (x\mapsto y)\in R\land x\in E\}$
soustraction sur le domaine	$E \triangleleft R$	$\{x,y (x\mapsto y)\in R\land x\notin E\}$

Signification	Expression	Définition
restriction sur le domaine	$E \lhd R$	$\{x,y (x\mapsto y)\in R\land x\in E\}$
soustraction sur le domaine	$E \lessdot R$	$\{x,y (x\mapsto y)\in R\land x\notin E\}$
restriction sur le codomaine	$R \rhd F$	$\{x,y (x\mapsto y)\in R\land y\in F\}$

Signification	Expression	Définition
restriction sur le domaine	$E \lhd R$	$\{x,y (x\mapsto y)\in R\land x\in E\}$
soustraction sur le domaine	$E \triangleleft R$	$\{x,y (x\mapsto y)\in R\land x\notin E\}$
restriction sur le codomaine	$R \rhd F$	$\{x,y (x\mapsto y)\in R\land y\in F\}$
soustraction sur le codomaine	$R \triangleright F$	$\{x,y (x\mapsto y)\in R\land y\notin F\}$

Signification	Expression	Définition
restriction sur le domaine	$E \lhd R$	$\{x,y (x\mapsto y)\in R\land x\in E\}$
soustraction sur le domaine	$E \triangleleft R$	$\{x,y (x\mapsto y)\in R\land x\notin E\}$
restriction sur le codomaine	$R \rhd F$	$\{x,y (x\mapsto y)\in R\land y\in F\}$
soustraction sur le codomaine	$R \triangleright F$	$\{x,y (x\mapsto y)\in R\land y\notin F\}$
modification ou surcharge	$R \Leftrightarrow Q$	$\{x,y (x\mapsto y)\in s\leftrightarrow t$
		$\wedge (((x \mapsto y) \in R \land x \notin dom(Q))$
		$\forall (x \mapsto y) \in Q)\}$

$$R_1 = \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\}$$


```
R_1 = \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\}
R_2 = \{(3 \mapsto 3), (5 \mapsto 4)\}
```



```
\begin{array}{ll} R_1 &= \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\} \\ R_2 &= \{(3 \mapsto 3), (5 \mapsto 4)\} \\ E &= \{1, 2, 3\} \end{array}
```



```
\begin{array}{ll} R_1 &= \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\} \\ R_2 &= \{(3 \mapsto 3), (5 \mapsto 4)\} \\ E &= \{1, 2, 3\} \\ F &= \{5, 7, 9\} \end{array}
```



```
\begin{array}{ll} R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9), (4\mapsto 7), (4\mapsto 9)\} \\ R_2 &= \{(3\mapsto 3), (5\mapsto 4)\} \\ E &= \{1, 2, 3\} \\ F &= \{5, 7, 9\} \\ E \lhd R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9)\} \end{array}
```



```
\begin{array}{ll} R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9), (4\mapsto 7), (4\mapsto 9)\} \\ R_2 &= \{(3\mapsto 3), (5\mapsto 4)\} \\ E &= \{1, 2, 3\} \\ F &= \{5, 7, 9\} \\ E \lhd R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9)\} \\ E \lhd R_1 &= \{(4\mapsto 7), (4\mapsto 9)\} \end{array}
```



```
\begin{array}{ll} R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9), (4\mapsto 7), (4\mapsto 9)\} \\ R_2 &= \{(3\mapsto 3), (5\mapsto 4)\} \\ E &= \{1, 2, 3\} \\ F &= \{5, 7, 9\} \\ E \lhd R_1 &= \{(2\mapsto 1), (2\mapsto 8), (3\mapsto 9)\} \\ E \lhd R_1 &= \{(4\mapsto 7), (4\mapsto 9)\} \\ R_1 \rhd F &= \{(3\mapsto 9), (4\mapsto 7), (4\mapsto 9)\} \end{array}
```



```
\begin{array}{ll} R_1 &= \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\} \\ R_2 &= \{(3 \mapsto 3), (5 \mapsto 4)\} \\ E &= \{1, 2, 3\} \\ F &= \{5, 7, 9\} \\ E \lhd R_1 &= \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9)\} \\ E \lhd R_1 &= \{(4 \mapsto 7), (4 \mapsto 9)\} \\ R_1 \rhd F &= \{(3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\} \\ R_1 \rhd F &= \{(2 \mapsto 1), (2 \mapsto 8)\} \end{array}
```



```
R_1 = \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\}
         R_2 = \{(3 \mapsto 3), (5 \mapsto 4)\}
          E = \{1, 2, 3\}
          F = \{5, 7, 9\}
  E \triangleleft R_1 = \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 9)\}
  E \triangleleft R_1 = \{(4 \mapsto 7), (4 \mapsto 9)\}
  R_1 \triangleright F = \{(3 \mapsto 9), (4 \mapsto 7), (4 \mapsto 9)\}
  R_1 \triangleright F = \{(2 \mapsto 1), (2 \mapsto 8)\}
R_1 \Leftrightarrow R_2 = \{(2 \mapsto 1), (2 \mapsto 8), (3 \mapsto 3), (4 \mapsto 7), (4 \mapsto 9), (5 \mapsto 4)\}
```


Les Fonctions

Les Fonctions

Signification	Expression	Définition
fonction partielle	$s \rightarrow t$	$\{r r\in s\leftrightarrow t\land \forall x,y,z\cdot (x,y\in r\land x,z\in r\Rightarrow y=z)\}$

Les Fonctions

Signification	Expression	Définition
fonction partielle	s otharpoonup t	$\{r r\in s \leftrightarrow t \land \forall x,y,z \cdot (x,y\in r \land x,z\in r \Rightarrow y=z)\}$
fonction totale	$s \rightarrow t$	$\{f f\in s \mapsto t \wedge \mathrm{dom}(f)=s\}$

Signification	Expression	Définition
fonction partielle	s o t	$\{r r\in s \leftrightarrow t \land \forall x,y,z \cdot (x,y\in r \land x,z\in r \Rightarrow y=z)\}$
fonction totale	$s \rightarrow t$	$\{f f\in s \mapsto t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in S o t \wedge f^{-1}\in t o S\}$

Signification	Expression	Définition
fonction partielle	$s \rightarrow t$	$\{r r\in s\leftrightarrow t\land \forall x,y,z\cdot (x,y\in r\land x,z\in r\Rightarrow y=z)\}$
fonction totale	s o t	$\{f f\in s \to t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in s \to t \land f^{-1}\in t \to s\}$
injectives totales	$s \rightarrowtail t$	$s \mapsto t \cap s \to t$

Signification	Expression	Définition
fonction partielle	$s \rightarrow t$	$\{r r\in s\leftrightarrow t\land \forall x,y,z\cdot (x,y\in r\land x,z\in r\Rightarrow y=z)\}$
fonction totale	s o t	$\{f f\in s \to t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in s \to t \land f^{-1}\in t \to s\}$
injectives totales	$s \rightarrowtail t$	$s \mapsto t \cap s \to t$
surjectives partielles	$s + \!$	$\{f f\in s \mapsto t \wedge \operatorname{ran}(f)=t\}$

Signification	Expression	Définition
fonction partielle	$s \rightarrow t$	$\{r r\in s\leftrightarrow t\land \forall x,y,z\cdot (x,y\in r\land x,z\in r\Rightarrow y=z)\}$
fonction totale	s o t	$\{f f\in s \to t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in s \rightarrow t \land f^{-1}\in t \rightarrow s\}$
injectives totales	$s \rightarrowtail t$	$s \rightarrowtail t \cap s \to t$
surjectives partielles	s t	$\{f f\in s ightarrow t \wedge \operatorname{ran}(f)=t\}$
surjectives totales	$s \rightarrow t$	$s + t \cap s \to t$

Signification	Expression	Définition
fonction partielle	s op t	$\{r r\in s\leftrightarrow t\land \forall x,y,z\cdot (x,y\in r\land x,z\in r\Rightarrow y=z)\}$
fonction totale	s o t	$\{f f\in s \to t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in s \to t \land f^{-1}\in t \to s\}$
injectives totales	$s \rightarrowtail t$	$s \rightarrowtail t \cap s \to t$
surjectives partielles	s t	$\{f f\in s \mapsto t \wedge \operatorname{ran}(f)=t\}$
surjectives totales	$s \rightarrow t$	$s woheadrightarrow t \cap s o t$
bijectives partielles	$s \rightarrowtail t$	$s \rightarrowtail t \cap s \ggg t$

Signification	Expression	Définition
fonction partielle	s o t	$\{r r\in s \leftrightarrow t \land \forall x,y,z \cdot (x,y\in r \land x,z\in r \Rightarrow y=z)\}$
fonction totale	s o t	$\{f f\in s \to t \wedge \mathrm{dom}(f)=s\}$
injectives partielles	$s \rightarrowtail t$	$\{f f\in s \mapsto t \wedge f^{-1}\in t \mapsto s\}$
injectives totales	$s \rightarrowtail t$	$s \rightarrowtail t \cap s \to t$
surjectives partielles	s woheadrightarrow t	$\{f f\ins ightarrow t\wedge \mathrm{ran}(f)=t\}$
surjectives totales	$s \rightarrow t$	$s woheadrightarrow t \cap s o t$
bijectives partielles	$s \rightarrowtail t$	$s \rightarrowtail t \cap s \twoheadrightarrow t$
bijectives totales	s → * t	$s \rightarrowtail t \cap s \twoheadrightarrow t$

Signification	Syntaxe
Lambda-expression	λ Id_liste · (Predicat Expression)

Signification	Syntaxe
Lambda-expression	λ Id_liste \cdot (Predicat Expression)
fonction constante	$\textit{Expression} \times \{\textit{Expression}\}$

Signification	Syntaxe
Lambda-expression	λ Id_liste · (Predicat Expression)
fonction constante	$Expression \times \{Expression\}$
transformée en fonction	fnc(Expression)

Signification	Syntaxe
Lambda-expression	λ Id_liste · (Predicat Expression)
fonction constante	Expression \times {Expression}
transformée en fonction	fnc(Expression)
transformée en relation	rel(Expression)

Signification	Syntaxe
Lambda-expression	λ Id_liste · (Predicat Expression)
fonction constante	Expression \times {Expression}
transformée en fonction	fnc(Expression)
transformée en relation	rel(Expression)
évaluation de fonction	Expression(Expression)

$$f = \lambda x \cdot (x \in \mathbb{N}|x+2)$$

$$f(3) = 5$$


```
\begin{array}{ll} f &= \lambda x \cdot (x \in \mathbb{N}|x+2) \\ f(3) &= 5 \\ R_1 &= \{(0 \mapsto 1), (0 \mapsto 2), (1 \mapsto 1), (1 \mapsto 7), (2 \mapsto 3)\} \\ fnc(R_1) &= \{(0 \mapsto \{1,2\}), (1 \mapsto \{1,7\}), (2 \mapsto \{3\})\} \end{array}
```



```
\begin{array}{ll} f &= \lambda x \cdot (x \in \mathbb{N} | x + 2) \\ f(3) &= 5 \\ R_1 &= \{(0 \mapsto 1), (0 \mapsto 2), (1 \mapsto 1), (1 \mapsto 7), (2 \mapsto 3)\} \\ fnc(R_1) &= \{(0 \mapsto \{1, 2\}), (1 \mapsto \{1, 7\}), (2 \mapsto \{3\})\} \\ R_2 &= \{(0 \mapsto \{0, 2\}), (1 \mapsto \{4, 6, 8\})\} \\ rel(R_2) &= \{(0 \mapsto 0), (0 \mapsto 2), (1 \mapsto 4), (1 \mapsto 6), (1 \mapsto 8)\} \end{array}
```



```
\begin{array}{ll} f &= \lambda x \cdot (x \in \mathbb{N}|x+2) \\ f(3) &= 5 \\ R_1 &= \{(0 \mapsto 1), (0 \mapsto 2), (1 \mapsto 1), (1 \mapsto 7), (2 \mapsto 3)\} \\ fnc(R_1) &= \{(0 \mapsto \{1,2\}), (1 \mapsto \{1,7\}), (2 \mapsto \{3\})\} \\ R_2 &= \{(0 \mapsto \{0,2\}), (1 \mapsto \{4,6,8\})\} \\ rel(R_2) &= \{(0 \mapsto 0), (0 \mapsto 2), (1 \mapsto 4), (1 \mapsto 6), (1 \mapsto 8)\} \\ ctx &= \mathbb{N} \times \{0\} \\ &= \lambda x \cdot (x \in \mathbb{N}|0) \end{array}
```


- Présentation de la méthode E
- 2 La logique du 1^e ordre et la théorie des ensembles
 - La logique du 1^e ordre
 - La théorie des ensembles
 - Les types de données prédéfinis
 - Les séquences
- 3 La synthèse

• Les booléens sont un cas particulier de type énuméré : $BOOL = \{TRUE, FALSE\}$

- Les booléens sont un cas particulier de type énuméré : $BOOL = \{TRUE, FALSE\}$
- Il est possible de convertir explicitement un prédicat en un booléen : bool(*Predicat*)

- Les booléens sont un cas particulier de type énuméré : $BOOL = \{TRUE, FALSE\}$
- Il est possible de convertir explicitement un prédicat en un booléen : bool(Predicat) bool($\exists x \cdot (x \in \mathbb{N} \land x = x * 2)$)

- Les booléens sont un cas particulier de type énuméré : BOOL = {TRUE, FALSE}
- Il est possible de convertir explicitement un prédicat en un booléen : bool(Predicat) bool($\exists x \cdot (x \in \mathbb{N} \land x = x * 2)$) = TRUE

Symbole	Signification	Définition	
\mathbb{Z}	ensemble des entiers relatif		

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
N	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
N	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
N	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
\mathbb{N}	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$
maxint	entier maximum représentable	

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
N	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$
maxint	entier maximum représentable	
minint	entier minimum représentable	

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
\mathbb{N}	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$
maxint	entier maximum représentable	
minint	entier minimum représentable	
INT	entiers relatif représentable	minintmaxint

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
N	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$
maxint	entier maximum représentable	
minint	entier minimum représentable	
INT	entiers relatif représentable	minintmaxint
NAT	entiers positifs représentable	0maxint

Symbole	Signification	Définition
\mathbb{Z}	ensemble des entiers relatif	
\mathbb{N}	ensemble des entiers positifs	$\{x x\in\mathbb{Z}\wedge x\geq 0\}$
\mathbb{N}_1	entiers strictement positifs	$\{x x\in\mathbb{Z}\wedge x>0\}$
nm	ensemble des entiers entre <i>n</i> et <i>m</i>	$\{x x\in\mathbb{Z}\wedge x\geq n\wedge x\leq m\}$
maxint	entier maximum représentable	
minint	entier minimum représentable	
INT	entiers relatif représentable	minintmaxint
NAT	entiers positifs représentable	0maxint
NAT_1	entiers strictement positifs représentable	1maxint

Symbole	Signification
succ	fonction successeur

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition
_	soustraction ou différence

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition
_	soustraction ou différence
*	multiplication ou produit

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition
_	soustraction ou différence
*	multiplication ou produit
/	quotient de la division entière

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition
_	soustraction ou différence
*	multiplication ou produit
/	quotient de la division entière
mod	reste de la division entière

Symbole	Signification
succ	fonction successeur
pred	fonction prédécesseur
_	moins unaire
+	addition
_	soustraction ou différence
*	multiplication ou produit
/	quotient de la division entière
\mod	reste de la division entière
X ^y	opération puissance entière

Symbole	Signification	Syntaxe
\sum	Pomme d'expressions quantifiées	\sum Id_liste \cdot (Prdicat Expression)

Symbole	Signification	Syntaxe
\sum	Pomme d'expressions quantifiées	\sum Id_liste \cdot (Prdicat Expression)
Π	Produit d'expressions quantifiées	\prod Id_liste \cdot (Prdicat Expression)

$$E_1 = \{1, 2, 3, 4\}$$

$$E_1 = \{1, 2, 3, 4\}$$

$$\sum x \cdot (x \in E_1 | x * 2) = (1 * 2) + (2 * 2) + (3 * 2) + (4 * 2)$$

$$E_1 = \{1, 2, 3, 4\}
\sum x \cdot (x \in E_1 | x * 2) = (1 * 2) + (2 * 2) + (3 * 2) + (4 * 2)
= 20$$

$$E_1 = \{1, 2, 3, 4\}$$

$$\sum x \cdot (x \in E_1 | x * 2) = (1 * 2) + (2 * 2) + (3 * 2) + (4 * 2)$$

$$= 20$$

$$\prod x \cdot (x \in E_1 | x) = 1 * 2 * 3 * 4$$

$$E_1 = \{1, 2, 3, 4\}$$

$$\sum x \cdot (x \in E_1 | x * 2) = (1 * 2) + (2 * 2) + (3 * 2) + (4 * 2)$$

$$= 20$$

$$\prod x \cdot (x \in E_1 | x) = 1 * 2 * 3 * 4$$

$$= 24$$

Symbole	Signification	Syntaxe
card	nombre d'éléments d'un ensemble quelconque	card(Expression)

Symbole	Signification	Syntaxe
card	nombre d'éléments d'un ensemble quelconque	card(Expression)
min	minimum d'un ensemble fini non vide d'entiers	$\min(\textit{Expression})$

Symbole	Signification	Syntaxe
card	nombre d'éléments d'un ensemble quelconque	card(Expression)
min	minimum d'un ensemble fini non vide d'entiers	$\min(\textit{Expression})$
max	maximum d'un ensemble fini non vide d'entiers	$\max(\textit{Expression})$

- Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
 - La logique du 1^e ordre
 - La théorie des ensembles
 - Les types de données prédéfinis
 - Les séquences
- 3 La synthèse

Les séquences

Les séquences (ou suites) sont un cas particulier de constructeurs de fonctions dont le domaine est un intervalle d'entiers

Les séquences

Les séquences (ou suites) sont un cas particulier de constructeurs de fonctions dont le domaine est un intervalle d'entiers

Symbole	Signification	Définition
seq(E)	séquences finies d'éléments de <i>E</i>	$\bigcup n \cdot (n \in \mathbb{N} 1n \to E)$

Les séquences

Les séquences (ou suites) sont un cas particulier de constructeurs de fonctions dont le domaine est un intervalle d'entiers

Symbole	Signification	Définition
seq(E)	séquences finies d'éléments de <i>E</i>	$\bigcup n \cdot (n \in \mathbb{N} 1n \to E)$
$seq_1(E)$	séquences non vides	$\operatorname{seq}(E) - \varnothing$

Les séquences ont une dénotation syntaxique prédéfinie :

[]
$$= \emptyset$$

[3,7,5] $= \{1 \mapsto 3, 2 \mapsto 7, 3 \mapsto 5\}$

L'insertion dans une séquence

L'opérateur d'ajout d'un élément au début de la séquence est noté :
 a -> s avec a ∈ E et s ∈ seq(E)

L'insertion dans une séquence

- L'opérateur d'ajout d'un élément au début de la séquence est noté :
 a -> s avec a ∈ E et s ∈ seq(E)
- L'opérateur -> est défini de façon primitive par :

$$a \rightarrow [] = \{1 \mapsto a\}$$

 $a \rightarrow s = \{1 \mapsto a\} \cup (\text{pred}; s)$

Notation	Signification	
size	longueur de séquence	

Notation	Signification	
size	longueur de séquence	
$\overline{}$	concaténation	

Notation	Signification	
size	longueur de séquence	
	concaténation	
<-	ajout à la fin	

Notation	Signification	
size	longueur de séquence	
$\overline{}$	concaténation	
<-	ajout à la fin	
rev	inversion de séquence	

Notation	Signification	
size	longueur de séquence	
$\overline{}$	concaténation	
<-	ajout à la fin	
rev	inversion de séquence	
conc	concaténation généralisée	

size([3, 7, 5, 6]) = 4


```
size([3,7,5,6]) = 4
[3,7,5] \frown [4,8] = [3,7,5,4,8]
```



```
size([3, 7, 5, 6]) = 4

[3, 7, 5] \frown [4, 8] = [3, 7, 5, 4, 8]

rev([3, 7, 5, 4]) = [4, 5, 7, 3]
```



```
\begin{array}{rl} \operatorname{size}([3,7,5,6]) &= 4 \\ [3,7,5] \frown [4,8] &= [3,7,5,4,8] \\ \operatorname{rev}([3,7,5,4]) &= [4,5,7,3] \\ \operatorname{conc}([[2,3],[],[5,7,8],[0]]) &= [2,3,5,7,8,0] \end{array}
```


Signification	Expression
Premier élément	first(s)

Les opérations sur les séquences II

Signification	Expression
Premier élément	first(s)
Dernier élément	last(s)

Les opérations sur les séquences II

Signification	Expression
Premier élément	first(s)
Dernier élément	last(s)
Éléments sauf le premier	tail(s)

Les opérations sur les séquences II

Signification	Expression
Premier élément	first(s)
Dernier élément	last(s)
Éléments sauf le premier	tail(s)
Éléments sauf le dernier	front(s)

first([4,5,7,3]) = 4


```
\begin{array}{ll} {\rm first}([4,5,7,3]) &= 4 \\ {\rm last}([4,5,7,3]) &= 3 \end{array}
```



```
\begin{array}{ll} {\rm first}([4,5,7,3]) &= 4 \\ {\rm last}([4,5,7,3]) &= 3 \\ {\rm tail}([4,5,7,3]) &= [5,7,3] \end{array}
```



```
\begin{array}{ll} \mathrm{first}([4,5,7,3]) &= 4 \\ \mathrm{last}([4,5,7,3]) &= 3 \\ \mathrm{tail}([4,5,7,3]) &= [5,7,3] \\ \mathrm{front}([4,5,7,3]) &= [4,5,7] \end{array}
```


- 1 Présentation de la méthode B
- 2 La logique du 1^e ordre et la théorie des ensembles
- 3 La synthèse

• La méthode B est une méthode formelle basée sur la logique du 1^e ordre et la théorie des ensembles.

- La méthode B est une méthode formelle basée sur la logique du 1^e ordre et la théorie des ensembles.
- Le développement avec la méthode B se base sur une activité de modélisation et une activité de vérification des modèles obtenus.

- La méthode B est une méthode formelle basée sur la logique du 1^e ordre et la théorie des ensembles.
- Le développement avec la méthode B se base sur une activité de modélisation et une activité de vérification des modèles obtenus.
- Le développement avec la méthode B couvre l'ensemble des étapes d'un cycle de développement.

- La méthode B est une méthode formelle basée sur la logique du 1^e ordre et la théorie des ensembles.
- Le développement avec la méthode B se base sur une activité de modélisation et une activité de vérification des modèles obtenus.
- Le développement avec la méthode B couvre l'ensemble des étapes d'un cycle de développement.
- La méthode B permet le développement de logiciels sûrs et validés conformes à la spécification initiale.

