Assignment -2 Data Visualization and Data Pre-processing

Assignment Date	17 September 2022		
Student Name	Logeshkumar R		
Student Roll Number	727719EUCS074		
Maximum Marks	2 Marks		

Question-1:

Download the dataset: Dataset

Question-2:

Load the dataset.

Solution:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

data = pd.read_csv("E://Churn_Modelling.csv")
data.head()

```
In [1]: import pandas as pd
         import numpy as np
import matplotlib.pyplot as plt
         import seaborn as sns
data = pd.read_csv("E://Churn_Modelling.csv")
         data.head()
Out[1]:
             RowNumber Customerld Surname CreditScore Geography Gender Age Tenure
                                                                                           Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary
                      1 15634602 Hargrave
          0
                                                     619
                                                           France Female 42
                                                                                             0.00
                                                                                                                                                   101348.88
                           15647311
                                                     608
                                                                                          83807.86
                                                                                                                                                   112542.58
                      3 15619304
                                                                                       2 125510.82
```

Question-3:

Perform Below Visualizations.

• Univariate Analysis

```
In [3]: sns.boxplot(data.Age)
Out[3]: <AxesSubplot:xlabel='Age'>
```


• Bi - Variate Analysis

```
In [7]: sns.boxplot(y=data.CreditScore,x=data.Age)
Out[7]: <AxesSubplot:xlabel='Age', ylabel='CreditScore'>
```


• Multi - Variate Analysis

Question-4:

Perform descriptive statistics on the dataset.

```
In [9]: data['NumOfProducts'].mean()
 Out[9]: 1.5302
In [10]: data['EstimatedSalary'].median()
Out[10]: 100193.915
In [11]: data['Tenure'].mode()
Out[11]: 0
              2
         dtype: int64
 In [13]:
          data.kurt()
Out[13]: RowNumber
                             -1.200000
          CustomerId
                             -1.196113
                             -0.425726
          CreditScore
          Age
                              1.395347
          Tenure
                             -1.165225
          Balance
                             -1.489412
          NumOfProducts
                             0.582981
          HasCrCard
                             -1.186973
          IsActiveMember
                             -1.996747
          EstimatedSalary
                             -1.181518
          Exited
                              0.165671
          dtype: float64
```

In [16]:	data.var()	
Out[16]:	RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: float64	8.334167e+06 5.174815e+09 9.341860e+03 1.099941e+02 8.364673e+00 3.893436e+09 3.383218e-01 2.077905e-01 2.497970e-01 3.307457e+09 1.622225e-01
In [17]:	data.std()	
Out[17]:	RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited dtype: float64	2886.895680 71936.186123 96.653299 10.487806 2.892174 62397.405202 0.581654 0.455840 0.499797 57510.492818 0.402769

Question-5:

Handle the Missing values.

In [18]:	data.isna().any()	
Out[18]:	RowNumber	False
	CustomerId	False
	Surname	False
	CreditScore	False
	Geography	False
	Gender	False
	Age	False
	Tenure	False
	Balance	False
	NumOfProducts	False
	HasCrCard	False
	IsActiveMember	False
	EstimatedSalary	False
	Exited	False
	dtype: bool	

```
In [19]: data.isna().sum()
Out[19]: RowNumber
                             0
                             0
         CustomerId
                             0
         Surname
         CreditScore
                             0
                             0
         Geography
         Gender
                             0
         Age
                             0
         Tenure
         Balance
         NumOfProducts
                             0
         HasCrCard
                             0
         IsActiveMember
                             0
         EstimatedSalary
         Exited
                             0
         dtype: int64
```

F	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Δпе	Tenure	Ralance	NumOfProducts	HasCrCard	IsActiveMember	Estimated 9
0	1	15634602	Hargrave	619		Female	42	2	0.00	1	1	1	1013
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	1125
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	1139
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	938
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	790
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	962
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	1016
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	420
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	928
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	381

Question-6:

Find the outliers and replace the outliers

```
In [23]: Q1=data.Age.quantile(0.25)
       Q2=data.Age.quantile(0.75)
       IQR=Q2-Q1
       print(IQR)
In [24]: data=data[~((data.Age<(Q1-1.5*IQR)))|(data.Age>(Q2+1.5*IQR)))]
Out[24]:
            RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSa
       0 1 15634602 Hargrave 619 France Female 42 2 0.00
                  2 15647311
                              Hill
                                         608
                                                Spain Female 41
                                                                 1 83807.86
                                                                                            0
                                                                                                             11254
                3 15619304 Onio 502 France Female 42 8 159660.80
                                                                                                             11393
                  4 15701354
                              Boni
                                         699 France Female 39
                                                                       0.00
                                                                                                              9382
            5 15737888 Mitchell 850 Spain Female 43 2 125510.82
        9995 9996 15606229 Obijiaku 771 France Male 39 5
                                                                       0.00
                                                                                                             9627
        9996
                9997 15569892 Johnstone
                                        516 France Male 35
                                                                 10 57369.61
                                                                                                             10169
                9998 15584532 Liu 709 France Female 36 7 0.00
        9997
                                                                                                             4208
                9999 15682355 Sabbatini
        9998
                                        772 Germany Male 42
                                                                 3 75075 31
                                                                                    2
                                                                                                              9288
                                                                                                       0
        9999
             10000 15628319 Walker 792 France Female 28 4 130142.79
                                                                                                      0
                                                                                                             3819
       9641 rows × 14 columns
```

Question-7:

Check for Categorical columns and perform encoding.

Question-8:

Split the data into dependent and independent variables.

Question-9:

Scale the independent variables

Question-10:

Split the data into training and testing

```
In [56]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
In [57]: x_train
Out[57]: array([[-2.24837781],
                 [ 0.59167031],
                 [ 1.04607801],
                 [-0.54434894],
                 [ 1.04607801],
                [-0.43074701]])
In [58]: x_test
Out[58]: array([[ 1.50048571],
                [-0.20354316],
                [ 0.36446646],
                 [ 0.81887416],
                 [-0.88515471],
                 [ 0.13726261]])
```

```
In [40]: y_train
Out[40]: 7389
                  1
          9275
                  1
          2995
                  1
          5316
                  1
          356
                  1
                 . .
          9225
                 1
          4859
                1
          3264
                  1
          9845
                  1
          2732
                  1
          Name: HasCrCard, Length: 8000, dtype: int64
In [41]: y_test
Out[41]: 9394
                  1
          898
                  1
          2398
                  1
          5906
                  0
          2343
                  1
          1037
                 1
          2899
                  1
          9549
                  1
          2740
                  1
          6690
          Name: HasCrCard, Length: 2000, dtype: int64
```