CS2102

Tutorial 07

- Question: using Armstrong's axiom, proof
 - Union if $a \to b$ and $a \to c$, then $a \to bc$

- Question: using Armstrong's axiom, proof
 - Union if $a \to b$ and $a \to c$, then $a \to bc$
- What we know?
 - $a \rightarrow b$
 - $a \rightarrow c$

- Question: using Armstrong's axiom, proof
 - Union if $a \to b$ and $a \to c$, then $a \to bc$
- What we know?
 - $a \rightarrow b$
 - $a \rightarrow c$
- Aim: $a \rightarrow bc$ (Make RHS bc)
 - Two candidates:
 - $a \rightarrow b$ augmentation $ac \rightarrow bc$
 - $a \rightarrow c$ augmentation $ab \rightarrow bc$

- Question: using Armstrong's axiom, proof
 - Union if $a \to b$ and $a \to c$, then $a \to bc$
- What we know?
 - $a \rightarrow b$
 - $a \rightarrow c$
- Aim: $a \rightarrow bc$ (Make RHS bc)
 - Two candidates:
 - $a \rightarrow b$ augmentation $ac \rightarrow bc$
 - Then need to find $a \to ac$ to complete with transitivity $[a \to c]$ augmentation with a]
 - $a \rightarrow c$ augmentation $ab \rightarrow bc$
 - Then need to find $a \to ab$ to complete with transitivity $[a \to b]$ augmentation with b]

- Question: using Armstrong's axiom, proof
 - Decomposition if $a \to bc$, then $a \to b$

- Question: using Armstrong's axiom, proof
 - Decomposition if $a \to bc$, then $a \to b$
- What we know?
 - $a \rightarrow bc$

- Question: using Armstrong's axiom, proof
 - Decomposition if $a \to bc$, then $a \to b$
- What we know?
 - $a \rightarrow bc$
- Aim: $a \rightarrow b$
 - Can be solved immediately if we have $bc \rightarrow b$
 - Then $a \to bc$; $bc \to b$ can be combined into $a \to bc \to b$

- Question: using Armstrong's axiom, proof
 - Decomposition if $a \to bc$, then $a \to b$
- What we know?
 - $a \rightarrow bc$
- Aim: $a \rightarrow b$
 - Can be solved immediately if we have $bc \rightarrow b$
 - Then $a \to bc$; $bc \to b$ can be combined into $a \to bc \to b$
 - But $bc \rightarrow b$ is always implied
 - due to Reflexivity

- Question: using Armstrong's axiom, proof
 - Pseudo-transitivity if $a \rightarrow b$ and $bc \rightarrow d$, then $ac \rightarrow d$

- Question: using Armstrong's axiom, proof
 - Pseudo-transitivity if $a \to b$ and $bc \to d$, then $ac \to d$
- What we know?
 - $a \rightarrow b$
 - $bc \rightarrow d$

- Question: using Armstrong's axiom, proof
 - Pseudo-transitivity if $a \to b$ and $bc \to d$, then $ac \to d$
- What we know?
 - $a \rightarrow b$
 - $bc \rightarrow d$
- Aim: $ac \rightarrow d$
 - If we have $ac \rightarrow bc$ we can solve by transitivity: $ac \rightarrow bc \rightarrow d$

- Question: using Armstrong's axiom, proof
 - Pseudo-transitivity if $a \to b$ and $bc \to d$, then $ac \to d$
- What we know?
 - $a \rightarrow b$
 - $bc \rightarrow d$
- Aim: $ac \rightarrow d$
 - If we have $ac \rightarrow bc$ we can solve by transitivity: $ac \rightarrow bc \rightarrow d$
 - But $ac \rightarrow bc$ can be formed from $a \rightarrow b$
 - Augmentation with c

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$
- What we know?
 - $a \rightarrow b$
 - $c \rightarrow d$
- Aim: $ac \rightarrow bd$
 - Make RHS bd, we have two candidates
 - $a \rightarrow b$ augmentation $ad \rightarrow bd$
 - $c \rightarrow d$ augmentation $bc \rightarrow bd$
 - Make LHS ac, we have two candidates
 - $a \rightarrow b$ augmentation $ac \rightarrow bc$
 - $c \rightarrow d$ augmentation $ac \rightarrow ad$

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$
- What we know?
 - $a \rightarrow b$
 - $c \rightarrow d$

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$
- What we know?
 - $a \rightarrow b$
 - $c \rightarrow d$
- Aim: $ac \rightarrow bd$
 - Make RHS bd, we have two candidates
 - Make LHS ac, we have two candidates

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$
- What we know?
 - $a \rightarrow b$
 - $c \rightarrow d$
- Aim: $ac \rightarrow bd$
 - Make RHS bd, we have two candidates
 - $a \rightarrow b$ augmentation $ad \rightarrow bd$
 - $c \rightarrow d$ augmentation $bc \rightarrow bd$
 - Make LHS ac, we have two candidates
 - $c \rightarrow d$ augmentation $ac \rightarrow ad$
 - $a \rightarrow b$ augmentation $ac \rightarrow bc$

- Question: using Armstrong's axiom, proof
 - Composition if $a \to b$ and $c \to d$, then $ac \to bd$
- What we know?
 - $a \rightarrow b$
 - $c \rightarrow d$
- Aim: $ac \rightarrow bd$
 - Make RHS bd, we have two candidates
 - $a \rightarrow b$ augmentation $ad \rightarrow bd$ –
 - $c \rightarrow d$ augmentation $bc \rightarrow bd$ —
 - Make LHS ac, we have two candidates
 - $c \rightarrow d$ augmentation $ac \rightarrow ad$
 - $a \rightarrow b$ augmentation $ac \rightarrow bc$

$$ac \rightarrow ad \rightarrow bd$$

 $ac \rightarrow bc \rightarrow bd$

- Question: Use extended Armstrong's axioms to show $F \models CDG \rightarrow E$
- What we know?
 - $ABC \rightarrow E$; $BD \rightarrow A$; $CG \rightarrow B$
- Aim: $CDG \rightarrow E$
 - Find $CDG \rightarrow ABC$
 - \triangleright Then by transitivity: $CDG \rightarrow ABC \rightarrow E$

- Question: Use extended Armstrong's axioms to show $F \models CDG \rightarrow E$
- What we know?
 - $ABC \rightarrow E$; $BD \rightarrow A$; $CG \rightarrow B$
- Aim: $CDG \rightarrow ABC$
 - Find $CDG \rightarrow A$
 - Find $CDG \rightarrow B$
 - Find $CDG \rightarrow CG$ (Reflexivity)
 - Then by transitivity: $CDG \rightarrow CG \rightarrow B$
 - Find $CDG \rightarrow C$
 - Reflexivity
 - \triangleright Then by union: $CDG \rightarrow ABC$

- Question: Use extended Armstrong's axioms to show $F \models CDG \rightarrow E$
- What we know?
 - $ABC \rightarrow E$; $BD \rightarrow A$; $CG \rightarrow B$
- Aim: $CDG \rightarrow A$
 - Find $CDG \rightarrow BD$
 - \triangleright Then by transitivity: $CDG \rightarrow BD \rightarrow A$

- Question: Use extended Armstrong's axioms to show $F \models CDG \rightarrow E$
- What we know?
 - $ABC \rightarrow E$; $BD \rightarrow A$; $CG \rightarrow B$
- Aim: $CDG \rightarrow BD$
 - Find $CDG \rightarrow B$
 - <done before>
 - Find $CDG \rightarrow D$
 - Reflexivity
 - \triangleright Then by union: $CDG \rightarrow BD$

- Question: Use extended Armstrong's axioms to show $F \models CDG \rightarrow E$
- What we know?
 - $ABC \rightarrow E$; $BD \rightarrow A$; $CG \rightarrow B$
- Aim: $CDG \rightarrow E$
 - <omitted>
 - ightharpoonup Then by union $CDG \rightarrow BD$
 - ightharpoonup Then by transitivity $CDG \rightarrow BD \rightarrow A$
 - ightharpoonup Then by union $CDG \rightarrow ABC$
 - \blacktriangleright Then by transitivity $CDG \rightarrow ABC \rightarrow E$

- Question: Compute *CDG* +
- Steps: Using algorithm #1
 - $\theta = CDG$

- Question: Compute *CDG* +
- Steps: Using algorithm #1
 - $\theta = CDG$
 - With $CG \rightarrow B$ then $\theta = \theta \cup \{B\} = BCDG$
 - $CG \subseteq CDG = \theta$ and $B \notin \theta$

- Question: Compute *CDG* +
- Steps: Using algorithm #1
 - $\theta = CDG$
 - With $CG \rightarrow B$ then $\theta = \theta \cup \{B\} = BCDG$
 - $CG \subseteq CDG = \theta$ and $B \notin \theta$
 - With $BD \to A$ then $\theta = \theta \cup \{A\} = ABCDG$
 - $BD \subseteq BCDG = \theta$ and $A \notin \theta$

- Question: Compute CDG+
- Steps: Using algorithm #1
 - $\theta = CDG$
 - With $CG \rightarrow B$ then $\theta = \theta \cup \{B\} = BCDG$
 - $CG \subseteq CDG = \theta$ and $B \notin \theta$
 - With $BD \to A$ then $\theta = \theta \cup \{A\} = ABCDG$
 - $BD \subseteq BCDG = \theta$ and $A \notin \theta$
 - With $ABC \rightarrow E$ then $\theta = \theta \cup \{E\} = ABCDEG$
 - $ABC \subseteq ABCDG = \theta$ and $E \notin \theta$

- Question: Compute CDG+
- Steps: Using algorithm #1
 - $\theta = CDG$
 - With $CG \rightarrow B$ then $\theta = \theta \cup \{B\} = BCDG$
 - $CG \subseteq CDG = \theta$ and $B \notin \theta$
 - With $BD \to A$ then $\theta = \theta \cup \{A\} = ABCDG$
 - $BD \subseteq BCDG = \theta$ and $A \notin \theta$
 - With $ABC \rightarrow E$ then $\theta = \theta \cup \{E\} = ABCDEG$
 - $ABC \subseteq ABCDG = \theta$ and $E \notin \theta$
 - $\triangleright CDG^+ = ABCDEG = R$

- Question: Compute *CDG* +
- Steps: Using question 9(a)
 - Final step: $CDG \rightarrow ABC \rightarrow E$
 - We have
 - $CDG \rightarrow CDG$
 - $CDG \rightarrow ABC$
 - $CDG \rightarrow E$
 - By union: $CDG \rightarrow ABCDEG$

- Question: find all keys of *R*
- How?
 - Brute force method
 - Similar to T01 Q12A
 - But with5 attributes
 - Find from smallest subset

- Question: find all keys of *R*
- How?
 - By reasoning
 - Since $CDG^+ = ABCDEG = R$
 - *CDG* is a superkey
 - Check if *CDG* is a key
 - Check CD^+ ; CG^+ ; DG^+ then determine that CDG is a key
 - Consider that CDG does not appear on the RHS of any FD
 - $(R-C)^+$ cannot contain C
 - $(R-D)^+$ cannot contain D
 - $(R-G)^+$ cannot contain G
 - CDG is the only key since every superkey must contain CDG

- Question: find prime attributes of *R*
- How?
 - Brute force method
 - Find all keys of *R*
 - $AB \rightarrow R$
 - $AC \rightarrow R$
 - Union all attributes in keys of *R*
 - A, B, C

- Question: find prime attributes of *R*
- How?
 - Smarter method
 - Note: A does not appear on any RHS \Rightarrow A must be part of any superkey
 - This limits the search space to include A
 - One attribute
 - $A^+ = A$ $\Rightarrow A$ is not superkey
 - Two attributes
 - $AB^+ = R$ $\Rightarrow AB$ is a key
 - $AC^+ = R$ $\Rightarrow AC$ is a key
 - $AD^+ = AD$ $\Rightarrow AD$ is not a key
 - $AE^+ = AE$ $\Rightarrow AE$ is not a key

- Question: find prime attributes of *R*
- How?
 - Smarter method
 - Note: A does not appear on any RHS \Rightarrow A must be part of any superkey
 - This limits the search space to include A
 - Known keys: *AB*, *AC*
 - Three attributes: must include A but must exclude AB and AC
 - $ADE^+ = ADE \implies ADE$ is not a key
 - No more 3 attributes that satisfies the condition
 - Four attributes: must include A but must exclude AB and AC
 - No 4 attributes that satisfies the condition
 - We can stop the search here

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Consider $AB \rightarrow CDE$
 - Consider A
 - $A^+ = A$ $\Rightarrow B$ is NOT redundant
 - Consider B
 - $B^+ = BCDE$ $\Rightarrow B \rightarrow CDE$ is implied, A is redundant
 - Let $G = \{B \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{B \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Consider $AC \rightarrow BDE$
 - Consider A
 - $A^+ = A$ $\Rightarrow C$ is NOT redundant
 - Consider C
 - $C^+ = BCDE \implies C \rightarrow CDE$ is implied, A is redundant
 - Let $G = \{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - The rest of the FDs have single attribute for LHS
 - None of these can be redundant
 - $G = \{B \rightarrow CDE, C \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}$
 - Contains no redundant attribute in FD
 - Apply decomposition and remove duplicates
 - $G = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{B \rightarrow C, B \rightarrow D, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Consider $B \rightarrow C$
 - $B^+ = BDE$ w.r.t. $\{B \to D, B \to E, C \to B, C \to D, C \to E\}$
 - Not redundant
 - Consider $B \rightarrow D$
 - $B^+ = BCDE$ w.r.t. $\{B \to C, B \to E, C \to B, C \to D, C \to E\}$
 - Redundant
 - $G = \{B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{B \rightarrow C, B \rightarrow E, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Consider $B \rightarrow E$
 - $B^+ = BCDE$ w.r.t. $\{B \to D, C \to B, C \to D, C \to E\}$
 - Redundant
 - $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Consider $C \rightarrow B$
 - $C^+ = CDE$ w.r.t. $\{B \rightarrow C, C \rightarrow D, C \rightarrow E\}$
 - Not redundant
 - $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Start with $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Consider $C \rightarrow D$
 - $B^+ = BCE$ w.r.t. $\{B \rightarrow C, C \rightarrow B, C \rightarrow E\}$
 - Not redundant
 - $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - Consider $C \rightarrow E$
 - $C^+ = BCD$ w.r.t. $\{B \rightarrow C, C \rightarrow B, C \rightarrow D\}$
 - Not redundant
 - $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$

- Question: find one minimal cover of F
- How?
 - Algorithm #2
 - Ends with $G = \{B \rightarrow C, C \rightarrow B, C \rightarrow D, C \rightarrow E\}$
 - This is one possible minimal cover