第一章

1. (20%) 已知 $C^{2\times 2}$ 的子空间

$$V_{1} = \left\{ \begin{bmatrix} x & x \\ y & y \end{bmatrix} | x, y \in C \right\}, \quad V_{2} = \left\{ \begin{bmatrix} x & -y \\ -x & y \end{bmatrix} | x, y \in C \right\}$$

分别求 V_1 , V_2 , $V_1 \cap V_2$, $V_1 + V_2$ 的一组基及它们的维数。

2. (18%) 设 $C^{2\times 2}$ 上的线性变换 f 定义为:

$$f(X) = XM$$
, $\forall X \in C^{2 \times 2}$

其中,
$$M = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$

- (1) $\vec{x} f \vec{e} V$ 的基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵 A_{11}
- (2) 分别求 f 的特征值及相应的特征子空间的一组基及它们的维数;
- (3) 给出 f 的最小多项式;
- (4) 问:是否存在V 的基,使得 f 的矩阵为对角阵?为什么?
- 3. (20%) 设 $C^{2\times 2}$ 上的线性变换 f 定义为:

$$f(X) = \begin{bmatrix} t & t \\ t & t \end{bmatrix}$$
, $\forall X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in C^{2 \times 2}$

其中, t 表示矩阵 X 的迹 tr(X) = a + d 。

- (1) $\mathbf{x} f \mathbf{c} V$ 的基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵A;
- (2) 求 f 的值域 R(f) 及核子空间 K(f) 的基及它们的维数;
- (3) 问: R(f) + K(f) 是否为直和? 为什么?
- 4. (20%) 假设矩阵 $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 在 $C^{2\times 2}$ 上定义映射 f 如下:

对任意
$$X \in C^{2\times 2}$$
, $f(X) = AXA$

- (1) 证明: $f \in C^{2\times 2}$ 上的线性变换;
- (2) 求f在 $C^{2 imes2}$ 的基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵M;
- (3) 求 f 的值域 R(f) 及核子空间 K(f) 的各一组基及它们的维数;
- (4) 问: $C^{2\times 2} = R(f) \oplus K(f)$ 是否成立? 为什么?
- (5) 试求M 的 Jordan 标准形, 并写出f 的最小多项式;
- (6) 问:能否找到 $C^{2\times 2}$ 的基,使得f的矩阵为对角阵?为什么?
- 5. (16%) $C^{2\times 2}$ 上的线性变换 f 定义如下: $f(X) = \begin{pmatrix} a-b & c-d \\ c-d & a-b \end{pmatrix}$, $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in C^{2\times 2}$
- (1) $\vec{x} f \in C^{2\times 2}$ 的基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵;
- (2) 求 f 的值域 R(f) 及核子空间 K(f) 的各一组基及它们的维数;

- (3) 问: $C^{2\times 2} = R(f) \oplus K(f)$ 是否成立? 为什么?
- 6. (8%) 设 f,g 为线性空间V 上的线性变换,且 fg = f. 试证: V = K(f) + R(g);
- 7. 若n阶方阵A与G满足:①. $A^2 = A$; ②. GAG = G; ③. $R(G) \subseteq R(A)$ 则 $G^2 = G$ (证明时请注明每一步的理由).

第二章

- 1. (10%)设 C^3 的子空间 $V = \{(x,y,z) \mid 2x+y-z=0\}$, $\eta = (1,1,1)$ 。试求 $\eta_0 \in V$,使得 $\|\eta \eta_0\| = \min_{\varepsilon \in V} \|\eta \xi\|$ 。
- 2. 在 $R_3[x]$ 上定义内积 $< f(x), g(x) >= \int_{-1}^1 f(x)g(x)dx$ 。 $R_3[x]$ 的子空间 $W = span\{1, x^2\}$ 。 试求 $p(x) \in R_3[x]$,使得 $\|p(x) x\| = \min_{h(x) \in W} \|h(x) x\|$ 。
- 3. (10%)假设 $\xi_1=(1,1,0),\ \xi_2=(1,0,-1)$, R^3 的由 $\xi_1,\ \xi_2$ 生成的子空间 $V=L(\xi_1,\xi_2)$, $\eta=(1,1,1)$ 。在V 中求向量 η_0 ,使得 $\|\eta-\eta_0\|=\min_{\xi\in V}\|\eta-\xi\|$ 。
- 4. (10%)设V 是一n 维欧氏空间, $\omega \in V$ 是一单位向量,k 是一参数,V 上的线性变换 f 定义为:

$$f(\eta) = \eta - k < \eta, \omega > \omega$$
, $\forall \eta \in V$

问: 当k 取何值时, f 是正交变换?

- 5. 记 $V=R^2$ 。 $A=egin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ 。 定义V 上先行变换如下: $f(\eta)=A\eta, \forall\,\eta\in V.$
- (1) 求 f 的 值 域 的 一 组 基, 并 给 出 V 的 两 个 不 同 的 子 空 间 U,W , 使 得 $V = \operatorname{Im} f \oplus U = \operatorname{Im} f \oplus W$;
- (2) 问: f 是否为正交变换? 为什么?

第三章

- 1. 已知 A 的特征多项式与最小多项式都是 λ^5 , 分别求 A 及 A^2 的 Jordan 标准形.
- 2. (8%) 已知n 阶方阵A 满足 $A^2 = 2A + 8I$,且A + 2I 的秩是r,求 det(A + I).
- 3. (12%) 设矩阵 $A = \begin{pmatrix} x & 0 & 0 \\ 1 & 5 & 0 \\ 4 & 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 5 & y & 2 \\ 0 & 2 & t \\ 0 & 0 & 5 \end{pmatrix}$.
- (1) 根据x的不同的值,讨论矩阵A的所有可能的 Jordan 标准形;
- (2) 若 $A \subseteq B$ 是相似的,问:参数 x, y, t 应满足什么条件?试说明你的理由。

- 4. 假设矩阵 A 的特征多项式及最小多项式都等于 $(\lambda-3)(\lambda+4)^2$,并且 $B = \begin{pmatrix} 3 & 2 & 2 \\ 0 & -4 & 5 \\ 0 & 0 & -4 \end{pmatrix}$ 。
- (1) 分别给出 $A \cap B$ 的 Jordan 标准形;
- (2) 问: A 与 B 是否相似? 为什么?
- 5. 证明: 若方阵 B 的特征值全为零,则必存在正整数 k ,使 $B^k=O$ 。

6. Eximise
$$A = \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 0 \end{pmatrix}$$

- (1) 试写出矩阵 A 的特征多项式,最小多项式,及矩阵 A-3I 的秩;
- (2) 如果矩阵 B = A 有相同的特征多项式,有相同最小多项式,并且 B = 3I 与 A = 3I 的秩也相同,
- 问:与A是否一定相似?说明你的理由。
- 7. (12%) 已知矩阵 A 的特征多项式 $C_A(\lambda)$ 及最小多项式 $m_A(\lambda)$ 相等,均等于 $(\lambda-1)\lambda^2$,矩

$$\mathbf{E} B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

- (1) 分别给出 A 和 B 的 Jordan 标准形;
- (2) 问: A 与 B 是否相似? 为什么?

8. (16%) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix}$$
。

- (1) 试分别求 A 的特征多项式和最小多项式;
- (2) 写出 A 的 Jordan 标准型;
- (3) 求 A^{100} ;

第四章

- 1. 假设 A 是正规矩阵。若 A 的特征值全是实数,证明: A 是 Hermite 矩阵。
- 2. 假设 $A \times B$ 都是 $n \times n$ Hermite 矩阵。证明 AB 是 Hermite 矩阵当且仅当 AB = BA 。
- 3. 假设 A 是 Hermite 矩阵, 证明: e^{iA} 是酉矩阵。
- 4. 证明: Hermite 阵和酉矩阵都是正规阵。试举一例说明存在这样的正规阵,它既不是 Hermite

矩阵,也不是酉矩阵。

- 5. 若 n 维列向量 $\alpha \in C^n$ 的长度小于 2, 证明: $4I \alpha \alpha^H$ 是正定矩阵。
- 6. 假设 $A = n \times n$ 酉矩阵, $B = n \times n$ 矩阵。证明: $AB = n \times n$ 是酉矩阵当且仅当 $B = n \times n$
- 7. 假设 $A \in n \times n$ 酉矩阵, $B \in n \times n$ Hermite 矩阵, 并且 AB = BA 。记 M = AB 。证明: 存在酉矩阵 U ,使得 $U^H MU$ 是对角阵。
- 8. 若 A 是正规矩阵,则 A 是酉矩阵的充要条件是 A 的特征值的模全为 1;
- 9. 若n 阶 Hermite 矩阵 A 为正定阵,又 B 是 n 阶方阵且 $A-B^HAB$ 也是正定阵,则 B 的谱半 径 $\rho(A)<1$ 。
- 10. 若方阵 A 的特征值全为零,则必存在正整数 k ,使 $A^k = O$.
- 11. 设A 是n 阶正定矩阵, $\alpha_1, \alpha_2, \Lambda$, α_n 是n 维非零列向量. 若当 $i \neq j$ 时,总有 $\alpha_i^H A \alpha_j = 0$,则 $\alpha_1, \alpha_2, \Lambda$, α_n 必线性无关

第五章

- 1. (10%) 设A,B 为方阵,作 $M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$,设t 是参数.
- (1) 试证: $e^{Mt} = \begin{pmatrix} e^{At} & O \\ O & e^{Bt} \end{pmatrix}$;
- (2) 已知 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, 求 e^{Mt} .
- 2. (15%) 设 $A = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix}$, 求 A 的特征多项式、最小多项式,并求矩阵函数 e^{At} 。
- 3. 设 $A = lphaoldsymbol{eta}^H$,试证: $\|A\|_F = \|oldsymbol{lpha}\|_{\gamma}\|oldsymbol{eta}\|_{\gamma}$.
- 4. (10%) 试证: 若A为n阶正规矩阵,则

$$\max_{\theta \neq x \in C^n} \frac{\left| x^H A x \right|}{x^H x} = \rho(A) = \left\| A \right\|_2$$

- 5. 设 $\|\cdot\|$ 是相容矩阵范数。证明:对任意方阵 A , A 的谱半径 $\rho(A) \leq \|A\|$;
- 6. 证明:对任意方阵 A , $\det e^A = e^{trA}$ (这里, $\det \mathbf{z}$ 表示矩阵的行列式, tr 表示矩阵的迹);

第六章

- 1. (10%) 设 α 为 $n \times l$ 矩阵, β 为 $s \times l$ 矩阵,作 $A = \alpha \beta^H$. 求 A^+ (用 α , β 表示);
- $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}$, 试求A的广义逆矩阵 A^+ 。 2. (12%)假设矩阵 A =
- 3. 假设矩阵 $A = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & -2 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$, 求 A 的广义逆矩阵 A^+ 。
- 4. (15%) 假设矩阵 $A = \begin{pmatrix} 0 & 0 & -1 & 1 \\ 1 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \end{pmatrix}$, 求 A 的广义逆矩阵 A^+ 。

 5. (15%) 假设矩阵 $A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 3 & 6 & 0 & 0 \end{pmatrix}$, 求 A 的广义逆矩阵 A^+ 。
- 6. (15%) 假设矩阵 $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 求A的广义逆矩阵 A^+ 。
- 7. 设 $A \in C^{s \times n}$, r(A) = r。求 AA^+ 的 Jordan 标准形。
- 8. 设 A 是正规阵,证明: $(A^2)^+ = (A^+)^2$ 。