

Report No.: EED32I00289402 Page 1 of 38

TEST REPORT

Product : Harmony

Trade mark : Brand Charger

Model/Type reference: Harmony

Serial Number : N/A

Report Number : EED32I00289402 FCC ID : 2AG5A-BRCHAR Date of Issue : Dec. 07, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

BrandCharger Ltd
Flat H, 7/F, Mai Luen Industrial Building 23 Kung Yip Street
Kwai Chung Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

Tom - chen
Tom chen (Test Project)

Compiled by:

Kevin Ian (Project Engineer)

(1301.13,004)

Dec. 07, 2016

Kevin yang (Reviewer)

Approved by:

Sheek Luo (Lab supervisor)

Check No.: 2457575298

2 Version

Date	Description
Dec. 07, 2016	Original
-	(65)

Page 3 of 38

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample and the sample information are provided by the client.

4 Content

Page 4 of 38

1 COVER PAGE.							
2 VERSION	•••••		•••••		••••••		2
3 TEST SUMMAR	Υ	•••••	•••••	•••••	•••••	•••••	3
4 CONTENT	•••••	•••••	•••••	•••••	•••••		4
5 TEST REQUIRE	MENT	•••••		•••••		•••••	5
5.1.2 For Ra	nducted test diated Emiss nducted Emis ONMENT	setupions test setu ssions test se	ipetup				5 6 6
6 GENERAL INFO	ORMATION		•••••	•••••	•••••	•••••	7
Appendix B) Appendix C) Appendix D) Appendix E) Appendix F)	ESCRIPTION OF PECIFICATION NOF SUPPOR TONTYTYTYTYTYTYTYTYTYTYTROM STANDALTIES FROM STANDALTIES FROM STANDALTIES FROM STANDALTIES FROM STANDALTIES FROM STANDALTIES FROM STANDALTIES TON	F EUT	DITIONSHE CUSTOMER. ONFIDENCE LEV PECIFICATIO NPower Justed Emission Emissions	RD/ELS, K=2)			
				TO SECTION	adiated)		
PHOTOGRAPHS							
PHOTOGRAPHS	OF EUT COI	NSTRUCTIO	NAL DETAILS	S	•••••	•••••	38

Report No. : EED32I00289402 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

Page 6 of 38

5.2 Test Environment

Operating Environment:		
Temperature:	22°C	0
Humidity:	55% RH	
Atmospheric Pressure:	1010 mbar	

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
Test Mode	Tx	Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402MH2 ~2460 MH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of n	nodulation and a	all kind of data	
		4.00		_	

Report No. : EED32I00289402 Page 7 of 38

6 General Information

6.1 Client Information

Applicant:	BrandCharger Ltd
Address of Applicant:	Flat H, 7/F, Mai Luen Industrial Building 23 Kung Yip Street Kwai Chung Hong Kong
Manufacturer:	CCA DESIGNING&MANUFACTURING LIMITED
Address of Manufacturer:	BLD 120-121TH, PINGHUAN IND.CITY PINGSHAN TOWN, SHENZHEN, 518118
Factory:	CCA DESIGNING&MANUFACTURING LIMITED
Address of Factory:	BLD 120-121TH, PINGHUAN IND.CITY PINGSHAN TOWN, SHENZHEN, 518118

6.2 General Description of EUT

A 50. A 51. A			
Product Name:	Harmony		
Model No.(EUT):	Harmony		
Trade Mark:	Charger O		
EUT Supports Radios application:	BT 4.2 Dual mode(2402MHz-2480MHz)		6
Power Supply:	3.7V 2000mAh(Lithium battery)		
USB Line:	62.5(Unshielded)	-05	
Sample Received Date:	Nov. 09, 2016		
Sample tested Date:	Nov. 09, 2016 to Dec. 05, 2016	(6)	

6.3 Product Specification subjective to this standard

Operation I	requency:	2402MI	Hz~2480MHz			\				
Bluetooth \	/ersion:	BT 4.2	Dual mode(24	02MHz-2480	OMHz))	(67)			
Modulation	Technique:	DSSS								
Modulation	Type:	GFSK	GFSK							
Number of	Channel:	40	8	/*>		/*>				
Sample Ty	pe:	Portable	e production	(25)	•)		·)			
Antenna Ty	/pe:	Chip Ar	ntenna	(0)		(0)				
Antenna G	ain:	0.5dBi								
Test Power	r Grade:	NA	NA							
Test Softwa	are of EUT:	(manufa	acturer declare	e) ACTsBTA	PP_Index 7		(41)			
Test Voltag	je:	AC 120	V/60Hz, AC 2	40V/50Hz	0	/				
Operation I	Frequency eacl	n of channe	I							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz			
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz			
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz			
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz			
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz			
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz			

Report No. : EED32I00289402 Page 8 of 38

7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Supplied by
USB Power Adapter	Apple	A1402	CTI

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

Report No. : EED32I00289402 Page 9 of 38

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
01)	Radio Frequency	7.9 x 10 ⁻⁸		
2 RF power conducted		0.31dB (30MHz-1GHz)		
2	RF power, conducted	0.57dB (1GHz-18GHz)		
2	Dadiated Courieus amission test	4.5dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)		
4	Conduction emission	3.6dB (9kHz to 150kHz)		
4	Conduction emission	3.2dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	2.8%		
7	DC power voltages	0.025%		

Page 10 of 38

Report No. : EED32I00289402 **7 Equipment List**

	RF test system									
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017					
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017					
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017					
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017					
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017					
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017					
PC-1	Lenovo	R4960d	(6,1)	04-01-2016	03-31-2017					
power meter & power sensor	R&S	OSP120	101374	04-01-2016	03-31-2017					
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017					
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		04-01-2016	03-31-2017					

Conducted disturbance Test										
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017					
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017					
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017					
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017					
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017					
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017					
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017					

Page 11 of 38

3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019					
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017					
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017					
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018					
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018					
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017					
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017					
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017					
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017					
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017					
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017					
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017					
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017					
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017					
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017					
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017					
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017					
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017					
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017					
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017					
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-12-2016	01-11-2017					
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017					
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017					
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017					

Report No. : EED32l00289402 Page 12 of 38

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32l00289402 Page 13 of 38

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.7443	1.0811	PASS	
BLE	MCH	0.7503	1.0778	PASS	Peak
BLE	HCH	0.7529	1.0830	PASS	detector

Test Graphs

Report No. : EED32l00289402 Page 15 of 38

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-5.642	PASS
BLE	MCH	-3.598	PASS
BLE	НСН	-1.676	PASS

Page 16 of 38

Test Graphs

Report No. : EED32l00289402 Page 17 of 38

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-6.332	-56.722	-26.33	PASS
BLE	HCH	-2.275	-45.419	-22.28	PASS

Test Graphs

Report No. : EED32I00289402 Page 18 of 38

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-6.499	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-4.493	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-2.602	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32I00289402 Page 21 of 38

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE	LCH	-21.236	8	PASS
BLE	MCH	-19.533	8	PASS
BLE	НСН	-17.099	8	PASS

Page 22 of 38

Test Graphs

Report No.: EED32I00289402 Page 23 of 38

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is Chip antenna and no consideration of replacement. The best case gain of the antenna is 0.5dBi.

Report No. : EED32I00289402 Page 24 of 38

Appendix G): AC Power Line Conducted Emission

est Procedure:	T.	est frequency range :150KHz-	-30MHz		
		The mains terminal disturban		onducted in a shield	led room.
	1) The EUT was connected to			
	-/	Stabilization Network) which	•	•	•
		power cables of all other ur			
		which was bonded to the gr			
	(6)	for the unit being measured			
		multiple power cables to a s exceeded.	single Lisix provided ti	ne rating of the List	N Was Hot
	2.)The tabletop EUT was place	od upop a pop motolli	a tabla 0 9m abaya	the ground
	3,	reference plane. And for flo	•		-
		horizontal ground reference	_	on, are 201 mas p	10000 011 010
	4) The test was performed wit		eference plane. The	e rear of the
	'	EUT shall be 0.4 m from the			
		reference plane was bonde			
		1 was placed 0.8 m from the	•		
		ground reference plane for plane. This distance was be			
	(6)	All other units of the EUT at			
		LISN 2.	na acconatea equipir	ione was at loade on	
	5) In order to find the maximum	n emission, the relative	e positions of equip	ment and all
		of the interface cables n	nust be changed a	ccording to ANSI	C63.10 on
		conducted measurement.			
mit:		(6,1)	(C)	(C,)	7
		Frequency range (MHz)	Limit (d	BμV)	
		1 requestey range (Wi12)	Quasi-peak	Average	
	-0-	0.15-0.5	66 to 56*	56 to 46*	_0
	(4)	0.5-5	56	46	
		5-30	60	50	
		The limit decreases linearly v	•		e range 0.15
	N	OTE : The lower limit is applic	cable at the transition	rrequency	
easurement Data					
initial pre-scan w		rmed on the live and neutral li			
i initial pre-scan w uasi-Peak and Ave		rmed on the live and neutral li easurement were performed a			mission were
initial pre-scan w					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
initial pre-scan wuasi-Peak and Ave					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
initial pre-scan wuasi-Peak and Ave					mission were
initial pre-scan wuasi-Peak and Ave					mission were
initial pre-scan wasi-Peak and Av					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
i initial pre-scan w uasi-Peak and Ave					mission were
i initial pre-scan w uasi-Peak and Ave					mission were

Page 25 of 38

		Reading_Level		evel	Correct	N	Measurement		Limit		Margin			
No.	Freq.	(dBuV)			Factor		(dBu∀)		(dBuV)		(dB)			
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	41.24		21.24	9.80	51.04		31.04	65.15	55.15	-14.11	-24.11	Р	
2	0.4380	36.54		13.02	9.90	46.44		22.92	57.10	47.10	-10.66	-24.18	Р	
3	0.6900	36.69		15.39	9.90	46.59		25.29	56.00	46.00	-9.41	-20.71	Р	
4	0.9300	35.86		26.28	9.70	45.56		35.98	56.00	46.00	-10.44	-10.02	Р	
5	1.8780	32.98		20.16	9.96	42.94		30.12	56.00	46.00	-13.06	-15.88	Р	
6	4.6420	33.03		13.97	10.00	43.03		23.97	56.00	46.00	-12.97	-22.03	Р	

Report No. : EED32I00289402 Page 26 of 38

Neutral line: 80.0 dBuV

		Reading_Level		evel	Correct	M	Measurement		Limit		Margin			
No.	Freq.	(0	dBuV)		Factor		(dBu∀)		(dB	u∨)	(0	iB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1700	42.31		27.29	9.80	52.11		37.09	64.96	54.96	-12.85	-17.87	Р	
2	0.4220	40.69		24.20	9.90	50.59		34.10	57.41	47.41	-6.82	-13.31	Р	
3	0.5740	39.13		12.01	9.90	49.03		21.91	56.00	46.00	-6.97	-24.09	Р	
4	1.8540	32.58		22.85	9.96	42.54		32.81	56.00	46.00	-13.46	-13.19	Р	
5	3.2659	32.22		11.56	10.00	42.22		21.56	56.00	46.00	-13.78	-24.44	Р	
6	5.5460	33.90		24.38	10.00	43.90		34.38	60.00	50.00	-16.10	-15.62	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No. : EED32l00289402 Page 27 of 38

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 1	20kHz 3	300kHz	Quasi-peak	
	Ah awa 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	-07
est Procedure:	Below 1GHz test proced a. The EUT was placed at a 3 meter semi-ane determine the position b. The EUT was set 3 m was mounted on the to c. The antenna height is	ure as below: on the top of a rotation camber. The finding of the highest radia eters away from the top of a variable-height	ing table 0 table was ration. interferen ght antenn	.8 meter rotated 3 ce-receivatower.	s above the g 360 degrees to ving antenna,	whic
	determine the maximum polarizations of the and d. For each suspected end the antenna was tuned was turned from 0 degree. The test-receiver system Bandwidth with Maximum f. Place a marker at the frequency to show contained bands. Save the spector lowest and highest	tenna are set to ma mission, the EUT want d to heights from 1 regrees to 360 degree em was set to Peak num Hold Mode. end of the restricted mpliance. Also meastrum analyzer plot. It channel	ke the meas arrangemeter to 4 s to find the Detect Fud band closure any e	asurement of to its value of to its value of the maximum and to the missions	ent. worst case an and the rotata num reading. and Specified ne transmit in the restrice.	d the
	g. Different between about of fully Anechoic Char	ove is the test site, comber change form to	able 0.8 m	eter to 1.		
	18GHz the distance is h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	owest channel , the ements are performend and found the X axis	Highest cled in X, Y, positioning	hannel Z axis p which it	is worse cas	
Limit:	h Test the EUT in the I i. The radiation measure Transmitting mode, ar	owest channel , the ements are performend and found the X axis	Highest cled in X, Y, positioning	hannel Z axis p which it	is worse cas	
imit:	h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced	owest channel , the ements are performent and found the X axis ures until all frequer	Highest cled in X, Y, positioning ncies meas @3m)	hannel Z axis p which it sured wa Rer	is worse cas s complete.	
imit:	h Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency	owest channel , the ements are performent found the X axis ures until all frequer	Highest cled in X, Y, positioning ncies meas @3m)	hannel Z axis p which it sured wa Rer Quasi-pe	is worse cas as complete.	
imit:	h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz	owest channel , the ements are performend found the X axis ures until all frequer Limit (dBµV/m 40.0	Highest cled in X, Y, positioning ncies meas @3m)	hannel Z axis p which it sured wa Rer Quasi-pe	t is worse cas is complete. mark eak Value	
imit:	h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	owest channel , the ements are performent found the X axis sures until all frequer Limit (dBµV/m 40.0 43.5	Highest cled in X, Y, positioning ncies meas	hannel Z axis p which it sured wa Rer Quasi-pe Quasi-pe	t is worse cas is complete. mark eak Value eak Value	
imit:	h. Test the EUT in the I i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	owest channel , the ements are performend found the X axis ures until all frequer Limit (dBµV/m 40.0 43.5 46.0	Highest cled in X, Y, positioning ncies meas	hannel Z axis p which it sured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse cas is complete. mark eak Value eak Value	

Report No.: EED32I00289402 Page 28 of 38

Test plot as follows:

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK(1-DH5)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	GFSK	(1)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Page 29 of 38

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Worse case mode:	GFSK	C°D		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: EED32I00289402 Page 31 of 38

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
$(C_{i,j,j})$	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011=	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

	n		

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	<u> </u>	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	/°5	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 32 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(2))	
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
		,							
1	43.812	14.57	0.88	6.63	22.08	40.00	-17.92	Horizontal	
2	49.707	15.08	1.38	8.66	25.12	40.00	-14.88	Horizontal	
3	65.114	12.00	1.44	7.94	21.38	40.00	-18.62	Horizontal	
4	129.468	10.97	1.58	14.82	27.37	43.50	-16.13	Horizontal	
5	338.400	14.52	2.64	17.56	34.72	46.00	-11.28	Horizontal	
6 рр	684.745	20.37	3.79	12.18	36.34	46.00	-9.66	Horizontal	

Report No. : EED32I00289402 Page 33 of 38

Test mode:	Transmitting	Vertical	· ·
------------	--------------	----------	-----

Freq		Cable Loss				Over Limit	Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			

1 pp	48.843	15.01	1.31	19.99	36.31	40.00 -3.69 Vertical
2	68.151	10.99	1.45	13.52	25.96	40.00 -14.04 Vertical
3	111.347	12.27	1.57	21.47	35.31	43.50 -8.19 Vertical
4	160.909	10.16	1.73	18.76	30.65	43.50 -12.85 Vertical
5	257.422	12.58	2.35	17.42	32.35	46.00 -13.65 Vertical
6	584.790	18.74	3.42	8.09	30.25	46.00 -15.75 Vertical

Report No. : EED32l00289402 Page 34 of 38

Transmitter Emission above 1GHz

Worse case mode:		: GFSK		Test channel:		Lowest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1118.517	30.02	2.42	35.05	44.89	42.28	74.00	-31.72	Pass	*H
1306.407	30.47	2.63	34.85	43.67	41.92	74.00	-32.08	Pass	Н
1680.831	31.20	2.99	34.53	43.48	43.14	74.00	-30.86	Pass	H
4804.000	34.69	5.11	34.35	43.96	49.41	74.00	-24.59	Pass	Н
7206.000	36.42	6.66	34.90	39.04	47.22	74.00	-26.78	Pass	Н
9608.000	37.88	7.73	35.08	38.91	49.44	74.00	-24.56	Pass	Н
1129.964	30.05	2.43	35.04	45.51	42.95	74.00	-31.05	Pass	V
1483.727	30.84	2.81	34.69	43.65	42.61	74.00	-31.39	Pass	V
1998.475	31.70	3.23	34.30	43.20	43.83	74.00	-30.17	Pass	V
4804.000	34.69	5.11	34.35	40.60	46.05	74.00	-27.95	Pass	V
7206.000	36.42	6.66	34.90	38.52	46.70	74.00	-27.30	Pass	V
9608.000	37.88	7.73	35.08	39.11	49.64	74.00	-24.36	Pass	V

Worse case	mode:	GFSK Test channel: Middle Re		Remark: Peak					
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1153.210	30.11	2.46	35.01	44.67	42.23	74.00	-31.77	Pass	Н
1446.435	30.77	2.78	34.72	43.97	42.80	74.00	-31.20	Pass	S H
1943.292	31.62	3.19	34.34	43.19	43.66	74.00	-30.34	Pass	Н
4880.000	34.85	5.08	34.33	43.29	48.89	74.00	-25.11	Pass	Н
7320.000	36.43	6.77	34.90	40.52	48.82	74.00	-25.18	Pass	Н
9760.000	38.05	7.60	35.05	38.88	49.48	74.00	-24.52	Pass	Н
1127.091	30.05	2.43	35.04	44.18	41.62	74.00	-32.38	Pass	V
1495.101	30.86	2.82	34.68	45.00	44.00	74.00	-30.00	Pass	V
2055.225	31.83	3.39	34.31	42.81	43.72	74.00	-30.28	Pass	V
4880.000	34.85	5.08	34.33	41.80	47.40	74.00	-26.60	Pass	V
7320.000	36.43	6.77	34.90	41.40	49.70	74.00	-24.30	Pass	V
9760.000	38.05	7.60	35.05	39.84	50.44	74.00	-23.56	Pass	V

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page	35	of	38
------	----	----	----

Worse case	case mode: GFSK		e mode: GFSK Test channel:			nel:	Highest	Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final Test Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1201.149	30.23	2.52	34.96	44.47	42.26	74.00	-31.74	Pass	. Н	
2013.795	31.73	3.27	34.30	43.97	44.67	74.00	-29.33	Pass	Н	
2218.323	32.19	3.84	34.35	43.33	45.01	74.00	-28.99	Pass	₩.	
4960.000	35.01	5.05	34.31	40.46	46.21	74.00	-27.79	Pass	Н	
7440.000	36.45	6.89	34.90	39.98	48.42	74.00	-25.58	Pass	Н	
9920.000	38.22	7.47	35.02	40.25	50.92	74.00	-23.08	Pass	Н	
1260.670	30.37	2.58	34.90	43.88	41.93	74.00	-32.07	Pass	V	
1495.101	30.86	2.82	34.68	45.58	44.58	74.00	-29.42	Pass	V	
1968.184	31.65	3.21	34.32	43.29	43.83	74.00	-30.17	Pass	V	
4690.000	34.44	5.16	34.39	40.40	45.61	74.00	-28.39	Pass	V	
7440.000	36.44	6.87	34.90	39.33	47.74	74.00	-26.26	Pass	V	
9920.000	38.23	7.46	35.01	38.30	48.98	74.00	-25.02	Pass	V	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32I00289402 Page 36 of 38

PHOTOGRAPHS OF TEST SETUP

Test Model No.: Harmony

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00289402 Page 38 of 38

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00289401 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

