Some useful equations

Voc	Open circuit voltage	$V_{oc} = \frac{nKT}{q} \ln(\frac{I_{sc}}{I_L} + 1)$
$v_{ m oc}$	Normalized open circuit voltage	$v_{oc} = \frac{q}{nKT} VOC$
F	Fill factor	$FF = \frac{v_{oc} - \ln(v_{oc} + 0.72)}{v_{oc} + 1} = \frac{V_{mpp}I_{mpp}}{V_{oc}I_{sc}} = \frac{P_{mpp}}{V_{oc}I_{sc}}$
η	Efficiency	$\eta = \frac{V_{oc}I_{sc}FF}{V_{oc}I_{sc}}$
V_{T}	Thermal voltage	$V_T = \frac{KT}{q} = 0.0259$

Variables

q:electrin charge = 1.602×10^{-19}	K:boltzmann constant= 1.38× 10 ⁻²³
T:temperature [K]	n: diode ideal factor (normal =1)
I _{sc} : short circuit current	I _L : saturation current
AM1.5: Air mass coefficient at	
1000W/m2	