

Def: A se	t G tage	ther u	a binary	operator	0
detine	d on elen	ments of	- G is a	group	î++:
	osure:				
	If 9,,92 C	G then	a 0 q	e G	
	71792		ع کر ال		
	0 131 .				
(S) 70	dentity:	() (_	
	I an ide				
	90e =	9 = 0	°9 Yg	€ G	
31	nverse:				
	For each	qEG, 3	a unique	2 inverse	q'EG
		•			
	5.t. 9	, g = e	= 9 0 9		
(D. A.	10.11.				
(4) <u>A</u>	sociativity		/		/ \
	L+ 9,,92	$c_1, c_2 \in G$, then (g	, ° 9 2) ° 93	= 9, (92.93)
Ex: (R.	+),(Z	, +) a	re group	S	
(")	, u	regular mult	iplication"		
a: Ts	(R, ·)	z arou D			
Δ'		J. 3			
A	· Ye>	Basa	O does	not have	2.12
(3)	. No	Because		VOI VIOCE	CIN
	. Unsure	Widel SE		7	
			0 7 1		

Claim: SO(3) is a group under matrix multiplication Proof: ① For any R, R, E SO(3), is R, R, E € SO(3)? a) $(R,R_z)^T(R,R_z) = R_z^T(R,TR)R_z = R_z^TR_z = I$ Same process works for $(R,R_z)(R,R_z)^T$ b) det (R,R2) = det (R) det (R2) = 1.1 = 1 @ Identity matrix I = [0 0 0] 3) Inverse R-1 = RT by orthogenality (4) Associativity by matrix multiplication Def: A group (G, 0) is abelian if every g, g2 EG commutes under 0, i.e. g, ogz = g20g, Ex: SO(z) is abelian because RESO(z) is uniquely parameterized by a single axis and angle OES': $Z = \begin{bmatrix} \cos(\theta) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$

<u>Ex</u>	:	50	(~)	F	אני	n ?	>2	i	S	Y 0V	·-0	be	انصه	1					
						sho									tat	icn	S		
						wa													
			10	Hei	icu	- (X	e S	a	nd	ar	gle	2S	L	he	re			
						vd													
						Rol							,			١,	\	۲	
Ω	12	epr	ese	$rac{3}{2}$	ng	+ 1	he H	ص ع	nti 	gur	at Coa	icv	(0 	rie m	nte Laf	~+10 -0	>^)	05	
	ارو	elaf	ign ive	7	1000 10	dy a	fi Fi	xec	J.	s fra	me	· .			\				
												•							
						oor"													
						me								ro-1	ati	mg	م		
	Po	ハナ	'	ela	five	te) _C		tiχe	ol .	tra	m E							