C*-Algebra and K-theory

PENGLIN LI

The University of Sheffield Western Bank, Sheffield, S10 2TN pli46@sheffield.ac.uk

May 2022

Abstract

K-the theory is important in non-commutative geometry, and C*-algebra is the main object researched by non-commutative geometry. In this report, we firstly introduce the basic concept, the spectrum of the elements in C^* -algebra, and function calculus on C^* -algebra. In the second part, we discuss unitary elements and projections which are special parts of C*-algebra with special properties and the equivalences defined on them. Finally, we introduce the Grothendieck construction and we define the K_0 group by the Grothendieck construction.

Contents

1	C*-Al	gebra	1
	1.1	Algebra	1
	1.2	Spectrum	3
	1.3	The continuous function calculus for normal elements	4
2	Unita	ry Elements and Projections	4
	2.1	Homotopy Class of Unitary Elements	4
	2.2	Semigroup of Projections	5
3	K_0 -G1	roup	8

1 C*-Algebra

1.1 Algebra

Definition 1.1 (Algebra)

Given a field \mathbb{F} , an algebra \mathcal{A} over \mathbb{F} is a set endowed with the following conditions:

- (linear stucture) A is a vector space over \mathbb{F} .
- (multiplicative structure) A multiplication on $\mathcal{A}: \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ such that,
 - -(xy)z = x(yz) for all $x, y, z \in A$.
 - -x(y+z) = xy + xz and (x+y)z = xz + yz.
 - $-\lambda(xy) = (\lambda x)y = x(\lambda y)$ for all $x, y \in A$, and $\lambda \in \mathbb{F}$.

Remark 1.2

The requirement for being an *algebra* is much stronger than that for a *vector space*, since it has an additional multiplicative structure.

Example 1.3 (Algebras)

- (Group Algebra)
- (Lie Algebra)

Definition 1.4 (C-Algebra)

When the field $\mathbb F$ is the complex number field $\mathbb C$, algebra $\mathcal A$ is called a complex algebra or *C-algebra* $(i.e., \mathbb{F} = \mathbb{C}).$

Definition 1.5 (Normed Algebra)

The algebra A is called a *normed algebra* if

- *A* is a *C*-algebra.
- There is a norm on its associated vector space structure (i.e., A is a normed space), and satisfies

$$||ab|| \le ||a|| \cdot ||b||$$
 for any $a, b \in A$.

Remark 1.6

In another word, there is a norm $\|\cdot\|$ over \mathcal{A} :

$$\mathcal{A} \to \mathbb{R}$$
$$a \mapsto ||a||.$$

Definition 1.7 (Banach Algebra)

A normed algebra A is a *Banach algebra* if it is complete under its norm $\|\cdot\|$.

Remark 1.8

The normed algebra A is complete means, for any Cauchy sequence $\{x_n\}$ in A, we have

$$\{x_n\} \longrightarrow x \in \mathcal{A}$$
 converge in \mathcal{A}

(*i.e.*, $\lim \{x_n\} = x$, its limit, is in A).

Definition 1.9 (*-Algebra)

An algebra A is called a *-algebra if

- \mathcal{A} is a C-algebra.
- (*-structure(conjugate)) A is endowed with a conjugate "*": for any $a, b \in A$, $\alpha \in \mathbb{C}$,

$$-(a+b)^* = a^* + b^*$$

$$-(\alpha a)^* = \overline{\alpha} a^*$$

$$- a^{**} = a$$

$$-(ab)^* = b^*a^*.$$

Remark 1.10 (Adjoint)

For an element $a \in A$, the conjugation $a^* \in A$ is called an adjoint of a.

Definition 1.11 (C^* -Norm)

A norm on a *-algebra A is a C^* -norm if it satisfies

$$||a^*a|| = ||a||^2$$
 for all $a \in \mathcal{A}$.

Definition 1.12 (C^* -Algebra)

The algebra A is called a C^* -algebra if

- A is a *-algebra
- It endow with a C*-norm.
- The algebra A is complete under the C^* -norm.

Remark 1.13

Equivalently A is a C^* -algebra $\iff A$ is a Banach algebra with a *-structure and a C^* -norm.

Next we consider the subalgera of a C^* -algebra.

DEFINITION 1.14

A *-algebra \mathcal{A}' is called a *-subalgebra of a *- algebra \mathcal{A} if it is closed under

- (linear operation) $A \times A \rightarrow A$ by $(a, b) \mapsto a + b$.
- (multiplication) $A \times A \rightarrow A$ by $(a,b) \longmapsto a \cdot b$
- (adjoint) $A \to A$ by $a \mapsto a^*$.
- (scalar multiplication) $\mathbb{C} \times \mathcal{A} \to \mathcal{A}$ by $(\alpha, a) \mapsto \alpha a$.

Definition 1.15

A non-empty subset B of a C^* -algebra A is called a sub- C^* -algebra if B is a sub- C^* -algebra and also a C*-algebra.

(*i.e.*, *B* is a sub-*-algebra and complete under the *-norm on A).

Remark

 $B \subset \mathcal{A}$ is a sub- \mathbb{C}^* -algebra $\iff B$ is closed under algebraic operations and is norm-closed.

1.2 Spectrum

To define the spectrum of elements in C^* -algebra A, we need to introduce the concept and properties of the invertible group of A first.

Definition 1.16 (Invertible group GL(A), as in [3])

 \mathcal{A} is an unital C^* -algebra, an element $a \in \mathcal{A}$ is called invertible if there is an element $b \in \mathcal{A}$ such that $ab = ba = 1_A$. So we define the set of all invertible elements in A by

$$GL(A) = \{a \in A : a \text{ is invertible } \}.$$

Remark 1.17

- The inversion b is unique, since if $ab_1 = ab_2$, then $(ab_1)b_2 = 1 \cdot b_2 = b_2 = b_1(ab_2) = b_1 \cdot 1 = b_1$, $i.e., b_1 = b_2.$
- (Invertible group GL(A))

GL(A) is a group under the multiplication. Since for any elements $a, b \in GL(A)$, we have $a^{-1}, b^{-1} \in \mathcal{A}$, then $(ab) \cdot (b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = 1$. Hence $(ab)^{-1} = b^{-1}a^{-1} \in \mathcal{A}$, i.e., $ab \in GL(\mathcal{A})$. Other conditions for group are obvious.

In addition, if $a \in GL(\mathcal{A})$, then $\alpha a \in GL(\mathcal{A})$ for any $\alpha \in \mathbb{C}$, since $(\alpha a)(\frac{1}{\alpha}a^{-1}) = (\alpha \frac{1}{\alpha})(aa^{-1}) = 1$.

Definition 1.18 (Spectrum, as in [1])

 \mathcal{A} is an unital C^* -algebra, the spectrum of an element $a \in \mathcal{A}$ is the set of complex numbers $\lambda \in \mathbb{C}$ such that $a - \lambda 1_A$ is not invertible in A, *i.e.*,

$$\operatorname{\mathsf{Sp}}(a) = \operatorname{\mathsf{Sp}}_A(a) = \{\lambda \in \mathbb{C} : a - \lambda 1_{\mathcal{A}} \not\in \operatorname{\mathsf{GL}}(A)\}.$$

Remark 1.19

• (Resolution) We define the *resolution* to be the complement of spectrum, *i.e.*,

$$\sigma(a) = {\lambda \in \mathbb{C} : \lambda 1 - a \in GL(A), i.e., invertible}.$$

and the resolution function by $\lambda \in \sigma(a)$ is in resolution (*i.e.*, $\lambda 1 - a \in GL(A)$ is invertible), then

$$R(\lambda) = (\lambda - a)^{-1}.$$

1.3 The continuous function calculus for normal elements

A natural thinking about the C^* algebra is how to define the function calculus for an element in C*-algebra.

Definition 1.20 $(C_0(X))$

 $C_0(X)$ is the C^* -algebra of all continuous functions $f: x \to \mathbb{C}$ which vanishing at infinity. (*i.e.*, for each $\epsilon > 0$, there is a compact subset *K* of *X*, such that $|f(x)| \le \epsilon$ for all $x \in X \setminus K$).

Remark

 $C_0(X)$ is a C^* -algebra since,

- $C_0(X)$ is obviously closed under algebraic operation.
- $f^* = f(x)$
- The norm is defined by $||f|| = \sup\{|f(x)||x \in X\}.$

Remark

C(X) is defined to be the set of all continuous function on X. And if X is compact, we deduce that $C_0(X) = C(X)$.

Definition 1.21 $(C^*(S))$

 \mathcal{A} is a C^* -algebra and S is a subset of \mathcal{A} . Then $C^*(S)$ is defined to be the C^* -subalgebra generated by *S*. (*i.e.*, $C^*(S)$ is the smallest C^* -subalgebra contains subset *S*).

Now we will see the important theorem which can also define the continuous function calculus for normal elements in C^* -algebra.

THEOREM 1.22 (Continuous function calculus)

 \mathcal{A} is an unital C^* -algebra and a is a normal element (i.e., $a \cdot a^* = a^* \cdot a$). Then there is an isometric *-isometric isomorphism such that

$$C^*(a) \xleftarrow{\simeq} C_0(sp(a))$$

$$f(a) \xleftarrow{\text{correspondence}} f$$

$$a \xleftarrow{\text{correspondence}} id$$

The proof an be seen in [3] by using some analytical tools.

By this theorem and the correspondence, we can define the continuous function calculus on normal elements.

2 Unitary Elements and Projections

2.1 Homotopy Class of Unitary Elements

In this part, we shall just consider the unitary elements in an unital C^* -algebra.

DEFINITION 2.1 (Unitary Elements, as in [2])

Let \mathcal{A} be a C^* -algebra, then an element $u \in \mathcal{A}$ is unitary if $u \cdot u^* = u^* \cdot u = 1$.

Remark 2.2

u is unitary $\Longrightarrow ||u|| = ||u^*|| = 1$ (since $||uu^*|| = ||u||^2 = 1$), however $||u|| = 1 \Rightarrow u$ is unitary. This is different of the algebra of complex numbers, which has $|\alpha| = 1 \Longrightarrow \alpha \overline{\alpha} = |\alpha| = 1$.

Definition 2.3 (Unitary Group)

Denote the group of all unitary elements in C^* -algebra A as U(A), *i.e.*,

$$U(A) = \{u \in A : uu^* = 1 = u^*u\}.$$

Remark 2.4

U(A) is a group under the multiplication of the C^* -algebra A, since if $u_1, u_2 \in A$, then

- $(u_1u_2)(u_1u_2)^* = u_1u_2u_2^*u_1^* = 1 \Longrightarrow u_1u_2 \in U(A).$
- $1_{\mathcal{A}} \in U(\mathcal{A})$.
- $\bullet \ (u_1u_2)u_3 = u_1(u_2u_3).$
- there is $u_1^* \in U(A)$ such that $u_1 u_1^* = u_1^* 1 u = 1$, *i.e.*, $u_1^{-1} = u_1^*$.

Hence U(A) is a group under multiplication.

Now we can consider the topological structure on a C^* -algebra, more specifically, on the group of unitary elements.

2.2 Semigroup of Projections

Definition 2.5 (Semigroup of Projections)

Define the semigroup of projections for C^* -algebra matrixes, by

$$\mathcal{P}_{\infty}(\mathcal{A}) = \bigcup_{n=1}^{\infty} \mathcal{P}_{n}(\mathcal{A})$$
 where $\mathcal{P}_{n}(\mathcal{A}) = \mathcal{P}(M_{n}(\mathcal{A}))$

 $(\mathcal{P}(M_n(\mathcal{A})))$ means the set of projections in $M_n(\mathcal{A})$).

Definition 2.6 (Semigroup Operation)

Define the operation \oplus on $\mathcal{P}_{\infty}(\mathcal{A})$ by

$$p \oplus q = \operatorname{diag}(p,q) = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$$

where $p \in \mathcal{P}_m(\mathcal{A}), q \in \mathcal{P}_n(\mathcal{A})$, and $p \oplus q \in M_{m+n}(\mathcal{A})$.

Remark 2.7

 $\mathcal{P}_{\infty}(\mathcal{A})$ is a semigroup under the operation " \oplus ", since

• If
$$p \in \mathcal{P}_m(\alpha)$$
, $q \in \mathcal{P}_n(\mathcal{A})$, then $p \oplus q = \operatorname{diag}(p,q) = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \in \mathcal{P}_{m+n}(\mathcal{A})$, since

$$(p \oplus q)(p \oplus q) = \begin{pmatrix} p^2 & 0 \\ 0 & q^2 \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$$

and
$$\begin{pmatrix} p^* & 0 \\ 0 & q^* \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$$
.

Combination:

$$(p \oplus q) \oplus w = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \oplus w = \begin{pmatrix} p & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & w \end{pmatrix} = p \oplus \begin{pmatrix} q & 0 \\ 0 & w \end{pmatrix} = p \oplus (q \oplus w).$$

Definition 2.8 (\sim_0 Relation)

Define the relation \sim_0 on $\mathcal{P}_{\infty}(\mathcal{A})$ by $p \in \mathcal{P}_m(\mathcal{A})$, $q \in \mathcal{P}_n(\mathcal{A})$, then $p \sim_0 q$ if there is an element $v \in M_{m,n}(\mathcal{A})$ such that

$$p = v^*v$$
 and $q = vv^*$

Remark 2.9

- The $M_{m,n}(\mathcal{A})$,
- vv^* , v^*v are the usual multiplication of matrixes.

Remark 2.10

- " \sim_0 " is a equivalence relation on semigroup $\mathcal{P}_{\infty}(\mathcal{A})$, since
 - (Reflexive) When $p \in \mathcal{P}_n(\mathcal{A}) \subset \mathcal{P}_{\infty}(\mathcal{A})$, then $p^* \in M_n(\mathcal{A})$ and $p^*p = pp^* = p$.
 - (Symmetry) If $p \in \mathcal{P}_n(\mathcal{A})$, $q \in \mathcal{P}_m(\mathcal{A})$, $p \sim_0 q$, i.e., there is a $v \in M_{m,n}(\mathcal{A})$ such that $p = v^*v$, q = vv^* . Then let $a = v^* \in M_{n,m} * (\mathcal{A})$, we have $q = a^*a$, $p = aa^*$, i.e., $q \sim_0 p$.
 - (Translative) If $p \in \mathcal{P}_{n_1}(\mathcal{A}), q \in \mathcal{P}_{n_2}(\mathcal{A}), z \in \mathcal{P}_{n_3}$ and $p \sim_0 q, q \sim_0 z, i.e., p = v^*v, q = vv^* = v^*v$ $w^*w, z = ww^*$. Then let $x = wv \in M_{n_3,n_1}(A)$, we have $p = x^*x, z = xx^*$, i.e., $p \sim_0 z$.
- If $p, q \in \mathcal{P}_n(\mathcal{A}) \subset \mathcal{P}_{\infty}(\mathcal{A})$ for some n, then

$$p \sim_0 q \iff p \sim q$$
 (Murry-von Neumann equivalence)

since if $p \sim_0 q$, there is a $v \in M_n(A)$ such that $v^*v = p$, $vv^* = q$, i.e., $p \sim q$.

• A projection $p \in \mathcal{P}_{\infty}(\mathcal{A})$ means p is a projection in $M_n(\mathcal{A})$, *i.e.*, $p \in \mathcal{P}_n(\mathcal{A})$ for some n.

Proposition 2.11 (\sim_0 under " \oplus ")

Suppose elements p,q,r,p',q' are projections in $\mathcal{P}_{\infty}(\mathcal{A})$, where \mathcal{A} is a \mathcal{C}^* -algebra, then

- $p \sim_0 p \oplus 0_n$, where 0_n is the zero matrix in $M_n(A)$.
- If $p \sim_0 p'$, $q \sim_0 q'$, then we have $p \oplus q \sim_0 p' \oplus q'$.
- $p \oplus q \sim_0 q \oplus p$.
- $p, q \in \mathcal{P}_n(\mathcal{A})$ such that pq = 0, then we have $p + q \in \mathcal{P}_n(\mathcal{A})$ and $p + q \sim_0 p \oplus q$.

Proof.

• Let $p \in \mathcal{P}_m(\mathcal{A})$ and $0_n \in \mathcal{P}_n(\mathcal{A})$ then set $u = \begin{pmatrix} p \\ 0 \end{pmatrix} \in M_{m+n,m}(\mathcal{A})$, then

$$u^*u = \begin{pmatrix} p^* & 0 \end{pmatrix} \begin{pmatrix} p \\ 0 \end{pmatrix} = p^*p = p$$

since $p \in \mathcal{P}_n(\mathcal{A})$ and

$$uu^* = \begin{pmatrix} p \\ 0 \end{pmatrix} \begin{pmatrix} p^* & 0 \end{pmatrix} = \begin{pmatrix} pp^* & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & 0 \end{pmatrix} = p \oplus 0_n.$$

Hence $p \sim_0 p \oplus 0_n$.

• If $p \sim_0 p'$, $q \sim_0 q'$, then there exists v, w such that

$$p = v^*v$$
, $p' = vv^*$, $q = w^*w$, $q' = ww^*$.

Set $u = \operatorname{diag}(v, w) = \begin{pmatrix} v & 0 \\ 0 & w \end{pmatrix}$, then we have

$$u^*u = \begin{pmatrix} v^*v & 0 \\ 0 & ww^* \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} = p \oplus q \quad , \quad uu^* = \begin{pmatrix} vv^* & 0 \\ 0 & ww^* \end{pmatrix} = \begin{pmatrix} p' & 0 \\ 0 & q' \end{pmatrix} = p' \oplus q'.$$

Hence we have $p \oplus q \sim_0 p' \oplus q'$.

• If $p \in \mathcal{P}_n(\mathcal{A})$, $q \in \mathcal{P}_m(\mathcal{A})$, then set $u = \begin{pmatrix} 0_{n,m} & q \\ p & 0_{m,n} \end{pmatrix} \in M_{m+n}(\mathcal{A})$, then we have

$$u^*u = \begin{pmatrix} 0_{m,n} & p^* \\ q^* & 0_{n,m} \end{pmatrix} \begin{pmatrix} 0_{n,m} & q \\ p & 0_{m,n} \end{pmatrix} = \begin{pmatrix} p^*p & 0 \\ 0 & q^*q \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} = p \oplus q$$

, and

$$uu^* = \begin{pmatrix} 0_{n,m} & q \\ p & 0_{m,n} \end{pmatrix} \begin{pmatrix} 0_{m,n} & p^* \\ q^* & 0_{n,m} \end{pmatrix} = \begin{pmatrix} qq^* & 0 \\ 0 & pp^* \end{pmatrix} = \begin{pmatrix} q & 0 \\ 0 & p \end{pmatrix} = q \oplus p.$$

Hence we get $p \oplus q \sim_0 q \oplus p$.

• We first consider a claim which will be used in our proof.

CLAIM 2.12

Projections $p, q \in \mathcal{P}(A)$ is said to be orthogonal and sign $p \perp q$ when pq = 0. Then we have the relation

$$p \perp q \iff p + q \in \mathcal{P}(\mathcal{A}) \iff p + q \leq 1.$$

So if $p, q \in \mathcal{P}_n(\mathcal{A})$ and pq = 0, *i.e.*, $p \perp q$. According to the claim, we have p + q is also a projection, $i.e., p + q \in \mathcal{P}_n \mathcal{A}$. Next we set $u = \begin{pmatrix} p \\ q \end{pmatrix} \in M_{2n,n}(\mathcal{A})$, we can get

$$u^*u = \begin{pmatrix} p^* & q^* \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = p^*p + q^*q = p + q \quad , \quad uu^* = \begin{pmatrix} p \\ q \end{pmatrix} \begin{pmatrix} p^* & q^* \end{pmatrix} = \begin{pmatrix} pp^* & pq^* \\ qp^* & qq^* \end{pmatrix} = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} = p \oplus q.$$

Hence we get $p + q \sim_0 p \oplus q$.

CLAIM 2.13

If $p \in \mathcal{P}(\mathcal{A})$, then $p \in \mathcal{A}^+$.

Proof. Since $p \in \mathcal{P}(\mathcal{A})$ is a projection, and the proposition of spectrum DNF, we have $sp(p)^2 = sp(p^2) = sp(p)$. Hecne for all elements $t \in sp(p) = sp(p)^2$, $t \ge 0$, i.e., $p \ge 0$, i.e., $p \in \mathcal{A}^+$.

Remark 2.14 (The proof of the CLAIM 2.12)

- (1) \Rightarrow (2): $p+q \in \mathcal{P}(\mathcal{A})$ since $(p+q)^2 = p^2 + q^2 + pq + qp = p^2 + q^2 = p+q$, and $(p+q)^* = p^* + q^* = p+q$.
- (2) \Rightarrow (3): $P + q \in \mathcal{P}(\mathcal{A})$, then by Claim 2.13, $p + q \in \mathcal{A}^+$, i.e., $p + q \ge 0$. And $1 (p + q) \in \mathcal{A}^+$ since 1 (p + q) is adjoint and for all $t \in sp(1 (p + q)) = 1 sp(p + q)$, $t \ge 0$, (this is because $r(p + q) = \|p + q\| = 1$ by $p + q \in \mathcal{P}(\mathcal{A})$). Hence we have $1 (p + q) \ge 0$, i.e., $p + q \le 1$.

• (3) \Rightarrow (1): If $p + q \le 1$. then $p(p + q)p = p^3 + pqp = p + pqp \le p^2 = p$. So pqp = p(qp) = 0, we get qp = 0, *i.e.*, $p \perp q$.

Naturally we are condering about the equivalent class for the semigroup of projections under the equivalence \sim_0 .

Definition 2.15 (Semigroup $\mathcal{D}(\mathcal{A})$)

• Consider the semigroup of projections $(\mathcal{P}_{\infty}(\mathcal{A}), \oplus)$ and the equivalence \sim_0 on it, then we can define

$$\mathcal{D}(\mathcal{A}) = \mathcal{P}_{\infty}(\mathcal{A}) / \sim_0,$$

and for each element $p \in \mathcal{P}_{\infty}(\mathcal{A})$, we denote the corresponded equivalet class by $[p]_{\mathcal{D}} \in \mathcal{D}(\mathcal{A})$.

• Then we define the addition "+" on $\mathcal{D}(\mathcal{A})$ by

$$[p]_{\mathcal{D}} + [q]_{\mathcal{D}} = [p \oplus q]_{\mathcal{D}}$$
 where $p, q \in \mathcal{P}_{\infty}(\mathcal{A})$

Remark 2.16

- The addition "+" is well defined on $\mathcal{D}(\mathcal{A})$, since for any $p' \in [p]_{\mathcal{D}}$ and $q' \in [q]_{\mathcal{D}}$ (i.e., $p' \sim_0 p, q' \sim_0 p$ q), by Proposition 2.11 we have $p' \oplus q' \sim_0 p \oplus q$, i.e., $[p']_{\mathcal{D}} + [q']_{\mathcal{D}} = [p]_{\mathcal{D}} + [q]_{\mathcal{D}}$.
- $(\mathcal{D}(\mathcal{A}), +)$ is a Abelian semigroup, since

$$[p]_{\mathcal{D}} + [q]_{\mathcal{D}} = [p \oplus q]_{\mathcal{D}} = [q \oplus p]_{\mathcal{D}} = [q]_{\mathcal{D}} + [p]_{\mathcal{D}},$$

the second equility is because $p \oplus q \sim_0 q \oplus p$ by the property of \sim_0 equivalence. Hence $(\mathcal{D}(\mathcal{A}), +)$ is an Abelian semigroup.

3
$$K_0$$
-Group

This part is based on the construction of Grothendieck which is a way to translate an Abelian semigroup to an Abelian Group. And we wiil use his construction on the Abelian semigroup $\mathcal{D}(\mathcal{A})$ which we have already defined to get the Abelian group K_0 group.

Construction 3.1 (Grothendieck Construction)

The Grothendieck construction is a construction to translate an Abelian semigroup to Abelian group.

Abelian Semigroup
$$\longrightarrow$$
 Abelian Group $S \longrightarrow G(S)$

Consider an Abelian Semigroup (S, +), we first define an equivalence " \sim " on $S \times S$ by

$$(x_1, y_1) \sim (x_2, y_2)$$
 if $x_1 + y_2 + z = x_2 + y_1 + z$ for some $z \in S$

Remark 3.2

The equivalence " \sim " is well defined on $S \times S$ since

- (Reflexive) $(x,y) \sim (y,x)$ since x + y = x + y.
- (Symmetry) If $(x_1, y_1) \sim (x_2, y_2)$, we get $x_1 + y_2 + z = x_2 + y_1 + z$ for some $z \in S$. Then $x_2 + y_1 + z = x_1 + y_2 + z$, i.e., $(x_2, y_2) \sim (x_1, y_1)$.
- (Translative) If $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$, we can get

$$x_1 + y_2 + z_1 = x_2 + y_1 + z_1$$
, $x_2 + y_3 + z_2 = x_3 + y_2 + z_2$ for some $z_1, z_2 \in S$

So we have $x_1 + y_2 + z_1 + y_3 + z_2 = x_2 + y_1 + z_1 + y_3 + z_2 = x_3 + y_2 + z_2 + y_1 + z_1$, i.e.,

$$x_1 + y_3 + (y_2 + z_1 + z_2) = x_3 + y_1 + (y_2 + z_2 + z_1).$$

where $y_2 + z_1 + z_2 \in S$. Hence we get $(x_1, y_1) \sim (x_3, y_3)$.

Definition 3.3 (Grouthendieck Group)

Define the G(S) as the Grothendieck group of S by the quotient,

$$G(S) = (S \times S) / \sim$$
.

Denote $\langle x, y \rangle$ to be the equivalence class in G(S), i.e., $\langle x, y \rangle = \{(p,q) \sim (x,y) : (p,q) \in S \times S\}$. And the group operation "+" on G(S) is defined by

$$\langle x_1,y_1\rangle+\langle x_2,y_2\rangle=\langle x_1+x_2,y_1+y_2\rangle.$$

(Notice that $-\langle x,y\rangle=\langle y,x\rangle$ and $\langle x,x\rangle=0$ for all $x\in G(S)$, this ensure the identity and inverse elemenets in G(S)).

Remark 3.4

• ("+" is well defined) If $(p_1, q_1) \in \langle x_1, y_1 \rangle$ and $(p_2, q_2) \in \langle x_2, y_2 \rangle$, then $p_1 + y_1 + z = x_1 + q_1 + z$, $p_2 + y_2 + w = x_2 + q_2 + w$ for some $z, w \in S$. So we have

$$(p_1 + p_2) + (y_1 + y_2) + (z + w) = (x_1 + x_2) + (q_1 + q_2) + (z + w)$$
 where $z + w \in S$.

Hence $(p_1 + p_2, q_1 + q_2) \sim (x_1 + x_2, y_1 + y_2)$, i.e., $\langle p_1 + p_2, q_1 + q_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$. The "+" is well defined on G(S).

• ((G(S), +) is an Abelian group) We have $\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle = \langle x_2, y_2 \rangle + \langle x_1, y_1 \rangle$, since *S* is Abelian.

Remark 3.5

Becareful, when we consider about such formula

$$\langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle$$
 in $G(S)$,

it means $\langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle = \langle x_1, y_1 \rangle + (-\langle x_2, y_2 \rangle) = \langle x_1, y_1 \rangle + \langle y_2, x_2 \rangle = \langle x_1 + y_2, x_2 + y_1 \rangle$. And since S is a semigroup, an element $x \in S$ may not have the inverse elment -x.

Next there is a map from Abelian semigroup S to its Grothendieck group G(S) like an embedding map, which is named Grothendieck map.

Definition 3.6

The Grothendieck map is defined by

$$\gamma_S : S \longrightarrow G(S)$$

$$x \longmapsto \langle x + y, y \rangle \quad \text{for any } y \in S$$

Remark 3.7

• (The Grothendieck map is well defined) For any $x \in S$ and $y_1, y_2 \in S, y_1 \neq y_2$, consider $\langle x + y_1 \rangle$ and $\langle x+y_2,y_2\rangle$. Then we get $\langle x+y_1,y_2\rangle \sim \langle x+y_2,y_2\rangle$, since $x+y_1+y_2=x+y_2+y_1$, i.e., $\gamma_S(x)$ is independent of the selection of y in S. The Grothendieck map γ_S is well defined.

• (The Grothendieck map is additive) Consider $\gamma_S(x_1 + x_2) = \langle x_1 + x_2 + y, y \rangle$ for any $y \in S$, and $\gamma_S(x_1) + \gamma_S(x_2) = \langle x_1 + y/2, y/2 \rangle + \langle x_2 + y/2, y/2 \rangle = \langle x_1 + x_2 + y, y \rangle = \gamma_S(x_1 + x_2)$. Hence γ_S is an additive map.

Definition 3.8

A semigroup (S, +) has the cancellation property if for $x, y, z \in S$ such that x + z = y + z, we can get x = y.

In Abelian group the cancellation property is also established, and we will see later that when a Abelian semigroup is an "operation closed" subset of a Abelian group, it also has the cancellation property.

Proposition 3.9

1) (Universal property) If $\phi: S \to H$ is an additive map and S is an Abelian semigroup, H is an Abelian group. Then there is an unique group homomorphism $\psi: G(S) \to H$ such that the following diagram commute,

2) (Functoriality) Given an additive map $\varphi: S \to T$, where S and T are both Abelian semigroup. Then there is an unique group homomorphism $G(\varphi)$ induced by φ such that the diagram commute,

$$S \xrightarrow{\varphi} T$$

$$\gamma_{S} \downarrow \qquad \qquad \downarrow \gamma_{T}$$

$$G(S) \xrightarrow{G(\varphi)} G(T)$$

3) The Grothendieck group G(S) can be exactly presented by using Grothendieck map, $G(S) = \{\gamma_S(x) - \gamma_S(y) : x, y \in S\}$, *i.e.*,

$$\langle x, y \rangle = \gamma_S(x) - \gamma_S(y)$$

4) For any $x, y \in S$, then

$$\gamma_S(x) = \gamma_S(y) \iff x + z = y + z \quad \text{for some } z \in S.$$

- 5) The Grothendieck map γ_S is injective if and only if the Abelian semigroup has the cancellation property.
- 6) If (H, +) is an Abelian group, $S \subseteq H$ is a non-empty subset of H and closed under "+". Then (S, +) is an Abelian semigroup with cancellation property. And there is an isomorphism

$$G(S) \simeq H_0 = \{x - y : x, y \in S\}$$

(Where H_0 is the semigroup of H generated by subset S).

Proof. We first consider the basic conclusion 3),

• (Proof of 3)) For any $\langle x, y \rangle \in G(S)$, we have

$$\langle x,y\rangle = \langle x+y,y\rangle - \langle x+y,x\rangle = \gamma_S(x) - \gamma_S(y).$$

(where $\langle x,y\rangle = \langle x+y,y\rangle - \langle x+y,x\rangle$ is because $\langle x+y,y\rangle - \langle x+y,x\rangle = \langle x+y,y\rangle + \langle x,x+y\rangle = \langle (x+y)+x,(x+y)+y\rangle = \langle x+y,x+y\rangle + \langle x,y\rangle = 0 + \langle x,y\rangle = \langle x,y\rangle$)

- (Proof of 4))
 - (\Leftarrow): If x + z = y + z for some $z \in S$, then we have x + y + (x + z) = x + y + (y + z), i.e., (x + y) + x + z = (x + y) + y + z, i.e., $(x + y, y) \sim (x + y, x)$ in $S \times S$, i.e., $\langle x + y, y \rangle = \langle x + y, x \rangle$. Hence $\gamma_S(x) = \gamma_S(y)$.
 - (\Rightarrow): If $\gamma_S(x) = \gamma_S(y)$, *i.e.*, $\langle x+y,y \rangle = \langle x+y,x \rangle$, so we have $(x+y,y) \sim (x+y,x)$, *i.e.*, x+y+x+w = x+y+y+w for some $w \in S$. Then we set z=x+y+w, we get x+z=y+z.
- (Proof of 5))
 - (⇒): Suppose the Grothendieck map γ_S : $S \to G(S)$ is injective, then if x + z = y + z in S, by 4) we have $\gamma_S(x) = \gamma_S(y) \Rightarrow x = y$ (since $\gamma_S(x) = y$) is injective).
 - (\Leftarrow): If *S* has the cancellation property, then by 4) and cancellation property, we have

$$\gamma_S(x) = \gamma_S(y) \Rightarrow x + z = y + z$$
, for some $z \in S \Rightarrow x = y$,

which means the Grothendieck map γ_S is injective.

- (Proof of 1))
 - According to 3), every element in G(S) has the form $\gamma_s(x) \gamma_s(y)$. Then since γ_s is additive, $\gamma_s(x) \gamma_s(y) = \gamma_s(x-y)$, so $\varphi(x-y) = \psi(\gamma_s(x-y))$. However, since φ is additive,

$$\varphi(x-y) = \varphi(x) - \varphi(y) = \psi(\gamma_s(x)) - \psi(\gamma_s(y)) = \psi(\gamma_s(x) - \gamma_s(y)),$$

so ψ is additive. Then for any elements $\gamma_s(x) - \gamma_s(y)$ in G(S), we have

$$\psi(\gamma_s(x) - \gamma_s(y)) = \psi(\gamma_s(x)) - \psi(\gamma_s(y)) = \varphi(x) - \varphi(y).$$

 $(i.e., \psi(\langle x, y \rangle) = \varphi(x) - \varphi(y))$. Hence ψ is unique.

 $-\psi(\langle x,y\rangle) = \varphi(x) - \varphi(y)$ is well-defined, since if $\langle x_1,y_1\rangle = \langle x_2,y_2\rangle$, then $x_1+y_2+z=x_2+y_2+z$ for some $z \in S$. Then we have

$$\varphi(x_1 + y_2 + z) = \varphi(x_1) + \varphi(y_2) + \varphi(z) = \varphi(x_2 + y_1 + z) = \varphi(x_2) + \varphi(y_1) + \varphi(z)$$

in H. Since H is an Abelian group, we can use the cancellation, so $\varphi(x_1) - \varphi(y_1) = \varphi(x_2) - \varphi(y_2)$, *i.e.*, $\psi(\langle x, y \rangle) = \psi(\langle x_2, y_2 \rangle)$, ψ is well-defined.

• (Proof of 2)) According to 1), we can regard the diagram as

$$S \xrightarrow{\gamma_T \circ S} G(T)$$

$$\gamma_s \downarrow \qquad \qquad \qquad G(\varphi)$$

$$G(S)$$

where $\gamma_T \circ S$ is an additive map , (since γ_T , S are both additive). G(T) is an Abelian group, so we can apply 1), and we get a unique group homomorphism $G(\varphi)$.

• A non-empty subset S of Abelian group H which is closed under+ is obviously an Abelian semi-group with cancellation property (since if x + z = y + z, we deduce that x = y in $S \subset H$). Then

consider the diagram

$$S \xrightarrow{\tau} H$$

$$\gamma_s \downarrow \qquad \qquad \psi$$

$$G(S)$$

where H is an Abelian group, τ is the induced map (automatically additive). Hence, according to 1), we have a unique group homomorphism $\psi: G(S) \to H$ such that the diagram commute, *i.e.*, $\psi(r_s(x)) = \tau(x) = x \in H$ for all $x \in S$. And the image of map $\psi: G(S) \to H$ is

$$\operatorname{Im} \psi - \{ \psi(r_s(x) - r_s(y)) = \psi(\gamma_s(x)) - \psi(\gamma_s(y)) = x - y | x, y \in S \},$$

by 3). Thus, $\operatorname{Im} \psi = H_0$ and if $\psi(\gamma_s(x) - \gamma_s(y)) = 0$, we deduce that x = y, *i.e.*, $\langle x, y \rangle = 0$. Hence ψ is injective, $\psi: G(S) \to H_0 = \{x - y | x, y \in S\}$ is an isomorphism.

Example 3.10

The Grothendieck group of $(\mathbb{Z}^+,+)$ is $(\mathbb{Z},+)$, *i.e.*, $G(\mathbb{Z}^+)=\mathbb{Z}$.

Since $(\mathbb{Z}^+,+)$ is an Abelian semigroup and $(\mathbb{Z},+)$ is an Abelian group, so $G(\mathbb{Z}^+) \simeq H_0 = \{x-y|x,y \in \mathbb{Z}^+\}$ \mathbb{Z}^+ }. And $H_0 = \mathbb{Z}$ since $H_0 \subset \mathbb{Z}$ and for any $z \in \mathbb{Z}$, if z > 0, then $z = z \in \mathbb{Z}^+$ and if z < 0, then $z = 0 - z \in H_0.$

Now we can given the definition about the K_0 group by using Grothendieck's construction.

Definition 3.11 (The K_0 -group for a unital C^* -algebra)

Let \mathcal{A} be a C^* -algebra, and let $(\mathcal{D}(\mathcal{A}), +)$ be the semigroup by $\mathcal{D}(\mathcal{A}) = \mathcal{P}_{\infty}(\mathcal{A}) / \sim_0$. Then $K_0(\mathcal{A})$ is defined to be the Grothendieck group of $\mathcal{D}(A)$, *i.e.*,

$$K_0(\mathcal{A}) = G(\mathcal{D}(\mathcal{A})).$$

Remark

We have the map $[\cdot]_0 : \mathcal{P}_{\infty}(\mathcal{A}) \to K_0(\mathcal{A})$ and in particular,

$$[\cdot]_0: \mathcal{P}_{\infty}(\mathcal{A}) \longrightarrow \mathcal{D}(\mathcal{A}) \longrightarrow K_0(\mathcal{A})$$

$$p \longmapsto [p]_{\mathcal{D}} \longmapsto \gamma([p]_{\mathcal{D}})$$

by $[p]_0 = \gamma([p]_D)$ where γ is the Grothendieck map.

References

- [1] William Arveson. *An invitation to C*-algebras*. eng. Graduate texts in mathematics ; 39. New York: Springer-Verlag, 1976. ISBN: 0387901760.
- [2] F Larsen. An introduction to K-theory for C*-algebras. eng. London Mathematical Society student texts; 49. Cambridge: Cambridge University Press, 2000. ISBN: 0521783348.
- Huaxin Lin. An introduction to the classification of amenable C*-algebras [electronic resource]. eng. Singapore; River Edge, NJ: World Scientific, 2001. ISBN: 1-281-95143-9.