Scilab Textbook Companion for Principles Of Linear Systems And Signals by B. P. Lathi¹

Created by
A. Lasya Priya
B.Tech (pursuing)
Electrical Engineering
NIT, Surathkal
College Teacher
H. Girisha Navada, NIT Surathkal
Cross-Checked by
S.M. Giridharan, IIT Bombay

August 11, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Principles Of Linear Systems And Signals

Author: B. P. Lathi

Publisher: Oxford University Press

Edition: 2

Year: 2009

ISBN: 0-19-806227-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	signals and systems	10
2	time domain analysis of continuous time systems	26
3	time domain analysis of discrete time systems	42
4	continuous time system analysis	60
5	discrete time system analysis using the z transform	78
6	continuous time signal analysis the fourier series	89
7	continuous time signal analysis the fourier transform	97
8	Sampling The bridge from continuous to discrete	111
9	fourier analysis of discrete time signals	117
10	state space analysis	134

List of Scilab Codes

Exa 1.2	power and rms value	10
Exa 1.3	time shifting	11
Exa 1.4	time scaling	14
Exa 1.5	time reversal	15
Exa 1.6	basic signal models	17
Exa 1.7	describing a signal in a single expression	21
Exa 1.8	even and odd components of a signal	22
Exa 1.10	input output equation	23
Exa 2.5	unit impulse response for an LTIC system	26
Exa 2.6	zero state response	29
Exa 2.7	graphical convolution	32
Exa 2.8	graphical convolution	33
Exa 2.9	graphical convolution	38
Exa 3.1	energy and power of a signal	42
Exa 3.8	iterative solution	44
Exa 3.9	iterative solution	45
Exa 3.10	total response with given initial conditions	46
Exa 3.11	iterative determination of unit impulse response	50
Exa 3.13	convolution of discrete signals	50
Exa 3.14	convolution of discrete signals	52
Exa 3.16	sliding tape method of convolution	53
Exa 3.17	total response with given initial conditions	54
Exa 3.18	total response with given initial conditions	55
Exa 3.19	forced response	56
Exa 3.20	forced response	59
Exa 4.1	laplace transform of exponential signal	60
Exa 4.2	laplace transform of given fsignal	60
Eva 4 3 a	laplace transform in case of different roots	62

Exa 4.3.b	laplace transform in case of similar roots	62
Exa 4.3.c	laplace transform in case of imaginary roots	63
Exa 4.4	laplace transform of a given signal	63
Exa 4.5	inverse laplace transform	64
Exa 4.8	time convolution property	64
Exa 4.9	initial and final value	65
Exa 4.10	second order linear differential equation	65
Exa 4.11	solution to ode using laplace transform	66
Exa 4.12	response to LTIC system	66
Exa 4.15	loop current in a given network	67
Exa 4.16	loop current in a given network	67
Exa 4.17	voltage and current of a given network	67
Exa 4.23	frequency response of a given system	68
Exa 4.24	frequency response of a given system	69
Exa 4.25	bode plots for given transfer function	69
Exa 4.26	bode plots for given transfer function	69
Exa 4.27	second order notch filter to suppress 60Hz hum	74
Exa 4.28	bilateral inverse transform	75
Exa 4.29	current for a given RC network	76
Exa 4.30	response of a noncausal sytem	76
Exa 4.31	response of a fn with given tf	77
Exa 5.1	z transform of a given signal	78
Exa 5.2	z transform of a given signal	78
Exa 5.3.a	z transform of a given signal with different roots	80
Exa 5.3.c	z transform of a given signal with imaginary roots	81
Exa 5.5	solution to differential equation	82
Exa 5.6	response of an LTID system using difference eq	82
Exa 5.10	response of an LTID system using difference eq	83
Exa 5.12	maximum sampling timeinterval	84
Exa 5.13	discrete time amplifier highest frequency	84
Exa 5.17	bilateral z transfrom	84
Exa 5.18	bilateral inverse z transform	85
Exa 5.19	transfer function for a causal system	86
Exa 5.20	zero state response for a given input	87
Exa 6.1	fourier coefficients of a periodic sequence	89
Exa 6.2	fourier coefficients of a periodic sequence	90
Exa 6.3	fourier spectra of a signal	91
Exa. 6.5	exponential fourier series	92

Exa	6.7	exponential fourier series for the impulse train 94
Exa	6.9	exponential fourier series to find the output 95
Exa	7.1	fourier transform of exponential function
Exa	7.4	inverse fourier transform
Exa	7.5	inverse fourier transform
Exa	7.6	fourier transform for everlasting sinusoid 102
Exa	7.7	fourier transform of a periodic signal 104
Exa	7.8	fourier transform of a unit impulse train 105
Exa	7.9	fourier transform of unit step function 107
Exa	7.12	fourier transform of exponential function 109
Exa	8.8	discrete fourier transform
Exa	8.9	discrete fourier transform
Exa	8.10	frequency response of a low pass filter
Exa	9.1	discrete time fourier series
Exa	9.2	DTFT for periodic sampled gate function 118
Exa	9.3	discrete time fourier series
Exa	9.4	discrete time fourier series
Exa	9.5	DTFT for rectangular pulse
Exa	9.6	DTFT for rectangular pulse spectrum 127
Exa	9.9	DTFT of sinc function
Exa	9.10.a	sketching the spectrum for a modulated signal 131
Exa	9.13	frequency response of LTID
Exa	10.4	state space descrption by transfer function 134
Exa	10.5	finding the state vector
Exa	10.6	state space descrption by transfer function 135
Exa	10.7	time domain method
Exa	10.8	state space descrption by transfer function 136
Exa	10.9	state equations of a given systems
Exa	10.10	diagonalized form of state equation
Exa	10.11	controllability and observability
Exa	10.12	state space description of a given description 138
Exa	10.13	total response using z transform

List of Figures

1.1	time shifting	12
1.2	time shifting	13
1.3	time scaling	15
1.4	time scaling	16
1.5	time reversal	18
1.6	time reversal	19
1.7	basic signal models	20
1.8	describing a signal in a single expression	21
1.9	even and odd components of a signal	23
1.10	even and odd components of a signal	24
2.1	unit impulse response for an LTIC system	27
2.2	unit impulse response for an LTIC system	28
2.3	zero state response	30
2.4	zero state response	31
2.5	graphical convolution	34
2.6	graphical convolution	35
2.7	graphical convolution	36
2.8	graphical convolution	37
2.9	graphical convolution	39
2.10	graphical convolution	40
3.1	energy and power of a signal	43
3.2	iterative solution	44
3.3	iterative solution	45
3.4	total response with given initial conditions	47
3.5	total response with given initial conditions	48
3.6	iterative determination of unit impulse response	49
3.7	convolution of discrete signals	51

3.8	convolution of discrete signals	52
3.9	sliding tape method of convolution	53
3.10	total response with given initial conditions	54
3.11	total response with given initial conditions	55
3.12	forced response	57
3.13	forced response	58
4.1	laplace transform of exponential signal	61
4.2	frequency response of a given system	68
4.3	frequency response of a given system	70
4.4	frequency response of a given system	71
4.5	bode plots for given transfer function	72
4.6	bode plots for given transfer function	73
4.7	second order notch filter to suppress 60Hz hum	74
5.1	z transform of a given signal	79
5.2	response of an LTID system using difference eq	83
6.1	fourier coefficients of a periodic sequence	90
6.2	fourier coefficients of a periodic sequence	91
6.3	exponential fourier series	93
6.4	exponential fourier series for the impulse train	94
6.5	exponential fourier series to find the output	96
7.1	fourier transform of exponential function	98
7.2	inverse fourier transform	100
7.3	fourier transform for everlasting sinusoid	103
7.4	fourier transform of a periodic signal	104
7.5	fourier transform of a unit impulse train	106
7.6	fourier transform of unit step function	108
7.7	fourier transform of exponential function	109
8.1	discrete fourier transform	112
8.2	discrete fourier transform	113
8.3	frequency response of a low pass filter	115
9.1	discrete time fourier series	118
9.2	DTFT for periodic sampled gate function	119
9.3	discrete time fourier series	120

9.4	discrete time fourier series	123
9.5	discrete time fourier series	124
9.6	DTFT for rectangular pulse	126
9.7	DTFT for rectangular pulse spectrum	128
	DTFT of sinc function	
9.9	sketching the spectrum for a modulated signal	131

Chapter 1

signals and systems

Scilab code Exa 1.2 power and rms value

```
1 //signals and systems
2 //power and rms value of a signal
3 clear all
4 close
5 clc
6 //part a is a periodic function with period 2*pi/w0
8 disp("consider the power for almost infinite range")
9 disp('part (a)')
10 disp("integrating ((c*cos(w0*t + theta))^2) for this
     big range gives c^2/2 as the power which is
     irrespective of w0");
11 disp("rms value is the square root of power and
     therefore equal to sqrt(c^2/2)\n\n");
12 //part b is the sum of 2 sinusoids
13 disp('part (b)')
14 disp("again integrating in the same way and ignoring
      the zero terms we get (c1^2+c2^2)/2");
15 //part c deals with a complex signal
16 disp('part (c)')
```

17 disp("integrating the expression we get $|D|^2$ as the power and |D| as the rms value");

Scilab code Exa 1.3 time shifting

```
1 //signals and systems
2 //time shifting
3 clear all
4 close
5 clc
6 t = [-4:0.001:4];
7 a = gca();
8 \text{ plot}(t,(\exp(-2*t)).*(t>0))
9 a.thickness=2;
10 a.y_location="middle";
11 xtitle=('the signal x(t)')
12 //delaying the function by 1 second we obtain
13 figure
14 a=gca();
15 plot(t,(exp(-2*(t-1))).*((t>1)))
16 a.thickness=2;
17 a.y_location="middle";
18 title=('the signal x(t-1)')
19 //advancing the function by 1 second we obtain
20 figure
21 a=gca();
22 \text{ plot}(t,(\exp(-2*(t+1))).*(t>-1))
23 a.thickness=2;
24 a.y_location="middle";
25 xtitle=('the signal x(t+1)')
```


Figure 1.1: time shifting

Figure 1.2: time shifting

Scilab code Exa 1.4 time scaling

```
1 //signals and systems
2 //time scaling
3 clear all
4 close
5 clc
6 t = [-4:0.1:6];
7 a=gca();
8 plot(t,2.*((t>-1.5)&(t<=0))+2*\exp(-t/2).*((t>0)&(t
      <=3)));
9 figure
10 a.thickness=2;
11 a.y_location="middle";
12 xtitle=('the signal x(t)');
13 //compressing this graph by a factor 3
14 a=gca();
15 plot(t,2.*((t>-0.5)&(t<=0))+2*exp(-3*t/2).*((t>0)&(t=0))
     <=1)));
16 figure
17 a.thickness=2;
18 a.y_location="middle";
19 xtitle=('the signal x(3t)');
20 //expanding this signal by a factor 2
21 a=gca();
22 \text{ plot}(t, 2.*((t>-3)&(t<=0))+2*\exp(-t/4).*((t>0)&(t<=6))
     ));
23 a.thickness=2;
24 a.y_location="middle";
25 xtitle=('the signal x(t/2)');
26 //the coordinates can be easily obtained from the
     graphs
```


Figure 1.3: time scaling

Scilab code Exa 1.5 time reversal

```
1 //signals and systems
2 //time reversal
3 clear all
4 close
5 clc
6 t=[-6:0.1:6];
```


Figure 1.4: time scaling

```
7 a=gca();
8 plot(t,exp(t/2).*((t>=-5)&(t<=-1)));
9 figure
10 a.thickness=2;
11 a.y_location="middle";
12 xtitle=('the signal x(t)')
13 //by replacing t by -t we get
14 a=gca();
15 plot(t,exp(-t/2).*((t>=1)&(t<5)));
16 a.thickness=2;
17 a.y_location="middle";
18 xtitle=('the signal x(-t)')
19 //the coordinates can be easily observed from the graphs</pre>
```

Scilab code Exa 1.6 basic signal models

```
//signals and systems
//representation of a signal
clear all
close
clc
t=[0:0.1:5];
a=gca();
plot(t,t.*((t>=0)&(t<=2)) - 2*(t-3).*((t>2)&(t<=3)));
a.thickness=2;
a.y_location="middle";
xtitle=('the signal x(t)')</pre>
```


Figure 1.5: time reversal

Figure 1.6: time reversal

Figure 1.7: basic signal models

Figure 1.8: describing a signal in a single expression

```
12 //this can be written as a combination of 2 lines 13 disp("x(t)=x1(t)+x2(t)= tu(t)-3(t-2)u(t-2)+2(t-3)u(t-3)");
```

Scilab code Exa 1.7 describing a signal in a single expression

```
1 //signals and systems
2 //representation of a signal
3 clear all
4 close
5 clc
```

```
6 t=[-2:0.1:5];
7 a=gca();
8 plot(t,2.*((t>=-1.5)&(t<0))+2*exp(-t/2).*((t>=0)&(t <3)));
9 a.thickness=2;
10 a.y_location="middle";
11 xtitle=('the signal x(t-1)')
12 //this is a cobination of a constant function and an exponential function
13 disp("x(t)=x1(t)+x2(t)= 2u(t+1.5)-2(1-exp(-t/2))u(t) -2exp(-t/2)u(t-3)");</pre>
```

Scilab code Exa 1.8 even and odd components of a signal

```
1 //signals and systems
2 //odd and even components
3 clear all
4 close
5 clc
6 t = 0:1/100:5;
7 x = \exp(\%i.*t);
8 y = \exp(-\%i.*t);
9 even=x./2+y./2;
10 odd=x./2-y./2;
11 figure
12 a=gca();
13 plot2d(t, even)
14 a.x_location='origin'
15 xtitle=('even')
16 figure
17 a=gca();
18 plot2d(t,odd./%i)
19 a.x_location='origin'
20 xtitle=('odd')
```


Figure 1.9: even and odd components of a signal

Scilab code Exa 1.10 input output equation

Figure 1.10: even and odd components of a signal $\,$

```
9 //let the loop current be i(t)
10 //let capacitor voltage be y(t)
11 disp("the loop equation 4 the circuit is given by r*
    i(t)+(5/D)*i(t)=x(t)")
12 disp("final form - (3D+1)y(t)=x(t)")
13 //the next few problems are of the same type where
    we have to frame the equation based on the
    scenario
```

Chapter 2

time domain analysis of continuous time systems

Scilab code Exa 2.5 unit impulse response for an LTIC system

```
1 //time domain analysis of continuous time systems
2 //Convolution Integral of input x(t) = (e^-t).u(t)
      and g(t) = (e^{-2}t)u(t)
3 clear all;
4 close;
5 clc;
6 Max_Limit = 10;
7 t = 0:0.001:10;
8 for i=1:length(t)
        g(i) = (exp(-2*t(i)));
9
10 \text{ end}
11 x = \exp(-(t));
12
13 y = convol(x,g)
14 figure
```


Figure 2.1: unit impulse response for an LTIC system

Figure 2.2: unit impulse response for an LTIC system

```
15     a = gca();
16     plot2d(t,g)
17     xtitle('Impulse Response','t','h(t)');
18     a.thickness = 2;
19     figure
20     a = gca();
21     plot2d(t,x)
22     xtitle('Input Response','t','x(t)');
23     a.thickness = 2;
24     figure
25     a = gca();
26     T = 0:0.001:20;
27     plot2d(T,y)
28     xtitle('Output Response','t','y(t)');
29     a.thickness = 2;
```

Scilab code Exa 2.6 zero state response

```
1 //time domain analysis of continuous time systems
2 //Convolution Integral of input x(t) = (e^-3t).u(t)
        and h(t) = (2*e^-2*t-e^-t)u(t)
3 clear;
4 close;
5 clc;
6 Max_Limit = 10;
7 t = 0:0.001:10;
8 for i=1:length(t)
9        g(i) = (2*exp(-2*t(i))-exp(-t(i)));
10 end
11        x= exp(-3*(t));
12
```


Figure 2.3: zero state response

Figure 2.4: zero state response

```
13 y = convol(x,g)
14 figure
15 a=gca();
16 plot2d(t,g)
17 xtitle('Impulse Response', 't', 'h(t)');
18 a.thickness = 2;
19 figure
20 a=gca();
21 plot2d(t,x)
22 xtitle('Input Response', 't', 'x(t)');
23 a.thickness = 2;
24 figure
25 \quad a=gca();
26 \quad T = 0:0.001:20;
27 plot2d(T,y)
28 xtitle('Output Response', 't', 'y(t)');
29 a.thickness = 2;
```

Scilab code Exa 2.7 graphical convolution

```
1 //time domain analysis of continuous time systems
2 //Convolution Integral of input x(t) = (e^-t).u(t)
     and g(t) = u(t)
3 clear all;
4 close;
5 clc;
6 Max_Limit = 10;
7 t = -10:0.001:10;
8 for i=1:length(t)
9
          g(i) = exp(-t(i));
10
          x(i) = exp(-2*t(i));
11
12 end
13
14 y = convol(x,g)
```

```
15 figure
16 a=gca();
17 plot2d(t,g)
18 xtitle('Impulse Response', 't', 'h(t)');
19 a.thickness = 2;
20 figure
21 a=gca();
22 plot2d(t,x)
23 xtitle('Input Response', 't', 'x(t)');
24 a.thickness = 2;
25 figure
26 a=gca();
27 T = -20:0.001:20;
28 \text{ plot2d}(T,y)
29 xtitle('Output Response', 't', 'y(t)');
30 a.thickness = 2;
```

Scilab code Exa 2.8 graphical convolution

```
1 //time domain analysis of continuous time systems
2 //Convolution Integral of input x(t) = (e^-t).u(t)
        and g(t) =u(t)
3 clear all;
4 close;
5 clc;
6 Max_Limit = 10;
7 t = -10:0.001:10;
```


Figure 2.5: graphical convolution

Figure 2.6: graphical convolution

Figure 2.7: graphical convolution

Figure 2.8: graphical convolution

```
8 for i=1:length(t)
        if t(i)<0 then
           g(i) = -2 * exp(2 * t(i));
10
           x(i)=0;
11
12
        else
13
            g(i) = 2*exp(-t(i));
14
            x(i)=1;
15
        end
16 end
17
18 y = convol(x,g)
19 figure
20 a=gca();
21 plot2d(t,g)
22 xtitle('Impulse Response', 't', 'h(t)');
23 a.thickness = 2;
24 figure
25 \quad a = gca();
26 \text{ plot2d(t,x)}
27 xtitle('Input Response', 't', 'x(t)');
28 a.thickness = 2;
29 figure
30 \ a = gca();
31 T = -20:0.001:20;
32 \text{ plot2d}(T,y)
33 xtitle('Output Response', 't', 'y(t)');
34 a.thickness = 2;
```

Scilab code Exa 2.9 graphical convolution

1 //time domain analysis of continuous time systems

Figure 2.9: graphical convolution

Figure 2.10: graphical convolution

```
2 //Convolution Integral of input x(t) = (e^-t).u(t)
      and g(t) = u(t)
3 clear all;
4 close;
5 clc;
6 \text{ Max\_Limit} = 10;
7 t = linspace (-1,1,10001);
8 for i=1:length(t)
9
       g(i)=1;
10 \text{ end}
11 t1=linspace(0,3,10001);
12 for i=1:length(t1)
13 x(i) = t1(i)/3;
14 end
15 y = convol(x,g);
16 figure
17 a=gca();
18 size(t)
19 size(g)
20 plot2d(t,g)
21 xtitle('Impulse Response', 't', 'h(t)');
22 a.thickness = 2;
23 figure
24 \ a = gca();
25 \text{ size}(x)
26 plot2d(t1,x)
27 xtitle('Input Response', 't', 'x(t)');
28 a.thickness = 2;
29 figure
30 a=gca();
31 T=linspace(-1,4,20001);
32 \text{ size}(y)
33 \text{ plot2d}(T,y)
34 xtitle('Output Response', 't', 'y(t)');
35 a.thickness = 2;
```

Chapter 3

time domain analysis of discrete time systems

Scilab code Exa 3.1 energy and power of a signal

```
//signals and systems
//time domain analysis of discreet time systems
//energy of a signal
clear all;
close;
close;
clc;
n=0:1:5
figure
a=gca();
plot2d(n,n);
energy=sum(n^2)
power=(1/6)*sum(n^2)
disp(energy)
disp(power)
```


Figure 3.1: energy and power of a signal

Figure 3.2: iterative solution

Scilab code Exa 3.8 iterative solution

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //iterative solution
4 clear all;
5 close;
6 clc;
7 n=(-1:10)';
8 y=[16;0;zeros(length(n)-2,1)];
9 x=[0;0;n(3:length(n))];
10 for k=1:length(n)-1
11     y(k+1)=0.5*y(k)+x(k+1);
12 end;
13 clf;
```


Figure 3.3: iterative solution

```
14 size(y)
15 size(n)
16 plot2d3(n,y);
17 plot(n,y,'r.')
18 disp([msprintf([n,y])]);
```

Scilab code Exa 3.9 iterative solution

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //iterative solution
4 clear all;
5 close;
6 clc;
```

Scilab code Exa 3.10 total response with given initial conditions

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //total response with initial conditions
4 clear all;
5 close;
6 clc;
7 n = (-2:10);
8 y = [25/4; 0; zeros(length(n)-2,1)];
9 x = [0;0;4^-n(3:length(n))];
10 for k=1:length(n)-2
       y(k+2) = 0.6*y(k+1) + 0.16*y(k) + 5*x(k+2);
11
12 \text{ end};
13 clf;
14 a=gca();
15 plot2d3(n,y);
16
17 y1 = [25/4; 0; zeros(length(n)-2,1)];
18 x = [0;0;4^-n(3:length(n))];
19 for k=1:length(n)-2
       y1(k+2) = -6*y1(k+1) - 9*y1(k) + 2*x(k+2) + 6*x(k+1);
20
21 end
22 figure
23 a=gca();
```


Figure 3.4: total response with given initial conditions

Figure 3.5: total response with given initial conditions

Figure 3.6: iterative determination of unit impulse response

Scilab code Exa 3.11 iterative determination of unit impulse response

```
//signals and systems
//time domain analysis of discreet time systems
//impulse response with initial conditions
clear all;
close;
close;
clc;
n=(0:19);
x=[1 zeros(1,length(n)-1)];
a=[1 -0.6 -0.16];
b=[5 0 0];
h=filter(b,a,x);
clf;
plot2d3(n,h); xlabel('n'); ylabel('h[n]');
```

Scilab code Exa 3.13 convolution of discrete signals

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution
4 clear all;
5 close;
6 clc;
7 n=(0:19);
8 x=0.8^n;
9 g=0.3^n;
10 n1=(0:1:length(x)+length(g)-2);
11 c=convol(x,g);
12 plot2d3(n1,c);
```


Figure 3.7: convolution of discrete signals

Figure 3.8: convolution of discrete signals

Scilab code Exa 3.14 convolution of discrete signals

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution
4 clear all;
5 close;
6 clc;
7 n=(0:14);
8 x=4^-n;
9 a=[1 -0.6 -0.16];
10 b=[5 0 0];
11 y=filter(b,a,x);
```


Figure 3.9: sliding tape method of convolution

```
12 clf;
13 plot2d3(n,y); xlabel('n'); ylabel('y[n]');
```

Scilab code Exa 3.16 sliding tape method of convolution

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution by sliding tape method
4 clear all;
5 close;
6 clc;
7 x=[-2 -1 0 1 2 3 4];
8 g=[1 1 1 1 1 1 1];
9 n=(0:1:length(x)+length(g)-2);
```


Figure 3.10: total response with given initial conditions

```
10  c=convol(x,g);
11  clf;
12  plot2d3(n,c);  xlabel('n');  ylabel('c[n]');
```

Scilab code Exa 3.17 total response with given initial conditions

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution by sliding tape method
4 clear all;
5 close;
6 clc;
7 n=(0:10)';
8 y=[4;13; zeros(length(n)-2,1)];
```


Figure 3.11: total response with given initial conditions

Scilab code Exa 3.18 total response with given initial conditions

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution by sliding tape method
```

```
4 clear all;
5 close;
6 clc;
7 n=(0:10)';
8 y=[0;zeros(length(n)-1,1)];
9 x=(n+1)^2;
10 for k=1:length(n)-1
11         y(k+1)=y(k)+x(k);
12 end;
13 clf;
14 a=gca();
15 plot2d3(n,y);xtitle('sum','n')
16 plot(n,y,'b.')
```

Scilab code Exa 3.19 forced response

```
1 //signals and systems
2 //time domain analysis of discreet time systems
3 //convolution by sliding tape method
4 clear all;
5 close;
6 clc;
7 n=(0:14);
8 x=3^n;
9 a=[1 -3 2];
10 b=[0 1 2];
11 y=filter(b,a,x);
12 clf;
13 plot2d3(n,y); xlabel('n'); ylabel('y[n]');
```


Figure 3.12: forced response

Figure 3.13: forced response

Scilab code Exa 3.20 forced response

```
//signals and systems
//time domain analysis of discreet time systems
//convolution by sliding tape method
clear all;
close;
close;
clc;
pi=3.14;
n=(0:14);
x=cos(2*n+pi/3);
a=[1 -1 0.16];
b=[0 1 0.32];
y=filter(b,a,x);
clf;
plot2d3(n,y); xlabel('n'); ylabel('y[n]');
```

Chapter 4

continuous time system analysis

Scilab code Exa 4.1 laplace transform of exponential signal

Scilab code Exa 4.2 laplace transform of given fsignal

```
1 //signals and systems
2 //(a) laplace transform x(t) = del(t)
3 syms t s;
```


Figure 4.1: laplace transform of exponential signal $\,$

```
4
5  y =laplace('0',t,s)
6  disp(y)
7  //(b) Laplace Transform x(t) = u(t)
8
9  y1 =laplace('1',t,s);
10  disp(y1)
11  //(c) laplace transform x(t) = cos(w0*t)u(t)
12
13  y2 =laplace('cos(w0*t)',t,s);
14  disp(y2)
```

Scilab code Exa 4.3.a laplace transform in case of different roots

```
1 //signals and systems
2 //Inverse Lapalce Transform
3 //(a) X(S) = (7s-6)/s^2-s-6 Re(s)>-1
4 s = %s;
5 syms t;
6 [A] = pfss((7*s-6)/((s^2-s-6))); // partial fraction of F(s)
7 F1 = ilaplace(A(1),s,t)
8 F2 = ilaplace(A(2),s,t)
9 //F3 = ilaplace(A(3),s,t)
10 F = F1+F2;
11 disp(F, "f(t)=")
```

Scilab code Exa 4.3.b laplace transform in case of similar roots

Scilab code Exa 4.3.c laplace transform in case of imaginary roots

```
1 //example4.3
2 //(c) X(S) = 6(s+34)/s(s^2+10*s+34) Re(s)>-1
3 s = %s;
4 syms t;
5 [A] = pfss((6*(s+34))/(s*(s^2+10*s+34))); // partial fraction of F(s)
6 F1 = ilaplace(A(1),s,t)
7 F2 = ilaplace(A(2),s,t)
8 //F3 = ilaplace(A(3),s,t)
9 F = F1+F2;
10 disp(F, "f(t)=")
```

Scilab code Exa 4.4 laplace transform of a given signal

```
9 y3 = laplace('1',t,s);

10 y=y1*(%e^(-s))+y2*(%e^(-2*s))+y3*(%e^(-4*s))

11 disp(y)
```

Scilab code Exa 4.5 inverse laplace transform

```
1 //signals and systems
2 // example 4.5
3 // X(S) = s+3+5*exp(-2*s)/(s+1)*(s+2) Re(s)>-1
4 s1 = %s;
5 syms t s;
6 [A]=pfss((s1+3)/((s1+1)*(s1+2))); //partial fraction
       of F(s)
7 	ext{ F1 = ilaplace}(A(1),s,t)
8 F2 = ilaplace(A(2),s,t)
9 //F3 = ilaplace(A(3), s, t)
10 Fa = F1+F2;
11 disp(Fa,"f1(t)=")
12 [B]=pfss((5)/((s1+1)*(s1+2))); // partial fraction of
      F(s)
13 F1 = ilaplace(B(1),s,t)
14 F2 = ilaplace(B(2),s,t)
15 Fb = (F1+F2)*(%e^{-2*s});
16 disp(Fb, "f2(t)=")
17 disp(Fa+Fb, "f(t)=")
```

Scilab code Exa 4.8 time convolution property

```
//signals and systems
//Example 4.8
//Lapalce Transform for convolution
s=%s
syms t;
```

```
6 a=3;b=2;
7 [A]=pfss(1/(s^2-5*s+6)); // partial fraction of F(s)
8 F1 = ilaplace(A(1),s,t)
9 F2 = ilaplace(A(2),s,t)
10 //F3 = ilaplace(A(3),s,t)
11 F = F1+F2;
12 disp(F,"f(t)=")
```

Scilab code Exa 4.9 initial and final value

```
//Initial and final Value Theorem of Lapalace
    Transform
syms s;
num =poly([30 20],'s','coeff')
den =poly([0 5 2 1],'s','coeff')
X = num/den
disp (X,"X(s)=")
SX = s*X;
Initial_Value =limit(SX,s,%inf);
final_value =limit(SX,s,0);
disp(Initial_Value,"x(0)=")
disp(final_value,"x(inf)=")
```

Scilab code Exa 4.10 second order linear differential equation

```
8 F2 = ilaplace(A(2),s,t)
9 F3 = ilaplace(A(3),s,t)
10 F = F1+F2+F3
11 disp(F)
```

Scilab code Exa 4.11 solution to ode using laplace transform

Scilab code Exa 4.12 response to LTIC system

```
11 disp(F)
```

Scilab code Exa 4.15 loop current in a given network

Scilab code Exa 4.16 loop current in a given network

```
1 //signals and systems
2 //Unilateral Laplace Transform: transfer function
3 //example 4.16
4 s = %s;
5 syms t s;
6 y1 =laplace('24*%e^(-3*t)+48*%e^(-4*t)',t,s);
7 disp(y1)
8 y2 =laplace('16*%e^(-3*t)-12*%e^(-4*t)',t,s);
9 disp(y2)
```

Scilab code Exa 4.17 voltage and current of a given network

Figure 4.2: frequency response of a given system

Scilab code Exa 4.23 frequency response of a given system

```
1 s=poly(0, 's')
2 h=syslin('c',(s+0.1)/(s+5))
3 clf(); bode(h,0.1,100);
```

Scilab code Exa 4.24 frequency response of a given system

```
1 s=poly(0, 's')
2 h=syslin('c',(s^2/s))
3 clf(); bode(h,0.1,100);
4 h1=syslin('c',(1/s))
5 clf(); bode(h1,0.1,100);
```

Scilab code Exa 4.25 bode plots for given transfer function

```
1 s=poly(0,'s')
2 h=syslin('c',((20*s^2+2000*s)/(s^2+12*s+20)))
3 clf();bode(h,0.1,100);
```

Scilab code Exa 4.26 bode plots for given transfer function

```
1 s=poly(0,'s')
2 h=syslin('c',((10*s+1000)/(s^2+2*s+100)))
3 clf();bode(h,0.1,100);
```


Figure 4.3: frequency response of a given system

Figure 4.4: frequency response of a given system

Figure 4.5: bode plots for given transfer function

Figure 4.6: bode plots for given transfer function

Figure 4.7: second order notch filter to suppress 60Hz hum

Scilab code Exa 4.27 second order notch filter to suppress 60Hz hum

```
8 f=omega/((2*%pi))plot(f,mag(1,:),'k-',f mag(2,:),'k --',f,mag(3,:),'k-.');
9 xlabel('f[hz]'); ylabel('|H(j2/pi f)|');
10 legend('\theta=60^\circ','\theta = 80^\circ','\theta = 87^\circ',0)
```

Scilab code Exa 4.28 bilateral inverse transform

```
1 //signals and systems
2 //bilateral Inverse Lapalce Transform
3 / X(S) = 1/((s-1)(s+2))
4 s = %s ;
5 syms t;
6 [A]=pfss(1/((s-1)*(s+2))) // partial fraction of F(s)
7 	ext{ F1 = ilaplace}(A(1),s,t)
8 F2 = ilaplace(A(2),s,t)
9 F = F1 + F2;
10 disp(F, "f(t)=")
11
12
13 //X(S) = 1/((s-1)(s+2)) Re(s)> -1,Re(s)< -2
14 \ s = %s ;
15 syms t;
16 [A]=pfss(1/((s-1)*(s+2))) //partial fraction of F(s)
17 F1 = ilaplace(A(1),s,t)
18 F2 = ilaplace(A(2),s,t)
19 F = -F1-F2;
20 disp(F, "f(t)=")
21
22
23 //X(S) = 1/((s-1)(s+2)) -2< Re(s)< 1
24 s = %s ;
25 syms t;
26 [A]=pfss(1/((s-1)*(s+2))) // partial fraction of F(s)
27 F1 = ilaplace(A(1),s,t)
```

```
28 F2 = ilaplace(A(2),s,t)

29 F = -F1+F2;

30 disp(F,"f(t)=")
```

Scilab code Exa 4.29 current for a given RC network

Scilab code Exa 4.30 response of a noncausal sytem

Scilab code Exa 4.31 response of a fn with given tf

```
1 //signals and systems
2 // Unilateral
                   Laplace Transform: Solving Differential
       Equation
3 //example 4.17
4 s = %s;
5 syms t;
6 // \text{Re s} > -1
7 [A] = pfss(1/((s+1)*(s+5)));
8 	ext{ F1 = ilaplace}(A(1),s,t)
9 F2 = ilaplace(A(2),s,t)
10 / F3 = ilaplace(A(3), s, t)
11 	ext{ F} = F1+F2
12 disp(F)
13 //-5 < \text{Re s} < -2
14 [B] = pfss(-1/((s+2)*(s+5)));
15 G1 = ilaplace(B(1),s,t)
16 \text{ G2} = ilaplace(B(2),s,t)
17 / F3 = ilaplace(A(3), s, t)
18 \ G = G1+G2
19 disp(G)
```

Chapter 5

discrete time system analysis using the z transform

Scilab code Exa 5.1 z transform of a given signal

```
1 //signals and systems
2 // Ztransform of x[n] = (a)^n.u[n]
3 syms n z;
4 a = 0.5;
5 x =(a)^n;
6 n1=0:10;
7 plot2d3(n1,a^n1); xtitle('a^n','n');
8 plot(n1,a^n1,'r.')
9 X = symsum(x*(z^(-n)),n,0,%inf)
10 disp(X,"ans=")
```

Scilab code Exa 5.2 z transform of a given signal

```
1 //example 5.2 (c)
```


Figure 5.1: z transform of a given signal

```
2 //Z-transform of sine signal
3 syms n z;
4 Wo = \%pi/4;
5 a = (0.33)^n;
6 x1=\%e^{(sqrt(-1)*Wo*n)};
7 X1 = symsum(a*x1*(z^{(-n)}),n,0,%inf)
8 x2 = %e^{(-sqrt(-1)*Wo*n)}
9 X2 = symsum(a*x2*(z^{(-n)}),n,0,%inf)
10 X = (1/(2*sqrt(-1)))*(X1+X2)
11 disp(X, "ans=")
12
13 //example 5.2 (a)
14 //Z-transform of Impulse Sequence
15 syms n z;
16 X = symsum(1*(z^(-n)),n,0,0);
17 disp(X, "ans=")
18
19 //example 5.2 (d)
20 //Z-transform of given Sequence
21 syms n z;
22 X = symsum(1*(z^(-n)),n,0,4);
23 disp(X, "ans=")
24
\frac{25}{\text{example }} 5.2 \text{ (b)}
26 //Z-transform of unit function Sequence
27 \text{ syms n z};
28 X = symsum(1*(z^{(-n)}),n,0,%inf);
29 disp(X, "ans=")
```

Scilab code Exa 5.3.a z transform of a given signal with different roots

```
1 //signals and systems
2 //Inverse Z Transform:ROC |z|>1/3
3 z = %z;
4 syms n z1;//To find out Inverse z transform z must
```

```
be linear z = z1
5 X =(8*z-19)/((z-2)*(z-3))
6 X1 = denom(X);
7 zp = roots(X1);
8 X1 = (8*z1-19)/((z1-2)*(z1-3))
9 F1 = X1*(z1^(n-1))*(z1-zp(1));
10 F2 = X1*(z1^(n-1))*(z1-zp(2));
11 h1 = limit(F1,z1,zp(1));
12 disp(h1, 'h1[n]=')
13 h2 = limit(F2,z1,zp(2));
14 disp(h2, 'h2[n]=')
15 h = h1+h2;
16 disp(h, 'h[n]=')
```

Scilab code Exa 5.3.c z transform of a given signal with imaginary roots

```
1 //signals and systems
2 //Inverse Z Transform:ROC |z|>1/3
3 z = \%z;
4 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
5 \quad X = (2*z*(3*z+17))/((z-1)*(z^2-6*z+25))
6 X1 = denom(X);
7 \text{ zp = } roots(X1);
8 \quad X1 = 2*z1*(3*z1+17)/((z1-1)*(z1^2-6*z1+25))
9 F1 = X1*(z1^{(n-1)})*(z1-zp(1));
10 F2 = X1*(z1^(n-1))*(z1-zp(2));
11 h1 = limit(F1,z1,zp(1));
12 disp(h1, 'h1[n]=')
13 h2 = limit(F2, z1, zp(2));
14 disp(h2, 'h2[n]=')
15 h = h1+h2;
16 disp(h, 'h[n]=')
```

Scilab code Exa 5.5 solution to differential equation

```
1 //LTi Systems characterized by Linear Constant
2 // Coefficient Difference equations
3 //Inverse Z Transform
4 //z = \%z;
5 syms n z;
6 \text{ H1} = (26/15)/(z-(1/2));
7 \text{ H2} = (7/3)/(z-2);
8 \text{ H3} = (18/5)/(z-3);
9 F1 = H1*z^(n)*(z-(1/2));
10 F2 = H2*z^(n)*(z-2);
11 F3 = H3*z^(n)*(z-3);
12 \text{ h1} = limit(F1,z,1/2);
13 disp(h1, 'h1[n]=')
14 h2 = limit(F2,z,2);
15 disp(h2, 'h2[n]=')
16 \text{ h3} = limit(F3,z,3);
17 disp(h3, 'h3[n]=')
18 h = h1-h2+h3;
19 disp(h, 'h[n]=')
```

Scilab code Exa 5.6 response of an LTID system using difference eq

```
1 //LTi Systems characterized by Linear Constant
2 //Coefficient Difference equations
3 //Inverse Z Transform
4 //z = %z;
5 syms n z;
6 H1 = (2/3)/(z+0.2);
7 H2 = (8/3)/(z+0.8);
8 H3 = (2)/(z+0.5);
```


Figure 5.2: response of an LTID system using difference eq

```
9 F1 = H1*z^(n)*(z+0.2);

10 F2 = H2*z^(n)*(z+0.8);

11 F3 = H3*z^(n)*(z+0.5);

12 h1 = limit(F1,z,-0.2);

13 disp(h1, 'h1[n]=')

14 h2 = limit(F2,z,-0.8);

15 disp(h2, 'h2[n]=')

16 h3 = limit(F3,z,-0.5);

17 disp(h3, 'h3[n]=')

18 h = h1-h2+h3;

19 disp(h, 'h[n]=')
```

Scilab code Exa 5.10 response of an LTID system using difference eq

```
1 omega= linspace(-%pi,%pi,106);
2 H= syslin('c',(s/(s-0.8)));
3 H_omega= squeeze(calfrq(H,0.01,10));
4 size(H_omega)
5 subplot(2,1,1); plot2d(omega, abs(H_omega));
6 //xlabel('\omega');
7 //ylabel('|H[e^{{j\omega}}]|');
8 subplot(2,1,2); plot2d(omega,atan(imag(H_omega),real (H_omega))*180/%pi);
9 //xlabel('\omega');
10 //ylabel('\omega');
```

Scilab code Exa 5.12 maximum sampling timeinterval

```
1 //signals and systems
2 //maximum sampling interval
3 f=50*10^3;
4 T=0.5/f;
5 disp(T)//in seconds
```

Scilab code Exa 5.13 discrete time amplifier highest frequency

```
1 //signals and systems
2 //highest frequency of a signal
3 T=25*10^-6
4 f=0.5/T
5 disp(f)//in hertz
```

Scilab code Exa 5.17 bilateral z transfrom

```
1 //Z transform of x[n] = a^n.u[n]+b^-n.u[-n-1]
2 syms n z;
3 a=0.9
4 b = 1.2;
5
6 x1=(a)^(n)
7 x2=(b)^(-n)
8 //plot2d3(n1,x1+x2)
9 X1=symsum(x1*(z^(-n)),n,0,%inf)
10 X2=symsum(x2*(z^(n)),n,1,%inf)
11 X = X1+X2;
12 disp(X,"ans=")
```

Scilab code Exa 5.18 bilateral inverse z transform

```
1 //signals and systems
2 //Inverse Z Transform:ROC |z|>2
3 z = \%z;
4 syms n z1; //To find out Inverse z transform z must
      be linear z = z1
5 \text{ X} = -z*(z+0.4)/((z-0.8)*(z-2))
6 X1 = denom(X);
7 \text{ zp} = \text{roots}(X1);
8 X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2))
9 F1 = X1*(z1^{(n-1)})*(z1-zp(1));
10 F2 = X1*(z1^(n-1))*(z1-zp(2));
11 h1 = limit(F1, z1, zp(1));
12 disp(h1, 'h1[n]=')
13 h2 = limit(F2,z1,zp(2));
14 disp(h2, 'h2[n]=')
15 h = h1+h2;
16 disp(h, 'h[n]=')
17
18 //Inverse Z Transform: ROC 0.8 < |z| < 2
19 z = \%z;
```

```
20 \text{ syms n z1};
21 X = -z*(z+0.4)/((z-0.8)*(z-2))
22 \times 1 = denom(X);
23 \text{ zp = } \text{roots}(X1);
24 X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2))
25 F1 = X1*(z1^(n-1))*(z1-zp(1));
26 F2 = X1*(z1^(n-1))*(z1-zp(2));
27 \text{ h1} = limit(F1, z1, zp(1));
28 disp(h1*'u(n)', 'h1[n]=')
29 h2 = limit(F2,z1,zp(2));
30 disp((h2)*'u(-n-1)', 'h2[n]=')
31 disp((h1)*'u(n)'-(h2)*'u(n-1)', 'h[n]=')
32
33 //Inverse Z Transform:ROC | z | < 0.8
34 z = %z;
35 syms n z1;
36 \text{ X} = -z*(z+0.4)/((z-0.8)*(z-2))
37 \times 1 = denom(X);
38 \text{ zp = } \text{roots}(X1);
39 X1 = -z1*(z1+0.4)/((z1-0.8)*(z1-2))
40 F1 = X1*(z1^(n-1))*(z1-zp(1));
41 F2 = X1*(z1^(n-1))*(z1-zp(2));
42 \text{ h1} = \text{limit}(F1,z1,zp(1));
43 disp(h1*'u(-n-1)', 'h1[n]=')
44 h2 = limit(F2,z1,zp(2));
45 disp((h2)*'u(-n-1)', 'h2[n]=')
46 disp(-(h1)*'u(-n-1)'-(h2)*'u(-n-1)', 'h[n]=')
```

Scilab code Exa 5.19 transfer function for a causal system

```
1 //LTi Systems characterized by Linear Constant
2 //Coefficient Difference equations
3 //Inverse Z Transform
4 //z = %z;
5 syms n z;
```

```
6 H1 = -z/(z-0.5);
7 H2 = (8/3)*z/(z-0.8);
8 H3=(-8/3)*z/(z-2);
9 F1 = H1*z^(n-1)*(z-0.5);
10 F2 = H2*z^(n-1)*(z-0.8);
11 F3 = H3*z^(n-1)*(z-2);
12 h1 = limit(F1,z,0.5);
13 disp(h1, 'h1[n]=')
14 h2 = limit(F2,z,0.8);
15 disp(h2, 'h2[n]=')
16 h3 = limit(F3,z,2);
17 disp(h3, 'h3[n]=')
18 h = h1+h2+h3;
19 disp(h, 'h[n]=')
```

Scilab code Exa 5.20 zero state response for a given input

```
1 //LTi Systems characterized by Linear Constant
2 // Coefficient Difference equations
3 //Inverse Z Transform
4 //z = \%z;
5 syms n z;
6 \text{ H1} = (-5/3)*z/(z-0.5);
7 \text{ H2} = (8/3)*z/(z-0.8);
8 H3=5*z/(z-0.5);
9 H4=-6*z/(z-0.6);
10 F1 = H1*z^(n-1)*(z-0.5);
11 F2 = H2*z^{(n-1)}*(z-0.8);
12 F3 = H3*z^{(n-1)}*(z-0.5);
13 F4 = H4*z^{(n-1)}*(z-0.6);
14 \text{ h1} = limit(F1,z,0.5);
15 disp(h1, 'h1[n]=')
16 \text{ h2} = limit(F2,z,0.8);
17 disp(h2, 'h2[n]=')
18 h3 = limit(F3,z,0.5);
```

```
19 disp(h3,'h3[n]=')
20 h4 = limit(F4,z,0.6);
21 disp(h4,'h4[n]=')
22 h = h1+h2+h3+h4;
23 disp(h,'h[n]=')
```

Chapter 6

continuous time signal analysis the fourier series

Scilab code Exa 6.1 fourier coefficients of a periodic sequence

```
1 n=0:10;
2 a_n=0.504*2*ones(1,length(n))./(1+16*n.^2);
3 a_n(1) = 0.504
4 b_n=0.504*8*n./(1+16*n.*n);
5 \text{ size(n)}
6 size(a_n)
7 size(b_n)
8 disp(b_n(1))
9 C_n = sqrt(a_n.^2+(b_n).^2);
10 theta_n(1)=0; theta_n=atan(-b_n,a_n);
11 //n = [0, n];
12 clf;
13 size(n)
14 subplot(2,2,1); plot2d3(n,a_n); xtitle('a_n', 'n');
      plot(n,a_n,'ro');
15 subplot(2,2,2); plot2d3(n,b_n); xtitle('b_n', 'n');
      plot(n,b_n,'r.');
```


Figure 6.1: fourier coefficients of a periodic sequence

```
16     subplot(2,2,3);     plot2d3(n,C_n); xtitle('C_n','n');
          plot(n,C_n,'ro');
17     subplot(2,2,4);     plot2d3(n,theta_n,); xtitle('theta_n', 'n'); plot(n,theta_n,'r.')
```

Scilab code Exa 6.2 fourier coefficients of a periodic sequence

```
1    n=0:10;
2    a_n=zeros(1,length(n));
3    size(a_n)
4    b_n=(8/%pi^2*n.^2).*sin(n.*%pi/2);
5    size(n)
6    size(a_n)
7    size(b_n)
```


Figure 6.2: fourier coefficients of a periodic sequence

```
8 disp(b_n(1))
9 \quad C_n = b_n
10 // theta_n(1) = 0;
    theta_n=atan(-b_n,a_n);
12 //n = [0, n];
13 clf;
14 size(n)
  subplot(2,2,1); plot2d3(n,a_n); xtitle('a_n','n');
      plot(n,a_n,'ro')
  subplot(2,2,2); plot2d3(n,b_n); xtitle('b_n', 'n');
16
      plot(n,b_n,'r.')
  subplot(2,2,3); plot2d3(n,C_n); xtitle('C_n', 'n');
      plot(n,C_n,'ro')
18 subplot(2,2,4); plot2d3(n,theta_n,); xtitle('theta_n'
      , 'n'); plot(n, theta_n, 'r.')
```

Scilab code Exa 6.3 fourier spectra of a signal

```
1 n=0:10;
2
3 \text{ for } n=0:10
        // if (n\%2 == 0)
          // a_n = 0;
5
        //else
6
7
             if (n==4*n-3)
                  a_n=2/(%pi.*n);
8
             else if (n==4*n-1)
9
                      a_n = -2/(\%pi.*n);
10
11
                  end end end
12
13 b_n=zeros(1,length(n));
14 \text{ size(n)}
15 size(a_n)
16 size(b_n)
17 disp(b_n(1))
18 C_n = sqrt(a_n.^2+(b_n).^2);
19 theta_n(1)=0; theta_n=atan(-b_n,a_n);
20 / n = [0, n];
21 clf;
22 size(n)
23 subplot(2,2,1); plot2d3(n,a_n); xtitle('a_n', 'n');
      plot(n,a_n,'ro');
24 subplot(2,2,2); plot2d3(n,b_n); xtitle('b_n', 'n');
      plot(n,b_n,'r.');
25 subplot(2,2,3); plot2d3(n,C_n); xtitle('C_n', 'n');
      plot(n,C_n,'ro');
26 subplot(2,2,4); plot2d3(n,theta_n,); xtitle('theta_n')
      , 'n'); plot(n, theta_n, 'r.');
```


Figure 6.3: exponential fourier series

Figure 6.4: exponential fourier series for the impulse train

Scilab code Exa 6.5 exponential fourier series

```
1  n=(-10:10);  D_n=0.504./(1+ %i*4*n);
2  clf;
3  subplot(2,1,1);  plot2d3(n,abs(D_n));
4  subplot(2,1,2);  plot2d3(n,atan(imag(D_n),real(D_n)));
;
```

Scilab code Exa 6.7 exponential fourier series for the impulse train

```
1 //signals and systems
2 //fourier series for train of impulses
3 clear;
4 close;
```

```
5 clc;
6 n = -3:1:3
7 x = ones(1, length(n))
8 D_n=ones(1,length(n));
9 \quad C_n = [0 \quad 0 \quad 0 \quad 1 \quad 2 \quad 2 \quad 2]
10 subplot(3,1,1)
11 \ a = gca();
12 a.y_location = "origin";
13 a.x_location = "origin";
14 plot2d3(n,x)
15 subplot (3,1,2)
16 \ a = gca();
17 a.y_location = "origin";
18 a.x_location = "origin";
19 plot2d3(n,D_n)
20 subplot (3,1,3)
21 \ a = gca();
22 a.y_location = "origin";
23 a.x_location = "origin";
24 plot2d3(n,C_n); plot(n,C_n,'r.')
```

Scilab code Exa 6.9 exponential fourier series to find the output

```
1  n=(-10:10);  D_n=2/(3.14*(1-4.*n.^2).*(%i*6.*n+1));
2  clf;
3  subplot(2,1,1);  plot2d3(n,abs(D_n));
4  subplot(2,1,2);  plot2d3(n,atan(imag(D_n),real(D_n)));
;
```


Figure 6.5: exponential fourier series to find the output

Chapter 7

continuous time signal analysis the fourier transform

Scilab code Exa 7.1 fourier transform of exponential function

```
1 //signals and systems
2 //continuous time signal analysis the fourier
     transform
3 //fourier transform of \exp(-A*t)
4 clear;
5 clc;
6 A =1; //Amplitude
7 \text{ Dt} = 0.005;
8 t = -4.5:Dt:4.5;
9 xt = exp(-A*abs(t));
10 Wmax = 2*%pi*1; //Analog Frequency = 1Hz
11 K = 4;
12 k = 0: (K/1000):K;
13 W = k*Wmax/K;
14 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
15 XW = real(XW);
16 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
```


Figure 7.1: fourier transform of exponential function

```
Wmax to Wmax
17 XW = [mtlb_fliplr(XW), XW(2:1001)];
18 subplot(2,1,1);
19 a = gca();
20 a.y_location = "origin";
21 plot(t,xt);
22 xlabel('t in sec.');
23 ylabel('x(t)')
24 title ('Continuous Time Signal')
25 subplot(2,1,2);
26 \ a = gca();
27 a.y_location = "origin";
28 plot(W, XW);
29 xlabel('Frequency in Radians/Seconds W');
30 \text{ ylabel}('X(jW)')
31 title('Continuous-time Fourier Transform')
```

Scilab code Exa 7.4 inverse fourier transform

```
1 / Example 4.5
2 // Inverse Continuous Time Fourier Transform
3 // impulse funtion
4 clear;
5 clc;
6 close;
7 // CTFT
8 \quad A = 1;
              //Amplitude
9 \text{ Dw} = 0.005;
10 W1 = 4; //\text{Time in seconds}
11 \quad w = -W1/2:Dw:W1/2;
     for i=1:length(w)
12
          XW(1) = 1;
13
14
          end
```


Figure 7.2: inverse fourier transform

```
15 \quad XW = XW';
16
17 //Inverse Continuous-time Fourier Transform
18 t = -0.01:1/length(w):0.01;
19 xt = (1/(2*\%pi))*XW *exp(sqrt(-1)*w'*t)*Dw;
20 \text{ xt} = \text{real}(\text{xt});
21 figure
22 \ a = gca();
23 a.y_location = "origin";
24 a.x_location = "origin";
25 plot(t,xt);
26 xlabel('
                                                       t time
      in Seconds');
27 title('Inverse Continuous Time Fourier Transform x(t
      ) ')
```

Scilab code Exa 7.5 inverse fourier transform

```
1 //signals and systems
2 // Inverse Continuous Time Fourier Transform
3 // shifted impulse function
4 clear;
5 clc;
6 close;
7 w0 = 1
8 A = 1; //Amplitude
9 \text{ Dw} = 0.005;
10 W1 = 4; //\text{Time in seconds}
11 \quad w = -W1/2:Dw:W1/2;
12 XW = [zeros(1, length(w)/2) 1 zeros(1, length(w/2))];
13 \times W = XW';
14
15 //Inverse Continuous-time Fourier Transform
16 t = -0.01:1/length(w):0.01;
17 \text{ size}(XW)
```

Scilab code Exa 7.6 fourier transform for everlasting sinusoid

```
1 //signals and systems
2 // Continuous Time Fourier Transforms
3 // Sinusoidal waveforms cos(Wot)
4 clear;
5 clc;
6 close;
8 T1 = 2;
9 T = 4*T1;
10 Wo = 2*\%pi/T;
11 \quad W = [-Wo, O, Wo];
12 ak = (2*\%pi*Wo*T1/\%pi)/sqrt(-1);
13 XW = [-ak, 0, ak];
14 \text{ ak1} = (2*\%pi*Wo*T1/\%pi);
15 XW1 = [ak1, 0, ak1];
16
17 figure
```


Figure 7.3: fourier transform for everlasting sinusoid

Figure 7.4: fourier transform of a periodic signal

Scilab code Exa 7.7 fourier transform of a periodic signal

```
1 //signals and systems
```

```
2 // Continuous Time Fourier Transform of Symmetric
3 // periodic Square waveform
4 clear;
5 clc;
6 close;
8 T1 = 2;
9 T = 4*T1;
10 Wo = 2*\%pi/T;
11 W = -\%pi:Wo:\%pi;
12 delta = ones(1,length(W));
13 XW(1) = (2*\%pi*Wo*T1/\%pi);
14 mid_value = ceil(length(W)/2);
15 for k = 2:mid_value
     XW(k) = (2*\%pi*sin((k-1)*Wo*T1)/(\%pi*(k-1)));
16
17 \text{ end}
18 figure
19 \ a = gca();
20 a.y_location = "origin";
21 a.x_location = "origin";
22 plot2d3('gnn', W(mid_value:$), XW, 2);
23 poly1 = a.children(1).children(1);
24 \text{ poly1.thickness} = 3;
25 plot2d3('gnn',W(1:mid_value-1),XW($:-1:2),2);
26 poly1 = a.children(1).children(1);
27 poly1.thickness = 3;
28 xlabel('W in radians/Seconds');
29 title ('Continuous Time Fourier Transform of Periodic
       Square Wave')
```

Scilab code Exa 7.8 fourier transform of a unit impulse train

```
1 //signals and systems
```


Figure 7.5: fourier transform of a unit impulse train

```
2 //continuous time signal analysis the fourier
      transform
3 // Periodic Impulse Train
4 clear;
5 clc;
6 close;
7 T = -4:4;;
8 T1 = 1; //Sampling Interval
9 xt = ones(1,length(T));
10 \text{ ak} = 1/T1;
11 XW = 2*%pi*ak*ones(1,length(T));
12 Wo = 2*\%pi/T1;
13 W = Wo *T;
14 figure
15 subplot(2,1,1)
16 \ a = gca();
17 a.y_location = "origin";
18 a.x_location = "origin";
```

```
19 plot2d3('gnn',T,xt,2);
20 poly1 = a.children(1).children(1);
21 poly1.thickness = 3;
22 xlabel('
      t ');
23 title('Periodic Impulse Train')
24 subplot (2,1,2)
25 \ a = gca();
26 a.y_location = "origin";
27 a.x_location = "origin";
28 plot2d3('gnn',W,XW,2);
29 poly1 = a.children(1).children(1);
30 poly1.thickness = 3;
31 xlabel('
      t');
32 title('CTFT of Periodic Impulse Train')
```

Scilab code Exa 7.9 fourier transform of unit step function

```
//signals and systems
//continuous time signal analysis the fourier
transform
//fourier transform of unit step function u(t)
clear;
clc;
A = 0.000000001; //Amplitude
Dt = 0.005;
t = 0:Dt:4.5;
xt = exp(-A*abs(t));
Wmax = 2*%pi*1; //Analog Frequency = 1Hz
K = 4;
```


Figure 7.6: fourier transform of unit step function

```
12 k = 0:(K/500):K;
13 W = k*Wmax/K;
14 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
15 \text{ XW} = \text{real}(\text{XW});
16 W = [-mtlb_fliplr(W), W(2:501)]; // Omega from -Wmax
       to Wmax
17 XW = [mtlb_fliplr(XW), XW(2:501)];
18 subplot(2,1,1);
19 a = gca();
20 a.y_location = "origin";
21 plot(t,xt);
22 xlabel('t in sec.');
23 ylabel('x(t)')
24 title ('Continuous Time Signal')
25 subplot(2,1,2);
26 \ a = gca();
27 a.y_location = "origin";
28 plot(W, XW);
```


Figure 7.7: fourier transform of exponential function

```
29 xlabel('Frequency in Radians/Seconds W');
30 ylabel('X(jW)')
31 title('Continuous-time Fourier Transform')
```

Scilab code Exa 7.12 fourier transform of exponential function

```
//signals and systems
//Continuous Time Fourier Transform
//Continuous Time Signal x(t)= exp(-A*abs(t))
clear;
clc;
close;
A =1; //Amplitude
```

```
9 \text{ Dt} = 0.005;
10 t = -4.5:Dt:4.5;
11 xt = exp(-A*abs(t));
12
13 Wmax = 2*%pi*1; //Analog Frequency = 1Hz
14 \text{ K} = 4;
15 k = 0:(K/1000):K;
16 W = k*Wmax/K;
17 XW = xt* exp(-sqrt(-1)*t'*W) * Dt;
18 \text{ XW} = \text{real}(XW);
19 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
     Wmax to Wmax
20 XW = [mtlb_fliplr(XW), XW(2:1001)];
21 subplot(1,1,1)
22 subplot (2,1,1);
23 \ a = gca();
24 a.y_location = "origin";
25 plot(t,xt);
26 xlabel('t in sec.');
27 ylabel('x(t)')
28 title ('Continuous Time Signal')
29 subplot(2,1,2);
30 \ a = gca();
31 a.y_location = "origin";
32 plot(W, XW);
33 xlabel('Frequency in Radians/Seconds W');
34 \text{ ylabel}('X(jW)')
35 title('Continuous-time Fourier Transform')
```

Chapter 8

Sampling The bridge from continuous to discrete

Scilab code Exa 8.8 discrete fourier transform

```
1 //signals and systems
2 //sampling: the bridge from continuous to discrete
3 //DFT to compute the fourier transform of e^-2t.u(t)
4 T_0 = 4;
5 N_0 = 256;
6 \quad T = T_0/N_0;
7 t = (0:T:T*(N_0-1))';
8 \quad x = T*\exp(-2*t);
9 x = mtlb_i(x,1,(T*(exp(-2*T_0)+1))/2);
10 X_r = fft(x);
11 r = (-N_0/2:N_0/2-1);
12 omega_r = ((r*2)*\%pi)/T_0;
13 omega = linspace(-\%pi/T,\%pi/T,4097);
14 X = 1 ./(%i*omega+2);
15 subplot(2,1,1);
16 \ a = gca();
17 a.y_location = "origin";
```


Figure 8.1: discrete fourier transform

Figure 8.2: discrete fourier transform

Scilab code Exa 8.9 discrete fourier transform

```
1 //signals and systems
2 //sampling: the bridge from continuous to discrete
3 //DFT to compute the fourier transform of 8 rect(t)
4 T_0 = 4;
5 N_0 = 32;
6 \quad T = T_0/N_0;
7 x_n = [ones(1,4) \ 0.5 \ zeros(1,23) \ 0.5 \ ones(1,3)];
8 \text{ size}(x_n)
9 x_r = fft(x_n); r = (-N_0/2:(N_0/2)-1);
10 omega_r = ((r*2)*\%pi)/T_0;
11 size(omega_r)
12 size (omega)
13 omega = linspace(-\%pi/T,\%pi/T,4097);
14 X = 8*(sinc(omega/2));
15 \text{ size}(X)
16 figure(1);
17 subplot (2,1,1);
18 plot(omega, abs(X), "k");
19 plot(omega_r,fftshift(abs(x_r)),"ko")
20 xtitle("angle of X(omega) for true FT and DFT");
21 a=gca();
22 subplot (2,1,2);
23 \ a = gca();
24 a.y_location = "origin";
25 a.x_location = "origin";
26 plot(omega, atan(imag(X), real(X)), "k", omega_r,
      fftshift(atan(imag(x_r), real(x_r))), 'r.');
27 xtitle("angle of X(omega) for true FT and DFT");
```

Scilab code Exa 8.10 frequency response of a low pass filter

```
1 //signals and systems
2 // sampling: the bridge between continuous to
```


Figure 8.3: frequency response of a low pass filter

discrete $3 T_0 = 4;$ $4 N_0 = 32;$ $5 T = T_0/N_0; n = 0:N_0-1; r = n;$ $6 x_n = [ones(1,4), 0.5, zeros(1,23), 0.5, ones(1,3)]$; $7 \text{ H}_r = [ones(1,8), 0.5, zeros(1,15), 0.5, ones(1,7)]';$ $8 X_r = fft(x_n, -1);$ $9 Y_r = H_r .*(X_r); y_n = mtlb_ifft(Y_r);$ 10 subplot (2,2,1); 11 plot2d3(n,x_n); 12 plot(n,x_n,'r.') 13 **xtitle**('xn','n') 14 subplot (2,2,2); 15 plot2d3(r,real(X_r)); 16 plot(r,real(X_r), 'ro') 17 **xtitle**('Xr','r') 18 subplot (2,2,3); 19 plot2d3(n,real(y_n)); 20 plot(n,real(y_n),'r.') 21 **xtitle**('yn','n') 22 subplot (2,2,4); 23 plot2d3(r,(X_r).*H_r); 24 plot(r,(X_r).*H_r,'ro') 25 **xtitle**('XrHr','r')

Chapter 9

fourier analysis of discrete time signals

Scilab code Exa 9.1 discrete time fourier series

```
1 //signals and systems
2 //fourier analysis of discrete time signals
3 //Example5.5: Discrete Time Fourier Transform:x[n]=
      sin (nWo)
4 clear;
5 clc;
6 close;
7 N = 0.1;
8 \text{ Wo = \%pi;}
9 W = [-Wo/10, 0, Wo/10];
10 \times W = [0.5, 0, 0.5];
11 //
12 figure
13 a = gca();
14 a.y_location = "origin";
15 a.x_location = "origin";
16 plot2d3('gnn',W,XW,2);
```


Figure 9.1: discrete time fourier series

Scilab code Exa 9.2 DTFT for periodic sampled gate function

```
1 N_0=32; n=(0:N_0-1);
2 x_n= [ones(1,5) zeros(1,23) ones(1,4)];
3 for r=0:31
4     X_r(r+1)=sum(x_n.*exp(-sqrt(-1)*r*2*3.14/N_0*n))
```


Figure 9.2: DTFT for periodic sampled gate function

Figure 9.3: discrete time fourier series

```
/32;
5 end
6 subplot(2,1,1); r=n; plot2d3(r,real(X_r));
7 xlabel('r'); ylabel('X_r');
8 X_r=fft(x_n)/N_0;
9 subplot(2,1,2);
10 plot2d3(r,phasemag(X_r));
11 xlabel('r'); ylabel('phase of X_r');
12 disp(N_0, 'period=')
13 disp(2*%pi/N_0, 'omega=')
```

Scilab code Exa 9.3 discrete time fourier series

```
1 //signals and systems
2 // Discrete Time Fourier Transform of discrete
      sequence
3 //x[n] = (a^n).u[n], a>0 and a<0
4 clear;
5 clc;
6 close;
7 // DTS Signal
8 a1 = 0.5;
9 \ a2 = -0.5;
10 \text{ max\_limit} = 10;
11 \quad for \quad n = 0:max_limit-1
     x1(n+1) = (a1^n);
12
     x2(n+1) = (a2^n);
13
14 end
15 n = 0:max_limit-1;
16 // Discrete-time Fourier Transform
17 Vmax = 2*\%pi;
18 K = 4;
19 k = 0:(K/1000):K;
20 W = k*Wmax/K;
21 \times 1 = \times 1;
22 \times 2 = \times 2;
23 XW1 = x1* exp(-sqrt(-1)*n'*W);
24 \text{ XW2} = x2* \exp(-sqrt(-1)*n'*W);
25 \text{ XW1}_{\text{Mag}} = abs(XW1);
26 \text{ XW2\_Mag} = abs(XW2);
27 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
28 XW1_Mag = [mtlb_fliplr(XW1_Mag), XW1_Mag(2:1001)];
29 XW2_Mag = [mtlb_fliplr(XW2_Mag), XW2_Mag(2:1001)];
30 [XW1_Phase,db] = phasemag(XW1);
31 [XW2_Phase,db] = phasemag(XW2);
32 XW1_Phase = [-mtlb_fliplr(XW1_Phase),XW1_Phase
      (2:1001)];
33 XW2_Phase = [-mtlb_fliplr(XW2_Phase), XW2_Phase
```

```
(2:1001)];
34 //plot for a>0
35 figure
36 subplot (3,1,1);
37 plot2d3('gnn',n,x1);
38 xtitle('Discrete Time Sequence x[n] for a>0')
39 subplot (3,1,2);
40 \ a = gca();
41 a.y_location = "origin";
42 a.x_location = "origin";
43 plot2d(W, XW1_Mag);
44 title('Magnitude Response abs(X(jW))')
45 subplot (3,1,3);
46 \ a = gca();
47 a.y_location = "origin";
48 a.x_location = "origin";
49 plot2d(W,XW1_Phase);
50 title('Phase Response \langle (X(jW))' \rangle
51 //plot for a<0
52 figure
53 subplot(3,1,1);
54 plot2d3('gnn',n,x2);
55 xtitle('Discrete Time Sequence x[n] for a>0')
56 subplot (3,1,2);
57 a = gca();
58 a.y_location = "origin";
59 a.x_location = "origin";
60 plot2d(W,XW2_Mag);
61 title ('Magnitude Response abs(X(jW))')
62 subplot (3,1,3);
63 \ a = gca();
64 a.y_location = "origin";
65 a.x_location = "origin";
66 plot2d(W, XW2_Phase);
67 title('Phase Response \langle (X(jW))' \rangle
```


Figure 9.4: discrete time fourier series

Scilab code Exa 9.4 discrete time fourier series

```
1 //signals and systems
2 //Discrete Time Fourier Transform of discrete
          sequence
3 //x[n]= (a^n).u[-n], a>0 and a<0
4 clear;
5 clc;</pre>
```


Figure 9.5: discrete time fourier series

```
6 close;
7 // DTS Signal
8 \ a = 0.5;
9 \text{ max\_limit} = 10;
10 \text{ for } n = 0:\max_{\text{limit}} -1
     x1(n+1) = (a^n);
11
12 end
13 n = 0:max_limit-1;
14 // Discrete-time Fourier Transform
15 Vmax = 2*\%pi;
16 K = 4;
17 k = 0:(K/1000):K;
18 W = k*Wmax/K;
19 \times 1 = \times 1;
20 XW1 = x1* exp(-sqrt(-1)*n'*W);
21
22 \text{ XW1}_Mag = abs(XW1);
23 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
```

```
Wmax to Wmax
24 XW1_Mag = [mtlb_fliplr(XW1_Mag), XW1_Mag(2:1001)];
25 [XW1_Phase,db] = phasemag(XW1);
26 XW1_Phase = [-mtlb_fliplr(XW1_Phase),XW1_Phase
      (2:1001)];
27 //plot for a>0
28 figure
29 subplot(3,1,1);
30 plot2d3('gnn',-n,x1);
31 xtitle('Discrete Time Sequence x[n] for a>0')
32 subplot(3,1,2);
33 \ a = gca();
34 a.y_location = "origin";
35 a.x_location = "origin";
36 plot2d(W,XW1_Mag);
37 title('Magnitude Response abs(X(jW))')
38 subplot (3,1,3);
39 \ a = gca();
40 a.y_location = "origin";
41 a.x_location = "origin";
42 plot2d(W, XW1_Phase+%pi/2);
43 title('Phase Response \langle (X(jW))' \rangle
```

Scilab code Exa 9.5 DTFT for rectangular pulse

```
//signals and systems
//Discrete Time Fourier Transform
//x[n]= 1 , abs(n)<=N1
clear;
clc;
close;
// DTS Signal
N1 = 2;</pre>
```


Figure 9.6: DTFT for rectangular pulse

```
9 n = -N1:N1;
10 x = ones(1, length(n));
11 // Discrete-time Fourier Transform
12 Vmax = 2*\%pi;
13 \text{ K} = 4;
14 k = 0:(K/1000):K;
15 W = k*Wmax/K;
16 XW = x* exp(-sqrt(-1)*n'*W);
17 XW_Mag = real(XW);
18 W = [-mtlb_fliplr(W), W(2:1001)]; // Omega from -
      Wmax to Wmax
19 XW_Mag = [mtlb_fliplr(XW_Mag), XW_Mag(2:1001)];
20 //plot for abs(a)<1
21 figure
22 subplot (2,1,1);
23 \ a = gca();
24 a.y_location = "origin";
25 a.x_location = "origin";
26 plot2d3('gnn',n,x);
27 xtitle('Discrete Time Sequence x[n]')
28 subplot (2,1,2);
29 \ a = gca();
30 a.y_location = "origin";
31 a.x_location = "origin";
32 plot2d(W,XW_Mag);
33 title('Discrete Time Fourier Transform X(\exp(jW))')
```

Scilab code Exa 9.6 DTFT for rectangular pulse spectrum

```
1 //signals and systems
2 //discreet time fourier series
3 //IDTFT:Impulse Response of Ideal Low pass Filter
4 clear;
```


Figure 9.7: DTFT for rectangular pulse spectrum

```
5 clc;
6 close;
7 \text{ Wc} = 1;
             //1 \text{ rad/sec}
8 W = -Wc:0.1:Wc; //Passband of filter
9 HO = 1; //Magnitude of Filter
10 HlpW = H0*ones(1,length(W));
11 //Inverse Discrete-time Fourier Transform
12 t = -2*\%pi:2*\%pi/length(W):2*\%pi;
13 ht =(1/(2*\%pi))*HlpW *exp(sqrt(-1)*W'*t);
14 ht = real(ht);
15 figure
16 subplot (2,1,1)
17 \ a = gca();
18 a.y_location = "origin";
19 a.x_location = "origin";
20 a.data_bounds=[-%pi,0;%pi,2];
21 plot2d(W, HlpW, 2);
22 poly1 = a.children(1).children(1);
```


Figure 9.8: DTFT of sinc function

```
23 poly1.thickness = 3;
24 xtitle('Frequency Response of LPF H(exp(jW))')
25 subplot(2,1,2)
26 a = gca();
27 a.y_location = "origin";
28 a.x_location = "origin";
29 a.data_bounds=[-2*%pi,-1;2*%pi,2];
30 plot2d3('gnn',t,ht);
31 poly1 = a.children(1).children(1);
32 poly1.thickness = 3;
33 xtitle('Impulse Response of LPF h(t)')
```

Scilab code Exa 9.9 DTFT of sinc function

```
1 //signals and systems
2 //discreet time fourier series
3 //IDTFT: Impulse Response of Ideal Low pass Filter
4 clear;
5 clc;
6 close;
7 \text{ Wc} = 1;
             //1 \text{ rad/sec}
8 W = -Wc:0.1:Wc; //Passband of filter
9 HO = 1; //Magnitude of Filter
10 HlpW = H0*ones(1,length(W));
11 //Inverse Discrete-time Fourier Transform
12 t = -2*\%pi:2*\%pi/length(W):2*\%pi;
13 ht1 = (1/(2*\%pi))*HlpW *exp(sqrt(-1)*W'*t);
14 size(ht1)
15 n = -21:21;
16 \text{ size(n)}
17 ht=ht1.*(%e^%i*2*t);
18 \text{ ht} = \text{real}(\text{ht});
19 figure
20 subplot (2,1,1)
21 \ a = gca();
22 a.y_location = "origin";
23 a.x_location = "origin";
24 a.data_bounds=[-%pi,0;%pi,2];
25 plot2d(W, HlpW, 2);
26 poly1 = a.children(1).children(1);
27 poly1.thickness = 3;
28 xtitle('Frequency Response of LPF H(exp(jW))')
29 subplot (2,1,2)
30 \ a = gca();
31 a.y_location = "origin";
32 a.x_location = "origin";
33 a.data_bounds=[-2*%pi,-1;2*%pi,2];
34 size(t)
35 size(ht)
36 plot2d3('gnn',t,ht);
37 poly1 = a.children(1).children(1);
38 poly1.thickness = 3;
```


Figure 9.9: sketching the spectrum for a modulated signal

```
39 xtitle('Impulse Response of LPF h(t)')
```

Scilab code Exa 9.10.a sketching the spectrum for a modulated signal

```
1 //signals and systems
2 //discrete fourier transform
3 //Frequency Shifting Property of DTFT
4 clear;
5 clc;
6 close;
7 mag = 4;
```

```
8 W = -\%pi/4:0.1:\%pi/4;
9 H1 = mag*ones(1,length(W));
10 W1 = W + \% pi / 2;
11 W2 = -W - \%pi/2;
12 figure
13 subplot (2,1,1)
14 \ a = gca();
15 a.y_location = "origin";
16 a.x_location = "origin";
17 a.data_bounds=[-%pi,0;%pi,2];
18 plot2d(W,H1);
19 xtitle ('Frequency Response of the given H(exp(jW))')
20 subplot (2,1,2)
21 \ a = gca();
22 a.y_location = "origin";
23 a.x_location = "origin";
24 a.data_bounds=[-2*%pi,0;2*%pi,2];
25 plot2d(W1,0.5*H1);
26 plot2d(W2,0.5*H1);
27 xtitle ('Frequency Response of modulated signal H1(
      \exp(jW))')
```

Scilab code Exa 9.13 frequency response of LTID

```
1 //LTi Systems characterized by Linear Constant
2 //fourier analysis of discrete systems
3 //Inverse Z Transform
4 //z = %z;
5 syms n z;
6 H1 = (-5/3)/(z-0.5);
7 H2 = (8/3)/(z-0.8);
8 F1 = H1*z^(n)*(z-0.5);
9 F2 = H2*z^(n)*(z-0.8);
10 h1 = limit(F1,z,0.5);
11 disp(h1, 'h1[n]=')
```

```
12 h2 = limit(F2,z,0.8);

13 disp(h2,'h2[n]=')

14 h = h1-h2;

15 disp(h,'h[n]=')
```

Chapter 10

state space analysis

Scilab code Exa 10.4 state space descrption by transfer function

```
1 //signals and systems
2 //state space analysis
3 //state space description
4 clear all;
5 close;
6 clc;
7 s=poly(0, 's');
8 H=[(4/3)/(1+s),-2/(3+s), (2/3)/(4+s)];
9 Sys=tf2ss(H)
10 clean(ss2tf(Sys))
11 disp(Sys)
```

Scilab code Exa 10.5 finding the state vector

```
1 syms t s
2 A=[-12 2/3;-36 -1]; B=[1/3;1]; q0=[2;1]; X=1/s;
3 size(A)
4 size(s*eye(2,2))
```

```
5 Q=inv(s*eye(2,2)-A)*(q0+B*X);
6 q=[];
7 q(1)=ilaplace(Q(1));
8 q(2)=ilaplace(Q(2));
9 disp(q*'u(t)',"[q1(t) ; q2(t)]")
```

Scilab code Exa 10.6 state space descrption by transfer function

```
1 A=[0 1;-2 -3];
2 B=[1 0;1 1];
3 C=[1 0;1 1;0 2];
4 D=[0 0;1 0; 0 1];
5 syms s;
6 H=C*inv(s*eye(2,2)-A)*B+D;
7 disp(H,"the transfer function matrix H(s)=")
8 disp(H(3,2),"the transfer function relating y3 and x2 is H32(s)=")
```

Scilab code Exa 10.7 time domain method

```
//signals and systems
//state space
//state space
//time domain method to find the state vector

clc;
sclf;
s=poly(0,'s');
A=[s+12 -2/3; 36 s+1];
y=roots(det(A))
t=poly(0,'t');
beta=inv([1 y(1); 1 y(2)])*[%e^-y(1)*t; %e^-y(2)*t];
disp(beta)
size(beta)
W=beta(1)*[1 0;0 1]+ beta(2)*[-12 2/3;-36 -1];
```

```
14 zir=W*[2;1];
15 disp(zir);
16 zsr=W*[1/3;1];
17 disp(zsr);
18 total=zir+zsr;
19 disp(total);
```

Scilab code Exa 10.8 state space descrption by transfer function

Scilab code Exa 10.9 state equations of a given systems

```
1 A=[0 1;-2 -3];
2 B=[1;2];
3 P=[1 1;1 -1];
4 Ahat= P*A*inv(P)
5 Bhat=P*B
6 disp(Ahat, "A^=")
7 disp(Bhat, "B^=")
```

Scilab code Exa 10.10 diagonalized form of state equation

```
1 A=[0 1;-2 -3];
2 [V,lambda]=spec(A);
3 B=[1;2];
4 Bhat=P*B
5 disp(P,"P=")
6 disp(Bhat,"B^=")
7 disp(lambda,"lambda=")
```

Scilab code Exa 10.11 controllability and observability

```
1 A = [1 \ 0; 1 \ -1];
2 [V,lambda] = spec(A);
3 B = [1; 0];
4 C = [1 -2];
5 P = inv(V);
6 Bhat=P*B
7 Chat=C*inv(P)
8 disp('(a):')
9 disp(Bhat, "B<sup>=</sup>")
10 \operatorname{disp}(\operatorname{Chat}, \operatorname{C^-="})
11 A = [-1 \ 0; -2 \ 1];
12 [V,lambda] = spec(A);
13 B = [1;1];
14 C = [0 1];
15 P=inv(V);
16 \quad Bhat = P*B
17 Chat=C*inv(P)
18 disp('Part (b):')
19 disp(Bhat, "B^{\hat{}}=")
20 disp(Chat, "c^=")
```

Scilab code Exa 10.12 state space description of a given description

```
1 A=[0 1;-1/6 5/6];
2 B=[0;1];
3 C=[-1 5];
4 D=0;
5 sys=syslin('d',A,B,C,D);
6 N=25;
7 x=ones(1,N+1);n=(0:N);
8 q0=[2;3];
9 [ y q]=csim('step',n,sys);
10 y=dsimul(sys,x);
11 plot2d3(y)
```

Scilab code Exa 10.13 total response using z transform

```
//LTi Systems characterized by Linear Constant
//Inverse Z Transform
//z = %z;
syms n z;
H1 = (-2*z)/(z-(1/3));
H2 = (3*z)/(z-0.5);
H3 = (24*z)/(z-1);
F1 = H1*z^(n-1)*(z-(1/3));
F2 = H2*z^(n-1)*(z-0.5);
F3 = H3*z^(n-1)*(z-1);
H1 = limit(F1,z,(1/3));
disp(h1, 'h1[n]=')
h2 = limit(F2,z,0.5);
disp(h2, 'h2[n]=')
h3 = limit(F3,z,1);
```

```
16 disp(h3, 'h3[n]=')
17 h = h1+h2+h3;
18 disp(h, 'h[n]=')
```