Generative Models for Graphs

STAT-S 675 Fall 2021

Introduction

- Let G=(V,E) be an undirected and hollow graph with |V|=n and adjacency matrix A
 - $A \in \mathbb{R}^{n imes n}$ is symmetric with zero diagonals
- Suppose $G \sim F(\theta)$
 - What kind of $F(\theta)$ make sense here?
 - Given F and observed G, how can we estimate θ ?

Bernoulli Graphs

$$A_{ij} = \begin{cases} 1 & \exists \text{ edge between } i \text{ and } j \\ 0 & \text{else} \end{cases}$$

$$A_{ji} = A_{ij} \text{ and } A_{ii} = 0 \ \forall i,j \in [n].$$

 $A \sim \mathsf{BernoulliGraph}(P)$ iff:

- 1. $P \in [0,1]^{n \times n}$ describes edge probabilities between pairs of vertices.
- 2. $A_{ij} \stackrel{\text{ind}}{\sim} \mathsf{Bernoulli}(P_{ij})$ for each i < j.

For estimation, we need to impose some structure on P.

Example 1: If every entry $P_{ij} = \theta \in (0,1)$, then $A \sim \text{BernoulliGraph}(P)$ is an Erdos-Renyi graph. For this model, $A_{ij} \overset{\text{iid}}{\sim} \text{Bernoulli}(\theta)$.

Block Models

Suppose each vertex $v_1,...,v_n$ has hidden labels $z_1,...,z_n \in [K]$, and each P_{ij} depends on labels z_i and z_j . Then $A \sim \text{BernoulliGraph}(P)$ is a block model.

Example 2: Stochastic Block Model with two communities

- $z_1, ..., z_n \in \{1, 2\}$ • $P_{ij} = \begin{cases} p & z_i = z_j = 1\\ q & z_i = z_j = 2\\ r & z_i \neq z_j \end{cases}$
- To make this an assortative SBM, set $pq>r^2$.
- In this example, p=1/2, q=1/4, and r=1/8.

Block Models

Erdos-Renyi Model (1959)

- $P_{ij} = \theta$ (not a block model)
- 1 parameter θ

Stochastic Block Model (Lorrain and White, 1971)

- $P_{ij} = \theta_{z_i z_j}$
- K(K+1)/2 parameters θ_{kl}

Degree Corrected Block Model (Karrer and Newman, 2011)

- $P_{ij} = \theta_{z_i z_j} \omega_i \omega_j$
- K(K+1)/2 + n parameters θ_{kl} , ω_i

Popularity Adjusted Block Model (Sengupta and Chen, 2017)

- $P_{ij} = \lambda_{iz_j}\lambda_{jz_i}$
- Kn parameters λ_{ik}

Maximum Likelihood Estimation

$$L(P) = \prod_{i < j} P_{ij}^{A_{ij}} (1 - P_{ij})^{1 - A_{ij}}$$

- Erdos-Renyi: $L(\theta) = \prod_{i < j} \theta^{A_{ij}} (1 \theta)^{1 A_{ij}}$ $\implies \hat{\theta} = \frac{\sum_{i < j} A_{ij}}{n(n-1)/2}$
- SBM: $L(\vec{z}, \{\theta_{kl}\}) = \prod_{i < j} \prod_{k,l}^K \theta_{kl}^{A_{ij} z_{ik} z_{jl}} (1 \theta_{kl})^{(1 A_{ij}) z_{ik} z_{jl}}$ Computing MLEs for \vec{z} and $\{\theta_{kl}\}$ is NP-hard
- DCBM, PABM . . .

Expectation Maximization for SBM

$$\ell(\vec{z}, \{\theta_{kl}\}) = \sum_{i,j} \sum_{k,l}^{K} A_{ij} z_{ik} z_{jl} \log \theta_{kl} + (1 - A_{ij}) z_{ik} z_{jl} \log(1 - \theta_{kl})$$

- ullet Mean field approximation: Assume the labels z_{ik} are independent
- E-step: $E[z_{ik}] = \pi_{ik}$ $\propto \exp\left(\sum_{j \neq i} \sum_{l} \pi_{jl} (A_{ij} \log \theta_{kl} + (1 A_{ij}) \log(1 \theta_{kl}))\right)$
- M-step: $\hat{ heta}_{kl} = rac{\sum_{i < j} A_{ij} \pi_{ik} \pi_{jl}}{\sum_{i < j} \pi_{ik} \pi_{jl}}$
- Similar types of approaches for DCBM and PABM
- Mean field approximation may or may not be correct

Implementation

Demo