Markova ķēdes stacionārais sadalījums

Sākuma sadalījums $p(0) = (p_1^0 \quad p_2^0 \quad p_3^0 \quad ...)$, pārejas varbūtību matrica $P = \begin{pmatrix} p_{11} & p_{12} & p_{13} & ... \\ p_{21} & p_{22} & p_{23} & ... \\ p_{31} & p_{32} & p_{33} & ... \end{pmatrix}$

$$p(0) = \begin{pmatrix} p_1^0 & p_2^0 & p_3^0 & \dots \end{pmatrix}$$

$$p(1) = \begin{pmatrix} p_1(1) & p_2(1) & p_3(1) & \dots \end{pmatrix}$$

$$p(2) = \begin{pmatrix} p_1(2) & p_2(2) & p_3(2) & \dots \end{pmatrix}$$

.....

$$p(n) = \begin{pmatrix} p_1(n) & p_2(n) & p_3(n) & \dots \end{pmatrix}$$

Vai eksistē robežas

$$\lim_{n\to\infty} p_j(n), \qquad j=1,2,\dots ?$$

Pieņemsim, ka eksistē. Tad pie pietiekami lieliem n (robežas apkārtnē) sadalījumi vairs praktiski nemainās.

Būtu jābūt:
$$p_j(n+1) = \sum_{i=1}^{\infty} p_i(n) p_{ij}$$

Varētu būt:
$$p_j(n+1) \approx p_j(n)$$

Tādā gadījumā par stacionārajam sadalījumam jāizpildās

$$p^* = (p_1^* \quad p_2^* \quad p_3^* \quad \dots), \text{ kuram } \quad p_j^* = \sum_{i=1}^{\infty} p_i^* p_{ij}, \quad j = 1, 2, \dots$$

Teorēma. Ja eksistē vesels pozitīvs skaitlis n_0 , pie kura visi pārejas varbūtību matricas pa n_0 soļiem P^{n_0} elementi ir pozitīvi, tad eksistē robežas $\lim_{n\to\infty} p_{ij}(n) = p_j^*$ $j=1,2,\dots$ Robežvarbūtības nav atkarīgas no ķēdes sākumstāvokļa un ir vienīgais vienādojumu sistēmas

$$\begin{cases} \sum_{k=1}^{\infty} x_k p_{kj} = x_j & j = 1, 2, \dots \\ \sum_{j=1}^{\infty} x_j = 1 & \text{atrisinājums.} \end{cases}$$

Pierādījums.

Apzīmēsim
$$M_j(n) = \sup_i p_{ij}(n)$$
 un $m_j(n) = \inf_i p_{ij}(n)$. Acīm redzot, visiem k : $m_j(n) \le p_{kj}(n) \le M_j(n)$.

Saskaņā ar pilnās varbūtības formulu: $p_{ij}(n+1) = \sum_{k=1}^{\infty} p_{ik} p_{kj}(n)$

$$m_{j}(n+1) = \inf_{i} p_{ij}(n+1) = \inf_{i} \sum_{k=1}^{\infty} p_{ik} p_{kj}(n) \ge \inf_{i} \sum_{k=1}^{\infty} p_{ik} m_{j}(n) = m_{j}(n)$$

$$= 1$$
aizstāj ar mazāku

$$M_{j}(n+1) = \sup_{i} p_{ij}(n+1) = \sup_{i} \sum_{k=1}^{\infty} p_{ik} p_{kj}(n) \leq \sup_{i} \sum_{k=1}^{\infty} p_{ik} M_{j}(n) = M_{j}(n)$$

$$= 1$$
aizstāj ar lielāku

Tādējādi

$$m_j(1) \le m_j(2) \le ... \le m_j(n) \le ... \le M_j(n) \le ... \le M_j(2) \le M_j(1)$$

Virknēm $m_j(n)$ un $M_j(n)$ eksistē robežas, ja $n \to \infty$. pierādīsim, ka tās sakrīt.

Izvēlēsimies stāvokļus i un j, tā lai izpildītos

$$M_k(n+n_0) = p_{ik}(n+n_0) = \sum_{l=1}^{\infty} p_{il}(n_0)p_{lk}(n)$$

$$m_k(n+n_0) = p_{jk}(n+n_0) = \sum_{l=1}^{\infty} p_{jl}(n_0)p_{lk}(n)$$
 atņem

$$M_k(n+n_0)-m_k(n+n_0)=\sum_{l=1}^{\infty}(p_{il}(n_0)-p_{jl}(n_0))p_{lk}(n)=$$

$$=\sum_{l}^{+}(p_{il}(n_0)-p_{jl}(n_0))p_{lk}(n)+\sum_{l}^{-}(p_{il}(n_0)-p_{jl}(n_0))p_{lk}(n)\leq$$

pozitīvas starpības

negatīvas starpības

$$\leq M_k(n) \sum_{l} (p_{il}(n_0) - p_{jl}(n_0)) + M_k(n) \sum_{l} (p_{il}(n_0) - p_{jl}(n_0))$$
(*)

Ievērojot, ka pilna summa $\sum_{l=1}^{\infty} (p_{il}(n_0) - p_{jl}(n_0)) = 0 = \sum_{l}^{+} + \sum_{l}^{-} \text{redzam, ka}$

$$\sum_{j}^{+} = \sum_{j}^{-} \triangleq d_{ij} < 1_{\text{daļa no visas summas, kas vienāda ar 1}} d \triangleq \sup_{i,j} d_{ij} < 1_{\text{No (*) seko}} M_k(n+n_0) - m_k(n+n_0) \leq d(M_k(n) - m_k(n))$$

Ja ķēde izdarīs vēl n_0 soļus, koeficients būs d^2 utt. Redzams, ka $M_k(n) - m_k(n) \underset{n \to \infty}{\longrightarrow} 0$, bet ievērojot, ka $m_k(n) \le p_{ik}(n) \le M_k(n)$, seko, ka eksistē robežsadalījums, kas nav atkarīgs no sākumstāvokļa i.

Varam rakstīt: $p_{ij}(n+1) = \sum_{k=1}^{\infty} p_{ik}(n) p_{kj}$. Ievietojot robežvērtības:

$$p_{j}^{*} = \sum_{k=1}^{\infty} p_{k}^{*} p_{kj}$$
, turklāt $\sum_{j=1}^{\infty} p_{j}^{*} = 1$. Tātad robežsadalījuma eksistence pierādīta.

Pierādīsim <u>unitāti</u> (vienādojumu sistēmai (1) nav cita atrisinājuma kā robežvarbūtības). Pieņemsim, ka kaut kādi x_1, x_2, x_3, \cdots ir sistēmas (1) atrisinājums. Tad

$$x_{j} = \sum_{k=1}^{\infty} x_{k} p_{kj} = \sum_{k=1}^{\infty} \left(\sum_{l=1}^{\infty} x_{l} p_{lk} \right) p_{kj} = \sum_{l=1}^{\infty} x_{l} \sum_{k=1}^{\infty} p_{lk} p_{kj} = \sum_{l=1}^{\infty} x_{l} p_{lj} (2) = \dots$$

$$=\sum_{k=1}^{\infty}x_{k}p_{kj}(n)$$

Pārejot uz robežu, ja $n \to \infty$,

$$x_{j} = \sum_{k=1}^{\infty} x_{k} p_{j}^{*} = p_{j}^{*} \sum_{k=1}^{\infty} x_{k} = p_{j}^{*}$$

$$= 1, \text{ jo apmierina sistēmu (1)}$$

Markova ķēdi, kas apmierina teorēmas nosacījumus, sauc par ergodisku.

Piemēri.

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/4 & 3/4 \\ 1/5 & 1/5 & 1/5 & 2/5 \end{pmatrix}$$

Scientific Work Place 5.50

$$\frac{1}{2}p_1^* + \frac{1}{5}p_4^* = p_1^*$$

$$\frac{1}{2}p_1^* + \frac{1}{3}p_2^* + \frac{1}{5}p_4^* = p_2^*$$

$$\frac{1}{3}p_2^* + \frac{1}{4}p_3^* + \frac{1}{5}p_4^* = p_3^* \text{ , Solution is: } \left[p_1^* = \frac{3}{19}, p_2^* = \frac{9}{38}, p_3^* = \frac{4}{19}, p_4^* = \frac{15}{38}\right]$$

$$\frac{1}{3}p_2^* + \frac{3}{4}p_3^* + \frac{2}{5}p_4^* = p_4^*$$

$$p_1^* + p_2^* + p_3^* + p_4^* = 1$$

Stacionārais sadalījums:
$$p_1^* = \frac{3}{19}$$
, $p_2^* = \frac{9}{38}$, $p_3^* = \frac{4}{19}$, $p_4^* = \frac{15}{38}$

$$P = \begin{pmatrix} 1/10 & 5/10 & 4/10 \\ 6/10 & 2/10 & 2/10 \\ 3/10 & 4/10 & 3/10 \end{pmatrix}$$

$$P = \begin{pmatrix} 1/10 & 5/10 & 4/10 \\ 6/10 & 2/10 & 2/10 \\ 3/10 & 4/10 & 3/10 \end{pmatrix}$$

$$\frac{1}{10}p_1^* + \frac{6}{10}p_2^* + \frac{3}{10}p_3^* = p_1^*$$

$$\frac{5}{10}p_1^* + \frac{2}{10}p_2^* + \frac{4}{10}p_3^* = p_2^*$$

$$\frac{4}{10}p_1^* + \frac{2}{10}p_2^* + \frac{3}{10}p_3^* = p_3^*$$
, Solution is: $\left[p_1^* = \frac{16}{47}, p_2^* = \frac{17}{47}, p_3^* = \frac{14}{47}\right]$

$$p_1^* + p_2^* + p_3^* = 1$$

Stacionārais sadalījums: $p_1^* = \frac{16}{47}$, $p_2^* = \frac{17}{47}$, $p_3^* = \frac{14}{47}$

$$P = \begin{pmatrix} 8/10 & 1/10 & 1/10 \\ 0 & 9/10 & 1/10 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P = \begin{pmatrix} 8/10 & 1/10 & 1/10 \\ 0 & 9/10 & 1/10 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\frac{8}{10}p_1^* = p_1^*}{\frac{1}{10}p_1^* + \frac{9}{10}p_2^* = p_2^*}, \text{ Solution is: } [p_1^* = 0, p_2^* = 0, p_3^* = 1]$$

$$\frac{\frac{1}{10}p_1^* + \frac{1}{10}p_2^* + p_3^* = p_3^*}{p_1^* + p_2^* + p_3^* = 1}$$

Stacionārais sadalījums: $p_1^* = 0$, $p_2^* = 0$, $p_3^* = 1$

$$P = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$P = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\frac{\frac{1}{3}p_1^* + \frac{1}{2}p_2^* + p_3^* = p_1^*}{\frac{\frac{1}{3}p_1^* + \frac{1}{2}p_2^* = p_2^*}{\frac{1}{3}p_1^* = p_3^*}}, \text{ Solution is: } \left[p_1^* = \frac{1}{2}, p_2^* = \frac{1}{3}, p_3^* = \frac{1}{6}\right]$$
$$p_1^* + p_2^* + p_3^* = 1$$

Stacionārais sadalījums: $p_1^* = \frac{1}{2}$, $p_2^* = \frac{1}{3}$, $p_3^* = \frac{1}{6}$

5.
$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 \\ 0 & 0 & 2/3 & 1/3 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}$$

$$\frac{1}{2}p_1^* + \frac{1}{3}p_2^* = p_1^*$$

$$\frac{1}{2}p_1^* + \frac{2}{3}p_2^* = p_2^*$$

$$\frac{2}{3}p_3^* + \frac{1}{2}p_4^* = p_3^*$$
, Solution is: $\left[p_1^* = \frac{2}{5} - p_4^*, p_2^* = \frac{3}{5} - \frac{3}{2}p_4^*, p_3^* = \frac{3}{2}p_4^*\right]$

$$\frac{1}{3}p_3^* + \frac{1}{2}p_4^* = p_4^*$$

$$p_1^* + p_2^* + p_3^* + p_4^* = 1$$

Stacionārais sadalījums neeksistē