大整数模余运算举例说明

- $3185^{2753} \mod 3233 = (-48)^{2753} \mod 3233$
- =- (3^{2753} mod3233* $2^{4}*^{2753}$ mod3233) mod 3233
- 由于这里的模数3233太大,指数2753也太大,没有什么特殊情况可以利用。所以计算比较困难。
- 一种减负的做法是,利用模指数运算(参见下一页)。
- 2753 = (1010110000001)₂, 借助计算器或者计算机, 利用 这个分别将每项的模余求出来, 再求乘积的模余。

Modular Exponentiation 模指数运算 (自己看看)

- In cryptography it is important to be able to find $b^n \mod m$ efficiently, where b, n, and m are large integers.
- It is impractical to first compute b^n and then find its remainder when divided by m because b^n will be a huge number. Instead, we can use an algorithm as follows.
- Assume $n = (a_{k-1} \dots a_1 a_0)_2$, we can get

$$b^n = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} \cdot \dots \cdot b^{a_1 \cdot 2} \cdot b^{a_0}$$

- This shows that to compute b^n , we need only compute the values of b, b^2 , $(b^2)^2 = b^4$, $(b^4)^2 = b^8$, . . . , b^2 . Once we have these values, we multiply the terms b^2 in this list, where $a_i = 1$.
- The algorithm successively finds $b \mod m$, $b^2 \mod m$, $b^4 \mod m$, . . . , $b^{2k-1} \mod m$ and multiplies together those terms $b^{2j} \mod m$ where $a_j = 1$,