Requested Patent:

JP2000228890A

Title:

BRUSHLESS MOTOR;

Abstracted Patent:

JP2000228890;

Publication Date:

2000-08-15;

Inventor(s):

ITO MOTOYA; MOROTO KIYONORI;

Applicant(s):

DENSO CORP;

Application Number:

JP19990108226 19990415;

Priority Number(s):

JP19990108226 19990415; JP19980342415 19981202;

IPC Classification:

F02M37/08; H02P6/08; F04C15/00; F04D5/00; H02K29/00;

Equivalents:

•

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a brushless motor capable of reducing the cost of a drive circuit and reducing switching noise. SOLUTION: A five-phase brushless motor is energized at a four-phase armature coil by switching MOSFETs 36-45 using a parallel path. The current passing through the MOSFETs 36-45 becomes one half that of the conventional three-phase full-wave driven system, so that the respective MOSFETs 36-45 can use an inexpensive element having lower current capacity. When exciting phases are switched, one of two exciting phases is turned off at one exciting path of the parallel paths, and one non-exciting phase is turned on. As a result, the change in the total current of the motor become low in switching exciting phases, so as to reduce the switching noise. When required rotation speed is low, the motor torque is reduced to cause the rotational speed of the motor to be reduced by energizing only two-phase armature coil (two-phase energization). As a result, the rotational speed of the motor can be made variable without conducting PWM control.

(19)日本個特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-228890 (P2000-228890A)

(43)公開日 平成12年8月15日(2000.8.15)

(51) Int.Cl.7	酸別記号	P I Ý		
H02P 6/08		H 0 2 P 6/02	3 7 1 A	
F04C 15/00		F 0 4 C 15/00	L	
F 0 4 D 5/00 H 0 2 K 29/00		P 0 4 D 5/00 B H 0 2 K 29/00 Z		
				# F 0 2 M 37/08
		容查請求 未請求	R 請求項の数9 OL (全 8 頁)	
(21)出顧番号	特顧平11-108226	(71)出顧人 000004	人 000004260	
		株式会	社デンソー	
(22) 出版日	平成11年4月15日(1999.4.15)	型印度	刈谷市町和町1丁目1番地	
		(72)発明者 伊藤	元也	
(31)優先権主張番号)優先権主張番号 特顧平10-342415 爱知県刈谷市昭和町		刈谷市昭和町1丁目1番地 株式会	
(32)優先日	平成10年12月2日(1998.12.2)	社デン	ソー内	
(33) 優先權主張国	日本(JP)	(72)発明者 賭戸 清規		
		爱知県	刈谷市昭和町1丁目1番地 株式会	
		社デン	ソー内	
		(74)代理人 100098	3420	
		弁理士	: 加古 宗男	

(54) 【発明の名称】 ブラシレスモータ

(57)【要約】

【課題】 駆動回路の低コスト化とスイッチングノイズ 減少を実現する。

【解決手段】 5相のブラシレスモータにおいて、MOSFET36~45のスイッチングにより4相の電機子コイルに並列経路で通電する。これにより、MOSFET36~45に流れる電流が従来の3相全波駆動方式の1/2となるため、各MOSFET36~45は電流をの小さい安価な案子を使用できる。通電相切換時には、並列経路の一方の通電程路において、それまでの2つの通電相をオンするように切り換える。これにより、通電相が損時のモータ全電流の変化が小さくなり、スイッチングノイズが小さくなる。一方、要求回転数が低い時は、2相の電機子コイルのみに通電(2相通電)することで、モータトルクを低下させてモータ回転数を低下させる。これにより、PWM制御することなく、モータ回転数を可変できる。

【特許請求の範囲】

【請求項1】 各相の電機子コイルを装着したステータとマグネットロータとを対向させ、前記各相の電機子コイルへの通電を順次切り換えることで前記マグネットロータを回転駆動するブラシレスモータにおいて、

4相以上の電機子コイルを備え、

通電する複数相の電機子コイルに並列経路で電流を流す ようにスイッチング素子を接続し、

前記マグネットロータの回転位置に応じて通電相を切り 換える際にその切り換えの前後で通電相をオーバーラッ プさせるように前記スイッチング素子のスイッチング動 作を制御する駆動制御手段を設けたことを特徴とするブ ラシレスモータ。

【請求項2】 前記駆動制御手段は、要求モータ出力に 応じて通電相の相数を変更するように前記スイッチング 案子のスイッチングタイミングを切り換えることを特徴 とする請求項1に記載のブラシレスモータ。

【請求項3】 前記駆動制御手段は、モータ起動時及び /又は過負荷時に、電流が流れる経路のコイル抵抗値を 増加させるように前記スイッチング案子のスイッチング タイミングを切り換えることを特徴とする請求項1又は 2に記載のブラシレスモータ。

【請求項4】 前記駆動制御手段は、通電相の相数を偶数とするように前記スイッチング素子のスイッチング動作を制御することを特徴とする請求項1万至3のいずれかに記載のブラシレスモータ。

【請求項5】 前記電機子コイルの相数は、5相以上の 奇数相であることを特徴とする請求項1乃至4のいずれ かに記載のブラシレスモータ。

【請求項6】 全てのスイッチング素子は、1つの1C チップに組み込まれていることを特徴とする請求項1乃 至5のいずれかに記載のブラシレスモータ。

【請求項7】 前記マグネットロータの極数Pと前記ステータの極数Mとモータ相数×との関係は、

{(x-1)/x} M≤P≤{(x+1)/x} M (但しPは偶数、xは4以上の整数) に設定されている ことを特徴とする請求項1乃至6のいずれかに記載のブ ラシレスモータ。

【請求項8】 前記ステータの極数Mはモータ相数×の 偶数倍に設定され、前記マグネットロータの極数Pは4 ×m (但しmは自然数)に設定されていることを特徴と する請求項1乃至7のいずれかに記載のブラシレスモー タ

【請求項9】 車両の燃料ポンプの駆動モータとして用いられることを特徴とする請求項1乃至8のいずれかに記載のブラシレスモータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、各相の電機子コイルへの通電をスイッチング案子により順次切り換えてマ

グネットロータを回転駆動するブラシレスモータに関す るものである。

[0002]

【従来の技術】従来のブラシレスモータは、例えば図7に示すような3相全波駆動方式のブラシレスモータが多い。この3相全波駆動方式は、マグネットロータ(図示せず)の回転位置に応じて6個のMOSFET2~7を順次スイッチングして、U相、V相、W相の3相の電機子コイルU8、V8、W8への通電を順次切り換えて、3相のうち2相の電機子コイルに通電することで、マグネットロータを回転駆動するようにしている。つまり、マグネットロータの回転位置に応じて、通電相を®U相とV相、®V相とW相、®W相とU相の3通りの相み合わせに切り換えるようにしている。

[0003]

【発明が解決しようとする課題】上記3相全波駆動方式のブラシレスモータでは、電源(+B)から2相の電機子コイルに直列経路で電流が流れるため、モータに流れる全電流(以下「モータ全電流」という)が順次MOSFET2~7に流れる。このため、MOSFET2~7は、モータ全電流に耐え得る電流容量の大きい高値な素子が必要となり、低コスト化の要求を満たすことができない。しかも、2相の電機子コイルに直列経路で通電されるため、通電相の切換直後に、それまで通電されていなかった相の電機子コイルに通電を開始する際に発生する逆起電力により、瞬間的に電流が0となってから2相の電機子コイルに流れ始る。このため、通電相切換時のモータ全電流の変化が大きくなり、これがスイッチングノイズを大きくする原因となっている。

【0004】本発明はこのような事情を考慮してなされたものであり、従ってその目的は、スイッチング案子の低コスト化とスイッチングノイズの減少とを実現することができるブラシレスモータを提供することにある。 【0005】

[0005]

【課題を解決するための手段】上記目的を達成するために、本発明の請求項1のブラシレスモータは、4相以上の電機子コイルを備え、駆動制御手段によって、通電する複数相の電機子コイルに並列経路で電流を流すようにスイッチング素子を接続すると共に、駆動制御手段によってマグネットロータの回転位置に応じて通電相を切り換える際にその切り換えの前後で通電相をオーバーラップさせるようにスイッチング素子のスイッチング動作を制御する。

【0006】つまり、複数相の電機子コイルに2つの通 電経路で電流を並列に流せば、各スイッチング素子に流 れる電流が従来よりも少なくなり、その分、スイッチン グ素子の電流容量を小さくすることができ、低コスト化 であ。しかも、通電相の切り換えの前後で通電相をオ ーバーラップさせるように切り換えれば、通電相切換時 に、一方の通電経路の通電相のみが切り換えられるだけ であり、これと並列となる他方の通電経路は、通電相が切り換えられず、コイル電流は変化しない。このため、通電相切換時のモータ全電流の変化が従来の3相全波駆動方式より小さくなり、スイッチングノイズを小さくすることができる。また、電流が0となる瞬間がないため、トルクリップルを小さくすることができる。

【0007】ところで、モータ回転数の制御は、特開平9-42096号公報に示すようにスイッチング案子のオン/オフのデューティ比をPWM方式で制御して、モータ電流を制御して回転数制御を行うことが提案されている。しかし、PWM制御では、スイッチング案子を高速でスイッチングするため、高周波のスイッチングノイズが発生するという問題があり、例えば、車両の燃料ポンプの駆動モータに適用すると、PWM制御による高周波のスイッチングノイズによって、ラジオの音声に雑音が入ったり、他の車載電子部品が誤作動するおそれがある。

【0008】そこで、請求項2のように、要求モータ出力に応じて通電相の相数を変更するようにスイッチング 案子のスイッチングタイミングを切り換えるようにすると良い。つまり、要求モータ出力に応じて通電相の相数を変更すると、電流が流れる経路のコイル抵抗値が変化してコイル電流が変化し、モータトルクが変化する。これにより、PWM制御することなく、モータ回転数を可変することができて、高周波のスイッチングノイズの預題を解消することができる。

【0009】また、モータ起動時や過負荷時には、大きなコイル電流が流れ、スイッチング索子にも大電流が流れるため、スイッチング索子にかかる負担が大きくなる。このような事情を考慮して、請求項3のように、モータ起動時及び/又は過負荷時に、電流が流れる経路のイッチングタイミングを切り換えるようにすると良い。このようにすれば、モータ起動時及び/又は過負荷時に、コイル抵抗値の増加によってコイル電流が制限され、スイッチング索子に流れる電流が制限される。このため、電流容量の小さいスイッチング案子を使用しても、モータ起動や過負荷時にスイッチング案子に流れる電流を定格容量以下に加えることができて、スイッチング索子を保護することができる。

【0010】また、請求項4のように、通電相の相数を偶数とするようにスイッチング繋子のスイッチング動作を制御すると良い。このように、通電相の相数を偶数とすれば、並列経路の一方の通電経路のコイル数と他方の通電経路のコイル数をそれぞれ同数とすることができて、2つの通電経路のコイル抵抗値、コイル電流を同一にすることができ、ブラシレスモータをバランス良く回転させることができる。

【0011】この場合、請求項5のように、電機子コイ

ルの相数を5相以上の奇数相とすると良い。このように すれば、非通電相を1相にして通電相の相数を最大にし た時に通電相の相数を偶数にすることができ、上記請求 項4と同じく、ブラシレスモータをバランス良く回転さ せることができる。

【0012】また、例えば、4相以上の全波駆動方式のブラシレスモータでは、8個以上のスイッチング素子を必要とするため、請求項6のように、全てのスイッチング素子を1つのICチップに組み込んだ構成とすると良い。このようにすれば、部品点数を大幅に削減できて組立性を向上でき、一層の低コスト化が可能となる。

【0013】ところで、ブラシレスモータは、電機子コイルの通電によって発生する磁界とマグネットロータのマグネットの磁界との相互作用によって回転トルクを発生する。この回転トルクを効率良く発生させるには、通電相の電機子コイルに対してマグネットロータのN極とS極との境界部分を対向させる必要がある。

【0014】そこで、請求項7のように、マグネットロータの極数P(マグネットの数)とステータの極数M(突極の数)とモータ相数×との関係を次のように設定すると良い。

{ (x-1) /x } M ≤ P ≤ { (x+1) /x } M (但しPは偶数、xは4以上の整数)

【0015】このようにすれば、×相のブラシレスモータで、同時に(×-1)相ずつ通電する場合でも、通電する全ての電機子コイルにマグネットロータのN極とS極との境界部分を対向させることができ、効率良く回転トルクを発生させてモータ効率を向上できると共に、トルクリップルを低減することができる。

【0016】更に、請求項8のように、ステータの極数 Mをモータ相数×の偶数倍に設定し、マグネットロータ の極数Pを4×m(但しmは自然数)に設定すると良い。このようにすれば、通電相の電機子コイルと、これに対向するマグネットロータのマグネットとの間に生じる磁気力が回転軸に対して対称となるため、マグネットロータに作用する磁気力を偶力とすることができて、マグネットロータの径方向に作用する力成分をキャンセルすることができる。これにより、回転軸の軸受に加わる荷重を小さくすることができて、耐久性を向上できると共に、回転軸の振れを防止できる。

【0017】以上説明した本発明のブラシレスモータは、種々の装置の駆動モータとして利用することができ、例えば、請求項9のように、車両の燃料ポンプの駆動モータとして用いれば、駆動回路の低コスト化により燃料ポンプを低コスト化できると共に、スイッチングノイズを小さくすることができ、スイッチングノイズによるラジオの雑音や車載電子部品の誤作動を防止することができる。

[0018]

【発明の実施の形態】以下、本発明を車両の燃料ポンプ

に適用した一実施形態を図1乃至図6に基づいて説明する。燃料ボンブ11は、円筒ハウジング12内にボンブ部13とブラシレスモータ14とを組み込んで構成されている。ボンブ部13の構成を説明すると、円筒ハウジング12の一端部に圧入、かしめ等により固定されたボンプケーシング15とボンブカバー16とからボンブ室が構成され、このボンブ室内にインペラ17が収納されている。インペラ17は、ブラシレスモータ14の回転軸24に嵌着されている。

【0019】一方、ブラシレスモータ14は、例えば5相全被駆動方式のブラシレスモータであり、次のように構成されている。円筒ハウジング12内に円筒型のステータ19が嵌合固定され、このステータ19には、図2に示すように、例えば10個の突極20が形成されている。これら突極20には、A相〜E相の5相の電機子コイルA21〜E21が、A相、B相、C相、D相、E相の順序で2個ずつ装着され、各相の2個のコイルが回転

軸24に対して対称な位置(180°反対側の位置)に 配置されていると共に、各相の2個のコイルが直列に接 続されている(図3参照)。

【0020】以上のように構成した10極のステータ19の内周側には、マグネットロータ23が配置されている。このマグネットロータ23は、回転軸24に嵌着されたロータコア25と、このロータコア25の外周に接着等により固着された例えば8個の矛吸用のマグネット26とから構成され、8個のマグネットロータで100でである。これにより、8極のマグネットロータ23が構成されている。これにより、8極のマグネットロータ23が構成されている。

【0021】上述したマグネットロータ23の極数P (8極)とステータ19の極数M(10極)とモータ相 数x(5相)は、次式(1)~(3)の条件を満たすよ うに設定されている。

【0022】上記(1)式は、×相のブラシレスモータで、同時に(×-1)相ずつ通電する場合でも、通電する全ての電機子コイルにマグネットロータ23のN極とS極との境界部分を対向させるのに必要な条件である。また、上記(2)及び(3)式は、通電相の電機子コイルと、これに対向するマグネットロータ23のマグネット26との間に生じる磁気力を回転軸24に対して対称にする(偶力にする)のに必要な条件である。

【0023】図1に示すように、マグネットロータ23の回転軸24の一端は、軸受27を介してボンプケーシング15中心の軸受簡部28に回転自在に支持され、該回転軸24の他端を支持する軸受29は、円筒ハウジング12内に固定された軸受ホルダ30に組み付けられている。軸受ホルダ30には、5相全波駆動方式の駆動制御回路31(駆動制御巨路31によって各相の電機フィル21への通電が順次切り換えられる。円筒ハウジング12の駆動制御回路31個の開口部には、吐出口32を有するハウジングカバー33が嵌着されている。

【0024】ブラシレスモータ14によってボンプ部13のインペラ17が回転駆動されると、燃料タンク(図示せず)内の燃料がボンプカバー16の吸込み口(図示せず)からボンプ室内に吸い込まれ、ボンプケーシング15の吐出口(図示せず)から円筒ハウジング12内に吐出される。この燃料は、ステータ19とマグネットロータ23との間の隙間を流れてハウジングカバー33の吐出口32から燃料配管(図示せず)内に吐出され、燃料噴射弁(図示せず)へ送られる。

【0025】図4に示すように、各相の電機子コイルA 21~E21はY結線されている。また、駆動制御回路 31は、エンジン制御回路(図示せず)から制御信号が入力される制御部35と、この制御部35の出力に基づいて各相の電機子コイルA21〜E21への通電をスイッチングする駆動回路46とから構成され、駆動回路46は、10個のMOSFET36〜45を1つのICチップに組み込んで構成されている。これら10個のMOSFET36〜45は、2個ずつ対となってバッテリ電圧(+B) 関とグランド側との間にブリッジ状に接続され、各対の2つMOSFETの中間接続点がY結線されたA相〜E相のコイルA21〜E21の一端に接続されている。

【0026】駆動制御回路31は、エンジン要求燃料量が多い時には、ブラシレスモータ14の運転モードを4相通電モードに切り換え、エンジン要求燃料量が少ない時には2相通電モードに切り換える。

【0027】4相通電モードでは、5相のうち4相の電機子コイルに並列経路で通電して、ブラシレスモータ14を駆動する。このとき、駆動制御回路31は、マグネットロータ23の回転位置を非通電相のコイルに誘導される誘導電圧により検出し、その検出信号に基づいて、図5に示すように、MOSFET36~45を順次スイッチングして、4相の電機子コイルに並列経路で通電する。例えば、図2(a)に示すように、マグネットロータ23の回転位置がA相、B相、C相、D相の電機子コイルA21、B21、C21、D21に通電する位置にある時は、MOSFET36、38、42、44のみをインして(図5の[®])、A相コイルC21からB相コイルD21への通電経路と、C相コイルC21からB相コイルB21への通電経路で電源(+B)から並列に電流を流す。

【0028】このように、4相の電機子コイルを2相ずつ2つの通電経路に分けて並列に電流を流せば、各通電経路の電機子コイルにモータ全電流の1/2の電流が流れると共に、各MOSFET36~45にモータ全電流の1/2の電流が流れる。

【0029】その後、マグネットロータ23の回転位置が図2(b)に示す位置に達すると、駆動制御回路31は、3つのMOSFET36,38,42を引き続きオン状態に保持しながら、MOSFET44をオフすると共にMOSFET45をオンして(図5のゆ)、D相コイルD21に代えてE相コイルE21への通電に切り換える。これにより、A相コイルA21からE相コイルE21への通電経路と、C相コイルC21からB相コイルB21への通電経路で並列に環流を流す。

【0030】このようにして、マグネットロータ23の回転位置に応じて、並列経路のうち一方の通電経路において、それまでの2つの通電相をオンするように切り換えていくことで、通電相を傾次、1相ずつ切り換えていくことで、通電相を傾次、1相ずつ切り換えていくことで、通電相を傾次、1相ずつ切り換えていくことで、通電相を傾次、1相ずつ切り換えていた。整然料量が少ない時に、ブラシレスモータ14の運転モードを2相通電モードに切り換える。この2相通電モードでは、5相のうち2相の電機子コイルのみに通電して、ブラシレスモータ14を駆動する。例えば、マグネットロータ23の回転位置が、図2(a)に示す位置にある時は、2つのMOSFET36、44のみをオンして、A相コイルA21とD相コイルD21のみに直列経路で通電する。

【0032】この2相通電モードでは、4相通電モードに比べて、ブラシレスモータ14全体としての通電経路のコイル抵抗値が約2倍となるため、ブラシレスモータ14に流れる電流が約1/2になって、モータトルクが約1/2になり、図6に示すようなモータ回転数特性が得られる。この結果、4相通電モードから2相通電モードに切り換えると、モータ回転数が低下し、燃料ボンプ11の吐出量が減少する。

【0033】更に、駆動制御回路31は、モータ起動時 と過負荷時に、ブラシレスモータ14の運転モードを2 相通電モードに切り換えて、モータ全体としての通電経 路のコイル抵抗値を大きくする。これにより、モータ起 動時や過負荷時のコイル電流がコイル抵抗値によって適 度に抑えられ、MOSFET36~45に大電流が流れ ることが防止される。

【0034】尚、上述した4相通電モードと2相通電モードの他に、3相の電機子コイルに通電する3相通電モードを設定して、ブラシレスモータ14の運転モードを3段階に切り換えるようにしても良い。

【0035】図7に示す従来の3相全波駆動方式のブラシレスモータは、電源(+B)から2相の電機子コイルに直列経路で電流が流れるため、モータ全電流が、順

次、MOSFET2~7に流れることになり、電流容量の大きい高価なMOSFETが必要となる。

【0036】これに対し、本実施形態の5相のブラシレスモータ14は、4相通電時に、4相の電機子コイルに2つの通電経路で電流が並列に流れるため、各MOSFET36~45に流れる電流が従来の3相全波駆動方式の1/2となり、その分、各MOSFET36~45は電流容量の小さい安価な素子を使用できる。

【0037】ところで、本実施形態において、駆動回路 46を構成する10個のMOSFET36~45の電流 容量をそれぞれKとすると、駆動回路46全体として は、K×10の電流容量が必要となる。これに対し、図 7に示す従来の3相全波駆動方式では、駆動回路1を構成する6個のMOSFET2~7にモータ全電流(本実施形態の2倍の電流)が流れるため、各MOSFET2~7の電流容量をそれぞれ本実施形態の2倍(K×2)とする必要があり、駆動回路1全体としては、K×2×6年K×12の電流容量が必要となる。従って、本実施形態では、駆動回路46全体としての電流容量を従来の3相全波駆動方式よりも小さくすることができ、駆動回路46全体を1チップ化する場合においても本実施形態の方が有利である。

【0038】また、従来の3相全波駆動方式では、2相の電機子コイルに直列経路で通電されるため、通電相の切換直後に、それまで通電されていなかった相の電機子コイルに通電を開始する際に発生する逆起電力により、瞬間的に電流が0となってから2相の電機子コイルに流れ始める。このため、通電相切換時のモータ全電流の変化が大きくなり、スイッチングノイズが大きくなる。また、電流が0となる瞬間があるため、トルクリップルが大きくなる。

【0039】これに対し、本実施形態では、4相通電時に、電源(+B)から2つの通電経路に並列に通電するようにしたので、通電相を切り換える際に、一方の通を経路において、それまでの2つの通電相のうちの1つをオフし、それまでの1つの非通電相をオンするように切り換えることができる。このため、通電相切換時に、一方の通電経路の通電相のみが切り換えられるだけであり、これと並列となる他方の通電経路は、通電相が切り換えられず、コイル電流は変化しない。この結果、通動相切換時のモータ全電流の変化が従来の3相全駆動方式のほぼ1/2となり、スイッチングノイズを小さくすることができる。この場合、電流が0となる瞬間がない

【0040】しかも、通電相の相数を変えることで、モータ回転数を可変するようにしたので、PWM制御することなく、燃料ボンプ11の吐出量を可変制御するができる。従って、PWM制御による高周波のスイッチングノイズの発生も防止でき、前述した通電切換時のスイッチングノイズ減少効果と相俟って、スイッチングノイズ

ため、トルクリップルを小さくすることができる。

を大幅に低減することができ、ラジオの雑音や車載電子 部品の誤作動を防止することができる。

【0041】更に、本実施形態では、駆動回路46を構成する10個のMOSFET36~45を1つのICチップに組み込んでいるので、部品点数を大幅に削減でき、組立性向上、低コスト化の要求も満たすことができる。尚、駆動回路46と制御部46とを1つのICチップに組み込んでも良いことは言うまでもない。

【0042】また、本実施形態では、マグネットロータ23の極数Pとステータ19の極数Mとモータ相数×を、{(x-1)/x}M≦P≦{(x+1)/x}Mを満たすように設定しているため、x相のブラシレスモータで、同時に(x-1)相ずつ通電する場合でも、通電する全ての電機子コイルにマグネットロータ23のNをとS極との境界部分を対向させることができ、効率良く回転トルクを発生させてモータ効率を向上できると共に、トルクリップルを低減することができる。

【0043】しかも、ステータ19の極数Mをモータ相数×の偶数倍に設定し、マグネットロータ23の極数Pを4×m(但しmは自然数)に設定したので、通電相の電機子コイルと、これに対向するマグネットロータ23のマグネット26との間に生じる磁気力を回転軸に対して対称にすることができて、マグネットロータ23に作用する磁気力を優力とすることができる。これにより、マグネットロータ23の径方向に作用する力成分をキッンセルできるため、回転軸24の軸受27に加わる荷里を小さくすることができて、耐久性を向上できると共に、回転軸24の振れを防止できて、滑らかな回転を実現できる。

【0044】尚、前述した式(1)~(3)を満たす範囲であれば、マグネットロータ23の極数Pやステータ19の極数Mを適宜変更しても、同じ効果を得ることができる。

【0045】また、本実施形態では、電機子コイルの相数を5相としたが、4相又は6相以上としても良く、好ましくは、5相以上の奇数相とすると良い。5相以上の奇数相とすれば、非通電相を1相にして通電相の相数を

最大にした時に通電相の相数を偶数にすることができるため、並列経路の一方の通電経路のコイル数と他方の通 電経路のコイル数をそれぞれ同数とすることができて、 2つの通電経路のコイル抵抗値、コイル電流を同一にす ることができ、ブラシレスモータをバランス良く回転させることができる。

【0046】また、駆動回路46のスイッチング業子として、MOSFETに代えて、他のスイッチング素子を用いても良い。更には、駆動方式も全波駆動方式に限定されず、半波駆動方式としても良く、各相の電機子コイルA21~E21の結線もY結線に限定されない。

【0047】その他、本発明は、マグネットロータ23の回転位置をホール素子等の位置検出素子により検出し、その検出信号に基づいて通電相を切り換えるようにしても良い。また、本発明の適用範囲は、燃料ポンプ11の駆動モータに限定されず、種々の装置の駆動モータとして利用することができる。

【図面の簡単な説明】

【図1】本発明の一実施形態を示す燃料ポンプの縦断面 図

【図2】(a)と(b)はそれぞれマグネットロータの 異なる回転位置における図1のA-A断面図

【図3】各相の電機子コイルの巻回方法を説明する図

【図4】ブラシレスモータの電気的構成を示す回路図

【図5】4相通電モード時の各MOSFETの切換パタ ーンを示す図

【図6】ブラシレスモータのトルクー回転数特性を示す 図

【図7】従来の3相全波駆動方式のブラシレスモータの 電気的構成を示す回路図

【符号の説明】

11…燃料ポンプ、13…ポンプ部、14…ブラシレス モータ、19…ステータ、23…マグネットロータ、2 6…マグネット、31…駆動制御回路(駆動制御手

段)、35…制御部、36~45…MOSFET、46 …駆動回路、A21, B21, C21, D21, E21 …電機子コイル。

【図3】

【図6】

(8) 000-228890 (P2000-228890A)

【図5】

【図7】

