BAYESIAN INFERENCE AND MRF MODELS

Lecturer: Sang Hwa Lee

Goals

- Introduce the basic theory of Bayesian inference and MRF models for image processing
- Understand the elementary concepts in MRF models
- Understand why energy minimization methods are needed
- Understand how to use MRF models in the computer vision

Contents

- Labeling problems
- MRF model
- Energy minimization
 - Simulated annealing (Monte Carlo Simulation)
 - Belief propagation
 - Graph cut
- Applications of MRF models in computer vision
 - Stereo matching
 - Super resolution

LABELING PROBLEM

Labeling Problem

- What is labeling problem?
 - To assign a label from the label set to each of the sites
- Labels
 - Variables to discriminate the sites
 - Random (probabilistic) vs non-random (deterministic)
 - Discrete vs continuous
 - Types
 - Class symbol: object detection (ex: +1, -1)
 - Integer number: disparity values (ex: 0-10)
 - Vectors: motion vector, color, parameter set of function

Sites

- Independent locations or objects to have labels
- Pixel, block, feature vector, image
- Regular (pixel) vs irregular (feature point) structure

Examples of Labeling Problem

Research subject	Site type	Label type	Result of labels
Stereo matching	Pixel, block, pre-segment region	Integer number	Disparity map
Motion estimation	Block, pixel, pre-segment region	Integer 2-D vector	Motion vector
Segmentation, Binarization (document image)	Pixel, block, pre-segment region	Integer, symbol, color	Segmentation map
Image restoration, Image inpainting	Pixel, block, pre-segment region	Gray-scale (0-255), color	Recovered image
Classification, Recognition	pre-segment region, image	Class (+1, -1), symbol, ID number	Object detection, Classification, Recognition
Vector quantizer, Super resolution	Pixel, block	Vector	Codebook Magnified block
Curve fitting	Feature point	Vector, integer	Parameters of function

Extension of labeling Problem

- When we define what to estimate in a site system, any kinds of labeling problems can be established.
 - Define the label set and the site system
 - Application to many problems in computer vision
- But, a labeling problem does not include any methodology and algorithms.
 - The methods and solutions are open to you!
 - You can define new labeling problems and their solutions by our own algorithms!

Combinatorial Problem (1)

- Combinatorial problem?
 - The solution is a combination of possible labels.
- Labeling problem is a kind of combinatorial problem
 - The labels of sites are the combination of labels.
- Difficulty
 - D1: When there are many number of labels,
 - There are innumerable combinations of labels
 - D2: When the labels of sites are not independent,
 - The label of a site can be changed with respect to different combinations of labels in other sites.

Combinatorial Problem (2)

- How can you find the combination of labels in those difficulties?
 - Too many possible combinations for one solution
 - Effect on the labels of other sites
- Need of efficient way to find the combinatorial solutions
- The methodology is
 - Simulated annealing (Monte-Carlo simulation)
 - Belief propagation
 - Graph cut
 - Stochastic (non-linear) diffusion

BAYESIAN INFERENCE FOR MRF MODELS

Introduction (1)

- MRF: A mathematical framework to find the combinatorial solutions in the difficulties (especially focused on D₂).
 - For D2: MRF models
 - For D1 and D2: Energy minimization methods
- MRF model is a general framework to use the correlation of labels in the neighborhood.
 - MRF models deal with D2 (Not independent!).
 - MRF models → Prior model

Introduction (2)

- MRF defines the problems in the probabilistic domain
 - Consider the labels as random variables
 - Label \rightarrow *field*
 - Maximum a posteriori (MAP) estimation
 - Maximize p(labels | observations)
 - Ex: stereo matching: p(disparity | stereo images)
- It's difficult to deal with probability domain.
 - PDF of labels should be known or assumed in advance.
- We will transform the probability domain into the energy domain by Gibb's random field.

Bayesian Estimation (1)

- Maximum Likelihood (ML) Estimator
 - $\overline{}$ Given labels: \overline{p} (observations | labels)
 - Ex: Block matching motion estimation
 - Full search methods
- Maximum A Posteriori (MAP) Estimator
 - Given observations: p(labels | observations)
 - Use prior information of label by Bayesian Decomposition

Likelihood model Prior model
$$p(L \mid O) = \frac{p(O \mid L) p(L)}{p(O)}$$
 Constant for labels

Bayesian Estimation (2)

- MRF-MAP estimator generates two energy terms.
 - Likelihood model
 - To measure how well the observations are matched
 - Observations are directly related to image values.
 - Ex: block matching error
 - Prior model
 - To exploit the correlations of neighboring fields
 - Prior model is related to the label field that you want to estimate.
 - Ex: smoothness condition of labels
- How can we minimize the joint energy function against D1 and D2?
 - Sub-optimum problems

Bayesian Estimation (3)

- Energy minimization methods find the optimal (actually sub-optimum) solution against D1, D2.
 - Simultaneous minimization of joint energy functions, likelihood and prior terms
- Two types of energy minimization
 - E1: Minimizing energy function directly
 - E2: Stabilizing energy states
- E1: To find labels in minimizing energy function
 - Simulated annealing, graph cut, gradient descent
- E2: To propagate (or diffuse) the energy space first, and find labels by winner-takes-all
 - Belief propagation, non-linear (or stochastic) diffusion

Mathematical model of MRF

Definition of MRF

$$p(x_i | \forall x_j \neq x_i) = p(x_i | x_j \in N_{x_i}),$$

 $p(x_i | x_j) > 0 \ (\neq 0) \text{ and } \sum_i p(x_i | x_j) = 1$

- Neighborhood system
 - To define the neighboring sites
 - Clique: subset of neighborhood to have interactions between sites.
 - Neighborhood system is open to you.
 - First-order MRF window is sufficient for any applications.

1st MRF window

Mathematical model of GRF

Definition of Gibb's Random Field (GRF)

$$p(x) = \frac{1}{Z} \exp\left\{-\frac{U(x)}{T}\right\}$$

- Z: normalization factor
- T: Cooling temperature (Thermodynamics)
 - T varies as the iterative cooling (energy minimization) process.
- U(x): Gibb's potential (energy function)
- To transform the energy U(x) of random variable x into the probability p(x)

Equivalence of MRF and GRF

Equivalence of MRF and GRF

$$p(x) = \frac{1}{Z} \exp\left\{-\frac{1}{T} \sum_{c \in C} V_x(x, y \mid y \in c)\right\},$$

$$U(x) = \sum_{c \in C} V_x(x, y \mid y \in c)$$

- Sum of all clique potentials Vx(.) of MRF model is equivalent to Gibbs potential U(x).
 - 1. Define neighborhood system and cliques
 - 2. Define clique potentials \rightarrow MRF models (prior terms)
 - 3. Apply the sum of clique potentials to Gibb's potential
 - 4. Find the optimal solution with minimum energy

General MAP-MRF Framework

- Labeling problem with MAP-MRF framework
 - General tool for prior modeling of label fields
 - To exploit the correlation between neighboring fields
 - Label set: random variables
 - MRF models: prior knowledge of labels
 - Not energy minimization
- MAP-MRF framework for stereo matching
 - To find disparity map to maximize P(L|r, 1)
 - Bayesian decomposition
 - Derive likelihood and prior terms
 - Maximize P(L|r,l) = maximize P(r|l,L) P(L|l) / P(r|l)
 - By MRF GRF equivalence
 - Minimize U(L|r,l) = minimize U(r|l,L) + U(L|l) U(r|l)

Likelihood Model

- To measure how well the observations are matched using the estimated labels.
- Observations in images

- related to image values (intensity, color, texture...)
- At least, two observations are required to evaluate how well the labels match the observations
 - Ex: two stereo images, two video frames...
- Examples of likelihood models
 - Block (feature) matching:
 - stereo matching, motion estimation, segmentation, super resolution...
 - Shape (geometric) matching:
 - Curve fitting, shape (pattern) classification

Prior Model

- To exploit the correlations of neighboring fields
 - Prior model is related to the labels that you want to estimate.
 - Correlation: prior knowledge of labels
 - Smoothness, regular patterns, convex set
 - MRF models in the form of clique potentials
- MRF modeling is a kind of regularization process of the estimated labels.
 - Constrained problems: hard regularization
 - Assign the labels within the constraints
 - Ex: POCS (projection onto convex set)
 - MRF problems: soft regularization
 - Assign the labels with respect to MRF models (interaction)

How to use Bayesian MRF

- 1. Define what to estimate from your observations
 - Select research subjects
- 2. Define likelihood model
 - Using the label fields to be estimated
- 3. Design prior model
 - using the prior knowledge of label fields
 - MRF models in clique potentials
- 4. Apply one of energy minimization schemes
 - Joint energy minimization
- 5. Optimize the parameters in the energy function
- 6. Evaluate the results
 - Final results in MRF models should be better than those only in likelihood model.

APPLICATIONS OF BAYESIAN INFERENCE AND MRF MODELS

Stereo Matching (1)

- Most general problem with MRF modeling
 - Label set: disparities (depths)
 - MRF models of disparity field: prior model
- Energy functions
 - Likelihood model:
 - how well the disparities match the corresponding sites in the sense of block (pixel) difference of intensity or color
 - Prior model:
 - smooth and discontinuity-preserving energy function of the disparity

$$E(f) = \sum_{\{p,q\} \in \mathcal{N}} V_{p,q}(f_p, f_q) + \sum_{p \in \mathcal{P}} D_p(f_p),$$

Stereo Matching (2)

Comparison (Taxonomy of ..., 2002. 6, IJCV)

α-β swap

 α expansion

Cooperative

Cooperative with segmentation

Normalized correlation

Simulated annealing

Belief propagation

Stochastic diff.

Learning-based SR (1)

SR as recognition process

Learning-based SR (2)

- NYU: image analogies (*SIGGRAPH 2001*)
 - Training pairs

Learning-based SR (3)

Learning-based SR (4)

Data Entry for energy function

Likelihood model

$$P(L \mid H) = \prod_{l=1}^{N} \frac{1}{\sigma_L \sqrt{2\pi}} exp\left(-\frac{\left(L(l) - (AH)(l)\right)^2}{2\sigma_L^2}\right).$$

Prior model

$$\phi(T_p = t_k, T_q = t_l) \propto exp\left(-\sum_{overlap} (t_k(u) - n_l(v))^2 - \sum_{overlap} (n_k(u) - t_l(v))^2\right)$$

Learning-based SR (5)

■ 결과□ 8배 확대

ENERGY MINIMIZATION METHODS

Simulated Annealing (1)

- Literature
 - J.Besag, J.Royal stat. soc. B, 1974.2.
 - S.Geman and D.Geman, IEEE PAMI 1984.6
- Classical energy minimization
 - Monte Carlo simulation
 - Representative method for labeling problem
 - Energy minimization via MRF modeling
 - Prior model is defined by clique potentials
 - Origin from thermodynamics
 - Annealing
 - Cooling procedure
 - Random sampling of the label field
 - 2D potential plane

Simulated Annealing (2)

Metropolis algorithm

- 1. Set i = 0 and $T = T_{max}$. Choose an initial $\mathbf{u}^{(0)}$ at random.
- 2. Generate a new candidate solution $\mathbf{u}^{(i+1)}$ at random.
- 3. Compute $\Delta U = U(\mathbf{u}^{(i+1)}) U(\mathbf{u}^{(i)})$.
- 4. Compute the probability P from

$$P = \exp(-\frac{\Delta U}{T}) \quad if \Delta U > 0$$

$$1 \quad if \Delta U \le 0 \tag{3.9}$$

- 5. If P=1, accept the perturbation; otherwise draw a random number that is uniformly distributed between 0 and 1. If the number is less than P, accept the perturbation.
 - 6. Set i = i + 1. If $i < I_{max}$, go to 2.
- 7. Set i = 0 and $\mathbf{u}^{(0)} = \mathbf{u}^{(I_{max})}$. Reduce T according to a temperature schedule. If $T > T_{min}$, go to 2; otherwise, terminate.

Simulated Annealing (3)

- Sampling and decision methods
 - Metropolis method
 - Soft decision (global optimal)
 - Iterated conditional mode (ICM)
 - Hard decision (sub-optimal)
 - Gibbs sampler
 - Conditional sampling based on neighborhood distribution
- Features
 - Guarantees the global optimality theoretically
 - Very slow

Belief propagation (1)

- Literature
 - J.Sun, H.Y.Shum, ECCV-2002
- Features
 - MAP-MRF framework
 - Graph-based optimization
 - Propagation of messages via Bayesian network
 - Max-product algorithm
 - Robust energy measure
 - Use of multiple cues
 - Occlusion, line, color segmentation information

Belief propagation (2)

- Max-product algorithm
 - A pixel (y) is connected to all labels (x)
 - {y} is a vector where each element is the matching cost given different label.

Message weights

$$\psi_{st}(x_s, x_t) = \exp(-\rho_p(x_s, x_t)))$$
$$\psi_s(x_s, y_s) \propto \exp(-\rho_d(F(s, x_s, I)))$$

Message update

$$m_{1,2}^{new} \leftarrow \kappa \max_{x_1} \psi_{12}(x_1, x_2) m_1 m_{3,1} m_{4,1} m_{5,1}$$

Belief propagation (3)

Max-product algorithm

- 1. Initialize all messages as uniform distributions
- 2. Update messages iteratively for i=1:T

$$m_{st}^{i+1}(x_t) \leftarrow \kappa \max_{x_s} \psi_{st}(x_s, x_t) m_s^i(x_s) \prod_{x_k \in N(x_s) \setminus x_s} m_{ks}^i(x_s)$$

3. Compute beliefs

$$b_s(x_s) \leftarrow \kappa m_s(x_s) \prod_{x_k \in N(x_s)} m_{ks}(x_s)$$
$$x_s^{MAP} = \arg\max b_s(x_k)$$

Graph cut (1)

- Literature
 - Y.Boykov, O.Veksler, R.Zabih, IEEE PAMI, 2001 Nov.
 - V.Kolmogorov and R.Zabih, CVPR-01, ECCV-2002
- Graph-based labeling and energy minimization
 - Suitable for combinatorial problem and MRF modeling
 - Two energy terms: data and prior models
 - Multi-dimensional energy function
 - Multiple-move of labels
 - α - β swap:
 - \bullet α expansion
 - Local optimization of 2D potential plane with the bound
 - Fast and good performances

Graph cut (2)

- Applications of graph cut
 - Combinatorial problems
 - Image restoration
 - Correspondence estimation
 - Motion and disparity
 - Occlusion
 - Multiple-view
 - Voxel occupancy
- What energy functions can be minimized via graph cut?
 - V.Kolmogorov, ECCV-2002
 - Energy function is in the metric space
 - Triangular inequality

Graph cut (3)

- α - β swap
 - Move only in two labels
 - Vertices
 - pixels
 - labels (terminal)
 - Edges
 - t-link: terminal-pixel
 - n-link: neighboring pixel-pixel

Graph cut (4)

- α - β swap
 - Energy function
 - Edge weights
 - Data term and prior model
 - MRF model
 - Graph cut
 - Minimal edge cut

edge	weight	for
t_p^{α}	$D_p(\alpha) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha S}}} V(\alpha, f_q)$	$p \in \mathcal{P}_{\alpha\beta}$
t_p^{β}	$D_p(\beta) + \sum_{\substack{q \in \mathcal{N}_p \\ q \notin \mathcal{P}_{\alpha\beta}}} V(\beta, f_q)$	$p \in \mathcal{P}_{\alpha\beta}$
$e_{\{p,q\}}$	V(lpha,eta)	$\substack{\{p,q\}\in\mathcal{N}\\p,q\in\mathcal{P}_{\alpha\beta}}$

Graph cut (5)

- lacktriangle α expansion
 - Move only in a label
 - Vertices
 - pixels
 - labels (terminal)
 - auxiliary nodes (between separated pixels)
 - Edges
 - t-link: terminal-pixel
 - n-link: neighboring pixel-pixel, pixel-auxiliary node

Graph cut (6)

- lacktriangle α expansion
 - Energy function
 - Edge weights
 - Data term and prior model
 - MRF model
 - Graph cut
 - Minimal edge cut

edge	weight	for	
$t_p^{\bar{\alpha}}$	∞	$p\in\mathcal{P}_lpha$	
$t_p^{\bar{\alpha}}$	$D_p(f_p)$	$p otin\mathcal{P}_{lpha}$	
t_p^{α}	$D_p(\alpha)$	$p \in \mathcal{P}$	
$e_{\{p,a\}}$	$V(f_p, \alpha)$		
$e_{\{a,q\}}$	$V(\alpha, f_q)$	$\{p,q\} \in \mathcal{N}, \ f_p \neq f_q$	
$t_a^{ar{lpha}}$	$V(f_p, f_q)$		
$e_{\{p,q\}}$	$V(f_p, \alpha)$	$\{p,q\} \in \mathcal{N}, \ f_p = f_q$	

Graph cut (7)

• Algorithms: α - β swap (top), α expansion (bottom)

```
1. Start with an arbitrary labeling f
Set success := 0
3. For each pair of labels \{\alpha, \beta\} \subset \mathcal{L}
    3.1. Find \hat{f} = \arg \min E(f') among f' within one \alpha - \beta swap of f
    3.2. If E(\hat{f}) < E(f), set f := \hat{f} and success := 1
4. If success = 1 goto 2
5. Return f
1. Start with an arbitrary labeling f
Set success := 0
3. For each label \alpha \in \mathcal{L}
    3.1. Find \hat{f} = \arg \min E(f') among f' within one \alpha-expansion of f
    3.2. If E(\hat{f}) < E(f), set f := \hat{f} and success := 1
4. If success = 1 goto 2
Return f
```

Graph cut (8)

- α - β swap and α expansion: comparison
 - $\ ^{\square}$ $\ \alpha$ expansion guarantees the optimality generally
 - α expansion is better and faster

CONCLUSIONS

Some Comments (1)

- The results are mostly dependent on the MRF models, not energy minimization.
 - The performances of energy minimization methods are critically related to MRF models and image characteristics.
 - Need of elaborate optimization
 - Energy minimization methods effect mainly on the properties of speed, convergence, and stability.
 - We can't tell which method is better in any problems.
- The best performance results from the optimization of MRF models, parameters, and applied energy minimization method.

Some Comments (2)

- Theoretically, guaranteeing the global minimization dose not always obtain the global solution in the real implementation.
 - You just find a sub-optimum.
 - You don't know exactly the solution you have found is globally optimal.
 - The sub-optimum depends on the parameters, initial conditions (likelihood model).
 - Examples:
 - Simulated annealing
 - Binary graph cut with Pott's model
- You can find the best sub-optimum in your work.

Some Comments (3)

- The global optimum is not always the best solution as you expect.
 - The global optimum depends on the energy function that you have designed.
 - The solution is the best only in your MRF models and energy function.
 - Global optimum is mainly decided by the prior models.
 - Likelihood model
 - Types of energy measure functions
 - Energy minimization methods
- You should design the proper prior models to obtain the correct results as you expect.

Some Comments (4)

1st-MRF window is sufficient in pixel-wise dense fields.

Some Comments (5)

Convergence of iterative energy minimization

Ex: stereo matching

