

Introduction

Timeline

Schedule

Day1 9th Sep.

1. Group Discussion

Which materials are the best for solar concentrating? (mirror, lens etc.)

Day2 10th Sep. Optimizing angle of solar concentrator.

Choosing MPPT, DC-DC converter / DC booster for

charging supercapacitors as energy storage.

2. Assembling and Connecting Device

Setting angle of solar concentrator.

Connecting solar cell, MPPT and power electronics

circuit and supercapacitors.

3. Experiment and Measuring

Experiment of solar charging circuit at outside. Measuring charging time and charged voltage.

4. Group Discussion and Presentation

Finding problems and discussing.

Presenting group works for other groups.

What is the best way for optimizing energy?

Silicon solar cell

Power electronics Supercapacitors

How we decided each component?

Mirrors

Or

Fresnel Lens

UBC Engineering APSC 100 / 101

Engineering Process

Proposed Solutions

Circuit

A buck converter is built to lower the 18V from the solar panel to 5V.

Arduino Code

```
#include <avr/io.h>
#define PWMPin 10
unsigned int frq = 440; // 周波数
float duty = 0.5; // 指定したいデューティ比
void setup() {
 pinMode(PWMPin, OUTPUT);
void loop() {
 // モード指定
 TCCR1A = 0b00100001;
 TCCR1B = 0b00010010;
 // TOP値指定
 OCR1A = (unsigned int)(1000000 / frq);
 // Duty比指定
 OCR1B = (unsigned int)(1000000 / frq * duty);
}
```


ONE MORE THING

How we are using it?

Test Result

But, why?

(4)

"A solar panel system with a single-axis solar tracker installed sees a performance gain of 25 to 35 percent."

Problems Encountered

- 1. Output voltage lower than expectation
- 2. The readings from the light sensors fluctuate significantly
- 3. Move & Lock Mechanism

Conclusion

