

ELECTRONICS

Approval

TO : Dell/Compal

DATE : Set. 19. 2003

SAMSUNG TFT-LCD

MODEL NO.:LTN150PG-L02

Any Modification of Spec is not allowed without SEC permission

APPROVED BY:

PREPARED BY: Technical Customer Service Team

SAMSUNG ELECTRONICS CO., LTD.

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 1 / 32

CONTENTS

Revision History	(3)
General Description	(4)
1. Absolute Maximum Ratings1.1 Absolute Ratings of environment1.2 Electrical Absolute Ratings	(5)
2. Optical Characteristics	(7)
3. Electrical Characteristics3.1 TFT LCD Module3.2 Backlight Unit	(10)
4. Block Diagram 4.1 TFT LCD Module 4.2 Backlight Unit	(14)
 5. Input Terminal Pin Assignment 5.1 Input Signal & Power 5.2 LVDS Interface 5.3 Backlight Unit 5.4 Timing Diagrams of LVDS For Transmitting 5.5 Input Signals, Basic Display Colors and Gra 5.6 Pixel format 	
6. Interface Timing6.1 Timing Parameters(DE Mode)6.2 Timing Diagrams of interface Signal (DE Mode)6.3 Power ON/OFF Sequence	(22) ode)
7. Outline Dimension	(24)
8. Packing	(25)
9.Markings and Others	(26)
10. GENERAL PRECAUTIONS	(28)
Appendix 1.EDID	
Appendix 2.Inverter spec.	

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	2 / 32	<u>,</u>
---------	--------------	--------	-----------------	------	--------	----------

REVISION HISTORY

Approval

Date	Rev.No.	Page		Summary			
Apr. 16, 2003	P00	All	LTN150PG-L	.02 model rev.P00 specification was First issued.			
Set. 01, 2003	A00	All	To correct ty	/pos			
		16	To correct the	e input connector (JAE, FI-XB30SRL-HF11)			
		24	To change th	ne length of lamp wire tape (52mm→60mm)			
		Appendix	To update ED	OID			
Doc.No.	LTN150	DPG-L02	Rev.No	04-A00-S-030919 Pa	ge 3	3 /:	3

GENERAL DESCRIPTION

DESCRIPTION

LTN150PG-L01 is a color active matrix TFT (Thin Film Transistor) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching devices. This model is composed of a TFT LCD panel, a driver circuit and a backlight system. The resolution of a 15.0" contains 1400 x 1050 pixels and can display up to 262,144 colors. 6 O'clock direction is the Optimum viewing angle.

FEATURES

- Thin and light weight
- High contrast ratio
- SXGA-Plus (1400x1050 pixels) resolution
- Low power consumption
- DE (Data enable) only mode.
- LVDS Interface with 2 pixel / clock (2 channel)

APPLICATIONS

- Notebook PC and desktop monitors
- Display terminals for AV application products
- Monitors for Industrial machine
- If the usage of this product is not for PC application, but for others, please contact SEC

GENERAL INFORMATION

ITEM	SPECIFICATION	UNIT	NOTE
Display area	304.1(H)X228.1(V) (15.0" diagonal)	mm	
Driver element	a-si TFT active matrix		
Display colors	262,144		
Number of pixel	1400 x 1050 (SXGA-Plus)	pixel	
Pixel arrangement	RGB vertical stripe		
Pixel pitch	0.2175(H) x 0.2175(V)	mm	
Display Mode	Normally white		
Surface treatment	HAZE 25, HARD-COATING 3H		

Doc.No. LTN150PG-L02 Rev.No 04-A00-S-030919 Page 4	4 / 32	32	2
--	--------	----	---

Mechanical Information

Approval

ITEM		MIN.	TYP.	MAX.	NOTE
Module Size	Horizontal (H)	316.8	317.3	317.8	
	Vertical (V)	241.6	242.1	242.6	
	Depth (D)	-	-	6.0	
Weight			550g	565g	Without Inverter

Note (1) Depth of signal interface connector part.

1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Storage temperate	T _{STG}	-25	60	°С	(1)
Operating temperate (Temperature of glass surface)	T _{OPR}	0	50	°C	(1)
Shock (non-operating)	Snop		220	G	(2), (4)
Vibration (non-operating)	Vnop	-	1. 5	G	(3), (4)

- Note (1) Temperature and relative humidity range are shown in the figure below. 95 % RH Max. ($40~^{\circ}C \ge Ta$) Maximum wet bulb temperature at 39 $^{\circ}C$ or less. (Ta > $40~^{\circ}C$) No condensation.
 - (2) 2ms, half sine wave, one time for $\pm X, \pm Y, \pm Z$.
 - (3) $10 \sim 300 \sim 10$ Hz, Sweep rate 10 min, 30 min for X,Y,Z.
 - (4) At testing Vibration and Shock, the fixture in holding the Module to be tested have to be hard and rigid enough so that the Module would not be twisted or bent by the fixture.

1.2 ELECTRICAL ABSOLUTE RATINGS

Approval

(1) TFT LCD MODULE

(Vss = GND = 0 V)

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Power Supply Voltage	Vcc	Vss-0.3	4.0	V	(1)
Logic Input Voltage	Vin	Vss-0.3	Vcc + 0.3	V	(1)

NOTE (1) Within Ta (25 $\,\pm$ 2 $^{\rm O}C$)

(2) BACK-LIGHT UNIT

Ta = 25 ± 2 °C

ITEM	SYMBOL	MIN.	MAX.	UNIT.	NOTE
Lamp current	lL	3.0	7.0	mArms	(1)
Lamp frequency	FL	50	80	KHz	(1)

NOTE (1) Permanent damage to the device may occur if maximum values are exceeded.

Functional operation should be restricted to the conditions described under Normal Operating Conditions.

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 6 / 32

2. OPTICAL CHARACTERISTICS

The following items are measured under stable conditions. The optical characteristics should be measured in a dark room or equivalent state with the methods shown in Note (5).

Measuring equipment: TOPCON BM-5A

* Ta = $25 \pm 2^{\circ}\text{C}$, VDD=3.3V, fv= 60Hz, fdcLk=54MHz, IL = 6.3 mA

ITEM		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	NOTE
Contrast f (5 Point		CR		300	-	-		
Response Time at 25°C	Rising	TR		-	10	15	msec	(1) (2)
	Falling	T _F		-	15	20	msec	(1), (3)
Luminar of Whit		YL	$\phi = 0,$	180	200	-	cd/m²	(1), (4) @6.3mm
	Red	Rx	$\theta = 0$	0.560	0.580	0.600		
	Neu	Ry	Normal	0.320	0.340	0.360		
	Green	Gx	Viewing Angle	0.290	0.310	0.330		
Color Chromaticity		Gy		0.530	0.550	0. 570		(1), (5)
(CIE)	Blue	Вх		0.135	0.155	0.175		PR650
	Dide	Вү		0.135	0.155	0.175		
	White	Wx		0.293	0.313	0.333		
	vviiite	Wy		0.309	0.329	0.349		
		θι		60	-	-		
Viewing	Hor.	θя	CR ≥10	60	-	-		
Angle	M	фн	(at center point)	45	-	-	Degrees	
	Ver.	ф L		45	-	-		
13 Points White Variation					-	2.0		(6)

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	7 /3	32
---------	--------------	--------	-----------------	------	------	----

Note 2) Definition of Contrast Ratio (CR):

(5), (7), (9), (10) at FIGURE OF NOTE (6)

Note 3) Definition of Response time:

Note 4) Definition of Average Luminance of White: measure the luminance of white at 5 points.

Average Luminance of White (Y L,AVE)

$$Y_{L4} + Y_{L5} + Y_{L7} + Y_{L9} + Y_{L10}$$
 $Y_{L,AVE} = 5$

POINTS: 4, 5, 7, 9, 10 at FIGURE OF NOTE 6)

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	8 / 32	
---------	--------------	--------	-----------------	------	--------	--

Note 5) After stabilizing and leaving the panel alone at a given temperature for 30 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room.

30 minutes after lighting the back-light. This should be measured in the center of screen.

Lamp current: 6.0 mA

Environment condition : Ta $\,$ = 25 \pm 2 $^{\circ}\text{C}$

Optical characteristics measurement setup

Note 6) Definition of 13 points white variation (
$$\delta_W$$
), CR variation(δ_R) [1] ~ (13)]
$$\delta_R = \frac{\text{Maximum luminance of 13 points}}{\text{Minimum luminance of 13 points}} \delta_R = \frac{\text{Maximum CR of 13 points}}{\text{Minimum CR of 13 points}}$$

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 9 / 32

3. ELECTRICAL CHARACTERISTICS

Approval

3.1 TFT LCD MODULE

Ta=25 ± 2 ° C

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	NOTE
Voltage of Power	Supply	V _{DD}	3.0	3.3	3.6	V	
Differential Input Voltage for LVDS	High	VIH	-	-	+100	mV	VcM=+1.2V
Receiver Threshold	Low	VıL	-100	-	-	mV	V CIVI—+ 1.2 V
Vsync Frequency		fv	-	60	-	Hz	
Hsync Freque	Hsync Frequency		-	63.98	-	KHz	
Main Frequer	Main Frequency		42.7	54	85	MHz	
Rush Currer	Rush Current		-	-	1.5	A	(4)
	White		-	430		mA	(2),(3)*a
Current of Power Supply	Mosaic	IDD	-	450	1	mA	(2),(3)*b
	Max Pattern		-	550	600	mA	(2),(3)*c

- Note (1) Display data pins and timing signal pins should be connected.(GND=0V)
 - (2) $f_V=60Hz$, $f_{DCLK}=54MHZ$, Vdd=3.3V, DC Current.
 - (3) Power dissipation pattern

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 10 / 32

3.2 BACK-LIGHT UNIT

Approva

The backlight system is an edge - lighting type with a single CCFT (Cold Cathode Fluorescent Tube). The characteristics of a single lamp are shown in the following tables.

INVERTER: Ambit / Sumida

Ta=25 \pm 2 °C

ITEM	SYMB	MIN	TYP	MAX	UNIT	NOTE
Lamp Current	lι	2.0	6.0	7.0	mArms	(1)
Lamp Voltage	VL		655		Vrms	I∟=6.0mA
Frequency	f∟	45	60	80	kHz	(2)
Power Consumption	PL	-	4.0	-	W	(3)
Operating Life Time	Hr	15,000	-	-	Hour	(4)
Startup Voltage	Vs		_	1150	Vrms	25°C
Startup voltage	V 3		-	1380	Vrms	0 °C
Lamp Startup Time	Vs	-	-	1	sec	(5)

Note) The waveform of the inverter output voltage must be area symmetric and the design of the inverter must have specifications for the modularized lamp.

The performance of the backlight, for example life time or brightness, is much influenced by the characteristics of the DC-AC inverter for the lamp. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure that a poor lighting caused by the mismatch of the backlight and the inverter(miss lighting, flicker, etc.) never occur. When you confirm it, the module should be operated in the same condition as it is installed in your instrument.

Note (1) Lamp current is measured with a high frequency current meter as shown below.

- (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- (3) refer to $I_L \times V_L$ to calculate.
- (4) Life time (Hr) of a lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 6.0 mArms until one of the following event occurs.
 - 1. When the brightness becomes 50% or lower than the original.
- (5) The voltage above this value should be applied to the lamp for more than 1 second to startup Otherwise the lamp may not be turned on.

Doc.No. LTN150PG-L02 Rev.No 04-A00-S-030919 Page 12 / 32
--

3.3 INVERTER

Inverter : AMBIT/SUMIDA

 $Ta = 25 \pm 2^{\circ}C$

ITEM		MIN	TYP	MAX	UNIT	NOTE
Input Vol	tage(Vin)	7.5	14.4	21.0	mArms	
Open Circ	cuit Voltage	1400		1800	Vrms	IL =6.0 mArms
PWM dut	y cycle	10 ±2 @SMB_DAT FFH	-	100 @SMB_DAT 00H	%	Vin=14.4V
Efficiency	Optical	20	-	-	Nit/W	After 30min turn on
Lillolelicy	Electrical	-	80	-	%	at the center of LCDVin=14.4V @6.0mA(3)
Operating	Frequency	45	55	65	kHz	SMB_DAT=00H
PWM Fre	equency	200	210	220	Hz	Vin=14.4V
Input Volta	ge Ripple	-	-	0.5	Vpp	Peak to peak value
Input Power Consumption		-	5.0	5.7	W	(1) lout=6.0mArms
In-rush current		-		1.5	Α	
Shutdown time		-	1.0	1.4	sec	
Start-	up time	-	-	0.1	sec	(2)

Note

- (1) Vin=14.4V, IL=6.0mA
- (2) Inverter start-up time
- (3) Efficiency should be calculated as below formulation.

Optical efficiency = output Brightness(nits) / Input power(watt)

Electrical efficiency = output power / input power

Doc.No. LTN150PG-L02 Rev.No 04-A00-S-030919 **Page** 15 / 32

5. INPUT TERMINAL PIN ASSIGNMENT

5.1. Input Signal & Power LVDS, Connector: (JAE, FI-XB30SRL-HF11)

PIN NO	SYMBOL	FUNCTION	POLARITY	REMARK
1	Vss	Ground		
2	VDD	POWER SUPPLY +3.3V		
3	VDD	POWER SUPPLY +3.3V		
4	VEEDID	N/A (DDC 3.3V Power)		
5	BIST	Panel BIST control		
6	CLKEDID	N/A (DDC Clock)		
7	DATAEDID	N/A (DDC data)		
8	O_RxIN0-	LVDS Differential Data INPUT (Odd R0-R5,G0)	Negative	
9	O_RxIN0+	LVDS Differential Data INPUT (Odd R0-R5,G0)	Positive	
10	Vss	Ground		
11	O_RxIN1-	LVDS Differential Data INPUT (Odd G1-G5,B0-B1)	Negative	
12	O_RxIN1+	LVDS Differential Data INPUT (Odd G1-G5,B0-B1)	Positive	
13	Vss	Ground		
14	O_RxIN2-	LVDS Differential Data INPUT (Odd B1-B5,Sync,DE)	Negative	
15	O_RxIN2+	LVDS Differential Data INPUT (Odd B1-B5,Sync,DE)	Positive	
16	Vss	Ground		
17	O_RxCLK-	LVDS Differential Data INPUT (Odd Clock)	Negative	
18	O_RxCLK+	LVDS Differential Data INPUT (Odd Clock)	Positive	
19	Vss	Ground		
20	E_RxIN0-	LVDS Differential Data INPUT (Even R0-R5,G0)	Negative	
21	E_RxIN0+	LVDS Differential Data INPUT (Even R0-R5,G0)	Positive	
22	Vss	Ground		
23	E_RxIN1-	LVDS Differential Data INPUT (Even G1-G5,B0-B1)	Negative	
24	E_RxIN1+	LVDS Differential Data INPUT (Even G1-G5,B0-B1)	Positive	
25	Vss	Ground		
26	E_RxIN2-	LVDS Differential Data INPUT (Even B1-B5,Sync,DE)	Negative	
27	E_RxIN2+	LVDS Differential Data INPUT (Even B1-B5,Sync,DE)	Positive	_
28	Vss	Ground		
29	E_RxCLK-	LVDS Differential Data INPUT (Even Clock)	Negative	
30	E_RxCLK+	LVDS Differential Data INPUT (Even Clock)	Positive	

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	16 / 32	
---------	--------------	--------	-----------------	------	---------	--

5.2 LVDS Interface : Transmitter DS90CF363 or Compatible

LVDS for Odd pixel

Pin No.	Name	RGB Signal	Pin No.	Name	RGB Signal
44	TxIN0	RO0	12	TxIN11	GO5
45	TxIN1	RO1	13	TxIN12	BO0
47	TxIN2	RO2	15	TxIN13	BO1
48	TxIN3	RO3	16	TxIN14	BO2
1	TxIN4	RO4	18	TxIN15	воз
3	TxIN5	RO5	19	TxIN16	BO4
4	TxIN6	GO0	20	TxIN17	BO5
6	TxIN7	GO1	22	TxIN18	Hsync
7	TxIN8	GO2	23	TxIN19	Vsync
9	TxIN9	GO3	25	TxIN20	DE
10	TxIN10	GO4	26	TxCLK IN	Clock

LVDS for Even pixel

Pin No.	Name	RGB Signal	Pin No.	Name	RGB Signal
44	TxIN0	RE0	12	TxIN11	GE5
45	TxIN1	RE1	13	TxIN12	BE0
47	TxIN2	RE2	15	TxIN13	BE1
48	TxIN3	RE3	16	TxIN14	BE2
1	TxIN4	RE4	18	TxIN15	BE3
3	TxIN5	RE5	19	TxIN16	BE4
4	TxIN6	GE0	20	TxIN17	BE5
6	TxIN7	GE1	22	TxIN18	Hsync
7	TxIN8	GE2	23	TxIN19	Vsync
9	TxIN9	GE3	25	TxIN20	DE
10	TxIN10	GE4	26	TxCLK IN	Clock

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	17 / 32	
---------	--------------	--------	-----------------	------	---------	--

Note: The LCD Module uses a 100ohm resistor between positive and negative lines of each receiver input.

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	18 / 32

5.3 BACK LIGHT UNIT

Connector: JST BHSR - 02VS -1

Pin NO.	Symbol	Color	Function
1	HOT	Blue	High Voltage
2	COLD	White	Ground

5.4 Timing Diagrams of LVDS For Transmission

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	19 / 32

5.5 Input Signals, Basic Display Colors and Gray Scale of Each Color

Approval

		DATA SIGNAL								GRAY										
COLOR	DISPLAY			RE	D					GRI	EEN					BLU	JE			SCALE
		R0	R1	R2	R3	R4	R5	G0	G1	G2	G3	G4	G5	В0	В1	B2	ВЗ	B4	В5	LEVEL
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	-
001.00	CYAN	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
	MAGENTA	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	-
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
	DARK	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
GRAY	\wedge	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
SCALE	' `	:	:	:	:	:	:	:	:	:	:	:		÷	\ :	:	:	:	:	D2 DC0
OF	ļ	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	R3~R60
RED		1	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R61
	LIGHT	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R62
	RED	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	R63
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
	DARK	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	G1
GRAY	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	G2
SCALE		:	:);	:	:	:	:	:	:	:	:	:	:	:	:	G3~G60
OF	.1.	:	:,				:	:	:	:	:	:	:	:	:	:	:	:	:	
GREEN	\ \V	0	0	0	0	0	0	1	0	1	1	1	1	0	0	0	0	0	0	G61
	LIGHT	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	G62
	GREEN	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	G63
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
GRAY	DARK	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	B1
SCALE	DARK M	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	B2
OF	\wedge	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	B3~B60
BLUE		:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	D3~D0U
	V LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	B61
	LIGHT	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	B62
			1		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	B63

Note 1) Definition of gray:

Rn: Red gray, Gn: Green gray, Bn: Blue gray (n=gray level)

Note 2)Input signal: 0 =Low level voltage, 1=High level voltage

Doc.No	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	20 / 32	
--------	--------------	--------	-----------------	------	---------	--

6. INTERFACE TIMING

6.1 Timing Parameters

Signal	Item	Symbol	MIN	TYP	MAX	Unit	Note
Frame Frequency	Cycle	Tv	-	1066	-	lines	
Vertical Active Display Term	Display Period	Tvb	-	1050	-	lines	
One Line Scanning Time	Cycle	Тн	-	844		clocks	(1)
Horizontal Active Display Term	Display Period	Тно	-	700	-	clocks	

6.2 Timing diagrams of interface signal

Note: All input condition(level&timing) for SN75LVDS88 are the same with those of LPD11826 or compatible.

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	22 / 32	
---------	--------------	--------	-----------------	------	---------	--

6.3 Power ON/OFF Sequence

Approval

: To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown below.

Power ON/OFF Sequence

T1 : Vdd rising time from 10% to 90%

T2: The time from Vdd to valid data at power ON.

T3: The time from valid data off to Vdd off at power Off.

T4: Vdd off time for Windows restart

T5 : The time from valid data to B/L enable at power ON.

T6: The time from valid data off to B/L disable at power Off.

NOTE.

- (1) The supply voltage of the external system for the module input should be the same as the definition of VDD.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become white.
- (3) In case of VDD = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Doc.No. LTI	N150PG-L02 Rev.No	04-A00-S-030919	Page	23 / 32	
-------------	-------------------	-----------------	------	---------	--

1. CARTON(Internal Package)

(1) Packing Form
Corrugated Cardboard box and Corrupad form as shock absorber

Note 1)Total Weight: Approximately 9.0 kg 2) Acceptance number of piling: 10 sets

3) Carton size : 317(W)×286(D)×355(H)

4) MAX accumulation quantity: 5 cartons

PACKING CASE

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 25 / 32

(P)		$\overline{}$	ď
_ ~ /	1	D	S
	_	•	,

No	Part name	Quantity
1	Static electric protective sack	10
	Packing case(Inner box)	
2	included shock absorber	1 set
3	Pictorial marking	2 pics
4	Carton	1 set

9. MARKINGS & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1)Parts number: LTN150PG-L02

(2)Revision : One letter (3)Control code : One letter

(4)Lot number : 4 H 3 A XXX XX X

NOTE 1). This code indicating year is omitted in the products of KIHENG site.

(5) Nameplate Indication

Parts name : LTN150PG - L02 Lot number : 4H3A000000

Inspected work week: 0315

DP/N : Dell Part Number (" **0Y0813**" is for 150PG-L02)

REV.A00 : Product Revision Code

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	26 / 32	
---------	--------------	--------	-----------------	------	---------	--

(6) Packing box attach

(7) Packing box Marking: Samsung TFT-LCD Brand Name

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 27 / 32

10. GENERAL PRECAUTIONS

Approval

1. Handling

- (a) When the module is assembled, It should be attached to the system firmly using every mounting holes. Be careful not to twist and bend the modules.
- (b) Refrain from strong mechanical shock and / or any force to the module. In addition to damage, this may cause improper operation or damage to the module and CCFT backlight.
- (c) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than a HB pencil lead.
- (d) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.
- (e) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.
- (f) The desirable cleaners are water, IPA(Isoprophyl Alcohol) or Hexane.

 Do not use Keptone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (g) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth . In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.
- (h) Protect the module from static, it may cause damage to the C-MOS Gate Array IC.
- (i) Use fingerstalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (j) Do not disassemble the module.
- (k) Do not pull or fold the lamp wire.
- (I) Do not adjust the variable resistor which is located on the back side.
- (m) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (n) Pins of I/F connector shall not be touched directly with bare hands.

Doc.No.	LTN150PG-L02	Rev.No	04-A00-S-030919	Page	28 / 32

2. STORAGE

Approva

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD module in direct sunlight.
- (c) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.

3. OPERATION

- (a) Do not connect, disconnect the module in the "Power On" condition.
- (b) Power supply should always be turned on/off by following item 6.3 "Power on/off sequence ".
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the backlight connector and its inverter power supply shall be a minimized length and be connected directly. The longer cable between the backlight and the inverter may cause lower luminance of lamp(CCFT) and may require higher startup voltage(Vs).

4. OTHERS

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (c) Do not exceed the absolute maximum rating value. (the supply voltage variation, input voltage variation, variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.
- (d) If the module displays the same pattern continuously for a long period of time, it can be the situation when the image "sticks" to the screen.
- (e) This module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.

Appendix 1. EDID

Approval

Address	ĺ	Value	ĺ		ASCII	
	FUNCTION		BIN	DEC	or	Notes
(HEX)		HEX			Data	
00		00	00000000	0		
01		FF	11111111	255		
02		FF	11111111	255		
03	Header	FF	11111111	255		EDID Header
04	пеацеі	FF	11111111	255		EDID Headel
05		FF	11111111	255		
06		FF	11111111	255		
07		00	00000000	0		
08		4C	01001100	76	S	3 character ID
	ID Manufacturer Name				E	
09		A3	10100011	163	С	"SEC"
0A	ID Product Code	50	01010000	80	Р	"P"
0B	ID I Toddet Code	47	01000111	71	G	"G"
0C		00	00000000	0		
0D	32-bit serial no.	00	00000000	0		
0E	32-bit serial flo.	00	00000000	0		
0F		00	00000000	0		
10	Week of manufacture	00	00000000	0		
11	Year of manufacture	0D	00001101	13	2003	2003
12	EDID Structure Ver.	01	00000001	1	1	EDID Ver. 1.0
13	EDID revision #	03	00000011	3	3	EDID Rev. 3
14	Video input definition	80	10000000	128		
15	Max H image size	1E	00011110	30	30	30.45cm
16	Max V image size	17	00010111	23	23	22.8375cm
17	Display Gamma	78	01111000	120	2.2	Gamma 2.2
18	Feature support	0A	00001010	10		
19	Red/green low bits	87	10000111	135		10000111
1A	Blue/white low bits	F5	11110101	245		11110101
1B	Red x/ high bits	94	10010100	148	0.580	Red x 0.580=
	3			<u> </u>		1001010010
1C	Red y	57	01010111	87	0.340	Red y 0.340=
				<u> </u>		0101011100
1D	Green x	4F	01001111	79	0.310	Green x 0.310=
			4	1		0100111101
1E	Green y	8C	10001100	140	0.550	Green y 0.550=
		ļ	4	<u> </u>		1000110011
1F	Blue x	27	00100111	39	0.155	Blue x 0.155=
		-	4	.	0.455	0010011111
20	Blue y	27	00100111	39	0.155	Blue y 0.155=
			-	╂	0.040	0010011111
21	White x	50	01010000	80	0.313	White x 0.315=
		-	1	1	0.000	0101000001
22	White y	54	01010100	84	0.329	White y 0.329=
- 00	Fatablish addition of 4		00000000	 	+	0101010001
23	Established timing 1	00	00000000	0		1
24 25	Established timing 2	00	00000000	0	-	1
25	Established timing 3	<u> </u> 00	<u> 00000000</u>	U U		

 Doc.No.
 LTN150PG-L02
 Rev.No
 04-A00-S-030919
 Page
 30 / 32

Address		Value			ASCII			
41-0	FUNCTION		BIN	DEC	or	N	lotes	
(HEX)		HEX			Data			
26	Standard timing #1	01	00000001	1		not used		
27		01	00000001	1				
28	Standard timing #2	01	00000001	1		not used		
29	-	01	00000001	1				
2A 2B	Standard timing #3	01 01	00000001	1		not used		
2G 2C		01	00000001	1				
2D	Standard timing #4	01	00000001	1		not used		
2E	0, 1, 1,; , , , , , , , , , , , , , , , ,	01	00000001	1		, ,		
2F	Standard timing #5	01	00000001	1		not used		
30	Standard timing #6	01	00000001	1		not used		
31	Standard timing #0	01	00000001	1		Hot useu		
32	Standard timing #7	01	00000001	1		not used		
33		01	00000001	1		Hotassa		
34	Standard timing #8	01	00000001	1		not used		
35		01	00000001	1		*		
36		30	00110000	48	108	Main clock= 10	08 MHz	
37		2A	00101010	42				
38		78	01111000	120	1400	Hor active=700		
39		20	00100000	32	288	Hor blanking=	288 pixels	
3A		51	01010001	81	1050	4bit : 4bit Vertcal active=	-10E0 lines	
3B 3C		1A 10	00011010	26 16	16	Vertical active-		
3D		40	01000000	64	10	4bit : 4bit	rig- ro iirie:	5
3E		30	00110000	48	48	Hor sync. Offs	et=24 pixel	 S
3F	Detailed timing/monitor	70	01110000	112	112	H sync. Width		-
	descriptor#1		00010100	1	1	V sync. Offset=1 lines		
40	·	14	00010100	20	4	V sync. Width=	4 lines	
41		00	00000000	0		2bit : 2bit :2bit	·2bit	
			0000000			2510 1 2510 12510	.251	
								,
42		30	00110000	48	304	H image size=		
43		E4	11100100	228	228	V image size =	= 228.375 N	nm(approx)
44 45		10 00	00010000	16 0	-	No Horizontal	Rorder	
46		00	00000000	0	-	No Vertical Bo		
47		19	00000000	25		112 1 31 31 30 31 30		
48	A 173	00	00000000	0				
49		00	00000000	0	1			
4A		00	00000000	0		Manufacturer S	Specified (1	Timina)
4A 4B		00 0F	00000000	15		.v.arialaotalor	-p-564 ()	9/
4C		00 00	00000000	0				
4C 4D		00	00000000	0		Value =HSPWi	min / 2	
4D 4E		00	00000000	0		Value=HSPWr		
4F	Detailed timing/monitor	00	00000000	0		Value = Thbpm		
		•		•				
Doc.No.	Doc.No. LTN150PG-L02 Rev.No 04-A00-S-030919 Page				31 / 32			

Address	FI.112-TIG1	Value	P	D =0	ASCII	
(HEX)	FUNCTION	HEX	BIN	DEC	or Data	Notes
50	descriptor#2	00	00000000	0	Data	Value =Thbpmax /2
51	descriptor #2	00	00000000			Value = VSPWmin /2
52		00	00000000	0		Value = VSPWmax /2
53		00	00000000	0		Value = Tvbpmin / 2
54		00	00000000	0		Value =Tvbpmax / 2
55		0F	00001111	15		Thpmin=value*2 + HA pixelclks
56		F2	11110010	242		Thpmax=value*2 + HA pixelclks
57		02	00000010			Tvpmin= value *2 + VA lines
58		4B	01001011	75		Tvpmax= value *2 + VA lines
59		00	00000000	0	_	Module revision
5A		00	00000000	0		
5B		00	00000000	0		
5C		00	00000000	0		ASCII Data String Tag
5D		FE	11111110	254		
5E		00	00000000	0		
5F		59	01011001	89	[Y]	• • • • • • • • • • • • • • • • • • •
60		30	00110000	48	[0]	
61	Detailed timing/monitor	38	00111000	56	[8]	
62	descriptor#3	31	00110001	49	[1]	
63		33	00110011	51	[3]	
64		03	00000011	3	3	
65		31	00110001	49	[1]	
66		35	00110101	53	[5]	
67		30	00110000	48	[0]	
68		50	01010000	80	[P]	
69		47	01000111	71	[G]	
6A		0A	00001010	10	[^]	
6B		20	00100000	32	[]	
6C		00	00000000	0		
6D		00	00000000	0		
6E		00	00000000	0		Monitor Name Tag (ASCII)
6F		FE	11111110	254		1
70		00	00000000	0		1
71		CE	11001110		1	
72		C6	11000110			
73	Detailed timing/monitor	BA	10111010	_		
74	descriptor#4	AB	10101011	171		
75		95	10010101	149		
76		77	01110111	119		
77		4D	01001101	77		
78		12	00010010			
79		01	00000001	1		
7A		0A	00001010	⊣ ⊦		
7B		20	00100000	_		
7C		20	00100000	_		
7D		20	00100000			
7E	Extension Flag	00	00000000	0		
7F	Checksum	AF	10101111	175		
						<u> </u>
	T	1	1			
Doc.No.	LTN150PG-L02	Rev.No	0	4-A00-	S-03091	19 Page 32 / 32

P2

Approval Inverter Specification for P2

SEC:LTN150XC-L01/LTN150PG-L02

2003. 03. 25

REV. 0.0

- Inverter Input Voltage Range : $7.5 \sim 21 \mathrm{V}$

2003. 04. 24

REV. 0.1

- Lamp Current

Max: $6.0(\pm 0.3)$ mA $\rightarrow 6.3(\pm 0.3)$ mA

Min: 1.8(\pm 0.3)mA \rightarrow 2.0(\pm 0.3)mA

P2

1. General

This specification should be used as a guideline for designing the inverter used in P2 Program.

Brightness control method of inverter should be PWM(Burst) mode control.

1.1 Model

Туре	Samsung Part Number	Supplier Part Number	Remark
TFT_LCD	LTN150XC-L01		
	LTN150PG-L02		

2. Specification

2.1 General electrical specification

Referenced Panels: Samsung TFT-LCD

Item		Minimum	Typical	Maximum	Remarks	
Input voltage(Vin)		7.5 V	14.4V	21.0 V		
Open Circui	t Voltage	1.4kVrms	-	1.8kVrms		
Lamp voltag	e	-	655Vms	_		
		2.0 ± 0.3		6.3± 0.3		
I C	4	mArms		mArms		
Lamp Curre	nt	@ SMB_DAT	-	@SMB_DAT	$Vin = 7.5 \sim 21.0V$	
		FFH		00H	2110	
Dimming Duty Cycle		10(± 2%)		100%		
Efficiency	Optical	20nits/W	-	-	After 30min turn on at the center	
Efficiency	Electrical	-	80%	-	of the LCD.	
Operating F	requency	45 kHz	55kHz	65kHz	Vin = 14.4V, Iout=6.0mArms	
PWM Frequ	iency		$210 \pm 10 \mathrm{Hz}$			
Input Power				5 7W	Vin = 14.4 V, $Iout = 6.0 mArms$	
Consumption	n	-	-	5.7W	SMB_DAT=00H	
In-rush current		-	-	1.5A		
Shutdown tin	ne	0.6sec	1.0sec	1.4sec		
Start-up time	e			0.1sec		

SAMSUNG ELECTRONICS Co. Ltd. AMLCD 03-09-09

P2

2.2 Connectors

2.2.1 Backlight connector (CN1)

2.2.1.1 Backlight connector CN1 must be same as table 1.

Connector Maker	Connector Part No.	Remark
JST	SM02B-BHSS-1-TB	

2.2.1.2 Pin assignment

2.2.1.2.1 SM02B-BHSS-1-TB

Pin No	Symbol	Description	Remark
1	HV	Power supply for CCFL	
2	RTN	Return	

2.2.2 Input connector(CN2)

It must be a HONDA, LVC-D20SFYG 20pin connector, and the pin assignment is ;

	Input connector	Valtage	Comments		
HONDA	LVC-D20SFYG	- Voltage	Comments		
Pin	Function				
1	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the backlight DC-AC converter		
2	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to drive the backlight DC-AC converter		
3	INV_SRC	7.5V to 21V	This power rail should be used as a power rail to driv the backlight DC-AC converter		
4	NC	-	No Connection		
5	GND		Ground		
6	5VSUS	5V	This should be used as power source for the control circuitry on the inverter		
7	5VALW	5V	This should be used as power source that stores the brightness/contrast values & the circuit that interfaces with SMB_CLK & SMB_DAT		
8	GND		Ground		
9	SMB_DAT		SMBus interface for sending brightness & contrast information to the inverter/panel		
10	SMB_CLK		SMBus interface for sending brightness & contrast information to the inverter/panel		
11	GND		Ground		
12	FPBACK		Control signal input into the inverter to turn the backlight ON & OFF (1 - ON, 0 - OFF)		
13	GND		Ground		

SAMSUNG ELECTRONICS Co. Ltd. AMLCD Division 03-09-09

P2

14	LAMP_STAT	Lamp Status, on(High)/off(Low), from control chip
$15 \sim 20$	NC	No Connection

P2

Inverter Design Specification

2.2.3 SMBUS Address Definition

Table 9.8 SMBus address definition for brightness & contrast

Device Identifier			Device Address			Read/Write Bit	
0	1	0	1	A2	A1	A0	R/W=0

Inverter SMBUS Address	A2	A1	A0
Address = 58H	1	0	0
Recommend using Dallas Semiconductor DS1803 (Dual			
digital potentiometer) or equivalent function IC.			
Use Wiper 0 for contrast control & Wiper 1 for brightness			
(Backlight) control in case DS1803.			

2.2.4. Circuit Block Diagram

P2

3.0 Safety Requirement

Inverter must comply with UL1950 3^{rd} edition, CSA22.2 No. 950-95, EN60950-1992 + A1 & A2 and other applicable regulations.

The inverter has several safety critical components due to high voltage. See list and associated comments:

PWB: The PWB must be UL Recognized and have a 94V-1 or V-0 rating.

Transformer: Bobbin and other plastic parts must be UL Recognized and have appropriate temperature ratings for the application. Plastic must have 94V-1 or V-0 Flame Rating.

High Voltage Capacitors: Must have adequate ratings for the application.

Fuse: Must be UL Listed with appropriate ratings for application.

Output Connector(s): Must be UL Recognized. Must provide adequate spacing from pin to pin for high voltage.

Note) It is preferable that the inverter be a UL Recognized assembly. If assembly is not UL Approved, then a CFM (Confirmation List of Material) must be provided with each shipment of inverters providing manufacturer identification and material/part identification for each critical part.

4.0 Emissions Requirements

Inverter design must be such that is does not prevent host product from complying with CFR47-Part 15 Class B Limits, CISPR-22 Class B Limits, and EN55022 Class B Limits. Consideration should be given to high frequency signals, ringing on signals, filtering of ground and voltage lines, and use of good high frequency grounding techniques.

5.0 Immunity Requirements

Inverter Design must be such that it does not prevent host product from complying with EN50082-1 Generic Immunity Requirements for European Union. This includes ESD, EFT, FRI, Surge, Harmonics, and Flicker.

6.0 Reliability

Minimum MTBF: 10,000 Hrs min @ 25C +/- 1C, 60% RH.

7.0 Mechanical Spec.

7.1 Drawing - Refer to separate drawing.

Inverter Layout Drawing

Please see attached drawing

P2

Appendix A. Inverter Design Features (Inverter design – checklist)

Following table outlines the desired features and design checklist of the inverter.

Item	Feature	Description
1	Soft-start	Lamp should soft start.
2	Short/Open detection	Lamp out (mechanical broken) detection should be provided.
3	Over current protection	Over current protection: Must be checked at all temperature/voltage extremes
4	Over voltage Protection	Over voltage protection: Must be checked at all temperature/voltage extremes And have a stable cut off point.
5	Start-up time Control	Good start-up transient response
6		If dual conversion stage is used both stages shall synchronize
7		There is no indication that the inverter design must be tuned to the bulb.
8		Verify that Strike time and Strike voltage meet the Panel specification
9		The inverter board is designed with test nodes and an ICT fixture is in place to Verify that all components are within the design tolerances.
10		Four corner testing (Voltage vs. Temperature) has been performed on several Inverters using a lamp with components (i.e. BJT & Zener Diodes from different build lots
11		Four corner testing (min. & max. Voltage vs. Temperature) has been performed on several Inverters not using a lamp with components (i.e. BJT & Zener Diodes) from different build lots.
12		Efficiency should be measured – in side the panel and outside of the panel. Results should be analyzed and circuit modified, if the difference between efficiencies is too great.
13		Test inverter over the operating temperature inside the panel. (Notebook operating temperature ambient of 0 to 40 $^{\circ}$ C
14		Check stress factors on critical components (i.e. voltage and power ratings).
15		Panel should be observed in all display modes to ensure that pattern interference is not present. Look for this in the area of the panel that is closest to the bulb. This is sometimes termed as beat frequencies problem.
16		Abnormal what if analysis must be performed. For e.g. what happens if a component opens, shorts? The goal here is to make sure that failures do not result in safety issues.
17		Obtain drawings of key components, Transformer, inductor, ballast cap, valves, resonant cap etc. Verify that none of the aforementioned is over stressed.
18		Check thermals, to ensure that hotspots are not present, such that the customer can feel heat through the plastics, or display discoloration results.
19		Ensure that the inverter can not be heard (humming or clicking noises) and that control loop is stable
20		EMI recommendation: 1. The GND on the inverter board should be connected to the display metal which should be connected to the notebook system GND. This should be achieved through a secure mechanism such as a screw, copper washer etc. and NOT using conducting foam or copper tape. 2. The ground of the inverter should also be positively connected to the GND on the source PCBs on the panel. The GND point should be physically close to the input connector of the inverter.

SAMSUNG ELECTRONICS Co. Ltd. AMLCD Division 03-09-09

prepared by Y. S. Kwon

7

P2

SAMSUNG ELECTRONICS Co. Ltd. AMLCD 03-09-09

P2

Appendix B. CCFL Specification

Our Backlight system is an edge-lighting type with single CCFT(Cold Cathode Fluorescent Tube) Lamp . The characteristics of single lamp are shown in following table.

1. LTN150XC-L01/LTN150PG-L02

Items	Symbol	Min.	Тур.	Max.	Unit	Remark
Lamp current	IL	2.0	6.0	7.0	mAms	Note1, 2
Lamp Voltage	VL	-	655	_	Vrms	+/-5% @ IL=6.0mA
Lamp power	Pcfl	ı	3.93	-	Watt	@ I L=6.0mA
Lamp frequency	Fcfl	45	60	80	kHz	Note 3
Viels off Veltors	Va	-	-	1150	Versag	Ta=25°C
Kick-off Voltage	Vs	-	-	1380	Vrms	Ta=0°C
Life time	Hlife				Hour	Note4, @ IL=6.0mA
CCFL turn on time	Ton	-	-	0.5	msec	

- Note1. If CCFT lamp was flowed below minimum current, lamp become unstable for ignition.

 And if the CCFT lamp was flowed over maximum current, lamp life time should be shorter than normal condition.
- Note2. At the condition of luminance YL=TBD cd/m2 on TFT-LCD Panel output.
- Note3. Lamp frequency may produce interference with Horizontal synchronous frequency and this may cause beat on the display. Therefore lamp driving frequency shall be detached as much as possible from the horizontal synchronous frequency and its harmonics to avoid interference.
- Note4. Lamp life time is defined as the time when either A or B occur in the continuous operation under the condition of Ta=25°C and at maximum current.
 - A) Brightness becomes 50% of the original value.
 - B) Kick-off voltage at Ta=0°C exceeds maximum value.

P2

Appendix C. P2 Inverter Test Plan.

1. Functional Test Items

Check Items	Split Condition	Sample Quantity	Test Condition	Remark
Output current (Min, Max) & Output deviation	Input voltage Vin=7.5V, 14.4V, 21V Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	SMB_DAT=00H SMB_DAT=FFH	
Output Voltage	Output current SMBUS_DAT=FFH and 00H Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Input voltage Vin=7.5V, 14.4V, 21V	
Input Power	Output current SMBUS_DAT=FFH and 00H Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Input voltage Vin=7.5V, 14.4V, 21V	
Kick-off Voltage & Operating freq.	Temperature Ta=0°C, Ta=25°C Ta=50°C	5	Vin=14.4V, SMB_DAT=00H No load condition	
Shutdown time	Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Vin=14.4V, SMB_DAT=00H Open voltage detection & shutdown time check	
Turn-on time	Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Vin=14.4V, SMB_DAT=00H	
Electrical Efficiency	Output current 6mA(00H) Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Vin=14.4V, SMB_DAT=00H	
Optical Performance (Nits/W)	Output current SMBUS_DAT= 00H Temperature Ta=0°C, Ta=25°C, Ta=50°C	5	Vin=14.4V, SMB_DAT=00H	SEC test only
Stress Factor	Critical components	5	Voltage and power rating	
Display pattern check	SEC standard test pattern	5		SEC test only
Acoustic noise	Humming & clicking noise	5		
Temperature rise Measurement	Power on 2 hours under 25±5°C 60±5°C, measure key component's body temperature.	5	Vin=14.4V, SMB_DAT=00H	

All functional test will perform by inverter supplier and LCD manufacturer(SEC). And both company should be correct test results.

SAMSUNG ELECTRONICS Co. Ltd. AMLCD 03-09-09

P2

2. Reliability Test Items

No	Items	Test Condition	Sample size	Check Point
1	High temp. operation	Power on at max. input with load. Operation at Ta=50°C, 500Hours SMB_DAT=00H, 95%RH	20	Function test
2	Low temp. operation	Power on at min. input with load. Operation at Ta=0°C,500hours SMB_DAT=00H	20	Function test
3	High temp. storage	Power off High temperature 85°C, 500hours	10	Function test
4	Low temp. storage	Power off Low temperature –20°C, 500hours	10	Function test
5	Thermal Cycle	Power off storage Ta=20°C(30min) ⇔ Ta=60°C(30min) 100cycles	20	Function test
6	Power On/Off test	Max. input & min. input. Power on full load(SMB_DAT= 00H) 10sec On/10sec Off, 30,000cycle	10 each	Function test
7	Signal On/Off test	Signal HI(SMB_DAT=00H), 10sec Signal Low(SMB_DAT=FFH), 10sec Max. Vinput, Power on full load. 30,000cycle	10	Function test
8	Hot Start test	After storage at Ta=50°C for 2hour, Then power on at min. Vinput, max. Ioutput. 10times.	10	Function test
9	Cold Start test	After storage at Ta=0°C for 2hour, Then power on at min. Vinput, min. Ioutput. 10times	10	Function test
10	PCB bending test	PCB bending rate: 1mm max.	20	Cosmetic inspection
11	MTBF demo stress Test	Power on at Ta=60°C Max. input voltage, Full load operation	100	MTBF
12	Vibration test (Storage)	2G, 10~500Hz, 30min. 500Hz~10Hz, 30min.	10	Function test

TEST Schedule

5. 1 EST Schedule									
ITEM	D+1W	D+2W	D+3W	D+4W	D+5W	D+6W	D+7W	D+8W	remark
Functional test	Test by Sl	EC/Maker							
Reliability test		Test by M	aker, 500l	iours					
Long life test			Test	by Maker,	1,000hou	·s	-		

SAMSUNG ELECTRONICS Co. Ltd. AMLCD Division 03-09-09

P2

SAMSUNG ELECTRONICS Co. Ltd. AMLCD 03-09-09