Lecture 9: Dataflow MoCs

Seyed-Hosein Attarzadeh-Niaki

Some Slides due to Edward Lee

Embedded Real-Time Systems

-

Review

- Composition of state machines
 - Synchronous composition
 - Asynchronous composition
- Hierarchical composition: StateCharts

Embedded Real-Time Systems

Dataflow Models

- Proven to be useful for specifying streaming applications
 e.g., signal processing and communications domains
- Simulation of the algorithm at the functional or behavioral level
- Synthesis to software (e.g., a C program) or hardware (e.g., VHDL)
- Block-diagram based visual programming

Dataflow Signals (Streams)

- In dataflow signals, communication between the actors is done as sequences of messages
- Each message is called a token.
- A signal s is a partial function of the form

$$s: N \rightarrow V_s$$

 V_s is the type of the signal

- The signal is defined on an initial segment {0, 1, ..., n} ⊂ N, or (for infinite executions) on the entire set N.
- Unlike the synchronous reactive MoC, no necessary time relation between inputs and outputs of an actor.
 - They are not synchronized.

Embedded Real-Time Systems

Dataflow Actors

- A (determinate) actor will be described as a function that maps input sequences to output sequences
- An actor function F, maps entire input sequences to entire output sequences
- A firing function f, maps a finite portion of the input sequences to output sequences
- A firing rule specifies the number of tokens required on each input port in order to fire the actor

$$F(x_1,x_2,x_3,\cdots) = (ax_1,ax_2,ax_3,\cdots)$$

e.g.,
$$f(x_1) = (ax_1)$$

Embedded Real-Time Systems

.

Composition of Dataflow Actors: Buffered Communication

- Since the firing of the actors is asynchronous, a token sent from one actor to another must be buffered.
- When the destination actor fires, it consumes one or more input tokens.
- Being able to execute a dataflow model forever is called an *unbounded execution*.
 - We need scheduling policies that deliver bounded buffers.
 - Deadlock is another challenge which appears in the cycles.

Implementing Buffers for Dataflow Models

- Unbounded buffers require memory allocation and deallocation schemes.
- Bounded size buffers can be realized as circular buffers or ring buffers, in a statically allocated array.
 - A read pointer r is an index into the array referring to the first empty location. Increment this after each read.
 - A fill count n is unsigned number telling us how many data items are in the buffer. (or a tail pointer)
 - The next location to write to is (r + n) modulo buffer length.
 - The buffer is empty if n == 0
 - The buffer is full if n == buffer length
 - Can implement n as a (counting) semaphore, providing mutual exclusion for code that changes n or r.

Embedded Real-Time Systems

-

Facts About (General) Dynamic Dataflow

- Whether there exists a schedule that does not deadlock is undecidable.
- Whether there exists a schedule that executes forever with bounded memory is undecidable.

Undecidable means that there is <u>no</u> <u>algorithm</u> that can answer the question in finite time for all finite models.

However, there are special cases where the models are analyzable

Embedded Real-Time Systems

Dataflow: many variants, still active area of research

- o Computation graphs [Karp & Miller 1966]
- o Process networks [Kahn 1974]
- o Static dataflow [Dennis 1974]
- o Dynamic dataflow [Arvind, 1981]
- K-bounded loops [Culler, 1986]
- Synchronous dataflow [Lee & Messerschmitt, 1986]
- Structured dataflow [Kodosky, 1986]
- o PGM: Processing Graph Method [Kaplan, 1987]
- o Synchronous languages [Lustre, Signal, 1980's]
- o Well-behaved dataflow [Gao, 1992]
- o Boolean dataflow [Buck and Lee, 1993]
- o Multidimensional SDF [Lee, 1993]
- o Cyclo-static dataflow [Lauwereins, 1994]
- o Integer dataflow [Buck, 1994]
- o Bounded dynamic dataflow [Lee and Parks, 1995]
- o Heterochronous dataflow [Girault, Lee, & Lee, 1997]
- o Parameterized dataflow [Bhattacharya and Bhattacharyya 2001]
- o Structured dataflow (again) [Thies et al. 2002]
- · · ·

Lee 09: 6

now

_

Embedded Real-Time Systems

Synchronous Dataflow (SDF)

- The number of tokens consumed and produced by the firing of an actor is constant
- Static analysis can tell us whether we can schedule the firings to get a useful execution
- If so, then a finite representation of a schedule for such an execution can be created.

Embedded Real-Time Systems

Balance Equations

Let q_A , q_B be the number of firings of actors A and B. Let p_C , c_C be the number of tokens produced and consumed on a connection C.

Then the system is in balance if for all connections C

$$q_A p_C = q_B c_C$$

where A produces tokens on C and B consumes them.

Embedded Real-Time Systems

1

Example

Consider this example, where actors and arcs are numbered:

The balance equations imply that actor 3 must fire twice as often as the other two actors.

Embedded Real-Time Systems

Question

 What is the production/consumption matrix in this case?

$$\Gamma = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -8 & 0 \end{bmatrix}$$

Embedded Real-Time Systems

Example

A solution to the balance equations:

$$q = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \qquad \Gamma = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & -1 \\ 2 & 0 & -1 \end{bmatrix} \qquad \Gamma q = \vec{0}$$

This tells us that actor 3 must fire twice as often as actors 1 and 2.

Embedded Real-Time Systems

Example

But there are many solutions to the balance equations:

$$q = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \quad q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad q = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix} \quad q = \begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix} \quad q = \begin{bmatrix} \pi \\ \pi \\ 2\pi \end{bmatrix} \qquad \Gamma q = \vec{0}$$

For "well-behaved" models, there is a unique least positive integer solution.

Embedded Real-Time Systems

Least Positive Integer Solution to the Balance Equations

• Note that: if p_C , c_C , the number of tokens produced and consumed on a connection C, are non-negative integers, then the balance equation,

$$q_A p_C = q_B c_C$$

implies:

 q_A is rational if and only if q_B is rational.

 q_A is positive if and only if q_B is positive.

 Consequence: Within any connected component, if there is any non-zero solution to the balance equations, then there is a unique least positive integer solution.

Embedded Real-Time Systems

17

Rank of a Matrix

• The rank of a matrix Γ is the number of linearly independent rows or columns. The equation

$$\Gamma q = \vec{0}$$

is forming a linear combination of the columns of Γ .

- Such a linear combination can only yield the zero vector if the columns are linearly dependent (this is what is means to be linearly dependent).
- If Γ has a columns and b rows, the rank cannot exceed $\min(a, b)$.
- If the columns or rows of Γ are re-ordered, the resulting matrix has the same rank as Γ .

Embedded Real-Time Systems

Rank of the Production/Consumption Matrix

- Let a be the number of actors in a connected graph. Then the rank of the production/consumption matrix Γ is $\leq a$. (why?)
- If the model is a *spanning tree* (meaning that there are barely enough connections to make it connected) then Γ has a rows and a-1 columns.
- Theorem [Lee-Messerschmitt' 87]: Its rank is a-1. Exercise: Prove it. (Hint: use induction).
- Corollary: the rank of any production/consumption matrix of a connected graph is either a or a 1. (why?)

Embedded Real-Time Systems

19

Consistent Models

- Let a be the number of actors in a connected model. The model is *consistent* if Γ has rank a-1.
- If the rank is *a*, then the balance equations have only a trivial solution (zero firings).
- When Γ has rank a-1, then the balance equations always have a non-trivial solution.

Embedded Real-Time Systems

Example of an Inconsistent Model: No Non-Trivial Solution to the Balance Equations

$$\Gamma = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 2 & 0 & -1 \end{bmatrix}$$

- This production/consumption matrix has rank 3, so there are no nontrivial solutions to the balance equations.
- Note that this model can execute forever, but it requires unbounded memory.

Embedded Real-Time Systems

2

Necessary and sufficient conditions

Consistency is a necessary condition to have a (bounded-memory) infinite execution.

Is it sufficient?

Embedded Real-Time Systems

Deadlock 1

Is this diagram consistent?

Embedded Real-Time Systems

22

Deadlock 2

Some dataflow models cannot execute forever. In the above model, the feedback loop injects initial tokens, but *not enough* for the model to execute.

Embedded Real-Time Systems

SDF: from static analysis to scheduling

• Given: SDF diagram

Find: a bounded-buffer schedule, if it exists

- Step 0: check whether diagram is consistent. If not, then no bounded-buffer schedule exists.
- Step 1: find an integer solution to $\Gamma q = 0$.
- Step 2: "decompose" the solution q into a schedule, making sure buffers never become negative.

Embedded Real-Time Systems

20

Step 2: "decomposing" the firing vector

Example 1:

Schedule = (1;2;3;3)

$$b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \qquad q = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \qquad q = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \qquad q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$p = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \qquad p = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$q = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Step 2: "decomposing" the firing vector

Example 2:

What happens if we try to run the previous procedure on this example?

So, we have both necessary and sufficient conditions for scheduling SDF graphs.

Embedded Real-Time Systems

27

A Key Question: If More Than One Actor is Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:

- · Minimize buffer sizes.
- Minimize the number of actor activations.
- Minimize the size of the representation of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, *Software Synthesis from Dataflow Graphs*, Kluwer Academic Press, 1996.

Beyond our scope here, but hints that it's an interesting problem...

Embedded Real-Time Systems

Minimum Buffer Schedule

Embedded Real-Time Systems

Source: Shuvra Bhattacharyya

29

Scheduling Tradeoffs (Bhattacharyya, Parks, Pino)

Scheduling strategy	Code	Data
Minimum buffer schedule, no looping	13735	32
Minimum buffer schedule, with looping	9400	32
Worst minimum code size schedule	170	1021
Best minimum code size schedule	170	264

Source: Shuvra Bhattacharyya

Embedded Real-Time Systems

Homogeneous SDF

- An SDF graph in which every actor consumes and produces only one token from each of its inputs and outputs
- A general, consistent SDF graph that is not an HSDFG can always be converted into an equivalent HSDFG

Embedded Real-Time Systems

31

Graph-Based Techniques For (H)SDF Analysis

- Obtaining Feasible schedules using shortest paths in graphs
- Maximum Cycle Mean (MCM): Used to obtain the maximum available throughput of a selftimed HSDF graph (throughput_{max} = 1/MCM).

$$MCM(G) = max \begin{cases} \sum_{v \text{ is on } C} t(v) \\ \text{cycle } C \text{ in } G \end{cases}$$

Embedded Real-Time Systems

Reflection

• How can we model limited buffer sizes in SDF?

Embedded Real-Time Systems

33

34

Parallel Scheduling of SDF Models

SDF is suitable for automated mapping onto parallel processors and synthesis of parallel circuits.

Sequential

Embedded Real-Time Systems

Parallel

Boolean Dataflow (BDF)

- SDF cannot directly express conditional firing
 - e.g., where an actor fires only if a token has a particular value.
- Two basic actors SWITCH and SELECT are added in boolean datflow
- Any Turing machine can be expressed as a BDF graph
 _{Select}
 _{Switch}

F Switch

Embedded Real-Time Systems

Dataflow Modeling in Simulink Using Dataflow Domain in the DSP Toolbox

- Blocks inside the dataflow domain execute based on the availability of data as opposed to Simulink's sample time.
- Simulink automatically partitions the system into concurrent threads to increase data throughput for accelerated simulation and multicore code generation.

