Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

13 de junho de 2018

Duração: 2h30

Exame Final (época normal)

,

Nota: Justifique devidamente as suas respostas. O formulário encontra-se no verso.

X (2)...

- 1. [40] Considere a série de potências $f(x) = \sum_{n=1}^{\infty} \frac{(x+2)^n}{n3^n}$.
 - (a) Determine o domínio de convergência da série, indicando os pontos onde a convergência é simples e os pontos onde a convergência é absoluta.
 - (b) Calcule a soma f(x). (Sug.: comece por identificar a função derivada de f.)
- 2. [15] Represente em série de Taylor no ponto c=1 a função $f(x)=\frac{1}{2-x}$, indicando o maior intervalo onde tal representação é válida.
- 3. [15] Seja $f:\mathbb{R}\to\mathbb{R}$ uma função periódica de período 2π e integrável em $[-\pi,\pi]$. Justifique que se f é uma função par, então a sua série de Fourier é uma série de cossenos, da forma

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx).$$

- 4. [45] Considere a função f definida em \mathbb{R}^2 por $f(x,y)=x^3-x^2+xy^2-y^2$.
 - (a) Determine o plano tangente ao gráfico de f no ponto (0, 1, -1).
 - (b) Calcule as derivadas direcionais $D_{\vec{u}}f(0,1)$ segundo um qualquer vetor unitário $\vec{u}=(u_1,u_2).$
 - (c) Determine os pontos críticos de f e classifique-os (minimizante local, maximizante local ou ponto de sela).
- 5. [15] Considere a função f(x,y)=1-x. Justifique que f possui extremos absolutos no círculo $C=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ e calcule tais extremos.
- 6. [45] Resolva as seguintes equações diferenciais:
 - (a) $y' = (2 y)^2 \operatorname{sen} x;$
 - (b) $(2x\cos y + 3x^2y) dx + (x^3 2y x^2\sin y) dy = 0;$
 - (c) $y'' + y' 6y = 50xe^{2x}$. (Sug.: use o método dos coeficientes indeterminados.)
- 7. [25] Resolva o seguinte problema de Cauchy usando transformadas de Laplace:

$$y' - y = 2e^t$$
, $y(0) = -1$.

1

Algumas fórmulas de derivação

$(kf)' = kf' \qquad (k \in \mathbb{R})$	$(f^{\alpha})' = \alpha f^{\alpha - 1} f' \qquad (\alpha \in \mathbb{R})$
$(a^f)' = f' a^f \ln a \qquad (a \in \mathbb{R}^+)$	$(\log_a f)' = \frac{f'}{f \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$
$(\operatorname{sen} f)' = f' \cos f$	$(\cos f)' = -f' \operatorname{sen} f$
$(\operatorname{tg} f)' = f' \sec^2 f = \frac{f'}{\cos^2 f}$	$\left(\cot g f\right)' = -f' \csc^2 f = -\frac{f'}{\sin^2 f}$
$(\operatorname{arcsen} f)' = \frac{f'}{\sqrt{1 - f^2}}$	$(\arccos f)' = -\frac{f'}{\sqrt{1-f^2}}$
$\left(\operatorname{arctg} f\right)' = \frac{f'}{1+f^2}$	$(\operatorname{arccotg} f)' = -\frac{f'}{1+f^2}$

Alguns desenvolvimentos em série de MacLaurin

•
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots, \quad x \in]-1,1[$$

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, \quad x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \quad x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

Algumas transformadas de Laplace

$$F(s) = \mathcal{L}\{f(t)\}(s), \quad s > s_f$$

função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s > a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $

função	transformada
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) \ (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$