Introduction to Intelligent Vehicles [4. System Design]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

System Design

- ☐ What is system design?
- ☐ Why is system design needed?
- ☐ When is system design done?
- ☐ Where is system design done?
- ☐ Who performs system design?
- ☐ How to perform system design?

Layered Design

Example (Piece) of System Design

- What is system design? / Why is system design needed?
- ☐ When / Where is system design done?
- ☐ Who / How to perform(s) system design?

Cores of Model-Based Design

- Modeling
 - ➤ Work (design and analyze) upon models rather than real systems
- Design
 - > Optimize some objectives (performance, robustness, security, etc.)
 - > Satisfy some constraints
- Analysis
 - Check if there is any flaw or how good the designs are?
- ☐ (Implementation)
 - ➤ Make it real

Outline

- **☐** Mixed Integer Linear Programming (MILP)
- ☐ Simulated Annealing
- ☐ Mapping Problem
 - ➤ It is just a piece of system design

Linear Programming

- ☐ Linear Programming (LP)
 - Maximize
 - $2x_1 x_2$
 - > Subject to
 - $x_1 x_2 \le 1$
 - $2x_2 \le 3$
 - $x_1, x_2 \ge 0$
 - x₁, x₂ are real numbers

min
$$\mathbf{c}^{\mathsf{T}}\mathbf{x}$$
 subject to $A\mathbf{x} \leq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{x} \text{ in } \mathbf{R}$

- ☐ Simplex algorithm
 - https://en.wikipedia.org/wiki/Simplex_algorithm

Integer (Linear) Programming (ILP)

- Integer (Linear) Programming (ILP)
 - Maximize
 - $2x_1 x_2$
 - > Subject to
 - $x_1 x_2 \le 1$
 - $2x_2 \le 3$
 - $X_1, X_2 \ge 0$
 - x₁, x₂ are <u>integers</u>

max

 $\mathbf{C}^{\mathsf{T}}\mathbf{X}$

subject to $Ax \le b$, $x \ge 0$, x in Z

- NP-complete
 - ➤ Why is it hard?

Mixed Integer Linear Programming (MILP)

- ☐ Mixed Integer Linear Programming (MILP)
 - Maximize
 - $2x_1 x_2$
 - > Subject to
 - $x_1 x_2 \le 1$
 - $2x_2 \le 3$
 - $x_1, x_2 \ge 0$
 - x₁ is **real number**
 - x₂ is **integer**

Canonical form

 $max \qquad \qquad \mathbf{c}^\mathsf{T}\mathbf{x}$

subject to $Ax \le b$, $x \ge 0$, some x are integers

☐ Many tools are available for solving LP, ILP, and MILP

Quadratic Programming (QP)

Canonical form

min
$$1/2 \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

subject to $\mathbf{A} \mathbf{x} \le \mathbf{b}, \mathbf{x} \ge \mathbf{0}$

- Q is symmetric
- ➤ A special case of convex optimization

Convex optimization

max
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \le 0$ for all i

- f, g_i are convex
- > A function f is convex if
 - For all x_1 and x_2 in the domain of f, t in [0,1] f (t· x_1 + (1 - t) · x_2) \leq t · f(x_1) + (1 - t) · f(x_2)

Practice

- ☐ Bin packing problem [Wikipedia]
 - Given
 - A set of bins S₁, S₂, ... with the same size V
 - A set of n items with sizes a₁, a₂, ..., a_n
 - > "Pack" all items into bins and minimize the number of used bins
- ☐ LP? ILP? MILP? QP?

```
max \mathbf{c}^{\mathsf{T}}\mathbf{x} subject to \mathbf{A}\mathbf{x} \leq \mathbf{b}, \, \mathbf{x} \geq \mathbf{0}, \, \mathbf{x} \text{ in } \mathbf{Z} min y_1 + y_2 + ... + y_n subject to x_{i1} + x_{i2} + ... + x_{in} = 1 for all i a_1x_{1j} + a_2x_{2j} + ... + a_nx_{nj} \leq Vy_j for all j x_{ij} = 0 \text{ or } 1 \rightarrow 1: if and only if item i it packed in to bin j y_j = 0 \text{ or } 1 \rightarrow 1: if and only if bin j is used
```

Outline

- ☐ Mixed Integer Linear Programming (MILP)
- **☐** Simulated Annealing
- ☐ Mapping Problem
 - ➤ It is just a piece of system design

Simulated Annealing: Background

☐ Kirkpatrick, Gelatt, and Vecchi, "Optimization by simulated annealing," Science, May 1983.

Simulated Annealing: Basics

- Non-zero probability for "up-hill" moves
- Probability depends on
 - ➤ Magnitude of the "up-hill" movement
 - > Total search time
- \square Prob(S \rightarrow S') = min(1, $e^{-\Delta C/T}$)
 - > Equivalence
 - Prob(S \rightarrow S') = 1 if Δ C \leq 0 ("down-hill" move)
 - Prob(S \rightarrow S') = $e^{-\Delta C/T}$ if $\Delta C > 0$ ("up-hill" move)
 - $\triangleright \Delta C = cost(S') cost(S)$
 - "Smaller" is better
 - > T = temperature
 - T will cool down gradually

Simulated Annealing: Algorithm

- Get an initial solution S
- ☐ Get an initial temperature T > 0
- \square S* = S
- ☐ While "not yet frozen" (i.e., T is large enough)
 - (Iterate many times)
 - Pick a random neighbor S' of S
 - $\Delta C = cost(S') cost(S)$
 - If cost(S') < cost (S*), then S* = S'
 - If $\Delta C \leq 0$, then S = S'
 - If $\Delta C > 0$, then S = S' with probability $e^{-\Delta C/T}$
 - ightharpoonup T = rT (where r < 1)
- ☐ Return S*

Simulated Annealing

- Basic ingredients
 - ➤ Solution space
 - What are the feasible solutions?
 - ➤ Neighborhood structure
 - How to find a neighboring solution from the current one?
 - Cost function
 - How to evaluate the quality of a solution?
 - > Annealing schedule
 - How to conduct the search process to find a desired solution?
- Philosophy

Practice

- ☐ Bin packing problem [Wikipedia]
 - Given
 - A set of bins S₁, S₂, ... with the same size V
 - A set of n items with sizes a₁, a₂, ..., a_n
 - "Pack" all items into bins and minimize the number of used bins
- Basic ingredients
 - > Solution space
 - What are the feasible solutions?
 - ➤ Neighborhood structure
 - How to find a neighboring solution from the current one?
 - > Cost function
 - How to evaluate the quality of a solution?
 - > Annealing schedule
 - How to conduct the search process to find a desired solution?

Outline

- ☐ Mixed Integer Linear Programming (MILP)
- ☐ Simulated Annealing
- **☐** Mapping Problem
 - > It is just a piece of system design

Mapping from Software to Hardware

- ☐ Software (functional model): task graph
- ☐ Hardware (architectural platform): distributed Electronic Control Units (ECUs) connected by a network

Problem Formulation

- ☐ Decide task allocation, signal packing, and priority assignments (tasks on ECUs and messages on CAN bus)
- ☐ Satisfy timing constraints for tasks, signals, and paths

Task Allocation

- ☐ Indices and variables
 - ➢ i, j: index of a task
 - > k: index of an ECU
 - ➤ a_{i,k}: [0,1] task i is allocated onto ECU k
 - \succ s_{i,i}: [0,1] tasks i and j are allocated onto the same ECU
- Constraints
 - $\triangleright \sum_{k} a_{i,k} = 1$ for all i
 - \geqslant $a_{i,k} + a_{j,k} + s_{i,j} \neq 2$ for all i, j, k
- Questions
 - What are the meanings of the constraints?
 - \triangleright Why do we need $s_{i,i}$?
 - Is it possible that all tasks are allocated onto one ECU?

Task Priority Assignment

- ☐ Indices and variables
 - ➤ i, j, j': index of a task
 - p_{i,i}: [0,1] task i has a higher priority than another task j
- Constraints
 - \triangleright p_{i,i} + p_{i,i} = 1 for all i, j, i \neq j
 - $> p_{i,j} + p_{i,j'} 1 \le p_{i,j'}$ for all i, j, j', $i \ne j$, $i \ne j'$, $j \ne j'$
- Questions
 - ➤ What are the meanings of the constraints?
 - \triangleright Why do we use binary variables $p_{i,i}$, not integer $p_i = 1, 2, 3, ...$?
 - $p_i \neq p_j$
 - $p_i < p_j$ or $p_j < p_i$
 - $p_{i,j} + p_{j,i} = 1$ and $(p_i p_j) < (1 p_{i,j})$ M and $(p_j p_i) < p_{i,j}$ M
 - M: a large constant

Signal Packing

☐ Indices, constant parameters, and variables

- > i, j: index of a task; k: index of an ECU; l: index of a message
- T_{i,i}: the period of the signal from task i to task j
- > T_{k,l}: the period of ECU k's message I
- → a_{i,k}: [0,1] task i is allocated onto ECU k
- \succ t_{i,i,k,l}: [0,1] the signal from task i to task j is packed into ECU k's message l
- $\triangleright v_{k,l}$: [0,1] ECU k's message l is used

Constraints

- $ightharpoonup t_{i,i,k,l} \le v_{k,l}$ for all i, j, k, l
- $ightharpoonup t_{i,j,k,l} T_{k,l} \le T_{i,j}; \ t_{i,j,k,l} T_{i,j} \le T_{k,l} \ for all i, j, k, l$

Questions

- ➤ What are the meanings of the constraints?
- \triangleright Why do we need $v_{k,l}$?

Message Priority Assignment

☐ Similar to task priority assignment

Timing Constraints

- Task: response time ≤ period (given)
 - ightharpoonup Response time? $r_i = c_i + \sum_{p_j < p_i} \left[r_i / T_j \right] C_j$
- Message and signal: response time ≤ period (given)
 - ightharpoonup Response time? $q_i = b_i + \sum_{p_j < p_i} \left[\frac{q_i + \tau}{T_i} \right] c_j$ and $r_i = q_i + c_i$
- □ Path: latency ≤ deadline (given)
 - ➤ Latency?

Remaining Questions

- Variables
 - > s_{i,i}: [0,1] tasks i and j are allocated onto the same ECU
 - $\triangleright v_{k,l}$: [0,1] ECU k's message l is used
- Questions
 - > Task allocation
 - Why do we need s_{i,i}?
 - $-s_{i,j} \cdot p_{i,j}$ in response time computation
 - Is it possible that all tasks are allocated onto one ECU?
 - We have timing constraints
 - Signal packing
 - Why do we need $v_{k,l}$?
 - $-\ v_{k,l}\cdot$ (message size) in response time computation

Solved by MILP: Linearization

- □ Inequality of three binary variables: $\alpha + \beta + \gamma \neq 2$
 - $\triangleright \alpha + \beta + \gamma \neq 2 \iff \alpha + \beta \gamma \leq 1; \alpha \beta + \gamma \leq 1; -\alpha + \beta + \gamma \leq 1$
- Ceiling function: ceil(f)
 - > Replace ceil(f) by an integer x
 - \triangleright ceil(f) = x \leftrightarrow 0 \leq x f < 1
- \square Multiplication of two binary variables: $\alpha \cdot \beta$
 - \triangleright Replace $\alpha \cdot \beta$ by a binary variable γ
 - $\triangleright \alpha \cdot \beta = \gamma \iff \alpha + \beta 1 \le \gamma; \gamma \le \alpha; \gamma \le \beta$
- \square Multiplication of a binary variable α and a real variable $x: \alpha \cdot x$
 - \triangleright Replace $\alpha \cdot x$ by a real variable y
 - $\triangleright \alpha \cdot x = y \iff 0 \le y \le x; x M(1 \alpha) \le y \le M\alpha$
 - M: a large constant

Solved by MILP: Scalability Issue

☐ Let us ignore "group assignment" first

Solved by Simulated Annealing

- Basic ingredients
 - Solution space
 - What are the feasible solutions?
 - ➤ Neighborhood structure
 - How to find a neighboring solution from the current one?
 - Cost function
 - How to evaluate the quality of a solution?
 - > Annealing schedule
 - How to conduct the search process to find a desired solution?

Implications

- ☐ Allocate tasks onto the same ECU
 - ➤ A signal does not need to be transmitted if its source and target tasks are allocated onto the same ECU
 - Two signals can be packed into the same message if their source tasks are allocated onto the same ECU
- ☐ However, not allocate too many tasks onto the same ECU
 - Long task response time
- ☐ In most cases, pack signals into the same message
 - > Save headers!

Another Problem Formulation

☐ Task allocation, task priority assignment, **scheduling**

TDMA Scheduling

- Optimal scheduling implied by the timing analysis
 - > As early as possible for a synchronous message
 - > As evenly as possible for an asynchronous message
- ☐ How to resolve conflicts between multiple messages?

Q&A

Revisit CAN Timing Analysis

 \square R_i = Q_i + C_i

- (1): (2)+(6)
- (2): blocking time of the longest lower or same priority message
- (3): index set of all higher priority messages
- (4): max number of queued instances of message j within (1)
- τ: transmission of one bit
- (5): transmission time of an instance of message i
- (6): waiting time
- (7): transmission time

$$R_0 = 50$$
 $R_1 = 100$ $R_2 = 120$ $R_3 = 40$?