

Progress on hydrological modules in CABLE2

Mark Decker

Andy Pitman Jason Evans

(m.decker@unsw.edu.au)

Goals:

Add groundwater to facilitate hypothesis testing Address two issues ACCESS – Extremes WRF – Large Winter time cold bias

Model improvements:

Runoff generation and infiltration Subsurface Runoff Groundwater Coupling

What remains the same:

Canopy processes (flux calculations) Snow Soil temperature

Infiltration

Limit flux into soil based on state of soil Depends on surface layer moisture, ice, soil properties For through fall over unsaturated soils:

$$q_{\text{infl,max}} = K_{sat,srf} F_{\text{infl}} \left[\theta, \theta_{sat}, \frac{\partial \psi}{\partial \theta} \right]$$
 F_{infl} can be one of many functions $q_{\text{infl,max}}$ is the maximum infiltration

Surface Runoff

$$q_{\rm srf} = F_{sat} q_{\rm thr} + (1 - F_{\rm sat})(q_{\rm thr} - q_{\rm infl}^{\rm max})$$
 $F_{\rm sat}$: Fraction of Grid cell that is saturated

CABLE dumps water into first three soil layers until they were saturated

Runoff Based on TOPMODEL concepts

Subsurface Runoff: Topographic gradients drive subsurface fluxes

Horizontal transmissivity (i.e. conductivity) declines exponentially with Z_▽

Simplified parameterization:

 Z_{∇} : Grid cell mean water table depth

 $q_{\text{sub}} = q_{max} e^{-fZ_{\nabla}}$

f: Tunable parameter (~0.2) Encapsulates slopes, grid dependant

Removed from same depth as the water table depth (soil or aquifer)

Same functional form for F_{sat}

$$F_{\text{sat}} = (1 - F_{ice}) F_{sat,max} e^{-fZ_{\nabla}} + F_{ice}$$

1D Conceptual groundwater model

Simple bucket model of mass conservation:

$$\frac{d\Theta_{gw}}{dt} = q_{aquifer} - q_{sub}$$

Provides bottom boundary condition for Richards Equation Parameterize the fluxes using Z_{∇} , θ , K, and others

Limitations (of current implementation):

- No transfer between grid cells
- Subgrid scale fluxes from conceptual model
- Neglects groundwater coupling with
 - Stream flow
 - Flood plains
 - Anthropogenic removal

2D groundwater model: Explicit horizontal fluxes and Z_{_} dynamics:

Model grid resolves topography driven fluxes

- Increasingly computationally viable
- Unknown aquifer and soil properties remain problematic

Common among hydrologists, used by at least 1 LSM Simplifying Assumptions (Dupuit-Forchheimer)

- Z_□ is relatively flat with a hydrostatic saturated zone
- Horizontal fluxes & K invariant with respect to z

Solves for the thickness of the saturated layer:

Darcy's Law:
$$q_{\text{sub}} = -kh \nabla_{xy}[h]$$

h: thickness of saturated zone xy: horizontal direction

Conservation of
$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left[-kh \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[-kh \frac{\partial h}{\partial y} \right]$$

Simplified 2D simplified equation for groundwater dynamics (i.e. Z_{\Box})

Explicit horizontal transport between grid cells

Computationally expensive compared to 1D models

Soil and groundwater properties are poorly constrained due to limited observations

Offline parameter sensitivity: GSWP CABLE-2.1.2 + GW

Australia 0.25x0.25 CABLE-2.1.2 + GW offline

Australia 0.25x0.25 CABLE-2.1.2 + GW offline

Australia 0.25x0.25 CABLE-2.1.2 + GW offline

Australia 0.25x0.25 CABLE-2.1.2 + GW + 2D Lateral Transfer

GW:

Nail down choice of parameters to give good Australian ET for both summer and winter Non-hydro tuning?

2DGW

Simulations at high resolution (0.05 degrees) while sampling parameter space

Coupled:

LIS-WRF - Claire

Running. Finished spinup. Initial results promising

ACCESS - Ruth

Bug hunting. Hopefully running soon

