Série 2014

Procédures de qualification Installatrice-électricienne CFC Installateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Nom, prénom	N° de candidat	Date

Temps: 30 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois.
- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Barème: Nombres de points maximum: 18,0

17,5	-	18,0	Points = Note	6,0	
15,5	-	17,0	Points = Note	5,5	
13,5	-	15,0	Points = Note	5,0	
12,0	-	13,0	Points = Note	4,5	
10,0	-	11,5	Points = Note	4,0	
8,5	-	9,5	Points = Note	3,5	
6,5	-	8,0	Points = Note	3,0	
4,5	-	6,0	Points = Note	2,5	
3,0	-	4,0	Points = Note	2,0	
1,0	-	2,5	Points = Note	1,5	
0,0	-	0,5	Points = Note	1,0	

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Signature des expertes / experts :	Points obtenus	Note

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2015.

Créé par : Groupe de travail EFA de l'USIE pour la profession d'

installatrice-électricienne CFC / installateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

Bases technologiques

Exer	rcices		
1.	Deux batteries sont couplées en parallèle, mais les bornes de la deuxième batterie sont inversées (polarité inversée).	1	
	Quelle affirmation sur ce circuit est correcte ? Cochez la bonne réponse.		
	Un courant continu de court-circuit circule.		
	Un courant important circule, il n'est limité que par les résistances internes des batteries.		
	Seul un petit courant de transition circule entre les deux blocs batteries.		
	Aucun courant ne circule car il n'y a pas de charge.		
2.	Un chauffage électrique ayant une puissance électrique de 10 kW délivre en une heure et quarante minutes une énergie thermique de 58'280 kJ. Déterminez le rendement de ce chauffage.	2	

Exer	cices	Nombre maximal	de points obtenus
3.	Une plaque de protection rectangulaire avec quatre perçages est réalisée en acier. Ses dimensions sont 200 mm x 120 mm et elle a une épaisseur de 2,5 mm. Calculez la masse exacte de cette plaque en kg. ($\rho = 7.2 \frac{kg}{dm^3}$)	3	
4.	En quelle forme d'énergie utile les appareils suivants transforment-t-ils l'énergie électrique consommée ?	2	
	 a) Perceuse →		

Bases technologiques

Exer	ercices			
5.	Répondez aux questions suivantes.	2		
	a) Comment nomme-t-on l'induction restant dans un matériau ferromagnétique lorsque le champ magnétisant disparaît ?			
	 b) On fait une distinction entre les matériaux magnétiques doux et les matériaux magnétiques durs. Indiquez si l'on utilise des matériaux magnétiques doux ou durs pour les applications suivantes. 			
	Noyau de transformateur →			
	Aimant permanent →			
	Electroaimant →			
6.	Une pompe à eau délivre 50 litres d'eau par seconde dans un réservoir situé 60 m plus haut. Les pertes dans la canalisation montante sont de 10 % (il s'agit d'une diminution de pression), alors que le rendement de la pompe est de 80 %. La pompe est directement couplée à un moteur électrique dont la puissance absorbée est de 45 kW. Calculez le rendement du moteur.	3		

Bases technologiques

Exer	cices	Nombre maximal	de points obtenus
7.	Une clé dynamométrique est réglée sur 120 Nm. Quelle force doit être appliquée sur la clé sachant que son bras de levier a une longueur de 430 mm ?	2	
8.	Un réparateur a installé, il y a 10 ans, un éclairage composé de 12 lampes halogènes basse tension de 35 W. L'efficacité lumineuse des lampes halogènes basse tension est de 21 lm/W. Il désire remplacer cet éclairage par des lampes LED pour économiser de l'énergie. Les lampes LED ont une puissance de 7 W et une efficacité lumineuse de 70 lm/W. Combien de lampes LED doit-il installer si le flux lumineux doit rester le même ? Le facteur de vieillissement est négligé.	3	
	Total	18	