

DockTData

Automated Integration of Binding Affinity and Molecular Structure Data for Receptor—Ligand Interaction Modeling

José Renato D. Fajardo, Matheus M. P. da Silva, Leon S. C. Costa

Isabella A. Guedes, Laurent E. Dardenne

Molecular Modeling of Biological Systems Group (GMMSB)

- ► Background
- ▶ The DockTData Project
- ► What We Have
- ► Perspective:

- Binding affinity as central task in drug design
- Structural data as a rich information reference
- Structure-based affinity prediction models are as key components for Virtual Screening, De Novo Drug Design
- Need for open and FAIR-compliant resources

Current Data Landscape

1 Background

- Data availability is the bottleneck: no data = no AI/ML
- PDBbind¹ dataset was valuable but constrained by restrictive licensing
- Boltz-2² model recent success highlights how large-scale, curated datasets can unlock affinity prediction models
 - but the pipelines for obtaining the data are not readily available
- DockTData contributes to this ecosystem as a free and open resource

¹ S. Passaro et al., *bioRxiv*, **2025**, 10.1101/2025.06.14.659707.

² Z. Liu et al., Acc. Chem. Res., **2017**, 50.

1 Background

Bridging Disciplines Through Data

- **Medicinal Chemists:** a hub for deposition, extraction and curation of experimental binding data
- Machine Learning Community: comprehensive training material with multiple representations of proteins and ligands
- Bioinformatics & Molecular Modeling: consolidated datasets for validation of docking, virtual screening & QSAR simulations

Data Integration Challenges

1 Background

- Missing structural-functional links
- Lack of supporting information and documentation
- Data quality and consistency issues
- Scalability for large datasets
- Standardization of data formats and identifiers
- Understanding different data source structures

- ▶ Background
- ► The DockTData Project
- ▶ What We Have
- ► Perspectives

- Extract: PDB³ (API), BindingDB⁴ (flat files), ChEMBL⁵ (relational DB)
- Transform: Validation, Filtering, Processing, Cross-linking
- Load: Structure the integrated set

¹ Berman, H. M. et al Nucleic Acids Res. 2000, 28.

² Z. Liu, T. et al. Nucleic Acids Res., **2025**, 53.

³ Mendez, D. et al. Nucleic Acids Res. **2019**, 47.

- **Protein mapping:** UniProt IDs (ChEMBL), sequence identity $\geq 85\%$ (BindingDB)
- Ligand mapping: InChlKey and CCD

Pipeline

2 The DockTData Project

- ▶ Background
- ▶ The DockTData Project
- ► What We Have
- ▶ Perspectives

- 37.0K unique PDB structures
- 13.8K unique ligands
- Binding affinity types: Ki, Kd, IC50 & EC50
- Protein- & Nucleic acid- ligand complexes

• **DockTData** (Last update 17-Set-25)
Unique PDB structures: **37.0K**

• PDBbind* v.2020 (Free)
Unique PDB structures: 19.5K

• **PDBbind*** v.2024 (Paid**)
Unique PDB structures: **27.6K**

* Subject to a highly restrictive license ** Cost for academic users: USD 2,000

Dataset Characterization

3 What We Have

- ▶ Background
- ► The DockTData Project
- ▶ What We Have
- ► Perspectives

- Scalable, reproducible, automatic pipeline integrating structural-functional data
- A resource for many purposes:
 - ML-based Affinity Prediction
 - Virtual Screening Validation
 - Generative Models for Drug Design
 - and more

- Peptide and Oligosaccharides as ligands
- Target mapping by sequence alignment (MMseqs2)
- Subsets with refined filters
- Availability of **prepared structures** (e.g. protonation, cofactors)

- Expansion: Multi-ligand Complexes, Nucleotide Receptors
- Public web portal and collaborative curation
- **Call-to-action**: from the community to the community

This work was supported by **CAPES**, **CNPq** (grant number 309744/2022-9) and **FAPERJ** (grant numbers E-26/010.001415/2019, E-26/211.357/2021, E-26/200.393/2023).

Obrigado!