

10/536491
JC06 Rec. CT/PTO 25 MAY 2005

SEQUENCE LISTING

<110> PEPPELENBOSCH, Maikel Petrus
ZIVKOVIC, Danica
DIKS, Sander
BINK, Robert Jozef

<120> Asb transcription repressor proteins and nucleic acids
and their application in expansion of stem cells

<130> 28902.00016

<140> (to be assigned)
<141> 2005-05-25

<150> PCT/NL2003/000831
<151> 2003-11-25

<150> NL 02079903.74
<151> 2002-11-25

<160> 4

<170> PatentIn version 3.1

<210> 1
<211> 293
<212> PRT
<213> Danio rerio

<400> 1

Met Ala Val Val His Ala Glu Gly Asn Val Trp Ile Lys Gln Trp Asp
1 5 10 15

His Arg Phe His Met Tyr Gly Gly Gln Thr Cys Ser Pro Leu Met Ala
20 25 30

Gly Ser Trp Asp Asp Arg Thr Pro Leu His Asp Ala Ala Leu Gln Gly
35 40 45

Arg Leu Leu Pro Leu Arg Arg Leu Leu Ser Gln Gly Tyr Asn Val Gly
50 55 60

Met Ala Thr Leu Asp Gly Ile Thr Ala Leu His Glu Ala Cys Val Gly
65 70 75 80

Gly His Phe Thr Cys Ala Lys Leu Leu Leu Glu His Gly Ala Asp Ala
85 90 95

Asn Ala Val Thr Phe Asp Gly Ala Thr Pro Leu Phe Ser Ala Cys Cys
100 105 110

Ser Gly Asn Pro Ala Leu Val Ser Leu Ile Leu Thr His Ser Ser Ala
115 120 125

His His Pro Ala His Leu Leu Cys Ser Pro Leu His Glu Ala Ala Lys
130 135 140

Arg Gly His Thr Ala Cys Val Glu Leu Leu Leu Ser His Gly Val Asn
145 150 155 160

Val Asp Met Glu Leu Pro Ser Val Gly Thr Ala Leu Tyr Cys Ala Cys
165 170 175

Glu Val Lys Ser Thr Asp Cys Val Leu Thr Leu Leu Ile Leu Gly Ala
180 185 190

Asp Val Gln Cys Gly Arg Gly Leu Asp Thr Pro Leu His Ala Ala Cys
195 200 205

Arg Val Gly Gly Ala Lys Glu Ala Glu Leu Leu Leu Glu His Gly Ala
210 215 220

Asp Arg Thr Ser Arg Asn Ser Glu Gly Lys Thr Pro Leu Asp Leu Thr
225 230 235 240

Ser Asp Gln Ser Ile Lys His Leu Leu Gln Thr Ala Gly Thr Cys Ser
245 250 255

Leu Ser Gln Leu Cys Arg Trp Cys Ile Arg Arg Ser Leu Gly Gln Lys
260 265 270

Gly Leu Asn Lys Thr Lys Thr Leu Cys Leu Pro His Met Leu His Asn
275 280 285

Tyr Leu Leu Tyr His
290

<210> 2
<211> 879
<212> DNA
<213> Danio rerio

<400> 2
atggccgtgg ttcatgctga aggaaatgtc tggattaagc aatgggatca caggttcac 60
atgtatggag gacaaacatg tagtccacta atggcaggct cctgggacga cagaacacct 120
ttcacacgtg ctgcatttgca aggaagactg cttccactga gaagactcct ctcacaggc 180
tacaatgttg gaatggcgac ttttagatgga atcacagcac tgcatgaagc ttgtgttgaa 240
ggacatttca cctgtgctaa acttctcctg gaacatggtg cagatgcaaa tgcagtgact 300
ttttagatggag ccactcctct gttcagtgcc tgctgcagtg gaaaccccgc cttgtcagc 360
ctcattttga cacacagctc cgccccaccat ccagctcacc tgctctgctc acctctgcat 420
gaagctgcaa agagaggtca cacggcctgt gttgaactgc tggtgtctca tggtgtgaac 480
gtggacatgg agctgcccag tggtaaca ggcgtgtact gtgcgtgtga agtcaagagc 540
acagactgtg tactgaccct gctgatctta ggtgtgtatg tacaatgtgg gcgtggcctt 600
gacacacctt tacatgctgc atgcagagtt ggtggagcaa aagaggcgga gctactatta 660
gaacacgggg ctgatcgta atctagaaac tctgagggaa agacacctct ggatctgacc 720
tcagatcaga gcatcaaaca cctcttgcag actgcaggta cctgctctct gtctcagcta 780
tgcaatgggt gcattcgacg ctcactggaa caaaaaggac tcaacaaaac caagaccctt 840
tgcttaccac atatgctgca caattatctt ctctatcat 879

<210> 3
<211> 329
<212> PRT
<213> Homo sapiens

<400> 3

Met Ser Val Leu Glu Glu Asn Arg Pro Phe Ala Gln Gln Leu Ser Asn
1 5 10 15

Val Tyr Phe Thr Ile Leu Ser Leu Phe Cys Phe Lys Leu Phe Val Lys
20 25 30

Ile Ser Leu Ala Ile Leu Ser His Phe Tyr Ile Val Lys Gly Asn Arg
35 40 45

Lys Glu Ala Ala Arg Ile Ala Ala Glu Phe Tyr Gly Val Thr Gln Gly
50 55 60

Gln Gly Ser Trp Ala Asp Arg Ser Pro Leu His Glu Ala Ala Ser Gln
65 70 75 80

Gly Arg Leu Leu Ala Leu Arg Thr Leu Leu Ser Gln Gly Tyr Asn Val
85 90 95

Asn Ala Val Thr Leu Asp His Val Thr Pro Leu His Glu Ala Cys Leu
100 105 110

Gly Asp His Val Ala Cys Ala Arg Thr Leu Leu Glu Ala Gly Ala Asn
115 120 125

Val Asn Ala Ile Thr Ile Asp Gly Val Thr Pro Leu Phe Asn Ala Cys
130 135 140

Ser Gln Gly Ser Pro Ser Cys Ala Glu Leu Leu Leu Glu Tyr Gly Ala
145 150 155 160

Lys Ala Gln Leu Glu Ser Cys Leu Pro Ser Pro Thr His Glu Ala Ala
165 170 175

Ser Lys Gly His His Glu Cys Leu Asp Ile Leu Ile Ser Trp Gly Ile
180 185 190

Asp Val Asp Gln Glu Ile Pro His Leu Gly Thr Pro Leu Tyr Val Ala
195 200 205

Cys Met Ser Gln Gln Phe His Cys Ile Trp Lys Leu Leu Tyr Ala Gly
210 215 220

Ala Asp Val Gln Lys Gly Lys Tyr Trp Asp Thr Pro Leu His Ala Ala
225 230 235 240

Ala Gln Gln Ser Ser Thr Glu Ile Val Asn Leu Leu Leu Glu Phe Gly
245 250 255

Ala Asp Ile Asn Ala Lys Asn Thr Glu Leu Leu Arg Pro Ile Asp Val
260 265 270

Ala Thr Ser Ser Ser Met Val Glu Arg Ile Leu Leu Gln His Glu Ala
275 280 285

Thr Pro Ser Ser Leu Tyr Gln Leu Cys Arg Leu Cys Ile Arg Ser Tyr
290 295 300

Ile Gly Lys Pro Arg Leu His Leu Ile Pro Gln Leu Gln Leu Pro Thr
305 310 315 320

Leu Leu Lys Asn Phe Leu Gln Tyr Arg
325

<210> 4
<211> 990
<212> DNA
<213> Homo sapiens

<400> 4
atgtcggtgt tagaagaaaa tcggccgttt gctcaacaat tatccaatgt ctactttaca 60
atactttcgc tgttctgttt taagctttt gtgaaaatca gccttgccat cctcagtcat 120
ttctacatag tgaaaggcaa ccgcaaggaa gcggcaagga tagcagctga attttatgga 180
gtaacccaag gacaagggttc ctgggcagat cgatcaccac tacatgaagc agcaagtcaa 240
ggtcgccttc ttgctctgag aacattatta tcacagggtt ataatgtaaa tgcagtaacc 300
ttagaccatg tcaccccatt gcacgaagcc tgccttggag atcacgtggc atgtgccaga 360
actctgctgg aagcaggagc taatgtaaat gcaatcacga tagatggcgt gactccgtta 420
ttcaacgcatt gctcccaagg cagtccaaagc tgtgcagagc tgcttctgga gtatggtgcc 480
aaagccccagc tggagtcatg tcttccatcc ccaacgcatt agggccgccag taaaggtcac 540
catgaatgtc ttgacatcct gatatcctgg ggcatacatgt ttgaccaaga aattcctcat 600
ttggaaactc ctctctatgt agcttgtatg tcacagcaat tccattgcatt ctggaagctt 660
ctttatgctg gtgctgacgt acagaaaggc aaatattggg atactccatt acatgctgct 720
gctcaacaat ccagcacaga aattgtaaac ttactgctag aatttggagc agatataaat 780
gccaaaaata cagagcttct gcgacctata gatgtagcta cgtctagcag tatggtgaa 840
agaatattgc ttcaacatga agctacccca agctctttt accaacttttccgactctgt 900
atccgaagct acataggaaa accaagattt caccttatcc cacaactcca gctgccaacg 960
ttactgaaga atttcttaca gtatcgataa 990