1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$.

2 Oblicz (a) $\int_{-\infty}^{\infty} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{-\infty}^{\infty} \frac{x dx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$.

2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{x dx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2-\frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$.

2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$.

2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{x dx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2-\frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x^2-4x+7}}$. 2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{xdx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.

1 Oblicz $\int \frac{(2x^2-7)dx}{\sqrt{x_2^2-4x+7}}$.

2 Oblicz (a) $\int_{1}^{2} \left(3x^2 - \frac{2}{x^3}\right) dx$, (b) $\int_{1}^{2} \frac{x dx}{(5-x^2)^2}$.

3 Wyznacz pole zawarte pomiędzy liniami $y = x^2 +$ 2x - 3, y = 3x - 1.