INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT251 8-input multiplexer; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT251

FEATURES

- · True and complement outputs
- Both outputs are 3-state for further multiplexer expansion
- · Multifunction capability
- Permits multiplexing from n-lines to one line
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT251 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT251 are the logic implementations of single-pole 8-position switches with the state of three select inputs (S_0 , S_1 , S_2) controlling the switch positions. Assertion (Y) and negation $\overline{(Y)}$ outputs are both provided. The output enable input $\overline{(OE)}$ is active LOW. The logic function provided at the output, when activated, is:

$$Y = \overline{OE}.(I_{\underline{0}}.\overline{S}_{0}.\overline{S}_{\underline{1}}.\overline{S}_{2} + I_{1}.S_{0}.\overline{S}_{\underline{1}}.\overline{S}_{2} + I_{2}.S_{0}.S_{\underline{1}}.\overline{S}_{2} + I_{2}.S_{0}.S_{\underline{1}}.\overline{S}_{2} + I_{3}.S_{0}.S_{\underline{1}}.\overline{S}_{2} + I_{4}.\overline{S}_{0}.\overline{S}_{\underline{1}}.S_{2} + I_{5}.S_{0}.\overline{S}_{\underline{1}}.S_{2} + I_{6}.\overline{S}_{0}.S_{\underline{1}}.S_{2} + I_{6}.\overline{S}_{0}.S_{\underline{1}}.S_{\underline{2}} + I_{7}.S_{0}.S_{\underline{1}}.S_{\underline{2}})$$

Both outputs are in the high impedance OFF-state (Z) when the output enable input is HIGH, allowing multiplexer expansion by tying the outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	DADAMETED	CONDITIONS	TYP		
	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V			
	I _n to Y		15	19	ns
	I_n to \overline{Y}		17	19	ns
	S _n to Y		20	20	ns
	S_n to \overline{Y}		21	21	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	44	46	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT251

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
4, 3, 2, 1, 15, 14, 13, 12	I ₀ to I ₇	multiplexer inputs
5	Υ	multiplexer output
6	Y	complementary multiplexer output
7	ŌĒ	3-state output enable input (active LOW)
8	GND	ground (0 V)
11, 10, 9	S ₀ , S ₁ , S ₂	select inputs
16	V _{CC}	positive supply voltage

74HC/HCT251

FUNCTION TABLE

INPUTS										OUTI	PUTS		
ŌĒ	S ₂	S ₁	S ₀	I ₀	I ₁	l ₂	l ₃	I ₄	I ₅	I ₆	I ₇	Y	Υ
Н	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Z	Z
L	L	L	L	L	Х	Х	Х	Х	Х	Х	Х	Н	L
L	L	L	L	Н	X	X	Х	X	Х	X	X	L	Н
L	L	L	Н	X	L	X	Х	X	Х	Х	X	Н	L
L	L	L	Н	Х	Н	X	Х	X	Х	Х	X	L	н
L	L	Н	L	Х	Х	L	Х	Х	Х	Х	Х	Н	L
L	L	Н	L	Х	X	Н	X	X	X	X	X	L	H
L	L	Н	Н	Х	X	X	L	X	X	X	X	Н	L
L	L	Н	Н	Х	Х	X	Н	X	Х	Х	X	L	Н
L	Н	L	L	Χ	Х	Х	Х	L	Х	Х	Х	Н	L
L	Н	L	L	Х	X	X	X	Н	X	X	X	L	Н
L	H	L	Н	Х	X	X	X	X	L	X	X	Н	L
L	Н	L	Н	Х	Х	X	Х	X	Н	Х	X	L	Н
L	Н	Н	L	Х	Х	Х	Х	Х	Х	L	Х	Н	L
L	Н	Н	L	Х	X	X	X	X	X	Н	X	L	Н
L	H	Н	Н	Х	X	X	X	X	X	X	L	Н	L
L	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	Н	L	Н

Note

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - Z = high impedance OFF-state

Philips Semiconductors Product specification

8-input multiplexer; 3-state

74HC/HCT251

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	DADAMETER			-	T _{amb} (°		TEST CONDITIONS				
SYMBOL		74HC									WAVEFORMS
STIVIBUL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay I _n to Y		50 18 14	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay I _n to Y		55 20 16	175 35 30		220 44 37		265 53 45	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay S _n to Y		66 24 19	205 41 35		255 51 43		310 62 53	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		69 25 20	205 41 35		255 51 43		310 62 53	ns	2.0 4.5 6.0	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time OE to Y, Y		36 13 10	140 28 24		175 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Y, Y		39 14 11	140 28 24		170 35 30		210 42 36	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

74HC/HCT251

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT								
In	1.00								
S ₀	1.50								
$\frac{S_1}{OF}$ S_2	1.50								
ŌĒ	1.50								

AC CHARACTERISTICS FOR HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				7	「 _{amb} (°	UNIT	TEST CONDITIONS				
CVMDOL	PARAMETER				74HC			WAVEFORMS			
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		ONII	V _{CC}	WAVEFORWIS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay I _n to Y		22	35		44		53	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to \overline{Y}		22	35		44		53	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay S _n to Y		24	44		55		66	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay S_n to \overline{Y}		25	44		55		66	ns	4.5	Fig.7
t _{PZH} / t _{PZL}	3-state output enable time OE to Y, Y		13	28		35		42	ns	4.5	Fig.7
t _{PHZ} / t _{PLZ}	3-state output disable time OE to Y, Y		14	28		35		42	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

74HC/HCT251

AC WAVEFORMS

Fig.6 Waveforms showing the multiplexer input (I_n) and select input (S_n) to output (Y) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".