Network QoS 371-2-0213

Lecture 8

Gabriel Scalosub

Outline

- Classical Scheduling Algorithms
 - Introduction and Makespan
 - Interval Scheduling
 - Aftermath

2 Final Project: Some Thoughts

Scheduling Preliminaries

- Over 50 years of research
- Model:
 - n jobs J_i , j = 1, ..., n
 - m machines M_i , i = 1, ..., m
 - p_{ij} : job J_j 's processing time on machine M_i
 - jobs should be scheduled on machines
 - various constraints/assumptions
 - objective function is optimized
- Examples:
 - schedule jobs on m machines
 - variable-length jobs (same on all machines)
 - goal: minimize maximum completion time (Makespan)
 - single machine: trivial...
 - two machines: NP-hard (subset-sum)

Machine Scheduling Notation: $\alpha \mid \beta \mid \gamma$

- Machine environment α :
 - m: number of machines
 - P: parallel identical machines
 - Q: parallel machines with speeds, $p_{ij} = p_i/s_i$
 - job processing requirement p_i , machine speed s_i (independent)
 - R: parallel unrelated machines
 - ...
- Job characteristics β :
 - r_i : release time
 - d_i: deadline
 - pmtn: preemption is allowed
 - a job assigned to a machine can be stopped, and rescheduled later
 - prec: precedence constraints
 - specified by an underlying DAG on the jobs
 - **.**..

Machine Scheduling Notation: $\alpha \mid \beta \mid \gamma$ (Cont.)

- Objective function γ :
 - C_{max} : minimize maximum completion time of a job
 - job J_j 's completion time C_j
 - \bullet L_{max} : minimize maximum lateness of a job
 - job J_j 's lateness $L_j = C_j d_j$
 - $\sum_{i} U_{i}$: minimize number of late jobs
 - job J_j 's lateness indicator $U_j = \mathbb{1}_{|C_j| > d_j}$
 - $\sum_j w_j \overline{U}_j$: maximize weight of jobs scheduled by their deadlines
 - ullet job J_j 's non-lateness indicator $\overline{U}_j=1-U_j$
- Examples:
 - $1 \mid d_j, r_j \mid \sum_j w_j \overline{U}_j$
 - one machine ("queue"), maximize weight of jobs scheduled by their deadlines, with release times.
 - similar to the problem we saw last week...
 - $Q2 \mid \text{pmtn}, \text{prec}, d_j \mid \sum_i L_j$
 - 2 machines (different speeds), preemption allowed, precedence constraints, minimize sum (equiv. average) of latenesses

Machine Scheduling Notation: $\alpha \mid \beta \mid \gamma$ (Cont.)

- One more example:
 - *Pm* || *C*_{max}
 - m identical machines, minimize the makespan
 - o coming up next...

Examples of Problems, or "The Scheduling Zoo"

http://www.informatik.uni-osnabrueck.de/knust/class/, http://schedulingzoo.lip6.fr/

```
Parallel machine problems without preemption
```

```
· maximal polynomially solvable:
```

```
P|p_i = p; outtree; r, C_{max} Brucker et al. (1977)
P|p_i = p; tree|C_{n=r}
                                Hu (1961), Davida & Linton (1976)
Q|p_i = p_i r_i |C_{max}
                                Assignment-problem
O2|p_s = p; chains C_{max}
                               Brucker et al. (1999)
P|_{\mathbf{p}_{i}} = 1: chains: r_{i}|_{L_{max}}
                               Dror et al. (1998), Baptiste et al. (2004)
P|p_i = p_i intree L_{max}
                                Brucker et al. (1977), Monroa (1982)
                               Garey & Johnson (1976)
P^2 |_{\mathcal{D}} = p; prec |_{L_{max}}
P2n = 1:wecr, L_{max}
                               Garrer & Johnson (1977)
P|p_i = 1; outtree; r_i \sum C_i Brucker et al. (2002), Huo & Leung (2005)
P|p_i = p; outtree|\sum C_i
                                Hu (1961)
P2|_{D_i} = 1; prec; r_i \mid \sum C_i
                                Baptiste & Timkovsky (2004)
P2|p_i = p; prec | \sum C_i
                               Coffman & Graham (1972)
Pm|p_i = p_i tree \sum C_i
                                Baptiste et al. (2004)
Om p_i = \operatorname{re}_i \sum C_i
                                Dessouky et al. (1990)
B Y.C.
                                Horn (1973), Bruno et al. (1974)
                                Brucker & Kravchenko (2008)
P|p_i = p; r_i \sum w_i C_i
P|p_i = 1; r_i \sum w_i U_i
                                Networkflowproblem
Pm|_{\mathcal{D}_i} = \operatorname{gr}_i |\sum w_i U_i
                                Baptiste et al. (2004)
Q|p_i = p|\sum w_iU_i
                                Assignment-problem
                                Brucker & Kravchenko (2005)
P|p_i = p; r_i \sum T_i
P|p_i = 1; r_i \sum w_i T_i
                                Networkflowproblem
O[p_i = p \mid \sum w_i T_i
                                Assignment-problem
```

Function & Diamond Man (1979)

maximal pseudopolynomially solvable:

Qmr. Com	Lawler et al. (1989)	
$Qm \mid \sum w_i C_i$	Lawler et al. (1989)	
Om Vw.U.	Lawlet et al. (1989)	

· minimal NP-hard:

* $P|p_i = 1; intree; r_i | \sum C_i$

```
    F2||C_{cour}|
    Lensetra et al. (1977)

    F||C_{cour}|
    F||C_{cour}|

    F||p_{c}| = 1; interee; r_{c}C_{cour}|
    Brucker et al. (1977)

    F||p_{c}| = 1; precC_{cour}|
    Ullman (1975)

    F2||chainster(C_{cour}|)|
    Ullman (1991)

    F||p_{c}| = 1; outrier_{c}||C_{cour}|
    Kubbis (1988)

    F||p_{c}| = 1; outrier_{c}||C_{cour}||
    Brucker et al. (1977)
```

Graham's List Scheduling for Minimizing Makespan ('66)

Algorithm 1 LS

- 1: sort jobs arbitrarily, J_1, \ldots, J_n
- 2: **for** j = 1, ..., n **do**
- 3: assign J_i to currently least loaded machine
- 4: end for
 - Probably the first approximation algorithm ever
 - Actually an online algorithm
 - since order is arbitrary
 - How bad can LS be?
 - Assume job order is (considering processing times)

$$\underbrace{1,1,\ldots,1}_{m(m-1) \text{ jobs}}$$
, n

•
$$\frac{LS}{OPT} = \frac{2m-1}{m} = 2 - \frac{1}{m}$$

Competitive Analysis of List Scheduling

Theorem

Algorithm LS is $(2-\frac{1}{m})$ -approximation (competitive)

Proof.

- Observation: OPT $\geq \max\left\{\frac{\sum_{j} p_{j}}{m}, \max_{j} p_{j}\right\}$
- Notation:
 - L: maximum load in LS
 - *i**: most loaded machine in LS
 - j^* : last job assigned to i^*
- All machines have load $\geq L p_{j^*}$

$$\Rightarrow (\sum_{j} p_{j}) - p_{j^{*}} \geq m(L - p_{j^{*}})$$

$$L \leq \frac{(\sum_{j} p_{j}) - p_{j^{*}}}{m} + p_{j^{*}}$$

$$= \frac{\sum_{j} p_{j}}{m} + (1 - \frac{1}{m})p_{j^{*}}$$

$$< (2 - \frac{1}{m})OPT$$

Improving upon List Scheduling

- Observations:
 - if $n \le m$, LS is optimal
 - ensuring load-balancing online might be harmful
- How would improved online algorithms look like?
 - purposely cause imbalance
 - prepare for the worse
 - leave "some" room for a big job
 - not too much

	deterministic			randomized	
m	lower bound	upper bound	LS	lower bound	upper bound
2	1.5000	1.5000	1.5000	1.3333	1.3334
3	1.6666	1.6667	1.6667	1.4210	1.5567
4	1.7310	1.7333	1.7500	1.4628	1.6589
5	1.7462	1.7708	1.8000	1.4873	1.7338
6	1.7730	1.8000	1.8333	1.5035	1.7829
7	1.7910	1.8229	1.8571	1.5149	1.8169
∞	1.8520	1.9230	2.0000	1.5819	-

Improving upon List Scheduling

- What if we're allowed to sort jobs?
 - no longer online...
 - can we get a better approximation guarantee?
- OrderedLS: jobs are sorted: $p_1 \ge p_2 \ge ... \ge p_n$

Lemma

If n > m then $OPT \ge p_m + p_{m+1}$

Proof.

- Pigeonhole principle (for any solution):
 - 2 jobs out of J_1, \ldots, J_{m+1} are assigned to same machine
 - jobs are ordered by non-increasing processing time
 - the minimum weight of any such 2 jobs is $p_m + p_{m+1}$

Analysis of Improved Offline List Scheduling

Theorem

Algorithm OrderedLS is a $(\frac{3}{2} - \frac{1}{2m})$ -approximation

Proof (similar to previous).

- Observation: OPT $\geq \max\left\{\frac{\sum_{j} p_{j}}{m}, \max_{j} p_{j}\right\}$
- Same notation:
 - L (max-load), i^* (max-load machine), j^* (last job in i^*)
- If $j^* \leq m$: OrderedLS = Opt
- If $j^* > m$: $p_{j^*} \le \frac{p_m + p_{m+1}}{2} \le \frac{\text{OPT}}{2}$

$$L \leq \frac{(\sum_{j} p_{j}) - p_{j*}}{m} + p_{j*}$$

$$= \frac{\sum_{j} p_{j}}{m} + (1 - \frac{1}{m}) p_{j*}$$

$$\leq OPT + (1 - \frac{1}{m}) \frac{OPT}{2}$$

$$\leq (\frac{3}{2} - \frac{1}{2m}) OPT$$

Interval Scheduling

- Input
 - job J_j requires processing during interval $I_j = [s_j, t_j)$
 - uses all the interval
 - each job J_j has weight $w(J_j)$
 - m identical machines
- Goal
 - find a subset of jobs $S = S_1 \dot{\cup} S_2 \dot{\cup} \dots \dot{\cup} S_m$, such that
 - for any k, and any $J_j, J_{j'} \in S_k$, $I_j \cap I_{j'} = \emptyset$
 - criteria
 - $\max \sum_{J_i \in S} w(J_i)$
- Usually referred to as interval scheduling
 - refer to J_i as its interval
- Our focus:
 - uniform weights, i.e., $w(J_i) = 1$ for all j
- What algorithm would you use?

Offline Interval Scheduling (m = 1)

Algorithm 2 GIS(machine, jobs \mathcal{J})

- Greedy interval scheduling (GIS...)
- Main question: how should we sort intervals?

Offline Interval Scheduling (m = 1)

Theorem

GIS (sorting by t_i) produces an optimal schedule

Proof (by contradiction).

- Let $J_{i_1}, \ldots J_{i_k}$ be the schedule produced by GIS
- Let OPT be an optimal schedule
 - OPT schedules $J_{j_1}, \ldots, J_{j_r}, J_{j_{r+1}^*}, \ldots$
 - r < k is maximal
 - i.e., OPT "agrees" with GIS on a maximum prefix of GIS
- if r = k, GIS would have scheduled additional jobs
 - at least $J_{j_{r+1}^*}$ is available and non-overlapping
- Assume r < k
 - by definition of GIS, $t_{i_{r+1}} \leq t_{i_{r+1}}^*$
 - we can switch them without harming OPT
- ullet contradiction to GIS definition / maximality of r

Offline Interval Scheduling $(m \ge 1)$

Algorithm 3 m-GIS(m machines, jobs \mathcal{J})

- 1: **for** i = 1, ..., m **do**
- 2: add GIS(machine i, remaining jobs)
- 3: end for

Theorem

m-GIS is a 2-approximation

Proof (by contradiction).

- OPT $_i$: set of intervals in OPT \setminus m-GIS scheduled on M_i
- Assume |m-GIS| < |OPT|/2

$$\Rightarrow |\cup_i \text{Opt}_i| > |\text{Opt}|/2 > |m\text{-GIS}| = |\cup_i \text{GIS}_i|$$

- Pigeonhole principle
 - exists i s.t. $|OPT_i| > |GIS_i|$
 - OPT_i is available to GIS_i : contradicts optimality of GIS

 $\triangleright \text{GIS}_i$

Online Interval Scheduling

- Job J_j arrives at s_j
 reveals t_j
 preemptive
 - otherwise, same as ordering by s_i (unbounded competitiveness)

Algorithm 4 ONLINE-m-GIS: at time t

```
1: for any job J_i arriving at t do
        if J_i can be scheduled on some machine M_i then
 2:
             schedule J_i on M_i
 3:
        else
 4:
            j' \leftarrow \arg\max_k \{t_k \mid J_k \text{ is scheduled and intersects } J_i\}
 5:
             if t_i \geq t_{i'} then drop J_i
 6:
7:
             else drop J_{i'} and schedule J_i instead
             end if
 8:
        end if
 9.
10: end for
```

Online Interval Scheduling

• ONLINE-*m*-GIS emulates *m*-GIS

Corollary

Online-m-GIS is 2-competitive

- Is this tight?
- If m-GIS is an α -approximation
 - Online-m-GIS is α -competitive

$\mathsf{Theorem}$

m-GIS produces an optimal schedule

Corollary

Online-m-GIS produces an optimal schedule

Online!!

From Networking to Scheduling

- Links / paths → machines
- ullet Traffic \longrightarrow jobs
- Applications:
 - routing
 - optical networks
 - Wavelength Division Multiplexing (WDM)
 - packet scheduling
 - bounded-delay model
 - forwarding across networks (sensors, bounded-buffers)
 - many more...
- Some references
 - Cormen, Leiserson, Rivest. Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.
 - Sgall, Online Scheduling A Survey, in Fiat et al (eds.), Online Algorithms: The State of the Art, 1998.
 - Graham et al., Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, 1979.

The Creative Part of the Course

- Models we've seen:
 - AAP Routing
 - BM with commitments (FIFO)
 - BM with packet weights (FIFO)
 - BM/Scheduling with packet weights and deadlines
- Issues to take into account:
 - interesting/useful model extension
 - better algorithms
 - proofs (analytic)
 - simulations (heuristic)
 - KISS: "Keep It Simple, Stup..."
- Analytic approach:
 - toy examples are usually very instructive
 - limited models are a good place to start
- Simulation approach:
 - try to highlight the main ideas/benefits
 - a great motivator for designing better solutions