

FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA	2
MÓDULO	6
PROPRIEDADES DO MÓDULO	6
FUNÇÃO MODULAR	9
GRÁFICO DA FUNÇÃO MODULAR	9
EQUAÇÕES MODULARES	27
INEQUAÇÕES MODULARES	32
RESPOSTAS	37
REFERÊNCIA BIBLIOGRÁFICA	44

No final das séries de exercícios podem aparecer sugestões de atividades complementares. Estas sugestões referem-se a exercícios do livro "Matemática" de Manoel Paiva fornecido pelo FNDE e adotado pelo IFMG – Campus Ouro Preto durante o triênio 2015-2017.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA

Já vimos, em apostilas anteriores, como tratar com funções definidas por mais de uma expressão e agora vamos usar aqueles conceitos.

Uma função é definida por mais de uma sentença quando cada uma delas está associada à um subdomínio D_1 , D_2 , D_3 , ... D_n e a união destes n subconjuntos forma o domínio D da função original, ou seja, cada domínio D_i é um subconjunto de D.

Vamos ver alguns exemplos de funções definidas por mais de uma sentença e seus respectivos gráficos.

Ex.1: Seja a função

$$f(x) = \begin{cases} 1 & \text{se} & x < 0 \\ x + 1 & \text{se} & 0 \le x < 2 \\ 3 & \text{se} & x \ge 2 \end{cases}$$

O seu gráfico é dado por:

Ex. 2: Veja o gráfico de

$$f(x) = \begin{cases} -x & \text{se } x < -1 \\ x^2 - 1 & \text{se } x \ge -1 \end{cases}$$

Ex. 3: Seja a função

$$f(x) = \begin{cases} -x + 1 \text{ se } x < -2 \\ x^2 - 1 \text{ se } -2 \le x \le 1 \\ -x + 1 \text{ se } x > 1 \end{cases}$$

o gráfico é:

01) Construa o gráfico de cada uma das funções abaixo:

a)
$$f(x) = \begin{cases} x + 1 \text{ se } x \ge 0 \\ -x \text{ se } x < 0 \end{cases}$$

b)
$$f(x) = \begin{cases} -2 \text{ se } x \le 2 \\ x \text{ se } -2 < x < 2 \\ 2 \text{ se } x \ge 2 \end{cases}$$

c)
$$f(x) = \begin{cases} x^2 - 2x & \text{se } x \ge 1 \\ 1 - x & \text{se } x < 1 \end{cases}$$

d)
$$f(x) = \begin{cases} -x^2 + 1 & \text{se } x < 1 \\ (x-2)^2 - 1 & \text{se } x \ge 1 \end{cases}$$

02) Dada
$$f(x) = \begin{cases} x^2 + x - 2 & \text{se } x < -2 \\ -\frac{x}{2} + 1 & \text{se } x \ge -2 \end{cases}$$

a) Construa seu gráfico.

03) Quais valores de x tem imagem 7 na função

$$f(x) = \begin{cases} x^2 - \frac{5}{2}x + 1 & \text{se} \quad x \ge 0 \\ x + 2 & \text{se} \quad x < 0 \end{cases}$$

04) Construa o gráfico de $f(x) = \begin{cases} x & \text{se} \quad x \ge 0 \\ -x & \text{se} \quad x < 0 \end{cases}$

MÓDULO

Sendo x um número real, definimos **MÓDULO** ou **VALOR ABSOLUTO** que se representa por |x| através da expressão:

$$\left| \; x \; \right| = \begin{cases} x \quad \text{se} \quad x \geq 0 \\ -x \quad \text{se} \quad x < 0 \end{cases}$$

Da expressão acima, podemos tirar duas conclusões:

- 1. Se x é zero ou um número positivo, então o módulo de x é o próprio x.
- 2. Se x é um número negativo, então o módulo de x é o oposto aditivo de x.

É interessante associar a idéia de valor absoluto a distância, assim, o módulo de um número x é a distância do afixo de x até a origem do sistema. Este conceito voltará a ser usado quando você estiver estudando Números Complexos no 3º ano.

PROPRIEDADES DO MÓDULO

Da definição de módulo, decorrem algumas propriedades que veremos a seguir:

I
$$|x| \ge 0, \forall x \in \Re$$

II $|x| = 0 \Leftrightarrow x = 0$
III $|x| \cdot |y| = |xy|, \forall x, y \in \Re$
IV $|x|^2 = x^2, \forall x \in \Re$
V $|x + y| \le |x| + |y|, \forall x, y \in \Re$

VI
$$|x-y| \ge |x| - |y|, \forall x, y \in \Re$$

VII
$$|x| \le a e a > 0 \Leftrightarrow -a \le x \le a$$

VIII
$$|x| \ge a e a > 0 \Leftrightarrow x \le -a ou x \ge a$$

Exercícios

05) Aplicando o conceito de módulo, calcule:

- a) |4|
- b) |-18|
- c) |9-4|

e)
$$|\sqrt{7} - 2|$$

f)
$$|\sqrt{5} - 3|$$

06) Para que valores reais de x é válida cada uma das igualdades a seguir?

a)
$$|x+3| = x+3$$

b)
$$|x^2 - 1| = 1 - x^2$$

c)
$$|x^2 + 1| = x^2 + 1$$

07) O módulo de um número real x também pode ser definido desta forma: $|x| = \sqrt{x^2}$. Assim, calcule:

a)
$$\sqrt{(-3)^2}$$

b)
$$\sqrt{(\sqrt{3}-1)^2}$$

c)
$$\sqrt{(x-5)^2}$$

08) Considere, na reta real, os pontos A(a) e B(b).

O conceito de módulo pode ser usado para o cálculo da **distância AB** entre os pontos A e B, a partir de suas coordenadas. Assim, por definição,

$$AB = |a-b| = |b-a|$$

Desta forma, calcule a distância AB quando:

a)
$$a = -3 e b = 4$$

b)
$$a = -5 e b = -8$$

c)
$$a = \sqrt{3} eb = 5$$

- 09) Uma partícula desloca-se sobre uma reta real. Inicialmente ela se encontra no ponto A(-5), em seguida vai até B(7) e depois até C(-2).
- a) Qual a distância total percorrida pela partícula.

- b) Qual seu deslocamento final.
- 10) Verifique se cada uma das afirmativas a seguir é VERDADEIRA ou FALSA.

a)
$$|-x| = |x| \forall x \in \Re$$

b)
$$|x| \ge 0 \ \forall x \in \Re$$

c)
$$|x| = |y| \Rightarrow x = y, \forall x, y \in \Re$$

d)
$$|x|^2 = x^2 \ \forall x \in \Re$$

e)
$$|x| = a \Rightarrow x = a$$

f)
$$\exists x \in \Re | |x| < 0$$

ATIVIDADES COMPLEMENTARES

Pág. 192 - Exercícios 1 a 4

FUNÇÃO MODULAR

A função que associa a cada número real o seu valor absoluto é chamada FUNÇÃO MODULAR e representamos;

$$f(x) = |x|$$

Utilizando o conceito de módulo de número real apresentado na página 6 desta apostila, a função modular também pode ser definida da seguinte forma:

$$f(x) = \begin{cases} x & \text{se} & x \ge 0 \\ -x & \text{se} & x < 0 \end{cases}$$

GRÁFICO DA FUNÇÃO MODULAR

Na questão 04 (Pág. 06) desta apostila, você construiu o gráfico da função $f(x)= \mid x \mid$ porém apresentada sob a forma de duas sentenças. Observe lá o que você fez.

O gráfico da função modular é a reunião de duas semirretas de origem em (0, 0) que são as bissetrizes do 1º e 2 º quadrantes.

$$D = \Re e Im = \Re_+$$

Vamos, a partir de agora, desenvolver algumas técnicas para construção de gráficos de função modular.

Em cada exemplo a seguir vamos aprender um tipo de gráfico e, a seguir, construiremos um semelhante.

EXEMPIOS

Vamos construir o gráfico de f(x) = |2x|.

Resolução:

Quando nos deparamos com uma função elementar como esta, em princípio, construímos o gráfico de g(x) = 2x.

A seguir devemos fazer f(x) = |g(x)|, ou seja devemos "rebater" a parte do gráfico que se encontra abaixo do eixo horizontal, desta forma:

Agora é sua vez:

11) Construa, nas malhas quadriculadas de cada item, o gráfico que se pede. Em todas as malhas, está tracejado o gráfico da função f(x)=|x|. Aproveite para comparar o gráfico que vc construiu com este.

a)
$$f(x) = \left| \frac{x}{2} \right|$$

b)
$$f(x) = |3x|$$

$$c) f(x) = -|x|$$

Construir o gráfico da função f(x) = |x + 2|.

Resolução:

Assim como fizemos antes, vamos construir o gráfico de g(x) = x + 2

Agora, vamos "rebater" o que estiver abaixo do eixo das abscissas.

Este é o gráfico da função f(x) = |x + 2| e podemos observar o domínio e a imagem da função olhando para o gráfico:

$$D = \mathbb{R} e Im = \mathbb{R}_+$$

Vamos aproveitar este gráfico para fazer outra observação. Na figura abaixo está o gráfico de f(x) = |x + 2| e, tracejado em verde, o gráfico da função f(x) = |x|.

Comparando os dois gráficos, podemos dizer que o gráfico de f foi obtido a partir do deslocamento do gráfico de g em duas unidades para a esquerda.

A seguir, você pode observar uma família de gráficos do tipo f(x) = |x - a|. Note cada gráfico é deslocado, em relação do gráfico de f(x) = |x| em a unidades.

Tente associar esta ideia com o que você viu quando estudou os deslocamentos laterais do gráfico da função quadrática.

Exercícios

12) Construa o gráfico de f(x) = |x-1|

Construir o gráfico da função $f(x) = |x^2 + 2x|$.

Resolução:

Da mesma forma que já fizemos, construiremos o gráfico de $g(x) = x^2 + 2x$ e "rebateremos" o que está abaixo do eixo x pois f(x) não admite valor negativo.

 $D = \mathbb{R} e Im = \mathbb{R}_+$

Exercícios

Construa o gráfico de cada uma das funções apresentadas nas questões de 13 a 19.

13)
$$f(x) = |2x-1|$$

14)
$$f(x) = |2x + 3|$$

15)
$$f(x) = |2-3x|$$

16)
$$f(x) = |x^2 + 4x|$$

17)
$$f(x) = |-x^2 + 4|$$

18)
$$f(x) = |x^2 - 3x|$$

19)
$$f(x) = |x^2 - 3x + 2|$$

Construir o gráfico da função definida em todo o capo dos reais dada por f(x) = |x + 1| - 2

Resolução:

Em princípio, vamos construir o gráfico de g(x) = |x + 1| como vimos nos exemplos anteriores.

Agora devemos "deslocar" o gráfico duas unidades para baixo pois f(x) = g(x) - 2

Podemos ver que o DOMÍNIO desta função são todos os números reais. Observando o gráfico, qual é a IMAGEM desta função?

Construa o gráfico de cada uma das funções apresentadas nas questões de 20 a 24.

20)
$$f(x) = |x| - 3$$

21)
$$f(x) = |2x-1|+3$$

22)
$$f(x) = |x^2 - 4| - 3$$

23)
$$f(x) = |x^2 + 4x + 3| - 3$$

24)
$$f(x) = |x^2 + 1| - 4$$

Agora vamos começar a tratar com funções que apresentam incógnitas dentro e fora do módulo e outras com soma de módulos.

Ex1.: Construir o gráfico da função f(x) = |x+2| + x - 1.

Resolução:

Vamos dividir a função em duas partes. A primeira é o que está no módulo: |x+2| e a segunda parte será +x-1.

De |x+2|, temos:

$$|x+2| = \begin{cases} x+2 \text{ se } x \ge -2 \\ -x-2 \text{ se } x < -2 \end{cases}$$

De +x-1 temos que, independente do valor de x, seu valor será +x-1.

Vamos agora dispor estas situações num quadro. O que vai separar uma coluna de outra será o -2 que é o valor que faz mudar a expressão na primeira parte da função.

Note que a terceira linha é a soma das duas anteriores. A função que dividimos em duas partes era formada pela soma dessas. Assim, a função que trabalharemos agora será:

$$f(x) = \begin{cases} 2x + 1 \text{ se } x \ge -2 \\ -3 \text{ se } x < -2 \end{cases}$$

Vamos agora construir o gráfico desta função definida por partes.

Ex1.: Construir o gráfico da função f(x) = |2x+1| + |x-1|.

Resolução: Assim como fizemos antes, vamos dividir a função em duas partes e, a seguir, formaremos o quadro. Veja.

$$|2x+1| =$$

$$\begin{vmatrix} 2x+1 \text{ se } x \ge -\frac{1}{2} \\ -2x-1 \text{ se } x < -\frac{1}{2} \end{vmatrix}$$

$$|x-1| = \begin{cases} x-1 \text{ se } x \ge 1 \\ -x+1 \text{ se } x < 1 \end{cases}$$

Assim, a função de que devemos construir o gráfico será:

$$f(x) = \begin{cases} -3x \sec x < -\frac{1}{2} \\ x + 2 \sec -\frac{1}{2} < x < 1 \\ 2x \sec x > 1 \end{cases}$$

Exercícios

Construa o gráfico de cada uma das funções apresentadas nas questões de 25 a 32.

25)
$$f(x) = |x| + x$$

26)
$$f(x) = |x| - x$$

27)
$$f(x) = |x-3| + x + 2$$

281)
$$f(x) = |x+1| - x + 3$$

29)
$$f(x) = |2x-1| + x-2$$

30)
$$f(x) = |3x+2|-2x+3$$

31)
$$f(x) = x^2 - |4x| + 3$$

32)
$$f(x) = ||x-1|-x-4|$$

Construa o gráfico de cada uma das funções apresentadas nas questões de 33 a 37.

33)
$$f(x) = |x+1| + |x-1|$$

34)
$$f(x) = |x+1| - |x-1|$$

35)
$$f(x) = |2x-2| + |x+3| - 5$$

36)
$$f(x) = |x^2 - 4| - |x - 2|$$

37)
$$f(x) = \frac{|2x+1|+|x-3|}{2}$$

No link abaixo, você tem acesso a uma vídeo-aula de cerca de 30 minutos que abrange tudo que vimos até aqui sobre função modular.

EQUAÇÕES MODULARES

Para resolver equações modulares, devemos lembrar de duas propriedades de módulo:

P1:

$$|x| = k \iff x = k \text{ ou } x = -k$$

P2:

$$|x| = |y| \iff x = y \text{ ou } x = -y$$

Utilizando estas duas propriedades e a condição de que $|x| \ge 0$, vamos resolver algumas equações modulares.

Ex.1: Resolver |2x+1| = 7

Resolução:

$$|2x+1| = 7 \Rightarrow \begin{cases} 2x+1=7 \Rightarrow x=3 \\ ou \\ 2x+1=-7 \Rightarrow x=-4 \end{cases}$$

$$S = \{-4; 3\}$$

Ex.2: Resolver |3x-1| = |2x+3|

Resolução:

$$|3x-1| = |2x+3| \Rightarrow \begin{cases} 3x-1 = 2x+3 \Rightarrow x = 4 \\ ou \\ 3x-1 = -(2x+3) \Rightarrow x = -\frac{2}{5} \end{cases}$$

$$S = \left\{4; -\frac{2}{5}\right\}$$

Ex.2: Resolver |x-1| = 2x - 8

Resolução:

Em princípio devemos lembrar que $2x-8 \ge 0 \Rightarrow x \ge 4$

Deste forma só serão convenientes aquelas soluções maiores ou iguais a 4

$$|x-1| = 2x - 8 \Rightarrow \begin{cases} x - 1 = 2x - 8 \Rightarrow x = 7 \\ ou \\ x - 1 = -(2x - 8) \Rightarrow x = 3 \end{cases}$$

Como previmos anteriormente, a solução x = 3 não convém, neste caso,

$$S = \{7\}$$

Faça agora os exercícios referentes a este assunto.

38) Resolva as equações a seguir no campo dos números reais.

a)
$$|x+2|=3$$

b)
$$|3x-1|=2$$

c)
$$|4x-5|=0$$

$$d) \setminus |2x-3| = -1$$

e)
$$|x^2 - 3x - 1| = 3$$

f)
$$\left| x^2 - \frac{5}{2}x - \frac{1}{4} \right| = \frac{5}{4}$$

g)
$$|x^2 - 4x + 5| = 2$$

39) Resolva as equações a seguir no campo dos números reais.

a)
$$|3x+2| = |x-1|$$

c)
$$|x^2 + x - 5| = |4x - 1|$$

d)
$$|x^2 + 2x - 2| = |x^2 - x - 1|$$

b)
$$|4x-1|-|2x+3|=0$$

40) Resolva as equações a seguir no campo dos números reais.

a)
$$|x-2| = 2x+1$$

d)
$$|2x^2 + 15x - 3| = x^2 + 2x - 3$$

b)
$$|3x+2|=2x-3$$

e)
$$|3x-2| = 3x-2$$

c)
$$|2x-5| = x-1$$

f)
$$|4-3x| = 3x-4$$

Existem outras situações envolvendo equações modulares que não trataremos aqui mas você pode ver nas vídeo-aulas acessíveis pelos links abaixo:

Equações Modulares Parte 3

Equações Modulares Parte 4

Equações Modulares Parte 5

INEQUAÇÕES MODULARES

A idéia de módulo está ligada ao conceito de distância, como foi dito no início desta apostila. Assim, temos que:

$$|x| < a \Leftrightarrow -a < x < a$$

 $|x| > a \Leftrightarrow x < -a \text{ ou } x > a$

Utilizando estas propriedades, podemos resolver as equações que envolvem módulo.

Ex.1: Resolver a inequação |2x+3| < 7.

Resolução:

Aplicando a primeira propriedade acima, encontramos

$$-7 < 2x + 3 < 7$$

Resolvendo o sistema de inequações temos:

$$-5 < x < 2$$

Logo:

$$S = \{x \in \Re / -5 < x < 2\}$$

Ex.2: Resolver a inequação |-3x+1| > 2

$$\left|-3x+1\right| > 2 \Rightarrow \begin{cases} -3x+1 > 2 \\ ou \\ -3x+1 < -2 \end{cases}$$

Resolvendo as equações acima, temos:

$$x < \frac{1}{3}$$
 ou $x > 1$

Assim:

$$S = \left\{ x \in \Re \mid x < \frac{1}{3} \quad ou \quad x > 1 \right\}$$

41) Resolva, no campo dos números reais, cada uma das cinco inequações a seguir:

a)
$$|3x-2| < 4$$

b)
$$|2x-3| \le 1$$

c)
$$|4-3x|<-3$$

d)
$$|3x + 4| \le 0$$

b)
$$|x^2 - x - 4| > 2$$

e)
$$|2x-1| > 3$$

42) Resolver em $\ensuremath{\mathbb{R}}$ as quatro inequações a seguir.

a)
$$|x^2 - 5x + 5| < 1$$

c)
$$|x^2 - 5x| \ge 6$$

d)
$$|x^2 - 3x - 4| \le 6$$

43) Resolver em \mathbb{R} a inequação $2x-7+\left|x+1\right|\geq0$.

(Esta questão está resolvida na seção RESPOSTAS)

- 44) Resolver em \mathbb{R} a inequação $|x-1|-3x+7 \le 0$.
- 45) Resolver em \Re a inequação |2x+1|+4-3x>0.

RESPOSTAS

01) a)

b)

c)

02) Resolução a)

b) Para encontrar os pontos de imagem 4, devemos resolver as equações:

(1)
$$x^2 + x - 2 = 4$$

$$(2) \quad -\frac{x}{2}+1=4$$

De (1), temos $x_1 = -3$ e $x_2 = 2$ Mas -3 não convém

De (2) temos x = -6.

Assim 2 e -6 tem imagem 4.

03) 4

04)

05)

- a) 4
- d) 12 5
- b) 18
- e) $\sqrt{7} 2$
- c) 9 4
- f) $3 \sqrt{5}$

- **06)** a) $x \ge -3$ b) $-1 \le x \le 1$ c) $\forall x \in \Re$
- **07)** a) a) $x-5 \text{ se } x \ge 5$ b) $-x+5 \text{ se } x \le 5$
- **08)** a) 7 c) $\sqrt{3} 1$ b) 3
- **09)** a) 21 c) 3
- **10)** Verdadeiras: <u>a</u>, <u>b</u>, <u>d</u>, <u>f</u> Falsa: <u>c</u>, <u>e</u>

 $D = \Re e Im = \Re_+$

15)

 $\mathsf{D}=\Re\ \mathsf{e}\ \mathsf{Im}=\Re_{^+}$

16)

17)

 $D = \Re e Im = \Re_+$

18)

 $D = \Re e Im = \Re_+$

19)

 $D = \Re e Im = \Re_+$

 $D = \Re e Im = [-3; \infty)$

21)

22)

23)

 $D = \Re e Im = [-3; \infty)$

24)

 $D = \Re e Im = [-3; \infty)$

25)

 $\mathsf{D}=\mathfrak{R}\ \mathsf{e}\ \mathsf{Im}=\mathfrak{R}_{+}$

26)

 $\mathsf{D}=\mathfrak{R}\;\mathsf{e}\;\mathsf{Im}=\mathfrak{R}_{+}$

$$D = \Re e Im = [-1; \infty)$$

28)

29)

30)

$$D = \Re e \operatorname{Im} = \left[\frac{13}{3}; \infty\right)$$

31)

$$D = \Re e Im = [-1; \infty)$$

32)

$$D = \Re e \text{ Im} = \Re_+$$

33)

$$D = \Re e Im = [2; \infty)$$

34)

$$D = \Re e Im = [-2; 2]$$

$$D = \Re e \text{ Im} = [-1; \infty)$$

$$D = \Re e Im = \Re_+$$

37)

$$D = \Re e Im = [2; \infty)$$

38) a)
$$S = \{1, -5\}$$

b)
$$S = \left\{1, -\frac{1}{3}\right\}$$

c)
$$S = \left\{ \frac{5}{4} \right\}$$

d)
$$S = \phi$$

e)
$$S = \{-1, 1, 2, 4\}$$

f)
$$S = \left\{ -\frac{1}{2}, \frac{1}{2}, 2, 3 \right\}$$

g)
$$S = \{1, 3\}$$

39) a)
$$S = \left\{-\frac{3}{2}, -\frac{1}{4}\right\}$$

b)
$$S = \left\{2, -\frac{1}{3}\right\}$$

c)
$$S = \{-6, -1, 1, 4\}$$

d)
$$S = \left\{-\frac{3}{2}, \frac{1}{3}, 1\right\}$$

40) a)
$$S = \left\{ \frac{1}{3} \right\}$$

b)
$$S = \phi$$

c)
$$S = \{2, 4\}$$

d)
$$S = \{-13, -6\}$$

e)
$$S = \left[\frac{2}{3}; \infty\right]$$

f)
$$S = \left[\frac{4}{3}; \infty\right]$$

41) a)
$$S = \left\{ x \in \Re / -\frac{2}{3} < x < 2 \right\}$$

b)
$$S = \{x \in \Re / 1 \le x \le 2\}$$

c)
$$S = \left\{ x \in \Re \left[-\frac{1}{3} \le x \le 3 \right] \right\}$$

d)
$$S = \left\{-\frac{4}{3}\right\}$$

e)
$$S = \{x \in \Re \mid x < -1 \text{ ou } x > 2\}$$

42)
a)
$$S = \{x \in \Re \mid 1 < x < 2 \text{ ou } 3 < x < 4\}$$
b)
$$S = \{x \in \Re \mid x < -2 \text{ ou } -1 < x < 2 \text{ ou } x > 3\}$$
c)
$$S = \{x \in \Re \mid x \le -1 \text{ ou } 2 \le x \le 3 \text{ ou } x \ge 6\}$$

d)
$$S = \{x \in \Re \mid -2 \le x \le 1 \text{ ou } 2 \le x \le 5\}$$

43) (Resolução)

Sabendo que $|x+1| = \begin{cases} x+1 \text{ se } x \ge -1 \\ -x-1 \text{ se } x < -1 \end{cases}$ devemos considerar duas situações:

1ª situação:
$$x \ge -1$$

 $2x-7+|x+1| \ge 0 \Rightarrow$
 $\Rightarrow 2x-7+x+1 \ge 0 \Rightarrow x \ge 2$

Assim, a solução desta primeira parte é

$$S_1 = \{x \in \Re \mid x \ge -1\} \cap \{x \in \Re \mid x \ge 2\} =$$

$$= \{x \in \Re \mid x \ge 2\}$$
2a situação: $x < -1$

$$2x-7+|x+1| \ge 0 \Rightarrow$$
$$\Rightarrow 2x-7-x-1 \ge 0 \Rightarrow x \ge 8$$

Logo, temos como S_2 ,

$$S_2 = \{x \in \Re \mid x < -1\} \cap \{x \in \Re \mid x \ge 8\} = \emptyset$$

Portanto, a solução da inequação proposta será:

$$S = S_1 \cup S_2$$

Ou seja:

$$S = \{x \in \Re \mid x \ge 2\}$$

44)
$$S = \{x \in \Re \mid x \geq 3\}$$

45)
$$S = \{x \in \Re \mid x < 5\}$$

REFERÊNCIA BIBLIOGRÁFICA

MACHADO, Antônio dos Santos; Matemática, Temas e Metas. São Paulo, Atual. 1988.

IEZZI, Gelson e outros; Fundamentos da Matemática Elementar, Volume 1. São Paulo, Atual, 5ª edição, 1977.

RUBIÓ, Angel Pandés; Matemática e suas tecnologias; Volume 1. São Paulo, IBEP, 2005.

PAIVA, Manoel; Matemática; Volume 1. São Paulo, Moderna, 1995.

Links dos vídeos sugeridos

Pág. 27: vidigal.ouropreto.ifmg.edu.br/funcao-modular/

Pág. 28 vidigal.ouropreto.ifmg.edu.br/equacoes-modulares-p1/

Pág. 32 parte 3 vidigal.ouropreto.ifmg.edu.br/equacoesmodulares-p3/

parte 4 vidigal.ouropreto.ifmg.edu.br/equacoes-modulares-p4/

parte 5 vidigal.ouropreto.ifmg.edu.br/equacoes-modulares-p5/