Logic Gates

Logic Gates

Logic gates are the fundamental building blocks of digital circuits.

There are three main logic gates:

The NOT gate reverses the input, so if 1 is inputted into a NOT gate it will output 0.

The AND gate will only output 1 if both inputs are 1, otherwise the output will be 0.

The OR gate will output 1 if either or both of the inputs are 1.

Additional Gates

There are some additional logic gates you need to know about.

Exclusive OR -Only outputs a 1 if one of the inputs is 1 (not both). This is equivalent to an OR gate followed by a NOT gate.

This is equivalent to an AND gate followed by a NOT gate.

Combining Gates

Logic gates can be combined in order to create logic circuits.

For example:

Truth Tables

All the possible outcomes of a logic diagram can be represented using a truth table.

We start by filling in all the possible combinations of inputs.

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

Another Example

Here is another example of a truth table for a logic diagram consisting of two logic gates.

A	В	X	Y
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Logic Statements

Logic diagrams can also be written as logic statements.

C = A OR B

This logic statement shows that C is 1 if either or both A and B are 1.

We can also combine Boolean operators to create more complex logic statements.

C = NOT(A OR B)

In this case the **NOT** operator is applied to the output of **A OR B**, meaning it is reversed.

Scenarios (1)

You may be asked to produce a logic diagram for a given scenario.

Example Scenario

- A system is used to monitor athletes while they are training.
- A heart rate (H) monitor is used to monitor the athlete's heart rate.
- An oxygen (0) is used to monitor the athlete's oxygen levels.
- An alarm (A) is sounded if both the heart rate (H) and oxygen (O)
 readings are outside safe limits.

Scenarios (2)

You could also be asked to produce a truth table for a logic statement that relates to a specific scenario.

INPUTS		OUTPUT
	0	A
0	0	0
0	1	0
1	0	0
1	1	1