

Mammo-CLIP: A Vision Language Foundation Model to Enhance Data Efficiency and Robustness in Mammography

Shantanu Ghosh¹, Clare B. Poynton², Shyam Visweswaran³, Kayhan Batmanghelich¹

¹Dept. Of Electrical and Computer Engineering, Boston University ²Boston University Chobanian & Avedisian School of Medicine ³Intelligent Systems Program (ISP), University of Pittsburgh

TLDR: A vision language model trained on both mammogram-report pairs and mammogramattribute datasets, enhancing data efficiency, robustness, and interpretability

Motivation

- Scarcity of diverse, annotated mammogram datasets for effective CAD training.
- Vision-Language Models enhance robustness and data efficiency for medical imaging..
- Existing models lose critical diagnostic details due to reduced image resolution.
- Improving AI transparency with feature alignment between images and reports.

Mammo-CLIP pretraining $ilde{\mathcal{Z}}^T$

Findings classification on VinDr

Findings localization on VinDr Calcification mAP on VinDr Dataset

Mammo-FActOR

Mammo-FActOR localization

