Sparse Graph Label Randomization

October 18, 2023

Preliminaries 1

Bounded Functional Encryption

We will use the notation of static, bounded functional encryption as presented in [GGLW22].

Security

We will slightly weaken the security notion such that the adversary does not choose which circuits it can learn the functional secret key for. Indeed, this is a weaker notion of functional encryption which fixes the adversary's output circuit. We will assume that we get circuit C_1, \ldots, C_d .

For completeness, we have the original security definition of [GGLW22] below:

less, we have the original security definition of [GGLW22] below
$$\begin{cases} \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{MPK},\text{MSK})} \leftarrow \text{Setup}\,(1^n,1^q) \\ \mathcal{A}^{\text{KeyGen(MSK,\cdot)}}(\text{CT}) & \overset{(MPK,MSK)}{\underset{m \leftarrow \mathcal{A}^{\text{KeyGen(MSK)}}(\text{MPK})}{\text{CT}} \leftarrow \text{Enc(MPK},m) \end{cases} \\ \begin{cases} \mathcal{A}^{\text{Sim}_3^{U_m(\cdot)}}(\text{CT}) & \overset{(1^n,1^q)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \leftarrow \mathcal{A}^{(1^{\lambda})} \\ \mathcal{A}^{\text{Sim}_3(\mathbf{ct}_0)}(\text{CT}) & \overset{(MPK,\mathbf{st}_0)}{\underset{m \leftarrow \mathcal{A}^{S_1(\mathbf{st}_0)}(\text{MPK})}{\text{MPK}}} \\ (\text{CT},\mathbf{st}_2) \leftarrow \text{Sim}_2(\mathbf{st}_1,\Pi^m) \end{cases} \\ \lambda \in \mathbb{N} \end{cases}$$

whenever the following admissibility constraints and properties are satisfied:

- Sim_1, Sim_3 are stateful in that after each invocation, they updated their states $\mathbf{st}_1, \mathbf{st}_3$ respectively which is carried over to the next invocation.
- Π^m contains a list of functions f_i queried by \mathcal{A} in the pre-challenge phase along with their output on the challenge message m. That is, if f_i is the i-th function queried by A to oracle Sim_1 and $q_{[re]}$ be the number of queries A makes before outputting m, then $\Pi^m =$ $((f_1, f_1(m)), \ldots, (f_{q_{pre}}, f_{q_{pre}}(m))).$
- A makes at most q queries combined tote key generation oracle in both games.
- Sim₃ for eac queried function f_i , in the post challenge phase, makes a single query to its message oracle U_m on the same f_i itself.

Our modified security definition is as follows:

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{KeyGen}(\text{MSK},\{C_{1},\ldots,C_{d}\})}(\text{CT}) & (1^{n},1^{q}) \leftarrow \mathcal{A}^{(1)} \\
\mathcal{A}^{\text{KeyGen}(\text{MSK},\{C_{1},\ldots,C_{d}\})}(\text{CT}) & (MPK,MSK) \leftarrow \text{Setup}(1^{n},1^{q}) \\
m \leftarrow \mathcal{A}(\text{MPK},\text{SK}_{C_{1}},\ldots,\text{SK}_{C_{d}}) \\
\text{CT} \leftarrow \text{Enc}(\text{MPK},m)
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$\left\{
\begin{array}{l}
\mathcal{A}^{\text{Sim}_{3}^{U_{m}(\{C_{1},\ldots,C_{d}\})}}(\text{CT}) & (MPK,\mathbf{st}_{0}) \leftarrow \text{Sim}_{0}(1^{\lambda},1^{n},q) \\
m \leftarrow \mathcal{A}^{S_{1}(\mathbf{st}_{0})}(\text{MPK},C_{1},\ldots,C_{d}) \\
(\text{CT},\mathbf{st}_{2}) \leftarrow \text{Sim}_{2}(\mathbf{st}_{1},\Pi^{m})
\end{array}\right\}_{\lambda \in \mathbb{N}}$$

$$(1)$$

where the admissibility constraints remain the same.

1.2 Non-malleable Bounded FE

Here, we introduce the notion of non-malleable bounded functional encryption.

We define non-malleable security of bounded functional encryption in almost the exact notion of [Pas06] for public key encryption. First, let $NM(m_1, \ldots, m_q, A)$ be a game as follows for $q = \text{poly}(\lambda)$:

- 1. $(MPK, MSK) \leftarrow FE.Setup(1^{\lambda})$
- 2. $CT_1, \ldots, CT_q \leftarrow FE.Enc(MPK, m_1), \ldots FE.Enc(MPK, m_q)$
- 3. $CT'_1, \ldots, CT'_{\ell} \leftarrow \mathcal{A}(MPK, CT_1, \ldots, CT_q, 1^{|m|})$
- 4. $m_i' \leftarrow \bot$ is $CT_i = CT_j'$ for any $i \in [q], j \in [\ell]$ and $FE.Dec(SK_{identity}, c_i)$ otherwise.

Then, we say that a bounded functional encryption scheme is non-malleable if for all PPT \mathcal{A} and every PPT \mathcal{D} , there exists a negligible function negl such that for all $\{m\}_0, \{m\}_1 \in \{0,1\}^{nq}$, we have

$$\left| \mathbf{Pr}[\mathcal{D}(NM(\{m\}_0, \mathcal{A})) = 1] - \mathbf{Pr}[\mathcal{D}(NM(\{m\}_1, \mathcal{A})) = 1] \right| \le \text{negl.}$$
 (2)

As outlined in [Pas06], we can equivalently define non-mall eability in terms of a PPT recognizable relation R such that

$$\left| \mathbf{Pr} \left[NM\left(m_{1}, \dots m_{q}, \mathcal{A}(z)\right) \in \bigcup_{m \in \{m\}} R(m) \right] -$$

$$\mathbf{Pr} \left[c \leftarrow \operatorname{Sim}_{NM}(1^{n}, z); m' = \operatorname{FE.Dec}(\operatorname{SK}_{\text{identity}}, c); m' \in \bigcup_{m \in \{m\}} R(m) \right] \right| \leq \operatorname{negl}(\lambda).$$
(3)

Note that in the above definition, we do not give the adversary access to any SK_{C_i} . We simply require that the scheme is public key (many message) non-malleable.

2 Using Weak Extractible Obfuscation

2.1 Graph Randomized Traversal

Say that we have a sparse, potentially exponentially sized, graph $\mathcal{G} = (V, E)$ and $\forall v \in V, \deg(v) = d$. We also require that \mathcal{G} is equipped with a neighbor function, Γ , which can be computed in polynomial time. We define a randomized and keyed labelling function $\phi : \{0, 1\}^{\lambda} \times V \to \{0, 1\}^{\operatorname{poly}(\lambda)}$ such that given, $\phi(K, v_0)$ for root v_0 , an adversary, \mathcal{A} , which does not know a path from v_0 to v,

$$\Pr[\mathcal{A}(\mathcal{O}(C_{\Gamma}), v_0, v, \phi(K, v_0)) = \phi(K, v)] \le \operatorname{negl}(\lambda) \tag{4}$$

for function C_{Γ} where $C_{\Gamma}(\phi(K, u)) = \phi(K, \Gamma(u)_1), \dots, \phi(K, \Gamma(u)_d)$ if $\Gamma(u) \neq \emptyset$ and otherwise $\Gamma(u)$ returns a \perp string; and, \mathcal{O} represents an indistinguishable obfuscator.

2.2 Instantiation

We define

$$\phi(K, v) = (F(K, v), v).$$

For shorthand, we will write σ_v to connote an attempted "signature" of v where a correct signature is F(K, v).

We can now define C_{Γ} :

Algorithm 1 The circuit for the neighbor function, C_{Γ} .

```
1: function C_{\Gamma}(f(\sigma_v), v)

2: if f(\sigma_v) \neq f(F(K, v)) then

3: return \bot

4: if \Gamma(v) = \emptyset then

5: return \bot

6: u_1, \dots u_d = \Gamma(v)

7: return f(F(K, u_1)), f(F(K, u_2)), \dots, f(F(K, u_d))
```

Algorithm 2 Circuit for the neighbor function, $C_{\Gamma}^{w^*,\Gamma(w^*)_1,\dots,\Gamma(w^*)_d}$ with punctured PRF key $K(\{w^*\})$ and constant $z^*, z_1^*, z_2^*, \dots, z_d^*$

```
1: function C_{\Gamma}(f(\sigma_v), v)
        if v \neq w and f(\sigma_v) \neq f(F(K,v)) then
 2:
 3:
             return \perp
        if v = w and f(\sigma_v) \neq z^* then
 4:
             return \perp
 5:
        if \Gamma(v) = \emptyset then
 6:
             return \perp
 7:
        if v = w then
 8:
             return z_1^*, z_2^*, ..., z_d^*
 9:
         u_1, \dots u_d = \Gamma(v)
10:
        return f(F(K, u_1)), f(F(K, u_2)), \dots, f(F(K, u_d))
11:
```

Proof of eq. (4). We are going to use a series of inductively built indistinguishable hybrids along with algorithm 2 to show that eq. (4) holds.

- Hyb₀: In the first hybrid, the following game is played
 - 1. $K \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda'}$ and $\phi(K, v_0) = (F(K, v_0), v)$
 - 2. The challenger generates $\mathcal{O}(C_{\Gamma})$ and gives the program to \mathcal{A}
 - 3. The challenger chooses a v and gives the adversary v in plaintext.
 - 4. A outputs guess g and wins if $g = \phi(K, v)$
- Hyb₁: Let \mathcal{P} be the set of all paths from v_0 to v. For each path $P \in \mathcal{P}$ where P is an ordered list of connected vertices, we have that the adversary does not know some part of P. We can note that this implies that \mathcal{A} does not know $\phi(K, p)$ for all $p \in P$ as then \mathcal{A} can recover P. Let u_P be the first vertex in P such that \mathcal{A} does not know a path from v_0 to u_P . Define Suff'(P) to be the path in P from this u_P to v. Then, necessarily, \mathcal{A} does not know $\phi(K, w_P)$ for at least one $w_P \in \text{Suff'}(P)$ as then \mathcal{A} would know a path from v_0 to v. Now, let Suff(P) be the path which starts at w_P , ends at v.

We now inductively build up a series of hybrids to show that a hybrid distribution which shows $\phi(K, s)$ for $s \in \text{Suff}(P)$ indistinguishable from random. We perform the following procedure for each $P \in \mathcal{P}$. So, for $P \in \mathcal{P}$,

- For the base case, let $U = \text{Suff}(P)_1$ where $\text{Suff}(P)_1$ is the first vertex in P such that \mathcal{A} does not know $\phi(K, p)$ for $p \in P$.
 - 1. Set $w^* = p$. Then, replace C_{Γ} with $C_{\Gamma}^{w^*, \Gamma(w^*)_1, \dots, \Gamma(w^*)_d}$ as defined in algorithm 2. Fix the constant $z^* = f(F(K, p))$ and $z_1^* = f(F(K, \Gamma(w^*)_1)), \dots, z_d^* = f(F(K, \Gamma(w^*)_d))$.
 - 2. Set $z^* = f(t), z_1^* = f(t_1), \dots, z_d^* = f(t_d)$ where t, t_1, \dots, t_d are chosen at random
- For the ℓ -th inductive step where $1 \leq \ell < |\operatorname{Suff}(P)|$, we are going to assume that we are given a hybrid such that $w^* = \operatorname{Suff}(P)_{\ell}$ and $z^* = f(t), z_1^* = f(t_1), \ldots z_d^* = f(t_d)$ for random $t, \ldots t_d$ in algorithm 2. Now, we change the hybrid in a similar manner as in the base case:
 - 1. Set $w^* = \operatorname{Suff}(P)_{\ell+1}$. Then, replace C_{Γ} with $C_{\Gamma}^{w^*,\Gamma(w^*)_1,\dots,\Gamma(w^*)_d}$ as defined in algorithm 2. Fix the constant $z^* = f(F(K,p))$ and $z_1^* = f(F(K,\Gamma(w^*)_1)),\dots,z_d^* = f(F(K,\Gamma(w^*)_d))$.
 - 2. Set $z^* = f(t), z_1^* = f(t_1), \dots, z_d^* = f(t_d)$ where t, t_1, \dots, t_d are chosen at random to puncture on $Suff(P)_{\ell+1}$ where we update z^*, \dots, z_d^* with new randomness.

Finally, we can note that if $Hyb_0 \stackrel{c}{\approx} Hyb_3$,

$$\mathbf{Pr}[\mathcal{A}(C_{\Gamma}, v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))] \overset{c}{\approx} \mathbf{Pr}[\mathcal{A}(C_{\Gamma}', v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))]$$

where C'_{Γ} is C_{Γ} except that C'_{Γ} uses $\operatorname{inner}_{i}^{p}$ where $p = \max_{P \in \mathcal{P}} |P|$. We can note that C'_{Γ} returns \bot for any query on $\phi(K, w^{v})$ where $w^{v} \in \Gamma^{-1}(v)$. Using lemma 2.3 and the fact that $C'_{\Gamma}(u)_{i}$ returns \bot for all $u \in V$ and $i \in [d]$ where $v = \Gamma(u)_{i}$, we have that

$$\mathbf{Pr}[\mathcal{A}(C'_{\Gamma}, v_0, v, \phi(K, v_0)) \in \mathrm{Image}(\phi(K, v))] \leq \mathtt{negl}(\lambda).$$

Lemma 2.1. $Hyb_0 \stackrel{c}{\approx} Hyb_{2b}$.

Proof. First we show that $\mathrm{Hyb}_0 \stackrel{c}{\approx} \mathrm{Hyb}_1$. Note that if \mathcal{A} can distinguish between Hyb_0 and Hyb_1 then an adversary can distinguish between an FE scheme and its simulated counterpart where m is fixed to (K, v_0, r) . We can see this as Hyb_1 is direct simulation of the FE scheme.

Then, if \mathcal{A} can distinguish Hyb_1 and Hyb_{2a} , then we can break the security of the PRG used in line ?? of algorithm 1. We can create an adversary \mathcal{B} which, for some fixed K, distinguishes between FE.Enc(MPK, (K, u, r_2)) with random coins r_1 where $r_1, r_2 = \mathrm{PRG}(r)$ and FE.Enc(MPK, (K, u, r_1^*)) encrypted with random coins r_2^* where r_1^*, r_2^* are truly random.

Then, if \mathcal{A} can distinguish any transformation from Hyb_{2a} to Hyb_{2b} , then we can break the security of the FE scheme. We can see this by noting that if we fix m=(K,w,r) for random r and K, then $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$ is distinguishable and $\mathcal{A}^{\mathrm{Sim}_3^{u_m(\cdot)}}(\mathrm{CT}')$ where CT is the real cipher-text and CT' is simulated. We can then note that if the above are distinguishable, then $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_1,\ldots\mathrm{inner}_d\})}(\mathrm{CT})$ and $\mathcal{A}^{\mathrm{Sim}_3^{u_m(\cdot)}}(\mathrm{CT}')$ are distinguishable as $\mathcal{A}^{\mathrm{KeyGen}(\mathrm{MSK},\{\mathrm{inner}_1,\ldots\mathrm{inner}_d\})}$ can simply simulate $\mathcal{A}^{\mathrm{Sim}_3^{U_m(\cdot)}}(\mathrm{CT})$.

Then, if \mathcal{A} can distinguish any transformation from Hyb_{2b} to Hyb_{2a} , then we can break the security of a PRG in the same manner as distinguishing Hyb_1 and Hyb_{2a} .

By the chain rule, we get that \mathtt{Hyb}_0 and \mathtt{Hyb}_{2b} are indistinguishable even after a repeated number of sequential invocations of the transformation in \mathtt{Hyb}_{2a} and \mathtt{Hyb}_{2b} .

Lemma 2.2. Let A be a PPT adversary and assume that we have a non-malleable and simulation secure FE scheme. Then, we have that the inductive step of Hyb_3 holds.

Proof. We construct an adversary $\mathcal B$ that can break NM security using $\mathcal A$ if $\mathcal A$ can distinguish between the hybrids in the inductive step. Note that in order to distinguish between the hybrids, $\mathcal A$ must have queried inner_i^ℓ or $\mathsf{inner}_{i+1}^\ell$ on $\phi(K, w^u)$ where $u \in \{ \mathsf{Suff}(P)_{\ell+1} \mid P \in \mathcal P \}$ as this is the only difference between the hybrids. Thus, we see that $\mathcal A$ is able to produce $\mathsf{CT} \in \phi(K, w^u)$. By definition of inner_i^ℓ though, we know that $\mathsf{inner}_i^\ell(\phi(k,q)) \neq \phi(K, w^u)$ for any $q \in V$ as we define $\mathsf{inner}_i^\ell(K,q) = \bot$ if $\mathsf{inner}_i'(K,q) = \phi(K,w^u)$. Thus, the adversary has to be able to produce $\mathsf{CT} \in \phi(K,w^u)$ without calling C_Γ^ℓ where C_Γ^ℓ uses inner_i^ℓ instead of inner_i .

Thus, if $\mathcal{A}(w^u, v_0, C_{\Gamma}, \phi(K, v_0))$ can produce $\operatorname{CT} \in \phi(K, w^u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \dots, \phi(K, q_{\operatorname{poly}(\lambda)}))$ produce $\phi(K, w^u)$ where $q_1, \dots, q_{\operatorname{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C_{Γ} on. \mathcal{B} simply has to invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C'_{Γ} . \mathcal{B} then gives $\mathcal{A}(w^u, v_0, C'_{\Gamma}, \phi(K, v_0))$. \mathcal{B} then breaks eq. (3) (the relational notion of non-malleability) as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ with non-negligible probability while the simulator in eq. (3) cannot.

Lemma 2.3. Define C'_{Γ} where C'_{Γ} is defined as in algorithm 1 except that for some set $U \subset V$, $C_{\Gamma}(w^u)_i = \bot$ for all $w^u \in V$ such that $u = \Gamma(w^u)_i$ for some $u \in U$. In words, the parent of all $u \in U$ do not return $\phi(K, u)$ when queried on C'_{Γ} . Then, assuming the non-malleability and simulation security of FE, we have that for all PPT A and all $u \in U$,

$$\mathbf{Pr}[\mathcal{A}(C'_{\Gamma}, v_0, u, U, \phi(K, v_0)) \in Image(\phi(K, u))] \le negl(\lambda). \tag{5}$$

Proof. Almost identically to lemma 2.2, we construct an adversary \mathcal{B} that can break NM security using \mathcal{A} if \mathcal{A} can produce $CT \in \phi(K, u)$ for some $u \in U$.

If $\mathcal{A}(w^u, v_0, C'_{\Gamma}, u, \phi(K, v_0))$ can produce $\operatorname{CT} \in \phi(K, u)$, we can have $\mathcal{B}(\phi(K, v_0), \phi(K, q_1), \ldots, \phi(K, q_{\operatorname{poly}(\lambda)}))$ produce $\phi(K, u)$ where $q_1, \ldots, q_{\operatorname{poly}(\lambda)}$ are all the vertices that \mathcal{A} has queried C'_{Γ} on. \mathcal{B} simply has to invoke Sim_3 to create a simulated set of function keys for inner_i' for all $i \in [d]$ and can then simulate C'_{Γ} with these function keys.

We can then have \mathcal{B} invoke Sim_3 to create a simulated function key for $\operatorname{SK}'_{\operatorname{inner}_i}$ and thus a simulated C_{Γ}^* . \mathcal{B} then gives \mathcal{A} $(w^u, v_0, C_{\Gamma}^*, \phi(K, v_0))$. If we define the relation R to break in eq. (3) to be $R(K, v_0, r) = \{(K, v, r*) : \forall r^* \leftarrow \{0, 1\}^{\lambda}\}$, we can then break eq. (3) (the relational notion of security for non-malleability). We can see this as \mathcal{A} is able to create an encryption of $\phi(K, w^u)$ given encryptions of $\phi(K, q_1), \ldots, \phi(K, q_{\operatorname{poly}(\lambda)})$ with non-negligible probability while the simulator in eq. (3) cannot.

Abstract

References

- [GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded functional encryption from identity-based encryption. In *Annual International Conference on the Theory and Applications of Cryptographic Techniques*, pages 736–763. Springer, 2022. 1.1, 1.1
- [Pas06] Rafael Pass. Lecture 16: Non-mall eability and public key encryption, October 2006. 1.2, 1.2