# Blurring the Lines between Tourism and Terrorism in Western Europe

Shirley Liao -- Data Bootcamp Final Project -- Spring 2018

#### Introduction

This project will explore the relationship between tourism and terrorism within Western Europe. In the past several years, developed countries have seen an increase in the number of terrorist attacks, especially in big cities, that have caught worldwide attention. With the popularity of online media and news outlets, almost everyone has accesss to information on terrorism and terrorist activities, and could possibly inherit widespread paranoia from these events. From firsthand accounts, hearing about these violent events have discouraged some people from visiting the region, although this would not be an accurate judgment of all people. Because of this, I would like to utilize a more legitimate and accurate tool, Python, to discover if these word of mouth comments hold some weight to a greater conversation on the perception of violence, safety and future trends of tourism.

My final goal is to provide an idea on **if** terrorism is related to tourism, not necessarily proving that there is a direct relationship between the two variables. The project is to simply manipulate the data, and any conclusion is based solely on the given information below. If there is any relationship this is not to say that there is a cause and effect; finding no relationship is entirely possible as well.

#### Methodology

In executing this project, information on two main datasets will have to be extracted:

Data on terrorism was extracted from the Global Terrorism Database (GTD) (https://www.start.umd.edu/gtd/). This is the only comprehensive database on all recorded terrorist activities in every country starting from 1970. According to GTD, a terrorist attack is considered an intentional violent attack from subnational actor(s) in order to attain political, social, religious, or economic goals. State-sponsored terrorism is not included in this overview. Victims are considered any person(s), specified group of person(s), institutions, government, business, private and public properties. Important factors to consider are the country names, region, year, and individual event ids. The GTD website provides the data only in form of excel files, which have to be downloaded given a valid e-mail address, preferably from an academic institution.

Data on international tourism was extracted from a <u>database (https://data.worldbank.org/indicator/ST.INT.ARVL? end=2016&locations=CA&start=2005)</u> at <u>The World Bank (http://www.worldbank.org/)</u>, which covers various other statistical information by country and development priority. The organization has amassed a library of development knowledge through data-driven research. Tourism rates for this particular database are calculated by the number of internationl arrivals into each country per year. Data is obtained through the World Bank's API.

The relevant data on terrorism came in two excel files; the first file records all terrorist attacks from 1995-2012 and the second file that covers years 2013-2016. Both would need to be concatenated, and stripped down to the country, region, year, and event id. Using this information, the six countries in Western Europe that have had the most terrorist attacks will be used to observe their rates of change in terrorism and tourism from 2005 to 2016.

Main sections will include:

- Cross referencing the number of tourists and number of terrorist attacks over a 12 year period. The countries that are being investigated will be those in Western Europe, that have had the highest number of terrorist attacks in the past decade and a half.
- · Measuring growth rates by calculating increasing or decreasing quantities of tourists and attacks.
- In visualizing the data, necessary graphs will include comparing rates of change and finding their regressions.

Important variables:

- · Country Name
- Year
- · Region
- Event Id
- Change in number of tourists (percentage and rate)
- Change in number of terrorist attacks (percentage and rate)

#### **Access to Data Cleaning**

```
In [136]: import pandas as pd # to create dataframes
import matplotlib.pyplot as plt # to plot graphs
import numpy as np # for numerical calculations
import wbdata # to extract data from World Bank
import seaborn as sns # to plot regression charts
from linearmodels.panel import PanelOLS # for regression analysis

%matplotlib inline
```

#### Terrorism Data: Cleaning and Finding Rate of Change

There are two files extracted straight from GTD. Since these files are too large to upload directly, they had to be split into five smaller files and uploaded independently. These files are uploaded to GitHub, which then are extracted. They will all be concatenated into one large dataframe. There are 135 different columns for each file, for which this project only requires four: country name, year, eventid, and region.

In [107]: ta\_1 = "https://raw.githubusercontent.com/sl4655/Data\_Bootcamp\_Final\_Project/master/GTD\_05to09.csv"

df\_ta\_1 = pd.read\_csv(ta\_1, low\_memory=False)

df\_ta\_1.head()

# this is the data set that covers all attacks from 2005 to 2009

Out[107]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt            | region |   | addnotes                                      |                                                   |
|---|--------------|-------|--------|------|------------|----------|------------|---------|------------------------|--------|---|-----------------------------------------------|---------------------------------------------------|
| 0 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 95      | Iraq                   | 10     |   | NaN                                           | Britis<br>Secu<br>Guar<br>Killec<br>Suici<br>Atta |
| 1 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 1        | NaN        | 159     | Peru                   | 3      |   | The outcome of hostage situation was unknown, | Perur<br>Troop<br>Laun<br>Assa<br>Rebe<br>Held.   |
| 2 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 45      | Colombia               | 3      |   | The mayor of Tame, Alfredo Guzman Tafur, said | "FAR<br>Rebe<br>Seve<br>Peop<br>Tame              |
| 3 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 28      | Bosnia-<br>Herzegovina | 9      | : | NaN                                           | "Girl<br>Wour<br>in Bo<br>Serb<br>Repu<br>Gren    |
| 4 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 92      | India                  | 6      |   | NaN                                           | "Milita<br>Trigg<br>Blast<br>Kash<br>Anan         |

In [108]: ta\_2 = "https://raw.githubusercontent.com/s14655/Data\_Bootcamp\_Final\_Project/master/GTD\_10to12.csv"

df\_ta\_2 = pd.read\_csv(ta\_2, low\_memory=False)

df\_ta\_2.head()

# this is the data of all attacks from 2010 to 2012

Out[108]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt | region | <br>addnotes                                                      |                                           |
|---|--------------|-------|--------|------|------------|----------|------------|---------|-------------|--------|-------------------------------------------------------------------|-------------------------------------------|
| 0 | 2.010000e+11 | 2010  | 1      | 1    | NaN        | 0        | NaN        | 4       | Afghanistan | 6      | <br>The available sources listed the fatalities fo                | Press<br>Afgha<br>Road<br>Bomb            |
| 1 | 2.010000e+11 | 2010  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>NaN                                                           | Jane'<br>Intelli<br>"Pro-<br>Milita       |
| 2 | 2.010000e+11 | 2010  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>NaN                                                           | Raza<br>Dawr<br>Held<br>Invol             |
| 3 | 2.010000e+11 | 2010  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>This was<br>one of<br>three<br>related<br>attacks<br>(cf. 201 | Press<br>"Milita<br>Raze<br>Schol<br>Nort |
| 4 | 2.010000e+11 | 2010  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>This was one of three related attacks (cf. 201                | Press<br>"Milita<br>Raze<br>Schol<br>Nort |

In [109]: ta\_3 = "https://raw.githubusercontent.com/sl4655/Data\_Bootcamp\_Final\_Project/master/GTD\_13to14.csv"

df\_ta\_3 = pd.read\_csv(ta\_3, low\_memory=False)

df\_ta\_3.head()

Out[109]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt | region | <br>addnotes                                                      | •                                                      |
|---|--------------|-------|--------|------|------------|----------|------------|---------|-------------|--------|-------------------------------------------------------------------|--------------------------------------------------------|
| 0 | 2.013010e+11 | 2013  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>NaN                                                           | "Expl<br>devic<br>defus<br>Bann<br>The N               |
| 1 | 2.013010e+11 | 2013  | 1      | 1    | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>incident<br>represent<br>a | "Dead<br>bomb<br>leave<br>destri<br>in<br>Kirkul       |
| 2 | 2.013010e+11 | 2013  | 1      | 1    | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>incident<br>represent<br>a | "Dead<br>bomb<br>leave<br>destri<br>in<br>Kirkul       |
| 3 | 2.013010e+11 | 2013  | 1      | 1    | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>incident<br>conflict<br>ac | "2 col<br>woun<br>by<br>explo<br>mid<br>Kirkul<br>Aswa |
| 4 | 2.013010e+11 | 2013  | 1      | 1    | NaN        | 0        | NaN        | 153     | Pakistan    | 6      | <br>NaN                                                           | "Trag<br>averte<br>5kg b<br>defus<br>near              |

In [110]: ta\_4 = "https://raw.githubusercontent.com/sl4655/Data\_Bootcamp\_Final\_Project/master/GTD\_14to15.csv"

df\_ta\_4 = pd.read\_csv(ta\_4, low\_memory=False)

df\_ta\_4.head()

Out[110]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt | region | <br>addnotes                                                      | sc                                                      |
|---|--------------|-------|--------|------|------------|----------|------------|---------|-------------|--------|-------------------------------------------------------------------|---------------------------------------------------------|
| 0 | 2.014040e+11 | 2014  | 4      | 24   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>incident<br>conflict<br>ac | "Suic<br>attack<br>Iraq k<br>at lea<br>11               |
| 1 | 2.014040e+11 | 2014  | 4      | 24   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>attack<br>represent<br>a d | "20<br>perso<br>woun<br>in<br>Kirkul<br>Aswa<br>Iraq,   |
| 2 | 2.014040e+11 | 2014  | 4      | 24   | NaN        | 0        | NaN        | 228     | Yemen       | 10     | <br>NaN                                                           | "Yem<br>Roun<br>of<br>Secul<br>Incide<br>25<br>April.   |
| 3 | 2.014040e+11 | 2014  | 4      | 24   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>NaN                                                           | "Iraq:<br>Roun<br>of<br>Secul<br>Incide<br>22-28<br>Apr |
| 4 | 2.014040e+11 | 2014  | 4      | 24   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | <br>Casualty<br>numbers<br>for this<br>incident<br>conflict<br>ac | "25 ki<br>in<br>attacł<br>in Irac<br>Xinhu<br>Gen       |

In [111]: ta\_5 = "https://raw.githubusercontent.com/sl4655/Data\_Bootcamp\_Final\_Project/master/GTD\_15to16.csv"

df\_ta\_5 = pd.read\_csv(ta\_5, low\_memory=False)

df\_ta\_5.head()

Out[111]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt | region |   | addnotes                                                      | sc                                                          |
|---|--------------|-------|--------|------|------------|----------|------------|---------|-------------|--------|---|---------------------------------------------------------------|-------------------------------------------------------------|
| 0 | 2.015060e+11 | 2015  | 6      | 21   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | : | NaN                                                           | "Iraq:<br>Roun<br>of<br>Secul<br>Incide<br>16-22<br>Jun     |
| 1 | 2.015060e+11 | 2015  | 6      | 21   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | : | NaN                                                           | "Iraq:<br>Roun<br>of<br>Secul<br>Incide<br>16-22<br>Jun     |
| 2 | 2.015060e+11 | 2015  | 6      | 21   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | ; | Casualty<br>numbers<br>for this<br>incident<br>conflict<br>ac | "21/0<br>20:46<br>Bomb<br>attack<br>near<br>Iraqi<br>capita |
| 3 | 2.015060e+11 | 2015  | 6      | 21   | NaN        | 0        | NaN        | 95      | Iraq        | 10     | ; | NaN                                                           | "Iraq:<br>Roun<br>of<br>Secul<br>Incide<br>16-22<br>Jun     |
| 4 | 2.015060e+11 | 2015  | 6      | 21   | NaN        | 0        | NaN        | 95      | Iraq        | 10     |   | Casualty<br>numbers<br>for this<br>incident<br>conflict<br>ac | "21/0<br>20:46<br>Bomt<br>attacl<br>near<br>Iraqi<br>capita |

Out[112]:

|   | eventid      | iyear | imonth | iday | approxdate | extended | resolution | country | country_txt            | region |    | addnotes                                      |                                                   |
|---|--------------|-------|--------|------|------------|----------|------------|---------|------------------------|--------|----|-----------------------------------------------|---------------------------------------------------|
| 0 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 95      | Iraq                   | 10     |    | NaN                                           | Britis<br>Secu<br>Guar<br>Killec<br>Suici<br>Atta |
| 1 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 1        | NaN        | 159     | Peru                   | 3      | -: | The outcome of hostage situation was unknown, | Peru<br>Troop<br>Laun<br>Assa<br>Rebe<br>Held.    |
| 2 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 45      | Colombia               | 3      | :  | The mayor of Tame, Alfredo Guzman Tafur, said | "FAR<br>Rebe<br>Seve<br>Peop<br>Tame              |
| 3 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 28      | Bosnia-<br>Herzegovina | 9      | :  | NaN                                           | "Girl<br>Wour<br>in Bo<br>Serb<br>Repu<br>Gren    |
| 4 | 2.010000e+11 | 2005  | 1      | 1    | NaN        | 0        | NaN        | 92      | India                  | 6      |    | NaN                                           | "Milita<br>Trigg<br>Blast<br>Kash<br>Anan         |

5 rows × 135 columns

In [113]: df\_ta.set\_index(['iyear'], inplace = True)

 $\#\ I$  am setting the index to year as it is also the common index in the World Bank tourism data.

#### Out[114]:

|       | country_txt        | region_txt                 | eventid      |
|-------|--------------------|----------------------------|--------------|
| iyear |                    |                            |              |
| 2005  | Iraq               | Middle East & North Africa | 2.010000e+11 |
| 2005  | Peru               | South America              | 2.010000e+11 |
| 2005  | Colombia           | South America              | 2.010000e+11 |
| 2005  | Bosnia-Herzegovina | Eastern Europe             | 2.010000e+11 |
| 2005  | India              | South Asia                 | 2.010000e+11 |

In [115]: we = world.loc[world['region\_txt'] == "Western Europe"]
# more specifically, I want to look at countries in Western Europe
we.head(10)

#### Out[115]:

|       | country_txt    | region_txt     | eventid      |
|-------|----------------|----------------|--------------|
| iyear |                |                |              |
| 2005  | United Kingdom | Western Europe | 2.010000e+11 |
| 2005  | France         | Western Europe | 2.010000e+11 |
| 2005  | Greece         | Western Europe | 2.010000e+11 |
| 2005  | Sweden         | Western Europe | 2.010000e+11 |
| 2005  | Spain          | Western Europe | 2.010000e+11 |
| 2005  | France         | Western Europe | 2.010000e+11 |
| 2005  | France         | Western Europe | 2.010000e+11 |
| 2005  | Spain          | Western Europe | 2.010000e+11 |
| 2005  | Spain          | Western Europe | 2.010000e+11 |
| 2005  | Spain          | Western Europe | 2.010000e+11 |

```
In [116]: new = we.groupby(["iyear", "country_txt"])[['eventid']].count()

# Using the groupby and count method, I want to calculate the number of terrorist attacks by grouping them into year and specific country.

display(new.head(10))
```

|       |                | eventid |
|-------|----------------|---------|
| iyear | country_txt    |         |
| 2005  | France         | 33      |
|       | Germany        | 3       |
|       | Greece         | 6       |
|       | Italy          | 6       |
|       | Spain          | 24      |
|       | Sweden         | 3       |
|       | United Kingdom | 25      |
| 2006  | Austria        | 1       |
|       | France         | 34      |
|       | Germany        | 4       |

```
In [117]: we_ta = new.unstack(fill_value=0.0).sum(level=1, axis=1)
# this is important for organization, and to replace any NaN with 0.0.
we_ta.sum().sort_values(ascending=False).head(6)
# I want to find the six countries in Western Europe with the highest rates of terrorist activities.
```

dtype: float64

Once we have found how the top six countries in Western Europe that have most terrorist activity, this data becomes critical to comparing their rates of changes over time.

In [118]:

we\_ta.columns.set\_names(['Country Name'], inplace=True) we\_ta.index.set\_names(['Year'], inplace=True)

# this is to replace column and index labels with more appropriate titles that matches with WB data

ta\_final = we\_ta[['France', 'Germany', 'Greece', 'Ireland', 'Spain', 'United Kingdom']]

# here I am narrowing down the countries to just these six countries that I will look at

ta\_final

Out[118]:

| Country Name | France | Germany | Greece | Ireland | Spain | United Kingdom |
|--------------|--------|---------|--------|---------|-------|----------------|
| Year         |        |         |        |         |       |                |
| 2005         | 33.0   | 3.0     | 6.0    | 0.0     | 24.0  | 25.0           |
| 2006         | 34.0   | 4.0     | 23.0   | 1.0     | 23.0  | 6.0            |
| 2007         | 16.0   | 3.0     | 15.0   | 1.0     | 11.0  | 20.0           |
| 2008         | 13.0   | 3.0     | 53.0   | 5.0     | 37.0  | 39.0           |
| 2009         | 9.0    | 4.0     | 115.0  | 0.0     | 21.0  | 22.0           |
| 2010         | 3.0    | 1.0     | 49.0   | 4.0     | 3.0   | 57.0           |
| 2011         | 8.0    | 8.0     | 11.0   | 4.0     | 0.0   | 47.0           |
| 2012         | 65.0   | 4.0     | 22.0   | 29.0    | 1.0   | 54.0           |
| 2013         | 12.0   | 0.0     | 53.0   | 27.0    | 5.0   | 137.0          |
| 2014         | 14.0   | 13.0    | 26.0   | 33.0    | 4.0   | 103.0          |
| 2015         | 36.0   | 64.0    | 31.0   | 28.0    | 1.0   | 114.0          |
| 2016         | 26.0   | 41.0    | 31.0   | 15.0    | 3.0   | 104.0          |

In [119]: ta\_rate = ta\_final.pct\_change(periods=1) ta\_rate.replace(np.inf, 0, inplace=True)

> # I want to find the percent change of terrorist attacks for each country after every year # all values that come out as NaN and inf will be replaced by  $\theta$

ta\_rate

Out[119]:

| Country Name | France    | Germany   | Greece    | Ireland   | Spain     | United Kingdom |
|--------------|-----------|-----------|-----------|-----------|-----------|----------------|
| Year         |           |           |           |           |           |                |
| 2005         | NaN       | NaN       | NaN       | NaN       | NaN       | NaN            |
| 2006         | 0.030303  | 0.333333  | 2.833333  | 0.000000  | -0.041667 | -0.760000      |
| 2007         | -0.529412 | -0.250000 | -0.347826 | 0.000000  | -0.521739 | 2.333333       |
| 2008         | -0.187500 | 0.000000  | 2.533333  | 4.000000  | 2.363636  | 0.950000       |
| 2009         | -0.307692 | 0.333333  | 1.169811  | -1.000000 | -0.432432 | -0.435897      |
| 2010         | -0.666667 | -0.750000 | -0.573913 | 0.000000  | -0.857143 | 1.590909       |
| 2011         | 1.666667  | 7.000000  | -0.775510 | 0.000000  | -1.000000 | -0.175439      |
| 2012         | 7.125000  | -0.500000 | 1.000000  | 6.250000  | 0.000000  | 0.148936       |
| 2013         | -0.815385 | -1.000000 | 1.409091  | -0.068966 | 4.000000  | 1.537037       |
| 2014         | 0.166667  | 0.000000  | -0.509434 | 0.22222   | -0.200000 | -0.248175      |
| 2015         | 1.571429  | 3.923077  | 0.192308  | -0.151515 | -0.750000 | 0.106796       |
| 2016         | -0.277778 | -0.359375 | 0.000000  | -0.464286 | 2.000000  | -0.087719      |

```
In [160]:
          ta_plot = ta_rate.plot(
              figsize = (9,6)
          # plotting terror attack rates of change on a line graph
          ta_plot.spines['right'].set_visible(False)
          ta_plot.spines['top'].set_visible(False)
          ta_plot.spines['bottom'].set_visible(False)
          # I prefer graphs with no spines on top, right, and when there are negative y values, to have the bottom
           spine off as well.
          ta_plot.axhline(y=0, color='black', linewidth=0.5)
          # I also prefer the graph to include a horizontal line to indicate y=0
          ta_plot.set_title('Rate of Terror Attacks 2006-2016', fontsize=17, fontweight='bold', y=1.05)
          ta plot.set xlabel('Year', fontsize=15)
          ta_plot.set_ylabel('Percent Change', fontsize=15)
          ta_plot.legend(framealpha=0.5, facecolor='white')
          # I prefer the legend to be translucent to the background
```

Out[160]: <matplotlib.legend.Legend at 0x26f14e904a8>

#### Rate of Terror Attacks 2006-2016



Finding the percentage rate is important to finding how terrorism has increased or decreased for each country. From this graph, it seems that France, Germany, and Ireland have seen dramatic increases between 2010 to 2012. However from just this graph there are no valid conclusions or trends to be made. Whether Western Europe has experienced a noticeable rise in terrorism during a particular period time cannot be determined. Each country seems to have their own moments of increased terrorist activity that is independent from other countries.

#### **Tourism Data: Cleaning and Finding Rates of Change**

Data on tourism is grabbed from the World Bank. I am grabbing data from the six same countries specifically from the database that provides statistical information on international arrivals.

In [121]: data\_date = (datetime.datetime(2005, 1, 1), datetime.datetime(2016, 1, 1))
 tourist = wbdata.get\_dataframe({'ST.INT.ARVL':'values'},country=("GBR", "FRA", "ESP", "IRL", "DEU", "GRC"
), data\_date=data\_date)

# tourism data is grabbed from the World Bank Database, and information on the aforementioned six countri
 es will be examined

tourist.head(10)

#### Out[121]:

|         |      | values     |
|---------|------|------------|
| country | date |            |
| Germany | 2016 | 35555000.0 |
|         | 2015 | 34970000.0 |
|         | 2014 | 32999000.0 |
|         | 2013 | 31545000.0 |
|         | 2012 | 30411000.0 |
|         | 2011 | 28374000.0 |
|         | 2010 | 26875000.0 |
|         | 2009 | 24220000.0 |
|         | 2008 | 24884000.0 |
|         | 2007 | 24421000.0 |

In [122]: tourist\_final = tourist.unstack().T

tourist\_final.reset\_index(drop=True, level=0, inplace=True)

tourist\_final.columns.set\_names(['Country Name'], inplace=True)

tourist\_final.index.set\_names(['Year'], inplace =True)

# these steps will organize the data; the values column on top is dropped and the indenx and column label s are slightly changed.

tourist\_final

## Out[122]:

| Country Name | France     | Germany    | Greece     | Ireland    | Spain      | United Kingdom |
|--------------|------------|------------|------------|------------|------------|----------------|
| Year         |            |            |            |            |            |                |
| 2005         | 74988000.0 | 21500000.0 | 14765000.0 | 7333000.0  | 55914000.0 | 28039000.0     |
| 2006         | 77916000.0 | 23569000.0 | 16039000.0 | 8001000.0  | 58004000.0 | 30654000.0     |
| 2007         | 80853000.0 | 24421000.0 | 16165000.0 | 8332000.0  | 58666000.0 | 30870000.0     |
| 2008         | 79218000.0 | 24884000.0 | 15939000.0 | 8026000.0  | 57192000.0 | 30142000.0     |
| 2009         | 76764000.0 | 24220000.0 | 14915000.0 | 7189000.0  | 52178000.0 | 28199000.0     |
| 2010         | 76647000.0 | 26875000.0 | 15007000.0 | 7134000.0  | 52677000.0 | 28295000.0     |
| 2011         | 80499000.0 | 28374000.0 | 16427000.0 | 7630000.0  | 56177000.0 | 29306000.0     |
| 2012         | 81980000.0 | 30411000.0 | 15518000.0 | 7550000.0  | 57464000.0 | 29282000.0     |
| 2013         | 83634000.0 | 31545000.0 | 17920000.0 | 8260000.0  | 60675000.0 | 31063000.0     |
| 2014         | 83701000.0 | 32999000.0 | 22033000.0 | 8813000.0  | 64939000.0 | 32613000.0     |
| 2015         | 84452000.0 | 34970000.0 | 23599000.0 | 9528000.0  | 68175000.0 | 34436000.0     |
| 2016         | 82570000.0 | 35555000.0 | 24799000.0 | 10100000.0 | 75315000.0 | 35814000.0     |

In [123]: tourist\_rate = tourist\_final.pct\_change(periods=1)

# I also want to find the percentage change for tourism; index type is changed to integer tourist\_rate

Out[123]:

| <b>Country Name</b> | France    | Germany   | Greece    | Ireland   | Spain     | United Kingdom |
|---------------------|-----------|-----------|-----------|-----------|-----------|----------------|
| Year                |           |           |           |           |           |                |
| 2005                | NaN       | NaN       | NaN       | NaN       | NaN       | NaN            |
| 2006                | 0.039046  | 0.096233  | 0.086285  | 0.091095  | 0.037379  | 0.093263       |
| 2007                | 0.037694  | 0.036149  | 0.007856  | 0.041370  | 0.011413  | 0.007046       |
| 2008                | -0.020222 | 0.018959  | -0.013981 | -0.036726 | -0.025125 | -0.023583      |
| 2009                | -0.030978 | -0.026684 | -0.064245 | -0.104286 | -0.087670 | -0.064462      |
| 2010                | -0.001524 | 0.109620  | 0.006168  | -0.007651 | 0.009563  | 0.003404       |
| 2011                | 0.050256  | 0.055777  | 0.094623  | 0.069526  | 0.066443  | 0.035731       |
| 2012                | 0.018398  | 0.071791  | -0.055336 | -0.010485 | 0.022910  | -0.000819      |
| 2013                | 0.020176  | 0.037289  | 0.154788  | 0.094040  | 0.055878  | 0.060822       |
| 2014                | 0.000801  | 0.046093  | 0.229520  | 0.066949  | 0.070276  | 0.049899       |
| 2015                | 0.008972  | 0.059729  | 0.071075  | 0.081130  | 0.049831  | 0.055898       |
| 2016                | -0.022285 | 0.016729  | 0.050850  | 0.060034  | 0.104730  | 0.040016       |

In [124]: tourist\_rate.T

Out[124]:

| Year              | 2005 | 2006     | 2007     | 2008      | 2009      | 2010      | 2011     | 2012      | 2013     | 2014     | 2015     |
|-------------------|------|----------|----------|-----------|-----------|-----------|----------|-----------|----------|----------|----------|
| Country<br>Name   |      |          |          |           |           |           |          |           |          |          |          |
| France            | NaN  | 0.039046 | 0.037694 | -0.020222 | -0.030978 | -0.001524 | 0.050256 | 0.018398  | 0.020176 | 0.000801 | 0.008972 |
| Germany           | NaN  | 0.096233 | 0.036149 | 0.018959  | -0.026684 | 0.109620  | 0.055777 | 0.071791  | 0.037289 | 0.046093 | 0.059729 |
| Greece            | NaN  | 0.086285 | 0.007856 | -0.013981 | -0.064245 | 0.006168  | 0.094623 | -0.055336 | 0.154788 | 0.229520 | 0.071075 |
| Ireland           | NaN  | 0.091095 | 0.041370 | -0.036726 | -0.104286 | -0.007651 | 0.069526 | -0.010485 | 0.094040 | 0.066949 | 0.081130 |
| Spain             | NaN  | 0.037379 | 0.011413 | -0.025125 | -0.087670 | 0.009563  | 0.066443 | 0.022910  | 0.055878 | 0.070276 | 0.049831 |
| United<br>Kingdom | NaN  | 0.093263 | 0.007046 | -0.023583 | -0.064462 | 0.003404  | 0.035731 | -0.000819 | 0.060822 | 0.049899 | 0.055898 |

Out[161]: <matplotlib.legend.Legend at 0x26f14e689e8>

#### **Rate of Tourism**



Similar to the previous graph above, the line plot focuses on the percentage change for rates of tourism. There are some general trends observed in this graph; all countries have experienced a dramatic decrease in tourism around 2008, and a slight drop in 2011. Nothing can be concluded for certain, but there is a more noticeable pattern for rates in tourism than terrorism.

#### **Combining the Data**

Terrorism and tourism percentage change data will be concantenated. This final dataframe will be used for most of the data analysis. Several graphs will be created to visualize at once relationship and regression.

In [127]: type(tourist\_rate.index)

Out[127]: pandas.core.indexes.numeric.Int64Index

In [128]: type(ta\_rate.index)

Out[128]: pandas.core.indexes.numeric.Int64Index

In [129]: pct\_rate = pd.concat([ta\_rate, tourist\_rate], keys=['tourist\_rate', 'attack\_rate'], axis=1).fillna(value=
0)

# data of on rates of change for terrorism and tourism is concatenated, columns Labels on level=0 are add
ed

pct\_rate

Out[129]:

|                 | tourist_rat | te        |           |           |           |                   | attack_rat | е         |           |           |             |
|-----------------|-------------|-----------|-----------|-----------|-----------|-------------------|------------|-----------|-----------|-----------|-------------|
| Country<br>Name | France      | Germany   | Greece    | Ireland   | Spain     | United<br>Kingdom | France     | Germany   | Greece    | Ireland   | Sp          |
| Year            |             |           |           |           |           |                   |            |           |           |           |             |
| 2005            | 0.000000    | 0.000000  | 0.000000  | 0.000000  | 0.000000  | 0.000000          | 0.000000   | 0.000000  | 0.000000  | 0.000000  | 0.0         |
| 2006            | 0.030303    | 0.333333  | 2.833333  | 0.000000  | -0.041667 | -0.760000         | 0.039046   | 0.096233  | 0.086285  | 0.091095  | 0.0         |
| 2007            | -0.529412   | -0.250000 | -0.347826 | 0.000000  | -0.521739 | 2.333333          | 0.037694   | 0.036149  | 0.007856  | 0.041370  | 0.0         |
| 2008            | -0.187500   | 0.000000  | 2.533333  | 4.000000  | 2.363636  | 0.950000          | -0.020222  | 0.018959  | -0.013981 | -0.036726 | <b>-</b> 0. |
| 2009            | -0.307692   | 0.333333  | 1.169811  | -1.000000 | -0.432432 | -0.435897         | -0.030978  | -0.026684 | -0.064245 | -0.104286 | -0.         |
| 2010            | -0.666667   | -0.750000 | -0.573913 | 0.000000  | -0.857143 | 1.590909          | -0.001524  | 0.109620  | 0.006168  | -0.007651 | 0.0         |
| 2011            | 1.666667    | 7.000000  | -0.775510 | 0.000000  | -1.000000 | -0.175439         | 0.050256   | 0.055777  | 0.094623  | 0.069526  | 0.0         |
| 2012            | 7.125000    | -0.500000 | 1.000000  | 6.250000  | 0.000000  | 0.148936          | 0.018398   | 0.071791  | -0.055336 | -0.010485 | 0.0         |
| 2013            | -0.815385   | -1.000000 | 1.409091  | -0.068966 | 4.000000  | 1.537037          | 0.020176   | 0.037289  | 0.154788  | 0.094040  | 0.0         |
| 2014            | 0.166667    | 0.000000  | -0.509434 | 0.22222   | -0.200000 | -0.248175         | 0.000801   | 0.046093  | 0.229520  | 0.066949  | 0.0         |
| 2015            | 1.571429    | 3.923077  | 0.192308  | -0.151515 | -0.750000 | 0.106796          | 0.008972   | 0.059729  | 0.071075  | 0.081130  | 0.0         |
| 2016            | -0.277778   | -0.359375 | 0.000000  | -0.464286 | 2.000000  | -0.087719         | -0.022285  | 0.016729  | 0.050850  | 0.060034  | 0.1         |

This graph provides the complete data on rates of change for both tourism and terrorism from 2005 to 2016. This dataframe will be used to provide further graphic visualization side by side as well as a regression model.

```
fig, ax = plt.subplots(nrows = 3, ncols = 2, figsize=(18,15))
In [163]:
          fig.subplots adjust(hspace=0.5, wspace=0.3)
          fig.suptitle('Rates of Change of Tourism and Terror Attacks in Western Europe', fontsize=20, y=.95, fo
          ntweight = 'bold')
          # 6 stacked bar charts are created for each country to express percentage rates in relation to the tou
          rism and terrorism variables
          pct rate['tourist rate', 'Spain'].plot(kind='bar', color='red', ax=ax[0,0], alpha=0.8, label='Tourism
          pct_rate['attack_rate', 'Spain'].plot(kind='bar', color='blue', ax=ax[0,0], alpha=0.8, label='Terroris
          m Rate')
          ax[0,0].set_title('Spain')
          ax[0,0].set_ylabel('Percent Change')
          ax[0,0].set_xlabel('Year')
          ax[0,0].spines['right'].set_visible(False)
          ax[0,0].spines['top'].set_visible(False)
          ax[0,0].spines['bottom'].set_visible(False)
          ax[0,0].axhline(y=0, color='black', linewidth=0.5)
          ax[0,0].legend(framealpha=0.5, facecolor='white')
          ax[0,0].tick_params(axis='both', which='both',length=0, rotation='default')
          # ticks are off for both axis
          # y=0 line is apparent
          pct_rate['tourist_rate', 'United Kingdom'].plot(kind='bar', color='red', ax=ax[1,0], alpha=0.8, label=
           'Tourism Rate')
          pct_rate['attack_rate', 'United Kingdom'].plot(kind='bar', color='blue', ax=ax[1,0], alpha=0.8, label=
           'Terrorism Rate')
          ax[1,0].set_title('United Kingdom')
          ax[1,0].set_ylabel('Percent Change')
          ax[1,0].set xlabel('Year')
          ax[1,0].spines['right'].set_visible(False)
          ax[1,0].spines['top'].set_visible(False)
          ax[1,0].spines['bottom'].set_visible(False)
          ax[1,0].axhline(y=0, color='black', linewidth=0.5)
          ax[1,0].legend(framealpha=0.5, facecolor='white')
          ax[1,0].tick_params(axis='both', which='both',length=0, rotation='default')
          pct_rate['tourist_rate', 'Germany'].plot(kind='bar', color='red', ax=ax[1,1], alpha=0.8, label='Touris
          m Rate')
          pct_rate['attack_rate', 'Germany'].plot(kind='bar', color='blue', ax=ax[1,1], alpha=0.8, label='Terror
          ism Rate')
          ax[1,1].set title('Germany')
          ax[1,1].set_ylabel('Percent Change')
          ax[1,1].set xlabel('Year')
          ax[1,1].spines['right'].set_visible(False)
          ax[1,1].spines['top'].set_visible(False)
          ax[1,1].spines['bottom'].set visible(False)
          ax[1,1].axhline(y=0, color='black', linewidth=0.5)
          ax[1,1].legend(framealpha=0.5, facecolor='white')
          ax[1,1].tick_params(axis='both', which='both',length=0, rotation='default')
          pct rate['tourist rate', 'Ireland'].plot(kind='bar', color='red', ax=ax[0,1], alpha=0.8, label='Touris
          m Rate')
          pct_rate['attack_rate', 'Ireland'].plot(kind='bar', color='blue', ax=ax[0,1], alpha=0.8, label='Terror
          ism Rate')
          ax[0,1].set_title('Ireland')
          ax[0,1].set_ylabel('Percent Change')
          ax[0,1].set_xlabel('Year')
          ax[0,1].spines['right'].set visible(False)
          ax[0,1].spines['top'].set_visible(False)
          ax[0,1].spines['bottom'].set_visible(False)
          ax[0,1].axhline(y=0, color='black', linewidth=0.5)
          ax[0,1].legend(framealpha=0.5, facecolor='white')
          ax[0,1].tick_params(axis='both', which='both',length=0, rotation='default')
          pct_rate['tourist_rate', 'Spain'].plot(kind='bar', color='red', ax=ax[2,0], alpha=0.8, label='Tourism
           Rate')
          pct_rate['attack_rate', 'Spain'].plot(kind='bar', color='blue', ax=ax[2,0], alpha=0.8, label='Terroris
          m Rate')
          ax[2,0].set_title('Spain')
```

```
ax[2,0].set_ylabel('Percent Change')
ax[2,0].set_xlabel('Year')
ax[2,0].spines['right'].set_visible(False)
ax[2,0].spines['top'].set_visible(False)
ax[2,0].spines['bottom'].set_visible(False)
ax[2,0].axhline(y=0, color='black', linewidth=0.5)
ax[2,0].legend(framealpha=0.5, facecolor='white')
ax[2,0].tick params(axis='both', which='both',length=0, rotation='default')
pct_rate['tourist_rate', 'Greece'].plot(kind='bar', color='red', ax=ax[2,1], alpha=0.8, label='Tourism
Rate')
pct_rate['attack_rate', 'Greece'].plot(kind='bar', color='blue', ax=ax[2,1], alpha=0.8, label='Terrori
sm Rate')
ax[2,1].set title('Greece')
ax[2,1].set_ylabel('Percent Change')
ax[2,1].set_xlabel('Year')
ax[2,1].spines['right'].set_visible(False)
ax[2,1].spines['top'].set visible(False)
ax[2,1].spines['bottom'].set_visible(False)
ax[2,1].axhline(y=0, color='black', linewidth=0.5)
ax[2,1].legend(framealpha=0.5, facecolor='white')
ax[2,1].tick params(axis='both', which='both',length=0, rotation='default')
```

#### Rates of Change of Tourism and Terror Attacks in Western Europe



Here, a 3 by 2 figure with subplots is congregated by stack bar charts for percentage rates of each country. Again there does not seem to be any noticeable patterns just from observation. However it is obvious that tourism rates experience greater fluxuation than terrorism rates in all countries. It is normal to tourism to see a 2 or greater percent in change, but but terrorism rates often see less than 0.5 percent in change.

```
In [166]: fig, ax = plt.subplots(figsize=(10,7))
          ax.set title('Regression Model for Rates of Change', fontsize=17, y=1.03, fontweight='bold')
          # regression scatter plot for rate of change of each country
          ax.set_ylim(-5,10)
          ax.set_xlabel('Attack Rate')
          ax.set_ylabel('Tourist Rate')
          ax.scatter(y=pct rate.tourist rate.Spain, x=pct rate.attack rate.Spain)
          ax.scatter(y=pct rate.tourist rate.Ireland, x=pct rate.attack rate.Ireland)
          ax.scatter(y=pct_rate.tourist_rate['United Kingdom'], x=pct_rate.attack_rate['United Kingdom'])
          ax.scatter(y=pct_rate.tourist_rate.Germany, x=pct_rate.attack_rate.Germany)
          ax.scatter(y=pct_rate.tourist_rate.France, x=pct_rate.attack_rate.France)
          ax.scatter(y=pct_rate.tourist_rate.Greece, x=pct_rate.attack_rate.Greece)
          sns.regplot(y=pct_rate.tourist_rate.Spain, x=pct_rate.attack_rate.Spain)
          sns.regplot(y=pct_rate.tourist_rate.Ireland, x=pct_rate.attack_rate.Ireland)
          sns.regplot(y=pct_rate.tourist_rate['United Kingdom'], x=pct_rate.attack_rate['United Kingdom'])
          sns.regplot(y=pct_rate.tourist_rate.Germany, x=pct_rate.attack_rate.Germany)
           sns.regplot(y=pct_rate.tourist_rate.France, x=pct_rate.attack_rate.France)
          sns.regplot(y=pct_rate.tourist_rate.Greece, x=pct_rate.attack_rate.Greece)
          ax.axhline(y=0, color='black', linewidth=0.7)
          ax.set(xlabel='Terror Attack Rate', ylabel='Tourism Rate')
          ax.spines['right'].set visible(False)
          ax.spines['top'].set_visible(False)
          ax.spines['bottom'].set_visible(False)
          ax.legend(framealpha=0.5, facecolor='white')
```

Out[166]: <matplotlib.legend.Legend at 0x26f16757a20>

### Regression Model for Rates of Change



This regression graph shows the relationship between terror attack rate and tourism rate, and if possibly there is a relationship between these two variables. Just from observation, there seems to be no relationship between the independent and dependent variable that are consistent with all the countries. France has the strongest positive relationship, while Ireland has the strongest negative relationship. The rest of the countries have slight positive and negative relationships. The verdict is evenly split on whether there is a definitive positive/negative relationship overall.

Below are summaries of each countries' regression results:

#### Ireland

```
x = pct rate.attack rate.Ireland # x will be the independent variable, or rate of terrorist activity
y = pct_rate.tourist_rate.Ireland # y will be the dependent variable or rate of tourism
x = sm.add_constant(X) # an x-intercept will be added
model = sm.OLS(y,x).fit()
## sm.OLS(output, input)
predictions = model.predict(x)
model.summary()
C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin
g: kurtosistest only valid for n>=20 ... continuing anyway, n=12
  "anyway, n=%i" % int(n))
```

# Out[138]: OLS Regression Results

| Dep. Variable:    | Ireland          | R-squared:          | 0.015   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.083  |
| Method:           | Least Squares    | F-statistic:        | 0.1526  |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.704   |
| Time:             | 22:33:21         | Log-Likelihood:     | -25.489 |
| No. Observations: | 12               | AIC:                | 54.98   |
| Df Residuals:     | 10               | BIC:                | 55.95   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|       | coef    | std err | t      | P> t  | [0.025  | 0.975] |
|-------|---------|---------|--------|-------|---------|--------|
| const | 0.8683  | 0.729   | 1.192  | 0.261 | -0.755  | 2.492  |
| Spain | -5.1693 | 13.231  | -0.391 | 0.704 | -34.650 | 24.312 |

| Omnibus:       | 14.096 | Durbin-Watson:    | 2.435  |
|----------------|--------|-------------------|--------|
| Prob(Omnibus): | 0.001  | Jarque-Bera (JB): | 8.573  |
| Skew:          | 1.783  | Prob(JB):         | 0.0138 |
| Kurtosis:      | 5.103  | Cond. No.         | 20.7   |

#### France

```
In [139]: x = pct_rate.attack_rate.France
y = pct_rate.tourist_rate.France
x = sm.add_constant(X)

model = sm.OLS(y, x).fit()
predictions = model.predict(x)

model.summary()
```

C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin
g: kurtosistest only valid for n>=20 ... continuing anyway, n=12
 "anyway, n=%i" % int(n))

# Out[139]:

#### **OLS Regression Results**

| Dep. Variable:    | France           | R-squared:          | 0.007   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.092  |
| Method:           | Least Squares    | F-statistic:        | 0.07550 |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.789   |
| Time:             | 22:33:24         | Log-Likelihood:     | -25.849 |
| No. Observations: | 12               | AIC:                | 55.70   |
| Df Residuals:     | 10               | BIC:                | 56.67   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|   |       | coef   | std err | t     | P> t  | [0.025  | 0.975] |
|---|-------|--------|---------|-------|-------|---------|--------|
| Ī | const | 0.5494 | 0.751   | 0.732 | 0.481 | -1.123  | 2.222  |
| Ī | Spain | 3.7462 | 13.634  | 0.275 | 0.789 | -26.631 | 34.124 |

| Omnibus:       | 25.109 | Durbin-Watson:    | 2.095    |
|----------------|--------|-------------------|----------|
| Prob(Omnibus): | 0.000  | Jarque-Bera (JB): | 23.657   |
| Skew:          | 2.428  | Prob(JB):         | 7.29e-06 |
| Kurtosis:      | 7.872  | Cond. No.         | 20.7     |

#### Germany

```
In [140]: x = pct_rate.attack_rate.Germany
y = pct_rate.tourist_rate.Germany
x = sm.add_constant(X)

model = sm.OLS(y, x).fit()
predictions = model.predict(x)

model.summary()
```

C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin
g: kurtosistest only valid for n>=20 ... continuing anyway, n=12
 "anyway, n=%i" % int(n))

### Out[140]:

#### **OLS Regression Results**

| Dep. Variable:    | Germany          | R-squared:          | 0.053   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.042  |
| Method:           | Least Squares    | F-statistic:        | 0.5584  |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.472   |
| Time:             | 22:33:26         | Log-Likelihood:     | -26.384 |
| No. Observations: | 12               | AIC:                | 56.77   |
| Df Residuals:     | 10               | BIC:                | 57.74   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|       | coef    | std err | t     | P> t  | [0.025  | 0.975] |
|-------|---------|---------|-------|-------|---------|--------|
| const | 0.4473  | 0.785   | 0.570 | 0.581 | -1.302  | 2.196  |
| Spain | 10.6528 | 14.256  | 0.747 | 0.472 | -21.111 | 42.416 |

| Omnibus:       | 12.061 | Durbin-Watson:    | 2.607  |
|----------------|--------|-------------------|--------|
| Prob(Omnibus): | 0.002  | Jarque-Bera (JB): | 6.837  |
| Skew:          | 1.637  | Prob(JB):         | 0.0328 |
| Kurtosis:      | 4.719  | Cond. No.         | 20.7   |

#### **United Kingdom**

```
x = pct_rate.attack_rate['United Kingdom']
In [101]:
          y = pct_rate.tourist_rate['United Kingdom']
          x = sm.add_constant(X)
          model = sm.OLS(y, x).fit()
          predictions = model.predict(x)
          model.summary()
```

C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin g: kurtosistest only valid for n>=20 ... continuing anyway, n=12 "anyway, n=%i" % int(n))

# Out[101]: OLS Regression Results

| Dep. Variable:    | United Kingdom   | R-squared:          | 0.008   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.092  |
| Method:           | Least Squares    | F-statistic:        | 0.07632 |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.788   |
| Time:             | 22:18:53         | Log-Likelihood:     | -15.942 |
| No. Observations: | 12               | AIC:                | 35.88   |
| Df Residuals:     | 10               | BIC:                | 36.85   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|   |       | coef    | std err | t      | P> t  | [0.025  | 0.975] |
|---|-------|---------|---------|--------|-------|---------|--------|
| Ī | const | 0.4567  | 0.329   | 1.389  | 0.195 | -0.276  | 1.189  |
|   | Spain | -1.6497 | 5.971   | -0.276 | 0.788 | -14.955 | 11.656 |

| Omnibus:       | 1.888 | Durbin-Watson:    | 2.700 |
|----------------|-------|-------------------|-------|
| Prob(Omnibus): | 0.389 | Jarque-Bera (JB): | 1.319 |
| Skew:          | 0.748 | Prob(JB):         | 0.517 |
| Kurtosis:      | 2.368 | Cond. No.         | 20.7  |

#### Greece

In [102]: x = pct\_rate.attack\_rate.Greece
 y = pct\_rate.tourist\_rate.Greece
 x = sm.add\_constant(X)

model = sm.OLS(y, x).fit()
 predictions = model.predict(x)

model.summary()

C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin
g: kurtosistest only valid for n>=20 ... continuing anyway, n=12
 "anyway, n=%i" % int(n))

# Out[102]:

#### **OLS Regression Results**

| Dep. Variable:    | Greece           | R-squared:          | 0.115   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | 0.026   |
| Method:           | Least Squares    | F-statistic:        | 1.297   |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.281   |
| Time:             | 22:19:17         | Log-Likelihood:     | -18.076 |
| No. Observations: | 12               | AIC:                | 40.15   |
| Df Residuals:     | 10               | BIC:                | 41.12   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|       | coef    | std err | t      | P> t  | [0.025  | 0.975] |
|-------|---------|---------|--------|-------|---------|--------|
| const | 0.7913  | 0.393   | 2.014  | 0.072 | -0.084  | 1.666  |
| Spain | -8.1236 | 7.133   | -1.139 | 0.281 | -24.017 | 7.770  |

| Omnibus:       | 2.201 | Durbin-Watson:    | 2.700 |
|----------------|-------|-------------------|-------|
| Prob(Omnibus): | 0.333 | Jarque-Bera (JB): | 1.407 |
| Skew:          | 0.804 | Prob(JB):         | 0.495 |
| Kurtosis:      | 2.524 | Cond. No.         | 20.7  |

#### Spain

```
In [103]: x = pct_rate.attack_rate.Spain
y = pct_rate.tourist_rate.Spain
x = sm.add_constant(X)

model = sm.OLS(y, x).fit()
predictions = model.predict(x)

model.summary()
```

C:\Users\Shirley Liao\Anaconda3\Anaconda Python\lib\site-packages\scipy\stats\stats.py:1390: UserWarnin
g: kurtosistest only valid for n>=20 ... continuing anyway, n=12
 "anyway, n=%i" % int(n))

## Out[103]:

#### **OLS Regression Results**

| Dep. Variable:    | Spain            | R-squared:          | 0.033   |
|-------------------|------------------|---------------------|---------|
| Model:            | OLS              | Adj. R-squared:     | -0.063  |
| Method:           | Least Squares    | F-statistic:        | 0.3448  |
| Date:             | Mon, 14 May 2018 | Prob (F-statistic): | 0.570   |
| Time:             | 22:19:48         | Log-Likelihood:     | -21.612 |
| No. Observations: | 12               | AIC:                | 47.22   |
| Df Residuals:     | 10               | BIC:                | 48.19   |
| Df Model:         | 1                |                     |         |
| Covariance Type:  | nonrobust        |                     |         |

|       | coef   | std err | t     | P> t  | [0.025  | 0.975] |
|-------|--------|---------|-------|-------|---------|--------|
| const | 0.2321 | 0.527   | 0.440 | 0.669 | -0.943  | 1.407  |
| Spain | 5.6241 | 9.577   | 0.587 | 0.570 | -15.716 | 26.964 |

| Omnibus:       | 5.721 | Durbin-Watson:    | 2.229 |
|----------------|-------|-------------------|-------|
| Prob(Omnibus): | 0.057 | Jarque-Bera (JB): | 2.969 |
| Skew:          | 1.209 | Prob(JB):         | 0.227 |
| Kurtosis:      | 3.304 | Cond. No.         | 20.7  |

#### **Conclusion (Final Thoughts)**

This goal of this project is to manipulate, analyze, and visualize the data on terrorism and tourism. At the core of the project, I wanted to know if general assumptions on terrorism and tourism based on media was true.

Were there actually more terrorist activity in Western Europe in recent years than in the past few decades? Looking at general counts from each country, this is mixed. The UK, Ireland, and Germany there has seen a consistent increase. However for Greece and France there have been periods on fluxuation, and for Spain it has even seen a drop. What I looked at were their rates of change, which more importantly considers how rapidly terrorist activity have risen or declined in the last 12 years. Upon observing percentage changes, this provides even less of a clear trend. This is because there are generally small incremental changes each year, which in a small time span, does not really provide strong conclusions.

Is tourism even affected by terrorism, and can we trust the data? In completing the project, I've noticed how influential large quantities are in observing change. Obviously (and thankfully), tourism data works with greater numbers, and as a result, countries experience more dramatic rates of change per year. But there are also really mixed results, with some countries experiencing dramatic increases and decreases in some years, while in others, sees almost no change in the amount of tourists. Other factors can also be at play for these change, and they can't be discounted. Recessions, politics, and other trends in tourism needs to be factored in also. Overall tourism in Western Europe is quite consistent if you look at quantity, but rates of change are more striking. The region on its own is a hotspot for tourism.

There is no conclusive result on whether terrorism affects tourism. More in-depth research is necessary to find if there is a definitive relationship. Nonetheless it is satisfying enough in preparing this data to see how each country has change over time through these variables.