Computer Graphics I

Lecture 20: Computer animation 4

Xiaopei LIU

School of Information Science and Technology ShanghaiTech University

What is a fluid?

• Definition

 A substance that continually deforms (flows) under an applied stress

Fluid simulation

Simulate the behavior of fluid flows

- Modeling the fluid behavior
- Solve the fluid equations numerically
- Rendering the simulation result

Physical quantities

Velocity field u

A spatially and temporally varying vector field of velocity

Physical quantities

Likewise

- Pressure field p
 - A scalar field of pressure
- Density field ρ
 - A scalar field of density
- Temperature field T
 - A scalar field of temperature

Pressure field on a car surface

Physical quantities

Viscosity ν

- A measure of its resistance to gradual deformation
- Small viscosity implies easier (large) deformation

Divergence

 The divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume

$$\left. \operatorname{div} \mathbf{F}
ight|_p = \lim_{V o \{p\}} \iint_{S(V)} rac{\mathbf{F} \cdot \hat{\mathbf{n}}}{|V|} \, dS$$

$$\operatorname{div} \mathbf{F} =
abla \cdot \mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (U, V, W) = \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z}.$$

Vorticity

Describes the local spinning motion

$$egin{aligned} ec{\omega} &=
abla imes ec{v} = \left(rac{\partial}{\partial x}, rac{\partial}{\partial y}, rac{\partial}{\partial z}
ight) imes (v_x, v_y, v_z) \ &= \left(rac{\partial v_z}{\partial y} - rac{\partial v_y}{\partial z}, rac{\partial v_x}{\partial z} - rac{\partial v_z}{\partial x}, rac{\partial v_y}{\partial x} - rac{\partial v_x}{\partial y}
ight) \end{aligned}$$

Laminar flow

- When a fluid flows in parallel layers
 - No disruption between the layers

Turbulence flow

A flow in chaotic behavior

1. Modeling for Fluids

Control volume

An enclosed volume with arbitrary shape

Flux

Any effect that passes through a surface or

substance

$$\varphi = \oint_{S} \mathbf{Q} \cdot d\mathbf{s}$$

Fluid dynamics

- Conservation laws
 - Conservation of mass
 - The rate of change of mass = mass flux rate
 - Conservation of momentum
 - The rate of change of momentum = internal + external force

Conservation of mass

- Continuity equation
 - Integral form

$$\frac{\partial}{\partial t} \oint_{V} \rho dV = -\oint_{S} \rho \mathbf{u} \cdot d\mathbf{s}$$

Differential form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Conservation of momentum

Momentum equation

- Apply Newton's second law
- Integral form

$$\frac{\partial}{\partial t} \oint_{V} \rho \mathbf{u} dV + \oint_{S} (\rho \mathbf{u} \cdot d\mathbf{s}) \mathbf{u} = -\oint_{S} p d\mathbf{s} + \oint_{S} \mathbf{\tau}_{shear} \cdot d\mathbf{s} + \oint_{V} \rho \mathbf{g} dV$$

Differential form

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla(\rho \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{\tau}_{shear} + \rho \mathbf{g}$$

Integral form

$$\frac{\partial}{\partial t} \oint_{V} \rho dV = -\oint_{S} \rho \mathbf{u} \cdot d\mathbf{s}$$

$$\frac{\partial}{\partial t} \oint_{V} \rho \mathbf{u} dV + \oint_{S} (\rho \mathbf{u} \cdot d\mathbf{s}) \mathbf{u} = -\oint_{S} p d\mathbf{s} + \oint_{S} \mathbf{\tau}_{shear} \cdot d\mathbf{s} + \oint_{V} \rho \mathbf{g} dV$$

Differential form

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla(\rho \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{\tau}_{shear} + \rho \mathbf{g}$$

Incompressible fluids

- The volume and density do not change
 - Differential form (constant density)

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \boldsymbol{\tau}_{shear} + \mathbf{g}$$

Newtonian fluids

Linear shear-stress relation

$$\mathbf{\tau}_{shear} = -\nu' \rho (\nabla \cdot \mathbf{u}) \mathbf{I} + 2\rho \nu \mathbf{S}$$

Strain rate (deformation rate)

$$\mathbf{S} = \frac{1}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$

Incompressible Navier-Stokes equations

Apply Newtonion fluid relation in incompressible governing equations

$$\nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{g}$$

Incompressible Navier-Stokes equations

- Fluid equations in computer graphics
 - Navier-Stokes equations in isothermal case

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u}$$

$$\nabla \cdot \vec{u} = 0$$

Lagrangian view

Coordinate is moving with fluid

Pressure equation

Taking divergence of the momentum equation

$$\nabla \cdot \frac{\partial \vec{u}}{\partial t} + \nabla \cdot (\vec{u} \cdot \nabla \vec{u}) + \nabla \cdot \frac{1}{\rho} \nabla p = \nabla \cdot (\vec{g} + \nu \nabla \cdot \nabla \vec{u})$$

Remove zero terms

$$\nabla \cdot \vec{u} = 0 \longrightarrow \nabla \cdot \frac{1}{\rho} \nabla p = \nabla \cdot (-\vec{u} \cdot \nabla \vec{u} + \vec{g} + \nu \nabla \cdot \nabla \vec{u})$$

Ideal inviscid flows

- No viscosity or very small viscosity
- Drop the viscosity term

$$\frac{D\vec{u}}{Dt} + \frac{1}{\rho}\nabla p = \vec{g}$$
$$\nabla \cdot \vec{u} = 0$$

Boundary conditions

- Solid wall boundary
 - The flow cannot penetrate
 - Slip boundary

$$\vec{u} \cdot \hat{n} = \vec{u}_{\text{solid}} \cdot \hat{n}$$

No-slip (Neumann) boundary

$$\vec{u} = \vec{u}_{\mathrm{solid}}$$

2. Unconditionally stable semi-Lagrangian method

Finite difference method

Derivative approximation

- First derivative
 - Taylor expansion

$$u(x + \Delta x) = u(x) + \Delta x \frac{\partial u(x)}{\partial x} + \frac{(\Delta x)^2}{2} \frac{\partial^2 u(x)}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 u(x)}{\partial x^3} + \cdots$$

First order approximation

$$\frac{u(x + \Delta x) - u(x)}{\Delta x} = \frac{\partial u(x)}{\partial x} + \frac{\Delta x}{2} \frac{\partial^2 u(x)}{\partial x^2} + \dots = \frac{\partial u(x)}{\partial x} + O(\Delta x)$$

Finite difference method

Derivative approximation

- First derivative
 - Second order approximation

$$u_{i+1} = u_i + \Delta x \left(\frac{\partial u}{\partial x}\right)_i + \frac{\Delta x^2}{2} \left(\frac{\partial^2 u}{\partial x^2}\right)_i + \frac{\Delta x^3}{3!} \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \frac{\Delta x^4}{4!} \left(\frac{\partial^4 u}{\partial x^4}\right)_i + \cdots$$

$$u_{i-1} = u_i - \Delta x \left(\frac{\partial u}{\partial x}\right)_i + \frac{\Delta x^2}{2} \left(\frac{\partial^2 u}{\partial x^2}\right)_i - \frac{\Delta x^3}{3!} \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \frac{\Delta x^4}{4!} \left(\frac{\partial^4 u}{\partial x^4}\right)_i + \cdots$$

$$\left(\frac{\partial u}{\partial x}\right)_i = \frac{u_{i+1} - u_{i-1}}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

Splitting

- How to solve the fluid equations?
 - Split the complex equations into simpler ones
- Splitting in general PDE

$$\frac{dq}{dt} = f(q) + g(q)$$

$$\tilde{q} = q^n + \Delta t f(q^n)$$

$$q^{n+1} = \tilde{q} + \Delta t g(\tilde{q})$$

Splitting

- Splitting in general PDE
 - Is splitting with the same order as original? Yes!

$$q^{n+1} = (q^n + \Delta t f(q^n)) + \Delta t g(q^n + \Delta t f(q^n))$$

$$= q^n + \Delta t f(q^n) + \Delta t (g(q^n) + O(\Delta t))$$

$$= q^n + \Delta t (f(q^n) + g(q^n)) + O(\Delta t^2)$$

$$= q^n + \frac{dq}{dt} \Delta t + O(\Delta t^2)$$

Splitting for Navier-Stokes equations

$$\mathbf{w}_0(\mathbf{x}) \xrightarrow{\mathrm{add\ force}} \mathbf{w}_1(\mathbf{x}) \xrightarrow{\mathrm{advect}} \mathbf{w}_2(\mathbf{x}) \xrightarrow{\mathrm{diffuse}} \mathbf{w}_3(\mathbf{x}) \xrightarrow{\mathrm{project}} \mathbf{w}_4(\mathbf{x})$$

MAC grid

Staggered grid

- Staggered arrangement of velocity and pressure
- Face center: velocity samples
- Cell center: pressure samples
- Avoid high frequency artifacts

Advection

- What is an advection?
 - Transport of a substance

$$Dq/Dt = 0$$

- Numerical solver
 - The simple discretization: explicit Euler

$$\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} = 0 \qquad \longrightarrow \qquad \frac{q_i^{n+1} - q_i^n}{\Delta t} + u_i^n \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x} = 0$$

Unconditionally unstable! \longrightarrow $q_i^{n+1} = q_i^n - \Delta t u_i^n \frac{q_{i+1}^n - q_{i-1}^n}{2\Delta x}$

Semi-Lagrangian advection

- How to make stable solution?
 - Implicit formulation?
 - Difficult to solve; hard for non-linear advection
- Unconditionally stable yet simple solution?
 - Semi-Lagrangian scheme
 - Jos Stam, Stable Fluids, SIGGRAPH 1999

$$\frac{d\vec{x}}{dt} = \vec{u}$$

Unconditionally stable simulation

Helmholtz-Hodge Decomposition

- Any vector field can be uniquely decomposed into
 - Divergence free field
 - Divergent field

$$\mathbf{w} = \mathbf{u} + \nabla q \qquad \nabla \cdot \mathbf{u} = 0$$

How can this be applied to fluid equations?

 Define an operator P: project any vector field w onto its divergence free part u

$$\nabla \cdot \mathbf{w} = \nabla^2 q$$
 \longrightarrow $\mathbf{u} = \mathbf{P}\mathbf{w} = \mathbf{w} - \nabla q$

Unconditionally stable simulation

- Apply to Navier-Stokes equation
 - Apply to both sides of momentum equation

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} - \frac{1}{\rho}\nabla p + \nu\nabla^2\mathbf{u} + \mathbf{f}$$

$$\mathbf{P}\mathbf{u} = \mathbf{u} \quad \mathbf{P}\nabla p = 0 \qquad \mathbf{P}$$

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{P}\left(-(\mathbf{u} \cdot \nabla)\mathbf{u} + \nu\nabla^2\mathbf{u} + \mathbf{f}\right)$$

$$\mathbf{w}_0(\mathbf{x}) \xrightarrow{\text{add force}} \mathbf{w}_1(\mathbf{x}) \xrightarrow{\text{advect}} \mathbf{w}_2(\mathbf{x}) \xrightarrow{\text{diffuse}} \mathbf{w}_3(\mathbf{x}) \xrightarrow{\text{project}} \mathbf{w}_4(\mathbf{x})$$

Unconditionally stable simulation

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{P} \left(-(\mathbf{u} \cdot \nabla)\mathbf{u} + \nu \nabla^2 \mathbf{u} + \mathbf{f} \right)$$

• Add force $\mathbf{w}_1(\mathbf{x}) = \mathbf{w}_0(\mathbf{x}) + \Delta t \ \mathbf{f}(\mathbf{x}, t)$

- Advect $\mathbf{w}_2(\mathbf{x}) = \mathbf{w}_1(\mathbf{p}(\mathbf{x}, -\Delta t))$
- Diffuse $\left(\mathbf{I} \nu \Delta t \nabla^2\right) \mathbf{w}_3(\mathbf{x}) = \mathbf{w}_2(\mathbf{x})$
- Project $\nabla^2 q = \nabla \cdot \mathbf{w}_3$ $\mathbf{w}_4 = \mathbf{w}_3 \nabla q$

Vorticity confinement

Compensate for numerical diffusion

- Add a "vorticity confinement" force
- Disturb the flow from current vorticity
- Definition of vorticity
- Find vortices $\vec{\omega} = \nabla \times \vec{u}$
 - The local axes of vorticity

$$\vec{N} = \frac{\nabla |\vec{\omega}|}{\|\nabla |\vec{\omega}|\|}$$

Construct disturbing force

$$f_{\rm conf} = \epsilon \Delta x (\vec{N} \times \vec{\omega})$$

Vorticity confinement

Implementation

Computation of vorticity

$$\vec{\omega}_{i,j,k} = \left(\frac{w_{i,j+1,k} - w_{i,j-1,k}}{2\Delta x} - \frac{v_{i,j,k+1} - v_{i,j,k-1}}{2\Delta x}, \frac{u_{i,j,k+1} - u_{i,j,k-1}}{2\Delta x} - \frac{w_{i+1,j,k} - w_{i-1,j,k}}{2\Delta x}, \frac{v_{i+1,j,k} - v_{i-1,j,k}}{2\Delta x} - \frac{u_{i,j+1,k} - u_{i,j-1,k}}{2\Delta x}\right)$$

Computation of vorticity gradient

$$\nabla |\vec{\omega}|_{i,j,k} = \left(\frac{|\vec{\omega}|_{i+1,j,k} - |\vec{\omega}|_{i-1,j,k}}{2\Delta x}, \quad \frac{|\vec{\omega}|_{i,j+1,k} - |\vec{\omega}|_{i,j-1,k}}{2\Delta x}, \quad \frac{|\vec{\omega}|_{i,j,k+1} - |\vec{\omega}|_{i,j,k-1}}{2\Delta x}\right)$$

Normalize this to get N

$$\vec{N}_{i,j,k} = \frac{\nabla |\vec{\omega}|_{i,j,k}}{\|\nabla |\vec{\omega}|_{i,j,k}\| + 10^{-20}}$$

Smoke simulation

Evolve additional quantities

Temperature T and smoke concentration s

$$\frac{DT}{Dt} = 0 \qquad \frac{Ds}{Dt} = 0$$

- Buoyancy force $f_{\text{buoy}} = (0, -\alpha s + \beta (T - T_{\text{amb}}), 0)$

An Advection-Reflection Solver for Detail-Preserving Fluid Simulation

Jonas Zehnder Université de Montréal Rahul Narain Indian Institute of Technology Delhi University of Minnesota Bernhard Thomaszewski Université de Montréal

4. Liquid Simulation

Liquid simulation

Characteristics of liquids

- Interface dynamics
- Tracking the motion of interface

Liquid simulation

- Implicit surface & level set
 - Implicit surface
 - A surface in Euclidean space defined by an equation F(x,y,z)=0.
 - Why? Easy for complex surfaces
 - Level set surface

Liquid simulation

Interface representation

- Implicit surface
- liquid volume as one side of an isocontour of an implicit function

$$\phi \leq 0$$

- Interface
 - Isosurface (isocontuour)

$$\phi = 0$$

- Interface advection
 - Level set equation

$$\phi_t + \vec{u} \cdot \nabla \phi = 0$$

Problem with mesh-based method

- How to simulate complex free surface?
 - Complex free boundary condition
 - Water splashes

Particle methods are preferred

5. Smoothed Particle Hydrodynamics

Lagrangian solver for fluids

Coordinate is moving with fluid

Function approximation with SPH

- Problem setting
 - Reconstructing an (unknown) function f from a set of irregular samples $f_i = f(x_i)$
 - Using the Dirac-delta function, we can rewrite f(x) as a convolution

$$f(\mathbf{x}) = \int_{\mathbf{x}'} f(\mathbf{x}') \delta(\|\mathbf{x} - \mathbf{x}'\|) dV$$

Replace delta function with a kernel function w_h

$$\tilde{f}(\mathbf{x}) = \int_{\mathbf{x}'} f(\mathbf{x}') \omega_h(\|\mathbf{x} - \mathbf{x}'\|) dV$$
 $\int \omega_h = 1$

Function approximation with SPH

 Discretize the integral into a sum over all sample points to obtain the SPH approximation

$$\tilde{f}(\mathbf{x}) = \int_{\mathbf{x}'} f(\mathbf{x}') \omega_h(\|\mathbf{x} - \mathbf{x}'\|) \, dV \quad \Longrightarrow \quad \langle f \rangle (\mathbf{x}) = \sum_i f_i \omega_h(\|\mathbf{x}_i - \mathbf{x}\|) V_i$$

- How to compute volume V_i for each sample?
 - Associate with mass m_i

$$V_i = \frac{m_i}{\rho_i}$$

- Function approximation with SPH
 - How to compute density estimation?

$$\rho_{i} = \langle \rho \rangle (\mathbf{x}_{i}) = \sum_{j} \omega_{h}(||\mathbf{x}_{i} - \mathbf{x}_{j}||) \rho_{j} V_{j} + V_{i} = \frac{m_{i}}{\rho_{i}}$$

$$\rho_{i} = \langle \rho \rangle (\mathbf{x}_{i}) = \sum_{j} \omega_{h}(||\mathbf{x}_{i} - \mathbf{x}_{j}||) \rho_{j} V_{j}$$

$$= \sum_{j} \omega_{h}(||\mathbf{x}_{i} - \mathbf{x}_{j}||) \rho_{j} \frac{m_{j}}{\rho_{j}}$$

$$= \sum_{i} \omega_{h}(||\mathbf{x}_{i} - \mathbf{x}_{j}||) m_{j}$$

Kernel functions

Admissible kernel functions: they must be normalized

$$\int_{\mathbf{x}} \mathbf{\omega}_h(\|\mathbf{x}\|) dV = 1$$

- Smoothing parameter h
 - Allowing control over how far the influence of each sample point reaches (local support)
 - Too large values of h produce unnecessarily smooth reconstructions
 - Kernel function converges to a Dirac-delta function as h goes to zero

Kernel functions

A good polynomial kernel function

$$\omega_h(d) = \begin{cases} \frac{315}{64\pi h^3} \left(1 - \frac{d^2}{h^2}\right)^3 & d < h, \\ 0 & \text{otherwise} \end{cases}$$

Approximation of differential operators

- Apply SPH approximations to the solution of partial differential equations
 - Not only a reconstruction of the continuous function f, but also the derivatives of the function
- Sample values f_i are constants, we can write approximation of gradient as

$$\langle \nabla f \rangle (\mathbf{x}) = \sum_{i} f_{i} \nabla \omega_{h}(\|\mathbf{x} - \mathbf{x}_{i}\|) V_{i}$$

$$\nabla \omega_h(\|\mathbf{x} - \mathbf{x}_i\|) = \frac{\mathbf{x} - \mathbf{x}_i}{\|\mathbf{x} - \mathbf{x}_i\|} \, \omega_h'(\|\mathbf{x} - \mathbf{x}_i\|)$$

Approximation of differential operators

Other linear operators can be treated similarly

$$\langle \Delta f \rangle (\mathbf{x}) = \sum_{i} f_{i} \Delta \omega_{h}(||\mathbf{x} - \mathbf{x}_{i}||) V_{i}$$

$$\langle \nabla \cdot \mathbf{f} \rangle (\mathbf{x}) = \sum_{i} \mathbf{f}_{i} \cdot \nabla \omega_{h}(\|\mathbf{x} - \mathbf{x}_{i}\|) V_{i}$$

- Accuracy of the approximations of derivative
 - Strongly depends on the distribution of sample points within the support region
 - For highly irregular sample distributions, the differential properties can be very noisy

Approximation of differential operators

- Problem with previous estimation
 - Gradient approximation can yield non-zero values even if the function is constant
- How to rectify?
 - Enforce a zero gradient for constant functions by subtracting the constant f_i

$$\nabla f(\mathbf{x}_i) \approx \langle \nabla [f - f_i] \rangle (\mathbf{x}_i)$$

$$= \sum_{j} (f_j - f_i) \nabla \omega_h(||\mathbf{x}_i - \mathbf{x}_j||) V_j$$

Approximation of differential operators

Same reasoning applied to the divergence and Laplace operators

$$\langle \nabla \cdot \mathbf{f} \rangle (\mathbf{x}_i) = \sum_{j} (\mathbf{f}_j - \mathbf{f}_i) \cdot \nabla \omega_h(||\mathbf{x}_i - \mathbf{x}_j||) V_j$$
$$\langle \Delta f \rangle (\mathbf{x}_i) = \sum_{j} (f_j - f_i) \Delta \omega_h(||\mathbf{x}_i - \mathbf{x}_j||) V_j$$

Approximation of differential operators

Another variation of the gradient approximation important in particular for fluid simulation

$$\nabla \left[\frac{f}{\rho} \right] = \frac{\rho \nabla f - f \nabla \rho}{\rho^{2}}$$

$$\Rightarrow \nabla f = \rho \left(\nabla \left[\frac{f}{\rho} \right] + \frac{f \nabla \rho}{\rho^{2}} \right)$$

$$\nabla f(\mathbf{x}_{i}) \approx \rho_{i} \left(\left\langle \nabla \left[\frac{f}{\rho} \right] \right\rangle (\mathbf{x}_{i}) + \frac{f_{i} \left\langle \nabla \rho \right\rangle (\mathbf{x}_{i})}{\rho_{i}^{2}} \right)$$

$$= \rho_{i} \sum_{j} m_{j} \left(\frac{f_{j}}{\rho_{j}^{2}} + \frac{f_{i}}{\rho_{i}^{2}} \right) \nabla \omega_{h} (\|x_{i} - x_{j}\|)$$

For compressible fluids

 The momentum equation can be written as a combination of pressure, viscosity, and external forces

$$\frac{D\mathbf{v}}{Dt} = \frac{1}{\rho} \left(\mathbf{f}_{p} + \mathbf{f}_{v} + \mathbf{f}_{e} \right)$$

- $-\mathbf{f}_{e}$ are external forces acting on the fluid
- The pressure force \mathbf{f}_p is a function of the pressure field p
- Viscous forces smooth the velocity field

$$\mathbf{f}_{p} = -\nabla p$$
$$\mathbf{f}_{v} = \mu \nabla \cdot \nabla \mathbf{v} = \mu \Delta \mathbf{v}$$

For compressible fluids

- How to compute pressure
 - Equation of state
 - Common choice: Tait equation

$$p = K\left(\left(\frac{\rho}{\rho_0}\right)^{\gamma} - 1\right)$$

- The most straightforward spatial discretization
 - Consider Lagrangian coordinates

$$\frac{\partial \mathbf{v}_{i}}{\partial t} = -\frac{\langle \nabla p \rangle (\mathbf{x}_{i})}{\rho_{i}} + \mu \langle \Delta \mathbf{v} \rangle (\mathbf{x}_{i}) + \frac{\mathbf{f}_{e}(\mathbf{x}_{i})}{\rho_{i}}$$

- Pressure forces
 - Particle accelerations due to pressure forces

$$\frac{\mathbf{f}_{p}(\mathbf{x}_{i})}{\mathbf{\rho}(\mathbf{x}_{i})} = -\frac{\langle \nabla p \rangle (\mathbf{x}_{i})}{\mathbf{\rho}_{i}}$$

Implementation

$$\frac{\mathbf{f}_{p}(\mathbf{x}_{i})}{\mathbf{\rho}(\mathbf{x}_{i})} = -\sum_{j} \nabla \omega_{h}^{ij} p_{j} \frac{m_{j}}{\mathbf{\rho}_{j} \mathbf{\rho}_{i}} = -\sum_{j} \mathbf{a}_{p}^{ji}$$

Pressure forces

- Problem
 - Observation

$$\mathbf{a}_p^{ji} + \mathbf{a}_p^{ij} \neq 0$$

- Linear and angular momentum may not be conserved
- Low resolution problem is more significant (visual artifacts)

Symmetrize

$$\nabla f(\mathbf{x}_{i}) \approx \rho_{i} \left(\left\langle \nabla \left[\frac{f}{\rho} \right] \right\rangle (\mathbf{x}_{i}) + \frac{f_{i} \left\langle \nabla \rho \right\rangle (\mathbf{x}_{i})}{\rho_{i}^{2}} \right)$$

$$= \rho_{i} \sum_{j} m_{j} \left(\frac{f_{j}}{\rho_{j}^{2}} + \frac{f_{i}}{\rho_{i}^{2}} \right) \nabla \omega_{h} (\|x_{i} - x_{j}\|)$$

$$\longrightarrow \frac{\mathbf{f}_{p}(\mathbf{x}_{i})}{\rho(\mathbf{x}_{i})} = -\sum_{j} \nabla \omega_{h}^{ij} (\frac{p_{j}}{\rho_{j}^{2}} + \frac{p_{i}}{\rho_{i}^{2}}) m_{j}$$

Viscosity forces

 Discretizing the acceleration on particles due to viscosity leads to the expression

$$\frac{\mathbf{f}_{v}(\mathbf{x}_{i})}{\rho_{i}} = \mu \sum_{j} \Delta \omega_{h}^{ij} (\mathbf{v}_{j} - \mathbf{v}_{i}) \frac{m_{j}}{\rho_{i} \rho_{j}} = \mu \sum_{j} \mathbf{a}_{v}^{ji}$$

– The force is symmetric:

$$\mathbf{a}_{v}^{ji} + \mathbf{a}_{v}^{ij} = 0$$

Viscosity forces

- Problem
 - Higher-order derivatives depends strongly on the distribution of sample points
 - Quite noisy especially for small support radius of the kernel function
- Smoothing operator
 - Create artificial viscosity

$$\tilde{\mathbf{v}}_{i} = \xi \langle \mathbf{v} \rangle (\mathbf{x}_{i}) + (1 - \xi) \mathbf{v}_{i}
= \xi \left[\sum_{j} \omega_{h}^{ij} \mathbf{v}_{j} \frac{m_{j}}{\rho_{j}} \right] + (1 - \xi) \mathbf{v}_{i}$$

$$0 \le \xi \le 1$$

- Time discretization and simulation loop
 - Using a simple explicit integration scheme

$$\mathbf{v}_{i}(t + \Delta t) = \mathbf{v}_{i}(t) + \Delta t \frac{D\mathbf{v}_{i}}{Dt}$$

$$\mathbf{x}_{i}(t + \Delta t) = \mathbf{x}_{i}(t) + \Delta t \mathbf{v}_{i}(t + \Delta t)$$

Higher order time-integrator can be applied

- Prediction-correction scheme
 - PCISPH, Solenthaler et al. SIGGRAPH 2009
 - The density at a point in time t + 1

$$\rho_{i}(t+1) = m \sum_{j} W(\mathbf{x}_{i}(t+1) - \mathbf{x}_{j}(t+1))$$

$$= m \sum_{j} W(\mathbf{x}_{i}(t) + \Delta \mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) - \Delta \mathbf{x}_{j}(t))$$

$$= m \sum_{j} W(\mathbf{d}_{ij}(t) + \Delta \mathbf{d}_{ij}(t))$$
where $\mathbf{d}_{ij}(t) = \mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)$, and $\Delta \mathbf{d}_{ij}(t) = \Delta \mathbf{x}_{i}(t) - \Delta \mathbf{x}_{j}(t)$

Prediction-correction scheme

– Assuming that Δd_{ij} is relatively small, the first order Taylor approximation can be applied

$$\rho_{i}(t+1) = m \sum_{j} W(\mathbf{d}_{ij}(t)) + \nabla W(\mathbf{d}_{ij}(t)) \cdot \Delta \mathbf{d}_{ij}(t)$$

$$= m \sum_{j} W(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)) +$$

$$m \sum_{j} \nabla W(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t)) \cdot (\Delta \mathbf{x}_{i}(t) - \Delta \mathbf{x}_{j}(t))$$

$$= \rho_{i}(t) + \Delta \rho_{i}(t).$$

• The term $\Delta \rho_i(t)$ is unknown, a function of p which we are looking for

- Prediction-correction scheme
 - Density error predictor

$$\rho_{err_i}^* = \rho_i^* - \rho_0$$

Pressure corrector

$$\delta = \frac{-1}{\beta(-\sum_{j} \nabla W_{ij} \cdot \sum_{j} \nabla W_{ij} - \sum_{j} (\nabla W_{ij} \cdot \nabla W_{ij}))}$$

$$\tilde{p}_{i} = \delta \rho_{err_{i}}^{*}$$

$$p_{i} += \tilde{p}_{i}$$

Particle solver coupled with rigid bodies

End of the lecture