CARNEGIE MELLON UNIVERSITY COMPUTER SCIENCE DEPARTMENT 15-445/645 – DATABASE SYSTEMS (FALL 2020) PROF. ANDY PAVLO

Homework #3 (by Kunal Jobanputra)
Due: **Sunday Oct 18, 2020 @ 11:59pm**

IMPORTANT:

- Upload this PDF with your answers to Gradescope by 11:59pm on Sunday Oct 18, 2020.
- **Plagiarism**: Homework may be discussed with other students, but all homework is to be completed **individually**.
- You have to use this PDF for all of your answers.

For your information:

• Graded out of 100 points; 2 questions total

• Rough time estimate: $\approx 1 - 2$ hours (0.5 - 1 hours for each question)

Revision: 2020/10/07 21:57

Question	Points	Score
Sorting Algorithms	40	
Join Algorithms	60	
Total:	100	

Question 1: Sorting Algorithms [40 points]
We have a database file with eight million pages ($N = 8,000,000$ pages), and we want to sort it using external merge sort. Assume that the DBMS is not using double buffering or blocked I/O, and that it uses quicksort for in-memory sorting. Let B denote the number of buffers.
(a) [10 points] Assume that the DBMS has <u>four</u> buffers. How many passes does the DBMS need to perform in order to sort the file? □ 8 □ 10 □ 12 □ 14 □ 15
(b) [5 points] Again, assuming that the DBMS has <u>four</u> buffers. What is the total I/O cost to sort the file? □ 60,000,000 □ 120,000,000 □ 144,000,000 □ 240,000,000 □ 480,000,000
(c) [10 points] What is the smallest number of buffers B that the DBMS can sort the target file using only two passes? \Box 172 \Box 173 \Box 174 \Box 2,450 \Box 2,451 \Box 2,452 \Box 2,827 \Box 2,828 \Box 2,829 \Box 3,999,999 \Box 4,000,000 \Box 4,000,001
(d) [10 points] What is the smallest number of buffers B that the DBMS can sort the target file using only five passes? \Box 24 \Box 25 \Box 26 \Box 50 \Box 51 \Box 52 \Box 53 \Box 2,450 \Box 2,451 \Box 2,452 \Box 3,999,999 \Box 4,000,000 \Box 4,000,001
(e) [5 points] Suppose the DBMS has <u>twenty</u> buffers. What is the largest database file (expressed in terms of N, the number of pages) that can be sorted with external merge sort using <u>6</u> passes? □ 89 □ 98 □ 65,610 □ 65,601 □ 590,490 □ 590,940 □ 49,521,980 □ 49,251,980 □ 56,980,234 □ 65,980,234

Question 2: Join Algorithms [60 points]

Consider relations R(a, b) and S(a, c, d) to be joined on the common attribute a. Assume that there are no indexes available on the tables to speed up the join algorithms.

- There are B = 75 pages in the buffer
- Table R spans M = 2,400 pages with 80 tuples per page
- Table S spans N = 1,200 pages with 100 tuples per page

Answer the following questions on computing the I/O costs for the joins. You can assume the simplest cost model where pages are read and written one at a time. You can also assume that you will need <u>one</u> buffer block to hold the evolving output block and <u>one</u> input block to hold the current input block of the inner relation. You may ignore the cost of the writing of the final results.

results.								
Hash join with S as the outer relation and R as the inner relation. You may ignore recursive partitioning and partially filled blocks.								
i. [5 points] What is the cost of the partition phase? \Box 1,800 \Box 2,400 \Box 3,600 \Box 4,800 \Box 7,200								
ii. [5 points] What is the cost of the probe phase? \Box 1,800 \Box 2,400 \Box 3,600 \Box 4,800 \Box 7,200								
 b) [10 points] Assume that the tables do not fit in main memory and that a high cardinal of distinct values hash to the same bucket using your hash function h₁. Which of t following approaches works the best? □ Create hashtables for the innner and outer relation using h₁ and rehash into an embedded hash table using h₂!= h₁ for large buckets 								
\Box Create hashtables for the innner and outer relation using h_1 and rehash into an embedded hash table using h_1 for large buckets								
☐ Use linear probing for collisions and page in and out parts of the hashtable needed at a given time								
☐ Create 2 hashtables half the size of the original one, run the same hash join algorithm on the tables, and then merge the hashtables together								
(c) [5 points] Block nested loop join with R as the outer relation and S as the inner relation □ 31,200 □ 33,000 □ 33,600 □ 42,000 □ 42,600								
(d) [5 points] Block nested loop join with S as the outer relation and R as the inner relation □ 31,200 □ 33,000 □ 33,600 □ 42,000 □ 42,600								

(e) S	Sort	t-merge join	with S as the	he outer rela	ntion and R a	s the inner relation	:
	i.	[5 points]	What is the cost of sorting the tuples in R on attribute a?				
		\Box 3,000	□ 5,200	□ 7,400	□ 9,600	□ 10,800	
	ii.	_			ting the tupl \Box 4,200	les in S on attribute □ 4,800	a?
j	iii.	the join att	ribute?		e merge pha	_	are no duplicates in
	iv.	_				ase in the worst cas \Box 4, 750,000	