Andy's math/science background information

J. Andrew Fingerhut (andy.fingerhut@gmail.com)

June 1, 2025

Contents

1	Introduction	1
_	Notation 2.1 Maxwell's Equations	1 1
3	Divergence	2

1 Introduction

This document is a place to write up notes on background in math that help in learning science.

2 Notation

 \mathbb{R}^3 - The set of all points in 3-dimensional space, i.e. where each point is specified by a sequence of 3 real-valued coordinates.

 ∇ - Called "nabla", and often called "del". Some history of it can be found on the Nabla Symbol page [2].

 ∇f - Gradient of a scalar function $f: \mathbb{R}^3 \to \mathbb{R}$. grad f - another way to write the gradient of f, ∇f

2.1 Maxwell's Equations

In partial differentiatal form:

where:

- ullet is the electric field
- \bullet **B** is the magnetic field
- ρ is the electric charge density
- **J** is the current density
- ϵ_0 is the vacuum permittivity
- μ_0 is the vacuum permeability

3 Divergence

Divergence has been generalized to many coordinate systems other than the 3-dimensional Cartesian coordinate system \mathbb{R}^3 , but I will focus on \mathbb{R}^3 .

The Wikipedia page on Gradient [1] is not too bad for me, as long as I skim over the parts that generalize it to other coordinate systems.

References

- [1] Wikipedia. Gradient, 2025. URL https://en.wikipedia.org/wiki/Gradient.
- [2] Wikipedia. Nabla Symbol, 2025. URL https://en.wikipedia.org/wiki/Nabla_symbol.