Home Work of Week 7

Deadline: 9:00am, December 10 (Thursday), 2020

- 1. Recall that \mathcal{G}_n is the uniformly distributed *n*-vertex random graph, and that $\mathcal{G}_{n,p}$ is the *n*-vertex random graph each of whose edge appears independently with probability p. Prove that \mathcal{G}_n and $\mathcal{G}_{n,\frac{1}{2}}$ are identically distributed.
- 2. Prove that for any $p \in (0,1)$ and positive integers m, n with $1 \le m \le {n \choose 2}$, random graphs $\mathcal{G}_{n,m}$ and $\mathcal{G}_{n,p}$ (the number of edges is m) are identically distributed.
- 3. (Bonus score 5 points) We know that $\lim_{n\to\infty} \Pr(\mathcal{G}_{n,p} \text{ has an isolated vertex}) = 1 e^{-e^{-c}}$ when $p = \frac{\ln n + c}{n}$. Based on this fact, prove that $\lim_{n\to\infty} \Pr(\mathcal{G}_{n,m} \text{ has an isolated vertex}) = 1 e^{-e^{-c}}$ when $m = \frac{n \ln n + cn}{2}$. (Hint: it may be helpful to follow the basic idea in proving the similar result of coupon collector problem.)
- 4. Do Bernoulli experiment for 20 trials, using a new 1-Yuan coin. Record the result in a string $s_1s_2...s_i...s_{20}$, where s_i is 1 if the i^{th} trial gets Head, and otherwise is 0.