CS 771A:	Intro to Machine Le	Endsem Exam	(16 July 2024)		
Name	MELBO	40 marks			
Roll No	24007	Dept.	AWSM		Page 1 of 4

Instructions:

- 1. This question paper contains 2 pages (4 sides of paper). Please verify.
- 2. Write your name, roll number, department in block letters with ink on each page.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ ambiguous cases may get 0 marks.

Q1. (True-False) Write T or F for True/False (write only in the box on the right-hand side). You must also give a brief justification for your reply in the space provided below. (3 x (1+2) = 9 marks)

1 EM run on data $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^2$ s.t. $\|\mathbf{x}_i\|_2 \le 2$ for all $i \in [N]$ to learn mixture of two Gaussians $\mathcal{N}(\mathbf{\mu}_k, I), k \in [2]$ will always ensure that the means satisfy $\|\mathbf{\mu}_k\|_2 \le 2$.

In any iteration of the EM algorithm, the means μ_k are updated as $\mu^c = \sum_{i \in [N]} \eta_{ic} \cdot \mathbf{x}^i$ where $\eta_{ic} \stackrel{\text{def}}{=} \frac{q_c^i}{\sum_{i \in [N]} q_c^j}$ i.e. $\sum_{i \in [N]} \eta_{ic} = 1$ i.e., a weighted average of the points is used to update the mean.

However, convex sets $\mathcal C$ satisfy the property that if $\mathbf x, \mathbf y \in \mathcal C$, then $\eta \cdot \mathbf x + (1-\eta) \cdot \mathbf y \in \mathcal C$ as well for any $\eta \in [0,1]$. Since the set $\mathcal B_2(0,2) \stackrel{\text{def}}{=} \{\mathbf x \in \mathbb R^2 \colon ||\mathbf x||_2 \le 2\}$ is convex, the result follows.

The difference of two Mercer kernels can never be Mercer. If True, give a proof. If False, construct two Mercer kernels K_1, K_2 with maps ϕ_1, ϕ_2 s.t. the difference $K_3 \stackrel{\text{def}}{=} K_1 - K_2$ is also a Mercer kernel with map ϕ_3 . Give maps ϕ_1, ϕ_2, ϕ_3 explicitly.

F

Let $K_1, K_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined as $K_1(x,y) \stackrel{\text{def}}{=} 25xy$ and $K_2(x,y) \stackrel{\text{def}}{=} 16xy$. The corresponding feature maps are $\phi_1(x) = [5x]$ and $\phi_2(x) = [4x]$. Note the feature maps are unidimensional. We have $K_3(x,y) = 9xy$ for which the feature map $\phi_3(x) = [3x]$ works.

For convex differentiable $f: \mathbb{R} \to \mathbb{R}$, if $f\left(\frac{x+y}{2}\right) > 1$ for some $x, y \in \mathbb{R}$, then we must have $\max\{f(x), f(y)\} > 1$. Justify either using a proof or counter example.

T

Convex functions satisfy $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$. If $f(x) \leq 1$ as well as $f(y) \leq 1$ then we will have $f\left(\frac{x+y}{2}\right) \leq \frac{1+1}{2}$ i.e. $f\left(\frac{x+y}{2}\right) \leq 1$ which is a contradiction. Thus, at least one of f(x) or f(y) must be strictly greater than 1 which implies that $\max\{f(x),f(y)\}>1$.

Q2 (Almost Uniform) Melbo is constructing a distribution \mathcal{D} with support over 2D vectors of length up to 1 i.e. $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2 \le 1\}$. \mathcal{D} has two parameters $\mathbf{c} \in \mathbb{R}^2$, $\epsilon \in [0,1]$ and assigns a *high* density $\frac{1}{\epsilon}$ in a "dense ball" of radius ϵ centered at \mathbf{c} i.e., in $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2 \le 1, \|\mathbf{x} - \mathbf{c}\|_2 \le \epsilon\}$ and a *low* density of $\frac{1}{2\pi}$ in the rest of the support i.e., in $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2 \le 1, \|\mathbf{x} - \mathbf{c}\|_2 > \epsilon\}$. We have $\|\mathbf{c}\|_2 \le 1 - \epsilon$ i.e., the dense ball stays within the support.

- a. For which values of ϵ will \mathcal{D} be a proper distribution? Find them and show calculations. You may find the fact that $\pi \sqrt{\pi^2 2} \in [0,1]$ and $\pi \sqrt{\pi^2 1} \in [0,1]$ to be useful.
- b. Find out the mean vector $\mu \in \mathbb{R}^2$ of this distribution. Show calculations. (5 + 7 = 12 marks)

Hint: the mean of a uniform distribution over a circle is its centre.

Find value(s) of ϵ for which \mathcal{D} is a proper distribution.

Distributions are normalized i.e., $\frac{1}{\epsilon} \cdot \pi \epsilon^2 + \frac{1}{2\pi} \cdot (\pi - \pi \epsilon^2) = 1$ i.e. $\epsilon^2 - 2\pi \epsilon + 1 = 0$. Solving the quadratic gives us the candidate values as $\pi \pm \sqrt{\pi^2 - 1}$. However, the larger root would result in $\epsilon = \pi + \sqrt{\pi^2 - 1} > \pi > 1$ which is absurd since that would in-turn force $\|\mathbf{c}\|_2 \le 1 - \epsilon < 0$. Thus, the only value ϵ can take is $\pi - \sqrt{\pi^2 - 1}$. Note that this value satisfies $\epsilon \in [0,1]$ using the fact provided in the question statement.

Find out the mean vector of the distribution \mathcal{D} .

Let \mathcal{U} denote the unit ball $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_2 \le 1\}$ and \mathcal{H} be the dense ball $\{\mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x} - \mathbf{c}\|_2 \le \epsilon\}$. We have $\mathbf{\mu} = \int_{\mathcal{U}}^{\square} \mathbf{x} \cdot \mathcal{D}(\mathbf{x}) \ d\mathbf{x} = \underbrace{\int_{\mathcal{H}}^{\square} \mathbf{x} \cdot \mathcal{D}(\mathbf{x}) \ d\mathbf{x}}_{(A)} + \underbrace{\int_{\mathcal{U} \setminus \mathcal{H}}^{\square} \mathbf{x} \cdot \mathcal{D}(\mathbf{x}) \ d\mathbf{x}}_{(B)}.$

 $(A) = \frac{1}{\epsilon} \int_{\mathcal{H}}^{\square} \mathbf{x} \ d\mathbf{x} \text{ . Now } \int_{\mathcal{H}}^{\square} \mathbf{x} \ d\mathbf{x} = \pi \epsilon^2 \cdot \int_{\mathcal{H}}^{\square} \mathbf{x} \cdot \mathcal{P}(\mathbf{x}) \ d\mathbf{x} \text{ where } \mathcal{P}(\mathbf{x}) = \frac{1}{\pi \epsilon^2} \text{ is the (conditional)}$ uniform distribution inside the heavy ball. As the mean of a uniform distribution over a circle is its centre, we have $\int_{\mathcal{H}}^{\square} \mathbf{x} \cdot \mathcal{P}(\mathbf{x}) \ d\mathbf{x} = \mathbf{c} \text{ which gives us } (A) = \frac{1}{\epsilon} \cdot \pi \epsilon^2 \cdot \mathbf{c} = \pi \epsilon \cdot \mathbf{c}.$

$$(B) = \frac{1}{2\pi} \int_{\mathcal{U} \setminus \mathcal{H}}^{\square} \mathbf{x} \, d\mathbf{x} = \frac{1}{2\pi} \left(\underbrace{\int_{\mathcal{U}}^{\square} \mathbf{x} \, d\mathbf{x}}_{(C)} - \underbrace{\int_{\mathcal{H}}^{\square} \mathbf{x} \, d\mathbf{x}}_{(D)} \right).$$
 Using the same argument as above, we get

 $(C) = \pi 1^2 \cdot \mathbf{0}$ and $(D) = \pi \epsilon^2 \cdot \mathbf{c}$ which gives us $(B) = -\frac{\epsilon^2}{2} \cdot \mathbf{c}$ giving us $\mathbf{\mu} = \left(\pi \epsilon - \frac{\epsilon^2}{2}\right) \cdot \mathbf{c}$. However, recall that ϵ satisfies $\epsilon^2 - 2\pi \epsilon + 1 = 0$ which means $\mathbf{\mu} = \frac{1}{2} \cdot \mathbf{c}$.

Can you simplify these calculations? What if the *low* density is some general value $p_l \neq \frac{1}{2\pi}$?

CS 771A:	5 771A: Intro to Machine Learning, IIT Kanpur Endsem Exan						
Name	MELBO	40 marks					
Roll No	24007	Dept.	AWSM		Page 3 of 4		

Q3 (Positive Linear Regression) We have data features $\mathbf{x}_1, ..., \mathbf{x}_N \in \mathbb{R}^D$ and labels $y_1, ..., y_N \in \mathbb{R}$ stylized as $X \in \mathbb{R}^{N \times D}$, $\mathbf{y} \in \mathbb{R}^N$. We wish to fit a linear model with positive coefficients:

$$\underset{\mathbf{w} \in \mathbb{R}^{D}}{\operatorname{argmin}} \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} \text{ s. t. } w_{j} \ge 0 \text{ for all } j \in [D]$$

- 1. Write the Lagrangian for this problem by introducing dual variables (no derivation needed).
- 2. Simplify the dual problem (eliminate \mathbf{w}) show major steps. Assume X^TX is invertible.
- 3. Give a coordinate descent/ascent algorithm to solve the dual. (2 + 4 + 6 = 12 marks)

Write down the Lagrangian here (you will need to introduce dual variables and give them names)

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|_2^2 - \boldsymbol{\alpha}^\mathsf{T} \mathbf{w}$$

which can be rewritten for convenience as

$$\mathcal{L}(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{w} - \mathbf{w}^{\mathsf{T}} X^{\mathsf{T}} \mathbf{y} - \mathbf{w}^{\mathsf{T}} \boldsymbol{\alpha} + \frac{1}{2} ||\mathbf{y}||_{2}^{2}$$

Derive and simplify the dual. Show major calculations steps.

The dual is $\max_{\alpha \geq 0} \Big\{ \min_{\mathbf{w}} \{ \mathcal{L}(\mathbf{w}, \alpha) \} \Big\}$. Solving the inner problem by applying first-order optimality (since it is an unconstrained problem) gives us $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{0} \Rightarrow X^{\mathsf{T}}(X\mathbf{w} - \mathbf{y}) - \alpha = \mathbf{0}$. Putting this in the Lagrangian and neglecting constant terms gives us

$$\min_{\alpha \ge 0} \left\{ \frac{1}{2} \alpha^{\mathsf{T}} C \alpha + \alpha^{\mathsf{T}} \mathbf{s} \right\}$$

where $C = [c_{ij}] \stackrel{\text{def}}{=} (X^{\mathsf{T}}X)^{-1} \in \mathbb{R}^{D \times D}$ and $\mathbf{s} = [s_i] \stackrel{\text{def}}{=} CX^{\mathsf{T}}\mathbf{y} \in \mathbb{R}^D$.

Give a coordinate descent/ascent algorithm to solve the dual problem.

Consider a single coordinate of the dual variable, say α_i (the coordinate may have been chosen cyclically or via random permutation, etc. The optimization problem restricted to α_i is

$$\min_{\alpha_i \ge 0} \frac{1}{2} c_{ii} \alpha_i^2 + \alpha_i \left(s_i + \sum_{j \ne i} c_{ij} \alpha_j \right)$$

Using the QUIN trick tells us that the optimal value is $\max\left\{0, -\frac{1}{c_{ii}}\left(s_i + \sum_{j \neq i} c_{ij}\alpha_j\right)\right\}$

Q4. (Kernel Smash) $K_1, K_2, K_3 : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are Mercer kernels i.e., for any $x, y \in \mathbb{R}$, we have $K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ with $\phi_1(x) = (1,x), \phi_2(x) = (x,x^2), \phi_3(x) = (x^2,x^4,x^6)$. Design a map $\phi_4 : \mathbb{R} \to \mathbb{R}^7$ for kernel K_4 s.t. $K_4(x,y) = \left(K_1(x,y) - K_2(x,y)\right)^2 + 3K_3(x,y)$ for all $x,y \in \mathbb{R}$. No derivation needed. Note that ϕ_4 must not use more than 7 dimensions. If your solution does not require 7 dimensions then leave the rest of the dimensions blank or fill with zero. (7 marks) $\phi_4(x) = 0$

$$(1, x^2, 2x^4, x^6\sqrt{3}, 0, 0, 0)$$