四、高空圖分析原理與應用

四、1地轉風與高度場分析

	地特與共同及物力和	
	四、高层图之分析中其原理、	C-1
•	(一)、高圣筝压面上天氛图的分析	
	*要了解大员之趋为性爱,必须分析: 気压竭, 気温、遏度、密度·	5位温喝。
	, , , , , , , , , , , , , , , , , , ,	
	*老大気适合流体势力平衡,则负压本高度竭力一对一之学选调	到老,故
4.4	可以用交乐为童艺传禧。二在等压面上,高度传较大的地方,就有	自当於等
	高面上的高压位置;而高夜饱低的就相当於低压位置任誓高	<u> </u>
	头沙以在等压面上,由於理想负体方程式(P=PRT)知:	***
	D.密度只是交温的函程;即等密度线以平约等温线,故不必再估	及宏发場分析。
	2)又由位温的笔义[0=T(中)Php],在等压面上等位温线义:	平约等温线,
	效也小带再做位温喝之分析。因此,看高冬天是图採用等	压面图,
	則只要分析高度、気温中溼度場即可。在作業上可方便許	3
	*方外,在中高撑发地区,大尺度大定里边达合举地转近似,	校高发場
	即为华地南建动之流場。	
	$V^2 \psi = \tilde{J} = \frac{1}{f} \nabla^2 \tilde{\Phi}, \text{ or } \psi' = \frac{\tilde{\Phi}'}{f} : \text{ geostrophy}.$	- 0
C-1	地村周本高茂場之分析	
	J	
	若大灵适合地較同近似,在等压面上地較同之大小可由下	代表示,
	$\frac{\sqrt{\frac{9}{3}} \frac{\partial Z}{\partial n} \simeq \frac{9}{5} \frac{\delta Z}{\delta n}}{\sqrt{\frac{9}{3}} \frac{\delta Z}{\delta n}}$	
Water Manager and a second		
	八卷已知地韩凤的大小,且相,", , , , , , , , , , , , , , , , , , ,	n, 承违
	两倍等高线主意饱差为 82 (一般取 60 gpm), 则	
	$\delta n = \frac{9}{5} \frac{\delta z}{V_q}$	<u>.</u>
	V	
	对上大做图,可得不同维度(于)之相对两倍等高线的距離本其	# = 5
	风喝大小的関係图来。得同様之δn,在越高维国建筑小,?	、4尚全
	天気图分析时,要多到用地鞋园大小束修正两修等高线問之距許图6-1可参考衰留之天美图、	
	[三] [5] [5] [5] [5]	
	··· / (52 固定下)	
	10 (02 to 27)	
	77/0 3 0°	
•	TA DER	
	In TA DER	

	L-2
*当然,复嗲园本地鞋园問会有差異,此差異向景台	格老地 转偏差凤(
ageostrophic wind, Vag), BP Vag = V - Vg	
造成 Vag 的因素有:(1)地形,(2)摩擦力的作用,及(3)	<u>器展迅速的天気系统。</u>
又由地韩凤 i 定义: f 定义 $v_g = -\nabla_p \overline{\Phi}$.	<u> </u>
$\frac{dV}{dt} = \int \hat{E} \times V - \nabla_{p} \cdot e^{+F_{r}} = -\int \hat{E} \cdot e^{-F_{r}} \cdot$	$(\overrightarrow{V}-\overrightarrow{V_g})+\overrightarrow{F_r}$
$= f \hat{k} \times V_{ag} + F_{r}$	<u> </u>
→ 改着大灵号摩擦力的作用(Fr=0), 灯掌位质量大灵 确差风的科瓦力作用。	的加重发即者地对
*(主意:大支之加建茂皇由於科瓦力、压力群及力平摩擦力三	力之了平衡(3) 造成。)
	• •
* 卷実際風事地轉風同向,但較強(V>Vg),約務為	超地转風(super-
geostrophic wind)。此时地载偏差分量本实際周围向,但	因科瓦力主作用,使
得大炎運动向右加速(见式6)。同理, V< Vg 主次地	· 事記 (sub geostrophic
wind) 划使大氮墨动向左力b束。	
いいかなはそのこのまり	
*地轄偏差風之分量(即造成地轄偏差風之因素)。 由定义: V=Vg+Vag	
$\frac{12 \times 2 \cdot \sqrt{-\sqrt{3} + \sqrt{3}}}{\sqrt{1}}$	
$\frac{d\vec{V}}{dt} = \frac{d\vec{V}_8}{dt} + \frac{d\vec{V}_{ag}}{dt} = -\int \hat{R} \times \vec{V}_{ag} + F$	
$= \frac{\partial \vec{V}g}{\partial t} + \vec{V} \cdot \nabla \vec{V}g + \omega \frac{\partial \vec{V}g}{\partial P} + \frac{d \vec{V}ag}{d t}$	- 9
	r — @
(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)
、地鞋偏差周可分为五個分量:	32
O等变压风分量 (isollobaric wind) (計=b) 01	
图平流地射佛差凤兮曼 (advective ageostrophic wind)
③对说"""(convertive)
●地動偏差要量分量,及(文)	
⑤摩擦她转编差冠分量(antitriptic wind).	
- TA DER	—(2)
IA UEN	

[★] 當摩擦力為0時,空氣運動的加速度即為壓力梯度力與科氏力的不平衡(地轉偏差風的 科氏力作用)所造成。

(一) 摩擦地轉偏差風分量(Antitriptic Wind)

摩擦力為減速力,它使空氣運動的速度減小,科氏力也 (压力化等沒有意化) 隨之減小,但壓力梯度力不受影響,如圖,科氏力、梯度力 與摩擦力平衡,因

$$-f\hat{k} \times \vec{\nabla}_{ag(F)} = -\vec{F} (在多加 速度 时 d\vec{r} = 0)$$
 (6-26)

故摩擦力與摩擦地轉偏差風分量之科氏力,大小相等方向相 反) 因此,真實風總是比地轉風小,在北半球它偏向地轉風 的左侧。(即指伺低压)

B 6-5

$$\sqrt{\frac{\partial^2}{\partial t}}$$
 app. $\sqrt{\frac{\partial^2}{\partial t}}$ $\sqrt{\frac{\partial^2}{\partial t}}$

$$-f\hat{k} \times \overrightarrow{V}_{ag(i)} = \frac{\partial \overrightarrow{V}_g}{\partial t} \implies \overrightarrow{V}_{ag(i)} = \frac{1}{f} \hat{k} \times \frac{\partial \overrightarrow{V}_g}{\partial t}$$
(6-27)

故

$$\Rightarrow \overrightarrow{V}_{ag(i)} = \frac{1}{f} \widehat{k} \times \frac{\partial \overrightarrow{V}_g}{\partial x} \qquad \left(: \widehat{k} \times (\widehat{k} \times \overrightarrow{V}) = -\overrightarrow{V} \right)$$

$$= -\frac{g}{f^2} \frac{\partial \nabla Z}{\partial x}$$

$$-f\hat{\mathbf{k}} \times \frac{\partial \vec{\nabla}_{\mathbf{g}}}{\partial t} = \mathbf{g} \nabla \frac{\partial \mathbf{Z}}{\partial t}$$
(6-29)

因此
$$g \nabla \frac{\partial Z}{\partial t} = -f^2 \overrightarrow{V}_{ag(i)}$$

$$\frac{\partial}{\partial t} (\nabla Z) \qquad -\nabla (\frac{\partial Z}{\partial T})$$
 (6-30) 此即表示 $\nabla A_{ag(i)}$ 與等變高 線的梯度成正比,而方向指向等高

線下降的一側。(即指何低压)

(三) 平流地轉偏差風分量 (Advective Ageostrophic Wind)

氣塊平移時,因等高線的曲率不同,即不平行,故移行的軌

跡與等高線間有差異,如圖6-6所示,即当一点地平移為,居上往入另一种即当一点地平移时, 能越在開始可達地輕(orgradient)平街,但平移後,居上往入另一种压力梯度力,使其失去原有之平衡, 故处堤处须润的自己,使其再度追到影的平衡, 建种调为之过程,即会产生加速度,因此产生了非地转之分量来。

B 6-6

因

$$-f\hat{k} \times \overrightarrow{\nabla}_{ag(a)} = \overrightarrow{\nabla} \cdot \nabla \overrightarrow{\nabla}_{g} = |\overrightarrow{\nabla}_{B}| \frac{\delta \overrightarrow{\nabla}_{g}}{\delta s}$$
or
$$\overrightarrow{\nabla}_{ag(a)} = \frac{|\overrightarrow{\nabla}_{B}|}{f} \hat{k} \times \frac{\delta \overrightarrow{\nabla}_{g}}{\delta s}$$
(6-31)

故 $\overrightarrow{V}_{ag(a)}$ 與 $\delta\overrightarrow{V}_g$ 垂直,且在其左側。 $\delta\overrightarrow{V}_g$ 有兩個分量,一垂直 k \overrightarrow{V}_B ,它使風轉向,以趙向於平沪等高鏡;另一在 \overrightarrow{V}_B 的反(同) 向,它使風速減小 以趙向汾來等高線的梯度一致。因此,在分流處平流地轉偏差風分量偏向高壓;在合流處平流地轉偏差風分量偏向低壓。(如圖 6-7)

→ 同建多小时会的, Vay指向左, To Con 左偏, 偏向低压 一般是多大时(合流), Vay指向左, To Con 左偏, 偏向低压 → 均竭向松平约高的等高值。

(四) 對流地轉偏差風分量 (Convective Ageostrophic Wind)

四)對流地轉偏差風分量 (Convective Ageostrophic Wind)
因為
$$-f\hat{k} \times \overrightarrow{V}_{ag(c)} = \omega \frac{\partial \overrightarrow{V}_g}{\partial p} = \omega \frac{\delta \overrightarrow{V}_g}{\delta p}$$

$$\partial \overrightarrow{V}_g = \omega \frac{\partial \overrightarrow{V}_g}{\partial p} = \omega \frac{\partial \overrightarrow{V$$

故在上升運動($\omega < 0$)處, $\omega \frac{\partial \overrightarrow{V}_g}{\partial n}$ 與 $\delta \overrightarrow{V}_g$ 同向, $\overrightarrow{V}_{ag(c)}$ 在 $\delta \overrightarrow{V}_g$ 的左侧(冷侧),即若氣流上升,則對流地轉偏差風與等溫 线 漢相交,且指向冷側;在下降運動 $(\omega>0)$ 處, $\omega\frac{\partial\overline{V}_g}{\partial p}$ 與 $\delta\overrightarrow{V}_g$ 反向, $\overrightarrow{V}_{ag(c)}$ 在 $\delta\overrightarrow{V}_g$ 的右側(暖側),即若氣流下降 ,則 % 對流地轉偏差風與等溫應相交,且指向暖側(如圖 6-8)。 强烈的温度水平梯度與垂直運動,將伴隨强盛的 $\overrightarrow{V}_{ag(c)}$ 。

、在垂龙速度大之地区, 劫锋面或山坡附近及 水平温度梯度太之地区, 水平温度仍次及 如蜂鱼或海豚等地区, 均有强型之此项效底。 上竹星动,指向冷区 下降星沙、Vay指向暖区

6 - 8

(五)加速度

以上討論造成 V_{ag} 之各作用力。可是 V_{ag} 對大氣運動(加速度)的影響,還要再經過科氏力的作用,即 -f k X d V_{ag} /dt。另外,摩擦力的討論要注意+/-號。

四、2 熱力風與厚度場分析

(翅为凤之其他特性, 建複響大动),	C-3
C-2 熱力凤本厚茂唱(温茂場)的分析、图	
由流作势力平衡関係知两等压面之层技正的此层大気	平均温度,
$\frac{\partial z}{\partial p} = -\frac{KI}{D}$	-
市两等压面上地期周之向考差,定义为這層大気的地力凤	,VT,何景,
TP VT = Vg LR - VS TR	
$\frac{1}{\sqrt{\frac{3V_g}{V_g}}} = -\frac{g}{f} \hat{\epsilon} \times \nabla_p \hat{\epsilon} \times \frac{3V_g}{V_g} = -\frac{g}{f} \hat{\epsilon} \times \nabla_p (\frac{3P}{2P}) = \frac{R}{fP} \hat{\epsilon} \times \nabla_p (\frac{3P}{2P}) = \frac{R}{f$	T) \
A rate of the state of the stat	下温茂梯度.
	F V D /Q 97/Q,
二型为国主大小龙: $V_T = \frac{9}{f} \left(\frac{\partial \Delta Z}{\partial n} \right) = \frac{9}{f} \frac{\partial \Delta Z}{\partial n}$	F . t o
国此, VT 本在2的関係就相当於Vg 本Z 3 関係。二亦	便用
前面图 C-1 查出不同缉废之相隣两份等厚灰线的距離,来判走	为到为
三大小。 一个在正压的区域,属本本交流的形势都不能高度改变,即言	Vr = 0
即重重属却正比较水丰温度梯度。一般在中锋在地压有最大)Z ,
其上層之Ug 示最 5g (域 民之位置)。另外 在夏季, 南亚地及之上苍, 以青	新三层10到
之加整维作用,使得此及之温放分布,北高南低(景反向), 故地	及うと方右
東風暖底(市游西風)。 二。亞尼如 又下程大, 而锋面处, "又下程大, 故	上层有碳层。
4岁外由冷平流时,凤向随高友增加是全时針方向改变;而暖平	1克为1项时针。
故可用探定资料(周向)来判勘一多统是在彩色或移出。	10
*厚茨場之意化市平均温度之関係、	
$\int \left[dz = -\frac{RT}{gP} dP \right] \rightarrow 2_2 - 2_1 = \frac{R}{g} + \ln \frac{P_1}{P_2}$	
n - 4 12	······
$(\frac{\partial z}{\partial t})_2 - (\frac{\partial z}{\partial t})_1 = \frac{R}{g} h \frac{r_1}{P_2} \frac{\partial T}{\partial t}$	2 . + 51 .80
即两等压面間之厚皮委化(四一日)人做,超势只求其間之平均温度	委的超劣
成飞机。差两等压面同之温度不良,创此二等压面之高度变化智势。	相等(层发)
差其平均温度,均会使等压面向上指升,且上唇的下唇抬升更高	
降低, 向下降落里是	
: 造成地高, 2丁>0, 为暖车流, 约 222 > 22, 、 图 4 22, th	好大,
上餐上升更多,厚度麦厚。	
	,

四、3 槽與脊髓高度的傾斜

	C-6
C-3: 等压面上脊(或H)、槽(或L) 随高度的倾斜.	
可以由下到之观矣来讨评:	
(i) 大郊 i 2-layer model (\$8-2) 式 tendency eq. (\$63):自己意智	·•
(ii) tan 4 2 85 if (52)	
_(ii) \	
WALL WALL WALL WALL WALL WALL WALL WALL	·
	
= +4 .4 .6 .7 52 \	•
(iV) 更完整之讨论 $(\frac{\delta Z}{\delta B})$	
是	
在這两点上等压面之斜率,(含含) 2012年12日 12日 12日 12日 12日 12日 12日 12日 12日 12日	
在侧室搭到此天负系统随高 (等)=const. 中级部的特形。	校1870
()= const. 即倒期的性形。	
由流供費为平衡: $\frac{\partial z}{\partial p} = -\frac{\alpha}{g}$ $\Rightarrow \delta z = -\frac{\alpha}{g} \delta p$	
申说供費力平衡: $\frac{2p}{2p} = -\frac{q}{g}$ $\Rightarrow \delta z = -\frac{q}{g} \delta p$ $\Rightarrow Z_b - Z_a = -\frac{q}{g} \delta P$, δp	= P P2
又い(参考) 是SずPz近意,	
$\frac{1}{\sqrt{5}} \left(\frac{\partial z}{\partial s} \right) = \frac{\partial}{\partial s} \left(\frac{\partial z}{\partial s} \right) \delta s + \frac{\partial}{\partial p} \left(\frac{\partial z}{\partial s} \right) \delta p$	
The state of the s	
$= \frac{3s^2}{3s^2} \delta s - \frac{3\alpha}{3s} \frac{\delta p}{g}$	
对等压面上斜率相同之美处:	
$\left(\frac{\partial^{2}}{\partial s}\right)_{b} - \left(\frac{\partial^{2}}{\partial s}\right)_{a} = 0 = \left(\frac{\partial^{2}\mathcal{E}}{\partial s^{2}}\right) \delta s - \left(\frac{\partial d}{\partial s}\right) \frac{\delta P}{g}$	
$\frac{\delta P}{\delta S} = g \frac{\left(\frac{3^2 Z}{\delta S^2}\right)_P}{\left(\frac{3 Z}{\delta S}\right)_P}, \exists \delta P = -\frac{g}{\lambda} \delta Z$	3434
$\Rightarrow \frac{\delta z}{\delta s} = -\frac{\left(\frac{\partial z}{\partial s^2}\right)_p}{\left(\frac{\partial z}{\partial s^2}\right)_p} = -\frac{\left(\frac{\partial^2 z}{\partial s^2}\right)_p}{\left(\frac{\partial z}{\partial s^2}\right)_p} \tag{X}$	
$\Rightarrow \frac{\delta z}{\delta s} = -\frac{\left(\frac{\partial z}{\partial s^2}\right)_p}{d\left(\frac{\partial d}{\partial s}\right)_p} = -\frac{\left(\frac{\partial^2 z}{\partial s^2}\right)_p}{T\left(\frac{\partial I}{\partial s}\right)_p}.$ (*)	
T (387b ·	
在学压面上:	
在槽(或工)如,($\frac{3^22}{3S^2}$)>0;在脊如($\frac{3^22}{3S^2}$)<0.	
10001000	

斜壓性的增強是中緯度天氣系統生成與加強的根本原因,其能量的來源就是「可用位能」, 可由下列幾個因子來判斷:

- 1. **可用位能**的增加,即暖空氣爬到冷空氣上方,或冷空氣鑽到暖空氣下方; 主要的原因:空氣的冷暖平流。東亞主槽/主脊 系統的加強或移入,或上層渦度的平 流等。
- 2. 天氣圖(斜溫圖)分析上,主要之現象(特徵)為:,
 - a. 水平向等高線與等溫線的夾角大小(即不平行),即高度槽與溫度槽的相位差(90°)。
 - b. 力管項的大小, $(\frac{\partial \rho}{\partial x}\frac{\partial P}{\partial y} \frac{\partial \rho}{\partial y}\frac{\partial P}{\partial x})$ or $(\nabla \alpha \times \nabla P) \bullet \hat{k}$;在垂直向亦有力管項。
 - c.. 系統在垂直方向的向西傾斜。
 - d. 有熱力風,水平溫度梯度或垂直風切,即水平溫度平流。
 - e. 或分析水平的輻合及輻散,及垂直速度。

Principles of Meteorological Analysis.

gradients can be larger.

From Eqs (4) and (5) above it follows contour gradient, or c_{σ^r} max = $2c_{\sigma^r}$. This is the maximum equilibrium wind in anticyclonically curved flow; it does not imply is precisely twice the geostrophic wind for that that the maximum anticyclonic gradient wind that actual winds cannot exceed it.

The quadratic equation for cyclonic gradient wind is solved in a similar manner:

$$c_{gr} = -fR/2 + \sqrt{[R^2 f^2/4]} + 980R(\partial Z/\partial n)_p].$$
 (cyclonic) (6)

adjacent anticyclone. Another verification is positive, and its square root is greater than interpretation is that cyclones can have larger gradients than anticyclones, and such is usually the case. On the pressure charts LOWs at all levels. In fact, the maximum pressure slope is usually somewhat nearer the cyclone center than the center of the that intense tropical storms are observed while analogous anticyclonic circulations The quantity beneath the radical is always fR/2. In this equation there is no restriction illustrated observe the asymmetry in, distribution of gradients between HIGHs and on magnitude of pressure gradient to maintain real roots of the quadratic. A useful are not found.

They are not necessarily in gradient balance winds"; more properly, "gradient-level winds." It is usually assumed in practice that the effect of surface friction decreases rapidly with height, and at levels 500 meters or 2000 feet above ground the wind should attain balance with the pressure field. Such a level can be taken as the gradient level. As an aid in sea-level pressure analysis, these winds are often entered on the surface chart. These are called "gradient according to the gradient-wind equations given

-The principal forces governing motions in the atmosphere are the pressure, the 7.23. Accelerations with unbalanced forces.

with increasing distance from the center, Coriolis, and the frictional forces. The horizontal acceleration acting on a parcel of air can be considered the unbalanced residual of these forces per unit mass. That is,

$$d\mathbb{C}/dt = f * (\mathbb{C} - \mathbb{C}_{o}) + \mathbb{F}. \tag{1}$$

difference is ageostrophic wind, denoted C' $(\mathbb{C} - \mathbb{C}_o)$ is always the vector difference between actual and geostrophic wind. This (Fig. 7.04b). From Eq (1) it follows that the net acceleration is the vector difference

Fig. 7.231.—Graphical relation of acceleration and ageostrophic wind in frictionless motion.

strophic wind.

strophic wind C' and directed to the right tion is included.) This difference is shown as of C'. In absence of friction, the acceleration is actually the Coriolis force per unit mass for between actual Coriolis force $f * \mathbb{C}$ and that Coriolis force $f * \mathbb{C}_{\sigma}$ for geostrophic wind, when $\mathbf{F} \approx 0$. (It is $d\mathbb{C}/dt - \mathbf{F}$ when fric-Notice that it is perpendicular to the ageo $d\mathbb{C}/dt$ in the lower part of Figure 7.231. the ageostrophic wind

that, if C has geostrophic direction but From the illustration above it is evident

tion by geostrophic acceleration and that by ageostrophic acceleration. We shall not investigate the latter. Since geostrophic acceleration can be described adequately in terms of pressure and isallobaric24 fields, it is worth while finding as much as possible concerning this contribution to total accelera-Thus, supergeostrophic winds are accelerated cyclonically curved flow in gradient conditions is one special case \overline{M} $c < c_{q}$ but both are of same direction, acceleration is to the $c>c_o$, then \mathbb{C}' is along the wind direction, left of the wind. Therefore, subgeostrophic to the right of the geostrophic wind. Antiand acceleration is to the right of the wind.

We may transform the geostrophic part of the equations above by use of the differential operator

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbb{C} \cdot \nabla_h + w \frac{\partial}{\partial z}$$
$$= \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z}.$$

of the coordinate components of wind. It is

seen from further examination of Figure

strophic wind, and gradient cyclonic flow is Acceleration may be given also in terms

one special case of that type.

winds are accelerated to the left of the geo-

Then, by Eqs (1), (1a), and (1b),

 $du/dt - F_x = fv' = f(v - v_o)$, (1a)

$$\begin{split} d\mathbb{C}/dt - \mathbf{F} &= f * \mathbb{C}' = \partial \mathbb{C}_{\sigma}/\partial t + \mathbb{C} \cdot \nabla_{h} \mathbb{C}_{\sigma} \\ &+ w(\partial \mathbb{C}_{\sigma}/\partial z) + d\mathbb{C}'/dt - \mathbf{F}, \quad (2) \end{split}$$

 $= -f(u - u_q)$. (1b)

 $dv/dt - F_v = -fu'$

$$du/dt - P_z = fv' = \partial u_v/\partial t + \mathbb{C} \cdot \nabla_h u_v$$

$$+ w(\partial u_v/\partial z) + du'/dt - P_z, \quad (2a)$$

tude of acceleration can be determined relative

From the three equations above, the magnito the ageostrophic wind. Since f is of magnitude 10-4 sec-1, acceleration is about 1/10,000 strophic speed in middle latitudes. The change of wind speed by an acceleration acting over a

as large in the same system of units as ageo-

$$dv/dt - F_y = -fu' = \partial v_o/\partial t + \mathbb{C} \cdot \nabla_h v_o$$
$$+ w(\partial v_o/\partial z) + dv'/dt - F_y. \tag{2b}$$

If the last two equations are divided by f and -f, respectively, seconds) a constant acceleration gives change long time may be large. In only 3 hours (10,800 of wind speed about equal to the initial ageo-

strophic wind. It is of interest to investigate the factors giving accelerations to motion and consequently departures from geostrophic balance, for, if we are to employ the geostrophic and gradient wind equations at all, we should be aware of some conditions with departures. If actual wind is expressed as the sum of geostrophic wind and the ageo-
$$-\frac{w}{f}\frac{\partial u_{p}}{\partial t} + \frac{w}{f}\frac{\partial u_{p}}{\partial x} + \frac{w}{f}\frac{\partial u_{p}}{\partial x} + \frac{w}{f}\frac{\partial u_{p}}{\partial x}$$
 (3a)

ageostrophic wind C'. Obviously, these are A similar expression holds for resultant not valid where f = 0.

 $u_o + u'$; $v = v_o + v'$. The total time deriva-

strophic component: $\mathbb{C} = \mathbb{C}_{\mathfrak{o}} + \mathbb{C}'$; u =tives of \mathbb{C} , u, and v are $d\mathbb{C}/dt = d\mathbb{C}_{\mathfrak{o}}/dt +$ $d\mathbb{C}'/dt$; $du/dt = du_0/dt + du'/dt$; dv/dt =

Accelerations $\partial u_{a}/\partial t$ and $\partial v_{a}/\partial t$ comprise the isallobaric acceleration $\partial \mathbb{C}_o/\partial t$ to

24. Pressure change.

It is now seen that acceleration can be

examined in two parts, viz., the contribu-

11/29

wind C', which is that part of ageostrophic sides of Eqs (3a) and (3b) give the advective pressed in the last equations, those give the convective ageostrophic wind C. Next are the nictional accelerations, which contribute Eq (2) the ageostrophic acceleration also strophic wind, and, when divided by the wind related to isallobaric acceleration. The terms $(u\partial u_{\mathfrak{o}}/\partial x + v\partial u_{\mathfrak{o}}/\partial y)$ and $(u\partial v_{\mathfrak{o}}/\partial x +$ υθυ_ο/θy) comprise the (horizontal) advective The corresponding quantities in the right $w(\partial v_o/\partial z)$ are the components of geostrophic acceleration due to vertical motion. As exthe antitriptic wind CF. Finally, as seen by Coriolis parameter, they give the isallobaric acceleration to geostrophic wind, $\mathbb{C} \cdot \nabla_h \mathbb{C}_{\varrho}$. ageostrophic wind \mathbb{C}_a' . Next, $w(\partial u_o/\partial z)$ and contributes to the net ageostrophic wind.

The resultant ageostrophic wind is the vector sum of all contributions:

$$\mathbb{C}' = \mathbb{C}'_i + \mathbb{C}'_a + \mathbb{C}'_c + \mathbb{C}'_F + X,$$

to ageostrophic acceleration. If that term is where X denotes ageostrophic wind related dropped (not suggesting it is small), we have

$$\mathbb{C}' = \mathbb{C}'_{i} + \mathbb{C}'_{a} + \mathbb{C}'_{r} + \mathbb{C}'_{r} ; \qquad (4)$$

$$u' = u'_{i} + u'_{a} + u'_{c} + u'_{r} ; \qquad (4a)$$

4

$$v' = v'_i + v'_a + v'_c + v'_F.$$

(4b)

complete than presently considered in It will be remembered henceforth that the resultant ageostrophic wind being described omitted. However, valuable information is not the true resultant, since a term is can be obtained from the simplified form, and the equations we now have are more practice.

a) Antitriptic wind.—The most obvious frictional stress between moving air and the departure from geostrophic balance is that earth first may be viewed as retardation (Fo in Fig. 7.232) acting opposite to the due to friction with the earth's surface. The geostrophic wind. This decreases air moion, thus decreasing the Coriolis force.

the Coriolis force $f * \mathbb{C}$, and the pressure There results an acceleration toward lower state the wind is less than geostrophic and directed to the left of Co (northern hemiforce are in equilibrium. Observe that pressure, as the pressure force is not affected directly, and the air develops a component of motion across contours (isobars) toward lower pressure. In the final adjusted sphere). In this state the frictional force F,

Fig. 7.232.—The effect of friction on geostrophic balance. (Shown here is a state of equilibrium between pressure, Coriolis, and frictional forces.)

tion corresponds to isallobaric wind C', di-

must be directly proportional to and directed shown also by differentiating the geostrophic equation $f * \mathbb{C}_q = 980 \ (\nabla Z)_p$ with

Eq (5) shows that an isallobaric accelera-

tendencies to the left (Fig. 7.233).

 $'*\mathbb{C}' = -\mathbf{F}$, which is Eq (2) when $\mathbb{C}'_i +$ $\mathbb{C}'_a+\mathbb{C}'_c=0.$ In this condition \mathbb{C}' and \mathbb{C} are Figures 9.02ab with the gradient-level winds perpendicular, and therefore $c = c_o \cos \delta$, if 8 is the angle between C and the contours (isobars). This departure at the surface is a surface roughness, and static stability in the friction layer. The effect of surface friction is shown clearly by comparing the winds in complicated function of wind distribution, in Figure 7.03h.

respect to time; that is, $f * \partial \mathbb{C}_o / \partial t = 980$ $\nabla(\partial Z/\partial t)_p$. But from Eq (5), $f*(\partial \mathbb{C}_g/\partial t) =$

> b) Isallobaric wind.—The definition of isallobaric wind found above was first given large isallobaric gradients the by Brunt and Douglas,25 who suggested isallobaric wind could account for the principal ageostrophic flow. that with

fication of Strophic Balance for Changing Pressure Distribution, and Its Effect on Rainfall," Memoirs of the Royal Meteorological Society, Vol. III, No. 22 25. D. Brunt and C. K. M. Douglas, "The Modi-

larger rises south, isallobaric wind is north-Isobaric Analysis Figure 7.233 gives the isobaric topog-

ward with speed proportional to the magnitude of the isallobaric gradient. the topography after time 8t (heavy dashed lines), and the isopleths (isallohypses, isalloraphy at an initial time (heavy solid lines)

The isallobaric wind speed may be evaluated directly from the tendency field by the scalar form of Eq (6). For example, where $f = 10^{-4} \text{ sec}^{-1}$ and the tendency gradient is 10 gpft per hour per 100 km (a rather large value), isallobaric wind is about 8 m sec⁻¹.

bars) of net change. At the right are the

initial geostrophic wind $\mathbb{C}_{\rho 0}$, final geostrophic wind $\mathbb{C}_{\mathfrak{o}_1}$, and change $\delta \mathbb{C}_{\mathfrak{o}}$ for point A.

parallels isallobars, and its

Vector $\delta \mathbb{C}_{g}$

gradient.

magnitude is proportional to the isallobaric The effect of the isallobaric field is given

3

 $(d\mathbb{C}/dt)_i = f * \mathbb{C}'_i = \partial \mathbb{C}_o/\partial t$.

will be used.26 The quantity $\partial \mathbb{C}_o/\partial t$ is approximated by $\delta \mathbb{C}_{\mathfrak{o}}/\delta t$. Accordingly, from

For convenience, only the first of Eqs (2)

C') is due to this local variation of geostrophic wind. We denote this contribution

by the first term on the right of Eqs (2). A part of $d\mathbb{C}/dt$ (and a corresponding part of

Fig. 7.233.—The isallobaric wind in relation to the isallobaric pattern.

ured from a pattern of pressure change is the field of instantaneous tendency. In the The validity of the isallobaric wind measdependent on how well the field of integrated change during the period indicates moving wave pattern in Figure 7.144 the from the opposite inflection point. The field of isallobaric wind deduced from the change true isallobaric winds would be directed toward the inflection point in the current center in advance of the trough and away patterns in the drawing gives quite an erroneous picture. In general, the longer the time interval for pressure change, greater is the discrepancy between cated and true isallobaric wind fields. Eq (5), $(d\mathbb{C}/dt)$; $\delta t = \delta \mathbb{C}_{o}$. Is all obaric acceleration is along $\delta \mathbb{C}_o$, with larger falling * $(f * \mathbb{C}'_i) = -f^2\mathbb{C}'_i$, or \mathbb{C}'_i is directed 180° rected 90° to the left. Isallobaric wind then along the isallobaric descendant. This may be rom the isallobaric ascendant $\nabla(\partial Z/\partial t)_p$.

The degree to which the isallobaric wind ing terms²⁷ on the right side of Eq (2). It is C' approximates total ageostrophic wind C' depends on the contribution by the remain-

> Direction n is along the isallobaric ascendant: Thus, if isallobars are west-east with 26. For slightly different derivations using coordinate components refer to B. Haurwitz, Dynamic Meteorology (New York: McGraw-Hill Book Co., 1941), pp. 155-59, and E. W. Hewson and R. W. Longley, Meleorology: Theoretical and Applied (New York: John Wiley & Sons, 1944), pp. 128-30.

9

 $\mathbb{C}_i' = -(980/f^2)[\nabla(\partial Z/\partial t)_p]$, $c_i' = (980/f^2)[\partial(\partial Z/\partial t)_p/\partial n]$

portance of the isallobaric contribution is given by Field and Pressure Changes," Journal of Meteorology, 27. A more detailed discussion of the relative im-B. Haurwitz, "On the Relation between the Wind III (1946), 95-99.

245

apparent that even with strong isallobaric wind the ageostrophic wind may be zero or even opposite to the isallobaric wind. Thus it is improper to attribute existing ageostrophic winds only to the isallobaric patiern until all other factors have been accounted for. (For gradient winds in an isallobaric field the requirement is that the sum of all terms on the right of Eq [2] equals $dC_{\rm m}/dt$.)

air parcel moves horizontally, the pressure pattern usually varies along its trajectory. This is true even if the pressure field is steady, for contours are not straight or uniformly curved and not parallel over large distances. Thus, an air parcel which at one instant is in geostrophic (or gradient) balance soon may find itself in a different pressure field NTO readjust itself, the parcel is subjected to acceleration and thus develops an ageostrophic component, From this viewpoint alone it is easy to see that geostrophic or gradient wind is rarely precisely fulfilled on synoptic pressure charts.

The effect of horizontal variations in the pressure, pattern on accelerations is given by $\mathbb{C} \cdot \nabla_h \mathbb{C}_{\varrho}$ in Eq. (2). We may write $\mathbb{C} \cdot \nabla_h \mathbb{C}_{\varrho} = c(\partial \mathbb{C}_{\varrho}/\partial s)$, where s is distance downwind through the point in question, and $\partial \mathbb{C}_{\varrho}/\partial s$ is the variation of vector geostrophic wind in that direction (Fig. 7.234). If acceleration due to this effect is $(\partial \mathbb{C}/dt)_{\varrho}$ and the corresponding ageostrophic wind is \mathbb{C}_{ϱ}' , then

$$(d\mathbb{C}/dt)_a = f * \mathbb{C}'_a = c(\partial\mathbb{C}_o/\partial s). \quad (7)$$

The advective contribution is illustrated graphically.²⁸ in Figure 7.234. Geostrophic winds are measured from the pressure pattern at points δs apart and equidistant from δ . Vector δC_{\wp} is the difference in geostrophic winds upstream and downstream from δ . Dividing δC_{\wp} by δs approximates $\partial C_{\wp}/\delta s$,

28. This can be shown also by superimposing the pressure patterns at two points in a manner similar to Figure 7.233.

which lies along $\delta \mathbb{C}_{\sigma}$. From Eq (7) the acceleration is along $\delta \mathbb{C}_{\sigma}$ and directly proportional to wind speed as well as to the magnitude of $\delta \mathbb{C}_{\sigma}/\delta s$. The ageostrophic wind is 90° to the left of $\delta \mathbb{C}_{\sigma}$. Notice in this example that the acceleration has a component to the right of the wind, indicating clockwise turning of wind in partial agreement with the contour pattern, and also a component opposite to the wind \mathbb{C} , implying retarded motion in agreement with the divergence of contours.

If $\partial C_0/\partial s$ is normal to the actual wind $\mathbb{C},$ then the ageostrophic wind lies along the

and the motion is parallel to the contripetal, and the motion is parallel to the contours. This is a statement of the gradient-wind condition for a steady pressure field and horizontal motion. In fact, one can show that C·v_AC is the cyclostrophic acceleration in the gradient-wind equation with the same assumptions. By neglecting this advective term in the acceleration, the gradient-wind correction is being neglected.

Figure 7.235 gives simple illustrations of the advective effect on ageostrophic winds. Shown here are the three pressure patterns possible with straight contours, but deductions are also applicable to curved contours. For each case we might assume the wind is geostrophic initially at a. In the first diagram, as the air moves from a to b, it experiences no acceleration due to space variation of the pressure field; this wind remains

geostrophic. In the second the contours diverge downwind, the motion is retarded, and ageostrophic wind is to the right. In the last diagram the effect is opposite.

To show the approximate value of ageo-

Fig. 7.235.—The departure of actual wind from geostrophic due to changing pressure gradients in the direction of motion.

strophic wind resulting from the advective contribution, average values may be substituted into Eq (7). If $f=10^{-4}\,\mathrm{sec^{-1}}$, wind speed is 10 m sec⁻¹, and geostrophic wind from the same direction varies 5 m sec⁻¹ per 100 km along the wind, then $c_a^2 \simeq 5$ m sec⁻¹. This is the same order of magnitude as the

isallobaric wind. With stronger winds this effect can be more important than the isallobaric influence.

Deductions made on the basis of Figure 7.235 may be formulated into a set of general rules applicable to most synoptic patterns of pressure and wind. If air moves into a weaker pressure field, it is deflected to the right of the contours and its motion retarded, and, if air moves into a stronger pressure field, it is deflected to the left of the contours and its motion accelerated, provided its motion is in reasonable agreement with the pressure pattern initially. These rules exclude contributions by other terms in Eq (2), and they may not be strictly valid in certain critical conditions of curved flow or curved contours.39

the general rules given above for advective pears that winds are subgradient in having There is frequent empirical evidence of accelerations to the wind, not so much at the surface, where it is difficult to separate effects of friction, but at levels sufficiently higher, where there are still plentiful wind rapidly downstream. Here the winds differ less from those upstream than consistent with the widening of contour channels. Still farther upstream west of Lake Winnipeg, where contours converge downstream, it apcome from the weak pressure ridge over data. In Figure 7.03g there are several supergradient winds in the south central United States where contours western Canada

western Canada.

d) Connective ageostrophic wind.—The discussion above was devoted to varying pressure fields for horizontal air motion only; horizontal accelerations due to vertical displacements from one pressure pattern to another must be considered also. The vertical component of motion is ordinarily very

29. It is possible for the air to be accelerated while moving into a weaker pressure field if the contours vary in curvature sufficiently; in this case, supergradient winds toward lower pressure.

usually so many times greater than horizontal variation that accelerations resulting from vertical displacements are not always small relative to the horizontal component, but vertical variation of pressure patterns is

From Eq (2) acceleration $(d\mathbb{C}/dt)_c$ due to vertical displacement may be represented in the same form as Eq (7). Thus, negligible in comparison.

$$(d\mathbb{C}/dt)_c = f * \mathbb{C}'_o = w(\partial\mathbb{C}_o/\partial z)$$
.

8

wind with height; it is the thermal wind in Vector $\partial \mathbb{C}_o/\partial z$ is the variation of geostrophic a thin layer divided by the depth.

motion; it is directed toward warmer air in of ACo. Thus, ageostrophic wind Co blows tion to $\partial \mathbb{C}_{\varrho}/\partial z$, which has the direction of $\Delta \mathbb{C}_{\rho}$. For upward motion w>0, and from The related ageostrophic wind is to the left across isotherms toward colder air in upward In Figure 7.07 are given the vector geostrophic winds $\mathbb{C}_{\mathfrak{o}_1}$ at lower level z_1 and $\mathbb{C}_{\mathfrak{o}_2}$ at upper level z_2 ; the difference, $\Delta \mathbb{C}_{\varrho}$, divided by the layer depth is the approxima-Eq (8) acceleration $(d\mathbb{C}/dt)_c$ is along $\Delta\mathbb{C}_{\mathfrak{g}}$. downward motion.

component from south. For descent the re-linduced by terrain. wind is from west at 700 mb and zero at 850 mb. The thermal wind in the layer is celerated eastward and has ageostrophic sulting ageostrophic component is from north. If the air rises rapidly, it arrives at As an example, consider that geostrophic 700 mb with actual motion from south of then from west. With ascent the air is ac-

perature gradients are favorable for dem sec-1 per kilometer (horizontal temperaments should give no horizontal accelerations to the velocity. Large horizontal tem-In barotropic regions vertical displacedisplacements and can give an appreciable contribution to the total ageostrophic wind. For $f = 10^{-4} \text{ sec}^{-1}$ and $\partial \mathbb{C}_g/\partial z = 10$ ture gradient about 3° C/100 km), Eq (8) velopment of ageostrophic winds by vertical

gives speed for \mathbb{C}'_{o} 1 m sec⁻¹ for each 1 cm sec⁻¹ of vertical velocity. That vertical absolute value in large-scale atmospheric motion.30 The above result for convective ageostrophic wind might appear small in comparison with the others, but there are frequent situations in which vertical velocity and thermal wind are both larger than the values used. In effect, this convelocity may be considered an average tribution easily can be as important as those above.

lower atmosphere is the west coast of North America north of 45° latitude. Here the chart for 1 March 1950 through which large the east coast of the United States north of denced by high humidities aloft and pre-Unfortunately, for the same reason wind data are few. Because gradientmb geostrophic winds are slightly stronger from west, implying ageostrophic motion northeastward with ascent, 850-mb winds in this area should cross contours to the left. winds in the vicinity of 850 mb are acceleralso by forced flow toward lower pressure There are several areas in the 850-mb vertical velocities might be expected. Along the Florida peninsula upward motion is evi-Another region of suspected ascent in the ated not just by upward displacement but level winds are from southwest and the 850cipitation.

Over the south central United States the cold front. Winds at 700 mb are from west or west-northwest with average speeds about 50 knots. The 850-mb chart shows, west with smaller speeds. In descending to resulting in northwesterly winds supergeostrophic for that level. In this area at 850 mb strong subsidence is occurring just behind below this, geostrophic winds from norththis level, the air is accelerated to southwest (ageostrophic wind from northwest),

30. H. A. Panofsky, 'Targe-Scale Vertical Velocity and Divergence," in American Meteorological Society, Compendium of Meteorology, pp. 639-46.

conceivably because of ageostrophic wind by the winds are stronger than geostrophic subsidence and by transport horizontally into a field of diverging contours.

carry the effect downward through the fricnate at the earth's surface (where it is level), ageostrophic winds due to strong subsidence can be felt even in surface winds tion layer. Accelerations and ageostrophic subsidence should be particularly evident just behind cold fronts, where thermal wind friction layer is conducive to turbulent mixing. This could be a major contribution if there is sufficient turbulent mixing to winds at the surface developed through is large and where lack of stability in the to ageostrophic flow behind the cold front Although vertical velocities must termiover Texas in Figures 9.02ab.

version of Van Meigham's summary in the of atmospheric stability was given for vertical displacements only. Stability for little has been done with that phase of the subject. What appears below is a modified 7.24. Stability for horizontal and vertical displacements.—In Chapter 3 a discussion norizontal and arbitrary displacements deserves similar treatment, but unfortunately Compendium of Meteorology (1951).

geostrophic velocity $U_A = (u_o)_A$ at A located a small distance $(\delta y, \delta z)$ transverse to Consider a geostrophic current (Fig. 7.24) of invariant wind direction a in a strophic velocity at any point A_0 along x, small region of space. To simplify the discussion, the xy-plane is oriented with xordinates on the earth. In this scheme $v_g =$ also there is no temperature gradient downaxis downwind, instead of by local grid co- $\partial v_o/\partial x = \partial v_o/\partial y = \partial v_o/\partial z = 0$, assuming wind. Furthermore, if $U_0 = (u_o)_0$ is geothe x-axis is

$$U_{A} = U_{0} + (\partial u_{o}/\partial y)_{0} \delta y$$
$$+ (\partial u_{o}/\partial z)_{0} \delta z . \quad (1)$$

In such a coordinate system the equations of motion are

$$du/dt = 2\omega w \cos\phi \sin\alpha + 2\omega v \sin\phi$$

(2a)

 $-a(\partial p/\partial x)$,

$$dv/dt = -2\omega u \sin \phi - 2\omega w \cos \phi$$

$$\times \cos \alpha - \alpha(\partial \rho/\partial y), \quad (2b)$$

$$dw/dt = -2\omega u \cos \phi \sin \alpha + 2\omega v$$

$$\times \cos \phi \, \cos a \, - \, a (\partial \rho/\partial z) \, - \, g \, , \quad (2c)$$
 extraneous forces F_x, F_y, F_z are neglected.

if extraneous forces F_x , F_y , F_z are neglected. In the subsequent discussion we use the

FIG. 7.24

notations: $2\omega \sin \phi = f$, $2\omega \cos \phi \sin \alpha = B$, and $2\omega \cos \phi \cos \alpha = C$.

its component of acceleration along x is stitutes displacement by, bz from Ao. At this new position the parcel is assumed to Now suppose a parcel of unit mass at A_0 is given transverse velocity v1, w1 by some temporary impulse; after a small interval dt the parcel occupies position A, which conhave the pressure of its environment, and $(du/dt)_A = Bw_1 + fv_1$. Upon integration,

$$u_A = B\delta z + f\delta y + U_0. \tag{3}$$

This velocity component relative to geostrophic flow at A is $u_1 = u_A - U_A$; by substitution of Uo from Eq (1) into Eq (3),

$$u_1 = (f - \partial u_o/\partial y)\delta y$$

$$+ (B - \partial u_{\varrho}/\partial z)\delta z. \quad (4)$$

Therefore,

We now can determine the transverse horizontal component dv/dt of the parcel's acceleration at A. From Eqs (2b) and (4)

$$(dv/dt)_A = -f(f - \partial u_o/\partial y)\delta y$$
$$-f(B - \partial u_o/\partial z)\delta z - Cw_1. \quad (5)$$

 $\times (\partial\theta/\partial y)\delta y - (g/\theta)(\partial\theta/\partial z)\delta z$. (8) Eqs (5) and (8) express the transverse horizontal and vertical accelerations resulting ion velocity v1, w1 of a parcel initially moving with geostrophic wind. The state of stability or instability exists according as the accelerations tend to return the parcel to the reference axis (x-axis) or carry it farther away. For each of these equations there has come to be defined a correspondvertical only, we speak of static stability. With displacements in the horizontal only, we have come to associate horizontal or Static stability can be found directly from Eq (8). If $v_1 = \delta y = 0$, and if stability mosphere, per unit distance, to unstable

 $(dw/dt)_A = -B(f - \partial u_o/\partial y)\delta y - B(B)$

 $-\partial u_q/\partial z)\delta z + Bv_1 - (g/\theta)$

Vertical acceleration resulting from displacement of the parcel is

from displacement $(\delta y, \delta z)$ with perturba-

$$(dw/dt)_{A} = -Bu_{A} + Cv_{1} - c_{p} \theta_{0}$$

$$\times [\partial(p/1000)^{\gamma}/\partial z] - g. \quad (6)$$

The next-to-last term on the right is merely the vertical pressure force expressed in potential temperature. We now introduce the assumption that transverse displacement of the parcel is dry adiabatic. Necessity for this assumption31 is apparent from definition of static stability in Chapter 3.

ing type of stability. If the displacement is

Vertical acceleration of the undisturbed geostrophic motion at A is

inertia stability.

 $dw/dt \neq 0$

$$= -B U_A - c_p \theta_A \frac{\partial}{\partial z} \left(\frac{p}{1000} \right)^* - g. (7)$$

E is defined as the resistance by the at-

 $E_{\nu} = B(B - \partial u_{\nu}/\partial z)$ accelerations, Upon subtracting Eq (7) from Eq (6) and substituting for u_1 from Eq (4),

$$(dw/dt)_A = -B (f - \partial u_o/\partial y) \delta y$$

$$-B (B - \partial u_o/\partial z) \delta z + B v_1$$

This agrees with the previous expression for with B. Since $2\omega\cos\theta$ has maximum value $1.46 \times 10^{-4} \text{ sec}^{-1}$, while $\partial u_o/\partial z$ is usually sec-1, and the last term on the right is of the order 10⁻⁵ to 10⁻⁴ sec⁻², Eq (9) reduces

stability, Eq 3.17(3), except for the term

in the range of magnitude 10^{-3} to 10^{-2}

 $+ (g/\theta)(\theta\theta/\theta z)$. (9)

Now $\theta_0 - \theta_A$ may be expressed in terms of δy and δz by $\theta_0 - \theta_A = -(\partial \theta/\partial y)\delta y$ $-c_p \left(\theta_0 - \theta_A\right) \frac{\partial}{\partial z} \left(\frac{p}{1000}\right)$ $(\partial \theta/\partial z) \delta z$. Also,

$$\frac{\partial}{\partial z} \left(\frac{p}{1000} \right)^{s} = \frac{1}{c_{p}\rho} \frac{\partial p}{\partial z} \simeq -\frac{g}{c_{p}\theta}.$$

31. The assumption of adiabatic displacement should have been made in deriving Eq (5) for a more complete expression for $(dv/dt)_A$, which is obtained from Eq (5) by adding

ity, it does not express completely the

stability along the vertical.

Inertia stability E, is defined from Eq

 $\times (2\omega \sin \phi - \partial u_{o}/\partial y)$. (11)

 $E_h = -(1/\delta y)(dv/dt)_A \simeq (2\omega \sin \phi)$

Eq (10) is the standard definition for stabil-

In retrospect, it is evident that, although

 $E_v \simeq (g/\theta)(\partial \theta/\partial z)$.

$$a \frac{\partial p}{\partial y} \left(\frac{1}{\theta} \frac{\partial \theta}{\partial y} \delta y + \frac{1}{\theta} \frac{\partial \theta}{\partial z} \delta z \right)$$

3

to the right side of the equation, constituting negligible correction for horizontal displacement.

ity or instability according as $\partial u_{\mathfrak{o}}/\partial y \lessgtr$ of geostrophic wind. There can be inertia instability only when the shear is negative large, the atmosphere is characterized gen- $2\omega \sin \phi$. The sign of inertia stability is derequires anticyclonic shear about 10-4 sec-1 or greater. Since that shear seldom is so erally by inertia stability. However, there As $2\omega \sin \phi$ is positive (northern hemipendent only on relative values of the Coriolis parameter and the horizontal shear (anticyclonic) and of magnitude exceeding the Coriolis parameter. In middle latitudes this is one region of the atmosphere in particular where inertia instability frequently exists, namely, immediately to the right of jet streams where anticyclonic shear can be sphere), the atmosphere has inertia stabil-

strophic wind the first term above can be [5]) $-f(B - \partial u_o/\partial z)(\delta z/\delta y) - Cw_1/\delta y$ is Eq (11) is a valid expression for inertia stability only when the quantity (from Eq negligible. This would be the case with no regions of strong vertical shear of geolarge even with small vertical displacements. In such conditions it would have to vertical displacements ($\delta z = w_1 = 0$). In be considered along with the term retained

ing. An air parcel deflected from the geo-In regions where inertia instability exists, conditions are favorable for horizontal mixtrophic flow would develop transverse ac-

celeration, carrying it farther away from its original position in the current, and theoretically it could not come to equilibrium regions of strong anticyclonic shear are inertia instability might be part of the explanation for the weak temperature field to with the pressure field until it arrived in a region of stability. All this suggests that favorable for horizontal mixing and that the right of the strong wind current in Figure 7.08b.

placements in more detail, we mention a few of the previous works: Solberg,32 Van Meigham, 33 Palmén, 34 Godson, 35 and Bjerk-For the reader interested in reviewing the subject of stability as related to lateral disnes.36 32. H. Solberg, "Le Mouvement d'inertie de l'atmosphère stable et son rôle dans la théorie des cyclones," Procès-verbaux de l'assoc. de météor. U.G.G.I., Edimbourg, 1936, pp. 66-82.

dynamic Instability," in American Meteorological 33. J. Van Meigham, "Perturbation d'un courant a'tmosphérique permanent zonal," Inst. R. météor. Belg., Mem., XVIII (1944), 1-34; "Hydro-Society, Compendium of Meteorology, pp. 434-53.

(1950), 268-78; "Synoptic Significance of Dynamic 34. E. Palmén, "On the Distribution of Temperature and Wind in the Upper Westerlies," 35. W. L. Godson, "Generalized Criteria for Dynamic Instability," Journal of Meteorology, VII Journal of Meteorology, Vol. V, No. 1.

36. J. Bjerknes, "Extratropical Cyclones," in American Meteorological Society, Compendium of Instability," ibid., pp. 333-42. Meteorology, pp. 577–98.

READING REFERENCES

PETTERSSEN, SYERRE. Weather Analysis and Forecasting, pp. 205–21, 378–440. New York: McGraw-BYERS, H. R. General Meteorology, Chap. 16. New York: McGraw-Hill Book Co., 1944. Hill Book Co., 1940.

四、4 補充資料-2 (江火明老師之天氣學講義)

多、(第六章 高空等壓面天氣圖的分析

§ 6-1 前言

對大氣熱力性質的瞭解, %項分析氣壓場、氣溫場、濕度場、密度場與位溫場。

若大氣適合流體靜力平衡,則氣壓與高度為1-1 單調遞減函數,故可以選擇氣壓為垂直座標。在等壓面上,高度較大的地方就相當於等高面上的高壓位置;高度較低的地方就相當於等高面上的低壓位置。

對於中高緯度地區,大尺度大氣運動適合準地轉近似,故高度場即為準地轉運動的涼場。 $\nabla^2 \psi = \xi = \frac{1}{f} \nabla^2 \Psi \Rightarrow \psi' = \frac{\Psi'}{f} \left(geostrophy \right)$ ξ δ -2 地轉風與高度場的分析

若大氣運動適合地轉風近似,在等壓面上地轉風的大小可以下式表之:

$$V_{g} = \frac{g}{f} \left(\frac{\partial z}{\partial n} \right) = \frac{g}{f} \frac{\delta z}{\delta n} , \qquad (6-1)$$

若已知地轉風的大小,且相隔兩條等高線的距離為 δn ,兩相鄰等高線之數值差為 δz (一般取 $60~{
m gpm}$),則

$$\delta n = \frac{g}{f} \frac{\delta z}{V_g} , \qquad (6-2)$$

→、同樣之5n,越高緯風速越少

利用上式可繪製圖6-1,由圖中可查出不同緯度之相隔兩條等高線的距離與其間地轉風大小的關係。在高空天氣圖分析時,要多利用地轉風大小來修正兩等高線間的距離。

當然,實際風與地轉風間有差異的,其向量差稱為地轉偏 差風(Ageostrophic Wind, \overrightarrow{V}_{ag}),即 $\overset{\circ\circ}{V}_{ag}$ $\overset{\circ\circ}{V}_{ag}$ $\overset{\circ\circ}{V}_{g}$, $\overset{\circ\circ}{V}_{g}$ (6-3)

決定 \overrightarrow{V}_{ag} 的因素有(1)地形;(2)摩差力作用;(3)發展迅速的天氣系統。 (对流地転偏差層)

在北半球中高緯度地區,大尺度大氣運動近似地轉平衡 ,因此,在高壓 (H) 地區氣流呈反氣旋運動,在低壓 (L) 地 區氣流呈氣旋運動。

在高空圖上,中高緯度地區處於顯著西風帶,大尺度大氣運動表示出明顯的森士培波(Rossby Waves)的型式,因此,在分析高度場時,要特別留意脊(Ridge)與槽(Trough)的位置

③) § 6-3 熱力風與厚度場(溫度場)的分析

溫度是無向量,它的分析可依第四章的要點分析之。 $^{\circ}$ 由浓 體靜力平衡關係知,兩等壓面之厚度正比於此層大氣之平均溫度。即 $\frac{\partial Z}{\partial p} = -\frac{RT}{P}$

兩等壓面上地轉風之向量差,定義為這層大氣的熱力風 (Thermal Wind, \overrightarrow{V}_T) 向量,即 $\overrightarrow{OP} = -\frac{3}{f} \underbrace{k} \times \nabla_p \underbrace{\partial P}_{\partial P}$ $\overrightarrow{\nabla}_T = \overrightarrow{V}_{g,U} - \overrightarrow{V}_{g,L}$, $\overrightarrow{V}_g = -\frac{1}{f} \underbrace{k} \times \nabla_p \overrightarrow{\nabla}_{g,P}$, $\overrightarrow{P}_{g,U} = \underbrace{R}_{g,U} + \underbrace{K}_{g,U} + \underbrace{K}_$

$$V_{T} = \frac{g}{f} \left(\frac{\partial \Delta z}{\partial n} \right) = \frac{g}{f} \frac{\delta \Delta z}{\delta n} , \qquad (6-4)$$

因此, \overrightarrow{V}_T 與 ΔZ 的關係就相當於 \overrightarrow{V}_g 與Z的關係。同樣的可以利用圖6-1,查出不同緯度之相隔兩條等厚度線的距離,來判斷熱力風的大小。

在正壓的區域, 風速與氣流的形勢都不隨高度改變, 即

$$\frac{\partial \overrightarrow{V}_{T}}{\partial z} = 0 , \qquad (6-5)$$

由 31g = R 包x ¬p T → { 21g = R (2T) p → 2 管压面上南北温度梯度之大小, 中垂龙向之而风梯度成正比。一般在 中缘没有最大之对, 效其上唇之以不最珍 (喷là)。另外在夏季之南亚地区上号, 2 青藕高厚之加塑作用,使得处臣之 3 5 反 何且很强, 效此臣之之 8 有东风喷là。

相

若氣流形勢與氣溫形勢同煩位,即等壓面上的高度槽就是溫度槽,則地轉風風向不隨高度改變;風速隨高度逃增, 遠也表示熱力風與下層風同向。由於

表故熱力風風向總是平汀於溫度線,在北半球,對對著風向,在其左側為冷側;右側為暖側。若空氣由冷側吹向暖側,即冷平流,則上層地轉風在下層地轉風的左側,換句話說,風向隨高度增高呈逆時針方向改變;若空氣由暖側吹向冷側,即暖平流,則上層地轉風在下層地轉風的右側,換句話說,風向隨高度增高呈順時針方向改變。發展於一種力風之討論及才學此之探及資料之分析有很大之幫助。一定有助於研判一定是實際的是實在於值或該象。一个「存上反背他」

[59月 续 1.60 中間.

*厚度唱这个事年的温度之周围。

由局体静力平衡方程式:

$$\int dz = \int -\frac{RT}{gp} dp$$

 $\Rightarrow 2_2 - 2_1 = + \frac{R}{g} \int_{P_2}^{P_1} \mathsf{T} d \ln p = \frac{R}{g} \cdot \mathsf{T} \ln \frac{P_1}{P_2}$

即两望压面之高度变化超势的差(厚度超势),只不其間之平均温度的爱化超势成正比。

着"""""遭疫降低,例(3号)。<(3号)),且公别的公司要下降得了、 (3至<0,冷平锅) 即两军压面問之厚茂减少。

少超夜僧高,武力,则武力就,且如此以上介得多,厚度查大。

如圖 6-2,若b 與a 分別為 p_1 面與 p_2 面的兩個等壓面上的兩 點,在這兩點之等壓面斜率 $((\frac{\partial z}{\partial s})_p)$ 相等,我們欲探討這天氣 高度的變化圖。

由浓體靜力平衡,

$$\frac{\partial z}{\partial p} = -\frac{\alpha}{g} , \qquad (6-7)$$

故浔

$$\delta z = -\frac{\alpha}{g} \delta p , \qquad (6-8)$$

$$z_b - z_a = -\frac{\alpha}{g} \delta p , \qquad (6-9)$$

其中
$$\delta p = p_1 - p_2$$
 (6-10)

- # ϕ = p_1 - p_2 (§ 8.2)

 () ϕ = ϕ = ϕ | ϕ

6-2

又因
$$(\frac{\partial z}{\partial s})$$
是 s 與 p 的函數,故
$$\delta(\frac{\partial z}{\partial s}) = (\frac{\partial}{\partial s})(\frac{\partial z}{\partial s})\delta s + (\frac{\partial}{\partial p})(\frac{\partial z}{\partial s})\delta p$$

$$= \left(\frac{\partial^2 z}{\partial s^2}\right) \delta s - \left(\frac{\partial \alpha}{\partial s}\right) \frac{\delta p}{g} , \qquad (6-11)$$

對等壓面斜率相同的位置,

$$\left(\frac{\partial z}{\partial s}\right)_{b} - \left(\frac{\partial z}{\partial s}\right)_{a} = \left(\frac{\partial^{2} z}{\partial s^{2}}\right) \delta s - \left(\frac{\partial \alpha}{\partial s}\right) \frac{\delta p}{g}$$

$$= 0 , \qquad (6-12)$$

故浔

$$\frac{\delta p}{\delta s} = g \frac{\left(\frac{\partial^2 z}{\partial s^2}\right)_p}{\left(\frac{\partial \alpha}{\partial s}\right)_p}$$
(6-13)
$$\frac{\delta z}{\delta s} = -\frac{\left(\frac{\partial^2 z}{\partial s^2}\right)_p}{\left(\frac{1}{\alpha}\right)\left(\frac{\partial \alpha}{\partial s}\right)_p}$$

$$= -\frac{\left(\frac{\partial^2 z}{\partial s^2}\right)_p}{\left(\frac{1}{T}\right)\left(\frac{\partial T}{\partial s}\right)_p}$$
(6-14)

等壓面上,

$$(\frac{\partial^2 z}{\partial s^2})_p > 0$$
,在槽(或L)處; $(\frac{\partial^2 z}{\partial s^2})_p < 0$,在脊(或用)處; (6-15)

故槽 (或 L) 隨高度遞增而傾斜的斜率為

$$\frac{\delta z}{\delta s} = -\frac{\left| (\frac{\partial^2 z}{\partial s^2})_p \right|^{(t)}}{(\frac{1}{T})(\frac{\partial T}{\partial s})_p}$$
(6-16)

脊 (或Ⅲ) 隨高度遞增而傾斜的斜率為

$$\frac{\delta z}{\delta s} = \frac{\left| \frac{\partial^2 z}{\partial s^2} \right|_p}{\left(\frac{1}{T} \right) \left(\frac{\partial T}{\partial s} \right)_p}$$
(6-17)

(6-16) 舆(6-17) 雨式的分母,表示斜壓性的大小,在正壓的特況 , $(\frac{\partial T}{\partial s})_p = 0$,則肾(或 \mathbb{H})、槽(或 \mathbb{L})隨高度遞增並無傾斜的 現象。在斜壓性限强的地方,則 $\frac{\delta z}{\delta s}$ 限小,即脊(或 $\mathbb H$)、槽 (或L) 隨高度逃增傾斜限厲害。

若 $(\frac{\partial T}{\partial s})_p > 0$,則

(1) 在脊(或 \mathbb{H})處, $\frac{\delta z}{\delta s}>0$,即脊隨高度遞增向 $+\delta s$

若 $(\frac{\partial T}{\partial c})_p$ < 0 ,則

 $\xrightarrow{\mathcal{U}} (X)$ (冷側) 傾斜。

换言之,高壓中心(或脊)總是隨高度遞增傾向暖側;低壓 心(或槽)總是隨高度遞增傾向冷側。 (202)

由(6-16)與(6-17)兩式知,等壓面曲率限大的天氣系統(資 、槽、Ⅲ、Ⅰ),亦即限顯著的上凸或下凹的天氣系統 ,它隨高度遞增而傾斜較小($\frac{\delta z}{\delta s}$ 大);若是較平淺的天氣 系統,它隨高度遞增而傾斜很厲害 $(\frac{\delta z}{\delta c}$ 小)。

若1, 12 兩圓形低壓中心, 等壓面向上彎曲的曲率相同 ,在 \mathbb{L}_1 附近溫度梯度大;而在 \mathbb{L}_2 附近溫度梯度小,則 \mathbb{L}_1 隨高 度逃增向冷侧傾斜較厲害。

若LN, L3兩圓形低壓中心附近溫度梯度相同,在L1等壓面 向上彎曲的曲率大 (等壓線較密集);而在L3等壓面向上彎曲 的曲率小 (等壓線較疏寬),則L3隨高度遞增向冷側傾斜較厲 害。

换句話說,一圓形氣旋(反氣旋)中心隨高度遞增偏向冷 (暖)側傾斜,若高度一定,則偏移的大小 δs 與溫度梯度成正 比;與等壓面向上(下)彎曲的曲率成反比。

8 6—6 地轉偏差運動 (Ref. p. = 40 (g7. = 23) of Saucier, 1935) 由地射倫差風之定义, $V_{ag} = \vec{V} - \vec{V}_{g}$, 及地

は動

大程式 : $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

は対

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

は対

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

は対

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

は対

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (アラシンル建度と

の $\frac{d\vec{V}}{dt} = -f \hat{k} \times \vec{V}_{ag} + \vec{F}$ (6-20)

若大氣無摩擦力的作用,則單位質量大氣的地轉偏差風的 柯氏力,即為大氣運動的加速度。 若具實風與地轉風同向,但風速卻大於地轉風風速,即超地轉風(Supergeostrophic Wind),則地轉偏差分量與具實風同向,由(6-20)式知地轉偏差風的柯氏力向具實風的右側,故超地轉風(Supergeostrophic Wind)使大氣運動向右加速。

若真實風與地轉風同向,但風速卻小於地轉風風速,即次地轉風(Subgeostrophic Wind),則地轉偏差分量與真實風反向,由(6-20)式知地轉偏差風的柯氏力向真實風的左側,故次地轉風(Subgeostrophic Wind)使大氣運動向左加速。

由定義知

$$\overrightarrow{\nabla} = \overrightarrow{\nabla}_{g} + \overrightarrow{\nabla}_{ag}$$

$$\frac{d\overrightarrow{\nabla}}{dt} = \frac{d\overrightarrow{\nabla}_{g}}{dt} + \frac{d\overrightarrow{\nabla}_{ag}}{dt} = - \int \widehat{\mathcal{L}} \times \overrightarrow{V}_{ag} + \overrightarrow{V}$$

$$= \frac{\partial \overrightarrow{\nabla}_{g}}{\partial t} + \overrightarrow{\nabla} \cdot \nabla \overrightarrow{\nabla}_{g} + \omega \frac{\partial \overrightarrow{\nabla}_{g}}{\partial p} + \frac{d\overrightarrow{\nabla}_{ag}}{dt}$$
(6-21)

故

$$-f\hat{k} \times \overrightarrow{\nabla}_{ag} = \frac{\partial \overrightarrow{\nabla}_{g}}{\partial t} + \overrightarrow{\nabla} \cdot \nabla \overrightarrow{\nabla}_{g} + \omega \frac{\partial \overrightarrow{\nabla}_{g}}{\partial p} + \frac{d\overrightarrow{\nabla}_{ag}}{dt} - \overrightarrow{F}_{r}$$
 (6-23)

RP

$$\hat{\lambda} : \mathcal{V}_{ag} \times_{ag} = \frac{1}{f} \frac{\partial u_g}{\partial t} + \frac{u}{f} \frac{\partial u_g}{\partial x} + \frac{v}{f} \frac{\partial u_g}{\partial y} + \frac{\omega}{f} \frac{\partial u_g}{\partial p} - \frac{1}{f} F_x + \frac{1}{f} \frac{du_{ag}}{dt} \quad (6-24a)$$

$$\hat{\lambda} : \mathcal{V}_{ag} \times_{ag} = -\frac{1}{f} \frac{\partial v_g}{\partial t} - \frac{u}{f} \frac{\partial v_g}{\partial x} - \frac{v}{f} \frac{\partial v_g}{\partial y} - \frac{\omega}{f} \frac{\partial v_g}{\partial p} + \frac{1}{f} F_y - \frac{1}{f} \frac{dv_{ag}}{dt} \quad (6-24b)$$

此即表示地轉偏差風可分為五個分量: (1) 等變壓風分量 (Isollobaric Wind); (2) 平流地轉偏差風分量 (Advective Ageostrophic Wind); (3) 對流地轉偏差風分量 (Convective Ageostrophic Wind); (4) 摩擦 地轉偏差風分量 (Antitriptic Wind); (5) 地轉偏差變量分量。亦即

$$\overrightarrow{V}_{ag} = \overrightarrow{V}_{ag(i)} + \overrightarrow{V}_{ag(a)} + \overrightarrow{V}_{ag(c)} + \overrightarrow{V}_{ag(F)} + \overrightarrow{X}$$
 (6-25)

(一) 摩擦地轉偏差風分量(Antitriptic Wind)

摩擦力為減速力,它使空氣運動的速度減小,科氏力也 (压力化等沒有意化) 隨之減小,但壓力梯度力不受影響,如圖,科氏力、梯度力 與摩擦力平衡,因

故摩擦力與摩擦地轉偏差風分量之科氏力,大小相等方向相 反。因此,真實風總是比地轉風小,在北半球它偏向地轉風的左側。(即指向低低) 少{陸地上约40%

B 6-5

$$\sqrt{\frac{\partial^2}{\partial t}}$$
 app. $\sqrt{\frac{\partial^2}{\partial t}}$ $\sqrt{\frac{\partial^2}{\partial t}}$

(二)等變壓風分量(Isollobaric Wind) $V_{ag(i)} = \frac{1}{1} \hat{k} \times \frac{3V_q}{3t}$ 有等變壓線的梯度很大時,等變壓風分量可能是 地轉 (地勢風隨明閱達化 中系統 : 憲人)

$$-f\hat{k} \times \overrightarrow{V}_{ag(i)} = \frac{\partial \overrightarrow{V}_g}{\partial t} \implies \overrightarrow{V}_{ag(i)} = \frac{1}{f} \hat{k} \times \frac{\partial \overrightarrow{V}_g}{\partial t}$$
(6-27)

故

$$\Rightarrow \overrightarrow{V}_{ag(i)} = \frac{1}{f} \widehat{k} \times \frac{3\overrightarrow{V}g}{3\cancel{T}} \qquad \left(:: \widehat{k} \times (\widehat{k} \times \overrightarrow{V}) = -\overrightarrow{V} \right)$$

$$= -\frac{g}{f} \frac{3\overrightarrow{V}Z}{3\cancel{T}}$$

$$\frac{\partial \overrightarrow{\nabla}_{g}}{\partial t} = g \nabla \frac{\partial Z}{\partial t}$$

$$g \nabla \frac{\partial Z}{\partial t} = -f^{2} \overrightarrow{\nabla}_{ag(i)}$$

$$\frac{\partial}{\partial t} (\nabla Z)$$

$$- \nabla (\frac{\partial Z}{\partial t})$$
(6-29)

$$g \nabla \frac{\partial Z}{\partial t} = -f^2 \overrightarrow{V}_{ag(i)}$$
此即表示 $\overrightarrow{V}_{ag(i)}$ 與等變高 線的梯度成正比,而方向指向等高

線下降的一側。(即指向低压)

(三) 平流地轉偏差風分量 (Advective Ageostrophic Wind)

氣塊平移時,因等高線的曲率不同,即不平行,故移行的軌

B 6-6

因

$$-f\hat{k} \times \overrightarrow{V}_{ag(a)} = \overrightarrow{V} \cdot \nabla \overrightarrow{V}_{g} = |\overrightarrow{V}_{B}| \frac{\delta \overrightarrow{V}_{g}}{\delta s}$$
or
$$\overrightarrow{V}_{ag(a)} = \frac{|\overrightarrow{V}_{B}|}{f} \hat{k} \times \frac{\delta \overrightarrow{V}_{g}}{\delta s}$$
(6-31)

故 $\overrightarrow{V}_{ag(a)}$ 與 $\delta\overrightarrow{V}_g$ 垂直,且在其左側。 $\delta\overrightarrow{V}_g$ 有兩個分量,一垂直 k \overrightarrow{V}_B ,它使風轉向,以趙向於平沪等高鏡;另一在 \overrightarrow{V}_B 的反(同) 向,它使風速減小 以趙向汾來等高線的梯度一致。因此,在分流處平流地轉偏差風分量偏向高壓;在合流處平流地轉偏差風分量偏向低壓。(如圖 6-7)

→ 同建多小时会的, Vay指向左, To Con 左偏, 偏向低压 一般是多大时(合流), Vay指向左, To Con 左偏, 偏向低压 → 均竭向松平约高的等高值。

(四) 對流地轉偏差風分量 (Convective Ageostrophic Wind)

四)對流地轉偏差風分量 (Convective Ageostrophic Wind)

因為
$$-f\hat{k} \times \overrightarrow{\nabla}_{ag(c)} = \omega \frac{\partial \overrightarrow{\nabla}_g}{\partial p} = \omega \frac{\delta \overrightarrow{\nabla}_g}{\delta p}$$

$$\partial \overrightarrow{\nabla}_g$$

$$\partial \overrightarrow{\nabla$$

故在上升運動($\omega < 0$)處, $\omega \frac{\partial \overrightarrow{V}_g}{\partial n}$ 與 $\delta \overrightarrow{V}_g$ 同向, $\overrightarrow{V}_{ag(c)}$ 在 $\delta \overrightarrow{V}_g$ 的左侧(冷侧),即若氣流上升,則對流地轉偏差風與等溫 $\delta\overrightarrow{V}_g$ 反向, $\overrightarrow{V}_{ag(c)}$ 在 $\delta\overrightarrow{V}_g$ 的右側(暖側),即若氣流下降 ,則 线 對流地轉偏差風與等溫滬相交,且指向暖側(如圖 6-8)。 强烈的温度水平梯度與垂直運動,將伴隨强盛的 $\overrightarrow{V}_{ag(c)}$ 。

、在垂龙速度大之地区, 如蜂鱼或海豚是地区, 均有强烈之此项效克。 一上什么动。指向冷区 了上什些叫公司 下降里沙、Vay指向暖区

6-8

(五)加速度

$$-f \hat{k} \times Vag(x) = \frac{dVag}{dx}$$

$$\frac{dVag}{dx} = -f \hat{k} \times Vag \implies : 科氏加速力使其向右偏。**$$