14. Aufgabenblatt

(Besprechung in den Tutorien 05.02.2024–09.02.2024)

Aufgabe 1. Subset Sum

Betrachten Sie das folgende Problem und den dazugehörigen Algorithmus.

Subset Sum

Eingabe: Eine Multimenge $U := \{u_1, u_2, \dots, u_m\}$ von natürlichen Zahlen

und eine Zahl $B \in \mathbb{N}$.

Frage: Existiert eine Teilmenge $U' \subseteq U$, die sich zu B aufsummiert?

Algorithm 1: Algorithmus für Subset Sum

Input: Eine Multimenge $U := \{u_1, u_2, \dots, u_m\}$ von natürlichen Zahlen und eine natürliche Zahl B.

Output: true genau dann, wenn es eine Teilmenge $U' \subseteq U$ mit $\sum_{u \in U'} u = B$ gibt.

1 ▷ Sei T[i, j] eine Boolesche Tabelle mit $0 \le i \le m$ und $0 \le j \le B$, die angibt, ob es in $\{u_1, u_2, \ldots, u_i\}$ eine Teilmenge gibt, die sich zu j aufsummiert. Initial sind alle Einträge false.

```
2 foreach 0 \le i \le m do
        T[i,0] \leftarrow \texttt{true}
 4 end
 5 foreach i = 1 \dots m do
        foreach j = 1 \dots B do
 6
            if j \geq u_i then
 7
                T[i,j] \leftarrow T[i-1,j] \vee T[i-1,j-u_i]
 8
 9
               T[i,j] \leftarrow T[i-1,j]
10
            end
11
        \mathbf{end}
12
13 end
14 return T[m, B]
```

- 1. Analysieren Sie die Laufzeit des Algorithmus.
- 2. Ist dadurch gezeigt, dass Subset Sum in P liegt?

Hinweis: Eine Multimenge ist eine Menge, in der Elemente mehrfach vorkommen können, d.h. $\{1,1\} \neq \{1\}$.

Aufgabe 2. NP, PSPACE, und deterministische Exponentialzeit

Diskutieren Sie, warum NP \subseteq PSPACE $\subseteq \bigcup_{k \geq 1} \mathsf{DTIME}(2^{n^k})$ gilt.

Aufgabe 3. Generalized Geography

In der Vorlesung wurde das generalisierte Geographiespiel eingeführt:

Eingabe: Ein gerichteter Graph G mit Startknoten v.

Spielregeln: Die Spielerinnen wählen abwechselnd einen "nächsten Knoten" unter den noch nicht gewählten Nachfolgern des aktuellen Knotens. Wer keinen Nachfolger mehr auswählen kann, verliert das Spiel.

Wir betrachten das dazugehörige Entscheidungsproblem.

GENERALIZED GEOGRAPHY (GG)

Eingabe: Ein gerichteter Graph G = (V, E) und $v \in V$.

Frage: Hat Spielerin 1 eine Gewinnstrategie, die mit einem Nachbarn von v startet?

- 1. Zeigen Sie, dass entweder Spielerin 1 oder Spielerin 2 eine Gewinnstrategie hat.
- 2. Sei $\phi = \exists x_1 \forall x_2 \exists x_3 \dots \exists x_n F$ eine quantifizierte aussagenlogische Formel, wobei F in konjunktiver Normalform mit freien Variablen x_1, \dots, x_n ist.

Geben Sie eine polynomzeitberechenbare Instanz (G, v) an, sodass ϕ genau dann wahr ist, wenn $(G, v) \in GG$.