

MATH 152 - PYTHON LAB 1

Directions: Use Python to solve each problem. (Template link)

1. Define variables a = 1.54 and b = 3.78, then evaluate the following:

(a)
$$\frac{\sin^2(a) + \cos^2(a)}{b^2 + 1}$$

(b)
$$\frac{(\sin(a) + \cos(a))^2}{b^2 + 1}$$

State whether or not the answers to (a) and (b) are equal. One or both of the expressions can be simplified using a well-known trigonometric identity. Give the simplified expression(s).

- 2. A very useful identity this semester will be the power reducing formula for $\sin(\theta)$, which is $\sin^2(\theta) = \frac{1 \cos(2\theta)}{2}$.
 - (a) Verify this identity when $x = \frac{3\pi}{4}$.
 - (b) Plot $f = \sin^2(x) \frac{1 \cos(2x)}{2}$ on $[0, 2\pi]$. Since this is a trigonometric identity, f(x) should be 0 for all x. If you do not get y = 0, explain why.
- 3. Given $f(x) = -x^3 2x^2 + 5x$ and g(x) = x:
 - (a) Graph both functions on the same set of axes in a domain and range that let's you see all points of intersection.
 - (b) Find the exact and approximate area between these curves. (NOTE: if the absolute value method does not work, you'll have to split it up as you do by hand!)
- 4. Given $f(x) = 5x^2(x^3 7)^{1/2}$:
 - (a) Make an appropriate substitution to change $\int f(x)dx$ to a function of u and integrate this function.
 - (b) Confirm your answer to part (a) by integrating $\int f(x)dx$ directly. Show that your answers for part (a) and (b) are the same.
 - (c) Use the definite integral from part (b) and the Fundamental Theorem of Calculus to evaluate $\int_{2}^{3} f(x)dx$ (give exact and approximate answers).
 - (d) Check your answer to part (c) by using Python to directly evaluate $\int_2^3 f(x)dx$.