#Name :Mane Shivraj Pandurang

#class: B.E.A.I & D.S.

#Roll No:37

#Subject : Deep Learning (CL-IV)

In [35]: ## Practical No. 1

#1. Problem Statement Real estate agents want help to predict the house price fo

In [4]: import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

 $\begin{tabular}{ll} \textbf{from} & \textbf{sklearn.model_selection} & \textbf{import} & \textbf{train_test_split} \\ \end{tabular}$

from sklearn.linear_model import LinearRegression

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

In [7]: df = pd.read_csv("/content/USA_Housing.csv")

In [17]: df.head()

Out[17]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05

In [18]: # Checking for missing values
 print(df.isnull().sum())

Avg. Area Income 0

Avg. Area House Age 0

Avg. Area Number of Rooms 0

Avg. Area Number of Bedrooms 0

Area Population 0

Price 0

dtype: int64

In [19]: print (df.head())

```
Avg. Area Income Avg. Area House Age Avg. Area Number of Rooms \
                                                                    7.009188
        0
               79545.458574
                                        5.682861
        1
               79248.642455
                                        6.002900
                                                                    6.730821
        2
               61287.067179
                                        5.865890
                                                                    8.512727
                                        7.188236
        3
               63345.240046
                                                                    5.586729
        4
               59982.197226
                                        5.040555
                                                                    7.839388
           Avg. Area Number of Bedrooms Area Population
                                                                  Price
                                            23086.800503 1.059034e+06
        0
                                   4.09
                                            40173.072174 1.505891e+06
        1
                                   3.09
        2
                                   5.13
                                            36882.159400 1.058988e+06
        3
                                   3.26
                                            34310.242831 1.260617e+06
        4
                                   4.23
                                            26354.109472 6.309435e+05
In [22]: #Step 4: Define Features and Target Variable
         X = df.drop(columns=['Price']) # Features
         y = df['Price'] # Target variable
In [23]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
In [24]: model = LinearRegression()
         model.fit(X_train, y_train)
Out[24]:
          LinearRegr ssion
         LinearRegression()
In [28]: #Step 7: Make Predictions
         y_pred = model.predict(X_test)
In [29]: #Step 8: Evaluate the Model
         print("Mean Absolute Error (MAE):", mean_absolute_error(y_test, y_pred))
         print("Mean Squared Error (MSE):", mean_squared_error(y_test, y_pred))
         print("Root Mean Squared Error (RMSE):", np.sqrt(mean_squared_error(y_test, y_pr
         print("R-squared Score (R2):", r2_score(y_test, y_pred))
        Mean Absolute Error (MAE): 80879.0972348982
        Mean Squared Error (MSE): 10089009300.894518
        Root Mean Squared Error (RMSE): 100444.06055558745
        R-squared Score (R2): 0.9179971706834289
In [34]: #Step 9: Visualize the Predictionsplt.figure(figsize=(10, 6))
         plt.scatter(range(len(y_test)), y_test, color='red', label='Actual Prices')
         plt.scatter(range(len(y_pred)), y_pred, color='blue', label='Predicted Prices')
         plt.xlabel("Sample Index")
         plt.ylabel("Price")
         plt.title("Actual vs Predicted Prices per Sample")
         plt.legend()
         plt.show()
```

