ECSE-200 Quiz #11 ([minimum number of randomly chosen people such that the probability of two people having the same birthday is greater than ½, ignoring leap years] Nov 2018)

NAME	g Field	McGill ID#

READ each question carefully. Do your work independently. SHOW ALL YOUR WORK. Give units on your answers (where appropriate).

Consider the circuit diagram and the plot of current $i_s(t)$ versus time t. The circuit is in dc steady-state for t < 0. Answer the questions.

- 1) Express the input $i_s(t)$ shown in the figure above in terms of the unit step function u(t). [3pts]
- 2) What is the voltage $v_c(t)$ in response to the input $i_s(t) = 1 \text{A } u(t)$? [2pts]
- 3) What is the voltage $v_c(t)$ in response to the input $i_s(t)$ as shown in the figure above? [3pts]
- 4) What is the voltage $v_R(t)$ in response to the input $i_S(t)$ as shown in the figure above? [2pts]

a) initial condition:
$$V_{c}(0+) = V_{c}(0-) = 0V$$

final condition: $D_{1A} \neq 10kn \quad V_{c}(a) = 1A \cdot 10kn = 10kV$

time constant: $T_{10kn} = 10kV$
 $T_{10kn} = 10$

3)
$$V_{c}(t) = 30V(1 - exp(-t/ams))u(t)$$
 $+ (-60V)(1 - exp(-(t-4ms)/ams))u(t-4ms)$
 $+ 30V(1 - exp(-(t-8ms)/ams))u(t-8ms)$

[+1 for correct amplitudes]

[+1 for correct delays]

[+1 for correct functional form]

page 1/2

4) Find unit step response.
$$i_s = 1Ault$$
)

 $t = 0+$
 $t = 0+$