差消法化简 高阶递推方程

快速排序

- 假设 A[p..r] 的元素彼此不等
 以首元素A[1]对数组 A[p..r]划分,使得:
 小于x 的元素放在 A[p..q-1]
 大于 x 的元素放在 A[q+1..r]
- 递归对 A[p..q-1]和 A[q+1..r] 排序

工作量:子问题工作量+划分工作量

输入情况

• 有n种可能的输入

x 排好序位置	子问题 1规模	子问题 2规模
1	0	n-1
2	1	n-2
3	2	n-3
•••	•••	•••
n-1	n-2	1
n	n-1	0

对每个输入,划分的比较次数都是n-1

工作量总和

$$T(0) + T(n-1) + n-1$$

 $T(1) + T(n-2) + n-1$
 $T(2) + T(n-3) + n-1$

•••

$$+ T(n-1) + T(0) + n-1$$

$$2[T(1)+...+T(n-1)]+n(n-1)$$

快速排序平均工作量

假设首元素排好序在每个位置是等概率的

$$T(n) = \frac{2}{n} \sum_{i=1}^{n-1} T(i) + O(n), n \ge 2$$
$$T(1) = 0$$

全部历史递推方程对于高阶方程应该先化简,然后迭代

差消化简

利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的

$$T(n) = \frac{2}{n} \sum_{i=1}^{n-1} T(i) + cn$$

$$nT(n) = 2 \sum_{i=1}^{n-1} T(i) + cn^{2}$$

$$(n-1)T(n-1) = 2 \sum_{i=1}^{n-2} T(i) + c(n-1)^{2}$$

差消化简

$$nT(n) - (n-1)T(n-1)$$
= $2T(n-1) + cn^2 - c(n-1)^2$

化简

$$nT(n) = (n+1)T(n-1) + c_1n$$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{c_1}{n+1}$$

迭代求解

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{c_1}{n+1} = \cdots$$

$$= c_1 \left[\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{3} \right] + \frac{T(1)}{2}$$

$$= c_1 \left[\frac{1}{n+1} + \frac{1}{n} + \dots + \frac{1}{3} \right]$$

$$\frac{\text{RA}}{\text{With}}$$

$$= \Theta(\log n)$$

$$T(n) = \mathcal{O}(n \log n)$$

小结

- 对于高阶递推方程先要用差消 法化简为一阶方程
- 迭代求解