Lecture 16 Interpolation Cont.

Owen L. Lewis

Department of Mathematics and Statistics University of New Mexico

October 22, 2024

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 1/36

Recall

Given n+1 distinct points x_0, \ldots, x_n , and values y_0, \ldots, y_n , there exists a unique polynomial p(x) of degree at most n so that

$$p(x_i) = y_i \quad i = 0, \ldots, n$$

Recall: Monomials

Obvious attempt: try picking

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

To find the a_k 's

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ & & & \vdots & \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

That is,

$$a = V^{-1}y$$

Very bad matrix: terribly ill-conditioned.

Good: Easy to evaluate at any other location (nested):

$$p(x) = a_0 + x(a_1 + x(a_2 \dots x(a_{n-1} + a_n x) \dots)).$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 3/36

Recall: Lagrange

The general Lagrange form is

$$\ell_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i} \quad \Rightarrow \ell_k(x_j) = \begin{cases} 1, & \text{if } j = k \\ 0, & \text{if } j \neq k \end{cases}$$

The resulting interpolating polynomial is

$$p(x) = \sum_{k=0}^{n} \ell_k(x) y_k$$

Very good: no need to invert a matrix. Can just build directly out of our data. Bad: No easy way to evaluate. Must store many polynomials/coefficients.

Resolution: Newton Polynomials

By definition, its nested

$$p(x) = \tilde{a}_0 + \tilde{a}_1(x - x_0) + \tilde{a}_2(x - x_0)(x - x_1) + \tilde{a}_3(x - x_0)(x - x_1)(x - x_2) + \dots$$

We can find an algorithm to compute the coefficients:

$$\tilde{\mathbf{a}}_k = f[x_0, \dots x_k].$$

where

$$f[x_i, \dots x_j] = \frac{f[x_i, \dots x_{j-1}] - f[x_{i+1}, \dots x_j]}{x_i - x_i}, \quad f[x_j] = y_j.$$

The very good: More stable that monomials

The good: Almost as computationally efficient (nested evaluation)

The good: Easier to add more data points

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 5/36

Recursive Property

$$f[x_0,\ldots,x_k] = \frac{f[x_1,\ldots,x_k] - f[x_0,\ldots,x_{k-1}]}{x_k - x_0}$$

With the first two defined by

$$f[x_i] = f(x_i)$$

$$f[x_i, x_j] = \frac{f[x_j] - f[x_j]}{x_j - x_i}$$

 Owen L. Lewis (UNM)
 Math/CS 375
 October 22, 2024
 6/36

Invariance Theorem

 $f[x_0, \ldots, x_k]$ is invariant under all permutations of the arguments x_0, \ldots, x_k

Simple "proof": $f[x_0, x_1, ..., x_k]$ is the coefficient of the x^k term in the polynomial interpolating f at $x_0, ..., x_k$. But any permutation of the x_i still gives the same polynomial. That is, the order that you consider the interpolation points does not matter.

This says that we can also write

$$f[x_i, \ldots, x_j] = \frac{f[x_{i+1}, \ldots, x_j] - f[x_i, \ldots, x_{j-1}]}{x_j - x_i}$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 7/36

the easy way: tables

Χ	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
-X ₀	$f[x_0]$			
		$f[x_0, x_1]$		
<i>X</i> ₁	$f[x_1]$		$f[x_0, x_1, x_2]$	
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₂	$f[x_2]$		$f[x_1, x_2, x_3]$	
		$f[x_2, x_3]$		
<i>X</i> ₃	$f[x_3]$			$f[x_0, x_1, x_2, x_3]$

the easy way: tables

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>x</i> ₀	$f[x_0]$	6 5 1		$f[x_0, x_1, x_2, x_3]$
٧.	f[v.]	$I[X_0, X_1]$	f[v. v. v.]	
^1	/[A1]	$f[x_1, x_2]$	[[\lambda_0, \lambda_1, \lambda_2]	$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₂	$f[x_2]$	1 [11] [12]	$f[x_1, x_2, x_3]$	11.01.21.73
		$f[x_2, x_3]$		
<i>X</i> ₃	$f[x_3]$			

the easy way: tables

Χ	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
-X ₀	$f[x_0]$			
		$f[x_0, x_1]$		
<i>X</i> ₁	$f[x_1]$		$f[x_0, x_1, x_2]$	
		$f[x_1, x_2]$		$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₂	$f[x_2]$		$f[x_1, x_2, x_3]$	
		$f[x_2, x_3]$		
<i>X</i> ₃	$f[x_3]$			$f[x_0, x_1, x_2, x_3]$

the easy way: tables

We can compute the divided differences much easier using tables. To construct the divided difference table for f(x) for the x_0, \ldots, x_3

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>x</i> ₀	$f[x_0]$	45		
<i>X</i> ₁	<i>f</i> [<i>x</i> ₁]	$f[x_0, x_1]$	$f[x_0,x_1,x_2]$	
<i>X</i> ₂	$f[x_2]$	$f[x_1, x_2]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₃	<i>f</i> [<i>x</i> ₃]	$f[x_2, x_3]$		$f[x_0, x_1, x_2, x_3]$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 8/36

the easy way: tables

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>X</i> ₀	$f[x_0]$			$f[x_0, x_1, x_2, x_3]$
	45. 3	$f[x_0, x_1]$		
<i>X</i> ₁	$f[x_1]$	er 1	$f[x_0, x_1, x_2]$	
	6 F 3	$I[X_1, X_2]$	6.	$f[X_0, X_1, X_2, X_3]$
<i>X</i> ₂	<i>f</i> [<i>X</i> ₂]	6 F 3	$f[X_1, X_2, X_3]$	
	6 F 1	$I[X_2, X_3]$		
<i>X</i> 3	<i>T</i> [<i>X</i> 3]			

the easy way: tables

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>X</i> ₀	$f[x_0]$			$f[x_0, x_1, x_2, x_3]$
	65 3	$f[x_0,x_1]$	65	
<i>X</i> ₁	$f[X_1]$	er 1	$f[x_0, x_1, x_2]$	er 1
	4 []	$I[X_1, X_2]$	4 f., ., ., 1	$I[X_0, X_1, X_2, X_3]$
<i>X</i> ₂	<i>I</i> [<i>X</i> ₂]	f[v v]	$I[X_1, X_2, X_3]$	
Yo	$f[y_0]$	I[X2, X3]		
^ 3	1 [X3]			

the easy way: tables

We can compute the divided differences much easier using tables. To construct the divided difference table for f(x) for the x_0, \ldots, x_3

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>X</i> ₀	$f[x_0]$	4 []		
<i>X</i> ₁	$f[x_1]$	$I[X_0, X_1]$	$f[x_0, x_1, x_2]$	
Yo	f[xo]	$f[x_1, x_2]$	$f[y_1, y_2, y_2]$	$f[x_0, x_1, x_2, x_3]$
^ 2	1[12]	$f[x_2, x_3]$	1[1, 12, 13]	
<i>X</i> ₃	$f[x_3]$			

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 8/36

the easy way: tables

Now just read the coefficients out of your table

Χ	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>x</i> ₀	$f[x_0]$	6 5 1		$f[x_0, x_1, x_2, x_3]$
٧.	f[v.]	$I[X_0, X_1]$	f[vo vo vo]	
^1	1[7]	$f[x_1, x_2]$	1[٨0, ٨1, ٨2]	$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₂	$f[x_2]$. 17 23	$f[x_1, x_2, x_3]$	2 07 17 27 01
	45 3	$f[x_2, x_3]$		
<i>X</i> 3	<i>t</i> [<i>x</i> ₃]			

the easy way: tables

Now just read the coefficients out of your table

Χ	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
<i>x</i> ₀	a ₀			
		a_1		
<i>X</i> ₁	$f[x_1]$		a_2 $f[x_1, x_2, x_3]$	
		$f[x_1, x_2]$		a ₃
x_2	$f[x_2]$		$f[x_1, x_2, x_3]$	
		$f[x_2, x_3]$		
<i>X</i> ₃	$f[x_3]$			

Notes

To the Board

10/36

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3	_		
3 2	<u>13</u> 4	1 2 1 6	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u> 3	- <u>2</u>		

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3	4		
3/2	<u>13</u> 4	1 6	<u>1</u> 3	-2
0	3		- <u>5</u>	_
2	<u>5</u> 3	- <u>2</u>		

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3	_		
3 2	<u>13</u> 4	1 2 1 6	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u> 3	- <u>2</u>		

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3	_		
3 2	<u>13</u> 4	1 2 1 6	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u>	- 2 3	-	

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3			
3 2	<u>13</u> 4	1 2 1 6	<u>1</u> 3	-2
0	3		- <u>5</u>	_
2	<u>5</u> 3	- <u>2</u>		

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3	_		
3/2	<u>13</u> 4	$\frac{1}{2}$	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u> 3	-2/3		

the easy way: example

Construct the divided differences table for the data

and construct the largest order interpolating polynomial.

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3			
3 2	<u>13</u>	1 2 1 6	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u> 3	- <u>2</u>		

the easy way: example

X	$f[\cdot]$	$f[\cdot,\cdot]$	$f[\cdot,\cdot,\cdot]$	$f[\cdot,\cdot,\cdot,\cdot]$
1	3			
<u>3</u>	<u>13</u> 4	$\frac{1}{2}$	<u>1</u> 3	-2
0	3		$-\frac{5}{3}$	_
2	<u>5</u>	-2/3		

The coefficients are readily available and we arrive at

$$p_3(x) = 3 + \frac{1}{2}(x-1) + \frac{1}{3}(x-1)(x-\frac{3}{2}) - 2(x-1)(x-\frac{3}{2})x$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 12/36

Newton Polynomial

$$p_3(x) = 3 + \frac{1}{2}(x-1) + \frac{1}{3}(x-1)(x-\frac{3}{2}) - 2(x-1)(x-\frac{3}{2})x$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 13/36

Newton Polynomial

$$p_3(x) = 3 + \frac{1}{2}(x-1) + \frac{1}{3}(x-1)(x-\frac{3}{2}) - 2(x-1)(x-\frac{3}{2})x$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 14/36

Important

Theorem says there is exactly one polynomial of degree n which interpolates the n+1 data points

$$(x_0, y_0), (x_1, y_1), \dots (x_n, y_n).$$

Monomial, Lagrange, Newton are just three different ways to write/find/store the same polynomial:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$$

$$p(x) = \sum_{k=0}^{n} y_k \ell_k(x) = \sum_{k=0}^{n} y_k \left(\prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i} \right)$$

$$p(x) = \tilde{a}_0 + \tilde{a}_1(x - x_0) + \tilde{a}_2(x - x_0)(x - x_1) + \tilde{a}_3(x - x_0)(x - x_1)(x - x_2) + \dots$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 15/36

Bad News

Polynomial interpolation can have catastrophic drawbacks.

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 16/36

Let's take something very smooth function (Runge's function)

How does interpolation behave?

Let's take something very smooth function (Runge's function)

$$f(x) = \frac{1}{1 + 25x^2}$$

Five equally spaced points doesn't do well.

Let's take something very smooth function (Runge's function)

$$f(x) = \frac{1}{1+25x^2}$$

Nine equally spaced points is even worse!

Can show that, when using equispaced data points (for this f),

Owen L. Lewis (UNM)

$$\lim_{n\to\infty} \left(\max_{-1\leqslant x\leqslant 1} |f(x) - p_n(x)| = \infty \right)$$

20/36

October 22, 2024

Notes

To the board!

21/36

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024

Some analysis...

What can we say about

$$e(t) = f(t) - p(t)$$

at some point x? Consider n = 1: linear interpolation of a function at $x_0 \& x_1$

- want: error at x, e(x)
- look at

$$g(t) = e(t) - \frac{(t - x_0)(t - x_1)}{(x - x_0)(x - x_1)}e(x)$$

- g(t) is 0 at $t = x_0, x_1, x$
- so g'(t) is zero at two points
- so g''(t) is zero at one point, call it c

22/36

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024

Some analysis...

We know g''(c) = 0 for some point c:

$$0 = g''(c) = e''(c) - 2\frac{e(x)}{(x - x_0)(x - x_1)}$$
$$= f''(c) - 2\frac{e(x)}{(x - x_0)(x - x_1)}$$
$$e(x) = \frac{(x - x_0)(x - x_1)}{2}f''(c)$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 23/36

Analysis of Interpolation Error: General result

Theorem: Interpolation Error I

If $p_n(x)$ is the (at most) n degree polynomial interpolating f(x) at n+1 distinct points and if $f^{(n+1)}$ is continuous, then

$$e(x) = f(x) - p_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(c) \prod_{i=0}^{n} (x - x_i)$$

Can you explain the problem with Runge's function with this theorem?

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 24/36

Analysis of Interpolation Error: Equispaced Points

Theorem: Bounding Lemma

Suppose x_i are equispaced in [a, b] for i = 0, ..., n. Then

$$\prod_{i=0}^n |x-x_i| \leqslant \frac{h^{n+1}}{4} n!$$

(here, $h = x_i - x_{i-1}$ is the distance between our points).

Theorem: Interpolation Error II

Let $|f^{(n+1)}(x)| \leq M$, then with the above,

$$|f(x)-p_n(x)|\leqslant \frac{Mh^{n+1}}{4(n+1)}$$

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024 25/36

Fixes

We have two options:

- 1 move the nodes: Chebychev nodes
- piecewise polynomials (splines)

Option #1: Chebychev nodes in [-1, 1]

$$x_i = \cos\left(\pi \frac{2i+1}{2n+2}\right), \quad i=0,\ldots,n$$

Option #2: piecewise polynomials...

26/36

Owen L. Lewis (UNM) Math/CS 375 October 22, 2024

$$x_i = \cos\left(\pi \frac{2i+1}{2n+2}\right), \quad i = 0, \ldots, n$$

Start with a semi-circle above the interval.

$$x_i = \cos\left(\pi \frac{2i+1}{2n+2}\right), \quad i=0,\ldots,n$$

Equally space points on that circle.

$$x_i = \cos\left(\pi \frac{2i+1}{2n+2}\right), \quad i=0,\ldots,n$$

Project down to the x axis

$$x_i = \cos\left(\pi \frac{2i+1}{2n+2}\right), \quad i = 0, \ldots, n$$

Use those as your interpolation points.

- Can obtain nodes from equidistant points on a circle projected down
- Nodes are non uniform and non nested

31/36

High degree polynomials using equispaced points suffer from many oscillations

- Worst behavior is near the end points ("Runge Phenomenon").
- Things get worse as we add more (equally spaced) points and make higher order polynomial.

32/36

High degree polynomials using equispaced points suffer from many oscillations

- Chebyshev bunches the points towards the ends of the interval
- This "ties" the function down at the ends, and the error is distributed more evenly

33/36

High degree polynomials using equispaced points suffer from many oscillations

- Chebyshev bunches the points towards the ends of the interval
- This "ties" the function down at the ends, and the error is distributed more evenly

High degree polynomials using equispaced points suffer from many oscillations

- Chebyshev bunches the points towards the ends of the interval
- This "ties" the function down at the ends, and the error is distributed more evenly

Why not Chebychev?

Chebychev points are "optimal" in that they minimize Runge phenomenon as *n* increases.

Unfortunately this presumes we get to choose where our "data" points lie on the *x*-axis.