

Sistemas Lineares (SBL0091)

Prof.: C. Alexandre Rolim Fernandes

Prática de Laboratório 5 - Detecção de Comandos de Voz

- O código deve estar bem organizado e comentado, para que seja possível entendê-lo e corrigi-lo.
- Fazer todas as questões em um só arquivo.
- O seu código deve gerar automaticamente todos os gráficos e resultados solicitados.
- Enviar no SIGAA o código cujo nome do arquivo deve ser igual ao seu nome.
- Não enviar código em PDF.
- Prazo e forma de entrega: dia 11/07/23 às 23h59, no SIGAA.
- Esta prática vale 2,0 pontos extras na AP3. Estes pontos poderão realocados para as outras APs caso você fique com mais de 10,0 na AP3.

Detecção de Comandos de Voz usando Transformada de Fourier:

Foram fornecidos no SIGAA 6 diferentes arquivos de áudio no format .mat, sendo 3 deles correspondentes à palavra "sim" (Ys1, Ys2, Ys3) e 3 deles correspondentes à palavra "não" (Yn1, Yn2, Yn3).

O objetivo desta prática é encontrar um parâmetro, medido a partir da Transformada de Fourier, que nos permita detectar, de forma automática, se o áudio corresponde à palavra "sim" ou à palavra "não". Em outras palavras, realizaremos o reconhecimento automático dos comandos de voz "sim" e "não".

1) Carregue estes 6 sinais de áudio usando a função *load*. Ex.: *load Ys1 Ys1*. Caso deseje, você pode escutar estes arquivos usando a função *sound* no Matlab (não é obrigatório).

- 2-) Gere o gráfico do módulo da Transformada de Fourier destes 6 sinais (em 6 figuras diferentes) [figure, plot, fft, fftshift, abs]. O eixo x deste gráficos deve corresponder à frequência entre -pi e pi [linspace].
- 3-) Note que os sinais "sim" possuem componentes de alta frequência (sinais agudos) com maior intensidade que os sinais "não". Isto se deve ao fato de a palavra "não" ser mais nasalizada, o que implica em um sinal mais grave.

Em particular, pode-se observar que para as frequências acima de 0.33 rad/s (e menores dos que -0.33 rad/s), os sinais "sim" possuem o módulo da Transformada de Fourier com maiores intensidades. Este fato pode ser usado para criarmos um parâmetro que consiga distinguir os sinais "sim" e "não".

Calcule, para os 6 sinais de áudio, a soma dos módulos da Transformada de Fourier para as baixas frequências, isto é, entre -0.33 rad/s e 0.33 rad/s. Note que as frequências -0.33 rad/s e 0.33 rad/s correspondem aos índices 28344 e 35144 do vetor da Transformada de Fourier.

Ex.: FourierBaixa n1 = sum(abs(F Yn1(28344:35144)));

Neste exemplo, F Yn1 é a Transformada de Fourier de Yn1.

4-) Agora calcule, para os 6 sinais de áudio, a soma dos módulos da Transformada de Fourier para as altas frequências, isto é, para frequências maiores que 0.33 rad/s e menores do que -0.33 rad/s.

Ex.: FourierAlta_n1 = $sum(abs(F_Yn1(35144:end))) + sum(abs(F_Yn1(1:28344)));$

5-) Para cada um dos 6 sinais de áudio, calcule a razão entre as somas calculadas nas questões 3 e 4. Ex.:

Razao n1 = FourierAlta n1 / FourierBaixa n1;

- 6-) Calcule a média dos 6 valores obtidos na questão 5:

 Razao_media = (Razao_n1 + Razao_n2 + Razao_s1 + Razao_s2 + Razao_s3)/6;
- 7-) Para finalizar, compare os valores obtidos na questão 5 com a média obtida na questão 6. Os valores obtidos na questão 5 para os sinais "não" (ex. Razao_n1) devem ser menores que Razao_media, enquanto os valores obtidos os sinais "sim" (ex. Razao s1) devem ser menores que Razao media.

Caso isto tenha acontecido, os parâmetros obtidos na questão 5 podem ser usados para o reconhecimento automático dos 6 sinais "sim" e "não", através de uma simples comparação com o valor Razao_media.