

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: V420DK1 SUFFIX: KS1

Revision : <u>C8</u> Customer :	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your confirm	nation with your signature and comments.

Approved By	Checked By	Prepared By		
Chao-Chun Chung	YP Lee	Jim Ho		

Version 2.1 Date : Oct.23 2013

CONTENTS

CONTENTS	2
REVISION HISTORY	4
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 GENERAL SPECIFICATIONS	5
1.4 MECHANICAL SPECIFICATIONS	6
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
2.2 PACKAGE STORAGE	8
2.3 ELECTRICAL ABSOLUTE RATINGS	8
2.3.1 TFT LCD MODULE	8
2.3.2 BACKLIGHT CONVERTER UNIT	8
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE	9
3.2 BACKLIGHT UNIT	12
3.2.1 CONVERTER CHARACTERISTICS	12
3.2.2 CONVERTER INTERFACE CHARACTERISTICS	14
4. BLOCK DIAGRAM OF INTERFACE	16
4.1 TFT LCD MODULE	16
5 .INPUT TERMINAL PIN ASSIGNMENT	17
5.1 TFT LCD MODULE	17
5.2 BACKLIGHT UNIT	22
5.3 CONVERTER UNIT	22
5.4 COLOR DATA INPUT ASSIGNMENT	24
6. INTERFACE TIMING	25
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	25
6.1.1 Timing spec for QFHD Frame Rate = 50Hz	25
6.1.2 Timing spec for QFHD Frame Rate = 60Hz	25
6.1.3 Input Timing Spec for FHD, Frame Rate = 50Hz	26
Version 2.1 2	Date : Oct.23 2013

6.1.4 Input Timing Spec for FHD, Frame Rate = 60Hz	26
6.1.5 Input Timing Spec for FHD, Frame Rate = 100Hz	27
6.1.6 Input Timing Spec for FHD, Frame Rate = 120Hz	27
6.1.7 Input Timing spec for QFHD, Frame Rate = 24Hz	28
6.1.8 Input Timing spec for QFHD, Frame Rate = 30Hz	28
6.2 V by One Input Signal Timing Diagram	31
6.3 Byte Length and Color mapping of V-by-One HS	32
6.4 POWER ON/OFF SEQUENCE	33
6.5 2D/3D MODE CHANGE SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON	34
7. OPTICAL CHARACTERISTICS	35
7.1 TEST CONDITIONS	35
7.2 OPTICAL SPECIFICATIONS	36
8. PRECAUTIONS	41
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	41
8.2 SAFETY PRECAUTIONS	41
8.3 SAFETY STANDARDS	41
9. DEFINITION OF LABELS	42
9.1 MODULE LABEL	42
9.2 CARTON LABEL	43
10. PACKAGING	44
10.1 PACKAGING SPECIFICATIONS	44
10.2 PACKAGING METHOD	44
10.3 UN-PACKAGING METHOD	46
11 MECHANICAL CHARACTERISTIC	47

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver. 2.0	10/09, 2013	All	All	The Approval specification was firstly issued.
Ver. 2.1	10/23, 2013	25	6.1.1	Added the information of Data Clock and Frame rate.
		25~28	6.1	Modified the frequency of Data Clock from Max. 79MHz to 78MHz.
		33	6.4	Added the mark of T14.

NNOLUX 群創光電股份有限公司

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420DK1-KS1 is a 42" TFT Liquid Crystal Display module with LED Backlight unit and 8Lanes V-by-One HS interface. This module supports 3840 x 2160 Quad Full HDTV format and can display true 1.07G colors (8-bit+FRC). The driving board module for backlight is built-in.

1.2 FEATURES

- High brightness 350 nits
- High contrast ratio 5000:1
- Fast response time Gray to Gray typical: 9.5 ms
- High color saturation NTSC 72%
- Quad Full HDTV (3840 x 2160 pixels) resolution, true HDTV format
- V-by-One HS interface
- Optimized response time for 50Hz/60Hz frame rate
- Viewing Angle: 178(H)/178(V) (CR>10) VA Technology
- Ultra wide viewing angle: Super MVA technology
- RoHs compliance
- T-con input frame rate *: FHD 50/60Hz, FHD 100/120Hz, QFHD 24/30Hz or QFHD 50/60Hz,
 Output frame rate: QFHD 50/60Hz, QFHD 100/120Hz
 - *: The detail setting such as I2C command or timing requirement in FHD/QFHD is specified in INX application note. It's important and necessary to follow the specification either in product SPEC or application note, otherwise it may lead to abnormal or no display. INX application note would be provided by INX in the design-in stage.

1.3 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	919.296 (H) x 517.104 (V)	mm	(1)
Bezel Opening Area	924.296 (H) x 522.104 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	3840 x R.G.B. x 2160	pixel	-
Pixel Pitch(Sub Pixel)	0.0798 (H) x 0.2394 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	1.07G colors (8-bit+FRC)	color	ı
Display Operation Mode	Transmissive mode / Normally black	-	-
Surface Treatment	Anti-Glare coating (Haze 1%) , Hardness 3H	-	(2)
Rotation Function	Achievable		(3)
Display Orientation	Signal input with "INX"		(3)

Note (1) Please refer to the attached drawings in chapter 11 for more information about the front and back outlines.

Note (2) The spec of the surface treatment is temporarily for this phase. INX reserves the rights to change this feature.

Note (3)

1.4 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	935.3	936.3	937.3	mm	(1),(2)
Module Size	Vertical (V)	537.1	538.1	539.1	mm	(1),(2)
		15.2	16.2	17.2	mm	To Rear
	Depth (D)	24.6	25.6	26.6	mm	To converter cover
Weight		7995.2	8416	8836.8	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Module Depth does not include connectors.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	V	alue	Unit	Note	
nem	Бушьог	Min.	Max.	Offit		
Storage Temperature	T_{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T_{OP}	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V _{NOP}	-	1.0	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. ($Ta \le 40 \, {}^{\circ}C$).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) $10 \sim 200 \text{ Hz}$, 30 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Relative Humidity (%RH)

Version 2.1 7 Date : Oct.23 2013

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time, It is highly recommended to store the module with temperature from 0 to 35 $^{\circ}$ C at normal humidity without condensation.
- (b) The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offit		
Power Supply Voltage	V_{CC}	-0.3	13.5	V	(1)	
Logic Input Voltage	$V_{\rm IN}$	-0.3	3.6	V	(1)	

2.3.2 BACKLIGHT CONVERTER UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	V_{W}	Ta = 25 ℃	ı	-	60	V_{RMS}	3D Mode
Converter Input Voltage	V_{BL}	-	0	-	30	V	
Control Signal Level	-	-	-0.3	-	6	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control and External PWM Control.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

	n		6 1 1		Value	TT :	NI	
	Param	eter	Symbol	Min.	Тур.	Max.	- Unit	Note
Power Supply Voltage			V _{CC}	10.8	12	13.2	V	(1)
Rush Curre	nt		I _{RUSH}	_	_	2.33	A	(2)
		White Pattern	P_T	_	11.43	13.63	W	
OFHD 120F Power Cons	_	Horizontal Stripe	P_T	_	22.29	26.96	W	
rower con	ounip tion	Black Pattern	P_{T}	_	11.36	13.66	W	
		White Pattern	_	_	0.95	1.14	A	
OFHD 120F Power Supp	-	Horizontal Stripe	_	_	1.86	2.25	A	
rower supply current		Black Pattern	_	_	0.95	1.14	A	(3)
	White Pattern		P_T	_	10.72	12.93	W	
QFHD 60Hz Power Cons	-	Horizontal Stripe	P_{T}	_	22.22	26.93	W	
rower con	amp trom	Black Pattern	P_{T}	_	12.38	14.96	W	
		White Pattern	_	_	0.89	1.08	A	
QFHD 60Hz Power Supp	-	Horizontal Stripe	_	_	1.85	2.24	A	
r ower supp	ry current	Black Pattern	_	_	1.03	1.25	A	
	Differential Threshold V		VLVTH	_	_	+50	mV	
V-by-One HS	Differential Threshold V		VLVTL	-50	_	_	mV	(4)
	Differential input voltage (single-end)		VID	200	_	600	mV	
CMOS	Input High	Γhreshold Voltage	V _{IH}	2.7	_	3.3	V	
interface	Input Low T	Threshold Voltage	$V_{\rm IL}$	0	_	0.7	V	

Note (1) The module should be always operated within the above ranges. The ripple voltage should be controlled under 10% of Vcc (Typ.)

Note (3) The specified power supply current is under the conditions at Vcc = 12 V, Ta = 25 ± 2 °C, fv = 60/120 Hz, whereas a power dissipation check pattern below is displayed.

3.2 BACKLIGHT UNIT

3.2.1 CONVERTER CHARACTERISTICS

Parameter	Symbol		Value		Unit	Note
rarameter	Symbol	Min.	Тур.	Max.	Oillt	Note
Power Consumption	P _{BL(2D)}		39	44.9	W	(1), (2)
Tower Consumption	P _{BL(3D)}		34.4	39.6	W	(1), (2)
Converter Input Voltage	VBL	22.8	24.0	25.2	VDC	
	I _{BL(2D)}	_	1.63	1.88	A	Non Dimming
Converter Input Current	I _{BL(3D)}		1.43	1.7	A	
Innut Innuch Comment	$I_{R(2D)}$	-	_	3.9	Apeak	V _{BL} =22.8V (3), (6)
Input Inrush Current	I _{R(3D)}	_	_	5.4	Apeak	V _{BL} =22.8V (3), (6)
Dimming Frequency	FB	170	180	190	Hz	(5)
Dimming Duty Ratio	DDR	5	-	100	%	(4), (5)
Life Time	-	30,000	-	-	Hrs	(7)

- Note (1) The power supply capacity should be higher than the total converter power consumption P_{BL} . Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.
- Note (2) The measurement condition of Max. value is based on 42" backlight unit under input voltage 24V, at 2D/3D Mode and lighting 1 hour later.
- Note (3) For input inrush current measure, the VBL rising time from 10% to 90% is about 20ms.
- Note (4) EPWM signal have to input available duty range. Between 97% and 100% duty (DDR) have to be avoided. (97% < DDR < 100%) But 100% duty (DDR) is possible. 5% duty (DDR) is only valid for electrical operation.
- Note (5) FB and DDR are available only at 2D Mode.
- Note (6) Below diagram is only for power supply design reference.

Test Condition: V_{BL}=22.8V, at 2D Mode / at 3D Mode

Note (7) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at $Ta = 25\pm2^{\circ}C$

3.2.2 CONVERTER INTERFACE CHARACTERISTICS

Parameter		Crembal	Symbol Test		Value		Unit	Note			
		Symbol	Condition	Min.	Тур.	Max.	Offit	note			
On/Off Control	ON	VIDI ONI	_	2.0	_	5.0	V				
Voltage	OFF	VBLON	_	0	_	0.8	V				
External PWM Control	HI		_	2.0	_	5.25	V	Duty on	(E) (C) (O)		
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off	(5), (6) , (9)		
External PWM Frequer	ncy	F _{EPWM}	_	150	160	170	Hz	Normal m	ode (7) , (9)		
Error Signal		ERR	_	_	_	_	_	Abnorn	nal: Open		
VBL Rising Time		Tr1	_	20	_	_	ms	10%-9	$90\%\mathrm{V}_{\mathrm{BL}}$		
Control Signal Rising T	ime	Tr	_	_	_	100	ms				
Control Signal Falling	Гіте	Tf	_	_	_	100	ms				
PWM Signal Rising Tin	ne	TPWMR	_	_	_	50	us	,	(6)		
PWM Signal Falling Ti	me	TPWMF	_	_	_	50	us] '	6)		
Input Impedance		Rin	_	1	_	_	ΜΩ	EPWM, BLON			
PWM Delay Time		TPWM	_	100	_	_	ms	(6)			
PLONI Deless Times		Ton	_	300	_	_	ms				
BLON Delay Time		T _{on1}	_	300	_	_	ms				
BLON Off Time		Toff	_	300	_	_	ms				

- Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.
- Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.
- Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON

Turn OFF sequence: BLOFF \rightarrow PWM signal \rightarrow VBL

- Note (4) When converter protective function is triggered, ERR will output open collector status. Please refers to Fig.2.
- Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.3.
- Note (6) EPWM is available only at 2D Mode.
- Note (7) EPWM signal have to input available frequency range.
- Note (8) [Recommend] EPWM duty ratio is set at 100% (Max. Brightness) in 3D Mode.
- Note (9) Used the EPWM signal control user dimming only in L/D OFF. When L/D ON, please reference 5.1 Note (11) and application Note.

Version 2.1 14 Date : Oct.23 2013

Fig. 1

Fig. 2 Fig. 3

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5.INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

CNV1 Connector Pin Assignment (187059-51221(P-TWO) or WF23-402-5133(FCN))

			T
Pin	Name	Description	Note
1	Vin	Power input (+12V)	
2	Vin	Power input (+12V)	
3	Vin	Power input (+12V)	
4	Vin	Power input (+12V)	
5	Vin	Power input (+12V)	
6	Vin	Power input (+12V)	
7	Vin	Power input (+12V)	
8	Vin	Power input (+12V)	
9	N.C.	No Connection	(10)
10	GND	Ground	
11	GND	Ground	
12	GND	Ground	
13	GND	Ground	
14	GND	Ground	
15	L/R_O	Output signal for Glasses Left Right signal,	(5)
16	L/R	Input signal for Left/Right synchronous signal.	(3) (7)
17	2D/3D	2D/3D Enable	(2) (7)
18	SDA	I2C Data signal	(11)(12)
19	SCL	I2C Clock signal	(11)(12)
20	N.C.	No Connection	
21	N.C.	No Connection	(10)
22	LD_EN	Local Dimming Mode Enable.	(4) (6)
23	N.C.	No Connection	(10)
24	N.C.	No Connection	(10)
25	HTPDN	Hot plug detect output, Open drain.	
26	LOCKN	Lock detect output, Open drain.	
27	GND	Ground	
28	RX0N	1 ST Pixel Negative V-by-One differential data input in area A. Lane 0	(4)
29	RX0P	1 ST Pixel Positive V-by-One differential data input in area A. Lane 0	(1)
30	GND	Ground	
31	RX1N	2 ND Pixel Negative V-by-One differential data input in area A. Lane 1	(3)
32	RX1P	2 ND Pixel Positive V-by-One differential data input in area A. Lane 1	(1)
33	GND	Ground	

34	RX2N	3 RD Pixel Negative V-by-One differential data input in area A. Lane 2	
35	RX2P	3 RD Pixel Positive V-by-One differential data input in area A. Lane 2	(1)
36	GND	Ground	
37	RX3N	4 TH Pixel Negative V-by-One differential data input in area A. Lane 3	(1)
38	RX3P	4 TH Pixel Positive V-by-One differential data input in area A. Lane 3	(1)
39	GND	Ground	
40	RX4N	5 TH Pixel Negative V-by-One differential data input in area A. Lane 4	(1)
41	RX4P	5 TH Pixel Positive V-by-One differential data input in area A. Lane 4	(1)
42	GND	Ground	
43	RX5N	6 TH Pixel Negative V-by-One differential data input in area A. Lane 5	(1)
44	RX5P	6 TH Pixel Positive V-by-One differential data input in area A. Lane 5	(1)
45	GND	Ground	
46	RX6N	7 TH Pixel Negative V-by-One differential data input in area A. Lane 6	(1)
47	RX6P	7 TH Pixel Positive V-by-One differential data input in area A. Lane 6	(1)
48	GND	Ground	
49	RX7N	8 TH Pixel Negative V-by-One differential data input in area A. Lane 7	(1)
50	RX7P	8 TH Pixel Positive V-by-One differential data input in area A. Lane 7	(1)
51	GND	Ground	
		<u> </u>	1

Note (1) V-by-One^R HS Data Mapping

Area	Lane	Data Stream
	Lane 0	1, 9, 17,, 3825, 3833
	Lane 1	2, 10, 18,, 3826, 3834
	Lane 2	3, 11, 19,, 3827, 3835
A	Lane 3	4, 12, 20,, 3828, 3836
A	Lane 4	5, 13, 21,,3829, 3837
	Lane 5	6, 14, 22,, 3830, 3838
	Lane 6	7, 15, 23,, 3831, 3839
	Lane7	8, 16, 24,, 3832, 3840

Note (2) 2D/3D mode selection.

L= Connect to GND or Open, H=Connect to +3.3V

2D/3D	Note
L or Open	2D Mode
Н	3D Mode

Note (3) Input signal for Left Right eye frame synchronous

 V_{IL} =0~0.8 V, V_{IH} =2.0~3.3 V

L/R	Note
L	Right synchronous signal
Н	Left synchronous signal

Note (4) Local dimming enable selection. (Default: enable)

L= Connect to GND, H=Connect to +3.3V or Open

LD_EN	Note
L	Local Dimming Disable
H or Open	Local Dimming Enable

Version 2.1 19 Date : Oct.23 2013

LD_EN enable pin should be set in power on stage.

Backlight should be turned off in the period of changing original setting after power on.

Note (5) The definition of L/R_O signal as follows

L = 0V, H = +3.3V

L/R_O	Note
L	Right glass turn on
Н	Left glass turn on

Note (6) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below.

Note (7) Interface optional pin has internal scheme as following diagram. Customer should keep the interface voltage level requirement which including Panel board loading as below.

Note (8) V-by-One HS connector pin order defined as follows

Note (9) V-by-One connector mating dimension range request is 0.93mm~1.0mm as below.

- Note (10) Reserved for internal use. Please leave it open.
- Note (11) Local dimming table select & User dimming adjust for customer use. (User dimming is available only at 2D Mode. User dimming duty ratio is set at 100% (Max. Brightness) in 3D Mode.)
- Note (12) The detail setting such as I2C command or timing requirement in FHD/QFHD is specified in INX application note. It's important and necessary to follow the specification either in product SPEC or application note, otherwise it may lead to abnormal or no display. INX application note would be provided by INX in the design-in stage.

5.2 BACKLIGHT UNIT

The pin configuration for the housing and leader wire is shown in the table below.

CN2 Connector Type: 196388-12041-3(P-TWO) or FF01-431-123A(FCN)

Pin No.	Symbol	Description
1	VLED+	
2	VLED+	Positive of LED string
3	VLED+	
4	NC	NC
5	N-	
6	N-	
7	N-	
8	N-	Negative of LED string
9	N-	riegative of LED string
10	N-	
11	N-	
12	N-	

5.3 CONVERTER UNIT

CN1 (Header): CI0114M1HR0-LA (CvilLux)

Pin No.	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	ERR	Normal (GND) ; Abnormal (Open collector)
12	BLON	BL ON/OFF
13	NC	NC
14	E_PWM	External PWM Control

Note (1) If Pin14 is open, E_PWM is 100% duty.

Note (2) Input connector pin order defined as follows

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 10-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

															D	ata S	Sign	al															
	Color					Re	ed						Green								Blue												
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	В8	В7	В6	В5	В4	В3	В2	B1	В0		
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Red	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Green	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
Colors	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Red (1)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Gray	Red (2)	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Scale	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
Of	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:	:	:	:	:	:	:		
Red	Red (1021)	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Red	Red (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ı :		
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	ı :		
Green	Green (1021)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0		
Green	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0		
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0		
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		
Gray	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		
Blue	Blue (1021)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	1		
Diue	Blue (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0		
	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1		

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram. (Ta = 25 ± 2 °C)

C:1	Thomas	Cl1	Min	Т	Man	T Tabit	NIata
Signal	Item	Symbol	Min.	Typ.	Max.	Unit	Note
Data Clock	Frequency	1/Tc	70	74.25	78	MHz	(1)
	Intra-Pair skew		-0.3	l	0.3	UI	(2)
	Inter-pair skew		-5	l	5	UI	(3)
V-by-One Receiver	Spread spectrum modulation range	Fclkin_mod	1/Tc-0.5%		1/Tc+0.5%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	_	_	30	KHz	(4)

6.1.1 Timing spec for QFHD Frame Rate = 50Hz

Signal	Ite	em	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		Fclkin (=1/TC)	70	74.25	78	MHz	(1)
Frame rate	2D mode		Fr	47	50	53	Hz	(8),(9)
Vertical Active		Total	Tv	2200	2700	2790	Th	Tv=Tvd+Tvb
Display Term (8 Lane,3840X2160	2D Mode	Display	Tvd	2160	2160	2160	Th	
Active Area)		Blank	Tvb	40	540	630	Th	
Horizontal Active		Total	Th	530	550	600	Тс	Th=Thd+Thb
Display Term (8 Lane,3840X2160	2D Mode	Display	Thd	480	480	480	Тс	
Active Area)		Blank	Thb	50	70	120	Тс	

6.1.2 Timing spec for QFHD Frame Rate = 60Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	2[) Mode	F _{clkin}	70	74.25	78	MHz	(1)
	31) Mode	(=1/TC)		74.25		MHz	(1)
Frame Rate	2D Mode 3D Mode		F_{r}	57	60	63	Hz	(8),(9)
			Γr		60		Hz	(6)
Vertical Active	2D	Total	Tv	2208	2250	2350	Th	Tv=Tvd+Tvb

Display Term	Mode	Display	Tvd		2160		Th	
(8 Lane,3840X2160 Active Area)		Blank	Tvb	48	90	190	Th	
	3D Mode	Total	Tv		2250		Th	
		Display	Tvd		2160		Th	(7)
		Blank	Tvb		90		Th	(7)
	• •	Total	Th	530	550	600	Tc	Th=Thd+Thb
Horizontal Active	2D Mode	Display	Thd		480		Tc	
Display Term	1110010	Blank	Thb	50	70	120	Tc	
(8 Lane,3840X2160		Total	Th	530	550	600	Tc	Th=Thd+Thb
Active Area)	3D Mode	Display	Thd		480		Tc	
		Blank	Thb	50	70	120	Тс	

6.1.3 Input Timing Spec for FHD, Frame Rate = 50Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		F_{r}	47	50	53	Hz	(8),(9)
Vertical Active Display Term		Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb
(2 Lane,1920X1080		Display	Tvd		1080		Th	
Active Area)	2D	Blank	Tvb	24	270	315	Th	
Horizontal Active	Mode	Total	Th	1060	1100	1340	Tc	Th=Thd+Thb
Display Term (2 Lane,1920X1080		Display	Thd		960		Tc	
Active Area)		Blank	Thb	100	140	380	Тс	

6.1.4 Input Timing Spec for FHD, Frame Rate = 60Hz

Signal	Item		Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Fre	equency	F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	20	2D Mode		57	60	63	Hz	(8),(9)
Vertical Active Display Term	2D Total Mode Display		Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
			Tvd	1080			Th	

(2 Lane,1920X1080	D11	т.1.	24	45	015	771-	
Active Area)	Blank	Tvb	24	43	315	Th	
Horizontal Active	Total	Th	1060	1100	1340	Тс	Th=Thd+Thb
Display Term (2 Lane,1920X1080	Display	Thd		960		Тс	
Active Area)	Blank	Thb	100	140	380	Тс	

6.1.5 Input Timing Spec for FHD, Frame Rate = 100Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		F_{r}	97	100	103	Hz	(8),(9)
Vertical Active Display Term		Total	Tv	1104	1350	1395	Th	Tv=Tvd+Tvb
(4 Lane,1920X1080		Display	Tvd		1080		Th	
Active Area)	2D	Blank	Tvb	24	270	315	Th	
Horizontal Active	Display Term	Total	Th	530	550	670	Тс	Th=Thd+Thb
(4 Lane,1920X1080		Display	Thd		480		Тс	
		Blank	Thb	50	70	190	Тс	

6.1.6 Input Timing Spec for FHD, Frame Rate = 120Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	21) Mode	F _{clkin}	70	74.25	78	MHz	(1)
Data Clock	31) Mode	(=1/TC)		74.25		MHz	(1)
Frame Rate	2D Mode 3D Mode		F_{r}	117	120	123	Hz	(8),(9)
Frame Kate			Гг		120		Hz	(6)
		Total	Tv	1104	1125	1395	Th	Tv=Tvd+Tvb
Vertical Active	2D Mode	Display	Tvd		1080		Th	
Display Term	1110010	Blank	Tvb	24	45	315	Th	
(4 Lane,1920X1080	45	Total	Tv		1125		Th	
Active Area)	Active Area) 3D Mode	Display	Tvd		1080		Th	(7)
	1110010	Blank	Tvb		45		Th	(7)
Horizontal Active	2D	Total	Th	530	550	670	Tc	Th=Thd+Thb

Display Term	1,100.0	Display	Thd		480		Тс	
(4 Lane,1920X1080 Active Area)		Blank	Thb	50	70	190	Тс	
Tetave Theat		Total	Th	530	550	670	Тс	Th=Thd+Thb
	3D Mode	Display	Thd		480		Тс	
	Wiede	Blank	Thb	50	70	190	Тс	

6.1.7 Input Timing spec for QFHD, Frame Rate = 24Hz

Signal		Item	Symbol	Min.	Тур.	Max.	Unit	Note
Data Clock	Frequency		F _{clkin} (=1/TC)	70	74.25	78	MHz	(1)
Frame Rate	2D Mode		F_r	23	24	25	Hz	(8),(9)
Vertical Active Display Term		Total	Tv	2208	2250	2450	Th	Tv=Tvd+Tvb
(4 Lane, 3840X2160		Display	Tvd		2160		Th	
Active Area)	2D	Blank	Tvb	48	90	290	Th	
Horizontal Active	Mode	Total	Th	1060	1100	1200	Тс	Th=Thd+Thb
Display Term (4 Lane, 3840X2160	Display Term Lane, 3840X2160	Display	Thd		960		Тс	
Active Area)			Thb	80	140	240	Тс	

6.1.8 Input Timing spec for QFHD, Frame Rate = 30Hz

Signal		Item		Min.	Тур.	Max.	Unit	Note
Data Clock	2D Mode		F _{clkin}	70	74.25	78	MHz	(1)
Data Clock	3D Mode		(=1/TC)		74.25		MHz	(1)
Frame Rate	21) Mode	- F _r	29	30	31	Hz	(8),(9)
Frame Rate	31) Mode	Γ_{r}		30		Hz	(6)
	• •	Total	Tv	2208	2250	2350	Th	Tv=Tvd+Tvb
Vertical Active	2D Mode	Display	Tvd		2160		Th	
Display Term		Blank	Tvb	48	90	190	Th	
(4 Lane, 3840X2160		Total	Tv		2250		Th	
· I	3D Mode	Display	Tvd		2160		Th	(7)
	Wiode	Blank	Tvb		90		Th	(7)
Horizontal Active	2D	Total	Th	1060	1100	1200	Тс	Th=Thd+Thb

Display Term	Mode	Display	Thd		960		Тс	
(4 Lane,3840X2160 Active Area)		Blank	Thb	80	140	240	Тс	
	3D Mode	Total	Th	1060	1100	1200	Тс	Th=Thd+Thb
		Display	Thd		960		Тс	
		Blank	Thb	1060	1100	1200	Тс	

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr \times Tv \times Th$

 $Fr \times Tv \times Th \ge Fclkin (min)$

INPUT SIGNAL TIMING DIAGRAM

Note (2) Intra-pair Data skew

Note (3) V-by-One HS Inter-pair skew.

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) Please fix the Vertical timing (Vertical Total = TBD / Display = TBD / Blank = TBD) in 120Hz 3D mode

Note (6) In 3D mode, the set up Fr in Typ. . In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

Note (7) In 3D mode, the set up Tv and Tvb in Typ. . In order to ensure that the electric function performance to avoid no display symptom.(Except picture quality symptom.)

Note (8) The frame-to-frame jitter of the input frame rate is defined as the above figures. FRn = FRn-1 \pm 1.8%.

Note (9) The setup of the frame rate jitter > 1.8% may result in the cosmetic LED backlight symptom but the electric function is not affected.

6.2 V by One Input Signal Timing Diagram

Table 1 Eye Mask Specification

	X [UI]	Y [mV]	Note
A	0.25	0	(1)
В	0.3	50	(1)
С	0.7	50	(1)
D	0.75	0	(1)
Е	0.7	-50	(1)
F	0.3	-50	(1)

Note (1) Input levels of V-by-One HS signals are comes from "V-by-One HS Stander Ver.1.4"

6.3 Byte Length and Color mapping of V-by-One HS

Packer input &		20hnn PCR (10h:4)		
Unpacker output		30bpp RGB (10bit)		
Byte 0	D[0]	R[2]		
	D[1]	R[3]		
	D[2]	R[4]		
	D[3]	R[5]		
Буксо	D[4]	R[6]		
	D[5]	R[7]		
	D[6]	R[8]		
	D[7]	R[9]		
	D[8]	G[2]		
	D[9]	G[3]		
	D[10]	G[4]		
Byte 1	D[11]	G[5]		
Dyte 1	D[12]	G[6]		
	D[13]	G[7]		
	D[14]	G[8]		
	D[15]	G[9]		
	D[16]	B[2]		
	D[17]	B[3]		
	D[18]	B[4]		
Byte 2	D[19]	B[5]		
Dyte 2	D[20]	B[6]		
	D[21]	B[7]		
	D[22]	B[8]		
	D[23]	B[9]		
	D[24]	X		
	D[25]	X		
	D[26]	B[0]		
Byte 3	D[27]	B[1]		
Dyte 0	D[28]	G[0]		
	D[29]	G[1]		
	D[30]	R[0]		
	D[31]	R[1]		

6.4 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

6.5 2D/3D MODE CHANGE SIGNAL SEQUENCE WITHOUT VCC TURN OFF AND TURN ON

- Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc.
- Note (2) Apply the LED voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.
- Note (3) In case of Vcc is in off level, please keep the level of input signals on the low or high impedance. If T2<0,that maybe cause electrical overstress failure.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) When 2D/3D mode is changed, TCON will insert black pattern internally. During black insertion, TCON would load required optical table and TCON parameter setting. The black insertion time should be longer than 650ms because TCON must recognize 2D or 3D format and set the correct parameter.
- Note (7) Vcc must decay smoothly when power-off.
- Note (8) T5 Backlight turn on time depend on T14 command length+T13

Version 2.1 34 Date : Oct.23 2013

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V_{CC}	12±1.2	V			
Input Signal	According to typical v	to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Vertical Frame Rate	Fr	60	Hz			

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring in a windless room.

Local Dimming Function should be Disable before testing to get the steady optical characteristics (According to 5.1 CNF1 Connector Pin Assignment, Pin no. "22")

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

Item		Symbol		Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR			3500	5000	-	-	Note (2)
Response Time		Gray to gray				9.5	19	ms	Note (3)
Center Luminance of		т	2D		280	350	-	cd/m ²	Note (4)
White		Lc	3D			60	-	cd/m ²	Note (8)
White Variation		δW					1.3	-	Note (6)
			2D	$\theta_{x}=0^{\circ}, \theta_{Y}=0^{\circ}$	_		4	%	Note (5)
Cross Talk		СТ	3D-W			4	-	%	Note (8)
	_		3D-D			11	-	%	Note (8)
	Red	F	Rx			0.642		-	
	Red	Ry Gx Gy Bx		Viewing angle at normal direction	Typ	0.335	Typ.+	-	
	Green					0.309		-	
						0.615		-	
Color	Blue					0.151		-	
Chromaticity		Ву				0.056		-	
	White	Wx				0.280		-	
		Wy				0.290		-	
	Correlated c	ed color temperature				9800		K	
	Color	C.G.			_	72	_	%	NTSC
	Gamut							,,,	11100
Viewing Angle	Horizontal	θ_x + θ_x -		CR≥10	80	89	-	Deg.	(1)
					80	89	-		
	Vertical	θ	Y+		80	89	-	-0	
		θ	Υ-		80	89	-		
Transmission direction of the up polarizer		Φ	Oup	-	-	90	-	Deg.	(7)

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80 (or Eldim EZ-Contrast 160R).

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

L1023: Luminance of gray level 1023

L 0: Luminance of gray level 0

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023.

Gray to gray average time means the average switching time of gray level 0, 124, 252, 380, 508, 636, 764, 892 and 1023 to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 1023 at center point.

 $L_C = L$ (5), where L (x) is corresponding to the luminance of the point X at the figure in Note (6).

Note (5) Definition of Cross Talk (CT):

$$CT = | Y_B - Y_A | / Y_A \times 100 (\%)$$

Where:

YA = Luminance of measured location without gray level 1023 pattern (cd/m2)

YB = Luminance of measured location with gray level 1023 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 1023 at 5 points

$$\delta W = \frac{\text{Maximum} [L (1), L (2), L (3), L (4), L (5)]}{\text{Minimum} [L (1), L (2), L (3), L (4), L (5)]}$$

Note (7) This is a reference for designing the shutter glasses of 3D application. Definition of the transmission direction of the up polarizer (Φ_{up-P}) on LCD Module :

The transmission axis of the front polarizer of the shutter glasses should be parallel to this panel transmission direction to get a maximum 3D mode luminance.

Version 2.1 39 Date : Oct.23 2013

Note (8) Definition of the 3D mode performance (measured under 3D mode, use INX's shutter glass):

Test pattern

Left eye image and right eye image are displayed alternated

Measurement setup

Shutter glasses are well controlled under suitable timing, and measure the luminance of the center point of the panel through the right eye glass. The transmittance of the glass should be larger than 40.0% under 3D mode operation. The luminance of the test pattern "WW", denoted L(WW); the luminance of the test pattern "WB", denoted L(WB); the luminance of the test pattern "BW", denoted L(BW); the luminance of the test pattern "BB", denoted "L(BB)

Definition of the Center Luminance of White, Lc (3D): L(WW)

d. Definition of the 3D mode white crosstalk, CT (3D-W):
$$CT(3D-W) \equiv \frac{L(WB) - L(BB)}{L(WW) - L(BB)}$$

d. Definition of the 3D mode white crosstalk, CT (3D-W) :
$$CT(3D-W) \equiv \left| \frac{L(WB) - L(BB)}{L(WW) - L(BB)} \right|$$

e. Definition of the 3D mode dark crosstalk, CT (3D-D) : $CT(3D-D) \equiv \left| \frac{L(WW) - L(BW)}{L(WW) - L(BB)} \right|$

Version 2.1 Date: Oct.23 2013

INNOLUX 群創光電股份有限公司

PRODUCT SPECIFICATION

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure to the module (including Active Area) to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

8.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

Regulatory	Item	Standard
Information Technology equipment		UL60950-1:2006 or Ed.2:2007
		CAN/CSA C22.2 No.60950-1-03 or 60950-1-07
	СВ	IEC60950-1:2005 / EN60950-1:2006+ A11:2009
Audio/Video Apparatus	UL	UL60065 Ed.7:2007
	cUL	CAN/CSA C22.2 No.60065-03:2006 + A1:2006
	СВ	IEC60065:2001+ A1:2005 / EN60065:2002 + A1:2006+ A11:2008

If the module displays the same pattern for a long period of time, the phenomenon of image sticking may be occurred.

9. DEFINITION OF LABELS

9.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Model Name: V420DK1-KS1

Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

Manufactured Date:

Year: 2001=1, 2002=2, 2003=3, 2004=4...2010=0, 2011=1, 2012=2...

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

Serial No. : Manufacturing sequence of product

Product Line : $1\rightarrow$ Line 1, $2\rightarrow$ Line 2, ...etc.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

Model Name: V420DK1- KS1

Serial ID includes the information as below:

Manufactured Date:

Year: 2010=0, 2011=1, 2012=2...etc.

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

Revision Code: Cover all the change

10. PACKAGING

10.1 PACKAGING SPECIFICATIONS

(1) 6 LCD TV modules / 1 Box

(2) Box dimensions: 1035(L) X 309 (W) X 625 (H)

(3) Weight: approximately 54.94 Kg (modules per box)

10.2 PACKAGING METHOD

Packaging method is shown in following figures.

10.3 UN-PACKAGING METHOD

Un-packaging method is shown in following figures.

11. MECHANICAL CHARACTERISTIC

