Cálculo II - MA211 **IMECC - UNICAMP Neemias Martins** neemias.org/ped

#1 - AULA DE EXERCÍCIOS

NEEMIAS MARTINS

1. Determine e esboce o domínio das funções:

(a)
$$f(x,y) = \sqrt{x+y}$$

(b)
$$f(x,y) = \ln(9-x^2-9y^2)$$

(b)
$$f(x,y) = \ln(9-x^2-9y^2)$$

(c) $f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$

(a)

 $\sqrt{x+y}$ está definido somente se $x+y \ge 0$, i.e $y \ge -x$. Então

$$dom(f) = \{(x, y) \in \mathbb{R}^2 | y \ge -x \}.$$

(b)

 $\ln(9-x^2-9y^2)$ está definida somente quando $9-x^2-9y^2>0$, ou seja,

$$9 - x^{2} - 9y^{2} > 0$$

$$\Leftrightarrow -x^{2} - 9y^{2} > -9$$

$$\Leftrightarrow x^{2} + 9y^{2} < 9$$

$$\Leftrightarrow \frac{x^{2}}{9} + y^{2} < 1.$$

O domínio é o interior de uma elipse:

$$dom(f) = \{(x, y) \in \mathbb{R}^2 | \frac{x^2}{9} + y^2 < 1\}.$$

(c)

$$\sqrt{1-x^2-y^2-z^2}$$
 é bem definida somente se $1-x^2-y^2-z^2\geq 0$, ou seja, $x^2+y^2+z^2\leq 1$.

Portanto o domínio de f é a esfera de raio 1 com centro na origem e todo o seu interior:

$$dom(f) = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1\}.$$

2. Esboce o gráfico da função $f(x, y) = 9 - x^2 - 9y^2$.

$$gr(f) = \{(x, y, z) | (x, y) \in dom(f) e z = f(x, y)\}.$$

Analisamos inicialmente as intersecções de gr(f) com os planos x = 0, y = 0 e z = 0.

Traço-*yz*:

$$x = 0 \Rightarrow z = 9 - 9y^2.$$

Traço-xy:

$$z = 0 \Rightarrow 9 - x^2 - 9y^2 = 0 \Rightarrow \frac{x^2}{9} + y^2 = 1.$$

Traço-xz:

$$y = 0 \Rightarrow z = 9 - x^2$$
.

O gráfico de f é um paraboloide elíptico. Esboço do gráfico:

- 3. Faça o mapa de contorno da função mostrando várias curvas de nível.

 - (a) $f(x,y) = (y-2x)^2$ (b) $f(x,y) = \sqrt{y^2 x^2}$.
- (a) As curvas de nível são da forma $(y-2x)^2 = k$.

$$(y-2x)^2 = k$$

$$\Rightarrow y-2x = \pm \sqrt{k}$$

$$\Rightarrow y = 2x \pm \sqrt{k}.$$

Se k = 0, então y = 2x. Se k = 1, então y = 2x + 1 ou y = 2x - 1. Se k = 4, então y = 2x + 2 ou y = 2x - 2. Se k = 25, então y = 2x + 5 ou y = 2x - 5.

(b) Fazemos $\sqrt{y^2 - x^2} = k$, logo $y^2 - x^2 = k^2$, ou seja

Se
$$k = 0 \Rightarrow y^2 - x^2 = 0 \Rightarrow y = \pm x$$

Se $k \neq 0 \Rightarrow y^2 - x^2 = k^2 \Rightarrow \frac{-x^2}{k^2} + \frac{y^2}{k^2} = 1$.

Se
$$k = 1$$
, temos $-x^2 + y^2 = 1$. Se $k = 2$, temos $\frac{-x^2}{4} + \frac{y^2}{4} = 1$. Se $k = 4$, então $\frac{-x^2}{16} + \frac{y^2}{16} = 1$.

4. Determine o limite, se existir ou mostre que não existe.

(a)
$$\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$$

(b) $\lim_{(x,y)\to(0,0)} \frac{x^2ye^y}{x^4+4y^2}$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 y e^y}{x^4 + 4y^2}$$

(a)

$$\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2} = \frac{\lim_{(x,y)\to(2,1)} 4-xy}{\lim_{(x,y)\to(2,1)} x^2+3y^2} = \frac{2}{7}$$

(b) $\lim_{(x,y)\to(0,0)} \frac{x^2y\,e^y}{x^4+4\,y^2}$. Note que sobre o eixo x, i.e. fazendo y=0 temos f(x,0)=0. Assim $f(x,y)\to 0$ quando $(x,y)\to(0,0)$ ao longo do eixo x.

Agora, sobre a curva $y = x^2$, temos $f(x, x^2) = \frac{x^4 e^{x^2}}{5x^4}$. Então $f(x, y) \to \frac{1}{5}$ quando $(x, y) \to (0, 0)$ sobre a curva $y = x^2$, pois

$$\lim_{x \to 0} \frac{x^4 e^{x^2}}{5x^4} = \lim_{x \to 0} \frac{e^{x^2}}{5} = \frac{1}{5}.$$

Como os limites de f ao aproximarmos de (0,0) pelas curvas y=0 e $y=x^2$ são distintos, segue que não existe $\lim_{(x,y)\to(0,0)} f(x,y)$.

5. Determine o maior conjunto em que a função é contínua:

$$f(x,y) = \begin{cases} \frac{x^2 y^3}{2x^2 + y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

Quando $(x, y) \neq (0, 0)$, f é uma função racional e portanto contínua. Vejamos se f é contínua em(x, y) = (0, 0).

Note que $0 \le x^2 \le 2x^2 \le 2x^2 + y^2$. Logo,

$$x^{2} \le 2x^{2} + y^{2} \Rightarrow 0 \le \frac{x^{2}}{2x^{2} + y^{2}} \le 1$$
$$\Rightarrow 0 \le \left| \frac{x^{2}y^{3}}{2x^{2} + y^{2}} \right| \le |y^{3}|.$$

Como $\lim_{(x,y)\to(0,0)} |y^3| = 0$ e $\lim_{(x,y)\to(0,0)} 0 = 0$, segue do Teorema do Confronto que

$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{2x^2+y^2} = 0.$$

Uma vez que f(0,0)=1 e $\lim_{(x,y)\to(0,0)}\frac{x^2y^3}{2x^2+y^2}=0$, segue que f não é contínua em (0,0). Portanto o maior conjunto de continuidade de f é $\mathbb{R}^2\setminus\{(0,0)\}$, isto é $\{(x,y)|(x,y)\neq(0,0)\}$.

6. Calcule

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}.$$

Usaremos coordenadas polares:

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$r = \sqrt{x^2 + v^2}.$$

Quando $(x, y) \to (0, 0)$, temos $r \to \sqrt{0^2 + 0^2} = 0$. Logo,

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \lim_{r\to 0} \frac{r^2\cos\theta}{r} = \lim_{r\to 0} r\cos\theta \sin\theta$$

Como $-1 \le \cos \theta \le 1$ e $-1 \le \sin \theta \le 1$, então $-1 \le \cos \theta \sin \theta \le 1$, daí

$$-r \le r \cos \theta \sin \theta \le r$$
.

Como $\lim_{r\to 0} -r = \lim_{r\to 0} r = 0$, segue do Teorema do Confronto que

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = \lim_{r\to 0} r\cos\theta \, \sin\theta = 0.$$

Solução alternativa: É suficiente mostrarmos que

$$\lim_{(x,y)\to(0,0)} \left| \frac{xy}{\sqrt{x^2 + y^2}} \right| = 0$$

ou seja

$$\lim_{(x,y)\to(0,0)}\frac{|x||y|}{\sqrt{x^2+y^2}}=0.$$

Note que $|x| = \sqrt{x^2} \le \sqrt{x^2 + y^2}$. Então

$$0 \le \frac{|x|}{\sqrt{x^2 + y^2}} \le 1$$
$$\Rightarrow 0 \le \frac{|x||y|}{\sqrt{x^2 + y^2}} \le |y|.$$

Como $\lim_{(x,y)\to(0,0)} |y| = 0$, segue do Teorema do Confronto que

$$\lim_{(x,y)\to(0,0)} \frac{|x||y|}{\sqrt{x^2+y^2}} = 0$$

e portanto

$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0.$$