AOR Dr. Hendrik Kasten Mathematisches Institut

FAKULTÄT FÜR MATHEMATIK UND INFORMATIK

22. Oktober 2021

Modulformen 1 - Übungsblatt 1

Wintersemester 2021/22

Aufgabe 1 (6 Punkte)

Beweisen oder widerlegen Sie die folgenden Aussagen:

(a) Es gibt eine Möbiustransformation $\varphi: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ mit den Eigenschaften

$$\varphi(0)=-1, \varphi(i)=0, \varphi(2i)=\frac{1}{3}$$
 und $\varphi(1)=1$.

(b) Gilt $\varphi(z_1)=0$ und $\varphi(z_2)=\infty$ für eine Möbiustransformation φ und $z_1,z_2\in\mathbb{C}$, so ist φ von der Form

$$\varphi(z) = c \cdot \frac{z - z_1}{z - z_2}$$

mit einer Konstanten $c \in \mathbb{C} \setminus \{0\}$.

(c) Möbiustransformationen sind Homöomorphismen.

Aufgabe 2 (6 Punkte)

Es ist bekannt, dass jede invertierbare komplexe (2×2) -Matrix M einer Möbiustransformation φ_M zugeordnet wird. Die Menge all dieser Matrizen bildet die Gruppe $\mathrm{GL}_2(\mathbb{C})$ und nach Proposition 1.3 ist $\mathfrak M$ als Menge aller Möbiustransformationen ebenfalls eine Gruppe. Demnach ist die Abbildung

$$GL_2(\mathbb{C}) \to \mathfrak{M}, M \mapsto \varphi_M$$

ein Gruppenhomomorphismus.

- (a) Beweisen Sie, dass zwei Matrizen $M,N\in \mathrm{GL}_2(\mathbb{C})$ genau dann dieselbe Möbiustransformation definieren, wenn sie sich um einen skalaren Faktor $\lambda\in\mathbb{C}\setminus\{0\}$ unterscheiden.
- (b) Sei $f \in \operatorname{Aut}(\bar{\mathbb{C}})$ ein Automorphismus unter der Riemann'schen Zahlenkugel. Zeigen Sie:
 - (i): Die Umkehrabbildung f^{-1} ist meromorph.
 - (ii): Es gilt $\operatorname{Aut}(\bar{\mathbb{C}}) = \mathfrak{M}$.

Aufgabe 3 (6 Punkte)

Seien A und B zwei Matrizen in $\mathrm{SL}_2(\mathbb{R})\setminus\{\pm I_2\}$ mit der Eigenschaft AB=BA. Weisen Sie nach:

- (a) Ist A parabolisch, so ist auch B parabolisch.
- (b) Gilt $A\langle z\rangle=z$ für ein $z\in \bar{\mathbb{C}}$, so folgt $B\langle z\rangle=z.$

Hinweis zu (a): Nutzen Sie beispielsweise Korollar 1.18.

Abgabe: online über MaMpf bis Freitag, den 29. Oktober 2021, spätestens um 12 Uhr s. t.