

1: Γενικά για το μάθημα Βασικές έννοιες

- Πώς γίνεται το μάθημα, τι διαβάζω, πώς εξετάζομαι;
- Τι είναι η εξόρυξη γνώσης;
- Πώς υλοποιείται;
- Ποια η αρχιτεκτονική ενός συστήματος εξόρυξης γνώσης;
- Τι πρέπει να προσέχω;
- Από που ενημερώνομαι;

Διαδικαστικά

- Ώρες μαθήματος: Παρασκευή 12:00-3:00
- Διδάσκων: Ηρακλής Βαρλάμης
- Γραφείο: 5.1
- Ώρες γραφείου: Παρασκευή 3:00-4:00
- E-mail: varlamis@hua.gr
- Web: http://eclass.hua.gr/courses/DIT129/
 - Σημειώσεις, ανακοινώσεις, ασκήσεις, κλπ.
- Αίθουσα: 3.9

Θεωρία:

- Κατηγορίες προβλημάτων εξόρυξης γνώσης από δεδομένα
- Αλγόριθμοι, τεχνικές, μέθοδοι

Εργαστήριο:

- Εφαρμογές των πιο πάνω σε σύνολα δεδομένων
- Εξοικείωση με εργαλεία εξόρυξης γνώσης και μηχανικής μάθησης

Ασκήσεις:

• Σε θέματα του εργαστηρίου αλλά και θεωρίας

- Εισαγωγή στην εξόρυξη δεδομένων, 2η Έκδοση (2018), P.N. Tan, M. Steinbach, V. Kumar, (επιμ. Β. Βερύκιος)
- Εξόρυξη και ανάλυση δεδομένων: Βασικές έννοιες και αλγόριθμοι (2018), Μ. J. Zaki, W. Meira Jr. (επιμ. Β. Μεγαλοοικονόμου, Χ. Μακρής)
- Εξόρυξη από Μεγάλα Σύνολα Δεδομένων 3η Έκδοση (2020), A. Rajaraman, J. D. Ullman, J. Leskovec (επιμ. Α. Γούναρης, Ι. Μανωλόπουλος κλπ)

- J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, 2011.
 - Jiawei Han homepage: http://web.engr.illinois.edu/~hanj/
- Tan, P. N., Steinbach, M., & Kumar, V.
 (2016). Introduction to data mining. Pearson Education India.
 - Στα έγγραφα του eclass

Βαθμολογία

- Βαθμολογία (ισχύει για Φεβρουάριο & Σεπτέμβριο):
 - Τελική εξέταση: 50% [βαθμός >=5]
 - Εργασία (2 milestones): 50% [βαθμός >=5, υποχρεωτική]
 - Bonus 10% στις 2 καλύτερες εργασίες
- Τελική εξέταση: με ανοιχτό βιβλίο και σημειώσεις μαθήματος
- Κατοχύρωση:
 - Εργασίες δίνετε μόνο μέσα στο εξάμηνο και ο βαθμός τους κατοχυρώνεται για το Σεπτέμβριο
 - Τίποτε δεν κατοχυρώνεται για επόμενη χρονιά!

Ας ξεκινήσουμε

- 1960: Συλλογές δεδομένων, δημιουργία βάσεων δεδομένων, συστήματα διαχείρισης πληροφορίας
- 1970: Σχεσιακό μοντέλο δεδομένων, RDBMS
- 1980: Εξελιγμένα μοντέλα δεδομένων (extended-relational, OO, active, deductive, κλπ.) και ΒΔ προσαρμοσμένες στις ανάγκες των εφαρμογών (spatial, temporal, scientific, engineering, κλπ.)
- 1990-2000: Εξόρυξη δεδομένων και αποθήκες δεδομένων (data mining and data warehousing), ΒΔ πολυμέσων, ΒΔ στον παγκόσμιο ιστό
- 2010: Web of Data, Linked Data, Ontologies

- Αποδοτικές τεχνικές για να αναλύσουμε πολύ μεγάλες συλλογές από δεδομένα και να εξάγουμε χρήσιμες πληροφορίες από αυτά
- Η διαδικασία ανακάλυψης ενδιαφέρουσας (μη τετριμμένης, κατανοητής, επικυρωμένης, προηγούμενα άγνωστης και πιθανά χρήσιμης) πληροφορίας ή προτύπων
- Η ανάλυση δεδομένων με στόχο να βρούμε μη αναμενόμενες σχέσεις ανάμεσά τους καθώς και να τα συνοψίσουμε με νέους τρόπους που είναι κατανοητοί και χρήσιμοι στους χρήστες
- Data mining
 Εξόρυξη ή εξαγωγή γνώσης, εξόρυξη δεδομένων, ανάλυση δεδομένων/προτύπων

Παράδειγμα

 Μια τράπεζα διατηρεί δεδομένα σχετικά με τα στεγαστικά δάνεια που έχει δώσει και το αν αποπληρώθηκαν ή όχι

S e x	A g e	Time Addr	ResStat	оссир	Time Emp	Time Bank	House Exp	PAID BACK
M	50	0.5	owner	unemploye	0	0	00145	NO
M	19	10	rent	labourer	0.8	0	00140	NO
F	52	15	owner	creative	5.5	14	00000	YES
M	22	2.5	rent	creative	2.6	0	00000	YES
M	29	13	owner	driver	0.5	0	00228	NO
F	16	0.3	owner	unemploye	0	01	00160	NO
M	23	11	owner	professio	0.5	01	00100	YES
F	27	3	owner	manager	2.8	01	00280	NO
F	19	5.4	owner	guard etc	0.3	0	00080	NO
F	27	0.3	owner	manager	0.1	01	00272	NO
M	34	4	rent	guard etc	8.5	07	00195	YES
M	20	1.3	rent	labourer	0.1	0	00140	NO
M	34	1.3	owner	guard etc	0.1	0	00440	NO

- Γνωρίσματα δανειολήπτη: Φύλο, ηλικία, μονιμότητα κατοικίας, ιδιοκτησία, επάγγελμα, χρόνια εργασίας, χρόνια πελάτης, ετήσιες δαπάνες σπιτιού, Αποπλήρωσε ή όχι
- Υπάρχουν κανόνες που θα με βοηθήσουν να αποφασίσω αν θα εγκρίνω μια νέα αίτηση δανείου;

- Τετριμμένη γνώση: Αν είναι άνεργος και δεν έχει μόνιμη κατοικία τότε δεν αποπληρώνει το δάνειο
 - Το αν υποστηρίζεται από 2/13 περιπτώσεις αλλά και στις 2 ισχύει το **τότε**.
- Μη επικυρωμένη γνώση: Αν έχουν ιδιόκτητο σπίτι τότε αποπληρώνουν το δάνειο.
 - Υπάρχουν αρκετά παραδείγματα (9/13) αλλά δεν
 επιβεβαιώνονται όλα (αποπληρώνουν μόνο οι 2 στους 9)
- Μη κατανοητή γνώση: Αν εμφανίζουν μηδενικές ετήσιες δαπάνες τότε αποπληρώνουν το δάνειο.
 - Το αν υποστηρίζεται από 2/13 περιπτώσεις, και στις 2 ισχύει
 το τότε, αλλά δεν έχουμε στοιχεία για να το εξηγήσουμε.

Παράδειγμα

Προηγούμενα άγνωστη και πιθανά χρήσιμη: Όσοι είναι πάνω από 3 χρόνια στην ίδια κατοικία και πάνω από 1,42 χρόνια πελάτες αποπληρώνουν: (YES⇐⇒ accept, NO⇐⇒reject)

Το δέντρο αυτό μπορεί να χρησιμοποιηθεί για να προτείνει
 πως θα χειριστούμε νέες αιτήσεις

- Πολλά δεδομένα συγκεντρώνονται και εισάγονται σε αποθήκες δεδομένων
 - Web δεδομένα, ηλ. Εμπόριο, δείκτες μετοχών
 - Αγορές σε πολύ-καταστήματα/αλυσίδες
 - Συναλλαγές με τράπεζες/πιστωτικές κάρτες
 - Εφαρμογές κοινωνικής δικτύωσης
- Τα δεδομένα συλλέγονται και αποθηκεύονται με τρομερή συχνότητα (GB/hour)
 - Απομακρυσμένοι αισθητήρες (remote sensors) σε δορυφόρους
 - Τηλεσκόπια στον ουρανό
 - Microarrays που παράγουν γονιδιακά δεδομένα
 - Επιστημονικές προσομοιώσεις που παράγουν terabytes δεδομένων

- Τα δεδομένα έχουν πολύπλοκες σχέσεις μεταξύ τους που δύσκολα ανιχνεύονται
- Αν βρούμε τις κρυμμένες σχέσεις (γνώση) τότε κερδίζουμε
 - Μεγάλος ανταγωνισμός
 - Παροχή καλύτερων υπηρεσιών (fraud detection, targeting marketing)
 - Εξατομίκευση υπηρεσιών (personalization)
- Η εξόρυξη δεδομένων μπορεί να βοηθήσει τους
 - Στην κατηγοριοποίηση και την τμηματοποίηση των δεδομένων
 - Στην Διατύπωση Υποθέσεων
 - Στην καλύτερη οπτικοποίηση της πληροφορίας

Στόχος της εξόρυξης

- Να ταιριάξει τα δεδομένα σε κάποιο μοντέλο:
 - Περιγραφικό

• Προγνωστικό

- Δεν είναι ΒΔ και SQL
 - Οι ΒΔ οργανώνουν τα δεδομένα και η SQL χρησιμοποιείται για να ελέγξει αν τα δεδομένα επικυρώνουν (ή όχι) τη γνώση που ήδη έχουμε
 - Η ΒΔ περιέχει λειτουργικά δεδομένα
 - Με την SQL προσδιορίζουμε σαφείς πληροφοριακές ανάγκες και παίρνουμε ως απάντηση υποσύνολα της ΒΔ
- Παράδειγμα
 - Βρες όσους πήραν δάνειο και διαμένουν σε ενοίκιο
 - Χώρισε αυτούς που αποπλήρωσαν το δάνειο σε 4 ομάδες
 - Ποιος είναι ο μέσος χρόνος καθυστέρησης στην αποπληρωμή του δανείου
 - Να προχωρήσω την αίτηση για το συγκεκριμένο δάνειο;
 Πρόκειται να αποπληρωθεί;

- Έμπειρο σύστημα (Expert system)
 - ένα έμπειρο σύστημα διαθέτει πρότερη γνώση του πεδίου εφαρμογής, διατυπωμένη με συστηματικό τρόπο, και κανόνες για την εξαγωγή συμπερασμάτων
 - π.χ. Ένα σύστημα που θα υπολογίζει αμέσως τις δόσεις στις οποίες θα πρέπει να αποπληρωθεί ένα νέο δάνειο, ώστε να μεγιστοποιήσει την πιθανότητα αποπληρωμής του
- Στατιστικό πρόγραμμα
 - ένα στατιστικό πρόγραμμα έχει πρότερη γνώση των δεδομένων και προσαρμόζει την επεξεργασία σε αυτά, αλλά και στη γνώση που θέλουμε να εξάγουμε
 - Με βάση τα ιστορικά στοιχεία της τράπεζας υπάρχει συσχέτιση μεταξύ της αποπληρωμής του δανείου και των ετήσιων δαπανών και πόσο ισχυρή είναι;

- Συχνά υπάρχει πληροφορία «κρυμμένη» στα δεδομένα, η οποία δεν είναι προφανής και αναμενόμενη
 - Χρειάζονται πολλές και προσεκτικά σχεδιασμένες ενέργειες για να την ανακαλύψουμε
 - Ενδέχεται να μην την ανακαλύψουμε αν δεν ελέγξουμε όλα τα δεδομένα για όλα τα πιθανά ενδεχόμενα
- Συχνά η εξόρυξη γνώσης χρησιμοποιεί στατιστικές μεθόδους, παράγει και διατυπώνει γνώση με συστηματικό τρόπο, εφαρμόζεται στα δεδομένα μιας ΒΔ

Οι «ρίζες» της Εξόρυξης Δεδομένων

Πρέπει να αντιμετωπίσει:

- Το τεράστιο μέγεθος των δεδομένων
- Το μεγάλο αριθμό διαστάσεων (παραγόντων που μπορούμε να λάβουμε υπόψη)
- Την μη ομοιογενή και την κατανεμημένη φύση των δεδομένων

Data Mining Development

- Relational Data Model
- ·SQL
- Association Rule Algorithms
- Data Warehousing
- Scalability Techniques

Databasas

- Algorithm Design TechniquesAlgorithm Analysis
- Data Structures

Algorithms

Information Retrieval

DATA

MINING

- •Similarity Measures
- •Hierarchical Clustering
- •IR Systems
- •Imprecise Queries
- •Textual Data
- •Web Search Engines

Statistics

- •Bayes Theorem
- Regression Analysis
- •EM Algorithm
- •K-Means Clustering
- •Time Series Analysis
- Neural Networks
- Decision Tree Algorithms

Machine Learning

Εφαρμογές

- Εξόρυξη στο διαδίκτυο
- Μηχανές αναζήτησης με βάση τις ερωτήσεις που υποβάλλονται και τις επιλογές στα αποτελέσματα (clickstream analysis)
- Εξατομίκευση περιεχομένου και υπηρεσιών με βάση τα δεδομένα χρήσης (προσπέλασης)
- Πακέτα προσφορών σε πολυκαταστήματα με βάση τις αγορές
- Και άλλα: αποτελέσματα επιστημονικών
 πειραμάτων, κίνηση μετοχών, βιολογικά δεδομένα κλπ

Η διαδικασία εξόρυξης ννώσης

- Data Cleaning ΚαθαρισμόςΔεδομένων
- Data Integration ΕνοποίησηΔεδομένων
- Data Transformation Μετασχηματισμοί
 Δεδομένων

Καθαρισμός δεδομένων

Τα πραγματικά δεδομένα είναι

- Ελλιπή incomplete:
 - Λείπουν τιμές γνωρισμάτων (δεν καταγράφηκαν, καταγράφηκαν λανθασμένα),
 - Λείπουν ενδιαφέροντα γνωρίσματα (δε θεωρήθηκαν σημαντικά ή δεν ήταν διαθέσιμα),
 - Συμπλήρωση των γνωρισμάτων και τιμών που λείπουν
- Με θόρυβο noisy: περιέχουν λάθη ή outliers (περιθωριακές τιμές - τιμές που διαφέρουν πολύ από την πλειοψηφία)
 - Εύρεση των περιθωριακών τιμών και απομάκρυνση θορύβου
- Ασυνεπή inconsistent: περιέχουν ασυνέπειες, διπλότιμα
 - ∘ Διόρθωση ασυνεπών τιμών

- Επιλογή Δεδομένων και Γνωρισμάτων και εφαρμογή κατάλληλων Μετασχηματισμών
 - Συνάθροιση Aggregation: συνδυασμούς δεδομένων από πολλές πηγές
 - Sampling δειγματοληψία: χρήση αντιπροσωπευτικού δείγματος των δεδομένων για βελτίωση της απόδοσης
 - Dimensionality reduction μείωση διαστάσεων Κατάρα της διάστασης (curse of dimensionality)
- Πολλές τεχνικές για την ανάλυση δεδομένων γίνονται δυσκολότερες με την αύξηση της διάστασης των δεδομένων (αυξάνει εκθετικά η πολυπλοκότητα ή τα δεδομένα γίνονται πολύ αραιά)
 - Τεχνικές της γραμμικής άλγεβρας (SVD, PCA)
 - Απεικόνιση σε άλλο χώρο με μικρότερο αριθμό διαστάσεων

Μετασχηματισμός δεδομένων

 Ο συνδυασμός δεδομένων από διαφορετικές πηγές συχνά απαιτεί προσαρμογή των δεδομένων

 Discretization (μετασχηματιμός σε μια διακριτή τιμή) ή binarization (μετασχηματισμός σε δυαδική τιμή)

- Variable transformation μετασχηματισμοί των τιμών των μεταβλητών
 - π.χ. Κανονικοποίηση

Παράδειγμα

Αρχιτεκτονική ενός συστήματος DM

Υποστήριξη λήψης αποφάσεων

Δυναμικό για την υποστήριξη επιχειρησιακών αποφάσεων

Λἡψη Αποφάσεων

Παρουσίαση Δεδομένων

Τεχνικές Οπτικοποίησης

Εξόρυξη Δεδομένων

Ανακάλυψη Πληροφορίας

Data Exploration

Στατιστικές περιλήψεις, Ερωτήσεις (OLAP)

Προ-επεξεργασία&Ενοποίηση Δεδομένων, Αποθήκες`

Πηγές Δεδομένων

Χαρτιά, Αρχεία, Web έγγραφα, Επιστημονικά Πειράματα, Συστήματα Βάσεων Δεδομένων

Τελικός Χρήστης

Business Analyst

Data Analyst

DBA

λιαχειριστής

BΔ

- Μεγάλος όγκος δεδομένων
 - Οι αλγόριθμοι πρέπει να έχουν μικρή πολυπλοκότητα και υψηλή κλιμάκωση ώστε να διαχειρίζονται πολλά δεδομένα
- Πολυδιάστατα και Πολύπλοκα δεδομένα
 - Ροές δεδομένων (data streams) π.χ. δεδομένα αισθητήρων, ροές ειδήσεων
 - Χρονολογικές σειρές (time-series), χρονικά και ακολουθιακά δεδομένα
 - Ημι-δομημένα δεδομένα, γραφήματα, δίκτυα
 - Ετερογενείς πηγές δεδομένων
 - Χωρικά και χωροχρονικά δεδομένα, πολυμέσα, δεδομένα στο web,
 πολυγλωσσικά δεδομένα

Χρειαζόμαστε νέες και εξειδικευμένες εφαρμογές

- Οι μηχανές αναζήτησης αρχικά χρησιμοποιούσαν τις λέξεις που περιέχονταν στις σελίδες με αποτέλεσμα να παραπλανούνται εύκολα
- Η Google κατάφερε με τον αλγόριθμό της (PageRank) να πετύχει πιο αξιόπιστα αποτελέσματα γιατί βασίστηκε στις πληροφορίες που μεταφέρουν τα links προς μια σελίδα
- Ο Sergey Brin και ο Larry Page ήταν σπουδαστές στο Stanford σε θέματα ΒΔ και εξόρυξης δεδομένων το 1998.

Η βαθμονόμηση και η παραγωγή συστάσεων είναι ένα πεδίο εξόρυξης γνώσης με μεγάλο πρακτικό και ερευνητικό ενδιαφέρον

- Οι περισσότερες εταιρίες που κάνουν αποκλειστική προώθηση προϊόντων χρησιμοποιούν εργαλεία data mining
- Οι περισσότερες οικονομικές εταιρίες χρησιμοποιούν μοντέλα πελατών
- Η μοντελοποίηση είναι πιο εύκολη από την αλλαγή της συμπεριφοράς των πελατών
- Η Verizon Wireless μείωσε την απώλεια

Ο διαχωρισμός των πελατών σε ομάδες μπορεί να οδηγήσει σε καλύτερα στοχευμένες υπηρεσίες

- Ανίχνευση απάτης σε πιστωτικές κάρτες
- Ξέπλυμα χρήματος
- Παραβιάσεις ασφάλειας
 - NASDAQ Sonar system
- Τηλεφωνική απάτη
 - AT&T, Bell Atlantic, British Telecom/MCI
- Ανίχνευση βιοτρομοκρατίας με ανάλυση
 δεδομένων αισθητήρων στους Ολυμπιακούς

Η πρόβλεψη ή έγκαιρη διάγνωση αρνητικών περιστατικών μπορεί να μειώσει τις συνέπειες

Παράδειγμα: Ανάλυση

συνδέσμων

 Μπορούμε να βρούμε χρήσιμη πληροφορία, περίεργα πρότυπα κλπ.

- TIA: Terrorism (formerly Total)Information AwarenessProgram
 - DARPA program (σταμάτησε)
 - some functions transferred to intelligence agencies
- CAPPS II παρακολούθηση των στοιχείων πτήσης όλων των επιβατών αεροπορικών πτήσεων
- Η εξόρυξη δεδομένων μπορεί
 - Να παραβιάσει την ιδιωτικότητα
 - Να δημιουργήσει λάθος συναγερμούς (false positives)

Terrorist network for 26/11/2008 Mumbai attack based on intercepted phone calls.

- Αν οι ΒΔ έχουν 5% εσφαλμένα δεδομένα, η ανάλυση 10 εκατ. υπόπτων θα δημιουργήσει 500 χιλ. false positives
- Στην πραγματικότητα τα αναλυτικά μοντέλα συσχετίζουν πολλά δεδομένα για να μειώσουν τα false positives
- Παράδειγμα: Θέλουμε να βρούμε ένα πλαστό κέρμα στα 1000.
 - Με μία ρίψη κάθε νομίσματος δεν μπορούμε
 - Με 30 ρίψεις, ένα πλαστό κέρμα θα ξεχωρίσει με μεγάλη πιθανότητα
 - Αντίστοιχα μπορούμε να βρούμε 19 πλαστά κέρματα σε 100 εκατομ. ρίψεις

Πολυδιάστατο πρόβλημα

- Δεδομένα προς ανάλυση: σχεσιακά δεδομένα, συναλλαγές, ροές, αντικειμενοστραφή, αντικειμενοκεντρικά, χωρικά, χωροχρονικά, χρονολογικές σειρές, πολυμέσα, γράφοι
- Γνώση που εξάγεται: Διάκριση (discrimination), συσχετίσεις (association), κατηγοριοποίηση (classification), συσταδοποίηση (clustering), τάση/απόκλιση (trend/deviation), εξαιρέσεις (outliers)
- Τεχνικές που χρησιμοποιούνται: database oriented, data warehouse (analytical processing OLAP), στατιστική, οπτικοποίηση
- Προσαρμογή στις εφαρμογές: Retail, telecommunication,
 banking, fraud analysis, bio-data mining, stock market analysis, text
 mining, Web mining κλπ

- Περιγραφή πολυδιάστατων εννοιών
 - Γενίκευση, σύνοψη και αντιπαραβολή χαρακτηριστικών που έχουν τα δεδομένα, π.χ. «Καλοί» και «Κακοί» δανειολήπτες
 - Συχνά εμφανιζόμενα πρότυπα,
 π.χ. Γάλα □ Δημητριακά [0.5%, 75%] (confidence, support)
- Κατηγοριοποίηση και πρόβλεψη
 - Κατασκευή μοντέλων (συναρτήσεων) που περιγράφουν και διαχωρίζουν κατηγορίες ή έννοεις για μελλοντική πρόβλεψη π.χ. Ταξινόμησε τις χώρες με βάση το κλίμα τους αν γνωρίζεις τα δεδομένα βροχόπτωσης, ηλιοφάνειας και θερμοκρασίας
 - Πρόβλεψη τιμών που λείπουν αναλύοντας ένα δείγμα ή όλες
 τις προηγούμενες τιμές

- Συσταδοποίηση
 - Οι κατηγορίες είναι άγνωστες. Ομαδοποίηση των δεδομένων και δημιουργία νέων κατηγοριών
 - Μεγιστοποίηση της ομοιότητας των αντικειμένων μέσα στις συστάδες και ελαχιστοποίηση της ομοιότητας μεταξύ διαφορετικών συστάδων
- Ανάλυση εξαιρέσεων
 - Outlier: αντικείμενα που δεν είναι συμβατά με τη γενική συμπεριφορά των δεδομένων
 - Διάκριση μεταξύ θορύβου και εξαίρεσης. Ανίχνευση και ειδοποίηση (alert)
- Ανάλυση τάσεων και μεταβολών
 - Τάση και απόκλιση (regression analysis)
 - Εξόρυξη ακολουθιακών προτύπων
 - Ανάλυση περιοδικότητας
 - Ανάλυση με βάση την ομοιότητα

- Μεθοδολογία εξόρυξης
 - Εξόρυξη διαφορετικών τύπων γνώσης από διαφορετικού τύπου δεδομένα (βιολογικά, ρεύματα, ιστός κλπ)
 - Απόδοση: αποτελεσματικότητα, αποδοτικότητα, κλιμάκωση
 - Αξιολόγηση παραγόμενων προτύπων/γνώσης
 - Ενσωμάτωση προηγούμενης γνώσης
 - Ολοκλήρωση της εξαγόμενης γνώσης
 - Διαχείριση θορύβου και ελλιπών δεδομένων
 - Κατανεμημένη και αυξητική εξόρυξη γνώσης
- Αλληλεπίδραση με το χρήστη
 - Γλώσσες ερωτήσεων εξόρυξης δεδομένων
 - ∘ Έκφραση και οπτικοποίηση αποτελεσμάτων
 - Αλληλεπιδραστική (διαλογική) εξόρυξη γνώσης (π.χ. στις μηχανές αναζήτησης)
- Εφαρμογές και Κοινωνική επίδραση
 - Εξόρυξη με βάση το πεδίο αναφοράς
 - Προστασία δεδομένων, ευαίσθητα δεδομένα

- Εξόρυξη δεδομένων: ανακάλυψη
 προτύπων γνώσης που έχουν ενδιαφέρον
 από τα δεδομένα
- Διαδικασίες που περιλαμβάνει:
 - Καθαρισμό δεδομένων, ολοκλήρωση, επιλογή, μετασχηματισμό, εξόρυξη, αξιολόγηση προτύπων, παρουσίαση της παραγόμενης γνώσης
- Μπορεί να εφαρμοστεί σε ποικίλες αποθήκες δεδομένων
- Λειτουργίες: χαρακτηρισμός, διάκριση, συσχέτιση, κατηγοριοποίηση, συσταδοποίηση, ανάλυση τάσεων, εύρεση εξαιρέσεων κλπ.

Η καμπύλη ενδιαφέροντος για την εξόρυξη

Data mining and KDD

- Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, ECML/PKDD, PAKDD, κλπ.
- Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD

Database systems

- Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA
- Journals: IEEE-TKDE, ACM-TODS/TOIS, JIIS, J. ACM, VLDB J., Info. Sys., κλπ.

Al & Machine Learning

- Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, κλπ.
- \circ Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, κλπ.

Web and IR

- Conferences: SIGIR, WWW, CIKM, κλπ.
- Journals: WWW: Internet and Web Information Systems,

Statistics

- Conferences: Joint Stat. Meeting, κλπ.
- Journals: Annals of statistics, κλπ.