Class Field Theory

David Wiedemann

Table des matières

1	Mo	tivation	2
2	Inte	erlude : Inverse Limits	4
3	Gal	ois Theory and profinite groups	4
4	Loc	al Fields	7
\mathbf{L}	ist	of Theorems	
	1	Definition	2
	2	Corollary	2
	4	Lemma	3
	5	Theorem (Artin Reciprocity)	3
	6	Theorem (Abelian polynomial theorem)	3
	7	Theorem	4
	2	Definition (Inverse System)	4
	10	Lemma	5
	3	Definition (Profinite space)	5
	11	Lemma	5
	4	Definition (Profinite group)	6
	5	Definition (Krull Topology)	6
	13	Proposition	6
	14	Corollary	6
	15	Theorem (Fundamental Theorem of Galois Theory (Cool version))	6
	6	Definition (Local Field)	7
	7	Definition	7

Lecture 1: Intro

Mon 10 Oct

1 Motivation

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial and a p a prime. Look at $f_p(x) \in \mathbb{F}_p[x]$, in general, f_p is not irreducible so we can study it's factorizations.

Definition 1

We say f splits completely mod p if f_p factors into distinct linear factors. We write $Spl(f) = \{p | f_p = \prod (x - \alpha_i)\alpha_i \neq \alpha_j \forall i \neq j\}$

Problem

Given f, describe the factorisations behaviour of f_p as a function of p. Or at least give a rule determining Spl(f).

An answer to this illposed problem is a Reciprocity Law.

Example

Let $f(x) = x^2 - q \ q > 2$ prime.

Observe that

- 1. $f_p(x) = (x \alpha_p)^2$, but this happens iff p = 2, q
- 2. $f_p(x) = (x \alpha_p)(x + \alpha_p)$ iff $p \in Spl(f)$ iff $(\frac{q}{p}) = 1$
- 3. $f_p(x)$ is irreducible iff $(\frac{q}{p}) = -1$

To get a rule, we need to compute $\left(\frac{q}{p}\right)$, to do so, we use quadratic reciprocity. For us, quadratic reciprocity translates to

Corollary 2

$$(\frac{q}{p}) = \begin{cases} (\frac{p}{q}) & \text{if } p \equiv 1 \mod 4 \\ -(\frac{p}{q}) & \text{if } p \equiv 3 \mod 4 \end{cases}$$

So $Spl(X^2 - q)$ is determined by congruence conditions modula 4q.

Example

Let Φ_n be the nth cyclotomic polynomial, then

$$Spl(\Phi_n) = \{p | p \equiv 1 \mod n\}$$

What about general polynomials?

Over \mathbb{C} , we can always factor polynomials and so we write $K_f = \mathbb{Q}(\alpha_1, \dots, \alpha_n)$

for the splitting field of K_f over \mathbb{Q} .

 $K_f \supset \mathbb{Q}$ is a Galois extension and $\mathcal{O} = \mathcal{O}_{K_f}$ is it's ring of integers.

As \mathcal{O} is a dedekind domain, we have

$$p\mathcal{O}=\prod_{i=1}^n\beta_i^e, \mathcal{O}_{/\beta_i}\supset \mathbb{Z}/(p)$$
 a finite extension of \mathbb{Z}/p

We understand finite extensions of \mathbb{F}_p , there Galois group is generated by the Frobenius automorphism.

If p does not ramify ($e_p = 1 \iff p \not| D_{K_f}$) then we define the Artin-Symbol $\sigma_{\beta_i} \in Galf(K_f|\mathbb{Q})$ by

$$\sigma_{\beta_i}(\alpha) \equiv \alpha^p \mod \beta_i \forall a \in \mathcal{O}$$

Fact:

If $\beta_i \neq \beta_j$, then there is $\zeta \in Gal(K_f|\mathbb{Q})$ such that $\zeta(\beta_i) = \beta_j$, then $\sigma_{\beta_j} = \zeta \sigma_{\beta_i} \zeta^{-1}$.

The Artin symbol of p is $\sigma_p = C_{\text{Gal}}(\sigma_{\beta_i})$.

For now we suppose $Gal(K_f|\mathbb{Q})$ is an abelian group, in this case, we can turn the Artin Symbols into a map

$$\mathbb{Q}^* \supset \Gamma_{D_{K_f}} = \langle p \not| D_{K_f} \rangle \to \operatorname{Gal}(K_f | \mathbb{Q})$$

by sending $p \to \sigma_p$

Lemma 4

If $Gal(K_f|\mathbb{Q})$ is abelian, then, up to finitely many extensions,

$$p \in Spl(f) \iff \sigma_p = 1$$

Theorem 5 (Artin Reciprocity)

For K_f/\mathbb{Q} abelian, the Artin map $\sigma: \Gamma_{D_{K_f}} \to \operatorname{Gal}(K_f|\mathbb{Q})$ is surjective and it's kernel contains the "ray class group".

Here the ray class group is

$$\Gamma_a^{(ray)} = \left\{ r \in \mathbb{Q}^* | r = \frac{c}{d}(ca, d) = 1, c \equiv d \mod a \right\}$$

For a suitable a tant consists of ramified primes.

Define $\tilde{Spl}(f) = Spl(f) \setminus \{p|a\} \cup \{p \equiv 1 \mod a\}$.

Theorem 6 (Abelian polynomial theorem)

If f is abelian, then $\tilde{Spl}(f)$ can be described by congruence conditions wrt a modulus depending only on f.

Conversely, if $\tilde{Spl}(f)$ is described by congruence conditions, then $\operatorname{Gal}(K_f|\mathbb{Q})$ is abelian.

Theorem 7

Let f, g be polynomials (monic irreducible), then

$$K_f \subset K_g \iff Spl(g) \subset^* Spl(f)$$

This enters in the proof of the converse part of the abelian polynomail theorem.

2 Interlude: Inverse Limits

Let I be a directed ordered set $(i, j \in I \implies \exists k \text{ such that } i \leq k, j \leq k)$

Definition 2 (Inverse System)

A inverse system consists of data

$$\{X_i, f_{i,j} | i, j \in I, i \le j\}$$

 X_i are objects (topological spaces, groups, etc) and the $f_{i,j}: X_j \to X_i$ such that $f_{i,i} = \operatorname{Id}$ and $f_{j,k} \circ f_{k,i} = f_{j,i}$

Example

Take $X_i = \mathbb{Z}_{p^j\mathbb{Z}} \to \mathbb{Z}_{p^i\mathbb{Z}}, i \leq j$. Then, the inverse limit is defined by

$$X = \varprojlim_{i \in I} X_i = \left\{ (x_i) \in \prod X_i | f_{ij}(x_j) = x_i \forall i \le j \right\} \subset \prod_{i \in I} X_i$$

Lecture 2: Infinite galois theory

Thu 13 Oct

3 Galois Theory and profinite groups

Example

$$\mathbb{F}_p \subset \mathbb{F}_{p^n} \subset \overline{\mathbb{F}_p}$$
.

Though the extension is infinite, we can look at $Gal(\overline{\mathbb{F}_p}|\mathbb{F}_p)$ and it still contains the frobenius $\phi(x) = x^p$.

Let
$$H = \{\phi^n | n \in \mathbb{Z}\} = \langle \phi_n \rangle \subset \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$$
.
Note that $\overline{\mathbb{F}_p}^H = \mathbb{F}_p \ BUT \ H \subsetneq \operatorname{Gal}(\overline{\mathbb{F}_p} | \mathbb{F}_p)$

Lemma 10

Let T be a Hausdorff topological space.

The following are equivalent

- T is an inverse limit of finite discrete spaces
- T is compact and every point in T has a basis of neighborhoods of subsets that are clopen
- T is compact and totally disconnected

Proof (Sketch)

 $1 \implies 2$ follows from construction (exercise)

 $2 \implies 3$ Take $x \in T$ and let C_x be the connected component of x.

Then

$$C_x = \bigcap_{x \in U, \ clopen} \ U = \{x\}$$

because X is Hausdorff.

 $3 \implies 1 \text{ Let } I = \left\{ \begin{array}{l} \overset{\frown}{\text{equivalence relation }} R \subset T \times T | T/R \text{ is finite discrete} \end{array} \right\}$

Then, consider $\phi: T \to \varprojlim^T /_R$, one then checks this is a homeomorphism. (exercise again)

Definition 3 (Profinite space)

A profinite space is a totally disconnected, compact and Hausdorff space.

Lemma 11

Let G be a Hausdorff topological group.

Then the following are equivalent

- G is the inverse limit of discrete finite groups
- G is compact and the identity in G has a basis of neighborhoods consisting of normal clopen subgroups.
- G is compact and totally disconnected.

Proof

 $1 \implies 3$ see course notes

 $2 \implies 1$ We want to show that $\phi: G \to \varprojlim^G /_U$ where the limit is taken over all normal clopen subgroups.

 $3 \implies 2$ We take a basis for e as in the lemma above.

We take a basis of clopen neighborhoods U and then define

$$V = \left\{ v \in U | Uv \subset U \right\} \ \ and \ H = \left\{ h \in V | h^{-1} \in V \right\}$$

and one can show that H is a normal finite subgroup of finite index.

Definition 4 (Profinite group)

A totally disconnected compact Hausdorff topological group is called a profinite group.

Example

$$-\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$$

$$-\hat{\mathbb{Z}} = \lim_{n \in \mathbb{N}} \mathbb{Z}/N\mathbb{Z}$$
 where the inverse system is given by divisibility

Now we try to fix the fundamental theorem of Galois theory.

Let F be a field with algebraic closur \overline{F} .

Write $G_E = \operatorname{Gal}(\overline{F}|E)$ for a field extension $F \subset E \subset \overline{F}$.

In particular, G_F is just the absolute Galois group of F

Definition 5 (Krull Topology)

For some element $\sigma \in G_F$, define a absis of (open) neighborhoods to be

$$\{\sigma G_E|F\subset E \text{ finite normal }\}$$

Proposition 13

 G_F equipped with the Krull topology is a profinite group. We have

$$G_F = \varprojlim \operatorname{Gal}(E/F)$$

where E runs over finite Galois extensions of E

Corollary 14

$$G_{\mathbb{F}_p} \simeq \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p) \simeq \hat{\mathbb{Z}}$$

Theorem 15 (Fundamental Theorem of Galois Theory (Cool version))

The assignment

$$K \to \operatorname{Gal}(\overline{F}|K)$$

is a one-to-one correspondence between extensions $F \subset K \subset \overline{F}$ and closed subgroups of G_F .

The open subgroups of G_F correspond to finite extensions of F.

Proof

- 1. First, notice that an open subgroup of G_F is closed.
- 2. Finite extensions correspond to open subgroup (essentially by definition, one needs to take the normal closure)

3. Now, for an arbitrary field extensionf

$$\operatorname{Gal}(\overline{F}|K) = \bigcap_{i} \operatorname{Gal}(\overline{F}|K_{i})$$

as K_i varies over all finite subextensions of K

- 4. This assignment is injective as K is the fixed field of $Gal(\overline{F}|K)$
- 5. This assignment is surjective :

Take $H \subset G_F$ a closed subgroup and let $K = \overline{F}^H$, so that $H \subset \operatorname{Gal}(\overline{F}|K)$.

To see that this is in fact an equality, we take $\sigma \in \operatorname{Gal}(\overline{F}|K)$ and we show that $\sigma \in \overline{H} = H$.

Take some finite extension $K \subset L \subset \overline{F}$ so that $\sigma \operatorname{Gal}(\overline{F}|L)$ is a neighborhood of σ .

We need to show that

$$H \cap \sigma \operatorname{Gal}(\overline{F}|L) \neq \emptyset$$

To do this, we have to show $\tau \in H$ such that $\tau|_L = \sigma|_L$.

$$p: G_K \to \operatorname{Gal}(L/K)$$

is surjective and $p(H) \subset \operatorname{Gal}(L/K)$.

Since K is the fixed field of H, $L^{p(H)} = K$, we have $p|_H : H \to Gal(L/K)$ is surjective.

4 Local Fields

Example

 \mathbb{R} and \mathbb{C} are local fields for us

Definition 6 (Local Field)

A local field is a topological field which is locally compact but not discrete.

Definition 7

Let F be a field. An absolute value on F is a map $|\cdot|: F \to \mathbb{R}$ such that

- 1. $|x| \ge 0$ and |x| = 0 and $|x| = 0 \iff x = 0$
- 2. |xy| = |x||y|
- 3. $|x+y| \le |x| + |y|$

Example

- \mathbb{R} and \mathbb{C} with euclidean norm

— If O is a DVR, $F = \frac{(}{O})$, then $|x| = c^{-\nu(x)}$ with c > 1 defines an absolute value.

_