1

Supplementary Material for "A Differentially Private Reconfiguration Approach for Multi-Agent Distribution Networkss"

Chao Lei, Member, IEEE, Bo Chen, Member, IEEE, Siqi Bu, Senior Member, IEEE, Shuangqi Li, Member, IEEE, Qianggang Wang, Senior Member, IEEE, and Lalit Goel, Fellow, IEEE

I. ALGORITHMIC PSEUDO-CODE

We will exhibit the algorithmic pseudo-code for this proposed C-ADMM-based DP-DNR mechanism $\widetilde{\mathcal{M}}$ with a random perpetuation vector $\boldsymbol{\xi}^l$. As stated previously, the output of $\widetilde{\mathcal{M}}$ can be a mixture of obfuscated-but-feasible tie-line load flows $\boldsymbol{x}^{l_t^*}$ and realistically optimal topology solution \boldsymbol{u}^{l*} of the entire ADNs. The maximum iteration number is set to k_{max} , and then we can summarize this algorithm as below.

Algorithm 1 C-ADMM-based DP-DNR Mechanism $\widetilde{\mathcal{M}}$

- 1: Initialization with input c, A, G_v , G_{cr} , b_v , b_{cr} , b_u , K, h over $n_{\mathcal{A}}$ agents and input parameters ε , ϑ , Δ_{ρ} , τ , \overline{g} , \overline{a}^l ;
- 2: Sample a random perturbation vector $\boldsymbol{\xi}^l$, i.i.d. $\boldsymbol{\xi}^l \sim \mathbb{P}_{\boldsymbol{\xi}}$;
- 3: while $k \leqslant k_{max}$ do
- 4: Each agent distributively updates $(\boldsymbol{X}_{i,b}^{k+1}, \boldsymbol{V}_{i,b}^{k+1}) \leftarrow (\boldsymbol{Z}_{x}^{k}, \boldsymbol{W}_{v}^{k})$ by (9a) and sends $(\boldsymbol{X}_{i,b}^{k+1}, \boldsymbol{V}_{i,b}^{k+1})$ to the DSO;
- 5: DSO updates $(\boldsymbol{Z}_x^{k+1}, \boldsymbol{W}_v^{k+1}) \leftarrow (\boldsymbol{X}_i^{k+1}, \boldsymbol{V}_{i,b}^{k+1})$ by (9b) and sends $(\boldsymbol{Z}_x^{k+1}, \boldsymbol{W}_v^{k+1})$ to all agents;
- 6: Each agent distributively updates $(\boldsymbol{\mu}_{i,b}^{k+1}, \boldsymbol{\gamma}_{i,b}^{k+1}) \leftarrow (\boldsymbol{\mu}_{i,b}^{k}, \boldsymbol{\gamma}_{i,b}^{k})$ by (9c) and $\mathcal{V}_{i}(\boldsymbol{W}_{v}^{k}) \leftarrow \mathcal{V}_{i}(\boldsymbol{W}_{v}^{k+1});$
 - if convergence condition is satisfied then
- 8: return optimal solution (X^*, u^{l*}) for the entire ADNs;
- 9: else
- 10: $k \leftarrow k + 1$;
- 11: **end if**
- 12: end while
- 13: Release both obfuscated-but-feasible $\boldsymbol{x}^{l_t^*}$ and realistically optimal topology variables $\boldsymbol{u}^{l_t^*}$ for $\forall l_t \in \mathcal{T}$.