PS5841

Data Science in Finance & Insurance

Decision Tree

Yubo Wang

Autumn 2021

Decision Trees

- Prediction via stratification of the feature space
 - Divide the predictor space into highdimensional rectangles that minimizes "loss" via recursive binary splitting
 - Prediction based on the mean (for regression)
 or the most commonly occurring class (for
 classification) of training responses in the same
 terminal node

Recursive Binary Splitting

- Top-Down
 - Start from the top of the tree
- Greedy
 - The best split for a particular node is made at that particular step only, rather than taking into account of future steps
- Each split involves a cut-point s which splits a predictor X_i into two partitions
- Split a qualitative predictor into

$$\{X | X_j \text{ in classes up to } s\}$$
 and $\{X | X_j \text{ in the rest of the classes}\}$

Example

 $R_-(j,s) = \{X | X_j < s\}, R_+(j,s) = \{X | X_j \ge s\}$ Find the values of j (feature) and s (cut point) that minimize "loss"

$$\sum_{i:x_{i}\in R_{-}(j,s)} loss(y_{i},\hat{y}_{R_{-}}) + \sum_{i:x_{i}\in R_{+}(j,s)} loss(y_{i},\hat{y}_{R_{+}})$$

Split Criteria ("loss")

- Regression
 - RSS

$$\sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

- Classification
 - Gini index
 - (Cross) Entropy

$\hat{p}_{R_m C_k}$ for Classification

• The proportion of training observations in the m-th region R_m that are from the k-th class \mathcal{C}_k

$$\hat{p}_{mk} = \hat{p}_{R_m C_k} = \frac{n_{R_m C_k}}{n_{R_m}}$$

Classification Error Rate

• For the m-th region R_m

$$E_{R_m} = 1 - \max_{k} (\hat{p}_{R_m C_k})$$

- Overall error rate
 - is the sum of the error rates over all regions
- Classification error rate is not sufficiently sensitive for tree-growing and is rarely used as a split criterium

Gini Index (1)

• For the m-th region R_m

$$G_{R_m} = \sum_{k=1}^{K} \hat{p}_{R_m C_k} (1 - \hat{p}_{R_m C_k})$$

- a measure of variance across the K classes for observations in that region
- $-G_{R_m}$ will take on a small value if the m-th node is pure, containing predominantly observations from a single class

Gini Index (2)

Overall Gini index

$$G = \sum_{k=1}^{K} \frac{n_{Rm}}{N} G_{Rm}$$

the pooled variance involving regional variances

Example: Binary Split on Gini Index

- 2-class responses and 2-D features X_1 and X_2
- Find the optimal split for predictor X_1
 - Find $s_{X_1}^*$ that minimizes G as $G^{X_1}(s_{X_1}^*)$
- Find the optimal split for predictor X_2
 - Find $s_{X_2}^*$ that minimizes G as $G^{X_2}(s_{X_2}^*)$
- If $G^{X_1}(s_{X_1}^*) < G^{X_2}(s_{X_2}^*)$, the current step splits X_1 , otherwise, the current step splits X_2

Split, Node Purity

 Node purity – the degree to which a node contains predominantly observations from a single class Split for node purity Left $\hat{p}_{mk} = 0.64$ Right $\hat{p}_{mk} = 1.00$

Entropy

• For the m-th region R_m

$$D_{R_m} = -\sum_{k=1}^K \hat{p}_{R_m C_k} \log \hat{p}_{R_m C_k}$$

- D_{R_m} will take on a small value if the m-th node is pure, containing predominantly observations from a single class
- Overall entropy
 - is the sum of entropy over all regions
- The Gini index and the entropy are quite similar numerically

Cost Complexity Pruning (Weakest Link Pruning)

- Pruning a tree to manage the risk of overfitting by a large tree T_0
- Each value of the tuning parameter $(\alpha \ge 0)$ corresponds to a subtree $T \subset T_0$ which minimizes

error_rate +
$$\alpha |T|$$

Example: Pruning

Building a Pruned Tree

- 1. Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the loss for pruning (RSS or Error Rate) on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Decision Boundary random forest

That was

