Sarah Bazari BIOL564 Midterm Sheet Discrete-Time Models- population size measured in discrete time steps, dimensionless Recursion Equation: $N_{t+1} = f(N_t) = N_t F(N_t)$ $f(N_t)$; net growth rate, current pop $F(N_i)$; per-capita growth on avg. total pop. <u>Net Growth Rate:</u> the percentage increase or decrease of a population based on births and deaths within that timeframe, f(N) = B - D, $f(N) \ge 0$ with f(0) = 0; for growth Net Per Capita Growth Rate: the average rate a population increases per individual, showing the overall change in population size per individual over time, (Births - Deaths) / Total **Population** $F(N) \geq 0$ Exponential Growth Model (Density-Independent): Linear Population Model $\lambda > 1$ F(N) does not depend on population size. $0 < \lambda < 1$ Equation: $N_{t+1} = \lambda N_{t}$ If $\lambda > 1$, population grows exponentially. <u>Solution</u> (for initial condition N0): $N_{ij} = \lambda^{t} N_{ij}$ If $0 \le \lambda < 1$, population declines. $\lambda = f'(K) = 1 - r$ Net Per-Capita Growth Rate: $F(N) = 1 + b - d = \lambda$ b is the average number of surviving offspring per individual over a lifetime, $b \ge 0$ Growth $\lambda -> \infty$ as $t -> \infty$, $\lambda > 1$ d is the probability that a given individual dies during the year, $0 \le d < 1$ Decay $\lambda \rightarrow 0$ as $t \rightarrow \infty$, $0 \le \lambda < 1$ λ is the net per capita growth rate/ratio, $\lambda \geq 1$ Set up axes with N_t on the horizontal axis and N_{t+1} on the vertical axis ●
 Sketch the diagonal line N_{t+1} = N_t ● Problems: population approaches infinity as time approaches infinity, does not include density dependent factors <u>Improved Form</u>: $\lambda = 1 + b - d \rightarrow \lambda = 1 + b(N) - d(N) \rightarrow$ resource competition Sketch the net growth function, $f(N_t)$ **<u>Logistic Growth Model (Density-Dependent):</u>** Nonlinear Population Model 4. Choose an initial condition, N₀ and plot (N₀, N₀)
5. Since N_t + 1 = f(N_t) move vertically (up or down) to the curve f(N_t) and plot (N_t, N_{t+1})
6. Move horizontally to the diagonal line N_{t+1} = N_t Equation: $\frac{N_{t+1}}{N_{t+1}} = N_t + rN_t(1 - \frac{N_t}{K})$ Net Per-Capita Growth Rate: $\frac{F(N)}{N_t} = 1 + r(1 - \frac{N_t}{K})$ Carrying Capacity: $K = \frac{r}{d}$, $d_2 = \frac{r}{K}$ and plot (N_{t+1}, N_{t+1}) Repeat steps 5-6 until the long-time (asymptotic) behavior becomes clear Intrinsic Growth Rate: max rate at which population can grow when no environmental limits, r = b - dGrowth rate slows down as N approaches K, At N = K, growth stops (dN/dt=0)Bifurcation: point where stability of steady state changes, period doubling bifurcation where the cycles keep doubling until chaos and trans-critical bifurcation models where the trivial and carrying capacity steady states are interchanged with eachother. <u>Transcritical Bi:</u> zone= r<0, r>0, extinction and K against eachother Equilibria: Stable $f'(N^*) < 1$ Unstable $f'(N^*) > 1$ <u>Cobwebbing</u>: determines if pops return to equilibrium of the form $N_{t+1} = f(N_t)$, <u>Logistic model</u>: $\frac{f'(N)}{f'(N)} = \frac{1+r-\frac{2K_t}{K_t}}{1+r}$, reference tables of first 2 steady states Continuous-Time Models: time variable no longer an integer, appropriate model for when there is constant growth (predator-prey, competition bacterial reproduction, disease models) Equation: $N(t+dt) = N_t + bN(t)dt - dN(t)dt \rightarrow \frac{dN(t)}{dt} = rNt$, as dt gets large \rightarrow distance b/w Nt and N(t+dt) larger & dt smaller t \rightarrow 0 Equilibria: $\frac{dN}{dt} = rN(1 - \frac{N}{K}) = f(N)$ set equal to 0 Condition for Stability: f'(N) < 0 r \rightarrow stable when r<0 when $f'(K) \rightarrow = -r \rightarrow \text{stable when r} > 0 \text{ unstable when r} < 0$ Differential Equation for Logistic Growth: $\frac{dN}{dt} = rN(1 - \frac{N}{K})$ r < 0, $N(t) \rightarrow 0$ as $t \rightarrow \infty$ Steady States: N*=0 (plug in 0, trivial state, unstable, extinction), N*=K (plug in 1, nontrivial state, stable equilibrium), r = 0, $N(t) = N_0$ growth occur when $N_{\star} + 1 = N_{\star} = N^{*}$, growth rate and decay rate are the same, $\frac{f(N)}{f(N)} = N^{*} + rN^{*}(1 - \frac{N^{*}}{K}) = N^{*}$ λ > 1 λ < 1 $\underbrace{Perturbation}_{t+1} : \frac{n_{t+1} = N_{t+1} - N}_{t+1}$ Increase in $r \rightarrow$ higher oscillations around K Exponential Continuous Growth: separation variables, integration $\underline{Equation:} \frac{dN}{dt} = rN \rightarrow \frac{dN}{N} = rd_{t} \underbrace{Integration} \underbrace{\int \frac{1}{N} (dN)} = \underbrace{\int rdt \rightarrow ln(N)} = rt + C \underbrace{Solve\ N} e^{ln(|N|)} = e^{rt}$ **Logistic Continous Time**: $\frac{dN}{dt} = rN(1 - \frac{N}{K})$ Stable $f'(N^*) < 0$ Equilibria: N^* , $f(N^*) = 0$ Unstable f'(N) > 0Allee Effects (Density Dependence at Low Population Sizes): per-capita growth rate decreases at low densities due to size (predator) 2) mating 3) dispersal pollination. Non-Critical Depensation (Weak Allee Effect) growth rate still positive at low N, Critical Depensation (Strong Allee Effect) growth rate negative at low N o possible extinction threshold. Allee Threshold population size below which extinction occurs, u with $-K \le u \le K$. No Allee Effect with <u>compensation</u> (growth rate highest at small pop size N) $\underline{Model}: \frac{\frac{dN}{dt} = rN(1 - \frac{N}{K})(\frac{N}{A} - 1)$ Predator-Prey/Pest Models: relationship between predator intake and prey density, pests lead to changes in steady states Holling Type III Response: Functional Response model density-dependent predation rates, the intake of a consumer as a function of food density $p(N) = \frac{dN}{dR}$ $p(N) = \frac{a}{\frac{1}{1} + ah}$ a is attack rate, h is handling time (time consuming prey) Spruce Budworm Model: $\frac{dv}{dt} = G(N) - P(N)$, #'s kill up to 80% of mature trees, examine when p(N) increases linearly w/ population size, Predation linear b/c predator limited in consumption, limited to amount Budworms grow Logistically but also experience predation by birds at rate p(N): $\frac{dN}{dt} = rN(1 - \frac{N}{K}) - pN = g(N) - p(N) = f(N)$ $N \to \infty$, $p(N) = \frac{1}{h}$ $Budworm\ rare \rightarrow predation\ rate\ near\ 0$ Budworm common → predation rate saturated (levels off at 1/h) Never reaches 0 or 1/h(K) Equilibria: G(0)=r $G(N^*)=0$, $N^*=K$ Bifurcation: Bistability occurs when; $K_1 < K < K_2$ b/c 2 locally stable equilibrium separated by unstable equilibrium; if K crosses K_2 budworm pop explodes; if K drops below K_1 pop

Chaos: Chaotic dynamics are deterministic (no random terms), aperiodic (no pattern), bounded (does not go to infinity), and depends on the initial conditions.

budworms can eat→ p(N) saturate at high budworm densities, when N is high impossible to consume all

collapses Husteresis: gradual jump to new equilibrium, current state of the population depends on the state of the past Saddle-Node Bifurcation: if starts at N*3 or N*1=memory

Phase Line Diagram: plot $\frac{dN}{dt} = f(N)$ versus N and note when f(N) is positive or negative

What implications might chaotic dynamics have for real populations?

Making predictions is challenging (ex: intro of species w hopes of controlling another pop. but it leads to an extinction of that species, ex: climate models)

What happens to the population size as K increases to a and then above K2?

Equilibria of N*1, vanishes and pop goes to N*3

What happens now to the population size as K decreases towards and then below K1?

