

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C07C 41/03, 41/36, 43/11 C07C 43/15		A1	(11) International Publication Number: WO 92/16484 (43) International Publication Date: 1 October 1992 (01.10.92)
<p>(21) International Application Number: PCT/US92/02254</p> <p>(22) International Filing Date: 18 March 1992 (18.03.92)</p> <p>(30) Priority data: 673,289 19 March 1991 (19.03.91) US 847,874 13 March 1992 (13.03.92) US</p> <p>(71) Applicant: CYTRX CORPORATION [US/US]; 150 Technology Parkway, Norcross, GA 30092 (US).</p> <p>(72) Inventors: EMANUELE, R., Martin ; 5320 Hillbrook, Alpharetta, GA 30201 (US); HUNTER, Robert, L. ; 3640 Churchwell Court, Tucker, GA 30084 (US). CULBRETH, Paula, H. ; 3422 Skyland Drive, Loganville, GA 30249 (US).</p> <p>(74) Agents: JOHNSON, James, Dean et al.; Jones, Askew & Lunsford, 191 Peachtree Street, N.E., 37th Floor, Atlanta, GA 30303-1769 (US).</p>		<p>(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, RU, SD, SE, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent).</p> <p>Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</p>	

(54) Title: POLYOXYPROPYLENE/POLYOXYETHYLENE COPOLYMERS WITH IMPROVED BIOLOGICAL ACTIVITY

(57) Abstract

The present invention comprises novel preparations of polyoxypropylene/polyoxyethylene copolymers which retain the therapeutic activity of the commercial preparations, but are substantially free from the undesirable effects which are inherent in the prior art preparations. Because the preparations of polyoxypropylene/polyoxyethylene copolymers which comprise the present invention are a less polydisperse population of molecules than the prior art polyoxypropylene/polyoxyethylene copolymers, the biological activity of the copolymers is better defined and more predictable.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FI	Finland	MI	Mali
AU	Australia	FR	France	MN	Mongolia
BB	Barbados	GA	Gabon	MR	Mauritania
BE	Belgium	GB	United Kingdom	MW	Malawi
BF	Burkina Faso	GN	Guinea	NL	Netherlands
BG	Bulgaria	GR	Greece	NO	Norway
BJ	Benin	HU	Hungary	PL	Poland
BR	Brazil	IE	Iceland	RO	Romania
CA	Canada	IT	Italy	RU	Russian Federation
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
CI	Côte d'Ivoire	LJ	Liechtenstein	SU	Soviet Union
CM	Cameroon	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
DE	Germany	MC	Monaco	US	United States of America
DK	Denmark	MG	Madagascar		
ES	Spain				

5

1

10

POLYOXYPROPYLENE/POLYOXYETHYLENE COPOLYMERS WITH IMPROVED BIOLOGICAL ACTIVITY

15

Cross-Reference to Related Applications

This application is a continuation-in-part of pending U.S. Patent Application Serial No. 07/673,289, filed March 19, 1991.

20

Technical Field

25

The present invention relates to a preparation of polyoxypropylene/polyoxyethylene copolymer which has an improved toxicity and efficacy profile. The present invention also includes polyoxypropylene/polyoxyethylene block copolymers with a polydispersity value of less than approximately 1.05.

25

Background of the Invention

30

Certain polyoxypropylene/polyoxyethylene copolymers have been found to have beneficial biological effects when administered to a human or animal. These beneficial biological effects are summarized as follows:

Polyoxypropylene/polyoxyethylene Copolymers as Rheologic Agents

The copolymers can be used for treating circulatory diseases either alone or in combination with other compounds,

including but not limited to, fibrinolytic enzymes, anticoagulants, free radical scavengers, antiinflammatory agents, antibiotics, membrane stabilizers and/or perfusion media. These activities have been described in U.S. Patent Nos. 4,801,452, 4,873,083, 5 4,879,109, 4,837,014, 4,897,263, 5,064,643; 5,028,599; 5,047,236; 5,089,260; 5,017,370; 5,078,995; 5,032,394; 5,041,288; 5,071,649; 5,039,520; 5,030,448; 4,997,644; 4,937,070; 5,080,894; and 4,937,070, all of which are incorporated herein by reference.

10 The polyoxypropylene/polyoxyethylene copolymers have been shown to have quite extraordinary therapeutic activities. The surface-active copolymers are useful for treating pathologic hydrophobic interactions in blood and other biological fluids of humans and animals. This includes the use of a surface-active copolymer for treatment of diseases and conditions in 15 which resistance to blood flow is pathologically increased by injury due to the presence of adhesive hydrophobic proteins or damaged membranes. This adhesion is produced by pathological hydrophobic interactions and does not require the interaction of specific ligands with their receptors. Such proteins and/or 20 damaged membranes increase resistance in the microvasculature by increasing friction and reducing the effective radius of the blood vessel. It is believed that the most important of these proteins is soluble fibrin.

25 Pathological hydrophobic interactions can be treated by administering to the animal or human suffering from a condition caused by a pathological hydrophobic interaction an effective amount of a surface-active copolymer. The surface-active copolymer may be administered as a solution by itself or it 30 may be administered with another agent, including, but not limited to, a fibrinolytic enzyme, an anticoagulant, or an oxygen radical scavenger.

The method described in the foregoing patents comprises administering to an animal or human an effective

amount of a surface-active copolymer with the following general formula:

wherein a is an integer such that the hydrophobe represented by ($\text{C}_3\text{H}_6\text{O}$) has a molecular weight of approximately 950 to 4000 daltons, preferably about 1200 to 3500 daltons, and b is an integer such that the hydrophile portion represented by ($\text{C}_2\text{H}_4\text{O}$) constitutes approximately 50% to 95% by weight of the compound.

A preferred surface-active copolymer is a copolymer having the following formula:

wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the total molecular weight of the compound is approximately 8400 daltons.

The surface-active copolymer is effective in any condition where there is a pathological hydrophobic interaction between cells and/or molecules. These interactions are believed to be caused by 1) a higher than normal concentration of fibrinogen, 2) generation of intravascular or local soluble fibrin, especially high molecular weight fibrin, 3) increased friction in the microvasculature, or 4) mechanical or chemical trauma to blood components. All of these conditions cause an increase in pathological hydrophobic interactions of blood components such as cells and molecules.

It is believed that fibrin, especially soluble fibrin, increases adhesion of cells to one another, markedly increases friction in small blood vessels and increases viscosity of the blood, especially at low shear rates. The effects of the surface-

active copolymer are believed to be essentially lubrication effects because they reduce the friction caused by the adhesion.

5 Although not wanting to be bound by the following hypothesis, it is believed that the surface-active copolymer acts according to the following mechanism: Hydrophobic interactions are crucial determinants of biologic structure. They hold the phospholipids together in membranes and protein molecules in their native configurations. An understanding of the biology of the surface-active copolymer is necessary to appreciate the biologic activities of the compound. Water is a strongly 10 hydrogen bonding liquid which, in its fluid state, forms bonds in all directions with surrounding molecules. Exposure of a hydrophobic surface, defined as any surface which forms insufficient bonds with water, produces a surface tension or lack 15 of balance in the hydrogen bonding of water molecules. This force can be exceedingly strong. The surface tension of pure water is approximately 82 dynes/cm. This translates into a force of several hundred thousand pounds per square inch on the surface molecules.

20 As two molecules or particles with hydrophobic surfaces approach, they adhere avidly. This adhesion is driven by the reduction in free energy which occurs when water molecules transfer from the stressed non-hydrogen bonding hydrophobic surface to the non-stressed bulk liquid phase. The energy holding 25 such surfaces together, the work of adhesion, is a direct function of the surface tension of the particles:¹

$$W_{AB} = \gamma_A + \gamma_B - \gamma_{AB}$$

30 where W_{AB} = work of adhesion or the energy necessary to separate one square centimeter of particle interface AB into two separate particles, γ_A and γ_B are the surface tensions of particle A and particle B, γ_{AB} the interfacial tension between them.

Consequently, any particles or molecules in the circulation which develop significant surface tensions will adhere to one another spontaneously. Such adhesion within membranes and macromolecules is necessary to maintain their integrity. We use the term "normal hydrophobic interaction" to describe such forces. Under normal circumstances, all cells and molecules in the circulation have hydrophilic non-adhesive surfaces. Receptors and ligands which modulate cell and molecular interactions are generally located on the most hydrophilic exposed surfaces of cells and molecules where they are free to move about in the aqueous media and to interact with one another. Special carrier molecules are necessary to transport lipids and other hydrophobic substances in the circulation. In body fluids such as blood, nonspecific adhesive forces between mobile elements are extremely undesirable. These forces are defined as "pathologic hydrophobic interactions" because they restrict movement of normally mobile elements and promote inappropriate adhesion of cells and molecules.

In damaged tissue, hydrophobic domains normally located on the interior of cells and molecules may become exposed and produce pathologic adhesive surfaces whose interaction compounds the damage. Fibrin deposited along vessel walls also provide an adhesive surface. Such adhesive surfaces appear to be characteristic of damaged tissue. It is believed that the ability of the surface-active copolymer to bind to adhesive hydrophobic surfaces and convert them to non-adhesive hydrated surfaces closely resembling those of normal tissues underlies its potential therapeutic activities in diverse disease conditions.

Adhesion due to surface tension described above is different from the adhesion commonly studied in biology. The commonly studied adhesion is due to specific receptor ligand interactions. In particular, it is different from the receptor-mediated adhesion of the fibrinogen - von Willibrands factor family of proteins.²

Both the hydrophilic and hydrophobic chains of the surface-active copolymer have unique properties which contribute to biologic activity. The hydrophilic chains of polyoxyethylene (POE) are longer than those of most surfactants and they are flexible. They bind water avidly by hydrogen bond acceptor interactions with ether-linked oxygens. These long, strongly hydrated flexible chains are relatively incompressible and form a barrier to hydrophobic surfaces approaching one another. The hydroxyl moieties at the ends of the molecule are the only groups capable of serving as hydrogen bond donors. There are no charged groups.

This extremely limited repertoire of binding capabilities probably explains the inability of the molecule to activate host mediator and inflammatory mechanisms. The POE chains are not necessarily inert, however. Polyoxyethylene can bind cations by ion-dipole interactions with oxygen groups. The crown polyethers and reverse octablock copolymer ionophores are examples of such cation binding.³ It is possible that the flexible POE chains form configurations which bind and modulate calcium and other cation movements in the vicinity of damaged membranes or other hydrophobic structures.

The hydrophobic component of the surface-active copolymer is large, weak and flexible. The energy with which it binds to a cell membrane or protein molecule is less than the energy which holds the membrane phospholipids together or maintains the tertiary conformation of the protein. Consequently, unlike common detergents which dissolve membrane lipids and proteins, the surface-active copolymer adheres to damaged spots on membranes and prevents propagation of the injury.

The ability of the surface-active copolymer to block adhesion of fibrinogen to hydrophobic surfaces and the subsequent adhesion of platelets and red blood cells is readily demonstrated *in vitro*. Most surfactants prevent adhesion of

5 hydrophobic particles to one another, however, the surface-active copolymer has a unique balance of properties which optimize the anti-adhesive activity while minimizing toxicity. Thus, the surface-active copolymer is not routinely used by biochemists who use nonionic surfactants to lyse cells or dissolve membrane proteins. The surface-active copolymer protects cells from lysis. The hydrophobe effectively competes with damaged cells and molecules to prevent pathologic hydrophobic interactions, but cannot disrupt the much stronger normal hydrophobic interactions which maintain structural integrity.

10

15 The viscosity of blood is generally assumed to be the dominant determinant of flow through vessels with a constant pressure and geometry. In the smallest vessels, such as those in damaged tissue, other factors become significant. When the diameter of the vessel is less than that of the cell, the blood cell must deform in order to enter the vessel and then must slide along the vessel wall producing friction. The deformability of blood cells entering small vessels has been extensively studied⁴ but the adhesive or frictional component has not. The adhesion of cells to vessel walls is generally attributed to specific interactions with 20 von Willebrand's factor and other specific adhesive molecules.⁵ Our data suggests that in pathologic situations, friction resulting from nonspecific physicochemical adhesion between the cell and the vessel wall becomes a major determinant of flow.

25

30 Mathematically, both the strength of adhesion between two particles and the friction force which resists sliding of one along the other are direct functions of their surface tensions which are largely determined by their degree of hydrophobic interaction. The friction of a cell sliding through a small vessel consists of an adhesion component and a deformation component⁶ which are in practice difficult to separate:

$$F = Fa + Fd$$

where F is the friction of cells, F_a is the adhesion component and F_d is the deformation component.

5 The deformation component within a vessel differs from that required for entry into the vessel. It may be similar to that which occurs in larger vessels with blood flowing at a high rate of shear.⁷ Friction within blood vessels has been studied very little, but undoubtedly involves the same principles which apply to polymer systems in which the friction force correlates directly with the work of adhesion:⁸

$$F_a = k WA + c$$

10

where F_a is the adhesional component of the friction force, WA the work of adhesion, and k and c constants which pertain to the particular system studied. Many lubricants act as thin films which separate the two surfaces and reduce adhesion.⁹

15 The effects of the surface-active copolymer on microvascular blood flow were evaluated in several models ranging from artificial *in vitro* systems where critical variables could be rigidly controlled to *in vivo* systems mimicking human disease. First, the surface-active copolymer can be an effective 20 lubricant when used at therapeutic concentrations in a model designed to simulate movement of large cells through small vessels. It markedly reduced the adhesive component of friction, but had no detectable effect on the deformation component of friction. Second, the surface-active copolymer greatly accelerates 25 the flow through the narrow channels formed by the thrombogenic surfaces of glass and air. A drop of blood was placed on a cover slip and viewed under a microscope with cinemicroscopy during the time it took the blood to flow to the edges of the cover slip in response to gentle pressure. The 30 surface-active copolymer inhibited the adhesion of platelets to the glass and maintained the flexibility of red cells which enabled them to pass through the microscopic channels. While the surface-active copolymer did not inhibit the formation of

rouleaux by red cells, it did cause the rouleaux to be more flexible and more easily disrupted. Third, the surface-active copolymer increases the flow of blood through tortuous capillary-sized fibrin-lined channels by over 20-fold. It decreased viscosity of the blood by an amount (10%) far too small to account for the increased flow.

5 In a more physiologic model, the surface-active copolymer increased coronary blood flow by a similar amount in isolated rat hearts perfused with human red blood cells at a 30% hematocrit following ischemic damage.

10 In an *in vivo* model of stroke produced by ligation of the middle cerebral artery of rabbits, the surface-active copolymer increases blood flow to ischemic brain tissue. As much as a two-fold increase was measured by a hydrogen washout technique. In each of these models, there were controls for hemodilution and there was no measurable effect on viscosity at any shear rate measured.

15 It is believed that available data suggests that the surface-active copolymer acts as a lubricant to increase blood flow through damaged tissues. It blocks adhesion of hydrophobic surfaces to one another and thereby reduces friction and increases flow. This hypothesis is strengthened by the observation that the surface-active copolymer has little effect on blood flow in normal tissues where such frictional forces are small.¹⁰

20 The surface-active copolymers are not metabolized by the body and are quickly eliminated from the blood. The half-life of the copolymer in the blood is believed to be approximately two hours. It is to be understood that the surface-active copolymer in the improved fibrinolytic composition is not covalently bound to any of the other components in the composition nor is it covalently bound to any proteins.

5 The surface-active copolymer can be administered with a fibrinolytic enzyme, a free radical scavenger, or it can be administered alone for treatment of certain circulatory conditions which either are caused by or cause pathological hydrophobic interactions of blood components. These conditions include, but not limited to, myocardial infarction, stroke, bowel or other tissue infarctions, malignancies, adult respiratory distress syndrome (ARDS), disseminated intravascular coagulation (DIC), diabetes, unstable angina pectoris, hemolytic uremic syndrome, 10 red cell fragmentation syndrome, heat stroke, retained fetus, eclampsia, malignant hypertension, burns, crush injuries, fractures, trauma producing shock, major surgery, sepsis, bacterial, parasitic, viral and rickettsial infections which promote activation of the coagulation system, central nervous system 15 trauma, and during and immediately after any major surgery. It is believed that treatment of the pathological hydrophobic interactions in the blood that occurs in these conditions significantly reduces microvascular and other complications that are commonly observed.

20 The surface-active copolymer is also effective in increasing the collateral circulation to undamaged tissues with compromised blood supply. Such tissues are frequently adjacent to areas of vascular occlusion. The mechanism appears to be reducing pathological hydrophobic interactions in small blood 25 vessels. Circulatory conditions where the surface-active copolymers are effective include, but are not limited to, cerebral thrombosis, cerebral embolus, myocardial infarction, unstable angina pectoris, transient cerebral ischemic attacks, intermittent claudication of the legs, plastic and reconstructive surgery, 30 balloon angioplasty, peripheral vascular surgery, and orthopedic surgery, especially when using a tourniquet.

 The surface-active copolymer has little effect on the viscosity of normal blood at shear rates ranging from 2.3 sec^{-1} (low) to 90 sec^{-1} (high). However, it markedly reduces the

5 abnormally high viscosity found in postoperative patients and in those with certain pathologic conditions. This observation posed two questions: 1) what caused the elevated whole blood viscosity in these patients and, 2) by what mechanisms did the surface-active copolymer, which has only minor effects on the blood viscosity of healthy persons, normalize pathologic elevations in viscosity?

10 It is generally accepted that hematocrit and plasma fibrinogen levels are the major determinants of whole blood viscosity. This has been confirmed in normal individuals and in many patients with inflammatory conditions. However, these factors could not explain the changes that were observed. In patients having coronary artery cardiac bypass surgery, it was found that hematocrit fell an average of $23\pm4\%$ and fibrinogen fell $48\pm9\%$ within six hours after surgery. The viscosity did not decrease as expected, but increased from a mean of 23 ± 2 to 38 ± 4 15 centipoise (at a shear rate of 2.3 sec^{-1}). Viscosities in excess of 100 were found in some patients. The abnormally high viscosity of blood was associated with circulating high molecular weight polymers of soluble fibrin.¹¹ The soluble fibrin levels rose from $19\pm5\text{ }\mu\text{g/ml}$ to $43\pm6\text{ }\mu\text{g/ml}$ during surgery. These studies utilized a colorimetric enzymatic assay for soluble fibrin¹² and Western blotting procedures with SDS agarose gels to determine the 20 molecular weight of the large protein polymers.¹³

25 In the absence of specific receptors, cells and molecules in the circulation adhere to one another if the adherence reduces the free energy or surface tension between them. An assessment of the surface tension of various components of the blood can be made by measuring contact angles.

30 Red blood cells, lymphocytes, platelets, neutrophils all have contact angles in the range of 14 to 17 degrees. Peripheral blood proteins, such as albumin, α_2 macroglobulin, and

Hageman factor have contact angles in the slightly lower range of 12-15. This means that these proteins have no adhesive energy for the cells. In contrast, fibrinogen has a contact angle of 24 degrees and soluble fibrin of 31. Consequently, fibrinogen adheres weakly to red blood cells and other cells in the circulation promoting rouleaux formation. Fibrin promotes a very much stronger adhesion than fibrinogen because of its elevated contact angle and its tendency to form polymers with fibrinogen. Soluble fibrin in the circulation produces the increased adhesion which results in a very markedly increased viscosity at low shear rates. This adhesion also involves the endothelial walls of the blood vessels. If the adhesive forces are insufficient to slow movement of cells, they produce an increased friction. This is especially important in the very small blood vessels and capillaries whose diameters are equal to or less than that of the circulating cells. The friction of cells sliding through these small vessels is significant. The surface-active copolymer blocks the adhesion of fibrinogen and fibrin to hydrophobic surfaces of cells and endothelial cells. This prevents their adhesion and lubricates them so there is a greatly reduced resistance to flow. This can be measured only partially by measurements of viscosity.

Whether a certain fibrinogen level is sufficient to cause a problem in circulation is dependent upon several parameters of the individual patient. High hematocrits and high levels of fibrinogen are widely regarded as the primary contributors to increased viscosity. However, elevated fibrinogen levels are frequently associated with elevated soluble fibrin in the circulation. Careful studies have demonstrated that the fibrin is frequently responsible for the most severe changes. The normal level of fibrinogen is 200-400 $\mu\text{g}/\text{ml}$. It has been determined that, in most patients, fibrinogen levels of greater than approximately 800 $\mu\text{g}/\text{ml}$ will cause the high blood viscosity at the low shear rates mentioned hereinabove. The normal level of soluble fibrin has been reported to be approximately 9.2 ± 1.9 .¹⁴ Using the Wiman and Rånby assay, viscosity at low shear rates

was unacceptably high above about 15 $\mu\text{g}/\text{ml}$. It must be understood that soluble fibrin means molecular species that have a molecular weight of from about 600,000 to several million.

5 Numerous methods have been used for demonstrating soluble fibrin. These include cryoprecipitation especially cryofibrinogen. Heparin has been used to augment the precipitate formation. Ethanol and protamine also precipitate fibrin from plasma. Modern techniques have demonstrated that the soluble fibrin in the circulation is generally complexed with solubilizing agents. These are most frequently fibrinogen or fibrin degradation products. Des AA fibrin in which only the fibrin of peptide A moieties have been cleaved, tends to form relatively small aggregates consisting of one molecule of fibrin with two of fibrinogen. If both the A and B peptides have been cleaved to produce des AABB fibrin, then much larger aggregates are produced in the circulation. Fibrin degradation products can polymerize with fibrin to produce varying size aggregates depending upon the particular product involved.

10
15
20
25
30

Soluble fibrin in the circulation can markedly increase blood viscosity, especially at low shear rates. However, the relevance of this for clinical situations remains unclear. Viscosity assesses primarily the aggregation of red blood cells which is only one of many factors which determine *in vivo* circulation. Other factors affected by soluble fibrin are the endothelial cells, white blood cells and platelets. Soluble fibrin is chemotactic for endothelial cells, adheres to them avidly and causes their disorganization. It also has stimulatory effects for white blood cells, especially macrophages. Some of the effects of soluble fibrin may be mediated by specific receptors on various types of cells. However, since the free energy, as measured by contact angles of soluble fibrin, is less than that of any other plasma protein, it adheres avidly by a nonspecific hydrophobic interactions to virtually all formed elements in the blood.

Circulating soluble fibrin is normally cleared by macrophages and fibrinolytic mechanisms without producing damage. However, if the production of soluble fibrin is too great or if the clearance mechanisms have been compromised or if complicating disease factors are present, then soluble fibrin can induce deleterious reactions.

5 complicating disease, induce deleterious reactions.

10 Soluble fibrin is produced in damaged or inflamed tissues. Consequently, its effects are most pronounced in these tissues where it coats endothelial cells and circulating blood cells in a fashion which markedly reduces perfusion. The largest effects are in the small blood vessels where soluble fibrin coating the endothelial cells and white blood cells produces a severe increase in friction to the movement of white cells through the small vessels. Friction appears to be a much more severe problem with white blood cells and red blood cells because they 15 are larger and much more rigid.

20 Soluble fibrin is sufficient, then

5 problem with w... are larger and much more rigid.

20 If production of soluble fibrin is sufficient, then effects are noticed in other areas. The best studied is the adult respiratory distress syndrome where soluble fibrin produced in areas of damaged tissue produces microthrombi and other processes in the lungs which can cause pulmonary failure. However, lesser degrees of vascular compromise can be demonstrated in many other organs.

other alone or in complex with

25 demonstrated in many
30 Soluble fibrin, either alone or in complex with fibrinogen and other materials, is now recognized as being a major contributor to the pathogenesis of a diverse range of vascular diseases ranging from coronary thrombosis through trauma, burns, reperfusion injury following transplantation or any other condition where there has been localized or generalized activation of coagulation. A recent study demonstrated that virtually all patients with acute myocardial infarction or unstable angina pectoris have markedly elevated levels of soluble fibrin in their circulation.

5 An example of the effects of soluble fibrin has been shown in studies using dogs. A normal dog is subjected to a hysterectomy. Then, while the animal is still under anesthesia, the external jugular vein is carefully dissected. Alternatively, the vein may be occluded by gentle pressure with the fingers for seven minutes. It is examined by scanning electron microscopy for adhesion of fibrin, red blood cells and other formed elements.

10 One finds that very few cells adhere to the endothelia of veins from dogs which had not undergone hysterectomy, whether or not there had been stasis produced by seven minutes occlusion. Similarly, there was only a small increase in adhesion of red blood cells to the endothelium of the jugular vein in animals who had undergone hysterectomy. If, however, the animals had a hysterectomy in addition to mild seven minute occlusion of the veins, then there was a striking increase in adhesion of formed elements of blood to the endothelial surfaces in some cases producing frank mural thrombi. Both red blood cells and fibrin were visibly adherent to the endothelial surfaces. In addition, there was disruption of the normal endothelial architecture. All of the animals had elevated levels of soluble fibrin after the surgery. This model demonstrates the effects of soluble fibrin produced by relatively localized surgery to produce a greatly increased risk of deep vein thrombosis at a distant site.

15 The surface-active copolymer addresses the problems of fibrin and fibrinogen in the blood by inhibiting the adhesion of fibrin, fibrinogen, platelets, red blood cells and other detectable elements of the blood stream. It blocks the formation of a thrombus on a surface. The surface-active copolymer has no effect on the viscosity of water or plasma. However, it markedly increases the rate of flow of water and plasma in small segments through tubes. The presence of air interfaces at the end of the columns or air bubbles which provide a significant surface tension produce a friction along the walls of the tubes. The surface-active copolymer reduces this surface tension and the

friction and improves flow. This is an example whereby the surface-active copolymer improves flow of fluid through tissues through a tube even though it has no effect on the viscosity of the fluid as usually measured.

5 The surface-active copolymer has only a small effect on the viscosity of whole blood from normal individuals. It has little effect on the increase that occurs with high hematocrit. However, it has an effect on the very large increase in viscosity at low shear rates thought to be caused by soluble fibrin and fibrinogen polymers.

10 Recent studies demonstrate that the surface-active copolymer also has the ability to protect myocardial and other cells from a variety of noxious insults. During prolonged ischemia, myocardial cells undergo "irreversible injury." Cells which sustain irreversible injury are morphologically intact but are unable to survive when returned to a normal environment. Within minutes of reperfusion with oxygenated blood, cells containing such occult lesions develop swelling and contraction bands and die.

15 20 Irreversibly injured myocardial cells have mechanical and osmotic fragility and latent activation of lipases, proteases and other enzymes. Reperfusion initiates a series of events including calcium loading, cell swelling, mechanical membrane rupture and the formation of oxygen free radicals which rapidly destroy the cell. The surface-active copolymer retards such injury in the isolated perfused rat heart model. The mechanisms probably include osmotic stabilization and increased mechanical resistance in a fashion similar to that known for red blood cells.

25 30 The protective effects of the surface-active copolymer on the myocardium are not limited to the myocardial cells. It also protects the endothelial cells of the microvasculature as assessed morphologically. By maintaining the integrity of such

5 cells and helping to restore and maintain non-adhesive surfaces, the surface-active copolymer tends to reduce the adhesion of macromolecules and cells in the microvasculature, to reduce coronary vascular resistance and to retard development of the no reflow phenomenon.

10 Examples of conditions where the surface-active copolymer can be used is in the treatment of sickle cell disease and preservation of organs for transplantation. In both of these embodiments, blood flow is reduced because of pathologic hydrophobic interactions.

15 During a sickle cell crisis, sickled red blood cells aggregate because of the abnormal shape of the cells. In many cases, there are high concentrations of soluble fibrin due to disseminated intravascular coagulation. This results in pathological hydrophobic interactions between blood cells, cells lining the blood vessels and soluble fibrin and fibrinogen. By administering to the patient the surface-active copolymer, blood flow is increased and tissue damage is thereby reduced. The surface-active copolymer may be given prior to a sickle cell crisis to prevent onset of the crisis. In addition, the solution with the effective amount of surface-active copolymer may also contain an effective amount of anticoagulant.

20 In organs that have been removed from a donor for transplantation, the tissue is damaged due to ischemia and lack of blood. Preferably, the surface-active copolymer is mixed with a perfusion medium. The perfusion media that can be used with the surface-active copolymer are well known to those of ordinary skill in the art. The perfusion media can also be whole blood or plasma. The solution can be perfused through the organ thereby reducing the damage to the tissue. Because the tissue damage is reduced by perfusing the organ with the surface-active copolymer solution, the time the organ is viable and therefore the time the organ can be transplanted is increased.

Because the surface-active copolymer improves flow of blood through diseased or damaged tissue with minimal effect on blood flow in normal tissue, it is contemplated that the surface-active copolymer includes a method for delivering drugs to damaged tissue comprising the step of administering to the animal or human a solution containing an effective amount of a drug, and an effective amount of the surface-active copolymer.

Any drug that has an activity in diseased or damaged tissue is suitable for use with the surface-active copolymer. These drugs include:

1. antimicrobial drugs
 - antibiotics
 - antifungal drugs
 - antiviral drugs
 - antiparasitic drugs;
2. antifungal drugs;
3. chemotherapeutic drugs for treating cancers and certain infections;
4. free radical scavenger drugs, including those drugs that prevent the production of free radicals;
5. fibrinolytic drugs;
6. perfusion media;
7. anti-inflammatories, including, but not limited to, both steroids and nonsteroid antiinflammatory drugs;
8. membrane stabilizers, such as dilantin;
9. anticoagulants;
10. ionotropic drugs, such as calcium channel blockers;
11. autonomic nervous system modulators.

30

Polyoxypropylene/polyoxyethylene Copolymers as Adjuvants

Other polyoxypropylene/polyoxyethylene copolymers are also useful as an adjuvant and a vaccine which is comprised of an antigen and an improved adjuvant. In one

embodiment, the antigen is admixed with an effective amount of a surface-active copolymer having the following general formula:

5 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is between approximately 4500 to 5500 daltons and the percentage of hydrophile ($\text{C}_2\text{H}_4\text{O}$) is between approximately 5% and 15% by weight.

10 The improved vaccine also comprises an antigen and an adjuvant wherein the adjuvant comprises a surface-active copolymer with the following general formula:

15 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is between approximately 3000 to 5500 daltons and the percentage of hydrophile ($\text{C}_2\text{H}_4\text{O}$) is between approximately 5% and 15% by weight which is formulated as a water-in-oil emulsion. The copolymers destabilize commonly used water-in-oil vaccine emulsions, but surprisingly increase their efficacy and increase stability if the usual emulsifying agents are omitted.

20 The improved vaccine also comprises an antigen and an adjuvant wherein the adjuvant comprises a surface-active copolymer with the following general formula:

25 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is between approximately 3000 to 5500 daltons and the percentage of hydrophile ($\text{C}_2\text{H}_4\text{O}$) is between approximately 5% and 15% by weight, and a lipopolysaccharide (LPS) derivative. The adjuvant comprising a combination of LPS and surface-active

copolymer produces a synergy of effects in terms of peak titer, time to reach peak titer and length of time of response. In addition, the combination tends to increase the protective IgG2 isotypes.

5 The adjuvants also comprise an octablock copolymer (poloxamine) with the following general formula:

10 wherein:

the molecular weight of the hydrophobe portion of the octablock copolymer consisting of (C_3H_6O) is between approximately 5000 and 7000 daltons;

15 a is a number such that the hydrophile portion represented by (C_2H_4O) constitutes between approximately 10% and 40% of the total molecular weight of the compound;

b is a number such that the (C_3H_6O) portion of the octablock copolymer constitute between approximately 60% and 90% of the compound and a lipopolysaccharide derivative.

20 The (C_3H_6O) portion of the copolymer can constitute up to 95% of the compound. The (C_2H_4O) portion of the copolymer can constitute as low as 5% of the compound.

25 The combination of lipid conjugated polysaccharide with copolymer and an immunomodulating agent such as monophosphoryl lipid A, induces the production of a strong IgG response in which all of the subclasses of IgG are present. In

Polyoxypolypropylene/polyoxyethylene Copolymers as Antiiinfective Agents Another group of polyoxypolypropylene/polyoxyethylene

Another group of polyoxypropylene/polyoxyethylene copolymers inhibit the growth of bacteria and viruses. For example, these surface-active copolymers have been shown to inhibit HIV viruses, *Mycobacteria species* and *Toxoplasma gondii*. These copolymers are effective in

The surface-active copolymers are effective in treating a viral infection in a human or animal including infections caused by the HIV virus or related strains. The present invention provides a composition that can be administered to patients who are infected with HIV viruses or similar viruses. The surface-active copolymer is effective in inhibiting or suppressing the replication of the HIV virus and related virus strains in cells. The copolymers are useful for treating

The surface-active copolymers are useful for treating infections caused by microorganisms when used alone or with a conventional antibiotic. Several conventional antibiotics that can be used with the surface-active copolymer include, but are not limited to, rifampin, isoniazid, ethambutol, gentamicin, tetracycline, and erythromycin.

The surface-active copolymer has the following general formula:

5 wherein a is an integer such that the hydrophobe represented by ($\text{C}_3\text{H}_6\text{O}$) has a molecular weight of about 1200 to 5300 daltons, preferably about 1750 to 4500 daltons, and b is an integer such that the hydrophile portion represented by ($\text{C}_2\text{H}_4\text{O}$) constitutes approximately 10% to 50% by weight of the compound.

10 The antiinfective activity of the poloxamers is described in detail in copending U.S. Patent Application Serial No. 07/760,808, which is incorporated herein by reference.

Polyoxypropylene/polyoxyethylene Copolymers as Growth Stimulators and Immune Stimulators

15 Certain of the polyoxypropylene/polyoxyethylene copolymers are capable of effecting biological systems in several different ways. The biologically-active copolymers are capable of stimulating the growth of an organism, stimulating the motor activity of an organism, stimulating the production of T-cells in the thymus, peripheral lymphoid tissue, and bone marrow cells of an animal, and stimulating immune responsiveness of poultry.

20 The biologically-active copolymers also have a wide variety of effects on individual cells. These compounds have ionophoric activity, i.e., they cause certain ions to be transported across cell membranes. The compounds can cause non-cytolytic mast cell degranulation with subsequent histamine release. In addition, it has been found that certain members of this class of biologically-active copolymers are capable of specifically killing certain cancer cell lines.

25 Certain of the biologically-active copolymers can be administered orally to animals to stimulate the growth of food

5 animals such as chickens and swine. These and other biological activities are discussed in detail in copending U.S. Patent Application Serial Nos. 07/107,358 and 07/610,417, which are incorporated herein by reference.

10 *Polyoxypropylene/polyoxyethylene Copolymer Structure*

15 The surface-active copolymer blocks are formed by condensation of ethylene oxide and propylene oxide at elevated temperature and pressure in the presence of a basic catalyst. However, there is statistical variation in the number of monomer units which combine to form a polymer chain in each copolymer. The molecular weights given are approximations of the average weight of copolymer molecule in each preparation. A more detailed discussion of the preparation of these compounds is found in U.S. Patent No. 2,674,619, which is incorporated herein by reference. A more general discussion of the structure of poloxamers and poloxamine block copolymers can be found in Schmolka, I.R., "A Review of Block Polymer Surfactants", J. A.M. OIL CHEMISTS' SOC., 54:110-116 (1977), which is incorporated herein by reference.

20 It has been determined that the commercially available preparations of polyoxypropylene/polyoxyethylene copolymers vary widely relative to the size and configuration of the constituent molecules. For example, the preparation of poloxamer 188 that is purchased from BASF (Parsippany, N.J.) has a published structure of a molecular weight of the hydrophobe (C_3H_6O) of approximately 1750 daltons and the total molecular weight of the compound of approximately 8400 daltons. In reality, the compound is composed of molecules which range from a molecular weight of less than 3,000 daltons to over 20,000 daltons. The molecular diversity and distribution of molecules of commercial poloxamer 188 is illustrated by broad primary and secondary peaks detected using gel permeation chromatography.

5 In addition to the wide variation in polymer size in the poloxamer preparations currently available, it has been further determined that these fractions contain significant amounts of unsaturation. It is believed that this unsaturation in the polymer molecule is responsible, at least in part, for the 10 toxicity and variable biological activities of the available poloxamer preparations.

10 Thus, the wide diversity of molecules which are present in the commercially available polyoxypropylene/polyoxyethylene copolymers make prediction of the biological activity difficult. In addition, as is shown in the poloxamer 188 preparations, the presence of other molecular species in the preparation can lead to unwanted biological 15 activities.

15 The surface-active copolymer poloxamer 188 has been used as an emulsifier for an artificial blood preparation containing perfluorocarbons. It has been reported that patients receiving the artificial blood preparations have exhibited toxic 20 reactions. The toxic reactions included activation of complement¹⁵, paralysis of phagocyte migration¹⁶, and cytotoxicity to human and animal cells in tissue culture¹⁷. Efforts using supercritical fluid fractionation to reduce the toxicity of the 25 copolymers proved only partially successful.¹⁸ In addition, in toxicological studies in beagle dogs, infusion of poloxamer 188 was shown to result in elevated liver enzymes, (SGOT) and increased organ weights (kidney). Histologic evaluation of the kidney demonstrated a dose related cytoplasmic vacuolation of the proximal tubular epithelial cells.

25 The enormous variation that can occur in biological 30 activity when only small changes are made in chain length in the poloxamer copolymers is illustrated in Hunter, et al.¹⁹ The authors show that a difference of 10% in the chain length of the polyoxyethylene portions of the poloxamer polymer can mean the

difference between an excellent adjuvant and no adjuvant activity at all. Poloxamer 121 has a molecular weight of approximately 4400 daltons and contains approximately 10% by weight of polyoxyethylene. Poloxamer 122 has a molecular weight of approximately 5000 daltons and contains approximately 20% by weight of polyoxyethylene. The amount of polyoxypropylene in each molecule is approximately the same. As shown in Hunter, et al., when poloxamer 121 was used as an adjuvant with bovine serum albumin, the antibody titers were $67,814 \pm 5916$. When poloxamer 122 was used as an adjuvant with bovine serum albumin under the same conditions, the antibody titer against BSA was 184 ± 45 . The control titer without any adjuvant was <100 . Thus, a relatively small change in the chain length of the poloxamer can result in enormous changes in biological activity.

Because the commercially available sources of the polyoxypropylene/polyoxyethylene copolymers have been reported to exhibit toxicity as well as variation in biological activity, what is needed is a preparation of polyoxypropylene/polyoxyethylene copolymers which retain the therapeutic activities of the commercial preparations but are free from their other biological activities such as toxicity. In addition, what is needed is a preparation of polyoxypropylene/polyoxyethylene copolymers which is less polydisperse in molecular weight and contains less unsaturation and therefore is more efficacious.

Summary of the Invention

The present invention comprises novel preparations of polyoxypropylene/polyoxyethylene copolymers which retain the therapeutic activity of the commercial preparations, but are free from the undesirable effects which are inherent in the prior art preparations. Because the polyoxypropylene/polyoxyethylene copolymers which comprise the present invention are a less polydisperse population of molecules than the prior art polyoxypropylene/polyoxyethylene copolymers, the biological

activity of the copolymers is better defined and more predictable. In addition, the polyoxypropylene/polyoxyethylene copolymers which comprise the present invention are substantially free of unsaturation.

5 The present invention also comprises a polyoxypropylene/polyoxyethylene copolymer which has the following formula:

10 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the total molecular weight of the compound is approximately 8400 daltons. The compound has a polydispersity value of less than approximately 1.05.

15 It has been determined that the toxicity exhibited by the commercially available surface-active copolymer poloxamer 188 is primarily due to the small amounts of high and low molecular weight molecules that are present as a result of the manufacturing process. The high molecular weight molecules (those greater than 15,000 daltons) are probably responsible for activation of the complement system. The low molecular weight molecules (those lower than 5,000 daltons) have detergent-like physical properties which can be toxic to cells in culture. In addition, the low molecular weight molecules have unsaturated polymers present in the population.

20 The optimal rheologic molecules of poloxamer 188 are approximately 8,400 to 9400 daltons. It has also been determined that poloxamer 188 molecules above 15,000 and below 5,000 daltons are less effective rheologic agents and exhibit unwanted side effects. A preparation containing molecules between 5,000 and 15,000 daltons is a more efficient rheologic agent.

The present invention also includes a method of preparing polyoxypolyethylene/polyoxypolypropylene block copolymers with polydispersity values of less than 1.05. The method of preparing a non-toxic surface-active copolymer includes first condensing propylene oxide with a base compound containing a plurality of reactive hydrogen atoms to produce polyoxypolypropylene polymer and then condensing ethylene oxide with the polyoxypolypropylene polymer to produce a polyoxypolypropylene/polyoxypolyethylene block copolymer with the following general formula:

wherein the polydispersity value of the copolymer is less than 1.05, the improvement being the purification of the polyoxypropylene polymer to remove any truncated polymers before condensation with the ethylene oxide. The purification of the polyoxypropylene polymer can be by gel permeation chromatography.

Accordingly, it is an object of the present invention to provide a surface-active copolymer with a higher proportion of therapeutically active molecules while also eliminating molecules responsible for toxic effects.

It is another object of the present invention to provide a more homogeneous polyoxypropylene/polyoxyethylene copolymer relative to the molecular weight range.

It is another object of the present invention to provide a preparation of polyoxyethylene/polyoxypropylene block copolymer with a polydispersity value of less than 1.05.

It is another object of the present invention to provide a preparation of polyoxyethylene/polyoxypropylene block copolymer with substantially no unsaturation.

It is another object of the present invention to provide a surface-active copolymer with the therapeutic activity of poloxamer 188 that will not activate complement.

5 It is yet another object of the present invention to provide a purified poloxamer 188 that can be used safely in both humans and animals in treating tissue that has been damaged by ischemia.

10 It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals in treating tissue that has been damaged by reperfusion injury.

15 It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals as a vaccine adjuvant.

It is another object of the present invention to provide a surface-active copolymer with the therapeutic activity of poloxamer 188 that is not cytotoxic.

20 It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals in treating stroke.

It is yet another object of the present invention to provide a surface-active copolymer which has less renal toxicity and less detergent-like activity.

25 It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals as an antimicrobial agent.

It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals as an antibacterial, an antiviral, an antifungal and an antiprotozoa agent.

It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals in treating myocardial damage.

5 It is yet another object of the present invention to provide a surface-active copolymer that can be used safely in both humans and animals in treating adult respiratory distress syndrome.

10 These and other objects, features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

Brief Description of the Figures

Fig. 1 is a poloxamer grid for naming poloxamer compounds.

15 Fig. 2 is a chromatogram of commercially available poloxamer 188 subjected to gel permeation chromatography.

Fig. 3 is a chromatogram of fraction 1 of the poloxamer 188 collected from the chromatographic run described in Example I.

20 Fig. 4 is a chromatogram of fraction 2 of the poloxamer 188 collected from the chromatographic run described in Example I.

Fig. 5 is a chromatogram of fraction 3 of the poloxamer 188 collected from the chromatographic run described in Example I.

25 Fig. 6 is a chromatogram of fraction 4 of the poloxamer 188 collected from the chromatographic run described in Example I.

Fig. 7 is a chromatogram of fraction 5 of the poloxamer 188 collected from the chromatographic run described in Example I.

5 Fig. 8 is a chromatogram of fraction 6 of the poloxamer 188 collected from the chromatographic run described in Example I.

10 Figs. 9A through 9C are gel permeation chromatograms of unfractionated and fractionated poloxamer 760.5.

15 Figs. 10A through 10C are nuclear magnetic spectra of the fractions represented in Figs. 9A through 9C.

20 Figs. 11A through 11C are gel permeation chromatograms of three fractions of poloxamer 188.

25 Figs. 12A through 12C are gel permeation chromatograms of unfractionated and fractionated poloxamer 331.

Detailed Description

Although the prior art preparations of polyoxypropylene/polyoxyethylene block copolymers may have been suitable for industrial uses, it has been determined that the newly discovered uses for the copolymers as therapeutic agents require less polydisperse populations of molecules in the preparations.

30 The present invention comprises polyoxypropylene/polyoxyethylene copolymers that have a polydisperse value of less than 1.05. The novel copolymers can be prepared by removing disparate molecules from the prior art preparation or by preparing the copolymer according to the method that is contemplated as part of the present invention. The method of preparation of the copolymers of the present invention is the purification of the polyoxypropylene block of the

5 polyoxypolypropylene/polyoxyethylene copolymer before the polyoxyethylene blocks are added to the molecule. In this way, the partially polymerized polyoxypolypropylene polymers are removed before the addition of polyoxyethylene polymers to the molecule. This results in a block copolymer that is within the physical parameters which are contemplated as the present invention.

10 The present invention also comprises a polyoxypolypropylene/polyoxyethylene block copolymer which has the following formula:

15 wherein the molecular weight represented by the polyoxypolypropylene portion of the copolymer is between approximately 900 and 15000 daltons with a more preferred molecular weight of between 1,200 and 6500 daltons and the molecular weight represented by the polyoxyethylene portion of the copolymer constitutes between approximately 5% and 95% of the copolymer with a more preferred range of between approximately 10% and 90% of the copolymer and the polydispersity value is less than approximately 1.07.

20 The present invention also comprises a polyoxypolypropylene/polyoxyethylene block copolymer which has the following formula:

25 wherein the molecular weight of the hydrophobe $(\text{C}_3\text{H}_6\text{O})$ is approximately 1750 daltons and the average molecular weight of the compound is approximately 8300 to 9400 daltons. The compound has a molecular weight distribution ranging from approximately 5,000 to 15,000 daltons with a preferred molecular weight range of between approximately 7,000 to 12,000 daltons. In addition, the copolymer has

substantially no unsaturation as measured by nuclear magnetic resonance.

The nomenclature of the poloxamer compounds is based on a poloxamer grid (Fig. 1). The poloxamer grid is the relationship between nomenclature and composition of the various polymer members. The hydrophobe (polyoxypropylene) molecular weights are given as approximate midpoints of ranges. The first two digits of a poloxamer number on the grid, multiplied by 100, gives the approximate molecular weight of the hydrophobe. The last digit, times 10, gives the approximate weight percent of the hydrophile (polyoxyethylene) content of the surfactant.²⁰ For example, poloxamer 407, shown in the upper right hand quadrant of the grid (Fig. 1), is derived from a 4000 molecular weight hydrophobe with the hydrophile comprising 70% of the total molecular weight of the copolymer. Another example is poloxamer 760.5 which has a hydrophobe with a molecular weight of 7600 daltons and has a hydrophile which comprises 5% of the total molecular weight of the copolymer.

20 The representative poloxamers that are described in
 this patent application along with their Pluronic® numbers are
 shown in Table I.

Table I

Poloxamer No.	Pluronic® No.	% POE
188	F68	80%
331	L101	10%
760.5	L180.5	5%
1000.5	L331	5%

specific molecular weight averages. These values can also be assigned to biological properties of the polyoxypolyethylene/polyoxyethylene copolymers. A list of the processing characteristics follows.

5

Molecular Weight Averages	Processing Characteristics
Mz	Flex life/stiffness
Mn	Brittleness, flow
Mw	Tensile strength

10

For example, the breadth of the distribution is known as the polydispersity (D) and is usually defined as M_w/M_n . A monodisperse sample is defined as one in which all molecules are identical. In such a case, the polydispersity (M_w/M_n) is 1.0. Narrow molecular weight standards have a value of D near 1 and a typical polymer has a range of 2 to 5. Some polymers have a polydispersity in excess of 20.

15

The equations for expressing polydispersity are as follows:

$$\overline{M}_n = \frac{\sum \text{Area}_i}{\sum \text{Area}_i / M_i}$$

$$\overline{M}_w = \frac{\sum [(\text{Area}_i) (M_i)]}{\sum (\text{Area}_i)}$$

$$\bar{M}_z = \frac{\sum [(Area_i) (M_i)^2]}{\sum [(Area_i) (M_i)]}$$

$$\bar{M}_{z+1} = \frac{\sum [(Area_i) (M_i)^3]}{\sum [(Area_i) (M_i)^2]}$$

$$\text{Polydispersity (D)} = \frac{\bar{M}_w}{\bar{M}_n}$$

where: $Area_i$ = area of the i th slice
 M_i = molecular weight of the i th slice

5 Thus, by calculating the parameters listed above, one
 can specify a certain polydispersity that is acceptable for a
 pharmaceutical preparation. A high polydispersity value indicates
 a wide variation in size for the population of molecules in a given
 preparation while a lower polydispersity value indicates less
 variation. Because molecular size is an important determinant of
 10 biological activity, it is important to restrict the dispersity of the
 molecules in the preparation in order to achieve a more
 homogeneous biological effect. Thus, the polydispersity
 measurement can be used to measure the dispersity of molecules
 in a preparation and correlates to that compound's potential for
 15 variation in biological activity.

It is to be understood that the polydispersity values
 that are described herein were determined from chromatograms
 which were obtained using a Model 600E Powerline
 chromatographic system equipped with a column heater module, a
 20 Model 410 refractive index detector, Maxima 820 software
 package (all from Waters, Div. of Millipore, Milford, MA), two
 LiChroGel PS-40 columns and a LiChroGel PS-20 column in

series (EM Science, Gibbstown, NJ), and polyethylene glycol molecular weight standards (Polymer Laboratories, Inc., Amherst, MA). Polydispersity values obtained using this system are relative to the chromatographic conditions, the molecular weight standards and the size exclusion characteristics of the gel permeation columns. Polydispersity measurements using different separation principles may give absolute polydispersity values which are different from those described herein. However, one of ordinary skill in the art can easily convert any polydispersity value that is obtained using a different separation method to the values described herein simply by running a single sample on both systems and then comparing the polydispersity values from each chromatogram.

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
10175
10180
10185
10190
10195
10200
102

One embodiment of the present invention comprises a polyoxypropylene/polyoxyethylene copolymer which has the following formula:

5 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the average molecular weight of the compound is approximately 8300 to 9400 daltons. The polydispersity value is less than approximately 1.05. A block copolymer corresponding to at least these physical parameters has the beneficial biological effects of the prior art poloxamer 188 but does not exhibit the unwanted side effects which have been reported for the prior art compound. By 10 reducing the polydispersity value of the surface-active copolymer, it has been found that the toxicity associated with the prior art poloxamer 188 is significantly reduced. However, the beneficial 15 therapeutic activity of the modified poloxamer 188 is retained.

20 The surface-active copolymers of the present invention can be prepared in a number of ways. The polydispersity value can be reduced by subjecting the prior art compounds to gel permeation chromatography. In addition, the 25 compounds can be subjected to molecular sieving techniques that are known to those of ordinary skill in the art.

25 The surface-active copolymer of the present invention can be prepared in several ways. In the first method, commercially available poloxamer 188 is subjected to gel permeation chromatography. The chromatogram that is obtained from this procedure is shown in Fig. 1.

30 As can be seen in Fig. 1, commercial poloxamer 188 is composed of a broad distribution of molecules with a peak molecular weight of approximately 7900 to 9500 daltons. This corresponds generally to the published molecular weight for poloxamer 188 of 8400 daltons. The published molecular weight

for poloxamer 188 is determined by the hydroxyl method. The end groups of polyether chains are hydroxyl groups. The number averaged molecular weight can be calculated from the analytically determined "OH Number" expressed in mg KOH/g sample. It should be understood that the molecular weight of a polydisperse compound can be different depending upon the methodology used to determine the molecular weight.

5 Fig. 1 also shows small secondary peaks or shoulders lying to the left and right of the primary peak. These areas of the 10 poloxamer 188 chromatogram represent the high and low molecular weight molecules respectively. The high molecular weight species range in size from approximately 24,000 to 15,000 daltons. It is believed that these larger molecules have a greater 15 capacity to activate complement compared to the lower molecular weight species. The shoulder on the right or lower molecular weight side of the chromatogram is composed of molecules between approximately 2,300 daltons and 5,000 daltons. This species represents compounds which have more detergent-like properties and are cytotoxic to cells.

20 Using the gel permeation chromatography procedure, it has been determined that a fraction of poloxamer 188 with molecules ranging from approximately 5,000 daltons to 15,000 daltons, preferably between approximately 6,000 daltons and 13,000 daltons, with a peak at approximately 8,700 daltons, 25 represents a population of surface-active copolymers which are essentially devoid of toxic activities while still retaining the beneficial therapeutic activity of the commercially available poloxamer 188. This new composition is a much more homogeneous preparation than those currently available and 30 unexpectedly has fewer side effects than the prior art preparation.

30 It should be understood that the molecular weight range that is described as the optimum range for the copolymer is to be considered the outside range and that any population of

molecules that fall within that range are considered as embodiments of the present invention.

5 The present invention also includes a novel method of preparing a surface-active copolymer composition with the specifications described herein. The novel method involves the preparation of a uniform hydrophobic polyoxypropylene polymer and then proceed with the addition of the hydrophilic polyoxyethylene as is normally done. It is believed that the toxic copolymers that are the result of the standard commercial method 10 of preparing poloxamer 188 are due to truncated polymer chains and to unsaturation in the polymer.

15 In practicing the present invention, the hydrophobic polyoxypropylene polymer is purified to obtain a substantially uniform population of polyoxypropylene polymers. The purification can be performed using gel permeation chromatography. However, any method known to one of ordinary skill in the art which gives the desired range of polyoxypropylene polymers can be used.

20 In preparing the improved rheologic reagent, the polyoxypropylene polymer should have an average molecular weight of approximately 1750 daltons with an approximate molecular weight range between 1,000 and 2,600 daltons. The preferred molecular weight range is between 1,200 and 2,400 daltons.

25 After the desired polyoxypropylene copolymer has been obtained, the ethylene portion of the copolymer is added to both ends of the molecule by standard methods well known to those of ordinary skill in the art. The final polymer population should have a polyoxyethylene composition of approximately 30 20% of the total molecular weight of the molecule.

This invention is further illustrated by the following examples, which are not to be construed in any way as imposing

5 limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.

Example I

10 Poloxamer 188 (BASF Corporation, Parsippany N.J.) is dissolved in tetrahydrofuran at a concentration of 20mg/mL. A Model 600E Powerline chromatographic system equipped with a column heater module, a Model 410 refractive index detector and Maxima 820 software package (all from Waters, Div. of Millipore, Milford, MA) is used to fractionate the commercially prepared poloxamer 188 copolymer. The chromatographic system is equipped with two LiChrogel PS-40 columns and a LiChrogel PS-20 column in series (EM Science, 15 Gibbstown, NJ). The LiChrogel PS-40 columns are 10 μ m particle size and the LiChrogel PS-20 column is 5 μ m particle size. All columns are 7mm by 25 cm in size.

20 200 μ L (4mg) of the poloxamer 188 in tetrahydrofuran is added to the column and the sample is run with the columns and the detector at 40°C. The resulting chromatogram is shown in Fig. 2.

Example II

25 The sample that was collected in Example I was fractionated into five fractions and each fraction was run on the column as described in Example I. The chromatograms from the various chromatographic runs are shown in Figs. 3 through 8. The fraction that demonstrates the least toxicity while retaining the therapeutic activity of the poloxamer 188 is shown in Fig 5. 30 As can be clearly seen, the shoulders on either side of the peak in Fig. 5 are absent.

The average molecular weight for each fraction is shown in Table II. The chromatogram for each fraction is indicated in Figs. 3 through 8.

TABLE II

Fraction	Fig.	Time off Column (Min)	Molecular Wt.	Polydispersity Value
1	3	11.5-12.0	17000	1.0400
2	4	12.0-12.5	10270	1.0474
3	5	12.5-13.0	8964	1.0280
4	6	13.0-13.5	8188	1.0332
5	7	13.5-14.0	5418	1.1103
6	8	14.0-14.5	3589	1.0459

The polydispersity value for the unfractionated poloxamer 188 is 1.0896. The fraction that most closely corresponds to poloxamer 188 is fraction 3 which has a polydispersity value of approximately 1.0280.

Example III

In a one-liter 3 neck round bottom flask equipped with a mechanical stirrer, reflux condenser, thermometer and propylene oxide feed inlet, there is placed 57 grams (0.75 mol) of propylene glycol and 7.5 grams of anhydrous sodium hydroxide. The flask is purged with nitrogen to remove air and heated to 120°C with stirring until the sodium hydroxide is dissolved. Sufficient propylene oxide is introduced into the mixture as fast as it reacts until the product possesses a calculated molecular weight of approximately 1750 daltons. The product is cooled under nitrogen and the NaOH catalyst is neutralized with sulfuric acid and the product is then filtered. The final product is a water-insoluble polyoxypropylene glycol.

Example IV

The polyoxypropylene glycol from Example III is dissolved in tetrahydrofuran at a concentration of 20mg/mL. A Model 600E Powerline chromatographic system equipped with a

5 column heater module, a Model 410 refractive index detector and Maxima 820 software package (all from Waters, Div. of Millipore, Milford, MA) is used to fractionate the commercially prepared poloxamer 188 copolymer. The chromatographic system is equipped with two LiChrogel PS-40 columns and a LiChrogel PS-20 column in series (EM Science, Gibbstown, NJ). The LiChrogel PS-40 columns are 10 μm particle size and the LiChrogel PS-20 column is 5 μm particle size. All columns are 7mm by 25 cm in size.

10 200 μL (4mg) of the polyoxypropylene glycol in tetrahydrofuran is added to the column and the sample is run with the columns and the detector at 40°C. The fraction which corresponded to an average molecular weight of 1750 daltons with a molecular weight distribution between 1,000 and 2,600 daltons was collected. Other fractions were discarded.

15 **Example V**

20 The purified polyoxypropylene glycol from Example IV was placed in the same apparatus as described in Example III with an appropriate amount of anhydrous sodium hydroxide. An appropriate amount of ethylene oxide was added at an average 25 temperature of 120°C using the same technique described in Example III. The amount of added ethylene oxide corresponded to 20% of the total weight of the polyoxypropylene glycol base plus the weight of added ethylene oxide.

25 This procedure results in a polyoxypropylene/polyoxyethylene block copolymer composed of molecules which are far more homogeneous relative to molecular size and configuration compared to commercial preparations.

30 **Example VI**

35 Fractions of poloxamer 760.5 prepared by gel permeation chromatography and were analyzed for weight percent of oxyethylene and for unsaturation by NMR analysis as follows: Poloxamer 760.5 (BASF Corporation, Parsippany N.J.)

is dissolved in tetrahydrofuran at a concentration of 20mg/mL. A Model 600E Powerline chromatographic system equipped with a column heater module, a Model 410 refractive index detector and Maxima 820 software package (all from Waters, Div. of Millipore, Milford, MA) is used to fractionate the commercially prepared poloxamer 760.5 copolymer. The chromatographic system is equipped with Ultrastyragel 10³ Å and 500 Å in series (Waters, Div. of Millipore, Milford, MA). Column size is 7.8 mm internal diameter by 30 cm. Precolumn filters #A-315 with removable 2µm fits (Upchurch Scientific, Oak Harbor, WA) were used for protection of the columns. 200µL (4mg) of the poloxamer 760.5 in tetrahydrofuran is added to the column and the sample is run with the columns at 40°C and the detector at 45°C.

Sample one is an unfractionated sample of the poloxamer 760.5 as obtained from BASF Corporation (Parsipanny, New Jersey) and is shown in Fig 9A. Fraction one is an early fraction from the chromatographic system and is shown in Fig. 9B. Fraction two is a late fraction and is shown in Fig. 9C. All proton NMR analyses were performed in accordance with the NF procedure "Weight Percent Oxyethylene" on a Bruker 300 MHz instrument.

The proton nuclear magnetic resonance spectra from Figs. 9B and 9C showed slight ban broadening in the spectra when compared to the unfractionated sample. The late eluting fraction (Fraction 2) contains the largest amount of unsaturation as noted by a doublet signal at about 4.0 ppm. The proton spectra for the early eluting peak (Fraction 1) showed no impurities except water.

The weight percent oxyethylene was calculated for the samples. As can be seen from Table III, the early eluting fraction, which is the purest fraction, has the lowest percentage of oxyethylene. This fraction also showed no unsaturation as

measured by nuclear magnetic resonance. Using the poloxamer nomenclature system described above, the various fractions have the following characteristics and poloxamer number.

Table III

Fraction	% POE ^a	MW ^b	Poloxamer	Unsaturation ^c
Unfractionated	5.5	8135	760.5	Yes
Early Fraction	3.9	10856	104.4	No
Late Fraction	7.5	3085	291	Yes

a. As measured by NMR

b. Polyoxypropylene as measured by gel permeation chromatography

c. As measured by NMR

Example VII

Poloxamer 188 (Pluronic® F68) was fractionated on a gel permeation chromatography system according to Example I. Three fractions were collected. Fig. 11A shows Fraction 1, an early, high molecular weight fraction. Fig. 11B shows Fraction II, which is the major peak. Fig. 11C shows Fraction III, a late eluting, lower molecular weight population of molecules. The percent oxyethylene of each fraction was determined by proton NMR using a 200 MHz NMR spectrophotometer. Approximately 10 mg of each sample was tested. Samples were prepared by adding approximately 0.7 mL of CDCl₃ to each vial. The solution was filtered and transferred to a 5-mm NMR tube. One drop of D₂O was added, and the tube was shaken prior to measurement.

Table IV

Fraction	% POE ^a	MW ^b	Poloxamer
Early	85	16,500	258
Middle Fraction	82	8652	178
Late Fraction	90	3751	039

a. As measured by NMR

b. As measured by gel permeation chromatography

As shown in Table IV, the early eluting, the large molecular weight fraction had a high percentage of oxyethylene and corresponded to a poloxamer 258. The middle fraction had the smallest percentage of oxyethylene while the late eluting, small molecular weight fraction had the highest percentage of oxyethylene. The middle fraction had a calculated poloxamer number of 178 which corresponds closely to the desired number of 188. The late fraction had a calculated poloxamer number of 039. Thus, the commercially available poloxamer preparation has a significant population of polymers which may be harmful in a biological system.

Example VIII

Poloxamer 331 (Pluronic® L101) was fractionated according to the protocol in Example VI. The chromatographs for unfractionated poloxamer 331, an early eluting fraction and a late eluting fraction are shown in Figs. 12A through 12C respectively. The NMR spectra for each sample was then determined as in Example VI. The results of these spectra and chromatograms are summarized in Table V.

Table V

Fraction	% POE ^a	MW ^b	Poloxamer	Unsaturation ^c
Unfractionated	17	4045	342	Yes
Early Fraction	15	4452	381	No
Late Fraction	31	1466	103	Yes

a. As measured by NMR
 b. As measured by gel permeation chromatography
 c. As measured by NMR

When the poloxamer number for each fraction is calculated based on the empirical data collected, it is seen that the late fraction polymer is a very different poloxamer than the unfractionated preparation. In addition, the unsaturated population of polymers has been removed by the fractionation procedure.

It should be understood that the foregoing relates only to a preferred embodiment of the present invention and that numerous modifications or alterations may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims.

5

- 1 Adamson, AW, PHYSICAL CHEMISTRY OF SURFACES. 4th Ed., John Wiley & Sons, New York (1982).
- 2 See generally, HEMOSTASIS AND THROMBOSIS, BASIC PRINCIPLES AND CLINICAL PRACTICE, ed. by Colman, et al., J.B. Lippincott Company (1987)
- 3 Atkinson, TP, et al., "AM. J. PHYSIOL. 254:C20 (1988).
- 4 Brooks, DE, and Evans, EA, "Rheology of blood cells in CLINICAL HEMORHEOLOGY, Applications in Cardiovascular and Hematological Disease, Diabetes, Surgery and Gynecology". S. Chien, J. Dormandy, E. Ernst, and A. Matrai, eds, Martinus Nijhoff Publishers, Dordrecht (1987).
- 5 Thompson, AR, and Harker, LA, MANUAL OF HEMOSTASIS AND THROMBOSIS, Edition 3, F. A. Davis Company, Philadelphia (1983).
- 6 Lee, LH, "Effect of surface energetics on polymer friction and wear", in ADVANCES IN POLYMER FRICTION AND WEAR, Polymer Science and Technology, Vol. 5A, L.H Lee, editor, Plenum Press, New York (1974).
- 7 Brooks and Evans (1987), *supra*
- 8 Lee, (1974), *supra*
- 9 Adamson, (1982), *supra*
- 10 Grover, F.L., et al., "A nonionic surfactant and blood viscosity", ARCH SURG, 106:307 (1973).
- 11 Papadea, C. and Hunter, R., "Effect of RheothRx® copolymer on blood viscosity related to fibrinogen concentration", FASEB J 2:A384 (1988).
- 12 Wiman, B. and Rånby, M., "Determination of soluble fibrin in plasma by a rapid and quantitative spectrophotometric assay", THROMB. HAEMOST. 55:189 (1986).
- 13 Connaghan, DG, Francis, CW, Lane, DA, and Marder, VJ, "Specific identification of fibrin polymers, fibrinogen degradation products, and crosslinked fibrin degradation products in plasma and serum with a new sensitive technique", BLOOD, 65:589 (1985).
- 14 Wiman, B. and Rånby, M., "Determination of soluble fibrin in plasma by a rapid and quantitative spectrophotometric assay", THROMB. HAEMOST. 55:189 (1986).
- 15 Vercellotte, G.M., et al., "Activation of Plasma Complement by Perfluorocarbon Artificial Blood: Probable Mechanism of Adverse Pulmonary Reactions in Treated Patients and Rationale for Corticosteroid Prophylaxis", BLOOD, Vol. 59, pp. 1299-1304 (1982).
- 16 Lane, T.A., et al., "Paralysis of phagocyte migration due to an artificial blood substitute", BLOOD, Vol. 64, pp. 400-405 (1984).
- 17 Lane, T.A., et al., "Reduction in the toxicity of a component of an artificial blood substitute by supercritical fluid fractionation", TRANSFUSION, Vol. 28, pp. 375-378 (1987).
- 18 Lane, T.A., et al., "Reduction in the toxicity of a component of an artificial blood substitute by supercritical fluid fractionation", TRANSFUSION, Vol. 28, pp. 375-378 (1987).

- 19 Hunter, *et al.*, "The Adjuvant Activity of Nonionic Block Polymer Surfactants, III. Characterization of Selected Biologically Active Surfaces", SCAND. J. IMMUNOL., Vol. 23, pp. 28-300 (1986).
- 20 Henry, R. L., *et al.*, "Burn Wound Coverings and the Use of Poloxamer Preparations", CRITICAL REVIEWS IN BIOCOMPATIBILITY, Vol. 5, No. 3, pp. 207-220 (1989).

CLAIMS

1. A polyoxypropylene/polyoxyethylene block copolymer with the following general formula:

5 wherein the molecular weight represented by the polyoxypropylene portion of the copolymer is between approximately 900 and 15000 daltons and the molecular weight represented by the polyoxyethylene portion of the copolymer constitutes between approximately 5% and 90% of the copolymer and the polydispersity value is less than approximately 1.07.

10 2. The block copolymer of Claim 1, wherein the polydispersity value is less than approximately 1.05.

15 3. The block copolymer of Claim 1, wherein the polydispersity value is less than approximately 1.03.

20 4. The block copolymer of Claim 1, wherein the copolymer is substantially unsaturated.

5. The block copolymer of Claim 1, wherein the copolymer has a molecular weight range of between approximately 1,200 and 6500 daltons.

6. The block copolymer of Claim 5, wherein polyoxyethylene portion of the copolymer constitutes between approximately 10% and 90% of the copolymer.

5

7. A surface-active copolymer comprising a polyoxypropylene/polyoxyethylene block copolymer with the following general formula:

10 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the average total molecular weight of the compound is approximately 8400 daltons and the polydispersity value is less than approximately 1.07.

15

8. The surface-active copolymer of Claim 7, wherein the polydispersity value is less than approximately 1.05.

9. The surface-active copolymer of Claim 7, wherein the polydispersity value is less than approximately 1.03.

20

10. The surface-active copolymer of Claim 7, wherein the copolymer is substantially unsaturated.

11. A surface-active copolymer comprising a polyoxypolypropylene/polyoxyethylene block copolymer with the following general formula:

5 wherein the total molecular weight of the copolymer is between approximately 5,000 and 15,000 daltons and the molecular weight represented by the polyoxyethylene portion of the copolymer constitutes between approximately 75% and 85% of the copolymer.

10

12. The surface-active copolymer of Claim 11, wherein the total molecular weight of the copolymer is between approximately 7,000 and 12,000 daltons.

15

13. The surface-active copolymer of Claim 11, wherein the copolymer is substantially unsaturated.

14. A surface-active copolymer comprising a polyoxypropylene/polyoxyethylene block copolymer with the following general formula:

5 wherein the molecular weight of the hydrophobe (C₃H₆O) is approximately 9,700 daltons and the average total molecular weight of the compound is approximately 10,000 daltons and the polydispersity value is less than approximately 1.07.

10

15. The surface-active copolymer of Claim 14, wherein the polydispersity value is less than approximately 1.05.

16. The surface-active copolymer of Claim 14,
15 wherein the polydispersity value is less than approximately 1.03.

17. The surface-active copolymer of Claim 14, wherein the copolymer is substantially unsaturated.

18. A surface-active copolymer comprising a polyoxypropylene/polyoxyethylene block copolymer with the following general formula:

5 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 3400 daltons and the average total molecular weight of the compound is approximately 4000 daltons and the polydispersity value is less than approximately 1.07.

10 19. The surface-active copolymer of Claim 18, wherein the polydispersity value is less than approximately 1.05.

20. The surface-active copolymer of Claim 18,
wherein the polydispersity value is less than approximately 1.03.

21. The surface-active copolymer of Claim 18,
wherein the copolymer is substantially unsaturated.

5

22. A method of preparing a non-toxic
surface-active copolymer including first condensing propylene
oxide with a base compound containing a plurality of reactive
hydrogen atoms to produce polyoxypropylene polymer and then
10 condensing ethylene oxide with the polyoxypropylene polymer to
produce a polyoxypropylene/polyoxyethylene block copolymer
with the following general formula:

15 the improvement being the purification of the
polyoxypropylene polymer before the step of condensing ethylene
oxide with the polyoxypropylene polymer so that the
polydispersity value of the polyoxypropylene/polyoxyethylene
block copolymer is less than approximately 1.07.

20 23. The method of Claim 22, wherein the
polydispersity value of the polyoxypropylene/polyoxyethylene
copolymer is less than approximately 1.05.

25 24. The method of Claim 22, wherein the
polydispersity value of the polyoxypropylene/polyoxyethylene
copolymer is less than approximately 1.03.

25. The method of Claim 22, wherein the polyoxypropylene polymer is purified by gel permeation chromatography.

5 26. The method of Claim 22, wherein the copolymer is substantially unsaturated.

10 27. A method of preparing a non-toxic surface-active copolymer including first condensing propylene oxide with a base compound containing a plurality of reactive hydrogen atoms to produce polyoxypropylene polymer and then condensing ethylene oxide with the polyoxypropylene polymer to produce a polyoxypropylene/polyoxyethylene block copolymer with the 15 following formula:

20 wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the total molecular weight of the compound is approximately 8400 daltons,

the improvement being the purification of the polyoxypropylene polymer before the step of condensing ethylene oxide with the polyoxypropylene polymer thereby providing a polyoxypropylene/polyoxyethylene block copolymer preparation with a polydispersity value of less than approximately 1.07.

25

28. The method of Claim 27, wherein the polydispersity value of the polyoxypropylene/polyoxyethylene copolymer is less than approximately 1.05.

29. The method of Claim 27, wherein the polydispersity value of the polyoxypropylene/polyoxyethylene copolymer is less than approximately 1.03.

5

30. The method of Claim 27, wherein the polyoxypropylene polymer is purified by gel permeation chromatography.

10

31. The method of Claim 27, wherein the copolymer is substantially unsaturated.

15

32. A method of preparing a non-toxic surface-active copolymer including first condensing propylene oxide with a base compound containing a plurality of reactive hydrogen atoms to produce polyoxypropylene polymer and then condensing ethylene oxide with the polyoxypropylene polymer to produce a polyoxypropylene/polyoxyethylene block copolymer with the following formula:

20

25

wherein the molecular weight of the hydrophobe ($\text{C}_3\text{H}_6\text{O}$) is approximately 1750 daltons and the average total molecular weight of the compound is approximately 8400 daltons,

30

the improvement being the purification of the polyoxypropylene polymer before the step of condensing ethylene oxide with the polyoxypropylene polymer thereby providing a polyoxypropylene/polyoxyethylene block copolymer preparation wherein the polyoxypropylene portion of the copolymer is between approximately 900 and 15000 daltons and the molecular weight represented by the polyoxyethylene portion of the copolymer constitutes between approximately 5% and 95%.

33. The method of Claim 32, wherein the copolymer has a molecular weight range of between approximately 1,200 and 6500 daltons.

5

34. The method of Claim 32, wherein polyoxyethylene portion of the copolymer constitutes between approximately 10% and 90% of the copolymer.

10

35. The method of Claim 32, wherein the copolymer is substantially unsaturated.

Fig. 1

7/11-96

High - 11C

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US92/02254

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(5): C07C 41/03, 41/36, 43/11, 43/15
 U.S. Cl.: 568/616, 620, 621, 624

II. FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols
U.S.	568/616, 620, 621, 624, 618

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y	In "Polyethers"; Part I, Ch. IV, Sec. V (B), pgs. 233-237; Published 1963; N.G. Gaylord, ed.	1-21
Y	US, A, 4,764,567, Published 16 August 1988; (OH); See entire document.	1-35
Y	US, A, 4,275,244, Published 23 June 1981; (Helfert et al.); See entire document.	1-35
Y	US, A, 4,195,167, Published 25 March 1980; (Kroopf et al.); See entire document.	1-35

* Special categories of cited documents: ¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

15 June 1992

Date of Mailing of this International Search Report

29 JUN 1992

International Searching Authority

ISA/US

Signature of Authority Officer
NGUYEN HOANG
 INTERNATIONAL DIVISION
 for Michael HYDORN

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers _____, because they relate to subject matter^{1,2} not required to be searched by this Authority, namely:

2. Claim numbers _____, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out^{1,2}, specifically:

3. Claim numbers _____, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional search fees.

