Durée : 30 minutes. Aucun document n'est autorisé. La calculatrice collège est tolérée

La calculatrice college est toleree.
Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.
BON COURAGE!
* * * * * * * * * * * * * * * * * * * *
1. $(b^2)^{\frac{1}{9}}$ est égal à
$(1)^{\square} (b^{\frac{1}{9}})^2 (2)^{\square} (b^{-\frac{1}{9}})^2 (3)^{\square} \sqrt{b^9} (4)^{\square} \sqrt[9]{b^2}$
$_{(5)}\square$ aucune des réponses précédentes n'est correcte.
2. Parmi les symboles suivants, lesquels représentent la lettre psi (majuscule et minuscule) de l'alphabet grec :
${}_{(1)}\square \zeta \qquad {}_{(2)}\square \varphi \qquad {}_{(3)}\square \psi \qquad {}_{(4)}\square \Phi \qquad {}_{(5)}\square \Psi$
3. Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :
${}_{(1)}\square a \in E \qquad {}_{(2)}\square a \subset E \qquad {}_{(3)}\square d \not\subset E \qquad {}_{(4)}\square \{a\} \subset E \qquad {}_{(5)}\square \varnothing \in E$
4. Soient A,B,C trois ensembles. Parmi les affirmations suivantes lesquelles sont vraies?
$_{(1)}\square$ $(A\cup B)\cap C=A\cup (B\cap C)$ $_{(2)}\square$ $A^c\cup B^c=(A\cup B)^c$
${}_{(3)}\square Card(A \cup B) = Card(A) + Card(B) \qquad {}_{(4)}\square A \setminus B = A \cap B^c$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
5. Parmi les affirmations suivantes lesquelles sont vraies?
$_{(1)}\square$ La négation de $(P\Rightarrow Q)$ est $(\overline{Q}\Rightarrow \overline{P})$ $_{(2)}\square$ $(P\Rightarrow Q)\Leftrightarrow (\overline{P} \text{ ou } Q)$
(3) \Box $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x+y>0$ (4) \Box $\exists x \in \mathbb{R} \ x>x^2$
$_{(5)}\Box$ aucune des réponses précédentes n'est correcte.
6. Soit f une application de E dans F . Si f est injective
${}_{(1)}\square \forall (x,x') \in E^2 \ f(x) \neq f(x') \Rightarrow \ x \neq x' \qquad {}_{(2)}\square \forall (x,x') \in E^2 \ f(x) = f(x') \Rightarrow \ x = x'$
$ (3) \square \forall y \in F \ \exists x \in E \ y = f(x) \qquad (4) \square Card(E) \leqslant Card(F) $
aucune des réponses précédentes n'est correcte.

7. Soit $f: \mathbb{R} \to \{-6\}$ une application telle que f(x) = -6. f est . . .

 $_{(1)}\square$ injective $_{(2)}\square$ surjective $_{(3)}\square$ bijective

 $_{(4)}\square$ n'est pas une application $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

8. Soient les fonctions $f(x) = \frac{x-1}{x-2}$ et $g(x) = \sqrt{x}$. L'ensemble de définition de la fonction composée $f \circ g$ $(D_{f \circ g})$ est . . .

(1) \square $D_{f \circ g} = \mathbb{R} \setminus \{2\}$ (2) \square $D_{f \circ g} = [0, +\infty[$ (3) \square $D_{f \circ g} = [0, 4[\cup]4, +\infty[$ (4) \square $D_{f \circ g} = \mathbb{R} \setminus \{4\}$ aucune des réponses précédentes n'est correcte.

9. Le produit $\prod_{i=1}^{n} (5a_i)$ est égal à

 $(1)^{\square} \quad 5 \prod_{i=1}^n a_i \qquad (2)^{\square} \quad 5^n \prod_{i=1}^n a_i \qquad (3)^{\square} \quad 5^{n-1} \prod_{i=1}^n a_i$ $(4)^{\square} \quad 5 + \prod_{i=1}^n a_i \qquad (5)^{\square} \quad \text{aucune des réponses précédentes n'est correcte.}$

10. Simplifier la somme suivante : $\sum_{k=1}^n \ln(1+\frac{1}{k})$

 $_{(1)}\square$ n $_{(2)}\square$ $\ln(n)$ $_{(3)}\square$ $\ln(n+1)-\ln(n)$

 $_{(4)}\square$ $\ln(n+1)$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.