Logic Data Book

DM54/DM74 Connection Diagrams

221 Dual One Shots with Schmitt-Trigger Inputs

Truth Table

Ing	outs		Out	puts
Clear	A	В	Q	Q
L	X	X	L	н
X	H.	X	L	H
X	X	L	L	H
Н	L		12	T
Н	+	H	JI	T
+	L	Н	1	7

See page 5-44

Octal Buffers/Line Drivers/Line Receivers

240 Inverted TRI-STATE® Outputs

54LS221 (J,W); 74LS221 (N)

1G 54LS240 (J) 74LS240 (N)

Octal Buffers/Line Drivers/Line Receivers

241 Noninverted TRI-STATE Outputs

54LS241 (J) 54S241 (J)

545240 (J)

74LS241 (N) 745241 (N)

74S240 (N)

See page 5-53

Logic Da

Quadruple BUS Tra

242 Inverted T

See page 5-57

Quadruple Bus Trai

243 Noninvert

See page 5-57

See page 5-53

Octal Buffers/Line

244 Noninvert

DM54/DM74121, LS221 One Shots

1					1	DM54/7	4	C	M54/7	4	1 1
	Parameter	Design 1	Condition			121			LS221		Units
					Min	Typ (1)	Max	Min	Typ (1)	Max	
VT+	Positive-Going Threshold Voltage at A Input	V _{CC} = Min				1.4	2		1.0	2	٧
VT-	Negative-Going Threshold			DM54	0.8	1.4		0.8	1.0		V
	Voltage at A Input	VCC = Min		DM74	0.8	1.4		0.8	1.0		
VT+	Positive-Going Threshold Voltage at B Input	V _{CC} = Min				1.55	2		1.0	2	V
VT-	Negative-Going Threshold			DM54	0.8	1.35		0.8	0.9		V
	Voltage at B Input	VCC = Min		DM74	0.8	1.35		0.8	0.9		•
٧ı	Input Clamp Voltage		II = -12 m/	4			-1.5				v
		VCC = Min	II = -18 m/	4						-1.5	
ЮН	High Level Output Current						-400			-400	μА
VOH	High Level Output Voitage	VCC = Min		DM54	2.4	3.4		2.5	3.4 ,		V
		IOH = -400	μА	DM74	2.4	3.4		2.7	3.4 4		Ľ
IOL	Low Level Output Current			DM54	-		16			4,	mA
				DM74			16	Side		8 ,	III.A
VOL	Low Level Output Voltage		IOL = 4 mA						0.25	0.4	
		V _{CC} = Min	IOL = 8 mA	DM74				3	0.35	0.5	٧
			IOL = 16 m	A		0.2	0.4	lan ling i			
h	Input Current at Maximum	V _{CC} = Max	V ₁ = 5.5 V				1		1		mA
	Input Voltage	ACC = Max	V1 = 7 V							0.1	1111
ІН	High Level Input Current		VO = 2.4 V	A1 or A2			40				
		VCC = Max	VO - 2.4 V	8			80	1			μА
			V1 = 2.7 V	All			16			20 ,	
IIL	Low Level Input Current			A1 or A2			-1.6			4	
		VCC = Max,	$V_1 = 0.4 \text{ V}$	В			-3.2			8	mA
				Clear			N/A			-0.8	
los	Short Circuit Output Current	V _{CC} = Max	(2)	DM54	-20		-55	-20		-100	m.A
		ACC - Max	(2)	DM74	-18		-55	-20		-100	
Icc	Supply Current	VCC = Max		Quiescent		13	25		4.7	11	mA
		ACC - Wax		Triggered		23	40		19	27	1117

Note 1: All typical values are V_{CC} = 5 V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and for DM54LS221/DM74LS221, duration of short circuit should not exceed one second.

			-	DMS4/74				DMS4LS/74LS	ALS			
		From	To To	121				LS221	ALL LANGE		Samuel Samuel	Units
	Parameter	(Indul)	(Output)		Min	Tvo	Max	Conditions	Min Typ	Тур	Max	
				Conditions	+					45	70	90
		A1 00 A3	0			45	2				1	
Ніді	Propagation Delay Time, Low-to-High Level Output	20 10 10	,			36	56			35	22	US
	Propagation Delay Time, Low-to-High Level Output	8	a		-	+	T	-		45	99	us
PLH		Close	10	Cevr = 80 pF		_	K/Z	CEXT = 80 pr		-		
тын	Propagation Delay Time, Low-to-High Level Output	Clear	-	Burr 10 VCC		50	80	REXT = 2 KH		20	80	us
-		A 1 OF AS	C	DO DE INITE		Ц	1					-

î		8	ğ	ğ
	Ĭ		4	
	þ	6	9	
	ь.	_	4	

Parameter Conditions Fig. Parameter Conditions Conditions Fig. Parameter Conditions Conditions Fig. Fig.				-			DM54/74			1		DMS4LS/74LS	2			
Propagation Daiay Time, Low-to-High Level Output Clear Conditions Min Typ Max Min Typ Ma		Paramete		(luout)	(Output)		121					LS221			3	oits
A101A2 Q A5 A5 A5 A5 A5 A5 A5				(madeu)	(mdino)	Col	nditions	Min		Max	Con	ditions	-	-	×	
Propagation Datay Times, Low to High Level Output Gear Gear		Propagation Delay Time,	Low-to-High Level Output	A1 or A2	o				45	20				-	X 0 Z	US
Propagation Datay Time, Low-to-High Level Output Clear G		Propagation Delay Time,	Low-to-High Level Output	8	0				35	99				-	₹ 99	n.s
Propagation Delay Time, High-to-Low Level Output A1 or A2 0 0		Propagation Delay Time.	Low-to-High Level Output	Clear	10		CEXT = 80 pF			4		CEXT = 80 pF		-	65	l su
Propagation Delay Time, High-to-Low Level Output Gear O Clear O Cl		Propagation Delay Time,	High-to-Low Level Output	A1 or A2	10		BINT to VCC		90	80		REXT = 2 KB		90	80	U.S.
Propagation Delay Time, High-to-Low Level Output Clear Q CL = 15 pF NI A CL = 15 pF A Output Pulse Width Internal Timing Resistor (1) Rex = 40011 CEXT = 80 pF 70 110 150 Rex = 2 kil 70 15		Propagation Delay Time,	High-to-Low Level Output	8	Ia				40	65				40	99	ns.
Output Puise Width Internal Timing Resistor (1) A1, A2 or B Q or G A2 or B A1, A2 or B A3 or B A3 or B A4 or B </td <td></td> <td>Propagation Delay Time,</td> <td>High-to-Low Level Output</td> <td>Clear</td> <td>o</td> <td>CL = 15 pF</td> <td></td> <td></td> <td></td> <td></td> <td>= 15 pF</td> <td></td> <td></td> <td>40</td> <td></td> <td>81</td>		Propagation Delay Time,	High-to-Low Level Output	Clear	o	CL = 15 pF					= 15 pF			40		81
Schrining Capacitance A1, A2 or B	0	Output Pulse Width	Internal Timing Resistor (1)			AL = 400 11		0/	110		1 = 2 kg	CEXT = 80 pF REXT = 2 Kil	7.0	120	150	
External Timing Resistor CEXT = 10 kil 600 700 800 CEXT = 10 kil 60 700 600 750 750			Zero-Timing Capacitance	G 20 04	10		CEXT = 0		30	90	(CEXT = 0 REXT = 2 kil	20	47	02	us
			Forest Timing Design	20.00	5		CEXT = 100 pF REXT = 10 ktl	9009	700	800		CEXT = 100 pF REXT = 10 k1)	900	-	750	
Schmittingut, B	11 -		CATEGORY THINKS TORSISTON	-			CEXT = 1 µF REXT = 10 ktl	w w	7.	80		CEXT = 1 µF REXT = 10 kil	9	6.7	7.5	s is
Schmittingut, B		Input Pulse Width						90					40			ns
Rate of Rise or Fall Schmitt Input, B	AH)	Clear Pulse Width						A/N					9			ns
Control Found Fo		Rate of Rise or Fall	Schmitt Input, B					-					-			8
External Timing Resistance DMM54 1.4 30 DMM54 1.4 70 External Timing Capacitance Clear-Inactive State Setup Time N. A N. A N. A 0 1000 Outy Cycle RT = 2 kii 67 RT = 2 kii 67 87 87		of Input Pulse	Logic Input, A					-					-			81
External Timing Capacitance DM74 1.4 40 DM74 1.4 100 Clear-inactive State Setup Time Clear-inactive State Setup Time N.A RT = 2 kii 67 RT = 2 kii 67		External Timing Resistan	900				DM64	1.4		30		DM54	4			
External Timing Capacitance 0 1000 0 1000 Clear-hactive State Setup Time RT = 2 kil 67 RT = 2 kil 67 But Cycle RT = 2 kil 67 RT = 2 kil 67							DM74	4.1		40		DM74	1.4		100	KII
Clear-Inactive State Setup Time Clear-Inactive State Setup Time (15)		External Timing Capacity	ance					0		1000			0		0001	H.H.
AT = 2 ki! 67 RT = 2 ki! 67 RT = 2 ki! 67 RT = 2 ki!		Clear-Inactive State Set	up Time							4 Z			(16)			us
		Duty Cycle					RT = 2 K!!			19		RT = 2 K!!			67	
90 RT = Max RT							AT - Max REXT			06		RT = Max RT			06	og,

123 Dual Retriggerable One Shots with Clear

Truth Table 123, L123A

1	nput	8	Out	puts
A	В	CLR	Q	ā
н	X	н	L	н
X	L	н	L	Н
L	+	Н	1	T
	H	н	1	T
X	X	L	L	H

54123 (J,W) 54L123A (J,W) 74123 (N) 74L123A (N)

3

Truth Table LS123

In	puts		Outp	outs
Clear	A	8	Q	ā
L	X	X	L	н
X	Н	X	L	Н
X	X	L	L	Н
н	L	+	5	7
н	1	H	IL	U
	L	Н	JL	T

1 REXT / 1 2 VCC CEXT CEXT 1Q 2Q CLR 2B 16 15 14 13 12 2 2 REXT GND 20 54LS123 (J,W); 74LS123 (N)

See page 5-46

125 TRI-STATE® Quad Buffers

Truth Table

Inp	uts	Output
A	С	Y
Н	L	Н
L	L	L
X	Н	Hi-Z

Y = A

C3 VCC C4 10 C1 A1 74125 (N) 54125 (J,W) 74LS125A (N)

54LS125A (J,W)

See page 5-48

Notes: ___ = one high-level pulse. ___ = one low-level pulse. Notes: $\bot =$ one high-level pulse, $\bot =$ one low-level pulse. An external timing capacitor may be connected between C_{EXT} and R_{EXT}/C_{EXT} (positive). For accurate repeatable pulse widths, connect an external resistor between R_{EXT}/C_{EXT} and V_{CC} . To obtain variable pulse widths, connect external variable resistance between R_{EXT}/C_{EXT} and V_{CC} .

SSI

Units

Conditions Min Typ

Max

Conditions Min Typ

DM54/74 L123A

DM54/74 LS122, LS123

I = -12 mA
VCC = Min, iOH = Max (3) OM54 O.8 VCC = Min, iOH = Max (3) DM54 D.4 VCC = Min, iOH = Max (3) DM54 D.4 VCC = Min (3) OL = Max DM54 O.2 O.4 VCC = Min (3) OL = Max DM74 O.2 O.4 VCC = Max Vi = 5.5 \ V Vi = 2.4 \ Vi = 2.7 \ V Vi = 2.4 \ Vi = 2.7 \ V Vi = 2.7 \
VCC = Min, iOH = Max (3) DM54 2.4 3.4 VCC = Min, iOH = Max (3) DM74 2.4 3.4 DM54 DM74 2.4 3.4 DM74 0.2 DM74 0.2 DM75
VCC = Min, iOH = Max (3) DM54 2.4 3.4 16 DM74 2.4 3.4 16 DM74 2.4 3.4 16 DM74 2.4 3.4 16 DM74 DM74 DM74 DM74 DM74 DM74 DM74 DM74
VCC = Min, iOH = Max (3) DM54 2.4 3.4 2.4 3.4 2.4 3.4 2.4 3.4 2.4 2
$V_{CC} = Min (3) \begin{vmatrix} I_{OL} = Max \\ I_{OL} = Max \\ V_{I} = 5.5 V \end{vmatrix}$ $V_{CC} = Max $
VCC = Min (3) IOL = Max DM74 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4
$V_{CC} = Min (3) \begin{vmatrix} I_{OL} = Max & DM54 & 0.2 & 0.4 \\ I_{OL} = 4 mA & DM74 & 0.2 & 0.4 \end{vmatrix}$ $V_{CC} = Max \begin{vmatrix} V_{I} = 5.5 \text{ V} & V_{I} = 2.4 \text{ V} \\ V_{I} = 2.7 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$ $V_{CC} = Max \begin{vmatrix} V_{I} = 0.4 \text{ V} & V_{I} = 2.7 \text{ V} \\ V_{I} = 2.7 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$ $V_{CC} = Max \langle V_{I} = 0.4 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$ $V_{CC} = Max \langle V_{I} = 0.4 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$ $V_{CC} = Max \langle V_{I} = 0.4 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$ $V_{CC} = Max \langle V_{I} = 0.4 \text{ V} & V_{I} = 2.7 \text{ V} \end{vmatrix}$
$V_{CC} = Min (3) {}^{1}OL = Max DM74 \qquad 0.2 0.4$ $V_{CC} = Max V_{I} = 4 \text{ mA} DM74 \qquad 0.2 0.4$ $V_{I} = 4 \text{ mA} DM74 \qquad 0.4$ $V_{I} = 5.5 \text{ V} V_{I} = 2.7 \text{ V} 40$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} 40$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} 40$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} 40$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} -1.6$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} -1.6$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} -1.6$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} -1.6$ $V_{I} = 2.7 \text{ V} V_{I} = 2.7 \text{ V} -1.6$
ta $V_{CC} = Max$ $V_{I} = 5.5 \text{ V}$ $V_{I} = 5.5 \text{ V}$ $V_{I} = 2.4 \text{ V}$ $V_{I} = 2.7 \text{ V}$ $V_{I} $
ts $V_{CC} = Max$ $V_{I} = 5.5 \text{ V}$ $V_{I} = 2.4 \text{ V}$ $V_{I} $
uts VCC = Max V1 = 2.4 V V1 = 2.7 V V1
uts $V_{CC} = Max$ $V_{I} = 2.4 V$ 40 ut $V_{CC} = Max$ $V_{I} = 2.7 V$ 80 ut $V_{CC} = Max$, $V_{I} = 0.4 V$ -1.6 ut $V_{CC} = Max$, $V_{I} = 0.4 V$ -1.6 ont $V_{CC} = Max$ (2) (3) -1.0 -40 $V_{CC} = Max$ (2) (3) -1.0 -40
$V_{CC} = Max \qquad V_{I} = 2.7 \text{ V}$ $V_{I} = 2.4 \text{ V}$ $V_{I} = 2.7 \text{ V}$ $V_{I} = 0.4 \text{ V}$
ut Vic = Max, Vi = 0.4 V Vic = Max (2) (3) LS122 Vi = 2.4 V 80 -1.6 -1.6 -1.6 LS122
uts $V_{CC} = Max, V_{I} = 0.4 \text{ V}$ -1.6 ant $V_{CC} = Max (2) (3)$ -1.6 -40
ut) VCC = Max, V _I = 0.4 V -1.6 -1.6 -1.6 -1.6 -1.0 -40
out VCC = Mex (2) (3) -1.6 -40
ent VCC = Max (2) (3) -10 -40
No.

				DM54/74	4	
Parameter	From	To		123		
		indian)	Conditions Min Typ	Min	Typ	Мах
Propagation Delay Time,	V	(22	33
Low-to-High Level Output	8	3			18	28
Propagation Delay Time	Y				30	40

SSI

		5
	4	
		历
		35
63	Sep 7	e
а	ē	
-	d	ĸ
e	5	8
55	ñ	s
83	ď	
	3	
38	2 2	۲
а	ŝ	S.
		8
92	S	E
s	а	
63	ø	н
	9	
83		
	ē	
53	Š	ž.
63	e	ĸ.
6	8	8
	а	53
99		8
	2	E.
	Ö	
	9	
	3	
	202	
diam	100 THE 2 CO	
diam	100 C 100 C	
diam	200 C 2 C C C C C C C C C C C C C C C C	
diam	12 2 2 2 0 E B C 4 22 1	
autobles	i	ij
diam	i	ij
memberladian		
autobles		

						4	DM54 /74	4		MO	DM54/74			a	DM54/74	4		ì
	Parameter	,	· v	(lnout)	Outout		123			1	L123A			LS1	LS122, LS123	123		Units
				(100	(indino)	Conditions	Min	Typ	Max	Conditions	Min	Typ	Max	Conditions	Min	Typ	Max	
	Propagation Delay Time.	me.		4				22	33			120	175	7		22	33 ×	1
	Low-to-High Level Output	utput		9	3.			19	28			98	35			58	44 %	S .
	Propagation Delay Time,	me,		٧	10		Ч	30	40			120	180	1		30	45	
	High-to-Low Level Output	utput		8	2	CEXT = 0		27	36	CEXT = 0		986	35	CEXT = 0		37	99	SC
	Propagation Detay Time, High-to-Low Level Output	ime, utput			0	REXT = 5 kt. CL = 15 pF Bi = 400 0		18	27	REXT = 32 kg CL = 50 pF Rt = 4 kg		94	99	REXT = 5 kill CL = 15 pF R ₁ = 2 kill		18	27	
	Propagation Delay Time. Low-to-High Level Output	ime. utput	7 1/4	Clear	10			30	40			98	140	9.12		30	45	N. P.
(WOCMIN)	Minimum Width of Pulse at Output Q	ise at Output Q		AorB	0			45	99			220	330	1		116	200	0.8
	Width of Pulse at Output Q	tput Q		A or B	σ	CEXT = 1000 pF REXT = 10 kΩ CL = 15 pF RL = 400 Ω	3.08	3.42	3.76	CEXT = 1000 pF REXT = 100 kD CL = 50 pF PL = 4 kD	30.6	34.0	37.4 F	CEXT = 1000 pF REXT = 10 kΩ CL = 15 pF RL = 2 kΩ	4	4	9	2
	Puise Width	A or B Inputs High	46	2.55			40				130				40			
		A pr B Inputs Lo	Low				40				130				40	-		ns.
		Clear Low					40				130				40			
	External Timing Resistance	stance DM54	1				5		25		22		200		w		180	19
		DM74					9		90		9		400		9		260	200
	External Capacitance	9		-			No	No Restriction	lion		No R	No Restriction			No	No Restriction	non	
	Wiring Capacitance at	at DM54							90				40				9	1
	REXT / CEXT Terminal	DM74			100				9				80				90	PF

DM54/DM74LS122, 123, L123A, LS123 Dual One Shots

Note 1: All typical values are at V_{CC} = 5 V, T_A = 25°C.

Note 2: Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.

Note 3: Ground R_{EXT}/C_{EXT} and Input A, appty 2.4 V to the B Input to measure the following: VOH or IOS at the Q output or V_{OL} at the Q output.

Note 4: Quiescent I_{CC} is measured (after clearing) with 2.4 V applied to all clear and A inputs, B inputs grounded, all outputs open, C_{EXT} = 0.02 μF, and R_{EXT} = 25 kit.

Note 5: I_{CC} is measured in the triggered state with 2.4 V applied to all clear and B inputs. A inputs grounded, all outputs open, C_{EXT} = 0.02 μF, and R_{EXT} = 25 kit.

Note 6: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after 4.5 V, is applied to clock (LS122, LS123)

TMS 9914 GENERAL PURPOSE INTERFACE BUS ADAPTER

Peripheral and Interface Comme

990/9900 FAMILY MICROCOMPUTER COMPONENTS

- IEEE Std. 488-1975 Compatible
- Source and Acceptor Handshake
- Complete Talker and Listener Functions with Extended Addressing
- Controller and System Controller Capability
- Service Request
- Remote and Local with Lockout
- Serial and Parallel Polling
- Device Clear
- Device Trigger
- Compatible with TMS 9911 DMA Controller
- Single +5 V Power Supply
- Interfaces directly to SN75160/1/2 Transceivers

DESCRIPTION

The TMS 9914 General Purpose Interface Bus Adapter is a microprocessor controlled versatile device which rubbs the designer to implement all of the functions or a subset described in the IEEE Std. 488-1975. Using this standard variety of instruments can be interconnected and remotely or automatically programmed and controlled. The TMS 9914 is fabricated with N-channel silicon-gate technology and is completely TTL compatible on all inputs and our including the power supply (+5 V). It needs a single phase clock (nominally 5 MHz) which may be independent of microprocessor system clock and, therefore, it can easily be interfaced with most microprocessors. The general purpose interface bus adapter (GPIBA) performs the majority of the functions contained in IEEE STd. 488-1975 and is versatile enough to allow software implementation of those sections not directly implemented in hardware.

Figure 1. Typical System Interconnect

TMS 9914 GENERAL PURPOSE INTERFACE BUS ADAPTER

Figure 2. TMS 9914 Simplified Block Diagram

Table 1. Pin Description

		Description
	1/0	Description TMS 9914
Name	-	DATA I/O lines: allow data transfer between the TMS 9914 PIN OUTS
DI01	1/0	and the IEEE 700 curv
hrough	The state of	leaving device to indicate
D108		DATA VALID: Handshake Line. Sent by source device to indicate DATA VALID: Handshake Line. Sent by source device to indicate ASSIGNED
DAV	1/0	
		NOT READY FOR DATA: Handshake Line. Self of a new byte of data.
NRFD	1/0	NOT READY FOR DATA: Handshake Line. Sent by the acceptor to source device to indicate to the source device to indicate when it is ready for a new byte of data. DATA NOT ACCEPTED: Handshake Line. Sent by acceptor to source device to indicate DATA NOT ACCEPTED: Handshake Line. Sent by acceptor to source device to indicate to the source device to indicate the source device the source device to indicate the source device device the sourc
		DATA NOT ACCEPTED: Handshake Line. Self-by
NDAC	1/0	DATA NOT ACCEPTED: Handshake Enter- by the data bus. when it has accepted the current byte on the data bus. When it has accepted the current byte on the controller. When ATN is asserted, the ATTENTION: Management Line. Sent by the controller When ATN ATTENTION: on the data lines is interpreted as commands, sent by the controller When ATN
		when it has accepted the current byte on the when it has accepted the current byte on the ATN is asserted, the ATTENTION: Management Line. Sent by the controller When ATN information on the data lines is interpreted as commands, sent by the controller When ATN information data lines carry data.
ATN	1/0	information on the data lines is interpreted as communication of the data lines is interpreted as communication on the data lines is interpreted a
		information of the data lines carry data. is false, the data lines carry data. Sent by system controller to set the interface is false, the data lines carry data.
	-	or of the Management
IFC	1/	system, portions of which are contained in an output with internal pullup.
	n til te	O INTERFACE CLEAR: Management Line. Sent by system controller and is used in conjunction System controller assumes control. Open drain output with internal pullup. System controller assumes control. Open drain output with internal pullup. System controller and is used in conjunction of programming data, e.g. via
		Learnage Sources of programmes
REN		with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages to select between two attended solutions with other messages and the select between two attended solutions with the select between two att
		interface or front panel. Open drain output
SRQ		SERVICE REQUEST: Management Line. If ATN is false, this signal is sent by the "talker" indicate a need for service. END OR IDENTIFY: Management Line. If ATN is false, this signal is sent by the "talker" to be end of a multiple byte transfer. If sent by the controller with ATN true, this w
		indicate a Hosel The NTIFY: Management Line. If ATN is labely the controller with ATN true, this was
EOI		indicate a need for service. I/O END OR IDENTIFY: Management Line. If ATN is false, this signal is sent by the END OR IDENTIFY: Management Line. If ATN is false, this signal is sent by the Controller with ATN true, this we to indicate the end of a multiple byte transfer. If sent by the controller with ATN true, this we to indicate the end of a multiple byte transfer. If sent by the controller.
EOI		perform the parallel polling sequence. perform the parallel polling sequence that the device is the controller.
		perform the parallel polling sequence, perform the parallel polling sequence. Bus transceiver control line. Indicates that the device is the controller. TALK ENABLE: Bus transceiver control line. Indicates the direction of data transfer on the
CONTRO	DLLER	O Bus transceiver control line. Indicates the direction
TE		O TALK ENABLE: Bus transcerved data between TMS 9914 and the microprocessor. I/O Data I/O lines that allow transfer of data between TMS 9914 and the microprocessor. I/O Data I/O lines that allow transfer of data between TMS 9914 and the microprocessor.
12		data bus.
D0 throu	oh D7	data bus. 1/O Data I/O lines that allow transfer of data between TMS 9914 and the microprocesso I Address lines through which the TMS 9914 registers can be accessed by the microprocessor is about to rea When true (high) DBIN indicates to the TMS 9914 that the microprocessor is about to one of its
RS0 thro	ugh RS2	I Address lines through which the TMS 9914 that the microprocessor is the Address lines through which the TMS 9914 that the microprocessor is the to one of its
	ug.	When true (high) DBIN indicates to the wicroprocessor is about to with
DBIN		I Address lines through which the TMS 9914 that the microprocessor is about to When true (high) DBIN indicates to the TMS 9914 that the microprocessor is about to write to one of its from one of its registers. When false, that the microprocessor is about to write to one of its
		C'in magnisters is being
		WRITE ENABLE: indicates to the 1143 9914 for an microprocessor data transfer.
WE		GILLD EN ARI E: selects and entire the occurrence of an even
CE		1 1 A DIFFILL DELIC CO.
ĪNT		O INT: Open train of the bus requiring service.
		O INT: Open drain output the bus requiring service. ACCESS REQUEST: Signal to TMS 9911 DMA controller requesting DMA.
ACCR	ō	
neur	The second	La logic signals.

NOTE: The names of the IEEE bus lines have been maintained, and are therefore negative logic signals.

Table 3. Remote Multiple Message Coding

		DIO8	DIO7	DIO6	DIO5	DIO4	DIO3	DIO2	DIOI		Note
Addressed Command Group	ACG	X	0	0	0	X	X	X	X	AC	
Device Clear	DCL	X	0	0	1	0	1	0	0	UC	
Group Execute Trigger	GET	X	0	0	0	1	0	0	0	AC	
Go To Local	GTL	X	0	0	0	0	0	0	1	AC	
Listen Address Group	LAG	X	0	1	X	X	X	X	X	AD	
Local Lock Out	LLO	X	0	0	1	0	0	0	1	UC	
My Listen Address	MLA	X	0	1	L	L	L	L	L	AD	1
My Talk Address	MTA	X	1	0	T	T	T	T	T	AD	2
My Secondary Address	MSA	X	1	1	S	S	S	S	S	SE	3,4
Other Secondary Address	OSA									SE	4,5
Other Talk Address	OTA			7	TAG .	MT	A			AD	
Primary Command Group	PCG									- 19	6
Parallel Poll Configure	PPC	X	0	0	0	0	1	0	1	AC	7
Parallel Poll Enable	PPE	X	1	1	0	S	P	P	P	SE	8,9
Parallel Poll Disable	PPD	X	1	1	1	D	D	D	D	SE	8, 10
Parallel Poll Unconfigure	PPU	X	0	0	1	. 0	1	0	1	UC	11
Secondary Command Group	SCG	X	1	1	X	X	X	X	X	SE	
Selected Device Clear	SDC	X	0	0	0	0	1	0	0	AC	UD9 BE
Serial Poll Disable	SPD	X	0	0	1	1	0	0	1	UC	
Serial Poll Enable	SPE	X	0	0	1	1	0	0	0	UC	
Take Control	TCT	X	0	0	0	1	0	0	1	AC	12
Talk Address Group	TAG	X	1	0	X	X	X	X	X	AD	
Universal Command Group	UCG	X	0	0	1	X	X	X	X	UC	
Unlisten	UNL	X	0	1	1	1	1	1	1	AD	
Untalk	UNT	X	1	0	1	1	1	1	1	AD	

Symbols: AC - Addressed Command

AD - Address (Talk or Listen)

UC - Universal Command

SE - Secondary (Command or Address)

0 - Logical Zero (high level on IEEE Bus; Low level within 9914).

1 - Logical One (Low level on IEEE Bus; High level within 9914).

X - Don't Care (received message)

X - Must Not Drive (transmitted message)

ripheral d Interface Circuits

3.4

11

Peripheral and Interface Circuits

TMS 9914 GENERAL PURPOSE INTERFACE BUS ADAPTER

Notes to Table 3:

- 1. LLLL: Represents the coding for the device listen address.
- 2. TTTTT: Represents the coding for the device talk address.
- 3. S S S S: Represents the coding for the device secondary address.
- 4. Secondary addresses will be handled via address pass through.
- 5. OSA will be handled as an invalid secondary address pass through by the MPU.
- 6. PGG = ACG v UCG v LAG v TAG
- 7. PPC will be handled in software by the MPU via Unrecognized Address Command Group pass through.
- 8. PPE, PPD will be handled via pass through next secondary feature.
- 9. SPPP represents the sense and bit for remote configurable parallel poll.
- 10. D D D D specify don't care bits that must be sent all zeroes, but need not be decoded by receiving device.
- 11. PPU is handled via Unrecognized Universal Command Group pass through.
- 12. TCT will be handled via Unrecognized Addressed Command Group pass through. However, in this case, the device must be in TADS before the pass through will occur.

Interrupt Status Registers 0 and 1

INTO	INT1	BI	ВО	END	SPAS	RLC	MAC	
GET	UUCG	UACG	APT	DCAS	MA	SRQ	IFC	
INTO INT1 BI	An interrup	ot occurred in toccurred in the been received	register 1	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	GET UUCG	An Undefir	ed Universa ed	ger has occurred all Command has ed Command has
BO END SPAS	An EOI occ Serial Poll a rsv set in th	been output curred with A Active State I se Serial Poll	nas occurre register		UACG	been receive	ed. This bit secondary c in the Auxil	will also be set on command when the liary Command
RLC	occurred	re/LOCAL			APT	A secondar	y address ha	s occurred
MAC	An address	change has o	occurred		DCAS MA SRQ IFC	My Addre A Service	ss (MLAVN	ate has occurred MTA)*SPSM been received ved

INTO is the logical OR of each bit of Interrupt Status Register 0 ANDed with the respective bit of Interrupt Mask Register 0. INT1 is the same but applies to Interrupt Mask and Status Register 1. Reading either Interrupt Status Register will also clear it. The INT line will be cleared only when the interrupt status register which caused the interrupt is read.

Interrupt Mask Registers 0 and 1

X		BI	ВО	END	IFC	RLC	MAC
GET	UUCG	UACG	APT	DCAS	MA	SRQ	SPAS

The Interrupt Mask Registers 0 and 1 correspond to the Interrupt Status Registers 0 and 1 respectively, with the exception of INTO and INT1.

Address Status Register

REM	LLO	ATN	LPAS	TPAS	LADS V LACS	TADS V TACS	ulpa
-----	-----	-----	------	------	-------------------	-------------------	------

TMS 9914 GENERAL PURPOSE INTERFACE BUS ADAPTER

Peripheral and Interface Classic

The Address Status Register is used to convey the addressed state of the talker/listener and the remote/local and lockout condition. This information is derived from the TMS 9914 internal logic states at the time of reading. The libit is used for dual addressing and indicates the state of the LSB of the bus at last primary addressed time.

Bus Status Register

ATN DAV NDAC NRFD EOI SRQ IFC REN

The Bus Status Register allows the microprocessor to obtain the current status of the IEEE 488 Bus Management Lines.

Auxiliary Command Register

C/S f4 f3 f2 f1 f0

The Auxiliary Command Register allows control of additional features on chip and provides a means of inputting some of the local messages to the interface functions. Table 4 lists these messages and commands. If C/S = 1, the feature will be set and if C/S = 0, the feature will be cleared. If C/S = NA, it should be sent as zero.

Table 4. Auxiliary Commands

Function	Mnemonic	C/S	f4	f3	f2	fl	fo
Chip Reset	rst	0/1	0	0	0	0	0
Release ACDS holdoff	dacr	0/1	0	0	0	0	1
Release RFD holdoff	rhfd	NA	0	0	0	1	0
Holdoff on all data	hdfa	0/1	0	add o	0 11	1	1
Holdoff on EOI only	hdfe	0/1	0	0	1	0	0
Set new byte available false	nbaf	NA	0	0 0	1	0	1
Force group execute trigger	fget	0/1	0	0	1	1	0
Return to local	rtl	0/1	0	0	1	1	1
Return to local immediate	rtli	0	0	0	1	1	
Send EOI with next byte	feoi	NA	0	1	0	0	4
Listen only	lon	0/1	0	1	0	0	
Talk only	ton	0/1	Q	1	0	1	
Take control synchronously	tcs	NA	o action	diwin 1	1	0	
Take control asynchronously	tca	NA	0	1	1	0	
Go to standby	gts	NA	0	1	0	1	
Request parallel poll	10% rpp	0/1	0	01'	1	1	
Send interface clear	I sic	0/1	- 0	1	1	1	No.
Send remote enable	sre	0/1	1	0	0	0	. A
Request contol	rqc	· NA	1	0	0	0	
Release control	rlc	NA	1	0	0	1	
Disable all interrupts	dai	0/1	1	0	0	1	
Pass through next secondary	pts	NA	1	0	1	0	
Set T1 delay	stdl	0/1	1	0	1	0	

May 8

ce Circuits

nd local The ulpa

ent

some are will

DESIGN

Address Register dal

and Interface Circuits

Peripheral

A2 d A10 A51 A3 dat 4 enable dual primary addressing

edpa disable the listen function dal

disable the talk function dat primary device address A1 - A5

TMS 9914 GENERAL PURPOSE

INTERFACE BUS ADAPTER

The Address Switch Register corresponds to the Address Register. A power-up RESET or a rst command with C/S = 1 will leave the chip in a totally idle state. At this point, the Address Switch Register is read and the value is written into the Address Register. The reset condition is then cleared by sending rst with C/S=0.

Serial Poll Register

SI -55 58 rsv

The Serial Poll register is used to establish the status byte that is sent out when the controller conducts a serial poll. Bits 1 through 6 and 8 contain status information, while bit 7, rsv, is used to enable the SRQ line and to indicate to the controller which device(s) was responsible for making a service request.

Command Pass Through Register

DIOI DIO2 DIO3 DIO4 DIO5 DI06 DIO7 DIO8

The Command Pass Through Register is used to pass through to the microprocessor any commands or secondary addresses that are not automatically handled in the TMS 9914.

Parallel Poll Register

PP2 PP1 PP4 PP3 PP5 PP6 PP7 PP8

This register contains the status bit that is output when the controller conducts a parallel poll.

Data-In Register

DIO1 DIO2 DIO6 DIO5 DIO4 DIO3 DIO7 DIO8

The data-in register is used to move data from the interface bus when the chip is addressed as a listener. Upon receipt of a data byte, the chip will hold NRFD true until the microprocessor reads the data-in register, when NRFD will be set false automatically.

Data-Out Register

DIO1 DIO3 DIO2 DIO4 DIO5 DIO7 DI06 DIO8

The data-out register is used to move data from the TMS 9914 onto the IEEE std 488-1975 data bus.

After sending a byte out on the bus, the device can take part in a new handshake only after a new byte is placed in the data-out register, when it will be able to send DAV true again.