

1.1. A função é não injetiva, pois admite objetos diferentes com a mesma imagem.

Por exemplo, $1 \neq 5$ e f(1) = f(5) = 0.

1.2. A opção (C), $f\left(\frac{3}{2}\right) - f\left(-2\right) < 0$, é **falsa**.

Repara que
$$f\left(\frac{3}{2}\right) - f\left(-2\right) = f\left(\frac{3}{2}\right) + \left(-f\left(-2\right)\right)$$
, sendo $f\left(\frac{3}{2}\right) > 0$ e $-f\left(-2\right) > 0$.

Então,
$$f\left(\frac{3}{2}\right) - f\left(-2\right) > 0$$
.

Resposta: Opção (C)

1.3. A equação f(x) = k tem exatamente duas soluções se e só se $k \in]-5, -2[\cup]0, 6[$.

Resposta: $k \in]-5, -2[\cup]0, 6[$

1.4. Se $x \in [2, 6]$, a expressão de f(x) é do tipo f(x) = mx + b.

Seja y = mx + b a reta que passa pelos pontos A(2, 6) e B(6, -2).

$$\overrightarrow{AB} = B - A = (4, -8)$$

Declive da reta: $m = \frac{-8}{4} = -2$

$$y = -2x + b$$

Como o ponto A pertence à reta, tem-se $6 = -2 \times 2 + b$. Daqui resulta que b = 10.

Se
$$x \in [2, 6]$$
, $f(x) = -2x + 10$.

Para o ponto P de abcissa 3, $f(3) = -2 \times 3 + 10 = 4$

Resposta: A ordenada do ponto $P \notin 4$.

1.5. O gráfico de g obtém-se a partir do gráfico de f por uma translação de vetor $\vec{u}(2,0)$. Assim, o domínio de g é $\begin{bmatrix} -1,8 \end{bmatrix}$.

Ĵ	x	-1		3		7		8
g((x)	0	-	0	+	0	_	_

1.6. h(x) = -f(2x)

O gráfico de h obtém-se a partir do gráfico de f por uma contração horizontal de fator $\frac{1}{2}$, seguida de uma reflexão de eixo Ox.

Assim, o contradomínio da função h é $\begin{bmatrix} -6, 5 \end{bmatrix}$.

Resposta: $D'_h = [-6, 5]$

2. O gráfico de g pode ser obtido a partir do gráfico de f, aplicando-lhe a composta de duas translações, uma de vetor (-2,0) e outra de vetor (0,3). A expressão correspondente é g(x)=3+f(x+2).

Resposta: Opção (C)

3.1.
$$f(x) = 0.75x + 2.5 + 2 = 0.75x + 4.5$$

•
$$f(x) = 0.75x + 4.5$$

$$g(x) = 0.9x + 1.75 + 0 = 0.9x + 1.75$$

•
$$g(x) = 0.9x + 1.75$$

Resposta:
$$f(x) = 0.75x + 4.5 \text{ e } g(x) = 0.9x + 1.75$$

3.2. Preço a pagar na empresa A, sem bagagem: f(x)-2=0,75x+2,5

Preço a pagar na empresa B, sem bagagem: g(x) = 0.9x + 1.75

Sendo o custo igual, tem-se: 0.75x + 2.5 = 0.9x + 1.75

$$0,75x + 2,5 = 0,9x + 1,75 = 0,75x - 0,9x = 1,75 - 2,5 \Leftrightarrow -0,15x = -0,75 \Leftrightarrow$$

 $\Leftrightarrow x = \frac{0,75}{0,15} \Leftrightarrow x = 5$

Resposta: A distância a percorrer até à estação é 5 km.

4.1. Sendo h(t) = 7,025t - 8,5.

Para t = 0 obtém-se h(0) = -8, 5.

Resposta: A temperatura no início da experiência era de -8,5 °C.

4.2. Pretende-se obter o valor de t para o qual h(t) = 30.

Inserem-se na calculadora as expressões de cada um dos membros da equação, define-se a janela dada e identifica-se a abcissa do ponto de interseção das duas representações gráficas obtidas.

Conclui-se que, aproximadamente ao fim de 5,48 horas, a temperatura da substância atinge os 30 °C.

Em horas e minutos, obtém-se 5,48 h \approx 5 h 29 min.

Resposta: A duração da experiência foi de 5 h 29 min.

5. As coordenadas dos pontos A e B são do tipo (x, f(x)), sendo $f(x) = x^2$.

$$f(x) = x^{2} \Leftrightarrow x^{2} = -2x + 3 \Leftrightarrow x^{2} + 2x - 3 = 0 \Leftrightarrow x = \frac{-2 \pm \sqrt{4 + 12}}{2} \Leftrightarrow x = -3 \lor x = 1$$

- $B(1, 1^2)$, ou seja, B(1, 1).
- $A(-3,(-3)^2)$, ou seja, A(-3,9).

O centro da circunferência é o ponto C, ponto médio de [AB].

$$C\left(\frac{1-3}{2}, \frac{1+9}{2}\right)$$
, ou seja, $C(-1, 5)$.

Seja r o raio da circunferência: $r = \overline{CB} = \sqrt{(1+1)^2 + (1-5)^2} = \sqrt{20}$

Equação da circunferência: $(x+1)^2 + (y-5)^2 = 20$

Resposta: $(x+1)^2 + (y-5)^2 = 20$

Fim

3