"We're All Social Scientists Now"

Introduction to Quantitative Social Science

Body Camera ? Use of Force

Body Camera ? Use of Force

Naive estimator: E[# uof | body cam] - E[# uof | ~body cam]

Examples?

- Examples?
 - Consent decree, union, dept policy, officer assignment (e.g. undercover and patrol danger), officer quality, gvt level (fed, state, local), race, age, gender, economic status

Causal Research Design

- 1. Experiments
- 2. Quasi-experiments
- 3. Observational studies

Experiment

Quasi-Experiment

Observational Study

Include confounders in regression

Why Social Science?

- We're interested in people
- We want to change behaviors
- Privacy, bias, inclusion

Why Social Science?

- We're interested in people
- We want to change behaviors
- Privacy, bias, inclusion

Social scientists have been thinking about these things for a long time

Why Social Science?

- We're interested in people
- We want to change behaviors
- Privacy, bias, inclusion

Social scientists have been thinking about these things for a long time

"Statistics": from "state." It was meant to improve government.

	Machine Learning	Social Science
Primary Goal	Prediction	Explanation
Model Selection	Out-of-sample accuracy	Theory & Parameter Estimates

Body Camera Example

- Machine learning example:
 E[# uof | bodycam, confounders & everything else]
- Social science example:
 E[# uof | bodycam, confounders] E[# uof | ~bodycam, confounders]

Target A
Poor Validity,
Good Reliability

Target B
Poor Validity
Poor Reliability

Target C Good Validity, Good Reliability

Target A
Poor Validity,
Good Reliability

Target B
Poor Validity
Poor Reliability

Target C Good Validity, Good Reliability

Reliability sets the upper bound on validity

Important Social Science Issues

- Too few rows
 - No counterfactuals
 - External validity: E.g. studying self-control fatigue in the lab
 - Selection effect: E.g. vulnerable populations are less likely to report police misconduct
 - Ecological inference
- Too many rows
 - o p hacking, in-sample fitting and testing: E.g., flexible post-hoc outlier exclusion
- Too few columns
 - Unobserved variables: E.g. 2013 NFP project: motivation of mothers in/out of the program
- Too many columns
 - Post-treatment controls
 - Noise
- The wrong values
 - Missing values
 - Noisy values (e.g. conceptualization operationalization measurement)
 - Systematically biased values
- Model specification
 - o Relationship between rows, columns, values, e.g. linear v. non-linear, SUTVA
- Ethics
 - E.g. send mailers placing non-partisan judicial candidates with Montana state seal

Some Lessons Learned for DSSG Projects

- Behaviors are better predictors than demographics
- Some important predictors
 - Race
 - Age
 - Gender
 - Econ status
 - Geography
- Some useful datasets
 - American Community Survey
 - American Time Use Survey
 - General Social Survey
 - Behavioral Risk Factor Surveillance System
- Model all people involved (politicians, inspectors, judges, not just defendants)
- Potential bias at every step

Social Science Examples

- Miller's Law: 7 +/- 2
- Culture of Honor
- Invisible Gorilla: Selective Attention
- Implicit Association Test
- Social Pressure and Voter Turnout
- The Michigan Model (partisan ID)
- Republicans Should Pray for Rain
- The Political Legacy of American Slavery
- Effective Messages in Vaccine Promotion
- Crime and Punishment
- Geography and Trade
- Political Economy of Terrorism
- Minimum Wages and Employment