Evidence for propagating modes in alloys and amorphous solids

Discussion with Jason and Keith February 8, 2013

SiGe measurements

accumulation function

$$l_{\text{bulk, Si}} = \frac{3k}{\int C\nu d\omega} = 225 \text{ nm}$$

Distribution from the $\boldsymbol{\omega}$ dependence of phonon scattering

intrinsic vs. doped Si

We would expect that impurity scattering should reduce MFPs

MFP spectrum in doped Si is broader than that of crystalline Si???

SiGe alloy

$$l_{\text{bulk, Si}} = \frac{3k}{\int Cv d\omega} = 225 \text{ nm}$$

$$l_{\text{bulk,SiGe}} = \frac{3k}{\int Cv d\omega} = 40 \text{ nm}$$

Defects strongly suppress short λ phonons (high ω), the phonons remaining to contribute to k are now biased towards longer λ (lower ω), which skews the distribution towards longer MFP phonons

conductivity accumulation

PRB 85, 184303 (2012)

Phonon spectrum: LJ Ar vs. SW Si

amorphous Si measurements

Is there some inherent lower limit on the MFP that is greater than zero?

Does it even make sense to talk about MFP within this plateau?

MFP in a-Si from Tersoff and MD

MD-based: size of simulation cell=4.3 nm

APL 98, 144101 (2011)

propagons, locons, diffusons

Numerical studies of amorphous silicon show that the lowest 4% of, vibrational modes are plane-wave like, "propagons"

the highest 3% of modes are localized, "locons"

The rest are neither plane-wave like nor localized, "diffusons"

ordered and disordered

$$k_{ph,\mathbf{n}} = \sum_{\boldsymbol{\kappa}} \sum_{\boldsymbol{\nu}} \frac{k_B}{V} \boldsymbol{v}_{g,\mathbf{n}}^2(\boldsymbol{\kappa}) \, \tau(\boldsymbol{\kappa}) \qquad v_{g,\mathbf{n}}(\boldsymbol{\kappa}) = \partial \omega(\boldsymbol{\kappa}) \, / \partial \boldsymbol{\kappa}$$

$$D_{ph}(\boldsymbol{\kappa}) = \boldsymbol{v}_g^2(\boldsymbol{\kappa}) \, \tau(\boldsymbol{\kappa}) \qquad \sum_{25}^{30} \boldsymbol{v}_{g,\mathbf{n}}^2(\boldsymbol{\kappa}) \qquad \sum_{25}^{30} \boldsymbol{v}_{g,\mathbf{n}}^2(\boldsymbol{\nu}) \qquad \sum_{25}^{30}$$

In a disordered material, it is not possible (in general) to specify $v_{\rm g}$ and τ independently

$$k_{AF} = \sum_{modes} \frac{k_B}{V} D_{AF}(\omega(\kappa=0))$$

PRB 59, 3551–3559 (1999)

high-scatter limit: SW Si

high-scatter limit: LJ Ar

$$k_{AF} = \sum_{modes} \frac{k_B}{V} D_{AF}(\omega(\kappa=0))$$

$$k_{AF,HS} = \frac{k_B}{V_b} b v_s a$$

