Point totals are in parentheses next to each problem. Please show all work for partial credit.

1. Consider the simple linear regression model "through the origin".

$$Y_i = \beta_1 x_i + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2)$$

Find the maximum likelihood estimators for β_1 and σ^2 .

(Hint: $Y_i \sim N(\beta_1 x_i, \sigma^2)$)

(12)
$$f(y) = \frac{1}{\int L y' y'} e^{-\frac{1}{2}g^{2}(y' - \beta_{1}x')^{2}}$$

 $L(y) = \hat{T} \frac{1}{(2m)^{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{2\sigma^{2}} (y_{i} - \beta_{i} x_{i})^{2}} = \frac{1}{(2m)^{2}\sigma^{2}} e^{-\frac{1}{2\sigma^{2}} \sum_{i=1}^{2\sigma^{2}} (y_{i} - \beta_{i} x_{i})^{2}}$

$$\frac{\partial \Omega_{nL}}{\partial \beta_{1}} = \frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{$$

$$\Rightarrow \left| \hat{\beta}^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i^2 - \hat{\beta}_i x_i^2)^2 \right|$$

2. Credit scores can help determine whether an individual will qualify for a mortgage loan, and they are even used to determine the interest rates that will be charged. Six customers of a local bank are randomly selected and their credit scores (between 300 and 850) with corresponding interest charged (in percent) on a car loan are recorded. Summary statistics are listed below: (x = credit score, y = interest rate)

$$\sum x = 3,910$$
 $\sum y = 72$ $\sum x^2 = 2,575,800$ $\sum y^2 = 1,007$ $\sum xy = 45,002$

a) Find
$$S_{xx}$$
, S_{yy} , S_{xy}
(5) $S_{xx} = 2,575,803 - \frac{3910^2}{6} = 27,783.33$

$$5_{39} = 1007 - \frac{72^2}{6} = \frac{143}{6}$$

$$5_{39} = 45_1002 - \frac{(3910)(72)}{6}$$

$$= -1,918$$

b) Compute r, the sample correlation coefficient

$$\frac{7}{\sqrt{(27,783)(143)}} = \frac{-1,918}{(27,783)(143)}$$

c) Find the coefficient of determination and interpret the value in terms of credit scores and interest rates.

92.69. of variation in interest

d) Use Fisher's Z transformation to test H_0 : $\rho = -0.80$ vs. H_A : $\rho < -0.80$ at $\alpha = 0.02$

$$\frac{1}{2} \ln \left(\frac{1-.9625}{1+.9625} \right) = -1.97882 \qquad \frac{1}{2} \ln \left(\frac{1-.8}{1+.8} \right) = -1.09861$$
(5)

p-value = .0637 > α = .05 = D don't reject Ho. There is not enough evidence to conclude that $p \in -.80$.

- **3**. Let $Y_1 \dots Y_n$ be a random sample from $Y \sim EXP(\beta)$. Find the form of the Generalized Likelihood Ratio Test for $H_0: \beta = \beta_0 \ vs. \ H_a: \beta \neq \beta_0$.
 - a) Find the maximum likelihood estimators under Ω_0 and $\Omega.$

b) Evaluate $\lambda = \frac{L(\hat{\Omega}_0)}{L(\hat{\Omega})} \le k$ to find the form of the GLR test. (Hint: Use $\ln(\lambda)$ to determine when λ itself is increasing or decreasing.)

when
$$\lambda$$
 itself is increasing or decreasing.)

(10) $\lambda = \frac{L(\beta_0)}{L(\overline{\gamma})} = \frac{(\overline{\beta_0})^n e^{-\overline{\beta_0}}}{(\overline{\beta_0})^n e^{-\overline{\beta_0}}} = (\overline{\beta_0})^n e^{-\overline{\beta_0}} = (\overline{\beta_0})^n e^{-\overline{\beta_0}}$
 $(\overline{\beta_0})^n e^{-\overline{\beta_0}} = (\overline{\beta_0})^n e^{$

4. A farmer would like to examine the relationship between rainfall (in inches, X) and yield of wheat (in bushels per acre, Y). He collects data for 8 different harvests and records summary information below:

$$\sum x = 98.1$$

$$\sum y = 435.8$$

$$\sum y = 435.8 \quad \sum x^2 = 1299.85$$

$$\sum y^2 = 25,705 \sum xy = 5,772.65$$

a) Determine the least squares regression line and predict the yield of wheat if the rainfall was 14

b) Test H_0 : $\beta = 3$ vs. H_0 : $\beta > 3$ (at $\alpha = 0.05$)

c) Construct a 95% prediction interval for the yield of wheat if the rainfall was 14 inches.

5. A study was conducted to determine the effect of early child care on infant-mother attachment patterns. In the study, 93 infants were classified either "secure" or "anxious" using the Ainsworth strange-situation paradigm. In addition, the infants were classified according to the average number of hours per week that they spent in child care. The data appear below in the table:

Hours in Child Care

Attachment	Low (0 – 3 hrs)	Moderate (4-19 hrs)	High (20 – 54 hours)
Pattern Secure	24 (24.09)	35 (30.48)	(8.95) 64	
Anxious	11 (10.9)	10 (14.03)	(4.05) 8 29	
	35	45	13 93	

Do the data indicate a dependence between attachment patterns and the number of hours spent in child care? Test using α = 0.05.

(10)
$$\chi^{2} = \sum_{i=1}^{n} \frac{(24-24.04)^{2}}{24.04} + (8-4.05)^{2}$$

$$= \frac{7.267}{24.04} \quad \text{p-value} = .026$$

$$\chi^{2}_{21.05} = 5.44147 \quad \text{between attachment and day}$$
6. The FBI claims that in Boston (the bank robbery capital of the world) there is a 40% chance of no

6. The FBI claims that in Boston (the bank robbery capital of the world) there is a 40% chance of no bank robberies in a month, a 30% chance of one bank robbery each month, a 20% chance of two bank robberies each month, and a 10% chance of 3 bank robberies in a month. Using the observed data below collected for 10 years, is there evidence to reject the FBI's hypothesis on probabilities regarding bank robberies per month in Boston. Use $\alpha = 0.05$.

Count 57 36 15 12
$$n = 120$$

Ho: $\rho_0 = .40$, $\rho_1 = .30$, $\rho_2 = .20$, $\rho_3 = .10$

(10)

Ha: at least one $\rho: \neq \rho:0$
 $E_0 = 120(.40) = 48$
 $R^2 = \frac{(57 - 48)^2}{48}$
 $E_1 = 36$, $E_2 = 24$,

 $R^3 = .05 = 7.815$

And anough a violence to reject FBI's claim.

No. of bank robberies in the month

- 7. Let $Y_1 \dots Y_n$ be a random sample from $Y \sim POI(\lambda)$ with prior distribution for $\lambda \sim GAM(\alpha, \beta)$ where α , β are known constants.
 - a) Find the joint density for $Y_1 ... Y_n$, λ .

b) Use your result from part (a) to find the marginal density for $Y_1 \dots Y_n$

(7 cont.)

c) Use your results from parts (a) and (b) to show that the posterior density for $\lambda \mid Y_1 \dots Y_n$ is $GAM(\alpha^*, \beta^*)$ and identify α^* and β^* .

$$\frac{1}{\lambda} \left(\frac{1}{2} + \frac{1}{2} \right) - \lambda \left(\frac{1}{2} \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} + \frac{1}{2} \right) - \lambda \left(\frac{1}{2} \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} + \frac{1}{2} \right) - \lambda \left(\frac{1}{2} \right)$$

$$= \frac{1}{\lambda} \left(\frac{1}{2} + \frac{1}{2} \right)$$

d) Use your result in part (c) to find the Bayes estimator for λ . (Hint: the Bayes estimator is the mean of the posterior distribution)

(3)
$$\hat{\lambda} = E[\lambda | 3, \dots 3n] = \alpha^{+}, \beta^{+}$$

$$= (\Sigma y; + \alpha) \left(\frac{\beta}{\alpha \beta + 1}\right)$$