Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

Filen 1A/Oppgave1AFigur_E.png

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 8.10e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) det finnes noe jern i kjernen

STJERNE B) stjerna er 10 milliarder år gammel, men har bare levd1/10av levetida si

STJERNE C) stjerna består hovedsakelig av karbon og oksygen og få andre grunnstoffer

STJERNE D) massen til stjerna er 8 solmasser og den fusjonerer hydrogen i kjernen

STJERNE E) massen til stjerna er 0.7 solmasser og den fusjonerer hydrogen i kjernen

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 3.042e+06 kg/m3̂ og temperatur 21 millioner K.

Kjernen i stjerne B har massetet
thet 6.760e+06 kg/m $\hat{3}$ og temperatur 17 millioner K.

Kjernen i stjerne C har massetet
thet 3.192e+06 kg/m3̂ og temperatur 24 millioner K.

Kjernen i stjerne D har massetet
thet 6.813e+06 kg/m3 og temperatur 38 millioner K.

Kjernen i stjerne E har massetet
thet 1.468e+06 kg/m3̂ og temperatur 16 millioner K.

Filen 1K/1K.txt

Påstand 1: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig større enn den tilsynelatende størrelseklassen i blått filter

Påstand 2: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den absolutte størrelseklassen (magnitude) med blått filter er betydelig mindre enn den absolutte størrelseklassen i rødt filter

Påstand 4: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen~1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 2.212e+05 kg/m3̂ og temperatur 33.10 millioner K.

Kjernen i stjerne B har massetet
thet 1.752e+05 kg/m3̂ og temperatur 19.99 millioner K.

Kjernen i stjerne C har massetet
thet $4.332\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 27.83

millioner K.

Kjernen i stjerne D har massetet
thet 4.616e+05 kg/m3̂ og temperatur 23.68 millioner K.

Kjernen i stjerne E har massetet
thet 2.422e+05 kg/m3̂ og temperatur 35.85 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_.png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_Figur_2_png$

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_Figur_3_png$

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

0.00

4.49

8.98

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 4.18 buesekunder i løpet av et millisekund.

40.42

35.93

31.44

26.95

17.97

13.47

8.98

4.49

13.47 17.97 22.46 26.95 31.44 35.93 40.42

x-posisjon (10⁻⁶ buesekunder)

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Lillehammer som ligger i en avstand av 350 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.29320 km/t.

Filen 3E.txt

Tog1 veier 101100.00000 kg og tog2 veier 56200.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 498 km/s.

Filen 4E.txt

Massen til gassklumpene er 8300000.00 kg.

Hastigheten til G1 i x-retning er 14400.00 km/s.

Hastigheten til G2 i x-retning er 20880.00 km/s.

Filen 4G.txt

Massen til stjerna er 59.00 solmasser og radien er 2.14 solradier.