МЕТРИКИ И МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

Калитвин В.А. kalitvinv@yandex.ru

2025

1 / 72

Расстояние (метрика)

Расстояние может определяться по разному в зависимости от ситуации.

Пример 1. $E=\mathbb{R},\ \rho(x,y)=|x-y|.$ |a| — расстояние от 0 до точки a на числовой прямой.

|a-b| — расстояние между точками a и b на числовой прямой.

Пример 2.
$$E \neq \emptyset$$
, $\rho(x,y) = \left\{ \begin{array}{l} 0 \text{ при } x = y, \\ 1 \text{ при } x \neq y. \end{array} \right.$

Калитвин В.А. 2025 2 / 72

Евклидово расстояние (метрика, L_2 - метрика)

Пример 3. $E=\mathbb{R}^2,\ A(x_1,y_1),\ B(x_2,y_2)$ — точки на плоскости. $\rho(A,B)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.$

3 / 72

Манхеттенское расстояние (L_1 - метрика)

 $A(x_1, y_1), B(x_2, y_2)$ — точки на плоскости. $\rho_1(A,B) = |x_2 - x_1| + |y_2 - y_1|.$

Расстояние в \mathbb{R}^2 (на плоскости) можно определить по другому

$$\rho'(A,B) = \max(|x_2 - x_1|, |y_2 - y_1|).$$

 $(L_{\infty}$ - метрика (расстояние Чебышева)).

Этому расстоянию можно придать такой физический смысл. Представьте, что мы должны поддерживать определённую температуру в двух комнатах, и измеряем её двумя термометрами. Пусть в первой комнате нам нужно поддерживать температуру x_1 а во второй комнате — температуру y_1 . Показания термометров — $_2$ и $_2$ соответственно. Нужно следить за тем, чтобы температура нигде не отклонилась от нормы. Тогда определённое так расстояние ρ' между показаниями термометров показывает, на сколько градусов произошло отклонение температуры от нормы.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♡

5/72

Аналогичные расстояния можно ввести в трехмерном пространстве.

Пример. $E=\mathbb{R}^3,$ $A(x_1,y_1,z_1),\,B(x_2,y_2,z_3)$ — точки в трехмерном пространстве. $\rho(A,B)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}.$

Калитвин В.А. 2025 6 / 72

В общем случае можно записать метрики в \mathbb{R}^n .

$$A(x_1, x_2, \dots, x_n), B(y_2, y_2, \dots, y_n)$$
 — точки в n - мерном пространстве.

$$\rho(A,B) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \dots (y_n - x_n)^2}.$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めの○

7 / 72

Шары

Если на множестве определено расстояние, то с его помощью можно описать геометрические объекты, например, шары или окрестности точек в смысле этого расстояния. Давайте проанализируем расстояния, которые мы ввели, с такой точки зрения: что будет единичным шаром с центром в нуле в смысле какого-то данного расстояния ρ ? Единичный шар — это множество точек, которые удалены от центра на расстояние не большее, чем 1. Вот формальная запись этого множества:

$${A \mid \rho(A, O) \le 1}$$

Для евклидова расстояния ρ единичный шар на плоскости будет обычным кругом. А как будет выглядеть единичный шар с центром в нуле с точки зрения расстояния, которое мы назвали ρ_1 ?

4□ ト 4回 ト 4 重 ト 4 重 ト 9 Q ○

8 / 72

Точка A тогда и только тогда принадлежит единичному шару с центром в нуле в этой метрике, когда выполнено неравенство $|x|+|y| \le 1$. Все такие точки A принадлежат квадрату. Что будет кругом с точки зрения расстояния ρ_1 , которое мы определили через максимум? Тоже квадрат, но другой, со сторонами параллельными осям (рис., в).

4□ ト 4回 ト 4 重 ト 4 重 ト 9 9 ○ ○

На самом деле, можно получить бесконечное число способов задания расстояния, если в формуле, определяющей евклидово расстояние заменить 2 на p. Получится такое расстояние:

$$\rho_p(A,B) = (|x_2 - x_1|^p + |y_2 - y_1|^p)^{\frac{1}{p}}$$

 $(L_p$ - метрика (расстояние Минковского))

Будем считать, что $p \ge 1$. Теперь то расстояние, которое мы назвали $\rho_1($ будет совпадать с расстоянием $\rho_p,$ при p=1. Так что оно не зря было названо $\rho_1.$

Пусть p постепенно увеличивается от 1 до 2. Как будут выглядеть единичные шары, соответствующие этим расстояниям? Оказывается, они тоже будут постепенно раздуваться от ромбика, т. е. от шара, который соответствует расстоянию ρ_1 (до привычного нам евклидового шара, соответствующего расстоянию ρ_2 (рис.).

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

10 / 72

Калитвин В.А. 2025 11 / 72

Ну а дальше, когда p станет больше 2, единичный шар всё больше и больше будет заполнять большой квадратик (см. рис.). И оказывается, что при p, стремящемся к бесконечности, получается тот квадрат, который является единичным шаром для расстояния ρ' . Поэтому расстояние, которое мы назвали ρ' , можно также обозначить как p_{∞} , если использовать обозначение ρ_p , (это предельный случай при p стремящемся к ∞).

12 / 72

Метрические пространства

Определение. Метрикой (или расстоянием) на множестве E называется функция $\rho(x,y)$, удовлетворяющая условиям (аксиомам метрики): $\forall x,y,z\in E$

$$1.\rho(x,y) \ge 0; \ \rho(x,y) = 0 \Leftrightarrow x = y$$

$$2.\rho(x,y) = \rho(y,x)$$
 (аксиома симметрии)

$$3.\rho(x,y) \leq \rho(x,z) + \rho(z,y)$$
 (неравенство треугольника)

Множество E с заданным на этом множестве расстоянием ρ называется метрическим пространством.

Элементы E называют точками метрического пространства.

Если $F \subset E$ и E — метрическое пространство с метрикой ρ , то (F,ρ) также метрическое пространство.

Если на E заданы различные метрики ρ_1 и ρ_2 , то (E,ρ_1) и (E,ρ_2) — различные метрические пространства.

- 4 ロ ト 4 部 ト 4 章 ト 4 章 ト - 章 - 夕久(*)

13 / 72

Пример функции, не являющейся расстоянием

При попытке определить расстояние между реками как кратчайшее расстояние аксиома неравенства треугольника не будет выполняться.

4□ > 4□ > 4 = > 4 = > = 90

Калитвин В.А. 2025 14/72

Хаусдорфова метрика (Hausdorff distance) Paccтояние Хемминга (Hamming distance) Расстояние Левенштейна (Levenshtein's distance) Равномерная метрика (Uniform distance) Зоны Дирихле (Сферы влияния) р - адическая метрика Теория относительности Расстояние Махаланобиса (Mahalanobis distance) Косинусное расстояние (Cosine distance) Расстояние Жаккара (Jaccard Distance) Формула Хаверсина (Haversine formula) Расстояние Соренсена-Дайса Расстояние Брея-Кертиса

 $m Kaлитвин \ B.A. \ 2025 \ 15/72$

Важным классом метрических пространств являются нормированные векторные пространства.

Нормированное векторное пространство

Определение. Множество E называется векторным (или линейным) пространством над полем R, если для любых $x,y\in E$ определена сумма $(x+y)\in E$ и для любых $x\in E, \alpha\in \mathbb{R}$ определено произведение $\alpha x\in E$, причем выполнены следующие условия (аксиомы векторного пространства): $\forall x,y,z\in E\ \forall \alpha,\beta\in \mathbb{R}$

- 1. x + y = y + x (коммутативность сложения),
- 2. x + (y + z) = (x + y) + z (ассоциативность сложения),
- 3. $\alpha(x+y) = \alpha x + \alpha y$ (дистрибутивность)
- 4. $(\alpha + \beta)x = \alpha x + \beta x$ (дистрибутивность)
- 5. $\alpha(\beta x) = (\alpha \beta) x$ (ассоциативность умножения)
- 6. $1 \cdot x = x$
- 7. $\exists \Theta \in E$ такой, что $x + \Theta = x$; Θ называется нулем векторного пространства.

Калитвин В.А. 2025 16/72

8. $0 \cdot x = \Theta \ \forall x$

9. $\forall x \in E \exists -x \in E$ такой, что x + (-x) = 0.

Элементы векторного пространства обычно называют векторами, а числа из \mathbb{R} — скалярами. Вместо поля скаляров \mathbb{R} часто рассматривают как поле комплексных чисел C.

Из аксиом векторного пространства следует, что нуль единственный. Действительно, если Θ и Θ_1 нули, то

$$\Theta_1 = \Theta_1 + \Theta = \Theta + \Theta_1 = \Theta.$$

Кроме того, $0 \cdot x = \Theta$, т.к. $x + 0x = 1 \cdot x + 0x = (1 + 0)x = 1x = x \forall x \in E$. Вектор, в сумме с x дающий Θ , называется противоположным X и обозначается (-x). Т.к. $(-1)x + x = (-1)x + 1 \cdot x = [(-1) + 1]x = 0 \cdot x = \Theta$, то (-x) = (-1)x.

Вектор, противоположный x, единственный. Действительно, пусть u и z — векторы, противоположные x. Тогда $u=u+\Theta=u+(z+x)=u+(x+z)=(u+x)+z=\Theta+z=z+\Theta=z.$

Калитвин В.А. 2025 17/72

Вместо x + (-y) пишут x - y.

Если всякое подмножество МП является МП, то не всякое подмножество векторного пространства является векторным пространством. Следующее определение является обобщением понятия длины вектора.

Калитвин В.А. 2025 18 / 72

Определение 2. Нормой на векторном пространстве E называется функция $\| \bullet \| : E \to \mathbb{R}$, удовлетворяющая условиям (аксиомам нормы): $\forall x,y \in E \quad \forall \alpha \in \mathbb{R}$

- 1. $||x|| \ge 0$,
- 2. $||x|| = 0 \Leftrightarrow x = \Theta$
- 3. $\|\alpha x\| = |\alpha| \|x\|$ (положительная однородность),
- 4. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

Векторное пространство E с введенной на нем нормой |||| называется нормированным векторным пространством и обозначается $(E,\|\bullet\|)$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めの○

19 / 72

Теорема. НВП является метрическим пространством с метрикой

$$\rho(x,y) = ||x - y||. \tag{1}$$

Проверим выполнение аксиом метрики. Из аксиом нормы следует, что

1. $\rho(x,y) \ge 0$.

$$\rho(x,y) = ||x - y|| = 0 \Leftrightarrow x - y = \Theta \Leftrightarrow y = y + x - y = x.$$

2.
$$\rho(x,y) = ||x-y|| = ||(-1)(y-x)|| = |(-1)|||y-x|| = ||y-x|| = \rho(y,x)$$

3.
$$\rho(x,y) = ||x-y|| = ||(x-z) + (z-y)|| \le ||x-z|| + ||z-y|| = \rho(x,z) + \rho(z,y).$$

Т.е., нормированное векторное пространство является метрическим пространством с метрикой (1). Норма x - это расстояние от x до Θ или, иначе, длина вектора x.

$$||x|| = \rho(\Theta, x)$$

20 / 72

3. Евклидово пространство.

Пусть E векторное пространство над полем \mathbb{R} .

Определение. Скалярным произведением векторов пространства E называется функция $(\bullet, \bullet): E \times E \to \mathbb{R}$, удовлетворяющая условиям (аксиомам скалярного произведения): $\forall x, y, z \in E \quad \forall \alpha \in R$

- 1. (x, y) = (y, x) (симметрия)
- 2. (x + y, z) = (x, z) + (y, z) (аддитивность)
- 3. $(\alpha x, y) = \alpha(x, y)$ (однородность)
- 4. $(x,x) \geqslant 0$ и $(x,x) = 0 \Leftrightarrow x = \Theta$.

Векторное пространство E с введенным на нем скалярным произведением (\bullet, \bullet) называется евклидовым пространством и обозначается $(E, (\bullet, \bullet))$.

Если в качестве поля скаляров рассматривается C, то естественно значениями скалярного произведения считать комплексные числа. При этом аксиома 1 имеет вид $(x,y) = \overline{(y,x)}$ (черта означает переход к сопряженному комплексному числу).

→ □ ト ← □ ト ← 重 ト ← 重 ・ 夕 へ ○

21 / 72

Неравенство Коши-Буняковского

$$|(x,y)| \leqslant \sqrt{(x,x)}\sqrt{(y,y)}. \tag{2}$$

Доказательство. Из аксиом скалярного произведения имеем

$$0 \leqslant (\alpha x + y, \alpha x + y) = \alpha^2(x, x) + 2\alpha(x, y) + (y, y).$$

Квадратный трехчлен относительно α неотрицателен, поэтому его дискриминант $(x,y)^2-(x,x)(y,y)\leqslant 0$. Отсюда следует неравенство (1).

Доказательство закончено.

4□ > 4□ > 4 = > 4 = > = 99

Калитвин В.А. 2025 22 / 72

Теорема. Евклидово пространство является нормированным пространством с нормой

$$||x|| = \sqrt{(x,x)}. (3)$$

Проверим аксиомы нормы.

1.
$$||x|| = \sqrt{(x,x)} \geqslant 0 ||x|| = \sqrt{(x,x)} = 0 \Leftrightarrow (x,x) = 0 \Leftrightarrow x = \Theta$$

2.
$$\|\alpha x\| = \sqrt{(\alpha x, \alpha x)} = \sqrt{\alpha^2(x, x)} = |\alpha|\sqrt{(x, x)} = |\alpha|\|x\|$$
.

3.
$$||x+y|| = \sqrt{(x+y,x+y)} = \sqrt{(x,x)+2(x,y)+(y,y)} \le$$

 $\le \sqrt{(x,x)+2\sqrt{(x,x)}\sqrt{(y,y)}+(y,y)} = \sqrt{(||x||+||y||)^2} = ||x||+||y||.$

Из (1) и (2) следует

$$|x+y| \leqslant ||x|| \cdot ||y||.$$

Итак, евклидово пространство является нормированным векторным пространством с нормой (3), порожденной скалярным произведением, а поэтому и метрическим пространством с метрикой (1).

23 / 72

Расстояние между элементами евклидова пространства определяется равенством

$$\rho(x,y) = ||x - y|| = \sqrt{(x - y, x - y)}$$

24 / 72

4. Пространство \mathbb{R}^n .

Элементы. По определению множества \mathbb{R}^n состоит из всевозможных упорядоченных наборов (кортежей) $x=(x_1,x_2,\ldots x_n)$ из n действительных чисел $x_k(k=1,2,\ldots,n)$.

Ноль пространства. $\Theta = (0, \dots, 0)$

Операции. Определены действия сложение элементов \mathbb{R}^n и умножение их на действительные числа следующими равенствами

$$x + y = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, y_2 + x_2, \dots, x_n + y_n)$$

$$\alpha x = \alpha (x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Тогда \mathbb{R}^n становится векторным пространством. Справедливость аксиом векторного пространства следует из свойств действительных чисел.

4□ > 4□ > 4 = > 4 = > = 99

25 / 72

Для вектора $x=(x_1,x_2,\ldots,x_n)$ числа x_k называется компонентами (или координатами) этого вектора. Видно, что сложение векторов и умножение вектора на число производятся покомпонентно:

$$(x+y)_k = x_k + y_k, \quad (\alpha x)_k = \alpha x_k.$$

В пространстве \mathbb{R}^n можно ввести скалярное произведение векторов, положив

$$(x,y) = x_1y_1 + x_2y_2 + \dots + x_ny_n = \sum_{i=1}^n x_iy_i.$$

Выполнение аксиом скалярного произведения легко проверяется. Так, например, аддитивность видна из равенств

$$(x+y,z) = \sum_{k=1}^{n} (x_k + y_k) z_k = \sum_{k=1}^{n} x_k z_k + \sum_{k=1}^{n} y_k z_k = (x,z) + (y,z)$$

Калитвин В.А. 2025 26 / 72

В дальнейшем множество \mathbb{R}^n со скалярным произведением будем обозначать тем же символом \mathbb{R}^n . Это евклидово пространство, в нем норма и метрика задаются равенствами

$$||x|| = \sqrt{(x,x)} = \sqrt{\sum_{k=1}^{n} x_k^2},$$

$$\rho(x,y) = ||x-y|| = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}.$$

Заметим, что в векторном пространстве \mathbb{R}^n норму (а потому и метрику) можно было бы ввести иначе, например, по формуле

$$||x||_1 = \sum_{k=1}^n |x_k|$$
 или $||x||_\infty = \max_k |x_k|$.

На проверке выполнения аксиом нормы мы не останавливаемся. Пространство \mathbb{R}^n с такими нормами уже не будет евклидовым

5. Пространство ℓ_2 .

Элементы. Всевозможные последовательности $x=(x_1,x_2,\ldots,x_n,\ldots)$ (коротко (x_k)) вещественных чисел, для которых сходится ряд $\sum_{k=0}^{\infty} x_k^2$.

Например, $x = \left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \in \ell_2, y = \left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots\right) \notin \ell_2$, так как ряд

 $\sum\limits_{k=1}^{\infty}\frac{1}{k^2}$ сходится, а ряд $\sum\limits_{k=1}^{\infty}\frac{1}{k}$ расходится.

Ноль пространства. $\Theta = (0, 0, \ldots)$.

Операции. Определим операции сложения и умножения на скаляр для последовательности равенствами

$$x + y = (x_1, x_2, ...) + (y_1, y_2, ...) = (x_1 + y_1, x_2 + y_2, ...),$$

 $\alpha x = \alpha (x_1, x_2, ...) = (\alpha x_1, \alpha x_2, ...).$

Так как $(x_k + y_k)^2 \le 2(x_k^2 + y_k^2)$, то из $x_1, y \in \ell_2$ следует $x + y \in \ell_2$.

Действительно, сходимость рядов $\sum\limits_{k=1}^{\infty} {x_k}^2$ и $\sum\limits_{k=1}^{\infty} {y_k}^2$ влечет за собой

Калитвин В.А. 2025 28 / 72

сходимость ряда $\sum_{k=1}^{\infty} (x_k + y_k)^2$. Видно также, что из $x \in \ell_2$ следует $\alpha x \in \ell_2$. Следовательно, ℓ_2 с введенными алгебраическими операциями становится векторным пространством. Векторы ℓ_2 в отличии от векторов \mathbb{R}^n имеют бесконечное (счетное) число компонент. Так как $|x_k y_k| \leqslant \frac{1}{2} \left(x_k^2 + y_k^2 \right)$, то из $x, y \in \ell_2$ следует, что сходится ряд $\sum_{k=1}^n x_k y_k$ (причем абсолютно). Это позволяет для векторов пространства ℓ_2 ввести скалярное произведение по формуле

$$(x,y) = \sum_{k=1}^{\infty} x_k y_k.$$

Выполнение аксиом скалярного произведения проверяется непосредственно; при этом используются свойства сходящихся рядов. Через ℓ_2 обычно обозначают множество ℓ_2 со скалярным произведением (5), это евклидово пространство.

4 D > 4 B > 4 B > B = 900

29 / 72

Скалярное произведение (5) порождает норму и, следовательно: метрику в ℓ_2 :

$$||x|| = \sqrt{(x,x)} = \sqrt{\sum_{k=1}^{\infty} x_k^2}$$
 , $\rho(x,y) = ||x-y|| = \sqrt{\sum_{k=1}^{\infty} (x_k - y_k)^2}$.

Наряду с пространством ℓ_2 широко применяются другие пространства последовательностей. Например, пространство ℓ_1 состоящее из всевозможных последовательностей $x=(x_k)$ для которых сходится ряд $\sum_{k=1}^{\infty} |x_k|$, а норма задается равенством

$$||x||_1 = \sum_{k=1}^{\infty} |x_k|$$

- 4 ロ ト 4 団 ト 4 珪 ト 4 珪 - り Q ()

30 / 72

и пространство ℓ_{∞} , состоящее из всевозможных ограниченных последовательностей, с нормой определенной равенством

$$||x||_{\infty} = \sup_{k} |x_k|.$$

Эти пространства нормированные векторные, но не евклидовы. Отметим, что по запасу элементов они не совпадают с ℓ_2 , причем $\ell_1 \subset \ell_2 \subset \ell_\infty$.

Калитвин В.А. 2025 31/72

6. Пространство $C_{[a,b]}$

Элементы. Непрерывные функции на [a,b] со значениями в \mathbb{R} .

Ноль пространства. Функция, тождественно равная нулю на отрезке [a,b].

Операции. Из свойств непрерывных функций

$$(x+y)(t) = x(t) + y(t), \ (\alpha x)(t) = \alpha x(t)$$

следует, что при $x,y\in\mathbb{C}_{[a,b]}$ и $\alpha\in\mathbb{R}$ имеем $x+y\in\mathbb{C}_{[a,b]}$ и $\alpha x\in\mathbb{C}_{[a,b]}$. Следовательно, $C_{[a,b]}$ — векторное пространство

Непрерывная на отрезке функция имеет максимальное значение. Поэтому на пространстве $\mathbf{C}_{[a,b]}$ можно ввести следующим образом норму

$$||x|| = \max_{t \in [a,b]} |x(t)|.$$

Проверим выполнение аксиом нормы.

1.
$$||x|| \ge 0$$
, $||x|| = \max_{t \in [a,b]} |x(t)| = 0 \Leftrightarrow x(t) \equiv 0 \Leftrightarrow x = \Theta$

Калитвин В.А. 2025 32 / 72

 $2. \ \alpha \in \mathbb{R}$

$$\|\alpha x\| = \max_{t \in [a,b]} |\alpha x(t)| = \max_{t \in [a,b]} |\alpha| |x(t)| = |\alpha| \max_{t \in [a,b]} |x(t)| = |\alpha| \|x\|.$$

3.

$$\begin{split} \|x+y\| &= \max_{t \in [a,b]} |x(t)+y(t)| \leqslant \max_{t \in [a,b]} (|x(t)|+|y(t)|) \leqslant \\ &\leqslant \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |y(t)| = \|x\| + \|y\|, \end{split}$$

Расстояние

$$\rho(x,y) = ||x - y|| = \max_{t \in [a,b]} |x(t) - y(t)|.$$

Геометрический смысл расстояния - это максимальный зазор между графиками функций на отрезке [a,b]. Символом $C_{[a,b]}$ принято обозначать указанное нормированное пространство.

33 / 72

Заметим, что на множестве $C_{[a,b]}$ можно ввести и другие нормы, например,

$$||x||_1 = \int_a^b |x(t)|dt$$

 $||x||_2 = \sqrt{\int_a^b x^2(t)dt}$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९○

Калитвин В.А. 2025 34/72

7. Основные топологические понятия в метрических пространствах. Внутренность и замыкание множества.

Пусть (E, ρ) — метрическое пространство.

Определение 1. Множество $T\left(x_{0},r\right)=\{x\in E:\rho\left(x,x_{0}\right)< r\}$, где $x_{0}\in E$ и r>0, называется шаром (открытым) с центром в точке x_{0} и радиусом r или r-окрестностью точки x_{0} .

В случае $E=\mathbb{R}$ $T\left(x_{0},r\right)$ — это интервал $]x_{0}-r,x_{0}+r[.$

В случае $E = \mathbb{R}^2 T(x_0, r)$ — внутренность круга с центром в точке x_0 и радиусом r.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · からぐ

35 / 72

В случае $E=\mathbb{R}^3$ $T(x_0,r)$ — это внутренность шара с центром в точке x_0 и радиусом r.

Упражнение. Может ли в метрическом пространстве шар большего радиуса содержатся в шаре меньшего радиуса?

При помощи шаров вводятся в метрическом пространстве основные топологические понятия.

36 / 72

Определение 2. Для множества $M \subset E$ точка x_0 называется:

- а) внутренней, если она содержится в множестве M вместе с некоторым шаром $T\left(x_{0},r\right),$
- б) внешней, если она содержится в дополнении $CM = E \backslash M$ множества M вместе с некоторым шаром,
- в) граничной, если любой шар $T(x_0,r)$ имеет непустое пересечение с M и с CM.
- г) точкой прикосновения, если она принадлежит M или является граничной точкой для M.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ · 壹 · 釣९♡

Калитвин В.А. 2025 37/72

Определение 3. Совокупность всех внутренних точек M называется внутренностью M и обозначается $M^{\circ}(intM)$. Совокупность всех внешних точек M называется внешностью M и обозначается $M^{\nearrow}(extM)$. Совокупность всех граничных точек M называется границей M и обозначается ∂M .

Множество $\overline{M}=M^\circ\cup\partial M$ называется замыканием M (замыкание \overline{M} состоит из внутренних и граничных точке множества M). Очевидно включение $M^\circ\subset M$.

Определение 4. Окрестностью точки x метрического пространства называется всякое множество в этом пространстве, для которого x является внутренней точкой. Обозначается u(x).

Из определений следует, что любая окрестность точки прикосновения множества M имеет с M общие точки. В частности, любой шар T(x,r) имеет общие точки с M.

←□ ト ←□ ト ← 亘 ト → 亘 → りへ○

38 / 72

Определение 5. Точка x_0 называется предельной для множества M, если любой шар $T(x_0,r)$ имеет общие точки с M, отличные от x_0 . Множество всех предельных точек M обозначается M'.

Пример. $E=\mathbb{R},\ M=\{0\}\cup]1,2],\ M^\circ=]1,2[:\partial M=\{0,1,2\},\ M^{\nearrow}=]-\infty,0[\cup]0,1[\cup]2,+\infty\left[,\overline{M}=\{0\}\cup [1,2],M'=[1,2]\right]$

Каждая предельная точка, является и точкой прикосновения множества. Обратное неверно. Так, в примере точка 0 для M является точкой прикосновения, но не является предельной.

Точки прикосновения, не являющиеся предельными точками, называются изолированными точками множества.

Теорема. Справедливо равенство $\overline{M} = M \cup M'$. (т.е., для того, чтобы получить замыкание множества достаточно к множеству присоединить все его предельные точки).

→□▶ →□▶ → □▶ → □ ● のQの

39 / 72

Теорема. Справедливы утверждения:

- 1. $M \subset N \Rightarrow M' \subset N'$
- 2. $(M \cup N)' = M' \cup N'$
- 3. $(M')' \subset M'$
- $4. \ M \subset N \Rightarrow \overline{M} \subset \overline{N}$
- 5. $\overline{M \cup N} = \overline{M} \cup \overline{N}$
- 6. $\overline{(M)} = \overline{M}$
- 7. $M \subset N \Rightarrow M^{\circ} \subset N^{\circ}$
- 8. $(M \cap N)^{\circ} \Rightarrow M^{\circ} \cap N^{\circ}$
- 9. $(M^{\circ})^{\circ} = M^{\circ}$

40 / 72

8. Открытые и замкнутые множества, их связь.

Пусть (E, ρ) - метрическое пространство.

Определение. Множество $M \subset E$ называется открытым, если все его точки внутренние, то есть $M = M^{\circ}$. Множество $M \subset E$ называется замкнутым, если оно содержит все свои предельные точки, то есть $M' \subset M$ или $M = \overline{M}$. Пустое множество будем считать открытым.

Шар $T\left(x_{0},r\right)\subset E$ является открытым множеством, так как для любой точки x_{1} этого шара $T\left(x_{1},\varepsilon\right)\subset T\left(x_{0},r\right)$, если $\varepsilon\leqslant r-\rho\left(x_{0},x_{1}\right)$. Действительно, если $x\in T\left(x_{1},\varepsilon\right)$, то $\rho\left(x_{1},x\right)<\varepsilon$. Поэтому $\rho\left(x_{0},x\right)\leq\rho(x_{0},x_{1})+\rho\left(x_{1},x\right)<\rho\left(x_{0},x_{1}\right)+r-\rho(x_{0},x_{1}) \Rightarrow x\in T(x_{0},r)$. \Rightarrow $T(x_{1},\varepsilon)\subset T(x_{0},r)$.

Пример. Для любого множества M его внутренность M° — открытое множество, то есть $(M^{\circ})^{\circ} = M^{\circ}$.

Замыкание любого множества является замкнутым множеством.

 Калитвин В.А.
 2025
 41 / 72

Из определений следует, что $M^{\circ} \subset M \subset \overline{M}$ и что M° — наибольшее открытое множество, содержащееся в M, а \overline{M} — наименьшее замкнутое множество, содержащее M.

Множество E и пустое множество являются примерами одновременно открытых и замкнутых множеств.

Между замкнутыми и открытыми множествами имеется тесная связь.

Теорема 1. Множество M замкнуто тогда и только тогда, когда его дополнение открыто.

Теорема означает также, что множество M открыто тогда и только тогда, когда его дополнение замкнуто.

Теорема 2. а) Пересечение любого семейства и объединение конечного числа замкнутых множеств есть множество замкнутое.

б) Объединение любого семейства и пересечение конечного числа открытых множеств есть множество открытое.

Калитвин В.А. 2025 42 / 72

Из теоремы 1 и формул двойственности для множеств следуют утверждения теоремы об открытых множествах.

Заметим, что объединение любого семейства замкнутых множеств может быть не замкнутым, а пересечение любого семейства открытых может не быть открытым.

43 / 72

9. Сходящиеся последовательности

Определение. Точка $x_0 \in E$ называется пределом последовательности (x_n), если $\rho(x_n, x_0) \to 0$ при $n \to \infty$, то есть

$$\forall \varepsilon > 0 \exists N \mid \forall n \geq N \Rightarrow \rho(x_n, x_0) < \varepsilon.$$

Обозначают $\lim_{n\to\infty} x_n = x_0$ или $x_n\to x_0$. Последовательность, имеющая предел, называется сходящейся.

Определение можно записать символически

$$\left(\lim_{n\to\infty} x_n = x_0\right) \Leftrightarrow (\forall \varepsilon > 0 \exists N \mid \forall n \ge N \Rightarrow \rho(x_n, x_0) < \varepsilon\right)$$

Неравенство $\rho(x_n,x_0)<\varepsilon$ означает, что $x_n\in T(x_0,\varepsilon)$. Поэтому определение предела последовательности можно заменить равносильным с помощью окрестностей:

$$\left(\lim_{n\to\infty}x_n=x_0\right)\Leftrightarrow (\forall u\left(x_0\right)\exists N\mid\forall n\in\mathbb{N}\Rightarrow x_n\in u\left(x_0\right)\right).$$

Калитвин В.А. 2025 44 / 72

Это означает, что начиная с некоторого номера N, члены последовательности попадают в произвольно выбранную окрестность $u(x_0)$. В качестве $u(x_0)$ может быть выбран шар $T(x_0, r)$.

Теорема 1. Сходящаяся последовательность имеет единственный предел.

Теорема 2. Если последовательность (x_n) имеет предел x_0 , то любая подпоследовательность имеет тот же предел x_0 .

Теорема 3. Для того чтобы точка x_0 была предельной для множества M, необходимо и достаточно, чтобы x_0 была пределом последовательности (x_n) точек из M, отличных от x_0 :

$$(x_0 \in M') \Leftrightarrow (\exists x_n \in M \mid x_n \neq x_0, x_n \to x_0).$$

- **↓ロト ↓□ ト ∢ミト ∢ミト** ミー かくの

45 / 72

10. Сходимость в пространствах \mathbb{R}^m, ℓ_2 , и $C_{[a,b]}$.

Подробнее остановимся на сходимости последовательностей в указанных пространствах. В этих пространствах метрика порождена нормой, поэтому говорят о сходимости по норме.

Сходимость в \mathbb{R}^m .

Если (x_n) последовательность векторов из \mathbb{R}^m , то компоненты этих векторов $x_{n,k}(k=1,2,\ldots,m)$ образуют числовые последовательности (x_n) . Оказывается, сходимость (x_n) к вектору $x_0=(x_{0,1},x_{0,2},\cdots,x_{0,m})$ равносильна сходимости последовательностей компонент $(x_{n,k})$ к компоненте $x_{0,k}$ вектора x_0 при каждом $k=1,2,\ldots,m$.

Итак, сходимость в \mathbb{R}^m по норме - это покомпонентная сходимость:

$$\lim_{n \to \infty} x_n = \left(\lim_{n \to \infty} x_{n,1}, \lim_{n \to \infty} x_{n,2}, \dots, \lim_{n \to \infty} x_{n,m} \right).$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ める○

46 / 72

Сходимость в ℓ_2 .

Из неравенства

$$||x_n - x_0|| \le \sqrt{\sum_{k=1}^{\infty} (x_{n,k} - x_{0,k})^2} = |x_{n,k} - x_{0,k}| < \varepsilon$$

следует, что из сходимости последовательности x_n к x_0 следует покоординатная сходимость. Обратное неверно. Например, последовательность

$$x_{k_1k} = \left\{ \begin{array}{ll} 0 & \text{при} & n \neq k, \\ 1 & \text{при} & n = k, \end{array} \right.$$

то $\lim_{n\to\infty} x_{n,k} = 0$ для всех k, а $||x_n - \theta|| = 1$, то есть для x_n не является пределом θ (тем более любой вектор, отличный от θ).

47 / 72

Сходимость в $C_{[a,b]}$.

Рассмотрим, наконец, сходимость в $C_{[a,b]}$ последовательности функций (x_n) к функции x_0 . По определению метрики в $C_{[a,b]}x_n \to x_0$ означает:

$$\forall \varepsilon > 0 \exists n \in N \forall n \in N \Rightarrow \rho(x_n, x_0) = \max_{t \in [a, b]} |x_n(t) - x_0(t)| < \varepsilon).$$

Правую часть можно переписать в эквивалентной форме следующим образом

$$\forall \varepsilon > 0 \exists N | \forall n \ge N \forall t \in [a, b] \Rightarrow |x_n(t) - x_0(t)| < \varepsilon.$$

Это означает равномерную сходимость последовательности функций x_n к функции x_0 на отрезке [a,b].

- 4 ロ ト 4 @ ト 4 差 ト 4 差 ト - 差 - 夕 Q (?)

48 / 72

11. Отображения метрических пространств. Предел и непрерывность.

Пусть (E_1, ρ_1) и (E_2, ρ_2) метрические пространства и $M \subset E_1$. Пусть отображение (функция) $f: M \to E_2$ и x_0 — предельная точка для M.

По аналогии с числовыми функциями вводится понятие предела отображения в данной точке. Приведем два эквивалентных определения этого понятия.

Пусть x_0 предельная точка M, возможно, не входящая в M.

Определение 1 (по Коши). Точка $a \in E_2$ называется пределом отображения f в точке x_0 , если

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in M, x \neq x_0 \left(\rho_1 \left(x_1, x_0 \right) < \delta \Rightarrow \rho_2 (f(x), a) < \varepsilon \right).$$

Это определение можно очевидным образом переформулировать с помощью шаров или других окрестностей точек a и x_0 в соответствующих пространствах.

Калитвин В.А. 2025 49 / 72

Определение 2 (по Гейне). Точка $a \in E_2$ называется пределом отображения f в точке x_0 , если

$$\forall (x_n), x_n \in M, x_n \neq x_0 (x_n \to x_0 \Rightarrow f(x_n) \to a).$$

Равносильность определений по Коши и по Гейне доказывается точно так же как и в случае числовых функций. Принято обозначение,

$$\lim_{\substack{x \to x_0 \\ x \in M}} f(x) = f(x_0).$$

Если $M \cup \{x_0\}$ окрестность x_0 , то принадлежность $x \in M$ обычно не указывают. Пишут так ме $f(x) \to a$ при $x \to x_0$

Определение 3. Отображение f в точке α_0 называется непрерывным в точке x_0 inM, если либо x_0 — изолированная точка M, либо

$$\lim_{\substack{x \to x_0 \\ x \in M}} f(x) = f(x_0).$$

Калитвин В.А. 2025 50 / 72

Это означает (по Коши):

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in M \left(\rho_1 \left(x, x_0 \right) < \delta \Rightarrow \rho_2 \left(f(x), f\left(x_0 \right) \right) < \varepsilon \right),$$

то есть

$$\forall T\left(f\left(x_{0}\right),\varepsilon\right)|T\left(x_{0},\delta\right)\left(f\left(T\left(x_{0},\delta\right)\right)\subset T\left(f\left(x_{0}\right),\varepsilon\right)\right),$$

или (то Гейне) (для неизолированной точки x_0).

$$\forall (x_n), x_n \in M(x_n \to x_0 \Rightarrow f(x_n) \to f(x_0)).$$

Определение 4. Отображение f называется непрерывным на множестве M, если оно непрерывно в каждой точке M, то есть

$$\forall \varepsilon > 0 \forall x \in M \exists \delta > 0 \forall x' \in M | \left(\rho_1 \left(x, x' \right) < \delta \Rightarrow \rho_2 \left(f(x), f \left(x' \right) \right) < \varepsilon \right).$$

Если, в частности, M = E, то f непрерывно на всем пространстве.

 Калитвин В.А.
 2025
 51 / 72

Теорема 1. Для непрерывности отображения на всем пространстве необходимо и достаточно, чтобы полный прообраз всякого открытого множества был открыт.

Следствие. Для непрерывности отображения на всем пространстве необходимо и достаточно, чтобы полный прообраз всякого замкнутого множества был замкнут.

Пусть $f: M \subset E_1 \to E_2$, $g: \widetilde{M} \subset E_2 \to E_3$, $f(M) \subset \widetilde{M}$ и (E_3, ρ_3) — метрическое пространство.

Калитвин В.А. 2025 52/72

В этом случае можно рассматривать композицию отображений f и g:

$$h = g \circ f : M \to E_3, h(x) = g \circ f(x) = g[f(x)]$$

Теорема 2. Если отображение f непрерывно в точке x_0 , а g непрерывно в точке $f(x_0)$, то композиция $g \circ f$ непрерывна в точке x_0

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♡

53 / 72

Определение 5. Отображение f называется равномерно непрерывным на множестве M, если

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x \in M \forall x' \in M \quad | \left(\rho_1 \left(x, x' \right) < \delta \Rightarrow \rho_2 \left(f(x), f \left(x' \right) \right) < \varepsilon \right).$$

Из равномерной непрерывности следует непрерывность. Обратное неверно.

4□ > 4□ > 4 = > 4 = > = 99

Калитвин В.А. 2025 54/72

13. Отображения в \mathbb{R}^m , вектор-функции.

Пусть (E,ρ) — метрическое пространство, $M\subset E$. Отображение $f:M\to \mathbb{R}^m$ называется векторно-значным, а в случае $E=\mathbb{R}$ - вектор-функцией числового аргумента.

Компоненты f(x) обозначим $f_k(x)$ $(k=1,2,\ldots m), f_k(x)\in\mathbb{R}$:

$$f(x) = (f_1(x), f_2(x), \dots f_m(x))$$

Так как сходимость в \mathbb{R}^m равносильна покомпонентной, то непрерывность векторнозначной функции f(x) (в точке, на множестве или равномерной) равносильна непрерывности всех компонент $f_k(x)$ (в том же смысле).

Для вектор-функции числового аргумента можно определить производную в точке x_0 или интеграл на отрезке [a,b] повторяя соответствующие определения для числовых функций:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} [f(x_0 + \Delta x) - f(x_0)],$$

$$\int_{a}^{b} f(x)dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

Так как для векторов в \mathbb{R}^m сложение, умножение на число и предельный переход производятся покомпонентно, то справедливы равенства:

$$f'(x_0) = (f'_1(x_0), f'_2(x_0), \dots, f'_m(x_0))$$

$$dx = (\int_a^b f_1(x) dx, \int_a^b f_2(x) dx, \int_a^b f_1(x) dx)$$

$$\int_a^b f(x)dx = \left(\int_a^b f_1(x)dx, \int_a^b f_2(x)dx, \dots, \int_a^b f_m(x)dx\right),$$

то есть дифференцирование и интегрирование производится покомпонентно.

Отметим геометрический смысл производной f'(x). Вектор-функция f(x) является параметрическим уравнением кривой L в \mathbb{R}^m . Вектор $f(x_0 + \Delta x) - f(x_0)$ - это хорда, а $\frac{1}{\Delta x} \left[f(x_0 + \Delta x) - f(x_0) \right]$ - это секущая L в точке $f(x_0)$. Поэтому $f'(x_0)$ - это вектор, касательный к L в точке $f(x_0)$.

СВЯЗНОСТЬ И КОМПАКТНОСТЬ

I. Связность и её сохранение при непрерывнои отображении.

Одним из важных свойств множеств в метрическом пространстве (E, ρ) является связность.

Определение 1. Множество M называется несвязным, если $M \subset G_1 \cup G_2$, где G_1 и G_2 непересекающиеся открытые множества, каждое из которых имеет общие точки с M. В противном случае множество M называется связным.

В случае $E = \mathbb{R}$ можно дать описание всех связных множеств.

Теорема 1. В пространстве \mathbb{R} множество связно тогда и только тогда, когда оно промежуток.

Теорема 2. Объединение связных непересекающихся множеств связно.

 Калитвин В.А.
 2025
 57 / 72

4 □ ト ← □ ト ← 重 ト → 重 → り へ ○

Оказывается, что при непрерывном отображении свойство связности сохраняется. Пусть (E_1, ρ_1) и (E_2, ρ_2) . метрические пространства и $f: E_1 \to E_2$.

Теорема 3. Если отображение f непрерывно на E_1 и $M \subset E_1$ связное множество, то f(M) также связно.

Как следствие получаем обобщение известной теоремы Больцано-Коши о промежуточных значениях непрерывной функции. Пусть (Е, ρ) метрическое пространство, M с E и $f:M\to\mathbb{R}$

Теорема 4. Пусть M связно, f непрерывно на M, A и B - два значения этой функции, а C любое лежащее между ним число. Тогда C также является значением этой функции.

Естественен вопрос о связности всего пространства.

Определение 2. Связной компонентой метрического пространства называется связное множество, для которого нет отличного от него и содержащего его связного множества.

Калитвин В.А. 2025 58 / 72

Так как каждая точка E связное множество, то E является объединением связных компонент, которые по теореме не имеет общих точек. Если E связно, то компонента единственна.

В заключение приведем важное определение области.

Определение 3. Областью в метрическом пространстве называется всякое открытое связное множество.

2. Ограниченные множества в метрическом пространстве.

Определение. Множество в метрическом пространстве (E, ρ) называется ограниченным, если оно содержится в некотором шаре. Последовательность (x_n) называется ограниченной, если ограничено множество её членов.

Теорема 1. Если последовательность сходится, то она ограничена.

Калитвин В.А. 2025 59 / 72

Конечно, из ограниченности последовательности сходимость не следует (даже в $\mathbb R$), но в $\mathbb R^m$ имеет место теорема Больцано-Вейерштрасса, известная для случая $\mathbb R$.

Теорема 2. Из всякой ограниченной последовательности в \mathbb{R}^m можно выделить сходящуюся подпоследовательность.

В отличии от \mathbb{R}^m в пространстве ℓ_2 из ограниченнои последовательности не всегда можно выделить сходящуюся подпоследовательность. Например, если $x_{n,k}=0$ при $n\neq k$ и $x_{k,z}=1$, то последовательность (x_n) ограничена, причем $\|x_1\|=1$. Так как для любого k $x_{n,k}\to 0$, то подпоследовательность могла бы сходится лишь к нулю θ , а это невозможно, ибо $\|x_n-\theta\|=1$.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

60 / 72

Компакты в метрическом пространстве; их замкнутость и ограниченность

Пусть (E, ρ) метрическое пространство и $M \subset E$.

Определение. Множество M называется компактным (или компактом), если всякая последовательность его точек содержит сходящуюся подпоследовательность, предел которой принадлежит M. Если M=E, то компактом называют все пространство.

Например, E=[a,b] с обычной метрикой компактное пространство (согласно теореме Больцано-Вейерштрасса), а $E=\mathbb{R}$ некомпактное (контрпримером служит последовательность (n)).

Укажем свойства, следующие из компактности.

Теорема 1. Если множество компактно, то оно ограничено. Утверждение обратное теореме неверно. Так в $\mathbb R$ интервал]a,b[ограничен, но не компактен. Это видно из следующей теоремы.

Теорема 2. Если множество компактно, то оно замкнуто.

Калитвин В.А. 2025 61/72

Утверждение обратное теореме неверно. Так в R множество $[a, +\infty[$ замкнуто, но не компактно (так как неограничено).

Даже одновременное наличие ограниченности и замкнутости множества не влекут его компактности. Так в пространстве ℓ_2 множество $S=\{x:\|x\|=1\}$ некомпактно (из последовательности, для которой $x_{n,k}=0$ при $n\neq k$ и $x_{k,k}=1$, нельзя выделить сходящейся подпоследовательности), хотя ограничено ($S\subset T(\theta,\eta)$ при z>1) и замкнуто (так как его дополнение $CS=\{x:\|x\|<1\}\cup\{x:\|x\|>1\}$ — открыто).

Компакты в R^m . В общем случае ограниченность и замнкутость множества необходимы для компактности, но не достаточны. Оказывается, в пространстве R^m эти свойства для компактности достаточны.

Теорема. Множество в \mathbb{R}^m компактно тогда и только тогда, когда оно ограничено и замкнуто.

Teopema дает критерий компактности в \mathbb{R}^m .

5. Свойства непрерывных отображений компактов.

Числовые функции на компакте.

Пусть (E_1, ρ_1) и (E_2, ρ_2) метрические пространства, $M \subset E_1$ и $f: M \to E_2$ непрерывное отображение.

Теорема 1. Образ коипакта при непрерывном отображении компакт.

Важным следствием доказанной теоремы является обобщение известной теоремы Вейерштрасса.

Следствие. Если M компакт в метрическом пространстве, а функции $f:M\to R$ непрерывна, то множество значений этой функции ограничено и среди них есть наибольшее и наименьшее.

Действительно, множество $f(\mu) \subset \mathbb{R}$ компактно, а потому ограничено и замкнуто. Остается заметить, что ограниченное замкнутое множество в \mathbb{R} содержит максимальный и минимальный элементы. Следующая теорема обобщает известную теорему 1.

Калитвин В.А. 2025 63 / 72

Теорема 2. Непрерывное отображение компакта равномерно непрерывно.

В заключение рассмотрим вопрос о непрерывности обратного отображения. Пусть отображение $f: M \to E_2$, где $M \subset E_1$, инъективно, то есть каждая точка f(M) имеет единственный прообраз. В этом случае существует обратное отображение $f^{-1}: f(M) \to E_1$. Если f непрерывно, то f^{-1} может этим свойством не обладать.

Например, функция

$$y = \begin{cases} x & \text{при } x \in [0,1] \\ x-1 \text{ при } x \in]2,3] \end{cases}$$

непрерывная, а обратная ей функция

$$x = \begin{cases} y & \text{при } y \in [0,1] \\ y+1 \text{ при } y \in]1,2] \end{cases}$$

разрывная в точке y=1. Поэтому важна следующая теорема.

Теорема 3. Если отображение $f: M \to E_2$ непрерывно и иньективно, а M компактно, то обратное отображение $f^{-1}: f(M) \to E_1$ также непрерывно.

Калитвин В.А. 2025 65/72

ПОЛНЫЕ МЕТРИЧЕСКИЕ ПРОСТРАНСТВА

І. Полнота пространства. Банаховы пространства.

Определение 1. Последовательность (x_n) точек метрического пространства (E, ρ) называется фундаментальной, если $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \in \mathbb{N} \ (n, m \geqslant n_0 \Rightarrow \rho \ (x_n, x_m) < \varepsilon).$

Фундаментальность означает, что с ростом номеров члены последовательности неограниченно сближаются друг с другом.

Если последовательность сходится, то она фундаментальна.

Определение 2. Метрическое пространство называется полным, если в нем всякая фундаментальная последовательность сходится.

Теорема. Замкнутое множество полного метрического пространства само является полным метрическим пространством (с той же метрикой).

Метрика может порождаться нормой или скалярным произведением.

Определение 3. Нормированное векторное пространство полное в метрике, порожденной нормой, называется банаховым пространством. Евклидово векторное пространство, полное в метрике, порожденной скалярным произведением, называется гильбертовым пространством.

Названия даны в честь С. Банаха (1892-1945) и Д.Гильберта (1862-1943) - создателей современного анализа.

2. Полнота пространств \mathbb{R}^m, ℓ_2 и $C_{[a,b]}$.

3. Пространство ограниченных непрерывных отображений.

Приведем еще один пример полного метрического пространства, обобщающий предыдущий пример. Пусть (E_1,ρ_1) и (E_x,ρ_2) - метрические пространства. Через Φ обозначим совокупность всех непрерывных отображений $f:E_1\to E_2$, у каждого из которых множество

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めらぐ

67 / 72

значении $\{f(t)\}$ ограничено. Φ становится метрическим пространством, если для f, \bar{f} Φ положить

$$\rho(f, \bar{f}) = \sup_{x \in E_1} \rho_2(f(x), \bar{f}(x)).$$

Оказывается, если пространство (E_2, ρ_2) полное, то и (Φ, ρ) полное метрическое пространство.

68 / 72

Список литературы

- 1. Берман, Г.Н. Сборник задач по математическому анализу: учеб. пособие/ Г.Н. Берман. Любое издание.
- 2. Демидович, Б.П. Сборник задач и упражнений по математическому анализу: учеб. пособие / Б.П. Демидович. Любое издание.
- 3. Зорич, В.А. Математический анализ: учебник / В.А. Зорич. М.: Наука, 1981.
- 4. Ильин, В.А. Математический анализ. Начальный курс / В.А. Ильин, В.А. Садовничий, Бл. Х. Сендов; Под ред. А.Н. Тихонова. 2-е изд., перераб. М.: Изд-во МГУ, 1985.
- 5. Ильин, В.А. Основы математического анализа: учебник. 4-е изд., перераб. и доп. Начальный курс. Часть I/ В.А. Ильин, Э.Г. Позняк. М.: Наука, 1982.
- 6. Ильин, В.А. Основы математического анализа: учебник. 2-е изд., стереотипное. Часть II / В.А. Ильин, Э.Г. Позняк. М.: Наука, 1980.

Калитвин В.А. 2025 69 / 72

- 7. Калитвин, А.С. Лекции по математическому анализу. Часть І. Введение в математический анализ: учеб. пособие/ А.С. Калитвин. 3-е изд., исправленное Липецк: ЛГПУ, 2006.
- 8. Калитвин, А.С. Лекции по математическому анализу. Часть II. Дифференциальное исчисление функций одной переменной: учеб. пособие/ А.С. Калитвин. Липецк: ЛГПУ, 2009.
- 9. Калитвин, А.С. Лекции по математическому анализу. Часть III. Неопределённый интеграл: учеб. пособие / А.С. Калитвин. Липецк: ЛГПУ имени П.П. Семенова-Тян-Шанского, 2017.
- 10. Кудрявцев, Л.Д. Курс математического анализа: учебник: в 3 т. / Л.Д. Кудрявцев. —2-е изд., перераб. и доп. М.: Высш. шк., 1988. Т. 1.
- 11. Никольский, С.М. Курс математического анализа: учебник: в 2 т. / С.М. Никольский. 3-е изд., перераб. и доп. М.: Наука, 1983. Т. 1.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQの

70 / 72

- 12. Поволоцкий, А.И. Дифференциальное исчисление функций одной переменной и неопредёленный интеграл: учеб. пособие/ А.И. Поволоцкий, Л.М. Лихтарников. Ленинград: ЛГПИ имени А.И. Герцена, 1983.
- 13. Поволоцкий, А.И. Определённый интеграл. Ряды: учеб. пособие/ А.И. Поволоцкий, Л.М. Лихтарников. Ленинград: ЛГПИ имени А.И. Герцена, 1984.
- 14. Лихтарников, Л.М. Интегральное исчисление функций нескольких переменных и дифференциальные уравнения / Л.М. Лихтарников, А.И. Поволоцкий. Ленинград: ЛГПИ им. А.И. Герцена, 1986. 15. Поволоцкий, А.И. Метрические пространства. Дифференциальное исчисление функций нескольких переменных / А.И. Поволоцкий, Л.М. Лихтарников. Ленинград: ЛГПИ им. А.И. Герцена, 1985. 16. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления: учеб. пособие: в 3 т./ Г.М. Фихтенгольц. Любое издание. Том II.

71 / 72

- 17. Шибинский, В.М. Примеры и контрпримеры в курсе математического анализа: учеб. пособие/ В.М. Шибинский. М.: Высш. шк., 2007.
- 18. Скворцов, В.А. Примеры метрических пространств. Серия: Библиотека "Математическое просвещение". М.: МЦНМО, 2002.

Калитвин В.А. 2025 72/72