Adjusting Standard ANOVA

Methods to Account for

Heterogeneous Variances With an

Application to Turfgrass

Management

Michael Dumelle

Oregon State University

Department of Statistics

Background

- Statistics Consulting Practicum at Oregon State University
- Several turfgrass projects, Alec Kowalewski and Clint Mattox
- Collaboration with Horticulture Department
- One common problem: unequal variances (standard deviations) with treatment groups
- Variance is the standard deviation squared, important distinction!

Overview

- Motivation
- 2 Why ANOVA?
- Generalized Variance ANOVA (GV ANOVA)
- Data Application
- Conclusions

Motivation

- Analysis of Variance (ANOVA) identify significantly different treatments
 - Focus on one-way ANOVA
- Several assumptions
- All observations have the same variance (variance homogeneity)
- Often violated in practice

Why ANOVA?

- Why do we use ANOVA?
- ANOVA estimates are
- Correct on average (unbiased)
- As precise as possible (minimum variance)

Shortcomings of ANOVA

- What changes with unequal variance (variance heterogeneity)
- Equal variance ANOVA estimates
- Are still correct on average
- Can give incorrect p-values
 - Misleading inference, poor policy decisions

How Do I Know?

Graphics! If it looks off, it probably is

How Do I Know?

- Ratio of largest variance to smallest variance
 - Seen 1.5 to 9 as suggestions of cutoff points for variance
 - 1.22 to 3 for standard deviation
- Hypothesis tests for equality of variance
 - Levene's, Brown-Forsythe, etc.
 - Come with their own assumptions
 - Small p-value indicates evidence of unequal variance

How Do I Proceed?

- Transformations of the response
 - Difficult to find, often most effective with clear mean/variance relationship
 - Difficult to interpret, might not make statements on scale of interest
- Directly model unequal variance within groups
 - Generalized Variance ANOVA (GV ANOVA)

Generalized Variance ANOVA (GV ANOVA)

- GV ANOVA incorporates separate variances for each treatment level
 - No back transformation required
- Variance ratios known
 - lm() or gls() in R, proc glm or proc mixed in SAS
- Variance ratios unknown (usual case)
 - gls(), lme(), lmer() in R, proc mixed in SAS

Percent Green Cover

Data Setup

- Simulate turfgrass trial for percent green cover
- 4 treatments, 8 replicates, normally distributed, independent

	Α	В	С	D
Mean	50	50	58	60
SD	7	5	1	0.5

• Study pairwise differences between treatments, $\alpha = 0.05$

Data Layout

Treatment vs. Percent Disease

Pairwise Comparisons (ANOVA)

T1	T2	True.Diff	Est.	S.Err.	Adj.P.	Error
A	В	0	5.24	1.51	0.010	Type I
Α	C	8	11.02	1.51	< 0.001	None
Α	D	10	12.97	1.51	< 0.001	None
В	C	8	5.78	1.51	0.004	None
В	D	10	7.73	1.51	0.001	None
C	D	2	1.94	1.51	1.0	Type II

ANOVA Residuals (Studentized)

Pairwise Comparisons (GV ANOVA)

T1	T2	True.Diff	Est.	S.Err.	Adj.P.	Error
Α	В				0.098	
Α	C	8	11.02	1.13	< 0.001	None
Α	D	10	12.97	0.98	< 0.001	None
В	C	8	5.78	1.90	0.030	None
В	D	10	7.73	1.82	0.001	None
С	D	2	1.94	0.59	0.016	None

GV ANOVA Residuals (Studentized)

Conclusions

- ANOVA has great properties when assumptions satisfied
- Ignoring unequal variance and using ANOVA can give misleading inference
- How do I know if it is a problem in my data set? Explore graphics, variance ratios, hypothesis tests
- GV ANOVA accommodates unequal variance without transformations, interpret on original scale

Where to Start?

- Zuur, Alain, et al. Mixed effects models and extensions in ecology with R. Springer Science & Business Media, 2009.
 - Chapter 4
- Littell, Ramon C., et al. SAS for mixed models.
 SAS publishing, 2006.
 - Chapter 9

Acknowledgements

- Thank you to
 - Everyone here
 - On Horticulture Department at Oregon State University
 - Collaborators
 - Special thanks to Alec Kowalewski and Clint Mattox