Micha Bosshart - bmicha@ethz.ch

Ergänzt von N. Sendlhofer - nsendlhofer & C. Leser - cleser

Funktionen

Folgen und Reihen

konvergent Es existiert ein Grenzwert sonst divergent.

beschränkt Alle Glieder in endlich waagerechten Parallelstreifen enthalten.

$$\mathbf{monoton} \ \mathbf{wachsend} \quad \ a_{n+1} \geq a_n \qquad (\mathit{strikt} :>)$$

mon. wachsend/ fallend & beschränkt ⇒ konvergent

Falls
$$\lim_{n\to\infty} a_n = a$$
 und $\lim_{n\to\infty} b_n = b$, gilt:

$$\lim_{n \to \infty} (a_n \pm b_n) = a \pm b$$
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

$$\lim_{n \to \infty} (a_n/b_n) = a/b.$$

Gilt auch für Funktionen; sofern Grenzwert existiert.

$$\sum_{n=0}^{k} a \cdot q^{n} = a \cdot \frac{1 - q^{k+1}}{1 - q}$$

$$\sum_{n=0}^{\infty} a \cdot q^n = \frac{a}{1-q}, \quad \text{falls } |q| < 1$$

$$\sum_{n=1}^{\infty} [a_1 + (n-1) \cdot d] = \frac{n}{2} \cdot (a_1 + a_n)$$

$$\triangleright \sum_{n=1}^{k} n = \frac{k \cdot (k+1)}{2} \triangleright \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \quad \text{Gerade & Ungerade}$$

$$\triangleright \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \alpha = 1 \to \text{ harm. Reihe} \\ = \infty, \alpha \le 1 \text{ (divergiert)} \\ \neq \pm \infty, \alpha > 1 \text{ (konvergiert)} \end{cases}$$

Grenzwerte

Falls $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ (oder $\pm \infty$), so gilt

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

$$f(x) = o(g(x)) \text{ für } x \to a \iff \lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

$$\boxed{f(x) = O(g(x)) \text{ für } x \to a} \Longleftrightarrow \lim_{x \to a} \left| \frac{f(x)}{g(x)} \right| \le A \in \mathbb{R}$$

Es gilt:

$$x^k = o(e^x)$$
 für $x \to \infty$, $k \in \mathbb{R}$
 $\ln(x) = o(x^k)$ für $x \to \infty$, $k > 0$

$$f(x) = o(g(x)) \Rightarrow f(x) = O(g(x))$$

 $f(x) = O(g(x)) \Rightarrow f(x) = o(g(x))$

$$f(x) = O(g(x)) \implies f(x) = o(g(x))$$

Eigenschaften

Eine Funktion $f: A \to B$ ist eine Vorschrift, die jedem $x \in A$ ein Element $f(x) \in B$ zuordnet, $f: x \to f(x)$.

Definitionsbereich: D(f) = A

Zielbereich: Z(f) = B

Wertebereich: $W(f) = \{f(x) | x \in D(f)\}$

Surjektiv

Jeder Wert im Zielbereich Z(f) wird angenommen.

$$W(f) = Z(f)$$

Injektiv

Jede Horizontale schneidet den Graphen $\Gamma(f)$ höchstens

$$ightharpoonup f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
, sonst nicht injektiv

Bijektiv

Injektiv & Surjektiv \Leftrightarrow Bijektiv \Leftrightarrow Umkehrbar

Inverse Funktion

Sei f(x) eine Funktion von D(f) nach W(f), dann ist $f^{-1}: W(f) \to D(f)$ mit $y \mapsto f^{-1}(y)$ die inverse Funktion von f(x).

$$\rhd\ W(f^{-1})=D(f)$$

$$\triangleright \ D(f^{-1}) = W(f)$$

gerade: f(-x) = f(x)

ungerade: f(-x) = -f(x)

Stetigkeit

f(x) ist stetig im Punkt \mathcal{E} falls

$$\lim_{x \to \xi^{-}} f(x) = f(\xi) = \lim_{x \to \xi^{+}} f(x).$$

 \triangleright Bei Lücken in D(f) werden die einzelnen Abschnitte separat betrachtet.

Monotonie

(Strikt) Monoton Steigend

$$\triangleright x_1 < x_2 \iff f(x_1) \le f(x_2)$$
 (strikt: <)

(Strikt) Monoton Fallend

$$\triangleright x_1 < x_2 \iff f(x_1) \ge f(x_2)$$
 (strikt: >)

$$\triangleright f'(x) \le 0$$
 (strikt: <)

Beschränktheit

Alle Funktionswerte sind in einem endlich breiten waagerechten Parallelstreifen enthalten.

Asymptoten

Wir nennen eine Funktion g(x) eine Asymptote von f(x)für $x \to \infty$ falls

$$\lim_{x \to \infty} (f(x) - g(x)) = 0.$$

Hyperbolische Funktionen

$$cosh(x) = \frac{e^x + e^{-x}}{2}$$
 $sinh(x) = \frac{e^x - e^{-x}}{2}$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$

$$\frac{d}{dx}\cosh(x) = \sinh(x)$$
 $\frac{d}{dx}\sinh(x) = \cosh(x)$

$$\cosh(x)^2 - \sinh(x)^2 = 1$$

Inverse Funktionen

$$\cosh(x)^{-1} = \operatorname{arcosh}(x) \qquad = \ln(x + \sqrt{x^2 - 1})$$

$$\sinh(x)^{-1} = \operatorname{arsinh}(x) = \ln(x + \sqrt{x^2 + 1})$$

$$\tanh(x)^{-1} = \operatorname{artanh}(x) \qquad = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$$

Komplexe Zahlen

$$z = \underbrace{a + ib}_{\text{kartesisch}} = \underbrace{r \cos(\varphi) + ir \sin(\varphi)}_{\text{Polarform}} = \underbrace{r \cdot e^{i\varphi}}_{\text{Euler}}$$

Nullstellen Reeller Polynome mit Grad

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, $a_i \in \mathbb{R}$

- \triangleright Hat genau *n* Nullstellen (komplex und reell)
- ▶ Komplexe Nullstellen kommen immer im komplexkonjugierten Paar vor.

Komplex Konjugierte

Komplexe Zahl: z = x - iyKomplex konjugierte Zahl: $\bar{z} = x - iy$

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}} \mid \frac{1}{z^2 - 1} = \frac{\bar{z}^2 - 1}{|z^2 - 1|}$$

Potenzreihen

Potenzreihe der Funktion f(x) um den Punkt x_o :

$$f(x) = \sum_{n=0}^{\infty} a_n \cdot (x - x_o)^n$$

- \triangleright Höchstens eine Potenzreihe von f um x_0 existiert.
- \triangleright Konvergiert für $|x x_o| < r$

$$\boxed{\frac{1}{1-\boxed{\mathbf{x}}} = \sum_{n=0}^{\infty} \boxed{\mathbf{x}}^k}$$

Konvergenzradius

Innerhalb vom Konvergenzbereich darf man Potenzreihen *qliedweise*:

Taylorreihen

Taylorentwicklung von f(x) um x_o :

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_o)}{n!} (x - x_o)^n$$

- \triangleright ungerade Fkt \Leftrightarrow ungerade Indizes: $a_1x + a_3x^3 + \dots$
- \triangleright gerade Fkt \Leftrightarrow gerade Indizes: $a_0 + a_2 x^2 + \dots$

Trigonometrie

Werte Tabelle

rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
deg	0°	30°	45°	60°	90°
\sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$

Rechenregeln

$$1 = \sin(x)^2 + \cos(x)^2$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\sin(2\alpha) = 2\sin \alpha \cos \alpha$$

$$\sin(3\alpha) = 3\sin \alpha - 4\sin^3 \alpha$$

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\cos(3\alpha) = 4\cos^3 \alpha - 3\cos \alpha$$

$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos(\alpha)$$

Funktionsmodifikation

Frequenz $f: t \to \sin\left(\frac{2\pi}{T}t\right)$

Amplitude $f: t \to A \cdot \sin(t)$

Winkelgeschwindigkeit $\omega = \frac{2\pi}{T} \left[\frac{1}{T} \right]$

Appendix A

Nullstellen Reeller Polynome mit Grad

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \quad a_i \in \mathbb{R}$$

- \triangleright Hat genau *n* Nullstellen (komplex und reell)
- ▶ Komplexe Nullstellen kommen immer im komplexkonjugierten Paar vor.

Cosinus und Sinus - Integrale

Für $a, b \in \mathbb{Z}$ und n > 2, gelten:

$$\int_{a \cdot \frac{\pi}{2}}^{b \cdot \frac{\pi}{2}} \sin^n(x) \ dx = \frac{n-1}{n} \int_{a \cdot \frac{\pi}{2}}^{b \cdot \frac{\pi}{2}} \sin^{n-2}(x) \ dx$$
$$\int_{a \cdot \frac{\pi}{2}}^{b \cdot \frac{\pi}{2}} \cos^n(x) \ dx = \frac{n-1}{n} \int_{a \cdot \frac{\pi}{2}}^{b \cdot \frac{\pi}{2}} \cos^{n-2}(x) \ dx$$

Diese Regel kann mehrfach angewandt werden.

Polynome n-ten Grades

- $\triangleright f(x) = a \text{ für alle } x \in D(f) \Leftrightarrow f(x) \text{ ist konstant}$
- $\triangleright f'(x) \ge 0 \Leftrightarrow f(x)$ ist monoton wachsend
- $\triangleright f'(x) \le 0 \Leftrightarrow f(x)$ ist monoton fallend
- $\triangleright f'(x) > 0 \Rightarrow f(x)$ ist streng monoton wachsend
- $\triangleright f'(x) < 0 \Rightarrow f(x)$ ist streng monoton fallend
- $\triangleright f''(x) > 0, x \in [a, b] \Leftrightarrow f(x)$ konvex auf $[a, b] \smile$
- $\triangleright f''(x) < 0, x \in [a, b] \Leftrightarrow f(x)$ konkav auf $[a, b] \curvearrowright$
- $\triangleright f^n(x)$:
 - -n ungerade \rightarrow mind, eine Nullstelle
 - maximal n-1 Extremalstellen
 - -n gerade und $\geq 2 \rightarrow$ mind. eine Extremalstelle
 - maximal n-2 Wendepunkte
 - $-n \ge 3$ und ungerade \rightarrow mind. ein Wendepunkt, nicht zwingend Sattelpunkt

Wichtige Grenzwerte

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = 1 \quad \lim_{x \to \infty} x \cdot \sin \frac{1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad \lim_{x \to \infty} a^{\frac{1}{x}} = 1$$

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \quad \lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \quad \lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

$$\lim_{x \to 0} \frac{\arcsin(x)}{x} = 1 \quad \lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

$$\lim_{x \to 0} \frac{\sin(ax)}{\sin(ax)} = a \quad \lim_{x \to \infty} x^{a} \cdot \ln(x)^{b} = 0$$

$$\lim_{x \to 0} \frac{\sin(ax)}{\sin(x)} = a \quad \lim_{x \to \infty} \frac{e^{ax}}{x^{b}} = +\infty \qquad g'(0) = g^{(3)}$$

$$\lim_{x \to 0} \frac{\ln(a+x)}{x} = \frac{1}{a} \quad \lim_{x \to \infty} \left(\frac{n-1}{n+1}\right)^{n} = \frac{1}{e^{2}} \qquad f''(0) = f^{(4)}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^{2}} = \frac{1}{2} \quad \lim_{x \to \infty} \frac{\ln(x)}{x-1} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^{2}} = \frac{1}{2} \quad \lim_{x \to \infty} \frac{\tan(x)}{x} = \pm \infty$$

$$\lim_{x \to 0} \frac{\tan(x) - 1}{x} = 1$$
Rechengesetze für

Reihenentwicklung spezieller Funktionen

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots$$

$$\frac{1}{1+2x^2} = \sum_{n=0}^{\infty} (-2x^2)^n = 1 - 2x^2 + 4x^4 + \dots$$

$$\frac{x^2}{5-x} = x^2 \cdot \frac{1}{5} \cdot \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n = \sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^{n+1} x^{n+2}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

Wichtige Integrale

$$\int \sin(x)\cos(x)dx = -\frac{1}{2}\cos^2(x) + C$$

$$\int \sin^2(x)\cos(x)dx = \frac{1}{3}\sin^3(x) + C$$

$$\int \sin(x)\cos^2(x)dx = -\frac{1}{3}\cos^3(x) + C$$

$$\int \ln(x)dx = x(\ln(x) - 1) + C$$

$$\int \frac{1}{x\ln(x)}dx = \ln|\ln|x|| + C$$

$$\int 2x\sqrt{r^2 - x^2}dx = -\frac{2}{3}(r^2 - x^2)^{\frac{3}{2}} + C, \ r \neq 0$$

$$\int \sqrt{1 + x^2}dx = \frac{1}{2}\left(\operatorname{Arsinh}(x) + x\sqrt{1 + x^2}\right) + C$$

$$\int \frac{x}{\sqrt{x^2 - 1}}dx = \sqrt{x^2 - 1} + C$$

$$\int \frac{x}{\sqrt{x^2 + 1}}dx = \sqrt{x^2 + 1} + C$$

$$\int \frac{1}{x^2 + x}dx = -\ln|1 + x^- 1| + C$$

Ableitung Un-/Gerader Funktionen

 $\triangleright q(x)$ sei **gerade**

$$g'(0) = g^{(3)}(0) = g^{(5)}(0) = \dots = 0$$

$$f''(0) = f^{(4)}(0) = f^{(6)}(0) = \dots = 0$$

Rechengesetze für Exponenten & Logarithmen

$$B^{a} \cdot B^{b} = B^{a+b}$$

$$\frac{B^{a}}{B^{b}} = B^{a-b}$$

$$(B^{a})^{b} = B^{a \cdot b}$$

$$\log_{B}(a \cdot b) = \log_{B}(a) + \log_{B}(b)$$

$$\log_{B}\left(\frac{a}{b}\right) = \log_{B}(a) - \log_{B}(b)$$

$$\log_{B}(a^{r}) = r \cdot \log_{B}(a)$$

Basiswechsel: $\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$

Polarkoordinaten

Umrechnung im ersten Quadranten

$$r = \rho(\phi)$$

$$x = \cos(\phi) \cdot r$$

$$y = \sin(\phi) \cdot r$$

$$\phi \in \left[0, \frac{\pi}{2}\right]$$

Parametrisierungen

Kreis / Ellipse

Ellipse mit Mittelpunkt (x_o, y_o) und Halbachsen a & b. implizit:

$$\left(\frac{x - x_o}{a}\right)^2 + \left(\frac{y - y_o}{b}\right)^2 = 1$$

parametrisiert:

$$x(t) = x_o + a \cdot \cos(t)$$

$$y(t) = y_o + b \cdot \sin(t)$$

Normal- und Tangentialvektoren

explizit

$$y = f(x)$$
 $\vec{t} = \begin{pmatrix} 1 \\ f'(x_o) \end{pmatrix}$ $\vec{n} = \begin{pmatrix} f'(x_o) \\ -1 \end{pmatrix}$

parametrisiert

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} \quad \vec{t} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} \quad \vec{n} = \begin{pmatrix} -\dot{y}(t) \\ \dot{x}(t) \end{pmatrix}$$

Differentialrechnung

Ableitung Inverse Funktion

$$(f^{-1})'(x_o) = \frac{1}{f'(f^{-1}(x_o))}$$

Tangenten

$$t(x) = f(x_o) + f'(x_o) \cdot (x - x_o)$$

Eine Tangente t(x) an die Funktion f(x) im Punkt x_0 . erfüllt folgende Bedingungen:

$$t'(x_o) \stackrel{!}{=} f'(x_o),$$
$$t(x_o) \stackrel{!}{=} f(x_o).$$

Tangente $\vec{t}(s)$ an die Parametrisierung $\vec{r}(t)$ im Punkt t_o .

$$\vec{t}(s) = \begin{pmatrix} x(s) \\ y(s) \end{pmatrix} = \vec{r}(t_o) + s \cdot \dot{\vec{r}}(t_o)$$

Fehlerrechnung

Die berechnete Grösse f ist abhängig von der gemessenen Grösse x. Die gemessene Grösse weicht mit dem Messfehler dx von der Realität ab.

▶ Linearisierung

$$\left| f(x) \approx f(x_0) + \left. \frac{\partial f}{\partial x} \right|_{x_0} \cdot (x - x_0) \right|$$

▷ Absoluter Fehler

$$\Delta f = f(x + \Delta x) - f(x) \xrightarrow{\Delta x \to 0} \Delta f \approx f'(x) \Delta x$$

▷ Relativer Fehler

Bemerkungen

1% Genauigkeit

$$\frac{\Delta x}{x} = 1\% = \frac{1}{100}$$

$$\Delta\alpha = \frac{\pi}{180}$$

Parametrisierung der Krümmungsmittelpunkte an die Kurve $\vec{r} = (x(t), y(t))^T$.

$$E(t) = \begin{pmatrix} x_E(t) \\ y_E(t) \end{pmatrix}$$

$$x_E(t) = x - \frac{\dot{y}(\dot{x}^2 + \dot{y}^2)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

$$y_E(t) = y + \frac{\dot{x}\left(\dot{x}^2 + \dot{y}^2\right)}{\dot{x}\ddot{y} - \ddot{x}\dot{y}}$$

Krümmung

 \triangleright Parametrisierung $\vec{r}(t) = (x(t), y(t))^T$

$$k(t) = \frac{\dot{x}\ddot{y} - \ddot{x}\dot{y}}{(\dot{x}^2 + \dot{y}^2)^{\frac{3}{2}}}$$

 \triangleright Explizit y = f(x)

$$k(x) = \frac{f''(x)}{(1 + f'(x)^2)^{3/2}}$$

 \triangleright Polarkoordinaten $r = f(\varphi)$

$$k(\varphi) = \frac{(f(\varphi))^2 + 2(f'(\varphi))^2 - f(\varphi)f''(\varphi)}{[(f(\varphi))^2 + (f'(\varphi))^2]^{3/2}}$$

Integralrechnung

Hauptsatz der Infinitesimalrechnung

Für $a \in \mathbb{R}$

$$\boxed{\frac{d}{dx} \left[\int_{a}^{x} f(t)dt \right] = f(x)}$$

Partialbruchzerlegung

- 1. Nenner Faktorisieren
- 2. Ansatz
- 3. Koeffizientenvergleich, Konstanten bestimmen

 \triangleright *n*-fache reelle Nullstelle:

$$\frac{(\dots)}{(x-x_o)^n} = \frac{A}{(x-x_o)} + \frac{B}{(x-x_o)^2} + \dots + \frac{Z}{(x-x_o)^n}$$

 \triangleright *n*-fache komplexe Nullstelle (e.g. $(x^2 + 1)$):

$$\frac{(\dots)}{(x^2+1)^n} = \frac{Ax+B}{(x^2+1)} + \frac{Cx+D}{(x^2+1)^2} + \dots + \frac{Yx+Z}{(x^2+1)^n}$$

Partielle Integration

Es sei F'(x) = f(x) und G'(x) = g(x), dann gilt

$$\int_{a}^{b} G \cdot f \, dx = G \cdot F \Big|_{a}^{b} - \int_{a}^{b} g \cdot F \, dx.$$

Bogenlänge

 \triangleright explizit y = f(x)

$$s = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

 \triangleright Polarkoordinaten $\rho = \rho(\varphi)$

$$s = \int_{\varphi_1}^{\varphi_2} \sqrt{\rho^2 + \dot{\rho}^2} \ d\varphi$$

 \triangleright Parametrisierung $\vec{r}(t) = (x(t), y(t))^T$

$$s = \int_{t_1}^{t_2} \left| \sqrt{\dot{x}^2 + \dot{y}^2} \right| \ dt$$

Flächenberechnungen

 \triangleright Parametrisierung $\vec{r} = (x(t), y(t))^T$

$$A = \underbrace{\int_{t_1}^{t_2} + y\dot{x} \, dt}_{x \text{ monoton steigens}}$$

$$A = \underbrace{\int_{t_1}^{t_2} -y\dot{x}\,dt}_{1}$$

Fläche zwischen Ursprung und Kurve

▶ Parametrisierung

$$A = \frac{1}{2} \int_{t_1}^{t_2} (x\dot{y} - y\dot{x}) \, dt$$

▷ Polarkoordinaten

$$A = \frac{1}{2} \int_{\varphi_1}^{\varphi_2} \rho^2(\varphi) \, d\varphi$$

Fläche auf der rechten Seite der Kurve hat positives Vorzeichen

Rotationsvolumen

Kurve rotiert um x-Achse:

$$V = \int_{t_1}^{t_2} \pi y^2(t) \cdot \underbrace{\dot{x}(t)dt}_{dx} = \int_{x_1}^{x_2} \pi f^2(x) \cdot dx$$

Kurve rotiert um v-Achse:

$$V = \int_{t_1}^{t_2} \pi x^2(t) \cdot \underbrace{\dot{y}(t)dt}_{dy} = \int_{y_1}^{y_2} \pi x^2 \cdot \underbrace{f'(x)dx}_{dy}$$

Fläche unter Kurve rotiert um y-Achse:

$$V = \int_{t_1}^{t_2} \underbrace{2\pi x(t)}_{\text{Umfang}} \cdot y(t) \cdot \underbrace{\dot{x}(t)dt}_{dx} = \int_{x_1}^{x_2} 2\pi x \cdot f(x) dx$$

Rotationsoberflächen

Kurve rotiert um x-Achse:

$$O = \int_{t_1}^{t_2} 2\pi y(t) \cdot \underbrace{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)} \, dt}_{ds \text{ (Bogenlänge)}}$$
$$= \int_{x_1}^{x_2} 2\pi f(x) \cdot \underbrace{\sqrt{1 + f'(x)^2} \, dt}_{ds}$$

Kurve rotiert um y-Achse:

$$O = \int_{t_1}^{t_2} 2\pi x(t) \cdot \underbrace{\sqrt{\dot{x}^2(t) + \dot{y}^2(t)}}_{ds} dt$$
$$= \int_{x_1}^{x_2} 2\pi x \cdot \underbrace{\sqrt{1 + f'(x)^2}}_{ds} dx$$

Schwerpunkt / Trägheitsmoment

Sei H(x) die Höhe des Fläche a.d.S. x. Sei σ die Flächendichte $[kq/m^2]$.

Fläche:
$$A = \int_{x_1}^{x_2} H(x) dx$$

Masse:
$$M = \int_{x_1}^{x_2} \sigma \cdot H(x) dx$$

$$1 \quad f^{x_2}$$

Schwerpunkt:
$$x_s = \frac{1}{M} \int_{x_1}^{x_2} x \cdot \sigma \cdot H(x) dx$$

SP Rotationsvolumen:
$$x_s = \frac{1}{V} \int_{x_1}^{x_2} x \cdot \pi \cdot H^2(x) \ dx$$

Trägheitsmoment:
$$I_y = \int_{x_1}^{x_2} x^2 \cdot \sigma \cdot H(x) \ dx$$

$$\Theta = \int (Abstand zur Rotationsachse)^2 \cdot (Masse)$$

$$\Theta = \rho \cdot \int_{a}^{b} x^{2} \cdot G(x) dx$$

$$J_0 = \frac{\pi R^4}{2}$$
 = polares Flächenträgheitsmoment der Kreisscheibe

$$\Theta_x = \rho \cdot \int_a^b \frac{1}{2} \pi (f(x))^4 dx = \text{ masseträgheitsmoment}$$
 eines Rotationskörpers

$$\Theta = \rho \cdot \frac{1}{2} \pi \int_{a}^{b} y(t)^{4} ||\dot{x}(t)|| dt$$

G(x) = Masse an diesem Abstand

$$M(x) = \text{Mantelfäche} = 2\pi x \cdot G(x) = \text{Umfang} \cdot \text{H\"{o}he}$$

$$\Theta_z = \rho \int_{x_1}^{x_2} x^2 \cdot M(x) dx$$

Uneigentliche Integrale

 $Konvergiert \Longleftrightarrow Grenzwert \ existiert$

1. Gattung

Zu integrierende Funktion ist an der Grenze nicht definiert. Bsp.:

$$\int_{0}^{1} \frac{1}{x} dx = \lim_{\xi \to 0^{+}} \int_{\xi}^{1} \frac{1}{x} dx$$

2. Gattung

Unendlicher Integrationsbereich. Bsp.:

$$\int_{0}^{\infty} f(x) \ dx = \lim_{\xi \to \infty} \int_{0}^{\xi} f(x) \ dx$$

Tricks

$$\int\limits_{1}^{\infty} \frac{1}{x^{\alpha}} \ dx \qquad \text{konvergiert} \iff \alpha > 1$$

$$\int\limits_{0}^{1} \frac{1}{x^{\alpha}} \ dx \qquad \text{konvergiert} \iff \alpha < 1$$

Appendix B

Häufige Parametrisierungen

Ellipse

$$\overrightarrow{r}(t) = \begin{pmatrix} a \cdot \cos(t) + x_0 \\ b \cdot \sin(t) + y_0 \end{pmatrix}$$

Sonderfall Kreis mit Radius a = b

Zvkloide

$$\overrightarrow{r}(t) = {rt - a\sin(t) \choose r - a\cos(t)}$$

Sonderfall Gewöhnliche Zykloide r = a

Epizykloide

$$\overrightarrow{r}(t) = \binom{R\cos(t) - a\cos(\frac{R}{r}t)}{R\sin(t) - a\sin(\frac{R}{r}t)}$$

Sonderfall Kardioide R = 2r, r = a

$$\overrightarrow{r}(t) = {Rcos(t) + acos(\frac{R}{r}t) \choose Rsin(t) - asin(\frac{R}{r}t)}$$

Lissajous-Figuren

$$\overrightarrow{r}(t) = \begin{pmatrix} a_1 \sin(\omega_1 t + \varphi_1) \\ a_2 \sin(\omega_2 t + \varphi_2) \end{pmatrix}$$

J 1 - J