Inner Mantles and Iterated HOD

Kameryn J Williams

University of Hawai'i at Mānoa

2019 ASL North American Meeting Tuesday, 21 May 2019

Joint work with Jonas Reitz, New York City College of Technology, CUNY.

Set-theoretic geology

Usually, set theorists think of forcing from out an outward point of view. In geology, we reverse that perspective and look inward.

Definition

 $W\subseteq V$ is a ground if there is $\mathbb{P}\in W$ and $G\in V$ a \mathbb{P} -generic over W so that V=W[G].

Set-theoretic geology

Usually, set theorists think of forcing from out an outward point of view. In geology, we reverse that perspective and look inward.

Definition

 $W \subseteq V$ is a ground if there is $\mathbb{P} \in W$ and $G \in V$ a \mathbb{P} -generic over W so that V = W[G].

Theorem (Laver, Woodin)

The grounds are uniformly first-order definable.

Grounds

Theorem (Usuba)

ZFC proves that the grounds are strongly downward directed: If $\{W_r : r \in I\}$ is a set-sized collection of grounds, then there is a ground

$$W\subseteq \bigcap_{r\in I}W_r$$
.

Grounds

Theorem (Usuba)

ZFC proves that the grounds are strongly downward directed: If $\{W_r: r \in I\}$ is a set-sized collection of grounds, then there is a ground

$$W\subseteq \bigcap_{r\in I}W_r.$$

The Bedrock Axiom asserts that the only ground is V itself.

Theorem (Reitz)

There is a class forcing notion which forces the Bedrock Axiom.

The Mantle

Definition

The mantle M is the intersection of the grounds.

The Bedrock Axiom can be equivalently phrased V = M.

Theorem (Fuchs-Hamkins-Reitz, Usuba)

The mantle satisfies ZFC, is preserved by set forcing, and is the largest set forcing-invariant inner model.

The Mantle

Definition

The mantle M is the intersection of the grounds.

The Bedrock Axiom can be equivalently phrased V = M.

Theorem (Fuchs-Hamkins-Reitz, Usuba)

The mantle satisfies ZFC, is preserved by set forcing, and is the largest set forcing-invariant inner model.

Theorem (Fuchs-Hamkins-Reitz)

There is a class forcing notion which forces V to be the mantle of the forcing extension.

Observation

Consistently, $M^M \neq M$.

Proof.

Force V=M. Then use the Fuchs–Hamkins–Reitz forcing to get V[G] with $V=M^{V[G]}$ and so $(M^M)^{V[G]} \neq M^{V[G]}$.

Compare: consistently $HOD^{HOD} \neq HOD$.

Definition

The sequence of inner mantles M^{η} is defined as follows.

- $M^0 = V$.
- $M^{\eta+1} = M^{M^{\eta}}$.
- $M^{\lambda} = \bigcap_{n < \lambda} M^{\eta}$, for limit λ .

Can similarly define the sequence of iterated HODs.

Definition

The sequence of inner mantles M^{η} is defined as follows.

- $M^0 = V$.
- $M^{\eta+1} = M^{M^{\eta}}$.
- $M^{\lambda} = \bigcap_{n < \lambda} M^{\eta}$, for limit λ .

Can similarly define the sequence of iterated HODs.

Theorem (McAloon)

There is a model of ZFC so that HOD^{ω} is not a definable class.

Question

Can a similar result be proved for M^{ω} ?

Fuchs, Hamkins, and Reitz asked: can we force V to be the η -th inner mantle of a forcing extension? Compare:

Theorem (Zadrożny)

For each ordinal η or $\eta = \mathrm{Ord}$ there is a class forcing extension V[G] of V so that $V = (HOD^{\eta})^{V[G]}$.

Fuchs, Hamkins, and Reitz asked: can we force V to be the η -th inner mantle of a forcing extension? Compare:

Theorem (Zadrożny)

For each ordinal η or $\eta = \mathrm{Ord}$ there is a class forcing extension V[G] of V so that $V = (HOD^{\eta})^{V[G]}$.

Reitz and I answered the question affirmatively.

Warmup: forcing $V = M^{V[G]}$

For ease of presentation, I will assume GCH. The arguments can be made without this assumption, but choosing the coding points requires more care.

Let \mathbb{P} the the product of $\mathrm{Add}(\alpha,\alpha^{++})\oplus \mathbf{0}$ for regular cardinals α , with set support.

Theorem (Fuchs-Hamkins-Reitz)

The forcing $\mathbb P$ preserves ZFC and if $G\subseteq \mathbb P$ is generic over V then $V=M^{V[G]}=HOD^{V[G]}$.

The forcing $\mathbb{M}(\eta)$

(Again assume GCH.)

The problem: we cannot just iterate \mathbb{P} , because the correspondence between stages in the iteration and successive mantles is reversed.

The forcing $\mathbb{M}(\eta)$

(Again assume GCH.)

The problem: we cannot just iterate \mathbb{P} , because the correspondence between stages in the iteration and successive mantles is reversed.

- R is the class of regular cardinals $> \eta^+$. Partion R into η many cofinal classes:
- R_i consists of the elements of R whose index is equivalent to i modulo η.
- For $\alpha \in R$ the index $i(\alpha)$ of α is the unique $i < \eta$ so $\alpha \in R_i$.
- $\bullet \ R_{>i} = \bigcup_{j>i} R_j.$
- $\bullet \ R_{\geq i} = \bigcup_{j>i} R_j.$

The forcing $\mathbb{M}(\eta)$

Conditions in $\mathbb{M}(\eta)$ are set-sized functions p with dom p an initial segment of R. For each $\alpha \in \text{dom } p$ we have $p(\alpha)$ is an $\mathbb{M}(\eta) \upharpoonright (R_{>i(\alpha)} \cap \alpha)$ -name for a condition in $\text{Add}(\alpha, \alpha^{++}) \oplus \mathbf{0}$. The support of p is arbitrary.

For $p, q \in \mathbb{M}(\eta)$, say $q \leq p$ if $\operatorname{dom} q \supseteq \operatorname{dom} p$ and for each $\alpha \in \operatorname{dom} p$ we have $p \upharpoonright (R_{>i(\alpha)} \cap \alpha)$ forces over $\mathbb{M}(\eta) \upharpoonright (R_{>i(\alpha)} \cap \alpha)$ that $q(\alpha) \leq p(\alpha)$.

Properties of $\mathbb{M}(\eta)$

Lemma

- $\mathbb{M}(\eta)$ is a progressively distributive iteration and thus preserves ZFC. That is, for arbitrarily large κ we can factor $\mathbb{M}(\eta)$ as $\mathbb{Q}_{\kappa} * \dot{\mathbb{Q}}^{\mathrm{tail}}$ where \mathbb{Q}_{κ} is a set and $\mathbb{Q}_{\kappa} \Vdash \dot{\mathbb{Q}}^{\mathrm{tail}}$ is $<\kappa$ -distributive.
- $\mathbb{M}(\eta)$ is $\leq \eta^+$ -closed.
- Forcing with $\mathbb{M}(\eta)$ preserves R.

Properties of $\mathbb{M}(\eta)$

Lemma

- $\mathbb{M}(\eta)$ is a progressively distributive iteration and thus preserves ZFC. That is, for arbitrarily large κ we can factor $\mathbb{M}(\eta)$ as $\mathbb{Q}_{\kappa} * \dot{\mathbb{Q}}^{\mathrm{tail}}$ where \mathbb{Q}_{κ} is a set and $\mathbb{Q}_{\kappa} \Vdash \dot{\mathbb{Q}}^{\mathrm{tail}}$ is $<\kappa$ -distributive.
- $\mathbb{M}(\eta)$ is $\leq \eta^+$ -closed.
- Forcing with $\mathbb{M}(\eta)$ preserves R.

Analogous facts hold for $\mathbb{M}(\eta) \upharpoonright R_{\geq i}$ for each $i \leq \eta$.

Theorem (Reitz-W.)

Let $G \subseteq \mathbb{M}(\eta)$ be generic over V. Then $V = (M^{\eta})^{V[G]} = (HOD^{\eta})^{V[G]}$.

Theorem (Reitz-W.)

Let $G \subseteq \mathbb{M}(\eta)$ be generic over V. Then $V = (M^{\eta})^{V[G]} = (HOD^{\eta})^{V[G]}$.

Set $\mathbb{P} = \mathbb{M}(\eta)$ and $\mathbb{P}_i = \mathbb{M}(\eta) \upharpoonright R_{>i}$. Then \mathbb{P}_i canonically embeds into \mathbb{P} giving

$$\mathbb{P} = \mathbb{P}_0 \supseteq \mathbb{P}_1 \supseteq \cdots \supseteq \mathbb{P}_i \supseteq \cdots \qquad i < \eta$$

a descending chain of complete subposets.

Set
$$G_i = G \cap \mathbb{P}_i$$
.

Theorem (Reitz-W.)

Let $G \subseteq \mathbb{M}(\eta)$ be generic over V. Then $V = (M^{\eta})^{V[G]} = (HOD^{\eta})^{V[G]}$.

Set $\mathbb{P} = \mathbb{M}(\eta)$ and $\mathbb{P}_i = \mathbb{M}(\eta) \upharpoonright R_{>i}$. Then \mathbb{P}_i canonically embeds into \mathbb{P} giving

$$\mathbb{P} = \mathbb{P}_0 \supseteq \mathbb{P}_1 \supseteq \cdots \supseteq \mathbb{P}_i \supseteq \cdots \qquad i < \eta$$

a descending chain of complete subposets.

Set
$$G_i = G \cap \mathbb{P}_i$$
.

Claim

For each $i \leq \eta$ we have $(M^i)^{V[G]} = (HOD^i)^{V[G]} = V[G_i]$.

Claim

For each $i \leq \eta$ we have $(M^i)^{V[G]} = (HOD^i)^{V[G]} = V[G_i]$.

The successor case is essentially the Fuchs-Hamkins-Reitz argument.

The limit case goes through a technical lemma, a variant of a result due to Jech about continuous descending sequences of complete boolean subalgebras.

The technical lemma

Lemma

i is a limit ordinal, ${\mathbb P}$ is a < i^+ -closed pretame class forcing notion, and

$$\mathbb{P} = \mathbb{P}_0 \supseteq \mathbb{P}_1 \supseteq \cdots \supseteq \mathbb{P}_j \supseteq \cdots \supseteq \mathbb{P}_i$$

is a continuous descending sequence of complete suborders, coded as a single class. Further suppose that $\mathbb P$ is a progressively distributive iteration, factoring as $\mathbb Q_\kappa * \dot{\mathbb Q}^{\mathrm{tail}}$ for arbitrary large κ . Even further suppose $\mathbb P_j \cap \mathbb Q_\kappa$ is a complete suborder of $\mathbb P_j$ for each j, and the intersections form a continuous descending sequence of complete suborders:

$$(\mathbb{P}\cap\mathbb{Q}_{\kappa})=(\mathbb{P}_0\cap\mathbb{Q}_{\kappa})\supseteq(\mathbb{P}_1\cap\mathbb{Q}_{\kappa})\supseteq\cdots\supseteq(\mathbb{P}_j\cap\mathbb{Q}_{\kappa})\supseteq\cdots\supseteq(\mathbb{P}_i\cap\mathbb{Q}_{\kappa}).$$

Then, if $G \subseteq \mathbb{P}$ is generic over V and $G_j = G \cap \mathbb{P}_j$, then for any set of ordinals $X \in V[G]$ we have $X \in \bigcap_{j < i} V[G_j]$ if and only if $X \in V[G_i]$.

Separating the inner mantles from the iterated HODs

Theorem (Reitz-W.)

Let ζ and η be ordinals. There are class forcings $\mathbb A$ and $\mathbb B$ uniformly definable in ζ and η so that:

- Forcing with $\mathbb A$ gives a model where the sequence of iterated HODs has length exactly ζ and the sequence of inner mantles has length exactly $\zeta + \eta$.
- Forcing with $\mathbb B$ gives a model where the sequences of inner mantels has length exactly ζ and the sequence of iterated HODs has length exactly $\zeta + \eta$.

Separating the inner mantles from the iterated HODs

Theorem (Reitz-W.)

Let ζ and η be ordinals. There are class forcings $\mathbb A$ and $\mathbb B$ uniformly definable in ζ and η so that:

- Forcing with $\mathbb A$ gives a model where the sequence of iterated HODs has length exactly ζ and the sequence of inner mantles has length exactly $\zeta + \eta$.
- Forcing with $\mathbb B$ gives a model where the sequences of inner mantels has length exactly ζ and the sequence of iterated HODs has length exactly $\zeta + \eta$.

Fuchs–Hamkins–Reitz had forcings for separating the mantle and HOD. We modify their constructions similar to the definition of $\mathbb{M}(\eta)$.

Some open questions

The forcings $\mathbb A$ and $\mathbb B$ separate the sequences of inner mantles and iterated HODs. But they each make one sequence an initial segment of the other.

How independent are the two sequences?

Some open questions

The forcings $\mathbb A$ and $\mathbb B$ separate the sequences of inner mantles and iterated HODs. But they each make one sequence an initial segment of the other.

How independent are the two sequences?

Question

 η an ordinal. Can we force V to be the η -th inner mantle and η -th iterated HOD of the extension, but $M^i \neq HOD^i$ for each $0 < i < \eta$?

Question

 η an ordinal. Can we force that $M^i = HOD^{2i}$ for each $i < \eta$? What about getting $M^{2i} = HOD^i$ for each $i < \eta$?

Thank you!