МП-31 Захаров Дмитро

Викладач: Гиря Н.П.

Контрольна робота 2

§ Перетворення. Варіант 4 §

Задача 1: Лінійно-дробова функція #1

Умова. Знайти лінійно-дробове відображення $\omega: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ таке, що задовільняє $\omega(0)=1+i, \omega(2)=\infty, \omega(1+i)=3.$

Розв'язання. Як відомо, існує єдине лінійне-дробове відображення таке, що переводить трійку заданих точок в іншу трійок точок. Для знаходження ω скористаємось співвідношенням

$$\omega: \frac{z-z_1}{z-z_2} \cdot \frac{z_3-z_2}{z_3-z_1} = \frac{\omega-\omega_1}{\omega-\omega_2} \cdot \frac{\omega_3-\omega_2}{\omega_3-\omega_1}$$
 (1.1)

Власне, залишається лише підставити наші точки:

$$\frac{z-0}{z-2} \cdot \frac{1+i-2}{1+i-0} = \frac{\omega - (1+i)}{\omega - \infty} \cdot \frac{3-\infty}{3-(1+i)}$$
 (1.2)

Тут виникає питання з тим, що робити з виразами типу $\omega - \infty$. Правило наступне: вирази, де є точка на нескінченності, треба заміняти одиничкою. Тому остаточно маємо:

$$\frac{z}{z-2} \cdot \frac{-1+i}{1+i} = \frac{\omega - (1+i)}{2-i} \tag{1.3}$$

Оскільки $\frac{-1+i}{1+i} = i$, то можна спростити до:

$$\omega = (2-i) \cdot \frac{iz}{z-2} + (1+i) = \frac{(2i+1)z + (1+i)(z-2)}{z-2}$$
 (1.4)

$$= \left[\frac{(2+3i)z - 2(1+i)}{z-2} \right] \tag{1.5}$$

Відповідь. $\omega = \frac{(2+3i)z-2(1+i)}{z-2}$

Рис. 1: Перетворення $z\mapsto e^z$ до початкового образу в задачі 2.

Задача 2: Перетворення

Умова. Перевести область $\mathcal{D} = \{z \in \mathbb{C} : |\mathrm{Im}(z)| < \pi \land z \neq (\pi, +\infty) \cup (-\infty, 0)\}$ на верхню напівплощину.

Відповідь. Спочатку застосуємо експоненійне відображення $z\mapsto e^z$. Тоді прямі $z=x\pm i\pi$ перейдуть у $e^{x\pm i\pi}=e^{\pm i\pi}e^x=-e^x, x\in\mathbb{R}$. Це відповідає променю $(-\infty,0)$. Тобто, $z\neq (-\infty,0)$. Відрізок $(-\infty,0)$ перейде у (0,1), а $(\pi,+\infty)$ у $(e^\pi,+\infty)$. Отже, маємо Рисунок 5.

Отже, по суті треба перевести $z \neq (-\infty,1) \cup (e^{\pi},+\infty)$ до $z \neq (-\infty,-1) \cup (1,+\infty)$, а далі застосувати обернену функцію Жуковсього. Для цього віднімемо $\frac{1+e^{\pi}}{2}$, це переведе нашу область в $z \neq (-\infty,\frac{1}{2}-\frac{e^{\pi}}{2}) \cup (\frac{e^{\pi}}{2}-\frac{1}{2})$. Ділимо на $\frac{e^{\pi}-1}{2}$, отримаємо $z \neq (-\infty,1) \cup (1,+\infty)$, а далі засувавши функцію Жуковсього, отримаємо результат. Отже, перші два перетворення мають вигляд:

$$z \mapsto \frac{e^{\pi} - 1}{2} \left(z - \frac{1 + e^{\pi}}{2} \right) \tag{2.1}$$

А далі $z \mapsto z + \sqrt{z^2 - 1}$. Весь процес проілюстровано на Рисунку 2. Наше відображення тоді доволі об'ємне, тому явно його не будемо виписувати.

Дещо більш просте перетворення можна отримати за допомогою дробоволінійного відображення. Якщо спочатку застосувати $z\mapsto \frac{z-e^\pi}{z-1}\ (1\mapsto\infty,e^\pi\mapsto 0),$ а далі взяти корінь з цього, то теж отримаємо шуканий результат. Тобто, $\omega(z)=\sqrt{\frac{e^z-e^\pi}{e^z-1}}.$

Задача 3: Гіперболічний косинус

Умова. Знайти образ при застосуванні відображення $\omega: z \mapsto \cosh z$ на область $\mathcal{D} = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0 \land -1 < \operatorname{Im}(z) < 0\}.$

Рис. 2: Перетворення, що закінчує задачу 2.

Рис. 3: Перетворення $z \mapsto e^z$ до початкового образу в задачі 3.

Коментар. У завданні було написано $\cosh \pi$ замість відображення, тому я підозрюю, що там мало стояти $\cosh z$.

Розв'язання. Як відомо, гіперболічний косинус можна записати за означенням як $\omega(z)=\frac{e^z+e^{-z}}{2}$. Тепер помітимо, що по суті, ми маємо композицію двох перетворень:

- Спочатку накладається експоненційне відображення $z\mapsto e^z$.
- Далі накладається функція Жуковського $z \mapsto \frac{1}{2} \left(z + \frac{1}{z} \right)$.

Отже, залишається послідовно накласти ці два відображення до заданої області \mathcal{D} .

Крок 1. Розглянемо, як перетворюються границі області при такому перетворенні. Дійна пряма $(0, +\infty)$ перейде у відрізок $(1, +\infty)$. Горизональна пряма x - i для $x \in (0, +\infty)$ перетвориться на $e^{x-i} = e^x e^{-i} = z_0 e^x$ – це буде промінь від початку координат до z_0 , починаючи з z_0 , де $z_0 = e^{-i}$.

Вертикальна пряма it для $t\in (-1,0),$ тому образом буде дуга на одиничному колі між 1 та $e^{-i}.$

Рис. 4: Перетворення Жуковського до першого образу в задачі 3.

Нарешті, щоб визначити орієнтацію, підставимо якусь точку. Наприклад, $i\pi \notin \mathcal{D}$. Тоді $e^{i\pi} = -1$ не належить області, а отже маємо Рисунок 3.

Крок 2. Застосовуємо функцію Жуковсього на дугу та дві прямі. Дугу одиничного колу функція Жуковсього переводить на відрізок. Один кінець це z=1, а інший $\frac{1}{2}(e^i+e^{-i})=\cos 1$, тобто маємо відрізок $(\cos 1,1)$. Далі промінь z=t для $t\in (1,+\infty)$ відобразиться на промінь $(1,+\infty)$.

Нарешті, $z = z_0 t$ для $t \in (1, +\infty)$ перейде у:

$$\phi: z_0 t \mapsto \frac{1}{2} \left(z_0 t + \frac{1}{z_0 t} \right) = \frac{1}{2} \left(e^{-i} t + \frac{e^i}{t} \right)$$
 (3.1)

Отже, можемо знайти конкретний параметричний вигляд образу. Наприклад, дійсна частина:

$$\operatorname{Re}(\phi(t)) = t \cos 1 + \frac{\cos 1}{t}, \ \operatorname{Im}(\phi(t)) = -t \sin 1 + \frac{\sin 1}{t}$$
 (3.2)

Скоріше за все, цю криву можна віднести до якогось конкретного класу (наприклад, гіперболи), але явно я це не побачив, тому її і побудував. Результат на Рисунку 4. Область має бути замальованою всередині, під прямою y=0.

Задача 4: Лінійно-дробова функція #2

Умова. Знайти образ при застосуванні відображення $\omega: z \mapsto \frac{2+z}{z+1}$ на область $\mathcal{D}=\{z\in\mathbb{C}: |z+1|>2\}.$

Рис. 5: Перетворення в задачі 4. Червоним відмічено симетричні точки до і після перетворення, помаранчевим – якась точка за областю.

Розв'язання. Як відомо, лінійно-дробове відображення переводить узагальнене коло у узагальнене коло. Це означає, що як результат ми або отримаємо інше коло, або пряму.

Помітимо, що у нашого лінійно-дробового відображення $\omega: z \mapsto \frac{2+z}{z+1} \in$ особлива точка z=-1. Причому, -1 не належить нашій області і границі (а точніше, вона є центром кола |z+1|=2).

За принципом симетрії, знайдемо центр відображення $\omega(\mathcal{D})$. Симетричним до центра кола є точка на нескінченності і навпаки. Тому, $\omega(\infty)$ має відповідати центру нового відображення. Легко бачити, що $\omega(\infty)=1$ – отже це новий центр.

Отже, залишилося знайти радіус. Як відомов, дві точки z та z^* є симетричними відносно кола, якщо $|z-z_0|\cdot|z^*-z_0|=R^2$. Тому візьмемо дві симетричні точки, вони переведуться у інші дві симетричні точки, а звідти ми знайдемо радіус.

Отже, нехай z=0, тоді $1\cdot |z^*+1|=4$ звідси $z^*=3$ ($z^*=-5$ буде лежати на іншому промені). Тоді нова пара симетричних точок $\omega(0)=2, \omega(3)=\frac{5}{4}$. Тому, радіує знайдемо як:

$$(2-1)\left(\frac{5}{4}-1\right) = (R^*)^2 \implies R^* = \frac{1}{2}$$
 (4.1)

Отже, залишається лише знайти орієнтацію. Підставимо, наприклад, $2\in\mathcal{D}$. Тоді $\omega(2)=\frac{4}{3}$ — належить всередині знайденого кола.

Отже остаточно наш образ $|z-1| < \frac{1}{2}$.

Відповідь. $\{z \in \mathbb{C} : |z-1| < \frac{1}{2}\}.$