Chapitre 4: Application des principes

I Fonctions thermodynamiques

A) Définition

1) Enthalpie *H*.

H = U + PV, définie pour les systèmes dans lesquels on peut parler de pression et où elle est définie.

On a
$$dU = TdS - PdV + \sum \mu_i dn_i$$
 et $dH = dU + PdV + VdP$.

Donc
$$dH = TdS + VdP + \sum_{i}^{l} \mu_{i} dn_{i}$$

Cela permet donc d'échanger V et P dans l'identité de Gibbs.

$$H = H(S, P, n_i)$$
.

2) Energie libre *F*.

F = U - TS, définie pour les systèmes ayant une température et une entropie.

On a alors
$$dF = -SdT - PdV + \sum_{i} \mu_{i} dn_{i}$$

On a donc ici échangé S et T, et $F = F(T, V, n_i)$

3) Enthalpie libre *G*.

$$G = U + PV - TS$$
.
On a alors $dG = -SdT + VdP + \sum_{i} \mu_{i} dn_{i}$, et $G = G(T, P, n_{i})$.

Remarque:

H, F et G sont des fonctions d'état, donc les différentielles écrites sont totales. On a alors, pour une fonction f:

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$
, et $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$, soit, par exemple pour l'enthalpie :

$$\frac{\partial H}{\partial S} = T$$
, $\frac{\partial H}{\partial P} = V$, donc $\frac{\partial V}{\partial S} = \frac{\partial^2 H}{\partial S \partial P} = \frac{\partial^2 H}{\partial P \partial S} = \frac{\partial T}{\partial P}$.

Et de même pour les autres,
$$\frac{\partial S}{\partial V} = \frac{\partial P}{\partial T}$$
 et $-\frac{\partial S}{\partial P} = \frac{\partial V}{\partial T}$

Les transformations $U \to F$, $U \to G$ ou $U \to H$ sont des transformations de Legendre.

Toutes les fonctions $U(S,V,n_i)$, $F(T,V,n_i)$, $G(T,P,n_i)$ et $H(S,P,n_i)$ contiennent toutes les informations sur le système.

La fonction G est généralement plus commode, T et P étant facile à mesurer.

B) Calcul de S, H en fonction de G.

On a
$$dG = -SdT + PdV + \sum_{i} \mu_{i} dn_{i}$$

Donc
$$S = -\left(\frac{\partial G}{\partial T}\right)_{P,n_i}$$
.

On a H = G + TS

Donc
$$\frac{-H}{T^2} = \underbrace{\frac{-1}{T^2}G - \frac{1}{T}S}_{=\left(\frac{\partial \left(\frac{G}{T}\right)}{\partial T}\right)_{p,n_i}}$$
.

D'où la relation de Gibbs-Helmholtz :
$$H = -T^2 \left(\frac{\partial \left(\frac{G}{T} \right)}{\partial T} \right)_{P,n_i} = H(T,P,n_i).$$

Mais avec $H(\underline{T}, P, n_i)$, on ne peut pas retrouver G:

En intégrant, on obtient $\frac{G}{T} = -\int \frac{H}{T^2} dT + f(P, n_i)$, et f peut être à peu près n'importe quelle fonction.

Ainsi, les variables en fonction desquelles on exprime chacune des fonctions U, F, G, H, S sont importantes.

II Bilans d'énergie (1er principe)

A) Bilan énergétique des systèmes fermés

- 1) Transformation quelconque
 - $\bullet \quad \Delta E = Q + W$
 - Si $\Delta E_p = \Delta E_c = 0$, $\Delta U = Q + W$

2) Transformation adiabatique

On a alors Q = 0.

Donc $\Delta E = W$, ou $\Delta U = W$.

3) Transformation sans travail de pression

Exemple : les transformations isochores sont sans travail de la pression.

• Cas général :

$$W = \underbrace{W_p}_{\substack{\text{travail des} \\ \text{forces de pression}}} + \underbrace{W'}_{\text{autres}}$$

Donc $\Delta E = Q + W'$, ou $\Delta U = Q + W'$

(On considère dans la suite que $E \equiv U$)

- Cas particuliers:
- Si Q = 0, on a alors $\Delta U = W'$ (correspond à la calorimétrie)
- Si W'=0, on a alors $\Delta U=Q$.

4) Transformation isobare

C'est une transformation pour laquelle la pression est définie et constante à tout instant et en tout point (égale à $P_{\rm ext}$)

Ainsi,
$$W_p = -P\Delta V = -\Delta(PV)$$

• Cas général :

$$\Delta E = Q + W$$

Donc
$$\Delta U + \Delta E_c + \Delta E_n = Q + W' - \Delta (PV)$$

Donc
$$\Delta H + \Delta E_c + \Delta E_p = Q + W'$$

Ou, si
$$\Delta E_c = \Delta E_p = 0$$
, $\Delta H = Q + W'$

- Cas particuliers:
- Si Q = 0, on a alors $\Delta H = W'$
- Si W'=0, on a alors $\Delta H=Q$ (correspond en général à la chimie)
- Application:

Mesure du transfert thermique associé à une réaction chimique non explosive, qu'on suppose exothermique.

Ainsi, la transformation est isobare mais pas isotherme.

On cherche Q.

On a
$$E_c = 0$$
, $\Delta E_p = 0$.

Donc
$$Q = \Delta H_{i \to f}$$
.

On considère une autre transformation :

Etat 1 :
$$A + B, T_0, P_0$$

On le met dans un calorimètre et on laisse la transformation se faire.

Etat 2:
$$A+B+C+D, T_1, P_0$$

On le sort du calorimètre et on attend l'équilibre thermique.

Etat 3 :
$$A+B+C+D, T_0, P_0$$
 (correspond à l'état final)

On le remet dans le calorimètre avec une résistance jusqu'à atteindre T_1 .

Etat 4 :
$$A+B+C+D$$
, T_1 , P_0 (correspond à l'état 2)

Ainsi:

$$1 \to 2 : Q = 0, W' = 0$$
. Donc $\Delta H_{1 \to 2} = 0$

$$3 \rightarrow 4$$
: $W' = Ri^2 \Delta t$. Donc $\Delta H_{3 \rightarrow 4} = W'$

Ainsi,
$$\Delta H_{i \to f} = \Delta H_{1 \to 3} = \Delta H_{1 \to 2} + \Delta H_{2 \to 3} = \Delta H_{1 \to 2} - \Delta H_{3 \to 4} = -W'$$

Donc $Q = -W' = -Ri^2 \Delta t$

B) Bilan énergétique des écoulements permanents

1) Hypothèses de travail

$$D_{m,e}, \overrightarrow{v_e}, \overline{z_e}$$

$$P_Q \qquad D_{m,s}, \overrightarrow{v_s}, \overline{z_s}$$

- Système : fluide dans l'enceinte rouge.
- Le système est ouvert
- La surface peut avoir plusieurs nappes (si par exemple il y a une turbine à l'intérieur)
- Transfert de matière :
- Transfert uniquement convectif
- Uniquement à l'entrée et à la sortie
- En régime permanent, $D_{m,e} = D_{m,s} = D_m$ (car la masse est conservative)

• En regime permanent,
$$D_{m,e} = D_m$$

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \rho \vec{v} = 0 \text{ Donc } \vec{\nabla} \cdot \rho \vec{v} = 0$$
en régime permanent

$$\iiint \vec{\nabla} \cdot \rho \vec{v} \, d\tau = \oint \rho \vec{v} \cdot d\vec{S}$$

En dehors de l'entrée et de la sortie, $\vec{v} \perp d\vec{S}$; on peut ensuite en tirer $D_{\scriptscriptstyle m}$

- Transfert d'énergie :
- Transfert thermique : uniquement pour $P_{\mathcal{Q}}$ (pas à l'entrée ni à la sortie)
- Travail
- (1) Travail de transfert (à l'entrée et à la sortie)

$$\overrightarrow{F} = P_e S_e \vec{u}$$

$$\delta W_{e} = \vec{F} \cdot \vec{v}_{e} dt = P_{e} S_{e} v_{e} dt$$

De même en sortie, $\delta W_s = -P_s S_s v_s dt$ (la force est de sens opposé)

On a de plus :
$$D_{m,e}dt = \rho_e S_e v_e dt$$
, donc $S_e v_e = \frac{D_{m,e}}{\rho_e}$

Et de même
$$S_s v_s = \frac{D_{m,s}}{\rho_s}$$

Ainsi,
$$\delta W_1 = \delta W_e + \delta W_s = D_m \left(\frac{P_e}{\rho_e} - \frac{P_s}{\rho_s} \right) dt$$

(2) Travail autre : P_W

On a alors $\delta W_2 = P_W dt$.

2) Bilan en régime permanent

Pour le système fermé :

$$dE = \delta Q + \delta W$$
.

On est en régime permanent, donc sur l'aire hachurée $dE_{\parallel \parallel} = 0$

Donc
$$dE = D_m dt (e_{m,s} - e_{m,e})$$

On a de plus
$$e_m = u_m + \frac{1}{2}v^2 + gz$$

Et
$$\delta W = D_m \left(\frac{P_e}{\rho_e} - \frac{P_s}{\rho_s} \right) dt + P_W dt$$
, $\delta Q = P_Q dt$.

Donc
$$D_m \Delta (u_m + \frac{1}{2}v^2 + gz) = D_m \left(\frac{P_e}{\rho_e} - \frac{P_s}{\rho_s} \right) + P_W + P_Q$$

Enfin,
$$H = U + PV$$
, soit $h_m = u_m + \frac{P}{\rho}$
Donc $D_m \Delta (h_m + \frac{1}{2}v^2 + gz) = P_W + P_Q$

Donc
$$D_m \Delta (h_m + \frac{1}{2}v^2 + gz) = P_W + P_Q$$

III Bilans entropiques des systèmes fermés (2nd principe)

A) Relation de Clausius

• Relation générale :

$$\frac{dS}{dt} = \underbrace{\frac{\delta_e S}{dt}}_{=-\iint \frac{\tilde{J}_Q}{T_{\text{ext}}} d\vec{S}} + \underbrace{\frac{\delta_i S}{dt}}_{\geq 0}$$

Donc
$$\frac{dS}{dt} \ge - \iint \frac{\vec{j}_Q}{T_{\text{ext}}} \cdot d\vec{S}$$

• Si T_{ext} est uniforme :

$$\frac{dS}{dt} \ge \frac{1}{T_{\text{ext}}} \times \underbrace{\left(- \oiint \vec{j}_{Q} \cdot d\vec{S}\right)}_{\underbrace{\frac{\partial Q}{\partial t}}}$$

Soit
$$dS \ge \frac{\delta Q}{T_{\text{ext}}}$$
 (avec $dt > 0$)

B) Application aux transformations réversibles

On aura
$$\frac{dS}{dt} = - \oiint \frac{\vec{j}_Q}{T_{\text{ext}}} \cdot d\vec{S}$$

1) Transformations adiabatiques

On a alors $\vec{j}_Q \cdot d\vec{S} = 0$

- Pour une transformation infinitésimale, dS = 0
- Pour une transformation finie, $\Delta S = 0$
- Pour une transformation cyclique, $\Delta S = 0$ (2×!)

2) Transformations diathermes

La température intérieure est définie et uniforme (puisque la transformation est réversible), égale à $T_{\rm ext}$.

Donc $T = T(\vec{r}, t)$

- Pour une transformation infinitésimale, $dS = \frac{\delta Q}{T}$
- Pour une transformation finie, $\Delta S = \int_t \frac{\delta Q}{T}$
- Pour une transformation cyclique, $\Delta S = \oint_{t} \frac{\delta Q}{T} \left\{ \oint_{t} \frac{\delta Q}{T} = 0 \right\}$

3) Transformations isothermes

Ici, $T = T(\vec{r}, t)$

- Pour une transformation finie, $\Delta S = \frac{Q}{T}$
- Pour une transformation cyclique, $\Delta S = \frac{Q}{T}$ Q = 0 $\Delta S = 0$

C) Application aux transformations irréversibles

On aura
$$\frac{dS}{dt} > - \oiint \frac{\vec{j}_{\varrho}}{T_{\text{ext}}} \cdot d\vec{S}$$

1) Transformations adiabatiques

On a
$$\vec{j}_Q \cdot d\vec{S} = 0$$

- Pour une transformation finie, $\Delta S > 0$
- Pour un cycle, on devrait avoir $\Delta S > 0$ et $\Delta S = 0$, ce qui est impossible. On ne peut donc pas avoir de transformation cyclique adiabatique irréversible.

2) Transformations diathermes

On suppose que T_{ext} est uniforme.

- Pour une transformation finie, $\Delta S > \int_{t} \frac{\delta Q}{T_{\text{ext}}}$
- Pour une transformation cyclique, $\Delta S = 0 > \oint_t \frac{\delta Q}{T_{\text{ext}}}$

3) Transformations monothermes

Ici, $T_{\text{ext}}(\vec{r},t)$ (température extérieure stationnaire et homogène)

- Pour une transformation finie, $\Delta S > \frac{Q}{T_{\text{ext}}}$
- Pour une transformation cyclique, 0 > Q

IV Machines thermiques

A) Machines monothermes

1) Définition

C'est un système qui :

- Effectue des cycles
- Echange un travail avec l'extérieur
- Echange de la chaleur avec un thermostat à $T_{\text{ext}} = T_0 = \text{cte}$

On représente positivement ce qui entre dans S.

2) Exemple

On comprime, on détend...

3) Machines réversibles

• 2nd principe:

$$\Delta S = 0$$

$$\Delta S = \frac{Q}{T_0}$$
Donc $Q = 0$

• 1^{er} principe:

• 1et principe :

$$\Delta U = 0$$

 $\Delta U = Q + W$ Donc $W = 0$

→ Pas très utile...

4) Machine monotherme irréversible

• 2nd principe:

$$\frac{\Delta S = 0}{\Delta S > \frac{Q}{T_0}}$$
 Donc $Q < 0$

• 1^{er} principe:

$$\Delta U = 0$$

 $\Delta U = Q + W$ } Donc $W > 0$

On peut uniquement fournir du travail pour obtenir de la chaleur.

B) Machines dithermes

1) Définition

C'est un système effectuant des cycles et pouvant échanger du travail avec le milieu extérieur et de la chaleur uniquement avec deux thermostats à T_1 et T_2 (avec $T_1 > T_2$)

2) Nature du cycle

- Cas général :
- Monotherme à T_1
- Adiabatique
- Monotherme à T_2
- Adiabatique
- Cycle de Carnot : même que général mais réversible
- Isotherme à T_1

- Isentropique
- Isotherme à T_2
- Isentropique

3) Application des principes

- 1^{er} principe : $0 = Q_1 + Q_2 + W$ 2nd principe : $0 \ge \oint_t \frac{\delta Q}{T_{\text{ext}}}$, ou $0 \ge \frac{Q_1}{T_1} + \frac{Q_2}{T_2}$
- Diagramme de Raveau:

4) Différents types de machine ditherme

Moteur:

But : obtenir du travail (W < 0)

Ainsi : $Q_1 > 0$, $Q_2 < 0$ (/// sur le diagramme)

Efficacité : $e = \frac{-W}{Q_1} = 1 + \frac{Q_2}{Q_1}$

 $e \le 1 - \frac{T_2}{T_1}$. Dans tous les cas, $0 \le e \le 1$

• Réfrigérateur :

But : Prélever de la chaleur à la source froide ($Q_2 > 0$)

Ainsi, $Q_1 < 0$, W > 0 (/// sur le diagramme)

Efficacité:

$$e = \frac{Q_2}{W} = \frac{-1}{1 + \frac{Q_1}{Q_2}} \le \frac{T_2}{\underbrace{T_1 - T_2}_{e_{\text{rév}}}}$$

Remarque:

On n'a pas nécessairement $e \le 1$. Le réfrigérateur est d'autant plus efficace que l'écart entre la source froide et la source chaude est faible.

• Pompe à chaleur :

But : donner de la chaleur à la source chaude $(Q_1 < 0)$, et avoir W le plus faible possible (/// sur le diagramme)

Efficacité:

$$e = \frac{-Q_1}{W} \le \frac{T_1}{\underbrace{T_1 - T_2}_{e_{\text{rév}}}}$$

Remarque

On peut là aussi avoir e > 1, et l'écart doit aussi être faible pour une meilleure efficacité.

5) Rendement

• Définition :

$$r = \frac{-W}{Q_1}$$
 (-W : ce qui est gagné, Q_1 : ce qu'on paye pour garder la source

suffisamment chaude). r correspond à l'efficacité pour un moteur, mais dans tous les cas on a 0 < e < 1

• 1^{er} théorème de Carnot :

Pour une machine réversible,
$$\frac{Q_1}{T_1} + \frac{Q_2}{T_2} = 0$$
, donc $r = 1 - \frac{T_2}{T_1}$;

Ainsi, le rendement d'une machine réversible ne dépend que des températures.

Pour avoir r = 1, il faut que $T_2 = 0$ ou $T_1 = \infty$.

• Par définition, on a posé $T_0 = 273,16$ K (valeur exacte) pour le point triple de l'eau. Ainsi, avec la formule du rendement, on peut calculer n'importe quel rapport de températures (W et Q_1 peuvent être calculés facilement), et, grâce à T_0 , n'importe quelle température.

Remarque: par définition, $T(^{\circ}C) = T - 273,15K$ (exact aussi)

• 2^{ème} théorème de Carnot.

Pour une machine irréversible,
$$r < 1 - \frac{T_1}{T_2} = r_{\text{rév}}$$
 (et $e < e_{\text{rév}}$)

V Compléments

A) Transformation de Legendre

1) Problème

On considère une grandeur Y = f(X) (U = U(S))

On pose
$$Z = f'(X) = \frac{dY}{dX}$$
.

On veut alors travailler avec Z au lieu de X(U = U(T))

2) Solution bâtarde

On a Y = f(X), Z = f'(X), donc Y = g(Z) avec g une primitive de Z.

La solution est mauvaise : on peut obtenir une même fonction de X avec un même g(Z) ; on perd donc des renseignements.

3) Solution de Legendre

W(Z): famille de droites correspondant aux pentes de la courbe au point d'abscisse 0. Ainsi, W(Z) a les mêmes informations que Y(X). On peut donc changer de fonction.

Equation d'une des droites :
$$\frac{Y-W}{X-0} = Z$$
, donc $W = Y - ZX$
($U(T) = U - TS = F$)

B) Moteur fonctionnant entre deux briques

$$\alpha$$
 β

On considère deux briques identiques, de même capacité c, indilatables.

A
$$t = 0$$
, $T_{\alpha} = T_1$, $T_{\beta} = T_2$.

- Mise en contact adiabatiquement :
- Calcul de T_f :

$$\Delta U = W + Q = 0$$

 $dU_{\alpha}=cdT_{\alpha}$, $dU_{\beta}=cdT_{\beta}$ (en considérant une transformation où la température reste uniforme dans chaque compartiment)

Donc
$$c(T_f - T_1) + c(T_f - T_2) = 0$$
, soit $T_f = \frac{T_1 + T_2}{2}$

- Calcul de ΔS:

$$dS_{\alpha} = \frac{\delta\!Q_{\alpha,\mathrm{r\acute{e}v}}}{T_{\alpha}} = \frac{cdT_{\alpha}}{T_{\alpha}}\,,\ dS_{\beta} = \frac{\delta\!Q_{\beta,\mathrm{r\acute{e}v}}}{T_{\beta}} = \frac{cdT_{\beta}}{T_{\beta}}$$

Done
$$\Delta S = c \ln \frac{T_f^2}{T_1 T_2} = 2c \ln \frac{T_f}{\sqrt{T_1 T_2}} > 0$$

Et $\Delta S = S_i$ (adiabatique)

- Calcul de $S_{i,\alpha}$ et $S_{i,\beta}$:

 $S_{i,\alpha} = \Delta S_{\alpha} - S_{e,\alpha}$; il faut donc connaître la température à l'interface.

On admet pour l'instant qu'à l'interface $T = T_f$

Ainsi,
$$S_{e,\alpha} = \int \frac{\delta Q_{\alpha}}{T_f} = \frac{Q_{\alpha}}{T_f}$$

$$Q_{\alpha} = \Delta U_{\alpha} = c(T_f - T_1).$$

Donc
$$S_{i,\alpha} = c \left(2 \ln \frac{T_f}{\sqrt{T_1 T_2}} + \frac{T_1}{T_f} - 1 \right)$$
, et de même $S_{i,\beta} = c \left(2 \ln \frac{T_f}{\sqrt{T_1 T_2}} + \frac{T_2}{T_f} - 1 \right)$

Remarque : c'est la brique ayant la température initiale la plus importante pour laquelle S_i est le plus grand.

• On place maintenant une machine thermique entre les deux briques :

$$Q_{\alpha}$$
 Q_{β}

On suppose les cycles élémentaires, c'est-à-dire que les températures T_{α} et T_{β} sont constantes au cours d'un cycle.

On a
$$\delta Q_{\alpha} + \delta Q_{\beta} + \delta W = 0$$
, et $\frac{\delta Q_{\alpha}}{T_{\beta}} + \frac{\delta Q_{\beta}}{T_{\beta}} \le 0$

Donc $\delta Q_{\alpha} = -cdT_{\alpha}$, et $\delta Q_{\beta} = -cdT_{\beta}$ (pour le signe – : δQ_{α} , c'est ce qui est fourni au système, donc enlevé à la brique)

Donc
$$c \frac{dT_{\alpha}}{T_{\alpha}} + c \frac{dT_{\beta}}{T_{\beta}} \ge 0$$

Donc
$$c \ln \frac{T'_f}{T_1} + c \ln \frac{T'_f}{T_2} \ge 0$$
, soit $T'_f \ge \sqrt{T_1 T_2}$.

Ainsi,
$$\delta W_{\text{récupérable}} = -\delta W = \delta Q_{\alpha} + \delta Q_{\beta}$$

Soit
$$W_{\text{récupérable}} = -c(T_f - T_1) - c(T_f - T_2) = 2c(T_f - T_f)$$

Et $W_{\text{max récupérable}} = 2c \left(\frac{T_1 + T_2}{2} - \sqrt{T_1 T_2} \right)$ en cas de réversibilité (positif car une

moyenne arithmétique est plus grande qu'une moyenne géométrique)

C) Ecoulement dans une tuyère

1) Préliminaire : vitesse du son dans un fluide

Dans un fluide quelconque, $c^2 = \left(\frac{\partial P}{\partial \rho}\right)_S$

Pour le calcul:

On fait une petite variation du piston, δV , réversible (donc isentropique)

On calcule ensuite
$$\delta P$$
, $\delta \rho$, puis on a $\left(\frac{\partial P}{\partial \rho}\right)_{S}$!!

Pour un gaz parfait :

A S constante, $P\rho^{-\gamma}$ = cte

Donc
$$\frac{dP}{P} - \gamma \frac{d\rho}{\rho} = 0$$
, soit $\frac{dP}{d\rho} = \gamma \frac{P}{\rho}$.

Comme PV = nRT, on a $P = \rho \frac{RT}{M}$ (M: masse molaire du gaz)

Ainsi,
$$\left(\frac{\partial P}{\partial \rho}\right)_{S} = \gamma \frac{RT}{M}$$
, soit $c = \sqrt{\gamma \frac{RT}{M}}$

Pour l'air, à 25°C, on a $c = 345 \text{m.s}^{-1}$ ($\gamma = 1.4$)

2) Ecoulement permanent dans une tuyère

On suppose que la section S_t ne dépend que de x (on a ainsi une symétrie de révolution autour de l'axe x)

On suppose aussi que l'écoulement est permanent et unidimensionnel $(v(x), P(x), T(x), \rho(x))$

- Gaz parfait : $P = \rho \frac{RT}{M}$
- Conservation de la masse : $dm = \rho S_t v dt$, soit $\rho S_t v = \text{cte}$
- 1^{er} principe :

 $D_m\Delta(h_m+\frac{1}{2}v^2)=0$ (on suppose qu'il n'y a pas de variation d'énergie potentielle, et que le système ne reçoit pas d'énergie de l'extérieur)

Donc
$$h_m + \frac{1}{2}v^2 = \text{cte}$$

• On suppose de plus que chaque tranche de gaz (verticale) n'échange pas de chaleur avec les autres et évolue réversiblement. Donc $P\rho^{-\gamma}$ = cte.

Ecriture différentielle logarithmique de tous les points précédents (sauf le troisième) :

$$\frac{dP}{P} = \frac{d\rho}{\rho} + \frac{dT}{T}$$

$$\frac{d\rho}{\rho} + \frac{dS_t}{S_t} + \frac{dv}{v} = 0$$

$$c_{p,m}dT + vdv = 0$$

$$\frac{dP}{P} - \gamma \frac{d\rho}{\rho} = 0$$

On obtient ainsi:

$$\frac{dS_t}{S_t} + \frac{dv}{v} \left(1 - v^2 \frac{1}{\gamma} \frac{\rho}{P} \right) = 0 \text{ ; pour un gaz parfait, } \frac{1}{\gamma} \frac{\rho}{P} = \frac{1}{c^2}.$$

Donc
$$\frac{dS_t}{S_t} = \frac{dv}{v} \left(\frac{v^2}{c^2} - 1 \right)$$

 $\frac{v}{c} = M$: nombre de Mach.

Ainsi,
$$\frac{dS_t}{S_t} = \frac{dv}{v} (M^2 - 1)$$
 (Loi de Hugoniot)

3) Discussion

• Sens de variation de v, T, P:

$$-h_m + \frac{1}{2}v^2 = \text{cte}$$

Si v augmente, h_m diminue, donc T diminue.

-
$$dh_m = Tds_m + \frac{dP}{\rho}$$
 (C'est $dH = TdS + VdP$ pour une unité de masse)

Donc
$$dh_m = \frac{dP}{\rho}$$

Donc si v augmente, T diminue et P diminue aussi.

• Si on veut que M = 1, on doit avoir $\frac{dS_t}{S_t} = 0$:

Tuyère convergente :

$$(M^2-1)\frac{dv}{v} < 0$$
. Donc, si $M < 1$, $dv > 0$ et si $M > 1$, $dv < 0$

• Pour une tuyère divergente, on inverse les relations.