1 Exercises

1.1

Show that $a^6 \equiv 1 \pmod{14}$ for all a relatively prime to 14.

$$1^{6} \equiv 1 \pmod{14}$$
$$3^{6} \equiv 1 \pmod{14}$$
$$5^{6} \equiv 1 \pmod{14}$$
$$9^{6} \equiv (3^{6})^{2} \equiv 1 \pmod{14}$$
$$11^{6} \equiv 1 \pmod{14}$$
$$13^{6} \equiv 1 \pmod{14}$$

1.2

Verify that Lemma 1 is true if m = 14 and a = 5.

$$5*1 \equiv 5 \pmod{14}$$

 $5*3 \equiv 1 \pmod{14}$
 $5*5 \equiv 11 \pmod{14}$
 $5*9 \equiv 3 \pmod{14}$
 $5*11 \equiv 13 \pmod{14}$
 $5*13 \equiv 9 \pmod{14}$

1.3

Verify that $3^{\phi(8)} \equiv 1 \pmod{8}$.

$$\phi(8) = 4, 3^4 \equiv (3^2)^2 \equiv 1 \pmod{8}.$$

1.4

Which positive integers are less than 4 and relatively prime to it? What is the answer if 4 is replaced by 8? By 16? Can you induce a formula for $\phi(2^n)$, n = 1, 2, ...?

```
4: 1, 3.
8: 1, 3, 5, 7.
16: 1, 3, 5, 7, 9, 11, 13, 15.
```

It will be all odd integers less than 2^n , since these are the only integers with no factor of 2 in their prime decomposition. So, $\phi(2^n) = 2^n/2 = 2^{n-1}$.

1.5

Verify that the formula is correct for p=5 and n=2.

Integers less than 25 that are relatively prime to 25: 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24. 20 in all. $5^{2-1}(5-1) = 20$.

1.6

Calculate $\phi(74)$, $\phi(76)$, and $\phi(78)$.

$$\phi(74) = \phi(2)\phi(37) = 1 * 36 = 36$$

$$\phi(76) = \phi(2^2)\phi(19) = 2 * 18 = 36$$

$$\phi(78) = \phi(2)\phi(3)\phi(13) = 2 * 12 = 24$$

Calculate $\Sigma_{d|n}\phi(d)$

- (a) For n = 12, 13, 14, 15, and 16.
- (b) For $n = 2^k, k \ge 1$. (c) For $n = p^k, k \ge 1$ and p an odd prime.

(a)
$$\{d \ni d | 12\} = \{1, 2, 3, 4, 6, 12\}.$$
 $\Sigma_{d|n}\phi(12) = 1 + 1 + 2 + 2 + 2 + 4 = 12.$ $\{d \ni d | 13\} = \{1, 13\}.$ $\Sigma_{d|n}\phi(13) = 1 + 12 = 13.$ $\{d \ni d | 14\} = \{1, 2, 7, 14\}.$ $\Sigma_{d|n}\phi(14) = 1 + 1 + 6 + 6 = 14.$

- (b) Know that $\{d\ni d|2^k\}=\{1,2^1,...,2^k\}$. Also know that $\phi(2^k)=2^{k-1}$, for $k\ge 1$.. So, $\Sigma_{d|n}\phi(2^k)=1+2^0+2^1+...+2^{k-1}=1+\frac{2^k-1}{2-1}=2^k$. (c) Know that $\{d\ni d|p^k\}=\{1,p^1,...,p^k\}$. Also know that $\phi(p^k)=p^{k-1}(p-1)$. So, $\Sigma_{d|n}\phi(p^k)=1$.
- $1 + p^{0}(p-1) + p^{1}(p-1) + \dots + p^{k-1}(p-1) = 1 + (p-1)\frac{p^{k}-1}{p-1} = p^{k}.$

1.8

What are the classes C_d for n = 14?

$$C_1 = \{1, 3, 5, 9, 11, 13\}$$

$$C_2 = \{2, 4, 6, 8, 10, 12\}$$

$$C_7 = \{7\}$$

$$C_{14} = \{14\}$$

2 **Problems**

2.1

Calculate $\phi(42)$, $\phi(420)$, and $\phi(4200)$.

$$\phi(42) = \phi(2)\phi(3)\phi(7) = 1 * 2 * 6 = 12$$

$$\phi(420) = \phi(2^2)\phi(3)\phi(5)\phi(7) = 2 * 2 * 4 * 6 = 96$$

$$\phi(4200) = \phi(2^3)\phi(3)\phi(5^2)\phi(7) = 4 * 2 * 5 * 4 * 6 = 960$$

2.2

Calculate $\phi(54)$, $\phi(540)$, and $\phi(5400)$.

$$\phi(54) = \phi(2)\phi(3^3) = 1 * 3^2 * 2 = 18$$

$$\phi(540) = \phi(2^2)\phi(3^3)\phi(5) = 2 * 3^2 * 2 * 4 = 144$$

$$\phi(5400) = \phi(2^3)\phi(3^3)\phi(5^2) = 2^2 * 3^2 * 2 * 4 * 5 = 1440$$

2.3

Calculate ϕ of $10115 = 5 * 7 * 17^2$ and 100115 = 5 * 20023.

$$\phi(10115) = \phi(5)\phi(7)\phi(17^2) = 4 * 6 * 17 * 16 = 6528$$

$$\phi(100115) = \phi(5)\phi(20023) = 4 * 20022 = 80088$$

Calculate ϕ of $10116 = 2^2 * 3^2 * 281$ and $100116 = 2^2 * 3^5 * 103$.

$$\phi(10116) = \phi(2^2)\phi(3^2)\phi(281) = 2 * 3 * 2 * 280 = 3360$$

$$\phi(100116) = \phi(2^2)\phi(3^5)\phi(103) = 2 * 3^4 * 2 * 102 = 33048$$

2.5

Calculate $a^8 \pmod{15}$ for a = 1, 2, ..., 14.

Since $\phi(15) = 8$, know by Euler's Theorem that $a^8 \equiv 1 \pmod{15}$ for all a for which (a, 15) = 1. That leaves us with $a \in \{3, 5, 6, 9, 10, 12\}$. Consider

 $2 \equiv 2 \pmod{15}$ $2^2 \equiv 4 \pmod{15}$ $2^4 \equiv 1 \pmod{15}$ $3 \equiv 3 \pmod{15}$ $3^2 \equiv 9 \pmod{15}$ $3^4 \equiv 6 \pmod{15}$ $3^6 \equiv 6 \pmod{15}$ $3^8 \equiv 6 \pmod{15}$ $5 \equiv 5 \pmod{15}$ $5^2 \equiv 10 \pmod{15}$ $5^4 \equiv 10 \pmod{15}$

Can deduce from this that all the a that are by 3 and sometimes 2, i.e. $a \in \{3, 6, 9, 12\}$, are $\equiv 6 \pmod{15}$ when raised to the 8th power. The a that are divisible by 5 are $\equiv 10 \pmod{15}$ when raised to the 8th power.

2.6

Calculate $a^8 \pmod{16}$ for a = 1, 2, ..., 15.

Since $\phi(16) = 8$, know by Euler's Theorem that $a^8 \equiv 1 \pmod{16}$ for all the a for which (a, 16) = 1, i.e. all the odd a. All other a can be written 2k, so $(2k)^8 = 2^4 2^4 k^8$ must be divisble by $16 = 2^4$, i.e. $a^8 \equiv 0 \pmod{16}$.

2.7

Show that if n is odd, then $\phi(4n) = 2\phi(n)$.

If n is odd, then it has no factor of 2 in its prime-power decomposition. Since ϕ is multiplicative, can then write $\phi(4n) = \phi(2^2)\phi(n) = 2\phi(n)$.

2.8

Perfect numbers satisfy $\sigma(n) = 2n$. Which n satisfy $\phi(n) = 2n$?

Write $n=p_1^{e_1}...p_k^{e_k}$ and $\phi(n)=n(1-\frac{1}{p_1})...(1-\frac{1}{p_k})$. Observe that since all $p_i>1$, the product $(1-\frac{1}{p_1})...(1-\frac{1}{p_k})$ can't possibly be ≥ 1 , let alone 2. This makes sense given the definition of ϕ as the number of positive integers less than or equal to n and relatively prime to n. Since there are only n-1 integers less than or equal to n, the ceiling of $\phi(n)$ is n-1.

 $1+2=(3/2)\phi(3), 1+3=(4/2)\phi(4), 1+2+3+4=(5/2)\phi(5), 1+5=(6/2)\phi(6), 1+2+3+4+5+6=(7/2)\phi(7),$ and $1+3+5+7=(8/2)\phi(8)$. Guess a theorem.

 $\Sigma_{d\ni(d,n)=1}=(n/2)\phi(n).$

2.10

Show that

$$\Sigma_{p \le x} \sigma(p) - \Sigma_{p \le x} \phi(p) = \Sigma_{p \le x} d(p)$$

Not sure if p is supposed to mean prime p, but I think so. If so, $\sigma(p_i) = 1 + p_i$, $\phi(p) = p_i - 1$, and $d(p_i) = 2$. So $\sigma(p_i) - \phi(p_i) = 2 = d(p_i)$. The relationship should hold for the sum as well.

2.11

Prove Lemma 3 by starting with the fact that there are integers r and s such that ar + ms = 1.

Lemma 3 states: if (a, m) = 1 and $a \equiv b \pmod{m}$, then (b, m) = 1. Per the prompt, multiply the congruence by r to get $ar \equiv br \pmod{m}$. We know that $ar \equiv ar + ms \equiv 1 \equiv br \pmod{m}$, or, in other words, that m|br-1. Assume now that there is an integer d that divides m and d. Then d|m and d|br. But if d|m, then d|br-1, so it must be that d|1.

2.12

If (a, m) = 1, show that any x such that

$$x \equiv ca^{\phi(m)-1} \pmod{m}$$

satisfies $ax \equiv c \pmod{m}$.

Know that $a^{\phi(m)} \equiv 1 \pmod{m}$. Multiply both sides of the congruence to get $ax \equiv ca^{\phi(m)} \equiv c \pmod{m}$.

2.13

Let $f(n) = (n + \phi(n))/2$. Show that $f(f(n)) = \phi(n)$ if $n = 2^k$, k = 2, 3, ...

Know that $\phi(2^k) = 2^{k-1}$ So $f(2^k) = (2^k + 2^{k-1})/2 = 2^{k-2}3$. Observe that $\phi(3) = 2$, so $\phi(2^{k-2}*3) = \phi(2^{k-2})\phi(3) = 2^{k-3}*2 = 2^{k-2}$. So, $f(f(2^k)) = (2^{k-2}3 + 2^{k-2})/2 = 2^{k-2}2 = 2^{k-1} = \phi(2^k)$.

2.14

Find four solutions of $\phi(n) = 16$.

Can write $\phi(n) = p_1^{e_1-1}(p_1-1)...p_k^{e_k-1}(p_k-1)$. Notice that $16=2^4$, so each term of this product must be a power of 2. So, possible (p_i-1) terms include be $p_i=3,5$. However, these p_i must have $e_i=1$, otherwise we have $p_i^{e_i-1}$ terms which are not powers of 2. So, some possible n:

$$n = 2^5 = 32$$

$$n = 2^4 * 3 = 48$$

$$n = 2^3 * 5 = 60$$

$$n = 2^2 * 3 * 5 = 60$$

Find all solutions of $\phi(n) = 4$ and prove that there are no more.

Similarly to above, observe that $4=2^2$, and relevant primes from which to construct the number include 2, 3, and 5. We can exclude primes greater than 5 for the construction, since $5-1=2^2$, so for any $p_i > 5$, $p_i - 1 > 2^2$, which means its not a viable candidate. Likewise the n which include factors of 3 and 5 in their prime-power decompositions must have these at a factor of 1, for reasons outlined in the previous exercise. This leaves us with n of the form $2^{e_2}3^{e_3}5^{e_5}$, with $e_2 \in [0,3]$ and $e_3, e_5 \in [0,1]$. Can enumerate all such n that satisfy $\phi(n) = 4$: 5, 8, 10, 12.

2.16

Show that $\phi(mn) > \phi(m)\phi(n)$ if m and n have a common factor greater than 1.

If m, n have a common factor greater than 1, we know that they must share at least some of the primes of their prime-power decompositions, whose product we denote as $x = p_k^{\overline{e}_k} \dots p_j^{\overline{e}_j}$. Now denote what remains of m and n's prime-power decompositions as m/x = m', n/x = n'. Consider each p_i in the decomposition of x. It's possible that p_i divides either m' or n', but not both, since if it did, we would need to include an additional p_i term in x. So let's say that for each p_i , the p_i factor for one of either m' or n' is \overline{e}_i , and for the other it is $\overline{e}_i + \dot{e}_i$, where $\dot{e}_i \geq 0$. In mn we must thus have p_i with an exponent of $2\overline{e}_i + \dot{e}_i$. In $\phi(mn)$, we will have a term $p_i^{2\overline{e}_i + \dot{e}_i - 1}(p_i - 1)$ associated with p_i . In $\phi(m)\phi(n)$, the term associated with p_i is $p_i^{\overline{e}_i + \dot{e}_i - 1}p_i^{\overline{e}_i - 1}(p_i - 1)^2 = p_i^{2\overline{e}_i + \dot{e}_i - 2}(p_i - 1)^2$. The ratio of the p_i term in $\phi(mn)$ vs. $\phi(m)\phi(n)$ is $p_i/(p_i - 1) > 1$. The remaining primes in m' and n''s decompositions do not feature in x, and are unique between the two. So for each of these, the p_i term in $\phi(mn)$ is the same as that in $\phi(m)\phi(n)$.

2.17

Show that (m, n) = 2 implies $\phi(mn) = 2\phi(m)\phi(n)$.

Can write $m=2*p_1^{r_q}...p_k^{r_k}$ and $n=2^{e_2}*q_1^{s_1}...q_k^{s_k}$ with all p_i different from all q_i (or reverse if m happens to have a higher power of 2 in its decomposition). For the p_i and q_i 's, $\phi(2*p_1^{r_q}...p_k^{r_k}q_1^{s_1}...q_k^{s_k})=\phi(p_1^{r_q}...p_k^{r_k})\phi(q_1^{s_1}...q_k^{s_k})$ For the 2 factor, have an exponent of e_2+1 in mn, so in $\phi(mn)$ the term associated with 2 is $2^{e_2}(2-1)=2^{e_2}$. In $\phi(m)\phi(n)$, the term associated with 2 is $2^0*1*2^{e_2-1}*1=2^{e_2-1}$. So, $2\phi(m)\phi(n)=\phi(mn)$.

2.18

Show that $\phi(n) = n/2$ if and only if $n = 2^k$ for some positive integer k.

If $n=2^k$, then $\phi(n)=2^{k-1}=2^k/2$. For the converse, observe that $\phi(n)=p_1^{e_1-1}(p_1-1)...p_k^{e_k-1}(p_k-1)=p_1^{e_1}...p_k^{e_k}/2$. Since $\phi(n)\in\mathbb{Z}$, $\phi(n)=n/2\Rightarrow 2|n$, so know we have $p_1=2$. Furthermore, can write $n/2=2^{e_1-1}p_2^{e_2}...p_k^{e_k}=2^{e_1-1}(2-1)p_2^{e_2-1}(p_2-1)...p_k^{e_k-1}(p_k-1)$. Dropping the 2^{e_1-1} term from both sides, need $p_2^{e_2-1}(p_2-1)...p_k^{e_k-1}(p_k-1)=p_2^{e_2}...p_k^{e_k}$ for this equation to hold. Note that $p_2^{e_2}...p_k^{e_k}$ must be odd, since it explicitly excludes the factor associated with 2. But, $p_2^{e_2-1}(p_2-1)...p_k^{e_k-1}(p_k-1)$ must be even, since it contains p_i-1 terms. So, the only way for this to work if there are no factors than 2 in n, i.e. if $n=2^k$.

2.19

Show that if n-1 and n+1 are both primes and n>4, then $\phi(n)\leq n/3$.

Know that 2|n, since both n-1 and n+1 odd. Also know that 3|n, because if it did not, it would have to divide one of n-1 or n+1, and since $n-1 \neq 3$ because n>4, this would violate n-1, n+1 being prime. So can write $n=2^{e_1}3^{e_2}p_i^{e_i}$... and $\phi(n)=2^{e_1-1}*3^{e_2-1}*2*p_i^{e_i-1}(p_i-1)$... = $2^{e_1}*3^{e_2-1}*p_i^{e_i-1}(p_i-1)$... So $3\phi(n)=2^{e_1}*3^{e_2}*p_i^{e_i-1}(p_i-1)$... If there are no prime factors p_i in n other than 2 and 3, then $3\phi(n)=n$. If there are, clearly each $p_i^{e_i-1}(p_i-1)< p_i*p_i^{e_i-1}=p_i^{e_i}$, so $3\phi(n)< n$.

Show that $\phi(n) = 14$ is impossible.

Observe that the prime decomposition of 14 is 2*7 and $\phi(n)=p_1^{e_1-1}(p_1-1)...p_k^{e_k-1}(p_k-1)$. None of the (p_i-1) terms can be 7, since 8 is not a prime. For the factor of 2, we could have $2^2|n$ or 3|n. The term in $\phi(n)$ that would be associated with the term 2^2 in n is $2^1(2-1)$, which is clearly not divisible by 7. The term in $\phi(n)$ that would be associated with the term 3 in n is $3^0(3-1)$, which is also not divisible by 7. So, to get the term of 7 in $\phi(n)$, would need a term of 7^2 in n, but this is associated with a term of $7^1(7-1) > 14$.