

Nota

Matriz identidad

La diagonal de $A = (a_{ij})$ consiste en las componentes a_{11} , a_{22} , a_{33} , etc. A menos que se establezca de otra manera, se hará referencia a la diagonal principal simplemente como la diagonal.

La matriz identidad I_n de $n \times n$ es una matriz de $n \times n$ cuyos elementos de la diagonal principal son iguales a 1 y todos los demás son 0. Esto es,

$$I_n = (b_{ij})$$
 donde $b_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$ (2.4.1)

Dos matrices identidad

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{e} \quad I_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Nota

 I_n funciona para las matrices de $n \times n$ de la misma manera que el número 1 funciona para los números reales $(1 \cdot a = a \cdot 1 = a \text{ para todo número})$ real a).

Teorema 2.4.1

Sea A una matriz cuadrada de $n \times n$. Entonces

$$AI_n = I_n A = A$$

Es decir, I_n conmuta con toda matriz de $n \times n$ y la deja sin cambio después de la multiplicación por la derecha o por la izquierda.

Demostración

Sea c_{ij} el elemento ij de AI_n . Entonces

$$c_{ii} = a_{i1}b_{1i} + a_{i2}b_{2i} + \dots + a_{ii}b_{ii} + \dots + a_{in}b_{ni}$$

Pero por (2.4.1), esta suma es igual a a_{ii} . Así $AI_n = A$. De una manera similar se puede demostrar que $I_n A = A$ y esto demuestra el teorema.

Notación. De aquí en adelante se escribirá la matriz identidad únicamente como I, ya que si A es de $n \times n$ los productos IA y AI están definidos sólo si I es también de $n \times n$.

Observación 1

A partir de esta definición se deduce inmediatamente que $(A^{-1})^{-1} = A$ si A es invertible.

Definición 2.4.2

La inversa de una matriz

Sean A y B dos matrices de $n \times n$. Suponga que

$$AB = BA = I$$

Entonces B se llama la **inversa** de A y se denota por A^{-1} . Entonces se tiene

$$AA^{-1} = A^{-1}A = I$$

Si A tiene inversa, entonces se dice que A es invertible.

Observación 2

Esta definición no establece que toda matriz cuadrada tiene inversa. De hecho, existen muchas matrices cuadradas que no tienen inversa (ejemplo 2.4.3).