Emory University

MATH 212 Differential Equations Learning Notes

Jiuru Lyu

August 24, 2023

Contents

1	First Order Ordinary Differential Equations	2
	1.1 Introduction	2
2	Second Order ODEs	3
3	System of ODEs	3

1 First Order Ordinary Differential Equations

1.1 Introduction

Definition 1.1.1 (Ordinary Differential Equations/ODEs). An *ordinary differential equation* is an equation that contains one or more derivatives of an unknown function y = y(x). **Definition 1.1.2 (Order of ODEs).** The *order* of an ODE is the maximum order of the derivatives appearing in the equation.

Definition 1.1.3 (Solution to ODEs). The *solution* to an ODE is a function y that satisfies the equation.

Example 1.1.4 Solve y'' = 3x + 1.

Solution 1.

$$y' = \int 3x + 1 \, dx = \frac{3}{2}x^2 + x + C$$
$$y = \int y' \, dx = \int \frac{3}{2}x^2 + x + C \, dx = \frac{1}{2}x^3 + \frac{1}{x}x^2 + Cx + D.$$

Definition 1.1.5 (Linear ODEs/Non-Linear ODEs). A first order ODE is *linear* if it can be written as

$$y' + p(x)y = f(x).$$

Otherwise, it is *non-linear*.

Definition 1.1.6 (Homogenous/Non-Homogenous Linear ODEs). If f(x) = 0, then the linear ODE is *homogenous*. That is,

$$y' + p(x)y = 0.$$

Otherwise, it is *non-homogenous*.

Definition 1.1.7 (Trivial/Non-Trivial Solution). y = 0 is a *trivial solution* to a homogenous ODE. Any other solutions are *non-trivial*.

Definition 1.1.8 (One-Parameter Family of Solutions). We call C a *parameter* and the equation, therefore solution, defines a *one-parameter family* of solutions.

Example 1.1.9 For the ODE y'=1, $y_1=x+C_1$ is a solution to it, and it is a one-parameter family of solutions. Similarly, for $y'=\frac{1}{x^2}$, the one-parameter families of solutions are defined by $y_2=-\frac{1}{x}+C_2$ on the interval $(-\infty,0)\cup(0,\infty)$.

- 2 Second Order ODEs
- 3 System of ODEs