NASA-GLENN CHEMICAL EQUILIBRIUM PROGRAM CEA2, FEBRUARY 5, 2004 BY BONNIE MCBRIDE AND SANFORD GORDON REFS: NASA RP-1311, PART I, 1994 AND NASA RP-1311, PART II, 1996

```
### CEA analysis performed on Tue 03-Dec-2024 15:17:42
# Problem Type: "Rocket" (Infinite Area Combustor)
prob case=_____3157 ro equilibrium
# Pressure (1 value):
p,atm = 19.02
# Supersonic Area Ratio (1 value):
supar= 70
# Oxidizer/Fuel Wt. ratio (1 value):
o/f = 2.3
# You selected the following fuels and oxidizers:
fuel paraffin
                      wt\%=100.0000 \text{ rho,g/cc}= 0.924
oxid O2
                      wt%=100.0000
# You selected these options for output:
# short version of output
output short
# Proportions of any products will be expressed as Mass Fractions.
output massf
# Heat will be expressed as siunits
output siunits
# Input prepared by this script:/var/www/sites/cearun.grc.nasa.gov/cgi-bin/CEARU
N/prepareInputFile.cgi
### IMPORTANT: The following line is the end of your CEA input file!
end
             THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM
          COMPOSITION DURING EXPANSION FROM INFINITE AREA COMBUSTOR
Pin = 279.5 PSIA
CASE = __
           REACTANT
                                       WT FRACTION
                                                                    TEMP
                                                        ENERGY
                                        (SEE NOTE)
                                                       KJ/KG-MOL
                                                                      Κ
FUEL
            paraffin
                                        1.0000000 -1860600.000
                                                                   298.150
OXIDANT
           02
                                        1.0000000
                                                         0.000
                                                                     0.000
0/F=
       2.30000 %FUEL= 30.303030 R,EQ.RATIO= 1.444352 PHI,EQ.RATIO= 1.444352
               CHAMBER
                         THROAT
                                    EXIT
Pinf/P
                 1.0000
                         1.7310
                                  891.42
P, BAR
                         11.134 0.02162
                 19.272
T, K
                3485.98 3312.76 1394.92
RHO, KG/CU M 1.5101 0 9.3124-1 4.5646-3
```

-562.82 -1240.63 -6320.15 -1839.02 -2436.21 -6793.78

H, KJ/KG

U, KJ/KG

12/3/24, 12:17 PM _____3157.html

G, KJ/KG S, KJ/(KG)(K)			
M, (1/n) (dLV/dLP)t		23.038 -1.03380	
(dLV/dLT)p	1.7204	1.6363	1.0001
Cp, KJ/(KG)(K) GAMMAs	1.1364		
SON VEL,M/SEC MACH NUMBER	1204.2	1164.3 1.000	
		1.000	4.470
PERFORMANCE PAR	AMETERS		
Ae/At		1.0000	
CSTAR, M/SEC CF			1777.5 1.9091
Ivac, M/SEC			3532.9
Isp, M/SEC		1164.3	3393.3

MASS FRACTIONS

*C0	0.46785	0.45717	0.34666
*C02	0.23670	0.25349	0.42716
COOH	0.00001	0.00001	0.00000
*H	0.00186	0.00159	0.00000
HCO	0.00002	0.00001	0.00000
H02	0.00006	0.00003	0.00000
*H2	0.00916	0.00897	0.01407
H20	0.21771	0.22582	0.21211
H202	0.00001	0.00000	0.00000
*0	0.00846	0.00611	0.00000
*0H	0.04085	0.03345	0.00000
*02	0.01731	0.01336	0.00000

^{*} THERMODYNAMIC PROPERTIES FITTED TO 20000.K

NOTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS