Monte Carlo Yöntemleri

Sinan Yıldırım

MDBF, Sabancı Üniversitesi

May 9, 2017

İçindekiler

Giriș

Buffon'un iğnesi Örneklerin ortalaması Monte Carlo

Kesin örnekleme yöntemleri Tersini alma yöntemi Dönüştürme yöntemi Birleştirme yöntemi Reddetme örneklemesi

Önem örneklemesi

Markov zinciri Monte Carlo Metropolis-Hastings Gibbs örneklemesi

Sıralı Monte Carlo Sıralı önem örneklemesi Parçacık süzgeci

Giriș

Buffon'un iğnesi

Örnek: Buffon'un iğnesi

Eşit aralıklı $(1\ cm)$ paralel çizgileri olan bir masaya $1\ cm'$ lik bir iğne rastgele atılıyor.

İğnenin masadaki çizgilerden birini kesmesi ihtimali nedir?

Örnek: Buffon'un iğnesi

Bu olasılık kesin olarak hesaplanabilir:

- lğnenin ortasının en yakın çizgiye uzaklığı d olsun.
- ▶ İğnenin çizgilerle yaptığı küçük açı $\theta \in (0, \pi/2)$ olsun.

İğnenin çizgilerden birini kesmesi şu şartla olur:

$$\frac{d}{\sin\theta} < \frac{1}{2} \tag{1}$$

Örnek: Buffon'un iğnesi

 d, θ bağımsız ve $d \in [0, 1/2]$ ve $\theta \in [0, \pi/2]$ arasında homojen dağılır:

$$p(d, heta) = egin{cases} rac{4}{\pi}, & (d, heta) \in [0, 1/2] imes [0, \pi/2] \ 0, & ext{else} \end{cases}$$

 $A=\{(d,\theta):d/\sin\theta<1/2\}=\{(d,\theta):d<\sin\theta/2\}$ kümesi, figürdeki eğrinin altındaki alana karşılık gelir. $X=(d,\theta)$ dersek, bu kümenin olasılığı

$$\mathbb{P}(X \in A) = \int \int_{A} p(r,\theta) dr d\theta = \frac{2}{\pi}$$

Örnek: Buffon'un iğnesi - Monte Carlo yaklaşımı

 $\mathbb{P}(X \in A)$ 'ı yaklaşık hesaplamak için Monte Carlo deneyi:

$$X^{(i)}=(d^{(i)}, \theta^{(i)}), \ i=1,\ldots,N$$
 örnekleri üretilir:
$$d^{(i)} \sim \mathsf{Unif}(0,1/2), \quad \theta^{(i)} \sim \mathsf{Unif}(0,\pi/2),$$

 $\mathbb{P}(X \in A)$ olasılığı aşağıdaki gibi kestirilir:

$$\mathbb{P}(X \in A) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{A}(X^{(i)})$$
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(d^{(i)} < \sin(\theta^{(i)})/2)$$

Örnek: Buffon'un iğnesi - Monte Carlo yaklaşımı

N = 100 atış ve karşılık geldikleri d, θ değereri.

Örnek: Buffon'un iğnesi - Monte Carlo yaklaşımı

Büyük sayılar kanunu N arttıkça kestirimin $2/\pi$ 'ye yaklaştığını öngörür.

π 'nin kestirimi

 π ile $\mathbb{P}(X \in A)$ arasındaki ilişki:

$$\pi=\frac{2}{\mathbb{P}(X\in A)},$$

 π 'nin Monte Carlo kestirimi:

$$\begin{split} \pi &\approx 2 \times \frac{N}{\sum_{i=1}^{N} \mathbb{I}(d^{(i)} < \sin(\theta^{(i)})/2)} \\ &= 2 \times \frac{\text{toplam nokta sayısı}}{\text{kırmızı nokta sayısı}} \end{split}$$

Örneklerin ortalaması

Örneklerin Ortalaması

Bir $\mathcal{X}\subset\mathbb{R}^{d_{\mathrm{X}}}$, $d_{\mathrm{X}}\geq1$ kümesinden $\mathit{N}\geq1$ tane *rassal örnek* verilmiş olsun:

$$X^{(1)},\ldots,X^{(N)}.$$

Örneklerin bağımsız ve özdeş dağılımlı olduğunu ve π olasılık dağılımından geldiğini varsayalım:

$$X_1,\ldots,X_N \overset{\text{i.i.d.}}{\sim} \pi.$$

Ayrıca π dağılımı bilinmiyor olsun.

π 'ye göre ortalama değer

X'in π dağılımına göre beklentisini $X^{(1:N)}$ örneklerini kullanarak yaklaşık olarak nasıl hesaplayabiliriz?

 $\pi(x)$ olasılık yoğunluk fonksiyonu ise:

$$\mathbb{E}_{\pi}(X) = \int_{\mathcal{X}} x \pi(x) dx.$$

 $\pi(x)$ olasılık kütle fonksiyonu ve X, x_1, x_2, \ldots değerlerini alıyorsa:

$$\mathbb{E}_{\pi}(X) = \sum_{i} x_{i}\pi(x_{i}).$$

Makul bir kestirim:

$$\mathbb{E}_{\pi}(X) \approx \frac{1}{N} \sum_{i=1}^{N} X^{(i)}.$$

Genel fonksiyonların beklenti değeri

Şimdi de $\varphi:\mathcal{X}\to\mathbb{R}$ fonksiyonunun π' ye göre beklentisini inceleyelim.

$$\pi(\varphi) := \mathbb{E}_{\pi}(\varphi(X)) = \int_{\mathcal{X}} \varphi(x)\pi(x)dx.$$

Bu beklentinin kestirimi:

$$\mathbb{E}_{\pi}(\varphi(X)) \approx \frac{1}{N} \sum_{i=1}^{N} \varphi(X^{(i)}).$$

Örnek: $\varphi(x) = x^2$, $\varphi(x) = \log x$, vs.

 $\varphi(X) = X$ bizi ilk probleme geri götürür.

Bir kümenin olasılığı

 $A \subseteq \mathcal{X}$ şeklinde bir küme verilmiş olsun.

$$\pi(A) := \mathbb{P}(X \in A)$$

İşaret fonksiyonu: $\mathbb{I}_A:\mathcal{X} \to \{0,1\}$

$$\mathbb{I}_{A}(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Üstteki olasılık $\varphi = \mathbb{I}_A$ fonksiyonunun beklenti değeri olur:

$$\mathbb{E}_{\pi}(\mathbb{I}_{A}(X)) = \int_{\mathcal{X}} \mathbb{I}_{A}(x)\pi(x)dx$$
$$= \int_{A} \pi(x)dx$$
$$= \mathbb{P}(X \in A).$$

Bu olasılığa örnekler kullanılarak

$$\mathbb{P}(X \in A) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{A}(X^{(i)}).$$

Monte Carlo

Monte Carlo: Ana fikir

Şimdi şu senaryoyu düşünelim: π dağılımını biliyoruz, ama π 'den gelen örneklerimiz yok.

- $ightharpoonup \pi$ 'den istediğimiz kadar bağımsız örnek üretebiliyoruz.
- $\blacktriangleright \pi(\varphi)$ 'yi hesaplayamıyoruz.

Bu durumda $\pi(\varphi)$ 'ye nasıl yaklaşılabilir?

Eğer $X^{(1)},\dots,X^{(N)}\sim\pi$ örneklerini kendimiz üretirsek, ilk probleme geri döneriz.

Bu basit fikir, Monte Carlo yöntemlerinin ana fikridir.

Monte Carlo'nun gerekçelendirilmesi - yansızlık

 $\pi(\varphi)$ 'nin Monte Carlo kestirimini $\pi_{MC}^{N}(\varphi)$ ile gösterelim:

$$\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi) = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \varphi(X^{(i)}).$$

Herhangi bir $N \geq 1$ için, $\pi_{MC}^{N}(\varphi)$ 'nın beklenti değeri:

$$\mathbb{E}\left(\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi)\right) = \mathbb{E}\left(\frac{1}{\mathsf{N}}\sum_{i=1}^{\mathsf{N}}\varphi(X^{(i)})\right).$$

$$= \frac{1}{\mathsf{N}}\sum_{i=1}^{\mathsf{N}}\mathbb{E}_{\pi}(\varphi(X^{(i)}))$$

$$= \frac{1}{\mathsf{N}}\mathsf{N}\mathbb{E}_{\pi}(\varphi(X))$$

$$= \mathbb{E}_{\pi}(\varphi(X)) = \pi(\varphi).$$

Ancak, yansızlık tek başına yeterli bir özellik değildir.

Monte Carlo'nun gerekçelendirilmesi - Büyük sayılar kanunu

$$\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi) = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \varphi(X^{(i)}).$$

Büyük sayılar kanunu: Eğer $|\pi(\varphi)| < \infty$ ise $\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi)$ 'nin $\pi(\varphi)$ 'ye yakınsar:

$$\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi) \overset{\mathsf{a.s.}}{\to} \pi(\varphi), \quad \mathsf{as} \; \mathsf{N} \to \infty.$$

Monte Carlo'nun gerekçelendirilmesi - Merkezi limit teoremi

 $\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi)$ 'nin varyansı:

$$\mathbb{V}\left[\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi)\right] = \frac{1}{\mathsf{N}^2} \sum_{i=1}^{\mathsf{N}} \mathbb{V}_{\pi}\left[\varphi(X^{(i)})\right] = \frac{1}{\mathsf{N}} \mathbb{V}_{\pi}\left[\varphi(X)\right].$$

Buradan, $\mathbb{V}_{\pi}[\varphi(X)]$ sonlu olduğu sürece $\pi_{MC}^{N}(\varphi)$ 'nin doğruluğunun N ile arttığı söylenebilir.

Merkezi limit teoremi: Eğer $\mathbb{V}_{\pi}\left[\varphi(X)\right]<\infty$ ise

$$\sqrt{N}\left[\pi_{MC}^{N}(\varphi)-\pi(\varphi)\right]\overset{d}{\to}\mathcal{N}\left(0,\mathbb{V}_{\pi}\left[\varphi(X)\right]\right)\quad\text{as }N\to\infty.$$

Monte Carlo gerekçelendirilmesi - Deterministik integraller

 $\pi(\varphi)$ 'nin hesaplanması için bir takım belirlemeci integral teknikleri de vardır;

Ancak bu teknikler X'in boyutu d_x büyüdükçe kötüleşir.

Monte Carlo yaklaşımının başarımı d_x 'ten bağımsızdır.

$$\mathbb{V}\left[\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi)\right] = rac{1}{\mathsf{N}}\mathbb{V}_{\pi}\left[\varphi(\mathsf{X})\right].$$

İleri yöntemlere ihtiyaç

Çoğu problemde, tek sorun integralin alınamazlığı değil.

- π'den örnekleme yapmak homojen dağılım kadar kolay olmayabilir.
 Bunun için bir takım kesin örnekleme yöntemleri geliştirilmiştir. Örnek: tersini alma yöntemi, reddetme örneklemesi, kompozisyon, vs
- $ightharpoonup \pi$ 'den örnekleme yapmak imkansız olabilir.

Örnek: Bayesçi çıkarımdaki sonsal dağılım: X bilinmeyen değişkenininin Y=y verisi verildiğindeki sonsal dağılımı

$$\pi(x) := p_{X|Y}(x|y) = \frac{p_X(x)p_{Y|X}(y|x)}{\int p_X(x')p_{Y|X}(y|x')dx'} = \frac{p_{X,Y}(x,y)}{\int p_{X,Y}(x',y)dx'}$$
$$\propto p_X(x)p_{Y|X}(y|x)$$

Bu tür dağılımlardan yaklaşık örnekler elde etmek için yazında bir çok yöntem var, örn: Markov zinciri Monte Carlo, Sıralı Monte Carlo, vs.

Kesin örnekleme yöntemleri

Sözde-rassal sayı

Çıkış noktası olarak, bilgisayarımızın homojen dağılımdan örnekler üretebildiğini varsayacağız.

$$U \sim \text{Unif}(0,1)$$

Bu üretilen sayılar belirlenimci yöntemlerle üretilir; bu sebeple bu sayılara sözde-rassal sayı denir.

Soru: Elimizde Unif(0,1) dağılımından gelen sayılar olsun. Bu sayıları kullanarak herhangi bir π dağılımından nasıl örnek üretebiliriz?

Tersini alma yöntemi

Tersini alma yöntemi

 $X \sim \pi$ rassal değişkeninin kümülatif dağılım fonksiyonu:

$$F(x) = \mathbb{P}(X \le x), \quad x \in \mathbb{R}.$$

F'nin genelleştirilmiş tersi:

$$G(u) := \inf\{x \in \mathcal{X} : F(x) \ge u\}.$$

Homojen dağılmış sayılar ve G kullanılarak $X \sim \pi$ elde edilebilir.

$$U \sim \mathsf{Unif}(\mathsf{0},\mathsf{1}) \Rightarrow \mathit{G}(\mathit{U}) \sim \pi$$

Tersini alma yöntemi

F'nin genelleştirilmiş tersi:

$$G(u) := \inf\{x \in \mathcal{X} : F(x) \ge u\}.$$

X ayrık ise ve x_1, x_2, \ldots değerlerini alıyorsa:

$$G(u) = x_{i^*}, \quad i^* = \min\{i : F(x_i) \ge u\} \Leftrightarrow F(x_{i^*-1}) < u \le F(x_{i^*})$$

X sürekli ise ve $\pi(x) > 0$ şeklinde bir olasılık yoğunluk fonksiyonu varsa (F'te sıçrama ve düz alanlar yok), F monoton artandır ve tersi $G = F^{-1}$ alınabilir.

$$G(u) = F^{-1}(u)$$

Örnek: Üssel dağılım

 $X \sim \text{Exp}(\lambda)$, $\lambda > 0$, olasılık yoğunluk dağılımı

$$\pi(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \text{else} \end{cases}, \quad u = F(x) = \begin{cases} \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \geq 0 \\ 0, & \text{else} \end{cases}.$$

O halde, ${\sf Exp}(\lambda)$ 'dan $U\sim {\sf Unif}(0,1)$ ve $X=-\log(1-U)/\lambda$ şeklinde örnek üretebiliriz.

Örnek: Geometrik dağılım

 $X \sim \text{Geo}(\rho)$, olasılık kütle fonksiyonu

$$\pi(x) = (1 - \rho)^x \rho, \quad x = 0, 1, 2 \dots, \quad F(x) = 1 - (1 - \rho)^{x+1}.$$

O halde, $\mathsf{Geo}(\rho)$ 'dan $U\sim\mathsf{Unif}(0,1)$ ve $X=\left\lceil\frac{\log(1-U)}{\log(1-\rho)}-1\right\rceil$ şeklinde örnek üretilebilir.

Dönüştürme yöntemi

Dönüştürme yöntemi: basit durum

Tersini alma yöntemi U'dan X = G(U)'ya bir çeşit dönüştürme olarak görülebilir.

Daha genel olarak, uygun bir g fonksiyonuyla bir dağılımdan diğerine geçilebilir.

Basit örnek: $X \sim \mathsf{Unif}(a,b)$ üretmek için, $U \sim \mathsf{Unif}(0,1)$ üretip U'yu

$$X = g(U) := (b - a)U + a.$$

şeklinde dönüştürebiliriz.

Dönüştürme yöntemi: genel

Elimizde olasılık yoğunluk fonksiyonu $p_X(x)$ olan m boyutlu $X \in \mathcal{X} \subseteq \mathbb{R}^m$ rassal değişkeni olsun.

Tersi alınabilir bir $g:\mathcal{X} \to \mathcal{Y} \subseteq \mathbb{R}^m$ kullanarak X'i dönüştürelim:

$$Y = (Y_1, \ldots, Y_m) = g(X_1, \ldots, X_m)$$

Soru: Y'nin olasılık yoğunluk dağılımı $p_Y(y)$ ne olur?

$$y = (y_1, \dots, y_m) = g(x_1, \dots, x_m)$$
 kullanarak, Jakobian'ı tanımlayalım

$$J(y) = \det \frac{\partial g^{-1}(y)}{\partial y} = \det \frac{\partial x}{\partial y} = \det \frac{\partial (x_1, \dots, x_m)}{\partial (y_1, \dots, y_m)} = \det \begin{bmatrix} \partial x_1/\partial y_1 & \dots & \partial x_1/\partial y_m \\ \vdots & \ddots & \vdots \\ \partial x_m/\partial y_1 & \dots & \partial x_m/\partial y_m \end{bmatrix}$$

Y'nin olasılık yoğunluk fonsiyonu:

$$p_Y(y) := p_X(g^{-1}(y))|J(y)|$$

Uygulama: $\mathcal{N}(0,1)$ için Box-Muller yöntemi

Standart Gauss dağılımı (normal dağılım) $\mathcal{N}(0,1)$ 'ın olasılık yoğunluk fonksiyonu

$$\phi(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Kümülatif dağılım fonksiyonunun tersini almak kolay değil. Alternatif olarak, dönüştürme kullanacağız

İlk önce

$$R \sim \mathsf{Exp}(1/2), \quad \Theta \sim \mathsf{Unif}(0, 2\pi).$$

üretilir, sonra

$$X_1 = \sqrt{R}\cos(\Theta), \quad X_2 = \sqrt{R}\sin(\Theta)$$

dönüşümü ile $X_1, X_2 \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$ elde edilir.

Box-Muller yöntemi: Kanıt

Bu yöntem doğrudan değişkenlerin dönüştürülmesine dayanır:

$$(R,\Theta) = (X_1^2 + X_2^2, \arctan(X_2/X_1)))$$

Jakobian'ın $(r,\theta) = (x_1^2 + x_2^2, \arctan(x_2/x_1))$ 'deki değeri

$$J(r,\theta) = \begin{vmatrix} \partial r/\partial x_1 & \partial r/\partial x_2 \\ \partial \theta/\partial x_1 & \partial \theta/\partial x_2 \end{vmatrix} = \begin{vmatrix} 2x_1 & 2x_2 \\ \frac{1}{1+(y_2/y_1)^2} \frac{-y_2}{y_1^2} & \frac{1}{1+(y_2/y_1)^2} \frac{1}{y_1} \end{vmatrix} = 2$$

 (X_1, X_2) 'nin olasılık yoğunluk fonksiyonu, formülü kullanarak,

$$\begin{aligned} p_{X_1,X_2}(x_1,x_2) &= p_R(r)p_{\Theta}(\theta)|J(r,\theta)| \\ &= p_R(x_1^2 + x_2^2)p_{\Theta}(\arctan(x_2/x_1))|J(r,\theta)| \\ &= \frac{1}{2}e^{-\frac{1}{2}(x_1^2 + x_2^2)}\frac{1}{2\pi}2 \\ &= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x_1^2}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x_2^2} \\ &= \phi(x_1;0,1)\phi(x_2;0,1) \end{aligned}$$

olarak bulunabilir, ki bu da iki Gauss dağılımının çarpımı olduğu için $X_1, X_2 \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ olduğu görülür.

4□ > 4□ > 4 = > 4 = > = 99

Çokdeğişkenli Gauss dağılım

n imes 1 boyutlu çok değişkenli Gauss dağılımını $X \sim \mathcal{N}(\mu, \Sigma)$ şeklinde gösterelim.

 $\mu = \mathbb{E}(X)$, $n \times 1$ ortalama vektörüdür.

$$\Sigma = \mathsf{Cov}(X) = \mathbb{E}[(X - \mu)(X - \mu)^T]$$

ise $n \times n$ simetrik ve kesin artı *kovaryansa* matrisidir. Bu matrisin (i,j)'inci elemanı

$$\sigma_{ij} = \mathsf{Cov}(X_i, X_j) = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)] = \mathbb{E}(X_i X_j) - \mu_i \mu_j$$

Olasılık yoğunluk fonksiyonu

$$\phi(x; \mu, \Sigma) = \frac{1}{|2\pi\Sigma|} \exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

Burada, | · | determinanti simgeler.

Çokdeğişkenli Gauss dağılımı

Varsayalım ki $X = (X_1, \ldots, X_n)^T \sim \mathcal{N}(\mu, \Sigma)$ olsun.

Kertesi $m \leq n$ olan $m \times n$ bir matris ve bir $m \times 1$ η vektörünü kullanarak X'i

$$Y = AX + \eta$$

şeklinde dönüştürelim.

Y, X'in doğrusal dönüştürülmüş hali olduğu için Y de Gauss dağılımına sahiptir.

$$\mathbb{E}(Y) = \mathbb{E}(AX + \eta)$$

$$= A\mathbb{E}(X) + \eta$$

$$= A\mu + \eta$$

$$\mathsf{Cov}(Y) = \mathbb{E}([Y - \mathbb{E}(Y)][Y - \mathbb{E}(Y)]^T)$$

$$= \mathbb{E}([AX + \eta - (A\mu + \eta)][AX + \eta - (A\mu + \eta)]^T)$$

$$= \mathbb{E}(A(X - \mu)(X - \mu)^T A^T) = A\mathsf{Cov}(X)A^T$$

$$= A\Sigma A^T$$

Sonuç olarak, $Y \sim \mathcal{N}(A\mu + \eta, A\Sigma A^T)$ yazabiliriz.

Çokdeğişkenli Gauss dağılımı: örnekleme

 $n \times 1$ boyutlu μ vektörü ve $n \times n$ kesin artı Σ matrisi verildiğinde, $X \sim \mathcal{N}(\mu, \Sigma)$ nasıl üretilir?

Önce $R_1, \ldots, R_n \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$ üretilir böylece

$$R = (R_1, \ldots, R_n) \sim \mathcal{N}(0_n, I_n)$$

sağlanmış olur.

Sonra, Cholesky ayrıştırması kullanılarak

$$\Sigma = AA^T$$

eşitliğini sağlayan A matrisi bulunur.

Son olarak

$$X = AR + \mu$$

değişkeni üretilir.

Birleştirme yöntemi

Birleştirme yöntemi: Sıradüzenli modeller

 ${\mathcal Z}$ kümesinden değer alan ve $Z\sim \alpha(\cdot)$ rassal değişkenimiz olsun.

Z = z verildiğinde $X|Z = z \sim p_z(\cdot)$ olsun.

Bu durumda, $X \sim P'$ in marginal (tekil) dağılımı bir *karışım dağılımıdır*.

$$\pi(x) = \begin{cases} \int p_z(x)\alpha(z)dz, & \alpha(z) \text{ olasılık yoğunluk fonksiyonu ise} \\ \sum_z p_z(x)\alpha(z)dz, & \alpha(z) \text{ olasılık kütle fonksiyonu ise} \end{cases}$$

 $X \sim \pi$ nasıl üretilebilir?

Birleştirme yöntemi

 $X \sim \pi$ nasıl üretilebilir?

$$\pi(x) = \begin{cases} \int p_z(x)\alpha(z)dz, & \alpha(z) \text{ olasılık yoğunluk fonksiyonu ise} \\ \sum_z p_z(x)\alpha(z)dz, & \alpha(z) \text{ olasılık kütle fonksiyonu ise} \end{cases}$$

Doğrudan P'den örnekleme çok zor olabilir, ancak Π ve P_z 'den örnekleme yapmak kolaysa, birleştirme yöntemi kullanılabilir:

- 1. $Z \sim \alpha(\cdot)$ üretilir,
- 2. $X \sim p_Z(\cdot)$, üretilir
- 3. Z atılır ve X tutulur.

Bu şekilde üretilen X kesin olarak π 'den gelir.

Örnek: Karışım Gauss dağılımı

K bileşeni olan, bileşenlerinin

- ortalama değerleri ve varyansları: $(\mu_1, \sigma_1^2), \dots, (\mu_K, \sigma_K^2)$
- karışımdaki olasılık ağırlıkları w_1,\ldots,w_K ($w_1+\cdots+w_K=1$ olacak şekilde)

olan karışım Gauss dağılımının yoğunluk fonksiyonu

$$\pi(x) = \sum_{k=1}^K w_k \phi(x; \mu_k, \sigma_k^2).$$

Bu dağılımdan örnekleme yapmak için

- 1. w_k olasılıkla k üretilir,
- 2. $X \sim \mathcal{N}(\mu_k, \sigma_k^2)$ üretilir,
- 3. k atılır ve X tutulur.

Örnek: Mahremiyet gözeten veri paylaşımı

Bir şirket D olan aylık talep miktarını mahremiyet sebebiyle gürültü olarak X şeklinde paylaşıyor.

Paylaşılan X'in dağılımı

$$\pi(x) = \sum_{d} \left[\frac{e^{-\lambda} \lambda^{d}}{d!} \right] \left[\frac{1}{2b} \exp\left(-\frac{|x - d|}{b}\right) \right]$$

Bu paylaşım sürecinin Monte Carlo ile benzetimini yapmak istiyoruz. $X \sim \pi$ nasıl iiretilir?

Toplamdaki ilk terim $\mathcal{PO}(\lambda)$ 'nin olasılık kütle fonksiyonunun d'deki değeri, diğeri de Laplace(d,b)'nin olasılık dağılım fonksiyonunun x'teki değeri.

- 1. $D \sim \mathcal{PO}(\lambda)$ üretilir,
- 2. $X \sim \text{Laplace}(D, b)$ üretilir (veya $V \sim \text{Laplace}(0, b)$ ve X = D + V.).
- 3. D atılır X tutulur.

Reddetme örneklemesi

Reddetme örneklemesi

Sık kullanılan bir başka yöntem.

Şu şartları sağlayan bir q(x) dağılımı gerekir.

- \blacktriangleright $\pi(x) > 0$ ise q(x) > 0 olmalı
- ▶ Her $x \in \mathcal{X}$ için $\pi(x) \leq Mq(x)$ 'yi sağlayacak bir M > 0 olması.

Reddetme örneklemesi:

- 1. $X' \sim q(\cdot)$ ve $U \sim \text{Unif}(0,1)$ üretilir.
- 2. $U \leq \frac{\pi(X')}{Mq(X')}$, ise X = X' alınır; değilse 1.'e geri dönülür.

Reddetme örneklemesi: Kabul olasılığı

- 1. $X' \sim q(\cdot)$ ve $U \sim \mathsf{Unif}(0,1)$ üretilir.
- 2. $U \leq \frac{\pi(X')}{Ma(X')}$, ise X = X' alınır; değilse 1.'e geri dönülür.

Bir döngüde kabul etme olasılığı

$$\mathbb{P}(\mathsf{Kabul}) = \int \mathbb{P}(\mathsf{Kabul}|X' = x)p_{X'}(x)dx$$

$$= \int \frac{\pi(x)}{Mq(x)}q(x)dx$$

$$= \frac{1}{M}\int \pi(x)dx$$

$$= \frac{1}{M},$$
(2)

Dolayısıyla q(x)'i $\pi(x)$ 'e olabildiğince yakın seçmek ve $M=\sup_x \pi(x)/q(x)$ almak makuldür.

Reddetme örneklemesi: Neden çalışır?

- 1. $X' \sim q(\cdot)$ ve $U \sim \mathsf{Unif}(0,1)$ üretilir.
- 2. $U \leq \frac{\pi(X')}{Ma(X')}$, ise X = X' alınır; değilse 1.'e geri dönülür.

Yöntemin doğruluğunu göstermek için, üretilen X'in dağılımının π olduğunu göstermek gerekir.

Bayes' teoremini kullanarak,

$$p_X(x) = p_{X'}(x|\mathsf{Kabul}) = \frac{p_{X'}(x)\mathbb{P}(\mathsf{Kabul}|X' = x)}{\mathbb{P}(\mathsf{Kabul})}$$
$$= \frac{q(x)\frac{1}{M}\frac{\pi(x)}{q(x)}}{1/M}$$
$$= \pi(x).$$

Örnek: Gamma dağılımı

Örneklenecek dağılım: $X\sim \Gamma(lpha,1)$, lpha>1. Olasılık yoğunluk fonksiyonu:

$$\pi(x) = \frac{x^{\alpha-1}e^{-x}}{\Gamma(\alpha)}, \quad x > 0.$$

Aracı dağılım olarak $q_{\lambda} = \operatorname{Exp}(\lambda)$, $0 < \lambda < 1$, seçelim.

$$q_{\lambda}(x) = \lambda e^{-\lambda x}, \quad x > 0.$$

Bütün $x \in \mathcal{X}$ için $\pi(x) \leq Mq(x)$ 'i sağlayacak M bulunmalı:

$$\frac{\pi(x)}{q_{\lambda}(x)} = \frac{x^{\alpha-1}e^{(\lambda-1)x}}{\lambda\Gamma(\alpha)}$$

 $x=(lpha-1)/(1-\lambda)$ 'de enbüyütülür, dolayısıyla

$$M_{\lambda} = \frac{\left(\frac{\alpha - 1}{1 - \lambda}\right)^{\alpha - 1} e^{-(\alpha - 1)}}{\lambda \Gamma(\alpha)}$$

alınabilir. Kabul olasılığı

$$\frac{\pi(x)}{q_{\lambda}(x)M_{\lambda}} = \left(\frac{x(1-\lambda)}{\alpha-1}\right)^{\alpha-1} e^{(\lambda-1)x+\alpha-1}$$

Örnek: Gamma dağılımı

Kabul olasılığı $1/M_{\lambda}$, M_{λ} 'yı önceden bulmuştuk:

$$M_{\lambda} = \frac{\left(\frac{\alpha - 1}{1 - \lambda}\right)^{\alpha - 1} e^{-(\alpha - 1)}}{\lambda \Gamma(\alpha)}$$

Şimdi de M_λ 'yı enküçültecek λ 'yı seçelim. M_λ , $\lambda^*=1/lpha$ 'da enküçültülür ve

$$M^* = \frac{\alpha^{\alpha} e^{-(\alpha-1)}}{\Gamma(\alpha)}.$$

elde edilir. Sonuç olarak $\Gamma(\alpha, \beta)$ 'dan örnekleme yapmak için,

- 1. $X' \sim \text{Exp}(1/\alpha)$ ve $U \sim \text{Unif}(0,1)$ örneklenir.
- 2. If $U \leq (x/\alpha)^{\alpha-1} e^{(1/\alpha-1)x+\alpha-1}$, ise X = X' alınır, değilse 1'e gidilir.

Örnek: Gamma dağılımı

$\pi(x)$ tam olarak bilinmediğinde

Diyelim ki $\pi(x)$ 'in sadece bilinmeyen bir sabit çarpanla çarpılmış haldeki değerini biliyoruz:

$$\pi(x) = \frac{\widehat{\pi}(x)}{Z_{\pi}}, \quad Z_{\pi} = \int \widehat{\pi}(x) dx$$

Reddetme örneklemesi, bütün $x \in \mathcal{X}$ için $\widehat{\pi}(x) \leq Mq(x)$ 'i sağlayan bir M ile hala uygulanabilir.

- 1. $X' \sim q(\cdot)$ ve $U \sim \mathsf{Unif}(0,1)$ üretilir.
- 2. $U \leq \frac{\widehat{\pi}(X')}{Mq(X')}$ ise, X = X' alınır; değilse 1.'e gidilir.

Kabul olasılığı: $\frac{1}{M}Z_{\pi}$.

$\pi(x)$ tam olarak bilinmediğinde: Bayesci çıkarım örneği

Bilinmeyen sabit sorunu Bayesci çıkarımda sıklıkla karşımıza çıkar.

Bayesci çıkarımda amaç sonsal dağılımı bulmaktır.

Hesaplanamayan sonsal dağılımlardan örnekleme yapılabilir.

X'in Y = y verildiğindeki sonsal dağılımı

$$\pi(x) := p_{X|Y}(x|y) \propto p_X(x)p_{Y|X}(y|x) = \widehat{\pi}(x)$$

Çarpımsal (ve çoğunlukla hesaplanamayan) sabit:

$$p_Y(y) = \int p_X(x)p_{Y|X}(y|x)dx$$

Bilinmeyen sabite örnek: Bayesci çıkarım

X'in Y = y verildiğindeki sonsal dağılımı

$$p_{X|Y}(x|y) \propto p_X(x)p_{Y|X}(y|x)$$

Çarpımsal (ve çoğunlukla hesaplanamayan) sabit:

$$p_Y(y) = \int p_X(x) p_{Y|X}(y|x) dx$$

 $\pi(x) = p_{X|Y}(x|y)$ 'dan örnekleme için reddetme örneklemesi kullanılabilir.

Örnek: Eğer bütün $x \in \mathcal{X}$ için $p_{Y|X}(y|x) \leq M'$ i sağlayacak bir M varsa, reddetme örneklemesi bu M ile ve $q(x) = p_X(x)$ ile kullanılabilir:

- 1. $X' \sim q(\cdot)$ ve $U \sim \mathsf{Unif}(0,1)$ üretilir,
- 2. Eğer $U \le p_{Y|X}(y|X')/M$ ise X = X' alınır; değilse 1.'e gidilir.

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatlarını saptamak istediğimiz bir hedef (source) X = (X(1), X(2)):

 s_1, s_2, s_3 noktalarındaki üç sensör hedefe olan uzaklıklarını ölçüyor:

$$r_i = [(X(1) - s_i(1))^2 + (X(2) - s_i(2))^2]^{1/2}, \quad i = 1, 2, 3$$

Ölçümler $Y = (Y_1, Y_2, Y_3)$ gürültülü:

$$Y_i = r_i + V_i, \quad V_i \sim \mathcal{N}(0, \sigma_y^2), \quad i = 1, 2, 3.$$

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatla ilgili önsel kanı:

$$X \sim \mathcal{N}(0_2, \sigma_x^2 I_2), \quad \sigma_x^2 \gg 1$$

Amaç: $Y = y = (y_1, y_2, y_3)$ verildiğinde $\mathbb{E}(X|Y = y)$ 'yi hesaplamak.

$$\pi(x) := p_{X|Y}(x|y) \propto \underbrace{p_X(x)p_{Y|X}(y|x)}_{\widehat{\pi}(x)} = \underbrace{\phi(x; 0_2, \sigma_x^2 I_2)}_{p_X(x)} \underbrace{\prod_{i=1}^3 \phi(y_i; r_i, \sigma_y^2)}_{p_{Y|X}(y|x)}$$

Reddetme örneklemesi $q(x) = p_X(x)$ alınarak yapılabilir:

$$\frac{\widehat{\pi}(x)}{q(x)} = p_{Y|X}(y|x) = \prod_{i=1}^{3} \phi(y_i; r_i, \sigma_y^2) = \frac{1}{(2\pi\sigma_y^2)^{3/2}} e^{-\frac{1}{2}\sum_{i=1}^{3} (y_i - r_i)^2} \le \frac{1}{(2\pi\sigma_y^2)^{3/2}}$$

O halde, $M = \frac{1}{(2\pi\sigma_n^2)^{3/2}}$ seçilmelidir.

Hedef yer saptaması - dağılımlar, $\sigma_{\mathsf{x}}^2=100$, $\sigma_{\mathsf{y}}^2=1$

Hedef yer saptaması - reddetme örneklemesi $\sigma_{\rm x}^2=100$, $\sigma_{\rm y}^2=1$

Önem örneklemesi

Önem örneklemesi: Motivasyon

Yola çıkarkenki problemimiz: yaklaşık hesaplamak istediğimiz beklenti değeri

$$\pi(\varphi) = \mathbb{E}_{\pi}(\varphi(X)) = \int_{\mathcal{X}} \varphi(x)\pi(x)dx.$$

 $\pi(\varphi)$ 'nin Monte Carlo kestirimi

$$\pi_{\mathsf{MC}}^{\mathsf{N}}(\varphi) = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \varphi(X^{(i)}), \quad X^{(i)} \sim \pi, \quad i = 1, \dots, \mathsf{N},$$

için π 'den örnekleme yapmamız gerekiyor.

Bir çok durumda $X \sim \pi$ örneklemesi çok zor, çok pahalı veya imkansız olabilir.

Önem örneklemesi

Yine, $\pi(x)>0$ ise q(x)>0 şartını sağlayan bir yardımcı dağılımımız olsun. $\pi(x)$ ve q(x) verildiğinde, önem fonksiyonunu tanımlayalım $w:\mathcal{X}\to\mathbb{R}$

$$w(x) := \begin{cases} \pi(x)/q(x), & q(x) > 0, \\ 0 & q(x) = 0. \end{cases}$$

Önem örneklemesine temel oluşturan bağlantı:

$$\pi(\varphi) = \mathbb{E}_{\pi}(\varphi(X)) = \int_{\mathcal{X}} \varphi(x)\pi(x)dx$$

$$= \int_{\mathcal{X}} \varphi(x)\frac{\pi(x)}{q(x)}q(x)dx$$

$$= \int_{\mathcal{X}} \varphi(x)w(x)q(x)dx$$

$$= \mathbb{E}_{q}(\varphi(X)w(X))$$

Önem örneklemesi

Eğer q(x)'ten örnekleme yapmak kolay ise, $\pi(\varphi)$ 'ye yaklaşmak için önem örneklemesi yapılabilir.

- 1. $X^{(1)}, \ldots, X^{(N)} \stackrel{\text{i.i.d.}}{\sim} q(\cdot)$ örneklenir.
- 2. $\pi(\varphi)$ 'ye şu şekilde yaklaşılır:

$$\pi_{\mathsf{IS}}^{\mathsf{N}}(\varphi) := \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \varphi(X^{(i)}) w(X^{(i)}).$$

Önem örneklemesi: Örnek

 $(X,Y)\in\mathcal{X} imes\mathcal{Y}$ değişkenlerinin ortak dağılımının yoğunluk fonksiyonu $p_{X,Y}(x,y)$ olsun

$$p_{X,Y}(x,y) = p_X(x)p_{Y|X}(y|x)$$

Bazı durumlarda $p_Y(y)$ hesaplanmak istenebilir:

$$p_{Y}(y) = \int_{\mathcal{X}} p_{X,Y}(x,y) dx = \int_{\mathcal{X}} p_{X}(x) p_{Y|X}(y|x) dx = \mathbb{E}_{P_{X}}(p_{Y|X}(y|X))$$

Standard Monte Carlo kestirimi:

$$p_Y(y) \approx \frac{1}{N} \sum_{i=1}^N p_{Y|X}(y|X^{(i)}), \quad X^{(1)}, \ldots, X^{(N)} \sim p_X(x).$$

Önem örneklemesi ile kestirim:

$$p_Y(y) pprox rac{1}{N} \sum_{i=1}^N rac{p_X(X^{(i)})}{q(X^{(i)})} p_{Y|X}(y|X^{(i)}), \quad X^{(1)}, \ldots, X^{(N)} \sim q(x).$$

Önem örneklemesi: en iyi q(x)

q(x)'yu seçme özgürlüğümüz var, o halde en iyileştirmeye çalışalım.

$$\mathbb{V}_q\left[\pi_{\mathsf{IS}}^{N}(\varphi)\right] = \frac{1}{N}\mathbb{V}_q\left[w(X)\varphi(X)\right]$$

Varyansı en küçük yapacak q(x)

$$q(x) = \pi(x) \frac{|\varphi(x)|}{\pi(|\varphi|)}$$

Bu tercih ile elde edilen varyans:

$$\min_{q} \mathbb{V}_{q} \left[\pi_{\mathsf{IS}}^{\mathsf{N}}(\varphi) \right] = \frac{1}{\mathsf{N}} \left(\left[\pi(|\varphi|) \right]^{2} - \left[\pi(\varphi) \right]^{2} \right).$$

Öz-düzgeleyici önem örneklemesi

Önem örneklemesi $\pi(x)=\frac{\widehat{\pi}(x)}{Z_p}$ olduğunda ve sadece $\widehat{\pi}(x)$ bilindiğinde yine uygulanabilir.

Önem fonksiyonu

$$w(x) := \begin{cases} \frac{\widehat{\pi}(x)}{q(x)}, & q(x) > 0\\ 0, & \widehat{q}(x) = 0, \end{cases}$$

$$\mathbb{E}(w(X)) = \int \frac{\widehat{\pi}(x)}{q(x)} q(x) dx = \int \frac{\pi(x) Z_{\pi}}{q(x)} q(x) dx = Z_{\pi}.$$

$$\mathbb{E}(w(X)\varphi(X)) = \int \frac{\widehat{\pi}(x)}{q(x)} \varphi(x) q(x) dx = \int \frac{\pi(x)Z_{\pi}}{q(x)} \varphi(x) q(x) dx = \pi(\varphi)Z_{\pi}.$$

İki ifadeyi birbirine bölersek

$$\pi(\varphi) = \frac{\mathbb{E}(w(X)\varphi(X))}{Z_{\pi}} = \frac{\mathbb{E}(w(X)\varphi(X))}{\mathbb{E}(w(X))}.$$

Öz-düzgeleyici önem örneklemesi

$$\pi(\varphi) = \frac{\mathbb{E}(w(X)\varphi(X))}{Z_{\pi}} = \frac{\mathbb{E}(w(X)\varphi(X))}{\mathbb{E}(w(X))}.$$

Hem pay hem payda için aynı örnekler kullanarak önem örneklemesi yapılabilir.

$$\pi_{\mathsf{IS}}^{\mathsf{N}}(\varphi) = \frac{\frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \varphi(X^{(i)}) w(X^{(i)})}{\frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} w(X^{(i)})}, \quad X^{(1)}, \dots, X^{(\mathsf{N})} \sim q(\cdot).$$

Öz-düzgeleyici önem ağırlıkları:

$$W^{(i)} = \frac{w(X^{(i)})}{\sum_{j=1}^{N} w(X^{(j)})}$$

Öz-düzgeleyici önem örneklemesi

- 1. $i=1,\ldots,N$ için; $X^{(i)}\sim q(\cdot)$ üretilir ve $w(X^{(i)})=\frac{\widehat{\pi}(X^{(i)})}{q(X^{(i)})}$ hesaplanır.
- 2. $i=1,\ldots,N$ için $W^{(i)}=\frac{w(X^{(i)})}{\sum_{i=1}^N w(X^{(i)})}$ hesaplanır.
- 3. $\pi_{\mathsf{IS}}^{\mathsf{N}}(\varphi) = \sum_{i=1}^{\mathsf{N}} W^{(i)} \varphi(X^{(i)})$ hesaplanır.

Öz-düzgeleyici önem örneklemesi: Bayesci çıkarım

Sonsal dağılım:

$$\pi(x) = p_{X|Y}(x|y) \propto p_X(x)p_{Y|X}(y|x)$$

Hesaplanmak istenen beklenti değeri

$$\mathbb{E}(\varphi(X)|Y=y)=\int p_{X|Y}(x|y)\varphi(x)dx.$$

Öz-düzgeleyici önem örneklemesi:

1. $i=1,\ldots,N$ için; $X^{(i)}\sim q(\cdot)$ örneklenir ve önem ağırlıkları hesaplanır

$$w(X^{(i)}) = \frac{p_X(X^{(i)})p_{Y|X}(y|X^{(i)})}{q(X^{(i)})}.$$

- 2. $i=1,\ldots,N$ için; $W^{(i)}=\frac{{}_{w}(X^{(i)})}{\sum_{i=1}^{N}{}_{w}(X^{(i)})}$ hesaplanır.
- 3. $\mathbb{E}(\varphi(X)|Y=y) \approx \sum_{i=1}^{N} W^{(i)} \varphi(X^{(i)})$ hesaplanır.

Eğer $q(x) = p_X(x)$ seçilirse, önem fonksiyonu $w(x) = p_{Y|X}(y|x)$ olur.

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatlarını saptamak istediğimiz bir hedef (source) X = (X(1), X(2)):

 s_1, s_2, s_3 noktalarındaki üç sensör hedefe olan uzaklıklarını ölçüyor:

$$r_i = [(X(1) - s_i(1))^2 + (X(2) - s_i(2))^2]^{1/2}, \quad i = 1, 2, 3$$

Ölçümler $Y = (Y_1, Y_2, Y_3)$ gürültülü:

$$Y_i = r_i + V_i, \quad V_i \sim \mathcal{N}(0, \sigma_v^2), \quad i = 1, 2, 3.$$

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatla ilgili önsel kanı:

$$X \sim \mathcal{N}(0_2, \sigma_x^2 I_2), \quad \sigma_x^2 \gg 1$$

Amaç: $Y = y = (y_1, y_2, y_3)$ verildiğinde $p_{X|Y}(x|y)$ 'i bulmak ve $\mathbb{E}(X|Y = y)$ 'yi hesaplamak.

$$\pi(x) = p_{X|Y}(x|y) \propto \underbrace{p_X(x)p_{Y|X}(y|x)}_{\widehat{\pi}(x)} = \underbrace{\phi(x; 0_2, \sigma_x^2 I_2)}_{p_X(x)} \underbrace{\prod_{i=1}^3 \phi(y_i; r_i, \sigma_y^2)}_{p_{Y|X}(y|x)}$$

Öz-düzgeleyici önem örneklemesi $q(x) = p_X(x)$ alınarak yapılabilir:

$$w(x) = \frac{\widehat{\pi}(x)}{q(x)} = \frac{p_X(x)p_{Y|X}(y|x)}{p_X(x)} = p_{Y|X}(y|x) = \prod_{i=1}^{3} \phi(y_i; r_i, \sigma_y^2)$$

Hedef yer saptaması - dağılımlar, $\sigma_{\mathsf{x}}^2 = 100$, $\sigma_{\mathsf{y}}^2 = 1$

Hedef yer saptaması

Öz-düzgeleyici önem örneklemesi: q(x)'in seçiminin önemi

Bir başka Bayesci çıkarım örneği:

$$X \sim \mathcal{N}(\mu, \sigma^2), \quad Y_1, \dots, Y_n | X = x \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(x - a, x + a).$$

Sonsal dağılım:

$$\pi(x) = p_{X|Y}(x|y) \propto \underbrace{\phi(x; \mu, \sigma^2)}_{p_X(x)} \underbrace{\frac{1}{(2a)^n} \prod_{i=1}^n \mathbb{I}_{(x-a, x+a)}(y_i)}_{p_{Y|X}(y|x)}$$

Öncül ve sonsal dağılımlar (n=10, a=2, $\mu=0$, $\sigma^2=10$):

Öz-düzgeleyici önem örneklemesi: q(x)'in seçiminin önemi

Sonsal dağılım:

$$\pi(x) = p_{X|Y}(x|y) \propto \underbrace{\phi(x; \mu, \sigma^2)}_{p_X(x)} \underbrace{\frac{1}{(2a)^n} \prod_{i=1}^n \mathbb{I}_{(x-a, x+a)}(y_i)}_{p_{Y|X}(y|x)}$$

Öz-düzgeleyici önem örneklemesi $\mathbb{E}(X|Y=y)'$ ı kestirmek için kullanılabilir.

q(x) için ilk seçim: öncül dağılım $q(x) = \phi(x; \mu, \sigma^2)$.

Bu geçerli bir seçimdir, ama a küçük ve σ^2 büyük ise önem fonksiyonu

$$w(x) = \frac{1}{(2a)^n} \prod_{i=1}^n \mathbb{I}_{(x-a,x+a)}(y_i).$$

çoğu örnek için 0, çok az örnek için $\frac{1}{(2a)^n}$ olacaktır. Bu da varyansın fazla olmasına sebep olur.

Öz-düzgeleyici önem örneklemesi: q(x)'in seçiminin önemi

Daha akıllı bir seçim sonsal dağılıma bakılarak yapılabilir.

 $y_{\text{max}} = \max_i y_i \text{ ve } y_{\text{min}} = \min_i y_i \text{ olsun.}$

$$x \in (y_{\text{max}} - a, y_{\text{min}} + a) \Leftrightarrow x - a < y_i < x + a, \quad \forall i = 1, \dots, n$$

Dolayısıyla, $(y_{\text{max}} - a, y_{\text{min}} + a)$ aralığının dışında vakit harcamamıza gerek yok.

Mantıklı bir seçim: $q(x) = \text{Unif}(x; y_{\text{max}} - a, y_{\text{min}} + a)$.

Bu seçimle

$$w(x) = \begin{cases} \frac{\phi(x; \mu, \sigma^2) \frac{1}{(2a)^n}}{1/(2a + y_{\min} - y_{\max})}, & x \in (y_{\max} - a, y_{\min} + a) \\ 0, & \text{else} \end{cases}$$

Öz-düzgeleyici önem örneklemesi: q(x)'in seçiminin önemi

Markov zinciri Monte Carlo

Ayrık zamanlı Markov zinciri

Başlangıç yoğunluk/kütle fonksiyonu ve geçiş olasılık çekirdeği yoğunluk/kütle fonksiyonu sırasıyla $\eta(x)$ ve M(x'|x) olan bir Markov zinciri $\{X_t\}_{t\geq 1}$:

$$p(x_{1:n}) = \eta(x_1)M(x_2|x_1)\dots M(x_n|x_{n-1})$$

= $\eta(x_1)\prod_{t=2}^n M(x_t|x_{t-1})$

Geçmiş değerler verildiğinde, Markov zincirinin n zamanındaki değeri sadece n-1 zamandaki değerine bağlıdır.

$$p(x_n|x_{1:n-1}) = p(x_n|x_{n-1}) = M(x_n|x_{n-1}).$$

Değişimsiz dağılım ve durağan dağılım

 X_n 'in marjinal dağılımını özyinelemeli olarak yazabiliriz

$$\pi_1(x) := \eta(x)$$

$$\pi_n(x) := \int M(x|x')\pi_{n-1}(x')dx'$$

Eğer verilen bir $\pi(x)$ dağılımı

$$\pi(x) = \int M(x|x')\pi(x')dx'$$

şartını sağlıyorsa " $\pi(x)$, M'ye göre değişimsizdir" denir ve M'nin belli şartları sağlaması durumunda

- \blacktriangleright $\pi(x)$, M'nin tek değişimsiz dağılımıdır,
- π(x), M'nin durağan dağılımıdır, yani

$$\lim_{n\to\infty}\pi_n\to\pi$$

Metropolis-Hastings

Markov zinciri Monte Carlo

Örnekleme problemi: $\pi(x)$ dağılımından örnekleme yapmak.

Markov zinciri Monte Carlo (MZMC) yöntemleri, durağan dağılımı π olan bir Markov zincirinin tasarımına dayanır.

Bu zincir yeterince uzun zaman çalıştırıldığında (mesela bir t_b zamanından sonra) zincirin üretilen değerlerinin $X_{t_b+1}, X_{t_b+2}, \ldots, X_T$ yaklaşık olarak π 'den geldiği kabul edilir.

Bu değerler, π dağılıma göre olan beklenti değerlerini hesaplamaya yarar.

$$\pi(arphi) pprox rac{1}{T-t_b} \sum_{t=t_b+1}^T arphi(X_t)$$

Metropolis-Hastings

En çok kullanılan MZMC yöntemlerinden biri Metropolis-Hastings yöntemidir.

 $X_{n-1} = x$ verildiğinde yeni değer için $q(\cdot|x)$ koşullu dağılımından çekilen bir örnek yeni değer olarak önerilir, bu değer belli bir olasılığa göre kabul edilir, edilmezse eski değerde kalınır.

 $X_{n-1} = x$ verildiğinde,

- ▶ Yeni değer için $x' \sim q(\cdot|x)$ önerilir.
- ➤ X_n'in değeri

$$\alpha(x, x') = \min \left\{ 1, \frac{\pi(x')q(x|x')}{\pi(x)q(x'|x)} \right\}$$

olasılıkla $X_n = x'$ alınır, yoksa önerilen değer reddedilir ve $X_n = x$ alınır.

Metropolis-Hastings: doğruluk

Metropolis-Hastings'in geçiş matrisi (çekirdeği):

$$M(x'|x) = q(x'|x)\alpha(x,x') + \underbrace{\left[1 - \int_{\mathcal{X}} q(x'|x)\alpha(x,x')\right]}_{x' \text{te reddetme olasiliği}} \delta_x(x').$$

 π , M için ayrıntılı denge koşulunu sağlar: Herhangi $A,B\subseteq\mathcal{X}$ kümeleri için

$$\int_{A} \int_{B} M(x'|x)\pi(x)dxdx' = \int_{B} \int_{A} M(x'|x)\pi(x)dxdx'$$

(X ayrıksa, her
$$x, x'$$
 için $M(x'|x)\pi(x) = M(x|x')\pi(x')$.)

- π , M için ayrıntılı denge koşulunu sağlarsa,
 - M tersinebilirdir ve
 - π, M'in değişimsiz dağılımıdır.

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatlarını saptamak istediğimiz bir hedef (source) X = (X(1), X(2)):

 s_1, s_2, s_3 noktalarındaki üç sensör hedefe olan uzaklıklarını ölçüyor:

$$r_i = [(X(1) - s_i(1))^2 + (X(2) - s_i(2))^2]^{1/2}, \quad i = 1, 2, 3$$

Ölçümler $Y = (Y_1, Y_2, Y_3)$ gürültülü:

$$Y_i = r_i + V_i, \quad V_i \sim \mathcal{N}(0, \sigma_v^2), \quad i = 1, 2, 3.$$

Bayesci çıkarım örneği: Hedef yer saptaması

Koordinatla ilgili önsel kanı:

$$X \sim \mathcal{N}(0_2, \sigma_x^2 I_2), \quad \sigma_x^2 \gg 1$$

Amaç: $Y=y=(y_1,y_2,y_3)$ verildiğinde $p_{X|Y}(x|y)$ 'i bulmak ve $\mathbb{E}(X|Y=y)$ 'yi hesaplamak.

$$\pi(x) = p_{X|Y}(x|y) \propto \underbrace{p_X(x)p_{Y|X}(y|x)}_{\widehat{\pi}(x)} = \underbrace{\phi(x; 0_2, \sigma_x^2 I_2)}_{p_X(x)} \underbrace{\prod_{i=1}^{3} \phi(y_i; r_i, \sigma_y^2)}_{p_{Y|X}(y|x)}$$

Metropolis-Hastings algoritması $q(x'|x) = \phi(x'; x, \sigma_q^2 I_2)$ alınarak yapılabilir:

$$\alpha(x, x') = \min \left\{ 1, \frac{p_X(x')p_{Y|X}(y|x')q(x|x')}{p_X(x)p_{Y|X}(y|x)q(x'|x)} \right\} = \min \left\{ 1, \frac{p_X(x')p_{Y|X}(y|x')}{p_X(x)p_{Y|X}(y|x)} \right\}$$

Hedef yer saptaması - dağılımlar, $\sigma_{\mathsf{x}}^2=100$, $\sigma_{\mathsf{y}}^2=1$

Hedef yer saptaması için Metropolis-Hastings: örnekler

Hedef yer saptaması için Metropolis-Hastings: ilk 200 örnek

Gibbs örneklemesi

Gibbs örneklemesi

Bir diğer çok sık kullanılan MZMC yöntemi de Gibbs örneklemesidir.

Uygulanması için

- $ightharpoonup X = (X(1), \dots, X(d))$ değişkeni çok boyutlu olmalı,
- ▶ tam koşullu π_k (·|X(1), . . . X(k-1), X(k+1), . . . , X(d)) dağılımlarından örnekleme yapılabilmeli.

Gibbs örneklemesi:

$$X_1=(X_1(1),\ldots,X_1(d))$$
 ile başla. $n=2,3,\ldots$ için, $k=1,\ldots,d$ için
$$X_n(k)\sim \pi_k(\cdot|X_n(1),\ldots,X_n(k-1),X_{n-1}(k+1),\ldots,X_{n-1}(n)).$$

Gibbs örneklemesi: doğruluk

Gibbs örneklemesi:

$$X_1 = (X_1(1), \dots, X_1(d))$$
 ile başla. $n = 2, 3, \dots$ için, $k = 1, \dots, d$ için

$$X_n(k) \sim \pi_k(\cdot|X_n(1),\ldots,X_n(k-1),X_{n-1}(k+1),\ldots,X_{n-1}(n)).$$

Bu algoritmanın döngüsünün k'ıncı adımına karşılık gelen geçiş matrisi (çekirdeği) M_k :

$$M_k(x, y) = \pi_k(y_k|x_{-k})\delta_{x_{-k}}(y_{-k})$$

Burada
$$x_{-k} = (x_{1:k-1}, x_{k+1:d}) \ y_{-k} = (y_{1:k-1}, y_{k+1:d}).$$

Bütün bür döngüye karşılık gelen geçiş matrisi (çekirdeği)

$$M = M_1 M_2 \dots M_d$$

Her bir M_k 'nın ayrıntılı denge koşulunu sağladığı ve π 'ye göre tersinirliği gösterilebilir.

Sıralı Monte Carlo

Büyüyen boyutlarda sıralı çıkarım

 $\{X_n\}_{n\geq 1}$, her biri \mathcal{X} 'ten değer alan rassal değişkenler dizisi olsun.

 $X_{1:n}$ için $\{\pi_n(x_{1:n})\}_{n\geq 1}$ dağılım dizisi verilmiş olsun.

Her biri $\varphi_n: X^n \to \mathbb{R}$ olan bir $\{\varphi_n\}_{n \geq 1}$ fonksiyon dizisi verilsin.

Amaç: Sıralı çıkarım

$$\pi_n(\varphi_n) = \mathbb{E}_{\pi_n} \left[\varphi_n(X_{1:n}) \right] = \int \pi_n(x_{1:n}) \varphi_n(x_{1:n}) dx_{1:n}, \quad n = 1, 2, \dots$$

integrallerine sıralı bir şekilde nasıl yaklaşabiliriz?

Örnek: Saklı Markov modelleri (SMM)

SMM, biri gizli ve Markov zinciri olan, diğeri gözlenen iki süreçten oluşur.

$$\{X_t \in \mathcal{X}, Y_t \in \mathcal{Y}\}_{t \geq 1}$$

 $\{X_t\}_{t\geq 1}$ başlangıç ve geçiş yoğunlukları $\eta(x)$ ve f(x'|x) olan saklı Markov zinciri

$$X_1 \sim \eta(x), \quad X_t | (X_{1:t-1} = x_{1:t-1}) \sim f(\cdot | x_{t-1}),$$

 $\{Y_t\}_{t\geq 1}$, $\{X_t\}_{t\geq 1}$ 'ye koşullu bağımsız süreç:

$$Y_t|(\{X_i\}_{i\geq 1}=\{x_i\}_{i\geq 1},\{Y_i\}_{i\neq t}=\{y_i\}_{i\neq t})\sim g(\cdot|x_t).$$

Örneğe örnek: Hedef takip

- $V_t = (V_t(1), V_t(2))$: t anındaki hız vektörü
- $P_t = (P_t(1), P_t(2))$: t anındaki pozisyon vektörü
- $ightharpoonup X_t = (V_t, P_t)$: t anındaki hız ve pozisyon
- Y_t ~ $\mathcal{N}((||S_1 P_t||, ||S_2 P_t||, ||S_3 P_t||), \sigma_y^2 I_3)$: 3 sensörlerden alınan gürültülü uzaklık ölçümleri.

 X_t bir Markov zinciri olarak modellenebilir. Bu durumda $\{X_t,Y_t\}$ bir SMM oluşturur.

SMM: hedef sonsal dağılımlar

Ortak dağlım:

$$p(x_{1:n}, y_{1:n}) = \eta(x_1) \prod_{t=2}^{n} f(x_t|x_{t-1}) \prod_{t=1}^{n} g(y_t|x_t)$$

Gözlemlerin marjinal (tekil) dağılımı

$$p(y_{1:n}) = \int_{\mathcal{X}^n} p(x_{1:n}, y_{1:n}) dx_{1:n}.$$

 $x_{1:n}$ 'nin $y_{1:n}$ 'e olan sonsal dağılımı:

$$p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n},y_{1:n})}{p(y_{1:n})} \propto p(x_{1:n},y_{1:n})$$

Amaç: $\pi_n(x_{1:n}) = p(x_{1:n}|y_{1:n})$ ve $\mathbb{E}_{\pi_n}[\varphi_n(X_{1:n})]$ 'e yaklaşmak.

Sıralı önem örneklemesi

Sıralı önem örneklemesi

 $\mathbb{E}_{\pi_n}\left[\varphi_n(X_{1:n})\right]$ için önem örneklemesi yapmak istiyoruz.

Bunun için $q_n(x_{1:n})$ 'ye ihtiyacımız var, bu durumda ağırlık fonksiyonları

$$w_n(x_{1:n}) = \frac{\pi_n(x_{1:n})}{q_n(x_{1:n})}.$$

q_n'yi sıralı olarak oluşturabiliriz:

$$q_n(x_{1:n}) = q_1(dx_1) \prod_{i=1}^n q_i(x_i|x_{1:i-1})$$

Bu durumda ağırlık fonksiyonları özyinelemeli olarak yazılabilir:

$$w_n(x_{1:n}) = w_{n-1}(x_{1:n-1}) \underbrace{\frac{\pi_n(x_{1:n})}{\pi_{n-1}(x_{1:n-1})q_n(x_n|x_{1:n-1})}}_{w_{n|n-1}(x_{1:n})}.$$

$$\pi_n(x_{1:n}) = \widehat{\pi}_n(x_{1:n})/Z_n$$
 ve $\widehat{\pi}_n(x_{1:n})$ biliniyorsa,

$$W_n^{(i)} = \frac{w_n(X_{1:n}^{(i)})}{\sum_{i=1}^N w_n(X_{1:n}^{(i)})}.$$

Sıralı (öz-düzgeleyici) önem örneklemesi

Diyelim ki $\pi_n(x_{1:n}) = \widehat{\pi}_n(x_{1:n})/Z_n$ ve $\widehat{\pi}_n(x_{1:n})$ biliniyor.

Öz-düzgeleyici önem örneklemesi sıralı bir şekilde uygulanabilir:

 $n = 1, 2, \dots$ için;

- $i = 1, \dots, N$ için,
 - ▶ n = 1 ise $X_1^{(i)} \sim q_1(\cdot)$ üretilir, $w_1(X_1^{(i)}) = \frac{\pi_1(X_1^{(i)})}{q_1(X_1^{(i)})}$ hesaplanır.
 - ▶ $n \ge 2$ ise $X_n^{(i)} \sim q_n(\cdot|X_{1:n-1}^{(i)})$ üretilir, $X_{1:n}^{(i)} = (X_{1:n-1}^{(i)}, X_n^{(i)})$ oluşturulur, ve

$$w_n(X_{1:n}^{(i)}) = w_{n-1}(X_{1:n-1}^{(i)}) \frac{\widehat{\pi}_n(x_{1:n})}{\widehat{\pi}_{n-1}(x_{1:n-1})q_n(X_n^{(i)}|X_{1:n-1}^{(i)})}.$$

lacktriangle Öz-düzgeleyici önem ağırlıkları: $i=1,\ldots,N$ için

$$W_n^{(i)} = \frac{w_n(X_{1:n}^{(i)})}{\sum_{i=1}^N w_n(X_{1:n}^{(i)})}.$$

SMM için sıralı önem örnekleyicisi

Hedef dağılımlar: $\pi_n(x_{1:n}) \propto \widehat{\pi}_n(x_{1:n}) = p(x_{1:n}, y_{1:n})$

$$p(x_{1:n}, y_{1:n}) = \eta(x_1)g(y_1|x_1)\prod_{t=2}^n f(x_t|x_{t-1})g(y_t|x_t)$$

 $p(x_{1:n}|y_{1:n})$ özyinelemeli olarak yazılabilir:

$$p(x_{1:n}, y_{1:n}) = p(x_{1:n-1}, y_{1:n-1})f(x_n|x_{n-1})g(y_n|x_n)$$

 q_n sıralı olarak gözlemlere göre ayarlanabiliir. Örneğin,

$$q_n(x_{1:n}|y_{1:n}) = q(x_1|y_1) \prod_{t=2}^n q(x_t|x_{t-1}, y_t)$$

= $q_{n-1}(x_{1:n-1}|y_{1:n-1})q(x_n|x_{n-1}, y_n)$

Önem ağırlıkları:

$$w_n(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{f(x_n|x_{n-1})g(y_n|x_n)}{g(x_n|x_{n-1},y_n)}.$$

Parçacık süzgeci

Ağırlık bozulması sorunu

n arttıkça çok az sayıda $X_{1:n}^{(i)}$ 'nin önem ağırlıkları $w_n(X_{1:n}^{(i)})$ diğerlerininkine göre çok büyük olacaktır.

Dolayısıla, $W_n^{(i)}$ öz-düzgelenmiş ağırlıkarından çok azı 1'e yakın olacak, diğerleri 0'a yaklaşacaktır.

Limitte, $W_n^{(i)}$ 'lerden bir tanesi 1, diğerleri 0 olacaktır.

Bu soruna, ağırlık bozulması sorunu denir.

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; \mathsf{a} x, \sigma_x^2), \quad g(y|x) = \phi(y; \mathsf{b} x, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; \mathsf{a} x, \sigma_x^2), \quad g(y|x) = \phi(y; \mathsf{b} x, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; \mathsf{a} x, \sigma_x^2), \quad g(y|x) = \phi(y; \mathsf{b} x, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

$$\eta(x) = \phi(x; 0, \sigma_0^2), \quad f(x'|x) = \phi(x'; ax, \sigma_x^2), \quad g(y|x) = \phi(y; bx, \sigma_y^2)$$

Yeniden örnekleme → Parçacık süzgeci

Ağırlık bozulması sorununu önlemek için, sıralı önem örneklemesinin her bir adımına yeniden örnekleme uygulanır.

Yeninden örnekleme: Ağırlıkları olan bir örnek kümesinin, yine o kümeden ağırlıklarına doğru orantılı ihtimallerle seçilmiş eşit ağırlıklandırılan örnekler kümesiyle değiştirilmesi.

Diyelim ki n-1 zamanında $X_{1:n-1}^{(1)},\ldots,X_{1:n-1}^{(N)}$ örneklerimiz var ve bunların öz-düzgelenmiş ağırlıkları $W_{n-1}^{(1)},\ldots,W_{n-1}^{(N)}$.

Bu örneklerden, ağırlıkları olasılıklarıyla N kere bağımsız örnekler çekilir:

$$P(\widetilde{X}_{1:n-1}^{(i)} = X_{1:n-1}^{(j)}) = W_{n-1}^{(j)}, \quad i, j = 1, \dots, N.$$

Artık yolumuza 1/N eşit ağırlıklı $\widetilde{X}_{1:n-1}^{(1)},\dots,\widetilde{X}_{1:n-1}^{(N)}$ ile devam ediyoruz.

Parçacık süzgeci: Sıralı örnekleme yöntemine yeniden örnekleme adımının eklenmesiyle elde edilen yönteme denir.

SMM için parçacık süzgeci

Hedef dağılımlar: $\pi_n(x_{1:n}) \propto \widehat{\pi}_n(x_{1:n}) = p(x_{1:n}, y_{1:n})$

$$p(x_{1:n}, y_{1:n}) = \eta(x_1)g(y_1|x_1)\prod_{t=2}^n f(x_t|x_{t-1})g(y_t|x_t)$$

Parçacık süzgeci:

n=1 için;

$$i=1,\ldots,N$$
 için $X_1^{(i)}\sim q(\cdot|y_1)$ örneklenir ve $W_1^{(i)}\propto \frac{\eta(X_1^{(i)})g(y_1|X_1^{(i)})}{q(X_1^{(i)}|y_1)}$ hesaplanır. $n=2,3,\ldots$ icin,

▶ Yeniden örnekleme ile $\widetilde{X}_{1:n-1}^{(1)}, \dots, \widetilde{X}_{1:n-1}^{(N)}$ üretilir:

$$\mathbb{P}(\widetilde{X}_{1:n-1}^{(i)} = X_{1:n-1}^{(j)}) = W_{n-1}^{(j)}, \quad i, j = 1, \dots, N.$$

- $i=1,\ldots,N$ için, $X_n^{(i)}\sim q_n(\cdot|\widetilde{X}_{n-1}^{(i)},y_n)$ örneklenir, $X_{1:n}^{(i)}=(\widetilde{X}_{1:n-1}^{(i)},X_n^{(i)})$ oluşturulur.
- Bu parçacıkların ağırlıkları

$$W_n^{(i)} \propto \frac{f(X_n^{(i)}|\widetilde{X}_{n-1}^{(i)})g(y_n|X_n^{(i)})}{q(X_n^{(i)}|\widetilde{X}_{n-1}^{(i)},y_n)}.$$

Yeniden örnekleme: Yol bozulması sorunu

Ağırlık bozulması sorununu yeniden örnekleme ile giderilebilir.

Ancak yeniden örnekleme yol bozulması sorunu yaratır.

Art arda yeniden örneklemeler sebebiyle önceki zamanlara ait parçacık sayısı gitgide düşer.