Algebra 1 Nils Witt

Sachen, die Schmidti nicht ausführt

Wintersemester 2020

Satz 1 (1. Fortsetzungssatz). K ein Körper und K' = K(a) ein einfache, algebraische Körpererweiterung von K mit Minimalpolynom $f \in K[X]$. Und sei $\sigma : K \to L$ ein Körperhomomorphismus.

- (i) Ist $\sigma': K' \to L$ ein Körperhomomorphismus, der σ fortsetzt, so gilt, dass $\sigma'(a) \in L$ eine Nullstelle von f^{σ} ist.
- (ii) Sei $\beta \in L$ eine Nullstelle von f, so gibt es genau eine Fortsetzung $\sigma' : K' \to L$ mit $\sigma'(a) = \beta$.

Satz 2 (2. Fortsetzungssatz). Sei $K \subset K'$ algebraisch und $\sigma : K \to L$ ein Körperhomomorphismus und L sei algebraisch abgeschlossen, dann gibt es zu σ eine Fortsetzung $\sigma' : K' \to L$.

Lemma 1. Sei L/K eine endliche Galoiserweiterung. Und seien $\alpha, \beta \in L$ mit der Eigenschaft, dass $\sigma(\alpha) = \alpha$, $\forall \sigma \in \operatorname{Gal}(L/K)$ und, dass $\sigma(\beta) \neq \beta$ und zwar für alle $\sigma \in \operatorname{Gal}(L/K) \setminus \{\operatorname{id}\}$. Dann gilt

- (i) $L = K(\beta)$ und
- (ii) $\alpha \in K$

Beweis. Wir betrachten die einfache Körpererweiterung $K(\beta) = K'$, dann gilt insbesondere, dass $\sigma|_{K'} \neq \mathrm{id}_{K'}$ falls $\sigma \neq \mathrm{id}_L$. Denn zumindest wird $\beta \in K'$ nicht auf sich selbst geschickt. Insbesondere ist also

$$\operatorname{Gal}(L/K') = \operatorname{Aut}_{K'}(L) = \{ \sigma \in \operatorname{Aut}(L) : \sigma|_{K'} = \operatorname{id}_{K'} \} = \{ \operatorname{id}_L \}$$

Der Fixkörper von Gal(L/K') ist also $L^{\{id_L\}} = L$. Da die Zuordnungen aus dem Hauptsatz bijektiv sind, folgt $K' = K(\beta) = L$.

Zu (ii). Da $\sigma(\alpha) = \alpha$ für alle $\sigma \in \operatorname{Gal}(L/K)$ gilt, dass $\operatorname{Gal}(L/K(\alpha)) = \operatorname{Gal}(L/K)$ und nach dem Hauptsatz der Galoistheorie folgt das Resultat, weil

$$K(\alpha) = L^{\operatorname{Gal}(L/K(\alpha))} = L^{\operatorname{Gal}(L/K)} = K$$

Also $\alpha \in K$.

Seite 1

Algebra 1 Nils Witt

Lemma 2. Sei L/K einfach, algebraisch. Also sei $a \in L$ mit L = K(a) und $f \in K[X]$ sei das Minimalpolynom von a und \overline{K} ein algebraischer Abschluss von K. Dann gilt, dass $[L:K]_s = Anzahl$ der verschiedenen Nullstellen von f in \overline{K} .

Beweis. Die "Umformulierung von Lemma 3.40" machen wir explizit. Sei nun $\alpha \in \overline{K}$ eine Nullstelle von f in \overline{K} . Wir können $K \hookrightarrow \overline{K}$ und erhalten nach 3.40(ii) eine eindeutige Fortsetzung der kanonischen Inklusion $\tau : K(a) \to \overline{K}$ mit $\tau(a) = \alpha$ und $\tau|_K = \mathrm{id}_K$. Dann ist τ ein K-Homomorphismus von $K(a) = L \to \overline{K}$ und somit erhalten wir aus jeder Nullstelle genau einen K-Homomorphismus $L \to \overline{K}$.

Sei nun $\sigma: L = K(a) \to \overline{K}$ ein K-Homomorphismus, dann ist σ durch seinen Wert auf a eindeutig festgelegt und mit dem Standardargument ist $\sigma(a)$ eine Nullstelle von f. Zu jedem K-Homomorphismus von $L \to \overline{K}$ erhalten wir also dadurch genau eine Nullstelle von f in \overline{K} .

Proposition 1. Sei L/K normal und endlich mit char K=p>0. Dann ist L/K galoissch genau dann, wenn $\# \operatorname{Aut}_K(L) = [L:K]$.

Beweis. Es existiert ein eindeutig bestimmter Zwischenkörper K_i von L/K mit der Eigenschaft, dass K_i/K rein inseperanel und L/K_i separabel ist, weil L/K normal. Da L/K algberiasch ist, ist \overline{L} ein algebraischer Abschluss von K und wir erhalten

$$1 = [K_i : K]_s = \# \operatorname{Hom}_K(K_i, \overline{K}) = \# \operatorname{Hom}_K(K_i, \overline{L})$$

Daher git, dass $\operatorname{Hom}_K(K_i, \overline{L}) = \{K_i \hookrightarrow \overline{L}\}$. Sei nun $\sigma \in \operatorname{Gal}(L/K)$, dann betrachte man $\sigma|_{K_i} : K_i \to L$. Da $K \subset K_i$ und indem wir $L \hookrightarrow \overline{L}$, wird $\sigma|_{K_i}$ so zu einem Element von $\operatorname{Hom}_K(K_i, \overline{L})$, also ist $\sigma|_{K_i}$ fortgesetzt nach \overline{L} die natürliche Inklusion von K_i nach \overline{L} , insbesondere ist $\sigma|_{K_i} = \operatorname{id}_{K_i}$.

Ferner gilt, dass $\#\operatorname{Aut}_K(L) = [L:K]_s$, denn jeder K-Automorphismus von L ist auf natürliche Weise ein K-Homomorphismus von $L \to \overline{L}$, was $\#\operatorname{Aut}_K(L) \le [L:K]_s$ zeigt. Wegen der Normalität von L/K beschränkt sich aber jeder K-Homomorphismus von $L \to \overline{L}$ zu einem K-Automorphismus von L. Insbesondere liefern zwei verschiedene K-Homomorphismen von $L \to \overline{L}$ auch zwei verschiedene K-Automorphismen von L und es gilt Gleichheit. Ferner gilt

$$\# \operatorname{Aut}_K(L) = [L:K]_s = [L:K_i]_s \underbrace{[K_i:K]_s}_{=1} = [L:K_i] = [L:K_i][K_i:K] \le [L:K]$$

Es ist $[K_i:K]=1 \Leftrightarrow [L:K]_s=[L:K] \Leftrightarrow K=K_i \Leftrightarrow \#\operatorname{Aut}_K(L)=[L:K]$ und $[L:K]_s=[L:K]$ ist äquivalent dazu, dass L/K separabel ist. Wir haben also, dass L/K galoissch ist genau dann, wenn $\#\operatorname{Aut}_K(L)=[L:K]$.