

Wykorzystanie metody Chiena-Hronesa-Reswicka w strojeniu regulatora PID

Autor: Jakub Ściga

Promotor: dr inż. Krzysztof Lalik

Zakres pracy

- » Wstęp teoretyczny dotyczący działania układów automatycznej regulacji
- » Przegląd różnych metod doboru nastaw regulatora PID
- » Symulacja metody Chiena-Hronesa-Reswicka w programie MATLAB/Simulink
- » Implementacja algorytmu autoregulacji na sterowniku PLC

Metody doboru nastaw PID

- » Metoda Zieglera-Nicholsa
- » Metoda Hassena-Offereissena
- » Metoda Cohena-Coona
- » Metoda Strejca
- » Metoda Chiena-Hronesa-Reswicka

Metoda Zieglera-Nicholsa

Parametry	$\mathbf{K}_{\mathbf{p}}$	T_{i}	T_d	
P	0,5 K _{kr}			
PI	$0,45~\mathrm{K_{kr}}$	0,85 T _{osc}		
PID	0,6 K _{kr}	0,5 T _{osc}	$0.125 T_{\rm osc}$	

Rys. 1. Dobór nastaw regulatora PID wg metody Zieglera-Nicholsa

Metoda Hassena-Offereissena

Parametry	$\mathbf{K}_{\mathbf{p}}$	T_{i}	$\mathbf{T_d}$	
P	0,45 K _{kr}			
PI	$0,45~\mathrm{K_{kr}}$	3 T _{i kryt}		
PID	0,45 K _{kr}	$4,5 T_{d max}$	$0.3 T_{d max}$	

Rys. 2. Dobór nastaw regulatora PID wg metody Hassena-Offereissena

Metoda Cohena-Coona

Parametry	$\mathbf{K}_{\mathbf{p}}$	T_{i}	T_d	
P	$\frac{1}{K_{kr}}(1+\frac{\mathrm{r}}{3})$			
PI	$\frac{1}{K_{kr}}(0.9 + \frac{\mathrm{r}}{12})$	$t_d \frac{30 + 3r}{9 + 20r}$		
PID	$\frac{1}{K_{kr}}(\frac{4}{3}+\frac{r}{4})$	$t_d \frac{32 + 6r}{13 + 8r}$	$t_d \frac{4}{13 + 2r}$	

Rys. 3. Dobór nastaw regulatora PID wg metody Cohena-Coona

Metoda Strejca

Rys. 4. Wyznaczenie parametrów pośrednich regulatora PID wg metody Strejca

Metoda Chiena-Hronesa-Reswicka AGH

Rys. 5. Wyznaczenie parametrów pośrednich regulatora PID wg metody Chiena-Hronesa-Reswicka

Metoda Chiena-Hronesa-Reswicka Heswicka Heswicka Metoda Chiena-Hronesa-Reswicka Metoda Chiena-Reswicka Metoda Meto

Przeregulowanie	0 %		20 %			
Parametry	K_p	T_{i}	T_d	K_p	T_{i}	T_d
P	$0,3\frac{1}{a}$			$0.7\frac{1}{a}$		<u>—</u>
PI	$0,35\frac{1}{a}$	1,2 T		$0,6\frac{1}{a}$	Т	_

Rys. 6. Dobór nastaw regulatora PID wg metody Chiena-Hronesa-Reswicka

Rys. 7. Układ automatycznej regulacji zbudowany za pomocą pakietu Simulink


```
88 Obliczanie parametrow regulacji
y1=dy(I dy)*(0-x(I dy))+y(I dy);
x1=(0-y(I_dy))/dy(I_dy)+x(I_dy);
x2=(K-y(I dy))/dy(I dy)+x(I dy);
ta=abs(y1);
                                         %wyraz wolny
                                         %odległość stycznej na wys. 0
td=abs(x1);
to=abs(x2-x1);
                                         %odległość stycznej na wys. K
88 Dobor nastawow PID CHR
                                        %wartość wzmocnienia
Kp=0.6/ta;
Ti=1*to:
                                       %stała całkowania
Td=0.5*td:
                                        %stała różniczkująca
```

Rys. 8. Fragment programu odpowiedzialny za dobór nastaw regulatora PID

Rys. 9. Wyznaczanie stycznej w punkcie przegięcia odpowiedzi układu

Rys. 10. Porównanie sygnału wyjściowego regulowanego i bez regulacji

Rys. 11. Sterownik PLC Sinamic S7-1200

Rys. 12. Panel HMI Siemens Simatic HMI KTP600

Rys. 13. Silnik prądu stałego i sterownik WOBIT SDC106

Rys. 14. Obiekt automatycznej regulacji

Działanie programu na PLC

Rys. 15. Przepisanie rejestru i inkrementacja licznika

Działanie programu na PLC

Rys. 16. Zapis aktualnych wartości położenia, prędkości i przyspieszenia

Działanie programu na PLC

```
//Obliczanie parametrow regulacji
#y1:= "Dane".predkosc["pkt przeg"] * (0 - "pkt przeg") + "Dane".polozenie["pkt przeg"];
#x1 := (0 - "Dane".polozenie["pkt przeg"]) / "Dane".predkosc["pkt przeg"] + "pkt przeg";
#x2 := ("zadana" - "Dane".polozenie["pkt przeg"]) / "Dane".predkosc["pkt przeg"] + "pkt przeg";
#punkt przeg := ABS(#y1);
#td := #x1;
#to := #x2- #x1;
//Dobor nastaw regulatora PID
"Kp" := 0.6 /#punkt przeg;
                                  //wartość wzmocnienia
"Ti" := 1 * #to;
                                  //stała całkowania
"Td" := 0.5 * #td;
                                  //stała różniczkujaca
#Wzmocnienie := "Kp";
#"Stała Ti" := "Ti";
#"Stała Td" := "Td";
```

Rys. 17. Algorytm doboru nastaw regulatora PID

Dziękuję za uwagę