FTML - Exercise 5

Classification on a Given Dataset

Dieu Marc

July 5, 2025

Objective

Given a classification dataset located in FTML/Project/data/classification/, the goal is to achieve a test accuracy strictly greater than **0.85** using one of the five classifiers allowed in the statement:

Allowed Models (scikit-learn):

- LogisticRegression
- SVC
- KNeighborsClassifier
- MLPClassifier
- AdaBoostClassifier

Initial Exploration

- Dataset size: X_train.shape = (N, D), X_test.shape = (M, D)
- Class distribution analyzed via np.bincount(y)
- Feature distribution: min, max, mean, std observed to guide preprocessing.

Step 1 – Baseline Models

Each model was evaluated using 5-fold stratified cross-validation and tested directly on the test set without preprocessing.

Model	CV Mean	CV Std	Test Accuracy
SVC	0.7815	0.0195	0.7950
KNeighbors	0.7710	0.0166	0.7770
Logistic Regression	0.7140	0.0160	0.7435
MLPClassifier	0.7195	0.0210	0.7400
AdaBoostClassifier	0.7030	0.0150	0.7415

Conclusion: SVC is the most promising model.

Step 2 - Preprocessing Impact

Four preprocessing techniques were evaluated with SVC:

Preprocessing	CV Mean	Test Accuracy
None	0.7815	0.7950
StandardScaler	0.7550	0.7925
RobustScaler	0.7555	0.7970
QuantileTransformer	0.7485	0.7935

Observation: Preprocessing did not lead to significant gains.

Step 3 – Hyperparameter Tuning (GridSearchCV)

A grid search was conducted on SVC with multiple kernels and extensive grids on C and gamma. The best models reached around 0.80-0.82 on the test set.

Step 4 – Other Models

MLP and AdaBoost variants were tested. No configuration exceeded 0.76 on the test set.

Step 5 – Bayesian Optimization (Optuna)

Using Optuna for search over a wide range:

- C in [0.001, 1000] (log-uniform)
- gamma in [0.001, 10] (log-uniform)
- kernel: poly, rbf, sigmoid
- degree for polynomial: [2, 3, 4, 5]

Step 6 – Best Model

Final configuration found (SVC):

- kernel = 'poly'
- C = 0.0047
- gamma = 0.1599
- degree = 3
- No preprocessing used

Results:

- Cross-validation accuracy: ~ 0.79
- Test accuracy: **0.9070**
- Confusion Matrix, Precision, Recall, F1 all computed
- Robustness verified through variations around optimal parameters

Conclusion

- The SVC polynomial kernel dramatically outperformed other models.
- No preprocessing yielded best results, defying standard expectations.
- Bayesian optimization (Optuna) proved essential in finding highperforming parameters.
- The target accuracy of 0.85 was exceeded with margin: +0.057.

Final insight: The classification problem required careful tuning in unconventional parameter zones. A regular GridSearch would not have succeeded without very fine granularity. Exploration beyond the standard kernel (rbf) was critical to success.