Analisi Matematica II

Analisi complessa

Virginia De Cicco, Pietro Mercuri Sapienza Univ. di Roma Teorema di Cauchy

Primitiva

Sia $A \subseteq \mathbb{C}$ un aperto connesso ed $f: A \to \mathbb{C}$ una funzione continua.

Si dice che $F: A \to \mathbb{C}$ è una *primitiva* di f

se è derivabile in A

e se F'(z) = f(z) per ogni $z \in A$.

Come in campo reale, se F è una primitiva di f, allora per ogni $c \in \mathbb{C}$ la funzione F+c è una primitiva di f.

La conoscenza di una primitiva permette di calcolare immediatamente gli integrali curvilinei; infatti vale un analogo del teorema di Torricelli-Barrow.

Teorema di Torricelli-Barrow

Sia $A \subseteq \mathbb{C}$ un aperto connesso,

sia $\gamma\colon [a,b]\to\mathbb{C}$ una curva regolare (o regolare a tratti) la cui traccia $\gamma([a,b])\subseteq A$,

sia $f: A \to \mathbb{C}$ una funzione continua e $F: A \to \mathbb{C}$ una sua primitiva.

Allora

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

Per dimostrarlo basta osservare che $F(\gamma(t))$ è una primitiva di $f(\gamma(t))\gamma'(t)$ e quindi

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} (F \cdot \gamma)'(t)dt = F(\gamma(b)) - F(\gamma(a)).$$

Teorema di Torricelli-Barrow

Dal teorema segue che se f ammette una primitiva, allora l'integrale dipende solo dagli estremi $\gamma(a)$ e $\gamma(b)$ e non dalla curva che li connette.

In particolare, se γ è chiusa $(\gamma(a) = \gamma(b))$, allora $\int_{\gamma} f(z)dz = 0$.

Ritornando agli esempi precedenti, si può osservare che necessariamente la funzione $\frac{1}{z}$ non ammette una primitiva in \mathbb{C}^* , perché, come già visto, $\int_{\gamma_t} \frac{1}{z} dz = 2\pi i \neq 0$.

Inoltre il fatto che $\int_{\gamma} z^k dz = 0$ per ogni $k \neq -1$ intero è coerente col fatto che z^k ammette, per $k \neq -1$, la primitiva $\frac{z^{k+1}}{k+1}$, che è definita in tutto $\mathbb C$ se k > -1 e in $\mathbb C^*$ se k < -1.

Appello del 19 novembre 2012

Si calcoli

$$\int_{\gamma} z^2 dz,$$

dove γ è il segmento congiungente i punti 1 e i.

Soluzione: Tale funzione è olomorfa in $\mathbb C$ e ammette la primitiva

$$F(z)=\frac{1}{3}z^3\,.$$

Quindi

$$\int_{\gamma} z^2 dz = F(i) - F(1) = -\frac{i}{3} - \frac{1}{3}.$$

Esistenza di una primitiva

Vediamo ora delle condizioni necessarie e sufficienti per l'esistenza di una primitiva.

Teorema

Sia $A\subseteq\mathbb{C}$ un aperto connesso e sia $f\colon A\to\mathbb{C}$ una funzione continua. Allora sono equivalenti le seguenti proposizioni:

- a) f ammette una primitiva in A;
- b) per ogni curva regolare a tratti $\gamma\colon [a,b]\to\mathbb{C}$ la cui traccia $\gamma([a,b])\subseteq A$, l'integrale di f su γ dipende solo dagli estremi di γ ;
- c) per ogni curva chiusa e regolare a tratti $\gamma\colon [a,b]\to\mathbb{C}$ la cui traccia $\gamma([a,b])\subseteq A$, l'integrale di f su γ è nullo.

Aperti semplicemente connessi

Un aperto connesso $A \subseteq \mathbb{C}$ si dice *semplicemente connesso* se

per ogni curva γ semplice, chiusa e regolare a tratti contenuta in A (significa che la traccia $\gamma([a,b])\subseteq A)$,

l'aperto limitato che ha γ come frontiera è interamente contenuto in A .

Esempi: gli intorni circolari e i semipiani sono semplicemente connessi. Si osservi inoltre che

- 1) \mathbb{C}^* è un aperto connesso, ma non semplicemente connesso e lo stesso vale per ogni corona circolare.
- 2) \mathbb{C}^{**} è semplicemente connesso.

Infine se A è solo un aperto connesso ci sono curve che delimitano aperti interamente contenuti in A e altre no.

Appello del 19 novembre 2012

Domanda a risposta multipla

Uno solo dei seguenti insiemi è semplicemente connesso. Quale?

a)
$$\{z \in \mathbb{C} : 1 \le |z| \le 2\}$$

b)
$$\{z \in \mathbb{C} : |z| \ge 1\}$$

c)
$$\{z \in \mathbb{C} : 0 < |z| \le 1\}$$

$$\mathsf{d})\;\{z\in\mathbb{C}:0\leq|z|\leq1\}$$

Soluzione: d)

Teorema integrale di Cauchy

Un importante teorema sulle funzioni olomorfe è il seguente:

Teorema integrale di Cauchy

Sia $A\subseteq\mathbb{C}$ un aperto connesso e sia $f\colon A\to\mathbb{C}$ una funzione olomorfa. Allora per ogni γ circuito (cioè semplice e chiusa) regolare a tratti, contenuto in A e tale che:

(I) γ è la frontiera di un aperto D interamente contenuto in A si ha che

$$\int_{\gamma} f(z)dz = 0.$$

Esercizio

Si calcoli il seguente integrale in campo complesso sulla curva chiusa indicata:

$$\int_{\gamma} \frac{\sin(\pi z)}{z(z+1)} dz, \qquad \gamma(t) = i + \frac{1}{2} e^{it}, \qquad t \in [0, 2\pi].$$

Soluzione: γ è la circonferenza di centro $z_c=i$ e di raggio $\frac{1}{2}$ e la funzione non è definita in 0 ed -1. La curva γ non "racchiude" tali punti e quindi, per il teorema integrale di Cauchy,

$$\int_{\gamma} \frac{\sin(\pi z)}{z(z+1)} dz = 0.$$

Appello del 30 maggio 2012

- (i) Si enunci e si dimostri il Teorema integrale di Cauchy.
- (ii) Si calcolino al variare di $n \le 7$ i seguenti integrali

$$I_n:=\int_{\gamma_n}\frac{1}{z-\frac{15}{2}}\,dz\,,$$

dove γ_n è il bordo dell'insieme

$$A_n = \{z = x + iy : |x| \le n, |y| \le n\}.$$

Soluzione:

Se $n \leq$ 7, il punto $\frac{15}{2}$ non cade all'interno della curva γ_n e quindi

$$I_n=\int_{\gamma_n}\frac{1}{z-\frac{15}{2}}\,dz=0\,.$$

Teorema integrale di Cauchy: osservazioni

- 1) Nell'esempio $f(z)=\frac{1}{z}$ in cui $\int_{\gamma_r}\frac{1}{z}dz=2\pi i$, la curva γ_r (circonferenza di centro 0 e raggio r) non verifica l'ipotesi (I), essendo $A=\mathbb{C}^*$.
- 2) Il teorema vale anche se γ è l'unione di due curve.

Teorema integrale di Cauchy: conseguenze

Richiamiamo qui il teorema sull'equivalenza delle 3 condizioni:

- a) f ammette una primitiva in A;
- b) per ogni curva regolare a tratti $\gamma \colon [a,b] \to \mathbb{C}$ la cui traccia $\gamma([a,b]) \subseteq A$, l'integrale di f su γ dipende solo dagli estremi di γ ;
- c) per ogni curva chiusa e regolare a tratti $\gamma\colon [a,b]\to\mathbb{C}$ la cui traccia $\gamma([a,b])\subseteq A$, l'integrale di f su γ è nullo.

Dal teorema integrale di Cauchy e dall'implicazione c) \Rightarrow a) del teorema precedente prima che si ha il seguente corollario.

Corollario

Se A stesso è semplicemente connesso, ogni funzione $f:A\to\mathbb{C}$ olomorfa in A, allora f ammette primitiva in A.

Teorema integrale di Cauchy: conseguenze

Osservazione 1

Il fatto che $\int_{\gamma_r} \frac{1}{z} dz = 2\pi i$ non dipenda da r, non è un caso,

ma è un fatto generale:

l'integrale di una funzione olomorfa su un circuito non varia se tale circuito viene deformato senza uscire dall'aperto di olomorfia.

Infatti, vale la seguente proposizione.

Teorema integrale di Cauchy: conseguenze

Proposizione

Se γ_1, γ_2 sono due circuiti regolari a tratti con γ_2 interno a γ_1 ,

se f è olomorfa nel dominio D compreso tra γ_1 e γ_2 ,

allora

$$\int_{\gamma_1} f(z)dz = \int_{\gamma_2} f(z)dz.$$

Tale proposizione è una immediata conseguenza del teorema integrale di Cauchy applicato alla curva $\gamma=\gamma_1\cup\gamma_2^-$.

Nel caso particolare in cui f sia olomorfa in tutto il dominio interno a γ_1 , si ha che i due integrali sono uguali banalmente, essendo entrambi uguali a 0.

Formula integrale di Cauchy

Formula integrale di Cauchy

Sia $A \subseteq \mathbb{C}$ un aperto connesso e sia $f: A \to \mathbb{C}$ una funzione olomorfa.

Sia γ un circuito regolare a tratti, contenuto in A e tale che:

(I) γ è la frontiera di un aperto D interamente contenuto in A.

Allora per ogni $z_0 \in D$ vale la seguente formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Formula integrale di Cauchy

Osservazione 2

Il risultato afferma che, una volta che si conosce in valore di f su γ ,

allora si conosce il valore di f in tutti i punti del suo interno D.

Questo valore è indipendente dalla curva γ (grazie all'osservazione 1).

Il teorema (e la formula) di Cauchy ha notevoli conseguenze che vedremo in seguito.

Formula integrale di Cauchy

(I) γ è la frontiera di un aperto D interamente contenuto in A.

Allora per ogni $z_0 \in D$ vale la seguente formula:

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

e quindi si ha

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0).$$

Esercizio

Si calcoli

$$\int_{\gamma} \frac{\sin^3 z}{z - \frac{\pi}{2}} dz,$$

dove

1)
$$\gamma(t) = e^{it}, t \in [0, 2\pi]$$

2)
$$\gamma(t) = 2e^{it}$$
, $t \in [0, 2\pi[$.

Soluzione:

1)

$$\int_{\gamma} \frac{\sin^3 z}{z - \frac{\pi}{2}} dz = 0$$

per il teorema di Cauchy.

2)

$$\int_{\gamma} \frac{\sin^3 z}{z - \frac{\pi}{2}} dz = 2\pi i \sin^3 \left(\frac{\pi}{2}\right) = 2\pi i.$$

per la formula integrale di Cauchy.