

2.5.2 衍生数据

```
AV = Autoviz_Class()
dft = Av.Autoviz(
    filename=None,
    sep=",",
    depvar="effective time",
    dfte=daily_attr_copy,
    header=0,
    verbose=0,
    lowess=True,
    chart_format="svg",
    max_rows_analyzed=150000,
    max_cols_analyzed=30,
)
```

Scatter Plot of each Continuous Variable vs Target

Using Lowess Smoothing. This might take a few minutes for large data sets...

Number of All Scatter Plots = 6

Pair-wise Scatter Plot of all Continuous Variables

Histograms (KDE plots) of all Continuous Variables

Violin Plot of all Continuous Variables

 $\label{eq:continuous Variables} Heatmap \ of \ all \ Continuous \ Variables \ including \ target = effective \ time$

3.数据分析

3.1 方差分析每月或是每年的事项是否有差异

3.1.1 原始事项时长数据的方差分析

```
# 原始事项数据的方差分析
part = '3.1.1'

def vr_event(data, num, cate):
    formula = f'{num}~C({cate})'
    anova_re_2019 = anova_lm(ols(formula, data=data[[num, cate]]).fit())
    res = anova_re_2019.loc[f'C({cate})', 'PR(>F)']
    return res
```

```
# 事项时长数据

vr_duration_table = pd.DataFrame()

for event in tqdm(df['event'].unique()):
    for cate in cate_vars:
        if cate not in ['event', 'attr']:
            temp = df[df['event'] == event].copy()
            temp[cate] = temp[cate].astype(str)
            res = vr_event(temp, 'duration', cate)
            vr_duration_table.loc[event, cate] = res

# 该表格是各个事项的时长数据关于各分类变量的方差分析结果
vr_duration_table
```

100%| 243/243 [00:14<00:00, 16.66it/s]

```
.dataframe tbody tr th {
  vertical-align: top;
}
.dataframe thead th {
  text-align: right;
}
```

	year	month	day	weekday	mid_hour	day_period	week_order	duration_attr
托福写作与听力	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
python	0.008460	2.287125e-02	0.739882	8.399767e-01	5.757493e-11	1.195543e-08	1.238277e-01	9.591669e-44
快递	0.010206	3.445722e-01	0.730032	1.954784e-01	3.759866e-01	1.737118e-01	4.138766e-01	2.937760e-09
搜索术	NaN	1.000000e+00	NaN	5.792850e-15	NaN	NaN	1.000000e+00	1.113672e-01
午休	0.000013	4.856760e-08	0.864952	2.972783e-01	2.546873e-05	1.956907e-01	6.523863e-15	9.438105e-45
•••								
大数据	NaN	NaN	0.038696	6.211273e-01	5.265412e-01	6.896051e-01	5.445203e-01	4.238756e-04
线上研讨	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
做视频	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
报名考试	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
外出游玩	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

243 rows × 8 columns

```
# 选取那些在不同分类情况下时长有显著差异的数据
vr_duration_table.to_excel('事项时长数据的方差分析结果.xlsx', index=True)
significant_event = vr_duration_table[vr_duration_table > .05].dropna(axis=0, how='all')
significant_event
```

```
.dataframe tbody tr th {
   vertical-align: top;
}
.dataframe thead th {
   text-align: right;
}
```

	year	month	day	weekday	mid_hour	day_period	week_order	duration_attr
python	NaN	NaN	0.739882	0.839977	NaN	NaN	0.123828	NaN
快递	NaN	0.344572	0.730032	0.195478	0.375987	0.173712	0.413877	NaN
搜索术	NaN	1.000000	NaN	NaN	NaN	NaN	1.000000	0.111367
午休	NaN	NaN	0.864952	0.297278	NaN	0.195691	NaN	NaN
托福听力	NaN	NaN	0.786872	0.706346	NaN	NaN	NaN	NaN
•••								
机器学习	NaN	0.434528	0.665255	0.402006	NaN	NaN	0.141308	NaN
制定计划	NaN	0.544331	NaN	NaN	0.592593	0.592593	NaN	0.074074
配置环境	NaN	NaN	1.000000	1.000000	0.333333	0.333333	NaN	NaN
深度学习	NaN	0.378635	0.731785	0.193446	NaN	0.524222	0.113776	NaN
大数据	NaN	NaN	NaN	0.621127	0.526541	0.689605	0.544520	NaN

114 rows × 8 columns

```
# 对于有显著差异的事项 做出在不同分类中均值的bar图
mins = 30 # 剔除掉出现次数少的事项
for e in tqdm(significant_event.index):
    if len(df[df['event'] == e]) >= mins:
       for c in significant\_event.columns:
           if significant_event.loc[e, c] >= .05:
               plt.figure(dpi=100)
               df[df['event'] == e].groupby(c)['duration'].agg('mean').plot(
                   kind='bar', figsize=(20, 10)
               title = f'{part} mean value of {e} duration in different {c} groups'
               plt.title(title, fontsize=20)
               plt.xlabel(e, fontsize=20)
               plt.ylabel('Mean value', fontsize=20)
               plt.xticks(fontsize=20)
               plt.yticks(fontsize=20)
               file = os.path.join(path, f'{title}.png')
               plt.savefig(file, dpi=600)
```

100%| 114/114 [07:23<00:00, 3.89s/it]

