

Discrimination and classification (I)

- Objectives
- > Two populations
- Minimum expected cost of misclassification rule
- Minimum total probability of misclassification rule
- Two multivariate normal populations
 - Equal population variances
 - Unequal population variances

- Assume the existence of clusters which are known a priori.
- Construct discrimination rules to allocate new observations into these known groups.

4

Two populations

Two populations: π_1 and π_2

Classification measurements $\mathbf{x} = (x_1, x_2, ..., x_p)'$

An object with measurements \boldsymbol{x} , must be assigned into either π_1 or π_2

Let Ω be the sample space, and

 R_1 = set of \boldsymbol{x} for which the object is being classified into π_1

 R_2 = set of \boldsymbol{x} for which the object is being classified into π_2

In addition, $R_1 \cup R_2 = \Omega$, $R_1 \cap R_2 = \emptyset$

Classification rule (Region R_1 and R_2): minimizes the chances of making misclassification error

Two populations

Important concepts

1. Prior

 p_1 = prior probability of π_1 p_2 = prior probability of π_2

2. Misclassification

P(2|1) = Conditional probability of misclassification of an object as π_2 when, in fact, it is from π_1 P(1|2) = Conditional probability of misclassification of an object as π_1 when, in fact, it is from π_2

3. Cost

Cost matrix

True Population	Classify as	
	π_1	π_2
π_1	0	c(2 1)
π_2	c(1 2)	0

Two populations

Expected cost of misclassification (ECM)

ECM =
$$c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2$$

Minimum Expected Cost of Misclassification

The Regions R_1 and R_2 that minimize the ECM are defined by the values \boldsymbol{x} for which the following inequalities hold.

$$R_1$$
:
$$\frac{f_1(x)}{f_2(x)} \ge \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right)$$

$$R_2$$
: $\frac{f_1(x)}{f_2(x)} < \left(\frac{c(1|2)}{c(2|1)}\right) \left(\frac{p_2}{p_1}\right)$

4

Two populations

Special Cases of Minimum Expected Cost of Misclassification Rule

1. Equal priors: $p_1 = p_2$

$$R_1$$
: $\frac{f_1(x)}{f_2(x)} \ge \left(\frac{c(1|2)}{c(2|1)}\right)$; R_2 : $\frac{f_1(x)}{f_2(x)} < \left(\frac{c(1|2)}{c(2|1)}\right)$

2. Equal misclassification costs: c(1|2) = c(2|1)

$$R_1: \frac{f_1(x)}{f_2(x)} \ge \left(\frac{p_2}{p_1}\right); \qquad R_2: \frac{f_1(x)}{f_2(x)} < \left(\frac{p_2}{p_1}\right)$$

3. Equal priors and equal misclassification costs : $p_1 = p_2$, c(1|2) = c(2|1)

$$R_1: \frac{f_1(x)}{f_2(x)} \ge 1;$$
 $R_2: \frac{f_1(x)}{f_2(x)} < 1$

Tv

Two populations

TMP rule: Minimize the total probability of misclassification

TMP = P(misclassifying a π_1 observation or misclassifying a π_2 observation)

=P(observation from π_1 and is misclassified) + P(observation from π_2 and is misclassified)

$$= p_1 \int_{R_2} f_1(x) dx + p_2 \int_{R_1} f_2(x) dx$$

Allocate observations in order to minimize TPM. Mathematically, equivalent to minimizing the expected cost of misclassification when the costs of misclassification are equal.

Two populations (Normal populations: (μ_1, Σ_1) , (μ_2, Σ_2))

Equal population variances $\Sigma_1 = \Sigma_2 = \Sigma$

Minimum ECM rule:

Allocate a new observation x_0 to π_1 if

$$(\mu_1 - \mu_2)' \Sigma^{-1} x_0 - \frac{1}{2} (\mu_1 - \mu_2)' \Sigma^{-1} (\mu_1 + \mu_2) \ge \ln \left[\left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right) \right]$$

Allocate x_0 to π_2 otherwise.

Two populations (Normal populations: (μ_1, Σ_1) , (μ_2, Σ_2))

Equal population variances $\Sigma_1 = \Sigma_2 = \Sigma$

Estimated Minimum ECM rule:

Allocate a new observation x_0 to π_1 if

$$(\overline{x}_1 - \overline{x}_2)' S_{pooled}^{-1} x_0 - \frac{1}{2} (\overline{x}_1 - \overline{x}_2)' S_{pooled}^{-1} (\overline{x}_1 + \overline{x}_2) \ge \ln \left[\left(\frac{c(1|2)}{c(2|1)} \right) \left(\frac{p_2}{p_1} \right) \right]$$

Allocate x_0 to π_2 otherwise.

Two populations (Normal populations: (μ_1, Σ_1) , (μ_2, Σ_2))

Unequal population variances $\Sigma_1 \neq \Sigma_2$

Minimum ECM rule:

Let
$$k = \frac{1}{2} \ln \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right) + \frac{1}{2} \left(\mu_1' \Sigma_1^{-1} \mu_1 - \mu_2' \Sigma_2^{-1} \mu_2 \right)$$

Allocate a new observation x_0 to π_1 if

$$-\frac{1}{2}x_0'(\Sigma_1^{-1} - \Sigma_2^{-1})x_0 + (\mu_1'\Sigma_1^{-1} - \mu_2'\Sigma_2^{-1})x_0 - k \ge \ln\left[\left(\frac{c(1|2)}{c(2|1)}\right)\left(\frac{p_2}{p_1}\right)\right]$$

Allocate x_0 to π_2 otherwise.

Estimated Minimum ECM rule: same as above except the unknown parameters are replaced by sample estimates. Hence, μ_1 , Σ_1 , μ_2 , Σ_2 are replaced by \overline{x}_1 , S_1 , \overline{x}_2 , S_2 .