CODURI – Seminar 6

Definitie Fie A o multime nevida. Se numeste cod peste A orice submultime nevida C a lui A⁺ care genereaza liber un submonoid al lui A^{*}.

Daca C este un cod peste A atunci submonoidul liber generat de C se noteaza cu C*.

Observatia 1.
$$C^+ = C^* - \{1_{A^*}\}$$

Elementele din C se numesc cuvinte cod.

Observatia 2. C este un cod peste A, daca orice cuvant $w \in C^+$ poate fi descompus in mod unic in C. Aceasta proprietate face ca orice codificare a unui text (obtinand o secventa din C^+) sa poata fi decodificat in mod unic (altfel decodificarea este ambigua, deci C nu este un Cod).

Teorema lui Sardinas-Patterson

Fie A o multime nevida. $C \subseteq A^+$, $C \neq \emptyset$. Atunci C este un cod peste A daca si numai daca $C \cap C_i = \emptyset$, pentru orice $i \geq 1$, unde multimile C_i sunt construite astfel:

 $C_1 = \{x \in A^+ \mid \exists c \in C \text{ astfel incat } cx \in C\}$ "traducere" exista un cuvant cod c in C care este prefix al unui alt cuvant cod din C. Notam acest cuvant cu cx. Punem x in multimea C_1 .

Cum construim C_1 : Se ia primul cuvant din C si se verifica daca este prefix pentru celelalte cuvinte din C. Daca DA se pune fiecare sufix (ale cuvintelor pt. care c este prefix) in C_1 . Acest lucru se repeta pentru al doilea cuvant din C, al treilea cuvant din C, si asa mai departe pana se epuizeaza toate cuvintele din C

$$C_2 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_1) \text{ sau } (\exists c \in C_1 \text{ a.i. } cx \in C) \}$$

"traducere" pt. $(\exists c \in C \text{ a.i. } cx \in C_1)$ exista un cuvant cod c in C care este prefix al unui alt cuvant din C_1 . Notam acest cuvant cu cx. Punem x in multimea C_2 .

"traducere" pt. $(\exists c \in C_1 \text{ a.i. } cx \in C)$ exista un cuvant c in C_1 care este prefix al unui cuvant cod din C. Notam acest cuvant cu cx. Punem x in multimea C_2 .

Cum construim C_2 : Pas1. Se ia primul cuvant din C si se verifica daca este prefix pentru cuvinte din C_1 . Daca DA se pune fiecare sufix (ale cuvintelor din C_1 pt. care c este prefix) in C_2 . Acest lucru se repeta pentru toate cuvintele din C.

Pas2. Se ia primul cuvant din C_1 si se verifica daca este prefix pentru cuvinte cod din C. Daca DA se pune fiecare sufix (ale cuvintelor din C pt. care c este prefix) in C_2 . Acest lucru se repeta pentru toate cuvintele din C_1 .

$$C_3 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_2)^\vee (\exists c \in C_2 \text{ a.i. } cx \in C) \}$$

"traducere" pt. $(\exists c \in C \text{ a.i. } cx \in C_2)$ exista un cuvant cod c in C care este prefix al unui alt cuvant din C_2 . Notam acest cuvant cu cx. Punem x in multimea C_3 .

"traducere" pt. $(\exists c \in C_2 \text{ a.i. } cx \in C)$ exista un cuvant c in C_2 care este prefix al unui cuvant cod din C. Notam acest cuvant cu cx. Punem x in multimea C_3 .

Cum construim C_3 : Pas1. Se ia primul cuvant din C si se verifica daca este prefix pentru cuvinte din C_2 . Daca DA se pune fiecare sufix (ale cuvintelor din C_2 pt. care c este prefix) in C_3 . Acest lucru se repeta pentru toate cuvintele din C.

Pas2. Se ia primul cuvant din C_2 si se verifica daca este prefix pentru cuvinte cod din C. Daca DA se pune fiecare sufix (ale cuvintelor din C pt. care c este prefix) in C_3 . Acest lucru se repeta pentru toate cuvintele din C_2 .

"Redundanta" Presupunand ca s-a construit multimea Ci, construim Ci+1

$$C_{i+1} = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_i)^\vee (\exists c \in C_i \text{ a.i. } cx \in C) \}$$

"traducere" pt. $(\exists c \in C \text{ a.i. } cx \in C_i)$ exista un cuvant cod c in C care este prefix al unui alt cuvant din C_i . Notam acest cuvant cu cx. Punem x in multimea C_{i+1} .

"traducere" pt. $(\exists c \in C_i \text{ a.i. } cx \in C)$ exista un cuvant c in C_i care este prefix al unui cuvant cod din C. Notam acest cuvant cu cx. Punem x in multimea C_{i+1} .

Cum construim C_{i+1} : Pas1. Se ia primul cuvant din C si se verifica daca este prefix pentru cuvinte din C_i . Daca DA se pune fiecare sufix (ale cuvintelor din C_i pt. care c este prefix) in C_{i+1} . Acest lucru se repeta pentru toate cuvintele din C.

Pas2. Se ia primul cuvant din C_i si se verifica daca este prefix pentru cuvinte cod din C. Daca DA se pune fiecare sufix (ale cuvintelor din C pt. care c este prefix) in C_{i+1} . Acest lucru se repeta pentru toate cuvintele din C_i .

Observatia 3. Pentru fiecare multime C_i construita se verifica daca $C \cap C_i = \emptyset$. Daca DA se trece la counstuirea urmatoarei multimi C_{i+1} (C inca este cod). Daca NU, adica $C \cap C_i \neq \emptyset$, C nu este cod (nu satisface Teorema lui Sardinas-Patterson). Deci ne oprim cu constructia multimilor C_i . Raspunsul este C nu este cod!

Observatia 4. La un moment dat (incepand de la un anumit index i) fie se obtine C_i multime vida (ceea ce inseamna ca toate celelate multimi C_j $j \ge i$, vor fi vide, deci $C \cap C_j = \emptyset$ pentru orice index $j \ge i$). Fie se obtin multimi egale, \exists un j > i, a.i. $C_i = C_j$. Cum $C \cap C_i = \emptyset$ avem $C \cap C_j = \emptyset$ pentru orice index $j \ge i$. Asadar nu mai are sens sa mai construim alte multimi. In ambele cazuri ne oprim cu raspunsul C este cod!

Observatia 5. Algoritmul lui Sardinas-Patterson se termina intotdeauna intr-un numar finit de pasi. Fie obtineti o intersectie nevida (exista i ai. $C \cap C_i \neq \emptyset$ caz in care C nu este cod), fie obtineti o multime C_i

astfel incat aceasta este vida, si automat $C \cap C_i = \emptyset$, (si $C_i = C_j = \emptyset$ pentru orice index $j \ge i$) fie C_i este nevida, $C \cap C_i = \emptyset$, si \exists un j > i, a.i. $C_i = C_j$. (In ultimele doua cazuri C este cod).

Exemple

Ex1. Fie $C = \{01, 110, 0001, 0110\}$ Verificati daca C este cod.

Calculam $C_1 = \{x \in A^+ \mid \exists c \in C \text{ a.i. } cx \in C\} = \{10\}$

Verificam $C \cap C_1 = \emptyset$ adevarat

Calculam $C_2 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_1) \text{ sau } (\exists c \in C_1 \text{ a.i. } cx \in C) \} = \emptyset$

Evident $C \cap C_2 = \emptyset$ (si asa va fi pt. orice alta multime C_i , $i \ge 2$)

Asadar C este cod.

Ex2. Fie $C = \{11, 1100, 00011, 0001, 101011\}$ Verificati daca C este cod.

Calculam $C_1 = \{x \in A^+ \mid \exists c \in C \text{ a.i. } cx \in C\} = \{00, 1\} \text{ deci } C \cap C_1 = \emptyset$

Calculam $C_2 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_1) \text{ sau } (\exists c \in C_1 \text{ a.i. } cx \in C) \} = \{011, 01, 1, 100, 01011\}$

Deci $C \cap C_2 = \emptyset$

Calculam $C_3 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_2) \text{ sau } (\exists c \in C_2 \text{ a.i. } cx \in C) \} = \{1, 100, 01011\}$

Deci $C \cap C_3 = \emptyset$

Calculam $C_4 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_3) \text{ sau } (\exists c \in C_3 \text{ a.i. } cx \in C) \} = \{1, 100, 01011\}$

Deci $C_4 = C_3$, (si asa va fi pt. orice alta multime C_i , $i \ge 3$) deci $C \cap C_i = \emptyset$ pt orice $i \ge 3$.

Asadar C este cod.

Ex3. Fie $C = \{b, aab, bba, aabbb, abbb\}$ Verificati daca C este cod.

Calculam $C_1 = \{x \in A^+ \mid \exists c \in C \text{ a.i. } cx \in C\} = \{ba, bb\}, C \cap C_1 = \emptyset$

Calculam $C_2 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_1) \text{ sau } (\exists c \in C_1 \text{ a.i. } cx \in C) \} = \{a, b\}$

Deci $C \cap C_2 \neq \emptyset$ Asadar C un este cod.

Ex4. Fie $C = \{01, 10, 011, 110\}$ Verificati daca C este cod.

Calculam $C_1 = \{x \in A^+ \mid \exists c \in C \text{ a.i. } cx \in C\} = \{1\} \text{ deci } C \cap C_1 = \emptyset$

Calculam $C_2 = \{x \in A^+ | (\exists c \in C \text{ a.i. } cx \in C_1) \text{ sau } (\exists c \in C_1 \text{ a.i. } cx \in C) \} = \{0, 10\}$

deci $C \cap C_2 = \{10\} \neq \emptyset$ Asadar C un este cod.

Observatie Daca veti lua cuvantul 01110 veti observa ca acesta acepta 2 descompuneri in C anume:

01110 = 01.110 = 011.10 ceea ce face ca sa existe texte ale caror codificare peste C sa accepte mai multe decodificari (decodificare ambigua). Asadar C un poate realiza a codificare buna.

Exercitii

Ex1. Fie $C = \{aa, aab, baa, baab\}$ Verificati daca C este cod.

Ex2. Fie $C = \{bc, b, cba, cbba\}$ Verificati daca C este cod.

Ex3. Fie $C = \{001, 00110, 1, 1010\}$ Verificati daca C este cod.

Ex4. Fie $C = \{1, 011, 01110, 1110, 10011\}$ Verificati daca C este cod.

Ex5. Fie $C = \{01, 1001, 1011, 111, 1110\}$ Verificati daca C este cod.