

Description

The VST08N033 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =85V, I_{D} =150A $R_{DS(ON)}$ <3.9m Ω @ V_{GS} =10V
- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N033-TC	VST08N033	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	85	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	150	А	
Drain Current-Continuous(T _C =100 ℃)	I _D (100℃)	106	Α	
Pulsed Drain Current	I _{DM}	450	А	
Maximum Power Dissipation	P _D	210	W	
Derating factor		1.4	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	1050	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	T _J ,T _{STG} -55 To 175		

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	0.71	°C/W
---	-------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics				•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	85		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•	•		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.2	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =75A	-	3.2	3.9	mΩ
Forward Transconductance	g FS	V _{DS} =10V,I _D =75A	-	60	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	\/ -40\/\/ -0\/	-	6200	-	PF
Output Capacitance	C _{oss}	V_{DS} =40V, V_{GS} =0V, F=1.0MHz	-	911	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.UIVITZ	-	68	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	25	-	nS
Turn-on Rise Time	t _r	V_{DD} =40 V , I_{D} =75 A	-	24	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =4.7 Ω	-	83	-	nS
Turn-Off Fall Time	t _f		-	30	-	nS
Total Gate Charge	Qg	\/ -40\/1 -754	-	94		nC
Gate-Source Charge	Q _{gs}	V_{DS} =40V, I_{D} =75A, V_{GS} =10V	-	35		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	21		nC
Drain-Source Diode Characteristics			•	•		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =150A	-		1.2	V
Diode Forward Current (Note 2)	I _S		-	-	150	Α
Reverse Recovery Time	t _{rr}	$T_J = 25$ °C, $I_F = I_S$	-	63		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	142		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=50V,V_G=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 🛭)

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance