Radial Basis Function networks for regression and classification

April 5, 2011

Outline

Radial Basis Function Networks

Classification and Regression

Given a dataset (TRAINING SET) of input-target pairs:

$$D = \left\{ \mathbf{x}^{i}; \mathbf{t}^{i} \right\}_{i=1,2,\dots,N}$$

- the learning task is to predict the corresponding ${\bf t}$ to each $\underline{{\sf new}}$ input vector ${\bf x} \notin D$
 - **1** classification: \mathbf{t}^i are discrete (class label)
 - 2 regression: tⁱ continuous value
- Underlying relation between **x** and **t** given by:

$$\mathbf{t}^{i} = f\left(\mathbf{x}^{i}\right) + \epsilon^{i}$$

- GOAL: to approximate f with a parametric function $\mathbf{y}(\mathbf{x}; \mathbf{w})$
 - polinomial, ffw, etc.

• Consider a mapping from an input space $X \subseteq \mathbb{R}^D$ to a target space $Y \subset \mathbb{R}$

$$f(\mathbf{x}): \mathbf{x} \in X \subseteq \mathbb{R}^D \longrightarrow \mathbf{y} \in Y \subseteq \mathbb{R}$$

- In general we do not know the function $f(\mathbf{x})$
- We only have a set of input-target pairs called Training Set (TS)

$$\mathbf{x}^1 \rightarrow y^1$$
 $\vdots \qquad \vdots$
 $\mathbf{x}^N \rightarrow y^N$

• The goal of exact interpolation is to find a function h(x) such that:

$$h(\mathbf{x}^{\mathbf{i}}) = t^{i}, i = 1, \dots, N$$

 The radial basis function approach introduces a set of N basis functions (one for each data point) of the form:

$$\phi_n(\mathbf{x}) = \phi(\parallel \mathbf{x} - \mathbf{x}^n \parallel)$$

where $\phi(\cdot)$ is some non linear function and $\|\mathbf{x} - \mathbf{x}^n\|$ denote the Euclidean distance between the input \mathbf{x} and the point \mathbf{x}^n

Form of the basis functions

- Gaussian: $\phi(x) = exp\left(-\frac{x^2}{2\sigma^2}\right)$
- $\phi(x) = (x^2 \sigma^2)^{-\alpha}$, with $\alpha > 0$
- Thin-plate: $\phi(x) = x^2 \ln(x)$
- ...

We will consider the case of Gaussian basis function:

$$\phi_j(\mathbf{x}) = exp\left(-\frac{\|\mathbf{x} - \boldsymbol{\mu}_j\|}{2\sigma_j^2}\right)$$

 The output of the mapping is a linear combination of the basis functions:

$$h(\mathbf{x}) = \sum_{j=1}^{N} w_j \phi_j(\mathbf{x})$$

• Thus the interpolation condition can be expressed:

$$\sum_{i=1}^{N} w_j \Phi_{ij} = t^i \quad i = 1, 2, \dots, N$$

Thus the interpolation condition can be expressed:

$$\sum_{j=1}^{N} w_j \Phi_{ij} = t^i \quad i = 1, 2, \dots, N$$

• this condition can be rewritten in a matrix form: $\Phi w^T = t$

$$\begin{pmatrix} \Phi_{11} & \Phi_{12} & \dots & \Phi_{1N} \\ \Phi_{21} & \Phi_{22} & \dots & \Phi_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \Phi_{N1} & \Phi_{N2} & \dots & \Phi_{NN} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_N \end{pmatrix} = \begin{pmatrix} t^1 \\ t^2 \\ \vdots \\ t^N \end{pmatrix}$$

- Φ is a matrix of dimension $N \times N$ of components $\Phi(i,j) = \phi_j(\mathbf{x}^i)$
- w, t are vector of dimension N

$$\Phi w^T = t$$

ullet if $oldsymbol{\Phi}$ is a non singular matrix the solution for the parameters can be found simply by:

$$\mathbf{w} = \mathbf{\Phi}^{-1} \mathbf{t}$$

MATLAB EXPERIMENTS

MATLAB EXPERIMENTS

- ullet This method can generalized for mapping to multidimensional output space $Y\subseteq\mathbb{R}^{C}$
- In this case each input vector \mathbf{x}^n must be mapped exactly onto an output vector \mathbf{t}^n of components t_k^n with $k=1,\ldots,C$
- Thus the interpolation condition can be written:

$$\Phi W^T = T$$

- Where **W** is a matrix of dimension $C \times N$ while **T** is a matrix of dimension $N \times C$
- To find the solution we must invert the matrix Φ and perform a matrix product Φ⁻¹T

Radial basis function networks

- We made the following changes to the previous model:
 - **①** The number M of basis functions $\phi_1(\mathbf{x}), \dots \phi_M(\mathbf{x})$ is much less than N (number of data points);
 - 2 The centers μ_j and the width σ_j of basis functions are determined during the training process;
 - The bias parameters are included in the linear sum.

$$y_k(\mathbf{x}) = \sum_{j=1}^M w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

Radial basis function networks

Radial basis function networks training

- Two stage training procedure:
 - Unsupervised training to determine the parameters of the basis functions;
 - ② By fixing the parameters of the basis function we determine the weights (w_{ki}) by Supervised training

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

we can absorb the bias parameters into the weights to give:

$$y_k(\mathbf{x}) = \sum_{j=0}^{M} w_{kj} \phi_j(\mathbf{x})$$

where the function $\phi_0(\mathbf{x}) = 1$

- Consider a Training Set consisting of N data point and rbf network with M basis functions (internal nodes)
- We can construct the matrix Φ of dimension $N \times (M+1)$ as follows:

$$\begin{pmatrix} \Phi_{10}\Phi_{11} & \Phi_{12} & \dots & \Phi_{1M} \\ \Phi_{20}\Phi_{21} & \Phi_{22} & \dots & \Phi_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ \Phi_{N0}\Phi_{N1} & \Phi_{N2} & \dots & \Phi_{NM} \end{pmatrix}$$

• The expression for the output of the rbf network

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$

can be expressed as:

$$Y = \Phi W^T$$

• where **Y**, Φ and **W** are matrix of dimension $N \times C$, $N \times M$ and $C \times M$ respectively;

$$\mathbf{Y} = \mathbf{\Phi} \mathbf{W}^T$$

 We can find the parameters W by minimizing a suitable error function (e.g. sum-of-squares)

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{C} \{y_k(\mathbf{x}^n) - t_k^n\}^2$$

• The weights values are given by the solution of the linear equation:

$$\boldsymbol{\Phi}^T\boldsymbol{\Phi}\boldsymbol{W}^T=\boldsymbol{\Phi}^T\boldsymbol{T}$$

• The solution is $\mathbf{W}^T = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T}$

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{C} \left\{ y_k(\mathbf{x}^n) - t_k^n \right\}^2$$
$$= \frac{1}{2} \| \mathbf{\Phi} \mathbf{W}^T - \mathbf{T} \|^2$$

Deriving with respect to W

$$\frac{\partial E}{\mathbf{W}} = \mathbf{\Phi}^T (\mathbf{\Phi} \mathbf{W}^T - \mathbf{T})$$
$$= \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{W}^T - \mathbf{\Phi}^T \mathbf{T}$$

• Setting to zero the derivative and finding **W** we obtain: $\mathbf{W}^T = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{T}$

- It can be showed that the solution for W can be found using the Singular Value Decomposition (SVD)
 - **1** Decompose the matrix $\mathbf{\Phi} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
 - **2** Compute $\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^T$
- Where **U** and **V** are orthonormal matrix of dimension $N \times N$ and $M \times M$ respectively and Σ is a matrix of dimension $N \times M$ with the singular value on the diagonal
- Note that Σ^{-1} denote a $M \times N$ matrix constructed as follows:

$$\mathbf{\Sigma}^{-1}(i,i) = \begin{cases} \frac{1}{\mathbf{\Sigma}(i,i)} & \text{if } \mathbf{\Sigma}(i,i) > 0\\ 0 & \text{otherwise} \end{cases}$$

Determining the parameters of the basis functions

We consider the case of Gaussian basis function:

$$\phi_j(\mathbf{x}) = exp\left(-\frac{\parallel \mathbf{x} - \boldsymbol{\mu}_j \parallel}{2\sigma_j^2}\right)$$

ullet Thus we have to determine the parameters μ_j and σ_j for each basis function

Determining centers and width of the basis functions

- Different approach exists:
 - Subset of data points
 - Orthogonal least squares
 - Clustering algorithms
 - Gaussian mixture models

Clustering algorithms for selecting the parameters of the basis functions

- If we consider a clustering algorithm for which the number of clusters is predefined (e.g. K-Means):
 - \bullet Set the number of cluster to M and run the clustering algorithm
 - Set the centers of the basis functions equals to the centers of clusters
 - Set the widths (variances) of the basis functions equals to the variances of clusters

How do we select the model complexity?

- Choosing a very simple model may give rise to poor results ! (e.g. M=1)
- Choosing a very complex model may give rise to over-fitting and thus poor generalization performace!
- One technique that is often used to control over-fitting is to still use a complex model but to add a penalty term to the error function in order to discourage the coefficients from reaching large values (regularization):

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{C} \{y_k(\mathbf{x}^n) - t_k^n\}^2 + \frac{\lambda}{2} \| \mathbf{w} \|^2$$

where λ is called regularization coefficient

• The solution is $\mathbf{W}^T = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{T}$

- ullet It can be showed that the solution for $oldsymbol{W}$ can be found using the Singular Value Decomposition (SVD)
 - **1** Decompose the matrix $\mathbf{\Phi} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$
 - **2** Compute $\mathbf{V}\mathbf{\Sigma}^{-1}\mathbf{U}^T$
- Where **U** and **V** are orthonormal matrix of dimension $N \times N$ and $M \times M$ respectively and Σ is a matrix of dimension $N \times M$ with the singular value on the diagonal
- Note that Σ^{-1} denote a $M \times N$ matrix constructed as follows:

$$\mathbf{\Sigma}^{-1}(i,i) = egin{cases} rac{1}{\mathbf{\Sigma}(i,i) + \lambda} & \textit{if } \mathbf{\Sigma}(i,i) > 0 \\ 0 & \textit{otherwise} \end{cases}$$

MATLAB EXPERIMENTS

MATLAB EXPERIMENTS

Supervised Learning

- The use of unsupervised techniques to determine the basis function parameters is not in general an optimal procedure in so far as the subsequent supervised training is concerned
- Indeed with unsupervided techniques the setting up of the basis functions takes no account of the target labels
- In order to obtain best result we should include the target data in the training procedure, that is we should perform supervised training

Supervised Learning

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} exp\left(-\frac{\parallel \mathbf{x} - \boldsymbol{\mu}_j \parallel}{2\sigma_j^2}\right) + w_{k0}$$

- To find the parameters μ_j and σ_j we should minimize the error function (e.g. sum-of-squares) with respect to these parameters
- This can be done by deriving the error function with respect to μ_j and σ_j and make use of these derivatives in the *Gradient descent* optimization algorithm.

Supervised Learning

$$\frac{\partial E}{\partial \sigma_j} = \sum_{n} \sum_{k} \left\{ y_k(\mathbf{x}^n) - t_k^n \right\} w_{kj} exp\left(-\frac{\parallel \mathbf{x}^n - \boldsymbol{\mu}_j \parallel^2}{2\sigma_j^2} \right) \frac{\parallel \mathbf{x}^n - \boldsymbol{\mu}_j \parallel^2}{\sigma_j^3}$$

$$\frac{\partial E}{\partial \mu_{ji}} = \sum_{n} \sum_{k} \left\{ y_{k}(\mathbf{x}^{n}) - t_{k}^{n} \right\} w_{kj} exp\left(-\frac{\|\mathbf{x}^{n} - \boldsymbol{\mu}_{j}\|^{2}}{2\sigma_{j}^{2}}\right) \frac{(x_{i}^{n} - \mu_{ji})}{\sigma_{j}^{2}}$$

Gradient descent

- Differentiable error function E depending on parameters $\Theta = (\theta_1, \dots, \theta_S)$
- **1** We began with some initial guess for Θ (e.g. random)
- ② We update the parameters by moving a small distance in the Θ -space in the direction in which E decrease most rapidly $(-\nabla_{\Theta}E)$

$$\theta_j^{(\tau+1)} = \theta_j^{(\tau)} - \eta \frac{\partial E}{\partial \theta_j} \Big|_{\Theta^{(\tau)}}$$

• where η is called *learning rate* and is usually taken in the range [0...1]

Model complexity and PCA

April 5, 2011

Outline

A toy example of regression

2 Model complexity

A simple regression problem

We introduce some key concept by means of a toy example of regression problem

- In this toy example we know the regression function $u(x) = \sin(2\pi x)$
- The Training Set comprises 10 input data points $\{x_i\}_{i=1}^{10}$ spaced uniformly in the range [0,1] with the corresponding target value $\{t_i = u(x_i) + \epsilon_i\}_{i=1}^{10}$ where ϵ_i is small random noise (drawn from a gaussian distribution)

A simple regression problem

To approximate the "unknown" function u(x) by means of the function $y(x, \mathbf{w})$:

- choose the function *model* (linear, polynomial, neural network, ...)
- determine the parameters w of the model by the *learning* algorithm (usually this step involve):
 - choosing of an error function;
 - for a given value of $\tilde{\mathbf{w}}$ the error function measures the misfit between the function $y(\mathbf{x}, \tilde{\mathbf{w}})$ and the training data;
 - Learning Algorithm: is the procedure able to select the parameters **w** that minimizing the error function.

A first model: Polynomial

Polynomial Model:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j \text{ with } M \in \mathbb{N}$$

• Sum of squares Error Function: $E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y\left(x_{n}, \mathbf{w}\right) - t_{n} \right\}^{2}$

• Thus we have to select the value of M and then we have to determine the values of the parameters \mathbf{w} .

A second model: Neural Network

 in the case of single input and output, identity output function we can write:

$$y(x, \mathbf{w}) = \sum_{j=0}^{M} w_j^{(2)} \phi_j(x) \text{ with } M \in \mathbb{N}$$

$$\phi_j(x) = g\left(w_j^{(1)}x\right)$$

where $g(\cdot)$ is some non linear function (e.g. sigmoid, radial basis function RBF networks)

ullet Thus we have to select the value of M and then we have to determine the values of the parameters ullet.

Outline

A toy example of regression

Model complexity

7 / 23

Determining the parameters w

- Choosen the function model (polinomial, neural network, and so on), chosen the related value of M techniques exist to determine the parameters values w:
 - Maximum Likelihood;
 - Bayesian approach;
 - ...
- We indicate with w* the values of the parameters that minimize the error function for a given model (in our case identified by the value of M)

What does it happens when we change the model complexity ?

The Over-fitting Problem

- Measuring the generalization performance on the Test Set
- Root Mean Square error function $E_{RMS} = \sqrt{2E(\mathbf{w}^m)/N}$
- We choose M that give the best generalization performance (that ithe minumum error on the test set)

What does it happens to **w** when we change the model complexity ?

	M = 0	M = 1	M=6	M = 9
W_0^*	0.19	0.28	0.31	0.35
w_1^*		-1.27	7.99	232.37
w ₂ *			-25.43	-5321.83
w ₃ *			17.37	45868.31
w ₄ *				-231639.30
w ₅ *				640042.26
w ₆ *				-1061800.52
w ₇ *				1042400.18
w ₈ *				-557682.99
w ₉ *				125201.43

How do we select the model complexity?

- Choosing a very simple model may give rise to poor results ! (e.g. M=1 we are using a linear model)
- Choosing a very complex model may give rise to over-fitting and thus poor generalization performace!
- One technique that is often used to control over-fitting is to still use a complex model but to add a penalty term to the error function in order to discourage the coefficients from reaching large values (regularization):

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(x^n; \mathbf{w}) - t^n \}^2 + \frac{\lambda}{2} \| \mathbf{w} \|^2$$

where λ is called regularization coefficient

12 / 23

Using Regularization

MATLAB EXPERIMENTS

MATLAB EXPERIMENTS

Projected data onto \mathbf{V}^1

• Reconstruction error: 0.18 (RMS error)

Principal Component Analysis

- ullet Consider a data set of N observations $\{\mathbf{x}^n\}_{n=1,...,N}$ where $\mathbf{x}^n \in \mathbb{R}^d$
- Objective: to project the data onto a k < d dimensional space while maximizing the variance of the projected data
- k = 1, vector $\mathbf{u} \in \mathbb{R}^d$
- uxⁿ projection of the *n*-th point
- $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$ sample mean of the data
- ux̄ projected sample mean

Principal Component Analysis

Variance of projected data:

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}^{T} \mathbf{x}^{n} - \mathbf{u}^{T} \bar{\mathbf{x}})^{2} = \mathbf{u}^{T} S \mathbf{u}$$

• where *S* is:

$$S = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^n - \bar{\mathbf{x}})(\mathbf{x}^n - \bar{\mathbf{x}})$$

Optimization problem:

$$arg max_{\mathbf{u}} \mathbf{u}^{T} S \mathbf{u} \quad s.t. \parallel \mathbf{u} \parallel^{2} = 1$$

Principal Component Analysis

Using Lagrange multiplier:

$$\mathbf{u}^T S \mathbf{u} + \lambda (1 - \mathbf{u}^T \mathbf{u})$$

• setting the deriving with respect to **u** equal to zero (Eigenvalue problem):

$$S\mathbf{u} = \lambda \mathbf{u}$$

• multiplying both sides by \mathbf{u}^T (note that $\mathbf{u}^T\mathbf{u}=1$)

$$\mathbf{u}^T S \mathbf{u} = \lambda$$

So the variance is maximized when we choose u equal to the eigenvector having the largest eigenvalue λ of S

PCA Algorithm

- 1: function PCA(X, k)
- 2: $X_{mean} \leftarrow \text{computeMean}(X)$
- 3: $X_c \leftarrow X X_{mean}$
- 4: $Cov_X \leftarrow X_c^T X_c$
- 5: $[U \ Lambda] \leftarrow diagonalize(Cov_X)$
- 6: $U \leftarrow \text{sortDescending}(U, Lambda)$
- 7: $U_k \leftarrow \text{getFirstKcomponents}(U, k)$
- 8: $Y \leftarrow X_c U_{\nu}$
- 9: **return** *Y*
- 10: end function

- ▷ Centering data
- Computing covariance matrix
 □ Figory octors oigonyaluos
 - ▷ Eigenvectors, eigenvalues
 - Sorting eigenvectors
 ► First k eigenvectors
 - - ▷ Projecting data

April 5, 2011