α) Η εξίσωση (1) γράφεται ισοδύναμα:

$$\frac{x^2}{25} - \frac{y^2}{25} = 1$$

Επομένως, είναι $\alpha^2=25 \Leftrightarrow \alpha=5$, $\beta^2=25 \Leftrightarrow \beta=5$ και $\gamma^2=\alpha^2+\beta^2=25+25=50$.

Άρα, $y = \sqrt{50} = 5\sqrt{2}$.

Οι εστίες της έλλειψης είναι τα σημεία Ε(γ,0), Ε΄(-γ,0), δηλαδή:

$$E(5\sqrt{2},0), E'(-5\sqrt{2},0)$$

β) Οι ασύμπτωτες της υπερβολής

$$\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$$

είναι οι ευθείες

$$(\epsilon_1)$$
: $y = \frac{\beta}{\alpha}x$ kal (ϵ_2) : $y = -\frac{\beta}{\alpha}x$

δηλαδή

$$(\varepsilon_1)$$
: $y = x \quad \kappa \alpha \iota \quad (\varepsilon_2)$: $y = -x$

γ) Οι ευθείες (ϵ_1), (ϵ_2) έχουν συντελεστές διεύθυνσης $\lambda_1=1$ και $\lambda_2=-1$ αντίστοιχα. Αφού $\lambda_1\lambda_2=-1$, συμπεραίνουμε ότι οι ασύμπτωτες (ϵ_1), (ϵ_2) είναι κάθετες. Η καμπύλη της υπερβολής, οι εστίες Ε, Ε΄ της και οι ασύμπτωτες απεικονίζονται στο ακόλουθο σχήμα:

