

Thesis:

Control of industrial manipulator Diamond H1 model in the MATLAB.

MADE BY: HRISTO ILIEV GANCHEV

MAJOR: AICT

TECHNICAL UNIVERSITY- SOFIA

BRANCH PLOVDIV

Objective:

- ➤ The aim of the thesis is to make communication through serial RS232 interface in MATLAB, serving as managing industrial manipulator Diamond H1.
- To extend the operation of the manipulator by building automatic Control System.

Diamond H₁

- Mechanical characteristics.
- Axis and coordinate system.
- >> Syntax of commands.
- **Serial**
- communication RS232.

fig.1

Characteristics.

- Size of the end-effector 2"(50mm) to 12"(300mm)
- Payload
 2.2 lbs(1.0 kg)
- Encoders
 Incremental, 10000 pulse/rev
- >> **Type of motor**Brushless, low inertia ,high reaction
- **Weight**40.7 lbs (18.5 kg) for 7" vertical movement
- **∞ Operating temp** 50°F-104°F (10°C to 40°C)
- Production requirements
 Operation voltage:
 100-120AVC, 200-240VAC

fig.2

Sizes.

Fig.3

Height of the base	Length of arm	Height of lifting of Z axis
18 inch	5.25 inch	7 inch
(457 mm)	(133 mm)	(178 mm)

Fig.4

Limitations.

Axis	Limitations on movement	Max velocity	Max acceleration	Repetition
Т	to 360° (прието +/-230°)	To 360 °/sec	1500 °/sec ²	±0.01°
R	from ±10.5" to ±14.4" (depending on the arm)	From 35 inches/sec (depending on the arm)	300 inches/sec ²	±0.001" (0.025mm)
Z	7"	to 18 иinches/sec	44 inches/sec ²	±0.001" (0.025mm)

Table 2

Syntax of commands.

- > There is several types of commands:
- >> For movement:

Contains command (**MVA**, **MVR**) composed of 3 characters followed by distance, name of the axis (**T**, **Z**, **R**), which is moving and the value of step (in **units**).

- To set the parameters of the system— write command, distance and parameter value:
- PID parameters (**_KP**, **_KD**, **_KI**, **_IL**, **_EL**, **_CL**)
- Velocity parameters (SPD, ACL, DCL, AJK, DJK)
- Other
- **∞**Info commands– (**STA**, **INF**)

Serial communication RS232

	9 pin DTE		
1 01 02 70 03 80 04 90 05	Male RS232 DB9	(12346) (6789)	
	Number of pin	Signals:	
	1	Detection of carrier (CD) (от DCE) – from modem	
	2	Received data (RD) – coming from DCE	
	3	Transferred data (TD) – going to DCE	
Fig.5 "male" DB9	4	Ready of data terminal (DTR)	
5 90 4 80 3 70 2 60 1 60 1	5	Ground	
	6	Readiness of information to be sent (DSR) – incoming signal	
	7	Request to send (RTS) – outgoing signal	
	8	Ready to send (CTS) – incoming signal	
Fig.6 "female" DB9	9	Indicator (RI) (from DCE) – incoming from modem	
Table 3			

Types of connection.

➤ Connecting DTE with DCE:

Fig.7

➤ Connecting DTE with DTE :

Fig. 8

Approaches used to reach the objective:

- ➤ Use of communication features via the serial port of Instrument Control Toolbox. These features have the following purpose:
- Formation of the object and linking to it:

```
SerialObject = serial('COM1')
fopen(SerialObject);
```

- Sending and receiving information

fprintf query

Approaches used to reach the objective:

- Setting the parameters of communication:
- SerialObject.Terminator = 'LF/CR';
- **∞**Baudrate
- Output
- solution for the solution of the solutio
- delete(SerialObject);

Control method:

➤ The Control is formed trough MATLAB.

There is two types of control:

- "point to point" control
- Closed loop system.

"Point to point" control

- "Point to point" control is done so that the serial object to use commands to move the manipulator.
- ➤ Desired "points" for movement along each axis are set manually (by keyboard).

```
∞Td = input('Desired T position (in units) = ');
```

- ≈Zd = input('Desired Z position (in units) = ');
- »Rd = input('Desired R position (in units) = ');

Closed loop system with visual feedback

- Closed loop (**fig.9**) is based to algorithm for recognizing (SURF) of object (**fig.16**), which must be centered on the focus of the camera (**fig.14**).
- > Feedback provides information about whether or not a subject where is located the area that occupies the camera's focus.

Closed loop system with visual feedback

fig.9

Feedback trough serial communication

- **∞**Gives information when movement is completed.
- Feedback by sending the command **STA** through the serial port gives information about the status of stations or action.
- Record information from the manipulator becomes with function **query**:

INF = query(SerialObject,'\nSTA')

Overall system.

fig.10

Experiments

Attempted experiments represent the behavior of the manipulator management "point to point" and closed system with visual feedback.

Experiment of "point to point" control

»Assignments:

Moves	Value of Td	Value of Zd	Value of Rd
1	1000	-1500	-
1	-	1500	1000
2	1200	1100	2000
3	2000	600	1500
4	-1500	-1000	-1600

Table 4

Movement the T axis.

Фиг.11 Movement the T axis of each move

Movement the Z axis

Fig.12 Movement the Z axis for each move

Movement to R axis.

Fig.13 Movement to R axis for each move

Experience in managing a closed system with visual feedback

&Camera:

Fig.14

Fig.15

∞Object of recognition −Chinese-Bulgarian dictionary:

Fig.16

Fig.17

Running of experiment:

Conclusions

➤ On the basis of experiments shows that serial communication in MATLAB gives good results and the ability to implement methods for managing industrial manipulator Diamond H1.

Thank you for attention!