Notes on Drinfeld Modules and Explicit CFT for Function Fields

February 26, 2025

Pre-date: March 10! It is close!

- 1) Give a 30min (strict limit !!!) talk. Ideally more like 25min + 5 min for questions. The talks will be in March. I will try to reserve a room, and will give a more precise time/date when possible.
- 2) Write an "extended summary" (meaning around 5 pages NOT!!! >=10) of you article. It should summarise the article and its main ideas and be accessible to advanced Master students (i.e., the other students in this group).

1 Review on CFT

2 Drinfeld Modules

Let F be a global function field with a fixed place ∞ neccessarily at infinity?, and with field of constants $k = \mathbb{F}_q$. If λ is a place of F, we denote by F_{λ} the completion at λ , by $\mathcal{O}_{\lambda} \subset F_{\lambda}$ the valuation ring, by $\mathbb{F}_{\lambda} := \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}$ the residue field at λ , and by $N(\lambda) := \#\mathbb{F}_{\lambda}$ its cardinality. Since we are working with function fields, the Teichmüller lifting $\mathbb{F}_{\lambda} \hookrightarrow \mathcal{O}_{\lambda}$ is a field homomorphism (Check this!); we regard $\mathbb{F}_{\lambda} \subset \mathcal{O}_{\lambda} \subset F_{\lambda}$ as a subfield via this embedding.

Let L be an arbitary extension of k with a fixed algebraic closure \bar{L} .

Function fields: holomorphy ring

Let S be a non-empty set of (not all the) places of F. Define

$$\mathcal{O}_S := \bigcap_{\lambda \notin S} \mathcal{O}_{\lambda} = \{ x \in F \mid \operatorname{ord}_{\lambda}(x) \ge 0, \ \forall \lambda \notin S \}$$

to be the subring of F consisting of elements regular away from S. A holomorphy ring is a ring of this form. For example, our $A = \mathcal{O}_{\{\infty\}}$ is a holomorphy ring.

Proposition 2.1. Consider a holomorphy ring \mathcal{O}_S .

- (1) $\operatorname{Frac}(\mathcal{O}_S) = F$.
- (2) \mathcal{O}_S is a Dedekind domain.
- (3) There is a bijection

$$\{\text{place of } F \text{ not in } S\} \longleftrightarrow \operatorname{MaxSpec} \mathcal{O}_S$$

giving by $\lambda \mapsto \mathfrak{m}_{\lambda} \cap \mathcal{O}_{S}$, which induces isomorphisms

$$\mathbb{F}_{\lambda} = \mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda} \simeq \mathcal{O}_{S}/(\mathfrak{m}_{\lambda} \cap \mathcal{O}_{S})$$

So we can regard λ as a maximal ideal of A.

2.1 Definition

2.1.1 Endomorphisms of the additive group

Consider the additive group $\mathbb{G}_{a/L}$ over L. Now the point is, $\mathbb{G}_{a/L}$ is not only a group scheme, but a k-vector space scheme, and we consider the ring $\operatorname{End}_k(\mathbb{G}_{a/L})$ of all k-linear endomorphism of group schemes.

Proposition 2.2. End_k($\mathbb{G}_{a/L}$) = $L[\tau]$, where τ is the Frobenius-q endomorphism.

We explain the notation in the proof.

Proof. An endomorphism $\mathbb{G}_a \to \mathbb{G}_a$ of schemes over L is given by an L-algebra homomorphism $\Phi : L[X] \to L[X]$, hence it is determined by the image $\varphi(X) = \Phi(X)^{\perp}$ of X. It respects the group-scheme structure if it commutes with the co-multiplication map (also an L-algebra homomorphism)

$$\Delta: F[X] \to F[X] \otimes_L F[X], \quad X \mapsto X \otimes 1 + 1 \otimes X.$$

which amounts to

$$(\Phi \otimes \Phi)(\Delta(X)) = (\Phi \otimes \Phi)(X \otimes 1 + 1 \otimes X) = \Phi(X) \otimes 1 + 1 \otimes \Phi(X) = \varphi(X) \otimes 1 + 1 \otimes \varphi(X)$$

equals

$$\Delta(\Phi(X)) = \Delta(\varphi(X)) = \varphi(\Delta(X)) = \varphi(X \otimes 1 + 1 \otimes X).$$

This is to say that φ is additive, i.e. $\varphi(X+Y) = \varphi(X) + \varphi(Y)$.

We require furthur that Φ respects the "co-k-scalar multiplication", which I don't have the formula right now. So let's use the functor point of view. Take $c \in k$. Youeda tells us that

$$\operatorname{Hom}_{[k-\operatorname{Alg}^{\operatorname{op}},\operatorname{Grp}]}(\mathbb{G}_{\mathbf{a}},\mathbb{G}_{\mathbf{a}}) \simeq \mathbb{G}_{\mathbf{a}}(L[X]), \quad \phi \mapsto \phi(\operatorname{id}_{L[X]}),$$

so the co-c-multiplication is given by $X \mapsto cX$. Therefore Φ respects this map if $\varphi(cX) = c\varphi(X)$. In conclusion,

$$\begin{split} \operatorname{End}_k(\mathbb{G}_{\mathbf{a}/L}) &= \left\{ k\text{-linear polynomials in } L[X] \right\} \\ &= \left\{ \sum_i a_i X^{p^i} \middle| a_i \in L, \ \sum a_i c X^{p^i} = \sum a_i c^{p^i} X^{p^i}, \forall c \in k = \mathbb{F}_q \right\} \\ &= \left\{ \sum_i a_i X^{q^i} \middle| a_i \in L \right\} = \left\{ \left(\sum_i a_i \tau^i \right) (X) \middle| a_i \in L \right\}, \end{split}$$

where $\tau(X) := X^q$.

Note that $\tau: L[X] \to L[X]$ is additive, but doesn't commutes with elements in L:

$$\tau a = a^q \tau, \quad \forall a \in L.$$

$$\varphi(f(X)) = a_n f(X)^n + \dots + a_0$$

and

$$\Phi(f(X)) = f(\Phi(X)) = f(\varphi(X))$$

are different in general.

$$(b \otimes b') \cdot (c \otimes c') = bb' \otimes cc'.$$

¹Note that if $\varphi(X) = a_n X^n + \dots + a_0$, then

²Recall that the multiplicative structure on $B \otimes_A C$ is given by

Therefore $L[\tau]$ is a non-commutative subring of $\operatorname{End}(L[X])$, where multiplication is composition; it is a ring of **twisted polynomials**. And we have $\operatorname{End}_k(\mathbb{G}_{a/L}) \simeq L[\tau]$.

Remark. τ corresponds to the Frobenius-q endomorphism of $\mathbb{G}_{\mathbf{a}/L}$. (What is this? $\mathbb{G}_{\mathbf{a}/L}$ is NOT over $\mathbb{F}_q = k$.)

2.1.2 Drinfeld modules and isogenies

Let A be a k-algebra. A **Drinfeld** A-module³ over L is a homomorphism

$$\phi: A \to L[\tau] \quad x \mapsto \phi(x) =: \phi_x$$

of k-algebras such that $\phi(A)$ is not contained in $L \subset L[\tau]$.

Let ϕ and ϕ' be two Drinfeld modules $A \to L[\tau]$. An **isogeny** over L from ϕ to ϕ' is an $f \in L[\tau] \setminus \{0\}$ such that

$$f\phi_a = \phi'_a f, \quad \forall a \in A.$$

An **isomorphism** over L from ϕ to ϕ' is an invertible isogeny, namely an isogeny $f \in L[\tau]^{\times}$. If M/L is an extension, then a Drinfeld module over L induces naturally a Drinfeld module over M, and we can talk about isogenies over M for Drinfeld modules over L.

Remark (Another interpretation).

Let

$$\partial: L[\tau] \to L \quad \sum_i a_i \tau^i \mapsto a_0$$

be the homomorphism of taking the constant term. We say that a Drinfeld module $\phi:A\to L[\tau]$ has generic characteristic, if

$$\partial \circ \phi : A \to L[\tau] \twoheadrightarrow L$$

is *injective*. This implies that ϕ is injective.

2.2 The Drinfeld modules we need

In what follows, we take $A \subset F$ to be the subring consisting of functions that are regular away from ∞ , and we assume that every Drinfeld modules $\phi: A \to L[\tau]$ is of generic characteristic, so that $\partial \circ \phi: A \hookrightarrow L$ extends to an embedding

$$F \hookrightarrow L$$
.

Through the latter, we view F as a subfield of L.

Let L^{perf} be the purely inseperable closure of L in \bar{L} , then $L^{\text{perf}}((\tau^{-1}))$ is a well-defined skew-field⁴, containing $L[\tau]$ as a subring.

Under our assumption, $\phi: A \hookrightarrow L[\tau]$ is injective, so it extends to a unique embedding (Does $L^{\text{perf}}(\tau)$ make sense?)

$$\phi: F \hookrightarrow L^{\mathrm{perf}}((\tau^{-1})).$$

The function

$$v_{\phi}: F \to \mathbb{Z} \cup \{\infty\} \quad x \mapsto \operatorname{ord}_{\tau^{-1}}(\phi_x)$$

³There is more general definition, but this one suffices.

⁴We need to have all p-th root, so that $\tau^{-1}a = a^{1/q}\tau$ is always valid.

is a nontrivial⁵ valuation, and $v_{\phi}(x) \leq 0$ for all $x \in A \setminus \{0\}$. Therefore v_{ϕ} is equivalent to the valuation ord_{\infty} attached to the place \infty. We define the **rank of** ϕ to be the rational number $r \in \mathbb{Q}$ such that

$$\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty} \operatorname{ord}_{\infty}(x), \quad \forall x \in F,$$

where $d_{\infty} = [\mathbb{F}_{\infty} : k]$ is the inertia degree of F at ∞ . The tank r is always an integer (by a proposition we may encounter later). Since $L^{\text{perf}}((\tau^{-1}))$ is complete under $\text{ord}_{\tau^{-1}}$, the homomorphism $\phi : F \to L^{\text{perf}}((\tau^{-1}))$ gives rise to a unique homomorphism

$$\phi: F_{\infty} \to L^{\mathrm{perf}}((\tau^{-1}))$$

such that $\operatorname{ord}_{\tau^{-1}}(\phi_x) = rd_{\infty} \operatorname{ord}_{\infty}(x)$ for all $x \in F_{\infty}$.

Now the map ϕ restricts to a homomorphism

$$\phi: \mathbb{F}_{\infty} \subset \mathcal{O}_{\infty} \to L^{\mathrm{perf}}[\![\tau^{-1}]\!].$$

Composing with $\partial: L^{\text{perf}}[\![\tau^{-1}]\!] \to L^{\text{perf}}$ of taking constant term, we obtain an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L^{\text{perf}},$$

whose image lies in L (WHY???).

2.3 ε -normalized Drinfeld modules

Let $\phi: A \to L[\tau]$ be a Drinfeld module of rank r, extending to an embedding $\phi: F \to L^{\text{perf}}((\tau^{-1}))$. For $x \in F_{\infty}^{\times}$, we define

 $\mu_{\phi}(x) := \text{first non-zero coefficient of } \phi_x \text{ as a Laurent series in } \tau^{-1},$

so that $\mu_{\phi}(x) \in (L^{\text{perf}})^{\times}$, and the first term, i.e. the term with highest τ -order, of ϕ_x is

$$\mu_{\phi}(x)\tau^{-rd_{\infty}\operatorname{ord}_{\infty}(x)}$$
.

In particular, if $x \in A$, $\mu_{\phi}(x)$ is the leading coefficient of $\phi_x \in L[\tau]$, which is what we used before to define reduction type.

By definition, for $x, y \in F_{\infty}^{\times}$,

$$\mu_{\phi}(xy) = \mu_{\phi}(x)\mu_{\phi}(y)^{1/q^{rd_{\infty} \text{ ord}_{\infty}(x)}}.$$

Recall that ϕ gives us an embedding

$$\partial \circ \phi|_{\mathbb{F}_{\infty}} : \mathbb{F}_{\infty} \hookrightarrow L$$

With respect to this embedding, why???

$$\mu_{\phi}(x) = x, \quad \forall x \in \mathbb{F}_{\infty}$$

Definition 1. A sign function for F_{∞} is a group homomorphism $F_{\infty} \to \mathbb{F}_{\infty}$ such that $\varepsilon|_{\mathbb{F}_{\infty}} = \mathrm{id}_{\mathbb{F}_{\infty}}$. Note that a sign function ε is trivial on $1 + \mathfrak{m}_{\infty}$, so it is determined by $\varepsilon(\pi)$ for a uniformizer $\pi \in \mathfrak{m}_{\infty}$.

Let $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ be a sign function for F_{∞} . We say that ϕ is

• normalized, if

$$\mu_{\phi}(x) \in \mathbb{F}_{\infty}, \quad \forall x \in F_{\infty},$$

• ε -normalized, if

$$\exists \sigma \in \operatorname{Aut}_k(\mathbb{F}_{\infty}), \quad \phi = \sigma \circ \varepsilon.$$

Lemma 2.1. Let ε be a sign function for F_{∞} . Any Drinfeld module over L is isomorphic over \bar{L} to some ε -normalized Drinfeld module.

⁵Because $\phi(A) \not\subset L$.

2.4 The action of an ideal on a Drinfeld module

Let $\phi: A \to L[\tau]$ be a Drinfeld module. For an ideal \mathfrak{a} of A, Define

$$I_{\mathfrak{a},\phi} := \text{ ideal of } L[\tau] \text{ generated by } \{\phi_a \mid a \in \mathfrak{a}\}.$$

Every *left*-ideal of $L[\tau]$ is principal,⁶ so

$$I_{\mathfrak{a},\phi} = L[\tau]\phi_{\mathfrak{a}}$$

for a unique monic $\phi_{\mathfrak{a}} \in L[\tau]$. It is a plain to verify that for every $x \in A$, $I_{\mathfrak{a},\phi}$ absorb ϕ_x also from the right, i.e. $I_{\mathfrak{a},\phi}\phi_x \subset I_{\mathfrak{a},\phi}$, and therefore gives us a unique Drinfeld module

$$\mathfrak{a} * \phi : A \to L[\tau] \quad x \mapsto (\mathfrak{a} * \phi)_x$$

together with an isogeny $\phi_{\mathfrak{a}}$ from ϕ to $\mathfrak{a} * \phi$, namely

$$\phi_{\mathfrak{a}} \cdot \phi_x = (\mathfrak{a} * \phi)_x \cdot \phi_{\mathfrak{a}},$$

Lemma 2.2. Let \mathfrak{a} and \mathfrak{b} be non-zero ideals of A, then

$$\phi_{\mathfrak{a}\mathfrak{b}} = (\mathfrak{b} * \phi)_{\mathfrak{a}} \cdot \phi_{\mathfrak{b}},$$

$$\mathfrak{ab} * \phi = \mathfrak{a} * (\mathfrak{b} * \phi).$$

Lemma 2.3. Let $\mathfrak{a} = Aw \neq 0$ be a principal ideal of A, then

$$\phi_{\mathfrak{a}} = \mu_{\phi}(w)^{-1} \cdot \phi_w,$$

$$(\mathfrak{a} * \phi)_x = \mu_{\phi}(w)^{-1} \cdot \phi_x \cdot \mu_{\phi}(w), \ \forall x \in A.$$

Lemma 2.4. Let $\sigma: L \hookrightarrow M$ be a field extension, inducing a Drinfeld module

$$\sigma(\phi): A \to M[\tau], \ x \mapsto \sigma(\phi)_x = \sigma(\phi_x).$$

Then

$$\sigma(\mathfrak{a} * \phi) = \mathfrak{a} * \sigma(\phi),$$

$$\sigma(\phi_{\mathfrak{a}}) = \sigma(\phi)_{\mathfrak{a}}.$$

Fix a sign function $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} . Consider

- \mathcal{I} , the group of fractional ideals of A,
- \mathcal{P}^+ , a subgroup of the group \mathcal{P} of principal fractional ideals of A, which is generated by $x \in F^{\times}$ with $\varepsilon(x) = 1$, and
- the narrow class group $\operatorname{Pic}^+(A) := \mathcal{I}/\mathcal{P}^+$.

We can define $\mathfrak{a} * \phi$ for every $\mathfrak{a} \in \mathcal{I}$ by Lemma 2.2, giving an action of \mathcal{I} on the set of Drinfeld modules $A \to L[\tau]$. If, in addition, ϕ is ε -normalized, then \mathcal{P}^+ fixes ϕ by Lemma 2.3, giving an action of $\operatorname{Pic}^+(A)$.

⁶By an argument similar to L[X], probably.

2.5 Torsion submodule

A Drinfeld module $\phi: A \to L[\tau]$ defines an A-module structure on \bar{L} by

$$x \cdot b := \phi_x(b), \quad \forall x \in A, b \in \bar{L}.$$

All ϕ_x has coefficient in L, so ϕ , in particular, gives an A-module structure on L^{sep} .

For an ideal \mathfrak{a} of A, we define

$$\phi[\mathfrak{a}] := \left\{ b \in \bar{L} \mid \phi_{\mathfrak{a}}(b) = 0 \right\} = \left\{ b \in \bar{L} \mid \phi_{x}(b) = 0, \forall x \in \mathfrak{a} \right\},\,$$

an A/\mathfrak{a} -module and an A-submodule of \bar{L} with A-module structure induced by ϕ .

Proposition 2.3. Let ϕ be a Drinfeld module of rank r, \mathfrak{a} an ideal of A. Then $\phi[\mathfrak{a}]$ is a free A/\mathfrak{a} -module of rank r, and it is contained in F^{sep} .

Proof. Every ϕ_x acts by a polynomial of the form

$$\phi_x(T) = a_0 T + a_1 T^q + \dots + a_n T^{q^n},$$

which is separable, because $x \mapsto \phi_x \mapsto a_0$ is injective, which implies that $\phi'_x(T) = a_0 \neq 0$ if $\phi_x \neq 0$.

For the other claim, we use the structure of modules over Dedekind domains.

2.6 Hayes modules

Let \mathbb{C}_{∞} be a completion of an algebraic closure of F_{∞} . It is ∞ -adically complete and algebraically closed. Fix a sign function $\varepsilon: F_{\infty} \to \mathbb{F}_{\infty}$ for F_{∞} . A **Hayes module for** ε is a Drinfeld module $\phi: A \to \mathbb{C}_{\infty}[\tau]$ over \mathbb{C}_{∞} , such that

- It is of rank 1.
- It is ε -normalized.
- $\partial \circ \phi : A \hookrightarrow \mathbb{C}_{\infty}$ is the inclusion $A \subset F \subset F_{\infty} \subset \mathbb{C}_{\infty}$.

Let X_{ε} be the set of Hayes modules for ε .

If \mathfrak{a} is an ideal of A, and $\phi \in X_{\varepsilon}$ then $\mathfrak{a} * \phi \in X_{\varepsilon}$. By some discussion before, this defines an action of $\operatorname{Pic}^+(A) = \mathcal{I}/\mathcal{P}^+$ on X_{ε} .

Proposition 2.4. The set X_{ε} is a principal homogeneous space for $\operatorname{Pic}^+(A)$, i.e. $\operatorname{Pic}^+(A)$ acts freely and transitively on X_{ε} .

2.6.1 Galois action on X_{ε}

We define the **normalizing field for** (F, ∞, ε) to be the extension

$$H_A^+ := F$$
 (coefficient of $\phi_x \mid \phi \in X_{\varepsilon}, x \in A$)

of F in \mathbb{C}_{∞} .

$$\phi_x(b) = \sum_i \tau^i(b) = \sum_i b^{q^i}.$$

At least I think so!

⁷Note that if $\phi_x = \sum_{a:\tau^i}$, then

Theorem 1. (1) For any $\phi \in X_{\varepsilon}$ and $x \in A$,

$$H_A^+ = F$$
 (coefficient of ϕ_x)

- (2) Let B be the integral closure of A in H_A^+ . For any $\phi \in X_{\varepsilon}$ and $x \in A$, $\phi_x \in H_A^+[\tau]$ has integral coefficient, i.e. ϕ_x has coefficient in B.
- (3) The extension H_A^+/F is finite abelian, and it is unramified away from ∞ .

By Lemma 2.4, there is a natrual action of $Gal(H_A^+/F)$ on X_{ε} . For a fixed $\phi \in X_{\varepsilon}$, ϕ induces an injective group homomorphism

$$\psi: \operatorname{Gal}(H_A^+/F) \to \operatorname{Pic}^+(A).$$

- (4) For each non-zero prime \mathfrak{p} of A, the class of $\psi(\operatorname{Frob}_{\mathfrak{p}})$ in $\operatorname{Pic}^+(A)$ equals the class of \mathfrak{p} .
- (5) $\psi : \operatorname{Gal}(H_A^+/F) \to \operatorname{Pic}^+(A)$ is an isomorphism.

2.6.2 Reduction of Hayes modules

Corollary 2.1. Every Hayes module ϕ has good reduction over H_A^+ at every finite place \mathfrak{P} not over ∞ , i.e. the composition of reduction modulo \mathfrak{P} with ϕ is a Drinfeld module of rank 1 over B/\mathfrak{P} .

Proof. after finishing construction of $Artin^{-1}$.

3 Construction of the Inverse to the Artin Map

We fix the tuple (F, ∞, ε) and a Hayes module $\phi \in X_{\varepsilon}$. Let

$$F_{\infty}^+ := \{ x \in F_{\infty}^{\times} \mid \varepsilon(x) = 1 \} = \ker(\varepsilon : F_{\infty} \to \mathbb{F}_{\infty}^{\times}).$$

3.1 λ -adic representation

Let λ be a place of F different from ∞ , corresponding to a maximal ideal λ of A.

Take $e \ge 1$ and consider $\phi[\lambda^e]$. By Proposition 2.3, $\phi[\lambda^e]$ is an A/λ^e -module of rank 1. Define the λ -adic Tate module to be

$$T_{\lambda}(\phi) := \operatorname{Hom}_{A}(F_{\lambda}/\mathcal{O}_{\lambda}, \ \phi[\lambda^{\infty}]).$$

Proposition 3.1. $T_{\lambda}(\phi)$ is a free \mathcal{O}_{λ} -module of rank 1.

Proof. The ring \mathcal{O}_{λ} is a DVR, so

$$\operatorname{Hom}_{A}(F_{\lambda}/\mathcal{O}_{\lambda}, \ \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(\mathcal{O}_{\lambda}/\mathfrak{m}_{\lambda}^{e}, \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(A/\lambda^{e}, \phi[\lambda^{\infty}]) = \varprojlim_{e} \operatorname{Hom}_{A}(A/\lambda^{e}, \phi[\lambda^{e}]).$$

Hence

$$V_{\lambda}(\phi) := T_{\lambda}(\phi) \otimes_{\mathcal{O}_{\lambda}} F_{\lambda}$$

is a 1-dimensional F_{λ} -vector space.

Of course the next step is to try to find a Galois action. There is some ideal \mathfrak{a} such that $\sigma(\phi) = \mathfrak{a} * \phi$, and thus we have two isomorphisms between this one and ϕ :

• σ induces an isomorphism $V_{\lambda}(\sigma): V_{\lambda}(\phi) \simeq V_{\lambda}(\sigma(\phi)),$

• $\phi_{\mathfrak{a}}$ induces an isomorphism⁸ $V_{\lambda}(\phi_{\mathfrak{a}}): V_{\lambda}(\phi) \simeq V_{\lambda}(\mathfrak{a} * \phi).$

So we obtain an element

$$V_{\lambda}(\phi_{\mathfrak{a}})^{-1} \circ V_{\lambda}(\sigma) \in \mathrm{GL}_{F_{\lambda}}(V_{\lambda}(\sigma)) = F_{\lambda}^{\times} \cdot \mathrm{id},$$

corresponding to an element $\rho_{\lambda}^{\mathfrak{a}}(\sigma) \in F_{\lambda}^{\times}$.

- 3.2 ∞ -adic representation
- 3.3 The inverse of Artin map
- 4 Example: the Rational Function Field

Let F = k(t).

- 5 Comparision with Elliptic Curves
- 6 Proof of (some) lemmas

⁸Because?