UM 204 (WINTER 2024) - WEEK 3

Recall that $\mathbb{R} := \{\text{equivalence classes of equivalent } \mathbb{Q}\text{-Cauchy sequences}\}$

Addition & multiplication. Exercise!

- (i) Let $a = \{a_n\}$ and $b = \{b_n\}$ be Cauchy sequences. Then, $a + b = \{a_n + b_n\}$ and $a \cdot b = \{a_n \cdot b_n\}$ are Cauchy sequences.
- (ii) Say aRa' and bRb', then (a+b)R(a'+b') and $(a \cdot b)R(a' \cdot b')$.
- (iii) Associativity and commutativity of + and ·.
- (iv) $0_{\mathbb{R}} = [\{a_n\}]$, where $a_n \equiv 1$ and $1_{\mathbb{R}} = [\{b_n\}]$, where $b_n \equiv 1$.
- (v) -[a] = [-a] for all $[a] \in \mathbb{R}$. Here, we must first show that if a is a Cauchy sequence, then so is -a.
- (vi) If $[a] \neq 0_{\mathbb{R}}$, then there is some Cauchy sequence $\widetilde{a} = \{\widetilde{a}_n\}_{\mathbb{N}}$ such that and $[\widetilde{a}] = [a]$ and \widetilde{a} nonvanishing, i.e., $\widetilde{a}_n \neq 0$ for all $n \in \mathbb{N}$. We claim that
 - $1/\tilde{a} := \{1/\tilde{a}_n\}_{\mathbb{N}}$ is a Cauchy sequence,
 - $[a \cdot 1/\widetilde{a}] = 1_{\mathbb{R}}$,
 - If \tilde{b} is any other non-vanishing Cauchy sequence such that $[\tilde{b}] = [a]$, then $[1/\tilde{b}] = [1/\tilde{a}]$.

Thus, we may define 1/[a] as $[1/\tilde{a}]$.

(vii) · distributes over +.

Order. Exercise!

- (i) For each $[a] \in \mathbb{R}$, exactly one of the following holds: $[a] = 0_{\mathbb{R}}$, [a] > 0 or -[a] > 0.
- (ii) Transitivity of order holds.
- (iii) Addition preserves order.
- (iv) Multiplication preserves positivity.

Theorem 0.1. The ordered set (\mathbb{R}, \leq) constructed above satisfies the Archimedean property.

Proof. Let [a], [b] > 0. For any $m \in \mathbb{N}$, let [m] denote the equivalence class of the constant sequence $\{m, m, ...\}$. Since $\{b_n\} > 0$ is \mathbb{Q} -Cauchy, it is \mathbb{Q} -bounded, say by a rational number M > 0. Thus,

$$(0.1) b_n \le M, \quad \forall n \in \mathbb{N}.$$

Since [a] > 0, there is a rational c > 0 and $N \in \mathbb{N}$ such that $0 < c < a_n$ for all $n \ge N$. By the Archimedean property of \mathbb{Q} , there is some $m \in \mathbb{N}$ such that mc > M + c. Thus, we have that for $n \ge N$,

$$0 < c < mc - M < ma_n - b_n$$
.

Thus, by the definition of '> 0' on \mathbb{R} , we have that [m][a] - [b] > 0.

Theorem 0.2. The ordered field \mathbb{R} satisfies the least upper bound property.

Proof. Let $A \subset \mathbb{R}$ be a nonempty set, say containing x_0 , that is bounded above, say by M. We wish to construct a \mathbb{Q} -Cauchy sequences of rational numbers whose equivalence class represents the supremum of A. We do this by creating a "window" of width $\frac{1}{n}$ near the supposed supremum, and finding a rational number there (for each $n \in \mathbb{N}$).

Fix $n \in \mathbb{N}$. Let

$$U_n = \left\{ m \in \mathbb{Z} : \frac{m}{n} = \left[\left\{ \frac{m}{n}, \frac{m}{n}, \ldots \right\} \right] \text{ is an upper bound of } A \right\}.$$

By the Archimedean property of \mathbb{R} , U_n is non-empty and bounded below (in \mathbb{Z}) (why?). Thus, it admits a least element (why?), say m_n . To summarize

$$\frac{m_n}{n}$$
 is an upper bound of A but $\frac{m_n-1}{n}$ is not.

We show that $a = \{a_n = m_n/n\}_{n \in \mathbb{N}}$ is a \mathbb{Q} -Cauchy sequence such that $[a] = \sup A$. Let $\varepsilon > 0$ be a rational number. By the Archimedean property of \mathbb{Q} , there is an $N \in \mathbb{N}$ such that $1 < N\varepsilon$. Let $n, n' \ge N$. Then, $\frac{m_n}{n} > \frac{m_{n'}-1}{n'}$ because the former is an u.b. of A, but the latter isn't. Similarly, $\frac{m_{n'}}{n'} > \frac{m_n-1}{n}$. Combining these inequalities yields that

$$-\varepsilon < -\frac{1}{N} \le -\frac{1}{n'} < \frac{m_n}{n} - \frac{m_{n'}}{n'} < \frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Thus, $\{a_n\}$ is a \mathbb{Q} -Cauchy sequence.

By the definition of the sequence $\{a_n\}$, $x \le a_k = [\{a_k, a_k, ..., \}]$ for each $x = [\{x_n\}] \in A$ and $k \ge 1$. We claim that $x \le [\{a_n\}]$ for all $x \in A$. Suppose not. Then, there is an $x = [\{x_n\}] \in A$ such that $[\{a_n\}] < [\{x_n\}]$, i.e., there is some rational c > 0 and $N_1 \in \mathbb{N}$ such that

$$0 < c < x_n - a_n$$
, $\forall n \ge N_1$.

Let $\varepsilon = c/2$. Since $\{x_n\}$ is \mathbb{Q} -Cauchy, there is an $N_2 \in \mathbb{N}$ such that

$$-\frac{c}{2} < x_n - x_m < \frac{c}{2}, \quad \forall n, m \ge N_2.$$

Choose $N_0 = \max\{N_1, N_2\}$. Then, for any $m \ge N_0$

$$a_{N_0} + c < x_{N_0} < x_m + \frac{c}{2} \Rightarrow \frac{c}{2} < x_m - a_{N_0}.$$

This implies that $[\{x_n\}] > a_{N_0}$, which is a contradiction.

For the final step of the proof, let $y = [\{y_n\}]$ be an upper bound of A. A similar argument as above shows that $y \ge [\{(m_n - 1)/n\}] = [\{m_n/n\}] = [a]$.

Theorem 0.3 (Existence of n^{th} roots). For every real x > 0 and every $n \in \mathbb{N}^*$, there is a unique y > 0 such that $y^n = x$.

END OF LECTURE 6

- 0.1. **Complex numbers.** We briefly discuss complex numbers, although we will not develop differential calculus on the complex plane in this course. Formally, the a complex number is an ordered 2-tuple (a, b) of real numbers. The set of complex numbers is denoted by \mathbb{C} (instead of $\mathbb{R} \times \mathbb{R}$), and the following operations make \mathbb{C} a *normed field*.
 - (1) (a,b) + (c,d) = (a+c,b+d). (0,0) is the additive identity and (-a,-b) = -(a,b) for any (a,b).
 - (2) $(a,b) \cdot (c,d) = (ac bd, ad + bc)$. (1,0) is the multiplicative identity and $\left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = (a,b)^{-1}$ for any $(a,b) \neq (0,0)$.
 - (3) $|(a,b)| = \sqrt{a^2 + b^2}$.

The above operations, when restricted to complex numbers of the form (a,0), Note that $(0,1)^2 = (-1,0)$, i.e., (0,1) is a square-root of -1 in this field. It is denoted by i, and one always writes (a,b) as a+ib to indicate that it is a complex number. Another important operation on $\mathbb C$ is that of conjugation: $a+ib\mapsto \overline{a+ib}=a-ib$.

Theorem 0.4 (The Cauchy–Schwarz Inequality). Let $x_1,...,x_n,y_1,...,y_n \in \mathbb{C}$. Then

$$\left| \sum_{j=1}^{n} a_j \overline{b_j} \right|^2 \le \sum_{j=1}^{n} |a_j|^2 \sum_{j=1}^{n} |b_j|^2,$$

with equality if and only if there is a $\lambda \in \mathbb{C}$ such that $b_j = \lambda a_j$ for all j.

Proof. Let $\sum_{j=1}^{n} a_j \overline{b_j} = A$. Assume $B = \sum_{j=1}^{n} |b_j|^2 \neq 0$, else there is nothing to prove. We know that

$$\left|\sum_{j=1}^n a_j \overline{a_j}\right|^2 = \sum_{j=1}^n |a_j|^2 \ge 0.$$

We introduce a complex parameter $\lambda = u + iv$, to obtain that

$$0 \le \sum_{j=1}^{n} (a_j + \lambda b_j) (\overline{a_j + \lambda b_j}) = \sum_{j=1}^{n} |a_j|^2 + \overline{\lambda} a_j \overline{b_j} + \lambda \overline{a_j} b_j + |\lambda|^2 |b_j|^2$$

$$= \sum_{j=1}^{n} |a_j|^2 + 2u\Re(A) + 2v\Im(A) + (u^2 + v^2) \sum_{j=1}^{n} |b_j|^2 := F(u, v).$$

Applying some multi-variable calculus to F(u, v), we have that F attains a global minimum when $\frac{\partial F}{\partial u}(u, v) = \frac{\partial F}{\partial v}(u, v) = 0$, which happens at $(u_0, v_0) = \left(-\frac{\Re(A)}{\sum_{j=1}^n |b_j|^2}, -\frac{\Im(A)}{\sum_{j=1}^n |b_j|^2}\right)$. But

$$0 \le F(u_0, v_0) = \sum_{j=1}^n |a_j|^2 - \frac{|A|^2}{\sum_{j=1}^n |b_j|^2}.$$

For equality, it must be that the minimum attained is 0. I.e., $\sum_{j=1}^{n} |a_j + \lambda_0 b_j|^2 = 0$. This yields the equality case.

1. METRIC SPACES

1.1. **Definition and examples.** To discuss convergence of real sequences, we were not really relying on the algebraic properties of \mathbb{R} , but rather the notion of close-ness (or distance) between two real numbers. This notion makes sense in a much more general context.

Definition 1.1. A metric space is pair (X, d) consisting of a set X and a "distance" $d: X \times X \to [0, \infty)$ such that for all $x, y, z \in X$,

- (1) d(x, y) = 0 if and only if x = y;
- (2) (symmetry) d(x, y) = d(y, x);
- (3) (triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$.

Examples 1. Let $X = \mathbb{R}$. Then, d(x, y) = |x - y| is a distance function.

2. (Real Euclidean space). The vector space \mathbb{R}^n can be endowed with an inner product

$$\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n.$$

The length of a 'vector' $x \in \mathbb{R}^n$ is then given by

$$||x|| = \langle x, x \rangle^{1/2}$$
.

We claim that d(x, y) = ||x - y|| is a distance function on \mathbb{R}^n . It is known as the Euclidean metric on \mathbb{R}^n . Properties (1) and (2) are clear, and (3) follows from:

Theorem 1.2. For $a, b, c \in \mathbb{R}^n$, we have that

$$\left| \|a\| - \|b\| \right| \le \|a + b\| \le \|a\| + \|b\|.$$

Proof. The C-S inequality says that

$$|\langle a, b \rangle| \le ||a|| ||b||.$$

Using this, we have

$$||a+b||^2 = \langle a+b, a+b \rangle = \langle a, a \rangle + 2\langle a, b \rangle + \langle b, b \rangle \le ||a||^2 + 2||a|| ||b|| + ||b||^2 = (||a|| + ||b||)^2.$$

Now, given $a', b' \in \mathbb{R}^n$, let $a, b \in \mathbb{R}^n$ such that a' = a + b and b' = -b. Then, by the inequality just proved, we have that

$$||a'|| - ||b'|| \le ||a' + b'||.$$

Exchanging the roles of a' and b', we also have that $||b'|| - ||a'|| \le ||a' + b'||$.

3. (Discrete metric) Let *X* be any set. Define, for $x, y \in X$

$$d(x, y) = \begin{cases} 1, & x \neq y, \\ 0 & x = y. \end{cases}$$

END OF LECTURE 7

4. Let *p* ≥ 1. Define, for $x, y \in \mathbb{R}^n$

$$d_p(x, y) = \left(\sum_{j=1}^n |x_j - y_j|^p\right)^{1/p}.$$

Then, d_p is a metric. The triangle inequality is non-trivial to prove (Assignment 03).

- 5. The subset of any metric space is also a metric space via the restriction of the metric.
- 1.2. **Metric topology.** The notion of a metric allows us to define analogues of open and closed intervals in metric spaces. The idea of an open set is one where there is wiggle-room at every point (think (0,1)).

Definition 1.3. Let (X, d) be a metric space.

(1) Given $p \in X$ and $\varepsilon > 0$, the open ball centered p with radius ε is the set

$$B_d(p;\varepsilon) = B(p;\varepsilon) = \{x \in X : d(x,p) < \varepsilon\}.$$

This set is also referred to as the ε -neighborhood of p. The closed ball centered at p with radius ε is the set $\{x \in X : d(x, p) \le \varepsilon\}$.

In the standard metric on \mathbb{R} , $B(p;\varepsilon) = (p-\varepsilon, p+\varepsilon)$.

(2) Given a subset $E \subset X$, a $p \in X$ is an interior point of E if there is some $\varepsilon > 0$ such that

$$B_d(p;\varepsilon) \subseteq E$$
.

The collection of all interior points of E is called the interior of E, denoted by E° .

Remark. By definition $E^{\circ} \subseteq E$.

- (3) A set $E \subset X$ is open if $E = E^{\circ}$, i.e., for every $p \in E$, there is an $\varepsilon_p > 0$ such that $B_d(p; \varepsilon_p) \subseteq E$. **Remark.** The empty set is open.
- (4) The collection of open sets of (X, d) is called the d-metric topology on X.

Proposition 1.4. Every open ball is an open set.

Proof. Let $q \in B(p; \varepsilon)$. Let $\delta = \varepsilon - d(p, q)$. Then, for any $z \in B(q; \delta)$,

$$d(z, p) \le d(z, q) + d(q, p) < \varepsilon$$
.

Proposition 1.5. The union of an arbitrary collection of open sets is open. The intersection of a finite collection of open sets is open.

Proof. Let $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ be a collection of open sets, and $U=\cup_{\Lambda}G_{\alpha}$. Let $z\in U$. Then, $z\in G_{\alpha}$ for some $\alpha\in\Lambda$. Thus, there is some $\varepsilon>0$ such that $B_d(z;\varepsilon)\subseteq G_{\alpha}\subseteq U$.

Let $\{G_1,...,G_n\}$ be a collection of open sets, and $U = \bigcap_{j=1}^n G_j$. Let $z \in U$. Then, $z \in G_j$ for all j = 1,...,n. Thus, there is an $\varepsilon_j > 0$ such that $B(z;\varepsilon_j) \subseteq G_j$. Let $\varepsilon = \min_{1 \le j \le n} \{\varepsilon_j\}$. Then, $B(z;\varepsilon) \subseteq U$.

Example. Let *d* be the discrete metric on a (non-empty) set *X*. Given $z \in X$, note that $B(z;\varepsilon) = \{z\}$ if $\varepsilon \le 1$, and $B(z;\varepsilon) = X$ if $\varepsilon > 1$. Thus, every set is open in this topology.

The idea of a closed set is one where you cannot approach points outside the set.

Definition 1.6. Let (X, d) be a metric space, and $E \subset X$.

- (1) A $p \in X$ is a limit point of E if every neighborhood $B(p; \varepsilon)$ contains a point $q \neq p$ from E. **Remark.** If p is a limit point of E, then every neighborhood of p contains infinitely many points from E.
- (2) A $p \in E$ is said to be an isolated point of E if p is not an accumulation point of E, i.e., there is some $\varepsilon > 0$ such that $B(p; \varepsilon) \cap E = \{p\}$.
- (3) *E* is said to be closed if *E* contains all its accumulation points. **Remark.** The empty set has no limits points, and is therefore, closed.
- (4) The closure of *E* is the set $\overline{E} = E \cup \{z \in X : z \text{ is an accumulation point of } E\}$.
- (5) The boundary of *E* is the set $\partial E = \overline{E} \setminus E^{\circ}$.

END OF LECTURE 8