Convolutional Neural Network

Computational Linguistics @ Seoul National University

DL from Scratch By Hyopil Shin

Convolutional Neural Network

History A bit of history:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

1968...

CNN Structure

그림 7-1 완전연결 계층(Affine 계층)으로 이뤄진 네트워크의 예

그림 7-2 CNN으로 이뤄진 네트워크의 예 : 합성곱 계층과 풀링 계층이 새로 추가(회색)

Convolutional Neural Network

Convolutional Neural Network

Affine Layers

- 문제점
 - 데이터의 형상이 무시됨
 - MNIST: 가로, 세로, 채널(색상)의 3D데이터 → (1채널, 세로 28픽셀, 가로 28픽셀)
 - 공간적 정보-공간적으로 가까운 픽셀은 값이 비슷하거나, RGB의 각 채 널은 서로 밀접하게 관련, 거리가 먼 픽셀끼리는 별 연관이 없는 등
- 합성곱 계층은 형상을 유지할 수 있음
 - Feature map(특징맵): 합성곱의 입출력 데이터
 - Input feature map, output feature map

Convolution(from https://hunkim.github.io/ml/lec11.pdf)

Start with an image (width x hight x depth)

Convolution(from https://hunkim.github.io/ml/lec11.pdf)

Let's focus on a small area only (5x5x3)

Get one number using the filter

합성곱 연산

- 합성곱 계층->합성곱 연산 (예: 필터연산)
 - 합성곱 연산은 입력데이터에 필터를 적용
 - Fused multiply-add(FMA, 단일곱셈-누산)

그림 7-3 합성곱 연산의 예 : 합성곱 연산을 (*) 기호로 표기

	1	2	3	0		400000000000000000000000000000000000000	Questane con	processos				
						2	0	1				- Port
	0	1	2	3	*		-1	_		15	16	Action (market)
00000	3	0	1	2		U	1	2		6	15	-
	_		-			1	0	2		0	10	descriptions
	2	3	0	1								
	***************************************	인령 [레이터	inananan menanan menana Terraturah menanan men			필터					

합성곱 연산

그림 7-4 합성곱 연산의 계산 순서

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

2	0	1	15
0	1	2	10
1	0	2	

1	2	3	0
0	1	2	3
3	0	1	2
2	3	0	1

	2	0	1	11
*	0	1	2	10
	1	0	2	C

	1	2	3	0	
	0	1	2	3	
	3	0	1	2	
	2	3	0	1	

	2	0	1	15	16
)	0	1	2	10	10
	1	0	2		

opposite the second of the sec	1	2	3	0
	0	1	2	3
-	3	0	1	2
	2	3	0	1

	2	0	1		
	0	1	-0	15	16
ソ				6	15
	1	0	2		

합성곱 연산

• Affine : CNN = 가중치 매개변수 : 필터의 매개변수 , 편향:편향

그림 7-5 합성곱 연산의 편향: 필터를 적용한 원소에 고정값(편향)을 더한다.

Padding

• 출력 크기를 조정하기 위해 (입력의 크기를 보존)

그림 7-6 합성곱 연산의 패딩 처리 : 입력 데이터 주위에 0을 채운다(패딩은 점선으로 표시했으며 그 안의 값 '0'은 생략했다).

9	0 11 11 11 11 11 11 11 11 11 11 11 11 11	9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 6 8 8 8 8 8 8	5 5 6 6 6 6 7	**************************************									
2	1	2	3	0	2 X X X X X X X X X X X X X X X X X X X				-		7	12	10	2
2 6 6 8 9	0	1	2	3	1	*	2	U	1		4	15	16	10
2 2 3 4	3	0	1	2			0	1	1 4	650000000000000000000000000000000000000	10	6	15	6
2 4 4 3 2	2	3	0	1			1 0 2		ž.	8	10	4	3	
2	P 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 5 7 5 2 2 2 3 6 3 6									Per la constantina de la constantina della const			
	(4, 4)						(3, 3)				(4, 4)			
	입력 데이터(패딩 : 1)						필터			출력 데이터				

stride

• 필터를 적용하는 위치의 간격

그림 7-7 스트라이드가 2인 합성곱 연산

1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1
2	3	0	1	2	3	0
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1

스트라이드:2

	H					
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1
2	3	0	1	2	3	0
1	2	3	0	1	2	3
0	1	2	3	0	1	2
3	0	1	2	3	0	1

stride

- Stride를 키우면 출력크기 는 작아지고 패팅을 크게 하면 출력크기가 커짐
 - Padding, stride에 따른 출 력의 크기
 - 입력의 크기 (H, W), 필터 크기 (FH, FW), 출력 크기 (OH, OW), padding P, stride S

$$OH = \frac{H + 2P - FH}{S} + 1$$

$$OW = \frac{W + 2P - FW}{S} + 1$$

예 1: [그림 7-6]의 예

입력: (4,4), 패딩: 1, 스트라이드: 1, 필터: (3,3)

$$OH = \frac{4 + 2 \cdot 1 - 3}{1} + 1 = 4$$

$$OW = \frac{4 + 2 \cdot 1 - 3}{1} + 1 = 4$$

예 2: [그림 7-7]의 예

입력:(7,7), 패딩:0, 스트라이드:2, 필터:(3,3)

$$OH = \frac{7+2\cdot 0-3}{1} + 1 = 3$$

$$OW = \frac{7+2\cdot 0-3}{1} + 1 = 3$$

예3

입력: (28, 31), 패딩: 2, 스트라이드: 3, 필터: (5, 5)

$$OH = \frac{28 + 2 \cdot 2 - 5}{1} + 1 = 10$$

$$OW = \frac{31 + 2 \cdot 2 - 5}{1} + 1 = 11$$

3D 데이터의 합성곱 연산

- 길이방향(채널방향)으로 특징맵이 늘어남
 - 입력 데이터의 채널 수와 필터의 채널 수가 동일

그림 7-8 3차원 데이터 합성곱 연산의 예

블록 형상

그림 7-10 합성곱 연산을 직육면체 블록으로 생각한다. 블록의 형상에 주의할 것!

(C, H, W) 입력 데이터 *

(C, FH, FW) 필터

-

(1, OH, OW) 출력 데이터

블록 형상

그림 7-11 여러 필터를 사용한 합성곱 연산의 예

3D 데이터의 합성곱 연산

그림 7-9 3차원 데이터 합성곱 연산의 계산 순서

	0	1	3			
2	0	1	2 2	special control of the	63	
0	1	2	0	secondon econology, co-	18	
1	0	2				

18 51

par.		1	2	1	2		
	3	0	6	5	1		
1	2	3	0	3	0		
0	1	2	3	0	4		
3	0	1	2	1	5		
2	3	0	1	-	Second		

블록 형상

그림 7-12 합성곱 연산의 처리 흐름(편향 추가)

Batch

• N개의 데이터를 배치처리 할 때

그림 7-13 합성곱 연산의 처리 흐름(배치 처리)

Pooling

- 세로, 가로 방향의 공간을 줄이는 연산
- 최대 풀링

그림 7-14 최대 풀링의 처리 순서

1 2 1 0 0 1 2 3 3 0 1 2 2 4 0 1	2	1 2 1 0 0 1 2 3 3 0 1 2 2 4 0 1	2 3
1 2 1 0 0 1 2 3	2 3	1 2 1 0 0 1 2 3	2 3

Pooling계층의 특징

- 학습해야할 매개변수가 없다
 - 풀링 계층은 합성곱 계층과 달리 학습해야 할 매개변수가 없다. 풀링은 대상영역에서 최대값이나 평균을 취하는 명 확한 처리이므로 특별히 학습 할 것이 없다
- 채널 수가 변하지 않는다
 - 풀링 연산은 입력 데이터의 채널 수 그대로 출력 데이터 로 내보낸다.

그림 7-15 풀링은 채널 수를 바꾸지 않는다.

Pooling 계층의 특징

• 입력의 변화에 영향을 적게 받는다 (강건하다)

그림 7-16 입력 데이터가 가로로 1원소만큼 어긋나도 출력은 같다(데이터에 따라서는 다를 수도 있다).

1	2	0	7	1	0			1	1	2	0	7	1			
0	9	2	3	2	3			3	0	9	2	3	2		ranasaar.	
3	0	1	2	1	2	narozzonoal@za-	9 7	2	3	0	1	2	1	**************************************	9	7
2	4	0	1	0	1		6 8	3	2	4	0	1	0		6	8
6	0	1	2	1	2			2	6	0	1	2	1			
2	4	0	1	8	1			1	2	4	0	1	8			

- 4차원 배열: (10, 1, 28, 28)- 높이 28, 너비 28, 채널 1개인 데이 터 10개
- Im2col로 데이터 전개
 - 입력데이터를 필터링(가중치 계산)하기 좋게 전개하는 함수

- 합성곱 계층 구현
 - common/util.py

그림 7-19 합성곱 연산의 필터 처리 상세 과정 : 필터를 세로로 1열로 전개하고, im2col이 전개한 데이터와 행렬 내적을 계산합니다. 마지막으로 출력 데이터를 변형(reshape)합니다.

합성곱/풀링 계층 구현:Convolution class

```
class Convolution:
    def init (self, W, b, stride=1, pad=0):
        self W = W
       self_b = b
        self_stride = stride
        self.pad = pad
    def forward(self, x):
       FN, C, FH, FW = self, W, shape
        N, C, H, W = x.shape
        out h = int(1 + (H + 2*self.pad - FH) / self.stride)
        out w = int(1 + (W + 2*self.pad - FW) / self.stride)
        col = im2col(x, FH, FW, self, stride, self, pad)
        col_W = self.W.reshape(FN, -1).T # 필터 전개
        out = np.dot(col. col W) + self.b
        out = out.reshape(N, out h, out w, -1).transpose(0, 3, 1, 2)
        return out
```

그림 7-20 넘파이의 transpose 함수로 축 순서 변경하기: 인덱스(번호)로 축의 순서를 변경한다.

• 풀링 계층 구현

그림 7-21 입력 데이터에 풀링 적용 영역을 전개 (2×2 풀링의 예)

그림 7-22 풀링 계층 구현의 흐름 : 풀링 적용 영역에서 가장 큰 원소는 회색으로 표시


```
class Pooling:
   def __init__(self, pool_h, pool_w, stride=1, pad=0):
       self.pool h = pool h
       self.pool w = pool_w
       self.stride = stride
       self.pad = pad
   def forward(self, x):
       N, C, H, W = x.shape
       out h = int(1 + (H - self.pool h) / self.stride)
       out w = int(1 + (W - self.pool w) / self.stride)
       # 전개 (1)
       col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
       col = col.reshape(-1, self.pool h*self.pool_w)
       # 최댓값 (2)
       out = np.max(col, axis=1)
       # 성형 (3)
       out = out_reshape(N, out h, out w, C)_transpose(0, 3, 1, 2)
       return out
```

CNN 구현

• 07-train_convent.py

CNN Visualization

- 1번째 층의 가중치 시각화
 - 07-visualize_fileter.py

그림 7-24 학습 전과 후의 1번째 층의 합성곱 계층의 가중치: 가중치의 원소는 실수이지만, 이미지에서는 가장 작은 값(0)은 검은색, 가장 큰 값(255)은 흰색으로 정규화하여 표시함

CNN Visualization

그림 7-25 가로 에지와 세로 에지에 반응하는 필터 : 출력 이미지 1은 세로 에지에 흰 픽셀이 나타나고, 출력 이미지 2는 가로 에지에 흰 픽셀이 많이 나온다.

CNN Visualization

• 층 깊이에 따른 추출 정보의 변화

그림 7-26 CNN의 합성곱 계층에서 추출되는 정보. 1번째 층은 에지와 블롭, 3번째 층은 텍스처, 5번째 층은 시물의일부, 마지막 완전연결 계층은 시물의 클래스(개, 자동차 등)에 뉴런이 반응한다.[19]

AlexNet

- 2012년 발표됨. 딥러 닝 열풍을 일으키는 데 큰 역할
 - 활성화 함수로 ReLU 사용
 - Local Response
 Normalization이라
 는 국소적 정규화를
 실시하는 계층을 이용
 - Dropout 사용

그림 7-28 AlexNet의 구성[21]

