TLP521GB, TLP521-2GB, TLP521-4GB, TLP521, TLP521-2, TLP521-4 TLP521XGB, TLP521-2XGB, TLP521-4XGB TLP521X, TLP521-2X, TLP521-4X

HIGH DENSITY MOUNTING PHOTOTRANSISTOR OPTICALLY COUPLED ISOLATORS

APPROVALS

UL recognised, File No. E91231

'X'SPECIFICATIONAPPROVALS

- VDE 0884 in 3 available lead form:
 - -STD
 - -G form
 - SMD approved to CECC 00802
- BSI approved Certificate No. 8001

DESCRIPTION

The TLP521, TLP521-2, TLP521-4 series of optically coupled isolators consist of infrared light emitting diodes and NPN silicon photo transistors in space efficient dual in line plastic packages.

FEATURES

- Options:
 10mm lead spread add G after part no.

 Surface mount add SM after part no.
 Tape&reel add SMT&R after part no.
- High Current Transfer Ratio (50% min)
- High Isolation Voltage (5.3kV_{RMS},7.5kV_{PK})
- High BV_{CEO} (55Vmin)
- All electrical parameters 100% tested
- Custom electrical selections available

APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

TLP521 Dimensions in mm ← 2.54 7.0 6.0 1.2 5.08 7.62 4.0 †3.0 13° Max 0.26 TLP521-2 0.5 **←** 2.54 7.0 6.0 1.2 中华 10.16 7.62 9.16 †3.0 13° Max 0.26 3.35 0.5 TLP521-4 ⊐14 □13 **←** 2.54 **112** 7.0 **-11** 6.0 **→** 1.2 7.62 13° Max 0.26

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, Cleveland, TS25 1YD Tel: (01429) 863609 Fax: (01429) 863581

ISOCOM INC

1024 S. Greenville Ave, Suite 240, Allen, TX 75002 USA Tel: (214)495-0755 Fax: (214)495-0901 e-mail info@isocom.com http://www.isocom.com

7/4/03

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature55°C to	+ 125°C
Operating Temperature30°C to -	+100°C
Lead Soldering Temperature	
(1/16 inch (1.6mm) from case for 10 secs)	260°C

INPUT DIODE

Forward Current	 50mA
Reverse Voltage	 6V
Power Dissipation	 70mW

OUTPUT TRANSISTOR

Collector-emitter Voltage BV _{CEO}	55V
Emitter-collector Voltage BV _{ECO}	6V
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation	200mW
(derate linearly 2.67mW/°C above 25°C)	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}$ C Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)	1.0	1.15	1.3	V	$I_F = 10 \text{mA}$
	Reverse Current (I_R)			10	μΑ	$V_R = 4V$
Output	Collector-emitter Breakdown (BV _{CEO}) (Note 2)	55			V	$I_{\rm C} = 0.5 \text{mA}$
	Emitter-collector Breakdown (BV _{ECO})	6			V	$I_E = 100 \mu A$
	Collector-emitter Dark Current (I_{CEO})			100	nA	$V_{CE} = 20V$
Coupled	Current Transfer Ratio (CTR) (Note 2) TLP521, TLP521-2, TLP521-4 CTR selection available BL GB GB Collector-emitter Saturation VoltageV -GB	50 200 100 30		600 600 600 0.4 0.4	% % % % V	5mA I_{F} , 5V V_{CE} 1mA I_{F} , $0.4\text{V V}_{\text{CE}}$ 8mA I_{F} , $2.4\text{mA I}_{\text{C}}$ 1mA I_{F} , $0.2\text{mA I}_{\text{C}}$
	Input to Output Isolation Voltage $V_{\rm ISO}$ Input-output Isolation Resistance $R_{\rm ISO}$ Response Time (Rise), tr Response Time (Fall), tf	5300 7500 5x10 ¹⁰	4 3		$\begin{array}{c} V_{\text{RMS}} \\ V_{\text{PK}} \\ \Omega \\ \mu s \\ \mu s \end{array}$	See note 1 See note 1 $V_{IO} = 500V \text{ (note 1)}$ $V_{CE} = 2V$, $I_{C} = 2\text{mA}$, $R_{L} = 100\Omega$

Note 1 Measured with input leads shorted together and output leads shorted together.

Note 2 Special Selections are available on request. Please consult the factory.

7/4/03 DB92546m-AAS/A3

Collector Power Dissipation vs. Ambient Temperature

Collector Current vs. Low Collector-emitter Voltage

Forward Current vs. Ambient Temperature

Collector Current vs. Collector-emitter Voltage

Collector-emitter Saturation

Current Transfer Ratio vs. Forward Current

