Guião da Disciplina de Matemática Discreta

2014/2015

1 Carga horária semanal e unidades ECTS

- Horas presenciais semanais: 5 horas teórico-práticas + 1 hora tutorial.
- Horas de trabalho autónomo semanais: 5 horas
- Unidades ECTS: 6

2 Objectivos e competências fundamentais

- Objectivos: Formação em matemática discreta que permita a compreensão de modelos matemáticos de natureza combinatória, muito comuns em computação, telecomunicações, indústria de processadores, desenho de circuitos integrados, criptografia e segurança na transmissão de comunicações, sistemas de tráfego, etc.
- Competências: Capacidade de desenvolvimento de raciocínios lógicodedutivos e de demonstração de resultados em contextos onde as entidades envolvidas têm natureza discreta; capacidade de desenvolvimento de algoritmos de cálculo combinatório com recurso a paradigmas lógicos, a identidades combinatórias clássicas, a relações de recorrência e a funções geradoras; capacidade de resolução de problemas combinatórios representados por grafos.

3 Docentes e turmas

Docente	1 ^a Turma	2^a Turma
Domingos Moreira Cardoso	TP1	
Enide Andrade + Jorge Neves	TP2	TP3
Paula Rama	TP4	TP7
Maria Paula Lopes dos Reis Carvalho	TP5	
Maria Raquel Rocha Pinto	TP6	

4 Método de ensino

Exposição teórica acompanhada de exemplos ilustrativos e resolução de exercícios.

5 Regime de faltas

As falta são registadas apenas para fins estatísticos.

6 Avaliação

O modelo de avaliação adoptado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar nas seguintes datas:

- 1. 17 de Abril de 2015 (sexta-feira);
- 2. Dia do exame final.

A matéria a abordar no primeiro teste será leccionada até ao dia 10 de Abril de 2015. A matéria a abordar no segundo teste é a matéria leccionada depois de 10 de Abril.

7 Programa da disciplina

- 7.1 Linguagem Matemática e Lógica Informal (4 semanas).
 - Lógica proposicional.
 - * Sistemas matemáticos.
 - * Proposições condicionais, conectivos lógicos, tautologias e contradições.
 - Relações.
 - * Produto cartesiano e relações binárias.
 - * Relações de ordem e relações de equivalência.
 - * Funções.
 - * Relação de equipotência e cardinalidade de conjuntos.
 - Lógica de primeira ordem.
 - * Predicados, termos e átomos.
 - * Variáveis livres e variáveis ligadas.
 - * Interpretação e validade de fórmulas.
 - * Formas normais.
 - * Consequência lógica e princípio de resolução.

* Substituição e unificação de fórmula de primeira ordem.

7.2 Contextos e estratégias de demonstração (2 semanas).

- Estratégias de demonstração da implicação
 - * Prova directa.
 - * Demonstração por contraposição.
 - * Demonstração por redução ao absurdo.
- Princípios de indução e de indução completa.
- Princípio da gaiola dos pombos.

7.3 Princípios de enumeração combinatória (1 semana).

- Princípio da bijecção.
- Princípios da adição e da multiplicação.
- Princípio de inclusão-exclusão.

7.4 Agrupamentos e Identidades Combinatórias (1 semana).

- Arranjos com repetição e arranjos e combinações simples.
- Combinações e permutações (com e sem repetição) e números multinomiais.
- Identidades combinatórias.

7.5 Recorrência e Funções Geradoras (2 semanas).

- Relações de recorrência.
 - * Dependências recursivas simples.
 - * Equações de recorrência homogéneas.
 - * Equações de recorrência lineares não homogéneas.
 - * Equações de recorrência não lineares.
- Funções geradoras
 - * Séries formais de potências.
 - * Funções geradoras ordinária e exponencial.
 - * Equações de recorrência e funções geradoras.
 - * Funções geradoras de várias variáveis.

7.6 Números Combinatórios (1 semana)

- Factoriais e número binomiais.
- Números de Fibonacci e número de ouro.
- Números de Stirling
- Números Euler e Bell.

7.7 Elementos de Teoria dos Grafos (3 semanas)

- Conceitos e Resultados Fundamentais
 - * Grafos orientados e não orientados.
 - * Representação de grafos em computador.
 - * Isomorfismos, grafos etiquetados e não etiquetados.
 - * Conceitos métricos.
 - * Grafos e subgrafos particulares.
 - * Grafos eulerianos e semi-eulerianos.
 - * Grafos hamiltonianos e semi-hamiltonianos.
 - * Exemplos de enumeração de grafos simples.
 - * Algoritmos de pesquisa em grafos.
- Conexidade, caminhos e árvores.
 - * Grafos conexos.
 - * Determinação de componentes conexas (algoritmo de fusão de vértices).
 - * Grafos orientados fortemente conexos (matriz de atingibilidade).
 - * Problemas de caminho mais curto (algoritmo de Dijkstra).
 - * Árvores e florestas.
 - * Número de árvores abrangentes.
 - * Geração de todas as árvores abrangentes.
 - * Código de Prüfer.
 - * Árvores abrangentes de custo mínimo (algoritmo de Kruskal).

8 Bibliografia de base

- 1. D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta*: combinatória, teoria dos grafos e algoritmos, Escolar Editora, 2009.
- 2. D. M. Cardoso, P. Carvalho, *Noções de Lógica Matemática*, Universidade de Aveiro, 2007 (disponível na página da disciplina).

9 Bibliografia adicional

- 1. N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
- 2. M. Bóna, A Walk Through Combinatorics an introduction to enumeration and graph theory, World Scientific (2003).

- 3. R. L. Graham, D. E. Knuth and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, 2nd Ed. (2005).
- 4. J. M. S. Simões Pereira, Matemática Discreta: Tópicos de Combinatória. Editora Luz da Vida, 2006.
- 5. J. M. S. Simões Pereira, Matemática Discreta: Grafos, Redes e Aplicações. Editora Luz da Vida, 2009.
- 6. J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro, 1999.