## **Netzwerk-Dokumentation: IOT & Homelab**

## **Allgemeine Netzwerkkonfiguration**

## **Standard-LAN (Homelab & Management)**

**VLAN ID:** Default/untagged

**Subnetz:** 192.168.1.0/24

**Gateway:** 192.168.1.1

**DNS:** 192.168.1.1, 8.8.8.8

**DHCP-Bereich:** 192.168.1.100 - 192.168.1.200 (für automatische Zuweisung)

#### **IOT-VLAN**

**VLAN ID:** 100 (IOT-VLAN) **Subnetz:** 192.168.100.0/22 **Gateway:** 192.168.100.1

**DNS:** 192.168.100.1, 8.8.8.8

**DHCP-Bereich:** 192.168.102.1 - 192.168.102.254 (für automatische Zuweisung)

#### Gäste-VLAN

VLAN ID: 200 (Gäste-VLAN) Subnetz: 192.168.200.0/24 Gateway: 192.168.200.1

**DNS:** 192.168.1.3 (Pi-hole für Ad-Blocking)

**DHCP-Bereich:** 192.168.200.10 - 192.168.200.250 (für automatische Zuweisung)

## Netzwerkaufteilung und IP-Bereiche

Standard-LAN (192.168.1.0/24) - Homelab & Management

| dung                                             |  |
|--------------------------------------------------|--|
| teway                                            |  |
| UniFi Controller, Pi-hole+Unbound, Switches, APs |  |
| Proxmox Hosts, Storage                           |  |
| VMs, Docker Container, Services                  |  |
| Automatische Zuweisung                           |  |
| , Laptop (kabelgebunden + WiFi),<br>ment         |  |
| inftige Erweiterungen                            |  |
| r                                                |  |

# IOT-VLAN (192.168.100.0/22) - Smart Home Geräte + Mobile Clients

| Raum                                            | IP-Bereich                        | Anzahl IPs | Verwendung                                |  |
|-------------------------------------------------|-----------------------------------|------------|-------------------------------------------|--|
| Unterverteilung                                 | 192.168.100.1 - 192.168.100.62    | 62         | Zentrale Steuergeräte, Homematic CCU      |  |
| Flur 192.168.100.65 - 192.168.100.126           |                                   | 62         | Shelly Schalter, Homematic Sensoren       |  |
| Arbeitszimmer 192.168.100.129 - 192.168.100.190 |                                   | 62         | Shelly Relais, Hue Arbeitsplatz           |  |
| Schlafzimmer                                    | 192.168.100.193 - 192.168.100.254 | 62         | Hue Lampen, Klimasensoren, Jalousien      |  |
| Wohnzimmer                                      | 192.168.101.1 - 192.168.101.62    | 62         | Hue Lampen, Sonos Lautsprecher, TV-Geräte |  |
| Küche                                           | 192.168.101.65 - 192.168.101.126  | 62         | Küchengeräte, Sonos, Hue Unterschrank     |  |
| Bad                                             | 192.168.101.129 - 192.168.101.190 | 62         | Feuchtigkeitssensoren, Lüftungssteuerung  |  |
| Mobile Clients                                  | 192.168.101.191 - 192.168.101.230 | 40         | Smartphones, Tablets, Smart-TVs           |  |
| Reserve                                         | 192.168.101.231 - 192.168.103.254 | 536        | Für zukünftige Erweiterungen              |  |
| 4                                               | •                                 | •          | •                                         |  |

## Gäste-VLAN (192.168.200.0/24) - Gast-Zugang

| Bereich   | IP-Bereich                        | Anzahl IPs | Verwendung                            |  |
|-----------|-----------------------------------|------------|---------------------------------------|--|
| Gateway   | 192.168.200.1                     | 1          | VLAN Gateway                          |  |
| Reserve   | 192.168.200.2 - 192.168.200.9     | 8          | Für spezielle Konfiguration           |  |
| DHCP Pool | 192.168.200.10 - 192.168.200.250  | 241        | Gäste-Geräte (automatische Zuweisung) |  |
| Reserve   | 192.168.200.251 - 192.168.200.254 | 4          | Für zukünftige Erweiterungen          |  |
| 4         | •                                 | •          | •                                     |  |

# **DNS-Naming-Konvention**

**Standard-LAN Schema:** [geraetetype]-[nummer].lab.enzmann.online

## IOT-VLAN Schema: [geraetetype]-[raum]-[nummer].iot.enzmann.online

### Gerätetypen (Präfixe)

### Homelab & Infrastructure (Standard-LAN)

• **pve-** : Proxmox VE Hosts

• vm-: Virtuelle Maschinen

docker-: Docker Hosts/Swarm Nodes

• ha-: Home Assistant Instanzen

• nas-: NAS/Storage Systeme

• unifi-: UniFi Controller

• **switch-**: Managed Switches

ap-: Access Points

### **Technische Geräte (IOT-VLAN - detailliert)**

• **shelly-dimmer-** : Shelly Dimmer

shelly-pro1pm-: Shelly Pro 1PM (mit Leistungsmessung)

• **shelly-1-**: Shelly 1 (Relais)

• **shelly-button1-**: Shelly Button1

• shelly-flood-: Shelly Flood Sensor

• hm-window-: Homematic Fensterkontakt

• hm-motion-: Homematic Bewegungsmelder

• hm-thermo-: Homematic Thermostat

hm-temp-: Homematic Temperatursensor

hm-humid-: Homematic Feuchtigkeitssensor

• hm-smoke-: Homematic Rauchmelder

### **Consumer-Geräte (IOT-VLAN - einfach)**

• **hue-** : Philips Hue Lampen, Sensoren, Bridge

sonos-: Sonos Lautsprecher

### Raum-Abkürzungen

• **flur**: Flur

wz : Wohnzimmer

sz : Schlafzimmer

• az : Arbeitszimmer

• bad : Bad

kueche : Küche

**uv** : Unterverteilung

### Beispiele

### Standard-LAN (Homelab)

pve-01.lab.enzmann.online vm-homeassistant-01.lab.enzmann.online → Home Assistant VM docker-01.lab.enzmann.online ha-prod-01.lab.enzmann.online unifi-controller-01.lab.enzmann.online

- → Proxmox Host 1
- → Docker Swarm Manager
- → Home Assistant Produktiv
- → UniFi Controller

### **IOT-VLAN (Smart Home)**

shelly-dimmer-flur-01.iot.enzmann.online → Shelly Dimmer im Flur shellv-pro1pm-kueche-01.iot.enzmann.online → Shellv Pro 1PM in der Küche hue-wz-03.iot.enzmann.online sonos-kueche-01.iot.enzmann.online hm-temp-sz-01.iot.enzmann.online hm-window-sz-01.iot.enzmann.online

- → Hue Lampe im Wohnzimmer
- → Sonos in der Küche
- → Homematic Temperatursensor Schlafzimmer
- → Homematic Fensterkontakt Schlafzimmer

## **UniFi-spezifische Konfiguration**

## Standard-LAN Einstellungen

#### 1. Standard-Netzwerk (Default):

Name: "Standard-LAN"

VLAN: Untagged/Default

• Subnetz: 192.168.1.0/24

DHCP aktivieren: Ja

## Standard-LAN Einstellungen

#### 1. Standard-Netzwerk (Default):

Name: "Standard-LAN"

VLAN: Untagged/Default

Subnetz: 192.168.1.0/24

• DHCP aktivieren: Ja

#### 2. WiFi-Netzwerk:

• Name: "Enzian"

Sicherheit: WPA2/WPA3

VLAN: Standard-LAN (Default)

• Bandsteuerung: Dual-Band (2.4 + 5 GHz)

## **IOT-VLAN Einstellungen**

#### 1. Netzwerk erstellen:

• Name: "IOT-VLAN"

VLAN ID: 100

Subnetz: 192.168.100.0/22

DHCP aktivieren: Ja (für Fallback)

### 2. WiFi-Netzwerk:

• Name: "Enzian-IOT"

Sicherheit: WPA2/WPA3

VLAN: IOT-VLAN (100)

• Gast-Isolation: Aktiviert

## Gäste-VLAN Einstellungen

#### 1. Netzwerk erstellen:

• Name: "Gäste-VLAN"

VLAN ID: 200

Subnetz: 192.168.200.0/24

DHCP aktivieren: Ja

#### 2. WiFi-Netzwerk:

Name: "Enzian-Gast"

Sicherheit: WPA2/WPA3 (einfaches Passwort)

VLAN: Gäste-VLAN (200)

• Gast-Isolation: Aktiviert

• Bandbreiten-Limit: Optional (z.B. 50 Mbit/s)

## **UniFi Zone Matrix Konfiguration**

### Übersicht Zone Matrix

Die Zone Matrix bietet eine **grafische Oberfläche** zur einfachen Konfiguration von VLAN-zu-VLAN Kommunikation ohne komplexe Firewall-Regeln.

#### **Zone-Definitionen**

### **1. Zonen konfigurieren (Settings** → Security → Zones)

### Zone 1: "Internal" (Built-in)

• **Netzwerke:** Standard-LAN (192.168.1.0/24)

• Beschreibung: Vorkonfigurierte UniFi Zone für interne Netzwerke

• **Farbe:** Blau (Standard)

• **Status:** Bereits vorhanden, nur Netzwerk zuweisen

### Zone 2: "IOT" (Neu erstellen)

• **Netzwerke:** IOT-VLAN (192.168.100.0/22)

• **Beschreibung:** Smart Home Geräte + Mobile Clients

• Farbe: Grün

• Status: Neu erstellen

### Zone 3: "Hotspot" (Built-in)

• **Netzwerke:** Gäste-VLAN (192.168.200.0/24)

• **Beschreibung:** Vorkonfigurierte UniFi Zone für Gäste-Zugang

• **Farbe:** Orange (Standard)

• **Status:** Bereits vorhanden, nur Netzwerk zuweisen

### 2. Zone Matrix konfigurieren (Settings → Security → Zone Matrix)

## 

#### Legende:

X = Blockiert (Block)

• = Begrenzt (Limited) - nur spezifische Ports

## Zone Matrix Einstellungen im Detail

Internal → IOT: ✓ Allow

• Begründung: Home Assistant muss auf IOT-Geräte zugreifen

• Ports: Alle (für Administration und Setup)

**IOT** → **Internal**: • **Limited** 

• Begründung: Mobile Apps brauchen Zugriff auf Home Assistant

• Erlaubte Ports:

• (53) (DNS zu Pi-hole: 192.168.1.3)

• (123) (NTP für Zeitserver)

• (8123) (Home Assistant Web-Interface)

• (1883/8883) (MQTT Broker)

• (5353) (mDNS für Device Discovery)

Internal → Hotspot: X Block

• Begründung: Keine Verwaltung von Gäste-Geräten nötig

**IOT** → **Hotspot: X Block** 

• **Begründung:** Smart Home soll nicht mit Gäste-Netz kommunizieren

**Hotspot** → **Internal**: **Limited** 

Begründung: Gäste brauchen nur DNS-Auflösung

Erlaubte Ports:

• (53) (DNS zu Pi-hole: 192.168.1.3)

• (123) (NTP für Zeitserver)

• Vorteil: Hotspot-Zone hat bereits optimierte Gäste-Einstellungen

Hotspot → IOT: X Block

• **Begründung:** Gäste sollen keinen Zugriff auf Smart Home haben

Alle → Internet: ✓ Allow

• Begründung: Internet-Zugang für alle Zonen erforderlich

Vorteile der Zone Matrix mit Built-in Zonen

**Nutzt UniFi-Standards optimal** 

• Internal-Zone: Bereits für interne Netzwerke optimiert

- Hotspot-Zone: Bereits für Gäste-Zugang konfiguriert (Bandbreiten-Limits, Isolation)
- Nur eine neue Zone: "IOT" muss erstellt werden

### Weniger Konfigurationsaufwand

- Vorkonfigurierte Einstellungen der Built-in Zonen nutzen
- Bewährte UniFi-Praktiken werden automatisch angewendet
- Konsistent mit UniFi-Dokumentation

#### **Automatische Optimierungen**

- Hotspot-Zone bringt bereits Gäste-spezifische Einstellungen mit
- Internal-Zone ist für Verwaltungsaufgaben optimiert
- Standard-Firewall-Templates werden angewendet

### **Einfache Konfiguration**

- Grafische Oberfläche statt komplexer Firewall-Regeln
- Matrix-Ansicht macht Beziehungen sofort sichtbar
- Ein Klick zum Ändern von Allow/Block/Limited

### **Automatische Firewall-Regeln**

- UniFi generiert automatisch die entsprechenden Firewall-Regeln
- Bidirektionale Regeln werden automatisch erstellt
- Konsistente Regelanwendung auf alle Geräte in einer Zone

### **Troubleshooting**

- Übersichtliche Darstellung aller Zonen-Beziehungen
- Einfache Änderungen für Tests
- **Logging** zeigt blockierte Verbindungen pro Zone

### **Alternative Architektur: Dedizierte IOT-Services**

## Konzept-Übersicht

Anstatt alle Services im Standard-LAN zu betreiben und über Firewall-Regeln auf das IOT-VLAN zuzugreifen, werden **IOT-spezifische Services direkt in der IOT-Zone** bereitgestellt.

## Service-Aufteilung nach Zonen

Internal Zone (192.168.1.x) - Core Infrastructure

### # Reine Infrastruktur-Services

```
192.168.1.21 → pve-01.lab.enzmann.online (Proxmox Host 1)

192.168.1.22 → pve-02.lab.enzmann.online (Proxmox Host 2)

192.168.1.25 → nas-01.lab.enzmann.online (Storage)

192.168.1.3 → pihole-01.lab.enzmann.online (DNS)

192.168.1.48 → traefik-01.lab.enzmann.online (Reverse Proxy)

192.168.1.50 → portainer-01.lab.enzmann.online (Docker Management)

192.168.1.51 → grafana-01.lab.enzmann.online (Monitoring)

192.168.1.52 → influx-01.lab.enzmann.online (Monitoring DB)
```

#### IOT Zone (192.168.100.x) - Smart Home Services

```
bash
```

```
# IOT-spezifische Services (dedizierte VMs/Container)
192.168.100.41 → ha-prod-01.iot.enzmann.online (Home Assistant)
192.168.100.42 → ha-test-01.iot.enzmann.online (Home Assistant Test)
192.168.100.45 → mqtt-01.iot.enzmann.online (MQTT Broker)
192.168.100.46 → nodered-01.iot.enzmann.online (Node-RED)
192.168.100.47 → zigbee2mqtt-01.iot.enzmann.online (Zigbee Bridge)
192.168.100.48 → esphome-01.iot.enzmann.online (ESP Home)
192.168.100.50 → influx-iot-01.iot.enzmann.online (IOT Metrics DB)
# Smart Home Hardware
192.168.100.10 → hm-ccu-uv-01.iot.enzmann.online (Homematic CCU)
192.168.101.1 → hue-wz-bridge01.iot.enzmann.online (Hue Bridge)
# ... weitere IOT-Geräte
```

### **Technische Umsetzung**

#### **Proxmox VM-Deployment**

#### bash

### # Home Assistant VM in IOT-Zone

VM-Name: HA-Prod-IOT

vCPUs: 4 RAM: 8GB

Storage: 100GB SSD

Network: IOT-VLAN (VLAN 100)

IP: 192.168.100.41

### # MQTT Broker VM in IOT-Zone

VM-Name: MQTT-IOT

vCPUs: 2 RAM: 4GB

Storage: 50GB SSD

Network: IOT-VLAN (VLAN 100)

IP: 192.168.100.45

### **Docker Swarm in IOT-Zone**

```
yaml
# docker-compose-iot.yml (deployed on IOT network)
version: '3.8'
services:
  homeassistant:
    image: homeassistant/home-assistant:stable
    networks:
      - iot-services
    ports:
      - "192.168.100.41:8123:8123"
  mosquitto:
    image: eclipse-mosquitto:latest
    networks:
      - iot-services
    ports:
      - "192.168.100.45:1883:1883"
  nodered:
    image: nodered/node-red:latest
    networks:
      - iot-services
    ports:
      - "192.168.100.46:1880:1880"
networks:
```

## Vereinfachte Firewall-Regeln

iot-services:

ipam:

driver: bridge

config:

### **Zone Matrix (deutlich einfacher)**

- subnet: 192.168.100.0/22

### **Spezifische Regeln (weniger komplex)**

```
# Internal → IOT (Limited)
Port 22: SSH für VM-Management
Port 443: HTTPS für Web-Interfaces via Traefik
Port 3000: Grafana → InfluxDB-IOT für Monitoring
# IOT → Internal (Limited)
Port 53: DNS zu Pi-hole
Port 123: NTP für Zeitserver
Port 443: Backup/Update Services
```

### Vorteile der dedizierten IOT-Services

#### **Sicherheit**

- Vollständige Isolation IOT-Services laufen komplett getrennt
- **Kein Cross-Zone-Traffic** für normale IOT-Operationen
- Minimale Firewall-Regeln zwischen Zonen
- Blast Radius Reduction Kompromittierung bleibt in einer Zone

#### **Performance**

- Lokaler Traffic zwischen IOT-Geräten und Services
- Reduzierte Latenz für Smart Home Operationen
- **Keine VLAN-Routing** Overhead für häufige Zugriffe

### Verwaltung

- Klare Service-Zuordnung pro Zone
- **Einfachere Troubleshooting** Services sind dort wo sie gebraucht werden
- Zonenbezogene Backups möglich

#### Nachteile der dedizierten IOT-Services

#### **Ressourcen-Overhead**

- **Doppelte Services** (z.B. InfluxDB in beiden Zonen)
- Mehr VMs/Container zu verwalten
- Höherer Speicher/CPU-Verbrauch

### Komplexität

• Service-Synchronisation zwischen Zonen bei Bedarf

- Zentrale Überwachung wird schwieriger
- Backup-Strategie muss zonenbezogen sein

### **Monitoring-Herausforderung**

- Grafana in Internal kann nicht direkt auf IOT-InfluxDB zugreifen
- Separate Monitoring-Stacks oder komplexe Datenreplikation nötig

### **Hybrid-Ansatz (Empfehlung)**

#### **Core Services bleiben Internal**

#### hash

```
Proxmox, NAS, Pi-hole, Traefik → Internal Zone
Zentrale Überwachung (Grafana, InfluxDB) → Internal Zone
```

### **IOT-spezifische Services in IOT Zone**

#### bash

```
Home Assistant, MQTT, Node-RED → IOT Zone IOT-Hardware (Hue, Homematic) → IOT Zone Mobile Clients → IOT Zone
```

#### **Minimale Cross-Zone-Kommunikation**

#### bash

```
IOT Home Assistant → Internal Grafana (für Dashboards)
Internal Backup → IOT Services (für Datensicherung)
Mobile Clients → Internal Traefik (für Admin-Interfaces)
```

## **Praktische Umsetzung**

- 1. **Phase 1:** Services identifizieren die nur IOT brauchen
- 2. **Phase 2:** Diese Services in IOT-Zone migrieren
- 3. **Phase 3:** Firewall-Regeln entsprechend reduzieren
- 4. Phase 4: Monitoring und Backup anpassen

### WiFi-Netzwerke Übersicht

| WiFi-<br>Name   | VLAN                      | Zweck                            | Geräte                              | Passwort-Typ          |
|-----------------|---------------------------|----------------------------------|-------------------------------------|-----------------------|
| Enzian          | Standard-LAN<br>(Default) | Administration, Laptops, Homelab | Admin-Laptops,  Management-Geräte   | Starkes<br>Passwort   |
| Enzian-         | IOT-VLAN (100)            | Smart Home + Mobile Clients      | Smartphones, Tablets, Smart-<br>TVs | Mittleres Passwort    |
| Enzian-<br>Gast | Gäste-VLAN (200)          | Gäste-Zugang                     | Gäste-Geräte                        | Einfaches<br>Passwort |
| 4               |                           | •                                | •                                   |                       |

### Spezifische Regeln für Mobile Geräte (IOT-VLAN)

- Port 8123: IOT → Standard-LAN (Home Assistant Web-Interface)
- mDNS: Bidirektional zwischen Standard-LAN ↔ IOT für Device Discovery
- MQTT: IOT → Standard-LAN Port 1883/8883
- Chromecast/AirPlay: IOT-interne Kommunikation erlaubt

#### Spezifische Regeln für Gäste-VLAN

- DNS: Gäste-VLAN → Standard-LAN Port 53 (zu Pi-hole 192.168.1.3)
- NTP: Gäste-VLAN → Standard-LAN Port 123 (Zeitserver)
- Alle anderen Ports: Gäste-VLAN → Standard-LAN/IOT-VLAN blockiert

## Lokales DNS mit Pi-hole + Unbound auf Raspberry Pi

### Übersicht

Lokale DNS-Auflösung erfolgt über Pi-hole anstatt öffentlicher DNS-Einträge bei netcup:

- Sicherheit: Keine internen Strukturen öffentlich sichtbar
- Performance: Lokale Auflösung ohne Internet-Abhängigkeit
- **Zusatznutzen:** Ad-Blocking, Malware-Schutz, DNS-Statistiken
- Flexibilität: Einfache Verwaltung über Web-Interface

### **Architektur-Entscheidung: Dedizierte Hardware**

#### Warum Raspberry Pi statt VMs?

- Bootstrap-Problem vermeiden: VMs brauchen DNS zum Starten
- Unabhängigkeit: DNS läuft getrennt vom Proxmox Cluster
- Hochverfügbarkeit: Zwei Raspberry Pis für Redundanz
- **Kostengünstig:** ~€160 für zwei Pis vs. VM-Ressourcen

## Hardware-Spezifikation (pro Pi)

```
bash
```

```
Raspberry Pi 4B (4GB RAM)

SSD via USB 3.0 (bessere Performance als SD-Karte)

Gigabit Ethernet (kein WiFi für kritische Infrastruktur)

USV/Powerbank (optional für Stromausfälle)
```

## **Raspberry Pi DNS-Cluster Setup**

### **IP-Adresszuweisung**

#### bash

```
Pi-hole Primary: 192.168.1.3 → pihole-01.lab.enzmann.online
Pi-hole Secondary: 192.168.1.4 → pihole-02.lab.enzmann.online

# UniFi DHCP DNS-Server Einstellungen:
Primary DNS: 192.168.1.3
Secondary DNS: 192.168.1.4
Tertiary DNS: 8.8.8.8 (ultimativer Fallback)
```

## **Docker Compose Konfiguration (pro Pi)**

```
# /opt/dns-stack/docker-compose.yml (identisch auf beiden Pis)
version: '3.8'
services:
  unbound:
    image: mvance/unbound-rpi:latest # ARM-optimiert
   hostname: unbound-${PI_NUMBER}
    environment:
      TZ: 'Europe/Berlin'
   volumes:
      - unbound_config:/opt/unbound/etc/unbound
      - ./unbound.conf:/opt/unbound/etc/unbound/unbound.conf:ro
   networks:
      dns-internal:
        ipv4_address: 172.20.0.2
   restart: unless-stopped
  pihole:
    image: pihole/pihole:latest
   hostname: pihole-${PI_NUMBER}
    environment:
     TZ: 'Europe/Berlin'
     WEBPASSWORD: '${PIHOLE PASSWORD}'
      VIRTUAL_HOST: 'pihole-${PI_NUMBER}.lab.enzmann.online'
      FTLCONF_LOCAL_IPV4: '${PI_IP}'
      PIHOLE_DNS_: '172.20.0.2#5053' # Lokaler Unbound
   volumes:
      - pihole_config:/etc/pihole
      - pihole_dnsmasq:/etc/dnsmasq.d
    ports:
     - "53:53/tcp"
      - "53:53/udp"
      - "80:80/tcp" # Web-Interface
    networks:
      dns-internal:
        ipv4_address: 172.20.0.3
   depends_on:
      - unbound
    restart: unless-stopped
  gravity-sync:
    image: vmstan/gravity-sync:latest
    hostname: gravity-sync-${PI_NUMBER}
    environment:
      GS_REMOTE_HOST: "${REMOTE_PI_IP}"
      GS REMOTE USER: "pi"
```

```
GS_AUTO_MODE: "true"
    volumes:
      - pihole_config:/etc/pihole
      - ./gravity-sync:/root/gravity-sync
      - ~/.ssh:/root/.ssh:ro
    depends_on:
      - pihole
    restart: unless-stopped
volumes:
  pihole_config:
  pihole_dnsmasq:
  unbound_config:
networks:
  dns-internal:
    ipam:
      config:
        - subnet: 172.20.0.0/24
```

### **Environment-Konfiguration**

```
bash
# Pi #1: /opt/dns-stack/.env
PI_NUMBER=01
PI_IP=192.168.1.3
REMOTE_PI_IP=192.168.1.4
PIHOLE_PASSWORD=secure-admin-password
# Pi #2: /opt/dns-stack/.env
PI_NUMBER=02
PI_IP=192.168.1.4
REMOTE_PI_IP=192.168.1.3
PIHOLE_PASSWORD=secure-admin-password
```

### **Unbound Konfiguration**

```
# ./unbound.conf (identisch auf beiden Pis)
server:
   interface: 0.0.0.0
   port: 5053
   do-ip4: yes
   do-ip6: no
   do-udp: yes
   do-tcp: yes
   harden-glue: yes
   harden-dnssec-stripped: yes
   use-caps-for-id: no
    edns-buffer-size: 1232
   prefetch: yes
   num-threads: 2
    so-rcvbuf: 1m
   private-address: 192.168.0.0/16
   private-address: 172.16.0.0/12
   private-address: 10.0.0.0/8
   verbosity: 1
   log-queries: no
   hide-identity: yes
   hide-version: yes
   qname-minimisation: yes
   minimal-responses: yes
   msg-cache-size: 50m
   rrset-cache-size: 100m
   cache-max-ttl: 86400
# Forward zones für Lokale Domains
forward-zone:
   name: "lab.enzmann.online"
    forward-addr: 172.20.0.3@53
forward-zone:
   name: "iot.enzmann.online"
   forward-addr: 172.20.0.3@53
forward-zone:
   name: "guest.enzmann.online"
    forward-addr: 172.20.0.3@53
```

## **Deployment-Strategie**

**Phase 1: Erstes Raspberry Pi** 

```
bash
```

```
# 1. Raspberry Pi OS installieren
# 2. Docker installieren
sudo curl -fsSL https://get.docker.com | sh
sudo usermod -aG docker pi

# 3. DNS-Stack deployen
git clone <your-dns-config-repo>
cd dns-stack
docker-compose up -d

# 4. Als Primary DNS in UniFi eintragen
# 5. Stabilität für 1-2 Wochen testen
```

### **Phase 2: Zweites Raspberry Pi**

```
bash
```

```
# 1. Identische Installation wie Pi #1
# 2. SSH-Keys für Gravity Sync einrichten
# 3. Als Secondary DNS in UniFi hinzufügen
# 4. Gravity Sync zwischen beiden Pis aktivieren
# 5. Load Balancing testen
```

## Hochverfügbarkeit und Synchronisation

### **Automatische Konfigurationssync**

- **Gravity Sync** synchronisiert Pi-hole Einstellungen zwischen beiden Pis
- Blocklisten, DNS-Einträge, Whitelist werden automatisch abgeglichen
- Query-Logs bleiben lokal pro Pi für bessere Performance

#### Failover-Verhalten

```
bash

# Primärer Pi (192.168.1.3) fällt aus:

# → Clients nutzen automatisch sekundären Pi (192.168.1.4)

# → Keine Unterbrechung der DNS-Auflösung

# → Pi-hole Web-Interface über sekundären Pi verfügbar

# Sekundärer Pi (192.168.1.4) fällt aus:

# → Primärer Pi übernimmt alle Anfragen

# → Gravity Sync pausiert automatisch

# → Nach Wiederherstellung: Automatische Resync
```

## **Wartung und Updates**

## **Docker Container Updates**

```
bash

# Einzelner Pi (Rolling Update):
cd /opt/dns-stack
docker-compose pull
docker-compose up -d

# Automatisierung via Cron:
0 3 * * 0 cd /opt/dns-stack && docker-compose pull && docker-compose up -d
```

### **Backup-Strategie**

```
bash

# Pi-hole Konfiguration backup

docker-compose exec pihole pihole -a -t

# Volume Backup
sudo cp -r /var/lib/docker/volumes/dns-stack_pihole_config /backup/
```

## Pi-hole + Unbound Setup

**Docker Compose Konfiguration** 

```
# pihole/docker-compose.yml
version: '3.8'
services:
  unbound:
    image: mvance/unbound:latest
   hostname: unbound-01
   environment:
     TZ: 'Europe/Berlin'
   volumes:
      - unbound_config:/opt/unbound/etc/unbound
    networks:
      - pihole-internal
   deploy:
      placement:
        constraints:
          - node.role == manager
  pihole:
    image: pihole/pihole:latest
    hostname: pihole-01
    environment:
      TZ: 'Europe/Berlin'
      WEBPASSWORD: 'secure-admin-password'
      VIRTUAL_HOST: 'pihole-01.lab.enzmann.online'
      PROXY_LOCATION: 'pihole-01'
      FTLCONF_LOCAL_IPV4: '192.168.1.3'
      PIHOLE_DNS_: '10.0.1.2#5053' # Unbound Container IP
   volumes:
      - pihole_config:/etc/pihole
      - pihole_dnsmasq:/etc/dnsmasq.d
      - pihole_custom_conf:/etc/pihole/custom.conf
   ports:
      - "53:53/tcp"
      - "53:53/udp"
      - "67:67/udp" # DHCP (optional)
    networks:
      pihole-internal:
        ipv4_address: 10.0.1.3
     traefik:
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.pihole.rule=Host(`pihole-01.lab.enzmann.online`)"
      - "traefik.http.routers.pihole.tls.certresolver=letsencrypt"
      - "traefik.http.services.pihole.loadbalancer.server.port=80"
    depends on:
```

```
- unbound
   deploy:
     placement:
       constraints:
          - node.role == manager
volumes:
 pihole_config:
 pihole_dnsmasq:
 pihole_custom_conf:
 unbound_config:
networks:
  pihole-internal:
   ipam:
     config:
       - subnet: 10.0.1.0/24
 traefik:
    external: true
```

## **Unbound Konfiguration**

```
# Unbound Config erstellen (einmalig)
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) sh -c 'cat > /opt/unbound/etc/unbou
server:
   # Listening
   interface: 0.0.0.0
   port: 5053
   do-ip4: yes
   do-ip6: no
   do-udp: yes
   do-tcp: yes
   # Trust glue only if it is within the server's authority
   harden-glue: yes
   # Require DNSSEC data for trust-anchored zones
   harden-dnssec-stripped: yes
   # Don't use Capitalization randomization
   use-caps-for-id: no
   # Reduce EDNS reassembly buffer size.
    edns-buffer-size: 1232
    # Perform prefetching of close to expired message cache entries
   prefetch: yes
   # One thread should be sufficient
   num-threads: 1
   # Ensure kernel buffer is large enough
    so-rcvbuf: 1m
   # Ensure privacy of local IP ranges
    private-address: 192.168.0.0/16
   private-address: 169.254.0.0/16
   private-address: 172.16.0.0/12
   private-address: 10.0.0.0/8
   private-address: fd00::/8
   private-address: fe80::/10
   # Logging
   verbosity: 1
   log-queries: no
    log-replies: no
```

# Performance tuning

```
msg-cache-slabs: 2
    rrset-cache-slabs: 2
    infra-cache-slabs: 2
    key-cache-slabs: 2
    msg-cache-size: 50m
    rrset-cache-size: 100m
    cache-max-ttl: 86400
    cache-min-ttl: 300
    # Security
    hide-identity: yes
    hide-version: yes
    qname-minimisation: yes
    minimal-responses: yes
# Forward zones for Local domains
forward-zone:
    name: "lab.enzmann.online"
    forward-addr: 10.0.1.3@53 # Pi-hole IP
forward-zone:
    name: "iot.enzmann.online"
    forward-addr: 10.0.1.3@53 # Pi-hole IP
EOF '
```

## **DNS-Konfiguration in Pi-hole**

Lokale DNS-Einträge (via Web-Interface)

```
# Standard-LAN (Homelab) - Core Infrastructure
             unifi-controller-01.lab.enzmann.online
192.168.1.2
192.168.1.3
             pihole-01.lab.enzmann.online
192.168.1.10 switch-main-01.lab.enzmann.online
192.168.1.11 ap-wz-01.lab.enzmann.online
192.168.1.12 ap-sz-01.lab.enzmann.online
# Homelab Core
192.168.1.21 pve-01.lab.enzmann.online
192.168.1.22 pve-02.lab.enzmann.online
192.168.1.25 nas-01.lab.enzmann.online
# Homelab Services (Beispiele)
192.168.1.41 ha-prod-01.lab.enzmann.online
192.168.1.42 ha-test-01.lab.enzmann.online
192.168.1.45 docker-01.lab.enzmann.online
192.168.1.48 traefik-01.lab.enzmann.online
192.168.1.50
             portainer-01.lab.enzmann.online
192.168.1.51 grafana-01.lab.enzmann.online
192.168.1.52 influx-01.lab.enzmann.online
192.168.1.55 mqtt-01.lab.enzmann.online
             prometheus-01.lab.enzmann.online
192.168.1.56
# Client Devices
192.168.1.205 desktop-admin-01.lab.enzmann.online
192.168.1.206 laptop-admin-01.lab.enzmann.online
# IOT-VLAN (Smart Home) - wichtigste Geräte
192.168.100.10 hm-ccu-uv-01.iot.enzmann.online
192.168.101.1 hue-wz-bridge01.iot.enzmann.online
192.168.101.2 sonos-wz-bridge01.iot.enzmann.online
```

Wildcard-Domains (via dnsmasq config)

```
# /etc/dnsmasq.d/02-Lab-wildcard.conf
address=/lab.enzmann.online/192.168.1.48

# /etc/dnsmasq.d/03-iot-wildcard.conf
address=/iot.enzmann.online/192.168.1.48

# /etc/dnsmasq.d/04-guest-wildcard.conf
address=/guest.enzmann.online/192.168.1.48

address=/guest.enzmann.online/192.168.1.48
```

## **UniFi Integration**

### **DHCP-Einstellungen ändern**

- 1. Standard-LAN Netzwerk bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:** (lab.enzmann.online)

### **UniFi Integration**

### **Standard-LAN DHCP-Einstellungen**

- 1. Standard-Netzwerk (Default) bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:** (lab.enzmann.online)

### **IOT-VLAN DHCP-Einstellungen**

- 1. IOT-VLAN Netzwerk bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:** (iot.enzmann.online)

### Gäste-VLAN DHCP-Einstellungen

- 1. Gäste-VLAN Netzwerk bearbeiten
- 2. **DHCP** → **DNS Server:** (192.168.1.3) (Pi-hole IP)
- 3. **DHCP** → **Domain Name:**(guest.enzmann.online)
- 4. **DHCP** → **Lease Time:** 4 Stunden (kürzer für Gäste)

## Vorteile der Pi-hole + Unbound Lösung

## Sicherheit & Privatsphäre

- Keine externen DNS-Provider alle Anfragen bleiben lokal bis zu den Root-Servern
- DNSSEC-Validierung durch Unbound für sichere DNS-Auflösung
- **Kein DNS-Logging** bei externen Anbietern (Google, Cloudflare)
- **Qname-Minimisation** reduziert Datenleckage

#### **Performance**

- **Lokales Caching** auf zwei Ebenen (Pi-hole + Unbound)
- Prefetching von häufig genutzten Domains durch Unbound
- Rekursive Auflösung direkt zu autoritativen Servern
- Optimierte Cache-Größen für Homelab-Umgebung

#### Zusatzfunktionen

- Ad-Blocking für alle Geräte im Netzwerk (Pi-hole)
- Malware-Schutz über Blocklisten (Pi-hole)
- Query-Logging für Troubleshooting (Pi-hole)
- Statistiken über DNS-Nutzung (Pi-hole)
- Lokale Domain-Auflösung für (.lab) und (.iot) Subdomains

### **HTTPS & Zertifikate mit Traefik**

### Übersicht

Alle Homelab-Services werden über HTTPS mit echten Let's Encrypt Zertifikaten bereitgestellt:

- **Domain:** enzmann.online (gehostet bei netcup)
- Reverse Proxy: Traefik mit automatischer SSL-Terminierung
- **Zertifikate:** Let's Encrypt Wildcard via DNS-Challenge (netcup API)

## DNS-Struktur bei netcup

```
# A-Records (zeigen auf lokale IPs)
ha.enzmann.online → 192.168.1.41
grafana.enzmann.online → 192.168.1.51
portainer.enzmann.online → 192.168.1.50
traefik.enzmann.online → 192.168.1.48

# Wildcard für alle Services
*.enzmann.online → 192.168.1.48 (Traefik)
```

## **Traefik Konfiguration**



```
version: '3.8'
services:
  traefik:
    image: traefik:v3.0
    command:
      # API und Dashboard
      - "--api.dashboard=true"
      - "--api.insecure=false"
      # Provider
      - "--providers.docker=true"
      - "--providers.docker.swarmMode=true"
      - "--providers.docker.exposedbydefault=false"
      # Entrypoints
      - "--entrypoints.web.address=:80"
      - "--entrypoints.websecure.address=:443"
      - "--entrypoints.web.http.redirections.entrypoint.to=websecure"
      - "--entrypoints.web.http.redirections.entrypoint.scheme=https"
      # Let's Encrypt mit netcup DNS-Challenge für Wildcards
      - "--certificatesresolvers.letsencrypt.acme.dnschallenge=true"
      - "--certificatesresolvers.letsencrypt.acme.dnschallenge.provider=netcup"
      - "--certificatesresolvers.letsencrypt.acme.email=admin@enzmann.online"
      - "--certificatesresolvers.letsencrypt.acme.storage=/letsencrypt/acme.json"
      # Logging
      - "--log.level=INFO"
      - "--accesslog=true"
   ports:
      - "80:80"
      - "443:443"
    environment:
      # netcup API Credentials
      NETCUP_CUSTOMER_NUMBER: "${NETCUP_CUSTOMER_NUMBER}"
      NETCUP_API_KEY: "${NETCUP_API_KEY}"
      NETCUP_API_PASSWORD: "${NETCUP_API_PASSWORD}"
   volumes:
      - /var/run/docker.sock:/var/run/docker.sock:ro
      - traefik_letsencrypt:/letsencrypt
```

# traefik/docker-compose.yml

```
labels:
      # Traefik Dashboard
      - "traefik.enable=true"
      - "traefik.http.routers.dashboard.rule=Host(`traefik-01.lab.enzmann.online`)"
      - "traefik.http.routers.dashboard.service=api@internal"
      - "traefik.http.routers.dashboard.tls.certresolver=letsencrypt"
      - "traefik.http.routers.dashboard.middlewares=auth"
      # Basic Auth für Dashboard
      - "traefik.http.middlewares.auth.basicauth.users=admin:$2y$10$..." # htpasswd generiert
   networks:
      - traefik
    deploy:
     placement:
       constraints:
          - node.role == manager
volumes:
 traefik_letsencrypt:
networks:
 traefik:
   external: true
```

### **Environment File (.env)**

```
bash
# netcup API Credentials (von netcup CCP)
NETCUP_CUSTOMER_NUMBER=123456
NETCUP_API_KEY=abcdefghijklmnopqrstuvwxyz
NETCUP_API_PASSWORD=your-api-password
```

# **Service-Konfiguration Beispiele**

#### **Home Assistant**

```
# homeassistant/docker-compose.yml
services:
  homeassistant:
    image: homeassistant/home-assistant:stable
   volumes:
      - ha_config:/config
   networks:
     - traefik
    labels:
      - "traefik.enable=true"
      - "traefik.http.routers.homeassistant.rule=Host(`ha-prod-01.lab.enzmann.online`)"
      - "traefik.http.routers.homeassistant.tls.certresolver=letsencrypt"
      - "traefik.http.services.homeassistant.loadbalancer.server.port=8123"
networks:
 traefik:
   external: true
```

#### Grafana

```
# monitoring/docker-compose.ymL
services:
    grafana:
    image: grafana/grafana:latest
    environment:
        - GF_SERVER_ROOT_URL=https://grafana-01.lab.enzmann.online
        - GF_SECURITY_ADMIN_PASSWORD=secure-password
    networks:
        - traefik
    labels:
        - "traefik.enable=true"
        - "traefik.http.routers.grafana.rule=Host(`grafana-01.lab.enzmann.online`)"
        - "traefik.http.routers.grafana.tls.certresolver=letsencrypt"
        - "traefik.http.services.grafana.loadbalancer.server.port=3000"
```

#### **Portainer**

"traefik.http.routers.portainer.tls.certresolver=letsencrypt""traefik.http.services.portainer.loadbalancer.server.port=9000"

### netcup DNS API Setup

### 1. API-Zugang aktivieren

- 1. Bei netcup im Customer Control Panel anmelden
- 2. Stammdaten → API aufrufen
- 3. API-Key und API-Password generieren
- 4. **DNS-API** Berechtigung aktivieren

### 2. DNS-Einträge bei netcup

Wichtig: Keine A-Records für lokale Services erstellen!

```
bash

# Nur für DNS-Challenge erforderlich - keine manuellen Einträge nötig
# Traefik erstellt automatisch TXT-Records für Let's Encrypt
```

Optional: Falls später externe VPN-Services gewünscht:

### 3. Deployment

```
# Traefik Network erstellen
docker network create --driver overlay traefik
# Pi-hole + Unbound Stack deployen
docker stack deploy -c pihole/docker-compose.yml pihole
# Warten bis Container gestartet sind
sleep 30
# Unbound Konfiguration anwenden (einmalig)
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) sh -c 'cat > /opt/unbound/etc/unbou
server:
    interface: 0.0.0.0
   port: 5053
   do-ip4: yes
   do-ip6: no
   do-udp: yes
   do-tcp: yes
   harden-glue: yes
   harden-dnssec-stripped: yes
   use-caps-for-id: no
    edns-buffer-size: 1232
   prefetch: ves
   num-threads: 1
    so-rcvbuf: 1m
   private-address: 192.168.0.0/16
   private-address: 172.16.0.0/12
   private-address: 10.0.0.0/8
   verbosity: 1
    log-queries: no
   hide-identity: yes
   hide-version: yes
   qname-minimisation: yes
   minimal-responses: yes
   msg-cache-size: 50m
    rrset-cache-size: 100m
    cache-max-ttl: 86400
forward-zone:
    name: "lab.enzmann.online"
   forward-addr: 10.0.1.3@53
forward-zone:
    name: "iot.enzmann.online"
```

forward-addr: 10.0.1.3@53

```
forward-zone:
    name: "guest.enzmann.online"
    forward-addr: 10.0.1.3@53
forward-zone:
    name: "guest.enzmann.online"
    forward-addr: 10.0.1.3@53
EOF '
# Unbound neu starten für Konfiguration
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control reload
# UniFi DHCP auf Pi-hole umstellen (192.168.1.3 als DNS)
# Pi-hole lokale DNS-Einträge konfigurieren (Web-Interface)
# Environment für Traefik setzen
echo "NETCUP_CUSTOMER_NUMBER=123456" > .env
echo "NETCUP_API_KEY=your-api-key" >> .env
echo "NETCUP_API_PASSWORD=your-api-password" >> .env
# Traefik deployen
docker stack deploy -c traefik/docker-compose.yml traefik
# Services deployen
docker stack deploy -c homeassistant/docker-compose.yml homeassistant
docker stack deploy -c monitoring/docker-compose.yml monitoring
```

### Wildcard-Zertifikat Vorteile

- Ein Zertifikat für alle \*.enzmann.online Subdomains
- Automatische Erneuerung alle 60 Tage
- **Keine Rate-Limits** von Let's Encrypt
- **Einfache Service-Erweiterung** ohne zusätzliche Zertifikatskonfiguration

## **Zugriff auf Services**

Nach dem Setup sind alle Services sicher über HTTPS erreichbar:

```
https://ha-prod-01.lab.enzmann.online → Home Assistant
https://grafana-01.lab.enzmann.online → Grafana Dashboard
https://portainer-01.lab.enzmann.online → Docker Management
https://traefik-01.lab.enzmann.online → Traefik Dashboard
https://pihole-01.lab.enzmann.online → Pi-hole Admin Interface
```

### **Zusätzlich:** Alle IOT-Geräte sind über ihre Subdomains erreichbar:

```
https://hm-ccu-uv-01.iot.enzmann.online → Homematic CCU https://shelly-dimmer-flur-01.iot.enzmann.online → Shelly Dimmer
```

## **DHCP-Reservierungen**

## Standard-LAN (Homelab)

```
UniFi Controller: 192.168.1.2 → unifi-controller-01.lab.enzmann.online

Proxmox Host 1: 192.168.1.21 → pve-01.lab.enzmann.online

Proxmox Host 2: 192.168.1.22 → pve-02.lab.enzmann.online

Pi-hole DNS: 192.168.1.3 → pihole-01.lab.enzmann.online

Home Assistant: 192.168.1.41 → ha-prod-01.lab.enzmann.online

Docker Swarm Manager: 192.168.1.45 → docker-01.lab.enzmann.online

Traefik Reverse Proxy: 192.168.1.48 → traefik-01.lab.enzmann.online
```

## **IOT-VLAN (Smart Home + Mobile Clients)**

```
Homematic CCU: 192.168.100.10 → hm-ccu-uv-01.iot.enzmann.online
Hue Bridge: 192.168.101.1 → hue-wz-bridge01.iot.enzmann.online
Sonos Bridge: 192.168.101.2 → sonos-wz-bridge01.iot.enzmann.online
iPhone Admin: 192.168.101.200 → iphone-admin-01.iot.enzmann.online
iPad Wohnzimmer: 192.168.101.201 → ipad-wz-01.iot.enzmann.online
Samsung TV: 192.168.101.210 → tv-wz-01.iot.enzmann.online
```

## Gäste-VLAN (Gast-Zugang)

```
# Automatische DHCP-Zuweisung (192.168.200.10-250)
# Keine statischen Reservierungen für Gäste
```

### Geräte-Inventar

Standard-LAN - Homelab & Infrastructure

UniFi Infrastructure (192.168.1.2 - 192.168.1.20)

| Gerät        | IP           | DNS-Name              | Öffentlicher Zugang   | Notizen             |
|--------------|--------------|-----------------------|-----------------------|---------------------|
| UniFi        | 102 160 1 2  | unifi-controller-     |                       | Controller          |
| Controller   | 192.168.1.2  | 01.lab.enzmann.online | -                     | VM/Hardware         |
| Pi-hole +    | 192.168.1.3  | pihole-               | https://pihole-       | DNS + Ad-Blocking + |
| Unbound      | 192.100.1.3  | 01.lab.enzmann.online | 01.lab.enzmann.online | rekursiver Resolver |
| UniFi Switch | 192.168.1.10 | switch-main-          |                       | Hauptswitch         |
| Pro 24       | 192.100.1.10 | 01.lab.enzmann.online | -                     | Arbeitszimmer       |
| UniFi AP Pro | 192.168.1.11 | ap-wz-                |                       | Access Point        |
| 6            | 192.100.1.11 | 01.lab.enzmann.online | -                     | Wohnzimmer          |
| UniFi AP Pro | 192.168.1.12 | ap-sz-                |                       | Access Point        |
| 6            | 192.100.1.12 | 01.lab.enzmann.online | -                     | Schlafzimmer        |
| 4            | •            | •                     | •                     | •                   |

# Homelab Core (192.168.1.21 - 192.168.1.40)

| Gerät          | IP           | DNS-Name                  | Öffentlicher Zugang | Notizen           |
|----------------|--------------|---------------------------|---------------------|-------------------|
| Proxmox Host 1 | 192.168.1.21 | pve-01.lab.enzmann.online | -                   | Hauptserver       |
| Proxmox Host 2 | 192.168.1.22 | pve-02.lab.enzmann.online | -                   | Backup/Cluster    |
| TrueNAS Scale  | 192.168.1.25 | nas-01.lab.enzmann.online | -                   | Zentraler Storage |
| ◀              | •            | •                         | •                   | •                 |

Homelab Services (192.168.1.41 - 192.168.1.99)

| Gerät                  | IP            | DNS-Name                   | Öffentlicher Zugang   | Notizen             |  |
|------------------------|---------------|----------------------------|-----------------------|---------------------|--|
| Home Assistant         | 102 160 1 41  | ha-prod-                   | https://ha-prod-      | Produktiv HA        |  |
| Prod                   | 192.168.1.41  | 01.lab.enzmann.online      | 01.lab.enzmann.online | Instance            |  |
| Home Assistant         | 102.160.1.42  | ha-test-                   |                       | Tool /Doodlesses    |  |
| Test                   | 192.168.1.42  | 01.lab.enzmann.online      | -                     | Test/Development    |  |
| Docker Swarm           | 192.168.1.45  | docker-                    |                       | Swarm Leader        |  |
| Manager                | 192.100.1.45  | 01.lab.enzmann.online      | -                     | Swarm Leader        |  |
| Docker Swarm           | 192.168.1.46  | docker-                    | _                     | Swarm Worker        |  |
| Worker 1               | 192.100.1.40  | 02.lab.enzmann.online      | -                     | Swarm worker        |  |
| Docker Swarm           | 192.168.1.47  | docker-                    |                       | Swarm Worker        |  |
| Worker 2               | 192.100.1.47  | 03.lab.enzmann.online      | -                     | Swarm worker        |  |
| Traefik Reverse        | 192.168.1.48  | traefik-                   | https://traefik-      | CCI Torminiaruna    |  |
| Proxy                  | 192.100.1.40  | 01.lab.enzmann.online      | 01.lab.enzmann.online | SSL-Terminierung    |  |
| Portainer 192.168.1.50 |               | portainer-                 | https://portainer-    | Docker              |  |
| Portainer              | 192.100.1.50  | 01.lab.enzmann.online      | 01.lab.enzmann.online | Management          |  |
| Grafana 192.168.1.51   |               | grafana-                   | https://grafana-      | Monitoring          |  |
| Grafalla               | 192.100.1.31  | 01.lab.enzmann.online      | 01.lab.enzmann.online | Dashboard           |  |
| InfluxDB               | 192.168.1.52  | influx-                    |                       | Time Series DB      |  |
| ППИХОВ                 |               | 01.lab.enzmann.online      |                       | Time Series Db      |  |
| MQTT Broker            | 192.168.1.55  | mqtt-                      |                       | Mosquitto           |  |
| WQTT blokel            | 192.100.1.55  | 01.lab.enzmann.online      |                       | Wosquitto           |  |
| Prometheus             | 192.168.1.56  | prometheus-                | _                     | Metrics Collection  |  |
| Trometricus            | 132.100.1.30  | 01.lab.enzmann.online      |                       | Wethes Concetion    |  |
| Node Exporter          | 192.168.1.57  | nodeexp-                   | _                     | System Metrics      |  |
| TYOU'C EXPORTER        | 132.100.1.37  | 01.lab.enzmann.online      |                       | System Metrics      |  |
| Loki                   | 192.168.1.58  | loki-01.lab.enzmann.online | -                     | Log Aggregation     |  |
| Jaeger                 | 192.168.1.59  | jaeger-                    |                       | Distributed Tracing |  |
| Jacyci                 | 132.100.1.33  | 01.lab.enzmann.online      |                       | Distributed Tracing |  |
| Zusätzliche            | 192.168.1.60- |                            | _                     | 40 weitere IPs      |  |
| Services               | 99            |                            |                       | verfügbar           |  |

Client Devices (192.168.1.201 - 192.168.1.220)

| Gerät       | IP             | DNS-Name              | Öffentlicher<br>Zugang | Notizen                  |
|-------------|----------------|-----------------------|------------------------|--------------------------|
| Admin       | 192.168.1.205  | desktop-admin-        |                        | Management PC            |
| Desktop     | 192.168.1.205  | 01.lab.enzmann.online | -                      | (kabelgebunden)          |
| Admin       | 192.168.1.206  | laptop-admin-         |                        | Mobile Management (WiFi: |
| Laptop      | 192.166.1.206  | 01.lab.enzmann.online | -                      | "Enzian")                |
| Weitere     | 192.168.1.207- |                       |                        | Laptops, Drucker         |
| Clients 220 |                | -                     | -                      | (kabelgebunden + WiFi)   |
| 4           | •              | •                     |                        | ▶                        |

## **IOT-VLAN - Smart Home Geräte**

## **Unterverteilung (192.168.10.1 - 192.168.10.62)**

| Gerät         | IP            | DNS-Name               | MAC | Notizen        |
|---------------|---------------|------------------------|-----|----------------|
| Homematic CCU | 192.168.10.10 | hm-ccu-uv-01.iot.local | -   | Zentrale       |
| UniFi Switch  | 192.168.10.11 | switch-uv-01.iot.local | -   | Hauptverteiler |
| 4             | 1             | •                      | I   | •              |

# Flur (192.168.10.65 - 192.168.10.126)

| Gerät                     | IP            | DNS-Name                    | MAC | Notizen    |
|---------------------------|---------------|-----------------------------|-----|------------|
| Shelly 1 (Deckenlampe)    | 192.168.10.70 | shelly-1-flur-01.iot.local  | -   | Hauptlicht |
| Homematic Bewegungsmelder | 192.168.10.71 | hm-motion-flur-01.iot.local | -   | Eingang    |
| <b>▲</b>                  | •             | •                           | •   | •          |

## Arbeitszimmer (192.168.10.129 - 192.168.10.190)

| Gerät         | it IP DNS-Name I |                               | MAC | Notizen           |
|---------------|------------------|-------------------------------|-----|-------------------|
| Shelly Dimmer | 192.168.10.135   | shelly-dimmer-az-01.iot.local | ı   | Schreibtischlampe |
| Hue Strip     | 192.168.10.136   | hue-az-01.iot.local           | -   | Monitor-Backlight |
| 4             | •                | •                             |     | <b>&gt;</b>       |

# Schlafzimmer (192.168.10.193 - 192.168.10.254)

| Gerät                    | IP             | DNS-Name                  | MAC | Notizen              |
|--------------------------|----------------|---------------------------|-----|----------------------|
| Hue Lampe Links          | 192.168.10.200 | hue-sz-01.iot.local       | -   | Nachttischlampe      |
| Hue Lampe Rechts         | 192.168.10.201 | hue-sz-02.iot.local       | -   | Nachttischlampe      |
| Homematic Fensterkontakt | 192.168.10.202 | hm-window-sz-01.iot.local | -   | Fenster Straßenseite |
| 4                        | •              | •                         | •   | •                    |

## Wohnzimmer (192.168.11.1 - 192.168.11.62)

| Gerät           | IP            | DNS-Name                  | MAC | Notizen          |
|-----------------|---------------|---------------------------|-----|------------------|
| Hue Bridge      | 192.168.11.1  | hue-wz-bridge01.iot.local | -   | Zentrale Bridge  |
| Sonos One       | 192.168.11.10 | sonos-wz-01.iot.local     | -   | Musikwiedergabe  |
| Hue Deckenlampe | 192.168.11.11 | hue-wz-01.iot.local       | -   | Hauptbeleuchtung |
| Hue Stehlampe   | 192.168.11.12 | hue-wz-02.iot.local       | -   | Ambientelicht    |
| 4               | 1             | •                         | •   | •                |

## Küche (192.168.11.65 - 192.168.11.126)

| Gerät                      | IP            | DNS-Name                          | MAC | Notizen             |
|----------------------------|---------------|-----------------------------------|-----|---------------------|
| Shelly 1PM (Dunstabzug)    | 192.168.11.70 | shelly-pro1pm-kueche-01.iot.local | -   | Dunstabzugsteuerung |
| Hue Unterbauleuchte        | 192.168.11.71 | hue-kueche-01.iot.local           | -   | Arbeitsplatte       |
| Sonos One SL               | 192.168.11.72 | sonos-kueche-01.iot.local         | -   | Küchenmusik         |
| Homematic Temperatursensor | 192.168.11.73 | hm-temp-kueche-01.iot.local       | -   | Raumtemperatur      |
| 4                          | •             | •                                 |     | <b>•</b>            |

## Bad (192.168.11.129 - 192.168.11.190)

| Gerät                         | IP             | DNS-Name                  | MAC | Notizen            |
|-------------------------------|----------------|---------------------------|-----|--------------------|
| Shelly 1 (Lüftung)            | 192.168.11.135 | shelly-1-bad-01.iot.local | -   | Lüftungssteuerung  |
| Homematic Feuchtigkeitssensor | 192.168.11.136 | hm-humid-bad-01.iot.local | -   | Luftfeuchtigkeit   |
| Hue Spiegellampe              | 192.168.11.137 | hue-bad-01.iot.local      | -   | Spiegelbeleuchtung |
| <b>▲</b>                      |                | •                         |     | •                  |

[Weitere Räume nach gleichem Schema]

## Wartungshinweise

## **Backup-Strategie**

• UniFi Controller: Täglich automatisch + wöchentlich manuell

• **Proxmox:** Wöchentlich (VMs + Konfiguration)

• Home Assistant: Täglich automatisch

• **Docker Swarm:** Backup der compose files + Volumes

## **Update-Fenster**

• Infrastruktur (UniFi, Proxmox): Sonntag 02:00-04:00 Uhr

• Services (Home Assistant, Docker): Sonntag 04:00-06:00 Uhr

IOT-Geräte: Nach Bedarf, rollierend

## Monitoring

• Homelab: Grafana + InfluxDB für alle Services

- IOT: Home Assistant Device Tracker + Ping-Tests alle 5 Minuten
- Network: UniFi Controller Statistiken

#### **Dokumentation aktualisieren**

- Bei jeder Geräteerweiterung (IOT)
- Bei Service-Änderungen (Homelab)
- Nach größeren Netzwerkänderungen

## **Troubleshooting**

## Homelab-spezifische Probleme

#### 1. VM nicht erreichbar:

- Proxmox Host-Status prüfen
- VM-Status in Proxmox GUI kontrollieren
- Network Bridge Konfiguration überprüfen

## 2. Docker Service nicht verfügbar:

- Swarm Status: (docker node 1s)
- Service Status: (docker service ps <service>)
- Container Logs: (docker service logs <service>)

### 3. Home Assistant Verbindungsprobleme zu IOT:

- Firewall-Regeln Standard-LAN → IOT prüfen
- mDNS-Reflector Status kontrollieren
- MQTT Broker Erreichbarkeit testen

#### 4. HTTPS/Traefik Probleme:

Zertifikat nicht erstellt:

```
# Traefik Logs prüfen
docker service logs traefik_traefik

# netcup API Credentials testen
curl -X POST https://ccp.netcup.net/run/webservice/servers/endpoint.php \
    -d '{"action":"login","param":{"customernumber":"123456","apikey":"...","apipassword"
```

• Service nicht erreichbar über HTTPS:

```
bash
```

```
# DNS Auflösung testen (Lokal)
nslookup ha-prod-01.lab.enzmann.online 192.168.1.3
# Traefik Dashboard prüfen: https://traefik-01.lab.enzmann.online
# Router und Services Status kontrollieren
```

### • Wildcard-Zertifikat Probleme:

```
# ACME Logs prüfen

docker exec -it $(docker ps | grep traefik | cut -d' ' -f1) cat /letsencrypt/acme.json

# DNS Challenge manuell testen

dig TXT _acme-challenge.lab.enzmann.online

dig TXT _acme-challenge.iot.enzmann.online
```

#### 5. Pi-hole + Unbound DNS-Probleme:

• Lokale Domain nicht auflösbar:

```
# Pi-hole Status prüfen
docker service logs pihole_pihole

# Unbound Status prüfen
docker service logs pihole_unbound

# DNS-Auflösung manuell testen
nslookup ha-prod-01.lab.enzmann.online 192.168.1.3

# Pi-hole Query-Log prüfen: https://pihole-01.lab.enzmann.online
```

### • Unbound nicht erreichbar:

```
# Unbound Container IP prüfen

docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) nslookup google.com 10.0.1.2

# Unbound Konfiguration prüfen

docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-checkconf

# Unbound Cache-Statistiken

docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control stats_nores
```

## • DNS-Auflösung langsam:

```
# Cache-Hit-Rate prüfen
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) unbound-control stats | gre
# DNS-Query-Zeit testen
dig @192.168.1.3 google.com +stats
# Pi-hole Cache Leeren
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) pihole restartdns
```

#### Wildcard-Domains funktionieren nicht:

```
# dnsmasq Konfiguration prüfen
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) cat /etc/dnsmasq.d/02-lab-wi
# dnsmasq neu starten
docker exec -it $(docker ps | grep pihole | cut -d' ' -f1) pihole restartdns
# Unbound Forward-Zonen prüfen
docker exec -it $(docker ps | grep unbound | cut -d' ' -f1) cat /opt/unbound/etc/unbound
```

#### 6. Gäste-VLAN Probleme:

Gäste haben keinen Internet-Zugang:

```
bash

# VLAN-Zuordnung prüfen

# UniFi Controller → Clients → VLAN-Status kontrollieren

# Firewall-Regeln für Gäste-VLAN → Internet prüfen

# Gateway-Routing für 192.168.200.0/24 kontrollieren
```

## • Gäste können auf lokale Ressourcen zugreifen:

```
bash

# Firewall-Regeln überprüfen:
# Gäste-VLAN → Standard-LAN: Blockiert (außer DNS)
# Gäste-VLAN → IOT-VLAN: Blockiert

# WiFi Gast-Isolation prüfen ("Enzian-Gast")
# VLAN-Zuordnung von "Enzian-Gast" → VLAN 200 kontrollieren
```

### DNS funktioniert nicht für Gäste:

```
# Pi-hole Firewall-Regel prüfen
# Gäste-VLAN → 192.168.1.3:53 erlaubt?
# DNS-Auflösung von Gäste-VLAN testen
nslookup google.com 192.168.1.3
```

## **IOT-spezifische Probleme**

### 1. Gerät nicht erreichbar:

- VLAN-Zuordnung prüfen
- DHCP-Lease erneuern
- Firewall-Regeln überprüfen

## 2. DNS-Auflösung funktioniert nicht:

- Controller-DNS-Einstellungen prüfen
- mDNS-Reflector aktivieren

## 3. Home Assistant kann IOT-Geräte nicht finden:

- Firewall-Regel Standard-LAN → IOT prüfen
- Integration-spezifische Ports freischalten
- Network Discovery Settings in HA prüfen

# Netzwerk-übergreifende Probleme

### 1. Keine Inter-VLAN Kommunikation:

- Gateway-Konfiguration prüfen
- Routing-Tabellen kontrollieren
- Firewall-Regeln step-by-step testen

## 2. Performance-Probleme:

- Switch-Auslastung in UniFi Controller pr

  üfen
- QoS-Einstellungen anpassen
- Bandbreiten-Limits überprüfen

**Erstellt:** [Datum]

**Letzte Aktualisierung:** [Datum]

**Version:** 4.0 (erweitert um Gäste-VLAN und Mobile Clients)