Topic 1: Set

- 1. Floor and ceiling
 - ||: floor
 - []: ceiling
 - $\bullet \mid -X \mid = -\lceil X \rceil$
 - $\lfloor X + t \rfloor = \lfloor X \rfloor + t$ for $t \in Z$
- 2. Divisibility, prime, gcd and lcm
 - $m \mid n$: m divides n (m is less)
 - $n \mid 0$ is true, and $0 \mid n$ is false, except n = 0
 - prime: n > 1 and $1 \mid n$ and $n \mid n$ only
 - relatively prime: gcd(m, n) = 1
 - gcd: greatest common divisor
 - lcm: least common multiple
 - gcd(m, n) * lcm(m, n) = |m| * |n|
 - Euclid's gcd algorithm: for $m \neq n$, gcd(m, n) = gcd(m-n, n)
- 3. Set notation and construction
 - a set is a set of elements
 - Notation 1: $S = \{e1, e1, e1 \dots \}$
 - Notation 2: $S = \{e: description of e\}$
 - symmetric difference 1: $A \oplus B = (A \cup B) \setminus (A \cap B)$
 - symmetric difference 2: $A \oplus B = (A \setminus B) \cup (B \setminus A)$
 - Subset: \subseteq , Proper subset: \in
 - Power set: $Pow(X) = \{A : A \subseteq X\}$
 - Cardinality: |X|
 - Always: $|Pow(X)| = 2^{|X|}$
 - \bullet Set of Numbers: P \subset N \subset Z \subset Q \subset R
- 4. Laws of Sets Operations
 - Commutativity
 - Associativity
 - Distribution
 - Idempotence
 - Identity

- Double Complementation
- De morgan Laws: $(A \cup B)^C = A^C \cap B^C$, $(A \cap B)^C = A^C \cup B^C$
- 5. Cartesian product
 - (a, b): ordered pair
 - $A \times B = \{(a,b) | a \in A, b \in B\}$
- 6. Formal language
 - Σ : alphabet a finite, none empty set
 - λ : a empty word
 - Σ^k : set of all words of length k
 - Σ^* : set of all words
 - Σ^+ : set of all none empty words

Topic 2: Function Matrix and Relation

- 1. Function Definition
 - notation 1: $f: S \to T$
 - notation 2: $f: x \mapsto y$
 - notation 3: f(x) = y
 - every input has an one and only one output
 - Image: $Im(f) = \{f(x), x \in Dom(f)\}\$
 - $Im(f) \subset Codom(f)$
 - Composition: $g \circ f = g(f(x))$ where $\operatorname{Im}(f) \subset \operatorname{Dom}(g)$
 - Identity: $f \circ Id = Id \circ f = f$
- 2. Function inverse
 - surjective(onto): every output has a related input

$$Im(f) = Codom(f)$$

• injective(one-to-one): every input has an unique output

$$x \neq y \implies f(x) \neq f(y)$$

$$f(x) = f(y) \implies x = y$$

bijective

surjective and injective

• inverse

$$f^{-1}: y \to x$$

• $f: D \to C, S_D \subseteq D, S_C \subseteq C$, then: $f(S_D) \subseteq C$ is the image, and $f^{\Leftarrow}(S_C) \subseteq D$ is the inverse image if $f^{-1}(S_C) = f^{\Leftarrow}(S_C)$

3. Matrix

• M_{mn} m is row and n is column

$$\begin{bmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \dots & & & & \\ m_{m1} & m_{m2} & \dots & m_{mn} \end{bmatrix}$$

- Transpose M^T a matrix is called symmetric if $M^T = M$
- Sum
- product (first row second column)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} a_{11} * b_{11} + a_{12} * b_{21} + a_{13} * b_{31} & a_{11} * b_{12} + a_{12} * b_{22} + a_{13} * b_{32} \\ a_{21} * b_{21} + a_{22} * b_{21} + a_{13} * b_{31} & a_{21} * b_{12} + a_{22} * b_{22} + a_{23} * b_{32} \end{bmatrix}$$

4. Relation Property

- a relation from S to T is a subset of $R \subseteq S \times T$
- x is related to y, denote xRy or R(x, y), or $x,y \in R$, can be True or False
- Reflexive: $\forall x \implies xRx$
- Anti-reflexive: $\forall x \implies x \not \! R x$
- a relation can not be both reflexive and anti-reflexive
- Symmetric: $\forall x, y, xRy \implies yRx$
- Anti-Symmetric: $\forall x, y, xRy \land yRx \implies x = y$
- a relation can be both symmetric and anti-reflexive
- Transitive: $\forall x, y, z, xRy \land yRz \implies xRz$

5. Equivalence relation and Order relations

- Equivalence Relation: reflexive, symmetric and Transitive
- Partial Order ≤: reflexive, antisymmetric, transitive
- lub: least upper bound, $x \in S \land x \succeq a, \forall a \in A$

- glb: greatest lower bound, $x \in S \land x \leq a, \forall a \in A$
- Lattice: a poset where lub and glb exist for every pair of elements, then they exist for every finite subset
- Total Order \leq : Partial Order, Linearity: arrange every elements in a line $\forall a,b,a\leq b\vee b\leq a$
- Well order: Total Order, every subset has a least element
- Lexicographic order
- lenlex order

Topic 3: Graph theory

- 1. Definition: a collection of vertices and edges
 - terminology:
 - incident: edge is incident to vertices
 - adjacent: vertex is adjacent to its neighbour vertices
 - \bullet isolated
 - types of graph:
 - Undirected graph: edge = $\{v1, v2\}$
 - directed graph: edge = (v1, v2)
 - v(G) = |V|, e(G) = |E|

2. Degree

- degree: number of edges attached to the vertex
- Regular graph: all degree are Equivalence
- $\Sigma deg(v) = 2 \times e(G)$
- the degree is always even
- there is an even number of vertices of odd degree
- $\Sigma outdeg(v) = \Sigma indeg(v) = e(G)$

3. path

- simple path(edge): $e_i \neq e_j$
- close path: $v_0 = v_n$
- acyclic path(vertex): $v_i \neq v_j$
- cycle: acyclic path and close path
- acyclic graph: graph contains no cycle
- Edge traversal:

- Euler path: path containing every edge exactly once
- iff either it has exactly two vertices of odd degree
- Euler circuit: closed Euler path
- iff all deg(v) is even
- Vertex traversal:
- hamiltonian path: visit every vertex exactly once
- hamiltonian circuit: closed hamiltonian path

4. Connect graph

- connected graph:
- if there is an x-y path $\forall x, y \in V$, denote with k(G)
- strongly connected graph(directed):
- each pair of vertices joined by a directed path in both directions
- complete graph K_n :
- every vertex connected to each other, $\frac{n(n-1)}{2}$ edges.
- complete bipartitie graph $K_{m,n}$:
- all vertices form difference parts are connected, vertices from the same part are disconnected.

•

5. Tree

- acyclic, connected
- acyclic, $|V_G| = |E_G| + 1$
- one simple path between any two vertices
- connect, becomes disconnected if any single edge is removed
- acyclic, has a cycle is any single edge is added

6. Graph Isomorphisms

- $\phi: V_G \to V_H$ is bijection
- $(x,y) \in E_G$ iff $(\phi(x),\phi(y)) \in E_G$

7. Colouring, Cliques

- Chromatic number $\chi(G)$: theminimum colour
- $\chi(Tree) = 2$
- $\chi(cyclewith even vertices) = 2, \chi(cyclewith odd vertices) = 3$
- Clique number $\kappa(G)$: the largest complete subgraph
- Planar graph: without intersection
- a graph is nonplanar then it must contain a subdivision of K_5 or $K_{3,3}$

Topic 4: Logic

1. proposition Logic

• statement: a declarative sentence that can be True or False

• Well-formed formula(wff)

 \bullet Connectives: $\neg p, p \wedge q, p \vee q, p \implies q$ is a wff.

	Α	В	$A \implies B$
	F	F	T
• A implies B	F	Т	T
	Т	F	F
	Т	Т	T

• A unless B: $\neg B \implies A$

	A	В	$A \Longrightarrow B$
	F	F	${ m T}$
• A just in case B: $A \iff B$	F	Τ	F
	Т	F	F
	Τ	Т	T

•
$$A \iff B = (A \implies B) \lor (B \implies A)$$

2. Logic Equivalence

- $\phi \equiv \varphi$: have the same truth value
- Excluded middle contradiction
- Identity
- Idempotence
- Double Negation
- Commutativity
- Associativity
- Distribution
- De Morgan's Law: $\neg(p \land q) \equiv \neg p \lor q, \neg(p \lor q) \equiv \neg p \land q$
- Implication

3. formula

- Satisfiable: it can ber true for some assignment of truth value of its basic propositions
- Validity Tautology: $\models \phi$ if it is true for all propositions

4. argument

- Validity, Entailment: an argument is valid if conclusion is true when all premises are true
- $\phi_1, \phi_2 \dots \phi_n \models \phi$
- 5. Theorem: $\phi \equiv \varphi$ iff $\models (\phi \iff \varphi)$
- 6. Proof Method
 - Contrapositive: $A \implies B \iff (\neg B \implies \neg A)$
 - Contradiction: $A \iff \neg A \implies (B \land \neg B)$
 - case
 - substitution
- 7. Boolean Function

	\wedge	and		conjuction
•	V	or	+	disjunction
	_	not	\overline{p}	negation

- CNF: $\prod C = C_1.C_2.C_3...C_n$
- DNF(preferred): $\sum C = C_1 + C_2 + C_3 \dots C_n$
- absortion: x + xy = x
- combining the opposites: $xy + x\overline{y} = x$
- Demorgan's law
- double Negation

Topic 5: Induction and Recursion

- 1. Mathematical Induction
 - Base case: first thing is true
 - Incuctive Hypothesis: Assume sth is true for k, prove that k+1 is true

- conclusion
- Strong induction: $P(m) \wedge P(m+1) \wedge \cdots \wedge P(k) \implies P(k+1)$
- F-B induction: $P(k) \implies p(k+1)$ for some k, $P(k) \implies p(k-1)$ for other k.
- 2. $\sum n = frac(a_1 + a_n)n2$
- 3. $\sum n^2 = fracn(n+1)(2n+1)6$
- 4. $\prod n = fraca_1(1 q^n)1 q$
- 5. Recursive
 - Basis: some initial terms are specified.
 - Recursive Process: later terms states as functional expressions of earlier terms.
 - Correctness: if the computation of any later term can be reduced to the initial values give in basis.

Topic 6: Programs Analysis

- 1. big O
 - O(f): all function that are asymptotically less than f, also be called upper bound
 - which means that $\exists n_0 \text{ for } n > n_0, g < f$
 - $\Omega(f)$: lower bound
 - $\Theta(f)$: tight bound
 - complexity in terms of input size, N
 - drop constants, machine-independent
 - worst-case
 - $O(1) < O(\log n) < O(n) < O(n\log n) < O(n^2) < O(2^n) < O(n!)$

2. Master Theorem

- $\bullet \ T(n) = d^a T(f \frac{n}{d}) + \Theta(n^b)$
- $O(n^a), a > b$
- $O(n^a log n), a = b$
- $O(n^b), a < b$

Topic 7: Counting and Probability

- 1. Counting
 - Union rule: for disjoint base sets $|S_1 \cup \dots S_n| = \sum |S_n|$
 - Product rule: $S_1 \times \cdots \times S_n = \prod S_n$
 - permutation:
 - select r items from a size n set, without repetition, order matters
 - $\Pi(n,r) = \frac{n!}{(n-r)!}$
 - \bullet combination:
 - select r items from a size n set, without repetition, order doesn't matter
 - $\bullet \ \, {\textstyle \binom{n}{k=\frac{n!}{(n-r)!r!}}}$
- 2. Probability

- • Uniform probability distribution: each sample has a same probability in sample space Ω
- \bullet Event: a collection of outcomes from Ω
- in a uniform distribution, $P(E) = \frac{|E|}{|\Omega|}$
- Two sets: $|A \cup B| = |A| + |B| |A \cap B|$
- Three sets: $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$