IA et science des données

Cours 8 – mardi 22 mars Ensembles. Apprentissage non-supervisé

> Christophe Marsala Vincent Guigue

> > Sorbonne Université

LU3IN026 - 2021-2022

Plan du cours

Méthodes d'ensembles

Apprentissage non-supervisé

1 – Méthodes d'ensembles –

L'approche BAGGING

- ► Bootstrap AGGregatING
- ► Construire un ensemble de classifieurs de même type
- Agréger leurs résultats lors d'une classification
- ➤ ⇒ approche très efficace!
 - la variance globale est plus faible que la variance de chaque classifieur
- ► Si les classifieurs sont des arbres de décision : forêt

Marsala & Guigue – 2022

LU3IN026 - cours 8 - 3

1 – Méthodes d'ensembles –

Les forêts aléatoires (random forest)

- ▶ Idée : plus les arbres sont diversifiés, meilleur sera le score global
- Augmenter la diversité : choisir aléatoirement les variables à utiliser!
- Bagging modifié : random forest
- lacktriangle Soit ${f X}$ une base d'apprentissage avec n exemples
- Soit B le nombre de classifieurs souhaités, m < n le nombre d'exemples à choisir et $p \le d$ variables de description à choisir
 - 1. Extraire B sous-bases de $\mathbf{X}:\mathbf{X}_1,\ldots,\mathbf{X}_B$
 - ullet sélection aléatoire de m exemples de ${f X}$
 - $\bullet\,$ sélection aléatoire de p variables de descriptions
 - 2. Construire un classifieur f_k pour chaque sous-base \mathbf{X}_k
- lacktriangle Remarque : B, m et p sont des hyper-paramètres de l'algorithme

1 – Méthodes d'ensembles

L'approche BAGGING : apprentissage et classification

Apprentissage:

- ightharpoonup Soit X une base d'apprentissage avec n exemples
- ightharpoonup Soit B le nombre de classifieurs souhaités et m < n le nombre d'exemples à choisir
 - 1. Extraire B sous-bases de $\mathbf{X}:\mathbf{X}_1,\ldots,\mathbf{X}_B$
 - sélection aléatoire de m exemples de ${f X}$
 - avec ou sans remise
 - 2. Construire un classifieur f_k pour chaque sous-base \mathbf{X}_k
- lacktriangle Au final : on obtient un ensemble de B classifieurs f_1,\ldots,f_B

Classification:

- $lackbox{ Soit un ensemble de }B$ classifieurs f_1,\ldots,f_B
- ightharpoonup Soit un exemple ${f x}$ à classer
 - 1. calculer $f_k(\mathbf{x})$ pour chaque classifieur $k=1,\ldots,B$
- 2. classe finale prédite de ${f x}$: classe majoritaire parmi les $f_k({f x})$

Marsala & Guigue – 2022 LU3IN026 – cours 8 – 4

1 – Méthodes d'ensembles –

Evaluation d'ensembles

- ▶ Pour évaluer un ensemble construit par Bagging / random forest
- Validation croisée
 - très coûteuse pour évaluer un ensemble
 - ullet il faut construire B classifieurs à chaque fois!
- ► Evaluation Out Of the Bag (OOB)
 - adaptée aux ensembles et suffisante pour les évaluer
 - évaluer f_k sur les exemples de ${\bf X}$ non sélectionnés pour le construire
 - chaque ${\bf x}$ est évalué par les f_k pour lesquels il n'a pas été utilisé en apprentissage
 - compter le nombre de fois où il est bien classé sur le nombre de fois où il est classé

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 5 Marsala & Guigue - 2022 LU3IN026 - cours 8 - 6

Performances bagging vs random forest

(source : "An introduction to statistical learning", Gareth et al.)

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 7

1 – Méthodes d'ensembles –

Ensembles de classifieurs

- ► Approches de construction d'ensembles
 - bagging : bootstrap aggregating
 - random forests
- ► Evaluation :
 - validation croisée
 - approche Out Of Bag

Performances random forest : choix du nombre d'attributs

(source : "An introduction to statistical learning", Gareth et al.)

Marsala & Guigue – 2022 LU3IN026 – cours 8 – 8

Plan du cours

Méthodes d'ensembles

Apprentissage non-supervisé

rappels
apprendre sans classe
la tâche de clustering
le clustering hiérarchique

Marsala & Guigue – 2022

LU3IN026 - cours 8 - 9

2 – Apprentissage non-supervisé – rappels

Rappels : notations (1)

- ▶ Ensemble de n exemples (ou cas, ou individus) : $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - chaque individu \mathbf{x}_i est décrit par d variables.
 - $x_{i,j}$ (ou x_{ij}) est la valeur de la variable j pour l'exemple \mathbf{x}_i
- ► Base d'apprentissage
 - ullet ensemble d'exemples $\mathbf{X} \in \mathbb{R}^{n imes d}$

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ x_{2,1} & x_{2,2} & \dots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,d} \end{pmatrix}$$

- ullet apprentissage supervisé : chaque \mathbf{x}_i est associé à un label y_i
 - ensemble de labels associés à X

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

• classification binaire : $y_i \in \{-1, +1\}$

2 – Apprentissage non-supervisé – rappels

Rappels: notations (2)

- ightharpoonup Pour un seul exemple : $\mathbf{x}=(x_1,x_2,\ldots,x_d)$
- ▶ Terminologie : un label y_i = une classe
- lacktriangle Classifieur $f:f(\mathbf{x})$ est la classe donnée par f à l'exemple \mathbf{x}
 - cas binaire :

•
$$f: \mathbb{R}^d \longrightarrow \{-1, +1\}$$

 $\mathbf{x} \longmapsto f(\mathbf{x})$

- ou aussi : $f: \mathbb{R}^d \longrightarrow \{l_1, l_2\}$ avec l_1 et l_2 deux labels donnés
- cas multiclasses :
 - $f: \mathbb{R}^d \longrightarrow \{l_1, l_2, \dots, l_k\}$

Exemple : classifier des emails

- ▶ Objectif : construire un modèle pour détecter un spam
 - à partir d'un ensemble d'emails déjà reçus
- Description pour chaque email: valeurs d'attributs
 - statistiques sur son contenu
 - pourcentage de mots qui sont référencés comme caractéristiques de spam (par exemple : money,...), utilisation d'un dictionnaire
 - nombre moyen de lettres consécutives en majuscules
 - syllabes présentes, ...
- Base d'apprentissage : constituée d'emails déjà reçus
 - 4601 emails répartis en 2 catégories : 1813 spams, et 2788 non
 - Par exemple : spam (1) / non spam (-1)
 - $0,0.64,0.64,0.32,0,0,0,0,0,0,0.64,\cdots,0.778,0,3.756,61,278 \longrightarrow 1$
 - $0.49,0,0.49,0.49,0,0,0,0,0,0,0.99,\cdots,0.091,0,1.214,5,51 \longrightarrow -1$

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 13

2 – Apprentissage non-supervisé – apprendre sans classe

Exemple d'apprentissage non supervisé : groupes d'emails

- ▶ Objectif : grouper des emails selon leur ressemblance
- ▶ Description pour chaque email : statistiques sur son contenu
 - pourcentage de mots pertinents (selon le domaine)
 - nombre moyen de lettres consécutives en majuscules
- Aucune classe fournie
 - des classes seront mises en évidence à l'issue de l'apprentissage
- - email 1: 0,0.64,0.64,0.032,0,0,0,0,0,0.64,0,0,0.032,0,1.29,1.93,0,0.96,0,0,0,0,0,0,0,0,0,0,0,0 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.778,0,0,3.756,61,278
 - 0.49, 0, 0, 0, 0, 0, 0, 0, 0.99, 0.49, 0, 0, 0, 0, 0, 0.091, 0, 0, 1.214, 5, 51

Marsala & Guigue – 2022 LU3IN026 - cours 8 - 15

2 – Apprentissage non-supervisé – apprendre sans classe

Un autre petit exemple

D'autres données quelconques : combien de groupes ?

Apprentissage artificiel

- ► Ensemble de données décrites par des attributs
 - la description de la donnée est fournie
 - les attributs fournissent des valeurs connues pour la description, ils sont mesurables ou observables
- Éventuellement : existence de classes
 - une description peut être associée à une classe
 - la classe est une catégorie, une variable particulière, souvent non mesurable ou non observable directement
- ► Classification des descriptions, deux situations possibles :
 - soit une classe est connue pour certaines données
 - apprentissage supervisé
 - soit il n'y a pas de classe connue mais on souhaite former des groupes de données qui se ressemblent
 - apprentissage non supervisé

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 14

2 – Apprentissage non-supervisé – apprendre sans classe

Un petit exemple

▶ Un ensemble de données quelconque : combien de groupes ?

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 16

2 – Apprentissage non-supervisé – apprendre sans classe

Un autre petit exemple

D'autres données quelconques : 2 groupes?

Un autre petit exemple

D'autres données quelconques : 3 groupes?

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 19

2 – Apprentissage non-supervisé – apprendre sans classe

Un autre petit exemple

D'autres données quelconques : 5 groupes?

Marsala & Guigue – 2022 LU3IN026 – cours 8 – 21

2 – Apprentissage non-supervisé – la tâche de clustering

La classification en apprentissage non supervisé

- ► Classification : trouver des classes de descriptions
- ▶ Un ensemble de données sans classe connue
 - on recherche à faire des regroupements de descriptions similaires
 - on souhaite mettre en évidence des classes, des catégories
- ▶ But : former des groupes de données qui se ressemblent
 - clustering : faire des groupes parmi les données
 - cluster : ensemble de données regroupées ensemble
- Exemple :
 - le clustering hiérarchique
 - ullet l'algorithme des K-moyennes

Un autre petit exemple

D'autres données quelconques : 4 groupes?

Marsala & Guigue - 2022 LU3IN026 - cours 8 - 20

2 – Apprentissage non-supervisé – la tâche de clustering

L'apprentissage non supervisé

- 1. Phase d'apprentissage
 - construction d'un modèle
 - utilisation d'un ensemble de données d'apprentissage
 - créer des groupes homogènes selon les descriptions
 - mettre en évidence des ressemblances
 - évaluation du modèle obtenu
 - groupes homogènes?
- 2. Phase de test
 - validation du modèle
 - utilisation sur un ensemble de données de référence
 - vérifier que les groupes restent homogènes
- 3. Phase d'utilisation
 - mise en œuvre du modèle
 - utilisation sur des données quelconques

Marsala & Guigue – 2022 LU3IN026 – cours 8 – 22

2 – Apprentissage non-supervisé – le clustering hiérarchique

Le clustering hiérarchique

- ▶ But : obtenir des groupes d'exemples
- ▶ Idée : grouper petit à petit les exemples qui se ressemblent
- ▶ Question : Comment mesurer la ressemblance entre 2 exemples ?
- ▶ On possède un espace de représentation des exemples
 - calculer des distances entre les exemples
 - deux exemples se ressemblent d'autant plus qu'ils sont proches
- ▶ Mesurer une distance : fonction $d: \mathbf{X}^p \times \mathbf{X}^p \to \mathbb{R}^+$
 - séparation : $\forall x,y \in \mathbf{X}^d$, d(x,y)=0 ssi x=y
 - symétrie : $\forall x, y \in \mathbf{X}^d$, d(x, y) = d(y, x)
 - inégalité triangulaire : $\forall x,y,z \in \mathbf{X}^d$, $d(x,y)+d(y,z) \geq d(x,z)$
- ► À connaître : distance ultramétrique
 - on remplace l'inégalité triangulaire par $\forall x,y,z\in \mathbf{X}^d\text{, }\max(d(x,y),d(y,z))\geq d(x,z)$

Mesurer la distance entre 2 clusters

- ▶ Utiliser une distance entre 2 exemples : $d(x_1, x_2)$
 - Euclidienne, Manhattan, Minkowski, "infinie",...
 - étape de normalisation nécessaire
- ▶ Distances entre 2 clusters : dist(A, B)
 - A) complete linkage
 - B) average linkage C) simple linkage

 - D) centroid linkage
- ► Centre de gravité (centroid) d'un cluster

Marsala & Guigue - 2022