SOLAR-TERRESTRIAL RELATIONSHIPS RELATED TO THUNDERSTORMS AND BUV DARK CURRENT AND OZONE DATA

John R. Herman

Radio Sciences Company 624 Tulane Avenue Melbourne, Florida 32901

January 25, 1980

FINAL REPORT
July 1979 - December 1979

Contract NAS5-25663

Prepared for

National Aeronautics and Space Administration GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland 20771

ABSTRACT

Solar-terrestrial interactions as they affect Nimbus-4 BUV dark current and possibly affect thunderstorm occurrence are investigated. A solar wind index is calculated for 1970-1971. Dark current enhancements appear to be associated in some way with solar proton events and the solar wind index, but additional investigations by GSFC are required before conclusions can be drawn. Superposed epoch analysis of an index of North American thunderstorm occurrence reveals a discernible (statistically significant) increase in the index magnitude on days 1 and 2 following solar proton events. There appears to be little or no 27-day recurrence tendency in thunderstorm occurrence frequency, and no association with vorticity area index on a day-to-day basis.

ACKNOWLEDGEMENTS

Appreciation is expressed to Christopher T. Herman, Radio Sciences Company, for his unflagging help in computer programming and data analysis. The work was aided considerably by continuing discussions with Drs. Richard A. Goldberg, Charles A. Wolff, Mr. E.G. Stassinopoulos, and Dr. Ken Schatten of GSFC. Special thanks goes to Dr. Mae Lethbridge of Pennsylvania State University for supplying a printout of her thunderstorm index, and for permission to use it in the analyses reported on here.

APPENDIX B

CONSIDERATION OF X-RAY DETECTOR GEOMETRY FOR AUROROZONE II

TABLE OF CONTENTS

1.	INTRODUCTION
2.	THUNDERSTORM ANALYSIS
	2.1 Thunderstorms and PCA's
	2.2 27-Day Recurrence Tendency
	2.3 Additional Correlations 8
3.	PROTON FLUXES AND BUV DARK CURRENT
4.	SOLAR WIND INDEX
5.	CONCLUSIONS AND RECOMMENDATIONS
6.	REFERENCES
FIG	URE CAPTIONS
APP	PENDIX A. TABLE OF DAILY AVERAGE SOLAR WIND PARAMETERS, SOLAR WIND INDEX AND BLUE STREAK INDEX
	THE STATE OF THE SHORE OF THE STATE OF THE S

1. INTRODUCTION

Investigations by Goddard Space Flight Center (GSFC) of dark current variations in the backscattered ultraviolet (BUV) instrumentation and its possible effects on the BUV ozone data base are continuing (Stassinopoulos et al, 1978; 1979). Radio Sciences Company has provided support for these efforts under contract NAS5-25663. Under the contract the company also conducted a very limited investigation of solar-terrestrial effects on thunderstorms, and participated in Aurorozone II analysis. The tentative nature of the results precludes extensive technical discussion in this final report. The bulk of the report is therefore given over to the tabulation of a daily solar wind index which may be useful for correlations with both dark current and BUV ozone data.

Highlights of the thunderstorm analysis are briefly summarized in Section 2, and a comparison of selected solar proton events with dark current enhancements referred to as "blue streaks" by Stassinopoulos is discussed in Section 3. The development of the solar wind index using solar wind data, and a quantitative "blue streak" index as suggested by Schatten is discussed in Section 4; the tabulated values are given in Appendix A. Recommendations for future work are listed in Section 5, and Section 6 lists references cited in the text.

2. THUNDERSTORM ANALYSIS

Based on various ideas and speculations treated earlier (Herman and Goldberg, 1978; Goldberg and Herman, 1979; Herman, 1979), we have performed a superposed epoch analysis of thunderstorm occurrence using PCA (Polar Cap Absorption) dates as key days, investigated 27-day recurrence tendencies in thunderstorm occurrence in the northern part of the United States,

and correlated thunderstorms against the Roberts and Olson (1973) vorticity area index (VAI) and the solar wind index discussed in section 4. In all cases, the thunderstorm parameter used is the Lethbridge (1979) daily index (LTI) for the 40-45 ON latitude band covering the northern United States.

The LTI was derived by Lethbridge from thunderstorm observations at 102 U.S. stations in an area extending from the Atlantic Coast to 102 OW longitude and from 30 ON to 45 ON latitude. The data were compiled for the entire area and for the three latitude bands 30-35 ON; 35-40 ON; and 40-45 ON. The compilation was grouped into three periods: 1947-1956; 1957-1965; and 1966-1976. In each group, the variable is the cube root of the thunderstorm frequency for each day minus the 10-yr means of the daily cube roots. With seasonal effects thus removed, the index ranges from about -3 to +3 in magnitude.

2.1 Thunderstorms and PCA's

Arguments by Herman and Goldberg (1978, pp 248ff) suggest that the solar protons associated with polar cap absorption (PCA) events may help in the formation of thunderstorms in nontropical latitudes. The LTI was therefore subjected to a superposed epoch analysis using as key days the list of 76 major PCA events (30-MHz riometer absorption ≥ 2.5 dB) given by Pomerantz and Duggal (1974) covering the period 2/23/56 to 5/16/73. For later comparison, a table of random key dates within the same period was generated by microcomputer. Before proceeding to the thunderstorm analysis itself, it is instructive to examine the relative properties of the PCA and randomly selected key dates.

The distributions by month and year of the Pomerantz and Duggal dates are given in Fig. 1, along with those of the random dates. For the winter months only (Nov - Mar), the computer selected 36 key dates, while the actual PCA occurrence was only 23. This would imply a bias in favor of the random data, but it will be seen later that no statistically significant peaks appear in the superposed epoch distributions of thunderstorm occurrence following random key dates. In the yearly distribution, no PCA's occurred in sunspot minimum years (1964-1965), but the computer selected nine events in those two years.

It is interesting to note the tendency for more PCA's to occur in sunspot maximum than in minimum years (Fig. 1, bottom panel), which is in the same direction as the solar cycle variation of thunderstorm occurrence in mid to high latitudes (e.g., Herman and Goldberg, 1978). Additionally, the number of PCA's occurring in the sunspot maximum period of 1957-1960 surpassed that in the 1968-1970 maximum in rough proportion to the ratio of annual sunspot number in the two maxima. Finally, more PCA's seem to occur in the northern hemisphere summer half of the year, which is reminiscent of the seasonal variation in U.S. thunderstorm occurrence frequency. Thus emboldened, we may proceed to the superposed epoch analysis.

The day of PCA maximum was assigned day 0, and the average daily LTI from 2 days before to 7 days after day 0 was computed, using all 76 key dates. The result is shown as a solid line in the upper panel of Fig. 2. The LTI surrounding the 76 computer-generated random key dates between 1956 and 1973 were subjected to the same analysis, with the result shown as a dashed line in Fig. 2. Both the PCA and random key date data have a zero

offset for easier comparison. The average of the 10 daily means is -.0367 for the PCA data and .011 for the random data. The standard deviation (-) plotted in Fig. 2 refers to that for the average of the 10 daily PCA means.

The LTI values for all 10 days relative to the random key dates fall within one standard deviation of the average, while days 1 and 2 of the PCA events show a thunderstorm enhancement slightly greater than one sigma.

The procedure was repeated using only those key dates falling in the months Nov-Mar inclusive, with the results shown in the bottom panel of Fig. 2. Again, the LTI for days 1 and 2 of the PCA events are greater than 1 o-, while all randomly selected days and the days prior to the PCA are less than this level.

To determine whether or not the PCA-associated enhancement of days 1 and 2 are statistically significant, the statistics of small populations may be used (e.g., Meyer, 1975). The question to be answered is, what is the probability (P) that the LTI value will exceed 1 o on any one day in the 10 days surrounding the key date?

To find out, we assume that the 10 daily means are independent of each other, and randomly selected from an infinite, normally distributed index set. Without a priori knowledge of the fluctuations in the infinite set, we may use the standard deviation of the 10-day sample, and construct a test statistic t (Meyer, 1975, p 280):

$$t = \frac{m - u}{o - /(n)} \frac{1}{2} \tag{1}$$

where n (= 10) is the sample size, m is the sample mean, and u is the level at which we wish to test the null hypotheses. In the present case, since any desired significance level may be selected, we set $u = m + \frac{1}{2}$ and have n = 10.

That is, we are testing at the 1 $\frac{1}{6}$ level (solid horizontal lines in Fig. 2.). Thus, $t = (n)^{\frac{1}{2}} = 3.16$ for both the top and bottom panels in Fig. 2. Using standard tables of the cumulative student t distribution for n - 1 = 9 degrees of freedom, we find that

$$P(t \le 3.1; 9) = 0.994$$

In other words, the probability for the mean daily LTI to exceed 10- on any one day in the 10 plotted in Fig. 2 is only 0.6%. It might therefore be concluded that the peak on days 1 and 2 following the PCA key date is physically meaningful. The fact that all the other daily means fail to exceed the 10- level tends to support the validity of this statistical approach.

However, it may be argued that we do have a priori knowledge of the fluctuations in the infinite set, and the foregoing approach is too simplistic. While calculating the daily means for each of the 10 days, the variance (v) and standard deviation were also recorded. Fig. 3 shows the variances across the 10-day samples. For the 76 PCA events (top panel) the average variance of the ten daily means is 0.4735, and the standard deviation is 0.688. The latter is much greater than that used before, and it is obvious that the peak fails to exceed the new 1 \circ level. We therefore select a significance level just below the peak level, at say, m - u = 0.15 (broken horizontal lines in Fig. 2, top panel). Again using the null hypothesis (eq. 1), we now have m - u = 0.15, \circ = 0.688 and n = 76. Then t = 1.05, and from the tables (Meyer, 1975), P(t<1.0; 75) = 0.840. Thus, the probability that the peak on day 2 (Fig.2, top panel) arose by chance is 16%.

Similarly, the 10-day average standard deviation associated with the variances of the Nov-Mar PCA days is 0.629, and n = 23. Setting m - u = 0.36 (dashed horizontal lines in Fig. 2, bottom panel), we find t = 2.74, and P(t < 2.7; 22) = 0.993. Thus, there is only a 0.7% probability that the peak on day 2 could have arisen by chance. The exceedance probability for both days 1 and 2 is 1.6% for the Nov-Mar data. If, for these winter events, the random sample is used ($\sigma = 0.651; n = 36$), then the probability that the PCA peaks were due to chance is 0.4% rather than 1.6%.

We are thus led to the inescapable conclusion that PCA events occurring in the winter half of the year produced a measurable influence on thunderstorm occurrence in the northern U.S. in the latitude band 40-45 $^{\rm O}$ N, in the years 1956-1973. This conclusion supports the theoretical predictions of Herman and Goldberg (1978). A conclusion that PCA effects are discernible in the year-round thunderstorm data is on shakier grounds since ther is a 16% probability that the enhancements occurred by chance. Better statistics, using a more complete PCA data base, would serve to strengthen (or destroy) this conclusion.

2.2 27-Day Recurrence_Tendency

Spectral analysis of the 30-yr daily index (LTI) conducted at Pennsylvania State University revealed no strong peak at 27 days (Lethbridge, private communication). On the other hand, Lethbridge (1979) has shown that winter thunderstorms in the northern U.S. tend to occur about one day after solar magnetic sector boundary crossings. Others have shown that active regions on the solar surface tend to cluster near sector boundaries, and Heath and Wilcox (1975) found that certain active regions marked by enhanced UV emission may persist for a few years. On this basis, it was decided to test for a 27-day recurrence in portions of the Lethbridge index by ordering the daily index values in Bartels' rotation plots.

LTI data for Bartels rotations 1866 through 1903 (12/21/69 to 10/12/72) are plotted in Fig. 4. Days with greater than average thunderstorm occurrence are colored black. A coarse indication of the index level is made in the plot according to the scheme set forth in the figure caption. Cursory inspection of Fig. 4 reveals no obvious pattern of recurrence, except perhaps for day 7 of rotations 1884 to 1891 and a few others. Though there are many exceptions, there is a tendency for the index to remain high for several consecutive days.

This line of inquiry was abandoned after two additional simple tests were applied to the plot of Fig. 4. In the first, an overlay of the Svalgaard (1976) solar sector structure was prepared in the same format (not illustrated). Superposition of the overlay onto Fig. 4 gave the visual impression of a correspondence, but again there were many exceptions. Of a total of 326 thunderstorms (i.e., LTI \(\beta\) 0.500) in the period 12/8/68 to 10/22/72, 133 of them occurred on days when the interplanetary magnetic

occurred in negative sectors. Neither the statistical significance nor the possible physical inferences of these findings were investigated. Finally, the Carrington longitudes of the long-lived regions studied by Heath and Wilcox (1975) were converted to Bartels rotation days. No discernible (i.e. visual) correlation with thunderstorm occurrence (Fig. 4) was found. It appears that further work along this line would be fruitless.

2:3 Additional Correlations

Three tentative and brief correlation analyses were made using the Lethbridge index against: the Roberts/Olson VAI; the solar wind index discussed in section 4; and the daily solar flare index list in NOAA Solar-Geophysical Data booklets.

The rationale for the LTI/VAI correlation was that an increase in VAI is an indication of increased cyclogenesis in the northern hemisphere, which in turn implies increased stormy weather. In view of this rationale the results were somewhat surprizing. At first, a very simple, quick test was made, using data already ordered in relation to sector boundary key days. For the LTI, we used Fig. 2 of Lethbridge (1979, p 256), and for the VAI, we used curve c of Fig. 4.13 in Herman and Goldberg (1978, p 201). Those curves, for winter, northern hemisphere conditions, are plotted in Fig. 5 using arbitrary amplitudes. They are obviously negatively correlated, and indeed the correlation coefficient is -0.89. If we shift LTI to the right so that the VAI lags the LTI by 3 days, the correlation becomes positive, with a coefficient of 0.91.

Based on the standard Z test (e.g., Mendenhall and Scheaffer, 1973, p 421), the confidence level of this correlation lies between 95% and 98%. In other words, because of the small sample size (n = 7), the probability that the apparently high correlation was due to chance is about 4%. To further test this relationship, the LTI was correlated with daily VAI as reported by Olson et al (1977). Daily January and July values for the years 1947 to 1956 were utilized, and the VAI was smoothed (VS) according to the Lethbridge criterion:

$$VS = (VAI)^{1/3} - (vai)^{1/3}$$

where VAI is the index for a particular day and vai is the 10-yr average for that day. The correlation coefficients for all months computed were = ± 0.17, for both 0 and 3-day lags, indicating that the day-to-day variations in LTI and VAI are essentially independent of each other. It appears that the LTI and VAI are correlated only when acted on jointly by a solar influence related in some way to magnetic sector boundaries.

On the basis of extremely limited investigation, a lack of correlation was found between the daily LTI and solar wind index of section 4 (in one test month), and between LTI and the NOAA solar flare index (3 test months).

PROTON FLUXES AND BUV DARK CURRENT

In studying dark-current count-rate variations, Stassinopoulos has discovered unexpected enhancements that persist over several days. With the rate levels plotted in B-L space, it could be seen that the enhancements seem to be confined to approximately $2.8 \le L \le 4.3$, and when color-coded in the plot, they

take on the appearance of "blue streaks". Initially, three such enhancements were found in the dark current data, covering the periods April 24 - May 14, 1970; July 28 - August 9, 1970; and August 23-30, 1970.

For an initial test of solar effects on blue streak events, the daily average solar proton flux at 1 A.U. as measured by ATS-1 was utilized as a solar activity indicator. Hourly average ATS-1 data reported in Solar-Geophysical Data reports issued monthly by NOAA Environmental Research Laboratories were used to generate daily averages. The results for the 21-70 MeV proton channel covering the aforementioned events are given in Figs. 6 and 7. Here it can be seen that each of the three events was preceded by a PCA event (Shea and Smart, 1979). However, the long-lasting blue streak of April/May 1970 (Fig. 6) followed a minor PCA with an accompanying low daily average proton flux level, while the shorter lived blue streak of Aug. 23-30, 1970 (Fig. 7) was preceded by a strong PCA with a high daily average proton flux.

The blue streak of July 28 - Aug. 7, 1970 (Fig. 7) was intermediate between the other two. In short, for these three events, the time span of the blue streak event varied inversely with the intensity of the PCA as measured in terms of the daily average proton flux level. To pursue this line of inquiry further, one might test additional blue streak occurrences against the PCA list given in Table 1. In passing, it might be mentioned that the high daily average ATS-1 proton flux on May 6, 1970 (Fig. 6) was not accompanied by any reported PCA event, and the Explorer 41 proton monitoring experiment detected no enhancement until it entered the trapped proton belt late on May 6. A more promising approach to studying other possible solar effects on dark current lies in solar wind data, so further comparisons with PCA's have been made only in a preliminary way, as discussed later in section 4.

Table 1. Solar Proton Events, April 1970 - April 1971.

Date	Riometer Absorption (dB)	Flare Imp.	Duration (Hours)	Max.E=10MeV Proton Flux (cm ⁻² s ⁻¹)	Time of Proton Max.	Reference*
4/15/70	0.6	-	12	93	4/1800	1,5
5/30/70	1.9	-	48	·		5
6/14/70	SAT	2 B	-	3628	16/0700	1
6/26/70	0.8	2N	20	9		5
7/7/70	SAT	1B	29	6	7/2200	2
7/23/70	4.7	2B	С	12	23/2300	1
7/24/70	4.5		55	a 206	25/0100	1,3,5
8/14/70	3.0	1B	55		15/0600	3,5
11/5/70	3.5	. 3 B				1,3,5
12/12/7	0.8	1B			13/1600	1,5
12/24/7	0 0.6					5
1/24/71	14.5	3 B	120	1170	25/1800	1,3,5
4/1/71	0.4					5
4/6/71	3.8	1B	60		6/1800	1,3,5
4/21/71	0.9		10	3	21/0800	2,5

^{*1 -} Castelli and Barron (1977)

^{2 -} Solar-Geophysical Data (NOAA)

^{3 -} Pomerantz and Duggal (1974)

^{5 -} Shea and Smart (1979)

4. SOLAR WIND INDEX

It has been known for some time that variations in the bulk velocity of the solar wind (V_{SW}) are correlated with geomagnetic activity (Kp) fluctuations on a day-to-day basis (Snyder et al, 1963). More recent findings by Akasofu and others suggest that the interplanetary magnetic field (IMF) strength (F) and direction angle (Θ_{GSM}) are more important parameters than the bulk velocity alone (Schatten, private communication).

Accordingly, a solar wind index (SWI) incorporating all three parameters was devised by Schatten (following Akasofu), for use in studying the blue streak phenomenon. The index has been calculated with and without a zero offset for the period April 1, 1970 to December 31, 1971, as follows:

$$AK-I = (V_{sw} - \overline{V}) (F)^2 \sin^4(\theta')$$
 (2)

where \overline{V} is the mean daily velocity averaged over the period of interest. For April 1 - December 31, 1970, \overline{V} = 423 km/s; and for Jan 1 - Dec 31, 1971, \overline{V} = 433 km/s.

Noting that the index is negative when $V_{SW} \le \overline{V}$, it was decided to leave out the offset (i.e., letting $\overline{V} = 0$ in eq. 2), and recompute AK-II. The daily values of AK-II are plotted in Fig. 8, for visual comparison with the blue streak index to be discussed below. Tabular values of AK-I and AK-II are given in Appendix A.

In accordance with Schatten's suggestion, the direction angle $\theta'=\frac{1}{2}\theta_{GSM}$, was computed for each hour from:

$$\theta_{GSM} = \tan^{-1} B_{y}/B_{z} \qquad \text{for } B_{z} > 0$$
 (3)

$$\theta_{GSM} = 180 - \tan^{-1} B_{\chi}/B_{z} \quad \text{for } B_{z} < 0$$
 (4)

where B_y and B_z , the IMF components in magnetospheric coordinates, are tabulated in the Interplanetary Medium Data Book, NSSDC/WDC-a-R&S 77-04 and 77-04a. The hourly θ were averaged for each day for use in eq. 2 and tabulation in Appendix A. The daily averages for V_{sw} and F were likewise derived from the Data Book hourly values. Unfortunately, solar wind data for October through December 1971 are missing.

To gain a quantitative index of "blue streak" dark current data, Schatten suggested the use of an index M(t):

$$M(t) = (1)2500 + (2)7500 + (3)15000 + (4)30000$$
 (5)

where %N (N = 1,2,3,4) is the normalized total counts per day of the dark current in each channel N at times when the BUV satellite was within the blue streak region of space. Based on tabulated values of %N supplied by GSFC, we have calculated the daily M(t) for the period April 10, 1970 through December 31, 1971. These are plotted in Fig. 8 for comparison with the AK-II index, and all M(t) are tabulated in Appendix A.

Other solar-terrestrial indicators are noted in Fig. 8 to provide a visual comparison with M(t) and AK-II. These are keyed as follows:

K = King et al, Solar Rotation Key Dates (SCOSTEP WD-II)

R = Roberts and Olson, List of Geomagnetic Disturbances (WD-I)

A = Allen and Dunham, Major Magnetic Disturbances (WD-I)

P = Shea and Smart, List of PCA Events (SCOSTEP WD-III)

In thumbing through the pages of Fig. 8, it quickly becomes obvious that the most dramatic blue streak event as measured by M(t) occurred beginning April 21, 1970, shortly after the Nimbus 4 BUV experiment went into orbit.

The second largest M(t) event commenced near August 17, 1970, which provides a strong indication that the earlier event was not due to equipment malfunction. There seems to be a general tendency for the M(t) enhancements to follow the occurrence of a PCA by about a week, though this is not invariably true.

In passing, it is interesting to note that nearly all of King's solar rotation key dates (K) in Fig. 8 fall on peaks in the AK-II index. (The physical ramifications of this note with regard to the King et al (1977) 27-day recurrence pattern in planetary atmospheric pressure waves could not be followed up in the present work.) There is thus a rather pronounced 27-day recurrence tendency in the AK-II daily index. The same tendency can be seen in the solar wind bulk velocity alone, plotted in Fig. 9. This result reconfirms the Snyder et al (1963) findings based on earlier data.

In conclusion, it appears that additional work will be worthwhile in following up solar wind effects on the BUV dark current in certain regions of space.

5. CONCLUSIONS AND RECOMMENDATIONS

The nature of the work reported here precludes the drawing of any final conclusions, but the tentative results do suggest areas where further research may be fruitful.

With regard to the thunderstorm/solar activity question, it appears that there may be discernible solar proton effects on thunderstorm occurrence in mid- to high-latitudes. The possible relationship between thunderstorm coourrence and atmospheric vorticity is unclear, but there does seem to be a weak statistical link between the two near times of solar magnetic sector

crossings. It appears that the NOAA solar flare index is too coarse an indicator to be useful in thunderstorm analysis. Further, for 27-day recurrence effects, the meteorological noise level is apparently too high to permit a straightforward analysis. These tentative results suggest the following additional analyses:

- 1) Superposed epoch analysis of the Lethbridge index using a more extensive PCA data base for key dates;
- 2) More detailed statistical analysis of the possible relationship between thunderstorms and atmospheric vorticity;
- 3) To test the D'Angelo (1978) hypothesis that the solar wind electric field modulates the earth-ionosphere total potential with subsequent thunderstorm triggering, it is recommended to investigate the relationship between Schatten's solar wind index and the Lethbridge index.

With regard to the solar wind index itself, we recommend that:

- 4) The index be extended to additional years for use in various solar-terrestrial relationship studies, and particularly in analyses of BUV ozone over the 6-year life of the Nimbus 4 experiment;
- 5) The incorporation of solar wind bulk density into the index should be considered; and
- 6) Consideration should be given to varying the exponents on the elements of the index (i.e., V_{sw}^a F^b $\sin^c\theta$) to determine their relative importance in solar-terrestrial processes related to the solar wind.

Finally, specifically for the continued analysis of dark current enhancements, we suggest the following:

- 7) Using the M(t) index enhancements, consider a superposed epoch analysis with PCA, solar flare or other solar-tagged key dates;
- 8) Consider running averages of the solar wind index (e.g., AK-II) for correlation with M(t);
 - 9) Use integrated AK-II over N days prior to an M(t) event.
- 10) Use values of the magnetic indexes Kp or C9 to establish approximate solar wind velocities for days where the solar data are missing, in order to provide a more complete AK data base.

6. REFERENCES

Castelli, J.P., and W.R. Barron (1977), A catalog of solar radio bursts 1966-1976 having spectral characteristics predictive of proton activity, J. Geophys. Res. 82, 1275.

D'Angelo, N. (1978), <u>Thunderstorms</u>, <u>Ionosphere-to-Ground Potential Drop</u>, and the <u>Solar Wind Sector Structure</u>, Univ. of Iowa Rpt. 78-24, Iowa City, Iowa 52242.

Goldberg, R.A., and J.R. Herman (1979), Coupling processes related to the Sun-weather problem, in <u>Proc. International Solar-Terrestrial Predictions</u> Workshop, Boulder, Colorado, in the press.

Heath, D.F., and J.M. Wilcox (1975), A possible correlation between maxima of the far ultraviolet solar irradiance and central meridian passages of solar magnetic sector boundaries, in <u>Possible Relationships Between Solar Activity and Meteorological Phenomena</u>, (W. Bandeen and S. Maran, eds.), NASA-SP-366, p. 79.

Herman, J.R. (1979), Solar Activity, Atmospheric Electricity, and Satellite Monitoring of Global Thunderstorms, Radio Sciences Co. Final Rpt. RSCR-79-4.

Herman, J.R., and R.A. Goldberg (1978), Sun, Weather, and Climate, NASA SP-426, U.S. Government Printing Office, Washington, D.C.

King, J.W., A.J. slater, A.D. Stevens, P.A. Smith, and D.M. Willis (1977), Large-amplitude standing planetary waves induced in the troposphere by the sun, <u>J. Atmos. Terr. Phys.</u> 39, 1357.

Lethbridge, M. (1979), Thunderstorm frequency and solar sector boundaries, in Solar-Terrestrial Influences on Weather and Climate, (B.M. McCormac and T.A. Seliga, eds.), D. Reidel Publishing Co., Dordrecht, p. 253.

Mendenhall, W., and R.L. Scheaffer (1973), MMathematical Statistics with Applications, Duxbury Press, North Scituated AMassachusetts.

Meyer, S.L. (1975), <u>Data Analysis for Scientists and Engineers</u>, John Wiley and Sons, Inc., New York.

Olson, R.H., W.O. Roberts, and E. Gerety (1977), Vorticity-area index, in Solar-Terrestrial Physics and Metoerology: Working Document II, Special Committee for Solar-Terrestrial Physics (SCOSTEP), National Academy of Sciences, Washington, D.C., p. 84.

Pomerantz, M.A., and S.P. Duggal (1974), The Sun and cosmic rays, Rev. Geophys. Space Phys. 12, 343.

Roberts, W.O., and R.H. Olson (1973), New evidence for effects of variable solar corpuscular emission on the weather, Rev. Geophys. Space Phys. 11, 731.

Shea, M.A., and D.F. Smart (1979), Significant solar proton events, 1970-1972, in Solar-Terrestrial Physics and Meteorology: Working Document III, Special Committee for Solar-Terrestrial Physics (SCOSTEP), National Academy of Sciences, Washington, D.C.

Snyder, C.W., M. Neugebauer, and U.R. Rao (1963), The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity, <u>J. Geophys. Res.</u> 68, 6361.

Stassinopoulos, E.G., O.J. Rose, and R.A. Goldberg (1978), NIMBUS-4 BUV Dark Current Study: Data Filtering, NASA Rpt. X-601-78-21, June.

Stassinopoulos, E.G., L.L. Felton, and R.A. Goldberg, (1979), NIMBUS-4 BUV Dark Current Study: Seasonal Background Models, NASA TM-80302, May.

Svalgaard, L. (1976), <u>Interplanetary Sector Structure 1947-1975</u>, Stanford Univ. Rpt. SUIPR No. 648, Stanford, California.

FIGURE CAPTIONS

- Fig. 1. Distribution of major PCA occurrence by month (top panel) and by year (bottom panel) for period 1956-1973, compared with computer-generated random dates.
- Fig. 2. Superposed epoch analysis of Lethbridge Index (LTI) using random key dates and Pomerantz and Duggal (1974) major PCA dates.
- Fig. 3. Variance in daily mean LTI surrounding PCA key dates (solid curves) and random key dates (dashed curves) for years 1956-1973, latitude band 40-45 $^{\rm O}N$.
- Fig. 4. Lethbridge Index plotted in 27-day Bartels' rotation format. Full squares are LTI = 2.000; 3/4 square, LTI = 1.500; 1/2 square, LTI = 1.000; 1/4 square, LTI = 0.500.
- Fig. 5. Comparative response of Lethbridge (1979) thunderstorm index (LTI) and Roberts and Olson (1973) vorticity area index (VAI) to solar magnetic sector boundary crossings.
- Fig. 6. Daily average ATS-1 solar proton flux for energies 21-70 MeV, compared to dark current blue streak event and PCA event, April-May, 1970.
- Fig. 7. Same as Fig. 6 but for July-August, 1970.
- Fig. 8. Daily values of solar wind index (AK-II) and blue streak index M(t) for April 1970 July 1971. Legend: K- solar rotation key dates used by King et al (1977); R and A geomagnetic storm dates; P polar cap absorption events.
- Fig. 9. Daily average solar wind bulk velocity, April 1970 March 1971.

FIGURE I.

NOV-MAR ONLY (N=23 PCA; 36 RAND OM)

FIGURE 2.

FIGURE 3.

8
FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8

DATE 1970

FIGURE 8, CONT'D.

FIGURE 8, CONCL.D.

FIG9. Daily Average Solar Wind Bulk Velocity.

Fig. 9. contid.

Fig. 9 conclé.

APPENDIX A

TABLE OF DAILY AVERAGE SOLAR WIND PARAMETERS, SOLAR WIND INDEX AND BLUE STREAK INDEX

 $V_{SW} = \text{solar wind bulk velocity (km/s)}$

F = IMF field strength (gammas)

θ = IMF angle in magnetospheric coordinates (degrees)

AK-I = solar wind index with zero offset

AK-II = solar wind index without zero offset

M(t) = dark current blue streak index

	Day	Date	V sw	F	θ'	AK-I	AK-II	M(t)	
					April :	1970			
	91	1	483	9.2	18.4	51	406	_	
	∷92	2	435	_	-	_	-	-	
	93	3	-	_	-	_	· -	-	
	94	4	457	6.3	17.0	10	133	_	
	95	5	447	8.1	29.4	9 2	1703	_	
	. 96	6	603	8.5	50 . 7	4666	15623	-	·
	97	7	546	-				- ·	
	98	8	-	-	-	-	· - ·	-	
	99	9	6 3 8	-	-	-	-	· –	
	100	10	479	- .	59.6	∄ 60	<u>-</u>	2500	
	1 01	11	409	5.4	50.0	-140	4107	2670	
	102	12	409	5.3	59.6	-216	635 8	2891	•
	103	13	380	-	→ ,	· -		2857	
	104	14	386	4.6	36.5	37	1022	2790	·
	105	15	353	4.1	45.5	45	1536	3047	
	106	16	406	19.3	16.6	17	1007	2803	
	107	17	481	17.8	54.6	55	67280	2569	
	108	18	412	6.5	40.5	41	3097	2704	•
	109	19	416	8.4	65.8	. 66	20317	2929	•
	110	20	473	12.9	35.0	35	8519	3334	
	111	21	446	- .	· -	· -	- .	3134	
	112	22	452	5.3	39.6	40	2096	9999	
	113	23	377	-	· · · <u>-</u>	_	-	11387	
_	114	24	406	6.8	60.1	60	10603	14730	
	115	25	447	6.6	50.3	50	6823	16268	
	116	2 6	453	<u>-</u>	_	-	<u>-</u>	14250	
	117	27	373	3.6	55.0	55	2177	13204	
	118	28	338	4.1	56.0	56	2684	13427	
	119	29	326	4.0	79.7	80	4888	12296	
	120	30	393	8.2	49.3	49	8730	10900	
	,				May 197	0			
	121	1	440	8.2	38.7	176	4521	8705	
	122	2	487	6.9	32.0	241	1828	10692	
	123	3	478	-	-	-	-	12312	
	124	4	505	5.6	29.0	142	8 7 5	11644	
	125	5	466	6.1	38.2	235	2536	11143	
	126	6	527	-	-	_	-	10624	
	127	7	594	2.6	30.8	80	276	69 3 9	
	128	8	471	3.2	39.8	83	810	10704	
	129	9	402	4.0	68.4	-250	4807	10977	
	130	10	-	_	-	٠-	_	9564	
	131	11	-	3.0	47.4	-	-	[:] 8 098	
	132	12	354	8.6	50.5	-1807	9282	7469	
	133	13	410	6.9	39.1	-97	3088	7749	
	134	14	380	7.3	52.1	-886	7851	5968	

	D	Do+-	W	F	θ,	AK-I	∖ AK-II	M(t)
	Day	Date	V sw	r	Ð	AK-1	AK-11	M(t)
	135	15	402	5.3	42.8	-125	2407	5833
	136	16	344	4.6	44.0	-389	1695	4769
	137	17	380	8.2	41.4	-552	4887	5884
	138	18	356	7.2	32.4	-2 86	1521	5527
4	139	19	341	7.6	55.3	-2 1 61	8999	5293
	140	20	394	6.2	71.8	-905	12335	4470
	141	21	407	5.6	50.5	-177	4525	4668
	142	22	380	5.1	55.3	-51 0	4516	5739
	143	23	359	4.5	34.4	- 132	741	4136
	144	24	399	6.2	41.9	-183	3051	3820
	145	25	446	4.7	59.1	277	5341	4331
	146	26	297	3.9	38.4	-285	672	4965
	147	27	326	8.2	78.4	-5999	201 84	3228
	148	28	373	13.8	49.3	-3139	23467	2662
	149	29	434	8.6	40.4	145	5664	2943
	150	30		_	_	_	-	321 5
	151	31	431	6.5	29.3	20	1044	3013
					June 1	970		
	152	1	518	9.4	42.8	1791	9754	3261
	153	2	639	9.3	22.0	368	1088	3620
	154	5 3 9	550	5.3	61.3	2113	9145	3041
	155	4	-	4.4	55.5	_	. 7±42	3373
	156	5	393	5.0	42.3	- 153	2016	3596
	157	6	438	2.9	26.7	5	150	3572
	158	7	370	5.3	48.0	-453	31 70	3360
	159	8	412	7.7	38.8	-100	3766	2885
	160	9	_	7.3	42.7	_	_	2967
	161	10	395	5.6	54.4	-382	5414	2972
	162	11	415	5.3	37.3	-30	1572	31 25
	163	12	348	4.6	61.2	- 935	4342	2911
	164	13	3 58	6.7	53.7	-1229	6780	2763
	165	14	345	5.9	36.5°	-33 9	1503	2572
	166	15	351	7.9	62.1	-2737	13363	2500
	167	16	418	6.0	32.1	-14	1200	2628
	168	17	432	9.6	32.5	70	3318	2571
	169	18	452	8.3	62.0	1218	18925	2647
	170	19	434	4.8	52.0	99	3856	2744
	171	20	405	7.2	76.5	-830	18769	2712
	172	21	348	6.7	63.4	-2149	9986	3648
	173	22	341	5.5	35.1	-271	1128	3 988
	174	23	326	6.1	32.1	-288	967	4971
	175	24	314	7.0	35.7	-619	1784	7235
	176	25	319	6.7	55.9	-2193	6733	5192
	177	26	408	7.5	64.5	- 556	1 5231	5487
	178	27	529	-	- 4.C. C	-	-	3654
	179	28	- 420	3.3	46.6	- 7		3118
	180	29	438	3.5 5.6	26.2	7 -1.00	204	3015
_	181	30	397	5.6	36.3	-100	1529	3553

Day	Date	-V s w	${f F}$	θ'	AK-I	AK-II	M(t)
			•	July	1970		
			• .				
		440	9.2	38.4	316	5645	3070
182	1	448 475	8.9	39.0	647	5901	2581
183	2	475 466	7.3	49.6	772	8352	2741
184	3	617	6.7	41.2	1640	5214	2760
185	4	525	6.2	42.7	830	4268	3000
186	5 6	456	8.0	84.9	2085	28725	2929
187	7	450	3.4	34.2	_	20723	372 8
188	8	3 25	5.4	66.8	-2037	6764	3041
189 190	9	451	18.6	54.7	4313	69224	2715
	10	466	9.6	35.4	447	4836	3334
192	11	473	6.7	48.7	716	6764	3907
193	12	449	7 . 1	51.6	496	8538	4118
194	13	447	5.8	50.2	282	5239	4554
195	14	473	5 . 1	45.7	342	3228	4779
196	15	435	4.2	33.8	20	735	4744
197	16	421	4.3	59.3	-19	4255	4933
198	17	353	6.7	37.6	-435	2196	4853
199	18	373	4.4	37.6	-134	1001	3952
200	19	364	3.3	52.5	-254	1570	4414
201	20	332	-	_			4208
202	21	429	_	_	_	-	3070
202	22	559	_	_	_		2639
204	23	497	10.9	50.6	3139	21 054	3047
205	24	451	9.1	55.0	1048	16816	2862
206	25	791	11.8	52.1	19871	42701	3293
207	26	499	4.7	78.8	1557	10207	9081
208	27	480	4.9	58.2	715	6013	11200
209	28	438	6.2	21.3	10	293	9883
210	2 9	575	9.6	57.3	702 9	26574	6518
211	30	555	5.4	47.2	1116	4691	6948
212	31	414	4.9	69.9	-1 66	7731	7673
	-						
		-		August	1970		
21.3	1	391	3.1	44.5	-74	907	8298
213	2	369	6.1	9.3	-1	9	9222
214	3	3 98	6.5	25.2	- 35	553	7672
216	4	385	4.5	39.4	-125	1265	8914
217	5	299	4.1	60.4	-1190	2873	10202
217	6	333	8.0	33.9	- 557	2062	8507
219	.7	4 0 9	11.2	35.4	- 196	5777	8688
219	8	· 487	11.0	43.3	1716	13036	5441
221	9	582	4.2	29.7	169	619	4825
222	10	539	4.6	35.2	1 271	1259	5141
222 223	11	497	4.5	42.5	313	2097	6023
224	12	464	4.9	66.1	689	7784	6270
225	13	410	4.3	49.2	-78	2489	5808
263	. 10		,• • •				

Day	Date	V sw	F	θ,	AK-I	AK-II	M(t)	
226	14	346	4.9	27.1	-80	358	5694	
227	15	361	6.4	47.9	- 768	4482	6525	
228	16	385	7.7	51.3	-834	8468	5626	
229	17	539	14.5	59.2	T32 88	61690	3820	
230	18	508	7.7	78.9	4679	2792 8	9775	
231	19	514	5.4	24.4	77	437	15413	
232	20	383	6.7	39.7	-2 98	2862	13266	
233	21	353	5.5	53.6	-887	4482	14338	
234	22	383	5.7	22.2	- 26	254	12257	
235	23	357	5.0	65.5	-1130	6119	15215	
236	24	346	5.7	35.1	-273	1229	11099	
237	25	193	-	-	-	-	11885	
238	26	439	6.0	65.5	397	10836	6932	
239	27	434	6.1	55.5	191	7 449	8268	
240	28	399	7.0	41.7	-229	3829	6841	
241	29	376	5.0	44.7	-273	2301	7817	
242	30	360	4.8	47.4	-425	2435	7299	
243		348	7.6	52.9	- 1751	8134	4820	
				Santon	ber 1970			
				sebrem	Der 1970			
244	1	417	7.7	26.7	-14	1008	4384	
245	2	514	7.1	36 🛙 9	597	3367	4190	
246	3	467	6.3	44.4	419	4442	4181	
247	4	610	8.3	26.2	490	1597	4108	
248	5	593	4.1	44.2	675	2355	5227	
249	6	468	3.9	34.7	72	748	4875	
250	7	409	4.8	27.9	-15	452	4222	
251	8	424	7.7	34.0	6	2458	4584	
252	9	475	6.7	32.5	195	1777	3916	
253	10	-	5.5	38.3	-	-	4759	
254	11	364	-	_	-	-	38 <i>7</i> 1	
255	12	359	5.4	38.7	-285	1600	3880	
256	13	413	9.2	57.3	-420	17529	3263	
257	14	534	6.8	43.5	1153	5544	31 25	
258	15	494	5.5	57.6	1093	7594	4228	
259	16	414	4.6	62.3	-116	5383	4274	
260	17	408	5.4	55.1	- 197	5383	3773	
261	18	430	5.9	63.2	157	9501	4318	
262	19	485	7.5	63.7	2256	17621	3730	
263	20	508	5.8	53.0	1165	6952	3572	
264	21	462	6.2	64.5	998	11786	3561	
265	22	426	4.8	66.4	50	6921	3854	
266	23	388	4.7	60.2	-437	4860	4281	
267	24	355	5.3	56.6	-927	4844	4144	
268	25	33 8	5.0	51.8	-810	3223	4250	
269	26	346	3.8	56.2	-530	2382	3897	
270	27	406	8.1	61.6	-664	15949	3391	
271	28	471	7.9	18.2	29	280	3097	
272	29	351	8.4	23.4	- 126	616	2834	
273	30	429	9.7	37.9	28	1935	31 55	

Day	Date	V sw	F	θ,	AK-I	AK-II	M(t)
				October	r 1970		
274	1	436	6.7	50.8	212	70 59	3234
275	2	466	7.9	28.9	147	1587	31 06
276	3	531	7.1	33.5	506	2484	350 0 -
277	4	680	6.7	44.9	2865	7578	3750
278	5	564	-	-	-	-	2757
279	6	473	4.2	36.7	113	1064	2939
280	7	417	3.8	23.6	-2	155	3963
281	8	356	3.8	26.5	-38	204	4242
282	9	344	4.1	34.7	-139	607	3020
283	10	305	6.3	49.8	-1593	41 20	3150
284	11	318	8.4	78 .0	-6776	20540	2500
285	12	353	11.6	72.1	- 7713	38949	31.45
286	13	407	7.9	39.5	-162	4158	28 7 5
287	14	351	-	-	-	-	2817
28 8	15	31.2	4.5	31.9	- 175	493	2744
289	16	480	11.2	36.0	855	7 1 87	2760
290	17	442	19.3	39.4	1155	26724	2619
291	18	411	7.6	47.5	-203	7014	3827
292	19	396				-	3935
293	20	364	2.6	36.3	-49	302	6896
294	21	326	3.4	41.5	-216	726	
2 95	22	326	7.7	73.7	-4876	16403	4205
2 96	23	322	13.7	50.2	-6598	21 056	3275
297	24	422	_	-	-	-	4211
298	25	375	3.2	63.3	-312	2446	3667
299	26	342	3.2	61.1	-487	2057	3423
300	27	327	5.8	35.7	-374	1276	3770
301	28	413	-	-	-	-	3877
302	29	433	-	-	-	-	4365
303	30	605	_	_	-	-	3561 3731
304	31	492	_	_	_	-	3731
				Novemb	er 1970		
305	1	-	3.8	50.3		-	4500
306	2	400	-	_	-	-	3056
307	3	3 88	5.3	56.9	-483	5368	3710
30 8	4	3 88	6.7	51.0	-571	6353	340 9 ⁹
30 9	5	37 9	6.1	50.3	- 572	4942	3500
31 0	6	380	8.1	79.5	-2631	23303	2754
311	7	588	-	-	-	-	3250
31 2	8	·	4.8	41.8	-	-	3453
31 3	9	545	4.9	42.7	620	2768	3500
31 4	10	581	6.4	5 8 . 9	3481	12793	4141
31 5	11	-	-	-	-	-	3982
316	12	51.7	4.1	27.2	69	379	4461
31 7	13	422	4.8	60.1	-12	5491	4859

Day	Date	V	F	θ,	AK-I	AK-II	M(t)		
318	14	394	4.9	55.2	-315	3401	4870		
319	15	341	4.6	37.6	-240	1000	3915		•
320	16	336	-	37. 0		-	4637		
321	17	322	4.0	37.0	-212	676	3773		
322	18	373	10.9	36.7	- 756	5653	3991		
323	19	373 372	12.5	6.9	-2	12	2500		
32\$	20	-	11.1	14.0	_	-	2917		
325	21	480	 	-	_	_	2500		
325	22	470	8.2	70.1	2476	24704	2500		
327	23	423	9.3	58.1°	5	19006	2947		
328	24	434	9.5	26.1	38	1467	4010		
3 2 9	25	512	10.0	24.5	264	1514	3661		
330	26	531	4.6	41.4	437	21 49	4210		•
33 <u>1</u>	27	538	3.8	49.6	559	2613	4222		
33 2	28	474	3.4	46.9	168	1557	4205		
333	29	445	4.2	34.5	40	808	4274		
334	30	44.7 -	4.4	J4•J	-	-	3889		
334	30		_				3009		
				Decemb	er 1970				
335	1	308	4.2	30.3	-131	352	3821		
336	2	31 3	7.0	40.5	-958	2728	5043		
337	3	347	4.9	46.3	-498	2276	4676		
338	4	360	4.2	31.8	- 86	490	5224		
339	. 5	337	4.6	41.3	-345	1353	5000		
340	6	333	6.0	59.2	-1762	6526	3500		
341	7	338	8.4	52.7	-23 99	9549	3797		
342	8	503	9.4	62.1	4318	27113	3065		
343	9	471	5.4	61.3	830	8130	3387		•
344	10	_	4.2	48.8	-	-	3114		
345	11	340	4.4	36.9	-209	855	4914		
346	12	315	5.1	53.5	-1172	3421	6276		
347	13	337	5.5	34.6	-270	1060	5441		
348	14	566	-	J-1.0	-	-	3864		
349	1 5	515	4.3	48.3	529	2959	5176		
350	16	_	4.4	58.2	-		5913		
351	17	_	4.7	55.7	_	_	5278		
352	18	371	5.7	57 . 7	-861	6153	5459		
353	19	339	8.4	22.5	-127	513	4597		
354	20	306	7.4	49.2	-2102	5502	3334		
355	21	3 37	5 . 4	49.4	-832	3266	4914		
356	22	31 0	4.2	73.4	-1680	4612	4869	•	
357	23	342	4.5	72 . 5	- 1355	5730	4026		
358	24	J42 	7.2	36.4	-	5750 -	3446		
359	25 25	_	6.1	32.1	_	_	3362		
360	23 26	_	6.2	48.6	_	-	4138		
361	26 27	- 409	7.1	52.6	-279	821 2	3770	•	
362	27 28	37 9	/ • I	J4.0 -	-219	0212	4792		
363	20 29	379 370	7 . 6	49 . 9	-1046	- 731 <i>6</i>	51 62		
364	29 30	370 446		30.4			4058		
			8.1 6.5		99 7	1919			
365	31	438	6.5	11.2	1	26	3247		

Day	Date	V sw	F	Θ'	AK-I	AK-II	M(t)	
		SW		Januar	y 1971			
1	1	408	6.4	42.8	-192	3562	3600	
2	2	572	7.6	38.2	1200	4832	5411	
3	3	628	6.8	48.1	2810	8912	5123	
4	4	606	5.7	42.3	1173	4040	4569	
5	5	543	4.3	43.4	466	2238	4654	
6	6	519	5.1	26.5	92	535	4365	
7	7	_	2.0	52.2	•••	_	4933	
8	8	300	2.1	33.9	-56	128	5861	
9	9	299	3.0	47.0	-337	770	5000	
10	10	310	5.7	5 7.1	-1940	50 0 5	4167	
11	11	357	-	_	-	-	4197	
12	12	335	3.2	42.2	- 198	698	4405	
113	13 '	366	12.2	30.5	-632	3615	3777	
14	14	-	11.0	72.1	-	· · -	5395	
15	15	333	-	-	_		5585	
16	16	335	5.8	24.1	-89	31.3	3370	
17	17	337	6.4	40.6	-683	2476	3873	
18	18	462	11.9	35.3	505	7295	3611	
19	19	597	6.9	37.0	1 043	3728	2778	
20	20	706		-	-	-	3535	
21	21	656	3.3	39.3	396	1150	3750	
22	22	513	3.9	49.6	425	2624	3261	
23	23	463	4.6	37 . 7	92 21	1285	3791 2727	
24	24	434	5.2	47.0 -	31 -	3357	3727	
25	25 26	442	- /. 6	10.4	- - 2	-	1 0375 6286	
26 27	26 27	360 491	4.6 10.4	45.5	1708	8 13744	4916	
27 2 8	27 28	449	6.6	78 . 3	761	17983	5242	
26 29	29	380	6.6	25.4	-74	560	5905	
30	30	537	7.3	48.5	1794	9004	5250	
31	31	5 7 8	6.8	32.9		2327	6452	
				Februa	ry 1971		•	
20	7	(27	F 3	20.2	. 202	000	6010	
32	1	637 51.7	5.3	28.2	290	892 3646	6 3 49	·
33 34	2 3	51 <i>7</i> 429	3.4 -	62 . 1	614 -	3646 -	5818 6716	
34 35	3 4	380	3.4	32 . 6	- -49	- 370	6716 6411	
36	5	344	6 . 7	42.1	-780	3120	7222	
37	6	335	6.2	54.8	-1628	5742	6510	
38	7	366	4.8	73.3	-1028 -1241	7097	6078	
39	8	453	-	75.5	-1241	- 7057	6903	
40	9	499	7.1	38.5	522	3778	5570	
41	10	455	6.0	30.1	57	1036	5982	
42	11	402	6.4	26.6	-46	662	6756	
43	12	442	-	-	-	-	5380	
44	13	441	-	_	_	_	4892	
45	14	_	8.1	51.6	_		5544	
			•	-				

46 47 48 49 50 51 52 53	15 16 17 18 19 20 21	V sw 532 620 568 503 509	8.3 5.7 - 4.8	52.3 48.3	2754 1918	14364 6260	4527 4500
47 48 49 50 51 52 53	16 17 18 19 20 21	620 568 503 509	5.7 - 4.8	48.3 -			
48 49 50 51 52 53	17 18 19 20 21	568 503 509	- 4.8	-	>-0	~=~-	
49 50 51 52 53	18 19 20 21	503 509	4.8		; -	_	5209
50 51 52 53	19 20 21	509		68.8	1271	8756	4799
51 52 53	20 21		F 3				
52 53	21		5.2	36.1	257	1659	5095
5 3		427	4.7	46.8	-19	2664	4648
	22	390	4.5	64.3	-534	5206	4742
E /.		301	-	-	-	-	4750
54	23	326	9.1	53.6	-3615	11331	4033
55	24	411	9.3	37. 9	-234	5062	3044 '
56	25	583	111.7	39.9	3546	13511	3261
57	26	614	_		- ; i	-	3687
58	27	537	_	-		-	3820
59	28	483	4.0	19.5	11	96	5000
				March	1971		
60	1	438	4.4	33.0	14	746	4853
61	2	349	6.1	44.5	-727	31 34	3959
62	3	392	-	_	_	_	4621
63	4	451	4.9	84.1	494	10601	3985
64	5	339	4.7	47.0	- 575	2142	4039
65	6	333	3.9°	60.6	-850	2918	4334
66	7	312	4.0	59.9	-1 058	2797	4397
						2/9/ -	4346
67	8	369	-	-	- 1 / 7		
68	9	455	7.8	33. 9	147	267 9	3918
69	10	491	6.7	35.2	302	2433	4046
70	11	460	6.1	22.5	24	367	3985
71	12	422	_	_	_	_	3722
72	13	578	8.1	62.0	5902	23048	2875
73	14	642	6.4	45.2	2201	6666	4167
74	15	617	4.3	56.0	1633	5989	5330
75	16	535	3.9	62.5	1011	5154	5382
76	17	466	3.7	59.7	274	3545	6651
77	18	411	_	_	_	-	7390
78	19	407	5.0	66.1	-402	71 0 9	6604
79	20	416	5.0	21.5	- 6	188	5511
80	21	367	-	_	_	-	6744
81	22	326	4.3	42.5	-401	1256	6886
8 2	23	343	5.7	34.5	-291	1147	5743
83	23 24	446	8.4	42.7	239	6656	6072
							4063
84	25	533	5.7	38.2	489	2533	
85	26	500	6.2	25.5	92	660	5000
86	27	488	3.6	48.7	239	2015	4745
87	28	398	3.3	25.9	-13	158	4807
88	29	350	3.0	41.1	-134	588	3873
89	30	328	6.3	69.2	-3092	9942	4484
90	31	451	9.2	54.0	761	16353	4217
					,		

Day	Date	V sw	F	θ'	AK-I	AK-II	M(t)	
				April	1971			
91	1	491	4.5	50.2	430	3464	4643	
92	2	387	5.1	56.8	-548	4935	4269	
93	3	375	5.4	66.8	-1145	7804	5167	
94	4	458	11.8	36.1	470	7685	3770	
95	5	485	5.4	42.5	334	2 946	3426	
96	6	468	4.9	45.6	238	2928	4643	
9 7	7	447	4.0	43.5	61	1606	4961	
98	8	361	4.2	55.1	-551	2881	4397	
99	9	455	13.7	53.5	1959	35659	31 79	
100	10	583	6.1	58.0	2945	11221	4929	
1 01	11	565	5.7	56.2	2091	8753	_	
102	12	533	3.9	61.0	917	4744	-	
103	13	446	4.3	51.0	108	3008	_	
104	14	435	9.3	60.9	252	21 9 31	_	
105	15	466	7.7	45.5	552	7151	-	
106	16	532	4.9	66.2	17 16	8952	-	
107	17	471	4.0	52.5	260	2985	-	
108	18	40 9	4.5	43.6	- 96	1873		
1 09	19	412	2.6	46.5	-34	771	-	
110	20	358	6.3	18.6	-30	147	-	
111	21	353	9.8	57.4	-3725	17077	-	
112	22	365	7.9	44.8	-1000	5616	-	
113	. 23	436	7.9	32.7	32	2318	6876	
114	24	385	4.2	36.8	-102	874	61 22	
115	25	356	3.7	39.6	-167	88 0 5	6006	
116	26	356	4.6	36.4	-194	934	589 3	
117	27	398	5.5	57.9	- 498	6200	6389	
118	28	398	10.8	37.0	-490	6090	6038	
119	29	404	9.7	12.1	- 5	73	6078	
120	30	439	6.6	39.7	65	31 84	6302	
in Courts				May 19	71			
121	1	406	9.1	35.3	-222	3749	6428	
122	. 2	401	9.1	71.7	-1951	26982	5463	
123	3	403	5.5	50.6	-291	4347	5190	
124	4	3 95	5.6	63.2	-697	7863	6065	
125	5	399	4.8	52.8	-2 88	3701	59 3 8	
1263	6	52 8	7.9	61.6	3662	19 730	5210	
127	7	651	6.2	65.7	5862	17267	6683	
128	8	618	4.0	43.5	675	2220	7726	
129	9	539	3.5	70.0	1041	5148	8694	
130	10	476	4.0	61.7	442	4577	98 07	
131	11	379	3.7	55.6	-324	2405	9606	
132	12	357	5.0	44.9	-453	2216	9904	
133	13	335	6.0	51.0	-1247	4399	11905	
134	14	350	7.8	47.5	-1438	6292	7806	
135	15	379	9.5	45.3	- 1175	8731	613 9	
					:			

Day	Date	v sv	F	θ*	AK-I	AK-II	M(t)	
136	16	344	10.5	35.4	-1068	4271	6938	
137	17	447	13.3	60.0	1692	44477	3856	
138	18	462	10.6	69.8	2789	40270	73 89	
139	19	457	4,6	33.5	33 .53	8977	9883	
140	20	422	5.2	41.6	-42	2217	10509	
141	21	391	6.9	23.6	-36	362	11700	
142	22	383	4.5	42.6	-200	1628	12041	
143	23	407	7.6	55.6	-616	10896	10700	
144	24	449	6.2	44.9	181	4285	10337	
145	25	437	5.0	49.2	57	3588	6590	
146	26	413	5.0	53.2	- 175	4245	8823	
147	27	-	4.4	44.4	-	-	10500	
148	28	330	3.9	54.9	-681	2249	-	
149	2 9	31 0	5.2	45.7	-851	2199	11479	
150	30	438	10.9	37.7	133	7278	7543	
151	31	458	5.5	26.3	33	534	5922	
-31		.50		20.3	33	334	3722	
				June 1	971			
152	1	475	8.3	56 .7	1546	16183	51 27	
153	2	623	7.7	57.2	5700	18378	5160	
154	13	646	4.4	48.8	1362	4072	5577	
155	4	589	5.4	60.6	2683	9932	-	
156	5	487	3.4	48.7	214	1815	_	
157	6	461	4.4	60.2	347	5109	_	
158	7	431	3.5	31.5	1.11	397	13848	
159	8	451	4.3	55.8	185	3983	-	
160	9	375	4.2	52.1	-386	2617	_	
161	10	393	5.5	26.1	-41	440	-	
162	11	416	4.2	57 . 7	-128	3782	· _	
163	12	342	4.2	62.7	-947	3690	_	
164	13	339	5.7	71.5	-2402	8906	_	
165	14	312	5.2	67.5	-2328	6169	6413	
166	15	306	4.8	52.5	-1124	2759	5643	
167	16			49.5		5918	-	
168	17		8.2		-82	3236	-	
169	18		4.7	42.0		1819	_	
170	19		4.5		-75	482	_	
171	20		4.8			2019	_	
172	21	-		62.3	-	_	_	
173	22		3.6		-482		81 83	
174	23		8.9		-1456	6249	5441	
175	24		7.3		-1450 -51	182	5157	
176	25	-		63.4	-21	-	5093	
177	26		4.7		630	2623	4569	
178	27		3.3	54.2	-1.6	2018	4841	
179	28		5.3	53.4				
180	20 29		8.6	51.5	-090	4266	4091 5395	
181	30		4.5			2000		
TOT	30	נטכ	4.5	40.7	470	2080	5357	

Day	Date	V sw	F	θ*	AK-I	AK-II	M(t).	
				July 197	1	·		
182	1	530	4.4	55.0	891	4707	4079	
183	2	539	5.7	56.8		8438	4750	
184	3	_	4.7	40.3	-	-	5000	
185	4	461	4.9	73.6	637	9375	5193	
186	5	461	4.8	47.7	215	3169	4342	
187	6	424	5.9	32.0	-16	1164	5076	
188	7	395	5.4	24.1	-2 9	323	5500	
189	8	-	6.1	52.3		-	5417	
190	9	443	6.8	39.1	98	32 55	4892	
191	10	335	4.8	34.4	~ ~22 5′ \	796	4924	
192	11	31 7	6.1	53.3	- 1732	4866	4643	
193	12		8.4	29.5		_	4900	
194	13	427	7.0	48.6		6687	4621	
195	14	496	6.2	37.0	326	2467	5119	
196	15	477	5.2	41.7	243	2484	5093	
197	. 16	_	3.4	49.1	_	~	5625	
198	17	369	4.0	33.0		51.2	4643	
199	18	385	5.9	47.5		3945	4881	
200	19	427	8.3	43.4	-51	6555	4537	
201	20	-	5.7	33.3	-	-	4100	
202	21	425	5.8	50.7	-60	5104	31 82	
203	22	-	10.7	19.1	-	- 01 1	5938	
204	23	368	7.4	20.6	- 52	311	71.75	
205	24	-	6.2	30.5	-	-	7941	
206	25	-	4.0	53.9 39.0	- 100	2833	8000	
207	26 27	404 492	6.7 7.4	31.8	-1 82 262	2071	<u>-</u>	
208	27	492	7.4 4.4	27.1	202 -	2071	-	
209	28 29	_	5.6	56.7	_	_	_	
210	30	_	8.1	50.9	_	_	576 9	
211 212	31	_	8.6	42.2		_	5370	
212	JI.	_	0.0	42.2	_		3370	
				August	1971			
213	1		5.0	40.5			51 32	
214	2		5.7	51.7			5385	
215	3		3.1	39.4			4436	
216	4		7.1	37.5			5357	
217	5		7.9	48.0			5834	
218	6		4.9	28.6			J -	
219	7		8.3	58.6			_	
220	8		8.1	64.6			5648	
221	9		7.4	53.0			4000	
222	10		8.0	40.9			4342	
223	11		5.5	36.5			5132	
224	12		4.8	54.5			51 00	

Day	Date	v sw	.	0.	AK-I	AK-II	M(t)		
225	13		.8 5	5.8			4423		
226	14	2		9.6			4537		
227	15			6.4			4834		
228	16			1.9			3611	-	
229	17			2.4			5682	•	
230	18	10		7.0			_		
231	19			2.8			_		
232	20			9.2			5000		
233	21			2.3	:		5385		
234	22			8.9			4039		
235	23			4.4	•		4792		
236	24			9.6			5500		
237	25			4.8		•	5000		
238	26			9.7			4643		
239	27			1.2			4543 4537		
240	28			4.2					
241	29			6.3			2955		
241	30			3.7			4584		
242	31			1.6			4700		
243	JI	J	.4 3	1.0			4722		
	•		S	epter	mber 1971				
244	1			0.3	•		. 3929		
245	2			2.7			13335		
246	3	3	.3 7	3.0			7000		
247	4	4	.9 4	6.8			6250		
24 8	5	7	.4 5	5.6			5769		
249	6	7	.9 4	3.5			· 4674		
250	7	6	.3 5	6.0	•		593 8		
251	8	. 3	.3 5	8.8			4947		
252	9	3	6 4	4.5			4211		
253	10	3	.7 5	6.7			4519		
254	11			7.2			4885		
255	12			9.0			5000		
256	13			8.1			4079		
257	14	4.		7.4			~		
258	15			0.6			4167		
259	16	4.		6.4	•		4436		
260	17	4.		9.6					
261	18	8.		6.3			~		
262	19	6.		7.0			~		
263	20	4.		6.9					
264	21	4.		0.9			_		
265	22	4.		6 . 9					
266	23	-		_			_		
267	24	5.		7.3			4688		
268	25	10.		5.5			5599		
		9.		0.3			4677		
269	2 6	ч	5 741						

Dan	Doto	V	F	Θ'	AK-I	AK-II	M(t)()
Day	Date	ัรพ			AK-1	MC-II	
271	-28		3.6	33.2			5300 5068
272 273	29 30		3.1 6.7	38.6 52.8			5000
213	50		0.7			•	3000
				October	1971		
274	1				,		5423
275	1 2 3						5656
276 277	4						5625 6134
278	5						4902
279	5 6						5602
280	7			•			5556
281	8			•			4590
282 283	9 10			٠.			5294 5483
284	11						6200
285	12					\	6155
286	13			•		•	51.37
287	14			•	. •		5750
288	15		•				5738
289	16 17						5379 5293
290 291	18						5416
292	19						6125
293	20						5626
2 94	21						7318
295	22		·				6091
296 297	23 24						6230 6611
298	25 25						6037
299	26						6210
300	27						6746
301	28						5648
302	29						5500
303 304	30 31						5900 5648
304	<i>3</i> 1						3040
				Novembe:	r 1971		
305	1						5056
306	2						6 30 5
307	3						6364
308	4						6030
309 310	5 6						5658 5798
311	7						5970
312	8						5556
313	9						5782

Day	Date	V sw	F	θ'	AK-I	AK-II	M(t)
31 4 31 5 31 6 31 7 31 8 31 9 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30						5766 4798 6346 5798 6011 5695 5900 5427 5761 5479 6448 5521 5500 5870 6137 7267 7206 7631 8126 7381
				Decemb	er 1971		
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16			I A CONTRACT OF THE CONTRACT O			9999 8965 8587 7568 7639 7985 8270 6923 7046 7682 6343 7232 7094 6000 6207 6475
end							

end