

Speaker: Paul PETON

- Tech Lead Intelligence Artificielle
- Data Platform & Al MVP since 2018
- Co-animateur du podcast

• GitHub.com/methodidacte/meetups

Award Categories
Al, Data Platform

First year awarded: 2018

Number of MVP Awards:

Agenda

- MLOps dans une coquille de noix
- Les niveaux de maturité du MLOps
- Une stack MLOps sur Azure
 - Par où commencer ?
 - L'architecture sous-jacente
 - Distinguer les familles de composants
 - Piocher dans la « boîte à outils »
 - Utiliser plusieurs environnements

Déployer une stack MLOps sous Azure : gagnez progressivement en maturité

people dealing with process on a platform (DALL.E)

MLOps dans une coquille de noix

- Pourquoi industrialiser?
 - Pour diminuer les coûts (d'opérations manuelles, d'erreurs...)
 - Pour augmenter la qualité (par des opérations testées et automatisées)
 - Pour **réduire le temps de mise en production** (*time to market*)
- MLOps = ML + DevOps, mais pas que
 - Framework complet : design + model development + operations
 - Des niveaux de maturité
 - Une **stack** construite à partir d'un **tooling** vaste et mouvant
 - Sites de référence :
 - https://ml-ops.org/
 - https://mlops-guide.github.io/
- Une complexité forte liée à la nature de l'apprentissage automatique
 - Notion de reproductibilité
 - Notions de **dérive** (*drift*)

Les points de tension à résoudre

- La collaboration entre les Data Scientists
- Le temps passé et les efforts pour déployer les modèles
- La non **performance** des modèles lors de l'inférence
- La **gouvernance** des modèles et des données d'entrainement

What is your Al readiness?

Tracking

Maturité – niveau 0

- Suivre les **performances** des entrainements

- Assurer le **linéage** "code – data – model"

Tracking et versioning des modèles avec **mlflow**

CI: tests automatisés et packaging du code

CD: déploiement de modèle par CLI

Drift detection avec Azure Machine Learning

Stack MLOps dans Azure

Un exemple parmi tant d'autres

L'architecture sous-jacente : le *lake house*

- ... sauf si vous êtes déjà passé au *Data Mesh*!
- Un lac de données qui centralise tout, découpé en couches :
 - Brute
 - Raffinée
 - Valeur métier
- Des outils transverses
 - Dont les **registres**

Lire des papiers de recherche?

Figure 4. End-to-end MLOps architecture and workflow with functional components and roles

Build your open-source MLOps stack?

Explore tools and components of the MLOps stack. Select any tool to find more about it. Add it to build your own stack.

https://mymlops.com/

Les trois pipelines (de code) du Machine Learning

Data	Data Ingestion
Engineering Pipelines	Exploration and Validation
	Data Wrangling
	Data Splitting
ML	Model Training
Pipelines /	Model Evaluation
workflows	Model Testing
	Model Packaging
Model Serving	Batch
	On-demand (microservices, REST API)

Distinguer les familles de composants

https://ml-ops.org/content/end-to-end-ml-workflow

Distinguer les familles de composants

Code

Registr

Pipeline

Monitoring

Pipeline

Data preparation

Code versionné dans un

Repository Gi

Model training

Artefact de modèle déposé dans un

Model Registry

Model serving

Image (Docker) déposée dans un

Container Registry

Monitoring

Inclut la détection de la dérive

Our version of MLOps Stack template

Pipeline

Registry

Monitoring

Our MLOps Stack on Microsoft Azure

In a multiple environments context

Production

Pipeline

User Acceptance Tests

Development

Oh, que je préfère,
à un mouton à cinq pattes,
les doigts de la main

A five-legged unicorn and a giant hand with human fingers comicbook style by J.M.W. Turner