Design and Analysis of Algorithm

Mahesh Shirole,

VJTI, Mumbai-19.

Dynamic Programming (DP)

- DP is a powerful algorithm design technique to solve combinatorial optimization problems
- Optimization problems can have many possible solutions
- Each solution has a value, and we wish to find a solution with the optimal (*minimum or maximum*) value
- We call such a solution an optimal solution to the problem, as opposed to the optimum solution, since there may be several solutions that achieve the optimal value
- When developing a dynamic-programming algorithm, we follow a sequence of four steps:
 - Characterize the structure of an optimal solution
 - Recursively define the value of an optimal solution
 - Compute the value of an optimal solution, typically in a bottom-up fashion
 - Construct an optimal solution from computed information

Dynamic Programming (DP)

Richard Bellman first used the term *dynamic programming* to describe a type of problem in which the most efficient solution depended on choices that may change with time instead of being predetermined

- Dynamic programming is similar to divide-and-conquer in that an instance of a problem is divided into smaller instances
- Divide-and-conquer algorithms partition the problem into disjoint sub-problems, solve the sub-problems recursively, and then combine their solutions to solve the original problem
- In contrast, dynamic programming applies when the *sub-problems overlap*—that is, when sub-problems share sub-sub-problems
- A dynamic-programming algorithm solves each sub-sub-problem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time it solves each sub-subproblem

Dynamic Programming (DP)

- There are usually two equivalent ways to implement a dynamic-programming approach
 - Top-down with memoization: In this approach, we write the procedure recursively in a natural manner, but modified to save the result of each sub-problem (usually in an array or hash table). The procedure now first checks to see whether it has previously solved this sub-problem. If so, it returns the saved value, saving further computation at this level; if not, the procedure computes the value in the usual manner
 - Bottom-up method: In this approach, we sort the sub-problems by size; and solve them in size order, smallest first. We solve each sub-problem only once, and when we first see it, we have already solved all of its prerequisite sub-problems
- These two approaches yield algorithms with the same asymptotic running time
- The bottom-up approach often has much better constant factors, since it has less overhead for procedure calls

Fibonacci sequence

- Fibonacci sequence: f1 =1, f2 =1, f3 =2, f4 =3, f5 =5, f6 =8, f7 =13,....
- Each number in the sequence 1, 2, 3, 5, 8, 13,... is the sum of the two preceding numbers

$$f(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2, \\ f(n-1) + f(n-2) & \text{if } n \ge 3. \end{cases}$$

- 1. procedure f(n)
- 2. if (n = 1) or (n = 2) then return 1
- 3. else return f(n-1) + f(n-2)

Is this algorithm is efficient?

Fibonacci sequence

$$f(n) = f(n-1) + f(n-2)$$

$$= 2f(n-2) + f(n-3)$$

$$= 3f(n-3) + 2f(n-4)$$

$$= 5f(n-4) + 3f(n-5).$$

There are many duplicate recursive calls to the procedure

Fibonacci sequence

Top-down Approach (memoization)

- 1. procedure *f(n)*
- 2. if *n* in *Memo* return *Memo[n]*
- 3. Memo[1]=Memo[2]=1
- 4. if (n = 1) or (n = 2) then return 1
- 5. else
- 6. sub-prob-sol= f(n 1) + f(n 2)
- 7. *Memo[n]=sub-prob-sol*
- 8. return *sub-prob-sol*

Bottom-up Approach (iterative)

- 1. procedure f(n)
- 2. if *n*<=2
- 3. *Table[1]=Table[2]=*1 return 1
- 4. for (i=3; i=< n; i++)
- 6. return *Table[n]*

Assembly Line Scheduling in Manufacturing Sector

- Problem Statement: A manufacturing company has two assembly lines, each with n stations. A station is denoted by $S_{i,j}$ where i denotes the assembly line the station is on and j denotes the number of the station. The time taken per station is denoted by $a_{i,j}$. Each station is dedicated to do some sort of work in the manufacturing process. So, a chassis must pass through each of the n stations in order before exiting the company. The parallel stations of the two assembly lines perform the same task. After it passes through station $S_{i,j}$, it will continue to station $S_{i,j+1}$ unless it decides to transfer to the other line. Continuing on the same line incurs no extra cost, but transferring from line i at station j-1 to station j on the other line takes time $t_{i,j}$. Each assembly line takes an entry time e_i and exit time x_i . Give an algorithm for computing the minimum time from start to exit.
- Objective: To find the optimal scheduling i.e., the fastest way from start to exit.
- Note: let f_i [j] denotes the fastest way from start to station $S_{i,i}$.

Optimal Substructure

- An optimal solution to a problem is determined using optimal solutions to subproblems (in turn, sub subproblems and so on). The immediate question is, how to break the problem in to smaller sub problems?
- The answer is: if we know the minimum time taken by the chassis to leave station $S_{i,j-1}$, then the minimum time taken to leave station $S_{i,j}$ can be calculated quickly by combining $a_{i,j}$ and $t_{i,j}$

Final Solution:
$$f^{OPT} = \min\{f_1[n] + x_1, f_2[n] + x_2\}$$
.
Base Cases: $f_1[1] = e_1 + a_{1,1}$ and $f_2[1] = e_2 + a_{2,1}$.

Recursive Solution

• The chassis at station $S_{1,j}$ can come either from station $S_{1,j-1}$ or station $S_{2,j-1}$ (Since, the tasks done by $S_{1,j}$ and $S_{2,j}$ are same). But if the chassis comes from $S_{2,j-1}$, it additionally incurs the transfer cost to change the assembly line. Thus, the recursion to reach the station j in assembly line j are as follows:

$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1\\ \min \{f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j} \} & \text{if } j \ge 2 \end{cases}$$

$$f_2[j] = \begin{cases} e_2 + a_{2,1} & \text{if } j = 1\\ \min \{f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j} \} & \text{if } j \ge 2 \end{cases}$$

Assembly Line Scheduling Problem with Six Stations

1 0

The algorithm: **Fastest-way**(a, t, e, x, n) Source: CLRS

where a denotes the assembly costs, t denotes the transfer costs, e denotes the entry costs, x denotes the exit costs and n denotes the number of assembly stages.

- $1.f_1[1] = e_1 + a_{1,1}$
- $2.f_2[1] = e_2 + a_{2,1}$ 3. for j = 2 to n
- 4. if $((f_1[j-1] + a_{1,j}) \le (f_2[j-1] + t_{2,j-1} + a_{1,j}))$ then
- 5. $f_1[j] = f_1[j-1] + a_{1,j}$ and $l_1[j] = 1$ /* l_p denotes the line p */
- 6. else
- 7. $f_1[j] = f_2[j-1] + t_{2,j-1} + a_{1,j} \text{ and } l_1[j] = 2$
- 8. if $((f_2[j-1] + a_{2,j}) \le (f_1[j-1] + t_{1,j-1} + a_{2,j}))$ then
- 9. $f_2[j] = f_2[j-1] + a_{2,j}$ and $l_2[j] = 2$
- 10. else
- 11. $f_2[j] = f_1[j-1] + t_{1,j-1} + a_{2,j}$ and $l_2[j] = 1$
- 12. end for
- 13. if $(f_1[n] + x_1 \le f_2[n] + x_2)$ then
- 14. $f^{OPT} = f_1[n] + x_1$ and $l^{OPT} = 1$
- 15. else
- 16. $f^{OPT} = f_2[n] + x_2 \text{ and } l^{OPT} = 2$

Trace of the algorithm

```
Iteration 1: j = 1 and j = 2
f_1[1] = e_1 + a_{1,1} = 2 + 7 = 9 and start = S_{1,1}
f_2[1] = e_2 + a_{2,1} = 4 + 8 = 12 and start = S_{2,1}
f_1[2] = \min\{f_1[1] + a_{1,2}, f_2[1] + t_{2,1} + a_{1,2}\} = \min\{9 + 9, 12 + 2 + 9\} = 18, l_1[2] = 1
f_2[2] = \min\{f_2[1] + a_{2,2}, f_1[1] + t_{1,1} + a_{2,2}\} = \min\{12 + 5, 9 + 2 + 5\} = 16, l_2[2] = 1
Iteration 2: j=3
f_1[3] = \min\{f_1[2] + a_{1,3}, f_2[2] + t_{2,2} + a_{1,3}\} = \min\{18 + 3, 16 + 1 + 3\} = 20, l_1[3] = 2
f_2[3] = \min\{f_2[2] + a_{2,3}, f_1[2] + t_{1,2} + a_{2,3}\} = \min\{16 + 6, 18 + 3 + 6\} = 22, l_2[3] = 2
Iteration 3: i=4
f_1[4] = \min\{f_1[3] + a_{1,4}, f_2[3] + t_{2,3} + a_{1,4}\} = \min\{20 + 4, 22 + 2 + 4\} = 24, l_1[4] = 1
f_2[4] = \min\{f_2[3] + a_{2,4}, f_1[3] + t_{1,3} + a_{2,4}\} = \min\{22 + 4, 20 + 1 + 4\} = 25, l_2[4] = 1
Iteration 4: j=5
f_1[5] = \min\{f_1[4] + a_{1.5}, f_2[4] + t_{2.4} + a_{1.5}\} = \min\{24 + 8, 25 + 2 + 8\} = 32, l_1[5] = 1
f_2[5] = \min\{f_2[4] + a_{2.5}, f_1[4] + t_{1.4} + a_{2.5}\} = \min\{25 + 5, 24 + 3 + 5\} = 30, l_2[5] = 2
Iteration 5: i = 6
f_1[6] = \min\{f_1[5] + a_{1.6}, f_2[5] + t_{2.5} + a_{1.6}\} = \min\{32 + 4, 30 + 1 + 4\} = 35, l_1[6] = 2
f_2[6] = \min\{f_2[5] + a_{2.6}, f_1[5] + t_{1.5} + a_{2.6}\} = \min\{30 + 7, 32 + 4 + 7\} = 37, l_2[6] = 2
Optimum Schedule: \min\{f_1[6] + x_1, f_2[6] + x_2\} = \{35 + 3, 37 + 2\} = 38 \; ; \; l^{OPT} = 1.
```


- Biological applications often need to compare the DNA of two (or more) different organisms
- A strand of DNA consists of a string of molecules called *bases*, where the possible bases are adenine (A), guanine (G), cytosine (C), and thymine (T)
- We express a strand of DNA as a string over the finite set {A, C, G, T}
- One reason to compare two strands of DNA is to determine how "similar" the two strands are, as some measure of how closely related the two organisms are

- For example, the DNA of one organism S_1 and another organism S_2
 - S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
 - S₂ = GTCGTTCGGAATGCCGTTGCTCTGTAAA
- We can define similarity in many different ways
 - 1. Two DNA strands are similar if one is a **substring** of the other
 - 2. Two strands are similar if the *number of changes needed to turn one into the other* is small
 - 3. To measure the similarity of strands S_1 and S_2 is by finding a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2 . These bases must appear in the same order, but not necessarily consecutively
- In our example, the longest strand
 - S₃ = GTCGTCGGAAGCCGGCCGAA

- Formally, given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $xi_j = z_j$
- For example Z= <B, C, D, B> is a subsequence of X =<A, B, C, B, D, A, B> with corresponding index sequence <2, 3, 5, 7>
- Given two sequences X and Y, we say that a sequence Z is a common subsequence of X and Y, if Z is a subsequence of both X and Y
- For example, if X=<A, B, C, B, D, A, B> and Y=<B, D, C, A, B, A>, the sequence <B, C, A> is a common subsequence of both X and Y
- The sequence <B, C, A> is not a longest common subsequence (LCS) of X and Y, however, since it has length 3
- The sequence <B, C, B, A>, which is also common to both X and Y, has length 4
- The sequence <B, C, B, A> is an LCS of X and Y, as is the sequence <B, D, A, B>, since X and Y have no common subsequence of length 5 or greater

- In the longest-common-subsequence problem, we are given two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ and wish to find a maximum length common subsequence of X and Y
- In a brute-force approach to solving the LCS problem, we would enumerate all subsequences of X and check each subsequence to see whether it is also a subsequence of Y, keeping track of the longest subsequence we find
- Each subsequence of X corresponds to a subset of the indices {1, 2, ..., m} of X
- Because X has 2^m subsequences, this approach requires exponential time, making it impractical for long sequences

Step 1: Characterizing a Longest Common Subsequence (LCS)

- The LCS problem has an optimal-substructure property
- As we shall see, the natural classes of subproblems correspond to pairs of "prefixes" of the two input sequences
- To be precise, given a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$, we define the i^{th} prefix of X, for $i = 0, 1, \ldots$, m, as $X_i = \langle x_1, x_2, \ldots, x_i \rangle$
- For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$ and X_0 is the empty sequence

Theorem 15.1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Step 2: A Recursive Solution

- Theorem 15.1 implies that we should examine either one or two subproblems when finding an LCS of $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$
- If $x_m = y_n$, we must find an LCS of X_{m-1} and Y_{n-1}
 - Appending $x_m = y_n$ to this LCS yields an LCS of X and Y
- If $x_m != y_n$, then we must solve two sub-problems:
 - finding an LCS of X_{m-1} and Y and
 - finding an LCS of X and Y_{n-1}
 - Whichever of these two LCSs is longer is an LCS of X and Y
- There is overlapping sub-problems property in the LCS problem

Step 2: A Recursive Solution

- Let us define c[i, j] to be the length of an LCS of the sequences X_i and Y_j
- If either i = 0 or j = 0, one of the sequences has length 0, and so the LCS has length 0
- The optimal substructure of the LCS problem gives the recursive formula

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Recursive Solution (Code)

```
def LCS(P, Q, n, m)
  if n == 0 or m == 0: // base case
    result = 0
  else if P[n-1] == Q[m-1]:
    result = I + LCS(P, Q, n-I, m-I)
  else if P[n-I] != Q[n-I]: // just for clarity
    tmpl = LCS(P, Q, n-l, m)
    tmp2 = LCS(P, Q, n, m-I)
    result = max{ tmp I, tmp2 }
  return result
```

Analysis of Recursive Solution

Memorize Intermediate Results

```
// Initialize arr[n][m] to undefined
def LCS(P, Q, n, m)
  if arr[n][m] != undefined: return arr[n][m]
  if n == 0 or m == 0:
    result = 0
  else if P[n-1] == Q[m-1]:
    result = I + LCS(P, Q, n-I, m-I)
  else if P[n-I] != Q[n-I]: // just for clarity
     tmpl = LCS(P, Q, n-l, m)
    tmp2 = LCS(P, Q, n, m-1)
     result = max{ tmp1, tmp2 }
  arr[n][m] = result
  return result
```

Step 3: Computing the length of an LCS

- Dynamic programming to compute the solutions bottom up
- Procedure LCS-LENGTH takes two sequences X =<x₁,x₂, ..., x_m> and Y =
 <y₁, y₂, ..., y_n> as inputs
- It stores the c[i, j] values in a table c[0 .. m, 0 .. n], and it computes the entries in **row-major** order
- The procedure also maintains the table b[0 .. m, 0 .. n] to help us construct an optimal solution

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 \quad n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
   for i = 1 to m
    c[i,0] = 0
   for j = 0 to n
        c[0, j] = 0
 8 for i = 1 to m
         for j = 1 to n
             if x_i == y_i
10
                 c[i, j] = c[i-1, j-1] + 1
                 b[i,j] = "\\\"
12
             elseif c[i - 1, j] \ge c[i, j - 1]
13
                 c[i, j] = c[i - 1, j]
14
                 b[i,j] = "\uparrow"
15
             else c[i, j] = c[i, j - 1]
16
17
                 b[i,j] = "\leftarrow"
    return c and b
```

Step 3: Computing the length of an LCS

- Figure shows the tables produced by LCS-LENGTH on the sequences X =<A, B, C, B, D, A, 1 B> and Y =<B, D, C, A, B, A>
- To quickly construct an LCS simply begin at b[m, n] and trace through the table by following the arrows.
- Whenever we encounter a " Γ "in entry b[i, j], it implies that $\mathbf{x}_i = \mathbf{y}_i$ is an element of the LCS
- With this method, we encounter the elements of this LCS in reverse order
- The running time of the procedure is $\theta(mn)$, since each table entry takes $\theta(1)$ time to compute

j	0	1	2	3	4	5	6
	y_j	B	D	C	A	B	A
x_i	0	0	0	0	0	0	0
A	0	↑ 0	↑ 0	<u></u>	1	← 1	<u>\</u>
B	0	1	← 1	← 1	1	5	<u>+</u> 2
\overline{C}	0	1	↑ 1	2	←2	↑ 2	↑ 2
B	0	\	↑ 1	1 1 2	1 2	3	<u>-3</u>
D	0	1 1	\ 2	↑ 2	↑ 2	↑ 3	↑ 3
A	0	↑ 1	↑ 2	↑ 2	<u>\</u> 3	1 3	4
B		<u> </u>	1	1	1	<u> </u>	<u></u>

2

5

6

Step 4: Constructing an LCS

- The following recursive procedure prints out an LCS of X and Y in the proper, forward order.
- The initial call is PRINT-LCS(b,X, X.length, Y.length)

PRINT-LCS
$$(b, X, i, j)$$

- 1 **if** i == 0 or j == 0
- 2 return
- 3 **if** b[i, j] == """
- 4 PRINT-LCS(b, X, i 1, j 1)
- 5 print x_i
- 6 **elseif** $b[i, j] == "\uparrow"$
- 7 PRINT-LCS(b, X, i 1, j)
- 8 **else** PRINT-LCS(b, X, i, j 1)

;	0	1	2	3	4	5	6

 X_i

B

y_j	B	D	C	A	B	A
0	0	0	0	0	0	0
0	↑ 0	<u> </u>	<u> </u>	\1	<u>↓</u>	\1
0	\	←1	←1	1	<u></u>	←2
	↑ 1	1	2	←2	↑ 2	↑ 2
0	\	1	↑ 2	1	_2	<u>∠</u> ←2
	1	7	↑ 2	↑ 2	↑ 2	1 1
	1	1	↑ 2	_3	<u></u>	5
	\	1	1	1	<u> </u>	1

Matrix Chain Multiplication

- Suppose we want to compute the product M1M2M3 of three matrices M1,M2,and M3 of dimensions 2×10 , 10×2 , and 2×10 , respectively, using the standard method of matrix multiplication
- If we multiply M1 by the result of multiplying M2 and M3, then the number of scalar multiplications becomes $10 \times 2 \times 10 + 2 \times 10 \times 10 = 400$
- If we multiply M1 and M2 and then multiply the result by M3, the number of scalar multiplications will be $2\times10\times2+2\times2\times10=80$
- Thus, carrying out the multiplication M1(M2M3) costs five times the multiplication (M1M2)M3
- In general, the cost of multiplying a chain of n matrices M1M2 ...Mn depends on the order in which the n-1 multiplications are carried out

Matrix Chain Multiplication

- An order which minimizes the number of scalar multiplications can be found in many ways
- Consider, for example, the brute-force method that tries to compute the number of scalar multiplications of every possible order
- For instance, if we have four matrices M1,M2,M3,and M4, the algorithm will try all the following five orderings:
 - (M1(M2(M3M4)))
 - (M1((M2M3)M4))
 - ((M1M2)(M3M4))
 - ((M1M2)M3)M4))
 - ((M1(M2M3))M4)

Matrix-chain multiplication

• We are given a sequence (chain) <A1, A2, . . . , An> of *n* matrices to be multiplied, and we wish to compute the product

```
(...((A1*A2)*A3)...)*An)
```

- Matrix multiplication is associative, and so all parenthesizations yield the same product
- A product of matrices is fully parenthesized, if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses
- For example, if the chain of matrices is <A1, A2, A3, A4>, then we can fully parenthesize the product A1A2A3A4 in five distinct ways
- How we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product

SQUARE-MATRIX-MULTIPLY

- The attributes rows and columns are the numbers of rows and columns in a matrix
- We can multiply two matrices A and B only if they are compatible: the number of columns of A must equal the number of rows of B
- If A is a p X q matrix and B is a q X r matrix, the resulting matrix C is a p X r matrix
- The time to compute C is dominated by the number of scalar multiplications in line 8, which is pqr

```
MATRIX-MULTIPLY (A, B)
   if A.columns \neq B.rows
        error "incompatible dimensions"
   else let C be a new A.rows \times B.columns matrix
        for i = 1 to A. rows
             for j = 1 to B. columns
                 c_{ii} = 0
                 for k = 1 to A. columns
                      c_{ii} = c_{ii} + a_{ik} \cdot b_{ki}
9
        return C
```

Matrix-chain multiplication

- The matrix-chain multiplication problem is stated as follows: given a chain <A1, A2, . . . , An> of *n* matrices, where for i = 1, 2, . . . , n, matrix Ai has dimension pi 1 X pi, fully parenthesize the product A1A2 . . . An in a way that *minimizes* the number of *scalar multiplications*
- Note that in the matrix-chain multiplication problem, we are not actually multiplying matrices
- Our goal is only to determine an order for multiplying matrices that has the lowest cost
- Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications

Counting the number of parenthesizations

- Denote the number of alternative parenthesizations of a sequence of n matrices by P(n)
- When n = 1, we have just one matrix and therefore only one way to fully parenthesize the matrix product
- When $n \ge 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts, and the split between the two subproducts may occur between the k^{th} and $(k + 1)^{st}$ matrices for any k = 1, 2, ..., n 1
- Thus, we obtain the recurrence

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

The recurrence is the sequence of Catalan numbers, which grows as $\Omega(4^n/n^{3/2})$

Applying dynamic programming

- Use the dynamic-programming method to determine how to optimally parenthesize a matrix chain
- 1. Characterize the structure of an optimal solution
- 2. Recursively define the value of an optimal solution
- 3. Compute the value of an optimal solution
- 4. Construct an optimal solution from computed information

Step 1: The structure of an optimal parenthesization

- Let us adopt the notation $A_{i...j}$, where $i \le j$, for the matrix that results from evaluating the product $A_i A_{i+1} \dots A_j$
- If the problem is nontrivial, i.e., i < j, then to parenthesize the product $A_i A_{i+1} \dots A_j$, we must split the product between A_k and A_{k+1} for some integer k in the range i <= k < j
- That is, for some value of k, we first compute the matrices $A_{i...k}$ and $A_{k+1...j}$ and then multiply them together to produce the final product $A_{i...j}$
- The cost of parenthesizing this way is the cost of computing the matrix $A_{i...k}$, plus the cost of computing $A_{k+1...i}$, plus the cost of multiplying them together
- Thus, an optimal solution to an instance of the matrix-chain multiplication problem by splitting the problem into two subproblems (optimally parenthesizing $A_iA_{i+1} \dots A_k$ and $A_kA_{k+1} \dots A_j$), finding optimal solutions to subproblem instances, and then combining these optimal subproblem solutions

Step 2: A recursive solution

- Define the cost of an optimal solution recursively in terms of the optimal solutions to subproblems
- Let m[i, j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$; for the full problem, the lowest cost way to compute $A_{1...n}$ would thus be m[i, n]
- If i = j, the problem is trivial
 - the chain consists of just one matrix $A_{i..i} = A_i$, so that no scalar multiplications are necessary to compute the product
 - Thus, m[i, j]=0 for i = 1, 2, ..., n
- If i < j, we split the product $A_i A_{i+1} ... A_j$ between A_k and A_{k+1} for some integer k in the range i <= k < j
 - $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1} p_k p_j$
 - There are only j i possible values for k, however, namely k = i, i +1, . . . , j -1
 - Since the optimal parenthesization must use one of these values for k, we need only check them all to find the best

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j. \end{cases}$$

Step 3: Computing the optimal costs

- This procedure assumes that matrix A_i has dimensions $p_{i-1} \times p_i$ for i = 1, 2, ..., n
- Its input is a sequence $p = \langle p_0, p_1, ..., p_n \rangle$, where p.length = n + 1
- The procedure uses an auxiliary table m[1
 .. n, 1 .. n] for storing the m[i, j] costs and
 another auxiliary table s[1 .. n-1, 2 .. n]
 that records which index of k achieved the
 optimal cost in computing m[i, j]
- We use the table s to construct an optimal solution

```
MATRIX-CHAIN-ORDER (p)
```

```
1 \quad n = p.length - 1
2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
 3 for i = 1 to n
        m[i,i] = 0
   for l = 2 to n // l is the chain length
        for i = 1 to n - l + 1
            j = i + l - 1
            m[i, j] = \infty
            for k = i to j - 1
                 q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
10
                if q < m[i, j]
                     m[i,j] = q
12
                                            O(n^3)
                     s[i, j] = k
13
```

14 **return** m and s

Step 3: Computing the optimal costs

d=2 d=3 d=4 d=5C[1,5]C[2,4]C[2,5]C[2,3]C[3,5]C[3,3] $C[4,\!5]$ C[5, 5]C[6,6]6

 $M_1: 5 \times 10, \quad M_2: 10 \times 4, \quad M_3: 4 \times 6, \quad M_4: 6 \times 10, \quad M_5: 10 \times 2.$

C[1,1] = 0	C[1,2] = 200	C[1,3] = 320	C[1,4] = 620	C[1,5] = 348
	C[2,2] = 0	C[2,3] = 240	C[2,4] = 640	C[2,5] = 248
		C[3,3] = 0	C[3,4] = 240	C[3, 5] = 168
			C[4,4] = 0	C[4,5] = 120
				C[5,5] = 0

Figure 15.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n=6 and the following matrix dimensions:

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15 × 5	5×10	10×20	20×25

Step 4: Constructing an optimal solution

- call PRINT-OPTIMAL-PARENS(s,1,n) prints an optimal parenthesization
- Each entry s[i, j] records a value of k such that an optimal parenthesization of $A_iA_{i+1} \dots A_j$ splits the product between A_k and A_{k+1}
- For example, the call PRINT-OPTIMAL-PARENS(s,1,6) prints the parenthesization

((A1(A2A3))((A4A5)A6))

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35 × 15	15 × 5	5 × 10	10×20	20×25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of scalar multiplications to multiply the 6 matrices is m[1, 6] = 15,125. Of the darker entries, the pairs that have the same shading are taken together in line 10 when computing

$$m[2,5] = \min \begin{cases} m[2,2] + m[3,5] + p_1 p_2 p_5 &= 0 + 2500 + 35 \cdot 15 \cdot 20 &= 13,000 ,\\ m[2,3] + m[4,5] + p_1 p_3 p_5 &= 2625 + 1000 + 35 \cdot 5 \cdot 20 &= 7125 ,\\ m[2,4] + m[5,5] + p_1 p_4 p_5 &= 4375 + 0 + 35 \cdot 10 \cdot 20 &= 11,375 \end{cases}$$

$$= 7125 .$$