Grame of Life

Rules: -

For cell value == 1:
1) If no. of neighbouring living cell < 2 or >3

then the cell dies (i.e., becomes 0)

2) If no. of neighbouring living cells is enactly equals to 2 or 3 then the cell remains alive (i.e., Stayse 1)

For cell value == 0:
1) If no. of neighbouring living cells is exactly equals to 3 then the cell becomes alive (i.c., becomes 1)

2) If no. of neighbouring living cells is not equals to 3 then the cell remains dead (i.e., stays o).

Original State | Figual State | Intermediate State

· 1 / 1 : poil 1 ::

3

Two loops are neguired to solve this question: One loop to convert the original board to a board which contains 10/1/2/31. Another loop is used to replace all 2's, with I's and all 3's with 0's. Soj Loop 1:-) Find an no. of neighbouring living cells for each of the position. 2) If the position is Zero then if living Neighbours == 3 then board[1][4]= 2 3) If the position is I then if then board[i][j]=3 living Neighbours 1=3 Loop 2:Flip 3s to 0 and 2s to 1 inclusion: - Os remain Os. 1s remain 1s. If board[r][c] == 1 and livingNeighbours not in [2, 3], mark 3. If board[r][c] == 0 and livingNeighbours == 3: mark 2 *** Final loop: Flip all 3s to 0, all 2s to 1

Example:

Loop1:						
	0	1/3	0			
	201	0	1			
	£3	1	1			
	٥	p2	0			

Loop 2: (Replace 28 with 1 and 30 with 0)

Note: To count no. of neighbouring living cells we have to check all eight positions(if valid).

Whenever board[r][c] == 1 or

board[r][c] == 3 then it will be counted.

0	0	0			
1	0	1			
0	1	1			
0	1	0			

Note :-

			•
(i-1, j+	(i, j+1)	(i+1,j+1)	
(i-1,j)	(i,j)	(ؤرادند)	
(i-1,j-1)	(-i, j-1)	(i+1,j-1)	

MXY