§24.7: UDP Packets: Connectionless Client/Server

2 April 2007 CMPT167 Dr. Sean Ho Trinity Western University

Review last time

- IP, TCP vs. UDP
- **■** TCP server
 - ServerSocket object (in java.net)
 - accept()
 - Socket object
 - .getInputStream()
- TCP client
- Servers and multithreading

Quiz 5 (10 minutes)

- What is object serialization? What is needed for our objects to be serializable?
 [4]
- What kind of stream is used to output a serialized object? What method is used to actually do the output?
 [3]
- What is buffered I/O, and why do we care? [4]
- Contrast TCP with UDP. [4]
- Write Java code to open the file "input.dat" for reading, move to the 200th byte, and read an integer stored in binary format. (multiple possible solutions)

Quiz 5: answers #1-2

- What is object serialization? What is needed for our objects to be serializable?
 - Formatting the data in an object for I/O on a stream
 - Declare that the class implements Serializable
 - All instance variables must be Serializable, too
 - Unless declared transient
- What kind of stream is used to output a serialized object? What method is used to actually do the output?
 - ObjectOutputStream, .writeObject()

Quiz 5: answers #3-4

- What is buffered I/O, and why do we care?
 - I/O not immediately committed, but placed in intermediate buffer until ready for flush
 - Often better throughput from combining multiple writes
- Contrast TCP with UDP.
 - TCP: connection-oriented, more overhead
 - UDP: connectionless, no guarantee of delivery, packets may arrive out of order or duplicated

Quiz 5: answers #5

- Write Java code to open the file "input.dat" for reading, move to the 200th byte, and read an integer.
 - RandomAccessFile file = new RandomAccessFile("input.dat", "r");
 - file.seek(200);
 - int myint = file.readInt();

What's on for today

- Connectionless client/server networking with UDP
- Receiving a UDP packet (server)
- Sending a UDP packet (client)

Connectionless client/server

- TCP is connection-oriented
- UDP is connectionless
 - Send data one packet at a time
 - Similar to envelopes through CanadaPost
 - Fragment larger data into multiple packets
 - Packets might:
 - Not arrive at all
 - Arrive out of order
 - Get duplicated
 - Less overhead, better latency and possibly better throughput

Receiving a UDP packet

- DatagramSocket (in java.net):
 - * sock = new DatagramSocket(port);
 - Block/wait for a packet
 - sock.receive(packet);
- DatagramPacket:
 - Data payload:
 - byte data[] = new byte[100];
 - packet = new DatagramPacket(data, data.length);
 - Read packet:
 - packet.getData(), packet.getLength()
 - packet.getAddress(), packet.getPort()

Sending a UDP packet

- Prepare payload:
 - String msg = "Hello, World!";
 - data = msg.getBytes();
- Package payload:
 - packet = new DatagramPacket(data, length, hostname, port);
- Send packet:
 - socket.send(packet);

TODO

- Lab5 due Wed 11Apr:
 - File I/O
 - Store inventory and point-of-sale system
 - Worth 60 points
- Last day for submitting late labs is Fri 13Apr
- Last day of classes is Mon 16Apr
- Final exam is Fri 20Apr 2-4pm

