

Геометрические преобразования

Геометрические преобразования изображения включают в себя два этапа:

1. Определение нового местоположения пикселов

2. Определение значений пикселов на новом изображении

Виды геометрических преобразований

- Линейные
 - Проективные
 - Аффинные
 - Евклидовы
- Нелинейные
 - Полиномиальные
 - Кусочно-линейные
 - Сплайн-преобразование

— ...

Линейные геометрические преобразования

$$\mathbf{x} = \mathbf{T}\mathbf{x}$$

Проективные:

Т – невырожденная матрица произвольного вида

Аффинные, евклидовы:

Т – невырожденная матрица специального вида

Однородные координаты

Однородными координатами называют тройки (\bar{x}, \bar{y}, w) чисел (одновременно не равные нулю), связанные с обычными координатами точек плоскости соотношением:

Однородные координаты

Евклидовы преобразования (преобразования движения), традиционно описываемые в матричной форме так:

где ${\bf R}$ -- матрица поворота на угол φ , ${\bf t}$ -- вектор сдвига, в однородных координатах записываются более компактно:

$$\frac{\mathbf{x}}{1} = \frac{\mathbf{R}}{\mathbf{\theta}^t} \quad \frac{\mathbf{t}}{1} \quad \mathbf{x} \quad \mathbf{\theta} = \begin{array}{c} 0 \\ 0 \end{array}.$$

Евклидовы преобразования

Евклидовы преобразования

Любое евклидово преобразование может быть сконструировано из двух базовых преобразований:

- сдвиг;
- поворот.

Евклидовы преобразования

Аффинные преобразования

$$x = ax + by + c,$$

 $y = dx + ey + f,$ $x = Ax + c, x = \begin{cases} x \\ y \end{cases}, A = \begin{cases} a & b \\ d & e \end{cases}, c = \begin{cases} c \\ f \end{cases}$

$$\frac{\mathbf{x}}{1} = \frac{\mathbf{A}}{\mathbf{\theta}^t} \quad \frac{\mathbf{c}}{1} \quad \mathbf{x} \quad \mathbf{\theta} = \begin{array}{c} 0 \\ 0 \end{array}.$$

Аффинные преобразования

Любое аффинное преобразование может быть сконструировано из нескольких базовых преобразований:

- сдвиг;
- масштабирование;
- поворот;
- CKOC.

Проективные преобразования

Перспективные преобразования

Реализация масштабирования: простые способы

Реализация масштабирования: более общий подход

Методы интерполяции значений пикселов

Интерполяция по ближайшему соседу

Интенсивность пиксела на результирующем изображении отождествляется с интенсивностью пиксела наименее удаленного от его прообраза на исходном изображении.

- обобщение линейной интерполяции одной переменной для функций двух переменных.

Обобщение основано на применении обычной линейной интерполяции сначала в направлении одной из координат, а затем в перпендикулярном направлении.

Билинейная интерполяция рассматривает квадрат 2х2 известных пикселя, окружающих неизвестный. В качестве интерполированного значения используется взвешенное усреднение этих четырёх пикселей. В результате изображения выглядят значительно более гладко, чем результат работы метода ближайшего соседа.

Диаграмма относится к случаю, когда все известные пиксели равны, так что интерполированное значение просто является их суммой, поделенной на 4.

Интерполяция значения I(x',y') (показано красным цветом) по значениям I(x,y), I(x+1,y), I(x,y+1), I(x+1,y+1) (показаны желтым цветом)

$$\mathbf{I}(x',y') = \begin{bmatrix} 1-b & b \end{bmatrix} \begin{bmatrix} \mathbf{I}(x,y) & \mathbf{I}(x+1,y) \\ \mathbf{I}(x,y+1) & \mathbf{I}(x+1,y+1) \end{bmatrix} \begin{bmatrix} 1-a \\ a \end{bmatrix}$$

Восстанавливаемая поверхность – линейчатая (не является плоскостью). Ее сечения вдоль координатных плоскостей – прямые.

Интерполяция по ближайшему соседу и билинейная

abc def

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

- расширение кубической интерполяции на случай функции двух переменных, значения которой заданы на двумерной регулярной сетке. Поверхность, полученная в результате бикубической интерполяции, является гладкой функцией на границах соседних квадратов, в отличие от поверхностей, полученных в результате билинейной интерполяции или интерполяции методом ближайшего соседа.

Бикубическая интерполяция рассматривает массив из 4х4 окружающих пикселей — всего 16. Поскольку они находятся на разных расстояниях от неизвестного пикселя, ближайшие пиксели получают при расчёте больший вес. Бикубическая интерполяция производит значительно более резкие изображения, чем предыдущие два метода, и возможно, является оптимальной по соотношению времени обработки и качества на выходе. По этой причине она стала стандартной для многих программ редактирования изображений, драйверов принтеров и встроенной интерполяции камер.

Измерения на изображениях

Измерениям на изображениях довольно часто препятствуют искажения.

Изображение «в плане» Сохраняется ортогональность линий, контуры отверстий – окружности.

Изображение под углом
Нарушена ортогональность линий,
контуры отверстий — эллипсы
(аффинные искажения)

Примеры искажений на изображениях

Метод опорных точек

Параметры геометрического преобразования (функций f и g), устраняющего искажения на изображении, восстанавливается путем *интерполяции* по точкам, координаты которых известны как на искаженном так и на откорректированном изображении.

Таблица опорных точек

Искаженное изображение		Результирующее изображение	
и	v	x	y
u_1	v_1	x_1	\mathcal{Y}_1
u_2	v_2	x_2	\mathcal{Y}_2
	•••	•••	
u_N	v_N	x_N	\mathcal{Y}_N

Функция преобразования

$$x = f(u, v)$$
$$y = g(u, v)$$

Системы уравнений относительно параметров функций f и g

$$x_1 = f(u_1, v_1)$$

$$x_2 = f(u_2, v_2)$$

. . .

$$x_N = f(u_N, v_N)$$

$$y_1 = g(u_1, v_1)$$

$$y_2 = g(u_2, v_2)$$

...

$$y_N = g(u_N, v_N)$$

Вид уравнений в системах зависит от вида функций f и g. Для линейных преобразований — уравнения линейны.

$$x_{1} = a_{1}u_{1} + a_{2}v_{1} + a_{3}$$

$$x_{2} = a_{1}u_{2} + a_{2}v_{2} + a_{3}$$
...
$$x_{N} = a_{1}u_{N} + a_{2}v_{N} + a_{3}$$

$$y_{1} = b_{1}u_{1} + b_{2}v_{1} + b_{3}$$

$$y_{2} = b_{1}u_{2} + b_{2}v_{2} + b_{3}$$
...
$$y_{N} = b_{1}u_{N} + b_{2}v_{N} + b_{3}$$

$$U \cdot A = X$$

$$u_{1} \quad v_{1} \quad 1 \quad a_{1} \quad x_{1}$$

$$u_{2} \quad v_{2} \quad 1 \quad a_{2} = \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad a_{3} = \vdots$$

$$u_{N} \quad v_{N} \quad 1 \quad x_{N}$$

$$u_{1} \quad v_{1} \quad 1 \quad b_{1} \quad x_{N}$$

$$u_{2} \quad v_{2} \quad 1 \quad b_{2} = \vdots$$

$$\vdots \quad \vdots \quad \vdots \quad b_{3} = Y$$

$$U \cdot B = Y$$

Вид уравнений в системах зависит от вида функций f и g.

Нелинейные преобразования часто аппроксимируют полиномами двух переменных.

$$x = \int_{i=0}^{n} a_{ij} u^{i} v^{j}$$

$$y = \int_{i=0}^{n} b_{ij} u^{i} v^{j}$$

Пример для n = 2:

$$x = a_{00} + a_{01}v + a_{02}v^{2} + a_{10}u + a_{11}uv + a_{20}u^{2}$$
$$y = b_{00} + b_{01}v + b_{02}v^{2} + b_{10}u + b_{11}uv + b_{20}u^{2}$$

Выбор порядка *п* интерполирующего полинома – решение задачи о структуре и шуме в исходных данных.

На практике порядок полинома редко выбирается большим 3.

Параметры функций f и g отыскиваются из систем уравнений:

Решение переопределенных систем линейных уравнений

Система уравнений $U\cdot A=X$, как правило, переопределена, т.е. количество уравнений превышает количество переменных.

$$U = X$$

Параметры преобразования (вектор A) могут быть оценены, например, методом наименьших квадратов, т.е. выбраны так, чтобы минимизировать среднеквадратичную ошибку аппроксимации фактически «наблюдаемых» координат (X) их оценкой $(U\cdot A)$ для набора заданных опорных точек.

Глобальные и локальные преобразования

- Все рассмотренные выше типы преобразований относятся к глобальным
- Характер воздействия глобального преобразования не зависит от (местоположения) преобразуемой точки
- В некоторых случаях вид искажений может существенно зависеть от местоположения на изображении
- Трансформирующая функция должна моделировать локальные особенности искажений в каждой области изображения

Локальные преобразования

- Кусочно-линейное преобразование (метод конечных элементов)
- Функции радиального базиса
 - Функции Грина
 - Мультиквадрики Харди

Кусочно-линейное преобразование

- В зависимости от формы конечных элементов преобразование может быть
 - линейным(для треугольников)
 - билинейным(для прямоугольников)

Вид преобразования

$$x = a_0 + a_1 u + a_2 v$$
$$y = b_0 + b_1 u + b_2 v$$

$$x = a_0 + a_1 u + a_2 v + a_3 uv$$
$$y = b_0 + b_1 u + b_2 v + b_3 uv$$

Системы уравнений для поиска коэффициентов

$$x_0$$
 y_0 u_0 v_0 1 a_2 b_2
 x_1 y_1 = u_1 v_1 1 a_1 b_1
 x_2 y_2 u_2 v_2 1 a_0 b_0

Функции радиального базиса

- Все преобразования данного типа являются глобально-локальными
 - Глобальны, поскольку для построения преобразования задействуются все контрольные точки
 - Локальны, так как на отклик преобразования в определенной точке контрольные точки влияют с разными весами: чем ближе контрольная точка, тем больший вклад она дает

Функции Грина

 Функции Грина также называют thin plate splines (TPS, ТР-сплайны)

Вид преобразования

$$x = F(u,v) = a_0 + a_1 u + a_2 v + \sum_{i=1}^{N} f_i r_i^2 \ln r_i^2$$

$$y = G(u,v) = b_0 + b_1 u + b_2 v + \sum_{i=1}^{N} g_i r_i^2 \ln r_i^2$$

$$r_i^2 = \left[r_i (u,v)^2 \right] = (u - u_i)^2 + (v - v_i)^2$$

$$f_i = \sum_{i=1}^{N} f_i u_i = \sum_{i=1}^{N} f_i v_i = 0$$

$$g_i = \sum_{i=1}^{N} g_i u_i = \sum_{i=1}^{N} g_i v_i = 0$$

$$g_i = \sum_{i=1}^{N} g_i u_i = \sum_{i=1}^{N} g_i v_i = 0$$

Функции Грина

Система уравнений на параметры

где $r_{ij} = r_i(u_j, v_j)$, т.е. расстоянию от контрольной точки (x_i, y_i) до контрольных точек (u_i, v_i)

Мультиквадрики Харди

Вид преобразования

$$x = F(u,v) = \int_{i=1}^{N} f_i \sqrt{(x-x_i)^2 + (y-y_i)^2 + R^2} = \int_{i=1}^{N} f_i \sqrt{(r_i^2) + R^2}$$
$$y = G(u,v) = \int_{i=1}^{N} g_i \sqrt{(x-x_i)^2 + (y-y_i)^2 + R^2} = \int_{i=1}^{N} g_i \sqrt{(r_i^2) + R^2}$$

ИЛИ

$$x = F(u,v) = \int_{i=1}^{N} f_i I / \sqrt{(x-x_i)^2 + (y-y_i)^2 + R^2} = \int_{i=1}^{N} f_i I / \sqrt{(r_i^2) + R^2}$$
$$y = G(u,v) = \int_{i=1}^{N} g_i I / \sqrt{(x-x_i)^2 + (y-y_i)^2 + R^2} = \int_{i=1}^{N} g_i I / \sqrt{(r_i^2) + R^2}$$

где

$$R^2 = 0.6 \min \left(\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \right)$$

Мультиквадрики Харди

Система уравнений на параметры

где $r_{ij} = r_i(u_j, v_j)$, т.е. расстоянию от контрольной точки (u_i, y_i) до контрольных точек (u_j, v_j)

Примеры действия преобразований

Искаженное изображение

Эталонное изображение

Триангуляция множества контрольных точек

Триангуляция

Кусочно-линейное преобразование

Преобразованное изображение

Полином первого порядка

Преобразованное изображение

Полином третьего порядка

Преобразованное изображение

Полином третьего порядка+ мультиквадрики

Преобразованное изображение

Функции Грина

Преобразованное изображение

Эталонное изображение

Измерения на изображениях

Измерения на изображениях

<u>Дано</u>:

AB = 2 M

BC = 1.35 M

 $\angle ABC = 90^{\circ}$

Найти:

DE = ? M

<u>Решение</u>:

В пиксельных координатах: A = (314,64), B=(428,43), C=(433,122), AB = 116 px, BC = 79 px Res=2/116 м/px

Строим A', B', C': B' = B, A' = $(B'_x - AB, B'_y)$, C' = $(B'_x, B'_y + BC)$

Строим аффинное преобразование, переводящее А, В, С в А', В', С'.

$$x = a*u+b*v+c$$

 $y = d*u+e*v+f$

Измерения на изображениях

Измеряем DE: DE = 40 px*Res = 0.68 M

