- **DFA**= $(Q, \Sigma, \delta, q_0, F)$
- Q skończony zbiór stanów
- Σ skończony alfabet wejściowy
- δ funkcja przejścia postaci $Q\times\Sigma\to Q$
- q_0 stan poczatkowy
- $F\subseteq Q\,$ zbi
ór stanów akceptujących

Minimalizacja DFA

- 1. forall p końcowy, q niekońcowy, oznacz (p,q)
- 2. forall $(p,q) \in (F \times F) \cup (Q \setminus F \times Q \setminus F), p \neq q$ if $\exists_{a \in \Sigma} (\delta(p,a), \delta(p,a))$ jest oznaczona, oznacz (p,q) (rekurencyjnie).
- 3. nieoznaczone scalamy.

PDA
$$M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q skończony zbiór stanów
- Σ alfabet wejściowy
- Γ alfabet stosowy
- $q_0 \in Q$ stan początkowy
- $Z_0 \in \Gamma$ symbol początkowy na stosie
- $F \subset Q$ zbiór stanów akcepyujących (jeśli $F = \emptyset$ to akceptujemy przez pusty stos)
 - δ funkcja przejścia postaci $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$

LOP Zał., że L regularny. Wtedy istnieje stała n, że jeśli $z\in L$ oraz $|z|\geqslant n$, to można podzielić z na z=uvw takie, że:

- 1. $|v| \ge 1$
- 2. $|uv| \leq n$
- 3. $\forall_{i \in \mathbb{N}} z' = uv^i w \in L$

LOP bezk. Zał., że L bezkontekstowy. Wtedy istnieje stała n, że jeśli $z \in L$ oraz $|z| \ge$, to można podzielić z na z = uvwxy, takie, że:

- 1. $|vx| \geqslant 1$
- 2. $|vwx| \leq n$
- 3. $\forall_{i \in \mathbb{N}} z' = uv^i w x^i y \in L$

Lemat Ogdena Niech L język bezkontekstowy. Wtedy istnieje stała n taka, że jeśli $z \in L$ oraz |z| > n i oznaczymy w z n lub więcej pozycji jako wyróżnione, to można podzielić z na z = uvwxy takie, że:

- 1. v i x zawierają łącznie co najmniej jedną wyróżnioną pozycję
- 2. vwx zawiera co najwyżej n wyróżnionych pozycji
- 3. $\forall i \in \mathbb{N}z' = uv^i w x^i y \in L$

Podział $\alpha = uvw$, $|uv| \leq n$ oraz $|v| \geq 1$. Wybieramy i dla którego $|uv^iw| \notin L$ a powinien. Klasa języków regularnych jest domknięta na operację sumy, dopełnienia, przecięcia, złożenia i domknięcia Kleene'ego. Gramatyka bezkontekstowa G=(N,T,P,S)

- N skończony zbiór zmiennych(nieterminale)
- T skończony zbiór zmiennych końcowych (termina, alfabet)
- P skończony zbiór produkcji postaci A $\rightarrow \alpha$ gdzie A \in N i $\alpha \in (N \, \cup \, T)^*$
- $S \in N$ symbol początkowy

Postać normalna Chomsky'ego postaci:

 $A \to BC$ albo $A \to a$

Konstrukcje:

- 1. If po prawej terminal a to zastępujemy go C_a i dopisujemy $C_a \to a$
- 2. If prawa strona dłuższa niz 1 to zastępujemy $A \to B_1 \dots B_n$ przez $A \to B_1 D_1, D_1 \to B_2 D_2, \dots, D_{n-2} \to B_{n-1} B_n$

FIRST(X) - dla symboli

- 1. X-terminal, to FIRST(X)=X
- 2. $X \rightarrow \varepsilon$ to do FIRST(X) dodajemy ε
- 3. X nieterminal i $X \to Y_1Y_2...Y_k$ to dodajemy a do FIRST(X) jeśli istnieje i takie, że $a \in FIRST(Y_i)$ oraz $\varepsilon \in FIRST(Y_j)$ dla każdego j < i. $\varepsilon \in FIRST(X)$ jeśli należy do wszystkich $FIRST(Y_i)$.
- 4. $FIRST(X\alpha) = FIRST(X)$ gdy $\varepsilon \notin FIRST(X)$
- 5. $FIRST(X\alpha) = FIRST(X) \cup FIRST(\alpha)$ gdy $\varepsilon \in FIRST(X)$

FOLLOW(A) - dla nieterminali

- 1. Dla początkowego S do FOLLOW(S) dodajemy \$
- 2. Jeśli mamy produkcję $A \to \alpha B \beta$ to do FOLLOW(B) dodajemy wszystkie symbole z $FIRST(\beta)$ poza ε
- 3. Jeśli $A \to \alpha B\beta$ lub $A \to \alpha B$, gdzie $\varepsilon \in FIRST(\beta)$ to do FOLLOW(B) dodajemy wszystkie symbole z FOLLOW(A)

$\mathbf{LL}(\mathbf{1}) - A \rightarrow \alpha$

- 1. Dla każdej produkcji z gramatyki wykonaj 2 i 3
- 2. for each $a \in T$ if $a \in FIRST(\alpha)$ to wpisz $A \to \alpha$ do M[A,a]
- 3. if $\varepsilon \in FIRST(\alpha)$ to dla każdego $b \in FOLLOW(A)$ wpisz $A \to \alpha$ do M[A,b]
- 4. PROTIP: nie ma w tabeli $\varepsilon!$

\mathbf{SLR}

- 1. zbiory sytuacji
- 2. tabelka + redukcje (zaznaczyć ew. konflikty)
- 3. redukcja do FOLLOW(A) (if redukcja była z $A \rightarrow \beta$)

LR(1)

- 1. zbiory sytuacji z PODGLADEM
- 2. podgląd początkowy \$

- 3. podgląd przy domknięciu: mamy $[A \to \alpha \cdot B\beta, a] \in I$ dla każdej produkcji z $B \to \gamma$ dodaj $[B \to \gamma, FIRST(Ba)]$
- 4. tabelka + redukcje (zaznaczyć ew. konflikty)

LALR

1. zbiory sytuacji z PODGLADEM (SLR, ale z podglądem z LR(1))

LEADING(A)-pierwsze term. z A

- 1. $a \in LEADING(A)$ jeśli mamy produkcję $A \to Ba\beta$ lub $A \to a\beta$
- 2. if exists prod. $A \to B\alpha$ i $a \in LEADING(B)$ to $a \in LEADING(A)$
- 3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

TRAILING(A)-ostatnie term. z A

- 1. $a \in TRAILING(A)$ jeśli mamy produkcję $A \to \beta aB$ lub $A \to \beta a$
- 2. if exists prod. $A \to \alpha B$ i $a \in TRAILING(B)$ to $a \in TRAILING(A)$
- 3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

Tab. priorytetów $\doteq \Leftrightarrow$

 $TT \ T \doteq T$

 $TNT \ T \doteq T$

- TN for each $a \in LEADING(N)$ do $T \lessdot a$ (wiersze) \Leftrightarrow
- NT foreach $a \in TRAILING(N)$ do a > T (kolumny) \updownarrow
 - \$ zawsze gorszy

Zbiory sytuacji

- 1. Wzbogacenie $S' \to S$
- 2. Ponumerować produkcje (do redukcji!!!).

 $E \to \varepsilon \ E \to .$

3. dla kropek, na końcu w tabeli numer z produkcji

${\bf Rekurencja}$

- 1. $A \to A\alpha | B$
- 2. $A \rightarrow \beta A'$
- 3. $A' \to \alpha A' | \varepsilon$

Faktoryzacja

- 1. $A \to \alpha \beta_1 | \dots | \alpha \beta_k$
- 2. $A \to \alpha A'$
- 3. $A' \rightarrow \beta_1 | \dots | \beta_k$

język	lem	slowo	notes
$\omega = xxy \land x \neq \varepsilon$	LOP	ab^nab^n	i = 0
$\omega = xyyz \land y \neq \varepsilon$	reg	$len \geqslant 4$	dobrać krótsze
$\omega \omega^R \wedge \omega _a \equiv \omega _b \equiv 0 \pmod{13}$	LOP	$a^{13n}b^{13n}b^{13n}a^{13n}$	ozn.
$\omega: \omega _a \equiv \omega _b (mod3)$	reg	mini	
$\omega = xyy^R \land y \neq \varepsilon$	reg	2 obok	
$\omega: palindrom \wedge \omega _a = \omega _c$	LOP	$a^n c^n c^n a^n$	
$\omega = xcycz \land xy i yz \in \{a, b\}^*$ palindromy	Ogd	$a^mbca^mcba^m$	śr. ozn.
$ \omega _a = \omega _b$	bezk.		
$ \omega _a = \omega _b = \omega _c$	LOP	$a^nb^nc^n$	
$\omega: \omega _a \neq \omega _b \neq \omega _c$	Ogd	$a^{m+m!}b^ma^{m+m!}$	ozn b.
$\omega: \omega _a = \omega _b = \omega _c$	LOP	$a^nb^nc^n$	i=0
$\omega: \omega _a = \omega _c > \omega _b$	LOP	$a^{n+1}b^nc^{n+1}$	
ωωω	LOP	$0^n 1^n 0^n 1^n 0^n 1^n$	i=0
$\omega \omega^R \omega$	LOP	$0^{n}1^{n}1^{n}0^{n}0^{n}1^{n}$	i=0
$a^n c^k b^n : n \neq k$	Ogd	$a^{n!+n}c^nb^{n!+n}$	