Solutions to

Understanding Machine Learning by Shai Shalev-Shwartz and Shai Ben-David

Chapter 9 (Linear Predictors)

Zahra Taheri¹

Apr 2020

Exercise 9.1

Firstly, we prove that for all $c \in \mathbb{R}$, $|c| = \min_{a \geq 0} a$ such that $-a \leq c \leq a$. If $c \geq 0$ then obviously $c = |c| = \min_{a \geq 0} a$ such that $0 \leq c \leq a$. If c < 0 then -c > 0 and with the latter discussion, $-c = |c| = |-c| = \min_{a \geq 0} a$ such that $0 \leq -c \leq a$. Therefore, for all $c \in \mathbb{R}$, $|c| = \min_{a \geq 0} a$ such that $-a \leq c \leq a$. So, for all $i \in [m]$, if we consider $a_i = |\langle w, x_i \rangle - y_i|$, then we have

$$-a_i \le \langle w, x_i \rangle - y_i \le a_i.$$

Therefore, we want to write the following problem as a linear program:

$$\min \sum_{i=1}^{m} a_i \text{s.t. } \langle w, x_i \rangle - a_i \le y_i \text{ and } - \langle w, x_i \rangle - a_i \le -y_i, \text{ for all } i \in [m].$$
 (1)

Let

$$A = \begin{pmatrix} x_1^T \\ \vdots & -I_m \\ x_m^T \\ -x_1^T \\ \vdots & -I_m \\ -x_m^T \end{pmatrix}, w' = (w_1, \dots, w_d, a_1, \dots, a_m)^T, y = (y_1, \dots, y_m, -y_1, \dots, -y_m)^T.$$

Then by (1) and with the above notations we have

$$Aw' \leq y$$
.

¹https://github.com/zahta/Exercises-Understanding-Machine-Learning

Therefore, we can write the ERM problem of linear regression with respect to the absolute value loss function as the following linear program:

$$\min aw'Aw' \le y,$$

where
$$a = (0, \dots, 0, 1, \dots, 1)^T$$
.

Exercise 9.3

Let m be an arbitrary positive integer. Suppose that d=m and for all $i \in [m]$, $x_i = e_i$ and $y_i = 1$. Then $R = \max_i ||x_i|| = 1$. If $w^* = (1, ..., 1)^T$, then for all $i \in [m]$, $y_i \langle w^*, x_i \rangle = 1$ and $||w^*||^2 = m$, and so, using the notation in Theorem 9.1, we have $B = \min\{||w|| : \forall i \in [m], y_i \langle w, x_i \rangle \ge 1\} = \sqrt{m}$. Therefore, $(RB)^2 = m$ and by Theorem 9.1, the Perceptron algorithm stops after at most m iterations.

On the other hand by the Perceptron algorithm, we have

$$w^{(1)} = 0$$
 $w^{(2)} = e_1 w^{(3)} = e_1 + e_2 : w^{(m)} = \sum_{i=1}^{m-1} e_i w^{(m+1)} = (1, \dots, 1)^T = w^*.$

If we assume that sign(0) = -1 then for all $i \in [m]$, $\langle w^{(i)}, x_i \rangle = 0$ and so $sign(\langle w^{(i)}, x_i \rangle) \neq y_i$. Also by Theorem 9.1, when the Perceptron algorithm stops it holds that for all $i \in [m], y_i \langle w^{(t)}, x_i \rangle > 0$. So the Perceptron algorithm stops after m iterations and then we obtain $w^* = (1, ..., 1)^T$ with the desired condition $y_i \langle w^*, x_i \rangle = 1$, for all $i \in [m]$.

Exercise 9.4

Suppose that x_1, \ldots, x_m are all positive examples such that for all $i \in [m]$, $x_i = (a, b, 1)$ and $||x_i||^2 = R^2$. Since the examples have the same labels, $(x_1, 1), \ldots, (x_m, 1)$ is separable. Let $w^* = (0, 0, 1)$. Then obviously $y_i \langle w^*, x_i \rangle \geq 1$, for all $i \in [m]$ and we have $B = ||w^*|| = 1$. Then, the Perceptron algorithm stops after at most $(RB)^2 = R^2$ iterations, and when it stops it holds that for all $i \in [m]$, $\langle w^{(t)}, x_i \rangle > 0$.

Now we want to construct $m=R^2$ positive examples on which the upper bound of Theorem 9.1 equals R^2 and the perceptron algorithm is bound to make R^2 mistakes. Let $x_1:=(a_1,0,1)$ such that $a_1=\sqrt{R^2-1}$. Suppose that in iteration t of the Perceptron algorithm, the new example $x_t=(a,b,1)$ be such that 1. $||x_t||^2=R^2$, and 2. $\langle w^{(t)},x_t\rangle=0$.

We want to prove that as long as $t \leq R^2$, we can meet the above two desired conditions.

Let $t \leq R^2$. It is easy to see that if the above two conditions hold, for some $\alpha, \beta \in \mathbb{R}$ we have

$$w^{(t)} = (\alpha, \beta, t - 1). \tag{1}$$

Also by condition $\langle w^{(t)}, x_t \rangle = 0$, the inequality (9.4) in the proof of Theorem 9.1 holds with equality and we have

$$||w^{(t)}||^2 = ||w^{(t-1)}||^2 + R^2.$$

Now since $||w^{(1)}||^2 = 0$, if we use above equation recursively for t iterations, we obtain that

$$||w^{(t)}||^2 = (t-1)R^2.$$
 (2)

Therefore, by equations (1) and (2) we have $\alpha^2 + \beta^2 + (t-1)^2 = (t-1)R^2$. If $\beta \neq 0$, then without loss of generality we may rotate $w^{(t)}$ with respect to the z axis and consider $w^{(t)} = (\alpha, 0, t-1)$. Therefore, with the discussion above we have $\alpha = \sqrt{(t-1)R^2 - (t-1)^2}$ and so $w^{(t)} = (\sqrt{(t-1)R^2 - (t-1)^2}, 0, t-1)$. Now let $a := -\frac{t-1}{\alpha}$ and $x_t := (a, b, 1)$, where $b \in \mathbb{R}$. Then it is easy to see that $\langle w^{(t)}, x_t \rangle = 0$. Therefore, if $b := \sqrt{R^2 - a^2 - 1}$, then $||x_t||^2 = R^2$ and so, the two desired conditions hold. We just need to prove that $R^2 - a^2 - 1 \geq 0$ or equivalently $a^2 + 1 \leq R^2$. Since $t \leq R^2$, we have $R^2 - t + 1 \geq 1$ and so

$$a^{2} + 1 = \frac{(t-1)^{2}}{\alpha^{2}} + 1 = \frac{(t-1)R^{2}}{(t-1)R^{2} - (t-1)^{2}} = \frac{R^{2}}{R^{2} - t + 1} \le R^{2}.$$

This completes the proof.

Exercise 9.6

1. Suppose that $\mathcal{B}_d = \{B_{v,r} : v \in \mathbb{R}^d \text{ and } r > 0\}$ such that $B_{v,r}$ is a closed ball of center v and radius r in \mathbb{R}^d , i.e.,

$$B_{v,r}(x) = \begin{cases} 1 & \text{if } ||x - v|| \le r \\ 0 & \text{otherwise} \end{cases}$$

Also suppose that $C = \{x_1, \ldots, x_m\}$ is shattered by \mathcal{B}_d . If $y = (y_1, \ldots, y_m)$ is an arbitrary vector of labels of C, then there exists $B_{v,r} \in \mathcal{B}_d$ such that for all $i \in [m]$ we have $B_{v,r}(x_i) = y_i$. By definition of $B_{v,r}, y_i = 1$ for some $i \in [m]$, if and only if $||x_i - v|| \le r$ if and only if

$$\sum_{j=1}^{d} x_{ij}^{2} - 2\sum_{j=1}^{d} x_{ij}v_{j} + \sum_{j=1}^{d} v_{j}^{2} - r^{2} \le 0,$$

where $x_i = (x_{i1}, \dots, x_{id})^T$ and $v = (v_1, \dots, v_d)^T$, or equivalently

$$\langle w, x \rangle + b \le 0,$$

where $w := (-2v_1, \dots, -2v_d, 1)^T$, $x := (x_{i1}, \dots, x_{id}, ||x_i||^2)^T$ and $b := \sum_{j=1}^d v_j^2 - r^2$.

Let \mathcal{L}_{d+1} be the class of halfspaces in \mathbb{R}^{d+1} and consider the mapping $\phi: \mathbb{R}^d \to \mathbb{R}^{d+1}$ defined by $\phi(a) = (a_1, \dots, a_d, \|a\|^2)^T$. With the discussion above and the assumption sign(0) = 1, if x_1, \dots, x_m are shattered by \mathcal{B}_d then $\phi(x_1), \dots, \phi(x_m)$ are shattered by \mathcal{L}_{d+1} . Therefore,

$$VCdim(\mathcal{B}_d) \leq VCdim(\mathcal{L}_{d+1}) = d+2.$$

2. Let $C = \{0, e_1, \dots, e_d\}$. We want to show that if $\emptyset \neq C' \subseteq C$, then there exists $B_{v,r} \in \mathcal{B}_d$ such that for all $x \in C'$, $B_{v,r}(x) = 1$, and for all $x \in C \setminus C'$, $B_{v,r}(x) = 0$.

Let $v := \sum_{x \in C'} x$. Therefore,

$$||x - v|| = \begin{cases} \sqrt{|C'| - 1} & \text{if } x \in C' \text{ and } x \neq 0 \\ \sqrt{|C'|} & \text{if } x = 0 \\ \sqrt{|C'| + 1} & \text{if } x \in C \setminus C' \text{ and } x \neq 0 \end{cases}$$

If $0 \notin C'$, then let $r := \sqrt{|C'| - 1}$. Otherwise, let $r := \sqrt{|C'|}$. With the discussion above, it is easy to see that C is shattered by \mathcal{B}_d and so $d + 1 \leq VCdim(\mathcal{B}_d)$.

Therefore by parts 1 and 2 we have

$$d+1 \leq VCdim(\mathcal{B}_d) \leq d+2.$$