Date of birth: 11 November 1993 **♀** 9, via Monterosso, Beregazzo con Figliaro, 22070, Italy

८ +39 349 975 6876 ☑ rssmrc.11@gmail.com **n** marcorossi5

in marco-rossi-b4b582178

Marco Rossi

Research Interests

Broad interest in deep learning techniques.

PhD research fields: machine learning and AI applications to particle physics, especially high-energy and neutrino physics. Computational tools in high-energy physics.

Education

2019 → 2023 **Doctoral Student**, *Università degli Studi di Milano*, Milan, Italy.

Applications of ML and DL techniques to physics.

2016 → 2019 M.Sc in Physics, Università degli Studi di Milano, Milan, Italy.

Particle physics and quantum field theory

2012 → 2016 **B.Sc in Physics**, *Università degli Studi di Milano*, Milan, Italy.

Physics and matter sciences.

Professional Experience

 $2019 \rightarrow 2023$ **Doctoral Student**, *CERN*, Geneva, Switzerland.

Applications of ML and DL techniques to physics.

May-Jun 2019 Internship and master thesis, CERN, Geneva.

Thesis Investigating Anomaly Effects in HEP with GANs.

Supervisors Dr. Stefano Carrazza, Dr. Maurizio Pierini, Dr. Andrea Wulzer.

Jan-Mar 2016 Bachelor thesis, Università degli Studi di Milano, Milan, Italy.

Thesis Struttura Analitica della Distribuzione in Rapidità per la Produzione di un Bosone di Higgs.

Supervisors Prof. Stefano Forte.

Teaching

2020 → 2022 Corso di Informatica, Università degli Studi di Milano.

Teaching assistant for the course

Partecipation in Conferences and Workshops

Nov 2021 ACAT 2021, Daejeon (virtual).

Jul 2021 Offshell-2021, CERN (virtual).

May 2021 vCHEP2020, CERN (virtual).

Oct 2020 IML2020, CERN (virtual).

Sep 2020 iSCS-2020, CERN (virtual).

Sep 2020 **OpenPOWER**, North America (virtual).

Sep 2020 **SIF2020**, Italy (virtual).

Aug 2020 SSI2020, Los Angels (virtual).

Aug 2020 ICHEP2020, Prague (virtual).

Talks

- Nov 2021 ACAT 2021, Slicing with DL models at ProtoDUNE-SP.
- Jul 2021 Offshell-2021, MadFlow: automating Monte Carlo simulation on GPU for particle physics processes.
- May 2021 vCHEP2021, Deep Learning strategies for ProtoDUNE raw data denoising.
- Oct 2020 IML2020, Hit-reco: ProtoDUNE denoising with DL models.
- Sep 2020 **OpenPOWER**, Hit-reco: ProtoDUNE denoising with DL models.
- Sep 2020 SIF2020, PDFFlow: parton distribution functions on GPU.
- Aug 2020 ICHEP2020, PDFFlow: hardware accelerating parton density access.

Research Outcome

Articles

- [1] Stefano Carrazza, Juan M. Cruz-Martinez, and Marco Rossi. "PDFFlow: Parton distribution functions on GPU". In: Computer Physics Communications (Apr. 2021), p. 107995. DOI: 10.1016/j.cpc.2021.107995. URL: https://doi.org/10.1016%2Fj.cpc.2021.107995.
- [2] Stefano Carrazza et al. "MadFlow: automating Monte Carlo simulation on GPU for particle physics processes". In: *Eur. Phys. J. C* 81.7 (July 2021), p. 656. DOI: 10.1140/epjc/s10052-021-09443-8. arXiv: 2106.10279 [physics.comp-ph].
- [7] Marco Rossi and Sofia Vallecorsa. "Deep Learning Strategies for ProtoDUNE Raw Data Denoising". In: Computing and Software for Big Science 6.1 (Jan. 2022). ISSN: 2510-2044. DOI: 10.1007/s41781-021-00077-9. URL: https://doi.org/10.1007/s41781-021-00077-9.

Miscellanea Papers

[3] Stefano Carrazza et al. Towards the automation of Monte Carlo simulation on GPU for particle physics processes. May 2021. arXiv: 2105.10529 [physics.comp-ph].

Proceedings

[6] Marco Rossi, Stefano Carrazza, and Juan Cruz-Martinez. "PDFflow: hardware accelerating parton density access". In: Proceedings of 40th International Conference on High Energy physics — *PoS(ICHEP2020)*. Vol. 390. Apr. 2021, p. 921. DOI: 10.22323/1.390.0921.

Software

- [4] Juan Cruz-Martinez, Marco Rossi, and Stefano Carrazza. N3PDF/pdfflow. Version v0.0.1b1. July 2020. DOI: 10.5281/zenodo.3964191. URL: https://doi.org/10.5281/zenodo.3964191.
- [5] Marco Rossi. marcorossi5/DUNEdn: 1.0.1. Version 1.0.1. Jan. 2022. DOI: 10.5281/zenodo. 5841986. URL: https://doi.org/10.5281/zenodo.5841986.

Computer Skills

- Computing Operating Systems: Linux, Windows, MacOS.
 - Versioning-control: Git, GitHub.
 - Languages: Python, C++, BASH, LATEX, HTML5, CSS, PHP
 - o Data libraries: NumPy, SciPy, Pandas, Scikit-learn, Matplotlib.
 - ML Libraries: TensorFlow, PyTorch

- Deep Learning Computer vision: image classification, image denoising.
 - Clustering techniques.
 - Reinforcement Learning.

Languages

Italian Mother tongue.

 ${\sf English} \quad {\sf IELTS} \ \, {\sf Academic} \ \, {\sf Proficiency} \ \, {\sf Test}, \ \, {\sf CEFR} \ \, {\sf level} \ \, {\sf equivalent:} \ \, {\sf C1}.$

French Basic understanding and spoken production.