robotics hw4 cv

余承諺 r12922135

2023 / 12 / 09

Overleaf Link: https://www.overleaf.com/read/jvtnypypvdgq#59c2de

Regression

Extend camera matrix to homogeneous form 4×4 and denote as CameraMat. Objects position in base coordination, gripper coordination and image coordination are denoted as obj_base, obj_gripper and obj_img respectively. Under the pinhole camera, we can write the projection relation from base coordination to image coordination as.

$$\begin{bmatrix} \text{obj_img_w} \times \text{obj_img_d} \\ \text{obj_img_h} \times \text{obj_img_d} \\ \text{obj_img_d} \\ 1 \end{bmatrix} = \text{CameraMat} \times T_{\text{gripper to camera}} \times T_{\text{base to gripper}} \begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix}$$

We have already known that

obj_img_d ×
$$\sqrt{\text{obj_area}} = \text{obj_alpha}$$
 obj_img_d = obj_alpha × obj_area $^{-0.5}$

obj_alpha only depends on object. Then

$$\begin{bmatrix} \text{obj_img_w} \times \text{obj_alpha} \times \text{obj_area}^{-0.5} \\ \text{obj_img_h} \times \text{obj_alpha} \times \text{obj_area}^{-0.5} \\ \text{obj_alpha} \times \text{obj_area}^{-0.5} \\ \end{bmatrix} = \begin{bmatrix} \text{obj_alpha} & 0 & 0 & 0 \\ 0 & \text{obj_alpha} & 0 & 0 \\ 0 & 0 & \text{obj_alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \text{obj_img_w} \times \text{obj_area}^{-0.5} \\ \text{obj_img_h} \times \text{obj_area}^{-0.5} \\ \text{obj_area}^{-0.5} \end{bmatrix} = \text{CameraMat} \times T_{\text{gripper to camera}} \times T_{\text{base to gripper}} \begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix}$$

Merge obj_alpha, Camera Mat and $T_{\rm gripper\ to\ camera}$ to obj_M. Then

$$T_{\rm base\ to\ gripper} \begin{bmatrix} {\rm obj_base_x} \\ {\rm obj_base_y} \\ {\rm obj_base_z} \\ 1 \end{bmatrix} = {\rm obj_M} \begin{bmatrix} {\rm obj_img_w \times obj_area}^{-0.5} \\ {\rm obj_img_h \times obj_area}^{-0.5} \\ {\rm obj_area}^{-0.5} \\ 1 \end{bmatrix}$$

$${\rm obj_M} = T_{\rm gripper\ to\ camera}^{-1} \begin{bmatrix} {\rm obj_alpha} & 0 & 0 & 0 \\ 0 & {\rm obj_alpha} & 0 & 0 \\ 0 & 0 & {\rm obj_alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Regressing to acquire obj_M. The regression process needs N cases ($N \ge 4$). Each case contains: 1. a captured image, 2. the transformation from base coordination to gripper coordination when the image is captured, 3. object locations in base coordination.

Inference

When inferring, $T_{\rm base\ to\ gripper}$ and obj_M show be known. obj_img and obj_area also can be detect from image. Then

$$\begin{bmatrix} \text{obj_base_x} \\ \text{obj_base_y} \\ \text{obj_base_z} \\ 1 \end{bmatrix} = T_{\text{base to gripper}}^{-1} \text{obj_mg_w} \times \text{obj_area}^{-0.5} \\ \text{obj_img_h} \times \text{obj_area}^{-0.5} \\ \text{obj_area}^{-0.5} \\ 1 \end{bmatrix}$$