AHSANULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Department: Electrical and Electronic Engineering

Program: Bachelor of Science in Computer Science and Engineering

Semester Final Examination: Fall 2021 Year: 2nd Semester: 1st

Course Number: EEE 2141

Course Name: Electronic Devices and Circuits

Time: 3 (Three) hours Full Marks: 70

There are Eight (8) Questions. Answer any Six (6).

Question 1. [Marks: $11\frac{2}{3}$]

- a) Explain with proper derivation that, for a decade change in current, the diode voltage drop changes by 2.3nV_T. [5]
- Sketch the waveform of v_0 for the circuit shown in figure 1(b).

Figure: 1(b)

Question 2. [Marks: $11\frac{2}{3}$]

20 V

a) Describe the working principle of a full-wave bridge rectifier, and estimate the [2+3 maximum possible rectification efficiency.

Ideal diodes

Design

b) Find the circuit for the given figure below.

Question 3. [Marks: $11\frac{2}{3}$]

-20 V

Use operational amplifier with inputs V_1 , V_2 , V_3 , and V_4 such that $V_0 = 3V_1 - 5V_2 + 9V_3 - 11V_4$

 $[6\frac{2}{3}]$

 $[6\frac{2}{3}]$

Discuss the working principle of a zero crossing detector using an op-amp and a $[6\frac{2}{3}]$ triangular input voltage source.

Question 4. [Marks: $11\frac{2}{3}$]

- Discuss the steps required for IC fabrication. [5]
- Make a logic circuit with CMOS that gives output based on the following equation. b) $[6\frac{2}{3}]$ Also, show the timing diagram.

$$Y = ABD + \overline{ACD} + B$$

Question 5. [Marks: $11\frac{2}{3}$]

- Describe the output characteristics of a common base configuration of BJT. [5]
- Compute the following parameters from the voltage divider bias circuit in Fig. 5 (b). $[6\frac{2}{3}]$ b) $v) V_E$ ii) V_{CE} iii) I_B Repeat the solution using $\beta = 60$ and comment on the changes.

Question 6. [Marks: $11\frac{2}{3}$]

a) Explain the working principle of a depletion type MOSFET with necessary illustrations.

[5] Sketch the approximate hybrid model of the following circuit in Fig. 6 (b) and compute the $[6\frac{2}{3}]$ b) following parameters:

iii) A_v iv) A_i i) Z_i ii) Z_o

Fig. 6(b)

Question 7. [Marks: $11\frac{2}{3}$]

For the summing amplifier circuit in Fig. 7 (a), compute the value of v_2 to make $v_0=10$ V. [5] Assume the biasing voltage to be ± 20 V.

Fig. 7(a)

b) With necessary calculations of different circuit components, illustrate a free running $[6\frac{2}{3}]$ multivibrator using an operational amplifier that will produce a square wave of frequency 1 kHz and duty ratio, D=60%.

Question 8. [Marks: $11\frac{2}{3}$]

- With necessary calculations of different circuit components, illustrate a first-order active [5] low pass filter with gain of 10 and a corner frequency of 1kHz. Use 0.01 uF capacitor for your design.
- b) Explain the operation of an active Band Pass filter using the cascaded configuration of low $[6\frac{2}{3}]$ pass and high pass filter. Also, find the corner frequency and passband gain of that filter.