Derivadas de funções trigonométricas

Derivada da função seno: $(\sin x)' = \cos x$

Derivada da função cosseno: $(\cos x)' = -\sin x$

Derivada da função tangente: $(tg x)' = sec^2 x$

Derivada da função cotangente: $(\cos x)' = -\csc^2 x$

Derivada da função secante: $(\sec x)' = \sec x \operatorname{tg} x$

Derivada da função cossecante: $(\csc x)' = -\csc x \cot x$

Derivadas de funções trigonométricas inversas

$$\frac{d}{dx}(\operatorname{sen}^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\operatorname{tg}^{-1}x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\cot g^{-1}x) = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\csc^{-1}x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

Tabela de derivadas

Sejam u(x), v(x) funções diferenciáveis e k uma constante. Se:

[1]
$$y = k$$
, então $y' = 0$.

[2]
$$y = x$$
, então $y' = 1$.

[3]
$$y = k v(x)$$
, então $y' = k v'(x)$.

[4]
$$y = u(x) \pm v(x)$$
, então $y' = u'(x) \pm v'(x)$.

[5]
$$y = u(x) \cdot v(x)$$
, então $y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$.

[6]
$$y = \frac{u(x)}{v(x)}$$
, $v(x) \neq 0$, então $y' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{(v(x))^2}$.

[7]
$$y = a^{u(x)}$$
, então $y' = a^{u(x)} \cdot ln(a) \cdot u'(x)$.

[8]
$$y = e^{u(x)}$$
, então $y' = u'(x) e^{u(x)}$

Tabela de derivadas

[9]
$$y = log_a(u(x))$$
, então $y' = \frac{1}{ln(a)} \frac{u'(x)}{u(x)}$.
[10] $y = ln(u(x))$, então $y' = \frac{u'(x)}{u(x)}$.

[11]
$$y = (u(x))^{\alpha}$$
, $\alpha \in \mathbb{R}$, então $y' = \alpha (u(x))^{\alpha-1} u'(x)$.

[12] Seja $y = (u(x))^{v(x)}$, onde u(x) > 0, então:

$$y' = (u(x))^{v(x)} \left[v'(x) \ln(u(x)) + \frac{u'(x) v(x)}{u(x)} \right].$$

[13] Se
$$y = sen(u(x))$$
, então $y' = cos(u(x)) u'(x)$.

[14] Se
$$y = cos(u(x))$$
, então $y' = -sen(u(x)) u'(x)$.

[15] Se
$$y = tg(u(x))$$
, então $y' = sec^2(u(x))u'(x)$.

[16] Se
$$y = cotg(u(x))$$
, então $y' = -cosec^2(u(x))u'(x)$.

[17] Se
$$y = sec(u(x))$$
, então $y' = tg(u(x)) sec(u(x)) \cdot u'(x)$.

[18] Se
$$y = cosec(u(x))$$
, então $y' = -cotg(u(x)) cosec(u(x)) u'(x)$.

Tabela de derivadas

[19] Se
$$y = arcsen(u(x))$$
, então $y' = \frac{u'(x)}{\sqrt{1 - u^2(x)}}$.

[20] Se
$$y = \arccos(u(x))$$
, então $y' = -\frac{u'(x)}{\sqrt{1 - u^2(x)}}$.

[21] Se
$$y = arctg(u(x))$$
, então $y' = \frac{u'(x)}{1 + u^2(x)}$.

[22] Se
$$y = arccotg(u(x))$$
, então $y' = -\frac{u'(x)}{1 + u^2(x)}$.

[23] Se
$$y = arcsec(u(x))$$
, então $y' = \frac{u'(x)}{|u(x)|\sqrt{u^2(x)-1}}$, $|u(x)| > 1$.

[24] Se
$$y = arccosec(u(x))$$
, então $y' = -\frac{u'(x)}{|u(x)|\sqrt{u^2(x)-1}}, |u(x)| > 1$.