Revisão Rápida de Efeito Fotoelétrico

Rafael Lopes de Sá

April 14, 2014

1 Resumo

O efeito fotoelétrico consiste num elétron de um metal absorvendo um fóton de forma que esse elétron se torna livre:

elétron ligado + fóton
$$\rightarrow$$
 elétron livre (1)

Se a energia do fóton absorvida pelo elétron for maior que a energia de ligação do elétron com a estrutura metálica, o elétron vai se tornar livre e pode formar uma corrente elétrica. Quase todo problema sobre efeito fotoelétrico se resolve usando conservação de energia. Conceitualmente:

 $(energia \ do \ fóton) - (energia \ gasta \ para \ liberar \ o \ fóton \ da \ estrutura \ metálica) = \\ (energia \ cinética \ do \ elétron \ livre) + (energia \ potencial \ do \ elétron \ livre)$ (2)

A energia gasta para liberar o fóton da estrutura metálica é algo complicado de se calcular e, em geral, representamos apenas por um símbolo ϕ e pelo nome "função trabalho". É uma propriedade do metal e não do fóton.

A energia de um fóton é proporcional à sua frequência:

$$E_f = hf, (3)$$

onde h é chamado de **constante de Planck**. A energia cinética é dada pela fórmula familiar:

$$E_c = \frac{1}{2}mv^2. (4)$$

Já a energia potencial depende do seu sistema. Usualmente uma bateria pode ser conectada à celula fotoelétrica criando uma diferença de potencial. O elétron tem que então ir de contra (se o polo positivo da bateria estiver ligado ao cotodo) ou a favor (de o polo negativo da bateria estiver ligado ao catodo) esse potencial e gastará ou, respectivamente, receberá uma energia dada por:

$$E_p = Q_e \times V, \tag{5}$$

onde Q_e é a carga do elétron e V é a diferença de potencial da bateria. Colocando todos os conceitos juntos:

$$hf - \phi = E_c + E_p = \frac{1}{2}mv^2 + Q_eV.$$
 (6)

Algumas coisas a se lembrar:

- No efeito fotoelétrico usual, cada fóton é absrovido por um elétron. Isso quer dizer que se a energia do fóton não for pelo menos a função trabalho ϕ , não haverá corrente elétrica. No caso em que há uma bateria também, a energia do fóton tem que ser, pelo menos, a função trabalho mais a energia potencial provida pela bateria.
- Se o elétron absorver um fóton de energia maior (isto é, de maior frequência), ele sairá com maior energia. Mas não quer dizer que mais elétrons serão emitidos.
- Para emitir mais elétron, você precisa de mais fótons. Isso quer dizer uma luz incidente mais intensa.

2 Constantes e unidades

A unidade de energia no Sistema Internacional de unidades é o Joule. 1 J é uma quantidade muito grande para efeitos atômicos e subatômicos. Uma unidade conveniente é o eV. 1 eV é definido como a energia que 1 (um) elétron tem num potencial de 1 (um) Volt. Para converter para o SI, basta usar a carga do elétron:

- $1 \text{ eV} = 1.6 \times 10^{-19} \text{J}$,
- $1 J = 1/(1.6 \times 10^{-19}) eV = 6.24 \times 10^{18} eV$,

pela própria definição de eV a carga elétrica fundamental é escrita como $e=1.6\times 10^{-19}\,{\rm C}=1\,{\rm eV/V}.$

Algumas constantes:

- $h = 6.626 \times 10^{-34} \,\mathrm{J \ s} = 4.136 \times 10^{-15} \,\mathrm{eV} \,\mathrm{s},$
- $c = 3 \times 10^8 \,\text{m/s}$.
- $hc = 1240 \,\text{eV} \,\text{nm}$

O valor de hc é conveniente porque, muitas vezes, é dado o comprimento de onda (λ) do fóton em vez da freqüência. Essas duas quantidades se relacionam por:

$$c = \lambda f,\tag{7}$$