Bachelor in Mobile and Space Communications Engineering

Bachelor in Telematics Engineering

Bachelor in Sound and Image Engineering

Bachelor in Telecommunication Technologies Engineering

Notation:

• $\widehat{S}_{\text{MMSE}}$: Minimum Mean Square Error estimator.

• \widehat{S}_{MAD} : Mininimum Mean Absolute Deviation Error estimator.

• \widehat{S}_{MAP} : Maximum a posteriori estimator.

• $\widehat{S}_{\mathrm{ML}}$: Maximum likelihood estimator.

 $\ \, \widehat{S}_{\mathrm{LMSE}} \colon \text{Linear Minimum Mean Square Error estimator.}$

1. The random variables X and S are related through the conditional distribution:

$$p_{X|S}(x|s) = sx^{s-1}, \quad 0 \le x \le 1, \quad s \ge 0$$

- (a) Find the ML estimate of S given X, \hat{S}_{ML} .
- (b) Find the ML estimate of S given a set $\{x^{(k)}, k = 0, \dots, K-1\}$ of independent observations of X.

Solution:

(a)

$$\begin{split} \hat{s}_{\text{ML}} &= \arg \max_{s} p_{X|S}(x|s) \\ &= \arg \max_{s} sx^{s-1} \\ &= \arg \max_{s} \left[\log(s) + (s-1)\log(x) \right] \\ &= -\frac{1}{\log(x)} \end{split}$$

(b)

$$\begin{split} \hat{s}_{\text{ML}} &= \arg \max_{s} \prod_{k=0}^{K-1} p_{X|S} \left(x^{(k)} | s \right) \\ &= \arg \max_{s} s^{K} \left(\prod_{k=0}^{K-1} x^{(k)} \right)^{s-1} \\ &= \arg \max_{s} \left[K \log(s) + (s-1) \sum_{k=0}^{K-1} \log \left(x^{(k)} \right) \right] \\ &= -\frac{K}{\sum_{k=0}^{K-1} \log \left(x^{(k)} \right)} \end{split}$$

2. Consider the estimation of a random variable S from a random variable X, where their joint probability density function is given by:

$$p_{X,S}(x,s) = \begin{cases} 6s & 0 \le s \le x, \quad 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine the estimator $\widehat{S}_{\text{MMSE}}$.
- (b) Consider the estimation of S based on the observation of X, with the objective to minimize the following cost function:

$$c(S,\widehat{S}) = a^2(\widehat{S} - S)^2$$

Determine the optimal estimator of S, \hat{S} , which minimizes the expected cost of the estimator.

Solution:

(a)
$$\widehat{S}_{\mathrm{MMSE}} = \frac{2X}{3}$$

(b) $\widehat{S}^* = \frac{2X}{3}$

(b)
$$\hat{S}^* = \frac{2X}{3}$$