On the Importance of Checking Cryptographic Protocols for Faults

Toon Nolten

Outline

- Hardware Faults
- RSA Signatures
- Fiat-Shamir Identification Scheme
- Defending Against Fault Based Attacks
- Summary

Hardware Faults

- Transient faults
- Latent faults
- Induced faults
- Register faults

RSA Signatures

- N=pq, p and q large primes
- $x^s \mod N$, where s is a secret exponent
- ullet x in range 1 to N, usually after hashing
- ullet Security relies on the fact that factoring N is hard

Computation of Exponentiation

- Expensive part of computation is modular exponentiation
- ullet Calculate $E_1=x^s mod p$ and $E_2=x^s mod q$ by repeated squaring
- ullet $E=x^s mod N$ can be computed using the Chinese remainder theorem
- ullet More efficient than repeated squaring modulo N because the numbers involved are smaller

E by CRT

• *a*, *b* precomputed integers s.t.:

$$\left\{egin{array}{ll} a & \equiv 1 \pmod p \ a & \equiv 0 \pmod q \end{array}
ight. ext{ and } \left\{egin{array}{ll} b & \equiv 0 \pmod p \ b & \equiv 1 \pmod q \end{array}
ight.$$

- Such integers always exist
- $E = aE_1 + bE_2 \pmod{N}$

RSA's Vulnerability

- $E = M^s \mod N$, correct signature
- \hat{E} , faulty signature
- Suppose: $\hat{E} = a\hat{E}_1 + bE_2 \pmod{N}$
- Observe: $E-\hat{E}=a(E_1-\hat{E}_1)$
- If $E_1-\hat{E}_1$ is not divisible by p then: $gcd(E-\hat{E},N)=gcd(a(E_1-\hat{E}_1),N)=q$

Fiat-Shamir Identification Scheme

- Efficient method whereby Alice can authenticate her identity to Bob
- \bullet Both parties agree on an n-bit modulus N which is a product of two large primes and a security parameter t
- Secret key: $s_1, \ldots, s_t \mod N$
- ullet Public key: $v_1=s_1^2,\ldots,v_t=s_t^2\pmod N$

Fiat-Shamir Protocol

- 1. Alice picks a random $r \in \mathbb{Z}_N^*$ and sends r^2 to Bob.
- 2. Bob picks a random subset $S \subseteq \{1, \ldots, t\}$ and sends the subset to Alice.
- 3. Alice computes $y = r \cdot \prod_{i \in S} s_i \mod N$ and sends y to Bob.
- 4. Bob verifies Alice's identity by checking that $y^2 = r^2 \cdot \prod_{i \in S} v_i \pmod{N}$.

Fiat-Shamir Identification Scheme

- Attack based on register faults that occur while Alice is waiting for a challenge
- Given t faulty runs s_1,\ldots,s_t can be recovered in the time it takes to perform $\mathcal{O}(nt+t^2)$ modular multiplications

Fiat-Shamir Vulnerability

ullet Suppose one bit of r is flipped while waiting for S, $E=\pm 2^i$, Bob receives correct value $r^2 mod N$ but y is computed incorrectly

$$\hat{y} = (r+E) \cdot \prod_{i \in S} s_i$$

ullet Bob knows $\prod_{i\in S}v_i$ and can compute

$$(r+E)^2=rac{\hat{y}^2}{\prod_{i\in S}v_i}\pmod{N}$$

• Bob can guess the n possible values of E and recover r from

$$(r+E)^2-r^2=2E\cdot r+E^2\pmod N$$

Fiat-Shamir Vulnerability

ullet Using r and E Bob can compute

$$\prod_{i \in S} s_i = rac{\hat{y}}{r+E} \pmod{N}$$

• To find s_1, \ldots, s_t Bob constructs suitable sets S, singleton sets or sets that result in a set of equations for the s_i

Defending Against Fault Based Attacks

- Verify the output of a computation
- Protect internal state across rounds using CRC
- Random padding of the message to be signed

Summary

- Signature schemes using CRT, e.g. RSA and Rabin, are especially vulnerable
- Other implementations of RSA signatures are also vulnerable but require many more faults
- Identification schemes are vulnerable as well, e.g. Fiat-Shamir, Schnorr and Guillou-Quisquater
- Verifying the computation and using error detection bits for the internal state are necessary for security reasons

References

Dan Boneh, Richard A. DeMillo, Richard J. Lipton: On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract). EUROCRYPT 1997: 37-51