Assessment Schedule – 2017

Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i)	$HF + H2O \rightleftharpoons F^- + H3O^+$ $HBr + H2O \rightarrow Br^- + H3O^+$	ONE correct equation.		
(ii)	To conduct a current, a substance requires mobile charged particles / ions. HF and HBr solutions have ions in solution, so both will conduct electricity. HBr is a strong acid, and therefore completely dissociates to produce a high [Br $^-$] and [H $_3$ O $^+$]. In contrast, HF is a weak acid and therefore only partially dissociates to produce a lower [ions], i.e. F $^-$ and H $_3$ O $^+$. So, HF is a poorer electrical conductor / weaker electrolyte.	 Mobile charged particles / ions. Relates electrical conductivity to the degree of dissociation / ion concentration. TWO species related to concentration. 	Links the degree of dissociation to the amount of ions for both HBr and HF. (Correct follow on accepted from incorrect equations)	• Fully compares and contrasts the electrical conductivity of HBr and HF, i.e. links the degree of dissociation to the amount of ions (not only H ₃ O ⁺), and relates this to conductivity.
(b)(i)	$AgBr \rightleftharpoons Ag^{+} + Br^{-}$	Correct equation.		
(ii)	Br ⁻ is a common ion / added to solution An increase in [Br ⁻] will result in the reverse reaction being favoured, to restore equilibrium / minimise the change. This results in a decrease in $[Ag^+]$ (since Ag^+ reacts with some of the added Br ⁻ to help use it up) / AgBr becomes less soluble, (until $[Ag^+]$ [Br ⁻] is again equal to K_s .)	• Solubility of AgBr or [Ag ⁺] decreases.	• Links increase in [Br] to reverse reaction being favoured OR a decrease in solubility of AgBr OR [Ag ⁺] decreasing.	• Full explanation linking an increase in [Br] to a shift in equilibrium towards the reactants, and subsequent decrease in the solubility of AgBr OR [Ag ⁺] decreasing.
(iii)	$AgBr \rightleftharpoons Ag^{+} + Br^{-}$ $K_{s}(AgBr) = [Ag^{+}] [Br^{-}]$ $5 \times 10^{-13} = [Ag^{+}] \times \frac{0.150 \times 40}{65}$ $[Ag^{+}] = 5.42 \times 10^{-12} \text{ mol } L^{-1}$	• Correct K_s expression.	Correct calculation	Correct calculation with unit and significant figures.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	4a	5a	2m	3m	2e	3e

Q	Evidence	Achievement	Merit	Excellence
TWO (a)(i)	$[H_3O^+] = \sqrt{(K_a \times K_w \div [NH_3])}$ $[H_3O^+] = \sqrt{(5.75 \times 10^{-10} \times 1.00 \times 10^{-14} \div 0.105)}$ $[H_3O^+] = 7.40 \times 10^{-12} \text{ molL}^{-1}$ $pH = -\log (7.40 \times 10^{-12}) = 11.1$	One step correct.	Correct answer, with minor error e.g. significant figures.	Correct answer, including three significant figures.
(ii)	$NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$ $K_a = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$ $10^{-9.24} = 5 \times \frac{[H_3O^+]}{1}$ $[H_3O^+] = 1.15 \times 10^{-10}$ $pH = 9.94$ $pK_a = 9.24$ The solution will function as a buffer (as it contains a weak base and conjugate acid in a 5:1 ratio / within a 1:10 ratio / within a pH range of 8.24 – 10.24). Since the [NH ₃] > [NH ₄ ⁺] / pH > pK _a , the buffer will be more effective at neutralising added strong acid.	Correct process for determining pH. OR Buffer use / concept	Correct pH. OR Correct evaluation of the buffer.	Correct pH, including three significant figures. AND Correct evaluation of the buffer.

					ı
(b)(i)	$Cu(OH)_2 \rightleftharpoons Cu^{2+} + 2OH^-$	(i) or (ii) correct			l
(ii)	$K_{\rm s} = [\mathrm{Cu}^{2+}] [\mathrm{OH}^{-}]^2$	• (i) or (ii) correct.]
(iii)	Let $s = \text{solubility}$ $[\text{Cu}^{2+}] = s$ $[\text{OH}^{-}]^2 = (2s)^2$ $K_s = 4s^3$ $4s^3 = 4.80 \times 10^{-20}$ So; $s = 2.29 \times 10^{-7} \text{ mol L}^{-1}$	Correct process for calculating solubility.	Correct answer for solubility, with appropriate unit.		
(c)	When copper(II) hydroxide is dissolved in an acidic solution, the H_3O^+ ions neutralise the OH^- ions / H_3O^+ + $OH^- \rightarrow 2H_2O$ A decrease in [OH] will result in the forward reaction being favoured, to restore equilibrium / minimise the change. This causes more solid $Cu(OH)_2$ to dissolve, i.e. the solubility of $Cu(OH)_2$ increases / so that $[Cu^{2^+}][OH^-]$ will again equal K_s .	Recognises OH ⁻ ions are reacting with acid.	Partial explanation for an increase in solubility.	Complete explanation for the increased solubility of Cu(OH) ₂ in an acidic solution.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	3a	4a	3m	4m	1e	3e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	Phenolphthalein.	Correct indicator.		
(b)(i)	$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$	Correct process with minor error.	Correct calculation.	
	$K_{a} = \frac{[\text{CH}_{3}\text{COO}^{-}][\text{H}_{3}\text{O}^{+}]}{[\text{CH}_{3}\text{COOH}]}$			
	$1.74 \times 10^{-5} = \frac{\left(10^{-2.77}\right)^2}{[\text{CH}_3\text{COOH}]}$			
	$[CH_3COOH] = 0.166 \text{ mol } L^{-1}$			
(ii)	$n(\text{NaOH}) \text{ added} = 0.112 \text{ mol } \text{L}^{-1} \times 0.01 \text{ L} = 1.12 \times 10^{-3} \text{ mol}$ Initial $n(\text{CH}_3\text{COOH}) = 0.166 \text{ mol } \text{L}^{-1} \times 0.02 \text{ L} = 3.32 \times 10^{-3} \text{ mol}$ $n(\text{CH}_3\text{COOH}) \text{ remaining in } 30 \text{ mL} = 3.32 \times 10^{-3} \text{ mol} - 1.12 \times 10^{-3} \text{ mol} = 2.2 \times 10^{-3} \text{ mol}$ $n(\text{CH}_3\text{COOT}) \text{ in } 30 \text{ mL} = 1.12 \times 10^{-3} \text{ mol}$	• Correct n(NaOH) OR Initial n(CH ₃ COOH).	Two steps correct	Correct pH, including three significant figures.
	$K_{\rm a} = \frac{[\text{CH}_{3}\text{COO}^{-}][\text{H}_{3}\text{O}^{+}]}{[\text{CH}_{3}\text{COOH}]}$			
	$1.74 \times 10^{-5} = \frac{\left(\frac{1.12 \times 10^{-3}}{0.03}\right) [H_3 O^+]}{\frac{2.2 \times 10^{-3}}{}}$			
	0.03 $[H_3O^+] = 3.42 \times 10^{-5}$			
	$pH = -\log 3.42 \times 10^{-5}$			
	pH = 4.47			

(c)(i)	CH ₃ COO ⁻ , Na ⁺ , CH ₃ COOH, OH ⁻ , H ₃ O ⁺	• THREE species.			
(ii)	Both titrations produce a basic salt at the equivalence point because $[OH^-] > [H_3O^+] / pH > 7 / equations$. At the equivalence point the ethanoic acid is converted into the ethanoate ion and the methanoic acid is converted into the methanoate ion. The methanoic acid titration has a lower pH than the ethanoic acid titration at the equivalence point because: methanoate ions are a weaker base / produce fewer OH^- ions than ethanoate ions OR HCOOH has a larger K_a than CH_3COOH , as it is a stronger acid. As a result, its conjugate base, $HCOO^-$, is weaker than CH_3COO^- , so the pH will be lower at the equivalence point.	Both are basic HCOOH is a stronger acid than CH ₃ COOH OR HCOO ⁻ is weaker than CH ₃ COO ⁻	Links equivalence point pH for either, to the relative strength of the conjugate base OR relative concentrations of hydroxide ions.	Compares and contrasts the equivalence point for both titrations.	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence	1a	2a	3a	4a	2m	3m	2e (with minor error / omission)	2e

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence
0 – 7	8 – 13	14 – 19	20 – 24