Zadania – Praca i energia potencjalna w polu elektrostatycznym

Zadanie 1. W odległości r = 10 cm od dodatnio naelektryzowanej małej kulki A znajduje się ujemnie naelektryzowana mała kulka B. Wiedząc, że ładunki kulek wynoszą $q_A = +2 \, mC \, i \, q_B = -3 \, mC$. Oblicz jaką prace należy wykonać, aby rozsunać je na odległość d = 100 cm.

$$(odp. W_Z = 4,86 \cdot 10^5 J)$$

Zadanie 2. W centralnym polu elektrostatycznym wytworzonym przez ładunek punktowy Q = 10 μ C porusza się ładunek g = -1 pC. Odległość między ładunkami jest stała i wynosi r = 10 cm. Stała jest również siła wzajemnego oddziaływania. Oblicz pracę sił pola elektrycznego, jeżeli ładunek przemieścił się z punktu A do B.

$$(odp. W = 0)$$

Zadanie 3. Ładunek Q = 10 mC wytwarza pole elektryczne. Oblicz energię potencjalną ładunku g = 1 mC, umieszczonego w odległości r = 3 m od ładunku Q.

$$(odp. E_p = 3.10^4 J)$$

Zadanie 4. Ładunek punktowy q > 0 jest przesuwany po torze ABC w polu ładunku punktowego Q < 0. Prace wykonane przeciwko siłom pola elektrycznego (czyli przez siły zewnętrzne równoważące siły pola) na odcinkach AB i BC spełniają związek:

A)
$$W_{AB} = W_{BC}$$

A)
$$W_{AB} = W_{BC}$$
, B) $W_{AB} = 2W_{BC}$, C) $W_{AB} = 3W_{BC}$, D) $W_{AB} = 4W_{BC}$.

C)
$$W_{AB} = 3W_{BC}$$

D)
$$W_{AB} = 4W_{BC}$$
.

(odp. C)

Zadanie 5. Stosunek energii kinetycznej E_K elektronu w atomie wodoru modelu Bohra do jego energii potencjalnej E_P jest równy:

A)
$$\frac{E_k}{E_p} = \frac{1}{2}$$
, B) $\frac{E_k}{E_p} = -\frac{1}{2}$, C) $\frac{E_k}{E_p} = 2$, D) $\frac{E_k}{E_p} = -2$.

$$B) \frac{E_k}{E_n} = -\frac{1}{2}$$

C)
$$\frac{E_k}{E_n} = 2$$

$$D) \frac{E_k}{E_n} = -2.$$

(odp. B)

Zadanie 6. Znajdź natężenie jednorodnego pola elektrycznego E wiedząc, że przy przesunięciu ładunku $q = 10^{-2}$ C wzdłuż linii sił pola o d = 5 cm została wykonana praca W = 1 J

(odp.
$$E = \frac{W}{qd} = 2 \cdot 10^3 \frac{N}{C}$$
)

Zadanie 7. Cząstka α o początkowej energii kinetycznej $E_{k0} = 5,4\cdot 10^{-13}$ J ulega rozproszeniu na jądrze atomu złota $^{197}_{79}$ Au . W najmniejszej odległości od jądra cząstka zachowała połowę swojej energii kinetycznej. Zakładamy, że początkowa energia potencjalna cząstki była równa zero.

- a) Oblicz energię potencjalną tej cząstki w najmniejszej odległości od jądra atomu złota.
- b) Oblicz, na jaką najmniejszą odległość zbliżyła się cząstka lpha do jądra.
- c) Po jakim torze powinna poruszać się cząstka α , względem jądra atomu złota aby w jego polu elektrycznym całkowicie utraciła energię kinetyczną. Uzasadnij odpowiedź.

(odp. a)
$$E_p = 2.7 \cdot 10^{-13} \text{ J; b}$$
 $r = \frac{4 \text{ k Z e}^2}{E_{k0}} = 1.35 \cdot 10^{-13} \text{ m}$

Zadanie 8. W pewnym doświadczeniu strumień cząstek α (jąder helu) skierowano prostopadle na cienką folię ze złota, umieszczoną w próżni.

a) Na rysunku poniżej zaznaczono dwie cząstki α (z różnych chwil czasu) zbliżające się do jądra złota z początkowo jednakowymi prędkościami. Przyjmujemy, że cząstki α przelatują obok jądra złota jedna po drugiej w takim odstępie czasu, że nie dochodzi do wzajemnego oddziaływania między tymi cząstkami. Zakładamy, że każda z cząstek α , gdy przechodzi w pobliżu jądra, oddziałuje tylko z tym jednym jądrem złota, a ponadto jądro złota pozostaje nieruchome.

Na rysunku poniżej naszkicuj przybliżone tory ruchu obu cząstek lpha.

Au

b) Wyniki doświadczenia opisanego w zadaniu okazały się następujące. Bardzo duża część wystrzelonych cząstek α przelatywała przez folię ze złota prawie bez zmiany kierunku ruchu, niewielka część z nich po przejściu przez folię zmieniła kierunek ruchu, a znikoma część cząstek α odbijała się od folii pod różnymi kątami. Eksperymentatorzy, chcący poznać budowę atomu, założyli, że zmiana kierunku ruchu cząstek α jest spowodowana oddziaływaniem Coulomba z ładunkami znajdującymi się w atomach złota. Ponadto wiedzieli oni, że nośnikami ładunku ujemnego są elektrony, a każdy z nich jest kilka tysięcy razy lżejszy od cząstki α .

Zaznacz prawidłowe dokończenie zdania wybrane spośród A–C oraz 1.–3.

Wyniki eksperymentu przemawiały za tym, aby przyjąć model atomu, w którym

A.	ładunek dodatni jest rozmieszczony w atomie tak samo jak ładunek ujemny,	a jego masa	1.	jest dużo większa od całej masy ładunku ujemnego.
B.	większą część atomu równomiernie wypełnia tylko ładunek dodatni,		2.	jest dużo mniejsza od całej masy ładunku ujemnego.
C.	ładunek dodatni zajmuje bardzo małą część atomu,		3.	jest taka sama jak cała masa ładunku ujemnego.

c) Oceń prawdziwość poniższych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1.	Energia wiązania jądra cięższego (np. złota) jest większa niż energia wiązania jądra znacznie lżejszego (np. węgla).		F
2.	Deficyt masy jąder atomowych jest tym większy, im większa jest energia wiązania tych jąder.	Р	F
3.	Energia wiązania przypadająca na jeden nukleon jest dla wszystkich jąder atomowych taka sama.	Р	F

d) Potencjalna energia elektrostatyczna dwóch ładunków elektrycznych o wartościach q_1 i q_2 , znajdujących się w odległości d od siebie, wyraża się wzorem

$$E_{pot} = k \cdot \frac{q_1 \cdot q_2}{d}$$

gdzie k jest stałą elektryczną. Cząstka α , wystrzelona z pewną prędkością początkową, zbliża się centralnie w kierunku jądra złota. Zakładamy, że gdy cząstka α zbliża się do jądra, to oddziałuje tylko z tym jednym jądrem, a ponadto jądro złota pozostaje nieruchome. Oszacowano, że najmniejsza odległość, na jaką ta cząstka może się zbliżyć do jądra złota, jest równa $4\cdot10^{-14}$ m.

Oblicz początkową energię kinetyczną tej cząstki. Przyjmij, że w chwili początkowej odległość cząstki lpha od jądra złota była bardzo duża. Wynik podaj w MeV.

Zadanie 9. Ładunek ujemny o wartości 3·10⁻¹⁶ C wytwarza w swoim otoczeniu centralne pole elektryczne. Gdy w tym polu znalazł się inny ładunek ujemny, to w wyniku oddziaływania elektrostatycznego zaczął się przemieszczać w tym polu. Na wykresie

przedstawiono zależność siły

elektrostatycznego oddziaływania od odległości między ładunkami.

- a) Oblicz wartość drugiego ładunku.
- b) Narysuj wykres zależności energii potencjalnej od odległości dla tego układu ładunków.

(odp. a)
$$q = \frac{r^2 F}{k Q} = 2 \cdot 10^{-15} C$$
; b) $E = F \cdot r$)

Zadanie 10. W wierzchołkach trójkąta równobocznego o boku a = 3 cm znajdują się jednakowe co do wartości bezwzględnej ładunki q = 10 nC (dwa ujemne i jeden dodatni – zobacz rysunek). Oblicz energię układu ładunków względem przypadku, gdy wszystkie znajdowały się początkowo się daleko od siebie (w nieskończoności).

(odp.
$$W_{ABC} = -k \frac{q^2}{a} = -3.10^{-5} J$$
)