LARSON—MATH 511—CLASSROOM WORKSHEET 13 Ekhart-Young Theorem

Remaining SVD Claims

- 1. Show: the \hat{u} 's in U are orthogonal (where $\hat{u}_i = \frac{1}{\sigma_i} A \hat{v}_i$ for $i \in \{1 \dots r\}$.
- 2. Show: $AV = U\Sigma$ and $A = U\Sigma V^T$.

Low Rank Approximation

3. Why does $A = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_r \hat{u}_r \hat{v}_r^T$?

Let $A_k = \sigma_1 \hat{u}_1 \hat{v}_1^T + \ldots + \sigma_k \hat{u}_k \hat{v}_k^T$ (for $k \leq r$). We will show that A_k is the "best" low rank approximation to A.

- 4. What is a vector *norm*?
- 5. What is a matrix norm?

For any $m \times n$ matrix A, let $||A|| = \max \frac{||A\hat{x}||}{||\hat{x}||}$ (for any $\hat{x} \in \mathbb{R}^n$).

- 6. Is this number well-defined?
- 7. Is it a *norm*?
- 8. Find $||A A_k||$.
- 9. Let B be an $m \times n$ matrix with rank k. Explain why $||A A_k|| \le ||A B||$ if k = n.
- 10. The dimension of the null space of B (the "nullity") is n-k. Explain why there must be a non-0 vector \hat{x} in $N(B) \cap span(\{\hat{v}_1, \dots, \hat{v}_{k+1}\})$.
- 11. (We can assume \hat{x} is unit). Argue that $||(A-B)\hat{x}|| \geq \sigma_{k+1}$.
- 12. Argue that $||A A_k|| \ge ||A B||$.
- 13. Explain why A_k is the "best" rank-k approximation of A.

Sage/CoCalc

- 14. (a) Start the Chrome browser.
 - (b) Go to http://cocalc.com
 - (c) Login (likely using your VCU email address).
 - (d) You should see an existing Project for our class. Click on that.
 - (e) Click "New", then "Sage Worksheet", then call it c13.

15.

- 16. Input $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ (remember to inform Sage you mean for the entries to be interpreted as elements of a Real Double Field (RDF).
- 17. What is the rank of A?
- 18. Find the U, S, V from the SVD by evaluating: U, S, V = A.SVD(). Check what you have for u, S, V. What are the singular values of A?
- 19. Find the approximation matrix A_1 .
- 20. Find the norm of $A A_1$.
- 21. Let B be any 2×2 rank-1 matrix. Find the norm of A B and check that $||A A_1|| \ge ||A B||$.

Getting your classwork recorded

When you are done, before you leave class...

- 1. Click the "Make pdf" (Adobe symbol) icon and make a pdf of this worksheet. (If CoCalc hangs, click the printer icon, then "Open", then print or make a pdf using your browser).
- 2. Send me an email with an informative header like "Math 511—c13 worksheet attached" (so that it will be properly recorded).
- 3. Remember to attach today's classroom worksheet!