A Life Insurance Deterrent to Risky Behavior in Africa

Pedro de Araujo
Department of Economics and Business
Colorado College

James Murray
Department of Economics
University of Wisconsin - La Crosse

November 22, 2009

- AIDS killed an estimated 2.1 million people worlwide in 2007.
- Between 30.6 and 36.1 million people worldwide currently live with HIV.
- About 2/3 of these people live in Sub-Saharran Africa.
- Worldwide, between 1.8 and 4.1 million new people become infected every year.

- AIDS killed an estimated 2.1 million people worlwide in 2007.
- Between 30.6 and 36.1 million people worldwide currently live with HIV.
- About 2/3 of these people live in Sub-Saharran Africa.
- Worldwide, between 1.8 and 4.1 million new people become infected every year.

- AIDS killed an estimated 2.1 million people worlwide in 2007.
- Between 30.6 and 36.1 million people worldwide currently live with HIV.
- About 2/3 of these people live in Sub-Saharran Africa.
- Worldwide, between 1.8 and 4.1 million new people become infected every year.

- AIDS killed an estimated 2.1 million people worlwide in 2007.
- Between 30.6 and 36.1 million people worldwide currently live with HIV.
- About 2/3 of these people live in Sub-Saharran Africa.
- Worldwide, between 1.8 and 4.1 million new people become infected every year.

HIV/AIDS Prevention Campaigns

- HIV/AIDS funding was around \$10 billion in 2007.
 - Almost a 40 fold increase from the previous 10 years.
- Thailand and Cambodia: successful prevention campaigns focused on commercial sex workers.
 - Led to a 90% increase in condom use and 50% reduction in demand
- Longer-term relationships:
 - Ku, Sonenstein, and Pleck (1994): condom use declines with age and length of relationship.

HIV/AIDS Prevention Campaigns

- HIV/AIDS funding was around \$10 billion in 2007.
 - Almost a 40 fold increase from the previous 10 years.
- Thailand and Cambodia: successful prevention campaigns focused on commercial sex workers.
 - Led to a 90% increase in condom use and 50% reduction in demand
- Longer-term relationships:
 - Ku, Sonenstein, and Pleck (1994): condom use declines with age and length of relationship.

HIV/AIDS Prevention Campaigns

- HIV/AIDS funding was around \$10 billion in 2007.
 - Almost a 40 fold increase from the previous 10 years.
- Thailand and Cambodia: successful prevention campaigns focused on commercial sex workers.
 - Led to a 90% increase in condom use and 50% reduction in demand
- Longer-term relationships:
 - Ku, Sonenstein, and Pleck (1994): condom use declines with age and length of relationship.

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes.
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes.
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes.
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes.
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Oster (2007): risky sexual behavior is greater for those with
 - shorter life expectancies,
 - smaller life time incomes.
 - Find decisions of heterosexual males in Sub-Saharan Africa are consistent with homosexual males in United States.
- Becker (1993): Education may increase lifetime income and decrease risky behavior.
- Grossman (1972) and Kenkel (1991): Education may increase access to health information and facilities.
- Can life insurance (paid only if HIV negative) also replicate higher life expectancy and higher lifetime income?

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - ② Family consumption
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - ullet Exogenous factors with probability $\delta \in (0,1)$
 - ullet Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - 2 Family consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - ullet Exogenous factors with probability $\delta \in (0,1)$
 - ullet Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - 2 Family consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - ullet Exogenous factors with probability $\delta \in (0,1)$
 - Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - 3 Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - Exogenous factors with probability $\delta \in (0,1)$
 - ullet Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - Exogenous factors with probability $\delta \in (0,1)$
 - ullet Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - Exogenous factors with probability $\delta \in (0,1]$
 - ullet Contracting HIV in period t, die of AIDS between t and t+1

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - Exogenous factors with probability $\delta \in (0,1)$
 - Contracting HIV in period t, die of AIDS between t and t + 1.

Model 4/ 1:

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - Exogenous factors with probability $\delta \in (0,1)$
 - Contracting HIV in period t, die of AIDS between t and t + 1.

- Model the behavior of adult males with dependents.
- Derive utility and make decisions about:
 - Personal consumption.
 - Pamily consumption.
 - Number of risky sexual partners.
- Three period model:
 - 1) Ages 25-39 2) Ages 40-54 3) Ages 55-69
- Agents alive in period 1, possibly die before periods 2 and 3.
 - ullet Exogenous factors with probability $\delta \in (0,1)$
 - Contracting HIV in period t, die of AIDS between t and t + 1.

$$u(c_t, f_t, m_t) = v(c_t, f_t) + \gamma_t w(m_t)$$

- c_t: personal consumption
- f_t : family consumption
- m_t : number of sexual partners
- \bullet γ_t measures relative preference for sexual partners.

$$u(c_t, f_t, m_t) = v(c_t, f_t) + \gamma_t w(m_t)$$

- c_t: personal consumption
- f_t : family consumption
- m_t: number of sexual partners
- \bullet γ_t measures relative preference for sexual partners.

$$u(c_t, f_t, m_t) = v(c_t, f_t) + \gamma_t w(m_t)$$

- c_t: personal consumption
- f_t : family consumption
- m_t: number of sexual partners
- \bullet γ_t measures relative preference for sexual partners.

$$u(c_t, f_t, m_t) = v(c_t, f_t) + \gamma_t w(m_t)$$

- c_t: personal consumption
- f_t : family consumption
- m_t : number of sexual partners
- ullet γ_t measures relative preference for sexual partners.

$$u(c_t, f_t, m_t) = v(c_t, f_t) + \gamma_t w(m_t)$$

- c_t: personal consumption
- f_t : family consumption
- m_t : number of sexual partners
- ullet γ_t measures relative preference for sexual partners.

$$\log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + \left(1 - \alpha \right) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon)$$

- ullet α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0
- If husband is alive, c_t , $f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

Preference for Consumption

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- ullet α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0
- If husband is alive, $c_t, f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- α : preference for personal vs family consumption.
- \bullet ν : elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0
- If husband is alive, c_t , $f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0)=0
- If husband is alive, $c_t, f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0.
- If husband is alive, c_t , $f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0.
- If husband is alive, c_t , $f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

$$\begin{aligned} v(c_t, f_t) &= \\ \log \left(\left[\alpha \left(c_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} + (1 - \alpha) \left(f_t + \epsilon \right)^{\frac{\nu - 1}{\nu}} \right]^{\frac{\nu}{\nu - 1}} \right) - \log(\epsilon) \end{aligned}$$

- α : preference for personal vs family consumption.
- ullet u: elasticity of substitution personal vs family consumption.
- Small value of ϵ forces v(0,0) = 0.
- If husband is alive, c_t , $f_t > 0$, $v(c_t, f_t) > 0$, $v_c(c_t, f_t) > 0$ $v_f(c_t, f_t) > 0$, $v_{cc}(c_t, f_t) < 0$, $v_{ff}(c_t, f_t) < 0$.
- If husband is dead, $c_t = 0$ but $f_t > 0$ and $v(0, f_t) > 0$, $v_f(0, f_t) > 0$, $v_{ff}(0, f_t) < 0$.

Preference for Sexual Parnters

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-\left(m_t - m^*\right)^2 + \left(m^*\right)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Assume no sexual partners in final period (ages 55-79).
- Increases in number of sexual partners increases utility...
- Until reach a satation point m^* where $w'(m^*) = 0$.

$$w(m_t) = \log \left[-(m_t - m^*)^2 + (m^*)^2 + \epsilon \right] - \log(\epsilon)$$

- Small value of ϵ forces w(0) = 0 if agent is dead.
- If agent is alive and $m_t < m^*$, $w(m_t) > 0$, $w'(m_t) > 0$, $w''(m_t) < 0$
- Inada condition $\lim_{\epsilon \to 0} \lim_{m_t \to 0} w'(m_t, \epsilon) = \infty$ guarantees interior solution.

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^m$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

- Let $h \in (0,1)$ be the HIV prevalence among potential partners.
- Let $t \in (0,1)$ be the female-to-male transmission rate (per partnership).
- For a given partner, probability of not contracting HIV: (1 ht).
- For m_t partners: $(1 ht)^{m_t}$.
- Probability of contracting HIV in period t, die before t + 1:

$$\pi(m_t) = 1 - (1 - ht)^{m_t}$$

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

Each compontent of utility function:

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

Utility from everything in period 1 – definitely alive.

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

(Utility from everything in period 2) x (Prob alive).

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

(Utility from only family cons in period 2) \times (Prob dead).

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

(Utility from family/personal cons in period 3) \times (Prob alive).

Expected utility over three periods:

$$U = u(c_1, f_1, m_1) + \beta(1 - \delta) [1 - \pi(m_1)] u(c_2, f_2, m_2)$$

$$+ \beta \{1 - (1 - \delta) [1 - \pi(m_1)]\} u(0, f_2, 0)$$

$$+ \beta^2 (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)] u(c_3, f_3, 0)$$

$$+ \beta^2 \{1 - (1 - \delta)^2 [1 - \pi(m_1)] [1 - \pi(m_2)]\} u(0, f_3, 0)$$

(Utility from only family cons in period 3) \times (Prob alive).

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta(1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

Each compontent of budget constraint:

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta(1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

Income and personal and family cons period 1 – definitely alive.

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta (1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

(Income and expenses from personal cons period 2) \times (Prob alive).

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta (1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

Certain family consumption period 2.

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta(1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

(Expenses from personal cons period 3) \times (Prob alive).

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta(1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

Certain expense on family consumption in period 3.

Expected budget constraint over three periods:

$$p_{1}(c_{1} + f_{1}) + (1 - \delta) [1 - \pi(m_{1})] \frac{p_{2}c_{2}}{1 + r} + \frac{p_{2}f_{2}}{1 + r}$$

$$+ (1 - \delta)^{2} [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{p_{3}c_{3}}{(1 + r)^{2}} + \frac{p_{3}f_{3}}{(1 + r)^{2}}$$

$$= w_{1} + (1 - \delta) [1 - \pi(m_{1})] \frac{w_{2}}{1 + r} + \delta [1 - \pi(m_{1})] \frac{b_{2}}{1 + r}$$

$$+ \delta(1 - \delta) [1 - \pi(m_{1})] [1 - \pi(m_{2})] \frac{b_{3}}{(1 + r)^{2}}$$

 b_2 : Life insurance if dead in period 2, but not from HIV.

Expected budget constraint over three periods:

$$\begin{aligned} & p_{1}(c_{1}+f_{1})+(1-\delta)\left[1-\pi(m_{1})\right]\frac{p_{2}c_{2}}{1+r}+\frac{p_{2}f_{2}}{1+r} \\ & +(1-\delta)^{2}\left[1-\pi(m_{1})\right]\left[1-\pi(m_{2})\right]\frac{p_{3}c_{3}}{(1+r)^{2}}+\frac{p_{3}f_{3}}{(1+r)^{2}} \\ & =w_{1}+(1-\delta)\left[1-\pi(m_{1})\right]\frac{w_{2}}{1+r}+\delta\left[1-\pi(m_{1})\right]\frac{b_{2}}{1+r} \\ & +\delta(1-\delta)\left[1-\pi(m_{1})\right]\left[1-\pi(m_{2})\right]\frac{b_{3}}{(1+r)^{2}} \end{aligned}$$

 b_3 : Life insurance if alive in period 2, dead in 3, not from HIV.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars)
- Prices: $p_1 = p_2 = p_3 = 1$.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars)
- Prices: $p_1 = p_2 = p_3 = 1$.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars)
- Prices: $p_1 = p_2 = p_3 = 1$.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars)
- Prices: $p_1 = p_2 = p_3 = 1$.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars).
- Prices: $p_1 = p_2 = p_3 = 1$.

- HIV Prevalence among potential parnters: h = 0.119.
- Transmission rate: t = 0.15.
- Exogenous probability of dying: $\delta = 0.382$ matches a 55 year life expectancy.
- Interest rate / Discount rate (15 year period): r = 0.82, $\beta = 0.547$.
- Income: $w_1 = w_2 = 328.0$, roughly real GDP per person Uganda (U.S. dollars).
- Prices: $p_1 = p_2 = p_3 = 1$.

- Satiation point: $m^* = 50$.
- Personal consumption preference parameter: $\alpha = 0.5$.
- Elasticty of sub personal/family consumption: $\nu = 1.0$.
- Sexual partner preference parameters $\gamma_1 = 1.23$ (chosen to yield $\pi(m_1) = 0.119$).
- Sexual partner preference parameters $\gamma_2 = 51$ (chosen to yield $\pi(m_2) = 0.119$).

- Satiation point: $m^* = 50$.
- Personal consumption preference parameter: $\alpha = 0.5$.
- Elasticty of sub personal/family consumption: $\nu = 1.0$.
- Sexual partner preference parameters $\gamma_1 = 1.23$ (chosen to yield $\pi(m_1) = 0.119$).
- Sexual partner preference parameters $\gamma_2 = 51$ (chosen to yield $\pi(m_2) = 0.119$).

- Satiation point: $m^* = 50$.
- Personal consumption preference parameter: $\alpha = 0.5$.
- Elastcity of sub personal/family consumption: $\nu = 1.0$.
- Sexual partner preference parameters $\gamma_1 = 1.23$ (chosen to yield $\pi(m_1) = 0.119$).
- Sexual partner preference parameters $\gamma_2 = 51$ (chosen to yield $\pi(m_2) = 0.119$).

- Satiation point: $m^* = 50$.
- Personal consumption preference parameter: $\alpha = 0.5$.
- Elasticty of sub personal/family consumption: $\nu = 1.0$.
- Sexual partner preference parameters $\gamma_1 = 1.23$ (chosen to yield $\pi(m_1) = 0.119$).
- Sexual partner preference parameters $\gamma_2 = 51$ (chosen to yield $\pi(m_2) = 0.119$).

- Satiation point: $m^* = 50$.
- Personal consumption preference parameter: $\alpha = 0.5$.
- Elasticty of sub personal/family consumption: $\nu = 1.0$.
- Sexual partner preference parameters $\gamma_1 = 1.23$ (chosen to yield $\pi(m_1) = 0.119$).
- Sexual partner preference parameters $\gamma_2 = 51$ (chosen to yield $\pi(m_2) = 0.119$).