

Algebra of Matrices Ex 5.3 Q1

(i)
$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$= \begin{bmatrix} (a)(a) + (b)(b) & (a)(-b) + (b)(a) \\ (-b)(a) + (a)(b) & (-b)(-b) + (a)(a) \end{bmatrix}$$

$$= \begin{bmatrix} a^2 + b^2 & -ab + ab \\ -ab + ab & b^2 + a^2 \end{bmatrix}$$

$$= \begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$$

Hence.

$$\begin{bmatrix} a & b \\ -b & a \end{bmatrix} \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$$

$$\begin{aligned} & \begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & -1 \end{bmatrix} \\ & = \begin{bmatrix} (1)(1) + (-2)(-3) & (1)(2) + (-2)(2) & (1)(3) + (-2)(-1) \\ (2)(1) + (3)(-3) & (2)(2) + (3)(2) & (2)(3) + (3)(-1) \end{bmatrix} \\ & = \begin{bmatrix} 1 + 6 & 2 - 4 & 3 + 2 \\ 2 - 9 & 4 + 6 & 6 - 3 \end{bmatrix} \\ & = \begin{bmatrix} 7 & -2 & 5 \\ -7 & 10 & 3 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} 1 & -2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -3 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 7 & -2 & 5 \\ -7 & 10 & 3 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{bmatrix}$$

$$\begin{bmatrix} (2)(1) + (3)(0) + (4)(3) & (2)(-3) + (3)(2) + (4)(0) & (2)(5) + (3)(4) + (4)(5) \\ (3)(1) + (4)(0) + (5)(3) & (3)(-3) + (4)(2) + (5)(0) & (3)(5) + (4)(4) + (5)(5) \\ (4)(1) + (5)(0) + (6)(3) & (4)(-3) + (5)(2) + (6)(0) & (4)(5) + (5)(4) + (6)(5) \end{bmatrix}$$

$$\begin{bmatrix} 2 + 0 + 12 & -6 + 6 + 0 & 10 + 12 + 20 \\ 3 + 0 + 15 & -9 + 8 + 0^{\circ} & 15 + 16 + 25 \\ 4 + 0 + 18 & -12 + 10 + 0 & 20 + 20 + 30 \end{bmatrix}$$

$$\begin{bmatrix} 14 & 0 & 42 \\ 18 & -1 & 56 \\ 22 & -2 & 70 \end{bmatrix}$$

Algebra of Matrices Ex 5.3 Q2(i)

Given,
$$A = \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$

$$AB = \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 10 - 3 & 5 - 4 \\ 12 + 21 & 6 + 28 \end{bmatrix}$$

$$AB = \begin{bmatrix} 7 & 1 \\ 33 & 34 \end{bmatrix} \qquad ----(i)$$

$$BA = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & -1 \\ 6 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 10 + 6 & -2 + 7 \\ 15 + 24 & -3 + 28 \end{bmatrix}$$

$$BA = \begin{bmatrix} 16 & 5 \\ 39 & 25 \end{bmatrix} \qquad ----(ii)$$

From equation (i) and (ii), we get $AB \neq BA$

Algebra of Matrices Ex 5.3 Q2(ii)

Given,
$$A = \begin{bmatrix} -1 & -1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

$$BA = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} -1 + 0 + 0 & -2 + 1 + 0 & -3 + 0 + 0 \\ +0 + 01 & 0 - 1 + 1 & 0 + 0 + 0 \\ 2 + 0 + 4 & 4 + 3 + 4 & 6 + 0 + 0 \end{bmatrix}$$

$$AB = \begin{bmatrix} -1 & -1 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \qquad ----(i)$$

$$BA = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} -1+0+6 & 1-2+9 & 0+2+12 \\ 0+0+0 & 0-1+0 & 0+1+0 \\ -1+0+0 & 1-1+0 & 0+1+0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 5 & 8 & 14 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad ---(ii)$$
From (i) and (ii), $AB \neq BC$

Algebra of Matrices Ex 5.3 Q2(iii)

Given,
$$A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0+3+0 & 1+0+0 & 0+0+0 \\ 0+1+0 & 1+0+0 & 0+0+0 \\ 0+1+0 & 4+0+0 & 0+0+0 \end{bmatrix}$$

$$AB = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 4 & 0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 0 & 10 & 1 \\ 1 & 0 & 0 \\ 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 0 \\ 0 & 5 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0+1+0 & 0+1+0 & 0+0+0 \\ 1+0+0 & 3+0+0 & 0+0+0 \\ 0+5+4 & 0+5+1 & 0+0+0 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 0 \\ 9 & 6 & 0 \end{bmatrix}$$
---(ii)

From equation (i) and (ii), we get $AB \neq BA$

********* END *******