Objektif:

- Mahasiswa Mampu Memahami dan Menggunakan Software R Commander dalam Analisis Varians Satu Arah.
- 2. Mahasiswa Mampu Memahami Analisis Varians Dua Arah Tanpa Interaksi.
- 3. Mahasiswa Mampu Memahami Analisis Varians Dua Arah Dengan Interaksi.

PENDAHULUAN

Anova merupakan singkatan dari *Analysis of Variance*. Ditemukan oleh seorang ahli statistik yang bernama Ronald Aylmer Fisher tahun 1920. Distribusi F/Anova digunakan untuk menguji perbedaan rata-rata hitung dari tiga atau lebih populasi. Rata-rata populasi tersebut sama atau tidak.

Ada beberapa asumsi yang digunakan pada pengujian ANOVA, yaitu:

- 1. Populasi tersebut berdistribusi normal.
- 2. Populasi tersebut memiliki varians yang sama.
- 3. Sampel yang diambil dari populasi tersebut bersifat independen dan diambil secara acak.

Sesuatu yang akan diuji berdasarkan perbedaan signifikansi ratarata hitung berdasarkan analisis varians sering disebut sebagai klasifikasi. Analisis varians yang hanya menguji satu klasifikasi disebut sebagai Analisis Varians Klasifikasi

Tunggal atau Analisis Varians Satu Arah (One-Way Analysis of Variance), sedangkan yang menguji dua klasifikasi atau lebih disebut sebagai Analisis Varians Klasifikasi Ganda atau Analisis Varians Dua Arah (Two-Way Analysis of Variance).

LANGKAH-LANGKAH PENGUJIAN HIPOTESIS

Langkah-langkah dalam pengujian hipotesis Distribusi F/ANOVA dengan klasifikasi satu arah atau dua arah adalah sebagai berikut :

1. Tentukan H₀ dan H₁

H₀: Rata-rata ke-n sampel sama atau identik

H₁: Rata-rata ke-n sampel tidak sama atau tidak identik

- 2. Tentukan tingkat signifikan (α)
- 3. Tentukan derajat bebas (db)
 - a. Klasifikasi satu arah data sama:

$$V1 = k - 1$$

$$V2 = k (n - 1)$$

b. Klasifikasi satu arah data tidak sama:

$$V1 = k - 1$$

$$V2 = N - k$$

c. Klasifikasi dua arah tanpa interaksi:

$$V1$$
 (baris) = $b-1$

$$V2 \text{ (kolom)} = k-1$$

$$V2 = (k-1)(b-1)$$

d. Klasifikasi dua arah dengan interaksi:

$$V1$$
 (baris) = $b-1$

$$V2 (kolom) = bk(n-1)$$

V1 (interaksi) =
$$(k-1)(b-1)$$

$$V1 \text{ (kolom)} = k-1$$

- 4. Tentukan wilayah kritis (F_{tabel}) $F > (\alpha; V1; V2)$
- 5. Kriteria Pengujian

H₀ diterima jika Fhitung ≤ Ftabel

H₀ tidak diterima jika Fhitung > Ftabel

6. Nilai Hitung (Fhitung)

7. Keputusan

8. Kesimpulan

Berupa pernyataan hipotesis yang diterima.

6.1 Analisis Varians Satu Arah

Klasifikasi satu arah biasanya digunakan untuk menguji rata-rata pengaruh perlakuan dari suatu percobaan yang menggunakan satu faktor, dimana faktor tersebut memiliki tiga atau lebih kelompok. Dalam klasifikasi satu arah ini, rumus-rumus yang digunakan adalah:

6.1.1 Ukuran Data Sama

$$JKT = \sum_{i=1}^k \sum_{j=1}^n x^2 ij - \frac{T_2}{nk}$$

$$JKK = \sum_{i=1}^k \frac{T^2i}{n} - \frac{T^2}{nk}$$

$$JKG = JKT - JKK$$

Keterangan:

JKT : Jumlah Kuadrat Total

JKK : Jumlah Kuadrat Kolom

JKG : Jumlah Kuadrat Galat

x²ij : Pengamatan ke-j dari sampel ke-i

T² : Total semua pengamatan

T²i : Total semua pengamatan dalam contoh dari sampel ke-i

nk : Banyaknya anggota secara keseluruhan

n : Banyaknya pengamatan/anggota baris

Tabel 6.1 Analisis Varians dalam Klasifikasi Satu Arah dengan Data Sama

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung
Keragaman	Kuadrat	Derajat Bebas	Tengah	Fillung
Nilai Tengah Kolom	JKK	k-1	$S_1^2 = \frac{JKK}{k-1}$	S ₁ ²
Galat	JKG	k(n-1)	$S_2^2 = \frac{JKG}{k(n-1)}$	$\frac{S_1^2}{S_2^2}$
Total	JKT	nk-1		

Contoh:

Gunadarma City merupakan toko elektronik yang menjual berbagai jenis *handphone*, toko tersebut ingin mengetahui tingkat keuntungan yang diperoleh melalui penjualan berbagai produk, seperti Appa, Sunsang, Asas dan Xiomay.

Maka dilakukan pengamatan, berikut data yang disajikan:

Appa	Sunsang	Asas	Xiomay	
58	15	18	98	
99	80	50	15	
81	19	58	85	
10	89	11	51	
248	203	137	249	837

Dengan taraf nyata 5%. Ujilah apakah ada perbedaan yang signifikan pada tingkat keuntungan tiap-tiap varietas *handphone*?

Penyelesaian:

- 1. H_0 : Rata-rata tingkat keuntungan keempat varietas *handphone* sama.
 - H_1 : Rata-rata tingkat keuntungan keempat varietas $\mathit{handphone}$ tidak sama.
- 2. Taraf Nyata $\alpha = 0.05$
- 3. Derajat Bebas

$$V1 = (k-1) = (4-1) = 3$$
 $V2 = k(n-1) = 4(4-1) = 12$

4. Daerah Kritis

5. Kriteria Pengujian

H₀ diterima jika Fhitung ≤ Ftabel

H₀ tidak diterima jika Fhitung > Ftabel

6. Nilai Hitung

JKT =
$$(58^2 + 99^2 + 81^2 + 10^2 + 15^2 + 80^2 + 19^2 + 89^2 + 18^2 + 50^2 + 58^2 + 11^2 + 98^2 + 15^2 + 85^2 + 51^2) - (837^2 / 16)$$

= $60.697 - 43.785,5625 = 16.911,4375$
JKK = $((248^2 + 203^2 + 137^2 + 249^2) / 4) - (837^2 / 16)$
= $45.870,75 - 43.785,5625 = 2.085,1875$
JKG = $16.911,4375 - 2.085,1875 = 14.826,25$

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung	
Keragaman	Kuadrat		Tengah		
Nilai Tengah	2.085,1875	3	695,0625		
Kolom	2.065,1675	3	095,0025	0,5626	
Galat	14.826,25	12	1.235,5208	0,5020	
Total	16.911,4375	15			

7. Keputusan : H₀ diterima

8. Kesimpulan

Rata-rata tingkat keuntungan keempat varietas handphone sama.

LANGKAH-LANGKAH PENGERJAAN SOFTWARE

Buka software R-commander, lalu akan muncul tampilan seperti ini.

Gambar 6.1 Tampilan Awal R-commander

1. Pilih menu Data, New Data Set, lalu masukkan nama "Anova" – OK.

Gambar 6.2 Tampilan menu New Data Set

Gambar 6.3 Tampilan New Data Set

Gambar 6.4 Tampilan Data Editor

Ubah nama var1 dengan "SKOR" dan var2 dengan "VARIETAS" dengan cara klik pada var1 dan var2. Kemudian pada *type*, klik *numeric*.

Gambar 6.5 Tampilan Mengubah Nama Variable Editor (SKOR)

Gambar 6.6 Tampilan Mengubah Nama Variable Editor (VARIETAS)

 Masukkan data dengan memberi pemisalan. Di kolom "SKOR" ketikkan data sesuai tiap-tiap kolom. Pada kolom "VARIETAS" tuliskan angka 1 dari baris 1 sampai 4 (sesuai banyaknya baris), angka 2 dari baris 5 sampai 8, dst. Kemudian klik tanda close.

Gambar 6.7 Tampilan Isi Data Editor

- 3. Untuk mengecek kebenaran data yang sudah di input. Klik *View Data Set*. Jika ada data yang salah tekan tombol "edit set" lalu perbaiki data yang salah. Setelah selesai mengecek, close data editor tersebut.
- 4. Klik Data Manage variables in active data set Bin numeric variable.

Gambar 6.8 Tampilan Sub Menu Manage Variables

5. Pada *variable to bin* pilih "VARIETAS", pada *number of bin* pilih 4 (sesuai pemisalan, varietas 1, 2, 3, 4), OK. Maka akan muncul kotak *dialog* nama bin. Ketikkan sesuai dengan soal, OK.

Gambar 6.9 Tampilan Bin a Numeric Variables dan Bin Names

6. Klik *Statistics – Means – One-way ANOVA*, di kolom Peubah respon klik "SKOR" dan aktifkan *Pairwise comparisons of means*. OK.

Gambar 6.10 Tampilan Menu Olah Data

Gambar 6.11 Tampilan One-way ANOVA

7. Hasilnya adalah sebagai berikut:

Gambar 6.12 Hasil Akhir One-way ANOVA

Analisis Hasil Output:

6.1.2 Ukuran Data Tidak Sama

$$JKT = \sum_{i=1}^k \sum_{j=1}^n x^2 ij - \frac{T^2}{N}$$

$$JKK = \sum_{i=j}^k \frac{T^2i}{n} - \frac{T^2}{N}$$

$$JKG = JKT - JKK$$

Keterangan:

JKT : Jumlah Kuadrat Total

JKK : Jumlah Kuadrat Kolom

JKG : Jumlah Kuadrat Galat

x²ij : Pengamatan ke-j dari sampel ke-i

T²: Total semua pengamatan

T²i : Total semua pengamatan dalam contoh dari sampel ke-i

N : Banyaknya anggota secara keseluruhan

n : Banyaknya pengamatan/anggota baris

Tabel 6.2 Analisis Varians dalam Klasifikasi Satu Arah dengan Data Tidak Sama

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung
Keragaman	Kuadrat	Derajat Debas	Tengah	1 Intuing
Nilai Tengah	JKK	k-1	$S_1^2 = \frac{JKK}{k-1}$	
Kolom	JAK	K I	$S_1^2 = \frac{7^{k+1}}{k-1}$	S ₁ ²
Galat	JKG	N-k	$S_2^2 = \frac{JKG}{N - k}$	$\frac{S_1^2}{S_2^2}$
Total	JKT	<i>N</i> − 1		

Contoh:

Kelas 4EA01 melakukan pengamatan pada taman kampus untuk mengetahui rata-rata tingkat kecocokan jenis tanaman hidroponik, seperti mentimun, bayam, kangkung, sawi dan tomat. Data yang diperoleh yaitu:

Mentimun	Bayam	Kangkung	Sawi	Tomat	
15	18	11	15	10	
10	-	18	-	11	
18	-	15	11	-	
-	19	10	-	18	
43	37	54	26	39	199

Dengan taraf nyata 5%. Ujilah apakah ada perbedaan yang signifikan pada tingkat kecocokan tanaman hidroponik tiap-tiap varietas tanaman?

Penyelesaian:

1. H_0 : Rata-rata tingkat kecocokan tanaman hidroponik tiap-tiap varietas tanaman sama.

 H_1 : Rata-rata tingkat kecocokan tanaman hidroponik tiap-tiap varietas tanaman tidak sama.

- 2. Taraf Nyata $\alpha = 0.05$
- 3. Derajat Bebas

$$V1 = (k-1) = (5-1) = 4$$
 $V2 = (N-k) = (14-5) = 9$

4. Daerah Kritis

$$F Tabel (0,05; 4; 9) = 3,63$$

5. Kriteria Pengujian

H₀ diterima jika Fhitung ≤ Ftabel

H₀ tidak diterima jika Fhitung > Ftabel

6. Nilai Hitung

JKT =
$$(15^2 + 10^2 + 18^2 + 18^2 + 19^2 + 11^2 + 18^2 + 15^2 + 10^2 + 15^2 + 11^2 + 10^2 + 11^2 + 18^2) - (\frac{199^2}{14})$$

= $2.995 - 2.828,6428 = 166,3571$
JKK = $(\frac{43^2}{3} + \frac{37^2}{2} + \frac{54^2}{4} + \frac{26^2}{2} + \frac{39^2}{3}) - (\frac{199^2}{14})$
= $2.874,8333 - 2.828,6428 = 46,1905$
JKG = $166,3571 - 46,1905 = 120,1666$

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung
Keragaman	Kuadrat	Derajat Debas	Tengah	1 mung
Nilai Tengah	46,1905	4	11,5476	
Kolom	40,1303	7	11,5470	0,8649
Galat	120,1666	9	13,3518	0,0043
Total	166,3571	13		

7. Keputusan : H_0 diterima.

8. Kesimpulan

Rata-rata tingkat kecocokan tanaman hidroponik tiap-tiap varietas tanaman sama.

LANGKAH-LANGKAH PENGERJAAN SOFTWARE

1. Buka software R-commander, lalu akan muncul tampilan seperti ini.

Gambar 6.13 Tampilan Awal R-commander

2. Pilih menu Data, *New Data Set*, lalu masukkan nama "*Anova*" – OK.

Gambar 6.14 Tampilan menu New Data Set

Gambar 6.15 Tampilan New Data Set

Gambar 6.16 Tampilan *Data Editor*

Ubah nama var1 dengan "SKOR" dan var2 dengan "VARIETAS" dengan cara klik pada var1 dan var2. Kemudian pada *type*, klik *numeric*.

Gambar 6.17 Tampilan Mengubah Nama Variable Editor (SKOR)

Gambar 6.18 Tampilan Mengubah Nama Variable Editor (VARIETAS)

 Masukkan data dengan memberi pemisalan. Di kolom "SKOR" ketikkan data sesuai tiap-tiap kolom. Pada kolom "VARIETAS" tuliskan angka 1 dari baris 1 sampai 3 (sesuai banyaknya baris), angka 2 dari baris 4 sampai 5, dst. Kemudian klik tanda close.

Gambar 6.19 Tampilan Isi Data Editor

- 4. Untuk mengecek kebenaran data yang sudah di input. Klik *View Data Set*.

 Jika ada data yang salah tekan tombol "edit set" lalu perbaiki data yang salah. Setelah selesai mengecek, close data editor tersebut.
- 5. Klik Data Manage variables in active data set Bin numeric variable.

Gambar 6.20 Tampilan Sub Menu Manage Variables

6. Pada *variable to bin* pilih "VARIETAS", pada *number of bin* pilih 5 (sesuai pemisalan, varietas 1, 2, 3, 4, 5), OK. Maka akan muncul kotak *dialog* nama bin. Ketikkan sesuai dengan soal, OK.

Gambar 6.21 Tampilan Bin a Numeric Variables dan Bin Names

7. Klik *Statistics – Means – One-way ANOVA*, di kolom Peubah respon klik "SKOR" dan aktifkan *Pairwise comparisons of means*. OK.

Gambar 6.22 Tampilan Menu Olah Data

Gambar 6.23 Tampilan One-way ANOVA

8. Hasilnya adalah sebagai berikut:

Gambar 6.24 Hasil Akhir One-way ANOVA

Analisis Hasil Output:

6.2 Analisis Varians Dua Arah Tanpa Interaksi

Klasifikasi dua arah adalah klasifikasi pengamatan yang didasarkan pada 2 kriteria, seperti varietas dan jenis pupuk. Sekelompok pengamatan dapat diklasifikasikan menurut dua kriteria dengan menyusun data tersebut dalam baris dan kolom. Kolom menyatakan klasifikasi yang satu, sedangkan baris menyatakan kriteria klasifikasi yang lain. Tujuan dari pengujian anova dua arah adalah untuk mengetahui apakah ada pengaruh dari berbagai kriteria yang diuji terhadap hasil yang diinginkan.

Analisa varians dua arah tanpa interaksi merupakan pengujian hipotesis beda tiga rata-rata atau lebih dengan dua faktor yang berpengaruh dan interaksi antara kedua faktor tersebut ditiadakan.

Rumus yang digunakan dalam klasifikasi dua arah tanpa interaksi,

$$\begin{array}{l} \text{antara lain:} \\ \text{JKT} = \sum_{i=1}^{b} \sum_{j=1}^{k} xij^2 - \frac{T_2}{bk} \end{array}$$

$$JKK = \sum_{i=1}^k \frac{Tj^2}{b} - \frac{T^2}{bk}$$

$$\label{eq:JKB} \text{JKB} = \sum_{i=1}^{b} \frac{T^2 i}{k} - \frac{T^2}{\overline{bk}}$$

$$JKG = JKT - JKB - JKK$$

Keterangan:

JKT : Jumlah Kuadrat Total

JKK : Jumlah Kuadrat Kolom

JKB : Jumlah Kuadrat Baris

JKG : Jumlah Kuadrat Galat

x²ij : Pengamatan ke-j dari sampel ke-i

T² : Total semua pengamatan

T²i : Total semua pengamatan dalam contoh dari sampel ke-i

T²j : Jumlah/total pengamatan pada kolom

k : Jumlah kolom

b : Jumlah baris

bk : Jumlah kolom dan baris

Tabel 6.3 Analisis Varians dalam Klasifikasi Dua Arah Tanpa Interaksi

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung
Keragaman	Kuadrat		Tengah	
Nilai Tengah	IVD	h 1	$S^2 = \frac{JKB}{}$	$f = \frac{S_1^2}{1}$
Baris	JKB	b – 1	$S_1^2 = \frac{JKB}{b-1}$	1 S_{3}^{2}
Nilai Tengah	JKK	k – 1	$S_2^2 = \frac{JKK}{k-1}$	
Kolom	JKK	K-1	$\frac{s_2}{k-1}$	S_2^2
Galat	JKG	(b-1)(k-1)	$S_3^2 = \frac{JKG}{(b-1)(k-1)}$	$f_2 = \frac{2}{S_3^2}$
Total	JKT	bk – 1		

Contoh:

Berikut ini adalah hasil uji kuat tekan dari 4 jenis bata dengan penggunaan tanah liat yang berbeda *quarry*-nya:

	V1	V2	V3	V4	T
P1	4	6	7	8	25
P2	9	8	10	7	34
Р3	6	7	6	5	24
Т	19	21	23	20	83

Dengan tingkat kepercayaan 5%, ujilah apakah rata-rata hasil uji kuat tekan sama untuk:

- a. Jenis bata (pada baris);
- b. Jenis tanah liat (pada kolom).

Penyelesaian:

- 1. Hipotesis
 - a. H_0 : rata rata kuat tekan sama untuk penggunaan ketiga jenis tanah liat $(a_1 = a_2 = a_3)$

H₁: rata rata kuat tekan sama untuk penggunaan ketiga jenis tanah liat (sekurang-kurangnya ada satu $a_t \neq 0$)

b. H_0 : rata rata kuat tekan sama untuk penggunaan keempat jenis tanah liat ($\beta_1 = \beta_2 = \beta_3$)

 H_1 : rata rata kuat tekan sama untuk penggunaan keempat jenis tanah liat (sekurang-kurangnya ada satu $\beta_i \neq 0$)

- 2. Taraf Nyata $\alpha = 5\% = 0.05$
- 3. Derajat Bebas
 - a. Untuk baris

$$V1 = b - 1 = 3 - 1 = 2$$

$$V1 = b - 1 = 3 - 1 = 2$$
 $V2 = (b - 1)(k - 1) = (3 - 1)(4 - 1) = 6$

b. Untuk kolom

$$V1 = k - 1 = 4 - 1 = 3$$

$$V1 = k - 1 = 4 - 1 = 3$$
 $V2 = (b - 1)(k - 1) = (3 - 1)(4 - 1) = 6$

- 4. Daerah Kritis
 - a. Ftabel untuk baris

$$f_{(\alpha,V1,V2)} = f_{(0,05;2;6)} = 5,14$$

b. Ftabel untuk kolom

$$f_{(\alpha,V1,V2)} = f_{(0,05;3;6)} = 4,76$$

- 5. Kriteria Pengujian
 - a. H_0 diterima apabila $f_0 \le 5,14$ H_0 ditolak apabila $f_0 > 5,14$
 - b. H_0 diterima apabila $f_0 \le 4,76$ H_0 ditolak apabila $f_0 > 4,76$
- 6. Nilai Hitung

JKT =
$$(4^2 + 9^2 + 6^2 + 6^2 + 8^2 + 7^2 + 7^2 + 10^2 + 6^2 + 8^2 + 7^2 + 5^2) - \frac{83^2}{4(3)}$$

= $605 - 574,08 = 30,92$
JKB = $(\frac{25^2 + 34^2 + 24^2}{4}) - \frac{83^2}{4(3)}$
= $589,25 - 574,08 = 15,17$
JKK = $(\frac{19^2 + 21^2 + 23^2 + 20^2}{3}) - \frac{83^2}{4(3)}$
= $577 - 574,08 = 2,92$
JKG = $30,92 - 15,17 - 2,92 = 12,83$

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F hitung
Nilai Tengah Baris	15,17	2	7,59	3,55
Nilai Tengah Kolom	2,92	3	0,97	0,45
Galat	12,83	6	2,14	0,43
Total	30,92	11		

- 7. Keputusan : H₀ diterima
- 8. Kesimpulan

- a. Karena f_0 = 3,55 < $f_{0,05(2,6)}$ = 5,14, maka H_0 diterima. Artinya, rata-rata kuat tekan sama untuk penggunaan ketiga jenis tanah liat.
- b. Karena $f_0 = 0.45 < f_{0.05(3,6)} = 4.76$, maka H_0 diterima. Artinya, rata-rata kuat tekan sama untuk penggunaan keempat jenis bata.

6.3 Analisis Varians Dua Arah Dengan Interaksi

Analisa varians dua arah dengan interaksi merupakan pengujian beda tiga rata-rata atau lebih dengan dua faktor yang berpengaruh dan pengaruh interaksi antara kedua faktor tersebut diperhitungkan.

Rumus yang digunakan dalam klasifikasi dua arah dengan interaksi, antara lain :

$$JKT = \sum_{i=1}^{b} \sum_{j=1}^{k} x^{2}ijk - \frac{T_{2}}{bkn}$$

$$JKK = \sum_{j=1}^{k} \frac{T^2 j}{bn} - \frac{T^2}{bkn}$$

$$JKB = \sum_{i=1}^{b} \frac{T^2 j}{kn} - \frac{T^2}{bkn}$$

$$JK(BK) = \sum_{i=1}^{b} \sum_{j=1}^{k} \frac{T^{2}ij}{n} - \sum_{i=1}^{b} \frac{T^{2}}{kn} - \sum_{j=1}^{k} \frac{T^{2}j}{bn} + \frac{T^{2}}{bkn}$$

$$JKG = JKT - JKB - JKK - JK(BK)$$

Keterangan:

JKT : Jumlah Kuadrat Total

JKK : Jumlah Kuadrat Kolom

JKB : Jumlah Kuadrat Baris

JKG : Jumlah Kuadrat Galat

JK(BK): Jumlah Kuadrat Baris dan Kolom

x²ijk : Pengamatan ke-j dan k dari sampel ke-i

T² : Total semua pengamatan

T²j : Jumlah/total pengamatan pada kolom

 T^2 ij : Jumlah/total pengamatan pada baris dan kolom

k : Jumlah kolom

b : Jumlah baris

n : Banyaknya pengamatan/anggota baris

bn : Jumlah baris dan banyaknya pengamatan

kn : Jumlah kolom dan banyaknya pengamatan

bkn : Jumlah baris, kolom, dan banyaknya pengamatan

Tabel 6.4 Analisis Varians dalam Klasifikasi Dua Arah dengan Interaksi

Sumber	Jumlah	Derajat Bebas	Kuadrat	F hitung
Keragaman	Kuadrat	Derajat Besas	Tengah	· ····ca····g
Nilai Tengah	JKB	b – 1	$S_1^2 = \frac{JKB}{b-1}$	$f_1 = \frac{S_1^2}{S_4^2}$
Baris	JILD	5 1	$\frac{b-1}{b-1}$	1 S_{4}^{2}
Nilai Tengah	JKK	k – 1	$S_2^2 = \frac{JKK}{k-1}$	$f_2 = \frac{S_2^2}{S_4^2}$
Kolom	JILIC	K I	$\frac{\sqrt{k-1}}{2}$	2 S_{4}^{2}
Interaksi	JK(BK)	(b-1)(k-1)	$S_3^2 = \frac{JK(BK)}{(b-1)(k-1)}$	S^2
Galat	JKG	bk(n – 1)	$S_4^2 = \frac{JKG}{bk(n-1)}$	$f_3 = \frac{S_3^2}{S_4^2}$
Total	JKT	bkn – 1		

Contoh:

Berikut ini adalah hasil survey tentang pengaruh tingkat aktivitas dan tingkat ekonomi terhadap prestasi belajar :

Tingkat Aktivitas	Tingl	kat Eko	nomi	Т
Tilighat Aktivitas	Y ₁	Y ₂	Y ₃	
	64	72	74	
X_1	66	81	51	607
	70	64	65	
	65	57	47	
X_2	63	43	58	510
	58	52	67	
	59	66	58	
X_3	68	71	39	527
	65	59	42	
	58	57	53	
X_4	41	61	59	466
	46	53	38	
Т	723	736	651	2110

T = total

Dengan tingkat kepercayaan 5%, ujilah:

- a. Apakah ada pengaruh dari kedua faktor tersebut terhadap prestasi belajar?
- b. Apakah ada interaksi antara kedua faktor tersebut (tingkat aktivitas dan tingkat ekonomi)?

Penyelesaian:

1. Hipotesis

- a. f_1 : H_0 = rata rata semua tingkat aktivitas sama ($a_1=a_2=a_3=0$) H_1 = rata rata semua tingkat aktivitas tidak sama (sekurang-kurangnya ada satu $a_t\neq 0$)
- b. b. f_2: H_0 = rata rata semua tingkat ekonomi sama ($\beta_1=\beta_2=\beta_3=\beta_4=0$)

 H_1 = rata rata semua tingkat ekonomi tidak sama (sekurangkurangnya ada satu $\beta_i \neq 0$)

c. f_3 : H_0 = rata rata semua tingkat aktivitas dan ekonomi sama $((a\beta)_{11} = (a\beta)_{12} = (a\beta)_{13} = \dots = (a\beta)_{43} = 0)$

H₁ = rata rata semua tingkat aktivitas dan ekonomi tidak sama sekurang-kurangnya ada satu $((a\beta)_{ij} \neq 0)$

Catatan: untuk mempermudah dalam penyelesaian, masing-masing dijumlahkan terlebih dahulu, b = 4, k = 3, n = 3.

- 2. Taraf Nyata $\alpha = 5\% = 0.05$
- 3. Derajat Bebas

a.
$$V1 = b - 1 = 4 - 1 = 3$$

a.
$$V1 = b - 1 = 4 - 1 = 3$$
 $V2 = bk(n - 1) = 4(3)(3 - 1) = 24$

b.
$$V1 = k - 1 = 3 - 1 = 2$$

b.
$$V1 = k - 1 = 3 - 1 = 2$$
 $V2 = bk(n - 1) = 4(3)(3 - 1) = 24$

c.
$$V1 = (b-1)(k-1) = 6$$

c.
$$V1 = (b-1)(k-1) = 6$$
 $V2 = bk(n-1) = 4(3)(3-1) = 24$

4. Daerah Kritis

a.
$$f_{\alpha(V1,V2)} = f_{0,05(3,24)} = 3.01$$

b.
$$f_{\alpha(V1,V2)} = f_{0,05(2,24)} = 3,40$$

c.
$$f_{\alpha(V1,V2)} = f_{0.05(6,24)} = 2.51$$

- 5. Kriteria Pengujian
 - a. H_0 diterima apabila $f_0 \le 3,01$ H_0 ditolak apabila $f_0 > 3,01$
 - b. H_0 diterima apabila $f_0 \le 3,40$ H_0 ditolak apabila $f_0 > 3,40$
 - c. H_0 diterima apabila $f_0 \le 2,51$ H_0 ditolak apabila $f_0 > 2,51$
- 6. Nilai Hitung

JKT =
$$(64^2 + 66^2 + 70^2 + 72^2 + 81^2 + 64^2 + 74^2 + 51^2 + 65^2 + ... + 38^2) - (\frac{2110^2}{36})$$

= $127.448 - 123.669 = 3.779$

JKB =
$$\left(\frac{607^2 + 510^2 + 527^2 + 466^2}{9}\right) - \left(\frac{2110^2}{36}\right)$$

= $124.826 - 123.669 = 1.157$
JKK = $\left(\frac{723^2 + 736^2 + 651^2}{12}\right) - \left(\frac{2110^2}{36}\right)$
= $124.018,833 - 123.669 = 349,833 = 350$ (dibulatkan)
JK(BK) = $\left(\frac{200^2 + 2117^2 + \dots + 150^2}{3}\right) - \left(\frac{607^2 + 510^2 + 527^2 + 466^2}{9}\right)$
 $- \left(\frac{723^2 + 736^2 + 651^2}{12}\right) + \left(\frac{2110^2}{36}\right)$
= $125.947 - 124.826 - 124.019 + 123.669 = 771$
JKG = $3.779 - 1.157 - 350 - 771 = 1.501$

Sumber Keragaman	Jumlah Kuadrat	Derajat Bebas	Kuadrat Tengah	F hitung
Nilai Tengah Baris	1.157	3	385,67	6,17
Nilai Tengah Kolom	350	2	175	2,8
Interaksi	771	6	128,5	
Galat	1.501	24	62,54	2,05
Total	3.779	35		

7. Keputusan:

- a. $6,17 > f_{1tab}$, maka H_0 ' ditolak.
- b. $2.8 < f_{2tab}$, maka H_0 " diterima.
- c. $2,05 < f_{3tab}$, maka H_0 " diterima.

8. Kesimpulan

- a. Tingkat aktivitas berpengaruh terhadap prestasi belajar, tingkat ekonomi tidak berpengaruh terhadap prestasi belajar.
- b. Tidak ada interaksi antara tingkat ekonomi dengan tingkat aktivitas.

Referensi:

- [1] Walpole, Ronald E. (1995). Pengantar Statistika. Jakarta: Gramedia
- [2] Spiegel. R.M. (2004). Teori dan Soal Soal Statistik. Jakarta: Erlangga.
- [3] Lind, Douglas, William G. Marchal, Samuel A. Wathen. (2006). *Basic Statistics for Bussiness and Economics* (5th edition). New York: The McGraw-Hill Companies