UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores:

Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno

Gráficas y Juegos

Reposición

Ejercicio de la Tarea 2

1. [Ejercicio 3]

Sea G una gráfica conexa. Demuestre que si G no es completa, entonces contiente a P_3 como subgráfica inducida.

Demostración: Para este ejercicio necesitamos que $|V_G| \ge 3$, para las gráficas que no cumplan esto se tendrá la demostración por vacuidad. Nótese que el hecho de que G no sea completa implica que para al menos $x, y \in V_G$ se tiene que $xy \notin E_G$.

Previo a la demostración, provemos que en una gráfica conexa siempre podemos construir una trayectoria con exactamente 3 vértices:

Sea $x \in V_G$, por definición de conexidad y como $|V_G| \ge 3$, tenemos ha $x, y \in V_G$ tales que $xy \in E_G$, luego x es vecino a algún vértice distinto a y (o y es vecino de algún vértice distinto de x), pues en caso contrario xy sería una componente conexa contenida en G y $xy \ne G!!$ lo que contradice la hipótesis de que G es conexa. Supongamos, sin pérdida de generalidad, que z es vecino de x y $z \ne y$, luego zxy es una trayectoria de orden exactamente 3.

Para este ejercicio basta analizar 2 posibles casos¹:

Caso 1: Si G + e es completa, donde e = xy-arista para $x, y \in V_G$. Por **Prop. 1.64** y por hipótesis sabemos que existe un xy-camino en G, luego por **Prop. 1.62** sabemos que hay, en particular, una xy-trayectoria en G, luego hay alguna xy-trayectoria de orden 3 (esto lo sabemos gracias al resultado mostrado previamente) y supongamos, sin pérdida de generalidad, que ésta es T = (x, z, y), para $z \in V_G$, notemos que T tiene tamaño igual a 2, pues existen las aristas zx, zy pero no xy (por como definimos este caso), luego T es P_3 y concluimos que P_3 es subgráfica inducida de G.

Caso 2: Si G es un árbol, esto nos indica que G es 1—conexa, y es por eso que se considera este caso como el mínimo para el que se cumplirá la condición a demostrar. Sabemos por el teorema de caracterización de árboles que cada arista en G será un puente, y por el resultado previamente mostrado sabemos que existe una trayectoria T en G de orden exactamente 3, así T es claramente P_3 y concluimos P_3 es subgáfica inducida de G.

De los casos anteriores concluimos que el enunciado es verdadero.

QED

2. [Ejercicio 1 extra]

Sea G una gráfica. Demuestre que G es k-partita completa si y sólo si no contiene a K_{k+1} ni a $\overline{P_3}$ como subgráficas inducidas.

Demostración: En este ejercicio analizaremos 2 casos posibles:

⇒) Procedamos reducción al absurdo .

 $^{^1\}mathrm{Se}$ analizan los casos "extremos", pues los casos intermedios son combinaciones de estos.

- ·) Supongamos que $\overline{P_3}$ es subgráfica inducida de G, por definición de k-partita completa $\overline{P_3}$ no está en la misma parte (pues, en caso de estarlo hay una adyacencia en 2 vértices de la misma parte). Luego $\overline{P_3}$ está en 2 o 3 partes distintas y habrá un $x \in \overline{P_3}$ que no se relacionará con al menos 1 vértice en algunas de las partes y por tanto, G no es k-partita completa!! (lo que no cumple es ser completa bajo el supuesto tomado) y he aquí una contradicción de suponer que $\overline{P_3}$ es subgráfica inducida de G. Por lo tanto, concluimos que $\overline{P_3}$ no es subgráfica inducida de G.
- ·) Supongamos que K_{k+1} es subgráfica inducida de G, entonces hay 1 vértice de K_{k+1} en cada una de las partes (lo que suma k vértices) y un $x \in K_{k+1}$ en alguna parte tal que se relaciona con exactamente un vértice en esa parte y por tanto, G no es k-partita completa!! (no cumple el ser k-partita) y he aquí una contradicción de suponer que K_{k+1} es subgráfica inducida de G. Por lo tanto, concluimos que K_{k+1} no es subgráfica inducida de G.

 \Leftarrow)

De los casos anterior concluimos que G es k-partita completa si y sólo si no contiene a K_{k+1} ni a $\overline{P_3}$ como subgráficas inducidas. QED

Ejercicio de la Tarea 4

3. [Ejercicio extra 3]

Sea \mathcal{T} una familia de subárboles de un árbol T. Deduzca, por inducción sobre $|\mathcal{T}|$, que si cualesquiera dos elementos de \mathcal{T} tienen un vértice en común, entonces hay un vértice de T que está en todos los elementos de \mathcal{T} .

Demostración: Demostración por induccion sobre el numero de subarboles

Paso base: $\mathcal{T} = 3$

Sean T_1 , T_2 , T_3 subarboles de T

Pd Existe un vértice x que pertenece a T tal que $T_1 \cap T_2 = x \to T_1 \cap T_2 \cap T_3 = x$

Dem (Reduccion al absurdo)

Supongamos que $T_1 \cap T_2 \cap T_3 = \emptyset$ (algo que no puede pasar es que $T_1 \cap T_2 = T_1 \cap T_3 = T_2 \cap T_3 = \emptyset$ por hipotesis T es conexa y tambien por hipotesis $T_1 \cap T_2$ diferente del vacio) \rightarrow existe x_1 tal que x_1 pertenece a $T_1 \cap T_2$ y x_1 no pertenece a T_3 , existe x_2 tal que x_2 pertenece a $T_1 \cap T_3$ y x_2 no pertenece a T_2 , existe x_3 tal que x_3 pertenece a $T_2 \cap T_3$ y x_3 no pertenece a $T_1 \cap T_3$ y T_3 son vértices diferentes $T_3 \cap T_3$ pertenece a $T_3 \cap T_3$ y T_3 podemos formar un ciclo $T_3 \cap T_3$ pertenece a $T_3 \cap T_3$ pertenece a $T_4 \cap T_3$ pertenece a $T_5 \cap T_5$ p

Por lo tanto $T_1 \cap T_2 \cap T_3 \neq \emptyset \rightarrow$ existe un vértice compartido para los 3 subárboles

Hipótesis de inducción: supongamos para $\mathcal{T} = k$

Supongamos que si $\mathcal{T}=k$ tal que existen i,j tal que $i\neq j$ e i,j pertenezen a $\{1,...,k\}$ donde $T_i\cap T_j\neq\emptyset\to\bigcap_{r=1}^kT_r\neq\emptyset$

Paso inductivo: Pd para $\mathcal{T} = k + 1$

Pd si existen i,j tal que $i \neq j$ e i,j pertenezen a $\{1, ..., k+1\}$ donde $T_i \cap T_j \neq \emptyset \to \bigcap_{r=1}^{k+1} T_r \neq \emptyset$ Dem (Reducción al absurdo) Supongamos $\bigcap_{r=1}^{k+1} T_r = \emptyset$ y existen i,j pertenezen a $\{1,...,k+1\}$ donde $T_i \cap T_j \neq \emptyset \to \text{consideremos}$ a T' como el subárbol formado por la unión de todos los subárboles de $T_1, T_2, ...; T_{k+1}$ menos los subárboles T_i y T_j . Es decir T'= $\bigcup_{r=1,r\neq i,r\neq j}^{k+1} T_r \to T' \cap T_i \cap T_j = \emptyset$, pero por paso base esto es una contradicción \to existe un x tal que x pertenece a $\bigcap_{r=1}^{k+1} T_r$

Por lo tanto la porposición es verdadera.

QED

Ejercicio de la Tarea 5

4. [Pregunta 1]

Demuestre que si G es simple y 3-regular, entonces $\kappa = \kappa'$.

Demostración: Sea G 3-regular $\to d(v) = 3$ para todo v que pertenece a V \to sea v' un vertice de G \to para desconectar a v' de G, solo basta con "cortar" las 3 aristas de $v' \to k' = 3$. Por lo tanto k = k'.

5. [Pregunta 2]

Demuestre que una gráfica es 2-conexa por aristas si y sólo si cualesquiera dos vértices están conectados por al menos dos trayectorias ajenas por aristas.

Demostración: \Longrightarrow) Sea G una gráfica 2-conexa \to por teorema visto en clase en G existe un cliclo C que contendra 2 vertices v y u donde u y v pertenecen a G \to podemos tener la trayectoria P=(v,C,u) pero como C es un ciclo \to tambien existira la trayectoria P'=(u,V,v)

Por lo tanto existen 2 trayectorias ajenas por aristas en una gráfica 2-conexa

 \Leftarrow) Sean u y v cualesquiera vértices de una gráfica G y si u y v están conectados por dos trayectorias ajenas por aristas P y P' \rightarrow si unimos uPv y vP'v obtendremos un ciclo C que ira de uPvP'u \rightarrow sea G' una gráfica igual al ciclo C, si borramos una arista a G' \rightarrow G' seguira siendo conexa \rightarrow G' es 2-conexa \rightarrow G será 2-conexa ya que para todo v y u que pertenecen G existen 2 trayectorias ajenas por vertices

Ejercicio de la Tarea 7

6. [Ejercicio 1]

(a) Demuestre que si G tiene diámetro mayor que 3 (posiblemente infinito), entonces \overline{G} tiene diámetro menor que 3. Concluya que si G es inconexa, entonces \overline{G} es conexa.

Demostración: Sea G una gráfica.

Probaremos que \overline{G} tiene diámetro menor a 3.

Primero, sabemos que G tiene diametro mayor a 3 entonces tomemos una trayectoria P de G tal que su longitud es n (con n > 3).

La denotaremos como:

$$P = (x_0, x_1, \dots, x_n)$$

Ahora, por definición de \overline{G} es tal que:

$$|E_{\overline{G}}| = \binom{|V|-1}{2} - |E_G|$$

Por tanto, en \overline{G} la travectoria P cambia de la siguiente manera:

- El vértice x_0 es adyacente a los vértices x_2, x_3, \ldots, x_n , donde esto equivale a n-1 vértices.
- El vértice x_1 es adyacente a los vértices x_3, x_4, \ldots, x_n , donde esto equivale a n-2 vértices.
- El vértice x_2 es adyacente a los vértices x_0, x_4, \ldots, x_n , donde esto equivale a n-2 vértices.

Siguiendo este procedimiento, tenemos lo siguiente:

• El vértice x_i es adyacente a los vértices $x_{i-2}, x_{i+2}, x_{i+3}, \dots, x_n$, con i > 1.

Así, notemos lo siguiente:

En \overline{G} x_0 no es adyacente a x_1 , entonces necesitamos otro vértice x_3 para llegar a x_1 . Lo que implica que nos toma distancia igual a 2 llegar de x_0 a x_1 .

De la misma forma, x_1 no es adyacente a x_0 ni a x_2 , entonces necesitamos otro vértice x_4 para llegar a x_0 o x_2 . Lo que implica que nos toma distancia igual a 2 llegar de x_1 a x_0 o de x_1 a x_2 .

De lo anterior obtenemos que:

El vértice x_i no es adyacente al vértice x_{i-1} ni al vértice x_{i+1} , entonces necesitamos otro vértice x_{i+2} para llegar a x_{i-1} o x_{i+1} . Lo que implica que nos toma distancia igual a 2 llegar de x_i a x_{i-1} o de x_i a x_{i+1} .

Por lo tanto, \overline{G} tiene diámetro menor a 3.

Por último, probemos que si G es inconexa entonces \overline{G} es conexa.

Demostración: Sean $u, v \in G$ cualesquiera.

Supongamos que G es inconexa.

Sabemos que si $uv \notin E_G$, entonces $uv \in E_{\overline{G}}$.

Por lo antes visto, tenemos que:

Si u es adyacente a v, como el diámetro de \overline{G} es menor a 3, entonecs existe otro vértice $w \in G$ tal que $uv, vw \in E_{\overline{G}}$.

Es decir, podemos llegar desde un vértice u a cualquier otro vértice w usando al vértice v.

Por lo tanto, ya que u, v fueron arbitrarios, podemos concluir que \overline{G} es conexa. QED

Así, concluímos que si G es inconexa, entonces \overline{G} es conexa.

QED

(b) Una gráfica G es autocomplementaria si $G \cong \overline{G}$. Demuestre que si G es autocomplementaria, entonces $|V| \stackrel{4}{=} 0$ o $|V| \stackrel{4}{=} 1$.

Demostración: Primero, sabemos que si $G \cong \overline{G}$ entonces $V_G = V_{\overline{G}}$.

Probaremos que $|E_G| = |E_{\overline{G}}|$.

Veamos lo siguiente:

$$|V| \stackrel{4}{\equiv} 1 \longrightarrow |V| \equiv 1 \mod 4$$

Recordando la definición de mod, tenemos:

$$\begin{aligned} |V| &\equiv 1 \mod 4 \longrightarrow 4 \ \Big| |V| - 1 \\ &\longrightarrow |V| - 1 = 4 \cdot k, \text{ con } k \in \mathbb{N} \\ &\longrightarrow |V| = 4 \cdot k + 1 \end{aligned}$$

Luego, por definición de \overline{G} , tenemos:

$$|E_{\overline{G}}| = \binom{|V|-1}{2} - |E_G|$$

Sea $n = |V_G|$. Así,

$$|E_G| = |E_{\overline{G}}|$$

$$= {\binom{|V_G|-1}{2}} - |E_G|$$

$$= {\binom{n-1}{2}} - (n-1), \text{ porque } |V_G| = n$$

$$= \frac{(n-1)!}{2! \cdot ((n-1)-2)!} - (n-1)$$

$$= \frac{(n-1)!}{2! \cdot (n-1-2)!} - (n-1)$$

$$= \frac{(n-1)!}{2! \cdot (n-3)!} - (n-1)$$

$$= \frac{(n-1)(n-2)(n-3)!}{2! \cdot (n-3)!} - (n-1), \text{ porque } n! = n \cdot (n-1) \cdot (n-2)!$$

$$= \frac{(n-1)(n-2)(n-3)!}{2! \cdot (n-3)!} - (n-1)$$

$$= \frac{(n-1)(n-2)}{2!} - (n-1)$$

$$= \frac{(n-1)(n-2)}{2!} - (n-1), \text{ porque } 2! = 2 \cdot 1 = 2$$

$$= \frac{(n-1)(n-2)}{2} - \frac{2(n-1)}{2}$$

$$= \frac{(n-1)(n-2) - 2(n-1)}{2}$$

$$= \frac{n^2 - 3n + 2 - 2n + 2}{2}$$

$$= \frac{n^2 - 5n + 4}{2}$$

Ahora,

$$\frac{n^2 - 5n + 4}{2} = \frac{4\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2}{4} - \frac{5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n}{4} + 1\right]}{2}$$

$$= 4 \cdot \frac{\left[\frac{n^2 - 5n + 4}{4}\right]}{2}$$

$$= 4 \cdot \left[\frac{n^2 - 5n + 4}{8}\right]$$

Por lo tanto, tenemos lo siguiente:

$$|E_G| = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| - 1 = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right]$$

Despejando $|V_G|$, obtenemos:

$$|V_G| - 1 = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] \longrightarrow |V_G| = 4 \cdot \left[\frac{n^2 - 5n + 4}{8} \right] + 1$$

Sea
$$k = \left[\frac{n^2 - 5n + 4}{8}\right]$$
. Entonces:

$$|V_G| = 4 \cdot k + 1$$

Por lo tanto, llegamos a que $|E_G|=|E_{\overline{G}}|$ si $|V_G|=4\cdot k+1.$

QED

- 7.
- 8.
- 9.
- 10.
- 11.
- 12.