# Lecture 23

## Aakash Jog

## Thursday $15^{\rm th}$ January, 2015

## Contents

| 1 | Green's Theorem                       | 2 |
|---|---------------------------------------|---|
| 2 | Surface Integrals of Scalar Functions | 5 |
| 3 | Surface Integrals of Vector Functions | 6 |

#### 1 Green's Theorem

**Theorem 1** (Green's Theorem). Let C be a piecewise smooth, simple, and closed curve in  $\mathbb{R}^2$  with positive orientation. Let D be a domain bounded by C. If there exist continuous first order partial derivatives of P(x,y) and Q(x,y) in an open domain which contains D, then

$$W = \int_{C} \overline{F} \cdot \hat{T} ds = \int_{C} P dx + Q dy = \iint_{D} (Q_x - P_y) dA$$

Remark 1. Green's Theorem is also true for domains with holes.

Example 1. Find the work done by the force

$$\overline{F}(x,y) = (x^4, xy)$$

over the path

$$C = C_1 \cup C_2 \cup C_3$$



Solution. By Green's Theorem,

$$W = \int_{C} P \, dx + Q \, dy$$
$$= \iint_{D} (Q_x - P_y) \, dA$$
$$= \iint_{D} (y - 0) \, dA$$
$$= \int_{0}^{1} \int_{0}^{1-x} y \, dy \, dx$$
$$= \frac{1}{6}$$

**Example 2.** Calculate  $\int_C \overline{F} \cdot \hat{T} ds$  when

$$\overline{F} = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

and C is a simple, closed, piecewise smooth curve with positive orientation which does not pass through (0,0).

Solution.

$$P = \frac{y}{x^2 + y^2}$$
$$Q = \frac{x}{x^2 + y^2}$$

Therefore,

$$P_y = -\frac{(x^2 + y^2) - y \cdot 2y}{(x^2 + y^2)^2}$$
$$= \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
$$Q_x = \frac{(x^2 + y^2) - x \cdot 2x}{(x^2 + y^2)^2}$$

If  $(0,0) \notin D$ , Green's Theorem is applicable. Therefore,

$$\int_{C} \overline{F} \cdot \hat{T} \, \mathrm{d}s = \iint_{D} (Q_x - P_y) \, \mathrm{d}A$$
$$= 0$$

If  $(0,0) \in D$ , Green's Theorem is not applicable as  $P_y$  and  $Q_x$  are not continuous in D.

Let  $C_1$  be a circle of radius a, with the same orientation as C. Let  $\widetilde{C} = C \cup (-C_1)$ . Green's Theorem can be applied on the domain  $D \setminus D_1$  which is enclosed by  $\widetilde{C}$ .

$$\int_{C \cup (-C_1)} P \, dx + Q \, dy = \iint_{D \setminus D_1} (Q_x - P_y) \, dA$$

$$= 0$$

$$\int_{C} P \, dx + Q \, dy + \int_{-C_1} P \, dx + Q \, dy = 0$$

Therefore,

$$\int_{C} P \, dx + Q \, dy = \int_{C_{1}} P \, dx + Q \, dy$$

$$= \int_{0}^{2\pi} \left( P \left( x(t), y(t) \right) x'(t) + Q \left( x(t), y(t) \right) \right)$$

$$= \int_{0}^{2\pi} (\sin^{2} t + \cos^{2} t) \, dt$$

$$= 2\pi$$

**Example 3.** Calculate  $\int_C -2e^{2x-y}\cos y \, dx + \left(e^{2x-y}(\sin y + \cos y) + 2xy\right) \, dy$  when C is the half ellipse  $\left\{\frac{x^2}{4} + y^2 = 1, y \ge 0\right\}$  oriented from the point (2,0) to the point (-2,0).

Solution.



Let  $C_1$  be the line segment as shown.

$$P = -2e^{2x-y}\cos y$$
$$Q = e^{2x-y}(\sin y + \cos y) + 2xy$$

Therefore,

$$P_y = 2e^{2x-y}\cos y + 2e^{2x-y}\sin y$$
$$= 2e^{2x-y}(\cos y + \sin y)$$
$$Q_x = 2e^{2x-y}(\sin x + \cos y) + 2y$$

The domain is of the first kind.

$$\int_{C} P \, \mathrm{d}x + Q \, \mathrm{d}y = \int_{C} P \, \mathrm{d}x + Q \, \mathrm{d}y + \int_{C_{1}} P \, \mathrm{d}x + Q \, \mathrm{d}y - \int_{C_{1}} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

$$= \int_{C \cup C_{1}} P \, \mathrm{d}x + Q \, \mathrm{d}y - \int_{C_{1}} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

$$= \int_{D} (Q_{x} - P_{y}) \, \mathrm{d}A - \int_{C_{1}} P \, \mathrm{d}x + Q \, \mathrm{d}y$$

### 2 Surface Integrals of Scalar Functions

**Theorem 2.** Let S be a surface given by  $z = g(x, y), (x, y) \in D$ . Then the surface integral of a scalar function f(x, y, z) over S is equal to

$$\iint_{S} f(x,y,z) dS = \iint_{S} f(x,y,g(x,y)) \sqrt{1 + (g_x(x,y))^2 + (g_y(x,y))^2} dA$$

**Example 4.** Calculate  $\iint_S (x, y, z) dS$  when S is z = 1 - x - y above the domain

$$D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1 - x\}$$

Solution.

$$\iint_{S} (xy+z) \, dS = \iint_{D} (xy+z)\sqrt{1+1+1} \, dA$$

$$= \sqrt{3} \int_{0}^{1} \int_{0}^{1-x} ((x-1)y + (1-x)) \, dy \, dx$$

$$= \frac{5\sqrt{3}}{24}$$

#### 3 Surface Integrals of Vector Functions

**Definition 1** (Positive and negatively oriented surfaces). Let S be a surface given by  $z = g(x, y), (x, y) \in D$ . Then the surface is called positively oriented if, on S, the normal  $\overline{n} = (n_1, n_2, n_3)$  is given with  $n_3 > 0$ , and negatively oriented if  $n_3 < 0$ .

If S is closed, then the surface is called positively oriented if the normal is outwards, and negatively oriented if the normal is inwards.

#### Definition 2. If

$$\overline{F}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$$

is a vector function defined on S with the normal  $\hat{n}$  then the surface integral of the vector function is

$$\iint_{S} \overline{F} \cdot d\overline{S} = \int_{S} \overline{F}(x, y, z) \cdot \hat{n}(x, y, z) dS$$

**Theorem 3.** Let  $z = g(x, y), (x, y) \in D$  and S be positively oriented. Then

$$\iint_{S} \overline{F} \cdot d\overline{S} = \iint_{S} (-Pg_x - Qg_y + R) dA$$

**Example 5.** Find  $\iint_S \overline{F} \cdot d\overline{S}$  when  $\overline{F} = (x, y, z)$  and S is a lateral surface

of a solid bounded by the elliptical paraboloid  $z = 2 - x^2 - y^2$  and the plane z = 1.

Solution. Let

$$S_1: z = 2 - x^2 - y^2$$
  
 $S_2: z = 1$ 

Therefore,  $S = S_1 \cup S_2$ .

The normals to  $S_1$  and  $S_2$  are directed outwards with respect to the solid enclosed by  $S_1$  and  $S_2$ .<sup>1</sup>

$$\iint_{S} \overline{F} \cdot d\overline{S} = \iint_{S_{1}} \overline{F} \cdot d\overline{S} + \iint_{S_{2}} \overline{F} \cdot d\overline{S}$$

$$= \iint_{D} (-P(g_{1})_{x} - Q(g_{1})_{y} + R) dA$$

$$+ \iint_{D} (-P(g_{2})_{x} - Q(g_{2})_{y} + R) dA$$

$$= \iint_{D} (-y(-2x) - x(-2y) + 2 - x^{2} - y^{2}) dA$$

$$+ \iint_{D} (y(0) + x(0) - 1) dA$$

$$= \iint_{D} (4xy + 2 - x^{2} - y^{2}) dA - \iint_{D} dA$$

$$= \frac{\pi}{2}$$

<sup>&</sup>lt;sup>1</sup>If the orientation of a surface is not given, it can be assumed to be positive.