Social Media Sentiment Analysis Project

Mudavath Mounika,
Indian Institute of Technology Kharagpur,
Kharagpur, Kolkata, West Bengal,
mounikamudavath333@gmail.com

Introduction

This project focuses on analyzing Twitter data to classify the sentiment of tweets as **positive** or **negative**. Using **Natural Language Processing (NLP)** and **Machine Learning** techniques, the system processes raw tweets, cleans the text, removes unnecessary characters, and applies feature extraction methods to prepare the data for classification.

Dataset

Source: Sentiment140 dataset

• Size: 1.6 million tweets

Features:

- sentiment → Label (0 = Negative, 4 = Positive)
- text → Raw tweet text

The dataset is large and managed using **Git LFS** on GitHub.

Methodology

1. Data Preprocessing

- Removed URLs, mentions, numbers, and special characters
- Converted text to lowercase
- Reduced repeated characters
- Removed stopwords
- o Tokenization and text normalization

2. Feature Extraction

- Used TF-IDF Vectorizer to transform text into numerical features
- Limited vocabulary size to 5,000 most frequent words

3. Model Training

- Applied Logistic Regression as the classifier
- Trained the model on 80% of the data and tested on 20%

4. Evaluation Metrics

- Accuracy
- o Precision, Recall, and F1-score

Results

- The Logistic Regression model provided **good accuracy** on sentiment classification.
- TF-IDF with Logistic Regression proved efficient for large-scale text classification.

Conclusion

This project demonstrates how **Machine Learning and NLP** can be used to classify sentiment from social media text. The pipeline is efficient, scalable, and can be extended with deep learning models (e.g., LSTMs, BERT) for further improvement.

Future Work

- Use advanced word embeddings (Word2Vec, GloVe, BERT)
- Apply deep learning models for higher accuracy
- Deploy the model as a web app for real-time sentiment analysis