Ćwiczenia 3

- 2.2 Niech n będzie dodatnią liczbą całkowitą. Dla dodatniej liczby całkowitej k powiemy, że ciąg liczb $a[1], \ldots, a[n]$ jest k-dobry, jeżeli każda inwersja (i, j), $1 \le i < j \le n$, spełnia $j \le i + k$.
 - (a) Zaproponuj asymptotycznie optymalny ze względu na porównania algorytm sortujący ciągi *k-dobre*. Uzasadnij asymptotyczną optymalność swojego algorytmu.
 - Uwaga: w tym zadaniu argumentami funkcji złożoności są k i n.
 - (b) Zaproponuj wydajny czasowo i pamięciowo algorytm, który sprawdza, czy dany ciąg liczb $a[1], \ldots, a[n]$, dla zadanej dodatniej liczby całkowitej k, jest k-dobry. Uzasadnij poprawność swojego algorytmu i dokonaj analizy jego złożoności czasowej i pamięciowej.
- 2.5 Dana jest tablica a[1..n] oraz liczba całkowita $k \in \{1, 2, ..., n\}$. Zaproponuj liniowy algorytmy przesunięcia cyklicznego elementów tablicy a o k pozycji w lewo.
 - Przykład: ciąg [1, 2, 3, 4, 5] przesunięty cyklicznie o dwie pozycje w lewo będzie miał postać [3, 4, 5, 1, 2].
- 2.6 Dana jest n-elementowa tablica a[1..n] zawierająca tylko 0 i 1.
 - (a) Zaprojektuj wydajny algorytm sortowania a stabilnie i w miejscu.
 - (b) Załóżmy, że n=2k i w a znajduje się dokładnie k zer i k jedynek. Chcemy tablicę a posortować tak, żeby zera i jedynki były ułożone na przemian, począwszy od zera, tj. 010101... Zaproponuj wydajny algorytm, który wykona to w miejscu i stabilnie.