PRACTICE QUIZ 13 SOLUTIONS

ADRIAN PĂCURAR

Time: 10 min

Time to beat: ? min

Problem 1. Find the limit
$$\lim_{x\to -3} \frac{x^3+27}{x+3}$$
. (Hint: $a^3+b^3=(a+b)(a^2-ab+b^2)$).

We can either use the hint and factor the numerator (and then cancel an x + 3 factor), or use polynomial long division to see that the limit is equivalent to

$$\lim_{x \to -3} (x^2 - 3x + 9) = 27$$

Problem 2. Find the limit $\lim_{x\to 1} \frac{x^2-1}{\sqrt{x-1}}$.

Write the function as

$$\frac{(x+1)(x-1)}{\sqrt{x}-1} = \frac{(x+1)(\sqrt{x}+1)(\sqrt{x}-1)}{\sqrt{x}-1} = (x+1)(\sqrt{x}+1)$$

so the limit as $x \to 1$ is 4.

Problem 3. Find the left-sided limit $\lim_{x\to 1^-} \frac{x^2-1}{|x^3-x^2|}$.

Note that $x^3 - x^2 = x^2(x-1)$, so for x < 1 the absolute value is

$$|x^3 - x^2| = |x^2(x - 1)| = x^2|x - 1| = x^2(1 - x) = -x^2(x - 1)$$

Thus the limit is

$$\lim_{x \to 1^{-}} \frac{(x+1)(x-1)}{-x^{2}(x-1)} = \lim_{x \to 1^{-}} \frac{x+1}{-x^{2}} = -2$$

Problem 4. For the function

$$f(x) = \begin{cases} \frac{17}{5} - \frac{1}{5}x & \text{if } x < -3\\ 5(x+3)^2 - 1 & \text{if } -3 \le x < 2\\ 10x + 105 & \text{if } x \ge 2 \end{cases}$$

determine if f is continuous at x = -3 and x = 2

For point x = -3, the limit from the left is 4, while the limit from the right is -1, so the limit does not exist, and f is not continuous at x = -3

For point x = 2, the limit from the left is 124, while the limit from the right is 125, so again the limit does not exist, and f is not continuous at x = 2.

Note: both cases are jump discontinuities as the one-sided limits are different.