Entregables Distancias Topología

Juan Rodríguez

Ejercicio 1

Determinar cuáles de las siguientes funciones son distancias en \mathbb{R} .

1. d(x,y) = |x - y|.

Es distancia: cumple todos los axiomas de una métrica (distancia euclidiana).

Propiedad Reflexiva: Si
$$x=y$$
, entonces $d(x,y)=0$ $d(x,x)=|x-x|=|0|=0$ Si $d(x,y)=0$, entonces $x=y$ $d(x,y)=|x-y|=0 \rightarrow x-y=0 \rightarrow x=y$

Propiedad Simétrica:
$$d(x,y) = d(y,x)$$

 $d(x,y) = |x-y| = |-(y-x)| = |y-x| = d(y,x)$

Desigualdad Triangular:
$$d(x,z) \leq d(x,y) + d(y,z)$$

 $d(x,z) = |x-z| \leq |x-y| + |y-z|$
 $a = x-y$ $b = y-z$
 $|a+b| \leq |a| + |b|$

2. $d(x,y) = |x^2 - y^2|$.

No es distancia. Incumple la propiedad reflexiva d(1,-1)=0 y $1\neq -1$.

3. d(x,y) = |x - 2y|.

No es distancia. Incumple la propiedad reflexiva $d(1,1)=1\neq 0$

4.
$$d(x,y) = (x-y)^2$$
.

No es distancia. Incumple la desigualdad triangular $d(0,2) = 4 \le 1 + 1 = d(0,1) + d(1,2)$

5. $d(x,y) = \sin^2(x-y)$.

No es distancia. Incumple la propiedad reflexiva

$$d(x,y) = 0 \rightarrow x - y = k\pi$$
, no solo cuando $x = y$.

6. $d(x,y) = \arctan |x-y|$.

Es distancia: cumple todos los axiomas de una métrica (distancia euclidiana).

Propiedad Reflexiva:

Si
$$x = y$$
, entonces $d(x, y) = 0$

$$d(x,x) = \arctan |x-x| = \arctan |0| = 0$$

Si
$$d(x,y) = 0$$
, entonces $x = y$

$$d(x,y) = \arctan |x-y| = 0 \rightarrow x - y = 0 \rightarrow x = y$$

Propiedad Simétrica: d(x, y) = d(y, x)

$$d(x,y) = \arctan |x-y| = \arctan |-(y-x)| = \arctan |y-x| = d(y,x)$$

Designaldad Triangular: $d(x, z) \le d(x, y) + d(y, z)$

$$d(x, z) = \arctan |x - z| \le \arctan |x - y| + \arctan |y - z|$$

Tomamos tangente a ambos lados de la igualdad (Podemos hacerlo porque es una función monotona creciente, por lo que se cumple que f(a) < f(b) si a < b) tan(arctan |x - z|) \leq tan(arctan |x - y| + arctan |y - z|)

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a) \cdot \tan(b)}$$

$$\begin{aligned} |x - z| &\leq \frac{|x - y| + |y - z|}{1 - |x - y| \cdot |y - z|} \\ |x - z| &\leq |x - y| + |y - z| \leq \frac{|x - y| + |y - z|}{1 - |x - y| \cdot |y - z|} \end{aligned}$$

Ejercicio 2

Sea $d(A, B) = |A \cup B| - |A \cap B|$ para A, B subconjuntos finitos de un conjunto universo U.

Propiedad Reflexiva:

Si A = B, entonces

$$d(A, A) = |A \cup A| - |A \cap A| = |A| - |A| = 0.$$

Si d(A, B) = 0, entonces $|A \cup B| = |A \cap B|$. Esto sólo puede ocurrir si A = B. Por tanto, $d(A, B) = 0 \iff A = B$.

Propiedad Simétrica

$$d(A, B) = |A \cup B| - |A \cap B| = |B \cup A| - |B \cap A| = d(B, A).$$

Luego d(A, B) es simétrica.

Desigualdad Triangular:

Queremos probar que

$$d(A, B) \le d(A, C) + d(C, B).$$

Empecemos escribiendo:

$$d(A,B) = |A \cup B| - |A \cap B|.$$

Por la fórmula de inclusión-exclusión:

$$|A \cup B| = |A| + |B| - |A \cap B|,$$

entonces

$$d(A, B) = |A| + |B| - 2|A \cap B|.$$

De modo análogo:

$$d(A,C) = |A| + |C| - 2|A \cap C|, \qquad d(B,C) = |B| + |C| - 2|B \cap C|.$$

Sumando las dos últimas:

$$d(A,C) + d(B,C) = |A| + |B| + 2|C| - 2|A \cap C| - 2|B \cap C|.$$

La desigualdad triangular

$$d(A,B) < d(A,C) + d(B,C)$$

es equivalente a

$$|A| + |B| - 2|A \cap B| \le |A| + |B| + 2|C| - 2|A \cap C| - 2|B \cap C|.$$

$$-2|A \cap B| \le 2|C| - 2|A \cap C| - 2|B \cap C|.$$

$$-|A \cap B| \le |C| - |A \cap C| - |B \cap C|.$$

$$|A \cap C| + |B \cap C| - |A \cap B| \le |C|.$$

Interpretación. El término de la izquierda representa los elementos de C en común con A y con B, restando los que se cuentan dos veces. Esa cantidad siempre es menor o igual que el número de elementos de C. Por tanto, la desigualdad se cumple y la desigualdad triangular queda demostrada.

Conclusión

 $d(A, B) = |A \cup B| - |A \cap B|$ es una métrica en la familia de subconjuntos finitos de U.

Ejercicio 3

Determinar cuáles de las siguientes funciones son distancias en \mathbb{R}^2 :

a)
$$d_2((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2},$$

b)
$$d_{\times}((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| \cdot |y_1 - y_2|,$$

c)
$$d_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|,$$

d)
$$d_{\min}((x_1, y_1), (x_2, y_2)) = \min\{|x_1 - x_2|, |y_1 - y_2|\},\$$

e)
$$d_{\infty}((x_1, y_1), (x_2, y_2)) = \max\{|x_1 - x_2|, |y_1 - y_2|\}.$$

Sean
$$p = (x_1, y_1), q = (x_2, y_2), r = (x_3, y_3).$$

a) Euclidiana d_2

Si
$$p = q$$
, entonces $d(p,q) = 0$
 $d(p,p) = \sqrt{(0+0)} = 0$

Si
$$d(p,q)=0$$
, entonces $p=q$ $d(p,q)=0 \rightarrow +(x_1-x_2)^2+(y_1-y_2)^2=0 \rightarrow x_1-x_2=0$ y también que $y_1-y_2=0$

Por lo tanto p = q

Simetría: $d_2(p,q) = d_2(q,p)$.

$$d(p,q) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(-(x_2 - x_1))^2 + (-(y_2 - y_1))^2} =$$

$$= \sqrt{((x_2 - x_1))^2 + ((y_2 - y_1))^2} = d(q, p)$$

Designated at triangular: Escribimos u = q - p, v = r - q y u + v = r - p. Entonces

$$d_2(p,r) = ||u+v|| = \sqrt{(u_1+v_1)^2 + (u_2+v_2)^2} \le ||u|| + ||v||,$$

donde la última desigualdad es la de Minkowski. Por tanto, d_2 es distancia.

b) Producto d_{\times}

No cumple la propiedad reflexiva: si $p \neq q$ pero comparten una coordenada, por ejemplo p = (0,0), q = (0,1), entonces

$$d_{\times}(p,q) = |0-0| \cdot |0-1| = 0 \quad \text{con } p \neq q.$$

No es distancia.

c) Manhattan d_1

Propiedad Reflexiva:

Si
$$p = q$$
, entonces $d(p,q) = 0$
 $d(p,p) = 0 + 0 = 0$

Si
$$d(p,q)=0$$
 entonces $p=q$ $d(p,q)=0 \rightarrow |x_1-x_2|=0$ y también que $|y_1-y_2|=0$ $\rightarrow p=q$

Simetría: $d_1(p,q) = d_1(q,p)$.

Desigualdad triangular: usando la triangular en \mathbb{R} para cada coordenada,

$$|x_1 - x_3| \le |x_1 - x_2| + |x_2 - x_3|, \qquad |y_1 - y_3| \le |y_1 - y_2| + |y_2 - y_3|.$$

Sumando,

$$d_1(p,r) = |x_1 - x_3| + |y_1 - y_3| \le (|x_1 - x_2| + |x_2 - x_3|) + (|y_1 - y_2| + |y_2 - y_3|) = d_1(p,q) + d_1(q,r).$$

Luego d_1 es distancia.

d) Mínimo d_{\min}

Incumple la propiedad reflexiva: si $p \neq q$ y comparten alguna coordenada, por ejemplo p = (0,0), q = (0,1),

$$d_{\min}(p,q) = \min\{|0-0|, |0-1|\} = 0 \text{ con } p \neq q.$$

No es métrica.

e) Máximo d_{∞}

Propiedad Reflexiva: $d_{\infty}(p,q) = 0 \iff p = q$.

Simetría: inmediata por el valor absoluto.

Designaldad triangular: con u = q - p, v = r - q y u + v = r - p:

$$d_{\infty}(p,r) = \max\{|u_1 + v_1|, |u_2 + v_2|\} \le \max\{|u_1| + |v_1|, |u_2| + |v_2|\}$$

$$\le \max\{|u_1|, |u_2|\} + \max\{|v_1|, |v_2|\} = d_{\infty}(p, q) + d_{\infty}(q, r).$$

Por tanto, d_{∞} es métrica.

Ejercicio 4

Sea X = [0, 1) y definamos, para $x, y \in X$,

$$d(x,y) = \min\{|x-y|, 1-|x-y|\}.$$

Probar que d es una distancia en X.

1)Reflexiva y simetría

- Reflexiva: $d(x,y) = 0 \iff \min\{|x-y|, 1-|x-y|\} = 0 \iff |x-y| = 0 \iff x = y \text{ (como } |x-y| < 1 \text{ para } x, y \in [0,1)).$
- Simetría: $d(x,y) = \min\{|x-y|, 1-|x-y|\} = \min\{|y-x|, 1-|y-x|\} = d(y,x)$.

2) Desigualdad triangular

La idea es ver X = [0, 1) como el cociente \mathbb{R}/\mathbb{Z} (la circunferencia), y expresar d como un ínfimo de distancias euclidianas en \mathbb{R} . Para $x, y \in [0, 1)$ definimos

$$\tilde{d}(x,y) := \inf_{k \in \mathbb{Z}} |x - y - k|.$$

Observemos que, como $|x-y| \in [0,1)$, se tiene

$$\tilde{d}(x,y) = \min\{|x-y|, \ 1-|x-y|\} = d(x,y).$$

Por tanto, basta probar la desigualdad triangular para \tilde{d} :

$$\tilde{d}(x,z) \leq \tilde{d}(x,y) + \tilde{d}(y,z) \qquad (\forall x,y,z \in [0,1)).$$

Sea $m, n \in \mathbb{Z}$ arbitrarios. Usando la triangular en \mathbb{R} ,

$$|x - z - (m+n)| = |(x - y - m) + (y - z - n)| \le |x - y - m| + |y - z - n|.$$

Tomando ínfimos (primero en m, n y notando que m + n recorre todo \mathbb{Z}), obtenemos

$$\inf_{k\in\mathbb{Z}}|x-z-k| \ \leq \ \inf_{m,n\in\mathbb{Z}}\left(|x-y-m|+|y-z-n|\right) \ \leq \ \inf_{m\in\mathbb{Z}}|x-y-m|+\inf_{n\in\mathbb{Z}}|y-z-n|.$$

Esto es, $\tilde{d}(x,z) \leq \tilde{d}(x,y) + \tilde{d}(y,z)$. Como $\tilde{d}=d$, la desigualdad triangular queda probada para d.

Conclusión

Las tres propiedades (no negatividad y separación, simetría y desigualdad triangular) se cumplen. Luego

$$d(x,y) = \min\{|x-y|, 1-|x-y|\}$$
 define una métrica en [0, 1).

Observación. Esta es la distancia geodésica en la circunferencia S^1 al identificar $0 \sim 1$.

Ejercicio 5

Sea X un conjunto finito. Supongamos que $d: X \times X \to \{0,1\}$ es una distancia. Probar que necesariamente d coincide con la distancia discreta

$$\delta(x,y) := \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

Sea ahora $d: X \times X \to \{0,1\}$ una distancia cualquiera.

- Por la propiedad reflexiva, d(x,x) = 0 para todo $x \in X$.
- Si $x \neq y$, entonces por reflexiva no puede ocurrir d(x,y) = 0; como el codominio es $\{0,1\}$, necesariamente d(x,y) = 1.

Concluimos que, para todos $x, y \in X$, $d(x, y) = \delta(x, y)$. Es decir, $d = \delta$.

Conclusión

La única distancia en X que toma valores exclusivamente en $\{0,1\}$ es la métrica discreta:

$$d(x,y) = 0 \text{ si } x = y, \quad d(x,y) = 1 \text{ si } x \neq y.$$

Ejercicio 6

En \mathbb{R}^2 , para v = (x, y), demostrar

$$||v||_2 \le ||v||_1 \le \sqrt{2} ||v||_2$$
, donde $||v||_1 = |x| + |y|$, $||v||_2 = \sqrt{x^2 + y^2}$.

La cota derecha es equivalente a acotar la razón

$$R(x,y) := \frac{\|v\|_1}{\|v\|_2} = \frac{|x| + |y|}{\sqrt{x^2 + y^2}}.$$

Por simetría basta suponer $x \ge 0$ y $y \ge 0$ (los valores absolutos eliminan signos) y parametrizar y = kx con $k \ge 0$ y x > 0:

$$R(x,y) = \frac{x+kx}{\sqrt{x^2+k^2x^2}} = \frac{1+k}{\sqrt{1+k^2}} =: f(k).$$

Buscamos $\max_{k\geq 0} f(k)$. Derivando,

$$f(k) = \frac{1+k}{(1+k^2)^{1/2}}, \qquad f'(k) = \frac{(1+k^2)^{1/2} - (1+k)\frac{k}{(1+k^2)^{1/2}}}{1+k^2} = \frac{1-k}{(1+k^2)^{3/2}}.$$

Así, $f'(k) = 0 \iff k = 1$, con f'(k) > 0 si k < 1 y f'(k) < 0 si k > 1. Por tanto k = 1 es máximo global:

$$\max_{k \ge 0} f(k) = f(1) = \frac{1+1}{\sqrt{1+1}} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Concluimos que para todo $(x, y) \neq (0, 0)$,

$$\frac{\|v\|_1}{\|v\|_2} \le \sqrt{2} \implies \left[\|v\|_1 \le \sqrt{2} \|v\|_2 \right].$$

Para la cota izquierda usamos que $(|x|+|y|)^2=x^2+y^2+2|xy|\geq x^2+y^2,$ luego

$$||v||_2 = \sqrt{x^2 + y^2} \le |x| + |y| = ||v||_1$$

Conclusión (equivalencia de métricas)

De las dos desigualdades obtenemos

$$||v||_2 \le ||v||_1 \le \sqrt{2} \, ||v||_2 \, ,$$

así d_1 y d_2 son equivalentes (inducen la misma topología).

Ejercicio 7

Sean $A, B, C \in \mathbb{R}^2$.

(a) Métrica taxicab continua en \mathbb{R}^2

Definimos $d_1(P,Q) = |x_P - x_Q| + |y_P - y_Q|$. Probar que existe $O \in \mathbb{R}^2$ tal que $d_1(O,A) = d_1(O,B) = d_1(O,C)$.

Idea. El lugar geométrico de los puntos equidistantes a dos puntos P, Q:

$$\mathcal{B}(P,Q) := \{X : d_1(X,P) = d_1(X,Q)\}$$

es una línea poligonal no vacía formada por tramos con pendiente ± 1 (la "bisectriz ℓ^1 "). Bastará ver que $\mathcal{B}(A,B)$ y $\mathcal{B}(A,C)$ siempre se cortan.

Prueba (signos a lo largo de rectas). Sea, para X = (x, y),

$$F_{AB}(X) := d_1(X, A) - d_1(X, B).$$

Tomemos la recta $\gamma(t) = (t, -t)$. Entonces $t \mapsto F_{AB}(\gamma(t))$ es continua y, para |t| grande, los valores absolutos se "despegan", quedando

$$F_{AB}(\gamma(t)) = |t - a_x| + |-t - a_y| - |t - b_x| - |-t - b_y| = (a_y - a_x) - (b_y - b_x)$$
 para $t \gg 1$,

mientras que, para $t \ll -1$,

$$F_{AB}(\gamma(t)) = (a_x - a_y) - (b_x - b_y) = -[(a_y - a_x) - (b_y - b_x)].$$

Por el teorema del valor intermedio, existe t_0 tal que $F_{AB}(\gamma(t_0)) = 0$; es decir, $\gamma(t_0) \in \mathcal{B}(A, B)$. Un razonamiento idéntico (por ejemplo sobre la recta $\eta(s) = (s, s)$) muestra que $\mathcal{B}(A, C)$ también corta a alguna recta de pendiente +1. Como $\mathcal{B}(A, B)$ tiene tramos de pendiente +1 y -1 (y lo mismo $\mathcal{B}(A, C)$), y ambos son no acotados en el plano, necesariamente

$$\mathcal{B}(A,B) \cap \mathcal{B}(A,C) \neq \emptyset$$
.

Cualquier punto O en la intersección cumple $d_1(O, A) = d_1(O, B) = d_1(O, C)$.

Conclusión. En (\mathbb{R}^2, ℓ^1) siempre existe (aunque puede no ser único) un punto O equidistante a A, B, C.

(b) Métrica taxicab discreta en \mathbb{Z}^2

Ahora $A, B, C \in \mathbb{Z}^2$ y buscamos $O \in \mathbb{Z}^2$ con $d_1(O, A) = d_1(O, B) = d_1(O, C)$.

Afirmación. Tal O existe si y sólo si

$$a_x + a_y \equiv b_x + b_y \equiv c_x + c_y \pmod{2}$$
.

Necesidad (condición de paridad). Sea $O = (u, v) \in \mathbb{Z}^2$. Como $|m| \equiv m \pmod 2$ para $m \in \mathbb{Z}$,

$$d_1(O, P) = |u - p_x| + |v - p_y| \equiv (u - p_x) + (v - p_y) = (u + v) - (p_x + p_y) \pmod{2}.$$

Si $d_1(O, A) = d_1(O, B)$, entonces

$$(u+v) - (a_x + a_y) \equiv (u+v) - (b_x + b_y) \pmod{2} \implies a_x + a_y \equiv b_x + b_y \pmod{2}.$$

Aplicando a los tres pares, todas las sumas deben tener la misma paridad.

Suficiencia (construcción). Supongamos $a_x + a_y \equiv b_x + b_y \equiv c_x + c_y \pmod{2}$. La bisectriz ℓ^1 de dos puntos de \mathbb{Z}^2 con la misma paridad sí contiene puntos de la retícula (sus tramos de pendiente ± 1 pasan por vértices de la cuadrícula), mientras que si las paridades difieren, la bisectriz "queda entre" nodos de la retícula.

Sea $L_{AB} := \mathcal{B}(A, B) \cap \mathbb{Z}^2$ y $L_{AC} := \mathcal{B}(A, C) \cap \mathbb{Z}^2$. Bajo la hipótesis de paridad común, ambas son no vacías y, como en la parte continua, tienen tramos infinitos en direcciones de pendiente ± 1 . Dos tales conjuntos infinito-rectilíneos en direcciones cruzadas siempre se intersecan en algún nodo de la retícula; sea $O \in L_{AB} \cap L_{AC}$. Entonces

$$d_1(O, A) = d_1(O, B) = d_1(O, C),$$

con $O \in \mathbb{Z}^2$.

Conclusión. En la retícula (\mathbb{Z}^2, ℓ^1) existe $O \in \mathbb{Z}^2$ equidistante a A, B, C ssi $a_x + a_y$, $b_x + b_y$ y $c_x + c_y$ tienen la misma paridad.

Ejercicio 8

Calcular el valor análogo a π en la métrica taxicab.

En ℓ^1 , el círculo de radio r es un rombo de perímetro 8r y diámetro 2r, luego

$$\pi_{\text{taxi}} = \frac{\text{perimetro}}{\text{diámetro}} = \frac{8r}{2r} = 4.$$

Ejercicio 9

Sea $f(x) = \sin(2x)$ y $g(x) = \cos x$ en $[0, \pi]$. Queremos calcular

$$d_1(f,g) = \int_0^{\pi} |f(x) - g(x)| dx, \qquad d_{\infty}(f,g) = \sup_{x \in [0,\pi]} |f(x) - g(x)|.$$

Preparación

$$f(x) - g(x) = \sin(2x) - \cos x = \underbrace{\cos x}_{()} \underbrace{(2\sin x - 1)}_{()}.$$

Los ceros relevantes (cambios de signo) son:

$$\cos x = 0 \iff x = \frac{\pi}{2}, \qquad 2\sin x - 1 = 0 \iff \sin x = \frac{1}{2} \iff x = \frac{\pi}{6}, \frac{5\pi}{6}.$$

Con esto, el intervalo $[0, \pi]$ se parte en

$$[0, \frac{\pi}{6}], \quad (\frac{\pi}{6}, \frac{\pi}{2}], \quad (\frac{\pi}{2}, \frac{5\pi}{6}), \quad [\frac{5\pi}{6}, \pi],$$

en los que el signo de $\cos x(2\sin x - 1)$ es, respectivamente,

$$-, +, -, +.$$

a) Distancia integral d_1

Escribimos

$$d_1(f,g) = \int_0^{\pi} |\cos x (2\sin x - 1)| dx.$$

Para quitar el valor absoluto, integramos por tramos invirtiendo el signo donde el producto es negativo:

$$d_1(f,g) = \left(-\int_0^{\pi/6} + \int_{\pi/6}^{\pi/2} - \int_{\pi/2}^{5\pi/6} + \int_{5\pi/6}^{\pi}\right) \left(\cos x \left(2\sin x - 1\right)\right) dx$$
$$= \left(-\int_0^{\pi/6} + \int_{\pi/6}^{\pi/2} - \int_{\pi/2}^{5\pi/6} + \int_{5\pi/6}^{\pi}\right) \left(\sin 2x - \cos x\right) dx.$$

Tomamos una primitiva

$$P(x) = \int (\sin 2x - \cos x) dx = -\frac{1}{2} \cos 2x - \sin x.$$

Evaluamos en los puntos de corte (valores exactos):

Ahora, tramo a tramo (con el signo correspondiente):

$$I_{1} = -\left(P\left(\frac{\pi}{6}\right) - P(0)\right) = -\left(-\frac{3}{4} + \frac{1}{2}\right) = \frac{1}{4},$$

$$I_{2} = \left(P\left(\frac{\pi}{2}\right) - P\left(\frac{\pi}{6}\right)\right) = -\frac{1}{2} - \left(-\frac{3}{4}\right) = \frac{1}{4},$$

$$I_{3} = -\left(P\left(\frac{5\pi}{6}\right) - P\left(\frac{\pi}{2}\right)\right) = -\left(-\frac{3}{4} + \frac{1}{2}\right) = \frac{1}{4},$$

$$I_{4} = \left(P(\pi) - P\left(\frac{5\pi}{6}\right)\right) = -\frac{1}{2} - \left(-\frac{3}{4}\right) = \frac{1}{4}.$$

Sumando:

$$d_1(f,g) = I_1 + I_2 + I_3 + I_4 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \boxed{1}$$

b) Distancia del supremo d_{∞}

Como $x \in [0, \pi]$,

$$|\cos x| \le 1, \qquad \sin x \in [0,1] \ \Rightarrow \ 2\sin x - 1 \in [-1,1] \ \Rightarrow \ |2\sin x - 1| \le 1.$$

Por tanto,

$$|f(x) - g(x)| = |\cos x (2\sin x - 1)| \le 1 \cdot 1 = 1.$$

Este cota es al canzable en x=0 y $x=\pi$:

$$|f(0)-g(0)| = |\sin 0 - \cos 0| = |0-1| = 1, \qquad |f(\pi)-g(\pi)| = |\sin 2\pi - \cos \pi| = |0-(-1)| = 1.$$

Luego

$$d_{\infty}(f,g) = \sup_{x \in [0,\pi]} |f(x) - g(x)| = \boxed{1}.$$