

SAR Test Report

Report No.: AGC04369180701FH01

2AGQIFX1009A FCC ID

APPLICATION PURPOSE **Original Equipment**

PRODUCT DESIGNATION NFC Android Reader

BRAND NAME FAMOCO

FX100 **MODEL NAME**

CLIENT **FAMOCO SAS**

DATE OF ISSUE Aug. 22,2018

IEEE Std. 1528:2013

FCC 47CFR § 2.1093 STANDARD(S)

IEEE/ANSI C95.1:2005

REPORT VERSION

Attestation of Global Compliance (Shenzhen) Co., Ltd.

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 💢 🗲, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gert.com.

Attestation of Global Compliance

Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 2 of 58

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	onco (S. Allestellon of the	Aug. 22,2018	Valid	Initial Release

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the IGC S

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com $Add: 2/F.\ , Building\ 2, No.1-4, Chaxi\ Sanwei\ Technical\ Industrial\ Park, Gushu,\ Xixiang,\ Baoan\ District,\ Shenzhen,\ Guangdong\ Chinang Chinangdong\ Ch$

6 400 089 2118

Page 3 of 58

Test Report				
Applicant Name	FAMOCO SAS			
Applicant Address	59 Avenue Victor Hugo 75016 Paris France			
Manufacturer Name	FAMOCO SAS			
Manufacturer Address	59 Avenue Victor Hugo 75016 Paris France			
Product Designation	NFC Android Reader			
Brand Name	FAMOCO			
Model Name	FX100			
Different Description	N/A COMPANY			
EUT Voltage	DC3.7V by battery			
Applicable Standard	IEEE Std. 1528:2013 FCC 47CFR § 2.1093 IEEE/ANSI C95.1:2005			
Test Date	Aug. 14,2018 to Aug. 18,2018			
- C. Francisco	Attestation of Global Compliance(Shenzhen) Co., Ltd.			
Performed Location	2 F, Building 2, No.1-No.4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang Street, Bao'an District, Shenzhen, China			
Report Template	AGCRT-US-3G3/SAR (2018-01-01)			

	fron Tha	u
Tested By	:10	
	Eric Zhou(Zhou Yongkang)	Aug. 18,2018
	Angola li	
Checked By	The same of the sa	Colobar Compiliance (S) The adjust of the
	Angela Li(Li Jiao)	Aug. 22,2018
	Foresto ce	
Authorized By	Forrest Lei(Lei Yonggang) Authorized Officer	Aug. 22,2018

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the confirm

Page 4 of 58

TABLE OF CONTENTS

1. SUMMARY OF MAXIMUM SAR VALUE	
2. GENERAL INFORMATION	
2.1. EUT DESCRIPTION	6
3. SAR MEASUREMENT SYSTEM	8
3.1. THE SATIMO SYSTEM USED FOR PERFORMING COMPLIANCE TESTS CONSISTS OF FOLLOWING ITEMS	9 10 10
4. SAR MEASUREMENT PROCEDURE	12
4.1. SPECIFIC ABSORPTION RATE (SAR)	13 15
5. TISSUE SIMULATING LIQUID	
5.1. THE COMPOSITION OF THE TISSUE SIMULATING LIQUID	17 18
6. SAR SYSTEM CHECK PROCEDURE	19
6.1. SAR System Check Procedures	20
7. EUT TEST POSITION	
8. SAR EXPOSURE LIMITS	
9. TEST FACILITY	23
10. TEST EQUIPMENT LIST	
11. MEASUREMENT UNCERTAINTY	
12. CONDUCTED POWER MEASUREMENT	
13. TEST RESULTS	30
13.1. SAR Test Results Summary	
APPENDIX A. SAR SYSTEM CHECK DATA	
APPENDIX B. SAR MEASUREMENT DATA	
APPENDIX C. TEST SETUP PHOTOGRAPHS	54

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Page 5 of 58

1. SUMMARY OF MAXIMUM SAR VALUE

The maximum results of Specific Absorption Rate (SAR) found during testing for EUT are as follows:

Frequency Band	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit
	Body-worn	(W/Kg)
GSM 850	1.108	
PCS 1900	0.240	The Manufacture of the State of
WIFI 2.4G	0.213	1.6
Simultaneous Reported SAR	1.321	30 m
SAR Test Result	PASS	

This device is compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/Kg) specified in IEEE Std. 1528:2013; FCC 47CFR § 2.1093; IEEE/ANSI C95.1:2005 and the following specific FCC Test Procedures:

- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 648474 D04 Handset SAR v01r03
- KDB 865664 D01 SAR Measurement 100MHz to 6GHz v01r04
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D06 Hotspot Mode v02r01
- KDB 248227 D01 802 11 Wi-Fi SAR v02r02

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 6 of 58

2. GENERAL INFORMATION

2.1. EUT Description

General Information				
Product Designation	NFC Android Reader			
Test Model	FX100			
Hardware Version	H605_MB_V1.2			
Software Version	MOLY.WR8.W1449.MD.WG.MP .V59.P10, 2017/05/19 11: 1 7			
Device Category	Portable			
RF Exposure Environment	Uncontrolled			
Antenna Type	Internal			
GSM and GPRS				
Support Band	☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐			
GPRS Type	Class B			
GPRS Class	Class 12(1Tx+4Rx, 2Tx+3Rx, 3Tx+2Rx, 4Tx+1Rx)			
TX Frequency Range	GSM 850 : 820-850MHz;; PCS 1900: 1850-1910MHz;			
RX Frequency Range	GSM 850 : 869~894MHz; PCS 1900: 1930~1990MHz			
Release Version	R99			
Type of modulation	GMSK for GSM/GPRS			
Antenna Gain	GSM850: 0.52dBi; PCS1900: 0.73dBi;			
Max. Average Power	GSM850: 31.64dBm ;PCS1900: 28.87dBm			
Bluetooth				
Operation Frequency	2402~2480MHz			
Antenna Gain	1.0dBi			
Bluetooth Version	BR/EDR, BLE			
Type of modulation	BR/EDR: GFSK, π /4-DQPSK, 8-DPSK; BLE: GFSK			
EIRP	BR/EDR: 1.945dBm; BLE: -5.272 dBm			

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Page 7 of 58

EUT Description(Continue)

WIFI	
WIFI Specification	☐802.11a ⊠802.11b ⊠802.11g ⊠802.11n(20) ⊠802.11n(40)
Operation Frequency	2412~2462MHz
Avg. Burst Power	IEEE 802.11b:15.70dBm, IEEE 802.11g:13.51dBm; IEEE 802.11n(20):13.45dBm,IEEE 802.11n(40):9.97dBm
Antenna Gain	1.0dBi
Li-ion Battery	
Brand Name	FAMOCO
Model Name	FX100 Series
Manufacturer Name	SHENZHEN SHENGLILONG ELECTRONICS TECHNOLOGY CO., LTD.
Manufacturer Address	V Area, 4 th Floor, Longsheng Business Busilding, Longhua District, Shenzhen City, Guangdong Province, China
Capacitance	1400mAh
Rated Voltage	DC3.7V
Charging Voltage	DC4.2V

Note:1.CMU200 can measure the average power and Peak power at the same time 2.The sample used for testing is end product.

Product	The state of	Type	a Figobal	Attesti	
Product	The Compliance		Alles lation	Identical Prototy	pe

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a step www.agc.goalt.com.

Page 8 of 58

3. SAR MEASUREMENT SYSTEM

3.1. The SATIMO system used for performing compliance tests consists of following items

The COMOSAR system for performing compliance tests consists of the following items:

- The PC. It controls most of the bench devices and stores measurement data. A computer running WinXP and the Opensar software.
- The E-Field probe. The probe is a 3-axis system made of 3 distinct dipoles. Each dipole returns a voltage in function of the ambient electric field.
- The Keithley multimeter measures each probe dipole voltages.
- The SAM phantom simulates a human head. The measurement of the electric field is made inside the phantom.
- The liquids simulate the dielectric properties of the human head tissues.
- The network emulator controls the mobile phone under test.
- The validation dipoles are used to measure a reference SAR. They are used to periodically check the bench to make sure that there is no drift of the system characteristics over time.
- ·The phantom, the device holder and other accessories according to the targeted measurement.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 9 of 58

3.2. COMOSAR E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SATIMO. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SATIMO conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528 and relevant KDB files.) The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	SSE5
Manufacturer	MVG
Identification No.	SN 22/12 EP159
Frequency	0.4GHz-3GHz Linearity:±0.09dB(300MHz-3GHz)
Dynamic Range	0.01W/Kg-100W/Kg Linearity:±0.11dB
Dimensions	Overall length:330mm Length of individual dipoles:4.5mm Maximum external diameter:8mm Probe Tip external diameter:5mm Distance between dipoles/ probe extremity:2.7mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 3 GHz with precision of better 30%.

3.3. Robot

The COMOSAR system uses the KUKA robot from SATIMO SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from SATIMO is used.

The XL robot series have many features that are important for our application:

☐ High precision (repeatability 0.02 mm)

☐ High reliability (industrial design)

☐ Jerk-free straight movements

□ Low ELF interference (the closed metallic

construction shields against motor control fields)

□ 6-axis controller

The results spowford this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 10 of 58

3.4. Video Positioning System

The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.

During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

3.5. Device Holder

The COMOSAR device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The COMOSAR device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity

 $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

Page 11 of 58

3.6. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

□ Left head

☐ Right head

☐ Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 12 of 58

4. SAR MEASUREMENT PROCEDURE

4.1. Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and occupational/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element(dv) of given mass density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;
 E is the r.m.s. value of the electric field strength in the tissue in volts per meter;
 σ is the conductivity of the tissue in siemens per metre;
 ρ is the density of the tissue in kilograms per cubic metre;
 c_b is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t = 0 is the initial time derivative of temperature in the tissue in kelvins per second

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 13 of 58

4.2. SAR Measurement Procedure

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurement are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface is 2.7mm This distance cannot be smaller than the distance os sensor calibration points to probe tip as `defined in the probe properties,

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in SATIMO software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in db) is specified in the standards for compliance testing. For example, a 2db range is required in IEEE Standard 1528, whereby 3db is a requirement when compliance is assessed in accordance with the ARIB standard (Japan) If one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximum are detected, the number of Zoom Scan has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100MHz to 6GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤2 GHz: ≤15 mm 2 – 3 GHz: ≤12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scan are used to assess the peak spatial SAR value within a cubic average volume containing 1g abd 10g of simulated tissue. The Zoom Scan measures points(refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1g and 10g and displays these values next to the job's label.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gent.com.

Page 14 of 58

Zoom Scan Parameters extracted from KDB865664 d01 SAR Measurement 100MHz to 6GHz

				Jak Com
Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}			\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{\text{st}} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Zoom}(n > 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1 st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤ 1.5·Δz	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power Drift Measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the same settings. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 15 of 58

4.3. RF Exposure Conditions

Test Configuration and setting:

The EUT is a model of GSM Portable Mobile Station (MS). It supports GSM/GPRS, WCDMA, BT, WIFI, and support hot spot mode.

For WWAN SAR testing, the device was controlled by using a base station emulator. Communication between the device and the emulator were established by air link. The distance between the EUT and the antenna is larger than 50cm, and the output power radiated from the emulator antenna is at least 30db smaller than the output power of EUT.

For WLAN testing, the EUT is configured with the WLAN continuous TX tool through engineering command.

Antenna Location: (the back view)

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 16 of 58

For WWAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Body	Marce @ France of	(B) Age	
Back	<25mm	Yes	
Front	<25mm	Yes	711 The
Hotspot			
Back	<25mm	Yes	© # James CO
Front	<25mm	Yes	0 - 60 - 5
Edge 1 (Top)	75mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 2 (Right)	2mm	Yes	50° 50° 50° 50° 50° 50° 50° 50° 50° 50°
Edge 3 (Bottom)	2mm	Yes	GO - GO
Edge 4 (Left)	2mm	Yes	::::::::::::::::::::::::::::::::::::

For WLAN mode:

Test Configurations	Antenna to edges/surface	SAR required	Note
Body	Allesta	60	
Back	<25mm	Yes	The state of the s
Front	<25mm	Yes	The state of the s
Hotspot		F Global Con	
Back	<25mm	Yes	
Front	<25mm	Yes	- ·
Edge 1 (Top)	5mm	Yes	测 表 测
Edge 2 (Right)	2mm	Yes	The School of the State of the
Edge 3 (Bottom)	73mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR
Edge 4 (Left)	41mm	No	SAR is not required for the distance between the antenna and the edge is >25mm as per KDB 941225 D06 Hotspot SAR

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Page 17 of 58

5. TISSUE SIMULATING LIQUID

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15cm. For head SAR testing the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15cm For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in 5.2

5.1. The composition of the tissue simulating liquid

Ingredient (% Weight) Frequency (MHz)	Water	Nacl	Polysorbate 20	DGBE	1,2 Propanediol	Triton X-100
835 Body	54.00	1	0.0	15	0.0	30
1900 Body	70	13 3	0.0	9	0.0	20
2450 Body	70	1 2 1 2 1 2	0.0	9	0.0	20

5.2. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in IEEE 1528.

Target Frequency	hea	ad	body			
(MHz)	εr	σ (S/m)	εr	σ (S/m)		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	1.01	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		

($\epsilon r = relative permittivity$, $\sigma = conductivity$ and $\rho = 1000 \text{ kg/m}3$)

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (60, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 18 of 58

5.3. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using SATIMO

Dielectric Probe Kit and R&S Network Analyzer ZVL6.

		Tissue Stimulant N	Measurement for 835MHz			
CO	Fr. Dielectric Parameters (±5%)				tation of Global	
	(MHz)	er 55.20(52.44-57-96)	δ[s/m]0.97(0.9215-1.0185)	Temp [°C]	Test time	
Body 824.2	56.01	0.94				
Attestation	835	55.17	0.95	22.0	Aug.	
	836.6	54.78	0.96	22.0	14,2018	
	848.8	53.85	0.98	irou of Clops,		

		Tissue Stimulant Me	easurement for 1900MHz		
Fr. C		Dielectric Par	Tissue	KET THOUSE (C.	
	(MHz)	εr53.30(50.635-55.965)	δ[s/m]1.52(1.444-1.596)	Temp [°C]	Test time
Body	1850.2	55.02	1.46	0 "	
Compliance	1880	54.11	1.50	24.0	Aug.
	1900	53.59	1.52	21.8	16,2018
	1909.8	52.64	1.55	Elopal Compile	Thoi Global Co

		Tissue Stimulant M	easurement for 2450MHz		
Altestation of C	Fr. Allestono	Dielectric Pa	Tissue	AT THE STATE OF TH	
(MHz)	εr52.7(50.065-55.335)	δ[s/m]1.95(1.8525-2.0475)	Temp [°C]	Test time	
Body	2412	54.96	1.89		60
•	2437	53.86	1.90	21.6	Aug.
	2450	53.18	1.91	21.0	Aug. 18,2018
	2462	52.65	1.93	ilauce (3) 1	F Global Con

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 19 of 58

6. SAR SYSTEM CHECK PROCEDURE

6.1. SAR System Check Procedures

SAR system check is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are remeasured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

Each SATIMO system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by KGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.agc-gent.com.

Page 20 of 58

6.2. SAR System Check 6.2.1. Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of IEEE. the table below provides details for the mechanical and electrical Specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6
1900MHz	68	39.5	3.6
2450MHz	51.5	30.4	3.6

6.2.2. System Check Result

System Per	System Performance Check at 835MHz&1900MHz &2450MHz for Body									
Validation K	Validation Kit: SN29/15 DIP 0G835-383&SN 29/15 DIP 1G900-389& SN 29/15DIP 2G450-393									
Frequency	Target Value(W/Kg)		(R) 150	ce Result 0%)	Tested Value(W/Kg)		Tissue Temp.	Test time		
[MHz]	1g	10g	1g	10g	1g	10g	[°C]			
835	9.85	6.45	8.865-10.835	5.805-7.095	9.69	5.99	22.0	Aug. 14,2018		
1900	39.38	20.86	35.442-43.318	18.774-22.946	39.19	19.77	21.8	Aug. 16,2018		
2450	49.92	23.16	44.928-54.912	20.844-25.476	52.06	22.42	21.6	Aug. 18,2018		

Note:

(1) We use a CW signal of 18dBm for system check, and then all SAR value are normalized to 1W forward power. The result must be within ±10% of target value.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 21 of 58

7. EUT TEST POSITION

This EUT was tested in Body back, Body front and 4 edges.

7.1. Body Worn Position

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 10mm.

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 22 of 58

8. SAR EXPOSURE LIMITS

SAR assessments have been made in line with the requirements of IEEE-1528, and comply with ANSI/IEEE C95.1-2005 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

= = = = = = = = = = = = = = = = = = =						
Type Exposure	Uncontrolled Environment Limit (W/kg)					
Spatial Peak SAR (1g cube tissue for brain or body)	1.60					
Spatial Average SAR (Whole body)	0.08					
Spatial Peak SAR (Limbs)	4.0					

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com @ 400 089 2118 Add: 2/F. , Building 2, No.1-4,Chaxi Sanwei Technical Industrial Park,Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 23 of 58

9. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Page 24 of 58

10. TEST EQUIPMENT LIST

Equipment description	Manufacturer/ Model	Identification No.	Current calibration date	Next calibration date	
SAR Probe	MVG	SN 22/12 EP159	Aug. 08,2018	Aug. 07,2019	
Phantom	SATIMO	SN_4511_SAM90	Validated. No cal required.	Validated. No cal required.	
Liquid	SATIMO	ord coluit co	Validated. No cal required.	Validated. No cal required.	
Comm Tester	Agilent-8960	GB46310822	Mar. 01,2018	Feb. 28,2019	
Multimeter	Keithley 2000	1188656	Mar. 01,2018	Feb. 28,2019	
Dipole	SATIMO SID835	SN29/15 DIP 0G835-383	July 05,2016	July 04,2019	
Dipole	SATIMO SID1900	SN 29/15 DIP 1G900-389	July 05,2016	July 04,2019	
Dipole	SATIMO SID2450	SN29/15 DIP 2G450-393	July 05,2016	July 04,2019	
Signal Generator	Agilent-E4438C	US41461365	Mar. 01,2018	Feb. 28,2019	
Vector Analyzer	Agilent / E4440A	US41421290	Mar. 01,2018	Feb. 28,2019	
Network Analyzer	Rhode & Schwarz ZVL6	SN100132	Mar. 01,2018	Feb. 28,2019	
Attenuator	Warison /WATT-6SR1211	N/A	N/A	N/A	
Attenuator	Mini-circuits / VAT-10+	N/A	N/A	N/A	
Amplifier	EM30180	SN060552	Mar. 01,2018	Feb. 28,2019	
Directional Couple	Werlatone/ C5571-10	SN99463	June. 12,2018	June. 11,2019	
Directional Couple	Werlatone/ C6026-10	SN99482	June. 12,2018	June. 11,2019	
Power Sensor	NRP-Z21	1137.6000.02	Oct. 12,2017	Oct. 11,2018	
Power Sensor	NRP-Z23	US38261498	Mar. 01,2018	Feb. 28,2019	
Power Viewer	R&S	V2.3.1.0	N/A	N/A	

Note: Per KDB 865664 Dipole SAR Validation, AGC Lab has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement;
- 4. Impedance is within 5Ω of calibrated measurement.

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 25 of 58

11. MEASUREMENT UNCERTAINTY

Measur	ement un	certainty fo	or Dipole a	averaged o	over 1 grar	n / 10 gran	۱.		
a a	b	C C	d	e f(d,k)	Cf Australia	g	h c×f/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			LID:		all	- A	1	孙	Omplian
Probe calibration	E.2.1	5.831	N	1 板槽	e^1	15h Kinghar	5.83	5.83	00
Axial Isotropy	E.2.2	0.579	R @	√3	√0.5	√0.5	0.24	0.24	00
Hemispherical Isotropy	E.2.2	0.813	R	$\sqrt{3}$	√0.5	√0.5	0.33	0.33	8
Boundary effect	E.2.3	1.0	R	√3	1 👊	1	0.58	0.58	œ
Linearity	E.2.4	1.26	R	√3	15/ Kill Compilar	1 %	0.73	0.73	00
System detection limits	E.2.4	1.0	R	√3	11	Attestation	0.58	0.58	œ
Modulation response	E2.5	3.0	R	√3	1	1	1.73	1.73	00
Readout Electronics	E.2.6	0.021	N	1	1	1 7	0.021	0.021	8
Response Time	E.2.7	0	R	√3	1	Thomas Compilar	0	0	00
Integration Time	E.2.8	1.4	R Th	√3	1 Statestation	1	0.81	0.81	8
RF ambient conditions-Noise	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞ .
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	œ
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	TIM Tuberce	1 F 1	0.81	0.81	8
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	1	Allesta	0.81	0.81	8
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	1	1	1.33	1.33	∞
Test sample Related			一枪	-diance	秋	pliance	O F F of G	(B)	無等
Test sample positioning	E.4.2	2.6	N	1 🛭 🥌	Tation of 1 tobar	1	2.6	2.6	00
Device holder uncertainty	E.4.1	3	N	1	1	1	3	3	00
Output power variation—SAR drift measurement	E.2.9	5	R	√3	1	1	2.89	2.89	00
SAR scaling	E.6.5	5	R	$\sqrt{3}$	liance 1	FK1 KEL	2.89	2.89	8
Phantom and tissue parameters		K Kindlishes		F Global Con	® 49/2	ion of Global	a.G	Alles	
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	1	2.31	2.31	80
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	1 1	0.84	1.90	1.60	o
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N N	1 1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	√3	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty		Kill Dilance	RSS	A Compilaro	® ## astali	Cotton.	9.807	9.608	5
Expanded Uncertainty (95% Confidence interval)	S The station of G	in Jal	K=2	~ C		N.C	19.614	19.216	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at alther.//www.agc.gett.com.

Page 26 of 58

System	check un	certainty fo	or Dipole	averaged	over 1 gra	m / 10 gran	۱.		
a	b	C	d	e f(d,k)	®f #	g g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (± %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System									liti:
Probe calibration drift	E.2.1.3	0.5	-MN	1	1	1 7	0.50	0.50	8
Axial Isotropy	E.2.2	0.579	R	$\sqrt{3}$	d and O	The Original	0.00	0.00	8
Hemispherical Isotropy	E.2.2	0.813	R	√3	0	0	0.00	0.00	8
Boundary effect	E.2.3	1.0	R	√3	0	0	0.00	0.00	00
Linearity	E.2.4	1.26	R	√3	0	0	0.00	0.00	8
System detection limits	E.2.4	1.0	R	√3	0	0 //	0.00	0.00	8
Modulation response	E2.5	3.0	R	$\sqrt{3}$	on of Con	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	9	0	0	0.00	0.00	00
Response Time	E.2.7	0	R	√3	0	0	0.00	0.00	00
Integration Time	E.2.8	1.4	R	√3	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
RF ambient conditions-reflections	E.6.1	3.0	R	√3	0	0	0.00	0.00	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	oo
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	Compliance 1	® #1 For all	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	0	0	0.00	0.00	00
System check source (dipole)						lim		AT Mance	
Deviation of experimental dipoles	E.6.4	2	N 🔞	1	1. 格	nglance 1	2	2 @	00
Input power and SAR drift measurement	8,6.6.4	5	R	√3	estation of 1	1.0	2.89	2.89	00
Dipole axis to liquid distance	8,E.6.6	2	R	$\sqrt{3}$	1	1	1.15	1.15	
Phantom and tissue parameters							M	抓	Compliance
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4	R	√3	1	FIN TO TOTAL	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	lestation 1		0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	4	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5	N	1	0.23	0.26	1.15	1.30	М
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	00
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty	-6		RSS			1117	5.564	5.205	(
Expanded Uncertainty (95% Confidence interval)			K=2	KE JANO	6 - 3	F of Global Compliant	11.128	10.410	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 27 of 58

System Va	alidation ι	ıncertainty	for Dipol	e average	ed over 1 gi	ram / 10 gra		Trans.	
a	b	C	d	e f(d,k)	©f #	g g	h cxf/e	i c×g/e	k
Uncertainty Component	Sec.	Tol (±%)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (±%)	10g Ui (±%)	vi
Measurement System			lie.						THE .
Probe calibration	E.2.1	5.831	N	1	1	1	5.83	5.83	00
Axial Isotropy	E.2.2	0.579	R	$\sqrt{3}$	in ance	E TA Compilar	0.33	0.33	00
Hemispherical Isotropy	E.2.2	0.813	R 🦠	$\sqrt{3}$	0	0	0.00	0.00	00
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	94	1	0.58	0.58	00
Linearity	E.2.4	1.26	R	$\sqrt{3}$	1 🔞	1	0.73	0.73	00
System detection limits	E.2.4	1.0	R	√3	The 1 compliant	1 🚜	0.58	0.58	00
Modulation response	E2.5	3.0 💉	R	$\sqrt{3}$	on of Garden	0	0.00	0.00	00
Readout Electronics	E.2.6	0.021	N	G	1.0	1	0.021	0.021	00
Response Time	E.2.7	0.0	R	$\sqrt{3}$	0	0 🗥	0.00	0.00	00
Integration Time	E.2.8	1.4	R	$\sqrt{3}$	0	0	0.00	0.00	00
RF ambient conditions-Noise	E.6.1	3.0	R	√3	1 1 Mestalion	1	1.73	1.73	00
RF ambient conditions-reflections	E.6.1	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	00
Probe positioner mechanical tolerance	E.6.2	1.4	R	√3	1	1	0.81	0.81	00
Probe positioning with respect to phantom shell	E.6.3	1.4	R	√3	Compliance 1	® #1 France	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.3	R	√3	10	1	1.33	1.33	00
System check source (dipole)								Kir History	
Deviation of experimental dipole from numerical dipole	E.6.4	5.0	N	npliance 1	11	1	5.00	5.00	00
Input power and SAR drift measurement	8,6.6.4	5.0	R	$\sqrt{3}$	Alestation of 1	1	2.89	2.89	8
Dipole axis to liquid distance	8,E.6.6	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	00
Phantom and tissue parameters					-cill	- 7	701	新	Comblian
Phantom shell uncertainty—shape, thickness, and permittivity	E.3.1	4.0	R	$\sqrt{3}$	hopance 1	F TI TEL OFFICIAL	2.31	2.31	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1	3 (1)	0.84	1.90	1.60	00
Liquid conductivity measurement	E.3.3	4.0	N	1	0.78	0.71	3.12	2.84	М
Liquid permittivity measurement	E.3.3	5.0	N	1	0.23	0.26	1.15	1.30	M
Liquid conductivity—temperature uncertainty	E.3.4	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.02	8
Liquid permittivity—temperature uncertainty	E.3.4	2.5	R	√3	0.23	0.26	0.33	0.38	00
Combined Standard Uncertainty			RSS			梅柳	9.735	9.534	
Expanded Uncertainty (95% Confidence interval)		* 7111	K=2	Karablance Mill	© ##	J. County	19.470	19.069	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 1000, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Page 28 of 58

12. CONDUCTED POWER MEASUREMENT GSM BAND

Mode	Frequency(MHz)	Avg. Burst Power(dBm)	Duty cycle Factor(dBm)	Frame Power(dBm)
Maximum Power <1	> 20 "	C Alless		300
Artestation	824.2	31.64	-9	22.64
GSM 850	836.6	31.25	-9	22.25
ALL SAN	848.8	31.42	9	22.42
GPRS 850	824.2	31.14	-9	22.14
(1 Slot)	836.6	31.23	-9	22.23
(1 Glot)	848.8	31.18	-9 梅	22.18
CDDC 050	824.2	28.47	Mand Compliant -6 # Hoload Co	22.47
GPRS 850 (2 Slot)	836.6	28.69	-6 Metalion	22.69
(2 0101)	848.8	28.57	-6	22.57
0000 050	824.2	26.42	-4.26	22.16
GPRS 850 (3 Slot)	836.6	26.34	-4.26	22.08
	848.8	26.18	-4.26	21.92
:10	824.2	25.55	-3	22.55
GPRS 850	836.6	25.42	-3	22.42
(4 Slot)	848.8	25.28	-3	22.28
60	1850.2	28.87	-9 4 (1)	19.87
PCS1900	1880	28.56	-9	19.56
	1909.8	28.48	-9	19.48
ODD04000	1850.2	28.11	-9	19.11
GPRS1900 (1 Slot)	1880	28.09	-9	19.09
() Giot)	1909.8	28.44	J. Marchanne -9 ®	19.44
GPRS1900	1850.2	25.96	-6 New March	19.96
(2 Slot)	1880	25.87	-6	19.87
(Z Giot)	1909.8	25.77	-6	19.77
GPRS1900	1850.2	24.15	-4.26	19.89
(3 Slot)	1880	24.21	-4.26	19.95
	1909.8	24.22	-4.26	19.96
GPRS1900	1850.2	22.25	-3	19.25
(4 Slot)	1880	22.44	-3	19.44
(+ Olot)	1909.8	22.36	-3 T	19.36

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) - 9 dB

Frame Power = Max burst power (2 Up Slot) - 6 dB

Frame Power = Max burst power (3 Up Slot) - 4.26 dB

Frame Power = Max burst power (4 Up Slot) - 3 dB

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.go.tt.com.

Page 29 of 58

WIFI

Mode	Data Rate (Mbps)	Channel	Frequency(MHz)	Avg. Burst Power(dBm)
A THE	a ® # Hon of Globa	01	2412	15.70
802.11b	C1 Master	06	2437	15.36
		11	2462	14.61
-10		01	2412	12.09
802.11g	6	06	2437	13.51
	The Compliance	11	2462	12.95
A Station of Circle	At Glope,	01	2412	11.65
802.11n(20)	6.5	06	2437	13.45
		11	2462	12.43
相	ice Allance	03	2422	9.97
802.11n(40)	13.5	06	2437	9.52
	(S) Allestation C	09	2452	9.95

Bluetooth BR/EDR

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
pliance Filosal Comi	O Autostation	2402	1.945
GFSK	39	2441	1.142
30	78	2480	0.308
	0	2402	1.579
π /4-DQPSK	39	2441	0.748
For Global Con.	78	2480	-0.138
E.G. Alle	0	2402	1.220
8-DPSK	39	2441	0.381
	78	2480	-0.548

Bluetooth_BLE

Modulation	Channel	Frequency(MHz)	Peak Power (dBm)
	0	2402	-5.272
GFSK	19	2440	-6.040
	39	2480	-7.125

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed a

Page 30 of 58

13. TEST RESULTS

13.1. SAR Test Results Summary

13.1.1. Test position and configuration

Body-worn SAR was performed with the device 10mm from the phantom configured in the positions according to IEEE 1528-2013

13.1.2. Operation Mode

- Per KDB 447498 D01 v06, for each exposure position, if the highest 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional.
- 2. Per KDB 865664 D01 v01r04,for each frequency band, if the measured SAR is ≥0.8W/Kg, testing for repeated SAR measurement is required, that the highest measured SAR is only to be tested. When the SAR results are near the limit, the following procedures are required for each device to verify these types of SAR measurement related variation concerns by repeating the highest measured SAR configuration in each frequency band.
 - (1) When the original highest measured SAR is ≥0.8W/Kg, repeat that measurement once.
 - (2) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is >1.20 or when the original or repeated measurement is ≥1.45 W/Kg.
 - (3) Perform a third repeated measurement only if the original, first and second repeated measurement is ≥1.5 W/Kg and ratio of largest to smallest SAR for the original, first and second measurement is ≥ 1.20.
- 3. Body-worn exposure conditions are intended to voice call operations, therefore GSM voice call mode is selected to be test.
- 4. Per KDB 648474 D04 v01r03,when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤1.2W/Kg, SAR testing with a headset connected is not required.
- 5. Per KDB 248227 D01v02r02,for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/kg.
- 6. Per KDB 941225 D06 V02r01, When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations.
- Maximum Scaling SAR in order to calculate the Maximum SAR values to test under the standard Peak Power, Calculation method is as follows:
 Maximum Scaling SAR =tested SAR (Max.) ×[maximum turn-up power (mw)/ maximum measurement output power(mw)]

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XOC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 31 of 58

12.1.3. Test Result

SAR MEASURE	MENT								
Depth of Liquid (cm):>15			Relative	Humidity	/ (%): 57.4			
Product: NFC An	droid Reader								
Test Mode: GSM	850 with GMSK	modul	ation						
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
SIM 1 Card	The Compilar	- C	Allesian	C W	estatio	and Alles			
Body back	voice	190	836.6	1.26	0.418	31.64	31.25	0.457	1.6
Body front	voice	190	836.6	0.37	0.190	31.64	31.25	0.208	1.6
	liji:	-1111		THE TANK		The Compile	O E F Of Global Co.	- C	Attestano
Body back	GPRS-2 slot	128	824.2	0.05	1.051	28.70	28.47	1.108	1.6
Body back	GPRS-2 slot	190	836.6	1.66	0.870	28.70	28.69	0.872	1.6
Body back	GPRS-2 slot	251	848.8	0.26	0.766	28.70	28.57	0.789	1.6
Body front	GPRS-2 slot	190	836.6	1.84	0.406	28.70	28.69	0.407	1.6
Edge 2(Right)	GPRS-2 slot	190	836.6	0.31	0.347	28.70	28.69	0.348	1.6
Edge 3(Bottom)	GPRS-2 slot	190	836.6	0.36	0.026	28.70	28.69	0.026	1.6
Edge 4(Left)	GPRS-2 slot	190	836.6	0.14	0.258	28.70	28.69	0.259	1.6

Note

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body is 10mm of all above table.

MENT									
cm):>15			Relative	Relative Humidity (%): 55.5					
ndroid Reader									
1900 with GMS	K mod	ulation							
Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)	
liti:		AND THE		FL KEL	hilance	FA bal Compile	(B) Attestation of	(
voice	661	1880.0	-0.02	0.093	28.87	28.56	0.100	1.6	
voice	661	1880.0	1.33	0.047	28.87	28.56	0.050	1.6	
Attesto	1					4	1111	1	
GPRS-2 slot	661	1880.0	-0.02	0.233	26.00	25.87	0.240	1.6	
GPRS-2 slot	661	1880.0	1.66	0.048	26.00	25.87	0.049	1.6	
GPRS-2 slot	661	1880.0	1.15	0.020	26.00	25.87	0.021	1.6	
GPRS-2 slot	661	1880.0	-0.26	0.204	26.00	25.87	0.210	1.6	
GPRS-2 slot	661	1880.0	-0.02	0.017	26.00	25.87	0.018	1.6	
	mode Mode voice voice GPRS-2 slot GPRS-2 slot GPRS-2 slot GPRS-2 slot	mode Ch. Mode Ch. Voice 661 Voice 661 GPRS-2 slot 661	mode Ch. Fr. (MHz) Voice 661 1880.0 Voice 661 1880.0 GPRS-2 slot 661 1880.0	cm):>15 Relative ndroid Reader 1900 with GMSK modulation Mode Ch. Fr. (MHz) Power Drift (<±5%) voice 661 1880.0 -0.02 voice 661 1880.0 1.33 GPRS-2 slot 661 1880.0 -0.02 GPRS-2 slot 661 1880.0 1.66 GPRS-2 slot 661 1880.0 1.15 GPRS-2 slot 661 1880.0 -0.26	cm):>15 Relative Humidity ndroid Reader 1900 with GMSK modulation Mode Ch. Fr. (MHz) Power Drift (<±5%) SAR (1g) (W/kg) voice 661 1880.0 -0.02 0.093 voice 661 1880.0 1.33 0.047 GPRS-2 slot 661 1880.0 -0.02 0.233 GPRS-2 slot 661 1880.0 1.66 0.048 GPRS-2 slot 661 1880.0 1.15 0.020 GPRS-2 slot 661 1880.0 -0.26 0.204	Relative Humidity (%): 55.5 Relative Humidity (%): 55.5	Node Ch. Fr. (MHz) Power Drift (<±5%) (M/kg) Power (dBm) P	Relative Humidity (%): 55.5 Redroid Reader	

Note:

- When the 1-g Reported SAR is ≤ 0.8 W/kg, testing for low and high channel is optional. Refer to KDB 447498.
- •The test separation for body is 10mm of all above table.

The results spown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 32 of 58

SAR MEASUREMENT

Depth of Liquid (cm):>15 Relative Humidity (%): 50.3

Product: NFC Android Reader

Test Mode:802.11b

Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	SAR (1g) (W/kg)	Max. Tune-up Power (dBm)	Meas. output Power (dBm)	Scaled SAR (W/Kg)	Limit (W/kg)
Body back	DTS	01	2412	-0.25	0.213	15.70	15.70	0.213	1.6
Body front	DTS	01	2412	1.20	0.103	15.70	15.70	0.103	1.6
Edge 1 (Top)	DTS	01	2412	-1.32	0.085	15.70	15.70	0.085	1.6
Edge 2(Right)	DTS	01	2412	-0.02	0.137	15.70	15.70	0.137	1.6

Note:

- According to KDB248227, SAR is not required for 802.11n HT20/HT40 channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11a/b channels.
- All of above "DTS" means data transmitters.
- •The test separation for body is 10mm of all above table.

Repeated SAR										
Product: NFC Android Reader										
Test Mode: GSM850 with GMSK modulation										
Position	Mode	Ch.	Fr. (MHz)	Power Drift (<±5%)	Once SAR (1g) (W/kg)	Power Drift (<±5%)	Twice SAR (1g) (W/kg)	Power Drift (<±5%)	Third SAR (1g) (W/kg)	Limit (W/kg)
Body back	GPRS-2 slot	128	824.2	-0.46	0.882	station o'	\G		9	1.6

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true; //www.agc.gott.com.

Page 33 of 58

Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

NO	Cimultanaqua atata	Portable Handset			
NO		Body-worn	Hotspot		
The class	GSM(voice)+ WIFI 2.4GHz (data)	1.0			
2	GSM(voice)+Bluetooth(data)	_	T. Kingland		
3	GSM (Data) + Bluetooth(data)	Yes	Yes		
4	GSM (Data) + WIFI 2.4GHz (data)	Yes	Yes		

NOTE:

- 1. WIFI and BT share the same antenna, and cannot transmit simultaneously.
- 2. Simultaneous with every transmitter must be the same test position.
- 3. KDB 447498 D01, BT SAR is excluded as below table.
- 4. KDB 447498 D01, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user; which is 10mm for body-worn SAR.
- 5. According to KDB 447498 D01 4.3.1, Standalone SAR test exclusion is as follow:
 - For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] • [$\sqrt{(GHz)}$] ≤ 3.0 for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR³⁰, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

- 6. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- According to KDB 447498 D01 4.3.2, simultaneous transmission SAR test exclusion is as follow:
 - (1) Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.
 - (2) Any transmitters and antennas should be considered when calculating simultaneous mode.
 - (3) For mobile phone and PC, it's the sum of all transmitters and antennas at the same mode with same position in each applicable exposure condition
 - (4)When the standalone SAR test exclusion of section 4.3.2 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to det

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-q SAR, and x = 18.75 for 10-q SAR.

8. When the sum of SAR is larger than the limit, SAR test exclusion is determined by the SAR to peak location separation ratio. The simultaneous transmitting antennas in each operating mode and exposure condition combination must be considered one pair at a time to determine the SAR to peak location separation ratio to qualify for test exclusion. The ratio is determined by (SAR1 + SAR2)1.5/Ri, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion.

Estimated SAR			luding Tune-up ance	Separation Distance (mm)	Estimated SAR (W/kg)
		dBm	mW	Distance (IIIII)	(VV/Kg)
BT Messelvon of	Body	2	1.585	10	0.033

The results spowfork this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 34 of 58

Sum of the SAR for GSM 850 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			71 a 64D	SPLSR
		GSM 850	WI-Fi DTS Band	Bluetooth	Σ1-g SAR (W/Kg)	(Yes/No)
Body-worn (voice)	Rear	0.457	0.213		0.670	No
		0.457		0.033	0.490	No
	Front	0.208	0.103		0.311	No
		0.208		0.033	0.241	No
Body-worn (Data)	Rear	1.108		0.033	1.141	No
		1.108	0.213		1.321	No
	Front	0.407		0.033	0.440	No
		0.407	0.103		0.510	No
Body-worn (Hotspot)	Edge 2	0.348	0.137		0.485	No
	Edge 2	0.348		0.033	0.381	No

Note:

- -According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.
- ·SPLSR mean is "The SAR to Peak Location Separation Ratio "

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 35 of 58

Sum of the SAR for PCS 1900 &Wi-Fi & BT:

RF Exposure Conditions	Test Position	Simultaneous Transmission Scenario			Σ1-g SAR	SPLSR
		PCS1900	WI-Fi DTS Band	Bluetooth	(W/Kg)	(Yes/No)
Body-worn (voice)	Rear	0.100	0.213		0.313	No
		0.100		0.033	0.133	No
	Front	0.050	0.103		0.153	No
		0.050		0.033	0.083	No
Body-worn (Data)	Rear	0.240		0.033	0.273	No
		0.240	0.213		0.453	No
	Front	0.049		0.033	0.082	No
		0.049	0.103		0.152	No
Body-worn (Hotspot)	Edge 2	0.021	0.137		0.158	No
	Edge 2	0.021		0.033	0.054	No

Note:

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

[·]According to KDB 447498 D01 General RF Exposure Guidance, when the simultaneous transmission SAR is less than 1.6 W/Kg, SPLSR assessment is not required.

⁻SPLSR mean is "The SAR to Peak Location Separation Ratio"

Page 36 of 58

APPENDIX A. SAR SYSTEM CHECK DATA

Test Laboratory: AGC Lab Date: Aug. 14,2018

System Check Body 835 MHz

DUT: Dipole 835 MHz Type: SID 835

Communication System CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1; Conv.F=5.49 Frequency: 835 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.95$ mho/m; $\epsilon r = 55.17$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature (°C):22.4, Liquid temperature (°C): 22.0

SATIMO Configuration

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 835MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 835MHz Body/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Maximum location: X=1.00, Y=-2.00 SAR Peak: 0.90 W/kg

SAR 10g (W/Kg)	0.377814
SAR 1g (W/Kg)	0.611455

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 37 of 58

Date: Aug. 16,2018

Page 38 of 58

Test Laboratory: AGC Lab System Check Body 1900MHz

DUT: Dipole 1900 MHz; Type: SID 1900

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Duty Cycle:1:1; Conv.F=5.39 Frequency: 1900 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.52$ mho/m; $\epsilon r = 53.59$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.2, Liquid temperature ($^{\circ}$ C): 21.8

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 1900MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 1900MHz Body/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm

Maximum location: X=-1.00, Y=-2.00 SAR Peak: 4.20 W/kg

SAR 10g (W/Kg)	1.247153
SAR 1g (W/Kg)	2.472645

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gott.com.

Page 39 of 58

Date: Aug. 18,2018

Page 40 of 58

Test Laboratory: AGC Lab System Check Body 2450 MHz

DUT: Dipole 2450 MHz Type: SID 2450

Communication System CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1; Conv.F=5.04 Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.91$ mho/m; $\epsilon r = 53.18$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=18dBm

Ambient temperature ($^{\circ}$ C):22.0, Liquid temperature ($^{\circ}$ C): 21.6

SATIMO Configuration

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/System Check 2450MHz Body/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/System Check 2450MHz Body/Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm

Maximum location: X=2.00, Y=-1.00 SAR Peak: 6.23 W/kg

SAR 10g (W/Kg)	1.414715
SAR 1g (W/Kg)	3.284750

The results spoured this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true www.ago.gott.com.

Page 41 of 58

Page 42 of 58

APPENDIX B. SAR MEASUREMENT DATA

Test Laboratory: AGC Lab Date: Aug. 14,2018

GSM 850 Mid- Body- Back (MS)<SIM 1> DUT: NFC Android Reader; Type: FX100

Communication System: Generic GSM; Communication System Band: GSM 850; Duty Cycle: 1:8.3; Conv.F=5.49; Frequency: 836.6 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.96$ mho/m; $\epsilon r = 54.78$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.4, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GSM 850 Mid-Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GSM 850 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=8.00, Y=-23.00 SAR Peak: 0.62 W/kg

Dilli Cuii 002 77718	
SAR 10g (W/Kg)	0.277572
SAR 1g (W/Kg)	0.418300

Page 43 of 58

Page 44 of 58

Test Laboratory: AGC Lab Date: Aug. 14,2018

GPRS 850 Low- Body- Back (2up)

DUT: NFC Android Reader; Type: FX100

Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=5.49; Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 56.01$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.4, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 32

Configuration/GPRS 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Low The comment of th
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=3.00, Y=-28.00 SAR Peak: 1.58 W/kg

SAR 10g (W/Kg)	0.665500
SAR 1g (W/Kg)	1.051372

The results spowed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 45 of 58

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (C), this document to cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the confirmed at although the confirmed at although the confirmed at although the confirmed at all the confirmed at all the confirmed at although the confirmed at all the confirmed at although the confirmed at all the confirmed a

Date: Aug. 16,2018

Page 46 of 58

Test Laboratory: AGC Lab

PCS 1900 Mid-Body-Back (MS)<SIM 1> DUT: NFC Android Reader; Type: FX100

Communication System: Generic GSM; Communication System Band: PCS 1900; Duty Cycle: 1:8.3; Conv.F=5.39; Frequency: 1880 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 54.11$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.2, Liquid temperature (°C): 21.8

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/PCS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/PCS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Middle Middle
Signal	TDMA (Crest factor: 8.0)

Maximum location: X=-10.00, Y=-21.00 SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.055483
SAR 1g (W/Kg)	0.092606

The results spowfil this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 40°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.go.tt.com.

Page 47 of 58

Date: Aug. 16,2018

Page 48 of 58

Test Laboratory: AGC Lab
GPRS 1900 Mid-Body-Back (2up)

DUT: NFC Android Reader; Type: FX100

Communication System: GPRS-2Slot; Communication System Band: PCS 1900; Duty Cycle: 1:4.2; Conv.F=5.39; Frequency: 1880 MHz; Medium parameters used: f = 1850 MHz; $\sigma = 1.50$ mho/m; $\epsilon r = 54.11$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.2, Liquid temperature (°C): 21.8

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4 02 32

Configuration/GPRS1900 Mid-Body-Back/Area Scan: Measurement grid: dx=8mm, dy=8mm Configuration/GPRS1900 Mid-Body-Back/Zoom Scan: Measurement grid: dx=8mm, dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	PCS 1900
Channels	Middle
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=-17.00, Y=-23.00 SAR Peak: 0.39 W/kg

SAR 10g (W/Kg)	0.120006
SAR 1g (W/Kg)	0.233459

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

Page 49 of 58

Page 50 of 58

WIFI MODE

Test Laboratory: AGC Lab Date: Aug. 18,2018

802.11b Low-Body-Worn- Back (DTS)
DUT: NFC Android Reader; Type: FX100

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Conv.F=5.04;

Frequency: 2412 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\epsilon r = 54.96$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C):22.0, Liquid temperature ($^{\circ}$ C): 21.6

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/802.11b Low- Body- Back /Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/802.11b Low- Body- Back /Zoom Scan: Measurement grid: dx=5mm,dy=5mm, dz=5mm;

surf_sam_plan.txt, h= 5.00 mm
7x7x7,dx=5mm dy=5mm dz=5mm
Validation plane
Body Back
2450MHz
8 A Low
Crest factor: 1.0

Maximum location: X=-17.00, Y=14.00

SAR Peak: 0.35 W/kg

SAR 10g (W/Kg)	0.116107
SAR 1g (W/Kg)	0.212767

Report No.: AGC04369180701FH01 Page 51 of 58

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-gett.com.

IGC 8

Page 52 of 58

Repeated SAR

Test Laboratory: AGC Lab Date: Aug. 14,2018

GPRS 850 Low- Body- Back (2up)

DUT: NFC Android Reader; Type: FX100

Communication System: GPRS-2 Slot; Communication System Band: GSM 850; Duty Cycle: 1:4.2; Conv.F=5.49; Frequency: 824.2 MHz; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\epsilon r = 56.01$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 22.4, Liquid temperature (°C): 22.0

SATIMO Configuration:

Probe: SSE5; Calibrated: Aug. 08,2018; Serial No.: SN 22/12 EP159

Sensor-Surface: 4mm (Mechanical Surface Detection)

Phantom: SAM twin phantom

Measurement SW: OpenSAR V4_02_32

Configuration/GPRS 850 Low -Body-Back/Area Scan: Measurement grid: dx=10mm, dy=10mm Configuration/GPRS 850 Low -Body-Back/Zoom Scan: Measurement grid: dx=8mm,dy=8mm, dz=5mm;

Area Scan	surf_sam_plan.txt, h= 5.00 mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm,Complete
Phantom	Validation plane
Device Position	Body Back
Band	GSM 850
Channels	Low &
Signal	TDMA (Crest factor: 4.0)

Maximum location: X=6.00, Y=-5.00 SAR Peak: 1.23 W/kg

SAR 10g (W/Kg)	0.625145
SAR 1g (W/Kg)	0.881724

The results spound this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a training and the sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is issued by XCC, this document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only. The document is a sample (s) are retained for 30 days only are retained fo

Page 53 of 58

Page 54 of 58

APPENDIX C. TEST SETUP PHOTOGRAPHS

Body Back 10mm

Body Front 10mm

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a true.//www.agc.gatt.com.

Attestation of Global Compliance

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484 E-mail: agc@agc-cert.com 🕜 400 089 2118 Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 55 of 58

Edge 2(Right) 10mm-Hotspot Mode

Report No.: AGC04369180701FH01 Page 56 of 58

Edge 3(Bottom) 10mm-Hotspot Mode

Edge 4(Left) 10mm-Hotspot Mode

Page 57 of 58

DEPTH OF THE LIQUID IN THE PHANTOM—ZOOM IN

Note: The position used in the measurement were according to IEEE 1528-2013

Page 58 of 58

APPENDIX D. CALIBRATION DATA

Refer to Attached files.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by 100°C, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at although the confirmed at all the

Attestation of Global Compliance

Tel: +86-755 2908 1955

Fax: +86-755 2600 8484

E-mail: agc@agc-cert.com

6 400 089 2118

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China