Iniziato	venerdì, 11 luglio 2025, 10:13
Stato	Completato
Terminato	venerdì, 11 luglio 2025, 11:28
Tempo impiegato	1 ora 15 min.
Domanda 1	
Parzialmente corretta	
Punteggio max.: 1,00	

- Importante -

• Approssimate, se necessario, i risultati alla quarta cifra decimale.

- Esercizio -

Un gruppo di ricercatori marini ha raccolto dati di alcune località costiere per studiare la relazione tra la temperatura dell'acqua (in °C) e la densità di fitoplancton (in milioni di cellule per litro), un importante indicatore della salute dell'ecosistema marino. I dati rilevati sono i seguenti:

fito.RData

Fare una analisi descrittiva del dataset rispondendo alle domande seguenti.

1. Lo studio comprende

✓ osservazioni e sono presenti

- osservazioni mancanti.
- 2. La densità media di cellule di fitoplancton nelle località con temperatura inferiore (<) a 18.5 gradi centigradi è pari a

```
3,5491
```

con deviazione standard pari a

3. Il 5% delle località con temperatura dell'acqua più bassa ha temperatura inferiore a

4. Quale tra i grafici qui proposti è lo scatteplot delle variabili temperatura e fitoplancton?

Risposta:

ОВ

OA

 $\bigcirc D$

• C 🗸

La risposta corretta è: C

Si vuole indagare sulla seguente domanda: la temperatura dell'acqua e la densità di cellule di fitoplancton sono legate da una relazione lineare?

5. Posso affermare che

- OLo scatterplot fa pensare che le due variabili non siano correlate
- OLo scatterplot fa pensare che le due variabili siano negativamente correlate
- Lo scatterplot fa pensare che le due variabili siano positivamente correlate

 ✓
- ONessuna affermazione è vera

La risposta corretta è: Lo scatterplot fa pensare che le due variabili siano positivamente correlate

6. La correlazione campionaria tra le due variabili è pari a

0,8306

✓ ed è significativamente (con livello di significatività 0.01)

● non nulla**✓**

Onulla

La risposta corretta è: non nulla

Infatti, il p-value del test è pari a

0

- 7. Stimo la retta di regressione lineare. Il modello lineare corretto
 - Odeve contenere solo il coefficiente angolare, l'intercetta deve essere posta uguale a 0
 - deve contenere sia il coefficiente angolare sia l'intercetta
 - Onessuna delle affermazioni è vera

La risposta corretta è: deve contenere sia il coefficiente angolare sia l'intercetta

8. Il modello ha R^2 pari a

- ×
- 1. nrow(fito) e poi sum(is.na(fito))
- 2. mean(fito\$fitoplancton[fito\$temperatura < 18.5], na.rm = T) e sd(fito\$fitoplancton[fito\$temperatura < 18.5], na.rm = T)
- 3. quantile(fito\$temperatura,0.05,na.rm = T)
- 4. plot(fito\$temperatura,fito\$fitoplancton)
- 5. Guardando lo scatterplot, le due variabili sembrano positivamente correlate
- 6. cor.test(fito\$temperatura, fito\$fitoplancton) -> test e poi test\$estimate e test\$p.value
- 7. Im(fitoplancton ~ temperatura,data = fito) servono sia intercetta che coefficiente angolare infatti i p-value dei test per la nullità dei parametri sono entrambi < 0.01.
- 8. summary(lm(fitoplancton ~ temperatura,data = fito)) -> summodello e summodello \$r.squared

Domanda **2**

Risposta corretta

Punteggio max.: 1,00

Importante —

Approssimate, se necessario, i risultati alla quarta cifra decimale.

Esercizio —

L'urna U_1 contiene una **proporzione** 0.3 di palline bianche e l'urna U_2 una proporzione 0.5 di palline bianche. Si estraggono **con reimbussolamento** 4 palline da U_1 e 6 da U_2 . Tutte le palline estratte vengono sistemate in una terza urna U_3 . Sia X la **proporzione** di palline bianche nell'urna U_3 . Calcolare,

1. il valore atteso $\mathbb{E} X$

2. la varianza $\mathbb{V}\mathrm{ar}X$

0,0234

NB: può essere utile ricordare la distribuzione Binomiale

Chiamiamo B_1 e B_2 rispettivamente il numero di palline bianche estratte dalle due urne U_1 e U_2 . Si ha che $B_1\sim Bin(4,0.3)$ e $B_2\sim Bin(6,0.5)$. Inoltre B_1 e B_2 sono indipendenti. La proporzione di palline bianche nell'urna U_3 \'e

$$X = \frac{B_1 + B_2}{10}.$$

Quind

 $\mathbb{E}X = (\mathbb{E}B_1 + \mathbb{E}B_2)/10 = (4 \times 0.3 + 6 \times 0.5)/10 = 0.42)$

 $VarX = (\mathbf{V}_{ar}B_1 + \mathbf{V}_{ar}B_2)/10^2 = (4 \times 0.3 \times 0.7 + 6 \times 0.5 \times 0.5) / 100 = 0.0234$

Domanda 3					
Risposta corretta					
Punteggio max.: 1,00					
— Importante —					
Approssimate, se n	necessario, i risultati alla	quarta cifra decimale.			
— Esercizio —					
Sia X una variabile ale Determinare:	eatoria distribuita come (una Normale di media	0 e varianza 4 .		
1 La probabilità che X	sia minore di 1.5.				
0,7734					
✓					
2 La probabilità che X	(sia maggiore di 3.				
0,0668					
✓ 3 La probabilità che \	(sia maggiore di 3 saper)	ndo che X è minore di	6		
0,0655	t sia maggiore di o sapei	ndo che A e minore di	0.		
0,0000					
•					
Soluzione:					
1. pnorm(1.5,0,2)					
0.7733726 approssim	nato a 0.7734				
2. 1-pnorm(3,0,2)					
0.0668072 approssim	nato a 0.0668				
3 Usiamo la definizio	ne di prob. condizionata				
	rm(3,0,2)) / pnorm(6,0,2				
0.06554578 approssi		-7			
oomanda 4					
isposta corretta					
unteggio max.: 1,00					
Consideriamo una var	riabile aleatoria X con fu	unzione di den	sità 🗸 di prob	pabilità $f(x) = c \exp^{-c}$	cx per $x \in \mathbb{R}$, con c
	ve. X è una variabile alea			con parametro c ed è	continua
✔ .		F			
	come una binomiale	in modo uniforme	geometricamente	come una gamma	discreta
	1]]	
mista	massa		normalmente		
Risposta corretta.					
•	riabile aleatoria X con fu	unzione di densità di p	robabilità $f(x)=c\mathrm{e}$	xp^{-cx} per $x \in \mathbb{R}_+$ cor	n c positivo, e zero
	bile aleatoria distribuita e				
La risposta corretta è				_ cm _ Th	
	riabile aleatoria X con fu abile aleatoria distribuita				on c positivo, e zero

Domanda **5**

Parzialmente corretta

Punteggio max.: 1,00

- Importante -

• Approssimate, se necessario, i risultati alla quarta cifra decimale.

- Esercizio -

Un ente turistico delle Alpi ha condotto un'indagine su alcuni escursionisti per studiarne le preferenze e le abitudini. Per ciascun escursionista sono state resigtrate due variabili: la preferenza di percorso e il numero di escursioni effettuate nell'ultimo mese. I dati sono raccolti nel seguente file:

escursioni.RData

Fare una analisi descrittiva del dataset rispondendo alle domande seguenti.

1. Lo studio comprende

✓ osservazioni delle quali

✓ sono riferite ad escursionisti che preferiscono i sentieri facili. La proporzione di escursionisti che preferiscono i sentieri facili
è pari a

```
0,4383
```

~

2. Se consideriamo solo gli escursionisti che preferiscono i sentieri facili, il numero medio di escursioni effettuate nell'ultimo mese è pari a

```
1,3803
```

~ .

3. Quale dei seguenti grafici è compatibile con i dati a disposizione?

Risposta:

 $\bigcirc D$

 \bigcirc A

 \bigcirc C

La risposta corretta è: B

Si vuole dare una risposta quantitativa alla domanda: posso dire che più della metà degli escursionisti preferisce i sentieri impegnativi?

- 4. Per rispondere a questa domanda calcoli
 - Oun test di ipotesi per la proporzione di escursionisti che preferisce i sentieri impegnativi con H_0: p = 0.5 contro H_1: p != 0.5
 - \odot un test di ipotesi per la proporzione di escursionisti che preferisce i sentieri impegnativi con H_0: p = 0.5 contro H_1: p > 0.5

~

- Oun test di ipotesi per la proporzione di escursionisti che preferisce i sentieri impegnativi con H_0 : p = 0.5 contro H_1 : p < 0.5
- Onessuna di queste affermazioni è vera

La risposta corretta è: un test di ipotesi per la proporzione di escursionisti che preferisce i sentieri impegnativi con H_0 : p = 0.5 contro H_1 : p > 0.5

5. Ottengo un p-value pari a

- 6. Con livello di significatività pari a 0.01, posso affermare che
 - non posso rifiutare l'ipotesi nulla
 - Odevo rifiutare l'ipotesi nulla

La risposta corretta è: non posso rifiutare l'ipotesi nulla

- 7. Con livello di significatività pari a 0.01, posso affermare che
 - OAI più il 50% degli escursionisti preferisce i sentieri impegnativi
 - Il 50% degli escursionisti preferisce i sentieri impegnativi
 - Più del 50% degli escursionisti preferisce i sentieri impegnativi
 - ONessuna delle affermazioni è vera

La risposta corretta è: Il 50% degli escursionisti preferisce i sentieri impegnativi

- 1. nrow(escursioni) e table(escursioni\$Preferenza) e poi table(escursioni\$Preferenza)/sum(table(escursioni\$Preferenza))
- 2. mean(escursioni\$"Numero escursioni"[escursioni\$Preferenza == "Sentiero facile"])
- 3. barplot(table(escursioni\$Preferenza))
- 4. Svolgo un test di ipotesi per la proporzione di escursionisti che preferisce i sentieri impegnativi con H_0: p = 0.5 contro H_1: p > 0.5
- 5. table(escursioni\$Preferenza) e poi binom.test(91,162, p = 0.5, alternative = "greater") -> test e infine test\$p.value
- 6. Non posso rifiutare H_0 perché il p-value non è minore di 0.01.
- 7. Posso affermare H_0 ovvero che la metà degli escursionisti preferisce i sentieri impegnativi.