Algebra Qualifying Exam Sping 1987

Do two problems from each section.

Group Theory

- 1. Let G be a non-abelian group of order pq, where p and q are primes and p < q. Prove that p|q-1.
- 2. Prove that there does not exist a simple group of order 112.
- **3.** Prove the Frattini lemma: if G is a finite group, K is a normal subgroup of G, and P is a Sylow p-subgroup of K, then $G = N_G(P)K$.
- **4.** Prove that any finite nilpotent group G is the (internal) direct product of its Sylow subgroups. (One possible approach: use the fact that $N_G(H) \neq H$ for any proper subgroup H of G.)

Linear Algegra

- 1. Let V be a finite-dimensional \mathbf{F} -vector space and let $T \in \operatorname{End}_F(V)$. Assume that the minimal polynomial of T is of the form f(x)g(x) where f(x) and g(x) are relatively prime polynomials in $\mathbf{F}[x]$. Prove that $V = \ker f(T) \oplus \ker g(T)$ (internal direct sum).
- **2.** Let V be an \mathbf{F} -vector space and let W be a subspace of V. Let \widehat{V} and \widehat{W} denote the dual spaces of V and W, respectively. Prove that

$$\widehat{W} \cong \widehat{V}/Ann(W)$$

where Ann(W) is $\{f \in \widehat{V} | W \subseteq \ker f\}$.

- 3. Let V be a vector space of dimension 7 over the rationals, and let $T \in \operatorname{End}_Q(V)$. Suppose that the characteristic polynomial of T is $(x-1)^5(x-2)^2$ and that the minimal polynomial of T is $(x-1)^4(x-2)$. List the possibilities for the Jordan canonical form of T, up to re-ordering of Jordan blocks.
- **4.** Let V be a finite-dimensional vector space over an algebraically closed field \mathbf{F} , and let S and T be two *commuting* members of $\operatorname{End}_{\mathbf{F}}(V)$. Show that S and T have a common eigenvector (not necessarily for the same eigenvalue).

Rings and Modules

(In these problems, rings are assumed to have a multiplicative identity element "1", and modules are assumed to be unital. That is, if R is a ring and M is a (left) R-module, then $1 \cdot x = x$ for all $x \in M$).

- 1. By definition, and R-module is irreducible if it is non-zero and has no proper non-zero submodules. Let M and N be two irreducible R-modules. Prove that either $Hom_R(M,N)=0$ or $M\cong N$. Show also that $Hom_R(M,M)$ is a division ring.
- **2.** Show that if **F** is an infinite field and $f \in \mathbf{F}[x_1, \dots, x_n] \neq 0$.
- **3.** Let R be an integral domain and let ρ be a non-zero prime ideal of R. Show that R_{ρ} has a unique maximal ideal (where R_{ρ} denotes the "localization" of R at ρ).
- **4.** Show that a module over a ring R is always a homomorphic image of a free R-module.

Fields and Galois Theory

1. Let E be a splitting field for the polynomial $x^3 - 5$ over Q. Find all of the subfields of E.

- **2.** Let F_0 be a field of order 4 (i.e., having precisely four elements). Let t be transcendenatal over F_0 , and put $F = F_0(t)$, the function field in one variable over F_0 . Finally, put E = F(u) where $u^3 = t$.
 - (a) Show that E/F is normal and separable.
 - (b) Determine the galois group of the extension E/F.
- **3.** Let K be an extension field of the rationals, of finite degree. Prove that K contains only a finite number of roots of unity.
- **4.** Let E/F be an extension field and let $\alpha \in E$. Show that α is algebraic over F if and only if $[F(\alpha):F]$ is finite.