Ergänzende Unterlagen zur Vorlesung Grundlagen der Elektrotechnik (437.201) für Elektrotechnik-Studierende und Biomedical Engineering-Studierende

Renhart Werner

29. September 2008

Inhaltsverzeichnis

1	Das	elektrische Feld	1		
	1.1	Die elektrische Ladung	1		
	1.2	Wirkung elektrischer Ladungen	2		
	1.3	Arbeit, Potential und Spannung	5		
	1.4	Materie im elektrischen Feld	7		
	1.5	Energie im elektrostatischen Feld	15		
2	Gle	eichförmig bewegte Ladungen	17		
	2.1	Der elektrische Strom	17		
	2.2	Das Ohmsche Gesetz	20		
	2.3	Die Temperaturabhängigkeit des elektrischen Widerstandes	24		
	2.4	Analogie zwischen elektrostatischem Feld und Strömungsfeld	25		
	2.5	Die Leistung im stationären Strömungsfeld	26		
3	Gleichstromschaltungen				
	3.1	Der einfache elektrische Stromkreis	28		
	3.2	Zweipole	29		
4	Analyse linearer Gleichstromnetzwerke				
	4.1	Äquivalenz von Quellen	45		
	4.2		45		
	4.3	Ersatzquellenverfahren	47		
	4.4		48		
	4.5	Das elektrische Netzwerk als Graph	49		
	4.6	Die Zweigstromanalyse	52		
	4.7	Das Knotenspannungsverfahren	54		
	4.8	Maschenstromverfahren	57		
5	Ung	gleichförmig bewegte Ladungen	61		
	5.1		61		
	5.2	Ÿ	61		
	5.3	Kennwerte sinusförmiger Größen	62		
	5.4	Darstellungsformen zeitharmonischer Wechselgrößen	66		

In halts verzeichn is

6	Das	magnetische Feld	72
	6.1	Grunderscheinungen	72
	6.2	Kraft auf bewegte Ladungen	75
	6.3	Magnetische Kraftwirkung auf einen stromdurchflossenen Leiter	77
	6.4	Die Erregung des magnetischen Feldes	78
	6.5	Materie im magnetischen Feld	83
	6.6	Das Ohmsche Gesetz für magnetische Kreise	87
	6.7	Analogie zwischen dem elektrischen und dem magnetischen Feld	87
	6.8	Wirkungen im Magnetfeld	88
7	Verh	nalten Passiver Bauelemente bei zeitharmonischen Vorgängen	96
	7.1	Allgemeines	96
	7.2	Der Ohm'sche Widerstand	96
	7.3	Die Induktivität	98
	7.4	Der Kondensator	101
	7.5	Zusammenschaltung von passiven Bauelementen	103
8	Die	Frequenzabhängigkeit passiver Schaltungen	110
	8.1	Allgemeines	110
	8.2	Übertragungsfunktion und Bode-Diagramm	
	8.3	Beispiele	119
9	Mes	sung elektrischer Größen	120
	9.1	Die Messung von Strom, Spannung und Leistung	120
	9.2	Schaltung von Meßgeräten	121
	9.3	Zusammenstellung der wichtigsten Meßgeräte	127
	9.4	Klasseneinteilung	
10	Elek	trische Schwingkreise und Resonanz	129
		Der verlustbehaftete Reihenschwingkreis	129
	10.2	Der verlustbehaftete Parallelresonanzkreis	133

10 Elektrische Schwingkreise und Resonanz

Lineare Netzwerke werden in der Praxis sehr häufig bei unterschiedlichen Frequenzen betrieben. Beispielsweise finden in der Elektroakustik Netwzerke Anwendung, welche zumindest über den hörbaren Frequenzbereich (etwa 20 Hz bis 20 kHz) betrieben werden. Die Frequenzabhängigkeit entsprechender elektrischer Netzwerke bei zeitharmonischer Anregung wird in diesem Abschnitt diskutiert. Im Besonderen werden anhand der elektrischen Schwingkreise die Erscheinungen der Resonanz erläutert.

10.1 Der verlustbehaftete Reihenschwingkreis

An eine Spannungsquelle werden die Elemente R, L und C seriell, entsprechend Abb. 10.1 zusammengeschlossen.

Abbildung 10.1: RLC-Serienresonanzkreis.

Die Impedanz \underline{Z} ergibt sich dabei zu:

$$\underline{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right) \tag{10.1}$$

Aus 10.1 erkennt man die Frequenzabhängigkeit des Imaginärteiles und die Frequenzunabhängigkeit des Realteiles der Impedanz.

 $\Re\{\underline{Z}\}$ ist frequenzunabhängig

 $\Im\{\underline{Z}\}$ ist frequenzabhängig

Betrag und Phase errechnen sich aus:

$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\varphi_z = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$$

Der, sich bei eingeprägter Spannung \underline{U} einstellende Strom \underline{I} durch die Schaltung folgt zu:

$$\underline{I} = \frac{\underline{U}}{\underline{Z}} = \frac{\underline{U}}{R + j\left(\omega L - \frac{1}{\omega C}\right)} = \underline{U}\underline{Y}$$

$$I = \frac{U}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}} = \frac{U}{Z} = UY$$

Der Strom erreicht sein Maximum, wenn $\Im{\{\underline{Z}\}}$ Null wird. Dies ist genau dann der Fall, wenn $\omega = \omega_0$ ist. Darin wird ω_0 als Resonanz-Kreisfrequenz bezeichnet. Damit gilt:

$$\left(\omega_0 L - \frac{1}{\omega_0 C}\right) = 0 \tag{10.2}$$

$$\sqrt{\frac{1}{LC}} = \omega_0. \tag{10.3}$$

Es liegt Stromresonanz vor $(Z \Rightarrow Min., Y \Rightarrow Max.)$. Bei der Resonanz-Kreisfrequenz ω_0 wird die Gesamtimpedanz reell, Strom \underline{I} und Spannung \underline{U} sind in Phase!

Resonanz:
$$\underline{Z} = Z_0 = R$$
, $I_0 = \frac{U}{R}$

$$\begin{array}{ll} \omega L = \frac{1}{\omega C} & \Rightarrow & \omega^2 = \frac{1}{LC} \\ \omega_0 = \frac{1}{\sqrt{LC}} & \text{Resonanzkreisfrequenz} \\ f_0 = \frac{\omega_0}{2\pi} & \text{Resonanzfrequenz} \\ \omega_0 L = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}} = X_0 & \text{Resonanzblindwiderstand, Schwingungswiderstand} \end{array}$$

Der Verlauf des Stromes, abhängig von der Frequenz ist für unterschiedliche Widerstände R in Abb. 10.2 (a), den sogenannten Resonanzkurven, dargestellt. Die Kurven

Abbildung 10.2: (a) Resonanzkurven und (b) Normierte Resonanzkurve beim Reihenschwingkreis

gelten bei einer eingeprägten Spannung von $10\,V$, für $L=10\,mH$, $C=1\,mF$. Es ist deutlich zu erkennen, dass sich bei Ändern des Widerstandes R die Resonanz-Kreisfrequenz ω_0 nicht verändert. Die Maximalwerte des Stromes bei Resonanz nehmen mit zunehmenden Widerstandswerten entsprechend ab. Zudem werden die Kurven breiter, dh. die Maxima werden immer weniger ausgeprägt.

Ein Maß für die Qualität eines Schwingkreises ist nun grafisch aus der Breite der Resonanzkurven bei den unterschiedlichen Widerständen ablesbar. Um einen eindeutigen visuellen Vergleich der Kurven durchführen zu können, normiert man jede Kurve für sich auf den Maximalwert **Eins**. Das heisst, jeder Funktionswert der Kurve wird auf den Stromwert I_0 im Resonanzpunkt bezogen. Man erhält hernach die in Abb. 10.2 (b) dargestellten normierten Resonanzkurven.

Aus dem Verlauf dieser Kurven kann nun deutlich erkannt werden, welche Resonanzkurve schmäler und welche breiter ist. Für die Resonanzkurven bei $R=1\,\Omega$ und $R=5\,\Omega$ sind bereits die später beschriebenen Grenzfrequenzen ω_1' , ω_1'' bzw. ω_5' , ω_5'' mit eingezeichnet.

Aus der Diskussion der Impedanzbeziehung (10.1) können die Verläufe der Phasenverschiebungen der unterschiedlichen Resonanzkurven dargestellt werden:

Man erkennt, dass bei Frequenzen unterhalb der Resonanzfrequenz ein ohmsch-kapazitives Verhalten (Phasenwinkel der Impedanz φ_Z ist negativ)vorliegt. Bei Frequenzen über der Resonanzfrequenz überwiegt hingegen der induktive Blindanteil. Aus dem Verlauf der Kurven erkennt man auch, dass mit zunehmendem ohmschen Widerstand die Kurven immer flacher werden.

Abbildung 10.3: Phasenverläufe beim Reihenschwingkreis.

10.1.1 Resonanzschärfe oder Gütefaktor Q

Die Resonanzschärfe oder der Gütefaktor, kurz die Güte \mathbf{Q} eines Schwingkreises ist über die gespeicherte Energie und die Verlustenergie, wie folgt, definiert:

$$Q = \frac{2\pi \times \text{gesamte Speicherenergie}}{\text{Verlustenergie je Periode}}\Big|_{\text{bei Resonanz}}$$
$$= \frac{\omega_0 \times \text{gesamte Speicherenergie}}{\text{Verlustleistung}}\Big|_{\text{bei Resonanz}}$$

Die Energien W_L und W_C sind gleich groß. Durch EInsetzten der bekannten Begriffe folgt:

$$Q = \frac{\omega_0(W_L + W_C)}{P} = \frac{\omega_0 L I^2}{R I^2} = \frac{X_0}{R}.$$
 (10.4)

Die Güte Q ergibt sich somit aus dem Verhältnis des Blindwiderstandes X_0 bei Resonanz zum ohmschen Widerstand R des Schwingkreises. Die Inverse der Güte wird als Dämfungsfaktor d bezeichnet:

$$d = \frac{1}{Q} = \frac{R}{X_0} = R\sqrt{\frac{C}{L}}.$$
 (10.5)

10.1.2 Grenzfrequenzen und Bandbreite

Für den Resonanzkreis sind eine untere und eine obere Grenzfrequenz ω' bzw. ω'' genau dort definiert, wo der Strom auf das $\frac{1}{\sqrt{2}}$ -fache des Maximalwertes (=Strom I_0 bei der

Resonanz-Kreisfrequenz ω_0) zurückgegangen ist. Damit gilt:

$$Z = \sqrt{2}R = \sqrt{2}Z_0$$

$$I = \frac{U}{Z} = \frac{U}{\sqrt{2}Z_0} = \frac{I_0}{\sqrt{2}}$$

Der Strom ist gegenüber dem Höchstwert I_0 bei Resonanz auf das $\frac{1}{\sqrt{2}}$ -fache, dh. um $3\,dB$ abgesunken:

$$\frac{1}{\sqrt{2}}\Big|_{dB} = 20\log 2^{-\frac{1}{2}} = -10\log 2 \approx -3 \, dB$$

Die Differenz $\omega'' - \omega'$ entspricht der Bandbreite des Schwingkreises. Es lässt sich zeigen, dass sich diese durch

$$\omega'' - \omega' = \frac{R}{L} \tag{10.6}$$

berechnen lässt. Ducrh Erweitern mit ω_0 folgt:

$$\frac{\omega'' - \omega'}{\omega_0} = \frac{R}{L}\sqrt{LC} = R\sqrt{\frac{C}{L}} = \frac{R}{X_0} = d = \frac{1}{Q}$$

Misst man im Labor die Resonanzfrequenz und die beiden Grenzfrequenzen ω' und ω'' , so hat man damit die Möglichkeit, die Güte des Reihenschwingkreises messtechnisch zu ermitteln.

10.2 Der verlustbehaftete Parallelresonanzkreis

Der nachfolgend dargestellte Parallelschwingkreis ist in seinem Verhalten dual zum Reihenschwingkreis zu beschreiben.

Anstelle der Impedanz wird die Admittanz betrachtet:

$$\underline{Y} = G + j\left(\omega C - \frac{1}{\omega L}\right). \tag{10.7}$$

Wiederum ist der Realteil der Admittanz $\Re\{\underline{Y}\}$ frequenzunabhängig und der Imaginärteil $\Im\{\underline{Y}\}$ frequenzabhängig. Betrag und Phase folgen zu:

$$Y = \sqrt{G^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$$

$$\varphi_y = \arctan \frac{\omega C - \frac{1}{\omega L}}{G}.$$

Abbildung 10.4: RLC-Parallelresonanzkreis.

Bei eingeprägtem Strom \underline{I} der Stromquelle stellt sich die Spannung mit

$$\begin{array}{rcl} \underline{U} & = & \underline{\underline{I}} \\ \underline{Y} = \frac{\underline{I}}{G + j \left(\omega C - \frac{1}{\omega L}\right)} = \underline{I} \, \underline{Z} \\ \\ U & = & \frac{I}{\sqrt{G^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}} = \frac{I}{Y} = I \, Z \end{array}$$

ein. Die Spannung erreicht ihr Maximum, wenn $\Im{\{\underline{Y}\}}$ Null wird. Es liegt dann Spannungsresonanz vor $(Y \Rightarrow Min., Z \Rightarrow Max.)$. Dies wird wieder erreicht, wenn die Kreisfrequenz gleich $\omega_0 = \frac{1}{\sqrt{LC}}$ ist (vgl. (10.3)).

$$\begin{array}{ll} \omega C = \frac{1}{\omega L} & \Rightarrow & \omega^2 = \omega_0^2 = \frac{1}{LC} \\ \omega_0 = \frac{1}{\sqrt{LC}} & \text{Resonanzkreisfrequenz} \\ f_0 = \frac{\omega_0}{2\pi} & \text{Resonanzfrequenz} \\ \omega_0 C = \frac{1}{\omega_0 L} = \sqrt{\frac{C}{L}} = B_0. & \text{Resonanzblindleitwert} \end{array}$$

In der Praxis lassen sich die Schwingkreise mit den idealen Netwerkelementen nicht realisieren, da die realen Bauelemente immer verlustbehaftet sind. Die technischen Blindwiderstände sehen folgend aus:

Der praktische Parallelresonanzkreis kann nachfolgendes Aussehen haben.

Bei dieser Schaltung wurde angenommen, dass das Dielektrikum des Kondensators nicht ideal, dh. kein vollkommener Isolator ist. Es muss somit ein zu C_p paralleler Widerstand R_C bzw. dessen Leitwert G_C mitberücksichtigt werden.

$$\underline{Y}(j\omega) = G_C + j\omega C + \frac{1}{R_L + j\omega L} = G + jB$$

$$= G_C + \frac{R_L}{R_L^2 + \omega^2 L^2} + j\left(\omega C - \frac{\omega L}{R_L^2 + \omega^2 L^2}\right)$$

Bei Resonanz gilt: $Im\{\underline{Y}(j\omega)\}=0$:

$$\begin{split} \left(\omega_p C - \frac{\omega_p L}{R_L^2 + \omega_p^2 L^2}\right) &= 0\\ \omega_p^2 &= \frac{1}{LC} - \frac{R_L^2}{L^2}\\ w_p &= \sqrt{\frac{1}{LC} - \left(\frac{R_L}{L}\right)^2} = \sqrt{\omega_0^2 - \left(\frac{R_L}{L}\right)^2}. \end{split}$$

Die Kreisfrequenz ω_p , bei welcher hier Resonanz vorherrscht, ist von ω_0 unterschiedlich! Abhängig vom ohmschen Widerstandes R_L der Spule wird es zu einer Verschiebung der Resonanz-Kreisfrequenz ω_p kommen. Dies ist aus den Resonanzkurven in Abb. 10.5 deutlich ersichtlich. Die dargestellten Resonanzkurven wurden bei nachfolgenden Schaltungselementen ermittelt. $R_C = 1000 \,\Omega$, $L = 10 \, mH$, $C = 1 \, mF$, $I = 10 \, A$.

Abbildung 10.5: Resonanzkurve eines praktischen Parallelschwingkreises.