ПРОИЗВОДНАЯ ПО ЗАДАННОМУ НАПРАВЛЕНИЮ. ГРАДИЕНТ

Как известно, производная функции одной переменной y = y(x) характеризует скорость ее изменения при изменении x. Поэтому, очевидно, частная производная функции z = z(x, y) по переменной x характеризует скорость изменения этой функции в результате изменения x, или, по-другому, в направлении оси OX, а частная производная по y — скорость изменения функции в направлении оси OY. Однако, в каждой точке плоскости, кроме этих двух направлений, существует еще бесконечное множество других, и во многих случаях представляет интерес скорость изменения, или производная функции, по любому заданному направлению.

Рис. 12

Рассмотрим функцию z = z(x, y). На произвольно направленной оси ℓ в плоскости ХОУ выберем фиксированную точку M_0 и переменную точку M (рис. 12).

ОПРЕДЕЛЕНИЕ. Производной функции z = z(x,y) в точке M_0 по направлению ℓ называется $\frac{\partial z}{\partial \ell}(M_0) = \lim_{M \to M_0} \frac{z(M) - z(M_0)}{\left|\overline{M_0 \, M}\right|}$.

Эта производная характеризует скорость изменения функции в точке M_0 в направлении ℓ .

Выведем формулу вычисления производной по направлению. Пусть в прямоугольной декартовой системе координат зафиксирована точка $M_0(x_0,y_0),\ M(x,y)$ – произвольная, а направление ℓ образует с положительным направлением OX угол α (рис. 12). Обозначим $\left|\overline{M_0\ M}\right| = t$. Тогда $x = x_0 + t\cos\alpha,\ y = y_0 + t\sin\alpha$, поэтому функция z = z(x,y) на выбранном направлении фактически зависит от одной переменной t (рис.13). Поэтому в соответствии с определением

$$\frac{\partial z}{\partial \ell}(M_0) = \frac{dz}{dt}\Big|_{t=0} = \frac{\partial z}{\partial x}(M_0) \cos \alpha + \frac{\partial z}{\partial y}(M_0) \sin \alpha.$$

Рис. 13

И

Пусть теперь u = u(x, y, z) — функция трех переменных, $M_0(x_0, y_0, z_0)$ — фиксированная, M(x, y, z) — произвольная точка и $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы заданного направления ℓ в пространстве. Тогда, очевидно,

$$\begin{cases} x = x_0 + t \cos \alpha, \\ y = y_0 + t \cos \beta, \\ z = z_0 + t \cos \gamma \end{cases}$$

$$\frac{\partial u}{\partial \ell}(M_0) = \frac{\partial u}{\partial x}(M_0)\cos\alpha + \frac{\partial u}{\partial y}(M_0)\cos\beta + \frac{\partial u}{\partial z}(M_0)\cos\gamma. \tag{6.5}$$

ОПРЕДЕЛЕНИЕ. Градиентом функции u = u(x, y, z) в точке M(x, y, z) называется вектор $grad\ u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$.

Если обозначить $\vec{\tau} = (\cos \alpha, \cos \beta, \cos \gamma)$ — единичный вектор направления ℓ , то, очевидно, производная по направлению (6.5) — скалярное произведение grad u и $\vec{\tau}$:

$$\frac{\partial u}{\partial \ell} = \left(\operatorname{grad} u, \ \vec{\tau} \right) = \left| \operatorname{grad} u \right| \ \left| \vec{\tau} \right| \cos \omega, \ \omega = \left(\operatorname{grad} u, \ \ell \right).$$

Так как $|\vec{\tau}|=1$, то $\frac{\partial u}{\partial \ell}=|grad\ u|\cos\omega$, поэтому $\frac{\partial u}{\partial \ell}$ достигает максимума в том случае, когда $\ell\uparrow\uparrow grad\ u$. Это означает, что $grad\ u(M)$ указывает на направление наискорейшего возрастания функции в точке M. При этом скорость наибольшего возрастания в данной точке равна $|grad\ u|=\sqrt{(u_x')^2+(u_y')^2+(u_z')^2}$.

Итак, градиентом скалярной величины называется вектор, который по численному значению и направлению характеризует наибольшую скорость изменения величины.

ЗАМЕЧАНИЕ. Как было отмечено выше, графиком функции двух переменных является пространственная поверхность. Поэтому величина производной $\frac{\partial z}{\partial \ell} \left(M_0 \right)$ указывает, как будет меняться высота (значение переменной z) при движении из точки N_0 на поверхности, соответствующей M_0 , в направле-

нии ℓ (рис. 14): если $\frac{\partial z}{\partial \ell}(M_0) < 0$, то при движении в данном направлении из точки N_0 высота будет уменьшаться, если же $\frac{\partial z}{\partial \ell}(M_0) > 0$ — увеличиваться. Если $\frac{\partial z}{\partial \ell}(M_0) = 0$, то движение в направлении ℓ — это движение вдоль линии уровня, то есть линии постоянной высоты.

Вектор $\operatorname{grad}\ z(M_0)$ указывает, в каком направлении надо двигаться, чтобы крутизна подъема из точки N_0 была наибольшей.

ПРИМЕР. Вычислить производную по направлению вектора $\overline{M_0}M$ функции $z=2x\sqrt{y}-\frac{x^2}{3y^3}+4x$ в точке $M_0\big(3,1\big)$, если $M\big(-1,4\big)$. Найти направление наискорейшего возрастания этой функции в точке M_0 .

Найдем частные производные первого порядка в точке $M_0(3,1)$:

$$z'_{x}(3,1) = 2\sqrt{y} - \frac{2x}{3y^{3}} + 4\Big|_{(3,1)} = 4, \quad z'_{y}(3,1) = \frac{x}{\sqrt{y}} + \frac{x^{2}}{y^{4}}\Big|_{(3,1)} = 12.$$

Найдем вектор заданного направления и его направляющие косинусы:

$$\overline{M_0 M} = (-4, 3) \Rightarrow |\overline{M_0 M}| = 5 \Rightarrow \cos \alpha = -\frac{4}{5}, \cos \beta = \sin \alpha = \frac{3}{5}.$$

Производная по направлению $\frac{\partial z}{\partial \ell}(3,1) = -\frac{16}{5} + \frac{36}{5} = 4$. Это означает, что движение в направлении вектора $\overline{M_0}$ из точки $N_0(3,1,15)$, лежащей на поверхности, будет подъемом (высота будет увеличиваться).

Направление наискорейшего возрастания функции в точке $M_0(3,1)$ – $grad\ z(3,1)=(4,12)=4(1,3)$.

КАСАТЕЛЬНАЯ ПЛОСКОСТЬ И НОРМАЛЬ К ПОВЕРХНОСТИ

ОПРЕДЕЛЕНИЕ. *Касательной плоскостью* к поверхности F(x, y, z) = 0 в точке M_0 называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку. *Нормалью* называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что $\operatorname{grad} F(M_0)$ направлен по нормали к поверхности F(x,y,z)=0 в точке $M_0(x_0,y_0,z_0)$.

Рассмотрим кривую L, лежащую на поверхности и проходящую через точку $M_{\scriptscriptstyle 0}$ (рис. 15). Пусть она задана параметрическими уравнениями

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

Если $\vec{r}(t)$ – радиус-вектор точки M(x,y,z), движущейся при изменении t вдоль L, то $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$, а $\vec{r}(t_0) = x_0\vec{i} + y_0\vec{j} + z_0\vec{k}$ – радиусвектор точки M_0 .

Рис. 15