Traitement d'images

Transformations géométriques

Filtrage

Traitement d'images Transformations géométriques / Filtrage

Transformations géométriques

- ► Transformations géométriques
- ▶ Filtrage

Bibliographie

Transformations géométriques

- Cours de traitement d'images Elise Arnaud Edmond Boyer Université Joseph Fourier
- ► Cours de traitement d'images Alain Boucher
- Cours de traitement d'images T Guyer Université de Chambéry
- Cours de traitement d'images Caroline ROUGIER université de Montréal
- Analyse d'images : filtrage et segmentation (Edition Broché) - Cocquerez
- Cours de traitement d'images V Eglin INSA de Lyon
- Cours de traitement d'images JC Burie Université de La Rochelle

Traitement d'images

Transformations géométriques - vectoriel/bitmap

Transformations géométriques

- ▶ Objet vectoriel : on transforme les sommets (ou points de contrôle) et on retrace
- ▶ Objet bitmap : calcul pour chaque pixel

Transformations géométriques

Changement d'échelle

Transformations géométriques

Transformations géométriques

Cisaillement

Transformations géométriques

Changement d'échelle

Transformations géométriques

Filtrage

Première idée : agrandissement d'image par copie des pixels

Exemple : multiplication par 2 de la taille de l'image

Limite de cette approche?

Traitement d'images

Transformations géométriques

Filtrag

Principe général

Recherche du pixel antécédent : pour chaque pixel de l'image résultat, on cherche le pixel correspondant dans l'image initiale.

Transformation géométrique
$$(x,y) \rightarrow (x',y') = f(x,y)$$

Transformation inverse $(x',y') \rightarrow (x,y) = f^{-1}(x',y')$

Changement d'échelle : calcul

Transformations géométriques

Filtrage

Le changement d'échelle est une homothétie de centre l'origine. On note S_x et S_y les facteurs d'échelle suivant chaque axe (agrandissement ou réduction).

$$x' = S_x.x x = \frac{1}{S_x}.x'$$

$$y' = S_y.y y = \frac{1}{S_y}.y'$$

Algorithme

Remarque : arrondi entier des coordonnées de l'antécédent = "interpolation au plus proche voisin"

Changement d'échelle : aliasing

Transformations géométriques

Interpolation bilinéaire

Transformations géométriques

$$I_C = I_A + d(AC).(I_B - I_A)$$

$$I_{P1} = I(x, y) + (y_P - y).(I(x, y + 1) - I(x, y))$$

$$I_{P2} = I(x + 1, y) + (y_P - y).(I(x + 1, y + 1) - I(x + 1, y))$$

$$I_P = I_{P1} + (x_P - x).(I_{P2} - I_{P1})$$

Interpolation bilinéaire : zoom \times 2

Transformations géométriques

Rotation autour de l'origine

Transformations géométriques

Filtrage

$$x' = x\cos(\theta) - y\sin(\theta)$$
$$y' = y\cos(\theta) + x\sin(\theta)$$

avec θ angle de rotation

Démonstration

Coordonnées polaires : $x = r \cos(\alpha)$ et $y = r \sin(\alpha)$

Après rotation d'angle $\theta: x' = r\cos(\alpha + \theta)$ et $y' = r\sin(\alpha + \theta)$

$$x' = r\cos(\alpha)\cos(\theta) - r\sin(\theta)\sin(\alpha)$$

$$y' = r\cos(\alpha)\sin(\theta) + r\cos(\theta)\sin(\alpha)$$

$$x' = x \cos(\theta) - y \sin(\theta)$$

$$y' = y\cos(\theta) + x\sin(\theta)$$

Rotation d'une image autour de son centre

Recherche de l'antécédent :

$$x = W/2 + (x' - W/2)\cos(\theta) - (y' - H/2)\sin(\theta)$$

$$y = H/2 + (y' - H/2)\cos(\theta) + (x' - W/2)\sin(\theta)$$

Transformations géométriques

Traitement d'images

Rotation avec interpolation au plus proche voisin

Transformations géométriques

Traitement d'images

Rotation avec interpolation bilinéaire

Transformations géométriques

Filtrage

► Transformation locale : utilisation du voisinage de chaque pixel

- ▶ Un filtre de convolution (ou masque ou noyau) est généralement une matrice $2n + 1 \times 2n + 1$.
- Calcul : somme de produits, on parle de filtre linéaire

$$R(x,y) = \sum_{u=-n}^{u=-n} \sum_{v=-n}^{v=-n} I(x+u,y+v).K(u+n,v+n)$$

Pour éviter de modifier la luminance de l'image, la somme des coefficients du filtre doit être égale à 1.

Convolution: exemple

Transformations géométriques

Convolution : détail 1/5

Transformations géométriques

Convolution : détail 2/5

Transformations géométriques

Convolution : détail 3/5

Transformations géométriques

Convolution : détail 4/5

Transformations géométriques

Convolution : détail 5/5

Transformations géométriques

Calcul sur les bords de l'image

Transformations

Filtrage

Plusieurs possibilités :

- Mettre à zéro
- ► Convolution partielle utilisant une portion du filtre
- ► Compléter les valeurs manquante en construisant le miroir de l'image

?	?	?	?	?	?	?	?	?	?
?									?
?									?
?									?
?									?
?									?
?									?
?									?
?									?
?	?	?	?	?	?	?	?	?	?

Familles de filtres

Transformations géométriques

- ▶ Filtre passe-bas : atténue le bruit et les détails
- ▶ Filtre passe-haut : accentue les détails et les contours

Transformations géométriques

Filtrage

C'est un filtre passe-bas

- ► Lisse l'image (effet de flou)
- ► Réduit le bruit
- Réduit les détails

Filtre dont tous les coefficients sont égaux (chaque pixel est remplacé par la moyenne de ses voisins)

1/9	1/9	1/9		1/9	1	1	1
1/9	1/9	1/9	ou		1	1	1
1/9	1/9	1/9			1	1	1

Filtre moyenneur : exemples

Transformations géométriques

Filtrage

Plus le filtre grossit, plus le lissage devient important.

Le filtre Gaussien

Transformations géométriques

Filtrage

Le filtre gaussien donne un meilleur lissage et une meilleure réduction du bruit que le filtre moyenne.

Fonction gaussienne en 3D

Image d'une gaussienne

$$\frac{1}{98} \times \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 6 & 8 & 6 & 2 \\
3 & 8 & 10 & 8 & 3 \\
2 & 6 & 8 & 6 & 2 \\
1 & 2 & 3 & 2 & 1
\end{bmatrix}$$

Filtre Gaussien : exemple

Transformations géométriques

Filtre médian

Transformations géométriques

Filtrage

Pour nettoyer le bruit dans une image, il existe mieux que le filtre moyenneur ou le filtre gaussien : le filtre médian.

- C'est un filtre non-linéaire, qui ne peut pas s'implémenter comme une convolution
- ▶ On remplace la valeur d'un pixel par la valeur médiane dans son voisinage $2n + 1 \times 2n + 1$

Filtre médian : exemple 1

Transformations géométriques

Filtrage

a b c

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a 3×3 averaging mask. (c) Noise reduction with a 3×3 median filter. (Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Filtre médian : exemple 2

Transformations géométriques

7 X 7 Moyenne

Bruit "poivre et sel"

5 X 5 Moyenne

Filtre médian

Filtre médian : exemple 3

Transformations

