Recall that the flow of constructing SNARK is

- Computation (Equation) \Rightarrow Circuits \Rightarrow QAP \Rightarrow Verifiable Computation \Rightarrow SNARK
 - o [GGPR13] @ Eurocrypt'13: construct QAP for a circuit
 - [PG13] @ S&P'13 (Pinocchio): construct a verifiable computation protocol
 - [CFH+15] @ S&P'15 (Geppetto)
 - [DFK+16] @ S&P'16 (Cinderella)
 - [BCH+13] @ TCC'13: construct SNARK

Pinocchio Protocol

• https://eprint.iacr.org/2013/279

Suppose Alice wants to prove to Bob she knows $c_1, c_2, c_3 \in \mathbb{F}$ s.t. $c_1 \cdot c_2 \cdot (c_1 + c_3) = 7$.

Let Com be a (Pedersen) commitment.

- 1. Alice computes polynomials V(x), W(x), Y(x) and H(x)
- 2. Bob chooses a random point $s \in \mathbb{F}_p$ and computes $\mathsf{Com}(T(s))$
- 3. Alice computes Com(V(s)), Com(W(s)), Com(Y(s)) and Com(H(s)) and sends it to Bob
- 4. Bob checks $\mathsf{Com}(V(s) \cdot W(s) Y(s)) = \mathsf{Com}(T(s) \cdot H(s))$
 - o If Alice does not have a satisfying assignment, she cannot find V(x),W(x),Y(x) and H(x) s.t. $V(x)\cdot W(x)-Y(x)=H(x)\cdot T(x)$
 - Step 4 does not hold.

Question.

- In Step 3, how to compute Com(T(s)) without knowing T(x)?
 - Only Alice knows the target polynomial T(x)
- In Step 4, how to compute Com(V(s)), Com(W(s)), Com(Y(s)) and Com(H(s))?
 - \circ Only Bob knows the random point s

Blind Evaulation of a Polynomial

Suppose Alice has a polynomial $P(x)=a_0+a_1x+\cdots a_dx^d$ and Bob has a point $s\in\mathbb{F}_p$. Alice and Bob wish to compute $\mathsf{Com}(\mathsf{P}(\mathsf{s}))$.

- naive method;
 - Alice sends P(x) to Bob and he computes Com(P(s)) (and sends it to Alice).
 - Bob can learn p(x).

- Bob sends s to Alice and she computes Com(P(s)) (and sends it to Bob).
 - Alice can learn s.

Remark. Since Pedersen commitment supports addition,

$$\mathsf{Com}(\mathsf{x})^\mathsf{a} \cdot \mathsf{Com}(\mathsf{y})^\mathsf{b} = \mathsf{Com}(\mathsf{ax} + \mathsf{by})$$

and thus, Pedersen commitment also supports linear combinations

- using Pedersen commitment;
 - 1. Bob sends to Alice $\mathsf{Com}(1), \mathsf{Com}(s), \ldots, \mathsf{Com}(s^d)$
 - 2. Alice computes

$$\mathsf{Com}(P(s)) = \mathsf{Com}(1)^{a_0} \mathsf{Com}(s)^{a_1} \cdots \mathsf{Com}(s^d)^{a^d}$$

 \Rightarrow Alice *cannot* learn s and Bob *cannot* learn P(x), neither.

The Remaining Problem

- 1. making sure Alice computes her polynomials according to an assignment
 - o resolved by introducing "verifiable" blind polynomial evaluation
- 2. hiding the assignment
 - resolved by masking the polynomials
- 3. computing multiplications from two commitments
 - resolved by the use of pairing of elliptic curves
- 4. non-interactive

Boolean Circuits and QSPs

- Quadratic Span Programs (QSPs) are very similar to QAPs.
- ullet QSPs use only two sets of polynomials ${\cal V}$ and ${\cal W}$ since they only supports Boolean wire values.
- The divisibility check is updated to

$$P(x) = V(x) \cdot W(x)$$