Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский университет ИТМО

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Компьютерные сети»

Отчет по лабораторной работе №1 «Моделирование компьютерных сетей в среде NetEmul»

Студент:

Барсуков Максим Андреевич, группа P3315

Преподаватель:

Тропченко Андрей Александрович

Оглавление

Оглавление	1
Цель работы	2
Вариант лабораторной работы	2
Этап 1. Простейшая сеть из двух компьютеров	
Построение сети	
Настройка сети	
Анализ таблиц маршрутизации и ARP-таблиц	5
Тестирование сети	
Выводы	6
Этап 2. Линейная сеть из трех компьютеров	7
Построение сети	7
Настройка сети	7
Анализ таблиц маршрутизации и ARP-таблиц	8
Тестирование сети	11
Выводы	11
Этап 3. Полносвязная сеть из трёх компьютеров	12
Построение сети	
Настройка сети	13
Анализ таблиц маршрутизации и ARP-таблиц	13
Тестирование сети	14
Выводы	15
RLIROII	16

Цель работы

Целью данной лабораторной работы, выполняемой в среде моделирования NetEmul, является рассмотрение и изучение теоретических и практических основ настройки сетевого оборудования компьютерных сетей, методов передачи данных в локальных и глобальных вычислительных сетях, а также принципов реализации основных протоколов в процессе функционирования сети.

Вариант лабораторной работы

Адрес IPv4: 216.23.21.14

Этап 1. Простейшая сеть из двух компьютеров

Построение сети

На первом этапе была построена сеть, состоящая из двух компьютеров, соединенных друг с другом.

Рис 1.1: Схема сети из двух компьютеров

Настройка сети

Каждому компьютеру были назначены ІР-адреса:

PC1: 216.23.21.14PC2: 216.23.21.15

После назначения IP-адресов автоматически сформировались записи в ARP-таблицах. Эти таблицы используются для сопоставления IP-адресов с MAC-адресами сетевых адаптеров.

Рис 1.2: ARP-запросы в сети

Анализ таблиц маршрутизации и ARP-таблиц

При анализе таблиц маршрутизации было установлено:

- Каждый компьютер имеет маршрут по умолчанию для своей подсети.
- В ARP-таблицах появились записи с MAC-адресами соседних узлов.

Анализ: ARP-таблица содержит записи о соответствии IP-адресов MAC-адресам, что позволяет компьютерам находить друг друга в сети. Если компьютеру нужно отправить пакет, он сначала выполняет ARP-запрос, чтобы узнать MAC-адрес получателя.

Рис 1.3: ARP-таблица PC1

Рис 1.4: ARP-таблица РС2

Тестирование сети

Для проверки работоспособности сети был выполнен тест передачи UDP-пакетов. **Анализ**: Перед отправкой пакета инициируется ARP-запрос, если MAC-адрес получателя неизвестен. UDP-пакеты передаются напрямую, так как оба компьютера находятся в одной подсети.

Рис 1.5: Передача UDP-пакетов

Выводы

Изучены механизмы работы ARP-протокола. Определены принципы маршрутизации внутри локальной сети. Проверена успешность передачи данных по UDP.

Этап 2. Линейная сеть из трех компьютеров

Построение сети

На втором этапе к сети был добавлен третий компьютер, который был соединён с одним из двух существующих узлов.

Рис 2.1: Схема линейной сети из трёх компьютеров

Настройка сети

После назначения IP-адреса начинаем передавать ARP-запросы, чтобы определить соответствия между IP- и MAC-адресами другого компьютера в сети.

Рис 2.2: ARP-запросы в сети

Анализ таблиц маршрутизации и ARP-таблиц

После добавления третьего компьютера изменилось содержимое таблиц маршрутизации:

- Центральный узел теперь должен пересылать пакеты между двумя соседями.
- В ARP-таблицах появились новые записи о MAC-адресах новых узлов.
- Маршрутизация между РС1 и РС3 требует передачи данных через РС2.

Рис 2.3: eth0 в PC1

Рис 2.4: eth0 в PC2

Рис 2.5: eth1 в PC2

Рис 2.6: eth0 в PC3

Рис 2.7: ARP-таблица PC1

Рис 2.8: ARP-таблица PC2

Рис 2.9: ARP-таблица PC3

Рис 2.10: Свойства РС2

Г	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	216.23.21.0	255.255.255.0	216.23.21.14	216.23.21.14	0	Подключена
2	216.23.22.0	255.255.255.0	216.23.21.15	216.23.21.14	0	Статическая

Рис 2.11: Таблица маршрутизации РС1

	Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
1	216.23.21.0	255.255.255.0	216.23.21.15	216.23.21.15	0	Подключена
2	216.23.22.0	255.255.255.0	216.23.22.15	216.23.22.15	0	Подключена

Рис 2.12: Таблица маршрутизации РС2

		Адрес назначения	Маска	Шлюз	Интерфейс	Метрика	Источник
ı	1	216.23.21.0	255.255.255.0	216.23.22.15	216.23.22.16	0	Статическая
	2	216.23.22.0	255.255.255.0	216.23.22.16	216.23.22.16	0	Подключена

Рис 2.13: Таблица маршрутизации РС3

Тестирование сети

Был проведён тест отправки UDP-пакетов между разными узлами сети. Пакеты между ПК1 и ПК3 проходили через ПК2.

Ethernet: MAC-адреса получателя и отправителя, IP: IP-адреса получателя и отправителя, UDP: порты получателя и отправителя

Рис 2.14: Передача UDP-пакетов

Выводы

- Центральный узел играет роль маршрутизатора для трафика между удалёнными узлами.
- Таблицы маршрутизации на каждом устройстве адаптируются к новой конфигурации.
- В ARP-таблицах сохраняются записи о MAC-адресах всех узлов.

Этап 3. Полносвязная сеть из трёх компьютеров

Построение сети

На третьем этапе была сформирована полносвязная сеть, в которой каждый узел соединен с каждым другим узлом.

Рис 3.1: Схема полносвязной сети из трех компьютеров

Настройка сети

После назначения IP-адреса начинаем передавать ARP-запросы, чтобы определить соответствия между IP- и MAC-адресами другого компьютера в сети.

Рис 3.2: ARP-запросы в сети

Анализ таблиц маршрутизации и ARP-таблиц

Теперь каждый компьютер имеет несколько возможных маршрутов:

- Маршруты строятся по кратчайшему пути.
- Таблицы маршрутизации содержат альтернативные маршруты.
- Пакеты могут передаваться разными путями в зависимости от доступности узлов.

Тестирование сети

Анализ передачи UDP-пакетов показал, что сеть может автоматически перенаправлять трафик, если один из узлов выходит из строя.

Ethernet: MAC-адреса получателя и отправителя, IP: IP-адреса получателя и отправителя, UDP: порты получателя и отправителя.

Рис 3.3: Передача UDP-пакетов от PC1 к PC3

Рис 3.4: Передача UDP-пакетов от PC1 к PC3 при отсутствии прямого соединения между ними

Выводы

- Полносвязная сеть обеспечивает высокую отказоустойчивость.
- В таблицах маршрутизации появились избыточные маршруты.
- Сеть выбирает наиболее эффективный маршрут для передачи данных.

Вывод

В ходе выполнения данной лабораторной работы я наглядно изучил, как работают локальные сети различных конфигураций. Познакомился с ошибками, которые могут в них возникать, а также с процессом формирования основных таблиц (ARP) для доставки пакетов нужному адресату и оптимизации процесса. Проанализировано влияние топологии сети на маршрутизацию данных. Работа выполнена успешно, все цели достигнуты.