

Introduction to Computer Organization Welcome

Amey Karkare

karkare@cse.iitk.ac.in

Department of CSE, IIT Kanpur

karkare, CSE, IITK CS220, CO 1//

Required Background

- Programming (Native Compilation techniques)
 - ▶ Pick up C/C++ if not known already.
- ▶ Knowledge of digital gates, flip-flops, latches, counters etc.
- ▶ Binary number system and operations
- What will be covered?
 - Programming using Assembly Language
 - Circuit descriptions in Bluespec Verilog (BSV)
 - Computer Organization

- Lectures:
 - Wednesday, Thursday, Friday; 11:00 AM 11:50 AM, L-5
- Labs:
 - Groups of 2 students
 - ▶ New language for design descriptions: BlueSpec Verilog (BSV)
 - HW programming using FPGAs (Optional, if time and resources permit)
 - Assembly language programming

One midsem exam
One endsem exam
Labs
25 %
40 %
25 + 10 %

Tentative. May change as the course progresses.

Course will be heavy

- No text books
- Follow the lecture notes very closely
- Reference Books
 - BlueSpec Verilog:
 - Rishiyur S. Nikhil and Kathy Czeck: BSV by Example [www.bluespec.com/forum/download.php?id=140]
 - Assembly Language: Online notes
 - http://asm.sourceforge.net/
 - http://chortle.ccsu.edu/AssemblyTutorial/index.html
 - Computer Organization:
 - > Patterson, Hannessy: Computer Organization and Design
 - Hamacher et.al.: Computer Organization
 - > Tanenbaum: Structured Computer Organization
 - Parhami: Computer Architecture
 - > Stallings: Computer Organization and Architecture

- ·
 - I will form the groups of 2 students for assignments, and inform the class
 - Give feed back through out the semester
 - Feel free to discuss anything with the instructor
 - including criticism of instructor, TAs
 - Participate in the discussion
 - No question is silly enough
 - Only Stupid Question = NO Question

- ▶ Keep checking the course web page for announcements.
- Do not be late for the class
- Keep your cell phones switched off
- I travel extensively. Be ready for substitute classes on the week-ends/holidays and/or in the evenings.
 - Extra class on Saturday, January 4th, 11 AM.

I follow zero tolerance policy.

- Straight F for copying in assignment
 - I do not distinguish between the *source* and the *destination* nodes of the *copy* edge.
- Names are also reported to authorities to be put in personal files.

karkare, CSE, IITK CS220, CO 8/1

Any Questions/Comments/Suggestions?

karkare, CSE, IITK CS220, CO 9/1

Review of Digital Circuits

- Basic Gates
 - AND, OR, NAND, NOR, XOR, XNOR, NOT, BUF
- Memory Elements
 - Latch, Flip Flops
 - Registers
 - Level Sensitive, Edge Triggered
 - Input output behaviour (Parallel or Serial): SISO (Delay Line), SIPO, PISO, PIPO
 - Basic Circuits
 - Multiplexers, Counters, ALU, Adders, Multipliers

always
$$@(a \text{ or } b)$$

y = a & b;

OR

assign
$$y = a \& b;$$

Latches

```
always @(LE \text{ or } D)
if (LE == 1) Q = D;
```

▶ Flip Flops

```
always ( posedge CLK )
O = D;
```

Latches are level sensitive while flip flops are edge triggered.

- ▶ Computer is a "machine"
- As long as power is supplied, processor keeps executing instructions
 - Stored program model
 - Sequential order of execution
- Memory: Program and data storage
- Disk: File storage (passive data storage)

The machine is electronic

- Processor reads an instruction from memory
- Instruction:
 - A sequence of bits, understood and operated upon by processor
- Processor interprets these bits and operates on data
 - > Stored in internal registers or in memory
- Result of the execution is stored in memory/registers.
- Processor continues fetching the next instruction.
- Program:
 - Collection of instructions that are fetched and executed one after another

- Processor takes program only as a sequence of bits
 - Machine Language
- We understand programs in various forms
 - Assembly language: One to one correspondence with the machine language
 - High level languages:
 - Translators are needed to convert to machine language (compilers)
 - Programs for Virtual machine:
 - Languages such as Java, compile code to a virtual machine which is then interpreted by a tool.