Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №1.1.4

по курсу общей физики на тему:

«Измерение интенсивности радиационного фона»

Работу выполнил: Никифоров Дмитрий (группа Б02-205)

Долгопрудный 9 сентября 2022 г.

• Цель работы: применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интесивности радиационного фона

В работе исппользуется: счетчик Гейгера-Мюллера(СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

• Теоретические сведения:

Значительную часть радиационного фона составляет поток космических частиц, изменяющийся со временем случайным образом. Космические лучи разделяют на первичные - поток стабилных частиц, имеющих большую кинетическую энергию $(10^9-10^{21}~{\rm pB})$ и вторичные, которые возникают при вза-имодействии первичных с атмосферой Земли и составляют основную часть космичексих лучей, доходящих до поверхности Земли. Установлено, что в космическом пространстве поток частиц изотропен.

• Устройство счетчика Гейгера-Мюллера.

Счетчик, используемый в данной работе (СТС-6), представляет собой наполненный газом сосуд с двумя электродами: катодом (тонкостенным металлическим цилиндром) и анодом (тонкой нитью, натянутой вдоль оси циллиндра). На электроды подается напряжение 400 В. Частицы космических лучей ионизируют газ, находящийся в счетчике, а также выбивают электроны из его стенок; таким образом появляются свободные электроны. Под действием электрического поля между электродами электрон разгоняется и врезается в другие атомы, вибивая из них новые электроны. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд, видимый (если баллон прозрачный) даже простым глазом.

• Основные расчётные формулы:

Ошибка единичного измерения $\sigma = \sqrt{n}$. (В данном эксперименте n - это число импульсов)

В полосе $n \pm \sqrt{n}$ лежит 68% точек.

Ошибка среднего $\overline{\sigma} = \sqrt{\overline{n}}$.

Стандартное отклонение $\sigma = \frac{\overline{\sigma}}{\sqrt{N}},$ где N - это количество измерений.

• Графики:

По этому графику через равные промежутки времени измеряем полосу, в которую попадают все точки, и укорачиваем ее в $\frac{2}{3}$ раза, а потом делим пополам. Это и будет наша ошибка. Также по графику можем оценить среднее значение и сравнить его с реальным с помощью графика ниже.

Рис. 1: Основной эксперимент

Опираясь на предыдущие данные, которые мы уже получили(ошибку среднего), вычисляем стандартное отклонение по формуле $\sigma=\frac{\overline{\sigma}}{\sqrt{N}}$ и сравниваем с реальным по графику.

По гистограмме видим на какое число импульсов приходится максимум и убеждаемся в нормальности распределения нашей случайной величины, так как кривая красиво ложится на гауссиану.

Рис. 3: Гистограмма

Сравнив результаты основного и демонстрационного опыта, можно заметить, что данные получились довольно похожими, даже несмотря на меньшее количество измерений во втором опыте. Из этого можно сделать вывод, что распределение нормальное, а ошибка случайная.

• Результаты измерений и обработка данных:

Количество измерений	80	160	240	320	400
Оценка ошибки по полосе	2.5	2.5	2.0	3.0	3.2
Оценка среднего	13	13	13	13	13
Реальное среднее	13.1	13.4	13.6	13.5	13.5
Оценка ошибки среднего	3.5	3.5	3.5	3.5	3.5
Оценка стандартного отклонения	0.28	0.2	0.13	0.17	0.16
Реальное стандартное отклонение	0.45	0.32	0.28	0.22	0.19

• Заключение:

Нам удалось измерить интенсивность радиационного фона. Мы применили статистические методы для анализа данных и пришли к выводу, что радиационный фон стабилен. Также нам удалось довольно хорошо оценить погрешности, среднее значение и стандартное отклонение.