

DCS Lab 5 Finite State Machine

葉曜銘

Purpose

Learn how to design a finite state machine (FSM) using Verilog.

Lab05

- Run the command below to get files for this lab.
 - tar -xvf ~dcsTA01/Lab05.tar

Branch

- Some common branch instruction in RISC-V ISA:
- 1. BEQ (Branch if Equal)
- 2. BNE (Branch if Not Equal)
- 3. BLT (Branch if Less Than)
- 4. BGE (Branch if Greater or Equal)

Instruction	Branch taken	Branch not taken
BEQ A, B, dest	A == B	A != B
BNE A, B, dest	A != B	A == B
BLT A, B, dest	A < B	A >= B
BGE A, B, dest	A >= B	A < B

Problem for This Lab: 2-bit Branch Predictor

- Predicting a branch is taken or not can speed up the execution.
- 2-bit branch predictor change its prediction if two misses occur.

2-bit Branch Predictor as a FSM

State, output, condition (generated from inputs and current state)

FSM.sv

Input Signal	Bit Width	Definition	
clk	1	Clock.	
rst_n	1	Asynchronous active-low reset.	
in_valid	1	High when input is valid.	
ор	2	Type of branch instruction. (BEQ=00, BNE=01, BLT=10, BGE=11)	
Α	4	The first variable for branch instruction.	
В	4	The second variable for branch instruction.	

Output Signal	Bit Width	Definition	
pred_taken	1	High when the prediction is taken. Should be reset when rst_n is low.	
state	2	Current state of your 2-bit predictor. Should be reset when rst_n is low.	

FSM.sv

Instruction	Branch taken	Branch not taken
BEQ A, B, dest	A == B	A != B
BNE A, B, dest	A != B	A == B
BLT A, B, dest	A < B	A >= B
BGE A. B. dest	A >= B	A < B

Reminder

- 1. You must follow the state diagram in p.5.
- 2. State should be reset to 2'b00 when rst_n is low. (And pred_taken should be low at the same time.)
- 3. Outputs should change at posedge of clk if in_valid is high. (unless the inputs don't change the state.)
- 4. Both pred_taken and state should not change when in_valid is low.

Grading Policy

- Pass the RTL & Synthesis & Gate-level simulation: 100%
 - 合成結果: (不能有Error、Timing report slack met、不能有Latch)
 - Gate-level simulation不可以發生timing violation
- Demo 2 打7折

Upload

- 請將Lab05/01_RTL裡的FSM.sv依以下命名規則重新命名後上傳至 E3
- 命名規則:FSM_dcsxxx.sv,xxx為工作站帳號號碼
- 命名錯誤扣5分!!!
- Deadline:
 - Demo 1: 3/27 17:25
 - Demo 2: 3/27 23:59