

Switching, Delays and Performance

Andy Carpenter (Andy.Carpenter@manchester.ac.uk)

Elements these slides come from Kurose and Ross, authors of "Computer Networking: A Top-down Approach", and are copyright Kurose and Ross

Switching in the Network Core

- Mesh of interconnected routers
- *The* fundamental question:
 - how is data transferred through net?
- Either:
 - circuit switching:
 - fixed path (channel)
 - dedicated resources
 - packet-switching, data sent:
 - in discrete "chunks"
 - when resource available

Switching: Traditional Circuit Switching

- End-end resources reserved for transfer
- Resources are dedicated:
 - no sharing
 - all link bandwidth
 - all switch capacity
- Acts as a circuit; e.g.
 - continuous piece of copper wire
- Get guaranteed performance
- Setup required to configure and establish path

Sensible approach?

Switching: Networking Circuit Switching

- Network resources shared by dividing into pieces
 - normally pieces are of a fixed size
 - number of pieces fixed when create network
- Bits reserved for (allocated to) end-to-end transfers
- Resource piece is idle if not used by owning transfer
- For a link, divide link bandwidth into pieces using:
 - frequency division multiplexing (FDM)
 - time division multiplexing (TDM)

Switching: FDM and TDM

Switching: Packet Switching

- Each end-to-end data stream divided into packets
- Packets share network resources, use as needed
 - each packet uses full link bandwidth
- Store-and-forward:

Switching: Statistical Multiplexing

- Packets can arrive faster than can send out (buffer)
- Overload normally transitory, will later clear buffer
- If buffer becomes full, **drop** (lose) packets
- Aim for low probability of packet dropping

Switching: Packet versus Circuit

Each user:

100 Kbps when "active" active 10% of time

1 Mbps link

Figures are based on assumptions

- Circuit-switching: 1M/100K = 10 users
- Packet switching: 35 users
 - need statistics theory (why statistical multiplexing)
 - probability > 10 users active at same time < .0004
- Packet switching allows more users to use network

Delay, Loss and Throughput

- Data does not arrive instantaneously at destination
- Not all data sent arrives!
- Limit to amount of data can send per second

Delays: Transmission and Propagation

- Link has transmission rate: R (in bits per sec, bps)
 - depends on physical medium
 - often referred to as bandwidth of link
- For packet of L bits:
 - transmission delay $(d_{trans}) = L/R$
- Packets travel (propagate) with speed s (in m/s)
 - depends on physical medium
 - X * c (c = speed of light, ≈ $3x10^8$ m/s), X < 1
- For distance d (in meters):
 - propagation delay $(d_{prop}) = d/s$

Delays: Transmission vs. Propagation

≈ packet

- Cars "propagate" at 100 km/hr
- Booth takes 12 sec to service car (transmission time)
- Q: How long for convoy to get to 2nd booth?
- "push" all cars through booth = 12*10 = 120 sec
- For last car to propagate from 1st to 2nd both:
 - -100 km/(100 km/hr) = 1 hr
- A: 120 sec + 1hr = 62 minutes

Delays: End-to-End Delay

- Delay between parts of application comes from:
 - individual node delays
 - processing delays in applications
 - waiting for access to shared medium
- Also use round-trip-time (RTT)
 - time source to destination and back
- If no queuing delays, dominant delay predictable
 - sending 1 byte on any link: propagation delay
 - sending 25Mb on 10Mbps link: transfer rate

Throughput in Computer Networks

- Rate at which data is transferred, GUI may report
- Measuring useful (application data) throughput
- For large transfers, determined by three parameters:
 - remote computer (link), network and local link

Units (Background)

Link rates in bits per second (bps), with multipliers:

Times often small quantities, with multipliers:

milli m 10^{-3} micro μ 10^{-6} nano n 10^{-9} pico p 10^{-12}

Summary

- Aim is cost effective connectivity for set of computers
 Real esult is a packet switched network
 aim? se shared links and statistical multiplexing
 - Communication services seen as process-to-process
 - Delays and throughput define network performance

Course Structure

- Lectures: 3 per fortnight
 - Tuesdays week A, 9:00-10:00am
 - Thursdays, 3:00-4:00pm
- Laboratories: 1 per fortnight, needs preparation
 - week Bs
 - Moodle quiz, experiments in networking
- Workshops: 1 per fortnight, no preparation
 - Mondays (1.00pm) or Tuesdays (9.00am) week B
 - Moodle quiz, new material, examinable
- Self assessment tests: in your own time
 - Moodle quiz, recap lecture material

The University of Manchester Laboratory: Overview

- Learn how to configure and use real networks
- Have complete control over network that configure
- But, cannot let you loose on the Internet!
 - physical private <u>unconnected</u> networks needs
 - 3+ machines per student
 - use virtual network of virtual machines:

whole virtual network runs on your lab machine

no link to the outside world

Laboratory: Core Tool (VNUML)

- Use virtual operating system to emulate machines
- Several virtual machines, so needs to be light weight
 - not VMware, Virtual Box, etc.
- Virtual Networking User Mode Linux (VNUML)
 - each VM runs as a user process
 - each VM has to boot: quite slow
 - you get a partially disabled console
 - username root, password xxxx
 - entirely command line driven
 - installed on School's Linux machines
 - not easy to install elsewhere

Based on User Mode Linux (UML)

Laboratory: Example 50

Normal desktop

Laboratory: Deliverables

- Deadline end of your laboratory session
 - extended deadline 11pm on day of laboratory
- Unlike programming laboratories:
 - there is no program to submit and demo
- Instead:
 - configuration files, commands used
 - output from commands, your analysis
- We'll supply a Moodle quiz:
 - fill in the results as you go along
 - submit at end of laboratory session
 - record time when submit performed

Laboratory: Testing To See If It Works

- Virtual machines minimumally configured, available:
 - ifconfig shows configuration of network devices
 - ping sends "Are you there?" message, response:
 - Unknown Host no address for given name
 - Network Unreachable no path to machine
 - statistics working
 - no output not working
 - arp will show name/address of local machines
 - netstat shows statistics about the network
 - traceroute path through network (exercise 3...)
 - dig for information about names (exercise 4)

Reading

- . Kurose & K. Ross, Computer Networking: A Top-Down Approach, 6th Ed, Pearson, ISBN: 0-273-76896-4
- L. Peterson & B. S. Davie, Computer Networks, 5th Ed, Morgan Kaufmann, ISBN:0123850592.
- There are many good books on networking, if you do not like our selection then pick your own.