Lineare Algebra und Geometrie 1 WS 12-13

Dozent: Dr. Cynthia Hog-Angeloni

Mitschrift von: Sven Bamberger, Bernadette Mohr, Sahra Schreyer

> LATEXarbeit von: Sven Bamberger, Bernadette Mohr

> > Zuletzt Aktualisiert: 15. Januar 2013

Zusammenfassung:

Bei der Lineare Algebra und Geometrie

http://www.mathematik.uni-mainz.de/Members/dhanke/linearealgebrai 2012/linearealgebrai 2012

algebra-und-geometrie-i-im-ws-2012-13

Raum: Mo S1 & Fr S1

Uhrzeit: 08:00-10:00 & 12:00-14:00

Abgabe: Freitag 12:00

Dieses Skript wurde erstellt, um sich besser auf die Klausur vorzubereiten und eine ordentliche und für alle Personen lesbare Mitschrift zu haben.

Dieses Dokument garantiert weder Richtigkeit noch Vollständigkeit, da es aus Mitschriften gefertigt wurde und dabei immer Fehler entstehen können. Falls ein Fehler enthalten ist, bitte melden oder selbst korrigieren und neu hochladen.

Hier kleine Notizen zu einzelne Besonderheiten dieses Dokumentes.

1. /* */ alles zwischen diesen Zeichen sind Kommentare und sollen zum tiferen Verständnis oder Besondere Fragestellungen darstellen. Dabei ist zu beachten, das die Notation neiht immer komplett korrekt ist. Es können also kleinere mathematische Fehler auftauchen, welche aber für das Verständnis relevant sind.

Inhaltsverzeichnis

0	Grui	ndbegriffe
	0.1	Aussagen
	0.2	Mengen
1	Der	Raum \mathbb{R}^2
	1.1	Cramersche Regel
	1.2	Geraden
	1.3	Lineare Abbildungen
	1.4	Inverse Matrix, Basiswechsel

0 Grundbegriffe

0.1 Aussagen

Aussage	W	f
Wasser ist nass	X	
A. Merkel ist Bundeskanzlerin	x	
Rößler wäre gern Bundeskanzler	?	?
Ein Kaninchen ist eine Pflanze		x
Ein Dreieck hat vier Ecken		x
Jede gerade Zahl größer 2 ist Summer zweier Primzahlen - Goldbach Vermutung	?	?
Wenn 2012 Frauenüberschuss bei Matheprofessorinnen herrscht, dann ist die Erde eine Scheibe	x	

 $A \Rightarrow B$ ist wahr. A ist hinreichend für B. B ist notwendig für A.

$$\neg A = \text{nicht } A$$
 $A \lor B = A \text{ oder } B$
 $A \land B = A \text{ und } B$ $A \Leftrightarrow B = A \text{ ist "aquivalent zu } B$

					$A \Rightarrow B$	$A \Leftrightarrow B$
W	w	f	W	W	W	W
w	f	f	f	W	f	f
f	w	w	w f f f	W	W	f
f	f	w	\mathbf{f}	f	W	W

0.1.1 Satz:

A,B,CFolgende Aussagen sind wahr \Rightarrow "Tautologie"

- 1. $A \lor (\neg A)$
- 2. $\neg (A \land \neg A)$
- 3. $\neg(\neg A)$
- 4. $\neg (A \land B) \Leftrightarrow \neg A \neg B$ z.B. A = Die Sonne scheint B = Es ist bewölkt
- 5. $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$ z.B. A = Wasser ist trocken B = Es ist Sommer
- 6. $(A \Rightarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$ A = Es blitzt B = es donnert

0 Grundbegriffe

7.
$$A \land (A \Rightarrow B) \Rightarrow B$$

8.
$$A \Rightarrow B \land \neg B \Rightarrow \neg A$$

9.
$$[(A \Rightarrow B) \land (B \Rightarrow C)] \Rightarrow (A \Rightarrow C)$$

10.
$$A \land (B \lor C) \Rightarrow (A \land B) \lor (A \land C)$$

11.
$$A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C)$$

4 und 5 sind die De Morgan'sche Gesetze. 7 Ist der Modus ponens, 8 Modus tollens und die 9 Modus barbara (=Transitivität)

0.2 Mengen

0.2.1 Definition: (Cantor)

Unter einer Menge verstehen wir jede Zusammenfassung von stemmten auch wohl unterschiedenen Objekten unserer Anschauungen oder unseren Denkens zu einem Ganzen

Abbildung 0.1: Eine einfache Menge

$$a \in A$$
 $a \notin A \Leftrightarrow \neg(a \in A)$

0.2.2 Definition:

A, B Mengen

1.
$$A \subset B \quad \forall x \in A \Rightarrow x \in B$$

2.
$$A \subseteq B$$
 $(A \subset B) \land (A \neq B)$

3.
$$A = B$$
 $A \subset B$, $B \subset A$

4.
$$\emptyset$$
 $\emptyset \subset A \ \forall \text{ Mengen } A$

5.
$$|A| = \#A$$
 Anzahl der Elemente $|A| < \infty$ $A = \{a_1, a_2, \dots, a_n\}$

```
Bemerkung: \{1,2,1\} = \{1,2\}

Beispiel: \{1,2,\{1,2\},\{1,2\{1,3\}\}\}

gegeben Menge M, A = \{x \in M | x \text{ spricht italienisch}\} = \{x | (x \in M) \land x \text{ spricht italienisch}\}

\mathbb{N} = \{1,2,3,\ldots\}

\mathbb{Z} = \{\ldots,-1,0,1,2,\ldots\} \mathbb{Z}_{\geq 0} = \mathbb{N}_0 = \{01,2,3\cdots\}
```

 $\mathbb R$ hat die Ordnung a>bwen
narechts von bauf dem Zahlenstrahl liegt.
 $a\geq b:a>b\vee a=b$

0.2.3 Definition: (von weiteren Operationen auf Mengen)

A, B seien Mengen

Durchschnitt: $A \cap B = \{x | x \in A \land x \in B\}$ wenn $A \cap B = \emptyset$, disjunkt " $\bigcap_{i \in I} A_i = \{x | x \in A \text{ für alle } i\}$

Vereinigung: $A \cup B = \{x | x \in A \lor x \in B\} \bigcup_{i \in I} A_i = \{x | x \in A \text{ für mindestens ein } i\}$

Komplement von B **in** A: $A \setminus B = \{x | x \in A \land x \notin B\}$

symmetrische Differenz: $A \triangle B = \{A \setminus B \cup B \setminus A\} = \{x | x \in A \cup B \land x \notin A \cap B\}$

$$p(A) = \{B | B \subset A\}: A = \{1, 2, 3\} \quad p(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$$

kartesisches Produkt: $A \times B = \{(a,b) | a \in A, b \in B\}$

Beispiel: $A = \{a_1, a_2\}, B = \{b_1, b_2\}$ $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2)\}$

Abbildung 0.2: Darstellung von Operationen auf Mengen

0.2.4 Definition: (Relation)

Eine Relation zwischen zwei Mengen A und B ist eine Teilmenge $R \subset A \times B$. Wenn A = B "Relation auf Menge A" Beispiel:

- a) (Martin, London), (Susi, Madrid) $\in A \times B$
- b) $A = \{1, 2, 3, 4\}$
- 1. $R \subset A \times A$ $R = \{(1,3), (2,1)\}$

0 Grundbegriffe

- 2. $S \subset A \times A$ $S = \{(1,1), (2,2), (3,3), (4,4)\}$ (Gleichheitsrelation)
- 3. $R \subset \mathbb{R} \times \mathbb{R}$ $R = \{(a,b)|a < b\}$ (Ordnungsrelation)
- 4. $B = \{3, 4, 5, 6\}$ $R = \{(3, 3), (4, 4)\} \subseteq A \times B$
- 5. Relation auf \mathbb{N} $R = \{(a,b)|a,b \in \mathbb{N} \text{ und } a|b\} (a|b \Leftrightarrow b = n \cdot a, n \in \mathbb{N})$

0.2.5 Definition: (Funktion, ~Abbildung)

 $f:A\to B$ heißt Funktion, wenn $R\subset A\times B$ Relation, bei der jedes Element aus A genau einem Element aus B entspricht, sodass $(a,b)\in R$. Schreibweise f(a)=b $f:a\mapsto b$

Abbildung 0.3: Graphenkreis

Jeder Graph ist eine Relation, aber nicht unbedingt eine Funktion.

$f: A \to B$ Funktion:

A heißt Definitionsbereich von f

B heißt Wertebereich von f

 $a \in A$ heißt Argument von f

 $X \subset A$ $f(X) = \{b \in B | \exists a \in Xmitf(a) = b\}$ heißt Bildmenge von X unter f

 $Y \subset B$ $f^{-1}(y) = \{a \in A | f(a) \in Y\}$ heißt Urbild von Y

Beispiel:

$$\overline{f:A \to A}, f(a) = a$$
 indentische Abbildung $f:\mathbb{R} \to \mathbb{R}$

0.2.6 Definition: (injektiv, surjektiv, bijektiv)

- injektiv $\forall x \neq y \in A$ gilt $f(x) \neq f(y)$
- surjektiv $\forall b \in B \ \exists a \in A \ f(a) = b$

• bijektiv: injektiv und surjektiv injektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| \leq 1$ (Jedes b hat höchstens ein Urbild) surjektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| \geq 1$ (Jedes b hat mindestens ein Urbild) bijektiv $\Leftrightarrow \forall b \in B$ gilt $|f^{-1}(b)| = 1$ (Jedes b hat genau ein Urbild)

Abbildung 0.4: Mögliche Abbildungen auf einen Blick

1 Der Raum \mathbb{R}^2

1.0.7 Definition:

Ein Vektor $a = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$ ist ein Element von \mathbb{R}^2 .

Entspringt der Vektor in $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ = "Ortsvektor ".

Addition:
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

Multiplikation mit Skalar: $\lambda \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix}$

Eigenschaften: a, b, c Vektoren λ, μ reele Zahlen

1.
$$\lambda \cdot (a+b) = \lambda a + \lambda b$$

2.
$$(\lambda + \mu)a = \lambda a + \mu a$$

3.
$$(a+b)+c=a+(b+c)$$

4.
$$a + b = b + a$$

exemplarischer Beweis:

$$(\lambda + \mu)a = (\lambda + \mu) \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} (\lambda + \mu)a_1 \\ (\lambda + \mu)a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 + \mu a_1 \\ \lambda a_2 + \mu a_2 \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_2 \end{pmatrix} + \begin{pmatrix} \mu a_1 \\ \mu a_2 \end{pmatrix} = \lambda \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \mu \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \lambda a + \mu a$$

1.0.8 Definition: (Basis)

ein Paar von Vektoren B=(a,b) heißt Basis von \mathbb{R}^2 , wenn es für jeden Vektor c in \mathbb{R}^2 genau ein Paar (x,y) von Zahlen gibt, sodass $c=x\cdot a+y\cdot b$. x und y heißen Koordinaten von c bzgl. b.

Die Basis
$$\mathcal{E} = (e_1, e_2)$$
 $e_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, e_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Beispiel:

$$a = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$
 $b = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ $c = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 \\ -1 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \checkmark^{\text{kanonische Basis}}$$

1.0.9 Definition: (Determinante)

$$det(a,b) = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

1.1 Cramersche Regel

Das Gleichungssystem xa + yb = c hat die eindeutige Lösung $x = \frac{det(c,b)}{det(a,b)} \Leftrightarrow det(a,b) \neq 0$.

Beweis:

Kollar:

$$B = (a, b)$$
 ist Basis genau dann, wenn $det(a, b) \neq 0$ ist $det(a, b) = 0$ und (x, y) Lösung, so auch $(x + \lambda b_2, y - \lambda a_2)$ denn $a_1(x + \lambda b_2) + b_1(y - \lambda a_2) = \underbrace{a_1x + b_1y}_{c} + \lambda \underbrace{(a_1b_2 - b_1a_2)}_{0}$

Kollar:

 $det(a,b) = 0 \Rightarrow$ Es gibt entweder keine oder unendliche viele Lösungen.

1.2 Geraden

1.2.1 Definition: (Gerade)

Eine Gerade l in \mathbb{R}^2 ist eine Menge der Form $l = a + \mathbb{R}b = \{a + \lambda b | \lambda \in \mathbb{R}\}$ für $b \neq (8)$ a: "Stützvektor" b: "Richtungsvektor", $b^{\perp} = \begin{pmatrix} -b_2 \\ b_1 \end{pmatrix}:$ "Normalenvektor"

Beispiel:

$$a = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, b = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

1.2.2 Satz 1.2

Eine Teilmenge von \mathbb{R}^2 ist eine Gerade genau dann, wenn sie Lösungsmenge einer Gleichung $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \alpha x + \beta y = \gamma \right\}$ ist. α und β nicht beide Null.

Beweis:

 $l = a + \mathbb{R}b$

Dann erfüllt jeder Punkt $(a_1 + tb_1, a_2 + tb_2)$ die Gleichung $b_2a_1 - b_1a_2$.

DENN: $b_2(a_1 + tb_1) - b_1(a_s + tb_2) = b_2a_1 - b_1a_2 = det(a, b)$ Erfüllt umgekeht $\binom{x}{y}$ die Gleichung $\alpha x + \beta y = \gamma$ und ist $\alpha \neq 0$, dann folgt $x = \frac{-\beta}{\alpha}y + \frac{\gamma}{\alpha}$.

und ist $\alpha \neq 0$, dann folgt $x = \frac{-\beta}{\alpha}y + \frac{\gamma}{\alpha}$. Also ist $\begin{pmatrix} x \\ y \end{pmatrix}$ ein Punkt der Geraden $a \pm \mathbb{R}b$ mit $a = \begin{pmatrix} \frac{\gamma}{\alpha} \\ 0 \end{pmatrix}, b = \begin{pmatrix} -\beta \\ 0 \end{pmatrix}$

Beispiel:

$$x - y = 1$$
 $a = \begin{pmatrix} 1 \\ 0 \end{pmatrix} b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

1.3 Lineare Abbildungen

 $A: \mathbb{R}^2 \to \mathbb{R}^2$ heißt linear, wenn für jedes $a, b \in \mathbb{R}^2$ gilt: $A(x\vec{a} + y\vec{b}) = xA(\vec{a}) + yA(\vec{b})$

$$A \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 und $A \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ können beliebig vorgegeben werden. Anderseits ist A durch diese bestimmt.

$$A \begin{pmatrix} x \\ y \end{pmatrix} = x \cdot A \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot A \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$A\begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} a_1\\a_2 \end{pmatrix} \qquad A\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} b_1\\b_2 \end{pmatrix}$$

$$A\begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}}_{(2\times 2)-\text{Matrix}} \cdot \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} a_1 x & b_1 y \\ a_2 x & b_2 y \end{pmatrix} = xa + by$$

Eigenschaft: Die erste Spalte von A ist $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Beispiel:

 $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ repräsentiert die identische Abbildung.

Satz:

sind $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ linear, so auch die Verknüpfung $A \circ B$.

Beweis:

A(B(xa+yb)) = A(xB(a)+yB(b)) = xAB(a)+yAB(b)

Komposition linearer Abbildungen:

$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}; B = \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix}$$

$$A \circ B \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \begin{pmatrix} c_1 x_1 + d_1 x_2 \\ c_2 x_1 + d_2 x_2 \end{pmatrix} = \begin{pmatrix} a_1 c_1 x_1 + a_1 d_1 x_2 & b_1 c_1 x_1 + b_1 d_1 x_2 \\ a_2 c_1 x_1 + a_2 d_1 x_2 & b_2 c_2 x_1 + b_2 d_2 x_2 \end{pmatrix} = \begin{pmatrix} a_1 c_1 + c_2 b_1 & a_1 d_1 + b_1 d_2 \\ a_2 c_1 + b_2 c_2 & a_2 d_1 + b_2 d_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

1 Der Raum \mathbb{R}^2

$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} \cdot \begin{pmatrix} c_1 & d_1 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1c_1 + b_1c_2 & a_1d_1 + b_1d_2 \\ a_2c_1 + b_2c_2 & a_2d_1 + b_2d_2 \end{pmatrix}$$

Matrixmultiplikation entspricht Komposition von Abbildungen

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{pmatrix} = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \cdot 1 + 6 \cdot 3 & 5 \cdot 2 + 6 \cdot 4 \\ 7 \cdot 1 + 8 \cdot 2 & 7 \cdot 2 + 8 \cdot 4 \end{pmatrix} = \begin{pmatrix} 23 & 34 \\ 23 & 46 \end{pmatrix}$$

Satz:

Matrixmultiplikation ist assoziativ.

Beweis:

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Interpretiere A, B, C als Abbildungen
 $A \circ (B \circ C)(a) = A \circ B(C(a)) = A(B(C(a)))$
 $(A \circ B) \circ C(a) = (A \circ B)C(a) = A(B(C(a)))$

Satz:

 $A: \mathbb{R}^2 \to \mathbb{R}$ lineare Abbildungen A ist injektiv $\Leftrightarrow A$ ist surjektiv

Beweis:

Ax = bExistenz von $x \Leftrightarrow$ Surjektivität Eindeutigkeit von $x \Leftrightarrow$ Injektivität $det A \neq 0 \Leftrightarrow A$ injektiv $\Leftrightarrow A$ surjektiv. /* Durch Benutzung der Cramerschen Regel */

1.4 Inverse Matrix, Basiswechsel

Ist
$$A = \begin{pmatrix} a_1 & b_1 \\ a_2 b_2 \end{pmatrix}$$
 und $\lambda \in \mathbb{R} : \lambda \cdot A = \begin{pmatrix} \lambda a_1 & \lambda b_1 \\ \lambda a_2 & \lambda b_2 \end{pmatrix}$

Satz:

Für
$$A = \begin{pmatrix} a_1 & b_1 \\ a_2b_2 \end{pmatrix}$$
 mit $det(A) \neq 0$ gilt:
$$A^{-1} = \frac{1}{det(a)} \cdot \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix}$$

Beweis:

$$\begin{split} A \cdot A^{-1} &= \begin{pmatrix} a_1 & b_1 \\ a_2b_2 \end{pmatrix} \cdot \frac{1}{\det(a)} \cdot \begin{pmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{pmatrix} \\ &= \frac{1}{\det(a)} \cdot \begin{pmatrix} \det(A) & 0 \\ 0 & \det(A) \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ A^{-1} \cdot A \text{ analog } \Rightarrow A^{-1} \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ \mathcal{B} &= (\vec{b_1}, \vec{b_2}) \text{ Basis } \rightsquigarrow \begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix} = B \\ \vec{a} &= x_1 \vec{b_1} = B\vec{x} : \vec{x} = B^{-1} \vec{a} \\ \text{Die Koordinaten von } a \text{ bzgl. } B \text{ sind durch } B^{-1}(\vec{a}) \text{ gegeben.} \end{split}$$

Abbildungsverzeichnis

0.1	Eine einfache Menge	2
	Darstellung von Operationen auf Mengen	
0.3	Graphenkreis	4
0.4	Mögliche Abbildungen auf einen Blick	5