Contents

Preface		page VII
1	Solution of equations by iteration	1
1.1	Introduction	1
1.2	Simple iteration	2
1.3	Iterative solution of equations	17
1.4	Relaxation and Newton's method	19
1.5	The secant method	25
1.6	The bisection method	28
1.7	Global behaviour	29
1.8	Notes	32
	Exercises	35
2	Solution of systems of linear equations	39
2.1	Introduction	39
2.2	Gaussian elimination	44
2.3	LU factorisation	48
2.4	Pivoting	52
2.5	Solution of systems of equations	55
2.6	Computational work	56
2.7	Norms and condition numbers	58
2.8	Hilbert matrix	72
2.9	Least squares method	74
2.10	Notes	79
	Exercises	82
3	Special matrices	87
3.1	Introduction	87
3.2	Symmetric positive definite matrices	87
3.3	Tridiagonal and band matrices	93

iv Contents

3.4	Monotone matrices	98
3.5	Notes	101
	Exercises	102
4	Simultaneous nonlinear equations	104
4.1	Introduction	104
4.2	Simultaneous iteration	106
4.3	Relaxation and Newton's method	116
4.4	Global convergence	123
4.5	Notes	124
	Exercises	126
5	Eigenvalues and eigenvectors of a symmetric matrix	133
5.1	Introduction	133
5.2	The characteristic polynomial	137
5.3	Jacobi's method	137
5.4	The Gerschgorin theorems	145
5.5	Householder's method	150
5.6	Eigenvalues of a tridiagonal matrix	156
5.7	The QR algorithm	162
5.7.1	The QR factorisation revisited	162
5.7.2	The definition of the QR algorithm	164
5.8	Inverse iteration for the eigenvectors	166
5.9	The Rayleigh quotient	170
5.10	Perturbation analysis	172
5.11	Notes	174
	Exercises	175
6	Polynomial interpolation	179
6.1	Introduction	179
6.2	Lagrange interpolation	180
6.3	Convergence	185
6.4	Hermite interpolation	187
6.5	Differentiation	191
6.6	Notes	194
	Exercises	195
7	Numerical integration – I	200
7.1	Introduction	200
7.2	Newton–Cotes formulae	201
7.3	Error estimates	204
7.4	The Runge phenomenon revisited	208
7.5	Composite formulae	209

Contents	V	7

7.6	The Euler–Maclaurin expansion	211
7.7	Extrapolation methods	215
7.8	Notes	219
	Exercises	220
8	Polynomial approximation in the ∞ -norm	224
8.1	Introduction	224
8.2	Normed linear spaces	224
8.3	Best approximation in the ∞ -norm	228
8.4	Chebyshev polynomials	241
8.5	Interpolation	244
8.6	Notes	247
	Exercises	248
9	Approximation in the 2-norm	252
9.1	Introduction	252
9.2	Inner product spaces	253
9.3	Best approximation in the 2-norm	256
9.4	Orthogonal polynomials	259
9.5	Comparisons	270
9.6	Notes	272
	Exercises	273
10	Numerical integration – II	277
10.1	Introduction	277
10.2	Construction of Gauss quadrature rules	277
10.3	Direct construction	280
10.4	Error estimation for Gauss quadrature	282
10.5	Composite Gauss formulae	285
10.6	Radau and Lobatto quadrature	287
10.7	Note	288
	Exercises	288
11	Piecewise polynomial approximation	292
11.1	Introduction	292
11.2	Linear interpolating splines	293
11.3	Basis functions for the linear spline	297
11.4	Cubic splines	298
11.5	Hermite cubic splines	300
11.6	Basis functions for cubic splines	302
11.7	Notes	306
	Exercises	307

vi *Contents*

12	Initial value problems for ODEs	310
12.1	Introduction	310
12.2	One-step methods	317
12.3	Consistency and convergence	321
12.4	An implicit one-step method	324
12.5	Runge–Kutta methods	325
12.6	Linear multistep methods	329
12.7	Zero-stability	331
12.8	Consistency	337
12.9	Dahlquist's theorems	340
12.10	Systems of equations	341
12.11	Stiff systems	343
12.12	Implicit Runge–Kutta methods	349
12.13	Notes	353
	Exercises	355
13	Boundary value problems for ODEs	361
13.1	Introduction	361
13.2	A model problem	361
13.3	Error analysis	364
13.4	Boundary conditions involving a derivative	367
13.5	The general self-adjoint problem	370
13.6	The Sturm–Liouville eigenvalue problem	373
13.7	The shooting method	375
13.8	Notes	380
	Exercises	381
14	The finite element method	385
14.1	Introduction: the model problem	385
14.2	Rayleigh–Ritz and Galerkin principles	388
14.3	Formulation of the finite element method	391
14.4	Error analysis of the finite element method	397
14.5	A posteriori error analysis by duality	403
14.6	Notes	412
	Exercises	414
Appe	ndix A An overview of results from real analysis	419
Appe	ndixB WWW-resources	423
Biblio	graphy	424
Index		429