

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH RULE 17.1(a) OR (b) The Patent Office Concept House Cardiff Road Newport South Wales

REC'D 0 3 OCT 2003

NP10-8QQ

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subject company to certain additional company law rules.

Signed

Dated

5 September 2003

The **Patent**

25 JUL 2002

Request for grant of a patent O'l

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

26JUL02 E736161-2TWAIP3Gent Office P01/7700 0.00-0217294.@ardiff Road Newport Gwent NP9 1RH

1. Your reference

JBV/PMS/P33087

2. Patent application number (The Patent Office will fill in his part)

25 JUL 2002

0217294.8

3. Full name, address and postcode of the or of each applicant (underline all surnames)

Patents ADP number (if you know it) CO473587-003

If the applicant is a corporate body, give the country/state of its incorporation

Glaxo Group Limited Glaxo Wellcome House, Berkeley Avenue, Greenford, Middlesex UB6 0NN, Great Britain

United Kingdom

4. Title of the invention

Medicaments

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Corporate Intellectual Property

GlaxoSmithKline Corporate Intellectual Property CN925.1 980 Great West Road BRENTFORD Middlesex TW8 9GS

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or each of these earlier applications and (if you know it) the or each application number

Country

960982*0*03

Priority application number Date of filing (if you know it) (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer yes if:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is named as an applicant, or

c) any named applicant is a corporate body See note (d)

Patents Form 1/77

9. Enter the number of sheets for any of the lowing items you are filing with this form.

Do not count copies of the same document

Continuation sheets of this form	0	
Description	36 🖊	00
Claim(s)	8 /	ساس
Abstract	1 ノ	
Drawings	0	

10. If you are also filing any of the following, state how many against each item.

Priority Documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11.

Signature 11 Date 25-Jul-02

J B Valentine

12. Name and daytime telephone number of person to contact in the United Kingdom

JB Valentine 01279 644401

Warning

After an application for a Patent has beeen filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed tf it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission unless an application has been filed at least six weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- f) For details of the fee and ways to pay please contact the Patent Office.

10

Medicaments

This invention relates to novel compounds, compositions containing them and their use as antibacterials.

WO099/37635, WO00/21948, WO00/21952, WO00/43383, WO00/78748, WO01/07433, WO01/07432, WO02/08224, WO02/24684, WO02/50040, WO02/50061, WO01/25227 and WO02/040474 disclose quinoline and naphthyridine derivatives having antibacterial activity.

This invention provides a compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$R^{1}$$

$$Z^{2}$$

$$Z^{3}$$

$$N$$

$$Z^{4}$$

$$Z^{4}$$

(I)

15 wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

20 R¹ and R^{1a} are independently selected from hydrogen; hydroxy; (C₁₋₆) alkoxy optionally substituted by (C₁₋₆)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, CONH2, hydroxy, (C₁₋₆)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C₁₋₆)alkylsulphonyloxy; (C₁₋₆)alkoxy-substituted (C₁₋₆)alkyl; halogen; (C₁₋₆)alkyl; (C₁₋₆)alkylthio; trifluromethyl; nitro; azido; acyl; acyloxy; acylthio; (C₁₋₆)alkylsulphonyl; (C₁₋₆)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C₁₋₆)alkyl, acyl or (C₁₋₆)alkylsulphonyl groups, or when Z¹ is CR^{1a}, R¹ and R^{1a} may together represent (C₁₋₂)alkylenedioxy,

30 provided that when Z^1 , Z^2 , Z^3 , Z^4 and Z^5 are CR^{1a} or CH, then R^1 is not hydrogen;

 R^2 is hydrogen, or (C_{1-4}) alkyl or (C_{2-4}) alkenyl optionally substituted with 1 to 3 groups selected from:

amino optionally substituted by one or two (C1-4)alkyl groups; carboxy; (C1-4)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋ 4) alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₄)alkyl, hydroxy(C₁₋₄)alkyl, aminocarbonyl(C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C_{1-4}) alkylsulphonyl, trifluoromethylsulphonyl, (C_{2-4}) alkenylsulphonyl, (C_{1-4}) 5 4) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl or (C_{2-4}) 4) alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4-oxadiazol-3-yl; halogen; (C₁₋₄)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁₋ 10 4) alkyl, (C2-4) alkenyl, (C1-4) alkoxycarbonyl, (C1-4) alkylcarbonyl, (C2-4) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl; oxo; (C_{1-4}) alkylsulphonyl; (C_{2-4}) 4) alkenyl sulphonyl; or (C_{1-4}) amino sulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

15

 R^3 ishydroxy optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl or (C_{2-6}) alkenylcarbonyl;

20

R¹⁰ is selected from (C₁₋₄)alkyl and (C₂₋₄)alkenyl either of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₂₋₆)alkenylsulphonyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; and (C₂₋₆)alkenylcarbonyl;

30

35

R⁴ is a group -CH₂-R⁵₁ in which R⁵₁ is selected from:

(C₄₋₈)alkyl; hydroxy(C₄₋₈)alkyl; (C₁₋₄)alkoxy(C₄₋₈)alkyl; (C₁₋₄)alkoxy-(C₄₋₈)alkyl; (C₁₋₆)alkoxy- or (C₁₋₆)alkanoyloxy-(C₃₋₈)cycloalkyl(C₄₋₈)alkyl; cyano(C₄₋₈)alkyl; (C₄₋₈)alkenyl; (C₄₋₈)alkynyl; tetrahydrofuryl; mono- or di-(C₁₋₆)alkylamino(C₄₋₈)alkyl; acylamino(C₄₋₈)alkyl; (C₁₋₆)alkyl- or acyl-aminocarbonyl(C₄₋₈)alkyl; mono- or di-(C₁₋₆)alkylamino(hydroxy) (C₄₋₈)alkyl; or

15

20

25

30

35

 R^4 is a group $-U-R^5_2$ where R^5_2 is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

 X^{1} X^{2} X^{3} Y^{1} X^{5} Y^{2} Y^{2} Y^{2} Y^{2} Y^{3} Y^{2} Y^{2} Y^{3} Y^{2} Y^{2} Y^{2}

5 containing up to four heteroatoms in each ring in which

at least one of rings (a) and (b) is aromatic;

 X^{1} is C or N when part of an aromatic ring or CR^{14} when part of a non aromatic ring;

X² is N, NR¹³, O, S(O)_x, CO or CR¹⁴ when part of an aromatic or non-aromatic ring or may in addition be CR¹⁴R¹⁵ when part of a non aromatic ring;

 X^3 and X^5 are independently N or C;

 Y^1 is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring,

 Y^2 is a 2 to 6 atom linker group, each atom of Y^2 being independently selected from N, NR¹³, O, S(O)_x, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring; each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁₋₄)alkylthio; halo; carboxy(C₁₋₄)alkyl; halo(C₁₋₄)alkoxy; halo(C₁₋₄)alkyl; (C₁₋₄)alkyl; (C₂₋₄)alkenyl; (C₁₋₄)alkoxycarbonyl; formyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenylcarbonyl; (C₁₋₄)alkylcarbonyloxy; (C₁₋₄)alkoxycarbonyl(C₁₋₄)alkyl; hydroxy; hydroxy(C₁₋₄)alkyl; mercapto(C₁₋₄)alkyl; (C₁₋₄)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl; aryl(C₁₋₄)alkyl; aryl(C₁₋₄)alkoxy;

each R^{13} is independently H; trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, carboxy, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; arylcarbonyl; heteroarylcarbonyl; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

each x is independently 0, 1 or 2;

10

15

20

25

30

35

U is CO, SO₂ or CH₂; or

 R^4 is a group $-X^{1a}-X^{2a}-X^{3a}-X^{4a}$ in which:

 X^{1a} is CH_2 , CO or SO_2 ;

X2a is CR14aR15a;

X^{3a} is NR^{13a}, O, S, SO₂ or CR^{14a}R^{15a}; wherein:

each of R^{14a} and R^{15a} is independently selected from the groups listed above for R^{14} and R^{15} , provided that R^{14a} and R^{15a} on the same carbon atom are not both selected from optionally substituted hydroxy and optionally substituted amino; or

R^{14a} and R^{15a} together represent oxo;

 R^{13a} is hydrogen; trifluoromethyl; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or

two R^{14a} groups or an R^{13a} and an R^{14a} group on adjacent atoms together represent a bond and the remaining R^{13a} , R^{14a} and R^{15a} groups are as above defined; or two R^{14a} groups and two R^{15a} groups on adjacent atoms together represent bonds such that X^{2a} and X^{3a} is triple bonded;

 X^{4a} is phenyl or C or N linked monocyclic aromatic 5- or 6-membered heterocycle containing up to four heteroatoms selected from O, S and N and: optionally C-substituted by up to three groups selected from (C_{1-4}) alkylthio; halo; carboxy (C_{1-4}) alkyl; halo (C_{1-4}) alkoxy; halo (C_{1-4}) alkyl; (C_{1-4}) alkyl; (C_{2-4}) alkenyl; (C_{1-4}) alkoxycarbonyl; formyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkenylcarbonyl; (C_{1-4}) alkyl; hydroxy; hydroxy (C_{1-4}) alkyl; mercapto (C_{1-4}) alkyl; (C_{1-4}) alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl; aryl, aryl (C_{1-4}) alkyl or aryl (C_{1-4}) alkyl

4)alkoxy; and optionally N substituted by trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{1-4}) alkyl or (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

n is 0 or 1 and AB is $NR^{11}CO$, $CONR^{11}$, $CO-CR^8R^9$, CR^6R^7-CO , $O-CR^8R^9$, CR^6R^7-O , $NHR^{11}-CR^8R^9$, $CR^6R^7-NHR^{11}$, $NR^{11}SO_2$, $CR^6R^7-SO_2$ or $CR^6R^7-CR^8R^9$, provided that n=0, B is not NR^{11} , O or SO_2 , and provided that R^6 and R^7 , and R^8 and R^9 are not both optionally substituted hydroxy

and provided that R⁶ and R⁷, and R⁸ and R⁹ are not both optionally substituted hydroxy or amino;

and wherein:

5

15

20

25

30

each of R^6 , R^7 , R^8 and R^9 is independently selected from: H; (C_{1-6}) alkoxy; (C_{1-6}) alkylthio; halo; trifluoromethyl; azido; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkylcarbonyl; (C_{2-6}) alkenyloxycarbonyl; (C_{2-6}) alkylcarbonyl; (C_{2-6}) alkylcarbony

6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl;

or \mathbb{R}^6 and \mathbb{R}^8 together represent a bond and \mathbb{R}^7 and \mathbb{R}^9 are as above defined;

in optionally substituted amino the amino group is optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

in optionally substituted aminocarbonyl the amino group is optionally substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkenyl, (C_{1-6})alkenylcarbonyl, (C_{1-6})alkylcarbonyl, (C_{2-6})alkenylcarbonyl or (C_{2-6})alkenylcarbonyl and optionally further substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6})alkenyl;

and each R^{11} is independently H; trifluoromethyl; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

or where one of R⁶, R⁷, R⁸ or R⁹ contains a carboxy group they may together with R³
form a cyclic ester linkage.

10

15

20

25

30

35

The invention also provides the use of a compound of formula (I) or a pharmaceutically acceptable derivative thereof in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.

The invention also provides a pharmaceutical composition, in particular for use in the treatment of bacterial infections in mammals, comprising a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

The invention further provides a method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment of an effective amount of a compound of formula (I), or a pharmaceutically acceptable derivative thereof.

Preferably Z^5 is CH or N, Z^3 is CH or CF and Z^1 , Z^2 and Z^4 are each CH, or Z^1 is N, Z^3 is CH or CF and Z^2 , Z^4 and Z^5 are each CH

When R^1 or R^{1a} is substituted alkoxy it is preferably (C_{2-6}) alkoxy substituted by optionally N-substituted amino, guanidino or amidino, or (C_{1-6}) alkoxy substituted by piperidyl. Suitable examples of R^1 alkoxy include methoxy, trifluoromethoxy, n-propyloxy, i-butyloxy, aminoethyloxy, aminopropyloxy, aminobutyloxy, aminopentyloxy, guanidinopropyloxy, piperidin-4-ylmethyloxy, phthalimido pentyloxy or 2-aminocarbonylprop-2-oxy. Preferably R^1 is methoxy, amino (C_{3-5}) alkyloxy, guanidino (C_{3-5}) alkyloxy, piperidyl (C_{3-5}) alkyloxy, nitro or fluoro.

Preferably R^1 and R^{1a} are independently methoxy, amino(C_{3-5})alkyloxy, guanidino(C_{3-5})alkyloxy, piperidyl(C_{3-5})alkyloxy, nitro or fluoro; more preferably methoxy, fluoro, amino(C_{3-5})alkyloxy or guanidino(C_{3-5})alkyloxy. Preferably R^{1a} is H or F. Most preferably R^1 is methoxy or fluoro and R^{1a} is H or when Z^3 is CR^{1a} it may be C-F.

When Z^5 is CR^{1a} , R^{1a} is preferably hydrogen, cyano, hydroxymethyl or carboxy, most preferably hydrogen.

 R^2 is preferably hydrogen; (C₁₋₄)alkyl substituted with carboxy, optionally substituted hydroxy, optionally substituted amino or (C₁₋₄)alkoxycarbonyl; or (C₂₋₄)alkenyl substituted with (C₁₋₄)alkoxycarbonyl or carboxy. More preferred groups for R^2 are hydrogen, carboxymethyl, hydroxyethyl, aminocarbonylmethyl, ethoxycarbonylmethyl, ethoxycarbonylallyl and carboxyallyl, most preferably hydrogen.

 R^3 is preferably hydroxy or (C_{1-6}) alkoxy, most preferably hydroxy.

10

15

20

25

30

35

When R^3 and R^6 , R^7 , R^8 or R^9 together form a cyclic ester linkage, it is preferred that the resulting ring is 5-7 membered. It is further preferred that the group A or B which does not form the ester or amide linkage is CH_2 .

When A is CH(OH) the R-stereochemistry is preferred.

Preferably A is NH, NCH3, CH2, CHOH, CH(NH2), C(Me)(OH) or CH(Me).

Preferably B is CH2 or CO.

Preferably n=0.

Most preferably:

n is 0 and either A is CHOH, CH2 and B is CH2 or A is NH and B is CO.

Preferably R¹¹ is hydrogen or (C₁₋₄)alkyl e.g. methyl, more preferably hydrogen.

When \mathbb{R}^4 is $CH_2\mathbb{R}^5{}_1$, preferably $\mathbb{R}^5{}_1$ is $(C_{6\text{--}8})$ alkyl.

When R^4 is a group $-X^{1a}X^{2a}X^{3a}X^{4a}$:

X^{1a} is preferably CH₂.

X^{2a} is preferably CH₂ or together with X^{3a} forms a CH=CH or C≡C group.

 X^{3a} is preferably CH₂, O, S or NH, or together with X^{2a} forms a CH=CH or C=C group.

Preferred linker groups $-X^{1}a_{-}X^{2}a_{-}X^{3}a_{-}$ include $-(CH_{2})_{2}$ -O-, $-CH_{2}$ -CH=CH-, $-(CH_{2})_{3}$ -, $-(CH_{2})_{2}$ -NH- or $-CH_{2}$ CONH-.

Monocyclic aromatic heterocyclic groups for X^{4a} include pyridyl, pyrazinyl, pyrimidinyl, triazolyl, tetrazolyl, thienyl, isoimidazolyl, thiazolyl, furanyl and imidazolyl, 2H-pyridazone, 1H-pyrid-2-one. Preferred aromatic heterocyclic groups include pyrid-2-yl, pyrimidin-3-yl, thiazole-2-yl, pyrimidin-5-yl and fur-2-yl.

Preferred substituents on heterocyclic X^{4a} include halo especially fluoro, trifluoromethyl and nitro.

Preferred substituents on phenyl X^{4a} include halo, especially fluoro, nitro, cyano, trifluoromethyl, methyl, methoxycarbonyl and methylcarbonylamino.

Preferably X^{4a} is 2-pyridyl, 3-fluorophenyl, 3,5-difluorophenyl or thiazol-2-yl. Preferably R^4 is $-U-R^5_2$.

The group -U- is preferably -CH₂-.

Preferably R^5_2 is an aromatic heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR^{13} .

Alternatively and preferably the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non-aromatic and Y^2 has 3-5 atoms including NR¹³, O or S bonded to X^5 and NHCO bonded via N to X^3 , or O bonded to X^3 . Examples of rings (A) include optionally substituted:

(a) and (b) aromatic

1H-pyrrolo[2,3-b]-pyridin-2-yl, 1H-pyrrolo[3,2-b]-pyridin-2-yl, 3H-imidazo[4,5-b]-pyrid-2-yl, 3H-quinazolin-4-one-2-yl, benzimidazol-2-yl, benzo[1,2,3]-thiadiazol-5-yl, benzo[1,2,5]-oxadiazol-5-yl, benzofur-2-yl, benzothiazol-2-yl, benzo[b]thiophen-2-yl, benzoxazol-2-yl, chromen-4-one-3-yl, imidazo[1,2-a]pyridin-2-yl, imidazo-[1,2-a]-5 pyrimidin-2-yl, indol-2-yl, indol-6-yl, isoquinolin-3-yl, [1,8]-naphthyridine-3-yl, oxazolo[4,5-b]-pyridin-2-yl, quinolin-2-yl, quinolin-3-yl, quinoxalin-2-yl, indan-2-yl, naphthalen-2-yl, 1,3-dioxo-isoindol-2yl, benzimidazol-2-yl, benzothiophen-2-yl, 1Hbenzotriazol-5-yl, 1H-indol-5-yl, 3H-benzooxazol-2-one-6-yl, 3H-benzooxazol-2-thione-6-yl, 3H-benzothiazol-2-one-5-yl, 3H-quinazolin-4-one-2-yl, 3H-quinazolin-4-one-6-yl, 10 4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl, benzo[1,2,3]thiadiazol-6-yl, benzo[1,2,5]thiadiazol-5-yl, benzo[1,4]oxazin-2-one-3-yl, benzothiazol-5-yl, benzothiazol-6-yl, cinnolin-3-yl, imidazo[1,2-a]pyridazin-2-yl, imidazo[1,2-b]pyridazin-2-yl, pyrazolo[1,5-a]pyrazin-2-yl, pyrazolo[1,5-a]pyridin-2-yl, pyrazolo[1,5-a]pyrimidin-6-yl, pyrazolo[5,1-c][1,2,4]triazin-3-yl, pyrido[1,2-a]pyrimdin-4-one-2-yl, pyrido[1,2-15 a]pyrimidin-4-one-3-yl, quinazolin-2-yl, quinoxalin-6-yl, thiazolo[3,2-a]pyrimidin-5-one-7-yl, thiazolo[5,4-b]pyridin-2-yl, thieno[3,2-b]pyridin-6-yl, thiazolo[5,4-b]pyridin-6-yl, 4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl, 1-oxo-1,2-dihydro-isoguinolin-3-yl, thiazolo[4,5b]pyridin-5-yl, [1,2,3]thiadiazolo[5,4-b]pyridin-6-yl, 2H-isoquinolin-1-one-3-yl

20 (a) is non aromatic

(2S)-2,3-dihydro-1H-indol-2-yl, (2S)-2,3-dihydro-benzo[1,4]dioxine-2-yl, 3-(R,S)-3,4-dihydro-2H-benzo[1,4]thiazin-3-yl, 3-(R)-2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-3-yl, 3-(S)-2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-3-yl, 2,3-dihydro-benzo[1,4]dioxan-2-yl, 3-substituted-3H-quinazolin-4-one-2-yl,

(b) is non aromatic

25

- 1,1,3-trioxo-1,2,3,4-tetrahydro-1 l^6 -benzo[1,4] thiazin-6-yl, benzo[1,3]dioxol-5-yl, 4H-benzo[1,4]oxazin-3-one-6-yl, 2,3-dihydro-benzo[1,4]dioxin-6-yl, 2-oxo-2,3-dihydro-benzooxazol-6-yl, 4H-benzo[1,4]oxazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-
- benzo[1,4]oxazin-6-yl), 4H-benzo[1,4]thiazin-3-one-6-yl (3-oxo-3,4-dihydro-2H-benzo[1,4]thiazin-6-yl), 4H-benzo[1,4]oxazin-3-one-7-yl, 4-oxo-2,3,4,5-tetrahydro-benzo[b][1,4]thiazepine-7-yl, 5-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidin-6-yl, benzo[1,3]dioxol-5-yl, 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl, 2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazin-7-yl, 3-oxo-3,4-dihydro-2H-pyrido[3,2-
- b][1,4]thiazin-6-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-6-yl, 2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl, 2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl, 6,7-dihydro-[1,4]dioxino[2,3-d]pyrimidin-2-yl, 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl,

10

15

20

2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]oxazin-7-yl, 2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]oxazin-7-yl, 6-oxo-6,7-dihydro-5H-8-thia-1,2,5-triaza-naphthalen-3-yl, 3,4-dihydro-2H-benzo[1,4]oxazin-6-yl, 3-substituted-3H-benzooxazol-2-one-6-yl, 3-substituted-3H-benzooxazole-2-thione-6-yl, 3-substituted-3H-benzothiazol-2-one-6-yl, 2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl, 3,4-dihydro-2H-benzo[1,4]thiazin-6-yl, 3,4-dihydro-1H-quinolin-2-one-7-yl, 3,4-dihydro-1H-quinoxalin-2-one-7-yl, 6,7-dihydro-4H-pyrazolo[1,5-a]pyrimidin-5-one-2-yl, 5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl, 2-oxo-3,4-dihydro-1*H*-[1,8]naphthyridin-6-yl.

 R^{13} is preferably H if in ring (a) or in addition (C₁₋₄)alkyl such as methyl or isopropyl when in ring (b). More preferably, in ring (b) R^{13} is H when NR^{13} is bonded to X^3 and (C₁₋₄)alkyl when NR^{13} is bonded to X^5 .

 R^{14} and R^{15} are preferably independently selected from hydrogen, halo, hydroxy, (C₁₋₄) alkyl, (C₁₋₄)alkoxy, trifluoromethoxy, nitro, cyano, aryl(C₁₋₄)alkoxy and (C₁₋₄)alkylsulphonyl.

More preferably R¹⁵ is hydrogen.

More preferably each R^{14} is selected from hydrogen, chloro, fluoro, hydroxy, methyl, methoxy, trifluoromethoxy, benzyloxy, nitro, cyano and methylsulphonyl. Most preferably R^{14} is selected from hydrogen, hydroxy, fluorine or nitro. Preferably 0-3 groups R^{14} are substituents other than hydrogen.

Most preferred groups R⁵2 include:

[1,2,3]thiadiazolo[5,4-b]pyridin-6-yl

1H-Pyrrolo[2,3-b]pyridin-2-yl

2,3-Dihydro-[1,4]dioxino[2,3-b]pyridin-6-yl

2,3-Dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl

25 2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl

2,3-dihydro-benzo[1,4]dioxin-6-yl

2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]oxazin-7-yl

2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl

3,4-dihydro-2H-benzo[1,4]oxazin-6-yl

30 3-Methyl-2-oxo-2,3-dihydro-benzooxazol-6-yl

3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl

3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl

4H-benzo[1,4] thiazin-3-one-6-yl

4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yl

35 6-nitro-benzo[1,3]dioxol-5-yl

7-fluoro-3-oxo-3,4-dihydro-2H-benzo[1,4] oxazin-6-yl

8-Hydroxy-1-oxo-1,2-dihydro-isoquinolin-3-yl

```
8-hydroxyquinolin-2-yl
      benzo[1,2,3]thiadiazol-5-yl
      benzo[1,2,5]thiadiazol-5-yl
      benzothiazol-5-yl
  5
      thiazolo-[5,4-b]pyridin-6-yl
      3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazin-7-yl
10
      especially
      benzo[1,2,5]thiadiazol-5-yl
      4H-benzo[1,4] thiazin-3-one-6-yl
      2,3-dihydro-benzo[1,4]dioxin-6-yl
15
      benzo[1,2,3]thiadiazol-5-yl
      3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl
      7-fluoro-3-oxo-3,4-dihydro-2H-benzo[1,4] oxazin-6-yl
      2-oxo-2,3-dihydro-1H-pyrido[2,3-b][1,4]thiazin-7-yl
      2,3-Dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl
      3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl
20
      [1,2,3]thiadiazolo[5,4-b]pyridin-6-yl
      3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      7-fluoro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
25
      2-oxo-2,3-dihydro-1H-pyrido[3,4-b][1,4]thiazin-7-yl
      most especially
      3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl
      3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl.
30
```

When used herein, the term "alkyl" includes groups having straight and branched chains, for instance, methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, t-butyl, pentyl and hexyl. The term 'alkenyl' should be interpreted accordingly.

Halo or halogen includes fluoro, chloro, bromo and iodo.

Haloalkyl moieties include 1-3 halogen atoms.

35

Unless otherwise defined, the term 'heterocyclic' as used herein includes aromatic and non-aromatic, single and fused, rings suitably containing up to four hetero-atoms in each ring selected from oxygen, nitrogen and sulphur, which rings may be unsubstituted

10

15

20

25

30

35

or C-substituted by, for example, up to three groups selected from (C_{1-4}) alkylthio; halo; carboxy (C_{1-4}) alkyl; halo (C_{1-4}) alkoxy; halo (C_{1-4}) alkyl; (C_{1-4}) alkyl; (C_{2-4}) alkenyl; (C_{1-4}) alkoxycarbonyl; formyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkylcarbonyloxy; (C_{1-4}) alkoxycarbonyl (C_{1-4}) alkyl; hydroxy; hydroxy (C_{1-4}) alkyl; mercapto (C_{1-4}) alkyl; (C_{1-4}) alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R^3 ; (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl; optionally substituted aryl, aryl (C_{1-4}) alkyl or aryl (C_{1-4}) alkoxy and oxo groups. Each heterocyclic ring suitably has from 4 to 7, preferably 5 or 6, ring atoms. A fused heterocyclic ring system may include carbocyclic rings and need include only one heterocyclic ring. Compounds within the invention containing a heterocyclyl group may occur in two or more tautometric forms depending on the nature of the heterocyclyl group; all such tautomeric forms are included within the scope of the invention.

Where an amino group forms part of a single or fused non-aromatic heterocyclic ring as defined above suitable optional substituents in such substituted amino groups include H; trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl...

When used herein the term 'aryl', includes phenyl and naphthyl, each optionally substituted with up to five, preferably up to three, groups selected from (C_{1-4}) alkylthio; halo; carboxy (C_{1-4}) alkyl; halo (C_{1-4}) alkoxy; halo (C_{1-4}) alkyl; (C_{1-4}) alkyl; (C_{2-4}) alkenyl; (C_{1-4}) alkoxycarbonyl; formyl; (C_{1-4}) alkylcarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{2-4}) alkenyloxycarbonyl; (C_{1-4}) alkyl; mercapto (C_{1-4}) alkyl; (C_{1-4}) alkoxy; nitro; cyano, carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in (C_{1-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl; phenyl, phenyl (C_{1-4}) alkyl or phenyl (C_{1-4}) alkoxy.

The term 'acyl' includes (C_{1-6}) alkoxycarbonyl, formyl or (C_{1-6}) alkylcarbonyl groups.

Some of the compounds of this invention may be crystallised or recrystallised from solvents such as aqueous and organic solvents. In such cases solvates may be formed. This invention includes within its scope stoichiometric solvates including

. 10

15

20

hydrates as well as compounds containing variable amounts of water that may be produced by processes such as lyophilisation.

Since the compounds of formula (I) are intended for use in pharmaceutical compositions it will readily be understood that they are each provided in substantially pure form, for example at least 60% pure, more suitably at least 75% pure and preferably at least 85%, especially at least 98% pure (% are on a weight for weight basis). Impure preparations of the compounds may be used for preparing the more pure forms used in the pharmaceutical compositions; these less pure preparations of the compounds should contain at least 1%, more suitably at least 5% and preferably from 10 to 59% of a compound of the formula (I) or pharmaceutically acceptable derivative thereof.

Pharmaceutically acceptable derivatives of the above-mentioned compounds of formula (I) include the free base form or their acid addition or quaternary ammonium salts, for example their salts with mineral acids e.g. hydrochloric, hydrobromic, sulphuric nitric or phosphoric acids, or organic acids, e.g. acetic, fumaric, succinic, maleic, citric, benzoic, p-toluenesulphonic, methanesulphonic, naphthalenesulphonic acid or tartaric acids. Compounds of formula (I) may also be prepared as the N-oxide. Compounds of formula (I) having a free carboxy group may also be prepared as an *in vivo* hydrolysable ester. The invention extends to all such derivatives.

Examples of suitable pharmaceutically acceptable *in vivo* hydrolysable ester-forming groups include those forming esters which break down readily in the human body to leave the parent acid or its salt. Suitable groups of this type include those of part formulae (i), (ii), (iii), (iv) and (v):

$$---R^{c}-N < \frac{R^{d}}{R^{e}}$$
 (ii)

$$---$$
 CH₂ $---$ OR^f (iii)

$$-CHOCO - CH-R^g$$
 (iv)

25

10

15

20

25

30

wherein R^a is hydrogen, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, methyl, or phenyl, R^b is (C_{1-6}) alkyl, (C_{1-6}) alkoxy, phenyl, benzyl, (C_{3-7}) cycloalkyl, (C_{3-7}) cycloalkyloxy, (C_{1-6}) alkyl (C_{3-7}) cycloalkyl, 1-amino (C_{1-6}) alkyl, or 1- (C_{1-6}) alkyl) amino (C_{1-6}) alkyl; or R^a and R^b together form a 1,2-phenylene group optionally substituted by one or two methoxy groups; R^c represents (C_{1-6}) alkylene optionally substituted with a methyl or ethyl group and R^d and R^e independently represent (C_{1-6}) alkyl; R^f represents (C_{1-6}) alkyl; R^g represents hydrogen or phenyl optionally substituted by up to three groups selected from halogen, (C_{1-6}) alkyl, or (C_{1-6}) alkoxy; Q is oxygen or NH; R^h is hydrogen or (C_{1-6}) alkyl; R^i is hydrogen, (C_{1-6}) alkyl optionally substituted by halogen, (C_{2-6}) alkenyl, (C_{1-6}) alkoxycarbonyl, aryl or heteroaryl; or R^h and R^i together form (C_{1-6}) alkylene; R^i represents hydrogen, (C_{1-6}) alkyl or (C_{1-6}) alkoxycarbonyl; and R^k represents (C_{1-8}) alkyl, (C_{1-8}) alkoxy, (C_{1-6}) alkoxy or aryl.

Examples of suitable *in vivo* hydrolysable ester groups include, for example, acyloxy(C_{1-6})alkyl groups such as acetoxymethyl, pivaloyloxymethyl, α -acetoxyethyl, α -pivaloyloxyethyl, 1-(cyclohexylcarbonyloxy)prop-1-yl, and (1-aminoethyl)carbonyloxymethyl; (C_{1-6})alkoxycarbonyloxy(C_{1-6})alkyl groups, such as ethoxycarbonyloxymethyl, α -ethoxycarbonyloxyethyl and propoxycarbonyloxyethyl; di(C_{1-6})alkylamino(C_{1-6})alkyl especially di(C_{1-4})alkylamino(C_{1-4})alkyl groups such as dimethylaminomethyl, dimethylaminoethyl, diethylaminomethyl or diethylaminoethyl; 2-((C_{1-6})alkoxycarbonyl)-2-(C_{2-6})alkenyl groups such as 2-(isobutoxycarbonyl)pent-2-enyl and 2-(ethoxycarbonyl)but-2-enyl; lactone groups such as phthalidyl and dimethoxyphthalidyl.

A further suitable pharmaceutically acceptable *in vivo* hydrolysable ester-forming group is that of the formula:

wherein R^k is hydrogen, C_{1-6} alkyl or phenyl.

R is preferably hydrogen.

Certain of the above-mentioned compounds of formula (I) may exist in the form of optical isomers, e.g. diastereoisomers and mixtures of isomers in all ratios, e.g. racemic

10

mixtures. The invention includes all such forms, in particular the pure isomeric forms. For examples the invention includes compound in which an A-B group CH(OH)-CH₂ is in either isomeric configuration the *R*-isomer is preferred. The different isomeric forms may be separated or resolved one from the other by conventional methods, or any given isomer may be obtained by conventional synthetic methods or by stereospecific or asymmetric syntheses..

In a further aspect of the invention there is provided a process for preparing compounds of formula (I), or a pharmaceutically acceptable derivative thereof, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

wherein n is as defined in formula (I); Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , R^1 and R^3 are Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , R^1 and R^3 as defined in formula (I) or groups convertible thereto;

- Q¹ is NR²'R⁴' or a group convertible thereto wherein R²' and R⁴' are R² and R⁴ as defined in formula (I) or groups convertible thereto and Q² is H or R³' or Q¹ and Q² together form an optionally protected oxo group;
 - and X and Y may be the following combinations:
 - (i) one of X and Y is CO_2R^y and the other is $CH_2CO_2R^x$;
- 20 (ii) $X \text{ is } CHR^6R^7 \text{ and } Y \text{ is } C(=O)R^9$;
 - (iii) X is $CR^7 = PR^{Z_3}$ and Y is $C(=O)R^9$;
 - (iv) $X ext{ is } C(=0)R^7 ext{ and } Y ext{ is } CR^9=PR^2_3;$
 - (v) one of Y and X is COW and the other is NHR¹¹;
 - (vi) X is NHR¹¹ and Y is $C(=0)R^8$ or X is $C(=0)R^6$ and Y is NHR¹¹;
- 25 (vii) X is NHR¹¹ and Y is CR^8R^9W ;
 - (viii) X is W or OH and Y is CH2OH;
 - (ix) $X \text{ is NHR}^{11}$ ' and Y is SO₂W;
 - (x) one of X and Y is $(CH_2)_p$ -W and the other is $(CH_2)_qNHR^{11}$, $(CH_2)_qOH$, $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1;
- 30 (xi) one of X and Y is OH and the other is -CH= N_2 ;
 - (xii) Xis W and Y is CONHR¹¹;
 - (xiii) X is W and Y is -C≡CH followed by selective reduction of the intermediate C≡C- group;

10

30

in which W is a leaving group, e.g. halo or imidazolyl; R^X and R^Y are (C_{1-6}) alkyl; R^Z is aryl or (C_{1-6}) alkyl; A' and NR^{11} ' are A and NR^{11} as defined in formula (I), or groups convertible thereto; and oxirane is:

wherein R^6 , R^8 and R^9 are as defined in formula (I); and thereafter optionally or as necessary converting Q^1 and Q^2 to NR^2 ' R^4 '; converting A', Z^1 ', Z^2 ', Z^3 ', Z^4 ', Z^5 ', R^1 ', R^2 ', R^3 ', R^4 ' and NR^{11} ' to A, Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , R^1 , R^2 , R^3 , R^4 and NR^{11} '; converting A-B to other A-B, interconverting R^v , R^v , R^1 , R^2 , R^3 and/or R^4 , and/or forming a pharmaceutically acceptable derivative thereof.

Process variant (i) initially produces compounds of formula (I) wherein A-B is CO-CH₂ or CH₂-CO.

Process variant (ii) initially produces compounds of formula (I) wherein A-B is CR⁶R⁷-CR⁹OH.

Process variant (iii) and (iv) initially produce compounds of formula (I) wherein A-B is CR⁷=CR⁹.

Process variant (v) initially produces compounds of formula (I) where A-B is CO- NR^{11} or NR^{11} -CO.

20 Process variant (vi) initially produces compounds of formula (I) wherein A-B is NR¹¹-CHR⁸, or CHR⁶-NHR¹¹.

Process variant (vii) initially produces compounds of formula (I) wherein A-B is NR^{11} -CR $^8R^9$.

Process variant (viii) initially produces compounds of formula (I) wherein A-B is O-CH₂.

Process variant (ix) initially produces compounds where AB is NR¹¹SO₂.

Process variant (x) initially produces compounds of formula (I) wherein one of A and B is CH_2 and the other is NHR^{11} , O or S.

Process variant (xi) initially produces compounds of formula (I) wherein A-B is OCH_2 or CH_2O , providing that if A is CH_2 , n = 1.

Process variant (xii) produces compounds where AB is NR¹¹CO.

Process variant (xiii) produces compounds where AB is -CH2CH2- or -CH=CH-.

In process variant (v) the reaction is a standard amide formation reaction involving e.g.:

1. Activation of a carboxylic acid (e.g. to an acid chloride, mixed anhydride, active ester, O-acyl-isourea or other species), and treatment with an amine (Ogliaruso, M.A.; Wolfe,

10

15

20

25

30

35

J.F. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl. B: The Chemistry of Acid Derivatives, Pt. 1 (John Wiley and Sons, 1979), pp 442-8; Beckwith, A.L.J. in The Chemistry of Functional Groups (Ed. Patai, S.) Suppl. B: The Chemistry of Amides (Ed. Zabricky, J.) (John Wiley and Sons, 1970), p 73 ff. The acid and amine are preferably reacted in the presence of an activating agent such as 1-(dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) or 1-hydroxybenzotriazole (HOBT) or O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU); or 2. The specific methods of:

a. in situ conversion of an acid into the amine component by a modified Curtius reaction procedure (Shioiri, T., Murata, M., Hamada, Y., Chem. Pharm. Bull. 1987, 35, 2698) b. in situ conversion of the acid component into the acid chloride under neutral conditions (Villeneuve, G. B.; Chan, T. H., Tetrahedron. Lett. 1997, 38, 6489).

A' may be, for example. protected hydroxymethylene.

In process variant (i) the process is two step: firstly a condensation using a base, preferably sodium hydride or alkoxide, sodamide, alkyl lithium or lithium dialkylamide, preferably in an aprotic solvent e.g. ether, THF or benzene; secondly, hydrolysis using an inorganic acid, preferably HCl in aqueous organic solvent at 0-100°C. Analogous routes are described in DE330945, EP31753, EP53964 and H. Sargent, J. Am. Chem. Soc. 68, 2688-2692 (1946). Similar Claisen methodology is described in Soszko et. al., Pr.Kom.Mat. Przyr.Poznan.Tow.Przyj.Nauk., (1962), 10, 15.

In process variant (ii) the reaction is carried out in the presence of a base, preferably organometallic or metal hydride e.g. NaH, lithium diisopropylamide or NaOEt, preferably in an aprotic solvent, preferably THF, ether or benzene at -78 to 25°C (analogous process in Gutswiller et al. (1978) J. Am. Chem. Soc. 100, 576).

In process variants (iii) and (iv) if a base is used it is preferably NaH, KH, an alkyl lithium e.g. BuLi, a metal alkoxide e.g. NaOEt, sodamide or lithium dialkylamide e.g.di-isopropylamide. An analogous method is described in US 3989691 and M.Gates et. al. (1970) J. Amer.Chem.Soc., 92, 205, as well as Taylor et al. (1972) JACS 94, 6218.

In process variant (vi) the reaction is a standard reductive alkylation using, e.g., sodium borohydride or sodium triacetoxyborohydride (Gribble, G. W. in *Encyclopedia of Reagents for Organic Synthesis (Ed. Paquette, L. A.)* (John Wiley and Sons, 1995), p 4649).

The process variant (vii) is a standard alkylation reaction well known to those skilled in the art, for example where an alcohol or amine is treated with an alkyl halide in the presence of a base (for example see March, J; Advanced Organic Chemistry, Edition 3 (John Wiley and Sons, 1985), p364-366 and p342-343). The process is preferably carried out in a polar solvent such as N,N-dimethylformamide

10

15

20

25

30

35

In process variant (viii) where X is W such as halogen, methanesulphonyloxy or trifluoromethanesulphonyloxy, the hydroxy group in Y is preferably converted to an OM group where M is an alkali metal by treatment of an alcohol with a base. The base is preferably inorganic such as NaH, lithium diisopropylamide or sodium. Where X is OH, the hydroxy group in Y is activated under Mitsunobu conditions (Fletcher et.al. J Chem Soc. (1995), 623). Alternatively the X=O and Y=CH₂OH groups can be reacted directly by activation with dichlorocarbodiimide (DCC) (Chem. Berichte 1962, 95, 2997 or Angewante Chemie 1963 75, 377).

In process variant (ix) the reaction is conducted in the presence of an organic base such as triethylamine or pyridine such as described by Fuhrman et.al., J. Amer. Chem. Soc.; 67, 1245, 1945. The X=NR¹¹'SO₂W or Y=SO₂W intermediates can be formed from the requisite amine e.g. by reaction with SO₂Cl₂ analogously to the procedure described by the same authors Fuhrman et.al., J. Amer. Chem. Soc.; 67, 1245, 1945.

In process variant (x) where one of X and Y contains NHR¹¹ the leaving group W is halogen and the reaction is a standard amine formation reaction such as direct alkylation described in (Malpass, J. R., in *Comprehensive Organic Chemistry*, Vol. 2 (Ed. Sutherland, I. O.), p 4 ff.) or aromatic nucleophilic displacement reactions (see references cited in *Comprehensive Organic Chemistry*, Vol. 6, p 946-947 (reaction index); Smith, D. M. in *Comprehensive Organic Chemistry*, Vol. 4 (Ed. Sammes, P. G.) p 20 ff.). This is analogous to the methods described in GB 1177849.

In process variant (x) where one of X and Y contains OH or SH, this is preferably converted to an OM or SM group where M is an alkali metal by treatment of an alcohol, thiol or thioacetate with a base. The base is preferably inorganic such as NaH, lithium diisopropylamide or sodium, or, for SH, metal alkoxide such as sodium methoxide. The X/Y group containing the thioacetate SCOR^x is prepared by treatment of an alcohol or alkyl halide with thioacetic acid or a salt thereof under Mitsunobu conditions. The leaving group V is a halogen. The reaction may be carried out as described in Chapman et.al., J. Chem Soc., (1956),1563, Gilligan et. al., J. Med. Chem., (1992), 35, 4344, Aloup et. al., J. Med. Chem. (1987), 30, 24, Gilman et al., J.A.C.S. (1949), 71, 3667 and Clinton et al., J.A.C.S. (1948), 70, 491, Barluenga et al., J. Org. Chem. (1987) 52, 5190. Alternatively where X is OH and Y is CH₂V, V is a hydroxy group activated under Mitsunobu conditions (Fletcher et.al. J Chem Soc. (1995), 623).

In process variant (xi) the reaction is as described in den Hertzog et. al., recl.Trav. Chim. Pays-Bas, (1950),69, 700.

10

15

20

25

30

35

In process variant (xii) the leaving group W is preferably chloro, bromo or trifluoromethylsulphonyl and the reaction is the palladium catalysed process known as the "Buchwald" reaction (J. Yin and S. L. Buchwald, Org.Lett., 2000, 2, 1101).

In process variant (xiii) coupling of the acetylene compound (V) with the compound (TV) is accomplished using standard Pd-mediated chemistry, for example using Pd(Ph₃P)₂Cl₂ as the catalyst along with the addition of CuI in a mixture of triethylamine and dimethylformamide. Selective reduction of the intermediate –C=C- group is carried out either partially to –CH=CH- over a suitable catalyst eg Linlar catalyst, or fully to –CH₂-CH₂- by other means.

Reduction of a carbonyl group A or B to CHOH can be readily accomplished using reducing agents well known to those skilled in the art, e.g. sodium borohydride in aqueous ethanol or lithium aluminium hydride in ethereal solution. This is analogous to methods described in EP53964, US384556 and J. Gutzwiller *et al*, *J. Amer. Chem. Soc.*, 1978, 100, 576.

The carbonyl group A or B may be reduced to CH₂ by treatment with a reducing agent such as hydrazine in ethylene glycol, at e.g. 130-160°C, in the presence of potassium hydroxide.

Reaction of a carbonyl group A or B with an organometallic reagent yields a group where R^6 or R^8 is OH and R^7 or R^9 is alkyl.

A hydroxy group on A or B may be oxidised to a carbonyl group by oxidants well known to those skilled in the art, for example, manganese dioxide, pyridinium chlorochromate or pyridinium dichromate.

A hydroxyalkyl A-B group CHR⁷CR⁹OH or CR⁷(OH)CHR⁹ may be dehydrated to give the group CR⁷=CR⁹ by treatment with an acid anhydride such as acetic anhydride.

An amide carbonyl group may be reduced to the corresponding amine using a reducing agent such as lithium aluminium hydride.

A hydroxy group in A or B may be converted to azido by activation and displacement e.g. under Mitsunobu conditions using hydrazoic acid or by treatment with diphenylphosphorylazide and base, and the azido group in turn may be reduced to amino by hydrogenation.

An example of a group Q^1 convertible to $NR^2\,R^4$ is $NR^2'R^4'$ or halogen. Halogen may be displaced by an amine $HNR^2'R^4'$ by a conventional alkylation.

When Q^1 Q^2 together form a protected oxo group this may be an acetal such as ethylenedioxy which can subsequently be removed by acid treatment to give a compound of formula (VI):

10

15

20

25

$$\begin{array}{c|c} & & & \\ & & &$$

wherein the variables are as described for formula (I)

Intermediates of formula (VI) are novel and as such form part of the invention.

The ketone of formula (VI) is reacted with an amine HNR²'R⁴' by conventional reductive alkylation as described above for process variant (x).

Other novel intermediates of the invention are compounds of formula (VII):

$$R^{1} \xrightarrow{Z^{2}} Z^{3} \xrightarrow{N} Z^{4}$$

wherein the variables are as described for formula (I).

Examples of groups Z^1 , Z^2 , Z^3 , Z^4 , Z^5 , are CR^{1a} where R^{1a} is a group convertible to R^{1a} . Z^1 , Z^2 , Z^3 , Z^4 and Z^5 are preferably Z^1 , Z^2 , Z^3 , Z^4 and Z^5 .

 R^{1a} ', R^{1} ' and R^{2} ' are preferably R^{1a} , R^{1} and R^{2} . R^{1} ' is preferably methoxy. R^{2} ' is preferably hydrogen. R^{3} ' is R^{3} or more preferably hydrogen, vinyl, alkoxycarbonyl or carboxy. R^{4} ' is R^{4} or more preferably H or an N-protecting group such as t-butoxycarbonyl, benzyloxycarbonyl or 9-fluorenylmethyloxycarbonyl.

Conversions of R^{1a}', R¹', R²', R³' and R⁴' and interconversions of R^{1a}, R¹, R², R³ and R⁴ are conventional. In compounds which contain an optionally substituted hydroxy group, suitable conventional hydroxy protecting groups which may be removed without disrupting the remainder of the molecule include acyl and alkylsilyl groups. N protecting groups are removed by conventional methods.

For example R¹' methoxy is convertible to R¹' hydroxy by treatment with lithium and diphenylphosphine (general method described in Ireland et. al. (1973)

J.Amer.Chem.Soc.,7829) or HBr. Alkylation of the hydroxy group with a suitable alkyl derivative bearing a leaving group such as halide and a protected amino, piperidyl, amidino or guanidino group or group convertible thereto, yields, after conversion/deprotection, R¹ alkoxy substituted by optionally N-substituted amino, piperidyl, guanidino or amidino.

R³ hydroxy may be derivatised by conventional esterification or etherification.

The cyclohexenylamine NH_2 is converted to NR^2R^4 by conventional means such as amide or sulphonamide formation with an acyl derivative for compounds where U or

10

15

20

25

30

35

 X^{1a} is CO or SO₂ or, where R^4 is $-CH_2R^5_1$ or U or X^{1a} is CH_2 , by alkylation with an alkyl halide or other alkyl derivative R_4 -W in the presence of base, acylation/reduction or reductive alkylation with an aldehyde.

Where one of R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and they may together with R³ form a cyclic ester linkage. This linkage may form spontaneously during coupling of the compounds of formulae (IV) and (V) or in the presence of standard peptide coupling agents.

It will be appreciated that under certain circumstances interconvertions may interfere, for example, hydroxy groups in A or B and R^3 OH and the cyclohexenylamine will require protection e.g. as a carboxy- or silyl-ester group for hydroxy and as an acyl derivative for nitrogen, during conversion of $R^{1a'}$, $R^{1'}$, $R^{2'}$, $R^{3'}$ or $R^{4'}$, or during the coupling of the compounds of formulae (IV) and (V).

Compounds of formulae (IV) and (V) are known compounds, (see for example Smith *et al, J. Amer. Chem. Soc.*, 1946, 68, 1301) or prepared analogously, see for example the references cited above.

The 4-amino derivatives are commercially available or may be prepared by conventional procedures from a corresponding 4-chloro derivative by treatment with ammonia (O.G. Backeberg et. al., J. Chem Soc., 381, 1942) or propylamine hydrochloride (R. Radinov et. al., Synthesis, 886, 1986).

4-Alkenyl compounds of formula (IV) may be prepared by conventional procedures from a corresponding 4-halogeno-derivative by e.g. a Heck synthesis as described in e.g. *Organic Reactions*, 1982, <u>27</u>, 345.

4-Halogeno derivatives of compounds of formula (IV) are commercially available, or may be prepared by methods known to those skilled in the art. A 4-chloroquinoline is prepared from the corresponding quinolin-4-one by reaction with phosphorus oxychloride (POCl₃) or phosphorus pentachloride, PCl₅. A-4-bromo-substituent may be prepared from the quinolin- or naphthyridin-4-one by reaction with phosphorus tribromide (PBr3) in DMF. A 4-chloroquinazoline is prepared from the corresponding quinazolin-4-one by reaction with phosphorus oxychloride (POCl₃) or phosphorus pentachloride, PCl₅. A quinazolinone and quinazolines may be prepared by standard routes as described by T.A. Williamson in *Heterocyclic Compounds*, 6, 324 (1957) Ed. R.C. Elderfield.

Activated carboxy derivatives X=A'COW of formula (IV) may be prepared from X=A'CO₂H derivatives in turn prepared from CO₂H derivatives by conventional methods such as homologation.

4-Carboxy derivatives of compounds of formula (IV) are commercially available or may be prepared by conventional procedures for preparation of carboxy heteroaromatics well known to those skilled in the art. For example, quinazolines may be

10

15

20

25

30

35

prepared by standard routes as described by T.A. Williamson in *Heterocyclic Compounds*, 6, 324 (1957) Ed. R.C. Elderfield. These 4-carboxy derivatives may be activated by conventional means, e.g. by conversion to an acyl halide or anhydride.

4-Carboxy derivatives such as esters may be reduced to hydroxymethyl derivatives with for example lithium aluminium hydride. Reaction with mesyl chloride and triethylamine would give the mesylate derivative. A diazo compound (X is -CH=N₂) may be prepared from the 4-carboxaldehyde via the tosyl hydrazone. The 4-carboxaldehyde may be obtained from from the acid by standard procedures well known to those skilled in the art.

A 4-oxirane derivative of compounds of formula (IV) is conveniently prepared from the 4-carboxylic acid by first conversion to the acid chloride with oxalyl chloride and then reaction with trimethylsilyldiazomethane to give the diazoketone derivative. Subsequent reaction with 5M hydrochloric acid gives the chloromethylketone. Reduction with sodium borohydride in aqueous methanol gives the chlorohydrin which undergoes ring closure to afford the epoxide on treatment with base, e.g. potassium hydroxide in ethanol-tetrahydrofuran.

Alternatively and preferably, 4-oxirane derivatives can be prepared from bromomethyl ketones which can be obtained from 4-hydroxy compounds by other routes well known to those skilled in the art. For example, hydroxy compounds can be converted to the corresponding 4-trifluoromethanesulphonates by reaction with trifluoromethanesulphonic anhydride under standard conditions (see K. Ritter, Synthesis, 1993, 735). Conversion into the corresponding butyloxyvinyl ethers can be achieved by a Heck reaction with butyl vinyl ether under palladium catalysis according to the procedure of W. Cabri *et al*, J. Org. Chem, 1992, 57 (5), 1481. (Alternatively, the same intermediates can be attained by Stille coupling of the trifluoromethanesulphonates or the analaogous chloro derivatives with (1-ethoxyvinyl)tributyl tin, T. R. Kelly, J. Org. Chem., 1996, 61, 4623.) The alkyloxyvinyl ethers are then converted into the corresponding bromomethylketones by treatment with N-bromosuccinimide in aqueous tetrahydrofuran in a similar manner to the procedures of J. F. W. Keana, J. Org. Chem., 1983, 48, 3621 and T. R. Kelly, J. Org. Chem., 1996, 61, 4623.

The 4-hydroxyderivatives can be prepared from an aminoaromatic by reaction with methylpropiolate and subsequent cyclisation, analogous to the method described in N. E. Heindel et al, J. Het. Chem., 1969, 6, 77. For example, 5-amino-2-methoxy pyridine can be converted to 4-hydroxy-6-methoxy-[1,5]naphthyridine using this method.

If a chiral reducing agent such as (+) or (-)-B-chlorodiisopinocamphenylborane ['DIP-chloride'] is substituted for sodium borohydride, the prochiral chloromethylketone is converted into the chiral chlorohydrin with ee values generally 85-95% [see C. Bolm et

10

15

20

25

30

35

al, Chem. Ber. 125, 1169-1190, (1992)]. Recrystallisation of the chiral epoxide gives material in the mother liquor with enhanced optical purity (typically ee 95%).

The (R)-epoxide, when reacted with an amine derivative gives ethanolamine compounds as single diastereomers with (R)-stereochemistry at the benzylic position.

Alternatively, the epoxide may be prepared from the 4-carboxaldehyde by a Wittig approach using trimethylsulfonium iodide [see G.A. Epling and K-Y Lin, *J. Het. Chem.*, 1987, 24, 853-857], or by epoxidation of a 4-vinyl derivative.

Pyridazines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 3, Ed A.J. Boulton and A. McKillop and napthyridines may be prepared by routes analogous to those described in Comprehensive Heterocyclic Chemistry, Volume 2, Ed A.J. Boulton and A. McKillop.

4-Hydroxy-1,5-naphthyridines can be prepared from 3-aminopyridine derivatives by reaction with diethyl ethoxymethylene malonate to produce the 4-hydroxy-3-carboxylic acid ester derivative with subsequent hydrolysis to the acid, followed by thermal decarboxylation in quinoline (as for example described for 4-Hydroxy-[1,5]naphthyridine-3-carboxylic acid, J. T. Adams *et al.*, *J.Amer.Chem.Soc.*, 1946, **68**, 1317). A 4-hydroxy-[1,5]naphthyridine can be converted to the 4-chloro derivative by heating in phosphorus oxychloride, or to the 4-methanesulphonyloxy or 4-trifluoromethanesulphonic anhydride, respectively, in the presence of an organic base. A 4-amino 1,5-naphthyridine can be obtained from the 4-chloro, 4-methanesulphonyloxy or 4-trifluoromethanesulphonyloxy derivative by reaction with n-propylamine in pyridine.

Similarly, 6-methoxy-1,5-naphthyridine derivatives can be prepared from 3-amino-6-methoxypyridine.

1,5-Naphthyridines may be prepared by other methods well known to those skilled in the art (for examples see P.A. Lowe in "Comprehensive Heterocyclic Chemistry" Volume 2, p581-627, Ed A.R. Katritzky and C.W. Rees, Pergamon Press, Oxford, 1984).

The 4-hydroxy and 4-amino-cinnolines may be prepared following methods well known to those skilled in the art [see A.R. Osborn and K. Schofield, *J. Chem. Soc.* 2100 (1955)]. For example, a 2-aminoacetopheneone is diazotised with sodium nitrite and acid to produce the 4-hydroxycinnoline with conversion to chloro and amino derivatives as described for 1,5-naphthyridines.

The compounds of formula (V) are either commercially available or may be prepared by conventional methods.

For compounds of formula (V), where Y is NHR¹¹'suitable amines may be prepared from the corresponding 4-substituted cyclohexenyl acid or alcohol. In a first instance, an N-protected cyclohexenyl amine containing an acid bearing substituent, can

10

15

20

25

30

35

undergo a Curtius rearrangement and the intermediate isocyanate can be converted to a carbamate by reaction with an alcohol. Conversion to the amine may be achieved by standard methods well known to those skilled in the art used for amine protecting group removal. For example, an acid substituted N-protected cyclohexenyl amine can undergo a Curtius rearrangement e.g. on treatment with diphenylphosphoryl azide and heating, and the intermediate isocyanate reacts in the presence of 2-trimethylsilylethanol to give the trimethylsilylethylcarbamate (T.L. Capson & C.D. Poulter, *Tetrahedron Lett.*, 1984, 25, 3515). This undergoes cleavage on treatment with tetrabutylammonium fluoride to give the 4-amine substituted N-protected compound of formula (V). Alternatively, an acid group (CH₂)_{n-1}CO₂H may be converted to (CH₂)_nNHR¹¹ by reaction with an activating agent such as isobutyl chloroformate followed by an amine R¹¹NH₂ and the resulting amide reduced with a reducing agent such as LiAlH₄.

In a second instance, an N-protected cyclohexenyl amine containing an alcohol bearing substituent undergoes a Mitsunobu reaction (for example as reviewed in Mitsunobu, *Synthesis*, (1981), 1), for example with succinimide in the presence of diethyl azodicarboxylate and triphenylphosphine to give the phthalimidoethyl cyclohexenyl amine. Removal of the phthaloyl group, for example by treatment with methylhydrazine, gives the amine of formula (V).

Compounds of formula (V) where n=1 may be prepared from the compound where n=0 by homologation eg starting from a compound of formula (V) where Y=CO₂H.

Compounds of formula (V) with a $-C \equiv CH$ group may be prepared from the ketone treated with trimethylsilylacetylene and n-butyl lithium in dimethylformamide at low temperature followed by removal of the trimethylsilyl group with potassium carbonate in methanol or a fluoride source such as KF or tetrabutylammonium fluoride.

Compounds of formula (V) with a -CONHR¹¹ group may be prepared from the corresponding nitrile by partial hydrolysis under basic conditions.

Compounds of formula (V) substituted by R³ = OH may be prepared from a 1-keto derivative via a cyanohydrin reaction with sodium cyanide/hydrochloric acid in an ether/water two phase system (J. Marco *et al* Tetrahedron, 1999, 55, (24), 7625), or using trimethylsilylcyanide and zinc iodide catalysis in dichloromethane (A. Abad et al, J. Chem. Soc., Perkin 1, 1996, 17, 2193), followed by hydrolysis to give the α-hydroxy acid (Compound(V), Y=CO₂H, n=0, R³'=OH and Q¹ is NR²'R⁴') or partial hydrolysis to the carboxamide –CONH₂ as described above. In examples where there is trimethylsilyl protection of the alcohol, this is removed under the hydrolysis conditions. It will be appreciated that the amine protecting group eg N-carboxylic acid *tert*-butyl ester may be concommitantly removed during the hydrolysis step, necessitating a standard reprotection

C

5

10

15

with di-tert-butyl dicarbonate, giving key intermediates (V) such as (4-carbamoyl-4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester. It is noteworthy that during the cyanohydrin formation there is little or no stereoselectivity with regard to relative stereochemistry, and the (4-carbamoyl-4-hydroxy-cyclohexyl)-carbamic acid tert-butyl ester produced in this process is a mixture of cis and trans stereoisomers.

A Reformatsky reaction with the keto-derivative and an α -bromocarboxylic acid ester and zinc, followed by acid hydrolysis would afford the β -hydroxycarboxylic acid directly (Compound (V) Y=CO₂H, n=1, R^{3'}=OH)..

Compounds of formula (V) substituted by R³ = OH may be prepared by cycloaddition chemistry. A Diels Alder reaction between acrylamide and acetoxy butadiene gives (1). Elimination of acetic acid and hetero Diels Alder reaction with an *insitu* generated acyl nitroso compound gives the tricyclic hydroxylamine product (3). The NO bond is cleaved, for example by molybdenum hexacarbonyl or by other methods known in the literature.

Alternatively an ester of acrylic acid can be used which can subsequently be deprotected and converted to the amide by standard procedures:

OAC

$$CO_2R$$
 DO_2R
 DO_2R

10

15

20

25

30

35

The Boc group in the acyl nitroso component may be replaced by another protecting group which may be subsequently removed during the synthesis and replaced by Boc. The nitroso acyl group and/or the acylate ester moiety may be homochiral allowing the synthesis of individual enantiomers.

R⁴-halides and R⁴-W derivatives, acyl derivatives or aldehydes are commercially available or are prepared conventionally. The aldehydes may be prepared by partial reduction of the corresponding ester with lithium aluminium hydride or diisobutylaluminium hydride or more preferably by reduction to the alcohol, with lithium aluminium hydride or sodium borohydride (see Reductions by the Alumino- and Borohydrides in Organic Synthesis, 2nd ed., Wiley, N.Y., 1997; JOC, 3197, 1984; Org. Synth. Coll., 102, 1990; 136, 1998; JOC, 4260, 1990; TL, 995, 1988; JOC, 1721, 1999; Liebigs Ann./Recl., 2385, 1997; JOC, 5486, 1987), followed by oxidation to the aldehyde with manganese (II) dioxide. The aldehydes may also be prepared from carboxylic acids in two stages by conversion to a mixed anhydride for example by reaction with isobutyl chloroformate followed by reduction with sodium borohydride (R. J. Alabaster et al., Synthesis, 598, 1989) to give the hydroxymethyl substituted heteroaromatic or aromatic and then oxidation with a standard oxidising agent such as pyridinium dichromate or manganese (II) dioxide. Acyl derivatives may be prepared by activation of the corresponding ester. R⁴-halides such as bromides may be prepared from the alcohol R⁴OH by reaction with phosphorus tribromide in dichloromethane/triethylamine. Where $\rm X^{2a}$ is CO and $\rm X^{3a}$ is $\rm NR^{13a}$ the $\rm R^{4}$ -halide may be prepared by coupling an $\rm X^{4a}$ -NH₂ amine and bromoacetyl bromide. R⁴-W derivatives such as methanesulphonyl derivatives may be prepared from the alcohol R⁴OH by reaction with methane sulphonyl chloride. The leaving group W may be converted to another leaving group W, e.g. a halogen group, by conventional methods. Alternatively the aldehyde R⁵₂CHO and sulphonic acid derivative R⁵₂SO₂W may be generated by treatment of the R⁵₂H heterocycle with suitable reagents. For example benzoxazinones, or more preferably their N-methylated derivatives can be formylated with hexamine in either trifluoroacetic acid or methanesulfonic acid, in a modified Duff procedure [O. I. Petrov et al. Collect. Czech. Chem. Commun. 62, 494-497 (1997)]. 4-Methyl-4H-benzo[1,4]oxazin-3-one may also be formylated using dichloromethyl methyl ether and aluminium chloride giving exclusively the 6-formyl derivative.

Reaction of a R⁵₂H heterocycle with chlorosulphonic acid gives the sulphonic acid derivative (by methods analogous to Techer *et. al.*, *C.R.Hebd. Seances Acad. Sci. Ser. C*; **270**, 1601, 1970).

The aldehyde R⁵₂CHO may be generated by conversion of an R⁵₂halogen or R⁵₂trifluoromethane sulphonyloxy derivative into an olefin with subsequent oxidative

10

15

20

25

30

35

cleavage by standard methods. For example, reaction of a bromo derivative under palladium catalysis with trans-2-phenylboronic acid under palladium catalysis affords a styrene derivative which upon ozonolysis affords the required R⁵₂CHO (Stephenson, G. R., Adv. Asymmetric Synth. (1996), 275-298. Publisher: Chapman & Hall, London).

Where R⁵₂ is an optionally substituted benzoimidazol-2-yl group, the compound of formula (V) where R⁴ is R⁴ may be obtained by converting a R⁴ cyanomethyl group with partial hydrolysis to give the 2-ethoxycarbonimidoylethyl group which can then be condensed with an appropriately substituted 1,2-diaminobenzene to give the required benzoimidazol-2-yl group.

R⁵₂H heterocycles are commercially available or may be prepared by conventional methods. For example where a benzoxazinone is required, a nitrophenol may be alkylated with for example ethyl bromoacetate and the resulting nitro ester reduced with Fe in acetic acid (alternatively Zn/AcOH/HCl or H₂ Pd/C or H₂ Raney Ni). The resulting amine will undergo spontaneous cyclisation to the required benzoxazinone. Alternatively a nitrophenol may be reduced to the aminophenol, which is reacted with chloroacetyl chloride [method of X. Huang and C. Chan, Synthesis 851 (1994)] or ethyl bromoacetate in DMSO [method of Z. Moussavi et al. Eur. J. Med. Chim. Ther. 24, 55-60 (1989)]. The same general routes can be applied to prepare benzothiazinones [See for example F. Eiden and F. Meinel, Arch. Pharm. 312, 302-312 (1979), H. Fenner and R. Grauert Liebigs. Ann. Chem. 193-313 (1978)]]. A variety of routes are available to prepare aza analogues of benzothiazinones via the key corresponding aldehydes. For instance, 2-oxo-2,3-dihydro-1*H*-pyrido[3,4-b][1,4]thiazine-7-carbaldehyde may be accessed from 5-fluoro-2-picoline (E. J. Blanz, F. A. French, J. R. DoAmaral and D. A. French, J. Med. Chem. 1970, 13, 1124-1130) by constructing the thiazinone ring onto the pyridyl ring then functionalising the methyl substituent, as described in the Examples. The dioxin analogue of this aza substitution patern, 2,3-dihydro-[1,4]dioxino[2,3c]pyridine-7-carbaldehyde is accessible from Kojic acid by aminolysis from pyrone to pyridone then annelating the dioxin ring, again as described in the subsequent experimental data. Other aza substitution patterns with pyridothiazin-3-one, pyridooxazin-3-one, and pyridodioxin ring systems are also accessible, again as descibed in the Examples. Ortho-aminothiophenols may be conveniently prepared and reacted as their zinc complexes [see for example V. Taneja et al Chem. Ind. 187 (1984)]. Benzoxazolones may be prepared from the corresponding aminophenol by reaction with carbonyl diimidazole, phosgene or triphosgene. Reaction of benzoxazolones with diphosporus pentasulfide affords the corresponding 2-thione. Thiazines and oxazines can be prepared by reduction of the corresponding thiazinone or oxazinone with a reducing agent such as lithium aluminium hydride.

10

15

20

25

30

35

The amines R²'R⁴'NH are available commercially or prepared conventionally. For example amines may be prepared from a bromo derivative by reaction with sodium azide in dimethylformamide (DMF), followed by hydrogenation of the azidomethyl derivative over palladium-carbon. An alternative method is to use potassium phthalimide/DMF to give the phthalimidomethyl derivative, followed by reaction with hydrazine in DCM to liberate the primary amine.

Amines where X^{2a} is CO and X^{3a} is NR^{13a} may be prepared by reacting an N-protected glycine derivative HO₂C-X^{1a}-NH₂ with X^{4a}-NH₂ by conventional coupling using eg EDC.

Conversions of R^{1a'}, R^{1'}, R^{2'}, R^{3'} and R^{4'} may be carried out on the intermediates of formulae (IV) and (V) prior to their reaction to produce compounds of formula (I) in the same way as described above for conversions after their reaction.

The pharmaceutical compositions of the invention include those in a form adapted for oral, topical or parenteral use and may be used for the treatment of bacterial infection in mammals including humans.

The antibiotic compounds according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other antibiotics.

The composition may be formulated for administration by any route, such as oral, topical or parenteral. The compositions may be in the form of tablets, capsules, powders, granules, lozenges, creams or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

The topical formulations of the present invention may be presented as, for instance, ointments, creams or lotions, eye ointments and eye or ear drops, impregnated dressings and aerosols, and may contain appropriate conventional additives such as preservatives, solvents to assist drug penetration and emollients in ointments and creams.

The formulations may also contain compatible conventional carriers, such as cream or ointment bases and ethanol or oleyl alcohol for lotions. Such carriers may be present as from about 1% up to about 98% of the formulation. More usually they will form up to about 80% of the formulation.

Tablets and capsules for oral administration may be in unit dose presentation form, and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrollidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate, talc, polyethylene glycol or silica; disintegrants, for example potato starch; or acceptable wetting agents such as sodium lauryl sulphate. The tablets may be coated according to methods well known in normal pharmaceutical

10

15

20

25

30

35

practice. Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives, such as suspending agents, for example sorbitol, methyl cellulose, glucose syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, oily esters such as glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and, if desired, conventional flavouring or colouring agents.

Suppositories will contain conventional suppository bases, e.g. cocoa-butter or other glyceride.

For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, water being preferred. The compound, depending on the vehicle and concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilised before filling into a suitable vial or ampoule and sealing.

Advantageously, agents such as a local anaesthetic, preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. The dry lyophilized powder is then sealed in the vial and an accompanying vial of water for injection may be supplied to reconstitute the liquid prior to use. Parenteral suspensions are prepared in substantially the same manner except that the compound is suspended in the vehicle instead of being dissolved and sterilization cannot be accomplished by filtration. The compound can be sterilised by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.

The compositions may contain from 0.1% by weight, preferably from 10-60% by weight, of the active material, depending on the method of administration. Where the compositions comprise dosage units, each unit will preferably contain from 50-500 mg of the active ingredient. The dosage as employed for adult human treatment will preferably range from 100 to 3000 mg per day, for instance 1500 mg per day depending on the route and frequency of administration. Such a dosage corresponds to 1.5 to 50 mg/kg per day. Suitably the dosage is from 5 to 20 mg/kg per day.

No toxicological effects are indicated when a compound of formula (I) or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof is administered in the above-mentioned dosage range.

The compound of formula (I) may be the sole therapeutic agent in the compositions of the invention or a combination with other antibiotics or with a β -lactamase inhibitor may be employed.

Compounds of formula (I) are active against a wide range of organisms including both Gram-negative and Gram-positive organisms.

The following examples illustrate the preparation of certain compounds of formula (I) and the activity of certain compounds of formula (I) against various bacterial organisms.

EXAMPLES

5

10

15

20

25

30

35

General Procedure for Reductive Alkylation

The amine (0.32 mmol) under argon in MeOH (10 mL) and DMF (10 mL) was treated with aldehyde (0.32 mmol), and 3A molecular sieves (250 mg), followed by AcOH (1 mL). (Polystyrylmethyl)trimethylammonium cyanoborohydride (0.64 mmol) was added after 2 h. Once the reaction had gone to completion the resin was removed by filtration, and the solvent removed *in vacuo*. The residue was purified by flash column chromatography (silica gel, DCM:MeOH/NH₃ (2M) 0-12%) to give the **title compound**.

Intermediate 1

1,1,1-Trifluoromethanesulfonic acid 6-methoxy-[1,5]naphthyridin-4-yl ester

(a) 4-Hydroxy-6-methoxy-[1,5]-naphthyridine

5-Amino-2-methoxypyridine (55 g, 0.44 mol) in methanol (1000 mL) with methyl propiolate (40 mL, 0.44 mol) was stirred for 48 hours, then evaporated and the product purified by chromatography on silica gel (dichloromethane) followed by recrystallisation from dichloromethane-hexane (44.6 g, 48%).

The unsaturated ester (10.5g, 0.05 mol) in warm Dowtherm A (50 mL) was added over 3 minutes to refluxing Dowtherm A, and after a further 20 minutes at reflux the mixture was cooled and poured into diethyl ether. The precipitate was filtered to give a solid (6.26 g, 70%).

(b) 1,1,1-Trifluoro-methanesulfonic acid 6-methoxy-[1,5]naphthyridin-4-yl ester

4-Hydroxy-6-methoxy-[1,5]-naphthyridine (10 g, 0.057 mol) in dichloromethane (200 mL) containing 2,6-lutidine (9.94 mL, 0.086 mol) and 4-dimethylaminopyridine (0.07 g, 0.0057 mol) was cooled in ice and treated with trifluoromethanesulfonic anhydride (10.5 mL, 0.063 mol). After stirring for 2.5 h the mixture was washed with

saturated ammonium chloride solution, dried, evaporated and purified on silica gel (dichloromethane) to give a solid (13.2 g).

Intermediate 2

5

10

15

20

25

30

35

3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazine-6-carboxaldehyde

(a) Methyl 3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazine-6-carboxylate

A solution of ethyl 2-mercaptoacetate (1.473 mL) in DMF (48 mL) was ice-cooled and treated with sodium hydride (540 mg of a 60% dispersion in oil). After 1 hour methyl 6-amino-5-bromopyridine-2-carboxylate (3 g) (T.R. Kelly and F. Lang, *J. Org. Chem. 61*, 1996, 4623-4633) was added and the mixture stirred for 16 hours at room temperature. The solution was diluted with EtOAc (1 litre), washed with water (3 x 300 mL), dried and evaporated to about 10 mL. The white solid was filtered off and washed with a little EtOAc to afford the title compound (0.95 g). MS (APCI-) m/z 223 ([M-H]-, 100%)

(b) 3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazine-6-carboxylic acid

A solution of methyl 3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazine-6-carboxylate (788 mg) in dioxan (120 mL)/water (30 mL) was treated dropwise over 2 h with 0.5M NaOH solution (8 mL) and stirred overnight. After evaporation to approx. 3 mL, water (5 mL) was added and 2N HCl to pH4. The precipitated solid was filtered off, washed with a small volume of water and dried under vacuum to give the **title compound** as a solid (636 mg).

MS (APCI-) *m/z* 209 ([M-H]-, 5%), 165([M-COOH]-, 100%)

(c) 6-Hydroxymethyl-3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazine

A solution of 3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazine-6-carboxylic acid (500 mg) in THF (24 mL) with triethylamine (0.396 mL) was cooled to -10°C and isobutyl chloroformate (0.339 mL) added. After 20 min the suspension was filtered through kieselguhr into an ice-cooled solution of sodium borohydride (272 mg) in water (8 mL), the mixture stirred 30 min and the pH reduced to 7 with dilute HCl. The solvent was evaporated and the residue triturated under water. The product was filtered and dried under vacuum to give the **title compound** as a white solid (346 mg). MS (APCI-) *m/z* 195 ([M-H]-, 50%), 165(100%)

(d) $3-0x_0-3,4-dihydro-2H$ -pyrido[3,2-b][1,4]thiazine-6-carboxaldehyde

A solution of 6-hydroxymethyl-3-oxo-3,4-dihydro-2*H*-pyrido[3,2-*b*][1,4]thiazine (330 mg) in dichloromethane (30 mL)/THF (30 mL) was treated with manganese dioxide

(730 mg) and stirred at room temperature. Further manganese dioxide was added after 1 h (730 mg) and 16 h (300 mg). After a total of 20 h the mixture was filtered through kieselguhr and the filtrate evaporated. The product was triturated with EtOAc/hexane (1:1) and collected to give the **title compound** as a solid (180 mg). MS (APCI⁻) m/z 195 ([M-H]⁻, 95%), 165 (100%)

Intermediate 3

5

10

15

20

25

30

35

3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine-6-carboxaldehyde

(a) 2-Bromo-5-hydroxy-6-nitropyridine

3-Hydroxy-2-nitropyridine (20 g, 0.143 mol) was dissolved in methanol (400 mL) and a solution of 25% sodium methoxide in methanol (33 mL, 0.13 mol) was added at room temperature. The mixture was stirred for 30 min, then was cooled to 0 °C, and bromine (7.2 mL, 0.14 mol) was added slowly. The reaction was then stirred at 0 °C for 30 min, then was quenched with glacial AcOH (2.5 mL). The solvent was removed *in vacuo* to afford material (30 g, 96%), which was used without further purification. MS (ES) m/z 219.0 (M + H)⁺.

(b) Ethyl (6-bromo-2-nitro-pyridin-3-yloxy)acetate

2-Bromo-5-hydroxy-6-nitropyridine (30 g, 0.14 mol) was suspended in acetone (200 mL), and potassium carbonate (39 g, 0.28 mol) was added, followed by ethyl bromoacetate (15.7 ml, 0.14 mol). The reaction was heated at reflux for 10 h, then was cooled to room temperature and diluted with Et₂O. The precipitate was removed by suction filtration, and the filtrate was concentrated *in vacuo* to afford material (38 g, 89%), which was used without further purification. MS (ES) m/z 305.0 (M+H)⁺.

(c) 6-Bromo-4H-pyrido[3,2-b][1,4]oxazin-3-one

Ethyl (6-bromo-2-nitro-pyridin-3-yloxy) acetate (38 g, 0.125 mol) was dissolved in glacial AcOH (150 mL), and iron powder (20 g, 0.36 mol) was added. The mixture was mechanically stirred and heated at 90 °C for 5 h, then was cooled to room temperature and diluted with EtOAc (300 mL). The mixture was filtered through a pad of silica gel and the filtrate was concentrated *in vacuo* and the residue recrystallized from MeOH (15 g, 52%). MS (ES) m/z 229.0 (M + H)⁺.

(d) 6-((E)-Styryl)-4H-pyrido[3,2-b][1,4] oxazin-3-one

6-Bromo-4*H*-pyrido[3,2-b][1,4]oxazin-3-one (6.0 g, 26.3 mmol) and *trans*-2-phenylvinylboronic acid (3.9 g, 26.3 mmol) were dissolved in 1,4-dioxane (150 mL) and

15

25

30

the solution was degassed with argon. (Ph₃P)₄Pd (230 mg, 0.2 mmol) was added, followed by a solution of potassium carbonate (6.9 g, 50 mmol) in H₂O (20 mL). The reaction was heated at reflux under argon overnight, then was cooled to room temperature and diluted with EtOAc (200 mL). The solution was washed sequentially with H₂O and brine, dried (Na₂SO₄), and concentrated *in vacuo*. The solid residue was purified by flash chromatography on silica gel (5-10% EtOAc/CHCl₃) to afford a solid (2.5 g, 38%). MS (ES) m/z 253.0 (M + H)⁺.

(e) 3-Oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazine-6-carboxaldehyde

6-((E)-Styryl)-4H-pyrido[3,2-b][1,4]oxazin-3-one (1.2 g, 4.8 mmol) was dissolved in DCM (200 mL) and the solution was cooled to -78 °C. Ozone was bubbled through the solution with stirring until a pale blue colour appeared, then the excess ozone was removed by bubbling oxygen through the solution for 15 min. Dimethylsulfide (1.76 mL, 24 mmol) was added to the solution, and the reaction was stirred at -78 °C for 3 h, then at room temperature overnight. The solvent was removed *in vacuo*, and the residue was triturated with Et₂O (50 mL). The collected solid was washed with additional Et₂O and dried to afford a solid (700 mg, 82%). MS (ES) m/z 179.0 (M + H)⁺.

Intermediate 4

20 (1R*,4S*)-4-Amino-1-hydroxy-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide

(a) Acetic acid 6-carbamoyl-cyclohex-2-enyl ester

1-Acetoxy-1,3-butadiene (20.79 g, 185 mmol) was dissolved in toluene (21 mL). To this was added acrylamide (11.98 g, 168 mmol) and hydroquinone (111 mg). The colourless solution was heated at 110°C for 116 h under argon. More 1-acetoxy-1,3-butadiene (5.67 g, 51 mmol) was then added, and heating continued for a further 24 h. The solution was cooled then DCM added. This solution was purified by Biotage 75 chromatography twice on silica gel (2 x 400 g) (DCM:MeOH 0-3%) to give the **title compound** as a viscous oil (21.76 g, 119 mmol, 70%), which solidified on standing; δH (CDCl₃) 1.83-2.33 (7H, m), 2.51-2.66 (1H, m), 5.54-6.05 (5H, m).

(b) Cyclohexa-1,3-dienecarboxylic acid amide

10

15

20

25

30

35

To acetic acid 6-carbamoyl-cyclohex-2-enyl ester (4.00 g, 21.8 mmol) in dry THF (75 mL) was added, over 20 min, potassium *tert*-butoxide in THF (1 M, 24 mL, 24 mmol). After stirring for 2.8 h, EtOAc (300 mL) was added and the solution washed with water (20 mL). The organic phase was dried (MgSO₄), filtered, and concentrated *in vacuo* to give the **title compound** as a brown oil (>100%). This was used immediately without further purification.

(c) 1-Carbamoyl-2-oxa-3-aza-bicyclo[2.2.2]oct-5-ene-3-carboxylic acid *tert*-butyl ester

To the crude cyclohexa-1,3-dienecarboxylic acid amide (max 21.8 mmol) in DCM (160 mL) was added *N*-hydroxy carbamic acid *tert*-butyl ester (3.05 g, 22.9 mmol). This solution was cooled in an ice bath then a solution of tetrabutylammonium periodate (9.93 g, 22.9 mmol) in DCM (30 mL) was added dropwise. After stirring for a further 17 h the mixture was reduced to a small volume *in vacuo* then diluted with EtOAc. The mixture was then washed with water, aqueous sodium bisulphite (x2), and brine, dried (MgSO₄) and concentrated *in vacuo* to give a residue which was purified by flash column chromatography (silica gel, Pet 40-60:EtOAc 2-60%), to give the **title compound** as a white solid (1.77 g, 6.96 mmol, 32%); δH (CDCl₃) 1.47 (9H s), 1.52-1.62(1H, m), 1.74-1.84 (1H, m), 2.12-2.20 (1H, m), 4.73-4.78 (1H, m), 5.48 (1H, br s), 6.57-6.62 (3H, m); *m/z* (ES+) 277 (MNa⁺, 100%).

(d) ((1R*,4S*)-4-Carbamoyl-4-hydroxy-cyclohex-2-enyl)-carbamic acid tert-butyl ester

To 1-carbamoyl-2-oxa-3-aza-bicyclo[2.2.2]oct-5-ene-3-carboxylic acid tert-butyl ester (998 mg, 3.93 mmol) in MeCN:H₂O (15:1) (70 mL) was added molybdenum hexacarbonyl (2.07 g, 7.85 mmol) and the mixture heated to reflux. After 14 h the reaction mixture was concentrated *in vacuo* and the residue was purified by flash column chromatography (silica gel, DCM:MeOH 0-10%), to give the **title compound** as a white solid (454 mg, 1.77 mmol, 45%); δ H (CD₃OD) 1.44 (9H s), 1.60-1.71 (1H, m), 1.77-1.82 (1H, m), 1.91-1.98 (1H, m), 2.05-2.12 (1H, m), 4.03-4.07 (1H, m), 5.62-5.65 (1H, m), 5.81-5.84 (1H, m); m/z (ES+) 279 (MNa⁺, 100%).

(e) [(1R*,4S*)-4-Hydroxy-4-(6-methoxy-[1,5]naphthyridin-4-ylcarbamoyl)-cyclohex-2-enyl]-carbamic acid tert-butyl ester

A mixture of ((1R*,4S*)-4-carbamoyl-4-hydroxy-cyclohex-2-enyl)-carbamic acid tert-butyl ester (427 mg, 1.67 mmol), cesium carbonate (689 mg, 2.11 mmol), tris(dibenzylideneacetone)dipalladium(0) (30.5 mg, 0.033 mmol), and rac-2,2'-

10

15

20

25

30

bis(diphenylphosphino)-1,1'-binaphthyl (62 mg, 0.1 mmol) in dry 1,4-dioxane (22 mL) under argon, was sonicated for 20 minutes then 1,1,1-trifluoromethanesulfonic acid 6-methoxy-[1,5]naphthyridin-4-yl ester **Intermediate 1** (514 mg, 1.67 mmol) added, and the mixture stirred and heated under argon at 60°C. After 15 h the mixture was cooled, filtered, and the filtrate concentrated *in vacuo* to give a residue which was purified by flash column chromatography (silica gel, DCM:MeOH 0-5%), to give the **title compound** as a white solid (364 mg, 0.877 mmol, 53%); δH (CD₃OD) 1.46 (9H s), 1.71-1.81 (1H, m), 1.91-1.97 (1H, m), 2.02-2.07 (1H, m), 2.22-2.29 (1H, m), 4.10-4.16 (1H, m), 4.14 (3H, s), 5.75-5.79 (1H, m), 5.94-5.96 (1H, m), 7.28 (1H, d), 8.21 (1H, d), 8.51 (1H, d), 8.64 (1H, d); *m/z* (ES+) 415 (MH⁺, 100%).

(f) (1R*,4S*)-4-Amino-1-hydroxy-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide

[(1R*,4S*)-4-hydroxy-4-(6-methoxy-[1,5]naphthyridin-4-ylcarbamoyl)-cyclohex-2-enyl]-carbamic acid *tert*-butyl ester (362 mg, 0.873 mmol) in dry DCM (30 mL) was treated with trifluoroacetic acid (10 mL). After 30 min the solvent was removed *in vacuo* and the residue purified by flash column chromatography (silica gel, DCM:MeOH/NH₃ (2M) 0-10%) to give the **title compound** as a white solid (242 mg, 0.771 mmol, 88%); $\delta_{\rm H}$ (CD₃OD) 1.61-1.70 (1H, m), 1.91-1.98 (1H, m), 2.02-2.08 (1H, m), 2.19-2.27 (1H, m), 3.41-3.45 (1H, m), 4.14 (3H, s), 5.72-5.76 (1H, m), 5,97-6.01 (1H, m), 7.28 (1H, d), 8.20 (1H, d), 8.51 (1H, d), 8.64 (1H, d); m/z (ES+) 315 (MH⁺, 100%).

Example 1

(1R*,4S*)-1-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl)-amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide dihydrochloride

Prepared by the General Procedure for Reductive Alkylation from Intermediate 2 and Intermediate 4 to give the free base of the title compound in 77% yield; $\delta_{\rm H}$ (CDCl₃/CD₃OD) 1.68-1.79 (1H, m), 1.95-2.02 (1H, m), 2.07-2.13 (1H, m), 2.19-2.26 (1H, m), 3.32-3.38 (1H, m), 3.51 (2H, s), 3.91 (2H, s), 4.14 (3H, s), 5.80-5.83 (1H, m), 6.09-6.11 (1H, m), 7.04 (1H, d), 7.25 (1H, d), 7.67 (1H, d), 8.18 (1H, d), 8.50 (1H, d), 8.62 (1H, d); m/z (ES+) 493 (MH⁺, 100%).

This material as a solution in DCM/MeOH 1:1 was treated with 4M HCl in 1,4-dioxane (0.5 mL), evaporated to dryness, then dried under vacuum to provide the title compound as a white solid.

5 Example 2

15

(1R*,4S*)-1-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl)-amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide dihydrochloride

10 Prepared by the General Procedure for Reductive Alkylation from

Intermediate 3 and Intermediate 4 on a 0.305 mmol scale to give the free base of the title compound in 72% yield; $\delta_{\rm H}$ (CDCl₃/CD₃OD) 1.67-1.77 (1H, m), 1.98-2.02 (1H, m), 2.08-2.13 (1H, m), 2.21-2.28 (1H, m), 3.34-3.38 (1H, m), 3.88 (2H, s), 4.15 (3H, s), 4.62 (2H, s), 5.81-5.85 (1H, m), 6.07-6.09 (1H, m), 6.96 (1H, d), 7.23 (1H, d), 7.26 (1H, d), 8.19 (1H, d), 8.52 (1H, d), 8.63 (1H, d); m/z (ES+) 477 (MH⁺, 100%).

This material as a solution in DCM/MeOH 1:1 was treated with 4M HCl in 1,4-dioxane (0.5 mL), evaporated to dryness, then dried under vacuum to provide the **title compound** as a white solid.

Biological Activity

The MIC (μg/ml) of test compounds against various organisms was determined including: S. epidermidis CL7, S. aureus WCUH29, S. pneumoniae 1629, S. pyogenes CN10, H. influenzae ATCC 49247, E.faecalis 2, M. catarrhalis Ravasio, E. coli 7623. Examples 1 and 2 have an MIC <1 μg/ml versus all these organisms.

Claims

1. A compound of formula (I) or a pharmaceutically acceptable derivative thereof:

$$R^{1} \xrightarrow{Z^{2}} Z^{3} \xrightarrow{N} Z^{4}$$

(I)

wherein:

5

10

15

20

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are CH, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

R¹ and R¹a are independently selected from hydrogen; hydroxy; (C¹-6) alkoxy optionally substituted by (C¹-6)alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C¹-6)alkyl, acyl or (C¹-6)alkylsulphonyl groups, CONH2, hydroxy, (C¹-6)alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C¹-6)alkylsulphonyloxy; (C¹-6)alkoxy-substituted (C¹-6)alkyl; halogen; (C¹-6)alkyl; (C¹-6)alkylthio; trifluromethyl; nitro; azido; acyl; acyloxy; acylthio; (C¹-6)alkylsulphonyl; (C¹-6)alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C¹-6)alkyl, acyl or (C¹-6)alkylsulphonyl groups, or when Z¹ is CR¹a, R¹ and R¹a may together represent (C¹-2)alkylenedioxy, provided that when Z¹, Z², Z³, Z⁴ and Z⁵ are CR¹a or CH, then R¹ is not hydrogen;

R² is hydrogen, or (C₁₋₄)alkyl or (C₂₋₄)alkenyl optionally substituted with 1 to 3 groups selected from:
amino optionally substituted by one or two (C₁₋₄)alkyl groups; carboxy; (C₁₋₄)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₄)alkyl, hydroxy(C₁₋₄)alkyl, aminocarbonyl(C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C₁₋₄)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₄)alkenylsulphonyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl or (C₂₋₄)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-

30

35

ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4-oxadiazol-3-yl; halogen; (C₁₋₄)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl, (C₂₋₄)alkenylcarbonyl; oxo; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or (C₁₋₄)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

R³ ishydroxy optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkenyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylcarbonyl or (C₂₋₆)alkenylcarbonyl;

R¹⁰ is selected from (C₁₋₄)alkyl and (C₂₋₄)alkenyl either of which may be optionally substituted by a group R¹² as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, (C₁₋₆)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₆)alkenylsulphonyl, (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl or (C₂₋₆)alkenylcarbonyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₂₋₆)alkenylsulphonyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; and (C₂₋₆)alkenylcarbonyl;

R⁴ is a group -CH₂-R⁵₁ in which R⁵₁ is selected from:

(C₄₋₈)alkyl; hydroxy(C₄₋₈)alkyl; (C₁₋₄)alkoxy(C₄₋₈)alkyl; (C₁₋₆)alkoxy- or (C₁₋₆)alkanoyloxy(C₄₋₈)alkyl; (C₃₋₈)cycloalkyl(C₄₋₈)alkyl; hydroxy-, (C₁₋₆)alkoxy- or (C₁₋₆)alkanoyloxy-(C₃₋₈)cycloalkyl(C₄₋₈)alkyl; cyano(C₄₋₈)alkyl; (C₄₋₈)alkenyl; (C₄₋₈)alkynyl; tetrahydrofuryl; mono- or di-(C₁₋₆)alkylamino(C₄₋₈)alkyl; acylamino(C₄₋₈)alkyl; (C₁₋₆)alkyl- or acyl-aminocarbonyl(C₄₋₈)alkyl; mono- or di- (C₁₋₆)alkylamino(hydroxy) (C₄₋₈)alkyl; or

 R^4 is a group $-U-R^5_2$ where R^5_2 is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

containing up to four heteroatoms in each ring in which at least one of rings (a) and (b) is aromatic;

10

15

20

25

35

 X^1 is C or N when part of an aromatic ring or CR^{14} when part of a non aromatic ring;

 X^2 is N, NR¹³, O, S(O)_x, CO or CR¹⁴ when part of an aromatic or non-aromatic ring or may in addition be CR¹⁴R¹⁵ when part of a non aromatic ring;

X³ and X⁵ are independently N or C;

 Y^1 is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_X, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring,

 Y^2 is a 2 to 6 atom linker group, each atom of Y^2 being independently selected from N, NR¹³, O, S(O)_x, CO and CR¹⁴ when part of an aromatic or non-aromatic ring or may additionally be CR¹⁴R¹⁵ when part of a non aromatic ring; each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁₋₄)alkylthio; halo; carboxy(C₁₋₄)alkyl; halo(C₁₋₄)alkoxy; halo(C₁₋₄)alkyl; (C₁₋₄)alkyl; (C₂₋₄)alkenyl; (C₁₋₄)alkoxycarbonyl; formyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenylcarbonyl; (C₁₋₄)alkylcarbonyloxy; (C₁₋₄)alkoxycarbonyl(C₁₋₄)alkyl; hydroxy; hydroxy(C₁₋₄)alkyl; mercapto(C₁₋₄)alkyl; (C₁₋₄)alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; or aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl; aryl(C₁₋₄)alkyl; aryl(C₁₋₄)alkoxy;

each R^{13} is independently H; trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, carboxy, (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; arylcarbonyl; heteroarylcarbonyl; (C_{1-4}) alkoxycarbonyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

each x is independently 0, 1 or 2;

30 U is CO, SO₂ or CH₂; or

 R^4 is a group - X^{1a} - X^{2a} - X^{3a} - X^{4a} in which:

X^{1a} is CH₂, CO or SO₂;

X2a is CR14aR15a;

 X^{3a} is NR^{13a} , O, S, SO_2 or $CR^{14a}R^{15a}$; wherein:

each of R^{14a} and R^{15a} is independently selected from the groups listed above for R^{14} and R^{15} , provided that R^{14a} and R^{15a} on the same carbon atom are not both selected from optionally substituted hydroxy and optionally substituted amino; or

10

15

R^{14a} and R^{15a} together represent oxo;

 R^{13a} is hydrogen; trifluoromethyl; (C_{1-6}) alkyl; (C_{2-6}) alkenyl; (C_{1-6}) alkoxycarbonyl; (C_{1-6}) alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenyloxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{2-6}) alkenyl and optionally further substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl; or

two R^{14a} groups or an R^{13a} and an R^{14a} group on adjacent atoms together represent a bond and the remaining R^{13a} , R^{14a} and R^{15a} groups are as above defined; or two R^{14a} groups and two R^{15a} groups on adjacent atoms together represent bonds such that X^{2a} and X^{3a} is triple bonded;

 X^{4a} is phenyl or C or N linked monocyclic aromatic 5- or 6-membered heterocycle containing up to four heteroatoms selected from O, S and N and: optionally C-substituted by up to three groups selected from (C_{1-4}) alkylthio; halo; carboxy (C_{1-4}) alkyl; halo (C_{1-4}) alkoxy; halo (C_{1-4}) alkyl; (C_{1-4}) alkyl; (C_{2-4}) alkenyl; (C_{2-4}) alkenyl; (C_{2-4}) alkenyl; (C_{2-4}) alkenylcarbonyl; (C_{1-4}) alkylcarbonyloxy; (C_{1-4}) alkoxycarbonyl (C_{1-4}) alkyl; hydroxy; hydroxy (C_{1-4}) alkyl; mercapto (C_{1-4}) alkyl; (C_{1-4}) alkoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in (C_{2-4}) alkylsulphonyl; (C_{2-4}) alkenylsulphonyl; or aminosulphonyl wherein the amino group is

- optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl, aryl(C₁₋₄)alkyl or aryl(C₁₋₄)alkoxy; and optionally N substituted by trifluoromethyl; (C₁₋₄)alkyl optionally substituted by hydroxy, (C₁₋₆)alkoxy, (C₁₋₆)alkylthio, halo or trifluoromethyl; (C₂₋₄)alkenyl; aryl(C₁₋₄)alkyl; (C₁₋₄)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; formyl; (C₁₋
- 6)alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl, (C₂₋₄)alkenylcarbonyl, (C₁₋₄)alkyl or (C₂₋₄)alkenyl and optionally further substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;
- n is 0 or 1 and AB is $NR^{11}CO$, $CONR^{11}$, $CO-CR^8R^9$, CR^6R^7-CO , $O-CR^8R^9$, CR^6R^7-O , $NHR^{11}-CR^8R^9$, $CR^6R^7-NHR^{11}$, $NR^{11}SO_2$, $CR^6R^7-SO_2$ or $CR^6R^7-CR^8R^9$, provided that n=0, B is not NR^{11} , O or SO_2 , and provided that R^6 and R^7 , and R^8 and R^9 are not both optionally substituted hydroxy or amino;
- and wherein:
 each of R⁶, R⁷, R⁸ and R⁹ is independently selected from: H; (C₁₋₆)alkoxy; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋₆)

15

30

35

6)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in \mathbb{R}^3 ; (C₁₋₆)alkylsulphonyl; (C₂₋₆)alkenylsulphonyl; or (C₁₋₆)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl;

or R6 and R8 together represent a bond and R7 and R9 are as above defined;

in optionally substituted amino the amino group is optionally mono- or disubstituted by (C_{1-6}) alkoxycarbonyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcxycarbonyl, (C_{2-6}) alkenylcarbonyl, (C_{1-6}) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylsulphonyl, (C_{2-6}) alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

in optionally substituted aminocarbonyl the amino group is optionally substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl, (C_{2-6})alkenyl, (C_{1-6})alkylcarbonyl, (C_{1-6})alkylcarbonyl or (C_{2-6})alkenylcarbonyl and optionally further substituted by (C_{1-6})alkyl, hydroxy(C_{1-6})alkyl, aminocarbonyl(C_{1-6})alkyl or (C_{2-6})alkenyl;

and each R¹¹ is independently H; trifluoromethyl; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenylcarbonyl, (C₁₋₆)alkyl or (C₂₋₆)alkenyl and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl;

- or where one of R^6 , R^7 , R^8 or R^9 contains a carboxy group they may together with R^3 form a cyclic ester linkage.
 - 2. A compound according to claim 1 wherein Z^5 is CH or N, Z^3 is CH or CF and Z^1 , Z^2 and Z^4 are each CH, or Z^1 is N, Z^3 is CH or CF and Z^2 , Z^4 and Z^5 are each CH
 - 3. A compound according to any preceding claim wherein \mathbb{R}^1 is methoxy or fluoro and \mathbb{R}^{1a} is H or when \mathbb{Z}^3 is \mathbb{CR}^{1a} it may be C-F.
 - 4. A compound according to any preceding claim wherein R² is hydrogen.
 - 5. A compound according to any preceding claim wherein R³ is hydroxy.

- 6. A compound according to any preceding claim wherein n is 0 and either A is CHOH or CH₂ and B is CH₂ or A is NH and B is CO, and AB(CH₂)_n and NR²R⁴ are trans.
- 5 7. A compound according to any preceding claim wherein R⁴ is -U-R⁵₂, the group U- is -CH₂-, and R⁵₂ is an aromatic heterocyclic ring (A) having 8-11 ring atoms including 2-4 heteroatoms of which at least one is N or NR¹³ or the heterocyclic ring (A) has ring (a) aromatic selected from optionally substituted benzo and pyrido and ring (b) non-aromatic and Y² has 3-5 atoms including NR¹³, O or S bonded to X⁵ and NHCO bonded via N to X³, or O bonded to X³.
 - 8. A compound according to any of claims 1 to 6 wherein R^{5}_{2} is selected from:
- A compound selected from:
 (1R*,4S*)-1-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-ylmethyl) amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide
 (1R*,4S*)-1-Hydroxy-4-[(3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-ylmethyl) amino]-cyclohex-2-enecarboxylic acid (6-methoxy-[1,5]naphthyridin-4-yl)-amide or a
 pharmaceutically acceptable derivative thereof.
- 20 10. A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment an effective amount of a compound according to claim 1.
- 11. The use of a compound according to claim 1, in the manufacture of a medicament for use in the treatment of bacterial infections in mammals.
 - 12. A pharmaceutical composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier.
- 30 13. A process for preparing a compound according to claim 1, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

wherein n is as defined in formula (I); $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, $R^{1'}$ and $R^{3'}$ are Z^{1} , Z^{2} , Z^{3} , Z^{4} , Z^{5} , R^{1} and R^{3} as defined in formula (I) or groups convertible thereto;

Q¹ is NR²'R⁴' or a group convertible thereto wherein R²' and R⁴' are R² and R⁴ as defined in formula (I) or groups convertible thereto and Q² is H or R³' or Q¹ and Q² together form an optionally protected oxo group; and X and Y may be the following combinations:

- one of X and Y is CO_2R^y and the other is $CH_2CO_2R^x$;
 - (ii) X is CHR^6R^7 and Y is $C(=0)R^9$;
 - (iii) X is $CR^7 = PR^{Z_3}$ and Y is $C(=O)R^9$;
 - (iv) X is $C(=0)R^7$ and Y is $CR^9=PR^Z_3$;
 - (v) one of Y and X is COW and the other is NHR¹¹;
- 10 (vi) X is NHR¹¹ and Y is C(=O)R⁸ or X is C(=O)R⁶ and Y is NHR¹¹;
 - (vii) X is NHR¹¹ and Y is CR⁸R⁹W;
 - (viii) X is W or OH and Y is CH2OH;
 - (ix) X is NHR¹¹ and Y is SO_2W ;
 - (x) one of X and Y is $(CH_2)_p$ -W and the other is $(CH_2)_q$ NHR¹¹, $(CH_2)_q$ OH,
- 15 $(CH_2)_qSH$ or $(CH_2)_qSCOR^x$ where p+q=1;
 - (xi) one of X and Y is OH and the other is -CH=N₂;
 - (xii) Xis W and Y is CONHR¹¹;
 - (xiii) X is W and Y is -C≡CH followed by selective reduction of the intermediate C≡C- group;
- in which W is a leaving group, e.g. halo or imidazolyl; R^{x} and R^{y} are (C_{1-6}) alkyl; R^{z} is aryl or (C_{1-6}) alkyl; A' and NR^{11} ' are A and NR^{11} as defined in formula (I), or groups convertible thereto; and oxirane is:

- wherein R⁶, R⁸ and R⁹ are as defined in formula (I); and thereafter optionally or as necessary converting Q¹ and Q² to NR²'R⁴'; converting A', Z¹', Z²', Z³', Z⁴', Z⁵', R¹', R²', R³', R⁴' and NR¹¹' to A, Z¹, Z², Z³, Z⁴, Z⁵, R¹, R², R³, R⁴ and NR¹¹'; converting A-B to other A-B, interconverting R^v, R^w, R¹, R², R³ and/or R⁴, and/or forming a pharmaceutically acceptable derivative thereof.
 - 14. A compound of formula (VII):

30

$$R^{1} \xrightarrow{Z^{2}} Z^{3} \xrightarrow{N} Z^{4}$$

wherein the variables are as described for formula (I) in claim 1.

Abstract

Medicaments

Cyclohexene derivatives and pharmaceutically acceptable derivatives thereof useful in methods of treatment of bacterial infections in mammals, particularly man.