Advanced Calculus

Name:

Exam II Review, October 9, 2023

Row and Seat:_____

1. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto 8 - \frac{1}{k}$ is bounded above.

Solution: We'll show that *F* is bounded above by 8. Let $k \in \mathbb{Z}_{\geq 1}$. We have

$$\begin{bmatrix} 8 - \frac{1}{k} < 8 \end{bmatrix} \equiv \begin{bmatrix} 0 < \frac{1}{k} \end{bmatrix},$$
$$\equiv [0 < 1],$$
$$\equiv \text{True.}$$

$$(add \frac{1}{k} - 8)$$

(multiply by k)

2. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{(-1)^k}{k^2}$ converges.

Solution: We'll show that

$$(\exists L \in \mathbf{R}) \ (\forall \varepsilon \in \mathbf{R}) \ (\exists N \in \mathbf{Z}) \ (\forall k \in \mathbf{Z}_{>N}) \ (|F_k - L| < \varepsilon) \ . \tag{1}$$

Choose L=0. Let $\varepsilon\in\mathbf{R}$. Choose $N=\lceil\sqrt{\frac{1}{\varepsilon}}\rceil$. Then $N\in\mathbf{Z}$ as required. Let $k\in\mathbf{Z}_{>N}$. We have

$$|F_k - L| = |\frac{(-1)^k}{k^2}|,$$

$$= \frac{1}{k^2},$$

$$< \frac{1}{N^2},$$

$$= \frac{1}{\lceil \sqrt{\frac{1}{\varepsilon}} \rceil^2},$$

$$\leq \frac{1}{\sqrt{\frac{1}{\varepsilon}}},$$

 $= \varepsilon$.

3. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \begin{cases} k! & k < 10^9 \\ \frac{(-1)^k}{k^2} & k \geq 10^9 \end{cases}$ converges.

Solution: This is just like the previous problem, but we need to choose $N = \max(10^9, \lceil \sqrt{\frac{1}{\varepsilon}} \rceil)$.

4. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto \frac{3k+1}{2k+8}$ converges.

- 5. Show that the sequence $F = k \in \mathbb{Z}_{\geq 1} \mapsto k 3\lfloor \frac{k}{3} \rfloor$ does not converge to 1.
- 6. Using the definition from the QRS, show that the interval $(-\infty, 8)$ is open.
- 7. Let $A \subset \mathbb{R}$. Using the definition of an open set in the QRS, write the undefintion of an open set. That is, complete the statement:

A is not open \equiv

- 8. Using the undefition from the previous question, show that the set $(-\infty, 8) \cup \{9\}$ is not open.
- 9. Let $A \subset \mathbf{R}$. Using the definition of a limit point in the QRS, write the undefintion of limit point. That is, complete the statement:

$$x \not\in \operatorname{lp}(A) \equiv$$

10. Use your undefinition from the previous question to show that $5 \notin lp(\mathbf{Z})$.

Solution:

11. Use the QRS defintion of a *boundary point* to show that $12 \in bp((0,12))$.

Solution: Let δ be a positive number, and let $x^* = \begin{cases} 12 - \delta/2 & \delta < 24 \\ 6 & \delta \ge 24 \end{cases}$. Then $x^* \in (12 - \delta, 12 + \delta)$ and $x^* \in (0, 12)$. Further we have $12 + \delta/2 \notin (0, 12)$ and $12 + \delta/2 \in (12 - \delta, 12 + \delta)$. **Alternative** For every positive number δ , we have $(0, 12) \cap B(12, \delta) = (\max\{0, 12 - \delta\}, 12) \ne \emptyset$. Further $(0, 12)^C \cap B(12, \delta) = (12, 12 + \delta) \ne \emptyset$.

12. Use the result of the previous question to show that (0, 12) is not closed.

Solution: A closed set contains all of its boundary points. We showed that 12 is a boundary point (0,12), but $12 \notin (0,12)$; therefore (0,12) is not closed.

- 13. Show that the set **R** is not compact by showing that there is an open cover of **R** that has no finite subcover.
- 14. Show that the set **Z** is not compact by showing that there is an open cover of **Z** that has no finite subcover.

Solution: Define $\mathscr{C} = \{(0,k) \subset \mathbb{R} \mid k \in \mathbb{N}. \text{ Since } \bigcap_{x \in \mathscr{C}} x = (0,\infty), \text{ the set } \mathscr{C} \text{ is a cover for } \mathbb{N}. \text{ Let } \mathscr{C}' \text{ be any finite subset of } \mathscr{C}. \text{ Then } \bigcap_{x \in \mathscr{C}'} x \text{ is bounded because it's a finite union of bounded sets. But } \mathbb{N} \text{ isn't bounded, so } \mathbb{N} \not\subset \bigcap_{x \in \mathscr{C}'} x; \text{ therefore } \mathbb{N} \text{ isn't compact.}$

15. Let *F* be a convergent sequence, and let $\alpha \in \mathbb{R}$. Show that αF is a convergent sequence.

Solution: Let $\varepsilon > 0$. Since f converges, there is a number L and $M \in \mathbb{N}$ such that for all k > M, we have $|f_k - L| < \frac{\varepsilon}{1 + |\alpha|}$. For all k > M, we have

$$|\alpha f_k - \alpha L| = |\alpha||f_k - L| < \frac{|\alpha|}{1 + |\alpha|} \varepsilon < \varepsilon.$$

16. Let F be a convergent sequence and suppose range $(F) \subset ([0,\infty))$. Show that \sqrt{F} converges. You may use the fact that $(\forall x, y \in \mathbf{R}_{\geq 0}) (|\sqrt{x} - \sqrt{y}| \leq \sqrt{|x - y|})$

Solution: Let $\varepsilon > 0$. Define $\delta = \min\{1, \varepsilon^2/5\}$. For $x \in B'(2, \delta)$, we have $x - 2 \in [-1, 1]$. Thus $x + 2 \in [3, 5]$; consequently $|x + 2| \le 5$. Again, for $x \in B'(2, \delta)$, we have

$$\begin{split} |\sqrt{1+x^2} - \sqrt{5}| &\leq \sqrt{|x^2-4|}, \\ &= \sqrt{|x+2|} \sqrt{|x-2|}, \\ &< \sqrt{5\delta}, \\ &< \varepsilon. \end{split}$$

- 17. For the sequence $F = k \in \mathbb{Z}_{\geq 0} \mapsto k 3\lfloor \frac{k}{3} \rfloor$, give three examples of a convergent subsequence.
- 18. Give an example of a sequence F and a real number α such that αF converges and F diverges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto k$ and choose $\alpha = 0$. Then F diverges but 0F converges.

19. Give an example of sequences F and G such that both F and G diverge, but F + G converges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto k$ and $F = k \in \mathbb{Z}_{\geq 0} \mapsto -k$. Both F and G diverge, but F + G converges.

20. Give an example of sequences *F* and *G* such that both *F* and *G* diverge, but *FG* converges.

Solution: Choose $F = k \in \mathbb{Z}_{\geq 0} \mapsto (-1)^k$ and $G = k \in \mathbb{Z}_{\geq 0} \mapsto (-1)^k$. Both F and G diverge, but $FG = k \in \mathbb{Z}_{\geq 0} \mapsto 1$ converges.

21. Show that $(\forall x, y \in \mathbf{R}_{\geq 0}) (\sqrt{x+y} \leq \sqrt{x} + \sqrt{y})$.

Solution: We begin by proving that $(\forall x, y \in \mathbf{R}_{\geq 0})(\sqrt{x^2 + y^2} \leq x + y)$. Let $x, y \in \mathbf{R}_{\geq 0}$. We have

$$\sqrt{x^2 + y^2} = \sqrt{x^2 + 2xyy^2 - 2xy},$$
 (add and subtract)
$$= \sqrt{(x + y)^2 - 2xy},$$
 (algebra)
$$\leq \sqrt{(x + y)^2},$$
 (squre root function is increasing
$$= x + y.$$
 (algebra)

To finish the proof, we replace $x \to \sqrt{x}$ and $y \to \sqrt{y}$ in the above. This yields $\sqrt{x+y} \le \sqrt{x} + \sqrt{y}$.