Reasoning about Plan Revision in Agent Programs

Natasha Alechina University of Nottingham, UK

TIME 2012, Leicester 14 September 2012

What this talk is about

- verification (of agent programs with changing plans)
- transition systems correspond to agent program execution
- model-checking agent programs
- joint work with Brian Logan, Mehdi Dastani and John-Jules Meyer on a theorem-proving approach (using dynamic logic)
- main extension: explicit operator for 'having a plan'

Transition systems

Dynamic logic

 $\langle a; b \rangle p, \langle c; d \rangle p$

Having and executing a plan

What is an agent?

- many definitions of 'agent' in the literature key ideas include:
- autonomy: an agent operates without the direct intervention of humans or other agents
- situatedness: an agent interacts with its environment (which may contain other agents)
- reactivity: an agent responds in a timely fashion to changes in its environment
- proactivity: an agent exhibits goal-directed behaviour

What I will mean by an agent

- a computational system whose behaviour can be usefully characterised in terms of propositional attitudes such as beliefs and goals
- and which is programmed in an agent programming language which makes explicit use of propositional attitudes

What is an agent programming language?

- Belief, Desire and Intentions (BDI) framework, (Bratman 1987)
- BDI agent programming languages are designed to facilitate the implementation of BDI agents:
 - programming constructs corresponding to beliefs, desires and intentions
 - agent architecture or interpreter enforces relationships between beliefs, desires and intentions and which causes the agent to choose actions to achieve its goals based on its beliefs

3APL

- one of the first agent programming languages PRS (Georgeff and Ingrand 1988), very rich. I will talk about a more modern and less rich language, 3APL
- 3APL is a BDI agent programming language proposed in (Dastani et al. 2003)
- I present a cut-down version of 3APL (mostly regarding the language for beliefs, but also distinction between external and internal actions, not considering messages etc.)

3APL beliefs

- the beliefs of a 3APL agent represent its information about its environment and itself
- beliefs are represented by a set of positive literals
- the initial beliefs of an agent are specified by its program
- e.g., the agent may initially believe that it's in room1 and its battery is charged:

```
Beliefs:
  room1, battery
```

3APL goals

- the agent's goals represent situations the agent wants to realise (not necessarily all at once)
- goals are represented by a set of arbitrary literals
- the initial goals of an agent are specified by its program
- e.g., the agent may initially want to achieve a situation in which both room1 and room2 are clean

```
Goals: clean1, clean2
```

Declarative goals

- the beliefs and goals of an agent are related to each other
 - \blacksquare if an agent believes p, then it will not pursue p as a goal
 - if an agent does not believe that p, it will not have -p as a goal
- these relationships are enforced by the agent architecture

3APL basic actions

- basic actions specify the capabilities of the agent (what it can do independent of any particular agent program)
- 2 types of basic actions:
 - belief test actions: test whether the agent has a given belief
 - belief update actions: "external" actions which change the agent's beliefs

Belief test actions

■ a *belief test action* ϕ ? tests whether a boolean belief expression ϕ is entailed by the agent's beliefs, e.g.:

```
(room2 and -battery)?
```

tests whether the agent believes it is in *room2* and its battery is not charged

Belief update actions

- belief update actions change the beliefs (and goals) of the agent
- a belief update action is specified in terms of its pre- and postconditions (sets of literals), e.g.:

```
\{room1\} moveR \{ \}, \{-room1, room2\}
```

- an action can be executed if one of its pre-conditions is entailed by the agent's current beliefs
- executing the action updates the agent's beliefs to make one of the postconditions entailed by the agent's beliefs (actions non-deterministic)

Belief entailment

- a belief query (a belief test action or an action precondition) is entailed by the agent's belief base if
 - all positive literals in the query are contained in the agent's belief base, and
 - for every negative literal -p in the query, p is not in the belief base
 - i.e., we use entailment under the closed world assumption
- goal entailment corresponds to a formula being classically entailed by *one* of the goals in the goal base

Belief update

- executing a belief update action
 - adds all positive literals in the corresponding postcondition to the belief base, and
 - for every negative literal -p in the postcondition, p is removed from the agent's belief base
- goals which are achieved by the postcondition of an action are dropped
- for simplicity, we assume that the agent's beliefs about its environment are always correct and its actions in the environment are always successful

Abstract plans

- unlike basic actions, *abstract plans* cannot be directly executed by the agent.
- abstract plans provide an abstraction mechanism (similar to procedures in imperative programming) which are expanded into basic actions using plan revision rules
- if the first step of a plan π is an abstract plan $\bar{\alpha}$, execution of π blocks.

3APL plans

- plans are sequences of basic actions and atomic plans composed by plan composition operators:
 - sequence: " π_1 ; π_2 " (do π_1 then π_2)
 - conditional choice: "if ϕ then $\{\pi_1\}$ else $\{\pi_2\}$ "
 - lacksquare conditional iteration: "while ϕ do $\{\pi\}$ "
- e.g., the plan:

```
if room1 then {suck} else {moveL; suck}
```

causes the agent to clean *room1* if it's currently in *room1*, otherwise it first moves (left) to *room1* and then cleans it

3APL PG rules

- planning goal rules are used for plan selection based on the agent's current goals and beliefs
- a planning goal rule $\kappa \leftarrow \beta \mid \pi$ consists of three parts:
 - κ: an (optional) goal query which specifies which goal(s) the plan achieves
 - β : a *belief query* which characterises the situation(s) in which it could be a good idea to execute the plan
 - \blacksquare π : a plan
- a PG rule can be applied if κ is entailed by the agent's goals and β is entailed by the agent's beliefs
- \blacksquare applying the rule adds π to the agent's plans

Example 3APL PG rules

```
■ clean2 <- battery |
  if room2 then {suck} else {moveR; suck}</pre>
```

states that "if the agent's goal is to clean *room2* and its battery is charged, then the specified plan may be used to clean the room"

an agent can generate a plan based only on its current beliefs (reactive invocation), e.g., the rule:

```
<- -battery |
  if room2 then {charge} else {moveR; charge}</pre>
```

states "if the battery is low, the specified plan may be used to charge it"

Example 3APL PR rules

- a plan revision rule $p_j = \pi_j \leftarrow \beta_j \mid \pi'_j$ can be applied if π_j is in the plan base, β_j is entailed by the agent's beliefs and π_j is not executable,
- in other words the first action of π_j is either a belief update or belief test action which is not executable in the current belief state, or an abstract plan
- for example, if *moveR* fails, the agent may execute a slow but reliable version of the action, *slowR*:

Operational semantics

- we define the operational semantics of 3APL in terms of a transition system
- states are *agent configurations* $\langle \sigma, \gamma, \Pi \rangle$ where σ, γ are sets of literals representing the agent's beliefs and goals, and Π is a set of plan entries representing the agent's current active plans (annotated by the goals which they were adopted to achieve)
- each transition corresponds to a single step in the execution of the agent
- different execution strategies give rise to different semantics
- for simplicity we focus on non-interleaved execution—i.e., the agent executes a single plan to completion before choosing another plan

Formal entailment definitions

 $\blacksquare \models_{cwa}$ (belief entailment for closed world assumption):

```
\sigma \models_{\mathit{cwa}} p \; \mathsf{iff} \; p \in \sigma
\sigma \models_{\mathit{cwa}} -p \; \mathsf{iff} \; p \not\in \sigma
\sigma \models_{\mathit{cwa}} \phi \; \mathsf{and} \; \psi \; \mathsf{iff} \; \sigma \models_{\mathit{cwa}} \phi \; \mathsf{and} \; \sigma \models_{\mathit{cwa}} \psi
\sigma \models_{\mathit{cwa}} \phi \; \mathsf{or} \; \psi \; \mathsf{iff} \; \sigma \models_{\mathit{cwa}} \phi \; \mathsf{or} \; \sigma \models_{\mathit{cwa}} \psi
\sigma \models_{\mathit{cwa}} \{\phi_1, \ldots, \phi_n\} \; \mathsf{iff} \; \forall 1 \leq i \leq n \; \sigma \models_{\mathit{cwa}} \phi_i
```

 $\blacksquare \models_g (\text{goal entailment}):$

```
\begin{split} \gamma &\models_{\mathcal{G}} p \text{ iff } p \in \gamma \\ \gamma &\models_{\mathcal{G}} -p \text{ iff } -p \in \gamma \\ \gamma &\models_{\mathcal{G}} \phi \text{ or } \psi \text{ iff } \gamma \models_{\mathcal{G}} \phi \text{ or } \gamma \models_{\mathcal{G}} \psi \end{split}
```


Belief update function

- let a be a belief update action and σ a belief base such that $\sigma \models_{\mathit{cwa}} \mathtt{prec}_{j}(a)$
- intuitively, $\sigma \models_{\mathit{cwa}} \mathtt{prec}_{j}(a)$ if it contains all positive literals in $\mathtt{prec}_{j}(a)$ and does not contain the negative ones
- the result of executing belief update action a with respect to σ (assuming $prec_j(a)$ holds and the action results in the $post_{j,i}$ becoming true) is defined as:

$$\textit{T}_{j,i}(\textit{\textbf{a}},\sigma) = \left(\sigma \cup \left\{\textit{\textbf{p}}: \textit{\textbf{p}} \in \texttt{post}_{j,i}(\texttt{a})\right\}\right) \setminus \left\{\textit{\textbf{p}}: -\textit{\textbf{p}} \in \texttt{post}_{j,i}(\texttt{a})\right\}$$

■ intuitively, the result of the update satisfies (entails under \models_{cwa}) the corresponding postcondition $post_{j,i}(a)$

Transitions: belief test actions

belief test actions

$$\frac{\sigma \models_{\mathit{CWa}} \beta}{\langle \sigma, \gamma, \{\beta?; \pi \triangleright \kappa\} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi \triangleright \kappa\} \rangle}$$

Transitions: belief update actions

belief update actions when the corresponding goal not achieved yet:

$$\frac{\sigma \models_{\mathit{cwa}} \mathit{prec}_i(\alpha) \ \mathit{T}_{i,j}(\alpha,\sigma) = \sigma' \quad \gamma' = \gamma \setminus \{\phi \mid \sigma' \models_{\mathit{cwa}} \phi\} \ \sigma' \not\models_{\mathit{cwa}} \kappa}{\langle \sigma, \gamma, \{\alpha; \pi \rhd \kappa\} \rangle \longrightarrow \langle \sigma', \gamma', \{\pi \rhd \kappa\} \rangle}$$

belief update actions when the corresponding goal is achieved:

$$\frac{\sigma \models_{\mathit{cwa}} \mathsf{prec}_{\mathit{i}}(\alpha) \ \mathit{T}_{\mathit{i},\mathit{j}}(\alpha,\sigma) = \sigma' \quad \gamma' = \gamma \setminus \{\phi \mid \sigma' \models_{\mathit{cwa}} \phi\} \ \sigma' \models_{\mathit{cwa}} \kappa}{\langle \sigma, \gamma, \{\alpha; \pi \triangleright \kappa\} \rangle \longrightarrow \langle \sigma', \gamma', \{\ \} \rangle}$$

Transitions: plans

conditional choice

$$\frac{\sigma \models_{\mathit{cwa}} \phi}{\langle \sigma, \gamma, \{(\mathsf{if} \ \phi \ \mathsf{then} \ \pi_1 \ \mathsf{else} \ \pi_2); \pi \triangleright \kappa\}\rangle \longrightarrow \langle \sigma, \gamma, \{\pi_1; \pi \triangleright \kappa\}\rangle}$$

$$\frac{\sigma \not\models_{\mathit{cwa}} \phi}{\langle \sigma, \gamma, \{(\mathsf{if} \ \phi \ \mathsf{then} \ \pi_1 \ \mathsf{else} \ \pi_2); \pi \triangleright \kappa\}\rangle \longrightarrow \langle \sigma, \gamma, \{\pi_2; \pi \triangleright \kappa\}\rangle}$$

conditional iteration

$$\frac{\sigma \models_{\mathsf{cwa}} \phi}{\langle \sigma, \gamma, \{(\mathsf{while} \ \phi \ \mathsf{do} \ \pi_1); \pi \triangleright \kappa \} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi_1; (\mathsf{while} \ \phi \ \mathsf{do} \ \pi_1); \pi \triangleright \kappa \}}$$

$$\sigma \not\models_{\mathsf{cwa}} \phi$$

 $\langle \sigma, \gamma, \{ (\text{while } \phi \text{ do } \pi_1 \triangleright \kappa); \pi \} \rangle \longrightarrow \langle \sigma, \gamma, \{ \pi \triangleright \kappa \} \rangle$

Transitions: PG rules

■ planning goal rules $\kappa \leftarrow \beta \mid \pi$

$$\frac{\gamma \models_{\textit{g}} \kappa \quad \sigma_{\textit{cwa}} \models \beta}{\langle \sigma, \gamma, \{\} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi \triangleright \kappa\} \rangle}$$

Transitions: PR rules

■ plan revision rules $p_j = \pi_j \leftarrow \beta_j \mid \pi'_j$

$$\frac{\forall i \ \sigma \not\models_{\mathit{cwa}} \ \mathit{prec}_i(\alpha) \quad \sigma \models_{\mathit{cwa}} \beta_j}{\langle \sigma, \gamma, \{\pi_j = \alpha; \pi \rhd \kappa\} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi'_j \rhd \kappa\} \rangle}$$

$$\frac{\sigma \not\models_{\mathit{cwa}} \beta \quad \sigma \models_{\mathit{cwa}} \beta_j}{\langle \sigma, \gamma, \{\pi_j = \beta?; \pi \rhd \kappa\} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi'_j \rhd \kappa\} \rangle}$$

$$\frac{\sigma \models_{\mathit{cwa}} \beta_j}{\langle \sigma, \gamma, \{\pi_j = \bar{\alpha}; \pi \rhd \kappa\} \rangle \longrightarrow \langle \sigma, \gamma, \{\pi'_j; \pi \rhd \kappa\} \rangle}$$

where $\bar{\alpha}$ is the name of an abstract plan.

State of the art in model-checking agent programs

- Model-checking AgentSpeak (Promela, Spin) Rafael H. Bordini, Michael Fisher, Carmen Pardavila, Michael Wooldridge: Model checking AgentSpeak. AAMAS 2003:409-416
- General platform for model-checking BDI agents (AIL and AJPF) Louise A. Dennis, Michael Fisher, Matthew P. Webster, Rafael H. Bordini: Model checking agent programming languages. Autom. Softw. Eng. 19(1): 5-63 (2012)
- Work with Goal, 3/2APL,...

Challenges

- In common with general model-checking: scalability issues
- In common with general (software) model-checking: hard to deal with an infinite number of possible inputs/events, first-order properties
- I think there is still no system specification language at the right level of abstraction
- Beliefs, goals, plans, etc. are treated as just ordinary data structures: same as lists of strings or some other 'dumb' values
- However, they do have some logical structure (e.g. closure under the agent's reasoning rules) and connections to each other, which should be used, in a transparent fashion (use something more like Maude?)
- The most interesting logical challenge here I think is the logic of having committed to a set of intentions

What does having a set of intentions mean

- If an agent's set of intentions is {a; b; c, d; e; f} then it is easy to figure out what the possible actions by the agent are (a and d); for more general plans it is more complicated, but also well defined
- no logic with explicit adopted plans (in the logical language), apart from TCS11 (for single agent/single plan) and a paper in informal proceedings of DALT 2009.
- there are logics with explicit strategies (Simon and Ramanujam 2008,2009), but strategies and plans are not exactly the same and logics have no 'he *has adopted* this strategy' operator

Verification by theorem proving

- State properties of the system as axioms (completely axiomatise the operational semantics)
- Prove that the desired property logically follows from them
- This is a more complex problem than model-checking, but it is easier to deal with first-order, infinite domains, etc.

Signature of an agent program

- The signature of an agent program R is defined as $R = \langle P, PG, PR, Ac, Ac, Ac, Plan \rangle$
 - lacksquare P is a set of belief and goal atoms
 - PG is a set of planning goal rules, $r_i = \kappa_i \leftarrow \beta_i \mid \pi_i$
 - PR is a set of plan revision rules, $p_j = \pi_j \leftarrow \beta_j \mid \pi_j'$
 - Ac is a set of belief update actions occurring in the plans of PG and PR rules
 - Ac is a set of abstract plans occurring in the plans of PG and PR rules
 - Act is the set of specifications for belief update actions Ac
 - *Plan* is the set of all possible $\pi \triangleright \kappa$ pairs where κ is one of the agent's goals and π is a plan occurring in PG and PR rules or a suffix of such a plan

Language of PDL-3APL

program expressions:

$$\rho ::= \alpha \in \textit{Ac} \mid \textit{t}(\phi) \mid \bar{\textit{a}} \in \bar{\textit{Ac}} \mid \delta_{\textit{r}i} \mid \delta_{\textit{p}_j} \mid \rho_1; \rho_2 \mid \rho_1 \cup \rho_2 \mid \rho^*$$

formula:

$$\psi ::= \mathsf{Bp} \mid \mathsf{Gp} \mid \mathsf{G-p} \mid x \mid P^{\kappa} \pi \mid P\epsilon \mid \neg \psi \mid \psi_1 \wedge \psi_2 \mid \langle \rho \rangle \psi$$

Models of PDL-3APL

Let $R = \langle \mathcal{P}, PG, PR, Ac, Ac, Act, Plan \rangle$ be the signature of an agent program. A PDL-3APL model M relative to R is defined as

$$M = (W, V, \mathcal{R}_{\alpha}, \mathcal{R}_{t(\phi)}, \mathcal{R}_{\bar{\alpha}}, \mathcal{R}_{\delta_{r_i}}, \mathcal{R}_{\delta_{\rho_j}})$$

where

- W is a non-empty set of states.
- $V = (V_b, V_g, V_c, V_p)$ such that for every $s \in W$:
 - $V_b(s) = \{p_1, \dots, p_m : p_i \in \mathcal{P}\}$ is the set of the agent's beliefs in s;
 - $V_g(s) = \{(-)u_1, \dots, (-)u_n : u_i \in \mathcal{P}\}$ is the set of the agent's goals in s (note that V_g assigns literals rather than propositional variables);
 - $V_c(s)$ is either an empty set or $\{x\}$;
 - $V_p(s)$ is either the empty set or a singleton set $\{\pi \triangleright \kappa\}$, where π is the agent's plan in s and κ is the goal(s) achieved by this plan
- \mathcal{R}_{α} , $\mathcal{R}_{t(\phi)}$, $\mathcal{R}_{\bar{\alpha}}$, $\mathcal{R}_{\delta_{r_i}}$, $\mathcal{R}_{\delta_{p_i}}$ are binary relations on W

Conditions on models

- C1 $V_g(s) \cap V_b(s) = \emptyset$ and $\{p : -p \in V_g(s)\} \subseteq V_b(s)$
- C2 If $V_p(s) = \{\alpha; \pi \triangleright \kappa\}$, $V_b(s) \models_{\mathit{cwa}} \mathtt{prec}_i(\alpha)$ and $x \notin V_c(s)$, then there is an R_α transition to a state s' where $V_b(s') = T_{i,j}(\alpha, V_b(s))$, $V_g(s') = V_g(s) \setminus (\{p : p \in V_b(s')\} \cup \{-p : p \notin V_b(s')\})$ and if $V_b(s') \not\models_{\mathit{cwa}} \kappa$, $V_p(s') = \{\pi \triangleright \kappa\}$. If $V_b(s') \models_{\mathit{cwa}} \kappa$, $x \in V_c(s')$ and $V_p(s') = \{\}$.
- C3–C10 similarly correspond to operational semantics in non-x states

Conditions for exceptional states

- Condition for non-executable actions: if $V_p(s) = \{\alpha; \pi \triangleright \kappa\}$, $V_b(s) \not\models_{\mathit{cwa}} \mathtt{prec}_i(\alpha)$, and $x \not\in V_c(s)$, then there is an R_α transition to a state s' where $x \in V_c(s')$.
- Condition for executing in exceptional states: if $x \in V_c(s)$ then there are R_{α} , $R_{\bar{\alpha}}$ and $R_{t(\phi)}$ transitions from state s to itself
- Condition for PR rules: if $x \in V_c(s)$, $V_p(s) = \{\pi_j \triangleright \kappa\}$, $V_b(s) \models_{cwa} \beta_j$, then there is a $R_{\delta_{p_j}}$ transition to a state s' where $V_p(s') = \{\pi'_j \triangleright \kappa\}$ and $x \notin V_c(s')$ (where $p_j = \pi_j \leftarrow \beta_j \mid \pi'_j$).

Satisfaction

- $M, s \models Bp \text{ iff } p \in V_b(s)$
- $M, s \models Gp \text{ iff } p \in V_q(s)$
- $M, s \models G p \text{ iff } -p \in V_q(s)$
- $lacksquare M, s \models x \text{ iff } x \in V_c(s)$
- \blacksquare $M, s \models P^{\kappa}\pi$ iff $V_{p}(s) = \{\pi \triangleright \kappa\}$
- \blacksquare $M, s \models P_{\epsilon} \text{ iff } V_{p}(s) = \{\}$
- \blacksquare $M, s \models \neg \psi$ iff $M, s \not\models \psi$
- $M, s \models \psi_1 \land \psi_2$ iff $M, s \models \psi_1$ and $M, s \models \psi_2$
- $M, s \models \langle \rho \rangle \psi$ iff there exists s' such that $R_{\rho}(s, s')$ and $M, s' \models \psi$.

Translation into PDL

- f_b : $f_b(p) = Bp$; $f_b(\phi \text{ and } \psi) = f_b(\phi) \wedge f_b(\psi)$; $f_b(\phi \text{ or } \psi) = f_b(\phi) \vee f_b(\psi)$
- $f_g(p) = Gp$; $f_g(-p) = G-p$
- $\blacksquare f_p$:
 - $f_{p}(\alpha) = \alpha$
 - $f_p(\phi?) = t(\phi)$
 - $f_{p}(\bar{\alpha}) = \bar{\alpha}$
 - $f_p(\pi_1; \pi_2) = f_p(\pi_1); f_p(\pi_2)$
 - $f_p(\text{if } \phi \text{ then } \pi_1 \text{ else } \pi_2) = t(\phi); f_p(\pi_1)) \cup (t(\neg \phi); f_p(\pi_2))$
 - $f_p(\text{while } \phi \text{ do } \pi) = (t(\phi); f_p(\pi))^*; t(\neg \phi).$

Axioms

A1
$$Bp \rightarrow \neg Gp$$

A2
$$G-p \rightarrow Bp$$

A3a
$$P^{\kappa}\pi \to \neg P^{\kappa'}\pi'$$
 where $\pi' \neq \pi$ or $\kappa' \neq \kappa$

A3b
$$P\epsilon \lor \bigvee_{\pi \rhd \kappa \in \mathit{Plan}} P^{\kappa} \pi$$

BA1
$$\neg x \land P^{\kappa}(\alpha; \pi) \land f_b(\text{prec}_i(\alpha)) \land \psi \land \psi' \rightarrow \langle \alpha \rangle ($$

 $(f_b(\text{post}_{ij}(\alpha)) \land \neg f_b(\kappa) \land P^{\kappa} \pi \land \psi) \lor (f_b(\text{post}_{ij}(\alpha)) \land f_b(\kappa) \land x \land P \epsilon \land \psi'))$
where ψ, ψ' are any formulas not containing plan expressions or literals in $f_b(\text{post}_{ij}(\alpha))$, and in addition ψ' does not contain x

BA2a
$$\neg x \land P^{\kappa}\pi \rightarrow [u]\bot$$
 where $\pi \neq u; \pi'$ and $u \in Ac \cup \bar{Ac}$

BA2b $\neg x \land P^{\kappa}\pi \to [t(\phi)]\bot$ if π does not start with a belief test action ϕ ? or a conditional plan test on ψ where $\phi = \psi$ or $\phi = \neg \psi$

Axioms continued

BA3
$$\neg x \land P^{\kappa}(\alpha; \pi) \land f_b(\operatorname{prec}_i(\alpha)) \land \bigwedge_j \psi_j \land \bigwedge_j \psi_j' \rightarrow [\alpha]($$
 $\bigvee_j (f_b(\operatorname{post}_{ij}(\alpha)) \land \neg f_b(\kappa) \land P^{\kappa}\pi \land \psi_j) \lor$
 $\bigvee_j (f_b(\operatorname{post}_{ij}(\alpha)) \land f_b(\kappa) \land x \land P \in \land \psi_j'))$
where ψ_j and ψ_j' are any formulas not containing plan expressions or literals in $f_b(\operatorname{post}_{ij}(\alpha))$, and in addition ψ_j' does not contain x
BA4 $\neg x \land P^{\kappa}(\phi?; \pi) \land f_b(\phi) \land \psi_{np} \rightarrow \langle [t(\phi)] \rangle (P^{\kappa}\pi \land \psi_{np})$
BA5 $\neg x \land P^{\kappa}(\alpha; \pi) \land \bigwedge_i \neg f_b(\operatorname{prec}_i(\alpha)) \land \psi_{nx} \rightarrow \langle [\alpha] \rangle (x \land \psi_{nx})$
BA6 $\neg x \land P^{\kappa}(\phi?; \pi) \land \neg f_b(\phi) \land \psi_{nx} \rightarrow \langle [t(\phi)] \rangle (x \land \psi_{nx})$
BA7 $\neg x \land P^{\kappa}(\bar{\alpha}; \pi) \land \psi_{nx} \rightarrow \langle [\bar{\alpha}] \rangle (x \land \psi_{nx})$
BA8 $x \land \psi \rightarrow \langle [u] \rangle \psi$ where u is α , $t(\phi)$ or $\bar{\alpha}$

Axioms continued

- CP1 $\neg x \land P^{\kappa}(\pi_{if}; \pi) \land f_b(\phi) \land \psi_{np} \rightarrow \langle [t(\phi)] \rangle (P^{\kappa}\pi_1; \pi \land \psi_{np})$, where π_{if} is of the form if ϕ then π_1 else π_2
- CP2 $\neg x \land P^{\kappa}(\pi_{if}; \pi) \land \neg f_b(\phi) \land \psi_{np} \rightarrow \langle [t(\neg \phi)] \rangle (P^{\kappa}\pi_2; \pi \land \psi_{np})$, where π_{if} is as in **CP1**
- CP3 $\neg x \land P^{\kappa}(\pi_{wh}; \pi) \land f_b(\phi) \land \psi_{np} \rightarrow \langle [t(\phi)] \rangle (P^{\kappa}\pi_1; \pi_{wh}; \pi \land \psi_{np})$, where π_{wh} is of the form while $\phi \text{ do } \pi_1$
- CP4 $\neg x \land P^{\kappa}(\pi_{\textit{wh}}; \pi) \land \neg f_b(\phi) \land \psi_{\textit{np}} \rightarrow \langle [t(\neg \phi)] \rangle (P^{\kappa} \pi \land \psi_{\textit{np}})$, where $\pi_{\textit{wh}}$ is as in **CP3**
- CP5 $\neg x \land (P^{\kappa}\pi_{if} \lor P^{\kappa}\pi_{wh}) \land \neg f_b(\phi) \rightarrow [t(\phi)] \bot$ where π_{if} and π_{wh} are as above
- PG1 $P\epsilon \wedge f_g(\kappa_i) \wedge f_b(\beta_i) \wedge \psi_{npx} \rightarrow \langle [\delta_{ri}] \rangle (\neg x \wedge P^{\kappa_i} \pi_i \wedge \psi_{npx})$
- PG2 $\neg P \epsilon \lor \neg f_g(\kappa_i) \lor \neg f_b(\beta_i) \to [\delta_{ri}] \bot$
- PR1 $x \wedge P^{\kappa} \pi_j \wedge f_b(\beta_j) \wedge \psi_{npx} \rightarrow \langle [\delta_{p_j}] \rangle (\neg x \wedge P^{\kappa} \pi'_j \wedge \psi_{npx})$
- PR2 $\neg x \lor \neg P^{\kappa} \pi_j \lor \neg f_b(\beta_j) \to [\delta_{p_j}] \bot$

Translation of the program

- $tr(R) = (\cup_i(\delta_{ri}; f_p(\pi_i)) \bigcup \cup_j(\delta_{pj}; f_p(\pi'_i)))^+$
- Theorem: tr(R) picks out exactly those paths in a model which correspond to an execution of the program
- Can verify liveness and safety properties by checking whether $\langle tr(R) \rangle \phi$ and $[tr(R)] \phi$ are entailed by the formulas describing initial conditions
- complications: encoding plan expressions; encoding properties which hold along a path (Fahad Khan 2012, Regular Path Temporal Logic)

Conclusions

- agent programs can be verified just as ordinary programs
- however they have additional properties which it may be possible to expoit
- one of the properties is having an explicit set of plans, which seems to be an interesting logical property
- may be also of interest for game logics (being able to say 'this player is going to play this strategy' rather than 'if this player plays this strategy')