Float-point Adder

[raised by Tianjin Zhao, contact eda2018_uestc@126.com if any question.]

Background:

Floating point numbers are common data formats in computers, so it is necessary to add floating-point numbers to hardware.

IEEE 754 single-precision binary floating-point format: binary32

- Sign bit : 1 bit ('0' = '+', '1' = '-')
- Exponent width : 8 bits (-126 to +127)
- Significand precision : 24 bits

Figure 1 float-point number

Float-point adder:

Figure 2 float-point adder

Notice:

- In this job, we default to add no overflow
- For details: http://users.encs.concordia.ca/~asim/COEN_6501/ Lecture_Notes/L4_Slides.pdf
- You can verify your results on this website: http://weitz.de/ieee/

TASK:

- 1. Learn about the float-point number at internet by yourself.
- 2. design a float_point_adder unit.

Specification:

Please look at figure 1 and table 1.

Figure 3float_point_adder
Table 1 specification of float_point_adder

Port	Number of bits	Direction	Function
data1	32	In	32-bit Signed float
			input data
data2	32	In	32-bit Signed float
			input data
output_data	32	Out	32-bit Signed float
			output data

Requirements:

- 1. The port name must be kept strictly the same as the description table.
- 2. The file name must be "float point adder.vhd".
- 3. The entity name must be "float point adder".
- 4. Coding in VHDL.
- 5. Upload your code to eda2018_uestc@126.com.