Appendix 1

Greek Letters & Their Names

α	alpha
β	beta
	gamma
$\gamma \ \delta$	delta
ζ	zeta
ή	eta
θ	theta
ι	iota
κ	kappa
λ	lambda
μ	mu
υ	nu
π	pi
ρ	rho
σ	sigma
τ	tau
ф	phi
χ	chi
Ψ	psi
ω	omega

Appendix 2

Fundamental Physical Constants

S. No.	Physical constant	Symbol	Value
1.	Acceleration due to gravity	g	9.81 ms ⁻²
2.	Atomic mass unit	amu (u)	1.660453 × 10 ⁻²⁷ kg
3.	Avogadro constant	N _A	$6.02217 \times 10^{23} \text{ mol}^{-1}$
4.	Boltzmann constant	К	$1.38062 \times 10^{-23} \text{ JK}^{-1}$
5.	Electronic charge	е	1.602192 × 10 ⁻¹⁹ C
6.	Faraday constant	F	$9.64867 \times 10^4 \text{ C mol}^{-1}$
7.	Gas constant	R	8.314 JK ⁻¹ mol ⁻¹
8.	Molar volume of ideal gas at (STP)	V _m	$2.24136 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$
9.	Planck constant	h	6.62620 × 10 ⁻³⁴ Js
10.	Rydberg constant	R _H	$1.973731 \times 10^7 \mathrm{m}^{-1}$
11.	Standard pressure (atmosphere)	р	101325 Nm ⁻²
12.	Velocity of light of vacuum	С	2.997925 × 10 ⁸ ms ⁻¹

Additional Constants

Appendix 3 Periodic Table

Important Conversion Factors

Common Unit of Mass and Weight

1 pound = 453.59 gram = 0.45359 kilogram

1 kilogram = 1000 gram = 2.205 pound

1 gram = 10 decigram = 100 centigram

= 1000 milligram

atomic mass unit = 1.6606×10^{-24} gram

1 metric tonne = 1000 kilogram = 2205 pound

Common Units of Volume

1 quart = 0.9463 litre

1 litre = 1.056 quart

1 litre = 1 cubic decimetre = 1000 cubic

centimetre = 0.001 cubic metre

1 millilitre = 1 cubic centimetre

 $= 0.001 \text{ litre} = 1.056 \times 10^{-3} \text{ quart}$

1 cubic foot = 28.316 litre = 29.902 quart

= 7.475 gallon

Common Units of Energy

1 Joule = 1×10^7 erg

1 thermochemical calorie = 4.184 joule

The amount of heat required to the temperature of one gram of water from 14.5°C to

 15.5° C = 4.184×10^{7} erg

= 4.129×10^{-2} litre-atmosphere

= 2.612×10^{19} electron volt

1 erg = 1×10^{-7} joule

= 2.3901×10^{-8} calorie

1 electron volt = 1.6022×10^{-19} ioule

 $= 1.6022 \times 10^{-12} \text{ erg}$

1 litre-atmosphere = 24.217 calorie

= 101.32 ioule

 $= 1.0132 \times 10^9 \text{ erg}$

Common Units of Length

1 inch = 2.54 centimetre (exactly)

1 mile = 5280 feet

= 1.609 kilometre

1 yard = 36 inches

= 0.9144 metre

1 metre = 100 centimetre

= 39.37 inches

= 3.281 feet

= 1.094 yard

1 kilometre = 1000 metre

= 1094 yard

= 0.6215 mile

1 Angstrom = 1.0×10^{-8} centimetre

= 0.10 nanometre

= 1.0×10^{-10} metre

 $= 3.937 \times 10^{-9}$ inch

Common Units of Pressure

1 atmosphere = 760 millimetre

of mercury

 $= 1.013 \times 10^5$ pascal

= 14.70 pound per square inch

 $1 \text{ bar} = 10^5 \text{ pascal}$

1 torr = 1 millimetre of mercury

 $1 \text{ pascal} = 1 \text{ kg/ms}^2 = 1 \text{ N/m}^2$

Common Units of Temperature

SI Base Unit : Kelvin (K)

K = -273.15°C

 $K = ^{\circ}C + 273.15$

°F = 1.8 (°C) + 32

 $^{\circ}C = \frac{^{\circ}F - 32}{1.8}$

Popular Scientist & Their Work

- Angstrom, Anders Jonas He worked mainly with emission spectra Fraunhofer absorption lines wavelengths. Since 1905, spectral wavelengths have been expressed in Å.
 1Å = 10⁻¹⁰ m or 1Å = 10⁻⁸ cm
- Arrhenius, Svante (August) He demonstrated that electroytes are conductors due to the movement of ions. He gave the following equation to show the effect of temperature at rate constant.

$$k = A e^{-E_a/RT}$$

This equation is known by the name Arrhenius equation.

- **3. Aston, Francis William** He designed the mass spectrograph and discovered the isotopes of neon.
- 4. Avogadro, Amedeo He proposed a method for computing molecular weights from vapour densities. He also proposed that equal volumes of all gases contain equal numbers of molecule under similar temperature and pressure condition. [Avogadro's law].
- **5. Bartlett, Neil** Bartlett synthesize first compound of a noble gas in 1962, i.e., xenon hexachloroplatin.
- Becquerel, Antoine Henri He discovered radioactivity in fluorescent salts of uranium.
- 7. Berzelius, Jons Jacob He discovered several elements, i.e., Ce, Se, Li, Th and V. He proposed vital force theory of organic compounds.
- 8. Bohr, Niels Henrik David He proposed atomic model in 1913 to explain line spectrum of hydrogen.
- **9. Boltzmann, Ludwig Eduard** He worked on the kinetic theory of gases and on thermodynamics.

- 10. Boyle, Robert He worked on gases, flame tests and acid base indicators. He was the first to give a definition of a chemical element.
- **11. Bragg, Sir William Henry** He worked on X-ray crystallography analysis.
- 12. Bronsted, Johannes
 Nicolaus He proposed acid base
 theory as Lowry-Bronsted theory.
- **13. Bunsen, Robert Wilhelm** He popularized the use of Bunsen burner and developed the Bunsen cell.
- **14. Cavendish, Henry** He correctly distinguished between hydrogen and carbon dioxide.
- 15. Charles, Jacques Alexandre
 Cesar He proposed Charles law. He
 became the first person to make an
 ascent in a hydrogen balloon.
- **16. Crookes, Sir William** He discovered cathode rays and developed an improved vacuum tube.
- **17. Curie, Marie** She had discovered radium and polonium.
- **18. Dalton, John** He is best remembered for Dalton's atomic theory.
- 19. de-Broglie, Louis-Victor Pierre Raymond He is the best known for wave particle duality of light. He gave the following relation $\lambda = \frac{h}{p}$. This is called de-Brogile equation.
- Debye, Peter Joseph
 William He introduced the idea of electric dipole moments in molecules.
- 21. Dumas, Jean Baptiste
 Andre He devised a method of
 measuring vapour density.

- **22. Einstein, Albert** He proposed theory of relativity.
- 23. Fahrenheit, Gabriel Daniel He developed the mercury in glass thermometer and devised a temperature scale to go with it i.e., Fahrenheit scale.
- **24. Faraday, Michael** He proposed laws of electrolysis.
- **25. Fleming, Sir Alexander** He discovered the antibiotic penicillin.
- **26. Frankland, Sir Edward** He produced organometallic compounds (zinc dialkyls) firstly.
- 27. Gay-Lussac, Joseph He gives the laws of chemical combination in gases helped to establish the atomic theory.
- **28. Gibbs Josiah Willard** He developed the theory of chemical thermodynamics and function free energy as G = H TS.
- 29. Graham, Thomas He was associated with diffusion of gases and colloids.
- **30. Haber, Fritz** He proposed industrial method for production of NH₃.
- **31. Heisenberg, Werner Karl** He is the best known for his Uncertainty principle.
- **32. Huckel, Erich** He proposed Huckel rule for aromaticity.
- **33. Kekule, Friedrich August Von Stradonitz** He proposed structure of benzene.
- **34. Kelvin, Lord** He introduced the concept of absolute zero and developed Kelvin temperature scales.
- **35.** Lavoisier, Antoine Laurent He discovered oxygen and nitrogen in air. He also devised a rational nomenclature for chemical compounds.
- **36. Le- Chatelier** He proposed the principle for chemical equilibrium, known as the Le-Chatelier's principle.

- 37. Lewis, Gilbert Newton He introduced the concept of Lewis acids and bases. He also introduced the concept of a stable octet of electrons.
- **38. Maxwell, James Clark** He was one of the founders of the kinetic theory of gases.
- **39. Mary Hordgkin** She was a British chemist who used the technique of X-ray crystallography to educidate the structures of biomolecules.
- **40. Mendeleef, Dmitri Ivanovich** He framed the Periodic Table of the elements based on atomic masses.
- **41. Nernst,** (Hermann) **Walther** He mainly worked on electrochemistry and thermochemistry.
- **42. Ostwald, Friedrich Wilhelm** He worked on hydrolysis, viscosity, ionization and catalysis.
- **43. Pauli, Wolfgang Ernst** He proposed Pauli's exclusion principle which explained the electronic make up of atoms.
- **44. Planck, Max Karl Ernst Ludwig** He formulated the quantum theory.
- **45. Ramsay Sir William** He discovered the noble gases [Ne, Ar, Kr Xe and Rn].
- **46. Soddy, Frederick** He proposed the existence of isotopes.
- **47. Thomson, Sir Joseph John** He is the best known for the discovery of electron and atomic model.
- **48. Urey Harold Clayton** He is the best known for the discovery of deuterium(²₁D) [Heavy hydrogen].
- **49. Wohlder, Friedrich** He synthesised the first organic compound urea (NH₂CONH₂) in 1828.

Some Important Ores/Minerals and Their Chemical Formulae

S.No.	Name	Formula
1.	Alumina	Al ₂ O ₃
2.	Argentite	Ag ₂ S
3.	Asbestos	CaMg ₃ (SiO ₃) ₄
4.	Bauxite	Al ₂ O ₃ · 2H ₂ O
5.	Borax (tincal)	Na ₂ B ₄ O ₇ · 10H ₂ O
6.	Calcite	CaCO₃
7.	Calamine	ZnCO ₃
8.	Carnallite	KCl·MgCl ₂ ·6H ₂ O
9.	Cassiterite	SnO ₂
10.	Cerussite	PbCO ₃
11.	Chalk (aragonite, marble, limestone)	CaCO₃
12.	Chile salt petre	NaNO ₃
13.	Cinnabar	HgS
14.	Clay	Al ₂ O ₃ · 2SiO ₂ · 2H ₂ O
15.	Copper pyrites	CuFeS ₂
16.	Corrundum	Al ₂ O ₃
17.	Cryolite	Na ₃ AlF ₆
18.	Cuprite (ruby copper)	Cu ₂ O
19.	Dolomite	MgCO ₃ · CaCO ₃
20.	Epsomite (epsom salt)	MgSO ₄ · 7H ₂ O
21.	Fluorapatite	3Ca ₃ (PO ₄) ₂ · CeF ₂
22.	Fluorspar	CaF ₂
23.	Galena	PbS
24.	Gypsum	CaSO ₄ · 2H ₂ O
25.	Haematite (red)	Fe ₂ O ₃
26.	Horn silver	AgCl
27.	Iron pyrites	FeS ₂
28.	Kieserite	MgSO ₄ · H ₂ O
29.	Limonite (brown)	Fe ₂ O ₃ ·3H ₂ O
30.	Magnesite	MgCO ₃
31.	Magnetite	Fe ₃ O ₄
32.	Malachite	Cu(OH) ₂ · CuCO ₃
33.	Pyrolusite	MnO ₂
34.	Siderite	FeCO ₃
35.	Sylvine	KCI
36.	Talc	Mg ₃ (Si ₄ O ₁₀ (OH) ₂
37.	Zinc blende	ZnS
38.	Zincite	ZnO

Important Compounds and Their Formulae

S.No.	Compound	Formula
1.	Absolute alcohol	C ₂ H ₅ OH
2.	Alum	$M_2^1 SO_4 \cdot M_2^{III} (SO_4)_3 \cdot 24H_2O$ $(M^1 = Na^+, K^+, NH_4^+; M^{III} = AI^{3+}, Cr^{3+}, Fe^{3+})$
3.	Aspirin	o-CH ₃ OCO — C ₆ H ₄ — COOH
4.	Baking soda	NaHCO ₃
5.	Baryta water	A solution of Ba(OH) ₂
6.	Black oxide	MnO ₂
7.	Bleaching powder	CaOCl ₂
8.	Blue vitriol	CuSO ₄ · 5H ₂ O
9.	Borax (tincal)	Na ₂ B ₄ O ₇ · 10H ₂ O
10.	Borazole (inorganic benzene)	B ₃ N ₃ H ₆
11.	Calgon	Na ₂ [Na ₄ (PO ₃) ₆]
12.	Calomel	Hg ₂ Cl ₂
13.	Carbolic acid	C ₆ H₅OH
14.	Carborundum	SiC
15.	Caustic potash	кон
16.	Chloropicrin (tear gas)	$CCI_3 - NO_2$
17.	Chrome yellow	PbCrO ₄
18.	Chromyl chloride	CrO ₂ Cl ₂
19.	DDT	Dichlorodiphenyltrichloroethane
20.	Dry ice	Solid CO ₂
21.	Ferric alum	K ₂ SO ₄ · Fe ₂ (SO ₄) ₃ · 24H ₂ O
22.	Freon	CCI ₂ F ₂
23.	Gammexane (BHC)	C ₆ H ₆ Cl ₆
24.	Glauber salt	Na ₂ SO ₄ · 10H ₂ O
25.	Grape sugar	C ₆ H ₁₂ O ₆ (fructose)
26.	Gun powder	KNO ₃ (70%) + S (12%) + charcoal (13%)
27.	Gypsum salt (gypsum)	CaSO ₄ · 2H ₂ O
28.	Inorganic rubber	(PNCl ₂) _n
29.	Hydrolith	CaH ₂
30.	Нуро	Na ₂ S ₂ O ₃ ·5H ₂ O
31.	King of chemicals (oil of vitriol)	H ₂ SO ₄
32.	Laughing gas	N ₂ O
33.	Litharge	PbO

S.No.	Compound	Formula
34.	Lunar caustic	AgNO ₃
35.	Marshall's acid	H ₂ S ₂ O ₈ (perdisulphuric acid)
36.	Marsh gas	CH ₄
37.	Milk of lime (slaked lime or lime water)	Ca(OH) ₂
38.	Milk of magnesia	Mg(OH) ₂
39.	Mohr salt	$FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O$
40.	Muriatic acid	HCI
41.	Mustard gas	CICH ₂ CH ₂ SCH ₂ CH ₂ CI
42.	Oleum	H ₂ S ₂ O ₇
43.	Oil of winter green (methysalicylate)	o-HOC ₆ H ₄ COOCH ₃
44.	Pearl ash	K ₂ CO ₃
45.	Perhydrol	30% H ₂ O ₂
46.	Permutit (zeolite)	$Na_2O \cdot Al_2O_3 \cdot 2SiO_2 \cdot 6H_2O$
47.	Philosopher's wool	ZnO
48.	Phosgene	COCI ₂
49.	Plaster of Paris	$CaSO_4 \cdot \frac{1}{2} H_2O$
50.	Prussian blue	Fe ₄ [Fe(CN) ₆] ₃
51.	Prussic acid	HCN
52.	Quick lime (lime)	CaO
53.	Red oxide	Pb ₃ O ₄
54.	Rochelle salt	KNaC ₄ H ₄ O ₆ ·4H ₂ O
55.	Rust	Fe ₂ O ₃ · xH ₂ O
56.	Smelling salt	(NH ₄) ₂ CO ₃
57.	Soda ash	Na ₂ CO ₃ (anhydrous)
58.	Spirit of wine (grain alcohol)	C ₂ H ₅ OH
59.	Talc	3MgO·4SiO ₂ ·H ₂ O
60.	Teflon	(C ₂ F ₄) _n
61.	TEL	(C ₂ H ₅) ₄ Pb
62.	TNT	Trinitrotoluene (an explosive)
63.	Turnbull's blue	KFe(F(CN) ₆)
64.	Vinegar	CH₃COOH (7–8%)
65.	Washing soda	Na ₂ CO ₃ · 10H ₂ O
66.	Water glass	Na ₂ SiO ₃
67.	White vitriol	ZnSO ₄ · 7H ₂ O
68.	Wood spirit	CH₃OH

Important Facts

S. No.	Property	Element/lon
1.	Smallest cation	H ⁺
2.	Largest cation	Cs ⁺
3.	Solid with highest density	Iridium (Ir)
4.	Liquid with highest density	Mercury (Hg)
5.	Elements named in honour of the countries	Ru, Ge, Po, Am
6.	Most electronegative elements	Fluorine (F)
7.	Most abundant elements on earth	Oxygen (O)
8.	Most abundant metal in earth crust	Aluminium (Al)
9.	Liquid metal	Mercury (Hg)
10.	Lustrous non-metal	lodine (I ₂)
11.	Hardest among non-metals	Diamond
12.	Soft metals	Na, K
13.	Best ductile metals	Au, Ag
14.	Best conductor metal	Silver (Ag)
15.	Most poisonous element	Pu
16.	Element with maximum number of isotopes	Ag
17.	Most electropositive metal	Caesium (Cs)
18.	Liquid non-metal	Br
19.	Metal kept in paraffin wax	Li
20.	Coinage metals	Ag, Au, Cu, Al

Composition and Uses of Different Alloys

S. No.	Alloy	Composition	Uses
1.	Stainless steel	Fe = 73%, Cr = 18%	For making cutlery, ornamental,
		Ni = 8% and cabon	pieces and automobile parts.
2.	Invar	Fe = 64%, Ni = 36%	For making measuring
			instruments and clock pendulums.
3.	Alinco	Fe = 63%, Ni = 20%	For making permanent magnets.
5.	Aimeo	Al = 12%, Co = 5%	To making permanent magnets.
4.	Tungsten steel	Fe = 83%, Tungsten (W) = 14%	For making cutting tools for high
		and carbon	speed lathes.
5.	Manganese steel	Fe = 85%, Mn = 13% and	For making rock drills, rail lines,
		carbon	burglar proof safes and crushing
6.	Nickel steel	Ni = 4.2%	machinery For making electromagnets and
0.	Mickel Steel	INI - 4.270	ocean cables.
7.	Permalloy	Fe = 21%, Ni = 78% and carbon	For making shafts and ocean
	,	,	cables.
8.	Silicon steel	Fe = 85%, Si = 15%	Pumps and pipes for carrying
			acids.
9.	Brass	Cu = 60 - 80%	Utensils, condenser tubes and
		Zn = 40 - 20%	cartridges. Utensils,coins, statues.
10.	Bronze	Cu = 75 – 90%	statues.
10.	DIGITEC	Sn = 25 - 10%	
11.	Monel metal	Cu = 30%, Ni = 67%,	For acid containers, acid pumps
		Fe + Mn = 3%	etc.
12.	Bell metal	Cu = 80%, Sn = 20%	Bells, Gongs
13.	Gun metal	Cu = 87%, Sn = 10%, Zn = 3%	Guns, casting, gears.
14.	German silver	Cu = 50%,	Utensils, ornaments.
15.	Constantan	Zn = 25%, Ni = 25% Cu = 60%, Ni = 40%	For making resistance haves
15.	Constantan	Cu = 60%, N1 = 40%	For making resistance boxes, thermocouples.
16.	Phosphor bronze	Cu = 95%, Sn = 4.8%	Springs electrical equipments.
		P = 0.2%	
17.	Aluminium	Cu = 90%, Al = 10%	Coins, picture frames, cheap
	bronze		jewellery.
18.	Coinage silver	Ag = 90%, Cu = 10%	Silver coins.
19.	Dental alloy	Ag = 33%,	For filling teeth cavities.
20.	Palladium silver	Hg = 52%, Sn = 15% Ag = 40%, Pd = 60%	Potentiometer wires and
20.	rallaululii Silvei	Mg - 40%, ru - 00%	winding of some special
			instruments.
21.	Silver solder	Ag = 63%,	Soldering and for jointing
		Cu = 30%, Zn = 7%	metals.
22.	Sterling silver	Ag = 80%, Cu = 20%	A standard quality of silver used
			in jewellery.

Preparation of Common Laboratory Reagents

I. Concentrate Acids

S.No.	Name	Approximate concentration	Specific gravity	Percentage by weight
1.	Acetic acid (glacial)	17.6 M (17.6 N)	1.06	99.5%
2.	Conc. hydrochloric acid	11.7 M (11.7 N)	1.19	36.0%
3.	Conc. nitric acid	15.6 M (15.6 N)	1.42	69.5%
4.	Conc. sulphuric acid	18 M (36.0 N)	1.84	98.0%

II. Dilute Acids

S. No.	Name	Concentration	Method of preparation
1.	Dil. acetic acid	5 M (5 N)	Dilute 285 mL of glacial acetic acid with distilled water and make up the volume of 1 L.
2.	Dil. hydrochloric acid	5 M (5 N)	Add 430 mL of conc. HCl in the distilled water and make up the volume to 1 L.
3.	Dil. nitric acid	5 M (5 N)	Add 320 mL of conc. nitric acid to distilled water and make up the volume to 1 L.
4.	Dil. sulphuric acid	2.5 M (5 N)	Pour 140 mL of conc. sulphuric acid slowly and with constant stirring in 500 mL of distilled water. Cool and make up the volume to 1 L.

III. Bases

1.	Ammonia solution (Liquor ammonia)	15 M (15 N)	As supplied
2.	Dil. ammonia solution (Ammonium hydroxide)	2 M (2 N)	Pour 266.6 mL of the conc. ammonia solution in distilled water and make up the volume of 1 L.
3.	Sodium hydroxide	5 M (5 N)	Dissolve 200 g sodium hydroxide pellets in 1 L of distilled water.

IV. Other Important Reagents

Malau				
S. No.	Name	Concentration	Molar mass	Method of preparation
1.	Ammonium acetate	2 M (2 N)	77	Dissolve 154 g of the salt in distilled water and dilute to 1 L.
2.	Ammonium chloride	5 M (5 N)	53.5	Dissolve 267.5 g of the salt in distilled water and dilute to 1 L.
3.	Ammonium carbonate	1.7 M (3.5 N)	96	Dissolve 160 g of ammonium carbonate in 140 mL liquor ammonia and make up the solution 1 L with distilled water.
4.	Ammonium molybdate			Dissolve 100 g of the salt in a mixture of 100 mL of liquor ammonia solution and add 250 g of ammonium nitrate and dilute it to 1L with distilled water.
5.	Ammonium oxalate	0.5 M (1 N)	142	Dissolve 71 g of the salt in distilled water and dilute to 1L.
6.	Ammonium sulphate	1 M (2 N)	132	Dissolve 132 g of the salt in distilled water and dilute to 1L.
7.	Barium chloride (BaCl ₂ · 2H ₂ O)	0.5 M (0.5 N)	244	Dissolve 61 g of the salt in distilled water and dillute to 1L.
8.	Bromine water	Approx. saturated	160	Add 2 mL of bromine in 100 mL of distilled water shake the mixture well. Keep it in a dark bottle.
9.	Calcium chloride	0.5 M (0.5 N)	219	Dissolve 55 g of the salt in distilled water and make up the volume to 1L.
10.	Chlorine water		71	Prepare chlorine by treating solid ${\rm KMnO_4}$ with conc. HCl. Saturate 1 L of distilled water with chlorine gas and keep the solution in a dark coloured bottle.
11.	Copper sulphate	14%	249.5	Dissolve 14 g of the salt in distilled water and make up the volume to 100 mL.
12.	Cobalt nitrate	0.15 M (0.075 N)	291	Dissolve 43.65 g of the salt in distilled water and make up the volume to 1L.
13.	Dimethyl glyoxime	1%		Dissolve 1.0 g of the solid in 100 mL ethyl alcohol.
14.	Diphenylamine	0.5%		Dissolve 0.5 g of the solid in 85 mL of conc. sulphuric acid and dilute it with care with distilled water to 100 mL.
15.	Disodium hydrogen phosphate Na ₂ HPO ₄ · 12H ₂ O	0.3 M (N)	358	Dissolve 120.0 g of the salt in distilled water and make up the volume to 1L.

S. No.	Name	Concentration	Molar mass	Method of preparation
16.	Ferric chloride FeCl ₃ · 6H ₂ O	0.33 M (1 N)	270	Dissolve 90 g of the salt in distilled water containing 10 mL of conc. hydrochloric acid and make up the volume of 1 L.
17.	lodine solution		254	Dissolve 1.0 g of iodine crystals in a solution of 2 g potassium iodide in minimum amount of water and dilute the solution to 100 mL.
18.	Lead acetate (CH ₃ COO) ₂ Pb	0.5 M (N)		Dissolve 200 g of solid salt in 500 mL of distilled water containing 15 mL acetic acid and make up the volume to 1 L with distilled water.
19.	Lime water Ca(OH) ₂	0.02 M (0.04 N)	74	Shake 2–3 g of calcium hydroxide with 1 L distilled water, filter the solution after sometimes and keep it in a reagent bottle. Bottle should be securely stoppered in order to protect the reagent from CO ₂ of atmosphere.
20.	Litmus solution (blue)			Dissolve 10 g of litmus in distilled water and make the volume to 1 L.
21.	Litmus solution (red)			To the blue litmus solution add about 10 drops of dilute hydrochloric acid.
22.	Methyl orange			Dissolve 1 g of the solid in 1L of distilled water.
23.	Mercuric chloride	0.25 M (0.5 N)	272	Dissolve 70 g of the salt in small amount of distilled water and

24.

25.

26.

27.

Nessler's reagent

Potassium chromate

0.25 M (0.5 N)

0.15 M (1 N)

0.15 M (0.5 N)

194

294

368

 $K_2[HgI_4]$

K₂CrO₄

Potassium dichromate (K₂Cr₂O₇)

Potassium

ferrocyanide

make up the volume to 1 L with

Dissolve 23 g of mercuric iodide

and 16 g of potassium iodide in

distilled water and make up the volume to 100 mL. Add 150 mL of 4 M NaOH solution. Allow it to stand for 24 h and decant the solution. Solution should be stored in a dark coloured bottle.

Dissolve 49 g of the salt in

distilled water and make up the

Dissolve 49.0 g of the salt in

distilled water and make up the

Dissolve 46.10 g of the salt in distilled water and dilute to 1L.

distilled water.

volume to 1L.

volume to 1L.

S. No.	Name	Concentration	Molar mass	Method of preparation
28.	Potassium ferricyanide	0.2 M (0.5 N)	329	Dissolve 55.0 g of the salt in distilled water and dilute to 1L.
29.	Potassium iodide KI	0.5M (0.5 N)	166	Dissolve 83.0 g of the salt in distilled water and make up the volume to 1L.
30.	Potassium permanganate KMnO ₄	0.06 M (0.3 N)	158	Dissolve 10.0 g of the salt in 1L distilled water. Heat the solution and filter it through glass wool.
31.	Potassium thiocyanate	0.5 M (0.5 N)	97	Dissolve 49.0 g of the salt in distilled water and make up the volume to 1L.
32.	Phenolphthalein	1%		Dissolve 1.0 g of the solid in 100 mL of ethyl alcohol.
33.	Silver nitrate AgNO ₃	0.1 M	170	Dissolve 17 g of the salt in 250 mL of distilled water and store it in a brown coloured bottle.
34.	Sodium acetate	5 M (5 N)	82	Dissolve 410 g of salt in distilled water and dilute to 1L.
35.	Sodium nitroprusside			Dissolve 4 g of the solid in 100 mL of distilled water.
36.	Starch			Prepare a paste of about 1.0 g of soluble starch in cold water and pour it gradually in 100 mL of boiling water with constant stirring. Boil it for 10 min and cool.
37.	Yellow ammonium sulphide (NH ₄) ₂ S _x		6 N	Take about 200 mL of conc. ammonia solution in a bottle and saturate it with $\rm H_2S$ gas. Add 10 g of flower of sulphur and 200 mL of conc. NH $_4$ OH. Warm gently and shake well until sulphur is completely dissolved. Dilute the solution to 1L with distilled water.

Important Name Reactions

1. Aldol condensation

$$2\text{CH}_{3}-\text{CHO} \xrightarrow{\text{Dil. NaOH}} \text{CH}_{3}-\text{CH}-\text{CH}_{2}-\text{CHO} \xrightarrow{\Delta \atop -\text{H}_{2}\text{O}} \\ \text{OH} \\ 3\text{-hydroxy butanal} \\ \text{(Aldol)} \qquad \text{CH}_{3}-\text{CH}=\text{CHCHO} \\ \text{But}-2-\text{enal} \\ \end{cases}$$

2. Cannizzaro reaction

2 CHO + Conc. NaOH CH₂OH + Benzyl alcohol CO
$$\bar{\text{O}}$$
Na Sodium benzoate

3. Carbylamine reaction

$$R-NH_2+CHCl_3+3KOH \xrightarrow{\Delta} RNC+3KCl+3H_2O$$

4. Clemmensen reduction

$$C = O \xrightarrow{Z_{n-Hg}} CH_2 + H_2O$$

5. Coupling reaction

$$N_{2}^{\dagger}Cl^{-} + H$$

OH

OH

OH

OH

OH

OH

N=N

OH + Cl^{-} + H_{2}O

P-hydroxyazobenzene (orange dye)

N=N

NH₂

NH₂

NH₂ + Cl^{-} + H₂O

P-aminoazobenzene (yellow dye)

6. Etard reaction

$$\begin{array}{c} \text{CH}_3 \\ \\ \text{Foluene} \end{array} + \text{CrO}_2\text{Cl}_2 \xrightarrow{\text{CS}_2} \begin{array}{c} \text{CH(OCrOHCl}_2)_2 \\ \\ \text{Chromium complex} \end{array} \\ \begin{array}{c} \text{Benzaldehyde} \end{array}$$

7. Friedel Crafts acylation reaction

$$+ CH_3COCl \frac{Anhy. AlCl_3}{\Delta}$$

$$COCH_3$$

$$+ HCl$$

$$Acetophenone$$

8. Gabriel phthalimide synthesis

9. Gattermann's reaction

$$ArN_2^+ X^ ArCl + N_2 + CuX$$
 $ArBr + N_2 + CuX$

10. Gattermann's-Koch reaction

11. Haloform reaction

$$R - C - CH_3 \xrightarrow{\text{NaOX}} R - C - ONa + CHX_3$$

$$[X = Cl, Br, J]$$

12. Hell-Volhard-Zelinsky reaction

$$\begin{array}{c} X \\ \text{CH}_2\text{COOH} \xrightarrow{\text{(i)} X_2 / \text{Red phosphorus}} R \xrightarrow{R} \text{CH} \text{--COOH} \\ & (X = \text{Cl, Br}) \\ & [\alpha\text{-halocarboxylic acid}] \end{array}$$

13. Hofmann bromamide degradation reaction

O
$$\parallel$$
 $R - C - NH_2 + Br_2 + 4NaOH \longrightarrow R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$

14. Kolbe reaction

$$\begin{array}{c|c} OH & \bar{O}Na^{+} & OH \\ \hline & NaOH & \hline & (i) CO_{2} \\ \hline & (ii) H^{+} & \hline \end{array}$$

2-hydroxybenzene

15. Reimer-Tiemann reaction

16. Rosenmund reduction

O
C—Cl
CHO
$$\frac{\text{Pd-H}_2\text{SO}_4}{\text{H}_2}$$
Benzoyl chloride
Benzaldehyde

17. Stephen reaction

$$RCN + SnCl_2 + HCl \longrightarrow RCH = NH \xrightarrow{H_3O^+} RCHO$$

18. Swarts reaction

$$H_3C-Br+AgF \longrightarrow H_3C-F+AgBr$$

19. Williamson synthesis

$$RX + RONa \longrightarrow R - O - R + NaX$$

$$CH_3 \longrightarrow C - O^-Na^+ + CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow C - CH_3 + NaBr$$

$$CH_3 \longrightarrow C \longrightarrow CH_3 \longrightarrow CH_3$$

20. Wolff-Kishner reduction

$$C=O \xrightarrow{H_2N-NH_2} C==NNH_2 \xrightarrow{KOH/\text{ ethylene glycol}} CH_2+N_2$$

21. Wurtz reaction

$$CH_3Br + 2Na + BrCH_3 \xrightarrow{Dry \text{ ether}} CH_3 - CH_3 + 2NaBr$$
 ethane

22. Wurtz Fittig reaction

$$+ Na + RX \xrightarrow{\text{Ether}} + NaX$$