CSPB 3155 - Reckwerdt - Principles of Programming Languages

<u>Dashboard</u> / My courses / <u>2244:CSPB 3155</u> / <u>Week 5: Lettuce, Scoping, and Closures</u> / <u>Online Quiz 4</u>

Started on	Monday, 17 June 2024, 11:05 PM
State	Finished
Completed on	Monday, 17 June 2024, 11:07 PM
Time taken	1 min 54 secs
Marks	25.00/25.00
Grade	10.00 out of 10.00 (100 %)

Correct

Mark 4.00 out of 4.00

let x = 10 in	(* Line 1 *)
let $f = function(x)$	(* Line 2 *)
x + 20	(* Line 3 *)
in	
x + f(x)	(* Line 4 *)

The comments are written between (* and *) markers.

- (A) Which of the definitions does the x in line 3 refer to?
- Line 2 Correct
- It is an undefined usage
- Line 1
- Line 4

Mark 2.00 out of 2.00

- (B) Which of the definitions does the x in line 4 refer to?
- Line 2
- It is an undefined usage
- Line 1 Correct
 - Line 4

Mark 2.00 out of 2.00

(Correct)

Marks for this submission: 4.00/4.00.

Correct

Mark 2.00 out of 2.00

Consider the Lettuce program below:

```
let x = 10 in
  let y = x + 10 in
    let z = x * y in
            2 * z
```

What value does it evaluate to?

Answer: 400

Correct

Correct

Marks for this submission: 2.00/2.00.

Question 3

Correct

Mark 2.00 out of 2.00

What is the value computed by the following Lettuce program:

```
let x = 10 in
let y = let x = 10 in x + 10 in
   let z = let x = 20 in x + 10 in
```

Just type the number in the box below.

Answer: 10

Marks for this submission: 2.00/2.00.

Correct

Mark 2.00 out of 2.00

What is the value computed by the following Lettuce program:

```
let x = 10 in
let y = let x = 10 in x + 10 in
   let z = let x = 20 in x + 10 in
```

Answer: 30

Marks for this submission: 2.00/2.00.

Question 5

Correct

Mark 2.00 out of 2.00

What is the value computed by the Lettuce program?

```
let f = function(x) \times x \times x in
    let x = 20 in
          f (10)
```

Answer: 100

Correct

Marks for this submission: 2.00/2.00.

Correct

Mark 5.00 out of 5.00

Consider Let Bindings in lettuce. Consider the following operational semantic rule:

$$\frac{\mathbf{eval}(e_1, \sigma) = v_1, \quad \mathbf{eval}(e_2, \sigma) = v_2, \quad v_1 \neq \mathbf{error}}{\mathbf{eval}(Let(id, e_1, e_2), \sigma) = v_2}$$

What is the value of the following program under these semantics:

The remaining semantic rules are as in the "Lettuce-Let Language" notebook. Specifically, the semantics for Constants and Identifiers are recalled here:

$$\frac{}{eval(Const(v), \sigma) = v} (const-rule)$$

$$\frac{x \in \text{domain}(\sigma)}{eval(\text{Ident}(x), \sigma) = \sigma(x)} \text{(ident-ok-rule)} \quad \frac{x \notin \text{domain}(\sigma)}{eval(\text{Ident}(x), \sigma) = \mathbf{error}} \text{(ident-nok-rule)}$$

Select one:

- a. 10
- b. false
- c. 20
- o d. error
- e. true

Your answer is correct.

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 5.00 out of 5.00

Consider Let Bindings in lettuce. Consider once again the following operational semantic rule:

eval
$$(e_1, \sigma) = v_1$$
, eval $(e_2, \sigma) = v_2$, $v_1 \neq$ error
eval $(Let(id, e_1, e_2), \sigma) = v_2$

Which of the statement best describes the shortcoming of this semantic rule?

Select one:	
a. The rule should add the values computed by e1 and e2	
b. The rule must check if e2 is an error before it evaluates e1	
c. The rule must also check if e1 is an error, and if so return error.	
od. The rule does not bind id to the value computed by expression e1, when evaluating e2.	
e. The rule is correct	
Your answer is correct.	
(Correct)	
Marks for this submission: 5.00/5.00.	

Correct

Mark 3.00 out of 3.00

Suppose we add a new operator \sqrt{x} denoted by $\operatorname{Sqrt}(\mathbf{Expr})$ in Lettuce. Note that \sqrt{x} requires its argument x to be non-negative. Select which of the options below are the appropriate big-step operational rules for evaluating square-root.

$$\frac{\operatorname{eval}(e,\sigma) = v_1, \ v_1 \in R, \ v_1 \ge 0}{\operatorname{eval}(Sqrt(e), \sigma) = \sqrt{\overline{v_1}}}(\mathbf{A})$$

$$\frac{\mathbf{eval}(e,\sigma) = v_1, \ v_1 \in R}{\mathbf{eval}(Sqrt(e), \sigma) = v_1^2}(\mathbf{B})$$

$$\frac{\mathbf{eval}(e,\sigma) = v_1, \ v_1 \in R}{\mathbf{eval}(Sqrt(e),\sigma) = \sqrt{v_1}}(\mathbf{C})$$

$$\frac{\mathbf{eval}(e,\sigma) = v_1, \ v_1 \in R, \ v_1 < 0}{\mathbf{eval}(Sqrt(e), \sigma) = \mathbf{error}}(\mathbf{D})$$

$$\frac{\mathbf{eval}(e,\sigma) = v_1, \ v_1 \in R, \ v_1 \leq 0}{\mathbf{eval}(Sqrt(e), \sigma) = \mathbf{error}} (\mathbf{E})$$

$$\frac{\mathbf{eval}(e,\sigma) = v_1, \ v_1 \notin R}{\mathbf{eval}(Sqrt(e),\sigma) = \mathbf{error}}(\mathbf{F})$$

$$\frac{\operatorname{eval}(e,\sigma) = v_1, \ v_1 \notin R}{\operatorname{eval}(Sqrt(e),\sigma) = \mathbf{0}}(\mathbf{G})$$

Select one or more:

- **a**. A
- b. E
- c. C
- d. D
- e. E
- f. F
- g. G

Your answer is correct.

Correct

Marks for this submission: 3.00/3.00.