

DSP ontwikkeling

10 Dec 2010

Jan Mennekens

Artesis 2010

1. know what you're doing

- 1. know what you're doing
- 2. think before you do it

- 1. know what you're doing
- 2. think before you do it
- 3. how will you do it?

- 1. know what you're doing
- 2. think before you do it
- 3. how will you do it?
- 4. do it

- 1. know what you're doing
- 2. think before you do it
- 3. how will you do it?
- 4. do it
- 5. now look what you've done

know what you're doing

begrijp uw opdracht!

begrijp uw opdracht!

- begrijp uw opdracht!
- twee weken in het labo kunnen makkelijk een half uur in de bibliotheek uitsparen

begrijp uw opdracht!

- begrijp uw opdracht!
- twee weken in het labo kunnen makkelijk een half uur in de bibliotheek uitsparen

- begrijp uw opdracht!
- twee weken in het labo kunnen makkelijk een half uur in de bibliotheek uitsparen
- het is goed dat je niet snel vooruit gaat, want je gaat in de verkeerde richting

het verschil tussen

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

het verschil tussen

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

en

het verschil tussen

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

en

het verschil tussen

$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

en

```
def conv(x, y):
    P, Q, N = len(x), len(y), len(x)+len(y)-1
z = []
for k in range (N):
    t, lower, upper = 0, max(0, k-(Q-1)), min(P-1, k)
    for i in range(lower, upper+1):
        t = t + x[i] * y[k-i]
    z.append(t)
return z
```


bepalen mate van gelijkheid

- bepalen mate van gelijkheid
- gebruikt voor
 - signaal/echo-detectie
 - beeld/rand-herkenning

- bepalen mate van gelijkheid
- gebruikt voor
 - signaal/echo-detectie
 - beeld/rand-herkenning
- gebruikt in
 - ontvangers / radar /sonar
 - medische apparatuur

Sunday 25 September 11

demo

- simpel te proberen
- werkt prima met ruis
- werkt nog beter met template

- transformatie frequentie-domein
 - welke frequenties zitten in dit signaal

- transformatie frequentie-domein
 - welke frequenties zitten in dit signaal
- gebruikt voor
 - draaggolf-detectie
 - harmonischen-detectie

- transformatie frequentie-domein
 - welke frequenties zitten in dit signaal
- gebruikt voor
 - draaggolf-detectie
 - harmonischen-detectie
- gebruikt in
 - ontvangers / radar /sonar
 - mechanische testbanken

Sunday 25 September 11

demo

- simpel te proberen
- werkt prima met ruis
- langere FFT's zijn beter
- recupereer energie indien mogelijk

filters

uitfilteren frequentie-componenten

filters

- uitfilteren frequentie-componenten
- gebruikt voor
 - signaal-zuivering

filters

- uitfilteren frequentie-componenten
- gebruikt voor
 - signaal-zuivering
- gebruikt in
 - ontvangers / radar /sonar
 - audio/video toepassingen
 - telefonie (echo-canceling)

Sunday 25 September 11

filter

demo

- simpel te proberen
- eenvoudig te construeren
- is eigenlijk een convolutie

aliasing

aliasing

conclusie stap 1

DSP is CONVOLUTIE

stap 2

think before you do it

• simuleer eerst !!!!!

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date
- hergebruik zoveel mogelijk

• simuleer eerst !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date
- hergebruik zoveel mogelijk

- simuleer eerst !!!!!
- simuleer nog eens !!!!!
- maak een proefmodel
- hou dit proefmodel bij en up-to-date
- hergebruik zoveel mogelijk
- wees niet bang om te herbeginnen

conclusie stap 2

architectuur is belangrijk

stap 3

how will you do it?

DSP

DSP

DSP is convolutie

- DSP is convolutie
- DSP is heel veel MACs in korte tijd
 - meerdere bussen
 - meedere cores
 - snelle interfaces

- DSP is convolutie
- DSP is heel veel MACs in korte tijd
 - meerdere bussen
 - meedere cores
 - snelle interfaces
- en minder
 - veel memory
 - zware user-interfaces

microcontroller

- microcontroller
- standaard high-end PC

- microcontroller
- standaard high-end PC
- DSP core

- microcontroller
- standaard high-end PC
- DSP core
- DSP multi-core

- microcontroller
- standaard high-end PC
- DSP core
- DSP multi-core
- GPU

- microcontroller
- standaard high-end PC
- DSP core
- DSP multi-core
- GPU
- FPGA / discrete logica

- microcontroller
- standaard high-end PC
- DSP core
- DSP multi-core
- GPU
- FPGA / discrete logica
- combinatie

gesofisticeerde simulatie-paketten

- gesofisticeerde simulatie-paketten
- IDE/dev-kit

- gesofisticeerde simulatie-paketten
- IDE/dev-kit
- target language C / C++ / asm

- gesofisticeerde simulatie-paketten
- IDE/dev-kit
- target language C / C++ / asm
- FPGA core design pakket

- gesofisticeerde simulatie-paketten
- IDE/dev-kit
- target language C / C++ / asm
- FPGA core design pakket
- data-analyse tools

conclusie stap 3

blijf op de hoogte van de technologieveranderingen

stap 4

do it

decisions

hardware of software

hardware of software

- hardware of software
- geheugen of tijd

hardware of software

- hardware of software
- geheugen of tijd

- hardware of software
- geheugen of tijd
- snelheid of stroom

hardware of software

- hardware of software
- geheugen of tijd

- hardware of software
- geheugen of tijd
- snelheid of stroom

- hardware of software
- geheugen of tijd
- snelheid of stroom
- communicatie of rekenen

hardware of software

- hardware of software
- geheugen of tijd

- hardware of software
- geheugen of tijd
- snelheid of stroom

- hardware of software
- geheugen of tijd
- snelheid of stroom
- communicatie of rekenen

- hardware of software
- geheugen of tijd
- snelheid of stroom
- communicatie of rekenen

- hardware of software
- geheugen of tijd
- snelheid of stroom
- communicatie of rekenen

het beste algorithme wint ALTIJD

conclusie stap 4

ken uw trade-offs

stap 5

now look what you've done

denk na over hoe je dat gaat testen

- denk na over hoe je dat gaat testen
- bouw je proefmodel als testbank

- denk na over hoe je dat gaat testen
- bouw je proefmodel als testbank
- voorzie testmogelijkheden op de HW

- denk na over hoe je dat gaat testen
- bouw je proefmodel als testbank
- voorzie testmogelijkheden op de HW
- automatiseer je testen

- denk na over hoe je dat gaat testen
- bouw je proefmodel als testbank
- voorzie testmogelijkheden op de HW
- automatiseer je testen
- loop je testen zo vaak mogelijk

voorbeeld setup

TCL simulation code

TCL function library

Python simulation code

Python libraries

SWIG wrapper SWIG wrapper SWIG wrapper

ANSI C DSP lib (fixed point)

ANSI C DSP lib (floating point)

ANSI C FEC lib

simulator setup

target setup

Sunday 25 September 11

conclusie stap 5

the difference between a good design and a great design is the amount of testing done

- stap 1 : ken je onderwerp
 - DSP is convolutie

- stap 1 : ken je onderwerp
 - DSP is convolutie
- stap 2 : design door simulatie
 - architectuur is belangrijk

- stap 1 : ken je onderwerp
 - DSP is convolutie
- stap 2 : design door simulatie
 - architectuur is belangrijk
- stap 3 : beslis over de aanpak
 - blijf op de hoogte

- stap 1 : ken je onderwerp
 - DSP is convolutie
- stap 2 : design door simulatie
 - architectuur is belangrijk
- stap 3 : beslis over de aanpak
 - blijf op de hoogte
- stap 4 : maak de juiste design
 - ken uw trade-offs / design decisions

- stap 1 : ken je onderwerp
 - DSP is convolutie
- stap 2 : design door simulatie
 - architectuur is belangrijk
- stap 3 : beslis over de aanpak
 - blijf op de hoogte
- stap 4 : maak de juiste design
 - ken uw trade-offs / design decisions
- stap 5 : testing, testing, 1.2.3
 - de enige manier om zeker te zijn

vragen?

www.dcim.be

jan@dcim.be

www.dcim.be

jan@dcim.be

gebruikte SW

minimaal

- minimaal
 - ubuntu 11.04

- minimaal
 - ubuntu 11.04
 - ipython

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib
- voor SWIG

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib
- voor SWIG
 - swig

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib
- voor SWIG
 - swig
 - python-dev

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib
- voor SWIG
 - swig
 - python-dev
- voor de repository

- minimaal
 - ubuntu 11.04
 - ipython
 - python-matplotlib
- voor SWIG
 - swig
 - python-dev
- voor de repository
 - git

repository

git clone git://github.com/JeanLeHacker/ Artesis_2011.git

git clone git://github.com/JeanLeHacker/ Artesis_2011.git

the end...

www.dcim.be

jan@dcim.be

www.dcim.be

jan@dcim.be