

UNIT - 1

INTRODUCTION

- 1. Some Representative Problems
 - ➤ A First Problem: Stable Matching:
 - The Problem
 - Designing the Algorithm
 - Analyzing the Algorithm
 - Extensions
- 2. Five Representative Problems:
 - ➤ Interval Scheduling
 - Weighted Interval Scheduling
 - ➤ Bipartite Matching
 - > Independent Set
 - Competitive Facility Location
- 3. Computational Tractability:
 - ➤ Some Initial Attempts at Defining Efficiency
 - ➤ Worst-Case Running Times and Brute-Force Search
 - Polynomial Time as a Definition of Efficiency
- 4. Asymptotic Order of Growth:
 - Properties of Asymptotic Growth Rates
 - Asymptotic Bounds for Some Common Functions
- 5. Implementing the Stable Matching Algorithm
 - Using Lists and Arrays: Arrays and Lists,
 - > Implementing the Stable Matching Algorithm
- 6. A Survey of Common Running Times:
 - Linear Time
 - \triangleright $O(n \log n)$ Time
 - Quadratic Time
 - Cubic Time
 - \triangleright O(nk) Time
 - ➤ Beyond Polynomial Time
 - Sub linear Time.

UNIT 1

INTRODUCTION

1. A first problem: Stable Matching

1.1 The problem:

- Designing a college admission process or job recruiting process that is self-enforcing.
- All juniors in college majoring in computer science begin applying to companies for summer internships.
- Application process is the interplay between two different types of parties.
 - 1. Companies (the employers)
 - 2. Students (the applicants)
- Each applicant has a preference ordering on companies and each company forms a preference ordering on its applicants.
- Based on these preferences, companies extend offers to some of their applicants, applicants choose which of their offers to accept.
- Gale and Shapely considered the sorts of things that could start going wrong with the process.
 - 1. "Raj" accepted job at company "CluNet".
 - 2. "WebExodus" offers job to "Raj".
 - 3. "Raj" now prefers "WebExodus" and rejects "CluNet".
 - 4. "Kiran" gets an offer from "CluNet".
 - 5. "Kiran" already had accepted offer from "BabelSoft".
 - 6. "Kiran" accepts offer from "CluNet" and rejects "BabelSoft".
 - 7. "Deepa" who has accepted the offer from "BabelSoft" calls up "WebExodus" to join them (i.e. she preferred WebExodus over BabelSoft.
 - 8. "WebExodus" rejects "Raj" and accept "Deepa" (i.e. WebExodus preferred Deepa over Raj).
- Situation like this creates chaos and both applicants and employers endup unhappy with the
 process as well as outcome as the process is not self-enforcing and people are not allowed to
 act in their self-interest.

• According to Gale and Shapley: Given a set of preferences among employers and applicants, we can assign applicants to employers so that for every employer E, and every applicant A who is not scheduled to work for E, at least one of the following two things should hold:

- 1. "E" prefers every one of its accepted applicants to "A".
- 2. "A" prefers her current situation over working for employer "E".

If this holds, the outcome is stable.

• Individual self-interest will prevent any applicant/employer deal from being made behind the scene.

1.2. Formulating the problem:

- Each applicant is looking for a single company. Each company is looking for many applicants. Each applicant does not typically apply to every company.
- Each of **napplicants** applies to each of **ncompanies** and each company wants to accept a single applicant.

(OR)

- nmen and n women can end up getting married, in this case everyone is seeking to be paired with exactly one individual of opposite gender.
 - \triangleright M is a set of n men, M={m₁,m₂,...,m_n}
 - \triangleright W is a set of n women, W={w₁,w₂,...,w_n}
 - ▶ M*W, is the set of all possible ordered pairs of form (m,w), where m∈M and w∈W
- Matching: A matching "S" is a set of ordered pairs, each from M*W, with the property that each member of M and each member of W appears in at most one pair in S.

Perfect matching

- A perfect matching S¹ is a matching with the property that each member of M and each member of W appears in exactly one pair in S¹.
- A perfect match is a way of pairing men with the women in such a way that everyone
 ends up married to somebody and nobody is married to more than one person. (i.e.
 neither singlehood nor polygamy).

Instability:

- Say there are 2 pairs (m,w) and (m¹,w¹) in S with property that
 - > m prefers w¹ to w
 - \triangleright w¹ prefers m to m1

The pair (m,w¹) is an instability with respect to S: (m,w¹) does not belong to S.

- Our goal is a set of marriages with no instabilities. A matching S is stable if:
 - 1. It is perfect.
 - 2. There is no instability with respect to S.

• Example 1:

We have a set of two men, $\{m, m^1\}$ and a set of two women $\{w, w^1\}$. The preference lists are:

```
m prefers w to w<sup>1</sup>
m<sup>1</sup> prefers w to w<sup>1</sup>
w prefers m to m<sup>1</sup>
w<sup>1</sup> prefers m to m<sup>1</sup>
```

- \triangleright There is a unique stable matching, consisting of pairs (m,w) and (m',w¹).
- (m¹,w) and (m,w¹) would not be a stable match, because the pair (m,w) would form an instability with respect to this matching.

• Example 2:

```
m prefers w to w<sup>1</sup>
m<sup>1</sup> prefers w<sup>1</sup> to w
w prefers m<sup>1</sup> to m
w<sup>1</sup> prefers m to m<sup>1</sup>
```

- (m,w) and (m¹,w¹) is stable, because both men are happy as neither would leave their matched partners.
- \triangleright (m¹,w) and (m,w¹) is stable as both women are happy.
- > So its possible for an instance to have more than one stable matching.

1.3 Designing the Algorithm:

Basic steps:

- **1.** Initially, everyone is unmarried.
 - ➤ If an unmarried man **m** chooses woman **w** who ranks highest on his preference list and proposes her.
 - \triangleright A mam \mathbf{m}^1 whom \mathbf{w} prefers, \mathbf{w} may or may not receive a proposal from \mathbf{m}^1 .