PREDICTING THE PRICE OF SKINCARE PRODUCTS USING REGRESSION MODEL

JING LEE

APRIL 20, 2022

METIS PROJECT 2

WEB SCRAPING AND REGRESSION

Introduction

Motivation

- Skincare is a multibillion-dollar growing industry
- The price for 1 oz cream range from \$10 to \$200+
- What determine the pricing of products?
- Budget brands vs luxury brands?

Objective

- Investigation the features that contribute to the pricing of products
- Use a regression model to predict price of skincare products

Goals

- Consumers can decide what products to buy within their budget
- New skincare companies can understand how products are priced

What goes into the pricing of products?

- \$123 per 1 oz
- Parent company: L'oreal
- Luxury brand
- Rating: 4.6 stars
- Reviews: 3,919

- \$17 for 1 oz
- Parent company: L'oreal
- Budget brand
- Rating 4.12 stars
- Reviews: 112

Methodology: data collection

- Web scraping data (~1847 products)
 - website: www.ulta.com
 - Major retailer of beauty products ranging from luxury to affordable brands

Methodology: Tools

• Tools:

• Requests/ BeautifulSoup, pandas, matplotlib, seaborn, statsmodels, sklearn

Models:

- Linear regression without regularization
- Linear regression with regularization
 - Lasso
 - Ridge
 - Elastic net
- Extensive feature engineering to improve model

• Metrics:

• R², mean absolute error (MAE)

Model selection – cross validation

• Linear regression without regularization

• Predictors: $10 \rightarrow 17$ and 1501 datapoints

• Mean train $R^2 : 0.409 + /- 0.063$

• Test R²: 0.413

• MAE: \$13.66

Predictors in the model

- Predictors correlation with price (predictor)
 - len_ingredients 0.44
 - price_per_vol 0.44

Other findings

- Most brand come have the same 7 major parent companies
- High ratings and low number of reviews and vice verse

Conclusions

- Predicting price with linear regression and the current features is not a good model
- Model has low prediction accuracy of ~ 41 %
- Price prediction is +/- \$13.66 is high considering average products cost ~\$35
- Missing important features such as investment in marketing which could heavily influence pricing and purchase power
- There is no clear predictor for products pricing

Future work

- Acquire data from other products sources
 - Sephora: luxury brands
 - Target: affordable brands
- In depth study of the actual ingredients in the product to determine pricing
 - use of classification model to improve prediction
- A feature to account for marketing influence

Thank you!!

Questions?

Appendix

```
simple regression scores:
train r2 [0.39054358 0.41968104 0.37822006 0.52167151 0.33326757]
mean cv r2 0.409 +/- 0.063
test r2: 0.413
MAE +- $: 13.66
ridge regression scores:
train r2 [0.39237975 0.43186739 0.36834842 0.51323988 0.3546437 ]
mean cv r2 0.412 +/- 0.057
test r2: 0.409
MAE +- $: 13.78
lasso regression scores:
train r2 [0.39058034 0.42079321 0.37841136 0.52173008 0.33252066]
mean cv r2 0.409 +/- 0.063
test r2: 0.413
MAE +- $: 13.66
elastic regression scores:
train r2 [0.39187371 0.43534027 0.36727406 0.5114768 0.35664375]
mean cv r2 0.413 +/- 0.056
test r2: 0.408
MAE +- $: 13.81
```

Heatmap

	coef	std err	t	P> t	[0.025	0.975]
const	15.0415	5.738	2.621	0.009	3.786	26.297
wordCount_descr	-0.1526	0.057	-2.680	0.007	-0.264	-0.041
key_ingredients	0.4733	0.236	2.002	0.045	0.010	0.937
len_ingredients	0.4791	0.041	11.610	0.000	0.398	0.560
len_actives	-3.3086	0.671	-4.932	0.000	-4.625	-1.993
benefits_count	0.4320	0.138	3.123	0.002	0.161	0.703
clinical	1.4984	0.250	5.990	0.000	1.008	1.989
size_float	0.7687	0.093	8.255	0.000	0.586	0.951
rating_x2	0.5725	0.164	3.499	0.000	0.252	0.893
price_per_vol	0.2715	0.016	16.936	0.000	0.240	0.303
productType_serum	5.2029	1.112	4.678	0.000	3.021	7.384
cleanXformula	-0.3645	0.205	-1.774	0.076	-0.767	0.039
brand_sub2	-6.9184	2.737	-2.528	0.012	-12.287	-1.550
glycerin	3.6681	1.345	2.728	0.006	1.031	6.306
dimethicone	5.4102	1.100	4.917	0.000	3.252	7.569
niacinamide	-5.1606	1.502	-3.436	0.001	-8.107	-2.214
glycolic acid	4.0026	2.174	1.841	0.066	-0.262	8.267
peptide	2.8370	1.383	2.051	0.040	0.124	5.550
100						

 Omnibus:
 162.332
 Durbin-Watson:
 1.982

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1318.181

 Skew:
 -0.072
 Prob(JB):
 5.76e-287

 Kurtosis:
 7.589
 Cond. No.
 730.