# BE530 – Medical Deep Learning

- Performance Metrics -

Byoung-Dai Lee

Division of Al Computer Science and Engineering

Kyonggi University



### MAE vs. RMSE

- Regression 모델 평가
  - MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y_j}|$$
  $\hat{y_j}$  - the predicted value  $\hat{y_j}$  - ground truth

RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y_j})^2}$$

- RMSE는 결과적으로 오차가 클수록 더 큰 penalty를 부과함



### 분류 모델 평가

■ 정확도(Accuracy)로만 평가할 경우

정확도(
$$Accuracy$$
) =  $\frac{정답과 일치한 수}{전체 데이터 수}$ 

- 스팸 메일과 정상 메일을 분류하는 이진 분류 작업
  - 수신된 메일 100건을 사람이 직접 분류해보니 스팸이 60개, 정상 메일이 40개
  - 분류기가 모든 메일을 스팸으로 분류한다면 → 정확도 60%
- 분류 대상 클래스의 분포에 영향을 받기 때문에 단순히 정확도만 이용한 모델 평가에는 한계가 존재함
- 평가 지표
  - 정확도, 정밀도, 재현율, F-점수, ROC, AUROC, ...



### 혼동행렬 (Confusion Matrix)

#### ■ 예측 결과와 실제 결과를 행렬로 표현하는 기법

|        |          | Predi          | ction          |
|--------|----------|----------------|----------------|
|        |          | 1              | 0              |
| Actual | Actual 1 | True Positive  | False Negative |
| Class  | 0        | False Positive | True Negative  |



- True Positive Positive로 예측해서 True임 (예측이 맞음)
- False Positive Positive로 예측해서 False임 (예측이 틀림, 실제값은 Negative)
- False Negative Negative로 예측해서 False임 (예측이 틀림, 실제값은 Positive)
- True Negative Negative로 예측해서 True임 (예측이 맞음)



## 정확도 (Accuracy)

|        |   | Predi          | ction          |
|--------|---|----------------|----------------|
|        |   | 1              | 0              |
| Actual | 1 | True Positive  | False Negative |
| Class  | 0 | False Positive | True Negative  |

정확도(
$$Accuracy$$
) =  $\frac{TP + TN}{TP + TN + FP + FN}$ 

오류율( $Error\ Rate$ ) = 1 - Accuracy



## 정밀도 (Precision)

■ Positive라고 예측한 것 중에서 얼마나 잘 맞았는지 비율

| <b>Precision</b> |  |     | Prediction     |                |  |
|------------------|--|-----|----------------|----------------|--|
|                  |  | 1 0 |                |                |  |
| Actual<br>Class  |  | 1   | True Positive  | False Negative |  |
|                  |  | 0   | False Positive | True Negative  |  |

정밀도(
$$Precision$$
) =  $\frac{TP}{TP + FP}$ 



### 재현율 (Recall)

- 실제 Positive한 것 중에서 얼마나 잘 예측하였는지 비율
  - 재현율 = 민감도 (sensitivity) = True Positive Rate

| Recall |        |                | Prediction    |                |  |
|--------|--------|----------------|---------------|----------------|--|
|        |        | 1              | 0             |                |  |
|        | Actual | 1              | True Positive | False Negative |  |
| Class  | 0      | False Positive | True Negative |                |  |

재현율(
$$Recall$$
) =  $\frac{TP}{TP + FN}$ 

- Precision과 Recall은 trade-off 관계
  - Recall을 높이기 위해서는 FN를 줄여야 하며, Precision을 높이려면 FP를 줄여야 하기 때문



## 특이도 (Specificity)

■ 실제 Negative한 것 중에서 얼마나 잘 예측하였는지 비율

| <b>Specificity</b> |  |     | Prediction     |                |  |
|--------------------|--|-----|----------------|----------------|--|
|                    |  | 1 0 |                |                |  |
| ActualClass        |  | 1   | True Positive  | False Negative |  |
|                    |  | 0   | False Positive | True Negative  |  |

특이도(Specificity) = 
$$\frac{TN}{TN + FP}$$



## 음성예측도 (Negative Predicted Value)

■ Negative라고 예측한 것 중에서 얼마나 잘 맞았는지 비율

#### **NPV**

|        |   | Predi          | ction          |  |
|--------|---|----------------|----------------|--|
|        |   | 1              | 0              |  |
| Actual | 1 | True Positive  | False Negative |  |
| Class  | 0 | False Positive | True Negative  |  |

음성예측도(Negative Prediced Value) = 
$$\frac{TN}{TN + FN}$$



## 분류 모델 성능 평가 지표





#### F-measure

| 모델 | Precision | Recall | 평균    |
|----|-----------|--------|-------|
| А  | 0.6       | 0.39   | 0.495 |
| В  | 0.02      | 1.0    | 0.51  |

#### ■ 모델 B

- 모든 데이터를 Positive로 분류한다면 → Recall = 1.0
- 그러나 Negative도 Positive로 분류하기 때문에 좋은 분류기(X)
- → 단순 평균으로 모델이 좋은지 나쁜지 평가하기 힘들 수 있음

#### ■ F-measure

$$F-meaure = 2 \times \frac{Precision \times Recall}{Precision + Recall}$$

| 모델 | Precision | Recall | 평균    | F-measure |
|----|-----------|--------|-------|-----------|
| А  | 0.6       | 0.39   | 0.495 | 0.472     |
| В  | 0.02      | 1.0    | 0.51  | 0.039     |



## **Average Precision (1)**

#### ■ Precision-Recall 그래프

- 알고리즘의 매개변수 조절에 따른 precision과 recall의 변화 표현
- 알고리즘의 성능을 전반적으로 파악하기에는 좋으나 서로 다른 두 알고리즘 을 정량적으로 비교하기에는 불편함

### Average Precision (AP)

- Precision-Recall 그래피에서 그래프 선 아래쪽의 면적 계산
- 면적의 값 (AP)가 높을수록 성능이 우세







## Average Precision (2)

- 15개의 얼굴이 존재하는 이미지에서 얼굴 검출 알고리즘에 의해 총 10개의 얼굴이 검출되었다고 가정
  - Confidence Score를 0%에서부터 100%까지 모두 고려

| Detections | confidences | TP or FP |
|------------|-------------|----------|
| Α          | 57%         | TP       |
| В          | 78%         | TP       |
| С          | 43%         | FP       |
| D          | 85%         | TP       |
| Е          | 91%         | TP       |
| F          | 13%         | FP       |
| G          | 45%         | TP       |
| Н          | 68%         | FP       |
| I          | 95%         | TP       |
| J          | 81%         | TP       |

Precision (7/10 = 0.7), Recall (7/15 = 0.47)



# Average Precision (3)

#### ■ Confidence score에 따른 재정렬

| Detections | confidences | TP or FP |
|------------|-------------|----------|
| I          | 95%         | TP       |
| Е          | 91%         | TP       |
| D          | 85%         | TP       |
| J          | 81%         | TP       |
| В          | 78%         | TP       |
| Н          | 68%         | FP       |
| Α          | 57%         | TP       |
| G          | 45%         | TP       |
| С          | 43%         | FP       |
| F          | 13%         | FP       |

#### ■ Confidence score에 따른 Precision-Recall

| Detections | confidences | TP or FP | 누적 TP | 누적 FP | Precision | Recall     |
|------------|-------------|----------|-------|-------|-----------|------------|
| I          | 95%         | TP       | 1     | 0     | 1/1=1     | 1/15=0.067 |
| Е          | 91%         | TP       | 2     | 0     | 2/2=1     | 2/15=0.13  |
| D          | 85%         | TP       | 3     | 0     | 3/3=1     | 3/15=0.2   |
| J          | 81%         | TP       | 4     | 0     | 4/4=1     | 4/15=0.27  |
| В          | 78%         | TP       | 5     | 0     | 5/5=1     | 5/15=0.33  |
| Н          | 68%         | FP       | 5     | 1     | 5/6=0.83  | 5/15=0.33  |
| Α          | 57%         | TP       | 6     | 1     | 6/7=0.86  | 6/15=0.4   |
| G          | 45%         | TP       | 7     | 1     | 7/8=0.88  | 7/15=0.47  |
| С          | 43%         | FP       | 7     | 2     | 7/9=0.78  | 7/15=0.47  |
| F          | 13%         | FP       | 7     | 3     | 7/10=0.7  | 7/15=0.47  |



## **Average Precision (4)**

#### ■ Precision-Recall 그래프





## ROC Curve (1)

- Receiver Operating Characteristics (ROC) Curve
  - x축을 FP rate(1-specificity), y축을 TP rate으로 하여 시각화한 그래프
    - TPR과 FPR은 비례 관계
    - 모든 환자를 암이라고 한다면 → TPR=1, FPR=1
    - 모든 환자를 정상이라고 한다면 → TPR=0, FPR=0
  - 이진 분류 또는 의료 분야에서 많이 사용되는 성능 지표







## ROC Curve (2)

#### 모델의 예측 확률을 기준으로 오름차순 정렬

| 실제 정답 | 예측 확률 |
|-------|-------|
| Р     | 0.6   |
| N     | 0.7   |
| Р     | 0.4   |
| N     | 0.2   |



| 실제 정답 | 예측 확률 |  |  |  |
|-------|-------|--|--|--|
| N     | 0.7   |  |  |  |
| Р     | 0.6   |  |  |  |
| Р     | 0.4   |  |  |  |
| N     | 0.2   |  |  |  |

예측 확률에 따른 FPR/TPR 계산

FPR = AP =  $1 \times 0.33 + 0.88 \times (0.47 - 0.33) = 0.4532$ 

#### Threshold = 0.7

모델 예측 결과 및 실제 정답 데이터

| 실제 정답 | 예측 확률 | 모델의 예측 |
|-------|-------|--------|
| N     | 0.7   | Р      |
| Р     | 0.6   | N      |
| Р     | 0.4   | N      |
| N     | 0.2   | N      |

False Positive Rate = 
$$\frac{\sum False\ Positive\ \dot{\uparrow}}{\sum \ S \ \Box \ Negative\ \dot{\uparrow}} = \frac{1}{2}$$

True Positive Rate = 
$$\frac{\sum True\ Positive\ \dot{\uparrow}}{\sum \ S \ \Box\ Positive\ \dot{\uparrow}} = \frac{0}{2}$$



#### Threshold = 0.6

모델 예측 결과 및 실제 정답 데이터

| 실제 정답 | 예측 확률 | 모델의 예측 |  |  |
|-------|-------|--------|--|--|
| N     | 0.7   | Р      |  |  |
| Р     | 0.6   | Р      |  |  |
| Р     | 0.4   | N      |  |  |
| N     | 0.2   | N      |  |  |



False Positive Rate = 
$$\frac{\sum False\ Positive\ \dot{\uparrow}}{\sum 정답의\ Negative\ \dot{\uparrow}} = \frac{1}{2}$$





**ROC Curve** 

$$(\frac{1}{2},\frac{1}{2})$$

## **AUROC**

#### AUROC

Area Under the ROC Curve



| AUROC value | Interpretation        |
|-------------|-----------------------|
| 0.5         | The worst             |
| 1.0         | The best              |
| 0.50 ~ 0.70 | Sub-optimal           |
| 0.70 ~ 0.80 | Good performance      |
| > 0.80      | Excellent performance |



# An Example





# An Example (cont.)

| Method                          | Category   | n    | Mean ± SD (RS)    | Mean ± SD<br>(predicted) | 95% CI for mean<br>differences | T-value | p-value | MAE±SD            |
|---------------------------------|------------|------|-------------------|--------------------------|--------------------------------|---------|---------|-------------------|
|                                 | All cases  | 1000 | $0.506 \pm 0.080$ | $0.505 \pm 0.080$        | (-0.00195, 0.00310)            | 0.45    | 0.655   | $0.023 \pm 0.033$ |
|                                 | Subgroup 1 | 123  | $0.449 \pm 0.068$ | $0.455 \pm 0.069$        | (-0.01156, -0.00190)           | -2.76   | 0.007   | $0.020 \pm 0.020$ |
| Segmentation-                   | Subgroup 2 | 202  | $0.530 \pm 0.083$ | $0.522 \pm 0.092$        | (0.00026, 0.01713)             | 2.03    | 0.043   | $0.035 \pm 0.050$ |
| based method 1                  | Subgroup 3 | 83   | $0.543 \pm 0.088$ | 0.514±0.100              | (0.01004, 0.04909)             | 3.01    | 0.003   | $0.058 \pm 0.074$ |
|                                 | Subgroup 4 | 63   | $0.493 \pm 0.078$ | 0.493 ± 0.081            | (-0.00596, 0.01459)            | 0.84    | 0.404   | $0.025 \pm 0.032$ |
|                                 | Subgroup 5 | 652  | $0.505 \pm 0.075$ | $0.508 \pm 0.075$        | (-0.00456, 0.00019)            | -1.81   | 0.071   | $0.019 \pm 0.024$ |
| Segmentation-<br>based method 2 | All cases  | 1000 | $0.506 \pm 0.080$ | $0.506 \pm 0.078$        | (-0.00263, 0.00236)            | -0.10   | 0.917   | $0.024 \pm 0.032$ |
|                                 | Subgroup 1 | 123  | $0.449 \pm 0.068$ | 0.457 ± 0.069            | (-0.01234, -0.00346)           | -3.52   | 0.001   | $0.021 \pm 0.015$ |
|                                 | Subgroup 2 | 202  | $0.530 \pm 0.083$ | 0.524±0.094              | (-0.00194, 0.01509)            | 1.52    | 0.130   | $0.038 \pm 0.049$ |
|                                 | Subgroup 3 | 83   | $0.543 \pm 0.088$ | 0.514±0.097              | (0.01113, 0.04786)             | 3.20    | 0.002   | $0.059 \pm 0.066$ |
|                                 | Subgroup 4 | 63   | $0.493 \pm 0.078$ | $0.496 \pm 0.081$        | (-0.01237, 0.00653)            | -0.62   | 0.539   | $0.025 \pm 0.028$ |
|                                 | Subgroup 5 | 652  | $0.505 \pm 0.075$ | $0.507 \pm 0.072$        | (-0.00443, 0.00028)            | -1.73   | 0.084   | $0.019 \pm 0.023$ |



|                             |            | No. of samples |    |     |    |      |              |                 |                 |                   |
|-----------------------------|------------|----------------|----|-----|----|------|--------------|-----------------|-----------------|-------------------|
| Method                      | Category   | TP             | FP | TN  | FN | n    | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC               |
| Segmentation-based method 1 | All cases  | 466            | 66 | 444 | 24 | 1000 | 91 (89, 93)  | 95 (94, 96)     | 87 (85, 89)     | 0.96 (0.94, 0.97) |
|                             | Subgroup 1 | 25             | 3  | 91  | 4  | 123  | 94 (90, 98)  | 86 (80, 92)     | 97 (94, 100)    | 0.96 (0.92, 0.99) |
|                             | Subgroup 2 | 107            | 22 | 68  | 5  | 202  | 87 (82, 92)  | 96 (93, 99)     | 76 (70, 82)     | 0.92 (0.86, 0.97) |
|                             | Subgroup 3 | 43             | 17 | 22  | 1  | 83   | 78 (69, 87)  | 98 (95, 100)    | 56 (45, 67)     | 0.86 (0.76, 0.98) |
|                             | Subgroup 4 | 25             | 6  | 31  | 1  | 63   | 89 (81, 97)  | 96 (91, 100)    | 84 (75, 93)     | 0.93 (0.85, 1.00) |
|                             | Subgroup 5 | 314            | 34 | 288 | 16 | 652  | 92 (90, 94)  | 95 (93, 97)     | 89 (87, 91)     | 0.97 (0.95, 0.98) |
| Segmentation-based method 2 | All cases  | 470            | 61 | 436 | 32 | 1000 | 91 (89, 93)  | 94 (93, 95)     | 88 (86, 90)     | 0.95 (0.94, 0.97) |
|                             | Subgroup 1 | 25             | 3  | 91  | 4  | 123  | 94 (90, 98)  | 86 (80, 92)     | 97 (94, 100)    | 0.98 (0.96, 1.00) |
|                             | Subgroup 2 | 105            | 24 | 62  | 11 | 202  | 83 (78, 88)  | 91 (87, 95)     | 72 (66, 78)     | 0.89 (0.84, 0.95) |
|                             | Subgroup 3 | 43             | 17 | 19  | 4  | 83   | 75 (66, 84)  | 91 (85, 97)     | 53 (42, 64)     | 0.81 (0.69, 0.93) |
|                             | Subgroup 4 | 28             | 3  | 29  | 3  | 63   | 90 (83, 97)  | 90 (83, 97)     | 91 (84, 88)     | 0.95 (0.88, 1.00) |
|                             | Subgroup 5 | 317            | 31 | 288 | 16 | 652  | 93 (91, 95)  | 95 (93, 97)     | 90 (88, 92)     | 0.97 (0.96, 0.99) |



#### References

- 머신러닝에서 사용되는 평가 지표, <a href="https://gaussian37.github.io/ml-concept-ml-evaluation/">https://gaussian37.github.io/ml-concept-ml-evaluation/</a>
- mAP (mean Average Precision) for Object Detection, <a href="https://medium.com/@jonathan\_hui/map-mean-average-precision-for-object-detection-45c121a31173">https://medium.com/@jonathan\_hui/map-mean-average-precision-for-object-detection-45c121a31173</a>
- 물체 검출 알고리즘 성능 평가 방법 AP(Average Precision)의 이해, https://bskyvision.com/465
- Receiver Operating Characteristics (ROC), <a href="https://scikit-learn.org/stable/auto\_examples/model\_selection/plot\_roc.html">https://scikit-learn.org/stable/auto\_examples/model\_selection/plot\_roc.html</a>
- ROC Curve란? ROC 커브 해석, <a href="https://losskatsu.github.io/machine-learning/stat-roc-curve/#2-1-%EC%A0%95%EB%B0%80%EB%8F%84precision%EC%99%80-%EB%AF%BC%EA%B0%90%EB%8F%84recall">https://losskatsu.github.io/machine-learning/stat-roc-curve/#2-1-%EC%A0%95%EB%B0%80%EB%8F%84precision%EC%99%80-%EB%AF%BC%EA%B0%90%EB%8F%84recall</a>
- Measuring Performance: AUC(AUROC), <a href="https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/">https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/</a>
- ROC 완벽 정리, <a href="https://m.blog.naver.com/PostView.nhn?blogId=sw4r&logNo=221015817276&proxyReferer=https%3A%2F%2Fwww.google.com%2F">https://m.blog.naver.com/PostView.nhn?blogId=sw4r&logNo=221015817276&proxyReferer=https%3A%2F%2Fwww.google.com%2F</a>





