2020 华二冬令营集训 省选模拟赛

欢乐过年赛

第五试

时间: 2020 年 1 月 31 日 08:00 ~ 13:00

题目名称	松鼠串门	网络攻击	项链
题目类型	传统型	传统型	传统型
目录	squirrel	network	cyclic
可执行文件名	squirrel	network	cyclic
输入文件名	squirrel.in	network.in	cyclic.in
输出文件名	squirrel.out	network.out	cyclic.out
每个测试点时限	2 秒	1.0 秒	1.0 秒
内存限制	1.5 GB	512 MiB	512 MiB
子任务数目	20	20	20
测试点是否等分	是	是	是

提交源程序文件名

对于 C++ 语言	squirrel.cpp	network.cpp	cyclic.cpp
对于 C 语言	squirrel.c	network.c	cyclic.c
对于 Pascal 语言	squirrel.pas	network.pas	cyclic.pas

编译选项

对于 C++ 语言	-02 -std=c++14	
对于 C 语言	-02 -std=c11	
对于 Pascal 语言	-02	

松鼠串门 (squirrel)

【题目描述】

一个美丽的国度的中央有一棵巨大的松树,树上住着许多松鼠。这棵树可以被抽象为一棵 n 个点的有根树,编号为 1 到 n,其中根的编号为 1。

树上活泼可爱的松鼠们喜欢到处串门。有时,住在编号为 u 的点的松鼠会携带 d 份干粮出发串门。由于松鼠们有选择强迫症,而这棵有根树上的每个点都只有唯一的父亲,因此它们只喜欢沿着当前所在的点沿着到树根的路径爬,并且从一个点爬到相邻的另外一个点,会消耗一定体力,松鼠需要吃掉一份干粮补充体力。如果没有干粮了,松鼠便无法在树上移动了。

树上每个点都会结出非常多(多到松鼠永远也不可能采完)的某种松果,编号为i的点结出的全部松果价值为一个非负整数 a_i 。松鼠在串门的过程中,可以在沿途经过的所有点采集任意数量的松果。当松鼠结束它的串门过程时,它会统计出所有采摘到的松果的价值的异或和s。假设在这棵树上,松鼠的快乐可以简单地用某个数值量化,那么松鼠这次串门旅途就会获得大小为s的快乐值。松鼠当然希望越快乐越好,它希望能够计算出每次串门能获得的最大的快乐值。

年复一年,日复一日,松树沐浴在阳光雨露之下,有时会长出新的叶子,即树上某个已经存在的点会多出一个新的儿子。每当有新的点出现,树上的总点数会加一,并且 松鼠们会将新的点编号为新的总点数。新的点和其它之前存在的点一样,可能会有新的 松鼠搬来居住,并且以后这些松鼠可能也会出门串门,这个点上也会结出价值为某个特定的值的松果。

经过常年的观测,你,这棵松树的管理者,已经预测了这棵松树上发生的所有事件:松鼠的串门,以及新的叶子的长出。这些事件都不会同时发生,并且每个事件只会在之前的事件结束后才会发生,于是你按照时间顺序将它们全部罗列出来。非常关心松鼠身心健康的你现在想要知道,对于每个松鼠串门的事件,对应的串门活动能够给松鼠带来的最大的快乐值是多少。

【输入格式】

从文件 squirrel.in 中读入数据。

输入的第一行为两个正整数 n,m,分别表示初始时树的点数以及事件的数目。

接下来 n 行中,第 i 行为两个整数 f_i , a_i ,分别表示编号为 i 的点在树上的父亲节点的编号,以及编号为 i 的点结出的每个松果的价值。特别地,一定有 $f_1=0$,表示编号为 1 的点为这棵树的根。

接下来m行,每行的输入数据为以下两种情况之一:

• 0 u d

表示松鼠串门事件: 松鼠携带了 d 份干粮从编号为 u 的点出发串门;

• 1 *u a*

表示长出了新叶子的事件:编号为u的点长出了一个新的儿子,并且新点结出的松果的价值为a。

每行的第一个数字标志了事件的类型。

对于所有的输入数据,都满足 $1 \le n \le 5 \times 10^5, 1 \le m \le 5 \times 10^5, 0 \le a_i < 2^{64}, f_1 = 0, 1 \le f_i < i(i > 1)$ 。

【输出格式】

输出到文件 squirrel.out 中。

对于每个松鼠串门的时间,输出一行一个整数,表示本次串门松鼠能获得的最大的 快乐值。

【样例1输入】

```
1 3 4
2 0 7
3 1 2
4 2 4
5 0 3 1
6 0 3 2
7 1 2 1
8 0 4 1
```

【样例 1 输出】

```
1 6 2 7 3 3
```

【样例 1 解释】

松鼠的第一次出行,可能到达的点的编号有 2,3,可以获得的最大快乐值为 6; 松鼠的第二次出行,可能到达的点的编号有 1,2,3,可以获得的最大快乐值为 7; 松鼠的第三次出行,可能到的的点的编号有 2,4,可以获得的最大快乐值为 3。

【样例 2】

见选手目录下的 squirrel/squirrel2.in 与 squirrel/squirrel2.ans。本组样例没有 1 类事件。

【样例 3】

见选手目录下的 *squirrel/squirrel3.in* 与 *squirrel/squirrel3.ans*。

【子任务】

测试点	<i>n</i> ≤	$m \leq$	$a_i \leq$	是否有1类事件
1,2	20	20	2^{64}	是
3	5 ×10 ⁵	5 ×10 ⁵	2^{1}	否
4	9 X10	9 X10		是
5,6,7,8	10^{3}	2,000	2^{64}	Æ
9,10	2×10^{4}	2×10^{4}	232	否
11,12,13,14	2 ×10	2 ×10	2	
15,16	10^{5}	10^{5}	2^{64}	是
17,18,19,20	5×10^{5}	5×10^{5}		

网络攻击 (network)

【题目描述】

某 IT 公司有非常复杂的网络结构,这个网络结构共有 n 台主机,有些主机之间有双向通信的通道,不同的主机之间可以直接或间接地通过这些通道交换信息。

现在,公司的 CEO 在考虑这样一个问题:公司的网络结构是否是安全的。目前,CEO 知道有两个和黑客有能力破坏公司的网络系统的通道。两个黑客可以选择两条不同的通道进行破坏,在此之后,如果有两台电脑之间无法交换信息,那么公司的网络结构便被他们成功破坏了。

换句话说,整个公司看作是一个连通的无向图,你可以去掉两条不同的边,使得整个图变得不连通。CEO 想请你帮忙计算出有多少种成功破坏公司的网络结构的方案。两种方案被认为是不同的,当且仅当一个方案中,存在一个通道被破坏,而另一个方案中没有。

【输入格式】

从文件 network.in 中读入数据。

第一行两个整数 n,m,表示公司主机的数目和通道的数目。

接下来 m 行,每行两个整数 u,v,表示 u,v 之间有一条双向数据传输通道。

【输出格式】

输出到文件 network.out 中。

一行一个整数,表示成功破坏公司网络结构的方案数。

【样例 1 输入】

```
1 3 3
2 1 2
3 2 3
4 3 1
```

【样例 1 输出】

1 3

【样例1解释】

显然破坏任意两条边均可。

【样例 2】

见选手目录下的 network/network2.in 与 network/network2.ans。

【子任务】

测试点	n	m
1,2,3,4	2000	≤ 200
5,6,7,8	≤ 200	$\leq 5 \times 10^5$
9,10,11,12	$\leq 3,000$	$\leq 5,000$
13,14,15,16	$\leq 5,000$	$\leq 5 \times 10^5$
17,18,19,20	$\leq 3 \times 10^5$	> 0 × 10

项链 (cyclic)

【题目描述】

宝宝有一串珠子,是她从龙虎山上的老和尚那里买来的。

串上有n个珠子,一开始都为红色。

现在宝宝想选取 m 个珠子涂为黑色,但是为了美观,她不想让任意 k 个连续的珠子同时被涂为黑色。

宝宝现在想知道有多少种不同的涂色方案。两个方案是相同的,当且仅当可以通过 旋转珠子使得对应的位置颜色相同。

由于答案可能很大, 你只需要输出答案除以 998244353 的余数。

【输入格式】

从文件 cyclic.in 中读入数据。

一行三个整数 n, m, k,意义如题目所述。

【输出格式】

输出到文件 cyclic.out 中。

一行一个整数,表示方案数除以998244353的余数。

【样例 1 输入】

1 4 2 2

【样例 1 输出】

1 2

【样例 1 解释】

可能的涂法为:

- 红黑红黑
- 红红红红

【样例 2】

见选手目录下的 cyclic/cyclic2.in 与 cyclic/cyclic2.ans。

【子任务】

14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		目不去 1
测试点	n	是否有 $m = k$
1,2	≤ 10	否
3,4	$\leq 10^2$	是
5,6		否
7,8	$\leq 2,000$	是
9,10	$\leq 2,000$	否
11,12	$\leq 3 \times 10^4$	
13,14	$\leq 10^{5}$	是
15,16	≥ 10	否
17,18	$\leq 5 \times 10^6$	是
19,20	$ \geq 9 \times 10^{\circ}$	否