Controlled Rectifiers (Three-phase)

Dr. Suneel Kommuri

Email: Suneel.Kommuri@xjtlu.edu.cn

Dept. Electrical & Electronic Engineering

Outline

Review of last week lecture

1. Three-phase Half-wave controlled rectifiers

- 1. Firing/triggering angle α ;
- 2. Resistive loading;
- 3. Inductive loading;

2. Full-wave (bridge)

- 1. Resistive loading;
- 2. Inductive loading.

Power semiconductor devices – Review

• Terminals of a controllable power electronic device

SCR in a rectification circuit – Review

- SCR/Thyristor: Acts like a diode where you can select when conduction will start, but not when it stops.
 - Semi-controlled: we control the turn on point, but only turns off when circuit conditions force it to.

SCR Turn-On Analysis – Review

- Two conditions must be met before the SCR can conduct:
- 1. The SCR must be forward biased ($v_{AK} > 0$).
- A current must be applied to the gate of SCR.
- A SCR is turned ON by increasing the anode current. This can be accomplished in one of the following ways:
- 1. Forward voltage triggering
- 2. Gate triggering
- 3. The dv/dt triggering
- 4. Temperature triggering
- 5. Light triggering

Phase Control – Review

- In this circuit, the control of the output DC voltage is realized by modifying the triggering pulse phase or firing angle, this is called *Phase Control*.
- Change the firing angle α from 0 to π :

1.1 Firing angle (triggering angle) - Recall

 In controlled rectifier, controllability of the circuit is realized by triggering the thyristors at different phases, which is called the *firing/triggering angle*. It is usually represented by "α";

 This trigger signal is a current pulse at the "gate" terminal of thyristors;

- For single phase circuit, $\alpha=0$ means trigger signal is sent at $\omega t=0$;
- For three-phase circuit, $\alpha = 0$ means trigger signal is sent at $\omega t = \pi/6$, which is the first *natural commutation* (phase changing) point.

- Three phase supply primary in delta and secondary in star connection.
- Common-cathode connection.
- v_b v_c v_c
- Natural commutation (phasechanging) point
 - It is considered as the starting point for thyristor triggering angle α , i.e. $\alpha = 0^{0}$.
 - Phase-shift range: $\alpha <= 120^{\circ}$.

- When $\alpha = 0^{\circ}$ (Same as the uncontrolled, 3-phase, half-wave)
 - Example: At $\alpha = 0$ ($\omega t = \pi/6$), as soon as T_a is forward biased (red line v_a becomes the largest one), a trigger signal is provided to T_a , so T_a starts to conduct;
 - At $\omega t = 5\pi/6$, when v_b becomes the largest one, another trigger signal is provided to T_b , so T_b starts to conduct;
 - At $\omega t = 3\pi/2$, when v_c becomes the largest one, the trigger signal to T_c is provided, so T_c starts to conduct.

- When $\alpha = 30^{\circ}$
 - From $\omega t = \pi/6$ to $\pi/3$, although T_a is forward biased (red line v_a is the largest one), no trigger signal is provided to T_a , so T_a cannot conduct;
 - At $\alpha=30^{\circ}$ ($\omega t=\pi/3$), a trigger signal is provided to T_a , so T_a starts to conduct;
 - At $\omega t = 5\pi/6$, when v_b becomes the largest one, since no trigger signal is provided to T_b , it will not conduct until $\omega t = \pi$. It will conduct only when the trigger signal provided.

- When $\alpha = 60^{\circ}$
 - From $\omega t = \pi/6$ to $\pi/2$, although T_a is forward biased (red line v_a is the largest one), no trigger signal is provided to T_a , so it cannot conduct;
 - At $\alpha = 60^{\circ}$ ($\omega t = \pi/2$), a trigger signal is provided to T_a , therefore it starts to conduct;
 - From $\omega t = \pi to 7\pi/6$, v_a is no longer the largest one, T_a stops; since no trigger signal is provided to T_b , it will not conduct either. In this region, no SCR will conduct.
 - At $\omega t = 7\pi/6$, T_b is triggered and forward biased, therefore it conducts.

Resistive load, quantitative analysis

- When $\alpha \leq 30^{\circ}$,
- Average value of output voltage, $V_o = \frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\alpha+5\pi/6} V_m \sin \omega t \, d(\omega t) = \frac{3\sqrt{3}}{2\pi} V_m \cos \alpha$
- RMS voltage, $V_{RMS} = \left[\frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\alpha+5\pi/6} V_m^2 \sin^2 \omega t \, d(\omega t)\right]^{1/2} = \sqrt{3} V_m \left[\frac{1}{6} + \frac{\sqrt{3}}{8\pi} \cos 2\alpha\right]^{1/2}$
- Average load current, $I_o = \frac{V_o}{R} = \frac{3\sqrt{3}V_m}{2\pi R}\cos\alpha$
- RMS load current, $I_{RMS} = \frac{V_{RMS}}{R} = \frac{\sqrt{3}V_m}{R} \left[\frac{1}{6} + \frac{\sqrt{3}}{8\pi} \cos 2\alpha \right]^{1/2}$
- When $\alpha > 30^{\circ}$,
- Average output voltage, $V_o = \frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\pi} V_m \sin \omega t \, d(\omega t) = \frac{3V_m}{2\pi} [1 + \cos(\alpha + 30^0)]$
- RMS voltage, $V_{RMS} = \left[\frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\pi} V_m^2 \sin^2 \omega t \, d(\omega t)\right]^{1/2} = \frac{\sqrt{3}V_m}{2\sqrt{\pi}} \left[\left(\frac{5\pi}{6} \alpha\right) + \frac{1}{2}\sin(2\alpha + \pi/3)\right]^{1/2}$

Inductive load (R-L)

- The load inductance L is large enough, the output current i_o is continuous and almost flat;
- When $\alpha \leq 30^{\circ}$, the rectified voltage waveform is similar to resistive load;
- When $\alpha > 30^{\circ}$ (eg. $\alpha = 60^{\circ}$):
 - At $\omega t = \pi$, v_a is zero but i_a is not zero due to RL load. So, T_a keeps conducting beyond π .
 - v_o goes negative beyond $\omega t = \pi$.
- When T_b is turned on, load current shifts from T_a to T_b .

Inductive load, quantitative analysis

Load current i_0 is always continuous, and

Average value of output voltage,
$$V_o = \frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\alpha+5\pi/6} V_m \sin \omega t \, d(\omega t) = \frac{3\sqrt{3}}{2\pi} V_m \cos \alpha$$

RMS voltage,
$$V_{RMS} = \left[\frac{1}{2\pi/3} \int_{\alpha+\pi/6}^{\alpha+5\pi/6} V_m^2 \sin^2 \omega t \, d(\omega t)\right]^{1/2} = \sqrt{3} V_m \left[\frac{1}{6} + \frac{\sqrt{3}}{8\pi} \cos 2\alpha\right]^{1/2}$$

- The average value of thyristor current = Average value of source current, $I_{SA} = \frac{(I_o \times 120)}{360}$ RMS value of thyristor current:

$$I_{T,RMS} = \left[\frac{I_o^2 \times 120}{360}\right]^{1/2} = \frac{I_o}{\sqrt{3}}$$

2 Three-phase bridge fully-controlled rectifier

Numbering of the 6 thyristors indicates the trigger sequence:

$$T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4 \rightarrow T_5 \rightarrow T_6$$

Positive and negative groups of SCRs are fired at an interval of 120°

- $-\alpha = 0^{\circ}$
- Thyristors behave like diodes
- T_1 is triggered at $\omega t = \pi/6$, T_2 starts at $\pi/2$...
- Load (output) voltage is similar to uncontrolled case

$$V_{an} = V_m \sin \omega t$$

$$V_{bn} = V_m \sin(\omega t - 120^0)$$

$$V_{cn} = V_m \sin(\omega t - 240^0)$$

- $\alpha = 30^{\circ}$
- T_1 starts conducting at $\omega t = 60^{\circ}$, T_2 conducts at 120°, T_3 conducts 180° and so on....
- At $\omega t = 60^{\circ}$, T_1 connected to line "a" from positive group and T_6 connected to line "b" would conduct, therefore output voltage follows the line voltage v_{ab} .
- Output voltage is continuous

- $\alpha = 60^{\circ}$
- T_1 starts conducting at $\omega t = 90^{\circ}$, T_2 conducts at 150° , T_3 conducts 210° and so on....
- Output voltage is continuous

- $\alpha = 90^{\circ}$
- T1 starts conducting at $\omega t = 120^{\circ}$
- Output is discontinuous due to resistive load
- At $\omega t = 150^{\circ}$, output voltage,

$$V_{ab} = V_{an} - V_{bn}$$

$$= V_m \sin 150^0$$

$$- V_m \sin (150^0 - 120^0) = 0$$

- Inductive load (R-L load)
 - $-\alpha = 0^{\circ}$
 - Note that load inductance
 L is large so that the load
 current is continuous and
 constant at magnitude.
 - T_1 is triggered at $\omega t = \pi/6$
 - Output voltage is continuous

- Inductive load (R-L load)
 - $\alpha = 30^{\circ}$
 - T_1 is triggered at $\omega t = \pi/3$
 - Output voltage is continuous

- Inductive load (R-L load)
 - $-\alpha = 60^{\circ}$
 - T_1 is triggered at $\omega t = \pi/2$
 - Output voltage is continuous

- Inductive load (R-L load)
 - $-\alpha = 90^{\circ}$
 - T_1 is triggered at $\omega t = 120$
 - Output voltage is continuous and goes negative due to RL load

Quantitative analysis

• Average output voltage (R-load, for $\alpha \le 60^{\circ}$ and any α for RL load)

$$V_{dc} = \frac{3}{\pi} \int_{\pi/6 + \alpha}^{\pi/2 + \alpha} v_{ab} d(\omega t) = \frac{3}{\pi} \int_{\pi/6 + \alpha}^{\pi/2 + \alpha} \sqrt{3} V_m \sin\left(\omega t + \frac{\pi}{6}\right) d(\omega t)$$
$$= \frac{3\sqrt{3} V_m}{\pi} \cos\alpha$$

- For resistive load, when $\alpha > 60^{\circ}$, load current I_o is discontinuous.

$$V_{dc} = \frac{3}{\pi} \int_{\frac{\pi}{6} + \alpha}^{\frac{5\pi}{6}} \sqrt{3} \sin\left(\omega t + \frac{\pi}{6}\right) d(\omega t) = \frac{3\sqrt{3}V_m}{\pi} \left[1 + \cos\left(\frac{\pi}{3} + \alpha\right)\right]$$

RMS output voltage

$$V_{\text{rms}} = \left[\frac{3}{\pi} \int_{\pi/6 + \alpha}^{\pi/2 + \alpha} 3V_m^2 \sin^2 \left(\omega t + \frac{\pi}{6} \right) d(\omega t) \right]^{1/2}$$
$$= \sqrt{6} V_m \left(\frac{1}{4} + \frac{3\sqrt{3}}{8\pi} \cos 2\alpha \right)^{1/2}$$

Quantitative analysis – Notes

• V_m is the peak value of the phase voltage.

$$v_{an} = V_m \sin \omega t$$

$$v_{bn} = V_m \sin(\omega t - 120^0)$$

$$v_{cn} = V_m \sin(\omega t - 240^0)$$

 Line to line voltages lead the phase voltage by 30⁰.

$$v_{ab} = \sqrt{3}V_m \sin(\omega t + 30^0)$$

$$v_{bc} = \sqrt{3}V_m \sin(\omega t - 90^0)$$

$$v_{ca} = \sqrt{3}V_m \sin(\omega t - 210^0)$$

$$\cong V_{ml} \sin(\omega t - 210^0)$$

Quantitative analysis

Average output current (load current) for resistive load

$$I_o = \frac{V_o}{R}$$

- Thyristor voltage and current
 - Same as three-phase half-wave rectifier
- For EMF load, L is large enough
 - All the same as inductive load except the calculation of average output current $I_o = \frac{V_o E}{R}$

Exercise – Try to solve!

- A three-phase half-wave controlled converter is operated from 3-phase, 230 V, 50 Hz supply with load resistance $R=10\Omega$. An average output voltage of 50% of the maximum possible output voltage is required. Determine
 - a) the firing angle,
 - b) average and rms values of load current,
 - c) rectification efficiency

Summary

- 3-phase half-wave rectifier with R-load: 1) Continuous conduction mode when $\alpha < 30^{\circ}$, 2) Discontinuous mode when $\alpha > 30^{\circ}$.
- 3-phase full-wave rectifier: Triggering pulses should be
 - According the sequence of $V_{T1} \rightarrow V_{T2} \rightarrow V_{T3} \rightarrow V_{T4} \rightarrow V_{T5} \rightarrow V_{T6}$
 - With 60° phase difference
 - 6 pulses in one period;
 - Continuous conduction mode for $\alpha \le 60^{\circ}$ in R-load and for any α in RL load, otherwise, *discontinuous mode*.
- The output voltage waveforms for $\alpha=0^{0},30^{0},60^{0}$ of 3-phase fully controlled bridge rectifier with RL load will be same as the waveforms for $\alpha=0^{0},30^{0},60^{0}$ of 3-phase fully controlled bridge rectifier with R load.

See you in the next class (March 24th)

Tutorial in the next lecture

The End

