

Contrastive Learning

221124 Advanced Computer Vision Sohee Kim

♦ Background

Representation Learning

- A class of machine learning approaches that allow a system to discover the representations required for feature detection or classification from raw data
- "raw 데이터에서 detection이나 classification에 필요한 표현을 자동으로 검색할 수 있도록 하는 일련의 기술"
 - Learning useful reprentation based on input data
- Representation: Different ways to view data to encode or describe it

Image : RGB format / HSV format

- Two approaches
 - Generative(생성) approaches generate similar image
 - Pixel level generation : computationally expensive
 - Discriminative(판별) approaches recognize tag, sort data
 - Train networks to perform pretext tasks: limit the generality of learned representations

♦ Background

Self-supervised Learning

- Deep learning need enough quality and data
 - Labeling process is essential → Difficult to collect sufficiently
- A field of Unsupervised learns features from unlabeled input data train
- A method designed to obtain its own label using information that can be obtained from data

Motivation of Contrastive Learning

- Input image : cheetah
 - ⇒ Classification response : Classification rates of <u>leopards</u>, <u>jaguars</u>, etc. are higher than those of boats or shopping carts

Supervised

Semi - Supervised

Unsupervised

It can be seen that similar features are acting on cheetahs, raopards, jaguars, etc., and these well-extracted feature values start with the assumption that they will have similarity information between instances

Self - **supervised**

> Result of image classification model based on supervised

Background

Contrastive Learning

- One way to perform Representation learning
- An approach to use Self-supervised learning
- ⇒ Learning through <u>comparison</u> between the input samples
 - Composed of Positive pair and Negative pair
 - Positive pair close, Negative pair far apart
 - To learn such an embedding space in which

 Similar samples stay close together, while dissimilar ones are far apart
- Advantages: data construction costs are none and learn easier
 - **Use Unlabelled data** ⇒ representation is more general, can respond to new classes
- It is used as a way to fine-tuning network for various Downstream tasks(classification)
 - It is much simpler to perform fine-tuning with other tasks in that it can be done without modification of the model structure

> Train with using Pretext task

A Simple Framework for Contrastive Learning of Visual Representations

Chen, Ting, et al. (Google Research)
International conference on machine learning. PMLR, 2020.

1. Introduction

- SimCLR a simple framework for contrastive learning of visual representations
 - Outperforms previous work
 - Simpler, requiring neither specialized architectures nor a memory bank
- ✓ Major components
 - 1. Composition of multiple data augmentation operations is crucial in defining the contrastive prediction tasks
 - 2. Introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations
 - 3. Benefits from larger batch sizes and longer training compared to its supervised counterpart

> ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50. Our method, SimCLR, is shown in bold.

2. Method

The Contrastive Learning Framework

- No explicit negative sampling
 - Minibatch(N) → 2N data points
 - Negative sample : 2(N-1) data points

 Positive sample : 1 data point

★ Data augmentation module

• T: Data augmentations

(Random Resize Crop, Random Color distortion, Gaussian Blur)

Random Transformation

Data Augmentation

(T)

- t, t': Two separate data augmentation operators
- x_i, x_i : Two correlated views
- \bigstar Base Encoder $f(\cdot)$: ResNet-50
 - h_i, h_i: Representation vectors (Global Average Pooling)
- \bigstar **Projection head** $g(\cdot)$: map non-linear representation to the space
 - Use Two-layer MLP
 - z_i, z_j : vectors generated after Projection head
- \bigstar Contrastive loss function : NT-Xent Loss on z_i, z_i
 - Cosine similarity : $sim(u, v) = u^T v / ||u|| ||v||$

$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbbm{1}_{[k \neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)} \;, \quad \text{Same image} \to \text{hight similarity} \\ \hspace{0.5cm} \triangleright \quad \text{Different image} \to \text{low similarity} \\$$

2. Method

The Contrastive Learning Framework overview

2. Method

Tuning Model: Bringing similar closer

Cosine similarity

$$\mathrm{s_{i,j}} = rac{\mathbf{z_i^T}\mathbf{z_j}}{\left(au || \mathbf{z_i}|| || \mathbf{z_j}||
ight)}$$

2. NT-Xent Loss calculation

NT-Xent Loss : -log(softmax)

$$l(i,j) = -lograc{exp(s_{i,j})}{\sum_{k=1}^{2N} l_{[k!=i]} exp(s_{i,k})}$$

Pair 2 Loss (k=2)

Compute loss over all the pairs in the batch size (N=2)and take an average

$$ext{L} = rac{1}{2 ext{N}} \sum_{ ext{k}=1}^{ ext{N}} [ext{l}(2 ext{k}-1,2 ext{k}) + ext{l}(2 ext{k},2 ext{k}-1)]$$

3. Data Augmentation for Contrastive Representation Learning

Data Augmentation

- (a) Global and local views.
- (b) Adjacent views.

Figure 3. Solid rectangles are images, dashed rectangles are random crops. By randomly cropping images, we sample contrastive prediction tasks that include global to local view $(B \rightarrow A)$ or adjacent view $(D \to C)$ prediction.

- Many existing approaches: change the architecture to define contrastive prediction tasks
- ⇒ Perform simple random cropping of target images – contain all of things abocve
- ⇒ Decouple(분리) Predictive task with NN architecture

Augmentations

f) Rotate {90°, 180°, 270°}

(j) Sobel filtering

Spatial/geometric transformation

(h) Gaussian noise

- Cropping, resizing, rotating, cutout
- Appearance transformation
 - Color distortion, Gaussian blur, Sobel filtering

3. Data Augmentation for Contrastive Representation Learning

Linear evaluation results under individual and composition of transformations

- No single transformation suffices to learn good representations
- When composing augmentations, the contrastive prediction task becomes harder, but the quality of representation improves
- Best: Random Crop + Random Color Distortion

Color Augmentation strength

	Color distortion strength					
Methods	1/8	1/4	1/2	1	1 (+Blur)	AutoAug
SimCLR Supervised	59.6	61.0	62.6	63.2	64.5	61.1
Supervised	77.0	76.7	76.5	75.7	75.4	77.1

Table 1. Top-1 accuracy of unsupervised ResNet-50 using linear evaluation and supervised ResNet-50⁵, under varied color distortion strength (see Appendix A) and other data transformations. Strength 1 (+Blur) is our default data augmentation policy.

- Stronger color augmentation → improves
- Simple cropping + stronger color distortion> Auto Augment(supervised)
- Unsupervised contrastive learning benefits from stronger (color) data augmentation than supervised learning

4. Architectures for Encoder and Head

Linear evaluation of supervised / unsupervised

Unsupervised contrastive learning benefits
 (more) from bigger models

Linear evaluation with different

Maximize agreement

- Projection:

Nonlinear > Linear > None

What to predict?	Random guess	Representation		
what to predict:	Random guess	h	$g(m{h})$	
Color vs grayscale	80	99.3	97.4	
Rotation	25	67.6	25.6	
Orig. vs corrupted	50	99.5	59.6	
Orig. vs Sobel filtered	50	96.6	56.3	

Accuracy of training additional MLPs

- Representation = h better than g(h)
 - z = g(h): trained to be invariant to transformation
 - h more information maintained / g(h) loses information

5. Loss Functions and Batch Size

Loss function

Margin	NT-Logi.	Margin (sh)	NT-Logi.(sh)	NT-Xent
50.9	51.6	57.5	57.9	63.9

Table 4. Linear evaluation (top-1) for models trained with different loss functions. "sh" means using semi-hard negative mining.

ℓ_2 norm?	au	Entropy	Contrastive acc.	Top 1
Yes	0.05	1.0	90.5	59.7
	0.1	4.5	87.8	64.4
	0.5	8.2	68.2	60.7
	1	8.3	59.1	58.0
No	10	0.5	91.7	57.2
	100	0.5	92.1	57.0

Table 5. Linear evaluation for models trained with different choices of ℓ_2 norm and temperature τ for NT-Xent loss. The contrastive distribution is over 4096 examples.

NT-Xent performed best

Batch size

Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch. 10

- Larger Batch Size → better
 - Larger batch sizes provide more negative examples, facilitating convergence

6. Comparison with State-of-the-art

Linear evaluation

Method	Architecture	Param (M)	Top 1	Top 5		
Methods using ResNet-50:						
Local Agg.	ResNet-50	24	60.2	-		
MoCo	ResNet-50	24	60.6	-		
PIRL	ResNet-50	24	63.6	-		
CPC v2	ResNet-50	24	63.8	85.3		
SimCLR (ours)	ResNet-50	24	69.3	89.0		
Methods using other architectures:						
Rotation	RevNet-50 ($4\times$)) 86	55.4	-		
BigBiGAN	RevNet-50 ($4\times$)) 86	61.3	81.9		
AMDIM	Custom-ResNet	626	68.1	-		
CMC	ResNet-50 (2 \times)	188	68.4	88.2		
MoCo	ResNet-50 (4 \times)	375	68.6	-		
CPC v2	ResNet-161 (*)	305	71.5	90.1		
SimCLR (ours)	ResNet-50 (2 \times)	94	74.2	92.0		
SimCLR (ours)	ResNet-50 ($4\times$)	375	76.5	93.2		

Table 6. ImageNet accuracies of linear classifiers trained on representations learned with different self-supervised methods.

- Compare with previous approaches (Self-supervised model)
- SimCLR: best performance

Semi-supervised learning

Method	Architecture	Label fraction 1% 10% Top 5			
Supervised baseline	ResNet-50	48.4	80.4		
Methods using other labe	l-propagation:				
Pseudo-label	ResNet-50	51.6	82.4		
VAT+Entropy Min.	ResNet-50	47.0	83.4		
UDA (w. RandAug)	ResNet-50	-	88.5		
FixMatch (w. RandAug)	ResNet-50	-	89.1		
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2		
Methods using representation learning only:					
InstDisc	ResNet-50	39.2	77.4		
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8		
PIRL	ResNet-50	57.2	83.8		
CPC v2	ResNet-161(*)	77.9	91.2		
SimCLR (ours)	ResNet-50	75.5	87.8		
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2		
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6		

Table 7. ImageNet accuracy of models trained with few labels.

Sample 1% or 10% of the labeled ILSVRC-12 training datasets in a class-balanced way, fine-tune the whole base network on the labeled data

7. Conclusion

* SimCLR

- Self-supervised Learning Simple framework
 - Improve performance of Self-supervised learning,
 Semi-supervised learning, Transfer learning
- Difference from standard Supervised learning
 - Data augmentation, non-linear projection head, the loss function
- By training to <u>learn Representation</u>, performance achieved at the level of Supervised learning
- The strength of this simple framework suggests that, despite a recent surge in interest, self-supervised learning remains undervalued

