Matemáticas DH 108 -1 Marcela llabaca Moore

Funciones. Apoyo 1.

Recordemos la definición de función compuesta:

Dadas dos funciones $g:X\to Y, f:Y\to Z$, se define la compuesta $f\circ g:X\to Z$ como :

 $(f \circ g)(x) = f(g(x))$ siempre que tenga sentido, es decir que ocurra $\text{Re } c(g) \subseteq Dom(f)$.

A trabajar!

Apliquemos lo anterior en los casos siguientes:

Si
$$f(x) = 5x - 1$$
, $g(x) = 2x^2 - 7$, $h(x) = \frac{1}{x+1}$ determine:

a)
$$(f \circ g)(x)$$
 b) $(f \circ h)(x)$, c) $(h \circ g)(x)$, d) $(f \circ f)(x)$ e) $(h \circ f)(x)$

 $f(h \circ h)(x), g(g \circ g)(x)$

Funciones Inyectivas:

Diremos que una función $f: X \to Y$ es inyectiva si se cumple:

para cada $x_1 \neq x_2$ se cumple que $f(x_1) \neq f(x_2)$ o equivalentemente

Si
$$f(x_1) = f(x_2)$$
 entonces $x_1 = x_2$.

Por ejemplo, la función $f(x) = \sqrt{x}$ es inyectiva en cualquiere dominio de números no negativos.

Geométricamente esto se puede probar usando el hecho siguiente:

cualquier recta horizontal debe cortar la gráfica de la función en , a lo más, un punto.

Ejemplos:

 $y = x^3$ inyectiva

$$y = x^2 + 2x + 5$$
 no

Función Epiyectiva.

Diremos que una función $f: X \to Y$ es epiyectiva o sobreyectiva si se cumple:

$$Rec(f) = Y$$
.

Es decir para cada elemento y del conjunto Y, existe un $x \in Dom(f)$ tal que y = f(x).

Función Biyectiva.

Diremos que una función $f: X \to Y$ es biyectiva si es inyectiva y epiyectiva .

En este caso , es posible definir la función inversa de f , $f^{-1}: Y \to X$ que satisface:

$$f^{-1}(y) = x$$
 siempre que $f(x) = y$.

Es decir
$$f \circ f^{-1} = I_Y$$
, y además $f^{-1} \circ f = I_X$

Ejemplo: Determinemos la inversa de $f(x) = \frac{x}{2} + 1$

Dado que
$$f \circ f^{-1} = I_Y$$
 se tiene que $f(f^{-1})(x) = x$, es decir

$$\frac{f^{-1}(x)}{2} + 1 = x \Rightarrow \frac{f^{-1}(x)}{2} = x - 1 \Rightarrow f^{-1}(x) = 2(x - 1)$$

A trabajar!

Encuentre f^{-1} , identifique su dominio y recorrido en cada caso.

$$f(x) = x^5$$

$$f(x) = x^4, x \ge 0$$

$$f(x) = x^3 + 1$$

$$f(x) = \frac{x - 7}{2}$$

$$f(x) = \frac{x-7}{2}$$
 $f(x) = \frac{1}{x^2}, x \ge 0$

$$f(x) = \frac{x+3}{x-2}$$

$$f(x) = \frac{\sqrt{x} + 3}{\sqrt{x} - 3}$$
 $f(x) = x^2 - 2x, x \le 1$ (complete el cuadrado) $f(x) = (2x^3 + 1)^{1/5}$

La gráfica de $f^{-1}(x)$ y de f(x) son simétricas con respecto a la recta y = xpues, el punto $(x,y) \in Graf(f) \Leftrightarrow y = f(x) \Leftrightarrow f^{-1}(y) = x \Leftrightarrow (y,f^{-1}(y)) \in graf(f^{-1})$

$$y = x^3$$
, $y = \sqrt[3]{x}$

Siga trabajando!

Demuestre que $h^{-1}(x) = h(x)$ si $h_1(x) = \frac{6x+7}{5x-6}$ tambien en el caso $h_2(x) = \frac{x+9}{x-1}$ calcule $h^{-1}(h^{-1}(x))$.

Funciones Par e Impar.

- 1) Diremos que una función $f: X \to Y$ es par si f(-x) = f(x). Geométricamente, esto significa que la función es simétrica con respecto al eje Y.
- 2) Diremos que una función $f: X \to Y$ es impar si f(-x) = -f(x). Geométricamente, esto significa que la función es simétrica con respecto al origen.

....nuevamente a trabajar...

Indique si las siguientes funciones son par, impar o ninguno de éstos tipos:

$$f(x) = x^5$$
 $f(x) = x^4, x \ge 0$ $f(x) = x^3 + x$
 $f(x) = \frac{x-7}{2}$ $f(x) = \frac{1}{x^2}, x \ge 0$ $f(x) = \frac{x}{x^2 - 2}$

$$f(x) = \frac{\sqrt{x} + 3}{\sqrt{x} - 3}$$
 $f(x) = x^2 - 2x$ $f(x) = 2x^4 + 3x^2 - 1$

Practiquemos algo de gráficas:

Grafique en cada caso y = f(x). y y = g(x).identifique los valores de x que satisfacen f(x) > g(x).

i)
$$f(x) = \frac{x}{2}, g(x) = \frac{4}{x} + 1$$

i)
$$f(x) = \frac{x}{2}, g(x) = \frac{4}{x} + 1$$
 ii) $f(x) = \frac{2}{x+1}, g(x) = \frac{3}{x-1}$