

CGH40010

10 W, RF Power GaN HEMT

Cree's CGH40010 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40010, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40010 ideal for linear and compressed amplifier circuits. The transistor is available in both screwdown, flange and solder-down, pill packages.

PN's: CGH40010F & CGH40010P

FEATURES

- Up to 6 GHz Operation
- 16 dB Small Signal Gain at 2.0 GHz
- 14 dB Small Signal Gain at 4.0 GHz
- 13 W typical P_{SAT}
- 65 % Efficiency at P_{SAT}
- 28 V Operation

APPLICATIONS

- 2-Way Private Radio
- **Broadband Amplifiers**
- Cellular Infrastructure
- **Test Instrumentation**
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	Volts	25°C
Gate-to-Source Voltage	$V_{\sf GS}$	-10, +2	Volts	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	4.0	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	1.5	А	25°C
Soldering Temperature ²	T_s	245	°C	
Screw Torque	τ	60	in-oz	
Thermal Resistance, Junction to Case ³	$R_{_{\Theta JC}}$	8.0	°C/W	85°C
Case Operating Temperature ^{3,4}	T _c	-40, +150	°C	

Note:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹								
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	$V_{DS} = 10 \text{ V, I}_{D} = 3.6 \text{ mA}$		
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 28 \text{ V, } I_{D} = 200 \text{ mA}$		
Saturated Drain Current	I _{DS}	2.9	3.5	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BR}}}$	120	-	-	V _{DC}	$V_{gs} = -8 \text{ V, } I_{D} = 3.6 \text{ mA}$		
RF Characteristics ² (T _c = 25°C, F ₀ = 3.7 GH	z unless otherwi	se noted)						
Small Signal Gain	G _{ss}	12.5	14.5	-	dB	V _{DD} = 28 V, I _{DQ} = 200 mA		
Power Output ³	P _{SAT}	10	12.5	-	W	V _{DD} = 28 V, I _{DQ} = 200 mA		
Drain Efficiency ⁴	η	55	65	-	%	V_{DD} = 28 V, I_{DQ} = 200 mA, P_{SAT}		
Output Mismatch Stress	VSWR	-	-	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA},$ $P_{OUT} = 10 \text{ W CW}$		
Dynamic Characteristics	Dynamic Characteristics							
Input Capacitance	C _{GS}	-	4.5	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		
Output Capacitance	C _{DS}	-	1.3	-	pF	$V_{DS} = 28 \text{ V, } V_{gs} = -8 \text{ V, } f = 1 \text{ MHz}$		
Feedback Capacitance	C_{GD}	-	0.2	-	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$		

Notes:

 $^{^{\}mbox{\tiny 1}}$ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at www.cree.com/RF/Document-Library

 $^{^{\}rm 3}$ Measured for the CGH40010F at P_DISS = 14 W.

⁴ See also, the Power Dissipation De-rating Curve on Page 6.

¹ Measured on wafer prior to packaging.

² Measured in CGH40010-AMP.

 $^{^3}$ P_{SAT} is defined as I_G = 0.36 mA.

⁴ Drain Efficiency = P_{out} / P_{DC}

Typical Performance

Typical Performance

Swept CW Data of CGH40010F vs. Output Power with Source and Load Impedances Optimized for Drain Efficiency at 2.0 GHz

Swept CW Data of CGH40010F vs. Output Power with Source and Load Impedances Optimized for Drain Efficiency at 3.6 GHz

Typical Performance

Swept CW Data of CGH40010F vs. Output Power with Source and Load Impedances Optimized for P1 Power at 3.6 GHz

Simulated Maximum Available Gain and K Factor of the CGH40010F $V_{\rm DD}$ = 28 V, $I_{\rm DQ}$ = 200 mA

Typical Noise Performance

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A > 250 V	JEDEC JESD22 A114-D
Charge Device Model	CDM	1 < 200 V	JEDEC JESD22 C101-C

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
500	20.2 + j16.18	51.7 + j15.2
1000	8.38 + j9.46	41.4 + j28.5
1500	7.37 + j0	28.15 + j29
2500	3.19 - j4.76	19 + j9.2
3500	3.18 - j13.3	14.6 + j7.46

Note 1. $V_{\rm DD}$ = 28V, $I_{\rm DQ}$ = 200mA in the 440166 package.

Note 2. Optimized for power, gain, \mathbf{P}_{SAT} and PAE.

Note 3. When using this device at low frequency, series resistors should be used to maintain amplifier stability.

CGH40010 Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Operating Temperature (See Page 2).

CGH40010-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1,R2	RES,1/16W,0603,1%,0 OHMS	1
R3	RES,1/16W,0603,1%,47 OHMS	1
R4	RES,1/16W,0603,1%,100 OHMS	1
C6	CAP, 470PF, 5%,100V, 0603	1
C17	CAP, 33 UF, 20%, G CASE	1
C16	CAP, 1.0UF, 100V, 10%, X7R, 1210	1
C8	CAP 10UF 16V TANTALUM	1
C14	CAP, 100.0pF, +/-5%, 0603	1
C1	CAP, 0.5pF, +/-0.05pF, 0603	1
C2	CAP, 0.7pF, +/-0.1pF, 0603	1
C10,C11	CAP, 1.0pF, +/-0.1pF, 0603	2
C4,C12	CAP, 10.0pF,+/-5%, 0603	2
C5,C13	CAP, 39pF, +/-5%, 0603	2
C7,C15	CAP,33000PF, 0805,100V, X7R	2
J3,J4	CONN SMA STR PANEL JACK RECP	1
J2	HEADER RT>PLZ.1CEN LK 2 POS	1
J1	HEADER RT>PLZ .1CEN LK 5POS	1
-	PCB, RO4350B, Er = 3.48, h = 20 mil	1
Q1	CGH40010F or CGH40010P	1

CGH40010-AMP Demonstration Amplifier Circuit

CGH40010-AMP Demonstration Amplifier Circuit Schematic

CGH40010-AMP Demonstration Amplifier Circuit Outline

Typical Package S-Parameters for CGH40010 (Small Signal, $V_{\rm DS}$ = 28 V, $I_{\rm DQ}$ = 100 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.909	-123.34	17.19	108.22	0.027	21.36	0.343	-90.81
600 MHz	0.902	-133.06	14.86	101.82	0.028	15.60	0.329	-98.65
700 MHz	0.897	-140.73	13.04	96.45	0.028	10.87	0.321	-104.84
800 MHz	0.894	-146.96	11.58	91.78	0.029	6.84	0.317	-109.84
900 MHz	0.891	-152.16	10.41	87.61	0.029	3.33	0.316	-113.95
1.0 GHz	0.890	-156.60	9.43	83.82	0.029	0.19	0.318	-117.42
1.1 GHz	0.889	-160.47	8.62	80.31	0.029	-2.66	0.321	-120.40
1.2 GHz	0.888	-163.90	7.93	77.02	0.029	-5.28	0.326	-123.02
1.3 GHz	0.887	-166.99	7.34	73.90	0.029	-7.72	0.332	-125.36
1.4 GHz	0.887	-169.80	6.82	70.92	0.029	-10.01	0.338	-127.51
1.5 GHz	0.887	-172.39	6.38	68.05	0.029	-12.18	0.345	-129.50
1.6 GHz	0.887	-174.80	5.98	65.28	0.028	-14.24	0.353	-131.37
1.7 GHz	0.887	-177.07	5.63	62.59	0.028	-16.21	0.360	-133.15
1.8 GHz	0.887	-179.22	5.32	59.97	0.028	-18.09	0.369	-134.87
1.9 GHz	0.887	178.73	5.04	57.41	0.028	-19.91	0.377	-136.54
2.0 GHz	0.888	176.76	4.78	54.89	0.027	-21.66	0.385	-138.17
2.1 GHz	0.888	174.86	4.55	52.42	0.027	-23.35	0.393	-139.77
2.2 GHz	0.888	173.02	4.34	49.99	0.027	-24.98	0.402	-141.34
2.3 GHz	0.888	171.23	4.15	47.60	0.026	-26.56	0.410	-142.90
2.4 GHz	0.889	169.48	3.97	45.24	0.026	-28.08	0.418	-144.45
2.5 GHz	0.889	167.76	3.81	42.90	0.026	-29.55	0.426	-145.99
2.6 GHz	0.890	166.07	3.66	40.59	0.025	-30.98	0.434	-147.53
2.7 GHz	0.890	164.39	3.53	38.30	0.025	-32.36	0.442	-149.06
2.8 GHz	0.890	162.74	3.40	36.03	0.025	-33.69	0.450	-150.59
2.9 GHz	0.891	161.10	3.28	33.78	0.024	-34.97	0.458	-152.12
3.0 GHz	0.891	159.46	3.17	31.55	0.024	-36.20	0.465	-153.65
3.2 GHz	0.892	156.21	2.97	27.12	0.023	-38.51	0.479	-156.72
3.4 GHz	0.893	152.96	2.79	22.73	0.022	-40.63	0.493	-159.80
3.6 GHz	0.893	149.69	2.64	18.38	0.022	-42.52	0.505	-162.90
3.8 GHz	0.894	146.38	2.50	14.05	0.021	-44.17	0.517	-166.03
4.0 GHz	0.894	143.03	2.38	9.72	0.020	-45.56	0.527	-169.19
4.2 GHz	0.894	139.61	2.28	5.40	0.019	-46.67	0.537	-172.39
4.4 GHz	0.895	136.11	2.18	1.07	0.019	-47.46	0.546	-175.64
4.6 GHz	0.895	132.53	2.09	-3.29	0.018	-47.90	0.554	-178.95
4.8 GHz	0.895	128.85	2.01	-7.68	0.017	-47.96	0.561	177.69
5.0 GHz	0.895	125.06	1.94	-12.10	0.017	-47.61	0.568	174.25
5.2 GHz	0.895	121.15	1.88	-16.58	0.016	-46.84	0.573	170.72
5.4 GHz	0.895	117.11	1.82	-21.12	0.016	-45.67	0.578	167.10
5.6 GHz	0.895	112.94	1.77	-25.73	0.015	-44.12	0.582	163.38
5.8 GHz	0.895	108.62	1.72	-30.42	0.015	-42.30	0.586	159.54
6.0 GHz	0.895	104.15	1.68	-35.20	0.015	-40.33	0.589	155.56

To download the s-parameters in s2p format, go to the CGH40010 Product page and click on the documentation tab.

Typical Package S-Parameters for CGH40010 (Small Signal, $V_{\rm DS}$ = 28 V, $I_{\rm DQ}$ = 200 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.911	-130.62	18.41	105.41	0.022	19.44	0.303	-112.24
600 MHz	0.906	-139.65	15.80	99.47	0.023	14.31	0.299	-119.83
700 MHz	0.902	-146.70	13.80	94.50	0.023	10.17	0.298	-125.50
800 MHz	0.899	-152.41	12.22	90.19	0.023	6.68	0.299	-129.85
900 MHz	0.898	-157.17	10.96	86.34	0.024	3.67	0.302	-133.28
1.0 GHz	0.896	-161.24	9.92	82.82	0.024	0.99	0.305	-136.05
1.1 GHz	0.896	-164.79	9.06	79.56	0.024	-1.41	0.309	-138.34
1.2 GHz	0.895	-167.95	8.33	76.49	0.024	-3.62	0.314	-140.30
1.3 GHz	0.895	-170.80	7.70	73.57	0.023	-5.66	0.320	-142.01
1.4 GHz	0.894	-173.41	7.17	70.78	0.023	-7.56	0.326	-143.54
1.5 GHz	0.894	-175.82	6.70	68.08	0.023	-9.35	0.332	-144.94
1.6 GHz	0.894	-178.09	6.28	65.47	0.023	-11.05	0.338	-146.24
1.7 GHz	0.894	179.78	5.92	62.92	0.023	-12.66	0.345	-147.48
1.8 GHz	0.894	177.75	5.59	60.43	0.023	-14.19	0.352	-148.68
1.9 GHz	0.894	175.81	5.30	57.99	0.023	-15.65	0.358	-149.84
2.0 GHz	0.894	173.94	5.04	55.59	0.022	-17.05	0.365	-150.99
2.1 GHz	0.894	172.13	4.80	53.23	0.022	-18.39	0.372	-152.12
2.2 GHz	0.894	170.37	4.58	50.91	0.022	-19.67	0.379	-153.26
2.3 GHz	0.895	168.65	4.38	48.61	0.022	-20.90	0.386	-154.39
2.4 GHz	0.895	166.96	4.20	46.33	0.021	-22.08	0.393	-155.54
2.5 GHz	0.895	165.30	4.03	44.08	0.021	-23.20	0.400	-156.69
2.6 GHz	0.895	163.66	3.88	41.84	0.021	-24.27	0.407	-157.85
2.7 GHz	0.895	162.04	3.74	39.63	0.021	-25.28	0.414	-159.03
2.8 GHz	0.895	160.43	3.60	37.43	0.020	-26.25	0.420	-160.22
2.9 GHz	0.896	158.83	3.48	35.24	0.020	-27.16	0.427	-161.42
3.0 GHz	0.896	157.24	3.37	33.06	0.020	-28.02	0.433	-162.64
3.2 GHz	0.896	154.06	3.16	28.74	0.019	-29.57	0.446	-165.13
3.4 GHz	0.896	150.87	2.98	24.44	0.019	-30.88	0.457	-167.69
3.6 GHz	0.896	147.66	2.82	20.16	0.018	-31.95	0.468	-170.31
3.8 GHz	0.897	144.41	2.68	15.89	0.018	-32.76	0.478	-173.00
4.0 GHz	0.897	141.10	2.56	11.61	0.017	-33.30	0.488	-175.77
4.2 GHz	0.897	137.72	2.45	7.33	0.017	-33.55	0.497	-178.61
4.4 GHz	0.897	134.26	2.35	3.03	0.017	-33.50	0.505	178.47
4.6 GHz	0.897	130.71	2.26	-1.31	0.016	-33.18	0.512	175.46
4.8 GHz	0.896	127.06	2.17	-5.68	0.016	-32.58	0.518	172.36
5.0 GHz	0.896	123.30	2.10	-10.09	0.016	-31.74	0.524	169.16
5.2 GHz	0.896	119.42	2.04	-14.57	0.016	-30.72	0.529	165.86
5.4 GHz	0.896	115.41	1.98	-19.10	0.016	-29.60	0.534	162.44
5.6 GHz	0.896	111.26	1.92	-23.71	0.016	-28.46	0.537	158.89
5.8 GHz	0.895	106.97	1.87	-28.40	0.017	-27.41	0.540	155.20
6.0 GHz	0.895	102.53	1.82	-33.19	0.017	-26.54	0.543	151.36

To download the s-parameters in s2p format, go to the CGH40010 Product Page and click on the documentation tab.

Typical Package S-Parameters for CGH40010 (Small Signal, $V_{\rm DS}$ = 28 V, $I_{\rm DQ}$ = 500 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.914	-135.02	18.58	103.70	0.020	18.36	0.300	-126.80
600 MHz	0.909	-143.57	15.88	98.05	0.020	13.67	0.302	-133.51
700 MHz	0.906	-150.23	13.83	93.33	0.021	9.90	0.304	-138.40
800 MHz	0.904	-155.61	12.23	89.23	0.021	6.77	0.307	-142.08
900 MHz	0.903	-160.09	10.95	85.56	0.021	4.08	0.311	-144.94
1.0 GHz	0.902	-163.93	9.91	82.21	0.021	1.71	0.314	-147.23
1.1 GHz	0.901	-167.29	9.04	79.09	0.021	-0.41	0.319	-149.10
1.2 GHz	0.901	-170.29	8.31	76.15	0.021	-2.35	0.323	-150.69
1.3 GHz	0.900	-173.00	7.69	73.35	0.021	-4.12	0.328	-152.07
1.4 GHz	0.900	-175.50	7.15	70.66	0.021	-5.78	0.333	-153.29
1.5 GHz	0.900	-177.81	6.69	68.07	0.021	-7.32	0.338	-154.41
1.6 GHz	0.900	-179.98	6.27	65.54	0.021	-8.77	0.344	-155.44
1.7 GHz	0.900	177.96	5.91	63.08	0.020	-10.15	0.349	-156.43
1.8 GHz	0.899	176.00	5.59	60.67	0.020	-11.45	0.355	-157.38
1.9 GHz	0.899	174.12	5.30	58.30	0.020	-12.68	0.361	-158.30
2.0 GHz	0.899	172.31	5.04	55.97	0.020	-13.85	0.366	-159.22
2.1 GHz	0.899	170.54	4.80	53.67	0.020	-14.96	0.372	-160.14
2.2 GHz	0.900	168.83	4.58	51.40	0.020	-16.01	0.378	-161.06
2.3 GHz	0.900	167.15	4.39	49.16	0.019	-17.01	0.384	-161.99
2.4 GHz	0.900	165.49	4.21	46.94	0.019	-17.95	0.390	-162.93
2.5 GHz	0.900	163.87	4.04	44.73	0.019	-18.85	0.396	-163.88
2.6 GHz	0.900	162.26	3.89	42.54	0.019	-19.69	0.402	-164.86
2.7 GHz	0.900	160.66	3.75	40.37	0.019	-20.48	0.407	-165.85
2.8 GHz	0.900	159.08	3.62	38.21	0.019	-21.21	0.413	-166.86
2.9 GHz	0.900	157.51	3.50	36.05	0.018	-21.89	0.418	-167.89
3.0 GHz	0.900	155.93	3.39	33.91	0.018	-22.52	0.424	-168.95
3.2 GHz	0.900	152.79	3.18	29.65	0.018	-23.61	0.435	-171.12
3.4 GHz	0.900	149.64	3.00	25.40	0.017	-24.48	0.445	-173.38
3.6 GHz	0.900	146.45	2.85	21.17	0.017	-25.11	0.454	-175.73
3.8 GHz	0.900	143.23	2.71	16.93	0.017	-25.51	0.463	-178.17
4.0 GHz	0.900	139.94	2.58	12.69	0.017	-25.67	0.471	179.30
4.2 GHz	0.900	136.58	2.47	8.43	0.016	-25.60	0.479	176.67
4.4 GHz	0.899	133.14	2.38	4.15	0.016	-25.32	0.486	173.94
4.6 GHz	0.899	129.61	2.29	-0.17	0.016	-24.85	0.492	171.12
4.8 GHz	0.899	125.97	2.21	-4.53	0.016	-24.24	0.498	168.18
5.0 GHz	0.898	122.23	2.13	-8.94	0.016	-23.54	0.503	165.13
5.2 GHz	0.898	118.36	2.07	-13.41	0.016	-22.80	0.507	161.96
5.4 GHz	0.898	114.36	2.01	-17.95	0.017	-22.11	0.511	158.66
5.6 GHz	0.897	110.22	1.95	-22.56	0.017	-21.54	0.514	155.22
5.8 GHz	0.897	105.94	1.90	-27.26	0.018	-21.16	0.517	151.63
6.0 GHz	0.897	101.51	1.86	-32.04	0.019	-21.04	0.519	147.87

To download the s-parameters in s2p format, go to the CGH40010 Product Page and click on the documentation tab.

Product Dimensions CGH40010F (Package Type - 440166)

NOTES:

- 1 DIMENSIONING AND TO EDANGING DED ANSI VIA EM 199
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.004	0.006	0.10	0.15
С	0.115	0.135	2.92	3.43
D	0.057	0.067	1.45	1.70
Ε	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.545	0.555	13.84	14.09
Н	0.280	0.360	7.11	9.14
J	ø .100		2.54	
K	0.3	75	9.53	

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH40010P (Package Type - 440196)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.003	0.006	0.10	0.15
С	0.115	0.135	2.92	3.17
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.195	0.205	4.95	5.21
Н	0.280	0.360	7.11	9.14

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	lmage
CGH40010F	GaN HEMT	Each	CREE COLLEGE C
CGH40010P	GaN HEMT	Each	CREE CORACIONAL CORRESPONDO DE CORRE
CGH40010F-TB	Test board without GaN HEMT	Each	
CGH40010F-AMP	Test board with GaN HEMT installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639