Principles of Database Systems

Introduction

Data

- Values of qualitative or quantitative variables, belonging to a set of items (wikipedia)
- Data as an abstract concept can be viewed as the lowest level of abstraction from which information and then knowledge are derived (wikipedia)

- Data
 - Does data always be useful?

- Data
 - Does data always be useful?

Data

 Data on its own carries no meaning. For data to become information, it must be interpreted and take on a meaning.

档案中的记录

(李明, 男, 1972, 江苏, 计算机系, 1990)

数据的解释

语义: 学生姓名、性别、出生年月、籍贯、所在系别、 入学时间

解释:李明是个大学生,1972年出生,江苏人,1990年考入计算机系

请给出另一个解释和语义

Another Example

- the height of Mt. Everest is generally considered as "data"
- a book on Mt. Everest geological characteristics may be considered as "information"

- a report containing practical information on the

best way to reach Mt. Everest's peak may be considered as "knowledge".

8848.64

- Database (DB)
 - Collection of interrelated data

How to access and manage database?

Nan		Minor diameter olerance	diar		Head shape	Price for 50 screws	at fa	lable ctory itlet?		er Phil	it or llips ad?
- 1	Restaurant	- Loca	ation			Town	Stars	Yes	27	76	Flat
	Domino's Pizza	High Schools in a Texas County, 2001-02								oth	
	Domino's Pizza	-		nig	ii ociioois i	s iii a texas cui	mty, 2001-02	-02		% of 12th	lat
-	Giovannis Pizzer		White %	Black, Hispanic, & Asian %	Total Enrollment	% Passed Algebra	Mean Algo Scale Sc		% With College Plans	Graders Ever Eco. Dis.	ips
М	Little Caesars Pi	Z #1	92	-	1,690	63	1541	_	86	10	ips
	Pizza Depot	12	53	47	340	- 8	1374		50	38	1000
М	Pizza Hut	113	15	85	1,533	0	1327		59	69	lat
M	Round Table Piz	84	0.0	100	1,018	1	1317		45	58	ips
M	Round Table Piz	#5	92	187	1,633	45	1485		72	9	oth
М	Round Table Piz	#5	6	94	1,834	15	1416		49	74	oth
		#1	5	95	1,394	23	1437	- 1	55	68	1000
M	Vitos Famous Pi	Z #8	60	40	2,218	29	1472		78	27	oth
M2	24 2.55	113	36	64	39	0	0		25	92	ips
		#10	92	8	53	73	1555		69	0	
M	28 2.7	#11	90	10	612	33	1464		75	21	ips
M		County Group Share	45	55	12,364	28	1308		60	42	oth
M	50 4.5	State Group Share	46	54	1,143,198	31	1387		62	45	-lat
				on Agency, 2002 clude other races							

- Database Management System (DBMS)
 - a collection of interrelated data and a set of programs to access those data
 - An environment that is both convenient and efficient to use
 - DBMS is the core of database systems.
 - Database systems are designed to manage large bodies of information. Management of data involves both defining structures for storage of information and providing mechanisms for the manipulation of information.

Database Management System (DBMS)

- Database Applications:
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases can be very large.
- Databases touch all aspects of our lives

University Database Example

- Application program examples
 - Add new students, instructors, and courses
 - Register students for courses, and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts
- In the early days, database applications were built directly on top of file systems
- In the case, if new need arises, e.g. new major is to be created, then new files or even new application might be developed to fulfill the requirement.

- This typical file-processing system is supported by a conventional operating system.
- Before database management systems (DBMSs) were introduced, organizations usually stored information in such systems.
- Keeping organizational information in a fileprocessing system has a number of major disadvantages

- Data redundancy and inconsistency (数据冗余和不一致)
 - Multiple file formats, duplication of information in different files
- Difficulty in accessing data(数据访问困难)
 - Need to write a new program to carry out each new task
- Data isolation (数据孤立)
 - multiple files and formats
- Integrity problems (完整性问题)
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

- Atomicity of updates (更新操作的原子性)
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
- Concurrent access by multiple users (多用户并发访问)
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time

- Security problems (安全性问题)
 - Hard to provide user access to some, but not all, data

- Data redundancy and inconsistency (数据冗余和不一致)
- Difficulty in accessing data(数据访问困难)
- Data isolation (数据孤立)
- Integrity problems (完整性问题)
- Atomicity of updates (更新操作的原子性)
- Concurrent access by multiple users (多用户并发访问)
- Security problems (安全性问题)

Database systems offer solutions to all the above problems

Additional issues

- Some other definitions
 - Database(DB):a collection of interrelated data,
 stored in systems as files
 - Database management system (DBMS): a system/mechanism to manage data in DB or: set of programs to access the data in DB
 - Database system(DBS): DB + DBMS + Users/Administers
 - Database application system: DB + DBMS +
 Application programs + Users/Administers

Additional issues

DBS

 A major purpose of a database system is to provide users with an abstract view of the data.

• That is, the system hides certain details of how the data are stored and maintained.

• Recall the methods used in typical

• Most drawbacks of typical file-processing systems are due to the dependency among application programs and data (程序与数据的非独立/依存性).

• On the contrary, DBMS is proposed to allow users to access and modify data more easily and more efficient.

- How can DBMS make it works?
 - Key: Data abstraction

- For the system to be usable, it must retrieve data efficiently.
- The need for efficiency has led designers to use complex data structures to represent data in the database.
- Since many database-system users are not computer trained, developers hide the complexity from users through several levels of abstraction, to simplify users' interactions with the system

An architecture for a database system

- Physical level (物理层): describes how data (e.g., customer) is stored are actually stored in files (or in secondary storage)
- description results
 - physical/internal schema (物理模式,内模式)
 - i.e. storage structure and access methods, such as index, physical blocks, access methods for secondary memory, etc.
- description procedure/Physical DB design
 - physical abstraction

• Logical level (逻辑层): describes data stored in database, and the relationships among the data.

```
type instructor = record
    ID : string;
    name : string;
    dept_name : string;
    salary : integer;
    end;
```

- description results
 - logical schema (逻辑模式), e.g. relational tables
- description procedure/Logical DB design
 - logical abstraction
- Merits: hiding physical implementation details

- View level (视图层): describes data from different view of data
 - in application areas, data item and associations among them
 - several views for one datum
- description results
 - external schema (外模式)={view}, set of views
- description procedure/Logical DB design
 - view abstraction
- merits: application programs are programmed according to views, hiding details of data types. Views can also hide information (e.g., salary) for security purposes.

- E.g. Banking Application Areas
 - in view-level, finding objects, object's features, and associations among objects
 - from more than one viewpoints, view integration
 - view1: customer<id, name, street, city>
 - view2: loan<loan-number, amount>
 - view3: account<account-number, balance>
 - view4: customer <borrower, loan>
 - view5: customer <depositor, account>
 - view6:
 - **–**

Instances & Schemas (实例&模式)

- Schema(模式) the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them
 - Analogous to type information of a variable in a program
- Physical schema (物理模式): database design at the physical level
- Logical schema (逻辑模式): database design at the logical level
- Subschema (子模式): database design at the view level

Instances & Schemas (实例&模式)

- **Instance** (实例) the actual content of the database at a particular point in time
 - Analogous to the value of a variable
- Schema and Instance
- E.g.
 - schema : customer=<c_name, c_id, street, city>
 - instance of schema: <Tom, 1001,Manhatton, New York >

数据库系统的模式结构

• 三级模式

Instances & Schemas (实例&模式)

● Physical Data Independence(物理数据独立性)

- the ability to modify the physical schema without changing the logical schema
- Applications depend on the logical schema
- In general, the interfaces between the various levels and components should be well defined so that changes in some parts do not seriously influence others.

数据库系统的模式结构

• 三级模式与数据独立性

Data Model (数据模型)

- Data descriptions/abstractions in three levels must obey three types of specification, i.e. three types of data models
- Definition of data model:
 - a collection of conceptual tools for describing
 - data
 - data relationships (数据联系)
 - data semantics (数据语义)
 - consistency constraints (一致性约束)
- A data model provides a way to describe the design of a database at the physical, logical, and view levels.

Data Model (数据模型)

- In the course, data models can be classified as
 - Conceptual Data Model
 - Entity-Relationship Model (实体-联系模型)
 - Logical Data Model
 - Relational model (关系模型)
 - network data model (网状模型)
 - hierarchical data model (层次模型)
 - Object-based data model (基于对象的数据模型)
 - Semistructured data model (半结构化数据模型)
 - Physical Data Model
 - B* tree model...

Data Model (数据模型)

• Relational model (Chapter 2)

• Example of tabular data in the relational Columns

model

				•
ID	name	dept_name	salary	
22222	Einstein	Physics	95000	Rows
12121	Wu	Finance	90000	/
32343	El Said	History	60000	/
45565	Katz	Comp. Sci.	75000	/
98345	Kim	Elec. Eng.	80000	/
76766	Crick	Biology	72000	
10101	Srinivasan	Comp. Sci.	65000	/
58583	Califieri	History	62000	/
83821	Brandt	Comp. Sci.	92000	
15151	Mozart	Music	40000	/
33456	Gold	Physics	87000	/
76543	Singh	Finance	80000	≁

Database Languages as human-machine interfaces

 Data-Manipulation Language, DML (数据操纵语言)

 Data-Definition Language, DDL (数据定义语言)

- Data Manipulation Language (DML)
 - Language for accessing and manipulating the data organized by the appropriate data model
 - DML also known as query language
- Two classes of languages
 - **Procedural** (过程化**DML**)— user specifies what data is required and how to get those data
 - Declarative (nonprocedural) (声明式DML) user specifies what data is required without specifying how to get those data
- Query (查询):a statement requesting the retrieval of information
- SQL is the most widely used query language

- Data Definition Language (DDL)
 - DDL is used for specifying the database schema and additional properties of the data
 - E.g.
 create table account (
 account-number char(10),
 balance integer);
 - DDL can also be used to define integrity constraints in DB
 - domain integrity, referential integrity, assertions, authorization, etc.

- Data Definition Language (DDL)
 - just like any other programming language, the DDL gets as input some instructions (statements) and generates some output.
 - The output of the DDL is placed in the **data dictionary**(数据字典), which contains **metadata**(元数据)

- Metadata: data about data
 - The structures /schemas of the database defined by DDL
 - Integrity constraints (完整性约束)
 - **Primary key** (主键) (ID uniquely identifies instructors)
 - Referential integrity (参照完整性) (references constraint in SQL)
 - e.g. dept_name value in any instructor tuple must appear in department relation
 - Authorization (授权)

- SQL: widely used non-procedural language
 - Example: Find the name of the instructor with ID 22222

```
select name
from instructor
where instructor.ID = '22222'
```

 Example: Find the ID and building of instructors in the Physics dept.

```
select instructor.ID, department.building
from instructor, department
where instructor.dept_name=department.dept_name
and department.dept_name = 'Physics'
```


SQL

- Application programs generally access databases through one of Language extensions to allow embedded SQL
- Application program interface (e.g., ODBC/JDBC) which allow SQL queries to be sent to a database

Relational Databases

Relational Databases

- Relational database
 - based on the relational model
 - uses a collection of tables to represent both data and the relationships among those data
 - Includes a DML and DDL
 - Most commercial relational database systems employ the SQL language
 - More details refer to Chapter 2.

- Basic Concepts:
 - Data, Database, DBMS
 - Purpose of DBMS: Solve the problem of
 - Data redundancy and inconsistency (数据冗余和不一致)
 - Difficulty in accessing data
 - Data isolation (数据孤立)
 - Integrity problems (完整性问题)
 - Atomicity of updates (更新操作的原子性)
 - Concurrent access by multiple users (多用户并发访问)
 - Security problems (安全性问题)

- View of Data
 - Data Abstraction
 - architecture for a database system
 - Physical level
 - Logical level
 - View level
 - Schema
 - Physical schema
 - Logical schema
 - Subschema
 - Instance
 - Physical Data Independence

- View of data
 - Data Model
 - a collection of conceptual tools
 - Classification of Data Model
 - Conceptual Data Model
 - Logical Data Model
 - Physical Data Model
- Database Languages
 - DDL & DML
 - SQL
- Relational database
 - based on the relational model

Thanks

