Tehnici de baza in activitatea stiintifica Techniques for Scientific Work (WS 2015-2016) Homework 4 (due January 6, 2016)

- (1) Problems 6 and 7 from http://staff.ieat.ro/~merascu/links/WS2015TSW/HW1.pdf.
- (2a) In the following formulae, t stands for a tuple (i. e. list of elements). Examples of tuples are: $\langle \rangle$ (the empty list), $\langle a, b \rangle$ (a list with two elements). The binary infix function \smile concatenates two tuples. Examples:

$$\langle \rangle \smile \langle a, b \rangle = \langle a, b \rangle$$
$$\langle a, b \rangle \smile \langle b, c \rangle = \langle a, b, b, c \rangle$$

Consider the following definitions:

- (a) $F[\langle \rangle] = \langle \rangle$
- (b) $\forall f \ F[\langle a \rangle \smile t] = F[t] \smile \langle a \rangle$
- (c) $\forall G[\langle \rangle, s] = s$
- (d) $\forall \forall x \in G[\langle a \rangle \smile t, s] = G[t, \langle a \rangle \smile s]$

Use these equalities as rewrite rules in order to compute the expressions: $F[\langle a, b, c \rangle], G[\langle a, b, c \rangle, \langle \rangle]$.

(2b) Using the formulae at (2a), prove: $\forall F[t] = G[t, \langle \rangle]$.

Hint: prove first $\forall \ F[t] \smile s = G[t,s]$. For proving the later, consider the predicate P[t] defined as $\forall \ F[t] \smile s = G[t,s]$ and use the induction principle for tuples in order to prove $\forall \ P[t]$. (One must prove $P[\langle \rangle]$ and $\forall \ P[t] \Rightarrow P[\langle a \rangle \smile s]$). Note that for proving equalities it is enough to transform both sides by using known equalities as rewrite rules, and, of course, if necessary, the appropriate properties of tuples).