# Model Diagnostics

Stat 230: Applied Regression Analysis

# PDF version of slides

# RMarkdown demo

## Conditions required for inference

Our model must be valid for inference to be valid

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 where  $\varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$ 

#### Conditions to check:

- Linear relationship is appropriate
- Errors are independent and identically distributed (iid)
- Errors are normally distributed
- Variance of the errors doesn't depend on x

### Residuals

**Definition**: 
$$e_i = \widehat{\varepsilon}_i = y_i - \widehat{y}_i$$

#### **Properties:**

- sum to zero  $\implies$  mean is 0
- **uncorrelated** with x and  $\hat{y}$
- normally distributed

• 
$$SD(e_i) = \widehat{\sigma} \sqrt{1 - \frac{1}{n} - \frac{(x_i - \overline{x})^2}{\sum (x_i - \overline{x})^2}}$$

#### Standardized residuals

$$r_{i} = \frac{e_{i}}{\widehat{\sigma}\sqrt{1 - \frac{1}{n} - \frac{(x_{i} - \overline{x})^{2}}{\sum(x_{i} - \overline{x})^{2}}}}$$

#### **Properties:**

- sum to zero  $\implies$  mean is 0
- **uncorrelated** with x and  $\hat{y}$
- normally distributed
- $SD(r_i) = 1$

## A "good" residual plot





#### Your turn

- Work in groups
- On the whiteboards, sketch a plot of *y* vs. *x* and a corresponding residual plot that would indicate a violation of the
  - 1. linearity condition
  - 2. constant variance condition

## Assessing normality

- histogram of residuals
- normal Q-Q plot of residuals

#### Examples of "good" plots:









## Assessing independence

• plot residuals vs. variable inducing dependence (e.g. time, location, subject ID)

#### Examples of "good" plots:





## Your turn

Work through Example 1 on the worksheet

# What happens the conditions aren't valid?

- Linearity: if nonlinear, everything breaks!
- **Independence:** estimates are still unbiased (i.e. we fit the right line) but measures of the accuracy of those estimates (the SEs) are typically too small
- **Normality:** estimates are still unbiased (i.e. we fit the right line), SEs are correct BUT confidence/prediction intervals are wrong (we can't use t-distribution)
- Constant error variance: estimates are still unbiased but standard errors are wrong (and we don't know how wrong)

# What do we do if our assumptions are violated?

- 1. Change our assumptions (hard, need more stats)
- 2. Transform *y*, *x*, or both
- 3. Change the type of inference (remember the bootstrap?)

## Transforming variables can

- Address non-linear patterns (i.e., linear on transformed scale)
- Stabilize variance
- Correct skew
- Minimize the effects of outliers

### Applying transformations

To apply a transformation, we calculate a new variable and use it in place of the original variable in our model

#### Examples

$$\log(y) = \beta_0 + \beta_1 x + \varepsilon$$
$$y = \beta_0 + \beta_1 \sqrt{x + \varepsilon}$$
$$\log(y) = \beta_0 + \beta_1 \sqrt{x + \varepsilon}$$

## Your turn

Work through Example 2 on the worksheet

## Review of logarithms

The logarithm  $\log_b(x)$  is a function that is the exponent (power) that the base, b, must be raised to produce the value x:

- $\log_{10}(100) = 2$  since  $10^2 = 100$
- $\log_{10}(10) = 1$  since  $10^1 = 10$
- $\log_2(1) = 0$  since  $2^0 = 1$
- $\log_2(0.5) = -1 \text{ since } 2^{-1} = \frac{1}{2}$

## Review of logarithms

- Takes in only positive numbers, i.e. x > 0
- The log of products is the sum of the logs

$$\log_b(mx) = \log_b(m) + \log_b(x)$$

The log of quotients is the difference of the logs

$$\log_b\left(\frac{m}{x}\right) = \log_b(m) - \log_b(x)$$

The log of powers is the exponent times the log

$$\log_b(x^p) = p \log_b(x)$$