19114079 Sheryas Dodamani

Assignment 1

1) a)
$$\pi_1(t) = \begin{cases} e^{-2t} & t \neq 0 \\ 0 & 0 \text{ otherwise} \end{cases}$$

$$E_{\infty} = \int |\pi_1(t)|^2 dt$$

$$= \int 0 dt + \int e^{-4t} dt$$

$$= -1 \left(e^{-4t} \right)^{\infty} \right)$$

$$E_{\infty} = \frac{1}{4} \left(e^{-4t} \right)^{\infty} \right)$$

$$E_{\infty} = \frac{1}{4} \left(e^{-4t} \right)^{\infty}$$

$$= \int 0 dt + \int e^{-4t} dt$$

$$= -1 \left(e^{-4t} \right)^{\infty} \right)$$

$$E_{\infty} = \frac{1}{4} \left(e^{-4t} \right)^{\infty} \right)$$

$$= \int 0 dt + \int e^{-4t} dt$$

$$= \int$$

c) $\chi_3(n) = \int (1/2)^n n \pi 3$ 2 O otherwise $n_3(-n) = \begin{cases} (1/2)^{-n} & n \leq -3 \\ 0 & \text{otherwise} \end{cases}$ $\chi_{3even}(n) = \chi_3(n) + \chi_3[-n]$ n7/3 -6-5-4-3-2-1 0 $\chi_3 \text{ odd } [n] = \chi_3[n] - \chi_3[-n] =$

Page:
Date: / / b) $\chi_2(t) = \sin(t/2)$ $t \in \mathbb{R}$ $\chi_2(-t) = \sin(-t/2) = -\sin(t/2)$ $\Rightarrow \chi_{2} \operatorname{even}(t) = \chi_{2}(t) + \chi_{2}(-t)$ $\chi_{2} \operatorname{odd}(t) = \chi_{2}(t) - \chi_{2}(t) = \sin(t/2)$ newentt = 0 1 Zever (t) n20da(t) = sin(42) = N2010(+)(1)(1)(1) -311 3п -17

