PHYS 615 – Activity 7.2: Lagrangian for two Particles

Let's consider two particles, at (x_1, y_1, z_1) and (x_2, y_2, z_2) , respectively. The kinetic energy is then the sum of the kinetic energies for each particle, and we've seen before that we can get the forces from a single potential $U(x_1, y_1, z_1, x_2, y_2, z_2)$.

The Lagrangian is defined just as before, but now depends on 6 coordinates (and, possibly, time):

$$\mathcal{L} = T - U = \frac{1}{2}m_1(\dot{x}_1^2 + \dot{y}_1^2 + \dot{z}_1^2) + \frac{1}{2}m_2(\dot{x}_2^2 + \dot{y}_2^2 + \dot{z}_2^2) - U(x_1, y_1, z_1, x_2, y_2, z_2)$$
(1)

As before, a change to generalized coordinates q_1, q_2, \dots, q_n , may be advantageous, but the Euler-Lagrange equation will hold either with the original Cartesian coordinates or the new generalized coordinates:

$$\frac{\partial \mathcal{L}}{\partial q_i} = \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \tag{2}$$

- 1. Two masses and a spring
 - (a) Write down the Lagrangian $\mathcal{L}(x_1,x_2,\dot{x}_1,\dot{x}_2)$ for particles of equal mass m that move along the x-axis (only). The two particles are connected by a spring with potential energy $\frac{1}{2}kx^2$, where x is the extension of the spring $x=x_1-x_2-l$, l being the equilibrium length of the spring.

(b) Rewrite \mathcal{L} in terms of the new variables $X = \frac{1}{2}(x_1 + x_2)$ and x.

(c)	Write down the two Euler-Lagrange equations.
(d)	Solve for $X(t)$ and $x(t)$ and describe the motion. Is there a connection to what we saw about the center of mass earlier in this class?