

Communities Analysis

color	league	
Red	Bundesliga Germany	
Green (right)	Second tier Germany	
Green (left)	Primer League England	
Yellow	La Liga Spain	
Blue	Second tier England	
Pink	Karlsruher SC	
Purple	First tier England	

- Walktrap as algorithm
- Divided to 7 communities just like the different leagues

By Dendogram - Divided to 4 communities

Liad Nahmias

Triad and Dyad Analysis

Triad Census:

Dyad Census:

Generated 100 networks:

Liad Nahmias

Small World Network Analysis

Two Conditions to check: (I chose only the big component)

- 1. $l_{network} \approx \ln(N)$
- 2. $C_{netwrok} \gg C_{random\ graph}$

	My Network	Random Graph	Check
Condition 1	3.245556	Ln(120)=4.788	V
Condition 2	0.745	0.154	V

A Small World Network

Free Scale Network Analysis

Degrees Vector:

Results:

```
$continuous
[1] FALSE
```

\$alpha [1] 33.08237

\$xmin

[1] 40

\$logLik
[1] -7.602404

\$KS.stat

[1] 0.07079412

\$KS.p [1] 1

- Not a Free-Scale Network
- Behave like Free-Scale Network only from degree 40

QAP Test

Random network with the same number of nodes and edges

[1] 0.005511905

Istq: -0.004090305 Med: -0.0004697992 Mean: -0.0001911777 3rdq: 0.003937773 Max: 0.01904945

Liad Nahmias