

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

□05.570Ω20Ω06Ω12ΩEΞλ∈05.570 20 06 12 EX

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 20%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Problema 1

a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.

C: "Tenir un bon brou"

X: "Ser un bon cuiner"

P: "Tenir paciència"

A: "Fer un bon arròs"

T: "Triomfar en el dinar familiar"

1) Quan tens un bon brou, no és necessari ser un bon cuiner ni tenir paciència per a poder fer un bon arròs.

 $C \rightarrow \neg (A \rightarrow X \land P)$

2) Si no tens un bon brou ni ets un bon cuiner, pots fer un bon arròs si tens paciència.

 $\neg C \land \neg X \to (P \to A)$

3) Per a triomfar en el dinar familiar és necessari fer un bon arròs.

 $T \rightarrow A$

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Predicats:

M(x): x es un mòbil

G(x): x té connexió 3G

S(x): x té connexió via satèl·lit

C(x): x té cobertura

O(x): x és a la cima d'una muntanya

A(x): és una antena de telefonia

E(x,y): x és a prop de y

T(x): x fa una trucada telefònica

Domini: conjunt no buit qualsevol

1) Tots els mòbils tenen connexió 3G o connexió via satèl·lit

 $\forall x[M(x) \rightarrow G(x) \vee S(x)]$

2) Si un mòbil és a la cima d'una muntanya i té cobertura, aleshores és un mòbil amb connexió via satèl·lit o hi ha una antena de telefonia a prop d'ell

 $\forall x [M(x) \land O(x) \land C(x) \rightarrow S(x) \lor \exists y [A(y) \land E(y,x)]]$

3) Si un mòbil que té connexió 3G fa una trucada telefònica aleshores hi ha antena de telefonia a prop d'ell.

 $\forall x [M(x) \land G(x) \rightarrow (T(x) \rightarrow \exists y [A(y) \land E(y, x)])$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Problema 2

Demostreu la validesa del raonament següent utilitzant les 9 regles primitives de la deducció natural (no podeu utilitzar ni regles derivades ni equivalents deductius):

$$P\lor Q$$
, $P\to R$, $\neg T\to \neg Q$.: $R\lor T$

1.	P√Q			P
2.	P→R			P
3.	$\neg T \rightarrow \neg Q$			P
4.		Р		Н
5.		R		E→2,4
6.		R∨T		Iv 5
7.		Q		Н
8.			$\neg T$	Н
9.			$\neg Q$	E→3,8
10.			Q	lt 7
11.		$\neg \neg T$		I _¬ 8, 9, 10
12.		Т		E¬ 11
13.		R∨T		l∨ 12
14.	R∨T			Ev 1, 6, 13

Problema 3

Analitzeu la validesa o la invalidesa del següent raonament utilitzant el mètode de resolució. Simplifiqueu, si es pot, el conjunt de clàusules resultant. Són consistents les premisses?

$$\mathsf{A} \to (\mathsf{B} \to \mathsf{C}),\, \neg \mathsf{C} \to \neg \mathsf{A},\, \mathsf{A} \vee \mathsf{C},\, \neg \mathsf{B} \to \neg \mathsf{C} \, \mathrel{\dot{.}.} \, \mathsf{C}$$

Normalització de les premisses i de la negació de la conclusió:

$$A \rightarrow (B \rightarrow C) = \neg A \lor (\neg B \lor C) = \neg A \lor \neg B \lor C$$

$$\neg C \rightarrow \neg A = \neg \neg C \lor \neg A = C \lor \neg A$$

$$A \lor C = A \lor C$$

$$\neg B \rightarrow \neg C = \neg \neg B \lor \neg C = B \lor \neg C$$

$$\neg C = \neg C$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Conjunt de clàusules resultants:

$$\neg A \lor \neg B \lor C, C \lor \neg A, A \lor C, B \lor \neg C, \neg C$$

(amb negreta, el conjunt de suport)

Observant les clàusules obtingudes, observem que no en podem eliminar cap per aplicació de la regla del literal pur. Ara bé, la darrera clàusula (\neg C) subsumeix la quarta (que també conté \neg C) i que la segona subsumeix la primera (que també conté els literals \neg A i C). Cap regla però, no permet eliminar la cinquena.

Llavors, el conjunt resultant de clàusules és:

$$C \vee \neg A, A \vee C, \neg C$$

Resolució:

C∨¬A	$\neg C$
¬A	A∨C
С	¬C

Per a comprovar la consistència de les premisses, partim del següent conjunt de clàusules:

$$\neg A \lor \neg B \lor C, C \lor \neg A, A \lor C, B \lor \neg C$$

Per la regla de subsumpció, podem eliminar la primera clàusula (que conté la segona), amb la qual cosa tenim:

$$C \vee \neg A, A \vee C, B \vee \neg C$$

Per la regla del literal pur, podem eliminar B v ¬C. Així doncs, tenim:

$$C \vee \neg A, A \vee C$$

d'on, fent resolució, obtindrem C i no podrem, per tant, arribar a la clàusula buida. Hem de concloure, consegüentment, la consistència de les premisses.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Problema 4

Considerem el següent raonament:

$$\forall x[T(x) \rightarrow \exists y S(x,y)]$$

$$\exists x \ \forall y[S(x,y) \rightarrow M(y) \land T(a)]$$

$$\therefore \forall x \ \forall y(M(x) \land T(y) \rightarrow \neg S(x,y))$$

Siguin les interpretacions

Digues si alguna d'elles és un contraexemple.

Solució:

En Domini $\{1,2\}$ la primera premissa $\forall x[\ T(x) \to \exists y\ S(x,y)]$ és equivalent a $P1=[T(1)\to S(1,1)\ \lor S(1,2)] \land [T(2)\to S(2,1)\ \lor S(2,2)]$

La segona premissa $\exists x \ \forall y [S(x,y) \rightarrow M(y) \land T(a)]$ és equivalent a $P2 = \{[S(1,1) \rightarrow M(1) \land T(a)] \land [S(1,2) \rightarrow M(1) \land T(a)]\} \lor \{[S(2,1) \rightarrow M(2) \land T(a)] \land [S(2,2) \rightarrow M(2) \land T(a)]\}$

La conclusió $\forall x \ \forall y (M(x) \land T(y) \rightarrow \neg S(x,y))$ és equivalent a

$$C = (\mathsf{M}(1) \wedge \mathsf{T}(1) \rightarrow \neg \mathsf{S}(1,1)) \wedge \ (\mathsf{M}(1) \wedge \mathsf{T}(2) \rightarrow \neg \mathsf{S}(1,2)) \ \wedge \ (\mathsf{M}(2) \wedge \mathsf{T}(1) \rightarrow \neg \mathsf{S}(2,1)) \wedge \ (\mathsf{M}(2) \wedge \mathsf{T}(2) \rightarrow \neg \mathsf{S}(2,2))$$

Observem que

·	P1	P2	C
I1	V	V	F
I2	V	F	F
I3	V	V	V

Observem que:

La interpretació I1 és un contraexemple ja que fa verdaderes les premisses i falsa la conclusió. La interpretació I2 no és un contraexemple ja que no fa verdaderes les premisses. La interpretació I3 no és un contraexemple ja que fa verdadera la conclusió.

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	20/06/2012	09:00