Assignment 18.2: Problem Statement

In one state, 52% of the voters are Republicans, and 48% are Democrats. In a second state, 47% of the voters are Republicans, and 53% are Democrats. Suppose a simple random sample of 100 voters are surveyed from each state.

What is the probability that the survey will show a greater percentage of Republican voters in the second state than in the first state?

Solution

For this analysis,

Let P_1 = the proportion of Republican voters in the first state

P₂ = the proportion of Republican voters in the second state

 p_1 = the proportion of Republican voters in the sample from the first state

 p_2 = the proportion of Republican voters in the sample from the second state.

The number of voters sampled from the first state $(n_1) = 100$,

and The number of voters sampled from the second state $(n_2) = 100$.

Step 1 : To make sure the sample size is big enough to model differences with a normal population.

Because
$$n_1P_1 = 100 * 0.52 = 52,$$

 $n_1(1 - P_1) = 100 * 0.48 = 48,$
 $n_2P_2 = 100 * 0.47 = 47,$ and
 $n_2(1 - P_2) = 100 * 0.53 = 53$

all above values are each greater than 10, the sample size is large enough.

Step 2: Find the mean of the difference in sample proportions:

$$\mu_{p1-p2} = P_1 - P_2 = 0.52 - 0.47 = 0.05.$$

Step 4: Find the standard deviation of the difference.

$$\begin{split} &\sigma_{d} = sqrt\{ \left[\ P_{1}(1 - P_{1}) \ / \ n_{1} \ \right] + \left[\ P_{2}(1 - P_{2}) \ / \ n_{2} \ \right] \} \\ &\sigma_{d} = sqrt\{ \left[\ (0.52)(0.48) \ / \ 100 \ \right] + \left[\ (0.47)(0.53) \ / \ 100 \ \right] \} \\ &\sigma_{d} = sqrt \left(0.002496 \ + \ 0.002491 \right) = sqrt(0.004987) = 0.0706 \end{split}$$

Step 3: Find the probability.

This problem requires us to find the probability that p_1 is less than p_2 . This is equivalent to finding the probability that p_1 - p_2 is less than zero. To find this probability, we need to transform the random variable $(p_1 - p_2)$ into a <u>z-score</u>.

That transformation appears below:

$$z_{p1-p2} = (x - \mu_{p1-p2}) / \sigma_d = (0 - 0.05)/0.0706 = -0.7082 = -0.71$$
 (upto 2 decimals)

Using Table for Standard Normal Distribution, we find

Table of Standard	Manager I Dec	$D/Z \sim -1$

	Table of Standard Normal Probabilities, $P(Z \le z)$											
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
-3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
-3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		
-3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.00	0.0001		
-3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001		
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002		
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002		
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003		
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005		
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007		
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010		
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014		
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019		
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026		
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036		
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048		
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064		
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084		
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110		
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143		
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183		
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233		
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294		
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367		
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455		
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559		
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681		
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823		
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985		
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170		
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379		
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611		
8.0-	0.2119	0.3000	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867		
-0.7	0.2410	0.2389	0.2858	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148		
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451		
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776		
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121		
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483		
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859		
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247		
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641		

 $P(z \le 0.7082) = 0.2389 = 0.24$ (upto 2 decimals)

the probability of a z-score being -0.7082 = 0.71 (upto 2 decimals) or less is 0.24

Therefore, the probability that the survey will show a greater percentage of Republican voters in the second state than in the first state is 0.24.