24-2

Single Source Shortest Paths

Single-source shortest paths problem

Input: A weighted directed graph G=(V, E) and a source vertex s.

Output: for every $v \in V$, find a shortest path from s to v.

Negative-weight edges:

 $\delta(u, v)$: the shortest-path weight from u to v.

If G contains no negative-weight cycles reachable from s, then $\delta(s, v)$ is well-defined for all $v \in V$. Otherwise, if there is a negative-weight cycle on some path from s to v, we define $\delta(s, v) = -\infty$.

Variants (Applications):

Single-destination shortest paths problem
(Transform to single-source by reversing edges.)
Single-pair shortest paths problem
(No faster algorithms exist.)
All-pairs shortest paths problem
(Solve single-source problem V times.
Faster algorithms exist: Chapter 25.)

Representing shortest paths:

for every $v \in V$, maintain a predecessor $\pi(v)$

Predecessor subgraph: $G_{\pi} = (V_{\pi}, E_{\pi})$, where

$$V_{\pi} = \{ v \mid v \in V \text{ and } \pi(v) \neq NIL \} \cup s$$

$$E_{\pi} = \{ (\pi(v), v) \mid v \in V_{\pi} - \{s\} \}$$

 G_{π} is a *shortest-paths tree* rooted at *s*. (not unique)

Relaxation:

Repeatedly decrease d[v] until $d[v]=\delta(s, v)$. Two procedures:

Initialize-Single-Source(G, s)

- 1 for each vertex $v \in V[G]$
- 2 **do** $d[v] \leftarrow \infty$
- $3 \qquad \pi[v] \leftarrow \text{NIL}$
- 4 $d[s] \leftarrow 0$

Relax(u, v, w)

- 1 **if** d[v] > d[u] + w(u, v)
- 2 then $d[v] \leftarrow d[u] + w(u, v)$
- $\pi[v] \leftarrow u$

24.1 The Bellman-Ford algorithm

* Weights can be negative. If there is a negative cycle reachable from s, it returns FALSE.

BELLMAN-FORD
$$(G, w, s)$$

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for $i \leftarrow 1$ to $|V[G]| - 1$

3 do for each edge $(u, v) \in E[G]$

4 do RELAX (u, v, w)

5 for each edge $(u, v) \in E[G]$

6 do if $d[v] > d[u] + w(u, v)$

7 then return FALSE

8 return TRUE

* O(VE) time

Example: (Each phase relaxes edges in lexicographic order: (u,v), (u,x), (u,y), (v,u), (x,v), (x,y), (y,v), (y,z), (z,u), (z,x). Shaded edges indicate π .)

Lemma 24.2: If G contains no negative-weight cycles reachable from s. Then, Bellman-Ford algorithm computes $d[v]=\delta(s, v)$ for all vertices v that are reachable from s.

Proof: By induction, we can easily show that if the shortest path from *s* to *v* contains *i* edges, *d*[*v*] will be correctly computed after phase *i*. Since a simple path contains at most *V*-1 edges, The lemma holds.

Theorem 24.4: Bellman-Ford algorithm is correct. (See textbook for its proof.)

24.2 Single-source shortest path in DAGs

DAG-SHORTEST-PATHS (G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE (G, s)
- 3 for each vertex u, taken in topologically sorted order
- 4 **do for** each vertex $v \in Adj[u]$
 - **do** RELAX(u, v, w)

* Correctness: By Induction

The critical path problem: Finding a longest path through a DAG.

Since a DAG contains no cycles, this problem can be solved by negating the weights and then running DAG-SHORTEST-PATHs.

24.3 Dijkstra's algorithm:

(All weights should be nonnegative.)

It maintains a set S of vertices v whose $\delta(s, v)$ is computed. And it repeatedly selects a vertex $u \in V$ -S with minimum d[u], inserts it into S, and relaxes all edges leaving u.

DIJKSTRA(G, w, s)1 INITIALIZE-SINGLE-SOURCE(G, s)2 $S \leftarrow \emptyset$

 $Q \leftarrow V[G]$

4 while $Q \neq \emptyset$

do $u \leftarrow \text{EXTRACT-MIN}(Q)$

 $S \leftarrow S \cup \{u\}$

for each vertex $v \in Adj[u]$

8 **do** RELAX(u, v, w)

Time Complexity:

- * Similar to Prim's MST algorithm.
- (a) Implement priority queue Q as an array

Steps $1\sim3$: O(V) (Build Q)

Step 5: $O(V^2)$ (V times Extract-Min)

Step 6: *O(V)*

Steps 7~8: O(E) (2E times Decrease-key)

Total: $O(V^2+E) = O(V^2)$ (for dense *G*)

(b) Implement Q as a binary heap

Step 5: O(Vg V) (V times Extract-Min)

Steps 7~8: O(Elg V) (2E times Decrease-key)

Total: $O(E \mid g \mid V)$ (for sparse G)

(c) Implement Q as a Fibonacci heap

Step 5: O(Vg V) (V times Extract-Min)

Steps 7~8: O(E) (2E times Decrease-key)

Total: O(E+Vlg V) (for sparse G)

Homework: Ex. 24.1-4, 24.2-1, 24.3-2, Pro. 24-2, 24-3, 24-5 (mean-weight cycle).