EXAM: Linear models

The duration of the exam is 3 hours.

General questions

- Show that the hat matrix $H = X(X^TX)^{-1}X^T$ is an orthogonal projector onto the column space of X.
- 2) What is the orthogonal projection of $\mathbf{y} = (Y_1, \dots, Y_n) \in \mathbb{R}^n$ on $\operatorname{Vect}(1_n)$, with $1_n = (1, \dots, 1)^\top \in \mathbb{R}^n$?
- 3) Express the pseudo inverse of X thanks to its SVD : $X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$.
- 4) Show that the variance of the OLS estimator θ is $Var(\theta) = \sigma^2 \sum_{i=1}^r s_1^{-2} v_i v_i^T$.
- (5) Describe the "PCA before OLS" technique.
- 6) Let $X \in \mathbb{R}^n$ be normally distributed $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ and Y an affine transformation of X, Y = LX + u with $L \in \mathbb{R}^{m \times n}$, $u \in \mathbb{R}^m$ deterministic. Then Y is also normally distributed with mean μ_Y and covariance Σ_Y , $Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$. Show that $\mu_Y = u + L\mu_X$ and $\Sigma_Y = L\Sigma_X L^T$.

Ordinary Least Squares (OLS)

- 7) Let $Y = (Y_1, \dots, Y_n)^T \in \mathbb{R}^n$ and $X = (1_n, \tilde{X}) \in \mathbb{R}^{n \times (p+1)}$, $1_n = (1, \dots, 1)^T \in \mathbb{R}^n$. The identity matrix of dimension n is denoted as I_n . Denote the residuals as $\hat{\epsilon} = Y \hat{Y}$. Let $\hat{\theta} \in \arg\min_{\theta \in \mathbb{R}^{p+1}} \|Y X\theta\|_2^2$ and $\hat{Y} = (\hat{Y}_1, \dots, \hat{Y}_n)^T = X\hat{\theta}$.
 - (a) Show that $\min_{\theta \in \mathbb{R}^{p+1}} \|Y X\theta\|_2^2 \leq \min_{\theta_0 \in \mathbb{R}} \|Y 1_n \theta_0\|_2^2$
 - (b) Show that $\arg\min_{\theta_0 \in \mathbb{R}} \|Y 1_n \theta_0\|_2^2 = \overline{Y} = n^{-1} \sum_{i=1}^n Y_i$
 - (c) Deduce the following inequality $\frac{\sum_{i=1}^{n}(Y_i-\hat{Y}_i)^2}{\sum_{i=1}^{n}(Y_i-\overline{Y}_i)^2} \leq 1$
 - State the normal equations for the OLS and use it to show that

$$\langle \hat{\varepsilon}, X \rangle = 0$$

$$\langle \hat{\varepsilon}, \hat{Y} \rangle = 0$$

$$\langle \hat{\varepsilon}, \bar{Y} \mathbf{1}_n \rangle = 0.$$
(1)

(e) Show that we can write the R^2 as

$$R^2 = 1 - \frac{\|Y - \hat{Y}\|^2}{\|Y - \overline{Y}\mathbf{1}_n\|^2} = \frac{\|\hat{Y} - \overline{Y}\mathbf{1}_n\|^2}{\|Y - \overline{Y}\mathbf{1}_n\|^2}.$$

- (f) Elaborate on when R = 0 and R = 1.
- (8) Give the coordinate descent algorithm for the OLS specifying the gradients.
- 9) Show that if X is full column rank the OLS estimator is unique.

Ridge

10) We consider the Ridge problem in the following points,

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p} \left(\|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_2^2 \right)$$

Give a closed-for expression for $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{rdg}}$. When is it unique?

- Give an expression for the prediction for a new point x_0 and the residuals ϵ_{δ} . Show that $\mathbb{E}[\epsilon_{\delta}] = [I_n X(X^TX + \lambda I_n)^{-1}X^T]X\hat{\theta}_{\lambda}^{\mathrm{rdg}}.$
- Show that the ridge regression estimator for dataset (X,Y) can be obtained by ordinary least squares regression on an augmented data set (\tilde{X},\tilde{Y}) . Both X and Y are augmented by adding p rows. Specify the values of those rows.

LASSO. Here again $X \in \mathbb{R}^{n \times p}$.

Let $\Omega = \operatorname{diag}(w_1, \dots, w_n)$ with $w_i > 0$ for all i. Express (justifying) the coordinate descent algorithm for the following problem

$$\hat{\boldsymbol{\theta}}_n = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} (Y - X\boldsymbol{\theta})^T \Omega (Y - X\boldsymbol{\theta}) + 2\lambda \|\boldsymbol{\theta}\|_1$$

(hint (indication) : when solving the previous problem over one single direction it can be expressed into a simpler problem where the function $\eta_{\lambda}(z) = \arg\min_{x \in \mathbb{R}} (z-x)^2 + 2\lambda |x|$ is useful)

- (a) Show that 0 is a solution of the Lasso $\min_{\theta} \|Y X\theta\|_2^2 + 2\lambda \|\theta\|_1$ if and only if $Y^T X \theta \leq \theta^T X^T X \theta / 2 + \lambda \|\theta\|_1$, $\forall \theta \in \mathbb{R}^p$
 - (b) Show that for all $u=(u_1,\ldots,u_K)^T$, $v=(v_1,\ldots v_K)^T$, it holds that $|u^Tv| \leq \|u\|_1 \max_{1\leq k\leq K} |v_k|$
 - (c) Show that $Y^T X \theta \leq \lambda_{max} \|\theta\|_1$ with $\lambda_{max} = \max_{k=1,...,p} |X_k^T Y|$ and $X = (X_1, ..., X_p)$.
 - (d) Deduce that if $\lambda \geqslant \lambda_{max}$ then 0 is one solution of the Lasso.
 - (e) Deduce that if $\lambda \geqslant \lambda_{max}$, then 0 is the unique solution of the Lasso. One can start by considering $\theta \neq 0$ such that

$$Y^T X \boldsymbol{\theta} = \boldsymbol{\theta}^T X^T X \boldsymbol{\theta} / 2 + \lambda \| \boldsymbol{\theta} \|_1,$$

and then the 2 cases : $\theta \in \ker(X)$ and its contrary.

Tests and CI

- 15) Chi-square test for the variance: In the framework of the linear model of Question 7, we suppose in addition that the vector of noises ϵ is Gaussian of covariance matrix $\sigma^2 \mathbb{I}_n$.
 - (a) We are interested in the variance of the noises σ^2 . Recall the expression for the unbiased estimator $\hat{\sigma}^2$ seen in class for this quantity. What is the distribution of $(n-p-1)\hat{\sigma}^2/\sigma^2$?
 - (b) Deduce a confidence interval for $\widehat{\sigma}^2$ constructed from $\widehat{\sigma}^2$ and the quantiles 0.025 and 0.975 of the probability distribution. What is the confidence level of this interval?
 - (c) Denote q_a, q_b the quantiles 0.025 and 0.975 respectively. Is $q_a = -q_b$?
- 16) We want to design a test to see if the coefficient $\widehat{\theta_j}$ is equal to 1.

- (a) Detail the test, including : the null and alternative hypotheses, the statistic, the probability distribution of the statistic, the p-value, the rejection region for a α -level test, and the first order risk.
- (b) For a given database and a given coefficient j, we obtain in this test a p-value p_1 . What is the decision of the test of acceptance or rejection according to α ?
- (c) What is the type-I error?
- 17) Let X_1, \ldots, X_n be Gaussian variables of known variance σ^2 and unknown mean μ . Detail a hypothesis test for $\mu > 1$.

10 10