Собитов Анвархон

Группа: Р3115

Вариант: 46

Д3 4:

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	1		1	4		4	5		3	4	
e2	1	0		3	5				1	2	4	4
e3			0		4	3		5		3	5	5
e4	1	3		0	3	2	3	1			5	5
e5	4	5	4	3	0	3				5	2	
e6			3	2	3	0	2			2		
e7	4			3		2	0	2		2	5	
e8	5		5	1			2	0		2	1	
e9		1							0	5		
e10	3	2	3		5	2	2	2	5	0		4
e11	4	4	5	5	2		5	1			0	5
e12		4	5	5						4	5	0

Шаг №1: Найти гамильтонов цикл

- 1. Для начала возьмем в S вершину e_1 . $S = \{e_1\}$ Последовательно будем включать возможные вершины в S
- 2. e_2 : $S = \{e_1, e_2^+\}$
- 3. e_4 : $S = \{e_1, e_2, e_4^+\}$
- 4. e_5 : $S = \{e_1, e_2, e_4, e_5^+\}$
- 5. e_3 : $S = \{e_1, e_2, e_4, e_5, e_3^+\}$
- 6. e_6 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6^+\}$
- 7. e_7 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7^+\}$
- 8. e_8 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8^+\}$
- 9. e_{10} : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}^+\}$
- 10. e_9 : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_9^+\}$
- 11. У е₉ больше нет возможных вершин, удалим ее.
- $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$
- 12. Вернемся к е₁₀.
- 13. e_{12} : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_{12}^+\}$
- 14. e_{11} : $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_{12}, e_{11}^+\}$
- 15. У е₁₁ больше нет возможных вершин, удалим ее.

$$S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}, e_{12}\}$$

16. Вернемся к e_{12} .

17. У е₁₂ больше нет возможных вершин, удалим ее.

$$S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{10}\}$$

18. Вернемся к е₁₀.

19. У е₁₀ больше нет возможных вершин, удалим ее.

$$S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8\}$$

20. Вернемся к е₈.

21.
$$e_{11}$$
: $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}^+\}$

22.
$$e_{12}$$
: $S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}^+\}$

23.
$$e_{10}$$
: S = { e_1 , e_2 , e_4 , e_5 , e_5 , e_6 , e_7 , e_8 , e_{11} , e_{12} , e_{10}^+ }

24. e₉:
$$S = \{e1, e_2, e_4, e_5, e3, e_6, e_7, e_8, e_{11}, e_{12}, e_{10}, e_9^+\}$$

- 25. Ребра (е9, е1) нет, найдена гамильтонова цепь.
- 26. Удалим из S вершину е₉.

$$S = \{e_1, e_2, e_4, e_5, e_3, e_6, e_7, e_8, e_{11}, e_{12}, e_{10}\}$$

- 27. Вернемся к e₁₀.
- 28. У е₁₀ больше нет возможных вершин, удалим ее.

...

Таким образом проходим по вершинам, пока не доходим до гамельтонова пути:

$$S = \{e_1, e_2, e_4, e_5, e_9, e_{10}, e_6, e_3, e_{12}, e_{11}, e_7, e_8\}$$

Перенумеруем вершины согласно полученному гамильтонову циклу (чтобы ребра были внешними)

	e	e_2	e ₃	e ₄	e ₅	e ₆	e ₇	e	e 9	e ₁₀	e ₁₁	e ₁₂
	1							8				
e_1	0	1	1	1	0	1	0	0	0	1	1	1
e_2	1	0	1	1	1	1	0	0	1	1	0	0
e_3	1	1	0	1	0	0	1	0	1	1	1	1
e_4	1	1	1	0	1	1	1	1	0	1	0	0
e ₅	0	1	0	1	0	1	0	0	0	0	0	0
e_6	1	1	0	1	1	0	1	1	1	0	1	1
e ₇	0	0	1	1	0	1	0	1	0	0	1	0
e ₈	0	0	0	1	0	1	1	0	1	1	0	1

e ₉	0	1	1	0	0	1	0	1	0	1	0	0
e ₁₀	1	1	1	1	0	0	0	1	1	0	1	1
e ₁₁	1	0	1	0	0	1	1	0	0	1	0	1
e ₁₂	1	0	1	0	0	1	0	1	0	1	1	0

До перенумерации вершин: e₁, e₂, e₃, e₄, e₅, e₆, e₇, e₈, e₉, e₁₀, e₁₁, e₁₂ После перенумерации вершин: e₁, e₂, e₄, e₅, e₉, e₁₀, e₆, e₃, e₁₂, e₁₁, e₇, e₈

Шаг №2. Построение графа пересечений G'

Определим p_{2-10} , для чего в матрице R выделим подматрицу R_{2-10} Ребро (e_2e_{10}) пересекается с (e_1e_3) , (e_1e_4) , (e_1e_6)

Определим p_{2-9} , для чего в матрице R выделим подматрицу R_{2-9} Ребро (e_2e_9) пересекается с (e_1e_3) , (e_1e_4) , (e_1e_6)

Определим p_{2-6} , для чего в матрице R выделим подматрицу R_{2-6} Ребро (e_2e_6) пересекается c (e_1e_3) , (e_1e_4)

Определим p_{2-5} , для чего в матрице R выделим подматрицу R_{2-5} Ребро (e_2e_5) пересекается с (e_1e_3) , (e_1e_4)

Определим p_{2-4} , для чего в матрице R выделим подматрицу R_{2-4} Ребро (e_2e_4) пересекается с (e_1e_3)

Определим p_{3-12} , для чего в матрице R выделим подматрицу R_{3-12} Ребро (e_3e_{12}) пересекается с

 $(e_1e_4), (e_1e_6), (e_1e_{10}), (e_1e_{11}), (e_2e_4), (e_2e_5), (e_2e_6), (e_2e_9), (e_2e_{10})$

Определим p_{3-11} , для чего в матрице R выделим подматрицу R_{3-11} Ребро (e_3e_{11})

пересекается $c(e_1e_4)$, (e_1e_6) , (e_1e_{10}) , (e_2e_4) , (e_2e_5) , (e_2e_6) , (e_2e_9) , (e_2e_{10})

Определим p_{3-10} , для чего в матрице R выделим подматрицу R_{3-10} .

Ребро (e_3e_{10}) пересекается c (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6) , (e_2e_9)

Определим p_{3-9} , для чего в матрице R выделим подматрицу R_{3-9}

Ребро (e_3e_9) пересекается с (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6)

Определим p_{3-7} , для чего в матрице R выделим подматрицу R_{3-7} Ребро (e_3e_7) пересекается c (e_1e_4) , (e_1e_6) , (e_2e_4) , (e_2e_5) , (e_2e_6)

Найдено 15 пересечений графа.

	p ₁₋₃	p ₂₋₁₀	p ₁₋₄	p ₁₋₆	p ₂₋₉	p 2-6	p ₂₋₅	p 2-4	p ₃₋₁₂	p ₁₋₁₀	p ₁₋₁₁	p ₃₋₁₁	p ₃₋₁₀	рз-9	p 3-7
p ₁₋₃	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0
p 2-10	1	1	1	1	0	0	0	0	1	0	0	1	0	0	0
p ₁₋₄	0	1	1	0	1	1	1	0	1	0	0	1	1	1	1
p ₁₋₆	0	1	0	1	1	0	0	0	1	0	0	1	1	1	1
p ₂₋₉	1	0	1	1	1	0	0	0	1	0	0	1	1	0	0
p 2-6	1	0	1	0	0	1	0	0	1	0	0	1	1	1	1
p ₂₋₅	1	0	1	0	0	0	1	0	1	0	0	1	1	1	1
p ₂₋₄	1	0	0	0	0	0	0	1	1	0	0	1	1	1	1
p 3-12	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0
p 1-10	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0
p ₁₋₁₁	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0
p ₃₋₁₁	0	1	1	1	1	1	1	1	0	1	0	1	0	0	0
p 3-10	0	0	1	1	1	1	1	1	0	0	0	0	1	0	0
p ₃₋₉	0	0	1	1	0	1	1	1	0	0	0	0	0	1	0
p ₃₋₇	0	0	1	1	0	1	1	1	0	0	0	0	0	0	1

Шаг №3. Построить семейства фС

- 1. Рассмотрим 1 строку матрицы. Найдем первый нулевой элемент.
- 2. 2. Запишем дизъюнкцию $M_{1\text{-}3}=r_1 \ \text{V} \ r_3=110011110000000 \ \text{V} \ 0110111101001111=11101111110011111$
- 3. В строке M_{1-3} находим номера нулевых элементов, $J' = \{4, 10, 11\}$.
- 5. В строке $M_{1\text{-}3\text{-}4}$ находим номера нулевых элементов, $J'=\{10,\,11\}$. Запишем дизъюнкцию $M_{1\text{-}3\text{-}4\text{-}10}=M_{1\text{-}3\text{-}4}$ V $r_{10}=1111111111001111$ V 000000001101000=111111111111111
- 7. В строке $M_{1-3-4-10-11}$ все числа равны единице.
- 8. Построено $\psi_1 = \{u_{1\,3}, u_{1\,4}, u_{1\,6}, u_{1\,10}, u_{1\,11}\}$

По такому же алгоритму делаем ψ_2 - ψ_9 Получаем:

```
\begin{array}{l} \psi_1 = \left\{u_{1\,3},\,u_{1\,4},\,u_{1\,6},\,u_{1\,10},\,u_{1\,11}\right\} \\ \psi_2 = \left\{u_{1\,3},\,u_{3\,12},\,u_{3\,11},\,u_{3\,10},\,u_{3\,9},\,u_{3\,7}\right\} \\ \psi_3 = \left\{u_{1\,3},\,u_{1\,10},\,u_{1\,11},\,u_{3\,10},\,u_{3\,9},\,u_{3\,7}\right\} \\ \psi_4 = \left\{u_{1\,3},\,u_{1\,11},\,u_{3\,11},\,u_{3\,10},\,u_{3\,9},\,u_{3\,7}\right\} \\ \psi_5 = \left\{u_{2\,10},\,u_{2\,9},\,u_{2\,6},\,u_{2\,5},\,u_{2\,4},\,u_{1\,10},\,u_{1\,11}\right\} \\ \psi_6 = \left\{u_{2\,10},\,u_{2\,9},\,u_{1\,10},\,u_{1\,11},\,u_{3\,9},\,u_{3\,7}\right\} \\ \psi_7 = \left\{u_{2\,10},\,u_{1\,10},\,u_{1\,11},\,u_{3\,10},\,u_{3\,9},\,u_{3\,7}\right\} \\ \psi_8 = \left\{u_{1\,4},\,u_{1\,6},\,u_{2\,4},\,u_{1\,10},\,u_{1\,11}\right\} \\ \psi_9 = \left\{u_{1\,6},\,u_{2\,6},\,u_{2\,5},\,u_{2\,4},\,u_{1\,10},\,u_{1\,11}\right\} \end{array}
```

Шаг №4. Выделить из G' максимальный двудольный подграфа H'

Для каждой пары множеств вычислим значение критерия

$$\begin{split} &\alpha_{1\text{-}2} = \ |\psi_1| + |\psi_2| - |\psi_1 \cap \psi_2| = \ 10 \\ &\alpha_{1\text{-}3} = \ |\psi_1| + |\psi_3| - |\psi_1 \cap \psi_3| = 8 \\ &\dots \\ &\alpha_{1\text{-}9} = \ |\psi_1| + |\psi_9| - |\psi_1 \cap \psi_9| = 8 \end{split}$$

Таким же образом сделаем для остальный α Все результаты отобразим в матрице:

	1	2	3	4	5	6	7	8	9
1	0	1 0	8	9	10	9	9	6	8
2		0	8	7	13	10	9	11	1 2
3			0	7	11	8	7	9	1 0
4				0	12	9	8	10	1 1
5					0	9	1 0	9	8
6						0	7	9	1 0
7							0	9	1 0
8								0	7
9									0

 $\begin{array}{l} \text{max } \alpha_{i\text{-}j}=\alpha_{2\text{-}5}\!=13 \text{ дает лишь пара множеств} \\ \psi_2=\left\{u_{1\ 3},\,u_{3\ 12},\,u_{3\ 11},\,u_{3\ 10},\,u_{3\ 9},\,u_{3\ 7}\right\}\,\mathbf{u} \\ \psi_5=\left\{u_{2\ 10},\,u_{2\ 9},\,u_{2\ 6},\,u_{2\ 5},\,u_{2\ 4},\,u_{1\ 10},\,u_{1\ 11}\right\} \end{array}$

В суграфе H, содержащем максимальное число непересекающихся ребер, проведем ребра из ψ_2 внутри, а из ψ_5 снаружи.

Удалим из ψ_G ребра, которые вошли в ψ_2 и ψ_5 . Объединим одинаковые множества ψ_1 и ψ_8 , ψ_9 входит в ψ_1

Не реализованными остались два ребра. Проведем их. Итоговый граф:

