# The hidden subgroup problem for infinite groups

## Greg Kuperberg, UC Davis

We consider the hidden subgroup problem for infinite groups, beyond the celebrated original cases established by Shor and Kitaev.

#### 1 Motivation and main results

Some of the most important quantum algorithms solve rigorously stated computational problems and are superpolynomially faster than classical alternatives. This includes Shor's algorithm for period finding [13]. The hidden subgroup problem is a popular framework for many such algorithms [10]. If G is a discrete group and X is an unstructured set, a function  $f: G \to X$  hides a subgroup  $H \le G$  means that f(x) = f(y) if and only if y = xh for some  $h \in H$ . In other words, f is a hiding function for the hidden subgroup H when it is right H-periodic and otherwise injective, as summarized in this commutative diagram:



The *hidden subgroup problem* (HSP) is then the problem of calculating H from arithmetic in G and efficient access to f.

The computational complexity of HSP depends greatly on the ambient group G, as well as other criteria such as that H is normal or lies in a specific conjugacy class of subgroups. The happiest cases of HSP are those that both have an efficient quantum algorithm, and an unconditional proof that HSP is classically intractable when f is given by an oracle.

Shor's algorithm solves HSP when  $G = \mathbb{Z}$ , the group of integers under addition. Even though  $\mathbb{Z}$  is infinite and Shor's algorithm is a major motivation for HSP, many of the results since then have been about HSP for finite groups [2, Ch. VII]. Here we examine HSP in some key cases when G is a discrete, infinite group, with the rule that the hidden subgroup H can be confirmed with polynomial query complexity. We obtain five main results for different types of G. In three cases, we obtain hardness results; in two others, we obtain algorithms. To state the hardness results properly, we define the hidden subgroup *existence* problem (HSEP) to be the decision problem of whether H is non-trivial.

**Theorem 1.** Consider HSP in  $\mathbb{Q}$ , the rational numbers viewed as a discrete group under addition. Then it is NP-complete, with reduction in BQP, to determine whether the hidden subgroup  $H \leq \mathbb{Q}$  is larger than  $\mathbb{Z}$ . Equivalently, HSEP in the quotient  $\mathbb{Q}/\mathbb{Z}$  is NP-complete.

Theorem 1 is in contrast to both Shor's algorithm for  $G = \mathbb{Z}$ , as well as Hallgren's algorithm when  $G = \mathbb{R}$  and the hiding function f is Lipschitz and takes values in a Hilbert space [3, 5]. Assuming the conjecture that  $\mathsf{NP} \not\subseteq \mathsf{BQP}$ , the theorem implies that  $\mathsf{HSP}$  in  $\mathbb{Q}$  has no efficient quantum algorithm.

**Theorem 2.** HSEP in a finitely generated, non-abelian free group  $F_k$  is NP-complete, even assuming that the hidden subgroup is normal.

Theorem 2 is in contrast to the case of finite groups. If G is finite and H is normal, then HSP is in BQP whenever the quantum Fourier transform on G has a polynomial time quantum algorithm [6].

The proofs of Theorems 1 and 2 both relativize. In relative form, we can show that HSP in these two cases has exponential query complexity.

**Theorem 3.** Consider HSEP for the group  $G = \mathbb{Z}^k$  where the hiding function f has pseudo-polynomial query cost. If this problem is in BQP<sup>f</sup> uniformly in f and in the dimension k, then the unique short vector problem uSVP for integer lattices  $L \leq \mathbb{Z}^k$  and polynomial parameters is also in BQP.

**Theorem 4.** HSP in  $\mathbb{Z}^k$  with binary encoding of vectors can be solved in BQP, uniformly in the dimension k and in the bit complexity of the answer.

Theorem 4 is in contrast to the Shor-Kitaev algorithm [7], which achieves the same thing with the crucial extra hypothesis that the hidden subgroup  $H \leq \mathbb{Z}^k$  has full rank  $\ell = k$ , equivalently when H is a finite-index subgroup. The case when H has lower rank  $\ell < k$  is a new result as far as we know.

**Theorem 5.** Let G be a fixed, finitely generated group with a finite-index abelian subgroup  $K \leq G$ . Then HSP in G can be solved in time  $2^{O(\sqrt{n})}$ , where n is the bit complexity of the answer.

The special case of HSP Theorem 5 is equivalent to the hidden shift problem in the abelian group K. In contrast to our other main results, Theorem 5 can be proven using existing algorithms. The result follows from the author's prior work on the dihedral hidden subgroup problem [8, 9]. The proof is much nicer using a refinement of the author's second algorithm recently obtained by Peikert [12].

### 2 Elements of some of the proofs

#### 2.1 In the proof of Theorem 1

Given a decision problem d(x) in NP, we assume a predicate z(x,y) that accepts prime numbers y=p as certificates. We let the hidden subgroup  $H \leq \mathbb{Q}$  be generated by 1, and by 1/p for every accepted p. Our technique is to construct an H-periodic hiding function f(a/b) that takes a rational number a/b as input, and that can also be efficiently computed using access to the predicate z. To do this, we use the fact that rational numbers have a canonical partial fraction form analogous to partial fractions for rational functions in calculus. For example,

$$\frac{1}{60} = -2 + \frac{1}{2} + \frac{1}{4} + \frac{2}{3} + \frac{3}{5}.$$

This partial fraction form requires factoring the denominator b, which is why the reduction is in BQP. (There is also a workaround using a classical algorithm for partial factorization, only it is conditional on conjectures in number theory.) The value of f(a/b) is now given by striking the integer term, and striking every term whose denominator p is prime and accepted by z. H contains  $\mathbb{Z}$  regardless, and  $H \neq \mathbb{Z}$  if and only if there is an accepted certificate. Thus, the decision problem d reduces to HSP in  $\mathbb{Q}$ .

#### 2.2 In the proof of Theorem 2

Since the hidden subgroup  $H = N \le F_k$  is normal, it is *normally generated* by a set of words R, meaning that N is generated by elements of R and their conjugates. The quotient group  $F_k/N$  is thus realized as the presented group  $\langle A|R\rangle$ , where |A|=k is an alphabet. As in the proof of Theorem 1, we have a decision problem d(x) in NP with a predicate z(x,y), and we want to generate N by some encoding of the accepted certificates. We want an N-periodic hiding function f(w) on words  $w \in F_k$  that can be computed efficiently from z. We construct f(w) as a canonical word for the element [w] = wN in the quotient group  $F_k/N$ . In other words, we need an efficient solution to the word problem in the group  $K = F_k/N$ . Even though the word problem for finitely presented groups is RE-complete [1, 11], we rely on a restricted version which does have an efficient algorithm, even with only guess-and-check access to the relators.

We assume that k = 14 (strictly for simplicity), and we let  $F_{14}$  be generated by the alphabet

$$A = \{a_1, b_1, a_2, b_2, \dots, a_7, b_7\}.$$

Taking each possible certificate y initially as a binary string, we interpret it as a word y(a,b) in two letters a and b, and we assume the corresponding relator

$$r_{y} = y(a_{1}, b_{1})y(a_{2}, b_{2}) \cdots y(a_{7}, b_{7}).$$

The resulting group presentation  $\langle A|R\rangle$  satisfies the crucial C'(1/6) hypothesis of Greendlinger [4], that any common substring of any two relators (as cyclic words) is less than 1/6 of the length of each relator.

Greendlinger showed that if a word w represents the identity in a C'(1/6) presented group, then it can be reduced to the trivial word with the greedy algorithm. If a relator r can be used to greedily shorten w, then it must share more than half of its length with w. Using the special form of our relators  $r = r_y$ ,  $r_y$  can thus be calculated with a guess-and-check procedure using the predicate z. Using a refinement of Greendlinger's algorithm, we can also calculate the shortlex equivalent  $v \sim w$  of any word w in polynomial time. In the refined algorithm, each relator r is only invoked when at least 1/6 of its length has already been computed. If  $r = r_y$ , then we can again confirm y with the predicate z.

#### 2.3 In the proof of Theorem 4

Our algorithm for HSP in  $\mathbb{Z}^k$  has a standard quantum stage:

- **1.** Prepare an approximate Gaussian state  $|\psi_G\rangle$  on a finite box in  $\mathbb{Z}^k$ .
- **2.** Evaluate f to make  $U_f | \psi_G \rangle$ , and measure the output register to obtain a coset state  $| \psi_{H+\vec{v}} \rangle$ .
- **3.** Apply the QFT operator  $F_{(\mathbb{Z}/Q)^k}$  to  $|\psi_{H+\vec{v}}\rangle$  and measure a Fourier mode  $\vec{y}_0 \in (\mathbb{Z}/Q)^k$ .

The rescaled Fourier mode  $\vec{y}_1 = \vec{y}_0/Q \in (\mathbb{R}/\mathbb{Z})^k$  approximates a random element of the dual group  $H^\# \leq (\mathbb{R}/\mathbb{Z})^k$ , which consists of all  $\vec{y}$  such that  $\vec{x} \cdot \vec{y} \in \mathbb{Z}$  for all  $\vec{x} \in H$ . If H has full rank, then  $H^\#$  is a finite group, and the Shor-Kitaev algorithm denoises each coordinate of  $\vec{y}_1$  using continued fractions. If H has lower rank, then  $H^\#$  is a pattern of stripes in  $(\mathbb{R}/\mathbb{Z})^k$ , and this denoising step is not directly possible.



In our remedy, we calculate the connected subgroup  $H_1^\#$  from a single sample  $\vec{y}_1$  with high probability, when there is a little enough noise. In this case,  $\vec{y}_1$  has multiples that land close enough to  $\vec{0}$  to reveal the tangent directions to  $H^\#$ . We can find useful multiples of  $\vec{y}_1$  this type using the LLL algorithm. Given an approximate basis of tangent directions to  $H^\#$ , we can put its matrix  $B_1$  in RREF form using some careful linear algebra to bound the noise in the matrix entries. We can then apply the continued fraction algorithm to remove the noise and learn  $H_1^\#$ . Finally the dual  $H_1 \le \mathbb{Z}^k$  of  $H_1^\#$  itself contains H as a full-rank subgroup, and we can finish the algorithm using Shor-Kitaev.

## **References**

- [1] William W. Boone, *The word problem*, Ann. of Math. (2) **70** (1959), 207–265.
- [2] Andrew M. Childs and Wim van Dam, *Quantum algorithms for algebraic problems*, Rev. Modern Phys. **82** (2010), no. 1, 1–52, arXiv:0812.0380.
- [3] Kirsten Eisenträger, Sean Hallgren, Alexei Kitaev, and Fang Song, *A quantum algorithm for computing the unit group of an arbitrary degree number field*, STOC '14— Proceedings of the 2014 ACM Symposium on Theory of Computing, ACM, New York, 2014, pp. 293–302.
- [4] Martin Greendlinger, *Dehn's algorithm for the word problem*, Comm. Pure Appl. Math. **13** (1960), 67–83.
- [5] Sean Hallgren, *Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem*, J. ACM **54** (2007), no. 1, Art. 4, 19 pp.
- [6] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma, *Normal subgroup reconstruction and quantum computation using group representations*, ACM Symposium on Theory of Computing, 2000, pp. 627–635.
- [7] Alexei Kitaev, Quantum measurements and the Abelian stabilizer problem, 1995, arXiv:quant-ph/9511026.
- [8] Greg Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden subgroup problem, SIAM J. Comput. **35** (2005), no. 1, 170–188, arXiv:quant-ph/0302112.
- [9] \_\_\_\_\_\_, Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography 22 (2013), 20–34, arXiv:1112.3333.
- [10] Michele Mosca and Artur Ekert, *The hidden subgroup problem and eigenvalue estimation on a quantum computer*, Quantum computing and quantum communications (Palm Springs, CA, 1998), Lecture Notes in Comput. Sci., vol. 1509, Springer, Berlin, 1999, arXiv:quant-ph/9903071, pp. 174–188.
- [11] Pyotr S. Novikov, *On the algorithmic unsolvability of the word problem in group theory*, Trudy Mat. Inst. im. Steklov., vol. 44, Izdat. Akad. Nauk SSSR, Moscow, 1955.
- [12] Chris Peikert, He gives c-sieves on the CISDH, 2019, CryptologyePrintArchive, Report2019/725.
- [13] Peter W. Shor, *Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer*, SIAM J. Comput. **26** (1997), no. 5, 1484–1509, arXiv:quant-ph/9508027.