Sats 1 (Volym under graf). Anta att f är en funktion definierad på en mängd $D = [a,b] \times [c \times d] = \{(x,y) \mid a \le x \le b, c \le y \le d\}.$

Volymen under grafen z = f(x,y) är då $\iint_D f(x,y) dA$.

Bevis. Dela in D i $m \times n$ stycken lika stora rektanglar A_{ij} med area $\Delta A = \frac{b-a}{m} \frac{d-c}{n}$ och låt punkten $(x_{ij}, y_{ij}) \in A_{ij}$. Då är volymen under grafen ungefär $\sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}, y_{ij}) \Delta A$.

Definition 1 (Integrer barhet). Vi låter $\iint_D f(x,y) dA = \lim_{m,n\to\infty} \sum_{i=1}^m \sum_{j=1}^n f(x_{ij},y_{ij}) \Delta A$ om gränsvärdet existerar. Då säger vi
 att \bar{f} är integrerbar.

Om $f(x,y) \ge 0$ och f är integrerbar är volymen mellan D och z = f(x,y) $\mathrm{då} \iint_D f(x,y) \mathrm{d}A.$

Sats 2 (Krav för integrerbarhet). Om en funktion f är kontinuerlig på en mängd D är f integrerbar på D.

Sats 3 (Fubinis sats). Om f(x,y) är kontinuerlig på $D = [a,b] \times [c,d]$ är

$$\iint_D f(x,y) dA = \int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy.$$

Idé. Idén bakom satsen är att i två variabler är volymen integralen av tvärsnittsarean, likt att arean är integralen av höjden i en variabel. Integralen av tvärsnittsarean borde bli samma oberoende av vilket håll vi tar tvärsnittsarean.

Definition 2 (Dubbelintegral över begränsade områden). Låt f(x,y) vara definierad på ett begränsat område $D \subseteq \mathbb{R}^2$. Låt också R vara en rektangel som helt innehåller D och definiera $F(x,y) = \begin{cases} f(x,y) \text{ om } (x,y) \in D \\ 0 \text{ annars} \end{cases}$. Då definierar man $\iint_D f(x,y) dA = \iint_R F(x,y) dA$ om F är integrerbar.

Eftersom F(x,y) = f(x,y) på hela D och F(x,y) = 0 utanför D så borde volymen mellan z = f(x,y) och D vara samma som volymen mellan z =F(x,y) och R och bör därför vara en rimlig definition av en integral av föver D.