MA 126-103 — Summer 2017 — Dr. Clontz — Readiness Quizzes

- 1. The Substitution Rule is the opposite of which derivative rule? (2017-06-05, 2.1)
 - A. Chain Rule
 - B. Product Rule
 - C. Quotient Rule
 - D. Power Rule
- 2. What is incorrect about the following attempt at using the Substitution Rule?

$$\int_0^1 (3-2x)^5 dx = \int_0^1 u^5 \left(-\frac{1}{2}du\right)$$

(2017-06-05, 2.1)

- A. dx should have been replaced with $+\frac{1}{2} du$.
- B. The bounds are incorrect.
- C. u shouldn't be raised to the 5th power.
- D. dx should have been replaced with -2 du.
- 3. Which of these formulas would be most useful in finding $\int \sin^4 \theta \cos^2 \theta \, d\theta$? (2017-06-05, 2.2)
 - A. $\sin^2(\theta) = \frac{1}{2} + \frac{1}{2}\sin(2\theta)$
 - B. $\cos^2(\theta) = 1 \sin^2(\theta)$
 - C. $\sin^2(\theta) = 1 \cos^2(\theta)$
 - D. $\cos^2(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$
- 4. Which of these formulas would be most useful in finding $\int \sec^4(\theta) d\theta$? (2017-06-05, 2.2)
 - A. $\sec^2(\theta) = 1 \tan^2(\theta)$
 - B. $\tan^2(\theta) = 1 + \sec^2(\theta)$
 - C. $\sec^2(\theta) = 1 + \tan^2(\theta)$
 - D. $\tan^2(\theta) = 1 \sec^2(\theta)$

- 5. Which of these substitutions would be most useful in finding $\int \frac{1}{25x^2+9} dx$? (2017-06-05, 2.3)
 - A. Let $25x^2 + 9 = 25\sec^2\theta + 25$.
 - B. Let $25x^2 + 9 = 9\tan^2\theta + 9$.
 - C. Let $25x^2 + 9 = 9\sin^2\theta + 9$.
 - D. Let $25x^2 + 9 = 25\cos^2\theta + 25$.
- 6. Which of these substitutions would be most useful in finding $\int \frac{1}{x\sqrt{4-16x^2}} dx$? (2017-06-05, 2.3)
 - A. Let $4 16x^2 = 16 16\cos^2\theta$.
 - B. Let $4 16x^2 = 4 4\sin^2\theta$.
 - C. Let $4 16x^2 = 4 + 4\tan^2\theta$.
 - D. Let $4 16x^2 = 16 + 16\sec^2\theta$.
- 7. Which of these substitutions would be most useful in finding $\int_3^5 \frac{1}{\sqrt{x^2-9}} dx$? (2017-06-05, 2.3)
 - A. Let $x^2 9 = 9\sin^2\theta + 9$.
 - B. Let $x^2 9 = \tan^2 \theta 1$.
 - C. Let $x^2 9 = 9\sec^2\theta 9$.
 - D. Let $x^2 9 = \cos^2 \theta + 1$.

8. Which of these sums is the first step in expanding $\frac{4x^2+16x+17}{(x+2)^2(x^2+1)^2}$ into partial fractions? (2017-06-12, 2.4)

A.
$$\frac{A}{x+2} + \frac{Bx}{x+2} + \frac{C}{(x^2+1)^2}$$

B.
$$\frac{A}{x+2} + \frac{B}{(x+2)^2} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$$

C.
$$\frac{A}{x+2} + \frac{Bx}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

D.
$$\frac{Ax+B}{(x+2)^2} + \frac{Cx+D}{(x^2+1)^2}$$

- 9. Why must $\frac{3+5x^5}{(x+1)(x+3)^2}$ first be simplified using long polynomial division before using the method of partial fractions? (2017-06-12, 2.4)
 - A. It is a rational function of x.
 - B. The degree of its numerator is odd, while the degree of its demoninator is even.
 - C. It is an irrational function of x.
 - D. The degree of its numerator is greater than or equal to the degree of its denominator.
- 10. Integration by Parts is the opposite of which derivative rule? (2017-06-12, 2.5)
 - A. Chain Rule
 - B. Quotient Rule
 - C. Power Rule
 - D. Product Rule
- 11. Which choice is most appropriate for using integration by parts to find $\int 3x \cos(x) dx$? (2017-06-12, 2.5)

A.
$$u = 3$$
, $dv = x \cos(x) dx$

B.
$$u = \cos(x)$$
, $dv = 3x dx$

C.
$$u = 3x$$
, $dv = \cos(x) dx$

D.
$$u = x \cos(x)$$
, $dv = 3 dx$

- 12. Which of these techniques is most appropriate as the first step to find $\int z^2 \sin(z^3) dz$? (2017-06-12, 2.6)
 - A. Integration by Substitution
 - B. Integration by Parts
 - C. Method of Partial Fractions
 - D. Trigonometric Identities

- 13. Which of these techniques is most appropriate as the first step to find $\int \frac{t^2+3t+1}{t^3+t} dt$? (2017-06-12, 2.6)
 - A. Method of Partial Fractions
 - B. Trigonometric Substitution
 - C. Trigonometric Identities
 - D. Integration by Substitution
- 14. Which of these integrals represents the area bounded by the curves $x=y^2$ and x=4? (2017-06-12, 3.1)
 - A. $\int_0^2 2y \, dy$
 - B. $\int_{-2}^{2} ((4) (y^2)) dy$
 - C. $\int_0^4 ((\sqrt{y}) (2)) dx$
 - D. $\int_{-2}^{0} ((4y^2) (2\sqrt{y})) dx$
- 15. Which of these integrals also represents the area bounded by the curves $x=y^2$ and x=4? (2017-06-12, 3.1)
 - A. $\int_0^2 ((x^2) (4)) dx$
 - B. $\int_2^4 ((x^2) (-x^2)) dx$
 - C. $\int_0^4 ((\sqrt{x}) (-\sqrt{x})) dx$
 - D. $\int_{2}^{0} ((x^2) (\sqrt{x})) dx$