

# 2D Convolution (1)

1////



| K(X, | y) |   |
|------|----|---|
| -1   | 0  | 1 |
| -1   | 0  | 1 |
| -1   | 0  | 1 |











# 2D Convolution (2)



| k(x,y) |   |   |  |  |
|--------|---|---|--|--|
| -1     | 0 | 1 |  |  |
| -1     | 0 | 1 |  |  |
| -1 0 1 |   |   |  |  |











# 2D Convolution (3)



| k(x | k(x,y) |   |  |
|-----|--------|---|--|
| -1  | 0      | 1 |  |
| -1  | 0      | 1 |  |
| -1  | 0      | 1 |  |











# 2D Convolution (4)



| k(x,   | k(x,y) |   |  |  |
|--------|--------|---|--|--|
| -1     | 0      | 1 |  |  |
| -1     | 0      | 1 |  |  |
| -1 0 1 |        |   |  |  |











### 2D Convolution (5)



| $\mathcal{K}(\mathcal{N}, \mathbf{y})$ |   |   |  |
|----------------------------------------|---|---|--|
| -1                                     | 0 | 1 |  |
| -1                                     | 0 | 1 |  |
| -1                                     | 0 | 1 |  |

k(x v)

|          | ► X O_9(x,y) |     |      |      |  |
|----------|--------------|-----|------|------|--|
| <b>V</b> | 100          | 100 | -100 | -100 |  |
| У        | 100          | 100 | -100 | -100 |  |
|          | 100          | 100 | -100 | -100 |  |
|          | 0            | 0   | -100 | -100 |  |









### Kernel Coefficients to Neural Nets





Image f(x,y) (N-1,M-1)

| w_11 | w_12 | w_13 |
|------|------|------|
| w_21 | w_22 | w_23 |
| w_31 | w_32 | w_33 |

| weights inputs $x_1 \longrightarrow w_{Ij}$ $x_2 \longrightarrow w_{2j}$ $x_3 \longrightarrow w_{3j}$ $x_3 \longrightarrow w_{nj}$ $x_n \longrightarrow w_{nj}$ | activation function net input $\underbrace{net_j}^{net_j} \underbrace{\varphi}_{\text{activation}} o_j$ activation $\underbrace{\theta_j}_{\text{threshold}}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Input from image I(x,y) | weight |
|-------------------------|--------|
| x_11                    | w_11   |
| x_12                    | w_12   |
| x_13                    | w_13   |
| x_21                    | w_21   |
| x_22                    | w_22   |
| x_23                    | w_23   |
| x_31                    | w_31   |
| x_32                    | w_32   |
| x_33                    | w_33   |

N layers



# Map to Single Layer NN (1)



Where



Group 1, C1, as those from edge pixels Group 2, C2, as those from non-edge pixels

Hence, from the following, we have

| 100 | 100 | 0 | 0 |
|-----|-----|---|---|
| 100 | 100 | 0 | 0 |
| 100 | 100 | 0 | 0 |
| 100 | 100 | 0 | 0 |

| 0 | -100 | -100 | 0 |
|---|------|------|---|
| 0 | -100 | -100 | 0 |
| 0 | -100 | -100 | 0 |
| 0 | -100 | -100 | 0 |

$$(1,1), y = 0; (1,2), y=1; (1,3), y=1; (1,4), y=0$$

$$(2,1), y = 0; (2,2), y=1; (2,3), y=1; (2,4), y=0$$

$$(3,1)$$
,  $y = 0$ ;  $(3,2)$ ,  $y=1$ ;  $(3,3)$ ,  $y=1$ ;  $(3,4)$ ,  $y=0$ 

$$(4,1), y = 0; (4,2), y=1; (4,3), y=1; (4,4), y=0$$

Continue till the las pair as

Harry Li, Ph.D.



# Map to Single Layer NN (2)

#### From the following,

| 0 | 100 | 100 | 0 |
|---|-----|-----|---|
| 0 | 100 | 100 | 0 |
| 0 | 100 | 100 | 0 |
| 0 | 100 | 100 | 0 |

| 100 | 100 | -100 | -100 |
|-----|-----|------|------|
| 100 | 100 | -100 | -100 |
| 100 | 100 | -100 | -100 |
| 100 | 100 | -100 | -100 |

$$(1,1), y = 1; (1,2), y=1; (1,3), y=1; (1,4), y=1$$

$$(2,1)$$
,  $y = 1$ ;  $(2,2)$ ,  $y=1$ ;  $(2,3)$ ,  $y=1$ ;  $(2,4)$ ,  $y=1$ 

$$(3,1)$$
,  $y = 1$ ;  $(3,2)$ ,  $y=1$ ;  $(3,3)$ ,  $y=1$ ;  $(3,4)$ ,  $y=1$ 

$$(4,1), y = 1; (4,2), y=1; (4,3), y=1; (4,4), y=1$$

### The training algorithm:

where

of: desired the output.

y: actual output.



# Map to Single Layer NN (2)

### From the following,

| 0 | 100 | 100 | 0 |
|---|-----|-----|---|
| 0 | 100 | 100 | 0 |
| 0 | 100 | 100 | 0 |
| 0 | 100 | 100 | 0 |

| 100 | 100 | -100 | -100 |
|-----|-----|------|------|
| 100 | 100 | -100 | -100 |
| 100 | 100 | -100 | -100 |
| 100 | 100 | -100 | -100 |

$$(1,1), y = 1; (1,2), y=1; (1,3), y=1; (1,4), y=1$$

$$(2,1), y = 1; (2,2), y=1; (2,3), y=1; (2,4), y=1$$

$$(3,1)$$
,  $y = 1$ ;  $(3,2)$ ,  $y=1$ ;  $(3,3)$ ,  $y=1$ ;  $(3,4)$ ,  $y=1$ 

$$(4,1)$$
,  $y = 1$ ;  $(4,2)$ ,  $y=1$ ;  $(4,3)$ ,  $y=1$ ;  $(4,4)$ ,  $y=1$ 

#### The training algorithm:

where

of: desired the output.

y: actual output.

So, we have

| Input from image I(x,y) | weight | Output image O(x,y) |
|-------------------------|--------|---------------------|
| x_11                    | w_11   | y_11                |
| x_12                    | w_12   | y_12                |
| x_13                    | w_13   | y_13                |
| x_21                    | w_21   | y_21                |
| x_22                    | w_22   | y_22                |
| x_23                    | w_23   | y_23                |
| x_31                    | w_31   | y_31                |
| x_32                    | w_32   | y_32                |
| x_33                    | w_33   | y_33                |

Now, train the NN find weights w\_ij