

planetmath.org

Math for the people, by the people.

Kripke submodel

Canonical name KripkeSubmodel
Date of creation 2013-03-22 19:34:50
Last modified on 2013-03-22 19:34:50

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771) Entry type Definition Classification msc 03B45

Defines generated submodel

Let $\mathcal{F} = (W, R)$ be a Kripke frame. A *subframe* of \mathcal{F} is a pair $\mathcal{F}' = (W', R')$ such that W' is a subset of W and $R' = R \cap (W' \times W')$. A *submodel* of a Kripke model M = (W, R, V) of a modal propositional logic PL_M is a triple (W', R', V') where (W', R') is a subframe of (W, R), and $V'(p) = V(p) \cap W'$ for each propositional variable p in PL_M .

The most common submodel of a Kripke model M = (W, R, V) is constructed by taking $W_w := \{u \mid wR^*u\}$, where R^* is the reflexive transitive closure of R, for any $w \in W$. The submodel $M_w := (W_w, R_w, V_w)$ is called the submodel of M generated by the world w, and \mathcal{F}_w the subframe of \mathcal{F} generated by w. A submodel of M is called a generated submodel if it is generated by some world w in M.

Proposition 1. For any wff A and any $u \in W_w$, $M \models_u A$ iff $M_w \models_u A$.

Proof. We do induction on the number n of connectives in A.

If n = 0, then A is either \bot or a propositional variable. Clearly, $M \not\models_u \bot$ iff $M_w \not\models_u \bot$, or $M \models_u \bot$ iff $M_w \models_u \bot$. If A is some propositional variable p, then $M \models_u p$ iff $u \in V(p)$ iff $u \in V(p)$ iff $u \in V(p)$ and $u \in W_w$ (by assumption) iff $u \in V(p) \cap M_w$ iff $u \in V_w(p)$ iff $M_w \models_u p$.

Next, suppose A is $B \to C$. Then $M \models_u A$ iff $u \in V(B)^c \cup V(C)$ iff $u \in (W - V(B)) \cup V(C)$ and $u \in W_w$ (by assumption) iff $u \in W_w - V(B)$ or $u \in V_w(C)$ iff $u \in W_w - V_w(B)$ or $u \in V_w(C)$ iff $M_w \models_u A$.

Finally, suppose A is $\square B$. First let $M \models_u A$. To show $M_w \models_u A$, pick any $v \in W_w$ such that uR_wv . Then uRv, so that $M \models_v B$, or $v \in V(B)$. Since $v \in W_w$, $v \in V_w(B)$, or $M_w \models_v B$, and thus $M_w \models_u A$. Conversely, let $M_w \models_u A$. To show $M \models_u A$, pick any $v \in W$ such that uRv. Since wR^*u , wR^*v so that $v \in W_w$. Furthermore $(u,v) \in R \cap (W_w \times W_w) = R_w$. So $M_w \models_u B$, or $v \in V_w(B) \subseteq V(B)$, which means $M \models_u A$.

Corollary 1. $M \models A \text{ iff } M_w \models A \text{ for all } w \in W.$

Proof. If $M \models A$, then $M \models_u A$ for all $u \in W$, so that $M_w \models_u A$ for all $u \in W_w$ and all $w \in W$, or $M_w \models_u A$ for all $w \in W$. Conversely, if $M_w \models_A A$ for all $w \in W$, then in particular $M_w \models_w A$ (since R^* is reflexive) for all $w \in W$, or $M \models_w A$ for all $w \in W$, or $M \models_A A$.

Corollary 2. $\mathcal{F} \models A \text{ iff } \mathcal{F}_w \models A \text{ for all } w \in W.$

Proof. If $\mathcal{F} \models A$, then $M \models A$ for all M based on \mathcal{F} , or $M_w \models A$, where M_w is based on \mathcal{F}_w , for all $w \in W$ by the last corollary. Since any model

based on \mathcal{F}_w is of the form M_w , $\mathcal{F}_w \models A$. Conversely, suppose $\mathcal{F}_w \models A$ for all $w \in W$. Let M be any model based on \mathcal{F} . Then M_w is based on \mathcal{F}_w , and therefore $M_w \models A$. Since w is arbitrary, $M \models A$ by the last corollary, so $\mathcal{F} \models A$.