Lecture 10 Entity-relationship diagram

Subject Lecturer: Kevin K.F. YUEN, PhD.

Acknowledgement: Slides were offered from Prof. Ken Yiu.

Slides content modified from Database Systems Concepts

Some parts might be revised and indicated.

Outline

Entity relationship (ER) diagram

Extended features of ER diagram

Design issues and decisions

How to convert a ER diagram to relational schemas?

Entity-Relationship (ER) Diagram

- ER diagram is used to design the schema of a database
 - A collection of entities
 - Relationship among entities
 - Attributes of entities and relationships
- Example: part of the ER diagram for the bank database
 - customer and account are entities
 - depositor is a relationship between customer and account
 - customer_name is an attribute of customer

Notations for ER diagrams

- Chen's notation
 - The traditional notation
 - Used in our lecture slides

IDEF1X

Also called the crow's foot notation

UML notation

Express attributes in a more compact way

Examples of ER diagram drawing tools

- draw.io
 - https://drawio-app.com/entity-relationship-diagrams-with-draw-io/
- Smartdraw
 - https://www.smartdraw.com/entity-relationship-diagram
- DBDiagram.io
 - https://dbdiagram.io/home
- Microsoft Powerpoint

Objectives

At the end of this lecture, you should be able to:

- Draw a correct ER diagram for a given scenario
 - to capture all the requirements

Explain to others why your ER diagram is correct

 Compare two different ER diagrams (for the same scenario)

Entity

- Entity: an object that is distinguishable from other objects
 - It may have attributes
 - E.g., a customer is an entity:

its attributes are name and address (street & city)

- Entity set: a set of entities of the same type
 - E.g., the set of all customers

321-12-3123 Jones Main Harrison Entity set "customer" 019-28-3746 Smith North Rye 677-89-9011 Hayes Main Harrison Dupont Woodside 555-55-5555 Jackson A customer entity 244-66-8800 Curry North Rve 963-96-3963 Williams Nassau Princeton 335-57-7991 Adams Spring Pittsfield

Keys for Entity Sets

- The designer selects one of the candidate key(s) to be the primary key
 - A candidate key of an entity set is a minimal super key
 - A <u>super key</u> of an entity set is a set of attribute(s) whose value(s) uniquely determine each entity
- Example: consider the schema

customer = (customer_id, customer_name, customer_street, customer_city)

- (customer_id, customer_name) is a super key
- customer_id is a candidate key
- We choose *customer_id* as the primary key

customer = (customer_id, customer_name, customer_street, customer_city)

Relationship Sets

Relationship: an association among entities

Hayes _____ A-102 customer entity account entity

- It may have attributes (e.g., access-date)
- Relationship set: a collection of relationships
 - E.g., depositor

Attributes

- Attributes: description/property of an entity
 - customer = (customer_id, customer_name, customer_street, customer_city)
 - loan = (loan_number, amount)
- Simple attribute
- Composite attribute
 - It contains multiple simple attributes
 - E.g., address can be decomposed into customer_street and customer_city
- Multi-valued attributes
 - E.g., phone_numbers (a customer may have several numbers)
- Derived attributes
 - It can be computed from other attributes
 - E.g., age (derived from date_of_birth)

ER Diagram with Attributes

multivalued attribute (double ellipses)

derived attribute (dashed ellipse)

ER Diagrams

- Rectangles represent entity sets
 - Lines link entity sets to attributes
- Diamonds represent relationship sets
 - Lines link relationship sets to entity sets or attributes
- Ellipses represent attributes
- Underline indicates primary key attributes

Cardinality Constraints

- Express cardinality constraints between the relationship set and the entity set by:
 - \bullet a directed line (\rightarrow): "one" (possibly 0)
 - an undirected line (—): "many" (possibly 0)
- 4 types of cardinality constraints
- (1) One-to-one relationship
- (2) One-to-many relationship
 - E.g., a loan is associated with at most one customer; a customer can have several loans

one-to-one

one-to-many

Cardinality Constraints (Cont')

(3) Many-to-one relationship:

E.g., a loan can be associated with several customers; a customer has at most one loan

(4) Many-to-many relationship:

E.g., a customer can have several loans; a loan can be associated with several customers

Keys for Relationship Sets

- The combination of primary keys of the participating entity sets forms a super key of a relationship set
 - (customer_id, account_number) is the super key of depositor
 - customer_id is the primary key of customer
 - account_number is the primary key of account
- To decide the candidate key, we must consider the mapping cardinality of the relationship set
 - Examples of candidate key
 - One-to-one mapping: (account_number)
 - Many-to-many mapping: (customer_id, account_number)

Roles

Scenario

- Some employees are workers, some employees are managers
- How to express the "works_for" relationship?

Role labels

- Clarify semantics of the relationship
- Indicated in ER diagrams by labeling the lines that connect diamonds to rectangles
- E.g., in the above diagram, the role labels are "manager" and "worker"

[Exercise] Find the mistakes here

- IDs from entities
- incorrect to "make" a primary key for borrower

- customer missing other attributes
- loan missing key

[Exercise] Find the mistakes here

- irrelevant attribute in customer

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., every loan must have a customer (via borrower)
- Partial participation: some entities may not participate in any relationship in the relationship set
 - E.g., participation of customer in borrower is partial

Degree of a Relationship Set

- Degree = the number of entity sets that participate in a relationship set
- [Common] binary relationship sets that involve two entity sets
- [Rare] higher-degree relationship sets
 - Example: Employees of a bank may have jobs (responsibilities) at multiple branches, with different jobs at different branches.
 - → ternary relationship set between entity sets *employee*, *job*, *and branch*

Weak Entity Sets

A **weak entity** is a type of entity that does not have any unique key for the attribute tuples. A weak entity depends on another entity (called also the identifying entity) that is considered its owner. A weak entity is an entity that cannot exist without an entity it depends on. It is depicted as a rectangle with a double border. The entity is connected with an identifying relationship to the identifying entity.

- Weak entity set: an entity set without a primary key
- The existence of a weak entity set depends on its identifying entity set
 - Identifying relationship: a total, one-to-many relationship set from the identifying entity set to the weak entity set
- The discriminator (i.e., partial key) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set. E.g., payment_number
- The primary key of a weak entity set: primary key of its identifying entity set & the weak entity set's discriminator. E.g., (loan_number, payment_number)

Outline

Entity relationship (ER) diagram

Extended features of ER diagram

Design issues and decisions

How to convert a ER diagram to relational schemas?

Specialization/Generalization

- A triangle labeled ISA
 - Partition an entity set into subgroups
 - E.g., customer "is a" person
 - Attribute inheritance, e.g., employee inherits all the attributes and relationship participation of person
 - Entities from the same subgroup share the same characteristics
 - E.g., employee has salary
 - These subgroups have attributes / relationships that are not used in the higher-level entity set
 - E.g., person does not have salary

Aggregation

 Consider the ternary relationship works_on; suppose we want to record managers for tasks performed by an employee at a branch

Ternary: consisting of three parts

- Relationship sets works_on and manages represent overlapping information
 - Every manages relationship corresponds to a works_on relationship
 - However, some works_on relationships may not correspond to any manages relationships
 - So we can't discard the works_on relationship

Aggregation (Cont.)

- Eliminate this redundancy via aggregation
 - Treat relationship as an abstract entity
 - Allows relationships between relationships
 - Abstraction of relationship into new entity
- Without introducing redundancy, the following diagram represents:
 - An employee works on a particular job at a particular branch
 - An employee, branch, job combination may have an associated manager

Outline

Entity relationship (ER) diagram

Extended features of ER diagram

Design issues and decisions

How to convert a ER diagram to relational schemas?

Summary of ER Design Decisions

- Entity set vs. attribute
- Entity set vs. relationship set
- A ternary relationship vs. a pair of binary relationships
- Strong entity set vs. weak entity set
- The use of specialization/generalization
 - contributes to modularity in the design
- The use of aggregation
 - treat the aggregate entity set as a single unit without caring its internal structure

- Use of entity sets vs. attributes
 - Question: What is the difference between these two models, in terms of the "telephone_number" attribute?

- Use of entity sets vs. relationship sets
 - Designate a relationship set to describe an action that occurs between entities
 - The second ER-diagram cannot directly model the case that "a loan can be jointly held by several customers"

- Binary versus n-ary relationship sets
 - Some relationships are naturally non-binary
 - Example: works_on
 - Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g., ternary relationship *parents* (between child and his/her father and mother)

is best replaced by

two binary relationships: fatherOf and motherOf

Placement of relationship attributes (depending on the cardinality ratio)

If each account can have only one customer, use access-date as an attribute of account, instead of a relationship attribute

That is, the relationship from customer to account is one to many

ER Diagram for the Bank Database

Outline

Entity relationship (ER) diagram

Extended features of ER diagram

Design issues and decisions

How to convert a ER diagram to relational schemas?

How to convert a ER digram into relational schemas?

Convert each entity set into a schema

Convert each relationship set into a schema

- Example: convert the entity set "customer" into:
 - © Customer_schema = (<u>customer_id</u>, customer_city)

Representation as Schemas

- Representing an entity set
 - ⋄ A strong entity set \rightarrow a schema with the same attributes loan = (loan number, amount)

payment = (loan number, payment number,
 payment_date, payment_amount)

Representation as Schemas

- Representing a relationship set
 - A many-to-many relationship set →
 a schema with attributes for the primary keys of the
 two participating entity sets, and any descriptive
 attributes of the relationship set
 - Example: schema for relationship set borrower

borrower = (customer_id, loan_number_)

Redundancy of Schemas

- Example on many-to-one relationship:
 - Should we use the schema account_branch(account-number,branch-name)?
 - o It is not necessary!
 - Just add an attribute branch_name to the schema of account :
 - account = (<u>account-number</u>, balance, branch-name)
- Many-to-one and one-to-many relationship sets that are total on the many-side: represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side

37

Redundancy of Schemas (Cont.)

- For one-to-one relationship set, either side can be used as the "many" side
 - The extra attribute can be added to either side
- If participation is partial on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in NULL values
- The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
 - Example: The payment schema already contains the attributes that would appear in the loan_payment schema (i.e., loan_number and payment_number)

Composite and Multivalued Attributes

- For composite attribute, create an attribute for each component
 - Example: given entity set customer with composite attribute name with component attributes first_name and last_name the schema corresponding to the entity set has two attributes

name.first_name and name.last_name

- A multivalued attribute M of an entity E is represented by a separate schema EM
 - Example: multivalued attribute dependent_name of employee is represented by the following schema

employee_dependent_names = (employee_id, dname)

E.g., an employee with primary key "C125" and dependents Jack and Jane
 → two tuples (C125, Jack) and (C125, Jane) in the above table

Representing Specialization via Schemas

Method 1

- Form a schema for the higher-level entity
- Form a schema for each lower-level entity set, include primary key of higher-level entity set and local attributes

```
person = (person_id, name, street, city)
```

customer = (person_id, credit_rating)

employee = (person_id, salary)

Drawback: to find all the information of an employee, we need to access two relations (person and employee)

Representing Specialization as Schemas (Cont.)

Method 2

 Form a schema for each entity set with all local and inherited attributes

```
person = (person_id, name, street, city)
customer = (person_id, name, street, city, credit_rating)
employee = (person_id, name, street, city, salary)
```

- If specialization is total, the schema for the generalized entity set (person) not required to store information
 - Can be defined as a "view" relation containing union of specialization relations
- Drawback: street and city may be stored redundantly for people who are both customers and employees

Schemas Corresponding to Aggregation

- o To represent aggregation, create a schema containing
 - primary key of the aggregated relationship,
 - the primary key of the associated entity set
 - any descriptive attributes
- For example, to represent aggregation manages between relationship works_on and entity set manager, create a schema manages (employee_id, branch_name, title, manager_name)
- We can remove the schema works_on provided that we are willing to store *NULL* values for attribute manager_name in relation on schema manages

Summary of Chen's Notations

Appendix: UML notations

A1

weak entity set

E E entity set A1 attributes: A2 simple (A1), A2.1 composite (A2) and multivalued (A3) A2.2 R relationship set derived (A4) {A3} A4()identifying R relationship set E for weak entity set primary key A1 discriminating total participation E R E attribute of of entity set in

relationship

Appendix: UML notations

