

Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo

INFOVIS: HIERARCHY AND GRAPHS

Rosane Minghim
Danilo Medeiros Eler

2010-2018

INFOVIS: HIERARCHY AND GRAPHS

Rosane Minghim

Danilo Medeiros Eler

Bib: Alexandru C. Telea, Data Visualization: Principles and Practice. (Capítulo 11)

Graphs

- Represent relationships, such as:
 - Communication in Social Networks
 - Network traffic
 - Word semantic
 - Precedence
 - Routes

4

Trees

- Represent Hierarchy. Native applications such as:
 - Phylogenies
 - Family trees
 - File Structure
 - Government
 - ??

Trees and Graphs – non native

- Abstract structures
 - Similarities
 - Correlations
 - Precedence
 - Transformation
 - Etc.

6

Types of data and SciVis

- · Scientific Visualization vs. Infovis
- Ex:
 - SciVis
 - · Mesh with scalar and vector data in each point
 - InfoVis
 - Attribute tables and similarity matrices

Parenthesis: SciVis in contrast with InfoVis

8

Parenthesis: SciVis in contrast with InfoVis

- SciVis: physical phenomena.
- Measurements and simulations
 - Applications: engineering, medicine, physics and other sciences.
- Data types: scalar, vector, tensor

Data Types in Infovis

- May be more than numbers.
- They can be:
 - Nominal, ordinal, binary, discrete, continuous, and so on
 - · Time varying and streaming

10

Types of Attributes in InfoVis

Tipo de Dados	Domínio do Atributo	Operações	Exemplos
Nominal	Conjunto	Comparação	Texto, referências, elementos
	não	(=,≠)	sintáticos, qualificadores
	ordenado		
Ordinal	Conjunto	Ordenação	Pontuação (ex. bom, médio,
	ordenado	(>,<.≥,≤)	ruim)
Discreto	Conj.	Aritmética	Contagem (ex. número de
	Inteiros e	inteira	filhos, número de linhas de
	Naturais		código, etc)
Contínuo	Conj Real	Aritmética real	Taxas e medidas (ex. distância,
			similaridade, altura)
Relacionais	"tuplas" dos	Agrupamentos,	Ex. (co-autores, colegas, sócios,
	nominais	coleções	etc)

Types of Attributes in InfoVis

- Qualitative or quantitative?
 - Nominal and Ordinal qualitative
 - Discrete and continuous quantitative
 - Categorical may be nominal, ordinal, and discrete.

12

Differences between types of Data in Infovis and SciVis

	Scivis	Infovis
Data domain	spatial $\subset \mathbb{R}^n$	abstract, non-spatial
Attribute types	numeric $\subset \mathbb{R}^m$	any data types
Data points	samples of attributes over domain	tuples of attributes without spatial location
Cells	support interpolation	describe relations
Interpolation	piecewise continuous	can be inexistent

Table visualization

- Each column describes typically a separate atribute.
- Each table cell can have any of the previously mentioned data types.

Tree Visualization

- Árvores são um tipo particular de dados relacionais
- Uma árvore possui um conjunto de nós e arestas
 - · Toda aresta liga um par de nós
- Na prática, um par de nós são ligados com base em uma semântica específica

16

Tree Visualization: ball-and-stick

- Ball-and-stick visualization also known as node-and-link visualization
- It maps:
 - Nodes as glyphs
 - Edges as lines and shapes
- Much screen space is necessary

Treemaps

- Presenting tree using all available pixel space
- Main approach
 - Sub-trees are rectangles
 - Rectangles are subdivided to contain further sub-trees.
 - Direction of subdivision is ortogonal to previous level

Treemaps: stock Market evolution in a year

- Rectangle
 - Firm
- Size
 - Capitalization in the market
- Color
 - Price fluctuation in the period
- Glyph 'N' indicates companies with interesting News in the financial Market.

Example: Code

- Visualization of C code with Seesoft
- Colors: age
 - Red recently modified
 - Blue code not changed for a log time.
- · Small Windows with details
 - Actual source code

Graph Layouts

- Node link
 - Force-based
 - Ring
 - Spectral or Connectivity based
 - Arcs linear

References

- Alexandru C. Telea. Data visualization: principles and practice. A K Peters. Ltd. Capítulo 11.
- MARTINS, R.; ANDERY, G. F.; HEBERLE, H.; PAULOVICH, F. V.; LOPES, A. A.; PEDRINI, H.; MINGHIM, R. Multidimensional Projections for Visual Analysis of Social Networks Journal of Computer Science and Technology (2012)