Polinomios

Definción: Se llama polinomio en x con coeficientes en K a la expresión

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n$$

donde $n \in \mathbb{N} \cup \{0\}$ $a_i \in K$ y K puede ser \mathbb{Q} , \mathbb{R} ó \mathbb{C} .

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n$$
 término independiente coeficiente principal

- a_i , $0 \le i \le n$ son los **coeficientes** de P(x).
- So $a_n = 1$ el polinomio se dice **mónico**.
- Si $a_i = 0$, para todo $1 \le i \le n$ el polinomio se llama **nulo**.

Obs: No está definido el grado del polinomio nulo.

K[x]: conjunto de **TODOS** los polinomios con coeficientes en K.

$$\mathbb{Z}[x] \subseteq \mathbb{Q}[x] \subseteq \mathbb{R}[x] \subseteq \mathbb{C}[x]$$

Ej:
$$P(x) = -x^3 + 3x^8 - 5x + 4 = 3x^8 + 0x^7 + 0x^6 + 0x^5 + 0x^4 - x^3 + 0x^2 - 5x + 4$$

• gr(P(x) = 8

completo y ordenado en forma decreciente

- Coeficiente principal: 3
- Término independiente: 4

Definción: Dados dos polinomios $P(x) = a_0 + a_1 x + \ldots + a_n x^n$ y $Q(x) = b_0 + b_1 x + \ldots + b_n x^n$ diremos que

$$P(x) = Q(x) \Leftrightarrow a_i = b_i$$
, para todo $i = 1, \dots n$.

OPERACIONES ENTRE POLINOMIOS:

1) Suma: Se suman los coeficientes de los monomios de igual grado.

Ej: Si
$$P(x) = x^4 - 3x^3 + x + 2$$
 y $Q(x) = -x^3 + 5x^2 + 3$ entonces:

$$P(x) + Q(x) = (1 + 0)x^{4} + (-3 + (-1))x^{3} + (0 + 5)x^{2} + (1 + 0)x + (2 + 3)$$
$$= x^{4} - 4x^{3} + 5x^{2} + x + 5$$

2) **Producto:** Se aplica la propiedad distributiva y posteriormente se suman los monomios de igual grado.

Ej: Si $P(x) = x^4 - 3x$ y $Q(x) = -x^3 + 5$ entonces:

$$P(x)Q(x) = (x^4 - 3x)(-x^3 + 5) = -x^7 + 5x^4 + 3x^4 - 15x = -x^7 + 8x^4 - 15x$$

Obs:
$$gr(P(x)Q(x)) = gr(P(x)) + gr(Q(x))$$

3) División entera:

Teorema: Dados dos polinomios A(x), $B(x) \in K[x]$, $B(x) \neq 0$, existen dos polinomios Q(x) y $R(x) \in K[x]$, llamados cociente y resto respectivamente de dividir A(x) por B(x), unívocamente determinados tales que

$$A(x) = Q(x)B(x) + R(x), \quad \text{con } R(x) = 0 \text{ ó } gr(R(x)) < gr(B(x)).$$

REGLA DE RUFFINI: Se utiliza para dividir un polinomio por otro de la forma (x-a). Se trabaja con los coeficientes del polinomio exclusivamente y éste debe estar completo y ordenado en forma decreciente.

$$Q(x) = x^2 + 2x + 2$$
 cociente $R(x) = 5$ resto

$$A(x) = (x^2 + 2x + 2)(x - 2) + 5$$

Obs: Si el resto de una división de A(x) por B(x) es 0 el polinomio A(x) se puede factorizar.

Definción: Diremos que el polinomio B(x) divide al polinomio A(x) si y sólo si A(x) = Q(x)B(x).

Ej:
$$x-2$$
 divide a x^2-4 pues $x^2-4=(x-2)(x+2)$.

Definción: Se llama **valor numérico** de un polinomio a número que resulta de reemplazar la variable por un número cualquiera dado y efectuar las operaciones.

Ej: Si
$$A(x) = x^3 - 2x + 1$$
 entonces
$$A(2) = 2^3 - 2.2 + 1 = 5$$
 coincide con resto de dividir $A(x)$ por $x - 2$.

Teorema del resto: El resto de una división de un polinomio P(x) por otro de la forma (x-c) es igual al valor numérico que dicho polinomio toma para x=c, o sea al valor P(c).

Obs: B(x) divide a $A(x) \Leftrightarrow A(x) = Q(x)B(x)$ \Leftrightarrow el resto de la división de A(x) por B(x) es 0.

RAÍCES DE UN POLINOMIO:

Definición: Dado $P(x) = a_n x^n + \ldots + a_1 x + a_0 \in K[x]$, un elemento $c \in K$ se dice **raíz** de P(x) si P(c) = 0.

Ejemplos:

- Si $P(x) = x^2 2x + 1$
 - entonces c = 1 es raíz de P(x) pues $P(1) = 1^2 2.1 + 1 = 0$.
- Si $Q(x) = x^4 16$ entonces $c_1 = 2$, $c_2 = -2$, $c_3 = 2i$ y $c_4 = -2i$ son raíces de P(x).
- Si $R(x) = x^2 + 1$ entonces P(x) no tiene raíces reales pero sí complejas: $i \ y i$.
- Si M(x) = (x-1)(x-2)(x+4)entonces $c_1 = 1$, $c_2 = 2$ y $c_3 = -4$ son sus raíces.

Corolario del teorema del resto:

Un elemento $c \in K$ es raíz de un polinomio $P(x) \in K[x]$ si y sólo si P(x) es divisible por (x - c).

Dem: c es raíz de $P(x) \Leftrightarrow P(c) = 0$ \Leftrightarrow el resto de la división de P(x) por x - c es 0 $\Leftrightarrow P(x) = (x - c)Q(x)$ $\Leftrightarrow P(x)$ es divisible por x - c.

Ej: 2 es raíz de
$$P(x) = x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$$

Def: Si c es una raíz de un polinomio P(x), se llama **orden de multiplicidad** de la raíz c al mayor número natural k tal que P(x) es divisible por $(x-c)^k$ y no lo es por $(x-c)^{k+1}$.

Es decir, $P(x) = (x - c)^k Q(x)$ donde Q(x) no es divisible por x - c.

Teorema fundamental del algebra: Todo polinomio de grado n > 0 con coeficientes en $\mathbb C$ tiene exactamente n raíces en $\mathbb C$.

Teorema: Sea P(x) un polinomio con coeficiente reales, es decir, $P(x) \in \mathbb{R}[x]$, y z una raíz compleja de P(x) entonces \overline{z} también es raíz de P(x) y z y \overline{z} tienen el mismo orden de multiplicidad.

Obs: El polinomio $P(x) = (x - z)(x - \overline{z}), z \in \mathbb{C}$ tiene coeficientes reales.

CÁLCULO DE RAÍCES DE UN POLINOMIO:

n raíces de P(x)

$$P(x) = a_n x^n + \ldots + a_1 x + a_0 = a_n (x - c_1)(x - c_2) \ldots (x - c_n)$$

$$c$$
 es raíz de $P(x) \Leftrightarrow P(c) = 0$

• Caso n=1: Despejamos.

Ej: Si
$$P(x) = 2x + 5 = 2(x - (-\frac{5}{2}))$$

$$2x + 5 = 0 \Leftrightarrow x = -\frac{5}{2}$$

• Caso n=2: Aplicamos la fórmula de Baskara.

$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$

Ej: Si
$$P(x) = x^2 - 3x - 4$$

 $x^2 - 3x - 4 = 0$

$$x_1 = 4$$

$$x_2 = -1$$

$$P(x) = (x-4)(x+1)$$

 \bullet Caso especial: Bicuadrática. Se realiza una sustitución y se reduce al caso n=2.

Ej: Si
$$P(x) = x^4 - 3x^2 - 4$$

$$x^{4} - 3x^{2} - 4 = 0 \Leftrightarrow t^{2} - 3t - 4 = 0$$

Luego,
$$x^{2} = 4$$

$$x^{2} = 4$$

$$x^{2} = -2$$

$$x^{3} = i$$

$$x^{2} = -1$$

$$x^{4} = -i$$

$$P(x) = (x-2)(x+2)(x-i)(x+i)$$

MÉTODO PARA CALCULAR RAÍCES RACIONALES:

Teorema de Gauss: Si un número racional $\frac{p}{q}$ con mcd(p,q) = 1 es raíz de un polinomio $P(x) = a_0 + a_1x + \ldots + a_nx^n$ con coeficientes enteros entonces p divide a a_0 y q divide a a_n .

Obs: P(x) y kP(x) tiene las mismas raíces. $(k \neq 0)$

Corolario: Si $a_n = 1$ entonces las raíces racionales de P(x) sólo pueden ser enteras y se encuentran entre los divisores de a_0 .

Ej: Si
$$P(x) = x^{543} + x + 1$$
 \Rightarrow $P(x)$ no tiene raíces racionales.

Posible raíces racionales: $\frac{p}{q} = \pm 1$

Como
$$P(1) = 3 \neq 0$$
 y $P(-1) = -1 \neq 0$