Solution to DES using Laplace Transforms

Aditya Tripathy Dept. of Electrical Engg., IIT Hyderabad. January 8, 2025

Outline

Table Of Contents

Problem

Solution

Discretizing

Theoretical Solution

Theoretical Solution

Theoretical Solution

Graph

Problem

Problem Statement

Plot the solution to $y' + 2y = \sin x$

Solution

Euler's Method

To plot a curve in the solution family, we take the initial condition to be

$$x_0 = 0, y_0 = 1$$

Using Euler's Method, we represent the the differential equation in the following difference equations:

$$x_{n+1} = x_n + h (3.1)$$

$$y_{n+1} - y_n + 2hy_n = h\sin x_n (3.2)$$

$$\to y_{n+1} = (1 - 2h) y_n + h \sin x_n \tag{3.3}$$

Now we can iteratively generate points which lie close to the graph.

Let
$$\mathcal{L}(y) = Y$$

$$(sY - y_0) + 2Y = \mathcal{L}(\sin x) \tag{3.4}$$

$$\mathcal{L}(\sin x) = \int_0^\infty e^{-sx} \sin x = \frac{1}{s^2 + 1}$$
 (3.5)

$$(s+2) Y = y_0 + \frac{1}{s^2 + 1}$$
 (3.6)

$$Y = \frac{y_0}{s+2} + \frac{1}{(s^2+1)(s+2)}$$
 (3.7)

(3.8)

Using method of partial fractions,

$$\frac{1}{(s^2+1)s+2} = \frac{a}{s+2} + \frac{bs+c}{s^2+1}$$
 (3.9)

On solving we get,

$$a = \frac{1}{5}$$

$$b = \frac{-1}{5}$$

$$c = \frac{2}{5}$$
(3.11)
(3.12)

$$b = \frac{-1}{5} \tag{3.12}$$

$$z = \frac{2}{5} \tag{3.13}$$

(3.14)

Substituting $y_0 = 1$,

$$Y = \frac{1}{s+2} + \frac{0.2}{s+2} + \frac{-0.2s}{s^2+1} + \frac{0.4}{s^2+1}$$
 (3.15)

$$Y = \frac{1.2}{s+2} + \frac{-0.2s}{s^2+1} + \frac{0.4}{s^2+1}$$
 (3.16)

Now, we take the inverse laplace transform to get a solution,

$$\mathcal{L}^{-1}\left(\frac{1}{s+2}\right) = e^{-2x}u(x) \tag{3.18}$$

$$\mathcal{L}^{-1}\left(\frac{1}{s^2+1}\right) = \sin xu\left(x\right) \tag{3.19}$$

$$\mathcal{L}^{-1}\left(\frac{s}{s^2+1}\right) = \cos xu\left(x\right) \tag{3.20}$$

Therefore the final solution to the differential equation is,

$$y(x) = (1.2e^{-2x} - 0.2\cos x + 0.4\sin x) u(x)$$
 (3.21)

Graph

Figure 1: equilateral triangle of side 5cm