	Laboratório 8 - Redes VLSM para Cisco Packet Tracer					
Univer	Universidade Federal do Pará					
Curso	Curso Ciência da Computação Disciplina Laboratório de Redes de Computadores					
Data	08/01/2021 Equipe					
Integrantes						

Sumário

Objetivo	1
Sub-redes de tamanho fixo	
<u>VLSM</u>	2
Atividades	3

Objetivo

Neste laboratório iremos implementar o conceito de VLSM, no qual fragmentaremos uma rede em sub-redes menores no intuito de conseguir maior economia de IPs com a criação de redes que possuem tamanho variável.

Sub-redes de tamanho fixo

Um IP classe C é aquele que inicia com os bits "110". O quadro abaixo ilustra um panorama das 2²¹ possíveis redes classe C, detalhando a faixa de IP de cada rede (do endereço de rede ao de broadcast) e máscara padrão, ambos no formato binário e decimal. Em azul, os 24 bits destinados à identificação de rede (os três primeiros bits em negrito são fixos da classe); em vermelho, os 8 bits destinados a identificação de *host* (incluindo o da rede e o de *broadcast*).

	Redes Classe C com Máscara Padrão de tamanho Fixo						
Rede	Atributo	Notação Decinal					
		<u>110</u> 00000.00000000.00000000.00000000	192.0.0.0				
	Faixa	Até	Até				
Rede 0		<u>110</u> 00000.00000000.00000000.11111111	192.0.0.255				
	Máscara	11111111. 11111111. 11111111.00000000	255.255.255.0 ou /24 (24				
	iviascara	11111111. 11111111. 11111111	bits 1s)				
		<u>110</u> 00000.00000000.00000001.00000000	192.0.1.0				
Dodo 1	Faixa	Até	Até				
Rede 1		<u>110</u> 00000.000000000.00000001.11111111	192.0.1.255				
	Máscara	11111111. 11111111. 11111111.00000000	255.255.255.0 ou /24				
		<u>110</u> 00000.000000000.00000010.00000000	192.0.2.0				
Rede 2	Faixa	Até	Até				
Reue 2		<u>110</u> 00000.000000000.00000010. 11111111	192.0.2.255				
	Máscara 11111111. 11111111. 11111111. 000000000		255.255.255.0 ou /24				
		<u>110</u> 11111.111111111.11111111.00000000	223.255.255.0				
Rede	Faixa	Até	Até				
2 ²¹ -1		<u>110</u> 11111.111111111.111111111.1111111111	223.255.255.255				
	Máscara 111111111. 111111111. 11111111. 00000000		255.255.255.0 ou /24				

Qualquer uma das 2²¹ redes, alocará **2⁸-2** IPs para atender *hosts*. Alterando a máscara padrão podemos indicar a utilização de mais bits para representar redes, "emprestando" os bits para representar *hosts*, quebrando assim a rede em sub-redes menores, o que segmentaria o domínio de *broadcast* e aumentaria o desempenho da rede. A quantidade de sub-redes criadas equivale a quantidade de possibilidades que os bits emprestados podem gerar. Exemplo:

Rede 0: 192.0.2.0/24 (256 IP possíveis)				
11000000.000000000000010.00000000 (192.0.2.0) até	11000000.00000000.00000010.00000000 (192.0.2.0) até 11000000.00000000.0000010.11111111 (192.0.2.255)			
Sub-rede 1: 192.0.2.0/25 (128 IP possíveis)	Sub-rede 2: 192.0.2.128/25 (128 IP possíveis)			
11000000.00000000000010.0000000 (192.0.2.0) 11000000.0000000.0000010.10000000 (192.0.2.1)				
Até Até				
110 00000.00000000.00000010 <u>.0</u> 1111111 (192.0.2.127) 110 00000.0000000.00000010 <u>.1</u> 1111111 (192.0.2.255)				

A rede foi dividida em duas, por emprestar 1 bit (primeiro do último octeto). Mas podemos continuar subdividindo. Ao emprestarmos mais um bit, dividimos cada sub-rede em duas sub-redes ainda menores. Para ilustrar, tomemos a Sub-rede 2. Veja:

Sub-Rede 2: 192.0.2.128/25 (25 bits 1s, sobrando 7 bits 0s com 128 IP possíveis)				
11000000,000000000,00000010,10000000 (192.0.2.128) at	té <u>11000000.000000000.00000010.1</u> 1111111 (192.0.2.255)			
Sub-rede 1: 192.0.2.128/26 (64 IP possíveis)	Sub-rede 2: 192.0.2.192/26 (64 IP possíveis)			
110 00000.000000000.00000010. <u>10</u> 000000 (192.0.2.128)	110 00000.00000000.00000010. <u>11</u> 000000 (192.0.2.192)			
Até Até				
110 00000.000000000.00000010. <u>10</u> 111111 (192.0.2.191)	110 00000.000000000.00000010. <u>11</u> 111111 (192.0.2.255)			

A figura ao lado mostra uma parte da árvore de divisões que fizemos. Note que a máscara muda à medida que divisões são feitas. A quantidade de sub-redes criadas equivale 2^b, onde *b* é a quantidade de bits emprestados. Note também que quanto mais bits emprestados, maior a quantidade de sub-redes e menor é a quantidade de IPs válidos em cada uma dessas sub-redes para fazer o endereçamento dos hosts.

- 1. A partir da rede <u>172.16.32.0/16</u> preencha a Tabela 1 para esquematizar sua divisão em 8 sub-redes (onde 06 sub-redes são válidas) e construa uma topologia para representar este esquema.
- 2. Use dois roteadores *Generic Router-PT-Empty*: um com 2 e outro com 3 sub-redes; a sexta sub-rede servirá para a rede do *link Serial ponto-a-ponto*.

- 3. Configure o roteamento estático para que haja plena comunicação na topologia.
- 4. Responda as atividades de A01 até A06.

VLSM

O grande problema da divisão de sub-redes vista, reside no fato de que necessariamente, todas as sub-redes criadas terão o mesmo tamanho. O que pode gerar desperdício em IP por conta do mal dimensionamento, afinal nem todas as sub-redes necessariamente terão a mesma quantidade de clientes. Para solucionar isso, utilizamos o conceito de VLSM (Variable Length Subnet Masks), que consiste basicamente em usar máscaras de tamanho variado, conforme a necessidade.

Por exemplo, se precisamos dividir nossa rede em 3 sub-redes denominadas **A, B e C**. Onde A tem 13, B tem 6 e C tem 2 hosts, para que não haja desperdício, utilizaríamos uma máscara para cada um, tal que a quantidade IPs possíveis fosse a menor potência de 2, igual superior a quantidade de hosts + 2 (endereço de rede e broadcast). No caso: /28, /29 e /30; respectivamente (clique aqui para ver uma descrição mais detalhada, reproduzido no final deste arquivo).

Para construir esquemas VLSM, comece sempre pela rede com maior quantidade de IPs necessários. O endereço de rede da próxima Sub-rede é o IP imediatamente posterior ao endereço de broadcast na rede anterior, tal qual no esquema de divisão anterior.

- 5. Dada a rede 200.16.34.0/24 monte um esquema de VLSM na Tabela 1 para que atenda o cenário da Figura 1 de tal forma que haja o menor desperdício de IPs possíveis.
- 6. Monte a topologia e configure o roteamento estático para que haja conectividade.
- 7. Verifique as tabelas de roteamento e responda as atividades de **A07 até A09**.

	Tabela 1 – Sub-redes de Tamanho Fixo						
Rede	Máscara	End. de Rede	End.de Broadcast	Gateway	Qtd. IPs		
			_				

	Tabela 2 – Sub-redes de Tamanho Variável							
Rede	de Máscara End. de Rede End.de Broadcast Gateway Qtd. IPs							

Atividades

- 01 Quantos bit foram emprestados para montar o esquema da Tabela 1?
- 02 Em uma rede classe B com máscara 255.255.224.0, quantas sub-redes existem?
- 03 Qual seria o endereço de rede da segunda sub-rede do exemplo dado?
- 04 Qual a soma da quantidade de IPs válidos em todas as 4 sub-redes do exemplo dado.
- 05 Qual o endereço de rede da sub-rede que contém o IP 192.0.2.126?
- 06 A tabela de roteamento no Packet Tracer reconhece a rede que deu origem às sub-redes?
- 07 Qual o máximo de bits poderíamos emprestar para realizar a divisão em sub-redes?
- 08 Quantas máquinas a mais poderíamos conectar em cada uma das sub-redes criadas?
- 09 Quantos IPs seriam desperdiçados se você tivesse adotado uma divisão por máscara fixa?

Classes, subredes e máscaras

Classe A – Padrão 255.0.0.0 com perfixo /8					
Bits emprestados	Máscara	Prefixo	Subredes (2 ⁿ)	Hosts (2 ⁿ -2)	
1	255.128.0.0	/9	2	8388606	
2	255.192.0.0	/10	4	4194302	
3	255.224.0.0	/11	8	2097150	
4	255.240.0.0	/12	16	1048574	
5	255.248.0.0	/13	32	524286	
6	255.252.0.0	/14	64	262142	
7	255.254.0.0	/15	128	131070	
8	255.255.0.0	/16	256	65534	
9	255.255.128.0	/17	512	32766	
10	255.255.192.0	/18	1024	16382	
11	255.255.224.0	/19	2048	8190	
12	255.255.240.0	/20	4096	4094	
13	255.255.248.0	/21	8192	2046	
14	255.255.252.0	/22	16384	1022	
15	255.255.254.0	/23	32768	510	
16	255.255.255.0	/24	65536	254	
17	255.255.255.128	/25	131072	126	
18	255.255.255.192	/26	262144	62	
19	255.255.255.224	/27	524288	30	
20	255.255.255.240	/28	1048576	14	
21	255.255.255.248	/29	2097152	6	
22	255.255.255.252	/30	4194304	2	
23	255.255.254	/31	8388608	2 (*)	

Classe B – Padrão 255.255.0.0 com perfixo /16					
Bits emprestados	Máscara	Prefixo	Subredes (2 ⁿ)	Hosts (2 ⁿ -2)	
1	255.255.128.0	/17	2	32766	
2	255.255.192.0	/18	4	16382	
3	255.255.224.0	/19	8	8190	
4	255.255.240.0	/20	16	4094	
5	255.255.248.0	/21	32	2046	
6	255.255.252.0	/22	64	1022	
7	255.255.254.0	/23	128	510	
8	255.255.255.0	/24	256	254	
9	255.255.255.128	/25	512	126	
10	255.255.255.192	/26	1024	62	
11	255.255.255.224	/27	2048	30	
12	255.255.255.240	/28	4096	14	
13	255.255.255.248	/29	8192	6	
14	255.255.255.252	/30	16384	2	
15	255.255.255.254	/31	32768	2 (*)	

Classe C – Padrão 255.255.255.0 com perfixo /24						
Bits emprestados	Máscara	Prefixo	Subredes (2 ⁿ)	Hosts (2 ⁿ -2)		
1	255.255.255.128	/25	2	126		
2	255.255.255.192	/26	4	62		
3	255.255.255.224	/27	8	30		
4	255.255.255.240	/28	16	14		
5	255.255.255.248	/29	32	6		
6	255.255.255.252	/30	64	2		
7	255.255.255.254	/31	128	2 (*)		

Cuidado apenas com a rede com um "*" que são as /31 (255.255.254), pois o número de subredes é calculado com a fórmula de 2^n (n=bits 1), mas os *hosts* são 2, o que pela fórmula de *hosts* daria zero (2^n -2 / com n=bits zero da máscara).

Isso é uma exceção que foi definida na RFC 3021, portanto para utilizar essas máscaras na prática é preciso ver se o roteador ou switch L3 suporta esse padrão.