INTRODUCTION TO CATEGORY THEORY

CARDONA, ROBERT MRROBERTCARDONA@GMAIL, KHOSHBIN, MASSY MASSY255@GMAIL.COM, AND MORTEZAVI. SIAVASH SIAVASH.MORTEZAVI@GMAIL.COM

Abstract. Module Theory.

1. MATH 697 Homework One

Exercise 1.1. Prove Theorem 4 (Isomorphism Theorems):

(1) (The First Isomorphism Theorem for Modules) Let M,N be R-modules and let $\varphi:M\to N$ be an R-modules homomorphism. Then $\ker\varphi$ is a submodule of M and $M/\ker\varphi\cong\varphi(M)$.

Proof. Let M,N be R-modules and let $\varphi:M\to N$ be an R-modules homomorphism. Then by definition $\varphi(x+y)=\varphi(x)+\varphi(y)$ and $\varphi(rx)=r\varphi(x)$ for all $x,y\in M,\,r\in R$. We want to show that $\ker\varphi=\{m\in M:\varphi(m)=0\}$ is a submodule. Observe that since M is a module then M is an abelian group by definition so there exists $0\in M$ such that m+0=m for all $m\in M$. In particular $\varphi(0)=\varphi(0+0)=\varphi(0)+\varphi(0)$ implying $\varphi(0)=0$. Conclude that $0\in\ker\varphi\neq\emptyset$. Now let $r\in R,\,x,y\in\ker\varphi$. Observe that $\varphi(x+ry)=\varphi(x)+\varphi(ry)=\varphi(x)+r\varphi(y)=0+r\cdot 0=0+0=0$. Hence $x+ry\in\ker\varphi$. Conclude by the submodule criterion that $\ker\varphi$ is in fact a submodule.

Now define $\Phi: M/\ker \varphi \to \varphi(M)$ by $\Phi(m + \ker \varphi) = \varphi(m)$. We want to show that this mapping is a well-defined bijective homomorphism. We first show well-definedness. Suppose $m + \ker \varphi = m' + \ker \varphi$ it follows by property of cosets that $m - m' \in \ker \varphi$, in particular $\varphi(m - m') = \varphi(m) - \varphi(m') = 0$ and hence $\varphi(m) = \varphi(m')$. But since $\varphi(m) = \Phi(m + \ker \varphi)$ and $\varphi(m') = \Phi(m' + \ker \varphi)$ we have $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$. Conclude that Φ is in fact well-defined.

Suppose that $\Phi(m + \ker \varphi) = \Phi(m' + \ker \varphi)$. Then it follows that $\varphi(m) = \varphi(m')$ and so $\varphi(m - m') = 0$ and so $m - m' \in \ker \varphi$. By property of cosets it follows that $m + \ker \varphi = m' + \ker \varphi$ and hence Φ is injective.

Let $n \in \varphi(M)$. Then by definition of image of φ there exists $m \in M$ such that $n = \varphi(m)$. It is immediate that $m + \ker \varphi \in M/\ker \varphi$ and we can conclude that Φ is surjective.

Now we must show that Φ is an R-module homomorphism. Let $x,y\in M/\ker\varphi$ where $x=m+\ker\varphi$ and $y=m'+\ker\varphi$ for some $m,m'\in M$ and let $r\in R$. Observe that

$$\begin{split} \Phi(x+y) &= \Phi(m+m'+\ker\varphi) \\ &= \varphi(m+m') \\ &= \varphi(m) + \varphi(m') \\ &= \Phi(m+\ker\varphi) + \Phi(m'+\ker\varphi) \\ &= \Phi(x) + \Phi(y) \end{split}$$

and

$$\Phi(rx) = \Phi(r(m + \ker \varphi))$$

$$= \Phi(rm + \ker \varphi)$$

$$= \varphi(rm)$$

$$= r\varphi(m)$$

$$= r\Phi(m + \ker \varphi)$$

$$= r\Phi(x)$$

Hence we have shown that Φ is a well-defined bijective homomorphism and thus we can conclude by definition of R-module isomorphism that $M/\ker\varphi\cong\varphi(M)$.

- (2) (The Second Isomorphism Theorem) Let A, B be submodules of the R-module M. Then $(A+B)/B \cong A/(A \cap B)$.
- (3) (The Third Isomorphism Theorem) Let M be an R-module, and let A and B be submodules of M with $A \subseteq B$. Then $(M/A)/(B/A) \cong M/B$.

Date: June 8, 2013.

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the R-module M. There is a bijection between the submodules of M which contain N and the submodules of M/N. The correspondence is given by $A \leftrightarrow A/N$, for all $A \supseteq N$. The correspondence cummutes with the processes of taking sums and intersections (i.e., is a lattice isomorphism between the lattice of submodules of M/N and the lattice of submodules of M which contain N).

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY LONG BEACH