Optimization Theory and Algorithms

A QCQP Problem (part 1)

(F2018)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $b, c \in \mathbb{R}^n$ for $n \geq 2$. Consider the following quadratic-constrained, quadratic program (QCQP):

$$\min_{x,y \in \mathbb{R}^n} \quad f(x,y) = \frac{1}{2} \left(x^T A x + y^T A y \right) - b^T x - c^T y \tag{1}$$

s.t.
$$h_i(x,y) = 0, i = 1,2,3$$
 (2)

where

$$h_1(x,y) = \frac{1}{2}(x^Tx - 1), \quad h_2(x,y) = \frac{1}{2}(y^Ty - 1), \quad h_3(x,y) = x^Ty.$$

Part 1: (100 points)

- 1. Prove that regularity (constrained qualification) holds at any feasible (x, y).
- 2. Derive the first-order necessary conditions for this QCQP.
- 3. Derive expressions for multipliers, $\lambda_1, \lambda_2, \lambda_3$, in terms of (A, b, c) and (x, y).
- 4. Let $V(x,y) = \{w \in \mathbb{R}^{2n} : \nabla h(x,y)^T w = 0\}$. We can write $w^T = (u^T,v^T)$. Prove that for any $(u,v) \in V(x,y)$,

$$\left(\begin{array}{c} x \\ y \end{array}\right) \perp \left(\begin{array}{c} u \\ v \end{array}\right) \perp \left(\begin{array}{c} y \\ x \end{array}\right).$$

5. (CIE only) Let (x, y) be a stationary point and λ be the associated multiplier vector. Prove that if A is positive semidefinite and $(b - c) \perp (x - y)$, then

$$\lambda_3 \ge \frac{\lambda_1 + \lambda_2}{2}.$$

Remarks:

- 1. Due on November 22, Thursday, 5pm, Dao Yuan 511.
- 2. Please typeset your answers and derivation.
- 3. Print clearly your name, student number and course number.