

Para los ejercicios 47–54, resuelva cada ecuación

47.
$$x^2 + 9x = 0$$

52.
$$3x = 11x^2$$

51. $-4x^2 + 9x = 0$

48.
$$x^2 - 14x = 0$$

$$0.2.0 - 0.11$$

49.
$$b^2 = -7b$$

53.
$$x - 6x^2 = 0$$

50. $-6x = 2x^2$

$$54. -5a = -a^2$$

Para los ejercicios 55–58, solucione cada ecuación para la variable indicada

55.
$$ax^2 + bx = 0 \text{ para } x$$

57.
$$y^2 - ay + 2by - 2ab = 0$$
 para y

56.
$$3ay^2 = by$$
 para y

58.
$$x^2 + ax + bx + ab = 0$$
 para x

Para los problemas ??-??, plantee la ecuación y solucione el problema

61. Encuentre la longitud del radio de un esfera cuya superficie es numéricamente igual a su volumen. (Recuerde que la superficie de la esfera es
$$S_s=4\pi r^2$$
 y su volumen es $V_s=\frac{4}{3}\pi r^3$)

Pensamiento en palabras

64. Suponga que un amigo, factoriza $36x^2y + 48xy^2$ como sigue:

$$36x^{2}y + 48xy^{2} = (4xy)(9x + 12y)$$
$$= (4xy)(3)(3x + 4y)$$
$$= 12xy(3x + 4y)$$

Es correcto el procedimiento? ¡Podría sugerir algo a su amigo?

Taller 07, Factorización Álgebra 8°

Algebra 8°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Fecha:	
Curso:	
Nombre:	

Guía

Factorizar es un proceso mediante el cual se puede expresar como un producto un número o un polinomio. Los números enteros se pueden clasificar en números primos y compuestos. Todos los números enteros compuestos, se pueden factorizar como producto de números primos o potencias de primos y ésta factorización es única.

Por ejemplo el número 35, es compuesto, ya que se puede factorizar así:

$$35 = 5 \cdot 7$$

donde 5 y 7 son números primos

También el número 48 se puede expresar como el producto de primos o potencias de primos así:

$$48 = 2^4 \cdot 3$$

Generalizando, se puede decir que la factorización es un proceso inverso a multiplicación. Anteriormente hemos usado la propiedad distributiva para encontrar el producto de un monomio y un polinomio, tal como se ve en la siguiente tabla:

Expresión	Aplicando P. distributiva	Producto
3(x+2)	3(x) + 3(2)	3x+6
5(2x-1)	5(2x) + 5(-1)	10x - 5
$x(x^2 + 6x - 4)$	$x(x^2) + x(6x) + x(-4)$	$x^3 + 6x^2 - 4x$

Ahora usaremos la propiedad recolectiva para reversar lo hecho por la propiedad distributiva. Así si tenemos

$$ab + ac = a(b + c)$$

Expresión	Expresión reescrita	Expresión factorizada
3x + 6	3(x) + 3(2)	3(x+2)
10x - 5	5(2x) + 5(-1)	5(2x-1)
$x^3 + 6x^2 - 4x$	$x(x^2) + x(6x) + 2(-4)$	$x(x^2 + 6x - 4)$

$$3x^2 + 12x = 3x(x+4)$$
 o $3x^2 + 12x = 3(x^2 + 4x)$
 $3x^2 + 12x = x(3x+12)$ o $3x^2 + 12x = \frac{1}{2}(6x^2 + 24x)$

factorizado si: polinomio de manera completa. Un polinomio con coeficientes enteros está completamente Nosotros estaremos interesados lógicamente en el primer caso, donde se ha factorizado el

- 1. Este está factorizado como el producto de polinomios con coeficientes enteros
- Ninguno de los factores polinomios puede ser factorizado nuevamente.

el factor 3x+12 posee un factor común que es 3. Así mismo en el segundo caso, el Observe que en el tercer caso, el polinomio puede ser factorizado nuevamente, porque binomio $(x^2 + 4x)$ puede ser factorizado, ya que x es factor común a los dos términos

Taller

Quiz de conceptos

Para los problemas 1–10, conteste V o F

- 1. La factorización es el proceso inverso a la multiplicación.
- La propiedad distributiva de la forma ab + ac = a(b + c) es aplicada para factorizar
- 3. Un polinomio puede ser factorizado de múltiples formas, pero solo una es la completa
- 4. El factor común mayor de $6x^2y^3-12x^3y^2+18x^4y$ es $2x^2y$
- 5. Si el producto de x y y es cero, entonces x es cero y/o y es cero
- El factor común siempre es un monomio
- 7. Si la factorización de un polinomio puede ser factorizada nuevamente, entonces el polinomio no está completamente factorizado
- El polinomio factorizado, $3a(2a^2+4)$, está completamente factorizado
- Las soluciones de la ecuación x(x+2) = 7 son 7 y 5
- 10. El conjunto solución para $x^2 = 7x$ es 7

Ejercicios

Para los ejercicios 1–10, clasifique cada número como primo o compuesto

2 81 63

ros primos. Por ejemplo, $30 = 2 \cdot 3 \cdot 5$ Para los problemas 11-20, factorice cada número compuesto como producto de núme-

12. 39 14. 49 16. 64 18. 84 20. 91

Para los problemas 21-24, determine si el polinomio está completamente factorizado

$$21. \ 6x^2 + 12xy^2 = 2xy(3x + 6y)$$

22.
$$2a^3b^2 + 4a^2b^2 = 4a^2b^2\left(\frac{1}{2}a + 1\right)$$

23.
$$10m^2n^3 + 15m^4n^2 = 5m^2n(2n^2 + 3m^2n)$$

24.
$$24ab + 12bc - 18bd = 6b(4a + 2c - 3d)$$

Para los ejercicios 25–37, factorice completamente

25.
$$12x + 8y$$
 32. $6x^5 - 18x^3 + 24x$

26.
$$15x^2 + 6x$$

27. $42y^2 - 6y$
28. $8x^5y^3 - 6x^4y^5 + 12x^2y^3$
39. $9x^2 - 17x^4 + 21x^5$
21. $42y^2 - 6y$
31. $8x^5y^3 - 6x^4y^5 + 12x^2y^3$

35.
$$x(y-1) + 5(y-1)$$

36. $5x(a-b) + y(a-b)$

Para los ejercicios 38–46, factorice por agrupación de términos

31. $15x^4y^2 - 45x^5y^4$

37. x(x-1)-3(x-1)

 $30. \ 24a^3b^2 + 36a^2b$ 29. $12x^3 - 10x^2$ 28. 27xy - 36y

38.
$$ax - 2x + ay - 2y$$
 43. $2bx + cy + cx + 2by$ 39. $2ax - bx + 2ay - by$ 44. $2a^2 - 3bc - 2ab + 3ac$

40.
$$5ax - 5bx - 2ay + 2by$$

41. $3bx + 3x + by + y$
45. $x^2 - 2x + 5x - 10$

42.
$$ax^2 - 2x^2 + 3a - 6$$
 46. $3x^2 + 18x - 2x - 12$