

CS182: Introduction to Machine Learning –Unsupervised Learning: Kmeans

Yujiao Shi SIST, ShanghaiTech Spring, 2025

Goal: Automatically partition unlabeled data into groups of similar data points.

Question: When and why would we want to do this?

Useful for:

- Automatically organizing data.
- Understanding hidden structure in data.
- Preprocessing for further analysis.
 - Representing high-dimensional data in a low-dimensional space (e.g., for visualization purposes).

Applications (Clustering comes up everywhere...)

• Cluster news articles or web pages or search results by topic.

• Cluster protein sequences by function or genes according to expression

profile.

• Cluster users of social networks by interest (community detection).

Facebook network

Cluster customers according to purchase history.

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

And many many more applications....

Question: Which of these partitions is "better"?

OPTIMIZATION BACKGROUND

Coordinate Descent

Goal: minimize some objective

$$\vec{\theta}^* = \underset{\vec{\theta}}{\operatorname{argmin}} J(\vec{\theta})$$

 Idea: iteratively pick one variable and minimize the objective w.r.t. just that one variable, keeping all the others fixed.

Block Coordinate Descent

Goal: minimize some objective (with 2 blocks)

$$\vec{\alpha}^*, \vec{\beta}^* = \underset{\vec{\alpha}, \vec{\beta}}{\operatorname{argmin}} J(\vec{\alpha}, \vec{\beta})$$

• Idea: iteratively pick one *block* of variables ($\vec{\alpha}$ or $\vec{\beta}$) and minimize the objective w.r.t. that block, keeping the other(s) fixed.

while not converged:

$$\vec{\alpha} = \underset{\vec{\alpha}}{\operatorname{argmin}} J(\vec{\alpha}, \vec{\beta})$$

$$\vec{\beta} = \underset{\vec{\beta}}{\operatorname{argmin}} J(\vec{\alpha}, \vec{\beta})$$

K-MEANS

Recipe for K-Means Derivation:

- 1) Define a Model.
- 2) Choose an objective function.
- 3) Optimize it!

上海科技大学 ShanghaiTech University

- Input: unlabeled data D = $\{\mathbf{x}^{(i)}\}_{i=1}^N$, $\mathbf{x}^{(i)} \in \mathbb{R}^M$
- Goal: Find an assignment of points to clusters
- Model Paramters:
 - \circ cluster centers: $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \; \mathbf{c}_j \in \mathbb{R}^M$
 - \circ cluster assignments: $\mathbf{z} = [\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(N)}], \ \mathbf{z}^{(i)} \in \{1, \dots, K\}$
- Decision Rule: assign each point $\mathbf{x}^{(i)}$ to its nearest cluster center \mathbf{c}_j

上海科技大学 ShanghaiTech University

- Input: unlabeled data D = $\{\mathbf{x}^{(i)}\}_{i=1}^N$, $\mathbf{x}^{(i)} \in \mathbb{R}^M$
- Goal: Find an assignment of points to clusters
- Model Paramters:
 - \circ cluster centers: $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \; \mathbf{c}_j \in \mathbb{R}^M$
 - \circ cluster assignments: $\mathbf{z} = [\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(N)}], \ \mathbf{z}^{(i)} \in \{1, \dots, K\}$
- Decision Rule: assign each point $\mathbf{x}^{(i)}$ to its nearest cluster center \mathbf{c}_j
- Objective:

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \min_{j} ||\mathbf{x}^{(i)} - \mathbf{c}_{j}||_{2}^{2}$$

Question: In English, what is this quantity?

Answer:

上海科技大学 ShanghaiTech University

- Input: unlabeled data D = $\{\mathbf{x}^{(i)}\}_{i=1}^N$, $\mathbf{x}^{(i)} \in \mathbb{R}^M$
- Goal: Find an assignment of points to clusters
- Model Paramters:
 - \circ cluster centers: $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \ \mathbf{c}_j \in \mathbb{R}^M$
 - \circ cluster assignments: $\mathbf{z} = [\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(N)}], \ \mathbf{z}^{(i)} \in \{1, \dots, K\}$
- Decision Rule: assign each point $\mathbf{x}^{(i)}$ to its nearest cluster center \mathbf{c}_j
- Objective:

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \min_{j} ||\mathbf{x}^{(i)} - \mathbf{c}_{j}||_{2}^{2}$$

$$= \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \min_{z^{(i)}} ||\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}||_{2}^{2}$$

上海科技大学 ShanghaiTech University

- Input: unlabeled data D = $\{\mathbf{x}^{(i)}\}_{i=1}^N$, $\mathbf{x}^{(i)} \in \mathbb{R}^M$
- Goal: Find an assignment of points to clusters
- Model Paramters:
 - \circ cluster centers: $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \ \mathbf{c}_j \in \mathbb{R}^M$
 - \circ cluster assignments: $\mathbf{z} = [\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(N)}], \ \mathbf{z}^{(i)} \in \{1, \dots, K\}$
- Decision Rule: assign each point $\mathbf{x}^{(i)}$ to its nearest cluster center \mathbf{c}_j
- Objective:

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \underset{j}{\min} ||\mathbf{x}^{(i)} - \mathbf{c}_{j}||_{2}^{2}$$

$$= \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \underset{z^{(i)}}{\min} ||\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}||_{2}^{2}$$

$$\hat{\mathbf{C}}, \hat{\mathbf{z}} = \underset{\mathbf{C}, \mathbf{z}}{\operatorname{argmin}} \sum_{i=1}^{N} ||\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}||_{2}^{2}$$

- Input: unlabeled data D = $\{\mathbf{x}^{(i)}\}_{i=1}^N$, $\mathbf{x}^{(i)} \in \mathbb{R}^M$
- Goal: Find an assignment of points to clusters
- Model Paramters:
 - \circ cluster centers: $\mathbf{C} = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \ \mathbf{c}_i \in \mathbb{R}^M$
 - \circ cluster assignments: $\mathbf{z} = [\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \dots, \mathbf{z}^{(N)}], \ \mathbf{z}^{(i)} \in \{1, \dots, K\}$
- Decision Rule: assign each point $\mathbf{x}^{(i)}$ to its nearest cluster center \mathbf{c}_j
- Objective:

$$\hat{\mathbf{C}} = \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \min_{j} ||\mathbf{x}^{(i)} - \mathbf{c}_{j}||_{2}^{2}$$

$$= \underset{\mathbf{C}}{\operatorname{argmin}} \sum_{i=1}^{N} \min_{z^{(i)}} ||\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}||_{2}^{2}$$

Now apply Block Coordinate Descent!

$$\begin{split} \hat{\mathbf{C}}, \hat{\mathbf{z}} &= \underset{\mathbf{C}, \mathbf{z}}{\operatorname{argmin}} \sum_{i=1}^{N} ||\mathbf{x}^{(i)} - \mathbf{c}_{z^{(i)}}||_{2}^{2} \\ &= \underset{\mathbf{C}, \mathbf{z}}{\operatorname{argmin}} J(\mathbf{C}, \mathbf{z}) \end{split}$$

1) Given unlabeled feature vectors

$$D = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}\$$

- 2) Initialize cluster centers $c = \{c_1, ..., c_K\}$
- 3) Repeat until convergence:
 - a) $z \leftarrow argmin_z J(C, z)$ (pick each cluster assignment to minimize distance)
 - b) C ← argmin_C J(C, z)
 (pick each cluster center to minimize distance)

This is an application of Block Coordinate Descent!
The only remaining step is to figure out what the argmins boil down to...

K-Means Algorithm

上海科技大学 ShanghaiTech University

- 1) Given unlabeled feature vectors $D = \{x^{(1)}, x^{(2)}, \dots, x^{(N)}\}$
- 2) Initialize cluster centers $c = \{c_1, ..., c_K\}$
- 3) Repeat until convergence:
 - a) for i in $\{1,..., N\}$ $z^{(i)} \leftarrow \underset{j}{\operatorname{argmin}_{j}} (|| \mathbf{x}^{(i)} - \mathbf{c}_{j} ||_{2})^{2}$
 - b) for j in $\{1,...,K\}$ $\mathbf{c}_{j} \leftarrow \underset{i:z^{(i)}=j}{\operatorname{argmin}} \sum_{i:z^{(i)}=j} (||\mathbf{x}^{(i)} \mathbf{c}_{j}||_{2})^{2}$

The minimization over cluster assignments decomposes, so that we can find each z⁽ⁱ⁾ independently of the others

Likewise, the minimization over cluster centers decomposes, so we can find each **c**_j independently

K-Means Algorithm

Given unlabeled feature vectors

$$D = \{ \mathbf{x}^{(1)}, \, \mathbf{x}^{(2)}, \dots, \, \mathbf{x}^{(N)} \}$$

- 2) Initialize cluster centers $c = \{c_1, ..., c_K\}$
- 3) Repeat until convergence:
 - a) for i in $\{1,..., N\}$ $z^{(i)} \leftarrow index j$ of cluster center nearest to $x^{(i)}$
 - b) for j in $\{1,...,K\}$ $\mathbf{c}_{j} \leftarrow \mathbf{mean} \text{ of all points assigned to cluster } j$

K=3 cluster centers

K-MEANS EXAMPLE

K=2 cluster centers

K-MEANS EXAMPLE

Example: K-Means

INITIALIZING K-MEANS

Initialization of K-Means

K-Means Algorithm

Given unlabeled feature vectors

$$D = \{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(N)}\}\$$

- Initialize cluster centers $c = \{c_1, ..., c_K\}$

Repeat until Remaining Question:

a) for i in {1,..., N} How should we initialize the cluster centers?

- $z^{(i)} \leftarrow inde$ b) for j in $\{1,...,K\}$ $c_j \leftarrow mea^T$ 1. Random centers (picked from the data points)
 - 2. Furthest point heuristic
 - K-Means++

Initialization for K-Means 上海科技大学 ShanghaiTech University

Algorithm #1: Random Initialization Select each cluster center uniformly at random from the data points in the training data

Observations:

- ... sometimes works great!
- ... sometimes get stuck in poor local optima.

上海科技大学 ShanghaiTech University

Algorithm #1: Random Initialization
Select each cluster center uniformly at random from the data points in the training data

Observations:

- ... sometimes works great!
- ... sometimes get stuck in poor local optima.

Initialization for K-Means 上海科技大学 ShanghaiTech University

Algorithm #1: Random Initialization Select each cluster center uniformly at random from the data points in the training data

Observations:

- ... sometimes works great!
- ... sometimes get stuck in poor local optima.

上海科技大学 ShanghaiTech University

Algorithm #1: Random Initialization
Select each cluster center uniformly at random from the data points in the training data

Observations:

- ... sometimes works great!
- ... sometimes get stuck in poor local optima.

Initialization for K-Means

K-Mean Performance (with Random Initialization)

If we do **random initialization**, as **k** increases, it becomes more likely we won't have perfectly picked one center per Gaussian in our initialization (so K-Means will output a bad solution).

- For k equal-sized Gaussians, $\Pr[\text{each initial center is in a different Gaussian}] \approx \frac{k!}{k^k} \approx \frac{1}{e^k}$
 - Becomes unlikely as k gets large.

Initialization for K-Means 上海科技大学 ShanghaiTech University

Algorithm #2: Furthest Point Heuristic

- 1. Pick the first cluster center **c**₁ randomly
- 2. Pick each subsequent center \mathbf{c}_i so that it is **as far as possible** from the previously chosen centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{i-1}$

Observations:

- Solves the problem with Gaussian data
- But outliers pose a new problem!

Example 1:

- No outliers
- Good performance

Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center \mathbf{c}_j so that it is **as far as possible** from the previously chosen centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{j-1}$

Observations:

- Solves the problem with Gaussian data
- But outliers pose a new problem!

Example 1:

- No outliers
- Good performance

Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center c_j so that it is **as far as possible** from the previously chosen centers $c_1, c_2, ..., c_{i-1}$

Observations:

- Solves the problem with Gaussian data
- But outliers pose a new problem!

Example 2:

- One outlier throws off the algorithm
- Poor performance

Algorithm #2: Furthest Point Heuristic

- Pick the first cluster center c₁
 randomly
- 2. Pick each subsequent center \mathbf{c}_j so that it is **as far as possible** from the previously chosen centers $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{j-1}$

Observations:

- Solves the problem with Gaussian data
- But outliers pose a new problem!

Example 2:

- One outlier throws off the algorithm
- Poor performance

Initialization for K-Means

Algorithm #3: K-Means++

• Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to $D^2(x)$.

Initialization for K-M

Algorithm #3: K-Means++

 Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to D²(x).

i	D(x)	D ² (x)	$P(c_2 = x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

 \mathbf{C}

- Choose c₁ at random.
- For j = 2, ..., K
 - Pick c_j among $x^{(1)}, x^{(2)}, ..., x^{(n)}$ according to the distribution

$$P(c_j = x^{(i)}) \propto \min_{j' < j} \left| \left| x^{(i)} - c_{j'} \right| \right|^2 D^2(x^i)$$

Theorem: K-Means++ always attains an O(log k) approximation to optimal K-Means solution in expectation.

Initialization for K-M

Algorithm #3: K-Means++

• Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to $D^2(x)$.

Example 1:	lack	
LABITIPIC II		

- One outlier
- Good performance

i	D(x)	D2(x)	$P(c_2 = x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

Initialization for K-M

Algorithm #3: K-Means++

Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to D²(x).

Exam	p	le	1:
	_		

- One outlier
- Good performance

i	D(x)	D ² (x)	$P(c_2 = x^{(i)})$
1	3	9	9/137
2	2	4	4/137
•••			
7	4	16	16/137
•••			
N	3	9	9/137
	Sum:	137	1.0

Algorithm #3: K-Means++

• Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to $D^2(x)$.

Observations:

- Interpolates between random and farthest point initialization
- Solves the problem with Gaussian data
- And solves the outlier problem

Example 1:

- One outlier
- Good performance

Q: In k-Means, since we don't have a validation set, how do we pick k?

A: Look at the training objective function as a function of k J(c, z) and pick the value at the "elbo" of the curve.

- Q: What if our random initialization for k-Means gives us poor performance?
- A: Do random restarts: that is, run k-means from scratch, say, 10 times and pick the run that gives the lowest training objective function value.

The objective function is **nonconvex**, so we're just looking for the best local minimum.

Learning Objectives

K-Means

You should be able to...

- Distinguish between coordinate descent and block coordinate descent
- Define an objective function that gives rise to a "good" clustering
- Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
- 4. Implement the K-Means algorithm
- 5. Connect the non-convexity of the K-Means objective function with the (possibly) poor performance of random initialization