Quantum Technology and Military Applications

September 2025

Contents

Ι	Founda	tions	1
1	1.2 Taxon	ritions Terms	3 3 3
2	2.1 Quant2.2 Quant2.3 Quant	Technology Overview tum Information Science	5 5 5 6
3	Recent M	lilestones in Quantum Computing	7
II	Applic	eations and Military	9
4	Application	ons of Quantum Computing	11
	4.0.1	Quantum Simulations	11
	4.0.2	Quantum Cryptoanalysis	11
	4.0.3	Quantum Searching & Walks	11
	4.0.4	Quantum Optimization	11
	4.0.5	Quantum Linear Algebra	11
	4.0.6	Quantum Machine Learning & AI	11
5	Military A	Applications	13
	5.0.1	Quantum Cybersecurity	13
	5.0.2	Quantum Computing	13
	5.0.3	Quantum Communication	13
	5.0.4	Quantum PNT	13
	5.0.5	Quantum ISTAR	13
	5.0.6	Quantum Electronic Warfare	13
	5.0.7	Quantum Radar & Lidar	13
	5.0.8	Quantum Underwater Warfare	13
	500	Quantum Space Warfare	1/1

iv CONTENTS

5.0.10 Chemical & Biological Simulations	14
6 Recent Advances by Application Area	15
7 Recent Developments in Quantum Defence Applications	17
III Strategy and Policy	19
8 Quantum Strategy Roadmap	21
9 TRL & Time Horizon	23
10 Summary of Recent Quantum Policy News	25
11 Recent Quantum Computing Policy Developments	27
12 Latest Government Policy on Post-Quantum Cryptography (PQC) 12.1 Recent PQC Policy Developments	29
IV Perspectives	31
13 Hype vs Reality	33
14 Ethical, Security, and Peace Implications	35
15 Conclusion	37
16 Key Observations	39
V Quantum, AI, and Security 16.1 Four Strategic Frontiers	43

Part I Foundations

Key Definitions

1.1 Core Terms

- Quantum Technology (QT): Uses quantum properties like entanglement, superposition, and tunneling for real-world applications.
- Dual-use technology: Serves both civilian and military purposes.
- Quantum Warfare (QW): Warfare enhanced by QT across all domains.
- Quantum Attack: Exploiting quantum tools to break or disrupt security.

1.2 Taxonomy of QT

- Quantum Computing & Simulation Digital & analog computers, simulators.
- Quantum Communication & Cryptography Quantum networks, QKD, post-quantum cryptography.
- Quantum Sensing & Metrology Magnetometers, gravimeters, clocks, radar, imaging.

1.3 Impact Categories

- Must Have: Essential for security (e.g., post-quantum cryptography).
- Effectiveness: Enhances current tools (e.g., quantum AI, optimization).
- **Precision:** Better measurement accuracy.
- New Capabilities: Enables things never before possible (e.g., quantum radar).

Quantum Technology Overview

Categories and foundational principles of quantum technology from the second quantum revolution.

2.1 Quantum Information Science

- Information science linked to quantum physics.
- Core concepts: qubits, quantum superposition, quantum entanglement, no-cloning theorem.
- Basis for quantum computing, communication, and sensing.

2.2 Quantum Computing

- Types: Digital QC, Analogue QC, Quantum Simulators.
- Evolutionary stages:
 - 1. Component QC (CQC)
 - 2. Noisy Intermediate-Scale QC (NISQ)
 - 3. Fault-Tolerant QC (FTQC)

2.3 Quantum Communication & Cryptography

- Quantum Networks
- Quantum Key Distribution (QKD)
- Post-Quantum Cryptography (PQC)
- Quantum Random Number Generators (QRNG)

2.4 Quantum Sensing & Metrology

- Most mature area: timing, sensing, imaging.
- Includes: quantum electric/magnetic/inertial sensors, quantum clocks, RF antennas, imaging systems, radar technology, other advanced sensors.

Recent Milestones in Quantum Computing

Date	Development	Details / Significance	Source
Sep 2025	Quantum Motion: first full-stack silicon CMOS quantum computer	Delivered to UK's National Quantum Computing Centre — a step toward scalable, manufacturable hardware.	Quantum Motion
Sep 2025	IonQ frequency conversion to telecom wavelengths	Converts photons from trapped-ion systems into telecom bands \rightarrow key for quantum internet over fiber.	IonQ
Jul 2025	Japan's first homegrown superconducting QC	Built entirely from domestic components at RIKEN — boosts national quantum sovereignty.	LiveScience
Jul 2025	Cryogenic amplifier breakthrough (TWPA)	Reduces amplifier heat emissions by factor of 10,000 — crucial for scaling cryogenic quantum systems.	LiveScience
Apr 2025	Fujitsu & RIKEN: 256- qubit superconducting QC	Quadruples scale of their 2023 machine; roadmap to 1,000 qubits by 2026.	SpinQuanta
Apr 2025	DARPA scaling initiative	15 companies engaged to scale multiple hardware platforms (superconducting, photonic, trapped ions, neutral atoms).	NextGov
Mar 2025	Pasqal + NVIDIA CUDA-Q integration	Enables hybrid quantum-classical workflows, integrating quantum systems with GPU toolchains.	Reuters
Feb 2025	Microsoft Majorana 1 topological chip	Introduces "topoconductor" material—aims for higher fault tolerance and scalability.	Microsoft

2025	D-Wave claims quantum supremacy (annealing)	Reported outperforming supercomputers in a materials simulation task with	
2025	IQM raises \$300M+ funding	quantum annealing. Expanding hardware R&D and partnerships with national labs.	IQM

Part II Applications and Military

Applications of Quantum Computing

Major application areas of quantum computing are covered in the following subsections.

4.0.1 Quantum Simulations

chemistry, materials science, drug discovery

4.0.2 Quantum Cryptoanalysis

breaking RSA, ECC, symmetric cryptography

4.0.3 Quantum Searching & Walks

faster searches in large datasets.

4.0.4 Quantum Optimization

logistics, traffic, financial modelling.

4.0.5 Quantum Linear Algebra

faster equation solving (HHL algorithm).

4.0.6 Quantum Machine Learning & AI

enhanced ML, neural networks, pattern recognition.

Military Applications

Applications of quantum technology to defence and security based on the paper [1]

5.0.1 Quantum Cybersecurity

Defence & attack capabilities.

5.0.2 Quantum Computing

Enhanced computational power for defence simulations.

5.0.3 Quantum Communication

Security & technical applications (QKD, networks).

5.0.4 Quantum PNT

Precision navigation & timing without GPS.

5.0.5 Quantum ISTAR

Earth's surface & underground surveillance, advanced imaging.

5.0.6 Quantum Electronic Warfare

Radar and lidar disruption.

5.0.7 Quantum Radar & Lidar

Stealth detection.

5.0.8 Quantum Underwater Warfare

Submarine detection with gravimeters/magnetometers.

5.0.9 Quantum Space Warfare

Secure satellite networks, timing systems.

5.0.10 Chemical & Biological Simulations

Detection and defence research.

5.0.11 New Materials Design

Improved armour, energy systems.

5.0.12 Brain Imaging & Human

Machine Interfaces – Potential long-term uses.

Recent Advances by Application Area

Application Area	Development	Details / Significance	Source
Quantum Simulations	Hybrid quantum + AI boosts molecular modeling	University of Michigan researchers combine quantum and AI for more accurate simulations.	Interesting Engineering
Quantum Simulations	Scalable chemistry simulation with error correction	Quantinuum demonstrates end-to-end chemistry workflow with QEC.	Quantinuum
Quantum Simula- tions	First-principles simulation of cavity-coupled molecules	Strong light-matter coupling modeled at quantum level.	Quantum Zeitgeist
Quantum Simulations	New approach to quantum chemistry equations	Improves accuracy of molecular simulations.	Phys.org
Quantum Machine Learning & AI	D-Wave quantum-AI developer tools	New toolkit integrates quantum systems into AI training.	D-Wave
Quantum Machine Learning & AI	QKAR chip design optimization	Australian team boosts semiconductor design efficiency by $\sim 20\%$.	Tom's Hard- ware
Quantum Machine Learning & AI	ML for quantum circuit optimization	AlphaTensor- Quantum reduces gate overhead and improves efficiency.	QuSoft
Quantum Optimisation	Quantum ML in finance / portfolio optimization	Emerging QML techniques applied to smart investing and portfolio optimization.	Finextra

Recent Developments in Quantum Defence Applications

Date	Application	Development	Source
Sep 2025	Quantum Communication / Networks	IonQ demonstrates photon conversion to telecom wavelengths, enabling quantum-secure networking over existing fiber.	Investors.com
Sep 2025	Quantum Cybersecurity / Networks	Rigetti wins U.S. Air Force contract to build hybrid superconducting-optical quantum network nodes.	Barron's
Jul 2025	Quantum PNT & Sensing	Honeywell awarded U.S. government contracts for quantum sensors supporting PNT & ISR under DoD's transition program.	Honeywell
Jun 2025	Quantum PNT (Maritime)	Q-CTRL's maritime quantum navigation (dual gravimeter) tested aboard Australian Navy vessel in first defence sea trials.	Q-CTRL
May 2025	Strategic Threat Assessment	U.S. Defense Intelligence Agency warns rivals are nearing oper- ational deployment of quantum technologies.	Quantum Insider
May 2025	Policy / Strategy	Just Security op-ed urges U.S. strategy to prioritize quantum sensors as the most immediate defence advantage.	Just Security

Apr 2025	Quantum PNT & Navigation	DARPA awards \$24.4M to Q-CTRL to develop quantum navigation sensors resilient to jamming/spoofing.	Q-CTRL
Apr 2025	Quantum Navigation Prototype	0, 1	Lockheed Martin
Jan 2025	Quantum Radar & Electronic Warfare	HENSOLDT to support DLR in optimizing quantum radar for defence applications.	Quantum Insider
Jan 2025	Quantum Radar / ISAC Integration	Research proposes integrating quantum radar (quantum illumination) into integrated sensing & communications (ISAC) architectures.	arXiv

Executive Summary

We are entering a critical inflection point in technological history. The convergence of **Quantum Computing**, **Artificial Intelligence (AI)**, and **Security** is not a distant future—it is the emerging present.

As quantum algorithms grow more capable, AI systems more autonomous, and cyber threats more complex, we must ask: how do we engineer trust, resilience, and intelligence at the frontier?

The diagram below illustrates the overlap between these domains and the interdisciplinary challenges that arise at their intersections—from Quantum AI to Post-Quantum Cryptography and AI-driven cyber defense.

Part III Strategy and Policy

Quantum Strategy Roadmap

Roadmap for national defence adoption of quantum technology:

- 1. Identification Assess technological and scientific risks vs advantages.
- 2. Development Support R&D, prototyping, certification.
- 3. Implementation & Deployment Reach operational capability, adapt doctrines and strategies.

TRL & Time Horizon

Technology Readiness Levels and projected timelines.

Technology	TRL	Horizon
Quantum Computer (annealer)	4-5	2030
QKD (satellite)	7-8	2025 – 2030
PQC	7-8	2025
Quantum Communication Network	1 - 3	2030 – 2035
Quantum Inertial Navigation	4-5	2025 – 2030
Quantum Clocks	4-6	2030
Quantum Radar	1-2	Long-term
Quantum RF Antenna	4	2025 – 2030
Quantum Magnetic & Gravity Sensing	5-6	2025
Quantum Imaging	5	2025-2030

Summary of Recent Quantum Policy News

Region	Date	Policy / Action	Link
USA	Sep 2025	White House preparing executive actions to accelerate quantum tech and PQC adoption in federal agencies.	NextGov
USA	2025	Bipartisan NDAA amendment (SA 3684) requires national PQC migration strategy, pilot programs by 2027, and cost surveys.	Quantum Computing Report
USA	2025	Export controls imposed on advanced quantum technologies to restrict adversarial access.	MIT QIR
UK	2025	£670m, 10-year government investment plan in quantum computing.	NQCC
UK	2025	National "Compute Roadmap" includes AI and quantum compute capacity through 2030.	Gov.uk
UK	Mar 2025	PQC Migration Roadmap: identification of systems by 2028, major overhauls by 2031, full adoption by 2035.	NCSC
EU	Jul 2025	EU pushes for private capital to boost quantum tech ambitions by 2030, supplementing public funding.	Reuters
EU	Ongoing	EuroQCI project continues rollout of European Quantum Communication Infrastructure.	EU Commission
India	2023-2025	National Quantum Mission (\$730M) supporting quantum computing, communication, sensing, and materials.	DST India
India	2025	First full-stack 25-qubit domestic quantum computer (QpiAI-Indus) deployed.	Times of India

Australia 2025	National Quantum Strategy (2023–2033) updated milestones, including PQC guidance and hybrid quantum-classical projects.	Cyber.gov.au
Multilateral Sep 2025		Quantum Insider
Multilateral Sep 2025	CERN partners with Single Quantum and Quantum to launch new quantum networking lab.	Quantum Insider
Multilateral 2025	Business Software Alliance (BSA) publishes global quantum policy agenda (infrastructure, workforce, PQC, export control).	BSA.org

Recent Quantum Computing Policy Developments

Policy / Action	Description	Link
White House executive actions on quantum tech	The U.S. administration is preparing executive actions to accelerate quantum computing and broader quantum technology adoption in federal agencies.	NextGov
U.SUK Tech Prosperity Deal	The U.S. and UK signed a Technology Prosperity Deal to strengthen collabo- ration in deep tech, including quantum computing.	The Quantum Insider
UK investment in quantum computing $(£670m)$	The UK government announced a 10-year funding package worth £670 million to support quantum computing development.	NQCC
UK Compute Roadmap	The UK "Compute Roadmap" outlines major investments in AI and quantum computing infrastructure through 2030.	Gov.uk
Full-stack silicon CMOS quantum computer deployed (UK)	A full-stack silicon quantum computer using spin qubits was delivered to the National Quantum Computing Centre.	Quantum Motion
U.S. export controls on quantum technologies	The U.S. government introduced export controls on quantum computing and related technologies.	MIT QIR Policy
Bipartisan U.S. quantum legislation	Representatives Subramanyam and McGuire introduced bipartisan legislation to safeguard infrastructure and strengthen quantum readiness.	House.gov

Latest Government Policy on Post-Quantum Cryptography (PQC)

12.1 Recent PQC Policy Developments

Policy / Action	Description	Link
Executive actions on quantum & PQC (U.S.)	The White House is preparing executive actions to accelerate quantum technology and PQC adoption across federal agencies.	NextGov
Senate amendment for PQC migration strategy (SA 3684)	A bipartisan amendment to the FY 2026 NDAA requires a national PQC migration strategy, pilot upgrades by 2027, cost surveys, and progress reports.	Quantum Computing Report
NSA / CNSS Policy 15 (March 2025)	NSA released CNSS Policy 15 identifying quantum-resistant algorithms for use in national security systems.	NSA.gov
UK / NCSC migration timelines	NCSC published PQC migration timelines: identification by 2028, overhaul by 2031, full adoption by 2035.	NCSC.gov.uk
UK financial sector guidance (CMORG)	The UK's CMORG issued guidance (April 2025) urging PQC adoption aligned with NCSC's roadmap.	CMORG Guid- ance PDF
DHS PQC roadmap and guidance	DHS issued internal policy directing agencies to inventory and prioritize systems for PQC migration.	DHS.gov

12.2 Key Takeaways

- The U.S. and UK governments are moving from research into binding policies and legislative frameworks.
- Deadlines (2027 for pilots, 2035 for full adoption) are now explicit in both the U.S. and UK.
- Agencies are under pressure to inventory cryptographic systems and plan for migration.
- NSA and NCSC have provided concrete algorithm choices and migration roadmaps.
- Sector-specific guidance (e.g., UK finance) shows PQC policy is spreading beyond central governments.

Part IV Perspectives

Hype vs Reality

- Acknowledge the quantum hype.
- Many breakthroughs are still prototypes; scaling up is the main bottleneck.
- Realistic timelines: some breakthroughs (e.g., post-quantum cryptography, QRNG) are already here, while others (e.g., quantum radar) may be decades away.

Ethical, Security, and Peace Implications

- Quantum warfare may alter strategies, doctrines, and treaties.
- Raises ethical concerns: should certain QT be controlled under arms agreements?
- Dual-use technology spreads faster, complicating arms control and international regulation.

Conclusion

- Quantum technology will not create entirely new weapons but will transform warfare by enhancing precision, sensing, and cryptanalysis.
- Countries need a balanced approach: invest, prepare countermeasures, and develop ethical and legal frameworks.

Key Observations

- Quantum computing is now explicitly embedded in both U.S. and UK national technology strategies.
- Policies combine domestic funding (e.g., UK's £670m plan) with international cooperation (U.S.–UK pact).
- Export controls highlight security concerns and a desire to limit adversarial access.
- New legislation and executive orders are shifting quantum from research priority to strategic infrastructure.

Part V Quantum, AI, and Security

16.1 Four Strategic Frontiers

Quantum AI

Accelerating Intelligence with Quantum Algorithms

Quantum computing opens new frontiers in machine learning—boosting optimization, search, and pattern recognition. Can we build quantum-enhanced AI models that learn faster, generalize better, and defend autonomously?

Post-Quantum Security

Designing Cryptographic Systems for a Quantum-Enabled World

With Shor's algorithm threatening current public-key cryptography, secure communication demands quantum-resistant algorithms. How can we architect and scale post-quantum cryptographic systems before adversaries gain quantum advantage?

Hybrid Intelligence Systems

Combining Classical & Quantum Capabilities to Fortify Decision-Making

Hybrid architectures—where classical AI and quantum processors work in tandem—may offer a leap in speed and security. How do we build secure, adaptive platforms that operate across this hybrid divide?

16.1.1 Threats and Opportunities

Securing the Strategic Edge in the Quantum Race

As adversaries develop offensive quantum capabilities, the risk landscape expands—from encrypted data harvesting to quantum-enabled surveillance. What policies, safeguards, and innovation pathways can help allied forces stay ahead?

16.2 Looking Ahead

At the intersection of these disciplines lies more than technical innovation—it's a matter of digital sovereignty, intelligence superiority, and national security.

Building secure, intelligent systems in the age of quantum requires cross-sector collaboration, bold research, and an unwavering commitment to ethical foresight.

Bibliography

[1] Eleni Diamanti, Anthony Leverrier, Philippe Bouyer, Norbert Lütkenhaus, Philippe Grangier, Nicolas Sangouard, Stefano Pirandola, Valerio Scarani, Artur Ekert, John Rarity, Harald Weinfurter, et al. Quantum technologies for military applications. *EPJ Quantum Technology*, 8(19):1–22, 2021.