Ocular disease mechanisms elucidated by genetics of human fetal retinal pigment epithelium gene expression

Lab Journal Theme
07 - Gene Expression Analysis

Lisa Hu
414264
Bio-Informatica
Hanzehogeschool Groningen, ILST
Marcel Kempenaar
8 March 2022

Contents

1	Loading the data	2
2	Exploratory Data Analysis	3
	2.1 Data sample	3
	2.2 Boxplots	4
	2.3 Density plots	5
	2.4 Barplots	6
3	Normalization	7
	3.1 Heatmaps	7
	3.2 Multi Dimensional Scaling	9
4	Discovering Differentially Expressed Genes (DEGs)	10
	4.1 Pre-processing	10
	4.2 DESeq2 analysis	
	4.3 MA plot	12

1 Loading the data

For decompressing the data, run the code chunks in the Rmd file that deem fit for your situation:

- If you downloaded the data from the official site: Decompress the data and run the Rscript data_loading.R.
- If you want to use the dataset delivered with the project: Run the decompress-dataset code chunk.

```
#' Decompress the complete dataset
#' Use this chunk if you did not download the data from the site and want to use
#' the delivered gzipped dataset

## Set the count.file variable to the full path of the gene file
count.file <- ""
system(paste("gzip -d", count.file))</pre>
```

After decompressing the data, the data can be read:

```
## Read the dataset
dataset <- read.table("./gene_count.txt", sep = "\t", header = TRUE)
## Set rownames of the dataset to first column
row.names(dataset) <- dataset$Gene
## Remove the Gene column
dataset <- dataset[-1]

## Indices for dataset
glucose.data <- seq(1, 48, 2)
galactose.data <- seq(2, 49, 2)
groups <- factor(rep(1:2, times=24), labels = c("Glucose", "Galactose"))
col.ordered <- c(colnames(dataset[glucose.data]), colnames(dataset[galactose.data]))

## Colors for the two sample groups (red = galactose, blue = glucose)
group.cols <- hue_pal()(2)</pre>
```

2 Exploratory Data Analysis

2.1 Data sample

pander(dataset[0:5, 0:4], split.tables = 64)

Table 1: Table continues below

	X1_glucose	X1_galactose
alignment_not_unique	0	0
ambiguous	73052	71663
$**$ no_feature**	6143654	3901459
$**$ not_aligned**	0	0
$**$ too_low_aQual**	0	0

	$X2$ _glucose	$X2$ _galactose
alignment_not_unique	0	0
ambiguous	90130	114748
$**$ no_feature**	4560099	10675855
$**$ not_aligned**	0	0
too_low_aQual	0	0

pander(summary(dataset[,0:6]), split.tables = 64)

Table 3: Table continues below

X1_glucose	$X1$ _galactose	X2_glucose
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 0	Median: 0	Median: 0
Mean: 719	Mean: 549	Mean:750
3rd Qu.: 60	3rd Qu.: 44	3rd Qu.: 63
Max. $:6143654$	Max. $:3901459$	Max. $:4560099$

$X2$ _galactose	X3_glucose	$X3$ _galactose
Min. : 0	Min. : 0	Min. : 0
1st Qu.: 0	1st Qu.: 0	1st Qu.: 0
Median: 1	Median: 0	Median: 0
Mean: 1147	Mean : 622	Mean: 679
3rd Qu.: 99	3rd Qu.: 47	3rd Qu.: 54
Max. $:10675855$	Max. $:5017129$	Max. $:5650847$

2.2 Boxplots

Glucose

Galactose

2.3 Density plots

Density plot

2.4 Barplots

```
layout(matrix(c(1,1,1,2,2,2), nrow = 6, ncol = 1, byrow = T))
## Barplot of first half of the data
x1 <- barplot(colSums(dataset[1:24] / 1e6), main = "Sequencing depth sample 1-12",
              xlab = "Sample", ylab = expression("Sequencing depth (x10"^6*")"),
              ylim = c(0, 70), las = 2, col = group.cols, xaxt = 'n')
text(x = x1, y = colSums(dataset[1:24]/1e6),
     label = round(colSums(dataset[1:24] / 1e6),0), pos = 3)
axis(1, at = x1, labels = rep(1:12, each = 2), tick = FALSE, cex = 0.6)
legend("topright", c("Glucose", "Galactose"), col = group.cols, pch = 19)
## Rest of the data
x2 <- barplot(colSums(dataset[25:48] / 1e6), main = "Sequencing depth sample 13-24",
              xlab = "Sample", ylab = expression("Sequencing depth (x10"^6*")"),
              ylim = c(0, 60), las = 2, col = group.cols, xaxt = 'n')
text(x = x2, y = colSums(dataset[25:48]/1e6),
     label = round(colSums(dataset[25:48] / 1e6), 0), pos = 3)
axis(1, at = x1, labels = rep(13:24, each = 2), tick = FALSE, cex = 0.6)
```

Sequencing depth sample 1-12

Sequencing depth sample 13-24

3 Normalization

3.1 Heatmaps

A plot without the clustering and ordered groups:

Euclidean Sample Distances

3.2 Multi Dimensional Scaling

Since the colours confirm the sample group, the sample names were simplified to only the number indicating the different samples.

Multi Dimensional Scaling

4 Discovering Differentially Expressed Genes (DEGs)

4.1 Pre-processing

Genes with average read count below 10 and with zero counts in more than 20% of samples (10 samples) were considered not expressed and filtered.

```
fpm <- log2( (dataset / (colSums(dataset) / 1e6)) + 1 )
zero.counts <- apply(dataset, 1, function(x) length(which(x==0)))
filtered.subset <- subset(dataset, rowSums(dataset)/48 > 10 | zero.counts < 10)</pre>
```

Leaving the dataset look a bit like this:

```
pander(filtered.subset[0:5, 0:4], split.tables = 64)
```

Table 5: Table continues below

	$X1$ _glucose	$X1$ _galactose
ambiguous	73052	71663
$**$ no_feature**	6143654	3901459
ENSG0000000419.8	668	613
ENSG0000000457.9	567	494
ENSG0000000460.12	189	118

	X2_glucose	X2_galactose
ambiguous	90130	114748
no_feature	4560099	10675855
ENSG0000000419.8	1015	1141
ENSG0000000457.9	654	960
ENSG00000000460.12	146	294

```
pander(summary(filtered.subset[,0:6]), split.tables = 64)
```

Table 7: Table continues below

X1_glucose	$X1$ _galactose	$X2$ _glucose
Min.: 0 1st Qu.: 21	Min. : 0 1st Qu.: 16	Min. : 0 1st Qu.: 22
Median : 317	Median : 242	Median: 349
Mean: 1874 3rd Qu.: 1500	Mean : 1432 3rd Qu.: 1180	Mean : 1956 3rd Qu.: 1659
Max. :6143654	Max. :3901459	Max. :4560099

X2_galactose	X3_glucose	X3_galactose
Min.: 0	Min. : 0	Min. : 0
1st Qu.: 36	1st Qu.: 17	1st Qu.: 20
Median: 526	Median: 259	Median: 284
Mean: 2989	Mean: 1621	Mean: 1771
3rd Qu.: 2524	3rd Qu.: 1281	3rd Qu.: 1357
Max. :10675855	Max. :5017129	Max. :5650847

4.2 DESeq2 analysis

```
## Create design frame
design <- data.frame(groups)</pre>
## Create new DDS object with correct design
ddsMat <- DESeqDataSetFromMatrix(countData = filtered.subset,</pre>
                                  colData = design, design = ~0 + groups)
ddsMat <- DESeq(ddsMat)</pre>
## Results of the new DDS object
dds.res <- results(ddsMat, alpha=0.05)</pre>
summary(dds.res)
##
## out of 21571 with nonzero total read count
## adjusted p-value < 0.05
                   : 1034, 4.8%
## LFC > 0 (up)
## LFC < 0 (down)
                     : 709, 3.3%
## outliers [1]
                      : 0, 0%
                     : 837, 3.9%
## low counts [2]
## (mean count < 3)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
## Shrinkage
resultsNames(ddsMat)
                        "groupsGalactose"
## [1] "groupsGlucose"
lfc.gal <- lfcShrink(ddsMat, coef = "groupsGalactose", type = "apeglm")</pre>
summary(lfc.gal)
##
## out of 21571 with nonzero total read count
## adjusted p-value < 0.1
                     : 21558, 100%
## LFC > 0 (up)
## LFC < 0 (down)
                      : 0, 0%
## outliers [1]
                     : 0, 0%
## low counts [2]
                      : 0, 0%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
```

4.3 MA plot

DESeq2::plotMA(dds.res, main = "Glucose vs galactose")

Glucose vs galactose

