Descubriendo Epidemias: {serofoi}, un paquete de R para estimar retrospectivamente la fuerza de infección

Zulma M. Cucunubá¹ Nicolás T. Domínguez¹ Ben Lambert² Pierre Nouvellet³

²Department of Statistics, University of Oxford, UK.

³School of Life Sciences, Sussex University, UK.

Epiverse powered by data.org

Epiverse es una **colaboración internacional** con el fin de desarrollar un ecosistema de análisis de datos epidemiológicos confiable que busca prepararnos para futuras crisis de salud pública.

Nuestro equipo

VIGILADA MINEDUCACIÓN |

Fortalecimiento de **la capacidad para la respuesta, análisis y control de epidemias** en América Latina y el Caribe

Liderado por:

Financiado por:

Contexto sociotécnico

Contexto sociotécnico

Entrenamiento

Contexto sociotécnico

Entrenamiento

Epiverse - nuevos paquetes:

Desarrollo en Epiverse TRACE LAC

Desarrollo en Epiverse TRACE LAC

Desarrollo en Epiverse TRACE LAC

serofoi v.0.0.9

Autores:

Zulma M. Cucunubá Universidad Javeriana

Ben Lambert Oxford University

Pierre Nouvellet Sussex University

Nicolás Torres Universidad Javeriana

Colaboradores:

Jaime Andres Pavlich Universidad Javeriana

Geraldine Gómez Universidad Javeriana

David Santiago Quevedo Universidad Javeriana

Hugo Gruson data.org

Everlyn Kamau Oxford University

Richard Creswell Oxford University

serofoi v.0.0.9

Paquete de R para estimar retrospectivamente la fuerza de infección (FoI) de un patógeno determinado a partir de encuestas serológicas poblacionales de prevalencia desagregadas por edad por medio de modelos Bayesianos.

 Muestreo probabilístico de una población específica

- Muestreo probabilístico de una población específica
- Mide prevalencia de anticuerpos (IgG) en la sangre (eje y)

- Muestreo probabilístico de una población específica
- Mide prevalencia de anticuerpos (IgG) en la sangre (eje y)
- Desagregada por edad (eje x)

- Muestreo probabilístico de una población específica
- Mide prevalencia de anticuerpos (IgG) en la sangre (eje y)
- Desagregada por edad (eje x)
- Estudio de tipo transversal


```
library(serofoi)
library(dplyr)

data(chik2015)
str(chik2015)

total : int  45 109 144 148
counts : num  17 55 63 69
age_min : num  1 20 40 60
age_max : num  19 39 59 79
```

: num

2015 2015 2015 2015

tsur


```
library(serofoi)
library(dplyr)
data(chik2015)
str(chik2015)
total
         : int 45 109 144 148
counts
                17 55 63 69
         : num
age_min
                1 20 40 60
         : num
                19 39 59 79
age_max
         : num
                2015 2015 2015 2015
tsur
         : num
```

Desagregada por edad


```
library(serofoi)
library(dplyr)
data(chik2015)
str(chik2015)
total
         : int 45 109 144 148
counts
                17 55 63 69
         : num
age_min
                1 20 40 60
         : num
                19 39 59 79
age_max
         : num
tsur
                2015 2015 2015 2015
         : num
```

- Desagregada por edad
- Estudio de tipo transversal


```
library(serofoi)
library(dplyr)

data(chik2015)
str(chik2015)
```

total : int 45 109 144 148

counts : num 17 55 63 69

age_min : num 1 20 40 60

age_max : num 19 39 59 79

tsur : num 2015 2015 2015 2015

- Desagregada por edad
- Estudio de tipo transversal

plot_seroprev(serodata = chik2015)

¿Qué es la Fuerza de Infección (foi)?

La Fuerza de Infección (FoI) representa la tasa a la que los individuos susceptibles se infectan dado que estuvieron expuestos a un patógeno.

$$\lambda = \frac{\text{número de nuevas infecciones}}{\text{número de susceptibles expuesto} \times \text{duración media de la exposición}}$$

¿Qué es la Fuerza de Infección (foi)?

La Fuerza de Infección (FoI) representa la tasa a la que los individuos susceptibles se infectan dado que estuvieron expuestos a un patógeno.

Modelos serocatalíticos

$$\frac{dP(t)}{dt} = \lambda(t)(1 - P(t))$$

¿Qué es la Fuerza de Infección (foi)?

Ejemplo - Fol constante:

$$\frac{dP(t)}{dt} = \lambda(t)(1 - P(t))$$

$$P(a) = 1 - \exp(-\lambda a)$$

Fol constante vs dependiente del tiempo

Ajuste de datos de seroprevalencia por edad:

Fol constante vs dependiente del tiempo

Ejemplos:

Epiverse TRACELAC

Modelos implementados

Model Option	Probability of positive case at age \boldsymbol{a}	Prior distribution
constant	$\sim binom(n(a,t),P(a,t))$	$\lambda \sim uniform(0,2)$
tv_normal	$\sim binom(n(a,t), P(a,t))$	$\lambda \sim normal(\lambda(t-1), \sigma)$ $\lambda(t=1) \sim normal(0, 1)$
tv_normal_log	$\sim binom(n(a,t), P(a,t))$	$\lambda \sim normal(log(\lambda(t-1)), \sigma)$ $\lambda(t=1) \sim normal(-6, 4)$

Tipos de preguntas que se pueden resolver con serofoi

 ¿Cómo se caracterizan los patrones epidémicos/endémicos de una enfermedad infecciosa?

Tipos de preguntas que se pueden resolver con serofoi

 ¿Cómo se caracterizan los patrones epidémicos/endémicos de una enfermedad infecciosa?

1. ¿Cómo estimar la tendencia temporal de una infección de enfermedades con mecanismos complejos de transmisión?

Tipos de preguntas que se pueden resolver con serofoi

 ¿Cómo se caracterizan los patrones epidémicos/endémicos de una enfermedad infecciosa?

1. ¿Cómo estimar la tendencia temporal de una infección de enfermedades con mecanismos complejos de transmisión?

1. ¿Cómo determinar el impacto de estrategias de control?

Casos de uso

1. Chikungunya

- Datos: Bahía, Brasil (2015).
- Reto: Caracterizar patrones endémicos/epidémicos de la enfermedad.

Casos de uso

1. Chikungunya

- Datos: Bahía, Brasil (2015).
- Reto: Caracterizar patrones endémicos/epidémicos de la enfermedad.

2. Alfavirus

Virus de la encefalitis equina venezolana (VEEV)

- Datos: Pueblo rural, Panamá (2012).
- Reto: Encontrar una epidemia oculta en la región.

Casos de uso

1. Chikungunya

- Datos: Bahía, Brasil (2015).
- Reto: Caracterizar patrones endémicos/epidémicos de la enfermedad.

2. Alfavirus

Virus de la encefalitis equina venezolana (VEEV)

- Datos: Pueblo rural, Panamá (2012).
- Reto: Encontrar una epidemia oculta en la región.

3. Enfermedad de Chagas

- Datos: Pueblo rural, Colombia (2012).
- Reto: Determinar el impacto de estrategias de control.

Casos de uso

1. Chikungunya

- Datos: Bahía, Brasil (2015).
- Reto: Caracterizar patrones endémicos/epidémicos de la enfermedad.

2. Alfavirus

Virus de la encefalitis equina venezolana (VEEV)

- Datos: Pueblo rural, Panamá (2012).
- Reto: Encontrar una epidemia oculta en la región.

3. Enfermedad de Chagas

- Datos: Pueblo rural, Colombia (2012).
- Reto: Determinar el impacto de estrategias de control.

Reto metodológico:

¿Cómo estimar la efectividad histórica de una estrategia de control en áreas con patrones endémicos de infección?


```
# Load and prepare data
data("chagas2012")
chagas2012p <- prepare_serodata(chagas2012)</pre>
```

total	counts	age_min	age_max	tsur
34	0	1	1	2012
25	0	2	2	2012
35	1	3	3	2012
29	0	4	4	2012
36	0	5	5	2012
23	0	6	6	2012

age_mean_f	birth_year	prev_obs	prev_obs_lower	prev_obs_upper
1	2011	0.00000000	0.0000000000	0.10281792
2	2010	0.00000000	0.0000000000	0.13718517
3	2009	0.02857143	0.0007231044	0.14917208
4	2008	0.00000000	0.0000000000	0.11944487
5	2007	0.00000000	0.0000000000	0.09739376
6	2006	0.00000000	0.0000000000	0.14818513


```
# Load and prepare data
data("chagas2012")
chagas2012p <- prepare_serodata(chagas2012)</pre>
```

plot_seroprev(serodata = chagas2012)

 $n_{iters} = 800$

plot_seromodel(m1_cha, chagas2012p)


```
plot_seromodel(m1_cha, chagas2012p)
```


plot_seromodel(m1_cha, chagas2012p)

plot_seromodel(m2_cha, chagas2012p)

2000

plot_seromodel(m1_cha, chagas2012p)

plot_seromodel(m2_cha, chagas2012p)

plot_seromodel(m1_cha, chagas2012p)

Nuevos modelos:

Modelos con seroreversión

- Enfermedades de transmisión sexual (e.g. VPH, VIH, ...)

David Santiago Quevedo Universidad Javeriana

Richard Creswell
Oxford University

Modelos dependientes de la edad

- Pérdida de inmunidad
- e.g. COVID

Everlyn Kamau Oxford University

serofoi Epiverse

Contribuir a serofoi:

Contribuciones al paquete son bienvenidas por medio de *pull* requests, teniendo en cuenta el código de conducta del proyecto.

GitHub: https://github.com/epiverse-trace/serofoi

Website: https://epiverse-trace.github.io/serofoi/

Contáctanos:

Email:

<u>ex-ntorres@javeriana.edu.co</u> <u>zulma.cucunuba@javeriana.edu.co</u>

serofoi

¡Gracias LatinR!

Más información: ex-ntorres@javeriana.edu.co

