Motivation TTL: 2 % 4 % "o"

- Ein Rechner speichert, verarbeitet und produziert Informationen.
- Alle Ergebnisse müssen als Funktion der Anfangswerte exakt reproduzierbar sein.
- → Informationsspeicherung und Verarbeitung müssen exakt sein.
- Probleme: Noise, Crosstalk, Abschwächung
- → Es gibt keine exakte Datenübertragung oder Datenspeicherung.
- → Ziel: Quantisierung der Informationsspeicherung mit Signal groß gegenüber maximaler Störung
 - Binär-Codierung (nur zwei Zustände) ist die einfachste (und sicherste) Signal-Quantisierung.
 - BIT (0, 1) als grundlegende Informationseinheit

Motivation

- Ein Rechner kann üblicherweise
 - Zeichen verarbeiten (Textverarbeitung)
 - mit Zahlen rechnen
 - Bilder, Audio- und Videoinformationen verarbeiten und darstellen ...
- Ein Algorithmus kann zwar prinzipiell mit abstrakten Objekten verschiedener Art operieren, aber diese müssen im Rechner letztendlich als Folgen von Bits repräsentiert werden.
- → Kodierung!

Kapitel 2.1 - Kodierung von Zeichen

- Wie werden im Rechner Zeichen dargestellt ?
- Codes fester Länge
- "Längenoptimale Kodierungen" von Zeichen: Häufigkeitscodes (Bsp.: Huffman-Code)

Kapitel 2 – Kodierung

- 1. Kodierung von Zeichen
- 2. Kodierung von Zahlen
- 3. Anwendung: ReTI > Kodierung von Befahlen

Albert-Ludwigs-Universität Freiburg

Dr. Tobias Schubert, Dr. Ralf Wimmer

Professur für Rechnerarchitektur WS 2016/17

Alphabete und Wörter

"a" "b"

Definition

Eine nichtleere Menge $A = \{a_1, \dots, a_m\}$ heißt (endliches) Alphabet der Größe m.

 $\overline{a_1, \ldots, a_m}$ heißen Zeichen des Alphabets.

- $\underline{A^*} = \{ \underline{w} \mid \underline{w} = b_1 \dots b_n \text{ mit } \underline{n \in \mathbb{N}}, \forall i \text{ mit } 1 \leq i \leq n : \underline{b_i \in A} \} \text{ ist } \\ \underline{\text{die Menge aller W\"{o}rter \"{u}ber dem Alphabet } A}.$
- $|b_1...b_n| := n$ heißt Länge des Wortes $b_1...b_n$.
- Das Wort der Länge 0 wird mit ε bezeichnet.

Beispiel:

Sei
$$A = \{a, b, c, d\}$$
.

Dann ist bcada ein Wort der Länge 5 über A.

Sei $A = \{a_1, ..., a_m\}$ ein endliches Alphabet der Größe m.

Eine Abbildung a : A (10 1) mail nl=1,23,...

■ Eine Abbildung $c: A \rightarrow (0,1)^*$)oder $c: A \rightarrow (0,1)^n$ heißt 4 Jedes Codewart hat 1 Code, falls c injektiv ist.

- Die Menge $c(A) := \{ w \in \{0,1\}^* \mid \exists a \in A : c(a) = w \}$ heißt Menge der Codewörter.
- Ein Code $c: A \rightarrow \{0,1\}^n$ heißt Code fester Länge.
- Für einen Code $c: A \rightarrow \{0,1\}^n$ fester Länge gilt: $n \geq \lceil \log_2 m \rceil$.
 - Ist $n = \lceil \log_2 m \rceil + r$ mit r > 0, so können die r zusätzlichen Bits zum Test auf Übertragungsfehler verwendet werden (siehe Kap. 6).

) Linksemdentig d.h. für jedes Codewart

Codes fester Länge

- Die Kodierung eines jeden Zeichens besteht aus *n* Bits.
 - ASCII (American Standard Code for Information Interchange): 7 Bits (es gibt Erweiterungen mit 8 Bits)
 - EBCDIC: 8 Bits
 - Unicode: 16 Bits
 - Vgl. "Rechnerarchitektur"
- Diese Kodierungen sind recht einfach zu behandeln. Unter Umständen wird für sie aber mehr Speicherplatz gebraucht als unbedingt nötig.

Beispiel: ASCII-Tabelle

Häufigkeitsabhängige Codes

- **Ziel**: Reduktion der Länge einer Nachricht durch Wahl verschieden langer Codewörter für die verschiedenen Zeichen eines Alphabets (also kein Code fester Länge!)
- Häufiges Zeichen \rightarrow kurzer Code Seltenes Zeichen \rightarrow langer Code Idee:
- Voraussetzungen:
 - Häufigkeitsverteilung ist bekannt → statische Kompression

TS/RW - Kapitel 2 - Kodierung

Häufigkeitsverteilung ist nicht bekannt \rightarrow dynamische Kompression 1) Streame alle Zeichen Zahle die Häufigkeiten
2) kodieren 3) v) Verteiling dem Jekoclieter 2 VRW-Kapitel 2-Kodierung mitschicken 2

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Beispiel:

Zeichen a b c d e f g h i j
Häufigkeit [%] 20 25 15 8 7 6 5 5 5 4

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen abcdefg

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen a b c d e f g

Häufigkeit [%]

20 25 15 8

43

32

Beispiel:

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen abcdefg

Häufigkeit [%]

- Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.
- Kommt als Teilschritt z.B. in MP3 oder JPEG vor.
- Zeichen a b c

Der Huffman-Code ist der bekannteste häufigkeitsabhängige Code.

11110 ■ Kommt als Teilschritt z.B. in MP3 oder JPEG vor.

Beispiel:

Baue binären Baum, indem

keiten jeweils zu einem

Erzeugte Huffman-Kodierung

Erzeugte Kodierung:

а	b	С	d	е	f	g	h	i	j
00	10	110	1110	0100	0101	0110	0111	11110	11111

Huffman-Code: Dekodierung

(b) |~|

Erzeugte Kodierung:

	Ü		•					0 -	
а	b	С	d	е	f	g	h/	$\int_{\mathbb{R}}$	
00	10	110	1110	0100	0101	0110	9111	11240	11111

Lesen des Bitstromes bis Symbol erkannt wurde.

2 Erkanntes Symbol ausgeben und weiter mit 1.

Schritt

Bitstrom:

011....

das a" mit 1 oder ist das b"?

Präfixcodes

Definition

"01" ist Pra" fix

Sei A ein Alphabet der Größe m.

 $egin{aligned} oldsymbol{a}_1 \dots oldsymbol{a}_p \in A^* & \text{heißt Präfix von } b_1 \dots b_l \in A^*, \text{ falls } p \leq l \text{ und } a_l = b_l \ \forall i, \ 1 \leq i \leq p. \end{aligned}$ voriabler $oldsymbol{b}_0$

- Ein Code $c: A \to \{0,1\}$ heißt Präfixcode, falls es kein Paar $i,j \in \{1,\ldots,m\}$ gibt, so dass $c(a_i)$ Präfix von $c(a_j)$.
 - Der Huffman-Code ist ein Präfixcode.
 - Bei Präfixcodes können Wörter über {0,1} eindeutig dekodiert werden. (Sie entsprechen Binärbäumen mit Codewörtern an den Blättern.)
 - Huffman-Code ist ein bzgl. mittlerer Codelänge optimaler Präfixcode (unter Voraussetzung einer bekannten Häufigkeitsverteilung) - ohne Beweis.

Präfixcodes

Definition

Sei A ein Alphabet der Größe m.

- $a_1 \dots a_p \in A^*$ heißt Präfix von $b_1 \dots b_l \in A^*$, falls $p \le l$ und $a_i = b_i \ \forall i, \ 1 < i < p.$
- Ein Code $c: A \rightarrow \{0,1\}^*$ heißt Präfixcode, falls es kein Paar $i, j \in \{1, ..., m\}$ gibt, so dass $c(a_i)$ Präfix von $c(a_i)$.
 - Der Huffman-Code ist ein Präfixcode.
 - Bei Präfixcodes können Wörter über {0,1} eindeutig dekodiert werden. (Sie entsprechen Binärbäumen mit Codewörtern an den Blättern.)
 - Huffman-Code ist ein bzgl. mittlerer Codelänge optimaler Präfixcode (unter Voraussetzung einer bekannten Häufigkeitsverteilung) - ohne Beweis.

SMILE – Präfixcodes

a.
$$c('A') = 01$$
, $c('B') = 110$, $c('C') = 011$ \longrightarrow Kein.

b.
$$c('A') = 01$$
, $c('B') = 110$, $c('C') = 111$

c.
$$c('1') = xz$$
, $c('2') = xy$, $c('3') = yz$

d. Keiner der Obigen. Aussage kann wicht Shimmen!

14 / 15

Weitere Verfahren

- Es gibt zahlreiche Ansätze zur Datenkompression. (Beispiel: Lempel-Ziv-Welch.)
- In Programmtexten gibt es häufig viele Leerzeichen, gleiche Schlüsselwörter und so weiter.
- → Kodiere Folgen von Leerzeichen bzw. Schlüsselwörter durch kurze Codes.
 - Das wird z.B. bei GIF und TIFF genutzt.
 - Das soll auch funktionieren, wenn man noch nicht weiß, welche Zeichenketten häufig vorkommen.

