Clustering: Basics & Hierarchical Clustering

Philip D. Waggoner

MACS 40500: Computational Methods for American Politics

October 22, 2019

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 5 Linkage Methods
- 6 Dendrograms & Tree Cutting
- 7 Divisive Hierarchical Clustering
- 8 Coming Up

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 5 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

• Clustering attempts to group (or cluster) objects (*i* and *i*/) based on some rule defining the similarity (or dissimilarity) between the objects

- Clustering attempts to group (or cluster) objects (*i* and *i'*) based on some rule defining the similarity (or dissimilarity) between the objects
- Note that there is a distinction between clustering and classification/discrimination:

- Clustering attempts to group (or cluster) objects (*i* and *i'*) based on some rule defining the similarity (or dissimilarity) between the objects
- Note that there is a distinction between clustering and classification/discrimination:
 - ► Clustering: the group labels are not known a priori

- Clustering attempts to group (or cluster) objects (i and i') based on some rule defining the similarity (or dissimilarity) between the objects
- Note that there is a distinction between clustering and classification/discrimination:
 - ▶ **Clustering**: the group labels are not known a priori
 - ► Classification: the group labels are known for a trained sample (next week)

- Clustering attempts to group (or cluster) objects (i and i') based on some rule defining the similarity (or dissimilarity) between the objects
- Note that there is a distinction between clustering and classification/discrimination:
 - ► Clustering: the group labels are not known a priori
 - ► Classification: the group labels are known for a trained sample (next week)
- Thus, the typical goal in clustering is to discover the "natural groupings" present in the data

 Broadly, then, we can categorize clustering techniques into two camps:

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► Hierarchical (pairwise)

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) → move from signletons to progressively larger clusters based on similarity

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) \leadsto move from signletons to progressively larger clusters based on similarity
 - Partitioning (assignment, both "soft" and "hard")

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) → move from signletons to progressively larger clusters based on similarity
 - ▶ Partitioning (assignment, both "soft" and "hard") ~> maintain a set of clusters and assign points nearest to the cluster centroid

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) \leadsto move from signletons to progressively larger clusters based on similarity
 - ▶ Partitioning (assignment, both "soft" and "hard") ~> maintain a set of clusters and assign points nearest to the cluster centroid
- Key difference between these classes:

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) → move from signletons to progressively larger clusters based on similarity
 - ▶ Partitioning (assignment, both "soft" and "hard") ~> maintain a set of clusters and assign points nearest to the cluster centroid
- Key difference between these classes: subdividing the data

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) → move from signletons to progressively larger clusters based on similarity
 - ▶ Partitioning (assignment, both "soft" and "hard") ~> maintain a set of clusters and assign points nearest to the cluster centroid
- Key difference between these classes: subdividing the data
 - ▶ Hierarchical → No

- Broadly, then, we can categorize clustering techniques into two camps:
 - ► **Hierarchical** (pairwise) → move from signletons to progressively larger clusters based on similarity
 - ▶ Partitioning (assignment, both "soft" and "hard") ~> maintain a set of clusters and assign points nearest to the cluster centroid
- Key difference between these classes: subdividing the data
 - ▶ Hierarchical → No
 - ▶ Partitioning ~> Yes

 Regardless of the approach, the **grouping** of data is central to reducing the dimensionality of the space, and so making the data more accessible and understandable

- Regardless of the approach, the grouping of data is central to reducing the dimensionality of the space, and so making the data more accessible and understandable
- But note that precisely how we think about grouping is dependent on the distribution of the data, which has implications for algorithm selection and validation

- Regardless of the approach, the grouping of data is central to reducing the dimensionality of the space, and so making the data more accessible and understandable
- But note that precisely how we think about grouping is dependent on the distribution of the data, which has implications for algorithm selection and validation
- In general, we can think of three main types of grouping:

- Regardless of the approach, the grouping of data is central to reducing the dimensionality of the space, and so making the data more accessible and understandable
- But note that precisely how we think about grouping is dependent on the distribution of the data, which has implications for algorithm selection and validation
- In general, we can think of three main types of grouping:
 - Location
 - Shape
 - Density

- Regardless of the approach, the **grouping** of data is central to reducing the dimensionality of the space, and so making the data more accessible and understandable
- But note that precisely how we think about grouping is dependent on the distribution of the data, which has implications for algorithm selection and validation
- In general, we can think of three main types of grouping:
 - Location
 - Shape
 - Density

Density

Shape

• We will focus on three major types of clustering today and next class:

- We will focus on three major types of clustering today and next class:
 - Hierarchical agglomerative clustering (today)

- We will focus on three major types of clustering today and next class:
 - Hierarchical agglomerative clustering (today)
 - ► Hard partitioning (focus on k-means clustering *next class*)

- We will focus on three major types of clustering today and next class:
 - Hierarchical agglomerative clustering (today)
 - ► Hard partitioning (focus on k-means clustering *next class*)
 - Soft (probabilistic) partitioning (focus on the EM algorithm and Gaussian mixture models next class)

- We will focus on three major types of clustering today and next class:
 - Hierarchical agglomerative clustering (today)
 - ► Hard partitioning (focus on k-means clustering *next class*)
 - Soft (probabilistic) partitioning (focus on the EM algorithm and Gaussian mixture models next class)
- Note: Next class, also application on presidential vote shares by state in R

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 6 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

 Before we can cluster (or even decide whether clustering makes sense as a reasonable path forward), we should explore the feature space a bit

- Before we can cluster (or even decide whether clustering makes sense as a reasonable path forward), we should explore the feature space a bit
- There are several ways to do this:

- Before we can cluster (or even decide whether clustering makes sense as a reasonable path forward), we should explore the feature space a bit
- There are several ways to do this:
 - Informally (simple distribution plots)

- Before we can cluster (or even decide whether clustering makes sense as a reasonable path forward), we should explore the feature space a bit
- There are several ways to do this:
 - Informally (simple distribution plots)
 - Visually (VAT/ODI plots)

- Before we can cluster (or even decide whether clustering makes sense as a reasonable path forward), we should explore the feature space a bit
- There are several ways to do this:
 - Informally (simple distribution plots)
 - Visually (VAT/ODI plots)
 - Mathematically (sparse sampling)

A Note on "Informed Guessing"

A Note on "Informed Guessing"

 Importantly, note that with these approaches to assessing clusterability, as with virtually all of clustering, there is great ambiguity

A Note on "Informed Guessing"

- Importantly, note that with these approaches to assessing clusterability, as with virtually all of clustering, there is great ambiguity
- We can do our best to make sense of a complex feature space, but as our data are unlabeled, we are essentially always "guessing" about what these patterns are revealing

A Note on "Informed Guessing"

- Importantly, note that with these approaches to assessing clusterability, as with virtually all of clustering, there is great ambiguity
- We can do our best to make sense of a complex feature space, but as our data are unlabeled, we are essentially always "guessing" about what these patterns are revealing
- This is a limitation of UML acorss the board; yet simultaneously the reason it is so important to combine UML with other data reduction and modeling processes

• Let's start with informal diagnosis using the famous Fisher Iris data set:

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ▶ Petal Length

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ► Petal Length
 - Petal Width

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ► Petal Length
 - Petal Width
 - Sepal Length

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ▶ Petal Length
 - Petal Width
 - Sepal Length
 - Sepal Width

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ▶ Petal Length
 - ▶ Petal Width
 - Sepal Length
 - Sepal Width
 - ▶ 3 Species: setosa, versicolor, and virginica

- Let's start with informal diagnosis using the famous Fisher Iris data set:
 - ▶ Petal Length
 - Petal Width
 - Sepal Length
 - Sepal Width
 - ▶ 3 Species: setosa, versicolor, and virginica
 - ▶ 150 observations (50 of each)

Diagnosing Clusterability: Informally (Sepal Length by Sepal Width)

Diagnosing Clusterability: Informally (Petal Length by Petal Width)

 Next, let's get a little more precise on diagnosing clusterability using Visual Assessment of Tendency (VAT) plots, and still with the Fisher Iris data set

- Next, let's get a little more precise on diagnosing clusterability using Visual Assessment of Tendency (VAT) plots, and still with the Fisher Iris data set
- Originally dervied by Bezdek and Hathaway (2002), these VAT plots are also often called Ordered Dissimilarity Images (ODI)

- Next, let's get a little more precise on diagnosing clusterability using Visual Assessment of Tendency (VAT) plots, and still with the Fisher Iris data set
- Originally dervied by Bezdek and Hathaway (2002), these VAT plots are also often called Ordered Dissimilarity Images (ODI)
- Dissimilarity: first, visualize the dissimilarity matrix

- Next, let's get a little more precise on diagnosing clusterability using Visual Assessment of Tendency (VAT) plots, and still with the Fisher Iris data set
- Originally dervied by Bezdek and Hathaway (2002), these VAT plots are also often called Ordered Dissimilarity Images (ODI)
- Dissimilarity: first, visualize the dissimilarity matrix
- **Ordered**: objects, o, that are spatially proximate (measured as k) are displayed in consecutive order (if k_i is near k_j , then $o_1, o_2 \forall o \equiv o_{ki}, o_{kj}$)

- Next, let's get a little more precise on diagnosing clusterability using Visual Assessment of Tendency (VAT) plots, and still with the Fisher Iris data set
- Originally dervied by Bezdek and Hathaway (2002), these VAT plots are also often called Ordered Dissimilarity Images (ODI)
- Dissimilarity: first, visualize the dissimilarity matrix
- **Ordered**: objects, o, that are spatially proximate (measured as k) are displayed in consecutive order (if k_i is near k_j , then $o_1, o_2 \forall o \equiv o_{ki}, o_{kj}$)
- The visual result becomes darker blocks along the diagonal reflect greater spatial similarity, compared to lighter shaded blocks, which inversely suggest greater dissimilarity

Order is Important

Order is Important

Order is Important

VAT (ODI): Iris Data

Figure: ODI: Sepal

VAT (ODI): Iris Data

Figure: ODI: Sepal

Figure: ODI: Petal

A Quick Comparison

Figure: ODI: Petal

A Quick Comparison

Figure: ODI: Petal

Figure: Raw Data: Petal

Diagnosing Clusterability: Hopkins Statistic

• We can also mathematically derive what the VAT plots are revealing using a simple, but powerful statistic called the Hopkins statistic

Diagnosing Clusterability: Hopkins Statistic

- We can also mathematically derive what the VAT plots are revealing using a simple, but powerful statistic called the Hopkins statistic
- The Hopkins (or "H") statistic tests the the null hypothesis of spatial randomness in the data using a sparse sampling test

Diagnosing Clusterability: Hopkins Statistic

- We can also mathematically derive what the VAT plots are revealing using a simple, but powerful statistic called the Hopkins statistic
- The Hopkins (or "H") statistic tests the the null hypothesis of spatial randomness in the data using a sparse sampling test
- It calculates the probability that a given dataset is generated by a uniform (random noise, with no clusters) distribution or not (non-random, with clustering likely)
- This general procedure is called sparse sampling

• We specify a null hypothesis test,

We specify a null hypothesis test,

 H_0 : the data is uniformly ("equally") distributed

• We specify a null hypothesis test,

 H_0 : the data is uniformly ("equally") distributed

 H_A : the data is not uniformly distributed

We specify a null hypothesis test,

 H_0 : the data is uniformly ("equally") distributed

 H_A : the data is not uniformly distributed

Goal: calculate the pairwise dissimilarity across all observations in the
actual data is compared to a set of simulated dataset drawn from
some random distribution (usually uniform) with the same standard
deviation as the original data

We specify a null hypothesis test,

 H_0 : the data is uniformly ("equally") distributed

 H_A : the data is not uniformly distributed

- Goal: calculate the pairwise dissimilarity across all observations in the
 actual data is compared to a set of simulated dataset drawn from
 some random distribution (usually uniform) with the same standard
 deviation as the original data
- In the form of a question: is the actual data random, compared to the synthetic data set, which we *know* is random?

• Sample uniformly *n* observations, *p*, from our **actual** data, *D*

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i '

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_i = dist(p_i, p_i)$

- Sample uniformly *n* observations, *p*, from our **actual** data, *D*
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_i = dist(p_i, p_i)$
- Create a **simulated** dataset, Dt, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_j = dist(p_i, p_i)$
- Create a **simulated** dataset, Dt, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D
- For each observation $q_i \in D'$, find it's nearest neighbor q_i'

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_j = dist(p_i, p_i)$
- Create a **simulated** dataset, Dt, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D
- For each observation $q_i \in D'$, find it's nearest neighbor q_i'
- Calculate the distance between q_i and q_i and denote it $w_j = dist(q_i, q_i)$

Calculating the Hopkins Statistic

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_j = dist(p_i, p_i)$
- Create a **simulated** dataset, Dt, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D
- For each observation $q_i \in D'$, find it's nearest neighbor q_i'
- Calculate the distance between q_i and q_i and denote it $w_j = dist(q_i, q_i)$
- H is calculated as the sum of the mean distance in the actual data divided by the sum of the mean distances in the actual and simulated data

Calculating the Hopkins Statistic

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_j = dist(p_i, p_i)$
- Create a **simulated** dataset, DI, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D
- For each observation $q_i \in D'$, find it's nearest neighbor q_i'
- Calculate the distance between q_i and q_i and denote it $w_j = dist(q_i, q_i)$
- H is calculated as the sum of the mean distance in the actual data divided by the sum of the mean distances in the actual and simulated data

$$H = \frac{\sum_{j=1}^{m} u_j}{\sum_{j=1}^{m} u_j + \sum_{j=1}^{m} w_j}$$
 (1)

Calculating the Hopkins Statistic

- Sample uniformly n observations, p, from our actual data, D
- For each observation $p_i \in D$, find the nearest neighbor p_i ?
- Calculate the distance between p_i and p_i and denote it as $u_j = dist(p_i, p_i)$
- Create a **simulated** dataset, DI, drawn from a random, uniform distribution with n observations (q), with the same standard deviation as D
- For each observation $q_i \in D'$, find it's nearest neighbor $q_{i'}$
- Calculate the distance between q_i and q_i and denote it $w_j = dist(q_i, q_i)$
- H is calculated as the sum of the mean distance in the actual data divided by the sum of the mean distances in the actual and simulated data

$$H = \frac{\sum_{j=1}^{m} u_j}{\sum_{j=1}^{m} u_j + \sum_{j=1}^{m} w_j}$$
 (1)

• In general, H>0.5 leads to rejection of H_0 , suggesting the data are non-random, and are "clusterable"

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 5 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

 Distance data are relational, where greater values reflect can either reflect greater similarity or dissimilarity across observations or features

- Distance data are relational, where greater values reflect can either reflect greater similarity or dissimilarity across observations or features
- Important considerations include the nature of the variables, scales of measurement, and domain expertise

- Distance data are relational, where greater values reflect can either reflect greater similarity or dissimilarity across observations or features
- Important considerations include the nature of the variables, scales of measurement, and domain expertise
- When items are clustered, proximity is usually indicated by some sort of distance

- Distance data are relational, where greater values reflect can either reflect greater similarity or dissimilarity across observations or features
- Important considerations include the nature of the variables, scales of measurement, and domain expertise
- When items are clustered, proximity is usually indicated by some sort of distance
- By contrast, features are usually grouped on the basis of correlation coefficients (but so can observations)

 Before calculating distance metrics, it is important to first, and always, standardize data in clustering applications

- Before calculating distance metrics, it is important to first, and always, standardize data in clustering applications
- Notably, distance calculations are strongly influenced by unit measurement and magnitude

- Before calculating distance metrics, it is important to first, and always, standardize data in clustering applications
- Notably, distance calculations are strongly influenced by unit measurement and magnitude
- Suppose you had two features on which you wanted to cluster units: weight (lbs.) and household income (dollars)

- Before calculating distance metrics, it is important to first, and always, standardize data in clustering applications
- Notably, distance calculations are strongly influenced by unit measurement and magnitude
- Suppose you had two features on which you wanted to cluster units: weight (lbs.) and household income (dollars)
- In such a case, different units of measurement and distributions (skewed) will always return biased results

- Before calculating distance metrics, it is important to first, and always, standardize data in clustering applications
- Notably, distance calculations are strongly influenced by unit measurement and magnitude
- Suppose you had two features on which you wanted to cluster units: weight (lbs.) and household income (dollars)
- In such a case, different units of measurement and distributions (skewed) will always return biased results
- Thus first, always standardize input features to ensure they are "unitless" (commonly setting $\mu=0$ and $\sigma=1$)

• We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$

- We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$
- Generally a distance measure d(p, q) between two points p and q satisfies the following properties, where g is any other intermediate point:

- We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$
- Generally a distance measure d(p, q) between two points p and q satisfies the following properties, where g is any other intermediate point:
 - b d(p,q) = d(q,p)

- We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$
- Generally a distance measure d(p, q) between two points p and q satisfies the following properties, where g is any other intermediate point:
 - b d(p,q) = d(q,p)
 - ▶ d(p,q) > 0, if $p \neq q$

- We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$
- Generally a distance measure d(p, q) between two points p and q satisfies the following properties, where g is any other intermediate point:
 - b d(p,q) = d(q,p)
 - d(p,q) > 0, if $p \neq q$
 - ▶ d(p,q) = 0, if p = q

- We begin with some configuration of actual data, $\delta(p,q)$, and we want to calculate a measurement of distance, d(p,q), that accurately reflects this, such that $d(p,q) \to \delta(p,q)$
- Generally a distance measure d(p, q) between two points p and q satisfies the following properties, where g is any other intermediate point:
 - b d(p,q) = d(q,p)
 - d(p,q) > 0, if $p \neq q$
 - ▶ d(p, q) = 0, if p = q
 - \rightarrow $d(p,q) \leq d(p,g) + d(g,q)$

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{2}$$

where, setting $m \ge 1$ defines some true distance

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{2}$$

where, setting $m \ge 1$ defines some true distance

• m = 1: Manhattan ("city block") Distance:

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{2}$$

where, setting $m \ge 1$ defines some true distance

• m = 1: Manhattan ("city block") Distance:

$$d_{manhattan}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{2}$$

where, setting $m \ge 1$ defines some true distance

• m = 1: Manhattan ("city block") Distance:

$$d_{manhattan}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Canberra Distance (weighted version of Manhattan):

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{2}$$

where, setting $m \ge 1$ defines some true distance

• m = 1: Manhattan ("city block") Distance:

$$d_{manhattan}(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

Canberra Distance (weighted version of Manhattan):

$$d_{canberra}(p,q) = \sum_{i=1}^{n} \frac{|p_i - q_i|}{|p_i| + |q_i|}$$

Spatial Measures

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{3}$$

where, setting $m \ge 1$ defines some true distance

• m = 2: Euclidean Distance:

Spatial Measures

$$d_m(p,q) = \left(\sum_{i=1}^n |p_i - q_i|^m\right)^{\frac{1}{m}} \tag{3}$$

where, setting $m \ge 1$ defines some true distance

• m = 2: Euclidean Distance:

$$d_{euclidean}(p,q) = (\sum_{i=1}^{n} (p_i - q_i)^2)^{\frac{1}{2}}$$

or, more compactly (and commonly),

Spatial Measures

$$d_m(p,q) = (\sum_{i=1}^n |p_i - q_i|^m)^{\frac{1}{m}}$$
 (3)

where, setting $m \ge 1$ defines some true distance

• m = 2: Euclidean Distance:

$$d_{euclidean}(p,q) = (\sum_{i=1}^{n} (p_i - q_i)^2)^{\frac{1}{2}}$$

or, more compactly (and commonly),

$$d_{euclidean}(p,q) = \sqrt{\sum_{i=1}^{n}(p_i - q_i)^2}$$

 Correlation measures calculate similarity between observations based on...

 Correlation measures calculate similarity between observations based on...correlation

- Correlation measures calculate similarity between observations based on...correlation
- Meaning, two observations could be correlated across features, but far apart in Euclidean space, suggesting that we're interested in attribute similarity

- Correlation measures calculate similarity between observations based on...correlation
- Meaning, two observations could be correlated across features, but far apart in Euclidean space, suggesting that we're interested in attribute similarity
- Pearson Distance:

- Correlation measures calculate similarity between observations based on...correlation
- Meaning, two observations could be correlated across features, but far apart in Euclidean space, suggesting that we're interested in attribute similarity
- Pearson Distance:

$$d_{pearson}(p,q) = 1 - rac{\sum_{i=1}^{n}(p_i - ar{p})(q_i - ar{q})}{\sqrt{\sum_{i=1}^{n}(p_i - ar{p})^2\sum_{i=1}^{n}(q_i - ar{q})^2}}$$

- Correlation measures calculate similarity between observations based on...correlation
- Meaning, two observations could be correlated across features, but far apart in Euclidean space, suggesting that we're interested in attribute similarity
- Pearson Distance:

$$d_{pearson}(p,q) = 1 - rac{\sum_{i=1}^{n}(p_i - ar{p})(q_i - ar{q})}{\sqrt{\sum_{i=1}^{n}(p_i - ar{p})^2\sum_{i=1}^{n}(q_i - ar{q})^2}}$$

• Eisen Cosine Distance:

- Correlation measures calculate similarity between observations based on...correlation
- Meaning, two observations could be correlated across features, but far apart in Euclidean space, suggesting that we're interested in attribute similarity
- Pearson Distance:

$$d_{pearson}(p,q) = 1 - rac{\sum_{i=1}^{n}(p_i - ar{p})(q_i - ar{q})}{\sqrt{\sum_{i=1}^{n}(p_i - ar{p})^2\sum_{i=1}^{n}(q_i - ar{q})^2}}$$

• Eisen Cosine Distance:

$$d_{eisen}(p,q) = 1 - rac{|\sum_{i=1}^{n} p_i q_i|}{\sqrt{\sum_{i=1}^{n} p_i^2 \sum_{i=1}^{n} q_i^2}}$$

What can I cluster?

At this point you may be thinking, what can I cluster thats not a flower?

What can I cluster?

 At this point you may be thinking, what can I cluster thats not a flower? → a lot of things...

What can I cluster?

- At this point you may be thinking, what can I cluster thats not a flower? → a lot of things...
 - Respondents on large surveys
 - Geopolitical studies
 - Market preferences
 - Economies
 - Social media users
 - Perceptual studies
 - Geographic trends
 - And, on Friday, partisan voting by state
 - And, on your HW, state legislative professionalism

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 5 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

• The most common form of hierarchical clustering is agglomerative, or "bottom-up" clustering

- The most common form of hierarchical clustering is agglomerative, or "bottom-up" clustering
- Opposite partitioning methods, hierarchical clustering is concerned with creating clusters one observation at a time (or recursively for divisive)

- The most common form of hierarchical clustering is agglomerative, or "bottom-up" clustering
- Opposite partitioning methods, hierarchical clustering is concerned with creating clusters one observation at a time (or recursively for divisive)
- Each observation is treated as a cluster, and is fused with the closest observation in space

- The most common form of hierarchical clustering is agglomerative, or "bottom-up" clustering
- Opposite partitioning methods, hierarchical clustering is concerned with creating clusters one observation at a time (or recursively for divisive)
- Each observation is treated as a cluster, and is fused with the closest observation in space
- This cluster is joined with other similar (close) observations in a pairwise fashion until all observations belong to a cluster, converging when all observations belong to a single cluster, k

- The most common form of hierarchical clustering is agglomerative, or "bottom-up" clustering
- Opposite partitioning methods, hierarchical clustering is concerned with creating clusters one observation at a time (or recursively for divisive)
- Each observation is treated as a cluster, and is fused with the closest observation in space
- This cluster is joined with other similar (close) observations in a
 pairwise fashion until all observations belong to a cluster, converging
 when all observations belong to a single cluster, k
- Key terms: distance measure, linkage methods, dendrogram, tree-cutting

• Treat each observation as a singleton

- Treat each observation as a singleton
- Begin with n observations and some [distance] measure of all the $\binom{n}{2}=\frac{n(n-1)}{2}$ pairwise dissimilarities

- Treat each observation as a singleton
- Begin with *n* observations and some [distance] measure of all the $\binom{n}{2} = \frac{n(n-1)}{2}$ pairwise dissimilarities
- Examine all pairwise inter-cluster dissimilarities among the clusters, and identify the pair of clusters that are *least* dissimilar

- Treat each observation as a singleton
- Begin with *n* observations and some [distance] measure of all the $\binom{n}{2} = \frac{n(n-1)}{2}$ pairwise dissimilarities
- Examine all pairwise inter-cluster dissimilarities among the clusters, and identify the pair of clusters that are *least* dissimilar
- Fuse these clusters together based on the linkage method

- Treat each observation as a singleton
- Begin with n observations and some [distance] measure of all the $\binom{n}{2} = \frac{n(n-1)}{2}$ pairwise dissimilarities
- Examine all pairwise inter-cluster dissimilarities among the clusters, and identify the pair of clusters that are *least* dissimilar
- Fuse these clusters together based on the linkage method
- Compute the new pairwise inter-cluster dissimilarities among the remaining clusters

- Treat each observation as a singleton
- Begin with n observations and some [distance] measure of all the $\binom{n}{2} = \frac{n(n-1)}{2}$ pairwise dissimilarities
- Examine all pairwise inter-cluster dissimilarities among the clusters, and identify the pair of clusters that are *least* dissimilar
- Fuse these clusters together based on the linkage method
- Compute the new pairwise inter-cluster dissimilarities among the remaining clusters
- Stop when we reach k clusters (k = 1 in agglomerative; k = n in divisive)

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 6 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

• Linkage defines the (dis)similarity between two groups of observations

- Linkage defines the (dis)similarity between two groups of observations
- There are five common types of linkage: complete, single, Ward's method, average, and centroid

• Complete linkage uses the maximal inter-cluster dissimilarity,

$$d_{complete}(C_x, C_y) = max\{C_x, C_y\}$$

• Complete linkage uses the maximal inter-cluster dissimilarity,

$$d_{complete}(C_x, C_y) = max\{C_x, C_y\}$$

• Single linkage uses the minimal inter-cluster dissimilarity,

$$d_{single}(C_x, C_y) = min\{C_x, C_y\}$$

• Complete linkage uses the maximal inter-cluster dissimilarity,

$$d_{complete}(C_x, C_y) = max\{C_x, C_y\}$$

• Single linkage uses the minimal inter-cluster dissimilarity,

$$d_{single}(C_x, C_y) = min\{C_x, C_y\}$$

 Ward's linkage method joins the two clusters whose fusion is constrained by the smallest increase in SSE calculated per cluster, C,

$$\sum_{i=1}^n (x_i - \bar{x})^2$$

Average linkage uses the mean inter-cluster dissimilarity,

$$d_{average}(C_x, C_y) = \frac{\sum_i \sum_j d_{ij}}{N_{C_x} N_{C_y}}$$

where, d_{ij} is the pairwise distance between observations i and j, and N_* is the total number of observations in the computed cluster, C

Average linkage uses the mean inter-cluster dissimilarity,

$$d_{average}(C_x, C_y) = \frac{\sum_i \sum_j d_{ij}}{N_{C_x} N_{C_y}}$$

where, d_{ij} is the pairwise distance between observations i and j, and N_* is the total number of observations in the computed cluster, C

• **Centroid** linkage computes the dissimilarity between the *centroid* for cluster, \bar{x}_{C_*} ,

$$d_{centroid}(C_x, C_y) = d(\bar{x}_{C_x}, \bar{x}_{C_y})$$

Average linkage uses the mean inter-cluster dissimilarity,

$$d_{average}(C_x, C_y) = \frac{\sum_i \sum_j d_{ij}}{N_{C_x} N_{C_y}}$$

where, d_{ij} is the pairwise distance between observations i and j, and N_* is the total number of observations in the computed cluster, C

• **Centroid** linkage computes the dissimilarity between the *centroid* for cluster, \bar{x}_{C_*} ,

$$d_{centroid}(C_x, C_y) = d(\bar{x}_{C_x}, \bar{x}_{C_y})$$

• Difference between average and centroid:

Average linkage uses the mean inter-cluster dissimilarity,

$$d_{average}(C_x, C_y) = \frac{\sum_i \sum_j d_{ij}}{N_{C_x} N_{C_y}}$$

where, d_{ij} is the pairwise distance between observations i and j, and N_* is the total number of observations in the computed cluster, C

• **Centroid** linkage computes the dissimilarity between the *centroid* for cluster, \bar{x}_{C_*} ,

$$d_{centroid}(C_x, C_y) = d(\bar{x}_{C_x}, \bar{x}_{C_y})$$

Difference between average and centroid: average
 → average of all pairwise calculations;

• Average linkage uses the mean inter-cluster dissimilarity,

$$d_{average}(C_x, C_y) = \frac{\sum_i \sum_j d_{ij}}{N_{C_x} N_{C_y}}$$

where, d_{ij} is the pairwise distance between observations i and j, and N_* is the total number of observations in the computed cluster, C

• **Centroid** linkage computes the dissimilarity between the *centroid* for cluster, \bar{x}_{C_*} ,

$$d_{centroid}(C_x, C_y) = d(\bar{x}_{C_x}, \bar{x}_{C_y})$$

Difference between average and centroid: average
 → average of all
 pairwise calculations; centroid
 → fuses across centroids, which are
 intra-cluster averages

• There is no rule on determining which method is "best", as best is subjective, and typically project (or domain) dependent

- There is no rule on determining which method is "best", as best is subjective, and typically project (or domain) dependent
 - Average, complete and single linkage are most popular among statisticians, while centroid is often used in genomics and Ward's is most common in text mining

- There is no rule on determining which method is "best", as best is subjective, and typically project (or domain) dependent
 - Average, complete and single linkage are most popular among statisticians, while centroid is often used in genomics and Ward's is most common in text mining
 - ► Average and complete linkage tend to be preferred because they tend to yield more balanced dendrograms (more in a moment)

- There is no rule on determining which method is "best", as best is subjective, and typically project (or domain) dependent
 - Average, complete and single linkage are most popular among statisticians, while centroid is often used in genomics and Ward's is most common in text mining
 - ► Average and complete linkage tend to be preferred because they tend to yield more balanced dendrograms (more in a moment)
 - ► **Single** linkage can result in elongated, stringy-type clusters where each observation fuses one-at-a-time (i.e., its not pretty...)

Which linkage method should we select?

- There is no rule on determining which method is "best", as best is subjective, and typically project (or domain) dependent
 - Average, complete and single linkage are most popular among statisticians, while centroid is often used in genomics and Ward's is most common in text mining
 - ► Average and complete linkage tend to be preferred because they tend to yield more balanced dendrograms (more in a moment)
 - ► **Single** linkage can result in elongated, stringy-type clusters where each observation fuses one-at-a-time (i.e., its not pretty...)
 - Ward's method is based on minimizing the "loss of information" from joining two groups

- Two types of distance in hierarchical clustering might be confusing: "distance measure" and "linkage method"
- Worth reiterating the difference here to avoid confusion

- Two types of distance in hierarchical clustering might be confusing: "distance measure" and "linkage method"
- Worth reiterating the difference here to avoid confusion
- **Distance**: the measure of (dis)similarity between *observations* (e.g., $d_{euclidean}(p, q)$)

- Two types of distance in hierarchical clustering might be confusing: "distance measure" and "linkage method"
- Worth reiterating the difference here to avoid confusion
- **Distance**: the measure of (dis)similarity between *observations* (e.g., $d_{euclidean}(p,q)$)
- **Linkage**: also distance, but the measure of (dis)similarity between clusters (e.g., $d_{single}(C_x, C_y)$)

- Two types of distance in hierarchical clustering might be confusing: "distance measure" and "linkage method"
- Worth reiterating the difference here to avoid confusion
- **Distance**: the measure of (dis)similarity between *observations* (e.g., $d_{euclidean}(p, q)$)
- **Linkage**: also distance, but the measure of (dis)similarity between clusters (e.g., $d_{single}(C_x, C_y)$)
- Therefore, the input for a hierarchical clustering algorithm is an N × N distance matrix, from which inter-cluster distances are calculated via the selected linkage method

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 6 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

• So we fit a hierarchical clustering algorithm... now what?

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"
 - Leaves: observations

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"
 - Leaves: observations
 - ▶ Branches: inter-cluster connectors

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"
 - ► Leaves: observations
 - ▶ Branches: inter-cluster connectors
- As each leaf is fused with another, progressing from the bottom-up until all singletons are merged into a single tree

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"
 - Leaves: observations
 - ▶ Branches: inter-cluster connectors
- As each leaf is fused with another, progressing from the bottom-up until all singletons are merged into a single tree
- There is only one value-axis: the Y axis is the measured distance

- So we fit a hierarchical clustering algorithm... now what?
- The most common, clear way to diagnose and explore output is a dendrogram
- A tree-like structure with "leaves" and "branches"
 - Leaves: observations
 - ▶ Branches: inter-cluster connectors
- As each leaf is fused with another, progressing from the bottom-up until all singletons are merged into a single tree
- There is only one value-axis: the Y axis is the measured distance
- So we can get clear clustering when branches along the Y axis are long (suggesting greater distance from other clusters), and less obvious clustering when the branches are shorter

• Though hierarchical clustering is lauded for being assumption free in that we don't select *k a priori*, we actually do need to select *k*, but post hoc

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output
- The "useful" thing is to cut the tree where clusters exist, which is typically where branches are longest on the Y axis

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output
- The "useful" thing is to cut the tree where clusters exist, which is typically where branches are longest on the Y axis
- So how many clusters *should* accurately characterize the data...?

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output
- The "useful" thing is to cut the tree where clusters exist, which is typically where branches are longest on the Y axis
- So how many clusters should accurately characterize the data...?
- That's inherently subjective and largely up to the researcher

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output
- The "useful" thing is to cut the tree where clusters exist, which is typically where branches are longest on the Y axis
- So how many clusters should accurately characterize the data...?
- That's inherently subjective and largely up to the researcher
- HC is usually most useful in comparison to other approaches allowing for comparison and validation (more next class)

- Though hierarchical clustering is lauded for being assumption free in that we don't select k a priori, we actually do need to select k, but post hoc
- In other words, we fit our algorithm, we plotted our dendrogram, and we now have to do something useful with the output
- The "useful" thing is to cut the tree where clusters exist, which is typically where branches are longest on the Y axis
- So how many clusters should accurately characterize the data...?
- That's inherently subjective and largely up to the researcher
- HC is usually most useful in comparison to other approaches allowing for comparison and validation (more next class)
- Note: HC is computationally inefficient and expensive, especially on large datasets

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 6 Linkage Methods
- 6 Dendrograms & Tree Cutting
- 7 Divisive Hierarchical Clustering
- 8 Coming Up

• Divisive clustering is often referred to "top down" clustering

- Divisive clustering is often referred to "top down" clustering
- We begin by assigning all of observations to a single cluster

- Divisive clustering is often referred to "top down" clustering
- We begin by assigning all of observations to a single cluster
- We then partition the cluster into two least similar clusters, of all possible split values

- Divisive clustering is often referred to "top down" clustering
- We begin by assigning all of observations to a single cluster
- We then partition the cluster into two least similar clusters, of all possible split values
- We proceed recursively on each cluster until each cluster is a singleton

- Divisive clustering is often referred to "top down" clustering
- We begin by assigning all of observations to a single cluster
- We then partition the cluster into two least similar clusters, of all possible split values
- We proceed recursively on each cluster until each cluster is a singleton
- This is significantly more expensive even than agglomerative, given the many split calculations required at each split (hence its less popular)

Lecture Outline

- Clustering Basics
- 2 Diagnosing Clusterability
- 3 Conceptualizing and Calculating Distance
- 4 Hierarchical Clustering
- 5 Linkage Methods
- 6 Dendrograms & Tree Cutting
- Divisive Hierarchical Clustering
- 8 Coming Up

Coming Up

- k-means clustering
- Gaussian mixture models
- Demonstration in R: 2012 state Democratic vote shares

Coming Up

- k-means clustering
- Gaussian mixture models
- Demonstration in R: 2012 state Democratic vote shares
- First problem set due Friday at 5 pm to our GH repo (quick word on the data and concept)