

Probabilidade e Estatística Probabilidades

Prof. Fermín Alfredo Tang Montané

Probabilidade Condicional

Definição:

Sejam A e B dois eventos quaisquer de uma espaço amostral Ω, com P(B) > 0. A probabilidade de A ocorrer, na hipótese de B já ter ocorrido, denotado por P(A/B), é dada por:

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

▶ De maneira análoga, a probabilidade condicional de B dada a ocorrencia de A.

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Probabilidade Condicional

Exemplo:

- Considere:
 - ▶ E = "Um dado é lançado e a face é observada"
 - $\Omega = \{1, 2, 3, 4, 5, 6\}$
 - A = "É obtido o valor 3" = {3}
 - ▶ B = "É um obtido um valor ímpar" = $\{1, 3, 5\}$
 - ▶ $A \cap B = \{3\}$
- ▶ A probabilidade condicional:

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{1/6}{3/6} = \frac{1}{3}$$

Probabilidade Condicional Eventos Independentes

- Dois eventos A e B são ditos independentes se a probabilidade de ocorrência de um evento não interfere na probabilidade de ocorrência do outro evento.
- ▶ Neste caso, a probabilidade condicional fica:

$$P(A/B) = P(A)$$

$$P(B/A) = P(B)$$

Tipos de Eventos Dúvida

- Mutuamente Excludentes (Exclusivos ou disjuntos): quando não podem ocorrer simultaneamente.
- Independentes: se a probabilidade de ocorrência de um evento não interfere na probabilidade de ocorrência do outro evento.
- Eventos disjuntos são sempre independentes?

- No experimento,
 - ▶ E ="lançamento de um dado". Define-se os eventos A e B:
 - A="obtenção de uma face par"
 - B="obtenção de uma face impar"
- Os eventos A e B são claramente disjuntos.

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}$$

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}$$

Os eventos A e B são independentes?.

- Os eventos A e B são independentes?.
- Se fossem independentes teríamos que:

$$P(A/B) = P(A)$$

▶ Por definição:

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{P(\emptyset)}{P(B)} = 0$$

Mas sabemos que: $P(A) = \frac{1}{2}$

Logo são eventos dependentes.

Quando temos eventos independentes?

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

- ▶ E = "Lançar dois dados"
 - ▶ A = "Obter um número par no primeiro dado"
 - ▶ B = "Obter um número par no segundo dado"
 - A ∩ B = "Obter números pares em ambos dados"
 - Os eventos A e B são independentes?
 - Os eventos A e B são disjuntos?

- ▶ E = "Lançar dois dados"
 - A = "Obter um número par no primeiro dado"
 - ▶ B = "Obter um número par no segundo dado"
 - A ∩ B = "Obter números pares em ambos dados"

$$P(A) = \frac{1}{2} \qquad P(B) = \frac{1}{2}$$

$$P(A/B) = P(A) = \frac{1}{2}$$

- ▶ E = "Lançar dois dados"
 - A = "Obter um número par no primeiro dado"
 - ▶ B = "Obter um número par no segundo dado"
 - A ∩ B = "Obter números pares em ambos dados"

			1	<u> </u>	3	4	}	5	•	•	
	I	(1,1)	(1,	2)	(1,3)	(1,	4)	(1,5)	(1,	6)	
	<u> </u>	(2.1)	(2) \	(2.3)	(2	4	(2.5)	/2		
		(2,1)	(4	4)	(2,3)	(2	7)	(2,3)	(2	9)	
	3	(3,1)	(3,	2)	(3,3)	(3,	4)	(3,5)	(3,	6)	
	4	(4,1)	(4	<u>2)</u>	(4,3)	(4	4)	(4,5)	(4	6)	
		(((-	
	5	(5,1)	(5,	2)	(5,3)	(5,	4)	(5,5)	(5,	6)	
		(6.1)	16	2 /	(6.2)	16	41	(6.5)	16		
	0	(0,1)	(0,	-)	(0,3)	(0)	')	(0,3)	(0	9	

$$P(A) = \frac{18}{36} = \frac{1}{2}$$

$$P(B) = \frac{18}{36} = \frac{1}{2}$$

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{9/36}{18/36} = \frac{1}{2}$$

Probabilidade Condicional Regra do Produto

A regra do produto refere-se a probabilidade da interseção de eventos. É resultado direto da definição de probabilidade condicional.

$$P(A \cap B) = P(A / B)P(B)$$

No caso de eventos independentes temos o seguinte resultado.

$$P(A \cap B) = P(A)P(B)$$

Probabilidade Condicional

Exemplo I:

Num lote de 12 peças, 4 são defeituosas. Duas peças são retiradas, uma a uma sem reposição. Qual a probabilidade de que ambas sejam não defeituosas?

Método I:

- Considere cada retirada de uma peça não defeituosa como um evento.
 - A = "A primeira peça retirada é não defeituosa"
 - ▶ B = "A segunda peça retirada é não defeituosa"
- ▶ Observe que o evento B depende de A. Pede-se calcular $P(A \cap B)$.

Sabe-se que:

$$P(A) = \frac{8}{12}$$
 $P(B/A) = \frac{7}{11}$

Por definição:

$$P(A \cap B) = P(B/A)P(A)$$
$$= \frac{7}{11} \frac{8}{12} = \frac{14}{33} = 0,4242$$

Probabilidade Condicional

Exemplo I:

Num lote de 12 peças, 4 são defeituosas. Duas peças são retiradas, uma a uma sem reposição. Qual a probabilidade de que ambas sejam não defeituosas?

Método 2:

- \blacktriangleright Defina o espaço amostral Ω como e o evento A como:
 - Ω = "Formas de retirar duas peças peças do lote"
 - A = "Retirar duas peças não defeituosas do lote"
- ▶ Pede-se calcular P(A). Apliçar definição de probabilidades classica.

Calcula-se:

$$n(A) = C_2^8 = \frac{8!}{2!6!} = 28$$

$$n(\Omega) = C_2^{12} = \frac{12!}{2!10!} = 66$$

Por definição:

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{28}{66} = 0,4242$$

- ▶ Considere $A_1, A_2, A_3, ..., A_n$ uma partição do espaço amostral Ω e
- \blacktriangleright seja B um evento qualquer de Ω .

• Observe: $(A_2 \cap B)$

▶ Considere A_1 , A_2 , A_3 , ..., A_n uma partição do espaço amostral Ω e seja B um evento qualquer de Ω . A probabilidade de ocorrencia de B é definida como:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B / A_i)$$

- Prova:
- ▶ Observa-se que B pode ser decomposto em partes:

$$B = (A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B)$$

$$P(B) = P\left[(A_1 \cap B) \cup (A_2 \cap B) \cup \cdots \cup (A_n \cap B) \right]$$

▶ Como as partes de B são mutuamente excludentes:

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \cdots + P(A_n \cap B)$$

Aplicandose a regra do produto:

$$P(B) = P(A_1 \cap B) + P(A_2 \cap B) + \cdots + P(A_n \cap B)$$

Obtem-se que:

$$P(B) = P(A_1)P(B/A_1) + P(A_2)P(B/A_2) + \cdots + P(A_n)P(B/A_n)$$

Re-escrevendo, conclui-se a prova:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B / A_i)$$

Na prática, as probabilidades de ocorrência dos eventos A_1 , A_2 , A_3 , ..., A_n que fazem parte da partição Ω , são conhecidas ou podem ser calculadas, por isso as probabilidades $P(A_i)$ são chamadas de probabilidades à priori dos eventos A_i .

Exemplo:

- ▶ Um fabricante de sorvete recebe 20% do todo o leite que utiliza de uma fazenda F1, 30% de uma fazenda F2 e 50% de uma fazenda F3.
- Um órgão de fiscalização inspecionou as fazendas e observou que 20% do leite produzido na fazenda FI estava adulterado por adição de água, enquanto que para F2 e F3, essa proporção era de 5% e 2 %, respectivamente.
- Na fábrica de sorvete o leite é armazenado dentro de um refrigerador sem identificação das fazendas. Qual a probabilidade de que uma amostra de leite retirada do refrigerador esteja adulterada?

Solução:

- O espaço amostral pode ser particionado nas três fazendas fornecedoras de leite. Define-se assim os seguintes eventos e as suas probabilidades:
 - F₁: O sorvete foi fabricado com leite da fazenda F_1 ; $P(F_1) = 0.20$;
 - Arr F₂: O sorvete foi fabricado com leite da fazenda F₂; $P(F_2) = 0.30$;
 - F₃: O sorvete foi fabricado com leite da fazenda F_3 ; $P(F_3) = 0.50$;

Solução:

- Por outro lado, define-se o evento B como:
 - B: O leite estava adulterado pela adição de água.
- ▶ Isso permite definir as seguinte probabilidades condicionais:
 - $P(B/F_1)$: probabilidade de que o leite este adulterado dado que veio da fazenda F_1 ;
 - \triangleright P(B/F₂): probabilidade de que o leite este adulterado dado que veio da fazenda F₂;
 - \triangleright P(B/F₃): probabilidade de que o leite este adulterado dado que veio da fazenda F₃;
- onde:
 - $P(B/F_1) = 0.20; P(B/F_2) = 0.05; P(B/F_3) = 0.02;$
- usando o teorema de probabilidade total, pode-se calcular a probabilidade de que o leite este adulterado:

$$P(B) = \sum_{i=1}^{n} P(F_i)P(B/F_i) = (0,20)(0,20) + (0,30)(0,05) + (0,50)(0,02)$$
$$= 0,065$$

Considere A_1 , A_2 , A_3 , ..., A_n uma partição do espaço amostral Ω e seja B um evento qualquer de Ω . O teorema de Bayes estabelece uma expressão para a probabilidade condicional $P(A_i/B)$:

$$P(A_{i} / B) = \frac{P(A_{i})P(B / A_{i})}{\sum_{i=1}^{n} P(A_{i})P(B / A_{i})}$$

- Sob a hipótese de que o evento B, já tenha ocorrido, a probabilidade condicional P(A_i/B) é chamada de probabilidade à posteriori do evento A_i. Em contraste com a probabilidade à priori do evento A_i, P(A_i).
- Prova: Obtem-se diretamente da definição de probabilidade condicional, regra do produto e do teorema de probabilidade total.

$$P(A_i / B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i).P(B / A_i)}{P(B)} = \frac{P(A_i)P(B / A_i)}{\sum_{i=1}^{n} P(A_i)P(B / A_i)}$$

Exemplo I:

- Considerando o exemplo do fabricante de sorvete, sabendo-se que a amostra está adulterada, determinar a probabilidade de que o leite tenha sido fornecido pela fazenda F₂.
- ▶ Solução:
- \triangleright Pede-se calcular P(F₂/B).
- Por definição:

$$P(F_2 / B) = \frac{P(F_2)P(B / F_2)}{\sum_{i=1}^{3} P(F_i)P(B / F_i)}$$

Substituindo os valores das probabilidades à priori e à posteriori.

$$P(F_2 \mid B) = \frac{(0,30)(0,05)}{(0,20)(0,20) + (0,30)(0,05) + (0,50)(0,02)} = \frac{0,015}{0,065} = 0,2307$$

Exemplo 2:

▶ Determinadas peças são produzidas em três fábricas F₁, F₂, e F₃, sendo que a fábrica I e 2 produzem a mesma proporção de peças e a fábrica 3 produz o dobro das peças que cada uma das outras duas fábricas produzem. Sabe-se também, que 2% das peças produzidas pela fábrica I são defeituosas e que a proporção para as fábricas 2 e 3 são 3% e 4%, respectivamente. Qual a probabilidade de que uma peça defeituosa tenha origem da fábrica 2?

Solução:

Define-se o evento B = "A peça fabricada é defeituosa". Enquanto que o processo de fabricação em três fabricas configura uma partição em três eventos:

```
F<sub>1</sub> = "A peça é fabricada na fábrica I"; P(F_1) = 0.25
```

F₂ = "A peça é fabricada na fábrica 2";
$$P(F_2) = 0.25$$

F₃ = "A peça é fabricada na fábrica 3".
$$P(F_3) = 0.50$$

Solução:

▶ Os dados referentes à probabilidades condicionais P(B/F_i), que indicam a chance de uma peça ser defeituosa, dado provem de uma fábrica específica, são conhecidos:

$$P(B/F_1) = 0.02$$

 $P(B/F_2) = 0.03$
 $P(B/F_3) = 0.04$

▶ Pede-se a probabilidade $P(F_2/B)$. Para isso aplica-se o teorema de Bayes.

$$P(F_2 / B) = \frac{P(F_2)P(B / F_2)}{\sum_{i=1}^{3} P(F_i)P(B / F_i)}$$

Substituindo os valores das probabilidades à priori e à posteriori.

$$P(F_2 \mid B) = \frac{(0,25)(0,03)}{(0,25)(0,02) + (0,25)(0,03) + (0,50)(0,04)} = \frac{0,0075}{0,0325} = 0,2307$$