3.1. Задача про Гарри Поттера (acm.timus).

Уже сдал в прошлой домашней работе.

3.2.1. TIMUS_1521 (Военные сборы-2) - Splay-tree

В терминах сплей-дерева эта задача объясняется чуть проще, поэтому начну именно с этого.

Заведем дерево, закинув туда все числа от 1 до N, причем дерево на неявном ключе. Затем удалим из дерева k-ый элемент: в этот момент вспомним как работает удаление элемента в сплей-дереве: сначала в дереве ищется и вытягивается наверх этот элемент, удаляется и два его поддерева смёрживаются. Во время удаления запомним что за элемент мы нашли (k-ый-то он по неявному ключу, то есть по порядку в массиве, а мы запомним какой номер в нем стоял – и выведем его в ответ), и еще одно число: размер левого поддерева удаляемого элемента. Это число будет означать сколько осталось неудаленных элементов, меньшего удаляемого. Обозначим его за A.

А зная это число легко вычислить где будет следующий k-ый элемент после удаленного: это A + k, по модулю длины оставшего массива. Возвращаемся в начало и повторяем все действия и так пока не кончится массив.

Удаление (и вставка) работает за O(logN), значит общая сложность O(NlogN).

Код в приложении к письму в файле 1521_splay.java

Сплей-дерево в первой строке:

ID	Дата	Автор	Задача	Язык	Результат проверки	№ теста	Время работы	Выделено памяти
5537315	17:49:12 2 мар 2014	<u>TimurTuraev</u>	1521. Военные учения 2	Java 1.7	Accepted		0.546	14 428 КБ
5537302	17:47:49 2 мар 2014	TimurTuraev	1521. Военные учения 2	Java 1.7	Accepted		0.5	14 416 КБ
5536493	13:14:44 2 мар 2014	Raihasen	1521. Военные учения 2	G++ 4.7.2	Accepted		0.14	769 KB
5536154	06:26:52 2 мар 2014	TimurTuraev	1521. Военные учения 2	Java 1.7	Accepted		0.531	8 924 КБ

3.2.2. TIMUS_1521 (Военные сборы-2) – Treap

Заведем декартово дерево на неявном ключе и закинем все наши элементы туда (можно даже не за линию, а путем N последовательных вставок, такое заходит).

Идея та же: хочется при удалении знать сколько осталось слева живых элементов. А в декартовом дереве это тоже можно просто сделать, ведь как работает удаление? Сначала делаем сплит по «position – 1», затем по «первому» элементу (т.к. дерево на неявном ключе), получаем 3 элемента: левое поддерево left, искомый элемент и правое поддерево right. Затем склеиваем получившиеся деревья.

Искомое число A - размер left.

Сложность та же.

Код в приложении к письму в файле 1521_treap.java

Решение декартовым деревом в последней строке:

ID	Дата	Автор	Задача	Язык	Результат проверки	№ теста	Время работы	Выделено памяти
5537315	17:49:12 2 мар 2014	<u>TimurTuraev</u>	1521. Военные учения 2	Java 1.7	Accepted		0.546	14 428 КБ
5537302	17:47:49 2 мар 2014	<u>TimurTuraev</u>	1521. Военные учения 2	Java 1.7	Accepted		0.5	14 416 КБ
5536493	13:14:44 2 мар 2014	Raihasen	1521. Военные учения 2	G++ 4.7.2	Accepted		0.14	769 KB
5536154	06:26:52 2 мар 2014	<u>TimurTuraev</u>	<u>1521. Военные учения 2</u>	Java 1.7	Accepted		0.531	8 924 KБ

3.3. Swapper - Treap

Как и хотел, я все-таки сдал эту задачу, написав декартово дерево на неявном ключе.

Теоретическое решение ровно такое же, какое я описывал в предыдущей домашней работе: заводим 2 дерева на четные и нечетные позиции, затем аккуратно определяем границы для каждого дерева и в зависимости от запроса делаем либо два сплита + merge, меняя местами деревья, либо выводим сумму на отрезке, путем опять же сплитов.

Код в приложении к этому письму, в файле swapper_treap.java Посылка http://www.e-olimp.com/solutions/1372111