

SCIKIT-LEARN

¿Qué es Scikit-Learn?

Scikit-Learn es una biblioteca de Python especializada en aprendizaje automático clásico (machine learning). Ofrece algoritmos ya implementados para clasificación, regresión, clustering y reducción de dimensionalidad, con un enfoque práctico y de uso rápido.

Las principales características de Scikit-Learn:

- Open source y gratuita.
- Fácil de aprender: código sencillo y estandarizado.
- Se integra con NumPy, Pandas y Matplotlib.
- Incluye datasets de prueba (Iris, Wine, Digits, etc.).
- Optimizada para modelos clásicos, no para redes neuronales profundas.

Los módulos de aprendizaje automático se utilizan para distintas tareas de aprendizaje automático, tales como clasificación, regresión o reducción de dimensionalidad.

Estos son algunos de los módulos más comunes de Scikit-Learn:

- Preprocesamiento de datos.
- Modelos de clasificación: Regresión Logística, Árboles de decisión, Nave Bayes y K-vecinos.
- Modelos de regresión: Regresión Lineal, Regresión Ridge, Regresión Lasso y Regresión polinómica.
- Agrupamiento: K-Means, DBSCAN y Mean Shift.
- Reducción de dimensionalidad: Análisis de Componentes Principales y Análisis de Discriminante Lineal.
- Validación del modelo.

¿Qué es la regresión lineal?

La regresión lineal es un algoritmo de aprendizaje supervisado utilizado para modelar la relación entre una variable dependiente (Y) y una o más variables independientes (X). El objetivo del modelo es encontrar la línea recta que mejor se ajusta a los datos y utilizarla para hacer predicciones sobre nuevos datos.

Tipo de problema	Algoritmo / Clase principal		
Clasificación	LogisticRegression, KNeighborsClassifier, DecisionTreeClassifier, RandomForestClassifier,		
	GradientBoostingClassifier, SVC, LinearSVC, GaussianNB, MultinomialNB, BernoulliNB,		
	Perceptron, MLPClassifier		
Regresión	LinearRegression, Ridge, Lasso, ElasticNet, DecisionTreeRegressor, RandomForestRegressor,		
	GradientBoostingRegressor, SVR, KNeighborsRegressor, MLPRegressor		
Clustering	KMeans, DBSCAN, MeanShift, AgglomerativeClustering, SpectralClustering, Birch		
Reducción de	PCA, KernelPCA, TruncatedSVD, FactorAnalysis, FastICA		
dimensionalidad			
Modelos de Ensamble	BaggingClassifier, BaggingRegressor, AdaBoostClassifier, AdaBoostRegressor, VotingClassifier,		
	VotingRegressor, StackingClassifier, StackingRegressor		
Preprocesamiento	StandardScaler, MinMaxScaler, OneHotEncoder, LabelEncoder		
Selección de	SelectKBest, RFE (Recursive Feature Elimination)		
características			
Validación de modelos	train_test_split, cross_val_score, GridSearchCV, RandomizedSearchCV		

Ingeniería de Software con IA

Datasets incluidos en Scikit-Learn

Dataset	Función para cargar	Tipo de problema	Descripción
Iris	load_iris()	Clasificación	Flores de iris, 3 clases, 150 muestras.
Digits	load_digits()	Clasificación	Imágenes 8x8 de dígitos escritos a mano (0–9).
Wine	load_wine()	Clasificación	Vinos italianos, 13 características químicas.
Breast	load_breast_cancer()	Clasificación	Tumores malignos o benignos en mama.
Cancer		binaria	
Diabetes	load_diabetes()	Regresión	Datos médicos para predecir progresión de la diabetes.
Linnerud	load_linnerud()	Regresión multisalida	Ejercicios físicos (3 features) vs medidas corporales (3 salidas).

pip install scikit-learn

EJERCICIOS

Ejercicio 1

```
Implementa el siguiente algoritmo.
```

```
1
     #Regresión Lineal con Scikit-learn
 2
 3
     from sklearn.linear model import LinearRegression
 4
     X = [[1], [2], [3], [4], [5]]
 5
     y = [5, 8, 12, 15, 16]
 6
 7
     modelo=LinearRegression()
 8
     modelo.fit(x, y)
9
     print(modelo.predict([[6]])) # Predicción para x=6
10
```

¿Qué es el dataset Iris?

Scikit-learn trae un dataset muy famoso: Iris dataset. Contiene datos de flores Iris de 3 especies distintas:

- A. Setosa (0)
- **B.** Versicolor (1)
- C. Virginica (2)

Cada flor tiene **4 características numéricas** (medidas en centímetros):

- 1. sepal length → Largo del sépalo
- 2. sepal width → Ancho del sépalo
- 3. petal length → Largo del pétalo
- **4.** petal width → Ancho del pétalo

iris setosa

iris versicolor

iris virginica


```
Implementa el siguiente algoritmo.
 C2_Scikit-learn_iris.py > ...
        import matplotlib.pyplot as plt
       from sklearn.datasets import load iris
   2
   3
       import pandas as pd
   4
   5
       #Cargar dataset
       iris = load iris()
   6
       X, y = iris.data, iris.target
   7
   8
       #Convertir a DataFrame para verlo en tabla
   9
  10
       df = pd.DataFrame(X, columns=iris.feature_names)
  11
       df["species"] = [iris.target names[i] for i in y]
  12
       #Mostrar primeros datos
  13
       print("=== 10 primeros datos del dataset Iris ===")
  14
       print(df.head(10))
  15
  16
  17
       #Gráfico: comparar largo y ancho del pétalo
  18
       plt.figure(figsize=(8,6))
       for species in iris.target names:
  19
            subset = df[df["species"] == species]
  20
            plt.scatter(subset["petal length (cm)"], subset["petal width (cm)"], label=species)
  21
  22
       plt.title("Flores Iris según tamaño de pétalos")
  23
  24
       plt.xlabel("Largo del pétalo (cm)")
       plt.ylabel("Ancho del pétalo (cm)")
  25
       plt.legend()
  26
       plt.grid(True)
  27
       plt.show()
  28
```


Implementa el siguiente algoritmo.

```
C3_monedas_scikit_learn_v1.py > ...
      import cv2
  1
  2
      import numpy as np
      from sklearn.cluster import KMeans
  3
  4
      import matplotlib.pyplot as plt
  5
      ruta = r"C:\Users\DELL\Desktop\python\senati\2 scikit-learn pytorch\monedas.jpg"
  6
  7
      # 1) Cargar imagen y convertir a gris
  8
  9
      img = cv2.imread(ruta)
      gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
 10
      blur = cv2.GaussianBlur(gray, (15, 15), 0)
 11
 12
 13
      # 2) Detectar círculos
      circles = cv2.HoughCircles(
 14
 15
          blur,
 16
           cv2.HOUGH GRADIENT,
 17
           dp=1.2,
 18
          minDist=50,
           param1=100,
 19
 20
           param2=30,
 21
           minRadius=20,
           maxRadius=80
 22
 23
 24
      if circles is not None:
 25
 26
           circles = np.round(circles[0, :]).astype("int")
           radii = circles[:, 2].reshape(-1, 1)
 27
 28
 29
          # 3) Clasificar tamaños de monedas
 30
           kmeans = KMeans(n clusters=5, random state=0)
          labels = kmeans.fit predict(radii)
 31
32
33
          # 4) Definir colores para cada cluster
34
          colors = [(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]
35
          # 5) Dibujar círculos con color según cluster
36
          for (x, y, r), label in zip(circles, labels):
37
              color = colors[label % len(colors)] # Asigna color del cluster
38
39
              cv2.circle(img, (x, y), r, color, 2)
              cv2.putText(img, f"Clase {label}", (x - 20, y), cv2.FONT_HERSHEY_SIMPLEX,
40
41
                           0.6, color, 2)
42
          # Mostrar resultado
43
          plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
44
          plt.axis("off")
45
46
          plt.show()
47
      else:
          print("No se detectaron monedas.")
48
```


PYTORCH

1. ¿Qué es PyTorch?

PyTorch es una biblioteca de aprendizaje automático de código abierto basada en la biblioteca de Torch, utilizado para aplicaciones como visión artificial y procesamiento de lenguajes naturales,

principalmente desarrollado por el Laboratorio de Investigación de Inteligencia Artificial de Facebook (FAIR). Es un software libre y de código abierto liberado bajo la Licencia Modificada de BSD. A pesar de que la interfaz de Python está más pulida y es el foco principal del desarrollo, PyTorch también tiene una interfaz en C++.

En resumen, PyTorch es una librería de Python muy popular para Inteligencia Artificial y Deep Learning. Se utiliza para crear, entrenar y probar redes neuronales. Es muy flexible y fácil de aprender, ideal para educación y proyectos reales.

2. Conceptos Clave

- Tensors: Son como arreglos (matrices) de Numpy, pero con superpoderes:
 - Pueden ejecutarse en CPU o GPU.
 - o Son la base para todos los cálculos en redes neuronales.
- Autograd (Derivadas automáticas): PyTorch calcula automáticamente las derivadas, necesarias para entrenar redes neuronales.
- Modelos (nn.Module): En PyTorch, un modelo (red neuronal) se define como una clase o con nn.Sequential.
- Loss Function (Función de pérdida): Mide el error entre la predicción de la red y el valor real.
- Optimizer: Ajusta los parámetros de la red para reducir el error.

3. Flujo de trabajo

Todo proyecto con PyTorch sigue estos pasos:

3. Flujo de trabajo en PyTorch

Todo proyecto con PyTorch sigue estos pasos:

1. Preparar datos

Entradas (X) y salidas (Y).

2. Definir el modelo

Arquitectura de la red.

3. Definir función de pérdida y optimizador

Para medir errores y mejorar la red.

4. Entrenar el modelo

Ciclo: predicción → pérdida → retropropagación → actualización.

5. Probar el modelo

Verificar si aprendió bien.

Implementa el siguiente algoritmo.

```
P01 PyTorch 2x.py > ...
       import torch.nn as nn
  2
       import torch.optim as optim
  3
  4
  5
      # 1) Datos: y = 2x
      X = \text{torch.tensor}([[1.0], [2.0], [3.0], [4.0]])
  6
      Y = \text{torch.tensor}([[2.0], [4.0], [6.0], [8.0]])
  7
  8
      # 2) Modelo: una sola neurona (lineal)
  9
      model = nn.Linear(1, 1)
 10
 11
      # 3) Función de pérdida y optimizador
 12
      criterion = nn.MSELoss()
 13
      optimizer = optim.SGD(model.parameters(), lr=0.01)
 14
 15
 16
      # 4) Entrenamiento
       for epoch in range(200):
 17
           Y \text{ pred = model}(X)
 18
                                        # Predicción
           loss = criterion(Y pred, Y) # Error
 19
 20
           optimizer.zero grad()
                                       # Borrar gradientes
 21
           loss.backward()
                                        # Retropropagación
 22
 23
           optimizer.step()
                                        # Ajustar pesos
 24
           if (epoch+1) % 50 == 0:
 25
               print(f"Época {epoch+1}, Pérdida: {loss.item():.4f}")
 26
 27
 28
      # 5) Probar la red
      test = torch.tensor([[5.0]])
 29
       print("Para x=5, la red predice:", model(test).item())
 30
```

- 1. Le damos ejemplos $(1\rightarrow 2, 2\rightarrow 4, 3\rightarrow 6, 4\rightarrow 8)$.
- La red trata de adivinar la regla.
- 3. Calculamos el error.
- 4. La red ajusta sus parámetros (pesos).
- 5. Al final, si probamos con x=5, debería dar una respuesta cerca de 10.

Implementa el siguiente algoritmo.

```
P02_PyTorch_2x_dos_neuronas.py > ...
      import torch
  1
  2
      import torch.nn as nn
  3
      import torch.optim as optim
  4
  5
      # 1) Datos: y = 2x
      X = torch.tensor([[1.0],[2.0],[3.0],[4.0]])
  6
      Y = torch.tensor([[2.0],[4.0],[6.0],[8.0]])
  7
  8
      # 2) Modelo: ahora con una capa oculta de 2 neuronas
  9
      model = nn.Sequential(
 10
          nn.Linear(1, 2), # Capa oculta: 1 entrada -> 2 neuronas
 11
          nn.ReLU(), # Activación ReLU
 12
          nn.Linear(2, 1) # Capa de salida: 2 neuronas -> 1 salida
 13
 14
 15
 16
      # 3) Función de pérdida y optimizador
      criterion = nn.MSELoss()
 17
      optimizer = optim.SGD(model.parameters(), lr=0.01)
 18
 19
      # 4) Entrenamiento
 20
      for epoch in range(500):
 21
          Y \text{ pred} = \text{model}(X)
                                       # Predicción
 22
 23
          loss = criterion(Y_pred, Y) # Error
 24
                                     # Borrar gradientes
 25
          optimizer.zero grad()
          loss.backward()
                                       # Retropropagación
 26
 27
          optimizer.step()
                                      # Ajustar pesos
 28
          if (epoch+1) % 100 == 0:
 29
               print(f"Época {epoch+1}, Pérdida: {loss.item():.4f}")
 30
 31
 32
      # 5) Probar la red
 33
      test = torch.tensor([[5.0]])
      print("Para x=5, la red predice:", model(test).item())
 34
```

- La primera capa transforma x en 2 valores internos (neuronas ocultas).
- Se aplica la función ReLU (que deja pasar valores positivos y bloquea negativos).
- La segunda capa convierte esas 2 neuronas en la salida final.

