

北京航空航天大學BEIHANGUNIVERSITY

机器学习团队作业

所选题目 垃圾邮件分类

姓	名	刘嘉明
学	号	23371007

2025年6月25日

1 小组分工

刘嘉明	陈加玺	陈柏銮	赵敏智	杨明和
填写实验报告	编写代码,	始学 4257	编写代码	填写实验报告
编写代码	调试	编写代码 		

2 模型选择与原理

在本次作业中,我们主要尝试了三个方案,分别是朴素贝叶斯, SVM 和 Transformer 模型,最终我们选择了 Transformer 模型的输出结果作为提交答案。

- 1. 朴素贝叶斯: 朴素贝叶斯的本质是贝叶斯公式,基本假设是"条件独立",但事实上, "条件独立"这一原则往往不成立,在垃圾邮件识别的任务中尤为明显。因此,朴素贝叶斯方法的实验结果并不理想,正确率仅有83%,我们最终也没有选取此方法。
- 2. SVM: 支持向量机是一个既简单又高效的模型。实现步骤主要分为预处理,特征选取,建模,评估这四步。首先,我们在读入文本内容后并没有急于训练,而是选择了预处理的手段,通过正则表达式匹配,将所有文本转为小写,消除大小写差异;去除HTML标签;替换数字、网址、邮箱、货币符号;使用 Porter Stemmer 算法进行词形归并(如"running"→"run")。之后,我们采用 TF-IDF 向量化方法,基于训练集建立 5000维的特征空间,通过 TfidfVectorizer 计算词频-逆文档频率,并把所有文本转换为高维稀疏特征矩阵。然后,使用线性 SVM 分类器,寻找最优超平面最大化正负样本间隔。最后一步,评估模型在验证集上的正确率并对测试集进行预测。
- 3. Transformer: 深度学习方法,通过预训练-微调范式实现了更加精准的垃圾邮件分类,使准确率从 SVM 的 98%提升到了 99%。该方案采用 DistilBERT 作为预训练模型,在保持 97%原始 BERT 性能的同时显著提升了推理效率。模型加载阶段先从本地读取数据,然后初始化包含 2 个输出类别的分类头。数据预处理环节通过 Hugging Face 的Tokenizer 实现文本到数字 ID 的转换,采用 WordPiece 算法进行子词切分。训练配置采用 AdamW 优化器,进行多次重复训练-预测,选择 F1 分数作为主要评估指标。

3 模型调参与中间结果

1. TF-IDF + SVM 模型调参与中间结果:

参数	调优范围	最优值	分析
max features	[1000 5000 10000]	5000	维度越高,模型越复
max_reatures	[1000, 5000, 10000]		杂,但可能过拟合
ngram_range	[(1,1), (1,2), (1,3)]	(1,2)	2-gram 捕捉短语
stan yyanda	[None, "english"]	None	保留停用词有助于
stop_words			垃圾邮件识别
C	[0.01, 0.1, 1] 0.1	0.1	增强正则化,防止过
C		0.1	拟合
alaga waight	[None, "balanced"]	"balanced"	解决数据不平衡问
class_weight			题

2. DistilBERT(Transformer)模型调参与中间结果

参数	调优范围	最优值	分析
pretrained model	["bert-base",	"distilbert"	速度更快
F	"distilbert"]		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
num_labels	2	2	二分类
looming note	[1e-5, 2e-5, 5e-5]	2e-5	微调需小学习率避
learning_rate			免破坏预训练知识
hatah siza	[8, 16, 32]	16	平衡显存和梯度稳
batch_size			定性
num_train_epochs	[2,3,4,5]	3	重复轮数
	[64, 128, 256]	128	截断长文本,保留关
max_length			键信息
padding	固定	固定	统一输入长度

4 实验结果

1. SVM: 计算了训练集准确率、验证集准确率、查准率、查全率、F1 分数等指标,并绘制了混淆矩阵。最后对测试集进行预测,并将结果保存在 csv 文件中。

训练准确率: 98.33 验证准确率: 97.91				
验证集分类报告: precision recall f1-score support				
þ	recision	recatt 11-	2001.6	support
正常邮件	0.98	0.97	0.98	8412
垃圾邮件	0.97	0.98	0.98	8088
			0.00	1/500
accuracy			0.98	16500
macro avg	0.98	0.98	0.98	16500
weighted avg	0.98	0.98	0.98	16500

2. Transformer: 同样,每轮都计算训练集准确率、验证集准确率、查准率、查全率、F1 分数等指标,最终选取 F1 最大者对应的模型作为测试模型,对测试集进行预测,并将结果保存在 csv 文件中。

5 参考文献

机器学习--SVM(支持向量机)垃圾邮件分类器 svm分类器训练详细步骤-CSDN博客 【论文阅读】Attention is all you need (Transformer) attention is all you need 原文-CSDN博客

模式分类与应用-贝叶斯垃圾邮件分类 hewlett-packard 实验室收集的邮件 数据集 -CSDN 博客