$\frac{Fx.1}{\sqrt{Fx.1}}$

$$e^{x} = e^{x}$$

$$\ln e^{x} = \ln e^{x}$$

$$x = x$$

Surjective. For any $y \in R^+$ we know $\ln y = x$ exists. Then $h(x) = h(\ln y) = e^{\ln y} = y$

preserves interpretation of f. $h(f^{M}(\chi_{1},\chi_{2}))$. $= h(\chi_1 + \chi_2)$ $= e^{\lambda_1 + \lambda_2}$

$$=e^{\mathcal{X}_{l}}\cdot e^{\mathcal{X}_{l}}$$

no members. Observe Rt = Rt / { 32.

 $\mathcal{A}^{s_i} = \mathcal{A}^{s_i} \mathcal{A}^{s_i} = \mathcal{A}^{s_i} \mathcal{A}^$

Construct Automorphism h as	٠	•	٠								•				
h 1 odd 2 even 3 dd 4 even	٠	•			٠	٠	•		٠	٠		•			•
$\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$	•	•	•	•	•		•	٠	•		•	•			•
· · · · · · · · · · · · · · · · · · ·	٠	•	٠	٠	٠	٠	٠	٠	۰	٠	۰	٠	٠	٠	•
observe $h(x)$ is even iff x is	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
observe (a,b). EET.	•	•	•	٠	٠	٠	•	•	•	•	0	•	•	•	•
· · · a+b is even ·	٠	•		•	٠		٠	٠	•		٠	•	•		•
· · · Either, a and be are															
· a and b are old															
Either, h(a) and h(b)															
. h(a) and h(b) are odd	٠	٠	٠												
$ \leftarrow \rightarrow h(a) + h(b) \text{ is even} $	٠	٠	٠												
\leftrightarrow $(h(a), h(b)) \in \mathcal{E}^*$	•	•	•	٠	٠	•	٠				•				
		Ex	.3												
Not Isomorphic. Assume for the	ake	of	Cor	ntra	lic	tion	the	re's	a bi	ject	ion				•
h: 7 -> Q. such that a < b. iff	h C	a.) <	c.h	(b)	for	·an	y. a	, b E	₹.		•				
Then 1 < 2 implies h(1)	.h	(2).	·h	le. K	now	the	re e	Kist	s.a	rati	onal				
.h(c) whereby. h(1) < h(c) < h(2)								rer	whe	re	1.<	<i>C</i> , (2.	•	•
Contradiction.	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	۰	٠	•	•	0
	٠	· [.,	U	•	٠	٠	٠				۰				
	٠	5X.	-	۰	٠	٠	۰	۰	۰	٠	۰	٠	٠	٠	•
. Consider the two graph struc	ture	.s. /	Y =	(ξ.χ.	, y ,	2 }	, ,	· {.(;	Y,y,)})) . av	d		
. N = (.{a,b,c},. { (a,b), (b,c)			_												
Observe (X,y) & RM and (h(x)	, h(y)) :	=. (a	a - b)) E	RN		•		. }	11	». b			•
But (h(y), h(z)) = (b, c)	e R	. N	inJ	(y	,7)	¢	R	•	•	. 7	},—;	, c	•	•	•
Hence homomorphism but not isom	וקאטו	hism	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

2) Not a formula.......... if it were a formula, Then by the inductive definition. · P(Xa) 1 3 X, R(X1, X3). V.P(X2) is also a formula. But it Loesn't. . Match any case of the Jefinition. Contradiction.

also, but it's not.

3) Formula $\left(\exists \chi_1 P(\chi_1) \longleftrightarrow \forall \chi_5 P(f(\chi_5,\chi_5))\right)$

 $\exists \chi_1 P(\chi_1)$ $\forall \chi_5 P(S(\chi_5,\chi_5))$

The tree's nodes are exactly the subformulas

Sub-hormulas definition. Following the same pattern of page 11 definition, . . . for each first-order formula OEF, We associate a set SFLOI, as

* if 0 is an atomic formula, Then sf[0] = {0}

** If $\theta = 7 \, \text{F}$ for formula φ , Then $\text{SF}[\theta] = \{\theta\} \cup \text{SF}[\Psi]$

* if 0 = (404) for formulas 4 and 4, Then SP[0] = SF[4] USF[4]Uf0]

if 0 = YXY or 0 = 3x4, Then St[0] = St[4] U.{0}

for both (1) and (2) bound variables Li are underlined.

1) $\exists \chi_3 (\forall \chi_2 P(h(\chi_1, \chi_3, \chi_2)) \Leftrightarrow (\forall \chi_1 R(c, \chi_1) \Lambda$

 $\left(\begin{array}{c} \forall \chi_{5} P(q(\chi_{3},\chi_{2})) \\ \forall \chi_{1} P(h(\chi_{1},\chi_{3},\chi_{2})) \end{array}\right)$

 $\forall \chi_2 \ \rho \left(h(\chi_1,\chi_3,\chi_2) \right)$

 $\forall \chi_1 R(c_1\chi_1) \Lambda \forall \chi_5 P(q(\chi_3,\chi_2))$

 $P(h(X_1,X_3,X_2)). P(c_1X_1) \wedge \forall X_5 P(g(X_3,X_2)).$

 $\mathcal{R}(c,\chi_1)$. $\mathcal{H}\chi_5 P(g(\chi_3,\chi_2))$.

 $\rho\left(q(\chi_3,\chi_2)\right).$

. χ_3 is bound as the formula is of the form $Y = 3\chi T$, and by def. (P. 67), none of the occurences is free.

. Remaining occurences can be shown by the same line of reasoning

2) (YX5 (P(\$(X21) V 3X2 R(X5,X2))-> 3X3 (YX, $\mathcal{R}(\mathcal{X}_{l},\mathcal{X}_{l}) \vee \mathcal{P}(\mathcal{X}_{l}))$

Similar reasoning