$10_{58} (K10a_{20})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^7 + u^5 + 2u^3 + b + u, -u^6 - u^4 - 2u^2 + a - 1, u^{10} - u^9 + 2u^8 - u^7 + 4u^6 - 2u^5 + 4u^4 - u^3 + 3u^2 + u + 1, u^2 - 2u^2 + 2u^2 + \dots + b + 3, 3u^{25} - 7u^{24} + \dots + a - 6, u^{26} - 2u^{25} + \dots - u + 1 \rangle$$

$$I_3^u = \langle b + u + 1, a - u, u^2 + u + 1 \rangle$$

$$I_4^u = \langle b - u, a - 1, u^2 + u + 1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 40 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^7 + u^5 + 2u^3 + b + u, -u^6 - u^4 - 2u^2 + a - 1, u^{10} - u^9 + \dots + u + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{6} + u^{4} + 2u^{2} + 1 \\ -u^{7} - u^{5} - 2u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{8} - u^{7} + 2u^{6} - u^{5} + 3u^{4} - u^{3} + 3u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} + u^{5} - u^{4} + u^{3} - 2u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{7} + u^{6} - u^{5} - 2u^{3} - u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^9 6u^8 + 6u^7 4u^6 + 14u^5 14u^4 + 10u^3 6u^2 + 10u$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_8	$u^{10} + u^9 + 2u^8 + u^7 + 4u^6 + 2u^5 + 4u^4 + u^3 + 3u^2 - u + 1$
c_2, c_4, c_7 c_{10}	$u^{10} + 3u^9 + \dots + 5u + 1$
c_5, c_9	$u^{10} - 5u^9 + \dots - 8u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_8	$y^{10} + 3y^9 + \dots + 5y + 1$
c_2, c_4, c_7 c_{10}	$y^{10} + 11y^9 + \dots + 13y + 1$
c_5, c_9	$y^{10} + 5y^9 + \dots + 32y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.100577 + 0.954526I		
a = -0.658857 - 0.498555I	-3.48123 - 2.16643I	-9.00466 + 4.21901I
b = -0.542150 + 0.578753I		
u = -0.100577 - 0.954526I		
a = -0.658857 + 0.498555I	-3.48123 + 2.16643I	-9.00466 - 4.21901I
b = -0.542150 - 0.578753I		
u = 0.900362 + 0.768734I		
a = -1.68093 + 0.92466I	10.21950 - 0.19532I	4.14143 - 1.59060I
b = 2.22427 + 0.45966I		
u = 0.900362 - 0.768734I		
a = -1.68093 - 0.92466I	10.21950 + 0.19532I	4.14143 + 1.59060I
b = 2.22427 - 0.45966I		
u = -0.774061 + 0.907730I		
a = -0.053403 + 0.383357I	4.50100 - 5.87397I	1.27770 + 5.35715I
b = 0.306648 + 0.345217I		
u = -0.774061 - 0.907730I		
a = -0.053403 - 0.383357I	4.50100 + 5.87397I	1.27770 - 5.35715I
b = 0.306648 - 0.345217I		
u = 0.782324 + 1.035710I		
a = 1.19625 - 1.47594I	8.4959 + 12.7213I	1.50029 - 7.98966I
b = -2.46450 - 0.08430I		
u = 0.782324 - 1.035710I		
a = 1.19625 + 1.47594I	8.4959 - 12.7213I	1.50029 + 7.98966I
b = -2.46450 + 0.08430I		
u = -0.308049 + 0.477623I		
a = 0.696944 - 0.500305I	0.004061 - 1.246020I	0.08524 + 5.02615I
b = -0.024265 - 0.486995I		
u = -0.308049 - 0.477623I		
a = 0.696944 + 0.500305I	0.004061 + 1.246020I	0.08524 - 5.02615I
b = -0.024265 + 0.486995I		

$$II. \\ I_2^u = \langle u^{25} + 2u^{24} + \dots + b + 3, \ 3u^{25} - 7u^{24} + \dots + a - 6, \ u^{26} - 2u^{25} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3u^{25} + 7u^{24} + \dots - 4u + 6 \\ -u^{25} - 2u^{24} + \dots - 3u - 3 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{25} + 3u^{24} + \dots - 2u + 4 \\ -u^{22} - 3u^{20} + \dots - 3u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{25} + u^{24} + \dots - 3u - 1 \\ u^{25} - 2u^{24} + \dots + 3u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{25} + 3u^{24} + \dots - u + 5 \\ -u^{25} - 4u^{23} + \dots - 3u - 2 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$5u^{25} - 12u^{24} + 25u^{23} - 43u^{22} + 75u^{21} - 109u^{20} + 126u^{19} - 175u^{18} + 168u^{17} - 200u^{16} + 98u^{15} - 164u^{14} - 6u^{13} - 49u^{12} - 144u^{11} - 10u^{10} - 179u^{9} + 26u^{8} - 112u^{7} - 28u^{6} - 47u^{5} - 26u^{4} + 9u^{3} - 16u^{2} + 15u - 5$$

Crossings	u-Polynomials at each crossing
c_1, c_3, c_6 c_8	$u^{26} + 2u^{25} + \dots + u + 1$
c_2, c_4, c_7 c_{10}	$u^{26} + 8u^{25} + \dots + 13u + 1$
c_{5}, c_{9}	$(u^{13} + 2u^{12} + \dots + 3u + 2)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_8	$y^{26} + 8y^{25} + \dots + 13y + 1$
c_2, c_4, c_7 c_{10}	$y^{26} + 20y^{25} + \dots - 11y + 1$
c_5, c_9	$(y^{13} + 10y^{12} + \dots - 7y - 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.752045 + 0.803934I		
a = 1.97258 - 1.23710I	1.88524 - 0.96841I	0.413632 + 1.140295I
b = -2.47801 - 0.65547I		
u = 0.752045 - 0.803934I		
a = 1.97258 + 1.23710I	1.88524 + 0.96841I	0.413632 - 1.140295I
b = -2.47801 + 0.65547I		
u = -0.578645 + 0.950081I		
a = 0.030039 + 0.285319I	-0.80957 - 3.02973I	-5.16840 + 1.62282I
b = 0.288458 + 0.136559I		
u = -0.578645 - 0.950081I		
a = 0.030039 - 0.285319I	-0.80957 + 3.02973I	-5.16840 - 1.62282I
b = 0.288458 - 0.136559I		
u = -0.496478 + 0.720203I		
a = 0.299461 - 0.224790I	0.00150 - 1.41503I	-1.90513 + 4.60201I
b = -0.013218 - 0.327276I		
u = -0.496478 - 0.720203I		
a = 0.299461 + 0.224790I	0.00150 + 1.41503I	-1.90513 - 4.60201I
b = -0.013218 + 0.327276I		
u = -0.335785 + 1.109920I		
a = 0.267955 + 0.444237I	1.88524 - 0.96841I	0.413632 + 1.140295I
b = 0.583042 - 0.148240I		
u = -0.335785 - 1.109920I		
a = 0.267955 - 0.444237I	1.88524 + 0.96841I	0.413632 - 1.140295I
b = 0.583042 + 0.148240I		
u = 0.905446 + 0.730041I		
a = 1.71372 - 0.85399I	9.45063 - 6.48172I	3.04187 + 3.27257I
b = -2.17513 - 0.47784I		
u = 0.905446 - 0.730041I		
a = 1.71372 + 0.85399I	9.45063 + 6.48172I	3.04187 - 3.27257I
b = -2.17513 + 0.47784I		_

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.269616 + 1.131670I		
a = -0.308288 - 0.503667I	1.46125 - 6.61332I	-1.15142 + 6.72912I
b = -0.653102 + 0.213082I		
u = -0.269616 - 1.131670I		
a = -0.308288 + 0.503667I	1.46125 + 6.61332I	-1.15142 - 6.72912I
b = -0.653102 - 0.213082I		
u = -0.786233 + 0.860060I		
a = 0.072545 - 0.387289I	4.64840	1.75564 + 0.I
b = -0.276054 - 0.366893I		
u = -0.786233 - 0.860060I		
a = 0.072545 + 0.387289I	4.64840	1.75564 + 0.I
b = -0.276054 + 0.366893I		
u = -0.819468 + 0.042718I		
a = 0.021039 - 0.644673I	5.42596 - 2.97283I	4.39163 + 2.88376I
b = -0.010298 - 0.529188I		
u = -0.819468 - 0.042718I		
a = 0.021039 + 0.644673I	5.42596 + 2.97283I	4.39163 - 2.88376I
b = -0.010298 + 0.529188I		
u = 0.791857 + 0.886903I		
a = -1.65384 + 1.34745I	5.42596 + 2.97283I	4.39163 - 2.88376I
b = 2.50466 + 0.39980I		
u = 0.791857 - 0.886903I		
a = -1.65384 - 1.34745I	5.42596 - 2.97283I	4.39163 + 2.88376I
b = 2.50466 - 0.39980I		
u = 0.732196 + 0.941652I		
a = 1.54369 - 1.64448I	1.46125 + 6.61332I	-1.15142 - 6.72912I
b = -2.67881 - 0.24953I		
u = 0.732196 - 0.941652I		
a = 1.54369 + 1.64448I	1.46125 - 6.61332I	-1.15142 + 6.72912I
b = -2.67881 + 0.24953I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.156803 + 0.747604I		
a = -1.50536 - 0.52470I	-0.80957 + 3.02973I	-5.16840 - 1.62282I
b = -0.156223 + 1.207680I		
u = 0.156803 - 0.747604I		
a = -1.50536 + 0.52470I	-0.80957 - 3.02973I	-5.16840 + 1.62282I
b = -0.156223 - 1.207680I		
u = 0.799863 + 1.014160I		
a = -1.26195 + 1.42943I	9.45063 + 6.48172I	3.04187 - 3.27257I
b = 2.45906 + 0.13647I		
u = 0.799863 - 1.014160I		
a = -1.26195 - 1.42943I	9.45063 - 6.48172I	3.04187 + 3.27257I
b = 2.45906 - 0.13647I		
u = 0.148015 + 0.419312I		
a = 1.80840 - 0.30217I	0.00150 - 1.41503I	-1.90513 + 4.60201I
b = -0.394374 - 0.713561I		
u = 0.148015 - 0.419312I		
a = 1.80840 + 0.30217I	0.00150 + 1.41503I	-1.90513 - 4.60201I
b = -0.394374 + 0.713561I		

III.
$$I_3^u=\langle b+u+1,\ a-u,\ u^2+u+1\rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ -u-1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 8u + 4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_7, c_{10}	$u^2 - u + 1$
c_3, c_4, c_8	$u^2 + u + 1$
c_5, c_9	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}	$y^2 + y + 1$
c_{5}, c_{9}	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = -0.500000 + 0.866025I	-4.05977I	0. + 6.92820I
$\frac{b = -0.500000 - 0.866025I}{u = -0.500000 - 0.866025I}$		
a = -0.500000 - 0.866025I $a = -0.500000 - 0.866025I$	4.05977I	06.92820I
b = -0.500000 + 0.866025I		

IV.
$$I_4^u = \langle b - u, \ a - 1, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ 2u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -3

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{10}$	$u^2 - u + 1$
c_3, c_4, c_8	$u^2 + u + 1$
c_5,c_9	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_{10}	$y^2 + y + 1$
c_{5}, c_{9}	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 1.00000	0	-3.00000
b = -0.500000 + 0.866025I		
u = -0.500000 - 0.866025I		
a = 1.00000	0	-3.00000
b = -0.500000 - 0.866025I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$((u^{2} - u + 1)^{2})(u^{10} + u^{9} + \dots - u + 1)$ $\cdot (u^{26} + 2u^{25} + \dots + u + 1)$
c_2, c_7, c_{10}	$((u^{2} - u + 1)^{2})(u^{10} + 3u^{9} + \dots + 5u + 1)(u^{26} + 8u^{25} + \dots + 13u + 1)$
c_3,c_8	$((u^{2} + u + 1)^{2})(u^{10} + u^{9} + \dots - u + 1)$ $\cdot (u^{26} + 2u^{25} + \dots + u + 1)$
c_4	$((u^{2}+u+1)^{2})(u^{10}+3u^{9}+\cdots+5u+1)(u^{26}+8u^{25}+\cdots+13u+1)$
c_5,c_9	$u^{4}(u^{10} - 5u^{9} + \dots - 8u + 4)(u^{13} + 2u^{12} + \dots + 3u + 2)^{2}$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6 c_8	$((y^2 + y + 1)^2)(y^{10} + 3y^9 + \dots + 5y + 1)(y^{26} + 8y^{25} + \dots + 13y + 1)$
c_2, c_4, c_7 c_{10}	$((y^2+y+1)^2)(y^{10}+11y^9+\cdots+13y+1)(y^{26}+20y^{25}+\cdots-11y+1)$
c_5,c_9	$y^4(y^{10} + 5y^9 + \dots + 32y + 16)(y^{13} + 10y^{12} + \dots - 7y - 4)^2$