2022 年普通高等学校招生全国统一考试(浙江券)

数学

姓名 准考证号

本试题卷分选择题和非选择题两部分.全卷共4页,选择题部分1至3页;非选择题部分3至 4页. 满分150分, 考试时间120分钟.

考生注意:

- 1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和 答题纸规定的位置上.
- 2. 答题时,请按照答题纸上"注意事项"的要求,在答题纸相应的位置上规范作答,在本试题 卷上的作答一律无效.

参考公式:

如果事件 A, B 互斥, 则

$$P(A+B) = P(A) + P(B)$$

如果事件 A, B 相互独立, 则

$$P(AB) = P(A) \cdot P(B)$$

若事件A在一次试验中发生的概率是p,则n次

独立重复试验中事件 A 恰好发生 k 次的概率

$$P_n(k) = C_n^k p^k (1-p)^{n-k} (k=0,1,2,\dots,n)$$
 球的表面积公式

台体的体积公式

$$V = \frac{1}{3} \left(S_1 + \sqrt{S_1 S_2} + S_2 \right) h$$

其中 S_1 , S_2 表示台体的上、下底面积,

h 表示台体的高

柱体的体积公式

$$V = Sh$$

其中S表示柱体的底面积,h表示柱体的高

锥体的体积公式

$$V = \frac{1}{3}Sh$$

其中S表示锥体的底面积,h表示锥体的高

$$S = 4\pi R^2$$

球的体积公式

$$V = \frac{4}{3}\pi R^3$$

其中 R 表示球的半径

选择题部分(共40分)

- 一、选择题: 本大题共 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选项中,只有 一项是符合题目要求的.
- 1. 设集合 $A = \{1,2\}, B = \{2,4,6\}, 则 A \cup B = ($
- A. {2}

- B. {1,2} C. {2,4,6} D. {1,2,4,6}
- 2. 已知 $a,b \in \mathbb{R}, a+3i = (b+i)i$ (i 为虑数单位),则 (

- A. a = 1, b = -3 B. a = -1, b = 3 C. a = -1, b = -3 D. a = 1, b = 3

- $x-2 \ge 0$, 3. 若实数 x, y 满足约束条件 $\{2x + y - 7 \le 0, \text{则 } z = 3x + 4y \text{ 的最大值是 } ($
- A 20

B. 18

C. 13

D. 6

- 4. 设 $x \in \mathbb{R}$,则" $\sin x = 1$ "是" $\cos x = 0$ "的(
- A. 充分不必要条件
- B. 必要不充分条件
- C. 充分必要条件
- D. 既不充分也不必要条件
- 5. 某几何体的三视图如图所示(单位: cm),则该几何体的体积(单位: cm^3)是(

- A. 22π
- B. 8π

- C. $\frac{22}{3}\pi$
- D. $\frac{16}{3}\pi$
- 6. 为了得到函数 $y = 2\sin 3x$ 的图象,只要把函数 $y = 2\sin \left(3x + \frac{\pi}{5}\right)$ 图象上所有的点(
- A. 向左平移 $\frac{\pi}{5}$ 个单位长度

B. 向右平移 $\frac{\pi}{5}$ 个单位长度

C. 向左平移 $\frac{\pi}{15}$ 个单位长度

- D. 向右平移 $\frac{\pi}{15}$ 个单位长度
- 7. 己知 $2^a = 5, \log_8 3 = b$,则 $4^{a-3b} = ($
- A. 25

- B. 5
- C. $\frac{25}{9}$ D. $\frac{5}{2}$
- 8. 如图,已知正三棱柱 $ABC-A_1B_1C_1$, $AC=AA_1$, E, F 分别是棱 BC, A_1C_1 上的点. 记 EF 与 AA_1 所成的 角为 α , EF 与平面 ABC 所成的角为 β , 二面角 $\mathit{F}-\mathit{BC}-\mathit{A}$ 的平面角为 γ ,则(

A. $\alpha \le \beta \le \gamma$ B. $\beta \le \alpha \le \gamma$ C. $\beta \le \gamma \le \alpha$ D. $\alpha \le \gamma \le \beta$

9. 已知 $a,b \in \mathbb{R}$, 若对任意 $x \in \mathbb{R}$, $a | x-b| + | x-4| - | 2x-5 \ge 0$, 则 ()

A. $a \le 1, b \ge 3$

10. 已知数列 $\{a_n\}$ 满足 $a_1 = 1, a_{n+1} = a_n - \frac{1}{3}a_n^2 (n \in \mathbf{N}^*)$,则(

A. $2 < 100a_{100} < \frac{5}{2}$ B. $\frac{5}{2} < 100a_{100} < 3$ C. $3 < 100a_{100} < \frac{7}{2}$ D. $\frac{7}{2} < 100a_{100} < 4$

非选择题部分(共110分)

- 二、填空题: 本大题共7小题,单空题每题4分,多空题每空3分,共36分.
- 11. 我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为"三斜求积",它填

补了我国传统数学的一个空白. 如果把这个方法写成公式, 就是 $S = \sqrt{\frac{1}{4} \left[c^2 a^2 - \left(\frac{c^2 + a^2 - b^2}{2} \right)^2 \right]}$, 其中 a,

b,c 是三角形的三边,S 是三角形的面积. 设某三角形的三边 $a=\sqrt{2},b=\sqrt{3},c=2$,则该三角形的面积

12 已知多项式 $(x+2)(x-1)^4 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$,则 $a_2 =$ _______

 $a_1 + a_2 + a_3 + a_4 + a_5 =$ ______.

13. 若 $3\sin\alpha - \sin\beta = \sqrt{10}$, $\alpha + \beta = \frac{\pi}{2}$, 则 $\sin\alpha = \underline{\qquad}$, $\cos 2\beta = \underline{\qquad}$.

14. 已知函数 $f(x) = \begin{cases} -x^2 + 2, & x \le 1, \\ 1, & x < 1, \end{cases}$ 则 $f(f(\frac{1}{2})) = _____; 若当 x \in [a,b]$ 时, $1 \le f(x) \le 3$,则 b-a

的最大值是

15. 现有7张卡片,分别写上数字1,2,2,3,4,5,6. 从这7张卡片中随机抽取3张,记所抽取卡片上 数字的最小值为 ξ ,则 $P(\xi=2)=$ ______, $E(\xi)=$ _____.

16. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左焦点为 F, 过 F 且斜率为 $\frac{b}{4a}$ 的直线交双曲线于点 $A(x_1, y_1)$, 交

双曲线的渐近线于点 $B(x_2,y_2)$ 且 $x_1 < 0 < x_2$. 若|FB| = 3|FA| ,则双曲线的离心率是_____.

17. 设点 P 在单位圆的内接正八边形 $A_1A_2\cdots A_8$ 的边 A_1A_2 上,则 $\overrightarrow{PA_1}^2+\overrightarrow{PA_2}^2+\cdots+\overrightarrow{PA_8}^2$ 的取值范围是

三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.

18. 在 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c. 已知 $4a = \sqrt{5}c$, $\cos C = \frac{3}{5}$.

- (1) 求 sin A 的值;
- (2) 若b=11, 求 $\triangle ABC$ 的面积.
- 19. 如图,已知 ABCD 和 CDEF 都是直角梯形, AB//DC , DC//EF , AB=5 , DC=3 , EF=1 , $\angle BAD = \angle CDE = 60^{\circ}$,二面角 F-DC-B 的平面角为 60° .设 M , N 分别为 AE , BC 的中点 .

- (1) 证明: $FN \perp AD$;
- (2) 求直线 BM 与平面 ADE 所成角的正弦值.
- 20. 已知等差数列 $\{a_n\}$ 的首项 $a_1 = -1$,公差d > 1.记 $\{a_n\}$ 的前n项和为 $S_n(n \in \mathbb{N}^*)$.
- (1) 若 $S_4 2a_2a_3 + 6 = 0$, 求 S_n ;
- (2) 若对于每个 $n \in \mathbb{N}^*$,存在实数 c_n ,使 $a_n + c_n$, $a_{n+1} + 4c_n$, $a_{n+2} + 15c_n$ 成等比数列,求d的取值范围.
- 21. 如图,已知椭圆 $\frac{x^2}{12} + y^2 = 1$. 设 A,B 是椭圆上异于 P(0,1) 的两点,且点 $Q\left(0,\frac{1}{2}\right)$ 在线段 AB 上,直线 PA,PB 分别交直线 $y = -\frac{1}{2}x + 3$ 于 C,D 两点.

- (1) 求点 P 到椭圆上点的距离的最大值;
- (2) 求|CD|的最小值.

22. 设函数
$$f(x) = \frac{e}{2x} + \ln x(x > 0)$$
.

- (1) 求 f(x) 的单调区间;
- (2) 已知 $a,b \in \mathbb{R}$,曲线 y = f(x) 上不同的三点 $(x_1, f(x_1)), (x_2, f(x_2)), (x_3, f(x_3))$ 处的切线都经过点 (a,b) . 证明:
- (i) 若 a > e, 则 $0 < b f(a) < \frac{1}{2} \left(\frac{a}{e} 1 \right)$;

(ii) 若
$$0 < a < e, x_1 < x_2 < x_3$$
, 则 $\frac{2}{e} + \frac{e - a}{6e^2} < \frac{1}{x_1} + \frac{1}{x_3} < \frac{2}{a} - \frac{e - a}{6e^2}$.

(注: e = 2.71828····是自然对数的底数)