Рух складних систем

Задачі:

- 1. У системі на малюнку маси тіл рівні m_0, m_1, m_2 , тертям знехтуємо, маси блоків малі. Знайти прискорення тіла m_1 .
- 2. Призмі, на якій знаходиться брусок масою m, надали горизонтальне прискорення вліво, рівне a. При якому максимальному значенні a брусок буде нерухомим відносно призми, якщо коефіцієнт тертя між ними $k < ctg \ \alpha$.
- 3. На два катки різного радіуса поклали важку плиту, яка формує кут α з горизонтом. Знайдіть прискорення цієї плити α , якщо проковзуваня немає, а маса катків незначна.

- 4. Знайдіть прискорення тіл системи. Сила F прикладена по напряму нитки до одного с тіл маси m. Ділянки нитки паралельні.
- 5. До шарика на підвісі довжини l підвісили другий шарик на нитці тієї ж довжини. При обертанні шариків навколо вертикальної вісі, яка проходить через верхню точку підвісу, обидві нитки знаходяться в одній площині, і складають з вертикаллю кути α та β . Знайдіть кутову швидкість обертання кульок ω .

Домашнє завдання— Рух складних систем

Задачі:

- 1. Маляр працює в своїй підвісній люльці. Йому раптово знадобилося піднятися догори. Він починає тягнути за мотузку з такою силою, до його сила тиску на підлогу зменшилася до $400\ H$. Маса люльки $12\ кг$, а маляра $72\ kr$. Чому дорівнює прискорення люльки?
- 2. Між двома брусками маси m_1 кожний вставили клин маси m_2 з кутом α . Знайдіть прискорення тіл.
- 3. По дерев'яній нахиленій площині нахиленій під кутом α до горизонту, затягають ящик за прив'язану до нього нитку. Коефіцієнт тертя ящика о площину дорівнює μ . Під яким кутом треба тягнути нитку, щоб з найменшими зусиллями затягти ящик?

4. Маса повітряної кулі разом із канатом, що тягнеться по землі, рівна m. Виштовхувальна сила, що діє на шар рівна F. Коефіцієнт тертя канату о землю рівний μ . Сила опору повітря, яка діє на шар, пропорційна квадрату швидкості шару відносно повітря, тобто $F_{\rm on.} = \alpha v^2$. Знайдіть швидкість шару відносно землі, якщо дує горизонтальний вітер зі швидкістю u.

