

## Agenda

- 1. Introduction to Vector Databases
- 2. Core Concepts and Architecture
- 3. Retrieval Techniques Overview
- 4. Categorization of Retrieval Methods
- 5. Benchmarking Vector Databases
- 6. Key Considerations for Selection
- 7. Current Challenges and Future Directions
- 8.Q&A

## You Could Have Invented VectorDBs





## You Could Have Invented VectorDBs



## What are Vector Databases?

- Definition: Specialized databases designed to store, index, and query high-dimensional vector embeddings
- Purpose: Enable efficient similarity search and retrieval of unstructured data
- Key Insight: Transform semantic similarity into geometric proximity in high-dimensional space

### **Why Vector Databases Matter**

- Traditional databases struggle with unstructured data (text, images, audio)
- ML models generate embeddings that capture semantic meaning
- Need for fast, scalable similarity search at production scale

## The Semantic Gap Problem

#### **Traditional Information Retrieval Limitations**

- Keyword matching cannot capture semantic meaning
- Car =/= Automobile in lexical search
- Query-document mismatch even when semantic similarity is high

### **Example Medical Literature Search**

- Query: "heart attack symptoms"
- Relevant document: "myocardial infarction presentation"
- Traditional IR techniques: No lexical overlap -> Missed
- Vector Search: Semantic similarity -> found

## Core Architecture Components

### **Vector Embeddings**

- Dense numerical representations (typically 100-2000 dimensions)
- Generated by ML models (transformers, CNNs, etc.)
- Capture semantic relationships in continuous space
- (uncle man) + woman ≈ aunt

### **Indexing Structures**

- Flat Index: Brute force, exact search
- Tree-based: KD-trees, Ball trees
- Hash-based: LSH (Locality Sensitive Hashing)
- Graph-based: HNSW, NSG
- Quantization-based: PQ, OPQ, ScaNN

## Retrieval Techniques: Overview

# Exact vs. Approximate Search Exact Search (KNN)

- Guarantees finding true nearest neighbors
- Computationally expensive: O(nd) complexity
- Suitable for small datasets or offline processing

## **Approximate Nearest Neighbor (ANN)**

- Trade-off accuracy for speed
- Sublinear time complexity
- Production-ready for large-scale applications

# Theoretical Foundations of Approximate Search

#### **Accuracy-Speed Trade-Off**

**Exact Search Problem:** Given query q and dataset  $X \in \{x_1, ..., x_n\}$  find k points with smallest  $d(q, x_i)$ 

### **Computational Complexity**

- Brute force: O(nd)
- Best known lower bound:  $\Omega(n)$  for general metric spaces
- High dimensions: All points appear equidistant (concentration of measure)

**Approximate Nearest Neighbor (ANN):** Trade accuracy for speed - enables sublinear algorithms:  $\mathcal{O}(n^{\rho})$  where  $\rho < 1$ 

### **Common Approximation Types:**

- Distance-based: Return points within  $(1+\epsilon)$  factor of optimal
- Probabilistic: Find true NN with probability p
- Recall-based: Return  $\alpha$  fraction of true k nearest neighbors

## The Curse of Dimensionality

### **Concentration of Measure Phenomenon**

**Key Result:** in high dimensions, distances concentrate around their mean

For random vectors in 
$$\frac{Var[||X||_2]}{E[||X||_2]^2} \to 0$$
 as  $d \to \infty$ 

### **Implication**

- Signal-to-noise ratio degrades:  $\frac{d_{max} d_{min}}{d_{min}} o 0$
- All points appear nearly equidistant
- Traditional indexing structures (k-d trees) become ineffective

## **Distance Metrics**

### **Common Similarity Measures**

#### 1. Euclidean Distance (L2)

• 
$$d = \sqrt{\sum (x_i - y_i)^2}$$

Sensitive to magnitude

### 2. Cosine Similarity

- $cos(\theta) = (A \cdot B)/(|A||B|)$
- Direction-focused, magnitude-invariant

#### 3. Dot Product

- $A \cdot B = \sum (a_i \times b_i)$
- Fast computation, used in attention mechanisms

### 4. Manhattan Distance (L1)

- $d = \sum |x_i y_i|$
- Robust to outliers

## Retrieval Method Categories

#### 1. Tree-Based Methods

#### **KD-Trees**

- Binary space partitioning
- Effective in low dimensions (< 20)
- Degrades with dimensionality (curse of dimensionality)
- Rarely used in modern embeddings, exact recall

### **Ball Trees**

- Hierarchical clustering approach
- Better for high-dimensional data than KD-trees
- $O(\log n)$  average case complexity

## k-d Trees

Red = X-axis split Blue = Y-axis split



Source: https://medium.com/@notesbymuneeb/k-d-trees-for-nearest-neighbor-search-df4fc459da51

## Retrieval Method Categories

#### **Ball Trees**

#### Structure:

- Recursive binary tree over nested hyperspheres ("balls")
- Each node covers a subset of points with a center and radius

#### **Querying:**

- Uses triangle inequality to prune subtrees
- Efficient for exact k-NN and radius queries

#### **Complexity:**

- Build time: O(n log n)
- Avg. query time: O(log n)
- Worst-case: O(n) in high dimensions

#### Trade-offs:

- Handles higher dimensions better than KD-Trees
- Still degrades with dimensionality
- Exact recall, but slower than hashing for large-scale search

## Retrieval Method Categories

## 2. Hash-Based Methods Locality Sensitive Hashing (LSH)

- Maps similar vectors to same hash buckets
- Very fast, low memory, acceptable recall
- Works better in high dimensional spaces
- Probabilistic guarantees
- Examples: Random projections, MinHash
- Trade-Off: More hash functions = better recall but slower queries

### **Learning to Hash**

- Deep learning approaches
- Learn optimal hash functions
- Examples: Deep Supervised Hashing (DSH)

## LSH



## Retrieval Method Categories

### **LSH Mathematical Foundations**

**LSH Family Definition:** Family H is  $(r, cr, p_1, p_2)$ -sensitive if:

- $d(x, y) \le r \to \Pr[h(x) = h(y)] \ge p_1$
- $d(x, y) \ge cr \rightarrow \Pr[h(x) = h(y)] \le p_2$

## **Query Complexity:**

- L hash tables, K functions each
- Expected query time:  $O(L \cdot n^{\rho})$  where  $\rho = \ln(1/p_1) / \ln(1/p_2) < 1$
- Space: O(LKn)

## Retrieval Method Categories

# 3. Graph-Based Methods Navigable Small World (NSW)

- Single-layer graph
- Inspired by small-world networks
- Foundation for HNSW

### **Hierarchical Navigable Small World (HNSW)**

- Multi-layer graph structure
- Greedy search with skip connections
- State-of-the-art performance/speed trade-off
- O(n) space

## **HNSW**



## **Navigable Small World Networks**

### Kleinberg's Model (2000):

- Grid graph + long-range connections
- Connection probability  $\propto d(u, v)^{(-\alpha)}$
- Optimal  $\alpha$  = d (dimension) for greedy routing

**HNSW Insight:** Multi-layer graph mimics hierarchical structure

- Layer 0: All points (NSW graph)
- Layer i: Exponentially decreasing density
- Search: Start at top, navigate down

**Theoretical Guarantee:** Expected search complexity: O(log n) with high probability

## Retrieval Method Categories

# 4. Learned Indices Deep Learning Approaches

- Learn optimal indexing structures
- Examples: Learned LSH, Neural Information Retrieval
- Promising but computationally intensive

## **Hybrid Methods**

- Combine traditional indexing with ML
- Learn query-specific optimizations
- Balance between performance and complexity

## Retrieval Method Categories

## 5. Inverted File (IVF) Methods

- Partitions data into clusters or "cells"
- Uses a coarse quantizer (e.g., k-means) to assign vectors to clusters
- At query time, searches only a subset of clusters near the query
- Reduces search space dramatically, speeding up retrieval
- Often combined with Product Quantization (PQ) for efficient compression

## **Inverted File (IVF) Methods**



## Performance on Sift1M (d=128, k=10)

| Index           | Memory (MB) | Query Time<br>(ms) | Recall     | Notes                                                                    |
|-----------------|-------------|--------------------|------------|--------------------------------------------------------------------------|
| Flat (L2 or IP) | ~500        | ~18                | 1.0        | Good for small<br>datasets or<br>where query<br>time is<br>irrelevant    |
| LSH             | 20 - 600    | 1.7 - 30           | 0.4 - 0.85 | Best for low<br>dimensional<br>data, or small<br>datasets                |
| HNSW            | 600 - 1600  | 0.6 - 2.1          | 0.5 - 0.95 | Very good for<br>quality, high<br>speed, but<br>large memory<br>usage    |
| IVF             | ~520        | 1 - 9              | 0.7 - 0.95 | Good scalable option. High-quality, at reasonable speed and memory usage |

#### Hardware used

- M1 chip with 8-core CPU
- 8GB unified memory

## Retrieval Methods Decision Tree

- Small + Low-dim + Exact: Flat, Trees
- Large + Memory constraints: LSH or IVF
- Production + High performance: HNSW
- Massive scale + Memory efficient: IVF +
   Quantization
- Research + Optimization: Learned Indices

## Vector Database Systems

### **Open-Source Options**

- Faiss (Facebook): High-performance similarity search library
- Annoy (Spotify): Approximate nearest neighbors, memorymapped
- Hnswlib: Fast HNSW implementation
- Milvus: Distributed vector database
- Weaviate: GraphQL-based vector search engine

#### **Commercial Solutions**

- Pinecone: Managed vector database service
- Vespa: Distributed search and storage
- Qdrant: Neural search engine
- Chroma: Al-native embedding database

## Benchmarking Vector Databases

## **Key Performance Metrics Recall@K**

- Percentage of true neighbors found in top-K results
- Most important accuracy metric
- Usually measured at K=1, 10, 100

#### **Queries Per Second (QPS)**

- Throughput under concurrent load
- Measured at different recall levels

#### **Latency Percentiles**

- P50, P95, P99 response times
- Important for user-facing applications

#### **Memory Usage**

- Index size vs. dataset size ratio
- Critical for large-scale deployments

## Standard Benchmarking Datasets

### **Research Datasets**

- SIFT1M/SIFT1B: 128-dimensional SIFT descriptors
- GIST1M: 960-dimensional GIST descriptors
- GloVe: Word embeddings (25-300 dimensions)
- Deep1B: 1 billion deep neural network features

## **Domain-Specific Benchmarks**

- MS MARCO: Document retrieval
- BEIR: Information retrieval benchmark
- MTEB: Massive text embedding benchmark

## **Benchmark Considerations**

## **Evaluation Methodology**

- Cold vs. Warm Queries: Cache effects
- Query Distribution: Random vs. realistic query patterns
- Dataset Characteristics: Dimensionality, clustering, outliers

## **Hardware Dependencies**

- CPU vs. GPU: Different algorithms perform differently
- Memory Hierarchy: L1/L2 cache, RAM, storage
- SIMD Instructions: Vectorized operations impact

## **Selection Considerations**

### **Dataset Characteristics**

- Size: Millions vs. billions of vectors
- **Dimensionality**: Low (<100) vs. high (>1000) dimensions
- Update Frequency: Static vs. dynamic datasets
- Distribution: Clustered vs. uniform data

### **Query Patterns**

- Batch vs. Real-time: Different optimization strategies
- Query Volume: QPS requirements
- Accuracy Requirements: Exact vs. approximate tolerance

## Selection Considerations (cont.)

#### **Operational Requirements**

Scalability - Horizontal vs. vertical scaling capabilities

- Distributed processing support
- Load balancing strategies

#### Consistency

- ACID properties for updates
- Eventual vs. strong consistency
- Multi-version concurrency control

#### **Integration**

- API compatibility (REST, gRPC)
- Language bindings
- Ecosystem integration (Kafka, Spark, etc.)

## Performance Optimization Strategies

#### **Index Tuning**

- Parameter Selection: M, ef\_construction in HNSW
- Memory vs. Accuracy Trade-offs: Choose appropriate index type
- Preprocessing: Dimensionality reduction, normalization

#### **Query Optimization**

- Batching: Process multiple queries together
- Caching: Cache frequent queries and results
- Filtering: Pre-filter with metadata before vector search

### **Hardware Optimization**

- SIMD Utilization: Vectorized distance calculations
- GPU Acceleration: Parallel processing for large batches
- Memory Layout: Optimize for cache locality

## **Current Challenges**

### **Technical Challenges**

- Curse of Dimensionality: Performance degradation in high dimensions
- Dynamic Updates: Maintaining index quality with insertions/deletions
- Multi-modal Retrieval: Combining different data types effectively

### **Operational Challenges**

- Cost Management: Balance between performance and infrastructure costs
- Monitoring: Understanding query patterns and system health
- Version Management: Handling model updates and embedding changes

## **Emerging Trends**

### **Advanced Retrieval Techniques**

- Dense-Sparse Hybrid: Combining dense embeddings with sparse features
- Multi-Vector Retrieval: Representing documents with multiple embeddings

### **Integration Patterns**

- RAG (Retrieval-Augmented Generation): LLM + vector search
- Multi-modal Search: Text, image, audio in unified systems
- Federated Search: Distributed vector databases

## **Future Directions**

#### **Research Areas**

- Learned Indexes: Using ML to optimize index structures and query routing
- Disk-based ANN: Scaling to trillion-vector datasets that don't fit in memory
- Real-time Learning: Dynamic embedding updates and adaptive indexing

#### **Industry Evolution**

- Standardization: Common APIs, benchmarks, and interchange formats
- **Hybrid Search**: Combining vector similarity with traditional filters and ranking
- Edge Deployment: Optimized models and indexes for mobile/IoT devices

## **Key Takeaways**

- 1. No One-Size-Fits-All: Choose based on specific requirements
- 2. Trade-offs are Fundamental: Speed vs. accuracy vs. memory
- 3. Benchmarking is Critical: Use appropriate datasets and metrics
- 4. Consider Total Cost of Ownership: Not just query performance
- 5. Stay Updated: Rapidly evolving field with new techniques

### **Recommended Approach**

- 1. Start with simple baseline (Faiss flat index)
- 2. Identify bottlenecks and requirements
- 3. Experiment with different methods
- 4. Validate with realistic workloads
- 5. Monitor and iterate

## Thank You

### **Additional Resources:**

https://arxiv.org/html/2310.11703v2

https://www.pinecone.io/learn/series/faiss/vect

or-indexes/