RISC-V RV64I Simple Green Card

	I				Green Card	
Instruction	Type	Opcode		Funct7/IMM		
add rd, rs1, rs2			0x0	0x00	$R[rd] \leftarrow R[rs1] + R[rs2]$	
mul rd, rs1, rs2			0x0	0x01	$R[rd] \leftarrow (R[rs1] * R[rs2])[31:0]$	
sub rd, rs1, rs2			0x0	0x20	$R[rd] \leftarrow R[rs1] - R[rs2]$	
sll rd, rs1, rs2			0x1	0x00	$R[rd] \leftarrow R[rs1] << R[rs2]$	
mulh rd, rs1, rs2			0x1	0x01	$R[rd] \leftarrow (R[rs1] * R[rs2])[63:32]$	
slt rd, rs1, rs2			0x2	0x00	$R[rd] \leftarrow (R[rs1] < R[rs2]) ? 1 : 0$	
xor rd, rs1, rs2	R	0x33	0x4	0x00	$R[rd] \leftarrow R[rs1] \land R[rs2]$	
div rd, rs1, rs2			0x4	0x01	$R[rd] \leftarrow R[rs1] / R[rs2]$	
srl rd, rs1, rs2			0x5	0x00	$R[rd] \leftarrow R[rs1] >> R[rs2]$	
sra rd, rs1, rs2			0x5	0x20	$R[rd] \leftarrow R[rs1] >> R[rs2]$	
or rd, rs1, rs2			0x6	0x00	$R[rd] \leftarrow R[rs1] \mid R[rs2]$	
rem rd, rs1, rs2			0x6	0x01	$R[rd] \leftarrow (R[rs1] \% R[rs2]$	
and rd, rs1, rs2			0x7	0x00	$R[rd] \leftarrow R[rs1] \& R[rs2]$	
lb rd, offset(rs1)		I ()Y()≺	0x0		R[rd] ← SignExt(Mem(R[rs1] + offset, byte))	
Ih rd, offset(rs1)			0x1		R[rd]	
lw rd, offset(rs1)			0x2		R[rd] ← SignExt(Mem(R[rs1] + offset, word))	
ld rd, offset(rs1)			ox3		R[rd] ← Mem(R[rs1] + offset, doubleword)	
addi rd, rs1, imm		I ()x13	0x0		$R[rd] \leftarrow R[rs1] + imm$	
slli rd, rs1, imm			0x1	0x00	$R[rd] \leftarrow R[rs1] << imm$	
slti rd, rs1, imm			0x2		R[rd] ← (R[rs1] < imm) ? 1 : 0	
xori rd, rs1, imm			0x4		$R[rd] \leftarrow R[rs1] \land imm$	
srli rd, rs1, imm			0x5	0x00	$R[rd] \leftarrow R[rs1] >> imm$	
srai rd, rs1, imm	- 1		0x5	0x20	$R[rd] \leftarrow R[rs1] >> imm$	
ori rd, rs1, imm			0x6	UNZU	R[rd] ← R[rs1] imm	
andi rd, rs1, imm			0x7		R[rd] ← R[rs1] & imm	
addiw rd, rs1, imm		0x1B	0x0		$R[rd] \leftarrow SignExt((R[rs1](63:0) + SignExt(imm))[31:0])$	
Jalr rd, rs1, imm		0x67	0x0		R[rd] ← PC + 4	
Jan Tu, 131, IIIIII			0.00		PC ← R[rs1] + {imm, 1b'0}	
ecall	-		0x0	0x000	(Transfers control to operating system)	
ecan			0.00	0,000	a0 = 1 is print value of a1 as an integer.	
					a0 = 10 is exit or end of code indicator.	
sb rs2, offset(rs1)			0x0		Mem(R[rs1] + offset) ← R[rs2][7:0]	
	-	0x23				
sh rs2, offset(rs1) sw rs2, offset(rs1)	S		0x1 0x2		$Mem(R[rs1] + offset) \leftarrow R[rs2][15:0]$ $Mem(R[rs1] + offset) \leftarrow R[rs2][21:0]$	
					$Mem(R[rs1] + offset) \leftarrow R[rs2][31:0]$	
sd rs2, offset(rs1)			0x3		$Mem(R[rs1] + offset) \leftarrow R[rs2][63:0]$	
beq rs1, rs2, offset			0x0		if(R[rs1] == R[rs2])	
1 2 55	-		0.4		PC ← PC + {offset, 1b'0}	
bne rs1, rs2, offset blt rs1, rs2, offset	-	0x63	0x1		if(R[rs1] != R[rs2])	
	SB				PC ← PC + {offset, 1b'0}	
			0x4		if(R[rs1] < R[rs2])	
h					PC ← PC + {offset, 1b'0}	
bge rs1, rs2, offset			0x5		if(R[rs1] >= R[rs2])	
					PC ← PC + {offset, 1b'0}	
auipc rd, offset	U	0x17	R[rd] ← PC + {offset, 12'b0}			
lui rd, offset		0x37			R[rd] ← {offset, 12'b0}	
jal rd, imm	UJ	0x6f			R[rd] ← PC + 4	
					PC ← PC + {imm, 1b'0}	

For further reference, here are the bit lengths of the instruction components

TOT TOTAL	er reference, i	icre are the	ore reingerio	or the matrice	tion compo	110110	_	
R-TYPE	funct7	rs2	rs1	funct3	rd	opcode		
Bits	7	5	5	3	5	7		
							_	
I-TYPE	imm[11:0]	rs1	funct3	rd	opcode			
Bits	12	5	3	5	7	1		
						_		
S-TYPE	imm[11:5]	rs2	rs1	funct3	imm[4:0]	opcode		
Bits	7	5	5	3	5	7		
							_	
SB-TYPE	imm[12]	imm[10:5]	rs2	rs1	funct3	imm[4:1]	imm[11]	opcode
Bits	1	6	5	5	3	4	1	7
U-TYPE	imm[31:12]	rd	opcode					
Bits	20	5	7	1				
			•	-				
UJ-TYPE	imm[20]	imm[10:1]	imm[11]	imm[19:12]	rd	opcode		
Bits	1	10	1	8	5	7		

执行结果参考: https://kvakil.github.io/venus/