Classificação de assinatura eletrônica de empréstimos com base no histórico financeiro

Componentes da Equipe:

- Carlos Souza
- · Rafael Kanda
- Saile Santos

Problema

Com base no dataset: E-Signing of Loan-Based on Financial History realizar a classificação e previsão se um dado indivíduo concluiu o processo de assinatura eletrônica ou não.

Algoritmos usados:

- · Árvore de Decisão;
- Floresta Aleatória;
- KNN;
- SVC;

- · Naive Bayes;
- · Regressão Linear;
- Regressão Logística;
- · Rede Neural.

Configuração dos Algoritmos

- · Conjunto de datasets iguais;
- Divisão 70% treino / 30% teste;
- Random_state = 2811;
- · Sem adição de parâmetros nos modelos.

Configuração dos Algoritmos – Rede Neural

```
redeneural = Sequential()
redeneural.add(Dense(128, activation = 'relu', input dim = 4))
redeneural.add(Dense(128, activation = 'relu'))
redeneural.add(Dense(128, activation = 'relu'))
redeneural.add(Flatten())
redeneural.add(Dense(1, activation = 'sigmoid'))
earlystop = EarlyStopping(monitor='loss', patience = 10)
learning rate reduction = ReduceLROnPlateau(monitor = 'accuracy', patience = 2, verbose = 1, factor = 0.5, min lr = 0.00001)
callbacks = [earlystop, learning rate reduction]
redeneural.compile(
    loss="binary crossentropy",
    optimizer="adam",
    metrics=['accuracy']
redeneural.fit(
    X_train,
    y train.values,
    epochs=30,
    batch size=64,
    callbacks = callbacks
```

Resultados

	Score	R2 Score	\mathbf{EQM}
Árvore de Decisão	0.9997	0.742	0.4334
Floresta Aleatória	0.9997	0.599	0.3977
KNN	0.7199	0.788	0.4448
SVC	0.5526	0.808	0.4496
Regressão Linear	0.0100	0.013	0.2454
Regressão Logística	0.5410	0.884	0.4686
Naive Bayes	0.5291	0.826	0.4543

Resultados – Rede Neural

	Acurácia	Perda	MSE	MAE
Modelo	0.5689	0.6643	0.2361	0.4744

Melhores Resultados

Conclusão

O desempenho dos algoritmos testados ainda não chegaram em um nível aceitável, mas melhoram em relação ao método testado na sprint passada.

Como os algoritmos foram usados de forma simples, o próximo passo é selecionar aqueles com os melhores resultados e aprofundar seu estudo e aplicação visando o refinamento dos algoritmos.

Link do Trabalho

Acesso pelo GitHub:

https://github.com/Equipe5-ifam-cmzl/trabalho-final

