1/1 point

1/1 point

1/1 point

1. Given the Single Layer Perceptron described in the lectures:

Grade received 100% To pass 80% or higher

What should be replaced in the question mark?

- $\bigcap w_1w_2 + x_1x_2 + b$
- $\bigcirc w_1x_1 + w_2x_2 + b_1 + b_2$
- $\bigcirc w_1x_2 + w_2x_1 + b$
- **⊘** Correct

Correct! In a single layer perceptron, we evaluate a (weighted) linear combination of the inputs plus a constant term, which represents the bias!

Correct! We see the Loss Function as a function of w_1,w_2 and b so we can perform Gradient Descent to find the optimal parameters that

- 2. For a Regression using a Single Layer Perceptron, select all that apply:
 - The Loss Function used is $L(y,\hat{y}) = -y \ln(\hat{y}) (1-y) \ln(1-\hat{y})$.
 - The Loss Function used is $L(y,\hat{y})=rac{1}{2}(y-\hat{y})^2$.
 - **⊘** Correct

Correct

Correct! This is the mean squared error, usually used as a loss function for regression.

- To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of w_1,w_2 and b.
- minimize it!

To minimize the Loss Function, we consider $L(y,\hat{y})$ as a function of x_1 and x_2 .

Consider the problem of Classification using a Single Layer Perceptron as discussed in the lectures.

In the figure above, z and $\sigma(z)$ are, respectively:

- $\bigcirc z = w_1x_1 + w_2x_2 + b$ and $\sigma(z) = rac{1}{2}(z \hat{z})^2$
- $\bigcirc \ z = rac{1}{1+e^{-z}}$ and $\sigma(z) = w_1x_1 + w_2x_2 + b$
- $\bigcirc \ z = x_1 + x_2 + b \ \mathsf{and} \ \sigma(z) = frac{1}{2} (z \hat{z})^2$
- $igotimes z = w_1x_1 + w_2x_2 + b$ and $\sigma(z) = rac{1}{1+e^{-z}}$

Correct

Correct! In this case, z is a linear combination of the inputs and $\sigma(z)$ is the sigmoid function, so it maps the result to a value between 0 and 1, thus the output can be interpreted as a probability.

4. In the 2,2,1 Neural Network described below

1/1 point

How many parameters must be tuned to minimize the Loss Function?

- 9

 $\langle \vee \rangle$ Correct

Correct! We have 2 inputs, which will generate 2 constant terms (b_1 and b_2), since the next layer has 2 neurons, each input must have 2 parameters, therefore the first layer has 2 + 2*2 = 6 parameters. The hidden layer, therefore, has three more parameters since there are 2 neurons. We also must add another constant term $c.\,$ In total there are 9 parameters.

5. About Backpropagation, check all that apply:

1/1 point

- It is a way to obtain the input values for a given output of a neural network.
- It is a method to update the parameters of a neural network.

Correct

Correct! This is the method which a neural network updates its parameters.

- It is the same as gradient descent.
 - It is a method that starts in the output layer and finishes in the input layer.

Correct

Correct! As the name suggests, the backpropagation method iteratively updates the neural network parameters from backwards.