

**MCDONNELL DOUGLAS**



**AIR-4.1.2**  
**AV-8B HARRIER CLASS DESK**

# **Open Systems Ada Technology Demo**

## **Open Systems-Joint Task Force**

### **WALCOFF AUDITORIUM**

**29 May 1996**  
**FAIRFAX VA**

**Maj. Glenn Hoppe**

**AV-8B CLASS DESK**

**Don Winter**

**MCDONNELL DOUGLAS AEROSPACE**



# OUTLINE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

## → BACKGROUND

- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY



# BACKGROUND

AIR-4.1.2  
AV-8B HARRIER CLASS DESK

## GENERAL PROBLEM:

- Use of COTS is growing in military embedded applications
- Ada 95 is language of choice where COTS/GOTS can't be applied
- Mixed language situations may arise as a result
- Risk reduction demonstrations are called for, employing Ada 95 in COTS RT environment (POSIX, C)

## SOLUTION:

McDonnell Douglas Aerospace will:

- Develop an air-to-ground ballistics algorithm using Ada 95
- Link this algorithm into the AV-8B demonstration OFP (C, C++)
- Perform a flight demonstration on an AV-8B equipped with COTS MC, POSIX-compliant RTOS
- Apply/evaluate Wright Lab DFIP

## BENEFICIARIES:

- AV-8B OSCAR
- F-15 MPDP Upgrade
- F/A-18 Blk 18E
- C-17 CIP
- Joint Strike Fighter





# PROJECT OVERVIEW



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

## OPEN SYSTEMS ADA TECHNOLOGY DEMONSTRATION



- **RE-ENGINEERED F-15 RUNGE-KUTTA ALGORITHM**
  - ADA 95, OBJECT-ORIENTED DESIGN
  - DFIP FAULT TOLERANT INPUT/OUTPUT PROCESSING
- **COTS RUN-TIME ENVIRONMENT**
  - POWER PC MISSION COMPUTER
  - POSIX-COMPLIANT OPERATING SYSTEM (VX WORKS)



# OUTLINE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

- BACKGROUND
- TECHNICAL DETAILS
- FY97 RECOMMENDATIONS
- SUMMARY



# OSAT DEMONSTRATION



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

---

## Software Development Tasks

- Reengineer/recode F-15 Runge-Kutta (Ada83) ballistics algorithm
  - Object-oriented design in accordance with MDA Common OFP architecture
  - Code in Ada95
  - POSIX-compliant RTOS (VX Works)
  - PowerPC host
  - Implement DFIP input and output algorithms
- Integrate with AV-8B demo (C) OFP, C++ NAV module
  - Enhance demo OFP to add A/G
    - Transform to/from platform coordinates
    - Accommodate 20 Hz algorithm (legacy code is 10 Hz)
  - Hard code Mk 76 Practice Bomb ballistics



# DEMONSTRATION ENVIRONMENT



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

- TAV-8 CUM 6 WILL BE DEMONSTRATOR AIRCRAFT
  - BASED AT NAWC-CL
- XN-6 MISSION COMPUTER WILL BE REPLACED WITH POWER PC-BASED UNIT
  - SUPPLIED BY CDI
- WIND RIVER VX WORKS RTOS (POSIX-COMPLIANT)
- BASELINE OFP WILL BE MDA C-OFP WITH C++ COMMON NAV/COMM MODULES (USED FOR MDA DEMO FLIGHT)
- GREEN HILLS ADA 95 NATIVE AND CROSS COMPILERS
- FLIGHTS WILL BE CONDUCTED AT CHINA LAKE
  - MK 76 DROPS WILL OCCUR AT CHINA LAKE'S TEST RANGE



# OUTLINE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

---

- **BACKGROUND (AGENT BRIEFS)**
- **TECHNICAL DETAILS**
- **FY97 RECOMMENDATIONS**
- **SUMMARY**



# OUTLINE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

---

- **BACKGROUND (AGENT BRIEFS)**
- **TECHNICAL DETAILS**
- FY97 RECOMMENDATIONS**
- **SUMMARY**



# PROJECT SCHEDULE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

| ID | Task Name                                        | 1995 |    |    |    | 1996 |    |    |       | 1997    |       |    |    | 1998 |    |    |    | 1999 |    |    |
|----|--------------------------------------------------|------|----|----|----|------|----|----|-------|---------|-------|----|----|------|----|----|----|------|----|----|
|    |                                                  | Q1   | Q2 | Q3 | Q4 | Q1   | Q2 | Q3 | Q4    | Q1      | Q2    | Q3 | Q4 | Q1   | Q2 | Q3 | Q4 | Q1   | Q2 | Q3 |
| 1  | COFP                                             |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 2  | Define and Acquire OO Toolset                    |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 3  | Achieve proficiency with new toolset             |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 4  | Requirements Tool Decision                       |      |    |    |    |      |    |    |       | ◆ 6/3   |       |    |    |      |    |    |    |      |    |    |
| 5  | Architecture Development                         |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 6  | Initial Mission Computer (MC) Arch. Review       |      |    |    |    |      |    |    | ◆ 5/8 |         |       |    |    |      |    |    |    |      |    |    |
| 7  | Detailed Arch. Review - A/A & A/G wpn, NAV pt/pt |      |    |    |    |      |    |    | ◆ 7/3 |         |       |    |    |      |    |    |    |      |    |    |
| 8  | Detailed Arch. Review - all Common MDA MC S/W    |      |    |    |    |      |    |    |       | ◆ 10/2  |       |    |    |      |    |    |    |      |    |    |
| 9  | Navigation                                       |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 10 | Point to Point Steering                          |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 11 | A/G Weapons (Targeting/Steering/Zones)           |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 12 | Ballistic                                        |      |    |    |    |      |    |    |       |         |       |    |    |      |    |    |    |      |    |    |
| 13 | Gun                                              |      |    |    |    |      |    |    |       | ◆ 12/31 |       |    |    |      |    |    |    |      |    |    |
| 14 | Rockets (OSCAR)                                  |      |    |    |    |      |    |    |       |         | ◆ 3/3 |    |    |      |    |    |    |      |    |    |
| 15 | Maverick                                         |      |    |    |    |      |    |    |       |         | ◆ 6/2 |    |    |      |    |    |    |      |    |    |
| 16 | GBU-10/12/24/28 (Laser)                          |      |    |    |    |      |    |    |       |         | ◆ 7/1 |    |    |      |    |    |    |      |    |    |
| 17 | GBU-15 (TV/IR)                                   |      |    |    |    |      |    |    |       |         | ◆ 7/1 |    |    |      |    |    |    |      |    |    |



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

## FY97 RECOMMENDATIONS

---

- COMPLETE ALL OSAT DEMO OBJECTIVES (\$200K REQ'D)
- OSAT FOLLOW-ON CANDIDATES:
  - DISTRIBUTED PROCESSING DEMONSTRATION (MULTIPLE POWER PCs)
    - POSIX/ORB/ADA 95
  - IMPLEMENT/DEMONSTRATE F-15 ZAP MISSILE ALGORITHM
    - 5-DOF MISSILE FLY-OUT ALGORITHM
    - REDESIGN USING ADA 95, OBJECT-ORIENTED DESIGN
  - DEMONSTRATE OFF-BOARD LINK PROCESSING
    - AUTOMATIC TARGET HAND-OFF SYSTEM (ATHS)
    - ELEMENT OF MULTI-SENSOR INTEGRATION
  - IMPLEMENT/DEMONSTRATE OTHER COMMON OFP COMPONENTS USING ADA 95



# OUTLINE



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

---

- **BACKGROUND (AGENT BRIEFS)**
- **TECHNICAL DETAILS**
- **FY97 RECOMMENDATIONS**
- **SUMMARY**





# SUMMARY



AIR-4.1.2  
AV-8B HARRIER CLASS DESK

---

- OSAT BUILDS UPON MDA'S COMMON OFP IRAD AND OFFERS REAL RISK MITIGATION
  - BENEFICIARIES INCLUDE ALL AVIONICS PROGRAMS EVOLVING TOWARD OPEN SYSTEMS AND/OR ADA 95
- DFIP ANALYSIS AND TEST HAS IMMEDIATE PAYBACK POSSIBILITIES
  - ENHANCEMENT TO COMMON BALLISTICS MODULE TARGETED FOR AV-8B, F-15, F/A-18, JSF
- FY97 FOLLOW-ON OBJECTIVES SHOULD ADDRESS OTHER KEY RISK AREAS
  - DISTRIBUTED PROCESSING
  - NEW FUNCTIONALITY (E.G. OFF-BOARD DATA)