קורס: 20416 "תורת ההסתברות"

(85 / 4 מועד - 20017 (סמסטר 20.7.2017 מועד א4 / 85)

חומר העזר המותר: מחשבון מדעי וספר הקורס בלבד.

מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם **חשבו את התוצאה הסופית** (כמובן, במידת האפשר).

לבחינה מצורפת: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

שאלה 1 (25 נקודות)

. ו- B שני שחקנים, שלכל אחד מהם מטבע תקין משלו, שאותו הוא מטיל שוב ושוב.

 $_{\mathrm{H}}$ הראשון H -מטיל את המטבע שלו, הוא מפסיק להטילו מייד עם קבלת ה

כאשר B מטיל את המטבע שלו, הוא מפסיק להטילו מייד עם קבלת ה- H השלישי (בסהייכ ולאו דווקא ברצף).

בוחרים באקראי אחד משני השחקנים שלעיל והוא מטיל את המטבע שלו, כמפורט מעלה.

יהי X מספר ההטלות שבוצעו על-ידי השחקן שנבחר.

- $(9 \, \mathrm{tgr})$ א. מהי פונקציית ההסתברות של
- (8 נקי) ב. אם ידוע ש- X=5 , מהי ההסתברות ששחקן B נבחר להטיל את המטבע שלוי X=5
 - E[X] ג. חשב את (8 נקי).

שאלה 2 (25 נקודות)

נתונה קופסה ובה 20 פתקים שווים בגודלם ובצורתם : 13 אדומים ו- 7 כחולים. מוציאים באקראי מהקופסה פתק אחר פתק, ללא החזרה.

- (6 נקי) א. מהי שונות מספר הפתקים הכחולים שיוצאו ב- 10 הבחירות הראשונות!
 - (6 נקי) ב. מהי ההסתברות שהפתק הכחול החמישי יוצא בבחירה ה- 15:

יהי X המשתנה המקרי המוגדר על-ידי מספר הפתקים הכחולים שהוצאו מייד לאחר שהוצא פתק אדום. $X=5 \ .$ למשל, אם סדר הבחירה (מימין לשמאל) היה: באכאאאב אאאב אאאב אא אראב אא אראב אז X=5

- $(3 \, \mathrm{tg}')$ ג. מהי התוחלת של $(3 \, \mathrm{tg}')$
- (7נקי) ד. מהי השונות של X!

שאלה 3 (25 נקודות)

במעגל שלהלן, כל אחד מחמשת המתגים **סגור** בהסתברות 0.8, ואז **יכול לעבור בו זרם**.

כאשר מתג פתוח, לא יכול לעבור בו זרם.

כמו כן, כל מתג פועל באופן בלתי-תלוי במתגים אחרים.

- (9 נקי) א. מהי ההסתברות שיעבור זרם מ-A ל-B!
- (8 נקי) ב. אם לא עובר זרם מ-A ל-B, מהי ההסתברות שמתג 2 פתוח!
- , ג. אם מתג 1 פתוח וגם לפחות אחד מארבעת המתגים 2, 3, 4 ו-5 סגור, אם נקי) ג. אם מתג 1 פתוח וגם לפחות אחד מארבעת ההסתברות שיעבור זרם מ-A ל-8!

2

שאלה 4 (25 נקודות)

- א. התפלגות משקל (בגרם) של עגבנייה מקרית היא נורמלית עם תוחלת 100 וסטיית-תקן 30. אין תלות בין משקלים של עגבניות שונות.
 - בוחרים 50 עגבניות מקריות
- 1. מהי ההסתברות שבדיוק 8 מהן תשקולנה פחות מ- 70 גרם, 31 מהן תשקולנה בין 70 גרם (7 נקי) לכקי) בין 125 גרם והשאר תשקולנה יותר מ-125 גרם?
 - (6 נקי) אם ידוע שבדיוק 8 עגבניות (מתוך ה-50) שקלו פחות מ-70 גרם, מהי שונות מספר העגבניות שתשקולנה יותר מ-125 גרם?

הערה: ערוך חישובים מדויקים עד כמה שאפשר.

(n = 2,3,...) ב. מטילים קובייה תקינה n פעמים (12)

; ההטלות n-1 מספר הפעמים שהתוצאה שהתקבלה ה- מספר מספר אות יהי

ויהי N = n ההטלות. ביותר שהתקבלה ב-n ההטלות.

X ו- X ו- X ו- X ו- X ו- X ו- X

שאלה 5 (25 נקודות)

יהיו בלתי-תלויים מקריים מקריים ($n=2,3,\ldots$) איהיו יהיו יהיו אחד מהם התפלגות אחידה (רציפה) על הקטע (-1,1);

 $M = \max\{X_1, X_2, \dots, X_n\}$ ויהי M המקסימום של משתנים מקריים אלו, כלומר,

M ים מהי פונקציית הצפיפות של המשתנה המקרי א. מהי פונקציית הצפיפות א.

 $P\{X_2 > X_1 + 1\}$ ב. חשב את ב. (8 נקי)

 $P\{M > X_1 + 1\}$ ג. חשב את (9 נקי)

בהצלחה!

$\Phi(z)$ ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0	0.000	0.0091	0.0020	0.000.	0.0700	0.0750	0.0772	0.0000	0.00	0.0075
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
J. 1	0.7771	0.2221	0.2221	0.7771	0.7771	0.,,,,	0.,,,,	0.7771	0.7771	0.7770

$\Phi(z)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
Z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326