Summary: Composite Integration (Chapter 6)

Midpoint

$$I_{M} = h \left[f\left(a + \frac{1}{2}h\right) + f\left(a + h\right) + f\left(a + \frac{3}{2}h\right) + \dots + f\left(a + (n - \frac{1}{2})h\right) \right]$$
(6.9)

where $E_M = \frac{b-a}{24}h^2f''(\eta)$. Romberg: $\int_a^b f(x)dx = \frac{1}{3}[4I_M(2n) - I_M(n)] + O(h^3)$

Trapezoidal

$$I_T = h\left(\frac{1}{2}f_1 + f_2 + f_3 + \dots + f_n + \frac{1}{2}f_{n+1}\right)$$
(6.15)

where $E_T = -\frac{b-a}{12}h^2f''(\eta)$. Romberg: $\int_a^b f(x)dx = \frac{1}{3}[4I_T(2n) - I_T(n)] + O(h^3)$

Simpson

$$I_S = \frac{h}{3}(f_1 + 4f_2 + 2f_3 + 4f_4 + 2f_5 + \dots + 4f_n + f_{n+1})$$
(6.22)

where $E_S = -\frac{b-a}{180}h^4f''''(\eta)$. Romberg: $\int_a^b f(x)dx = \frac{1}{15} \left[16I_S(2n) - I_S(n) \right] + O(h^6)$

Hermite

$$I_H = I_T + \frac{1}{12}h^2(f_1' - f_{n+1}')$$
(6.28)

where $E_H = \frac{b-a}{720}h^4f''''(\eta)$. Romberg: $\int_a^b f(x)dx = \frac{1}{15} \left[16I_H(2n) - I_H(n) \right] + O(h^6)$

Discrete Data (via Cubic Splines)

$$\int_{a}^{b} f(x)dx \approx \frac{1}{3}I_{T} + \frac{2}{3}\sum_{i=1}^{n} h_{i}s\left(x_{i} + \frac{1}{2}h_{i}\right)$$
(6.40)

where $h_i = x_{i+1} - x_i$.

Gaussian

$$I_G = w_1 f(z_1) + w_2 f(z_2) + \dots + w_m f(z_m)$$
(6.42)

where $|E_G| \le \frac{\alpha}{\sqrt{m}} R^{2m} ||f^{(2m)}||_{\infty}$ for R = (b-a)e/(8m) and $\alpha = (b-a)\sqrt{\pi}/4$

k	f(x)	$\int_{a}^{b} f(x)dx$
0	1	ℓ
1	x	ℓx_m
2		$\ell\left(x_m^2 + \frac{1}{12}\ell^2\right)$
3	x^3	$\ell x_m \left(x_m^2 + \frac{1}{4} \ell^2 \right)$
4	x^4	$\ell \left(x_m^4 + \frac{1}{2}\ell^2 x_m^2 + \frac{1}{80}\ell^4 \right)$
5	x^5	$\ell x_m \left(x_m^4 + \frac{5}{6} \ell^2 x_m^2 + \frac{1}{16} \ell^4 \right)$

Table 1: Values for $\int_a^b x^k dx$, where $\ell = b - a$ and $x_m = (b + a)/2$.