Assignment – 2

Data Visualization and Pre-processing

Assignment Date	26 September 2022
Student Name	Raveena. R
Student Roll Number	2019PITIT146
Maximum Marks	2 Marks

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
```

1. Load the dataset.

df=pd.read_csv('/content/Churn_Modelling.csv')

df

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
		****	***	500	***	920				160	1922	550		144
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

Τ.	head()													
	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0

df.shape

(10000, 14)

2. Perform Below Visualizations

a. Univariate Analysis

```
df_france=df.loc[df['Geography']=='France']
df_spain=df.loc[df['Geography']=='Spain']
df_germany=df.loc[df['Geography']=='Germany']
```

```
plt.plot(df_france['Balance'],np.zeros_like(df_france['Balance']),'o')
plt.plot(df_spain['Balance'],np.zeros_like(df_spain['Balance']),'o')
plt.plot(df_germany['Balance'],np.zeros_like(df_germany['Balance']),'o')
plt.xlabel('Age')
plt.show()
```


/ Oc. complete

b. Bivariate Analysis

```
plt.bar('Geography','Age',data=df,color='teal')
```

<BarContainer object of 10000 artists>

plt.scatter('EstimatedSalary', 'NumOfProducts', data=df)

<matplotlib.collections.PathCollection at 0x7fcc81cb4c50>

sns.stripplot(x='Gender',y='Balance',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fcc81b965d0>

3. Multivariate Analysis

sns.pairplot(df.corr())

plt.subplots(figsize=(20,17)) sns.heatmap(df.corr(),annot=True,cmap='pink')

RowNumber	1	0.0042	0.0058	0.00078	-0.0065	-0.0091	0.0072	0.0006	0.012	-0.006	-0.017
Customerid	0.0042	1									
CreditScore		0.0053	1								
Age			-0.004	1	-0.01						0.29
Fenure				-0.01	1						
Balance		-0.012			-0.012	1	-0.3				
NumOfProducts						-0.3	1				-0.048
HasCrCard						-0.015	0.0032	1	-0.012		
ActiveMember					-0.028		0.0096	-0.012	1	-0.011	-0.16
EstimatedSalary IsActiveMember									-0.011	1	
Exited Es			-0.027	0.29			-0.048		-0.16	0.012	1
	RowNumber	Customerld	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited

sns.pairplot(df)

4. Perform descriptive statistics on the dataset

df.describe(include='all')

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000
unique	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881
std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818
min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000
25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000
50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000
75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500
max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000

5. Handle the Missing values

df.isnull()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	False	False	False	False	False	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False	False	False	False	False	False
•••	1000	***	(611	110	(444)	1000	660	1444	660	***	(300)			****
9995	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False	False	False	False	False	False	False

6. Find the outliers and replace the outliers

```
df.plot(subplots=True,layout=(4,6),kind='box',figsize=(22,18))
```

RowNumber
CustomerId
CreditScore
Age
Tenure
Balance
NumOfProducts
HasCrCard
IsActiveMember
EstimatedSalary
Exited

dtype: object

AxesSubplot(0.125,0.71587;0.110714x0.16413)
AxesSubplot(0.257857,0.71587;0.110714x0.16413)
AxesSubplot(0.390714,0.71587;0.110714x0.16413)
AxesSubplot(0.523571,0.71587;0.110714x0.16413)
AxesSubplot(0.656429,0.71587;0.110714x0.16413)
AxesSubplot(0.789286,0.71587;0.110714x0.16413)
AxesSubplot(0.125,0.518913;0.110714x0.16413)
AxesSubplot(0.257857,0.518913;0.110714x0.16413)
AxesSubplot(0.390714,0.518913;0.110714x0.16413)
AxesSubplot(0.523571,0.518913;0.110714x0.16413)
AxesSubplot(0.656429,0.518913;0.110714x0.16413)


```
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)
IQR = Q3 - Q1
n = 1.5
df = df['(df['Age'] < Q1 - n*IQR) | (df['Age'] > Q3 + n*IQR)]
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
58	59	15623944	T'ien	511	Spain	Female	66	4	0.00	1	1	0	1643.11	1
85	86	15805254	Ndukaku	652	Spain	Female	75	10	0.00	2	1	1	114675.75	0
104	105	15804919	Dunbabin	670	Spain	Female	65	1	0.00	1	1	1	177655.68	1
158	159	15589975	Maclean	646	France	Female	73	6	97259.25	1	0	1	104719.66	0
181	182	15789669	Hsia	510	France	Male	65	2	0.00	2	1	1	48071.61	0

df.plot(subplots=True,layout=(4,6),kind='box',figsize=(22,18))

RowNumber AxesSubplot(0.125,0.71587;0.110714x0.16413) CustomerId AxesSubplot(0.257857,0.71587;0.110714x0.16413) CreditScore AxesSubplot(0.390714,0.71587;0.110714x0.16413) AxesSubplot(0.523571,0.71587;0.110714x0.16413) Age Tenure AxesSubplot(0.656429,0.71587;0.110714x0.16413) AxesSubplot(0.789286,0.71587;0.110714x0.16413) Balance NumOfProducts AxesSubplot(0.125,0.518913;0.110714x0.16413) AxesSubplot(0.257857,0.518913;0.110714x0.16413) HasCrCard AxesSubplot(0.390714,0.518913;0.110714x0.16413) IsActiveMember EstimatedSalary AxesSubplot(0.523571,0.518913;0.110714x0.16413) Exited AxesSubplot(0.656429,0.518913;0.110714x0.16413)

dtype: object

7. Check for Categorical columns and perform encoding

df.dtypes

RowNumber	int64
CustomerId	int64
Surname	object
CreditScore	int64
Geography	object
Gender	object
Age	int64
Tenure	int64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64
dtype: object	

```
df['Geography'].unique()
array(['Spain', 'France', 'Germany'], dtype=object)
Geography=pd.get_dummies(df["Geography"])
df=pd.concat([df,Geography],axis=1)
df.drop(["Geography"],axis=1,inplace=True)
df['Gender'].unique()
array(['Female', 'Male'], dtype=object)
Gender=pd.get_dummies(df["Gender"])
df=pd.concat([df,Gender],axis=1)
df.drop(["Gender"],axis=1,inplace=True)
df.columns
Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Age', 'Tenure',
        'Balance', 'NumOfProducts', 'HasCrCard', 'IsActiveMember', 'EstimatedSalary', 'Exited', 'France', 'Germany', 'Spain', 'Female',
        'Male'],
      dtype='object')
df['Surname'].unique()
```

'Allan', 'Hobbs', 'Coates', 'Ignatyev', 'McConnell', 'Tang', 'Bell', 'Nwora', 'McDonald', 'Davidson', 'Hs?', 'Onyemauchechukwu', 'Connolly', 'King', 'Greco', 'Fanucci', 'Su', 'Woolnough', 'Harrison', 'Isayeva', 'Martin', 'Ch'em', 'Nnonso', 'Trentino', 'Kelly', 'Sullivan', 'Thomson', 'Rogers', 'Ponomarev', 'De Luca', 'Sheppard', 'Birk', 'Obioma', 'Theatu', 'Dellucci', 'Hs'eh', 'Davies', 'Fields', 'Page', 'Wu', 'Chen', 'Young', 'Sabbatini, 'Harvey', 'Sal', 'Tan', 'Otitodilinna', 'Chinonyelum', 'Munro', 'Sargent', 'Bianchi', 'Chiu', 'Buccho', 'Dolgorukova', 'Green', 'Thezimako', 'Dennis', 'Eve', 'Stradford', 'Liao', 'Abramovich', 'Cross', 'Ko', 'Fiorentini', 'Gray', 'Lu', 'Yevseyev', 'Horton', 'Wall', 'Cummins', 'Kodilinyechukwu', 'Scott', 'Harris', 'Ofodile', 'Highland', 'Botts', 'Baresi', 'Afamefuna', 'Rogova', 'Bufkin', 'Boniwell', 'Lombardi', 'Kuykendall', 'Browne', 'Niu', 'Mackie', 'Ifeatu', 'Fan', 'Davey', 'Kennedy', 'Gibson', 'Ferguson', 'Onyenachiya', 'Combes', 'Kent', 'Ngozichukwuka', 'Okonkwo', 'Lappin', 'Zhdanova', 'Ibekwe', 'Pettry', 'Wright', 'Felix', 'Nnaife', 'Schofield', 'Onwubiko', 'Rubin', 'Perry', 'Ma', 'Akudinobi', 'Flemming', 'Spencer', 'Okwuadigbo', 'Tu', 'Chidiebere', 'Yuan', 'Jamieson', 'Davis', 'Conway', 'Okwudilolisa', 'Lavrentyev', 'Muir', 'Soares', 'Lucas', 'Hudson', 'Winter-Irving', 'North', 'Rahman', 'Samaniego', 'Mayrhofer', 'Esomchi', 'Findlay', 'Seleznyov', 'Mickey', 'Spaull', 'Brown', 'Esseyev', 'Vorobyova, 'McClaarn', 'Mueller', 'Hao', 'Peng', 'Sykes', 'Woronoff', 'Duncan', 'Whitson', 'Loggia', 'Parkin', 'Tsai', 'Pugh', 'Chim', 'Chiemezie', 'Curtis', 'Russell', 'Rose', 'Fiorentino', 'Shaw', 'Zakharov', 'Tsui', 'Bolton', 'Golubev', 'Vanzetti', 'Tretiakova', 'Owens', 'Chifley', 'Murphy',

'Yermakova', 'Chikelu', 'Otitodilichukwu', 'Norriss', 'Mott', 'Henry', 'Pope', 'Romano', 'Watson', 'Ward', 'Fitzgerald', 'Arnold', 'Wells', 'Iweobiegbunam', 'Chiedozie', 'Thomas', 'Chukwujekwu', 'Vagin', 'Parks'], dtype=object)

df.dtypes RowNumber int64 CustomerId int64 Surname object CreditScore int64 int64 Age Tenure int64 Balance float64 NumOfProducts int64 int64 HasCrCard IsActiveMember int64 EstimatedSalary float64 int64 Exited France uint8 uint8 Germany Spain uint8 Female uint8 Male uint8 dtype: object

df.drop(["Surname"],axis=1,inplace=True)

8. Split the data into dependent and independent variables

```
dependent_data=df['Exited']
independent_data=df.drop('Exited',axis=1)
```

9. Scale the independent variables

10. Split the data into training and testing

 $X_train, \ X_test, \ y_train, \ y_test = train_test_split(\ independent_data, \ dependent_data, \ test_size=0.30, \ random_state=42)$

```
sc=StandardScaler()
X train = sc.fit transform(X train)
X test = sc.transform(X test)
print(X train)
-1.07879243]
 0.8471792
             0.31996526   0.46317624   ...   -0.61572793   -0.92696238
   0.92696238]
 [-0.22875737 -0.7671311 -0.57601735 ... 1.62409395 1.07879243
  -1.07879243]
 . . .
 [ 0.88831374 -1.36057018  0.70769237 ... -0.61572793  1.07879243
  -1.07879243]
 [ 1.62408552  0.21836558  1.42086444  ... -0.61572793  -0.92696238
   0.92696238]
 [-0.65405277 -1.57586185 1.27823003 ... -0.61572793 -0.92696238
   0.92696238]]
print(X_test)
[ 0.43654915 -0.19958681 0.30016548 ... -0.61572793 -0.92696238
  0.92696238]
[-1.39268608 -0.45567995 0.4020472 ... -0.61572793 -0.92696238
  0.926962381
[ 0.9845328 -0.86183628 -0.1888668 ... -0.61572793 1.07879243
 -1.07879243]
[ 0.43905299 -0.72549476 -0.57601735 ... -0.61572793 -0.92696238
  0.92696238]
[ 1.64805086  0.17543652  0.02508482  ... -0.61572793  -0.92696238
  0.92696238]
[ 0.71411789 -0.50209666 -0.42319476 ... 1.62409395 1.07879243
 -1.07879243]]
```