

Time Value of Money

- Rs 1 today is worth more than Rs 1 received in the future
- Opportunity cost (OC) of money received in future: forgone interest that could be earned if Rs 1 was received today
- PV of an amount received in the future is the amount that would have to be invested today at the prevailing interest rate to generate the given future value.

Formula (Present Value). The present value (PV) of a future value (FV) received n years in the future is

$$PV = \frac{FV}{(1+i)^n} \tag{1-1}$$

where *i* is the rate of interest.

Present Value Analysis

■ Higher the interest rate, the lower the present value of a future amount

$$PV = \frac{FV_1}{(1+i)^1} + \frac{FV_2}{(1+i)^2} + \frac{FV_3}{(1+i)^3} + \dots + \frac{FV_n}{(1+i)^n}$$

Formula (Present Value of a Stream). When the interest rate is i, the present value of a stream of future payments of FV_1, FV_2, \ldots, FV_n is

$$PV = \sum_{t=1}^{n} \frac{FV_t}{(1+i)^t}$$

- PV or a ruture payment : difference between the ruture value (FV) and the opportunity cost of waiting (OCW): PV = FV OCW → PV < FV as long as OCW > 0
- Higher the interest rate, lower the PV needed to generate the same FV in future.
- Net present value (NPV) of a project is simply the present value (PVt) of the income stream generated by the project minus the current cost (C0) of the project: NPV = PVt C0.

Present Value of Indefinitely Lived Assets

$$PV_{Asset} = CF_0 + \frac{CF_1}{(1+i)} + \frac{CF_2}{(1+i)^2} + \frac{CF_3}{(1+i)^3} + \cdots$$

■ Sum1: the value of a perpetual bond that pays the owner Rs 1000 at the end of each year when the interest rate is fixed at 5 percent is given by?

Value of a firm

■ Value of a firm is the present value of the stream of profits (cash flows) generated by the firm's physical, human, and intangible assets including its current profit

$$PV_{Firm} = \pi_0 + \frac{\pi_1}{(1+i)} + \frac{\pi_2}{(1+i)^2} + \frac{\pi_3}{(1+i)^3} + \cdots$$

Marginal (Incremental) Analysis

- Control Variable Examples:
 - Output
 - Price
 - Product Quality
 - Advertising
 - R&D
- Basic Managerial Question: How much of the control variable should be used?
- Firm solves this by finding out the level of control variable that maximizes net benefits. This optimal Y is denoted as Y*
- Net benefits are maximized when, the marginal change in total benefits (MB) equals the marginal change in total costs (MC).
- So we have to study when we increase the control variable by a small amount, how the benefits and costs increase. In discrete case, we consider increasing the control variable Y by 1 unit. In continuous variable case, we consider increasing the control variable Y by an infinitesimally small amount denoted by ΔY or dY

Net Benefits

- Net Benefits = Total Benefits (B) Total Costs (C)
- Benefits vary with Y | B is a function of Y B(Y)
- Costs vary with Y | C is a function of Y C(Y)
- Objective of manager: Maximize net benefits by choosing optimum Y
- N(Y) = B(Y) C(Y)
- Suppose we increase Y by ΔY unit, then B increases by ΔB and C increases by ΔC
- When $\triangle B > \triangle C$, it pays to increase Y, since NB will increase
- When $\triangle B < \triangle C$, it pays to decrease Y, since NB will now decrease if Y is increased
- So max is at $\triangle B = \triangle C$ or MB = MC

Marginal Benefit (MB)

■ Change in total benefits arising from a change in the control variable, Q:

$$MB = \frac{\Delta B}{\Delta Q}$$

■ This is the Slope (calculus derivative) of the total benefit curve.

Marginal Cost (MC)

■ Change in total costs arising from a change in the control variable, Q:

$$MC = \frac{\Delta C}{\Delta Q}$$

■ Slope (calculus derivative) of the total cost curve

Marginal Principle

- To maximize net benefits, the managerial control variable should be increased up to the point where MB = MC.
- *MB* > *MC* means the last unit of the control variable increased benefits more than it increased costs.
- *MB* < *MC* means the last unit of the control variable increased costs more than it increased benefits.
- Sum

The Geometry of Optimization: Total Benefit and Cost

The Geometry of Optimization: Net Benefits

