	Name of the School	School of Basic & Applied Sciences	Name of the Department	Mathematics
	Name of the Program	B.Tech, CSE	Course Code- Course	UBS 1003M
	Session	2024-25	Branch, Year & Semester	CSE , 1 st , 1 st

UNIT 3: INTEGRAL CALCULUS

Work Sheet

SECTION A

Short Answer type Questions

Multiple integration: Double integral, Triple integral, Change of order of integration, Change of variables, Applications: Areas and volumes, Center of mass and center of gravity (Constant and variable densities)

1. Evaluate
$$\int_0^2 \int_0^{x^2} e^{\frac{y}{x}} dy dx$$

2.
$$\int_0^a \int_0^{\sqrt{a^2 - x^2}} \sqrt{a^2 - x^2 - y^2} \, dy \, dx$$

3.
$$\int_0^1 \int_x^{\frac{1}{x}} e^{\frac{y}{x}} \frac{y}{(1+y^2)(1+xy)^2} dy dx$$

4.
$$\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx \ dy \ dz$$

$$5. \int_1^e \int_1^{\log y} \int_1^{e^x} \log z \, dz \, dx \, dy$$

6.
$$\int_0^2 \int_0^x \int_0^{2x+2y} e^{x+y+z} dz dy dx$$

SECTION B

Long Answer type Questions

- 1. Evaluate $\int_{1}^{2} \int_{-\sqrt{2-y}}^{\sqrt{2-y}} 2x^{2} y^{2} dx dy$.
- 2. Find $\iint (x^2 + y^2 + z^2) dx dy dz$, where the region is bounded by x = 0, y = 0, z = 0, and $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$.
- 3. Evaluate $\int \int \int xyz(x^2 + y^2 + z^2)dx dy dz$, over the first octant of the sphere $(x^2 + y^2 + z^2) = a^2$.
- 4. Change of order of integration and evaluate $\int_0^a \int_0^x \frac{\sin y \, dy \, dx}{\sqrt{[(a-x)(x-y)]} \, (4-5\cos y)^2}$
- 5. Evaluate $\int_0^a \int_0^a \frac{x \, dy \, dx}{x^2 + y^2}$ by changing to polar co-ordinates.
- 6. Evaluate $\iint \frac{(x^2+y^2)^2}{x^2y^2} dx dy$ over the area common to $x^2 + y^2 = ax$ and $x^2 + y^2 = by$; a, b > 0
- 7. Evaluate $\iint \frac{x^2y^2}{(x^2+y^2)} dx dy$ over the annular region between circles $(x^2+y^2=a^2)$ and

$$(x^2 + y^2 = b^2); a, b > 0.$$