StatML (Chapter 7): Language Models

Chunqi Shi

Brandeis University shicq@brandeis.edu

October 2, 2014

Overview

- Language Models
- N-Gram Language Models
- Smoothing
- Interpolation & Back-off
- 5 Size of Language Models

Language Models

Why?

Language models answer the question:

How likely is a string of English words good English?

What?

A statistical language model assigns a probability to a sequence of m words $P(w_1, ..., w_m)$ by means of a probability distribution.

How?

- Reordering:
 - P_{LM} (the house is small) > P_{LM} (small the is house)
- Word Choice:
 - $P_{LM}(I \text{ am going home}) > P_{LM}(I \text{ am going house})$

Language Models & SMT Architecture

How language models work in a basic SMT architecture¹?

http://slideplayer.us/slide/203403/

Open Source Language Models Example

Architecture of the LIMSI SMT system² and open language models:

- SRILM³ (N-Gram) & NN[Neural Networks] (Continuous Space LM).
- Giza++: Translation Model.
- Moses: Decoder

²http://www.limsi.fr/tlp/mt/

³http://sourceforge.net/projects/irstlm/

Other Language Models Applications

Speech Recognition

 $P_{LM}(I \text{ saw a van}) > P_{LM}(\text{eyes awe of an})$

Spell Correction

The office is about fifteen minuets from my house.

 P_{LM} (about fifteen minutes from) > P_{LM} (about fifteen minuets from)

Information Retrieval

No results found for "University of Brandeis" (Query likelihood model). P_{LM} (University of Brandeis) $> P_{LM}$ (Brandeis University)

More !!

Part-of-speech Tagging, Parsing, Summarization, Question-Answering, etc.

Probabilistic Language Modeling

How to Compute P(W)

$$P(W) = P(w_1, \ldots, w_m)$$

Probability of an upcoming word

$$P(w_k|w_1, w_2, \ldots, w_{k-1})$$

Decomposing using Chain Rule

$$P(w_1,...,w_m) = P(w_1)P(w_2|w_1)P(w_2|w_1,w_2)...P(w_m|w_1,w_2,...,w_{m-1})$$

Example

 $P(\text{its water is so transparent}) = P(\text{its}) \times P(\text{water}|\text{its}) \times P(\text{is}|\text{its water}) \times P(\text{so}|\text{its water is}) \times P(\text{transparent}|\text{its water is so})$

Chain Rule Estimation

Joint Probability

$$P(w_1w_2\ldots w_m)=\prod P(w_i|w_1w_2\ldots w_i-1)$$

How to estimate?

Maximum likelihood estimation:

$$P(transparent|its water is so) =$$

<u>Count(its water is so transparent)</u> <u>Count(its water is so)</u>

Problems?

- Sparse data: NO enough data for estimating.
- Large space: HUGE possible sentences.

Markov Chain

Markov Assumption

Only previous history matters:

P(transparent|its water is so) = (transparent|so) or maybe

P(transparent|its water is so) = (transparent|so)

kth Order Markov Model

$$P(w_1w_2...w_m) = \prod P(w_i|w_{i-k}w_2...w_i-1)$$

Simple Cases

Unigram model: $P(w_1w_2...w_m) = \prod P(w_i)$

Bigram model: $P(w_1 w_2 \dots w_m) = \prod_{i=1}^{m} P(w_i | w_{i-1})$

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

"The computer which I had just put into the machine room on the fifth floor crashed."

October 2, 2014

Bigram Example

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

<s> I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .67~~$$

 $P(| Sam) = \frac{1}{2} = 0.5$

$$P(\text{Sam} | < s >) = \frac{1}{3} = .33$$

$$P(\mathtt{am} \mid \mathtt{I}) = \tfrac{2}{3} = .67$$

$$P(\operatorname{Sam} \mid \operatorname{am}) = \tfrac{1}{2} = .5$$

$$P(\text{do} \mid I) = \frac{1}{3} = .33$$

Trigram Example

Counts for trigrams and estimated word probabilities

the green (total: 1748)				
word	C.	prob.		
paper	801	0.458		
group	640	0.367		
light	110	0.063		
party	27	0.015		
ecu	21	0.012		

the red (total: 225)				
word	c.	prob.		
cross	123	0.547		
tape	31	0.138		
army	9	0.040		
card	7	0.031		
,	5	0.022		

the blue (total: 54)				
word	c.	prob.		
box	16	0.296		
•	6	0.111		
flag	6	0.111		
,	3	0.056		
angel	3	0.056		

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

"The red cross" and "The green party" are frequent trigrams in the Europarl corpus.

Evaluation of N-gram Models

How good is our model?

Extrinsic Evaluation: training A & B, testing, comparing accuracy of A & B by evaluation metric.

But it is time-consuming.

Intrinsic Evaluation

Perplexity: How well can we predict the next word?

Intrinsic evaluation is Bad approximation! Unless the test data looks just like the training data.

But is helpful to think about.

Intuition of Perplexity

How hard is the task of recognizing digits "0, 1, 2, 3, 4, 5, 6, 7, 8, 9"? Perplexity 10.

Perplexity

Cross Entropy

$$H(W) = -\frac{1}{n} \log P(w_1 w_2 \dots w_n)$$

= $-\frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1 \dots, w_{i-1})$

Perplexity:

$$PP(W) = 2^{H(W)} = P(W)^{-\frac{1}{n}}$$

Perplexity as branching factor

$$PP(W) = P(1, 2, ..., 10)^{-\frac{1}{10}}$$

= $(\frac{1}{10})^{10 \times -\frac{1}{10}} = (\frac{1}{10})^{-1} = 10$

Comparison N-gram Models

Minimizing perplexity is the same as maximizing probability, thus better model.

word	unigram	bigram	trigram	4-gram
i	6.684	3.197	3.197	3.197
would	8.342	2.884	2.791	2.791
like	9.129	2.026	1.031	1.290
to	5.081	0.402	0.144	0.113
commend	15.487	12.335	8.794	8.633
the	3.885	1.402	1.084	0.880
rapporteur	10.840	7.319	2.763	2.350
on	6.765	4.140	4.150	1.862
his	10.678	7.316	2.367	1.978
work	9.993	4.816	3.498	2.394
•	4.896	3.020	1.785	1.510
	4.828	0.005	0.000	0.000
average	8.051	4.072	2.634	2.251
perplexity	265.136	16.817	6.206	4.758

Generalization and Zeros

Unseen N-grams

Things that NOT ever occur in the training set. But occur in the test set.

Training Set:

Test Set:

... denied the allegations

... denied the offer

2 ... denied the reports

2 ... denied the loan

... denied the claims

... denied the request

$$P(\text{"offer"}|\text{"denied the"}) = 0$$

Smoothing

Sparse statistics, smoothing to generalize better.

Smoothing

How to smooth all words non-zeros

When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

Steal probability mass to generalize better

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Add-One Smoothing

Laplace smoothing

Pretend we saw each word one more time than we did.

• For all possible n-grams, add the count of one.

$$p = \frac{c+1}{n+v}$$

- -c = count of n-gram in corpus
- -n = count of history
- -v = vocabulary size
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
 - 86,700 distinct words
 - $-86,700^2 = 7,516,890,000$ possible bigrams
 - but only about 30,000,000 words (and bigrams) in corpus

Bigram Add-One Smoothing

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Add-lpha Smoothing

Will α adjusted count a lot?

• Add $\alpha < 1$ to each count

$$p = \frac{c + \alpha}{n + \alpha v}$$

- What is a good value for α ?
- Could be optimized on held-out set

Comparison of Add-lpha Smoothing

Bigram in Europarl corpus

Count	Adjusto	Test count	
c	$(c+1)\frac{n}{n+v^2}$	$(c+\alpha)\frac{n}{n+\alpha v^2}$	t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

- Add- α smoothing with $\alpha = 0.00017$
- ullet t_c are average counts of n-grams in test set that occurred c times in corpus

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

• Add $\alpha < 1$ to each count

$$p = \frac{c + \alpha}{n + \alpha v}$$

- What is a good value for α ?
- Could be optimized on held-out set

Comparison of Add- α Smoothing

Bigram in Europarl corpus

Count	Adjusto	Test count	
c	$(c+1)\frac{n}{n+v^2}$	$(c+\alpha)\frac{n}{n+\alpha v^2}$	t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

- Add- α smoothing with $\alpha = 0.00017$
- ullet t_c are average counts of n-grams in test set that occurred c times in corpus

Held-out Estimation

Deleted Estimation

Count r	Count of counts N _r	Count in held-out T_r	Exp. count $E[r] = T_r/N_r$
0	7,515,623,434	938,504	0.00012
1	753,777	353,383	0.46900
2	170,913	239,736	1.40322
3	78,614	189,686	2.41381
4	46,769	157,485	3.36860
5	31,413	134,653	4.28820
6	22,520	122,079	5.42301
8	13,586	99,668	7.33892
10	9,106	85,666	9.41129
20	2,797	53,262	19.04992

	Adjusted count		
Count c	$(c+1)\frac{n}{n+v^2}$	$(c+\alpha)\frac{n}{n+\alpha v^2}$	Test count t_c
0	0.00378	0.00016	0.00016
1	0.00755	0.95725	0.46235
2	0.01133	1.91433	1.39946
3	0.01511	2.87141	2.34307
4	0.01888	3.82850	3.35202
5	0.02266	4.78558	4.35234
6	0.02644	5.74266	5.33762
8	0.03399	7.65683	7.15074
10	0.04155	9.57100	9.11927
20	0.07931	19.14183	18.95948

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

Is Markov assumption sufficient? NO!

Language has long-distance dependencies:

Or:

References

Many slides are from:

- StatML book's Web site &
- Dan Jurafsky's "Language Modeling: Introduction to N-grams".

The End