2. 设计举例

【例】设计一个模可控同步加法计数器。要求当控制信号M=0时,以模5计数器工作; 当M=1时,以模7计数器工作。

解: (1) 建立原始状态图, M=0时, N=5; M=1时, N=7; Y_0 、 Y_1 分别为5进制和7进制的进位信号。

(2) 确定触发器的数目及类型,选择状态编码: $2^n \ge N = 7$; 取n=3,选择JK 触发器。编码顺序为 $Q_2Q_1Q_0$ 。设:

S0=000, S1=001, S2=010, S3=011, S4=100, S5=101, S6=110, S7=111.

(3) 画出计数器的次态卡诺图,求状态方程。

$$MQ_{2}^{Q_{1}Q_{0}}$$
00 01 11 10 $Q_{2}^{n+1} = MQ_{1}Q_{2} + Q_{1}Q_{0}Q_{2}$ 01 000 $Q_{2}^{n+1} = Q_{1}Q_{0} + Q_{2}Q_{1}Q_{0}$ 2 2 $Q_{2}^{n+1} = MQ_{1}Q_{2} + Q_{2}Q_{1}Q_{0}$ 10 001 010 100 011

画出输出卡诺图, 求输出方程

Q_1Q_0 MQ_2	00	01	11	10
00	0	0	0	0
01		Х	X	Х
11	0	0	X	0
10	0	0	0	0

Q_1Q_0 MQ_2	00	01	11	10
00	0	0	0	0
01	0	х	X	X
11	0	0	(x	1
10	0	0	0	0

(a) Y0 的卡诺图
$$Y_0 = \overline{M}Q_2$$

(b) Y1的卡诺图
$$Y_1 = Q_1Q_2$$

(4) 检查能否自启动

M=0

$Q_2^{n+1} = M\overline{Q_1}Q_2 + Q_1Q_0\overline{Q_2}$
$Q_1^{n+1} = \overline{Q_1}Q_0 + \overline{Q_2}Q_1\overline{Q_0}$
$Q_0^{n+1} = M\overline{Q}_1\overline{Q}_0 + \overline{Q}_2\overline{Q}_0$
$Y_0 = \overline{M}Q_2$ $Y_1 = Q_1Q_2$

Q_2	$Q_{\rm l}$	Q_0	$Q_2^{\mathrm{n+l}}$	$Q_{\scriptscriptstyle m I}^{\scriptscriptstyle m n+l}$	Q_0^{n+l}	Y_1	Y_0
1	0	1	0	1	0	0	1
1	1	0	0	0	0	1	1
1	1	1	0	0	0	1	1

M=1

Q_2	$Q_{\rm l}$	Q_0	Q_2^{n+1}	Q_1^{n+1}	$Q_0^{\mathrm{n+I}}$	Y_1	Y_0
1	1	1	0	0	0	1	0

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$

$Q_2^{n+1} = M\overline{Q_1}Q_2 + Q_1Q_0\overline{Q_2}$ $Q_1^{n+1} = \overline{Q_1}Q_0 + \overline{Q_2}Q_1\overline{Q_0}$ $Q_0^{n+1} = M\overline{Q_1}\overline{Q_0} + \overline{Q_2}Q_0$

(5) 求驱动方程。

$$J_2 = Q_1 Q_0$$
 $K_2 = M \overline{Q}_1$ $I_1 = Q_0$ $K_1 = \overline{Q}_2 \overline{Q}_0 = Q_2 + Q_0$ $I_2 = M \overline{Q}_1 + \overline{Q}_2$ $I_3 = M \overline{Q}_1 + \overline{Q}_2$ $I_4 = \overline{Q}_2$ $I_5 = \overline{Q}_1$

(6) 画逻辑图。

