Fever Signal Analysis and Anomaly Detection:

A Spatio-temporal Study of National Health Patterns, 2022-2024

Joel Skaria

Executive Summary

- Key Findings: Dataset: 843,935 observations over 730 days (2022-2024)
- Identified 21 significant anomaly days (2.88% of timespan)
- Distinct seasonal patterns in fever signals
- Regional variations between states
- Different patterns between adult/pediatric populations

Dataset Overview

VOLUME: 843,935 OBSERVATIONS TIMEFRAME: JULY 2022 - JUNE 2024

GEOGRAPHIC COVERAGE

Demographic Analysis

Regional representation

Signal Patterns and Inflection Points

Statistical Analysis

- PCA decomposition results (90% variance explained by 30 components)
- Spatial correlations between states

- Denominator Selection Rationale:
 - 1. 7-day Rolling Average Smooths out daily reporting variations - Captures weekly cyclical patterns - Reduces impact of weekend/holiday effects
 - 2. EWMA Smoothing Gives more weight to recent observations Reduces noise while preserving trends Better handles irregular reporting patterns

Methodology Explained

- 7-day window captures weekly patterns
- Rolling average smooths reporting variations
- EWMA gives more weight to recent observations
- Final signal balances noise reduction with trend preservation

National Signal

Age Group Comparison

Geographic Analysis - California

County 6037.0County 6073.0

County 6065.0 County 6085.0

County 6001.0

County 6067.0 County 6071.0 County 6013.0 County 6075.0

Geographic Analysis -Texas

Anomaly Detection Methodology

- Methodology: Signal decomposition using PCA (90% variance explained)
 - Bandpass filtering to isolate relevant frequencies
 - Statistical thresholds $(3\sigma \text{ and } 2.5\sigma)$
 - Multi-state validation

Original Signal Reconstructed Signal

Year-over-Year Comparison

Anomaly Detection

Reconstructed Signal

- 21 anomalous days
- 26 states showing anomalies
- 1.7 states per anomaly day (average)

Key Components

Seasonal decomposition

Geographic factors

Demographic considerations

Model Strategy

- Feature selection
- Temporal aspects
- Spatial correlations

Implementation Plan

DATA PIPELINE REQUIREMENTS VALIDATION APPROACH

SUCCESS METRICS

Limitations and Future Work

- Current Limitations:
 - Rural state data sparsity
 - Smartphone dependency
 - Demographic representation
- Future Development:
 - Enhanced modeling incorporating:
 - Improved spatial correlation analysis
 - Better seasonality modeling
 - More granular demographic segmentation

Contact: Joel Skaria, joel.skaria.js@gmail.com