Pracownia z ANALIZY NUMERYCZNEJ

Lista nr 1

Początek zapisów: 10 października 2016 r.

Termin realizacji: 13 listopada 2016 r.

Punktacja (podana przy każdym zadaniu): 8–12 punktów

Każde z zadań może być wybrane najwyżej przez trzy osoby (trzy zespoły dwuosobowe — w wypadku zadań P1.12, P1.21) spośród wszystkich zapisanych na pracownie.

P1.1. 9 punktów Rozważmy zadanie obliczania wartości funkcji

$$f(x) = \frac{x - \sin x}{x^3}$$

dla x bliskich 0.

- a) Oblicz $\lim_{x\to 0} f(x)$.
- b) Zaprogramuj funkcję f(x) według wzoru (1) (możesz wykorzystać biblioteczną funkcję $\sin x$). Wywołaj ją dla $x := 10^{-k}$ $(k = 0, 1, \dots, 15)$. Skomentuj wyniki i porównaj z wcześniej obliczoną granicą.
- c) Opracuj metode obliczania f(x), która jest lepsza niż wzór (1). Zaproponowana metoda powinna dobrze działać dla dowolnego $x \neq 0$.
- 8 punktów P1.2. Liczba e jest następującą granicą:

(2)
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

Korzystając ze wzoru (2), oblicz kolejne przybliżenia liczby e podstawiając $n=8^k$ dla $k=1,2,\ldots,10$. Oceń jakość uzyskanych wyników. Podaj lepszy sposób obliczania wartości e.

- **P1.3.** 8 punktów Wartości funkcji $f(x) = (x-1)^8$ można obliczać na różne sposoby, np: a) $x^8 8x^7 + 28x^6 56x^5 + 70x^4 56x^3 + 28x^2 8x + 1$,

 - b) (((((((x-8)x+28)x-56)x+70)x-56)x+28)x-8)x+1,
 - c) (x-1)(x-1)(x-1)(x-1)(x-1)(x-1)(x-1),

 - d) $\left\{ \left[(x-1)^2 \right]^2 \right\}^2$, e) $\left\{ \begin{array}{l} e^{8\ln|x-1|} : (x \neq 1), \\ 0 : (x = 1). \\ \vdots \end{array} \right.$

Porównaj podane wyżej metody obliczania f(x) dla $x \in [0.99, 1.01]$ (np. w N równoodległych punktach tego przedziału). Wyniki eksperymentu przedstaw na odpowiednich wykresach, przeanalizuj je i skomentuj.

- **P1.4**. 10 punktów Wykorzystując jedynie podstawowe działania arytmetyczne (+, -, *, /), zaproponuj efektywne sposoby wyznaczania wartości funkcji $f(x) = \arctan g(x) = \arctan g(x)$ z dokładnością bliską dokładności maszynowej. Opracowane algorytmy porównaj z funkcjami bibliotecznymi.
- **P1.5**. | 10 punktów | Wykorzystując jedynie podstawowe działania arytmetyczne (+, -, *, /), zaproponuj efektywny sposób wyznaczania wartości funkcji sinus i cosinus z dokładnością bliską dokładności maszynowej. Opracowany algorytm porównaj z funkcjami bibliotecznymi.

P1.6. 11 punktów Niech $\{s_n\}$ będzie ciągiem zbieżnym do granicy s. Algorytm ε konstruuje tablicę wielkości $\varepsilon_n^{(k)}$:

$$\varepsilon_{-1}^{(n)} = 0, \qquad n \in \mathbb{N}_0,$$

$$\varepsilon_0^{(n)} = s_n, \qquad n \in \mathbb{N}_0,$$

$$\varepsilon_{k+1}^{(n)} = \varepsilon_{k-1}^{(n+1)} + \frac{1}{\varepsilon_k^{(n+1)} - \varepsilon_k^{(n)}}, \qquad k, n \in \mathbb{N}_0.$$

W wielu wypadkach parzyste kolumny są zbieżne do s szybciej niż $\{s_n\}$, tzn.

$$\lim_{n \to \infty} \frac{\varepsilon_{2k}^{(n)} - s}{s_n - s} = 0.$$

a) Obliczyć 20 początkowych wyrazów ciągów $\{s_n\}$ i $\{\varepsilon_2^{(n)}\}$ oraz $\{e_n \coloneqq s_n - s\}$ i $\{d_n \coloneqq \varepsilon_2^{(n)} - s\}$ w wypadku i. $s_n = \sum_{j=0}^{n} (-1)^j (2j+1)^{-1}, \ s = \pi/4;$ iii. $s_n = \sum_{k=1}^{n} k^{-3/2}, \ s \approx 2.612375348685488;$ iii. $s_n = \sum_{k=0}^{n} (-1)^j (j+1)^{-1}, \ s = \ln 2;$ iv. $s_n = \sum_{k=0}^{n} (j+1)^{-2}, \ s = \pi^2/6;$

Czy mamy do czynienia z istotnym przyspieszeniem zbieżności? Powtórzyć doświadczenie dla innych

- b) Przedstawić przyspieszenie zbieżności uzyskiwane przez algorytm ε w kolejnych (parzystych) kolumnach.
- 10 punktów Ciąg $funkcji Bessela J_n$ określamy wzorem

$$J_n(x) := \frac{1}{\pi} \int_0^{\pi} \cos(x \sin t - nt) dt$$
 $(n = 0, 1, ...).$

Łatwo zauważyć, że $|J_n(x)| \leq 1$. Wiadomo, że zachodzi związek

$$J_{n+1}(x) = \frac{2n}{x} J_n(x) - J_{n-1}(x)$$
 $(n = 1, 2, ...).$

Wykorzystać ten związek oraz znane wartości $J_0(1) \approx 0.7651976866$, $J_1(1) \approx 0.4400505857$ do obliczenia w arytmetyce z pojedynczą precyzją wartości

$$J_0(1), J_1(1), \ldots, J_{20}(1).$$

Co można powiedzieć o wiarygodności wyników?

- ii. Rozważyć następujący algorytm.
 - Wybrać N > 20 i określić pomocnicze wartości

$$\begin{split} c_{N+1}^{(N)} &:= 0; \qquad c_N^{(N)} := 1.0, \\ c_{k-1}^{(N)} &:= \frac{2k}{x} c_k^{(N)} - c_{k+1}^{(N)} \quad (k = N, N-1, \dots, 1). \end{split}$$

— Następnie obliczyć stałą $\lambda := J_0(x)/c_0^{(N)}$ oraz wielkości

$$j_k^{(N)} := \lambda c_k^{(N)}$$
 $(k = 0, 1, \dots, N).$

— Wówczas jest $j_k^{(N)} \approx J_k(x)$ dla $k=0,1,\ldots,N$. Wykonać obliczenia w arytmetyce z pojedynczą precyzją dla x=1 oraz dla N=25 i N=30. Przedyskutować wyniki.

- b) Powtórzyć obliczenia z punktu a) w arytmetykach z podwyższoną precyzją. Przedyskutować wyniki.
- Sprawdź doświadczalnie, jak dobrym przybliżeniem wartości e^x jest dla $x \in [-\frac{1}{2}, \frac{1}{2}]$ na-**P1.8**. | 10 punktów | stępujące wyrażenie wymierne:

(3)
$$\frac{\sum_{k=0}^{3} a_{2k} \left(\frac{x}{3}\right)^{2k} + \sum_{k=0}^{3} b_{2k} \left(\frac{x}{3}\right)^{2k+1}}{\sum_{k=0}^{3} a_{2k} \left(\frac{x}{3}\right)^{2k} - \sum_{k=0}^{3} b_{2k} \left(\frac{x}{3}\right)^{2k+1}},$$

gdzie

$$a_0 := 0.864864,$$
 $b_0 := 1.297296,$ $a_2 := 0.898128,$ $b_2 := 0.37422,$ $a_4 := 0.10206,$ $b_4 := 0.0183708,$ $a_6 := 0.0020412,$ $b_6 := 0.00010935.$

Następnie, wykorzystując wzór (3), zaproponuj efektywny sposób obliczania z dużą dokładnością wartości e^x dla $x \in \mathbb{R}$. Opracowaną metodę porównaj z funkcją biblioteczną.

P1.9. 9 punktów Opracować i sprawdzić na przykładach procedury funkcyjne, obliczające z dokładnością bliską dokładności maszynowej wartości następujących funkcji matematycznych:

$$g_1(x) := x + e^x - e^{3x}, \quad g_2(x) := \log x - 1, \quad g_3(x) := \sqrt{x^2 + 1} - 1.$$

W każdym wypadku zbadać, czy istnieje groźba utraty cyfr znaczących wyniku i – w razie potrzeby – zaproponować sposób uniknięcia groźby.

P1.10. | 12 punktów Zaproponuj efektywny numerycznie program wyznaczający rozwiązania równania algebraicznego postaci

$$ax^3 + bx^2 + cx + d = 0$$
.

gdzie a, b, c i d są liczbami rzeczywistymi.

P1.11. 10 punktów Sprawdzić, że dla dowolnych stałych A i B ciąg

$$x_k = A(1+\sqrt{3})^k + B(1-\sqrt{3})^k$$

spełnia zwiazek rekurencyjny

$$x_k = 2(x_{k-1} + x_{k-2})$$
 $(k = 3, 4, ...).$

Sprawdzić, że jeśli $x_1=1$ i $x_2=1-\sqrt{3}$ są początkowymi dwoma wyrazami ciągu, to A=0 i B=0 $(1-\sqrt{3})^{-1}$. Obliczyć (w arytmetykach z pojedynczą i podwyższoną precyzją) 100 początkowych wyrazów ciągu następującymi trzema sposobami, a następnie porównać wyniki:

- a) za pomocą związku rekurencyjnego,
- b) za pomocą wzoru $x_k = B(1-\sqrt{3})^k$, c) za pomocą wzoru $x_k = \tilde{A}(1+\sqrt{3})^k + B(1-\sqrt{3})^k$, gdzie $\tilde{A} := 2^{-t}$ (błąd reprezentacji liczb rzeczywistych w arytmetyce maszynowej).
- **P1.12**. Zadanie dla dwuosobowego zespołu. 12 punktów Jak wiadomo, liczba π określa stosunek obwodu okręgu do jego średnicy. Można próbować ją wyznaczyć stosując np. wzór

$$\frac{\pi}{4} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1},$$

chociaż nie jest to zbyt dobry pomysł (dlaczego?). Korzystając z odpowiedniej literatury, zaproponuj przynajmniej trzy sposoby wyznaczania wartości liczby π z dużą dokładnością, np. kilkunastu tysięcy cyfr po przecinku. Opisane metody porównaj pod względem szybkości i efektywności numerycznej.

P1.13. | 8 punktów Zrealizować następujący wariant metody Newtona z nadzorem. Niech f będzie daną funkcja i niech beda dane takie dwa przybliżenia a i b jej pierwiastka, że f(a)f(b) < 0. Jeśli |f(a)| < |f(b)|, połóżmy c := a; w przeciwnym razie c := b. Jeśli jeden krok metody Newtona dla $x_0 := c$ daje wartość x_1 leżącą w przedziałe [a, b], przyjmujemy $c := x_1$, w przeciwnym razie kładziemy c := a + (b - a)/2 (co to oznacza?). Następnie przyjmujemy

$$[a,\,b] := \left\{ \begin{array}{ll} [a,\,c], & \mathrm{je\acute{s}li} & f(a)f(c) < 0, \\ [c,\,b], & \mathrm{je\acute{s}li} & f(a)f(c) \geqslant 0 \end{array} \right.$$

i powtarzamy wszystkie opisane wyżej czynności dla aktualnych wartości a i b. Proces kończymy wówczas, gdy $|b-a|<\epsilon$ lub gdy $|f(c)|<\delta$, gdzie ϵ i δ są zadanymi z góry małymi liczbami. Proszę pamiętać o ograniczeniu liczby iteracji, żeby wykluczyć bardzo długie obliczenia!

- **P1.14.** [10 punktów] Korzystając z omówionych metod iteracyjnych zaproponować sposób wyznaczania *ekstremum lokalnego* funkcji $f \in C^1[a,b]$. Wykonać eksperymenty m.in. dla $f(x) = \sin(2\pi x), x \in [0,1];$ $f(x) = e^{-x^2}, x \in [-1,1]; f(x) = x(1+x^2)^{-1}, x \in [0,10]; f(x) = x^2 + x 1, x \in [-2,2].$
- **P1.15.** 10 punktów Na podstawie (udokumentowanych) obliczeń dla wybranych równań nieliniowych postaci f(x) = 0 wyznaczyć w przybliżeniu (inaczej mówiąc odgadnąć) rząd każdej z poniższych metod iteracyjnych:

(4)
$$x_{k+1} := x_k - \frac{f(x_k)}{\sqrt{[f'(x_k)]^2 - f(x_k)f''(x_k)}},$$

(5)
$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} - \frac{1}{2} \frac{f''(x_k)}{f'(x_k)} \left[\frac{f(x_k)}{f'(x_k)} \right]^2$$
 (metoda Olvera),

(6)
$$x_{k+1} := x_k - 1 / \left\lceil \frac{f'(x_k)}{f(x_k)} - \frac{1}{2} \cdot \frac{f''(x_k)}{f'(x_k)} \right\rceil \qquad (\textbf{metoda Halleya}).$$

P1.16. 12 punktów Układ równań nieliniowych,

(7)
$$f_i(x_1, x_2, \dots, x_n) = 0 \qquad (i = 1, 2, \dots, n),$$

można rozwiazać uogólnieniem metody Newtona. Zapiszmy układ (7) w postaci wektorowej,

$$f(x) = 0$$

gdzie $\mathbf{f}, \mathbf{x} \in \mathbb{R}^n$. Załóżmy, że wektor \mathbf{x}_k jest bieżącym przybliżeniem rozwiązania układu (7). Wówczas, kolejne przybliżenie \mathbf{x}_{k+1} jest rozwiązaniem następującego układu równań liniowych:

$$\mathbf{J}(\mathbf{x}_k)(\mathbf{x}_{k+1} - \mathbf{x}_k) = -\mathbf{f}(\mathbf{x}_k),$$

gdzie

$$\mathbf{J}(\mathbf{x}) = \mathbf{f}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

nazywamy Jakobianem funkcji f. Należy zaprogramować powyższą metodę i wykorzystać ją do rozwiązania przykładowych układów równań nieliniowych. Jaki jest koszt pojedynczej iteracji algorytmu? Jakie problemy możemy napotkać? Jak wybrać dobre przybliżenie startowe?

P1.17. 10 punktów Metoda Steffensena jest następującą metodą iteracyjną rozwiązywania równania nieliniowego f(x) = 0:

$$x_{k+1} := x_k - f(x_k)/g(x_k), \qquad k = 0, 1, \dots,$$

gdzie

$$g(x) := [f(x + f(x)) - f(x)]/f(x).$$

Przy pewnych założeniach jest ona zbieżna kwadratowo.

Zaprogramować powyższą metodę i wykonać obliczenia m. in. dla $f(x) = x - \operatorname{tg} x$ (zera leżące w pobliżu 4.5 i 7.7) oraz $f(x) = x^3 - 5x^2 + 3x - 7$ i $x_0 = 5$.

P1.18. 11 punktów Zrealizować następujący wariant metody siecznych. Niech f będzie daną funkcją i niech a i b będą takie, że f(a)f(b) < 0. Połóżmy c := a. W kolejnych krokach metody niech b oznacza ostatnie przybliżenie zera α funkcji f, a – przedostatnie przybliżenie, a c – najbardziej aktualne przybliżenie (tj. otrzymane najpóźniej) o własności

$$(8) f(c)f(b) < 0.$$

W każdym kroku aktualizujemy wartości a, b, c zastępując je odpowiednio wartościami a', b', c'. Jeśli f(a)f(b) < 0, to obliczamy b' stosując jeden krok metody siecznych dla przybliżeń a i b (symbolicznie b' := MS(a,b)). Jeśli f(a)f(b) > 0, to sprawdzamy najpierw, czy punkt MS(a,b) będzie leżał w przedziale o końcach b i c. Jeśli TAK, to kładziemy b' := MS(a,b); w przeciwnym razie przyjmujemy b' := (b+c)/2.

Wreszcie definiujemy a' := b, potem c' := c albo c' := a', aby zachodziła własność analogiczna do własności (8), a następnie powtarzamy wszystkie wyżej opisane czynności dla aktualnych wartości a, b i c. Proces kończymy wówczas, gdy $|b-a| < \epsilon$ i/lub gdy $|f(b)| < \delta$, gdzie ϵ i δ są zadanymi z góry małymi liczbami. Proszę pamiętać o ograniczeniu liczby iteracji, żeby wykluczyć bardzo długie obliczenia!

P1.19. 12 punktów Metodę Newtona można stosować także do znajdowania rozwiązań równania nieliniowego f(z)=0 w dziedzinie liczb zespolonych. Np. dla $f(z):=z^4+1$ i $z_0:=0.5+0.5i$ otrzymujemy $z_{10}=0.7071067812+0.7071067812i$ – czyli bardzo dobre przybliżenie liczby $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$, będącej jednym z rozwiązań równania $z^4+1=0$.

Niech c_{n+1} oznacza kolor czarny. Niech $\zeta_1, \zeta_2, \ldots, \zeta_n$ będą rozwiązaniami równania $z^n+1=0$ w dziedzinie liczb zespolonych. Przypiszmy każdemu z tych rozwiązań inny, ale różny od czarnego, kolor; powiedźmy odpowiednio c_1, c_2, \ldots, c_n . Niech M będzie liczbą parzystą, a W_M następującym zbiorem punktów płaszczyzny zespolonej:

$$W_M := \left\{ -1 + 2\frac{k}{M} + \left(-1 + 2\frac{l}{M} \right) i : k, l = 0, 1 \dots, M \right\}.$$

Dla wybranych n i M (np. n=3,4,5,6; M=400,800), wykonaj rysunek, na którym każdy z punktów w zbioru W_M zostanie narysowany kolorem c(w) ustalonym na podstawie poniższej procedury:

a)
$$z_0 := w;$$
 $z_{k+1} := z_k - \frac{f(z_k)}{f'(z_k)}$ $(k = 0, 1, ..., N - 1; \text{ np. } N = 10, 20, 35);$

b) jeśli istnieje takie k, że z_N jest blisko liczby ζ_k (jak należy to rozumieć w wypadku liczb zespolonych?), to przyjmujemy $c(w) := c_k$, w przeciwnym razie $c(w) := c_{n+1}$.

Jaki charakter ma otrzymamy w ten sposób obraz? Spróbuj przeanalizować zaobserwowane zjawisko i wyciągnąć wnioski. Następnie przeprowadź podobny eksperyment dla *metody Halleya*, która wyraża się wzorem

$$z_{k+1} := z_k - 1 / \left[\frac{f'(z_k)}{f(z_k)} - \frac{1}{2} \cdot \frac{f''(z_k)}{f'(z_k)} \right].$$

Czy metoda ta zachowuje się podobnie?

P1.20. 10 punktów Niech α będzie rozwiązaniem równania nieliniowego f(x) = 0. Załóżmy, że dysponujemy metodami iteracyjnymi postaci

$$x_{n+1} := F(x_n), \qquad x_{n+1} := G(x_n),$$

gdzie F i G są funkcjami spełniającymi warunek $F(\alpha) = G(\alpha) = \alpha$ (np. w wypadku metody Newtona mamy F(x) = x - f(x)/f'(x)). Załóżmy, że metody te są rzędu p i q, odpowiednio. Można wykazać, że metody postaci

$$x_{n+1} := F(G(x_n)), \qquad x_{n+1} := G(F(x_n))$$

są rzędu $p \cdot q$. Wykorzystaj powyższą obserwację do zaproponowania metod iteracyjnych wysokiego rzędu rozwiązywania równań nieliniowych. Przeprowadź odpowiednie eksperyment numeryczne i wyciągnij wnioski.

P1.21. Zadanie dla dwuosobowego zespołu. 12 punktów Rozważmy następującą metodę iteracyjną wyznaczania pierwiastka α równania nieliniowego f(x) = 0:

$$x_{k+1} := x_k - \frac{f(x_k)}{f'(x_k)} + h(x_k)$$
 $(k = 0, 1, ...),$

gdzie x_0 jest dane, a h jest pewną funkcją. Oczywiście przy $h(x) \equiv 0$ mamy do czynienia z klasyczną metodą Newtona, o której wiadomo, że jest zbieżna kwadratowo, jeśli α jest pierwiastkiem pojedynczym. Zbadać możliwość takiego doboru funkcji h, aby wykładnik zbieżności powyższej metody wynosił więcej niż 2, np. 3, 4 albo 5. Wyniki teoretyczne poprzeć odpowiednimi testami numerycznymi. Czy w podobny sposób można zmodyfikować inne metody, np. metodę Halleya (patrz zadanie **P1.15**.)?

Wskazówki: 1º Jakie warunki musi spełniać funkcja h? 2º Zapoznaj się z rozdziałem 8.4. książki A. Ralstona, Wstęp do analizy numerycznej, PWN, Warszawa 1971.