Inferência: Verossimilhança e Bayesiana para a variância de uma normal

1. Seja $x_1, \ldots x_n$ uma a.a. de uma distribuição normal de média μ conhecida e variância σ^2 desconhecida. Quando necessário, considere a priori $[\sigma^2] \propto 1/\sigma^2$.

Considere que foi tomada a amostra dada pelos valores a seguir, e que $\mu=10$. Obtenha a expressão da posteriori.

- (a) Obtenha a expressão da verossimilhança do modelo.
- (b) Obtenha as funções escore e hessiana.
- (c) Obter a estimativa analítica e numericamente.
- (d) Obtenha a aproximação quadrática da verossimilhança.
- (e) Repita itens acima para alguma reparametrização de conveniência.
- (f) Obtenha a expressão da distribuição a posteriori.
- (g) É possível identificar a posteriori do modelo como alguma distribuição conhecida?
- (h) Indique (com comandos do R ou de alguma outra forma) como resumos pontuais e intervalares desta distribuição a posteriori.
- (i) Obtenha amostras da posteriori por um algorítmo MCMC.

1. (a) As funções de verossimilhança $(L(\sigma^2))$, log-verossimilhança $(l(\sigma^2))$, escore $(U(\sigma^2))$ e hessiana $(H(\sigma^2))$ são dadas por:

$$L(\sigma^2; y) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y_i - \mu)^2\right\}$$

$$= (2\pi)^{-n/2} (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{1=1}^n (y_i - \mu)^2\right\}$$

$$l(\sigma^2; y) = \log\{L(\sigma^2; y)\} = (-n/2) [\log(2\pi) + \log(\sigma^2) + \frac{\sum_{1=1}^n (y_i - \mu)^2}{n} (\sigma^2)^{-1}]$$

$$U(\sigma^2) = \frac{\mathrm{d}l(\sigma^2; y)}{\mathrm{d}\sigma^2} = (-n/2) [(\sigma^2)^{-1} - \frac{\sum_{1=1}^n (y_i - \mu)^2}{n} (\sigma^2)^{-2}]$$

$$H(\sigma^2) = \frac{\mathrm{d}^2 l(\sigma^2; y)}{\mathrm{d}(\sigma^2)^2} = (-n/2) [-(\sigma^2)^{-2} + \frac{\sum_{1=1}^n (y_i - \mu)^2}{n} (\sigma^2)^{-3}]$$

O estimador máxima verossimilhança $\hat{\sigma}^2$ obtido fazendo $U(\sigma^2)=0$, o valor da informação observada ao redor de $\hat{\sigma}^2$, $I_o(\hat{\sigma}^2)=-H(\hat{\sigma}^2)$ e a variância do estimador $\mathrm{Var}(\hat{\sigma}^2)=I^{-1}(\hat{\sigma}^2)$ são obtidos analiticamente neste caso, com expressões

$$\hat{\sigma}^2 = \frac{\sum_{1=1}^n (y_i - \mu)^2}{n},$$

$$I_o(\hat{\sigma}^2) = \frac{n}{2(\hat{\sigma}^2)^2},$$

$$\operatorname{Var}(\hat{\sigma}^2) = \frac{2(\hat{\sigma}^2)^2}{n},$$

que para os dados disponíveis produzem os resultados a seguir

```
y <- c(12.1,8.7,11.3,9.2,10.5,9.7,11.6)
n <- length(y)
(MLE <- sum((y-10)^2)/n)

## [1] 1.619

H.MLE <- - n/(2*MLE^2); Io.MLE <- -H.MLE; Var.MLE = 1/Io.MLE; se.MLE <- sqrt(Var.MLE)
c(H=H.MLE, Io=Io.MLE, Var=Var.MLE, SE=se.MLE)

## H Io Var SE
## -1.3360 1.3360 0.7485 0.8652
```

As funções $l(\sigma^2)$, $U(\sigma^2)$ e $I_o(\sigma^2)$ podem ser definidas como se segue¹.

```
llfun <- function(par, mu, dados, log=TRUE){
    res <- -(length(dados)/2)*log(par) - sum((dados-mu)^2)/(2*par)
    if(!log) res <- exp(res)
    return(res)
}
Ufun <- function(par, mu, dados){
    return( -(length(dados)/2) * ((1/par) - sum((dados-mu)^2)/(n*par^2)))
}
Hfun <- function(par, mu, dados){
    return( -(length(dados)/2) * (-(1/par^2) + 2*sum((dados-mu)^2)/(n*par^3)))
}</pre>
```

A seguir verificamos os valores obtidos anteriormente com os retornados pelas funções.

 $^{^{1}}$ note que para maior eficiência e para evitar repetição desnecessária de cálculos chamadas das funções, um argumento da função poderia receber diretamente o valor da soma de quadrados e tamanho da amostra n no lugar dos dados.

```
round(c(llfun(MLE, dados=y, mu=10), Ufun(MLE, dados=y, mu=10), Hfun(MLE, dados=y, mu=10)), di
## [1] -5.185  0.000 -1.336
```

A aproximação quadrática da função de verossimilhança é dada por

$$\tilde{l}(\sigma^2; y) = l(\hat{\sigma}^2) + (1/2)(\sigma^2 - \hat{\sigma}^2)^2 H(\hat{\sigma}^2)$$

e definida no código a seguir.

```
llaprox <- function(par, dados, mu){
  est <- sum((dados - mu)^2)/length(dados)
  llfun(est, dados=dados, mu=mu) + 0.5 * (par - est)^2 * Hfun(est, dados=dados, mu=mu)
}</pre>
```

Os gráficos da função de log-verossimilhança e de sua aproximação quadrática são mostrados na figura 1. Nota-se que a aproximação não é boa mesmo para pequenos decréscimos nos valores de log-verossimilhança. A pequena amostra e a natureza do parâmetro explicam, em grande parte, tal fato. Inferências baseadas em tal aproximação tais como testes de Wald e intervalos simétricos podem produzir resultados não confiáveis neste caso. Mais adiante iremos discutir a reparametrização como possível estratégia para obter melhores aproximações.

Figura 1: Função de verossimilhança para σ^2 e a respectiva aproximação quadrática.

Embora as expressões analíticas para as quantidades de interesse mencionadas acima sejam disponíveis neste exemplo, vamos ilustrar como estimativas podem ser obtidas através de métodos numéricos, que devem ser utilizados em problemas em que expressões analíticas não podem ser obtidas.

Um código baseado na maximização da função de verossimilhança é apresentado a seguir e o hessiano numérico é também extraído. Como esperado, os valores estão muito próximos aos obtidos anteriormente.

```
## [1] 1.619
##
## $objective
## [1] -5.185

optimHess(MLEnum$maximum, llfun, dados=y, mu=10)
##         [,1]
## [1,] -1.336

-1/optimHess(MLEnum$maximum, llfun, dados=y, mu=10)
##         [,1]
## [1,] 0.7485

sqrt(-1/optimHess(MLEnum$maximum, llfun, dados=y, mu=10))
##         [,1]
## [1,] 0.8652
```

Outros métodos numéricos alternativos à otimização podem ser utilizados. Vejamos dois exemplos. O primeiro é encontrar a raiz da função escore.

```
uniroot(Ufun, interval=c(0.1, 20), dados=y, mu=10)$root
## [1] 1.619
```

Um segundo é utilizar o "tradicional" algorítmo de Newton-Raphson segundo o qual estimativas do parâmetro são atualizadas sequencialmente até convergência segundo:

$$\theta_{t+i} = \theta_i - \frac{U(\theta)}{H(\theta)}.$$

Portanto o algorítmo de Newton-Raphson exige que sejam fornecidas as funções escore e hessiana. Além disto, como o algoritmo não impõe restrição ao parâmetro, utilizamos neste caso uma transformação logarítmica $\phi = \log(\sigma^2)$ internamente na função, uma vez que devemos impor a restrição de que $\sigma^2 > 0$. As funções $U(\cdot)$ e $H(\cdot)$ são redefinidas sob esta reparametrização e omite-se as constantes (-n/2) que se cancelam na divisão $U(\cdot)/H(\cdot)$. A seguir temos a definição do algorítmo em uma função e seu resultado para o conjunto de dados considerado aqui, novamente fornecendo estimativa próxima ao valor exato das expressões analíticas.

```
iteração
                  par
       1.00
                 1.58
## iteração
                  par
##
      2.000
                1.618
##
  iteração
                  par
##
      3.000
                1.619
  iteração
                  par
      4.000
                1.619
##
   iteração
                  par
##
      5.000
                1.619
## logpar
              par
## 0.4815 1.6186
## attr(,"iteracoes")
## [1] 5
## attr(, "hessian.logpar")
## [1] 1
```

(b) A expressão da distribuição a posteriori é obtida da forma:

$$[\sigma^{2}|y] \propto [\sigma^{2}] \cdot L(\sigma^{2};y)$$

$$= (\sigma^{2})^{-1} \cdot (2\pi)^{-n/2} (\sigma^{2})^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \sum_{1=1}^{n} (y_{i} - \mu)^{2}\right\}$$

$$\propto (\sigma^{2})^{-(n/2)-1} \exp\left\{-\frac{\sum_{1=1}^{n} (y_{i} - \mu)^{2}}{2\sigma^{2}}\right\}$$

(c) A expressão anterior, vista como uma função de σ^2 , corresponde ao núcleo de uma densidade "gama inversa" de parâmetros:

$$\alpha = \frac{n}{2}$$
 e $\beta = \frac{2}{\sum_{i=1}^{n} (y_i - \mu)^2}$.

Esta distribuição também é chamada na literatura de qui-quadrado inversa escalonada.

(d) Para o conjunto de dados temos que

$$\alpha = \frac{n}{2} = \frac{7}{2} = 3,5$$
 e $\beta = \frac{2}{\sum_{i=1}^{n} (y_i - \mu)^2} = \frac{2}{11,33} = 0,1765.$

```
a.post <- length(y)/2
b.post <- 2/sum((y-10)^2)
c(a.post, b.post)
## [1] 3.5000 0.1765</pre>
```

Embora códigos para tal distribuição possam ser obtidos já implementados, vamos definindo uma função da densidade gama-inversa a partir de sua expressão. A seguir usamos a função para obter o gráfico da posteriori obtida aqui.

Figura 2: Densidade (gama-inversa) de σ^2 para o exemplo.

OBS: A função pode ser escrita de forma computacionalmente mais adequada, em função de estatísticas da amostra e evitando cálculos redundantes.

Vamos agora considerar obter simulações da distribuição posteriori. Neste caso não vamos nos preocupar em escrever um código e vamos utilizar o seguinte resultado trivial. Se $X \sim \text{Ga}(\alpha,\beta)$ então $Y = 1/X \sim \text{InvGa}(\alpha,\beta)$. Portanto, para simular de uma distribuição gama inversa basta tomar o inverso de valores simulados de uma distribuição gama com os os mesmos parâmetros. A figura 3 mostra a densidade teórica sobreposta por histograma e densidade empíricas obtidos com 10.000 amostras dos distribuição.

Figura 3: Histograma e densidade estimada das amostras da posteriori comparados com a expressão analítica da posteriori.

- (e) i. Resumos pontuais da posteriori.
 - A. Média da posteriori. Neste caso se tem a expressão analítica e que portanto deve ser utilizada.

Entretanto, como em muitos casos pode não ser disponível, ilustra-se também a obtenção por integração numérica e por simulação.

• Expressão analítica

$$E[\sigma^2|y] = \frac{1}{\beta(\alpha - 1)} = 2.27$$

```
(e.post <- 1/(b.post*(a.post-1)))
## [1] 2.266
```

• Integração numérica (a partir da definição de esperança de uma v.a.).

$$E[\sigma^{2}|y] = \int_{0}^{\infty} \sigma^{2} f(\sigma^{2}|y) d\sigma^{2}$$

```
Epost <- function(par, ...) par * dinvgamma(par, ..., log=FALSE)
integrate(Epost, lower=0, upper=50, a=a.post, b=b.post)
## 2.263 with absolute error < 6.6e-06</pre>
```

• Simulação.

```
mean(sim)
## [1] 2.28
```

- B. Moda da posteriori. Assim como no caso da média a expressão analítica da moda é conhecida mas ilustra-se também a obtenção por otimização numérica e por simulação.
 - Expressão analítica.

$$E[\sigma^2|y] = \frac{1}{\beta(\alpha+1)} = 1.26$$

```
(mo.post <- 1/(b.post*(a.post+1)))
## [1] 1.259
```

• Otimização numérica, maximizando a densidade (ou, equivalentemente, a log-densidade, o que em geral é mais estável numericamente).

```
optimize(dinvgamma, lower=0, upper=50, a=a.post, b=b.post, log=FALSE, maximum=TRUE)
## $maximum
## [1] 1.259
##
## $objective
## [1] 0.5133
optimize(dinvgamma, lower=0, upper=50, a=a.post, b=b.post, log=TRUE, maximum=TRUE)
## $maximum
## [1] 1.259
##
## $objective
## [1] -0.6669
```

 Simulação. Utiliza-se aqui um algorítmo simples tomando-se o ponto de máximo de uma suavização da densidade.²

```
sim.den <- density(sim, n=1024)
sim.den$x[which.max(sim.den$y)]
## [1] 1.327</pre>
```

²veja outro algorítmo mais adiante com o uso da função hdrcde::hdr().

C. Mediana da Posteriori

- Expressão analítica: não disponível.
- Otimização numérica.

Pode-se definir uma função que retorne quantis da posteriori gamma inversa.

```
qinvgamma <- Vectorize(function(p, a, b, ...){
  q.f <- function(x, a, b)
    integrate(dinvgamma, lower=0, upper=x, a=a, b=b)$value - p
  uniroot(q.f, a=a, b=b, ...)$root
})
(md.post <- qinvgamma(0.5, a=a.post, b=b.post, interval=c(0,50)))
## [1] 1.785</pre>
```

Entretanto, para o cálculo de quantis neste exemplo, a definição da função anterior é desnecessária, pois, pode-se simplesmente tomar inversos dos quantis da distribuição gama.

```
1/qgamma(1-0.5, shape=a.post, scale=b.post)
## [1] 1.785
```

Portanto desejando-se ter uma função específica para a gama-inversa, basta definir:

```
qinvgamma <- function(p, a, b, ...)
1/qgamma(1-p, shape = a, scale=b, ...)
```

• Simulação

```
median(sim)
## [1] 1.794
```


Figura 4: Média, mediana e moda na distribuição a posteriori do exemplo.

- ii. Resumos intervalares (usando $1 \alpha = 0.95$)
- i. Intervalo de credibilidade quantis
 - A. Por otimização numérica

```
(ICq <- qinvgamma(c(0.025, 0.975), a=a.post, b=b.post))
## [1] 0.7076 6.7047
```

B. Por simulação

```
quantile(sim, prob=c(0.025, 0.975))
## 2.5% 97.5%
## 0.7075 6.8346
```

- ii. Intervalo de credibilidade HPD³
 - A. Otimização numérica. A função a seguir é apenas um exemplo ilustrativo e pode ser escrita de outras formas (o que fica como exercício). Para rotinas mais eficientes vejam as fornecidas por pacotes especializados.

```
# Função para obter o HPD de uma função (f.d.p.) *unimodal*
# fc nao totalmente geral devido a valor superior fixado no argumento "interval"
hpdinvgamma <- function(prob, a, b){
    require(rootSolve)
    moda <- 1/(b*(a+1))
    dmax <- dinvgamma(moda, a=a, b=b)</pre>
    f.int <- function(corte, a, b, prob){</pre>
        f.corte <- function(x) dinvgamma(x, a=a, b=b) - (dmax - corte)
        int <- uniroot.all(f.corte, interval=c(0,100))</pre>
        p1 <- integrate(dinvgamma, lower=0, upper=int[1], a=a, b=b)$value
        p2 <- integrate(dinvgamma, lower=0, upper=int[2], a=a, b=b)$value
        return(((p2-p1) - prob)^2)
    corte.int <- optimize(f.int, interval=c(0, dmax), a=a, b=b, prob=prob)</pre>
    f.corte <- function(x)</pre>
      dinvgamma(x, a=a, b=b, log=FALSE) - (dmax - corte.int$minimum)
    int <- uniroot.all(f.corte, interval=c(0,100))</pre>
    return(int)
(IChpd <- hpdinvgamma(0.95, a=a.post, b=b.post))
## [1] 0.4761 5.2770
integrate(dinvgamma, lower=IChpd[1], upper=IChpd[2], a=a.post, b=b.post)
## 0.95 with absolute error < 8.1e-08
```

B. HDR obtido a partir de simulações da posteriori.

```
require(hdrcde)
## baseado nas amostras
hdr(sim, prob=95)$hdr
## [,1] [,2]
## 95% 0.3323 5.318
## baseado em uma aproximação discreta da densidade
par.vals <- seq(0, 30, length=2000)
d.vals <- dinvgamma(par.vals, a=a.post, b=b.post)
hdr(den=list(x=par.vals, y=d.vals), prob=95)$hdr
## [,1] [,2]
## 95% 0.4848 5.073</pre>
```

Alguns exemplos de funções disponíveis em outros pacotes.

```
require(TeachingDemos)
emp.hpd(sim)
hpd(qinvgamma, a=a.post, b=b.post)
detach(package:TeachingDemos)
##
require(BEST)
```

 $^{^3}$ diversos pacotes do R fornecem algorítmos para cálculos de intervalos HPD. Em geral são fornecidas funções para obtenção de intervalos HPD a partir de um objeto como amostras (simulação) da posteriori, mas alguns pacotes fornecem também funções para cálculo a partir de posterioris na forma de função.

```
hdi(sim, credMass=0.95)
hdi(qinvgamma, credMass=0.95, a=a.post, b=b.post)
detach(package:BEST)
##
require(LaplacesDemon)
p.interval(sim)
detach(package:LaplacesDemon)
##
require(emdbook)
tcredint("invgamma", list(a=a.post, b=b.post)) # problema aqui
detach(package:emdbook)
#
require(coda)
HPDinterval(as.mcmc(sim))
detach(package:coda)
```

Pode-se verificar a propriedade de que o IC-HPD é mais curto do que o de quantis. A diferença torna-se mais acentuada quanto mais assimétrica for a distribuição.

```
diff(ICq)
## [1] 5.997
diff(IChpd)
## [1] 4.801
```

O gráfico da função com os dois tipos de intervalos mostra que eles são bem distintos neste caso.

Figura 5: Comparação de intervalos de quantis e HDR.

Gráficos da priori, posteriori e verossimilhança.

Para incluir o gráfico da verossimilhança na mesma escala da priori e posteriori é necessário utilizar a função padronizada (de forma a integrar 1). Há duas formas que serão ilustradas a seguir: (i) reconhecendo o núcleo de alguma distribuição conhecida (quando possível), (ii) integrando explicitamente a verossimilhança (analítica ou numericamente).

Neste exemplo a opção (i) é possível pois, para a verossimilhança, tem-se que:

$$L(\sigma^2|y) \propto IG(a = (n/2) - 1, b = 2/\sum_{i=1}^n (y_i - \mu)^2).$$

```
post <- function(dados, mu, plot=TRUE, from, to){</pre>
    a <- length(dados)/2
    SQ <- sum((dados-mu)^2)
    b <- 2/SQ
    MLE <- SQ/length(dados)
    if(plot){
        par.seq <- seq(from, to, length=201)</pre>
        vero.seq <- dinvgamma(par.seq, a=a-1, b=b)</pre>
        post.seq <- dinvgamma(par.seq, a=a, b=b)</pre>
        max.seq <- max(c(max(vero.seq), max(post.seq)))</pre>
        plot(par.seq, post.seq, type="l", ylim=c(0, 1.4*max.seq),
              xlab=expression(sigma^2), ylab=expression(group("[",sigma^2,"]")))
        lines(par.seq, vero.seq, lty=2, col=4)
        lines(par.seq, 1/par.seq, lty=3, col=2)
        legend("topright", c("priori", "verossimilhança", "posteriori"),
               lty=c(3,2,1), col=c(2,4,1))
    return(c(a=a, b=b, MLE=MLE, media=1/(b*(a-1)), moda=1/(b*(a+1))))
```

```
par(mar=c(3, 3.2, .5, .5), mgp=c(2,1,0))
post(dados=y, mu=10, from=0, to=10)
```



```
## a b MLE media moda
## 3.5000 0.1765 1.6186 2.2660 1.2589
```

Figura 6: Priori, verossimilhança e posteriori para o exemplo.

Para (ii) a verossimilhança integrada (numericamente) pode ser obtida da forma a seguir, que pode ser usada mesmo que a expressão da verossimilhança não tenha uma forma proporcional à de uma distribuição de probabilidades conhecida.

```
llfun.int <- function(par, ...){
    C <- integrate(llfun, low=0, up=50, ..., log=FALSE)$value
    res <- llfun(par, ..., log=FALSE)/C
    attr(res, "C") <- C
    return(res)
}
integrate(llfun.int, mu=10, dados=y, lower=0, upper=50)

## 1 with absolute error < 2.9e-06</pre>
```

Verificando os cálculos dos valores da densidade e da constante normalizadora temos:

O gráfico a seguir mostra que (i) e (ii) são equivalentes.

Figura 7: Verossimilhanças integradas obtida de duas formas diferentes: (i) por integração numérica (pontos) (ii) pela expressão da gama-inversa (linha).

Aproximação normal da posteriori Sob certas condições, a posteriori pode ser aproximada por uma distribuição normal com média igual a moda da posteriori e variância (inversamente) relacionada ao Hessiano. Mais especificamente, obtém-se a log-densidade da posteriori e dela se obtém o máximo (moda) e o valor do hessiano avaliado neste ponto de máximo. Em certos casos particulares estes valores podem ser obtidos analiticamente, porém, de forma mais geral são obtidos numericamente. A aproximação é boa quando (i) o parâmetro é interior ao espaço paramétrico, para valores do parâmetro na proximidade da moda e para grandes tamanhos de amostra.

$$[\sigma^{2}|y] \propto (\sigma^{2})^{-(n/2)-1} \exp\left\{-\frac{\sum_{1=1}^{n} (y_{i} - \mu)^{2}}{2\sigma^{2}}\right\}$$
$$\log[\sigma^{2}|y] \propto (-(n/2) - 1)\log(\sigma^{2}) - \frac{\sum_{1=1}^{n} (y_{i} - \mu)^{2}}{2}(\sigma^{2})^{-1}$$
$$\frac{\mathrm{d}\log[\sigma^{2}|y]}{\mathrm{d}\sigma^{2}} \propto (-(n/2) - 1)(\sigma^{2})^{-1} + \frac{\sum_{1=1}^{n} (y_{i} - \mu)^{2}}{2}(\sigma^{2})^{-2}$$
$$H(\sigma^{2}) = \frac{\mathrm{d}^{2}\log[\sigma^{2}|y]}{\mathrm{d}(\sigma^{2})^{2}} \propto -(-(n/2) - 1)(\sigma^{2})^{-2} - \sum_{1=1}^{n} (y_{i} - \mu)^{2}(\sigma^{2})^{-3}$$

E a variância para a aproximação normal é dada por $H(\hat{\sigma}^2) = -2.84$, em que $\hat{\sigma}^2 = 1/(\beta(\alpha+1)) = 1.26$ é a moda da posteriori. Portanto a variância a aproximação normal é da posteriori:

$$[\sigma^2|y] \sim N(\hat{\sigma}^2, -H^{-1}(\hat{\sigma}^2)) \sim N(1.26, 0.352)$$

Neste caso, ambos, $\hat{\sigma}^2$ e $-H^{-1}(\hat{\sigma^2})$ puderam ser obtidos analiticamente. Caso isto não fosse possível aproximação obtidas numericamente podem ser obtidas pela maximização da log-posteriori (ou minimização do negativo da log-posteriori).

Uma forma alternativa mais simples e direta de definir no R a log-posteriori (a uma constante), sem utilizar as derivações algébricas das expressões, é dada a seguir.

```
neglogpost <- function(par, y, mu)
    -(sum(dnorm(y, mean=mu, sd=sqrt(par), log=TRUE)) + log(1/par))</pre>
```


Figura 8: Densidade a posteriori e a respectiva aproximação normal.

No caso de se usar estimativas numéricas, a densidade da normal fica como no comando a seguir. Note que não toma-se aqui o negativo do hessiano pois, no código anterior, foi minimizado o negativo da log-posteriori.

```
dnorm(x, mean=APnum$par, sd=sqrt(1/APnum$hessian))
```

Amostragem (MCMC) Como já visto anteriormente a posteriori do exemplo possui forma analítica conhecida e amostras da posteriori podem ser obtidas diretamente, tomando-se os inversos de valores simulados da distribuição gamma correspondente. Entretanto, a título de ilustração, será exemplificado a seguir um algorítmo de *Cadeias de Markov via Monte Carlo* (MCMC) para obter amostras da posteriori.

O algorítmo de Metropolis-Hastings para amostrar de uma distribuição $\pi(\theta)$ segue os seguintes passos:

- 1. Toma-se um valor inicial θ_0 (arbitrário) para o parâmetro.
- 2. Escolhe-se uma função $q(\theta_*|\theta_{t-1})$ para sortear um novo valor θ_* "proposto" para o parâmetro.
- 3. Geram-se valores em uma "cadeia" (suficientemente grande) segundo as regras:
 - (a) para cada valor proposto calcula-se $\alpha = \min \left\{ 1, \frac{\pi(\theta_*)q(\theta_{t-1}|\theta_*)}{\pi(\theta_{t-1})q(\theta_*|\theta_{t-1})} \right\}$,
 - (b) aceita-se que a cadeia mova-se para o valor proposto com probabilidade α , ou seja, sorteia-se $U \sim \mathrm{U}(0,1)$

$$\theta_t = \left\{ \begin{array}{ll} \theta_* & \text{se } u < \alpha \\ \theta_{t-1} & \text{se } u \ge \alpha \end{array} \right..$$

Uma versão simplificada deste algorítmo (chamada de algorítmo de Metrópolis) é obtida quanto $q(\cdot)$ é simétrica. Neste caso $q(\theta_*|\theta_{t-1}) = q(\theta_{t-1}|\theta_*)$ e o cálculo de α se reduz a

$$\alpha = \min \left\{ 1, \frac{\pi(\theta_*)}{\pi(\theta_{t-1})} \right\}.$$

A distribuição $\pi(\theta)$ é a distribuição objetivo, da qual se deseja simular, no caso, a posteriori $[\sigma^2|y]$. É importante notar que a função não precisa ser completamente especificada, ou seja, pode ser conhecida somente a uma contante de proporcionalidade uma vez que tal constante é cancelada no cálculo de α . Portanto, para simular de uma posteriori precisamos somente definir em $\pi(\cdot)$ a função obtida por

$$[\sigma^2|y] \propto [\sigma^2] \cdot L(\sigma^2;y).$$

Na definição da função usaremos agora os argumentos n e SQ para evitar recalcular quantidades fixas a cada iteração. Usa-se ainda o fato que $\frac{\pi(\theta_*)}{\pi(\theta_{t-1})} = \exp[\log(\pi(\theta_*) - \pi(\theta_{t-1}))]^{-5}$.

```
dpost <- function(par, n, SQ)
  ifelse(par > 0, exp(-(0.5*n+1) * log(par) - 0.5 * SQ/par), 0)
logdpost <- function(par, n, SQ)
  ifelse(par > 0, -(0.5*n+1) * log(par) - 0.5 * SQ/par, -Inf)
```

O algoritmo a seguir utiliza uma $q(\cdot)$ simétrica uniforme ao redor do valor atual do parâmetro tal que

$$\theta_* \sim U[\theta_{t-1} - a, \theta_{t-1} + a].$$

```
MCMC <- function(N, init, n, SQ, a){
    sim <- numeric(N)
    sim[1] <- init
    aceita <- 0
    for(i in 2:N){
        nv <- runif(1, sim[i-1]-a, sim[i-1]+a)
        alpha <- min(1, exp(logdpost(nv, n=n, SQ=SQ)-logdpost(sim[i-1], n=n, SQ=SQ)))
        if(runif(1) < alpha) {sim[i] <- nv; aceita <- aceita+1}
        else sim[i] <- sim[i-1]</pre>
```

⁴Funções definidas anteriormente como a de verossimilhança também poderiam ser definidas desta forma para maior eficiência computacional.

 $^{^5}$ Outras simplificações poderiam ser obtidas para este exemplo considerando a razão para o cálculo de α .

```
}
attr(sim, "taxa aceitação") <- aceita/(N-1)
return(sim)
}</pre>
```

Rodando o algorítmo para o exemplo temos os resultados a seguir.

```
n.y <- length(y)
SQ.y <- sum((y-10)^2)
sim.mcmc <- MCMC(1000, init=1, n=n.y, SQ=SQ.y, a=0.2)
attributes(sim.mcmc)
## $`taxa aceitação`
## [1] 0.9419</pre>
```

```
par(mar=c(3, 3.2, .5, .5), mgp=c(2,1,0))
plot(sim.mcmc, ty="l", xlab="simulação", ylab=expression(sigma^2[sim]))
```


Figura 9: Sequência de valores em uma amostras da posteriori obtida por um algorítimo MCMC.

A figura que sobrepõe a densidade empírica mostra que esta amostra é claramente inadequada!

Figura 10: Histograma e densidade estimada da amostra MCMC comparadas com a posteriori analítica.

A mensagem é clara, embora simples, o algorítmo MCMC requer cuidados na sua implementação. Entre eles destacam-se: (i) é necessário que a distribuição estacionária seja atingida o que em geral não é válido para valores iniciais da cadeia que devem ser descartados sendo considerados um período de "aquecimento" da cadeia (burn-in); (ii) a distribuição $q(\cdot|\cdot)$ deve ser calibrada (no exemplo pela escolha do valor argumento a) para fornecer uma taxa de aceitação compatível com o algorítmo (no exemplo seria por volta de 30%); (iii) as amostras podem ser muito correlacionadas o que requer um maior número de valores a serem gerados (N). Além disto, pode-se armazenar apenas um a cada tantos valores gerados (por exemplo 1 a cada 10) o que reduz a memória computacional utilizada para armazenamento e a autocorrelação dos valores a serem armazenados. A este procedimento denomina-se raleamento (thinning); (iv) uma parametrização adequada pode assegurar uma melhor convergência, no exemplo poderia-se ter um melhor resultado com $\log(\sigma^2)$. Neste último caso os valores obtidos na cadeia podem ser diretamente transformados ao final para a parametrização desejada para inferências. Com estes pontos em mente o algorítmo MCMC anterior deve ser adaptado e calibrado (por tentativa e erro na especificação de a para atingir a taxa aceitação recomendada. Vamos rodar a cadeia novamente considerando apenas (i), (ii) e (iii). Após algums tentativas obtivemos a rodada a seguir.

```
sim.mcmc <- MCMC(110000, init=1, n=n.y, SQ=SQ.y, a=5)
attributes(sim.mcmc)

## $`taxa aceitação`
## [1] 0.2998

sim.mcmc <- (sim.mcmc[-(1:10000)])[(1:10000)*10] ##</pre>
```


Figura 11: Novos resultados obtidos modificando opções no algorítmo MCMC.

Os resultados com uma amostra maior, descartando amostras iniciais, tomando um valor a cada 10 e com uma taxa de aceitação adequada para o algorítimo são claramente melhores. Melhorias adicionais do algorítmo anterior ficam como exercício neste momento.

Existem ainda na literatura diversos "testes convergência" que visam verificar se há evidências de que a cadeia tenha atingido seu estado estacionário. Uma prática recomendada é obter não apenas uma, mas múltiplas cadeias o que assegura diagnósticos de convergência mais confiáveis. OA obtenção de múltiplas cadeias é de fato necessária para alguns testes de convergência.

Reparametrização

Tanto na análise de verossimilhança, quanto na aproximação nomal da posteriori é vantajoso, para a qualidade das aproximações que a verossimilhança e a posteriori sejam aproximadamente simétricas e, se possível, com curvas próximas às correspondentes da distribuição normal. Tal fato também beneficia o desempenho dos algorítmos numéricos, Muitas vezes é possível se obter uma melhor aproximação através da alguma reparametrização do modelo.

Vamos considerar, no exemplo em questão, a reparametrização $\phi = \log(\sigma^2)$ (outra reparametrização comumente utilizada seria $\phi = \log(\sigma)$).

As função de verossimilhança, escores e hessiana, como funções de ϕ são dadas a seguir.

$$L(\phi = \log(\sigma^2)|y) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi e^{\phi}}} \exp\left\{-\frac{1}{2e^{\phi}}(y_i - \mu)^2\right\}$$

$$= (2\pi)^{-n/2} e^{-(n/2)\phi} \exp\left\{-\frac{1}{2e^{\phi}} \sum_{i=1}^n (y_i - \mu)^2\right\}$$

$$l(\phi; y) = \log\{L(\phi; y)\} = -(n/2)[\log(2\pi) + \phi + \frac{\sum_{i=1}^n (y_i - \mu)^2}{n} e^{-\phi}]$$

$$U(\phi) = \frac{\mathrm{d}l(\phi; y)}{\mathrm{d}\phi} = -(n/2)[1 - \frac{\sum_{i=1}^n (y_i - \mu)^2}{n} e^{-\phi}]$$

$$H(\phi) = \frac{\mathrm{d}^2 l(\phi; y)}{\mathrm{d}(\phi)^2} = -\frac{\sum_{1=1}^n (y_i - \mu)^2}{2} e^{-\phi}$$

O valor da verossimilhança maximizada é o mesmo, bem como o valor da função para cada ϕ é igual ao da função para o σ^2 correspondente, conforme princípio da invariância da verossimilhança. A função de verossimilhança escrita anteriormente pode ser facilmente adaptada para permitir a opção de se usar ou não a forma reparametrizada.

```
(MLE <- sum((y-10)^2)/length(y))

## [1] 1.619

vero <- function(par, mu, dados, log=TRUE, repar=FALSE){
   if(repar) par <- exp(par)
   res <- -(length(dados)/2)*log(par) - sum((dados-mu)^2)/(2*par)
   if(!log) res <- exp(res)
   res
}</pre>
```

Os códigos a seguir comparam os resultados sem e com reparametrização.

```
## [1] -5.185
##
## $counts
## function gradient
##
       NA NA
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
##
          [,1]
## [1,] -1.336
## com reparametrização
(MLEnumR <- optimize(vero,interval=c(-20, 20), mu=10, dados=y, log=TRUE, maximum=TRUE, repar=TRUE))
## $maximum
## [1] 0.4816
##
## $objective
## [1] -5.185
exp(MLEnumR$maximum)
## [1] 1.619
(MLEnumR <- optim(1, vero, mu=10, dados=y, log=TRUE, repar=TRUE, method="Brent",
                  lower=-20, upper=20, control=list(fnscale=-1), hessian=TRUE))
## $par
## [1] 0.4815
##
## $value
## [1] -5.185
##
## $counts
## function gradient
##
       NA
                  NA
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
##
   [,1]
## [1,] -3.5
c(MLE, MLEnum$par, exp(MLEnumR$par))
## [1] 1.619 1.619 1.619
```

As funções de verossimilhança estão na figura a seguir. Note a invariância nos valores do eixo-Y do valores da verossimilhança.

Figura 12: Funções de verossimilhança parametrizadas com σ^2 (esquerda) e $\phi = \log(\sigma^2)$ (direita).

Transformações podem levar a funções de verossimilhança que possuem melhores aproximações quadráticas. Além disto, a aproximação na parametrização original pode ser melhor obtida transformando-se de volta os valores a partir da aproximação quadrática de função reparametrizada. Na figura a seguir, o gráfico da esquerda mostra a função de verossimilhança de ϕ sua aproximação quadrática. A gráfico da direita mostra a função de verossimilhança de σ^2 , a sua aproximação quadrática como obtida anteriormente e a aproximação de $l(\sigma^2)$ obtida a partir da aproximação de $l(\phi)$. Esta última aproximação é claramente superior. Em resumo, o ideal é sempre usar a função de verossimilhança e evitar se possível o uso de aproximações. Entranto, se for necessário utilizar aproximações deve-se aproximar a verossimilhança em uma parametrização conveniente, que forneça uma verossimilhança aproximadamente simétrica e quadrática e, a partir desta aproximação as funções aproximadas para outras parametrizações podem ser obtidas diretamente, pela invariância da verossimilhança, apenas transformando os valores do parâmetro.

```
Hfun.phi <- function(par, dados, mu){- (sum((dados-mu)^2)/2) * exp(-par)}
logvero.approx.phi <- function(par, dados, mu, est){
  vero(est, dados=dados, mu=mu, repar=TRUE) + 0.5 * (par - est)^2 * Hfun.phi(est, dados=dados, mu=mu)}</pre>
```

No contexto bayesiano as reparametrizações seguem o teorema de transformação de variáveis. Revisando, se uma v.a. X possui densidade $f_X(x)$, então a v.a. Y = h(X), sendo $h(\cdot)$ uma função monótona, tem densidade

$$f_Y(y) = f_X(h^1(x)) \cdot \left| \frac{\mathrm{dh}^1(x)}{\mathrm{dy}} \right|.$$

Para a expressão da posteriori de ϕ consideramos que a mudança de variável $\phi = h(\sigma^2) = \log(\sigma^2)$ e, equivalentemente $\sigma^2 = h^{-1}(\phi) = e^{\phi}$ é uma transformação segundo uma função monótona. Aplicando-se o teorema de

```
par(mar=c(3, 3.2, .5, .5), mgp=c(2,1,0))
par(mfrow=c(1,2))
curve(vero(x, mu=10, dados=y, log=TRUE, repar=TRUE), from=log(0.55), to=log(8.5),
      xlab=expression(phi == log(sigma^2)), ylab=expression(l(phi)))
curve(logvero.approx.phi(x, dados=y, mu=10, est=log(MLE)), from=log(0.55), to=log(8.5),
      xlab=expression(phi == log(sigma^2)), ylab=expression(l(phi)), add=T, col=4, lty=3)
legend("topright", c("verossimilhança", "aprox. quad."), lty=c(1,3), col=c(1,4))
curve(llfun(x, mu=10, dados=y, log=TRUE), from=0.55, to=8.5,
      xlab=expression(sigma^2), ylab=expression(l(sigma^2)))
curve(llaprox(x, dados=y, mu=10), from=0.55, to=8.5, add=T, col=2, lt=2)
sigma2.vals \leftarrow seq(0.5, 10, 1=501)
lines <- lines(sigma2.vals, logvero.approx.phi(log(sigma2.vals), dados=y, mu=10, est=log(MLE)),
                lty=3, col=4)
legend("topright", c("verossimilhança",
                     expression(paste("aprox. quad.", sigma^2)),
                     expression(paste("aprox. quad.", phi))), lty=1:3, col=c(1,2,4))
```


Figura 13: Esquerda: verossimilhança de ϕ e respectiva aproximação quadrática. Direita: verossimilhança de σ^2 e aproximações quadráticas obtidas a partir de $l(\sigma^2)$ e de $l(\phi)$.

transformação de variáveis aleatórias, a densidade da priori tem a expressão

$$f(\phi) = f(h^{-1}(\phi)) \left| \frac{\mathrm{d}h^{-1}(\pi)}{\mathrm{d}\phi} \right|$$
$$\propto \frac{1}{\mathrm{e}^{\phi}} \mathrm{e}^{\phi}$$
$$\propto 1,$$

ou seja, a priori (não normalizada, imprópria) é uma uniforme em toda reta real. A posteriori (não normalizada) tem a expressão,

$$f(\phi|y) \propto e^{-\frac{n}{2}\phi} \exp\left\{-\frac{\sum_i (y_i - \mu)^2}{2}e^{-\phi}\right\},$$

e o gráfico pode ser obtido como a seguir. Comparado com o anteriormente mostrado para σ^2 é nítido o "melhor" (mais simétrico e próximo da normal) comportamento da posteriori sob a reparametrização.

```
lpostphi <- function(phi, dados, mu, log=TRUE){
   n <- length(dados)
   SQ <- sum((dados-mu)^2)
   res <- -(n/2)*(phi + (SQ/n) * exp(-phi))</pre>
```

```
if(!log) res <- exp(res)
return(res)
}</pre>
```

Está função não é uma densidade, pois não é normalizada, ou seja, integrando 1 em seu domínio.

```
integrate(lpostphi, lower=-10, upper=10, dados=y, mu=10, log=F)
## 0.00768 with absolute error < 2.4e-05</pre>
```

A distribuição normalizada é obtida calculando o denominador do Teorema de Bayes, $[Y] = \int [Y|\phi][\phi]d\phi$. No exemplo este termo é

 $\frac{(\sum_{i=1}^{n} (y_i - \mu)^2)^{n/2}}{\Gamma(n/2)}$

que facilmente obtido, resolvendo a integral, ou, de forma mais fácil, tomando-se os termos constantes na densidade de σ^2 . A função para $[\phi|y]$ pode ser definida como forma a seguir.

```
dpostphi <- function(phi, dados, mu, log=FALSE, cte=TRUE){
    n <- length(dados)
    SQ <- sum((dados-mu)^2)
    res <- -(n/2)*(phi + (SQ/n) * exp(-phi))
    if(cte) res <- res + (n/2)*log(SQ/2) - log(gamma(n/2))
    if(!log) res <- exp(res)
    return(res)
}
integrate(dpostphi, lower=-10, upper=10, dados=y, mu=10, cte=TRUE)

## 1 with absolute error < 3.3e-05</pre>
```

Por simplicidade e generalidade, vamos aqui utilizar uma solução numérica que pode ser utilizado caso a constante nomalizadora correspondente a [Y] não possa ser obtida em forma fechada. Neste caso a função de densidade pode ser definida como a seguir.

```
dpostphiN <- function(phi, ...){
    CTE <- integrate(lpostphi, -Inf, Inf, ..., log=FALSE)$value
    return(lpostphi(phi, ..., log=FALSE)/CTE)
}
integrate(dpostphiN, low=-Inf, up=Inf, dados=y, mu=10)
## 1 with absolute error < 9.5e-07</pre>
```

Para obter a aproximação normal da posteriori neste exemplo, é possível obter expressões analíticas para a moda e hessiano como se segue, em que $\hat{\sigma}^2 = \sum_i (y_i - \mu)^2 / n$:

$$\begin{split} \log(f(\phi|y)) &\propto -\frac{n}{2} [\phi + \hat{\sigma}^2 \mathrm{e}^{-\phi}] \\ \frac{\mathrm{d} \log(f(\phi|y))}{\mathrm{d} \phi} &\propto -\frac{n}{2} [1 - \hat{\sigma}^2 \mathrm{e}^{-\phi}] \\ \frac{\mathrm{d} \log(f(\phi|y))}{\mathrm{d} \phi} &\propto -\frac{n}{2} \hat{\sigma}^2 \mathrm{e}^{-\phi} \\ \hat{\phi} &= \log(\hat{\sigma}^2) \\ H(\hat{\phi}) &= -\frac{n}{2}. \end{split}$$

Para os dados o exemplo em questão, temos os seguintes valores:

Figura 14: Densidades da posteriori $[\phi|y]$ não normalizada (esquerda) e normalizada (direita).

```
(phi.moda <- log(sum((y-10)^2)/(length(y))))
## [1] 0.4815
(phi.hess <- - (sum((y-10)^2)/2) * exp(-phi.moda))
## [1] -3.5
(phi.hess <- - length(y)/2)
## [1] -3.5</pre>
```

Entretanto vale ressaltar que nem sempre é possível obter tais expressões analiticamente e, se este for o caso, pode-se utilizar algorítmos numéricos.

```
(phi.num <- optimize(lpostphi, interval = c(-20, 20), dados=y, mu=10, maximum=TRUE))

## $maximum
## [1] 0.4816
##

## $objective
## [1] -5.185

(phi.num.hess <- optimHess(phi.num$maximum, lpostphi, dados=y, mu=10))

## [,1]
## [1,] -3.5</pre>
```

A aproximação normal da posteriori $[\phi|y]$ é mostrada no gráfico da direita na Figura a seguir. Nesta parametrização a aproximação é claramente superior à obtida anteriormente para $[\sigma^2|y]$ que é mostrada novamente na figura à esquerda.

Figura 15: Comparação das aproximações normais das posterioris, na parametrização σ^2 original (esquerda) e com a reparametrização $\phi = \log(\sigma^2)$ (direita).

Portanto, assim como discutido para função de verossimilhança, uma melhor aproximação para $[\sigma^2|y]$ pode ser obtida tomando-se a transformação para σ^2 da aproximação de $[\phi|y]$. Em outras palavras, ao invés de aproximarmos diretamente $[\sigma^2|y]$, (i) obtemos a aproximação de $\tilde{f}(\phi|y)$ e, (ii) transformamos a aproximação para obter

$$\tilde{f}_{\sigma^2|y}(\sigma^2) = \tilde{f}_{\phi|y}(h^{-1}(\phi)) \left| \frac{\mathrm{d}h^{-1}(\phi)}{\mathrm{d}\sigma^2} \right|.$$

Aqui, por estarmos tratando de distribuições de probabilidades, é necessário utilizar o Jacobiano para escalonar corretamente a densidade, o que não era necessário na análise de verossimilhança.

Note-se que os gráficos anteriores podem ser igualmente obtidos com os comandos a seguir, definindo sequencias de valores e avaliando as funções. Embora aparentemente mais trabalhoso, os comandos desta forma são convenientes para obter diretamente as densidades após a reparametrização, sem a necessidade de definir as densidades transformadas.

```
par(mar=c(3, 3.2, .5, .5), mgp=c(2,1,0))
par(mfrow=c(1,2))
phi.vals <- seq(-2, 2.5, l=200)
dpostphi.vals <- dpostphi(phi.vals, dados=y, mu=10)
dnorm.vals <- dnorm(phi.vals, m=phi.moda, sd=sqrt(-1/phi.hess))</pre>
```

