Distributed PCA and k-Means Clustering

Yingyu Liang

Joint work with Maria Florina Balcan, Vandana Kanchanapally
Georgia Institute of Technology

k-Means Clustering

- Given a set P of points in \mathbf{R}^d and #clusters k
- Find centers $\mathbf{c} = \{c_1, \dots, c_k\}$ to minimize the k-means cost

$$\sum_{p \in P} \min_{i} ||p - c_i||_2^2$$

Distributed Clustering

- Global data P consists of local data sets P_1, \ldots, P_s
 - Distributed databases
 - Images and videos on the Internet
 - Sensor networks ...
- Challenge: how to lower the communication needed?

Our Results

Algorithm for distributed k-means for high dimensional data

- loses $(1 + \epsilon)$ -approx factor compared to non-distributed
- lacksquare #points communicated independent of |P| and dim d
- has positive experimental results

Coreset

Coreset [HarPeled-Mazumdar,STOCO4] short summaries capturing relevant info w.r.t. all clusterings

Definition

An ϵ -coreset for P is a set of points D and weights w on D s.t.

$$\forall \mathbf{c}, (1-\epsilon) \mathrm{cost}(P, \mathbf{c}) \leq \sum_{q \in D} w_q \mathrm{cost}(q, \mathbf{c}) \leq (1+\epsilon) \mathrm{cost}(P, \mathbf{c}).$$

Distributed coreset construction (two rounds, interactive):

- I Compute a constant approximation solution A_i for P_i . Communicate the costs $cost(P_i, A_i)$
- 2 Sample O(kd) points. #points from P_i obeys multinomial[$\{\cos t(P_i, A_i)\}_i$]

$$\begin{array}{c|c} \operatorname{cost}(P_1,A_1) & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Distributed coreset construction (two rounds, interactive):

- I Compute a constant approximation solution A_i for P_i . Communicate the costs $cost(P_i, A_i)$
- 2 Sample $ilde{O}(kd)$ points. #points from P_i obeys Multinomial $\{ \cot(P_i,A_i) \}_i$

Distributed Coreset and Clustering [Balcan-Ehrlich-Liang, NIPS13]

Distributed coreset construction (two rounds, interactive):

- I Compute a constant approximation solution A_i for P_i . Communicate the costs $cost(P_i, A_i)$
- 2 Sample $ilde{O}(kd)$ points. #points from P_i obeys Multinomial $\{\cot(P_i,A_i)\}_i$

Used for distributed k-means clustering:

- **1** Lose $(1+\epsilon)$ approx factor compared to non-distributed
- 2 Communication on star: $\tilde{O}(kd+sk)$ points for const ϵ

Distributed k-Means Clustering for High Dimensional Data

Algorithm

- 1 Perform distributed PCA to $O(k/\epsilon^2)$ dimension
- 2 Perform distributed clustering on the projected data
- Lose $(1 + \epsilon)$ approx factor due to distributed PCA
- Communication cost on star network for constant ϵ :
 - Distributed PCA: O(sk) points in \mathbb{R}^d
 - Distributed Clustering: $\tilde{O}(k^2 + sk)$ points in $\mathbf{R}^{O(k)}$

Non-Distributed PCA

SVD on data

- 1 Perform SVD $A = UDE^T$
- 2 $D^{(t)}$: first t columns of D $E^{(t)}$: first t columns of E
- 3 Let $A^{(t)} = UD^{(t)}(E^{(t)})^T$

Equivalent:

Eigen-factorize covariance

- **1** Compute $S = A^T A$ and eigen-factorize $S = E \Lambda E^T$
- 2 Project the data on $E^{(t)}$

Distributed PCA

Algorithm: PCA onto dimension t

- - Each server: SVD $P_i = U_i D_i E_i^T$
 - lacksquare Each server: communicate $D_i^{(t)}$ and $E_i^{(t)}$ to the coordinator
- - \blacksquare Coordinator: compute covariance $S = \sum_i E_i^{(t)} D_i^{(t)} D_i^{(t)} (E_i^{(t)})^T$ factorize $S = E \Lambda E^T$
 - Coordinator: communicate $E^{(t)}$ to each server
 - lacksquare All servers: project the data on $E^{(t)}$ to get \hat{P}

$$P = \begin{bmatrix} P_1 \\ \vdots \\ P_s \end{bmatrix} \xrightarrow[\text{Local PCA}]{\text{Local PCA}} \begin{bmatrix} P_1^{(t)} \\ \vdots \\ P_s^{(t)} \end{bmatrix} = P^{(t)} \xrightarrow[\text{Global PCA}]{\text{Global PCA}} \hat{P}$$

Theorem (informal): Distributed PCA

Let L_X be a k-dim subspace.

Theorem (informal): Distributed PCA

Let L_X be a k-dim subspace.

Theorem (informal): Distributed PCA

Let L_X be a k-dim subspace.

Theorem (informal): Distributed PCA

Let L_X be a k-dim subspace.

Theorem (informal): Distributed PCA

Let L_X be a k-dim subspace.

Property of SVD

Lemma: SVD Truncation [Feldman-Schmidt-Sohler, SODA13]

Let $A = UDE^T$ and its SVD Truncation $A^{(t)} = UD^{(t)}(E^{(t)})^T$. For any k-dim subspace L_X , when $t \geq O(k/\epsilon^2)$:

1)
$$0 \le ||AX||_2^2 - ||A^{(t)}X||_2^2 \le \epsilon^2 \text{cost}(A, L_X).$$

2) $0 \le ||AX - A^{(t)}X||_2^2 \le \epsilon^2 \text{cost}(A, L_X)$

Property of SVD

Lemma: SVD Truncation [Feldman-Schmidt-Sohler, SODA13]

Let $A = UDE^T$ and its SVD Truncation $A^{(t)} = UD^{(t)}(E^{(t)})^T$. For any k-dim subspace L_X , when $t \ge O(k/\epsilon^2)$:

1)
$$0 \le ||AX||_2^2 - ||A^{(t)}X||_2^2 \le \epsilon^2 \text{cost}(A, L_X).$$

2)
$$0 \le ||AX - A^{(t)}X||_2^2 \le \epsilon^2 \text{cost}(A, L_X).$$

Theorem: Distributed PCA

For any k-dim subspace L_X , when $t \ge O(k/\epsilon^2)$:

1)
$$0 \le ||PX||_2^2 - ||\hat{P}X||_2^2 \le \epsilon^2 \text{cost}(P, L_X).$$

2)
$$0 \le ||PX - \hat{P}X||_2^2 \le \epsilon^2 \text{cost}(P, L_X),$$

Proof: combine the bounds for the SVD truncations

Distributed k-Means Clustering for High Dimensional Data

Algorithm

- 1 Perform distributed PCA to $O(k/\epsilon^2)$ dimension
- 2 Perform distributed clustering on the projected data
- Lose $(1 + \epsilon)$ approx factor due to distributed PCA
- Communication cost on star network for constant ϵ :
 - Distributed PCA: O(sk) points in \mathbb{R}^d
 - Distributed Clustering: $\tilde{O}(k^2 + sk)$ points in $\mathbf{R}^{O(k)}$

Experiments

Experiments on UCI data sets: (#clusters k = 20)

- sports activities: 9,210 points in \mathbb{R}^{5625} , s=10
- MNIST handwritten digits: 70,000 points in ${f R}^{784}$, s=100
- BOWnytimes: 300,000 points in \mathbf{R}^{102660} , s=100

Experiment results: can reduce dimension to around 20 while increasing the k-means cost by less than 10%

Experiments

Figure: k-means cost v.s. communicated #points. number labels: PCA dimensions.

Thanks!