Kingdome of Saudi Arabia
Ministry of Higher Education
Taibah University
College of Computer Science and
Engineering
Department of Information
Systems

المملكة العربية السعودية وزارة التعليم العالي جامعة طيبة كلية علوم وهندسة الحاسب الألي قسم نظم المعلومات

IS372 – Data warehouse and data mining

Analysis sales transactions

Professor. Mohammed Al-Sarem

Team member:

Nosiabh Humod Alamri 4051085

Shahad Mansour Aljohani 4052322

Shahad Khaled Almuzaini 4052253

Haneen Mohammed Alzoughibi 4051033

Section:

IA8G

Date:

24/5/2022

Introduction

One of the problems facing the market is the inability to deal with huge data and thus not achieving the expected income, so the rules of association can help solve this problem by extracting data that frequently appear with each other, to improve marketing plans and analyze the purchasing habits of customers and the difficulties that we will face Finding relationships of association rules between different products.

We used the rules of association, which is a simple and suitable technique for analyzing purchase data and searching for groups of repeating elements. It consists of two steps: creating groups of repeating elements, creating the appropriate rule.

The type of data used is Transaction data obtained from the "kaggle" site and its name is Sales Product Data.

Libraries

The database was downloaded as an excel file and these libraries were imported:

Panada is one of the most important libraries in Python for data manipulation and analysis.

NumPy provides an extensive library of high-level mathematical functions

Seaborn Python data visualization library based on matplotlib

matplotlib.pyplot comprehensive library for creating static, animated, and interactive visualizations in Python.

datetime allow us to manipulate dates and times.

OS This module provides a portable way of using operating system-dependent functionality.

Warnings to warn the developer of situations that aren't necessarily exceptions.

Pip install mlxtend To install mlxtend.

mlxtend.frequent_patterns import fpgrowth Function implementing FP-Growth to extract frequent itemsets for association rule mining.

mlxtend.frequent_patterns import association_rules Function to generate association rules from frequent itemsets.

Timeline

Task	Deadline	lead
Search For the Dataset	20/5/2022	All team member
Download It	22/5/2022	Shahad Khaled
Data Understanding and	22/5/2022	All
Preparations		
Model Building	23/5/2022	All
Evaluation And Testing	23/5/2022	All
Prepare Report	24/5/2022	All
Presentations	25/5/20200	All

Dataset description

Reviewing the Dataset

Statistical analysis of the dataset

Reviewing some basic statistical details

Attributes' classification

Reviewing data type to all attributes before pre-processing

```
# data type each column
df.dtypes
Out[4]:
Order ID
                    object
Product
                    object
Quantity Ordered
                    object
Price Each
                    object
Order Date
                    object
Purchase Address
                    object
dtype: object
```

Data pre-processing

Handling with missing values

drop identical duplicates rows

```
df.duplicated().sum()
Out[13]:
0
```

```
df.duplicated().values.any()
Out[14]:
False
```

convert columns to correct data types

```
#convert columns to correct data types
df["Order ID"] = pd.to_numeric(df["Order ID"], errors='coerce').fillna(0, downcast='infer')
df["Price Each"] = pd.to_numeric(df["Price Each"], errors='coerce').fillna(0, downcast='inf
df["Quantity Ordered"] = pd.to_numeric(df["Quantity Ordered"], errors='coerce').fillna(0, d
df['Product']= df['Product'].convert_dtypes()
df['Purchase Address']= df['Purchase Address'].convert_dtypes()
 df.dtypes
 Out[11]:
 Order ID
                                                      int64
                                                   string
 Product
 Quantity Ordered
                                                      int64
 Price Each
                                                 float64
 Order Date
                                                   object
 Purchase Address
                                                   string
 dtype: object
```

Visualization

Reviewing most sales city

The highest sales were in San Francisco on Hill St, the lowest sales were in Portland on North St.

It shows that almost all products have the same sales pattern over the months.

Box plot shows five numbers summary (Minimum, Q1, M, Q3, Maximum) Price each

Reviewing the best month of sales

Bar Plot shows the best sales were in December, and the lowest sales were in January.

Box plot shows five numbers summary (Minimum, Q1, M, Q3, Maximum) Sales.

Data mining algorithm/s Apriori

Algorithm for finding frequent items in a dataset

FP growth

An algorithm that stores the frequency of occurrence of itemsets

Model validation

Apriori

Testing the algorithm accuracy

rule	<pre>from mlxtend.frequent_patterns import association_rules, apriori rules = association_rules(frequent_items, metric = "lift", min_threshold = 0.0 rules.sort_values('confidence', ascending = False, inplace = True) rules</pre>								
Out[74]:									
	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	lever	
4	(Google Phone)	(USB-C Charging Cable)	0.030946	0.122480	0.005587	0.180551	1.474128	0.001	
10	(Vareebadd Phone)	(USB-C Charging Cable)	0.011573	0.122480	0.002062	0.178208	1.455004	0.000	
8	(iPhone)	(Lightning Charging Cable)	0.038333	0.121073	0.005666	0.147807	1.220810	0.001	
6	(Google Phone)	(Wired Headphones)	0.030946	0.105622	0.002365	0.076422	0.723538	-0.000	
14	(iPhone)	(Wired Headphones)	0.038333	0.105622	0.002589	0.067544	0.639486	-0.001	
1	(iPhone)	(Apple Airpods Headphones)	0.038333	0.087005	0.002090	0.054532	0.626770	-0.001:	
9	(Lightning Charging Cable)	(iPhone)	0.121073	0.038333	0.005666	0.046797	1.220810	0.001	
5	(USB-C Charging Cable)	(Google Phone)	0.122480	0.030946	0.005587	0.045619	1.474128	0.001	
3	(Google Phone)	(Bose SoundSport Headphones)	0.030946	0.074524	0.001278	0.041289	0.554038	-0.001	
15	(Wired Headphones)	(iPhone)	0.105622	0.038333	0.002589	0.024513	0.639486	-0.001	
0	(Apple Airpods	(iPhone)	0.087005	0.038333	0.002090	0.024026	0.626770	-0.001:	

FP growth

Testing the algorithm accuracy

Final result As we can see from the evaluation result are similar to each other and that proof the accuracy of the algorithm..

References:

- Knightbearr. (2022, February 5). *Analysis: Sales data (knightbearr)*. Kaggle. Retrieved May 25, 2022, from https://www.kaggle.com/code/knightbearr/analysis-sales-data-knightbearr/data
- Lab sheet (Lab 4: Data Preparation- NumPy Library, Lab 5: Data Exploratory Analysis, Lab 6: Dealing with Missing Values & PCA, Lab 8: Association Rules)
- Ganguly, M. (2021, April 15). *This is how you can analyze any dataset with the CRISP-DM framework*. Medium. Retrieved May 25, 2022, from https://gangulym23.medium.com/this-is-how-you-can-analyze-any-dataset-with-the-crisp-dm-framework-cc9353f4dabe
- YouTube. (2021). *YouTube*. Retrieved May 25, 2022, from https://www.youtube.com/watch?v=Cryve9ZWbYk.