(b) There exist some elements e_1, \ldots, e_n of A such that

$$e_i^2 = e_i$$

$$e_i e_j = 0, \quad i \neq j$$

$$e_1 + \dots + e_n = 1_A,$$

and $\mathfrak{b}_i = (1_A - e_i)A$, for i, j = 1, ..., n.

- (c) We have $\mathfrak{b}_i + \mathfrak{b}_i = A$ for all $i \neq j$, and $\mathfrak{b}_1 \cdots \mathfrak{b}_n = (0)$.
- (d) We have $\mathfrak{b}_i + \mathfrak{b}_j = A$ for all $i \neq j$, and $\mathfrak{b}_1 \cap \cdots \cap \mathfrak{b}_n = (0)$.

Proof. Assume (a). Since we have an isomorphism $A \approx A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$, we may identify A with $A/\mathfrak{b}_1 \times \cdots \times A/\mathfrak{b}_n$, and \mathfrak{b}_i with Ker (pr_i) . Then, e_1, \ldots, e_n are the elements defined just before Definition 32.3. As noted, $\mathfrak{b}_i = \text{Ker}(pr_i) = (1_A - e_i)A$. This proves (b).

Assume (b). Since $\mathfrak{b}_i = (1_A - e_i)A$ and A is a ring with unit 1_A , we have $1_A - e_i \in \mathfrak{b}_i$ for $i = 1, \ldots, n$. For all $i \neq j$, we also have $e_i(1_A - e_j) = e_i - e_i e_j = e_i$, so (because \mathfrak{b}_j is an ideal), $e_i \in \mathfrak{b}_j$, and thus, $1_A = 1_A - e_i + e_i \in \mathfrak{b}_i + \mathfrak{b}_j$, which shows that $\mathfrak{b}_i + \mathfrak{b}_j = A$ for all $i \neq j$. Furthermore, for any $x_i \in A$, with $1 \leq i \leq n$, we have

$$\prod_{i=1}^{n} x_i (1_A - e_i) = \left(\prod_{i=1}^{n} x_i\right) \prod_{i=1}^{n} (1_A - e_i)$$
$$= \left(\prod_{i=1}^{n} x_i\right) (1_A - \sum_{i=1}^{n} e_i)$$
$$= 0.$$

which proves that $\mathfrak{b}_1 \cdots \mathfrak{b}_n = (0)$. Thus, (c) holds.

The equivalence of (c) and (d) follows from the proof of Theorem 32.15.

The fact that (c) implies (a) is an immediate consequence of Theorem 32.15. \Box

Here is example of Theorem 32.16. Take the commutative ring of residue classes mod 30, namely

$$A := \mathbb{Z}/30\mathbb{Z} = \{\bar{i}\}_{i=0}^{29}$$

Let

$$\mathfrak{b}_1 = 2\mathbb{Z}/30\mathbb{Z} := \{2\bar{i}\}_{i=0}^{14}
\mathfrak{b}_2 = 3\mathbb{Z}/30\mathbb{Z} := \{3\bar{i}\}_{i=0}^{9}
\mathfrak{b}_3 = 5\mathbb{Z}/30\mathbb{Z} := \{5\bar{i}\}_{i=0}^{5}.$$