# (Nearly) Balanced BST tree

(nearly) balanced: no leaf is much farther away from the root than any other leaf.

Different balancing schemes allow different definitions of "much farther" and different amounts of work to keep them balanced.

#### Self-balancing binary search tree:

- a binary search tree
- & keep it balanced

#### Popular self-balancing BSTree

- red-black tree
- AVL tree

no leaf is more than a certain amount farther from the root than any other

# (Height-)Balanced tree

#### Height-balanced tree:

A tree whose subtrees differ in height by no more than one and the subtrees are height-balanced, too.

An empty tree is height-balanced.

http://xlinux.nist.gov/dads/

#### Height-balanced tree

AVL tree

## BST in Java.util and C++ STL

#### Java.util

- TreeMap
  a Red-Black tree based implementation
- TreeSet implementation based on a TreeMap

#### C++ STL

map, multimap
 are typically implemented as binary search trees

www.cplusplus.com

maps are usually implemented as red-black trees

en.cppreference.com/w/cpp/container/map

## Red-black tree



### Red-Black tree

A red-black tree is a binary search tree which satisfies:

- 1. Every node is either red or black.
- 2. The root is black.

This rule is sometimes omitted, since the root can always be changed from red to black

- 3. Every leaf NIL is considered black.
- 4. A red node have two black children.
- 5. For each node:

all paths from the node to descendant leaves contain the same number of black nodes.

## Red-Black tree

- one extra information per node: its *color*, which can be either RED or BLACK.
- black-height of a node x: bh(x)
   the number of black nodes on any path from x to a leaf node
- black-height of a red-black tree: the black-height of its root.

## Red-Black tree

#### Lemma

A red-black tree with n internal nodes has height at most  $2*log_2(n+1)$ .

### AVL tree

#### An AVL tree

is a binary search tree which satisfies:

the heights of the two subtrees of any node differ by at most one



## AVL tree

Suppose we have n nodes in an AVL tree of height h.

$$h \sim < 1.44 * \log_2 n$$

### Balanced trees

#### **Operations**

- 1. Search is  $O(\log n)$  since the trees are always balanced.
- 2. Insertion and deletions are also  $O(\log n)$
- 3. Balancing adds a constant factor to the speed of insertion/deletion.

- Difficult to program; more space for balance factor.
- Asymptotically faster but rebalancing costs time.

#### Remark:

Use left-rotate / right-rotate for rebalance

## Rotation



## DS

#### **TreeNode:**

info: TComparable

left: ^TreeNode

right: ^TreeNode

parent: ^TreeNode

end