www.slamtec.com

RPLIDAR S1

低成本 360 度激光扫描测距雷达

简介与规格书

型号: S1

9.2K

目录	
简介	3
系统构成及连接	4
工作原理和使用	4
安全性与适用范围	6
输出数据	6
高速采样协议与协议兼容性	7
应用场合	7
规格信息	8
测量性能	8
激光功率信息	8
光学窗口	9
扫描数据坐标系定义	10
通讯与接口	10
其他参数	13
自我保护和状态检测	14
开发工具与支持	15
机械尺寸	16
修订历史	17
附录	18
图 <u>表</u> 索引	18

RPLIDAR S1 是由 SLAMTEC 公司开发的新一代袖珍式低成本 TOF 激光雷达 (TOF LIDAR),它具有每秒 9200 次的激光测距采样能力,并采用了非接触式的能量和信号传输技术,克服了传统激光雷达的寿命限制,可长时间可靠的稳定运行。

RPLIDAR S1 为增强版二维激光测距雷达,可以实现在二维平面的 40 米半径范围内进行 360 度全方位的激光测距扫描,并产生所在空间的平面点云地图信息。这些云地图信息可用于地图测绘、机器人定位导航、物体/环境建模等实际应用中。

与其他系列激光雷达相比, RPLIDAR S1 在检测远距离物体和强光直射物体时, 测距表现更加稳定, 可在室内外环境下的 40 米测距半径内实现理想的建图效果, 应用范围可扩大到更多使用场景。

RPLIDAR S1 的典型扫描频率为 10Hz (600rpm),并可随用户需求,在 8-15Hz 范围内任意调整扫描频率;在 10Hz 的扫描频率下,9.2kHz 的采样频率可以实现 0.391°的角度分辨率。

得益于 TOF 测距的, RPLIDAR S1 在各种室内环境及强烈太阳光直接照射的室外环境下均表现出色。同时, 每一台 RPLIDAR S1 均在出厂前经过了严格检测,确保所发射激光功率符合 IEC-60825 Class 1 人眼安全等级。

系统构成及连接

RPLIDAR S1 主要包括激光测距核心以及使激光测距核心高速旋转的供电与机械部分。正常工作时,测距核心将开始顺时针旋转扫描。用户可以通过 RPLIDAR 的通讯接口获取 RPLIDAR 的扫描测距数据,以及对电机的旋转速度进行控制。

图表 1-1 RPLIDAR S1 系统构成示意图

RPLIDAR S1 自身带有转速检测与自适应系统,扫描时角分辨率会自动随着实际旋转频率做出调整。RPLIDAR S1 不需要使用者为其提供复杂的供电系统,这样便降低了总体成本。如果需要了解当前雷达的实际转速,外部系统可以通过通讯接口来获取相关数据。

具体的供电与通讯接口的信息请参考后文的规格信息。

工作原理和使用

RPLIDAR S1 采用了激光飞行时间测距技术,再配合 SLAMTEC 研发的高速激光采集处理机构,它可进行每秒 9200 次的测距动作。每次测距过程中,RPLIDAR S1 将发射经过调制的红外激光信号,该激光信号在照射到目标物体后产生的反光将被 RPLIDAR S1 的激光采集系统接收,然后经过嵌入在 RPLIDAR S1 内部的 DSP 处理器实时解算,被照射到的目标物体与 RPLIDAR S1 的距离值以及当前的角度信息将从通讯接口中输出。

图表 1-2 RPLIDAR S1 工作原理示意图

在电机机构的驱动下,RPLIDAR 的测距核心将顺时针旋转,从而实现对周围环境的 360 度全方位扫描测距检测。

图表 1-3 RPLIDAR S1 扫描所得环境示意图

安全性与适用范围

Class

RPLIDAR 系统采用低功率的红外线激光器作为发射光源,并采用调制脉冲方式驱动,激光器仅在极短的时间内进行发射动作。因而可以确保对人类及宠物的安全性,可以达到 Class I 级别的激光器安全标准。产品符合 21 CFR 1040.10和 1040.11,但根据 2007 年 6 月 24 日激光通告第 50 号的偏差除外。

注意: 使用非本文指定的控制,调整或执行程序可能会导致危险的辐射暴露。

调制的激光可以有效地避免在测距扫描过程当中的环境光与日光的干扰,因此可以在室内环境以及强烈太阳光直接照射的室外环境下正常使用。

输出数据

在 RPLIDAR 工作时,每次采样的数据将通过通讯接口输出。每个采样点的数据将包括如下的信息。如果需要具体的数据格式和通讯接口的协议,请与 SLAMTEC 联系。

数据类型	单位	描述
距离值	毫米	RPLIDAR 旋转中心距离采样点之间的实际距离
夹角	度	当前采样点相对于 RPLIDAR 自身朝向的夹角
起始信号	(布尔值)	表示当前采集点是否属于一次新的扫描
校验和	-	RPLIDAR 返回数据的校验和

图表 1-4 RPLIDAR S1 采样点的数据信息

图表 1-5 RPLIDAR S1 采样点数据帧

6/18

RPLIDAR S1 在不断的输出中包含了上述信息的采样点数据帧。外部系统可以通过发送控制指令使 RPLIDAR 停止输出数据,或者对输出数据的格式进行配置。具体的操作请与 SLAMTEC 联系。

高速采样协议与协议兼容性

RPLIDAR S1 使用新扩充的高速采样协议进行 9200 次/秒的激光扫描测距数据输出。用户必须更新对应的 SDK 或者改写原有的驱动程序,并使用新的高速采样协议来使用 RPLIDAR S1 的 9200 次/秒采样模式。请参考对应的协议文档了解详情。

RPLIDAR S1 兼容所有先前 RPLIDAR 产品所使用的通讯协议,用户可以直接替换先前型号的 RPLIDAR,并直接用于原有的系统当中。但此时 RPLIDAR S1 将工作于兼容模式下,系统进行激光测距的范围将会受到限制,具体范围请参考先前 RPLIDAR 产品所使用的通讯协议。

应用场合

本系统适用于如下领域:

- o 通用的同步定位与建图(SLAM)
- o 环境扫描与 3D 重建
- 需要进行长时间连续工作的服务机器人、工业领域
- 家用看护/清洁机器人的导航与定位
- 通用的机器人导航与定位
- 智能玩具的定位与障碍物检测

规格信息 <u>SL</u>\MTEC

测量性能

仅针对型号 S1

项目	·····································
适用场景	适合室内外环境,可靠的抗日光能力
测量压液	白色物体: 40m (白色漫反射表面)
测量距离	黑色物体: 10m (反射率 10%)
测量盲区	0.1m
采样频率	9.2kHz
扫描频率	典型值: 10Hz (8Hz-15Hz 可调)
角度分辨率	典型值: 0.391°(0.313°-0.587°取决于扫描频率)
通讯接口	TTL UART
通讯速率	256000bps
测量精度	±5cm [*]
/A)至1日/文	
测量分辨率	3cm

图表 2-1 RPLIDAR S1 性能表

*注:白色漫反射表面下的全量程精度。

激光功率信息

仅针对型号 S1

项目	单位	最小值	典型值	最大值	备注
激光器波长	纳米(nm)	895	905	915	红外波段
激光器功率	瓦(W)	-	28	-	峰值功率
脉冲时长	纳秒(ns)		10		-
脉冲占空比	%		0.0092		
激光安全等级	-	-	IEC-60825 Class 1	-	-

图表 2-2 RPLIDAR S1 光学信息表

*注:激光器功率为瞬时发光功率,实际平均功率将远低于此值。

光学窗口

为确保 RPLIDAR S1 的正常工作,请确保外部系统设计时安排合理的空间供 RPLIDAR S1 发射与接收激光信号。外部系统对测距窗口的部分遮挡将在一定程 度上影响 RPLIDAR S1 的测距性能和精度。如果有特殊需求或者需要采用透光 材质对 RPLIDAR 进行包裹,请联系 SLAMTEC 了解可行性。

图表 2-3 RPLIDAR S1 光学窗口示意图

9 / 18

请参考本文档的机械尺寸部分了解具体的光学测距窗口尺寸信息。

扫描数据坐标系定义

RPLIDAR S1 采用遵循左手法则的坐标体系,传感器正前方定义为坐标系的 x 轴,坐标系原点为测距核心的旋转中心,旋转角度随顺时针方向旋转增大。具体的坐标系定义如下图所示:

图表 2-4 RPLIDAR S1 扫描数据坐标系定义

通讯与接口

RPLIDAR S1 使用单独的 5V DC 电源同时为测距系统和电机系统供电。标准的 RPLIDAR S1 使用 SH1.0-6P 规范的母头底座,并配备一根本体线,本体线一端 使用的是 SH1.0-6P 规范的公头插座,另一端使用的是 XH2.54-5P 规范的公头插座。具体接口定义及本体线见下图:

图表 2-5 RPLIDAR S1 母座接口定义示意图

图表 2-6 RPLIDAR S1 本体线示意图

色彩	信号名	类型	描述	最小值	典型值	最大值
黑红	- VCC	供电	总供电	4.8V	5V	5.5V
白黄	GND	供电	地线	0V	0V	0V
蓝	RX	输入	测距核心串口输入	0V	3.3V	3.5V
绿	TX	输出	测距核心串口输出	0V	3.3V	3.5V

图表 2-7 RPLIDAR S1 对外接口信号定义

供电接口

RPLIDAR S1 采用唯一的外部供电同时驱动测距核心以及使得测距核心旋转的电

机系统。外部系统需要确保该供电电源的电流输出能力以及纹波特性确保雷达正常使用。

仅针对型号 S1

项目	单位	最小值	典型值	最大值	备注
供电电压	伏特(V)	4.8	5	5.5	超过最大电压可能 导致核心损坏
供电电压纹波	毫伏 (mV)	-	20	50	高纹波可能导致核 心工作失效
系统启动电流	毫安 (mA)	1400	1500	1600	
供电电流	毫安	待定	40	50	5V 供电,休眠时
	(mA)	待定	400	500	5V 供电,工作中

图表 2-8 RPLIDAR S1 供电规格参数

数据通讯接口

RPLIDAR S1 通讯接口采用 3.3V 电平的串口(UART)。其传输速率和协议指标如下表所示:

项目	单位	最小值	典型值	最大值	备注
波特率	bps	-	256000	-	-
工作模式	-	-	8 位数据,1 位停止位,	-	8n1
输出高电平	伏特(V)	2.9	3.3	3.5	输出信号高电平电压值

输出低电平 伏特(V)	-	0	0.4	输出信号低电平电压值
输入高电平 伏特(V)	1.6*	3.3	3.5	输入信号高电平电压值
输入低电平 伏特(V)	-0.3	0	0.4	输入信号高电平电压值

图表 2-9 RPLIDAR S1 串口接口规格信息

*注: RPLIDAR S1 的 RX 输入信号为电流控制型,为保证内部有可靠地进行信号识别,此引脚的实际控制节点电压不能低于 1.6V。

扫描电机控制

RPLIDAR S1 内部带有闭环电机控制系统,能够实现比较精确的旋转速度控制。 用户可以通过发送电机转速设置指令改变电机的旋转速度。

*注: RPLIDAR S1 的电机不能单独启动和停止,必须使用相应的雷达扫描命令来控制。

其他参数

仅针对型号 S1

项目	单位	最小值	典型值	最大值	备注
重量	克(g)	TBD	105	TBD	
工作温度范围	摄氏度(°C)	-5	25	45	
存储温度	摄氏度(°C)	-20	25	60	

图表 2-10 RPLIDAR S1 其他参数表

在 RPLIDAR S1 工作过程中,为了避免因故障导致设备自身出现损害,并且确保激光器时刻在安全输出范围内工作,RPLIDAR S1 带有激光器功耗检测以及传感器健康检查逻辑。在以下故障发生时,RPLIDAR S1 将自动停止扫描工作,并且关闭激光发射器,以避免对自身及外界造成损伤。

- 雷达扫描系统转速不稳定
- 雷达扫描系统转速过低
- 激光信号传感器工作异常

外部系统可以通过通讯接口查询当前系统的工作状态,并且可以尝试重启 RPLIDAR S1 来恢复工作。 为了方便用户使用 RPLIDAR S1 进行产品开发并加速开发周期,SLAMTEC 在机器人管理与开发软件 RoboStudio 中提供了 Framegrabber 插件供用户进行图形化调试,此外,还向用户提供可运行于 x86 windows、x86 Linux、arm Linux 等平台下的 SDK 开发包。具体信息请联系 SLAMTEC。

图表 4-1 RoboStudio 的 Framegrabber 插件

RPLIDAR S1 装配体的尺寸规格请参考下图:

*注: 底部 4*M2.5 的固定螺钉请不要超过 6mm 深度, 否则会导致内部组件损坏。

图表 5-1 RPLIDAR 机械尺寸图

16 / 18

日期	版本	描述
2019-3-7	1.0	S1 初始版本
2019-5-8	1.1	表格2-1 中添加测距盲区的说明
2019-5-8	1.2	更改图表 2-5、2-6、2-7 本体线线色和接口定 义
2019-5-29	1.3	更改机械尺寸中注释内容,将原来螺钉长度 4mm 修改为 6mm
2020-2-10	1.4	修改"安全性和使用范围"中关于室外使用 环境的说明
2021-03-15	1.5	表格 2-10 中添加存储温度数据

图表索引

图表 1-1 RPLIDAR S1 系统构成示意图	4
图表 1-2 RPLIDAR S1 工作原理示意图	5
图表 1-3 RPLIDAR S1 扫描所得环境示意图	5
图表 1-4 RPLIDAR S1 采样点的数据信息	6
图表 1-5 RPLIDAR S1 采样点数据帧	6
图表 2-1 RPLIDAR S1 性能表	8
图表 2-2 RPLIDAR S1 光学信息表	9
图表 2-3 RPLIDAR S1 光学窗口示意图	9
图表 2-4 RPLIDAR S1 扫描数据坐标系定义	10
图表 2-5 RPLIDAR S1 母座接口定义示意图	11
图表 2-6 RPLIDAR S1 本体线示意图	11
图表 2-7 RPLIDAR S1 对外接口信号定义	11
图表 2-8 RPLIDAR S1 供电规格参数	12
图表 2-9 RPLIDAR S1 串口接口规格信息	13
图表 2-10 RPLIDAR S1 其他参数表	13
图表 4-1 ROBOSTUDIO的 FRAMEGRABBER插件	15
图表 5-1 RPLIDAR 机械尺寸图	16

设计与制造: 上海思岚科技有限公司 地址: 中国上海浦东盛夏路 666 号盛银大厦 D501 Made in China