Intro to Analysis Homework 2

Zachary Meyner

1. Let S be a nonempty bounded set in \mathbb{R} . Let b < 0 and consider $bS = \{bs : s \in S\}$. Prove $\sup(bS) = b * \inf(S)$

Proof. Let $\sup(S) = s$ We know that $\sup(bS) = b\sup(S) = bs$. So $\forall s_0 \in S \ s_0 \leq s$. Becsue b < 0 multiplying it into the inequality give is $bs_0 \ge bs \ \forall bs_0 \in bS$. So by definition bs is the smallest element in bS when b < 0, so $bs = \inf(bS) = b * \inf(S)$.

2. Let $I_n = \left[1, 1 + \frac{1}{n}\right] \forall n \in \mathbb{N}$. Prove $\bigcap_{n=1}^{\infty} I_n = \{1\}$.

Proof. Clearly 1 is in $\left[1,1+\frac{1}{n}\right]$. BMOC Let $x\in\bigcap_{n=1}^{\infty}I_n$. Then

$$1 < x \le 1 + \frac{1}{n}$$
$$0 < x - 1 \le \frac{1}{n}$$

Since x-1>0 by Archimedean Property $\exists m\in\mathbb{N}$ s.t.

$$x - 1 > \frac{1}{m}$$

$$\implies x > 1 + \frac{1}{m}$$

but $x < 1 + \frac{1}{n} \ \forall n \in \mathbb{N}$. $\therefore \bigcap_{n=1}^{\infty} I_n = \{1\}$.

3. Consider the set $S = \left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$. Find the infimum and supremum of the set. Then, prove your assertions. $\inf(S) = -1$

Proof. (i) First we'll show -1 is a lower bound on S. Let $\frac{1}{n_0} - \frac{1}{m_0} \in S$ Then when $n \ge 1$ $\frac{1}{m_0} \le 1 \implies \frac{-1}{m_0} \ge -1$ Then $\frac{1}{n_0} - \frac{1}{m_0} \ge \frac{1}{n_0} - 1$. Also n > 0 so $\frac{1}{n_0} > 0$, which means $\frac{1}{n_0} - 1 > 0 - 1$. Together this means $\frac{1}{n_0} - \frac{1}{m_0} \ge \frac{1}{n_0} - 1 > 0 - 1 = -1$. So $\frac{1}{n_0} - \frac{1}{m_0} > -1$. So -1 is a lower bound on S.

lower bound on S.

(ii) BMOC suppose $x \in \mathbb{R}$ s.t. x is the greatest lower bound on S.

So x > -1 and $x \le s \ \forall s \in S$. Then x+1 > 0. and by Archimedean Property $\exists m_0 \in \mathbb{N}$ s.t. $\frac{1}{m_0} < x + 1 \implies \frac{1}{m_0} - 1 < x$ but $\frac{1}{m_0} - 1 \in S$, and $x \le s \ \forall s \in S$, a contradiction. Thus there is no x that exists.

 $\sup(S) = 1$

Proof. (i) First we'll show 1 is an upper bound on S. Let $\frac{1}{n_0} - \frac{1}{m_0} \in S$. Since $n \geq 1$ and $\frac{1}{n} \leq 1$ we know $\frac{1}{n_0} \leq 1$ and $\frac{1}{n_0} - \frac{1}{m_0} \leq 1 - \frac{1}{m_0}$. Now with n > 0 we have $\frac{1}{n} > 0$. This means $\frac{1}{m_0} > 0 \implies \frac{-1}{m_0} < 0$. With both of these we have $\frac{1}{n_0} - \frac{1}{m_0} \leq 1 - \frac{1}{m_0} < 1 - 0 = 1$. (ii) BMOC suppose $x \in \mathbb{R}$ s.t. x is the least upper bound on S.

So $x < 1 \implies 1 - x > 0$. By the Archimedean Property $\exists n_0 \in \mathbb{N}$ s.t. $\frac{1}{n_0} < 1 - x \implies \frac{1}{n_0} - 1 < -x \implies 1 - \frac{1}{n_0} > x$, but $1 - \frac{1}{n_0} \in S$, so x is not an upper bound on S, a contradiction.

$$\therefore \sup(S) = 1.$$

4. Let
$$I_n = \left(2 - \frac{1}{n}, 2\right) \forall n \in \mathbb{N}$$
. Prove $\bigcap_{n=1}^{\infty} I_n = \emptyset$.

Proof. BMOC let $x \in \bigcap_{n=1}^{\infty} I_n$. Then

$$2 - \frac{1}{n} < x < 2$$

$$2 - \frac{1}{n} < x - 2 < 0$$

$$0 < 2 - x < \frac{1}{n} - 2$$

Since 2 - x > 0 by Archimedean Property $\exists m \in \mathbb{N}$ s.t.

$$2 - x > \frac{1}{m}$$

$$\implies -x > \frac{1}{m} - 2$$

$$\implies x < 2 - \frac{1}{m}$$

but
$$x > 2 - \frac{1}{n} \ \forall n \in \mathbb{N}$$
. $\therefore \bigcap_{n=1}^{\infty} I_n = \emptyset$

5. Find the infimum of the set and prove your result.

$$S = \left\{ \frac{3+n}{n} : n \in \mathbb{N} \right\}$$

 $\inf(S) = 1$

Proof. (i) $3 + n \ge n \Longrightarrow \frac{3+n}{n} \ge 1$ so 1 is clearly a lower bound on S. (ii) BMOC suppose $x \in \mathbb{R}$ s.t. x > 1. So $x - 1 > 0 \Longrightarrow \frac{x-1}{3} > 0$. By Archimedean Property $\exists m \in \mathbb{N}$ s.t. $\frac{x-1}{3} > \frac{1}{m} \Longrightarrow x - 1 > \frac{3}{m} \Longrightarrow x > 1 + \frac{3}{m} \Longrightarrow x > \frac{3+m}{m}$ but x is a lower bound on $\frac{3+n}{n}$ a contradiction.

$$\therefore \inf(S) = 1$$

6. Find the limits of the following sequences. Prove your assertions.

(a)
$$\lim_{n \to \infty} \frac{2n-1}{n^2+2} = 0$$

Proof. Let $\varepsilon > 0$ be given, consider $k = \frac{2}{\varepsilon}$ Then $\forall n \geq k$

$$\left| \frac{2n-1}{n^2+2} - 0 \right| = \left| \frac{2n-1}{n^2+2} \right|$$

$$= \frac{2n-1}{n^2+2}$$

$$< \frac{2n}{n^2}$$

$$= \frac{2}{n}$$

$$< \varepsilon$$

$$(\frac{2}{k} = \varepsilon \implies \frac{2}{\varepsilon} = k)$$

$$\lim_{n \to \infty} \frac{n^2 - n}{n^2 + 2} = 1$$

Proof. Let $\varepsilon > 0$ be given, consider $k = \frac{3}{\varepsilon}$ Then $\forall n \geq k$

$$\left| \frac{n^2 - n}{n^2 + 2} - 1 \right| = \left| \frac{n^2 - n}{n^2 + 2} - \frac{n^2 + 2}{n^2 + 2} \right|$$

$$= \left| \frac{-n - 2}{n^2 + 2} \right|$$

$$= \left| \frac{-(n+2)}{n^2 + 2} \right|$$

$$= \frac{n+2}{n^2 + 2}$$

$$< \frac{n+2n}{n^2}$$

$$\leq \frac{3n}{n^2}$$

$$= \frac{3}{n}$$

$$< \varepsilon$$

$$(\frac{3}{k} = \varepsilon \implies k = \frac{3}{\varepsilon})$$

$$\lim_{n \to \infty} \frac{(-1)^n \sqrt{n}}{2n - 1} = 0$$

Proof. Let $\varepsilon>0$ be given, consider $k=\frac{1}{\varepsilon^2}$ Then $\forall n\geq k$

$$\left| \frac{(-1)^n \sqrt{n}}{2n - 1} - 0 \right| = \left| \frac{(-1)^n \sqrt{n}}{2n - 1} \right|$$

$$= \frac{\sqrt{n}}{2n - 1}$$

$$< \frac{\sqrt{n}}{2n - n}$$

$$= \frac{1}{\sqrt{n}}$$

$$\leq \varepsilon$$

$$(\frac{1}{\sqrt{k}} = \varepsilon \implies \sqrt{k} = \frac{1}{\varepsilon} \implies k = \frac{1}{\varepsilon^2})$$

(d) $\lim_{n \to \infty} \frac{n^2 - n}{n^3 - 2n - 4} = 0$

Proof. Let $\varepsilon>0$ be given, consider $k=\max(3,\frac{3}{\varepsilon})$ Then $\forall n\geq k$

$$\left| \frac{n^2 - n}{n^3 - 2n - 4} - 0 \right| = \left| \frac{n^2 - n}{n^3 - 2n - 4} \right|$$

$$= \frac{n^2 - n}{|n^3 - 2n - 4|}$$

$$= \frac{n^2 - n}{n^3 - 2n - 4} \qquad (n \ge 3)$$

$$= \frac{n^2}{n^3 - 2n - 4}$$

$$< \frac{n^2}{\frac{n^3}{3}} \qquad (n^3 - 2n - 4 > \frac{n^3}{3})$$

$$= \frac{1}{\frac{n}{3}}$$

$$= \frac{3}{n}$$

$$\leq \varepsilon$$

$$\left(\frac{3}{k} = \varepsilon \implies k = \frac{3}{\varepsilon}\right)$$