

Inferencia bayesiana de la hipótesis nula

Dr. Héctor Nájera

Dr. Curtis Huffman

Nipótesis nula y descubrimiento

Source	SS	df	MS	Numb	er of obs	\equiv	1,38
				- F(5,	1381)	=	12.5
Model	20057634.7	5	4011526.94	Prob	> F	=	0.000
Residual	441644355	1,381	319800.402	R-sq	uared	=	0.043
And Control		0.0000000000000000000000000000000000000	100000000000000000000000000000000000000	- Adj	R-squared	=	0.040
Total	461701990	1,386	333118.319	Root	MSE	=	565.5
bwght	Coef.	Std. Err.	t	P> t	1000.000		Interval
cigs	-13.25496	2.588155	-5.12	0.000	-18.3321		-8.17781
male	91.00571	30.45073	2.99	0.003	31.27103		150.740
parity	47.51602	17.07493	2.78	0.005	14.02041	2	81.0116
faminc	8.660125	3.013622	2.87	0.004	2.748353		14.571
faminc2	0826576	.0414853	-1.99	0.047	1640386		001276
_cons	3115.172	57.80237	53.89	0.000	3001.782	6	3228.56

¿De qué hablamos cuando hablamos de esto?

La clase pasada

Rechazando la nula (Meehl paradox):

- 1. La teorías deberían ser más difíciles de confirmar a medida que tenemos más precisión (Todas las teorías están mal)
- 2. ¿La teoría se confirma rechazando la nula?
- 3. La nula no puede ser exactamente verdadera
- 4. Rechazar la nula es más fácil a medida que la precisión aumenta!

Solución a la paradoja de Meehl

pace of possible outcomes

from null hypothesis for stopping at time T outcome

- Buscar aceptar el valor que se predice y no buscar rechazar un valor nulo no predicho
- Esto significa aumentar la precisión de la predicción del valor predicho

AH!

- New statistics: P-values < .001, Tamaños de efecto, intervalos de confianza y meta análisis como medios para evitar los problemas asociados a pruebas de significancia de las hipótesis nula (NHST).
- Pero como vimos la clase pasada, esto no lo resuelve.
- P-value: Es la probabilidad de que el estadístico (t) su hubiera obtenido de la nula (dada cierta regla respecto al tamaño de los resultados posibles).

- La precisión es la meta
- HDI: Medición de la precisión del valor posterior del parámetro

Bayes e hipótesis nulas. Dos caminos

- ¿Es creíble el valor "nulo" de un parámetro?
 - I. Estimación de parámetros: ¿el valor de interés "cae" dentro del HDI?
 - 2. Comparación de modelos con diferentes a prioris (según los diferentes valores que admitan del parámetro)

Algunas consideraciones de la inferencia bayesiana

Hipótesis: Diferencias entre dos grupos

Priors: Qué sabemos de cada parámetro antes de estos datos

Los datos de cada grupo se describen con distribuciones t usando parámetros: mu, nu y sigma

Los datos "fijos"

KRUSCHKE

mean = 101

95% HDI 100 101

mode = 1.95

95% HDI 1.27 2.93

101

 μ_2

Group 1 Std. Dev.

 σ_1

Group 2 Std. Dev.

 σ_2

Normality

log10(v)

8.0

mode = 0.234

95% HDI

102

103

100

mode = 0.981

95% HDI 0.674 1.46

0.0415

0.0

0.5 1.0 1.5 $(\mu_1 - \mu_2)/\sqrt{(\sigma_1^2 + \sigma_2^2)/2}$

-0.5 0.0 0.5

Combinando las posteriores

El computo bayesiano ofrece distribuciones de los valores posibles de los parámetros de interés:

Diferencia de medias, de escala (dispersión) y del tamaño del efecto

$$\mu_1 - \mu_2$$

$$\sigma_1 - \sigma_2$$

$$\left(\mu_1 - \mu_2 \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{2}}\right)$$

FIGURE 6 | Posterior estimate for difference of groups in Solari et al.³⁶ The third group is credibly different from the mean of the other eight groups.

HDI Bayesianos

El HDI de 95 % son los valores de Θ que tienen al menos ese nivel mínimo de credibilidad posterior.

- A diferencia del IC
 - El HDI tiene una interpretación directa en términos de la credibilidad de los valores de Θ
 - Es explícitamente acerca de $p(\Theta|D)$, que es exactamente de lo que queremos hablar
 - El HDI no depende del diseño de la investigación (el número de pruebas)
 - El HDI responde a las creencias a priori de las investigadoras, como debe ser.

Figure 11.7 Posterior HDI for the bias of a Bernoulli process, when the prior assumes a tail-strong nail (left column) or a fair coin (right column).

Bayes vs frecuencias

Tenemos distribuciones completas de los valores de los parámetros

No solo un estimador punctual

Tenemos precision explícita de los parámetros de interés

• No afectadas por las intenciones de muestreo y de prueba

Modelo flexible que es robusto a valores extremos

No hay supuesto de normalidad

Evaluación de hipótesis nula en Bayes

¿Qué hacer si quieres evaluar la probabilidad de un valor nulo?

Dos caminos:

I. Estimación vía parámetros: Región de Equivalencia Práctica (ROPE) y el Intervalo de más alta densidad (HDI)

2. Comparación bayesiana de modelos: Decisión basada en factores bayesianos (Bayes factors)

Usa la distribución posterior para discernir los valores creíbles del parámetro.

Considere un valor de referencia a evaluar del parámetro de interés: 0, -. 1 - . 1, 100 – 200.

- Región de equivalencia en la práctica (ROPE): rango (del parámetro)
 considerado como el mismo en términos prácticos.
- Pero, ¿cómo se determina la ROPE?

Region of practical equivalence (ROPE)

- Regla de decisión
 - El valor de un parámetro es declarado como no creíble, o rechazado, si su ROPE yace fuera del HDI relevante (típicamente el de 95 %) de su distribución posterior.

- Regla de decisión
 - El valor de un parámetro es declarado aceptado si su ROPE contiene completamente el HDI relevante (típicamente el de 95 %) de su distribución posterior.

- Regla de decisión
 - El valor de un parámetro es declarado aceptado si su ROPE contiene completamente el HDI relevante (típicamente el de 95 %) de su distribución posterior.

- Regla de decisión
 - ¿Qué hacer si el HDI y la ROPE traslapan, sin que la ROPE cubra la HDI por completo (ninguna de las condiciones anteriores se satisface?

- Regla de decisión
 - ¿Qué hacer si el HDI y la ROPE traslapan, sin que la ROPE cubra la HDI por completo (ninguna de las condiciones anteriores se satisface?

No siempre el 95% es simétrico

Figure 12.2: A skewed distribution has different 95% highest density interval (HDI) than 95% equal-tailed interval (ETI). Copyright © Kruschke, J. K. (2014). *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd Edition.* Academic Press / Elsevier.

- Esto es importante para las desviaciones estándar
- Pero también para cierto tipo de parámetros en modelos espaciales o en la estimación de valores atípicos

- Regla de decisión
 - El valor de un parámetro es declarado como no creíble, o rechazado, si su ROPE yace fuera del HDI relevante (típicamente el de 95 %) de su distribución posterior.

- Regla de decisión
 - El valor de un parámetro es declarado aceptado si su ROPE contiene completamente el HDI relevante (típicamente el de 95 %) de su distribución posterior.

- Regla de decisión
 - ¿Qué hacer si el HDI y la ROPE traslapan, sin que la ROPE cubra la HDI por completo (ninguna de las condiciones anteriores se satisface?

- No olvidar la inestabilidad de las fronteras de las HDI debido a la aleatoriedad del MCMC
- Es importante advertir que la regla de decisión es independiente de la inferencia bayesiana (la parte bayesiana se acaba en la estimación de la distribución posterior)

Figure 12.3: Left column: Haldane prior. Right column: Mildly informed prior. Vertical dashed lines mark a ROPE from 0.48 to 0.52. Annotation above the dashed lines indicates the percentage of the distribution within the ROPE. Copyright © Kruschke, J. K. (2014). *Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd Edition.* Academic Press / Elsevier.

2. Estimación de la nula vía modelos

- Planteamos la pregunta:
 - Estimación puntual del valor nulo v distribución de posibilidades

Que debemos de pensar de estos

modelos

- Marginal likelihood
- $P(D|\theta_1)p(\theta_1|m=1)d\ \theta_1$ vs $P(D|\theta_2)p(\theta_2|m=2)d\ \theta_2$
- Si tomamos la razón de las marginales: Bayes factor

Clase de hoy: Inferencia con las posteriores

Source	SS	df	MS	Numb	er of obs	=	1,387
				- F(5,	1381)	=	12.54
Model	20057634.7	5	4011526.94	Prot) > F	=	0.0000
Residual	441644355	1,381	319800.402	R-sc	quared	=	0.0434
Anthorn College				- Adj	R-squared	=	0.0400
Total	461701990	1,386	333118.319	Root	MSE	=	565.51
bwght	Coef.	Std. Err.	t	P> t	[95% Con	ıf.	Interval]
cigs	-13.25496	2.588155	-5.12	0.000	-18.3321		-8.177817
male	91.00571	30.45073	2.99	0.003	31.27103	1	150.7404
parity	47.51602	17.07493	2.78	0.005	14.02041	L	81.01163
faminc	8.660125	3.013622	2.87	0.004	2.748353	3	14.5719
faminc2	0826576	.0414853	-1.99	0.047	1640386	,	0012765
_cons	3115.172	57.80237	53.89	0.000	3001.782		3228.562

Consideraciones: Estimación de

parámetros

- No olvidar la inestabilidad de las fronteras de las HDI debido a la aleatoriedad del MCMC
- Es importante advertir que la regla de decisión es independiente de la inferencia bayesiana (la parte bayesiana se acaba en la estimación de la distribución posterior)

Próxima clase