

Física Experimental 4

Experimento I

Campos Elétricos e Magnéticos da Radiação Eletromagnética

3 de Maio de 2013

Professora Nadia Maria de Liz Koche

Alunos:

Juarez A.S.F 11/0032829 Sérgio Fernandes da Silva Reis 11/0140257 Jedhai Pimentel 09/0007883

Física Experimental 4

Conteúdo

1	Obj	etivos	2
2	Mat	eriais	2
3	Intr	odução	3
4	Pro	cedimentos	5
5	Dad	os	7
	5.1	Observando \vec{E} e \vec{B}	7
	5.2	A grade polarizadora	8
	5.3	Reflexão pela grade	8
	5.4	O campo estacionário	8
6	Aná	lise de Dados	12
	6.1	Observando \vec{E} e \vec{B}	12
	6.2	A grade polarizadora	12
	6.3	Reflexão pela grade	12
7	Con	elução	1/

1 Objetivos

Este experimento visa observar o campo elétrico \vec{E} e o campo magnético \vec{B} presentes em uma onda eletromagnética e observar o comportamento desta diante uma grade e uma placa ambas feitas de material condutor.

2 Materiais

Este experimento fará uso de:

- Fonte de micro-ondas
- Detetor sensível de campo elétrico
- Detetor sensível de campo magnético
- 2 Microamperímetros
- Banco ótico para suporte dos detetores
- Grade metálica
- Chapa metálica
- Régua milimetrada

3 Introdução

Matematicamente, onda é qualquer forma que satisfaça a equação diferencial:

$$\frac{\partial^2}{\partial t^2} \Psi = k^2 \frac{\partial^2}{\partial x^2} \Psi, \ k \in \Re$$
 (1)

Fisicamente uma onda é um distúrbio ou oscilação que se propaga pelo espaço e pela matéria acompanhada por uma transferência de energia. O tipo de onda em estudo, a eletromagnética, é a propagação de uma perturbação em campos elétricos e/ou magnéticos. Pode ser mostrado que as equações governantes dos fenômenos elétricos e magnéticos geram uma equação de onda como mostrada em 1.

O experimento requer o entendimento de duas equações:

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \Phi_B$$
(2)

$$E_s = -\frac{\partial}{\partial s}V\tag{3}$$

A equação 2 é conhecida como a Lei de Faraday e ela nos diz que a variação do fluxo magnético faz surgir um campo elétrico. A equação 3 nos diz que um campo elétrico faz variar a força eletromotriz em um circuito. Essas duas equações serão usadas no entendimento dos detetores de campo utilizados no experimento.

Considere o detector mostrado na figura 1a. A equação 3 nos diz que um campo elétrico incidente nas antenas irá gerar uma ddp no circuito e portanto uma corrente. Para que vejamos a corrente é necessário que o campo elétrico oscilante chegue no plano das antenas. Seja agora o detector na figura 1b. A equação 2 nos diz que se fizemos variar o fluxo magnético no interior deste circuito teremos um campo elétrico.Pela equação 3 temos o surgimento de uma ddp no circuito e portanto uma corrente. Para isso é preciso que a onda passe por dentro da espira formada pelo circuito, ou seja, o plano do detector deve estar perpendicular à direção de propagação da onda. 1

¹Os diodos retificadores são usados nos detetores apenas para transformar o sinal AC produzido pelos campos em sinal DC e facilitar as observações

Figura 1: Detetores de campo

Notamos que em ambos os detectores criados a corrente que surgirá no circuito deve ser proporcional ao campo medido. Temos então uma ferramenta para observar os campos \vec{E} e \vec{B} .

Podemos agora observar a polarização da onda EM. Um polarizador é um objeto que permite a passagem apenas de ondas com uma certa orientação. A princípio os campos campos \vec{E} e \vec{B} podem estar orientados em qualquer plano 2 . Colocando um polarizador em várias direções e observando o comportamento da onda em estudo podemos determinar se existe um plano que a oriente.

O outro efeito estudado será a formação de uma onda EM estacionária. Uma onda estacionária é aquela na qual a forma da onda não se propaga em um sentido, as posições de máximos e mínimos não variam com o tempo. A forma será atingida ao fazermos interferir a onda da fonte com a onda refletida de uma chapa metálica. Quando isso acontece a onda EM formada possui a forma:

$$E(x,t) = -2E_{max}\sin(\frac{2\pi}{\lambda}x)\cos(wt)$$

$$B(x,t) = 2B_{max}\cos(\frac{2\pi}{\lambda}x)\sin(wt)$$
(4)

Vemos que os termos em x nas equações nos dão:

$$x \in \{0, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}, \dots\} \Rightarrow E(x, t) = 0$$

$$x \in \{\frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}, \dots\} \Rightarrow B(x, t) = 0$$

Nota-se claramente que nessa situação os campos estão defasados de 90°.

 $^{^2{\}rm O}$ que se sabe é que os campos \vec{E} e \vec{B} são perpendiculares em relação à direção de propagação e entre si

4 Procedimentos

- 1. Inicialmente ligue a fonte de micro-ondas e os detectores em seus respectivos amperímetros. Para o procedimento foram usados dois microamperímetros diferentes, cada um com um fundo de escala. Como o campo \vec{E} é mais forte que o campo \vec{B} deve-se usar um microamperímetro com maior fundo de escala para este campo. Pode ser necessário esperar uns 10 minutos para que a fonte aqueça e seja capaz de manter o sinal constante.
- 2. Posicione o detector de campo \vec{E} a frente da antena emissora e observe o comportamento do amperímetro correspondente a medida que o sensor é colocado em várias posições. Certifique-se de rotacionar o sensor em todas as direções possíveis. Faça o mesmo para o detector de campo magnético. Aqui existem três observações importantes:
 - Não coloque o detector muito próximo da fonte para não danificar o material
 - Coloque o detector no eixo definido pela direção de propagação da onda como mostra a figura 2a. Nessa posição o sinal atinge seu máximo e essa padronização permite comparar melhor os dados.
 - Sempre que for usar um sensor mantenha o outro longe, pode haver pertubações no campo causadas pelo sensor. Sempre que for fazer uma medida mantenha-se afastado da montagem pois seu campo elétrico pode interferir.
- 3. Posicione de detector de \vec{E} de forma que o sinal medido seja máximo. Introduza a grade metálica entre a fonte e o sensor e perpendicularmente à direção de propagação da onda. Gira a grade em torno da direção de propagação da onda de 45° em 45° e observe o comportamento do microamperímetro. Veja a montagem na figura 2b.
- 4. Posicione a grade de forma que não haja transmissão através dela. Gire agora a grade em 45° em torno da vertical. Observe com o detector o campo \vec{E} atrás da grade e na direção de reflexão especular da grade. A montagem na figura 2c ilustra as direções mencionadas.
- 5. Posicione uma chapa metálica a cerca de um metro da fonte de forma que a normal à placa esteja direcionada para a fonte. Começando o mais próximo possível da placa faça medidas dos campos \vec{E} e \vec{B} em função da distância da placa metálica(os detectores devem estar sempre no eixo de propagação da onda como já foi visto). Veja a figura 2d. Algumas observações:
 - Começando o mais próximo possível da placa ande até 25 cm em direção à fonte tomando medidas a cada 0.5 cm. Nessa faixa o sinal deve se mantar estável.

- Na medição de \vec{B} use o centro da espira do detector para marcar o posicionamento.
- 6. Trace gráficos com os dados do procedimento 5 e com um computador ache os coeficiente que melhor adaptam a curva na fórmula 5. Essa fórmula descreve a amplitude dos campos em uma onda estacionária. Calcule a frequência e o comprimento de onda supondo que a velocidade de propagação seja a mesma do vácuo. Extrapolando o gráfico ache o valor dos campos na placa metálica. Calcule a diferença de fase entre os campos. Finalmente, calcule o valor do vetor de Poynting.

$$A(x) = A_0 \sin^2(\frac{2\pi}{\lambda}(x - b))$$
 (5)

Figura 2: Esquema das montagens

5 Dados

5.1 Observando \vec{E} e \vec{B}

Para essa observação definimos os eixos como na figura 3. Nessa representação a direção de propagação da onda é ao longo do eixo \mathbf{x} e a antena emissora esta na origem na direção do eixo \mathbf{y} .

Figura 3: Definindo os eixos

Obtemos os resultados:

• Colocando a antena detectora de \vec{E} paralela a cada um dos eixos obtemos a tabela:

Eixo paralelo	Corrente $\pm 5\mu A$
X	20 μΑ
у	250 μΑ
Z	$0 \mu A$

Tabela 1: Corrente em função da posição do detector \vec{E}

• Colocando a espira do detector \vec{B} perpendicular a cada um dos eixos obtemos a tabela:

Eixo perpendicular	Corrente $\pm 0.5 \mu A$
X	$0 \mu A$
У	$0 \mu A$
Z	30 μΑ

Tabela 2: Corrente em função da posição do detector \vec{B}

5.2 A grade polarizadora

Na tabela a seguir orientamos a grade pelas suas barras. Dizemos que a grade esta à 0° quando suas barras estão paralelas ao eixo y e 90° quando paralelas ao eixo x.

Condição	Corrente $\pm 5\mu A$
sem grade	150 μΑ
0°	$0 \mu A$
45°	45 μΑ
90°	$100 \mu A$

Tabela 3: Corrente em função da orientação da grade metálica

5.3 Reflexão pela grade

Na tabela 4 anotamos a corrente medida pela detector em cada posição.

Condição	Corrente $\pm 5\mu A$
Onda que passa pela grade	$0\mu A$
Onda refletida na direção especular	160 μΑ
Sem grade	200 μΑ

Tabela 4: Onda refletida pela grade

5.4 O campo estacionário

A tabela 5 foi obtida medindo os campos \vec{E} e \vec{B} a partir da placa refletora. Os gráficos nas figuras 4 e 5 mostram os dados da tabela junto com a curva na fórmula 5 que melhor se adapta ao dados. A figura 6 mostra as duas curvas achadas por regressão para as amplitudes dos campos da onda estacionária.

			Campo (µA)	$ec{E}$	$ec{B}$
Campo (μA)	$ec{E}$	$ec{B}$	Dist.(cm)	L	
Dist.(cm)		В	11.00	3.00	10.00
1.00	45.00	-	11.50	3.00	11.00
1.50	70.00	-	12.00	10.00	9.00
2.00	80.00	-	12.50	25.00	6.00
2.50	70.00	-	13.00	55.00	5.00
3.00	55.00	0.00	13.50	75.00	3.00
3.50	40.00	1.00	14.00	80.00	2.00
4.00	25.00	3.00	14.50	75.00	1.00
4.50	15.00	5.50	15.00	60.00	2.00
5.00	5.00	9.00	15.50	50.00	2.00
5.50	2.00	10.00	16.00	35.00	4.00
6.00	2.00	7.00	16.50	15.00	7.00
6.50	10.00	5.00	17.00	5.00	9.00
7.00	30.00	2.50	17.50	5.00	10.00
7.50	60.00	1.00	18.00	10.00	8.00
8.00	75.00	2.00	18.50	40.00	7.00
8.50	75.00	3.00	19.00	60.00	5.00
9.00	55.00	4.00	19.50	75.00	3.00
9.50	35.00	5.00	20.00	80.00	2.00
10.00	20.00	6.00	20.50	-	2.00
10.50	10.00	8.00	21.00	-	3.00
L	I		21.00	-	3.00

Tabela 5: Intensidade de corrente medida pela distância

Figura 4

Figura 5

Figura 6: Curvas para \vec{E} e \vec{B} extrapoladas

6 Análise de Dados

6.1 Observando \vec{E} e \vec{B}

Observamos pela análise da tabela 1 que o sensor de campo elétrico produz corrente se as antenas estiverem paralelas ao eixo y, como vimos na introdução esse deve ser o eixo de oscilação do campo elétrico gerado pela antena. Observando a tabela 2 vemos que a corrente é máxima quando a espira está perpendicular ao eixo z. O eixo z é então o eixo no qual o campo magnético oscila. Notamos que os eixos nos quais os campos oscilam (y e z) são perpendiculares entre si e perpendiculares com o eixo x de propagação da onda.

6.2 A grade polarizadora

Colocamos uma grade com as suas barras de forma paralela à oscilação do campo elétrico a frente do detetor. O esperado caso fosse uma onda numa corda, por exemplo, era que a mesma passasse normalmente pela fissura entre as grades. Entretanto, nessa situação não vemos nenhuma corrente no amperímetro. Ou seja, a onda não passa pela grade. Isso acontece porque diferente da onda numa corda, a onda elétrica interage com a grade.

Os elétrons na grade estão livres para se movimentarem. Quando o campo elétrico passa por eles a energia sendo transportada pela onda é transformada em energia cinética pelas cargas livres. Esse processo 'mata' a onda EM.

Ao colocarmos a grade perpendicular ao campo pudemos medir a onda elétrica, isso porque as barras não mais teriam o sentido de oscilação da onda, fazendo com que os elétrons não se movessem com tanta liberdade quanto estavam se movendo no caso anterior.

É valido ressaltar que mesmo com a grade perpendicular parte da energia foi perdida nela, pois ao medirmos sem a grade e com a grade, notávamos uma diferença de aproximadamente 30% na medida da corrente. Isso talvez tenha se dado devido a espessura das grades não serem desprezíveis e por haver barras paralelas na lateral da grade que poderiam reter parte da energia.

6.3 Reflexão pela grade

Como podemos ver na tabela 4, a parte refletida foi maior que a dissipada, o que era de se esperar já que a reflexão é na verdade uma "nova" onda gerada pelo movimento dos elétrons que foi gerado pela onda anterior, acredita-se que o restante foi perdido em forma de calor por efeito joule, já que não havia resquícios de onda atrás das grades mesmo neste ângulo.

O campo estacionário

Nesta parte do experimento onde elas se comportam de forma estacionária, pudemos observar no gráfico 6 que elas estão com seus máximos e mínimos defasados por $\frac{\lambda}{2}$, ou seja, quando o campo elétrico é máximo o magnético é mínimo e vise versa. Isso concorda com o esperado em teoria pelas fórmulas 4.

Como visto nos gráficos 4 e 5 e comparando com a fórmula 5 obtemos que o comprimento de onda λ para a onda em estudo é:

$$\lambda = 11.9$$
 cm

Podemos então usar a relação $c = \lambda f$ e supor a velocidade da luz como igual a do vácuo para obter:

$$f = \frac{c}{\lambda} = \frac{299792458m/s}{0.119m} = 2.5193 \quad GHz$$

Podemos usar as fórmulas novamente para obter as intensidades dos campos na origem.

$$E(0) = 75.36\sin^2(\frac{2\pi(0 - 5.26)}{11.87}) = 9.21$$

$$B(0) = 9.36 \sin^2(\frac{2\pi(x - 2.42)}{11.96}) = 8.54$$

Era esperado que E(0) fosse 0 na origem e que o campo B(0) estivesse em 9.36, seu máximo. Os valores estão dentro do esperado devido aos erros associados. Qualitativamente, podemos dizer que E(0) esta próximo de seu mínimo e B(0) próximo de seu máximo.

Vamos agora calcular o vetor de Poyting. Esse vetor mede a intensidade da radiação eletromagnética e indica sua direção de propagação. Ele é dado por:

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \tag{6}$$

Como \vec{S} varia muito rapidamente em geral analisamos o sue valor médio ao longo de um período. Já vimos na introdução que para uma onda estacionária os vetores \vec{E} e \vec{B} são dados pelas fórmulas 4.Supondo o campo \vec{E} na direção \vec{y} e \vec{B} em \vec{z} seu produto será dado por:

$$\vec{S} = \frac{1}{u_0} (-4E_{max}B_{max}\cos(kx)\sin(kx)\cos(wt)\sin(wt), 0, 0)$$
 (7)

E sua média será dado por:

$$\overline{S} = \frac{\frac{-4E_{max}B_{max}\cos(wt)\sin(wt)}{\mu_0} \int_0^{\lambda} \cos(kx)\sin(kx)dx}{\lambda}$$

Lembramos que $k = \frac{2\pi}{\lambda}$ para obter:

$$\overline{S} = \frac{A(t) \int_0^{\lambda} \frac{\sin(\frac{2\pi}{\lambda}x)}{2} dx}{\lambda} = \frac{A(t) \left[\frac{\cos(\frac{2\pi}{\lambda}x)}{4\pi/\lambda}\right]_0^{\lambda}}{\lambda} = 0$$

Portanto, na média não há transferência de energia de um ponto para o outro do espaço entre a fonte e a placa refletora.

7 Conclusão

Durante o experimento foi possível verificar a ortogonalidade dos campos elétrico e magnético e da direção de propagação da onda eletromagnética. Observouse ainda a propriedade polarizadora de uma grade feita de material condutor e como esta reflete a maior parte da radiação recebida. Finalmente, observamos e analisamos a formação de uma onda eletromagnética estacionária. Portanto, considerando o erro intrínseco a toda medida, os experimentos foram bem sucedidos.

Referências

- [1] HALLIDAY, D.; RESNICK, R.; WALKER. *Fundamentos de Física* volume 2 : Gravitação, Ondas e Termodinâmica. 8^a ed. Rio de Janeiro : LTC, 2009.
- [2] HALLIDAY, D.; RESNICK, R.; WALKER. *Fundamentos de Física* volume 3 : Eletromagnetismo. 8^a ed. Rio de Janeiro : LTC, 2009.