Contrôle 1 Architecture des ordinateurs

Durée: 1 h 30

Exercice 1 (6 points)

Soit le nombre binaire 1010011011₂, que l'on considère non signé dans un premier temps.

- 1. Donnez sa représentation décimale.
- 2. Donnez sa représentation hexadécimale.

On le considère maintenant signé sur 10 bits.

- 3. Donnez sa représentation décimale.
- 4. Donnez sa représentation binaire sur 15 bits signés.

Si le nombre binaire signé 27 bits **100011101001000110101001100**2 vaut -59 470 516₁₀.

- 5. Combien vaut le nombre binaire signé 32 bits 11111100011101001000110101010012 ?
- 6. Combien vaut le nombre binaire signé 27 bits 1100011101001000110101010102?

Soit le nombre en représentation décimale suivant : 2^{32} .

- 7. Combien faut-il de bits au minimum pour le représenter en binaire non signé ?
- 8. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Soit le nombre en représentation décimale suivant : -2^{32} .

9. Combien faut-il de bits au minimum pour le représenter en binaire signé ?

Pour finir:

- 10. Donnez la représentation binaire sur 9 bits signés du nombre –256.
- 11. Donnez, en puissance de deux, le nombre d'octets contenus dans 4 Mib.
- 12. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), le nombre de bits contenus dans **512 Kio**. Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

Exercice 2 (4 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les nombres ci-dessous dans le format flottant <u>simple précision</u>. Vous exprimerez le résultat final, sous forme binaire, <u>en précisant chacun des champs</u>.
 - 254,25
 - 0,9375
- En détaillant chaque étape, donnez la représentation associée aux nombres codés en double précision suivants :
 - 0000 CE00 0000 0000₁₆
 - FFFF CE00 0000 0000₁₆

Contrôle 1 1/4

Exercice 3 (6 points)

On souhaite réaliser la séquence du tableau présent sur le <u>document réponse</u> à l'aide de bascules JK.

- 1. Remplissez le tableau présent sur le <u>document réponse</u>.
- 2. Donnez les expressions des entrées **J** et **K** de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : J0 = 1, $K1 = \overline{Q2}$).

Exercice 4 (4 points)

- 1. Câblez les bascules sur le <u>document réponse</u> afin de réaliser un **décompteur asynchrone modulo 12**.
- 2. Remplissez les chronogrammes sur le <u>document réponse</u> à partir du montage ci-dessous :

Contrôle 1 – Annexes

Nom: Classe:

DOCUMENT RÉPONSE À RENDRE AVEC LA COPIE

Exercice 3

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	1	1						
1	1	0						
1	0	1						
1	0	0						
0	1	0						
0	0	1						
0	0	0						

Exercice 4 (1)

Exercice 4 (2)

