# Linear Algebra and Geometry 1

Systems of equations, matrices, vectors, and geometry

### Coordinate systems and coordinates

Hania Uscka-Wehlou, Ph.D. (2009, Uppsala University: Mathematics)

University teacher in mathematics (Associate Professor / Senior Lecturer) at Mälardalen University, Sweden



coordinate axes (singular: axis)





coordinate axes (singular: axis)

the origin



coordinate axes (singular: axis)

the origin

the unit on each axis

















orthogonal / perpendicular axes

equal units



Cartesian coordinates = rectangular coordinates



The plane,  $\mathbb{R}^2$ 



The plane,  $\mathbb{R}^2$ 



Cartesian product:  $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y); x \in \mathbb{R}, y \in \mathbb{R} \}$ 

The 3-space

coordinate axes (singular: axis)

the origin

the unit on each axis























coordinates: the address of the point a triple of numbers

The *n*-space

## $\mathbb{R}^n$

$$(x_1, x_2, \ldots, x_n)$$

 $\mathbb{R}^n$ 

$$(x_1, x_2, ..., x_n)$$

Cartesian product:  $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} = \{(x_1, x_2, ..., x_n); x_i \in \mathbb{R} \text{ for } i = 1, 2, ..., n\}$ 

 $\mathbb{R}^n$ 

$$(x_1, x_2, \ldots, x_n)$$

Cartesian product: 
$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} = \{(x_1, x_2, ..., x_n); x_i \in \mathbb{R} \text{ for } i = 1, 2, ..., n\}$$

coordinates: the address of the point

*n*-tuple of numbers

$$\mathbb{R}^n$$

$$(x_1, x_2, ..., x_n)$$

Cartesian product:  $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R} = \{(x_1, x_2, ..., x_n); x_i \in \mathbb{R} \text{ for } i = 1, 2, ..., n\}$ 

Coordinates of the origin are (0, 0, ..., 0)

coordinates: the address of the point

*n*-tuple of numbers