The physics-patch package

Improved version of the physics package

Willie Shen (Willie 169)

Version 2.6

Last update: Mar. 5, 2025

Contents

1	Pref	ace acce	1
2	Usag	ge	2
	2.1	Required packages	2
	2.2	Using physics-patch in your LATEX document	2
3	Com	amunication Channels	3
4	Lice	nse and Credit	3
5	List	of Commands	3
	5.1	Automatic bracing	3
	5.2	Vector notation	4
	5.3	Operators	6
	5.4	Utilities	8
	5.5	Quick quad text	8
	5.6	Derivatives	9
	5.7	Dirac bra-ket notation	10
	5.8	Matrix macros	12
	5.9	Symbols	15
	5.10	Shorthands for Greek alphabet	15
	5.11	Shorthands for mathrm alphabet and chemical element symbols	16
	5 12	Shorthands for textnormal alphabet	16

1 Preface

Since version 2.0, the physics-patch package has evolved from merely patching the physics package to fully replacing it, covering all its commands. While preserving the original goal—simplifying mathematical and physics typesetting for greater readability and efficiency—this package refines the design by addressing unconventional behaviors, extending commands, and introducing additional macros.

Like the original, this package provides commands with intuitive names and well-defined shorthands, ensuring both clarity and ease of recall.

This package resolved the unintuitive definitions and behaviors in physics without changing the command names and intended behaviors. For instance, in the original package, parentheses and their contents after TEXT

```
\dv\{f\}\{x\} are ignored.
```

Beyond refining existing functionality, this package extends commands for broader applicability such as enabling \xmat to support ellipses and introduces entirely new macros such as \omat.

2 Usage

2.1 Required packages

The physics-patch package requires amsmath, etoolbox, xcolor, xparse, and xstring package to work properly in your LATEX document. If you are unsure whether you've had them installed, you can either install it again using your local package manager (comes with most distributions) or by visiting the CTAN online package database, or even just try to use physics-patch package without worrying about it. Many modern LATEX compilers will locate and offer to download missing required packages for you.

2.2 Using physics-patch in your LATEX document

To use physics-patch in your LATEX document, simply insert \usepackage{physics-patch} in the preamble of your document, before \begin{document} and after \documentclass{class}:

```
\documentclass{class}
...
\usepackage{physics-patch}
...
\begin{document}
content...
\end{document}
```

- physics-patch has covered all commands in physics since version 2.0, so there's no need to load physics.
- It is ok to load physics before this package. This package will silently overrides macros in physics with an improved version. To use the original version provided by physics, load physics before this package and use the nooverride option (not recommended). nooverride falls back to override if physics is not loaded.
- This package pretends that physics package is loaded so that this package won't be overriden if loading physics is called afterward and packages loaded afterward that checks whether physics is loaded to determine its behavior (e.g. siunitx) work correctly. To disable this, use the nopretend option (not recommended).
- If siuitx is loaded before this package, this package will define \ITquantity and \ITqty as the integration of the improved definition of physics's \qty (in \PHquantity and \PHqty) and siuitx's \SI. You can optionally set siintegrate option to override \PTquantity and \PTqty with \ITqty (not recommended). siintegrate falls back to nosiintegrate if siunitx is not loaded.

3 Communication Channels

- Bug tracker: https://github.com/Willie169/physics-patch/issues.
- Announcements: https://github.com/Willie169/physics-patch/releases.
- **Repository:** https://github.com/Willie169/physics-patch.

4 License and Credit

- This package is released under the **LaTeX Project Public License** (**LPPL**) **1.3c.**See https://www.latex-project.org/lppl/lppl-1-3c for the details of that license.
- Many parts of this package are modified from the physics package, created by **Sergio C. de la Barrera** and licenced under **LPPL 1.3**.

See https://ctan.org/pkg/physics for the details of that package.

5 List of Commands

In the commands listed below, the left column is long-form names with non-default alternate names (if any), the middle column is default shorthand commands with detailed syntaxes and explanations.

Commands that have different definitions come with PT in the beginning of their name (e.g. \PTmqty). If nooverride is not used or the physics package is not loaded before this package, the commands without PT will be silent overriden to be the same as the ones with PT.

5.1 Automatic bracing

\PTquantity,\PHquantity	$\P (Tqty(typical) \to (I)$	automatic () braces
or \PHqty		
	$\ \ \ \backslash \text{PTqty}(\backslash \text{tall}) \to \left(\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$\P \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	automatic [] braces
	\PTqty \typical → <mark>-</mark>	automatic braces
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	automatic { } braces
	$\texttt{\PTqty\big\{} \to \big\{\big\}$	manual sizing (works with any of
	$\PTqty \rightarrow {} \\ \PTqty \rightarrow {} \\$	the above bracket types)
	$\ \ \ \ \Big\{\Big\}$	
	$\texttt{PTqty} \texttt{Bigg} \{ \} \rightarrow \left\{ \right\}$	
	$ \leftrightarrow \pTqty()$	alternative syntax; robust and more
	$ \leftrightarrow \PTqty[]$	LATEX-friendly
	↔ \PTqty	

	$ \leftrightarrow $	
\absolutevalue	$\abs{abs{a}} \rightarrow a $	automatic sizing; equivalent to
	1,1	\PTqty a
	$\abs\Big{a} \rightarrow a$	inherits manual sizing syntax from
	_	\PTqty
	\abs*{\grande} →	star for no resize
\norm	$\operatorname{norm}\{a\} \to \ a\ $	automatic sizing
	$\operatorname{Norm}\left(Big\{a\} \to a\right)$	manual sizing
	\norm*{\grande} →	star for no resize
\evaluated	$\langle \text{eval}\{x\}_0^{\wedge} \text{infty} \rightarrow x \bigg _0^{\infty}$	vertical bar for evaluation limits
		alternate form
	$ \text{veval}[x]_0^{ \text{infty}} \rightarrow x _0^{ \text{opt}}$	alternate form
	\eval[\venti _0^\infty	automatic sizing
	$ \rightarrow \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}_0^{\infty} $ \eval*[\venti _0^\\infty	star for no resize
	→ [₀	
\order		order symbol; automatic sizing and
		space handling
	$\langle \text{order} \rangle = \{x^2\} \rightarrow \mathcal{O}(x^2)$	manual sizing
	$\operatorname{\operatorname{Vorder}}^* \{\operatorname{\operatorname{Vorder}}^* \} \to \mathcal{O}($	star for no resize
\commutator	$\operatorname{Comm}\{A\}\{B\} \to [A,B]$	automatic sizing
	$\backslash \text{comm}\backslash \text{Big}\{A\}\{B\} \rightarrow \left[A,B\right]$	manual sizing
	\comm*{A}{\grande}	star for no resize
	$\rightarrow [A,]$	
\anticommutator or	$\lambda \in \mathbb{A} $	same as \poissonbracket
\acommutator		
\poissonbracket	$ \{A\} \{B\} \rightarrow \{A,B\}$	same as \anticommutator

5.2 Vector notation

The default del symbol ∇ used in physics-patch vector notation can be switched to appear with an arrow $\vec{\nabla}$ by including the option arrowdel in the document preamble:

\usepackage[arrowdel]{physics-patch}

\vectorbold	\vb{a} → a	upright/no Greek
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek
	θ	

$\forall a \{a\} \rightarrow \vec{a}$	upright/no Greek
$\forall x \in \{a\}, \forall x \in \{\forall t \in a\} \rightarrow \vec{a}, $	italic/Greek
$ec{ heta}$	
\vu{a} → a	upright/no Greek
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	italic/Greek
$\hat{ heta}$	
$\vdot \rightarrow \cdot as in a \cdot b$	note: \dp is a protected \del{TEX}
	primitive
$\backslash cross \rightarrow x \text{ as in } a \times b$	alternate name
\c p \rightarrow \times as in $\mathbf{a} \times \mathbf{b}$	shorthand name
	default mode
_ /	long-form (like \PTqty but also
\ /	handles spacing)
$\rightarrow \nabla \left[\Psi + \square \right]$	
\divisionsymbol → ÷	
\divg $ ightarrow abla \cdot$	note: if nooriginaldiv option
	is used, \div will be overriden as
	$\nabla \cdot$ too (not recommended)
	default mode
/	long-form
$\rightarrow \nabla \cdot (\mathbf{a} + \mathbf{b})$	
\divg[\vb{a}+\tall]	
$\rightarrow \nabla \cdot \left[\mathbf{a} + \mathbf{a} \right]$	
\curl $\rightarrow \nabla x$	
$\left\langle \text{curl}\left\{ \right\rangle \right\} \rightarrow \nabla \times \mathbf{a}$	default mode
\curl(\vb{a}+\tall)	long-form
$\rightarrow \nabla \times (\mathbf{a} + \mathbf{b})$	
\curl[\vb{a}+\tall]	
$\rightarrow \nabla \times \left[\mathbf{a} + \mathbf{a} \right]$	
\laplacian $ ightarrow abla^2$	
\laplacian{\Psi} $ ightarrow abla^2 \Psi$	default mode
\laplacian(\Psi+\tall)	long-form
$\rightarrow \nabla^2 (\Psi + \blacksquare)$	
\laplacian[\Psi+\tall]	
$\rightarrow \nabla^2 \Psi + \blacksquare $	
	$ \begin{array}{c} \forall a \in \{1, \forall a \in \{1$

5.3 Operators

The standard set of trig functions is redefined in physics-patch to provide automatic braces that behave like \PTqty(). In addition, an optional power argument is provided. This behavior can be switched off by including the option notrig in the preamble:

\usepackage[notrig]{physics-patch}

Example trig redefinitions:				
\sin	$\langle \sin(\sqrt{grande}) \rightarrow \sin(\sqrt{grande}) \rangle$	automatic braces; old \sin		
		renamed\sine		
	$\sin[2](x) \rightarrow \sin^2(x)$	optional power		
	$\sin x \rightarrow \sin x$	can still use without an argument		

The full set of available trig functions in physics-patch includes:

 \Rightarrow

$$\sin(x)$$
 $\sinh(x)$ $\arcsin(x)$ $\arcsin(x)$ $\arcsin(x)$
 $\cos(x)$ $\cosh(x)$ $\arccos(x)$ $\arccos(x)$
 $\tan(x)$ $\tanh(x)$ $\arctan(x)$ $\arctan(x)$
 $\csc(x)$ $\operatorname{csch}(x)$ $\operatorname{arccsc}(x)$ $\operatorname{acsc}(x)$
 $\sec(x)$ $\operatorname{sech}(x)$ $\operatorname{arcsec}(x)$ $\operatorname{asec}(x)$
 $\cot(x)$ $\coth(x)$ $\operatorname{arccot}(x)$ $\operatorname{acot}(x)$

The standard trig functions (plus a few that are missing in amsmath) are available without any automatic bracing under a new set of longer names:

\sine	\hypsine	\arcsine	\asine
\cosine	\hypcosine	\arccosine	\acosine
\tangent	\hyptangent	\arctangent	\atangent
\cosecant	\hypcosecant	\arccosecant	\acosecant
\secant	\hypsecant	\arcsecant	\asecant
\cotangent	\hypcotangent	\arccotangent	\acotangent

Similar behavior has also been extended to the following functions:

\exp(\tall)	exp()		\exponential
\log(\tall)	log(\logarithm
\ln(\tall)	ln(old definitions ⇒	\naturallogarithm
\det(\tall)	det(\determinant
\Pr(\tall)	Pr(\Probability

New operators:		
\tr	$\trrrho \rightarrow tr \rho also$	trace; same bracing as trig
	$\tr(\tall) \to tr($	functions
\Tr	$\Tr\rho o Tr ho$	alternate
\rank	\rank M → rank M	matrix rank
\erf	$\langle erf(x) \rightarrow erf(x) \rangle$	error function
\Res	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	residue; same bracing as trig functions
\Arg	$\Arg(z) \rightarrow Arg(z)$	principal argument
acosh	$\acosh(\pi) \rightarrow acosh(\pi)$	acosh
acsch	$\acsch(\pi) \rightarrow acsch(\pi)$	acsch
arccosh	$\arccosh(\pi) \rightarrow arccosh(\pi)$	arccosh
arccsch	$\arcsch(\pi) \rightarrow arcsch(\pi)$	arcesch
arcsech	$\arcsech(\pi) \rightarrow arcsech(\pi)$	arcsech
arcsinh	$\arcsinh(\pi) \rightarrow arcsinh(\pi)$	arcsinh
arctanh	$\arctanh(\pi) \rightarrow arctanh(\pi)$	arctanh
arctantwo	\arctantwo(\pi)	arctan2
	$\rightarrow \arctan 2(\pi)$	
asech	$\arrowvert asech(\pi) \rightarrow asech(\pi)$	asech
asinh	$\arrowvert (\pi) \rightarrow asinh(\pi)$	asinh
atanh	$\hat{\pi}$	atanh
atantwo	\atantwo(\pi) \rightarrow atan2(π)	atan2
closure	$\cline{(A)} \rightarrow \cline{(A)}$	closure
col	$\c) \c) \c) \c) \c) \c) \c) \c) \c) \c) $	column space
row	$\row(\mbox{\mbox{$\backslash$}} A) \rightarrow \mbox{\mbox{$row(A)$}}$	row space
ker	$\ker(\mathbf{A}) \rightarrow \ker(A)$	kernel
SD	$\backslash SD(X) \to SD(X)$	standard deviation
Var	$\bigvee Var(X) \rightarrow Var(X)$	variation
Mode	$\Mode(X) \rightarrow Mode(X)$	mode
Median	$\Median(X) \rightarrow Median(X)$	median
gcd	$\gcd(X) \rightarrow \gcd(X)$	lowercase greatest common divisor
lcm	$\label{eq:lcm} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	lowercase lowest common multiple
GCD	$\backslash GCD(X) \rightarrow GCD(X)$	uppercase greatest common divisor
LCM	$\backslash LCM(X) \rightarrow LCM(X)$	uppercase lowest common multiple

UnitVector	\UnitVector(\mathbf{r})	unit vector
	\rightarrow UnitVector(\mathbf{r})	
\principalvalue		Cauchy principal value
	$PV{\left\{ int \ f(z) \ dd\{z\} \right\} \rightarrow \atop P.V. \int f(z) dz}$	alternate

5.4 Utilities

\mathcolorbox	<pre>\mcbox{color}{content} \mcbox{cyan}{\typical} → ■</pre>	\colorbox for math environment, applying to all four levels of math styles
\autocolorbox or \acbox	\cbox{color}{content}	calls \colorbox when in text
		mode, calls \mathcolorbox
		when in math mode
\tentothepowerof	$ ext{tenpow{n}} \rightarrow 10^n$	work in both math mode and text
		mode
\scientificnotation	\scinote{3.00}{8}	work in both math mode and text
	$\rightarrow 3.00 \times 10^8$	mode
\TextCircled	\tc{A} → ④	patched \textcircled
\RNum	$\RNum{1} \rightarrow I$	uppercase roman numeral
\flatfrac	$\begin{array}{c} \left(a\right) & b \rightarrow a/b \end{array}$	flat fraction

5.5 Quick quad text

This set of commands produces text in math-mode padded by \quad spacing on either side. This is meant to provide a quick way to insert simple words or phrases in a sequence of equations. Each of the following commands includes a starred version which pads the text only on the right side with \quad for use in aligned environments such as cases.

General text:					
\qqtext		general quick quad text with			
		argument			
	\qq{word or phrase}	normal mode; left and right			
	→word or phrase				
	\qq*{word or phrase}	starred mode; right only			
	→ word or phrase				

Special macros:	
$\qcomma or \qc \rightarrow, _$	right only

\qcc →c.c	complex conjugate; left and right unless starred \qcc* \rightarrow c.c
\qif →if	left and right unless starred \qif* \rightarrow if

Similar to \qif:

\qthen, \qelse, \quinless, \quinless, \quince, \quin

5.6 Derivatives

The default differential symbol d which is used in \land derivative can be switched to an italic form d by including the option italic diff in the preamble:

\usepackage[italicdiff]{physics-patch}

\differential	$\d d d \rightarrow d$	
\ullierencial		no spacing (not recommended)
	$\langle dd x \rangle \rightarrow dx$	automatic spacing based on
	(dd(X) / dx	neighbors
		optional power
		long-form; automatic braces
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	d d	-
\PTderivative	$\langle PTdv\{x\} \rightarrow \frac{1}{dx}$	one argument
		two arguments
	$\langle PTdv[n] \{f\} \{x\} \rightarrow \frac{d^n f}{dx^n}$	optional power
	\PTdv{x}(\grande)	long-form; automatic braces,
	$\rightarrow \frac{d}{dx}$	spacing
	$\PTdv*{f}{x} \to df/dx$	inline form using \flatfrac
\PTpartialderivative or	\PTdv{f}{x}(\grande)	note: in original physics
\PTpderivative	$\rightarrow \frac{\mathrm{d}f}{\mathrm{d}u}$	package,
	$\mathbf{u}x$	$dv\{f\}\{x\}(grande) \rightarrow \frac{df}{dx}$
	$\langle PTpdv\{x\} \rightarrow \frac{\partial}{\partial x} $	shorthand name
	$\label{eq:power_power_power_power} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	two arguments
	$ PTpdv[n] \{f\} \{x\} \to \frac{\partial^n f}{\partial x^n} $	optional power
	$ \begin{array}{c} $	long-form
	$ PTpdv{f}{x}{y} \rightarrow \frac{\partial^2 f}{\partial x \partial y} $	mixed partial
	$\PTpdv*{f}{x} \rightarrow \partial f/\partial x$	inline form using \flatfrac
	\PTpdv{f}{x}(\grande)	note: in original physics
	$\rightarrow \frac{\partial f}{\partial x}$	package,
	02 \	$\pdv{f}{x} (\grande) \rightarrow \frac{\partial f}{\partial x}$

\variation	$\operatorname{Var}\{F[g(x)]\} \to \delta F[g(x)]$	functional variation (works like
		\dd)
	$\forall \text{var}(E-TS) ightarrow \delta(E-TS)$	long-form
\functionalderivative	$\fdv{g} o rac{\delta}{\delta g}$	functional derivative (works like \PTdv)
	$\fdv{F}{g} o \frac{\delta F}{\delta g}$	
	\fdv{V}(E-TS)	long-form
	\fdv{V} (E-TS) $ \rightarrow \frac{\delta}{\delta V} (E-TS)$	
	$\fdv*{F}{x} \rightarrow \delta F/\delta x$	inline form using \flatfrac

5.7 Dirac bra-ket notation

The following collection of macros for Dirac notation contains two fundamental commands, \bra and \ket, along with a set of more specialized macros which are essentially combinations of the fundamental pair. The fundamental commands are designed to contract with one another algebraically when appropriate and are thus suggested for general use. For instance, the following code renders correctly¹

$$\beta \left(\phi \right) \to \langle \phi | \psi \rangle$$
 as opposed to $\langle \phi | \psi \rangle$

whereas a similar construction with higher-level macros will not contract in a robust manner

$$\bra{\phi|\psi\rangle\xi|.}$$

On the other hand, the correct output can be generated by sticking to the fundamental commands,

$$\beta \left(\phi \right) \left(\phi \right) \left(\phi \right) \left(\phi \right) \left(\xi \right)$$

allowing the user to type out complicated quantum mechanical expressions without worrying about bra-ket contractions. That being said, the high-level macros do have a place in convenience and readability, as long as the user is aware of rendering issues that may arise due to an absence of automatic contractions.

\ket	\ket{\tall} →	automatic sizing
	\ket*{\tall} →	no resize
\bra	\bra{\tall} →	automatic sizing
	\bra*{\tall} → (no resize
	\bra{\phi}\ket{\psi}	automatic contraction
	$ ightarrow \langle \phi \psi angle$	
	\bra{\phi}\ket{\tall}	contraction inherits automatic
	$\rightarrow \langle \phi \bullet \rangle$	sizing

¹Note the lack of a space between the bra and ket commands. This is necessary in order for the bra to find the corresponding ket and form a contraction.

	\bra{\phi}\ket*{\tall}	a star on either term in the contrac-
	$\rightarrow \langle \phi $	tion prohibits resizing
	\bra*{\phi}\ket{\tall}	
	$\rightarrow \langle \phi $	
	\bra*{\phi}\ket*{\tall}	
	$\rightarrow \langle \phi $	
\innerproduct	\braket{a}{b} $\rightarrow \langle a b\rangle$	two-argument braket
	\braket{a} $\rightarrow \langle a a\rangle$	one-argument (norm)
	\braket{a}{\tall} $ \rightarrow \langle a \rangle$	automatic sizing
	\	no resize
	$\rightarrow \langle a \rangle$	110 103120
	$\langle a \rangle$ $\langle a b \rangle$	shorthand name
\outerproduct	$\langle \text{dyad}\{a\}\{b\} \rightarrow a\rangle\langle b $	two-argument dyad
(outorproduct	$\langle dyad\{a\} \rightarrow a \rangle \langle a $	one-argument (projector)
	$ \langle \text{dyad}(a) \text{dyad}(a) \rangle $	automatic sizing
	1 / \	
	$\langle dyad*\{a\}\{\langle tall\} \rightarrow a\rangle \rangle$	no resize
	\ketbra{a}{b} $\rightarrow a\rangle\langle b $	alternative name
	$\langle op\{a\}\{b\} \to a\langle b $	shorthand name
\expectationvalue	$\langle \text{expval}\{A\} \rightarrow \langle A \rangle$	implicit form
	\expval{A}{\Psi}	explicit form
	$\rightarrow \langle \Psi A \Psi \rangle$	shorthand name
	$\langle \Psi A \rangle \{\langle Psi \rangle \rightarrow \langle \Psi A \Psi \rangle$	
	\ev{\grande}{\Psi}	default sizing ignores middle
	$\rightarrow \langle \Psi \Psi \rangle$	argument
	\ev*{\grande}{\tall}	single star does no resizing
	→ ()	whatsoever
	\ev**{\grande}{\Psi}	double star resizes based on all
	$\rightarrow \langle \Psi \Psi \rangle$	parts
\matrixelement	\matrixel{n}{A}{m}	requires all three arguments
	$\rightarrow \langle n A m\rangle$	
	$\mathbb{R} \{n\} \{A\} \{m\} \rightarrow \langle n A m\rangle$	shorthand name
	\mel{n}{\grande}{m}	default sizing ignores middle
	$\rightarrow \langle n m\rangle$	argument
	<pre>\mel*{n}{\grande}{\tall}</pre>	single star does no resizing
	$\rightarrow \langle n $	whatsoever
	\mel**{n}{\grande}{m}	double star resizes based on all
	$\rightarrow \langle n m \rangle$	parts
	\ /	

5.8 Matrix macros

Note: $\mbox{\sc var}$ and $\mbox{\sc var}$ in physics uses $\mbox{\sc var}$ and $\mbox{\sc var}$ physics-patch don't.

The following matrix macros produce unformatted rows and columns of matrix elements for use as separate matrices as well as blocks within larger matrices. For example, the command \identity matrix $\{2\}$ which has also has the shortcut \identity produces the elements of a 2×2 identity matrix $\begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix}$ without braces or grouping. This allows the command to also be used within another matrix, as in:

$$\begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \hspace{0.2cm} \Rightarrow \hspace{0.2cm} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ a & b \end{pmatrix}$$

To specify elements on the right of left sides of our

\imat{2} sub-matrix we use the grouping command \PTmatrixquantity or \PTmqty to effectively convert \imat{2} into a single matrix element of a larger matrix:

groups were required in this case in order to get the a and b elements to behave as a single element, since $\PTmqty{\identaligned 2}$ also acts like a single matrix element (the same can be said of the grouped c and d elements). Finally, the outermost \PTmqty (), allowing the above example to be written on one line:

\PTmatrixquantity	$\label{eq:ptmqty} $$ \PTmqty{a & b } \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	groups a set of matrix elements into a single object
		parentheses
		alternate parentheses
	$\label{eq:ptmqty} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	square brackets
	\PTmqty a&b\\c&d $\rightarrow \begin{vmatrix} a & b \\ c & d \end{vmatrix}$	vertical bars
	${}$	alternative syntax; robust and more LATEX-friendly
	$ \leftrightarrow \pmqty()$	and more Bigs menaly
	$\P \$	
	\PTpmqty*{} ↔ \PTmqty*{}	
	$\P \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
	$ \leftrightarrow \PTmqty[]$	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
\PTsmallmatrixquantity	\PTsmqty{a & b \\ c & d} $ ightarrow \stackrel{ab}{c} d$	the smallmatrix form of \PTmqty
	\PTsmqty() or or	small version of \PTmqty()
	\PTsmqty*() or or	small version of \PTmqty*()
	\PTspmqty*{}	
	\PTsmqty[] or	small version of \PTmqty[]
	\PTsmqty or	small version of \PTmqty

	a b	
\matrixdeterminant		matrix determinant
		small matrix determinant
\identitymatrix	\imat{n}	elements of $n \times n$ identity matrix
	$\label{eq:point} $$ \Pr\{n\}$ $$ \Pr\{n\} $$ $$ PTmqty(\imat\{3\}) \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $$$	formatted with \PTmqty or \PTsmqty
\PTxmatrix	$\label{eq:ptmat} $$ \Pr\{x\} \{n\} \{m\} $$ \\ \Pr\{x \in X : x : x : x : x : x : x : x : x : x :$	elements of $n \times m$ matrix filled with x , if not provided, 1 is used
	\PTxmat*{x}{n}{m} \PTmqty(\PTxmat*{x}{3}{3}) \frac{x_{11} x_{12} x_{13}}{x_{21} x_{22} x_{23}}{x_{31} x_{32} x_{33}}	star for element indices, skip row/column indices $n = 1/m = 1$
	$\label{eq:localization} $$ \Pr (\Pr x_1 \ x_2 \ x_3) $$ $$ \to \left(x_1 \ x_2 \ x_3\right) $$ $$ $$ \Pr (\Pr x_1 \ x_2 \ x_3) $$ $$ $$ $$ \Pr x_1 \ x_2 \ x_3 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	only show p rows (including \vdots row) with skipped rows indicated by \vdots. If n isn't pro-
	$ \begin{array}{ccc} & x & x & x \\ & \vdots & \vdots & \vdots \\ & x & x & x \end{array} $ $ \begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ & & & &$	vided, p is used
	$\begin{tabular}{lll} & \begin{tabular}{lll} & \begin{tabular}{lll}$	only show p rows (including \vdots row) and q columns (including \ldots column) with skipped rows indicated by \vdots, skipped columns indicated by \ldots, intersection of \vdots row and \ldots column being \ddots. If n/m isn't provided, p/q is used. No indices will be added for ellipses even if star is given
	$ \begin{array}{ccc} & x & x & x \\ & \vdots & \vdots & \vdots \\ & x & x & x \end{array} $ \PTmqty(\PTxmat{x}{3}{3}[3][3]) $ \begin{array}{cccc} & x & x \\ & x & x \\ & x & x \end{array} $ \tag{x & x & x} \tag{x & x & x}	

	\PTmqty(\PTxmat{x}{5}{}[3][3])	
	$\rightarrow \begin{pmatrix} x & \dots & x \\ \vdots & \ddots & \vdots \\ x & \dots & x \end{pmatrix}$	
	\PTmqty(\PTxmat{x}{}{}[3][3])	
	$\rightarrow \begin{pmatrix} x & \dots & x \\ \vdots & \ddots & \vdots \\ x & \dots & x \end{pmatrix}$	
	\PTxmat*{x}{n}{g}	
	_	customize last row's element indices to g
	\PTmqty(\PTxmat*{x}{3}{3}{A}) (x1, x12, x12)	customize last row's element indices to g
	$\rightarrow \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\rightarrow \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{A1} & x_{A2} & x_{A3} \end{pmatrix}$	
	\PTmqty(\PTxmat*{x}{5}{5}[3][3]{A})	
	$\begin{pmatrix} x_{11} & \dots & x_{15} \end{pmatrix}$	
	→	
	$\rightarrow \begin{pmatrix} x_{11} & \dots & x_{15} \\ \vdots & \ddots & \vdots \\ x_{A1} & \dots & x_{A5} \end{pmatrix}$	
	\PTxmat*{x}{n}{m}{g}{h}	
	\PTmqty(\PTxmat*{x}{3}{3}{A}{B})	customize last row's element indices to g and last col-
		umn's element indices to h
	$\rightarrow \begin{vmatrix} x_{21} & x_{22} & x_{2B} \end{vmatrix}$	
	$\rightarrow \begin{pmatrix} x_{11} & x_{12} & x_{1B} \\ x_{21} & x_{22} & x_{2B} \\ x_{A1} & x_{A2} & x_{AB} \end{pmatrix}$	
	\PTmqty(\PTxmat*{x}{5}{5}[3][3]{A}{B})
	$\rightarrow \begin{pmatrix} x_{11} & \dots & x_{1B} \\ \vdots & \ddots & \vdots \\ x_{A1} & \dots & x_{AB} \end{pmatrix}$	
	→ : ∴ :	
	$\begin{pmatrix} x_{A1} & \dots & x_{AB} \end{pmatrix}$	
	\PTxmat[0 or 1 or 2]{x}{n}{m}[p][q]	Change the \vdots row/\ldots column from the
	\PTmqty(\PTxmat[0]{x}{5}{5}[3][3])	second last one to last one, 0 for both, 1 for row only,
	$ \begin{array}{cccc} & x & \dots \\ & x & \dots \end{array} $	2 for column only. Only work when corresponding p/q
	$\rightarrow x x \dots$	is provided and do not change the behavior of element
	(: :)	indices
	\PTmqty(\PTxmat[1]{x}{5}{5}[3][3])	
	$\rightarrow \begin{pmatrix} x & \dots & x \\ x & \dots & x \\ \vdots & \ddots & \vdots \end{pmatrix}$	
	$\rightarrow x \dots x$	
	, ,	
	\PTmqty(\PTxmat[2]{x}{5}{5}[3][3])	
	→ : : · ·	
\	(x x)	
\zeromatrix	\zmat{n}{m}	$n \times m$ matrix filled with zeros, equivalent to
		$\mathbf{m} \in \{0\} \in \mathbb{R}$. If m isn't provided, n is used
	$\begin{pmatrix} \begin{pmatrix} $	
	$\label{eq:ptmqty} $$ \Pr\{2\} \{2\} \to \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $$ \Pr\{2\} \to \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} $$$	
\paulimatrix	\pmat{n}	n th Pauli matrix
	$\label{eq:ptmqty(pmat{0})} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\label{eq:ptmqty(pmat{1})} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $\label{eq:ptmqty(pmat{2})} \rightarrow \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	$n \in \{0, 1, 2, 3 \text{ or } x, y, z\}$
	$\begin{pmatrix} 0 & -i \end{pmatrix}$	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

	$\label{eq:ptmqty} $$ \PTmqty(\pmat{3}) \to \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $$$	
\diagonalmatrix	\dmat{a,b,c,}	specify up to eight diagonal or block diagonal ele-
		ments
	$\label{eq:ptmqty} $$ \PTmqty(\dmat[0]\{1,2\}) \to \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} $$$	optional argument to fill spaces
	\PTmqty(\dmat{1,2&3\\4&5})	enter matrix elements for each block as a single
	1	diagonal element
	→ 2 3	
	4 5	
\antidiagonalmatrix	\admat{a,b,c,}	same as syntax as \dmat
	\PTmqty(\admat{1,2,3})	
	$\rightarrow \begin{pmatrix} & & 1 \\ & 2 & \\ 3 & & \end{pmatrix}$	

5.9 Symbols

5.10 Shorthands for Greek alphabet

If option shortgreek is used, the following shorthands will be defined for every uppercase and lowercase Greek letter:

\tgAlpha →	accept an optional argument argument in { } that is simply
<pre>\text{\textAlpha}}</pre>	skipped
\vAlpha → \varAlpha	
\uAlpha → \upAlpha	
\uvAlpha → \upvarAlpha	

Note that these don't ensure those commands are defined.

5.11 Shorthands for mathrm alphabet and chemical element symbols

If option shortmathrm is used, the following shorthands will be defined for every uppercase and lowercase English letter and every chemical element symbols (A\verb for example):

$\ \ \backslash rmA_a ^ b \to A_a^b$	work in both math mode and text
	mode

which are implemented with:

5.12 Shorthands for textnormal alphabet

If option shorttext is used, the following shorthands will be defined for every uppercase and lowercase English letter (A\verb for example):

 $\t XA \rightarrow \t Extnormal\{A\}$