- 1. Find the impedance Z<sub>tot</sub> presented by the RLC network to the current source. This is a symbolic exercise (no numbers).
  - a. What is  $Z_{tot}$  when  $\omega = 0$ ?
  - b. What is  $Z_{tot}$  when  $\omega \rightarrow \infty$ ?
  - c. What is  $Z_{tot}$  when  $\omega = \frac{1}{\sqrt{(LC)}}$ ?



d. What does the answer to (c.) tell you about the parallel combination of L&C when  $\omega = \frac{1}{\sqrt{(LC)}}$ ?

$$Z_{tot} = \frac{1}{j\omega C + \frac{1}{R} + \frac{1}{j\omega L}}$$

$$= \frac{1}{j\omega C + \frac{R + j\omega L}{j\omega R L}}$$

$$= \frac{j\omega R L}{(R - \omega^2 R L C) + j\omega L}$$

$$= \frac{j\omega R L}{R(1 - \omega^2 L C) + j\omega L}$$

a. 
$$Z_{tot}|_{\omega=0} = \frac{0}{R} = 0$$

b. 
$$Z_{tot}|_{\omega \to \infty} = \frac{jRL}{-2\omega LC + \omega L}|_{\omega \to \infty} = 0$$

c. 
$$Z_{tot}\Big|_{\omega = \frac{1}{\sqrt{(LC)}}} = \frac{j\omega RL}{R(0) + j\omega L} = R$$

d. L||C| at resonance has infinite impedance. L||C| at resonance is called a *tank circuit*.

2. Consider this circuit to be a filter, with an input and an output. To answer the following questions use the twoquestion intuitive approach described in lecture.



- a. If the input is  $i_{S'}$  and the output is  $i_{C'}$  what kind of filter is this?
- b. If the input is  $i_{\rm S'}$  and the output is  $i_{\rm R'}$  what kind of filter is this?
- c. If the input is  $i_{S}$ , and the output is  $i_{L}$ , what kind of filter is this?
- d. If the input is  $i_{S}$ , and the output is  $v_{out}$ , what kind of filter is this?

3. Consider this circuit to be a filter, with an input and an output. To answer the following questions use the twoquestion intuitive approach described in lecture.



- a. If the input is  $v_{\rm S}$ , and the output is  $v_{\rm C}$ , what kind of filter is this?
- b. If the input is  $v_{\rm S'}$  and the output is  $v_{\rm R'}$  what kind of filter is this?
- c. If the input is  $v_{s'}$  and the output is  $v_{L'}$ , what kind of filter is this?
- d. If the input is  $v_{S'}$  and the output is  $i_{out'}$  what kind of filter is this?

- 4. Find the impedance  $Z_{tot}$  presented by the RLC network to the current source. This is a symbolic exercise (no numbers).
  - a. What is  $Z_{tot}$  when  $\omega = 0$ ?
  - b. What is  $Z_{tot}$  when  $\omega \rightarrow \infty$ ?
  - c. What is  $Z_{tot}$  when  $\omega = \frac{1}{\sqrt{(LC)}}$ ?



d. What does the answer to ( c.) tell you about the series combination of L&C when  $\omega = \frac{1}{\sqrt{(LC)}}$ ?

$$Z_{tot} = R + Z_L + Z_C = R + j \omega L - j \left( \frac{1}{\omega C} \right) = R + j \left( \omega L - \frac{1}{j \omega C} \right)$$

a. 
$$Z_{tot}|_{\omega=0} = R+j\{ \rightarrow \infty \} \rightarrow \infty$$

b. 
$$Z_{tot}|_{\omega \to \infty} = R + j \{ \to \infty \} \to \infty$$

c. 
$$Z_{tot}\Big|_{\omega = \frac{1}{\sqrt{(LC)}}} = R + j \, 0 = R$$

d. *L* in series with *C* at resonance has zero impedance. Do you see the logical dual?