

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

developed, on which in turn occurred an apogamous embryo. In the latter the root developed first. Only three cases of apogamy were observed in Osmunda Claytoniana in Prantl's solution with K₂SO₄ omitted. In two cases the sporophytes developed from a mass of cellular tissue, while the third arose as an outgrowth in the notch of the prothallium. A further study will be made of these apogamous forms.—Elizabeth Dorothy Wuist, Osborn Botanical Laboratory, Yale University.

RAY TRACHEIDS IN QUERCUS ALBA

(WITH ONE FIGURE)

In the course of a recent study of the medullary rays of the Fagaceae, the writer was impressed with the manner in which some of the fibrotracheids in *Quercus* were associated with the rays. It is very common

to find the ends of these elements procumbent on the marginal ray cells for a considerable distance and communicating through semi-bordered pits. This condition is so similar to that found in certain coniferous woods that search was made in sections of oak wood at hand for tracheids that were distinctly radial. Fig. 1 shows a marginal ray tracheid of a uniseriate ray in normal stem wood of *Quercus alba* Linn. Another, somewhat smaller, was found in a different ray in the same section. The location is in the median late wood of the season's growth and is not in immediate proximity to a large vessel. So far as the writer is aware, ray tracheids have not previously been reported in the woods of the dicotyledons.—Samuel J. Record, Yale University.