apunte2parcial.md 2024-05-13

Regla de la cadena: $f(x) = f'(g(x)) \cdot g'(x)$

Puntos Criticos: 1. derivamos f(x) 2. hallamos las raices de f'(x)

Extremos Relativos: sea f una funcion definida en el intervalor [a;b] y sea x_{0} un PC de f(x) con x_{0} in a;b, si la f(x) al pasar por x_{0} pasa de (-) a (+) podemos asegurar que existe un minimo relativo. si pasa de (+) a (-) podemos segurar que existe un maximo relativo.

Extremos Absolutos: para un invergalo [a;b] 1. hallamos los PC de la funcion f(x) 2. Comparamos los valores en $PC \subset \{a,b\}$ 3. de la comparacion sacamos los puntos absolutos

Funciones Crecientes y Decrecientes: 1. hallamos los PC de f(x). 2.definimos los intervalos entre los PC (sin incluirlos). 3. evalamos el Sig(f'(x)) con x in Intevalo si es positivo la funcion crece, si es negativo la funcion decrece

Teorema de Rolle: si una funcion f(x) es continua en un intervalo [a;b], es derivable en (a;b) y f(a) = f(b) entonces, Existe un $c\in (a;b)$, f'(c)=0

Teorema del Valor Intermedio: sea f una funcion continua en [a;b]\$ derivable en (a;b)\$ entonces [a;b]\$ derivable en (a;b)\$ entonces [a;b]\$ derivable en (a;b)\$ entonces

Criterio de la Derivada Segunda: Sea c un PC de f(x) \$f'(c) = 0 \$. \$f''(c) < 0\$ entonce f tienen un minimo relativo en \$c\$.. \$f''(c) > 0\$ entonces f tiene un maximo relativo en \$c\$.. \$f''(c) = 0\$ no podemos asegurar que tenga un extremo relativo en \$c\$

Teorema del L'hopital: Dadas dos funciones diferenciables f(x) y g(x) en un intervalo abierto que contiene a, excepto posiblemente en a mismo, y $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \ o \ \int_{x \to a} f(x) = \lim_{x \to a} f(x) = d \ o \ \int_{x \to a} f(x) = \lim_{x \to a} f(x) = \lim_{$

Teorema de Bolzano: Sea f(x) una funcion continua en [a;b] si $Sig(f(a)) \neq Sig(f(b))$ entonces podemos asegurar que $\Rightarrow x \in Sig(f(a)) \neq Sig(f(a))$

Recta Tangente a un Punto: f(x), $P(x_{0}, y_{0})$ $\lim_{\Delta x}\right$ f(x)=M(x), donde x s es la pendiente en la ecuacion y=mx+b ahora evaluamos x_{0} en M(x). nos queda: $y_{0}=M(x_{0})+b$ ahora solo despejamos b y obtenemos la recta tangente a $P(x_{0}, y_{0})$ en f(x)