Project Documentation: Multipara Monitor Data Interpretation

Objective

The primary goal of this project is to develop a software solution capable of interpreting data from multipara monitors using a video feed. The system should demonstrate adaptability across various monitor models, ensuring versatility and applicability.

Tech Stack

The chosen technology stack for this project includes:

- **Python:** The core programming language facilitating overall development.
- **OpenCV:** Employed for computer vision tasks, particularly in the detection and localization of critical data areas on different monitor screens.[yolo -> trained my own model]

Project Structure

Detection of Data Display Areas

- **Objective:** Identify critical data areas, encompassing metrics such as HR (Heart Rate), ECG (Electrocardiogram), and oxygen levels, across a spectrum of monitor screens.
- **Implementation:** Leverage OpenCV's computer vision capabilities to detect and precisely locate the relevant display regions on monitors with varying layouts and designs.

Data Categories and Names

- Data Categories (nc): 9
- Names:
 - DBP (Diastolic Blood Pressure)
 - HR (Heart Rate)
 - HR_W (Heart Rate Waveform)
 - MAP (Mean Arterial Pressure)
 - RR (Respiration Rate)
 - RR_W (Respiration Rate Waveform)
 - SBP (Systolic Blood Pressure)
 - SPO2 (Oxygen Saturation)
 - SPO2_W (Oxygen Saturation Waveform)

Video Overview

Introduction to Small Dome Dam Project

• The video starts with a comprehensive introduction to the Small Dome Dam project, emphasizing the activation of the development environment using Python.

Functionality Demonstration

 A detailed walkthrough of the basic User Interface (UI) is provided, showcasing the core functionality where users can select a file, be it a video or an image, for further processing.

Image Processing

• The video demonstrates the process of choosing an image, uploading it, and allowing the model to predict critical elements like HR and SPO2 within the image.

Video Processing

 A processed video is presented, highlighting the positive results achieved in detecting complex metrics such as ECG and SPO2. The demonstration emphasizes the model's accuracy in various scenarios.

Key Metrics

• The presenter highlights key metrics, including a precision score of 0.86 for one parameter and 0.92 for another, underlining the reliability of the developed model.

Conclusion

• The video concludes with the presenter expressing satisfaction with the achieved results and hinting at the forthcoming detailed results, creating anticipation among the viewers.

Action Request

• The viewers are not explicitly requested to take any specific action, ensuring a passive conclusion to the video.

UI and Model Overview (Reference Video)

A supplementary video focuses on the User Interface (UI) aspect of the project. It
provides a deep dive into the end user's perspective, elucidates the code structure,
explains navigation and router functionality, and offers demonstrations of model
activation, image processing, and result showcasing.

Conclusion

This detailed documentation offers a comprehensive insight into the multipara monitor data interpretation project. It covers project objectives, the technology stack used, specific tasks undertaken, data categories, and a thorough breakdown of the referenced videos. It serves as a comprehensive guide for developers, project managers, and stakeholders involved in the development and deployment of this innovative solution.

There are some metrices I want to present precision, recall map metrics, confusion matrix and graph:

	a11	25	169	0.93	0.958	0.941	0.708
499/499	12.6G	0.006955 0.0	08052 0.0002246	0.01523	48	640	
	Class	Images	Labels	P	R	mAP@.5	
	a11	25	169	0.93	0.958	0.941	0.709
	DBP	25	15	1	0.938	0.998	0.742
	HR	25	24	0.958	1	0.978	0.832
	HR_W	25	25	0.92	0.92	0.877	0.598
	MAP	25	13	0.927	1	0.982	0.692
	RR	25	25	0.999	1	0.998	0.786
	RR_W	25	20	0.76	0.95	0.888	0.648
	SBP	25	15	0.998	1	0.998	0.797
	SP02	25	16	0.997	1	0.998	0.825
	SP02_W	25	16	0.812	0.812	0.748	0.464
	and a second of the	and the second second second	Associated the Association and	t TA ONE			

Optimizer stripped from yolov7/run1/weights/last.pt, 74.9MB
Optimizer stripped from yolov7/run1/weights/best.pt, 74.9MB
wandb: WARNING Artifacts logged anonymously cannot be claimed and expire after 7 days.

