Códigos perfeitos em Reticulados Ambientes

Lucas Eduardo Nogueira Gonçalves, lucasedng@gmail.com

São José dos Campos - SP, Brasil

1 Resultados

Teorema 1. Seja r > 0 um número natural de modo que $r \equiv 0 \pmod{2}$. Temos que o reticulado Λ' , com base $\beta' = \{(0, 2(r+1)), (r+1, r+1)\}$ é um r-código linear perfeito em D_2 na métrica ℓ_1 .

Exemplo 1. Tomemos r = 2. Pelo Teorema 1, temos que o reticulado Λ_1 , com base $\beta_1 = \{(0,6),(3,3)\}$ é um 2-código linear perfeito em D_2 na métrica ℓ_1 .

Figura 1: Reticulado Λ_1 em D_2 na métrica ℓ_1 .

Observação 1. O reticulado Λ_1 também é um r-código linear perfeito em D_2 na métrica ℓ_2 .

Figura 2: Reticulado Λ_1 em D_2 na métrica ℓ_2 .

Exemplo 2. Tomemos agora r=4. Pelo Teorema , temos que o reticulado Λ_2 , com base $\beta_2 = \{(0,10),(5,5)\}$ é um 4-código linear perfeito em D_2 na métrica ℓ_1 , como pode ser visto na Figura. Além disso, temos que Λ_2 também é um 4-código linear perfeito em D_2 na métrica ℓ_2 .

Notemos que, o reticulado simétrico de Λ' , obtido pela transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (y,x), é igual a Λ' . Isto é, $T(\Lambda') = \Lambda'$. Isso se da pelo fato de que $\beta'' = \{(2(r+1),0), (r+1,r+1)\}$ é uma base para $T(\Lambda')$. Como (2(r+1),0) = 2(r+1,r+1) - (0,2(r+1)), isto é, pode ser escrito como combinação linear inteira dos elementos de β' , temos que os dois reticulados coincidem, já que (r+1,r+1) pertence as duas bases.

Figura 3: Reticulado Λ_1 em D_2 nas métricas ℓ_1 e ℓ_2 respectivamente.

Em D_2 , consideremos os reticulados Λ_3 e Λ_4 com bases $\beta_3 = \{(5,1),(2,4)\}$ e $\beta_4 = \{(9,1),(4,6)\}$. Note que as Figuras e nos mostram que Λ_3 e Λ_4 são um 2-código linear perfeito e um 4-código linear perfeito respectivamente em D_2 , tanto na métrica ℓ_1 , quanto na métrica ℓ_2 .

Figura 4: Reticulado Λ_3 em D_2 nas métricas ℓ_1 e ℓ_2 respectivamente.

Figura 5: Reticulado Λ_4 em D_2 nas métricas ℓ_1 e ℓ_2 respectivamente.

Teorema 2. Seja r > 0 um número natural de modo que $r \equiv 0 \pmod{2}$. Temos que o reticulado Λ'' , com base $\beta'' = \{(2r+1,1), (r,r+2)\}$ é um r-código linear perfeito em D_2 na métrica ℓ_1 .

Exemplo 3. Tomemos r = 6. Pelo Teorema 2, temos que o reticulado Λ_5 , com base $\beta_1 = \{(13, 1), (6, 8)\}$ é um 6-código linear perfeito em D_2 na métrica ℓ_1 .

Observação 2. Ao contrário do que aconteceu com r=2 e r=4, temos que Λ_5 não é um 6-código linear perfeito em D_2 . Uma vez que ao centrarmos bolas nos pontos de Λ_2 , podemos ver que suas intersecções não são vazias em D_2 , como segue na Figura 6.

Figura 6: Reticulado Λ_5 em D_2 nas métricas ℓ_1 e ℓ_2 respectivamente.

De modo análogo ao o que ocorreu com o reticulado Λ' , temos que o simétrico do reticulado Λ'' também é um r-código linear perfeito em D_2 na métrica ℓ_1 . Isto é $T(\Lambda'')$ um r-código linear perfeito em D_2 na métrica ℓ_1 , como segue na Figura 7, tendo como exemplo o reticulado simétrico de Λ_3 .

Figura 7: Reticulado $T(\Lambda_3)$ em D_2 na métrica ℓ_1 .

Note que tanto no Teorema 1, quanto no Teorema 2, temos que a distância entre os elementos da base de todos esses códigos são é dado por 2(r+1), mais ainda, a diferença entre cada coordenada é r+1. Mas isso não implica que todo reticulado que satisfaça essa propriedade é um r-código linear perfeito em D_2 na métrica ℓ_1 . Tomemos Λ_6 o reticulado que possui a base $\beta_6 = \{(6,4),(3,7)\}$. Note que a distância entre (6,3) e (3,7) é dada por 2(2+1) e cada coordenada difere (2+1). Porém pela Figura 8 é fácil perceber que Λ_6 não é um r-código perfeito linear em D_2 na métrica ℓ_1 .

Figura 8: Reticulado Λ_6 em D_2 na métrica ℓ_1 .

Pergunta: Sabemos que isometrias em reticulados são dadas por composição de operadores ortogonais e

translações. Além disso, sabemos também que se dois reticulados Λ' e Λ'' são isométricos, então possuem a mesma densidade de empacotamento. Se Λ' e Λ'' são congruentes, isto é, equivalentes com fator de dilatação $\lambda=1$, e Λ' é um r-código perfeito linear em um ambiente Λ_a , temos necessariamente que Λ'' é um r-código perfeito linear em Λ_a ?

Teorema 3. grasi-tese: As isometrias $\phi : \mathbb{R}^n \to \mathbb{R}^n$ com a métrica da soma que fixam a origem são dadas por permutações de coordenadas compostas com trocas de sinais em algumas entradas e o grupo de isometrias é isomorfo a $\mathbb{Z}^n \rtimes S_n$, onde S_n é o grupo de permutações.

Observação 3. Com o resultado do Teorema anterior, podemos afirmar que em \mathbb{R}^2 as possíveis isometrias ϕ , que fixam a origem, são dadas por:

$$\phi_1(x,y) = (x,y)$$
 $\phi_2(x,y) = (-x,-y)$ $\phi_3(x,y) = (-x,y)$ $\phi_4(x,y) = (x,-y)$

$$\phi_5(x,y) = (y,x)$$
 $\phi_6(x,y) = (-y,x)$ $\phi_7(x,y) = (-y,x)$ $\phi_8(x,y) = (y,-x)$