Presek dveh implicitno danih ploskev

Aljaž Verlič, Blažka Blatnik, Lina Lumburovska, Luka Tavčer Mentor: Damir Franetič

5. junij 2017

Opis problema + modela (F)?

V \mathbb{R}^3 imamo podani dve poljubni implicitno podani ploskvi, opisanimi z enačbama $f_1(x)=C_1$ in $f_2(x)=C_2$, ki ju lahko gledamo tudi kot enačbi nivojnic funkcij f_1 in f_2 , presek pa je množica rešitev tega nelinearnega sistema enačb. Naša naloga je poiskati krivuljo K, ki predstavlja presek teh dveh ploskev.

Nalogo bomo rešili na 4 načine z uporabo metod za numerično reševanje diferencialnih enačb. Uporabili bomo:

- Eulerjevo/Runge-Kutta s fiksno dolžino koraka
- Eulerjevo/Runge-Kutta z adaptivno dolžino koraka

Eulerjeva metoda brez popravljanja

Opazimo, da je samo Eulerjeva metoda "blizu" pravilni rešitvi, ampak ni vredu.

Eulerjeva metoda brez popravljanja

Napake se seštevajo in so na večjem intervalu bolj opazne.

Eulerjeva metoda s popravljanjem z Newtonovo metodo

Ko za popravljanje napake uporabimo Newtonovo metodo, dobimo pravilno "krivuljo".

Potrebni pogoji + J matrika

Potreben pogoj za delovanje metod je, da sta funkciji f_1 in f_2 parcialno odvedljivi in da ima Jacobijeva matrika parcialnih odvodov poln rang 2. Za uspešno delovanje Newtonove metode moramo poiskati Jacobijevo matriko leve strani sistema nelinearnih enačb.

$$\mathsf{JG} = egin{bmatrix} \mathsf{grad}(f_1) \ \mathsf{grad}(f_2) \ \mathsf{grad}(ec{v} \cdot ec{x}) \end{bmatrix} \mathsf{oziroma} \ \mathsf{JG} = egin{bmatrix} \mathsf{grad}(f_1) \ \mathsf{grad}(f_2) \ \mathsf{grad}(ec{v}^\intercal) \end{bmatrix}$$

Razlaga adaptivnega koraka? (utemeljitev implementacije in zakaj je potrebna)

Koncna analiza parov ploskev za vsak primer + slike

Delovanje našega programa lahko preverimo s programom, ki smo ga napisali v Octave-u. Kot vhodne parametre mu podamo obe implicitno podani funkciji f_1 , f_2 , C1, C2, $grad(f_1)$, $grad(f_2)$. Določimo tudi začetni približek x_0 , začetno dolžino koraka in pa parameter, ki določa metodo delovanja (Euler/Runge-Kutta).

Začnemo z preprostim primerom sfere in ravnine, podane z enačbama:

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = 3x + 2y + z = 1$$

Tudi primer sfere in valja je relativno "lep"

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

•
$$f_2(x, y, z) = x^2 + y^2 = 1$$

Stvari malce otežimo s sfero in f_2

•
$$f_1(x, y, z) = x^2 + y^2 + z^2 = 4$$

$$f_2(x,y,z) = y^4 + \log(x^2 + 1)z^2 - 4 = 1$$

Za konec pa

- $f_1(x, y, z) = x^2 + \cos(y)z^2 12 = 4$
- $f_2(x, y, z) = y^4 + log(x^2 + 1)z^2 4 = 1$

