



## **Model Optimization and Tuning Phase**

| Date          | 07 July 2024               |  |
|---------------|----------------------------|--|
| Team ID       | 739863                     |  |
| Project Title | BlueBerry Yield Prediction |  |
| Maximum Marks | 6 Marks                    |  |

## **Hyperparameter Tuning Documentation:**

Hyperparameter tuning involves adjusting the parameters that govern the training process of machine learning models to optimize their performance. It includes methods such as grid search, random search, and Bayesian optimization. Proper documentation helps in understanding the impact of different hyperparameters, streamlining the tuning process, and replicating results. Clear records of hyperparameter settings and their outcomes are essential for achieving the best model accuracy and efficiency.

| Model                | Tuned Hyperparameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Optimal Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear<br>Regression | <pre>from sklearn.linear_model import Ridge   ridge = Ridge()   parameters = {'alpha': [0.1, 1, 10]} # Example values for regularization strength   ridge_regressor = GridSearchCV(ridge, parameters, scoring='neg_mean_squared_error', cv=5)   ridge_regressor.fit(x_train, y_train)  best_alpha = ridge_regressor.best_params_['alpha']   print("Best Alpha:", best_alpha)  # Using the best model found by GridSearchCV   best_ridge = ridge_regressor.best_estimator_   best_ridge_fit(x_train, y_train)   pred_ridge = best_ridge.predict(x_test)</pre> | <pre>mae_ridge = mean_absolute_error(y_test, pred_ridge) mse_ridge = mean_squared_error(y_test, pred_ridge) rmse_ridge = np.sqrt(mse_ridge) rsq_ridge = r2_score(y_test, pred_ridge)  print("MAE: %.3f" % mae_ridge) print("MSE: %.3f" % mse_ridge) print("RMSE: %.3f" % rmse_ridge) print("R-Square: %.3f" % rsq_ridge) print("Training Accuracy:", best_ridge.score(x_train, y_train)) print("Testing Accuracy:", best_ridge.score(x_test, y_test))  Best Alpha: 0.1 MAE: 95.466 MSE: 14043.502 RMSE: 118.505 R-Square: 0.991 Training Accuracy: 0.991011446378135 Testing Accuracy: 0.9913088598782471</pre> |





## mae rf train tu = mean absolute error(v train, pred rf train tu) param\_grid = { mae\_rf\_tu = mean\_absolute\_error(y\_test, pred\_rf\_tu) mse\_rf\_tu = mean\_squared\_error(y\_test, pred\_rf\_tu) 'n\_estimators': [50, 100, 200], 'max\_depth': [None, 10, 20, 30], 'min\_samples\_split': [2, 5, 10], 'min\_samples\_leaf': [1, 2, 4], 'bootstrap': [True, False] rmse\_rf\_tu = np.sqrt(mse\_rf\_tu) rsq\_rf\_tu = r2\_score(y\_test, pred\_rf\_tu) print("MAE train: %.3f" % mae rf train tu) print("MAE: %.3f" % mae\_rf\_tu) print("MSE: %.3f" % mse\_rf\_tu) print("RMSE: %.3f" % mse\_rf\_tu) print("R-Square: %.3f" % rsq\_rf\_tu) rf = RandomForestRegressor(random state=42) RandomForest grid\_search = GridSearchCV(estimator=rf, param\_grid=param\_grid, cv=5, n\_jobs=-1, verbose=2) print("Training Accuracy: %.3f" % best\_rf.score(x\_train, y\_train)) print("Testing Accuracy: %.3f" % best\_rf.score(x\_test, y\_test)) grid\_search.fit(x\_train, y\_train) Regressor Fitting 5 folds for each of 216 candidates, totalling 1000 fits Best Parameters: ('bootstrap': True, 'max\_depth': None, 'min\_samples\_leaf': 1, 'min\_samples\_split': 2, 'n\_estimators': 200) Best Cross-Validation Score: 0.906 best\_params = grid\_search.best\_params\_ best\_score = grid\_search.best\_score MAF train: 41,448 print(f"Best Parameters: {best params}") MAE: 110 332 print(f"Best Cross-Validation Score: {best\_score:.3f}") RMSE: 138.521 R-Square: 0.988 Training Accuracy: 0.998 best\_rf = grid\_search.best\_estimator Testing Accuracy: 0.988 pred\_rf\_train\_tu = best\_rf.predict(x\_train) pred\_rf\_tu = best\_rf.predict(x\_test) mae dt tu = mean absolute error(y test, pred dt tu) dt = DecisionTreeRegressor() mse\_dt\_tu = mean\_squared\_error(y\_test, pred\_dt\_tu) rmse\_dt\_tu = np.sqrt(mse\_dt\_tu) param\_grid = { rsq\_dt\_tu = r2\_score(y\_test, pred\_dt\_tu) 'max\_depth': [None, 10, 20, 30, 40, 50], 'min\_samples\_split': [2, 5, 10, 15], 'min\_samples\_leaf': [1, 2, 5, 10], print("MAE:", mae\_dt\_tu) print("MSE:", mse\_dt\_tu) print("MSE:", mse\_dt\_tu) print("MSE:", mse\_dt\_tu) print("R-Squared:", rsq\_dt\_tu) print("Training Accuracy:", best\_dt.score(x\_train, y\_train)) print("Testing Accuracy:", best\_dt.score(x\_test, y\_test)) 'max\_features': ['auto', 'sqrt', 'log2', None] **DecisionTree** grid search = GridSearchCV(estimator=dt, param grid=param grid, cv=5, scoring='neg mean squared error', n jobs=-1) Regressor grid\_search.fit(x\_train, y\_train) Best Parameters: {'max\_depth': None, 'max\_features': None, 'min\_samples\_leaf': 5, 'min\_samples\_split': 10} Mac: 128.17739583664462 MSE: 30284.679955869266 RMSE: 174.02494061446845 print("Best Parameters:", grid search.best params ) print("Best CV Score:", grid\_search.best\_score\_) R-Squared: 0.9812576374711801 best\_dt = grid\_search.best\_estimator Training Accuracy: 0.9931849259250838 Testing Accuracy: 0.9812576374711801 pred\_dt\_tu = best\_dt.predict(x\_test) xgb = XGBRegressor() mae xgb tuned = mean absolute error(y test, pred xgb tuned) mse\_xgb\_tuned = mean\_squared\_error(y\_test, pred\_xgb\_tuned) rmse\_xgb\_tuned = np.sqrt(mse\_xgb\_tuned) param\_grid = { 'learning\_rate': [0.01, 0.1, 0.2], rsq\_xgb\_tuned = r2\_score(y\_test, pred\_xgb\_tuned) 'max\_depth': [3, 5, 7], 'min\_child\_weight': [1, 3, 5], 'subsample': [0.6, 0.8, 1.0], print("MAE: %.3f" % mae xgb tuned) print("MSE: %.37" % mse\_xgb\_tuned) print("MSE: %.37" % mse\_xgb\_tuned) print("RSE: %.37" % rmse\_xgb\_tuned) print("R-Squared: %.37" % raq\_xgb\_tuned) print("Training Accuracy:", best\_xgb.score(x\_train, y\_train)) 'colsample bytree': [0.6, 0.8, 1.0] **XGBoost** grid\_search = GridSearchCV(estimator=xgb, param\_grid=param\_grid, print("Testing Accuracy:", best\_xgb.score(x\_test, y\_test)) scoring='neg\_mean\_squared\_error', cv=5, verbose=1) Regressor Fitting 5 folds for each of 243 candidates, totalling 1215 fits grid\_search.fit(x\_train, y\_train) Best Parameters: ('colsample\_bytree': 0.8, 'learning\_rate': 0.1, 'max\_depth': 3, 'min\_child\_weight': 1, 'subsample': 0.6) Best CV Score: -16626.085239377753 print("Best Parameters:", grid\_search.best\_params\_) Tuned Model Metrics: print("Best CV Score:", grid\_search.best\_score\_) MAE: 94.131 MSE: 14517.358 best\_xgb = grid\_search.best\_estimator\_ RMSE: 120.488 R-Squared: 0.991 Training Accuracy: 0.9951537856788809 Testing Accuracy: 0.9910156029061967 pred\_xgb\_tuned = best\_xgb.predict(x\_test)