一次元アーキテクチャにおける 量子ビット割り当て問題

東京大学大学院 情報理工学系研究科 電子情報学専攻 長谷川研究室 修士1年 内藤壮俊

自己紹介

- ▶ プログラミング経験
 - ▶ 競技プログラミング (C++)
 - ▶ ゲーム開発 (Unity C#)
 - ▶ 研究, ウェブ開発 (Python, JavaScript)
- ▶ 量子コンピューティングの経験
 - ▶ 量子ゲート型: IBM Quantum Challenge 2020 に参加した程度
 - ▶ 量子アニーリング型:今回が初めて

参加したきっかけ

- ▶ 量子アニーリングを使って、量子ゲートの回路設計を支援できないか?
 - ▶ コラボって感じがしてカッコいい

- 現存するゲート型量子コンピュータは数十ビット程度の規模なので、 扱う問題の大きさとしてちょうど良い…?
 - ▶ アニーリングが先行している分だけ、アドバンテージが活かせそう

背景説明

量子ゲート型計算機

- ▶ ゲート通過による状態変化 → 測定 により計算を行う
 - ▶ 量子ビットは複数の状態を重ね合わせることが可能
- ▶ 任意の量子回路はU3ゲート(1入力)と CXゲート(2入力)に展開可能
 - ▶ U3ゲート:1ビットの状態を任意に操作
 - ▶ CXゲート: 2ビット間でXOR演算を行う
 - $(x, y) \rightarrow (x, x \oplus y)$

図: U3ゲートとCXゲートに 展開された量子回路.

量子ビット割り当て問題

- ▶ 設計図上の「論理ビット」とデバイス上の「物理ビット」を対応させる問題
- ▶ CXゲートを作用させる物理ビットは隣り合っている必要がある
 - ▶ 離れている場合は? → SWAPゲートを使って物理ビットの中身を交換
- ▶ NISQデバイスでは、ゲート操作によるエラーが重要
 - ▶ SWAPゲートはCXゲート3つ分
 - ▶ エラー率は U3ゲート << CXゲート << SWAPゲート

図:SWAPゲートの構成.

図:物理ビットの配置の例

先行研究(古典的アプローチ)

- "Optimal SWAP Gate Insertion for Nearest Neighbor Quantum Circuits" (2014) [1] Robert Wille, Aaron Lye, and Rolf Drechsler
 - ▶ 1次元アーキテクチャ向けにSWAPゲートの個数を定式化
 - ▶ PBO (pseudo boolean optimization) ソルバーによる解法
- "Qubit Allocation for Noisy Intermediate-Scale Quantum Computers" (2018) [2] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha Narang
 - ▶ エラー率を考慮しながら, 論理ビットの初期配置を1ペアずつ決定
 - ▶ Dijkstra法+擬似焼き鈍し法によるアプローチ

- [1] R. Wille, A. Lye and R. Drechsler, "Optimal swap gate insertion for nearest neighbor quantum circuits," In Proceedings of 19th Asia and South Pacific Design Automation Conference (ASP-DAC 2014), pp. 489-494, 2014.
- [2] https://arxiv.org/abs/1810.08291

先行研究(QUBOを用いたアプローチ)

- "A QUBO formulation for qubit allocation" (2020) [3]
 Bryan Dury and Olivia Di Matteo
 - ▶ エラー率と回路の深さを考慮して、論理ビットの初期配置を決定する
 - ▶ $x_{ij} = 1$: 「i 番目の論理ビットはj 番目の物理ビットに対応する」

 - $Q_{ijkl} = -\ln(p_{jl}) \cdot g_{ik} \cdot d_{jl}^{3} \qquad b_{ij} = -\ln(p_{j}) \cdot g_{i}$ CXゲートのコスト[エラー]・[個数]・[距離] U3ゲートのコスト[エラー]・[個数]
 - ▶ ダイナミックな並び替えは考慮せず
 - ▶ CXゲートごとに, 「2ビットが隣り合うように並び替え → 配置を戻す」の繰り返し

今回扱いたい問題

- 物理ビットが一列に並んだアーキテクチャを考える
- ▶ CXゲートを含むそれぞれのレイヤーに対して、論理ビットの配置を決定する
 - CXゲートが論理ビットを共有しないように、左からレイヤーを構成
 - ▶ レイヤー間にSWAPゲートを挿入し, 物理ビット (の中身) を並び替える
- ▶ コスト = 用いるSWAPゲートの個数
 - ▶ 1次元アーキテクチャの場合, 転倒数で定式化可能

図:レイヤーの構成例.

古典的解法

- \blacktriangleright 量子ビットの個数 N に対し、各レイヤーにおける配置は N! 通り
- \blacktriangleright レイヤーの枚数 M に対して、全体の取りうる状態数は $(N!)^M$ 通り
- ▶ 動的計画法による高速化
 - ▶ 配置に対する暫定的なコストを持っておくことで, 空間計算量 $O(M \cdot N!)$, 時間計算量 $O(M \cdot (N!)^2)$ で解くことができる
- N=10 で $(N!)^2\approx 1.3\times 10^{13}$ なので、小規模の回路にしか適用できない.

背景説明 まとめ

- ▶ CXゲートを作用させる物理ビットは隣り合っていなければならない
- 物理ビットの (中身の) 入れ替えはSWAPゲートによって実現できるが, エラー率が高いためできるだけ使いたくない
- ▶ ナイーブな解法を試す研究や、初期配置の最適化を行っている研究はあったが、 全体の配置をQUBOで定式化 + 最適化する研究は無かった
- ▶ 古典的解法は計算量が非常に大きく、小規模な回路にしか使えない

提案手法

バイナリ変数を用いた定式化

- ▶ 各レイヤーにおける論理ビットは [0,1,…,N 1] の並び替えとなる
- Q_{mnv} : 「レイヤー m において,物理ビット n は論理ビット v に対応する」
 - ▶ MN² 個のバイナリ変数が必要
- ▶ one-hot 制約
 - ▶ 「物理ビットは単一ビットのみに対応する」: $\sum_{v=0}^{N-1} Q_{mnv} = 1$
 - ightharpoonup 「論理ビットは単一ビットのみに対応する」: $\sum_{n=0}^{N-1} oldsymbol{Q_{mnv}} = 1$
- ► CXゲートによる制約
 - ▶ 作用させる物理ビットは隣り合っていなければならない
 - ト ペナルティ関数: $\sum_{(a,b)\in[CX-gates]} \sum_{(i,j),|i-j|\geq 2} Q_{mia} Q_{mjb}$

コスト関数の定式化 (厳密解法)

- ▶ 隣り合うレイヤー A, B 間における, 論理ビットの移動 C を考える
- ▶ 補助変数+制約の追加による定式化
- ▶ この時, 転倒数 (= 論理ビットの入れ替わり) は厳密に定式化可能
 - $ightharpoonup cost = \sum_{0 \le i_1 < i_2 < N} \sum_{0 \le j_2 < j_1 < N} C_{i_1 j_1} \cdot C_{i_2 j_2}$

厳密解法の実行結果

- ▶ 出力結果のコストが大きすぎる or 解が見つからないという結果に...
- ▶ 探索空間の大きさに対して、制約を満たす組が少ないことが原因か
 - ト 用いたバイナリ変数の合計 = \log_2 (探索空間の状態数) = $MN^3 + 2MN^2 N^3 N^2$
 - ▶ $\log_2($ 解となる状態数 $) < \log_2(N!)^M \approx \frac{1}{\log 2} M(N \log N N)$
- ほとんど全てが「ハズレ」だった

転倒数の近似によるアプローチ

- ▶ 性能向上のため,近似解法を採用して状態数を削減することに
 - ▶ 転倒数を2次で表現できれば、用いるバイナリ変数は MN² 個で済む
- ▶ 重回帰分析によるフィッティング,期待値による推定を行った

図:重回帰分析,期待値による転倒数の推定結果. 横軸が正しい値,縦軸が推定値.

- ▶ 2つの推定結果は、互いに一次関数の関係になっていた
 - ▶ [重回帰分析による推定結果] = $\frac{2N-2}{N}$ [期待値による推定結果] $-\frac{(N-1)(N-2)}{4}$

コスト関数の定式化 (近似解法)

- ▶ 期待値による推定結果 $\approx \left\{ \sum_{0 \leq i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1} \right) \cdot C_{ij} \right\}$
- ▶ 重回帰分析による推定結果へ変換: $y = \frac{2N-2}{N}x \frac{(N-1)(N-2)}{4}$
- ▶ →転倒数 ≈ $\frac{2N-2}{N} \left\{ \sum_{0 \le i,j < N} \left(\frac{i+j}{2} \frac{ij}{N-1} \right) \left(\sum_{v=0}^{N-1} A_{iv} B_{jv} \right) \right\} \frac{(N-1)(N-2)}{4}$ と書ける
 - トレイヤーm, m+1間においては, $A_{iv}=Q_{miv}, B_{jv}=Q_{(m+1)jv}$
- ▶ 代入すると,以下のように整理できる

$$\sum_{m=0}^{M-2} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} \boldsymbol{Q}_{miv} \boldsymbol{Q}_{(m+1)jv} \right) \right\} - \underbrace{(M-1)\frac{(N-1)(N-2)}{4}}$$
 定数項.

最小化においては無視される.

Amplify解法モデルの構成

- $cost = \sum_{m=0}^{M-2} \left\{ \sum_{0 \le i,j < N} \frac{(N-1)(i+j)-2ij}{N} \left(\sum_{v=0}^{N-1} Q_{miv} Q_{(m+1)jv} \right) \right\}$
- $constraint = \sum_{m=0}^{M-1} \left\{ \sum_{v=0}^{N-1} (1 \sum_{n=0}^{N-1} \boldsymbol{Q_{mnv}})^2 + \sum_{n=0}^{N-1} (1 \sum_{v=0}^{N-1} \boldsymbol{Q_{mnv}})^2 + \sum_{v=0}^{N-1} (1 \sum_{v=0}^{N-1} \boldsymbol{Q_{mnv}})^2 + \sum_{$

- $ightharpoonup model = constraint <math>
 ightharpoonup \lambda + cost$ として構成した
 - ▶ model の項数(= モデルの規模)は O(MN³) 個

パフォーマンスの評価 (コスト最小化の性能比較)

- ▶ ランダムに生成したデータ10個に対してコストを計算した
 - ▶ 古典的解法は最適解を出力するので,必ず 古典的解法 ≤ Amplify解法 となる
 - ト Amplify解法においては, $\lambda = 100$, timeout = 1秒 として実行
- ▶ N, M の大きいケースで誤差が大きくなった
 - ightharpoonup 制約の重み λ を小さくする + timeout を伸ばすことでコスト抑制が可能

N	3	4	5	6
古典的解法 (M = 5)	0.6	1.4	2.1	4.1
Amplify解法 (M = 5)	0.6	1.4	2.1	4.5
古典的解法 (M = 20)	3.8	13.0	15.0	24.9
Amplify解法 (M = 20)	3.8	13.1	18.9	34.0

表: それぞれの解法における コストの平均値,

パフォーマンスの評価 (実行時間の比較)

M=5 にて、N を動かした時の実行時間(秒)を比較した

N	3	4	5	6	7	8	9	10	15	20
古典的解法	0.0007	0.0084	0.4551	8.9532	566.95	_	_	_	_	_
Amplify解法	1.8336	1.8184	1.4685	1.1751	1.2766	1.3620	1.3654	1.6483	6.1014	20.047

表: N を動かした時の実行時間の比較.

 $6 \le N$ においてAmplify解法の方が高速となっている.

- ▶ Nが大きくなると、Amplify解法でも時間がかかる傾向に
 - ▶ O(MN³) サイズのモデル構築に時間がかかっていた
- \triangleright といっても, 古典的解法は $O(M \cdot (N!)^2)$ なので飛躍的向上と言える
 - N=10 のとき, $(10!)^2\div 10^3\approx 132$ 億倍の高速化に成功

提案手法 まとめ

- ▶ 厳密解法は使い物にならなかったため,近似解法を採用した
- \triangleright N が小さい場合は古典的解法が強く,N が大きい場合はAmplify解法が強い

	古典的解法	Amplify解法			
		厳密解法	近似解法		
大域最適解	計算可能	計算可能	近似解のみ		
実用的な範囲	$N \le 6$ $M \le 100$	N,M ともに 小さい場合	$N \le 20$ $M \le 100$		

表:古典的解法とAmplify解法の比較. Amplify解法の方が実用的と言える.

アプリケーションの作成

OpenQASMとの連携

- ▶ 「OpenQASM」という言語で書かれた回路を入力できるようにしたい
- ▶ U3ゲートとCXゲートに分解済みの回路を入力に用いる

図:展開した後の回路.

```
cx qA[1],qB[1];
                                                                            cx qC[1],qC[0];
                                   u3(pi/2,0,5*pi/4) qC[1];
                                                                           u3(0,0,pi/4) qC[0];
u3(pi/2,0,pi) qC[0];
                                   \operatorname{cx} \operatorname{qC}[1], \operatorname{qC}[0];
cx qA[0],qC[0];
                                                                            cx qB[0],qC[0];
u3(0,0,-pi/4) qC[0];
                                   u3(0,0,pi/4) qC[0];
                                                                           u3(0,0,pi/4) qB[0];
u3(pi/2,0,pi) qC[1];
                                   cx qA[0],qC[0];
                                                                           u3(0,0,-pi/4) qC[0];
cx qB[1],qC[1];
                                   u3(0,0,pi/4) qA[0];
                                                                            cx qC[1],qC[0];
u3(0,0,-pi/4) qC[1];
                                   u3(0,0,-pi/4) qC[0];
                                                                           u3(pi/2,0,5*pi/4) qC[0];
\operatorname{cx} \operatorname{qA}[1],\operatorname{qC}[1];
                                  \operatorname{cx} \operatorname{qC}[1],\operatorname{qC}[0];
                                                                           \operatorname{cx} \operatorname{qC}[1], \operatorname{qB}[0];
                                                                           u3(0,0,-pi/4) qB[0];
u3(0,0,pi/4) qC[1];
                                   u3(0,0,9*pi/4) qC[0];
\operatorname{cx} \operatorname{qB}[1], \operatorname{qC}[1];
                                   cx qB[0],qC[0];
                                                                           u3(0,0,pi/4) qC[1];
u3(0,0,pi/4) qB[1];
                                   u3(0,0,-pi/4) qC[0];
                                                                            cx qC[1],qB[0];
u3(0,0,-pi/4) qC[1];
                                   \operatorname{cx} \operatorname{qC[1],qA[0]};
                                                                            cx qB[0],qC[1];
\operatorname{cx} \operatorname{qA}[1], \operatorname{qC}[1];
                                   u3(0,0,-pi/4) qA[0];
                                                                            \operatorname{cx} \operatorname{qA}[1],\operatorname{qC}[2];
\operatorname{cx} \operatorname{qA}[1], \operatorname{qB}[1];
                                   u3(0,0,pi/4) qC[1];
                                                                            cx qB[1],qC[2];
u3(0,0,pi/4) qA[1];
                                   \operatorname{cx} \operatorname{qC[1],qA[0]};
u3(0,0,-pi/4) qB[1];
                                   cx qA[0],qC[1];
```

図:出力されるOpenQASMプログラム.

アプリ機能紹介:量子回路の描画

- ▶ tkinterというライブラリで実装
- ▶ 設計図段階の回路と, Amplify解法の 実行結果を描画する

図:読み込んだ回路設計図の一部. (IBM Q上で描画.)

図:ビジュアライザ上での描画結果.

アプリ機能紹介: Amplifyの呼び出し

- ► Amplify解法を実行
 - ▶ タイムアウト (timeout) の調整可
 - 制約重みパラメータ (λ) の調整可
- 実行結果の描画
 - ▶ SWAPゲートは「X-X」で描画されている
- ▶ 良い解が見つかるまで調整・再試行が可能
 - ▶ 回路設計の効率化につながる

図: Amplify解法の実行結果.

アプリ機能紹介: OpenQASM形式で出力

- ▶ SWAPゲートを3つのCXゲートに置き換えることで OpenQASM形式に書き換えることが可能
 - ▶ 設計図段階の回路を入力して、アプリで実機搭載 可能な回路に変換して、その結果を出力する

図:SWAPゲートの展開.

- ▶ CXゲートの個数が最も少なくなるように置き換えを実行
 - ▶ 上下反転を考えると、置き換えは2通りある
 - ▶ CXゲートが相殺する場合がある

図:CXゲートの個数が減るケース.

アプリケーションの作成 まとめ

設計図段階の 量子回路の入力・描画

timeout, λ の調整

Amplify解法の実行 実行結果の描画

実機搭載可能な量子回路の出力

発表は以上です. ありがとうございました.