Matematiske metoder (MM 529)

Stephan Brandt

Syddansk Universitet, Odense

01. 10. 2012

L'Hospital's rule (repeated application)

L'Hospital's rule (limits as $x \to \infty$)

If f, g are both differentiable functions and

$$\frac{\lim_{x\to\infty}f(x)}{\lim_{x\to\infty}g(x)}=\frac{0}{0} \text{ or } \frac{\infty}{\infty} \quad \text{then} \quad \lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.$$

L'Hospital's rule (repeated application)

If f, g are both twice differentiable and

$$\frac{\lim_{x\to\infty}f(x)}{\lim_{x\to\infty}g(x)}=\frac{0}{0} \text{ or } \frac{\infty}{\infty} \quad \text{then} \quad \lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.$$

If also

$$\frac{\lim_{x\to\infty}f'(x)}{\lim_{x\to\infty}g'(x)}=\frac{0}{0}\text{ or }\frac{\infty}{\infty}\quad\text{then}\quad\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f''(x)}{g''(x)}.$$

L'Hospital's rule (repeated application)

If f, g are both n times differentiable and

$$\frac{\lim_{x \to \infty} f^{(k)}(x)}{\lim_{x \to \infty} g^{(k)}(x)} = \frac{0}{0} \text{ or } \frac{\infty}{\infty} \quad \text{for every } k \text{ with } 0 \le k < n \text{ then}$$

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f^{(n)}(x)}{g^{(n)}(x)}.$$

Application: $f(x) = b^x$, b > 1 (exponential function);

$$g(x) = p(x) = \sum_{i=0}^{n} a_i x^i$$
, $a_n > 0$ (polynomial function)

Determine $\lim_{x\to\infty} \frac{f(x)}{g(x)}$!

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)} = \frac{\infty}{\infty}.$$

Application: Polynomial growth versus exponential growth

$$f(x) = b^{x}, b > 1:$$

$$f'(x) = \frac{d}{dx}e^{x \ln b} = (\ln b)e^{x \ln b} = b^{x} \ln b. \quad f^{(n)}(x) = b^{x}(\ln b)^{n}.$$

$$g(x) = p(x) = \sum_{i=0}^{n} a_{i}x^{i}:$$

$$g'(x) = \sum_{i=0}^{n-1} (i+1)a_{i+1}x^i$$
. $g^{(n)}(x) = n!a_n$.

Since
$$\frac{\lim_{x \to \infty} f^{(k)}(x)}{\lim_{x \to \infty} g^{(k)}(x)} = \frac{\infty}{\infty}$$
 for every k with $0 \le k < n$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f^{(n)}(x)}{g^{(n)}(x)} = \lim_{x \to \infty} \frac{b^{x}(\ln b)^{n}}{n! a_{n}} = \frac{\infty}{n! a_{n}} = \infty.$$

Exponential growth beats polynomial growth!

f grows faster than g as $x \to \infty$ (even if b=1.01 and $a_n=n=1000!$).

Running time of algorithms (polynomial versus exponential in the input size).

Mean value theorem

If f is continuous on the interval [a, b] and differentiable on the open interval (a, b) then there is a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

There is a value c, where the tangent has the same slope as the straight line through (a, f(a)), (b, f(b)).

Linear approximation

f is continuous (or even differentiable) and f(10) = 100. Guess: What is f(10.1)?

My suggestion: f(10.1) = 100. Probably not correct but perhaps not too bad.

More information:

f is differentiable, f(10) = 100 and f'(10) = 20. What is f(10.1)? My suggestion: f(10.1) = 102. Probably not correct but perhaps not too bad.

Why? Explanation: 102 is the function value at x = 10.1 on the tangent line of the function f at x = 10.

If, say, $f(x) = x^2$, second guess much better than first guess, since $(10.1)^2 = 102.01$.

In a certain sense the best guess we can do.

Linear approximation

Aim: Approximating a differentiable function f in the vicinity of a point a by a line.

Linear approximation

If f is differentiable in a, then we call the linear function

$$P(x) = f(a) + f'(a)(x - a)$$

the linear approximation of f at a.

Equation of the tangent line at f in a.

Best possible approximation in the sense, that P(x) is the only linear function, where the limit of the error relative to the distance of x and a is zero as $x \to a$.

$$\lim_{x \to a} \frac{f(x) - P(x)}{x - a} = 0.$$

Finding zeroes of a function

For a function f a value x^* where $f(x^*) = 0$ is called a zero of f.

How to find zeroes of f?

Example: Polynomials.

Easy for degree two: $p(x) = x^2 + px + q$. Zeroes:

$$x^* = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}.$$

Quite difficult for degree 3 and 4.

Provably no algorithm to find the zeroes of polynomials of degree 5 and more.

What can we do?

Try to approximate the zeroes, i.e. find a value x very near to the zero x^* .

Newton approximation

Aim: approximate the zeroes of a function f, e.g. f high degree polynomial.

Use the idea of linear approximation: Take the zero of the tangent as a point which is (hopefully) closer to the zero.

Create sequence $(a_0, a_1, a_2, ...)$ where a_0 is an initial point "close" to the zero and a_{n+1} is the zero of the tangent at f in a_n for $n \ge 1$.

Formula

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}, \quad \text{if } f'(a_n) \neq 0.$$

Approach works if a_0 is close enough to the zero x^* , precise conditions are complicated.

Example: Find the largest zero of $f(x) = x^2 - 2$.

f is differentiable on \mathbb{R} and f'(x) = 2x.

Since f(1) = -1 and $f(x) \ge 2$ for $x \ge 2$ and f is continuous, the largest zero is between 1 and 2 (Intermediate value theorem).

Choose starting point close to the zero, e.g.: $a_0 = \frac{3}{2}$.

Newton approximation (example)

Example: Find the largest zero of $f(x) = x^2 - 2$.

f is differentiable on \mathbb{R} and f'(x) = 2x.

Largest zero of f is between 1 and 2.

Choose starting point close to the zero, e.g.: $a_0 = \frac{3}{2}$.

Formula

$$a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}, \quad \text{if } f'(a_n) \neq 0...$$

in our example

$$a_{n+1} = a_n - \frac{a_n^2 - 2}{2a_n} = \frac{a_n}{2} + \frac{1}{a_n}.$$

$$a_0 = \frac{3}{2}$$
, $a_1 = \frac{3}{4} + \frac{2}{3} = \frac{17}{12}$, $a_2 = \frac{17}{24} + \frac{12}{17} = \frac{577}{408} = 1.4142156...$, already very close to $x^* = \sqrt{2} = 1.4142135...$

If f is 'well-behaved' then a_{n+1} has about two more correct decimal digits than a_n close to x^* (quadratic convergence).

Taylor polynomial

(after Brook Taylor 1685–1731)

Can we do better than using linear approximation? Yes, we can (provided that our function has higher order derivatives)!

The Taylor polynomial of f at a

Let f be k-times differentiable on an interval I and $a \in I$. Then the k-th order Taylor polynomial of f at a is

$$P_k(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$$
$$\dots + \frac{f^{(k-1)}(a)}{(k-1)!}(x-a)^{k-1} + \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

First order Taylor polynomial of f at a:

$$P_1(x) = f(a) + f'(a)(x - a),$$

equation of the tangent of f at a (linear approximation).

Slightly easier to write:

k-th order Taylor polynomial at a = 0

$$P_k(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(k-1)}(0)}{(k-1)!}x^{k-1} + \frac{f^{(k)}(0)}{k!}x^k.$$

Example: Third order Taylor polynomial of $f(x) = e^x$ at a = 0.

Obs.: $f^{(k)}(x) = e^x$ for every k, therefore $f^{(k)}(0) = 1$ for every k.

$$P_3(x) = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3.$$

In general:

$$P_k(x) = 1 + x + \frac{1}{2}x^2 + \ldots + \frac{1}{k!}x^k = \sum_{i=0}^k \frac{1}{i!}x^i.$$

k-th order Taylor polynomial at a = 0

$$P_k(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots$$
$$\dots + \frac{f^{(k-1)}(0)}{(k-1)!}x^{k-1} + \frac{f^{(k)}(0)}{k!}x^k.$$

Example: Sixth order Taylor polynomial of $f(x) = \sin x$ at a = 0.

$$f^{(n)}(0) = \begin{cases} 0 = \sin 0 & \text{if } n = 4k, \\ 1 = \cos 0 & \text{if } n = 4k+1, \\ 0 = -\sin 0 & \text{if } n = 4k+2, \\ -1 = -\cos 0 & \text{if } n = 4k+3, \end{cases}$$

$$Q_6(x) = \frac{1}{1!}x + \frac{-1}{3!}x^3 + \frac{1}{5!}x^5 = x - \frac{1}{6}x^3 + \frac{1}{120}x^5.$$

Example: Taylor approximation of $f(x) = \sin x$

In colours: The kth order Taylor polynomials $Q_k(x)$ of $f(x) = \sin x$ at a = 0 for $k = 1, 3, 5, \dots 15$.

Taylor approximation

Previous examples: Third order Taylor polynomial of $f(x) = e^x$:

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3.$$

$$P_3(1) = 2.666... \approx 2.718... = f(1) = e^1.$$

Sixth order Taylor polynomial of $f(x) = \sin x$.

$$Q_6(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5.$$

$$Q_6(1) = 0.84166... \approx 0.84147... = f(1) = \sin 1.$$

By chance? No!

$$P_k(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

Taylor's Theorem

If f is k times differentiable, then

$$f(x) = P_k(x) + R_k(x)$$
, where the error term

$$R_k(x) = h_k(x)(x-a)^k$$
 and $\lim_{x\to a} h_k(x) = 0$.

 $P_k(x)$ is the only polynomial of degree k with this property.

Taylor approximation

$$P_k(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

Taylor's Theorem

If f is k times differentiable, then $f(x) = P_k(x) + R_k(x)$, where the error term

$$R_k(x) = h_k(x)(x-a)^k$$
 and $\lim_{x\to a} h_k(x) = 0$.

 $P_k(x)$ is the unique best approximation by a degree k polynomial of f(x) near a.

Closer analysis of the error term $R_k(x)$:

Lagrange remainder theorem

If f is k+1 times differentiable and $f^{(k+1)}$ continuous, then $f(x) = P_k(x) + R_k(x)$, where the remainder

$$R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!}(x-a)^{k+1}$$

for a point c in the interval between x and a.

Taylor approximation (Examples)

$$P_k(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

Lagrange remainder theorem

If f is k+1 times differentiable and $f^{(k+1)}$ continuous, then $f(x) = P_k(x) + R_k(x)$, where the remainder

$$R_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!} (x-a)^{k+1}$$

for a point c in the interval between x and a.

Example: Third order Taylor polynomial of $f(x) = e^x$ at a = 0.

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3.$$

Error we make by using $P_3(x)$ instead of f(x):

$$R_3(x) = \frac{e^c}{4!} x^4$$

for a point c in the interval between x and 0.

Taylor approximation (Examples)

Example: Third order Taylor polynomial of $f(x) = e^x$ at a = 0.

$$P_3(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3.$$

Error we make by using $P_3(x)$ instead of f(x):

$$R_3(x) = f(x) - P_3(x) = \frac{e^c}{4!}x^4$$

for a point c in the interval between x and 0.

Example x = 1: Error

$$R_3(1) = \frac{e^c}{4!}1^4 = \frac{e^c}{4!}$$

for a point c in the interval between 0 and 1. Therefore $0.041...=\frac{1}{41} \leq R_3(1) \leq \frac{e}{41} = 0.113...$

Actual error:

$$R_3(1) = f(1) - P_3(1) = 2.718... - 2.666... = 0.051...$$

Taylor approximation (Examples)

Example: Sixth order Taylor polynomial of $f(x) = \sin x$ at a = 0.

$$Q_6(x) = x - \frac{1}{6}x^3 + \frac{1}{120}x^5.$$

Error we make by using $Q_6(x)$ instead of f(x):

$$R_6(x) = f(x) - Q_6(x) = \frac{f^{(7)}(c)}{7!}(x-a)^7$$

for a value c in the interval between x and a.

Example x = 1: Error

$$R_6(1) = \frac{-\cos c}{7!} 1^7 = \frac{-\cos c}{7!}$$

for a value c in the interval between 0 and 1. Therefore $-0.000198\ldots=\frac{-1}{7!}\leq R_6(1)\leq \frac{-\cos 1}{7!}=-0.000107\ldots$

Actual error:

$$R_6(1) = f(1) - P_6(1) = 0.84147... - 0.84166... = -0.000195...$$

Taylor series

f differentiable arbitrarily many times. Then we can replace Taylor polynomial of f at a by an infinite series:

Taylor series

$$T(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$
$$= \sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^i$$

Remember: Infinite series is limit of partial sums.

For which x will it converge? Sure for x=a. There is always an $r\in [0,\infty)\cup \{\infty\}$, such that T(x) convergent for $x\in (a-r,a+r)$, and divergent on $\mathbb{R}\setminus [a-r,a+r]$ (radius of convergence).

Example:
$$T(x) = 1 + x + x^2 + x^3 + ... = \sum_{i=0}^{\infty} x^i$$
 (geometric series)

Taylor series of $f(x) = \frac{1}{1-x}$ at a = 0 converges only on (-1,1), r = 1.

f differentiable arbitrarily many times.

Taylor series

$$T(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{k!}(x-a)^3 + \dots$$
$$= \sum_{i=0}^{\infty} \frac{f^{(i)}(a)}{i!}(x-a)^i.$$

In our two examples T(x) = f(x) for every $x \in \mathbb{R}$ $(r = \infty)$:

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \dots = \sum_{i=0}^{\infty} \frac{1}{i!}x^i$$
 for every $x \in \mathbb{R}$.

$$\sin x = x - \frac{1}{6}x^3 + \frac{1}{120}x^5 - \ldots = \sum_{i=0}^{\infty} \frac{(-1)^i}{(2i+1)!}x^{2i+1}$$
 for every $x \in \mathbb{R}$.