

Intro to TensorFlow 2.0

Easier for beginners, more powerful for experts

Josh Gordon

twitter.com/random_forests

These are the slides from this talk

https://www.youtube.com/watch?v=

5ECD8J3dvDQ

Functions, not sessions

TF1

```
a = tf.constant(5)
b = tf.constant(3)
c = a * b
Symbolic
```

```
with tf.Session() as sess:
    print(sess.run(c))
```

TF2

```
a = tf.constant(5)
b = tf.constant(3)
c = a * b
Concrete
```

```
print(c)
```


Progressive disclosure of complexity

Sequential API + built-in layers

Functional API + built-in layers

Functional API

- + Custom layers
- + Custom metrics
- + Custom losses

Subclassing: write everything yourself from scratch

New users, simple models

Engineers with standard use cases

Engineers requiring increasing control

Progressive disclosure of complexity

Sequential API + built-in layers

Functional API + built-in layers

Functional API

- + Custom layers
- + Custom metrics
- + Custom losses

Subclassing: write everything yourself from scratch

New users, simple models

Engineers with standard use cases

Engineers requiring increasing control

```
model = keras.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(784,)))
model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(32, activation='softmax'))
```


Progressive disclosure of complexity

Sequential API + built-in layers

Functional API + built-in layers

Functional API

- + Custom layers
- + Custom metrics
- + Custom losses

Subclassing: write everything yourself from scratch

New users, simple models

Engineers with standard use cases

Engineers requiring increasing control

Visual Question Answering

Question: What color is the dog on the right?

Answer: Golden

Workflow

A multi-input model

- 1. Use a CNN to embed the image
- 2. Use a LSTM to embed the question
- 3. Concatenate
- 4. Classify with Dense layers, per usual

(vectorized, padded) (normalized) **Embedding** Conv2D / MaxPooling2D stack LSTM Concatenate Dense / softmax

Image input

Question input

A wonderful thing about Deep Learning: ability to mix data types (text, images, timeseries, structured data) in a single model.

```
# A vision model.
# Encode an image into a vector.
vision_model = Sequential()
vision_model.add(Conv2D(64, (3, 3),
                        activation='relu',
                        input_shape=(224, 224, 3)))
vision_model.add(MaxPooling2D())
vision_model.add(Flatten())
# Get a tensor with the output of your vision model
image_input = Input(shape=(224, 224, 3))
encoded_image = vision_model(image_input)
```



```
# A language model.
# Encode the question into a vector.
question_input = Input(shape=(100,),
                       dtype='int32',
                       name="Question")
embedded = Embedding(input_dim=10000,
                     output_dim=256,
                     input_length=100)(question_input)
encoded_question = LSTM(256)(embedded_question)
```



```
# Train a classifier on top.
output = Dense(1000,
                activation='softmax')(merged)
# You can train w/ .fit, .train_on_batch,
# or with a GradientTape.
vqa_model = Model(inputs=[image_input,
                             question_input],
```

outputs=output)

from tensorflow.keras.utils import plot_model
plot_model(vqa_model, to_file='model.png')

Progressive disclosure of complexity

Sequential API + built-in layers

Functional API + built-in layers

Functional API

- + Custom layers
- Custom metrics
- + Custom losses

Subclassing: write everything yourself from scratch

New users, simple models

Engineers with standard use cases

Engineers requiring increasing control

```
class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__(name='my_model')
        self.dense_1 = layers.Dense(32, activation='relu')
        self.dense_2 = layers.Dense(num_classes,activation='softmax')

def call(self, inputs):
    # Define your forward pass here
    x = self.dense_1(inputs)
    return self.dense_2(x)
```

```
class MyModel(tf.keras.Model):
    def __init__(self, num_classes=10):
        super(MyModel, self).__init__(name='my_model')
        self.dense_1 = layers.Dense(32)
        self.dense_2 = layers.Dense(num_classes,activation='softmax')

def call(self, inputs):
    # Define your forward pass here
    x = self.dense_1(inputs)
    x = tf.nn.relu(x)
    return self.dense_2(x)
```


Helpful references

Guides

tensorflow.org/guide/keras/overview tensorflow.org/guide/keras/functional tensorflow.org/guide/keras/train_and_evaluate tensorflow.org/guide/keras/custom_layers_and_models

Examples

tensorflow.org/tutorials/images/segmentation tensorflow.org/tutorials/generative/pix2pix tensorflow.org/tutorials/generative/adversarial_fgsm

Progressive disclosure of complexity

Quick experiment

Customize your training loop Add checkpointing, early stopping, TensorBoard monitoring, send Slack notifications... Custom training loop using built-in optimizers and losses e.g. GANs e.g. new optimization algorithm; easily modify gradients as you go.

```
model.compile(optimizer=Adam(),
              loss=BinaryCrossentropy(),
              metrics=[AUC(), Precision(), Recall()])
model.fit(data,
          epochs=10,
          validation_data=val_data,
          callbacks=[EarlyStopping()
                      TensorBoard(),
                     ModelCheckpoint()])
```

...or write your own callbacks!

Progressive disclosure of complexity

Quick experiment

Customize your training loop Add checkpointing, early stopping, TensorBoard monitoring, ... Custom training loop using built-in optimizers and losses e.g. GANs e.g. new optimization algorithm; easily modify gradients as you go.

Graphs with one LOC

```
@tf.function
def train_step(features, labels):
    with tf.GradientTape() as tape:
        logits = model(features, training=True)
        loss = loss_fn(labels, logits)

    grads = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(grads, model.trainable_variables))
    return loss
```


Low-level details: Linear regression

Constants

```
x = tf.constant([[5, 2], [1, 3]])
print(x)

tf.Tensor(
[[5 2]
    [1 3]], shape=(2, 2), dtype=int32)
```

Tensors to NumPy

Shape and dtype

```
print('shape:', x.shape)
print('dtype:', x.dtype)

shape: (2, 2)
dtype: <dtype: 'int32'>
```

Distributions

Math in TF2 feels like NumPy

```
a = tf.random.normal(shape=(2, 2))
b = tf.random.normal(shape=(2, 2))
c = a + b
d = tf.square(c)
```

Gradients

```
x = tf.constant(3.0)
with tf.GradientTape() as g:
   g.watch(x)
   y = x * x
dy_dx = g.gradient(y, x) # 6.0
```

Variables are automatically tracked

```
dense1 = tf.keras.layers.Dense(32)
dense2 = tf.keras.layers.Dense(32)
```

```
with tf.GradientTape() as tape:
   result = dense2(dense1(tf.zeros([1, 10])))
   tape.gradient(result, dense1.variables)
```


Quick demo


```
# Keras datasets
from tensorflow.keras import datasets
(train_images, train_labels), \
  (test_images, test_labels) = datasets.cifar10.load_data()
# TensorFlow Datasets
import tensorflow_datasets as tfds
dataset, metadata = tfds.load('cycle_gan/horse2zebra',
                               with_info=True,
                               as_supervised=True)
```

```
# Caching is important to avoid repeated work
# Use either an in-memory cache, or a cache file
def preprocess(img):
  img = tf.cast(image, tf.float32)
  img = (img / 127.5) - 1
  img = tf.image.resize(img, [286, 286])
  return img
image_ds = image_ds.map(
    preprocess, num_parallel_calls=AUTOTUNE).cache()
```

Helpful reference (on tf.data, loading images, and caching): tensorflow.org/tutorials/load_data/images
List of TensorFlow Datasets: tensorflow.org/datasets/catalog/overview

Distribute, without changing your code

- No code changes for single machine, multi-GPU training
- No code changes for multi-machine, multi-GPU training

Synchronous data parallelism via efficient all reduce.

MirroredStrategy

Multi-GPU training

- Synchronous data parallelism.
- Variables mirrored on each GPU.
- Replicas are run in lock-step..
- All-reduce: network efficient way to aggregate gradients.

import tensorflow as tf

```
model = tf.keras.applications.ResNet50()
optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
model.compile(..., optimizer=optimizer)
model.fit(train_dataset, epochs=10)
```

import tensorflow as tf

MultiWorkerMirroredStrategy

Multi-machine, multi-GPU training

- Efficient all reduce across multiple machines
- No additional code changes
- Cluster config environment variable

Project suggestion: TinyML

Train with Python; Deploy with Arduino

Gesture classification (on-device!)

<u>How-to Get Started with Machine Learning on Arduino, by Sandeep Mistry & Dominic Pajak tensorflow.org/lite/microcontrollers/overview</u>

Workflow

- 1. Capture data with the Arduino IDE for each gesture
- 2. Save CSVs (e.g. punch.csv, wave.csv)
- Upload to Colab
- 4. Train a model with TF2 using Keras
- 5. Convert your model to TFLite
- 6. Install on device (walkthrough provided)

Capturing data

How-to Get Started with Machine Learning on Arduino, by Sandeep Mistry & Dominic Pajak

```
# Convert the model to the TFLite format without quantization
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the model to disk
open("gesture_model.tflite", "wb").write(tflite_model)

# Check the size
import os
```

basic_model_size = os.path.getsize("gesture_model.tflite")

print("Model is %d bytes" % basic_model_size)

Deploying on device


```
IMU Classifier - model.h | Arduino 1.8.10
const unsigned char model[] = {
  0x1c, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00,
  0x1c, 0x00, 0x04, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x10,
  0x00, 0x00, 0x18, 0x00, 0x12, 0x00, 0x00, 0x00, 0x03,
  0xdc, 0x40, 0x02, 0x00, 0x10, 0x00, 0x00, 0x00, 0x1c,
  0x2c, 0x00, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x00, 0x01,
  0xe4, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xac,
  0x0f, 0x00, 0x00, 0x00, 0x54, 0x4f, 0x43, 0x4f, 0x20,
  0x76, 0x65, 0x72, 0x74, 0x65, 0x64, 0x2e, 0x00, 0x0d,
  0x80, 0x00, 0x00, 0x00, 0x74, 0x00, 0x00, 0x00, 0x68,
  0x5c, 0x00, 0x00, 0x00, 0x50, 0x00, 0x00, 0x00, 0x44,
Compiling sketch..
  const uint32_t u = *reinterpret_cast<uint32_t*>(&f);
                                        Arduino Nano 33 BLE on /dev/cu.usbmodem14501
```

How-to Get Started with Machine Learning on Arduino, by Sandeep Mistry & Dominic Pajak

Project suggestion: TF.js

Train with Python; Deploy with JS

Sentiment analysis in the browser

STATUS

Inference result (0 - negative; 1 - positive): 0.653573 (elapsed: 5.88 ms)

TensorFlow.js sentiment analysis example

Workflow

- 1. Train a model in Python
- 2. Save and convert your model (and metadata) to TF.js format
- 3. Upload to GitHub pages (or serve locally)
- 4. Run in the browser following the HTML and JS in the example

```
import tensorflowjs as tfjs
metadata = {
  'word_index': tokenizer.word_index,
# Save metadata
metadata_json_path = os.path.join(FLAGS.artifacts_dir, 'metadata.json')
json.dump(metadata, open(metadata_json_path, 'wt'))
# Convert your model to TF.js format
tfjs.converters.save_keras_model(model, FLAGS.artifacts_dir)
```

Tip: you must preprocess text in the browser exactly as you do in Pythor

TensorFlow.js toxicity classifier demo

This is a demo of the TensorFlow.js toxicity model, which classifies text according to whether it exhibits offensive attributes (i.e. profanity, sexual explicitness). The samples in the table below were taken from this <u>Kaggle dataset</u>.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true
Please stop. If you continue to vandalize Wikipedia, as you did to Kmart, you will be blocked from editing.	false	false	false	false	false	false	false
I respect your point of view, and when this discussion originated on 8th April I would have tended to agree with you.	false	false	false	false	false	false	false

Enter text below and click 'Classify' to add it to the table.

i.e. 'you suck'

CLASSIFY

Applications

Imagine a tool to assist moderators.

Or, to prompt users.

All data stays client side.

Demos

bit.ly/pose-net

Notes

Installing TF2

In Colab, run this command at the top of your notebook:

%tensorflow_version 2.x

To install locally, you can use pip.

Visit <u>tensorflow.org/install</u>

Keras vs tf.keras

In TF2, instead of writing "import keras" you write "from tensorflow import keras".

In Colab, if you ever see the message "Using TensorFlow Backend", you've imported the incorrect version.

Learning more

Learning more

Practical books

- Hands-on ML with Scikit-Learn, Keras and TensorFlow (2nd edition)
- Deep Learning with Python
- Deep Learning with JavaScript
- <u>TinyML</u>

Latest tutorials and guides

- tensorflow.org/tutorials
- tensorflow.org/quide

Thank you!

Josh Gordon

twitter.com/random_forests