Computer Vision for HCI

Image Segmentation and Template Matching

1

Image Segmentation

- Goal: Partition an image into distinct regions containing each pixels with similar attributes
- Use "discontinuity" and/or "similarity" approach
 - Discontinuity: segment into regions based on discontinuity (gradient or edge detection)
 - Similarity: Merge similar regions (clustering, region growing etc.)
- Topics
 - Simple Segmentation
 - Segmentation by Clustering
 - Superpixel Segmentation

Goal

3

3

Recap: Otsu's Simple Segmentation

- Distribution of graylevels can be used to determine <u>binary</u> threshold
- <u>Histogram</u> graphs number of pixels in the image with a particular graylevel, as a function of the possible graylevels
 - Find peaks and set threshold between peaks

4

Otsu's Method

- "A threshold selection method from graylevel histograms", IEEE Trans on Sys., Man, and Cyb., Vol 9, No 1, pp 62-66, 1979.
 - Basic idea: threshold is chosen such that the division in the histogram yields the largest reduction in standard deviation of the pixel intensities (black, white)
 - Matlab: graythresh()

5

5

Image Segmentation by Clustering

Identify groups of pixels that "go together"

Each "point" is a pixel in color space (3-D: RGB)

- K-Means
- Mean-Shift Clustering

6

K-Means

7

7

K-means Clustering

- Each "point" is a 3-D vector of color (RGB)
- Initialization:
 - Choose *k* cluster center points (how pick *k*?)
- Repeat:
 - Assignment step:
 - For every point, find its closest center point
 - Update step:
 - Update every center point as the mean of its assigned points
- Until:
 - The maximum number of iterations is reached, or
 - No changes during the assignment step, or
 - The average distortion per point drops very little

K-means: Initialization

- K-means is *extremely sensitive* to initialization
- Bad initialization can lead to
 - Poor convergence speed
 - Poor overall clustering
- How to initialize?
 - Randomly from data
 - Try to find K "spread-out" points (K-means++)
- Try multiple initializations and pick best result
 - Minimize total "distortion/inertia" (sum of distances of points to their cluster centers)

J(
$$\mu$$
,r) = $\sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{nk} || x_n - \mu_k ||^2$

Whether x_j is assigned to μ_i

9

q

Example

10

Mean-Shift

11

11

Mean-Shift segmentation

- Recall Mean-Shift tracking lecture...
- Used here for clustering
 - Unlike K-means, do **not** need initial 'K' number
- Assigns the data points to clusters iteratively by shifting points towards the "local modes"
 - Mode: The highest density of data points in the region, in the context of the Mean-Shift

Mean-Shift clustering

- Related to "Kernel Density Estimation" (KDE)
 - Imagine the data is sampled from a probability distribution
 - Goal: Estimate the underlying distribution (also called the probability density function) for a set of data
 - Place kernel (think "weighting function") on each point
 - Adding all the individual kernels generates a probability surface (e.g., density function)

13

Mean-Shift Clustering

- Idea:
 - Make points climb up the hill to the nearest peak on the density surface
 - Iteratively shift each point "uphill" until it reaches a peak

Mean-Shift Algorithm

- Define datapoint *x*
 - Color only: [*R*, *G*, *B*]
 - Spatial and Color: [x-loc, y-loc, R, G, B]
- For each datapoint x, find the neighboring points N(x) of x, given Kernel function/window K
- For each x, calculate the *mean shift* m(x):

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

- Then update each x with $x \leftarrow m(x)$
- Repeat *n times*, or until the points stabilize

More details (Matt Nedrich): https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/

15

Superpixels

19

19

Superpixel Segmentation

- "Superpixels" capture local visual redundancy in the image
 - **SLIC** Superpixel algorithm

20

SLIC Superpixel Segmentation

- Generated by clustering pixels based on:
 - Color similarity, and
 - Spatial proximity in the image
- Employ 5-D vector per pixel: [L, A, B, x, y]
 - [L, A, B] = pixel color vector in CIELAB color space
 - (L): intensity, (A, B): color
 - "Perceptual color space" with Euclidean distance properties
 - x, y = pixel position (or col, row)

21

21

SLIC Superpixel Algorithm

- Initially choose K = number of desired superpixels
- Divide image into regular "grid" steps S (for the desired K)

Algorithm 1 Efficient superpixel segmentation

- 1: Initialize cluster centers $C_k = [l_k, a_k, b_k, x_k, y_k]^T$ by sampling pixels at regular grid steps S.
- 2: Perturb cluster centers in an $n \times n$ neighborhood, to the lowest gradient position.
- 3: repeat

(to the pixel with <u>smallest</u> gradient magnitude in 3x3 region)

- 4: **for** each cluster center C_k **do**
- 5: Assign the best matching pixels from a $2S \times 2S$ square neighborhood around the cluster center according to the distance measure (see next few slides)
- 6: end for
- 7: Compute new cluster centers and residual error E {L1 distance between previous centers and recomputed centers}
- 8: **until** $E \leq \text{threshold}$

Notation

N	Number of pixels in the input image
К	Number of Superpixels used to segment the input image
N/K	Approximate size of each superpixel
$S = \sqrt{N/K}$	For roughly equally sized superpixels there would be a superpixel centre at every grid interval S

23

23

SLIC Superpixel Segmentation

• Distance function between 2 pixels:

$$D_{s} = d_{lab} + \frac{m}{s} d_{x,y}$$

 d_{lab} : LAB distance (Euclidean) between the 2 pixels.

 $\frac{1}{S}\,d_{x,y}$: Euclidean spatial distance, normalized by grid interval S.

m: compactness control of a super pixel. Larger values make it more compact.

Template Matching

Template Matching Intro

• Want to find areas of a search image that are similar to a given template *T*

Template T

27

General Approaches

- Template-Based:
 - Utilize raw template (pixels) and find best matching patches in search image
 - Sum-of-absolute differences (SAD)
 - Sum-of-squared differences (SSD)
 - Normalized cross-correlation (NCC)

1) Sum-of-Absolute Differences (SAD)

• Compute **absolute differences of pixel intensities** of template *T* and image patch *P* extracted from search image (note that *P* is the same size as template *T*)

$$SAD(P,T) = \sum_{R,G,B} \sum_{x,y} |P(x,y) - T(x,y)|$$

- Compute SAD for all patch locations within the search image
- Keep patch with minimum SAD or patches with SAD less than given threshold

29

SAD Example

Template Image T

Negative SAD (just for visualization),
Origin is in center of patch

2) Sum-of-Squared Differences (SSD)

• Similar to SAD, but replace absolute differences with **squared differences**

$$SSD(P,T) = \sum_{R,G,B} \sum_{x,y} (P(x,y) - T(x,y))^{2}$$

- Compute SSD for all patches within the search image
- Keep patch with minimum SSD

Illumination Changes

- SAD and SSD can work well if the template and search image have the same brightness
 - Problem: images can have varying illumination conditions

Search Image

Template T

35

3) Normalized Cross-Correlation (NCC)

Normalize images to remove variations from illumination conditions

Mean of pixel values <u>in patch</u> (each color computed independently)

$$NCC(P,T) = \sum_{R,G,B} \frac{1}{n-1} \sum_{x,y} \frac{\left(P(x,y) - \overline{P}\right) \cdot \left(T(x,y) - \overline{T}\right)}{\sigma_{P} \sigma_{T}}$$

Standard deviation of pixel values in patch (each color computed independently)

Note: <u>larger</u> values of NCC <u>better</u>!

The maximum value is 1 when two $\underline{\text{1-channel}}$ signals are exactly the same: NCC(a, a)=1

Summary

- K-Means
 - Choose cluster centers and label every pixel based on its nearest neighbor
 - Minimize total distortion
 - Sensitive to initialization
- Mean-Shift
 - Iteratively shifts data towards peaks
- Superpixel Segmentation
 - Clustering small pixel regions based on color similarity and proximity
- Template Matching
 - SAD, SSD, NCC

41