ЛАБОРАТОРНАЯ РАБОТА №10

ГРАДУИРОВАНИЕ ЭЛЕКТРОВЛАГОМЕРА

Цель работы: Ознакомиться с методами и приборами, применяемыми для измерения влажности. Научиться тарировать электровлагомер (снимать градуировочную кривую).

Основные теоретические сведения

Электрические методы оценки влажности материалов вследствие их простоты, малых затрат времени в процессе измерений нашли применение во многих отраслях легкой промышленности.

По принципу действия и в зависимости от измеряемого электрического параметра материала электрические влагомеры делят на две группы. В приборах первой группы оценка влажности материала производится по результатам измерения электрической проводимости или сопротивления. Приборы этой группы называются электровлагомерами сопротивления или кондуктометрическими электровлагомерами. Электровлагомер сопротивления представляет собой сочетание датчика и измерителя больших сопротивлений. От датчика требуется точное воспроизведение условий измерений в каждом опыте, для чего необходимо обеспечить надежное соприкосновение электродов датчика с материалом. В приборах второй группы оценка влажности материала производится по результатам измерения диэлектрической проницаемости. Приборы этой группы называют емкостными электровлагомерами.

Принцип действия емкостного электровлагомера основан на различии величин диэлектрической проницаемости сухого материала и влаги. При использовании такого метода измерения проводятся на переменном токе высокой частоты, в результате измерения определяется емкостное сопротивление датчика. Измерительное устройство емкостного влагомера сложнее влагомера сопротивления.

Конструктивное оформление датчика тесно увязывается со свойствами контролируемого материала. Так, для тканей нашли применение датчики в форме роликов, между которыми располагается материал, для кож игольчатые датчики, вкалываемые в материал показано на рисунке 1.

Рисунок 1 – Датчики: а – роликовые, б – игольчатые

Рассмотрим устройство и работу измерительной схемы влагомера сопротивления типа ЭВ- 2К.

Прибор на рисунке 2 состоит из стабилизированного блока питания (1) измерительного устройства (2). Стабилизированный блок питания включает понижающий трансформатор Tr1, выпрямитель на диодах D_1 и D_2 , сглаживающий конденсатор и параметрический стабилизатор напряжения, образованный резистором R_5 и стабилитронами D_3 и D_4 . На выходе блока питания включен переменный резистор R_7 , служащий для регулировки напряжения питания.

Рисунок 2 – Измерительная схема влагомера сопротивления типа ЭВ- 2К

Измерительное устройство содержит основной делитель напряжения на резисторах $R_{\rm J}$; $R_{\rm 1}$; $R_{\rm 2}$, усилитель постоянного тока, выполненный на лампе R01, и вспомогательный делитель напряжения на резисторах $R_{\rm 6}$; $R_{\rm 8}$. Между катодом лампы и движком переменного резистора $R_{\rm 8}$ включен измерительный прибор A. Вспомогательный делитель напряжения служит для установки стрелки измерительного прибора на НШ при настройке прибора, перемещением подвижного контакта резистора $R_{\rm 8}$.

При изменении влажности исследуемого материала, изменяется сопротивление датчика $R_{\rm Д}$. Т. к. датчик включен в цепь основного делителя напряжения, то изменение величины $R_{\rm Д}$ приведет к изменению выходного напряжения U_1 , подводимого к управляющей сетке лампе R01. Изменение U_1 приводит к изменению анодного тока $I_{\rm A}$ и, соответственно, напряжения U_2 на катодном сопротивлении R_3 . Неравенство напряжения U_2 и $U_{\rm Д}$ приводит к появлению разности напряжений $\Delta U = U_2$ - $U_{\rm Д}$ на зажимах A. Через измерительный прибор при этом течет ток $I_{\rm ил} = \Delta U/R_{\rm ип}$, что вызывает

отклонение стрелки на величину α = к I_{un} . Поскольку изменение тока I_{un} пропорционально сопротивлению датчика, то шкалу прибора можно отградуировать в единицах влажности исследуемого материала, т.е. каждому значению тока поставить в соответствие определенное значение влажности.

Порядок выполнения работы

- 1. Включить электровлагомер в электрическую сеть и подготовить его к работе. Перед измерениями выверить края шкалы прибора: рукояткой «Установка НШ» при свободном датчике установить стрелку прибора на отметку «Н» (только на первом диапазоне 0...+22). Рукояткой «Установка КШ» при нажатой кнопке установить стрелку прибора на отметку «КШ».
 - 2. Произвести градуировку электровлагомера, для чего:
 - 3. образец взвесить на аналитических весах;
- 4. снять показания электровлагомера (образец прокалывается датчиком последовательно в трех местах и определяется среднее показание);
- 5. поместить исследуемый образец в сушильный шкаф и выдержать в течение 25+30 сек.
- 6. Измерения по пункту 2 последовательно повторить 4-5 раз до полного высушивания образца.
 - 7. Влажность определяется выражением:

$$W = \frac{m - m_0}{m} \,, \tag{1}$$

где m — масса влажного материла; m_0 — масса сухого материала.

8. Данные градуировки занести в протокол градуировки и, взяв среднеарифметическое результатов измерения влажности образцов, построить градуировочную кривую влагомера W = f(n) (таблица 1).

Протокол градуировки						
Электровлагомер типа	для материала					
при температуре	окружающей среды					

Таблица 1 – Результаты измерений

$N_{\underline{0}}$		Macca	Влаж-	Показания			
об-	Масса влажного	сухого	ность по	электровлагомера			
раз-	материала	матери-	весовому	1	2	3	сред-
ца		ала	методу, %	1		3	нее
1	Исходная						
	После						
	первой						
	подсушки						
	После						
	второй						
	подсушки						
	После						
	третьей						
	подсушки						
2	Исходная						
	После						
	первой						
	подсушки						
	После						
	второй						
	подсушки						
	После						
	третьей						
	подсушки						

Содержание индивидуального отчета

- 1. Название, цель работы.
- 2. Схема лабораторной установки с описанием.
- 3. Таблица с результатами измерений.
- 4. Результаты расчетов.
- 5. Выводы.

Контрольные вопросы

- 1. Методы измерения влажности.
- 2. Кондуктометрический метод измерения влажности.
- 3. Емкостные электровлагомеры и принцип их действия.
- 4. Пояснить схему и принцип действия электровлагомера ЭВ-2К.
- 5. Достоинства и недостатки емкостных электровлагомеров.