

Introduction to Data Science (Lecture 23)

Dr. Mohammad Pourhomayoun

Assistant Professor
Computer Science Department
California State University, Los Angeles

Map Reduce

Map-Reduce

 Map-Reduce is a programming model for processing and generating big data sets with a parallel and distributed algorithm.

- map function processes input key/value pairs to generate a set of intermediate key/value pairs.
- reduce function merges all intermediate values associated with the same intermediate key.

[Ref]: Dean, Jeffrey & Ghemawat, Sanjay. (2004). MapReduce: Simplified Data Processing on Large Clusters. Communications of the ACM.

Example: Compute overall word frequency across 5M docs

Map Reduce for Relational Database Operations

Example: Relational Join

- Relational Join: Stick the tuples of two relations together when they agree on common attributes (column names).
- Consider two database tables R(A, B) and S(B, C).
- R JOIN S: T(A, B, C) formed by joining rows (a, b) ϵ R and (b, c) ϵ S with matching b.
- Example: R(A,B) JOIN $S(B,C) = \{a,b,c \mid a,b \text{ is in } R \text{ and } b,c \text{ is in } S\}$.

Α	В
6	2
12	2
7	5

R

В	С
2	9
5	11
5	3
9	5

Α	В	С
6	2	9
12	2	9
7	5	11
7	5	3

S R JOIN S

The Map Function for Join

• Each tuple (a,b) in R is mapped to:

$$key = b$$
, $value = (R,a)$.

- Note: "R" in the value is just a <u>bit</u> to indicate "this value represents a tuple in R, not S."
- Each tuple (b,c) in S is mapped to:

key =
$$b$$
, value = (S,c) .

 After grouping by keys (shuffle), each reducer gets a key-list that looks like:

The Map Function for Join

$$R = \begin{array}{c|cc} A & B \\ \hline 6 & 2 \\ \hline 12 & 2 \\ \hline 7 & 5 \\ \end{array}$$

$$S = \begin{array}{c|c}
B & C \\
2 & 9 \\
\hline
5 & 11 \\
\hline
5 & 3 \\
9 & 5 \\
\end{array}$$

Map on R:
$$\begin{cases} (2, (R,6)) \\ (2, (R,12)) \\ (5, (R,7)) \end{cases}$$

Map on S: $\begin{cases} (2, (S,9)) \\ (5, (S,11)) \\ (5, (S,3)) \\ (9, (S,5)) \end{cases}$

(2, [(R,6), (R,12), (S,9)]) (5, [(R,7), (S,11), (S,3)]) (9, [(S,5)])

The Reduce Function for Join

After grouping by keys, each reducer gets a key-list that looks like:

• Reducer generates a tuple (a,b,c) for each pair of (R,a_i) and (S,c_j) on the list with key b.

The Reduce Function for Join

Α	В	С
6	2	9
12	2	9
7	5	11
7	5	3

Map Reduce for Matrix-Vector Multiplication

MapReduce for Matrix Multiplication

Matrix Multiplication

$$c_{ik} = \sum_{j} a_{ij} \times b_{jk}$$

Example

$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 \\ 1 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 4 + 1 \cdot 1 + 3 \cdot 2 & 2 \cdot 5 + 1 \cdot 3 + 3 \cdot 1 \\ 4 \cdot 4 + 2 \cdot 1 + 1 \cdot 2 & 4 \cdot 5 + 2 \cdot 3 + 1 \cdot 1 \end{bmatrix}$$

$$= \begin{bmatrix} 15 & 16 \\ 20 & 27 \end{bmatrix}$$

Simple Pseudo Code for Matrix Multiplication (general approach)

```
for i = 1 to n do
    for j = 1 to n do
        for k = 1 to n do
        C[i,j] = C[i,j] + A[i,k] x B[k,j]
        endfor
    endfor
endfor
```


Special Case: Matrix-Vector Multiplication

 Map-Reduce originally developed by Google in order to compute the PageRank vector.

Map for Matrix-Vector Multiplication

Map Function:

- -N mappers process row i of the matrix at a time
- Mapper j Maps $((i, j), m_{ij})$ to (i, m_{ij}, v_j)
- Note that We assumed that each mapper can load vector v.

Reduce for Matrix-Vector Multiplication

Reduce function:

- M reducers calculate elements of vector R
- Reducer i receives $(i, [m_{i1} v_1, \dots m_{iN} v_N])$, sums all values of the list of a key i, and produces (i, R_i) :

$$R_i = \sum_j m_{ij} \times v_j$$

Thank You!

Questions?