Performance: Digital Data, Analog Signals

Radhika Sukapuram

September 10, 2020

Radhika Sukapuram Lecture 7 September 10, 2020 1 / 16

Performance of various modulation schemes

- Measured by the bandwidth of the modulated signal (not the channel)
- ullet -depends on a factor r^{-1} , which is determined by the modulation and filtering process
- Filters are used to filter out unwanted frequency components
- 0 < r < 1

 1 Don't confuse this with r=no of data elements / no of signal elements $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Radhika Sukapuram Lecture 7 September 10, 2020 2 / 16

Performance of various modulation schemes

- ASK and PSK, and under some assumptions, FSK: $B_T = (1 + r)R$ where R is the bit rate
- MPSK: $B_T = \frac{1+r}{L}R = \frac{1+r}{\log_2 M}R$ where L is the number of bits encoded per signal element, M is the number of signal elements
- MFSK: $B_T = \frac{(1+r)M}{\log_2 M} R$
- Bandwidth efficiency: $\frac{R}{B_T}$

Question

If a modulation scheme is highly bandwidth efficient, it means that

- (A) it can send a higher number of bits per unit of bandwidth
- (B) it can send a lower number of bits per unit of bandwidth

Performance of various modulation schemes

- ASK and PSK and under some assumptions, FSK: $B_T = (1 + r)R$ where R is the bit rate
- MPSK: $B_T = \frac{1+r}{L}R = \frac{1+r}{\log_2 M}R$ where L is the number of bits encoded per signal element, M is the number of signal elements
- MFSK: $B_T = \frac{(1+r)M}{\log_2 M} R$
- Bandwidth efficiency: $\frac{R}{B_T}$

	r=0	r = 0.5	r=1
ASK	1.0	0.67	0.5
Multilevel FSK			
M = 4, L = 2	0.5	0.33	0.25
M = 8, L = 3	0.375	0.25	0.1875
M = 16, L = 4	0.25	0.167	0.125
M = 32, L = 5	0.156	0.104	0.078
PSK	1.0	0.67	0.5
Multilevel PSK			
M = 4, L = 2	2.00	1.33	1.00
M = 8, L = 3	3.00	2.00	1.50
M = 16, L = 4	4.00	2.67	2.00
M = 32, L = 5	5.00	3.33	2.50

E_b/N_0

- E_b/N_0 : the ratio of signal energy per bit to noise power density per hertz
- A parameter related to SNR that is more convenient for determining digital data rates and error rates
- Bit Error Rate is a function of E_b/N_0

Energy = Power * time

Energy per bit in a signal (analog or digital) that contains binary digital data, $E_b = ST_b$

S: signal power, T_b : time required to send 1 bit. Since $R = \frac{1}{T_b}$, where R is the data rate, $E_b = \frac{S}{R}$

$$\frac{E_b}{N_0} = \frac{S}{N_0 R} = \frac{S}{kTR}$$

Radhika Sukapuram Lecture 7 September 10, 2020 6 / 16

Why is E_b/N_0 important?

- E_b/N_0 : the ratio of signal energy per bit to noise power density per hertz
- Bit Error Rate is a **decreasing** function of E_b/N_0

$$\frac{E_b}{N_0} = \frac{S}{N_0 R} = \frac{S}{kTR}$$

- As the bit rate R increases, the transmitted signal power must increase relative to noise, to maintain the required E_b/N_0
- If the data rate were doubled, the bits would be more tightly packed together, and the same passage of noise might destroy more bits

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

Question

For binary phase-shift keying $E_b/N_0=8.4dB$ is required for a bit error rate of 10^{-4} (1 bit error out of every 10,000). If the effective noise temperature is 290 K (room temperature) and the data rate is 2400 bps, what received signal level is required? Express the answer in dBW. $k=1.38*10^{-23}J/K$

Relating E_b/N_0 to SNR

$$\frac{E_b}{N_0} = \frac{S}{N_0 R}$$

 N_0 is the noise power density in watts per hertz.

The noise N in a signal with bandwidth B is $N = BN_0$.

Substituting for N_0 ,

$$\frac{E_b}{N_0} = \frac{S}{N_0 R} = \frac{SB}{NR}$$

Relating E_b/N_0 to Spectral Efficiency

As per Shannon's formula, $C = B \log_2(1 + S/N)$. That is, $\frac{S}{N} = 2^{C/B} - 1$

$$\frac{E_b}{N_0} * \frac{R}{B} = \frac{S}{N}$$

Therefore $\frac{E_b}{N_0} = \frac{B}{R} * \frac{S}{N} = \frac{B}{R} (2^{C/B} - 1)$

Assuming R = C,

$$\frac{E_b}{N_0} = \frac{B}{C}(2^{C/B} - 1)$$

This relates the achievable spectral efficiency C/B to E_b/N_0

10 / 16

Radhika Sukapuram Lecture 7 September 10, 2020

Question

For constant signal-to-noise ratio, an increase in data rate

- (A) increases the error rate
- (B) decreases the error rate
- (C) has no effect on the error rate

11 / 16

Radhika Sukapuram Lecture 7 September 10, 2020

Bandwidth Efficiency for MFSK and MPSK

	r=0	r = 0.5	r=1
ASK	1.0	0.67	0.5
Multilevel FSK			
M = 4, L = 2	0.5	0.33	0.25
M = 8, L = 3	0.375	0.25	0.1875
M = 16, L = 4	0.25	0.167	0.125
M = 32, L = 5	0.156	0.104	0.078
PSK	1.0	0.67	0.5
Multilevel PSK			
M = 4, L = 2	2.00	1.33	1.00
M = 8, L = 3	3.00	2.00	1.50
M = 16, L = 4	4.00	2.67	2.00
M = 32, L = 5	5.00	3.33	2.50

Lecture 7

12 / 16

Theoretical Bit Error Rate for MFSK and MPSK

- For MFSK, BER decreases as M increases
- For MFSK, Bandwidth efficiency decreases as M increases
- For MPSK, BER increases as M increases
- For MPSK, Bandwidth efficiency increases as M increases
- For both, there is a tradeoff between bandwidth efficiency and BER

BER for FSK, ASK, PSK, and QPSK

What is the bandwidth efficiency for FSK, ASK, PSK, and QPSK for a bit error rate of 10^{-7} on a channel with an SNR of 12 dB? For FSK and ASK, $(\frac{E_b}{N_c})dB$ =14.2dB

$$\frac{E_b}{N_0} * \frac{R}{B} = \frac{S}{N}$$

$$\frac{R}{B_T} = \frac{S}{N} / (\frac{E_b}{N_0})$$

Radhika Sukapuram

Lecture 7

September 10, 2020

14 / 16

Bandwidth efficiency for FSK, ASK, PSK, and QPSK

$$(\frac{R}{B_T})dB = (\frac{S}{N})dB - (\frac{E_b}{N_0})dB$$

For FSK and ASK, $(\frac{R}{B_T})dB = 12dB - 14.2dB = -2.2dB$

$$\left(\frac{R}{B_T}\right) = 0.6$$

Similarly, for PSK,

$$\left(\frac{R}{B_T}\right) = 12dB - 11.2dB = 0.8dB$$

$$\left(\frac{R}{B_T}\right) = 1.2$$

For QPSK, since the modulation rate determines the bandwidth and it is twice that of the data rate for PSK,

$$\left(\frac{R}{B_T}\right) = 2.4$$

Bandwidth efficiency for FSK, ASK, PSK, and QPSK

- ASK and FSK exhibit the same bandwidth efficiency
- PSK is better, and even greater improvement can be achieved with multilevel signaling.

16 / 16