Data Visualization Geometric Objects Facets Statistical transforms Your turn

R for Data Science (I): Visualization

Alex Sanchez, Miriam Mota, Ricardo Gonzalo and Mireia Ferrer

Statistics and Bioinformatics Unit. Vall d'Hebron Institut de Recerca

Readme

- License: Creative Commons
 Attribution-NonCommercial-ShareAlike 4.0 International
 License http://creativecommons.org/licenses/by-nc-sa/4.0/
- You are free to:
 - Share : copy and redistribute the material
 - Adapt : rebuild and transform the material
- Under the following conditions:
 - **Attribution**: You must give appropriate credit, provide a link to the license, and indicate if changes were made.
 - NonCommercial: You may not use this work for commercial purposes.
 - Share Alike: If you remix, transform, or build upon this work, you must distribute your contributions under the same license to this one.

Outline: Data Exploration

- The Data Science Approach in R
- Data Visualization
- Data Transformation
- Exploratory Data Analysis

Recall: The Data Science Approach in R

Program

Data Visualization Geometric Objects Facets Statistical transforms Your turn

Data Visualization

Graphics in the tidyverse

- Traditionally graphics in R are relatively complicated because they are based in functions with many parameters.
- Improving a graphic or overimposing distinct plots is also a non-trivial task.
- The tidyverse approach provides a distinct way to draw plots which is, at the same time, intuitive, flexible and powerful.
- This is made possible because it implements the so-called grammar of graphics which was introduced by Hadley Wickam in his paper A layered grammar of graphics.

The grammar of graphics

- Graphics are treated as a set of elements which can be combined to produce the final plot.
- The idea consists of *working with distinct layers* starting with a first one that sets the data to be plotted.
- Successive layers are added, for instance to change colors, add annotations, overimpose other plots, etc.

The ggplot2 package

- This package implements the grammar of graphics within the tidyverse.
- The package does not belong to the standard R distribution, so it has to be installed.
 - This can be done when installing the tidyverse or separately (only for this package).
- Option 1:

```
install.packages('tidyverse')
```

• Option 2:

```
install.packages('ggplot2')
```

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- 1 The data to be represented, stored in a data frame.

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- The data to be represented, stored in a data frame.
- ② Geometric objects (geoms) which define the global aspect of the layer (bars, points, lines...).

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- The data to be represented, stored in a data frame.
- @ Geometric objects (geoms) which define the global aspect of the layer (bars, points, lines...).
- Sthetic attributes (aesthetics), visual properties of the geoms such as position, color of line, shapes of points, etc.

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- The data to be represented, stored in a data frame.
- @ Geometric objects (geoms) which define the global aspect of the layer (bars, points, lines...).
- Sesthetic attributes (aesthetics), visual properties of the geoms such as position, color of line, shapes of points, etc.
- A statistical summary of the data (stats) (counting, smoothing, ...). It is usually associated to the type of geom used.

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- The data to be represented, stored in a data frame.
- @ Geometric objects (geoms) which define the global aspect of the layer (bars, points, lines...).
- Sthetic attributes (aesthetics), visual properties of the geoms such as position, color of line, shapes of points, etc.
- A statistical summary of the data (stats) (counting, smoothing, ...). It is usually associated to the type of geom used.
- facets and scales allow to visualize different subsets of the data and control the representation in space.

- A (gg)plot is obtained by combining several elements which produce distinct layers in the same plot:
- The data to be represented, stored in a data frame.
- @ Geometric objects (geoms) which define the global aspect of the layer (bars, points, lines...).
- Sthetic attributes (aesthetics), visual properties of the geoms such as position, color of line, shapes of points, etc.
- A statistical summary of the data (stats) (counting, smoothing, ...). It is usually associated to the type of geom used.
- facets and scales allow to visualize different subsets of the data and control the representation in space.
- Different elements can be included in the graph with the

Creating a plot in practice

The basic steps to create a plot are:

- Create a ggplot object providing the data and some aesthetics
- Add one or more geoms using the + operator to define and shape the plot type.

Example 1. The data

library(readxl)

3

4

5

First we need the data

```
diabetes <- read excel("datasets/diabetes.xls")</pre>
head(diabetes)
  # A tibble: 6 x 11
##
    numpacie mort tempsviu edat bmi edatdiag tabac
       <dbl> <chr>
                      <dbl> <dbl> <dbl>
                                          <dbl> <chr> <dl
##
                       12.4 44 34.2
## 1
           1 Vivo
                                             41 No f~
## 2
           2 Vivo
                       12.4 49 32.6
                                             48 Fuma~
```

14.1

14 1

9.6 49 22

7.2 47 37.9

43 42.2

33.1

35 Fuma~

45 No f~

42 Fuma~

44 No f~

3 Vivo

4 Vivo

5 Vivo

6 Vivo

Example 1. Build the plot

```
library(ggplot2)
ggplot(diabetes)+
  geom_point(aes(x=edat,y=sbp))
```


Variations on the theme

Calls to ggplot can be combined differently

```
ggplot(data=diabetes,aes(x=edat,y=sbp))+
geom_point()
```

or

```
ggplot()+
geom_point(data=diabetes,aes(x=edat,y=sbp))
```

Aesthetics

- In a ggplot aesthetic aes () refers to what we can see, that is, visual properties of an object.
 - x, y: what goes on the axes
 - color: exterior color
 - II: color of the interior
 - shape: shape of the points
 - linetype: type of line
 - size: size
 - alpha: transparency (1: opaque; 0: transparent)
- Each type of geometry accepts a subset of the possible options.
- One of the most used functions is to define groups through various aesthetics variables or directly with the option on "group".

Example 2: Aesthetics

```
ggplot(diabetes)+
  geom_bar(aes(x=as.factor(ecg)))
 90 -
60 -
 30 -
               Anormal
                                                             Normal
                                      Frontera
                                    as.factor(ecg)
ggplot(diabetes)+
  geom_histogram(aes(x=bmi),bins=10)
 40 -
30 -
20 -
 10 -
```

Distinguishing between groups using aes() (1)

```
ggplot(diabetes)+
geom_point(aes(x=edat,y=sbp, col=tabac))
```


Distinguishing between groups using aes() (2)

```
ggplot(diabetes)+
geom_point(aes(x=edat,y=sbp, col=tabac, shape=chd))
```


aes properties that do not depend on variables

Notice the difference between these plots.

```
ggplot(diabetes)+
  geom_point(aes(x=edat, y=sbp), col='red')
```

```
ggplot(diabetes)+
geom_point(aes(x=edat, y=sbp, col='red'))
```


Data Visualization Geometric Objects Facets Statistical transforms Your turn

Geometric Objects

Modifying plots by adding geoms

- Geometric objects are the actual marks we put on a plot.
 Examples include:
 - points (geom_point, for scatter plots, dot plots, etc)
 - lines (geom_line, for time series, trend lines, etc)
 - boxplot (geom_boxplot, for, well, boxplots!)
- A plot must have at least one geom; there is no upper limit.
 - You can add a geom to a plot using the + operator
- You can get a list of available geometric objects using the code below: help.search("geom_", package = "ggplot2")

Drawing plots incrementally

In the console run the follow instructions one after the other

```
(p <- ggplot(diabetesF, aes(x=edat, y=sbp)))
(p<- p + geom_point())
(p<- p + geom_smooth(method='lm'))</pre>
```

Do not forget boxplots!

```
(p<- ggplot(diabetes, aes(x=chd, y=tempsviu)) +
   geom_boxplot())</pre>
```


$$(p < - p +$$

ggtitle("Relation between temps viu and chardiac disease

Adding labels to your plot

- It is straightforward with the geom_text() which accepts a labels mapping.
- An alternative is using geom_label

```
ggplot(diabetesF, aes(x=edat, y=sbp))+
geom_point() +
geom_text(aes(label=chd), size = 3)
```


ggplot extensions: the ggrepel package

Use this package to avoid overlapping of labels and points

```
install.packages("ggrepel")

require(ggrepel)

ggplot(diabetesF, aes(x=edat, y=sbp))+ geom_point() +
  geom_label_repel(aes(label=chd), size = 3)
```

ggplot extensions: the ggrepel package

Exercise I

- The data for this exercise, stored in the file EconomistData.csv.
- They consist of Human Development Index and Corruption Perception Index scores for several countries.
- Create a scatter plot with CPI on the x axis and HDI on the y axis.
- Color the points blue.
- Map the color of the the points to Region.
- Make the points bigger by setting size to 2
- Map the size of the points to HDI.Rank

Data Visualization Geometric Objects Facets Statistical transforms Your turn

Facets

Facets

- Faceting is ggplot2 parlance for small multiples
- The idea is to create separate graphs for subsets of data
- ggplot2 offers two functions for creating small multiples:
 - facet_wrap(): define subsets as the levels of a single grouping variable
 - facet_grid(): define subsets as the crossing of two grouping variables
- Faceting facilitates comparison among plots, not just of geoms within a plot

The housings dataset

For te following examples we will use a database on housing prices.

```
require(readr)
housing <- read_csv("datasets/landdata-states.csv")</pre>
```

What is the trend in housing prices in each state?

We can start with what we know how to do: map State to color.

```
p5 <- ggplot(housing, aes(x = Date, y = Home.Value))
p5 + geom_line(aes(color = State))</pre>
```

Housing prices trends by states (1)

```
p5 <- ggplot(housing, aes(x = Date, y = Home.Value))
p5 + geom_line(aes(color = State))</pre>
```


Housing prices by states (2)

 Visibility of distinct trends depending on state can be improved if we plot each state in a separate graphic.

```
p5 <- ggplot(housing, aes(x = Date, y = Home.Value))
(p5 <- p5 + geom_line() +
  facet_wrap(~State, ncol = 10))</pre>
```

Housing prices by states (2)

Exercise

Interpret the result of the following instructions:

```
ggplot(mtcars,aes(x=wt,y=mpg))+geom_point()+
+ geom_smooth()+
+ facet_grid(as.factor(am)~as.factor(gear))
```

- What happens if we try to separate based on a continuous variable?
- How can this be solved?

Data Visualization Geometric Objects Facets Statistical transforms Your turn

Statistical transforms

Statistics

- Some plot types (such as scatterplots) do not require transformations-each point is plotted at x and y coordinates equal to the original value.
- Other plots, such as boxplots, histograms, prediction lines etc. require statistical transformations:
 - for a boxplot the y values must be transformed to the median and 1.5(IQR)
 - for a smoother smother the y values must be transformed into predicted values

One stat per each geom

Each geom has a default statistic, but these can be changed.

geom	stat
geom_bar() geom_col() geom_pol() geom_smooth()	stat_count() stat_identity() stat_identity() stat_smooth()

- The "stat" is an argument of the "geom" and the "geom" is an argument from the "stat".
- Compare the outputs from:

```
args(geom_histogram)
args (stat bin)
```

Seeing the effect of stats (1: default)

```
p <-ggplot(housing, aes(x = Home.Value))
(p<-p + geom_histogram())</pre>
```


Seeing the effect of stats (2: change values)

```
p<- ggplot(housing, aes(x = Home.Value))
(p<-p+geom_histogram(stat= 'bin', binwidth=4000))</pre>
```


That's (not) all

- There are many other things you can do with your plots.
- An easy way to learn is adapting other people's plots.
 - You can go to R graphs gallery which has a
 - specific section on ggplot2

and start adapting some of their plots to your needs.

- And do not forget the cheatsheet!:
 - ggplot2-cheatsheet-2.1-Spanish.pdf

Data Visualization Geometric Objects Facets Statistical transforms Your turn

Your turn

Use the dataset from "The Economist" available from the course page to draw the plot from the figure below:

