# **Table of Contents**

| 1 Materiales metálicos                    |               |
|-------------------------------------------|---------------|
| 1.1 Principales propiedades mecánicas     |               |
|                                           |               |
|                                           |               |
| 1.2.2 Diagrama tensión-deformación        | 1             |
|                                           |               |
|                                           | 1             |
|                                           | 2             |
| 1.4 Tratamientos térmicos de metales      | 21            |
| 1.5 Tratamientos termoquímicos de los m   | netales20     |
| 1.6                                       | 2             |
| 1.7 Fundiciones                           | 3             |
| 1.8 Compatibilidad de metales: la corrosi | ón galvánica3 |
|                                           | 3             |

# 1 Materiales metálicos

| Se denomina                     | a los elementos químicos caracterizados por ser buenos conductores del |                                    |               |  |
|---------------------------------|------------------------------------------------------------------------|------------------------------------|---------------|--|
| y la                            | , poseer alta                                                          | , y ser                            | a             |  |
| temperaturas normales           | (excepto el mercurio y el galio)                                       | ). Generalmente son                | de            |  |
| la luz, lo que les da su j      | peculiar brillo. El concepto de r                                      | netal refiere tanto a elementos pu | ıros, así     |  |
| como a                          | con características metálio                                            | cas, como el acero (               |               |  |
| ) y el bron                     | ce (                                                                   | ). Los metales comprenden la ma    | ayor parte de |  |
| la <u>tabla periódica de lo</u> | s elementos y se separan de los                                        | no metales por una línea diagona   | al entre el   |  |
| boro y el polonio. Se es        | xtraen de los minerales de de la                                       | s rocas (menas). Los materiales i  | netálicos     |  |
| cuyo componente princ           | cipal es el                                                            | se llaman ferrosos, el resto s     | e llaman no   |  |
| ferrosos como el                |                                                                        | etc                                |               |  |

Paulino Posada pág. 2 de 41

### 1.1 Principales propiedades mecánicas

# 1-Plasticidad Es la propiedad mecánica de los metales completamente opuesta a la \_\_\_\_\_ La plasticidad se define como la capacidad que tienen los metales de \_\_\_\_\_\_ la forma que les fue dada después de ser sometidos a un esfuerzo. Los metales, usualmente son altamente \_\_\_\_\_\_, por esta razón, una vez son deformados, fácilmente conservarán su nueva FORMA. 2-Fragilidad La fragilidad es una propiedad completamente opuesta a la tenacidad, ya que denota la facilidad con la que un metal puede ser una vez es sometido a un esfuerzo. En muchas ocasiones, los metales son \_\_\_\_\_ unos con otros para reducir su coeficiente de \_\_\_\_\_ y poder tolerar más las cargas. La fragilidad también se define como fatiga durante las pruebas de resistencia mecánica de los metales. De esta manera, un metal puede ser sometido varias veces al mismo esfuerzo antes de \_\_\_\_\_\_ y arrojar un resultado concluyente sobre su fragilidad. 3-Maleabilidad La maleabilidad hace alusión a la facilidad que tiene un metal para ser \_\_\_\_\_\_ sin que esto represente una ruptura en su estructura. Muchos metales o aleaciones metálicas cuentan con un alto coeficiente de maleabilidad, este es el caso del aluminio que es altamente maleable, o el acero inoxidable. 4-Dureza La dureza se define como la resistencia que opone un metal ante agentes abrasivos. Es la resistencia

Paulino Posada pág. 3 de 41

metales requieren de ser aleados en algún porcentaje para aumentar su \_\_\_\_\_\_. Este es

el caso del oro, que por sí solo no lograría ser tan duro como lo es cuando se mezcla con el bronce.

que tiene cualquier metal a ser \_\_\_\_\_\_ o penetrado por un cuerpo. La mayoría de

| Históricamente, la dureza se medía en una es   | scala empírica, determinada por la capacidad que tenía    |
|------------------------------------------------|-----------------------------------------------------------|
| un metal de rayar a otro o de resistir el impa | cto de un Hoy en día, la dureza                           |
| de los metales es medida con procedimiento     | estandarizados como lo son el test de Rockwell,           |
| Vickers o Brinell. Todos estos tests buscan a  | rrojar resultados concluyentes sin dañar mayormente el    |
| metal que está siendo estudiado.               |                                                           |
|                                                |                                                           |
| 5-Ductilidad                                   |                                                           |
| La ductilidad es la capacidad que tiene un m   | etal para deformarse antes de En                          |
|                                                | npletamente opuesta a la La                               |
| ductilidad puede ser dada como un porcenta     | je de elongación máximo o como un máximo de               |
| reducción de área. Una forma elemental de e    | explicar dúctilidad de material, es su capacidad para ser |
| transformado en o                              | Un metal altamente dúctil es el                           |
|                                                |                                                           |
| 6-Elasticidad                                  |                                                           |
| La elasticidad que define como la capacidad    | que tiene un metal para recuperar su                      |
| después de haber sido sometido a una fuerza    | externa. En general, los metales son muy                  |
| elásticos, por esta razón es común que prese   | nten o rastros de golpes de los                           |
| que nunca se recuperarán. Cuando un metal      | es elástico, también se puede decir que es resiliente, ya |
| que es capaz de absorber de forma elástica la  | a que le está provocando una                              |
| deformación.                                   |                                                           |
|                                                |                                                           |
| 7-Tenacidad                                    |                                                           |
|                                                |                                                           |
|                                                | , ya que denota la capacidad que                          |
|                                                | una fuerza externa sin Los metales                        |
| -                                              | Este es el caso del, cuya tenacidad le                    |
|                                                | acción que requieran de soportar altas                    |
|                                                | de los metales puede ser medida en diferentes escalas.    |
|                                                | lativamente pequeñas de fuerza a un metal, como           |
| ligeros impactos o choques. En otras ocasion   | nes, es común que sean aplicadas fuerzas mayores. De      |

Paulino Posada pág. 4 de 41

| cualquier manera, el coeficiente de tenacidad de un metal será dado en la medida en la que éste no |                                                        |  |  |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| presente ningún tipo de                                                                            | _ después de haber sido sometido a un esfuerzo.        |  |  |
|                                                                                                    |                                                        |  |  |
| 8-Rigidez                                                                                          |                                                        |  |  |
| La rigidez es una propiedad mecánica propia de                                                     | los metales. Esta tiene lugar cuando una fuerza        |  |  |
| externa es aplicada a un metal y éste debe desarr                                                  | collar una fuerza interna para soportarla. Esta fuerza |  |  |
| interna se denomina "estrés". De esta manera, la                                                   | rigidez es la capacidad que tiene un metal de          |  |  |

a la deformación durante la presencia del estrés.

#### 9-Variabilidad de las propiedades

Los tests de propiedades mecánicas de los metales no siempre producen los mismos resultados, esto se debe a los posibles cambios en el tipo de equipo, procedimiento, u operario que se usa durante las pruebas. Sin embargo, incluso cuando todos estos parámetros son controlados, existe un pequeño margen en la variación de los resultados de las propiedades mecánicas de los metales. Esto se debe a que en general la fabricación o proceso de extracción de los metales difiere. Por lo tanto, los resultados a la hora de medir las propiedades de los metales se pueden ver alterados. Con el objetivo de mitigar estas diferencias, se recomienda realizar varias veces la misma prueba de resistencia mecánica en el mismo material, pero en diferentes muestras seleccionadas de forma aleatoria.

Paulino Posada pág. 5 de 41

### 1.2 El acero

| Los materiales más                       | _ en cualquier taller de mantenim  | iento industrial son los     |
|------------------------------------------|------------------------------------|------------------------------|
| aceros. Generalmente acero al carbono    | del tipo A42b. Aunque actualmer    | nte también se utilizan      |
| mucho otros materiales como los acero    | s, el                              | , la fibra de                |
| , los                                    | o los materiales                   | El acero es una              |
| aleación de                              | Se puede alear, adema              | ás, con otros elementos para |
| obtener aleaciones de diferentes caracte | erísticas según sea necesario.     |                              |
| Es el metal más usado del mundo con g    | gran diferencia por sus elevadas p | restaciones                  |
| así como su                              | Las aleaciones de hierro-carboi    | no dan lugar a los aceros si |
| el porcentaje de carbono es menor del _  | Si hay más carbono, dar            | n lugar a las fundiciones.   |
| Las técnicas para la obtención del acerc | se denominan                       | Empieza con los              |
| minerales ricos en                       | como siderita, limonita, pirita, m | agnetita El hierro se        |
| obtiene de sus óxidos, presentes en los  | minerales anteriores, en un        | En el                        |
| alto horno se reduce con                 | y carbonato cálcico.               |                              |

# Esquema de un alto horno.



| En la imagen anterior se ve cómo el alto horno se alimenta por la                      | _ con carbón,     |
|----------------------------------------------------------------------------------------|-------------------|
| mineral de hierro y caliza. El carbón se, potenciándose el calor gen                   | erado con         |
| a presión. Se funden los de hierro, mezclándose o                                      | con el carbono    |
| presente en el carbón. La mezcla (llamada arrabic                                      | o), más pesada,   |
| se va al del alto horno (). En la parte intermedia                                     | a (etalaje) queda |
| la del alto ho                                                                         | orno. El arrabio, |
| al contener alrededor del de carbono, es un material, pero                             | , que             |
| tiene menos aplicaciones practicas. Para convertirlo en acero se le debe rebajar el co | ontenido          |
| en Asimismo, se le pueden añadir otros                                                 | para obtener      |
| características determinadas que meioren sus propiedades.                              |                   |

Paulino Posada pág. 7 de 41

# 1.2.1 Clasificación de los aceros

| Segúnla norma UNE EN 10                                   | 1020:2001 define al ace | ero como aquel materia   | al en el que el                         |            |
|-----------------------------------------------------------|-------------------------|--------------------------|-----------------------------------------|------------|
| es el elemento predominant                                | e, el contenido en      | es, ge                   | neralmente inferior al .                | y          |
| contiene además a otros ele                               | mentos. El límite supe  | rior del 2% en el conte  | enido de carbono (C) es                 | s el       |
| límite que separa al acero de                             | e la                    | En general, un au        | ımento del contenido d                  | le         |
| carbono en el acero eleva su                              | ı resistencia a la      | , pero                   | como contrapartida                      |            |
| incrementa su                                             | en frío y ha            | ıce que disminuya la _   |                                         | / la       |
|                                                           | . En función de este po | orcentaje, los aceros se | pueden clasificar de la                 | ì          |
| siguiente manera:                                         |                         |                          |                                         |            |
|                                                           |                         |                          |                                         |            |
| A                                                         |                         | 1 11                     | / · · · · · · · · · · · · · · · · · · · |            |
| -Aceros: C                                                |                         |                          |                                         |            |
| tienen una resistencia última                             | _                       |                          |                                         |            |
| entorno de 135-160 HB. So                                 |                         |                          |                                         |            |
| técnica adecuada. Aplicacio                               | nes: Piezas de resisten | cia media de buena ter   | nacidad, deformación e                  | n          |
| frío, embutición, plegado, h                              | errajes, etc.           |                          |                                         |            |
|                                                           |                         |                          |                                         |            |
| -Aceros                                                   | · El porcentaje de ca   | irhono estáen el entorn  | o del Tiene                             | בחוו       |
| resistencia última a la rotura                            |                         |                          |                                         |            |
| bajo un tratamiento térmico                               |                         |                          |                                         |            |
| hasta 80 kg/mm2 y una dure                                |                         | pacach alcanzar          | una resistencia mecan                   | cu uc      |
|                                                           |                         |                          |                                         |            |
| Aplicaciones: Ejes, element                               | os de maquinaria, piez  | as resistentes y tenace  | s, pernos, tornillos,                   |            |
| herrajes.                                                 |                         |                          |                                         |            |
|                                                           |                         |                          |                                         |            |
| -Aceros                                                   | : Si el porcentaje      | de carbono es del        | . Tienen una                            |            |
| resistencia a la rotura de 62-                            |                         |                          |                                         |            |
| tratamiento de templado su                                | 5                       | -                        |                                         | <u>)</u> . |
| Aplicaciones: Ejes y elemer                               |                         |                          |                                         |            |
| Aplicaciones. Ejes y elemei<br>explosión transmisiones et |                         | as vasiante resistentes, | cimidios de motores c                   | IC         |
|                                                           |                         |                          |                                         |            |

Paulino Posada pág. 8 de 41

| -Aceros             | : El porcentaje de carbono es del         | Tienen una resistencia mecánica      |
|---------------------|-------------------------------------------|--------------------------------------|
| de 70-75 kg/mm2, y  | y una dureza Brinell de 200-220 HB. Bajo  | un tratamiento de templado estos     |
| aceros pueden alcar | nzar un valor de resistencia de 100 kg/mm | 12 y una dureza de 275-300 HB.       |
| Aplicaciones: Ejes, | transmisiones, tensores y piezas regularm | nente cargadas y de espesores no muy |
| elevados.           |                                           |                                      |

Paulino Posada pág. 9 de 41

### 1.2.2 Diagrama tensión-deformación



Paulino Posada pág. 10 de 41

".

Paulino Posada

Pasado el punto A y hasta llegar al punto B, los alargamiento producidos crecen de manera más rápida con la tensión, y se cumple que al \_\_\_\_\_\_ la carga, la pieza \_\_\_\_\_\_ de nuevo su geometría inicial, es decir, se sigue comportando elásticamente. El punto B marca el límite a este comportamiento, y por ello al punto B se le denomina "límite elástico".



| Traspasado el punto B, el material pasa a comportarse de manera                            | , es decir, que                |  |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| no recupera su inicial, quedando una deforma                                               | ción remanente al cesar la     |  |  |  |
| carga. De esta manera, el proceso de descarga se realiza siguiendo la                      | trayectoria según la línea     |  |  |  |
| punteada mostrada del diagrama, q                                                          | ue como se ve, corta al eje de |  |  |  |
| deformaciones, $\Delta L/L0$ , a una cierta distancia del origen, que se corres            | sponde con la deformación      |  |  |  |
| que queda. Concretamente, el punto B o "_                                                  | ,,                             |  |  |  |
| es aquel que le corresponde una deformación remanente del                                  |                                |  |  |  |
| Si se sigue aplicando carga se llega al punto identificado en la gráfica                   | como C, a partir de aquí       |  |  |  |
| y hasta el punto D, las deformaciones de maner                                             | a rápida mientras que la carga |  |  |  |
| fluctúa entre dos valores, llamados límites de fluencia,                                   | Este                           |  |  |  |
| nuevo estadio, denominado de, es característ                                               | ico exclusivamente de los      |  |  |  |
| aceros, no apareciendo en los aceros                                                       |                                |  |  |  |
| Más allá del punto de fluencia D es necesario seguir aplicando un de la                    |                                |  |  |  |
| arga para conseguir un pronunciado aumento del alargamiento. Entramos ya en la zona de las |                                |  |  |  |
|                                                                                            |                                |  |  |  |

pág. 11 de 41

| grandes             | plásticas                                                                    | hasta alcanzar el punto F, donde   | e la carga alcanza su |  |
|---------------------|------------------------------------------------------------------------------|------------------------------------|-----------------------|--|
| valor               | or, lo que dividida por el área inicial de la probeta proporciona la tensión |                                    |                       |  |
| máxima de           | o resistencia a la                                                           | tracción.                          |                       |  |
| A partir del punto  | E tiene lugar el fenómeno de e                                               | estricción de la probeta, consiste | ente en una           |  |
|                     | de la sección en la zon                                                      | a de la rotura, que es la causa de | e la siguiente bajada |  |
| de la curva, dado   | que al reducirse el valor de la _                                            | , el valor                         | de la carga aplicado  |  |
| a partir del punto  | E también se va reduciendo ha                                                | sta alcanzar el punto F de         |                       |  |
| LÍMITE ELÁSTI       | CO Y RESISTENCIA A LA TI                                                     | RACCIÓN                            |                       |  |
| La determinación    | de las propiedades mecánicas                                                 | en el acero, como el               | , la                  |  |
|                     |                                                                              | o de otras características mecáni  |                       |  |
|                     |                                                                              | que se p                           |                       |  |
|                     |                                                                              | ensayo de tracción normalizado     |                       |  |
| 10002-1.            |                                                                              |                                    |                       |  |
| El valor de la tens | ión última o                                                                 | se calcula a part                  | ir de este ensayo, y  |  |
| se define como el   | cociente entre                                                               | que ha provocado e                 | el fallo a rotura del |  |
|                     |                                                                              | de la sección transversal          |                       |  |
| probeta, mientras   | que el                                                                       | marca el umbral que, una           | a vez se ha           |  |
| superado, el mate   | rial trabaja bajo un comportam                                               | iento plástico y deformaciones i   | remanente.            |  |
| En la sección AN    | EXOS de este tutorial se puede                                               | en consultar los valores del límit | e elástico y la       |  |
| resistencia a tracc | ión para las distintas calidades                                             | de aceros según las normativas     | europea y             |  |
| americana.          |                                                                              |                                    |                       |  |

Paulino Posada pág. 12 de 41

# CARACTERÍSTICAS PRINCIPALES DEL ACERO

| • Aleación de color pardo/oscuro.                                |                                                              |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------|--|--|
| • Resistencia a tracción:                                        |                                                              |  |  |
| Alargamiento rotura:                                             |                                                              |  |  |
| • Densidad:                                                      |                                                              |  |  |
| • Fusión a                                                       | en función de los aleantes empleados.                        |  |  |
| •                                                                |                                                              |  |  |
|                                                                  |                                                              |  |  |
| • Se en preser                                                   | ıcia de agua/humedad                                         |  |  |
| • Es, el imár                                                    | se pega.                                                     |  |  |
|                                                                  |                                                              |  |  |
| La composición y las proporciones d                              | e los elementos de aleación tienen gran influencia sobre las |  |  |
| características resultantes de los acer                          | os.                                                          |  |  |
| El carbono eleva la                                              | del acero y disminuye su                                     |  |  |
| tenacidad; el silicio mejora la, y el azufre y el fósforo pueden |                                                              |  |  |
| considerarse perjudiciales.                                      |                                                              |  |  |
| Entre los metales, el níquel incremer                            | ıta la, el cromo la                                          |  |  |
| , el vai                                                         | nadio la, el                                                 |  |  |
| tungsteno y el cobalto la dureza a alt                           |                                                              |  |  |

Paulino Posada pág. 13 de 41

#### ALEANTES PRINCIPALES.

- Plomo: Reduce resistencia. Fácil de mecanizar.
- Cromo: Dureza, Resistencia, inoxidabilidad
- Vanadio: Resistencia, corrosión.
- Molibdeno: Tenacidad, resistencia, corrosión.
- Silicio: Flexibilidad. Muelles.
- Níquel: Tenacidad, resistencia corrosión.
- Cobalto: Gran dureza. Para corte.
- Tungsteno o Wolframio: Resistencia a alta temperatura, para herramientas de corte.

#### APLICACIONES DE ACUERDO A SU COMPOSICIÓN.

- Aceros al Carbono: Para elementos constructivos (vigas, pilares), piezas mecánicas.
- Aceros al Silicio: Muelles, ballestas.
- Aceros al Cromo-Vanadio: Herramientas.
- Aceros al Cromo- Molibdeno: Herramientas, piezas de alta resistencia.
- Aceros al Cobalto o Tungsteno: Herramientas de corte.

Paulino Posada pág. 14 de 41

| 1.2.2.1 |  |  |  |
|---------|--|--|--|
| 1.2.2.1 |  |  |  |

El \_\_\_\_\_\_ estira un material.

Se produce en los cables de un puente colgante.



El \_\_\_\_\_ comprime un material.

Se produce en los pilares que soportan un puente.



Entre los pilares de un puente, las vigas que los unen estan sometidas a un \_\_\_\_\_\_.

El esfuerzo de flexión tiende a doblar un material.



Paulino Posada pág. 15 de 41

El \_\_\_\_\_\_ se produce al hacer girar un objeto, por ejemplo un eje. El esfuerzo de torsión aumenta con la resistencia que el eje oponga al giro.

La broca de un taladro está sometida a un esfuerzo de torsión.









Paulino Posada pág. 16 de 41

#### Càlculo de la tensión

La tensión es una medida del esfuerzo al que se somete un objeto. La tensión que actúa sobre un elemento estructural, como por ejemplo una columna, está definida como el cociente de fuerza y superficie perpendicular a la fuerza. En estructuras de edificaciones, las cargas principales están causadas por las masas que deberán soportar las estructuras. Como la relación entre la fuerza de gravedad y la masa es proporcional ( $F = g \cdot m$ ), en las propioedades mecánicas de los metales, los

valores de tensión se indican en  $\frac{kg}{cm^2}$ 

$$\sigma = \frac{m}{A}$$

m masa en kg

A area en cm<sup>2</sup>

#### **Ejemplo**

Una columna debe soportar  $1000 \, kg$  . La superficie de la columna es de  $4 \, cm^2$  .

¿A qué tensión está sometida la columna?

$$\sigma = \frac{m}{A} = \frac{1000 \, kg}{4 \, cm^2} = 250 \frac{kg}{cm^2}$$

¿Qué tipo de esfuerzo se produce?

El esfuerzo es de compresión.





#### **Ejercicio 1.2.2.1-1**

¿Se podría utilizar una grúa con un cable de acero redondo de 5 mm de diàmetro para elevar un motor de 2 toneladas?

¿A qué tensión estaría sometido el cable?

¿Qué tipo de esfuerzo se produce?

Paulino Posada pág. 18 de 41

#### 1.2.2.2 Cálculo del alargamiento

$$\sigma = \frac{\Delta L}{L_0} \cdot E$$

σ tensión en

$$\frac{kg}{cm^2}$$

 $\frac{\Delta L}{L}$  alargamiento relativo sin unidad

E módulo de elasticidad en

#### **Ejemplo**

Si a una viga de acero de 4 m de longitud se le aplica una tensión de compresión de  $1000 \frac{kg}{cm}^2$ , su

alargamiento relativo será de  $\frac{\Delta L}{L_0} = \frac{\sigma}{E} = \frac{-1000 \frac{kg}{cm^2}}{2100000 \frac{kg}{cm^2}} = -0,0004762$ 

$$\rightarrow$$
 alargamiento =  $\frac{\Delta L}{L_0} \cdot L_0 = -0,0004762 \cdot 4000 \, mm = -1,9 \, mm$ 

El esfuerzo de compresión se considera negativo para indicar que el alargamiento es negativo

(acortamiento).



# **Ejercicio 1.2.2.2-1**

Una viga de acero de 10 m se somete a una tensión de tracción de  $500 \frac{kg}{cm^2}$ .

¿Cuanto se alarga la viga?

Paulino Posada pág. 20 de 41

# 1.3 Tipos de aceros más utilizados

| <del></del>                                                                                |
|--------------------------------------------------------------------------------------------|
| Es un acero en carbono de% a%, blandos y dúctil fácil de maquinar,                         |
| formar y soldar.                                                                           |
| Inconvenientes: es muy, fácilmente, además de presentar grietas internas                   |
| frecuentemente, lo que lo convierte en un material poco para aplicaciones industriales.    |
| Sí se utiliza mucho en                                                                     |
| Tiene características mecánicas a los aceros ordinarios. Se obtiene como el acero          |
| como aleación de y se convierte en inoxidable añadiendo al menos un 12% de                 |
| (habitualmente también). Estos aceros son mucho más que los aceros                         |
| carbono, hasta 10 veces.                                                                   |
| En el uso de los aceros se deben tener en cuenta algunas recomendaciones:                  |
| Cuidado con la corrosión al unir 2 metales diferentes con un medio conductor. El           |
| menos se corroe. Por ejemplo, unir planchas de acero con tornillos de                      |
| acero al                                                                                   |
| Se pueden soldar con electrodos de inox, con método MIG o bien TIG.                        |
| Los aceros inoxidables más utilizados son de los tipos:                                    |
| Aceros inoxidables (se pega el imán)                                                       |
| Aceros inoxidables (el imán no se pega)                                                    |
| Aceros inoxidables                                                                         |
| Son los aceros inoxidables más, pero con menor resistencia a la                            |
| ·                                                                                          |
| El imán se en ellos. Se usan en cuchillería, sartenes, para placas de inducción. En genera |
| no se utilizan en el mundo y son los más                                                   |
| Ejemplos: AISI 420.                                                                        |

Paulino Posada pág. 21 de 41

| Aceros inoxidables                    |                                       |                     |
|---------------------------------------|---------------------------------------|---------------------|
| Se tienen a su vez dos grandes tipos: |                                       |                     |
| Los aceros inoxidables                | : Usados en la industria alimen       | taria. Tienen buena |
| resistencia a la                      | . Se denominan también como acero i   | nox A2, AISI303     |
| (barras), AISI 304 (chapas), 18-10    | (18% de cromo, 10% de níquel).        |                     |
| Acero inoxidable:                     | El más resistente a la                | Llevan un 2-4%      |
| de Se conoc                           | ce como acero inox A4, o bien AISI 31 | 16.                 |

Paulino Posada pág. 22 de 41

# **1.4** Tratamientos térmicos de metales

| bjetivo de estos tratamientos es las propiedades mecánicas de los metales y                      |                                                          |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|
| aleaciones. En ocasiones se utiliza este tipo de tratamientos para, posteriormente, conformar el |                                                          |  |
| material.                                                                                        |                                                          |  |
| Las propiedades de las aleas                                                                     | ciones de un mismo metal, y en particular de los         |  |
|                                                                                                  |                                                          |  |
| aceros, residen en la composición                                                                | de la aleación que los forma y el tipo de                |  |
| tratamiento a los que se les                                                                     | s somete. Los tratamientos térmicos modifican la         |  |
| estructura que forman a los                                                                      | aceros, sin variar us composición                        |  |
| El tratamiento en el materi                                                                      | al es uno de los pasos fundamentales para que pueda      |  |
| alcanzar las propiedades mecánicas para las cu                                                   | uales está creado. Este tipo de procesos consisten en el |  |
| y                                                                                                | de un metal en su estado sólido para cambiar             |  |
| sus propiedades físicas. Con el tratamiento tér                                                  | mico adecuado se pueden reducir los esfuerzos            |  |
| internos, el tamaño del grano, incrementar la _                                                  | o producir una superficie                                |  |
| con un interior La clave de los                                                                  | s tratamientos térmicos consiste en las reacciones que   |  |
| se producen en el material, tanto en lo aceros o                                                 | como en las aleaciones no férreas, y ocurren durante     |  |
| el proceso de y                                                                                  | de las piezas, en unos tiempos                           |  |
| Para conocer a que deb                                                                           | oe elevarse el metal para que se reciba un tratamiento   |  |
| térmico es recomendable contar con los diagra                                                    | amas de cambio de como el del hierro-                    |  |
| carbono. En este tipo des                                                                        | se especifican las temperaturas en las que suceden los   |  |
| cambios de fase (cambios de estructura cristal                                                   | ina).                                                    |  |
| Los tratamientos térmicos han adquirido gran                                                     | importancia en la industria en general, ya que con las   |  |
| constantes innovaciones se van requiriendo m                                                     | etales con mayores tanto al                              |  |
| desgaste como a la tensión. Los principales tra                                                  | atamientos térmicos son:                                 |  |

Paulino Posada pág. 23 de 41

| El se util                   | iza para obtener un tipo  | o de aceros de alta          | llamado                 |
|------------------------------|---------------------------|------------------------------|-------------------------|
| martensita. Se trata de      | la tempera                | tura del acero hasta una ter | nperatura cercana a     |
| ° C y post                   | eriormente someterlo a    | enfriamientos                | en                      |
| agua, aceite o aire. La capa | cidad de un acero para    | transformarse en             | durante e               |
| temple depende de la comp    | osición química del ac    | ero y se denomina            | Al                      |
| obtener aceros martensítico  | os, en realidad, se prete | nde aumentar la              | El                      |
| problema es que el acero re  | esultante será muy        | y poco                       | , porque exister        |
| altas                        | internas.                 |                              |                         |
|                              |                           |                              |                         |
|                              |                           |                              |                         |
| El                           | es el tratamiento téri    | nico que sigue al            | El acerc                |
| templado es aquel que tien   | e una                     | muy alta (llamado n          | nartensita), pero tiene |
| el inconveniente de ser      | у росо _                  | porq                         | ue tiene tensiones      |
| internas.                    |                           |                              |                         |
| Elco                         | nsiste en                 | la pieza templac             | la hasta cierta         |
| temperatura, para reducir la | as                        | que tiene el acero           |                         |
| (de alta dureza). De este m  | odo, evitamos que el ac   | ero sea, saci                | rificando un poco la    |
| La veloc                     | cidad de enfriamiento e   | s, porlo general,            | ·                       |
|                              |                           |                              |                         |
|                              |                           |                              |                         |
|                              |                           |                              |                         |
| El recocido consiste en      |                           | -                            | -                       |
| posteriormente, enfriarlo le | ntamente. Se utiliza, al  | igual que el caso anterior,  | para suprimir los       |
| defectos del                 | ·                         |                              |                         |
| Se persigue:                 |                           |                              |                         |
| Eliminar                     | del temple.               |                              |                         |
| Aumentar la                  |                           | del acero.                   |                         |
| El proceso del               | es el sigu                | iente:                       |                         |

Se \_\_\_\_\_\_ el acero hasta una temperatura dada

Se \_\_\_\_\_ la temperatura durante un tiempo

Se \_\_\_\_\_\_ lentamente hasta temperatura ambiente, controlando la \_\_\_\_\_\_ de enfriamiento. Si la variación de temperatura es muy \_\_\_\_\_\_, pueden aparecer tensiones internas que inducen grietas o deformaciones. El grado de \_\_\_\_\_\_ que se quiere dotar al metal depende de la velocidad de \_\_\_\_\_\_ y la \_\_\_\_\_\_ a la que se elevó inicialmente.

Este tratamiento se emplea para eliminar \_\_\_\_\_\_\_ internas sufridas por el material tras una conformación \_\_\_\_\_\_\_, tales como una forja o laminación para conferir al acero unas propiedades que se consideran normales de su composición. El normalizado se practica calentando \_\_\_\_\_\_\_ el material hasta una temperatura crítica y se mantiene en ella durante un tiempo. A partir de ese momento, su estructura interna se vuelve más \_\_\_\_\_\_ y aumenta la \_\_\_\_\_\_ del acero.



Paulino Posada pág. 25 de 41

# **1.5** Tratamientos termoquímicos de los metales

| Los tratamientos termoquímicos son tratami      | entos en los que, además de los                       |
|-------------------------------------------------|-------------------------------------------------------|
| cambios en la estructura del acero, también s   | e producen cambios en la                              |
| de la capa, añadiendo                           | liferentes productos químicos hasta una profundidad   |
| determinada. Estos tratamientos requieren el    | uso de calentamiento y enfriamiento                   |
| en especiales. Entre l                          | os objetivos más comunes de estos tratamientos están  |
| aumentar la superficial                         | de las piezas dejando el núcleo más,                  |
| disminuir el aumenta                            | ndo el poder lubrificante, aumentar la resistencia al |
| , aumentar la resistencia a                     | o aumentar la resistencia a la                        |
| <b>·</b>                                        |                                                       |
|                                                 |                                                       |
|                                                 |                                                       |
|                                                 |                                                       |
| Consiste en aumentar la cantidad de             | de la de los aceros.                                  |
| Se mejora la superficial y                      | la resiliencia. Se aplica a piezas que deben ser      |
| resistentes a golpes y la vez al desgaste. Se a | plica a los aceros.                                   |
|                                                 |                                                       |
|                                                 |                                                       |
|                                                 |                                                       |
| Consiste en                                     | de los aceros y fundiciones. Las durezas son          |
| elevadas y tienen alta resistencia a la         | El componente químico añadido                         |
| es, que se obtie                                | ne del amoniaco.                                      |
|                                                 |                                                       |
|                                                 |                                                       |
|                                                 |                                                       |
| Se trata de la supo                             | erficie del material introduciendo                    |
|                                                 | La temperatura es                                     |
|                                                 | ruración, que es mucho menor que aquella. Se aplica a |
| los aceros.                                     |                                                       |

Paulino Posada pág. 26 de 41

y disminuir el coeficiente de \_\_\_\_\_\_.

Paulino Posada pág. 27 de 41

| EL PROCESO DE                                                                                                                         |    |
|---------------------------------------------------------------------------------------------------------------------------------------|----|
| Para que el acero se (es decir, para que se forme óxido) éste debe quedar expuesto al Además, el acero se corroe mucho más deprisa en |    |
| presencia de otros agentes atmosféricos como el                                                                                       | ٠. |
| Además, cuando queda inmerso en agua del mar, el acero está expuesto también a corrosión                                              |    |
| , similar a la que tiene lugar entre el acero y los elementos de                                                                      | _  |
| de una embarcación.                                                                                                                   |    |
| En la figura:                                                                                                                         |    |
| • la zona A queda expuesta a                                                                                                          |    |
| por lo que es una zona generalmente corrosiva para productos de acero;                                                                |    |
| • la zona B se encuentra constantemente, que                                                                                          |    |
| también contiene mucho oxígeno disuelto. Es la zona más para el acer                                                                  | o; |

la zona C es también muy \_\_\_\_\_ para el acero debido a que a la \_\_\_\_\_

Zonas de corrosión en un entorno marino.

se añade la \_



Son múltiples los sistemas de protección existentes, muchas veces la solución óptima se alcanza integrando varios de ellos.

vídeo: La protección del acero contra la corrosión | | UPV

Paulino Posada pág. 28 de 41

https://youtu.be/xow45w9YhM4?si=v2ncdJx6ND6NsMWa

Paulino Posada pág. 29 de 41

| PROTECCIÓN POR                                 |                                                               |                   |  |
|------------------------------------------------|---------------------------------------------------------------|-------------------|--|
| "La protección por                             | consiste en crear una capa                                    | 0                 |  |
| barrera que aísle el metal del                 | e aísle el metal del" En principio es el método más evidente, |                   |  |
| cubrimos el material por una                   | de otra sustancia que no se                                   | y                 |  |
| que impide que el material sensible entre en _ | con el                                                        | y la              |  |
| humedad. Dentro de este tipo de protección p   | oodemos diferenciar:                                          |                   |  |
| Recubrimientos no                              |                                                               |                   |  |
| : Método ecor                                  | nómico. Precisa que la superficie del m                       | naterial a        |  |
| proteger se encuentre                          | , El, pintura qı                                              | ie contiene óxido |  |
| de, es uno de los más es                       | mpleados.                                                     |                   |  |
| : Son muy resistentes                          | a la oxidación. Tienen la ventaja de se                       | er muy,           |  |
| pero tienen muy poca resistencia al            | , el más habitual es el                                       | <u>_</u> .        |  |
| : Tiene la ver                                 | ntaja de resistir elevadas                                    | у                 |  |
| desgaste por                                   |                                                               |                   |  |
|                                                |                                                               |                   |  |
| Recubrimientos métálicos                       |                                                               |                   |  |
|                                                |                                                               |                   |  |
| Se distinguen varios métodos según el modo     | en que se deposita la capa protectora:                        |                   |  |
| : Se sumerge el m                              | ietal a proteger en un baño de otro met                       | al                |  |
| Al sacarlo del baño, el metal se               | formando una fina película                                    | ·                 |  |
| Los metales más comunmente empleados en        | estos procedimientos son:                                     |                   |  |
| , se utiliza mu                                | icho en las latas de conserva (la hojala                      | ta).              |  |
| , es el más en                                 | mpleado para proteger vigas, vallas, to                       | rnillos y otros   |  |
| objetos de acero.                              |                                                               |                   |  |
| , es muy ec                                    | onómico y de gran calidad.                                    |                   |  |
| , para recu                                    | ıbrir cables y tuberías.                                      |                   |  |

Paulino Posada pág. 30 de 41

| Cuando el riesgo de corrosión es muy elevado, se recomie    | nda hacer un recubrimiento c   | on Alclad.     |
|-------------------------------------------------------------|--------------------------------|----------------|
| El Alclad es un producto forjado, formado por un núcleo o   | le una aleación de             | y              |
| que tiene un recubrimiento de aluminio o aleación de alum   | ninio que es anódico al núcleo | o y por lo     |
| tanto protege electroquímicamente al núcleo contra la       | ·                              |                |
|                                                             |                                |                |
|                                                             |                                |                |
|                                                             |                                |                |
| Se hace pasar corriente eléctrica entre dos metales diferen | tes que están inmersos en un   | líquido        |
| que actúa de electrolito. Uno de                            | e los metales será aquel que q | lueremos       |
| proteger de la oxidación y hará de cátodo. El otro metal ha |                                |                |
| corriente eléctrica, sobre el metal                         | se crea una película protector | ra. Con este   |
| método se produce el                                        | de diversos metale             | es.            |
|                                                             |                                |                |
|                                                             |                                |                |
| <del>;</del>                                                |                                |                |
| Se provoca la reacción de las piezas con un agente químic   | o que forme compuestos de u    | ın pequeño     |
| espesor en su, dando lugar a una j                          | película protectora por ejemp  | lo:            |
| Se aplica una solución de ác                                | rido crómico sobre el metal a  |                |
| formándose una película de                                  |                                |                |
|                                                             |                                | 1 . 1          |
| Se aplica una solución de ácid                              | -                              |                |
| Formándose una capa de fosfatos metálicos sobre el metal    | , que la                       | _ del entorno. |
|                                                             |                                |                |
| INHIBIDORES                                                 |                                |                |
|                                                             |                                |                |
| Los inhibidores pueden ser:                                 |                                |                |
| : Forman una película protectora                            |                                |                |
| : Eliminan oxigeno.                                         |                                |                |
| Los más utilizados son las                                  | _, muy empleadas en los radi   | iadores de los |
| automóviles.                                                |                                |                |

Paulino Posada pág. 31 de 41

\_\_\_\_

"En este método se obliga al material que se pretende proteger a comportarse como un cátodo suministrándole electrones. Para ello se emplea otro metal que estará en contacto con él, llamado \_\_\_\_\_\_\_. El \_\_\_\_\_\_\_\_ está formado por un metal mucho más electronegativo que el metal a defender."



| Cuando dos sistemas se ponen er    | n contacto eléctrico el más                  | se oxida               |
|------------------------------------|----------------------------------------------|------------------------|
| cediendo                           | al menos electronegativo. En este caso e     | el ánodo de sacrificio |
| electronegativo,                   | se oxida comunicando los electrones liberad  | os en este proceso al  |
| metal a                            |                                              |                        |
| A través de esta reacción el       | se va corroyendo y acaba destruy             | éndose, por lo que     |
| cada cierto tiempo tiene que ser _ | Este método se utiliza m                     | ucho en cubiertas de   |
| barcos, y en conducciones subter   | ráneas. Los ánodos galvánicos más utilizados | s en la protección     |
| catódica son de                    |                                              |                        |

Paulino Posada pág. 32 de 41

"Variante del método anterior en la que se incrementa el paso de electrones hacia el metal a proteger
\_\_\_\_\_\_ una fuente de tensión que mantenga la \_\_\_\_\_\_ entre
ambos metales."

Se emplea sobre todo en conducciones enterradas.



"Tal y como hemos visto en el punto anterior existe una gran cantidad de sistemas para controlar la corrosión. Sin embargo quizás el método más eficaz sea realizar un buen diseño y elección de los materiales a emplear en las aplicaciones industriales, de tal forma que se evite dicho fenómeno."

Paulino Posada pág. 33 de 41

### 1.7 Fundiciones

| Fundición                       | Tipos                |                     | Caraterísticas     |                |
|---------------------------------|----------------------|---------------------|--------------------|----------------|
| adquiere cuando se rompe), las  |                      | y la                |                    | ·              |
| fundiciones se clasifican atend | iendo a la           |                     | (aspecto y co      | olor que       |
| solamente de su                 | , sino c             | lel proceso de      |                    | Así, las       |
| un, donde                       | se solidifica. Las c | aracterísticas de l | la fundición no de | penden         |
| metálicas pero también de plás  | tico, consistente en | l                   | un material e i    | ntroducirlo en |
| Pero atención, también se denc  | mina fundición al j  | proceso de fabric   | ación de piezas, c | omúnmente      |
| El tanto por ciento de carbono  | oscila entre el      | % y %.              |                    |                |
| otros elementos.                |                      |                     |                    |                |
| Las fundiciones son aleaciones  | de                   |                     | que, además, pued  | den contener   |

| Fundición                                                                                          | Tipos                                                                                                                  | Caraterísticas                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ordinaria Solamente lleva hierro y carbono, sin elementos de aleación)                             | Fundición blanca                                                                                                       | Es muy dura y frágil solamente se crea como materia prima para fabricar aleaciones maleables.                                                                                                                                   |
|                                                                                                    | Fundición gris                                                                                                         | Su color es gris, porque el carbono esta en forma de grafito                                                                                                                                                                    |
|                                                                                                    | Fundición atruchada                                                                                                    | Tiene unas propiedader intermedias entre la fundición blanca y gris.                                                                                                                                                            |
| Aleada                                                                                             | Además de hierro y carbono (en las proporciones adecuadas) lleva otros elementos químicos que mejoran sus propiedades. |                                                                                                                                                                                                                                 |
| Especial Emplea como materia prima las fundiciones ordinarias, sometidas a un tratamiento térmico. | Maleable de corazón blanco                                                                                             | Se moldea la pieza en fundición blanca. Se recubre a la pieza de mineral de hierro y se introduce en el horno a 1000 °C durante unos 10 días. Se enfría lentamente en el horno durante unos 5 días, hasta temperatura ambiente. |
|                                                                                                    | Maleable de corazón negro                                                                                              | Se moldea la pieza en fundición blanca. Se recubre a la pieza de arena y se introduce en el horno a 900 °C durante unos 6 días. Se enfría lentamente en el horno durante unos 5 días, hasta temperatura ambiente.               |
|                                                                                                    | Maleable perlítica                                                                                                     | Se moldea la pieza en fundición blanca. Se recubre a la pieza de arena y se introduce en el horno a 900 °C durante unos 5 días. Se enfría lentamente en el horno durante unos 2 días, hasta temperatura ambiente.               |

Fundición de hierro gris en 5 pasos

https://youtu.be/Ld3FMCeWl1I?si=Nmlzww3MnQIjM54H

Paulino Posada pág. 34 de 41

### 1.8 Compatibilidad de metales: la corrosión galvánica.

| En alguna ocasión se puede haber planteado    | la duda sobre la utilización de accesorios de latón jun | unto |
|-----------------------------------------------|---------------------------------------------------------|------|
| con tuberías fabricadas en otro tipo de       | , por los posibles efectos perjudiciales sobr           | bre  |
| la instalación. Un fenómeno que se puede d    | ar es la conocida como corrosión                        |      |
| , que se puede prod                           | lucir por contacto entre diferentes                     | es   |
| en presencia de un medio conductor o electr   |                                                         |      |
| Pero ¿qué es exactamente la corrosión galva   | ínica? En presencia de una solución conductora, entre   | re   |
| dos con suficiente diferen                    | cia de potencial se produce un flujo de                 | ,    |
| uno de ellos actúa como                       | (-) y el otro como (+),                                 |      |
| produciéndose una migración de                | del primero al segundo. El flujo de                     |      |
| es mayor cuanta más h.                        | aya entre los metales. Este efecto, aunque de escasa    |      |
| importancia en instalaciones sanitarias, en c | ue el medio consiste en agua potable o condensados, s   | , se |
| incrementa notablemente en el caso de agua    | o soluciones ácidas.                                    |      |
| El índice o serie galvánica nos indica el gra | do de nobleza de cada metal: cuanto más                 |      |
| en el índice, mayor, q                        | ue se producirá sólo sobre uno de los dos metales, el   | -    |
| , situado en posi                             | ción inferior en el siguiente gráfico:                  |      |

### Índice galvánico de los metales



| Es importante saber que este efect<br>es insignificante si el área del met |                                       |                                      | i<br>: |
|----------------------------------------------------------------------------|---------------------------------------|--------------------------------------|--------|
| corrosión. Por ejemplo no existe i                                         | ncompatibilidad en la combinaci       | ón de accesorios de latón con        |        |
| tuberías de                                                                | _ debido a la superficie compara      | tivamente de                         |        |
| éstas. En los casos en que se comb                                         | oina latón con acero inoxidable, c    | jue en este caso actúa como met      | al     |
| noble, el latón -aquí como metal c                                         | orrosible- sólo sufriría este efect   | o si la superficie del metal         | _      |
| fuera mucho mayor. Por ejemplo e                                           | en el caso de un racor instalado e    | n un tanque de acero                 |        |
| En estos casos, como medida de p (vídeo).                                  | recaución, se pueden utilizar los     |                                      | -      |
| Para más información, recomenda <u>UNE EN12502</u> .                       | mos consultar las normas <u>UNE 1</u> | <u>12076 IN</u> y la serie de normas |        |
| También puede interesarle las <u>PRO</u>                                   | OPIEDADES DEL LATÓN.                  |                                      |        |
| Fuente https://www.rmmcia.es/blog/laton                                    | -y-cobre/compatibilidad-de-meta       | ıles-la-corrosion-galvanica          |        |

Paulino Posada pág. 36 de 41

Paulino Posada pág. 37 de 41

### **1.9** Fatiga de materiales

La fatiga de los materiales es un proceso de daño que se produce en los elementos mecánicos cuando se someten a cargas variables, incluso aunque estas sean varias veces inferiores a las que producirían la rotura ante una carga constante. Puede definirse como un proceso de cambio estructural permanente, progresivo y localizado que se produce en algún punto del material sujeto a condiciones que producen tensiones y deformaciones fluctuantes y que puede terminar en la aparición de grietas y la fractura completa después de un número suficiente de fluctuaciones.

Ejemplos de fallos por fatiga se pueden encontrar en multitud de sistemas mecánicos. Desde los ferrocarriles hasta los aviones, pasando por los automóviles, barcos o muy diversos tipos de máquinas empleadas en la industria o la agricultura. En los últimos años son también frecuentes los fallos por fatiga en equipos electrónicos sometidos a variaciones de temperatura durante su funcionamiento. Los ciclos térmicos generan tensiones variables en los materiales, que producen un daño progresivo. Una característica de los fallos por fatiga es su espontaneidad, ya que normalmente se producen de forma repentina sin dar tiempo para tomar medidas que lo eviten, con las consecuencias catastróficas que puede tener en muchos casos. Una idea de la importancia del fenómeno nos la da el hecho de que aproximadamente tres de cada cuatro fallos mecánicos producidos en las máquinas y vehículos de distinto tipo son debidos a la fatiga.

Se dice que el proceso es permanente porque, excepto muy en sus inicios, no es posible reparar el material mediante algún tipo de tratamiento. Igualmente, el proceso es progresivo porque el daño aumenta al aumentar el número de ciclos de carga. El proceso se inicia normalmente en zonas muy localizadas en las que hay algún tipo de discontinuidad geométrica en el elemento, como son taladros, marcas producidas por un golpe o cambios de diámetro. Aunque lo determinante en el proceso son las tensiones y deformaciones producidas por las cargas aplicadas al elemento de que se trate, en lo que sigue, para simplificar, se utilizará el término "cargas" para referirnos a las solicitaciones que producen la fatiga.

El número de fluctuaciones de la carga necesarios para producir la rotura del elemento depende del nivel de carga aplicado. Este puede ser desde varias decenas o centenas de ciclos, como ocurre cuando se intenta romper un alambre de poco diámetro doblándolo alternativamente en uno y otro sentido hasta su rotura, hasta cientos de miles o millones de ciclos, con niveles de carga más bajos. En general, en la mayoría de los materiales hay un nivel de tensiones generadas por las cargas, por debajo del cual no se produce daño por fatiga. Es lo que se conoce como límite de fatiga del material.

El proceso es complejo y depende de múltiples parámetros, además de las características del material y el nivel de las cargas. Entre ellos cabe destacar el ambiente, principalmente agentes corrosivos y temperatura, la geometría del elemento: tamaño, discontinuidades, acabado superficial, la complejidad de las cargas aplicadas, tratamientos superficiales, etc. Como ejemplo, puede decirse que dependiendo del acabado superficial y de las discontinuidades como taladros, ángulos, etc., la

Paulino Posada pág. 38 de 41

resistencia a fatiga de un elemento puede ser la mitad o la cuarta parte que ese mismo elemento con un buen acabado superficial y unas discontinuidades más suaves.

La historia está llena de casos de fallos por fatiga, que se han ido produciendo a medida que han ido apareciendo sistemas más complejos y sometidos a mayores solicitaciones. En la segunda mitad del siglo XIX comenzó a saberse algo del fenómeno con la aparición del ferrocarril, en el que existen numerosas piezas sometidas a cargas variables y un número considerable de ciclos; por ejemplo, los ejes y ruedas producen un ciclo cada vuelta que dan. A principios y mediados del siglo pasado comenzó también a tomarse conciencia de la importancia de la fatiga en los automóviles y en los barcos. Un caso bien conocido es el de los barcos de la serie Liberty producidos por Estados Unidos durante la Segunda Guerra Mundial. De los cerca de 3000 barcos producidos, alrededor del 50% tuvieron fallos por fatiga durante la Guerra, llegando el fallo hasta la rotura en dos en cerca de doscientos de ellos. Pero ese fenómeno se produce aún, aunque con mucha menos frecuencia, siendo el desastre del Prestige un exponente de ello. Desde los años 50 del pasado siglo hasta nuestros días ha tomado especial relevancia el fenómeno de la fatiga en la industria aeronáutica. La desintegración en vuelo de algunos de los aviones Comet, que fueron los primeros aviones comerciales presurizados, hizo ver la importancia de la fatiga en el diseño de los fuselajes de los aviones. Actualmente, la fatiga suele ser uno de los parámetros fundamentales en el diseño tanto de los fuselajes como de los motores delos aviones.

Es difícil hacer estimaciones suficientemente fiables de la resistencia de un sistema a fatiga, lo que requiere de altos coeficientes de seguridad en el diseño y numerosos ensayos para comprobar las estimaciones realizadas. Ello es debido principalmente a diversos factores entre los que se incluyen la aleatoriedad de las cargas producidas en los sistemas, la variabilidad del comportamiento de los materiales a fatiga y a la gran cantidad de parámetros de los que depende.

Sin embargo, en los últimos años se ha producido una mejora importante en el conocimiento del proceso, que puede dividirse en una fase inicial de daño microestructural, la aparición de una microgrieta y su posterior crecimiento ante las cargas cíclicas hasta la fractura final. Igualmente, se ha producido una mejora de la capacidad de predicción del comportamiento de las grietas. Además, los equipos que permiten detectar grietas pequeñas han experimentado una gran evolución, permitiendo detectar grietas cada vez menores. Todo ello ha permitido, especialmente en la industria aeronáutica, el desarrollo de diseños basados en la denominada tolerancia al daño, que ha supuesto un aumento de la seguridad de los equipos ante la fatiga.

El criterio de diseño basado en la tolerancia al daño considera que es posible que aparezcan grietas en un avión y por ello, mediante técnicas de análisis y métodos de detección, debe garantizarse que la aparición de dichas grietas no generará un fallo catastrófico. Para ello, el avión debe diseñarse capaz de soportar las cargas de funcionamiento con grietas de determinada longitud. Pero ello no quiere decir que se permita volar con grietas de esas dimensiones. El diseño tolerante al daño va unido al cumplimiento de tres condiciones: la capacidad de análisis de la velocidad de crecimiento de grieta por fatiga ante las cargas de funcionamiento; la capacidad de detección de grietas de pequeñas dimensiones durante el mantenimiento; y una planificación adecuada de los periodos de revisión para comprobar la existencia de grietas. Teniendo en cuenta las grietas menores que es

Paulino Posada pág. 39 de 41

capaz de detectar el sistema de inspección, los periodos de revisión deben planificarse suficientemente cortos para que desde que la grieta alcanza una longitud detectable por los procedimientos al uso hasta que llega a la longitud máxima tolerada se hayan producido varias revisiones. De esa forma solo es posible un accidente si el procedimiento de detección de grietas falla varias veces y cada vez con grietas de mayor longitud, más fáciles de detectar.

Todos estos avances en el conocimiento del proceso, en los procedimientos de análisis y en las capacidades de ensayo a fatiga han permitido reducir enormemente los fallos y accidentes producidos por esta causa. Sin embargo aún debe seguir profundizándose en el fenómeno para reducir los fallos y las necesidades de altos coeficientes de seguridad, que reducen la eficiencia de los sistemas al aumentar sus costes tanto de fabricación como de mantenimiento.

Jaime Domínguez Abascal es académico de la Real Academia de Ingeniería.

Fuente:

El Mundo 16/01/2018

https://www.elmundo.es/economia/2018/01/16/5a5de0e4e5fdeaad3c8b45e5.html





Liberty Ship SS John W. Brown on the Great Lakes in the United States

https://ww2db.com/image.php?image\_id=5061

https://www.mathscinotes.com/2018/05/liberty-ship-production-data/

Paulino Posada pág. 40 de 41



Petrolero Prestige ante la costa gallega en 2002

http://citaconlahistoriajm.blogspot.com/2017/11/el-desastre-del-prestige.html

Vídeo fatiga de materiales

#### https://youtu.be/ec50pX 0N4s?si=PMXcHEAsMXVJuHJx

#### Responde a las siguientes preguntas:

- 1. ¿En el mástil de un velero, que tipo de esfuerzo se produce? ¿Se podría producir rotura por fatiga, porqué?
- 2. ¿Cómo se anuncia la fractura por fatiga?
- 3. ¿Cuál es el porcetaje aproximado de las fracturas por fatiga en las causas de fallos mecánicos?
- 4. ¿Cómo se puede reparar un inicio de daño avanzado por fatiga de material?
- 5. ¿Qué zonas de una pieza son especialmente propensas a sufrir fatiga de material?
- 6. ¿Qué indica el límite de fatiga del material?
- 7. ¿Qué parámetros influyen en que se produzca un daño por fatiga de material?
- 8. ¿Qué significa diseño basado en la tolerancia al daño?
- 9. ¿Qué condiciones se deben cumplir para que el diseño basado en la tolerancia al daño sea efectivo y prevenga un accidente?

Paulino Posada pág. 41 de 41