10월 11일 공유

1) 업데이트 내용

1. 2023년 데이터를 예측값으로 사용

```
In [31]: # 결과 해석
        result = pd.DataFrame([y_pred, y_test.Target]).T
        result.columns = ['예측',"실제값"]
        result = pd.concat([y_idx.reset_index(drop=True),re
        result
Out[31]:
            연도 윌 주차
                             예측 실제값
          0 2023 1 1 38.185821
                                   37.0
          1 2023 1
                      2 35.942030
                                   35.0
          2 2023 1
                      3 35.492412
                                   36.0
          3 2023 2
                      1 37.077018
                                   34.0
        4 2023 2 2 36.773600 32.0
```

기대효과. 더 많은 데이터를 학습하여 더 좋은 성능을 보일 것으로 예상

2. 비율 변수(열)을 사용

```
⇒["Science_IT_P","Ecnomic_P","Global_P","North_Korea_P","Culture_P","Social_P","Issue_P",
'Politic_P', 'Sports_P', 'Local_P', 'Etc_P']
```

기대효과. 단순히 뉴스 보도량이 아닌 그 시기(해당 주차)에 어느 뉴스 카테고리에 집중되었는지 알 수 있다.

3. 이전 달의 긍정, 부정, 잘모름 정도를 활용

```
⇒ ["긍정_과거(Positive_Past)","부정_과거(Negative_Past)","잘모름_과거(Non_Past)"] 기대효과. 시계열적인 특성을 활용
```

4. 이전 달과 비교하여 뉴스 카테고리별 증감량 확인

```
⇒["Science_IT_ID","Ecnomic_ID","Global_ID","North_Korea_ID","Culture_ID","Social_ID","Issue_ID", 'Politic_ID', 'Sports_ID', 'Local_ID', 'Etc_ID']
```

기대효과. 어느 카테고리가 증가 혹은 감소 할 시 궁, 부정에 영향을 끼치는지 알 수 있다.

2) 모델링 결과

예측 결과 해석

10월 11일 공유 1

	연도	월	주차	예측	실제값
0	2023	1	1	57.567362	37.0
1	2023	1	2	44.068627	35.0
2	2023	1	3	33.252183	36.0
3	2023	2	1	29.090435	34.0
4	2023	2	2	41.160612	32.0
5	2023	2	3	36.814931	35.0
6	2023	2	4	42.539644	37.0
7	2023	3	1	36.672715	36.0
8	2023	3	2	37.336986	34.0
9	2023	3	3	33.044060	33.0
		이전	모델(E	BaseLine)	

• 2023년 1월 1주차, 2월 4주차 값을 보면 실제로 이전 모델보다 더 긍정 정도를 잘 맞추는 모습이다.

변수 중요도 해석

	0	1
9	Local	193
7	Politic	169
0	Etc	165
11	SUM	164
6	Issue	162
이전.	모델(BaseLiı	ne)

- 최신 모델의 변수 중요도를 살펴보면 확실히 한달 전의 긍정 정도가 높은 중요도를 보이는 것으로 확인
- 그리고 해당 주의 정치 기사의 비중이 긍정에 높은 중요도를 보인다.

성능 지표 확인

- 해당 성능 지표는 MAE라는 성능 지표로 회귀 모델에서 쓰이는 성능 지표이다.
- MAE는 결과값이 낮을수록 좋다.
- 이전 모델에 비해 최신 모델이 더 좋은 모습을 보여준다.

10월 11일 공유

3) 추후 진행 예정 사항

1) 주제 * 주제 변수 투입 방안 고려

10월 11일 공유