L'ordre dans l'ensemble \mathbb{R} .

1 Ordre et opérations

1.1 Définition

Soient a et b deux nombres réels.

- 1. On dit que a est supérieur ou égal à b et on écrit $a \geq b$, si on a : $a b \geq 0$.
- 2. On dit que a est supérieur strictement à b et on écrit a > b, si on a :a b > 0.
- 3. On dit que a est inférieur ou égal à b et on écrit $a \le b$, si on a $:a-b \le 0$.
- 4. On dit que a est inférieur strictement ou égal à b et on écrit a < b, si on a :a b < 0.

Exemple

$$a = \frac{3}{4}$$
 et $b = \frac{5}{6}$.

1.2 Ordre et addition

Propriété

Soient a,b et c des nombres réels. Si $a \leq b$ alors $a+c \leq b+c$.

Exemple

$$a = 1 + \sqrt{12}$$
 et $b = \frac{1}{3} + \sqrt{12}$

Conséquence

Soient a,b,c et d des nombres réels. Si $a \le b$ et $c \le d$ alors $a+c \le b+d$.

Exemple

$$a = \frac{4}{5} + \sqrt{2}$$
 et $b = \frac{5}{4} + \sqrt{3}$

1.3 Ordre et multiplication

Propriété

Soient a,b et c des nombres réels.

- Si $a \le b$ et c > 0 alors $ac \le bc$.
- Si $a \le b$ et c < 0 alors $ac \ge bc$.

Conséquence

Soient a,b,c et d des nombres réels positifs . Si $a \le b$ et $c \le d$ alors $ac \le bd$.

Propriété

Soient a,b et c des nombres réels. Si $a \le b$ et $b \le c$ alors $a \le c$.

1.4 Ordre et opposé

Propriété

Soient a etb deux nombres réels. Si $a \le b$ alors $-a \ge -b$.

1.5 Ordre et inverse

Propriété

Soient a et b deux nombres réels non nuls et de même signe. Si $a \le b$ alors $\frac{1}{a} \ge \frac{1}{b}$.

Exemple

$$a = \frac{1}{3 - \sqrt{3}}$$
 et $b = \frac{1}{4 - \sqrt{3}}$

1.6 Ordre et Carré

Propriété

Soient a etb deux nombres réels.

- Si $a \leq b$ et (a,b) de \mathbb{R}^+)alors $a^2 \leq b^2$.
- Si $a \leq b$ et $(a,b \text{ de } \mathbb{R}^-)$ alors $a^2 \geq b^2$.

1.7 Ordre et racine carrée

Propriété

Soient a etb deux nombres réels positifs. Si $a \le b$ alors $\sqrt{a} \le \sqrt{b}$.

2 Encadrement

2.1 Définition

Soient a,b et x des réels. Encadrer x signifie trouver deux réels a et b tels que : $a \le x \le b$ ou $a \le x < b$ ou $a < x \le b$ ou $a < x \le b$

- Le nombre réel positif b-a est appelé amplitude de l'encadrement.
- a est appelé une valeur approchée par défaut de x à b-a prés.
- b est appelé une valeur approchée par excès de x à b-a prés.

2.2 Encadrement et opérations

Propriétés

Soient a,b,c,d,x et y tels $a \le x \le b$ et $c \le y \le d$. On a :

- 1. $a + c \le x + y \le b + d$.
- 2. $a d \le x y \le b c$.
- 3. $ac \le xy \le bd.(a,b,c \text{ et } d \text{ de } \mathbb{R}^+).$
- 4. $\frac{a}{d} \leq \frac{x}{y} \leq \frac{b}{c}$. $(a \text{ et } b \text{ de } \mathbb{R}^+) \text{ et } (c \text{ et } d \text{ de } \mathbb{R}^{+*})$

Exercices d'applications

- 1. Comparer les nombres x et y dans chacun des cas suivants : $x = 1 \frac{1732}{735}$ et $y = \frac{1}{100} + 1$; $x = \sqrt{2}$ et $y = \frac{2}{\sqrt{2} + 1}$; $x = \sqrt{3} 1$ et $y = \frac{2}{\sqrt{3} + 1}$; $x = 17\sqrt{2}$ et $y = 15\sqrt{3}$
- 2. On donne les encadrements suivants : $2 \le x \le 4$ et $-6 \le y \le -1$. Donner un encadrement de x^2 ; y^2 ; x + y; 2x 3y; xy; $\frac{1}{x}$.

3 Distance et la valeur absolue

3.1 Définition

Sur une droite graduée $\Delta(O; I)$, on considère un point A d'abscisse x. La distance OA est appelé la valeur absolue de x et on écrit : OA = |x|.

Remarque

Soit x un nombre réel. On a : $|x| = \begin{cases} x \text{ si } x \ge 0 \\ -x \text{ si } x \le 0 \end{cases}$.

3.2 Distance entre deux points

Propriété

Sur une droite graduée $\Delta(O; I)$, on considère A et B deux points d'abscisses x et y respectifs. On a AB = |x - y|.

3.3 Proprietés

Soient x et y deux réels.On a :

- 1. Si |x| = 0 alors x = 0.
- 2. |-x| = |x| et |x y| = |y x|.
- 3. Si |x| = |y| alors x = y ou x = -y.
- 4. $|x|^2 = |x^2| = x^2$.
- 5. $\sqrt{x^2} = |x|$.
- 6. |xy| = |x||y|
- 7. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, (y \in \mathbb{R}^*).$
- 8. $|x+y| \le |x| + |y|$ et $|x-y| \ge |x| |y|$.

4 Intervalles

Soient a et b deux réels tels que $a \leq b$.

Ensemble des réels x tel que	Représentation sur la droite gradué	Notation	Nomination
$a \le x \le b$		[a;b]	Intervalle borné, fermé en a et b .
a < x < b]a;b[Intervalle borné, ouvert en a et b .
$a \le x < b$		[a;b[Intervalle borné, fermé en a et ouvert en b .
$a < x \le b$	<u>a</u>] b →]a;b]	Intervalle borné, ouvert en a et fermé en b .
$x \le a$		$]-\infty;a]$	Intervalle non borné, fermé en a .
x < a		$]-\infty;a[$	Intervalle non borné, ouvert en a .
$x \ge b$	<u></u> b C T T T T T T T T T T T T	$[b; +\infty[$	Intervalle non borné, fermé en b .
x > b	<u></u>	$]b;+\infty[$	Intervalle non borné, ouvert en b .

Remarques

- 1. Les symboles $+\infty$ et $-\infty$ ne sont pas des nombres.
- 2. le symbole $+\infty$ se lit "plus infini".
- 3. le symbole $-\infty$ se lit "moins infini".
- 4. $\mathbb{R} =]-\infty; +\infty[,\mathbb{R}^+ = [0; +\infty[$ et $\mathbb{R} =]-\infty; 0].$
- 5. Soit [a; b] un intervalle.

 - Le nombre |a-b| est appelé l'amplitude de l'intervalle [a;b].

 Le nombre $c=\frac{a+b}{2}$ est appelé le milieu de l'intervalle [a;b].

 Le nombre $r=\frac{|a-b|}{2}$ est appelé le rayon de l'intervalle [a;b].

Intersection et réunion 4.1

Définition

Soient I et J deux intervalles de \mathbb{R} .

- On note l'intersection de deux intervalles I et $J:I\cap J$ et on écrit $I:I\cap J=\{x\in\mathbb{R}|x\in I\}$
- On note la réunion de deux intervalles I et $J: I \cup J$ et on écrit $: I \cup J = \{x \in \mathbb{R}/x \in I \text{ ou } x \in J\}$

Exemples

- 1. I =]-3;4] et J =]2;5].
- 2. $I =]-\infty;4]$ et $J =]-1;+\infty[$.
- 3. I =]-5; 2] et J = [3; 7[.

5 Intervalles et valeur absolue

Ensemble des réels x tel que	Écriture en utilisant les intervalles	Représentation sur la droite gradué
$ x \le r$	$x \in [-r; r]$	$r \longrightarrow r$
x < r	$x \in]-r;r[$	$r \longrightarrow r$
$ x \ge r$	$x\in]-\infty;-r]\cup [r;+\infty[$	$r \longrightarrow r$
x > r	$x\in]-\infty;-r[\cup]r;+\infty[$	$r \rightarrow r$
$ x-a \le r$	$x \in [a-r;a+r]$	a-r $a+r$
x - a < r	$x \in]a-r;a+r[$	a-r
$ x-a \ge r$	$x\in]-\infty;a-r]\cup [a+r;+\infty[$	a-r $a+r$
x-a > r	$x\in]-\infty;a-r[\cup]a+r;+\infty[$	a-r $a+r$

6 Approximations et approximations décimales

6.1 Approximation

Définition

Soient a et x deux réels et r un réel strictement positif.

- 1. Si $a \le x \le a + r$ on dit que a est une approximation(ou valeur approchée) du réel x par défaut à r près.
- 2. Si $a-r \le x \le a$ on dit que a est une approximation(ou valeur approchée) du réel x par excès à r près.
- 3. Si $|x-a| \le r$ on dit que a est une approximation(ou valeur approchée) du réel x à r près.

6.2 Approximation décimale

Définition

Si x est un réel et p est un entier relatif alors il existe $n \in \mathbb{N}$ tel que $:p.10^{-n} \le x \le (p+1).10^{-n}$.

- $p.10^{-n}$ est appelé une approximation décimale par défaut du réel x à 10^{-n} près.
- $(p+1)10^{-n}$ est appelé une approximation décimale par excès du réel x à 10^{-n} près.