1. SYNCHRONIZATION

Motivation

- Distributed System challenges
- Common notion

Techniques (Real)

- Challenges
- Precision Time Protocol
 - Timestamp

Master

TM1 = 1051

TM2 = 1053

Tm = 1050s

Line Delay = 1s

Follow Up

Follow Up

Slave

Sync

~TM1

~TM2

Ts = 1000s

Ts = 1001

TS1 = 1002

Ts = 1052

TS2 = 1053

Techniques (Logical)

- Challenges
- Lamport time-stamps
- Vector Clocks

$$e_1 \rightarrow e_2 \Rightarrow C(e_1) < C(e_2)$$

thus, if $C(e_1) \not< C(e_2)$ then $e_1 \not\rightarrow e_2$

$$e_1 \to e_2 \Leftrightarrow C(e_1) < C(e_2)$$

$$C(e_1) < C(e_2)$$
 even if $(e_1 \not\rightarrow e_2 \land e_2 \not\rightarrow e_1)$ (concur. events)

Perspectivation

2. LEADER ELECTION AND CONSISTENCY

Motivation

- Leader Election
 - Data & Div./Conq.
- Consistency
 - Replication → Troubles

Leader Election

- Prerequisites
- General Approach
- When?
- Technique Comparison

Techniques

- Bully
- Ring-based: Chang and Roberts
- Message Complexicity

$$N-1 + N-2 + ... + 1 = (N-1)*N/2 = O(N^2)$$

Consistency

- CAP
- PACELC

Consistency models

- Strong Consistency
- Weak Consistency
- Eventual Consistency

•

3. FAULT TOLERANCE AND CONSENSUS

Motivation

- Fault Tolerance
 - Failures?
- Consensus
 - Coherent group

Terminology

- Failures:
 - Crash, Arbitrary...
- Fault consequences

Consensus

- What?
 - Fault consequences
- Approaches
 - State machine replication
- X Process fails
- Paxos, Zoo Keeper, RAFT

- Basics
- Leader Election
- Log Replication
- Election Restriction (Safety)

- Basics
- Leader Election
- Log Replication
- Election Restriction (Safety)

- Basics
- Leader Election
- Log Replication
- Election Restriction (Safety)

- Basics
- Leader Election
- Log Replication
- Election Restriction (Safety)

4. POSITIONING AND LOCATION AWARENESS

Motivation

- Navigation
- Firefighters

Challenges

Level

Privacy

Concepts

- Position
 - Absolute/Relative/Hybrid
- Location
- Location Service
- Location Based Service

Absolute Positioning

- Trilateration
- Triangulation (ToTal)

Absolute Positioning

- Trilateration
- Triangulation (ToTal)

Relative Positioning

Dead Reckoning

Hybrid Positioning

Sensor Fusion

Kalman filters

Perspective

Pervasive systems

Article - Privacy

5. PERVASIVE COMPUTING (BACKGROUND, METHODS AND ENABLING TECH.)

Background

- Weiser XEROC PARC
- → Cloud, Crowd and Shroud

Properties

- Ubiquitous
- Transparent
- Openness
- Autonomous

Concepts/Methods

Awareness

Interaction

- Smart X
- Calm Tech.

Enabling Technologies

6. CONTEXT AWARENESS USING SMART X (TOWARDS INTELLIGENT **ENVIRONMENTS)**

Context Aware System

- Situation
- What, Where, When,
- How
- and Why
- Sensor Fusion

Challenges

- User Context
- Environment Context
- Privacy

Lifecycle

Example

Fact Subject Object Relation

Smart X

 Combination → Intelligent Environment

Intelligent System

- Distributed
- Environment
- Interaction
- Context

Zero Conf.

