Practice quiz on Types of Functions

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do $\it not$ define a function $f:A\to B$?

- $\bigcirc \ f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\bigcirc \ f(1)=4, f(2)=40, \text{and} \ f(10)=8.$
- $\textcircled{9} \ f(1) = 5, f(2) = 8, \text{and} \ f(10) = 40.$
- $\bigcirc \ f(a)=4a,$ for each $a\in A$

 \checkmark Correcto A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

- $\bigcirc T(a) = \text{ and } D(a) = S$
- $\bigcirc T(a) = \text{ and } D(a) = H$
- $\bigcirc T(a) = + \text{ and } D(a) = S$
- $\textcircled{ } T(a) = + \operatorname{and} D(a) = H$

 $\checkmark \ \ \text{Correcto}$ Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3.	Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are <i>not</i> on the	1/1 puntos
	graph of g ?	
	\bigcirc $(0,-1)$	
	○ (1,0)	
	\bigcirc $(-1,0)$	
	$\label{eq:correcto} \mbox{Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3\neq -1$, so the point $(2,-1)$ is \mathbb{q} on the graph of g.}$	
4.	Let the point $A=(2,4)$. Which of the following graphs does $\it not$ contain the point $\it A$?	1/1 puntos
	\bigcirc The graph of $s(x)=x^2$	
	lacktriangledown The graph of $h(x)=x-1$	
	\bigcirc The graph of $g(x)=x+2$	
	\bigcirc The graph of $f(x)=2x$	
	✓ Correcto	
	The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1\neq 4$, so the point $(2,4)$ is <i>not</i> on the graph of h .	
5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1/1 puntos
	$\bigcirc \ h$ is neither a strictly increasing function nor a strictly decreasing function.	
	igcup h is a strictly increasing function	
	All statements are correct	
	lacktriangledown is a strictly decreasing function	

A function h is called strictly decreasing if whenever a < b, then h(a) > h(b)

Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!

✓ Correcto

Which of the following is a possible value for f(3.7)?

- 17
- 14.7
- \bigcirc -3
- 3

✓ Correcto

A function f is called strictly increasing if whenever a < b, then f(a) < f(b).

Since f(3)=15 is given and 3<3.7, it must be that 15< f(3.7), and this answer satisfies that.