theoretical.md 8/28/2022

Theoretical part

The weighted vote assigns a weight to each point, the weight can be calculated as the inverse of each points distance from some point x. That is $f(x,x_i)$

Considering two target classes \$c_1,c_2\$, without weights \$x\$ would be assigned to the class with \$k\$ nearest points. Therefore as \$k\$ increases the points that are checked increases. If we assume that point \$x\$ belongs to \$c_1\$ but \$c_2\$ has more neighbors then the algorithm decides that \$x\$ belongs to \$c_2\$.

Also, if the cardinality of $c_2 > c_1$ and $k=c_2$ then x would always belong to c_2 .

Giving weights to each vote allows the distance to those points to decide where \$x\$ belongs, a cluster of points some distance \$d\$ from \$x\$ will hold a higher weight than another cluster distance \$2d\$ even if it contains more points.

As the number of k increases the calculation of weight stays the same, therefore if the cardinality of c_2 > c_1 and $k = |c_2|$ then the weights of the furthest points will be negligible.