Matematica Discreta

Compito 4

1.) Quale delle applicazioni $F: \mathbb{R}^3 \to \mathbb{R}^3$ è lineare?

a.)
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 \\ x_2 + 2 \\ x_3 \end{pmatrix}$$
 b.) $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_2 \\ 3x_3 \\ x_1 \end{pmatrix}$ c.) $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} x_2 - x_3 \\ x_1x_3 \\ x_1 - x_2 \end{pmatrix}$

- 2.) Trovare la matrice dell'applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^4$ dato da $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 9x_1 + 3x_2 3x_3 \\ 2x_1 9x_2 x_3 \\ 4x_1 9x_2 2x_3 \\ 5x_1 + x_2 + 5x_2 \end{pmatrix}$.
- 3.) Consideriamo l'applicazione $T: \mathbb{R}^2 \to \mathbb{R}^3$ dato da $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix}$. Stabilire se T è lineare e, in caso di si, trovare la matrice.
- 4.) In \mathbb{R}^2 consideriamo la retta l data da $l = \left\{ \begin{array}{ll} x & = & 2t \\ y & = & t \end{array} \right.$, $t \in \mathbb{R}$ e il vettore $\vec{v} = \left(\begin{array}{ll} 1 \\ 1 \end{array} \right)$. Trovare la matrice che rappresenta la rifessione in l e l'immagine del vettore \vec{v} sotto questa riflessione.
- 5.) Trovare la matrice che rappresenta l'applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^2$ con

$$T(\left(\begin{array}{c}1\\0\\0\end{array}\right))=\left(\begin{array}{c}7\\11\end{array}\right),\,T(\left(\begin{array}{c}0\\0\\1\end{array}\right))=\left(\begin{array}{c}-13\\7\end{array}\right)\,\mathrm{e}\;T(\left(\begin{array}{c}0\\1\\0\end{array}\right))=\left(\begin{array}{c}6\\9\end{array}\right).$$

a.)
$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e T\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

6.) Trovare la matrice che rappresenta l'applicazione lineare
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 con a.) $T(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $T(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ b.) $T(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e $T(\begin{pmatrix} 3 \\ 7 \end{pmatrix}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

7.) Trovare, se è possibile, l'inverse dei seguente matrici:

a.)
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$$
 c.) $\begin{pmatrix} 1 & 3 \\ -2 & 6 \end{pmatrix}$

$$d.) \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 1 & 2 & 4 \end{array} \right)$$

e.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$

$$f.) \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{array} \right)$$

e.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$$
 f.) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ g.) $\begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 0 & -1 & 0 & 1 \\ 1 & 0 & 0 & 2 \end{pmatrix}$ h.) $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 5 & 9 & 1 & 6 \end{pmatrix}$

h.)
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 2 \\ 1 & 2 & -1 & 1 \\ 5 & 9 & 1 & 6 \end{pmatrix}$$

- 8.) Per quali valori di $a \in \mathbb{R}$ è la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & a \end{pmatrix}$ invertibile? In tale casi trovare l'inverse.
- 9.) Sia A una matrice $n \times n$ e $m \in \mathbb{N}$. Il prodotto $AA \dots A$ (di m copie di A) viene denotato con A^m . Calcolare:

a.)
$$A^8$$
, dove $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ b.) A^{10} , dove $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ c.) A^5 , dove $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

b.)
$$A^{10}$$
, dove $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

c.)
$$A^5$$
, dove $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

10.) Multiplicare, se è possible, le matrici dati.

a.)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

a.)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 b.) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ c.) $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

$$c.) \begin{pmatrix} 1\\2\\1 \end{pmatrix} \begin{pmatrix} 3 & 2\\1 & 0 \end{pmatrix}$$

d.)
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 1 & -1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}$$
 e.) $\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 2 & 1 \end{pmatrix}$ f.) $\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}$

e.)
$$\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 2 & 1 \end{pmatrix}$$

f.)
$$\begin{pmatrix} 1\\3\\2 \end{pmatrix}$$
 $\begin{pmatrix} 1&0&-1 \end{pmatrix}$

11.) Siano $A \in B$ due matrici $n \times n$ invertibile. Dimostrare: AB è invertibile e $(AB)^{-1} = B^{-1}A^{-1}$.

Buon divertimento!