$$\text{GMM:} \quad p(\mathbf{x}|\theta) = p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k). \qquad 0 \leqslant \pi_k \leqslant 1 \qquad \sum_{k=1}^K \pi_k = 1$$

GMM:
$$p(\mathbf{x}|\theta) = p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$
 $0 \leqslant \pi_k \leqslant 1$ $\sum_{k=1}^{K} \pi_k = 1$

1 of K representation

K-dimensional binary random variable z

$$z_k \in \{0,1\}$$
 and $\sum_k z_k = 1$

$$p(z_k = 1) = \pi_k$$

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

conditional probability

$$p(\mathbf{x}|z_k = 1) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 $p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$p(\boldsymbol{x}, \boldsymbol{z})$$

GMM:
$$p(\mathbf{x}|\theta) = p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$
 $0 \leqslant \pi_k \leqslant 1$ $\sum_{k=1}^{K} \pi_k = 1$

1 of k representation

$$K$$
-dimensional binary random variable \mathbf{z} $z_k \in \{0,1\}$ and $\sum_k z_k = 1$ $p(z_k = 1) = \pi_k$ $p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$

remark:

If we have several observations $\mathbf{x}_1, \dots, \mathbf{x}_N$, then, because we have represented the marginal distribution in the form $p(\mathbf{x}) =$ $\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, it follows that for every observed data point \mathbf{x}_n there is a corresponding latent variable \mathbf{z}_n .

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$p(\mathbf{x}, \mathbf{z})$$

Responsibilities

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$

Example

Maximum likelihood (GMM)

$$\ln p(\mathbf{X}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k) \right\}$$
 Vector of K D -dim. means $\boldsymbol{\mu}_k$ Vector of K D xD covariances $\boldsymbol{\Sigma}_k$

• maximizing w.r.t π , μ and Σ \rightarrow

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \qquad \Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^{\mathrm{T}}$$

$$\left(N_k = \sum_{n=1}^N \gamma(z_{nk}) \right) \qquad \pi_k = \frac{N_k}{N}$$

Maximum likelihood (GMM)

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n \qquad \Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^{\mathrm{T}}$$

$$N_k = \sum_{n=1}^N \gamma(z_{nk}). \qquad \pi_k = \frac{N_k}{N}$$

- so what?! \rightarrow Problem: Expr. depend on $\gamma(z_{nk})$ which depends on π, μ, Σ which depends on $\gamma(z_{nk})$ which depends on
- Idea: Alternating approach (EM-algorithm):

Step t: Evaluate
$$\gamma(z_{nk})_{(t)}$$
 using $(\pi, \mu, \Sigma)_{(t-1)}$

Evaluate $(\pi, \mu, \Sigma)_{(t)}$ using $\gamma(z_{nk})_{(t)}$

Maximum likelihood (GMM)

Maximum likelihood (GMM)

EM for Gaussian Mixtures

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect to the parameters (comprising the means and covariances of the components and the mixing coefficients).

- 1. Initialize the means μ_k , covariances Σ_k and mixing coefficients π_k , and evaluate the initial value of the log likelihood.
- 2. E step. Evaluate the responsibilities using the current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (9.23)

Maximum likelihood (GMM)

3. M step. Re-estimate the parameters using the current responsibilities

$$\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \tag{9.24}$$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right) \left(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right)^{\text{T}}$$
(9.25)

$$\pi_k^{\text{new}} = \frac{N_k}{N} \tag{9.26}$$

where

$$N_k = \sum_{n=1}^{N} \gamma(z_{nk}). {(9.27)}$$

4. Evaluate the log likelihood

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$
(9.28)

and check for convergence of either the parameters or the log likelihood. If the convergence criterion is not satisfied return to step 2.

Having latent variables **Z** , ML becomes

$$\ln p(\mathbf{X}|\boldsymbol{\theta}) = \ln \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

- Summation inside In → Problems!
- If we knew the complete dataset $\{\mathbf{X},\mathbf{Z}\}$ (and thus the distribution $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$), we could use ML to solve for $\boldsymbol{\theta}$ with $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ directly (which is easy, as we will see, because $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$ is of exponential family (the functional form is known!!)
- We only know $p(\mathbf{Z}|\mathbf{X},\theta)$ (\rightarrow responsibilities, as we will see) \rightarrow compute expectation of (unknown) quantity $p(\mathbf{X},\mathbf{Z}|\theta)$ or even better of the quantity $\ln p(\mathbf{X},\mathbf{Z}|\theta)$

alternating EM:

E-Step: compute
$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}).$$
 M-Step: compute
$$\boldsymbol{\theta}^{\text{new}} = \arg\max_{\boldsymbol{\theta}} \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}).$$

The General EM Algorithm

Given a joint distribution $p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$ over observed variables \mathbf{X} and latent variables \mathbf{Z} , governed by parameters $\boldsymbol{\theta}$, the goal is to maximize the likelihood function $p(\mathbf{X}|\boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$.

- 1. Choose an initial setting for the parameters θ^{old} .
- 2. **E step** Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$.
- 3. **M step** Evaluate θ^{new} given by

$$\theta^{\text{new}} = \underset{\theta}{\operatorname{arg\,max}} \mathcal{Q}(\theta, \theta^{\text{old}})$$
 (9.32)

where

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\theta).$$
 (9.33)

Check for convergence of either the log likelihood or the parameter values.
 If the convergence criterion is not satisfied, then let

$$\theta^{\text{old}} \leftarrow \theta^{\text{new}}$$
 (9.34)

and return to step 2.

applied to GMM:

$$p(\mathbf{z}) = \prod_{k=1}^{K} \pi_k^{z_k} \qquad p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$

$$p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

$$\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}.$$

Bayes
$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})\right]^{z_{nk}}$$

$$\frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})}{p(\mathbf{X} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})} = \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})}{\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})}$$

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]^{z_{nk}}$$

$$\mathbb{E}[z_{nk}] = \frac{\sum_{z_{nk} \in \{0,1\}}}{\sum_{z_{nj}} \left[\pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right]^{z_{nk}}}$$

$$= \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j=1}^{K} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} = \gamma(z_{nk})$$

$$\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}.$$

Linearität des Erwartungswertes

$$\begin{split} \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) &= \\ \mathbb{E}_{\mathbf{Z}} [\ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] &= \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}. \\ &= \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \end{split}$$

these are computed with $heta^{
m old}$