Measure Theoretic Probability

[Listen to uploaded audio files too if needed]

In this study material, we will show how measure theory plays a vital role in probability theory.

To be honest, actually probability theory stands on the shoulder of the gigantic notion of Measure Theory. In other words, probability theory is *a kind of* measure in limited interval in reals following some probability-specific axioms. That means, measure theory is a more generalized body of knowledge.

-- Brief encounter with Measure Theory

Let X be any set and W = P(X) be a power set. The measure is a function $f: W \to R^+$ such that the following conditions are satisfied considering $\{0\} \subset R^+$:

$$A, A_i, A_j \in W,$$

$$f(A) \ge 0,$$

$$[i \ne j] \Rightarrow [A_i \cap A_j = \phi],$$

$$f(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} f(A_i).$$

Explanations: The first condition says that in any case the measure of some subset of X should be always positive inclusive of zero. The second condition says that if we take partition of set X and find individual measure, then the total measure of union will equal to the sum of each measure.

-- Measure Theoretic Probability

Let Σ be a $\sigma - a \lg ebra$ on X and a function is given as: $p: \Sigma \to R$. This function is a probability measure if it follows standard probability axioms in [0,1] and also the followings:

- 1. If, for any $\{A_i\}_{i=1}^n \in \Sigma^n$ that is pairwise disjoint, $p(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n p(A_i)$ then we say p is finitely additive
- 2. If, for any $\{A_i\}_{i=1}^{\infty} \in \Sigma^{\infty}$ that is pairwise disjoint, $p(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} p(A_i)$ then we say p is σ -additive

Explanations: The first condition talks about measure condition in finite sense (because $n < \infty$). The second condition is a more generalized version for positive additivity and it is called sigma-additive. Both are actually following measure theory conditions.

-- Subtle distinctions

Now let us look at function p(.) in two different lights. First one is NOT a probability measure but a finite measure. The second one is a restriction so that p(.) becomes a probability measure.

If p is a measure such that $p(X) < \infty$, then it is a finite measure

If p(X) = 1 then it is a probability measure

-- Boole Inequality Theorem

For any probability space $\{X, \Sigma, p\}$

$$p\left\{\bigcup_{i=1}^{\infty} A_i\right\} \leq \sum_{i=1}^{\infty} p(A_i) \text{ for any } \left\{A_m\right\} \in \Sigma^{\infty}$$

Explanation: This is saying that if we take any arbitrary subsets of X then as a generalization the probability measure will follow the above mentioned inequality in sigma-algebra on X. One way to look at this is that: it is a generalized version of measure theory condition considering non-disjoint subsets too.

-- Almost Sure Equality of RVs

Let H_1, H_2 be two random variables (RVs) and (X, Σ, p) be a probability measure space. The RVs are called as Almost-Surely-Equal if the following condition is satisfied:

$$p(w \in X : H_1(w) = H_2(w)) = 1$$

The above definition consider at least one such element in probability measure space. However, there can be subset $A \subset X$, |A| > 1 where the above statement can be valid.

The Almost-Surely-Equal RVs are often denoted as: $H_1 = H_2$.

-- Relationship to Expectations

Suppose $H_1 = H_2$ in the probability measure space (X, Σ, p) and E denotes expected values. Then we can derive two conclusions as given below:

1. If
$$H_1 \ge H_2$$
 then $E(H_1) \ge E(H_2)$
2. If $H_1 = H_2$ then $E(H_1) = E(H_2)$

Explanations: The second condition is saying that = relation between RVs maintains = relation between expected values. The first condition is a more generalized version saying that if two RVs maintain \geq relation then, in ordering relation the expected values will maintain \geq relation.

Assignments:

Q1. Prove the following claim:

Let
$$\{X, \Sigma, p\}$$
 be a probability space and $A, B \in \Sigma$, such that $A \subseteq B$. Then $p(A) \leq p(B)$

Q2. Prove the statements

1. If
$$H_1 \ge H_2$$
 then $E(H_1) \ge E(H_2)$

2. If
$$H_1 = H_2$$
 then $E(H_1) = E(H_2)$