Map-aware Motion Prediction

Course 4, Module 2, Lesson 2

Assumptions to Improve Prediction

Positional Assumptions

- Vehicles on driving lane usually follow the given drive lane
- Changing drive lanes is usually prompted by an indicator signal

Velocity Assumptions

- Vehicles usually modify their velocity when approaching restrictive geometry (tight turns)
- Vehicles usually modify the velocity when approaching regulatory elements

Improvement of Position Estimation

- Roadways with natural curvature
- Vehicles on drive lane usually follow the given drive lane
- The predicted path is set to follow the center of the driving lane which the dynamic vehicle is on

Improvement of Path Prediction

• Problems with the model:

 Difficult to predict lane change maneuvers without extra information

Improvement of Path Prediction

- Problems with the model:
 - Difficult to predict lane change maneuvers without extra information
 - Multiple possible lanelets such as when on an intersection

Improvement of Path Prediction

• Solution with the model:

Most likely prediction using object state
 Multi-hypothesis prediction appearance & track

Multi-hypothesis Approach

- Consider the range of all possible motions
 - Left, right, stay stopped
- Provides more information to local planner + o consider multiple scenarios
- Safer due to human error (forgotten turn signal)

Jupolate probabilities of belief based on indicator signals, position to the left or right of the centrer line & state of the vehicle

Improvements to Velocity Prediction

- Road curvature can be used to improve the velocity prediction over the path
 - Maximum lateral acceleration:
 0.5 -1 m/s²

Vehicle speed when eatening wives.

Improvements to Velocity Prediction

 Road curvature can be used to improve the velocity prediction over the path

 Improve the velocity prediction based on regulatory elements in the environment stop/yield signs, Speed limit change o Stop locations, deceleration or traffic highers.

profiles

Lanelet priors

preprocess map for nomical trajectories along each way.

multihypothesis priors based on norminal driving behaviour

Issues with the Assumptions

- Vehicles don't always stay within their lane or stop at regulatory elements
- Vehicles off of the road map cannot be predicted

using this method

dynamic

vehicles Yeart to pothsles & bouncing balls.

Summary

- Described a set of assumptions made by map-aware algorithms to improve motion prediction
- Defined position-based and velocity-based prediction enhancements
 - Identify strategies to generated multiple hypotheses
- Identified issues with the map-aware assumptions
- Next: Calculating time to collision