Эйлеров цикл

- ullet Цикл в графе G называется эйлеровым, если он содержит все ребра G
 - \star как подграф, эйлеров цикл совпадает с G с точностью до вершин степени 0 (изолированных вершин)
- ullet Эйлерова цепь это цепь, содержащая все ребра G
 - эйлеров цикл частный случай эйлеровой цепи
- Граф эйлеров (полуэйлеров), если в нем есть эйлеров цикл (цепь)
- Источник понятия старая головоломка о кенигсбергских мостах:
- Город Кенигсберг расположен на берегах реки Прегель и двух островах на этой реке; части города соединены мостами (см. рисунок)
- Можно ли обойти все мосты, пройдя по каждому из них ровно один раз?

* В головоломке спрашивается о наличии эйлеровой цепи в графе с 4 вершинами (берега и острова реки) и 7 ребрами (мосты)

Теорема Эйлера о циклах

Теорема Эйлера о циклах

Граф без изолированных вершин является эйлеровым тогда и только тогда, когда он связен и степени всех его вершин четны.

Доказательство (необходимость):

- ullet Пусть G эйлеров граф без изолированных вершин
 - ⇒ Каждая вершина инцидентна хотя бы одному ребру
 - ⇒ Эйлеров цикл проходит по всем вершинам
 - \Rightarrow Любые две вершины в G соединены цепью (частью эйлерова цикла)
 - \Rightarrow G связен
- \bullet «Обойдем» G по эйлерову циклу
- Для произвольной вершины *v*
 - ullet мы «зайдем» в вершину v столько же раз, сколько «выйдем» из нее
 - ullet инцидентное v ребро используется либо только для захода в v, либо только для выхода из v
 - \star петля используются и для захода, и для выхода
 - при подсчете степени вершины каждая петля учитывается дважды
 - остальные ребра разбиваются на пары (входящее ребро, исходящее ребро)
 - ⇒ Степень *v* четна

Теорема Эйлера о циклах — достаточность

Доказательство (достаточность):

- ullet Пусть G связен, степени всех вершин в G четны; построим в G эйлеров цикл
- \bullet Если в G есть петли, то можно
 - удалить петли (связность графа и четность степеней вершин не нарушатся)
 - построить эйлеров цикл в получившемся графе
 - встроить петли в построенный цикл, получая эйлеров цикл в G
- \Rightarrow В дальнейшем считаем, что в G нет петель
 - ullet Пусть v_0 произвольная вершина графа G
 - $\deg(v_0)>0 \Rightarrow$ построим цепь с началом в v_0
 - ребра e₁, e₂,... выбираем произвольно
 - останавливаемся, когда цепь нельзя продолжить
 - (все ребра, инцидентные текущей вершине u_k уже вошли в цепь)
 - ⇒ остановимся через конечное число шагов
 - пусть построена цепь $v_0, e_1, v_1, e_2, \dots, e_k, v_k$
 - ullet докажем, что $v_k = v_0$, т.е. мы построили цикл
 - от противного: пусть $v_k \neq v_0$
 - \Rightarrow проходя по цепи от u_0 к u_k , мы входили в u_k $\ell > 0$ раз, а выходили $\ell 1$ раз
 - все ребра, по которым мы входили и выходили, различны
 - \Rightarrow в цепи $2\ell-1$ ребер, инцидентных v_k
 - ullet это не все ребра в G, инцидентные v_k , так как $\deg(v_k)$ четна
 - \Rightarrow противоречие с правилом построения цепи \Rightarrow $v_k = v_0$
 - Окончание доказательства \Longrightarrow

Теорема Эйлера о циклах — достаточность (2)

- ullet Пусть C_1 построенный цикл:
 - Если C_1 эйлеров, построение закончено
- ullet Пусть C_1 не эйлеров, т.е. в графе $G_1=G-\{e_1,\ldots,e_k\}$ есть ребра
- Среди этих ребер есть ребро f_1 , инцидентное какой-то вершине v_i цикла C_1 \star иначе C_1 компонента связности связного графа G, не совпадающая с G
- \star В графе G_1 степени всех вершин четны
 - при удалении ребер e_1, \ldots, e_k степень каждой из вершин v_1, \ldots, v_k уменьшилась на четное число, а степени остальных вершин не изменились
- ullet Рассмотрим компоненту связности графа G_1 , содержащую ребро f_1
 - ullet в ней можно построить цикл $ar{C}_2$ из ребер f_1,\ldots,f_m тем же способом, которым был построен цикл C_1 :

- ullet последовательность ребер $e_1,\ldots,e_i,f_1,f_2,\ldots,f_m,e_{i+1},\ldots,e_k$ образует цикл C_2
- \star в C_2 больше ребер, чем в C_1
- \star если цикл C_2 эйлеров, построение закончено
- \star иначе повторим процедуру, расширив цикл C_2 до C_3 , и т.д.
- \star число ребер в G конечно \Rightarrow какой-то цикл C_i окажется эйлеровым

Комментарии к теореме Эйлера о циклах

- \star Если G эйлеров граф, e какое-то его ребро, то граф G e полуэйлеров \bullet если в эйлеровом цикле удалить произвольное ребро, останется эйлерова цепь
- ⇒ Верна следующая версия теоремы Эйлера:
- ★ Граф без изолированных вершин является полуэйлеровым ⇔ он связен и в нем не более двух вершин нечетной степени
 - \star Понятия эйлерова цикла/цепи переносятся без изменений на орграфы
- ⇒ Анализ доказательства дает теорему Эйлера для орграфов:
- ★ Орграф без изолированных вершин является эйлеровым ⇔ он сильно связен и для любой вершины степень исхода равна степени захода
 - ! Сформулируйте ориентированную версию критерия для полуэйлеровых графов
 - будьте внимательны!
- \star Граф кенигсбергских мостов не является полуэйлеровым
 - все 4 вершины имеют нечетную степень (проверьте!)

Приложения эйлеровых графов

- Задача китайского почтальона: дан граф с неотрицательными весами ребер, требуется найти циклический маршрут наименьшего веса, содержащий все ребра графа
 - практическая задача: составление маршрутов поливальных/посыпальных машин на улицах города
 - \star если граф эйлеров, то оптимальным маршрутом является эйлеров цикл
 - * неэйлеров граф превращают в эйлеров заменой некоторых ребер на кратные
 ◆ соответствует дополнительному «холостому» проходу по ребру
- * Задача о разрезании лазером: в станок для лазерной резки подается лист металла, который нужно разрезать на детали в соответствии с чертежом
 - лазер не должен проходить один и тот же отрезок дважды (может оплавиться край детали)
 - лазер можно отключить и переустановить на другую точку листа, но это сложная процедура, и количество отключений надо минимизировать
- ! Опишите связь этой задачи с эйлеровыми графами
- ! Чем отличается работа с неэйлеровыми графами в задаче о разрезании лазером и задаче китайского почтальона?

Диаметр эйлеровых графов

- ullet d(u,v) расстояние от u до v (наименьшая длина (u,v)-маршрута) в графе G
 - \star d(u,u)=0, $d(u,v)=\infty$ если (u,v)-маршрута не существует
 - \star в неориентированном графе d(u,v)=d(v,u)
- \star Диаметр графа: $diam(G) = \max_{u,v \in V} d(u,v)$
 - \star диаметр графа/орграфа, не являющегося связным/ сильно связным, бесконечен
 - \star реальный мир: огромные графы с маленьким диаметром (шесть рукопожатий)
- 🛪 Диаметр орграфа называют ориентированным диаметром
 - неориентированный диаметр $\overline{diam}(G)$ орграфа G это диаметр графа G', полученного симметризацией G (стиранием всех стрелок)
 - * это «диаметр для пешеходов»: по улицам с односторонним движением пешеход может двигаться в любую сторону
- \star $\overline{\mathit{diam}}(G) \leqslant \mathit{diam}(G)$, и разница может быть сколь угодно велика
 - например, $\overline{diam}(G) < \infty = diam(G)$
- \bigstar Теорема Бабаи (2006): если G эйлеров, то $diam(G) = O(\overline{diam}(G) \cdot \Delta \cdot \ln n)$, где Δ максимальная степень вершины в G, n число вершин
 - Пусть T порождающее множество группы G; граф Кэли $\Gamma(G,T)$ имеет множество вершин G и множество ребер $\{(u,v)\mid \exists t\in T: v=ut\}$
 - ★ граф Кэли эйлеров (объясните, почему)
 - ullet можно определить диаметр группы $G: diam(G) = \max_T diam(\Gamma(G, T))$
 - \star гипотеза Бабаи: диаметр симметрической группы S_n полиномиален от n

Мосты и точки сочленения

Пусть G — произвольный неориентированный граф

- Ребро e графа G называется мостом, если G-e имеет больше компонент связности, чем G
- \bullet Вершина v графа G называется точкой сочленения, если G-v имеет больше компонент связности, чем G

Пример: граф на рисунке имеет четыре моста и две точки сочленения

ullet ребра e_1 , e_2 , e_3 и e_4 и вершины u,v

- Мосты и точки сочленения обычно рассматривают для связных графов
- \star Единственный связный граф с мостом и без точек сочленения цепь длины f 1
 - во всех остальных случаях хотя бы одна из инцидентных мосту вершин является точкой сочленения
- ★ Мосты и точки сочленения моделируют узкие места в сетях связи

Свойства мостов

Лемма о циклах

Для любого графа G, e — мост \Leftrightarrow e не содержится ни в одном цикле G.

Доказательство (необходимость):

- е содержится в некотором цикле
- \Rightarrow по лемме о разрыве цикла, G-e и G имеют одни и те же компоненты связности
- \Rightarrow е не мост \Rightarrow мост не содержится ни в одном цикле

Достаточность:

- e = (u, v) не содержится ни в одном цикле
- ullet если в G-e есть (u,v)-цепь, эта цепь вместе с e образует цикл, что невозможно
- \Rightarrow u и v лежат в разных компонентах связности G-e
 - но в одной компоненте связности G, благодаря ребру e
- ⇒ число компонент связности увеличилось
- $\Rightarrow e \text{MOCT}$

Свойства мостов (2)

Лемма об удалении моста

Vдаление моста увеличивает число компонент связности графа G ровно на 1.

Доказательство:

- ullet пусть G_e компонента связности графа G, содержащая мост e=(u,v)
- ullet все компоненты G, кроме G_e , переходят в граф G-e без изменения
- \Rightarrow достаточно показать, что в графе G_e-e две компоненты связности
- ullet докажем, что любая вершина $w \in G_e$ связана в $G_e e$ либо с u, либо с v:
 - G_e связен \Rightarrow существует (w, u)-путь P
 - ullet если e
 otin P, то w и u связаны в $G_e e$
 - ullet если $e \in P$, то $P = (w, e_1, \ldots, v, e, u) \Rightarrow w$ и v связаны в $G_e e$

Свойства точек сочленения

Лемма о точке сочленения

Вершина v связного графа G является точкой сочленения \Leftrightarrow в G найдутся две отличные от v вершины u и w такие, что любой (u,w)-путь содержит v.

Доказательство (необходимость):

- \bullet v точка сочленения графа $G \Rightarrow G v$ не связный
- ullet пусть u и w любые вершины из разных компонент связности графа G-v
- \Rightarrow любой (u, w)-путь проходит через v

Достаточность:

- ullet пусть вершины $u \neq v$ и $w \neq v$ таковы, что любой (u,w)-путь содержит v
- \Rightarrow в графе G-v вершины u и w не связаны
- \Rightarrow G-v не связный $\Rightarrow v$ точка сочленения
- ★ В отличие от удаления моста, удаление точки сочленения может привести к сколь угодно большому росту числа компонент связности

Пример: в графе на рисунке при удалении v_0 число компонент увеличивается на n

Двусвязные графы. Блоки

- Связный граф без точек сочленения называется двусвязным
- ★ Если граф моделирует сеть связи, то двусвязность это отказоустойчивость:
 - выход из строя одного узла не нарушает функционирования остальной сети, независимо от того, какой узел вышел из строя
 - выход из строя одной линии не нарушает функционирования остальной сети, независимо от того, какая линия вышла из строя
 - кроме случая, когда сеть связи цепь длины 1
- ★ Рассматривают и более сильные требования отказоустойчивости:
 - ullet выход из строя любых k узлов не нарушает функционирования остальной сети ((k+1)-связные графы)
 - ullet выход из строя любых k линий не нарушает функционирования остальной сети (peберно (k+1)-связные графы)
 - * Задача мониторинга связности локальной сети с глобальным интернетом
- ullet Компонента двусвязности (блок) графа G это любой максимальный по включению двусвязный подграф G

Пример: в графе на рисунке 5 блоков (обведены красным)

Блоки, в отличие от компонент связности, могут иметь общие вершины

Лемма о блоках

Лемма о блоках

Два различных блока графа G либо не имеют общих вершин, либо имеют единственную общую вершину, являющуюся точкой сочленения G.

Доказательство:

- ullet пусть компоненты двусвязности G' и G'' графа G имеют общую вершину v
- ullet рассмотрим граф $ar{G}$, состоящий из всех вершин и ребер графов G' и G''

- ullet $ar{G}$ связен, но не двусвязен по определению блока
- \Rightarrow в $ar{G}$ есть точка сочленения, и ей может быть только вершина v
 - если удалить любую другую вершину из G', то G' останется связным \Rightarrow для любой оставшейся в G' вершины u найдется (u,v)-путь \Rightarrow для любой вершины $w \in G''$ найдется (u,w)-путь $\Rightarrow \bar{G}$ останется связным
 - при удалении вершины из G'' рассуждаем аналогично
 - поскольку v точка сочленения, подграфы G' и G'' не могут иметь других общих вершин: если такая вершина v' есть, то граф $\bar{G}-v$ связен, поскольку любая его вершина связана с v' в силу двусвязности графов G' и G''
- ! Докажите, что блок это порожденный подграф

Дерево блоков

- ullet Граф блоков B(G) графа G определяется следующим образом:
 - вершинами являются блоки и точки сочленения G
 - каждая точка сочленения соединена неориентированным ребром со всеми блоками, в которые она входит

Теорема о графе блоков

Граф блоков связного графа G является деревом.

Доказательство:

- ullet B(G) очевидно связен; докажем, что в B(G) нет циклов
- пусть имеется цикл $B_1, a_1, \ldots, B_k, a_k, B_1$ ($k \ge 2$)
- \Rightarrow любые вершины из блоков, например, B_1 и B_k соединены двумя путями (один проходит через a_k , а другой нет)
- \Rightarrow a_k не точка сочленения по лемме о точке сочленения