第二部分: 高等数学章节精讲

Base

Limit & continuity

第1讲 函数极限与连续

一、函数极限的定义及使用

- 重要的公式与概念定义
 - 。 $\epsilon-\delta$ 定义: $\lim_{x o x_0}f(x)=A\iff orall\epsilon>0$,当 $0<|x-x_0|<\delta$ 时,有 $|f(x)-A|<\epsilon$.
 - 。 左右极限: $\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$.
- 涉及的重要题型
 - 。 题型: 用定义证明极限。
 - 。 **通式通法**: 核心是找到 δ 与 ϵ 的关系。
 - 。 做题步骤:
 - a. **化简**: 从不等式 $|f(x)-A|<\epsilon$ 出发, 进行化简变形, 使其能够出现 $|x-x_0|$ 因子。
 - b. **寻找**: 通过<u>放缩</u>法, 建立 $|x-x_0|$ 与 ϵ 的关系, 从而找到一个合适的 δ (通常是 ϵ 的表达式)。
 - c. 书写: 按定义格式, 清晰地写出证明过程。

二、函数极限的 计算

- 重要的公式与概念定义
 - $\lim_{x\to 0} \frac{\sin x}{x} = 1$
 - 。 两个重要极限: $\lim_{x \to \infty} (1+\frac{1}{x})^x = e$ 或 $\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
 - 。 等价无穷小替换 (当 $x \rightarrow 0$ 时):
 - $\sin x \sim x$, $\tan x \sim x$, $\arcsin x \sim x$, $\arctan x \sim x$
 - $-1 \cos x \sim \frac{1}{2}x^2$
 - $ullet e^x-1\sim \overline{[x]}, a^x-1\sim x\ln a$
 - $\blacksquare \ln(1+x) \sim \boxed{x}, \log_a(1+x) \sim \frac{x}{\ln a}$
 - $(1+x)^{\alpha} 1 \sim \alpha x$

。 洛必达法则: 若
$$\lim \frac{f(x)}{g(x)}$$
 是 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型, 且 $\lim \frac{f'(x)}{g'(x)}$ 存在(或为 ∞) , $\Rightarrow \lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$

。 泰勒公式 (麦克劳林公式):

$$f(x) = f(0) + f'(0)x + rac{f''(0)}{2!}x^2 + \cdots + \boxed{rac{f^{(n)}(0)}{n!}x^n} + o(x^n)$$

• 涉及的重要题型

- 。 题型1: $\boxed{\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型
 - **通式通法**: 方法优先级: 等价无穷小 \rightarrow <u>洛必达</u>法则 \rightarrow 泰勒展开。
 - 做题步骤:
 - a. 先替换: 观察式子中是否有可用的等价无穷小, 尤其是乘除部分, 优先替换简化。
 - b. **再洛必达**: 替换后若仍为不定式, 使用洛必达法则。对于复杂乘积的求导要细心。
 - c. **终极泰勒**: 若洛必达法则使用复杂或失效(如导数不存在或循环), 或出现加减法抵消的情况, 优先考虑泰勒展开, 特别是展开到非零的最低次项。
- 。 题型2: $0\cdot\infty$, $\infty-\infty$, 1^∞ , 0^0 , ∞^0 型
 - **通式通法**: 核心思想是转化为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型。
 - 做题步骤:
 - a. <u>**变形**</u>: 将 $0\cdot\infty$ 化为 $\frac{0}{1/\infty}$ 或 $\frac{\infty}{1/0}$; 将 $\infty-\infty$ 通过通分、有理化或变量替换等方法合 并。
 - b. **取指对**: 对 $1^\infty,0^0,\infty^0$ 型, 设原极限为 A, 取对数 $\lim \ln A$ 转化为 $0\cdot\infty$ 型, 再按步骤1处理。
 - a. **还原**: 求出 $\lim \ln A = B$ 后, 务必记得原极限 $A = e^B$ 。

三、函数极限的存在性

- 重要的公式与概念定义
 - 。 <u>夹逼</u>定理 (Squeeze Theorem): 若在 x_0 某去心邻域内, $g(x) \leq f(x) \leq h(x)$, 且 $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A$, $\Rightarrow \lim_{x \to x_0} f(x) = A$.
 - 。 单调有界准则: 单调有界数列必有极限。

• 涉及的重要题型

- 。 题型: 证明极限存在并求极限。
- 。 通式通法: 常用夹逼定理和单调有界准则。
- 。 做题步骤:
 - a. **观察函数/数列结构**: 如果是复杂函数或含n项和/积的数列, 优先考虑夹逼。如果是递推关系式定义的数列, 优先考虑单调有界。
 - b. 构造夹逼/证明单调有界:
 - 夹逼: 通过放缩法找到两个极限相同的更简单的函数/数列来"夹住"目标。
 - 单调有界: 用作差/作商法或数学归纳法证明单调性, 用放缩法证明有界性。

c. 求极限: 利用夹逼定理直接得出极限, 或对递推式两边同时取极限解出 A=f(A)。

四、函数极限的应用——连续 间断

- 重要的公式与概念定义
 - 。 函数连续性:
 - 存在&&相等

$$lacksquare \lim_{x o x_0}f(x)=\overline{f(x_0)}\iff \lim_{x o x_0^-}f(x)=\lim_{x o x_0^+}f(x)=f(x_0).$$

- 。 间断点分类:
 - 第一类: 左右极限都存在。(可去间断点: $L=R\neq f(x_0)$; 跳跃间断点: $L\neq R$)
 - 第二类: 至少一个左右极限不存在。(无穷间断点, 震荡间断点)
- 涉及的重要题型
 - 。 题型: 讨论函数的连续性, 判断间断点类型。
 - 。 通式通法: 紧扣定义, 计算分段点或无定义点的左极限、右极限和函数值。
 - 做题步骤:
 - a. **找可疑点**: 找出函数定义域的分段点、无定义点、或以任何形式导致函数表达式发生改变的点。
 - b. **三项计算**: 计算在这些可疑点 x_0 处的左极限 $\lim_{x\to x_0^-}f(x)$ 、右极限 $\lim_{x\to x_0^+}f(x)$ 和 函数值 $f(x_0)$ 。
 - c. **下结论**: 根据三者的关系, 依据定义判断该点是连续点还是何种类型的间断点。

第2讲 数列极限

一、数列极限的定义及使用

• 重要的公式与概念定义

。 $\epsilon-N$ 定义: $\lim_{n o\infty}x_n=A\iff orall\epsilon>0, \exists N\in\mathbb{N}^+$,当 n>N 时,有 $|x_n-A|<\epsilon$.

• 涉及的重要题型: 与函数极限类似, 定义主要用于理论证明, 计算题中较少直接使用。

二、数列极限的存在性与 计算

- 重要的公式与概念定义
 - 。 单调有界准则: 单调有界数列必有极限。
 - 。 | 夹逼 | 定理: 若 $y_n \leq x_n \leq z_n$,且 $\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = A$,则 $\lim_{n \to \infty} x_n = A$.

- 。 函数极限与数列极限关系 (海涅 定理): 若 $\lim_{x\to x_0}f(x)=A$, 则对任何<u>以 x_0 为极限</u>的数列 $\{x_n\}$ $(x_n\neq x_0)$, 都有 $\lim_{n\to\infty}f(x_n)=A$. (常用于将数列极限转化为函数极限)。
- 涉及的重要题型
 - \circ 题型1: 递推数列 $x_{n+1}=f(x_n)$
 - 通式通法: 单调有界准则。
 - 做题步骤:
 - a. **证明有界**: 用数学归纳法或放缩法证明数列 $\{x_n\}$ 有上界或下界。
 - b. **证明单调**: 用 $x_{n+1}-x_n$ 的符号或 $\frac{x_{n+1}}{x_n}$ 与1的大小关系判断单调性。
 - c. **求解极限**: 设 $\lim_{n\to\infty}x_n=A$, 对递推式两边取极限, 解方程 A=f(A)。
 - 。 题型2: n项和或n项积的极限
 - 通式通法: 夹逼定理或定积分定义法。
 - 做题步骤:
 - a. **识别类型**: 观察式子结构。如果是和式且每项分母为 n, 分子是关于 i 的函数, 形如 $\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{n} f(\frac{i}{n})$, 考虑定积分定义。否则考虑夹逼。
 - b. 实施方法:
 - 定积分法: 将和式凑成 $\int_0^1 f(x)dx$ 的形式并计算。
 - 夹逼法: 将和或积的每一项进行适当的放缩(通常是放大分母/缩小分子得到下界, 缩小分母/放大分子得到上界), 使得上下界易于求极限且极限值相等。
 - c. 得出结论: 根据定理得出最终极限值。

differential

第3讲 概念

- 一、导数定义(导数在一点的问题)
 - 重要的公式与概念定义

。 导数定义:
$$f'(x_0) = \lim_{\Delta x \to 0} \boxed{ \dfrac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} } = \lim_{x \to x_0} \boxed{ \dfrac{f(x) - f(x_0)}{x - x_0} }$$

- 。导数与连续关系: 可导必连续, 连续不一定可导。
- 。 左右导数: $f'(x_0)$ 存在 $\iff f'_{-}(x_0) = f'_{+}(x_0)$.
- 涉及的重要题型
 - 。 题型: 利用导数定义求某一点的导数, 或判断可导性。
 - 。 通式通法: 严格套用导数定义式, 转化为求一个极限问题。
 - 。 做题步骤:

- a. **写定义**: 准确写出 $f'(x_0)$ 的定义式。对于分段函数在分段点的可导性, 需要分别写出左导 数和右导数的定义式。
- b. 代入计算: 将函数表达式代入, 计算极限。此时可能会用到前面求极限的各种方法。
- c. 比较判断: 如果是判断可导性. 比较计算出的左右导数是否相等。若相等则可导. 否则不可 导。

、微分

- 重要的公式与概念定义
 - 。 微分定义: 若 $\Delta y = f(x_0 + \Delta x) f(x_0) = A\Delta x + o(\Delta x)$, 则称函数 f(x) 在 x_0 点可 微,且 $dy = A\Delta x$
 - 。 可微与可导关系: 函数在某点可微的 \iff 该函数在该点可导, 且 dy=f'(x)dx
- 涉及的重要题型
 - 。 题型: 求函数的微分。
 - 。 **通式通法**: 微分就是导数乘以 dx。
 - 。 做题步骤:
 - a. **求导数**: 计算出函数 f(x) 的导数 f'(x)。
 - b. **乘dx**: 将求得的导数乘以 dx, 即得微分 dy=f'(x)dx.

第4讲 计算

一、基本求导公式

- 重要的公式与概念定义:
 - $\circ \ (C)'=0$, $(x^lpha)'=lpha x^{lpha-1}$, $(\sin x)'=\cos x$, $(\cos x)'=-\sin x$,

$$(\tan x)' = \sec^2 x$$
, $(\cot x)' = -\csc^2 x$, $(\sec x)' = \sec x \tan x$, $(\csc x)' = -\csc x \cot x$

- $e^{x} = e^{x}, (a^{x})' = a^{x} \ln a.$ $e^{x} = (\ln |x|)' = \frac{1}{x}, (\log_{a} |x|)' = \frac{1}{x \ln a}.$
- $\circ (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}, (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}, (\arctan x)' = \frac{1}{1+x^2}, (\operatorname{arccot} x)' = \frac{1}{1+x^2}$
- 。 四则运算法则: $(u\pm v)'=u'\pm v'$, (uv)'=u'v+uv', $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$.

二、复合函数求导

- 通式通法: 链式法则 (Chain Rule): 若 y=f(u), u=g(x), 则 $\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$ = $\boxed{f'(g(x))g'(x)}$.
- 做题步骤:
 - i. 分层: 将复杂函数从外到内分解成基本函数的复合。
 - ii. 逐层求导: 从最外层函数开始, 对每一层函数求导。
 - iii. 相乘: 将各层求导的结果连乘起来。

三、隐..

- 通式通法: 方程 F(x,y) = 0 两边对 x 求导, 视 y 为 x 的函数。
- 做题步骤:
 - i. **两边求导**: 将方程 F(x,y)=0 两边同时对自变量 x 进行求导。
 - ii. **注意链式法则**: 遇到含有 y 的项时, 要使用链式法则, 即 $(f(y))' = \left| f'(y) \cdot y' \right|$
 - iii. **解出**y': 求导后得到一个关于 y' 的代数方程, 从中解出 y' 的表达式。

四、反...

- **通式通法**: 若 y=f(x) 的反函数为 x=g(y), 则 $g'(y)=\boxed{rac{1}{f'(x)}}$ 或 $rac{dx}{dy}=rac{1}{dy/dx}$.
- 做题步骤:
 - i. **求原函数导数**: 计算出 y = f(x) 的导数 f'(x)。
 - ii. **取倒数**: 直接取导数的倒数, $\frac{1}{f'(x)}$ 。
 - iii. **变量替换**: 将表达式中的 x 用反函数 g(y) 替换, 得到完全以 y 为变量的结果。

五、分段...(含绝对值)

- 通式通法: 分段点处用定义求, 非分段点处直接用公式求。
- 做题步骤:
 - i. **处理非分段点**: 在每个分段区间内部, 函数有明确的表达式, 直接套用求导公式。
 - ii. **处理分段点**: 在分段点 x_0 , 必须用左右导数的定义分别求 $f'_-(x_0)$ 和 $f'_+(x_0)$ 。
 - iii. **比较下结论**: 比较左右导数是否相等, 以判断在分段点是否可导。绝对值函数先化为分段函数再处理。

六、对数 ...

- 适用场合: 多个函数连乘、连除或开方, 形式复杂。
- 做题步骤:
 - i. **两边取对数**: 在方程 y=f(x) 两边同时取自然对数 $\ln y = \ln f(x)$ \circ

- ii. **化简并求导**: 利用对数的性质将乘除化为加减, 幂指化为乘法, 然后两边对 x <u>隐函数求导,</u> 得 $\frac{1}{n}y'=(\ln f(x))'$.
- iii. **解出**y': 将右侧求导结果乘以 y, 并将 y 用 f(x) 代回, 即 $y'=y\cdot (\ln f(x))'=f(x)\cdot (\ln f(x))'$.

七、幂指..

- **适用场合**: $y = [f(x)]^{g(x)}$ 型函数。
- **通式通法**: 方法一: 改写为 $y=e^{g(x)\ln f(x)}$ 再求导。方法二: 对数求导法。
- 做题步骤 (方法一):
 - i. **指数化**: 将 $y = [f(x)]^{g(x)}$ 改写为 $y = e^{g(x) \ln f(x)}$ 。
 - ii. **复合求导**: 对 e 的指数函数进行复合函数求导。
 - iii. 整理: $y'=e^{g(x)\ln f(x)}\cdot [g'(x)\ln f(x)+g(x)\frac{f'(x)}{f(x)}]=[f(x)]^{g(x)}[g'(x)\ln f(x)+\frac{g(x)f'(x)}{f(x)}]$ 。

八、Parametric equation..

• 通式通法:

$$\circ$$
 一阶导数: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \boxed{\frac{\psi'(t)}{\phi'(t)}}$.
$$\circ \quad \Box$$
 所导数: $\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{d(\frac{\psi'(t)}{\phi'(t)})/dt}{dx/dt}$.

- 做题步骤:
 - i. **求一阶导**: 分别求 y 和 x 对参数 t 的导数, 然后相除。
 - ii. **求二阶导预备**: 将一阶导数结果看作一个关于 t 的新函数, 对 t 求导。
 - iii. **再除x对t的导**: 将上一步的结果再除以 dx/dt, 得到二阶导数。

九、高阶导数

- 通式通法: 归纳法或利用莱布尼茨公式。
- 莱布尼茨公式: $(uv)^{(n)} = \sum_{k=0}^n C_n^k u^{(n-k)} v^{(k)}$.
- 做题步骤:
 - i. **直接计算**: 先求一、二、三阶导数, 观察规律, 用数学归纳法写出 n 阶导数表达式。
 - ii. 公式法: 对两个函数乘积求高阶导数, 直接使用莱布尼茨公式。
 - iii. **分解**: 将复杂函数分解为基本函数的和, 再分别求高阶导数。

第5讲 一元函数微分学的应用(一)——几何应用

一、研究对象

- 重要的公式与概念定义
 - 切线与法线:

■ 切线方程:
$$y-y_0=f'(x_0)(x-x_0)$$
■ 法线方程: $y-y_0=\boxed{-\frac{1}{f'(x_0)}}(x-x_0)$ (当 $f'(x_0)\neq 0$)
○ 曲率K: $K=\boxed{\frac{|y''|}{(1+y'^2)^{3/2}}}$

。 曲率K:
$$K = \boxed{ \dfrac{|y''|}{(1+y'^2)^{3/2}} }$$

 \circ 曲率半径R: $R=rac{1}{L}$

二、研究内容 (函数图像的性态)

- 重要的公式与概念定义
 - 单调性:
 - $f'(x) > 0 \implies f(x)$ 单调递增
 - $f'(x) < 0 \implies f(x)$ 单调递减
 - 极值:
 - 必要条件: $f'(x_0) = 0$ 或 $f'(x_0)$ 不存在, 则 x_0 为驻点或尖点,可能是极值点。
 - 第一充分条件: f'(x) 在 x_0 两侧异号。
 - 第二充分条件: $f'(x_0) = 0$ 且 $f''(x_0) \neq 0$ 。 ($f''(x_0) < 0$ 为极大值, $f''(x_0) > 0$ 为极 小值)。
 - 凹凸性:
 - $f''(x) > 0 \implies$ 曲线是凹的 (concave up)
 - $f''(x) < 0 \implies$...凸.. (concave down)
 - 。 拐点:
 - 必要条件: $f''(x_0) = 0$ 或 $f''(x_0)$ 不存在。
 - 充分条件: f''(x) 在 x_0 两侧异号。
 - 新近线:
 - 水平渐近线: $\lim_{x\to\infty} f(x) = A \implies y = A$
 - ullet 垂直渐近线: $\lim_{x o x_0} f(x) = \infty \implies x = x_0$
 - 斜渐近线: y=ax+b, 其中 $a=\lim_{x \to \infty} \left| \frac{f(x)}{x} \right|, b=\lim_{x \to \infty} \boxed{[f(x)-ax]}$

• 涉及的重要题型

- 。 **题型**: 全面研究函数性态并绘制草图, 或求单调区间、极值、凹凸区间、拐点、渐近线。
- 。 **通式通法**: 系统化流程: 定义域 \rightarrow 一阶导数 \rightarrow 二阶导数 \rightarrow 渐近线。
- 做题步骤:
 - a. **一阶信息**: 求 f'(x), 令其等于0或不存在, 找出驻点和不可导点。用这些点划分定义域, 判断各区间 f'(x) 的符号, 确定单调区间和极值点。
 - b. **二阶信息**: 求 f''(x), 令其等于0或不存在, 找出可能的拐点。用这些点划分定义域, 判断各区间 f''(x) 的符号, 确定凹凸区间和拐点。
 - c. **综合分析**: 结合极限思想求出所有渐近线, 并将上述所有信息(单调性、极值、凹凸性、拐点、渐近线)整合, 绘制函数大致图像。

第6讲 一元函数微分学的应用(二)——中值定理、微分等式与微分 不等式

一、中值定理

- 重要的公式与概念定义
 - 。 **费马引理 (Fermat's Theorem)**: 若 f(x) 在 x_0 处<u>可导且取极值</u>, 则 $f'(x_0)=0$ 。
 - 。 **罗尔定理 (Rolle's Theorem)**: 若 f(x) 在 [a,b] 连续, (a,b) 可导, 且 f(a)=f(b), 则 $\exists \xi \in (a,b)$ 使得 $f'(\xi)=0$ 。
 - ullet 拉格朗日 中值定理 (Lagrange's Mean Value Theorem): 若 f(x) 在 [a,b] 连续, (a,b) 可导,

则
$$\exists \xi \in (a,b)$$
 使得 $f'(\xi) = \boxed{rac{f(b)-f(a)}{b-a}}$ 。

。 柯西中值定理 (Cauchy's Mean Value Theorem): 若 f(x),g(x) 在 [a,b] 连续, (a,b) 可导,

且
$$g'(x)
eq 0$$
,则 $\exists \xi \in (a,b)$ 使得 $rac{f'(\xi)}{g'(\xi)} = \boxed{rac{f(b) - f(a)}{g(b) - g(a)}}$ 。

 \circ 泰勒中值定理 (Taylor's Theorem with Lagrange Remainder): ...则 f(x)=

$$\sum_{k=0}^{n-1} rac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \left| rac{f^{(n)}(\xi)}{n!} (x-x_0)^n
ight|_{oldsymbol{\circ}}$$

• 涉及的重要题型

- 。 **题型**: 证明存在点 ξ 使其导数/函数值满足某个等式。
- 。通式通法:核心是构造辅助函数,将问题转化为罗尔定理的应用。
- 。 做题步骤:
 - a. **变形**: 将要证明的结论 $\cdots = 0$ 变形,使得左侧的结构能看出某个函数的导数形式。例如,看到 $f'(\xi) + g(\xi)f(\xi) = 0$,就要联想到 $[e^{G(x)}f(x)]'$ (其中G'(x) = g(x))。

- b. **构造**: 构造辅助函数 F(x), 其形式通常是将变形后的等式"积分"回去。常用形式有 $F(x)=f(x), F(x)=f(x)g(x), F(x)=rac{f(x)}{g(x)}, F(x)=f(x)e^{\phi(x)}$ 等。
- c. **验证**: 验证构造的 F(x) 在某个区间 [a,b] 上满足罗尔定理的条件 (F(a)=F(b)), 从而证明结论。若涉及二阶导数 $f''(\xi)$, 则需对 f'(x) 和另一个函数应用罗尔定理, 或者对F(x) 使用两次罗尔定理。

二、微分等式问题(方程的根、函数的零点)

- 通式通法: 结合函数的单调性与零点存在定理/介值定理。
- 做题步骤:
 - i. **存在性**: 利用零点存在定理(若 f(x) 在 [a,b] 连续& f(a) f(b) f(b) f(c) f(c)
 - ii. **唯一性**: 求导 f'(x), 分析其在区间内的符号。若 f'(x) 恒大于零或恒小于零, 则函数单调, 根最多只有一个。
 - iii. 下结论: 结合以上两步, 得出根唯一存在。

三、微分不等式问题

- 通式通法: 将不等式移项, 构造辅助函数, 利用函数的单调性证明。
- 做题步骤:
 - i. **构造函数**: 将要证的不等式, 如 f(x)>g(x) (对 x>a), 移项构造成 $\boxed{F(x)=f(x)-g(x)>0 } .$
 - ii. **求导判断单调性**: 计算 F'(x), 并判断其在 x>a 区间内的符号, 从而确定 F(x) 的单调性。
 - iii. **利用端点值**: 计算 F(a) 的值 (通常 F(a)=0)。结合单调性(如 F(x) 递增)和端点值, 得出 F(x)>F(a)=0,从而原不等式得证。

第7讲 一元函数微分学的应用(三)——物理应用与经济应用

- **物理应用**: 主要考察<u>变化率</u>问题。如速度是位移对时间的导数 v(t) = s'(t), 加速度是速度对时间的导数 a(t) = v'(t)。相关变化率问题核心是找出变量间的关系式, 然后两边对时间 t 求导。
- 经济应用: 主要涉及边际与弹性的概念。(数一不作要求)

integral

第8讲 概念与性质

一、祖孙三代

- 重要的公式与概念定义
 - **原函数**: 若 F'(x) = f(x), 则 F(x) 是 f(x) 的一个原函数。
 - 。 **不定积分**: f(x) 的全体原函数称为 f(x) 的不定积分, 记作 $\int f(x) dx = \boxed{F(x)} + C$ 。
 - 。 **定积分**: $\int_a^b f(x)dx$ 是一个数值, 代表函数图像在 [a,b] 区间上与x轴围成的面积的代数和。
 - 。 **变上限积分函数**: $\Phi(x) = \int_a^x f(t)dt$ 是一个函数, 且 $(\int_a^x f(t)dt)' = f(x)$ 。

二、积分比大小

- **通式通法**: 利用定积分性质。若在 [a,b] 上 $f(x) \geq g(x)$, 则 $\int_a^b f(x)dx \geq \int_a^b g(x)dx$ (a < b)。
- 做题步骤:
 - i. <u>作差</u>: 将要比较的两个积分相减,合并成一个积分 $\int_a^b [f(x)-g(x)]dx$ 。
 - a. **判断符号**: 判断被积函数 f(x)-g(x) 在积分区间上的符号。
 - b. 得出结论: 若被积函数恒为正,则积分为正,反之亦然。

三、定义

- 重要的公式与概念定义: $\int_a^b f(x)dx = \lim_{\lambda o 0} \left| \sum_{i=1}^n f(\xi_i) \Delta x_i \right|$ (其中 $\lambda = \max\{\Delta x_i\}$)。
- 涉及的重要题型: 将极限形式的和式转化为定积分求解。
- **通式通法**: 核心是凑出定积分定义的形式 $\lim_{n \to \infty} \sum_{i=1}^n \left | \frac{b-a}{n} f(a + \frac{b-a}{n} i) \right |$
- 做题步骤:
 - i. **提取因子**: 从和式中提出因子 $\frac{1}{n}$ 。
 - ii. **变量替换**: 将和式中的 $\boxed{\frac{i}{n}}$ 视作变量 x, $\boxed{\frac{1}{n}}$ 视作 dx
 - iii. **确定积分限**: 观察 i 的变化范围, 如从1到n, 则 $x=\frac{i}{n}$ 的范围近似从0到1, 从而确定积分上下限, 写出定积分并计算。

四、 反常 积分的判敛

- 重要的公式与概念定义
 - 。 无穷区间上的反常积分: $\int_a^{+\infty} f(x) dx$

- 。 无界函数的反常积分: 在瑕点 c 处, $\int_a^b f(x) dx$
 - $\int_{1}^{+\infty} \frac{1}{x^p} dx$: 当 p>1 时收敛, $p\leq 1$ 时发散。
- 。 p-积分判敛: $\int_0^1 \frac{1}{x^p} dx$: 当 p < 1 时收敛, $p \geq 1$ 时发散。
- 涉及的重要题型: 判断反常积分的收敛性。
- 通式通法: 比较判别法和极限形式的比较判别法。
- 做题步骤:
 - i. **找到标准**: 观察被积函数 f(x), 在积分的"问题点"(无穷远或瑕点)附近, 找一个行为相似且敛散 性已知的简单函数 g(x) (通常是p-积分形式)。
 - ii. 求极限: 计算 $\lim_{x\to\infty ({\rm or}\; x_0)} rac{f(x)}{g(x)} = L_{\circ}$
 - iii. **下结论**: 若 $0 < L < +\infty$, 则 $\int f(x) dx$ 与 $\int g(x) dx$ 同敛散。若 L = 0 或 $L = \infty$, 需结 合比较判别法分析。

第9讲 计算

·、基本积分公式

• 与基本求导公式<u>互逆</u>, 务必熟记。特别注意: $\int \frac{1}{1+x^2} dx = \arctan x + C$, $\int \frac{1}{\sqrt{1-x^2}} dx =$ $\arcsin x + C_{\circ}$

不定积分的计算

- 通式通法: 凑微分法(第一类换元), 变量代换法(第二类换元), 分部积分法。
- 题型1: 凑微分法
 - 。 做题步骤:
 - a. **观察**: 观察被积函数, 看是否能写成 f(g(x))g'(x) 的形式。
 - b. 凑: 将 g'(x)dx 凑成 d(g(x))。
 - c. **积分**: 对变量 g(x) 进行积分。
- 题型2: 分部积分 法
 - \circ 公式: $\int u dv = uv \int v du$
 - 。 做题步骤:
 - a. 选u,dv: 选择谁作 u 的原则是"反对幂指三"。(反三角函数, 对数函数, 幂函数, 指数函数, 三 角函数)。排在前面的优先选作 u。
 - b. **套公式**: 计算出 du 和 $v=\int dv$, 然后代入分部积分公式。
 - c. **再积分**: 计算 $\int v du$, 有时需要再次使用分部积分法。

三、定积分..

- 通式通法: 牛顿-莱布尼茨公式, 换元法, 分部积分法, 利用奇偶性和周期性。
- 牛顿-莱布尼茨公式: $\int_a^b f(x)dx = F(b) F(a)$ 。
- 利用 对称性
 - 。 $\overline{\Xi f(x)}$ 为奇函数, 则 $\int_{-a}^{a} f(x) dx = 0$ 。
 - 。 若 f(x) 为偶函数, 则 $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$ 。
- 做题步骤:
 - i. **观察**: 观察被积函数和积分区间。区间是否<u>对称</u>[-a,a]? 函数有无奇偶性?
 - ii. **化简**: 利用奇偶性、周期性或一些定积分性质(如 $\int_0^\pi x f(\sin x) dx = \frac{\pi}{2} \int_0^\pi f(\sin x) dx$)简化 计算。
 - a. 计算: 用牛顿-莱布尼茨公式, 或配合换元、分部积分法求解。

四、变限积分..

- 通式通法: 核心是变限积分求导。
- 公式: $\left[rac{d}{dx}
 ight] \int_{\phi(x)}^{\psi(x)} f(t) dt = \left[f[\psi(x)] \psi'(x)
 ight] f[\phi(x)] \phi'(x).$
- 涉及的重要题型: 求含变限积分的函数的导数或极限。
- 做题步骤:
 - i. 识别: 辨认出题目中的变限积分结构。
 - ii. **求导**: 若是求导问题, 直接套用上述公式。
 - iii. **处理极限**: 若是求极限问题, 且为 $\frac{0}{0}$ 型 (当 $x \to a$ 时, $\int_a^x f(t)dt \to 0$), 则常与洛必达法则结合使用, 对分子或分母的变限积分求导。

五、反常积分..

- 通式通法: 将反常积分转化为正常定积分的极限。
- 做题步骤:
 - i. 写成极限:

$$\circ \int_a^{+\infty} f(x) dx = \overline{\lim_{b o +\infty}} \int_a^b f(x) dx_{\circ}$$

- 。 若 c 为瑕点, $\int_a^b f(x) dx = \lim_{\epsilon o 0^+} \int_a^{c-\epsilon} f(x) dx + \lim_{\delta o 0^+} \int_{c+\delta}^b f(x) dx$ 。
- ii. **计算定积分**: 先把极限符号外的定积分算出来, 结果是关于极限变量(如b, ϵ)的表达式。
- iii. **求极限**: 最后计算上一步得到的表达式的极限。若极限存在, 则反常积分收敛于此极限值。

第10讲 一元函数积分学的应用(一)——几何应用

- 重要的公式与概念定义
 - 平面图形面积:
 - 直角坐标: $S=\int_a^b [f_\pm(x)-f_\mp(x)]dx$ 或 $S=\int_c^d [g_{\pm}(y)-g_{\pm}(y)]dy$.
 - 极坐标: $S = \frac{1}{2} \int_{\alpha}^{\beta} r^2(\theta) d\theta$.
 - 旋转体体积:
 - 绕x轴: $V_x = \pi \int_a^b y^2(x) dx$.
 - 绕y轴: $V_y = \pi \int_c^d x^2(y) dy$. (或用壳法: $V_y = 2\pi \int_a^b x f(x) dx$)
 - 曲线弧长

 - 直角坐标: $L = \int_a^b \sqrt{1 + [y'(x)]^2} dx$.
 参数方程: $L = \int_\alpha^\beta \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$.
 极坐标: $L = \int_\alpha^\beta \sqrt{[r(\theta)]^2 + [r'(\theta)]^2} d\theta$.
 - 。 旋转曲面面积: (绕x轴) $S = 2\pi \int_a^b |y(x)| \sqrt{1 + [y'(x)]^2} dx$.
- 涉及的重要题型: 求面积, 体积, 弧长, 旋转曲面面积。
- 通式通法: 画图. 选元. 定限. 积分。
- 做题步骤:
 - i. **画草图**: 根据题目描述画出相关曲线和区域的草图. 明确积分区域或旋转体形状。
 - ii. **选坐标和积分元**: 根据图形特点选择最方便的坐标系(直角/极坐标)。确定积分元(是 dx, dy 还 是 $d\theta$?), 并写出微元(面积微元 dA, 体积微元 dV 等)的表达式。
 - iii. **定限并积分**: 根据草图确定积分变量的上下限, 列出积分式并计算。

第11讲 一元函数积分学的应用(二)——积分等式与积分不等式

- 通式通法: 与微分中值定理类似, 核心是构造辅助函数, 但这次是利用积分的性质或对变限积分函数 求导。
- 做题步骤:
 - i. 构造辅助函数:
 - 。 **等式证明**: 证明 $\int_a^b f(x) dx = C$ 这类, 常常需要构造一个变限积分函数 F(x) = $\int_a^x f(t)dt$, 然后证明 F'(x) 满足某个性质, 或者证明 F(b)=C。
 - 。 **不等式证明**: 类似微分不等式, 构造 $F(x)=\int_a^x f(t)dt-\int_a^x g(t)dt$, 通过证明 F'(x) = f(x) - g(x) 的符号来确定 F(x) 的单调性, 进而证明不等式。
 - ii. **求导分析**: 对构造的辅助函数求导, 分析其导数的性质 (如符号、零点)。
 - iii. 积分/代入: 利用导数的性质推断原函数的性质(如单调性、最值), 或利用 积分中值 定理 $\int_a^b f(x)dx = f(\xi)(b-a)$ 进行变换, 从而得证。

第12讲 一元函数积分学的应用(三)——物理应用

- 重要的公式与概念定义
 - 。 **变力做功**: $W = \int_a^b F(x) dx$ (力 F(x) 沿直线从 a 移动到 b)
 - 。 **水压力**: 压力 = 压强 imes 面积。 对水平窄条带取微元, $dF = \boxed{p \cdot dA} = \rho gh \cdot w(h) dh$, 然后 积分 $F = \int_{c}^{d} \rho ghw(h) dh$ 。

。 **质心**:
$$\bar{x}=rac{\int_a^b \boxed{x}
ho(x)f(x)dx}{\int_a^b
ho(x)f(x)dx}$$
, $\bar{y}=rac{\frac{1}{2}\int_a^b
ho(x)f}{\int_a^b
ho(x)f(x)dx}$ (密度为 $ho(x)$ 的平面薄片)。

- 诵式诵法: 微元法。
- 做题步骤:
 - i. **建立坐标系**: 选择合适的坐标系来描述物理情景。
 - ii. 取微元: 在积分变量方向上(如位移、深度)取一个微小量, 计算这个微元对应的物理量 (功微元 dW, 压力微元 dF 等)。
 - iii. 积分求和: 在指定范围内对微元进行积分, 得到总量。

Multi (多元函数)

第13讲 多元函数微积分

概念

- 偏导数: $f_x(x_0,y_0)=\frac{\partial z}{\partial x}|_{(x_0,y_0)}=\lim_{\Delta x\to 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}.$ 全微分: 若 $\Delta z=A\Delta x+B\Delta y+o(\rho)$, 则称 f 在该点可微, $dz=A\Delta x+B\Delta y=0$ $\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$.
- \mathbf{K} 偏导数存在且连续 \Longrightarrow 可微 \Longrightarrow 连续 \Longrightarrow 偏导数存在。

复合函数求导法(链式求导规则)

- 通式通法: 画出变量间的依赖关系图, 然后沿着所有能到达目标自变量的路径, 将路径上的偏导数相 乘. 最后将所有路径的结果相加。
 - \circ 例如 z=f(u,v), u=u(x,y), v=v(x,y), 则 $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x}$
- 做题步骤:
 - i. **画依赖图**: 清晰画出变量间的复合/依赖关系。
 - ii. **应用法则**: 根据图. 沿着路径应用链式法则. 写出求导表达式。

隐函数求导法

- 通式通法:

 - 。 方程 F(x,y,z)=0 确定 z=z(x,y): $\frac{\partial z}{\partial x}=\boxed{-\frac{F_x}{F_{|z|}}}, \frac{\partial z}{\partial y}=-\frac{F_y}{F_z}$ 。
 。 方程组 $\begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases}$ 确定 u=u(x,y), v=v(x,y): 求 $\frac{\partial u}{\partial x}$ 时, 将方程组两边对 x 求偏导,得到关于 $\frac{\partial u}{\partial x}$,的线性方程组,然后用<u>克拉默法则</u>求解。
- 做题步骤:
 - i. **移项构造**: 将所有项移到一边, 构造 F(x, y, z) = 0 的形式。
 - ii. 套公式/求偏导:
 - 。 对于单个方程, 直接套用公式。
 - 。 对于方程组, 两边对自变量求导, 将要求的因变量看作函数, 其他因变量看作常数。
 - iii. **求解**: 解代数方程或线性方程组. 得出所求的偏导数。

四、多元函数的 极、最值

- 通式涌法:
 - 。 无条件极值: 先找驻点, 再用二阶偏导数判别。
 - 。 条件极值(最值): 拉格朗日乘数 法。
 - 。 闭区域最值: 比较内部驻点和边界上的最值。
- 做题步骤 (无条件极值):
 - i. **求驻点**: 联立方程组 $\begin{cases} f_x(x,y)=0\\ f_y(x,y)=0 \end{cases}$ 解出所有驻点 (x_0,y_0) 。 ii. **计算判别式**: 计算 $A=f_{\boxed{xx}}(x_0,y_0)$, $B=f_{\boxed{xy}}(x_0,y_0)$, $C=f_{\boxed{yy}}(x_0,y_0)$,并计算
 - $\Delta = AC B^2$
 - iii. **判断**: 若 $\Delta > 0$. A < 0 则为极大值: $\Delta > 0$. A > 0 则为极小值。若 $\Delta < 0$ 则非极值点。 若 $\Delta=0$ 则方法失效。
- 做题步骤 (条件极值-拉格朗日乘数法):
 - i. **构造拉格朗日函数**: 对目标函数 f(x,y) 和约束条件 $\phi(x,y)=0$, 构造 $L(x,y,\lambda)=0$ $f(x,y) + \left| \, \lambda \, \middle| \phi(x,y)
 ight|
 ight|$
 - ii. **联立方程**: 求解方程组 $egin{cases} L_x=f_x+\lambda\phi_x=0\ L_y=f_y+\lambda\phi_y=0 \end{cases}$ 得到可能的极值点。 $L_{igcap \lambda}=\phi(x,y)=0$

iii. 判断: 根据问题是求最值还是极值, 结合实际意义或比较各点函数值来确定。

五、偏微分方程(含偏导数的等式)

- 通式通法: 通过变量代换将复杂的偏微分方程化为简单的常微分方程。
- 做题步骤:
 - i. **变量代换**: 根据题目给出的新变量 (如 u=x+y, v=x-y), 将原函数 z=f(x,y) 看作 z=f(u(x,y),v(x,y))。
 - ii. **求偏导**: 利用链式法则, 用<u>新变量</u> u,v 来表示旧的偏导数 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial w}$.
 - iii. **代入化简**: 将这些表达式代入原偏微分方程, 得到一个关于 u, v 的新方程, 通常这个方程会更简单. 可以当作常微分方程来求解。

第14讲 二重积分

一、概念

- 定义: $\iint_D f(x,y)d\sigma = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i,\eta_i) \Delta \sigma_i$
- 性质: 线性性, 区域可加性, 比较定理, 估值定理, 中值定理。
- 对称性:
 - 。 若积分区域 D 关于 y 轴对称,
 - f(x,y) 是关于 x 的奇函数, 则 $\iint_{\mathcal{D}} f(x,y) d\sigma = 0$ 。
 - f(x,y) 是关于 x 的偶函数,则 $\iint_D f(x,y)d\sigma=2\iint_{D_1} f(x,y)d\sigma$,其中 D_1 是 D 在 y 轴右侧的部分。
 - \circ 关于 x 轴对称及关于原点对称有类似结论。

二、计算

- 题型1: 直角坐标系计算
 - 。 通式通法: "先一后二", 将二重积分化为两次定积分。
 - 做题步骤:
 - a. **画区域**: 画出积分区域 D 的草图。
 - b. 定序定限:
 - 选择积分顺序: dxdy 或 dydx。原则是让积分限尽可能简单(常数)。
 - 定限:
 - dydx (X-型): x 的范围是常数 [a,b], y 的范围是函数 $[y_1(x),y_2(x)]$ 。所谓"后积先定限,限为常数; 先积后定限,限为函数"。

- dxdy (Y-型): y 的范围是常数 [c,d], x 的范围是函数 $[x_1(y),x_2(y)]$ 。
- c. 计算: 先对内层积分, 再对外层积分。
- 题型2: 极坐标系计算
 - 。 **适用场合**: 被积函数含 x^2+y^2 或 $\frac{y}{x}$, 积分区域是圆形、扇形、环形。
 - 。 通式通法:
 - 坐标变换: $x = r \cos \theta, y = r \sin \theta$ 。
 - 面积微元: $d\sigma = dxdy = r drd\theta$ 。
 - 。 做题步骤:
 - a. **画区域**: 画出积分区域 D 的草图。
 - b. 定限:
 - 定r 的范围: 从原点出发, 做射线穿过区域, "穿入点"的r 为下限, "穿出点"的r 为上限。r 的范围可以是 $[\phi_1(\theta),\phi_2(\theta)]$ 。
 - 定 θ 的范围: 射线扫过整个区域, 其起始角度为下限 α , 终止角度为上限 β 。
 - c. **计算**: 将被积函数和面积微元都换成极坐标形式, 写出积分 $\int_{\alpha}^{\beta} d\theta \int_{\phi_1(\theta)}^{\phi_2(\theta)} f(r\cos\theta, r\sin\theta) r dr$ 并计算。

Multi integral (多元函数积分学)

第15讲 预备知识 (空间解析几何&场论)

- 一、向量的运算及其运用
 - 重要的公式与概念定义
 - 。 **数量积 (点乘)**: $\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$ 。几何意义:向量 \vec{a} 在向量 \vec{b} 上的投影与 $|\vec{b}|$ 的乘积。
 - 。 **向量积 (叉乘)**: $\vec{a} \times \vec{b}$ 是一个向量,其模为 $|\vec{a}||\vec{b}|\sin\theta$,方向符合<u>右手</u>定则。几何意义:以 \vec{a},\vec{b} 为邻边的平行四边形的面积。
 - 。 **混合积**: $[\vec{a}\ \vec{b}\ \vec{c}] = (\vec{a}\times\vec{b})\cdot\vec{c}$ 。几何意义:以 \vec{a},\vec{b},\vec{c} 为棱的平行六面体的体积。

二、平面、直线及位置关系

- 重要的公式与概念定义
 - 平面方程:
 - 点法式: $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$,法向量 $\vec{n}=(A,B,C)$ 。
 - 一般式: Ax + By + Cz + D = 0。
 - 直线方程:
 - 点向式/对称式: $\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}$,方向向量 $ec{s}=(m,n,p)$ 。

・参数式:
$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

三、空间曲线的切线与法平面

- 重要的公式与概念定义
 - 。 **曲线方程**: 参数式 $\vec{r}(t) = (x(t), y(t), z(t))$ 。
 - \circ 切向量: $\vec{r}'(t) = (x'(t), y'(t), z'(t))_{\circ}$
 - 。 <u>切线</u>方程: 在点 $P_0(x_0,y_0,z_0)$ (对应参数 t_0), $\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}$ 。

。 法平面 方程:
$$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$$
。

四、空间 曲面 的切平面与法线

- 重要的公式与概念定义
 - 。 曲面方程: F(x,y,z)=0。
 - 。 法向量: $\vec{n}=(\frac{\partial F}{\partial x},\frac{\partial F}{\partial y},\frac{\partial F}{\partial z})|_{P_0}$ 。
 - 。 切平面方程: 在点 $P_0(x_0,y_0,z_0)$, $F_x(P_0)(x-x_0)+F_y(P_0)(y-y_0)+F_z(P_0)(z-z_0)=0$ 。
 - \circ 法线方程: $\frac{x-x_0}{F_x(P_0)} = \frac{y-y_0}{F_y(P_0)} = \frac{z-z_0}{F_z(P_0)}$

五、旋转曲面

- 通式通法: 空间曲线绕坐标轴旋转。
- 做题步骤:
 - i. **确定曲线和轴**: 明确是哪条曲线 C 绕哪个轴旋转(例如 xoz 平面上的曲线 f(x,z)=0 绕 z 轴旋转)。
 - ii. **应用"旋转体公式"**: 核心思想是,旋转面上任意一点 P(x,y,z) 到旋转轴的距离,= <u>生成曲线</u> 上与它"同高"的点 $P'(x_0,0,z_0)$ 到旋转轴的距离。
 - iii. **建立方程**: 例如,上述曲线<u>绕 z 轴</u>旋转,则有 $\sqrt{x^2+y^2}=|x_0|$ 且 $z=z_0$ 。将 $x_0=\pm\sqrt{x^2+y^2}$ 和 $z_0=z$ 代入曲线方程 $f(x_0,z_0)=0$,得到 $f(\pm\sqrt{x^2+y^2},z)=0$ 。

六、 场论 初步

• 重要的公式与概念定义

- 。 梯度 (Gradient): 数量场 u=u(x,y,z) 的梯度是一个向量场, $\operatorname{grad} u=\nabla u=\left(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z}\right)$ 。 其方向是函数 u 增长最快的方向,其模为最大变化率。
- 。 **散度 (Divergence)**: 向量场 $\vec{F}=(P,Q,R)$ 的散度是一个数量场, ${\rm div}\ \vec{F}=\nabla\cdot\vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$ 。表示源的强度。
- 。 旋度 (Curl): 向量场 $\vec{F}=(P,Q,R)$ 的旋度是一个向量场, $\operatorname{curl} \vec{F}=
 abla imes \vec{F}=(P,Q,R)$

$$egin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \ P & Q & R \ \end{bmatrix}$$
。表示场的旋转程度。