

Análise Combinatória

Prof. Everton Dias etgdb@cesar.school

O princípio fundamental da contagem diz que:

- se há x modos de tomar uma decisão D1 e, tomada essa decisão
- há y modos de tomar a decisão D2.

Logo o número de modos de tomar sucessivamente as decisões D1 e D2 é

X * Y

Exemplo 1. Com 5 calças e 5 blusas, de quantos modos podemos nos vestir?

Princípios Básicos

Exemplo 2. Uma bandeira é formada por 7 listras que devem ser coloridas usando apenas as cores verde, azul e cinza. Se cada listra deve ter apenas uma cor e não se pode usar cores iguais em listras adjacentes, de quantos modos se pode colorir a bandeira?

Exemplo 1. Com 5 calças e 5 blusas, de quantos modos podemos nos vestir?

D1: escolha da calça (5 modos)

D2: escolha da blusa (5 modos)

Há $5 \times 5 = 25$ formas de se vestir.

Exemplo 2. Uma bandeira é formada por 7 listras que devem ser coloridas usando apenas as cores verde, azul e cinza. Se cada listra deve ter apenas uma cor e não se pode usar cores iguais em listras adjacentes, de quantos modos se pode colorir a bandeira?

Há 3 modos de escolher a cor da primeira lista e, posteriormente, 2 modos de escolher a cor. Logo: $3 \times 2^6 = 192$

Exemplo 3. Quantos são os números de três dígitos distintos?

Exemplo 3. Quantos são os números de três dígitos distintos?

Exemplo 3. Quantos são os números de três dígitos distintos?

Existem algumas estratégias para utilizar nos problemas de combinatória e, mais pra frente, probabilidade:

Exemplo 3. Quantos são os números de três dígitos distintos?

Existem algumas estratégias para utilizar nos problemas de combinatória e, mais pra frente, probabilidade:

- Postura: Devemos nos colocar no papel da pessoa que deve fazer a ação solicitada pelo problema e ver quais decisões tomar.
- Divisão: Devemos, sempre que possível, dividir as decisões a serem tomadas em pequenos problemas mais simples.
- Não adiar as dificuldades: Pequenas dificuldades costumam se transformar em dificuldades maiores à frente.

Princípios Básicos Exercícios

Problemas

- O código morse usa duas letras, ponto e traço, e as palavras têm de 1 a 4 letras. Quantas são as palavras do código morse?
- 2. Quantos divisores inteiros e positivos possui o número 360?

Respostas individuais!

Tempo: 10min

Resolução

Há duas palavras de uma letra. Há 2x2 = 4 palavras de duas letras, analogamente, 2x2x2=8 palavras de 3 letras e 2x2x2x2= 16 palavras de 4 letras.

Soma: 2+4+8+16 = 30.

Princípios Básicos Exercícios

Resolução

2.

 $360 = 2^3 \times 3^2 \times 5$. os divisores inteiros e positivos são formados da forma: $2^{\alpha} \times 3^{\beta} \times 5^{\gamma}$

 $α ∈ {0,1,2,3}, β ∈ {0,1,2} e γ ∈ {0,1}$ Há 4x3x2=24 maneiras de escolher os expoentes, logo, 24 divisores.

 Para o divisor ser par, α não pode ser 0. Logo: 3x3x2 = 18 divisores pares.

Princípios Básicos Exercícios

Permutação e Combinação

Há alguns problemas de Combinatória que, sejam aplicações do princípio básico, aparecem com frequência. Para isso, vale a pena saber seus métodos de resolução.

Permutação Simples

Permutação Simples

Há alguns problemas de Combinatória que, sejam aplicações do princípio básico, aparecem com frequência. Para isso, vale a pena saber seus métodos de resolução.

Permutação Simples

De quantos modos podemos ordenar em fila n objetos distintos?

A escolha que ocupará o primeiro lugar poderá ser feita de n modos; a escolha do segundo lugar pode ser feita de n-1 modos; a do terceiro lugar n-2, e assim por diante. A escolha do último lugar poderá ser feita apenas de 1 único modo, o que nos leva:

Permutação Simples

Há alguns problemas de Combinatória que, sejam aplicações do princípio básico, aparecem com frequência. Para isso, vale a pena saber seus métodos de resolução.

Permutação Simples

De quantos modos podemos ordenar em fila n objetos distintos?

A escolha que ocupará o primeiro lugar poderá ser feita de n modos; a escolha do segundo lugar pode ser feita de n-1 modos; a do terceiro lugar n-2, e assim por diante. A escolha do último lugar poderá ser feita apenas de 1 único modo, o que nos leva:

$$n(n-1)(n-2)(n-3)...1 = n!$$

Permutação Simples

 Cada ordem que se dá aos objetos é chamada de uma Permutação Simples dos objetos. Assim as permutações simples das letras a, b e c são:

 Portanto, o número de permutações simples de n objetos distintos é:

$$P_n = n!$$

Exemplo 1. Quantos são os anagramas da palavra "calor"? Quantos começam com consoantes?

Permutação Simples

Exemplo 2. De quantos modos podemos arrumar em fila 5 livros diferentes de Estatística, 3 livros diferentes de Física e 2 livros diferentes de Computação, de modo que, livros de uma mesma matéria permaneçam juntos?

Permutação Simples

Exemplo 1. Quantos são os anagramas da palavra "calor"? Quantos começam com consoantes?

- $P_5 = 5! = 120$ anagramas
- 3 x 4! = 72 anagramas

Exemplo 2. De quantos modos podemos arrumar em fila 5 livros diferentes de Estatística, 3 livros diferentes de Física e 2 livros diferentes de Computação, de modo que, livros de uma mesma matéria permaneçam juntos?

5!3!2! 3!= 120 x 6 x 2 x 6 = 8640

Exemplo 3. Quantos são os anagramas da palavra "Botafogo"?

Permutação Simples

Exemplo 4. De quantos modos podemos dividir 8 objetos em um grupo de 5 objetos outro de 3 objetos?

Permutação Simples

Exemplo 3. Quantos são os anagramas da palavra "Botafogo"?

8! / 3! = 6720

Exemplo 4. De quantos modos podemos dividir 8 objetos em um grupo de 5 objetos outro de 3 objetos?

8! / 5! 3! = 56

Nesses casos temos os coeficientes Multinomiais

Considere um conjunto com n elementos distintos. Qualquer sequência de p desses elementos (todos distintos) é chamada de Arranjo Simples ($0 \le p \le n$, com n e p naturais). Dizemos arranjo simples de n elementos tomados p a p, e simbolizamos por $A_{n,p}$

Esse arranjo simples pode ser calculado da seguinte forma:

$$A_{n,p} = n! / (n - p)!$$

Considere um conjunto com n elementos distintos. Qualquer sequência de p desses elementos (todos distintos) é chamada de Arranjo Simples ($0 \le p \le n$, com n e p naturais). Dizemos arranjo simples de n elementos tomados p a p, e simbolizamos por $A_{n,p}$

Esse arranjo simples pode ser calculado da seguinte forma:

$$A_{n,p} = n! / (n - p)!$$

É importante enfatizar que nos problemas que envolvem arranjo, a ordem dos termos agrupados importa, uma vez que uma sequência será diferente de uma outra se seus respectivos termos estiverem ordenados de forma distinta. Leva em consideração a natureza dos elementos e a ordem.

Exemplo 1. Considere os algarismos 1,2,3,4 e 5. Quantos números com algarismos distintos, superiores a 100 e inferiores a 1.000, podemos formar?

Combinações

Exemplo 2. Em um colégio, dez alunos candidataram-se para ocupar os cargos de presidente e vice-presidente do grêmio estudantil. De quantas maneiras distintas a escolha poderá ser feita?

Exemplo 1. Considere os algarismos 1,2,3,4 e 5. Quantos números com algarismos distintos, superiores a 100 e inferiores a 1.000, podemos formar?

$$A_{5.3} = 5! / (5 - 3)! = 60$$

Exemplo 2. Em um colégio, dez alunos candidataram-se para ocupar os cargos de presidente e vice-presidente do grêmio estudantil. De quantas maneiras distintas a escolha poderá ser feita?

$$A_{10.2} = 10! / (10 - 2)! = 90$$

Considere um conjunto com n elementos distintos. Qualquer subconjunto formado por de p desses elementos (todos distintos) é chamado de Combinação Simples ($0 \le p \le n$, com n e p naturais). Dizemos combinação simples de n elementos tomados p a p, e simbolizamos por $C_{n,p}$.

Essa combinação simples pode ser calculada da seguinte forma:

$$C_{n,p} = n! / (n - p)! p!$$

Considere um conjunto com n elementos distintos. Qualquer subconjunto formado por de p desses elementos (todos distintos) é chamado de Combinação Simples ($0 \le p \le n$, com n e p naturais). Dizemos combinação simples de n elementos tomados p a p, e simbolizamos por $C_{n,p}$.

Essa combinação simples pode ser calculada da seguinte forma:

$$C_{n,p} = n! / (n - p)! p!$$

• É importante enfatizar que nos problemas que envolvem a ferramenta da combinação a ordem dos termos agrupados não importa, uma vez que um subconjunto A será igual a um outro subconjunto B se seus respectivos elementos forem os mesmos. Leva em consideração apenas a natureza.

Exemplo 1. Uma escola quer organizar um torneio esportivo com 10 equipes, de forma que cada equipe jogue exatamente uma vez com cada uma das outras. Quantos jogos terá o torneio?

Combinações

Exemplo 2. Uma pessoa vai realizar uma viagem e quer escolher quatro entre nove camisetas. De quantos modos distintos ele pode escolher as camisetas?

Combinações

Arranjo e Combinação

Exemplo 1. Uma escola quer organizar um torneio esportivo com 10 equipes, de forma que cada equipe jogue exatamente uma vez com cada uma das outras. Quantos jogos terá o torneio?

$$C_{10,2} = 10! / (10 - 2)! 2! = 45$$

Exemplo 2. Uma pessoa vai realizar uma viagem e quer escolher quatro entre nove camisetas. De quantos modos distintos ele pode escolher as camisetas?

$$C_{9.4} = 9! / (9 - 4)! \ 4! = 126$$

Exemplo 3. Com 5 homens e 4 mulheres, quantas comissões de 5 pessoas, com exatamente 3 homens, podem ser formadas?

Exemplo 3. Com 5 homens e 4 mulheres, quantas comissões de 5 pessoas, com exatamente 3 homens, podem ser formadas?

$$C_{5.3} C_{4.2} = 10 \times 6 = 60 \text{ comissões}$$

- Com 5 homens e 4 mulheres, quantas comissões de 5 pessoas, com pelo menos 3 homens, podem ser formados?
- Quantos são os anagramas da palavra "CAPÍTULO":
 - o possíveis?
 - o que começam e terminam por vogal?
 - que têm as vogais e as consoantes intercaladas?
 - que têm as letras c,a,p juntas, nessa ordem?
 - o que têm as letras c,a,p juntas, em qualquer ordem?
 - que tem a letra p em primeiro lugar, e a letra a em segundo?

Respostas individuais! Tempo: 15min

Resolução

Com 5 homens e 4 mulheres, quantas comissões de 5 pessoas, com *pelo menos* 3 homens, podem ser formados?

$$C_{5,3}C_{4,2} + C_{5,4}C_{4,1} + C_{5,5} = 10 \times 6 + 5 \times 4 + 1 = 81 \text{ comissões}$$

Resolução

Quantos são os anagramas da palavra "CAPÍTULO":

a) possíveis?

8! = 40.320

b) que começam e terminam por vogal?

 $4 \times 3 \times 6! = 12 \times 720 = 8.640$

c) que têm as vogais e as consoantes intercaladas?

Há 4! x 4! = 24 x 24 = 576 anagramas (ordem par)

4! x 4! = 24 x 24 = 576 anagramas (ordem ímpar)

576 + 576 = 1.152

Resolução

d) que têm as letras c,a,p juntas, nessa ordem?

6! = 720

e) que têm as letras c,a,p juntas, em qualquer ordem?

 $3! \times 6! = 6 \times 720 = 4.320$

f) que tem a letra p em primeiro lugar, e a letra a em segundo?

6! = 720

Pessoas impulsionando inovação. Inovação impulsionando negócios.

Everton Dias etgdb@cesar.org.br

