L^p spaces, II

BY AMEER QAQISH

Abstract

These are some notes on L^p spaces, filling in the gaps in chapter 9 of [1].

1 Filling in Gaps

The Fourier transform of a function $f \in L^1(\mathbb{R}^n)$ is provisionally defined by

$$\mathcal{F}f(\xi) = \hat{f}(\xi) \int_{\mathbb{R}^n} f(x) e^{-ix \cdot \xi} dx.$$

Later \mathcal{F} will be multiplied by a constant to make it unitary from $\mathcal{S}(\mathbb{R}^n)$ to $\mathcal{S}(\mathbb{R}^n)$. By the dominated convergence theorem, $\mathcal{F}: L^1(\mathbb{R}^n) \to C_b(\mathbb{R}^n)$.

Theorem 1. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\partial_{\varepsilon}^{\alpha} \mathcal{F} f = \mathcal{F}((-i \, x)^{\alpha} \, f) = (-i)^{|\alpha|} \, \mathcal{F}(x^{\alpha} \, f).$$

Proof. First assume $\alpha = j$ for some $j \in \{1, ..., n\}$. We have

$$\partial_{\xi_{j}} \mathcal{F} f(\xi) = \partial_{\xi_{j}} \left(\int_{\mathbb{R}^{n}} f(x) e^{-ix \cdot \xi} dx \right)$$

$$= \int_{\mathbb{R}^{n}} \partial_{\xi_{j}} (f(x) e^{-ix \cdot \xi}) dx$$

$$= \int_{\mathbb{R}^{n}} f(x) e^{-ix \cdot \xi} (-ix_{j}) dx$$

$$= \mathcal{F} (-ix_{j} f)(\xi).$$

The swapping of the derivative and integral in the second equality is justified by the mean value theorem and the dominated convergence theorem since

$$|\partial_{\xi_j}(f(x) e^{-ix \cdot \xi})| = |f(x) e^{-ix \cdot \xi}(-i x_j)| = |x_j f(x)|$$

and $x_j f \in \mathcal{S}(\mathbb{R}^n)$. By induction on $|\alpha|$, we get the result for every α .

Theorem 2. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\mathcal{F}\partial^{\alpha}f=(i\,\xi)^{\alpha}\,\mathcal{F}f=i^{|\alpha|}\,\xi^{\alpha}\,\mathcal{F}f.$$

Proof. First suppose $\alpha = j$ for some $j \in \{1, \dots, n\}$. By Fubini's theorem,

$$\mathcal{F}\partial_{x_j} f(\xi) = \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \partial_{x_j} f(x) e^{-ix \cdot \xi} dx_j dx'.$$

Section 1

To compute $\int_{\mathbb{R}} \partial_{x_j} f(x) e^{-ix\cdot\xi} dx_j$, since $|\partial_{x_j} f(x) e^{-ix\cdot\xi}| = |\partial_{x_j} f(x)| \le \frac{C}{1+|x_j|^N} \in L^1(\mathbb{R})$ we can use integration by parts with $u = e^{-ix\cdot\xi}$, $dv = \partial_{x_j} f(x)$ to get

$$\int_{\mathbb{R}} \partial_{x_j} f(x) e^{-ix \cdot \xi} dx_j = e^{-ix \cdot \xi} f(x) \Big|_{x_j = -\infty}^{\infty} - \int_{\mathbb{R}} f(x) e^{-ix \cdot \xi} - i \xi_j dx_j$$
$$= i \xi_j \int_{\mathbb{R}} f(x) e^{-ix \cdot \xi} dx_j.$$

Thus

$$\mathcal{F}\partial_{x_{j}}f(\xi) = \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} \partial_{x_{j}}f(x) e^{-ix\cdot\xi} dx_{j} dx'$$

$$= i\xi_{j} \int_{\mathbb{R}^{n-1}} \int_{\mathbb{R}} f(x) e^{-ix\cdot\xi} dx_{j} dx'$$

$$= i\xi_{j} \mathcal{F}f(\xi).$$

The result follows by induction on $|\alpha|$.

Theorem 3. $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$.

Proof. Let $f \in \mathcal{S}(\mathbb{R}^n)$. Theorem 1 implies that $\mathcal{F}f \in C^{\infty}(\mathbb{R}^n)$. By theorems 1 and 2, if $f \in \mathcal{S}(\mathbb{R}^n)$, then

$$\xi^{\beta} \partial_{\xi}^{\alpha} \mathcal{F} f = \xi^{\beta} (-i)^{|\alpha|} \mathcal{F} (x^{\alpha} f)$$
$$= (-i)^{|\beta|} (-i)^{|\alpha|} \mathcal{F} \partial^{\beta} (x^{\alpha} f),$$

where in the second inequality we use the fact that $x^{\alpha} f \in \mathcal{S}(\mathbb{R}^n)$. Since $x^{\alpha} f \in \mathcal{S}(\mathbb{R}^n)$, it follows that $\partial^{\beta}(x^{\alpha} f) \in \mathcal{S}(\mathbb{R}^n)$. In particular, $\partial^{\beta}(x^{\alpha} f) \in L^1(\mathbb{R}^n)$. Thus $\mathcal{F}\partial^{\beta}(x^{\alpha} f) \in C_b(\mathbb{R}^n)$. Thus $\mathcal{F}\partial^{\beta}(x^{\alpha} f) \in C_b(\mathbb{R}^n)$. Thus $\mathcal{F}\partial^{\beta}(x^{\alpha} f) \in C_b(\mathbb{R}^n)$.

Theorem 4. For $f \in \mathcal{S}(\mathbb{R}^n)$, $\mathcal{F}^* \mathcal{F} f = (2\pi)^n f$.

Proof. By the dominated convergence theorem (note $\mathcal{F}f \in \mathcal{S}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n)$) and Funini's theorem,

$$\mathcal{F}^* \mathcal{F} f(x) = \int \mathcal{F} f(\xi) e^{ix \cdot \xi} d\xi$$

$$= \lim_{\varepsilon \searrow 0} \int \mathcal{F} f(\xi) e^{-\varepsilon |\xi|^2} e^{ix \cdot \xi} d\xi$$

$$= \lim_{\varepsilon \searrow 0} \iint f(y) e^{-iy \cdot \xi} dy e^{-\varepsilon |\xi|^2} e^{ix \cdot \xi} d\xi$$

$$= \lim_{\varepsilon \searrow 0} \iint f(y) e^{-\varepsilon |\xi|^2 + i(x - y) \cdot \xi} dy d\xi$$

$$= \lim_{\varepsilon \searrow 0} \int f(y) \int e^{-\varepsilon |\xi|^2 + i(x - y) \cdot \xi} d\xi dy$$

$$= \lim_{\varepsilon \searrow 0} \int f(y) p(\varepsilon, x - y) d\xi dy,$$

$$= \lim_{\varepsilon \searrow 0} (f * p(\varepsilon, \cdot))(x),$$

FILLING IN GAPS 3

where

$$p(\varepsilon, x) = \int e^{-\varepsilon |\xi|^2 + ix \cdot \xi} d\xi.$$

Making the substitution $v = \sqrt{\varepsilon} \xi$ yields

$$p(\varepsilon, x) = \varepsilon^{-n/2} \int e^{-|v|^2 + i\varepsilon^{-1/2} x \cdot v} dv$$
$$= \varepsilon^{-n/2} q(x/\sqrt{\varepsilon}),$$

where q(x) = p(1, x). We proceed to compute q(x). By Fubini's theorem,

$$q(x) = \int_{\mathbb{R}^n} e^{-|\xi|^2 + ix \cdot \xi} d\xi$$

$$= \left(\int_{\mathbb{R}} e^{-\xi_1^2 + ix_1 \xi_1} d\xi_1 \right) \cdots \left(\int_{\mathbb{R}} e^{-\xi_n^2 + ix_n \xi_n} d\xi_n \right)$$

$$= \hat{g}(-x_1) \cdots \hat{g}(-x_n),$$
(1)

where $g(x) = e^{-x^2}$. Note that $g \in \mathcal{S}(\mathbb{R})$. We proceed to compute \hat{g} . Note that $g'(x) = -2xe^{-x^2} = -2xg(x)$. Thus

$$g' + 2 x g = 0.$$

Taking the Fourier transform of both sides using theorems (1) and (2) yields $i \xi \hat{g} + 2 i \hat{g}' = 0$. Thus

$$2 \hat{g}' + \xi \hat{g} = 0.$$

Thus $2\frac{d\hat{g}}{d\xi} + \xi \hat{g} = 0$. Thus $2d\hat{g} + \xi d\xi \hat{g} = 0$. Thus $\frac{1}{\hat{g}}d\hat{g} = -\frac{\xi}{2}d\xi$. Thus $\ln(\hat{g}) = \frac{-\xi^2}{4} + C$. Thus

$$\hat{g} = C e^{-\xi^2/4}$$
.

We have

$$\hat{g}(0) = \int_{\mathbb{R}} e^{-x^2} dx = \pi^{1/2}.$$

Thus

$$\hat{g}(\xi) = \pi^{1/2} e^{-\xi^2/4}$$
.

Thus by (4),

$$q(x) = \hat{g}(-x_1) \cdots \hat{g}(-x_n) = \pi^{n/2} e^{-|x|^2/4}$$

We have

$$\int q(x) dx = \pi^{n/2} \int e^{-|x|^2/4} dx$$

$$= \pi^{n/2} 2^n \int e^{-|y|^2} dy$$

$$= 2^n \pi^{n/2} \pi^{n/2}$$

$$= (2\pi)^n.$$

4 Section 2

Thus since f is bounded and continuous, $f * p(\varepsilon, \cdot) \to (2\pi)^n f$ pointwise as $\varepsilon \searrow 0$, so

$$\mathcal{F}^* \mathcal{F} f(x) = \lim_{\varepsilon \searrow 0} (f * p(\varepsilon, \cdot))(x)$$
$$= (2\pi)^n f(x).$$

This completes the proof.

Thus if we redefine

$$\mathcal{F}f(\xi) = (2\pi)^{-n/2} \int f(x) e^{-ix\cdot\xi} dx,$$

then $\mathcal{F}^*\mathcal{F}=I$. Note that $\mathcal{F}^*=R\mathcal{F}=\mathcal{F}R$, where Rf(x)=f(-x). Thus $\mathcal{F}\mathcal{F}^*=I$, so $\mathcal{F}:\mathcal{S}(\mathbb{R}^n)\to\mathcal{S}(\mathbb{R}^n)$ is unitary.

2 Exercises

Exercises from chapter 9.

1. Let (X, μ) and (Y, ν) be σ -finite measure spaces, and let k(x, y) be measurable on $(X \times Y, \mu \times \nu)$. Let $p \in (1, \infty)$, and let q be the conjugate exponent to p. Assume that there are measurable functions A(x), B(y), positive a.e. on X and Y, respectively, such that

$$\int_{X} |k(x,y)| A(x)^{p} d\mu(x) \le C_{1} B(y)^{p},$$

$$\int_{Y} |k(x,y)| B(y)^{q} d\nu(y) \le C_{2} A(x)^{q}.$$

Then $Ku(x) = \int_{Y} k(x, y) u(y) d\nu(y)$ defines a bounded operator

$$K: L^p(Y, \nu) \to L^p(X, \nu), \quad ||K|| \le C_1^{1/p} C_2^{1/q}.$$

Proof. Let $f \in L^p(Y, \nu)$ be arbitrary. We use the dual characterization of the L^p norm to show that the function $x \mapsto \int_Y |k(x,y)| |f(y)| \, dy$ has finite L^p norm. This will show that the integral Kf(x) converges absolutley for a.e. x, so Kf is well defined. In the process, we will also establish the bound $||K|| \le C_1^{1/p} C_2^{1/q}$. Let $g \in L^q(X, \mu)$ be arbitrary. We have

$$\int_{X} \left| \int_{Y} |k(x,y)| \, |f(y)| \, d\nu(y) \, g(x) \right| \, d\mu(x) \, \leq \, \int_{X} \int_{Y} |k(x,y)| \, |f(y)| \, |g(x)| \, d\nu(y) \, d\mu(x).$$

Using the inequality $a b \leq \frac{a^p}{p} + \frac{b^q}{q}$ for $a, b \geq 0$, we estimate

$$|f(y)||g(x)| = \frac{A(x)}{B(y)}|f(y)|\frac{B(y)}{A(x)}|g(x)|$$

$$\leq \frac{1}{p}\frac{A(x)^p}{B(y)^p}|f(y)|^p + \frac{1}{q}\frac{B(y)^q}{A(x)^q}|g(x)|^q.$$

Exercises 5

By Fubini's theorem,

$$\int_{X} \int_{Y} |k(x,y)| |f(y)| |g(x)| d\nu(y) d\mu(x) \leq \frac{1}{p} C_{1} ||f||_{L^{p}}^{p} + \frac{1}{q} C_{2} ||g||_{L^{q}}^{q}.$$

Replacing f with t f and g with $t^{-1} g$ yields

$$\int_X \int_Y |k(x,y)| \, |f(y)| \, |g(x)| \, d\, \nu(y) \, d\mu(x) \le \frac{1}{p} \, C_1 \, \|f\|_{L^p}^p \, t^p + \frac{1}{q} \, C_2 \, \|g\|_{L^q}^q \, t^{-q}.$$

Minimizing over t yields

$$\int_{X} \int_{Y} |k(x,y)| |f(y)| |g(x)| d\nu(y) d\mu(x) \le C_1^{1/p} C_2^{1/q} \|f\|_{L^p} \|g\|_{L^q}.$$

Thus $||Kf||_{L^p} \le C_1^{1/p} C_2^{1/q} ||f||_{L^p}$. Thus $||K|| \le C_1^{1/p} C_2^{1/q}$.

3. Given $u \in L^1_{loc}(\mathbb{R}^n)$, $p \in [1, \infty]$, and $\varphi \in C^\infty_c(\mathbb{R}^n)$, show that $\varphi * u \in C^\infty(\mathbb{R}^n)$.

Proof. We first show that $\varphi * u$ is continuous. Let $x \in \mathbb{R}^n$ be arbitrary, and let (x_k) be an arbitrary sequence converging to x. We need to show that

$$\lim_{k \to \infty} \int \varphi(x_k - y) \, u(y) \, dy = \int \varphi(x - y) \, u(y) \, dy.$$

Since x_k is convergent, there is a ball $B \subset \mathbb{R}^n$ such that $x_k \in B$ for all $k \in \mathbb{N}$. Let $K = \text{supp}(\varphi)$. Note that $x_n - y \in K$ if and only if $y \in x_n - K \subset B - K$ and that B - K is bounded. Thus

$$|\varphi(x_k - y) u(y)| = |\varphi(x_k - y) u(y) \chi_{B-K}| \le \left(\sup_{z \in \mathbb{R}^n} |\varphi(z)|\right) |u(y)| \chi_{B-K} \in L^1(\mathbb{R}^n).$$

By the dominated convergence theorem,

$$\lim_{k \to \infty} \int \varphi(x_k - y) \, u(y) \, dy = \int \varphi(x - y) \, u(y) \, dy.$$

Thus $\varphi * u$ is continuous. Now for any $j \in \{1, \dots, n\}$,

$$\begin{split} \partial_{x_j}(\varphi * u) &= \lim_{h \to 0} \int \frac{\varphi(x + h e_j - y) - \varphi(x - y)}{h} \, u(y) \, dy \\ &= \lim_{h \to 0} \int \partial_{x_j} \varphi(x + \theta(h) \, h \, e_j - y) \, u(y) \, dy \\ &= \lim_{h \to 0} \left(\partial_{x_j} \varphi * u \right) (x + \theta(h) \, h \, e_j) \\ &= \left(\partial_{x_j} \varphi * u \right) (x), \end{split}$$

where the second equality is by the mean value theorem, and in the last equality we use the fact that $\partial_{x_j} \varphi \in C_c^{\infty}$ and the continuity result previously established. By induction, $\partial^{\alpha}(\varphi * u) = \partial^{\alpha} \varphi * u$ for every multi-index α .

4. If $u \in L^p(\mathbb{R}^n)$ and $w \in L^q(\mathbb{R}^n)$, $p \in [1, \infty]$, $\frac{1}{p} + \frac{1}{q} = 1$, u * w is uniformly continuous on \mathbb{R}^n .

6 Bibliography

Proof. By Holder's inequality, $\int |u(x-y)w(y)| dy \le ||u||_{L^p} ||w||_{L^q}$ for all $x \in \mathbb{R}^n$. Thus (u*w)(x) is well defined for every $x \in \mathbb{R}^n$. Let $x_1, x_2 \in \mathbb{R}^n$ be arbitrary. We have

$$|(u*w)(x_1) - (u*w)(x_2)| \leq \int |u(x_1 - y) - u(x_2 - y)| |w(y)| dy$$

$$\leq ||u(x_1 - \cdot) - u(x_2 - \cdot)||_{L^p} ||w||_{L^q}.$$

By translation and reflection invariance of the integral,

$$||u(x_1 - \cdot) - u(x_2 - \cdot)||_{L^p} = ||u(x_1 + \cdot) - u(x_2 + \cdot)||_{L^p}$$

$$= ||u(x_1 - x_2 + \cdot) - u(\cdot)||_{L^p}$$

$$= ||\tau_{x_2 - x_1} u - u||_{L^p}$$

Since $\|\tau_z u - u\|_{L^p} \to 0$ as $z \to 0$, $\omega(\delta) = \sup_{\|z\| \le \delta} \|\tau_z u - u\|_{L^p}$ is a modulus of continuity for u * w, so u * w is uniformly continuous.

In excercises 5-6, let (X, \mathfrak{F}, μ) be a measure space and \mathcal{A} and algebra of subsets of X such that $\sigma(\mathcal{A}) = \mathfrak{F}$. Let

$$\Lambda = \operatorname{span}\{\chi_A : A \in \mathcal{A}\}.$$

5. If
$$f \in L^1(X, \mu)$$
 and $\int_A f d\mu = 0$ for all $A \in \mathcal{A}$, then $f = 0$.

Proof. Let $\mathcal{C} = \{B \in \mathfrak{F} : \int_B f d\mu = 0\}$. Clearly $\mathcal{A} \subset \mathcal{C}$. If $B_n \in \mathcal{C}$ and $B_n \nearrow B$, then $B \in \mathfrak{F}$ and by the dominated convergence theorem, $\int_B f d\mu = \lim_{n \to \infty} \int_{B_n} f d\mu = 0$, so $B \in \mathcal{C}$. Similarly, if $B_n \in \mathcal{C}$ and $B_n \searrow B$, then $B \in \mathcal{C}$. Thus \mathcal{C} is a monotone class. Since $\mathcal{C} \supset \mathcal{A}$, the monotone class lemma implies $\mathcal{C} \supset \sigma(\mathcal{A}) = \mathfrak{F}$. Thus $\int_B f d\mu = 0$ for all $B \in \mathfrak{F}$. For all $n \in \mathbb{N}$, $0 = \int_{\{f \geq \frac{1}{n}\}} f d\mu \geq \frac{1}{n} \mu(f \geq \frac{1}{n})$. Thus $\mu(f \geq \frac{1}{n}) = 0$ for all $n \in \mathbb{N}$. Thus $\mu(f > 0) = 0$. Applying the same argument to -f yields $\mu(-f > 0) = 0$, so $\mu(f < 0) = 0$. Thus f = 0 a.e.

6. If
$$\mu(X) < \infty$$
, Λ is dense in $L^p(X, \mu)$ for all $p \in [1, \infty)$.

Proof. Let $C = \{B \in \mathfrak{F} : \chi_B \in \overline{\Lambda}\}$. Clearly $A \subset C$. Suppose $B_n \in C$ and $B_n \nearrow B$. Obviously $B \in \mathfrak{F}$. Note that $\chi_{B_n} \to \chi_B$ pointwise and $|\chi_{B_n}| \le 1 \in L^p(X, \mu)$. By the dominated convergence theorem, $\chi_{B_n} \to \chi_B$ in $L^p(X, \mu)$. Thus $\chi_B \in \overline{\Lambda}$. Similarly, if $B_n \in C$ and $B_n \setminus B$, then $B \in C$. Thus C is a monotone class, so $C = \mathfrak{F}$. It follows that any simple function is in $\overline{\Lambda}$. By density of simple functions in $L^p(X, \mu)$, it follows that $\overline{\Lambda} = L^p(X, \mu)$.

Bibliography

[1] Michael E. Taylor. *Measure theory and integration*. Number v. 76 in Graduate studies in mathematics. American Mathematical Society, Providence, R.I, 2006. OCLC: ocm67384265.