- 7.1 (a) True.
 - (b) False.
 - (c) False.
 - (d) True.
 - (e) True.
 - (f) True.
- 7.2 (a) False.
 - (b) True.
 - (c) True.
 - (d) True.
 - (e) False.
 - (f) False.
- 7.3 Following Euclids algorithm:
 - (a) Yes.

$$GCD(10505, 1274)$$

$$= GCD(1274, 313)$$

$$= GCD(313, 22)$$

$$= GCD(22, 5)$$

$$= GCD(5, 2)$$

$$= GCD(2, 1)$$

$$= GCD(1, 1)$$

$$= 1$$

(b) No.

$$GCD(8024, 7289)$$

$$= GCD(7289, 740)$$

$$= GCD(740, 629)$$

$$= GCD(629, 111)$$

$$= GCD(111, 74)$$

$$= GCD(74, 37)$$

$$= 37.$$

7.4

7.5 Let $\phi = (x \vee y) \wedge (x \vee \bar{y}) \wedge (\bar{x} \vee y) \wedge (\bar{x} \vee \bar{y})$. The following truth-table shows that ϕ is not satisfiable.

X	у	$(x \vee y)$	$(x \vee \bar{y})$	$(\bar{x} \lor y)$	$(\bar{x} \vee \bar{y})$	ϕ
0	0	0	1	1	1	0
0	1	1	0	1	1	0
1	0	1	1	0	1	0
1	1	1	1	1	0	0

7.6 Let $\langle L_i, M_i \rangle$ be a polytime language and decider, such that $L_i = \{ w \mid M_i \langle w \rangle \text{ accepts} \}$, and M_i always halts in polynomial time.

Let $L_{\cup} = L_i \cup L_j$, $L_{\circ} = L_i \circ L_j$, $\bar{L}_i = \{w \in \Sigma^* \mid w \notin L_i\}$ be languages. To show that $L_{\cup}, L_{\circ}, \bar{L}_i \in P$, we construct respective polynomial time deciders $M_{\cup}, M_{\circ}, \bar{M}_i$.

 M_{\cup} = "On input w:

- 1. Run $M_i\langle w\rangle$. If M_i accepts, accept.
- 2. Run $M_j\langle w\rangle$. If M_j accepts, accept.
- 3. If neither $M_i\langle w\rangle$ nor $M_j\langle w\rangle$ accepted, reject."

 $M_{\circ} =$ "On input w:

- 1. For each position k = 0 to |w|, divide w into substrings $w = w_1 w_2$, where w_1 is the first k symbols in w.
- 2. Run $M_i\langle w_1\rangle$ and $M_i\langle w_2\rangle$. If both accept, accept.
- 3. If no k exists such that $M_i\langle w_1\rangle$ and $M_i\langle w_2\rangle$ both accept, reject."

 \bar{M}_i = "On input w:

- 1. Run M_i on w. If M_i accepts reject. If M_i rejects, accept.
- 7.7 Let $\langle L_i, N_i \rangle$ be a language and non-deterministic Turing machine, such that N_i decides L_i in polynomial time.

Let $L_{\cup} = L_i \cup L_j$, $L_{\circ} = L_i \circ L_j$ be languages. To show that $L_{\cup}, L_{\circ} \in P$, we construct respective polynomial time non-deterministic deciders.

 N_{\cup} = "On input w:

- 1. Non-deterministically branch to simulate both $N_i\langle w \rangle$ and $N_j\langle w \rangle$.
- 2. If either branch accepts, accept, else reject."

 N_{\circ} = "On input w:

- 1. Non-deterministically branch for each position k = 0 to |w|, with each branch dividing w into substrings $w = w_1 w_2$, where w_1 is the first k symbols in w.
- 2. For each branch, run $N_i\langle w_1\rangle$ and $N_j\langle w_2\rangle$. If both accept, accept.
- 3. If no branch accepts, reject."
- 7.8 To show that CONNECTED $\in P$, we need to show that CONNECTED \in TIME (n^k) , where k is some constant. As M decides CONNECTED, we only need to prove that M runs in $O(n^k)$.
 - In step 1, a node is selected and marked. This is done in constant time.
 - In stages 2 and 3, each node in G is scanned and marked if it is a neighbour of a marked node. This is repeated until no new nodes are marked. Assuming we do not visit already marked nodes, this has a worst-case run-time of $n \sum_{i=1}^{n-1} i = \frac{n^2(n-1)}{2}$ steps.
 - In stage 4, each node of G is scanned to determine if it is marked. This takes n steps.

Combining steps 2,3 and 4, we have a run time of $\frac{n^2(n-1)}{2} + n = \frac{n^3 + n^2 + 2n}{2} = O(n^3)$. This is clearly in P, and the proof is complete.