Example 8.1. The reader should verify that

$$\begin{pmatrix} 2 & 1 & 1 & 0 \\ 4 & 3 & 3 & 1 \\ 8 & 7 & 9 & 5 \\ 6 & 7 & 9 & 8 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ 3 & 4 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

is an LU-factorization.

One of the main reasons why the existence of an LU-factorization for a matrix A is interesting is that if we need to solve *several* linear systems Ax = b corresponding to the same matrix A, we can do this cheaply by solving the two triangular systems

$$Lw = b$$
, and $Ux = w$.

There is a certain asymmetry in the LU-decomposition A=LU of an invertible matrix A. Indeed, the diagonal entries of L are all 1, but this is generally false for U. This asymmetry can be eliminated as follows: if

$$D = diag(u_{11}, u_{22}, \dots, u_{nn})$$

is the diagonal matrix consisting of the diagonal entries in U (the pivots), then if we let $U' = D^{-1}U$, we can write

$$A = LDU'$$

where L is lower- triangular, U' is upper-triangular, all diagonal entries of both L and U' are 1, and D is a diagonal matrix of pivots. Such a decomposition leads to the following definition.

Definition 8.2. We say that an invertible $n \times n$ matrix A has an LDU-factorization if it can be written as A = LDU', where L is lower-triangular, U' is upper-triangular, all diagonal entries of both L and U' are 1, and D is a diagonal matrix.

We will see shortly than if A is real symmetric, then $U' = L^{\top}$.

As we will see a bit later, real symmetric positive definite matrices satisfy the condition of Proposition 8.2. Therefore, linear systems involving real symmetric positive definite matrices can be solved by Gaussian elimination without pivoting. Actually, it is possible to do better: this is the Cholesky factorization.

If a square invertible matrix A has an LU-factorization, then it is possible to find L and U while performing Gaussian elimination. Recall that at Step k, we pick a pivot $\pi_k = a_{ik}^{(k)} \neq 0$ in the portion consisting of the entries of index $j \geq k$ of the k-th column of the matrix A_k obtained so far, we swap rows i and k if necessary (the pivoting step), and then we zero the entries of index $j = k + 1, \ldots, n$ in column k. Schematically, we have the following steps:

$$\begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & a_{ik}^{(k)} & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{pmatrix} \xrightarrow{\text{pivot}} \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & a_{ik}^{(k)} & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{pmatrix} \xrightarrow{\text{elim}} \begin{pmatrix} \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{pmatrix}.$$