

Separation Assurance Automation

- Should detect all conflicts with sufficient time to resolve them
- Should not resolve false conflicts
- Should not suggest resolutions which result in near-term losses of separation

Separation Assurance Automation

- Should detect all conflicts with sufficient time to resolve them
- Should not resolve false conflicts
- Should not suggest resolutions which result in near-term losses of separation

If we could perfectly predict the future positions of all aircraft this would be fairly easy

Prediction Errors

Any trajectory prediction will have some error

Impact of Errors

- Error Correlation
 - Wind errors affect all aircraft in a certain area
 - Cruise speed errors are independent of each other
- Type of impact
 - Cruise speed errors result in along-track errors
 - Descent profile errors result in altitude errors

Automation Objectives

- To be robust to trajectory prediction errors
- To be as efficient as possible given a certain amount of prediction error

Study Objectives

- To understand how different sources of trajectory prediction errors affect the AAC Autoresolver
- To compare the relative effects across error sources
- To highlight algorithmic improvements to deal with errors

Error Sources Studied

- Wind prediction
- Cruise speed prediction
- Weight
- Maneuver initiation time
- Top of descent
- Descent speed

Simulation Environment

- Airspace Simulator: Airspace Concept Evaluation System (ACES)
- Separation Assurance Algorithm: Advanced Airspace Concept (AAC) Autoresolver

Key Simulation Feature

Every time conflict detection is performed, both a perfect and a perturbed prediction are created

Error Studies

- Perform two separate studies:
 - Detection study
 - Resolution study
- Vary the amount of error from single source
- Use 3 hours of nationwide traffic

Error Amounts

Error Type:	Applied:	Values:
Wind	Simulation-Wide	-10%,10%, 25%
Cruise Speed	Per Aircraft	±2%, ±5%
Weight	Per Aircraft	±10%, ±20%
Maneuver Timing	Per Maneuver	±20 sec, ±40 sec
Top of Descent	Per Aircraft	±5 nmi, ±10 nmi
Descent Speed	Per Aircraft	±5%, ±10%

Generally slightly larger than values found in previous studies

Wind Errors

Cruise-Speed Errors

Weight Errors

Maneuver-Initiation-Time Errors

Top-of-Descent Errors

Descent-Speed Errors

Descent-Speed Errors

Detection Study

- Looked at geometric detection with and without a horizontal buffer
- Open-loop simulations with over 1800 losses of separation

Wind Errors

Symmetric between positive and negative values

Wind Errors

- Symmetric between positive and negative values
- Buffer is quite effective

Cruise-Speed Error

Linear increase to large amount

Cruise-Speed Error

- Linear increase to large amount
- Buffer effective

Weight Error

Decrease as a function of time and small total value

Weight Error

- Decrease as a function of time and small total value
- Buffer less effective for large errors

Top-of-Descent Errors

Relatively large number of missed alerts

Top-of-Descent Errors

- Relatively large number of missed alerts
- Buffer not very effective

Descent-Speed Errors

 Moderate amount of missed alerts and steep curve near 1 minute to loss

Descent-Speed Errors

- Moderate amount of missed alerts and steep curve near 1 minute to loss
- Buffer not very effective

Missed Alert Summary

 Cruise-speed and top-of-descent errors result in most missed alerts

Missed Alert Summary

- Cruise-speed and top-of-descent errors result in most missed alerts
- Buffer is least effective for top-of-descent and descent-speed errors

Resolution Study

- 1 nmi detection buffer
- 8-minute look-ahead for conflict detection
- 12-minute look-ahead for successful resolutions

Wind Errors

- Losses increase with increase wind error
- Symmetric with positive and negative magnitude

Cruise-Speed Errors

- Produces fewer losses than largest wind error
- Small errors are handled well by the algorithm

Weight Errors

- About the same number of losses as the cruise speed case
- Linear increase with amount of error

Maneuver-Initiation-Time Errors

- Causes more errors than the previous cases
- Only impacts aircraft which are maneuvering

Top-of-Descent Errors

- Results in the most losses of separation
- Not as dependent on the error amount

Descent-Speed Errors

- Large number of losses for the large error case
- Losses are dependent on error amount

Losses of Separation

- Descent prediction errors result in significant amount of losses of separation
- Wind, weight, and cruise speed errors are less important

Delay Summary

- Top-of-descent errors result in large delays
- Wind and cruise speed errors also contribute a lot to delay

Conclusions

- Over 90% of all losses were resolved for all cases
- Prediction errors result in increased losses and delay
- Descent prediction errors result in many late predictions and the largest number of losses

Future Work

- Identify algorithm improvements for robustness
- Experiment with combinations of errors