COMPLEX VARIABLES CHEATSHEET

Complex Numbers Algebra

Fundamental Representations

- Let $z \in \mathbb{C}$.
- Cartesian Form: z = x + iy
- x = Re(z) is the real part.
- y = Im(z) is the imaginary part.
- **Polar Form:** $z = r(\cos \theta + i \sin \theta)$
- $r = |z| = \sqrt{x^2 + y^2}$ is the modulus (magnitude).
- $\theta = \arg(z)$ is the argument (angle).
- Exponential Form (Euler's Formula):
- $z = re^{i\theta}$

Complex Conjugate

• $e^{i\theta} = \cos\theta + i\sin\theta$

- If z = x + iy, the conjugate is $\bar{z} = x iy$.
- $\bar{z} = re^{-i\theta}$
- $z\bar{z} = |z|^2 = x^2 + y^2$
- Re(z) = $\frac{z+\bar{z}}{2}$, Im(z) = $\frac{z-\bar{z}}{2i}$

Multiplication & Division

- Let $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$.
- Multiplication: $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- · Magnitudes multiply, angles add.
- **Division:** $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 \theta_2)}$
- Magnitudes divide, angles subtract.

Functions of a Complex Variable

Mapping A complex function f(z) maps a point z in the complex plane (the domain) to a point w = f(z) in another complex plane (the codomain or image).

- w = f(z) = u(x, y) + iv(x, y), where z = x + iy.
- u(x, y) is the real part of the output.
- v(x, y) is the imaginary part of the output.

- $\lim_{z\to z_0} f(z) = L$ means f(z) approaches L as z approaches z_0 from any
- If the limit differs along two different paths to z_0 , the limit does not exist.

Strategies for Evaluating Limits

- 1. **Direct Substitution:** If $f(z_0)$ is defined and the function is continuous, the
- 2. **Test Along Paths:** To show a limit DNE, approach z₀ along two paths and get different results.
 - Along the real axis: let $z = x + iy_0$, take $x \to x_0$.
 - Along the imaginary axis: let $z = x_0 + iy$, take $y \to y_0$.
 - Along a line: let $z = z_0 + re^{i\phi}$, take $r \to 0$ (for fixed ϕ).
- 3. Squeeze Theorem: If $|f(z)| \le g(z)$ and $\lim_{z\to z_0} g(z) = 0$, then $\lim_{z\to z_0} f(z) = 0.$

Continuity A function f(z) is continuous at z_0 if:

- 1. $f(z_0)$ exists.
- 2. $\lim_{z\to z_0} f(z)$ exists.
- 3. $\lim_{z\to z_0} f(z) = f(z_0)$.

Derivatives Analyticity

The Complex Derivative The derivative of f(z) at z_0 is:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

• The limit must be the same regardless of how Δz approaches 0.

Cauchy-Riemann Equations A function f(z) = u(x, y) + iv(x, y) is differentiable at a point z = x + iy if and only if the partial derivatives of u and v exist and satisfy the Cauchy-Riemann (C-R) equations.

Cartesian Form:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

If these hold and the partials are continuous, the derivative is:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y}$$

Polar Form: For $z = re^{i\theta}$ and $f(z) = u(r, \theta) + iv(r, \theta)$.

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

If these hold and the partials are continuous, the derivative is:

$$f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right)$$

Analyticity

- A function f(z) is **analytic** at a point z_0 if it is differentiable at z_0 and in a small disk around z_0 .
- A function is analytic in a region if it is analytic at every point in that
- An entire function is analytic on the entire complex plane C. Examples: e^z , $\sin(z)$, $\cos(z)$, polynomials.
- If C-R equations hold for a region, f(z) is analytic there.

Elementary Transformations

• Let $z = re^{i\theta}$. The function $f(z) = z^n$ for integer n is:

$$w = z^n = (re^{i\theta})^n = r^n e^{in\theta}$$

- Geometric Effect:
 - The magnitude is raised to the power n: $|w| = |z|^n$.
 - The angle is multiplied by n: $arg(w) = n \cdot arg(z)$.
- This means points are rotated by a factor of n and their distance from the origin is scaled by a power of n.
- A sector of angle α in the z-plane is mapped to a sector of angle $n\alpha$ in the w-plane.

Roots of Complex Numbers

- The *n*-th roots of a complex number $z_0 = r_0 e^{i\theta_0}$ are the solutions to $w^n = z_0$.
- There are exactly *n* distinct roots, given by:

$$w_k = \sqrt[n]{r_0} \exp\left[i\left(\frac{\theta_0 + 2\pi k}{n}\right)\right]$$

• for $k = 0, 1, 2, \dots, n-1$.

How to Calculate Roots:

- 1. Write the number z_0 in exponential form $r_0e^{i\theta_0}$. Be sure to use the principal argument for θ_0 .
- 2. The magnitude of all roots is the same: $\sqrt[p]{r_0}$.
- 3. Find the angle of the first root (k = 0): $\frac{\theta_0}{\pi}$.
- 4. The other roots are spaced evenly around a circle. Add increments of $\frac{2\pi}{\pi}$ to the angle for each subsequent root.

Example: Cube roots of 8i

- 1. Polar form: $z = 8i = 8e^{i\pi/2}$. Here $r_0 = 8$, $\theta_0 = \pi/2$, n = 3.
- 2. Magnitude of roots: $\sqrt[3]{8} = 2$.
- 3. Angles: $\frac{\pi/2+2\pi k}{3}$ for k=0,1,2.
 - $k=0: \frac{\pi/2}{3}=\frac{\pi}{6}$

 - $k = 1 : \frac{\pi/2 + 2\pi}{3} = \frac{5\pi}{6}$ $k = 2 : \frac{\pi/2 + 4\pi}{3} = \frac{9\pi}{6} = \frac{3\pi}{2}$
- 4. The roots are: $w_0 = 2e^{i\pi/6}$, $w_1 = 2e^{i5\pi/6}$, $w_2 = 2e^{i3\pi/2}$.

The Exponential Function

- $f(z) = e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$.
- $|e^z| = e^x$ and $arg(e^z) = y$.
- Periodic with period $2\pi i$: $e^{z+2\pi i} = e^z$.
- Maps horizontal lines (y = c) to rays from the origin.
- Maps vertical lines (x = c) to circles of radius e^c .

Logarithmic Function (Principal Value)

- The inverse of e^z , but multi-valued.
- Principal Value: Log(z) = ln |z| + iArg(z)
- where Arg(z) is the principal argument, $-\pi < Arg(z) \le \pi$.
- The "branch cut" is usually on the negative real axis.

Complex Trigonometric Functions

Definitions from Euler's Formula

- $cos(z) = \frac{e^{iz} + e^{-iz}}{2}$ $sin(z) = \frac{e^{iz} e^{-iz}}{2i}$

These are entire functions. Unlike their real counterparts, complex sine and cosine are unbounded.

Hyperbolic Functions

- $\bullet \quad \cosh(z) = \frac{e^z + e^{-z}}{2}$
- $\sinh(z) = \frac{e^z e^{-z}}{2}$

Relations:

- cos(iv) = cosh(v)
- $\sin(iy) = i \sinh(y)$
- $\cosh(iz) = \cos(z)$
- $\sinh(iz) = i\sin(z)$

Rectangular Form of Sin/Cos

- \bullet z = x + iy
- $\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$
- cos(z) = cos(x) cosh(y) i sin(x) sinh(y)

Important Definitions

- Contour: A continuous chain of a finite number of smooth curves.
- Simple Contour: A contour that does not cross itself.
- Closed Contour: A contour whose start and end points are the same.
- **Domain:** An open connected set of points.
- Simply Connected Domain: A domain with no "holes". Any simple closed contour in the domain encloses only points within the domain.
- Singular Point (Singularity): A point where a function is not analytic.
- **Harmonic Functions:** Real-valued functions u(x, y) and v(x, y) that satisfy Laplace's equation ($\nabla^2 u = u_{xx} + u_{yy} = 0$). The real and imaginary parts of an analytic function are harmonic conjugates.