Illustrations for Control Theory

Contents

SMC Chattering Elimination: Quasi-Sliding Mode	. 2
Ternary Differential Equations' Solutions	. 3
Conditions for Existence and Uniqueness of Classical, Caratheodory, Filippov Solutions	. 4

SMC Chattering Elimination: Quasi-Sliding Mode

In many practical control systems, including DC motors and aircraft control, it is important to avoid control chattering by providing continuous/smooth signals. One obvious solution to make the control function continuous/smooth is to approximate the discontinuous function $v(\sigma) = -\rho \, \mathrm{sign} \, (\sigma)$ by some continuous/smooth function. For instance, it could be replaced by a "sigmoid function".

Table 1: replaced sign by a "sigmoid function"

	sign(x)	$\operatorname{sat}\!\left(\frac{x}{arepsilon} ight)$	$rac{x}{ x +arepsilon}$	$\tanh(x)$	$\frac{1 - e^{-Tx}}{1 + e^{-Tx}}$
continuity	discontinuous	continuous	smooth¹	smooth	smooth
	<i>y x</i>	$\varepsilon = 0.5$	$ \begin{array}{c} y \\ \\ \end{array} $ $ \varepsilon = 0.5 $	x	T = 5

¹I am not sure about this

Ternary Differential Equations' Solutions

Table 2: solutions to ternary differential equations

differetial equation	differetial inclusion	classical solution	caratheodory solution	Filippov solution
$\dot{x} = \begin{cases} 1 & \text{if } x < 0 \\ a & \text{if } x = 0 \\ -1 & \text{if } x > 0 \end{cases}$	$\dot{x} \in \mathcal{F}(x) = \begin{cases} 1 & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ -1 & \text{if } x > 0 \end{cases}$	Only when $a=0$, classical solution exists. The maximal classical solution is $1.\ \text{if } x(0)>0, x_1(t)=x(0)-\\ t,t< x(0)\\ 2.\ \text{if } x(0)<0, x_2(t)=x(0)+\\ t,t<-x(0)\\ 3.\ \text{if } x(0)=0, x_3(t)=0, t\in [0,\infty)$	Only when $a=0$, caratheodory solution exists. The maximal classical solution is $1. \text{ if } x(0)>0, x_1(t)=\max(x(0)-t,0), t\in[0,\infty)\\ 2. \text{ if } x(0)<0, x_2(t)=\min(x(0)+t,0), t\in[0,\infty)\\ 3. \text{ if } x(0)=0, x_3(t)=0, t\in[0,\infty)\\ \text{Note:} \text{These only absolutely continuous (not continuously differentiable)}$	Whatever the value of a is, the Filippov solution is $1. \ \text{if } x(0) > 0, x_1(t) = \max(x(0) - t, 0), t \in [0, \infty)$ $2. \ \text{if } x(0) < 0, x_2(t) = \min(x(0) + t, 0), t \in [0, \infty)$ $3. \ \text{if } x(0) = 0, x_3(t) = 0, t \in [0, \infty)$
$\dot{x} = \begin{cases} -1 & \text{if } x < 0 \\ a & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$	$ \dot{x} \in \mathcal{F}(x) = \begin{cases} -1 & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases} $ From $x = x(0) \neq 0$, classical solution exists as $ 1. \ x_1(t) = x(0) + t \text{ if } x(0) > 0 $ $ 2. \ x_2(t) = x(0) - t \text{ if } x(0) < 0 $ From $x = x(0) = 0$, classical solution exists when $a = 1$ or $a = -1$ $ 1. \ \text{when } a = 1, x_1(t) = t, t \in [0, \infty) $ $ 2. \ \text{when } a = -1, x_2(t) = -t, t \in [0, \infty) $		From $x=x(0)\neq 0$, classical solution exists as $1. \ x_1(t)=x(0)+t \text{ if } x(0)>0 \\ 2. \ x_2(t)=x(0)-t \text{ if } x(0)<0.$ From $x=x(0)=0$, two caratheodory solutions exist for all $a\in\mathbb{R}$ $1. \ x_1(t)=t, t\in[0,\infty) \\ 2. \ x_2(t)=-t, t\in[0,\infty)$ These two solutions only violate the vector field in $t=0$	Filippov solution exists for all $a\in\mathbb{R}$ and $x(0)\in\mathbb{R}$. 1. if $x(0)\geq 0$, $x_1(t)=x(0)+t$, $t\in[0,\infty)$ 2. if $x(0)\leq 0$, $x_2(t)=x(0)-t$, $t\in[0,\infty)$ Note: When $x(0)=0$, exists two Filippov solutions.
$\dot{x} = \begin{cases} 1 \text{ if } x \neq 0 \\ 0 \text{ if } x = 0 \end{cases}$	$\dot{x} \in \{1\}$	$x=0,t\in [0,\infty)$	two caratheodory solutions: $ 1. \ x(t) = 0, t \in [0, \infty) $ $ 2. \ x(t) = t, t \in [0, \infty) $	one unique solution: $1. \ x(t) = t, t \in [0, \infty)$

Conditions for Existence and Uniqueness of Classical, Caratheodory, Filippov Solutions

Table 3: conditions of solutions to $\dot{x} = X(x(t))$

	solution	existence	uniqueness
classical	continuously differentiable	$X:\mathbb{R}^d o\mathbb{R}^d$ is continuous	essentially one-sided Lipschitz on $B(x, \varepsilon)$,²
Filippov	absolutely continuous	$X: \mathbb{R}^d o \mathbb{R}^d$ is measurable and locally essentially bounded	essentially one-sided Lipschitz on $B(x, \varepsilon)$

 $^{^{2}}$ Every vector field that is locally Lipschitz at x satisfies the one-sided Lipschitz condition on a neighborhood of x, but the converse is not true.