

17 - 9220

PROYECTO: ELABORACIÓN DE PREFABRICADOS NO ESTRUCTURALES PARA ACABADOS DE USO RESIDENCIAL A PARTIR DE RCD FASE 2

FICHA TÉCNICA MATERIALES DE FORMACIÓN PROFESIONAL

Para el desarrollo de las actividades concernientes al proyecto de innovación se hace requerida la siguiente contratación:

ITEM	DESCRIPCIÓN	CANTIDAD
1	Cemento tipo portland por kilos	50
2	Fallo de cilindros de concreto	50

Anexo cotizaciones de plataforma www.construdata.com y fichas técnicas del producto

Proyectó: Juan Pablo Mejia Ramirez Revisó: Hades F. Salazar Jiménez

Valor kilo cemento \$430 x 250 kilos=\$107.500

Ficha técnica Cemento Tipo Portland.

ESPECIFICACIONES TÉCNICAS DEL BIEN O SERVICIO A CONTRATAR:

Denominación del Bien: CEMENTO PORTLAND GRIS

Denominación técnica: CEMENTO PORTLAND GRIS

Grupo/clase/familia: CONSTRUCCIONES: MATERIALES, RPTOS Y ACC.

Unidades de medida: BULTO * 50kG

Descripción general: Es el cemento hidráulico producido mediante la pulverización el clinker compuesto esencialmente de silicato de calcio hidráulico y contiene generalmente una o más formas de sulfato de calcio como adición durante la molienda.

CARACTERÍSTICAS TÉCNICAS

• DE LAS ADICIONES Y ADITIVOS

De acuerdo con la Norma Técnica, el cemento no contendrá adiciones, excepto en los siguientes casos:

Puede añadirse sulfato de calcio y/o eventualmente agua en cantidad tal que el trióxido de azufre y la pérdida de ignición no excedan los límites establecidos • A opción del fabricante, puede usarse aditivos de proceso en la fabricación del cemento, siempre que tales materiales, en la cantidad usada, hubieran demostrado que reúnen los requisitos de la Norma.

DE LOS TIPOS DE CEMENTO

Según la Norma NTC 30, NTC 121 y NTC 321, se clasifican en:

Tipo I: Para uso general, no requiere propiedades de otro tipo.

Tipo II: Para uso general y para cuando se desea moderar la resistencia a los Sulfatos o moderado calor de hidratación.

Tipo III: Para ser utilizado se requiere de altas resistencias iníciales.

Tipo IV: Utilizado cuando se desea bajo calor de hidratación.

Tipo V: Para emplearse cuando se desea alta resistencia a los sulfatos.

REQUISITOS

REQUISITOS FÍSICO QUÍMICOS

REQUISITOS QUÍMICOS

COMPOSICIÓN QUÍMICA / TIPO DE CEMENTO

Dióxido de Silicio, %, min. TIPO II = 20.0(C, D)

Oxido de Aluminio, %, max. TIPO II 6.0

Oxido Férrico, %, max. TIPO II = 6.0(C, D) TIPO IV = 6.5

Oxido de Magnesio, %, max. TIPO 1,11,111, IV = 6.0

Trióxido de Azufre, %, max.

Cuando (C3A)igual/menor 8% TIPO I = 3.0 TIPO II = 3.0 TIPO III = 3.5 TIPO IV = 2.3

TIPO V = 2

Cuando (C3A)mayor 8% TIPO I = 3.5 TIPO II = (B) TIPO III = 4.5 TIPO IV = (B) TIPO V = (B)

Perdida por ignición, %, max. TIPO I = 3.0 TIPO II = 3.0 TIPO III = 3.0 TIPO IV = 2.5 TIPO V = 3.0

Residuo insoluble, %, max. TIPO I = 0.75 TIPO II = 0.75 TIPO III = 0.75 TIPO IV = 0.75 TIPO V = 0.75

Silicato Tricálcico, %, max. TIPO IV = 35(C)

Silicato Dicálcico, %, min. TIPO IV = 40(C)

Aluminato Tricálcico, %, max. TIPO II = 8 TIPO III = 15 TIPO IV = 7(C) TIPO V = 5(D)

Aluminio-ferrita tetracálcico, mas dos veces el Aluminato tricálcico o solución sólida,%,max. TIPO V = 5(D)

REQUISITOS FÍSICOS

CARACTERÍSTICAS / TIPO DE CEMENTO

CONTENIDO DE AIRE DEL MORTERO, %, VOL.

MÁXIMO TIPO I = 12 TIPO II = 12 TIPO III = 12 TIPO IV = 12 TIPO V = 12

MÍNIMO TIPO I = - TIPO II = - TIPO III = - TIPO IV = - TIPO V = -

Finura, Superficie Especifica, (m2kg)

Ensayo de Turbidímetro, min. TIPO I = 160 TIPO II = 160 TIPO III = - TIPO IV = 160 TIPO V = 160

Ensayo de Permiabilidad, min. TIPO I = 280 TIPO II = 280 TIPO III = - TIPO IV = 280 TIPO V = 280

Expansión en Autoclave, %, máx. TIPO I = 0.8 TIPO II = 0.8 TIPO III = 0.8 TIPO IV = 0.8 TIPO V = 0.8

Resistencia a la comprensión (Mpa), no menores que los valores mostrados para las edades indicadas a continuación:

1 día TIPO III = 12.0

días TIPO I = 12.0 TIPO II =10.0 TIPO III = 24.0 TIPO V = 8.0

7 días TIPO I = 19.0 TIPO II = 17.0 TIPO IV = 7.0 TIPO V = 15.0

28 días TIPO IV = 17.0 TIPO V = 21.0

Tiempo de Fraguado (métodos alternativos)

Ensayo de Gilmore (minutos)

Fraguado inicial: No menor que, min. TIPO I = 60 TIPO II = 60 TIPO III = 60 TIPO IV = 60 TIPO V = 60

Fraguado final: No mayor que, min. TIPO I = 600 TIPO II = 600 TIPO III = 600 TIPO IV = 600 TIPO V = 600

Ensayo de Vicat (minutos)

Tiempo de fraguado: No menor que, min. TIPO I = 45 TIPO II = 45 TIPO III = 45 TIPO IV = 45 TIPO V = 45

Tiempo de fraguado: No mayor que, min. TIPO I = 375 TIPO II = 375 TIPO III = 375 TIPO IV = 375 TIPO V = 375

OTRAS ESPECIFICACIONES

ALMACENAMIENTO

El cemento deberá de ser almacenado en un lugar fresco, protegido de la intemperie y de fácil acceso para la inspección.

Así mismo el cemento deberá almacenarse de tal forma que permita un fácil acceso a la inspección e identificación apropiada de cada cargamento, y en edificaciones, contenedores o empaques adecuados a las condiciones climáticas que protegerán al cemento de la humedad y minimizarán el deterioro por almacenamiento.

ENVASEY ROTULADO

ENVASE

El envase será recibido en el envase original de la fábrica es decir en bolsa de 50 Kg

Cuando el cemento sea embolsado, deberá tener un contenido neto de 50 Kg.

ROTULADO

- La palabra Cemento Pórtland Tipo I y el tipo correspondiente Nombre o símbolo del fabricante 2
- El contenido neto en Kilogramos
- El código de la Norma Técnica.

Valor fallo cilindro de concretos \$5.104x50 fallos = \$255.200

FICHA TÉCNICA FALLO DE CILINDROS

- 1. TÍTULO: Resistencia a la compresión de cilindros de concreto
- 2. NORMA DE REFERENCIA: ASTM C39, INTE 06-02-01

3. ALCANCE

Este ensayo permite la determinación de la resistencia a la compresión (fc) de los especímenes cilíndricos de concreto moldeados en laboratorio o en campo u obtenidos por medio de la extracción de núcleos. Se limita a concretos con peso unitario mayor que 800 kg/m3.

4. IMPORTANCIA Y APLICACIÓN

Se debe tener cuidado en la interpretación del significado de los resultados de la

resistencia a la compresión obtenida por medio de este ensayo, puesto que la resistencia no es una propiedad fundamental o intrínseca del concreto. Los valores obtenidos pueden depender del tamaño y la forma del espécimen, el Tpo de mezcla, los procedimientos de mezclado, los métodos de muestreo, moldeo y fabricación y de la edad, temperatura y condiciones de humedad durante el curado. El ensayo se aplica a especímenes elaborados y curados de acuerdo con las normas ASTM C 31 (3.2), ASTM C 192 (3.1), ASTM C 617 (3.9), ASTM C 1231 (3.9), C 42 (6.14-6.16) y ASTM C 873. Los resultados de este método de ensayo se usan como una base para el control de calidad de la proporción, mezclado y la colocación del concreto, determinación del cumplimiento de especificaciones, control para la evaluación de la eficacia de adiTvos y usos similares.

5. ESPÉCIMEN DE ENSAYO

Los especímenes de ensayo estándar son cilindros de concreto de 150x300 mm o 100x200 mm. Pueden uTlizarse cilindros de otras dimensiones, siempre y cuando cumplan con la relación Longitud/Diámetro = 2. La diferencia de diámetro de un espécimen individual con respecto a los demás no debe ser mayor que 2%. El número mínimo de especímenes es de 2 para especímenes de 150 mm de diámetro y 3 para especímenes de 100 mm de diámetro.

6. RESUMEN PROCEDIMIENTO

Este método de ensayo consiste en la aplicación de una carga de compresión uniaxial a los cilindros moldeados o núcleos a una velocidad de carga especificada (0.25 ± 0.05 MPa/s). La resistencia a la compresión del espécimen se calcula dividiendo la carga máxima obtenida durante el ensayo entre el área de la sección transversal del espécimen.

7. REQUERIMIENTOS PARA SOLICITUDES

Se debe proveer al laboratorio los especímenes y especificar claramente la fecha de moldeo y la fecha a la cual se especifica la falla. Por ejemplo: 7 días, 28 días, 56 días, etc. Se debe especificar si los especímenes necesitan Tempo de curado en la cámara y coronamiento. Si no se va a colocar coronamiento, la forma en que se desea que se preparen los especímenes para garanTzar planicidad en sus caras (Pulido o con almohadilla de neopreno). El laboratorio no se responsabiliza por cilindros que no cumplen con la especificación.