Семинар 3 АМВ, весна 2019

1. Бинпоиск

Корень из n. Полиномиальность языка квадратов натуральных чисел.

2. Динамическое программирование

Задача о рюкзаке.

Классическая постановка: Рюкзак 0-1 (0-1 Кпарsасk Problem). Задача формулируется как задача оптимизации. Имеется n грузов. Для каждого i-го груза определён его вес $w_i > 0$ и ценность $c_i > 0$. Ограничение суммарного веса предметов в рюкзаке задаётся грузоподъёмностью W. Необходимо максмизировать $\sum_i c_i x_i$ при ограничениях $\sum_i w_i x_i \leqslant W, x_i \in \{0,1\}$.

Так же можно сформулировать задачу распознавания языка KNAPSACK, которая заключается в проверке того, что из подмножества из n элементов для каждого из которых задан вес w_j и стоимость c_j , мы можем взять такое подмножество $B \subset \{1,\ldots,n\}$, что $\sum_{i\in B} w_i \leqslant W$ и $\sum_{i\in B} c_i \geqslant C$. Она в каком-то смысле не сложнее, чем вышеприведенная задача оптимизации.

Рассмотрим другой вариант постановки: Неограниченный целочисленный рюкзак. Каждого предмета можно брать сколько угодно и известно, что $w_i \in \mathbb{N}$. Тогда задачу можно решить с помощью динамического программирования за время O(nW). Пусть C[w] - максимальная суммарная ценность предментов, которые можно поместить в рюкзак грузоподъемностью w. Тогда C[0] = 0 и C[w] = $\max_i(c_i + C[w - w_i])$. Но сложность не полиномиальна по размеру входа! Если Wочень большое, то вход имеет размер $\log W + \ldots$, а в асимптотику входит W.

3. NP и начало про полиномиальную сводимость