Билеты по алгебре II семестр

Тамарин Вячеслав

31 мая $2020\ г.$

Оглавление

Вопрос 1	Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. По-	
	нятие циклической группы	2
	і Подгруппа, порожденная множеством	2
	іі Примеры образующих в D_n и $\mathrm{GL}_n(K)$	2
Вопрос 2	Порядок элемента. Эквивалентное определение. Соотношение $g^n=e$ и порядок элемента g . Порядок	
	элемента в группе \mathbb{Z}/n	3
Вопрос 3	Классификация циклических групп. Порядок элемента в циклической группе. Критерий для опре-	
	деления порядка, если известно отношение $g^n = e$	4
Вопрос 4	Подгруппы циклических подгрупп. Прообраз подгрупп	5
Вопрос 5	Классы смежности. Теорема Лагранжа. Следствия.	6
Вопрос 6	Количество элементов данного порядка в циклической группе. Тождество для функции Эйлера.	
	Критерий цикличности. Конечные подгруппы в мультипликативной группе поля.	7
Вопрос 7	Представление перестановки в виде произведения независимых циклов. Порядок перестановки. Об-	
	ратная перестановка и ее циклическая запись.	8

Вопрос 1 Подгруппа, порожденная множеством. Явное описание. Примеры образующих в D_n и $\mathrm{GL}_n(K)$. Понятие циклической группы.

Подгруппа, порожденная множеством

Определение 1: Подгруппа, прожденная множеством

G — группа, $X \subset G$. Наименьшая группа $H \leqslant G$, содержащая X называется подгруппой, порожденной X.

Обозначение. $\langle X \rangle$.

Замечание. Эта группа всегда существует и совпадает с $\bigcap_{X\subset L\leqslant G}L=\langle X
angle$

Утверждение (Явное описание порожденной подгруппы).

$$\langle X \rangle = \{ x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n} \mid x_i \in X, \ \varepsilon_i = \pm 1 \}.$$

Для n=1 считаем, что такое произведение равно нейтральному элементу.

Доказательство.

- Любой элемент $x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n}$ должен принадлежать подгруппе, порожденной X, из чего следует это включение.
- Заметим, что заданное множество подгруппа G: произведение двух элементов и обратный элемент имеют такой же вид, нейтральный — случай с n=0. Поэтому это множество — подгруппа G, содержащая X. Так как $\langle X \rangle$ — минимальная группа с этим свойством, получаем нужное включение.

Определение 2: Группа, порожденная множеством

Группа G называется порожденной множеством X, если $\langle X \rangle = G$. Если X конечно, имеет место обозначение $G = \langle x_1, \ldots, x_n \rangle$. Все x_i называются образующими G. Если для группы G существует такой конечный набор, она называется конечно порожденной.

Определение 3: Циклическая подгруппа

G — группа, $g \in G$. Подгруппа вида $\langle g \rangle = \{g^n \mid n \in \mathbb{Z}\}$ называется циклической подгруппой, порожденной g.

Определение 4: Циклическая группа

Группа G называется циклической, если она порождена одним элементом, то есть $\exists g \in G \colon G = \langle g \rangle$.

Примеры образующих в D_n и $\mathrm{GL}_n(K)$

Образующие D_n Заметим, что одним элементом эта группа порождена быть не может, так как она не абелева.

Утверждение. Поворот f_{φ} на угол $\varphi=rac{2\pi}{n}$ и симметрия f_l относительно одной из разрешенных прямых. Тогда $\langle f_{\varphi}, f_l \rangle = D_n$.

Доказательство. Любой поворот на $\frac{2\pi k}{n}$ можно получить повтором f_{ω}^{k} . Докажем, что

$$\left| \left\{ f_l^{\varepsilon} f_{\varphi}^k \mid \varepsilon \in \{0, 1\}, \ k \in \{0, \dots, n-1\} \right\} \right| = 2n.$$

Пусть $f_l^{\varepsilon_1} f_{\varphi}^{k_1} = f_l^{\varepsilon_2} f_{\varphi}^{k_2}$. Тогда $f_l^{\varepsilon_1 - \varepsilon_2} f_{\varphi}^{k_1 - k_2} = \mathrm{id}$. Если $\varepsilon_1 = \varepsilon_2$, $f_{\varphi}^{k_1 - k_2} = \mathrm{id} \Longrightarrow k_1 = k_2$. Иначе $f_l^{\varepsilon} = f_{\varphi}^k$, но поворот не может быть равен симметрии, так как при симметрии на месте остается только прямая, а при повороте либо одна точка, либо все пространство.

Образующие $GL_n(K)$ Здесь образующими будут матрицы элементарных преобразований: транспозиций (которые можно выразить через оставшиеся), псевдоотражения (домножение на число) и трансвекции (прибавление одной строки к другой, умноженной на число).

Вопрос 2 Порядок элемента. Эквивалентное определение. Соотношение $g^n=e$ и порядок элемента g. Порядок элемента в группе \mathbb{Z}/n

Определение 5: Порядок элемента

Порядок элемента $g \in G$ — количество элементов в подгруппе $\langle g \rangle$.

Обозначение. ord g

Лемма 1

Пусть $g \in G$. Если ord g конечен, то ord g = n, где n — наименьшее натуральное число, что $g^n = e$, иначе такого n не существует.

Доказательство.

• Пусть $g^n = e$. Докажем, что ord $g \leqslant n$. Рассмотрим $\{e, g, g^2, \dots, g^n, \dots\}$. Начиная с g^n элементы повторяются. А именно

$$g^m = g^{nq+r} = g^r.$$

Следовательно, различных элементов группы $\langle g \rangle$ всего n.

- Пусть ord $g = \infty$ и $g^n = e$ при $n \in \mathbb{N}$. но в группе $\langle g \rangle$ не более n элементов. Противоречие.
- Пусть $m = \text{ ord } g < \infty$. Рассмотрим $\{e, g, \dots g^m\}$. Здесь m+1 элемент, поэтому там есть два равных. Пусть $g^i = g^j \Longrightarrow g^{i-j} = e$. Но тогда $|\langle g \rangle| \leqslant i-j$. Значит, $i = m, j = 0, \ g^m = e$. Также получаем, что до этого ни один $g^k = e$, поэтому, m и есть минимальное.

Утверждение. Пусть $g \in G$, $g^n = e$, $n \in \mathbb{N}$. Тогда n; ord n.

Доказательство. Поделим с остатком $n=q\cdot \mathrm{ord}\ g+r,\ 0\leqslant r<\mathrm{ord}\ g.$ Тогда $e=g^n=g^r.$ Если $r\neq 0,$ то $g^r\neq e.$ Следовательно, r=0.

Лемма 2

Пусть G — группа, $g \in G$. Тогда существует такой единственный гомоморфизм $f \colon \mathbb{Z} \to G, \ f(1) = g$.

Доказательство. Такой гомоморфизм существует (как задан в условии, все условия выполняются). Заметим, что $q(n) = q(1)^n = q^n$. Поэтому он задан однозначно.

Теорема 1: Об изоморфмности циклической группы

Пусть $g \in G$ Если ord g = n, то $\langle g \rangle$ изоморфна группе \mathbb{Z}/n . Если ord $g = \infty$, то $\langle g \rangle$ изоморфна \mathbb{Z} .

Доказательство.

- Пусть ord g = n. Построим $f: \mathbb{Z}/n \to G$ так $f(\overline{k}) = g^k$. Проверим корректность: пусть $k_1 \equiv k_2 \pmod{n}$, то есть $k_1 = k_2 + sn \Longrightarrow g^{k_1} = g^{k_2} \cdot g^{sn} = g^{k_2}$. Из свойств элементов \mathbb{Z}/n и f следуют необходимые условия гомоморфизма. Также заметим, что это биекция.
- Пусть ord $g = \infty$. Построим гомоморфизм $f: f(1) = g \Longrightarrow f(n) = g(1)^n = g^n$. Он сюрьективен, проверим инъективность: пусть $\ker f \neq 0$, тогда $\exists k \in \mathbb{N} : g^k = e$, а тогда $\langle g \rangle$ конечна. Противоречие.

Вопрос 3 Классификация циклических групп. Порядок элемента в циклической группе. Критерий для определения порядка, если известно отношение $g^n=e$

Лемма 3: Порядок элемента \mathbb{Z}/n

Пусть $k \in \mathbb{Z}/n$. Тогда ord $k = \frac{n}{(n,k)}$.

Доказательство.

ord
$$k = \min d : dk \equiv 0 \pmod{n} \implies d = \min \left\{ t \frac{n}{(n,k)} \right\}.$$

Наименьшим значением будет то, когда t=1: $\frac{n}{(n,k)}$.

Следствие 1: Порядок элемента в циклической группе

G — группа, $g \in G$, ord g = n. Тогда ord $g^k = \frac{n}{(n,k)}$.

Доказательство. Из прошлой леммы это доказано для \mathbb{Z}/n , а мы знаем, что $G \cong \mathbb{Z}/n$.

Лемма 4: Критерий определения порядка

Пусть $g \in G$: $g^n = e$ и $n = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}$. Тогда если $g^{\frac{n}{p_i}} \neq e$ i, то n = ord g.

Доказательство. Пусть m = ord g.

$$g^n = e \Longrightarrow n \mid m$$
.

Тогда, если $n \neq m$,

$$\exists p_i \colon n \mid p_i^{\alpha_i} \wedge p_i^{\alpha_i} \not\mid m.$$

Следовательно, $\frac{n}{p_i} \mid m \Longrightarrow \frac{n}{p_i} = mk$. Но тогда $g^{mk} = e$. Противоречие. Поэтому n = m.

Вопрос 4 Подгруппы циклических подгрупп. Прообраз подгрупп.

Теорема 2

Пусть G циклическая и H < G. Тогда H тоже циклическая.

Более того, если |G| = n, то $\forall d \ n : d : \exists ! H \leq \mathbb{Z}/n : |H| = d$.

Доказательство

Рассмотрим два случая.

• $G \simeq \mathbb{Z}$.

Лемма 5

Пусть H — подгруппа в \mathbb{Z} . Тогда H циклическая.

Доказательство

Докажем, что $H = \langle n \rangle = n\mathbb{Z}$. Если $H = \{0\}$, то n = 0. Пусть m — минимальный натуральный делитель числа n. Заметим, что все $km \in H$, поэтому $\langle m \rangle = m\mathbb{Z} \subseteq H$. Пусть $x \in H$, $x \notin \langle m \rangle$. Тогда x = km + r, $0 < r < m \Longrightarrow r = x - km \in H$, следовательно, m не наименьший. Противоречие.

• $G \simeq \mathbb{Z}/n$. Рассмотрим гомоморфизм, $\pi : \mathbb{Z} \to \mathbb{Z}/n$, $\pi(x) = \overline{x}$.

Лемма 6

Пусть $f: G_1 \to G_2$ — гомоморфизм групп, $H \leqslant G_2$. Тогда $f^{-1}(H) \leqslant G_1$.

Доказательство

- $\begin{array}{ll} 1. \ f(e)=e\Longrightarrow f^{-1}(e)=e, \ e\in H\Longrightarrow e\in f^{-1}(H)\\ 2. \ a=f^{-1}(x), \ x\in H\Longrightarrow f(a^{-1})=x^{-1}\in H \end{array}$
- 3. $f(a), f(b) \in H \Longrightarrow f(ab) = f(a)f(b) \Longrightarrow ab \in f^{-1}(H)$

Мы знаем, что $H \leqslant G = \mathbb{Z}/n$. По прошлой лемме $\pi^{-1}(H) \leqslant \mathbb{Z}$, поэтому $\pi^{-1}(H)$ циклическая. Из этого следует, что и H циклическая.

Докажем существование и единственность подгруппы порядка d, если $n \in d$. Рассмотрим элемент $\frac{n}{d} \in \mathbb{Z}/n$, его порядок равен d, поэтому порожденная им группа будет иметь такой же порядок.

Пусть $H=\langle x \rangle$, ord x=d. Если отождествить этот элемент с числом, $d=\frac{n}{(n,x)}$. Тогда $\frac{n}{d}=(n,x)$ $x : \frac{n}{d} \Longrightarrow H \subseteq \langle \frac{n}{d} \rangle$. Кроме этого в обоих группах d элементов, следовательно, они совпали.

Вопрос 5 Классы смежности. Теорема Лагранжа. Следствия.

Определение 6: Отношение эквивалентности по подгруппе

Пусть $H \leqslant G$. Определим отношение эквивалентности $\sim_H: g_1 \sim_H g_2 \iff \exists h \in H: g_1 = g_2 h$.

Комментарий. Это отношение эквивалентности.

- $g = ge \Longrightarrow g \sim_H g$
- $g_1 \sim_H g_2 \Longrightarrow \exists h \in H : g_1 = hg_2 \Longrightarrow h^{-1}g_1 = g_2 \Longrightarrow g_2 \sim_H g_1$
- $g_1 \sim_H g_2 \sim_H g_3 \Longrightarrow \exists h_1, h_2 \in H \colon g_1 = hg_2, \ g_2 = h_2g_3 \Longrightarrow g_1 = h_1h_2g_3 \Longrightarrow g_1 \sim_H g_3$

Определение 7: Класс эквивалентности относительно \sim_H

Пусть G — группа, $H \leq G$, $g \in G$. Тогда множество $gH = \{gh \mid h \in H\}$ называется классом эквивалентности относительно \sim_H . gH — левый смежный класс g по подгруппе H.

Определение 8: Индекс

Множество всех левых смежных классов будем обозначать G/H. Количество элементов в G/H называется индексом H в G и обозначается [G:H].

Следствие 2

Группа G разбивается в дизъюнктное объединение левых смежных классов $G = \bigsqcup_{gH \in G/H} gH$.

Утверждение. Пусть H-nodгруппа G и $g\in G$. Тогда отображение $H\to gH$, заданное по правилу $h\to gh-$ биекция.

Определение 9: Порядок группы

Порядок группы G — число элементов в G.

Теорема 3: Теорема Лагранжа

Пусть G — группа, $H \leq G$. Пусть порядок H и индекс [G:H] конечны. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство

По следствию $G = \bigsqcup_{gH \in G/H} gH$, всего таких классов [G:H], |gH| = |H|. Из чего и получаем нужное равенство.

Следствие 3

Пусть G — конечная группа, $H \leqslant G$. Тогда |G| : |H|.

Следствие 4

Пусть G — конечная группа, $g \in G$. Тогда |G| i ord g.

Следствие 5

Пусть G — конечная группа порядка $n, q \in G$. Тогда $q^n = e$.

Следствие 6

Пусть G — конечная группа порядка $p \in \mathbb{P}$. Тогда $G \simeq \mathbb{Z}/p$.

Следствие 7

Пусть G — конечная группа порядка 4. Тогда $G \simeq \mathbb{Z}/4$ или $G \simeq \mathbb{Z}/2 \times \mathbb{Z}/2$.

Следствие 8

Пусть $n \in \mathbb{N}$, $a \in \mathbb{Z}/n^*$. Тогда $a^{\varphi(n)} = 1$.

Вопрос 6 Количество элементов данного порядка в циклической группе. Тождество для функции Эйлера. Критерий цикличности. Конечные подгруппы в мультипликативной группе поля.

Лемма 7

Пусть $n \in \mathbb{N}$. Тогда $n = \sum_{d|n} \varphi(d)$.

Доказательство

Рассмотрим группу \mathbb{Z}/n . Если $n \in d$, то в этой группе есть единственная подгруппа порядка d, в которой лежат все элементы порядка d. Эта группа циклическая, следовательно, таких элементов $\varphi(d)$. Тогда

$$n = |\mathbb{Z}/n| = \sum_{d|n} |\{x \in \mathbb{Z}/n \mid \text{ord } x = d\}| = \sum_{d|n} \varphi(d).$$

Лемма 8

Пусть H — конечная группа, в которой число элементов $x^d = e$ не больше d. Тогда H — циклическая.

Доказательство

Пусть |H|=n. Пусть $x\in H$, ord x=d. Тогда $\forall y\in \langle x\rangle\colon y^d=e$. Таких d штук. С другой стороны, в H не более d элементов, что $y^d=e$.

Рассмотрим $z \in H$, ord x = d. Он удовлетворяет $z^d = e$, поэтому $z \in \langle x \rangle$. Но в циклической $\langle x \rangle$ ровно $\varphi(d)$ элементов порядка d. Тогда

$$n = \sum_{d|n} |\{x \in H \mid \text{ord } x = d\}| \leqslant \sum_{d|n} \varphi(d) = n.$$

Следовательно, неравенство обращается в равенство, поэтому верно и неравенство для n. Значит, элементов порядка n в H ровно $\varphi(n)$. Тогда H порождена одним из них.

Теорема 4: Конечные подгруппы в мультипликативной группе поля

Пусть H — конечная подгруппа в K^* , K — поле. Тогда H циклическая.

Доказательство

Решений уравнения $x^d - 1 = 0$ в поле K не более d. Поэтому их не более d в подгруппе H. По предыдущей лемме H циклическая.

Следствие 9

Пусть $p \neq 2 \in \mathbb{P}$. Тогда группа $\mathbb{Z}/p^* \simeq \mathbb{Z}/(p-1)$.

Определение 10: Первообразный корень по модулю

Если $n \in \mathbb{N}$, число $a \colon \langle a \rangle = \mathbb{Z}/n^*$ называется первообразным корнем по модулю n.

Вопрос 7 Представление перестановки в виде произведения независимых циклов. Порядок перестановки. Обратная перестановка и ее циклическая запись.

Определение 11: Цикл

Пусть $\{a_1,\ldots a_k\}\subset \{1,\ldots n\}$. Цикл (a_1,\ldots,a_k) — такой элемент c из S_n , что

$$c(x) = \begin{cases} x, & x \notin \{a_1, \dots a_k\} \\ a_{i+1}, & x = a_i \land 1 \le i < k \\ a_1, & x = a_k \end{cases}$$

Замечание. Порядок (a_1, \ldots, a_k) равен k.

Определение 12: Неподвижная точка

Пусть $\sigma \in S_n$. Неподвижная точка — такой $x \in \{1,\dots,n\}$, что $\sigma(x) = x$.

Обозначение. $Fix(\sigma)$ — множество всех неподвижных точек относительно σ .

Определение 13: Носитель

Носитель перестановки $\sigma \in S_n$ — множество $\{1,\ldots,n\} \setminus \mathrm{Fix}(\sigma)$.

Обозначение. supp σ .

Определение 14: Независимость перестановок

Перестановки $\sigma_1, \sigma_2 \in S_n$ называются независимыми, если $\sup \sigma_1 \cap \sup \sigma_2 = \emptyset$.

Свойства. Две независимые перестановки коммутируют.

Теорема 5: Разложение в произведение циклов

Пусть $\sigma \in S_n$. Тогда существует единственный с точностью до порядка набор независимых циклов $c_1, \ldots, c_k, c_i \neq id$, что $\sigma = c_1 \ldots c_k$.

Доказательство

Рассмотрим все различные орбиты $\Omega_1, \Omega_2, \dots \Omega_s$. Определим перестановки $c_i, i \in \{1, \dots s\}$:

$$c_i = \begin{cases} \sigma(x), & x \in \Omega_i \\ x, & x \notin \Omega_i \end{cases}.$$

Докажем, что c_i — независимые циклы.

- supp $c_i \subseteq \Omega_i$, поэтому все c_i различны.
- Докажем, что $c_i = \left(x, \sigma(x), \dots \sigma^{l-1}(x)\right), \quad l = |\Omega_i| \,, x \in \Omega_i.$
 - $-\sigma^k(x) = x, \ k > 0 \Longrightarrow |\Omega_i| \leqslant k$
 - $-\sigma^{k_1}(x) = \sigma^{k_2}(x), \ 0 \leqslant k_2 < k_1 < l \Longrightarrow \sigma^{k_2-k_1}(x) = x \Longrightarrow |\Omega_i| \leqslant k_2 k_1 < l.$ Из чего следует, что все элементы Ω_i различны.
 - Рассмотрим элемент $\sigma^l(x) \in \{x, \sigma(x), \dots \sigma^{l-1}(x)\}$. По прошлому пункту он не может совпасть ни с кем кроме x.

Получили, что c_i — цикл.

Докажем, что $\sigma = c_1 \dots c_s$. Пусть $x \in \Omega_i$, тогда $\sigma(x) \in \Omega_i$.

$$c_1 \dots c_s(x) = c_1 \dots c_{i-1} c_i(x) = c_1 \dots c_{i-1} (\sigma(x)) = \sigma(x).$$

Теперь докажем единственность. Пусть $\sigma = c_1 \dots c_k$. supp $c_i = \Omega_j$. Порядок следования элементов в c_i определяется действием на этой орбите, так как остальные циклы независимы и не влияют на жту орбиту.

Теорема 6: Порядок перестановки

Пусть $\sigma \in S_n$ и $\sigma = c_1 \dots c_k$. Обозначим d_i за длину c_i . Тогда ord $\sigma = (d_1, \dots d_k)$

Доказательство

Так как независимые перестановки коммутируют, $\sigma^d = \prod c_i^d$. Так как c_i^d тоже независимы, чтобы $\sigma^d = id$, нужно $c_i^d = id$. То есть требуется $d \in d_i$.

Теорема 7: Обратная перестановка в циклической записи

Пусть $c = (a_1, \dots a_k)$. Тогда $c^{-1} = (a_k, \dots a_1)$. Если $\sigma = c_1 c_2 \dots c_s$, где c_i — независимые циклы, то $\sigma^{-1} = c_1^{-1} c_2^{-1} \dots c_s^{-1}$.

Доказательство

Так как c_i^{-1} тоже независимы, они коммутируют, поэтому можем поставить в нужном порядке.