class05: Data Visualization with ggplot

Jiachen Fan (A17662703)

Use ggplot

To use ggplot we first need to install it. Use 'install.packages()'. Before I use any package functions I have to load them up with a 'library()'.

```
library(ggplot2)
ggplot(cars)
```

```
tail(cars,6)
```

```
speed dist
45
      23
           54
46
      24
           70
47
      24
           92
48
      24
           93
49
      24
         120
50
      25
           85
```

```
ggplot(cars) +
  aes(x=speed, y=dist)
```



```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


To use ggplot, three things matter -data(data.frame) -aesthetics (how the data map to the plot) -geoms (how I want things drawn)

[`]geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distance of the Cars

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
AATF 5.0784720 5.0151916 unchanging
AATK 0.4711421 0.5598642 unchanging
AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

[1] "Gene" "Condition1" "Condition2" "State"

```
ncol(genes)
[1] 4
  table(genes$State)
      down unchanging
                              up
        72
                 4997
                             127
  round(table(genes$State)/nrow(genes)*100,2)
      down unchanging
                              up
                            2.44
      1.39
                96.17
  ggplot(genes)+
    aes(x= Condition1, y=Condition2) +
    geom_point()
```



```
p <- ggplot(genes) +
    aes(x=Condition1, y=Condition2, col=State) +
    geom_point()
p</pre>
```



```
p + scale_colour_manual( values=c("blue","gray","red") )+
    theme_bw()
```


Gene Expression Changes Upon Drug Treatment

7. Going Further

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.

gapminder <- read.delim(url)

# install.packages("dplyr") ## un-comment to install if needed
library(dplyr)</pre>
```

```
Attaching package: 'dplyr'
```

The following objects are masked from 'package:stats':

filter, lag

```
The following objects are masked from 'package:base': intersect, setdiff, setequal, union
```

```
gapminder_2007 <- gapminder %>% filter(year==2007)

ggplot(gapminder_2007)+
  aes(x = gdpPercap, y = lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.4)
```



```
ggplot(gapminder_2007)+
  aes(x = gdpPercap, y = lifeExp, color=pop) +
  geom_point(alpha=0.4)
```



```
q <- ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.4)
q</pre>
```


q + scale_size_area(max_size = 10)


```
gapminder_1957 <- gapminder %>% filter(year==1957)
ggplot(gapminder_1957)+
  aes(x = gdpPercap, y = lifeExp, color = continent, size = pop) +
  geom_point(alpha = 0.4) +
  scale_size_area(max_size = 10)
```



```
gapminder_1957_2007 <- gapminder %>% filter(year==1957|year==2007)
s <-ggplot(gapminder_1957_2007)+
  aes(x = gdpPercap, y = lifeExp, color = continent, size = pop) +
  geom_point(alpha = 0.4) +
  scale_size_area(max_size = 10) +
  facet_wrap(~year)
s</pre>
```


table(gapminder\$continent)

8.Bar Charts

```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
pop gdpPercap
       country continent year lifeExp
                    Asia 2007 72.961 1318683096 4959.115
1
         China
2
         India
                    Asia 2007 64.698 1110396331
                                                 2452.210
3 United States
                Americas 2007 78.242 301139947 42951.653
4
     Indonesia
                    Asia 2007 70.650 223547000
                                                 3540.652
5
        Brazil Americas 2007 72.390 190010647
                                                 9065.801
```

```
ggplot(gapminder_top5) +
aes(x = country, y = pop) +
geom_col()
```



```
ggplot(gapminder_top5) +
aes(x = country, y = lifeExp, fill = continent) +
geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


9.Extensions: Animation

First, install.packages("gifski") and install.packages("gganimate") Second, use '#| eval:false' to skip the execution of animation.

```
library(gapminder)
library(gganimate)

ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
    geom_point(alpha = 0.7, show.legend = FALSE) +
    scale_colour_manual(values = country_colors) +
    scale_size(range = c(2, 12)) +
    scale_x_log10() +
    facet_wrap(~continent) +
    # gganimate
    labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
    transition_time(year) +
    shadow_wake(wake_length = 0.1, alpha = FALSE)
```

10. Combining plots

Install 'patchwork'

```
library(patchwork)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))

(p1 | p2 | p3) /
p4</pre>
```

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

