

Glucose Spike Prediction from Meal Macros

An Exploratory Data Analysis

Directed Reading Program 2025, Viggy Vanchinathan

Mentor: Andrew Henrichson

Agenda

- Diabetes & Glucose Monitoring introduction
- CGMacros Dataset
 - Study methodology
 - Example signal
 - Glucose spikes
- The Problem
- Strategies for Prediction
 - ???
 - ???
 - ???
- Success?

Glucose Monitoring

Dexcom G6 Pro CGM

CGMacros Dataset

CGMacros: a scientific dataset for personalized nutrition and diet monitoring

Ricardo Gutierrez-Osuna 1 , David Kerr 1 , Bobak Mortazavi 1 , Anurag Das 1

Published: Jan. 28, 2025. Version: 1.0.0

Multimodal dataset containing: meal macronutrients, photographs of food, physical activity, patient health parameters from blood analysis, gut microbiome profiles of 45 study participants (15 healthy adults, 16 with prediabetes, 14 with type 2 diabetes)

→ Continuous glucose measurement over 10 day time span with standardized meals

25 April 2025

Finding Peaks

NOT the overall height of the peak!

The Problem... (postprandial spike)

Calories, Fat, Protein, Fiber, Carbs...

Severity of glucose spike

... the artillery!

???

???

First Pass

Linear Methods

Naïve Approach: Regression

$$w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + w_5x_5 = y$$
Carbs Protein Fats Fiber Calories

Want w to minimize Mean Squared Error (OLS)

Naïve Approach: Regression

$$w_0 + w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + w_5x_5 = y$$
Carbs Protein Fats Fiber Calories

69.764 0.493 -0.074 0.024 -1.126 0.010

$$R^2 = 0.0364$$

Second Pass

Linear Methods

Nonlinear Methods

???

XGBoost: Gradient Boosted Decision Trees

$$\mathcal{L}^{(t)} = \sum_{i=1}^n \ell(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t)$$

- Discretized data into three stages
 - <50,
 - 50-100
 - >100
- Hopefully easier task!

XGBoost: Gradient Boosted Decision Trees

Accuracy: 0.44

Third Pass

Linear Methods

Nonlinear Methods

Neural Methods

Multilayer Perceptron

Want w^1, w^2, w^3 to minimize Huber Loss

$$L_\delta(y,f(x)) = egin{cases} rac{1}{2}(y-f(x))^2 & ext{for } |y-f(x)| \leq \delta, \ \delta \cdot \left(|y-f(x)| - rac{1}{2}\delta
ight), & ext{otherwise}. \end{cases}$$

Multilayer Perceptron

Hyperparameters:

- Huber Smoothed L1 Loss
- Adam Optimizer
- Epoch size: 500
- Batch size: 64

MAE: 38.46 mg/dL

Conclusions & Future Directions

Conclusions

- Glucose response is highly dependent on the participant response characteristics, sensitivity
- Nonlinear dynamics between macronutrient composition and glucose spike value
- Limitations due to confounding effect of unspecified variables (e.g. insulin amount)

Extension

- Incorporating multimodal analysis:
 - Meals pictures/consumption -> macro estimation -> glucose spike prediction (famous use case)
- Time/Sequence dependent models (LSTM, HMM)
- More mechanistic models (dependent on glucose response modeling)

???

