Lliçó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

- 1. Congruències.
- 2. Els enters mòdul n. Aritmètica en Z_n.
- 3. <u>Elements invertibles en Z_n. Funció d'Euler.</u>
- 4. Aplicació a la criptografia.

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

DEFINICIÓ:

Siga n un enter major que 1. Donats a i $b \in Z$, direm que

a es congruent amb b mòdul n

i escriurem

 $a \equiv b \pmod{n}$

si

 $a-b=k\cdot n$ amb $k\in Z$.

EXEMPLE:

$$17 \equiv 2 \pmod{5}$$
 ja que $17-2=15=3.5$
 $-7 \equiv -49 \pmod{6}$ ja que $-7-(-49)=42=7.6$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

TEOREMA

La relació de congruència mòdul n (n > 1) és una relació d'equivalència.

TEOREMA

Si $(x_nx_{n-1}\dots x_1x_0)_{10}$ és la representació en base 10 d'un enter positiu x, aleshores

$$x \equiv (x_0 + x_1 + \dots + x_{n-1} + x_n) \pmod{9}.$$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

```
APLICACIÓ: Estudiem si la multiplicació
                            54321.98765=5363013565,
       està incorrectament efectuada.
                                                             54321 \equiv 6 \pmod{9}
98765 \equiv 8 \pmod{9}
      54321 \equiv 15 \pmod{9} \equiv 6 \pmod{9}
      98765 \equiv 35 \pmod{9} \equiv 8 \pmod{9}
5363013565 \equiv 37 \pmod{9} \equiv 10 \pmod{9} \equiv 1 \pmod{9}  5363013565 \equiv 1 \pmod{9}
       Per la compatibilitat de la relació de cong. amb el producte:
                              54321.98765 \equiv 6.8 \pmod{9}
                54321.98765 \equiv 48 \pmod{9} \equiv 12 \pmod{9} \equiv 3 \pmod{9}
       Per la transitivitat
                               54321.98765 \equiv 3 \pmod{9}
       Si l'operació estiguera ben efectuada:
                       5363013565 = 54321.98765 \equiv 3 \pmod{9}
```

Per tant l'operació és incorrecta.

Lliçó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

APLICACIÓ: Estudiem si la multiplicació

està incorrectament efectuada.

Com 3 ≠ 1, aleshores l'operació es incorrecta.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

ATENCIÓ!: Si una operació supera la prova dels nous, això no implica que l'operació siga correcta.

Estudiem si

$$15.36 = 450$$
,

està incorrectament efectuada.

$$\underbrace{\frac{15}{6} \cdot \underbrace{36}_{9}}_{6 \cdot 9 = 54} = \underbrace{450}_{9}$$

No podem concloure res sobre la falsedat o veracitat de la igualtat. I, no obstant això, sabem que la igualtat és falsa, ja que el producte 15.36 dóna com resultat 540 i no 450.

<u>liçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR</u>

 $Z_n = \{ [0], [1], ..., [n-1] \}$ $[0] = \{ 0 + kn / k \in Z \}$ $[1] = \{ 1 + kn / k \in Z \}$... $[n-1] = \{ (n-1) + kn / k \in Z \}$

Ja que, per a tot a $\in Z_{\mathbf{r}} \exists ! q, r \in Z$ tal que

$$a = q \cdot n + r, 0 \le r < |n|,$$

de manera que $a \equiv r \pmod{n}$ i per tant

$$[a] = [r], 0 \le r < n - 1.$$

on:

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

Donada una classe d'equivalència [a] de Z_n , obtindre un representant de classe entre 0 i n – 1:

El representant buscat és la resta de la divisió euclídea de a entre n.

EXEMPLE: Siga [149] \in Z₂₃. Calculem un representant de classe entre 0 i 22:

$$149 = 6 \cdot 23 + 11$$

[149] = [11] en Z₂₃

D'altra banda, com

$$-149 = (-6)\cdot 23 - 11$$

= $(-6)\cdot 23 - 11 + 23 - 23$
= $(-7)\cdot 23 + 12$,
aleshores $[-149] = [12]$ en Z_{23}

Lliçó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

OPERACIONS INDUÏDES EN Z_n

A partir de la suma i el producte d'enters podem induir dos noves operacions en Z_n :

- La suma en Z_n : $[x] +_n [y] = [x + y]$
- El producte en $\mathbf{Z_n}$: $[x] \cdot_n [y] = [x \cdot y]$

EXEMPLE: En Z₂ les taules de les operacions induïdes són:

$+_{2}$	[0] [0] [1]	[1]	_	•2	[0] [0] [0]	[1]
[0]	[0]	[1]		[0]	[0]	[0]
[1]	[1]	[0]		[1]	[0]	[1]

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

OPERACIONS INDUÏDES EN Zn

EXEMPLE:

$$[128] +_{347} [306] = [128 + 306] = [434] = [87] \leftarrow 434 = 1 \cdot 347 + 87.$$

$$[-27] \cdot_{347} [370] = [(-27) \cdot 370] = [-9990] = [73]$$

$$\uparrow$$

$$-9990 = (-28) \cdot 347 - 274 = (-28) \cdot 347 - 274 + 347 - 347 = (-29) \cdot 347 + 73$$

Podríem haver reduït prèviament [-27] y [370]:

$$\begin{bmatrix} -27 \end{bmatrix} \cdot_{347} \begin{bmatrix} 370 \end{bmatrix} = \begin{bmatrix} 320 \end{bmatrix} \cdot_{347} \begin{bmatrix} 23 \end{bmatrix} = \begin{bmatrix} 7360 \end{bmatrix} = \begin{bmatrix} 73 \end{bmatrix} \leftarrow 7360 = 21 \cdot 347 + 73$$

$$\begin{bmatrix} -27 \end{bmatrix} = \begin{bmatrix} 320 \end{bmatrix} \leftarrow -27 = (-27 + 347) - 347 = (-1) \cdot 347 + 320.$$

$$\begin{bmatrix} 370 \end{bmatrix} = \begin{bmatrix} 23 \end{bmatrix} \leftarrow 370 = 1 \cdot 347 + 23$$

2. ELS ENTERS MÒDUL n. ARITMÈTICA EN \mathbb{Z}_n

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

Aquestes noves operacions en Z_n hereten les propietats de la suma i el producte en Z:

- +_n i ⋅_n són associatives i commutatives
- posseeixen element neutre ([0] y [1], respectivament)
- tot element posseeix simètric per a +_n ([a]+[-a]=[0])
- ·n és distributiu respecte de +n

TEOREMA

 Z_n és un anell commutatiu amb unitat amb les operacions induïdes:

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

TEOREMA

Siga Z_n^* el conjunt dels elements invertibles de Z_n , per al producte. Són equivalents:

- 1. [a] $\in Z_n^*$
- 2. ∃ [b] ∈ Z_n tal que [a][b] = [1]
- 3. \exists b,k \in Z tal que ab kn = 1
- 4. mcd(a,n)=1

EXEMPLE: Els enters positius menors que 8 i primers amb 8 són: 1, 3, 5 y 7.

De manera que Z_8 * ={[1],[3],[5],[7]}

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE: Calcula
$$[25]^{-1}$$
 en Z_{72} .
L'algoritme d'Euclides dóna lloc a:
$$72 = 2(25) + 22, \ 0 < 22 < 25$$
$$25 = 1(22) + 3, \ 0 < 3 < 22$$
$$22 = 7(3) + 1, \ 0 < 1 < 3$$
$$3 = 3(1) + 0.$$

Per tant,
$$mcd(25,72) = 1$$
. A més:
 $1 = 22 - 7(3) = 22 - 7(25 - 22)$
 $= (-7)(25) + (8)(22)$
 $= (-7)(25) + 8(72 - 2(25))$
 $= 8(72) - 23(25)$.

Després
$$[25]^{-1} = [-23] = [-23 + 72 - 72] = [49 - 72] = [49].$$

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

DEFINICIÓ:

Sign $n \ge 1$. Anomenem **funció d'Euler** sobre n i la denotem per $\phi(n)$ al cardinal de Z_n^* .

$$\varphi(n) = card\{x \in \mathbb{Z}^+ / x \le n \mid mcd(x, n) = 1\}.$$

Clarament si p és primer, $\varphi(p) = p - 1$.

EXEMPLE:

Com $Z_8^* = \{[1],[3],[5],[7]\}$, tenim que $\phi(8)=4$.

EXEMPLE:

Com 17 és un nombre primer, $\varphi(17)=17-1=16$.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

TEOREMA (Teorema d'Euler)

Si $[y] \in Z_n^*$ aleshores, $[y]^{\phi(n)} = [1]$

TEOREMA (Teorema d'Euler)

Siguen $y, n \in \mathbb{Z}^+ / mcd(y, n) = 1$, aleshores $y^{\phi(n)} \equiv 1 \pmod{n}$

EXEMPLE:

```
Com \varphi(8)=4 y Z_8*=\{[1],[3],[5],[7]\}, tenim que:

3^4 \equiv 1 \pmod{8}, 5^4 \equiv 1 \pmod{8}, 7^4 \equiv 1 \pmod{8}
```

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

TEOREMA (Teorema d'Euler)

Si
$$[y] \in Z_n^*$$
 aleshores, $[y]^{\phi(n)} = [1]$

EXEMPLE:

Aquest teorema ens pot ajudar a calcular potències grans de nombres enters.

Intentem calcular $[7]^{495}$ en \mathbb{Z}_8 .

- 1. φ(8)=4 i com [7] $∈ Z_8^*$, pel teorema d'Euler: [7]⁴=[1].
- 2. A més, com 495=123·4+3, podem escriure: $[7]^{495}=[7]^{123\cdot4+3}=([7]^4)^{123}\cdot[7]^3=[1]\cdot[343]=[42\cdot8+7]=[7]$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

TEOREMA (Teorema d'Euler)

Siguen $y, n \in \mathbb{Z}^+ / mcd(y, n) = 1$, aleshores $y^{\varphi(n)} \equiv 1 \pmod{n}$

COROL·LARI (Teorema de Fermat)

Siga $y \in Z^+$ i p primer. Si p no divideix a y, aleshores $y^{p-1} \equiv 1 \pmod{p}$

EXEMPLE:

Siga y=348 i el enter primer p=11.

Com 11 no divideix a 348, el teorema de Fermat ens garanteix que

$$348^{10} \equiv 1 \pmod{11}$$
.

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

CÁLCULO DE LA FUNCIÓ D'EULER

PROPOSICIÓ

Si $p \in Z^+$ és un nombre primer i $u \in Z^+$, aleshores

$$\varphi(p^u) = p^{u-1}(p-1).$$

TEOREMA

1. Siguen n_1, n_2, \ldots, n_k enters positius primers entre si dos a dos. Si $n = n_1 n_2 \cdots n_k$, aleshores

$$\varphi(n) = \varphi(n_1)\varphi(n_2)\cdots\varphi(n_k).$$

2. Si $n=p_1^{r_1}p_2^{r_2}\,\cdots\,p_k^{r_k}\,$ és la descomposició en factors primers d'un enter positiu n,

$$\varphi(n) =
= p_1^{r_1-1} (p_1 - 1) p_2^{r_2-1} (p_2 - 1) \cdots p_k^{r_k-1} (p_k - 1)
= n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE:

Considerem el enter n=167544. Com la seua descomposició en factors primers és

$$167544 = 2^3 \cdot 3^2 \cdot 13 \cdot 179$$

es té que el valor de la funció d'Euler calculada sobre aquest enter és:

$$\varphi(167544) = 167544 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{13}\right) \left(1 - \frac{1}{179}\right) = 51264.$$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

T: Text pla (en llenguatge natural o bé reduït a una successió de dígits de transcripció immediata).

T*: Criptograma, o text xifrat (il·legible per a qui no conega D).

C: Funció de xifrat o de codificació, coneguda per l'emissor.

D: Funció de desxifrat o de descodificació, coneguda pel receptor. C i D són funcions inverses una d'una altra.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

DEFINICIÓ:

Un sistema criptogràfic o criptosistema consisteix en cinc components: M, M*,K, C i D.

- M és el conjunt de tots els missatges a transmetre;
- 2. M* és el conjunt de tots els missatges xifrats;
- K és el conjunt de claus a utilitzar, és a dir, els paràmetres que controlen els processos de xifrat i desxifrat;
- 4. C és el conjunt de tots els mètodes de xifrat:

$$C = \{C_k : M \longrightarrow M^*, k \in K\};$$

5. D és el conjunt de tots els mètodes de desxifrat:

$$D = \{D_k : M^* \longrightarrow M, \ k \in K\}.$$

Per a una clau donada k, la transformació D_k és la inversa de C_k , és a dir,

$$D_k(C_k(m)) = m, \quad \forall m \in M.$$

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

CRIPTOSISTEMES DE CLAU PRIVADA

Un criptosistema de clau privada basa la seua tècnica en un valor secret anomenat clau.

L'emissor i el receptor estableixen de mutu acord el sistema criptogràfic, i la clau concreta que utilitzaran en les seues comunicacions.

Aquest tipus de criptosistemes permet, coneixent la funció de xifrat, obtindre la de desxifrat, i viceversa.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE (xifrat afí):

Identificant les lletres de l'alfabet amb els enters mòdul 27:

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 és a dir,
$$M=M*=Z_{27}$$

La funció de xifrat $C_{r,s}: M \longrightarrow M^*$, $r,s \in \mathbb{Z}$, ve definida per

$$C_{r,s}([m]) = [r][m] + [s], \text{ amb } mcd(r,27) = 1.$$

La funció de desxifrat serà

$$D_{r,s}: M^* \longrightarrow M / D_{r,s}([m^*]) = [r]^{-1}([m^*] - [s]).$$

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Prenent com a cas particular r = 2 i s = 3:

$$C_{2,3}([m]) = [2][m] + [3], \text{ amb mcd}(2,17)=1.$$

 $D_{23}([m^*]) = [2]^{-1}([m^*] - [3]).$

<u>Simbòlic</u>	<u>Numèric</u>	<u>Xifrat: <i>C</i>_{2,3}</u>	<u>Simbòlic</u>
R	[18]	[12]	М
0	[15]	[6]	G
М	[12]	[0]	Α
Α	[0]	[3]	D

$$C_{2,3}([18])=[2][18]+[3]=[39]=[1\cdot27+12]=[12]$$

$$C_{2,3}([15])=[2][15]+[3]=[33]=[1\cdot27+6]=[6]$$

$$C_{2,3}([12])=[2][12]+[3]=[27]=[0]$$

$$C_{2,3}([0]) = [2][0] + [3] = [3]$$

X

R

Α

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z **EXEMPLE:** 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Prenent com a cas particular r = 2 i s = 3:

$$C_{2,3}([m]) = [2][m] + [3], \text{ amb mcd}(2,17)=1.$$

 $D_{23}([m^*]) = [2]^{-1}([m^*] - [3]).$

<u>Simbòlic</u>	<u>Numèric</u>	Desxifrat: D _{2,3}	<u>Simbòlic</u>
М	[12]	[18]	R
G	[6]	[15]	0
Α	[0]	[12]	М
D	[3]	[0]	Α

$$D_{2,3}([12]) = [2]^{-1}([12] - [3]) = [14]([12] - [3]) = [126] = [4 \cdot 27 + 18] = [18]$$

$$D_{2,3}([6])=[2]^{-1}([6]-[3])=[14]([6]-[3])=[42]=[1\cdot27+15]=[15]$$

$$D_{2,3}([0])=[2]^{-1}([0]-[3])=[14]([0]-[3])=[-42]=[(-2)\cdot 27+12]=[12]$$

 $D_{2,3}([3]) = [2]^{-1}([3]-[3])=[0]$

D

F

S

X

R

Α

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

İndex

CRIPTOSISTEMES DE CLAU PUBLICA

Basen la seua tècnica en què la clau per a xifrar és pública, mentres que la de desxifrar només és coneguda per l'usuari corresponent, i a més, és computacionalment difícil trobar la clau de desxifrat a partir del coneixement de la de xifrat.

Donen resposta a la necessitat de dotar de clau secreta a cada parell de membres potencialment comunicants d'una comunitat d'individus.

Cada usuari *U* té assignades un parell de semiclaus:

- La primera semiclau determina la funció de xifrat C_U que ha d'aplicar qualsevol que desitge enviar-li un missatge a l'usuari U; C_U ha de ser del domini públic.
- La segona semiclau ha de reservar-se en secret per part de \pmb{U} ; la funció de desxifrat \pmb{D}_U que determina, serà aplicada per ell per a interpretar els missatges que reba.

És condició imprescindible que la semiclau secreta siga pràcticament impossible de deduir de la semiclau pública.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

CRIPTOSISTEMES DE CLAU PUBLICA

EXEMPLE: Sistema Rivest-Shamir-Adleman (Sistema RSA).

Siguen p i q dos nombres primers, i $n = p \cdot q$.

Considerem $M = M^* = Z_n^* i t un enter tal que$

$$mcd(t, \varphi(n)) = 1.$$

Amb aquestes condicions hi ha un enter s tal que

$$t \cdot s \equiv 1 \pmod{\varphi(n)}$$
,

és a dir, $t \cdot s = k \cdot \phi(n) + 1$ per a algun $k \in Z$.

Definim la funció de xifrat per

C: M
$$\to$$
 M* / C([m]_n) = [m]_n^t.

I la funció de desxifrat per

D:
$$M* \to M / D([m*]_n) = [m*]_n^s$$
.

La semiclau que és pública és el parell (n,t).

La semiclau secreta és el parell (n,s).

Han de mantindre's en secret p, q, $\varphi(n)$ i s.

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE:

```
Suposem el cas concret on p = 13 i q = 17. Aleshores,

n = 13 \cdot 17 = 221 i

\phi(n) = (p-1) \cdot (q-1) = 12 \cdot 16 = 192.
```

Per tant $M = M^* = Z_{221}^*$.

Aleshores, triant

t=11 (ja que, mcd(11,192)=1)

calculem el valor de s tal que

$$t \cdot s \equiv 1 \pmod{192}$$

i trobem s=35.

Per tant:

$$C([m]_{221})=[m]_{221}^{11}$$

 $D([m^*]_{221})=[m^*]_{221}^{35}$

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

$$C([m]_{221})=[m]_{221}^{11}$$

 $D([m^*]_{221})=[m^*]_{221}^{35}$

X				
I	<u>Simbòlic</u>	<u>Numèric</u>	<u>m¹¹</u>	m ¹¹ (mod 221)
F	R	018	64268410079232	086
_	0	015	8649755859375	111
R	М	012	743008370688	142
A	Α	000	0	000
T	, ,		·	

Lliçó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

																										\mathbf{Y}	
EXEMPLE:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

D		$C([m]_{221})=[m]$		
E		$D([m^*]_{221})=[m^*]_{221}$	*] ₂₂₁ 33	
S	<u>Text xifrat</u>	<u>m³⁵</u>	m ³⁵ (mod 221)	<u>Simbòlic</u>
X	086	Necessitariem	018	R
I	111	algun algoritme	015	0
F	142	d'exponenciació	012	M
R	000	modular	000	Α
A				
T				

Llicó 2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE: Suposem que volem calcular

$$C([m]_{221})=[111]_{221}^{35}$$

Podem anar calculant potències de 2, i anar reduint a mòdul 221:

```
[111]^2 = [12321] = [55 \cdot 221 + 166] = [166]
[111]^4 = ([111]^2)^2 = [166]^2 = [27556] = [124 \cdot 221 + 1] = [152]
[111]^8 = ([111]^4)^2 = [152]^2 = [23104] = [104 \cdot 221 + 120] = [120]
[111]^{16} = ([111]^8)^2 = [120]^2 = [14400] = [65 \cdot 221 + 35] = [35]
[111]^{32} = ([111]^{16})^2 = [35]^2 = [1225] = [5 \cdot 221 + 120] = [120]
[111]^{35} = [111]^{32} \cdot [111]^3 = [120] \cdot [1367631]
= [120] \cdot [6188 \cdot 221 + 83] = [120] \cdot [83]
= [9960] = [45 \cdot 221 + 15] = [15]
```

Lliçó2. CONGRUÈNCIES. ARITMÈTICA MODULAR

EXEMPLE: Suposem que volem calcular

$$C([m]_{221})=[86]_{221}^{35}$$

Podem anar calculant potències de 2, i anar reduint a mòdul 221:

$$[86]^2 = [7396] = [33.221 + 103] = [103]$$

 $[86]^4 = ([86]^2)^2 = [103]^2 = [10609] = [48.221 + 1] = [1]$
 $[86]^{32} = ([86]^4)^8 = [1]$
 $[86]^{35} = [86]^{32} \cdot [86]^3 = [1] \cdot [636056] = [2878.221 + 18] = [18]$