

Theory

Stochastic State Transitions Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells

Piyush B. Gupta,^{1,6,*} Christine M. Fillmore,² Guozhi Jiang,¹ Sagi D. Shapira,¹ Kai Tao,³ Charlotte Kuperwasser,^{2,3} and Eric S. Lander^{1,4,5,*}

Cell 146, 633-644, August 19, 2011

Cancer cells within individual tumors:

- distinct phenotypic states, different functional attributes
- equilibria in proportions of cells in the different states
- mechanism largely unknown

The classical picture

CSC model I

Cancer stem cells (CSC)

- one of phenotypical states
- give rise to non-CSCs during tumor growth
- non-CSCs cannot produce CSCs
- CSC differentiation gives rise to cell-state equilibrium
- only CSC seed tumors
- hierarchical cell-lineage structure like in normal tissue development

The experiment

Two breast-cancer cell lines

- three cell phenotypes: basal, luminal and stem-like cells
- exhibit distinct cell-state equilibria

- ▶ 99% purification by FACS (fluorescence-activated cell sorting)
- ▶ 6 days of cell growth (ca. 6 cell cycles)

The experiment

Two breast-cancer cell lines

- three cell phenotypes: basal, luminal and stem-like cells
- exhibit distinct cell-state equilibria

▶ approach equilibrium in few days (SUMI59 faster than SUMI49)

Frequency-dependent rate of cell growth

- no interconversion of cell states
- cell signaling to detect phenotypic composition of culture

Frequency-dependent rate of cell growth

- no interconversion of cell states
- cell signaling to detect phenotypic composition of culture
- **BUT**:

no significant difference in proliferation rate of cell populations (~I doubling / day)

"taking over" of population by rare subtype (after FACS) would require doubling rates of 2-3/day

Frequency-dependent rate of cell growth

- no interconversion of cell states
- cell signaling to detect phenotypic composition of culture
- NO!

Interconversion between cell phenotypes

- no interconversion of cell states
- no need for inter-cell communication
- modeling by Markov chains

Testing predictions

Markov chain predicts trajectories for phenotypical composition

Testing predictions

Markov chain predicts trajectories for phenotypical composition

Experiment: measured 6.5% at day I, and I% at day 6

Tumor seeding capacities

Injection of purified cells into mice:

only stem cells able to induce tumor growth

phenotypical fractions in tumor close to cell line SUM159

Table 2. Incidence and Phenotype Analyses of Tumors Arising from Sorted SUM159 Subpopulations											
SUM159 Subpopulations				Analysis of Formed Tumors							
Basal	Stem-like	Luminal	Tumor Incidence	Viable cells (%)	GFP-neg H2K-neg (%)	Basal (%)	Stem-like (%)	Luminal (%)			
Direct Injection											
+	-	-	0/4								
-	+	-	4/4	17.11	49.34	93.38	6.03	0.59			
-	-	+	0/4								

Tumor seeding capacities

Injection of purified cells into mice:

only stem cells able to induce tumor growth

phenotypical fractions in tumor close to cell line SUM159

Table 2. Incidence and Phenotype Analyses of Tumors Arising from Sorted SUM159 Subpopulations										
SUM159 Subpopulations				Analysis of Formed Tumors						
Basal	Stem-like	Luminal	Tumor Incidence	Viable cells (%)	GFP-neg H2K-neg (%)	Basal (%)	Stem-like (%)	Luminal (%)		
Direct Injection										
+	-	-	0/4							
-	+	-	4/4	17.11	49.34	93.38	6.03	0.59		
_	-	+	0/4							
With GFP + Irrad. SUM159										
_	-	-	0/4							
+	-	-	4/5	58.1 ± 2.1	56.0 ± 6.0	81.7 ± 5.9	11.4 ± 3.5	6.9 ± 2.4		
-	+	-	4/5	53.4 ± 4.7	56.7 ± 7.7	67.2 ± 11.4	24.1 ± 8.0	8.6 ± 3.5		
-	-	+	4/5	65.7 ± 6.3	57.7 ± 7.2	82.4 ± 8.1	12.0 ± 6.5	5.6 ± 2.7		

Use irradiated carrier cells:

longer life time chance to generate new stem-like cells all three populations able to seed tumor!

A modified picture

Important therapeutic implications!