Exercice 1. On suppose que l'on dispose d'un stock illimité de boules rouges et de boules blanches indiscernables au toucher. Une urne contient initialement une boule rouge et une boule blanche indiscernables au toucher.

On effectue dans cette urne une succession d'expériences aléatoires selon le protocole suivant : on extrait une boule de l'urne et après chaque tirage, la boule tirée est remise dans l'urne et on ajoute dans l'urne une boule de la même couleur que la boule tirée.

Pour tout entier $n \ge 1$, on note X_n (respectivement Y_n) la variable aléatoire égale au nombre de boules rouges (respectivement blanches) contenues dans l'urne à l'issue de la n-ième expérience, c'est-à-dire après le tirage d'une boule et de la remise d'une boule supplémentaire.

Pour tout entier $k \ge 1$, on note R_k (respectivement B_k) l'événement : « tirer une boule rouge (respectivement blanche) lors du k-ième tirage ».

- **1. a**) Justifier que $X_1(\Omega) = [1, 2]$. Donner la loi de X_1 . Calculer $\mathbf{E}[X_1]$ et $\mathbf{V}(X_1)$.
- **b)** Exprimer les événements $[X_2 = 1]$, $[X_2 = 2]$ et $[X_2 = 3]$ en fonction des événements B_1 , B_2 , R_1 et R_2 .
 - c) Montrer que X_2 suit la loi discrète uniforme sur [1,3]. En déduire $\mathbf{E}[X_2]$ et $\mathbf{V}(X_2)$.
- **2. a)** Donner sous forme de tableau la loi conjointe du couple (X_1, X_2) .
 - **b)** Calculer la covariance de X_1 et X_2 . Les variables aléatoires X_1 et X_2 sont-elles indépendantes?
- **3. a)** Pour tout entier $n \ge 1$, exprimer l'événement $[X_n = 1]$ en fonction des événements B_1, B_2, \ldots, B_n .
 - **b)** Montrer que $\mathbf{P}([X_n=1]) = \frac{1}{n+1}$. De même, calculer $\mathbf{P}([X_n=n+1])$.
- **4. a)** Établir pour tout entier $k \in [2, n+1]$, les égalités suivantes :

$$\mathbf{P}_{[X_n=k-1]}\left([X_{n+1}=k]\right) = \frac{k-1}{n+2} \text{ et } \mathbf{P}_{[X_n=k]}\left([X_{n+1}=k]\right) = \frac{n+2-k}{n+2}.$$

- **b)** En déduire pour tout $k \in [2, n+1]$, une relation entre $\mathbf{P}([X_{n+1}=k]), \mathbf{P}([X_n=k])$ et $\mathbf{P}([X_n=k-1])$.
- c) À l'aide d'un raisonnement par récurrence, montrer que pour tout entier $n \ge 1$, la variable aléatoire X_n suit la loi discrète uniforme sur [1, n+1].
- 5. On rappelle que l'appel à la fonction randint (a, b) du module numpy.random renvoie un entier suivant une loi uniforme sur l'ensemble d'entiers $\{a, a+1, \ldots, b-1\}$. Compléter le programme suivant afin qu'il simule une réalisation de la variable aléatoire X_{20} .

```
\begin{array}{lll} \textbf{import} & \texttt{numpy.random} & \texttt{as} & \texttt{rd} \\ n = & \dots & \\ r = 1 \\ b = 1 & \\ \textbf{for} & k & \textbf{in} & \textbf{range}(1, n+1): \\ & & \textbf{if} & \texttt{rd.randint}(1, k+2) <= r: \\ & & \dots & \\ & & \textbf{else}: & \\ & & \dots & \\ x = & \dots & \\ \textbf{print}(x) & \end{array}
```

- **6. a**) Justifier que les variables aléatoires X_n et Y_n sont de même loi.
 - **b)** Pour tout entier $n \ge 1$, que vaut $X_n + Y_n$?
 - c) Quel est le coefficient de corrélation linéaire $\rho(X_n, Y_n)$ de X_n et Y_n ?