2323-MA378: Class Test in Week 9 (Wed, 28 Feb)

.....

Some useful formulae.

• Cauchy's theorem: If p_n be the polynomial of degree n that interpolates f at the n+1 points $a=x_0 < x_1 < \cdots < x_n = b$. Then, for any $x \in [a,b]$ there is a $\tau \in (a,b)$ such that

$$f(x) - p_n(x) = \frac{f^{(n+1)}(\tau)}{(n+1)!} \pi_{n+1}(x), \tag{1}$$

where $\pi_{n+1}(x) = \prod_{i=0}^{n} (x - x_i)$ denotes the nodal polynomial.

- $\bullet \ \|g\|_{\infty} \ \text{denotes} \ \max_{a \leq x \leq b} |g(x)|.)$
- If l be the linear spline interpolant to a function f on the equally spaced points $a = x_0 < x_1 \cdots < x_N = b$ with $h = x_i x_{i-1} = (b-a)/N$, then

$$||f - l||_{\infty} \le \frac{h^2}{8} ||f''||_{\infty},$$
 (2)

• If S is the Piecewise Cubic Hermite Interpolating Polynomial that interpolates the function f at the equally spaced points $\{a=x_0< x_1< \cdots < x_N=b\}$ with $x_i-x_{i-1}=(b-a)/N=:h$, then

$$||f - S||_{\infty} := \max_{a \le x \le b} |f(x) - S(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(iv)}(x)|.$$
(3)

.....

In all the questions below, the function f is

$$f(x) = e^{x/2}$$

Q1. (50 marks)

- (a) Write down the Lagrange form for the polynomial, $p_2(x)$, that interpolates f at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.
- (b) Evaluate $p_2(1/2)$.
- (c) What bound does (1) give for $|f(1/2) p_2(1/2)|$?

Q2. (30 marks)

- (a) Give a formula for the piecewise linear interpolant, l(x), that interpolates f, at the points $x_0 = -1$, $x_1 = 0$, and $x_2 = 1$.
- (b) Evaluate l(1/2).
- (c) Use (2) to give an upper bound for $||f(x) l(x)||_{\infty}$.
- (d) What value of N would you have to choose so that $||f l||_{\infty} \le 10^{-6}$?
- Q3. (18 marks) Suppose that S is the **PCHIP** interpolant to the function f at the N+1 equally spaced points $\{x_0=-1 < x_1 < \cdots < x_N=1\}$. What value of N should one take to ensure that $\|f-S\|_{\infty}$ is no more than 10^{-6} ?
- Q4. (2 marks) Could there ever be a situation where, if we use the same values of f and N in (2) and (3), the error bound for the linear spline interpolant could be *less* than that PCHIP interpolant? If so, suggest an example.