Lagrangian dynamics of dendritic microcircuits enables real-time backpropagation of errors

<u>Dominik Dold</u>^{1,2}, Akos F. Kungl^{1,2}, João Sacramento³, Mihai A. Petrovici^{1,2}, Kaspar Schindler⁴, Jonathan Binas⁵, Yoshua Bengio⁵, Walter Senn¹

Department of Physiology, Bern.
 Kirchhoff-Institute for Physics, Heidelberg.
 Institute of Neuroinformatics, UZH/ETH Zurich.
 Department of Neurology, Inselspital, Bern.
 MILA, Montreal.

Can backprop be implemented in the brain?

How adjust deep synapses to improve final output...?

A theoretical framework for backprop, Y. le Cun (1988)
Feedback alignment, T. Lillicrap et al. (2016)
Equilibrium Propagation, B. Scellier & Y. Bengio (2016)
Dendritic backprop, J. Sacramento et al. (2018)
Review by Whittington & Bogacz (2019)

•••

Apical dendrite carries local prediction error

¹Sacramento et al., NIPS 2018; ² Urbanczik & Senn, Neuron 2014

Prospective response enables just-in-time error

¹Sacramento et al., NIPS 2018; ² Urbanczik & Senn, Neuron 2014; ³ Köndgen et al., Cereb Cortex 2008

Prospective coding and least-action principle

Energy function

$$E(u) = \sum_{i} ||\underbrace{u_{i} - W_{i} \varphi(u_{i-1})}_{\text{prediction error } e_{i}}||^{2} + \beta \cdot cost$$

Lagrange function

Physics! prospective response
$$\delta \int L \, dt = 0$$
 $\dot{W} \propto \nabla_W L$ $\frac{\partial L}{\partial \widetilde{u}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\widetilde{u}}} = 0$

Theorem 1 (real-time backprop)

$$\boldsymbol{e_i} = W_{i+1}^{\mathrm{T}} \boldsymbol{e_{i+1}}$$
, $\dot{\boldsymbol{W}_i} \propto \boldsymbol{e_i} \varphi(u_i)^{\mathrm{T}}$

Theorem 2 (real-time gradient descent)

$$\frac{\mathbf{d}}{\mathbf{d}W_i} cost = \lim_{\beta \to 0} \frac{1}{\beta} e_i^{\beta} \varphi^{\beta} (u_i)^{\mathrm{T}}$$

Prospective coding and least-action principle

Energy function

$$E(u) = \sum_{i} \parallel u_i - W_i oldsymbol{arphi}(u_{i-1}) \parallel^2 + eta \cdot cost$$

Theorem 1 (real-time backprop)

$$\boldsymbol{e_i} = W_{i+1}^{\mathrm{T}} \boldsymbol{e_{i+1}}$$
, $\dot{\boldsymbol{W}_i} \propto \boldsymbol{e_i} \varphi(u_i)^{\mathrm{T}}$

Theorem 2 (real-time gradient descent)

$$\frac{\mathbf{d}}{\mathbf{d}W_i} cost = \lim_{\beta \to 0} \frac{1}{\beta} e_i^{\beta} \varphi^{\beta} (u_i)^{\mathrm{T}}$$

Real-time error backpropagation in cortical circuits

also applicable to unsupervised learning and reinforcement learning

 $\varphi(u(t+ au))$

Plastic microcircuit – no need for weight transport

19/06/2019 Dominik Dold

Neurosynaptic dynamics implement backprop

Efficient learning for neuromorphic hardware

mail: dodo@kip.uni-heidelberg.de

threshold

Dominik Dold 19/06/2019