Дисперсионный анализ, часть 2

Математические методы в зоологии - на R, осень 2015

Марина Варфоломеева

Многофакторный дисперсионный анализ

- Модель многофакторного дисперсионного анализа
- Взаимодействие факторов
- Несбалансированные данные, типы сумм квадратов
- Многофакторный дисперсионный анализ в R
- Фиксированные и случайные факторы

Вы сможете

- Проводить многофакторный дисперсионный анализ и интерпретировают его результаты с учетом взаимодействия факторов
- Отличать фиксированные и случайные факторы и выбирать подходящую модель дисперсионного анализа

Модель многофакторного дисперсионного анализа

Линейные модели для факторных дисперсионных анализов

• Два фактора А и В, двухфакторное взаимодействие

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + \epsilon_{ijk}$$

· Три фактора A, B и C, двухфакторные взаимодействия, трехфакторное взаимодействия

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

Взаимодействие факторов

Взаимодействие факторов

Взаимодействие факторов - когда эффект фактора В разный в зависимости от уровней фактора А и наоборот

На каких рисунках взаимодействие факторов?

есть

- · b, c нет взаимодействия
- · a, d есть взаимодействие

Рисунок из Logan, 2010, fig.12.2

Взаимодействие факторов может маскировать главные эффекты

- Если есть значимое взаимодействие
- пост хок тесты только по нему.
- · главные эффекты обсуждать не имеет смысла

Задаем модель со взаимодействием в R

Взаимодействие обозначается: - двоеточием

Если есть факторы А и В, то их взаимодействие А:В

Для такой модели
$$y_{ijk} = \mu + lpha_i + eta_j + (lphaeta)_{ij} + \epsilon_{ijk}$$

Формула модели со взаимодействием:

$$Y \sim A + B + A:B$$

Сокращенная запись такой же модели обозначает, что модель включает все главные эффекты и их взаимодействия:

$$Y \sim A*B$$

Несбалансированные данные, типы сумм квадратов

Проблемы несбалансированных дизайнов

- Оценки средних в разных группах с разным уровнем точности (Underwood 1997)
- ANOVA менее устойчив к отклонениям от условий применимости (особенно от гомогенности дисперсий) при разных размерах групп (Quinn Keough 2002, section 8.3)
- Проблемы с рассчетом мощности. Если $\sigma_\epsilon^2>0$ и размеры выборок разные, то $\frac{MS_{groups}}{MS_{residuals}}$ не следует F-распределению (Searle et al. 1992).
- Для фикс. эффектов неравные размеры проблема только если значения р близкие к α
- · Мораль: старайтесь *планировать* группы равной численности!

Если несбалансированные данные, выберите правильный тип сумм квадратов

- SSe и SSab также как в сбалансированных
- SSa, SSb три способа расчета
- Для сбалансированных дизайнов результаты одинаковы
- Для несбалансированных дизайнов рекомендуют **суммы квадратов III типа** если есть взаимодействие факторов (Maxwell & Delaney 1990, Milliken, Johnson 1984, Searle 1993, Yandell 1997)

Типы сумм квадратов в дисперсионном анализе

Типы сумм квадратов	I тип	II тип	III тип
Название	Последовательная	Без учета взаимодействий высоких порядков	Иерархическая
SS	SS(A), SS(B A) SS(AB B, A)	SS(A B) SS(B A) SS(AB B, A)	SS(A B, AB) SS(B A, AB) SS(AB B, A)
Величина эффекта зависит от выборки в группе	Да	Да	Нет
Результат зависит от порядка включения факторов в модель	Да	Да	Нет
Команда R	aov()	Anova() (пакет car)	Anova() (пакет car)

Многофакторный дисперсионный анализ в R

Пример: Возраст и память

Почему пожилые не так хорошо запоминают? Может быть не так тщательно перерабатывают информацию? (Eysenck, 1974)

Факторы:

- · Age Возраст:
 - Younger 50 молодых
 - Older 50 пожилых (55-65 лет)
- · Process тип активности:
 - Counting посчитать число букв
 - Rhyming придумать рифму к слову
 - Adjective придумать прилагательное
 - Imagery представить образ
 - Intentional запомнить слово

Открываем данные

Посмотрим на боксплот

```
library(ggplot2)
theme_set(theme_bw(base_size = 16) + theme(legend.key = element_blank()))
ggplot(data = memory, aes(x = Age, y = Words)) +
    geom_boxplot(aes(fill = Process))
```


Некрасивый порядок уровней memory\$Process

Боксплот с правильным порядком уровней

```
# переставляем в порядке следования средних значений memory$Words memory$Process <- reorder(memory$Process, memory$Words, FUN=mean) mem_p <- ggplot(data = memory, aes(x = Age, y = Words)) + geom_boxplot(aes(fill = Process)) mem_p
```


Подбираем линейную модель

Внимание: при использовании III типа сумм квадратов, нужно при подборе линейной модели обязательно указывать тип контрастов для факторов. В данном случае - contrasts=list(Age=contr.sum, Process=contr.sum)

```
memory_fit <- lm(formula = Words ~ Age * Process, data = memory,
contrasts=list(Age=contr.sum, Process=contr.sum))
```

Задание: Проверьте условия применимости дисперсионного анализа

- Есть ли гомогенность дисперсий?
- Не видно ли трендов в остатках?
- Нормальное ли у остатков распределение?

Решение: 1. Проверяем условия применимости

- Есть ли гомогенность дисперсий?
- Не видно ли трендов в остатках?

```
memory_diag <- fortify(memory_fit)
ggplot(memory_diag, aes(x = .fitted, y = .stdresid)) + geom_point(aes(size = .com_position = position_jitter(width = 0.2)) + geom_hline(yintercept = 0)</pre>
```


Решение: 2. Проверяем условия применимости

• Нормальное ли у остатков распределение?

```
ggplot(memory_diag) + geom_point(stat = "qq", aes(sample = .stdresid)) +
    geom_abline(yintercept = 0, slope = sd(memory_diag$.stdresid))
```


Результаты дисперсионного анализа

```
library(car)
Anova (memory fit, type = 3)
## Anova Table (Type III tests)
##
## Response: Words
##
             Sum Sq Df F value Pr(>F)
## (Intercept) 13479 1 1679.54 < 2e-16 ***
             240 1 29.94 0.0000004 ***
## Age
## Process 1515 4 47.19 < 2e-16 ***
## Age:Process 190 4 5.93
                               0.00028 ***
           722 90
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

- Взаимодействие достоверно, факторы отдельно можно не тестировать, тк. взаимодействие может все равно изменять их эффект до неузнаваемости.
- Нужно делать пост хок тест по взаимодействию факторов

Пост хок тест по взаимодействию факторов

```
# 1. создаем переменную-взаимодействие
memory$AgeProc <- interaction(memory$Age, memory$Process)</pre>
# 2. подбираем модель без intercept
cell means <- lm(Words ~ AgeProc - 1, data = memory)</pre>
# 3. делаем пост хок тест
library(multcomp)
memory tukey <- glht(cell means, linfct = mcp(AgeProc = "Tukey"))</pre>
options (width = 90)
summary(memory tukey)
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Words ~ AgeProc - 1, data = memory)
##
## Linear Hypotheses:
                                                Estimate Std. Error t value Pro
##
                                                   -0.50
## Younger.Counting - Older.Counting == 0
                                                                1.27
                                                   -0.10 1.27
## Older.Rhyming - Older.Counting == 0
## Voundor Dhymina Oldor Counting -- 0
                                                    0.60
```

Смотрим на результаты пост хок теста

В виде таблицы результаты практически не читаемы. Лучше построить график.

```
##
##
     Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lm(formula = Words ~ AgeProc - 1, data = memory)
## Linear Hypotheses:
                                                 Estimate Std. Error t value Pr(>|t|)
##
## Younger.Counting - Older.Counting == 0
                                                    -0.50
                                                                       -0.39
                                                                1.27
                                                                                 1.000
## Older.Rhyming - Older.Counting == 0
                                                    -0.10
                                                                1.27
                                                                       -0.08
                                                                                1.000
## Younger.Rhyming - Older.Counting == 0
                                                     0.60
                                                                1.27
                                                                        0.47
                                                                                1.000
## Older.Adjective - Older.Counting == 0
                                                     4.00
                                                                1.27
                                                                        3.16
                                                                                0.063 .
## Younger.Adjective - Older.Counting == 0
                                                                1.27
                                                                                <0.01 ***
                                                     7.80
                                                                        6.16
## Older.Imagery - Older.Counting == 0
                                                     6.40
                                                                1.27
                                                                                <0.01 ***
                                                                        5.05
## Younger.Imagery - Older.Counting == 0
                                                    10.60
                                                                        8.37
                                                                                 <0.01 ***
                                                                1.27
## Older.Intentional - Older.Counting == 0
                                                     5.00
                                                                        3.95
                                                                                 <0.01 **
                                                                1.27
                                                                1.27
                                                                                <0.01 ***
## Younger.Intentional - Older.Counting == 0
                                                    12.30
                                                                        9.71
## Older.Rhyming - Younger.Counting == 0
                                                     0.40
                                                                1.27
                                                                                1.000
                                                                        0.32
## Younger.Rhyming - Younger.Counting == 0
                                                     1.10
                                                                1.27
                                                                        0.87
                                                                                0.997
## Older.Adjective - Younger.Counting == 0
                                                     4.50
                                                                1.27
                                                                        3.55
                                                                                0.021 *
## Younger.Adjective - Younger.Counting == 0
                                                     8.30
                                                                1.27
                                                                        6.55
                                                                                <0.01 ***
                                                                1.27
                                                                                <0.01 ***
## Older.Imagery - Younger.Counting == 0
                                                     6.90
                                                                        5.45
                                                                                                   24/37
## Younger.Imagery - Younger.Counting == 0
                                                                                <0.01 ***
                                                                1.27
                                                                        8.76
                                                    11.10
```

Данные для графиков

7 Vaunaan

```
# Статистика по столбцам и по группам одновременно (n, средние,
# стандартные отклонения)
library(dplyr)
memory summary <- memory %>%
  group by (Age, Process) %>%
  summarise(
    .n = sum(!is.na(Words)),
    .mean = mean(Words, na.rm = TRUE),
    .sd = sd(Words, na.rm = TRUE))
memory summary
## Source: local data frame [10 x 5]
## Groups: Age [?]
##
##
         Age
                 Process
                                       .sd
                            .n .mean
                  (fctr) (int) (dbl) (dbl)
##
       (fctr)
## 1
     0lder
                Counting
                               7.0 1.83
## 2
     0lder
                 Rhyming
                            10
                               6.9 2.13
     0lder
              Adjective
                            10 11.0 2.49
## 3
     0lder
                               13.4 4.50
## 4
                 Imagery
                            10
     Older Intentional
                               12.0 3.74
## 5
                            10
                                 6.5 1.43
                Counting
                            10
    Younger
```

1 06

25/37

Графики для результатов: Столбчатый график

Графики для результатов: Линии с точками

Какой график лучше выбрать?

library(gridExtra)
grid.arrange(mem_barp, mem_linep, ncol = 2)

· Должен быть максимум данных в минимуме чернил (Tufte, 1983)

Приводим понравившийся график в приличный вид

```
mem_linep <- mem_linep + labs(x = "Возраст", y = "Число запомненных слов") + scale_x_discrete(labels = c("Пожилые", "Молодые")) + scale_colour_brewer(name = "Процесс", palette = "Dark2", labels = c("Счет", "Рифма", "Прилагательное", "Образ", "Запоминание")) + theme(legend.key = element_blank()) mem_linep
```


Фиксированные и случайные факторы

Фиксированные и случайные факторы

- Фиксированные факторы
 - возможные градации фактора заранее известны, уровни фактора выбраны не случайно из небольшого числа возможных
 - предсказывать можно только для существующих в модели значений факторов
- Случайные факторы
 - возможные градации фактора неизвестны заранее, уровни фактора выбраны случайно из множества возможных
 - предсказывать можно для любых значений факторов

Задание: Примеры фиксированных и случайных факторов

Опишите ситуации, когда эти факторы будут фиксированными, а когда случайными

- Несколько произвольно выбранных градаций плотности моллюсков в полевом эксперименте, где плотностью манипулировали.
- Фактор размер червяка (маленький, средний, большой) в выборке червей.
- Деление губы Чупа на зоны с разной степенью распреснения.

Приведите другие примеры того, как тип фактора будет зависеть от проверяемых гипотез

Гипотезы в разных моделях многофакторного дисперсионного анализа

Тип фактора	Фиксированные факторы	Случайные факторы
Модель дисп.анализа	І-модель	II-модель
Гипотезы	средние равны	нет увеличения дисперсии связанного с фактором
Для А	$H_{0(A)}:\mu_1=\mu_2=\dots=\mu_i=\mu$	$H_{0(A)}:\sigma_{lpha}^2=0$
Для В	$H_{0(B)}:\mu_1=\mu_2=\dots=\mu_i=\mu$	$H_{0(B)}:\sigma_{eta}^2=0$
Для АВ	$H_{0(AB)}: \mu_{ij}=\mu_i+\mu_j-\mu$	$H_{0(AB)}:\sigma^2_{lphaeta}=0$

Рассчет F-критерия для I и II моделей дисперсионного анализа

Факторы	А и В фиксированные	А и В случайные	А фиксированный, В случайный
Α	$rac{F=MS_a}{MS_e}$	$rac{F=MS_a}{MS_{ab}}$	$rac{F=MS_a}{MS_e}$
В	$rac{F=MS_b}{MS_e}$	$rac{F=MS_b}{MS_{ab}}$	$\frac{F=MS_b}{MS_ab}$
АВ	$rac{F=MS_{ab}}{MS_e}$	$rac{F=MS_{ab}}{MS_e}$	$rac{F=MS_{ab}}{MS_e}$

Внимание: сегодня говорили только профиксированные факторы.

Если есть случайные факторы - смешанные модели. О них в магистратуре.

Пакеты nlme и lme4

Книги:

- · Pinheiro, J., Bates, D., 2000. Mixed-Effects Models in S and S-PLUS. Springer.
- · Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology With R. Springer.

Take home messages

- Многофакторный дисперсионный анализ позволяет оценить взаимодействие факторов. Если оно значимо, то лучше воздержаться от интерпретации их индивидуальных эффектов
- Если численности групп равны получаются одинаковые результаты с использованием I, II, III типы сумм квадратов
- В случае, если численности групп неравны (несбалансированные данные) по разному тестируется значимость факторов (I, II, III типы сумм квадратов) >- В зависимости от типа факторов (фиксированные или случайные) по разному формулируются гипотезы и рассчитывается F-критерий.

Дополнительные ресурсы

- · Quinn, Keough, 2002, pp. 221-250
- · Logan, 2010, pp. 313-359
- · Sokal, Rohlf, 1995, pp. 321-362
- · Zar, 2010, pp. 246-266