Experimenting on a new method for the NeuLAND position calibration and fine tuning with the Millepede algorithm

Yanzhao Wang¹, Igor Gasparic², Håkan Johansson³, Andreas Zilges¹

¹ University of Cologne, Institute for Nuclear Physics, Germany

 $^2\ {\sf GSI}\ {\sf Helmholtzzentrum}\ {\sf für}\ {\sf Schwerionenforschung},\ {\sf Germany}$

³ Chalmers University of Technology, Sweden

R3B Collaboration Meeting July 8th 2024

Email: ywang@ikp.uni-koeln.de

Time and position calibration parameters

Symbols:

x: position of the interaction

t: time of the interaction

 ${\cal L}: {\sf length} \ {\sf of} \ {\sf the} \ {\sf scintillator}$

 t_l : time of the left PMT signal

 $t_r: \mathsf{time}\ \mathsf{of}\ \mathsf{the}\ \mathsf{right}\ \mathsf{PMT}\ \mathsf{signal}$

 C_e : effective speed of light

Time relation:

$$t = rac{t_r + t_l}{2} - rac{L}{2 \cdot rac{C_e}{}} + rac{t_{\mathsf{sync}}}{}$$

Position relation:

$$x = rac{C_e}{2} \left(t_r - t_l + t_{\mathsf{offset}}
ight)$$

Additional calibration parameters:

- t_{sync}: time synchronization among scintillators
- t_{offset} : time offset between adjacent PMTs

Total number of calibration parameters: 3900

Side view of NeuLAND

Procedures

Obtain the positions of bars with signals

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon

Side view of NeuLAND

Procedures

- **1** Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Side view of NeuLAND

Procedures

- Obtain the positions of bars with signals
- Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Calibration with muon tracks:

$$pos = C_e \cdot (t_r - t_l + t_{offset})/2 \tag{1}$$

$$t = (t_r + t_l)/2 - L/(2 \cdot \frac{C_e}{C_e}) + \frac{t_{sync}}{C_e}$$
 (2)

$$\vec{x}_{\mu} = \vec{a}^{i} \cdot z_{\mu} + \vec{b}^{i} \tag{3}$$

where
$$\vec{a}=(a_x,a_y,a_t)$$
, $\vec{b}=(b_x,b_y,b_t)$

Calibration with muon tracks:

$$pos = \frac{C_e}{t_r} \cdot (t_r - t_l + \frac{t_{offset}}{2}) / 2$$
 (1)

$$t = (t_r + t_l)/2 - L/(2 \cdot C_e) + t_{\text{sync}}$$
 (2)

$$\vec{x}_{\mu} = \vec{a}^{i} \cdot z_{\mu} + \vec{b}^{i} \tag{3}$$

where
$$\vec{a}=(a_x,a_y,a_t)$$
, $\vec{b}=(b_x,b_y,b_t)$

For time offsets of horizontal bars:

$$b_x^i - g_{ct}^i / 2 + g_c^i \cdot \Delta t^i / 2 + a_x^i z_\mu = 0$$

For time offsets of vertical bars:

$$b_y^i - g_{ct}^i/2 + g_c^i \cdot \Delta t^i/2 + a_y^i \cdot z_\mu = 0$$

For time sync:

$$b_t^i + g_s^i + L/(2 \cdot g_c^i) - t_{\mathsf{sum}}/2 + a_t^i z_\mu = 0$$

with
$$q_e^i \equiv C_e$$
, $q_{et}^i \equiv C_e \cdot t_{offeet}$ and $q_e^i \equiv t_{sync}$

Calibration with muon tracks:

$$ext{pos} = rac{C_e \cdot (t_r - t_l + t_{ ext{offset}})/2}{t = (t_r + t_l)/2 - L/(2 \cdot rac{C_e}{e}) + t_{ ext{sync}}}$$

$$\vec{x}_{\mu} = \vec{a}^{i} \cdot z_{\mu} + \vec{b}^{i}$$

where
$$\vec{a}=(a_x,a_y,a_t)$$
, $\vec{b}=(b_x,b_y,b_t)$

For time offsets of horizontal bars:

$$b_x^i - g_{ct}^i / 2 + g_c^i \cdot \Delta t^i / 2 + a_x^i z_\mu = 0$$

For time offsets of vertical bars:

$$b_y^i - g_{ct}^i/2 + g_c^i \cdot \Delta t^i/2 + a_y^i \cdot z_\mu = 0$$

For time sync:

$$b_t^i + g_s^i + L/(2 \cdot g_c^i) - t_{\text{sum}}/2 + a_t^i z_\mu = 0$$

with
$$g_c^i = C_e$$
, $g_{ct}^i = C_e \cdot t_{\text{offset}}$ and $g_s^i = t_{\text{sync}}$

Millepede input:

- (1) $\partial f/\partial q_i$: 1st order derivative of local parameters
- (2) $\partial f/\partial p_l$: 1st order derivative of global parameters
- z: "measurements" (constant values) (3)

 σ : measurement errors

Calibration with muon tracks:

$$ext{pos} = rac{C_e \cdot (t_r - t_l + t_{ ext{offset}})/2}{t = (t_r + t_l)/2 - L/(2 \cdot rac{C_e}{e}) + t_{ ext{sync}}}$$

$$\vec{x}_{\mu} = \vec{a}^{i} \cdot z_{\mu} + \vec{b}^{i}$$

where
$$\vec{a}=(a_x,a_y,a_t),\ \vec{b}=(b_x,b_y,b_t)$$

For time offsets of horizontal bars:

$$b_x^i - g_{ct}^i/2 + g_c^i \cdot \Delta t^i/2 + a_x^i z_\mu = 0$$

For time offsets of vertical bars:

$$b_y^i - g_{ct}^i/2 + g_c^i \cdot \Delta t^i/2 + a_y^i \cdot z_\mu = 0$$

For time sync:

$$b_t^i + g_s^i + L/(2 \cdot g_c^i) - t_{\text{sum}}/2 + a_t^i z_\mu = 0$$

with $g_c^i = C_e$, $g_{ct}^i = C_e \cdot t_{ extsf{offset}}$ and $g_s^i = t_{ extsf{sync}}$

Millepede input:

- (1) $\partial f/\partial q_j$: 1st order derivative of local parameters
- (2) $\partial f/\partial p_l$: 1st order derivative of global parameters
- (3) z: "measurements" (constant values)

 σ : measurement errors

Solutions to the rank deficit error

- Reduce global or local parameters
- Applying additional constraints

Introducing local constraints:

Horizontal bars : $b_y^i - Y_{bar}^i + a_y^i \cdot z_\mu = 0$

Vertical bars : $b_x^i - X_{bar}^i + a_x^i \cdot z_\mu = 0$

Predetermination of position parameters

Purposes of predetermination

- \bullet Use good initial values from a crude calibration method to reduce rejected entries (<33.3%)
- Select one bar from the plane when a muon crosses multiple bars of the same plane
- ullet Remove outliners caused by background γ rays

Step 1: Collect time differences of adjacent PMT signals

Predetermination on position parameters

Step 2: Normalize the distribution and convert to a CDF for each bar

Predetermination on position parameters

Step 2: Normalize the distribution and convert to a CDF for each bar

Step 3: Linear fitting from 0.05 to 0.95

Calculation of parameters:

$$C_e = 2 \cdot \mathsf{BarLength} \cdot \mathsf{slope}$$

$$t_{\text{offset}} = (0.5 - \text{intercept})/\text{slope}$$

Predetermination on position parameters

Step 2: Normalize the distribution and convert to a CDF for each bar

Step 3: Linear fitting from 0.05 to 0.95

Calculation of parameters:

$$C_e = 2 \cdot \mathsf{BarLength} \cdot \mathsf{slope}$$

$$t_{\text{offset}} = (0.5 - \text{intercept})/\text{slope}$$

Evaluation results:

Fine tuning with the Millepede algorithm

Data preprocessing

- Scale the time/position values ($\times 10^{-1}$)
- Select bars with only one signal per event
- 3 Remove the isolated bars of each plane
- Average bar positions for local constraints
- Linear fit with z-x and z-y functions on bar positions
- Choose the bar closest to the linear function for each plane
- Remove bars with large residuals

Comparison of time offset parameters

Comparison of effective speed parameters

Summary and outlook

Summary

- Simultaneous fitting using the Millepede algorithm
- Predetermination of the position-related calibration parameters
- Good consistency between the results from the Millepede algorithm and the current method

Outlook

- Adding time synchronization parameters
- Applying the Millepede algorithm to the energy calibration
- Further comparison between the Millepede algorithm and current method with the simulated data

