Lab14

1. In the lecture, we saw cases 1 and 2 in the implementation of the Deutsch algorithm. In this exercise, you will do it for cases 3 and 4. Define oracles for each case. Build the circuit of the algorithm. Render the result for each case.

. . .

- 2. Let's consider the NAND function: f(00) = 1 and f(01)=f(10)=f(11)=0.
- a. Is this function balanced, constant, or neither of them?
- b. What is the matrix of the oracle associated with this function?
- c. In Strange, implement the Deutsch-Jozsa algorithm for this function. Render the result. What is the result of measuring the first output qubit?

Answer:

- a) Not balanced, not constant
- b)

a x2 x1	000	001	010	011	100	101	110	111
000	0	0	0	0	1	0	0	0
001	0	1	0	0	0	0	0	0
010	0	0	1	0	0	0	0	0
011	0	0	0	1	0	0	0	0
100	1	0	0	0	0	0	0	0
101	0	0	0	0	0	1	0	0
110	0	0	0	0	0	0	1	0
111	0	0	0	0	0	0	0	1

- c) 50% not balanced, not constant
- 3. Let's have a function $f(x0 \ x1 \dots xn-1) = z$ that receives an n-bit input and returns a 1-bit output.
 - a. How many different input values can you pass to f?
 - b. How many different output values can f return?
- c. How many different functions like f can be defined? That is, a function that receives an n-bit input and returns a 1-bit output.
 - d. How many of those functions are constant?
 - e. How many of those functions are balanced.

Answer:

- a) 2ⁿ
- b) 2
- c) $2^{(2^n)}$
- d) 2
- e) a! / (b! * (a-b)!); where: $a = 2^n; b = 2^n(n-1)$