ITERATION OF HOLOMORPHIC MAPS OF THE UNIT BALL INTO ITSELF

YOSHIHISA KUBOTA

Dedicated to Professor Mitsuru Ozawa on the occasion of his 60th birthday

ABSTRACT. Let Ω be a plane disc and let f be a holomorphic map of Ω into itself. It is known that the iterates f_n of f converge to a constant $\zeta \in \overline{\Omega}$ as $n \to \infty$ unless f is a conformal map of Ω onto itself. In the present paper it is shown that a more complicated statement of this kind is true in the unit ball of \mathbb{C}^N .

1. Let Ω be a plane disc and let f be a holomorphic map of Ω into itself. It is known that the iterates f_n of f converge to a constant $\zeta \in \overline{\Omega}$ as $n \to \infty$ unless f is a conformal map of Ω onto itself [3, pp. 131-134]. In the present paper we study the action of the iterates of holomorphic maps of the unit ball into itself.

Let B_N be the unit ball of \mathbb{C}^N and let F be a holomorphic map of B_N into itself. The iterates F_n of F are defined by

$$F_0(z) = z, \quad F_{n+1}(z) = F(F_n(z)) \qquad (n = 0, 1, ...).$$

Let r be a positive integer with $1 \le r \le N$. Corresponding to the orthogonal direct sum decomposition $\mathbb{C}^N = \mathbb{C}^r \oplus \mathbb{C}^{N-r}$, each $z \in \mathbb{C}^N$ decomposes into z = z' + z'', where $z' \in \mathbb{C}^r$, $z'' \in \mathbb{C}^{N-r}$. Accordingly, for a map $\Phi = (\phi_1, \dots, \phi_N)$ from B_N into \mathbb{C}^N , we write $\Phi = \Phi' + \Phi''$, where $\Phi' = (\phi_1, \dots, \phi_r)$ and $\Phi'' = (\phi_{r+1}, \dots, \phi_N)$.

THEOREM. Let F be a holomorphic map of B_N into itself. If F is not an automorphism of B_N , then either

- (i) the iterates F_n of F converge to a constant map as $n \to \infty$, uniformly on every compact subset of B_N , or
- (ii) there exist a subsequence $\{F_{n_v}\}$ of $\{F_n\}$, an automorphism T of B_N and a positive integer r with $1 \le r < N$, such that $T \circ F_{n_v} \circ T^{-1}$ converge as $v \to \infty$, uniformly on every compact subset of B_N , to a holomorphic map Φ of B_N into itself having the following properties: (a) $\Phi'(z') = z'$ for $z' \in B_r$ and (b) $\Phi''(z) = 0''$ for $z \in B_N$.

In case (i), if $\zeta = \lim_{n \to \infty} F_n(z)$, $z \in B_N$, is a point in B_N , then ζ is the fixed point of F.

In case (ii) the restriction $\tilde{F}'(z')$ of $\tilde{F} = T \circ F \circ T^{-1}$ to B_r is an automorphism of B_r .

Received by the editors June 23, 1982 and, in revised form, September 9, 1982.

1980 Mathematics Subject Classification. Primary 32H99.

Key words and phrases. Iteration, holomorphic map, unit ball.

©1983 American Mathematical Society 0002-9939/82/0000-0946/\$01.75

There is a simple example which belongs to case (ii). We define the map $F = (f_1, f_2)$ by

$$f_1(z) = -z_1 + az_2^2$$
, $f_2(z) = bz_2$, $z = (z_1, z_2)$,

where $2|a|+|a|^2+|b|^2<1$. Then F is a holomorphic map of B_2 into itself and F_{2k} converge as $k\to\infty$ to the map

$$\Phi(z) = \left(z_1 - \frac{a}{1 + b^2} z_2^2, 0\right),\,$$

and F_{2k+1} converge as $k \to \infty$ to the map

$$\psi(z) = \left(-z_1 + \frac{a}{1+b^2}z_2^2, 0\right).$$

Finally we note that there is a holomorphic map F of the unit polydisc U^N in \mathbb{C}^N into itself such that the iterates F_n converge to a nonconstant map from U^N into ∂U^N . A simple example is

$$F(z) = (\frac{2}{3}z_1 + \frac{1}{3}, z_2, \dots, z_N), \qquad z = (z_1, \dots, z_N).$$

2. We begin with an elementary lemma.

LEMMA. Let Ψ be a holomorphic map from B_N into \overline{B}_N . If Ψ is not constant, then $\Psi(B_N) \subset B_N$.

PROOF. Suppose that $\Psi = (\psi_1, \dots, \psi_N)$ maps one point in B_N to a point w in the boundary of B_N . We may assume that $w = (1, 0, \dots, 0)$. Then the maximum principle shows that $\psi_1(z) \equiv 1$, and so that $\psi_1(z) \equiv 0$, $j = 2, \dots, N$. Thus Ψ must be constant.

Let Ψ be a holomorphic map from B_N into \mathbb{C}^N . We denote by $A_{\Psi}(z)$ the matrix (a_{ij}) ,

$$a_{ij} = \frac{\partial \psi_i}{\partial z_j}(z) \quad (1 \le i \le N, 1 \le j \le N)$$

where $\Psi = (\psi_1, \dots, \psi_N)$ and $z = (z_1, \dots, z_N)$.

- 3. We now turn to the proof of the theorem. Let F be a holomorphic map of B_N into itself and let F_n be its nth iterate. Then the sequence $\{F_n\}$ is normal in B_N .
- Case 1. Every convergent subsequence of $\{F_n\}$ converges to a constant map uniformly on every compact subset of B_N .
- Case 1.1. There exists a subsequence $\{F_{n_v}\}$ converging to a constant map which maps B_N into a point ζ in B_N .

We have

$$F(\zeta) = \lim_{v \to \infty} F(F_{n_v}(z)) = \lim_{v \to \infty} F_{n_v}(F(z)) = \zeta$$

and, hence, for any convergent subsequence $\{F_{m_n}\}$ we have

$$\lim_{v\to\infty} F_{m_v}(z) = \lim_{v\to\infty} F_{m_v}(\zeta) = \zeta \qquad (z\in B_N).$$

Thus, in this case, $\{F_n\}$ converges to the constant ζ and ζ is the fixed point of F.

Case 1.2. Every convergent subsequence of $\{F_n\}$ converges to a constant map which maps B_N into a point in the boundary of B_N .

In this case we have $||F_n(z^*)|| \to 1$ as $n \to \infty$, where z^* is a point in B_N . Hence there exists a subsequence $\{F_{n_n}\}$ such that

$$||F_n(z^*)|| < ||F_{n+1}(z^*)|| \qquad (v = 1, 2, ...).$$

We may assume that $\{F_{n_v}(z)\}$, $z \in B_N$, converges to the point $e_1 = (1, 0, ..., 0)$. Put $a_v = F_n(z^*)$ (v = 1, 2, ...). Then

$$||a_v|| < ||F(a_v)|| \qquad (v = 1, 2, ...),$$

$$\lim_{v \to \infty} a_v = e_1, \quad \lim_{v \to \infty} F(a_v) = \lim_{v \to \infty} F_{n_v}(F(z^*)) = e_1.$$

Hence, letting $v \to \infty$ in the inequality

$$\frac{\left|1 - \left\langle F(a_v), F(z) \right\rangle \right|^2}{1 - \left\| F(z) \right\|^2} \le \frac{1 - \left\| F(a_v) \right\|^2}{1 - \left\| a_v \right\|^2} \frac{\left|1 - \left\langle a_v, z \right\rangle \right|^2}{1 - \left\| z \right\|^2} \qquad (z \in B_N)$$

[2, p.163] we have

$$\frac{|1-f_1(z)|^2}{1-||F(z)||^2} \le \frac{|1-z_1|^2}{1-||z||^2} \qquad (z \in B_N),$$

where $F = (f_1, \dots, f_N)$ and $z = (z_1, \dots, z_N)$. Then writing $F_n = (f_1^{(n)}, \dots, f_N^{(n)})$ we obtain

$$\frac{\left|1-f_1^{(n)}(z)\right|^2}{1-\|F_n(z)\|^2} \le \frac{\left|1-z_1\right|^2}{1-\|z\|^2} \qquad (z \in B_N).$$

Since $||F_n(z)|| \to 1$ as $n \to \infty$, it follows from this inequality that $f_1^{(n)}(z) \to 1$ as $n \to \infty$. This shows that $F_n(z) \to e_1$ as $n \to \infty$.

Case 2. There exists a subsequence $\{F_{n_v}\}$ which converges to a nonconstant map Ψ , uniformly on every compact subset of B_N .

There is a point z^* in B_N with rank $A_{\Psi}(z^*) > 0$. We may assume that

$$\operatorname{rank} A_{\Psi}(z^*) = \sup_{\Phi \in \mathcal{C}} \sup_{z \in B_{\nu}} \operatorname{rank} A_{\Phi}(z) \equiv r \leq N,$$

where \mathcal{L} is the family of all limit maps of convergent subsequences of $\{F_n\}$. Further we may assume that $\{F_{n_{\nu+1}-n_{\nu}}\}$ also converges. Let Φ be its limit map. Since $\Psi(B_N) \subset B_N$ (it follows from the lemma), we have

$$\Phi(\Psi(z)) = \lim_{v \to \infty} F_{n_{v+1}-n_v}(F_{n_v}(z)) = \Psi(z) \qquad (z \in B_N).$$

Putting $w^* = \Psi(z^*)$ we have $\Phi(w^*) = w^*$. Regarding A_{Ψ} and A_{Φ} as linear operators, rather than matrices, the relation $\Phi \circ \Psi = \Psi$ shows that $A_{\Phi}(w^*) \circ A_{\Psi}(z^*) = A_{\Psi}(z^*)$. This shows that the restriction of $A_{\Phi}(w^*)$ to the r-dimensional space which is the range of $A_{\Psi}(z^*)$ is the identity. Hence, by the definition of r, it follows that rank $A_{\Phi}(w^*) = r$.

Now we may assume that $\Phi(0) = 0$ and $A_{\Phi}(0) = \binom{I}{Y} \binom{X}{Z}$, rank $A_{\Phi}(0) = r$, by considering the map $T \circ F \circ T^{-1}$ in place of F, where I is the identity matrix of order r and T is a suitable automorphism of B_N .

We shall show that Φ has properties (a) and (b). Since $\Phi'(z')$ is a holomorphic map of B_r into itself with $\Phi'(0') = 0'$ and since $A_{\Phi'}(0') = I$, it follows by Cartan's uniqueness theorem that

$$\Phi'(z') = z' \qquad (z' \in B_c).$$

Further, from the inequality

$$||z'||^2 + ||\Phi''(z')||^2 = ||\Phi(z')||^2 < 1$$
 $(z' \in B_r)$

we have that $\|\Phi''(z')\| \to 0$ as $\|z'\| \to 1$ (where $\|\|$ denotes the euclidean norm), and so

(2)
$$\Phi''(z') = 0'' \quad (z' \in B_r).$$

On the other hand, since rank $A_{\Phi}(z) = r$ in a neighborhood U of 0, there exist functions $H_j(z')$, j = r + 1, ..., N, such that $H_j(z')$ are holomorphic in a neighborhood U' of 0' and

(3)
$$\Phi''(z) = (H_{r+1}(\Phi'(z)), \dots, H_N(\Phi'(z))) \qquad (z \in U).$$

(For instance, this follows from Theorem 5 in Chapter I, §B of [1].) From (1), (2) and (3) we see that

$$(H_{r+1}(z'),...,H_N(z')) = (H_{r+1}(\Phi'(z')),...,H_N(\Phi'(z')))$$

= $\Phi''(z') = 0'' (z' \in U').$

Hence $H_i \equiv 0$, j = r + 1, ..., N, so that we obtain

$$\Phi''(z) = 0'' \qquad (z \in B_N).$$

Thus we have proved that there exist a subsequence $\{F_{n_v}\}$ (we consider $n_{v+1} - n_v$ as n_v), and an automorphism T of B_N such that $T \circ F_{n_v} \circ T^{-1}$ converge as $v \to \infty$ to a map Φ with properties (a) and (b).

Next we shall show that $\tilde{F}'(z')$ is an automorphism of B_r , where $\tilde{F} = T \circ F \circ T^{-1} = \tilde{F}' + \tilde{F}''$. We assume that $\{F_{n_v-1}\}$ converges, without loss of generality. Putting $G = \lim_{v \to \infty} F_{n_v-1}$ and $\tilde{G} = T \circ G \circ T^{-1} = \tilde{G}' + \tilde{G}''$ we have

(5)
$$\tilde{G} \circ \tilde{F} = \lim_{v \to \infty} T \circ F_{n_v} \circ T^{-1} = \Phi.$$

From this and the lemma it follows that $\tilde{G}(B_N) \subset B_N$. Hence we also obtain

(6)
$$\tilde{F} \circ \tilde{G} = \Phi.$$

Then we see from (1), (4), (5) and (6) that

(7)
$$\tilde{G}'(\tilde{F}(z')) = \tilde{F}'(\tilde{G}(z')) = z' \qquad (z' \in B_r)$$

and

(8)
$$\tilde{G}''(\tilde{F}(z)) = \tilde{F}''(\tilde{G}(z)) = 0'' \qquad (z \in B_N).$$

From (8) we obtain that $\tilde{F}''(z') = 0'', z' \in B_r$. Indeed, putting $w = \tilde{F}(z')$ we have

$$\tilde{F}''(z') = \tilde{F}''(\Phi'(z')) = \tilde{F}''(\tilde{G}(w)) = 0''.$$

Similarly we obtain that $\tilde{G}''(z') = 0'', z' \in B_r$. Therefore from (7) we have

$$\tilde{G}'(\tilde{F}'(z')) = \tilde{F}'(\tilde{G}'(z')) = z' \qquad (z' \in B_r).$$

This shows that the map $\tilde{F}'(z')$ is an automorphism of B_r .

If r = N, then F is an automorphism of B_N . Thus the proof of the theorem is complete.

REFERENCES

- 1. R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N.J., 1965.
- 2. W. Rudin, Function theory in the unit ball of Cⁿ, Die Grundlehren der Math. Wissenschaften, Bd. 241, Springer-Verlag, Berlin, 1980.
 - 3. G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954.

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, KOGANEI-SHI, TOKYO 184, JAPAN