

AI Enterprise Workflow Study Group

Course 2, Week 1

3/7/2020

Agenda

- Check in
- C2W1 key concepts
- Discussion
- Next steps

Course & Study Group Schedule

Al Enterprise Workflow Study Group		
Session	Topic	Date
Overview Webinar	Webinar with instructor, Ray Lopez	15-Feb
Course 1 Week 1	Course intro	22-Feb
Course 1 Week 2	Data ingestion, cleaning, parsing, assembly	29-Feb
Course 2 Week 1	Exploratory data analysis & visualization	7-Mar
Course 2 Week 2	Estimation and NHT	14-Mar
Course 3 Week 1	Data transformation and feature engineering	21-Mar
Course 3 Week 2	Pattern recognition and data mining best practices	28-Mar
Course 4 Week 1	Model evaluation and performance metrics	4-Apr
Course 4 Week 2	Building machine learning and deep learning models	11-Apr
Course 5 Week 1	Deploying models	18-Apr
Course 5 Week 2	Deploying models using Spark	25-Apr
Course 6 Week 1	Feedback loops and monitoring	2-May
Course 6 Week 2	Hands on with OpenScale and Kubernetes	9-May
Course 6 Week 3	Captsone project week 1	16-May
Course 6 Week 4	Captsone project week 2	23-May

Course 2 Week 1 learning objectives

- 1. Explain the principal steps in exploratory data analysis
- 2. Explain the use case for Python tools (pandas, matplotlib, and Jupyter) in EDA
- 3. Describe strategies for dealing with missing data
- 4. Explain the role of communication in EDA

Key concepts

- Exploratory Data Analysis
 - EDA Process
 - Tools
 - Summarizing Data
- Missing Data
 - Types
 - Ways to Deal With
 - Imputation Strategies

Exploratory Data Analysis

- Exploratory vs Confirmatory
- Sometimes thoughtful EDA & visualization can reveal solution to problem such that models aren't required.
- Challenge: Many options in how data can be visualized and results communicated

EDA Process

EDA Process Example

- Load data into pandas, NumPy or another similar tool and summarize the data
- Use tables, text and visualizations to tell the story that relates the business opportunity to the data
- Identify a strategy to deal with missing values
- Investigate the data and underlying business scenario with visualizations and hypothesis testing
- Communicate your findings

Communication

Not just results, also:

- What you have done
- What you are doing
- What you plan to do

Tools

https://www.anaconda.com/python-data-visualization-2018-why-so-many-libraries/

Tools

https://www.anaconda.com/python-data-visualization-2018-why-so-many-libraries/

Tips

- Keep plots quick and dirty
- Emphasis is identifying and communicating insights
- Not meant to be long term dashboards
- Keep codebase separate from your visualization notebook. Code should exist as separate files, in part to ensure version control and collaboration.
- Ok to get through projects via copy/paste, but very helpful to dig into the docs to see what's possible and understand how all the pieces fit together.

Summarizing Data

- Use groupby and pivot_table to summarize data
- Discretization for continuous data: qcut() & cut()

Types of Missing Data

- Missing Completely at Random (MCAR)
- Missing at Random (MAR)
 - Some dependence on missing value e.g gender bias
 - Models can be used to impute missing values
- Missing Not at Random (MNAR)
 - Missing data depend on unmeasured or unknown variables

Dealing with Missing Data

- Ignore
- Complete Case Analysis
 - Impact depends on category of missingness
 - Rows: df.dropna()
 - Columns: df.dropna(axis='columns') // feature engineering
- Imputation
- Empathize Try to get at the root of what's causing missing values

Imputation

Imputation: Replace missing data with substituted values

- Bayesian Imputation
- Multiple imputation

Choose strategy based on type of data:

- Categorical Data: Treat missing data as a category in categorical data.
- Numerical Data: Better to use imputation technique. Can track w new column.

Imputation strategies decided by evaluating models on hold-out set

"reconsider your imputation methods once you get to the back-and-forth between the feature engineering and modeling phases of the project"

