CCS6224 Network Security

Lecture 4 Securing the Local Area Network

Outline

- > Introduction to Endpoint Security
 - Host-Based protection
- > Layer 2 Security Threats
 - CAM Table Attack & Mitigation
 - VLAN Attack & Mitigation
 - DHCP Attack & Mitigation
 - ARP Attack & Mitigation
 - Address Spoofing Attack & Mitigation
 - STP Attack & Mitigation

Securing LAN Elements

Endpoint Security

Securing Endpoints in the Borderless Network

Post malware attack questions:

- · Where did it come from?
- What was the threat method and point of entry?
- What systems were affected?
- What did the threat do?
- Can I stop the threat and root cause?
- How do we recover from it?
- How do we prevent it from happening again?

Host-Based Protection:

- Antivirus/Antimalware
- SPAM Filtering
- URL Filtering
- Blacklisting
- Data Loss Prevention (DLP)

Antimalware Protection

Spam Filtering

URL Filtering

Blacklisting

Data Loss Prevention (DLP)

DLP provides services and protections:

- Detailed logging and forensic evidence gathering
- User/Administrator notification
- Real time prevention and blocking
- Quarantine of confidential data

Cisco Network Access Control

Cisco NAC Functions

Cisco NAC Components

Layer 2 Security Threats

Switch Attack Categories

CAM Table Attack

Basic Switch Operation

```
S1# show mac-address-table
          Mac Address Table
Vlan
       Mac Address
                          Type
                                      Ports
       0001.9717.22e0
                                      Fa0/4
                         DYNAMIC
       000a.f38e.74b3
                                      Fa0/1
                         DYNAMIC
       0090.0c23.ceca
                          DYNAMIC
                                      Fa0/3
                                      Fa0/2
       00d0.ba07.8499
                          DYNAMIC
Sw1#
```

CAM Table Operation Example

CAM Table Attack

Intruder Runs Attack Tool

Fill CAM Table

CAM Table Attack

Switch Floods All Traffic

Attacker Captures
Traffic

CAM Table Attack Tools

```
macof -i eth1
36:a1:48:63:81:70 15:26:8d:4d:28:f8 0.0.0.0.26413 > 0.0.0.0.49492: S 1094191437:1094191437(0) win 512
16:e8:8:0:4d:9c da:4d:bc:7c:ef:be 0.0.0.61376 > 0.0.0.0.47523: S 446486755:446486755(0) win 512
18:2a:de:56:38:71 33:af:9b:5:a6:97 0.0.0.0.20086 > 0.0.0.0.6728: S 105051945:105051945(0) win 512
e7:5c:97:42:ec:1 83:73:1a:32:20:93 0.0.0.0.45282 > 0.0.0.0.24898: S 1838062028:1838062028(0) win 512
62:69:d3:1c:79:ef 80:13:35:4:cb:d0 0.0.0.0.11587 > 0.0.0.0.7723: S 1792413296:1792413296(0) win 512
c5:a:b7:3e:3c:7a 3a:ee:c0:23:4a:fe 0.0.0.0.19784 > 0.0.0.0.57433: S 1018924173:1018924173(0) win 512
88:43:ee:51:c7:68 b4:8d:ec:3e:14:bb 0.0.0.0.283 > 0.0.0.0.11466: S 727776406:727776406(0) win 512
b8:7a:7a:2d:2c:ae c2:fa:2d:7d:e7:bf 0.0.0.0.32650 > 0.0.0.0.11324: S 605528173:605528173(0) win 512
e0:d8:1e:74:1:e 57:98:b6:5a:fa:de 0.0.0.0.36346 > 0.0.0.0.55700: S 2128143986:2128143986(0) win 512
```

Topic 6.2.3: Mitigating CAM Table Attacks

© 2013 Cisco and/or its affiliates. All rights reserved.

Mitigating CAM Table Attacks Countermeasure for CAM Table Attacks

Port Security

```
S1(config) # interface f0/1
S1(config-if) # switchport port-security
Command rejected: FastEthernet0/1 is a dynamic port.
S1(config-if) # switchport mode access
S1(config-if) # switchport port-security
S1(config-if) # end
S1#
```

Enabling Port Security

Verifying Port Security

```
S1# show port-security interface f0/1
Port Security
Port Status
                           : Secure-shutdown
Violation Mode
                           Shutdown
Aging Time
                           : 0 mins
Aging Type
                           : Absolute
SecureStatic Address Aging : Disabled
 Maximum MAC Addresses
                           : 0
Total MAC Addresses
Configured MAC Addresses
                           : 0
Sticky MAC Addresses
                           : 0
Last Source Address:Vlan
                           : 0000.0000.0000:0
Security Violation Count
                           : 0
```

Port Security Options

```
S1(config) # interface f0/1
S1(config-if) # switchport port-security ?
aging Port-security aging commands
mac-address Secure mac address
maximum Max secure addresses
violation Security violation mode
<<cr>
S1(config-if) # switchport port-security
```

Enabling Port Security Options

Setting the Maximum Number of Mac Addresses

```
Switch(config-if)
switchport port-security maximum value
```

Manually Configuring Mac Addresses

```
Switch (config-if)

switchport port-security mac-address mac-address {vlan | {access | voice}}
```

Learning Connected Mac Addresses Dynamically

```
Switch (config-if)
switchport port-security mac-address sticky
```

Port Security Violations

Security Violation Modes:

- Protect
- Restrict
- Shutdown

Security Violation Modes				
Violation Mode	Forwards Traffic	Sends Syslog Message	Increases Violation Counter	Shuts Down Port
Protect	No	No	No	No
Restrict	No	Yes	Yes	No
Shutdown	No	Yes	Yes	Yes

Port Security Aging

Switch (config-if)

Parameter	Description	
static	Enable aging for statically configured secure addresses on this port.	
time time	 Specify the aging time for this port. The range is 0 to 1440 minutes. If the time is 0, aging is disabled for this port. 	
type absolute	 Set the absolute aging time. All the secure addresses on this port age out exactly after the time (in minutes) specified and are removed from the secure address list. 	
type inactivity	 Set the inactivity aging type. The secure addresses on this port age out only if there is no data traffic from the secure source address for the specified time period. 	

Port Security with IP Phones


```
S1(config)# interface f0/1
S1(config-if)# switchport mode access
S1(config-if)# switchport port-security
S1(config-if)# switchport port-security maximum 3
S1(config-if)# switchport port-security violation shutdown
S1(config-if)# switchport port-security aging time 120
S1(config-if)#
```

SNMP MAC Address Notification

VLAN Hopping Attacks

VLAN Hopping Attacks

- Trunk ports have access to all VLANs by default
- Used to route traffic for multiple VLANs across the same physical link (generally between switches)
- Encapsulation can be 802.1q or ISL
- An end station can spoof as a switch with ISL or 802.1q
- The station is then a member of all VLANs

VLAN Double-Tagging Attack

Mitigating VLAN Hopping Attacks

- A double-tagging VLAN hopping attack is unidirectional, works only if the attacker and the trunk port are in the same native VLAN
- To mitigate the hopping attack, the best way is to make sure the native VLAN of the trunk port(s) is different than any users' ports
- Do not use VLAN1 for anything

DHCP Function

- Server dynamically assigns IP address on demand
- Administrator creates pools of addresses available for assignment
- Address is assigned with lease time
- DHCP delivers other configuration information in options

DHCP Starvation Attack

- > Gobbler/DHCPx looks at the entire DHCP scope and tries to lease all of the DHCP addresses available in the DHCP scope
- > This is a Denial of Service (DoS) attack using DHCP leases

Mitigating DHCP Starvation Attack

- > Gobbler uses a new MAC address to request a new DHCP lease
- > Restrict the number of MAC addresses on a port
- > Will not be able to lease more IP address then MAC addresses allowed on the port
- In the example the attacker would get one IP address from the DHCP server

```
Cisco IOS
switchport port-security
switchport port-security maximum 1
switchport port-security violation restrict
switchport port-security aging time 2
switchport port-security aging type inactivity
```

Rogue DHCP Server Attack

- What do you see as a potential problem with incorrect information?
 - Wrong default gateway—Attacker is the gateway
 - Wrong DNS server—Attacker is DNS server
 - Wrong IP address—Attacker does DOS with incorrect IP

Mitigating Rogue DHCP Server Attack Configuring DHCP Snooping

DHCP Snooping Reference Topology

Configuring a Maximum Number of MAC Addresses

```
S1(config)# ip dhcp snooping
S1(config)#
S1(config)# interface f0/1
S1(config-if)# ip dhcp snooping trust
S1(config-if)# exit
S1(config)#
S1(config)# interface range f0/5 - 24
S1(config-if-range)# ip dhcp snooping limit rate 6
S1(config-if-range)# exit
S1(config)#
S1(config)#
S1(config)# ip dhcp snooping vlan 5,10,50-52
S1(config)#
```

Verifying DHCP Snooping

```
S1# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
5,10,50-52
DHCP snooping is operational on following VLANs:
DHCP snooping is configured on the following L3 Interfaces:
Insertion of option 82 is enabled
  circuit-id default format: vlan-mod-port
  remote-id: 0cd9.96d2.3f80 (MAC)
Option 82 on untrusted port is not allowed
Verification of hwaddr field is enabled
Verification of giaddr field is enabled
DHCP snooping trust/rate is configured on the following Interfaces:
Interface
                          Trusted
                                     Allow option
                                                     Rate limit (pps)
                                                     unlimited
FastEthernet0/1
                          yes
                                     yes
 Custom circuit-ids:
FastEthernet0/5
                                     no
 Custom circuit-ids:
FastEthernet0/6
                                      no
 Custom circuit-ids:
 <output omitted>
```

View the DHCP snooping database

S1# show ip dhcp s	nooping binding				
MacAddress	IpAddress	Lease (sec)	Type	VLAN	Interface
00:03:47:B5:9F:AD	192.168.10.10	193185	dhcp-snooping	5	FastEthernet0/5

ARP Function

- > Before a station can talk to another one
 - it must do an ARP request to map the IP address to the MAC address
 - This ARP request is broadcast
 - All computers on the subnet will receive and process the ARP request
 - the station that matches the IP address in the request will send an ARP reply

ARP Spoofing and ARP Poisoning Attack

Mitigating ARP Attacks Configuring Dynamic ARP Inspection

- > Uses the DHCP snooping binding table information
- > Check the mac address and IP address fields to see
 - if the ARP from the interface is in the binding
 - if not, traffic is blocked

sh ip dhcp snooping binding									
MacAddress	IpAddress	Lease(sec) Type		VLAN	Interface			
00:03:47:B5:9F:	AD 10.120.4.10	193185	dhcp-snooping	4	Fast	tEthernet3/18			

Configuring Dynamic ARP Inspection

```
S1(config)# ip dhcp snooping
S1(config)#
S1(config)# ip dhcp snooping vlan 10
S1(config)# ip arp inspection vlan 10
S1(config)#
S1(config)#
S1(config)# interface fa0/24
S1(config-if)# ip dhcp snooping trust
S1(config-if)# ip arp inspection trust
S1(config-if)#
```

Checking Source, Destination, and IP

```
S1(config) # ip arp inspection validate ?
  dst-mac Validate destination MAC address
           Validate IP addresses
  src-mac Validate source MAC address
S1(config) # ip arp inspection validate src-mac
S1(config) # ip arp inspection validate dst-mac
S1(config) # ip arp inspection validate ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate ip
S1(config)#
S1(config) # ip arp inspection validate src-mac dst-mac ip
S1(config)#
S1(config) # do show run | include validate
ip arp inspection validate src-mac dst-mac ip
S1 (config) #
```

Address Spoofing Attack

- Attacker sends packets with the incorrect source MAC address
- > If network control is by MAC address, the attacker now looks like the Server

Mitigating Address Spoofing Attack

Configuring IP Source Guard

IP Source Guard Reference Topology

Configuring IP Source Guard

```
S1(config)# interface range fastethernet 0/1 - 2
S1(config-if-range)# ip verify source
S1(config-if-range)# end
S1#
```

Checking IP Source Guard

10
10

> We can use the DHCP snooping binding table information

ip verify source dhcp-snooping-vlan

 Operates just like dynamic ARP inspection, but it looks at every packet, not just ARP packet

STP Basics

- STP is used to maintain loop-free topologies in a redundant layer 2 architecture
- > 4-key steps involved
- 1. Elect root bridge
- 2. Elect root port
- 3. Elect designated port
- 4. Block all remaining ports

STP Manipulation Attacks

Spoofing the Root Bridge

Successful STP Manipulation Attack

Mitigating STP Attacks

Configuring PortFast

Configuring BDPU Guard

%SPANTREE-2-BLOCK_BPDUGUARD: Received BPDU on port F0/1 with BPDU Guard enabled. Disabling port. %PM-4-ERR_DISABLE: bpduguard error detected on Et0/0, putting F0/1 in err-disable state

Configuring Root Guard

Configuring Loop Guard

