(1) Ecco 2018 Vic Reiner

Lecture 4

Cyclic Sieving phenomena & Springer's Theorem

Recall that in lecture 1 we proved ...

(deBruijn 1959)

THEOREM: For a permutation group $G \subseteq G_h$, consider its orbits $O = \{S_1, ..., S_t\}$ when G acts on

the Bodean algebra 2^[n], and the Z1/271-action

via complementation sending () = c(0)={mS1,-,[n]\Sty.

Then the poset of all Gorbots $X := 2^{M}/G$

and its rank-generating function $X(q) := r_0 + r_1 q + r_2 q + \dots + r_n q^n$

 $= \sum_{k=1}^{\infty} q^k \cdot \left| \binom{MJ}{k} / G \right|$

have the property that

ro-ry+r2-... ±rn = # self-complementary G-orbits

i.e. $[X(q)]_{q=-1} = |\{x \in X : c(x) = x\}|$

This is an example of what Stembridge called a "q=-1 phenomenon":

A set X with an action of Z/2/2= (c) and polynomial X(g) such that

X(1) = |X|

 $X(-1) = \left| \left\{ x \in X : c(x) = x \right\} \right|$

More generally, one can consider sets X with actions of cyclic groups I/m Z = (= <c> = 1e, c, c2, --, cm-13 for m larger than 2: Say that a set X with the action of a cyclic DEFINITION: (R.-Stanton-White) group C=(c)= Z/mZ and a polynomial X(g) 2004 exhibit a cyclic siering phenomenon (OSP) if for every cd in C one has [{x \in X : cd(x) = x }] $\left[\times(q)\right]_{q=6d}$ where $g := e^{\frac{2\pi i}{m}}$ EXAMPLE (one of the first)

THEOREM: This X, X(q) exhibits a CSP.

(RSW)

(exercise 2 green

(EXERCISE 2 gives one of the proofs)

$$\begin{array}{c}
e.g. & n=4 \\
k=2
\end{array}$$

$$X = \binom{[n]}{k} = \binom{[4]}{2}$$

$$C = \frac{\mathbb{Z}/4\mathbb{Z}}{4\mathbb{Z}}$$

$$= \langle c \rangle = \{e,c,c^2,c^3\}$$

$$\binom{[n,2,3,4)}{2}$$

This first example comes from a much more general statement about reflection groups, and an enhanced version of the Shephard-Todd/Chevalley isomorphism between the convariant algebra and the regular representation. (Springer 1972) THEOREM: Given a finite reflection group GCGL(C)=GL(V), say that ce Gi is a regular element if it has an eigenvector veV (so c(v)= g.v) lying on no reflection Then if we consider the cyclic subgroup (= <c> = 2e,c,c3,-,cm-19 CG one has an isomorphism of GxC-representations coinvariant algebra regular representation (fn,--,fn) · Gacting as before by · G acting by left-translations as before: $h \mapsto gh$ · () acting by scalar · C acting by right-translations: substitutions c(xi)= gxi Vi h is hed Equivalently, for any G-representation p, one has EXERCISE 3 $\chi_{p(c)} = \left[f(q) \right]_{q=g}$ asks you to pheck they are the fake-degree polynomial for p equivalent

This leads to the following general CSP. THEOREM: When a finite reflection group GCGLn(C) acts transitively on a set $X \subseteq G/H$ for some subgroup H) and CEG is any regular element, say of order m, then one has a CSP for the action of C=<c>=Z/mZ on X with the polynomial

In other words,

$$\left[\left(\left(\left(x \right) \right) \right]_{q=\zeta^{d}} = \left[\left(\left(x \right) \right) \right]_{\chi \in X} : c^{d}(x) = \chi^{2} \right]$$

$$= \left[\left(\left(\left(x \right) \right) \right]_{\chi \in X} : c^{d}(x) = \chi^{2} \right]$$

$$= \left[\left(\left(\left(x \right) \right) \right]_{\chi \in X} : c^{d}(x) = \chi^{2} \right]$$

Why does this generalize our first example?

Recall there
$$X = \binom{[n]}{k}$$
 k -subsets of $[n]$
 G_1
 G_2
 G_3
 G_4
 G_4
 $G_{1,2,-,k}$
 G_5
 $G_{2,2,-,k}$
 $G_{3,2,-,k}$
 G

Inside G_n , the n-cycle c=(1,2,-n) is a regular element, because when c acts on $V=\mathbb{C}^n$, it has an eigenvector \mathbb{C}^n \mathbb{C}^n

 $V = \begin{cases} \frac{9}{92} \\ \frac{9}{92} \end{cases}$ where $9 = e^{\frac{2\pi i}{N}}$: $c(v) = \left[\frac{9}{92}\right] = \frac{9}{9} \cdot v$

reflection

and v lies on no reflection hyperplanes $x_i = x_j$ since its coordinates are distinct.

 $x_1 = x_2$

Hence the THEOREM implies one should have a CSP for
$$X = \binom{[n]}{k} = G/H$$

$$C = \langle e_i \rangle = \{e_i e_i, e_i^2, \dots, e^{iH}\} \cong \mathbb{Z}/n\mathbb{Z}$$
with the polynomial
$$X(q) = \frac{Hilb(\Omega X)^H}{Hib(\Omega X)^G}, q)$$
We know $\Omega X^G = \Omega(x_1, \dots, x_n)^{G_n} = \Omega(e_1, e_2, \dots, e_n)$
so $Hilb(\Omega X)^G, q) = (I-qXI-q^2)...(I-q^n)$

But also $\Omega X^H = \Omega(x_1, \dots, x_n)^{G_n} \times \Omega(x_1, \dots, x_n) \times \Omega(x_1, \dots, x_n)^{G_n} \times \Omega(x_1, \dots,$

(8)
The proof idea for deducing the CSP THEOREM
from Springer's THEOREM is our favorite
idea of comparison of traces.
Start with Springer's isomorphism of GxC-representations
cinvariant algebra regular representation
Start with Springer's isomorphism of $G \times C$ -representations cinvariant algebra regular representation $C[x_1,-,x_n]/(f_1,-,f_n) \cong Preg$
Take H-fixed spaces on both sides, leaving an
isomorphism of C-representations
$(C(x)/(f))^{H} = (\rho_{reg})^{H}$
Compare the trace of cd on the two sides:
· The left side is a graded vector space
where cd acts as the scalar (gd) in its
ken graded component.
Also, one ram show the Hilbert series
Also, one can show the Hilbert series is $X(q) = \frac{\text{Hilb}(C(x)^{H}, g)}{\text{Hilb}(C(x)^{G}, q)}$, so c^{d} acts with c^{d} bace $\left[X(q)\right]_{q=g^{d}}$.
. The right side is coset space X=G/H
with (-action via $c^d(gH) = cdgH$)
50 cd acts with trace { gH : cdgH = gH } = { xeX : cd(x)=x}