

NCKU Programming Contest Training Course Computational Geometry 2017/05/31

Jheng-Huang Hong

Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

Line intersection

• The vector V₂ is clockwise/counterclockwise from V₁ ?

Line intersection

• Cross Product:

$$1 \times 2 = \det \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} = 1 2 - 2 1 = 1 1 1 2$$

 $1 \times 2 > 0$

Line intersection

Cross Product :

$$1 \times 2 = (1 - 0) \times (2 - 0) = (1 - 0)(2 - 0) - (2 - 0)(1 - 0)$$

 $1 \times 2 > 0$

Line intersection

$$1 \times 2 = (1 - 0) \times (2 - 0) = (2 - 0)(2 - 0) - (4 - 0)(4 - 0) = -12$$

Line intersection

• Line intersection problem

Line intersection

Two situation

Line intersection

$$(0 \times 1) \cdot (0 \times 2) = ?$$

Line intersection

$$(0 \times 1) \cdot (0 \times 2) < 0$$

Line intersection

$$(0 \times 1) \cdot (0 \times 2) < 0$$

Line intersection

IBM, event sponso

$$((2-1)\times(3-1))\cdot((2-1)\times(4-1))<0$$
 & & $((4-3)\times(1-3))\cdot((4-3)\times(2-3))<0$

Line intersection

$$(4-3) \times (2-3) = 0$$

Line intersection

$$(4-3) \times (2-3) = 0$$

Line intersection

• Cross Product:

 $min(3, 4) \le 2 \le max(3, 4) \&\& min(3, 4) \le 2 \le max(3, 4)$

Line intersection

Two situation

Practice - 1

UVa 191 - Intersection

Convex Hull

- 中譯「凸包」或「凸殼」。在多維空間中有一群散佈各處的點,「凸包」是包覆這群點的所有外殼當中,表面積暨容積最小的一個外殼,而最小的外殼一定是凸的。
- 「凸」的定義是:圖形內任意兩點的連線不會經過圖形外部。「凸」 並不是指表面呈弧狀隆起,事實上凸包是由許多平坦表面組成的。

演算法筆記 – Convex Hull

Convex Hull

- Algorithm
 - Brute Force
 - Graham-Scan
 - Andrew's Monotone Chain

Step1 : Sort by x

• Step2 : Connect points

• Step2 : Connect points

Andrew's Monotone Chain

$$01 \times 02 < 0$$

• Step4 : Delete starting point

Practice - 1

UVa 218 - Moth Eradication

