Experiment 2: Loan Amount Prediction using Linear Regression

Sreenethi G S

July 2025

Aim

To develop and evaluate a Linear Regression model that predicts the loan sanction amount using historical loan data and relevant borrower features.

Libraries Used

• Pandas: Data manipulation

• NumPy: Numerical operations

• Scikit-learn: Model building, preprocessing, and evaluation

• Matplotlib and Seaborn: Data visualization

Objective

- Preprocess and clean the dataset
- Perform exploratory data analysis (EDA)
- Engineer features to improve model accuracy
- Train and validate a Linear Regression model
- Evaluate model performance using MAE, MSE, RMSE, and R² metrics
- Visualize results and interpret model behavior

Mathematical Description

The mathematical model for Linear Regression is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \epsilon$$

Where:

- y is the dependent variable (Loan Sanction Amount)
- x_1, x_2, \ldots, x_n are the independent variables
- β_0 is the intercept term
- β_1, \ldots, β_n are coefficients
- ϵ is the error term

RSS is minimized:

$$RSS = \sum_{i=1}^{m} \left(y_i - \left(\beta_0 + \sum_{j=1}^{n} \beta_j x_{ij} \right) \right)^2$$

Evaluation Metrics

- MAE: Mean Absolute Error
- MSE: Mean Squared Error
- RMSE: Root Mean Squared Error
- R^2 : Coefficient of determination
- Adjusted R^2

Python Code

```
train_df = pd.read_csv("/content/drive/MyDrive/train.csv")
target = 'Loan Sanction Amount (USD)'
drop_cols = ['Customer_ID', 'Name', 'Property_ID', 'Location', 'Property_
   Location']
train_df.drop(columns=drop_cols, inplace=True)
train_df.dropna(inplace=True)
# Step 4: Handle missing values
train_df.dropna(inplace=True)
# Step 5: Visualize Target Distribution
plt.figure(figsize=(8, 5))
sns.histplot(train_df[target], kde=True, color='skyblue')
plt.title('DistributionuofuLoanuSanctionuAmount')
plt.xlabel(target)
plt.ylabel('Frequency')
plt.tight_layout()
plt.show()
# Step 6: Visualize numerical features
num_features = ['Age', 'Income (USD)', 'Credit Score', 'Dependents',
                'Current Loan Expenses (USD)', 'Property Price', 'Property
                   ∟Age']
for col in num_features:
    plt.figure(figsize=(8, 4))
    sns.histplot(train_df[col], kde=True, bins=30)
    plt.title(f'Distribution of (col}')
    plt.tight_layout()
    plt.show()
    plt.figure(figsize=(8, 4))
    sns.boxplot(x=train_df[col])
    plt.title(f'Boxplot of (col}')
   plt.tight_layout()
    plt.show()
# Step 7: Correlation Heatmap
plt.figure(figsize=(10, 8))
corr_matrix = train_df[num_features + [target]].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Heatmap')
plt.tight_layout()
plt.show()
# Step 8: Scatter plots (numerical features vs target)
key_features = ['Incomeu(USD)', 'CredituScore', 'PropertyuPrice', 'Current
   □Loan □ Expenses □ (USD) ']
for col in key_features:
    plt.figure(figsize=(8, 5))
    sns.scatterplot(data=train_df, x=col, y=target, alpha=0.6)
    plt.title(f'{col} vs {target}')
  plt.tight_layout()
```

```
plt.show()
# Step 9: Boxplots of categorical features vs target
cat_features = ['Gender', 'Income_Stability', 'Profession', 'Type_of_
   Employment',
                 'Has Active Credit Card', 'Co-Applicant', 'Property Type']
for col in cat_features:
    plt.figure(figsize=(10, 5))
    sns.boxplot(data=train_df, x=col, y=target)
    plt.title(f'{target} by {col}')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
# Step 10: Feature Engineering
train_df['Total_Income'] = train_df['Income_u(USD)'] + train_df['Current_u
   Loan_Expenses_(USD)']
train_df['Log_Loan_Amount'] = np.log1p(train_df[target])
train_df['Log_Income'] = np.log1p(train_df['Incomeu(USD)'])
train_df['Age_Bin'] = pd.cut(train_df['Age'], bins=[18, 30, 40, 50, 60,
   100], labels=False)
# Step 11: Define final features and target
numerical_features = ['Age', 'Income_(USD)', 'Credit_Score', 'Dependents',
                       'Current_Loan_Expenses_(USD)', 'Property_Price', '
                          Property_Age', 'Total_Income']
X = train_df[numerical_features + cat_features]
y = train_df[target]
# Step 12: Split dataset (Train=60%, Validation=20%, Test=20%)
X_train_val, X_test, y_train_val, y_test = train_test_split(X, y,
   test_size=0.2, random_state=42)
X_{\text{train}}, X_{\text{val}}, y_{\text{train}}, y_{\text{val}} = train_test_split(X_{\text{train}}_val, y_{\text{train}}_val
   , test_size=0.25, random_state=42)
# Step 13: Preprocessing pipeline
preprocessor = ColumnTransformer([
    ('num', StandardScaler(), numerical_features),
    ('cat', OneHotEncoder(drop='first', handle_unknown='ignore'),
       cat_features)
])
# Step 14: Full pipeline with Linear Regression
pipeline = Pipeline([
    ('preprocessor', preprocessor),
    ('regressor', LinearRegression())
])
# Step 15: Train the model
pipeline.fit(X_train, y_train)
# Step 16: Predict & Evaluate on Validation Set
y_val_pred = pipeline.predict(X_val)
```

```
mae_val = mean_absolute_error(y_val, y_val_pred)
mse_val = mean_squared_error(y_val, y_val_pred)
rmse_val = np.sqrt(mse_val)
r2_val = r2_score(y_val, y_val_pred)
adj_r2_val = 1 - (1 - r2_val) * (len(y_val) - 1) / (len(y_val) - X_val.
   shape[1] - 1)
print("---⊔Validation⊔Metrics⊔---")
print(f"MAE: \( \{\) mae_val:.2f\}")
print(f"MSE:_|{mse_val:.2f}")
print(f"RMSE: [rmse_val:.2f]")
print(f"R2_Score:_\{r2_val:.4f}")
print(f"Adjusted_R2:_{\( \) \{adj_r2_val:.4f}\)")
# Step 17: Predict & Evaluate on Test Set
y_test_pred = pipeline.predict(X_test)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
r2_test = r2_score(y_test, y_test_pred)
adj_r2_test = 1 - (1 - r2_test) * (len(y_test) - 1) / (len(y_test) - 1)
   X_test.shape[1] - 1)
print("---__Test__Metrics__---")
print(f"MAE: [mae_test:.2f]")
print(f"MSE: [mse_test:.2f]")
print(f"RMSE: [rmse_test:.2f]")
print(f"R2_Score:_\{r2_test:.4f}")
print(f"Adjusted R2: {adj_r2_test:.4f}")
# Step 18: Actual vs Predicted (Test Set)
plt.figure(figsize=(8, 5))
plt.scatter(y_test, y_test_pred, alpha=0.6, color='royalblue')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--'
   )
plt.xlabel('Actual_Loan_Amount')
plt.ylabel('Predicted_Loan_Amount')
plt.title('Actual uvs Predicted (Test Set)')
plt.tight_layout()
plt.show()
# Step 19: Residual Plot (Test Set)
residuals_test = y_test - y_test_pred
plt.figure(figsize=(8, 5))
plt.scatter(y_test_pred, residuals_test, alpha=0.6, color='orange')
plt.axhline(0, linestyle='--', color='red')
plt.xlabel('Predicted_Loan_Amount')
plt.ylabel('Residuals')
plt.title('Residuals_vs_Predicted_(Test_Set)')
plt.tight_layout()
plt.show()
# Step 20: K-Fold Cross-Validation
scoring = {
```

```
'MAE': 'neg_mean_absolute_error',
    'MSE': 'neg_mean_squared_error',
    'R2': 'r2'
}
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cv_results = cross_validate(pipeline, X, y, cv=kf, scoring=scoring)
# Convert to positive and create result table
mae_scores = -cv_results['test_MAE']
mse_scores = -cv_results['test_MSE']
rmse_scores = np.sqrt(mse_scores)
r2_scores = cv_results['test_R2']
cv_table = pd.DataFrame({
    'Fold': [f'Fold<sub>□</sub>{i+1}' for i in range(5)],
    'MAE': mae_scores,
    'MSE': mse_scores,
    'RMSE': rmse_scores,
    'R2_Score': r2_scores
})
cv_table.loc['Average'] = cv_table.drop(columns='Fold').mean()
print("\n---⊔Cross⊔Validation⊔Results⊔---")
print(cv_table)
```

Note: Full code includes EDA, modeling, prediction, visualization, and metrics.

Output Screenshots

```
--- Validation Metrics ---
MAE: 21904.22
MSE: 971926456.02
MSE: 971926456.02
RSE: 971926456.02
RSE: 91575.74
R2 Score: 0.5764
Adjusted R2: 0.5743
--- Test Metrics ---
MAE: 22145.56
MSE: 9386720.05
RMSE: 31592.20
R2 Score: 0.5472
Adjusted R2: 0.5450
```

Figure 1: Figure 1: Performance Metrics

Figure 2: Figure 2: Distribution of Dataset

Figure 3: Figure 3: Boxplot of Features

Figure 4: Figure 4: Correlation Heatmap

Figure 6: Residual Plot

Figure 5: Figure 5: Actual vs Predicted Loan Amount

Inference Table

Cross-Validation Results (5-Fold)

Fold	MAE	$MSE~(\times 10^8)$	RMSE	R^2
Fold 1	22090.85	9.96	31556.51	0.5483
Fold 2	21386.32	9.40	30655.92	0.5652
Fold 3	22128.77	10.8	32933.10	0.5183
Fold 4	21838.68	9.65	31069.29	0.5727
Fold 5	21917.13	9.55	30896.81	0.5817
Average	21872.35	9.88	31422.33	0.5572

Result Summary Table

Description	Student's Result		
Dataset Size (after preprocessing)	15,183		
Train/Test Split Ratio	60% Train, 20% Validation, 20% Test		
Feature(s) Used for Prediction	Age, Income, Credit Score, Dependents,		
	Property Price, Property Age, etc.		
Model Used	Linear Regression		
Cross-Validation Used?	Yes		
If Yes, Number of Folds (K)	5		
Reference to CV Results Table	Table 1		
Mean Absolute Error (MAE) on Test Set	22,145.56		
Mean Squared Error (MSE) on Test Set	9.98×10^{8}		
Root Mean Squared Error (RMSE) on Test Set	31,592.20		
R ² Score on Test Set	0.5472		
Adjusted R^2 Score on Test Set	0.5450		
Most Influential Feature(s)	Income (USD), Property Price, Credit Score		
Observations from Residual Plot	Residuals are moderately scattered around 0; no major pattern observed, indicating acceptable model fit.		
Interpretation of Predicted vs Ac-	Most predictions align well with actual		
tual Plot	values; slight underestimation in high loan ranges.		
Any Overfitting or Underfitting Observed?	Slight underfitting observed		
Justification	Test and validation errors are comparable,		
	but R^2 is moderate; residuals do not show strong bias.		

Table 1: Summary of Model Performance and Key Observations

Best Practices

- Handle missing values appropriately
- Feature engineering like log transforms and income sum
- Normalize numerical and encode categorical data
- Evaluate with multiple metrics

• Analyze residuals for bias

Learning Outcomes

- Understood end-to-end ML pipeline
- Learned feature engineering
- \bullet Applied cross-validation and evaluation metrics
- Interpreted residual and prediction plots