Análisis Matemático III

Javier Ortín Rodenas Curso 2025-2026

Contenidos

1.	Cardinali	dad de conjuntos	4
	0.1	Definición de cardinalidad, tipos de cardinalidad	4
	0.2	Ejemplos de conjuntos numerables	5
	0.3	Ejemplos de conjuntos no numerables	6
	0.4	Procesos que dan lugar a conjuntos numerables	7
	0.5	Más procesos que dan lugar a conjuntos numerables	8
	0.6	Definición de conjunto de partes	8
	0.7	Cardinal de partes de un conjunto finito	9

Introducción de la asignatura

La materia será la misma que en años anteriores, aunque habrá un cambio en la metodología de enseñanza: no habrá tutorías grupales. No obstante, sí habrá evaluación continua. Su funcionamiento se explicará posteriormente.

Preliminares

En la sección de preliminares se tratarán los siguientes temas:

- Cardinalidad de conjuntos
- Descomposición de abiertos de \mathbb{R}^N en unión de cubos diádicos
- Series dobles

§1. Cardinalidad de conjuntos

0.1 Definición de cardinalidad, tipos de cardinalidad

Intuitivamente, podemos definir la cardinalidad de un conjunto como el número de elementos que tiene. Además, es lógico plantear la distinción entre conjuntos finitos e infinitos. Veamos cómo formalizar esta idea.

Sea A un conjunto no vacío, diremos que A es un conjunto finito de cardinalidad $n \in \mathbb{N} = \{1, 2, \ldots\}$ si existe una aplicación biyectiva $\varphi : \{1, 2, \ldots, n\} \to A$. Se considera que el conjunto vacío \varnothing es finito con cardinal 0.

Sea A un conjunto cualquiera, diremos que es un conjunto infinito si existe cierta aplicación inyectiva $\varphi: \mathbb{N} \to A$. Dentro de esta clasificación, diremos que A es infinito numerable si existe una aplicación $\varphi: \mathbb{N} \to A$ biyectiva. Si esto último no fuese posible, diremos que A es infinito no numerable.

Aunque no entra dentro de los objetivos de esta asignatura, es interesante contemplar la siguiente observación: Si un conjunto no es un conjunto finito, podemos afirmar simplemente que es un conjunto "no finito". Si además incluimos el axioma de elección, sí podremos afirmar que tal conjunto es infinito. Dentro de los conjuntos infinitos, todos son o bien numerables o bien no numerables, sin intersección entre ambas categorías.

0.2 Ejemplos de conjuntos numerables

- N: trivial, basta considerar la aplicación identidad.
- Z: basta considerar la siguiente aplicación biyectiva:

$$\varphi(n) = \begin{cases} \frac{n}{2}, & \text{si } n \text{ es par} \\ -\frac{n-1}{2}, & \text{si } n \text{ es impar} \end{cases} \qquad \begin{array}{c} 1 & 2 & 3 & 4 & 5 & \cdots \\ \downarrow \varphi & \downarrow \varphi & \downarrow \varphi & \downarrow \varphi \\ 0 & 1 & -1 & 2 & -2 & \cdots \end{array}$$

• $\mathbb{Q} := \left\{ \frac{z}{n} : z \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Denotaremos por \hat{Q} al conjunto $\left\{ \frac{z}{n} : z, n \in \mathbb{N} \right\}$. Como hemos visto en el apartado anterior, al ser \mathbb{Z} numerable, \hat{Q} y \mathbb{Q} han de tener necesariamente la misma cardinalidad. Por tanto, basta con demostrar que \hat{Q} es numerable, lo que haremos a continuación por medio de una doble desigualdad.

Representaremos los elementos de \hat{Q} en una tabla infinita que recorreremos diagonalmente:

	1	2	3	4	
1	1 1 ×	$\frac{2}{1}$	$\frac{3}{1}$	$\frac{4}{1}$	
2	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$	
3	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{3}{3}$	$\frac{4}{3}$	
4	$\frac{1}{4}$	$\frac{2}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	
÷	i	÷	÷	÷	٠.

Por tanto, obtenemos como resultado la siguiente aplicación $\varphi: \mathbb{N} \to \hat{Q}$ con

$$\varphi(1) = \frac{1}{1}, \quad \varphi(2) = \frac{2}{1}, \quad \varphi(3) = \frac{1}{2}, \quad \varphi(4) = \frac{3}{1}, \quad \varphi(5) = \frac{2}{2}, \quad \varphi(6) = \frac{1}{3}...$$

Aunque esta aplicación no es inyectiva (por ejemplo $\varphi(1) = \varphi(5)$), sí es suprayectiva. Por tanto, card $\mathbb{N} \leq \operatorname{card} \hat{Q}$. Además, como $\mathbb{N} \subseteq \hat{Q}$, es evidente que card $\mathbb{N} \geq \operatorname{card} \hat{Q}$. En consecuencia, card $\mathbb{N} = \operatorname{card} \hat{Q}$; es decir, \hat{Q} es numerable y por tanto también lo es \mathbb{Q} .

0.3 Ejemplos de conjuntos no numerables

Vemos que \mathbb{R} es no numerable por reducción al absurdo. Supongamos que existe una aplicación biyectiva $\varphi : \mathbb{N} \to \mathbb{R}$. Así, ha de cumplirse $\varphi(\mathbb{N}) = \mathbb{R}$. Definiremos una sucesión de intervalos encajados como sigue:

- Tomamos a_1, b_1 cualesquiera tales que $a_1 < b_1 y \varphi(1) \notin [a_1, b_1]$
- Para n > 1, tomamos a_n, b_n tales que $a_n < b_n$, $[a_n, b_n] \subset (a_{n-1}, b_{n-1})$ y $\varphi(n) \notin [a_n, b_n]$

De este modo, obtenemos una sucesión de intervalos cerrados encajados tales que $\varphi(n) \notin [a_n, b_n] \, \forall n \in \mathbb{N}$. Denotando $I_i = [a_i, b_i]$, se cumple:

- 1. I_1 es compacto por el teorema de Heine-Borel
- 2. $\{I_n:n\in\mathbb{N}\}$ verifica la propiedad de la intersección finita

Al ser una sucesión de intervalos cerrados encajados, juntando las dos nociones anteriores, podemos afirmar que se satisface la propiedad de la intersección infinita. Por tanto, se tiene:

$$\exists x_0 \in \bigcap_{n=1}^{\infty} I_n \Rightarrow x_0 \in \mathbb{R} \backslash \varphi(\mathbb{N}) \Rightarrow \varphi(\mathbb{N}) \neq \mathbb{R} \Rightarrow \varphi \text{ no es biyectiva}$$

Se contradice la hipótesis de partida. Por todo lo anterior, concluimos que \mathbb{R} es no numerable.

La aplicación tan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$ es biyectiva, luego el intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ es no numerable. Por otro lado, podemos establecer una biyección entre este intervalo y cualquier otro invervalo abierto. Así, cualquier intervalo es no numerable.

0.4 Procesos que dan lugar a conjuntos numerables

Sea A un conjunto finito, sea B un conjunto infitnito numerable. Entonces, $A \cup B$ y $A \times B$ son conjuntos infinitos numerables (o vacíos).

<u>Demostración:</u> Distinguiremos dos casos:

Si $A = \emptyset$, entonces $A \cup B = B$ que es infinito numerable por hipótesis. Además, $A \times B = \emptyset$ que es finito por definición.

Si $A \neq \emptyset$, como A es finito podemos afimar que $A \setminus B = \{a_1, a_2, \dots, a_{n_1}\}$ para cierto $n_1 \in \mathbb{N} \cup \{0\}$. Por ser B infinito numerable, existe una aplicación biyectiva $\varphi : \mathbb{N} \to B$. Para ver que $A \cup B$ es infinito numerable, basta considerar la siguiente biyección:

$$\hat{\varphi}(n) = \begin{cases} a_n, & \text{si } n \le n \le n_1 \\ \varphi(n - n_1), & \text{si } n > n_1 \end{cases}$$

Esta biyección $\hat{\varphi}$ enumera primero todos los elementos de $A \setminus B$ (de haberlos) para luego enumerar todos los elementos de B en el orden original de φ .

Al ser A finito, podemos escribir $A = \{a_1, a_2, \dots, a_{n_2}\}$ para cierto $n_2 \in \mathbb{N}$. Para ver que $A \times B$ es infinito numerable, podemos enumerar sus elementos de la siguiente forma:

Basta enumerar los elementos de $A \times B$ recorriendo la tabla de izquierda a derecha y de arriba a abajo, pues cada fila tiene n_2 elementos y hay tantas filas como naturales.

0.5 Más procesos que dan lugar a conjuntos numerables

Sean A, B conjuntos infinitos numerables con $A \cap B = \emptyset$. Entonces, $A \cup B$ y $A \times B$ son conjuntos infinitos numerables.

<u>Demostración:</u> Al ser A y B infinitos numerables por hipótesis, podemos afirmar que existen ciertas aplicaciones biyectivas $\varphi_A : \mathbb{N} \to A$ y $\varphi_B : \mathbb{N} \to B$.

Para ver que $A \cup B$ es infinito numerable, basta considerar la siguiente biyección:

$$\varphi_{A \cup B}(n) = \begin{cases} \varphi_A\left(\frac{n+1}{2}\right), & \text{si } n \text{ es impar} \\ \varphi_B\left(\frac{n}{2}\right), & \text{si } n \text{ es par} \end{cases}$$

Así, se enumeran alternativamente los elementos de A y B. Al ser $A \cap B = \emptyset$, es seguro que esta aplicación es biyectiva.

Finalmente, para ver que $A \times B$ es infinito numerable, podemos representar sus elementos de forma matricial utilizando un razonamiento diagonal análogo al empleado para ver que $\mathbb Q$ es numerable.

Nota: Aunque en esta demostración hemos supuesto que $A \cap B = \emptyset$, el resultado puede aplicarse también para conjuntos de intersección no vacía. Nótese que como A y B son infinito numerables, entonces $A \cap B$, $A \setminus B$ y $B \setminus A$ han de ser necesariamente conjuntos finitos o infinitos numerables. Finalmente, basta ver que $A \cup B = ((A \setminus B) \cup (B \setminus A)) \cup (A \cap B)$, unión de conjuntos disjuntos. Como para el caso del producto cartesiano no se ha usado la hipótesis de que $A \cap B = \emptyset$, el resultado es válido en cualquier caso.

0.6 Definición de conjunto de partes

Sea A un conjunto cualquiera, se denomina "conjunto de partes de A" y se denota como $\mathcal{P}(A)$ al conjunto cuyos elementos son todos los subconjuntos de A. En particular, siemrpe se cumple que $\emptyset, A \in \mathcal{P}(A)$.

Por ejemplo, para $A = \{1, 2\}$, se tiene que $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$.

0.7 Cardinal de partes de un conjunto finito

Sea A un conjunto finito, entonces card $\mathcal{P}(A) = 2^{\operatorname{card} A} \in \mathbb{N}$.

<u>Demostración:</u> Distinguiremos dos casos:

Para $A = \emptyset$, se tiene que $\mathcal{P}(A) = \{\emptyset\}$, luego card $\mathcal{P}(A) = 1 = 2^0 = 2^{\operatorname{card} A}$.

Si $A \neq \emptyset$, sea $n := \operatorname{card} A \in \mathbb{N}$, podemos identificar cada subconjunto de A según la presencia o ausencia de cada uno de sus n elementos. Definimos el conjunto de las tuplas de ceros y unos de longitud n como sigue:

$$C := \{(\varepsilon_1, \dots, \varepsilon_n) : \varepsilon_i \in \{0, 1\} \ \forall i \in \{1, \dots, n\}\}$$

Así, denotando $A = \{a_1, \ldots, a_n\}$, cada tupla de C puede asociarse biunívocamente a un subconjunto de A al indicar cada ε_i si el elemento a_i pertenece o no al subconjunto. Por tanto, la siguiente aplicación es biyectiva:

$$\varphi: \mathcal{P}(A) \longrightarrow C$$

$$B \prod_{i=1}^{n} f_i(B)$$