Curso de Lógica Matemática

Cristo Daniel Alvarado

27 de febrero de 2024

Índice general

_	Introducción
	0.1. Temario
	0.2. Conectivas Lógicas
1.	Lógica Proposicional
	1.1. Alfabeto
	1.2. Modeos o Estructuras
	1.3. Lista de Axiomas Lógicos

Capítulo 0

Introducción

0.1. Temario

Los siguientes temas se verán a lo largo del curso:

- 1. Lógica (Teoría de Modelos).
 - 1.1) Lógica proposicional.
 - 1.2) Lógica de primer orden.
- 2. Teoría de la Computabilidad.
- 3. Teoría de Conjuntos.

Y la bibliografía para el curso es la siguiente:

- Enderton, 'Introducción matemática a la lógica'.
- Enderton, 'Teoría de la computabilidad'.
- Copi, 'Lógica Simbólica' o 'Computability Theory'.
- Rebeca Weber 'Computability Theory'.

0.2. Conectivas Lógicas

La disyunción (\land), conjunción (\lor), negación (\neg), implicación (\Rightarrow) y si y sólo si (\iff) son las conectivas lógicas usadas usualmente.

(Se habló un poco de una cosa llamada forma normal disyuntiva).

A $\{\land, \lor, \neg\}$ se le conoce como un conjunto completo de conectivas lógicas. Nos podemos quedar simplemente con conjuntos completos de disyuntivas con solo dos elementos, a saber: $\{\land, \neg\}$ y $\{\lor, \neg\}$, ya que $P \lor Q$ es $\neg(\neg P \land \neg Q)$. (de forma similar a lo otro $P \land Q$ es $\neg(\neg P \lor \neg Q)$).

También $\{\Rightarrow,\neg\}$ es otro conjunto completo de conectivas lógicas, ya que $P \land Q$ es $\neg(P \Rightarrow \neq Q)$.

Y, {|} es un conjunto completo, donde | es llamado la **barra de Scheffel**, que tiene la siguiente tabla de verdad.

P	Q	P Q
\overline{V}	V	F
V	F	V
F	V	V
F	F	V

con este, se tiene un conjunto completo de conectivas lógicas.

Como muchas veces se usan conectivas de este tipo:

$$(P \Rightarrow \neg Q) \Rightarrow ((P \Rightarrow R) \land \neg (Q \Rightarrow S) \land T)$$

al ser muy largas, a veces es más conveniente escribirlas en forma Polaca. De esta forma, lo anterior quedaría de la siguiente manera:

$$\Rightarrow \Rightarrow P \neg Q \land \land PR \neg \Rightarrow QST$$

Ahora empezamos con el estudio formal de la lógica.

Capítulo 1

Lógica Proposicional

1.1. Alfabeto

El alfabeto de la lógica proposicional es un conjunto que consta de dos tipos de símbolos:

- 1. Variables, denotadas por $p_1, p_2, ..., p_n, ...$ (a lo más una cantidad numerable). Estas representan proposiciones o enunciados (tengo un paraguas, me caí de las escaleras, no tengo café en la cafetera, etc...).
- 2. Conectivas, como \Rightarrow y \neg .

Aceptamos la existencia de estas cosas (pues, al menos debemos aceptar la existencia de algo). Se van a trabajar con sucesiones finitas de símbolos del alfabeto descrito anteriormente. Ahora necesitaremos especificar que tipos de sucesiones van a servirnos para tener un significado formal.

Definición 1.1.1

En el conjunto de sucesiones finitas de símbolos del alfabeto, definimos una **fórmula bien formada** (abreviada como **FBF**) como sigue:

- 1. Cada variable es una **FBF**.
- 2. Si φ, ψ son **FBF**, entonces $\neg \varphi$ y $\Rightarrow \varphi \psi$ también lo son.

Observación 1.1.1

Recordar que usamos la notación Polaca en la definición anterior.

A continuación unos ejemplos:

Ejemplo 1.1.1

 p_{17} , p_{54} y $\Rightarrow p_2p_{25}$ son FBF. Las primeras dos son llamadas **variables aisladas**. También lo es $\neg \Rightarrow p_2p_{25}$ (en este ejemplo, los p_i son variables).

Pero, por ejemplo $\Rightarrow \neg p_1 p_2 p_3$ y $\Rightarrow p_4$ no son FBF.

Viendo el ejemplo anterior, notamos que el operador \Rightarrow es binario (solo usa dos entradas) y \neg es unario (solo una entrada). Por lo cual, añadir o no demás variables a los opeadores dentro de la fórmula, hace que la fórmula ya no sea una FBF.

Observación 1.1.2

Eventualmente se va a sustituir la notación Polaca por la normal, para que se pueda leer la FBF y el proceso no sea robotizado.

Definiremos ahora más conectivas lógicas para poder trabajar más cómodamente.

Definición 1.1.2

Se definirán tres conectivas lógicos adicionales.

- 1. Se define la **disyunción** $\varphi \lor \psi$ como $\Rightarrow \neg \psi \varphi$ (en notación Polaca).
- 2. Se define la **conjunción** $\varphi \wedge \psi$ como $\neg(\neg \psi \vee \neg \varphi)$.
- 3. Se define el si sólo si $\psi \iff \varphi \text{ como } (\psi \Rightarrow \varphi) \land (\varphi \Rightarrow \psi)$.

1.2. Modeos o Estructuras

En el fondo, queremos que las FBF sean cosas verdaderas o falsas. Un Modelo o Estructura es algo que le va a dar significado a las FBF. De alguna manera va a ser una forma de asignarle el valor de verdadero o falso a cada una de las variables.

Definición 1.2.1

Un **Modelo o Estructura** de la lógica proposicional es una función $m: \mathrm{Var} \to \{V, F\}$, donde Var denota al conjunto de símbolos que son variables. Básicamente estamos diciendo que hay variables que son verdaderas y otras que son falsas.

Teorema 1.2.1

Para todo modelo m, existe una única extensión $\overline{m}: FBF \to \{V, F\}$, donde FBF denota al conjunto de las fórmulas bien formadas, tal que $\overline{m}(\neg \varphi) = V \iff \overline{m}(\varphi) = F$ y $\overline{m}(\neg \varphi \psi) = F \iff \overline{m}(\varphi) = V$ y $\overline{m}(\psi) = F$.

Definición 1.2.2

Sea m un modelo, φ una fórmula y Σ un cojunto de fórmulas. Definimos que

- 1. $m \models \varphi \ (m \text{ satisface } \varphi) \text{ si } \overline{m}(\varphi) = V.$
- 2. $m \models \Sigma$ si $m \models \varphi$ para cada φ elemento de Σ .

Ejemplo 1.2.1

Sea m un modelo tal que $m(p_1) = V$ y $m(p_i) = F$, para todo $i \geq 2$. En este caso $m \not\models \neg p_3$, pero $m \models \neg p_5$.

Definición 1.2.3

Decimos que una fórmula φ es:

- 1. Satisfacible si existe un modelo m tal que $m \models \varphi$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \varphi$.
- 3. Una tautología si todo modelo m cumple que $m \models \varphi$.

Ejemplo 1.2.2

Tomemos de ejemplo a $\Rightarrow p_1p_2$. cualquier modelo que haga a p_1 y p_3 verdaderas, o ambas falsas satisfacen la FBF, p_1 , $\neg \Rightarrow p_1p_3$ o $\neg (p_1 \Rightarrow \neg p_1)$. Por lo cual, esta fórmula es satisfacible.

En cambio, $\neg(p_1 \Rightarrow p_1)$ es contradictoria y, por ende $p_1 \Rightarrow p_1$ y $\neg p_1 \Rightarrow \neg p_1$ son tautologías.

Definición 1.2.4

Sea Σ un conjunto de fórmulas. Decimos que Σ es

- 1. Satisfacible si existe un modelo m tal que $m \models \Sigma$.
- 2. Contradictoria si todo modelo cumple que $m \nvDash \Sigma$.
- 3. Una tautología si todo modelo m cumple que $m \models \Sigma$.

Ejemplo 1.2.3

El conjunto de fórmulas $\Sigma = \{ \Rightarrow p_1 p_2, p_1, \neg p_2 \}$ no es satisfacible (en este caso, es contradictorio).

Observación 1.2.1

Se tiene lo siguiente:

- 1. Una tautología \Rightarrow satisfacible.
- 2. φ es satisfacible $\iff \neg \varphi$ es una contradicción.
- 3. Satisfacible es lo mismo que no contradictoria.

Definición 1.2.5

Si Σ es un conjunto de FBF y φ es alguna otra fórmula, entonces decimos que φ es **consecuencia lógica** de Σ , o que Σ **implica lógicamente** a φ , escrito como $\Sigma \vDash \varphi$, si para todo modelo m tal que $m \vDash \Sigma$ se tiene que $m \vDash \varphi$.

Ejemplo 1.2.4

El conjunto de FBF $\{ \Rightarrow p_1 p_2, p_1 \} \vDash p_2$.

Observación 1.2.2

Se tiene lo siguiente:

- 1. Un conjunto de FBF $\Sigma \nvDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible.
- 2. Además, un conjunto de FBF $\Sigma \vDash \varphi$ si y sólo si $\Sigma \cup \{\neg \varphi\}$ no es satisfacible.

Lema 1.2.1

Sea Σ un conjunto de fórmulas y sean $Var(\Sigma)$ el conjunto de las variables p_i que aparecen en las fórmulas de Σ . Si m_1 y m_2 son dos modelos tales que

$$m_1|_{\mathrm{Var}(\Sigma)} = m_2|_{\mathrm{Var}(\Sigma)}$$

entonces, $\overline{m_1}|_{\Sigma} = \overline{m_2}|_{\Sigma}$. En particular, para cada fórmula φ que sea elemento de Σ , entonces

Demostración:

Sin pérdida de generalidad, Σ es cerrado bajo subformulas.

Procederemos por inducción sobre $\varphi \in \Sigma$, demostraremos que $\overline{m_1}(\varphi) = \overline{m_2}(\varphi)$. Si φ coincide con algún p_i , entonces $p_i \in \text{Var}(\Sigma)$ y, por tanto

$$\overline{m_1}(p_i) = m_1(p_i) = m_2(p_i) = \overline{m_2}(p_i)$$

Ahora hacemos el paso inductivo.

- 1. Tenemos el caso en que φ es de la forma $\neg \psi$ y suponemos que $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\neg \psi) = F \iff \overline{m_1}(\psi) = V \iff \overline{m_2}(\psi) = V \iff \overline{m_2}(\neg \psi) = F$. Por lo tanto, $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. El caso en que sea verdadero es análogo.
- 2. Tenemos el caso en que φ es de la forma $\Rightarrow \varphi_1 \psi$ y, supontemos que $\overline{m_1}(\varphi_1) = \overline{m_2}(\varphi_1)$ y $\overline{m_1}(\psi) = \overline{m_2}(\psi)$. Se tiene que $\overline{m_1}(\Rightarrow \varphi_1 \psi) = F \iff \overline{m_1}(\varphi_1) = V$ y $\overline{m_1}(\psi) = F \iff$ (por hipótesis de inducción) $\overline{m_2}(\varphi_1) = V$ y $\overline{m_2}(\psi) = F \iff \overline{m_2}(\Rightarrow \varphi_1 \psi) = F$. El caso en que sean verdaderas es análogo. Por tanto, $\overline{m_1}(\Rightarrow \varphi_1 \psi) = \overline{m_2}(\Rightarrow \varphi_1 \psi)$.

Lo cual completa el paso inductivo.

Corolario 1.2.1

Si Σ es un conjunto finito de fórmulas, entonces se puede verificar 'Mecánicamente' si es el caso, que $\Sigma \vDash \varphi$.

El procedimiento para verificar el modelo, se hace mediante la tabla de verdad de las variables y las FBF de Σ .

Definición 1.2.6

Decimos que un conjunto de fórmulas bien formadas Σ es **finitamente satisfacible** si cualquier subconjunto finito $\Delta \subseteq \Sigma$ es satisfacible.

Teorema 1.2.2 (Teorema de Compacidad de Gödel)

Si Σ es un conjunto (arbitrario) de fórmulas tal que $\Sigma \vDash \varphi$, entonces existe un $\Delta \subseteq \Sigma$ finito tal que $\Delta \vDash \varphi$.

El teorema que Gödel probó originalmente fue este:

Teorema 1.2.3 (Teorema de Gödel)

Un conjunto de fórmulas Σ es satisfacible si y sólo si es finitamente satisfacible.

Veamos por qué el teorema de Gödel implica el teorema de compacidad de Gödel. Se tiene que $\Sigma \nvDash \varphi \iff$ existe un modelo m tal que $m \vDash \Sigma \cup \{\neg \varphi\}$. Es decir, si y sólo si $\Sigma \cup \{\neg \varphi\}$ es satisfacible, es decir que es finitamente satisfacible (por el teorema de Gödel), es decir que para todo $\Delta \subseteq \Sigma$ finito se cumple que

$$\Delta \cup \{\neg \varphi\}$$

es satisfacible. Y esto sucede si y sólo si para todo $\Delta \subseteq \Sigma$ finito existe m tal que $m \models \Delta \cup \{\neg \varphi\}$, si y sólo si para todo $\Delta \subseteq \Sigma$ finito $\Delta \nvDash \varphi$, con lo cual

$$\Sigma \nvDash \varphi \iff \Delta \nvDash \varphi$$

para todo $\Delta \subseteq \Sigma$ finito, que es el teorema de compacidad en su forma contrapositiva.

Lema 1.2.2

Sea Σ un conjunto finitamente satisfacible, y sea φ cualquier fórmula, entonces o bien $\Sigma \cup \{\varphi\}$ es finitamente satisfacible o $\Sigma \cup \{\neg \varphi\}$ lo es.

Demostración:

Supongamos que no, es decir que tanto $\Sigma \cup \{\varphi\}$ como $\Sigma \cup \{\neg \varphi\}$ no son finitamente satisfacibles, por lo cual existen $\Delta_1, \Delta_2 \subseteq \Sigma$ finitos tales que $\Delta_1 \cup \{\varphi\}$ y $\Delta_2 \cup \{\neg \varphi\}$ no son satisfacibles. Entonces $\Delta_1 \cup \Delta_2$ no puede ser satisfacible, pues si m es un modelo tal que $m \models \Delta_1 \cup \Delta_2$, entonces $m \models \varphi$ contradice el hecho de que $\Delta_1 \cup \{\varphi\}$ es no satisfacible y si $m \models \neg \varphi$ contradice el hecho de que $\Delta_2 \cup \{\neg \varphi\}$ no es satisfacible, siendo $\Delta_1 \cup \Delta_2 \subseteq \Sigma$, se contradice el hecho de que Σ es finitamente satisfacible#_c. Luego se tiene el resultado.

Ahora procederemos a probar el teorema de Gödel.

Demostración:

Se probará la doble implicación:

- \Rightarrow): Es inmediato.
- \Leftarrow): Sean $\varphi_1, \varphi_2, ...$ una enumeración 'efectiva' de todas las fórmulas (checar la observación). Recursivamente, definimos conjuntos de fórmulas $\Sigma_0 \subseteq \Sigma_1 \subseteq \cdots$ tales que $\Sigma_0 = \Sigma$, y
 - 1. Cada Σ_n es finitamente satisfacible.
 - 2. Para cada $n \in \mathbb{N}$, o bien $\varphi_n \in \Sigma_{n+1}$ o bien $\neg \varphi_n \in \Sigma_{n+1}$

en este contexto, definimos:

$$\Sigma_{n+1} = \begin{cases} \Sigma_n \cup \{\varphi_n\} & \text{si este conjunto es finitamente satisfacible} \\ \Sigma_n \cup \{\neg \varphi_n\} & \text{en caso contrario} \end{cases}$$

Esta definición es consistente con la recursión por el lema anterior.

Ahora, definimos $\Sigma_{\infty} = \bigcup_{n \in \mathbb{N}} \Sigma_n$. Analicemos a este conjunto.

- 1. Σ_{∞} es finitamente satisfacible. En efecto, sea $\Delta \subseteq \Sigma$ un subconjunto finito, entonces existe $n \in \mathbb{N}$ tal que $\Delta \subseteq \Sigma_n$, luego como Σ_n es finitamente satisfacible, Δ es satisfacible. Por lo cual Σ_{∞} es finitamente satisfacible.
- 2. Para cada fórmula ψ o bien $\psi \in \Sigma_{\infty}$ ó $\neg \psi \in \Sigma_{\infty}$ y no ambas. Esto es inmediato con la enumeración efectiva de todas las fórmulas bien formadas.
- 3. Σ_{∞} es maximal finitamente satisfacible.

Sea $m: \operatorname{Var}(\Sigma_{\infty}) \to \{V, F\}$, dado por $m(p_n) = V$ si y sólo si $p_n \in \Sigma_{\infty}$. Se probará el siguiente lema:

Lema 1.2.3

Para cualquier fórmula ψ , $\overline{m}(\psi) = V$ si y sólo si $\psi \in \Sigma_{\infty}$ y $\overline{m}(\psi) = F$ si y sólo si $\neg \psi \in \Sigma_{\infty}$.

Demostración:

Procederemos por inducción sobre ψ .

- El caso base es inmediato por definición.
- $\overline{m}(\neg \psi) = V \iff \overline{m}(\psi) = F \iff \psi \notin \Sigma_{\infty} \iff \neg \psi \in \Sigma_{\infty}.$

• $\overline{m}(\Rightarrow \xi \psi) = F \iff \overline{m}(\xi) = F \text{ y } \overline{m}(\psi) = V \iff \neg \xi, \psi \in \Sigma_{\infty} \text{ si y sólo si } \Rightarrow \psi \xi \notin \Sigma_{\infty} \text{ (esto es cierto por la maximalidad de } \Sigma_{\infty} \text{ al ser finitamente satisfacible)}.$

por inducción se tiene lo deseado.

En conclusión, el modelo definido cumple que $m \vDash \psi$ si y sólo si $\psi \in \Sigma_{\infty}$. En particular, $m \vDash \Sigma$, y Σ es satisfacible.

Observación 1.2.3

Tuplas. Considere los números naturales. Podemos establecer una biyección entre las tuplas finitas de números naturales junto con el cero, y los números naturales, de esta forma:

Si $n \in \mathbb{N}$, por el TFA podemos expresar a $n = q_1^{\alpha_1} \cdot ... \cdot q_m^{\alpha_m}$. Establecemos la biyección dada como sigue: $n \mapsto (\alpha_1, ..., \alpha_{m-1}, \alpha_m - 1)$. De esta forma podemos enumerar algo con tuplas. Lo que Gödel hace es que hace ciertas asignaciones: $\neg = 0, \Rightarrow = 1, 2 = p_1, 3 = p_2$, etc... Esta enumeración es llamada enumeración de Gödel.

Cuando decimos lo de enumeración, nos referimos a esto. Básicamente enumeramos a todas las fórmulas bien formadas. Cuando decimos que la enumeración es efectiva, hacemos referencia a que podemos hacerlo de forma mecánica.

1.3. Lista de Axiomas Lógicos

Definición 1.3.1 (Axiomas Lógicos)

Se tienen los siguientes axiomas. Cualquier fórmula que caiga en alguno de los siguientes casos.

- 1. $\varphi \Rightarrow (\psi \Rightarrow \varphi)$.
- 2. $\varphi \Rightarrow ((\psi \Rightarrow \neg \varphi) \Rightarrow \neg \psi)$.
- 3. $\varphi \Rightarrow \varphi'$ siempre que φ' sea el resultado de sustituir una subfórmula de la forma $\neg \neg \psi$ por ψ , o viceversa.
- 4. $\varphi \Rightarrow \varphi[\psi \Rightarrow \xi \iff \neg \xi \Rightarrow \neg \psi]$.
- 5. $\varphi \Rightarrow \varphi[\neg \psi \Rightarrow \psi \leftrightsquigarrow \psi]$.
- 6. $(\varphi \Rightarrow (\xi \Rightarrow \psi)) \Rightarrow ((\varphi \Rightarrow \xi) \Rightarrow (\varphi \Rightarrow \psi))$.

Junto con una única regla de inferencia, llamada Modus Ponens, la cual consiste en que

$$\begin{array}{ccc} \varphi & \Rightarrow & \psi \\ \hline \varphi & & \\ \hline & \ddots & \psi \end{array}$$

Un ejemplo de 3. sería que $(p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow \neg \neg p_2)$. Cuando ponemos [.] al lado de una fórmula, nos referimos a cualquier subfórmula interna dentro de la original. Cuando ponemos \iff es que podemos sustituir uno por otro.

Definición 1.3.2

Sea Γ un conjunto de fórmulas, y sea φ una fórmula.

- 1. Una demostración de φ a partifr de Γ es una sucesión finita de fórmulas $(\varphi_1, ..., \varphi_n)$ tales que, para cada i se cumple una de las siguientes:
 - 1.1) φ_i es un axioma lógico.

- 1.2) φ_i es un elemento de Γ .
- 1.3) Existen j, k < i tales que: φ_j es la fórmula $\varphi_k \Rightarrow \varphi_i$.
- 2. φ es demostrable a partir de Γ , o bien φ es un teorema de Γ , si existe una demostración de φ a partir de Γ . Esto se simboliza por $\Gamma \vdash \varphi$.

Observación 1.3.1

$$\varphi \lor \psi$$
 es $\neg \varphi \Rightarrow \psi$, y $\varphi \land \psi$ es $\neg (\psi \Rightarrow \neg \varphi)$. $\varphi \iff \psi$ es $(\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$

Ejemplo 1.3.1

Se cumple que $\{\neg C, A \Rightarrow C, A \lor (B \Rightarrow C), \neg C \Rightarrow (C \Rightarrow E), B\} \vdash E$. Probemos que esto es cierto:

- Ax. 4
- Premisa
- $\begin{array}{cccc} 1) & (A \Rightarrow C) & \Rightarrow & (\neg C \Rightarrow \neg A) \\ 2) & A & \Rightarrow & C \\ 3) & \neg C & \Rightarrow & \neg A \\ \end{array}$ Modus ponens
- 4) $\neg C$ Premisa
- 5) $\neg A$ 3,4 Modus ponens
- $\begin{array}{ccc}
 \neg A & & \Rightarrow & (B \Rightarrow C) \\
 \neg A & & \Rightarrow & C
 \end{array}$ 6) Premisa
- 6,5 Modus ponens 7)
- B8) Premisa C9) 7,8 Modus ponens
- \Rightarrow $(C \Rightarrow E)$ $10) \neg C$ Premisa
- 11) C 10,4 Modus ponens
- 12) E11,9 Modus ponens

 $\therefore E$

Ejemplo 1.3.2

 $\{\varphi \wedge \psi\} \vdash \varphi$. En efecto:

- Premisa
- Ax. 1
- Ax. 4
- 3,2 M.P. 4,1 M.P.
- $6) \neg \neg \varphi$ Ax. 3
- 6,5 M.P.

esta demostración es llamada simplificación.

Hay varias demostraciones que son de utilidad. Como las siguientes:

Ejercicio 1.3.1

Pruebe lo siguiente:

- 1. $\{\varphi \Rightarrow \psi, \neg \psi\} \vdash \neg \varphi$ (llamada **Modus Tollens**).
- 2. $\{\varphi\} \vdash \varphi \lor \psi$ (llamada **Adición**).
- 3. $\{\varphi \lor \psi, \neg \varphi\} \vdash \psi$ (llamada Silogismo Disyuntivo).

4. $\{\varphi, \psi\} \vdash \varphi \land \psi$ (llamada Conjunción).

Demostración:

Probemos cada inciso.

De (1):

1)
$$\varphi \Rightarrow \psi$$
 Premisa
2) $(\varphi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \psi)$ Ax. 4
3) $\neg \psi \Rightarrow \neg \psi$ 2,1 M.P.
4) $\neg \psi$ Premisa
5) $\neg \varphi$ 3,4 M.P.

De (2):

1)
$$\varphi$$
 Premisa
2) φ \Rightarrow $(\neg \psi \Rightarrow \varphi)$ Ax. 1
3) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
4) $\neg \psi \Rightarrow \varphi$ \Rightarrow $\neg \varphi \Rightarrow \neg \neg \psi$ Ax.4.
5) $\neg \varphi \Rightarrow \neg \neg \psi$ \Rightarrow $\neg \varphi \Rightarrow \psi$ Ax. 3
6) $\neg \varphi \Rightarrow \psi$ \Rightarrow $\Rightarrow \neg \varphi \Rightarrow \psi$ Ax. 3
7) $\Rightarrow \varphi \Rightarrow \psi$ 6,5 M.P.
8) $\Rightarrow \varphi \lor \psi$ $\Rightarrow \varphi \lor \psi$

De (3):

1)
$$\varphi \lor \psi$$
 Premisa
2) $\neg \varphi$ \Rightarrow ψ 1)
3) $\neg \varphi$ Premisa
4) ψ 2,3 M.P.

De (4):

1)
$$\varphi$$
 \Rightarrow $((\psi \Rightarrow \neg \varphi) \Rightarrow \varphi)$ Axioma
1) $((\psi \Rightarrow \neg \varphi) \Rightarrow \neg \varphi)$ \Rightarrow $\neg (\psi \Rightarrow \neg \varphi)$ Axioma
1) $\neg (\psi$ \Rightarrow $\neg \varphi)$ M.P.