Introduction to DeepPavlov

Mikhail Burtsev, PhD Moscow Institute of Physics and Technology (MIPT)

DeepPavlov

- DeepPavlov is for
 - development of production ready chat-bots and complex conversational systems,
 - NLP and dialog systems **research**.
- DeepPavlov's goal is to enable Al-application developers and researchers with:
 - set of pre-trained NLP models, pre-defined dialog system components (ML/DL/Rule-based) and conversational agents templates for a typical scenarios;
 - a framework for **implementing** and testing their own **dialog models**;
 - tools for application integration with adjacent infrastructure (messengers, helpdesk software etc.);
 - **benchmarking** environment for conversational models and uniform access to relevant datasets.

Dialogue system combines complimentary skills to help user.

Core concepts

Ō

- Agent is a conversational agent communicating with users in natural language (text).
- **Skill Manager** performs selection of the **Skill** to generate response.
- Skill fulfills user's goal in some domain.

 Typically, this is accomplished by presenting information or completing transaction (e.g. answer question by FAQ, booking tickets etc.). However, for some tasks a success of interaction is defined as continuous engagement (e.g. chit-chat).

Core concepts

• **Component** is a reusable functional component of **Skill**.

 Chainer builds an agent/component pipeline from heterogeneous Components (rulebased/ml/dl). It allows to train and infer models in a pipeline as a whole.

DeepPavlov installation

Ubuntu

Create a virtual environment with Python 3.6

```
virtualenv -p python3.6 env
```

Activate the environment.

```
source ./env/bin/activate
```

Clone the repo and cd to project root

git clone https://github.com/deepmipt/DeepPavlov.git cd DeepPavlov

Install the requirements:

python setup.py develop

Install spacy dependencies:

python -m spacy download en

DeepPavlov installation

Windows

Install the Docker following the instructions:

https://docs.docker.com/docker-for-windows/install

Then go to console and get the container by the following command:

```
docker pull altinsky/convai:deeppavlov
```

Run the container with DeepPavlov installation:

```
docker run -p 8888:8888 altinsky/convai:deeppavlov
```

Open http://127.0.0.1:8888/ in your browser to access Jupyter Notebook

Upload file with tutorial via Jupyter Notebook

To STOP the container:

```
docker stop
```

To continue working with your saved container:

```
docker ps -a to list saved containers
```


HelloBot in 7 lines in DeepPavlov

Import core components of the dialogue Agent

```
from deeppavlov.core.agent import Agent, HighestConfidenceSelector
from deeppavlov.skills.pattern_matching_skill import PatternMatchingSkill
```


HelloBot in 7 lines in DeepPavlov

Import core components of the dialogue Agent

```
from deeppavlov.core.agent import Agent, HighestConfidenceSelector
from deeppavlov.skills.pattern_matching_skill import PatternMatchingSkill
```

Define responses and input patterns for Skills

Import core components of the dialogue Agent

```
from deeppavlov.core.agent import Agent, HighestConfidenceSelector
from deeppavlov.skills.pattern_matching_skill import PatternMatchingSkill
```

Define responses and input patterns for Skills

Combine Skills with SkillManager (selector) into an Agent

```
HelloBot = Agent([hello, bye, fallback], skills_selector=HighestConfidenceSelector())
```


Import core components of the dialogue Agent

```
from deeppavlov.core.agent import Agent, HighestConfidenceSelector
from deeppavlov.skills.pattern_matching_skill import PatternMatchingSkill
```

Define responses and input patterns for Skills

Combine Skills with SkillManager (selector) into an Agent

```
HelloBot = Agent([hello, bye, fallback], skills_selector=HighestConfidenceSelector())
```

Talk with HelloBot!

```
HelloBot(['Hello', 'Bye', 'Or not'])
['Hello world!', 'See you around', 'I can say "Hello world!"']
```


Diving deeper in DeepPavlov

- Simple skills are boring!
- Trainable skills are cool!

How to build advanced bot

- How to build advanced bot
 - for every Skill
 - prepare data
 - define trainable model
 - train model

- How to build advanced bot
 - for every Skill
 - prepare data
 - define trainable model
 - train model
 - create SkillManager = SkillSelector + SkillFilter

- How to build advanced bot
 - for every Skill
 - prepare data
 - define trainable model
 - train model
 - create SkillManager = SkillSelector + SkillFilter
 - assemble Skills and SkillManager into an Agent

- How to build advanced bot
 - for every Skill
 - prepare data
 - define trainable model
 - train model
 - create SkillManager = SkillSelector + SkillFilter
 - assemble Skills and SkillManager into an Agent

- Data preparation
 - Read data DatasetReader
 - Index data Vocab
 - Manage Data DatasetIterator

- How to build advanced bot
 - for every Skill
 - prepare data
 - define trainable model
 - train model
 - create SkillManager = SkillSelector + SkillFilter
 - assemble Skills and SkillManager into an Agent

Features

Component	Description		
NER component	Based on neural Named Entity Recognition network. The NER component reproduces architecture from the paper <u>Application of a Hybrid Bi-LSTM-CRF model to the task of Russian Named Entity Recognition</u> which is inspired by Bi-LSTM+CRF architecture from https://arxiv.org/pdf/1603.01360.pdf .		
Slot filling components	Based on fuzzy Levenshtein search to extract normalized slot values from text. The components either rely on NER results or perform needle in haystack search.		
Classification component	Component for classification tasks (intents, sentiment, etc). Based on shallow-and-wide Convolutional Neural Network architecture from Kim Y. Convolutional neural networks for sentence classification – 2014 and others. The model allows multilabel classification of sentences.		
Automatic spelling correction component	Pipelines that use candidates search in a static dictionary and an ARPA language model to correct spelling errors.		
Ranking component	Based on <u>LSTM-based deep learning models for non-factoid answer selection</u> . The model performs ranking of responses or contexts from some database by their relevance for the given context.		
Question Answering component	Based on R-NET: Machine Reading Comprehension with Self-matching Networks. The model solves the task of looking for an answer on a question in a given context (SQuAD task format).		
Morphological tagging component	Based on character-based approach to morphological tagging <u>Heigold et al., 2017</u> . An extensive empirical evaluation of character-based morphological tagging for 14 languages. A state-of-the-art model for Russian and several other languages. Model assigns morphological tags in UD format to sequences of words.		
Skills			
Goal-oriented bot	Based on Hybrid Code Networks (HCNs) architecture from <u>Jason D. Williams, Kavosh Asadi, Geoffrey Zweig, Hybrid Code Networks:</u> <u>practical and efficient end-to-end dialog control with supervised and reinforcement learning – 2017</u> . It allows to predict responses in goal-oriented dialog. The model is customizable: embeddings, slot filler and intent classifier can switched on and off on demand.		
Seq2seq goal-oriented bot	Dialogue agent predicts responses in a goal-oriented dialog and is able to handle multiple domains (pretrained bot allows calendar scheduling, weather information retrieval, and point-of-interest navigation). The model is end-to-end differentiable and does not need to explicitly model dialogue state or belief trackers.		
<u>ODQA</u>	An open domain question answering skill. The skill accepts free-form questions about the world and outputs an answer based on its Wikipedia knowledge.		
Embeddings			
Pre-trained embeddings for the	Word vectors for the Russian language trained on joint Russian Wikipedia and Lenta.ru corpora.		
Russian language	Word Vectors for the hassian language trained on joint hassian wintpeara and Lentana corpora.		

Intent recognition

Yoon Kim. 2014. Convolutional neural networks for sentence classification.

	F ₁ -score
DeepPavlov	99.10
api.ai ⁶	98.68
IBM Watson ⁷	98.63
Microsoft LUIS ⁸	98.53
Wit.ai ⁹	97.97
Snips.ai ¹⁰	97.87
Recast.ai ¹¹	97.64
Amazon Lex ¹²	97.59

Some results

Entity recognition Le Tanh Anh, Mikhail Y Arkhipov, and Mikhail S Burtsev. 2017. Application of

a hybrid k	oi-Istm-crf model to the task of russian named entity	recognition.		
Model	F ₁ -score		spaCy	
DeepPavlov	87.07 ± 0.21		opacy	
Strubell at al. (2017)	86.84 ± 0.19			, 2°, 9°, 3°
Spacy	85.85		Spacy	DeepPavlov
Chiu and Nichols (2015)	86.19 ± 0.25		opacy	Deepi av 10v
Durrett and Klein (2014)	84.04	TOTAL:	81.70	87.07
Ratinov and Roth (2009)	83.45			
		CARDINAL:	77.40	82.80
Table 3: Performance of De	eepPavlov NER	DATE:	81.63	84.87
module on OntoNotes 5.0 dat	taset. Average F_1 -	EVENT:	50.47	68.39
score for 18 classes.		FAC:	55.70	68.07
	Jason D Williams, Kavosh Asadi, and Geoffrey	GPE:	91.95	94.61
Coal oriented dialogue	Twoig 2017 Hybrid code notworks: practical and	LANGUAGE:	41.18	62.91
Goal-oriented dialogue efficient end-to-end dialog control with vised and reinforcement learning.		LAW:	55.56	48.27
Model	Test accuracy	LOC:	63.92	72.39
Bordes and Weston (2016)	41.1%	MONEY:	87.34	87.79
Perez and Liu (2016)	48.7%	NORP:	88.47	94.27
		ORDINAL:	79.63	79.53
Eric and Manning (2017)	48.0%	ORG:	82.66	85.59
Williams et al. (2017)	55.6%	PERCENT:	89.08	89.41
Deeppavlov*	55.0%	PERSON:	79.48	91.67
Table 2: Accuracy of predicting bot answers on		PRODUCT:	57.14	58.90
	QUANTITY:	70.54	77.93	
DSTC2 dataset. *The figures ca	TIME:	60.31	62.50	
directly, because DeepPavlov model used a differ-		WORK_OF_ART	: 30.45	53.17

ent train/test data partition.

iPavlov.ai

Interactive demo

http://demo.ipavlov.ai/

Source code

https://github.com/deepmipt/