Análisis Matemático II - (1033)

Ejercicios sobre integrales dobles aplicando la transformación polar

Ejercicio 1. Calcular la integral doble

$$I = \iint x e^{\sqrt{x^2 + y^2}} dx dy$$

sobre la región $D=\{(x,y)\in\mathbb{R}^2\colon\! x^2+y^2\leq 4 \land y\geq x\geq 0\}$

Ejercicio 2. Calcular la integral doble

$$I = \iint \left(1 + \frac{2xy}{x^2 + y^2}\right) dxdy$$

sobre la región

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4 \land 0 \le y \le x\}.$$

Ejercicio 3. Calcular la integral doble

$$I = \iint xye^y \, dxdy$$

sobre la región $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4 \land y \ge 0 \land x \ge 0\}$

Ejercicio 4. Calcular la integral doble

$$I = \iint x^2 dx dy$$

Sobre la región

$$D = \{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 \le 1 \land x \ge 1 \land y \ge 0\}.$$

Ejercicio 5. Calcular la integral doble

$$I = \iint\limits_{\Omega} \ln\left(\sqrt{x^2 + y^2}\right) dx dy$$

sobre la región

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 9 \land y \ge 0 \land x + y \ge 0\}.$$

Ejercicios sobre integrales dobles aplicando la transformación afín

Ejercicio 6. Calcular la integral doble

$$I = \iint y^2 dx dy$$

Sobre el paralelogramo R de vértices (0,0), (3,0), (1,2) y (4,2).

Ejercicio 7. Calcular la integral doble

$$I = \iint (x - y + 3)^2 \ln(x + y + 1) \ dxdy$$

sobre el paralelogramo R de vértices (0,0), (1,0), (1,2) y (2,1).

Ejercicio 8. Calcular la integral doble

$$I = \iint \frac{1}{x+y} dx dy$$

Sobre el paralelogramo R de vértices (0,2), (2,0), (1,4) y (3,2).

Ejercicio 9. Calcular la integral doble

$$I = \iint \frac{1}{(x - y + 2)^2} dx dy$$

Sobre el paralelogramo S de vértices (0,1), (2,0), (1,2) y (3,1).

Ejercicios sobre integrales triples aplicando transformaciones

Ejercicio 10. Calcular la integral triple

$$I = \iiint \sqrt{x^2 + y^2} dx dy dz$$

sobre la región $R=\{(x,y,z)\in\mathbb{R}^3\colon 1\leq x^2+y^2+z^2\leq 4 \land z\geq 0\}$

Ejercicio 11. Calcular la integral triple

$$I = \iiint 2z \ dxdydz$$

sobre la región $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4 \land z \ge 0\}$

i) Aplicando cambio a coordenadas cilíndricas. ii) Aplicando cambio a coordenadas esféricas.

Ejercicio 12. Calcular la integral triple

$$I = \iiint \sqrt{x^2 + y^2} \ dx dy dz$$

sobre la región $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \land x \ge 0 \land y \ge 0 \land z \ge 0\}.$

Ejercicio 13. Calcular la integral triple

$$I = \iiint 4z^2 e^{(x^2 + y^2)} dx dy dz$$

Sobre la región $R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \land 0 \le y \le x \land 0 \le z \le 1\}.$

Ejercicio 14. Calcular la integral triple

$$I = \iiint \sqrt{x^2 + y^2} \, dx dy dz$$

Sobre la región

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4 \land z \ge 0 \land 0 \le y \le x\}.$$

Ejercicio 15. Calcular la integral triple

$$I = \iiint \frac{y}{x^2 + y^2 + z^2} dx dy dz$$

Sobre la región $R=\{(x,y,z)\in\mathbb{R}^3\colon 1\leq x^2+y^2+z^2\leq 4 \land y\geq 0 \land z\geq 0\}.$

Ejercicio 16. Calcular la integral triple

$$I = \iiint \frac{x}{(x^2 + y^2 + z^2)^2} dx dy dz$$

Sobre la región $R = \{(x, y, z) \in \mathbb{R}^3 : 1 \le x^2 + y^2 + z^2 \le 4 \land x \ge 0 \land y \ge 0 \land z \ge 0\}.$

Ejercicio 17. Calcular la integral triple

$$I = \iiint e^{\sqrt{x^2 + y^2 + z^2}} dx dy dz$$

sobre la región $R = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 9 \land z \ge 0 \land 0 \le x \le y\}$

Ejercicio 18. Calcular la integral triple

$$I = \iiint \frac{\sqrt{x^2 + y^2}}{x^2 + y^2 + z^2} dx dy dz$$

sobre la región $V=\{(x,y,z)\in\mathbb{R}^3\colon 1\leq x^2+y^2+z^2\leq 4 \land 0\leq y\leq x\}.$

Ejercicios sobre el cálculo del volumen de un sólido aplicando integrales (dobles o triples)

Ejercicio 19. Calcular el volumen del sólido

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 4 - \sqrt{x^2 + y^2} \right\}.$$

Ejercicio 20. Calcular el volumen del sólido

$$V = \left\{ (x, y, z) \in \mathbb{R}^3 \colon 4 \le z \le 8 - \sqrt{x^2 + y^2} \land y \ge 0 \right\}.$$

Ejercicio 21. Calcular el volumen del sólido

$$\Omega = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4 \land z \ge \sqrt{x^2 + y^2} \land x \ge 0 \}.$$

Ejercicio 22. Hallar el volumen del sólido limitado por las superficies:

$$S_1: z = x^2 + y^2$$
 $S_1: 2(x^2 + y^2) = 3 - z$

Ejercicio 23. Calcular el volumen del sólido

$$V = \left\{ (x,y,z) \in \mathbb{R}^3 \colon \sqrt{x^2 + y^2} \le z \le 4 \land x \ge 0 \land y \ge 0 \right\}.$$

Ejercicio 24. Calcular el volumen del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 5 - y \land x^2 + y^2 \le 9\}.$$

Ejercicios relacionados con el Teorema de Green

Ejercicio 25. Verificar el Teorema de Green para el campo vectorial $F(x,y) = (x^2 + y, y^2 - x)$ y la curva

$$C = \{(x, y) \in \mathbb{R}^2 \colon x^2 + y^2 = 1\}.$$

Ejercicio 26. Calcular la integral de línea del campo vectorial $F(x, y) = (5x - 3y, xy^2 - 2y)$ a lo largo de la frontera de la región

$$D = \{(x, y) \in \mathbb{R}^2 : x + y \le 2 \land y \le x \land y \ge 0\}$$

recorrida en sentido positivo.

Ejercicio 27. Verificar el Teorema de Green para el campo vectorial F(x,y) = (-3y; y + 5x) a lo largo de la curva

$$C: x^2 + y^2 = 1.$$

Ejercicio 28. Calcular la integral de línea del campo vectorial $F(x,y) = (3x^2 - 2y^3, 2xy)$ a lo largo de la frontera del triángulo T de vértices (1,1), (2,0) y (3,3), recorrida en sentido positivo.

Ejercicio 29. Verificar el Teorema de Green para el campo vectorial F(x,y) = (x-2y,5x+1) y para la curva C, frontera de la región del primer cuadrante

$$D = \{(x, y) \in \mathbb{R}^2 \colon x^2 \le y \le x\}.$$

Ejercicio 30. Calcular la integral de línea del campo vectorial $F(x,y) = \left(\frac{x}{y}, -\frac{y}{x}\right)$ a lo largo de la frontera de la región

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 4 \land 1 \le y \le 2\}.$$

recorrida en sentido positivo.

Ejercicio 31. Verificar el Teorema de Green para el campo vectorial $F(x,y) = (2x - y^2, x^2 + y^2)$ sobre la frontera del triángulo de vértices (0,0), (2,0) y (2,2).

Ejercicio 32. Verificar el Teorema de Green para el campo vectorial $F(x,y) = (-y,x^2)$ y la curva

$$C: x^2 + y^2 = 1$$

<u>Sugerencia</u>. Utilizar la identidad $\cos^3(t) = \cos^2(t) \cdot \cos(t) = (1 - \sin^2) \cdot \cos(t) = \cos(t) - \sin^2(t) \cdot \cos(t)$.

Ejercicios relacionados con la teoría de campos conservativos

Ejercicio 33. Calcular la integral de línea del campo vectorial $F(x,y) = \left(\frac{x}{1+x^2} + y; 2e^{2y} + x\right)$ a lo largo de la curva $C = C_1 \cup C_2 \cup C_3$, siendo

$$C_1$$
: $\alpha_1(t) = (t; t^2) \quad 0 \le t \le 2$.
 C_2 : $\alpha_2(t) = (2 - t; 4 - t) \quad 0 \le t \le 2$.

$$C_3$$
: $\alpha_3(t) = (t; 2) \ 0 \le t \le 3$.

Ejercicio 34. Calcular la integral de línea del campo vectorial $F(x,y) = (xe^x + 2y, ye^y + 2x)$ para

C:
$$\alpha(t) = (3 + \sin(t), 1 + \cos^2(t))$$
 $0 \le t \le \frac{\pi}{2}$.

Ejercicio 35. Determinar los valores de los números reales $a \neq 0$ y $b \neq 0$ para que el campo vectorial

$$F(x,y) = (3a^2x^2y - b^2y^2, ax^3 - bxy + y^3)$$

sea un campo conservativo. Luego utilizar la función potencial para calcular la integral de línea del campo conservativo obtenido a lo largo de

C:
$$\alpha(t) = \left(3 + sen\left(\frac{\pi \cdot t}{2}\right), 1 + sen^2\left(\frac{\pi \cdot t}{2}\right)\right) \quad 0 \le t \le 1.$$

Ejercicio 36. Considere el campo vectorial $F(x,y) = \left(\frac{1}{y} + 2x, -\frac{x}{y^2}\right)$ conservativo en el conjunto abierto

$$U = \{(x, y) \in \mathbb{R}^2 : x > 0 \land y > 0\}$$

y el arco $C \subset U$ de la parábola de ecuación $y = x^2$ con extremo inicial A = (1,1) y extremo final B = (2,4).

- i) Obtener una parametrización para el arco C y utilizarla para calcular la integral de línea de F a lo largo de C, orientando la curva desde A hasta B.
- ii) Hallar la función potencial de F y utilizarla para calcular el valor de la integral sobre C con la misma orientación y verificar que coincide con el resultado obtenido en i).

Ejercicio 37. Considere el campo vectorial $F(x,y) = \left(\frac{1}{y} - \frac{y}{x^2} + 2x, -\frac{x}{y^2} + \frac{1}{x} + 2y\right)$ definido en el conjunto $U = \{(x,y) \in \mathbb{R}^2 : x > 0 \land y > 0\}.$

Hallar el valor de la integral de línea de F(x,y) a lo largo de una curva C, de extremo inicial A=(1,1) y extremo final B=(3,3).

Ejercicio 38. Calcular la integral de línea del campo vectorial $F(x,y) = (xe^x + 3y, e^y + 3x)$ para

C:
$$\alpha(t) = (1 + 2t^4, 1 + 3t^2)$$
 $0 \le t \le 1$.

Ejercicios sobre integrales de superficie de campos vectoriales

Ejercicio 39. Calcular la integral de superficie del campo vectorial F(x, y, z) = (x + z, y, x + y + z) a través de la superficie cilíndrica

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - y \land x^2 + y^2 \le 1\}$$

orientando la superficie S, según la normal ascendente (3º componente positiva).

Ejercicio 40. Calcular la integral de superficie del campo vectorial F(x, y, z) = (2x + 3z, y, x + z), a través de la superficie plana

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - y \land x^2 + y^2 \le 1\}$$

utilizando la norma ascendente (3° componente positiva).

Ejercicio 41. Calcular la integral de superficie del campo vectorial $F(x,y,z) = \left(-\frac{x}{\sqrt{x^2+y^2}}, -\frac{y}{\sqrt{x^2+y^2}}, 0\right)$, a través de la superficie cónica

$$S = \left\{ (x,y,z) \in \mathbb{R}^3 \colon z = \sqrt{x^2 + y^2} \land 0 \le z \le 1 \right\}$$

orientando la superficie S, según la normal ascendente (3° componente positiva).

Ejercicio 42. Calcular la integral de superficie del campo vectorial $F(x,y,z) = (x,y,z^2)$, a través de la superficie parabólica

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \land x^2 + y^2 \le 1\}$$

utilizando la norma ascendente (3° componente positiva).

Ejercicio 43. Calcular la integral de superficie del campo vectorial F(x, y, z) = (-x, -y, z), a través de la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} \land 1 \le z \le 4\}$$

Utilizando la norma ascendente (3° componente positiva).

Ejercicio 44. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (x + y, x^2 + y^2, e^z + z^2)$ sobre la superficie

$$S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 = 4 \land 0 \le z \le 4\}$$

Orientando al cilindro según la normal exterior. Note que no se trata de una superficie cerrada.

Ejercicios relacionados con el Teorema de Gauss (o de la divergencia)

Ejercicio 45. Aplicando el Teorema de la divergencia calcular la integral de superficie del campo vectorial F(x, y, z) = (x + z, y, x + y + z) a través de la superficie S, frontera del sólido:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\}.$$

orientada según la normal exterior.

Ejercicio 46. Aplicar el Teorema de la Divergencia para calcular la integral de superficie del campo vectorial

$$F(x, y, z) = (xy^2, x^2y, z)$$

a través de la superficie \mathcal{S} , frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 9 \land 0 \le y \land 0 \le z \le 3\}.$$

orientada según la normal exterior.

Ejercicio 47. Aplicando el Teorema de la divergencia calcular la integral de superficie del campo vectorial

$$F(x, y, z) = (x^3, y^3, z^3)$$

a través de la superficie S, frontera del sólido:

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1 \land z \ge 0\}.$$

orientada según la normal exterior.

Ejercicio 48. Aplicar el Teorema de la Divergencia para calcular la integral de superficie del campo vectorial

$$F(x, y, z) = (xy^2, x^2y, z)$$

a través de la superficie S, frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z \le 1\}.$$

orientada según la normal exterior.

Ejercicio 49. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (2x^2y, x + 5xy^2, z)$ a través de la superficie S, frontera del sólido

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4 \land z \ge 0\}$$

Orientada exteriormente.

Ejercicio 50. Calcular la integral de superficie del campo vectorial $F(x, y, z) = (x, y^2, z)$ a través de la superficie S frontera del sólido

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \land 0 \le z \le 1\}$$

Orientándola según la normal interior.