9 Kurven und Flächen

Inhalt

9.1	Parar	metrisierte kubische Kurven	9-2
ġ	9.1.1	Hermite-Kurven	9-6
9	9.1.2	Bézier-Kurven	9-9
ġ	9.1.3	Kubische Splines	9-14
9	9.1.4	Unterteilung von Kurven	9-23
9	9.1.5	Zeichnen von Kurven	9-26
9.2	Parar	metrisierte bikubische Flächen	9-26
9	9.2.1	Bézier-Flächen	9-28
9.3	Rotat	tionskörper	9-30

Reale Objekte werden often von "glatten" Kurven und Flächen begrenzt.

Wie lassen sich diese mit wenigen "Kontrollpunkten" beschreiben?

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven

9-2

9.1 Parametrisierte kubische Kurven

Beschreibung von Kurven (Flächen) auf drei Arten möglich:

- 1. explizit: y = f(x) und z = g(x) (Kurve), z = f(x, y) (Fläche)
- 2. implizit: f(x, y, z) = 0 (z. B. $x^2 + y^2 + z^2 1 = 0$ für Kugel)
- 3. parametrisiert: x = x(t), y = y(t), z = z(t), $t \in [0, 1]$

Eine parametrisierte kubische Kurve

$$Q(t) = \left(x(t), y(t), z(t)\right)^T \;, \quad t \in [0; 1]$$

wird durch drei kubische Polynome definiert:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

Mit $T=\left(t^{3},t^{2},t,1\right)^{T}$ und der Koeffizientenmatrix

$$C = \begin{pmatrix} a_{x} & b_{x} & c_{x} & d_{x} \\ a_{y} & b_{y} & c_{y} & d_{y} \\ a_{z} & b_{z} & c_{z} & d_{z} \end{pmatrix}$$

ergibt sich folgende Matrixschreibweise:

$$Q(t) = C \cdot T$$

Tangentialvektor an die Kurve:

$$\frac{d}{dt}Q(t) = Q'(t) = \left(\frac{d}{dt}x(t), \frac{d}{dt}y(t), \frac{d}{dt}z(t)\right)^{T} = C \cdot \frac{d}{dt}T = C \cdot \left(3t^{2}, 2t, 1, 0\right)^{T} = \begin{pmatrix} 3a_{x}t^{2} + 2b_{x}t + c_{x} \\ 3a_{y}t^{2} + 2b_{y}t + c_{y} \\ 3a_{z}t^{2} + 2b_{z}t + c_{z} \end{pmatrix}$$

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven

9-4

Stetigkeit bei der Verbindung zweier Kurvenstücke Q_1 , Q_2 :

- C^0 -/ G^0 -stetig: $Q_1(1) = Q_2(0)$
- G^1 geometrisch stetig: G^0 und gleiche Tangentenrichtung, d. h. $Q_1'(1) = k \cdot Q_2'(0)$ mit k>0
- C^1 stetig: C^0 und gleiche Tangente (Richtung und Betrag), d. h. $Q_1^\prime(1) = Q_2^\prime(0)$
- G^2 geometrisch stetig: G^1 und gleiche Krümmung $\left(2D: \kappa = \frac{|Q'Q''|}{\|Q'\|^3} \right)$
- C^2 stetig: C^1 und $Q_1''(1) = Q_2''(0)$

Bemerkung 9.1: C^2 spielt z. B. beim Straßenbau eine gewisse Rolle.

Übergang gerade Straße – Kreisbogen wäre C^1 , aber nicht $C^2 \Rightarrow$ Lenkrad müsste ruckartig bewegt werden

9 Kurven und Flächen

im folgenden Zerlegung der Matrix C in $C = G \cdot M$ mit 4×4 -Basismatrix M und 3×4 -Geometriematrix G

$$Q(t) = \begin{pmatrix} G_1, G_2, G_3, G_4 \end{pmatrix} \cdot \begin{pmatrix} m_{11} & \cdots & m_{14} \\ \vdots & & \vdots \\ m_{41} & \cdots & m_{44} \end{pmatrix} \cdot \begin{pmatrix} t^3 \\ t^2 \\ t \\ 1 \end{pmatrix} \qquad \text{mit} \quad G_i = \begin{pmatrix} g_{ix} \\ g_{iy} \\ g_{iz} \end{pmatrix}$$

M: feste Matrix für bestimmten Kurventyp

G: Lage (z. B. End-/Kontrollpunkte) einer konkreten Kurve

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven

9-6

9.1.1 Hermite-Kurven

Kurve bestimmt durch: Endpunkte P_1 und P_4 und Tangentialvektoren R_1 und R_4 in Endpunkten **Bestimmung der Hermite-Basismatrix** M_H in $Q(t) = G_H \cdot M_H \cdot T$ mit $G_H = \left(P_1, P_4, R_1, R_4\right)$:

$$x(t) = G_{H_x} \cdot M_H \cdot \begin{pmatrix} t^3 \\ t^2 \\ t \\ 1 \end{pmatrix}, \qquad x'(t) = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 3t^2 \\ 2t \\ 1 \\ 0 \end{pmatrix}$$

Einsetzen der Punkte/Vektoren für t = 0 bzw. t = 1 gibt:

9 Kurven und Flächen

$$\begin{split} x(0) &= P_{1_x} = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \qquad x(1) = P_{4_x} = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \\ x'(0) &= R_{1_x} = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad x'(1) = R_{4_x} = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \end{pmatrix} \end{split}$$

zusammengesetzt:

$$G_{H_x} = \left(P_{1_x}, P_{4_x}, R_{1_x}, R_{4_x}\right) = G_{H_x} \cdot M_H \cdot \begin{pmatrix} 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Invertierung obiger Matrix liefert M_H :

$$M_H = \begin{pmatrix} 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven 9-8

Ausmultiplizieren des rechten Produkts in $Q(t) = G_H \cdot M_H \cdot T$ gibt eine Darstellung der Kurve in den **Hermite-Basis-Polynomen**:

$$Q(t) = (2t^3 - 3t^2 + 1) \cdot P_1 + (-2t^3 + 3t^2) \cdot P_4 + (t^3 - 2t^2 + t) \cdot R_1 + (t^3 - t^2) \cdot R_4$$

Darstellung der Basis-Polynome:

Bemerkung 9.2: G^1 -stetiger Übergang zweier Hermite-Kurven, falls die Geometriematrizen die Form (P_1, P_4, R_1, R_4) und (P_4, P_7, kR_4, R_7) mit k > 0 haben

9.1.2 Bézier-Kurven

Pierre Étienne Bézier * 1910, Paris † 1999, Paris Bau- und Elektroingenieur, Mathematiker (Renault)

Kurve bestimmt durch: Endpunkte und zwei Kontrollpunkte

Geometriematrix: $G_B = (P_1, P_2, P_3, P_4)$

Zusammenhang Hermite-Bézier: $R_1=3$ $\left(P_2-P_1\right)$, $R_4=3$ $\left(P_4-P_3\right)$

Übergang zwischen den Geometriematrizen über Matrix $M_{H\!B}$:

$$G_H = G_B \cdot M_{HB} \quad \text{mit}$$

$$\left(P_1, P_4, R_1, R_4\right) = \left(P_1, P_2, P_3, P_4\right) \cdot \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 1 & 0 & 3 \end{pmatrix}$$

9 Kurven und Flächen 9.1 Parametrisierte kubische Kurven 9-10

Bézier-Basismatrix aus Hermite-Form:

$$Q(t) = G_H \cdot M_H \cdot T = G_B \cdot \underbrace{M_{HB} \cdot M_H}_{=:M_B} \cdot T$$

also:

$$M_B = M_{HB} \cdot M_H = \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 1 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Basispolynome aus $Q(t) = G_B \cdot M_B \cdot T$ sind die sog. **Bernsteinpolynome**:

$$Q(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t)P_3 + t^3 P_4$$

Sergej Natanovič Bernštejn [Сергей Натанович Бернштейн] * 1880, Odessa (Одесса, Russisches Reich, heute Ukraine) † 1968, Moskau (Москва [Moskva]) Mathematiker

Foto: Konrad Jacobs, Erlangen, Titel: _Sergei Natanowitsch Bernstein'

Quelle: https://commons.wikimedia.org/wiki/File:Sergei Natanowitsch Bernstein.jpg
Lizenz: ⊕(⊕(⊕) 2.0, https://creativecommons.org/licenses/by-sa/2.0ide/legalcode

Verbindung zweier Kurvenstücke zu Kontrollpunkten $\left(P_1,P_2,P_3,P_4\right)$ bzw. $\left(P_4,P_5,P_6,P_7\right)$ über gemeinsamen Punkt P_4

$$G^1$$
-stetig falls $P_3 - P_4 = k \left(P_4 - P_5 \right)$ mit $k > 0$

$$C^1$$
-stetig falls $P_3 - P_4 = P_4 - P_5$
bzw. $P_5 = 2P_4 - P_3$

$$C^2$$
-stetig falls $P_2 - 2P_3 = P_6 - 2P_5$
bzw. $P_6 = P_2 + 2(P_5 - P_3)$
 $= P_2 + 4(P_4 - P_3)$

Interpolation:

gegeben: l Punkte $Q_1, ..., Q_l$

gesucht: C^1 -stetige stückweise kubische Interpolation der Q_i

Ansatz: Bézier-Kurven zu Kontrollpunkten

$$(Q_i = P_{3i-2}, P_{3i-1}, P_{3i}, Q_{i+1} = P_{3i+1}), i = 1, ..., l-1$$

9 Kurven und Flächen 9.1 Parametrisierte kubische Kurven 9-12

Bestimmung der P_i :

$$\begin{aligned} & \text{ für } i = 1, ..., l \\ & P_{3i-2} \ := \ Q_i \\ & \text{ für } i = 2, ..., l-1 \\ & P_{3i-1} \ := \ Q_i + \frac{1}{6} \left(Q_{i+1} - Q_{i-1}\right) \\ & P_{3i-3} \ := \ Q_i - \frac{1}{6} \left(Q_{i+1} - Q_{i-1}\right) \\ & P_2 \ := \ \frac{1}{2} \left(Q_1 + P_3\right) \\ & P_{3l-3} \ := \ \frac{1}{2} \left(P_{3l-4} + Q_l\right) \end{aligned}$$

Verallgemeinerung: Bézier-Kurven beliebigen Grades

gegeben: Punkte $P_1, ..., P_{n+1}$

Bézier-Kurve *n*-ten Grades:

$$Q(t) = \sum_{i=0}^{n} P_{i+1} B_{i,n}(t)$$

mit Bernsteinpolynomen

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Beobachtung: $B_{i,n}(t) \ge 0$ für $t \in [0,1]$ und $\sum_{i=0}^{n} B_{i,n}(t) = 1$

⇒ Bézier-Kurve verläuft in konvexer Hülle der Kontrollpunkte

(nützlich für Clipping-Verfahren)

Rekursive Berechnung der Bernsteinpolynome:

$$\begin{split} B_{01}(t) &= 1 - t \,, \quad B_{11}(t) = t \\ B_{i,n}(t) &= (1 - t) B_{i,n-1}(t) + t B_{i-1,n-1}(t) \end{split}$$

mit
$$B_{-1,n-1}(t) = B_{n,n-1}(t) := 0$$

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven 9-14

9.1.3 Kubische Splines

Ein **kubischer B-Spline** approximiert eine Folge von m+1 Kontrollpunkten $P_0, ..., P_m, m \ge 3$. ("B" steht für Basis.)

Die Kurve besteht aus m-2 Kurvensegmenten $Q_3, ..., Q_m$ (kubische Polynome).

Jedes Segment Q_i ist definiert auf einem Parameterbereich $\left[t_i;t_{i+1}\right]$ (i=3,...,m).

Bemerkung 9.3: Spezialfall m = 3:

4 Kontrollpunkte $P_0, ..., P_3$, ein Polynom Q_3 mit $t_3 \le t \le t_4$

Die Verbindungspunkte $Q_{i-1}(t_i) = Q_i(t_i)$ (i=4,...,m) sowie Anfangspunkt $Q_3(t_3)$ und Endpunkt $Q_m(t_{m+1})$ heißen **Knotenpunkte**, die t_i **Knotenwerte**.

Der B-Spline heißt **uniform**, falls alle Parameterintervalle gleich lang sind – o. B. d. A. $t_3=0,\,t_4=1,\,...,\,t_m=m-3.$

BildGen, packet: 9

Geometrievektor zu Segment Q_i :

$$G_{BS_i} = (P_{i-3}, P_{i-2}, P_{i-1}, P_i)$$

- Jedes Segment wird von vier Kontrollpunkten beeinflusst.
- Umgekehrt beeinflusst jeder Kontrollpunkt (bis auf die ersten und letzten drei) jeweils vier Segmente.

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven 9-16

Definition der Kurve aus

$$Q_i(t) = G_{BS_i} \cdot M_{BS} \cdot T_i$$

 $f \ddot{\mathsf{u}} \mathsf{r} \, t_i \leq t \leq t_{i+1} \; \mathsf{mit}$

$$T_i = \begin{pmatrix} \left(t - t_i\right)^3 \\ \left(t - t_i\right)^2 \\ t - t_i \\ 1 \end{pmatrix}$$

und der Basismatrix

$$M_{BS} = \frac{1}{6} \cdot \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{1}{6} \left[(1-t)^3, 3t^3 - 6t^2 + 4, -3t^3 + 3t^2 + 3t + 1, t^3 \right]$$

Eigenschaften:

- Summe der vier Basispolynome ist $\equiv 1$
- Polynome sind ≥ 0
- ⇒ Kurve verläuft in konvexer Hülle der Kontrollpunkte

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven 9-18

Satz 9.4: B-Splines sind C^2 -stetig.

Beweis: Für x-Komponente am Übergang Q_i/Q_{i+1} und $t \in [0;1]$:

Kurve in Basisdarstellung:

$$Q_i(t) = G_{BS_i} \cdot M_{BS} \cdot T = \frac{(1-t)^3}{6} P_{i-3} + \frac{3t^3 - 6t^2 + 4}{6} P_{i-2} + \frac{-3t^3 + 3t^2 + 3t + 1}{6} P_{i-1} + \frac{t^3}{6} P_i$$

 C^0 -Stetigkeit:

$$x_i(1) = \frac{1}{6} \left(P_{i-2_x} + 4P_{i-1_x} + P_{i_x} \right) = x_{i+1}(0)$$

 C^1 -Stetigkeit:

$$\begin{split} \frac{d}{dt}Q(t) &= \frac{-(1-t)^2}{2}P_{i-3} + \frac{3t^2 - 4t}{2}P_{i-2} + \frac{-3t^2 + 2t + 1}{2}P_{i-1} + \frac{t^2}{2}P_i \\ &\frac{d}{dt}x_i(1) = \frac{1}{2}\left(-P_{i-2_x} + P_{i_x}\right) = \frac{d}{dt}x_{i+1}(0) \end{split}$$

 C^2 -Stetigkeit:

$$\frac{d^2}{dt^2}Q(t) = (1-t)P_{i-3} + (3t-2)P_{i-2} + (-3t+1)P_{i-1} + tP_i$$

$$\frac{d^2}{dt^2}x_i(1) = P_{i-2_x} - 2P_{i-1_x} + P_{i_x} = \frac{d^2}{dt^2}x_{i+1}(0)$$

9-20 9 Kurven und Flächen 9.1 Parametrisierte kubische Kurven

Bemerkung 9.5: C^2 -Stetigkeit wird erkauft durch Approximation statt Interpolation.

Bessere Annäherung ist möglich durch Doppelung von Kontrollpunkten: $P_{i-2} = P_{i-1}$

Interpolation durch Dreifach-Verwendung von Punkten: $P_{i-2} = P_{i-1} = P_i$

$$\Rightarrow Q_i(t) = \frac{(1-t)^3}{6} P_{i-3} + \frac{t^3 - 3t^2 + 3t + 5}{6} P_i$$
 ist eine Gerade.

- C^2 -stetig mit Ableitungen 0 für t=1
- Θ nicht G^1 -stetig, Knick!

Nicht-uniforme kubische B-Splines

Defintion eines nicht-uniformen kubischen B-Splines zur Approximation von Kontrollpunkten P_0, \dots, P_m :

benötigt: Knotenfolge $t_0, ..., t_{m+4}$ mit $t_i \le t_{i+1}$, z. B. (0, 0, 0, 1, 1, 2, 3, 3, 3, 4)

Definition des Kurvensegments Q_i zu Kontrollpunkten P_{i-3} , P_{i-2} , P_{i-1} , P_i :

$$Q_i(t) = P_{i-3} \cdot B_{i-3,4} + P_{i-2} \cdot B_{i-2,4} + P_{i-1} \cdot B_{i-1,4} + P_i \cdot B_{i,4}$$

mit Gewichtsfunktionen

$$\begin{split} B_{i,1}(t) &= \begin{cases} 1 & \text{für } t \in [t_i; t_{i+1}] \\ 0 & \text{sonst} \end{cases} \\ B_{i,k}(t) &= \frac{t - t_i}{t_{i+k-1} - t_i} \cdot B_{i,k-1}(t) + \frac{t_{i+k} - t}{t_{i+k} - t_{i+1}} \cdot B_{i+1,k-1}(t) \qquad \text{für } k > 1 \end{split}$$

(Wird der Nenner bei mehrfachen Knoten 0, so wird der Bruch als 0 definiert.)

Vorteil im Vergleich zu uniformen Splines:

- Interpolation durch Dreifach-Knoten möglich, ohne dass Geradenstücke entstehen
- gilt auch für Anfangs- und Endpunkt

9 Kurven und Flächen

9.1 Parametrisierte kubische Kurven 9-22

Rationale kubische Kurven

Eine rationale kubische Kurve hat die Form

$$Q(t) = \left(x(t) = \frac{X(t)}{W(t)}, y(t) = \frac{Y(t)}{W(t)}, z(t) = \frac{Z(t)}{W(t)}\right)^{T}$$

mit kubischen Polynomen X(t), Y(t), Z(t), W(t).

Darstellung in homogenen Koordinaten:

$$Q(t) = (X(t), Y(t), Z(t), W(t))^{T}$$

Bezeichnung für nicht-uniforme rationale B-Splines: NURBS

Vorteile rationaler Kurven:

- Invarianz unter perspektivischer Projektion
 - ⇒ Die Projektion kann nur auf die Kontollpunkte angewandt werden; bei anderen Kurven müssen alle Zwischenpunkte projiziert werden.
- ⊕ exakte Darstellung von Kegelschnitten möglich, z.B. Kreis

9 Kurven und Flächen

9-23

9.1.4 Unterteilung von Kurven

Frage: Wie lässt sich eine Kurve (ein Segment) durch Hinzunahme weiterer Kontrollpunkte in zwei Teile aufteilen, ohne dass sich das Bild ändert?

Hintergrund: Dies ist sinnvoll

- bei der Modellierung, wenn eine Kurve nur in einem Bereich verändert werden soll,
- beim Zeichnen von Kurven, vgl. Abschnitt 9.1.5.

Bei Bézier-Kurven ist die Unterteilung besonders einfach. Die neuen Kontrollpunkte sind Zwischenergebnisse bei der Ausführung des **Algorithmus von de Casteljau** zur Bestimmung des Kurvenpunktes für einen Parameterwert *t*.

```
Algorithmus von de Casteljau Eingabe Kontrollpunkte P_1, \ldots, P_{n+1}, Parameter t \in [0;1]  \begin{aligned} &\text{f\"ur } i = 1, \ldots, n+1 \\ &P_i^0 &:= P_i \\ &\text{f\"ur } r = 1, \ldots, n \\ &\text{f\"ur } i = 1, \ldots, n-r+1 \\ &P_i^r &:= (1-t)P_i^{r-1} + tP_{i+1}^{r-1} \\ &Q(t) &:= P_1^n \qquad // \ \textit{der gesuchte Punkt auf der Kurve} \end{aligned}
```

Paul de Faget de Casteljau * 1930, Besançon, FR Physiker, Mathematiker (Citroën)

9 Kurven und Flächen 9.1 Parametrisierte kubische Kurven 9-24

Beispiel 9.6:
$$n = 3$$
, $t = \frac{1}{2}$

Kontrollpunkte für linken (roten) Teil: $P_i^L = P_1^{i-1}$; Kontrollpunkte für rechten (blauen) Teil: $P_i^R = P_i^{n+1-i}$

9 Kurven und Flächen

direkte Berechnung der neuen Kontrollpunkte im Fall einer kubischen Kurve und Unterteilung bei $t = \frac{1}{2}$:

$$G_{B}^{L} = (P_{1}^{L}, P_{2}^{L}, P_{3}^{L}, P_{4}^{L}) = (P_{1}, P_{2}, P_{3}, P_{4}) \cdot \frac{1}{8} \cdot \begin{pmatrix} 8 & 4 & 2 & 1 \\ 0 & 4 & 4 & 3 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$G_{B}^{R} = (P_{1}^{R}, P_{2}^{R}, P_{3}^{R}, P_{4}^{R}) = (P_{1}, P_{2}, P_{3}, P_{4}) \cdot \frac{1}{8} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 3 & 4 & 4 & 0 \\ 1 & 2 & 4 & 8 \end{pmatrix}$$

$$G_B^R = (P_1^R, P_2^R, P_3^R, P_4^R) = (P_1, P_2, P_3, P_4) \cdot \frac{1}{8} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 3 & 4 & 4 & 0 \\ 1 & 2 & 4 & 8 \end{pmatrix}$$

Bemerkung 9.7: Bei B-Splines ergeben sich aus $(P_{i-3}, P_{i-2}, P_{i-1}, P_i) \cdot \frac{1}{8} \cdot \begin{pmatrix} \frac{1}{4} & \frac{5}{4} & \frac{7}{4} & \frac{5}{4} \\ 0 & 0 & \frac{4}{4} & \frac{5}{4} & \frac{7}{4} \end{pmatrix}$ fünf neue Kontrollpunkte, die zwei Segmente definieren, die mit dem ursprünglichen übereinstimmen.

aber: Die Nachbarsegmente haben noch die alten Kontrollpunkte.

O Verschiebung einzelner Punkte bei Modellierung führt zu Unstetigkeiten

9 Kurven und Flächen

9.2 Parametrisierte bikubische Flächen 9-26

9.1.5 Zeichnen von Kurven

Möglichkeit 1: Zerlegung des Parameterintervalls in kleine Teilintervalle, Annäherung der Kurve durch Geradenstücke auf jedem Teilintervall

Polynomauswertung durch

William George Horner * 1786, Bristol † 1837, Bath Mathematiker, Lehrer

- Horner-Schema oder
- Vorwärtsdifferenzen (dritter Ordnung) (effizienter)

Möglichkeit 2: rekursive Unterteilung der Kurve; wenn Kurve flach genug, Approximation durch Linie

9.2 Parametrisierte bikubische Flächen

Erinnerung: Form einer kubischen Kurve (hier mit *s* statt *t*):

$$Q(s) = G \cdot M \cdot S \qquad \text{mit } G = \begin{pmatrix} G_1, G_2, G_3, G_4 \end{pmatrix} \text{ und } S = \begin{pmatrix} s^3 \\ s^2 \\ s \\ 1 \end{pmatrix}$$

9 Kurven und Flächen

Verändere nun die G_i selbst entlang einer Kurve:

$$G_i(t) = \widetilde{G}_i \cdot M \cdot T$$
 mit $\widetilde{G}_i = \left(G_{1i}, G_{2i}, G_{3i}, G_{4i}\right)$

Alle Kurven zusammen ergeben eine Fläche.

Setzt man die transponierte Form $G_i(t)^T = T^T \cdot M^T \cdot \widetilde{G}_i^T$ in die Kurvendarstellung ein, ergibt sich die parametrisierte bikubische Fläche aus

$$Q(s,t) = T^T \cdot M^T \cdot \widetilde{G} \cdot M \cdot S \qquad \text{mit } \widetilde{G} = \begin{pmatrix} G_{11} & G_{12} & G_{13} & G_{14} \\ G_{21} & G_{22} & G_{23} & G_{24} \\ G_{31} & G_{32} & G_{33} & G_{34} \\ G_{41} & G_{42} & G_{43} & G_{44} \end{pmatrix}, \quad s,t \in [0;1]$$

oder koordinatenweise:

$$x(s,t) = T^T \cdot M^T \cdot \widetilde{G}_x \cdot M \cdot S \;, \quad y(s,t) = T^T \cdot M^T \cdot \widetilde{G}_y \cdot M \cdot S \;, \quad z(s,t) = T^T \cdot M^T \cdot \widetilde{G}_z \cdot M \cdot S$$

9 Kurven und Flächen

9.2 Parametrisierte bikubische Flächen

9.2.1 Bézier-Flächen

 G_B enhält 4 \cdot 4 = 16 Kontrollpunkte; die vier Eckpunkte des Flächenstücks werden interpoliert.

9 Kurven und Flächen 9.2 Parametrisierte bikubische Flächen 9-29

Beispiel 9.8: Bézier-Fläche, die 7 × 7 gegebene Punkte mit 36 Flächenstücken (Patches) interpoliert. Berechnung der inneren Kontrollpunkte ähnlich zum Algorithmus auf 9-12:

9 Kurven und Flächen 9-30

9.3 Rotationskörper

Lasse eine (z. B. kubische parametrisierte) Kurve um eine Achse rotieren.

