highway English (MNE)

Highway Tolls

U Japanu su gradovi povezani mrežom autoputeva. Mreža se sastoji od N gradova i M autoputeva. Svaki autoput povezuje par različitih gradova. Ne postoje dva autoputa koja povezuju isti par gradova. Gradovi su označeni od 0 do N-1, dok su autoputevi označeni od 0 do M-1. Autoputevi su dvosmjerni i moguće je iz bilo kojeg od gradova stići do bilo kojeg drugog koristeći autoputeve.

Putarina se naplaćuje za vožnju na svakom autoputu. Cijena putarine zavisi od **gustine saobraćaja** na autoputu. Saobraćaj može biti **rijedak** ili **gust**. Kada je saobraćaj rijedak, cijena putarina je A jena (ako još niste naučili to je japanska valuta:). Kada je saobraćaj gust, cijena putarine je B jena. Garantovano je da je A < B. Uzmite u obzir da su vam vrijedosti A i B poznate.

Imate uređaj koji, kada mu je poznato stanje saobraćaja na svim autoputevima, računa najmanju ukupnu putarinu koju bi neko morao platiti da bi putovao između gradova S i T. $(S \neq T)$ pod tim stanjem saobraćaja.

Međutim, ovaj uređaj je samo prototip. Vrijednosti S i T su fiksirane (tj. hardkodirani u mašini) i vama nisu poznate. Želite saznati S i T. Da biste to uradili, planirate postaviti mašini nekoliko stanja saobraćaja i iskoristiti dobijene vrijednosti putarine da zaključite vrijednosti S i T. S obzirom da je davanje stanja u saobraćaju mašini skupo, ne želite da koristite mašinu previše puta.

Detalji implementacije

Trebate implementirati sljedeću funkciju:

find pair(int N, int[] U, int[] V, int A, int B)

- N: broj gradova.
- U i V: nizovi dužine M, gdje je M broj autoputeva koji povezuju gradove. Za svako i i (0 < i < M 1), autoput i povezuje gradove U[i] i V[i].
- A: cijena putarine po autoputu kada je saobraćaj rijedak.
- B: cijena putarine po autoputu kada je saobraćaj gust.
- Funkcija će biti pozvana samo jednom po testnom slučaju.
- ullet Uzmite u obzir da je vrijednost M dužina nizova, i može biti određena na način prikazan u obavještenju o implementaciji.

Funkcija find pair može pozvati sljedeću funkciju:

int64 ask(int[] w)

- ullet Dužina w mora biti M. Niz w opisuje stanje saobraćaja.
- Za svako i ($0 \le i \le M-1$), w[i] daje stanje saobraćaja na autoputu i. Vrijednost w[i] mora biti 0 ili 1.
 - w[i] = 0 znači da je saobraćaj na autoputu i rijedak.
 - \circ w[i] = 1 znači da je saobraćaj na autoputu i gust.
- ullet Ova funkcija vraća najmanju ukupnu cijenu putarine za putovanje između gradova S i T, pod saobraćajnim uslovima navedenim pod w.
- Ova funkcija ne može biti pozvana više od 100 puta (po testnom slučaju).

find_pair treba pozvati sljedeću funkciju za prijavu odgovora:

- ullet s i t moraju biti par S i T (pri čemu redosljed nije bitan).
- Ova funkcija mora biti pozvana tačno jednom.

Ako neki od uslova iznad nije zadovoljen, vaš program je ocijenjen kao **Wrong Answer**. U suprotnom, vaš program je ocijenjen kao **Accepted** i vaši bodovi se računaju prema broju poziva ask (vidjeti sekciju Podzadaci).

Primjer

Neka su
$$N=4$$
, $M=4$, $U=[0,0,0,1]$, $V=[1,2,3,2]$, $A=1$, $B=3$, $S=1$ i $T=3$.

Program za ocjenjivanje (grader) poziva find_pair(4, [0, 0, 0, 1], [1, 2, 3, 2], 1, 3).

Na slici iznad grana sa brojem i odgovara autoputu i. Neki od mogućih poziva ask i odgovarajuće povratne vrijednosti su napisane ispod:

Call				Return
ask([0,	0,	0,	0])	2
ask([0,	1,	1,	0])	4
ask([1,	Θ,	1,	0])	5
ask([1,	1,	1,	1])	6

Za poziv funkcije ask([0, 0, 0, 0]), saobraćaj na svakom od autoputeva je rijedak i cijena putarine je 1. Najjeftinija ruta od S=1 do T=3 je $1\to 0\to 3$. Ukupna cijena putarine za ovu rutu je 2. Tako da funkcija vraća 2.

Za ispravan odgovor, procedura find_pair treba pozvati answer(1, 3) ili answer(3, 1).

Fajl sample-01-in.txt u zippovanom prilogu odgovara ovom primjeru. Drugi primjeri ulaza se također nalaze u prilogu.

U zip-fajlu uz ovaj zadatak, fajl sample-01-in.txt odgovara ovom primjeru. Zip-fajl sadrži i druge primjere.

Ograničenja

- 2 < N < 90000
- $1 \le M \le 130000$
- $1 \le A < B \le 1000000000$
- Za svako $0 \le i \le M-1$
 - 0 < U[i] < N-1
 - $\circ \ 0 < V[i] < N-1$
 - $\circ U[i] \neq V[i]$
- $(U[i], V[i]) \neq (U[j], V[j])$ and $(U[i], V[i]) \neq (V[j], U[j])$ $(0 \leq i < j \leq M-1)$
- Možete stići iz bilo kojeg grada u bilo koji drugi koristeći autoputeve.
- $0 \le S \le N 1$
- $0 \le T \le N 1$
- $S \neq T$

U ovom zadatku, program za ocjenjivanje (grader) NIJE adaptivan. Drugim riječima, S i T su fiksirani na početku pokretanja program za ocjenjivanje i ne zavise od upita koje postavi vaše rješenje.

Podzadaci

- 1. (5 bodova) jedan od S ili T je 0, $N \leq 100$, M = N 1
- 2. (7 bodova) jedan od S ili T je 0, M = N 1
- 3. (6 bodova) M = N 1, U[i] = i, V[i] = i + 1 ($0 \le i \le M 1$)

- 4. (33 boda) M = N 1
- 5. (18 bodova) A = 1, B = 2
- 6. (31 bod) Bez dodatnih ograničenja

Pretpostavimo da je vaš program ocijenjen kao **Accepted**, i poziva funkciju ask X puta. U tom slučaju se vaš broj bodova P za taj testni slučaj, u zavisnosti od broja podzadatka, računa na sljedeći način:

- Podzadatak 1. P = 5.
- Podzadatak 2. ako je $X \leq 60$, P = 7. U suprotnom P = 0.
- Podzadatak 3. ako je $X \leq 60$, P = 6. U suprotnom P = 0.
- Podzadatak 4. ako je $X \leq 60$, P = 33. U suprotnom P = 0.
- Podzadatak 5. ako je $X \leq 52$, P = 18. U suprotnom P = 0.
- Podzadatak 6.
 - Ako je $X \leq 50$, onda je P = 31.
 - \circ Ako je $51 \le X \le 52$, onda je P=21.
 - Ako je $53 \le X$, onda je P = 0.

Uzmite u obzir da je vaš broj bodova za svaki podzadatak jednak najmanjem broju bodova za testne slučajeve u tom podzadatku.

Primjer programa za ocjenjivanje (sample grader)

Programa za ocjenjivanje učitava ulaz u sljedećem formatu:

- red 1: N M A B S T
- red 2 + i ($0 \le i \le M 1$): U[i] V[i]

Ako je vaš program ocijenjen kao **Accepted**, program za ocjenjivanje (grader) ispisuje Accepted: q, gdje je q broj poziva funkcije ask.

Ako je vaš program ocijenjen **Wrong Answer**, program za ocjenjivanje (grader)štampa Wrong Answer: PORUKA, gdje je PORUKA jedna od sljedećih:

- answered not exactly once: Funkcija answer nije pozvana tačno jednom.
- w is invalid: Dužina w koji je poslat u ask nije jednaka M ili w[i] nije niti 0 niti 1 za neko i ($0 \le i \le M 1$).
- more than 100 calls to ask: Funkcija ask je pozvana više od 100 puta.
- {s, t} is wrong: Funkcija answer je pozvana sa neispravnim parom s i t.