

OLIVIERO ANDREUSSI UNIVERSITY OF NORTH TEXAS

ENVIRON: CONTINUUM EMBEDDINGS IN QUANTUM-ESPRESSO

OUTLINE

- Introduction to Continuum Embedding
- Ingredients
 - Continuum
 - Interface
 - Interactions
 - Numerical Solvers
- Recipes

DEALING WITH COMPLEXITY

- Democratic approaches (see tomorrow's session)
- Hierarchical approaches
 - Atomistic (QM/MM, DE, ONIOM, ...)

The Nobel Prize in Chemistry 2013

Martin Karplus

Wikimedia Commons Michael Levitt

Arieh Warshel

DEALING WITH COMPLEXITY

- Hierarchical approaches
 - Continuum (PCM, COSMO, etc.)
 - Fast (high-throughput)
 - Versatile
 - Accurate (in the right conditions)

CONTINUUM GENEALOGY

CONTINUUM EMBEDDINGS IN CONDENSED-MATTER

- Very active energy-related topic: catalysis, electro-catalysis, electro-chemistry, super-capacitors, batteries, solar, etc.
- In Quantum ESPRESSO (Environ), Big-DFT, FHI-AIMS, VASP (VaspSol), ONETEP (DL_MG), CP2K, GPAW, JDFT-x

Andreussi and Fisicaro, tutorial review accepted on Int. J. Quantum Chem. (2018). Open Access!

INGREDIENTS

- Continuum
- Interface
- Interactions
 - Numerical Solver

CONTINUUM

- Liquid
- Pressure medium
- Electrolyte
- Nanoparticle
- ...

O. Andreussi, A. Biancardi, S. Corni and B. Mennucci, *Nano Lett.* **13**, 4475 (2013)

INTERFACE

- Simple or complex
- Sharp or smooth
- Fixed or based on electrons or ions or both
- Local or non-local
- Single or multiple

$$s\left(\mathbf{r}\right) = \begin{cases} 1 & \mathbf{r} \in \text{system} \\ 0 & \mathbf{r} \in \text{continuum} \end{cases}$$

ELECTRONIC INTERFACE

$$s\left(\mathbf{r}\right)\equiv s\left(\rho^{el}\left(\mathbf{r}\right)\right)$$

$$s\left(\rho^{el}\left(\mathbf{r}\right)\right) = \frac{1}{2} \left(1 - \frac{1 - \left(\rho^{el}\left(\mathbf{r}\right)/\rho_{0}\right)^{2\beta}}{1 + \left(\rho^{el}\left(\mathbf{r}\right)/\rho_{0}\right)^{2\beta}}\right)$$

J.-L. Fattebert and F. Gygi, J. Comput. Chem. 23, 662, (2002)

662, (2002) J.-L. Fattebert and F. Gygi, Int. J. Quantum Chem. **93**, 139 (2003)

2 parameters

O. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. **136**, 064102 (2012)

$$s\left(\mathbf{r}\right) = \begin{cases} 1 & \rho^{el}\left(\mathbf{r}\right) > \rho_{max} \\ t\left(\ln\left(\rho^{el}\left(\mathbf{r}\right)\right)\right) & \rho_{max} > \rho^{el}\left(\mathbf{r}\right) > \rho_{min} \\ 0 & \rho^{el}\left(\mathbf{r}\right) < \rho_{min} \end{cases}$$

IONIC INTERFACE

- Analytic derivatives
- Stable
- Atom-dependent parametrization
 - UFF atomic radii
 - Uniform scaling
 - Smoothing

$$s(\mathbf{r}) \equiv s(\{|\mathbf{r} - \mathbf{R}_i|\})$$

$$s(\mathbf{r}) = 1 - \prod_{i} h_{i}(|\mathbf{r} - \mathbf{R}_{i}|),$$

$$h_{i}(|\mathbf{r}|) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{|\mathbf{r}| - \alpha R_{i}^{vdW}}{\Delta}\right) \right]$$

Giuseppe Fisicaro, et al. J. Chem. Theory Comput. 13, 3829 (2017)

Electronic

Ionic

SOLVENT-AWARE INTERFACE

 Augment the solute interface by a nonlocal term, that contains information on how much empty volume is around

smooth function

$$\hat{s}(\mathbf{r}) = s(\mathbf{r}) + (1 - s(\mathbf{r})) t(f^{ff}(\mathbf{r}))$$

$$f^{ff}\left[s\left(\mathbf{r}'\right)\right]\left(\mathbf{r}\right) \equiv \int s\left(\mathbf{r}'\right)h\left(\left|\mathbf{r}-\mathbf{r}'\right|\right)\mathrm{d}\mathbf{r}' = s*h\left(\mathbf{r}\right)$$
 smooth spherical function

- Smooth differentiable expression
- Extra parameters: from geometrical considerations or tuned to experiments

Andreussi et al. JCTC (2019)

INTERACTIONS

- Electrostatic
 - Dielectric screening (dipolar)
 - Coulomb interaction (monopole)

- Pressure
- Cavitation

$$\Delta G^{sol} = \Delta G^{el} + G^{cav} + G^{dis} + G^{rep} + \Delta G^{tm} + P\Delta V$$

- Dispersion
- Repulsion
- Specific (hydrogen bonds, chemical bonds, etc.)

$$V_{KS}^{interface}(\mathbf{r}) = \int \frac{\delta s(\mathbf{r}')}{\delta \rho^{el}(\mathbf{r})} \frac{\delta G[s]}{\delta s(\mathbf{r}')} d\mathbf{r}'$$
$$\mathbf{f}_{i}^{interface} = -\int \frac{\partial s(\mathbf{r})}{\partial \mathbf{R}_{a}} \frac{\delta G[s]}{\delta s(\mathbf{r})} d\mathbf{r}$$

VOLUME

Pressurizing medium (Enthalpy functional)

$$V \equiv V[s] = \int s(\mathbf{r}) d\mathbf{r}.$$

$$G^{PV}[s] = P^{ext}V[s]$$

$$\frac{\delta G^{PV}\left[s\right]}{\delta s}\left(\mathbf{r}\right) = 1$$

SURFACE

Cavitation, repulsion

$$G^{cav}[s] = \gamma S[s]$$

$$S[s] = \int |\nabla s(\mathbf{r})| \, d\mathbf{r}$$

$$\frac{\delta G^{cav}[s]}{\delta s}(\mathbf{r}) = -\nabla \cdot \left(\frac{\nabla s(\mathbf{r})}{|\nabla s(\mathbf{r})|}\right)$$

M. Cococcioni, et al. PRL **94**, 145501 (2005) D. Scherlis, et al. J. Chem. Phys. **124**, 74103 (2006)

DIELECTRIC SCREENING

Polarizable dielectric medium

$$G\left[\rho^{el}, \{\mathbf{R}_i\}\right] = \int \rho^{sys}(\mathbf{r}) \phi(\mathbf{r}) d\mathbf{r} - \int \frac{1}{8\pi} \epsilon(\mathbf{r}) |\nabla \phi(\mathbf{r})|^2 d\mathbf{r}$$

$$\rho^{sys}(\mathbf{r}) = \left(\rho^{el}(\mathbf{r}) + \sum_{i} z_{i} \delta\left(|\mathbf{r} - \mathbf{R}_{i}|\right)\right)$$

$$\frac{\delta G}{\delta \phi} = 0 \rightarrow \nabla \cdot \epsilon \left(\mathbf{r} \right) \nabla \phi \left(\mathbf{r} \right) = -4\pi \rho^{sys} \left(\mathbf{r} \right)$$
Generalized Poisson Equation (GPE)

$$\epsilon(\mathbf{r}) \equiv \epsilon(s(\mathbf{r})) = 1 + (\epsilon_0 - 1)(1 - s(\mathbf{r}))$$

POLARIZATION CHARGE

Reshuffling of GPE

$$\rho^{pol}\left(\mathbf{r}\right) = \frac{1}{4\pi} \nabla \ln \epsilon \left(\mathbf{r}\right) \cdot \nabla \phi \left(\mathbf{r}\right) - \frac{\epsilon \left(\mathbf{r}\right) - 1}{\epsilon \left(\mathbf{r}\right)} \rho^{sys} \left(\mathbf{r}\right)$$

$$\epsilon(\mathbf{r}) = e^{\log \epsilon_0 [1 - s(\mathbf{r})]}$$

O. Andreussi, I. Dabo and N. Marzari, J. Chem. Phys. **136**, 064102 (2012)

ELECTROLYTE

- Separate interface
- Neutralizing distribution of counter-ions in solution:
 - Study of charged slabs
 - Study of applied electrochemical potentials

I. Borukov, D. Adelman and H. Orland *PRL* 79, 435 (1997)
Dabo et al. *arXiv*:0901.0096 (2008)
R. Jinnouchi and A.B. Andreson, *PRB* 77, 245417 (2008)

ELECTROLYTE

lonic species in solution

$$\rho^{\pm}\left(\mathbf{r}\right) = z^{\pm}c^{\pm}\left(\mathbf{r}\right)$$

$$G\left[\rho^{el}, \left\{\mathbf{R}_{i}\right\}, c^{+}, c^{-}\right] = \int \left\{ \left[\rho^{sys}\left(\mathbf{r}\right) + \rho^{+}\left(\mathbf{r}\right) + \rho^{-}\left(\mathbf{r}\right)\right] \phi\left(\mathbf{r}\right) - \frac{\epsilon\left(\mathbf{r}\right)}{8\pi} \left|\nabla\phi\left(\mathbf{r}\right)\right|^{2} + -\mu^{+}c^{+}\left(\mathbf{r}\right) - \mu^{-}c^{-}\left(\mathbf{r}\right) - Ts\left[c^{+}\left(\mathbf{r}\right), c^{-}\left(\mathbf{r}\right)\right]\right\} d\mathbf{r}$$

$$s\left[c^{+}, c^{-}\right] = -k_{B}\left[c^{+}\left(\mathbf{r}\right)\ln\left(c^{+}\left(\mathbf{r}\right)\right) + c^{-}\left(\mathbf{r}\right)\ln\left(c^{-}\left(\mathbf{r}\right)\right)\right]$$

$$\frac{\delta G}{\delta c^{\pm}} = 0 \rightarrow c^{\pm}\left(\mathbf{r}\right) = c_{B}\left(\mathbf{r}\right)e^{\frac{-z^{\pm}\phi\left(\mathbf{r}\right)}{k_{B}T}}$$

$$\frac{\delta G}{\delta \phi} = 0 \rightarrow \nabla \cdot \epsilon\left(\mathbf{r}\right)\nabla\phi\left(\mathbf{r}\right) = -4\pi\left(\rho^{sys}\left(\mathbf{r}\right) + \rho^{+}\left(\mathbf{r}\right) - \rho^{-}\left(\mathbf{r}\right)\right)$$

NUMERICAL SOLVER

- Bi-directional interactions are usually associated with non-analytic partial differential equations (GPE, PBE, MPBE, LPBE, etc.)
 - Boundary Element Methods
 - Domain decomposition
 - Multigrid
 - Gradient descent coupled with vacuum Poisson solver (FFT, wavelets, etc.)

IMPROVED PRECONDITIONED SCHEME

$$\mathcal{P}^{CG}v_k(\mathbf{r}) = \sqrt{\epsilon(\mathbf{r})}\nabla^2[v_k(\mathbf{r})\sqrt{\epsilon(\mathbf{r})}] = -4\pi r_k(\mathbf{r}).$$

$$\mathcal{A}v_k(\mathbf{r}) = \nabla \cdot \epsilon(\mathbf{r})\nabla v_k(\mathbf{r})$$

$$= -v_k(\mathbf{r})q(\mathbf{r}) - 4\pi r_k(\mathbf{r}),$$

G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari and S. Goedecker, J. Chem. Phys. **144**, 014103 (2016).

FFTS

- Fast, parallel, widespread
- Periodic boundary conditions (PBC) artifacts
 - Makov-Payne
 - Point-countercharge
 - Martyna-Tuckerman

O. Andreussi and N. Marzari, PRB **90**, 245101 (2014)

RECIPES

- Model development level
 - Choose the continuum, choose the interface, choose the interactions
 - Tune the parameters
- User level
 - Choose the solver
 - Choose an application (compatible with the parameters)

SELF-CONSISTENT CONTINUUM SOLVATION (SCCS)

- Aqueous solutions
- Electronic interface
- Dielectric + Surface + Volume
- Or Dielectric + Surface (2D systems)

$$s\left(\mathbf{r}\right) = \begin{cases} 1 & \rho^{el}\left(\mathbf{r}\right) > \rho_{max} \\ t\left(\ln\left(\rho^{el}\left(\mathbf{r}\right)\right)\right) & \rho_{max} > \rho^{el}\left(\mathbf{r}\right) > \rho_{min} \\ 0 & \rho^{el}\left(\mathbf{r}\right) < \rho_{min} \end{cases}$$

$$\epsilon(\mathbf{r}) = e^{\log \epsilon_0 [1 - s(\mathbf{r})]}$$

$$\Delta G = \Delta G^{el} \left(\epsilon \left(s \left(\mathbf{r} \right) \right) \right) + \alpha S \left[s \left(\mathbf{r} \right) \right] + \beta V \left[s \left(\mathbf{r} \right) \right]$$

SCCS FOR CHARGED SPECIES

Anions need a separate parameterization

SOFT-SPHERE CONTINUUM SOLVATION

- Aqueous solutions
- Ionic interface
- Dielectric + Surface + Volume
- Or Dielectric + Surface (2D systems)

Table 2. MAEs in Aqueous Solvation Free Energies (kcal/mol) for Several Solvation Models (MAEs from ref 38)^a

method	neutrals	cations	anions
soft-sphere ^b	1.12	2.13	2.96
sccs ²³	1.14 ^c	2.27^{d}	5.54 ^d
SM8 ³⁸	0.55	2.70	3.70
SM12 ³⁹	0.59	2.90	2.90
PB/Jaguar ³⁸	0.86	3.10	4.80
IEF-PCM ³⁸	1.18	3.70	5.50
C-PCM/GAMESS ³⁸	1.57	7.70	8.90
GCOSMO/NWChem ³⁸	8.17	11.00	7.00

^aModel benchmarks refer to same set of 274 neutrals, 60 anions, and 52 cations of the Minnesota Solvation Database, version 2012. ²⁸ ^bParametrization of row 2 Table 1. ^cThe sccs implemented in BigDFT. ^dThe sccs for ions corresponds to a reduced set of 55 anions and 51 cations ²³ of the same Minnesota data set.

THE CODE

- Basic information
- Download and installation
- Input and Output
- Testing and examples

AN OPEN SOURCE PROJECT

- Website: www.quantum-environ.org
- Documentation: https://environ.readthedocs.io
- ▶ Public Q&A group: quantum-environ-users@googlegroups.com
- ▶ Public GitHub mirror: https://github.com/environ-developers/Environ
- ▶ Five releases:
 - ▶ Environ 0.1 in February 2015
 - ▶ Environ 0.2 in February 2016
 - Environ 1.0 in February 2018
 - ▶ Environ 1.1 in April 2019
 - Environ 2.0 in October 2021

ENVIRON 2.0

- ▶ A modular library written in Fortran 90/95/2003 (Object-Oriented Code)
- ▶ It relies on Quantum Espresso to perform reciprocal-space operations (gradients, Poisson potential, and related stuff)
 - Compiled as a stand-alone library
 - Currently only coupled with QE
- New features w.r.t Environ 1.1:
 - ▶ Internally generated G-vectors and FFT grids
 - Decoupled cells for DFT system and embedding Environment
 - Semiconductor embedding
- Extended use of object-oriented principles

DOWNLOAD AND INSTALLATION

- For news and releases, check out
 - www.quantum-environ.org
- For installation instructions, theoretical overview, and more, check out
 - https://environ.readthedocs.io/en/latest/
- Instructions are also available in the README file
- Once installed:
 - 1. Run the test-suite to check for consistency
 - 2. Run the examples to get familiarized with the tools
 - 3. Input keywords are also in Doc/INPUT_Environ.html

INPUT FILE

- Environ requires one additional input file
- It must be named **environ.in** and located in the directory where pw.x is running
- environ.in is composed of three namelists (two optional) and two optional cards

ENVIRON NAMELISTS

&ENVIRON (REQUIRED)

The global properties of the calculation

- The strength of the different environment effects
- Basic control keywords (verbosity)

&BOUNDARY (OPTIONAL)

The definition of the continuum boundaries

&ELECTROSTATIC (OPTIONAL)

The parameters for the electrostatic solvers

ENVIRON CARDS

EXTERNAL_CHARGES (OPTIONAL)

 Defines additional charge densities included in the electronic structure calculation (must be activated by env_external_charges = N>0)

DIELECTRIC_REGIONS (OPTIONAL)

- Defines non-homogenous dielectric regions inside the simulation cell
- (must be activated by env_dielectric_regions = N>0)

THREE LEVELS OF OUTPUT

- verbose=0 (default)
 - only print minimal information to standard output (inside the QE output file)
- 2. verbose>0
 - generate an additional readable text file named environ.debug
 - contains information of the Environ calculations
- 3. verbose>1
 - generate additional cube files
 - contains values of specific physical quantities on the simulation grid

Cube files may be useful for debugging or rendering purposes; they can be viewed with molecular visualization software, such as VMD

RUNNING TESTS

- Environ comes with a test-suite to allow for consistency checks
- To run the tests in serial, switch over to Environ/tests and run
- make run-tests
- ...or in parallel
- make run-tests-parallel

NOTE: a few tests may give some small errors and reported as failed

RUNNING EXAMPLES

- Summarized in Environ/examples/README
- ▶ To run, switch over to Environ/examples
- 1. Change directory into one of the examples
 - cd example01/
- 2. Run the script
 - ./run_example.sh
- 3. Make sure the script to run the example is executable. If not, run
 - chmod a+x run_example.sh
- 4. Compare results against the available references

COUPLING WITH QE

- Environ is coupled with the following QE sub-packages:
 - ▶ PW & NEB
 - ▶ CP
 - ▶ TDDFPT
 - XSPECTRA
- To run environ with these codes, run (e.g. PW)
 - \$QEPATH/bin/pw.x -environ < filename.in > filename.out
 - ▶ On the VM you can just run pw.x –environ ...

USERS & ENVIRON

- ▶ If you use the code and it works...
 - please cite the main references
 - full list available online and in the calculation output
- ▶ If you use the code and it doesn't work...
 - ▶ Bug NO WORRIES!... we'll fix it
 - Numerical problems GREAT!... Try tweaking the parameters
 - ▶ Physical problem NOT SO GREAT! May require development of new features
- In any case, please:
 - Check out the FAQ online or the Q&A group
 - Contact us (oliviero.andreussi@unt.edu)