NDA: Time Series Analysis Part 2: problem-oriented approach

Lionel Tabourier

LIP6 - CNRS and Sobonne University

first_name.last_name@lip6.fr

January 2021

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- \bullet post-processing \to model for the whole process

summarized description of a time series

Advantages and drawbacks

- powerful ⇒ understanding, allows prediction, test, ...
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- ullet post-processing o model for the whole process

summarized description of a time series

Advantages and drawbacks

- $\bullet \ \ \text{powerful} \Rightarrow \text{understanding, allows prediction, test,} \ \dots \\$
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

Summary of Part 1

About the classic approach

- pre-processing (transformation etc)
- decomposition/modeling
 - model for trend
 - model for seasonal component
 - ARMA model of residuals
- post-processing → model for the whole process

summarized description of a time series

Advantages and drawbacks

- powerful ⇒ understanding, allows prediction, test, . . .
- but heavy procedure, can be difficult to achieve

Now we look at time series data as (quasi) standard data

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve ⇒ suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, . . .

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

data traffic usage per application during 4 months

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve ⇒ suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, ...)

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

• data traffic usage per application during 4 months

A problem-oriented approach

Alternative approach problem-oriented: a specific question to solve ⇒ suited techniques regression, classification, hypothesis testing, clustering...

here: investigate a TSA problem and its resolution

The problem to solve

Provide resources in a local WiFi network (mall, university, ...)

- forecast the daily demand on the network
- plan and adapt the service in consequence
- raise an alert of exceptionally high demand

Data available

• data traffic usage per application during 4 months

Approach chosen

- create classes of usage profiles for each application
 - → clustering of past data
- analyze streaming data to attribute a class
 - \rightarrow classification of incoming data

Not a unique solution \rightarrow need evaluation and comparison

Approach chosen

- create classes of usage profiles for each application
 - \rightarrow clustering of past data
- analyze streaming data to attribute a class
 - → classification of incoming data

Not a unique solution \rightarrow need evaluation and comparison

Step 1: clustering

Agglomerative hierarchical clustering

cf. course on Clustering

UPGMA method (Unweighted Pair Group Method with Arithmetic Mean)

- initialization: each profile is one class
- compute the distances d(i, j) between pairs
- 1. find the lowest distance pair, group them in one class
- 2. recompute distances by arithmetic mean:

$$d(A,B) = \sum_{i \in A} \sum_{j \in B} d(i,j)$$

• iterate 1 and 2 until having one class

Step 1: clustering

Definition of the distance

Need appropriate notion of distance for time series euclidean distance inappropriate

$$d(S_1, S_2) = \sum_t |S_1(t) - S_2(t)|$$

Step 1: clustering

Definition of the distance

Need appropriate notion of distance for time series dynamic time warping

$$d(S_1,S_2) = \sum_t |S_1(t) - S_2(t')|$$
 s.t. $S_2(t')$ is the `best` match for $S_1(t)$

Step 1: clustering

Criterion to decide the clusters

Several options depending on the application:

- predefined number of clusters
- \bullet distance threshold Δ between clusters

nere: we want homogeneous clusters ⇒ threshold parameter ∆ to set experimentally

Step 1: clustering

Criterion to decide the clusters

Several options depending on the application:

- predefined number of clusters
- distance threshold Δ between clusters

here: we want homogeneous clusters \Rightarrow threshold parameter Δ to set experimentally

Step 1: clustering

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- UPGMA with S profiles: simple implementations in $O(S^3)$, most efficient in $O(S^2)$

→ neavy computational costs
manageable because offline processing (and small dataset)

Step 1: clustering

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- UPGMA with S profiles: simple implementations in $O(S^3)$, most efficient in $O(S^2)$

→ heavy computational costs manageable because offline processing (and small dataset)

Step 2: classification

cf. course on Classification

K-nearest neighbors: context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

K-nearest neighbors: principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its *k* nearest neighbors

Step 2: classification

cf. course on Classification

K-nearest neighbors: context

- Each data point is located in a space of features
- Each data point has a class (ex: red triangles, blue squares)

K-nearest neighbors: principle

- For a new unlabeled data point (ex: green circle): compute its distance to all labeled data points
- Prediction = dominant class among its *k* nearest neighbors

Step 2: classification

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- comparisons with S profiles: O(S)

computational costs relatively ligh but must be done in streaming

Step 2: classification

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- comparisons with S profiles:O(S)

computational costs relatively light but must be done in streaming

Step 2: classification

Here

simple: DTW distance to all existing data points \rightarrow what is the class of the closest profile? (k=1)

Computational complexity

- for each distance computation using DTW: ts of size n, for each point n comparisons $\Rightarrow O(n^2)$
- comparisons with S profiles:O(S)

computational costs relatively light but must be done in streaming

Quality evaluation Classification task

- observe data during part of the day to classify

→ here we compute prediction accuracy proportion of accurate classifications

What about the practical efficiency?

Quality evaluation

Classification task

- observe data during part of the day to classify
- ⇒ possible misclassifications

prediction accuracy (as a function of learning duration)

What about the practical efficiency?

Quality evaluation

Classification task

- observe data during part of the day to classify
- ⇒ possible misclassifications

prediction accuracy (as a function of learning duration)

What about the practical efficiency?

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- \bullet implementation details: (distance, threshold $\Delta,\,\ldots)$

under practical constraints \rightarrow computational demand, . .

TS analysis is also a craft: choices guided by knowledge of the methods and data important to identify why something works or not...

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- implementation details: (distance, threshold Δ, \ldots)

under practical constraints → computational demand, ...

TS analysis is also a craft:

choices guided by knowledge of the methods and data important to identify why something works or not...

Discussion

Complete workflow

- acquire data
- offline processing: clustering (classes definition)
- streaming processing: on-the-fly classification
- evaluation of classification

Choices

- choice of resolution
- methods (of clustering, of classification)
- implementation details: (distance, threshold Δ, \ldots)

under practical constraints → computational demand, ...

TS analysis is also a craft: choices guided by knowledge of the methods and data important to identify why something works or not...