Построение интегральных индикаторов Предпочтение групп экспертов

Панкратов Виктор,774

30 Марта, 2021

Постановка задачи

Задача₁

Построить рейтинг на основе расстояния Минковского до идеала

Предлагаемое решение задачи 1

Выбрать идеал(он может быть как стационарным ,так и вычисляться по выборке(среднее/максимум/минимум)).В моем решении использовалось среднее значение по выборке. Для нескольких значений параметра р рассчитать расстояние до этого идеала. Отсортированные значения будут являться рейтингом, который будет зависеть от параметра р.

Результат

	Устрицы	Арахис соленый	Молоко 2,5%	Макароны	Овсяное молоко 3.2%	Шоколад	Сырок "РОСТАГРОЭКСПОРТ" творожный глазированный с "Варенкой"	Кефир 3.2%	Гречневая крупа
-5	2.318158	2.395216	0.309424	1.668078	2.217465	0.000470	0.001865	0.052527	0.036798
-4	2.049682	2.124724	0.720963	1.483985	1.966834	0.030479	0.037660	0.343387	0.242286
-3	1.695025	1.768907	0.966475	1.242301	1.636500	0.216550	0.153342	0.769976	0.550924
-2	1.408667	1.490976	1.020086	1.057541	1.375792	0.531091	0.297169	1.048344	0.770334
-1	1.222610	1.334148	0.993990	0.960719	1.218331	0.801900	0.422921	1.154974	0.890407
0	1.098684	1.280843	0.942155	0.933101	1.127138	0.969904	0.530072	1.155935	0.962168
1	1.005297	1.332519	0.880753	0.941587	1.056874	1.049032	0.627256	1.099133	1.007550
2	0.949031	1.483002	0.833756	0.939699	0.983134	1.056396	0.712286	1.022113	1.020583
3	0.942374	1.618502	0.843973	0.918595	0.923155	1.024745	0.764768	0.954395	1.009493
4	0.941196	1.682662	0.876086	0.903838	0.890642	1.004246	0.789586	0.913142	0.998602
5	0.934372	1.706620	0.888950	0.896687	0.876608	1.001916	0.800071	0.897574	0.997203

Данная таблица показывает рейтинг для каждого $n:p=2^n$

Постановка задачи

Задача2

Определить, каким образом можно предпочесть одного эксперта другому.

Предлагаемое решение задачи 2

Для сравнения экспертов предлагается использовать один из предыдущих построенных рейтингов как "идеальный". Относительно него вычисляется число инверсий для каждого из экспертов. По полученным значениям производится сравнение в случае если экспертов необходимо сравнить. Если же экспертов необходимо исключить из выборки, для заданного α вычисляется p-value для полученного экспертом числа инверсий и при р $< \alpha$ эксперт исключается.

Результат

Данная таблица показывает отнормированное число инверсий для каждого эксперта.

