Практический кейс

«Прогнозирование размеров сварного шва при электронно-лучевой сварке тонкостенных конструкций аэрокосмического назначения»

В качестве исходных данных были взяты результаты экспериментальных исследований, проводимых в целях улучшения технологического процесса электронно-лучевой сварки изделия, сборка которого состоит из элементов, состоящих из разнородного материала.

Установка электронно-лучевой сварки, на которой проводились исследования, предназначена для сварки электронным лучом в глубоком вакууме деталей сборочных единиц из нержавеющих сталей, титановых, алюминиевых и специальных сплавов.

Существующая установка электронно-лучевой сварки обеспечивает реализованной режимов в рамках возможностей повторяемость системы управления. Работы образцах-имитаторах, ПО сварке выполнялись на соответствующих технологическому изделию.

Для уменьшения вложения энергии при сварке:

- 1. Снижалась величина сварочного тока (IW);
- 2. Увеличивался ток фокусировки электронного пучка (IF);
- 3. Увеличивалась скорость сварки (VW);
- 4. Менялось расстояние от поверхности образцов до электронно-оптической системы (FP).

По совокупности параметров технологических режимов обеспечивались минимально возможные размеры сварных швов: глубина шва (Depth) и ширина шва (Width).

В процессе выполнения работ была произведена электронно-лучевая сварка 18-ти единиц образцов. Результаты металлографического контроля по размерам сварного шва для каждого образца проводились в 4-х поперечных сечениях сварного шва. Ускоряющее напряжение было постоянным в диапазоне 19,8 — 20 кВ. Набор полученных данных собраны в составе режимов сварки, размеров сварочных швов в поперечных сечениях всех образцов. Статистические показатели набора обучающих данных указаны в табл. 1.

Статистические показатели набора обучающих данных

Показатель	IW	IF	VW	FP	Depth	Width
Количество	72	72	72	72	72	72
Среднее выборочное	45,666	141,333	8,639	78,333	1,196	1,970
Среднее квадратичное отклонение	1,678	5,146	2,061	21,494	0,225	0,279
Минимум	43	131	4,5	50	0,80	1,68
25%	44	139	8	60	1,08	1,76
50%	45	141	9	80	1,20	1,84
75%	47	146	10	80	1,29	2,05
Максимум	49	150	12	125	1,76	2,60

Задача:

Решить задачу регрессии (одним или несколькими методами) для предсказания глубины и ширины сварного соединения, выполнив необходимые этапы (разведочный анализ, предобработка)