a) Para o diagrama Dono x Membro temos:

```
PESSOA (CodPessoa, Nome, Idade) --->
RECEITA (CodReceita, DataPostagem, Título,
ModoPreparo, CodPessoa) --->
INGREDIENTE_RECEITA (CodReceita, CodIngrediente,
Quantidade) <--- INGREDIENTE (CodIngrediente,
Descrição, Unidade)
```

b)

- Consultas Significativas:
 - > Receitas
 - Receitas de João Silva com "ovo" na descrição de ingredientes
 - πReceita.Título, Pessoa.Nome (σ Pessoa.Nome = "João Silva"
 [^] Ingrediente.Descrição = "ovo" (Pessoa U Receita U Ingrediente U Ingrediente Receita))
 - Idade maior que 18 ou menor que 14
 - πReceita.CodReceita, Pessoa.Nome(σ Pessoa.idade > 18 (Receitas U Pessoa))
 - πReceita.CodReceita, Pessoa.Nome(σ Pessoa.idade < 14 (Receitas U Pessoa))
 - Descrição de ingredientes de receitas postadas pela Maria das Neves
 - πPessoa.Nome, Ingrediente.Descrição (σ Pessoa.nome = "Maria das Neves" (Pessoa U Receita U Ingrediente U Ingrediente Receita))
 - Pessoas que n\u00e3o postaram receitas
 - Contradição com outras queries, impossibilidade de entrar na FHP
- Predicado Simples:

```
➤ p1: P.idade < 14
```

> p2: P.idade > 18

> p3: P.nome = "João Silva"

p4: P.nome = "Maria das Neves"

p5: I.descrição = "ovo"

Pr = Pr'= {p1, p2, p3, p4, p5} Combinações = 2 ^ 5 = 32

Predicados Mintermo:

- > p1 ^ p2 ^ p3 ^ p4 ^ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ p3 ^ ¬ p4 ^ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ ¬ p3 ^ p4 ^ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ ¬ p3 ^ ¬ p4 ^ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ ¬ p2 ^ p3 ^ p4 ^ p5 —> excluindo consulta com nome "João Silva" e
 "Maria das Neves")
- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ p5
- ¬ p1 ^ p2 ^ p3 ^ p4 ^ p5 —> excluindo consulta com nome "João Silva" e
 "Maria das Neves"
- > ¬p1 ^p2 ^p3 ^¬p4 ^p5
- > ¬p1^p2^¬p3^p4^p5
- > ¬p1^p2^¬p3^¬p4^p5
- > ¬ p1 ^ ¬ p2 ^ p3 ^ p4 ^ p5 —> excluindo consulta com nome "João Silva" e "Maria das Neves"
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^p5
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^p5
- > ¬p1 ^¬p2 ^¬p3 ^p4 ^p5
- > ¬p1 ^¬p2 ^¬p3 ^¬p4 ^p5
- > p1 ^ p2 ^ p3 ^ p4 ^ ¬ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ p3 ^ ¬ p4 ^ ¬ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ ¬ p3 ^ p4 ^ ¬ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5 —> excluindo consulta com idade < 14 e idade > 18
- > p1 ^ ¬ p2 ^ p3 ^ p4 ^ ¬ p5 —> excluindo consulta com nome "João Silva" e
 "Maria das Neves"
- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ ¬ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- ¬ p1 ^ p2 ^ p3 ^ p4 ^ ¬ p5 —> excluindo consulta com nome "João Silva" e
 "Maria das Neves"
- > ¬p1^p2^p3^¬p4^¬p5
- > ¬p1^p2^¬p3^p4^¬p5
- > ¬p1 ^p2 ^¬p3 ^¬p4 ^¬p5
- > ¬ p1 ^ ¬ p2 ^ p3 ^ p4 ^ ¬ p5 —> excluindo consulta com nome "João Silva" e "Maria das Neves"
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^¬p5
- > ¬p1 ^¬p2 ^¬p3 ^p4 ^¬p5
- > ¬p1 ^¬p2 ^¬p3 ^¬p4 ^¬p5

Simplificação I:

- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ p5 → excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ p5 → excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > ¬p1^p2^p3^¬p4^p5
- > ¬ p1 ^ p2 ^ ¬ p3 ^ p4 ^ p5 —> excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- ¬ p1 ^ p2 ^ ¬ p3 ^ ¬ p4 ^ p5 → excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^p5
- ¬ p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ p5 —> excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- ¬ p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ p5 —> excluindo consulta que não tem nome
 "João Silva" e descrição "ovo"
- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ ¬ p5 —> excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- ¬ p1 ^ p2 ^ p3 ^ ¬ p4 ^ ¬ p5 → excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > ¬p1^p2^¬p3^p4^¬p5
- > ¬p1^p2^¬p3^¬p4^¬p5
- > ¬ p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ ¬ p5 —> excluindo consulta que não tem nome "João Silva" e descrição "ovo"
- > ¬p1 ^¬p2 ^¬p3 ^p4 ^¬p5
- > ¬p1 ^¬p2 ^¬p3 ^¬p4 ^¬p5

Simplificação II:

- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ p5
- > ¬ p1 ^ p2 ^ p3 ^ ¬ p4 ^ p5
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^p5
- 4. p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- > 5. p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- > 6. ¬ p1 ^ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- > 7. ¬ p1 ^ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- > 8. ¬ p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- \rightarrow 9. ¬ p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5 —> Fora do Domínio

Simplificação III:

- > p1 ^ ¬ p2 ^ p3 ^ ¬ p4 ^ p5
- > ¬p1^p2^p3^¬p4^p5
- > ¬p1 ^¬p2 ^p3 ^¬p4 ^p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ p4 ^ ¬ p5
- > p1 ^ ¬ p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- > ¬p1^p2^¬p3^p4^¬p5
- > ¬p1^p2^¬p3^¬p4^¬p5
- > ¬p1 ^¬p2 ^¬p3 ^p4 ^¬p5

Simplificação IV:

- > p1 ^ p3 ^ p5
- > p2 ^ p3 ^ p5
- > p3 ^ p5
- > p1 ^ p4 ^ ¬ p5
- > p1 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- > p2 ^ p4 ^ ¬ p5
- > p2 ^ ¬ p3 ^ ¬ p4 ^ ¬ p5
- > ¬p1 ^¬p2 ^p4 ^¬p5

Retirando os identificadores:

- > P.idade < 14 ^ P.nome = "João Silva" ^ I.descrição = "ovo"
- > 3P.nome = "João Silva" ^ I.descrição = "ovo"
- ➤ P.idade < 14 ^ P.nome = "Maria das Neves" ^ ¬ I.descrição = "ovo"
- P.idade < 14 ^ ¬ P.nome = "João Silva" ^ ¬ P.nome = "Maria das Neves" ^ ¬ I.descrição = "ovo"</p>
- ➤ P.idade > 18 ^ P.nome = "Maria das Neves" ^ ¬ I.descrição = "ovo"
- P.idade > 18 ^ ¬ P.nome = "João Silva" ^ ¬ P.nome = "Maria das Neves" ^ ¬ I.descrição = "ovo"
- → ¬ P.idade < 14 ^ ¬ P.idade > 18 ^ P.nome = "Maria das Neves" ^ ¬ I.descrição = "ovo"

Fragmentação tabela Pessoa:

- > Pessoa 1 = σ Idade < 14 ^ Nome = "João Silva" (PESSOA)
- Pessoa_2 = σ Idade > 18 ^ Nome = "João Silva" (PESSOA)
- > Pessoa_3 = σ Nome = "João Silva" (PESSOA)
- \triangleright Pessoa 4 = σ Idade < 14 ^ Nome = "Maria das Neves" (PESSOA)
- Pessoa_5 = σ Idade < 14 ^ ¬ Nome = "Maria das Neves" ^ ¬ Nome = "João Silva" (PESSOA)</p>
- \triangleright Pessoa 6 = σ Idade > 18 ^ Nome = "Maria das Neves" (PESSOA)
- Pessoa_7 = σ Idade > 18 ^ ¬ Nome = "Maria das Neves" ^ ¬ Nome = "João Silva" (PESSOA)
- ightharpoonup Pessoa_8 = σ ¬ Idade < 14 ^ ¬ Idade > 18 ^ Nome = "Maria das Neves" (PESSOA)

Fragmentação da tabela Ingrediente:

- Ingrediente_1 = σ descrição = "ovo" (INGREDIENTE)
- ➤ Ingrediente_2 = σ ¬ descrição = "ovo" (INGREDIENTE)

Fragmentação Derivada da tabela Receita (mais usada).

- ➤ Receita_1 = Receita ⋈ Pessoa_1 ⋈ Ingrediente_1 ⋈ Ingrediente_Receita
- ➤ Receita_2 = Receita ⋈ Pessoa_2 ⋈ Ingrediente_1 ⋈ Ingrediente_Receita
- ➤ Receita_3 = Receita × Pessoa_3 × Ingrediente_1 × Ingrediente_Receita

```
➤ Receita_4 = Receita × Pessoa_4 × Ingrediente_2 × Ingrediente_Receita
```

➤ Receita_5 = Receita × Pessoa_5 × Ingrediente_2 × Ingrediente_Receita

➤ Receita_6 = Receita × Pessoa_6 × Ingrediente_2 × Ingrediente_Receita

➤ Receita_7 = Receita × Pessoa_7 × Ingrediente_2 × Ingrediente_Receita

➤ Receita 8 = Receita × Pessoa 8 × Ingrediente 2 × Ingrediente Receita

2) De acordo com as consultas, temos que:

Query I: A1, A2, A3 Query II: A1, A4, A5

Query III: A1, A2, A3, A4, A5

Como representado na matriz abaixo:

	A 1	A2	А3	A 4	A5
Q1	1	1	1	0	0
Q2	1	0	0	1	1
Q3	1	1	1	1	1

E calculando a Matriz AA:

aff(A1,A1) = 130

aff(A1,A2) = 80

aff(A1,A3) = 80

aff(A1,A4) = 60

aff(A1,A5) = 60

aff(A2,A2) = 80

aff(A2,A3) = 80

aff(A2,A4) = 10

aff(A2,A5) = 10

aff(A3,A3) = 80

aff(A3,A4) = 10

aff(A3,A5) = 10

aff(A4,A4) = 60

aff(A4,A5) = 60

aff(A5,A5) = 60

Resultado:

	A 1	A2	A 3	A 4	A5
A 1	130	80	80	60	60
A2	80	80	80	10	10
А3	80	80	80	10	10
A4	60	10	10	60	60
A 5	60	10	10	60	60

E calculando a Matriz CA

	A2	А3	A4	A 5
A2	80	80	10	10
А3	80	80	10	10
A 4	10	10	60	60
A5	10	10	60	60

Calculando valores de bond:

```
bond(A2, A3) = 80 * 80 + 80 * 80 + 10 * 10 + 10 * 10 = 13000

bond(A2, A4) = 80 * 10 + 80 * 10 + 10 * 60 + 10 * 60 = 2800

bond(A2, A5) = 80 * 10 + 80 * 10 + 10 * 60 + 10 * 60 = 2800

bond(A3, A4) = 80 * 10 + 80 * 10 + 10 * 60 + 10 * 60 = 2800

bond(A3, A5) = 80 * 10 + 80 * 10 + 10 * 60 + 10 * 60 = 2800

bond(A4, A5) = 10 * 10 + 10 * 10 + 60 * 60 + 60 * 60 = 7400
```

	A2
A2	80
А3	80

A4	10
A5	10

Incluindo A3:

```
Posição (0, 3, 2):

cont(A0, A3, A2) = 2bond(A0, A3) + 2bond(A3, A2) - 2bond(A0, A2)

cont(A0, A3, A2) = 2 * 0 + 2 * 13000 - 2 * 0 = 26000

Posição (2, 3, n):

cont(A2, A3, An) = 2bond(A2, A3) + 2bond(A3, An) - 2bond(A2, An)

cont(A2, A3, An) = 2 * 13000 + 2 * 0 - 2 * 0 = 26000
```

	A2	А3
A2	80	80
А3	80	80
A4	10	10
A5	10	10

Incluindo A4:

```
Posição (0, 4, 2):
cont(A0, A4, A2) = 2bond(A0, A4) + 2bond(A4, A2) - 2bond(A0, A4)
cont(A0, A4, A2) = 2 * 0 + 2 * 2800 - 2 * 0 = 5600

Posição (2, 4, 3):
cont(A2, A4, A3) = 2bond(A2, A4) + 2bond(A4, A3) - 2bond(A2, A3)
cont(A2, A4, A3) = 2 * 2800 + 2 * 2800 - 2 * 13000 = -20400

Posição (3, 4, n):
cont(A3, A4, An) = 2bond(A3, A4) + 2bond(A4, An) - 2bond(A3, An)
cont(A3, A4, An) = 2 * 2800 + 2 * 0 - 2 * 0 = 5600
```

	A2	A 3	A4
A2	80	80	10
А3	80	80	10
A 4	10	10	60
A5	10	10	60

Incluindo A5:

Posição (0, 5, 2):

cont(A0, A5, A2) = 2bond(A0, A5) + 2bond(A5, A2) - 2bond(A0, A2) cont(A0, A5, A2) = 2 * 0 + 2 * 2800 - 2 * 0 = 5600

Posição (2, 5, 3):
cont(A2, A5, A3) = 2bond(A2, A5) + 2bond(A5, A3) - 2bond(A2, A3) cont(A2, A5, A3) = 2 * 2800 + 2 * 2800 - 2 * 13000 = -14800

Posição (3, 5, 4):
cont(A3, A5, A4) = 2bond(A3, A5) + 2bond(A5, A4) - 2bond(A3, A4) cont(A3, A5, A4) = 2 * 2800 + 2 * 7400 - 2 * 2800 = 14800

Posição (4, 5, n): cont(A4, A5, An) = 2bond(A4, A5) + 2bond(A5, An) -2bond(A3, An) cont(A4, A5, An) = 2 * 2800 + 2 * 0 - 2 * 0 = 5600

	A2	А3	A5	A4
A2	80	80	10	10
А3	80	80	10	10
A 4	10	10	60	60
A5	10	10	60	60

Marcando os quadrantes:

	A2	А3	A 5	A4
A2	80	80	10	10
А3	80	80	10	10
A 5	10	10	60	60
A4	10	10	60	60

E a fragmentação:

 $F1 = \pi A1, A2, A3$ $F2 = \pi A1, A4, A5$