

指导单位:

DCA

← 云计算开源产业联盟 RPA产业推进方阵

主办单位: Sağüz维社区 CreditPS Community ODPSA Open OPS Alliance

RPA时代

大会时间: 2020年11月27日-28日

大会地点:上海中庚聚龙酒店

云化环境下智能运维实践

张树祥 售前技术总监

张树祥

售前技术总监

2009年加入宝兰德,专注智能运维领域十年,曾从事开发、测试、运维工作,目前担任技术支持部售前技术总监。

CONTENTS

- 1 云化环境下运维面临的挑战
 - 2 云化环境下智能运维解决方案
 - ③ 云化环境下智能运维实践案例

云化环境下运维面临的挑战

云化环境下运维面临的挑战

业务系统高效、稳定运行

01系统架构复杂化

系统架构向分布式微服务方向演进, 系统复杂度大大增加,动态性强,对 于运维能力要求提升。

05运维操作分散

依赖自动化脚本的维护方式,维护工 作量大,容器和非容器运维操作分散。

02监控能力分散、不完善

监控能力分散,新技术组件的引入,监 控广度和深度不够,可视化能力不足。

03海量的运维数据,分析难

监控数量大,分析难,数据价 值未充分挖掘。

04运维对象的多样性

业务系统多厂家开发、引入软件版本的多样性,管理和维护标准不统一,管理难。

智能运维解决方案

智能运维解决方案

云化环境下智能运维发展和建设思路

工具运维->业务运维: 重点实现业务服务的端到端故障诊断定位及关联。

运维->建设->规划:从只关注运维过程,延伸到 关注开发过程甚至规划过程。IT规划开发运营一体化。

操作型->分析型:积累运维数据,强化分析能力, 从夯实运维->辅助运营,数据驱动一切。

系统稳定->客户体验:从关注系统稳定到关注体验、效率、效益。

以"智能"为内核,以ITIL和DevOps最佳实践为指导

- 以*资源* 为核心建立统一运维管理门户
- 以*流程、自动化,智能化* 为手段实现*运维的全生 命周期管理*
- 以*数据* 为基础驱动建立*数字化运营平台*

"融合、敏捷、智能"的一体化智能运维平台

智能运维解决方案落地思考-价值驱动

面向应用资源管理

实现资源的集中化、标 准化、规范化管理。

- 构建适合云环境的资源模型。
- 数据的实时性、准确性、完整性。(自动发现稽查)
- 数据消费场景。 (灵 活和完善的API)

敏捷ITSM

权衡ITLE和DEVOPS, 优化现有流程,流程原 子化、操作化。

- 流程可灵活定制,适应不同的场景。
- 与CMDB强耦合。
- 无缝对接运维操作, 提升工单处理效率。

全面的监控体系

充分复用现有资源,完善监控体现,在广度和深度上提升。

- 容器和非容器环境统 一监控,完善的指标 监控体系。
- 更关注用户体验的监控。
- 业务端对端的故障定位视角。

应用生命周期管理

集中化、标准化、自动 化实现运维操作生命周 期统一管理。

- 容器和非容器模式统一管理。
- 从源头控制标准化软件的版本基线和配置基线。
- 运维能力沉淀和共享, 具备开箱即用的工具。

AI运维中台

运维数据集中存储、分析,提供决策结果,提 升智能化程度。

- 向导式数据采集接入
- 海量数据的存储、分 析能力。
- 可视化模型管理,算 法的准确度。
- 统一API发布服务,供 第三方使用。

云化环境智能运维实践

某大型企业项目背景

- 2 运维流程只是流程,各种工单处理效率低,未与 CMDB和运维操作联动。
- 传统的网管监控能力,日志监控,无用户体验监 控,面向业务的端对端监控能力。
- 开发商多,引入的开源软件比较多,版本多,开 发商能力参差不齐,导致监控、运维标准不统一, 难管理。
- 缺乏AI分析能力,无落地的AI场景,监控和运维操作未联动。

开发商多

第一步.以CMDB为核心构建运维统一门户

资源总览,报表统计

基于通用的行业资源模型,结合用户情况进行优化,支持K8s与容器等资源模型,自动获取。快速导入现有的excel资源,IAAS、

PAAS、SAAS资源 可视化管理,线 上管理,方便统 计跟踪。

自动发现与稽查

平台内置多种软硬件资源自动发现能力,可扩展,自动纠错与稽查资源数据质量,确保准确性。

统一运维门户及API服务

全局跨模型检索

支持跨模型的全 局检索,快速查 询资产详细信息, 例如:资源归属、应 资源归属、应用 管理关系等。

第二步.对接现有工作流实现敏捷ITSM

通过工作流对接 方式, 快速对接 现有的流程,包 括自动工单和手 需对现有的流程 进行开发改造、 变更。强耦合 CMDB实现资源生 命周期管理。

可视化表单 和流程设计, 通过简单的 拖拽方式完 成流程快速 定制。

流程与运维操作联动

知方式	API		~
RL	URL		
坚美家	PUT		~]
eaders			

触发器/通知

可以邮件、API 通知用户,或 者使用其他产 品/工具执行相 应动作,实现 ITSM和运维操 作的联动。

		统 订报	
1015/049	acosmes	Recian	
25	225	75	

对每个用户 处理工单量、 处理时长进 行统计,明 确哪些环节 需要提高效 率,评估运 维质量。

第三步.完善现有监控指标体系,适应云环境需求

基于现有的日志 分析以及监控指 标,加上APM和 BPM实现基于业 务视角的跨业务 系统端对端监控, 并实现代码级故 障定位。持续提 升运维广度和深 度。

自动绘制系统应 用拓扑,清晰了 解系统部署情况 以及部署关系, (便于了解系统架 构,分析影响度。

英雄度 系統 CONSELLY 业务: 該無約
区域第3:0000
0 直接
Q 直接
Q 直接
Q 直接
Q 直接
Q 直接
P 均断限性
平均額内線線制
平均服务線線制
失敗的
合物数
成的率 (5)
健康度 (3)

AMISONO
2
2
1分件80月002変秒
1分件80月002変秒
170 運動
0
0
100
100

AMISONO
15
2
1分件80月00変秒
590月20変秒
470変形
0
0
100
100

AMILISON
14
2
4分件80月000変秒
3分件80月000変秒
84(全形
0
0
100
100

AMISONO
11
2
1分件80月000000
3付料10000000
84(全形
0
0
100
100

AMISONO
11
2
1分件80月000000
1分件80月00000
3480至秒
0
0
100
100

AMISONO
11
2
1分件80月000000
1分件80月00000
3480至秒
0
0
100
100

AMISONO
11
2
1分件80月000000
1分析9000000
3480至秒
0
0</td

多维度统计

根据不同的维度 统计用户体验指 标,例如:根据 手机号、营业厅、 地区统计用户满 意度情况。

关注满意度,包 括业务的成功率、 业务的响应时间、 健康度等用户体 验指标。

100 258

第四步.进一步提升自动化运维程度

依还能化场运快速平台产品,并还是一个,是一个,是一个的人。

多种类型应用生 命周期统一管理, 应用快速部署、 快速扩容、批置 启停、配置变 等生命周期管理 操作。

GOPS 全球运维大会2020·上海站

第五步.构建运维大脑,AI赋能运维

智能发现

异常检测 系统健康分析 低效资产判定 调用链异常检 测

智能定位

根因分析 告警收敛 智能巡检 多源日志分 析

智能预防

容量预测 容量规划 故障预测 容器规格管理 变更智能评估

智能决策

智能扩容 应用故障自愈 计算资源优化 中间件智能重 启

智能问答

智能投诉机器 人 智能运维机器 人 知识库

提供向导式的方式快速接入监控数据、用户行为 分析数据、业务数据等多源数据,集中存储分析, 能力开放,发布成通用服务,供现有自动化运维、 监控等第三方平台调用。

第六步.监控运维操作联动-故障自愈

01 提前在平台内预置维护故障自愈的场景,选 择是否需要人工干预。

基于多维度监控指标数据,通过AI中台进行 02 数据分析,及时发现存在实例宕机情况,告 警的同时发送信息到相关运维人员。

03 运维人员确认后,触发相关的故障自愈动作, 并在对话框返回处理结果。

04 在故障自愈结果中反馈故障自愈效果,以便 进行统计分析。

自愈歡览

实践总结

靠excel维护资产信息,缺乏资源管理平台, 运维工具零散,运维能力分散。

2 运维流程只是流程,各种工单处理效率低, 未与CMDB和运维操作联动。

监控具备传统的网管监控能力,日志监控, 无用户体验监控和面向业务的监控能力,监 控广度和深度不够。

开发厂商多,引入的开源软件比较多,版本 多,开发厂商能力参差不齐,导致监控、运 维标准不统一,难管理。

缺乏AI分析能力,无落地的AI场景,监控和运 维操作未联动。 帮助用户搭建面向应用的CMDB,创建资源模型,**100+**通用资源模型和自动发现能力,纳管**4000+主机**,资源覆盖主机、中间件、开源软件网络设备,存储,与ITSM结合完成资源全生命管理,与其他运维模块集成完成容量规划评估、影响度评估、资产盘点、安全分析等消费场景,统一运维门户,同时支持容器和非容器环境的运维,提升了运维资产的管控力度,提升了运维质量和效率。

与现有工作流程对接,与CMDB强耦合,完成资源生命周期管理,流程覆盖 从设备入库、出库、上架、使用调配、下架、报废;应用上线、发布更新、资源调配、应用下线等,与运维操作中心完成联动,提高了运维工单处理效率和质量。

复用现有的监控方案,结合APM、BPM、浏览器监控、APP监控、容器监控为用户提供面向用户体验的业务端对端监控解决方案,从系统运维转向业务运维,故障定位效率提升10倍+,性能和稳定性提升,提升业务连续性。

通过平台沉淀软件的最佳实践,从源头控制统一软件基线和配置 基线,逐步统一软件版本、运维监控标准,运维操作可审计。**有** 利于企业实现运维能力内化、共享和沉淀,运维质量和效率提升, 客观因素导致的故障率降低

帮助用户构建AI中台,沉淀智能发现/定位、智能预防、智能决策、智能问答共计**27个AIOPS**场景,**故障自愈次数每周200+。 提升了系统健壮性,提升用户满意度**。

高效运维社区 开放运维联盟

