Bergur Snorrason

17. febrúar 2023

Rótartvíundatré sem uppfyllir að sérhver nóða er stærri en börnin sín er sagt uppfylla hrúguskilyrðið.

- Rótartvíundatré sem uppfyllir að sérhver nóða er stærri en börnin sín er sagt uppfylla hrúguskilyrðið.
- ▶ Við köllum slík tré hrúgur (e. heap).

- Rótartvíundatré sem uppfyllir að sérhver nóða er stærri en börnin sín er sagt uppfylla hrúguskilyrðið.
- ▶ Við köllum slík tré hrúgur (e. heap).
- Hrúgur eru heppilega auðveldar í útfærslu.

- Rótartvíundatré sem uppfyllir að sérhver nóða er stærri en börnin sín er sagt uppfylla hrúguskilyrðið.
- ▶ Við köllum slík tré *hrúgur* (e. *heap*).
- Hrúgur eru heppilega auðveldar í útfærslu.
- Við geymum tréð sem fylki og eina erfiðið er að viðhalda hrúguskilyrðinu.

Pegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- ► Sú fyrri:

- Pegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- ► Sú fyrri:
 - Rótin er í staki 1 í fylkinu.

- Pegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- ► Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ► Hægra barn staks i er stak $2 \cdot i + 1$.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - ► Foreldri staks i er stakið $\lfloor i/2 \rfloor$.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið |i/2|.
- Sú seinni:

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið |i/2|.
- ► Sú seinni:
 - Rótin er í staki 0 í fylkinu.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið $\lfloor i/2 \rfloor$.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - ▶ Vinstra barn staks i er stak $2 \cdot i + 1$.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið |i/2|.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - ▶ Vinstra barn staks i er stak $2 \cdot i + 1$.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 2$.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið $\lfloor i/2 \rfloor$.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - ▶ Vinstra barn staks i er stak $2 \cdot i + 1$.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 2$.
 - ► Foreldri staks i er stakið $\lfloor (i-1)/2 \rfloor$.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið $\lfloor i/2 \rfloor$.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - ▶ Vinstra barn staks i er stak $2 \cdot i + 1$.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 2$.
 - Foreldri staks i er stakið |(i-1)/2|.
- Takið eftir í fyrri aðferðinni notum við ekki stak 0 í fylkinu.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið $\lfloor i/2 \rfloor$.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - ▶ Vinstra barn staks i er stak $2 \cdot i + 1$.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 2$.
 - Foreldri staks i er stakið |(i-1)/2|.
- Takið eftir í fyrri aðferðinni notum við ekki stak 0 í fylkinu.
- Þetta má sjá sem bæði kost og galla.

- Þegar við geymum tréð sem fylki notum við eina af tveimur aðferðum.
- Sú fyrri:
 - Rótin er í staki 1 í fylkinu.
 - ▶ Vinstra barn staks i er stak 2 · i.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 1$.
 - Foreldri staks i er stakið $\lfloor i/2 \rfloor$.
- Sú seinni:
 - Rótin er í staki 0 í fylkinu.
 - Vinstra barn staks i er stak $2 \cdot i + 1$.
 - ▶ Hægra barn staks i er stak $2 \cdot i + 2$.
 - Foreldri staks i er stakið |(i-1)/2|.
- Takið eftir í fyrri aðferðinni notum við ekki stak 0 í fylkinu.
- Þetta má sjá sem bæði kost og galla.
- ▶ Það stak má nota til að geyma, til dæmis, stærðina á trénu.

▶ Bein afleiðing af hrúguskilyrðinu er að rótin er stærsta stakið í trénu.

- Bein afleiðing af hrúguskilyrðinu er að rótin er stærsta stakið í trénu.
- Við getum því alltaf fengið skjótan aðgang að stærsta stakinu í trénu.

- Bein afleiðing af hrúguskilyrðinu er að rótin er stærsta stakið í trénu.
- Við getum því alltaf fengið skjótan aðgang að stærsta stakinu í trénu.
- Algengt er að forgangsbiðraðir (e. priority queues) séu útfærðar með hrúgum.

```
8 #define PARENT(i) ((i)/2)
9 #define LEFT(i)
                      ((i)*2)
                      ((i)*2 + 1)
10 #define RIGHT(i)
11 int h[MAXN + 1];
12 void swap(int* x, int* y) { int t = *x; *x = *y; *y = t; }
13 void fix down(int i)
14 {
15
       int mx = i;
       if (RIGHT(i) \le h[0] \&\& h[mx] < h[RIGHT(i)]) mx = RIGHT(i);
16
17
       if (LEFT(i) \le h[0] \&\& h[mx] < h[LEFT(i)]) mx = LEFT(i);
18
       if (mx != i) swap(&h[i], &h[mx]), fix down(mx);
19 }
20
21 void fix up(int i)
22
   {
23
       if (i == 1 \mid | h[i] \le h[PARENT(i)]) return;
24
       swap(&h[i], &h[PARENT(i)]), fix up(PARENT(i));
25 }
26
27 void pop()
28
       h[1] = h[h[0] - -]
29
30
       fix down(1);
31 }
32
33 void push (int x)
34 {
35
       h[++h[0]] = x:
       fix up(h[0]);
36
37 }
38
39 int peek() { return h[1]; }
40 int size() { return h[0]; }
41 void init() \{h[0] = 0; \}
```

► Gerum ráð fyrir að við séum með *n* stök í hrúgunni.

- ► Gerum ráð fyrir að við séum með *n* stök í hrúgunni.
- ightharpoonup Þá er hæð trésins $\mathcal{O}($).

- ► Gerum ráð fyrir að við séum með *n* stök í hrúgunni.
- ightharpoonup Þá er hæð trésins $\mathcal{O}(\log n)$.

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ▶ Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}($

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ▶ Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ▶ Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.
- Par sem push(...) parf aðeins að ferðast einu sinni upp að rót er tímaflækjan $\mathcal{O}($

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ▶ Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.
- Par sem push(...) þarf aðeins að ferðast einu sinni upp að rót er tímaflækjan $\mathcal{O}(\log n)$.

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ightharpoonup Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.
- ▶ Par sem push(...) þarf aðeins að ferðast einu sinni upp að rót er tímaflækjan $O(\log n)$.
- Nú þarf peek() ekki að gera annað en að lesa fremsta stakið í fylki svo tímaflækjan er O().

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ightharpoonup Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.
- ▶ Par sem push(...) þarf aðeins að ferðast einu sinni upp að rót er tímaflækjan $O(\log n)$.
- Nú þarf peek() ekki að gera annað en að lesa fremsta stakið í fylki svo tímaflækjan er $\mathcal{O}(1)$.

- Gerum ráð fyrir að við séum með n stök í hrúgunni.
- ightharpoonup Þá er hæð trésins $\mathcal{O}(\log n)$.
- Par sem pop() þarf aðeins að ferðast einu sinni niður að laufi er tímaflækjan $\mathcal{O}(\log n)$.
- ▶ Par sem push(...) þarf aðeins að ferðast einu sinni upp að rót er tímaflækjan $O(\log n)$.
- Nú þarf peek() ekki að gera annað en að lesa fremsta stakið í fylki svo tímaflækjan er $\mathcal{O}(1)$.
- Við getum útfært þetta með ítrun, í stað þess að nota endurkvæmni.

```
13 void pop()
14 {
15
       h[1] = h[h[0] - -];
16
       for (int i = 1, mx = i; swap(&h[i], &h[mx]), i = mx)
17
18
            if (RIGHT(i) \le h[0] \&\& h[mx] < h[RIGHT(i)]) mx = RIGHT(i);
19
           if (LEFT(i) \le h[0] \&\& h[mx] < h[LEFT(i)]) mx = LEFT(i);
20
           if (i = mx) return;
21
22
23
24
   void push(int x)
25
   {
26
       h[++h[0]] = x:
27
       for (int i = h[0]; i > 1 \&\& h[i] > h[PARENT(i)]; i = PARENT(i))
28
           swap(&h[i], &h[PARENT(i)]);
29 }
30
31 int peek() { return h[1]; }
  int size() { return h[0]; }
33 void init() { h[0] = 0; }
```