Introduction à la K-théorie des C^* -algèbres Clément Dell'Aiera

 $Figure\ 1-Pavage\ de\ Penrose\ généré\ avec\ http://www.spacegoo.com/penrose/$

Table des matières

1	Int	roduction	3
	1.1	Notations	:
	1.2	Rappels sur les produits tensoriels de C^* -algèbres	4
	1.3	Applications complètement positives et suites exactes	,
2	K-t	héorie des C^st -algèbres	9
	2.1	La suite exacte à six termes	1
	2.2	Produits croisés de C^* -algèbres	1
		2.2.1 Suite exacte de Pimsner-Voiculescu	1
		2.2.2 Extension de Toeplitz	1
	2.3	Suite exacte de Pimsner-Voiculescu	1
		2.3.1 La preuve originale	1
		2.3.2 Un exemple: le tore non-commutatif	2

1 Introduction

1.1 Notations

Pour une C^* -algèbre A non nécessairement unitale, on note A^+ la C^* -algèbre unitale qui la contient en tant qu'idéal bilatère, définie par :

$$A^{+} = \{(a, \lambda) \in A \times \mathbb{C}\}\$$

$$(a, \lambda)(b, \mu) = (ab + \lambda b + \mu a, \lambda \mu)$$

On a alors une suite exacte:

$$0 \longrightarrow A \longrightarrow A^+ \stackrel{\pi_{\mathbb{C}}}{\longrightarrow} \mathbb{C} \longrightarrow 0 .$$

On rappelle que pour tout semi-groupe abélien S, il existe un groupe G_S , appelé groupe de Grothendieck de S, et un morphisme de semi-groupe $\mu: S \to G_S$ tels que, pour tout groupe G et tout morphisme de semi-groupe G et set un unique morphisme de groupe G et semi-groupe G vérifiant G et semi-groupe G et semi-groupe

Enfin, une remarque sur les limites inductives de C^* -algèbres. Par système inductif, on entend une famille de morphismes $\{\phi_{ij}:A_j\to A_i\}_{i>j}$, où i et j sont éléments d'un ensemble partiellement ordonné, vérifiant la condition de cohérence :

$$\phi_{ij} \circ \phi_{jk} = \phi_{ik} \quad \text{si} \quad i > j > k.$$

Il existe alors un objet universel A_{∞} , appelé la limite inductive algébrique du système $\{A_i; \phi_{ij}\}$, et des morphismes canoniques $\phi_i : A_i \to A_{\infty}$ qui rendent le diagramme suivant commutatif :

$$\begin{array}{c}
A_i \xrightarrow{\phi_i} A_{\infty} \\
\downarrow^{\phi_{ij}} & \downarrow^{\phi_j} \\
A_j & \end{array}$$

et tel que $A_{\infty} = \cup \phi_j(A_j)$. Cet objet est universel au sens où, pour tout autre A'_{∞} et morphismes $\phi'_i: A_i \to A'_{\infty}$ qui font commuter le précédent diagramme, alors il existe un unique morphisme $A_{\infty} \to A'_{\infty}$ tel que le diagramme :

$$\begin{array}{ccc} A_i & \xrightarrow{\phi_i} A_{\infty} \\ \phi_{ij} & & & \\ \phi_{ij} & & & \\ A_j & \xrightarrow{\phi'_j} & A'_{\infty} \end{array}$$

commute. De plus, si chaque ϕ_j' est injectif, la flèche en pointillés l'est aussi. Et elle est surjective si $N=\cup\phi_j'A_j$.

Si
$$x = \phi_j(a_j),$$

$$\alpha(x) := \sup_i \{ ||\phi_{ij}(a_j)|| \}$$

définit une semi-C*-norme sur A_{∞} . On peut alors quotienter par l'idéal des éléments qui annulent α , puis compléter par rapport à la norme obtenue sur le quotient. On étend ainsi la limite inductive à la catégorie des C^* -algèbre. Dans la suite de ce rapport, lorsque l'on parlera de limite inductive, cela désignera par défaut cette construction.

1.2 Rappels sur les produits tensoriels de C^* -algèbres

Cette section présente les résultats qui seront utilisés sur les produits tensoriels de C^* -algèbres. Toutes les preuves des affirmations non justifiées peuvent être trouvées dans le livre de Murphy [4] par exemple.

On rappelle que le produit tensoriel de 2 espaces vectoriels E et F est défini comme l'unique (à isomorphisme près) espace vectoriel $E\otimes F$ muni d'une application bilinéaire $\pi:E\times F\to E\otimes F$ tel que, pour tout espace vectoriel W et toute application bilinéaire $\phi:E\times F\to W$, il existe une unique application linéaire $\varphi:E\otimes F\to W$ telle que $\phi=\varphi\circ\pi$. On note $\pi(x,y)=x\otimes y$. Ce sont ces éléments, appelés tenseurs élémentaires, qui engendrent $E\otimes F$ comme espace vectoriel.

Le lemme suivant donne l'unicité à isomorphisme près :

Lemme 1. Soient E et F deux espaces vectoriels sur un corps K. S'il existe deux K-espaces vectoriels V_1 et V_2 munis d'applications bilinéaires $\pi_j: E \times F \to V_j$ telles que, pour tout espace vectoriel W, toute application bilinéaire $E \times F \to W$, se factorise uniquement via π_1 et π_2 , alors V_1 et V_2 sont isomorphes en tant que K-espaces vectoriels.

Preuve 1. En factorisant π_j via π_j , il existe deux uniques applications linéaires $\phi_1: V_2 \to V_1$ et $\phi_2: V_1 \to V_2$ telles que :

$$\pi_1 = \phi_1 \circ \pi_2$$

$$\pi_2 = \phi_2 \circ \pi_1.$$

Montrons que ces deux applications sont inverses. Comme :

$$\phi_1 \circ \phi_2 \circ \pi_1 = \phi_1 \circ \pi_2 = \pi_1,$$

 $\phi_1 \circ \phi_2 = id_{V_1}$ par unicité de la factorisation de π_1 via π_1 . Symétriquement, on démontre que : $\phi_2 \circ \phi_1 = id_{V_2}$, et le résultat est démontré.

Le problème qui va se poser, si l'on veut définir des produits tensoriels d'espaces vectoriels topologiques par exemple, est celui de la topologie que l'on veut définir sur celui-ci. Alexandre Grothendieck a étudié ces constructions dans sa thèse, voir le séminiaire Bourbaki [1] pour une présentation. C'est au cours de sa thèse que A. Grothendieck a d'ailleurs introduit la nucléarité, notion clé pour les C^* -algèbres. On verra en effet que les C^* -algèbres nucléaires sont exactes : le foncteur obtenu en tensorisant par elle-même préserve l'exactitude des complexes de C^* -algèbres.

Sur les espaces de Hilbert, notre travail est simplifié : il existe un unique produit scalaire sur le produit tensoriel algébrique vérifiant : $\langle x \otimes x', y \otimes y' \rangle = \langle x, y \rangle \langle x', y' \rangle$. La complétion du produit tensoriel algébrique de H et K par rapport à ce produit scalaire est noté $H \hat{\otimes} K$. Ce résultat peut alors être transféré aux C^* -algèbres, grâce à leurs représentations sur des espaces de Hilbert.

Proposition 1. Soit A et B deux C^* -algèbres et (H,φ) et (K,ψ) deux représentations associées. Alors, il existe un unique *-homomorphisme $\pi: A \otimes B \to B(H \hat{\otimes} K)$ tel que $\pi(a \otimes b) = \varphi(a) \otimes \psi(b)$. De plus, π est injectif si φ et ψ le sont.

On appelle représentation universelle d'une C^* -algèbre A la somme directe de toutes les représentations (H_τ, ϕ_τ) , τ parcourant l'espace des états de A, la représentation associée dérivant de la construction GNS. On peut alors définir deux normes sur le produit tensoriel algébrique de 2 C^* -algèbres A et B.

Définition 1. Soit A et B deux C^* -algèbres de représentations universelles (H_A, ϕ_A) et (H_B, ϕ_B) . Soit π l'unique *-homomorphisme donné par la proposition précédente : $\pi(a \otimes b) = \phi_A(a) \otimes \phi_B(b)$.

– Le produit tensoriel spatial $A \otimes_{min} B$ est défini comme la complétion du produit tensoriel algébrique $A \otimes B$ par rapport à la norme

$$||.||_{min} \left\{ \begin{array}{ccc} A \otimes B & \rightarrow & \mathbb{R}_+ \\ c & \mapsto & ||\pi(c)|| \end{array} \right.$$

– Le produit tensoriel maximal $A \otimes_{max} B$ est défini comme la complétion du produit tensoriel algébrique $A \otimes B$ par rapport à la norme

$$||.||_{max} \left\{ \begin{array}{ccc} A \otimes B & \rightarrow & \mathbb{R}_+ \\ c & \mapsto & \max_p p(c) \end{array} \right.$$

où p parcourt l'ensemble des semi- C^* -normes sur $A \otimes B$.

On se servira de la propriété suivante : pour tout *-homomorphismes de C^* -algèbres $\varphi: A \to B$ et $\psi: A' \to B'$, il existe un unique *-homomorphisme $\pi: A \otimes_{min} A' \to B \otimes_{min} B'$ tel que

$$\pi(a \otimes a') = \varphi(a) \otimes \psi(a') \quad , \forall a \in A, a' \in A'.$$

De plus, π est injective si φ et ψ le sont. On notera $\varphi \otimes_{min} \psi$ à la place de π .

Définition 2. Une C^* -algèbre est dite nucléaire s'il n'existe qu'une seule C^* -norme sur le produit tensoriel algébrique $A \otimes B$, pour toute C^* -algèbre B.

Dans les parties suivantes de ce rapport, lorsque l'on tensorisera par des C^* -algèbres nucléaires, on omettra le symbole min, et le produit tensoriel topologique sera noté comme le produit tensoriel algébrique.

Théorème 1. Soit B une C^* -algèbre et $0 \longrightarrow A' \stackrel{\varphi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} A'' \longrightarrow 0$ une

suite exacte de C^* -algèbres. Si le produit tensoriel algébrique $A''\otimes B$ n'admet qu'une seule C^* -norme, ce qui arrive lorsque A'' ou B est nucléaire, alors la suite

$$0 \longrightarrow A' \otimes_{min} B \xrightarrow{\tilde{\varphi}} A \otimes_{min} B \xrightarrow{\tilde{\psi}} A'' \otimes_{min} B \longrightarrow 0$$

reste exacte.

On a noté $\tilde{\varphi} = \varphi \otimes_{min} id_B$ et $\tilde{\psi} = \psi \otimes_{min} id_B$.

Preuve 2. Soit $a'' \otimes b \in A'' \otimes B$. Par surjectivité, il existe $a \in A$ tel que $\psi(a) = a''$, et donc $\tilde{\psi}(a \otimes b) = a'' \otimes b$. Les éléments $a'' \otimes b$ générant $A'' \otimes B$, $\tilde{\psi}$ est surjective.

L'identité de B et φ étant des *-homomorphismes injectifs, $\tilde{\varphi} = \varphi \otimes_{min} id_B$ est injectif.

Observons que Im $\tilde{\varphi} = \text{Im } \varphi \otimes_{min} B \subset A \otimes_{min} B$ est un idéal. On vérifie facilement que Im $\tilde{\varphi} \subset \ker \tilde{\psi}$. Soit donc $R = \text{Im } \tilde{\varphi}$ et f l'application canonique $(A \otimes_{min} B)/R \to A'' \otimes_{min} B$ obtenue en factorisant $\tilde{\psi}$. Nous allons construire une application $g: A'' \otimes_{min} B \to (A \otimes_{min} B)/R$ qui vérifie $g \circ f = id$. Cela montrera que f est injective et donc que Im $\tilde{\varphi} = \ker \tilde{\psi}$.

Soit $a'' \in A''$. On choisit $a \in A$ tels que $\psi(a) = a''$ et on définit :

$$\begin{array}{ccc} A'' \times B & \to & (A \otimes B)/R \\ a'', b & \mapsto & a \otimes b \; (\text{mod } R) \end{array}$$

Cette application ne dépend pas de la préimage de a'' choisie : si $\psi(a_1) = \psi(a_2) = a''$, alors $\psi(a_1 - a_2) = 0$ donc $a_1 - a_2 = \varphi(a')$ pour un certain $a' \in A'$, d'où $a_1 \otimes b - a_2 \otimes b = \varphi(a') \otimes b$ et donc $a_1 \otimes b = a_2 \otimes b \mod R$.

De plus, la fonction $A'' \otimes B \to \mathbb{R}_+ : x \mapsto \max(||g(x)||, ||x||_{min})$ est une C^* norme. Par hypothèse, elle est donc égale à $||.||_{min}$, ce qui montre que g est
continue. Etant bilinéaire et continue, cette application se factorise en l'application $g: A'' \otimes_{min} B \to (A \otimes_{min} B)/R$ recherchée. En effet :

$$gf(a \otimes b + R) = g\tilde{\psi}(a \otimes b) = g(\psi(a) \otimes b) = a \otimes b + R$$

 $donc g \circ f = id_{(A \otimes_{min} B)/R}.$

Ce théorème sera utile pour la construction de l'extension de Toeplitz. Il sert aussi à la preuve du

Théorème 2. Soit $0 \longrightarrow A' \stackrel{\varphi}{\longrightarrow} A \stackrel{\psi}{\longrightarrow} A'' \longrightarrow 0$ une suite exacte de C^* -algèbres.

Si A' et A'' sont nucléaires, alors A l'est aussi.

Les C^* -algèbres finies dimensionelles ainsi que les C^* -algèbres commutatives sont nucléaires.

1.3 Applications complètement positives et suites exactes

Une application bornée $\sigma:A\to B$ entre deux C^* -algèbres unitales est dite complètement positive si $\sigma(1)=1$ et :

$$\sum_{i,j} b_i \sigma(a_i a_j^*) b_j^* \ge 0$$

pour tout entier n, tout $a_1, ..., a_n$ dans A et $b_1, ..., b_n$ dans B. Le résultat suivant caractérise les applications complètement positives.

Théorème 3 (Stinespring). Soit A une C^* -algèbre unitale. Une application unitale $\sigma: A \to B(H)$ est complètement positive ssi il existe :

- une isométrie $V: H \to H_1$
- une représentation non-dégénérée $\rho: A \to B(H_1)$ telles que $\sigma(a) = V^* \rho(a) V$ pour tout $a \in A$.

Ce résultat permet de montrer que si $\sigma:A\to A'$ est une application complètement positive, alors l'application $\sigma\otimes 1$, définie sur le produit tensoriel algébrique de manière évidente, s'étend en une application complètement positive $\sigma\otimes 1:A\otimes B\to A'\otimes B$.

En effet, σ étant complètement positive, elle est, en gardant les même notation, de la forme $\sigma(a) = V^* \rho(a) V$. Mais alors :

$$(\sigma \otimes 1)(a \otimes b) = (V^*\rho(a)V) \otimes b = (V \otimes 1)^*(a \otimes b)(V \otimes 1).$$

Les éléments $a \otimes b$ générant le produit tensoriel $A \otimes B$, l'extension par continuité de $\sigma \otimes 1$ est bien complètement positive.

Cette remarque nous permettra plus loin de construire l'extension de Toeplitz sans passer par la nucléarité. Il suffira alors de remarquer que lorsque l'on a une suite exacte courte scindée de C^* -algèbres, si la section est complètement positive, alors elle s'étend en une section complètement positive de la suite obtenue en tensorisant par une C^* -algèbre quelconque.

Proposition 2. Soit $0 \longrightarrow A' \xrightarrow{\varphi} A \xrightarrow{\psi} A'' \longrightarrow 0$ une suite exacte de C^* -

algèbres. Si la surjection ψ a une section complètement positive, alors, pour toute C^* -algèbre B, la suite

$$0 \longrightarrow A' \otimes_{min} B \xrightarrow{\tilde{\varphi}} A \otimes_{min} B \xrightarrow{\tilde{\psi}} A'' \otimes_{min} B \longrightarrow 0$$

reste exacte.

Preuve 3. L'injectivité de $\tilde{\varphi}$ et la surjectivité de $\tilde{\psi}$ fonctionne comme pour la preuve du théorème 2. On réitère la même technique pour montrer que la suite

tensorisée est exacte au milieu. Toutefois, on ne peut plus utiliser l'unicité d'une C^* -norme sur $A''\otimes_{min} B$, et on a aucune assurance que l'application

$$g: A'' \times B \to (A \otimes_{min} B)/R$$

se factorise depuis A" $\otimes B$.

On peut par contre étendre la section complètement positive $\sigma:A"\to A$ en une section complètement positive $\tilde{\sigma}:A"\otimes_{min}B\to A\otimes_{min}B$. Alors $\tilde{\psi}=f\circ\pi$ et $\tilde{\psi}\circ\tilde{\sigma}=id_{A''\otimes B}$, donc $f\circ\pi\circ\tilde{\sigma}=id$, où

$$\pi: A \otimes_{min} B \to (A \otimes_{min} B)/R$$

est la projection naturelle sur $R = \operatorname{Im} \tilde{\varphi}$.

Pour montrer que f est injective, il suffit donc de remarquer que $\pi\circ\tilde{\sigma}$ est un inverse à droite de f.

2 K-théorie des C*-algèbres

Avant de nous attaquer proprement dit au résultat de l'article de Pimsner et Voiculescu [3], nous allons citer les résultats de K-théorie des C^* -algèbres dont nous aurons besoin. Les preuves ne seront pas toujours détaillées, et peuvent être trouvées dans n'importe quel livre d'introduction au sujet, par exemple celui de Wegge-Olsen [7].

Définition 3. Soit p et q deux projecteurs dans une C^* -algèbre A. On définit trois relations d'équivalences :

 $p \sim q$ s'il existe une isométrie partielle u de A telle que $p = u^*u$ et $q = uu^*$. (équivalence de Murray-Von Neumann)

 $p \sim_u q$ s'il existe un unitaire u de A^+ tel que $p = uqu^*$. (Similitude)

 $p\sim_h q$ s'il existe un chemin continu en norme de projections de p à $q.(\operatorname{Homotopie})$

En général, on a : $\sim_h \Rightarrow \sim_u \Rightarrow \sim$. Pour avoir les implications inverses, on peut se placer dans $M_{\infty}(A)$. (Doubler la dimension à chaque fois suffit) On peut alors considérer l'ensemble des projections de $M_{\infty}(A)$ et quotienter par l'unique relation d'équivalence définie ci-dessus. L'ensemble obtenu est un semi-groupe pour l'opération de somme directe de projecteur, nommé V(A).

Définition 4. Le premier groupe de K-théorie de A est :

le groupe de Grothendieck de V(A) si A est unitale. le noyau de $K_0(A^+) \to K_0(\mathbb{C})$ sinon.

Pour passer aux groupes de K-théorie d'indices supérieurs de A, on se servira du foncteur de suspension $S(A) = A \times C_0(\mathbb{R})$.

Définition 5. Pour toute algèbre de Banach unitale, on pose

$$GL_{\infty}(A) = \lim_{n \to \infty} GL_n(A)$$
 (limite inductive)

munie de la topologie de la limite inductive.

Pour $n \ge 1$, on définit :

$$K_n(A) = \pi_{n-1} \left(GL_{\infty}(A) \right)$$

où $\pi_n, n \ge 1$ désigne le n^{ie} -groupe d'homotopie, et π_0 le groupe des composantes connexes.

Quelques remarques:

- 1. Le groupe $K_1(A)$ est donc généré par les classes [u] où est un unitaire ou un inversible de $GL_n(A)$, avec la présentation [1] = 0, $[u] + [v] = [u \oplus v]$ et [u] = [v] si u et v sont reliés par un chemin continu d'unitaires ou d'inversibles.
- 2. On a en fait la relation suivante

$$\forall i \in \mathbb{N}, \quad K_{i+1}(A) = K_i(S(A)).$$

3. Dans le cas des C^* -algèbres comme en K-théorie topologique, on a périodicité de Bott : $K_{i+2}(A) \simeq K_i(A)$.

Ces foncteurs de la catégorie des C^* -algèbres dans celle des groupes abéliens sont semi-exacts, i.e. ils transforment toute suite exacte courte en suite exacte très courte. Un point remarquable, et qui sera utilisé plus tard : leur comportement vis à vis de la stabilisation est naturel.

Définition 6. Une C^* -algère A est dite stable si $A \simeq A \otimes \mathbb{K}$, où $A \otimes \mathbb{K}$ est par défintion la stabilisation de A. On dit de deux C^* -algèbres qu'elles sont stablement isomorphes si $A \otimes \mathbb{K} \simeq B \otimes \mathbb{K}$.

L'agèbre des matrices se plonge naturellement (mais non canoniquement) dans l'algèbre de opérateurs bornés $\mathfrak{M}_n \simeq P_n \mathbb{B} P_n \subset \mathbb{K}$, où P_n est le projecteur sur les n premières coordonnées. Et le diagramme commutatif

permet d'affirmer que l'algèbre des opérateurs compacts est limite inductive du sytème inductif des matrices $\mathbb{K} \simeq \varinjlim \mathfrak{M}_n$. Ici, une matrice de taille $m \leq n$ est plongée dans \mathfrak{M}_n en la positionnant dans le coin haut-gauche. L'injectivité de la flèche verticale provient de celle des ϕ_n et la surjectivité de la densité des opérateurs de rang fini dans \mathbb{K} . Finalement, comme $M_n(A) \simeq A \otimes \mathfrak{M}_n$, on obtient que $A \otimes \mathbb{K} = \varinjlim M_n(A)$.

Il est facile de voir que homomorphismes $\iota_{nm*} = K_0 \iota_{nm}$ sont de isomorphismes, on obtient ainsi un diagramme commutatif pour tout $n \geq m$, que l'universalité de la limite inductive permet de compléter par une unique flèche (en pointillés):

$$K_0(M_n(A)) \xrightarrow{\phi_{m*}} K_0(A \otimes \mathbb{K})$$

$$\downarrow_{n_{m*}} \qquad \downarrow_{n_{m*}} \qquad \downarrow_{n$$

Comme les ι_* sont des isomorphismes, cette flèche l'est. Mais le diagramme commute, donc son inverse est donnée par $\phi_{n*} \circ \iota_{n1*} = \phi_{1*}$. On vient de montrer que

$$\left\{ \begin{array}{ccc} A & \to & A \otimes \mathbb{K} \\ a & \mapsto & a \otimes e_{11} \end{array} \right.$$

induit un isomorphisme $K_0(A) \simeq K_0(A \otimes \mathbb{K})$.

Donnons en exemple quelques calculs de groupes de K-théorie.

Deux projections dans $M_n(\mathbb{C})$ sont équivalentes précisément lorsque elles ont même rang. Ceci assure que $K_0(\mathbb{C}) = G_{\mathbb{N}} = \mathbb{Z}$, un générateur étant n'importe quel projecteur de rang 1. La K-théorie étant stable par augmentation et limite inductive, on a aussi : $\mathbb{Z} = K_0(M_n(\mathbb{C})) = K_0(\mathbb{K})$ avec même générateur.

 $K_0(C(\mathbb{S}^1)) = \mathbb{Z}$ est généré par la classe du projecteur $z \mapsto 1_{\mathbb{C}}$, et $K_1(C(\mathbb{S}^1)) = \mathbb{Z}$ avec pour générateur la classe de l'unitaire $z \mapsto z$.

Soit $p \in M_n(A^+)$ un projecteur. Posons

$$f_p(z) := zp - 1_n + p$$
 , $\forall z \in \mathbb{S}^1$.

Pour tout $z \in \mathbb{S}^1$, $f_p(z)$ définit un unitaire, donc $[f_p]_1 \in K_1(SA)$. De plus $||f_p - f_q|| = \sup_{z \in \mathbb{S}^1} ||(z - 1)(p - q)|| = 2||p - q||$, ce qui montre que $p \mapsto f_p$ et $f_p \mapsto p$ sont continues. Enfin, la relation $f_p f_q = f_{p+q}$ lorsque p et q sont orthogonales assure que $p \mapsto [f_p]_1$ se factorise en un homomorphisme $V(A) \to K_1(SA)$.

Définition 7. Soit A une C^* -algèbre. L'application de Bott est l'homomorphisme de groupe défini par :

$$\beta_A : \begin{cases} K_0(A) \to K_1(SA) \\ [p]_0 - [q]_0 \mapsto [f_p f_q^*]_1 \end{cases}$$

Soit $u \in \mathcal{U}_n^+(A)$. Comme

$$\begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix} \sim \begin{pmatrix} uu^* & 0 \\ 0 & 1_n \end{pmatrix},$$

on peut trouver un chemin continu d'unitaires $t \mapsto w_t$ de 1_{2n} à $\begin{pmatrix} u & 0 \\ 0 & u^* \end{pmatrix}$. Mais alors $q_t := w_t p_n w_t^* \in M_{2n}(A^+)$ est un lacet continu de projecteurs d'origine p_n . Comme $\pi_{\mathbb{C}}(q_t) = p_n$, $q_t - p_n \in M_{2n}((SA)^+)$ et on peut définir l'application Theta.

Définition 8. L'application Theta est l'homomorphisme défini par :

$$\theta_A : \left\{ \begin{array}{ccc} K_1(A) & \to & K_0(SA) \\ [u]_1 & \mapsto & [q]_0 - [p_n] \end{array} \right.$$

Ces deux applications, Bott et Theta, sont toutes deux des transformations naturelles entre les foncteurs K_0 et K_1S pour Bott, K_1 et K_0S pour Theta.

2.1 La suite exacte à six termes

Théorème 4. Soit $0 \longrightarrow J \xrightarrow{\iota} A \xrightarrow{\pi} B \longrightarrow 0$ une suite exacte de C^* -algèbres. Alors la suite à six termes suivantes est exacte :

$$K_0(J) \xrightarrow{\iota_*} K_0(A) \xrightarrow{\pi_*} K_0(B)$$

$$\downarrow \delta$$

$$K_1(B) \leftarrow_{\pi_*} K_1(A) \leftarrow_{\iota_*} K_1(J)$$

C'est l'un des résultats fondamentaux en K-théorie, il permet des calculs effectifs. Le premier pas à faire est de construire l'indice associé à toute suite exacte $\partial: K_1(B) \to K_0(J)$, qui transforme toute suite exacte courte en suite exacte longue. On peut trouver 2 isomorphismes naturels qui donnent la périodicité de Bott:

$$K_{i+1}(A) \simeq K_i(A), i = 0, 1.$$

Ces isomorphismes sont donnés par l'application de Bott $\beta: K_0 \to K_1S$ et $\theta: K_1 \to K_0S$. La périodicité permet de conclure en enroulant la suite exacte longue grâce à l'application exponentielle $\delta: K_0(B) \to K_1(J)$ qui est la composition $\theta_J^{-1} \circ \partial \circ \beta_B$.

Proposition 3 (Remarque sur le nom d'application exponentielle). Soit J un idéal bilatère de la C^* -algèbre A. Si $p-p_n \in M_{\infty}(A/J)$ et $x \in M_{\infty}(A^+)$ est un relevé auto-adjoint de p, alors :

$$\delta([p] - [p_n]) = [\exp(-2i\pi x)].$$

De plus, si toutes les projections de $M_{\infty}(A/J^+)$ peuvent se relever en des projections de $M_{\infty}(A^+)$, alors l'application exponentielle est triviale :

$$\exp(-2i\pi x) = \sum_{n=0}^{\infty} \frac{(-2i\pi x)^n}{n!} = 1 + (e^{-2i\pi} - 1)x = 1$$

 $car x = x^2.$

Preuve 4. Rappelons que δ est la composée donnée par :

$$K_0(A/J) \xrightarrow{\delta} K_1(J)$$

$$\downarrow^{\beta_{A/J}} \qquad \qquad \downarrow^{\theta_J}$$

$$K_1(SA/J) \xrightarrow{\partial} K_0(SJ)$$

Soient $p \in A/J$ et $x \in A$ un élément auto-adjoint tel que $\pi(x) = p$. Comme $e^{2i\pi tp} = 1 + (e^{2i\pi t} - 1)p$, $f_x(t) := 1 + (e^{2i\pi t} - 1)x$ relève $f_p(t) = e^{2i\pi tp}$.

Notons, dans un premier temps, que tout élément y d'une C^* -algèbre tel que le spectre de y^*y soit inclus dans [0;1] produit un unitaire $\begin{pmatrix} y & \sqrt{1-yy^*} \\ -\sqrt{1-y^*y} & y^* \end{pmatrix}$. On peut alors affirmer que

$$w_{f_x} := \begin{pmatrix} f_x & \sqrt{1 - f_x f_x^*} \\ -\sqrt{1 - f_x^* f_x} & f_x^* \end{pmatrix}$$

est un relevé unitaire de $\begin{pmatrix} f_p & 0 \\ 0 & f_p^* \end{pmatrix}$, relevé qui nous donne l'indice de $[f_p]_1 = \beta_{A/J}[p]_0$:

$$\partial [f_p]_1 = [w_{f_x} p_n w_{f_x^*}] - [p_n].$$

Soit $g_x(t) := (1-t)1_{A^+} + te^{2i\pi x}$ un chemin continu entre l'identité et $e^{2i\pi x}$. L'image de $e^{2i\pi x}$ par θ_J se calcule comme l'indice $[w_{g_x}p_nw_{g_x^*}] - [p_n]$. Montrer que f_x et g_x sont homotopes suffit donc à conclure.

Pour cela, remarquons que, t variant de 0 à 1 et le spectre de x étant inclus dans $\{0,1\}$, les éléments f_x et g_x ne dépendent que des valeurs des fonctions réelles

$$\begin{array}{ll} f(t,x) &= 1 + (e^{2i\pi t} - 1)x \\ g(t,x) &= 1 - t + te^{2i\pi x} = f(x,t) \end{array}$$

au voisinage du bord du carré $\partial[0;1] \times [0;1]$, homéomorphe au cercle \mathbb{S}^1 . Les classes d'homotopie de fonctions continues sur le cercle sont classifiée par leur nombre de tours, voir le livre d'Hatcher par exemple [2], et on vérifie que f et q sont ainsi homotopes, et donc que :

$$[w_{f_x}p_nw_{f_x^*}] = [w_{g_x}p_nw_{g_x^*}].$$

L'identité $\partial\circ\beta_B=\theta_J\circ\delta$ est démontrée, ce qui conclut.

2.2 Produits croisés de C*-algèbres

2.2.1 Suite exacte de Pimsner-Voiculescu

Soit A une C^* -algèbre et Γ un groupe discret. On se donne de plus une action par automorphisme $\alpha: \Gamma \to Aut(A)$. On peut alors munir l'espace $C_c(\Gamma, A)$ des fonctions à support fini d'un produit de convolution tordu par α :

$$f *_{\alpha} g = \sum_{s,t \in \Gamma} f(s) \alpha_s(g(t)) st.$$

Soit $\lambda_{\Gamma,A}$ la représentation régulière gauche de $C_c(\Gamma,A)$ sur $l^2(\Gamma,A) = \{\eta : \Gamma \to A : \sum_s \eta^*(s)\eta(s) < \infty\}$:

$$(\lambda_{\Gamma,A}(f)\eta)(\gamma) = \sum_{s \in \Gamma} \alpha_{\gamma^{-1}}(f(s))\eta(\gamma^{-1}s)$$

pour tous $f \in C_c(\Gamma, A), \eta \in l^2(\Gamma, A)$ et $\gamma \in \Gamma$.

Le produit croisé réduit de A par Γ , noté $A \times_{\alpha} \Gamma$, est défini comme la fermeture pour la norme d'opérateur de $\lambda_{\Gamma,A}(C_c(\Gamma,A))$ dans $B(l^2(\Gamma,A))$.

Les actions habituelles de A et de Γ sur $l^2(\Gamma, A)$ sont combinées.

$$(\pi(a)\eta)(s) = \alpha_{s^{-1}}(a)\eta(s)$$

$$(\lambda(\gamma)\eta)(s) = \eta(\gamma^{-1}s)$$

On parle pour la paire (λ, π) de représentation covariante du système $\{A, \Gamma, \alpha\}$, car la relation :

$$\lambda(\gamma)\pi(a)\lambda(\gamma^{-1}) = \pi(\alpha_{\gamma}(a))$$

est vérifiée.

Voici le résultat central de ce rapport. Il a été demontré par Pimsner et Voicu-lescu en 1980. [3]

Théorème 5 (Pimser-Voiculescu). Soit A une C^* -algèbre et $\alpha \in Aut(A)$. Il existe alors une suite exacte à six termes :

$$K_{0}(A) \xrightarrow{1-\alpha_{*}} K_{0}(A) \xrightarrow{\iota_{*}} K_{0}(A \times_{\alpha} \mathbb{Z})$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_{1}(A \times_{\alpha} \mathbb{Z}) \xleftarrow{\iota_{*}} K_{1}(A) \xleftarrow{1-\alpha_{*}} K_{1}(A)$$

La première chose que l'on peut, et que l'on va, dire à propos des produits croisés est que les générateurs de leurs groupes de K-théorie prennent une forme sympathique, qui va nous permettre de faire des calculs explicites dans la preuve de la suite de Pimsner-Voiculescu.

Lemme 2. Soit B une C^* -algèbre unitale, $1_B \in A$ une sous- C^* -algèbre de B, et u un unitaire de B tels que A et u engendrent B et $uAu^* = A$. Alors $K_1(B)$ est engendré par les inversibles de la forme :

$$1_B \otimes 1_n + x(u^* \otimes 1_n)$$
 , $n \in \mathbb{N}, x \in A \otimes \mathfrak{M}_n$.

De plus, si $B = A \times_{\alpha} \mathbb{Z}$, alors on peut se limiter aux classes d'unitaires de la forme :

$$1_B \otimes 1_n - F + Fx(u^* \otimes 1_n)F \quad F, x \in A \otimes \mathfrak{M}_n$$

où F désigne une projection auto-adjointe.

La remarque suivante est importante pour la preuve du lemme 6: dans le cas $B = A \times_{\alpha} \mathbb{Z}$, les classes concernées sont stables par somme, donc tout élément de $K_1(B)$ est la différence de deux générateurs.

Preuve 5. On note Γ le sous-groupe de $K_1(B)$ engendré par les éléments de la forme $1_B \otimes 1_n + x(u \otimes 1_n)$.

Comme u est unitaire, le spectre de $t(1_B+2u^*)+(1-t)u^*=t1_B+(1+t)u^*$ ne contient pas 0, et on a donc un chemin continu d'inversibles entre 1_B+2u^* et u^* , d'où :

$$[1_B + 2u^*]_1 = [u^*]_1. (1)$$

Les éléments $\sum_{s \leq j \leq t} a_j(u^j \otimes 1_p)$, $a_j \in A \otimes \mathfrak{M}_p$, $s,t \in \mathbb{Z}$ sont denses dans $B \otimes \mathfrak{M}_p$. Il suffit donc de prouver notre assertion pour ce type d'éléments. Mais, d'après l'équation 1, $[u]_1 \in \Gamma$, donc s = 0 suffit.

Soit donc $y = \sum_{0 \le j \le t} a_j(u^j \otimes 1_p)$ un inversible. On pose :

$$S_{\epsilon} = \begin{pmatrix} 0 & 0 & . & . & . & \epsilon I \\ -I & 0 & 0 & & & \\ & -I & & & & \\ & 0 & ... & & \\ & & & -I & 0 \end{pmatrix} \quad , \forall \epsilon > 0$$

la matrice avec des $-I:=-1_B\otimes 1_p$ sur la sous-diagonale et un ϵI dans le coin haut-droit, et :

$$T = \begin{pmatrix} a_0 & a_1 & \dots & \dots & a_t \\ 0 & I & & 0 & & & \\ & & I & & & & \\ & 0 & & & \dots & & \\ & & & & & I \end{pmatrix}.$$

Si l'on note $u_p = u \otimes 1_p$ et $y_k = \sum_{j=0}^{t-k} a_{j+k}(u^j \otimes 1_p) = y_{k+1}(u \otimes 1_p) + a_k$, on obtient l'identité :

$$S_0(u \otimes 1_n) + T = \begin{pmatrix} a_0 & a_1 & . & . & . & a_t \\ -u_p & I & & 0 & & & \\ & -u_p & I & & & & \\ & 0 & & ... & & \\ & & & -u_p & I \end{pmatrix}$$

$$= \begin{pmatrix} I & y_1 & . & . & . & y_t \\ 0 & I & 0 & & & \\ & & I & & & \\ & 0 & & ... & & \\ & & & & I \end{pmatrix} \begin{pmatrix} y & 0 & . & . & . & 0 \\ 0 & I & & 0 & & \\ & & I & & & \\ & & & & & I \end{pmatrix} \begin{pmatrix} I & & . & . & & \\ -u_p & I & 0 & & & \\ & -u_p & & & & \\ & & 0 & & ... & \\ & & & & -u_p & I \end{pmatrix}.$$

Les matrices de droite et de gauche de la dernière ligne sont unipotentes, leur classe dans $K_1(B)$ est donc nulle. Mais la classe de l'élément central est celle de y. Ajoutons à cela l'invariance de K_1 par homotopie, nous pouvons alors écrire, pour ϵ assez petit :

$$[y]_1 = [S_{\epsilon}(u \otimes 1_n) + T]_1$$

= $[u \otimes 1_n + S_{\epsilon}^{-1}T]_1$ car $[S_{\epsilon}]_1 = 0$
= $[u \otimes 1_n]_1 + [1_B \otimes 1_n + S_{\epsilon}^{-1}T(u^* \otimes 1_n)]_1$
= $n[u]_1 + [1_B \otimes 1_n + S_{\epsilon}^{-1}T(u^* \otimes 1_n)]_1$

et la première partie du lemme est démontrée.

Si maintenant B est un produit croisé $A\times_{\alpha}\mathbb{Z}$, qui est engendré par A et l'unitaire u vérifiant

$$\alpha^n(x) = u^n x u^{*n},$$

les générateurs peuvent être donnés plus explicitement.

On note $\beta:\mathbb{S}^1\to Aut(B)$ l'automorphisme donné par l'identité sur A et $\beta(z)u=zu$ pour tout $z\in\mathbb{S}^1$. La C^* -algèbre A est exactement l'algèbre des points fixes de β . Vu la première partie du lemme, il suffit de montrer que, pour tout générateur de la forme $1_B\otimes 1_n+x(u^*\otimes 1_n)$ où $x\in A\otimes \mathfrak{M}_n$, on peut trouver un unitaire $1_B\otimes 1_n-F+Fx(u^*\otimes 1_n)F$, où F est un projecteur auto-adjoint.

Soit donc un inversible $y=1_B\otimes 1_n+x(u^*\otimes 1_n):-1$ n'est donc pas dans le spectre de $x(u^*\otimes 1_n)$. Comme β est un automorphisme qui fixe A, il laisse invariant les spectre: le spectre de $x(u^*\otimes 1_n)$ est le même que celui de $(\beta(z)\otimes id_n)x(u^*\otimes 1_n)=\overline{z}x(u^*\otimes 1_n)$, pour tout $z\in\mathbb{S}^1$. Donc tout l'orbite de -1 sous l'action du cercle,

c'est-à-dire le cercle \mathbb{S}^1 , est dans la résolvante de $x(u^* \otimes 1_n)$.

On note U_- et U_+ les composantes connexes respectivement bornée et nonbornée de $\mathbb{C}-\mathbb{S}^1$. Alors la fonction e_- qui vaut 1 sur U_- et 0 sur U_- est holomorphe sur $\mathbb{C}-\mathbb{S}^1$, et on peut définir $P_-=e_-(x(u^*\otimes 1_n))$ par calcul holomorphe. De même pour $P_+=e_+(x(u^*\otimes 1_n))$. Ces deux éléments sont des projecteurs (non auto-adjoints) car $e_*(z)^2=e_*(z)$, et sont appelés les projecteurs spectraux de $x(u^*\otimes 1_n)$ associés à U_- et U_+ .

Comme $x(u^* \otimes 1_n)$ et $\overline{z}x(u^* \otimes 1_n)$ ont même spectre, les projecteur spectraux associés à U_+ et U_- sont les mêmes et donc :

$$(\beta(z) \otimes id_n)P_{+/-} = P_{+/-}.$$

Ceci assure que $P_{+/-} \in A \otimes \mathfrak{M}_n$, ce qui n'était pas évident a priori, $x(u^* \otimes 1_n)$ étant élément de $B \otimes \mathfrak{M}_n$.

On définit un chemin d'éléments inversibles par

$$y_{\epsilon} = \epsilon P_+ + x(u^* \otimes 1_n)P_+ + P_- + \epsilon x(u^* \otimes 1_n)P_-,$$

pour tout $0 \le \epsilon \le 1$. On a donc $[y_0] = [y_1] = [y]$. Comme $y_0 = 1 - P_+ + P_+ x(u^* \otimes 1_n)P_+$, il suffit de montrer que l'on peut remplacer P_+ par un projecteur auto-adjoint pour conclure.

Soit F le projecteur orthogonal sur l'image de P_+ . Alors il existe $T \in A \otimes \mathfrak{M}_n$ tel que :

$$P_+ = F + FT(1_A \otimes 1_n - F)$$

Comme $Fx(u^* \otimes 1_n)F = x(u^* \otimes 1_n)F$, on vérifie par un simple calcul que :

$$y_0 = 1_A \otimes 1_n - F + Fx(u^* \otimes 1_n)F + FS(1_A \otimes 1_n - F),$$

où $S = -T - x(u^* \otimes 1_n)FT$. L'inversibilité de y_0 donne celle de

$$1_A \otimes 1_n - F + Fx(u^* \otimes 1_n)F + \epsilon FS(1_A \otimes 1_n - F)$$

pour tout $\epsilon \in \mathbb{C}$, donc

$$[y] = [1_A \otimes 1_n - F + Fx(u^* \otimes 1_n)F].$$

On aurait pu remplacer y_0 par $(y_0y_0^*)^{-\frac{1}{2}}y_0$ qui est unitaire, ce qui conclut le lemme.

2.2.2 Extension de Toeplitz

Soient A et C deux C^* -algèbres.

Par extension de A par C, on entend un triplet (B, α, β) d'une C^* -algèbre et de deux morphismes telle que la suite :

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

soit exacte.

Cette section présente la construction d'une extension de $A \otimes \mathbb{K}$ par $A \times_{\alpha} \mathbb{Z}$ qui sera utile dans la preuve de l'exactitude de la suite de PV : l'extension de Toeplitz. Dans tout le document \mathcal{H} dénote un espace de Hilbert, l_2 par exemple, dont on fixe une base hilbertienne (e_n) , et \mathbb{B} et \mathbb{K} sont respectivement l'algèbre des opérateurs bornés et compacts sur \mathcal{H} . \mathbb{K} est un idéal bilatère et :

$$\pi: \mathbb{B} \to \mathbb{B}/\mathbb{K}$$

est la projection naturelle sur l'algèbre de Calkin.

 $H^2(\mathbb{S}^1)$ désigne le sous-espace hilbertien de $L^2(\mathbb{S}^1)$ engendré par les fonctions $z\mapsto z^n$ pour $n\geq 0$. Lorque l'on prendra $H^2(\mathbb{S}^1)$ pour \mathcal{H} , e_n dénotera ces fonctions. Pour $f\in C(\mathbb{S}^1)$, on désigne par T_f l'opérateur de $H^2(\mathbb{S}^1)$, appelé opérateur de Toeplitz associé à f, défini par $T_f(g)=\mathcal{P}(fg)$, où \mathcal{P} est le projecteur orthogonal sur $H^2(\mathbb{S}^1)$. On appelle f le symbole de T_f .

Soit $S \in \mathbb{B}$ l'opérateur de shift unilatéral, qui envoie e_n sur e_{n+1} . On note $C^*(S)$ la C^* -algèbre unitale engendrée par S. On voit que S^* envoie e_1 sur 0 et e_n sur e_{n-1} lorsque $n \geq 2$. Si on note $E_{ij}(x) = \langle x, e_j \rangle e_i$, on a :

$$E_{ij} = S^{i-1}S^{*j-1} - S^iS^{*j} \in C^*(S)$$

 $\mathbb K$ est donc un idéal bilatère de $C^*(S)$ et $P=1-SS^*=E_{11}$ est de rang 1 donc compact.

Lemme 3. L'application

$$\tau \left\{ \begin{array}{ccc} C(\mathbb{S}^1) & \to & B(H^2(\mathbb{S}^1))/K(H^2(\mathbb{S}^1)) \\ f & \mapsto & \pi(T_f) \end{array} \right.$$

est un *-homomorphisme injectif.

Preuve 6. Si l'on confond $f \in C(\mathbb{S}^1)$ avec l'opérateur de multiplication associé dans $L^2(\mathbb{S}^1)$, alors $f\mathcal{P} - \mathcal{P}f$ est un opérateur compact. En effet, si f(z) = z, on a un opérateur de rang 1, et cette fonction génère $C(\mathbb{S}^1)$ par théorème de Stone-Weiertrass.

Ceci permet d'écrire la relation suivante :

$$T_f T_g = \mathcal{P} f \mathcal{P} g = \mathcal{P} (\mathcal{P} f + \text{compact}) g = \mathcal{P} f g + \text{compact}$$

Donc $T_fT_g=T_{fg} \mod \mathbb{K}$, et comme $T_f^*=T_{\overline{f}},\, au$ est bien un *-homorphisme.

Pour l'injectivité, observons le noyau de τ . C'est un idéal bilatère de $C(\mathbb{S}^1)$, il existe donc un ouvert $X\subset\mathbb{S}^1$ tel que :

$$\ker \tau = \{ f \in \mathbb{C}(S^1) : f(z) = 0, \forall z \in X \}$$

Mais si $f \in \ker \tau$, alors $z \mapsto f(e^{i\theta}z)$ est aussi dans le noyau pour tout θ , ce qui assure que $X = \mathbb{S}^1$ ou \emptyset . Mais comme T_z n'est pas compact, $X = \mathbb{S}^1$ et l'injectivité est démontrée.

Comme $C(\mathbb{S}^1)$ est généré par z, qui s'envoit sur S par T, l'image de T est $C^*(S)$. La remarque précédente permet d'affirmer que $C^*(S)/\mathbb{K}$ est *-isomorphe à l'algèbre des fonctions continues sur le tore $C(\mathbb{S}^1)$, et l'image de S est la fonction identité sur \mathbb{S}^1 , noté z. On a donc une extension, écrite sous la forme d'une suite exacte :

$$0 \longrightarrow \mathbb{K} \longrightarrow C^*(S) \longrightarrow C(\mathbb{S}^1) \longrightarrow 0$$

Définition 9. On définit l'algèbre de Toeplitz \mathcal{T} associée à la paire (A, α) comme la C^* -sous-algèbre de $(A \times_{\alpha} \mathbb{Z}) \otimes C^*(S)$ engendré par $A \otimes I$ et $u \otimes S$.

Rappelons que l'on voit A comme une sous-*-algèbre de $A \times_{\alpha} \mathbb{Z}$, et que l'on note u l'unitaire qui rend intérieure l'action de α :

$$\forall a \in A, n \in \mathbb{Z}, \quad \alpha(n)a = u^{*n}au^n$$

Observons maintenant $A \times_{\alpha} \mathbb{Z}$, dont on va montrer qu'elle se réalise comme un quotient de \mathcal{T} par un idéal bilatère fermé. Soit donc J l'idéal bilatère fermé engendré par la projection $1 \otimes P$. La première chose à remarquer, c'est que l'on a un *-morphisme :

$$\phi \left\{ \begin{array}{ccc} \mathbb{K} & \to & \mathcal{T} \\ e_{ij} & \to & S^i P S^{*j} \end{array} \right..$$

Il est ici défini sur le système d'unités de K,

$$e_{ij}(x) = \langle x, e_i \rangle e_i$$

ce qui permet facilement de l'étendre à K entier.

L'identité suivante permet d'étendre ϕ à $A \otimes \mathbb{K}$:

$$(u \otimes S)^i (a \otimes P)(u \otimes S)^{*j} = (u^i a u^{*j}) \otimes \phi(e_{ij})$$

définit l'extension ψ de ϕ à $A \otimes \mathbb{K}$. Alors $\psi(A \otimes \mathbb{K}) = J \subset \mathcal{T}$.

Pimsner et Voiculescu montrent [3] que:

$$\operatorname{im} \psi = (A \times_{\alpha} \mathbb{Z}) \otimes \phi(\mathbb{K}) \cap \mathcal{T}$$
 (2)

En effet, soit $y \in (A \times_{\alpha} \mathbb{Z}) \otimes \phi(\mathbb{K}) \cap \mathcal{T}$. Comme y est dans $(A \times_{\alpha} \mathbb{Z}) \otimes \phi(\mathbb{K})$,

$$J \ni (1 \otimes E_n)y(1 \otimes E_n) \xrightarrow[n \to \infty]{} y$$

où $E_n=1\otimes\phi(e_{00}+e_{11}+...+e_{nn})=\psi(1\otimes(e_{00}+e_{11}+...+e_{nn}))\in J$ (on utilise une unité approchée de \mathbb{K}). J étant un idéal fermé, on en déduit que $y\in J$. L'inclusion inverse est directe.

Les C^* -algèbres \mathbb{K} , $C^*(S)$ et $C(\mathbb{S}^1)$ sont nucléaires car commutative pour $C(\mathbb{S}^1)$ ou limite inductive de C^* -algèbres finie-dimensionnelles pour \mathbb{K} . Ceci assure qu'il n'y a qu'une seule norme de C^* -algèbre sur leur produit tensoriel avec $A \times_{\alpha} \mathbb{Z}$.

De plus, avec le théorème T.2.6.26 de l'appendice T du livre de Wegge-Olsen [7], on a, sans ambiguité, une suite exacte :

$$0 \longrightarrow (A \times_{\alpha} \mathbb{Z}) \otimes \mathbb{K} \longrightarrow (A \times_{\alpha} \mathbb{Z}) \otimes C^*(S) \longrightarrow (A \times_{\alpha} \mathbb{Z}) \otimes C(\mathbb{S}^1) \longrightarrow 0$$

Une autre méthode pour l'obtenir est d'utiliser la proposition 2. En effet, $f \mapsto T_f$ est une section complètement positive de la première suite exacte :

$$\sum_{i,j} b_i T_{f_i f_j^*} b_j^* = (\sum_i b_i T_{f_i}) (\sum_i b_i T_{f_i})^*.$$

Cette suite exacte et l'identité 2 permet d'identifier \mathcal{T}/J à la C^* -algèbre engendrée par $A\otimes 1$ et $u\otimes z$ où z est l'inclusion $\mathbb{S}^1\to\mathbb{C}$. Cette dernière étant *-isomorphe à $A\times_{\alpha}\mathbb{Z}$, on en déduit la suite exacte :

$$0 \longrightarrow A \otimes \mathbb{K} \xrightarrow{\psi} \mathcal{T} \xrightarrow{\pi} (A \times_{\alpha} \mathbb{Z}) \longrightarrow 0.$$

C'est l'extension de Toeplitz associée à (A, α) .

2.3 Suite exacte de Pimsner-Voiculescu

2.3.1 La preuve originale

Maintenant que le décor est planté, nous pouvons passer à la K-théorie. On pose :

$$d: \left\{ \begin{array}{ccc} A & \to & \mathcal{T} \\ a & \mapsto & a \otimes I \end{array} \right.$$

Nous allons d'abord démontré le :

Lemme 4. Les diagrammes suivant :

sont commutatifs pour $i \in \{0,1\}$, et $d_*: K_1(A) \to K_1(\mathcal{T})$ est injectif.

Preuve 7. L'isomorphisme $K_1(A) \to K_1(A \otimes \mathbb{K})$ associe à une classe $[v] \in K_1(A)$ l'élément $[v \otimes e_{00} + (I - 1 \otimes e_{00})]$, dont l'image par ψ_* est :

$$\psi_*[v \otimes e_{00} + (I - 1 \otimes e_{00})] = [v \otimes P] + [1 \otimes I - 1 \otimes P] = [v \otimes P] + [1 \otimes SS^*]$$
 (3)

Maintenant:

$$d_* \circ (id_A - \alpha(-1))_* [v] = [v \otimes I] - [u^*vu \otimes I] \tag{4}$$

Soit l'unitaire:

$$\Omega = \begin{pmatrix} u \otimes S & Q \\ 0 & u^* \otimes S^* \end{pmatrix} \in \mathcal{T} \otimes M_2$$

On remarque que:

$$\Omega \begin{pmatrix} u^*vu \otimes I & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega^* = \begin{pmatrix} v \otimes SS^* + QQ^* & Q(u \otimes S) \\ (u^* \otimes S^*)Q^* & 1 \otimes I \end{pmatrix}$$
$$= \begin{pmatrix} v \otimes SS^* + QQ^* & 0 \\ 0 & 1 \otimes I \end{pmatrix}$$

Mais la classe dans K_1 est invariante par augmentation, i.e. $[x] = \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix}$, et par conjugaison par un unitaire, donc :

$$\left[\Omega\begin{pmatrix} u^*vu\otimes I & 0\\ 0 & 1\otimes I\end{pmatrix}\Omega^*\right]=\left[u^*vu\otimes I\right]$$

En remplaçant dans (4), on obtient:

$$[v \otimes I] - [v \otimes SS^* + Q] = [(v \otimes I)(v \otimes SS^* + Q)^{-1}]$$
$$= [v^* \otimes SS^* + Q]$$
$$= [1 \otimes SS^* + v \otimes P]$$

qui est l'expression que l'on avait trouvé pour l'image de [v] par ψ_* dans (3). La commutativité du diagramme i=0 suit la même preuve : il suffit de remarquer que si l'on prend une projection auto-adjointe $q \in A$, alors dans $K_0(\mathcal{T})$:

$$[(\alpha(-1)q) \otimes I] = \left[\Omega\begin{pmatrix} (\alpha(-1)q) \otimes I & 0\\ 0 & 0 \end{pmatrix} \Omega^* \right]$$
$$= \left[\begin{pmatrix} q \otimes SS^* & 0\\ 0 & 0 \end{pmatrix} \right]$$
$$= [q \otimes SS^*].$$

Ceci assure que:

$$d_* \circ ((id_A)_* - \alpha(-1)_*) [q \otimes e_{00}] = [q \otimes I] - [(\alpha(-1)q) \otimes I] = [q \otimes P] = \psi_* [q \otimes e_{00}].$$

Les diagrammes commutent bien, il reste à montrer l'injectivité de d_* .

Pour cela, montrons que si v_0 et v_1 sont des unitaires de A, et $t \mapsto w_t$ un chemin continu dans les unitaires de \mathcal{T} d'origine $v_0 \otimes I$ et d'arrivée $v_1 \otimes I$, alors $[v_0] = [v_1]$ dans $K_1(A)$.

Calculons:

$$\begin{pmatrix} w_t & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega \begin{pmatrix} \tilde{\alpha}(-1)w_t^* & 0 \\ 0 & 1 \otimes I \end{pmatrix} \Omega^* = \begin{pmatrix} w_t(1 \otimes S)w_t^*(1 \otimes S^*) + w_tQ & 0 \\ 0 & 1 \otimes I \end{pmatrix}.$$

Le chemin unitaire $y_t = w_t(1 \otimes S)w_t^*(1 \otimes S^*) + w_tQ \in \mathcal{T}$ vérifie :

$$\forall t, \quad y_t \in 1 \otimes I + J.$$

En effet:

$$y_t - 1 \otimes I = (w_t - 1 \otimes I)Q + w_t((1 \otimes S)w_t^* - w_t^*(1 \otimes S))(1 \otimes S^*),$$

mais un élément de la forme $(1 \otimes S)w - w(1 \otimes S)$ est toujours dans $B \otimes \phi(\mathbb{K})$, si $w \in \mathcal{T}$. Si w est dans $A \otimes I$ ou vaut $u \otimes S$, on obtient 0, et si $w = u^* \otimes S^*$, le commutateur vaut $u^* \otimes P \in B \otimes \phi(\mathbb{K})$. Ces éléments génèrent un algèbre dense dans \mathcal{T} : l'assertion en découle.

On a donc un chemin continu d'unitaires de $1 \otimes SS^* + v_0 \otimes P$ à $1 \otimes SS^* + v_1 \otimes P$, qui reste dans $1 \otimes I + J$. Comme ψ établit un isomorphisme de $\mathbb{C}1 \otimes I + J$ sur $A \otimes \mathbb{K}$, on a donc, dans $K_1(A \otimes \mathbb{K})$:

$$[\tilde{I} - 1 \otimes e_{00} + v_0 \otimes e_{00}] = [\tilde{I} - 1 \otimes e_{00} + v_1 \otimes e_{00}]$$

donc : $[v_0] = [v_1]$ dans $K_1(A)$, et l'injectivité de d_* est démontrée.

En passant l'extension de Toeplitz en K-théorie, et en combinant avec le lemme 4, on obtient le diagramme suivant :

K₁(
$$A \otimes \mathbb{K}$$
) $\xrightarrow{\psi_*} K_1(\mathcal{T}) \xrightarrow{\pi_*} K_1(A \times_{\alpha} \mathbb{Z}) \xrightarrow{\delta} K_0(A \otimes \mathbb{K})$

$$\stackrel{\simeq}{\cong} \downarrow \qquad \qquad \downarrow^{\iota_*} \downarrow \qquad \downarrow^{\iota_*$$

dont la première ligne est exacte, et le carré commute.

Lemme 5. $d_*: K_1(A) \to K_1(\mathcal{T})$ est un isomorphisme.

Preuve 8. Montrons que Ker $\delta \subset \text{Im } \iota_*$. Cela suffit puisque si d_* n'est pas surjectif, il existe un élément $x \in K_1(\mathcal{T}) \setminus \text{Im } d_*$, dont l'image par π_* n'est pas dans l'image de ι_* . Pourtant : $\delta \circ \pi_*(z) = 0$.

Nous allons montrer que tout élément de Ker δ s'écrit :

$$w = [1 \otimes 1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1]_1 - [1 \otimes 1_n - F_2 + F_2 x_2 (u^* \otimes 1_n) F_2]_1$$

pour certains x_1 , x_2 , F_1 et F_2 dans $A \otimes \mathfrak{M}_n$ tels que F_i soient des projections auto-adjointes unitairement équivalentes : il existe un unitaire $v \in A \otimes \mathfrak{M}_n$ les entrelaçant $F_1 = vF_2v^*$.

Montrons que cela conclut. Dans $K_1(A \times_{\alpha} \mathbb{Z})$, on a l'égalité :

$$[1 \otimes 1_n - F_2 + F_2 x_2 (u^* \otimes 1_n) F_2]_1 = [1 \otimes 1_n - F_1 + F_1 v x_2 (u^* \otimes 1_n) v^* F_1]_1$$
$$= [1 \otimes 1_n - F_1 + F_1 y (u^* \otimes 1_n) F_1]_1$$

où $y = vx_2(\alpha(-1) \otimes id_n)v^* \in A \otimes \mathfrak{M}_n$. Alors:

$$w = [(1 \otimes 1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1) (1 \otimes 1_n - F_1 + F_1 y (u^* \otimes 1_n) F_1)^*]_1$$

= $[1 \otimes 1_n - F_1 + F_1 x_1 (\alpha(-1) \otimes id_n) F_1 y^* F_1]_1$

L'élément entre crochets est dans $A \otimes \mathfrak{M}_n$, ce qui veut dire que sa classe w est dans l'image de ι_* : Ker $\delta \subset \operatorname{Im} \iota_*$ est démontré.

Montrons maintenat la remarque. Le lemme 2 nous permet d'affirmer que tout élément de $K_1(A \times_{\alpha} \mathbb{Z})$ s'écrit comme une différence de générateurs unitaires de la forme $[1_n - F + Fx(u^* \otimes 1_n)F]_1$. Si n = 1, un tel élément a un relevé $w = (1 - F) \otimes I + Fxu^*F \otimes S^* \in \mathcal{T}$. Mais alors :

$$ww^* = (1 - F) \otimes I + Fxu^*Fux^*F \otimes S^*S$$

$$= (1 - F) \otimes I + F \otimes I$$

$$= 1 \otimes I$$

$$w^*w = (1 - F) \otimes I + Fux^*Fu^*xF \otimes SS^*$$

$$= (1 - F) \otimes I + F \otimes (I - P)$$

$$= 1 \otimes I - F \otimes P$$

L'index est donc facilement calculable :

$$\delta[1_n - F + Fx(u^* \otimes 1_n)F]_1 = [1 \otimes I - w^*w]_0 - [1 \otimes I - ww^*]_0$$
$$= [F \otimes P]_0$$
$$= [F \otimes e_{00}]_0$$

Ce calcul assure que

$$[1_n - F_1 + F_1 x_1 (u^* \otimes 1_n) F_1]_1 - [1_m - F_2 + F_2 x_2 (u^* \otimes 1_m) F_2]_1 \in \text{Ker } \delta$$
ssi $[F_1]_0 = [F_2]_0$ dans $K_0(A)$.

Quitte à remplacer F_i et x_i par $0_p \oplus F_i$ et $I_p \oplus x_i$, on peut supposer m=n. De même, quitte à remplacer F_i et x_i par $F_i \oplus 1 \otimes 1_p$ et $x_i \oplus 1 \otimes 1_{n+p}$, on peut supposer que F_1 et F_2 sont unitairement équivalentes.

On a donc montré que d_* induisait un isomorphisme en K_1 -théorie. On obtient donc une suite exacte à 6 termes à partir de l'extension de Toeplitz, dont on voudrait déduire le théorème, ce que l'on peut faire à condition de montrer que d_* induit un isomorphisme au niveau des K_0 -groupes.

Lemme 6. $d_*: K_0(A) \to K_0(\mathcal{T})$ est un isomorphisme.

Preuve 9. La suite exacte $0 \longrightarrow SA \longrightarrow C(A \otimes \mathbb{S}^1) \longrightarrow A \longrightarrow 0$ est scindée, et induit, modulo la périodicité de Bott, le diagramme commutatif suivant :

$$K_1(A) \longrightarrow K_0\left(C(A \otimes \mathbb{S}^1)\right) \longrightarrow K_0(A)$$

$$\uparrow \qquad \qquad \downarrow \qquad .$$

$$K_0(A) \longleftarrow K_1\left(C(A \otimes \mathbb{S}^1)\right) \longleftarrow K_1(A)$$

Mais, la suite étant scindée, tout élément de $K_i(A)$ se relève, et les flèches connectantes, qui mesurent l'obstruction à être relevé, sont donc nulles : on obtient deux suites exactes scindées :

$$0 \longrightarrow K_{1-i}(A) \longrightarrow K_i\left(C(A \otimes \mathbb{S}^1)\right) \longrightarrow K_i(A) \longrightarrow 0$$

et donc $K_i(C(A \otimes \mathbb{S}^1)) \simeq K_0(A) \oplus K_1(A)$.

Si on note $\phi^A: SA \oplus A \to A \otimes C(\mathbb{S}^1)$ l'isomorphisme obtenu à partir des suites exactes scindées, alors :

$$(id_{C(\mathbb{S}^1)} \otimes d)_* \circ \phi_*^A = \phi_*^{\mathcal{T}} \circ d_*. \tag{5}$$

Le lemme 6 appliqué à $id_{C(\mathbb{S}^1)} \otimes d : A \otimes C(\mathbb{S}^1) \to \mathcal{T}(A \otimes C(\mathbb{S}^1))$, et le fait que $\mathcal{T}(A \otimes C(\mathbb{S}^1)) = \mathcal{T}(A) \otimes C(\mathbb{S}^1)$, assurent que $(id_{C(\mathbb{S}^1)} \otimes d)_*$ établit un isomorphisme de $K_1(A \otimes C(\mathbb{S}^1))$ sur $K_1(\mathcal{T} \otimes C(\mathbb{S}^1))$, ce qui, avec la remarque (5) conclut.

Le théorème 5 découle directement des lemmes précédents : on passe l'extension de Toeplitz en K-théorie et on se sert de la stabilité $K_i(A \otimes \mathbb{K}) \simeq K_i(A)$ et de l'isomorphisme $K_i(A) \simeq K_i(\mathcal{T})$.

2.3.2 Un exemple: le tore non-commutatif

Si on se fixe un automorphisme $\alpha \in Aut(A)$, on peut construire le produit croisé $A \times_{\alpha} \mathbb{Z}$ comme la C^* -algèbre universelle engendrée par A et un unitaire u vérifiant :

$$\forall a \in A, uau^* = \alpha(a).$$

Pour la construire effectivement, considérons A[u]. La relation de commutation nous donne le produit suivant :

$$au^nbu^m = a\alpha^n(b)u^{n+m} \quad \forall a, b \in A, \forall n, m \in \mathbb{Z}$$

Avec $A=C(\mathbb{S}^1)$ et α l'automorphisme induit par $z\mapsto e^{2i\pi\theta z}$, on obtient le tore non-commutatif A_{θ} . Le chemin $\phi_t:z\mapsto e^{2it\pi\theta z}$ montre que α est homotope à l'identité et la suite exacte de Pimser-Voiculescu se transforme alors en :

$$K_0(C(\mathbb{S}^1)) \xrightarrow{0} K_0(C(\mathbb{S}^1)) \xrightarrow{\iota_*} K_0(A_{\theta})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(A_{\theta}) \xleftarrow{\iota_*} K_1(C(\mathbb{S}^1)) \xleftarrow{0} K_1(C(\mathbb{S}^1)).$$

Mais $K_i(C(\mathbb{S}^1)) = K_i(S\mathbb{C} \oplus \mathbb{C}) = K_{1-i}(\mathbb{C}) \oplus K_i(\mathbb{C}) = \mathbb{Z}$, d'où : $K_i(A_\theta) = \mathbb{Z} \oplus \mathbb{Z}$, i = 0, 1. Nous avons donc calculé les groupes de K-théorie du tore non-commutatif, mais nous allons dire plus. On peut en effet calculer les générateurs de ces groupes.

Définition 10. Un projecteur de Rieffel de $A \times_{\alpha} \mathbb{Z}$ est un idemptotent autoadjoint de la forme $x_0 + x_1u + u^*x_1^*$, où $x_0, x_1 \in A$.

Un projecteur de Rieffel étant autoadjoint, nous pouvons immédiatement en déduire que x_0 aussi. L'idempotence conduit elle au trois relations suivantes :

- $-x_0 = x_0^2 + \alpha^{-1}(x_1^*x_1) + x_1x_1^*$
- $-x_1 = x_0 x_1 + x_1 \alpha(x_0)$ 0 = \alpha^{-1}(x_1) x_1.

Rappelons que l'algèbre de Von Neumann enveloppante d'une C^* -algèbre A est défnie par le bicommutant dans $\mathcal{L}(H_u)$ de $\pi_u(A)$, où $\pi_u:A\to\mathcal{L}(H_u)$ est la représentation universelle de A, c'est-à-dire la somme hilbertienne de toutes les représentations irréductibles de A.

Définition 11. Soit $x \in A$ un élément d'une C^* -algèbre.

Le support à gauche de x est défini comme le projecteur orthogonal de $\mathcal{L}(H_u)$ sur la fermeture de l'image de $\pi_u(x)$. On le note l_x .

Le support à droite de x est défini comme le projecteur orthogonal de $\mathcal{L}(H_u)$ sur l'orthogonal du noyau de $\pi_u(x)$. On le note r_x .

Ces deux projecteurs vérifient : $l_x x = x = x r_x, \forall x \in A$ et si x est autoadjoint, alors ils sont égaux.

Proposition 4. Soit $p = x_0 + x_1 u + u^* x_1^* \in A \times_{\alpha} \mathbb{Z}$ une projection de Rieffel et $\Delta := l_{x_1}$ le support à gauche de x_1 . Alors l'unitaire $\exp(2i\pi x_0 \Delta)$ est dans A

$$\delta[p]_0 = [\exp(2i\pi x_0 \Delta)]_1.$$

Preuve 10. Soit $p = x_0 + x_1 u + u^* x_1^* \in A \times_{\alpha} \mathbb{Z}$ une projection de Rieffel. Montrons par récurrence que le relevé autoadjoint $a = u^*x_1^* \otimes S^* + x_0 \otimes I + x_0 \otimes I$ $x_1 u \otimes S \in \mathcal{T}$ de p vérifie :

$$\forall n \ge 1, \quad a^n = a + (x_0^n - x_0)\Delta \otimes P.$$

Si c'est vrai au rang n,

$$a^{n+1} = a^2 + a(x_0^n - x_0)\Delta \otimes P$$

= $a + a(x_0^2 - x_0)\Delta \otimes P + x_0(x_0^n - x_0)\Delta \otimes P + x_1u(x_0^n - x_0)\Delta \otimes SP$
= $a + (x_0^{n+1} - x_0)\Delta \otimes P + u(\alpha(-1)x_1)(x_0^n - x_0)\Delta \otimes SP$

Le dernier terme étant nul (SP = 0), le principe de récurrence conclut.

Ayant exhibé un relevé autoadjoint de p, on est en mesure de calculer son indice. Mais:

$$\exp(2i\pi a) = 1 \otimes I + \sum_{n \ge 1} \frac{1}{n!} (a + (x_0^n - x_0)\Delta \otimes P)$$
$$= (e^{2i\pi} - 1)(a - x_0\Delta \otimes P) + \exp(2i\pi x_0\Delta) \otimes P + 1 \otimes (I - P)$$
$$= \psi \left(\exp(2i\pi x_0\Delta) \otimes e_{00} + 1 \otimes (I - e_{00})\right).$$

Il vient:

$$\partial [p]_0 = [\exp(2i\pi a)]_1 = [\exp(2i\pi x_0 \Delta) \otimes e_{00} + 1 \otimes (I - e_{00})]_1$$

Le *-homomorphisme δ étant la composition du connectant $\partial: K_0(A \times_{\alpha} \mathbb{Z}) \to K_1(A \times \mathbb{K})$ avec l'isomorphisme $K_1(A \times \mathbb{K}) \simeq K_1(A)$, on en déduit :

$$\delta[p]_0 = [\exp(2i\pi x_0 \Delta)]_1.$$

Ce résultat met à notre disposition une autre méthode de calcul de l'image par l'application exponentielle d'un projecteur dans le cas des projecteur de Rieffel. Il est à rapprocher de la proposition 3: Pimsner et Voiculescu [3] décrive de manière effective l'application exponentielle dans le cas d'un produit croisé $A \times_{\alpha} \mathbb{Z}$.

Nous avons vu que la suite exacte à 6 termes donnait deux suites exactes courtes, dont :

$$0 \longrightarrow K_0(C(\mathbb{S}^1)) \longrightarrow K_0(A_\theta) \stackrel{\delta}{\longrightarrow} K_1(C(\mathbb{S}^1))) \longrightarrow 0$$

On sait que les groupes à gauche et à droite sont tous les deux \mathbb{Z} , l'un étant généré par la classe de la projection $1 \in C(\mathbb{S}^1)$, l'autre par la classe de l'unitaire $z = id_{\mathbb{S}^1} \in C(\mathbb{S}^1)$. Si l'on trouve un projecteur p tel que $\delta[p]_0 = [z]_1$, on peut dire que $K_0(A_\theta)$ est engendré par $[1]_0$ et $[p]_0$.

On note φ la fonction définie par $\alpha(f)(z)=f(e^{2i\pi\theta}z)=f\circ\varphi(z)$. Soit $0<\delta<\theta$. Soit f la fonction de $\mathbb R$, affine par morceaux et 1 péridiodique, qui vaut 1 si t est dans $[\delta,\theta], 0$ si $t\in [\theta+\delta,1]$ et est nulle en 0. On pose :

$$\begin{cases} x_0 = e^{2i\pi f} \\ x_1(e^{2i\pi t}) = \sqrt{x_0(1-x_0)} 1_{0 < t < \delta} \end{cases}$$

On vérifie par un simple calcul que $p_{\theta} = x_0 + x_1 u + u^* x_1^*$ définit un projecteur de Rieffel. Maintenant, g étant auto-adjoint, son support gauche et droit coïncide (c'est le support de g), et $(x_0\Delta)(e^{2i\pi t}) = \frac{t}{\delta} 1_{0 < t < \delta}$. Cette fonction est homotope à z, et donc la proposition précédente conclut :

$$\delta[p_{\theta}]_0 = [z]_1.$$

Références

- [1] Alexandre Grothendieck. Produits tensoriels d'espace topologiques et espaces nucléaires. Séminaire N. Bourbaki, 69:193–200, 1951-1954.
- [2] A. Hatcher. Algebraic Topology. 2001.
- [3] D. Voiculescu M. Pimsner. Exact sequences for k-groups and ext-groups of certain cross-products of c^* -algebras. Operator theory, 4:93–118, 1980.
- [4] Gerard J. Murphy. C*-algebras and operator theory. Academic Press Inc., 1990.
- [5] Alain Connes Paul Baum. Geometric k-theory for lie groups and foliations. *Enseign. Math.*, 46:3–42, 2000.
- [6] Nigel Higson Paul Baum, Alain Connes. Classifying space for proper actions and k-theory of group c^* -algebras. Contemporary Mathematics, 197:241–291, 1994.
- [7] N.E. Wegge-Olsen. K-theory and C*-algebras, a friendly approach. Oxford University Press, 1993.