

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Отчет по выполнению практического задания №1.3

Тема:

Определение эффективного алгоритма сортировки на основе эмпирического и асимптотического методов анализа

Дисциплина: «Структуры и алгоритмы обработки данных»

Выполнил студент: Враженко Д.О.

Группа: <u>ИКБО-10-23</u>

Вариант: _____10

ЦЕЛЬ РАБОТЫ

Получить навыки по анализу вычислительной сложности алгоритмов сортировки и определению наиболее эффективного алгоритма.

ХОД РАБОТЫ

1. Задание 1

Эмпирическая оценка эффективности алгоритмов

1.1 Cocktail sort:

1.1.1 Словесное описание

Объявляем переменную control типа int, инициализируем переменные left и right значениями 0 и размерность массива - 1 соответственно. Пока левая граница меньше правой, то есть left < right, будет выполняться основной цикл, в который входят два цикла "для":

- 1) Для i = left и i < right: если элемент массива с индексом i больше элемента массива с индексом i+1, то поменять их местами и переменной control присвоить значение индекса i. Увеличение значения i на 1. Завершение цикла "для" и присваивание переменной right значение переменной control, то есть изменение правой границы.
- 2) Для i = right и i > left: если элемент массива с индексом i меньше элемента массива с индексом i-1, то поменять их местами и переменной control присвоить значение индекса i. Уменьшение значения i на 1. Завершение цикла "для" и присваивание переменной left значение переменной control, то есть изменение левой границы.

1.1.2 Блок-схема

1.1.3 Программный код

```
void Cocktail_Sort(int* arr, int size)
    int control;
    int left = 0, right = size - 1;
    while (left < right)</pre>
        for (int i = left; i < right; i++)</pre>
             if (arr[i] > arr[i + 1])
                 swap(arr[i], arr[i + 1]);
                 control = i;
        right = control;
        for (int i = right; i > left; i--)
             if (arr[i] < arr[i - 1])</pre>
                 swap(arr[i], arr[i - 1]);
                 control = i;
        left = control;
```

1.1.4 Тестирование

```
Array's size: 10
Unsorted array:
85 58 83 96 46 71 35 29 3 21
Sorted array:
3 21 29 35 46 58 71 83 85 96
```

1.1.5 Теоретическая сложность

В лучшем случае: $T(n)_{nyuuee} = 4*n+5=4n+5$.

В худшем случае: $T(n)_{xyounee} = (3*n-1)*n+n/2+4=3n^2-\frac{n}{2}+4$.

В среднем случае: $T(n)_{\text{лучшее}} \leq T(n)_{\text{среднее}} \leq T(n)_{\text{худшее}}$.

1.1.6 Сводная таблица

n	Лучший случ	Тучший случай		Средний случай		Худший случай	
	Кол-во операций	Время, мс	Кол-во операций	Время, мс	Кол-во операций	Время, мс	
100	405	0	15128	0	29954	0	
1000	4005	0	1678337	1	2999504	1	
10000	40005	0	166925341	68	299995004	46	
100000	400005	1	1652125485 3	7506	2999995000 4	4483	
1000000	4000005	7	1654078268 581	1036078	2999999500 004	463752	

1.1.7 Ёмкостная сложность

Составляет: n+3.

1.2 Quick sort:

1.2.1 Словесное описание

Если нижняя граница low меньше верхней границы high, то инициализируем 3 переменные целого типа: pivot, равной среднему элементу между low и high, i, равной low, и j, равной high. Пока $i \le j$:

- 1) Пока array[i] < pivot: i++;
- 2) Пока array[j] > pivot: j--;
- 3) Если $i \le j$: поменять местами array[i] и array[j], i++, j--;

Вызвать Quick_Sort(array, low, j) и Quick_Sort(array, i, high). Завершение цикла пока.

1.2.2 Блок-схема

1.2.3 Программный код

```
void Quick_Sort(int* arr, int low, int high)
    if (low < high)
        int pivot = arr[(low + high) / 2];
        int i = low;
        int j = high;
        while (i <= j)
            while (arr[i] < pivot)</pre>
                i++;
            while (arr[j] > pivot)
                j--;
            if (i \ll j)
                swap(arr[i], arr[j]);
                i++;
                j--;
        Quick_Sort(arr, low, j);
        Quick_Sort(arr, i, high);
```

1.2.4 Тестирование

```
Array's size: 10
Unsorted array:
69 0 99 19 21 24 27 61 88 73
Sorted array:
0 19 21 24 27 61 69 73 88 99
```

1.2.5 Теоретическая сложность

В лучшем случае: $T(n)_{nyuuee} = n \log(n)$.

В худшем случае: $T(n)_{xy\partial uee} = n^2$.

В среднем случае: $T(n)_{\textit{лучшеe}} \leq T(n)_{\textit{среднеe}} \leq T(n)_{\textit{худшеe}}$.

1.2.6 Сводная таблица

n	Лучший случай		Средний случай		Худший случай	
	Кол-во операций	Время, мс	Кол-во операций	Время, мс	Кол-во операций	Время, мс
100	200	0	7823	0	10000	0
1000	3000	0	679230	1	1000000	1
10000	40000	0	65341547	1	100000000	1
100000	500000	1	8529164123	3	1000000000	1
1000000	6000000	7	6238725671 45	33	100000000 000	8

1.2.7 Ёмкостная сложность

Составляет: n+6.

1.3.1 Графики

При п≤1000

Вывод:

Алгоритмы сортировки зависят от упорядоченности и неупорядоченности массивов. Если, массив упорядочен, то элементы не сортируются, и происходит только сравнение их элементов. Если, массив неупорядочен, то производится и сравнение элементов и их перемещение. В любом случае Quick Sort действует быстрее других сортировок, представленных в практической работе.

2. Задание 2

Асимптотический анализ сложности алгоритмов

2.1 Insertion sort

В лучшем случае: T(n) = 6n - 5

В худшем случае: $T(n) = 2n^2 + 3n - 4$

В О-нотации (оценка сверху) для анализа худшего случая сортировки простого выбора: для T(n) подберем такую простую g(n) и константу C, так что C*g(n) превышает T(n), по мере того как n значительно растет. Получаем, что T(n) имеет порядок роста O(g(n)), если имеется константа c и счетчик n_0 , такие

что $0 < T(n) \le C \cdot g(n)$, для $n \ge n_0$. В нашем случае g(n) = n2, C = 2, а $n_0 = 2$. Следовательно, $O(n^2)$.

В Ω -нотации (оценка снизу) для анализа лучшего случая сортировки обменом. Найдем такую константу с такую, что для бесконечного числа значений $n > n_0$ выполняется неравенство $T(n) \ge c \cdot k(n)$. Получим, что $k(n) = n^2$, c = 1, а $n_0 = 1$. Следовательно: $\Omega(n^2)$

Для данного алгоритма возможно получить асимптотически точную оценку вычислительной сложности алгоритма в нотации θ . Мы получим, что $T(n) = \theta(n^2)$. Докажем, что это действительно так. Для этого определим константы c_1 , c_2 и n_0 , для которых справедливо:

$$c_1 * n^2 \le 2n^2 + 3n - 4 \le c_2 * n^2$$
 для всех $n \ge n_0$

Разделив неравенство на n², получим:

$$c_1 \le 1 + \frac{3}{n} - \frac{4}{n^2} \le c_2$$

Правая часть $1+\frac{3}{n}-\frac{4}{n^2} \le c_2$ выполнится для всех $n\ge 2$, если выбрать $c_2\ge 3/2$ (при $n\to\infty$ $3/n\to0$ и $4/n^2$).

Аналогично левая часть $c_1 \le 1 + \frac{3}{n} - \frac{4}{n^2}$ выполнится для всех $n \ge 1$, если выбрать $c_1 \le 0$.

Тогда найдены $c_1=0,\ c_2=3/2$ и n_0 =4, а, значит, по определению, T(n)= $\theta(n^2).$

	Асимптотическая сложность алгоритма						
Алгоритм	Наихудший Наилучший случай (сверху) (снизу)		Средний случай (точная оценка)	Ёмкостная сложность			
Insertion sort	$O(n^2)$	Ω (n)	θ (n ²)	O(1)			
Cocktail sort	O (n ²)	Ω (n)	$\theta(n^2)$	O (1)			
Quick sort	O (n ²)	$\Omega\left(n*\log(n)\right)$	θ (n*log(n))	O (n)			

Вывод:

Из трёх сортировок, исследуемых мной самой эффективной для большего количества элементов, является Quick sort.