

数据库系统原理课程设计指南 2024

关佶红/Jihong Guan

教授/Professor

Email: jhguan@tongji.edu.cn

张毅超/Yichao Zhang

副教授/Associate Professor

Email: yichaozhang@tongji.edu.cn

李文根/Wengen Li

副教授/Associate Professor

Email: lwengen@tongji.edu.cn

先进数据与机器智能系统实验室 (ADMIS)

https://admis.tongji.edu.cn

计算机科学与技术学院

> 课程设计目标

• 总体目标

- 加深对数据库系统基础理论知识的理解,提高数据库应用系统设计与开发的实践能力,全面拓展数据库原理课程相关的综合分析和研发能力
 - 通过设计实现实际的数据库应用系统,熟悉并灵活运用所学基础理论,掌握数据库应用系统设计方法、开发技术,提高分析问题和解决问题的能力,强化动手能力
 - 通过调研前沿课题,了解当前数据管理的发展状态与发展趋势

· 具体目标

- **数据库应用系统开发(个人)**
 - 综合运用数据库理论与技术方法设计一个较完善的、有实际意义的数据库
 - 掌握MySQL/PostgreSQL/OceanBase/openGauss等流行数据库管理系统的应用与开发技术
 - 利用高级语言开发完整的数据库应用系统
- **数据管理前沿技术调研 (小组)**
 - 选择一个数据管理前沿课题进行调研分析, 撰写调研报告

数据库应用系统开发

• 数据库应用开发选题要求

- 围绕"海洋计算"或"城市计算"的合适题目,如海洋遥感图像检索系统、海洋表面温度预测平台、船舶轨迹查询系统、台风监测系统、城市交通状态查询系统、城市犯罪事件管理平台;或结合个人兴趣选择其他方向
- 题目自拟,具有一定的新颖性,9月20日前在Canvas中录入最新题目(可以沿用上学期大作业拟定的题目)

> 海洋计算

时空数据挖掘方法

Data

STDM Methods

Tasks

· 海洋计算: 主要研究问题

Hanchen Yang, Wengen Li, Shuyu Wang, Hui Li, Jihong Guan, Shuigeng Zhou, Jiannong Cao: Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies and Opportunities. CoRR abs/2307.10803 (2023)

▶ 可用海洋数据

Category	Name	Period	Spatial Resolution	Coverage	Temporal Resolution	Citation	Туре	Source
Satellite Data	MODIS	2000 to present	0.041x0.041	Global	8 days	[81, 84, 107, 108]	Sea surface temperature, ocean color, sea surface salinity	
		2002 to present	1 km x 1 km	Global	daily	[191]		https://modis.gsfc.nasa.gov/
		2002 to present	0.083°x 0.083°	Global	monthly	[97, 98]		
	AVHRR	1979 to present	1.1 km x 1.1 km	Global	daily	[74, 107]	Sea surface temperature, ocean color	https://www.eumetsat.int/avhrr
	Sentinel-3	2016 to present	$1.2~\mathrm{km} \times 1.2~\mathrm{km}$	Global	5 days	[20, 21, 49, 83, 121, 125, 217]	Sea surface temperature, ocean color	https://sentinels.copernicus.eu/web/sentinel/
	GOCI	2010 to 2021	$0.5~\mathrm{km} \times 0.5~\mathrm{km}$	Korean sea	houtly	[126, 158, 187, 226]	Sea surface chlorophy-ll, ocean color	https://oceancolor.gsfc.nasa.gov/data/goci/
	czcs	1978-1986	$0.825 \; \mathrm{km} \times 0.825 \; \mathrm{km}$	Global	8 days	[141, 148, 162, 231]	Sea surface chlorophy-ll	https://oceancolor.gsfc.nasa.gov/data/CZCS/
	OCM-2	2009 to present	1-4 km x 1-4 km	Global	2 days	[162]	Ocean color	https://ioccg.org/sensor/ocm-2/
	SeaWIFS	1997-2010	1-4 km x 1-4 km	Global	daily	[31, 114, 141, 203]	Ocean color	https://oceancolor.gsfc.nasa.gov/SeaWiFS/
In-situ data	Argo	1996-present	Trajectories of about 14060 floats	Global	1-10 days	[12, 17, 28, 212, 218]	sea surface temperature, sea surface salinity	https://argo.ucsd.edu/
	SOCCOM	2004-present	Trajectories of about 200 floats	Antarctic Ocean	10 days	[26, 92]	Ocean carbon	https://soccom.princeton.edu/
	GO-BGC	2021-present	Trajectories of about 500 floats	Global	10 days	[25, 79, 182, 216]	Sea O2, sea Ph	https://www.go-bgc.org/
Ships Data	AIS	2016 to 2018	Trajectories of about 70,000 vessels	Global	30 seconds - 1 day	[23, 45, 53, 82]	Trajectory anomalies, ship tracking	https://www.vmsdata.com/
	VMS	April, 2020	Trajectories of 750,000 vessels	Global	30 seconds - 1 day	[60, 177, 185]	Trajectory anomalies	https://marinecadastre.gov/
Reanalysis Data	OISST	1979-present	0.25°x0.25°	Global	daily	[86, 214, 234, 241]	Sea surface temperature	https://www.ncei.noaa.gov
	ERA-5	1959-present	4°x4°	Global	12-hour	[111, 128, 140, 233]	Sea surface temperature	https://www.ecmwf.int
	CMEMS Level 3 SLA	2004 to present	0.125°x0.125°	Global	daily	[11, 55]	Sea level anomalies	https://marine.copernicus.eu/
	CMEMS	1993-2020	0.25°x0.25°	Global	daily	[11]	Sea surface height anomaly	https://marine.copernicus.eu/
	HadCRUT4	1961-1990	5*x5*	Global	monthly	[36, 146, 176]	Air/Marine temperature anomalies	https://www.metoffice.gov.uk/
	COBE SST	1891 to present	1*x1*	Global	monthly	[33, 71]	Sea surface temperature	https://psl.noaa.gov/data/
	COBE-SST 2 and Sea Ice	1850 to 2019	1*x1*	Global	monthly	[189], [33]	Sea surface temperature, sea ice concentration	https://psl.noaa.gov/data/
	CMAP Precipitation	1979 the present.	2.5°x2.5°	Global	monthly	[40, 102, 119]	Pentad global gridded precipitation means.	https://psl.noaa.gov/data/
	WOD	1772 to 2017.	1°x1°	Global	daily	[22]	Sea temperature, salinity, oxygen	https://www.ncei.noaa.gov/products/world-ocean-databa

城市计算

城市计算(Urban Computing)

城市计算

- [1] 百度城市大脑白皮书
- [2] 阿里巴巴区块链赋能新型智慧城市白皮书
- [3] 京东云智能城市白皮书

- [4] 中国智能城市发展战略与策略研究
- [5] 城市交通数字化转型白皮书
- [6] **赛迪**白皮书: 2020城市新基建布局与发展白皮书

多源城市交通数据

基础设施 **Infrastructure**

交通基础

动态运行 数据

Dynamic Data

交通检测数据 **Detection Devices**

车辆和人员 **Vehicles and Employees**

城市活动 数据 Context Data

数据

Basic

Data

交通调查 数据 Census Data

交通行为数据 **Behavior Data**

人口、土地、经济 Population, Land, Economics

综合交通调查 **Comprehensive Census**

中国经济普查 ransportation Economic Census

城市计算应用场景

智慧基建

智慧能耗

智慧环保

智慧安防

智慧交通

智慧社交

城市计算: 主要研究问题

▶ 可用数据

国内城市数据

- 上海市公共数据开放平台: https://data.sh.gov.cn/
- 北京市公共数据开放平台: https://data.beijing.gov.cn/
- 深圳市政府数据开放平台: https://opendata.sz.gov.cn/

· 国外城市数据

- 纽约城市数据: https://opendata.cityofnewyork.us/data/
- 芝加哥城市数据: https://data.cityofchicago.org/

• 其他数据

- OpenStreetMap地图数据: https://download.geofabrik.de/
- 百度地图、高德地图 (API接口获取)

数据库应用系统开发

- 按照软件工程中软件生命周期来设计应用系统,结合数据库设计与实现要求,完成下述工作并撰写相应报告:
 - 1) 问题定义
 - 2) 可行性分析
 - 3) 需求分析: 数据字典、数据流图
 - 4) 总体设计: 数据库设计、应用系统设计
 - 5) 详细设计: 数据库设计、应用系统设计
 - 6)数据库建立、应用系统实现与功能调试
 - 7)数据库性能测试、系统综合测试,改进与完善
 - 8) 系统运行维护

数据库应用系统开发

- 数据库应用系统开发中强调**数据库设计**
 - 使用E-R图设计概念模型
 - 设计逻辑模型
 - 设计物理模型
- 要考虑规范化和实际应用需要,一般要求达到3NF
- 建立必要的索引,并对程序中的SQL语句进行优化,完成系统性能测试,保证较好的系统性能水平

> 数据库应用系统开发

• 完整性设计

- 需考虑关系模型的三类完整性约束条件,数据之间的关联应详细说明
- 要求对联系和各种约束进行适当定义
- 根据需求对有些约束可使用触发器

· 安全性设计

数据库的安全性至关重要,为系统设置用户管理功能,根据系统需求对用户分级,明确不同级别用户权限、可操作的功能

· 应用程序功能设计

- 应用系统的基本功能应根据实际需求目标来设定,通常有增加、删除、修改、查询、 统计报表、打印、备份、恢复、用户管理、密钥等功能
- 根据系统实际应用需求以及可能的扩展性需求,实现其它必要功能和附加功能,如数据分析、决策支持、特殊应用等
- 可采用B/S或C/S模式,或根据实际需求采用多级混合结构

课程设计开发工具

· 数据库设计工具

Freedgo Design、Lucidchart、Visual Paradigm、Edrawmax

· 数据库管理系统

- MySQL、PostgreSQL、OceanBase、openGauss
- IBM DB2、MS SQL Server

· 编程环境和语言(可自由选择)

根据需求和个人编程情况,选用某种面向对象语言和开发环境(如Python、Java、C++、.Net、Delphi等)

数据库应用系统开发

应用系统开发应独立完成,报告和程序功能完整,设计方法合理,用户界面友好,系统运行正常

· 要求提交:

- 系统设计与开发报告
 - 设计报告按照软件工程的要求与格式书写 , 不少于1.0万字, 不超过1.5万字
 - 需求分析、数据库概念设计、逻辑设计、物理设计部分清晰明确
- 系统源代码文件
- 系统操作、运行的完整功能录像演示文件

数据管理前沿技术调研(小组)

- ・ 方向1:蚂蚁科技OceanBase、华为openGauss/GaussDB
 - Storage: 存储
 - Index: 索引
 - Query: 查询
 - Optimization: 优化
 - Transactions: 事务处理、并发、恢复
- 方向2: 多模态数据检索(Multimodal Data Retrieval)
- · 方向3:向量数据库(Vector Database)
- · 以3~5人小组为单位进行调研分析,要求提交:
 - 小组调研报告 (PPT格式, 20-30页), 在上学期调研工作的基础上进行深化
 - 1页PPT总结与上学期调研工作的主要区别
 - 给出小组成员名单及各自完成工作说明

▶ 课程设计时间安排

第1-3周:题目调整与确定

• 第10周:中期进度检查

• 第16周: 期末答辩

每位同学参加课设正式答辩,介绍展示个人课设两部分的内容和成果(包括小组分工情况)

- 提交课设相关材料

• 注意:课程不安排集中授课

> 课程设计成果评价

· 课设成绩评定因素

- 应用系统研发和报告质量(独立完成)
- 前沿调研报告:小组综合情况、个人完成情况
- 课设期中进展情况、期末答辩情况
- 材料提交情况

· 课程成绩评定比例

- 系统开发50% (项目研发系统30%+项目研发报告20%)
- 课设进度与答辩20% (期中进度10%+期末答辩10%)
- 前沿调研报告20%
- 平时考勤10%(参加1-2次组织的讲座、按时提交材料、按时参加答辩)

OceanBase数据库大赛

全国高等学校计算机教育研究会 | 系统能力培养研究专家组 | 系统能力培养研究项目发起高校

https://open.oceanbase.com/competition

2024 全国大学生计算机系统能力大赛

-第四届 OceanBase 数据库大赛

○ 报名截止时间: 10月18日

立即报名

我的参赛信息 >

进入初赛可认

即日 — 24.10.18	24.10.18 — 24.11.11	24.11.15 — 24.12.23	2025年1月
报名	初赛	决赛	现场答辩
踊跃参与	决赛名单 & 省赛名单	20 强	夺冠之夜
所有高校学生均可报名	按总分评选全国 50 强及各省前 3 强	按总分评选全国 20 强	按得分及答辩成绩评选相 应奖项

> 注意事项

- 课程设计各项需提交内容等均需独立完成,或按小组分工合作完成,严禁抄袭(参考文献引用需标注),原则上不允许使用生成模型
- 期中和期末答辩视具体情况再通知安排
- 如有需要,请及时邮件、QQ或微信沟通

- 指导老师

- 关佶红: jhguan@tongji.edu.cn
- 张毅超: yichaozhang@tongji.edu.cn
- 李文根: lwengen@tongji.edu.cn

- 助教

- 王语嘉: 15855976816, 2432094@tongji.edu.cn
- 王林一: 18242128438, 2432093@tongji.edu.cn
- 陈雨微: 13093052227, 2432207@tongji.edu.cn
- 丁洋洋: 15852933650, 2432095@tongji.edu.cn
- 曾云驰: 18750385260, 2432038@tongji.edu.cn
- 宜锋锋: 15151393348, 2432186@tongji.edu.cn
- 刘 毅: 18326418258, liuyi61@tongji.edu.cn
- 马 嘉: 15916638722, 2432018@tongji.edu.cn

"立德树人"专项行动

"五守"

, 在走出校园后, 恪守法律法规。

> 学习阶段需要思考的问题

四个正确认识

- 正确认识世界和中国的发展大势
- 正确认识中国特色和国际比较
- 正确认识时代责任和历史使命
- 正确认识远大抱负和脚踏实地

- 远大理想与脚踏实地
- 知识学习与科研创新
- 学术道德与求真务实
- 人格情趣与身心健康
- 个人发展与社会责任