VI - Python

Commentaire

Insertion de commentaire | # Cette ligne ne sera pas lue par Python

I - Structures élémentaires

I.1 - Types élémentaires

Nombres		
+	Addition	3.4 + 2 renvoie 5.4
-	Soustraction	3.4 - 2 renvoie 1.4
*	Multiplication	3.4 * 2 renvoie 6.8
/	Division	3.4/2 renvoie 1.7
**	Puissance	3.4**2 renvoie (presque) 11.56
Booléens		
True, False	Valeurs booléennes vrai, faux	
==	Égal	4 == 2*2 renvoie True
>	Strictement supérieur	4 > 2 renvoie True
<	Strictement inférieur	4 < 2 renvoie False
>=	Supérieur ou égal	4 >= 2 * 2 renvoie True
<	Inférieur ou égal	4 <= 2 * 2 renvoie True
Connecteurs logiques		
and	Et logique	(3 == 0) and (4 == 2*2) renvoie False
or	Ou logique	(3 == 0) or (4 == 2*2) renvoie True
not	Non logique	not (3 == 0) renvoie False

Chapitre VI - Python

I.2 - Structures de contrôle

Affectation

	l A CC		
=	Affectation		x = 3
			stocke la valeur 3 dans la variable nommée x.
	Appel du contenu		2 * x + 3 renvoie 9
	Écrasement du contenu	de	x = 25 + 3 * 12
		Instruction conditionnelle	
			x = 20
i f c1:			$\mathbf{i} \mathbf{f} \mathbf{x} < 20$:
i1	c1, c2 sont des booléer		print("Riri")
elif c2:	i1, i2, i3 sont des ins		elif $x < 50$:
i2	Attention aux indentat		
	Attention aux deux-po	ints:	print("Fifi")
else:	elif (sinon mais si) et	else (sinon) sont optionnels	else:
i3			print ("Loulou")
			Affiche Fifi
		Boucle itérative	
	Nombre prédéterminé	d'itérations	
	i1 est une suite	d'instructions	for i in [3, 12, 1, 4]:
	Attention aux	indentations	print(i)
for element in liste:	Attention aux	deux-points:	Affiche 3 12 1 4
i 1	Liste peut être	une liste [3, 12, 1, 4]	for i in range (3, 7):
		un intervalle d'entiers range(a, b)	print(i)
		un intervalle de réels np.arange(a, b, pas)	Affiche 3 4 5 6
		np.linspace(a, b, nombre)	Amene 3 4 5 6
		Boucle conditionnelle	
	c est un booléen		
while c:	i1 est une suite d'instr	ructions	i = 3
	Attention aux indentat		while $i < 48$:
	Attention aux deux-po		i = 2 * i
i1	_	condition à chaque passage	<pre>print(i)</pre>
	l .		Affiche 6, 12, 24, 48
	pour qu'elle devienne f	.ausse	

Chapitre VI - Python ECT 2

Fonctions

dof ().	x, y sont les paramètres formels	\mathbf{def} f(x):
$\mathbf{def} \mathbf{f} (\mathbf{x}, \mathbf{y}) :$	i1 est une suite d'instructions	y = x**2 + 1
return z	z est la valeur renvoyée	return 3 * y
return z	Attention aux deux-points:	Affiche f(3) renvoie 30

I.3 - Modules

Importer des modules		
from numpy import *	Importe toutes les fonctions de numpy	
log(2)	Appel sans préciser la provenance	
import numpy as np	Charge le module numpy.	
np.log(2)	Appel en précisant le module d'appartenance.	

I.4 - Numpy - Calculs numériques

 $\label{eq:module pour effectuer des calculs numériques: import numpy as np} \end{module}$

Constantes

np.e	Constante e	Vaut environ 2.718
np.pi	Constante π	Vaut environ 3.14
	Fonctions	
np.exp	Exponentielle	np.exp(1) renvoie environ 2.718
np.log	Logarithme népérien	np.log(1) renvoie 0
np.sqrt	Racine carré	np.sqrt(4) renvoie 2.0
np.abs	Valeur absolue	np.abs(-3) renvoie 3
np.floor	Partie entière	np.floor(3.14) renvoie 3.0
Création de tableaux / matrices		
np.array	Crée un tableau à partir de la liste des éléments	np.array([[1, 2, 3], [4, 5, 6]]) définit $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$
np.zeros((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des zéros	np.zeros((2, 3)) définit $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

np.ones((n, p))	Crée une matrice à n lignes et p colonnes ne contenant que des 1	np.ones((2, 3)) définit $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
np.eye(n)	Crée la matrice identité d'ordre n	np.eye(3) définit $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
	Crée un vecteur ligne d'éléments	
np.arange(a, b, pas)	de a (inclus) à b (exclus)	np.arange(1.2, 2, 0.2) définit (1.2 1.4 1.6 1.8)
	espacés de pas	
	Crée un vecteur ligne d'éléments régulièrement espacés	
np.linspace(a, b, nbre)	de a (inclus) à b (inclus)	np.linspace(1.2, 2, 5) définit (1.2 1.4 1.6 1.8 2.)
	contenant nbre éléments	
	Manipulation de matrices	
t[i][j]	Accède à la ligne i colonnes j de t	t = np.array([[1, 2, 3], [4, 5, 6]])
	Numérotation à partir de 0	t[1][2] renvoie 6
		t = np.array([[1, 2, 3], [4, 5, 6]])
np.shape	Renvoie le nombre de lignes et le nombre de colonnes	a, b = np.shape(t)
		a contient 2, b contient 3
		a = np.array([[1, 2, 3], [4, 5, 6]])
		np.reshape(a, (3, 2))
np.reshape	Aplatit puis redimensionne un tableau	$\begin{pmatrix} 1 & 2 \end{pmatrix}$
		renvoie $\begin{pmatrix} 3 & 4 \\ - & - \end{pmatrix}$
		\5 6/
	Opérations sur les matrices	
		a = np.array([[1, 2], [3, 4]])
		b = np.array([[-1, 1], [0, 1]])
+	Addition élément par élément	a + b renvoie $\begin{pmatrix} 0 & 3 \\ 3 & 5 \end{pmatrix}$
-	Soustraction élément par élément	a - b renvoie $\begin{pmatrix} 2 & 1 \\ 3 & 3 \end{pmatrix}$
*	Multiplication d'une matrice par un réel	$2 * a renvoie \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$
np.dot	Produit matriciel	np.dot(a, b) renvoie $\begin{pmatrix} -1 & 3 \\ -3 & 7 \end{pmatrix}$
	Les fonctions np.exp, np.sqrt,s'effectuent é	elément par élément

Stastitiques

	1	
*, /, **	ATTENTION! Opérations élément par élément	$b**a renvoie \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$
		t = np.array([[1, 2, 3], [4, 5, 6]])
		np.sum(t) renvoie 21
		np.sum(t, 0) renvoie (5 7 9)
np.sum	Somme des éléments d'un tableau	. (6)
		np.sum(t, 1) renvoie $\binom{6}{15}$
		np.min(t) renvoie 1
	Minimum des éléments d'un tableau	$np.min(t, 0)$ renvoie $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
np.min	Minimum des elements d'un tableau	(1)
		$np.min(t, 1) renvoie {1 \choose 4}$
		np.max(t) renvoie 6
	Maximum des éléments d'un tableau	np.max(t, 0) renvoie (4 5 6)
np.max	Maximum des elements d'un tableau	(1) nonysis (3)
		$np.max(t, 1) renvoie {3 \choose 6}$
		np.mean(t) renvoie 3.5
nn maan	Mayanna dag álámanta d'un tablagu	np.mean(t, 0) renvoie (2.5 3.5 4.5)
np.mean	Moyenne des éléments d'un tableau	$n_{\text{n}} = n_{\text{n}} (t + 1) \text{ represented} (2)$
		np.mean(t, 1) renvoie $\binom{2}{5}$
		np.median(t) renvoie 3.5
np.median	Médiane des éléments d'un tableau	np.median(t, 0) renvoie $\begin{pmatrix} 2.5 & 3.5 & 4.5 \end{pmatrix}$
np.median	Mediane des cienients d'un tableau	$n_{\text{p}} = modian(t - 1) \text{ repyoio} \binom{2}{2}$
		np.median(t, 1) renvoie $\binom{2}{5}$
		np.var(t) renvoie 2.916
np.var	Variance des éléments d'un tableau	np.var(t, 0) renvoie $(2.25 \ 2.25 \ 2.25)$
np.var	variance des ciements d'un tableau	$\mathtt{np.var(t, 1)} \ \mathrm{renvoie} \ \begin{pmatrix} 0.6 \dots \\ 0.6 \dots \end{pmatrix}$
		\ /
		np.std(t) renvoie 1.707
np.std	Écart-type des éléments d'un tableau	np.std(t, 0) renvoie $\begin{pmatrix} 1.5 & 1.5 & 1.5 \end{pmatrix}$
пр. 504	Dear type des cientents à un tableau	np std(t 1) renvoie (0.816)
		np.std(t, 1) renvoie $\begin{pmatrix} 0.816\\ 0.816 \end{pmatrix}$
		np.cumsum(t) renvoie $\begin{pmatrix} 1 & 3 & 6 & 10 & 15 & 21 \end{pmatrix}$
	Somme cumulée des éléments	np.cumsum(t, 0) renvoie $\begin{pmatrix} 1 & 2 & 3 \\ 5 & 7 & 9 \end{pmatrix}$
np.cumsum	Aplatit le tableau si nécessaire	579
	Aplant to tableau of necessaire	np.cumsum(t, 1) renvoie $\begin{pmatrix} 1 & 3 & 6 \\ 4 & 9 & 15 \end{pmatrix}$
		(4 9 15)

Chapitre VI - Python ECT 2

I.5 - Pyplot - Graphiques

Module pour effectuer des rendus graphiques : import matplotlib.pyplot as plt

Tracé		
	X: liste des abscisses	
<pre>plt.plot(X, Y)</pre>	Y : liste des ordonnées	
	Crée le graphique contenant le tracé de la suite de points	
plt.show()	Montre le graphique	
	Compléments	
plt.xlim(xmin, xmax)	xmin: abscisse minimale	
pit.xiim(xmin, xmax)	xmax : abscisse maximale	
plt.ylim(ymin, ymax)	ymin : ordonnée minimale	
pit.yiim(ymin, ymax)	ymax : ordonnée maximale	
<pre>plt.axis([xmin, xmax, ymin, ymax])</pre>	Fixe les abscisses / ordonnées minimales / maximales	
plt.grid(True)	Affiche le quadrillage	
<pre>plt.grid(False)</pre>	Masque le quadrillage	
plt.legend()	Affiche la légende.	
Graphiques particuliers		
plt.hist(x)	Crée un histogramme avec les valeurs de x	
	Choix des critères automatique ou à préciser avec une option	
plt.bar(x, hauteur)	x liste des abscisses des barres	
height liste des hauteurs des barres		
plt.boxplot	Boîtes à moustaches	

I.6 - Random - Pseudo-alea

Module pour utiliser des nombres pseudo-aléatoires : import numpy.random as rd

Loi uniforme	
rd.rand(n, p)	Renvoie un tableau à n lignes et p colonnes
	Chaque élément est la réalisation d'une variable aléatoire
	de loi uniforme sur $[0,1]$

Chapitre VI - Python ECT 2

I.7 - Pandas - Panel data - Gestion des données

Module pour manipuler des données : import pandas as pd

	Statistiques
pd.mean	Moyenne des éléments du tableau par catégorie
pd.std	Écart-type des éléments du tableau par catégorie