CORRIGÉ: CCP PSI 2006

Partie I.

1.1. D'après la formule du binôme,

$$\sum_{k=0}^{n} {n \choose k} = (1+1)^n = 2^n$$

1.2. On a donc $\forall n \in \mathbb{N}, a_n^* = 1$.

1.3. Les séries $\sum (a_n)$ et $\sum (a_n^*)$ sont grossièrement divergentes (le terme général ne tend pas vers 0).

2.1. La formule du binôme donne

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} (z+1)^n$$

2.2.1. On «sait» calculer les sommes de suite géométriques. La raison z étant différente de 1,

$$\sum_{k=0}^{n} z^k = \frac{1 - z^{n+1}}{1 - z}$$

Pour |z| < 1, ce terme admet une limite. $\sum (a_n)$ converge et

$$A(z) = \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$$

2.2.2. On a $\left|\frac{z+1}{2}\right| \leq \frac{1+|z|}{2} < 1$ et $\sum (a_n^*)$ est donc aussi une série géométrique convergente de somme

$$\sum_{n\geq 0} a_n^* = \frac{1}{1 - \frac{z+1}{2}} = \frac{2}{1 - z} = 2A(z)$$

2.3.1. La série $\sum (a_n)$ est grossièrement divergente (terme général qui n'est pas de limite nulle).

2.3.2. Si z=-2 alors $a_n^*=(-1/2)^n$ est le terme général d'une série géométrique convergente.

2.3.3. (a_n^*) est une suite géométrique de raion $r = \frac{e^{i\theta}+1}{2} = \cos(\theta/2)e^{i\theta/2}$. Comme $\theta \in]0, \pi[, |r| \in]0, 1[$ et $\sum (a_n^*)$ converge

$$\sum_{k=0}^{\infty} a_{k}^{*} = \frac{1}{1-r} = \frac{2}{1-e^{i\theta}} = \frac{ie^{-i\theta/2}}{\sin(\theta/2)} = 1 + i\frac{\cos(\theta/2)}{\sin(\theta/2)}$$

Partie II.

1.1.1. On a

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!} \underset{n \to +\infty}{\sim} \frac{n^k}{k!}$$

1.1.2. Par croissance comparées, on a donc

$$\lim_{n \to +\infty} \frac{1}{2^n} \binom{n}{k} = 0$$

1.2. q étant fixé, $S_q(n,a)$ est alors une somme finie de suites de limite nulle et

$$\lim_{n\to+\infty} S_q(n,a) = 0$$

1.3. Soit $\varepsilon > 0$. Comme a est de limite nulle, il existe un rang q tel que $\forall k \ge q$, $|a_k| \le \varepsilon/2$. La suite $S_q(n,a)$ étant de limite nulle, il existe n_0 tel que $\forall n \ge n_0$, $|S_q(n,a)| \le \varepsilon/2$. On a alors

$$\forall n \geqslant n_0, |a_n^*| = \left| S_q(n,a) + \frac{1}{n} \sum_{k=q+1}^n \binom{n}{k} a_k \right| \leqslant \frac{\varepsilon}{2} + \frac{1}{2^n} \sum_{k=q+1}^n \binom{n}{k} \frac{\varepsilon}{2}$$

Comme $\sum_{k=a+1}^{n} {n \choose k} \le \sum_{k=0}^{n} {n \choose k} \le 2^n$, on a finalement

$$\forall n \geqslant n_0, |a_n^*| \leqslant \varepsilon$$

et on a montré que

$$\lim_{n\to+\infty}a_n^*=0$$

1.4. On a

$$a_n^* - l = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} (a_k - l)$$

et on se ramène au cas précédent $(a_n - l \rightarrow 0)$. Ainsi

$$\lim_{n\to+\infty}a_n^*=l$$

Rem: Il s'agissait ici, dans un cas particulier, du théorème de Césaro...

- 1.5. Si $a_n = (-2)^n$ alors $a_n^* = \frac{1}{2^n} (1-2)^n = \frac{(-1)^n}{2^n}$ donc ici (a_n^*) est une suite convergente de limite nulle alors que (a_n) est une suite divergente. Il n'y a donc pas équivalence entre les convergences de (a_n) et de (a_n^*) .
- 2.1. Le calcul donne

$$a_0^* = a_0, \ a_1^* = \frac{a_0 + a_1}{2}, \ a_1^* = \frac{a_0 + 2a_1 + a_2}{4}, \ a_3^* = \frac{a_0 + 3a_1 + 3a_2 + a_3}{8}$$

puis

$$U_0 = a_0$$
, $U_1 = 3a_0 + a_1$, $U_2 = 7a_0 + 4a_1 + a_2$, $U_3 = 15a_0 + 11a_1 + 5a_2 + a_3$

ďoù

$$U_0 = S_0$$
, $U_1 = 2S_0 + S_1$, $U_2 = S_2 + 3S_1 + 3S_0$, $U_3 = S_3 + 4S_2 + 6S_1 + 4S_0$

2.2.1. On peut donc supposer que

$$U_n = \sum_{k=0}^{n} {n+1 \choose k+1} S_k$$

2.2.2. La formule précédente est vraie pour n = 0, 1, 2, 3. Soit $n \ge 3$ tel que la formule soit vraie jusqu'au rang n - 1. On remarque que

$$U_n = 2^n T_n = 2U_{n-1} + \sum_{k=0}^{n} {n \choose k} a_k$$

On utilise alors la remarque de l'énoncé pour exprimer a_k à l'aide de S_k et S_{k-1} . En réordonnant les termes (on scinde la somme en deux et on réindice), on obtient

$$\sum_{k=0}^{n} {n \choose k} a_k = \sum_{k=0}^{n-1} \left({n \choose k} - {n \choose k+1} \right) S_k + S_n$$

Avec l'hypothèse de récurrence au rang n-1, on a donc

$$U_n = \sum_{k=0}^{n-1} \left(\binom{n}{k+1} + \binom{n}{k} \right) S_k + S_n$$

La formule $\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$ permet alors de montrer le résultat au rang n. 2.3. On suppose que $\sum (a_n)$ converge et on note S sa somme. On a donc $S_n \to S$ quand $n \to +\infty$. Avec la question

$$U_{n-1} = \sum_{k=1}^{n} {n \choose k} S_{k+1} = \sum_{k=0}^{n} {n \choose k} S_{k+1} - S_1$$

Comme $S_{n+1} \rightarrow S$, la question II.1 indique que

$$\lim_{n \to +\infty} \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} S_{k+1} = S$$

ce qui donne $\frac{\mathbf{U}_{n-1}+\mathbf{S}_1}{2^n} \to \mathbf{S}$ ou encore $\mathbf{T}_{n-1} = \frac{\mathbf{U}_{n-1}}{2^{n-1}} \to 2\mathbf{S}$. La série $\sum (a_n^*)$ converge et

$$\sum_{n=0}^{\infty} a_n^* = 2\sum_{n=0}^{\infty} a_n$$

2.4. Si $a_n = (-2)^n$ alors $\sum (a_n)$ diverge alors que $\sum (a_n^*)$ converge. Les séries $\sum (a_n)$ et $\sum (a_n^*)$ n'ont donc pas toujours même nature.

Partie III.

- 1.1. Pour tout réel x la suite $(x^n/(n+1)!)$ est de limite nulle et donc bornée. La série entière $\sum (x^n/(n+1)!)$ est donc de rayon de convergence infini et f est définie sur \mathbb{R} . Elle est même, comme somme de série entière, de classe $\mathscr{C}\infty$ sur \mathbb{R} .
- 1.2. On a

$$\forall x, f(x) = \sum_{n \ge 0} \frac{x^{n+1}}{(n+1)!} = e^x - 1$$

1.3. On en déduit que

$$\forall x \neq 0, \ e^{-x} f(x) = \frac{1 - e^{-x}}{x}$$

En 0, la fonction prend la valeur 1 (f(0) = 1).

2.1. On a

$$\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ \left| \frac{\sigma_n x^n}{n!} \right| \leq \frac{n|x|^n}{n!} \underset{n \to +\infty}{\longrightarrow} 0$$

La série entière : $\sum \frac{\sigma_n}{n!} x^n$ est donc de rayon de convergence infini. g est donc définie et de classe \mathscr{C}^{∞} sur \mathbb{R} .

2.2. On peut dériver terme à terme une série entière sur l'intervalle ouvert de convergence. Ainsi (on tient compte de $\sigma_0 = 0$)

$$\forall x \in \mathbb{R}, \ g'(x) - g(x) = \sum_{n \ge 0} \frac{\sigma_{n+1}}{n!} x^n - \sum_{n \ge 1} \frac{\sigma_n}{n!} x^n = 1 + \sum_{n \ge 1} \frac{x^n}{(n+1)!} = f(x)$$

2.3. On a ainsi

$$\forall x \in \mathbb{R}, \ g'(x)e^{-x} - g(x)e^{-x} = f(x)e^{-x}$$

En primitivant (avec les primitives nulles en 0) on a donc

$$\forall x \in \mathbb{R}, \ g(x) = e^x \int_0^x f(t)e^{-t} \ dt$$

3.1. F est une primitive de $x \mapsto e^{-x} f(x)$. Or, d'après III.1,

$$\forall x \in \mathbb{R}, \ e^{-x} f(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n!} x^{n-1}$$

On peut primitiver terme à terme une série entière sur l'intervalle ouvert de convergence. Comme F(0) = 0, on obtient

$$\forall x \in \mathbb{R}, \ F(x) = \sum_{n \ge 1} \frac{(-1)^{n+1}}{n \cdot n!} x^n$$

3.2. On a $g(x) = e^x F(x)$. Dérivons cette égalité n fois (avec la formule de Leibnitz) et prenons la valeur en 0. On obtient

$$g^{(n)}(0) = \sum_{k=0}^{n} {n \choose k} F^{(k)}(0)$$

Or, si h est la somme de la série entière $\sum (b_k x^k)$ alors $b_k = k!h^{(k)}(0)$. Ainsi, l'égalité précédente s'écrit

$$\forall n \geqslant 1, \ \sigma_n = \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k+1}}{k} = n! \gamma_n$$

4.1.1. On a

$$w_k = -\ln\left(1 - \frac{1}{k+1}\right) - \frac{1}{k+1} \sim \frac{1}{2(k+1)^2}$$

et c'est donc le terme général d'une série absolument convergente.

- 4.1.2. Soit $v_n = \sigma_n \ln(n)$; on a $v_n v_{n+1} = w_n$. Or, la série $\sum (v_n v_{n+1})$ et la suite (v_n) ont même nature et donc (v_n) est une suite convergente.
- 4.2. En regroupant les termes d'indices pairs et ceux d'indices impairs, on a

$$\tau_{2n} = -\sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=1}^{n} \frac{1}{2k-1}$$

$$\sigma_{2n} = \sum_{k=1}^{n} \frac{1}{2k} + \sum_{k=1}^{n} \frac{1}{2k-1}$$

En faisant la différence, on obtient

$$\tau_{2n} = \sigma_{2n} - \sigma_n$$

4.3. Notons *l* la limite de $(\sigma_n - \ln(n)) = (\nu_n)$. On a

$$v_{2n} - v_n = \sigma_{2n} - \sigma_n - \ln(2) = \tau_{2n} - \ln(2)$$

Cette quantité étant de limite l-l=0, on a donc $\tau_{2n}\to \ln(2)$. Par ailleurs $\tau_{2n+1}-\tau_{2n}=\frac{1}{2n+1}$ et donc $\tau_{2n+1}\to \ln(2)$. Finalement, la suite τ est convergente de limite ln(2) ou encore

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln(2)$$

- 5.1. $(\sigma_n \ln(n))$ admettant une limite finie, on a $\sigma_n \sim \ln(n)$. Ainsi, $(x^n \sigma_n)$ est bornée si et seulement si |x| < 1. Le rayon de convergence R est donc égal à 1.
- 5.2. Comme $\sigma_n \to +\infty$, $\sum \sigma_n$ et $\sum (-1)^n \sigma_n$ divergent et $\Delta =]-1,1[$. On peut dériver terme à terme la série entière pour

$$\forall x \in [0,1[, \phi'(x)] = \sum_{n > 1} n \sigma_n x^{n-1} \ge 0$$

et ϕ est donc croissante sur [0,1[. 5.3. La relation $\gamma_n = \frac{\sigma_n}{n!}$ peut s'écrire

$$\sigma_n = \sum_{k=1}^n \binom{n}{k} \frac{(-1)^{k+1}}{k}$$

Si on pose $a_k = \frac{(-1)^{k+1}}{k}$ pour $k \ge 1$ et $a_0 = 0$, on a donc

$$\frac{\sigma_n}{2^n} = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k = a_n^*$$

La partie II indique alors que $\sum (a_n^*)$ est convergente de somme égale à deux fois celle de $\sum (a_n)$. On a ainsi

$$\phi\left(\frac{1}{2}\right) = \sum_{n \ge 1} \frac{\sigma_n}{2^n} = 2\ln(2)$$

5.4. Soit $u_k = \frac{1}{k}$ si $k \ge 1$ et $u_0 = 1$. Soit w la suite constante égale à 1. On a

$$\forall n \ge 0, \ \sigma_n = \sum_{k=0}^n u_k w_{n-k} = (u * w)_n$$

où u*w désigne le produit de Cauchy de u par w . Le cours indique alors que

$$\forall x \in]-1,1[, \phi(x) = \sum_{k \ge 0} u_k x^k \sum_{k \ge 0} x^k = -\frac{\ln(1-x)}{1-x}$$

On retrouve $\phi(1/2) = 2\ln(2)$.