02 Mai, 2016

Kodierer Information

- ► Nicht-Rekursiver Kodierer
- Anzahl von Ausgängen :

$$N = 2$$

► Anzahl von Registern :

$$M = 2$$

► Generatoren :

$$(7,5)_8 = \begin{pmatrix} 111\\101 \end{pmatrix}$$

► Kode-Rate:

$$\frac{1}{2}$$

Kodierer Matrix: Nächster Zustand

	Bit 0	Bit 1
Zustand 0	0	2
Zustand 1	0	2
Zustand 2	1	3
Zustand 3	1	3

Kodierer Matrix : Ausgangsbits

Bit 0 Bit	1
00 11	
11 00)
10 01	
01 10)
	11 00 10 01

input: (1, 0, 1, 0, 0)

state input output next state

input: (1, 0, 1, 0, 0)

state	input	output	next state
00	1	11	10

input: (1, 0, 1, 0, 0)

state	input	output	next state
00	1	11	10
10	0	10	01

input: (1, 0, 1, 0, 0)

state	input	output	next state
00	1	11	10
10	0	10	01
01	1	00	10

input: (1, 0, 1, 0, 0)

state	input	output	next state
00	1	11	10
10	0	10	01
01	1	00	10
10	0	10	01

input: (1, 0, 1, 0, 0)

state	input	output	next state
00	1	11	10
10	0	10	01
01	1	00	10
10	0	10	01
01	0	11	00

