Index

Absorption:	Alexander's dark band, 177
by atmospheric aerosols, 436-446	Alignment of particles:
dominance of, in Rayleigh limit, 309	in interstellar dust clouds, 463-465
effect on ripple and interference structure,	in noctilucent clouds, 451
306, 318	in ocean waters, 427
mechanisms in bulk matter, summary, 282	Aluminum:
temperature effects on, 281	bulk optical properties of, 225, 271-273,
Absorption coefficient, bulk matter:	353
defined, 29	particles, extinction by:
measurement of, 29, 30	ellipsoids, 346
Absorption cross section:	measurements, 374-377
of cubes, 368	spheres, 294, 295, 310, 338, 375
defined, 71	surface plasmons in, 338, 339
of distribution of ellipsoids, 353-356	Amorphous solids:
of ellipsoids, Rayleigh limit, 150-152, 345,	and far-infrared emission, 446
348	as oxide coating, 376
integrated, of ellipsoid, 347	particles of, in interstellar dust, 462-466
in Rayleigh-Gans approximation, 161, 162	Amplitude scattering matrix:
of sphere, Rayleigh limit, 140	for anisotropic dipole, 154
of spheroid, 313	for cylinder, 202, 205, 408
of weakly absorbing large sphere, 166-169	Rayleigh limit, 208
Absorption edge, see Band gap	defined, 63
Absorption efficiency:	for optically active particles, 189, 408
defined, 72	in Rayleigh-Gans approximation, 161, 407
and emissivity, 125	for sphere, 112
greater than 1, 339-342	Rayleigh limit, 132, 140, 407
of small sphere, 136	and sum rule, 154
of sphere, asymptotic limit, 172, 173	symmetry of, 406-412
of water droplets, 170, 171	Angle-dependent functions, in Mie theory:
Aggregation of particles:	defined, 94
effect on extinction spectra:	polar plots of, 96
aluminum, 376	recurrence relations for, 95, 119
amorphous quartz, 361	Angular scattering:
gold, 372	calculations:
magnesium oxide, 366–368	for spheres, 114, 115
effect on optical properties, 81, 315, 342,	distributed in size, 387-389
258	of increasing size, 384-387
and sampling of atmospheric aerosols, 440	in Rayleigh limit, 133, 134
scattering by, spherical clusters, 423-425	for spheroids, 397-400
Albedo, single scattering:	measurements:
defined, 445	absolute and relative, 391
and global climate, 435, 442, 443-446	applicability of Mie theory to, 427, 428

for cylinder, 426	expansion of trigonometric functions in,
for nonspherical particles, 399-401, 422	418
for spheres, 420, 421	integral representation of, 110, 164, 197
techniques for, 389-392	power series expansions for, 208
Anisotropic cylinder, scattering by, 209	recurrence relation for, 197
Anisotropic oscillator model:	spherical (half-integral order):
applied to crystalline quartz, 250, 251	computation of, 478
theory of, 247-249	integral representation of, 92
Anisotropic solids, powders of, 432	plots of, 88
Anisotropic sphere, scattering by, 152, 153,	power series expansions for, 130, 131
184, 185	recurrence relations for, 86, 478
Asymmetry:	and Riccati-Bessel functions, 101
in absorption bands, 306-308	stability of recurrence relations for, 127,
in scattering diagrams, 115, 384–389,	128
398-400	Biological particles, scattering by, 395, 397,
Asymmetry parameter:	425, 427
defined, 72	Birefringence:
for nonspherical particles, 401	circular, 46, 191
for spherical particles, 119, 120	of ice, 179
Asymptotic limits:	linear, 45, 248
of absorption and scattering efficiencies,	Blackbody radiation, see Planck function
171 – 173	Blue moon and blue sun, 107, 129, 318
of extinction efficiency, 107, 110, 172, 299	Boundary conditions for electromagnetic
Atmospheric aerosols:	fields, 59-61, 99, 182
absorption by, 436-446	Brewster angle, 36, 135
and blue moon, 129	Bruggeman average dielectric function, 217,
and climate, 434-436	218
imaginary part of refractive index of, 279,	Bubble, resonance condition for, 331
436-439	Bulk optical constants, applicability of to
remote sensing of, 442, 443	small particles, 280, 326, 336, 360,
Average dielectric function, theories of:	371, 372
Bruggeman, 217, 218	
Maxwell Garnett, 214-218	Carbon particles:
see also Effective refractive index	and absorption by atmospheric aerosols,
Average refractive index of atmospheric	438, 439, 444–446
aerosols, 433, 438	absorption by small spheroids of, 351-353
Dahinas'a minainta 100	and complex refraction index of carbon,
Babinet's principle, 108	431
Backscattering:	in India ink, 288
by nonspherical particles, 422, 423	Causality, 19, 22, 56, 116
by sphere, 122	Charged sphere, scattering by, 118
Backscattering cross section, see Radar backscattering cross section	Christiansen effect, 292
Band gap:	Cigarette smoke, blue moon demonstrated
defined, 251, 252	with, 129
in magnesium oxide, 270	Circular cylinder, see Cylinders, scattering by Circular dichroism:
in semiconductors, 282	defined, 46, 191
superconducting, 282, 376	in particulate media, 192–194
Beam width, effect of on scattering, 117, 118	Circumstellar dust shells, 457, 462, 463
Bessel functions:	Clausius-Mosotti relation, 221
of complex order, 185	Climate changes, 434–436
of integral order, 195	Clusters of spheres, scattering by, 423 – 425
asymptotic expansions for, 93, 94	Coated ellipsoid, scattering by in Rayleigh
computation of, 492, 493	limit, 148–150
	,

Coated sphere, scattering by:	Cube:
computer program for, 483-489	absorption by, randomly oriented, 386
and immunological slide, 470-472	surface modes in, 365-369
and invisible particles, 149	Cylinders, scattering by:
in Rayleigh limit, 149	finite:
and surface modes, 329, 330	according to diffraction theory, 209-213
theory of, 181–183	in Rayleigh-Gans approximation,
Cole-Cole plots, 265, 351, 352	163-165
Colloids, optical properties of, 369-374	infinite, 194-213
Color:	amplitude scattering matrix for, 206
of copper, 259	anisotropic, 209
of gemstones, 271	efficiencies for, 204-207
of glacial crevasses, 276	scattering matrix for, 206
of Grand Canyon, 271	,
of metal colloids, 369, 371	Debye relaxation mode, 259-265
of noctilucent clouds, 448	dielectric function for, 263, 264
of old bottles, 271	and microwave absorption by
of rainbow, 177, 188	macromolecules, 472-474
of sky, 42	and water, 264
of swimming pools, 274	Degree of polarization, see Polarization
Color centers, 271, 282, 283	Depolarization factors, 147
Computer programs for scattering and	Depolarization of scattered light, 67, 403
absorption, 475, 476	Depolarization ratio, 403
by coated sphere, 483-489	Detailed balance, 125
by homogeneous sphere, 477-482	Dichroism:
by normally illuminated infinite cylinder,	circular, 46, 191
491 – 497	linear, 46
Conductivity, 13, 15, 19, 186	Dielectric function:
surface, 118	complex:
Convergence criteria in scattering	of aluminum, 255, 272, 346
calculations, 126, 477, 485	anisotropic model for, 247-250
Convolution theorem, 17	average, see Average dielectric function,
Copper, 259, 337, 352, 353	theories of
Core electrons, 267, 273	Cole-Cole plots of, 353
Cross polarization:	Debye mode for, 263, 264
defined, 383	Drude free-electron model for, 252-256
and depolarization ratio, 403	high- and low-frequency limits of, 234
and particle shape, 423	of ice, 275
in Rayleigh-Gans approximation, 407	Lorentz oscillator model for, 230-232,
of sphere, 408	241
Cross sections:	of magnesium oxide, 246, 269
of anisotropic sphere, 184	multiple oscillator model for, 245
of arbitrary particle, 71, 73	quantum mechanical expression for, 245
computation of, for spheres, 126-129	and refractive index, 227
of cylinder, 202-204	relationship of real and imaginary parts
of ellipsoid, Rayleigh limit, 151, 152, 343, 350	of, 266
normalization of, 289	of silicon carbide, 243
of optically active sphere, 190	of silver, 257, 258, 373
in Rayleigh-Gans approximation, 162	of water, 264, 275
of sphere, 103	static, 267
Rayleigh limit, 140	Dielectric function tensor, 152, 247, 249
and surface modes, 343	Differential scattering cross section:
of weakly absorbing large sphere, 166-171	defined, 72, 383
see also Absorption; Extinction; Scattering	measurement of, 391, 392

Diffraction:	aluminum, 346
by aperture, 109	coated, 148-150
by cylinder, 209-213	continuous distribution of, 353-356
by obstacle, 109	as disks, needles, and spheres, 348-353
by sphere, 110, 111	in electrostatics approximation, 141-149
theory of, 107-111	metallic, 345-347
Dipole:	polarizability tensor for, 150
potential of, 138, 139	randomly oriented, 151, 152, 346
radiation by, 99, 139, 236-238	surface modes in, 342-356
Disk:	Ellipsometric parameters of polarized light,
absorption by, 350, 353	46
as oblate spheroid, 146	and Stokes parameters, 50
scattering diagram for, diffraction theory,	Ellipsometry, 41, 56
111	and light-scattering measurements, 416
Dispersion:	Emissivity of sphere, 125
anomalous, 232, 235, 242	greater than 1, 126
normal, 177, 232, 239	Exciton, 269, 270
spatial, 22	pressure dependence of, 468, 469
Dispersion relations, see Kramers-Kronig	Extinction:
relations	defined, 69, 287
Doppler shift, wind velocity measurements	interpreted, 69, 75, 287
by, 447	paradox, 107, 110, 129
Drude free-electron model, 251-257	by sphere in absorbing medium, 330
for aluminum, 255, 256, 272, 273	sum rule for, 116, 117
dielectric function for, 252, 254	theorem, Ewald-Oseen, 5, 11
for semiconductors, 256	Extinction calculations:
and surface plasmons, 335, 345	for cylinders, 314–316
	for distribution of ellipsoids, 356
Eccentricity of spheroids, 146	of aluminum, 375
Effective optical constants, see Average	of magnesium oxide, 367, 368
dielectric function, theories of	of quartz, 363
Effective refractive index:	of silicon carbide, 364
of atmospheric aerosols, 443-446	for spheres:
of slab of particles, 78, 79	of aluminum, 294, 295, 310, 338, 375
see also Average dielectric function,	effect of absorption on, 307
theories of	effect of size distribution on, 296-299
Efficiency factor:	of electron-hole droplets, 377, 378
defined, 72	of gold, 370, 371
greater than 1, 125, 333, 334, 339–342	of magnesium oxide, 290-292, 308, 367
for radiation pressure, 120	of quartz, 361, 363
see also Absorption; Cross sections;	and ripple structure, 300, 301, 302
Extinction; Scattering	of silicon carbide, 333, 334
Electromagnetic waves, plane, 25-27	of water, 104-107, 292, 297, 309
Electron energy bands, 239, 251, 252, 270	see also Mie calculations
Electrons, free and bound, 257-259	for spheroids, 311-314
Electrostatics approximation, 136–154	Extinction cross secton defined, 71
for anisotropic sphere, 152 – 154	see also Cross sections; Scattering cross
for coated ellipsoid, 148, 149	sections and efficiencies
for cube, 342, 356, 368	Extinction measurements:
for ellipsoid, 141–149	for amorphous quartz spheres, 360-362
for sphere, 136–141	for colloidal gold, 371
and surface modes, 327	for colloidal silver, 373, 374
Ellipsoidal coordinates, 141	for cylinders, microwave, 322, 323
Ellipsoids:	for electron-hole droplets, 377, 378

for interstellar dust, 458-462	Green's function, 263
for irregular quartz particles, 318, 319, 362, 363	Group velocity, 253
for irregular silicon carbide particles, 364,	Haloes, ice-crystal, 178-180
365	Hankel functions, 93, 94
for magnesium oxide cubes, 366, 367	
for nonspherical aluminum particles,	Ice:
375-377	absorption bands of, 277, 278
for sphere in microwave cavity, 303, 304	dielectric function of, 275
for spheroids, microwave, 321, 322	in interstellar dust, 462, 467
Fil 1 405 404	Ice-water mixtures, 218
Fiber, scattering by, 425, 426	and radar backscattering, 265, 276
Fluctuations, scattering by, 6	Immunological slide, 469
Fogs, scattering by, 116, 387–389	Impurities, absorption by, 270, 271, 279
Form factors in Rayleigh-Gans theory, 161 for finite cylinder, 164, 165	Inhomogeneous particles, dielectric functions for, 213-219
for sphere, 163	Integrating plate method, 440, 441
Forward scattering:	Integrating sphere, 320, 441
dominance of, for large particles, 114–116,	Interference bands, in thin slabs, 38, 39
384, 387, 398	Interference structure in extinction, 104–106,
effect on measured extinction, 75, 110, 111,	292-299
289, 316	effect of absorption edge on, 306
and polarization, 206	for polystyrene spheres, 317, 318
Fourier transforms, 15-19, 23, 56	and response curves for sizing particles,
Fraunhofer diffraction, 109	404, 405
Free electrons, see Drude free-electron model	for spheroids, 311, 312
Fresnel formulas for reflection and	Interstellar dust, 307, 457-467
transmission, 34, 35	and circular polarization, 464, 465
and scattering by large sphere, 167	and diffuse bands, 459, 460
Fröhlich mode:	emission by, 462, 466
absorption at, 328	extinction by
of bubble, 331	average, 459
defined, 327	infrared, 461
effect of coating on, 329, 330, 471	ultraviolet, 460
effect of finite size on, 329	and linear polarization, 463, 464
effect of medium on, 332	scattering by, 465, 466
frequency of, 327 of void, 330	Inverse scattering problem, 10, 11, 403
width of, 332	Invisible particles, 149, 150 Irregular particles:
see also Surface modes; Surface plasmons;	extinction by, measurements, 318, 319
Surface phonons	scattering by, measurements, 400, 402
Surface phonons	seattering by, measurements, 400, 402
Geometrical factors of ellipsoid, 146-147	KBr pellet technique, 358-360
and depolarization factors, 147	Kirchhoff's law for emission and absorption,
and eccentricity of spheroids, 146, 147	125
and surface modes, 343, 344	Kramers-Kronig relations, 19-22, 41, 56, 274
Glory, 389	and Debye model 263
and nonspherical particles, 401	and dielectric function, 266
Gold, 337, 352, 353	and optical activity, 191
colloidal extinction by, 369-372	and oscillator model, 231
Graphite:	for reflection, 32, 33, 234
in interstellar dust, 459–461	for refractive index, 28
surface plasmon in, 379	Legendre functions 86 00 01
Greenhouse effect, 435	Legendre functions, 86, 90, 91

Levitation of particles, 394, 395	applicability of to nonspherical particles,
by radiation pressure, 304, 305	427, 428
Lidar, 443, 447	history of, 82, 129, 369
Light sources, for scattering, 390	Modes, electromagnetic, 97–100
Limiting behavior:	and laser levitation experiments, 305
of backscattering efficiency, 123	transverse electric, 97, 98
of dielectric function, 266, 267	transverse magnetic, 97, 98
of efficiencies:	Mueller matrices, 53 – 56, 417
for large sphere, 107-110, 171-173	for circular polarizer, 56
for small sphere, 130–136	for linear polarizer, 54
of harmonic oscillator model, 234, 235	for linear retarder, 55
Logarithmic derivative:	Mueller scattering matrix, see Scattering
computation of, 478	matrix
defined, 127, 204	Multiple-oscillator model, 244-247
recurrence relation for, 127, 205	for magnesium oxide absorption bands, 308
Lorentz oscillator model, 228-232	for quartz reflectance, 250, 251
for core electrons, 272	Multiple scattering, 9
dielectric function for, 230, 231, 241	and circular polarization, 451
for magnesium oxide, 240, 246	and extinction, 80
for silicon carbide, 241-243	
and surface modes, 332, 348	Needle:
Lyddane-Sachs-Teller relation, 244	absorption by, 350, 352
	as prolate spheroid, 146
Magnesium oxide:	Nephelometers:
bulk optical properties of, 239-241,	integrating, 439
245-247, 268-271	polar, 389-391, 414-419
extinction calculations for, 290-292, 367	Noctilucent clouds, 448-454
extinction measurements for, 365-369	Nonspherical particles:
particle production technique for, 359	angular scattering by, 397–401
Magnetic dipole, contribution of to	calculational techniques for, 220-222
absorption, 310	and cross polarization, 401-403
Magnetic particles, 141	extinction calculations for, 310-316
Matrices, for isolating particles, 358-360	extinction measurements for, 318, 319
Maxwell equations, 12, 58	scattering matrix for, 421-427
Fourier transform of, 16	see also Cube; Disk; Ellipsoids; Needle
for optically active media, 186	No-phonon bands, 271, 282
plane-wave solutions to, 26	
Maxwell Garnett average dielectric function,	Ocean waters, scattering by, 425, 427
214-219, 359, 444, 470	Optical constants:
Mean free path of electrons:	of aluminum, 255, 272, 346
limited by particle size, 336-368, 370-372	of atmospheric aerosols, 430-434
Microwave analog technique:	defined, 27, 28
for angular scattering, 395-397	experimental determination of, 41, 56
for extinction, 320-323	Kramers-Kronig relations for, 28
Microwave radiation:	Lorentz oscillator model for, 231
cavity absorption of, 303, 304	of magnesium oxide, 240, 245-247, 269
effect of on biological materials, 472, 473	at microwave frequencies, 396
scattering of, measurements, 395-397, 400,	of powder samples, 430, 431
402	relation to dielectric function, 227
see also Microwave analog technique	of silicon carbide, 242
Mie calculations, 126-129	from single-particle measurements, 431
computer programs for, 477-482	of water, 275
see also Extinction calculations, for spheres	see also Dielectric function; Refractive
Mie theory, 83-104, 111-114	index, complex

Optically active particles, 185-194	and longitudinal oscillations, 253, 254
cross sections for, 190	for semiconductor impurities, 256
Optical rotation:	shift of because of bound charges,
defined, 191	259
by particulate medium, 78, 192 – 194	for silicon, 256
Optical theorem, 71, 73	tables of, 257, 379
and absorption in Rayleigh-Gans	Plasmons, 233
approximation, 161	see also Surface plasmons
for cylinder, 204	Point matching method, 220
and diffraction theory, 109, 110	Polarization, 44-56
for dipole, 150	degree of, 53
for sphere, 112	circular, 53
and sum rule for extinction, 116	linear, 53
Oscillator model, see Lorentz oscillator model	measurement of, 54
	and ellipsometric parameters, 44-46
Particle production, 392-394	upon reflection, 36
aluminum, 376	see also Mueller matrices; Strokes
by arc vaporization, 359	parameters
by burning magnesium, 365	Polarization, of scattered light:
by grinding, 359, 360	in backward direction, 206, 456
of monodisperse aerosols, 393, 394	in forward direction, 206
with nebulizers, 393, 394	from noctilucent clouds, 449-453
with vibrating orifice, 393, 394, 405	by nonspherical particles, 401-403
Perturbation techniques, 220	at rainbow angle, 388, 389
Phase, measurement of, 321	by sphere, 113-115
Phase function:	Rayleigh limit, 135
defined, 72, 384	see also Scattering matrix
for finite cylinder, 210-212	Polarization modulation, 416-419
for infinite cylinder, 212, 213	in astronomy, 464
for spheres, 384–389	Polarizers:
see also Angular scattering	Mueller matrices for, 54, 56
Phase matrix, 66	and scattering matrix elements, 415
see also Scattering matrix	and Stokes parameters, 47–49
Phase velocity:	Polystyrene spheres:
defined, 25	measured extinction by, 317, 318
and refractive index, 235-238	measured matrix elements for, 419,
Phonons, 233	420
see also Surface phonons	for nephelometer calibration, 391
Photoacoustic technique, 292, 320, 441, 442	Poynting vector, 23, 24
Photographic process, 372	field lines of, 339–342
	Purcell-Pennypacker method, 220, 221
Photosensitive glass, 374 Planck function, 123-125, 435	Purcen-Fennypacker method, 220, 221
	Quantum size effects, 280, 369, 372, 376
Plane waves, 25–27	-
expansion of in vector cylindrical	Quartz:
harmonics, 195–197	amorphous:
expansion of in vector spherical harmonics, 89–93	infrared extinction measurements for, 360-362
propagation of, 28-30	particle production, 359
reflection and transmission of, 30-41	crystalline:
Plasma frequency:	infrared extinction measurements for,
for aluminum, 256	362, 363
defined, 230	reflection by, 250
for ionosphere, 256	visible and ultraviolet extinction
for lattice vibrations, 241	measurements for, 318, 319
··DIMMOND, ET!	mononiumino ioi, 210, 217

Radar backscattering:	Kramers-Kronig relations for, 33
from birds, 123	of normally incident light, 30-33
dependence on polarization, 456	of obliquely incident light, 33-36
from melting ice, 265	and penetration depth, 241
and rainfall measurements, 454-457	by slab, 36-41
reflectivity factor, 455	specular, 39
from thunderstorms, 276	by sphere, 171-174
Radar backscattering cross section, 120-123	Reflection cross section, 172
Radar backscattering efficiency	Reflection efficiency, 172
asymptotic limit, 123	for nonabsorbing sphere, 174
and correctness of computations, 478, 485	Refraction:
defined, 122	and determination of optical constants, 41
for sphere, 122	by prism, 178, 179
Rayleigh limit, 135	Snell's law for, 34
Radiation damage, 269-271, 290-292, 308	Refractive index, complex, 27, 227
Radiation pressure, 120	real part less than 1, 235-239
and levitation experiments, 304, 305, 394,	see also Optical constants
395	Remote sensing, atmospheric aerosols, 442,
Radio wave propagation, ionosphere, 256	443
Rainbows, 174–177, 180	Response function, light scattering
polarization of, 387-389	instrument, 404, 405
Rainfall, measurement of, 454–457	Reststrahlen, 244, 245
Rayleigh-Gans approximation, 158–165	bands in MgO, 270
and biological particles, 425	bands in quartz, 250
for finite cylinder, 163 – 165	temperature dependence of, 281
for optically active particles, 165	Ripple structure:
for sphere, 162, 163	in absorption, 293, 294, 303, 304
Rayleigh scattering, 6, 7, 132–134	in extinction, 105, 106, 293, 294, 296-298
according to Rayleigh, 133	300-304, 318
Rayleigh smoothness criterion, 39	in extinction by spheroids, 311, 312
Ray tracing diagram, for sphere, 167	in radiation pressure, 304, 305
Reciprocity relation, 409	in scattering, 302
Recurrence relations:	ni scattering, 502
for Bessel functions, 86, 197, 478	Scattering:
for logarithmic derivative, 127, 205	azimuthally dependent, 397, 399, 428
stability of, 128, 477, 478	coherent, in forward direction, 68
Reddening, 106, 107, 299	elastic, 7
by interstellar dust, 458	incoherent, 9, 76
by MgO smoke, 290	multiple, 9
by milk, 106	physical basis for, 3, 4
by polystyrene spheres, 317, 318	plane, 61, 62
and sunsets, 107	single, 9
Reflectance:	Scattering amplitude, 70, 71
of aluminum, 35, 255, 272	see also Amplitude scattering matrix
of magnesium oxide, 240, 246	Scattering cell, 392
and optical constants measurements, 41	Scattering coefficients:
of platinum, 241	for coated sphere, 183
of quartz, 250	computation of, 126–129
of silver, 257, 258	for cylinder, 198, 199
of water, 35	fine structure in, 301–304
Reflection:	for homogeneous sphere, 99–101, 114
and backscattering, 123	for optically active sphere, 180
diffuse, 39, 441, 442	vanishing of denominators of, 100, 101,
Fresnel formulas for, 34, 35	106, 326
	· · • · = ·

Scattering cross sections and efficiencies	spheres, 332-334
for arbitrary particle, 71, 72, 73	production of, 359
asymptotic values of, 171-173	Silver:
for cylinder, 204	bulk optical properties of, 257-259, 352,
for disks, needles, and spheres, Rayleigh	353
limit, 350	colloid, extinction by, 372-374
for magnesium oxide spheres, calculated,	Single particles, measurements on, 303, 304,
291	321-323, 394-397, 423-426
of obstacle, diffraction theory, 110	Sizing of particles, 403-406
for optically active sphere, 190	by angular scattering, 384
for randomly oriented ellipsoid, Rayleigh	by extinction, 318
limit, 152	by forward scattering, 401, 405
for sphere, 103	Skin depth, 310
Rayleigh limit, 135, 136, 140	Skylight:
for spheroids, calculated, 312-314	color of, 42, 107
see also Cross sections	polarization of, 157
Scattering diagram, 72	Smoke:
Scattering matrix, 63-69	aluminum, 376
for anisotropic dipole, 154-157	carbon, 320
for arbitrary particle, 65	MgO, SiO ₂ , SiC, 359
for cylinder, 206, 408	screens, 434
inequalities satisfied by elements of, 406,	Sphere:
407	anisotropic, 184, 185
measurements of, 414-427	coated, 181–183
for artificial fogs, 420	cross sections for, 103
for bacterial spores, 425, 427	polarization by, angle dependent, 113, 115,
for clusters of spheres, 423–425	385, 386, 388
for nonspherical particles, 421–427	in Rayleigh approximation, 130–141
for polystyrene spheres, 419, 420	in Rayleigh-Gans approximation, 162, 163
for quartz fiber, 425, 426	scattering by, angle dependent, 114, 115,
techniques for, 414–419	384–389
for water droplets, 419-421	scattering coefficients for, 100, 101, 114
for optically active sphere, 408	scattering matrix for, 112
in Rayleigh-Gans approximation, 407	in uniform electrostatic field, 137
for sphere, 112, 408	see also Angular scattering; Extinction
Rayleigh limit, 132	calculations; Scattering cross
symmetries of, 406–414	sections and efficiencies
Separation of variables, 219, 220	Spheroids:
Shape, dependence of optical properties on:	angular scattering by, calculated, 397–399
extinction, 310–316, 318–323	extinction by:
scattering matrix elements, 428	calculated, 311–314
surface modes, 342–344, 356, 357,	measured, 320-322
363-369, 373-377	geometrical factors for, 147
see also Nonspherical particles	surface modes in, 344
Signal velocity, 236	Stationary phase, method of, 74, 78, 79
Silicon carbide:	Statistical theory of scattering, 222
emission by, in interstellar dust, 462,	Stokes parameters, 46–53
463	in circular polarization representation, 191
lattice vibrations in, 241–244	example of use of, 417
	of scattered light, 64–67
particles:	two systems for, 382
extinction by:	Sum rule:
ellipsoids, 349, 364	for extinction, 116, 117, 129
fibers, 365	for susceptibility, 22, 267
measurements of, 364	for susceptionity, 22, 207

Supernumerary bows, 177	diffuse, 440, 441
Superposition, 60, 61	efficiencies for, 174
Surface modes, 325-389	at plane boundary:
in aluminum spheres, 338, 339	normally incident light, 30, 31
in cubes, 368	obliquely incident light, 33-36
defined, 326	by slab:
effect of coating on, 329, 330	homogeneous, 36-41
effect of shape on, 357	particulate, 77–79
effect of size on, 329, 333	Transparency, ultraviolet, 256
in ellipsoids, 342-356	
and lidar backscattering, 447, 448	Units, SI, 12
in magnesium oxide particles, 292, 365-369	, ,
in metallic spheres, 335, 336	Vector cylindrical harmonics, 195
in nonspherical particles, 342-356	Vector identities, 83
and one-oscillator mode, 331-334	Vector scattering amplitude, 70
in scattered light, observed, 374	for dipole, 139, 237
in silicon carbide particles, 333, 334, 364, 365	Vector spherical harmonics, 84, 87, 89, 182,
in spheres, 326-329	187
in voids and bubbles, 330, 331	expansion of plane wave in, 89-93
see also Fröhlich mode; Surface phonons;	orthogonality of, 90-93
Surface plasmons	Vibration ellipse, 45, 47
Surface phonons, 336	Voids, 147, 148
Surface plasmons, 335	surface modes in, 330, 331
in gold, 369-372	
in indium, application to immunology,	Water:
469~472	bulk optical properties of, 273 - 278
in silver, 372-374	Debye relaxation in, 264, 276
table of, 379	dielectric function of, 275
Suspension of particles, see Levitation of	electronic absorption in, 274, 278
particles	free molecule, normal modes of, 277
Symmetry:	transparent region of, 274–276
operations on particle, 409-412	vibrational absorption in, 276-278
of scattering matrices:	Water droplets:
for collections of particles, 412-414	absorption efficiency of, 170, 171
for obliquely illuminated cylinder, 408	extinction by, 105, 292-294, 297, 309
for ocean waters, 425, 427	polarization by, 115, 385, 386, 388
for optically active sphere, 408	scattering by, 114, 115, 384, 389
in Rayleigh-Gans approximation, 407	see also Angular scattering; Cross sections;
for sphere, 408	Ripple structure
for sphere, Rayleigh limit, 407	Wave equation:
time reversal, 125	scalar, 59
	in cylindrical coordinates, 194
Temperature:	in spherical polar coordinates, 84
effect of on optical properties, 264,	vector, 58, 83, 84
281 – 283	Waves:
global, effect of atmospheric aerosols on,	longitudinal, 15, 242, 254
434, 435	transverse, 15, 26, 242
Thermal emission, 123, 125	7ing gridg 469, 460
T-matrix method, 221, 222, 397 Transmission:	Zinc oxide, 468, 469 7. Prelations, 455, 456
Transmission:	Z-R relations, 455, 456