

Machine Learning

Linear Regression with multiple variables

Multiple features

Multiple features (variables).

Size (feet²)	Price (\$1000)
$\rightarrow x$	y ~
2104	460
1416	232
1534	315
852	178

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
× ₁	×z	×3	*4	9
2104	5	1	45	460
1416	3	2	40	232 M= 47
1534	3	2	30	315
852	2	1	36	178
 Notation:	 ★	 *	 1] / [1416]
$\rightarrow n = nu$			n=4 aining example	$\frac{\chi^{(2)}}{2} = \begin{bmatrix} 1416 \\ \frac{3}{2} \\ 40 \end{bmatrix} \in$
•	•	-	training examp	

Hypothesis:

Previously:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

Machine Learning

Linear Regression with multiple variables

Gradient descent for multiple variables

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:
$$\theta_0, \theta_1, \dots, \theta_n$$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 $\Rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$. **5(e)** $\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat
$$\left\{ \theta_0 := \theta_0 - o \frac{1}{m} \sum_{m=0}^{m} (h_{\theta}(x^{(i)})) \right\}$$

$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \underline{x}^{(i)}$$

1 feature

New algorithm $(n \ge 1)$:

$$\theta_j := \theta_j - \alpha \frac{1}{m}$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

(simultaneously update
$$heta_j$$
 for $j=0,\dots,n$)

$$\underline{0} := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice I: Feature Scaling

Feature Scaling

similar range of values

Idea: Make sure features are on a similar scale. then gradient decent an converge quickly

E.g.
$$x_1$$
 = size (0-2000 feet²) \leftarrow x_2 = number of bedrooms (1-5) \leftarrow

Feature Scaling

Get every feature into approximately a

Mean normalization

Replace \underline{x}_i with $\underline{x}_i - \underline{\mu}_i$ to make features have approximately zero mean (Do not apply to $\underline{x}_0 = 1$).

mean value of xi in training set

E.g.
$$x_1=\frac{size-1000}{2000}$$
 Average 5120 $x_2=\frac{\#bedrooms-2}{(5)}$ L-S belows $-5.5 \le x_1 \le 0.5$ Average 7120 $x_2 = \frac{1-5}{2000}$ Average 7120 $x_3 = \frac{1-5}{2000}$ Average 7120 $x_4 = \frac{1-5}{2000}$

u1 = average value of x1 in training set s1 = range (range=max-min, or use standard deviation) of value

and deviation)

Machine Learning

Linear Regression with multiple variables

Gradient descent in practice II: Learning rate

Gradient descent

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

ightharpoonup Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

choosing this threshold is also difficult, andrew like to plot this figure to visualize it

Making sure gradient descent is working correctly.

- For sufficiently small lpha, J(heta) should decrease on every iteration.
- But if lpha is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge. (Slow converge)

(Slow convege class possible)

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \dots$$

Andrew use 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.... and plot the J vs number of iteration

Machine Learning

Linear Regression with multiple variables

Features and polynomial regression

Housing prices prediction

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$
 we can define area instead of using frontage and depth

Area

sometimes we create new features to produce a better model

Polynomial regression

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\rightarrow \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Size (x)
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 \\ = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$\Rightarrow x_1 = (size)$$

$$\Rightarrow x_2 = (size)^2$$

$$\Rightarrow x_3 = (size)^3$$

we need to apply feature scaling if you are using gradient!!

Choice of features

Machine Learning

Linear Regression with multiple variables

Normal equation

for some linear regression problems, normal equation give us a much better way to solve for the optimal value of the parameters theta

so far we have gradient descent:

Gradient Descent

Normal equation: Method to solve for θ analytically.

get to the optimal value

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \frac{\partial}{\partial \phi} J(\phi)$$

$$\underline{\theta \in \mathbb{R}^{n+1}} \qquad \underline{J(\theta_0, \theta_1, \dots, \theta_n)} = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\underline{\frac{\partial}{\partial \theta_j} J(\theta)} = \cdots \stackrel{\boldsymbol{\leq}}{=} 0 \qquad \text{(for every } j\text{)}$$

Solve for $\theta_0, \theta_1, \ldots, \theta_n$

Examples: m = 4.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	$\rightarrow x_0$	x_1	x_2	x_3	x_4	y	
	1	2104	5	1	45	460	
	1	1416	3	2	40	232	l
$> X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$	1	1534	3	2	30	315	
	1	852	2	1 _1	3 6	178	ل
$\theta = (X^T X)^{-1} X^T y$		$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$1416 3 2$ $1534 3 2$ $852 2 1$ $m \times (n+1)$	2 40 2 30 3 36	y =	232 315 178	1est

<u>m</u> examples $(x^{(1)}, y^{(1)}), \ldots, (\underline{x^{(m)}, y^{(m)}})$; <u>n</u> features.

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\operatorname{des}_{\mathsf{sign}} \\ \operatorname{nock}_{\mathsf{n}})$$

$$(\operatorname{h}_{\mathsf{x}} (\operatorname{h}_{\mathsf{i}}))^{\mathsf{T}}$$

Andrew Ng

$$\theta = (X^T X)^{-1} X^T y$$

 $(X^TX)^{-1}$ is inverse of matrix $\underline{X^TX}$.

$$\frac{1}{\left(x^{7}x\right)^{-1}} = N^{-1}$$

Octave: pinv(x'*x)*x'*y

if we use normal equation, then feature scaling is not necessary

m training examples, n features.

Gradient Descent

- \rightarrow Need to choose α .
- → Needs many iterations.
 - Works well even when <u>n</u> is large.

more complex learning algorithm (ex: classification, ,,,), or n too large, we want to use gradient descent, its powerful and useful!

Normal Equation

- \rightarrow No need to choose α .
- Don't need to iterate.
 - Need to compute
- - Slow if n is very large.

n = (00)
time for computing increases like ~

V= 10000

Machine Learning

Linear Regression with multiple variables

Normal equation and non-invertibility (optional)

Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

- What if X^TX is non-invertible? (singular/degenerate)
- Octave: pinv(X'*X)*X'*y

psedo-inverse

linverse

What if X^TX s non-invertible?

Redundant features (linearly dependent).

E.g.
$$x_1 = \text{size in feet}^2$$

 $x_2 = \text{size in m}^2$
 $x_1 = (3.18)^2 x_2$

- Too many features (e.g. $m \leq n$).
- to solve it: Delete some features, or use regularization.

you dont have enough data!