Ekonometria Finansowa

Nieliniowe modele szeregów czasowych

mgr Paweł Jamer¹

Doktorant, Katedra Ekonometrii i Statystyki SGGW Ekspert ds. Modelowania Danych, Polskie Technologie Konsultant Zewnętrzny, Polkomtel

7 października 2016

¹pawel.jamer@gmail.com

Problem

Problem

Poszukiwany jest model opisujący szereg czasowy r_t równaniem postaci

$$r_t = f(\epsilon_t, \epsilon_{t-1}, \epsilon_{t-2}, \ldots),$$

gdzie

- f dowolna funkcja nieliniowa,
- ϵ_t WN (0,1)

Uproszczenie problemu

Uprośćmy przedstawiony problem rozwijając funkcję f w szereg Taylora:

$$r_t = g(\epsilon_{t-1}, \epsilon_{t-2}, \ldots) + \epsilon_t h(\epsilon_{t-1}, \epsilon_{t-2}, \ldots).$$

Wówczas funkcje g oraz h możemy interpretować następująco:

- $g(\epsilon_{t-1}, \epsilon_{t-2}, \ldots) = \mathbb{E}(r_t \mid \mathcal{R}_{t-1}),$
- $h^2(\epsilon_{t-1}, \epsilon_{t-2}, ...) = \text{Var}(r_t \mid \mathcal{R}_{t-1}).$

Definicja

Model nieliniowy

Model opisujący proces r_t nazwiemy nieliniowym, jeżeli warunkowa wartość oczekiwana $\mathbb{E}\left(r_t\mid\mathcal{R}_{t-1}\right)$ lub warunkowa wariancja $\mathsf{Var}\left(r_t\mid\mathcal{R}_{t-1}\right)$ jest w nim opisana za pomocą funkcji nieliniowej.

Model nieliniowej autoregresji

Modelem nieliniowej autoregresji rzędu p szeregu czasowego r_t nazwiemy model opisany równaniem

$$y_t = f(y_{t-1}, y_{t-2}, \dots, y_{t-p}) + \epsilon_t.$$

Oznaczenie. Model nieliniowej autoregresji rzędu p oznacza się symbolem NLAR (p).

Model wykładniczej autoregresji

Modelem wykładniczej autoregresji rzędu p szeregu czasowego r_t nazwiemy model opisany równaniem

$$y_t = \sum_{j=1}^{p} \alpha_j y_{t-j} + \epsilon_t,$$

gdzie

$$\bullet \ \alpha_j = \theta_j + \pi_j e^{-\alpha y_{t-j}^2}.$$

Oznaczenie. Model wykładniczej autoregresji rzędu p oznacza się symbolem EAR (p).

Model nieliniowej średniej ruchomej

Modelem nieliniowej średniej ruchomej rzędu q szeregu czasowego r_t nazwiemy model opisany równaniem

$$y_t = f(\epsilon_{t-1}, \epsilon_{t-2}, \dots, \epsilon_{t-q}) + \epsilon_t.$$

Oznaczenie. Model nieliniowej średniej ruchomej rzędu q oznacza się symbolem NLMA (q).

Model Rocke'a

Modelem Rocke'a szeregu czasowego r_t nazwiemy model opisany równaniem

$$y_t = \epsilon_t + \sum_{j=1}^{\infty} b_j \psi(\epsilon_{t-j}),$$

gdzie

- $\psi(x) \leq 0 \text{ dla } x > 0$,
- $\bullet \ \psi \left(-x\right) =\psi \left(x\right) ,$
- ψ (0) = 1.

Model dwuliniowy Definicja

Model dwuliniowy

Modelem dwuliniowym szeregu czasowego r_t nazwiemy model opisany równaniem

$$y_t = \mu + \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{j=0}^{q} \theta_j \epsilon_{t-j} + \sum_{k=1}^{p} \sum_{l=1}^{Q} c_{k,l} y_{t-k} \epsilon_{t-l},$$

gdzie

•
$$\theta_0 = 1$$
.

Model dwuliniowy Właściwości

Uwaga. Model dwuliniowy uwzględnia skupianie się danyh.

Uwaga. $r_t \sim \mathsf{ARCH} \Rightarrow r_t^2$ - proces dwuliniowy.

Wśród modeli dwuliniowych wyróżnia się:

- modele dwuliniowe naddiagonalne ($c_{k,l} = 0$ dla k > l).
- modele dwuliniowe poddiagonalne ($c_{k,l} = 0$ dla k < l).
- modele dwuliniowe diagonalne $(c_{k,l} = 0 \text{ dla } k \neq l)$.

Model TAR

Model progowy autoregresyjny

Modelem progowym autoregresyjnym (TAR) szeregu czasowego r_t nazwiemy model opisany równaniem

$$r_t + \theta_0 + \sum_{i=1}^p \theta_i r_{t-i} + I\left(z_{t-d} \leqslant r\right) \left(\psi_0 + \sum_{j=1}^q \psi_j r_{t-j}\right) = \epsilon_t.$$

Model SETAR. Model TAR w którym $z_{t-d} = r_{t-d}$ nazwiemy modelem SETAR.

Model wygładzonego przejścia

Modelem wygładzonego przejścia szeregu czasowego r_t nazwiemy model opisany równaniem

$$r_t = \mathbf{x}_t' \mathbf{\pi}_1 + \mathbf{x}_t' \mathbf{\pi}_2 F(z_t) + \epsilon_t,$$

gdzie

- $\mathbf{x}_t = \begin{bmatrix} 1 & y_{t-1} & \cdots & y_{t-p} & x_{1,t} & \cdots & x_{q,t} \end{bmatrix}$ wektor zmiennych,
- π_1, π_2 wektory parametrów,
- ϵ_t WN,
- $F(z_t)$ funkcja transformacji, parzysta lub nieparzysta funkcja ciągła.

Funkcja logistyczna:

$$F(z_t) = F(t) = \frac{1}{1 + e^{-\gamma \left(t^k + \sum_{i=1}^k \alpha_i t^{k-i}\right)}}.$$

Funkcja wykładnicza:

$$F(z_t) = F(t) = 1 + e^{-\gamma(t-\alpha)^2}$$

Model przełącznikowy

Model przełącznikowy

Modelem przełącznikowym szeregu czasowego r_t nazwiemy model opisany równaniem

$$r_t = \alpha_{z_t} + \sum_{i=1}^{p} \beta_{z_t,i} r_{t-i} + \epsilon_t,$$

gdzie

• z_t — łańcuch Markowa o zbiorze stanów

$$\mathcal{S} = \{1, 2, \dots, k\}, k \geqslant 2.$$

Odpowiednio dobrana funkcja nieliniowa powinna:

- zachowywać zgodność ze znanymi zależnościami ekonomicznymi,
- zachowywać zgodność ze znanymi faktami empirycznymi,
- posiadać dziedzinę zmienności zgodną z faktyczną zmiennością modelowanej wielkości,
- charakteryzować się elastycznością umożliwiającą aproksymację form zbliżonych do analizowanej formy.
- umożliwiać łatwe wyznaczenie jej parametrów.

Współczynnik maksymalnej korelacji:

$$m_{\rho} = \max_{f,g} \operatorname{Cor}(g(y), f(x)).$$

Maksymalna średnia korelacja:

$$m_m = \max_f \operatorname{Cor}(y, f(x)).$$

Maksymalny współczynnik regresji

$$m_r = \max_f R^2$$
,

gdzie

• R^2 — współczynnik determinacji w regresji $y = f(x) + \epsilon_t$.

Wybór liczby opóźnień

Uwaga. Wyboru liczby opóźnień w modelach NLAR, NLMA, dwuliniowych oraz progowych można dokonać wykorzystując kryteria informacyjne. Najczęściej stosowanymi kryteriami są kryteria AIC oraz BIC.

Test RESET Algorytm

Stosujemy MNK w celu wyznaczenia parametrów modelu

$$y_t = \beta' \mathbf{z}_t + u_t,$$

$$\mathsf{gdzie}\ \pmb{z}_t = \begin{bmatrix} 1 & y_{t-1} & \cdots & y_{t-p} & x_1 & \cdots & x_k \end{bmatrix}.$$

Obliczamy

$$SSR_0 = \sum_{t=1}^{T} \hat{u}_t^2.$$

Stosujemy MNK w celu wyznaczenia parametrów modelu

$$\hat{u}_t = \delta' \mathbf{z}_t + \sum_{j=0}^h \psi_j \hat{y}_t^j + \mathbf{v}_t.$$

Obliczamy

$$\mathsf{SSR} = \sum_{t=0}^{T} \hat{\mathsf{v}}_t^2.$$

Testujemy hipotezę

$$\begin{cases} H_0: & (\forall j) \, \psi_j = 0, \\ H_1: & (\exists j) \, \psi_j \neq 0. \end{cases}$$

Statystyka testowa jest postaci:

$$F = \frac{(\mathsf{SSR}_0 - \mathsf{SSR})/(h-1)}{(\mathsf{SSR})/(T-m-h)} \sim \mathbb{F}^{[h-1,T-m-h]},$$

gdzie m = p + k.

Pytania?

Dziękuję za uwagę!