Lecture 7: Games With Imperfect Information 1: Bayesian Games

Raymond Duch

Nuffield College With thanks to Scott Moser

Hilary 2011

Review: Normal form games

Normal form game is three things:

- ullet a set of players N
- ullet a set of actions available to each player, $\{A_i\}_{i\in N}$ (with $A=x_{i\in N}A_i$)
- Preferences of each player, depending on the actions of all: $\{u_i\}_{i\in N}$ with $u_i:A\to\mathbb{R}$

Review: Normal form games

And our equilibrium concept was

Nash Equilibrium!

A profile of actions a^{st} is a (pure strategy) Nash Equilbrium (NE) iff

$$u_i(a^*) \ge u_i(a_i, a_{-i}^*)$$
 for all a_i , for all $i \in N$

Motivation

Up till now, strategic situations are ones in which everyone knew everything (in equilibrium).

- structure of game
- actions available
- payoffs of others

They were games of complete and perfect information

- complete information: structure of the game, payoffs of all
- perfect information: how all act

Motivation 2

But!! Would like to relax this to study interactions in which actors do not "know everything":

- War: don't know strength of opponent/ don't know opponent's utilities (like to fight?)
- Candidate competition: don't know public preferences/ don't know opponent's "abilities" (war-chest, etc.)

Definition

[Note: departs slightly from Osborne def. 279.1] A Bayesian game in normal form is:

- a set of players
- a set of states (of nature), $\omega \in \Omega$ (assume countable for now easily generalized)
- a set of actions for each player
- a set of signals for each player (also called 'private infromation'), T_i , or "type space"
- von Neumann-Morgernsterm **utility** for each player. i.e. Bernouilli payoffs that depend on others' action and the state of the world: $u_i(\sigma,\omega) \to \mathbb{R}$

and... beliefs for each player (almost... more on this later) - if agents don't know about the environment, how are they to act? -what do we assume about how agents form and/ or update beliefs?

Definition, Intuition

Think of a Bayesian game (for now) as:

- Each player has an 'idea' about the world: whatever an agent doesn't know, it has beliefs about
- Get a signal (private information): something you know that others don't
- Update beliefs: now I know something more than I did at the beginning of the game, namely my own private info. How does that change my beliefs?
- BAYES' RULE
- Take action (perhaps probabilistically): maximize expected utility, given all info and beliefs you have.

Details

- Strategies for normal form games: (new) $\sigma_i:T_i\to \Delta S_i$ now depends on type (private info)
- Payoffs: depend on actions of all, and on state of nature. Bernoulli payoffs $u: S \times \Omega \to \mathbb{R}$.
- Expected utility (depends on type (signal) and actions): $U_i(\sigma, t_i) = \sum_{\omega \in \Omega} Pr[\omega, t_{-i}|t_i]u_i(\sigma_i(t_i), \sigma_{-i}(t_{-i}), \omega)$

Bayes' Rule

$$Pr(A|B) = \frac{Pr(B|A)Pr(A)}{Pr(B)} \tag{1}$$

If $C_1,...,C_N$ are events that partition the whole space i.e., $\sum Pr(C_n)=1,C_j \bigcap C_k=\emptyset$ and $Pr(C_n)>0$ for all n, then:

$$Pr(A|B) = \frac{Pr(B|A)Pr(A)}{\sum_{n=1}^{N} Pr(B|C_n)Pr(C_n)}$$
 (2)

Learning and Bayes' Rule

Bayesian Reasoning

The likelihood the incumbent is good if we observe low inflation:

- **①** Agent knows that there is a $\frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$ probability of reaching the top node.
- ② And a $\frac{1}{4} \times \frac{1}{5} = \frac{1}{20}$ probability of reaching the third node.
- After observing low inflation its 10 times as likely that the incumbent is good.
- lacktriangle Let p(l) be probability of good incumbent conditional on low inflation.
- **3** Because probabilities must sum to 1, $p(l)+\frac{p(l)}{10}=1$ so that $p(l)=\frac{10}{11}$
- 0 10p(l) + p(l) = 10
- p(l)(10+1)=10
- **8** $p(l) = \frac{10}{11}$

Bayes' Rule

Let $A_1...A_N$ be disjoint events (i.e., no two can occur simultaneously) such that $\sum Pr(A_n)=1$ and $Pr(A_n)>0$ for all n. Let B be some other event. Then:

$$Pr(A_j|B) = \frac{Pr(B|A_j)Pr(A_j)}{\sum_{n=1}^{N} Pr(B|A_n)Pr(A_n)}$$
(3)

Bayes Incumbent/Inflation Example

Returning to our example, let A_1 be the event that the incumbent is good and A_2 be the event that she is bad. Event B is low inflation. The Bayes formulae are:

$$Pr(A_1|B) = \frac{Pr(B|A_1)Pr(A_1)}{Pr(B|A_l)Pr(A_l) + Pr(B|A_2)Pr(A_2)}$$
(4)

$$Pr(A_2|B) = \frac{Pr(B|A_2)Pr(A_2)}{Pr(B|A_l)Pr(A_l) + Pr(B|A_2)Pr(A_2)}$$
(5)

Bayes Incumbent/Inflation Example

- $Pr(A_1) = \frac{3}{4}$
- $Pr(A_2) = \frac{1}{4}$
- $Pr(B|A_1) = \frac{2}{3}$
- $Pr(B|A_2) = \frac{1}{5}$

$$Pr(A_1|B) = \frac{\frac{2}{3} \times \frac{3}{4}}{\frac{2}{3} \times \frac{3}{4} + \frac{1}{5} \times \frac{1}{4}}$$
 (6)

and

$$Pr(A_2|B) = \frac{\frac{1}{5} \times \frac{1}{4}}{\frac{2}{3} \times \frac{3}{4} + \frac{1}{5} \times \frac{1}{4}}$$
 (7)

- so far, we have assumed that players know each others preferences
- what if players aren't perfectly informed?
- consider a modified version of the Battle of the Sexes

		Player 2				
		Prob. $\frac{1}{2}$			Prob. $\frac{1}{2}$	
		B	\bar{S}		B	\bar{S}
Player 1	B	2,1	0,0		2,0	0,2
riayer 1	S	0,0	1,2		0, 1	1,0

- there two 'states' player 2 'likes' or doesn't 'like' player 1
- there are two 'types' of player 2
- player 2 can calculate expected utilities given strategies of each types

	(B,B)	(B,S)	(S, B)	(S, S)
B	2	1	1	0
S	0	$\frac{1}{2}$	$\frac{1}{2}$	1

- Nash equilibrium
 - each type of player chooses optimal action given other types actions
 - player 1 faces uncertainty expected utility calculation
 - ▶ each type of player 2 chooses optimally given player 1's action
 - \blacktriangleright is (B,(B,S)) an equilibrium?

	(B,B)	(B,S)	(S, B)	(S, S)
B	2	1	1	0
S	0	$\frac{1}{2}$	$\frac{1}{2}$	1

- types, states & signals
 - ightharpoonup each player has two types: y, n
 - \blacktriangleright four states: yy, yn, ny, nn
 - each player receives a signal that reveals his own type
 - P1: $\tau_1(yy) = \tau_1(yn) = y_1 \& \tau_1(ny) = \tau_1(nn) = n_1$
 - ► Consider whether each of the four players strategies are optimal. Consider ((B, B), (B, S))

Can information hurt?

$$\begin{array}{c|ccccc} & \mathsf{Prob.} \ \frac{1}{2} & & \mathsf{:P1:} \\ & \mathsf{Prob.} \ \frac{1}{2} & & \mathsf{:P2:} \\ \hline L & M & R \\ \hline T & 1,2\varepsilon & 1,0 & 1,3\varepsilon \\ B & 2,2 & 0,0 & 0,3 \\ \hline \end{array}$$

$$\begin{array}{c|cccc} & \text{Prob. } \frac{1}{2} & \\ L & M & R \\ \hline 1, 2\varepsilon & 1, 3\varepsilon & 1, 0 \\ 2, 2 & 0, 3 & 0, 0 \\ \end{array}$$

Prob. $\frac{1}{2}$

- $0 < \varepsilon < \frac{1}{2}$
 - ▶ P2 chooses L: $2\varepsilon > \frac{3}{2}\varepsilon$ and $2 > \frac{3}{2}$
 - \triangleright P1's best response to L is B
- now, suppose P2 receives signal $\tau(\omega_1) \neq \tau(\omega_2)$
 - ▶ now R dominates if in state 1, M if state 2
 - ▶ T is best response to M and R

:P2:

Adverse selection (282.3)

- Firm A taking over firm T
 - A doesn't know value of T: equal probability over each dollar value $\{0,1,\ldots,100\}$
 - ▶ Value of T 50% greater under A
 - A bids y and true value of T is x
 - A's payoff is $\frac{3}{2}x y$ and T's payoff is y if offer is accepted and x if rejected
- A's action is a bid y
- T's is a threshold for accepting an offer
 - States: possible values of firm T
 - Actions: Set of possible bids (positive numbers) for A and set of possible thresholds
 - ► Signals: T gets a different signal for each state, A receives the same signal in each state
 - ▶ Beliefs: A assigns equal prob. to each state, T assigns prob. 1 to state indicated by signal

Solution Concepts

Direct application of NE \rightarrow Bayesian Nash Equilibrium

Definition

A strategy profile σ^* is a Bayesian Nash Equilibrium of a Bayesian strategic form game if

$$\sum_{\omega \in \Omega} Pr[\omega, t_{-i}|t_i] u_i(\sigma_i^*(t_i), \sigma_{-i}^*(t_{-i}), \omega)$$

$$\geq \sum_{\omega \in \Omega} Pr[\omega, t_{-i}|t_i] u_i(\sigma_i'(t_i), \sigma_{-i}^*(t_{-i}), \omega)$$

for all i, for all σ'_i

Provision of a Public Good (modified Palfrey-Rosenthal 1988)

- n players
- Actions = contribute or not, $A_i = \{0, 1\}$ for all i

$$u_i(1,a_{-i}) = \left\{ \begin{array}{ll} 1-c_i & \text{ if } \sum a_i \geq k \\ -c_i & \text{ otherwise} \end{array} \right.$$

$$u_i(0, a_{-i}) = \begin{cases} 1 & \text{if } \sum a_i \ge k \\ 0 & \text{otherwise} \end{cases}$$

• Private information: $c_i \sim U[0,1]$

Provision of a Public Good, k = 1

Consider aymmetric eq. (all c_i employ same strategy). Now:

- Asymmetric Eq: $a_i = 1, a_{-i} = 0$ is an equilibrium for any i
- Cut off point strategies: $u_i(1,a_{-i})=1-c_i, u_i(0,a_{-i})=p_i$, so best response function looks like "contribute if $c_i>1-p_i$ ". So focus on strategies \hat{c}_n such that " $c_i>\hat{c}_n$ " What if $c_i=\hat{c}_n$?
- Others contribtue with prob \hat{c}_n . Why?
- ullet Prob. that no one else contributes is $(1-\hat{c}_n)^{n-1}$
- Contribute if $E[u_i(1,.)] > E[u_i(0,.)]$
- Indifference requires $(1 \hat{c}_n)^{n-1} = \hat{c}_n$

Notes: \hat{c}_n decresing in n. Why?

Provision of a Public Good, k > 1

- Let x_i be realized number of other contributions, $x_i = \sum_{j \neq i} a_j$
- Net utility: $u_i(1, x_{-i}) u_i(0, x_{-i}) = Pr[x_{-i} = k 1] c_i$
- Ex ante: $Pr[x_{-i} = k-1] = \binom{n-1}{k-1} \hat{c}_n^{k-1} (1-\hat{c}_n)^{n-k}$. Why?
- \bullet Again, indifference implies $\binom{n-1}{k-1}\hat{c}_n^{k-1}(1-\hat{c}_n)^{n-k}=\hat{c}_n$
- Let $\Pi(\hat{c}_n) = \frac{\binom{n-1}{k-1}\hat{c}_n^{k-1}(1-\hat{c}_n)^{n-k}}{\hat{c}_n}$
- Indifference implies $\Pi(\hat{c}_n) = 1$
- ...
- (Approximately) $\hat{c}_n = \frac{k-2}{n-2}$, provided 2 < k < n

Uncertainty of Candidate Preferences (M&M pg. 164)

Two policy motivated candidates, ideal points (in 1-D) unknown. One median voter. Set up:

- $\theta_1 \in \{0, 1/2\}, \ \theta_2 \in \{1/2, 1\}$
- $u_i(x) = -(\theta_i x)^2, x = \text{implemented policy}$
- Median voter's ideal point $\sim U[0,1]$
- strategies: $s_1(\theta_1): \{0, 1/2\} \rightarrow [0, 1/2]$ (for simplicity) and vice versa
- Assume 1 uses $s_2(1/2) = a$ and $s_2(1) = b$. What about $\theta_1 = 1/2$?
- $s_1 = 1/2$ dominates any $s_1 < 1/2$. Why?
- So $s_1(1/2) = 1/2$ and $s_2(1/2) = 1/2$

- What about s_1 when $\theta_1 = 0$?
- max

$$-s_1^2 \left(\frac{s_1+1/2}{4} + \frac{s_1+b}{4}\right) - \frac{(1/2)^2}{2} \left(1 - \frac{s_1+1/2}{2}\right) - \frac{b^2}{2} \left(1 - \frac{s_1+b}{4}\right)$$
(8)

- (whew)
- Differentiate this and set equal to zero (some more math)
- $b = \frac{11}{7} \frac{\sqrt{106}}{14} \approx 0.836$
- So: $s_2(1/2) = 1/2$, $s_2(1) \approx 0.836$
- When cand. prefs. uncertain > more divergent platforms than when cand. prefs are known! Why? candidates are policy motivated > would rather lose to a moderate than to an extremist > dampens incentives for extreme candidates to moderate.

Types of Uncertainty

What can agents be uncertain of?

- Payoffs (own or others)
- Actions taken by others

Harsanyi!! -Any game of incomplete information can be transformed into a game of imperfect information (uncertainty about history of play)! Things to think about...

- Set of actions?
- Number of players?

Homework Questions from Osborne

- Exercises 276.1
- Exercise 290.1
- Exercises 307.1