Modelos Lineares Generalizados Duplos

Gustavo Almeida e Pedro Almeida

Universidade Federal de Juiz de Fora

14/12/2023

Introdução

- Modelos Gaussianos
- Modelos Lineares Generalizados
- MLG Duplo Modelagem de Locação e Escala

Especificação do Modelos

Família Exponencial

$$f(y;\theta_i,\Phi) = exp[\Phi y \theta_i - b(\theta_i) + c(y,\Phi)]$$

Preditor Linear de μ

$$\eta_i = X_i^T \beta$$

Preditor Linear de ϕ

$$\lambda_i = Z_i^T \gamma$$

Além disso, cada preditor linear possui uma função de ligação

Função de Ligação de μ

$$g(\mu_i) = \eta_i$$

Função de Ligação de ϕ

$$h(\phi) = \lambda(X_i)$$

Estimação

- Método da Máxima Verossimilhança (Smyth 1989)
- Método da Máxima Verossimilhança Restrita (Smyth and Verbyla 1999) (McCullagh and Tibshirani 1990)

Método via Máxima Verossimilhança

Como apresentado em (Paula 2013), a função escore e a matriz informação de Fisher para β podem ser obtidas calculando as derivadas da função de verossimilhança, da seguinte forma

$$\delta L(\pmb{\theta})/\delta \beta_j = \sum_{i=1}^n \{\frac{\omega_i}{V_i} (y_i - \mu_i) x_{ij} \}$$

em que $\omega_i = (d\mu_i/d\eta_i)^2$. Dessa forma, temos a função escore dada por

$$U_{\beta}(\boldsymbol{\beta}) = \frac{\delta L(\boldsymbol{\theta})}{\delta \boldsymbol{\beta}} = \phi \boldsymbol{X}^T \boldsymbol{W}^{1/2} \boldsymbol{V}^{-1/2} (\boldsymbol{y} - \boldsymbol{\mu})$$

em que \pmb{X} é uma matriz $n\times p$ de posto completo, $\pmb{W}=diag\{\omega_i,...,\omega_n\}$ é a matriz de pesos,

$$V = diag\{V_1,...,V_n\}, y = \{y_1,...,y_n\}e \mu = \{\mu_1,...,\mu_n\}.$$

$$\begin{split} \partial^2 \; \mathcal{L}(\theta)/\partial\beta_j \partial\beta_\ell &= \phi \sum_{i=1}^n \left(y_i - \mu_i\right) \frac{d^2\theta_i}{d\mu_i^2} \left(\frac{d\mu_i}{d\eta_i}\right)^2 x_{ij} x_{i\ell} \\ &+ \phi \sum_{i=1}^n \left(y_i - \mu_i\right) \frac{d\theta_i}{d\mu_i} \frac{d^2\mu_i}{d\eta_i^2} x_{ij} x_{i\ell} - \phi \sum_{i=1}^n \frac{d\theta_i}{d\mu_i} \left(\frac{d\mu_i}{d\eta_i}\right)^2 x_{ij} x_{ij} x_{i\ell} \end{split}$$

dessa forma, obtemos o valor esperado

$$\begin{split} \mathbf{E} \left\{ \partial^2 \mathbf{L}(\theta) / \partial \beta_j \partial \beta_\ell \right\} &= -\phi \sum_{i=1}^n \frac{d\theta_i}{d\mu_i} \left(\frac{d\mu_i}{d\eta_i} \right)^2 x_{ij} x_{i\ell} \\ &= -\phi \sum_{i=1}^n \frac{\left(d\mu_i / d\eta_i \right)^2}{V_i} x_{ij} x_{i\ell} \\ &= -\phi \sum_{i=1}^n \omega_i x_{ij} x_{i\ell}. \end{split}$$

Escrevendo na forma matricial, concluímos

$$\mathbf{K}_{\beta\beta}(\theta) = \mathrm{E}\left\{-\frac{\partial^2 \ \mathrm{L}(\theta)}{\partial \beta \partial \boldsymbol{\beta}^T}\right\} = \phi \mathbf{X}^T \mathbf{W} \mathbf{X}$$

Agora, deve-se realizar o mesmo procedimento na obtenção dos estimadores de máxima verossimilhança para γ , em que

$$\begin{split} \partial \mathbf{L}(\theta)/\partial \gamma_{j} &= \sum_{i=1}^{n} \left\{ \frac{d\phi_{i}}{d\lambda_{i}} \frac{\partial \lambda_{i}}{\partial \gamma_{j}} t_{i} + d'\left(\phi_{i}\right) \frac{d\phi_{i}}{d\lambda_{i}} \frac{\partial \lambda_{i}}{\partial \gamma_{j}} \right\} \\ &= \sum_{i=1}^{n} \left\{ \frac{1}{h'\left(\phi_{i}\right)} z_{ij} t_{i} + d'\left(\phi_{i}\right) \frac{1}{h'\left(\phi_{i}\right)} z_{ij} \right\} \\ &= \sum_{i=1}^{n} \frac{z_{ij}}{h'\left(\phi_{i}\right)} \left\{ t_{i} + d'\left(\phi_{i}\right) \right\} \end{split}$$

em que $h'(\phi_i) = d\lambda_i/d\phi_i$. Portanto, em forma matricial obtemos

$$\mathbf{U}_{\gamma} = \mathbf{Z}^T \mathbf{H}_{\gamma}^{-1} \left(\mathbf{t} - \boldsymbol{\mu}_T \right),$$

em que
$$\mathbf{H}_{\gamma}=\operatorname{diag}\left\{h'\left(\phi_{1}\right),\ldots,h'\left(\phi_{n}\right)\right\}, \mathbf{t}=\left(t_{1},\ldots,t_{n}\right)^{T}$$
 e $\mu_{T}=\left(\operatorname{E}\left(T_{1}\right)\right)$ = $\left(-d'\left(\phi_{1}\right),\ldots,-d'\left(\phi_{n}\right)\right)^{T}$.

Na obtenção da matriz informação de Fisher para γ , vamos calcular as derivadas segundas da função log verossmilhança

$$\begin{split} \partial^{2} \; \mathcal{L}(\theta) / \partial \gamma_{j} \partial \gamma_{\ell} &= -\sum_{i=1}^{n} \frac{z_{ij}}{\left\{h'\left(\phi_{i}\right)\right\}^{2}} \left[d''\left(\phi_{i}\right) h\left(\phi_{i}\right) \frac{d\phi_{i}}{d\lambda_{i}} z_{i\ell} - h''\left(\phi_{i}\right) \left\{t_{i} + e^{i\theta_{i}}\right\} \right] \\ &= -\sum_{i=1'}^{n} \frac{z_{ij} z_{i\ell}}{\left\{h'\left(\phi_{i}\right)\right\}^{2}} \left[d''\left(\phi_{i}\right) - \frac{h''\left(\phi_{i}\right)}{h'\left(\phi_{i}\right)} \left\{t_{i} + d'\left(\phi_{i}\right)\right\}\right] \end{split}$$

e cujos valores esperados ficam dados por

$$\mathrm{E}\left\{-\frac{\partial^{2} \mathrm{L}(\theta)}{\partial \gamma_{j} \partial \gamma_{\ell}}\right\} = -\sum_{i=1}^{n} \frac{d^{\prime\prime}\left(\phi_{i}\right)}{\left\{h^{\prime}\left(\phi_{i}\right)\right\}^{2}} z_{ij} z_{i\ell}.$$

Em forma matricial obtemos

$$\mathbf{K}_{\gamma\gamma} = \mathbf{Z}^T \mathbf{P} \mathbf{Z}$$

em que
$$\mathbf{P} = \mathbf{V}_{\gamma} \mathbf{H}_{\gamma}^{-2}, \mathbf{V}_{\gamma} = \operatorname{diag} \{ -d^{\prime\prime} \left(\phi_{1} \right), \dots, -d^{\prime\prime} \left(\phi_{n} \right) \}.$$

Devido à ortogonalidade entre os parâmetros θ_i e ϕ_i , segue diretamente a ortogonalidade entre β e γ . Assim, a matriz de informação de Fisher para θ é dado por $\mathbf{K}_{\theta\theta} = \mathrm{diag}\left\{\mathbf{K}_{\beta\beta}, \mathbf{K}_{\gamma\gamma}\right\}$.

Assim como na teoria dos modelos lineares generalizados, podemos estabeler um método iterativo para encontrar $\hat{\beta}$ e $\hat{\gamma}$. De acordo com [?], é possível atualizar essas estimativas a partir das expressões

$$\beta^{(m+1)} = \left(\mathbf{X}^T \Phi^{(m)} \mathbf{W}^{(m)} \mathbf{X}\right)^{-1} \mathbf{X}^T \Phi^{(m)} \mathbf{W}^{(m)} \mathbf{y}^{*(m)} e$$
$$\gamma^{(m+1)} = \left(\mathbf{Z}^T \mathbf{P}^{(m)} \mathbf{Z}\right)^{-1} \mathbf{Z}^T \mathbf{P}^{(m)} \mathbf{z}^{*(m)}$$

em que $\mathbf{y}^* = \mathbf{X}\beta + \mathbf{W}^{-1/2}\mathbf{V}^{-1/2}(\mathbf{y} - \mu), \mathbf{z}^* = \mathbf{Z}\gamma + \mathbf{V}_{\gamma}^{-1}\mathbf{H}_{\gamma}\left(\mathbf{t} - \mu_T\right)$ e m=0,1,2,....

Conforme [?] esse processo iterativo pode ser resolvido alternando-se as duas equações até a convergência. No chute inicial para ϕ_i pode-se considerar $\phi_i=\hat{\phi}, \forall \ i=1,...,n$, onde $\hat{\phi}$ é a estimativa de ϕ obtida de um MLG.

Sob as condições de regularidade, temos que para n grande $\hat{\beta} \sim \mathrm{N}_p\left(\beta,\mathbf{K}_{\beta\beta}^{-1}\right)$ e $\hat{\gamma} \sim \mathrm{N}_q\left(\gamma,\mathbf{K}_{\gamma\gamma}^{-1}\right)$, respectivamente. Além disso, devido à ortogonalidade entre β e γ segue a independência assintótica entre $\hat{\beta}$ e $\hat{\gamma}$.

Método via Máxima Verossimilhança Restrita

- É um método menos custoso
- Atualmente é utilizado nos pacotes DGLM e GAMLSS do R
- Utilizada uma abordagem

O estimador de MQO de γ é

$$Z^TW_dZ\gamma=Z^TW_d\mathbf{z}_d$$

Onde

$$\pmb{W}_d = diag(\frac{1}{h(\phi_i)^2 V_d(\phi_i)})$$

Via expansão de Taylor $var(\hat{\gamma})$ é dada por (Smyth and Verbyla 1999) (McCullagh and Tibshirani 1990)

$$var(\hat{\gamma})\approx I_{\gamma\gamma}^{-1}$$

Com

$$I_{\gamma\gamma} = \frac{1}{2} \boldsymbol{Z}^T W_d^* Z$$

Ε

$$W_d^* = W_d - 2diag(\frac{h_i}{\phi^2 h(\phi_i)_i^2}) + H^2$$

- É um método direto de conversão da estimação via máxima verossimilhança de γ para uma aproximação via máxima verossimilhança restrita.
- Além disso, o método nos dá que $\hat{\gamma}$ seja aproximadamente não viciado, e com que o submodelo de dispersão nos dê os erros padrão ajustados.

- Dado a complexidade de etimação de H^2 , (Smyth and Verbyla 1999) recomenda uma aproximação via $diag(h_i^2)$
- Assim, a nova matriz de pesos é dada por

$$W_d^* \approx W_d - 2 diag(\frac{h_i}{\phi_i^2 h(\phi_i)^2} + h_i^2)$$

Resíduos

Os desvios para a média são dados por

$$\mathbf{D}_{1}^{*}(\mathbf{y}; \hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\phi}}) = \sum_{i=1}^{n} d_{1}^{*2}\left(y_{i}; \hat{\boldsymbol{\mu}}_{i}, \phi_{i}\right)$$

em que

$$d_{1}^{*2}\left(y_{i};\widehat{\mu}_{i},\phi_{i}\right)=2\phi_{i}\left[y_{i}\left(\widetilde{\theta}_{i}-\widehat{\theta}_{i}\right)+\left\{b\left(\widehat{\theta}_{i}\right)-b\left(\widetilde{\theta}_{i}\right)\right\}\right]$$

Para ϕ_i grande $\forall i$ o desvio $\mathrm{D}_1^*(\mathbf{y};\hat{\mu},\phi)$ pode ser comparado com os percentis da distribuição X^2 com (n-p) graus de liberdade.

O resíduo Studentizado, no caso dos MLGs duplos será dado por

$$t_{D_{1i}} = \frac{d_1^*\left(y_i; \hat{\mu}_i, \hat{\phi}_i\right)}{\sqrt{1 - \hat{h}_{ii}}}, \label{eq:tD1i}$$

Em que $d_1^*\left(y_i;\hat{\mu}_i,\hat{\phi}_i\right)=\pm\sqrt{d_1^{*2}\left(y_i;\hat{\mu}_i,\hat{\phi}_i\right)}$, o sinal continua sendo o mesmo de $(y_i-\hat{\mu}_i)$ e \hat{h}_{ii} é o i-ésimo elemento da diagonal principal da matriz.

Os desvios para a precisão são dados por

$$\mathbf{D}_2^*(\mathbf{y}; \hat{\boldsymbol{\phi}}, \boldsymbol{\mu}) = \sum_{i=1}^n d_2^{*2} \left(y_i; \hat{\boldsymbol{\phi}}_i, \boldsymbol{\mu}_i \right)$$

Em que

$$d_{2}^{*2}\left(y_{i};\hat{\phi}_{i},\mu_{i}\right)=2\left[t_{i}\left(\tilde{\phi}_{i}-\hat{\phi}\right)+\left\{ d\left(\tilde{\phi}_{i}\right)-d\left(\hat{\phi}_{i}\right)\right\} \right],\tilde{\phi}_{i}$$

é solução para ϕ_i sob o modelo saturado sendo dada por $d'\left(\tilde{\phi}_i\right) = -t_i.$

Para ϕ_i grande $\forall i$ o desvio $\mathrm{D}_2^*(\mathbf{y};\mu,\hat{\phi})$ pode ser comparado com os percentis da distribuição X^2 com (n-p) graus de liberdade.

O resíduo componente do desvio para a precisão fica dado por

$$t_{D_{2i}} = \frac{d_2^* \left(y_i; \hat{\phi}_i, \hat{\mu}_i\right)}{\sqrt{1 - \hat{r}_{ii}}}, \label{eq:D2i}$$

Em que $d_2^*\left(y_i;\hat{\phi}_i,\hat{\mu}_i\right)=\pm\sqrt{d_2^{*2}\left(y_i;\hat{\phi}_i,\hat{\mu}_i\right)}$, o sinal sendo o mesmo de $\left\{\hat{t}_i+\ d'\left(\hat{\phi}_i\right)\right\}$ e \hat{r}_{ii} é o i-ésimo elemento da diagonal principal da matriz

$$\hat{\mathbf{R}} = \hat{\mathbf{P}}^{1/2} \mathbf{Z} \left(\mathbf{Z}^T \hat{\mathbf{P}} \mathbf{Z} \right)^{-1} \mathbf{Z}^T \hat{\mathbf{P}}^{1/2},$$

A fim de analisar os resíduos, (Paula 2013) sugere o gráfico normal de probabildades e contra os valores ajustados para t_{D_1} e t_{D_2} .

Influência

Em um MLG duplo, calcula-se LD_i , como nos modelos MLG, porém $\mathrm{com}\, \hat{\phi}_i$ no lugar de $\hat{\phi}$, ou seja, esta será definida por

$$\mathrm{LD}_i^\beta = \left\{\frac{\hat{h}_{ii}}{1 - \hat{h}_{ii}}\right\} t_{S_i}^2,$$

Em que

$$t_{S_{i}} = \frac{\sqrt{\hat{\phi}_{i}}\left(y_{i} - \hat{\mu}_{i}\right)}{\sqrt{\hat{V}_{i}\left(1 - \hat{h}_{ii}\right)}}$$

Uma medida para avaliar a influência nas estimativas dos parâmetros da precisão fica dada por

$$\begin{split} \mathrm{LD}_{i}^{\gamma} &= \left(\hat{\gamma}_{(i)} - \hat{\gamma}\right)^{T} \left(\mathbf{Z}^{T} \hat{\mathbf{P}} \mathbf{Z}\right) \left(\hat{\gamma}_{(i)} - \hat{\gamma}\right) \\ &= \left\{\frac{\hat{r}_{ii}}{1 - \hat{r}_{ii}}\right\} t_{Ti}^{2}, \end{split}$$

Em que

$$t_{T_{i}} = \frac{t_{i} + d'\left(\hat{\phi}_{i}\right)}{\sqrt{-d''\left(\hat{\phi}_{i}\right)\left(1 - \hat{r}_{ii}\right)}}.$$

A fim de analisar possíveis pontos de influência, (Paula 2013) sugere o gráfico normal de probabildades e contra os valores ajustados para LD_i^β e LD_i^γ .

Teste de Hipótese

Os testes de hipóteses para um MLG Duplo são apenas uma extensão dos testes de hipóteses para um MLG padrão, considerando ϕ_i não constante o teste da razão de verossimilhanças para $\pmb{\beta}$ dado por

$$\xi_{RV} = 2 \left\{ L(\hat{\beta}, \hat{\gamma}) - L(\beta^0, \hat{\gamma}) \right\}.$$

Da mesma forma, o teste em relação a γ é dado por

$$\xi_{RV}^{\gamma} = 2 \left\{ \ \mathrm{L}(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\gamma}}) - \mathrm{L}\left(\hat{\boldsymbol{\beta}}, \boldsymbol{\gamma}^{0}\right) \right\}.$$

O teste de Wald para β é definido, nesse caso, por

$$\xi_W = \left[\hat{\beta} - \beta^0\right]^T \hat{\text{Var}}^{-1}(\hat{\beta}) \left[\hat{\beta} - \beta^0\right],$$

da mesma forma para γ

$$\boldsymbol{\xi_W^{\boldsymbol{\gamma}}} = \left[\hat{\gamma} - \gamma^0 \right]^T \hat{\text{Var}}^{-1}(\hat{\gamma}) \left[\hat{\gamma} - \gamma^0 \right],$$

Estudo de Simulação

- Foram utilizados 2 exemplos, distribuições Normal e Gama
- Os tamanhos amostrais: 30, 100, 500 e 1000 foram simulados 1000 vezes cada
- ullet Os seguintes eta e γ foram fixadas para ambas as distribuições

$$\beta^T = (5, 0, 2, 3)$$

$$\gamma^T = (2,3,0,0)$$

O estudo de simulação se baseou no seguinte algoritmo:

- 2 Cálculo dos componentes lineares $\eta = X^T\beta$ e $\lambda = X^T\gamma$
- ① Geração de valores de um distribuição Normal ($\mu_i=\eta_i$, $\sigma_i^2=\frac{1}{e^{\lambda_i}}$) e Gama ($\alpha_i=e^{\lambda_i}$, $\theta_i=\frac{e_i^{\lambda_i}}{e^{\eta}}$)
- lacktriangle Estimação de eta e γ via máxima verossimilhança
- **⑤** Construção de gráficos e cálculo de valores de acurácia de $\hat{\beta}$ e $\hat{\gamma}$

Modelo Normal

EQM do Modelo Normal

Parâmetro	n = 30	n = 100	n = 500	n = 1000
$\hat{eta_1}$	0.02	0.00	0.00	0.00
$\hat{\beta_2}$	0.02	0.00	0.00	0.00
<u>^</u>	0.01	0.00	0.00	0.00
$egin{array}{c} eta_3 \ \hat{eta_4} \ \hat{\gamma_1} \end{array}$	0.02	0.00	0.00	0.00
$\widehat{\gamma_1}$	2.02	0.27	0.04	0.02
$\hat{\gamma_2}$	2.68	0.32	0.05	0.03
$egin{array}{c} \hat{\gamma_2} \ \hat{\gamma_3} \end{array}$	2.71	0.35	0.05	0.03
$\hat{\gamma_4}$	2.74	0.33	0.05	0.03

Considerações

- ullet EQM de \hat{eta} se aproxima de 0 já para tamanhos amostrais baixos
- \bullet EQM de $\hat{\gamma}$ se aproxima de 0 para um n a partir de 500, evidenciando sua complexidade

Modelo Gama

EQM do Modelo Gama

Parâmetro	n = 30	n = 100	n = 500	n = 1000
$-\frac{\hat{\beta_1}}{\hat{\beta_1}}$	0.02	0.00	0.00	0.00
$\hat{eta}_2^{ ext{ iny 2}}$	0.02	0.00	0.00	0.00
^	0.01	0.00	0.00	0.00
$egin{array}{c} eta_3 \ \hat{eta_4} \ \hat{\gamma_1} \end{array}$	0.02	0.00	0.00	0.00
$\widehat{\gamma_1}$	1.85	0.25	0.04	0.02
$\widehat{\gamma_2}$	2.36	0.32	0.05	0.02
$egin{array}{c} \widehat{\gamma_2} \ \widehat{\gamma_3} \end{array}$	2.49	0.29	0.05	0.03
$\widehat{\gamma_4}$	2.47	0.29	0.05	0.02

Considerações

- Comportamento do modelo Gama foi extremamente semelhante ao modelo Normal, evidenciando a robustez do método
- ullet EQM de \hat{eta} se aproxima de 0 já para tamanhos amostrais baixos
- \bullet EQM de $\hat{\gamma}$ se aproxima de 0 para um n a partir de 500, evidenciando sua complexidade

Aplicação

- Dados sobre performance de CPUs(Unidade Central de Processamento) (Ein-Dor and Feldmesser 1987). Variável resposta PRP (performance relativa publicada)
- CACHE(tamanho de memoria cache), CHMIN(número mínimo de canais), CHMAX(número máximo de canais), MCYT(tempo de ciclo da máquina), MMIN(mínimo de memória principal), MMAX(máximo de memória principal).
- 4 modelos testados: Normal, Normal Duplo, Gama Duplo, Normal Inversa Duplo
- Utilização do pacote GAMLSS
- ullet Seleção de variáveis para μ e ϕ via forward stepwise

Histograma da variável resposta

Comportamento em relação as variáveis explicativas

Modelo Normal

Modelo Normal Duplo

Desempenho dos Modelos Gama e Normal Inversa

Distribuição	Ligação μ	Ligação $\frac{1}{\sqrt{\phi}}$	BIC
Gama	Log	Log	1961.18
Gama	Identidade	Log	-
Gama	Inversa	Log	-
Gama	Log	Identidade	-
Gama	Log	Inversa	1958.77
Gama	Identidade	Identitdade	-
Gama	Identidade	Inversa	-
Gama	Inversa	Identitdade	-
Gama	Inversa	Inversa	-
Normal Inversa	Log	Log	1966.42
Normal Inversa	Identidade	Log	1968.7
Normal Inversa	Inversa	Log	-
Normal Inversa	Log	Identidade	-
Normal Inversa	Log	Inversa	1929.6
Normal Inversa	Identidade	Identitdade	-

O melhor modelo, Normal Inversa, teve o seguinte resultado

Com o seguinte envelope simulado

Coeficientes para $log(\mu)$

Parâmetro	Estimativa	p-valor
Intercepto	3.543	2e-16 ***
MYCT	-8.888e-04	1.43e-11 **
MMIN	6.651e-05	1.54e-07 ***
MMAX	3.436e-05	2e-16 ***
CACH	8.997e-03	2.38e-12 ***

Coeficientes para $\frac{1}{\sigma}(\sqrt{\phi})$

Parâmetro	Estimativa	p-valor
Intercepto	5.384880219	1.46e-07 ***
MMAX	0.001175228	9.35e-13 **
CHMAX	0.201854466	0.00549 ***

Conclusão

- Ao longo do trabalho, os Modelos Lineares Generalizados Duplos foram profundamente estudados
- Os MLGs duplos foram aplicados em dados simulados, onde vimos o comportamento desses em diferentes tamanhos amostrais
- Os MLGs duplos foram aplicados em dados reais, onde foi possível observar um grande ganho de desempenho em relação aos modelos Gaussianos
- Portanto, os Modelos Lineares Generalizados duplos representam uma ferramenta estatística robusta para modelagem, particularmente quando os conjuntos de dados trabalhados são complexos, heterogêneos e multidimensionais.

Referências

- Ein-Dor, Phillip, and Jacob Feldmesser. 1987. "Attributes of the Performance of Central Processing Units: A Relative Performance Prediction Model." *Communications of the ACM* 30 (4): 308–17.
- McCullagh, Peter, and Robert Tibshirani. 1990. "A Simple Method for the Adjustment of Profile Likelihoods." *Journal of the Royal Statistical Society: Series B (Methodological)* 52 (2): 325–44.
- Paula, Gilberto A. 2013. "Modelos de Regressão Com Apoio Computacional. 2013." *Citado Na pág* 1 (9): 10.
- Smyth, Gordon K. 1989. "Generalized Linear Models with Varying Dispersion." *Journal of the Royal Statistical Society: Series B* (Methodological) 51 (1): 47–60.
- Smyth, Gordon K, and Arūnas P Verbyla. 1999. "Adjusted Likelihood Methods for Modelling Dispersion in Generalized Linear Models." Environmetrics: The Official Journal of the International Environmetrics Society 10 (6): 695–709.