Relaciones

Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Relaciones

- Definición Dados los conjuntos A y B, R ⊂ A × B es una relacion binaria entre elementos de A y B.
- Si A = B, entonces R es una relación en A
- La relación R es total ssi $\forall x \in A \ \exists y \in B. \ \langle x, y \rangle \in R$
- $R^{-1} := \{ \langle y, x \rangle | \langle x, y \rangle \in R \}$ es el *inverso* de R
- Dadas las relaciones $R \subset A \times B$ y $S \subset B \times C$, $A \circ B := \{\langle a, c \rangle \in A \times C \mid \exists b \in B. \ \langle a, b \rangle \in R \land \langle b, c \rangle \in S\}$ se conoce como la *composición* entre A y S
- Las relaciones ternarias, cuaternarias, ect. se pueden representar con:
 - Considerar $A \times B \times C$ como $A \times (B \times C)$
 - Considerar $\langle a, b, c \rangle$ como $\langle a, \langle b, c \rangle \rangle$
 - Utilizaremos $\langle a,b,c \rangle$ y $\langle a,\langle b,c \rangle \rangle$ para representar el mismo objeto.

Ejemplos

- Mayor que (>)
- Menor que (<)
- Subconjunto de (⊂)
- Igual que (≡)
- madre_de
- $\bullet \ padre_de \\$

Propiedades de Relaciones Binarias

- Una relación $R \subset A \times A$ es llamada:
 - reflexiva sii $\forall a \in A$. $\langle a, a \rangle \in R$
 - irreflexiva sii $\forall a \in A$. $\langle a, a \rangle \notin R$
 - symetrica sii $\forall a, b \in A$. $\langle a, b \rangle \in R \Rightarrow \langle b, a \rangle \in R$
 - asimetrica sii $\forall a, b \in A$. $\langle a, b \rangle \in R \Rightarrow \langle b, a \rangle \notin R$
 - anti-simetrica sii $\forall a, b \in A$. $(\langle a, b \rangle \in R \land \langle b, a \rangle \in R) \Rightarrow a = b$
 - transitiva sii $\forall a, b, c \in A$. $(\langle a, b \rangle \in R \land \langle b, c \rangle \in R) \Rightarrow \langle a, c \rangle \in R$
 - relacion de equivalencia sii R es reflexiva, simetrica y transitiva
- La relación de igualdad (≡) es una relación de equivalencia en cualquier conjunto.
- En un conjunto de personas, la relacion madre_de no es simetrica ni reflexiva

Ordenes Parciales

- Un orden parcial es una relación reflexiva, antisimetrica y transitiva.
- Un orden parcial estricto es un orden parcial irreflexivo y transitivo
- Se dice que un *orden parcial* es **lineal** si todos los elementos se pueden *comparar*. i.e. si $\langle x,y\rangle\in R$ o $\langle y,x\rangle\in R$ para todo $x,y\in A$
- ullet La relación *menor o igual que* (\leq) es un *orden lineal* para todo $\mathbb N$
- La relación succesor es un orden parcial no lineal.

Funciones (como relaciones especiales)

- Una relación $f \subset X \times Y$ es una función parcial si para todo $x \in X$ hay a lo sumo un $y \in Y$ tal que $\langle x, y \rangle \in f$
- Se utiliza $f: X \to Y$ en vez de $f \subset X \times Y$
- A X se le conoce el **dominio** de f
- A Y se le conoce como el **contradominio** de f
- Se escribe f(x) = y en lugar de $\langle x, y \rangle \in f$
- Una función f esta **indefinida** en x sii $\langle x, y \rangle \notin f$ para todo $y \in Y$. Se indica con $f(x) = \bot$
- Si $\forall x \in X \exists^1 y \in Y$. $\langle x, y \rangle \in f$, a f se le conoce como una **funcion** total.
- Se conoce como **función identidad** en A a la función $id_A := \{\langle a, a \rangle \mid a \in A\}$

Notación lambda

- La **notación**- λ nos permite expresar funciones de forma más compacta.
- Para $f = \{\langle x, E \rangle | x \in X\}$ donde E es una expresión arbitraria, se puede escribir $\lambda x \in X$. E
- Ejemplos:
 - $\lambda n \in \mathbb{N}$. $n = \{\langle n, n \rangle \mid n \in \mathbb{N}\} = id_{\mathbb{N}}$
 - $\lambda x \in \mathbb{N}$. $x^2 = \{\langle x, x^2 \rangle \mid x \in \mathbb{N}\}$
 - $\lambda \langle x, y \rangle \in \mathbb{N} \times \mathbb{N}$. $x + y = \{ \langle \langle x, y \rangle, x + y \rangle \mid x \in \mathbb{N} \land y \in \mathbb{N} \}$

Propiedades de funciones e inversos

- Dada una función $f: S \to T$, la función es:
 - injectiva sii $\forall x, y \in S$. $f(x) = f(y) \Rightarrow x = y$
 - surjectiva sii $\forall y \in T \ \exists x \in S. \ f(x) = y$
 - bijectiva sii f es injectiva y surjectiva
- Si f es injectiva, la función contraria f^{-1} es una función parcial.
- Si f es surjectiva, la función contraria f^{-1} es una función total.
- Si f es *bijectiva*, la función contraria f^{-1} se le conoce como la **función inversa**.
- La función $v: \mathbb{N}_1 \to \mathbb{N}$ donde v(o) = 0 y v(s(n)) = v(n) + 1 es una bijección entre los numeros naturales unarios y los numeros naturales ordinarios.
- Nota: Los conjuntos que se pueden relacionar con una bijección se consideran equivalentes y a menudo son intercambiados. Se intercambiaran los \mathbb{N}_1 y \mathbb{N}

Cardinalidad de Conjuntos

- Se dice que un conjunto A es **finito** y tiene cardinalidad $\#(A) \in \mathbb{N}$ sii hay una función bijectiva $f: A \to \{n \in \mathbb{N} \mid n < \#(A)\}$
- Se dice que un conjunto A es **finitamente contable** sii hay una bijección $f:A\to\mathbb{N}$

Operaciones de Funciones

- Si $f \in A \to B$ y $g \in B \to C$ son funciones, llamamos a la función $g \circ f : A \to C$; $(g \circ f)(x) := g(f(x))$ la **composición** de g y f.
- Si $f \in A \to B$ y $C \subseteq A$, llamamos a la función $f|_C := \{\langle c, a \rangle \mid \langle c, b \rangle \in f\}$ donde $c \in C$ la **restricción** de f a C