NOIP 2023 模拟赛 题解

2023年10月8日

目录

1	divisor	1
2	bet	2
3	biscuit	3
4	game	4

A 最大公因数(divisor)

容易知道我们选一个质数作为所有保留下来的数的因子就行,开个桶统计每个质数的答案即可,复杂度 $O(\sum \sqrt{a_i} + \omega(a_i))$ 。

B 博弈(bet)

首先 a_i 的 sg 值就是 $a_i \mod (x+1)$ 。

考虑我们所求 $ans_j = [\bigoplus_{i=1}^n (a_i \bmod (j+1)) > 0]$ 。 考虑怎么求 $\bigoplus_{i=1}^n (a_i \bmod (j+1))$ 。 考虑分别求每一位,求 2^k 次方时,就相当于询问有哪些 $(a_i \bmod (j+1)) \bmod 2^{k+1} \geq 2^k$,我们统计 c_i 为 i 的出现次数,那么枚举 $\lfloor \frac{a_i}{j+1} \rfloor$,相当于一段 c_i 的区间和,共有 $\frac{n}{j+1}$ 段,前缀预处理即可。

复杂度 $O(n \log^2 n)$ 。

C 饼干 (biscuit)

考虑如果仍然需要补魔,那么先施法再补魔一定比先补魔再施法更劣。

那么我们每次一定是,先施法然后补满,直到某次我们施法完之后,把魔补到剩下消耗的总和,然后依次施完。

那么这个过程就相当于我们每个魔咒变成 a_i 个物品,第 j 个物品权值是 j,然后我们有 m 次机会把某个魔咒里权值最小的那个物品删去,我们称这个为操作一。

我们要求最后权值和最小。

然后吃饼干就是有k次机会把某个魔咒里权值最大的那个物品删去,我们称这个为操作二。

仔细分析一下,我们就是每次对最大的 a_i ,使用 a_i 次操作一(不足就全用了)。等所有操作一用完后,贪心地使用操作二即可。

复杂度 $O(n \log n + m)$ 或 $O(n \log n)$ 。

D 游戏 (game)

考虑如果最高位有偶数个 1,删掉这一位不会影响答案,所以现在问题变成了在长度为 n 的 01 序列上玩。

当 $2 \mid n$,把序列黑白染色后,显然先手可以选择白色或黑色全部取走,所以此时先手必胜。

当 $2 \nmid n$,如果先手拿了 0,那按上面的分析后手必胜,所以先手必须去取走一个 1。同理,接下来每次后手操作后,先手取的数必须和他一样。此时双方会平分所有的 1,所以赢的必要条件是 1 的个数为 4k + 1。

那么先手能模仿后手取数的充分条件就是第一步后,序列可以被划分为 ABA',其中 A' 是序列 A 的 'reverse',B 满足 $b_1 = b_2, b_3 = b_4, \ldots, b_{m-1} = b_m$ 。

考虑对于长度为 n < k 的序列我们都能证明这是必要条件,那么尝试归纳 n = k 的情况。假设第一步后序列为 $a_{1,\dots,n}$ 。

 $-a_1 \neq a_2$,当 $a_n \neq a_1$,那么后手拿 a_1 之后先手必败,满足结论。当 $a_n = a_1$,后手 a_1 后先手只能拿 a_n ,递归到 n-2 的问题。

 $-a_1 = a_2$,假如 $a_{3,...,n}$ 不满足条件,若 $a_n \neq a_1$ 则根据假设先手必败, $a_{1,...,n}$ 显然不满足条件,满足结论;若 $a_n = a_1$,后手拿 a_1 后,如果先手拿 a_2 ,则根据假设先手必败,否则递归到 n-2 的问题。假如 $a_{3,...,n}$ 满足条件,若 $a_n \neq a_1$,那么后手拿 a_n ,先手必须拿 a_{n-1} ,假如 $a_{1,...,n-2}$ 不满足条件,那么根据假设先手必败,否则可以知道先手必胜,此时 $a_{1,...,n-2}$ 和满足条件所以 $a_{1,...,n}$ 满足条件;若 $a_n = a_1$,假如 $a_{1,...,n-2}$ 满足条件,则知道 $a_{1,...,n}$ 满足条件且 $a_n = a_{n-1}$,先手必胜满足结论,否则 $a_{1,...,n-2}$ 不满足条件,后手拿完 a_n 后先手只能拿 a_1 ,递归到 n-2 的问题。

所以这是充要条件,判一判即可,复杂度 $O(\sum n)$ 。