Lecture 4: The Tychonoff Theorem

Tianpei Xie

Nov. 30th., 2022

Contents

1	The Tychonoff Theorem	2
2	The Stone-Ĉech Compactification	2

1 The Tychonoff Theorem

• Lemma 1.1 (Existance of Maximal Collection with Finite Intersection Property)
[Munkres, 2000]

Let X be a set; let $\mathscr A$ be a collection of subsets of X having the **finite intersection property**. Then there is a collection $\mathscr D$ of subsets of X such that $\mathscr D$ **contains** $\mathscr A$, and $\mathscr D$ has the finite intersection property, and no collection of subsets of X that properly contains $\mathscr D$ has this property.

[Hint: apply Zorn's Lemma to the collection of collections of subsets with finite intersection property]

- **Definition** We often say that a collection \mathscr{D} satisfying the conclusion of this theorem is maximal with respect to the finite intersection property.
- Lemma 1.2 (Elements of Maximal Collection with Finite Intersection Property)
 [Munkres, 2000]

Let X be a set; let \mathscr{D} be a collection of subsets of X that is **maximal** with respect to **the** finite intersection property. Then:

- 1. Any finite intersection of elements of \mathcal{D} is an element of \mathcal{D} .
- 2. If A is a subset of X that intersects every element of \mathcal{D} , then A is an element of \mathcal{D} .
- Theorem 1.3 (Tychonoff Theorem). [Munkres, 2000]
 An arbitrary product of compact spaces is compact in the product topology.

2 The Stone-Ĉech Compactification

References

James R Munkres. Topology, 2nd. Prentice Hall, 2000.