Computer Circuit Fundamentals (Lab 7)

K-Maps

Leonardo Fusser, 1946995

Experiment Performed on 1 November 2019
Report Submitted on 8 November 2019

TABLE OF CONTENTS

Objectives	3
·	
Design	3
Schematics	3
Ouestions	4

OBJECTIVES

- Practice simplifying Boolean expressions.
- Practice using K-maps.
- Practice designing Logic circuits effectively.
- > Practice simplifying Boolean expressions using K-maps.

DESIGN

Experiment

This experiment consisted of simplifying a Boolean expression derived from a truth table using the K-map method. The simplified expression: **AB'+CD'**, was then implemented into two separate Logic circuits. The first Logic circuit, using the Boolean expression simplified before, was implemented <u>using only NAND</u> gates (7400 ICs). The second Logic circuit, using the same expression as before, was implemented <u>using only NOR gates</u> (7402 ICs).

SCHEMATICS

F = AB' + CD' (Logic Diagram using NANDs)

F = AB' + CD' (Logic Diagram using NORs)

QUESTIONS

Questions from the Experiment

INPUTS				OUTPUT
A	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

1) Simplification of the above truth table using K-maps:

00	01	11	10
0	0	0	1
0	0	0	1
0	0	0	1
1	1	1	1

2) Logical circuits

- * The drawn logic diagram could be found above, under "Schematics".
- * The logic diagram was shown to the instructor.

3) Verification

- * The Logic circuit was tested during the lab session.
- * The Logic circuit was verified using the truth table above.