- 1. Regularizacija je korisna za slučaj (selektujte sve tačne opcije):
 - (a) Overfitting; (b) kada imamo obeležja u korelaciji; (c) prokletstva dimenzionalnosti (d) underfitting.
- 2. Napišite funkciju greške modela linearne regresije kada se primenjuje (a) Ridge (b) LASSO regularizacija.
- 3. Zamislite da ste trenirali kompleksan model linearne regresije na skupu podataka. Sada, koristite *Ridge* regresiju sa *penalty* λ . Odaberite opciju koja najbolje opisuje sistematsko odstupanje (*bias*):
 - (a) U slučaju velikog λ , bias je mali; (b) U slučaju velikog λ , bias je veliki; (c) Ne možemo reći ništa o bias-u;
 - (d) Nijedan od ponuđenih odgovora.
- 4. Šta se dešava kada primenite veliki penalty λ kod Ridge (L2) regularizacije? A šta kod LASSO (L1) regularizacije?
 - (a) Neki koeficijenti će dobiti vrednost 0; (b) Neki koeficijenti će se približiti vrednosti 0, ali neće biti baš 0;
 - (c) I a i b, u zavisnosti od situacije; (d) Nijedan od ponuđenih odgovora.
- 5. Za *Ridge* regresiju, šta znači da je $\lambda = 0$?
 - a. Veliki koeficijenti θ nisu penalizovani
 - b. Nije uračunat problem overfitting-a
 - c. Funkcija gubitka je identična funkciji ordinary least square (OLS) loss.
 - d. Sve iznad.
- 6. Tačno ili netačno:
 - a. *Ridge* i *LASSO* su tehnike koje redukuju kompleksnost modela i sprečavaju *overfitting* koji može rezultovati iz primene jednostavne linearne regresije.
 - b. Ridge regularizacija se može koristiti za selekciju važnih obeležja skupa podataka kod linearne regresije.
 - c. Ridge regularizacija smanjuje kompleksnost modela ali ne smanjuje broj obeležja.
 - d. Ako postoje dva ili više obeležja koje su u korelaciji, LASSO odabira jedno od njih na slučajan način. Ovo nije dobro za interpretaciju modela.
 - e. Ako je broj obeležja *D* veći od broja primera *N*, LASSO će odabrati najviše *N* ne-nula obeležja, čak i u slučaju da su sva obeležja relevantna.
 - f. Ako uvećamo količinu podataka N, očekujemo da će nam trebati manje λ .
 - g. *Ridge* regresija smanjuje koeficijente modela i pomaže da redukujemo kompleksnost modela i rešimo problem multikolinearnosti.
 - h. Možemo koristiti *Gradient Descent* algoritam da treniramo LASSO.
 - i. Ne postoji closed form solution za LASSO.
 - j. *Ridge* regresija je korisna u slučaju kada imamo mnogo obeležja gde svako od njih doprinosi (u manjoj meri) predikciji ciljne funkcije
- 7. Primenjujete regularizaciju. Koje od opcija su tačne ako uvećavate regularizacioni parametar λ ?
 - a. Uvećanje λ nikada neće smanjiti trening grešku.
 - b. Uvećanje λ nikada neće uvećati trening grešku.
 - c. Uvećanje λ nikada neće smanjiti test grešku.
 - d. Uvećanje λ nikada neće uvećati test grešku.
 - e. Uvećanje λ može uvećati ili smanjiti trening grešku.
 - f. Uvećanje λ može uvećati ili smanjiti test grešku.

- 8. Da li je potrebno na neki način pripremiti podatke pre regularizacije? Obrazložite odgovor.
- 9. Kako biramo optimalnu vrednost λ ?
- 10. Na grafiku ispod nacrtajte kako se ponaša greška merena na (a) trening (b) test skupu u zavisnosti od λ .

11. Kojim algoritmom treniramo LASSO model? Opišite ovaj algoritam.