

組員介紹:

 Ag8
 學校與姓名
 分配工作

 組員
 40623114 吳信億 繪製、設計

 組員
 40623115 吳隆廷 編輯

 組員
 40623117 楊智傑 繪製、設計

 組員
 40623121 蔡朝旭 繪製、設計

 組員
 40623133 蕭家瀚 繪製、設計

 組長
 40623152 潘季宏 編輯

目錄

圖目錄	 P.3
摘要	 P.4
設計動機	 P.5
Components	 P6~11
Q&A	 P.12
Onshap模擬	 P.13
參考資料	 P.14

壹、圖目錄

圖	1	概念圖	4
		Onshape Gear ↓	
		Onshape Escapement ↓	
		Onshape Ratchet ↓	
		Onshape (Right) →	
		Onshape (Frount) →	
圖	7	組合圖	10
		組合圖之右側試圖	
		海泊 圖	

貳、摘要

機械計時器原理內部結構主要由三部分:

第一部分是動力部件,由發條,上發條的單向機構,使人工旋轉時,只能 上緊,不會鬆。旋緊發條就提供了整個系統的動力。

第二部分是釋放部件。由一系列的齒輪變速,使發條鬆弛時的旋轉週數增加,在齒 輪系的末端有擒縱輪,擒縱爪和游絲,保證齒輪系在發條的驅動下旋轉的速度恆 定。游絲上有調整游絲長度的裝置,以調整擒縱爪擺動的頻率,保證齒輪按設定的 轉速旋轉,不會將已旋緊的發條一下子就鬆完,也不受發條鬆緊的影響而導致轉速 的變化。

第三部分是定時觸發裝<mark>置,使齒輪系中某個齒輪轉到一定</mark>角度後發出一個電信號或機械信號,停止供電或發出鈴聲。

三個部分一起工作是,旋動定時器到某個刻度,實際做了二件事,一是旋緊發條, 提供動力,使定時器開始工作,另一件事就是旋的刻度就是設定了觸發機構的觸發 位置。 然後整個結構在擒縱輪的控制下,慢慢釋放發條的動力,各級齒輪開始按照一定的 轉速旋轉,直到觸發機構動作。

圖 1 概念圖

叁、研究動機

在組員一番討論及學長又沒做過的情形下,我們選擇難度 頗高的機械計時器作為我們專題的題目。雖然機械計時器 牽涉到的東西很廣泛,但是我們仍堅持製作和研究。 我 們想了解平時看似簡單伴隨著我們的時間,形象化之後複 雜呈現的體系是如何的。我們想用不一樣的方式去了解它, 和不一樣的方式嘗試製作。研究與製作此作品,一定可以 讓我們學習到少許的齒輪學問和一些機械的原理。

肆、Components(Gear)

齒輪為最常用的機械元件之一,被廣泛的使用在機械傳動裝置中。他可利用在小自鐘錶齒輪,大至船舶渦輪機用大型齒輪,他可以確實的傳送動力。

經由不同尺數的配合,可得到任意齒輪的轉數比, 利用齒輪組合數的增減,可自由地變換轉軸間的相 互關係位置,可以使用在平行軸、相交軸、交錯軸 等各種軸之間傳動上。

齒輪也分很多種:正齒輪、螺旋齒輪、人字齒輪、傘 形齒輪。我們在製作的計時器中則是使用平行軸正 齒輪來做。

圖 2 Onshape Gear↓

肆、Components(Escapement)

擒縱機構是一個拉於輪列和振蕩器(調速機構)之間的機構。其功能是每當振盪器通過死點時,將少量的能源分配給振蕩器。"死點"的定義即振蕩器停止時占用的休止位置。啟動時,振蕩器從死點起擺,每次擺動,必須脫開擒縱輪的一個齒,使輪系和指針以極小的跳動旋轉並使振蕩器有很均勻的隨動頻率。

在擒縱機構釋放輪列的極短瞬間,擒縱機構停止,而振蕩器只在發條能量耗盡時停止。也即在這短瞬間,輪列將微量的能源分配給振蕩器。從秒針上能目視這顫動。至今為止,已有十多種的擒縱機構。

現代機械鐘錶上,主要有兩種:常用於時鐘的單擺以及常 用於手錶的擺輪遊絲系統;這兩種時間基準在自由震盪的 條件下,周期穩定。由於控制擒縱機構工作需要消耗能量, 而且自身的磨擦、空氣阻力等也導致能量的損耗,震盪系 統需要通過擒縱機構不斷地補充損耗的能量,使擺輪(或 單擺)達到能量輸入輸出的動態平衡,這就是傳衝過程。

肆、Components(Ratchet)

、Components(Combination chart)

伍、Combination chart:

圖 8 Combination chart Right

Question & Solution

Q :題目為甚麼選這?

A: 因為比較困難,學長們也沒做過且具有挑戰性

Q:設計齒輪之轉速比?

A:秒針轉 60 秒為 1 圈(即 1 分鐘),分針轉 60 分為 1 圈(即 1 小時),時針轉 12 小時為 1 圈,由此可知,棘輪與秒針齒輪 1:60,秒針與分針齒輪比為 1:60,分針與時針齒輪比為 1:12。

Q:使用何種軟體設計齒輪配合圖?

A:Onshape 線上繪圖軟體。

Q:為何使用該軟體繪圖?

A:因為 Onshape 擁有雲端存儲共享及繪圖軟體的功能。

Q:設計齒輪之節徑?

A:不須考慮節徑,只需模數與齒數,只需設計為適當大小。

Q:齒輪個數?

A:齒輪過多會影響到生產金額,齒輪過少會導致齒數過多而加工困難。

Q:帶動元件?

A:馬達(步徑馬達)

Onshape 模擬

https://www.youtube.com/watch?v=GOXOVOnCYeI&t=2s

參考資料:
https://zhidao.baidu.com/question/40377267.html

http://emmaishpp.blogspot.com/2012/07/post-in-progress.html

https://read01.com/zh-tw/ORQ6Pm.html#.XDMjHVwzZPY

https://www.khkgears.co.jp/tw/gear_technology/pdf/gear_guidel.pdf

