▼ I. DATA ACQUISITION (IMPORT)

```
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from \ sklearn.preprocessing \ import \ One HotEncoder
import scipy
from \ sklearn. ensemble \ import \ Random Forest Classifier
from sklearn.model_selection import GridSearchCV
from sklearn import feature_selection
from sklearn.feature_selection import SelectKBest
import seaborn as sns
from sklearn import metrics
from sklearn.metrics import classification_report
tyre_data = pd.read_csv("/content/drive/MyDrive/Copia di tyres_train.csv")
#tyre_data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/PoliMi colab/MIML_ML colab/tyres_train.csv")
tyre_data
```

	vulc	perc_nat_rubber	wiring_strength	weather	perc_imp	temperature	tread_type	tyre_se
0	17.990	26	1	0.16	0.01	-8.12	0	
1	20.704	36	1	0.30	0.01	-4.52	2	
2	19.156	34	1	0.30	0.01	-1.08	0	
3	16.802	35	1	0.19	0.02	7.44	1	
4	17.140	23	2	0.39	0.01	30.52	0	
2995	17.818	29	2	0.39	0.01	7.28	1	
2996	17.076	30	1	0.22	0.00	-1.44	1	
2997	16.170	33	1	0.39	0.01	-3.44	1	
2998	18.872	37	0	0.03	0.00	-0.76	4	
2999	20.272	33	2	0.06	0.00	2.80	1	

3000 rows × 16 columns

Our target variable is "failure"

```
tyre_data['failure']
    1
            0
    2
            0
    3
            0
            0
     2995
            1
     2996
     2997
            0
     2998
            0
    Name: failure, Length: 3000, dtype: int64
# Number of successes and failures
print(tyre_data.groupby('failure').size())
```

```
# visual representation (histogram)
plt.hist(tyre_data['failure'])
plt.xlabel("count of each class")
plt.ylabel("classes")
plt.show()
     failure
     0
          1992
          1008
     dtype: int64
        2000
        1750
        1500
        1250
        1000
         750
         500
         250
              0.0
                              count of each class
```

we can see how the dataset is imbalanced

```
# copy of the dataset to work with (so we don't have to import again)
df = tyre_data.copy(deep=True);
df
```

	vulc	perc_nat_rubber	wiring_strength	weather	perc_imp	temperature	tread_type	tyre_season	elevation	month	tread_depth 1
0	17.990	26	1	0.16	0.01	-8.12	0	1	332.5	8	0
1	20.704	36	1	0.30	0.01	-4.52	2	0	328.0	11	1
2	19.156	34	1	0.30	0.01	-1.08	0	0	247.0	0	1
3	16.802	35	1	0.19	0.02	7.44	1	0	408.0	7	3
4	17.140	23	2	0.39	0.01	30.52	0	1	308.0	2	2
2995	17.818	29	2	0.39	0.01	7.28	1	1	287.5	10	1
2996	17.076	30	1	0.22	0.00	-1.44	1	1	152.5	6	1
2997	16.170	33	1	0.39	0.01	-3.44	1	0	235.0	8	3
2998	18.872	37	0	0.03	0.00	-0.76	4	0	290.0	11	0
2999	20.272	33	2	0.06	0.00	2.80	1	0	405.0	2	1
3000 ro	ws × 16 o	columns									

▼ II. DATA PREPARATION

data: numerical and categorical attributes

```
numerical = ["vulc", "perc_nat_rubber", "weather", "perc_imp", "temperature", "elevation", "perc_exp_comp"]
categorical_original = ["tread_type", "tyre_season", "month", "tread_depth", "wiring_strength", "tyre_quality", "add_layers"]
```

▼ 1) Data validation

searching for and handling

- incompletenesses (NaN values)
- · duplicate values

```
df.isna().any()
```

```
vulc
                        False
    perc_nat_rubber
                        False
    wiring_strength
                        False
    weather
                        False
    perc_imp
                        False
    temperature
                        False
    tread_type
                        False
    tyre_season
                        False
    elevation
                        False
    month
                        False
    tread depth
                        False
    tyre_quality
                        False
    perc_exp_comp
                        False
    diameter
                         True
    add layers
                        False
    failure
                        False
    dtype: bool
-> only diameter has NaN values
Lets explore it and deal with the missing data:
```

count non nan and nan values

```
df['diameter'].isna().value_counts()
```

True 2110 False 890

Name: diameter, dtype: int64

-> we decide to remove the whole column of diameter because the majority of the observations are Nan values

```
# removing 'diameter' column
df = df.drop('diameter', axis=1)
np.isinf(df).any()
    vulc
                        False
    perc_nat_rubber
    wiring_strength
                        False
    weather
                        False
    perc_imp
                        False
     temperature
                        False
    tread_type
                        False
    tyre_season
                        False
    elevation
                        False
    month
                        False
    tread_depth
                        False
    tyre_quality
                        False
    perc_exp_comp
                        False
     add_layers
                        False
     failure
                        False
```

-> no infinite values

dtype: bool

checking if there are duplicate rows

```
df[df.duplicated()]
```

vulc perc_nat_rubber wiring_strength weather perc_imp temperature tread_type tyre_season elevation month tread_depth tyre_q

-> no duplicate rows

▼ 2) One-hot-encoding for categorical attributes

- now we are converting all the categorical attributes (there are 7 of them in our dataset)
- the one-hot encoding will create (k-1) binary columns for each categorical attribute and return a sparse matrix

```
ohe = OneHotEncoder(handle_unknown='ignore')
results = ohe.fit_transform(df[categorical_original])
dummy = pd.DataFrame.sparse.from_spmatrix(results)
dummy.columns = ohe.get_feature_names(df[categorical_original].columns)
dummy
```

/usr/local/lib/python3.8/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_fe warnings.warn(msg, category=FutureWarning)

	tread_type_0	tread_type_1	tread_type_2	tread_type_3	tread_type_4	tyre_season_0	tyre_season_1	month_0	month_1	month_2	• • •
0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
1	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
2	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	
3	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
4	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	1.0	
2995	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
2996	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
2997	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
2998	0.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	
2999	0.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	1.0	

3000 rows × 31 columns

removing extra columns

```
catlist = dummy.columns.tolist()
remlist = []
remlist += [catlist[-1]]
for i in range(0,len(catlist)-1):
 # print(catlist[i+1][:-2])
 if catlist[i][:-1] != catlist[i+1][:-1]:
   remlist += [catlist[i]]
remlist.remove('month_9')
remlist
     ['add_layers_2',
      'tread_type_4',
      'tyre_season_1',
      'month_11',
      'tread_depth_3',
      'wiring_strength_2',
      'tyre_quality_1']
dummy = dummy.drop(remlist,axis=1)
dummy
```

	tread_type_0	tread_type_1	tread_type_2	tread_type_3	tyre_season_0	month_0	month_1	month_2	month_3	month_4	• • •	month_9 ı
	0 1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
	1 0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0		0.0
1	2 1.0	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0		0.0
;	3 0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0		0.0

df = pd.concat([df,dummy],axis=1)
for cat in categorical_original:
 df = df.drop(cat,axis=1)
4f

	vulc	perc_nat_rubber	weather	perc_imp	temperature	elevation	perc_exp_comp	failure	tread_type_0	tread_type_1	 month_
0	17.990	26	0.16	0.01	-8.12	332.5	5.13	0	1.0	0.0	 0
1	20.704	36	0.30	0.01	-4.52	328.0	6.15	0	0.0	0.0	 0
2	19.156	34	0.30	0.01	-1.08	247.0	6.36	0	1.0	0.0	 0
3	16.802	35	0.19	0.02	7.44	408.0	6.62	0	0.0	1.0	 0
4	17.140	23	0.39	0.01	30.52	308.0	6.15	0	1.0	0.0	 0
2995	17.818	29	0.39	0.01	7.28	287.5	5.68	1	0.0	1.0	 0
2996	17.076	30	0.22	0.00	-1.44	152.5	5.81	1	0.0	1.0	 0
2997	16.170	33	0.39	0.01	-3.44	235.0	5.57	0	0.0	1.0	 0
2998	18.872	37	0.03	0.00	-0.76	290.0	5.89	0	0.0	0.0	 0
2999	20.272	33	0.06	0.00	2.80	405.0	6.00	0	0.0	1.0	 0

3000 rows × 32 columns

categorical = dummy.columns
categorical

```
cols = df.columns.tolist()
cols.remove('failure')
cols.append('failure')
df = df[cols]
df
```

	vulc	perc_nat_rubber	weather	perc_imp	temperature	elevation	perc_exp_comp	tread_type_0	tread_type_1	tread_type_2	• • •	n
0	17.990	26	0.16	0.01	-8.12	332.5	5.13	1.0	0.0	0.0		
1	20.704	36	0.30	0.01	-4.52	328.0	6.15	0.0	0.0	1.0		

▼ II.A. DATA EXPLORATION

We conducted data exploration to get an idea of the distribution of the data in our dataset:

- if any feature is useful to predict the failure of the tyre
- · if any feature has to be discarded or needs some transformation

So we proceeded with the univariate and bivariate analysis of numerical and categorical attributes separately.

10.1/U	ఎఎ	บ.วษ	U.U I	-3.44	∠აⴢ.∪	16.6	υ.υ	1.0	υ.υ	
▼ 1) Numerical										
Z13.UZ EEEZ	აა	ט.טס	υ.υυ	∠.0∪	405.0	υυ.σ	υ.υ	1.U	U.U	
<pre>df[numerical].describe()</pre>										

	vulc	perc_nat_rubber	weather	perc_imp	temperature	elevation	perc_exp_comp
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.00000
mean	18.184712	31.249667	0.282987	0.014550	-2.375360	376.184000	5.79151
std	1.587193	4.933300	0.183252	0.014262	5.672184	151.149861	0.41032
min	12.312000	18.000000	0.030000	0.000000	-19.280000	41.500000	4.54000
25%	17.241500	28.000000	0.160000	0.010000	-6.960000	263.500000	5.48000
50%	17.834000	31.000000	0.210000	0.010000	-2.080000	342.000000	5.80000
75%	18.934000	35.000000	0.370000	0.020000	0.080000	471.625000	6.08000
max	29.932000	46.000000	0.930000	0.050000	37.000000	939.500000	7.21000

UNIVARIATE analysis

df[numerical].boxplot(rot=90)

<matplotlib.axes._subplots.AxesSubplot at 0x7f3ce8fe1160>

We plot a histogram for each numerical attribute to compare the empirical density of the observations with target=0 (in blue) and those with target=1 (in red) if the two charts seem to overlap completely then the attribute is probably not useful for our case.

```
%matplotlib inline
```

```
X= pd.concat([df[numerical], df['failure']], axis=1)
X0 = X[X['failure']==0]
X1 = X[X['failure']==1]
fig, axes = plt.subplots(ncols=4, nrows=2, figsize=(20,15))
fig.tight_layout()
```

for i, ax in zip(range(X.columns.size), axes.flat):

```
sns.histplot(X0.iloc[:,i], color="blue", element="step", ax=ax, alpha=0.3)
sns.histplot(X1.iloc[:,i], color="red", element="step", ax=ax, alpha=0.3)
plt.show()
```


We can see from the graphs that in every case the blue and red histograms seem to be very similar

We might tend to conclude that these numerical attributes are not useful to discern the target value, so we want to perform some additional tests to asses whether the two distributions are different (red and blue)

In this case we performed chi-test (empirical distributions) and f-test (based on the analysis of variance)

note: since chi-test needs all non-negative inputs, we proceed by scaling the numerical attributes between 0 and 1

```
#MinMax scaling between 0 and 1
from sklearn.preprocessing import MinMaxScaler
mm_scaler = MinMaxScaler(copy=False,feature_range=(0, 1))
mmScaled = mm_scaler.fit_transform(df[numerical])
mmscaled_df = pd.DataFrame(mmScaled)
mmscaled_df.columns = df[numerical].columns
mmscaled_df
```

	vulc	perc_nat_rubber	weather	perc_imp	temperature	elevation	perc_exp_comp	7							
0	0.322247	0.285714	0.144444	0.2	0.198294	0.324053	0.220974								
1	1 0.476277 0.642857 0.300000 0.2 0.262260 0.319042 0.602996 2 0.388422 0.571429 0.300000 0.2 0.323383 0.228842 0.681648 3 0.254824 0.607143 0.177778 0.4 0.474769 0.408129 0.779026 4 0.274007 0.178571 0.400000 0.2 0.884861 0.296771 0.602996 995 0.312486 0.392857 0.400000 0.2 0.471926 0.273942 0.426966 996 0.270375 0.428571 0.211111 0.0 0.316986 0.123608 0.475655 997 0.218956 0.535714 0.400000 0.2 0.281450 0.215479 0.385768 998 0.372304 0.678571 0.000000 0.0 0.329069 0.276726 0.505618 1ed_df														
2	0.388422	0.571429	0.300000	0.2	0.323383	0.228842	0.681648								
3	0.254824	0.607143	0.177778	0.4	0.474769	0.408129	0.779026								
4	0.274007	0.178571	0.400000	0.2	0.884861	0.296771	0.602996								
•••															
2995	0.312486	0.392857	0.400000	0.2	0.471926	0.273942	0.426966								
2996	0.270375	0.428571	0.211111	0.0	0.316986	0.123608	0.475655								
2997															
=mmscaled_df															
=df['failure']															
_		• –		- ,											
		(selector_chi.fit elector_f.fit_tra	_			-		:()])							
we are as	king to p	rovide to us the	attributes	s that are	the most lik	ely to be d	ifferent (so the	e best o							
<pre>print(A.columns[selector_chi.get_support()]) print(A.columns[selector_f.get_support()])</pre>															

In concusion, since from the tests we got that the red and blue distributions are actually different for all of the numerical attributes except 'elevation', we decided to remove the latter.

• BIVARIATE analysis

```
# we are conducting the analysis through a scatter plot
%matplotlib inline
sns.pairplot(X,hue='failure')
```


▼ 2) Categorical

UNIVARIATE GRAPHICAL ANALYSIS of categorical attributes

• we are plotting a vertical bar chart for each categorical attribute to compare the empirical distribution of the observations with target=0 (in blue) and those with target=1 (in red)

```
Y = pd.concat([df[categorical], df['failure']], axis=1)
Y0 = Y[Y['failure']==0]
Y1 = Y[Y['failure']==1]
fig, axes = plt.subplots(ncols=4, nrows=6, figsize=(20,15))
fig.tight_layout()

for i ,ax in zip(range(Y.columns.size), axes.flat):
    Y0.iloc[:,i].value_counts(sort=False).plot.bar(rot=0, color="blue", ax=ax).set_title(Y.columns[i])
    Y1.iloc[:,i].value_counts(sort=False).plot.bar(rot=0, color="red", ax=ax)
plt.show()
```


%matplotlib inline

```
fig, axes = plt.subplots(ncols=3, nrows=3, figsize=(20,15))
fig.tight_layout()
```

for i, ax in zip(range(df[numerical].columns.size), axes.flat):
 sns.boxplot(x=df[numerical].iloc[:,i], ax=ax)
plt.show()

200

150

100

50

1000

800

600

400

200

0.01

0.02

0.03

0.04

- boxplots indicated that outliers could be present, but after plotting the histograms, we notice that those "outlier" values are present in such a high number of observations that we wouldn't consider them outliers (for weather and perc_imp attributes)
- for other attributes, the "outliers" mostly follow the distribution shape so we didn't remove them

250

200

150

100

50

→ 4) Correlation

We checked the correlation between all of the attributes and the target attribute ('failure') to assess which ones could be more relevant for predicting the target

df.corr().loc['failure'] vulc -0.144981 perc_nat_rubber 0.103633 weather 0.401803 perc_imp 0.273367 temperature 0.364126 0.079229 elevation perc_exp_comp 0.307221 tread_type_0 -0.217535 tread_type_1 0.038826 tread_type_2 0.083604 tread_type_3 0.045698 tyre_season_0 0.095066 month_0 0.040162 month_1 0.062862 month_2 0.039586 0.037830 month_3 month 4 0.051312 month_5 0.055764 month_6 0.055868 month_7 -0.003394 month 8 -0.287408 month 9 0.028791 month_10 0.026619 tread_depth_0 -0.226362 tread_depth_1 0.093872 tread_depth_2 0.073079 wiring_strength_0 0.030403

wiring_strength_1
tyre_quality_0

Name: failure, dtype: float64

add_layers_0

add_layers_1

failure

Since there are some attributes (month_7, add_layers_0) that have a correlation value very close to 0, we tried to train the model without them. Finally, we didn't get better scores so we kept all the attributes.

· Through a heat map, we then check the correation of each numerical attribute with the others

The idea is that if we find two attributes that have a very high correlation we could remove one of them because it would not bring additional information to the model.

sns.heatmap(df[numerical].corr(), annot=True)

-0.065282

0.319223

0.004087

1.000000

-0.020877

From the analysis of the heat map we conclude that there are not any attributes that have a high enough correlation to remove one of them.

▼ II.B. DATA PRE-PROCESSING

Like we mentioned in the data exploration, we decided to remove the columns of 'elevation', 'month_7', 'add_layers_0'

 $\label{eq:df2-df2-df2} $$ df2=df.drop(['elevation', 'month_7', 'add_layers_0'],axis=1) $$ df2 $$$

	vulc	perc_nat_rubber	weather	perc_imp	temperature	perc_exp_comp	tread_type_0	tread_type_1	tread_type_2	tread_type_3	
0	17.990	26	0.16	0.01	-8.12	5.13	1.0	0.0	0.0	0.0	
1	20.704	36	0.30	0.01	-4.52	6.15	0.0	0.0	1.0	0.0	
2	19.156	34	0.30	0.01	-1.08	6.36	1.0	0.0	0.0	0.0	
3	16.802	35	0.19	0.02	7.44	6.62	0.0	1.0	0.0	0.0	
4	17.140	23	0.39	0.01	30.52	6.15	1.0	0.0	0.0	0.0	
2995	17.818	29	0.39	0.01	7.28	5.68	0.0	1.0	0.0	0.0	
2996	17.076	30	0.22	0.00	-1.44	5.81	0.0	1.0	0.0	0.0	
2997	16.170	33	0.39	0.01	-3.44	5.57	0.0	1.0	0.0	0.0	
2998	18.872	37	0.03	0.00	-0.76	5.89	0.0	0.0	0.0	0.0	
2999	20.272	33	0.06	0.00	2.80	6.00	0.0	1.0	0.0	0.0	

3000 rows × 29 columns

▼ 1) Splitting the data into train and test sets

```
X = df2.iloc[:,0:-1]
y = df2.iloc[:,-1]
```

We decided to use as training set the 75% of the original dataset, and the rest (25%) for the test set.

		vulc	perc_nat_rubber	weather	perc_imp	temperature	perc_exp_comp	tread_type_0	tread_type_1	tread_type_2	tread_type_3		
	1056	16.444	37	0.39	0.01	0.64	6.01	0.0	1.0	0.0	0.0		
	1492	17.754	22	0.16	0.01	-9.16	5.48	1.0	0.0	0.0	0.0		
	2443	18.400	29	0.16	0.01	-8.72	5.38	1.0	0.0	0.0	0.0		
	133	21.532	33	0.38	0.04	-5.08	6.01	0.0	0.0	0.0	1.0		
	1675	19.228	34	0.17	0.01	-2.36	5.72	0.0	0.0	0.0	0.0		
We de	emons	trate ho	w the distribution	of the targ	get variable	is mantained	after the spitting	g in train and te	st set.				
	1883	17.708	26	0.16	0.01	-8.12	5.18	1.0	0.0	0.0	0.0		
-	y_train_dist=y_train.groupby(y_train.iloc[:]).size()/y_train.size y_test_dist=y_test.groupby(y_test.iloc[:]).size()/y_test.size												
_	train_test_dist = pd.DataFrame({'train': y_train_dist, 'test': y_test_dist}) ax = train_test_dist.plot.bar(rot=0) # rotation of the labels												

▼ 2) Oversampling data

oversampling by duplicating rows

· we obtained better results with this method than with undersampling and oversampling with SMOTENC (synthetic data)

```
from collections import Counter
from imblearn.over_sampling import RandomOverSampler
# define oversampling strategy
oversample = RandomOverSampler(sampling_strategy='minority')
# fit and apply the transform
X_over, y_over = oversample.fit_resample(X_train, y_train)
# summarize class distribution
print(Counter(y_over))

Counter({0: 1494, 1: 1494})
/usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:624: UserWarning: pandas.DataFrame with sparse columns found.It will
warnings.warn(
```

→ III. MODEL

· we tried multiple models (Decision Tree, SVM, Random Forest, LGBM...) and Random Forest appears to be the best one

Random Forest

Random forests is an ensemble learning method for classification and other tasks that operates by constructing a multitude of decision trees at training time.

```
A = X_over
B = y_over
classifier= RandomForestClassifier()
parameters = {'n_estimators' : [50, 100, 200],
           'criterion' : ['entropy', 'gini'],
           'max_depth' : [2,4,8],
           'min_samples_split' : [1,2,4,5],
            'min_samples_leaf' : [1,2,4,5]
           }
gs = GridSearchCV(classifier, parameters, cv=3, scoring = 'f1', verbose=10, n_jobs=-1, refit=True)
gs.fit(A.B)
     nan 0.74479721 0.74888678 0.74537111
                    nan
           nan
     nan
                  nan nan 0.74138197 0.7462934 0.74685835
     0.74570401 0.74652294 0.74744538 0.74839492 0.74803604 0.74706113
                           nan 0.74792059 0.74144245 0.74526289
           nan
                   nan
     nan 0.7578248 0.76070196 0.75842545
     nan 0.75955846 0.76055169 0.75928882
          nan
                   nan
     0.75676739 0.7585377 0.75748249 0.76138392 0.7589412 0.76160097
                            nan 0.75672883 0.76186477 0.75742235
           nan
                   nan
     0.75688372 0.75971925 0.75372202 0.7568142 0.75643984 0.75762544
                  nan nan 0.75654107 0.7557488 0.75794716
           nan
     0.75540922\ 0.76407308\ 0.75247888\ 0.75838744\ 0.75738493\ 0.75438366
           nan
                    nan
                             nan 0.80714322 0.81865004 0.81522064
     0.80407363 0.80636945 0.80902929 0.80370384 0.80069928 0.80188111
           nan
                    nan
                           nan 0.80093808 0.80253146 0.79968725
     nan nan 0.79445164 0.7903729 0.79158391
           nan
     0.78371336 0.78987671 0.78949497 0.79267872 0.78737527 0.79023393
                            nan 0.78687808 0.7876797 0.78298236
           nan
                    nan
     0.78880686 0.78643085 0.79042924 0.78192336 0.78808737 0.7883682
                            nan 0.74517799 0.74321551 0.74400493
           nan
                   nan
     0.74665216 0.74660938 0.74336777 0.74757728 0.74645523 0.74707472
           nan
                    nan
                           nan 0.74559132 0.74639
                                                    0.75085881
     0.74729967 0.74620911 0.74796154 0.74742092 0.74755087 0.74605287
           nan
                   nan nan 0.74329853 0.74592493 0.74842367
     0.7450318 \quad 0.74723349 \ 0.74644301 \ 0.74932034 \ 0.74837648 \ 0.74765496
                    nan
                           nan 0.74659376 0.74389573 0.7482543
           nan
     0.74660133 0.7465247 0.74513868 0.74583882 0.74396099 0.74574665
           nan
                    nan
                           nan 0.76348536 0.76015013 0.76023537
     0.75795764 0.7572126 0.75990654 0.75505517 0.75821105 0.76216739
                   nan
                            nan 0.76059449 0.76365903 0.76125062
           nan
     0.75612231 0.76112209 0.76172422 0.76263352 0.76548173 0.75799111
                           nan 0.7583935 0.75837807 0.75643339
     0.75900649 0.76088071 0.76017393 0.75684657 0.76012096 0.75942479
                   nan nan 0.76289807 0.75562149 0.75639672
          nan
     0.75789624 0.75606479 0.75913512 0.75495106 0.756532 0.75732625
           nan
                    nan
                             nan 0.8152132 0.81896141 0.81466237
     nan
                  nan nan 0.79965831 0.79891155 0.80537879
     0.8014407 \quad 0.803669 \quad 0.80276548 \ 0.80109314 \ 0.79917544 \ 0.80288336
                    nan
                             nan 0.79205349 0.79232475 0.78684798
           nan
     0.78853633 0.79407041 0.78643265 0.79190516 0.79346651 0.79095228
                    nan
                             nan 0.78784682 0.78917932 0.78201208
     0.78767652 0.79021463 0.78654869 0.78716228 0.78734407 0.78836334]
      warnings.warn(
    /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:624: UserWarning: pandas.DataFrame with sparse columns found.It w
      warnings.warn(
    GridSearchCV(cv=3, estimator=RandomForestClassifier(), n_jobs=-1,
               param_grid={'criterion': ['entropy', 'gini'],
                          'max_depth': [2, 4, 8],
                          'min_samples_leaf': [1, 2, 4, 5],
                          'min_samples_split': [1, 2, 4, 5],
                          'n_estimators': [50, 100, 200]},
               scoring='f1', verbose=10)
```

```
OUTDOEWICH VEDOCIO
hi Tiic(
print("Best score: %f using %s" % (gs.best_score_, gs.best_params_))
means = gs.cv_results_['mean_test_score']
stds = gs.cv_results_['std_test_score']
params = gs.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
    print("%f (%f) with: %r" % (mean, stdev, param))
     ט./סצאשא (ט.טטס43א) with: { criterion :
                                                          max_deptn : 4, min_samples_lear : 5, min_samples_split : 2,
     0.755621 (0.007958) with: {'criterion': 'gini',
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 100}
     0.756397 (0.009598) with: {'criterion': 'gini',
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 200}
     0.757896 (0.009571) with: {'criterion':
                                                 'gini'
                                                         'max_depth': 4,
                                                                          'min_samples_leaf': 5,
                                                                                                  'min_samples_split': 4, 'n_estimators': 50}
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 4, 'n_estimators': 100}
     0.756065 (0.009210) with: {'criterion':
                                                'gini',
                                                'gini',
     0.759135 (0.009775) with: {'criterion':
                                                         'max_depth': 4, 'min_samples_leaf': 5,
                                                                                                  'min_samples_split': 4, 'n_estimators': 200}
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 50}
     0.754951 (0.010575) with: {'criterion':
                                                'gini',
     0.756532 (0.006079) with: {'criterion': 'gini',
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 100}
     0.757326 (0.010679) with: {'criterion': 'gini',
                                                         'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 200}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 1, 'n_estimators': 50}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 1, 'n_estimators': 100}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 1, 'n_estimators': 200}
     0.815213 (0.007640) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 50}
     0.818961 (0.006272) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 100}
                                                'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}
     0.814662 (0.005838) with: {'criterion':
     0.800645 (0.011943) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 4, 'n_estimators': 50}
     0.814784 (0.010255) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 4, 'n_estimators': 100}
                                                                          'min_samples_leaf': 1,
                                                                                                  'min_samples_split': 4, 'n_estimators': 200}
     0.811164 (0.009113) with: {'criterion':
                                                 'gini',
                                                         'max_depth': 8,
                                                         'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 50}
     0.800062 (0.008614) with: {'criterion': 'gini',
     0.813472 (0.013114) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 100} 0.803082 (0.004773) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 1, 'n_estimators': 50}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 1, 'n_estimators': 100} nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 1, 'n_estimators': 200}
     0.799658 (0.006270) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 50}
     0.798912 (0.003798) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 100}
     0.805379 (0.007338) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 200}
     0.801441 (0.007816) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 4, 'n_estimators': 50}
     0.803669 (0.007922) with: {'criterion':
                                                'gini',
                                                         'max_depth': 8,
                                                                         'min_samples_leaf': 2,
                                                                                                  'min_samples_split': 4, 'n_estimators': 100}
     0.802765 (0.007637) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 4, 'n_estimators': 200}
     0.801093 (0.004379) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 50}
     0.799175 (0.007623) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 100} 0.802883 (0.007532) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 2, 'min_samples_split': 5, 'n_estimators': 200}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 1, 'n_estimators': 50} nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 1, 'n_estimators': 100}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 1, 'n_estimators': 200}
     0.792053 (0.009501) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 2, 'n_estimators': 50}
                                                                                                  'min_samples_split': 2, 'n_estimators': 100}
     0.792325 (0.007618) with: {'criterion':
                                                         'max_depth': 8, 'min_samples_leaf': 4,
                                                'gini',
     0.786848 (0.007367) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 2, 'n_estimators': 200}
     0.788536 (0.005237) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 50}
     0.794070 (0.002926) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 100}
     0.786433 (0.010787) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 4, 'n_estimators': 200}
     0.791905 (0.006682) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 50}
     0.793467 (0.003335) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 100}
     0.790952 (0.004939) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 200}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 1, 'n_estimators': 50}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 1, 'n_estimators': 100}
     nan (nan) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 1, 'n_estimators': 200}
     0.787847 (0.003316) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 50}
     0.789179 (0.003987) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 100}
     0.782012 (0.005355) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 5,
                                                                                                  'min_samples_split': 2, 'n_estimators': 200}
     0.787677 (0.009869) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 5,
                                                                                                  'min_samples_split': 4, 'n_estimators': 50}
     0.790215 (0.011225) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 4, 'n_estimators': 100}
     0.786549 (0.005943) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 4, 'n_estimators': 200}
     0.787162 (0.006250) with: {'criterion': 'gini',
                                                         'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 50}
     0.787344 (0.003332) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 100}
     0.788363 (0.007105) with: {'criterion': 'gini', 'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 5, 'n_estimators': 200}
#TESTING ON TEST SET
best_model = gs.best_estimator_
y_pred = best_model.predict(X_test)
     /usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:624: UserWarning: pandas.DataFrame with sparse columns found.It will
       warnings.warn(
# PREDICTION ON THE TEST SET
print('***RESULTS ON TEST SET***')
print("precision: ", metrics.precision_score(y_test, y_pred)) # tp / (tp + fp)
```

```
print("recall: ", metrics.recall_score(y_test, y_pred)) # tp / (tp + fn)
print("accuracy: ", metrics.accuracy_score(y_test, y_pred)) # (tp+tn)/m
    ***RESULTS ON TEST SET***
   precision: 0.5580645161290323
   recall: 0.6865079365079365
   f1_score: 0.6156583629893239
   accuracy: 0.712
print(classification_report(y_test, y_pred))
               precision
                         recall f1-score
                                         support
            0
                   0.82
                           0.72
                                   0.77
                                            498
                   0.56
                           0.69
                                   0.62
                                   0.71
                                            750
       accuracy
      macro avg
                   0.69
                           0.71
                                   0.69
                                            750
   weighted avg
                   0.73
                           0.71
                                   0.72
                                            750
```

As it is shown by the report, the f1-score that we obtained is around 0.63

→ IV. PREDICTION

Application of the trained model on unseen test dataset

```
tyre_test = pd.read_csv("/content/drive/MyDrive/Copia di tyres_test.csv")
#tyre_data = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/PoliMi colab/MIML_ML colab/tyres_train.csv")
```

tyre_test

	vulc	perc_nat_rubber	wiring_strength	weather	perc_imp	temperature	tread_type	tyre_season	elevation	month	tread_depth	1
0	17.180	30	1	0.21	0.00	-9.24	0	1	460.5	4	3	
1	17.744	24	1	0.16	0.01	-9.12	0	1	278.5	8	0	
2	16.930	34	0	0.27	0.01	3.64	2	0	733.5	11	2	
3	22.428	34	1	0.03	0.00	0.56	3	0	235.5	9	3	
4	16.818	29	1	0.06	0.00	-0.96	3	0	461.0	9	0	
				•••								
7979	20.060	31	1	0.29	0.01	0.40	4	1	361.5	6	2	
7980	17.718	21	1	0.16	0.01	-8.68	0	1	409.5	8	0	
7981	17.908	23	1	0.16	0.01	-6.92	0	1	266.0	8	0	
7982	17.916	28	1	0.16	0.01	-7.92	0	1	301.0	8	0	
7983	21.806	32	1	0.16	0.01	-6.48	1	1	313.0	5	0	
7004												

7984 rows × 15 columns

▼ Data preparation

tyre_test.isna().any()

vulc	False
perc_nat_rubber	False
wiring_strength	False
weather	False
perc_imp	False
temperature	False
tread_type	False
tyre_season	False
elevation	False
month	False

```
tread_depth
                   False
tyre_quality
                   False
                   False
perc_exp_comp
diameter
                   False
add_layers
                   False
dtype: bool
```

tyre_test = tyre_test.drop('diameter', axis=1)

One-hot-encoding:

```
results_test = ohe.fit_transform(tyre_test[categorical_original])
dummy_test = pd.DataFrame.sparse.from_spmatrix(results_test)
dummy_test.columns = ohe.get_feature_names(tyre_test[categorical_original].columns)
dummy_test
```

/usr/local/lib/python3.8/dist-packages/sklearn/utils/deprecation.py:87: FutureWarning: Function get_feature_names is deprecated; get_fe warnings.warn(msg, category=FutureWarning)

	tread_type_0	tread_type_1	tread_type_2	tread_type_3	tread_type_4	tyre_season_0	tyre_season_1	month_0	month_1	month_2	• • •
0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
1	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
2	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	
7979	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	
7980	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
7981	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
7982	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	
7983	0.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	

7984 rows × 31 columns


```
# removing extra columns
catlist = dummy_test.columns.tolist()
remlist = []
remlist += [catlist[-1]]
for i in range(0,len(catlist)-1):
  # print(catlist[i+1][:-2])
  if catlist[i][:-1] != catlist[i+1][:-1]:
    remlist += [catlist[i]]
remlist.remove('month 9')
remlist
     ['add_layers_2',
      'tread_type_4',
'tyre_season_1',
      'month_11',
      'tread_depth_3',
      'wiring_strength_2',
      'tyre_quality_1']
dummy_test = dummy_test.drop(remlist,axis=1)
dummy_test
```

	tread_type_0	tread_type_1	tread_type_2	tread_type_3	tyre_season_0	month_0	month_1	month_2	month_3	month_4	•••	month_9 ι
0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0		0.0
1	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0		0.0
3	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0		1.0
4	0.0	0.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0		1.0
7979	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
7980	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
7981	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0

tyre_test = pd.concat([tyre_test,dummy_test],axis=1)

for cat in categorical_original:

tyre_test = tyre_test.drop(cat,axis=1)

tyre_test

	vulc	perc_nat_rubber	weather	perc_imp	temperature	elevation	perc_exp_comp	tread_type_0	tread_type_1	tread_type_2	• • •	n
0	17.180	30	0.21	0.00	-9.24	460.5	5.54	1.0	0.0	0.0		
1	17.744	24	0.16	0.01	-9.12	278.5	5.01	1.0	0.0	0.0		
2	16.930	34	0.27	0.01	3.64	733.5	6.41	0.0	0.0	1.0		
3	22.428	34	0.03	0.00	0.56	235.5	5.95	0.0	0.0	0.0		
4	16.818	29	0.06	0.00	-0.96	461.0	5.97	0.0	0.0	0.0		
7979	20.060	31	0.29	0.01	0.40	361.5	5.89	0.0	0.0	0.0		
7980	17.718	21	0.16	0.01	-8.68	409.5	5.56	1.0	0.0	0.0		
7981	17.908	23	0.16	0.01	-6.92	266.0	5.20	1.0	0.0	0.0		
7982	17.916	28	0.16	0.01	-7.92	301.0	5.76	1.0	0.0	0.0		
7983	21.806	32	0.16	0.01	-6.48	313.0	5.26	0.0	1.0	0.0		

7984 rows × 31 columns

 $\label{tyre_test} tyre_test.drop(['elevation', 'month_7', 'add_layers_0'], axis=1) \\ tyre_test$

	vulc	perc_nat_rubber	weather	perc_imp	temperature	perc_exp_comp	tread_type_0	tread_type_1	tread_type_2	tread_type_3	
0	17.180	30	0.21	0.00	-9.24	5.54	1.0	0.0	0.0	0.0	
1	17.744	24	0.16	0.01	-9.12	5.01	1.0	0.0	0.0	0.0	
2	16.930	34	0.27	0.01	3.64	6.41	0.0	0.0	1.0	0.0	
3	22.428	34	0.03	0.00	0.56	5.95	0.0	0.0	0.0	1.0	
4	16.818	29	0.06	0.00	-0.96	5.97	0.0	0.0	0.0	1.0	
7979	20.060	31	0.29	0.01	0.40	5.89	0.0	0.0	0.0	0.0	
7980	17.718	21	0.16	0.01	-8.68	5.56	1.0	0.0	0.0	0.0	
7981	17.908	23	0.16	0.01	-6.92	5.20	1.0	0.0	0.0	0.0	
7982	17.916	28	0.16	0.01	-7.92	5.76	1.0	0.0	0.0	0.0	
7983	21.806	32	0.16	0.01	-6.48	5.26	0.0	1.0	0.0	0.0	

7984 rows × 28 columns

https://colab.research.google.com/drive/1UHB7c76aFn4Kzaq9UXNyV3c3FljuUD4l#scrollTo=nQTANII9GYOs&printMode=true

y_pred_test = best_model.predict(tyre_test)

/usr/local/lib/python3.8/dist-packages/sklearn/utils/validation.py:624: UserWarning: pandas.DataFrame with sparse columns found.It will warnings.warn(

with open(r'output.txt','w') as textfile:
 [print(x,file=textfile) for x in y_pred_test]

▼ V. ADDITIONAL NOTES

Scaling

Initially we scaled the data because we tried to train different types of models, but we discarded this choice because our final model (Random Forest) does not require it and it did not improve the final result.

PCA

We tried doing PCA of the dataset and then training the models with the principal components obtained, but this did not improve our final result.

we considered turning months into season to have less attributes, but we decided to leave them as they were originally

✓ 0s completed at 17:24

×