Biological sequence analysis in drug discovery

Jitao David Zhang Jul 31, 2019

1

The Central Dogma of Molecular Biology

DNA/RNA sequence analysis

How does BLAST work

Probablistic modelling of biological sequences

Conclusions

The Central Dogma of Molecular Biology

The central dogma

See the notes

Examples of drugs that target DNA or RNA

More and more drugs target DNA/RNA of the CD graph

Antisense oligonucleotides

Sequence analysis allows designing potent and specific ASOs

Sequence analysis is critical for phylogenetic analysis

Sequence analysis helps us understanding evolution of sequences

DNA/RNA sequence analysis

DNA is a string of characters and often form double helixes

RNA: the chemistry and the symbolic representation

RNA is a string of characters and is often single-stranded

• The minimum number of operations required to transform string *a* to string *b* with following operations:

- The minimum number of operations required to transform string a to string b with following operations:
 - $\cdot\,$ Insersion, for instance sit $bat\,\rightarrow\,bait$

- The minimum number of operations required to transform string *a* to string *b* with following operations:
 - \cdot Insersion, for instance sit bat o bait
 - Deletion, e.g. boat ightarrow bot

- The minimum number of operations required to transform string *a* to string *b* with following operations:
 - \cdot Insersion, for instance sit bat o bait
 - \cdot Deletion, e.g. boat ightarrow bot
 - \cdot Substitution, e.g. $pig \, \to \, big$

- The minimum number of operations required to transform string a to string b
 with following operations:
 - · Insersion, for instance sit bat \rightarrow bait
 - \cdot Deletion, e.g. boat ightarrow bot
 - \cdot Substitution, e.g. $\mathrm{pig}\,
 ightarrow\,\mathrm{big}$
- The Levenshtein distance between two strings a,b of length |a| and |b| respectively is given by $\text{lev}_{a,b}(|a|,|b|)$ where

$$\operatorname{lev}_{a,b}(i,j) = \begin{cases} \max(i,j) & \text{if } \min(i,j) = 0, \\ \min \begin{cases} \operatorname{lev}_{a,b}(i-1,j) + 1 \\ \operatorname{lev}_{a,b}(i,j-1) + 1 \\ \operatorname{lev}_{a,b}(i-1,j-1) + 1_{(a_i \neq b_j)} \end{cases} & \text{otherwise.} \end{cases}$$

where $1_{(a_i \neq b_j)}$ is the indicator function equal to 0 when $a_i = b_j$ and equal to 1 otherwise, and $lev_{a,b}(i,j)$ is the distance between the first i characters of a and the first j characters of b.

• The Levenshtein distance is often referred to as the edit distance.

• The Levenshtein distance is often referred to as the edit distance.

• The Levenshtein distance is often referred to as the edit distance.

Question

What is the Levenshtein distance between ${f AATGCTGCTT}$ and ${f AATGCATT}$?

• The Levenshtein distance is often referred to as the edit distance.

Ouestion

What is the Levenshtein distance between AATGCTGCTT and AATGCATT?

Answer

· The Levenshtein distance is often referred to as the edit distance.

Question

What is the Levenshtein distance between AATGCTGCTT and AATGCATT?

Answer

3

 Beyond bioinformatics, the Levenshtein distance is often used in computational linguistics and natural language processing. For instance, check out *How to Write a Spelling Corrector* by Peter Norvig.

· The Levenshtein distance is often referred to as the edit distance.

Question

What is the Levenshtein distance between AATGCTGCTT and AATGCATT?

Answer

3

 Beyond bioinformatics, the Levenshtein distance is often used in computational linguistics and natural language processing. For instance, check out *How to Write a Spelling Corrector* by Peter Norvig.

· The Levenshtein distance is often referred to as the edit distance.

Question

What is the Levenshtein distance between AATGCTGCTT and AATGCATT?

Answer

3

 Beyond bioinformatics, the Levenshtein distance is often used in computational linguistics and natural language processing. For instance, check out *How to Write a Spelling Corrector* by Peter Norvig.

Levenshtein distance applies to biological sequences

• Substitution matrix describes the rate at which one character changes to other character states over time.

- Substitution matrix describes the rate at which one character changes to other character states over time.
- Example of DNA-damage-inducible 1/2 protein (Silva *et al.*, Nature Reports, 2016):

- Substitution matrix describes the rate at which one character changes to other character states over time.
- Example of DNA-damage-inducible 1/2 protein (Silva *et al.*, Nature Reports, 2016):

```
· ...DTGAQTT... (yeast)
```

- Substitution matrix describes the rate at which one character changes to other character states over time.
- Example of DNA-damage-inducible 1/2 protein (Silva *et al.*, Nature Reports, 2016):

```
...DTGAQTT... (yeast)...DSGAQTT... (fruit fly)
```

- Substitution matrix describes the rate at which one character changes to other character states over time.
- Example of DNA-damage-inducible 1/2 protein (Silva *et al.*, Nature Reports, 2016):

```
...DTGAQTT... (yeast)...DSGAQTT... (fruit fly)...DSGAQMT... (human)
```

- · Substitution matrix describes the rate at which one character changes to other character states over time
- Example of DNA-damage-inducible 1/2 protein (Silva et al., Nature Reports, 2016):

```
· ...DTGAQTT... (yeast)
· ...DSGAQTT... (fruit fly)
· ...DSGAQMT... (human)
```

- · Substitution matrix describes the rate at which one character changes to other character states over time
- Example of DNA-damage-inducible 1/2 protein (Silva et al., Nature Reports, 2016):

```
· ...DTGAQTT... (yeast)
· ...DSGAQTT... (fruit fly)
· ...DSGAQMT... (human)
```

- · Substitution matrix describes the rate at which one character changes to other character states over time
- Example of DNA-damage-inducible 1/2 protein (Silva et al., Nature Reports, 2016):

```
· ...DTGAQTT... (yeast)
· ...DSGAQTT... (fruit fly)
· ...DSGAQMT... (human)
```

• The simplest substitution matrix: the Identity matrix $\begin{bmatrix} \vdots & \ddots & \vdots \\ 0 & 0 & & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$

(1) What are the advantage and disadvantage of using the identity matrix? (2) What other alternatives can you imagine?

Substitution matrix continued

· Log-odds matrices: we can express the probabilities of substitution with log-odds scores. The scores matrix S is defined as $S_{i,j} = \log \frac{p_i \cdot M_{i,j}}{p_i \cdot p_j} = \log \frac{M_{i,j}}{p_j} = \log \frac{\text{observed frequency}}{\text{expected frequency}}$ where $M_{i,j}$ is the probability that character i transforms into character j, and p_i , p_i are the frequencies of character i and j.

Substitution matrix continued

- · Log-odds matrices: we can express the probabilities of substitution with log-odds scores. The scores matrix S is defined as $S_{i,j} = \log \frac{p_i \cdot M_{i,j}}{p_i \cdot p_j} = \log \frac{M_{i,j}}{p_j} = \log \frac{\text{observed frequency}}{\text{expected frequency}}$ where $M_{i,j}$ is the probability that character i transforms into character j, and p_i , p_i are the frequencies of character i and j.
- Commonly used log-odds substitution matrices

Substitution matrix continued

- · Log-odds matrices: we can express the probabilities of substitution with log-odds scores. The scores matrix S is defined as $S_{i,j} = \log \frac{p_i \cdot M_{i,j}}{p_i \cdot p_j} = \log \frac{M_{i,j}}{p_j} = \log \frac{\text{observed frequency}}{\text{expected frequency}}$ where $M_{i,j}$ is the probability that character i transforms into character j, and p_i , p_i are the frequencies of character i and j.
- · Commonly used log-odds substitution matrices
 - PAM (Point Accepted Mutation) matrix, developed by Margaret Dayhoff in the 1970s, works well to compare closely related species, e.g. rat and mouse.

Substitution matrix continued

- · Log-odds matrices: we can express the probabilities of substitution with log-odds scores. The scores matrix S is defined as $S_{i,j} = \log \frac{p_i \cdot M_{i,j}}{p_i \cdot p_j} = \log \frac{M_{i,j}}{p_j} = \log \frac{\text{observed frequency}}{\text{expected frequency}}$ where $M_{i,j}$ is the probability that character i transforms into character j, and p_i , p_i are the frequencies of character i and j.
- · Commonly used log-odds substitution matrices
 - PAM (Point Accepted Mutation) matrix, developed by Margaret Dayhoff in the 1970s, works well to compare closely related species, e.g. rat and mouse.
 - BLOSUM (BLOck SUbstitution Matrix), developed by Steven and Jorja G. Henikoff in early 1990s, works well for evolutionarily divergent sequences, say zebrafish and human.

The Needleman-Wunsch algorithm

Dynamic programming underlies the Needleman-Wunsch algorithm

The Smith-Waterman algorithm

SM reaches local alignment whereas NW reaches global alignment

How does BLAST work

Seuqnce query: David versus Goliath

Sequence query is frequently used in drug discovery

Anyone can query similar sequences using the BLAST tool

How BLAST in principle works

BLAST is a heuristic method

Statistical models are important components of bioinformatics

Probablistic modelling of biological sequences

Model DNA/RNA sequences using Markov chains

Markov chain is a probablistic model of biological sequences

Hidden Markov Models

HMMs allow sequence discrimination

Conclusions

Phylogenetic analysis of drug targets

- · Phylogenetic analysis of drug targets
 - · Is my target present in mouse/rat/rabbit...?

- · Phylogenetic analysis of drug targets
 - Is my target present in mouse/rat/rabbit...?
 - $\boldsymbol{\cdot}$ Is the function of my target conserved in animals?

- · Phylogenetic analysis of drug targets
 - Is my target present in mouse/rat/rabbit...?
 - · Is the function of my target conserved in animals?
- Prediction of RNA secondary structure

- · Phylogenetic analysis of drug targets
 - Is my target present in mouse/rat/rabbit...?
 - · Is the function of my target conserved in animals?
- · Prediction of RNA secondary structure
- · Protein sequence and structure analysis

- · Phylogenetic analysis of drug targets
 - Is my target present in mouse/rat/rabbit...?
 - · Is the function of my target conserved in animals?
- · Prediction of RNA secondary structure
- · Protein sequence and structure analysis
 - · Discussed in the follow-up sessions

References

· Rosalind

References

- Rosalind
- Teaching RNA algorithms by Backofen Lab at U Freiburg, with source code available on Github.

References

- Rosalind
- Teaching RNA algorithms by Backofen Lab at U Freiburg, with source code available on Github.
- · An Introduction to Applied Bioinformatics