Recitation 5/5

Sungwoo Jeong Tuesday 10AM, 11AM

May 5, 2020

Vector space of functions

Consider a vector space \mathbb{R}^n with some orthonormal basis $b = \{b_1, b_2, \dots, b_n\}$. Given $x \in \mathbb{R}^n$, how can we express x in terms of linear combination of b? How do we compute the coefficients?

As we learned in previous lectures, functions on \mathbb{R} form a vector space. (Why?)

We will now think about the vector space of nice functions, (nice in a sense where the integral is nicely defined on these functions - let's not go too deep with this) and the inner product of two functions f, g is defined as

$$< f,g> = \int_{[a,b]} n(x) f(x) g(x) dx$$

with an appropriate domain [a, b] and some normalizing function n(x).

Important example - the vector space of all polynomials with degree less than 3.

- The basis (functions) can be chosen as $\{1, x, x^2\}$. Let's set a = -1, b = 1. Now, compute the coefficients of $3x^2 + 2x + 4$. Why can't we use the previous inner product method for obtaining the linear combination coefficients?
- Now we take another basis, $\{1, x, \frac{1}{3}(x^2 1)\}$. It is orthonormal, indeed. Now let's compute the coefficient of linear combination for $3x^2 + 2x + 4$ with the inner product.
- For a given domain [-1,1], we can expand this basis to any degree to make a orthonormal basis of the whole polynomial functions. (Or with any domain [a,b]) This is called the **Orthogonal Polynomial**. The example here is a famous Legendre Polynomial.
- Abstractions and comparison between infinite dimensional vector space and vector space \mathbb{R}^n

Fourier Series

(Unfortunately) Mathematicians found many more basis for the whole function vector space. The one that is most frequently used is the Fourier basis.

The basis is $\{\sin x, \sin 2x, \dots\} \cup \{\frac{1}{\sqrt{2}}, \cos x, \cos 2x, \dots\}$ and the inner product is given as,

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-[\pi, \pi]} f(x)g(x)dx$$

Fourier basis is important since

- Any function(nice function, of course) can be expressed as a sum of **periodic** functions
- It is proven that for usual functions, the linear combination coefficients of $\sin nx$, $\cos nx$ with large n is very small. In other words, we only need to compute first few coefficients to nicely approximate the original function.

Problems

1. Prove that Fourier basis is orthonormal.

2. Function f(x) is 0 on ..., $[-3\pi, -2\pi]$, $[-\pi, 0]$, $[\pi, 2\pi]$, ... and 1 on ..., $[-2\pi, -\pi]$, $[0, \pi]$, $[2\pi, 3\pi]$, Find Fourier series of f(x).

3. Consider function $f(x) = x^2$. Denote Fourier expansion of f as

$$f(x) = \frac{a_0}{\sqrt{2}} + \sum_{j=1}^{\infty} a_j \cos jx + \sum_{j=1}^{\infty} b_j \sin jx$$

Compute first few b_i coefficients. What do we get? Explain why.

4. Consider function $g(x) = x^3$. Without any computation, what can we deduce about Fourier coefficients of g?(Hint: similar to problem 3)

5. Similarly explain why some coefficients in problem 2 can be easily deduced without hard computation (i.e. without integration).

ANSWERS

1. For $i \neq j$,

$$\int_{-\pi}^{\pi} \sin ix \sin jx dx = \frac{1}{2} \int_{-\pi}^{\pi} (\cos(i+j)x - \cos(i-j)x) dx = 0$$

similarly product of cosines are zeros. Product of sine and cosine is also zero since it is an odd function.

2. If we let $f(x) = \frac{a_0}{\sqrt{2}} + \sum_{j=1}^{\infty} a_j \cos jx + \sum_{j=1}^{\infty} b_j \sin jx$, $a_0 = \frac{1}{\pi} \int_0^{\pi} \frac{1}{\sqrt{2}} dx = \frac{1}{\sqrt{2}}$. For cosine functions,

$$a_n = \frac{1}{\pi} \int_0^{\pi} \cos nx dx = \frac{1}{n\pi} \sin nx \Big|_{x=0}^{\pi} = 0$$

and for sine functions,

$$b_n = \frac{1}{\pi} \int_0^{\pi} \sin nx dx = -\frac{1}{n\pi} \cos nx \Big|_{x=0}^{\pi} = \frac{1 - \cos n\pi}{n\pi} = \frac{1 - (-1)^n}{n\pi}$$

So the Fourier series is,

$$f(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n\pi} \sin nx$$

- 3. Computing first few coefficients, we obtain all b_j zeros. This is because the function x^3 is an odd function, so it is only expressed as sum of odd basis functions(cosines).
- 4. Similarly, since x^2 is an even function, the coefficients of cosine basis a_j all become zero.
- 5. For problem 2, observe that if we subtract 1/2 from the original function, it returns an odd function. So $a_0 = \frac{1}{\sqrt{2}}$ and $a_j = 0$ is easily deduced without any hard computation.