NASA CR-134662 PWA-5069

TWO-STAGE LOW NOISE ADVANCED TECHNOLOGY FAN

I. AERODYNAMIC, STRUCTURAL, AND ACOUSTIC DESIGN

30 September 1974

by

H. E. Messenger, J. T. Ruschak and T. G. Sofrin

Pratt & Whitney Aircraft Division United Aircraft Corporation

Prepared for

National Aeronautics and Space Administration

NASA Lewis Research Center Contract NAS3-16811

1. Report No.	2. Government Acces	ssion No.	3. Recipient's Catalo	g No.
NASA CR-134662				
4. Title and Subtitle Two Store I ow Noise Advance	and Tachnalam	. Eam	5. Report Date	ombor 1074
Two-Stage Low Noise Advance				ember 1974
I. Aerodynamic, Structural, a	and Acoustic D	esign	6. Performing Organi	zation Code
7. Author(s)			8. Performing Organi	zation Report No.
H. E. Messenger, J. T. Ruscha	k and T. G. So	frin	PWA-5069	·
			10. Work Unit No.	
9. Performing Organization Name and Address				
Pratt & Whitney Aircraft Divi	sion		11. Contract or Grant	No.
United Aircraft Corporation			NAS3-16811	
East Hartford, Connecticut 0	6108		13. Type of Report a	nd Period Covered
12. Sponsoring Agency Name and Address			Contractor F	Report
National Aeronautics and Spa	ice Administrat	ion	14. Sponsoring Agenc	
Washington, D. C. 20546				
15. Supplementary Notes	***			
Design Report – Project Man	ager, W. L. Bee	de, Fluid System	Components D	ivision.
Technical Advisor, M. F. Heid			on.	
NASA – Lewis Research Cen	ter, Cleverand,	Onio 44133		
A two-stage fan was designed	to reduce noise	as much as 20 di	halarr arman	
The first stage roter has a dec	ion tin anadat	5.265.9 ms/s = (1.2)	o below current	requirements
The first-stage rotor has a design tip speed of 365.8 m/sec (1200 ft/sec) and a hub/tip ratio of 0.4. The fan was designed to deliver a pressure ratio of 1.9 with an adiabatic efficiency				
of 85.3 percent at a specific i				
Noise reduction devices inclu-			-	
splitter, a translating centerbo				
proper ratio of blades and var				
resettable stators, split outer	casings, and cap	pability to go to cl	lose blade-row	spacing.
17. Key Words (Suggested by Author(s))		18. Distribution Statement	· · · · · · · · · · · · · · · · · · ·	
Quiet Fan Acous	tic Design			
Two-Stage Fan Acous	tic Treatments			
Aerodynamic Design Sonic	Inlet	Unclassified - U	nlimited	
Structural Design				
19. Security Classif. (of this report)	20. Security Classif. (o	of this page)	21. No. of Pages	22. Price*
Unclassified	Unclassi	· •	170	22, 11100
	ı Unuassı	uicu	1,0	I

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	1
AERODYNAMIC-ACOUSTIC CONSIDERATIONS	2
FLOWPATH AND VELOCITY VECTOR DIAGRAM DESIGN	3
Design Iterations	3
Losses	4
Flow Blockages	4
Air Angles and Velocities	5
Flowpath Spacings	5
Loadings	6
Exit Duct Aerodynamic Design	7
AIRFOIL DESIGN	8
Rotors	8
Airfoil Series	8
Partspan Shrouds	8
Chords, Thicknesses, and Numbers of Blades	8
Incidence and Deviation Angles	9
Channel Areas	10
Rotor Geometry	10
Stators	10
Airfoil Series	10
Chords and Thicknesses	10
Incidence and Deviation Angles	11
Channel Areas	11
Stator Geometry	12
INLET AERODYNAMIC DESIGN	12
Objectives and Techniques	12
Sonic Inlet Geometry	13
Inlet Cowling and Centerbody	13
Sonic Inlet Lip Shapes	13
Inlet Mach Number Distribution, Boundary Layer Characteristics, and Estimated Pressure Recoveries	13

TABLE OF CONTENTS (Cont'd)

	Page
STRUCTURAL AND VIBRATION ANALYSIS	14
Rotors	15
Blade and Disk Vibration	15
Rotor Blade Stresses	15
Rotor Blade Flutter	16
Partspan Shrouds	17
Disk and Attachment Stresses	18
Stators	
Stator Vibration	18
Stator Stresses	18
Stator Flutter	19
Interstage Seals	19
Sonic Inlet Support Struts	19
Critical Speeds and Forced Response	19
Baseline Standard Inlet Cowling Configuration	20
Sonic Inlet Configuration	20
ACOUSTIC DESIGN	21
Sonic Inlet, Acoustic Considerations	21
Flowpath and Blade Geometry	21
Rig Spectra Predictions	22
Treatment Attenuation Targets	
Acoustic Treatment Selection	23
Inlet	23
Interstage and Aft Fan Duct	24
Predicted Attenuation — Interstage and Aft Treatment	25
Competing Noise Sources	25
APPENDIXES	
A. Symbols and Definitions	89
B. Aerodynamic Summaries	95
C. Airfoil Geometry on Design Conical Surfaces	105
D. Airfoil Coordinates on Manufacturing Surfaces	109
E. Two-Ring Acoustic Inlet Aerodynamic and Acoustic Design	157
REFERENCES	161
DISTRIBUTIONLIST	163

LIST OF FIGURES

Figure	Title	Page
1	Rotor and Stator Total Loss Spanwise Profiles	26
2	Rotor Adiabatic Efficiency Spanwise Profiles	27
3	Rotor Inlet and Exit Relative Air Angles Spanwise Profiles	28
4	Rotor Meridional Velocity Spanwise Profiles	29
5	Stator Meridional Velocity Spanwise Profiles	29
6	Inlet and Exit Mach Number Spanwise Profiles for Rotors	30
7	Inlet and Exit Mach Number Spanwise Profiles for Stators	30
8	Fan Flowpaths	31
9	Schematic of the Quiet Two-Stage Fan	32
10	Rotor Diffusion Factor Spanwise Profiles	33
11	Stator Diffusion Factor Spanwise Profiles	33
12	Total Pressure Ratio Spanwise Profiles	34
13	Stator Inlet and Exit Absolute Air Angle Spanwise Profiles	34
14	Fan Exit Duct and Acoustic Splitter Flowpath	35
15	Multiple-Circular-Arc Airfoil Definitions	36
16	Rotor Airfoil Thickness Spanwise Profiles	37
17	Rotor Chordwise Location of Airfoil Maximum Thickness Spanwise Profiles	37
18	Rotor Chord Spanwise Profiles	38
19	Rotor Inlet and Exit Metal Angle Spanwise Profiles	39
20	Rotor Incidence Angle Spanwise Profiles	40

LIST OF FIGURES (Cont'd)

Figure	Title	Page
21	Rotor Deviation Angle Spanwise Profiles	41
22	Minimum Rotor Channel Area Ratio Spanwise Profiles	42
23	Rotor Front Camber Angle and Chord-Camber Parameter Spanwise Profiles	43
24	Rotor Channel Area Ratios Versus Axial Distance	44/45
25	Meridional View and Polar Representation of Blade Mean-Camber- Line	46
26	Airfoil Coordinate Definition for Manufacturing Sections	46
27	Stator Chord Spanwise Profiles	47
28	Stator Chordwise Location of Maximum Thickness Spanwise Profiles	48
29	Stator Airfoil Thickness Spanwise Profiles	48
30	Stator Incidence Angles Spanwise Profiles	49
31	Stator Deviation Angles Spanwise Profiles	50
32	Stator Inlet and Exit Metal Angles Spanwise Profiles	51
33	Ratios of Channel-Throat-Area to Captured-Area Versus Span for Stators	52
34	Stator 1 Front Camber Angle and Chord-Camber Parameter Spanwise Profiles	53
35	Stator 1 Channel Area Ratios Versus Axial Distance	54
36	Baseline Standard and Sonic Geometries	55
37	Baseline Standard Inlet Outer Wall Mach Number and Shape Factor Distributions	56
38	Sonic Inlet Throat Mach Number Spanwise Profile — Approach Configuration	57

LIST OF FIGURES (Cont'd)

Figure	Title	Page
39	Mach Number Distributions Along Inlet Walls — Approach Configuration	57
40	Mach Number Distributions Along Inlet Walls — Cruise Configuration	58
41	Mach Number Distributions Along Inlet Walls — Takeoff Configuration	59
42	Boundary Layer Shape Factor Distributions Along Inlet Walls — Cruise Configuration	60
43	Boundary Layer Shape Factor Distributions Along Inlet Walls — Approach Configuration	61
44	Boundary Layer Shape Factor Distributions Along Inlet Walls- Takeoff Configuration	62
45	Rotor 1 Campbell Diagram	63
46	Rotor 2 Campbell Diagram	64
4 7	Rotor 1 Tip Mode Campbell Diagram	65
48	Rotor 2 Tip Mode Campbell Diagram	66
49	Rotor 1 Goodman Diagram	67
50	Rotor 2 Goodman Diagram	67
51	Schematic of Rotor Partspan Shrouds	68
52	Stator 1 Campbell Diagram	69
53	Stator 2 Campbell Diagram	70
54	Rotor Sideplate Seal Resonance	71
55	Stator Seal Resonance	71
56	Sonic Inlet Support Struts, Campbell Diagram	72
57	Spring-Mass Model for Critical Speed Analysis - Standard Inlet	73
58	Spring-Mass Model for Critical Speed Analysis - Sonic Inlet	74
59	Critical Speed Mode Shapes	75/76

LIST OF FIGURES (Cont'd)

Figure	Title	Page
60	Schematic of Sonic Inlet Configuration	77
61	Effect of Rotor - Stator Spacing on Blade-Passing Frequency Noise Level	78
62	Fan Aft One-Third Octave Spectra – Untreated	79
63	Fan Aft Noise Attenuation Targets	80
64	Inlet Estimated Attenuation Due to Wall Treatment - Approach	81
65	Summary of Acoustic Treatment	82
66	Treatment Attenuation — Fan Discharge Ducts	83
67	Tuning Curves	84
68	Analytically Predicted Attenuation of Aft Fan Noise at Takeoff	85
69	Predicted Jet and Treated Fan Noise Levels - Approach	86
70	Predicted Jet and Treated Fan Noise Levels - Takeoff	87
71	Two-Ring Acoustic Inlet Design Schematic	158
72	Two-Ring Acoustic Inlet Predicted Attenuation	159

LIST OF TABLES

T	able	Title	Page
	I	General Aerodynamic Design Parameters	3
	II	Design Performance	4
	III	Flow Blockages (% of Annulus Area) at Blade Edge Axial Location	5
	IV	Predicted Blade Aerodynamic Diffusion Factors at Stall	7
	V	Flow Blockages Assumed for Exit Duct Design	7
	VI	Rotor Blading Parameters	9
	VII	Stator Blading Parameters	11
	VIII	Baseline and Sonic Inlet Total Pressure Recoveries	14
	IX	Summary of Rotor Steady Stresses - 105% Design Speed	16
	X	Rotor First Coupled Mode Flutter Parameters	17
	XI	Partspan Shroud Parameters	17
	XII	Rotor Disk and Attachment Stresses - 105% Design Speed	18
	XIII	Analytically Predicted Fan Aft PNL at 45.7 Meter (105 Foot) Radius	25
	XIV	Identification of Aerodynamic Summary Table Headings	95
	XV	Identification of Spans and Diameters for Blade Element Data	96
	XVI	Aerodynamic Summary — Rotor 1	97/98
	XVII	Aerodynamic Summary – Stator 1	99/100
	XVIII	Aerodynamic Summary — Rotor 2	101/102
	XIX	Aerodynamic Summary — Stator 2	103/104
	XX	Airfoil Geometry on Design Conical Surfaces - Rotor 1	105
	XXI	Airfoil Geometry on Design Conical Surfaces - Stator 1	106
	XXII	Airfoil Geometry on Design Conical Surfaces – Rotor 2	107

LIST OF TABLES (Cont'd)

Table	Title	Page
XXIII	Airfoil Geometry on Design Conical Surfaces — Stator 2	108
XXIV	Airfoil Coordinates on Manufacturing Surfaces - Rotor 1	109/123
XXV	Airfoil Coordinates on Manufacturing Surfaces - Stator 1	124/133
XXVI	Airfoil Coordinates on Manufacturing Surfaces — Rotor 2	134/147
XXVII	Airfoil Coordinates on Manufacturing Surfaces – Stator 2	148/156
XXVIII	Two-Ring Acoustic Inlet Treatment Parameters	157

TWO-STAGE, LOW NOISE ADVANCED TECHNOLOGY FAN I. AERODYNAMIC, STRUCTURAL, AND ACOUSTIC DESIGN

H. E. Messenger, J. T. Ruschak and T. G. Sofrin

SUMMARY

Advanced, long-range, commercial transport aircraft will require a major reduction in engine noise without compromising requirements for high efficiency and adequate stall margin. To achieve a reduction of noise 20 dB below current requirements and to attain efficiency levels, stall margin, flow, and pressure ratio typical of an advanced fan, a two-stage, low tip-speed fan was selected as optimum for the flight Mach number range of 0.85 to 0.90.

Design features to reduce noise include use of low tip speeds and moderate blade aerodynamic loadings, proper relationship of the number of blades and vanes, axial spacings between blade rows of two aerodynamic chord lengths, acoustically treated casing walls, a flowpath exit acoustic splitter, and a translating centerbody sonic-inlet device.

The aerodynamic design was governed by the approximate parameters specified in the contract and applicable test data. Successful NASA-sponsored research fans tested by P&WATM were used to establish criteria for good efficiency and stall margin. Important fan design parameters include a pressure ratio of 1.90 with a fan adiabatic efficiency of 85.3 percent, a first-stage rotor tip speed of 365.8 m/sec (1200 ft/sec), and a specific flow at the first-stage rotor inlet of 209 kg/sec/m² (42.85 lbm/sec/ft²). Other features of the design include a fan flowpath with a constant outer diameter of 0.836 m (32.90 in.), constant diameter hub sections between blades and vanes to facilitate use of axial spacers for alternate test configurations, multiple-circular-arc rotor airfoils, stators with resettable stagger angle capability, and split outer casings to accommodate on-stand configuration changes.

Structural and vibration analyses included calculation of blade-disk frequencies and their resonances with rig excitations, blade and vane steady-state stresses and flutter parameters, rig critical speeds, and rotor forced response to unbalance. Predicted stresses due to centrifugal, gas bending, and untwist forces are well within the capabilities of the materials selected. To avoid resonances and flutter, first-stage and second-stage rotor blades have a partspan shroud at 66.5 and 60 percent span from the hub, respectively. All blades and vanes were predicted to be free of flutter.

INTRODUCTION

A fan research program is being conducted by P&WA for NASA-Lewis Research Center under Contract NAS3-16811. The objective of the program is to develop fan technology for application in turbofan engines for an advanced, long-range commercial transport with a cruise Mach number of 0.85 to 0.9. These future engines will be required to meet stringent noise reduction goals with minimum performance penalties. To achieve these goals, fans included in such engines must, during their design phase, incorporate features both to minimize the generation of noise and to obtain the maximum suppression of the noise generated.

An earlier NASA-Lewis study had been conducted for Advanced -Technology-Transport (ATT) application to determine the optimum fan configuration and performance parameters for a cruise Mach number of 0.85 to 0.9 and the stringent noise reduction goal of 20 dB below current requirements (FAR 36). The study showed that the optimum configuration was a low tip-speed, two-stage fan with a low hub/tip ratio [ref. 1]. The optimum pressure ratio was 1.9 and the tip speed was 365.8 m/sec (1200 ft/sec). Under current program, Contract NAS3-16811, this optimum fan is to be designed, constructed, and tested.

Several features that have the potential for minimizing noise were incorporated in this two-stage fan. These features include substantial axial spacing between blades and vanes, proper relationship of the number of blades and vanes, extensive use of acoustic treatment in casing walls and in a flowpath exit acoustic splitter, and a sonic inlet device using a translating centerbody.

Aerodynamic conditions for the fan are within the range of data obtained on two earlier, successful NASA-Lewis sponsored research fans tested by P&WA: 1) a 304.8 m/sec (1000 ft/sec) tip-speed, low-noise, single-stage fan [ref. 2] and 2) a two-stage, 442.0 m/sec (1450 ft/sec) tip-speed fan [ref. 3]. The information obtained from these two previous programs provide a solid foundation for performance predictions and for selection of blade and vane sections for the current design.

This report presents details of the aerodynamic, structural, and acoustic design of the current two-stage fan. Special terms, abbreviations, and symbols used in this report are defined in Appendix A.

AERODYNAMIC-ACOUSTIC CONSIDERATIONS

Both general design parameters and detailed elements of the fan design were significantly affected by the need to incorporate low noise features. A low tip-speed of 365.8 m/sec (1200 ft/sec) and moderate blade loadings were selected for low noise. As a result, two stages were required to obtain the design pressure ratio. A rather high fan-flow/unitannulus-area of 209.2 kg/sec/m² (42.85 lbm/sec/ft²) was chosen consistent with low engine frontal area and minimum diffusion from sonic inlet throat to fan inlet. The numbers of blades and vanes were chosen to restrict propagation of interaction tone noise at bladepassing frequency and yet maintain the desired solidities. These aerodynamic-acoustic considerations imposed a blade number relationship of s = 2r + 6, where s is the number of stator vanes in a given stage and r the number of upstream rotor blades. To reduce bladepassing tone noise, axial spacings between blade and vane rows were set such that at all spanwise positions the leading edge of each blade row is a minimum of two aerodynamic chords downstream of the trailing edge of the upstream blade. Constant diameter casing wall sections are provided between blade rows to permit tests with alternate spacings and to facilitate incorporation of wall acoustic treatments. Fan exit ducting was designed to include a removable acoustically treated flow splitter as well as wall treatments. A two-ring, acoustic inlet was initially selected to aid in suppression of forward radiated noise; however, this effort was discontinued in favor of a translating centerbody sonic inlet device. Acoustic treatments were also included in the inlet casing walls.

FLOWPATH AND VELOCITY VECTOR DIAGRAM DESIGN

General aerodynamic design parameters (Table I) for the two-stage low noise fan were chosen to conform with contract requirements, to provide similarity with advanced-technology NASA fan-stages of proven high performance, and to permit the use of existing hardware and test facilities. Because this fan is for application in an engine with a rather high bypass ratio, representative aerodynamic and acoustic data can be obtained without splitting the duct and core flow at the fan exit.

TABLE I
GENERAL AERODYNAMIC DESIGN PARAMETERS

	CONTRACT WORK STATEMENT	DESIGN
Overall Total Pressure Ratio	1.8-2.0	1.90
Overall Adiabatic Efficiency (%)	-	85.3
Parameters at Inlet to First Rotor:		
Tip Diameter - meters (inches)	0.762 (30) (min.)	0.836 (32.90)
Tip Speed - m/sec (ft/sec)	335.3-396.2 (1100-1300)	365.8 (1200)
Hub/Tip Ratio	0.4 (approx)	0.4
Specific Flow - $kg/sec/m^2$ ($lbm/sec/ft^2$)		209.2 (42.85)
Corrected Flow - kg/sec (lbm/sec)		96.39 (212.5)
Corrected Speed (rpm)	-	8367

DESIGN ITERATIONS

The flowpath and velocity vectors used to design the rotor and stator blade elements of the fan were determined from a series of iterations. The iterations were started using a reasonable flowpath shape and general design parameters consistent with requirements for a high bypass ratio turbofan engine, together with estimated efficiency profiles and flow blockages. Velocity vectors and flow conditions were then calculated by a computation system that provides an axisymmetric, compressible flow solution of continuity, energy, and radial equilibrium equations, with curvature, enthalpy, and entropy gradient terms included in the equilibrium equation [Appendix A of ref. 4]. To control velocities and loadings and to maximize predicted stall margin, a series of streamline analysis program runs was used to adjust flowpath shape, blade solidities, and spanwise total pressure slopes. Losses were reestimated using correlations of loss versus Mach number and loading for each significant

aerodynamic change. Stall margin was estimated by using the flowfield calculation to predict blade loading increases as the fan is back-pressured and by using loading limits established from test data as criteria for stall. The final set of design velocity vectors, together with assumed solidities and numbers of blades, was then used in the design of rotor and stator blade elements. Stress and vibration analyses were performed concurrently with the aerodynamic design to insure that the aerodynamic design would be compatible with mechanical design criteria. In subsequent flowpath and velocity vector iterations, calculation stations were revised to conform to actual leading and trailing edge locations of each blade and vane row and to retain desired axial spacings between blade rows. Performance parameters at the design point are summarized in Table II.

TABLE II

DESIGN PERFORMANCE

	PRESSURE RATIO		ADIABATIC EFFICIENCY	
	Local (per blade row)	Cumulative	Local (per blade row)	Cumulative
Blade Row				
Rotor 1	1.485	1.485	89.5%	89.5%
Stator 1	0.984	1.461		85.6%
Rotor 2	1.317	1.924	90.9%	87.3%
Stator 2	0.987	1.898		85.3%
Stage				
First	1.461		85.6%	
Second	1.298		86.1%	

LOSSES

Design values of rotor loss (Figure 1, lower set of curves) were estimated using a correlation of total loss versus inlet relative Mach number and loading based on fan rotor test data. No additional losses were added in the partspan shroud regions. Design stator losses (Figure 1, upper set of curves) were based on data correlated as loss parameter versus diffusion factor and percent span. A comparison of the final estimated values of rotor and stator design losses with data from tests of the 304.8 m/sec (1000 ft/sec) single-stage [ref. 5] and the 442.0 m/sec (1450 ft/sec) two-stage [ref. 3] NASA fans is also shown in Figure 1. The corresponding spanwise profiles of rotor adiabatic efficiency are given in Figure 2.

FLOW BLOCKAGES

Flow blockages were included in the aerodynamic design to account for boundary layer growth on casing walls and to account for the presence of a partspan shroud on each rotor. Blockages due to casing boundary layers at the fan inlet were calculated from analytical predictions of displacement thicknesses. Wall boundary layer growth through the blade rows was estimated from test data from the 442.0 m/sec (1450 ft/sec) fan which achieved its design flow rate [ref. 3]. In addition, to account for the presence of the rotor partspan

[†] Unless otherwise indicated, all data shown in comparisons are for test points at design speed on an operating line passing through the design point of the referenced fan.

shrouds, a blockage equal to the percent of annulus area occupied by each shroud was applied at the exit of the rotors, and approximately one-fourth of this amount was used at the inlet of each rotor. In calculating the design velocity vectors and flow conditions, the total blockages listed in Table III were applied equally to all stream tubes at each of the indicated axial locations.

TABLE III

FLOW BLOCKAGES (% OF ANNULUS AREA)
AT BLADE EDGE AXIAL LOCATIONS

LOCATION	TOTAL BLOCKAGE
R1 L. E.	2.6
R1T. E.	4.9
S1 L. E.	3.1
S1 T. E.	3.3
R2 L. E.	3.7
R2 T. E.	6.1
S2 L. E.	4.3
S2 T. E.	4.6

AIR ANGLES AND VELOCITIES

The fan was designed with a constant tip diameter to allow all the flowpath convergence to be taken at the root of the flowpath, which tends to minimize critical root-loadings and the large past-axial turnings inherent in a low speed, low hub/tip ratio fan rotor. As shown in spanwise profiles of flow angle (Figure 3), the first-stage rotor is designed to turn the flow approximately 30 degrees past axial at the root, about 10 degrees less than the rotor design value of the 304.8 m/sec (1000 ft/sec) fan [ref. 6].

Fan exit flow (aft fan-duct) is axial, as specified by contract, and the annulus area is set to provide an average exit Mach number of about 0.40, a practical value for effective noise treatment and for low losses from struts and ducting downstream of the fan. Flowpath convergence and curvature of the inner casing walls between the inlet spinner and fan exit were used to control velocity profiles and blade aerodynamic loadings (diffusion factors). Resulting profiles of meridional velocity and Mach number at leading and trailing edges of blade rows are shown in Figures 4 through 7.

FLOWPATH SPACINGS

Two flowpath configurations are shown in Figure 8. The lower configuration is the basic test configuration, and the upper configuration is an alternate configuration with more

closely spaced blade rows. To reduce noise associated with blade-vane wake interactions, the axial spacings between adjacent blade rows of the basic flowpath (wide blade-spacing, lower configuration) were set such that at all spanwise positions the leading edge of each blade row is a minimum of two aerodynamic chords downstream of the trailing edge of the upstream blade row. Constant radius hub sections were specified between blade rows to facilitate the use of spacers for increasing or decreasing axial lengths between blade rows for alternate test configurations. The alternate configuration, the upper configuration in Figure 8, has axial spacings between successive blade rows of 1, 1, and 2 aerodynamic chords and an overall length approximately 0.17 m (6.5 in.) less than that of the basic configuration. Streamline analysis calculations indicate that velocity vectors for the two configurations are substantially the same and, hence, no significant differences in aerodynamic performance are predicted.

A schematic showing the mechanical layout of the rig is presented in Figure 9.

LOADINGS

Spanwise profiles of design diffusion factors for the current fan are compared in Figures 10 and 11 with the diffusion factors that had been obtained from tests of the two previous research fans. The Figures show that the average loadings of the current fan are lower than those of the 304.8 m/sec (1000 ft/sec) single-stage fan [ref. 5] and the 442.0 m/sec (1450 ft/sec) two-stage fan [ref. 3] at test points where each was operating with a practical stall margin and high efficiency. Considerable effort was devoted to balancing the design loadings among blade rows to achieve maximum predicted stall margin. Parameters which were varied in these attempts include hub casing contours, average total pressure ratios and spanwise total pressure slopes of each rotor, and first-stage stator exit air angles. Stall margin was estimated by using the flowfield calculation to predict blade loading increases as the fan is back-pressured and using loading limits established from test data as criteria for surge. The fan stall margin obtained with this method, which in previous applications has given good agreement with test values, is about 18 percent. The predicted fan stall was set by the second-stage stator hub which reached diffusion factor levels of 0.65, considered the loading limit for stators.

The resulting higher loadings and design pressure ratios of the first-stage relative to second-stage, as shown in Figures 10, 11 and 12, reflect a provision for an anticipated, more rapid increase of second-stage blade loadings with an increase in fan back-pressure. Radial profiles of total pressure were sloped negatively (i.e., higher pressure near the hub than near the tip) to obtain high velocities on the hub wall to reduce critical loadings. Also, as part of the attempt to achieve a desirable loading balance, flow angles were set at 7.5 degrees at the exit of the first-stage stator (Figure 13).

The predicted loadings for the four blade-rows at the estimated stall point are presented in Table IV below.

TABLE IV

PREDICTED BLADE AERODYNAMIC DIFFUSION FACTORS AT STALL

	HUB (5% Flow)	MEAN (50% Flow)	TIP (90% Flow)
Rotor 1	0.55	0.55	0.51
Stator 1	0.62	0.46	0.45
Rotor 2	0.61	0.47	0.42
Stator 2	0.65	0.47	0.50

Tabulations of aerodynamic parameters at rotor and stator leading and trailing edges are provided in Appendix B (Tables XVI to XIX).

EXIT DUCT AERODYNAMIC DESIGN

The exit ducting and acoustic splitter contours for the fan were selected: 1) to provide conical casing surfaces convenient for incorporation of acoustic treatment, 2) to control Mach numbers for low losses and low noise, and 3) to allow use of existing rig hardware. Blockages were included in the flowfield calculation in order to account for boundary layer growth along the four flow-surfaces of the exit duct, and annulus areas were gradually increased along the duct to compensate for boundary layer growth to hold a Mach number of about 0.4 throughout the duct at the design point. The boundary layer parameters were estimated from limited test-data on flow over a perforated plate which is qualitatively similar to the acoustic treatments of the present design. Annulus blockages were set somewhat higher than are probably required, which should provide ability to operate at lower than design back pressure without choking of the flow in aft portions of the duct. Exit duct blockage values are listed in Table V. Use of these parameters and of an existing inner support structure resulted in the nearly parallel sloped duct casing walls and splitter contours as shown in Figure 14.

TABLE V
FLOW BLOCKAGES ASSUMED FOR EXIT DUCT DESIGN (% OF ANNULUS AREA)

	ION FROM ROTOR 1	
ROOT L.E. REF	FERENCE PLANE	TOTAL BLOCKAGE
(Meter)	(inch)	(%)
1.0363	40.8	5.6
1.0668	42.0	6.0
1.3208	52.0	7.3
1.5748	62.0	8.9
1.8288	72.0	10.5
2.0930	82.4	12.2
2.3368	92.0	12.2

Splitter geometry was determined from acoustic treatment dimensions, which set splitter thickness at 0.0157 m (0.62 in.), and from the previously discussed Mach number considerations. The splitter nose was designed as an ellipse with a ratio of semi-major to semi-minor axis of 2.5:1, and the splitter trailing edge was designed as a boattail with a 15-degree included angle. In order to reduce the splitter incidence angle, and hence to eliminate undersirable flow separations at the fan aerodynamic design point, the splitter nose was inclined at an angle of 3 degrees with respect to the rig centerline as compared to a 7-degree angle for the major portion of the splitter. The splitter is supported by two sets of five struts which are circumferentially aligned with five exit duct support struts (Figure 14). These struts are contoured as 400 series airfoils.

AIRFOIL DESIGN

ROTORS

Airfoil Series

Rotor blades for both stages of the fan were designed using multiple-circular-arc (MCA) airfoils generated on conical surfaces which approximate streamsurfaces of revolution. As shown in Figure 15, each MCA airfoil section is defined by specifying a value of total chord, front chord, total camber, front camber, maximum thickness and its chordwise location, and leading and trailing edge radii. Blades of this airfoil series have been used successfully in several applications, providing much useful test data for design of airfoils in the transonic and high subsonic Mach number regimes. Such data have been applied to the present design.

Partspan Shrouds

Both rotors have a partspan shroud to provide mechanical stability. These shrouds are located at 66.5 and 60 percent span from the hub of rotor 1 and rotor 2, respectively, with relative spanwise positions chosen such that the second-stage rotor shroud lies approximately in line with the expected wakes from the first-stage rotor shroud, thus minimizing total loss and other aerodynamic penalties normally associated with the shrouds.

Chords, Thicknesses, and Numbers of Blades

A summary of rotor blading parameters is given in Table VI. Chords, solidities, and numbers of blades were chosen to be consistent with acceptable aerodynamic loadings, moderate axial lengths, structural requirements, low noise, and previous experience. In particular, to restrict propagation of blade-vane interaction noise, the numbers of blades and vanes were selected according to the relation s = 2r + 6, where s is the number of stator vanes in a given stage and r the number of upstream rotor blades. The number of rotor 1 blades was determined according to the relation s = 2r + 6, where s is the number of stator vanes in a given stage and r the number of upstream rotor blades. The number of rotor 1 blades was determined flutter-free operation and by maximum solidity limits which were set by channel flow area requirements. The number of rotor 2 blades was selected to provide a 5:4 ratio for the number-of-rotor-2 blades to the the number-of-rotor-1 blades to give desirable fan noise characteristics (see the Acoustic Design Section).

TABLE VI
ROTOR BLADING PARAMETERS

	R1	R2
Number of Airfoils	28	35
Airfoil Series	MCA	MCA
Aspect Ratio (1)	2.75	2.54
Aspect Ratio (2)	2.19	2.21
Taper Ratio (3)	1.232	1.028
Hub Chord - meter (inch)	0.0897 (3.530)	0.0859 (3.382)
Tip Chord - meter (inch)	0.1105 (4.350)	0.0883 (3.476)
Tip Solidity	1.18	1.18
Hub Solidity	2.28	2.14

- (1) Average length/axially projected hub chord
- (2) Average length/chord at tip
- (3) Tip chord/hub chord

Rotor maximum-thickness to chord ratios, t/c, (Figure 16) were selected to provide mechanical stability while maintaining minimum airflow blockage. The chordwise locations of maximum thickness for both rotors (Figure 17) were set to give the blades the minimum possible leading edge wedge angles without creating cusp-shapes in the front portion of the blades. Rotor total chords and front chords are shown in Figure 18.

Incidence and Deviation Angles

Rotor leading and trailing edge metal angles (Figure 19) were determined from application of incidence and deviation criteria to the design velocity vectors. For rotor airfoil sections whose inlet relative Mach number exceeded 1.0, incidence angles ($i_{ssa'}$) were set at a location halfway between the leading edge and the point from which a Mach wave emanates that meets the leading edge of the following blade. A nominal design value of $i_{ssa'}$ of 1.5 degrees was chosen to account for development of the suction surface boundary layer, blockage at the blade leading edge, and bow wave losses. Actual values of incidence for rotors of the subject design (Figure 20) varied between approximately 1.0 and 2.4 degrees, the variation resulting from a selection of geometry to fulfill channel area requirements and to provide smooth blades. For subsonic sections, incidences were chosen at the leading edge at values consistent with minimum loss data from previous tests and with smooth distributions of blade geometry.

Rotor deviation angles were calculated using P&WA's cascade method modified by correction factors based on applicable rotor test data. Figure 21 shows the predicted deviations and comparisons with deviation angles calculated using Carter's Rule.

Channel Areas

To provide sufficient fan flow capacity while allowing the rotors to operate near minimum loss, the minimum critical area ratio $(A/A^*)_{min}$ in channels between adjacent blades for both rotors (Figure 22) was set at approximately 1.03 over most of the span. Desired channel areas were obtained by varying the chordwise distribution of airfoil camber. Near the location of each shroud, front camber was increased to provide higher values of $(A/A^*)_{min}$. In calculating A^* through the blade channels, losses were distributed in the following manner: no loss was applied ahead of the assumed normal shock at the blade passage entrance, a normal shock loss was applied at the blade passage entrance, and the remaining loss was distributed linearly through the rest of the channel.

The resulting profiles of front camber angle and chord-camber parameter are shown in Figure 23. Distributions of flow area ratio through the blade channels of both rotors are shown in Figure 24 for several spanwise locations. The distinctive shape of the A/A^* distribution at the root of rotor 1 is typical of a rotor root with past-axial turning [ref. 6].

Rotor Geometry

Rotor geometry on design conical surfaces is summarized in Appendix C (Tables XX and XXII); for each airfoil section, two values of total and front camber are tabulated. Figure 25 gives a polar representation of a blade mean-camber-line and the two definitions used to calculate these values of camber. For manufacturing purposes, the airfoil sections were redefined on planes normal to the stacking line, a radial line through the center of gravity of the root conical section. Rotor blade coordinates for these redefined sections are tabulated in Appendix D (Tables XXIV and XXVI), and Figure 26 gives the airfoil coordinate definitions used in these tabulations.

STATORS

Airfoil Series

MCA airfoils were also used in design of the first-stage stator vanes since this series of airfoils offers greater control of channel area than more conventional airfoil series and the potential for lower stator losses at the rather high stator root inlet Mach numbers of the present design. The second-stage stators were designed as 65/CA vanes (circular arc meanline with 65 series thickness distribution) since these vanes will operate with inlet Mach numbers less than 0.65, a regime where 65/CA airfoils have low losses.

Chords and Thicknesses

A summary of stator blading parameters is given in Table VII. To restrict propagation of blade-vane interaction noise, the numbers of vanes were selected according to the relation

s = 2r + 6 as discussed under Rotors. Stator chords and the locations of maximum thickness for both stators are shown in Figures 27 and 28. To provide low stator losses, maximum thickness-to-chord ratios were set at minimum values consistent with structural requirements. These thickness ratios (Figure 29) are somewhat higher than those for stators tested in previous NASA fans because of the higher aspect ratios of the present design. Any loss penalties should be small, however, since most of the thicker airfoils will operate with rather low inlet Mach numbers.

TABLE VII
STATOR BLADING PARAMETERS

	S1	S2
Number of Airfoils	62	76
Airfoil Series	MCA	65/CA
Aspect Ratio (1)	5.03	3.89
Aspect Ratio (2)	3.81	3.73
Taper Ratio (3)	1.099	0.9709
Hub Chord - meter (inch)	0.0513 (2.020)	0.0489 (1.930)
Tip Chord - meter (inch)	0.0564 (2.220)	0.0475 (1.8707)
Tip Solidity	1.33	1.38
Hub Solidity	2.50	2.46

- (1) Average length/axially projected hub chord
- (2) Average length/chord at tip
- (3) Tip-chord/hub chord

Incidence and Deviation Angles

Selection of design incidence angles and calculation of deviation angles for both stators (Figures 30 and 31) were based on P&WA's cascade system and minimum loss data from previous tests. The resulting metal angles are shown in Figure 32.

Channel Areas

Minimum values of channel area ratio $(A/A^*)_{min}$, near the stator 1 hub were set a few percent above the A/A^* for the corresponding stator inlet Mach number (Figure 33) according to a correlation of capture-area/throat-area ratio at minimum loss as a function of stator inlet Mach number [ref. 7]. The outer half of the blade has a front camber selected to give nearly

double-circular-arc (DCA) airfoils for this low Mach number portion of the vane. The resulting profiles of front camber and chord-camber parameter are shown in Figure 34, and the channel distributions of A/A^* for stator 1 are given in Figure 35. Channel area ratio was not a critical parameter in the design of stator 2 airfoils since the inlet Mach numbers are sufficiently low (0.50 - 0.65) that choking problems should not be encountered with the vanes selected by means of the P&WA correlation of cascade data.

Stator Geometry

Stator geometry on design conical surfaces is summarized in Appendix C (Tables XXI and XXIII). For manufacturing purposes, the airfoil sections were defined on planes normal to a radial (stacking) line. The resulting blade coordinates are presented in Appendix D (Tables XXV and XXVII).

INLET AERODYNAMIC DESIGN

OBJECTIVES AND TECHNIQUES

The purpose of the inlet aerodynamic designs is to provide inlet configurations that meet the program acoustical requirements while providing a minimum length in order to approach practical requirements of aircraft installation. Two inlet configurations were chosen for the program: a baseline standard inlet cowling configuration and a translating plug, choked (sonic) inlet configuration. Contours of these two configurations are shown in Figure 36.

The principal reason a translating centerbody, sonic inlet was chosen is because it provides a means of controlling flow area to achieve throat Mach numbers that give the desired noise suppression for a range of fan operating conditions. Furthermore, this configuration requires a minimum inlet length without excessive boundary layer growth or separation. Originally a two-ring, acoustic inlet had been selected; however, that design was discarded when the sonic inlet configuration was decided upon. A summary of the limited work done on the two-ring inlet is provided in Appendix E.

An inlet fabricated previously for another program is to be used as the baseline standard inlet cowling. This inlet provides a one-dimensional throat Mach number of 0.68 and has an inlet-length to fan-tip-diameter ratio (L/D) of 1.03 and an overall contraction ratio ($A_{highlite}/A_{throat}$) of 1.65 — "highlight" is defined as the farthest forward point on the inlet cowling (Figure 36). The aerodynamic contours of the sonic inlet were designed using a transonic axisymmetric flow analysis and a modified Reshotko-Tucker mass-momentum integral boundary layer solution. The inlet contours for both the baseline and sonic inlet configurations were selected to minimize the velocity overspeed along the surface downstream of the throat which should result in the best diffuser performance with the least distortion at the fan face.

It should be noted that the inlet flow for the aircraft approach condition used in the aerodynamic design of the sonic inlet was assumed to be 80 percent of design flow, which is believed to be the lowest practical flow for a sonic inlet design within present constraints. Any lower flow assumption would necessitate lengthening the inlet beyond practical mechanical and flight engine limits. The 80 percent design flow condition is theoretically possible with a variable, fan-duct nozzle, permitting fan operation at a higher speed (approximately 80 percent design speed) and a lower pressure ratio (1.19) at the desired thrust condition for aircraft approach.

The geometries of the fixed outer inlet cowling and the inner translating centerbody are shown in Figure 36 in the fully extended, intermediate, and fully retracted positions. These positions are specified as the approach position at 80 percent design flow, the takeoff position at 92.6 percent design flow, and the cruise position at 100 percent design flow. The one-dimensional throat Mach numbers associated with these positions are respectively 0.9, 0.9, and 0.71.

SONIC INLET GEOMETRY

Inlet Cowling and Centerbody

Since the fan aerodynamic design was essentially complete when the sonic inlet aerodynamic design was initiated, the inlet design had to be compromised to retain the fan root flow angle associated with the conventional spinner. This resulted in an overall inlet length of about 1.2 meters (47.5 inches) for an inlet-length to fan-tip-diameter ratio (L/D) approximately 1.45, which is somewhat larger than 1.0, the maximum ratio judged practical for a flight application. An L/D ratio of 1.0 would have been possible had it not been necessary to diffuse the inlet flow to a rather high area in order to retain the fan root platform contour.

A 0.0032 meter (0.25 inch) truncation, or step, was added at the trailing edge of the center-body to improve boundary layer characteristics in the region where the centerbody meets the fan spinner (Figure 36). The maximum centerbody radius was set at 0.19 meter (7.39 inches) at the throat of the inlet. The minimum cowling radius was set at 0.37 meter (14.55 inches) at an axial station 1.02 meters (40.0 inches) upstream of the first-stage rotor hub leading edge (reference plane).

Sonic Inlet Lip Shape

Since the sonic inlet is to be tested at static conditions only, an attempt was made to reproduce, as nearly as possible, the accelerations on the inlet surface which would be encountered at aircraft approach flight conditions. This was done by generating a 2.5:1 elliptical shape from the throat to approximately the inlet highlite station and then blending this contour to a circular arc by making them tangent and continuing the circular arc to complete the inlet contour. The overall contraction ratio ($A_{highlite}/A_{throat}$) of this configuration is equal to 1.45.

INLET MACH NUMBER DISTRIBUTIONS, BOUNDARY LAYER CHARACTERISTICS, AND ESTIMATED PRESSURES RECOVERIES

The outer wall Mach number and the boundary layer shape factor distributions were calculated for the baseline standard inlet configuration, and the results are shown in Figure 37 for the 100 percent speed, cruise flight condition. The shape factors are well under the separation limit of 2.2 to 2.5.

For the sonic inlet configuration, attempts were made to obtain a uniform Mach number profile at the inlet throat to meet acoustic criteria. As shown in Figure 38, the desired flat profile was achieved for the approach configuration at the throat, an axial distance of 1.016 meters (40 inches) upstream of the rotor 1 hub leading edge.

Mach number and shape factor distributions along the sonic inlet walls for the approach, cruise, and takeoff positions are shown in Figures 39 through 44. The Mach numbers along both inner and outer walls for the approach configuration (Figure 39) are quite similar, showing a peak Mach number of approximately 0.92 near the throat of the inlet, while peak Mach numbers for the cruise configuration (Figure 40) are 0.77 and 0.83 for the inner and outer walls, respectively. At takeoff (Figure 41), the inner wall Mach number reaches a peak of 0.98 near the inlet throat while the outer wall value is 0.81 at this location.

The shape factors for the wall boundary layers shown in Figure 42 for the cruise configuration indicate a stable boundary layer on the outer wall, but the inner wall boundary layer deteriorates rapidly as the flow approaches the centerbody truncation. This deterioration could lead to locally separated flow in this region — separation is indicated when shape factor reaches values of 2.2 to 2.5. This would, however, be followed by a reacceleration and reattachment of the flow on the spinner surface. A similar deterioration of shape factor in the area of centerbody and plug shaft truncation for the approach configuration is indicated in Figure 43 and an improvement in the boundary layer can be noted as the constant area portion of the inlet duct is reached; additional improvement will occur as the flow accelerates around the spinner. The takeoff configuration shown in Figure 44 has shape factor distributions similar to the cruise condition with the inner wall approaching a critically high value (2.17) near the intersection of the centerbody spinner. As in the cruise condition, the flow is expected to reattach on the spinner if any local separation occurs.

Baseline and sonic inlet total pressure recoveries were estimated from the analytical boundary layer solution and are presented in Table VIII.

TABLE VIII BASELINE AND SONIC INLET TOTAL PRESSURE RECOVERIES

	FLOW	CONDITION	
INLET CONFIGURATION	$(\%W\sqrt{\theta}/\delta)$	(Throat Mach No.)	TOTAL PRESSURE RECOVERY
Baseline, Cruise	100	0.68	0.993
Sonic, T/O	92.0	0.90	0.975
Sonic, Cruise	100	0.71	0.987
Sonic, Approach	80	0.70	0.970

STRUCTURAL AND VIBRATION ANALYSIS

Design of the fan blading included structural and vibration analyses to determine configurations that satisfy mechanical design requirements. The analyses included calculation of: blade-disk frequencies and their resonances with rig excitations, steady-state stresses, blade-vane flutter parameters, rig critical speeds, and full rotor system response due to imbalance at the rotor 1 location.

The material for rotor 1 blades is AMS 4973F (titanium alloy) and for rotor 2 blades is AMS 4928 (titanium alloy). The material for the stator vanes is AMS 5613 (stainless steel), and the material for the disks, hubs, spacers, and seals is AMS 5616 (stainless steel).

ROTORS

Blade and Disk Vibration

A partspan shroud is required for each rotor to avoid first bending resonances with first and second order rig-frequencies in the operating range. The airfoil geometry and shroud location were chosen to provide the best compromise between high speed margin with a 3E resonance (3E = 3 excitations per rotor revolution) and the speed at which a 4E resonance would occur. The shroud location selected for rotor 1 (i.e., 66.5 percent span from the hub) gives this rotor a predicted 5.6 percent 1st coupled mode (bending and torsion) 3E resonance frequency margin at 105 percent of design speed and positions the 1st coupled mode 4E resonance at 75 percent design speed (Figure 45). For rotor 1, no 2nd coupled mode or 3rd coupled mode critical resonances exist in the operating range.

During sonic inlet testing, the five support struts for the translating centerbody will create a 5E, 1st mode resonance on rotor 1 at 4800 rpm (Figure 45). This resonance is not considered a problem because the inlet struts are 0.254 meter (10 inches) forward of rotor 1 leading edge and the resonance occurs low in the speed range where the excitation energy is low.

The second-stage rotor, with a shroud location at 60 percent span from the hub, has a 1st coupled mode 3E resonance frequency margin of 5.4 percent and a 1st coupled mode 4E resonance at 72 percent design speed (Figure 46). For rotor 2, no 2nd coupled mode or 3rd coupled mode critical resonances exist in the operating range. The 5.6 and 5.4 percent margins on 1st coupled mode 3E resonance are adequate, based on previous test results that have shown good correlation with design predictions. Moreover, increasing these margins on 3E resonance would position the 1st coupled mode 4E resonance at higher speeds in the operating range. Due to these limiting 3E margins, the operational speed of the fan will be held to 105 percent corrected design speed during the test program.

Rotor blade tip chordwise bending modes are of great concern with the thin tip sections of modern fan blades. Excitations from inlet struts and stator vanes upstream and downstream of the rotor can interact with the natural frequency of these tip chordwise modes to produce high dynamic stresses. Figures 47 and 48 show that the tip chordwise bending mode resonances will not occur in the critical portion of the speed range (70 - 105 percent of design speed).

Rotor Blade Stresses

Stresses due to centrifugal forces, air loads, and untwist forces were calculated for 105 percent of design speed, and the results are shown in Table IX. The allowable stresses for the blade material based on 338.6°K (150°F) metal temperature for rotor 1 and 421.9°K (300°F)

metal temperature for rotor 2 are also shown in this table. The maximum combined stresses of $3.24 \times 10^8 \text{ N/m}^2$ (47,000 lbf/in.²) for rotor 1 and $2.03 \times 10^8 \text{ N/m}^2$ (29,500 lbf/in.²) for rotor 2 are comparable to stress levels present in experimental and production blades and are well below the allowable stresses.

Gas bending stresses with centrifugal restorations were calculated at 105 percent of design speed. Airfoil stresses were minimized for the combination of load and no load conditions. The selected axial and tangential tilt of 0.00107 meter (0.042 inch) results in a maximum stress of 4.1 x 10^7 N/m² (6,000 lbf/in.²) for rotor 1 and 2.8 x 10^7 N/m² (4,000 lbf/in.²) for rotor 2.

TABLE IX
SUMMARY OF ROTOR STEADY STRESSES

105% of Design Speed $- \text{ N/m}^2 \times 10^{-7} \text{ (lbf/in.}^2 \times 10^{-3} \text{)}$

	ROTOR 1	ROTOR 2
P/A	20.0 (29)	14.5 (21)
Centrifugal Untwist	8.3 (12)	3.1 (4.5)
Gas Bending	4.1 (6)	2.8 (4)
Combined	32.4 (47)	20.3 (29.5)
Allowable	60.7 (88)	53.1 (77)

Modified Goodman diagrams (Figures 49 and 50) indicate that at the maximum steady stress points the maximum allowable vibratory stresses for rotors 1 and 2 are 10.67×10^7 (15,500 lbf/in.²) and 12.72 and 10^7 N/m² (18,500 lbf/in.²), respectively. During testing, a vibratory stress limit of 6.89 x 10^7 N/m² (10,000 lbf/in.²) will be imposed. Since no low order resonances are expected in the high speed operating range, the actual vibratory stress levels that will be encountered during testing should be less than the 6.89 x 10^7 N/m² (10,000 lbf/in.²) limit set as part of the test procedures.

Rotor Blade Flutter

Flutter is a self-excited, self-sustaining vibration which occurs in either a torsional or bending mode or a combination of both. To prevent rotor blade flutter, a partspan shroud is required for each rotor of the two-stage fan. Values of flutter parameters for the shrouded blades were calculated at 105 percent of design speed, the operating speed considered most critical in regard to flutter, and these values were compared with correlated test data from previous programs. The calculated values of reduced-velocity parameters $(2\ V'_1/c\omega_b)$ and torsional-twist-to-bending-deflection ratio $(\psi\ c/d)$ for the 1st coupled mode flutter are summarized in Table X and lie within the range of P&WA experience where flutter problems have not been encountered. Values of reduced-velocity parameter $(2\ V'_1/c\ \omega_t)$ for torsional flutter, calculated at 105 percent speed (0.95 for rotor 1 and 1.2 for rotor 2) are also well within the range where flutter has not been experienced. The torsional frequency, ω_t , is based on the entire blade.

TABLE X

ROTOR FIRST COUPLED MODE FLUTTER PARAMETERS

ROTOR	REDUCED VELOCITY PARAMETER (2 $V'_1/c \omega_b$)	TORSIONAL TWIST/BENDING DEFLECTION $(\psi \mathrm{c/d})$
1	2.75	0.16
2	3.05	0.14

Partspan Shrouds

The partspan shrouds were sized and positioned to satisfy aerodynamic and structural requirements, including the 3E margin requirement. Shroud design parameters and stresses are summarized in Table XI, and a sketch of the shrouds is shown in Figure 51. Bearing stresses for the shroud are $3.55 \times 10^7 \text{ N/m}^2$ (5,150 lbf/in.²) for rotor 1 and 3.45 x 10^7 N/m^2 (5,000 lbf/in.²) for rotor 2, which are below values tested successfully on P&WA research rigs, e.g. $5.86 \times 10^7 \text{ N/m}^2$ (8500 lbf/in.²). The shrouds were designed to fit together sufficiently tight to provide adequate damping of vibrations without "shingling".

The Z* ratios, a measure of the relative stiffnesses of the shroud and adjacent airfoil as defined in Appendix A, are within the realm of successful experience.

TABLE XI

PARTSPAN SHROUD PARAMETERS
(105% Speed)

	ROTOR 1	ROTOR 2
Spanwise Location (% Span From Hub)	66.5	60.0
Contact Angle - deg.	55.0	70.0
Z* Ratio	1.30	1.49
Bearing Stress $-N/m^2 \times 10^{-7}$ (lbf/in. ²)	3.55 (5,150)	3.45 (5,000)
Bending Stress $-N/m^2 \times 10^{-7}$ (lbf/in. ²)	40.0 (58,000)	29.1 (42,246)
Thickness - meter (inch)	0.005 (0.20)	0.0046 (0.18)

Disk and Attachment Stresses

Conventional dovetail attachments were selected for the blades of both rotors. The calculated and allowable disk and attachment stresses for critical locations are listed in Table XII. All calculated values fall below the maximum allowed. In addition, the dynamic stress ratio (airfoil root stress divided by attachment stress) is above the minimum recommended value of 2.0, indicating that the attachment can withstand vibratory stresses greater than those the airfoil can tolerate.

TABLE XII

ROTOR DISK AND ATTACHMENT STRESSES (105% Design Speed)

		CALCULATED STRESS/ALLOWABLE STRESS $N/m^2 \times 10^{-7}$ (lbf/in. $^2 \times 10^{-3}$)	
LOCATION	TYPE OF STRESS	ROTOR 1	ROTOR 2
Blade Attachment	Combined	27.6/53.1 (40/77)	17.2/59.3 (25/86)
	Bearing	26.2/59.3 (38/86)	20.0/66.2 (29/96)
Disk	Tangential (avg.)	26.2/66.2 (38/96)	42.7/58.6 (62/85)
	Radial (max.)	15.9/53.8 (23/78)	11.0/47.6 (16/69)
Front Seal	Hoop	22.1/96.5 (32/140)	37.1/95.2 (53.8/138)
1.6.11.2.2.	Bending	4.1/96.5 (6/140)	13.8/95.2 (20/138)
Rear Seal	Ноор	22.1/96.5 (32/140)	37.1/95.2 (53.8/138)
Trous Sous	Bending	8.3/96.5 (12/140)	10.3/95.2 (15/138)

STATORS

Stator Vibration

Stator frequencies were calculated from a coupled bending-torsion analysis which included a model with the following end conditions:

- bending motion moment restraint at airfoil hub and tip
- torsional motion free at tip and restraint at spindle/actuation-arm junction (includes torsional flexibility of actuator arm).

As shown in Figures 52 and 53, the first two bending and torsion modes for stators 1 and 2 will not be excited by blade-passing orders in the operating range. Adequate margin on the first bending mode 3E resonance exists throughout the operating range and, based on past experience, higher order excitations should not result in vibrational problems.

Stator Stresses

Stator vane bending stresses due to air loads were calculated at 105 percent design speed. The maximum bending stress for stator 1 was calculated as $3.03 \times 10^8 \text{ N/m}^2$ (44,000 lbf/in.²)

and for stator 2 as $2.99 \times 10^8 \ \text{N/m}^2$ (53,500 lbf/in.²), which are considerably lower than the allowable stresses of $58.6 \times 10^7 \ \text{N/m}^2$ (85,000 lbf/in.²) and $52.4 \times 10^7 \ \text{N/m}^2$ (76,000 lbf/in.²) for stators 1 and 2, respectively. Stress allowables are based on vane material properties which are a function of metal temperatures. Vane metal temperatures used to determine allowable stresses for stator 1 and stator 2 are 65.56°C (150°F) and 148.89°C (300°F), respectively. Since no critical resonances are predicted in the operating range, vibratory stress levels are expected to be low. A maximum vibratory stress level of $\pm 6.89 \times 10^7 \ \text{N/m}^2$ ($\pm 10,000 \ \text{lbf/in.}^2$) will be imposed during test operation.

Stator Flutter

Flutter parameters were calculated for both stators and compared with correlated test data. Values of the dimensionless reduced-velocity parameter for bending flutter $(2V/c\omega_b)$ calculated for stators 1 and 2 were 2.1 and 1.4, respectively, which are within the successful (no flutter) area determined through experience. A similar conclusion was indicated by the values of reduced-velocity parameter $(2V/c\omega_t)$ for torsional flutter, which were computed as 2.05 and 1.87 for stators 1 and 2, respectively.

INTERSTAGE SEALS

The resonances were checked for the interstage rotor sideplate and stator seals (Figure 9) because of the long, cantilevered, stator inner-shrouds required for acoustic considerations. Frequencies of the seals were obtained from shell revolution structural analysis programs. The hoop stiffness effects of the stator inner shroud honeycomb construction were included in the vibration analysis. Resonances for all rotor and stator seals are above the 25 percent frequency margin requirement at 105 percent of design speed, as shown in Figures 54 and 55.

SONIC INLET SUPPORT STRUTS

Frequencies were calculated for the fan inlet strut using fixed-end conditions. The resulting frequencies are shown in Figure 56. The blade passing frequency for rotor 1 does not excite the fundamental bending and torsion modes. There are no low order resonances (1E and 2E) in the operating range. Static load (one-G) plus the maximum aerodynamic load on the centerbody causes a maximum stress of 2.95 x 10^7 N/m² (4280 lbf/in.²) on the inlet struts at the inner and outer diameter fillet welds. This is well below the allowable stress of 54.5 x 10^7 N/m² (79,000 lbf/in.²) for the AMS 5613 material used. The dimensionless, reduced-velocity parameter ($2V/c\omega_b$) for bending flutter was calculated to be 1.25, within the successful (no flutter) area determined through experience. The torsional flutter, reduced-velocity parameter ($2V/c\omega_t$) was calculated to be 0.6, also in the stable area.

CRITICAL SPEEDS AND FORCED RESPONSE

A rotor-frame critical-speed analysis was performed to determine the vibrational characteristics of the fan, with and without the sonic inlet configuration. The analysis was based on models which included all significant structural members of the rig and used the spring-mass system shown in Figure 57 for the baseline standard engine inlet cowling and Figure 58 for the sonic inlet.

Baseline Standard Inlet Cowling Configuration

Two critical speeds occur within the rig operating range at 4811 rpm and 8764 rpm for the standard inlet cowling configuration. Two other critical speeds occur at 10,729 rpm and 15,777 rpm, which are above the expected maximum operating speed (8785 rpm). The mode shapes of the 4811 rpm, 8764 rpm and 10,729 rpm speeds are shown in Figure 59. The mode at 8764 rpm has only 1.6 percent of the total of the rotor strain energy and, hence, is of little concern. The modes at 4811 rpm and 10,729 rpm have significant motion of the fan rotors and have more than 25 percent of the total strain energy in the rotating components. To determine whether a bearing damper is needed to reduce the vibratory amplitudes of these modes, a forced response analysis was performed on the system with and without a front bearing damper for these two critical speeds. This analysis was similar to the critical-speed analysis except that an unbalance was simulated and the resultant vibratory deflections calculated. Deflections were calculated at the first-stage rotor plane and at the flexible diaphragm behind the second bearing for an unbalance of 72 x 10⁻⁵ kg-m (one oz-in.).

A damper was chosen for the front bearing due to the relatively high 7.6 x 10^{-4} m (0.030 in.) deflection at the rotor for a 72 x 10^{-5} kg-m (one oz-in.) unbalance at the lowest critical speed without a damper. The damper would reduce this sensitivity to 0.13×10^{-4} m (0.0005in.) per 72 x 10^{-5} kg-m (one oz-in.). The rotor assembly will be balanced to better than 36×10^{-5} kg-m (0.05 oz-in.) unbalance but may reach 17×10^{-5} kg-m (0.25 oz-in.) during testing. This will give a maximum deflection of 0.030×10^{-4} m (0.00012 in.) at the rotor at 4811 rpm and 0.46×10^{-4} m (0.0018 in.) at 10,729 rpm, well within the tip clearance tolerance. Vibration accelerometers and amplitude pickups will be used to monitor rig and drive system vibration during testing.

Sonic Inlet Configuration

The addition of the sonic inlet did not change the critical-speed predictions of the standard inlet fan although it did create two additional natural frequencies at 2215 rpm and 8909 rpm, both out of the normal operating range. The mode at 8909 rpm, although close to the 105 percent speed line, should not present a problem since only a rather small fraction of the rotor strain energy is involved.

An analysis was made to determine the amount of radial "closure" at the sonic inlet throat in its fully extended position due to static (one - G) stress and dynamic deflections at all critical speeds. A schematic is presented in Figure 60 defining radial closure and showing the relative locations of the centerbody and bearing supports. The static (one - G) radial closure at the throat is 2.3×10^{-4} m (0.009 in.). The maximum total inlet throat dynamic closure in the operating range due to a 0.51×10^{-4} m (0.002 in.) deflection at each bearing support is 2.3×10^{-4} m (0.009 in.) static plus 2.5×10^{-4} (0.010 in.) dynamic, for a total of 4.8×10^{-4} m (0.019 in.) occurring at 8685 rpm. This total deflection is judged to be acceptable, and the probability of any resulting wall-separation or inlet total pressure distortion should be minimal. The effect of structural damping, not included in this analysis, will reduce the dynamic deflections further.

ACOUSTIC DESIGN

Known concepts of low noise turbofans were incorporated in the design of this two-stage fan. A low tip-speed and moderate design aerodynamic loadings were chosen to minimize generated noise. The number of blades and vanes were chosen to "cutoff" blade-passing tones, and an axial blade spacing of two chords was selected to minimize blade interaction noise. However, to meet the extremely low levels implied by FAR 36 minus 20 PNdB, the basically quiet fan must also incorporate extensive noise suppression in the inlet and exhaust duct. The noise spectra of the basic fan design were estimated, and the desired noise attenuations identified. Acoustic treatment was selected using both analytical and empirical models, and a final prediction of noise reduction was made. A sonic suppression device was selected to attenuate inlet radiated noise in lieu of inlet acoustic splitters (Appendix E). An aft acoustic splitter was incorporated to provide the required suppression of aft radiated noise.

SONIC INLET, ACOUSTIC CONSIDERATIONS

An inlet operating with a completely choked throat does not transmit sound upstream. In a rig or engine, the exact variation of attenuation as throat Mach number increases toward 1.0 is a function of the details of the inlet design. Extensive information on this subject is available in the literature and from a variety of tests performed at Pratt & Whitney Aircraft. At full choke, the amount of attenuation that can be measured is not a function of design but depends on flanking path and background noise levels. The sonic inlet for this rig was designed for a Mach number of 0.9 with the capability of running at full choke or less. In order to allow operation at part-choke conditions for reduced distortion generation, a limited amount of acoustic treatment was incorporated in the sonic inlet design so that full-choke noise attenuation characteristics could be approximated. Selection and design of the sonic inlet for this rig were based on aerodynamic, structural and engine compatibility considerations that are described in the Inlet Aerodynamic Design section of this report. The only acoustic design criterion used was that the flow disturbances produced by the sonic inlet hardware be minimized so that aft-radiated fan interaction noise could be kept as low as possible.

A translating centerbody was selected as the most practical compromise among acoustic, aerodynamic, and mechanical design criteria. The centerbody will be tested in three axial-positions representing the ATT engine (STF 433 engine) [ref. 1] conditions of cruise (design), takeoff, and approach with the latter two positions having capability of sonic inlet Mach numbers.

FLOWPATH AND BLADE GEOMETRY

To reduce the interaction tone noise at blade-passing frequency, the numbers of fan blades and vanes were chosen using the Tyler-Sofrin criterion [ref. 8] which specifies that if the number of stator vanes (s) is greater than twice the number of rotor blades (r), interaction noise generated at subsonic tip-speeds will decay within the inlet and exit ducts of a fan. The numbers actually selected (see Tables VI and VII) satisfy the relationship s = 2r + 6 for all adjacent blade row combinations except stator -1/rotor -2 which, due to mechanical and aerodynamic constraints limiting the number of stator 1 vanes, satisfies the relationship s = 2r - 8.

Axial spacings between blade rows were selected to reduce a residual blade-passing tone noise associated with blade/vane wake interactions. As shown in Figure 61, this noise component decreases rapidly as spacing is increased up to two or three chord lengths relative to the upstream blade row. After two or three chords spacing, further reductions in noise cannot be obtained without severe weight and length penalties. The values selected for the configuration to be tested in the current program are two aerodynamic tip chord lengths; however, the capability for alternate closer spacing is provided in the mechanical design of the rig.

An additional noise control feature was incorporated in the fan design for psychoacoustic purposes. A ratio of blades 35/28 (=5/4) in the two stages was chosen to avoid, as far as possible, dissonant chords usually present in multistage machines. This ratio is called a "major third" in musical theory and, by western standards, is considered "consonant". Psychoacoustic tests, using oscillators and a broadband noise generator, were run at P&WA to simulate a number of twin rotor builds. Rotor frequency ratios selected according to musical principles was found to produce less annoying spectra than those selected randomly, but this advantage held only at low frequencies, roughly below 1000 Hz. At higher frequencies typical of flight operations (approach and takeoff), the advantage of harmonius tones tended to disappear. However, the harmonic ratio concept was retained in the subject two-stage fan since it could do no harm and should provide a less annoying spectrum at speeds corresponding to some airport ground operating conditions, such as taxiing and idling.

RIG SPECTRA PREDICTIONS

As in the case of the full scale ATT engine (STF 433), noise spectra for the two-stage rig were predicted using one-third octave band data for an existing two-stage fan engine, the JT3D. This procedure may appear to have a disadvantage in that the differences in the ratio of the number-of-rotor-2-blades/number-of-rotor-1-blades, 35/32 in the JT3D and 35/28 in the present rig, prevent accurate spectral simulation. However, the 35/28 = 1.25 ratio is sufficiently close to $1.26 (\sqrt[3]{2})$ to insure that both rotor tones are in neighboring third octave bands, so that for purposes of PNdB calculations and for selecting sound absorbing liner parameters the predicted spectral shapes should be satisfactory.

To predict the rig spectrum at a particular condition (e.g., approach), the blade linear tip speed was found for the approach RPM. At this tip speed, fan data from the JT3D engine were selected. To convert these spectral data to the higher rig blade-passage frequencies, the one-third octave JT3D spectra were shifted to the right by the required number of third octaves.

Next, corrections for changes in size, blade-vane spacing, and pressure ratio were applied, as noted below. A correction of 2 dB was added to each frequency band to allow for the estimated increase in aft radiated noise associated with use of the sonic inlet. This amount was obtained from a set of choked inlet tests run on a JT8D engine in the late 1960's and represents both the backscattering at the sonic throat of forward propagating sound and additional noise generation caused by blade interaction with inlet flow velocity disturbances produced by the sonic inlet hardware.

The corrections mentioned above were as follows:

- Blade-vane spacing, $dB = 10 \log (projected \ chord \ ratio) = -3.5 \ dB$
- Fan size correction, $dB = 20 \log (diameter ratio) = -3.9 dB$
- Fan pressure ratio, $dB = 20 \log (pressure rise) = +3.8 dB$

The spacing correction was applied in the third octaves containing blade-passage tones; other corrections were applied across the spectrum. These corrections were based on results of an FAA funded fan noise research program (Contract No. DOT-FA69WA-2045) and extensive documentation of P&WA engine noise characteristics. They were incorporated into a computer program that predicts the spectral characteristics of study engines.

The resulting predicted rig source sound-pressure-level (SPL) spectra at a 45.7 m (150 ft) radius for the angle of maximum perceived-noise-level (PNL) aft of the rig are presented in Figure 62.

TREATMENT ATTENUATION TARGETS

To determine the appropriate acoustic treatment, the dominant annoying frequency range first had to be identified. For the inlet, this is described under Acoustic Treatment Selection. For aft noise, the dominant annoying frequency range was determined from source noise spectra transformed into subjective "NOY" values. These spectra were simply truncated until a required integrated value of target attenuation was established for the aft noise. Since the full-scale engine study [ref. 1] predicted a level just at FAR 36, and the goal of this contract is to achieve levels of FAR 36 minus 20 PNdB, a target attenuation of 20 PNdB was set as the treatment goal. Figure 63 shows the resulting aft attenuation spectrum at approach and takeoff with a peak attenuation near 3500 Hz.

ACOUSTIC TREATMENT SELECTION

Inlet

To provide improved attenuation of forward-radiated noise during operation with the sonic inlet not at full choke, a limited amount of treatment was applied to the walls of the sonic inlet. The inlet treatment was designed to be mainly effective in absorbing the upstream traveling waves (i.e., treatment was tuned to attenuate waves propagating forward from within the fan). The forward attenuation spectrum expected from the inlet treatment is shown in Figure 64 and represents a preceived noise level of 3 PNdB.

The inlet treatment was restricted to axial locations where the wall Mach number does not exceed 0.7 at any of the operating points. Flow separation at the wall could occur because of surface roughness in a region of flow diffusion if the treatment had been extended to regions of higher Mach number. With the translating centerbody in the forward (approach) position, the lengths of treatment exposed are approximately 0.482 m (19 in.) on the inner wall and 0.599 m (22 in.) on the outer wall to provide a treatment length to passage height

ratio of about 1.6. Retraction of the centerbody covers the treatment on the inner wall and reduces the ratio by about one-half. Backing depth is 0.635 cm (0.25 in.) and design facing sheet percent open area is six percent both for the inner and outer wall treatments. These values were chosen, in accordance with methods described in the next section, to tune the inlet treatment to the center of the inlet attenuation target spectrum.

Interstage and Aft Fan Duct

The treatment in the interstage region was selected to attenuate the lowest blade-passing-frequency (28E at approach); the long aft duct treatments, including treatment on the inner and outer walls and on both sides of the single splitter, were tuned for the center of the target, about 3200 Hz (Figure 63). On the basis of empirical data, including curves of tuning versus backing depth and PNL reduction versus treatment-length to duct-height ratio, this single splitter configuration was found to be superior to the no-splitter and two-splitter designs. By selection of deeper backing depths for the duct wall treatment and more shallow depths for the splitter, a relatively thin, 0.016 m = (0.62 in.) splitter was possible and a minimum blockage achievable. At the same time, the attenuation spectrum, compared to a spectrum for the splitter and wall treatment tuned to the same frequency, could be broadened to cover the attenuation target. The facing sheet values shown in Figure 65 were chosen for an optimum combination of bandwidth and peak attenuation rather than for peak attenuation alone.

Preliminary estimates of required treatment area were made by reference to guideline curves of PNdB reduction as a function of treatment-length to passage-height ratio (L/H) such as shown in Figure 66. This figure contains data from various tests, including several NASA funded programs, for fan ducts with L/H ratios up to 23. It has been observed in axial traverse tests at P&WA that the flattening of these curves at higher values of L/H is not due to a failure of long treatments to attenuate fan noise but rather to the limiting effect of flanking path noise and the presence of other noise sources, such as jet noise, on the overall observed attenuation spectrum. For the current program, NASA Quiet Two-Stage Fan Rig, an axial length of about 1.016 m (40 in.) available for treatment and a passage height of 0.178 m (7 in.) would result in L/H ratios of about 5.8 with no splitter, 12 with one splitter, and 20 with two splitters. The cross-sectional blockage of the splitters reduces the passage height, and this has been taken into account. The single-splitter configuration was taken as a starting point for the design on the basis of Figure 66 and various other considerations discussed above.

Tuning curves, such as shown in Figure 67, that relate treatment backing depth to frequency of peak attenuation were used for initial selection of backing depths. Generally, the initial value of facing sheet installed-resistance is taken to be equal to the value of the dimensionless frequency parameter in Figure 67 at the design point. A succession of iterations was then performed in which attenuation spectra were calculated by means of an analytical solution of the wave equation for the principal mode in the duct [ref. 9] for incremented values of backing depths and facing sheet resistances until an optimum coverage of the attenuation target was found.

PREDICTED ATTENUATIONS - INTERSTAGE AND AFT TREATMENT

On the basis of the procedures previously described, the attenuations shown in Figure 68 were obtained. PNL numbers for takeoff and approach at 45.7 m (150 ft) radius and maximum PNL are summarized in Table XIII.

TABLE XIII ANALYTICALLY PREDICTED FAN AFT PNL AT 45.7 METER (150 FOOT) RADIUS

CONDITION	DESIGN SPEED	PNL UNTREATED	PNL TREATED	PNL ATTENUATION
Approach	70%	112.3 d B	92.6 dB	19.7 dB
Takeoff	94%	125.0 dB	104.2 dB	20.8 dB

The results of the analytical design system indicate a reduction of approximately 20 PNdB in aft noise.

COMPETING NOISE SOURCES

In tests it is often difficult to realize large predicted values of duct attenuation. Fan jet mixing noise and additional noise generated by the rig fan air scrubbing the test rig afterbody tend to obscure measurements of treated fan noise levels in the farfield. However, empirical estimates of jet mixing noise have determined that at low speeds (e.g., approach) the majority of fan noise attenuation should be measureable at the farfield microphones (Figure 69). Use of narrow band spectral analysis, which increases the ratio of tone to broadband noise, will facilitate detection of fan noise attenuation. Further signal detection will be provided by operating at the widest possible nozzle condition, which reduces the jet nozzle velocity and consequently the jet noise. At higher speeds, the high levels of jet noise will at least partially mask the effect of the treatment (Figure 70).

Figure 1 Rotor (lower) and Stator (upper) Total Loss Spanwise Profiles

Rotor Adiabatic Efficiency Spanwise Profiles

Figure 3 Rotor Inlet and Exit Relative Air Angles Spanwise Profiles

Figure 4 Rotor Meridional Velocity Spanwise Profiles

Figure 5 Stator Meridional Velocity Spanwise Profiles

Figure 6 Inlet and Exit Mach Number Spanwise Profiles for Rotors

Figure 7 Inlet and Exit Mach Number Spanwise Profiles for Stators

Figure 8 Fan Flowpaths

Figure 9 Schematic of the Quiet Two Stage Fan

Figure 10 Rotor Diffusion Factor Spanwise Profiles

Figure 11 Stator Diffusion Factor Spanwise Profiles

Figure 12 Total Pressure Ratio Spanwise Profiles

Figure 13 Stator Inlet and Exit Absolute Air Angle Spanwise Profiles

Figure 14 Fan Exit Duct and Acoustic Splitter Flowpath

Figure 15 Multiple-Circular-Arc Airfoil Definitions

Figure 16 Rotor Airfoil Thickness Spanwise Profiles

Figure 17 Rotor Chordwise Location of Airfoil Maximum Thickness Spanwise Profiles

Figure 18 Rotor Chord Spanwise Profiles

Figure 19 Rotor Inlet and Exit Metal Angle Spanwise Profiles

Figure 20 Rotor Incidence Angle Spanwise Profiles

Figure 21 Rotor Deviation Angle Spanwise Profiles

Figure 22 Minimum Rotor Channel Area Ratio Spanwise Profiles

Figure 23 Rotor Front Camber Angle and Chord-Camber Parameter Spanwise Profiles

Figure 24 Rotor Channel Area Ratios Versus Axial Distance

Figure 24 (Cont'd) Rotor Channel Area Ratios Versus Axial Distance

Figure 25 Meridional View and Polar Representation of Blade Mean-Camber-Line

Figure 26 Airfoil Coordinate Definition for Manufacturing Sections

Figure 27 Stator Chord Spanwise Profiles

Figure 28 Stator Chordwise Location of Maximum Thickness Spanwise Profiles

Figure 29 Stator Airfoil Thickness Spanwise Profiles

Figure 30 Stator Incidence Angle Spanwise Profiles

Figure 31 Stator Deviation Angle Spanwise Profiles

Figure 32 Stator Inlet and Exit Metal Angle Spanwise Profiles

Figure 33 Ratios of Channel-Throat-Area to Captured-Area Versus Span for Stators

Figure 34 Stator 1 Front Camber Angle and Chord-Camber Parameter Spanwise Profiles

Figure 35 Stator 1 Channel Area Ratios Versus Axial Distance

Figure 36 Baseline Standard and Sonic Inlet Geometries

Figure 37 Baseline Standard Inlet Outer Wall Mach Number and Shape Factor Distributions

Figure 38 Sonic Inlet Throat Mach Number Spanwise Profile — Approach Configuration

Figure 39 Mach Number Distributions Along Inlet Walls — Approach Configuration

Mach Number Distributions Along Inlet Walls — Cruise Configuration Figure 40

Mach Number Distributions Along Inlet Walls — Takeoff Configuration Figure 41

Boundary Layer Shape Factor Distributions Along Inlet Walls — Cruise Configuration Figure 42

Boundary Layer Shape Factor Distributions Along Inlet Walls — Approach Configuration Figure 43

Boundary Layer Shape Factor Distributions Along Inlet Walls — Takeoff Configuration Figure 44

Figure 45 Rotor 1 Campbell Diagram

Figure 46 Rotor 2 Campbell Diagram

Figure 47 Rotor 1 Tip Mode Campbell Diagram

Figure 48 Rotor 2 Tip Mode Campbell Diagram

Figure 49 Rotor 1 Goodman Diagram

Figure 50 Rotor 2 Goodman Diagram

Figure 51 Schematic of Rotor Partspan Shrouds

Figure 52 Stator 1 Campbell Diagram

Figure 53 Stator 2 Campbell Diagram

Figure 54 Rotor Stdeplate Seal Resonance

Figure 55 Stator Sideplate Seal Resonance

Figure 56 Sonic Inlet Support Struts, Campbell Diagram

Figure 57 Spring-Mass Model for Critical Speed Analysis - Standard Inlet

TORSIONAL SPRING RATES	inlbf/deg \times 10 ⁻⁸ (m-N/rad \times 10 ⁻⁹)	T06 = 4.0 2.6	T10 = 10.0 6.5	T11 ≠ 50.0 32.5		T15 = 0.1 0.065	F16 = 10.0 6.5						
RATES	(N/m × 10 ⁻⁸)	F. 6.0	3.5	3.5	3.5		•	1.8	17.5	0.0008	17.5	17.5	17.5
LINEAR SPRING RATES	lbf/in. x 10 ⁶ (r	K01 = 0.5	K02 = 2.0	K03 = 2.0	K05 = 2.0	K06 = 10.0	K10 = 10.0	K11 = 1.0	K13 = 10.0	K14 = 0.00045	K15 = 10.0	K16 = 10.0	K17 = 10.0

Figure 58 Spring-Mass Model for Critical Speed Analysis – Sonic Inlet

Figure 59 Critical Speed Mode Shapes

Figure 59 (Cont'd) Critical Speed Mode Shapes

Figure 60 Schematic of Sonic Inlet Configuration

CHYNGE IN NOISE LEVEL, dB

Effect of Rotor-Stator Spacing on Blade-Passing Frequency Noise Level Figure 61

Figure 62 Fan Aft One-Third Octave Spectra — Untreated

Figure 63 Fan Aft Noise Attenuation Targets

Inlet Estimated Attenuation Due to Wall Treatment - Approach

Figure 65 Summary of Fan Acoustic Treatments

Figure 66 Treatment Attenuation — Fan Discharge Ducts

24

(FREQUENCY OF PEAK ATTENUATION) (DISTANCE BETWEEN TREATMENTS)

(SPEED OF SOUND) (1 + FLOW MACH NO.)

Figure 67 Tuning Curves

Figure 68 Analytically Predicted Attenuation of Aft Fan Noise at Takeoff

Figure 69 Predicted Jet and Treated Fan Noise Levels – Approach

Figure 70 Predicted Jet and Treated Fan Noise Levels – Takeoff

APPENDIX A

SYMBOLS AND DEFINITIONS

A	area - meters ² (feet ²)
A/A*	ratio of actual-area to critical-area (where local Mach number is 1.0)
a	distance along chord from leading edge of airfoil to point of maximum elevation of airfoil above chord line - meters (inches)
a'	a point on the suction surface of a blade halfway between the leading edge and the point from which a Mach wave emanates that meets the leading edge of the following blade
C	structural damping coefficient - N/m-sec (lbf/insec)
c	Chord (aerodynamic on flow surface) - meters (inches)
D	diffusion factor,
	for rotor = $1 - V_2'/V_1' + \frac{r_2 V_{\theta 2} - r_1 V_{\theta 1}}{(r_1 + r_2) V' \sigma}$
	for stator = $1 - V_3/V_2 + \frac{r_2 V_{\theta 2} - r_3 V_{\theta 3}}{(r_2 + r_3) V_2 \sigma}$
d	displacement in the direction normal to the minimum moment of inertia axis - meters (inches)
E	epse, the angle between rays drawn to a conical design surface, one ray to the leading edge of an airfoil section, the second to some other point on the airfoil - degrees; excitations per rotor revolution
G	gravitational force
Н	boundary layer shape factor passage height
I	moment of inertia about minor axis - meters ⁴ (inches ⁴)
ID	inner diameter of casing - meters (inches)
i	incidence angle, inlet air angle minus blade metal angle - degrees
K	blockage factor; linear spring constant - N/m (lbf/in.)

SYMBOLS AND DEFINITIONS (Cont'd)

L length of inlet - meters (inches)

length of acoustic treatment

L.E. leading edge of blade row

M Mach number

MCA multiple-circular-arc

N rotor speed (rpm)

OD outer diameter of casing - meters (inches)

p static pressure - N/m² (lbf/in.²)

P total or stagnation pressure - N/m² (lbf/in.²)

PNL perceived noise level (dB)

RLE leading edge airfoil radius - meters (inches)

RPM revolutions per minute

RTE trailing edge airfoil radius - meters (inches)

r radius measured from rig centerline - meters (inches);

number of rotor blades

R rotor

 r, θ, z cylindrical coordinate system, with z axis as rig centerline

S stator

blade spacing - meters (inches);

number of stator vanes

SPL sound pressure level (dB)

T total temperature - °K (°R);

torsional spring constant - m-N/rad (in. - lbf/deg)

T. E. trailing edge of airfoil

t (blade maximum thickness - meters (inches)

throat

U rotor speed - m/sec (ft/sec)

SYMBOLS AND DEFINITIONS (Cont'd)

	· · · · · · · · · · · · · · · · · · ·	
V	air velocity - m/sec (ft/sec)	
W	weight flow - kg/sec (lbm/sec)	
Z*ratio	(I/C) _{shroud cross-section} /(I/C) _{airfoil cross-section above shroud}	
z	axial distance - meters (inches)	
β	absolute air angle [cot-1 ($V_{\rm m}/V_{ heta}$)] - degrees	
Φ	vibratory twist deflection - degrees	
$oldsymbol{eta'}$	relative air angle [cot $^{-1}$ ($V_{\rm m}/V_{ heta}'$)] - degrees	
β*	metal angle, on conical surface, between tangent to mean camber line and meridional direction at leading and trailing edge - degrees	
$\triangle \beta$	air turning angle - degrees	
γ	blade chord angle, angle between a chord line and axial direction (measured in a plane parallel to z-axis) - degrees; ratio of specific heats for air	
δ	ratio of total pressure to standard pressure of $1.01 \times 10^5 \text{ N/m}^2$ (2116 lbf/ft	t ²)
δ°	deviation angle, exit air angle minus tangent to blade mean camber line at trailing edge - degrees	
ϵ	angle between tangent to streamline projected on meridional plane and axia direction - degrees	.1
η	efficiency (percent)	
θ	ratio of total temperature to standard temperature of 518.7°R	
ρ	mass density - kg/m^3 (lbm/ft^3)	
σ	solidity, ratio of aerodynamic chord to gap between blades	
φ	blade camber angle, difference between blade angles at leading and trailing edges on conical surface, $\beta' *_1 - \beta' *_2$ for rotors and $\beta *_2 - \beta *_3$ for stators - degrees	
φE	blade camber angle on plane of "unwrapped" conical surface $\beta'*_1 - \beta'*_2 - E_{TE}$ for rotors and $\beta*_2 - \beta*_3 - E_{TE}$ for stators - degrees	
Ψ	amplitude of torsional vibration (radians)	91

SYMBOLS AND DEFINTIONS (Cont'd)

$$\overline{\omega} \qquad \text{total pressure loss coefficient,} \qquad \frac{P_1'}{T_2'} = \frac{\frac{\gamma}{\gamma - 1}}{-P_2'} \qquad \text{(rotors)}$$

$$\frac{P_2 - P_3}{P_2 - p_2}$$
 (stators)

 $\omega_{\rm b}$ bending vibrational frequency (Hz)

 ω_t torsional vibrational frequency (rad/sec)

Subscripts

ad adiabatic

f front

Ef refers to front camber definitions which include epse angle E

in inlet

LE leading edge

m meridional (velocity); mean camber line (angle)

p profile (loss); polytropic (efficiency)

ss suction surface

st stage

t transition, throat

TE trailing edge

z axial component

 θ tangential component

o plenum chamber

SYMBOLS AND DEFINITIONS (Cont'd)

1	station into rotor
2	station out of rotor or into stator
3	station out of stator
Superscripts	
,	relative to rotor
*	blade metal (angle); critical, at Mach number unity (area)

APPENDIX B AERODYNAMIC SUMMARY TABLE XIV

IDENTIFICATION OF AERODYNAMIC SUMMARY TABLE HEADINGS

	v'-2 FT/SEC	, , ,											
	V:1 FT/SEC	; >	PO/PO INLET	270									
	Ţ.	M, 2	Vø'>2 FT/SEC	V' ₀₂				T02/ T01	- 1 1 ₃ -				
	7-, W	,, Z	VØ'-1 FT/SEC	۷' و ۱				PO/PO STAGE	رة <u>- 1</u>	%EFF-P TOT-STG	η_{p-st}		
	U-2 FT/SEC	$^{C}_2$	8'-2 Degree	β_2'				TO/TO INLET	[메 <mark>-</mark> 0	%EFF.A r tot.stg	$\eta_{ ext{ad-st}}$		
	U-1 FT/SEC	r,	8'-1 DEGREE	β_1'	EFF-P ROTOR %	η_{p2}		PO/PO	್ಷ	%EFF-A %EFF-P %EFF-A TOT-INLET TOT-STG	η_{p}		
	M-2	M ₂	%EFF-A TOT	$\eta_{ m ad}$	EFF.AD ROTOR %	$\eta_{ m ad_2}$		М-2	Σ ^ε		$\eta_{ m ad}$		
	Ž.	Σ.	%EFF-P TOT	η_{p}	P02/P01	⁷ ,		8 -1	M 2	%EFF-P STATC-ST	$\eta_{ps\text{-st}}$	EFF.AD STAGE %	$\eta_{ ext{ad-st}}$
	B-2 Degree	B	PO2/ PO1	7 - 1	102/101	⁺ 2 ⁺		8-2 DEGREE	A.	P02/ P01	~~ ~ ~	P02/P01	~ ₆ ~ ₆
	B-1 DEGREE	β	LOSS-P TOTAL	$\frac{\omega\cos\beta_2'}{20}$				B-1 DEGREE	β_2	LOSS-P TOTAL	200S B	T02/T01	-يا ⊢ ـ
	V0-2 FT/SEC	ν _{θ2}	OMEGA-B TOTAL	13	WC1/A1 LBM/SEC SQFT	$\sqrt[N]{\theta_1}$		Vø-2 FT/SEC	ر ه3	OMEGA-B TOTAL	13		
	VØ-1 FT/SEC	۲۰ ۱۰	D-FAC	۵	EFF-P INLET %	$a_{\mathbf{p}}$		Vθ-1 FT/SEC	V ₀₂	D-FAC	۵	EFF.P INLET %	η_{p}
	VM-2 FT/SEC	ر س2	RHOVM-2	ρ ₂ ν _{m2}	EFF-AD INLET %	$\eta_{ m ad}$		VM-2 FT/SEC	, EE >	RHOVM-2	ρ ₃ ν _{m3}	EFF.AD INLET %	$\eta_{ m ad}$
	VM-1 FT/SEC	> E	RHOVM-1	ρ ₁ ν _{m1}	PO/PO INLET	رم م		VM-1 FT/SEC	, m ₂	RHOVM-1	$\rho_2^{\rm V}$ m2	PO/PO INLET	୷୷ୢ
	V-2 FT/SEC	^	TURN DEGREE	δ	TO/TO INLET	12 Lo		V-2 FT/SEC	>"	TURN DEGREE	δΔ	TO/TO	卢어卢
	V·1 FT/SEC	۲-	DEV DEGREE	°2				V-1 FT/SEC	²	DEV DEGREE	స్ట	WCORR INLET LBM/SEC	$\frac{w\sqrt{\theta_1}}{\delta_1}$
	EPSI-2 Degree	62	INCM	_π 1				EPSI-2 DEGREE	n,	INCM DEGREE	- m2	NCORR INLET RPM	$\sqrt{\frac{g}{g}}$
ROTOR	EPSI-1 DEGREE	Ę	INCS DEGREE	_ z `			STATOR	EPSI-1 DEGREE	<i>s</i> -	INCS DEGREE			
RC	ಚ	•	SL	•			STA	Ts	•	SL	•		

TABLE XV

IDENTIFICATION OF SPANS AND DIAMETERS FOR BLADE ELEMENT DATA

	DENTIF	DENTIFICATION OF SPANS AND DIAMELERS FOR BLADE ELEMENT DATA	SPANS AN	JUIAMETER	ts for BLA	UE ELEMEN	A DA IA	
	TA INI 1	INI ET	ROTOR 1 EXIT	1 EXIT	STATOR 1 INLET	INLET	STATOR 1 EXIT	EXIT
	A IC	SPAN	DIA.	SPAN	DIA.	SPAN	DIA.	SPAN
SL	(in.)	(%)	(in.)	(%)	(in.)	(%)	(in.)	(%)
_	13.16	00	14.60	0.0	15.48	0.0	16.46	0.0
2	14.15	5.0	15.52	5.0	16.41	5.3	17.16	4.2
ان ر	15.19	10.3	16.43	10.0	17.30	10.5	17.90	8. 8.
, 4	16.23	15.6	17.35	15.0	18.19	15.6	18.67	13.5
٧.	17.28	20.9	18.26	20.0	19.07	20.6	19.47	18.3
9	19.34	31.3	20.09	30.0	20.81	30.6	21.08	28.1
7	21.38	41.6	21.93	40.0	22.56	40.6	22.75	38.2
· oc	23.38	51.8	23.76	50.1	24.29	9.05	24.43	48.5
6	25.32	919	25.57	59.9	25.99	60.4	26.10	58.6
10	26.30	9.99	26.49	65.0	26.86	65.3	26.96	63.9
: =	27.27	71.5	27.41	70.0	27.73	70.3	27.81	0.69
12	29.20	81.2	29.24	80.0	29.45	80.2	29.52	79.4
13	30.15	86.1	30.16	85.0	30.32	85.2	30.38	84.7
4	31.09	8.06	31.07	90.0	31.18	90.1	31.23	6.68
15	32.01	95.5	31.99	95.0	32.04	95.1	32.08	95.0
16	32.90	100.0	32.90	100.0	32.90	100.0	32.90	100.0
								!
	ROTOR	ROTOR 2 INLET	ROTOR 2 EXIT	2 EXIT	STATOR	2 INLET	STATOR 2 EXIT	EXIT
	DIA.	SPAN	DIA.	SPAN	DIA.	SPAN	DIA.	SPAN
SL	(in.)	(%)	(in.)	(%)	(in.) (%)	(%)	(in.)	(%)
_	16.89	0.0	18.28	0.0	18.55	0.0	19.30	0.0
2	17.66	8.4	18.85	3.9	19.19	4.5	19.82	3.8
ım	18.44	7.6	19.45	8.0	19.84	0.6	20.37	7.9
4	19.22	14.6	20.08	12.3	20.50	13.6	20.95	12.1
5	20.01	19.5	20.73	16.8	21.17	18.2	21.55	16.5
9	21.59	29.3	22.08	26.0	22.52	27.6	22.78	25.6
7	23.18	39.3	12.49	35.6	23.90	37.3	24.08	55.2
∞	24.78	49.3	24.96	45.7	25.32	47.2	25.43	45.I
6	26.38	59.3	26.45	6.55	26.75	57.1	26.82	55.3
10	27.19	64.4	27.22	61.2	27.49	62.3	27.54	9.09
=	28.01	69.4	28.00	66.5	28.23	67.5	28.27	0.99
12	29.64	7.67	29.59	77.4	29.75	78.0	29.77	0.77
13	30.47	84.8	30.40	82.9	30.52	83.4	30.54	82.7
41	31.29	0.06	31.23	9.88	31.31	6.88	31.33	88.4
15	32.11	95.0	32.07	94.3	32.11	94.5	32.11	94.2
16	32.90	100.0	32.90	100.0	32.90	100.0	32.90	100.0

TABLE XVI

AERODYNAMIC SUMMARY — ROTOR 1 S1 Units)

	^. -2	M/SEC	201196	2002	197.1	195.1	197.5	206.0	219.4	235.1	243.9	252.7	269.4	277.3	280.0	281.9	279.0		_	ı .	. c) i ⁻				o v	. ~	. ~	. c	. ~			10	. ~~						
	\ - 1	M/SEC	7576	274.9	283.1	291.3	307.9	324.7	341.4	358.0	366.6	375.3	392.6	401.3	6.604	418.4			۵	TNIFT	· -	1.5186	1 511	1.5050		007	1.4837	1.4790	1-477	1.4760	1.475	1.475	1.475	1.4783	1.4811	1.4901				
O UN	- E		777960	0.5926	5800	0.5718	0.5751	6965.0	0.6331	0.6763	0.7003	0.7247	0.7701	0.7912	0.7951	9962.0	0.7830		VB1-2	M/SEC	102.5	404	7		10.5	150.6	5.46-	-126.5	-155.3	-169-4		-207.3	-218.5	-224.3	-229.6	-229.9				
O. PUINT	11.1		26/30 6818 0		8681	0.8939	.9453	.9970		7660	.1257						1.3095		VB*-1	M/SEC	•	4157.4	1,68.0	-180.6	-192.2	-215.2	-237.9	-260-1	-281.7	-292.6	-303.5	-324.8	-335.5	-345.9	-356.1	-366.0				
ดี ลัดอวี ปี	7-0				193.0	203.2	223.5	243.9	264.4	284.5	294.7	304.9	325.3	335.5			366.0		8 2	RAD	0-6006-0-5048	0-6323-0-2972	0-6638-0-1457	0.6938-0.0147	0.0997						-		0.9074	0.9294	0.9517	0.9686		EFF P	ROTOR	. 8- 6
ш				168.9								303.5					366.0		1-18	œ		_										0	0.9901	1.0048	1,0184	-		EFF-AD	ROTOR	b e
RUN NO O			0.9058									0.6105		9065*0		0.5841 3	R53		*				93.44		95.2	. 0	6		1	6	91		œ	81.49	76	70.1	٠	P02/P01		1
ı,	7 - E		0 00000	0.6648	O	0.6717 0.	0.6762 0.		6792 0.1	0.6785 0.0						_	0.6732 0.5		- LL	TOT			1	95.14		. 6	95		93.23		9	68	87	82	11		1			
	7-9	DIAN	8674 C	0.8162 0.	7800 C.	7556 0.	7149 0.	6838 0.	6551 0.	6315 0.	6204 0.	6107 0.	6010 0.	*00 Zuu 9	6271 0.	6577 0.	7110 0.		P02/	POI		1.5180	1.511		_	· ~	· -	_	1.4770	_	_	-	_	_	_	-		102/101		:
	7 - 5	ADIAN RA		2.1 0.0 0	0 0	0	0	0	0 0	0	°	0		į			- 1		LOSS-P	TOTAL	0.0357	0.0243	0.0180	0.0141	0.0128	0.0117	0.0124	0.0130	0.0142	0.0149	0.0158	0.0108	0.0229	0.0324	0.0422	0.0565	:			
9	9	- 2	٦	7	6	80	9	4	9	5	2	2	18.0		121.4	126.4	36.1		OMEGA-B	TOTAL	0.1850	0.1091	0.0743	0.0546	0.0476	0.0418	0.0444	0.0473	0.0530	0.0563	0.0605	0.0776	5060.0	0.1288	0.1687	0.2258	,	WC1/A1	KG/SFC	SOM
_	1-64	A/SEC	0 0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2 D-FAC		0.4215	0.4396	0.4642	0.4837	0.5601	0.5121			0.4681	0.4565		0.4294	0.4240	0.4367	0.4514	0.4815			LET	.
			196.8					183.1			i	174.4		170.8		3.6	158.0		RHDVM-2		40.22	44.97	47.02	48.09	48.46	48.63	48.39	48.17	47.99	47.89	47.80	47.37	47.04	45.93	44.61	42.72		EFF-AD	INLET	5 4
	TLEA	7/2FC	215.7	216.9	~	218.9	220.3	221.0	221.2	221.0	220.8	220.8	220.4	220.1	219.8	219.5	219.4		RHOVM-1		43.76	43.90	44.04	44.16	44.26	44.41	64.44	44.51	64.44	44.48	44.47	44.43	44.40	Ç	44.33	44.32		P0/P0	INLET	•
	717	M/SEC	305.2	290.3	277.8		249.7	236.4	226.2	218.7	215.6	212.9	208.6	201.0	206.9	206.7	208.6	9	TURN	FALIAN	1.1055	0.9295	6.8096	0.7085	6.6227	0.4696	6.3473	0.2524	0.1845	0.1564	0.1328	C.0965	C.0827	0.0753	C.0667	0.0623		T0/T0	INLET	,
1	110	M/SEC	215.7	216.9	218.0	218.9	220.3	221.0	221.2	221.0	220.8	220.8	220.4	220.1	219.8	219.5	219.4	;	DEV	KADIAN	0.2347	0.2617	0.2746	0.2725	0.2690	C.2437	6.1951	0.1462	0.1228	0.1137	0.1116	C. 10 PO	0.1066	0.1166	0.1453	•202•				
6.1.202	7-12-2	KAULAN 0 10/3	0.1655	0.1420	6.1229	0.1073	0.0821	0.0638	0.0469	0.0357	0.0293	0.0231	0.0112	0.0059	0.0018	4000.0	-0.0000				6.0317						0.6759	0.0638 (0.0555		•06C4	o.	.0663	.0637	0.0566				
1001	1 :				C.1816	0.1645									0.0027	. 0005	0.0000				-6.0665	-0.0405					7600.0-			-0.0035					ŏ	0.018¢ (

TABLE XVI (Cont'd)

AERODYNAMIC SUMMARY — ROTOR 1 (English Units)

	V2	SEC	40469	0120		640.1	648-1	76.0	719.9	771.5	•	829.1	884.0	910.0	918.6	954.8	915.4																								
!			851.9 6			955.0			i		202.9			j		9	7	9		INCET	1.5250	5180	.5110	.5050	• 5000	• 4905	. 4837	4790	.4770	.4760	.4756	.4753	.4755	.4783	.4811	.4901					
0		ш.	, i	. .			-		-		_	_	~	_	-	_	330 1400		,	FT/SEC	336.4 1	198.8 1	96.0		7	_	_	-415.1	_	_			_	-	2	54.4					
Z	Ī		52 0.632		81 0.5	39 0.5718	53 0.5751	70 0.5	85 0.6331		57 0.7003			17 0.7912	79 0.7951	839 0.7966	95 0.7830	•	- 1	u_			į					- 1							Š	1.0 -75					
o	H1		- 1	0.8183		1	0			_	7	_	_	1.2317		1.2	1.309		- [36 -995.6	50.31-1065.8	51.99-1100.7	53,25-1135,0	54.53-1168.	50-1201	i	به	×.	i i	6
CODE	0-z	FT/SEC	533.0	766.4	633.2	9999	733.3	800.4	867.3	933.4	967,1	1000.5	1067.3	1100.9	1134.3	1167.7	1201.0		- 1		41 -28.92					.41 17.50		65 35.19						21	35	07 55.			ROTOR	i	2 90.09
O, SPEED	U-1	FT/SEC	480.4	516.6	507.5	8-069	706.1	780.5	853.4	924.3	1.096	9.566	065.8	100.7		168.5	1201.0		i	_			i					6 49.65			u 1		56	57.	58.	2 59.	!	E FF-A	ROTOR	•	89.52
Ş	M-2	ш.		8906.0					0.6526	0.6291	0.6191		_	`]		_	.5853 1		+	0	œ								3 92.84		91.41	88	86		16	70.1		P02/P01			.4849
RUN			- 1			717 0.7					0.6781 0.6			.6757 0.			.6732 0.5		1111		8		93	95	95	95	95	76		92	91	8	87.3	82	77.71	71.74					
	÷		0	•	7.0	71790 8	41.0 0.6	.2 0.6786	ıc.	O	5	U	0	4	c	٠ د	0 7	,	77.	P01	1.5250	1.5180	1.5110	1.5050	1.5000	1.4905	1,4837	1.4790	1.4770	1.4760	1.4756	1.4753	1,4755	1,4783	1.4811	1.4901		102/101			1.1336
i	1 B-2		1	0.0	7 3	4					0 35			į		(₹)	0,40	, ,	1000	TOTAL	0.0357	0.0243	0.0180	0.0141	0.0128	.0117	0.0124	0.0130	.0142	0.0149	0.0158	.0198	0.0229	•0324	.0422	•0565					
į		DEG	1						!										a i				1		0			C :	0		C			0	87 0	58 0	,	(A)	/SEC		•85
		-	869.4		642.7	1							387	383		414.6	444.6		ŀ				l					93 0.0473	1					0	0	15 0.22	İ	-P WC1/A1		S.	45
	V 0 – 1	FT/SEC	0	3 6	0	0	0-0	0.0	0	0.0	0.0	0	0.0	0.0	•	0.0	0.0	i.	1-7 N-L WC								9 0.5070								0.4	2 0.48	!	0 EFF-P	_		5 90.09
		FT/SEC	607.4	1.049	646.5	636.4	617.9	600	588.2	519.2	575.4	572.1	564.6	560.4	249.6	536.7	518.5		ZIMADE I		40.22	4	4	4	4	48.63	4	48.17	4	47.89	47.80	47.3	47.04	45.93	44.6	42.7	:	EFF-AD			89.52
			703.6	707	715.2	718.3	722.7	725.1	725.7	725.0	724.6	724.4	723.2	722.2	721.2	720.2	719.8		T- WADEY				: 1			4.4.4		44.51		44.4	4	44.4	44.40	44	44.3	44.3	-	04/04	INLET		1.4849
,	~	T/SEC F	000	001.00	9 4	· ·		Į.	742.0	717.7	707.2	4		۳,	۲.	9•1	, 13	4	I ORIN	DEGREE	63.34	53.26	46.39	40.60	35.68	26.91	19.90	14.46	10.57	8.96	7.61	5.53	41.14	4.32	3.82	3.57	:	0.1701	INLET		1.1336
:		FI/SEC F	9 1	- ,	٥ ر			_	_	0	ç	4	2	2	~	2	ac	i	UEV	E E	3.45	66.4	. 73	.61	.41	13.96	• 1 e	.37	.03	.52		. 16	.11	6.68	8.32	11.80					
:	1-2	RFE	135	181	440	4 8	704	657	801	043	613	321	640	340	105	023	၁၁၁	į	E 1	GREFIO	62	24	3.70	3.99	4.29	4.61	4.35	3.66	3.27	3.18	3.16	3.46	3,66	3.6€	3.65	3.24					
	1-1	GREE DEG	666	175	4 1 4	424	554	839	353	980	464	633	426	493	152	. 031	- 000		100		3.81	2 • 32	i.77	1.39	F.02	-0.56	0.56	96.0	0.85	0.20	0.62	1.22	1.44	1.58	1.43	1.03					
	SI EP	2	17	71 .	: 2		_	un.	•	ויז	~	-	Ö	٥.		የ	0		76	ĕ	'i'	7.	Ē	4	in I	آ بو	<u>-</u>	آ ھ	T 0	۲ 01	11	12	13	14	13	91					

TABLE XVII

(SI ODIES)

					!		i	ON NO	O, SPEED (CODE 0 POINT		
		VM-1	VM-2	/6-1	VB-2	R-1	-2 M-1		P0/P0	T0/T0	P0/P0	T02/
RADIAN		MISEC	SEC	M/SEC 1	24	IDIAN RADIAN	_		INLET	INLET	STAGE	101
0.1833		141.2			-		255 0.8410	10 0.5145	1.4181	1.1487	1.4181	1.1487
		165.3		220.6	23.4 0.		_		1.4356	1,1391	1.4356	1.1391
0.1603 0.1141 267.3	3 181.0	175.8	179.4	201.4	23.5 0.				1.4517	1.1340	1.4517	1.1340
0.0950		181.5		86.8	23.4 0.	7996 N.1	298 0.7604		1,4603	1.1306	1,4603	1,1306
		184.1		175.9	23.3 0.	7626 0.1	0.1301 0.7420		1.4665	1.1290	1.4665	1.1290
0.0612		185.9		158.2	23.1 0.	7053 0.1	306 0.70	91 0.5030		1.1266	1.4700	1.1266
0.0478		185.3		145.3	22.9 0.	6651 0.1	307 0.6817	17 0.4989		1,1260	1.4689	1.1260
ì		184.2	173.4	134.9	22.8 0.	6321 0.1			_	1.1259	1.4670	1.1259
0.0304		183.0		127.1	22.8 0.				_	1.1270	1.4657	1.1270
0.020		182.4	172.7	123.6	22.7 0.				_	1.1277	1.4643	1.1277
		181.9	172.4	120.7	22.7 0.			72 0.4925		1.1286	1.4633	1.1286
0.0177		180.2	171.1	117.1	22.5 0.				_	1.1326	1.4598	1.1326
0.0148		179.2	170.0	116.4	22.4 0.	0.5761 0.1		0	1,4567	1,1357	1.4567	1.1357
0.0112		176.2	170-1	121.0	22.4 0			0	' ~	1.1450	1.4560	1.1450
0.00.5		172.6	169.4	126.1	22.3 0.		U	0	1,4530	1.1554	1.4530	1.1554
0000-0-0		167.5	171.5	136.1			- 1	0	-	1.1721	1.4556	1,1721
i	i				0			0 U	4 C D C C	40.00	TEFE A	# FFF-D
E C	2 :	T-WADHY	KHUVMIZ	יייי איייי	TOTAL		001	CTATC CT	TOT TALET	TOT-TOT	TOT-STG	TOT-STG
KAUIAN	XA O (-	100	10.0	0000	76. 27	70.57	71-98	70-57	71.98
0.0968	0 0		49.37	2614.0	2681.0	0.00	6676.0	77.47	10.00	70.33	78.25	70.33
-0.0096 0.0718 0.2311	٠	•	49.9E		0-1550	6 75 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.40	60	20.00	1100	0000	
-0.0067 0.0796 0.1879	5		50.12		0.1182	0.0256	1096.0	82.14	83.89	11.48	80000	1
0.0160 0.0742 0.167	3		50.91			0.0211	0.9703	85.31	87.46	88.12	04.78	21.88
0.0323 0.0612 0.158	0.6		51.06			0.0171	0.9777	88.05	89.66	07.06	87.00	30.00
0.0562 0.0436 0.145	0		50.85			0.0122	0.0862	91.45	91.91	92.34	91.91	45.34
0.0807 0.0252 0.139	C		50.52		0.0372	0.0101	0.66.0	92.87	92.18	92.59	92.18	92.59
0.1051 0.0066 0.134	0		50.28		0.0321	0.0093	0.9919	93.32	91.89	92.32	91 . 89	92.32
0.1285-0.0110 0.127		49.38	50.12			0.0097	0.9924	92.91	90.91	91,39	90.91	91.39
0.1467-0.6202 0.125	Ċ.		96*65		0.0334	0.0105	0.9921	92.26	90.21	90.72	90.21	90.72
0-1524-0-0290 0-124			49.81			0.0116	0.9917	91.47	89.34	89.89	89.34	89.89
0-1746-0-0458 0-12	Ų.	i	49.26	0.3465	0.0467	0.0159	0.9895	88.51	86.09	86.81	86.09	86.81
-0-1890-0-0577 0-124	2		46.79	0.3510	0.0572	0.0199	0.9873	85,94	83.64	84.49	83.64	84.49
		47.75	48.44		0.0681	0.0243	0.9849	83.18		79.28	78.15	79.28
-0 0760 0-171	0		47.82		0.0867	0.0316	0.9810	78.86	72.50	73.91		73.91
-0.2180-0.0821 0.2321	0.5		47.74		0.1050	0.0391	6926.0	74.18		67.53	65.78	67.53
							1		•			
NCORR WCORR		P0/P0	Ξ.			102/101	P02/P01	Ol EFF-AD	-AD EFF-F	ن		
		INC	INL P	- LE				. b +)		
ه د	-			a		1,1336	0.9840	.00	.66 261.44			
	2 I+1336	11.4011		100		10111		3	3			

TABLE XVII (Cont'd)

AERODYNAMIC SUMMARY — STATOR 1 (English Units)

7-1543	V-1	V2		VM-2	V8-1	V 0 -2	8-1	B-2	¥-1	<u>+</u>		P0/P0	10/10	P0/P0	T02/
	FT/SEC	FT/SEC		FT/SFC	FT/SEC	FT/SEC	DEGREE	DEGREE	w e		•	INLET	INLET	STAGE	101
	941.8	8.669	463.3	594.9	- 1	77.0	4.09		2 0.8410	10 0.5145	7		1.148	104101	104141
	904.4	594.6	542.4	589.0		76.8	53.1	7.3		71 0.51	1	.4356	1.1391	1.4356	1.139
_	87731	593.8	576.7	588.8		77.0	48.9				-	.4517	1.1340	1.4517	1.1340
_	854.5	590.1	595.4	585.1		7.97	45.8	7.4	- 1	04 0.5100	-	• 4603	1.1306	1.4603	1,1306
	825.3	587.9	6.03	582.9	577.1	76.5	43.7	_			_	•4665	1.1290	1.4665	1.129
	800.9	581.4	6.609	576.5	519.2		40.4	_			-	•4700	1.1266	1.4700	1.1266
ۍ	772 -4	576.7	607.8	571.8	476.7		38.1				-	6894.	1.1260	1.4689	1,126
· α	748.9	574.0	604.2	569.1	442.5	74.9	36.2	7.5	5 0.6591		_	.4670	1.1259	1.4670	1.1259
	731.0	572.0	6000	568.0	416.9		34.8				-	.4657	1.1270	1.4657	1.1270
	723.0	571.5	508.5	566.6	405.5		34.1			39 0 49	_	.4643	1.1277	1.4643	1.1277
1	716.2	570.4	596.8	565.5	395.9	ì	33.6		i .	72 0.4925	_	•4633	1.1286	1.4633	1.1286
-	705.3	566.2	591.4	561.4			33.0			57 0.48	-	.4598	1.1326	1.4598	1.1326
	70,	562.4	587.8	557.6		73.4	33.0			08 0.4838	138 1.	.4567	1.1357	1.4567	1.1357
۰, ۲	761.2	563	578.0	558.0	i	73.5	34.5	7.5			-	.4560	1.1450	1.4560	1.1450
2 5	701.3	566.7	566.2	55.0	4	73.2	36.2		·		_	.4530	1,1554	1,4530	1.1554
ءِ ج	708	567.06	549.6	562.7	446.6	74.1	39.1	7	٠,	71 0.4804	_	•4556	1.1721	1.4556	1.1721
3	7	Tain	L-WACH &		4-7 D-F	AC DMFGA-B	4-8 LOSS-P			SEFF-P		REFF-A	REFF-P	REFF-A	SEFF-P
Š	품.	LOKN			KHUVM-Z D-FAL		- 1		102		:		F 0 110 F 0 F	-	1
u u	DE GR E E								n	IAICES			101-101	20101	
54	16.08								0.9299	74.27		70.57	71.98	70.07	71.98
11	13.24								0.9457	11.69		25	79.33	(8.25	19.3
56	10.77		1	50.72	72 0.4644	44 0.1182			1096.0	82.14	83	684	84.71	83.89	84.71
2	9.58					87 0.0934	34 0.0211		0.9703	85.31		87.46	88.12	87.46	88
	60.0								7776.0	88.05	89	99•	90.20	89.66	90.20
ې د	3.5	32.93	484	50.85			,		0.0862	91.45	ı	91.91	92.34	91.91	92.34
7 7	2.00								0066*0	92.87		92.18	95 • 59	92.18	92.59
α,	7.68								0.9919	93.32		68.	92,32	91.89	92.32
63	7.32	27.27		50.12	12 0.3584	84 0.0316	1	1	0.9924	95.91	06	.91	91 •39	16.06	91.3
917	7.20		49.3			27 0.0334			0.9921	92.26	8	.21	٠.	90.21	90.72
94	7.11		49.3			90 0.0359	59 0.0116		1166.0	91.47	68	.34	89.89	89.34	89.89
29	7.05		49.0		J.	65 0.0467	!	0.0159 0	9886	86.51		86.09	86.81	86.09	86.8
, =	7.16		48.7					199 0	.9873	85.94	œ œ	83.64	84 • 49	83.64	84.49
4	7.72				.*			£	0.9849	83.18	78	•15	79.28	78.15	79.2
) K	0		46.5			1	C	91	0.9810	78.86	72	. 50	73.91	72.50	73.91
202	13,30	וח		1 47.	÷		0	0 1660	6926	74.18	92	.78	67.53	65.78	67.5
		10/10	007.00	. EEE-AD	ט ב טבו	្ន	102	102/101	P02/P01		FFF-AD	EFF-P			
INLET	INLET		_			E-	!				STAGE	T01-516			
	BM/SEC			æ							ę	e !			

TABLE XVIII

AERODYNAMIC SUMMARY — ROTOR 2 (SI Units)

ļ	V'-2	M/SEC	184.7	188.6	194.1	98•3	202.2	209.4	17.8	28.9	242.1	49.3	257.0	273.0	278.2	281.6	82.0	282.6																						
!	^ -1 ^						268.6 2			İ	327.3 2		341.6 2					387.2 2	9	70/10	INLET	1,9713	.9715	1.9675	1.9619	1.9613	.9530	1.9422	1.9314	1.9217	1.9157	1.9103	.8979	8888	.8847	.8868	1668.			
6	_	_	į							,																		•						_	_	_	.3 1.			
2	Ī								0.599	0.6284	0.6631		0.7023		0.755	0.7574	0.753	0.7472		7A. T				3 -48.8		9 80.5									9 -237.4	~	5 -242			
POINT			6186	0.6623	0.7019	.7339	0.7624	0.8102	.8520	0.8919	6056-0	9056	0.9703	1.0089	1.0275	1.0450	.0611	.0772	9	1	M/SEC	-165.0	-173.7	-182.3	-191.1	-166.9	-217.	-235.4	-253.3	-270.9	-280.0	-289.1	-307 .4	-316.7	-325.8	-334.9	-343			
DE O		EC EC	4							277.6 0			311.5			<u>ب</u>	6.8 1	366.0		7_ 0	ADIAN	0.0432	0.1487	0.2517				0.6403	0.7356	.8165	0.8545	0.8892	0.9525	0.9821	1.0063	1.0238	•0304	717	POTOR	
EED CODE		_																•						0.8213 0				0.9054 0	0.9414 0	0.9753 0	0.9926 0	1.0091			.0715 1		11160			
O+ SPEED	<u>-</u> -	M/SEC	187.9	196.	205	213.	222	240	257	275	293	302	311.6	329.	339.0	348	357.	366.0							_						-	. ^		_	~	7	-	EFF-AU	ROTOR	
P.UN NO	4-2		0.7378	7169	0.6953	0.6750	0.6594	0.6286	6009	0.5770	0.5570	0.5470	0.5379	0.5199	0.5099	0.5021	9667.0	2047		4 1 1 1 1 1 1 1 1 1		1 92.57			90.36 7						9 93.13	1		۸,	.+	5.17		P02/P01		
			80 0	23 0.					0 00	0 06	62 0							11 0.	i.		101	95,91	93.4	4.40	95.27	95.74	95.83	95.20	94.52	93.7	93 • 39	93.03	92.21	89.12	83.84	78.39	73.42			
;	H.	2			0.4814		3 0.51	7 0.5264	8 0.53	1 0.5290	8 0.5262	5 0.52	9 0.5208	6 0.51		7 0.5043	7 0.4992	0 0.50		1207	ΙŪΔ	1.3901	.3733	1.3553	1.3435	1.3374	.3286	.3222	.3166	.3111	•3083	1.3055	1.3001	.2973	•2944	9862.1	•3051	102/101		
	R-2	RADIAN	0.8050	0.7654	0.7240	969.0	0.6783	0.6567	0.643	0.6311	0.6178	0.611	0.6049	0.5936	0.6051	0.6317	0.6687	0.7050										_	_	_	-			_	_		~			
	B-1	RAPIAN	0.1521	0.1409	.1335	.1287	0.1255	0.1221	.1211	9.1214	0.1222	.1227	0.1232	0.1242	0.1247	.1251	.1254	1257			TOTAL			0.0158	0.0121			0.0092	0.0095	0.0			0.0102	0.0140	0.0211	0.02	0.0390			
	Ve-2	u						139,3 0	31,2 0	0.44	117.8 0	114.8 0					0	23.7 0		UMEGALE	TOTAL	0.1124	0.0892	0.0651	0.0495	0.0410	0.0355	0.0373	0.0395	0.0416	0.0428	0.0436	0.0459	0.0639	0.0970	0.1364	5,1773	WC1/A1	KG/SEC	
		-	i	22.7									22.5		_	_		7						0.3703 (.3578 (FF-P 1		
	V6-1	M/SEC					!			1								~	3	DATE DEFINITION									57.22 0.		5.60 0.				-	~	0	FF-AD E		
	VM-2	M/SEC	184.5	186.4	187.	186.	185.	180.	174.6	169.	165	163.	161.9	158.2	154.5	150.3	146.7	145.												u i	u,	un.	u i	41	L.	48.3		ш		
	2	M/SEC	4	159.4	169.0	174.9	179.4	183.7	184.8	184.5	183.6	182.8	181.9	179.6	178.0	177.7	176.8	178.7		THEADER		45.09	45.59	48.47	50.19	51.43	52.55	52.77	52.63	52.37	52.11	51.86	51.10	50,53	50.08	49.40	49.56	PO/PO	INLET	
	N		Ý					227.9			203.4		196.9	150.9	187.5	186.3		ပံ			RADIAN	0.7926	9.676R	0.5695	0.4901	,4311	C.3379	0.2651	0.2058	6.1588	0•1381	1166	0.0894	0.0766	0.3652	6.0613	0.0607	01/0	INLET	
													:			7	.2	-																				7	H	
	2 V-1	N M/SEC			7 170.5		-	-	-	-	' -	' -	_	_	_		178	180	í								0.0.1689						r c.1102			3 6.1239	0.15			
	EPS1-	RADIA	0.1269	6.1138	0.101	0.60	0.080	0.0614	6.044	0.6294	0.6160	860000	11 0.0113 0.0039	9000	0.010	14-0.0069-0.0107	0.007	0.000		INC	RALIA	0.028	0.037	0.0385	0.0419	0.0397	0.420	0.0409	0.0466	0.0569	0.0662	0.0621	0.0670	0.0718	0.0758	C. U. 79	0.0708			
	FPS1-1	RADIAN		C.163R	0.1429	.1255	0,1106				0.0262	C.0185	.0113	-8000	-2500	-6900	5-0.0052-0.007	0000						3-0.0778		5-0.0649	6-0.0516	7-0.0423	8-C.0271	220000-0-6	0.0047	C.0187	C.0283	0.0330	6950.0	0.0404	.0318			
	S	œ										10	11 0	12-0	13-C	14-0	15-0	16 C		م	aź	ا-ر د	2-Ü	3-0	4 -0	5-0	0-9	7-0	8-0	0-6			12 C	13 0						

TABLE XVIII (Cont'd)

AERODYNAMIC SUMMARY – ROTOR 2 (English Units)

7 7	1	££1,4 4£	£ £ 1 , 4 . 48
-	5.8 605.4 75.0		4 7/2 2 6 6 3 7 6 7 3 7 7 7 4 4
74.6	2.9 611.7 74.6	£53,4 522.9 611.7 74.6	328 -2 F33 -4 322 -9 CII -1 14 -C
74.8	4.4 616.4 74.8	826.1 554.4 616.4 74.8	559.5 826.1 554.4 616.4 74.8
7 74.5 516.0	3.9 613.2 74.5 8 5 608 7 74.4	763 2 573.9 613.2 74.5	578.7 RCI.4 573.9 613.2 74.5
74.0	2.6 591.8 74.0	747.7 602.6 591.8 74.0	607-1 747-7 602-6 591-8 74-0
73.8	6.3 572.9 73.8	716.5 606.3 572.9 73.8	610.8 716.5 606.3 572.9 73.8
73.8	5.2 556.8 73.8	689.7 605.2 556.8 73.8	609.7 689.7 605.2 556.8 73.8
74.0	2.4 543.9 74.0	667,3 602,4 543,9 74.0	606.9 667.3 602.4 543.9 74.0
73.9	9.6 537.1 73.9	656.0 599.6 537.1 73.9	604.2 656.0 599.6 537.1 73.9
	6.9 531.3 73.9	645.9 596.9 531.3 73.9	601.5 645.9 596.9 531.3 73.9
73.6	9.4 519.1 73.6	626,3 589.4 519.1 73.6	594.0 626,3 589.4 519.1 73.6
1	4.00 SUGG-4 73 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	211 2 683 C 703 2 73 3	507 6 616.5 564.0 506.4 73.2 507 6 611 5 603 6 703.2 73.3
73.1	0.0 481.2 73.1	613.3 580.0 481.2 73.1	584.6 (13.3 580.0 481.2 73.1
1 74.1 4	6.2 477.1 74	626.3 586.2 477.1 74	590.9 626.3 586.2 477.1 74
VM-2 D-FAC	DHOVM-1 DHOVM-2 D-FAC	C-MACHA NOTE	C-MVOHO I-MVOHO N
		PEGP EE	FF DECREE PEGPEE
	42.04 55.47	45.41 42.04 55.47	60 15,20 45,41 42,04 55,47
	45.59 57.55	38.78 45.59 57.55	17 14.36 38.78 45.59 57.55
	48.47 59.24	32.63 48.47 59.24	21 13,30 32,63 48,47 59,24
	50.19 59.90	28.08 50.19 59.90	40 11.95 28.08 50.19 59.90
61 0 3861	51.43 60.21	24.70 51.43 60.21	11.35 24.70 51.43 60.21
	52.77 58.39	19.54 52.32 58.34	40 4.68 19.56 52.32 53.61 58 7 00 18 10 55.77 58.39
	52.63 57.22 0	11.70 52.63 57.22 0	55 (e.g. 13-17 52-63 57-22 0
o	52.37 56.20	9.10 52.37 56.20	24 6.57 9.10 52.37 56.20
0.3	52.11 55.60 0.	7.91 52.11 55.60 0.	45 (-31 7.91 52.11 55.60 0.
0.3	51.86 55.06 0.3	6.87 51.86 55.0b 0.3	56 6.22 6.87 51.86 55.06 0.3
	\$1.10 53.78 0.3	F.12 41.10 53.78 0.3	P4 6.32 F.12 61.10 53.78 0.3
1.20 0.3257	50.53 52.29	4.39 50.53 52.20	11 6.51 4.39 50.53 52.29
• • •	50.08 50.30	3,73 50.08 50.34	73 373 50.08 50.34
	49.40 48.39 0.3578	3.51 49.40 48.39 0.3578	7.10 3.51 49.40 48.39 0.3578
	49.26 47.10 0.3810	3,48 49.26 47.10 0.3810	48 49.26 47.10 0.3810
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	PO/PC EFF-AD	POZPC EFF-AD	POZPC EFF-AD
17 17 17 17 17 17 17 17 17 17 17 17 17 1	INCET INCET	INCET INCET	I INLET INLET
	87.28	87.28	54 1.9242 87.28

TABLE XIX

AERODYNAMIC SUMMARY — STATOR 2 (SI Units)

T02/	T01	1.1063	1.1016	1,0961	1.0924	1.0904	1.0882	1.0872	1,0865	1.0858	1.0855	1.0851	1.0845	1.0868	1.0917	1.0996	1.1088	0 1 11 11	TOTOT	77.94	81.34	85.54	88.76	90.48	92.35	92.58	92.21	91.40	90.84	90.19	88.73	85.27	79.56	72.17	64.84			
NT NO O	STAGE	1.3182	1,3181	1,3171	1.3167	1,3162	1.3149	1,3121	1.3078	1.3021	1.2987	1.2949	1.2873	1.2828	1.2775	1.2719	1.2651	4	TOTACT	77.06	80.59	84.97	88.32	90.10	92.05	92.28	91.91	91.07	67.06	89.82	88.32	84.74	78.84	71.19	63.64			
CODE 0. POINT TO/TO	INLET	1.2708	1.2549	1.2430	1.2351	1.2311	1.2260	1.2242	1.2233	1.2237	1.2241	1.2247	1.2283	1.2343	1.2500	1.2705	1.2996	0 ! UU •	TOTATION	74.50	80.18	85.06	88 39	90.32	92,34	92.58	92.28	91.39	40.77	90.01	87.57	84.80	79.39	73.21	24.99			
ام	INLET	1.8694	1.8923	1.9121	1.9227	1.9302	1.9329	1,9273	1.9185	1.9085	1.9018	1.8948	1.8792	1.8687	1.8601	1.8481	1.8416	4.000	TOTAL	72-18	78 . 34	83.65	87.28	89.39	91.61	91.87	91.54	90.58	89.90	89.08	86.43	83.42	77.53	70.83	63.52	AD EFF-P	101-516	30 317.18
RUN NO				9 0.4842	0.4871	. 0.4880	0.4819	3 0.4716		0.4500							- 1	0 I	TATO TO T	62.49	66.19	75.29	81,26	34.59	89.31	91.45	1.95	91.05	90.11	88.58	85.17	82.73	79.52	69.87	00*69		STAGE	86.30
2 M-1			0	00 0.6409	00 0.6335	00 0.6294	00 0.6161	86650 00	30 0.5823	00 0.5652	75557	00 0.5467		00 0.5175		00 0.5063	00 0.5116	,	100	ď		0.9718								_ !				9795	* +696°0	P02/P01		99866
		- 1			0.7306 0.000		0.6564 0.0000	0.6325 0.00	0.6146 0.0000	0.000.0 4000.0		889 0.00	5803 0.0000			0.6578 0.0000	0.6941 0.0000	9-200	TOTAL	_					í									0.0453	0.0681	102/101		1.0898
					0.0 0.7				•		o	0.0 0.5	ċ			0.0 0.6	9.0 0.0	8 - 4 Ou	i		0.1634				0.0455		0.0326	0.0353	0.0386				0.0807	0.1279	0.1874			!
1		i	178.2	164.4	154.1	147.1	136.6	128.9	122.3	116.5	113.7	1111.0	106.2	106.5	109.7	115.8	123.7		2	665470			0.3672	0.3605	0.3561	0.3574	0.3590	0.3604	0.3621	3 0.3644	0.3719			0.4354	0.4713	FFF-P	H	75.98 _1
VM-2	M/SEC	173.2	176.7	179.5	179.9	179.9	177.4	173.6	169.7	166.0	163.7	161.5	156.4	153.2	151.1	147.9	147.2			57.61		61.77					60.19			57.08		ď	Ś	20	48.65	EFF-AD		4 85.31
		144.9			171.3				173.2			-	162.0	158.0	153.7	149.8	148.6			45.93	, ru							4 57.42		ĸ.	S				66*27 1	űd/űd	INLET	4 1.8984
	M/SEC												156	153	151		147	5	MATORO	2 0	O	0.7	3	ċ	0.0	0.0	ټ ن	0.6	ن •		0	C.5	9.0	0.6		10,	INLET	1.235
	M/SEC											6.661						Š	ď		0.1506	0.1419	0.1404	0.1423	0.1469	3 0.1514	7 6.1552	· 0.1597	0,1625	0.1655	0.1746	0.1827	0.2009		0.2	¥C ∩ R R		. K6/2EU
		0.1439	0.1237	0.1072	0.0933	0.0814	0.0613	0.0455	C.0329	0.0230	0.0189	11 0.0155 0.0111	0.0102	0,0081	0.0056	0.0027	-0.0000	MONT SOME	2	1-0-4508-0-1	2-0-7250-0-0525	3-0-7931-0-053	4-0.8402-0.0402	5-0.8730-0.0530	6-0.9144-0.0687	7-0-9383-0-0-6	8-6.9562-0.1107	9-0.9704-0.1219	10-0.9762-0.1276	11-0-9819-0-1336	12-0.9965-0.1525	13-0.9779-0.1561	14-0.9507-0.1712	15-0-9130-0-1791	16-0.8767-0.1849	a a c c c	INLET	RAU/SEL 876-19

TABLE XIX (Cont'd)

AERODYNAMIC SUMMARY — STATOR 2 (English Units)

T02/	101	10000	1.1016	1960-1	1.0924	1 • 0 9 0 4	1.0882	1,0872	1.0865	1.0858	1,0855	1.0851	1.0845	1.0868	1.0917	1.0996	1,1088	#EFF-P	T0T-STG	77.94	81.34	85.54	88.76	90.48	92.35	92.58	72.2	70	00.00	28 73	000	70.00	75 57	17.71	***			i
P0/P0	STAGE	70160	1,3181	1.3171	1,3167	1,3162	1.3149	1,3121	1.3078	1.3021	1,2987	1.2949	1.2873	1.2828	1.2775	1.2719	1,2651	6 6 177 177 177	T0T-5TG	77.06	80.59	84.97	88.32	90.10	92.05	92.28	1,0	/0°16	000	00 32	200	70 07	1000	11.17	\$0.50			
10/10	INCE	100/08	1.2549	1.2430	1.2351	1.2311	1.2260	1.2242	1.2233	1.2237	1.2241	1.2247	1.2283	1.2343	1.2500	1.2705	1.2996	#EFF-P	TOT-INLET	74.50	80.18	85.06	88 •39	90.32	92.34	92.58	92.26	91.39	200	10.06	- 0	10 700	74.07	12.61	14.99			
04/04	INLET	1.8694	1.8923	1.9121	1.9227	1.9302	1.9329	1.9273	1.9185	1.9085	1.9010	1.8948	1.8792	1.8687	1.8601	1.8481	1.8416	7FFF-A	ET		18.34	33.65	87.28	89.39	91.61	91.87	91.54	90.58	96.48	84.08	01.00	73.67	66.00	10.83	63.52	D EFF-P	TOT-STG	317.18
H-2	•	- 1		0.4842	0.4871	0.4880	0.4819	0.4716				0.4371			0.4038		0.3853	# FFF - P	-			75.29					1			86.28		•	7	.8.	20.00		STAGE	86.30
B-2 #-1	٠	O.		0.0 0.6409	3.0 0.6335	0.0 0.6294	0.0 0.6161				0.0 0.5557		0.0 0.5280	0.0 0.5175		0.0 0.5063	0.0 0.5116	/ 2 (1 .	`&		1		0.9842	i		0.9933		1266	.	1065				7696.0	P02/P01		0.08.66
	DEGREE DEGREE			7.44					35.2			-			! !			91			0.0343	1		0.0156	l		į			۳. ا			- !	0	0.0681	102/101	i	0000
			0.0	0.0	0.0	0	0.0	0-0	0	0	0	0.0	0.0	0.0	0	0.0	0.0			c							٥,			1					13 0.1874	٩	. .	
	Ų.			539 •3		·									:			OVER CHANGE	7 7 1	61 0.4399	59.91 0.4100	,			1			58.82 0.3604		- 1					8.65 0.4713	PEFF-P		- 1
	Œ		9 579.8	8 588.8	5						537.2				2 495.7				THANKS	75 10.27		54.14		63	58.98 62		58.24 6C			56.28 57					4	OC. VOOL BEEFAN		8
-2 VM-1	u_	3.3 475.3	4.8 513.9					5.7	i								-		URN AHU	u -										3.74 56				49	47	(L		
																621.2 465.3			ביינים אינים א ביינים אינים א	77.	מין	12	1 4		10.04	8.67	69	15 3	31 3	94	00	47	51 3	56	80	F	INLET	M/SEC
PSI-2	SREE	838	306	622	942	0	8 4		704	170	1 1 0	433	306		110	001.0			E C	DECKER D															-16.60			RPM LE
1-1	REF	8.242	7.096	6.145	5.347	4.664	2 612	0.00	2000	70001	176-1		284	944	0.321	7.1.			INCS	DEGREE	67.10-	111111111111111111111111111111111111111	41.84	-50 62	-52.39	-53.76	-54.78	-55.60	-55.93	-56.26	-56.75	-56.03	-54.47	-52.31	-50.23			

APPENDIX C

TABLE XX

AIRFOIL GEOMETRY ON DESIGN CONICAL SURFACES - ROTOR 1

_
-
'n,
25
_
ပ္
⊆
and i
Πì
_
Figure 15
·
=
=
.2
iΤ
a
75
៳
~
=
0
Ξ
Definitions see
⊆
:-
7
Ψ,
\Box
-o-
≍
္ပ
11

		41.4	0000			0300		.0178	.9743	1,0129	.2116	. 2116	8640	0000	1.1784	•			4.3500	2.8277	0000	7400	0000	0000	55,824	50.036	12,124	12.124		•	-	=
			96.48 96.29 96.29		1097	0300	.7396	•0178	9710	4266	9 6		 	7	5	. 8363			4.3194										-3.240	234		836
			90.00 92.88 92.55		.0700	.0300	,7352	.0178	9434	.9824	.1257	. 1267	0421	8.00	1.2142	. 8236					0.000									277	1.2142	. 6236
SS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					.1073	0300	7116	.017	. 9245	.9633	125	• •	-10126	0000	254	0/4/0			4.2263	2.6799	00000	7114	0000	0000	52,971	56.192	7.189	6010/	-,720	000	1.2547	7970
F 1.	BLADES		70.00 77.59 76.93 76.28		1057	.0305	679	.0179	90179	. 9447				• 0 1 1 0	8	. 7687			4.1610	2,5973	.0305	1424	.0071	.0071	51.870	54.128	9.225	9.075		.677	1.3009	7607
32+90	, 28		60.00 69.30 68.55 67.80	ians)	.1039	.0371	• ທ	6610.	80.00	•	.2014	1960		.0254	ŝ	•7379	rope)	(603)	4.0922	2.5140	103/1		007	.007	50,422	53.194	11.534	11.228	100	10401		, ~
S	AIRFOILS		50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs & Radians)	1021	.0553	.5043	.0209		916	.2404	. 2518	****	7	0	. 7041	Foolish Units (Inchas & Degrees)	ි විධ න ව	4.0190	2.4232	.0053		000	0082	40.376	\$2,628	14.921	14.428	200	2.359	1.4203	.7041
ROOT METERS 334	- ARC		40.00 50.97 50.22 49.28	ts (Meters	1001.	.0603	2900	.0229	.7989	. 8801	.3430	. 3307	1344	0090	8	5999.	ite (Inch	2	3,9405	2,3254	.0603	0000	0000	0600	45.776	50.427	19.654	18.947	7.72	96.89	1.5004	. ~
13 CHES 14 . 16 . 16 . 16 . 16 . 16 . 16 . 16 .	CIRCULAR		0 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SI Units	.0564	2,90.	.6078	•0546	. 0249	.8275	.4824	. 4665	1500	.0834	1.6021	.6242	notish I In		3.6554	2.2187	.0642	4/01		600	42,476	47,410	27.640	26.729	4.0 a	4.780	1.4021	.6242
DIAMETER **	MULTIPLE -		20.00 29.08 28.43 27.78		.0955	8890	*****	.0272	.6834	.7745	.6711	.6527	8661	1140	1.7379	.5754	ű		3,7615	2,1001	9990		1010	7010	39.155	44.374	10.453	37.398	12.231	668.4	1.7379	.575
INLET DI/ Exit Di/	in #		100 100 100 100 100 100 100 100 100 100		.0928	.0730	.5811	•0300	.6256	.7195	9005	.8902	.2877	.1546	1.9350	.5168			3.6553	1.9643	00730	1188.	.0118	.0110	35.847	41.226	51.996	51.005	76.45	8.860	1.9350	.5168
= 3			5.00 6.37 6.27 6.17			•	•		.5903		1.0635					•			3,5955	1.8871	.0764	46734	.0124	.0124	33.823	39,334	60.935	60.201	20,325	10.178	2.0755	. 40
			2 4 4 4 2 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		.0905														3,5632	1.8454	0780	5740	0127	0127	32.812	38.384	66.412	65.866	20.944	10.793	2.1640	.4621
		E C			.0897	.0800	.5782	.0330	5689	.6671	1.3247	1,3197	.3502	. 1948	2,2727	* * * * *			3,5300	1.8020	0000	5.53	0130	0130	32.598	38.224	75.898	75.616	21.175	11,163	2.2727	. 4400
			SPAN (LE) SPAN (AV) SPAN (TE)																													
			PERCENT SPERCENT SPER		ວ ນັ້		2		RTE (x 10") 8'*	. 8	- -	φ.	 6 - 0	- -	ь	3/s			v	5	:	% C 10 max	, u.	1 1 1		, 88 88		ě	•		, 6	s/c

TABLE XXI

AIRFOIL GEOMETRY ON DESIGN CONICAL SURFACES — STATOR 1

			INLET	-	IAMETER = Iameter =	INCHES 15.48	001 METER: •393	v	1 NCHES 32.90 32.90	7 3 8 4 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8	3 T T T		
				MULTIPL	# W	CIRCULAR	- ARC	AIRFOILS,	62 V	VANES			
	#UB												T
3	000	5.00	10.00	20,00	30.00	0.	50.00	00.00	70.00	00.00	90.00	o. •	00
(¥ ()	000	6.08 7.15	13.79	27,19		18.60 17.67	9 6	67.36	ហួក	83.96	~ ~	96.11	100.001
					SI Un	SI Units (Meters	দs & Radians)	ians)					
	.0513	.0517	.0521	.0528	.0533	.0538	3 (90248	.0552	• 0556	0950+	9 50 •	+950+
		.0145	• 0 1 / 0	_	.0182	8810.		0	.020	.0218	0.20	• 0 2 5	• 0282
	51.100	.0526 5C.411	50.232	50.072	50.002	50.000	50.000	50.000	50.000	50.000	60.000	50,000	50.000
	.5478	.53	.5273	5 5	25	.502	498	496	*	7	.4779	4.	•
	.0178	•0178	0178	100	9410	710	.0178	• 0178	5	5	•0178	•0178	•0178
	95.79	5 6	7227		; ;	404			5 7		4017	7	7445
	1.0334	. 6	.8131	765	**	3.5	735	7365	7426	• •	8158	8.5	006
	1.1150	.8556	.7579	683	650	630	in	609	607	.6217	.6897	.76	.8657
	0080.1	~	.7463	.6773	7		419	6909	909	62	16891	.,	.8657
	1020	2 0	3 6	D LE	0 0 0 0	- 1 2		224	- 00	7 0	1223		9 6
	.2772	.1835	2 .	6 7 8 0	5.8	.0432	.0330	0920	021	.0172	0120		0000
	1864.2	2.3213	•	1.9904	1.8430	1.727.1	N	1,5542	~	1,4290	1,3778	_	1.3317
	.4003	₽	€	0	7	7	2	4 W	7.5	0		7.38	S
					Fnoli	Fnalish Units	(Inches &	V Degrees)					
					Î	}		(200 · 6 - 0 · 0					
	2	2,0373	2.0517	2,0768	2.0990	2.1193	2,1382	2,1560	2,1728	2,1889	2.2045	.212	2 • 2 2 0 0
	4 0	16.97	6688	8 8 8 9 9	.7155	7384	.0477	. 788.	98150	4 5 5 4	49462	1,0001	0011.
	51.100	50.411	50.232	50.672	50.002	20.000	50.000	50.000	50.000	50,000	80.000	0	50.000
	.5478	.5343	.52	515	.50	,5022	4985	467	•	4849	4774	. 4811	0
	0.000	.0070	0,000	007	0	.0070	.0070	.0070	.0070	.0070	.0070	.0070	•0000
	.0070	.0070	0	600	6	.0070	• •	• ;	•	0000	600	٦.	.00
	54.662	15.268	0.1.1			35.8/4	35.429	45,205	35.278	10.00	94004		9
	63.882	49.023) उ	* - 6			ı sı			35,622	9.5	•	109.64
	61.877	47.986	76	38.806		96	35.18	34,775	34.753	5.58	3.0	44.048	49,601
	0.4	1.520	•	10.252	11.540	7 7	12.583		13.712		_ ^	21.405	25.09
	198	10.512		3 4 4		· ~		9	1.203		. 9		
	2.4981	2,3213	2.1891	0 6 6	1.8430	727	~	1.5542	1.4872	1.4290	7	1,3541	=
	. 4003	20	. 4568	2	*	.5790	.6125	3	7.2	8669.	,7258	,7385	.7509

TABLE XXII

AIRFOIL GEOMETRY ON DESIGN CONICAL SURFACES - ROTOR 2

		=	100.00	•		.0883	900	000.09	2 10	.0178	0204	***	9640	86.90	0000	1.170	•		3.4760	0300	6,20	00,00	58462	8,571	1 2 8 8 2 1	000	950	96
			60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n _		.0882	0.000	59.660	0178	017	1.00	1077	1001.	7,000	000	0.40	,		3,4723	0300	6937	00,00	57,70	39	6,252	3,593	785	0340
			92.00	:												1,221			3.4687	0300	4589	0200	57,262	5.809	5,947	-2.932	3219	19 T B
ETERS .83\$			60 60 60 60 60 60 60 60 60 60 60 60 60 6	**		.0879	0458	56.606	60.0	0180	*166	*911	1190	200	0139	1,2711	-		9461	9000	, 6584	200,	6.00	6.670	6.821	005.10	1, 1, 1, 1	7867
* -	LADES		70.00	•		.0877	0443	57,875	6610	010	7635	40	, 1 4 1 V	010		1,3257	! !		3,4534	5,0300	6359	900,	55.205	0.057	8,121	. 50 d.	335	7543
INCHES 32.90 32.90	, 35 B		67.20 65.75	•	lians)	,0875	0347	57,115	020	.0205	986	1722	1712	. 0220	00.55	1.3877	-	rees)	3,4452	5,0347	+ DD •	800	53.896	9,867	1.295	1,265	1897	,7206
S.	AIRPOILS		8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		SI Units (Meters & Radians)	.0873	0410	916.95	0220	0221	* S T & *	2219	2161	8,70	0200	4588		English Units (Inches & Degrees)	3.4366	5 0 4 8 C	5.49	00.07	52.447	12,716	12,497		4588	6855
2007 E T E T E T E T E T E T E T E T E T E T	- ARC				its (Met	.0871	.0392	55,480	0239	0239	9673	2819	.2744	2000	0388	1.5423		nits (Incl	3.4277	55,480								
1 NCHES 16.89 18.26	c ^{IR} CUL ^A R		30.00		วั	.0868	0373	54.585	0254	.0254	• • • • • • • • • • • • • • • • • • •	3709	3589		0635	1.6415	•	inglish U	3 41 82	54.5	5440	00100	996	21,253	20,561	5,793	3,636	2609
AETER ETER B	TIPLE -		20.00	:		9980.	.0353	53,615	.0272	.0272	9.58	7 8 7	7995	1.59	0.97	1.7630		ш	3,4078	53.615	, v	010,		27,756	• •	6 9 9	5,566	.5672
NLET DIA	∃n∎		13.86	4		.0863	.0330	52,531	1242	.0292	898/	9 7 7 9	6220	1961		1.9190			3,3962	52.531	,5423	0115	45.078	37.049	35,639	7,225	8 302	. 5211
. A			5.00 8.01 7.31	•		1980.	.0317	516.15	0.440	0305	8999	7979	7691	1126	1779	2,0186			3,3897	51,915	'n.	0120		45,715	* ^	•	10.195	7
			2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	:		.0860	.0310	51,575	0310	0310	988	1076	8764	1097	1982	2,0768	•		3,3840	·:		_ ^			50.212 6,598	_		
		6 0	0000	•		•0859	.0302	51,200	.0317	0317	9367	1.0348	1.0000		,2233	2.1441			3,3820		. r.	2010.		59,289	ູ້ທີ		12,746	
			A ()	•																								
			SPAN	1				5	:	, ^										÷.								
			PERCENT PERCENT			U	ر د د	% сютах	>	RTE (x 102)	× × ×	; 0-	.	÷-	÷ •	ه/د	, i		. 5	1/c % c to max.		RLE RTE		ž Š	₩ .	φ _E ,		3/6

TABLE XXIII

AIRFOIL GEOMETRY ON DESIGN CONICAL SURFACES — STATOR 2

		1	00000		.0475	40.000	.0204	.0176	1.1248	0000	1.3755			1.8707	40.000 .5000	.000	50.366	000	1.3755	
			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0476	40.000	. 020 .	.0178	1.0707	.0020	1.4029			1.8724	*0.000 .5000	0000	48.558	.1.5	1.4029	
			90.00		0476	40.000	0000	.0178	10101	.0045	1.4312			1.6738	. 5000	•007	46.424	58.407	1.4312	, 1 1
2 E T E 2 S S S S S S S S S S S S S S S S S S			80.00 82.77 82.40 82.03		.0477	40.000	00000	.0178	.9246	-0082	\$144.1			1.8769	. 5000	• 0007	42.620	676.34	1.4914)))
=	VANES		70.00 74.13 73.56 72.99		.0478	40.000	9005.	0170	.8934	.0121	1.55/4			1.8805	5000	.0077	41.465	51.189	1,5574)
1NCHES 32.90 32.90	. 7.		65.24 64.52 64.52	ans)	.0479	40.000	1.000	.0178		.0163	1.6308		rees)	1.8839	*0.000 \$000	• 0078	41.373	50,781	1.6300)
u	AIRFOILS		50.00 56.08 55.20 54.33	SI Units (Meters & Radians)	0400	40.000	.016	.0176	.7069	.0254	. 5833	í.	English Units (Inches & Degrees)	1.0082	\$0.000 .5000	.0073	41,382	50.502	1.7144)
ROOT METERS • 471	- ARC		4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ts (Mete	0.04	40.000	0004	.0178	. 6805	.0390	1,8109	;	its (Inch	1.8935	5000	.0071	41.573	50.450	1,8109) 1 1
INCHES 10.55	CIRCULAR		30.00 30.42 34.42	SI Uni	.0482	40.000	.0178	.0178	.8802	.0582	1.9238	:	nglish Un	1.8992	40.000	.0070	41.772	50,429	1.9238) n
DIAMETER Diameter	/ 59		20.00 25.68 24.76 23.84		.0484	000.04	.0178	.0178	.8704	.0857	2.059/ .4855	1	ய்	1.9064	40.000	.0070	964.14	49.84	2.0597))
INLET DIA Exit dia			10.00 13.95 13.24 12.57		.0486	40.000	.0178	.0178	. 9062	.1268	2.2292			1.9150	40.000	.0070	43.888	7.266	2.2292) - •
. H			7 · 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		.0408	40.000	.0178	.0178	. 4971	.1587	2.3343			1.9203	40.000	•0070	48.949	9.090	2.3343	•
			2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		.0489	40.000	.0178	.0178	1.0601	.1788	2.3946			1.9234	40.000	.0070	52.030	10.243	2.3946) -
		E 0	0000		.0489	40.000	.0178	.0178	1.1468	.2057	2.4631			1.9268	40.000	.0070	55.956	65.708	2.4631	•
			FLOW SPAN (LE) SPAN (AV) SPAN (TE)																	
			PERCENT PERCENT PERCENT		2،	% c to mox t	0/c RLE (x 10²)	RTE (x 10²)	z -0		s/c			ر د د	% to max t	RLE		••	, 6 %	, ,

APPENDIX D

TABLE XXIV

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 1

(For Definitions see Figure 26)

22	9 Y					5		
			⁵ 2	<u>a</u> >-	Y.S	72	Q. ≻	χ.
0000	0003 .0004	- •	0000	00127	0.510		.000	#000
0028	•		.010	:	.0233	.0003	2000-	9000
9500	•0056 •0049	•	• 1100	•	6660.	.0028	.0011	.0025
.0083	•	•	.2201		• 1800	9500*	•0024	9 00 0
110	•	œ	1066.		• 2547	* 000	.0037	9000
0139	-	•		•	.3242	•0112	6 NOO .	.0082
910		N (050		1486.	.0140	0900*	6600
6410	9900		• 6602		9440	.0168	.0070	•0114
0.250	7510° 8600°	7 4	.8802	10104	.5057	9610	0800.	0128
0270	0010.	na	1000			. 770	0400	7410
900			066		9509	.0252	8600.	.0154
			1.2103		60.69	.0307	0 1 0 0	.0165
.0362	•	•	1.3204	•	.7281	.0335	1210	2010
.0389	.0147 .0218	•	1 • 4 3 0 4	.5003	.7622	.0363	.0127	4610.
.0417		2	1.5404	•	.7928	.0391	.0133	.0201
		0	1.6504	•	.8198	.0419	.0138	.0208
.0473		*	1 • 7 6 0 5	•	.8401	.0447	.0142	.0213
		·	1.8705	•	.8532	•0475	.0145	.0217
		7	1,9805	•	.8589	.0503	.0146	.0218
		-	2.0906	. 5758	,8571	.0531	•0146	.0218
	0120 0175		2.2006	•	• 8478	• 0559	.0145	.0215
			7.4.204	•		4.40	1.00	.021
) eo	2,5,07	•	2027	900	0710	1070
		. 10	2.6407	•	17267	1.00.	12.0	9410
	.0107 .0165	ĸ	2.7507	•	.6725	6690	0110	1210
0751		3	2.8608	•	9909.	.0727	8600.	.0154
•0770		,	2.9708		.5278	.0755	.0083	.0134
		•	3.0808	.257	. 4331	.0783	\$900.	0110
•0834		_	3.1909		.322,	0180.	.0045	.0082
		_	3.3009	.087	.1857	.0838	.0022	.0047
.0862	**************	•	3.4030	007	.0353	•	0002	•000•
			3.4109	0140	.0235	•0866	+000+	•000•
	(METERS) = .	.1670						
		\ 0.00 ·	RADIUS		6.913	RADIUS	(METERS)	
		\ r. 0			· (CHOHO	(METERS)	
		1510	302	_	1.813	752Z	(HETERS)	1940.
Ï	RLE (METERS)	.000330	_	_	5483	YCSL	(METERS)	. :0139
<u>=</u>	(METERS)	.000417	8 L E	(INCHES)	.0129	RLE (METERS)	TERS)	000328
Ξ	X-AREA(SO.METERS)	.000467	4 4	_		X - A D C A (ATE THE ENGINEERS	
•								,

TABLE XXIV (Cont'd)

English Units (Inches)	Inches)	ร	SI Units (Meters)	ers)	Engli	English Units (Inches)	Inches)	つ 万	Si Units (Meters)	ers)
ZC YP	۲ ۲	2.5	۵	4.5	20	a .	۲s	22	d. >	4.5
00000123	.0143	.0000	0003	*000*	0000	0122	1410.	0000	-•0003	+000•
P108 0074	.0221	.0003	0002	9000*	•0108	0073	.0216	.0003	0002	\$000
	.0942	0028	.0010	.0024	•1115	.0380	.0923	0000	0100.	.0023
.087	.1694	• 002	.0022	.0043	.2230	.0853	.1656	.0057	.0022	•0042
330 .134	• 2396	• 0085	•0034	1900	.3345	.1299	.2338	•0085	.0033	• 000°
440 .177	3048		.0045	,007,	0944.	.1719	.2973	.0113	**00	•0076
550 .218	.3655		< 500 •	.0093	• 5575	.2112	.3564	0145	• 00 2 4	1600*
6661 .2563	. 4218	.0169	• 00 • 5	,010,	0699.	.2480	.4113	.0170	.0063	•010•
7771 .2919	.4739	.0197	•007	•0120	.7805	.2822	• 4620	.0198	.0072	.0117
81 .324	.5221	,0226	.0083	,0133	.8921	.3139	.5088	.0227	• 0080	.0129
_	.5663	•0254	0600.	***						
.1101 .3835	e 9 0 9 •	,0282	.0097	*S10*			. 66.17	49204	7800.	0140
	.6437	•0310	*010°	•0164	9500.1	*	•			: :
.3321 .4323	.6770	.0338	0110	.0172	1.1151	.3700	6065	.0283	* 600 *	.0150
31	1707.	.0367	-0115	•0180	1.2266	.3944	.6266	.0312	0010.	•0159
5541 .4719	.7340	.0395	.0120	.0186	1.3381	.4163	.6587	.0340	9010.	.0167
.6651 .4888	.7578	.0423	.0124	.0192	1.4496	.4359	.6874	.0368	.0111	.0175
•	.7765	.0451	.0128	,0197	1.5611	. 4531	.7128	.0397	• 0115	1810.
1.8872 .5113	.7888	.0479	00100	•0200	1.6726	.4683	.7351	.0425	•0110	.0187
•	.794.2	.050	1610.	.0202	1.7841	480	.7528	.0453	.0122	.0191
•	.7927	.0536	.0131	•0201	1 . 8956	+88+	.7642	.0481	.0124	+610•
.2202 .5082	.7840	.0564	.0129	•0199	2.0071	.4917	.7690	.0510	~	5610
	,7680	.0592	.0126	.0195	2.1186	. 4902	.7670	53	•0125	9610
•	.744.2	.0620	.0122	•0189	2 • 2 3 0 1	.4838	.7583	9950.	~	.0193
•	.7122	.0649	•0116	.0181	2,3416	.4722	.7425	9650*	07100	.0189
.6642 .4248	.6713	.0677	.0108	.0171	2.4531	1554.	.7191	.0623	•0116	.0183
7753 .3879	.6208	•0705	6600.	•0158	2.5647	.4323	.6878	.0651	0110	.0175
_	.5598	.0733	•0087	\$0142	2.6762	.4034	.6480	.0680	•0105	5910*
173 .29	• 4866	.0761	.0074	•0124	2.7877	.3680	.5988	.0708	.0093	.0152
_	.3991	06/0	• 000	1010	2.8992	,3257	3	~	.0083	0137
193	.2956	8180.		5,00*	3.0107	.2759	.4683	• 0765	•0000	• 0 1 1 9
٠	.1692	9.084.6	.0020	£*00*	3.1222	.2179	. 3835	.0793	• 0055	.0097
.43360063	• 620•	,0872	0002	• 0000	3.2337	•1509	.2831	.0821	.0038	,0072
44130127	.0190	, 0874	0003	• 0000	3.3452	.0738	.1618	0850	.0019	1,004
ADJUS (TNCHES)	7.253	RADIUS	(METERS)	- ,1842	7474.6	1.0123	1970	0878	0003	5000
	3.441	CHORD	(METERS)	- 10874	n				•	
-	# 1.8334	1522	(METERS)	9940.	PADIUS (1	NCHES)		RADIUS	(METERS)	
=	.503	YCSL	(METERS)	■ ,0128	HORDE	NCHES)	3.457	CHORD	(METERS)	
=	* .0126	RLE (ME	TERSJ	• .000320		INCHES)	1.842	2CSL	(METERS)	8940*
(INCHES)	.012	RTE (ME	(METERS)	• •000305	153	NCHES)		YCSL	(METERS)	.0123
X-AREA (SO. IN.)		X-AREA(X-AREA(SQ.METERS)	•			.0125	RLE (ME	(METERS)	00031
J	* 3.57	GAMMA+C	GAMMA+CHORD(RAD+)=		RTE	(INCHES)	.0119	RTE (ME	RTE (METERS)	- 0000302

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES — ROTOR 1

SI Units (Meters)	ZC YP YS	• 6000 0000 •	.00030002	* 0054	• 0000 · 9800 •	.0115	.0144 .0048	.0172 .0057	. 6200	0210, 2/00, 0610,	.0287 .0085	.0316 .0091	0345 .0096		2010	. 04.60	.0488 .0111	.0517 .0112 .	1110. 9450.	.0575 .0109	.0612 .0106 .0174	9600 1990	0600. 6890.	• 0718	.0747 .0072	0900 9220	4004	-	.006 .0016 .0036	0003	SITUAN	1 (VOLUME) 100000	10000 10000 1			DATE (METERN)	X-AREA(SQ.METERS)	GAMMA-CHORD(RAD.) =
(Inches)	۲ s	.0132	•0200	0580	.2163	.2755	.3307	.3819	1621	5133	.5500	.5832	.6129	46624	.6823	. 6986	.7091	.7133	.7108	,7016	. 6650	.6319	.5933	.5462	.4898	. 4229	. 3443	• 2522	4760	.0166	7.797							80
English Units (Inches)	4		•	2000					9000				.3768							64240									6100	•	. (SPHTNI)						(SQ. IN.)	GAMMA-CHORD (DEG.)
Engl	20	0000•	.010	1511.	.3393	+25+	•5655	.6786	/16/•	1.0179	1.1311	1.2442	1.3573	1.5835	1.6966	1.8097	1.9228	2.0359	2.1490	2 • 2 6 2 1	2.4887	2.6014	2.7145	2.8276	2.9407	3.0539	3.1670	3.2801	3.545.6	3.5063	SHIGAG			1517			X-AREA (GAMMA-CH
																																			2	0.7	3	
nits (Meters)	45	0003 .0003	2000. 2000.	• •	•			1010. 0400.			•		1910. 2010.		•		•	8810* 8110*		• •		•	•	•	.0076 .0130	•	2600* 1500*	• •	•	-·0003 ·0004	(METERS) = .1928	(METERS) . :0885	IMETERS) = .0472	IMETERS)0117	•			JRU(RAD.)= .1215
SI Units (Meters)		-		. 0021	.0031	.0042	1 500 •		9200	.0083		9600	2010.	.010	.0113	5110	•0117	•		.0112	•	.0102	• 6000•	• 9800•	•		1600		- 0005		S (METERS) =	D (METERS) .			(METERS)		•	
s)	a	0003	. 6000. 6200. 6020.	1592 .0057 .0021	.2252 .0086 .0031	•2868 •0114 •0042	3440 .0143 .0051	1/10.	.0228 .0076	332 .0257 .0083	0285 .0090	• 9600 - 1100•	.0371 .0101	.0399 .0109	,0428 ,0113	. 5110. 7570.	. 210. 5850. 15		5110 1150	0599 0112		. 557 .0656 .0102	• 5600• 5890• 49	. 9800	9200		5 10031 • 0031 • 0031 • 035	17 .0856 .0017	. 0002	0003	7.592 RADIUS (METERS) =	3.482 CHORD (METERS) =	1.8569 2CSL (METERS) =	.4616 YCSL (METERS) .	*0123 RLE (METERS) *	OIZI RTE (METERS)	4.04 CANNALCHORD AND A	0.40 GAMMA-CHORU(RAD.)
_	S 2C YP Y	0136 .00000003	000000007	1592 .0057 .0021	36 .2252 .0086 .0031	•2868 •0114 •0042	3440 .0143 .0051	3744	001 .4917 .0228 .0076	1 .5332 .0257 .0083	0.000 .0285 .0090	• • • • • • • • • • • • • • • • • • •	6625 .0371 .0105	6 .6863 .0399 .0109	•7069 •0428 •0113	7235 .0457 .0115	. 7341		3 .7266 .0571 .0115	3 .7104 .0599 .0112	2 .6869 .0628 .0108	8 .6557 .0656 .0102 .		. 9883 .0/13 .0086	00 0742 0076 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	381 .2458 .0827 .0036	72 .1517 .0856 .0017	0275 .08820002	174 .08850003	= 7.592 RADIUS (METERS) =	3.482 CHORD (METERS) =	# 1.8569 2CSL (METERS) #	.4616 YCSL (METERS) .	;) * .0123 RLE (MFTFRS) * .	OIZI RTE (METERS) -) # .6877 X=ARRA(SB-METERS)# .	GOTT OF TO GAMBA-CHORU(RADO)

TABLE XXIV (Cont'd)

Engl	English Units (Inches)	(Inches)	SIL	SI Units (Meters)	ers)	Englis	English Units (Inches)	Inches)	SI U	SI Units (Meters)	(s.
22	a >	ΥS	77	4	4.5	20	a. >-	۲۶	20	<u>د</u> ح	۲5
	41.0	8610.	0000	0003	.0003	.0000	0110	.0123	0000	••0003	.0003
0000	1		.0003	0002	5000	•010•	0075	.0182	.0003	0002	• 0005
\010•			0000	8000	.0021	1151	.0274	.0764	.0029	.000	• 0010
1011		٠,	8 100	4	.0037	.2301	.0643	.1371	.0058	• 100 •	.0035
.2277	100	7000	7800	.0028	.0053	.3452	.0992	.1941	.0088	• 0025	60000
0 u u u			9110	.0037	.000	.4603	1321	.2474	.0117	.0034	.0063
0000			0145	9400	.0081	.5753	.1632	.2973	•0146	.0041	9,000
2490	. 2121		.0174	+000	.0093	+069.	.1923	.3438	.0175	6+00.	.0087
1665	2412	6617	.0202	.0061	•0105	+805+	.2194	.3870	•0205	• 0026	8400
1/4/•	01.7.		1620.	8400	.0116	70.4.	.2446	. 4269	.0234	.0062	•010
6016.	7,07.	^ 1	0240	5,00	.0125	1.0356	.2678	. 4635	.0263	8900.	.0118
8670-1			0286	1800	.0134	1 - 1 5 0 6	.2890	04650	.0292	.0073	•0126
1 • 1 38 /	0/150	E 4 7 F 9		7400	67.00	1.2657	.3082	.5274	.0321	.0078	.0134
1 • 2525		- 0	74.00			1.3808	.3253	.5547	.0351	.0083	.0141
1.3664	1/07.		4660		0156	85040	.3404	.5790	.0380	•008	.0147
1.4803	57/7		9 6		24.0	90.4.1	3534	.6002	.0409	0600.	,0152
1.5941	.3877	6939	0.00	0.000	7910	1.7260	3645	9919	.0438	.0093	,0157
1.7080	.3448	9 2 2 9		7010		2 4 4	3734	1414.	8440	5600.	1910.
1.8219	* 404	.6739	20.	* O . O .	77.00	7 10 1	1794	7 # # 7	7640	9600	.0164
1.9358	.4158	• 6846	7640.	9010	r/10•	19561			40.90	2000	.0145
2.0496	.4181	.6892	.0521	•010	.0175	2.0712	1000	7077	440		2910
2.1635	.4160	.6872	.0550	•010•	•0175	20110	n : 0 : 0		1000		
2.2774	*404*	.6788	.0578	•010•	.0172	2.3013	.3/4/	9010	5850	.004	0 0 0 0
2.3012	1982	.6635	.090	.0101	.0169	5 - 4 1 6 4	.3647	• 6266	100	5,000	
2.5051	.3823	.6412	.0636	.0097	.0163	2.5314	.3502	9509*	7 7 9 0 0	\$ 800°	****
2.614.5	3615	9119	.0665	.0092	.0155	5 • 6 4 6 5	.3312	•5776	7/00		
	4356	.5740	+690	.0085	•0146	2.7615	.3076	.5421	.070	.0078	8610
4 1 4 4	•	.5281	.0723	.0077	,0134	2.8766	.2790	.4986	.0731	.0071	,0127
	770		.0752	9900	.0120	2.9917	.2452	1911.	•0760	• 00 6 2	•0113
7 4 4 6 6	2248	0.03	0.0781	.0057	.0104	3.1067	,2061	.3847	.0789	• 0052	9600.
4	1750	3314	0180	5 + OO •	*008*	3.2218	.1612	.3124	.0818	.0041	• 00 2 4
30.	1202	.2422	.0839	.0031	2900*	3.3369	.1102	.2281	9 1 9	•0028	8500
1414.5	.0576	~	8980	.0015	.0035	3.4519	•0526	.1293	.087/	. 100	• 0033
90.5	900	.0257	4680	0002	.0007	3.5578	1900	.0241	*040*	- 00005	9000•
3.5.00		0100	.0897	0003	*000*	3.5670	0112	6410.	9060.	0003	*000*
70.0		•									
) SUICE	(INCHES)	•	RADIUS	(METERS)		RADIUS	(INCHES)	8.290	RADIUS	(METERS)	9017
HORD	(INCHES)	3.530	CHORD	(METERS)		-	INCHEST	70505	מאטרט ו		9 40
	(S SHUNI)	•	75 2 Z	(METERS)	•	_	INCHES	1.9065	1512	(METERS)	
	(VINCE)	•	YCSL	(METERS)		1CSL (1	(INCHES)	.3919	Y C S L	(METERS)	• 0100
	(SULVE S)	.0119	RLE (ME	(METERS)	.000302		INCHES)	0117	RLE (METERS)	TERS)	•
	THURS)	•	RTE (ME	(METERS)			INCHES	.0118	RTE (METERS)	TERS)	
4	- N - O - O - O - O - O - O - O - O - O	.6802	X-AREA	X-AREA (SQ.METERS)	11= .000439	X-AREA (S	(SQ. 1N.)	. 6749	X-AREA(X-AREA(SQ.METERS)	
GAMMA-CHORD (DEG	ORD (DEG.)	.)* 10.65	GAMMA-	GAMMA-CHORD (RAD.) =	.)* .1858	GAMMA-CHO	GAMMA-CHORD (DEG.)	13.46	GAMMA-	GAMMA-CHORD (RAD.)	. 2348

TABLE XXIV (Cont'd)

2C YP YS 00000108 -011 01060108 -011 1159 -0249 -07 2318 -0593 -13 3476 -0593 -13 3476 -1226 -23 5794 -1516 -28 6953 -1788 -32 6953 -1788 -32 6953 -1788 -32 6953 -1788 -32 6953 -1788 -18 7747 -2694 -47		٥	<u>۷</u>						
	• • • • • • •		•	20	<u>۸</u>	YS	22	۲Þ	4.5
-0076 -017 -017 -017 -017 -017 -017 -017 -017	* * * * * * * *	0003	.0003	0000	0107	.0117	0000		,000
0593 003 0593 013 0593 013 0516 028 1516 028 1788 032 02042 030 02042 044 02042 044	•••••	0002	+000	•010•	0076	•0170	.0003	0002	*000
00993 00918		•000•	•100•	.1167	.0226	.0697	.0030	9000*	.0018
.0918 .1226 .1226 .1288 .2272 .2277 .2495 .2495 .2495 .2497		5 00 1	.0033	.2334	.0546	.1250	6500.	3100	
2015 1516 1516 2017 2277 2277 2277 2277 2277 2277 2277	.	.0023	.0047	.3501	.0849	1770	6000	200	400
20042 20042 20042 20042 20044 20044 20044 20044	- ^ -	1600.	0900	899#•	.1136	.2258	6110	9000	7400
20142 22077 22077 22077 20074 20074		•003	,0072	26.83	9041	27715		7000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
.2012 .2277 .2495 .2694 .2694 .2694 .2694		.0045	.0083	-2002	1659	1716			• • • • • • • • • • • • • • • • • • • •
. 2277 . 2495 . 2694 . 2874 . 65	•070•	• 0052	*600*	99189	1894	15.18		7 000	0000
2694	.0235	9500.	*010*	46.6	2114	9000	.040		0600
2694 .5		.0063	.0113	1.0503	2319	200	. 0247	1000	***
.2874 .5		8900	.0121	1.1470	4050	4.00	4000	1000	80.0
1000		.0073	.0128		247	7 7 7	7000	• 000	•
2000		7.00	96.40	/5074	7 . 6 7 .		0250	• 00 6 8	.0123
5. 8716. 5075			- 7			1804	•0356	• 0072	.0129
3301		1000	*******	06.64.1		7100	U	5,000	• 0135
3404	1000				100	0166.	c - 0 •	• 0018	• 0 1 40
007	•	0000	16104	1 • 7 5 0 5	.3171	.5680	.0445	1800.	* 10 0
	•	• 0087	.0154	1.8672	.3250	.5827	* 4 + 0 *	.0083	4.0
10. 1000. 10/4	•	0600•	•0157	1.9839	.3309	.5931	.050	*000	.0151
	•	1 6000	•0158	2.1006	.3336	.5986	.0534	.0085	2510
9. 3564	•	1600.	•0158	2,2173	, 3325	.5979	.0563	1800	.0152
.3512 .61	•	• 0089	.0156	2.3339	.3277	1165.	.0503	.000	
9. 6146. 9	•	•0087	•0153	2.4506	.3190	5780	.0622		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
94 ,3284 ,5	•	.0083	•0148	2.5673	.3063	• 5585	.0652	.0078	27.0
653 • 3105 • 55	•	• 000•	.0141	2.6840	.2895	.5322	.0682	*00*	35.10
812 .2883 .52	•	.0073	.0132	2 • 8007	.2685	4989	. 0711	8400	
1 .2614	4 .0736	9900•	.0122	2.9174	. 2432	45.82	1460		
7		.0058	•0109	3.0341	.2134	1 3		7000	
1 .1929 ,36	•	6#00*	7600		9			L 600 •	1010
47 .1507 .2	•	.0038	9200	3.2475	3.00	93520		5 0 0 0	6000
.3606 .1029 .218	•	.0026	.0055	1,3042	100	3 10		6000	7/000
51. 60468		2100.	.0031	2.000		17070	0 0	200.	.0053
5830 0061		2000-1	7000			6/11.		100.	• 0030
700	•	7000	3000	080000	7900-	•0220	•	0002	9000
0110 4766		£000.	*000	3.6176	• 0108	.0140	6160.	••0003	*000°
5) * 8.		-	2156	RADIUS (IN	(INCHES)	069.8	RADIUS	(METERS)	7022.
) (INCHES) = 3.	S92 CHORD	(METERS)	• 0912		-	3,618	CHORD	(NE 4 E B S)	
(INCHES) # 1.	9194 ZCSL	(METERS)	98+0*	7CSL (11)	INCHES)		17.		
YCSL (INCHES)3	۰.	-	* 600° =				3 0 0 0		
· (SHUNE)	0		.00000				71.5	THETERS	
NOTES .	OLIA PIE CME							CHE LERS)	0.2000.
		1000			INCHES)	• 0118	RTE (ME)	(METERS)	•
			• •	X-AREA (SE IN.)	. (SG. 1N.)	.672	X-AREA(X-AREA(SQ.METERS)	+C+000. =

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES — ROTOR 1

SI Units (Meters)	ZC YP YS	.000000003	0002	*000		.0023	.0028	•0034	.0038	.0043	.0047	• 0051	*000*	.0057	0900•	.0063	9900.	9900.	.0068	9900.	.0068	.0068	9900.	•0063	0900•		0800.	,0785 ,0044 ,0093	• 0037	.0029			.09340002 ,0005	.09360003	RADIUS (METERS) 2359	(HETERS)	H (VOULUM)			•	•	_	GAMMA-CHORD(RAD.)# .3878
nches)	۲S	.010	.0153	• 0 6 1 4	. 1096	1978	.2379	.2754	.3104	.3428	.3727	. 4001	• 4251	9444	.4677	.4854	• 5008	1 + 1 5 •	.5243	•5304	.5309	.5257	.5147	9764.	.4744	ノササナ・	.4082	.3645	.3130	.2531	.1839	.1042	.0207	• 0130	9,288	3.486	a170.1		4942.	0110	.0117		. 22,22
English Units (Inches)	4.6	0101	•		7940	8680.	.1116								.2372	.2467	• 2548	.2615	.2668	.2696	.2694	.2660	, 2593	.2492	.2357	.2187	0861.	.1736					- 000 65	+010.	(INCHES)	LINCHES)	· (VSHUNI		INCHES	(INCHES)	. (S3HONI)	. (SQ. 1N.)	GAMMA_CHORD(DEG.)=
Engli	20	• 0000	*010*	6118	.2378	47.56	• 5945	.7134	.8322	.9511	1.0700	1 • 1889	1.3078	1.4267	1.5456	1.6645	1.7834	1.9023	2.0212	2 • 1 4 0 1	2 • 2 5 9 0	2,3778	2.4967	2 • 6 1 5 6	2 . 7 3 4 5	2 • 8 5 3 4	2,9723	3.0912	3.2101	3.3290	3 . 4479	3.5668	3.6756	3.6857	RADIUS		-	- •	_		RTE (X-AREA (GAMMA-CH
																																									э.	2	
3	YS	.0003	+000	.100.	.0030	+500.	.0065	.0075	*008*	.0093	1010	•010•	.0115	.0121	.0127	,0132	9610.	.0139	.0142	.0143	.0143	•0142	.0139	,0134	,0128	0210	0110	8600*	.0085	9900*	0500	.0028	9000*	.0003	.2283	.0927	96+0	•	70000	•	•	•	. 3433
its (Meters)	YP YS	0003 .0003	~		.0012 .0030								.0061 .0115							.0077 .0143	.0076 .0143	.0075 .0142	•	•	•	.0062 .0120	•	•	•	•	•	•		••0003 •0003	(METERS) = .2283			۱ ۱			•	•	•
SI Units (Meters)		•	0002	• 0008		.0026	.0032	.0038	.0043	.0048	.0053	• 0057	1900.	.006	9900.	0.000	.0073	+ 400 •	• 00 2 6	.007	• 9200•	•	.0073	. 0071	.0067	.0062	•	6400	.0041	.0032	.0022	•	0002			· METERS)					•	•	GAMMA-CHORD(RAD.)
•	4	0003	52 .00030002	4 .0030 .0005	2001	4 .0120 .0026	3 .0150 .0032	43 .0179 .0038	16 .0209 .0043	2 .0239 .0048	1 .0269 .0053	73 .0299 .0057	8 .0329 .0061	.0359 .0064	2 ,0389 ,0068	0419 .0070	.0449 .0073	+400· 6440·	.0509 .0076	6 .0538 .0077	• 9200° 8950° 9h	. 0598 .0075 .	. 6700. 8290, 673	659 .0071	. 0688 .0067 ·	. 2900, 8,00, 62	37 .0748 .0056 .	. 0778 .0049	.0041	96 .0838 .0032 .	61 .0868 .0022	, 0100. 1897 .0010 ·	17 .09250002	36 .09270003	.989 RADIUS (METERS) =	B (SOUTH SM) B COUNTY	0.000 1000 1000 1000 1000 1000 1000 100	1 (101111111 1011 1011 1011 1011 1011 1	YCSL (METERS)	.0112 RLE (METERS) = .	B RTE (METERS)	09 X-AREA(SQ.METERS) .	= 19.67 GAMMA-CHORD(RAD.) = .
	S ZC YP	. 60000 0000	7 .0162 .00030002	0654 .0030 .0065	0000 0012	4 .2114 .0120 .0026	7 ,2543 ,0150 ,0032	. 2943 .0179 .0038	9 ,3316 ,0209 ,0043	3 .3662 .0239 .0048	.3981 .0269 .0053	.4273 .0299 .0057	.4538 .0329 .0061	.4778 .0359 .0064	.4992 ,0389 ,0068	0419 .0070	.5347 .0449 .0073	.5483 .0479 .0074	.0509 .0076	.5646 .0538 .0077	. 5646 .0568 .0076	• 5700. 8620. 78	.5467 .0628 .0073 .	. 5285 .0658 .0071 .	22629 .5038 .0688 .0067 .	. 4723 .0718 .0062 .	22209 .4337 .0748 .0056 .	. 1938 .3875 .0778 .0049 .	. 3331 .0808 .0041	.1264 .2696 .0838 .0032 .	.0857 .1961 .0868 .0022 .	. 01010. 18997 .0010 .	0064 .0217 .09250002	5 .0136 .09270003	.989 RADIUS (METERS) =	B (VOLETURE COCK)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a .3236 YCSL (METERS) # .	0112 RLE (METERS)	0118 RTE (METERS)	1 = .6709 X-AREA(SQ.METERS) = .	1= 19.67 GAMMA-CHORD(RAD.) = .

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES — ROTOR 1

SI Units (Meters)	2C YP YS	.00000002 .0003		.0008	.0012	• 0016	.0021	+200*	/000 · 000 ·		DROD: FEDO: //70:		.0042	**00*	•0040		11100 ADD0 56500		0500		6400			.0037	.0032	•0057 •006	.0021	*100·	9000.	2000-	,0956,0002 ,0003	S (METERS) =	_	ZCSL (METERS) # 50511		(METERS)	RTE (METERS) = \$000282	X-AREA(SQ.METERS)# .000425	
nches)	۲S	1010	.0526	.0934	.1318	.1680	.2020	.2338	• 2635	0142.	.3164	1400	3802	.3973	.4124	• 4255	P 4 6 4 5	0044	4.004	9444.	***	4254	1086		• 3105	.2660	.2144	.1552	.0876	•0179	• 01.15	9.987	3.763	2.0129				+629*	27.75
English Units (Inches)	4	9600.	**************************************	.0296	.0477	.0649	.0810	.0962	5011	1235	9561.	071	62.41	.1739	9081.	.1868	9161.	1980	1982	1959	11611	1837	0011		.1270	.1058	• 0816	.0543	.0237	006B	9.00	(INCHES)	NOTES .	NCHES)	INCHES)		TACHES .		GAMMA_CHORD (DEG.)
Englis	20	0000	.0101	.2428	.3641	.4855	6909.	.7283	7648.	. 9710	1.0924	1 . 2 . 5	100001	1.5779	1.6993	1.8207	1.9421	2.1848	2.3062	2.4276	2.5490	2.6704	7.61917	3.0345	3.1559	3,2773	3.3986	3.5200	3.6414	3.7527	3.7628	PADIUS ()		2CSL (1	YCSL			¥ ± 8	GAMMA
rs)	¥\$.0003	*100	•0025	,0036	9,000	• 0055	*900*	2/00*	0800	.0087	5000	*010*	.010	.0113	0116	•110	0123	.0124	.0122	.0120	91.0		5600	.0085	.0073	• 900 •	.0042	*200*	• 0000	.0003	2461	8 * 00 * *	.0507	9900.		•	•	•
nits (Meters)	YP YS	٠	.000. 2000.									0000			_			.0058 .0123					0210. [800.						.0007 .0024	••0005 •0005	0002 .0003	(METERS) = .2461		•	•	•		TERS).	•
SI Units (Meters)	>	* 0000*		60000	.001	• 0019	•0054	.0028	2000	• 003	0.00		6 7 0 0 0	1500.	.0053	.0055	9900.		.0058	.0057	• 0026				.0037		*005	• 0016	1000. 1	- 0005	-	•	(METERS) =	(METERS) -	(METERS) =	THE TAXABLE PARTY OF THE PARTY		TERS).	
	ZC YP Y	• 2000 • • 0000 •	2000 - 1000 - E4	2 .0061 .0009	6 .0092 .0014	06 .0122 .0019	3 ,0153 ,0024	5 .0183 .0028	2 00° F120° 5	2 .0034	6 .0275 .0040	##00 - VEEC	03/00 00/00 00/00	1500 . 0397 . 0051	9 .0428 .0053	5500. 6540. 62	0489 .0086	/600 · 0760 ·	58 .0561 .0058	23 .0611 .0057	22 .0642 .0056	#MOO . FOR . 59	1000° 50/0°	77 77 7043	32 .0795 .0037	57 .0825 .0031	.00° +085¢ +0024	2 .0886 .0016	7000. 7140. 54	88 .09450002	- 0005	688 RADIUS (METERS) = +	3.731 CHORD (METERS) =	1.9956 ZCSL (METERS) .	.2600 VCSL (METERS) =	TOTAL STATE OF THE	TO THE STATE OF TH	.6639 X-AREA(SQ.METERS) .	25.43 GAMMA-CHORD(RAD.).
English Units (Inches) SI Units (Meters)	ZC YP Y	· 2000 · • 0000 · • 6000 · 9600 ·	2000: 1000: 1000	9000 1900 2001	.1416 .0092 .0014	.1806 .0122 .0019	3 ,0153 ,0024	.2515 .0028	2835 .0214 .0032	.3132 .0245 .0036	3406 .0275 .0040	\$ PD0 9000 7	9000 CAEGA CORA	.4277 .0397 .0051	090 .4439 .0428 .0053	159 .4579 ,0459 ,0055	9800 • 61480 • 0086	, enn. 02.50. 67.		.4823 .0611 .0057	.4722 .0642 .0056	#4565 *00834 *0084 *	000° (0/0° 000)	1000 1000 1000 10000 10000 100000 100000 1000000	.3332 .0795 .0037	.1224 .2857 .0825 .0031	3 .2306 .0856 .0024	36 .1672 .0886 .0016	7000, 7100, 5040, 7	4 .0188 .09450002	0098 .0120 .09480002	# 9.688 RADIUS (METERS) # .	CHES) # 3.731 CHORD (METERS) #	NCHES) # 1,9956 ZCSL (METERS) #	NCHES - 2609 VCSL (METERS) -	TOTAL PROPERTY OF THE PROPERTY) = .6639 X-AREA(SQ.METERS) = .	J# 25.43 GAMMA-CHORD(RAD.)# .

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 1

SI Units (Meters)	2C YP YS	.00000002	.00020002		.0063 .0005 .0020		1000		7100		0700	*0052	• 0054	•0020	0028	•005	•0030	.0032	.0032	_	.0034	.0034	.0034	.0033	.0032	.0031	• 0059	.0027	•0054	.0021	.0017	.0013	6000	.0003	•	.09740002 .0003	(METERS) .	CHORD (METERS) # .0974	_	(METERS) =		ALE (AETENS) COOK	# (AILIENS) # # # # # # # # # # # # # # # # # # #	TODO TICKS SECTION AND THE SEC	GAMMA-CHORD(RAD.)# .5713
Inches)	۲s	*600.	.0122	.0458	.0805	21112			9001	0111	9427.	.2480	.2693	.2887	.3063	. 3221	.3362	.3484	.3589	.3477	.3747	.3798	.3812	.3780	.3702	.3577	.3405	.3184	.2913	.2590	.2213	.1778	.1284	• 0725	•0150	.0101	- 10.686	3.836	2.0500	9721.		8600.	.0103		= 32.73
English Units (Inches)	<u>a</u>	0600	007B	.0057	9610	8280		1010	7000		•0//3	.0864	40447	.1022	.1089	. 1148	.1199	.1243	.1278	.1305	1326	1337	.1334	1315	.1279	1225	.1153	.1064	9560.	.0830	.0685	.0521	.0337	.0133	0.000	••0098	(SULVATOR)	INCHES)	(VERUE)		T C I L C	(INCHES)	CINCHES	(SQ. IN.)	GAMMA_CHORD (DEG.)
Englis	20	0000	1000	7600	27475	6166.	71/50	04650	\ 0 0 ·	C74/•	.8662	6686.	1 • 1 1 3 7	1.2374	1.3612	6+8+01	1.6087	1.7324	1.8562	1.9799	2.1036	2.2274	2 • 3 5 1 1	2.4749	2.5986	2.7224	2.8461	2.9699	3.0936	3 • 2 1 7 3	3 • 3 4 1 1	3.4648	3.5886	3.7123	3.8763	3.8361		0.00		•	_			X-AREA (GAMMALCH
SI Units (Meters)	7P 7S	-,0002 ,0002													.0034 .0085	0600, 9600,	+600° 800°	.0039 ,00097		.0041 .0103	.0042 .0105	.0043 .0104	.0043 .0107	.0042 .0106	.0041 .0104		9600. 2000.	.0035 .0090	.003! .0082	.0027 .0073			•	.0005 .0021	0002 .0004	0002 .0003	(METERS) # .2613	*			. n	•			GAMMA-CHORD(RAD.)= .5229
SI L	77	0000	0003	.0031	2400	1000	- 0			0.00	B 1 7 0 *	.0247	.0280	.0311	.0342	.0373	*0.00	.0435	9950.	.0497	.0529	0950*	1650.	.0622	.0653	.0684	• 0715	9440.	.0777	.0808	.0839	.0871	.0902	.0933	.0961	4960.	SUICE		1502	16.77	76.56	RLE (ME	RTE (ME	X-AREA(GAMMA-C
(Inches)	۲۶	8600.		0.00		1000				0/170	1547+	^	.2941	.3157	, 3353	.3531	.3689	.3828	3948	. 4051	.4133	.4192	. 4208		04040	.3955	.3768	.3527	.3232	.2878		.1983	~	_	8910.	0110	10.287	; ;	7000	,	9802*	•	•010•	•	1= 29.96
English Units (Inches)	<u>a</u> }-	-,0093	7007	800		40.	•			700.	***		• 1 1 6	.125	.1342	. 141	.1486		159		991.		.168	991.	.162		. 147	•136		.107	680.	•	.045	.019	700	•000	(V SH CALL			INCHES!	(INCHES)	INCHES	(INCHES)	(54. 1N.)	40RD (DE G.) .
Eng	2.0	0000		4761.	0 P T C	2472	000	0 10 1	77100	****	. 8568	.9792	5	1.2240	1.3464	1.4688	-		8 16	958	2.0808	2.2032	2.3256	2 • 4 4 8 0	2.5704	2.6929	2,8152	2.9377	3.0600	3.1825	3.3049	3.4273	3.5497	~	3.7844	4	11.10				102L			X-AREA (U

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 1

SI Units (Meters)	ZC YP YS	6000	0000	2000	0000	2000.	.000	9000•	.0008	.0193 .0010 .0042	1100	•0012	.0013	3	200	4100	4100	4	4100		• • • •	•	9100.	5100.	.0015	• 0014	.0013	• 0015	. 100.	. 6000.	• 9000• •	• 9000•	*000*	3 .0002	• 00000	- 0005	.09970002 .0002	DAD THE THEFT - 1002	1 10001111	a (arrena) a	(METERS)	L (METERS) -	RLE (METERS)000231		X-AREA(SQ.METERS)= .000410	
English Units (Inches)	YP YS	4000	•	•					.0317 .1422	.0378 .1639		_																_					.0171 .1359	_	•		0079 .0087	200 - 1 - 1 O 12	•	2000			•		(50, IN.)6361	37
English	72					. 2533			•6332																			•			•		3.546!	3.6727			3.9260	CARLES SUITERS		_			_		X-AREA (50.	GAMMA_CHORD(DEG.)=
ers)	7.5	,0002	.0003	• 0011	• 100	.0027	******			*00•	• 0053	• 002 •	* 900°	8900*	,0072	•0076	,0079	•0082	.0084	•0086	•0088	•0089	•0089	.0089	,0087	*0084	.000	2007	8900	0900	2900	1 4 0 0		7100	£000		2000	2790	0982	.0525	91002	1 1 1 1 1 1	1,2000	1670000	•	•
SI Units (Meters)	4	0002	- 0002	.000					7100						• 0023		• 0025	.0026	•	•	• 0027	.0027	.0027	• 0027	00026	+0025	.0023	1000	6100	4100			9000	2000	- 0002		2000-	(METERS)	(METERS)	(METERS)	(MFTFRS)	TEBE		K-C ("E-ERS) X=AREA(SO-MATERS)		
S	5 2	0000	*000	.0032	.0063	.0095	.0127	8.510.		0 6 6 6 6	7270.	.0253	.0285	.0317	.0348	.0380	•0412	****	5 C + O •	,050	.0539	.0570	.0602	.0634	5990.	.0697	.0729	.0740	.0792	4080.	2080.	7880	6160.	0.0950	0860		7840.	RADIUS	CHORD	75.72	75.7	COULTER STO		X + A R F A 4	1 4 2 3 4 0	
(Inches)	4.5	.0091	.01	•0430	.0754	.105	.134	141.	4		*07*	• 230	• 2505	+857+	. 2846	0662.	.3118	.3229	.3323	.3401	.3462	• 3508	.3518	.3488	.3415	. 3299	.3138	.2932	.2680	.2380	.2031	0.41.	•1175	•0662	.0138	900	-	10.98	3,866	2.06	* .1547			4.54	34.72	,
English Units (Inches)	<u>.</u>	7800 01		.003	•	2					0.60		18/0.			*	•	11011	•	-	•	:	:	-	2	•			*****		5 .0526	•	• 0250	.008	007		i	INCHES)	_	INCHES	INCHES)	6		. :		1
ш	20	0000•	•00•	• 1247	۰	.374	. 498	.623	.748		2/00	8/6/	1 • 1 2 2	/ + 7 • 1	1.57	0 6 4 0	1 • 6 2 1	1 • 7 4 6 1	0/8-1	1 0 4 9 5	2 • 120	2.245	2 • 3 6 9	4	2 • 6 1 9 5	Ţ	2.8684	.993	60	3.2426	3 • 3 6 7 5	3.492;	3.6169	3.7417	3.8570	3.844	0	RADIUS (YCSL	RLE	BT6	4	·	

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 1

English Units (Inches) SI Units (Meters)	2C YP YS 2C YP YS	0002	0093 .00020002	• 0000• 6400• 0000•	.0072 .0589 .00 4 6 .0002	.0133 .0821 ,0099 ,000	.0185 .1036 .0132 .0005	.0229 .1234 .0165 .0006	• 0265	.0295 .1580 .0231 .0007	. 0317 .1729 .0264 .0008	.0332 .1862 .0297 .0008	•0340 •1980 •0330 •00d9	.0341 .2082 .0363 .0009	.0337 .2168 .0396 .0089	.0326 .2240 .0429 .0008	.0309 .2296 .0462 .0008	.0286 .2337 .0495 .0007	.000	•2083 •0222 •2374 •0561 •0006	.0180 .2370 .0594 .0005	.0627 .0003	.2307 .0660 .0002	.0054 .2238 .0693 .0001	.0020 .2142 .0726 .0001	15/04 1505 6000**	18034 -1872 -0.042 -0.001	1000++ 6280+ /691+ 5500++	2000 8580 * 5681 * 0200	2008- 1680 + 9921 - 1000-	FZ60* 6001* C800**	2000- 7540 5220 1800-	00082 .0413 .04400002	• 7000°= 1201° 9600°	4.02690071 .0075 .10230002 .0002	RADIUS (METERS) .	(INCHES) = 4.027 CHORD (METERS) =	(INCHES) = 2,1563 2CSL (METERS) =	INCHES) # .0675 YCSL (METERS) #	B (SETTERS) BIR COOL B (NETTERS)	B (SESTED STORES B (SESTED)	1	CHORDIDEG.) # 41.40 GAMMA-CHORDIRAD.)
SI Units (Meters)	2C YP YS	.00000002	0002	,0032 .0000 .0009	.0002		• 0005	.000	9000•	.0227 .0009 .0044	. 0100.	.0011	,0325 ,0011 ,0056	• 0012	*0012	.0422 .0012 .0064	.0012	• 0012	.0011	.0011	•0010	.0417 .0010 .0070	\$000°	•000	· 000 4	9000	• 6000•	*000.	.0003	,0877 .0002 .0039		0000	1000.	2000	.10070002	RADIUS (METERS) = .3044	(METERS) =	~	(METERS) =	THE TERMS I	(METERS)	THE SOUTH DESCRIPTION OF THE SOUTH DESCRIPTION	AMMA-CHORD (RAD+) =
English Units (Inches)	ZC YP YS	.008	•	.0003 .037	.0079	3836 .0148 .089	.0210	.0265 .135	.0313 .156	.175	.0390 .192	61+0*	.2787 .0442 .2216	• 0420	•	.0474 ,253	.0472	. 59#0.	9 .0452 .	.0434	.0408	4295 .0380 .2757	•	.0317 .265	.0283 .255	0 .0248 .241	422. 1120. 68	se .0173 .204	.0134 .18	4525 .0094 .1535	24 .0053 .12	082 .0011 .088	0031 .049	0.00	.96400073 .0079	8ADIUS (INCHES) # 11.984	CINCHES) # 3.	O SUCCESSION STATES	O CONTRACTO				39.

TABLE XXIV (Cont'd)

2C YP YS ZC • 0000	× 000000000000000000000000000000000000	YS 0002 0003 0015 0021 0034 0034	2 C	YP	۲۶	22	4	۲.
		0002 0009 0015 0011 0021 0031		0073				
0014 0038 0163 0014 0163 0014 0172 1027 0174 1222 0176 1122 0176 1122 0176 11834 0176 11834 0177 11834 0178 11834 0		002 0009 0015 0021 0031 0030	0000.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0075	0000	0002	,0002
00014 00338 00093 00585 00222 1027 02314 1400 0346 11834 0399 117562 0399 11946 0399 2120 0399 2120 0399 2120 0399 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2230 0391 2391 0391 2391 0		0009 0015 0021 0031 0031	.0077	0068	.0088	.0002	0002	.0002
00093 00585 0163 00814 0137 0127 01314 01402 01346 01562 01393 01946 01393 01946 01393 01946 01393 01946 0137 0183 0172 0226 0172 0226 0172 0226 0172 0226 0173 0226 0174 0226 0175 0226		115 1021 1036 1031 1040	.1314	.0020	•0302	.0033	.000	0000
0.052		1021 1026 1031 1040	• 2628	.0105	9150*	.0067	.0003	.0013
0.022 1027 0.034 1222 0.034 1266 0.036 1834 0.0393 1946 0.0393 2041 0.0393 2041 0.0393 2259 0.0311 2221 0.026 2259 0.0273 2259 0.0273 2275 0.0274 2275 0.0276 2275 0.0276 2275 0.0377 2275 0.0017 2225 0.0067 2173	4	1026 1031 1036 1040	.3942	.0181	•1/0•	0010.	• 0000	.0018
.0273 .1222 .0314 .1400 .0346 .1562 .0376 .1756 .0383 .1264 .0383 .2120 .0383 .2230 .0343 .2230 .0343 .2230 .0343 .2259 .0373 .2259 .0374 .2259 .0057 .2259 .0057 .2259 .0057 .2259 .0067 .2259		1031 1036 1040	•525	•0248	9060•	.0133	•000•	.0023
0314 1140 034 1562 035 1156 038 1946 0387 2041 0387 2041 0387 2041 0387 2230 0311 2221 022 2230 027 3 2259 0172 2259 0172 2259 0172 2259 0174 2259 0175 2259 0177 2259 017		9600	•6570	.0306	.1078	.0167	•000	.0027
.0346 .1562 .0370 .1706 .0393 .1946 .0393 .2041 .0383 .2261 .0383 .2281 .0311 .2225 .0275 .2259 .0172 .2259 .0057 .2259 .0057 .2259 .0057 .2259 .0067 .226		0.40	• 7 8 8 4	•0354	.1236	.0200	•000•	.0031
0.0370 1.1706 0.0393 1.1946 0.0393 2.041 0.0393 2.041 0.0383 2.120 0.0347 2.183 0.0347 2.259 0.0273 2.275 0.0274 2.275 0.0274 2.259 0.0174 2.259 0.0057 2.173 0.0068 2.097 0.0097 0.1731	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		8616*	.0394	.1378	.0234	.0010	.0035
0.096		6.400	1.0511	• 0425	•1506	.0267	.001	,0038
0.093 1946 0.0367 2041 0.0367 2183 0.0311 2220 0.0243 2220 0.0275 2225 0.0276 2225 0.0172 2225 0.0172 2225 0.0174 2225 0.0174 2225 0.0177		2000	1.1825	.0447	•1619	0000	.001	.0041
0.367 2.201 0.367 2.212 0.367 2.220 0.373 2.230 0.073 2.275 0.073 2.275 0.074 2.275 0.0067 2.275 0.0068 2.207 0.0068 2.207 0.0069 2.207 0.0094 1.098		9 0 0	1.3139	1940.	•1717	+ C C O •	.0012	**00
0.363 - 2120 0.341 - 2230 0.0313 - 2230 0.0273 - 2275 0.0273 - 2275 0.0274 - 2259 0.0174 - 2259 0.0057 - 2173 0.0068 - 2097 0.0049 - 11898 0.0097 - 11731		200	1.4453	9940.	.1800	.0367	.0012	9400
0343 .2230 0343 .2230 0223 .2226 0226 .2259 0172 .2259 01172 .2259 00057 .2226 00057 .2773 00067 .2097 00097 .1998	000000	4 4 4 5 5	1.5767	.0463	96	00,00	• 0012	.0047
0.0143 .2230 0.0213 .2251 0.0226 .2275 0.0172 .2259 0.0114 .2226 0.0057 .2173 0.006 .2097 0.0069 .1998	000000	0055	1.7081	.0452	.1922	.0434	1100.	.0049
03113 -2250 0273 -2275 0226 -2275 0114 -2259 0057 -2173 0057 -2173 -0008 -2097 -0009 -1876 -0009 -1876	00000 00000 00000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.8395	.0433	1961	.0467	1100.	0500
0273 .2275 .0226 .2259 .0117 .2259 .0057 .2173 .0008 .2097 .0034 .1998 .0034 .1998	7000 7000 7000	7500	1.9709	90+0	. 1985	.0501	0100	0500
0.0226 .2275 0.0172 .2226 0.0114 .2226 0.0057 .2173 0.0008 .2097 0.0009 .1878	9000		2,1023	.0372	1995	4650	6000	1900
0172 -2259 0114 -2226 00057 -2173 0008 -2097 0-0008 -1998 0-0069 -1878	.000	8 400	2.2337	.0330	1991	.0567	8000	1500
0057 .2173 .0057 .2173 .0008 .2097 .0008 .2097 .0008 .0008 .0097 .0008 .		1005	2 • 3 6 5 1	.0281	.1973	.0601	.000	.0050
	[000	.0057	2.4965	.0227	.1942	.0634	9000	6000
		.0055	2,6279	1710.	.1892	10647	4000	400
30059 -1876		2000	2 . 7 5 9 3	.0121	. 1823	0.00	0003	900
3 0069 1876 3 0097 1731		1.400	2.8907	.0076	.1735	46.00	2000	4
0097 .1731			3.0221	.0036	.1626	0768	.000	1400
	2000	7	3,1534	.0002	6641.	1080.	0000	9000
4510 4154	E0003	0040	3.2848	0026	.1352	.0834	0001	.0034
		3.00	3.4162	8.00	91186	9480	1000-	0.00
· ·		6000	3.5476	- 00065	1001	1060	0002	.0025
1000			3.6790	0075	.0797	4560.	0002	0200
1770 01101		2100	3.8104	0080	•0575	9960	0002	.0015
4 CO CO C C C C C C C C C C C C C C C C	2000		3.9418	007B	.0333	1001	0002	.0008
0000	2000	3100	4.0653	0072	•0089	. 1033	0002	.0002
			4.0732	1,000.	.0073	4.01.	2000	2000
2/00. 0/00	• 7000•	7000		•			*****	•
•	S (METERS) =	.3266	s	(INCHES) .	_	RADIUS	(METERS)	* ,3363
TTOOT IN (SUILCAL)	_	.1027	=	NCHES)	4.073	CHORD	(METERS)	. 1035
1691.7 # (SHIN	(METERS)	1550	11) 75JZ	(INCHES) =		15 JZ	(METERS)	0556
61-90 · · · · · · · · · · · · · · · · · · ·	(METERS)	9100	•	INCHES) .	.0518	YCSL	(METERS)	.0013
				# (SHLNI)		RIF (METERS)		61000
0 0	KLE (MEIERS)	50000		a (SUNCAL)		DTC / MET	/ METERS.	
0800.	RTE (METERS)	• 0000				ALE LACTERS!		
* •5758	X-AREA (SQ.METERS) =	2/80003/2			7		A AREA LOGONE FERST	•

TABLE XXIV (Cont'd)

Units (Meters) YP YS ZC 0002 .0002 .00002 0002 .0002 .00003 14 .0000 .0007 .0003 18 .0006 .0003 .0003 19 .0000 .0003 .0003 19 .0000 .0003 .0003 .0003 10 .0000 .0003 .0003 .0003 10 .0000 .0003 .0003 .0003 11 .0000 .0004 .0003 .0003 12 .0000 .0004 .0003 .0003 13 .0000 .0004 .0003 .0003 14 .0000 .0004 .0003 .0003 15 .0000 .0004 .0003 .0003 .0003 16 .0000 .0004 .0003 .0003 .0003 17 .0000 .0004 .0003 .0003 .0003 18 .0000 .0004 .0003 .0003 .0003 19 .0000 .0004 .0003 .0003 .0003 10 .0000 .0003 .0003 .0003 .0003 10 .0000 .0003 .0003 .0003 .0003 .0003 10 .0000 .0003 .000	SI Units (Meters) 2	The color The
Units (Meters) Proposed Service Servi	SI Units (Meters) 2	SI Units (Meters)
Units (Meters) YP YS YP YS 12 -00002 .00002 14 .00002 .00002 18 .00006 .00029 18 .00009 .00029 19 .00009 .00029 10 .00010 .00040 11 .00009 .00039 12 .00009 .00040 13 .00009 .00040 14 .00010 .00040 15 .00009 .00040 16 .00009 .00040 17 .00009 .00040 18 .00009 .00040 18 .00009 .00040 19 .00009 .00040 10 .00009 .00009 10 .00009 .00009	SI Units (Meters) 2	SI Units (Meters)
Units (Meters) YP YS YP YS 100002 00002 11 -00003 00003 12 -00004 0003 13 -00004 0003 14 -00010 0004 15 -00004 0003 16 -00010 0004 17 -00010 0004 18 -00004 0004 18 -00004 0004 18 -00004 0004 19 -00005 0004 10 -00005 0004 10 -00007 0004	SI Units (Meters) 2C	SI Units (Meters) 2
Units (Metres) YP YP	A CUNTRA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	A C C C C C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 1

								1	1		•
-	<u>۸</u>	۲۶	26	۲p	۲.S	32	Q.	4.5	2.0	a. }	د د
;	9900	9900•	.0000	0002	,0002	0000	0068	.0067	0000	0002	.0002
0071 (8900**	+000	.0002	• 0002	.0002	0700	0.0070	1200	.0062	20002	.0002
:	0.000-	•0169	.0034	0002	*000	•1364	0092	9410	.0035	- 0005	*000
	0072	.0267	6900.	- 0005	,000	.2728	0114	.0223	6900.	0003	9000
	2012	•	.0103	0002	\$000°	• 4092	0133	.0298	.010	0003	9000
	0072	'n	.0137	0002	1100	9545.	0149	.0371	.0139	+000	•000•
6750 (0070	.0535	1410.	0002	*001*	• 6820	0162	1 + 1 0 •	.0173	+000	1100.
:	8900**	-	• 020 •	0002	•0016	.818	0173	•050•	.0208	+000+	.0013
	0065	.0693	.0240	0002	.0018	8456	0181	• 0575	.0243	0005	.0015
	1900	99200	.0274	0002	•100•	1.0912	0186	.0638	.0277		9100
	9500**	.0834	.0309	- 00001	,0021	1 • 2276	0189	0020	.0312	- 0005	.0018
	0051	•	.0343	0001	.0023	1.3640	0189	6540	.0346	- 0005	6100
	00	• 0 9 5 9	.0377	- 0000	•0024	1.5004	0187	5180	0381	1000	1,000
_	0037	.1016	.0412	0001	,0026	1.6368		. 6	9150	5000	.0022
	0028	•1069	9110.	0001	.0027	1.7732	0173	.0923	0450	+000	.0023
	0018	.1118	• 0480	00000	.0028	1.9096	0162	.0974	.0485	*000*	.0025
2.02520	0007	•	+ 1 5 O •	- 0000	.0030	2.0460	0148	.1022	.0520	+000	.0026
•	9000	•1206	.0549	0000	.0031	2.1824	1810-	6401	4.00		,002
•	0000	. 1244	.0583	.000	.0032	2.3188	110.1	.1113	.0589	- 0003	.0028
•	1035	•	.0617	.000	.0033	2.4551	0087	.1157	.0624	0002	.0029
•	1054	-	.0652	.000	.0033	2,5915	- 0059	.1203	9590	1000-	.0031
•	2 4 0 0	~	.0686	.0002	•0034	2.1270	0.00	A.C.	0.040	1000	1600
•	1085	.1342	•0720	• 0002	.0034	2.8644	000	1256	0728	0000	0032
	6,00	~	.0754	• 0082	•0034	3.0007	.0015	.1250	.0762	00000	.0032
•	5600	~	.0789	• 0002	,0032	3,1371	.0028	.1218	.0797	.0001	.0031
•	2600	1210	.0823	.0002	1600	3.2735	.0035	1911.	.0831	.000	.0029
•	0083	-	.0857	• 0002	,0028	3.4099	.0036	.1079	.0866	.000	.0027
9	000	.1003	• 0892	.000	.0025	3.5463	.0032	.0973	1090.	1000	.0025
•	0052	•	.0926	10001	.0022	3.6827	,0023	.0841	.0935	000	,0021
•	0.5	0	0960*	1000.	.0018	3.8191	.0008	• 0 6 8 5	0600	0000	.0017
•	200	• 0512	*660.	00000	.0013	3.9555	0012	.0503	. 1005	0000	.0013
;	6200		.1029	1000	.0008	6160.4	0036	• 0296	. 1039	- 00001	9000
9	0063	•000•	1061	0002	,0002	4.2213	0063	.0079	.1072	6002	•0002
i	1900	4000	.1063	-•0005	*000	4.2283	+ 900 • -	1900.	.1074	0082	.0002
() NCHE	. (5	*	RADIUS	(METERS)	3678	RADIUS (1	(INCHES) .	14.981	RADIUS	(METERS)	3805
INCHE	S	4 • 185	CHORD	(METERS)	.1063		NCHES)	4.228	CHORD	(METERS)	.1074
INCHES	* (S	?	ZCSL	(METERS)	.0567	: :	· CVUHUNI	2.2564	76.26	CMETERS	. 0573
INCHE	. (S	•	YCSL	(METERS)	.0001			1.0081	76.24 V C S L	(METERS)	0002
PHUNI	•		. ux)	75051		. ~	# (VIII)	0.00	1 1 1 1 C	TEDS:	71000
(INCHES)	-	0200	RTE	(METERS)	000128			0 0	ALC INCIENS	1000	
(SQ. IN.)		-	X-AREA	X-AREA (SO.METERS)		į	T ACHES!	0000	3 - 2 - 3	KIE (MEIEKS)	••
		١									

TABLE XXIV (Cont'd)

AIRFOIL COORDINATES ON MANUFACTURING SURFACES — ROTOR 1

SI Units (Meters 2	1442 .0813 .0006 .0037 1415 .0848 .0006 .0036 1334 .0849 .0006 .0031 1103 .0899 .0006 .0031 11043 .0899 .0006 .0031 1063 .0890 .0001 .0022 1083 .10990001 .0010 1083 .10940002 .0002 15.980 RADIUS (HETERS) = .4059 4.314 CHORD (HETERS) = .0096 2.3057 ZCSL (HETERS) = .0096 2.3057 ZCSL (HETERS) = .0002 15.980 RADIUS (HETERS) = .0002 15.980 RADIUS (HETERS) = .0002 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018 15.980 RADIUS (HETERS) = .00018
y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	.0236 .0253 .0255 .0242 .0242 .0242 .0242 .0242 .0242 .0242 .0244 .0246 .0247 .0246 .0247
Englis 2 C C C C C C C C C C C C C C C C C C	3.2006 3.3398 3.43398 3.63396 4.61396 4.3139 4.3139 7.51 7.51 7.51 7.51 7.51 7.51 7.51 7.51
Weters) Y S Y S O 0 0 2 O 0 0 2 O 0 0 1 O 0 0 1 O 0 0 1 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 2 O 0 0 3 O 0 0 0 3 O 0 0 0 3 O 0 0 0 0 0 O 0 0 0 0 O 0 0 0 0 O 0 0 0 0	11 .0031 0030 11 .0026 11 .0026 11 .0026 10 .0018 10 .0018 10 .0002 12 .0002 185) # .1065 185) # .0064 185) # .00044 185) # .000178 185) # .000178
<u> </u>	.0845 .00010846 .00010845 .00010945 .00010980 .0001105000011083000210850002108500021085000210850002108500021087 (METERS) # YCSL (METERS) # YCSL (METERS) # YCSL (METERS) # YCSL (METERS) # X-AREA(SQ-METERS) # AMMACHORD(RADO) #
(Inches) Y S ***O065 ***O067 ***O067 ***O069 ***O06	
English Units (Inches) 2	3.1687 .0026 3.3065 .0042 3.3065 .0042 3.5820 .0050 3.8570 .0050 3.8576 .0030 3.98576 .0030 4.1331 .0024 4.2539 .0044 4.2639 .0064 4.2709 .0064

TABLE XXIV (Cont'd)

SI Units (Meters)	2C YP YS	,00000002 ,0002	0002	0003	5 DO 0 -	0100* 1000* 0100*	.0003	0003	0003	0002	- 0001	0000-	8200° 1800° 1840°	***	5000	.000		,0012	*100	.0718 .0017 .0050 .0754 .0020 .0053	.0021	.0023	.0023	.0022	.0021	•0018	• 0015	0100.	• 0005	.000	.11130002 .0002	RADIUS (METERS)4262	(METERS)	(METERS) =	(METERS) .	(METERS)	(METERS)	X-AREA(SQ.METERS)= .000258 GAMMA-CHORD(RAD.)* 1.0000
Inches)	۲۶	6900.	6410.	.0229	1180	***	.0564	0590	,0739	•0829	1240.	1015		01210	. 1413	•1519	.1629	.1740	.1867	.1988	.2139	.2143	.2092	. 1985	.1821	.1598	.1315	.0967	• 0552	.0093	•0000	. 16.780	4,381	2.3471	.0284	0073	.0071	3998
English Units (Inches)	b	1,000-	0097	0111	1610	¥10.0	0136	0125	0107	0082	1900	0013	2500.		.0210	.0284	.0367	.0458	• 0555	.0671	9.00	.0889	6680.	.0874	.0814	.0718	.0583	.0409	.0193	0052	++000	(INCHES)	INCHES)	NCHES)	NUMBER	INCHES)	INCHES)	(SQ. IN.)
Englis	32	0000		.2826	. 4240	5090	. 000	.9892	1 • 1 306	1.2719	1 • 4 32	1.5545	8669.	1.0386	2 - 1 1 9 8	2 • 2 6 1 1	2 • 4025	2 • 5 4 3 8	2.6851	2.8264	3.1091	3+2504	3.3917	3.5330	3.6744	3.8157	3.9570	4.0983	4.2397	4.3742	4.3809	RADIUS (1		_				A E A
rs)	4.5	.0002	+000	5000*	,000°		.0013	\$100.	• 0017	+0019	,0021	•0023	.0027	.0030	,0032	•0034	.0037	•0039	7.00	9700.	.0047	.0047	9,000	.0043	0.00	•0035	•0028	.0021	•0012	2000	*0005	4173	11106	• •0592	• •0003	.000180		9883
nits (Meters)	Y Y	0002 .0002	-	•	•								10001							.0013 .0046		.0015 .0047							•	•	2000* 2000*			(METERS) = .0592	(METERS)0003	•		• •
SI Units (Meters)	ZC YP YS		••0003	• 0003	•		*000*	+000	+000	+000+	- 0003		10001		1000	.0003	• 0005	90000		.00.	• 0015	• 0015	•0016	• 0015	+001	•0013	• 0010	*000	£000•	1000:-	•	S (METERS) =				(METERS)		• •
	ď.	0002	.00360003	.0003	**************************************		.02140004	+000	.02850004	+000+	.03570003	.039 9282	70001 44401	0000 6040	1000	.0571 .0003	37 ,0606 ,0005	.0642 .0006	1000 6120	.00.	.0785 .0015	.0820 .0015	.0856 .0016	.0892 .0015	+001	.0963 .0013	00100	.1034 .0007	.1070 .0003	1000	. 1100 00002	.430 RADIUS (METERS) =	4.353 CHORD (METERS) # .	.3303 2CSL (METERS) = .	(METERS) .	(METERS)	.0070 RTE (METERS)	.3939 X-AREA(SQ.METERS)# . 56.63 GAHMA-CHORD(RAD.)# .
English Units (Inches) SI Units (Meters)	S ZC YP	68 ,00000002	00142 +0034 -+0003	.0216 .00710003	0291 .0100004	2000 - C - C - C - C - C - C - C - C - C	0176 -0519 -02140004	0175 .0596 .02500004	7 .0674 .02850004	0154 .0753 .03210004	-,0135 ,0833 ,0357 -,0003	.039 9282	7000-1 3750- 1401-	11.47	1000 + 0535	.1345 .0571 .0003	.1437 ,0606 ,0005	0255 1531 .0642 .0006	1000 B/80	1815 - 0749 - 0013	•1855 •0785 •0015	•1851 •0820 •0015	1799 .0856 .0016	i •1701 •0892 •0015	•1556 •0927 •0014	.1362 .0963 .0013	0100. 6660.	*0822 *1034 *0007	.0472 .1070 .0003	. 1008 1011. 6800. 3		3) = 16.430 RADIUS (METERS) =	5) # 4.353 CHORD (METERS) # ;	NCHES) = 2.3303 2CSL (METERS) = .	.0134 YCSL (METERS) .	3) = .007; RLE (METERS) = .) = .0070 RTE (METERS) = .	.3939 X-AREA(SQ.METERS)# . 56.63 GAMMA-CHORD(RAD.)# .

TABLE XXV

Englis	English Units	(Inches)	SI C	SI Units (Meters)	rs)	Eng	English Units (Inches)	(Inches)	S	SI Units (Meters)	ers)
20	4	s ≻	20	۸Ł	11 >-	22	ΥÞ	ιι >	ZZ	۸۲	s +
• 0000	030	.0083	. 000 0	5002	2002	0 000	1900-	5700.	0000.	0002	*0005
.CC78	0056	.0125	2000.	1000	0.003	.00679	2011	.0103		2000	6000.
200.	.0362	.0677	.0032	3000		. 1259		. 0632	.0032	.0007	.0016
. 1873	5640.	.0961	8730	.0013	.0024	•1883	•	.0911	9400.	.5012	.6023
.2497	563	.1237	.0063	.0017	•0631	. 2518		.1183	.006	•001c	.0030
. 3122	. 68.1	.1505	.0679	.0022	•0038	.3148	•	.1448	. 00 8C	.0021	.5037
.3746	• + C 7 5	.1767	• 00 95	.0027	.0045	. 3777	.1010	.1705	9600.	.0026	.0043
. 4371	.1253	. 2022	.0111	• 0032	.0051	7 0 4 4 0 7		• 1954 0 • 0 •	2110.	1510	3600
5 6 6 h.	404.	.2272	.0127	.0037	6.058	. 5036		.2197	9710	0000	• 0036
. 5619	661	.2519	.0143		• C36 4	.5556 6795	700	25.436	7910	1 3 0 0 C	10068
4 423.	.1857	.2752	.0159		2/02*	5 6 9 9		1997	01.76	5 100	.0073
. 6868	. 2045	7967	10.00	4 C C C C C C C C C C C C C C C C C C C	0000	75.54		.3048	.0192	.0053	7 200.
. 8117	1777	9646	3020		2000	.6184		.3196	.0208	.0057	.0081
. B 74 1	1 60 31 1	3424	.6222	1000	7900.	.8813	-2340	.3316	.0224	.0055	•00°
9366	.2561	. 3518	.0238	5900.	.0389	. 9443		.3405	.024C	.0062	• 0086
0666∙	6792.	.3585	.6254	, CC67	1513.	1.0072		.3466	• 02 56	.000	
1.0614	.2672	. 3621	.0270	.0063	.6092	1.0702	.2529	. 3498	.0272	•000	.0089
1 -1239	0693.	.3628	• 02 85	890J*	.6092	1.1331		2502	.C288	3000	5800.
1.1863	.2682	.3605	.0361	9900.	*0092	1, 1961		. 3476	• 0 30 4	4000	8800
1.2487	. 2648	.3551	.0317	.0067	0.000.	1.2590		3419	0320	9000	/ B C C C
1.3112	•258E	.3466	.0333	• [[66	8833	1. 3220		. 3332	9550	1000	0 0
1. 37 36	.:435	.3347	5 4E C •	• 0363	• 6085	1.3849		.3213	5555	1976	7277
1.4360	-2375	.3193	.0365	• 0000	181	1. 4479		. 3059	. U 36 8	, in contract of the contract	0 K
867	.2222	1002	.0381	3500.	• 6076	1.5108		. 7869 0476	1000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,000
1.5609	•5034	• 2 7E ë	. U.S 96	• 1125	• c : /e	1. U. U.		0107.	1 6) r	
1-6234	6	- 2489	.0412	3,503.	.0063	1.6567	0001	7000	0110) :- - - - - - - - - - - - - - - - - - -	7500.
1 •6858	2	.2159	87 to .		443 7	16695		1631	10 a a c	0000	7170
1.7482	777	2777	# ()	1000	.0040	70101	111	123:	4440	10020	.0031
1.810/	1987	1010	20.40	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2010	1.8885		0714	03+0	.0010	.0018
70 / 0 • T	10		0 0 0 0	1000	300	1.9464	'	.0145	4640.	1000	*300*
1.9355	7 ~	6600*	.0492	2000	.0003	1 - 9515		3600.	96 40*	3000°-	.0002
ATT SILLO VE	. CALMONIA	7.545	S.T.C.S.	(METERS)	. 1315	RADIUS	INCHES)		RACIUS	(METERS)	11
HOED	: -		CHORO	(METERS)		CHCRD	INCHES 1	4	CHCRD	(METERS	
	. ~	1	ZCSL	(MOTERS)	Ī	_		.991	2C 3L	(METERS)	н
CSL		•	YCSL	(METERS)	5 °0.059	_		.223	YCŠL	(METERS	11
ш			RLE (METERS)	1533)				700.	RLE CHO	(MCTERS)	
)	_		RTE (4E	TERE)	•		_			L.	
SAMMA-CHORDOUE	-;;	= .1409 = 33.11	N-AKEA C	X-AREA (S.G.METERS 3 II SAMMA-CROSS (R.AD.) II	= .5778 = .5778	SAMMA-CHORD (DE	::	= 31.67	GAMMA-CI	15	1 11
	:										

TABLE XXV (Cont'd)

SI Units (Meters)	ZC YP YS	Ċ	1909 - 1909 - 1000 1909 - 1909 - 1000	2000	3000	300	51014	20017	100	2000	- CC26	.0032	.0036	.0179 .000. SACO.	.0043	.0045	3400.	6400•	3500*	.0051	.0293 .0C5i .C077	• 000	9500*	. 640û.	2400.	7 700 -	T 100 *	.0037	m	9 . CC28	•0022	0015	. 7550.	G5G20001 .0003	5040002 .000	(METERS)	- (NETER)	I COULTER	1 (000103)	T CONTRACTOR	
(Inches)	45 2		· ·	•			0.83						-		•	•					•	•	.2935	•		. 2595	•	•	•	.1696	•	•	•	130	.0385	3.230	,	1,00	7 2 2 7	0000	,
English Units (Inches)	ZC YP		9000 - 1 9000 - 1	. CD3	.322	•037		.3199675		1 2 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1		.5759 .1270	_				•8958 •1874							1.3437921		1.4717745	~		10	1-7276 -1093	•		9196 .227	9778	1.98360071		(VUHUNT)	CALHONIA	COLECNE		
eters)	2	2000*	ن ر		.0015	.0022	.0528	.0035	.0041	.6347	• C G 5 2	•0058	.6063	• 0.058	50072	900.16	6/110	181	. 0082	•0083	. 008 3	2850	10001	5,00	9/07/9	2/00-		• C U 6 Z	• 0055	0 0 0 0 0 0 0 0	5000	8770	P C C C C	0000	• c c c s	.2028	. 05 00	.0254	, 00 52	•	
SI Units (Meters)	ZC YP	2000- 0000-	7000- 2000*		.6032 .6006	•	.0065 .0015	G	•	• G 0 2	.0129 .0031	£003	.0161 .0040		#00.	100	900		•	•002	•002		500	200°	500.	•	30		00000 BISC.	•	,	7770. 8970.	•	•	*95C0 025C*	RADIUS (METERS) =	CHORD (METERS)	ZCSL (METERS	YCSL (METERS)	CHAPTORE MISS	
ts (Inches)	55		2600. 74																													•) C		ت ت	7.985	_		• 20	- E900e	
English Units (Incl	ZC YP	300.4- 0000	വ																							1.4605								nc ac		RADIUS (INCHES)	L'HON'T)	SHOUT !	HONE	BLE (NOHIL)	

TABLE XXV (Cont'd)

English	English Units (Inches	ches)	SIU	SI Units (Meters)	ers)	Englis	English Units (Inches)	Inches)	SI Unit	SI Units (Meters)	3)
zc	ΥP	5 7) 11	٨b	YS	ZC	۵ ۲	\$	2 C	۲۶	ξ.
	,		i i	C	600	ניטטט י	59000	.0071	3000.	6002	.0002
0000	2005	3/00.	0000	1000:1	.6402	2000	0050	8600	.0002	0001	*C 003
9000		- CCO.	9 0		8000	. 0645	4.505.	.0342	.0016	.000	6000*
7 490.	יינים.	0000	2 2 2 2 2		.0015	1291	231	.0603	.0033	9000*	.0015
.1285	1221	9 0 0 0	0000	3000	1002	1936	.372	6480.	5 400 •	.000	.0022
1 32 1	2001	3000	0 10 0		1000	25581	0.510	.1082	9300*	.0013	•0027
• 2563	775	#10T ·	0000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	3227	999	•1304	.3632	.0016	.0033
.3212	3 1 C	.1303	7877	7700	0.00	-3872	731	.1516	8600.	.002	•0039
• 3854	1610.	. 1523	0,000	1400	7 4 4 5 5	4517	4.000	.1718	.0115	.0023	* 000
9644	928	.1735	#T TO *	111	r 6 400	-F1E2	540	.1912	.0131	.6627	6400*
. 5133	• T 018	• 1936	.0131	1700.	D = 0	2010	1177	2005	.0148	.0030	.0053
.5781	.1221	.2129	/ 510 ·	4 6 0 0 0	+ c	5000	402	2267	.0164	• 0033	8:00°
. 6423	• 1300	•2312	.0103	0000	n (1)	2000	3	2420	.0130	.036	.0361
• 106 6	• ×491	9242	.0179	• 55.36	• tues	3,70		0 131	75 10	5000	.0065
. 7763	• <u>. 6</u> 6 6	.2615	-0196	1400	. ilibė	**//*	970**	2053	6213	1800	7300
.8351	7.3	.2729	.0212	1 to 3 *		5000	0101	0000	1 0	1 5	0 4000
8993	.1732	.2817	.0228	. OC45	5007.2	+£ 06 •	. 645	. 27.54	2770.	1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
9635	5484	.2882	.0245	.0047	.0073	-968□	•1738	.2791	0.77	****	1100
1.0278	189	. 2921	.0261	.000	+000*	1.0325	#177	• 23 26	.3262	n :	2100.
0.000	8301	7 2 9 3 7	.6277	8433.	.0075	1.0970	793	.2836	.0279	3	2/00.
1 1 5 6 2	0.0	2927	.0294	6,000	4,00.	1.1516	. 133	.2823	.0295	9 #00.	2/00.
7007 • 7	1000	2002	0.51	8 400 e	.0373	1.2261	9117.	.2785	.0311	3 400.	.0071
1. 2255	000	2007	3250	7400	.0072	1,2906	. 1741	.2723	.0328	4400.	6300.
1 48 2 1	000	6.50.0	2450	1 di Ci	0200	1 •3552	687	.2637	.0344	.0043	.0667
1. 3489	n :	1416	9.750	3100	7.000	1-4197	2.0	.2524	.0361	1400	• 000 •
1 • 4 13 2	#17.4	2597	0.000			1.1.04.7	1004	. 2385	.0377	.0039	.0061
1. 4774	• 1638	+6+Z•	0.00	4 2 4 4 1 0	0 0 0	7 6 7 6 7	1 1 1	2222	0.393	.0036	.0356
1.5416	• 1519	.2324	2650.	1000	n a	1. 0100		2021	0.410	.0032	.0051
1.6059	• 1376	.2122	8 0 4 0 •	3000	*****	1 1 1 1 1 1	7171	1707	3 6 4 0 .	.002 k	9,000
1.6701	.1209	.1888	.0424	• 003.	8 7 7 7 .	1.5.7.78	774) M	1000	9500
٦,	0.15	• 1617	. 0441	.0026	1,004,1	1-1474	4000	1001			ייאפט
1.7986	793	.1366	.0457	.0026	.0033	1.8063	4177	.1233	ה היים היים היים	9 (1000
00000	62.5	13.81	. 0473	4100*	.0024	1.8714	0.00	• 0.895	0/+0.	4.00.	7,70
0700 • 7		1 1 1 1	0.40	9000	.0014	1.9359	. 3224	.0512	. C432	3000.	5 100.
1.36.1	;	1 1 1	40.40	. מכטיי	¥ 000	1.9944	0041	.0121	.0507	T0330*-	.0003
ת	0.00	. O.L.C.		1 (2,0005	0069	.0080	• 0508	0002	•0062
1 • 991 3	:070	•0683	9.65.				1	 			
•			() TO 6 G	(SAPTRA)	1 = .2121	RADIUS (ENCHES)		RADIUS	(MITERS)	н
KAD IUS (.	TACHES !		10000	0000000	1	_			CHORD	CMUTERSI	П
CHORD	NCHIN		2	400 F 642	1 .0055			1.0054	ZCSL	(METERS	= .025
7502	NCHES		707	100000000000000000000000000000000000000					YCSL	(METERS!	•
YCSL (1	NCHIN		7.5.L	4 U U U U U U					R15 (4)	TERS)	
RLE (.	(SZHONT)	0070	7 E C 7 E	STEE (MELLINE)				0200	RIE (METERS)	TERS	00 0179
RTE (1	SCHESS		7	742	•				X-ARTA	X-ARTA (SS. METERS)	550000" =(5
X-AREA (S			X-AREAL	X-AREALSS - MET-KS)	.)= .udcc33	A - A H H H A		Č		- C-UVC) CCOMU-VINA	,
-47.	ORD (DEG.)	~	GAMMA-C	HORDINAD	•	6A MMA-CHORDICE	;	72.5	3 - 40 040	1000	•

TABLE XXV (Cont'd)

(inch 1 1 1 1 1 1 1 1 1
68) 0070 0170 0
68) 5 C C C C C C C C C C C C C C C C C C
Units (In No. No. No. No. No. No. No. No. No. No.

TABLE XXV (Cont'd)

SI Units (Meters)	ZC YP YS	.00000002 .0002 .00020001 .0002	6002		.0056 .0009 .0021	-6012	.0015	• CO1 ô	.0021	.0624	.0027	•003€	.0032	.0034	• 0036	.0038	• 0039	•0033	.0282 .0639 .0067	.0035	.0039	.0038	•0036	.034	.0032	, 2603.	.0027	• C023	.0019 .003	.0015	.0010	• 0000•	• • • • • • • • • • • • • • • • • • • •	.05156602 .6002	п		(METERS) =	CMETERS) = .004	י בי	1000	11000° = (2011		•
Inches)	s *	0.000	.0338	.0595	. 0838	1901.	.1283	.1486	.1676	.1955	.2021	.2174	.2307	.2417	•2505	.2571	.2615	. 26 37	.2637	.2615	.2571	.2504	.2414	.2301	.2164	.2002	.1915	.1660	.1358	•1086	.0783	3440.	.0111	•0075			= 1.0158	159		0.400		27. 31	7
English Units (Inches)	ΥP	0065	. 2076	.5213	1347	9740.	-0602	.0725	•€843	8:00:	320T•	. 1177	.1274	• 1357	• 1425	. 47B	• 1516	• 1539	1.547	• 1.540	•1518	• 1479	• 1426	• 1355	•1269	•1166	• 1045	8060•	751	•576	382	-0167	\$ \$00° -	3907*-	(ENCHES)		_	_			_		
Englis	20	. 0000	. 0653	•1307	. 1961	. 2614	•3268	. 3921	•4575	. 5228	.5882	. 6535	.7189	. 7842	9648•	. 9143	• 9803	1.0456	1.1110	1-1763	1.2417	1. 30 70	1.3724	1.4377	1.5031	1.5685	1.6338	1 •6 992	1.7645	1.8299	1.8952	1.9606	2, 0196	2 • C25 9		CHORD (I	_	_			8 23	•)
ers)	ار ک	20003	6000	.0015	.0621	.6327	.0033	•0038	.0043	8 400.	.0053	.0057	0 900	.0064	. 0066	8300.	6903•	• 6 6 7 6	0 200.	6300*	• 0068	.0067	, 0064	.0061	. 005 a	#S00*	6 400.	.0043	.0037	6230.	.0021	.0012	• 0003	.6002		11		,	. ,		١ !	•	1
SI Units (Meters)	Ϋ́	2000-	2000	9000	6000	.0013	.0016	•0013	.0023	.002	.0029	.0032	.0035	.0037	.6033	1 5 0 0 6 1	.0042	5430*	.0043	.0043	2,000	.0041	.0040	.0036	.0036	.0033	•003€	.026	.0021	.0017	.001	• 2008	0001	0002	(METERS)	()01114	CAPTRA	() () () () () () () () () ()	71.11.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-AKEASSOMELRO	14 × 1 0 × 0 ×
N IS	22	2000.	-0016	.0033	6430.	9900.	. 00 82	6600*	.0115	.0132	.0148	.0165	.0181	.0198	.0214	.0231	.0247	.0264	.0280	.0297	.6313	.0330	. 3346	.0363	• 0379	• 0396	.0412	62 40*	.0445	. 54 62	.04 78	†6 †0•	6050	.0511	RADIUS	2010	70.7	1 / 2 >	ָרְיבָּי קריים קריים	11.0	1 2 2	4 1 X X 4 X	J LAMEAU
(Inches)	S >	1700.	0233	.0598	5 48 0 *	.1079	.1301	.1512	.1710	.1898	.2075	.2238	.2381	.2500	. 2597	.2670	• 27 19	.2746	.2750	.2736	.2688	.2621	. 2531	.2417	.2277	.2112	.1919	.1698	.1445	.1160	.0835	4	.0116	007	er:	·	4 -	•					7
English Units (Inches)	4.6	065	0800	. 5223	.363	.0501	•0635	.3766	+0834	.1020	9 1 1 4 4	.1263	371	*1465	-1542	.1603	1497	675	. 1687	682	.1660	620	.1565	-1432	.1401	. 231	.1153	.1014	##B 1 •	• 52	M	.0136	100	067	-			-	•	- :	- 1	EA (50. LN.)	ؿ
Engli	2 C	0.000	9 30 0	.1298	-1947	. 2596	.3245	. 3894	-4543	. 5192	. 5841	-6483	. 7138	.7787	. 8436	• 9085	. 9734	1.0383	1.1032	1.1681	1.2330	1 -2 97 9	1.3628	1 -4277	1.4926	1.5575	1.6224	1.6873	1.7522	1.8171	1.6820	1.9468	505	2,0117	PADTUS 67		1000	707	1636	RL : (1	RIE	X-AREA (S	GAMMA-CH

TABLE XXV (Cont'd)

SI Units (Meters)	ZC YP YS	*6060 -*6002 *0662	7000	-000°	.0008	.0010	.0013	.0015	.0017	100.	•002€	.0022	.0191 .0023 .0055	*005	•0025	.0025	•0025	.0025		• 005	*005#	.0023	.0022	.0021	.0019	.0318 .004	.0015	.0013 .003	.6611 .002	.0003	.0005 .001	-0002	•		S (METERS)	O (METERS) =	(METERS) =	YCSL (METERS) = .0033	RLE (METERS) = .000177	(METERS)	X-AREA(53 METERS) = .00 0132	
its (Inches)	48	2 .0069							1 • 1685				3 .2173												1 •1852		1533					•		•	_	~	7	= .1316	= .007g			7
English Units	d X	00 5062	ŀ							57 .0740		21857					Ī					13 .0917											6100*- 08	1	(INCHES)	(SUHDAT)	(INCHES)	(INCHES)	(INCHES)	_	(SQ. IN.)	GAMMA-CHORD (DEG.)
	20	0000	•000 •	1364	-2046	•2729	. 3411	£604°	. 4775	.5457	• 6133	•6821	. 75	.8186	. 8868	.955	1.0232	1.0914	1,1596	1.22	1, 2961	1.3643	1. 4325	1.5007	1, 5689	1.6371	1 • 705 4	1.7736	1.8418	1.9100	1.9782	2.0464	2 -10	2, 1146	RADIUS	CHORD	ZC SL	YCSL	RLE	RTE	X-AREA	GAMMA-(
ers)	YS	.0002	6000	9000	.0022	.0028	.0033	. CC38	. 0042	9400.	0000	.0053	•0055	• 6057	.0059	• CO6 O	0900.	• 0000	• 60 60	• 6005	.0058	• 0056	\$500°	.0051	8 7 0 0	\$ \$00°	200	.0035	6290.	.6023	-0017	0100.	.0003	•0005	11	11	11	= 00 34	.000	•	•	1 - 3288
SI Units (Meters)	Ϋ́	0002	1000	5000	.0008	.0011	.0013	.0516	.0018	.6625	• 0022	.0324	•0025	.0026	.0027	.0028	.0028	.6020	.0026	•600.	.0027	.0026	.0025	.6023	.6622	.0020	.0017	.0015	• 661Z	.000.	•0000	2000.	0001	3000°-	(METERS)	(METERS)	(METERS)	(METERS)	TERSI	TERS)	X-AREA (SG.METERS)	SAMMA-CHORD(RAD.)
∩ is	2 C	.0000	.0017	0034	.0051	.0068	.0636	.0103	.0120	.6137	.0154	.0171	.0188	.0205	.0223	.024C	.0257	.0274	.6291	.0308	.0325	.0342	.0359	• 0377	•0394	.0411	• 04 2B	5 7 7 0	• 04 62	• 0479	96+0•	.0514	•0529	.0531	RADIUS	CHORD	ZCSL				X-AREA (SAM MA-C
(Inches)	48	.0071	.0355	ú	.0871	.1099	• 1307	.1496	.1667	.1819			• 5	•	• 2	• 2		• 2	• 2	• 5		• 2	.2		•	.1727	•	-	•	•		•	•		11.	2.0	~		1700. 1		•1	18.84
English Units (Incl	Υ,	#900 · - 0	1		. 31																					4776							١	'	(SEHONE)	(SUHDNI)	(INCHES)	(INCHES)	(SZHONE)	(SCHONT)	AREA. (50. IN.)	HORD(DES.)
Enç	20	. 0000	067	134	2025	.2691	. 337	+ C#	. 471	.539	909	. 673	.7413	. 808	.8761	. 943	1.010	L. D78.	1.145	1.213	.280	. 347	•415	482	. 550.	. 617	•684	.752	.819	. 887	+ 954	•C21	. 082	2 • C 8 9 2	RADIUS	2	_	_			-A REA	MA-C

TABLE XXV (Cont'd)

•	YS	.0002	.0010	.0617	.0023	.0029	•0035	0.00	# #DO •	8 2 2 2 3	.0051	*C054	, 500.	9000	0.000	•0061	1900	.0061	•00E1	.006	8200	• 0026	\$ 00°	.0051	870048	* 400.	•0039	•0034	•0029	.0023	•0616	6000•	•0 002	.0002	36.00	96.56	• 115 45 9			= .000161	11	п	= .3055
SI Units (Meters)	ΥP	0002	1000	*000	.0007	5000•	.0012	• 0013	.0013	100.	6100.	5103.	3200	7700.	1700·	2200-	7700	.0022	• 0022	.0021	.0021	.6020	•0013	• 001a	•0016	• 6015	•0013	.001	5000•	.0007	*000*	,000.	6001	6002	0	נקשושה)	(METERS)	(METERS)	(METERS)	TERS)	TERS	X-AREA (SG.METERS)	SAM MA-CHORD (3 AD.) =
S. U.	22	.0000	.0018	.0035	.0053	.0071	.0089	.0106	.0124	.6142	.0159	.0177	4610.	.0213	• UZ3L	-0248	•0266	.0283	.0301	•0318	.0337	.0354	.0372	•0390	8U+U*	.0425	. 04 43	.0461	• 04 78	9640.	.0514	.0532	•0548	• 0 24 3		77042	CHORD	ZCSL	Y C S L	RLE (METERS)	872 (周	X-AREA (GAM MA-
Inches)	۸s	.0100	.0375	•066C	.0921	.1160	.1376	.1570	.1742	• 1 85¢	• 2026	.2137	• 2228	• 2301	-2354	• 2390	• 2406	• 2404	.2384	• 2346	.2289	.2213	.2118	. 2005	.1872	.1719	.1547	.1354	.1141	• 0906	6 490*	.0369	.0097	• 0068		2000-47	2.162	= 1.0808		= .0071		= .2352	= 17.50
English Units (Inches)	γP	0062 0051	.2057	•1169	272	.0367	• 0453	• 6553	6.1	•662	.0714	•.758	#6.4C*	2780.	. Cat	• 0.856	-0862	• . 860	-0851	• ∴834	•0810	6770.	-0740	¥69·•	0.640	.0579	510	. 0434	• .356	. 2259	.0159	-2052	050	0061		7	_	_	_				64 MMA-CHORD(353.) =
Engli	ZC	. 0000	. 0697	•1395	. 2093	•279□	- 3488	-4185	. 4883	•5580	. 6273	•6975	. 7673	-8371	. 9068	9766	1.5463	1-1161	1.1858	1.2556	1 • 325 3	1, 3951	1.4648	1.5346	1.6044	1.6741	1 • 7439	1.8135	1.8834	1, 9531	2 • C 2 2 9	2-0926	2 - 155 7	2.1624			<u> </u>	_	_		RTE ()	X-AREA (6-A MM A - CH (
ters)	۲3	2000-	6000.	.0016	.6023	• 6029	.6634	• 6039	.0043	7,004,7	•0000	• 0053	9500*	.0057	•6000•	. 0360	0900.	.0060	•0000	6500*	.0057	•6056	.0053	.0050	7 400.	.0043	• 6039	•0034	.0029	•C023	.0016	6000	. 2002	.0002		н	п	11	+1		= .000179	11	11
SI Units (Meters)	ΥP	0002	2000	.000	1000.	.0010	.0012	.0014	.0016	.0018	•0018	.0025	.0021	•3022	.6623	.0023	.6023	.0023	.0023	.0023	.0022	.002	.0025	.0013	.0018	.0016	.0014	.0012	.0010	.000	4000	7000	0001	2000-		(METERS	(METERS)	(METERS)	(METERS)	(METERS)	(METERS)	X-AREA(S) .METER.	GAMMA-CHORD (RAD.)
รเ	20	0000	.0018	.0635	.0053	.3076	.0088	.0105	.0123	.014C	.0158	.0175	.0193	.0210	.0228	• 0245	.0263	.0285	• 02 98	•0315	.0333	.0350	.0368	.0386	.0403	.0421	.0438	.0456	.0473	16 40.	.0508	.0526	.0542	.0543	,	RADIUS	CHORD	ZCSL	YCSL	RLE (ME	RTE (FE	X-AREA(CAMMA-C
Inches)	٨s	0700.	.0368	. 06 47	.0902	.1135	.1347	.1537	.1768	.1358	.1988	• 2099	.2190	.2263	.2318	.2354	.2372	.2371	.2352	.2315	.2259	.2185	.2092	.1981	.1950	.1700	.1530	.1346	.1129	.0897	.0643	9920	9600	6900*		-		1.0690		0071			17.67
English Units (Inch	Α¥	- 0063 0063	.061	. 0177			4740.																							.281			1	062		_	_	INCHES				_	
Englis	22	0000	0690	.1380	•2070	. 2760	-3450	. 4140	• 4 82 9	. 5519	• 6 2 2 0 3	• 6899	.7589	.8279	e 96 8 •	• 36 59	1.0349	1, 1039	1 -1729	1,2413	1, 3109	1 • 3 799	1. 4483	1.5178	1.5868	1.6558	1.7248	1 . 7 9 3 8	1.8528	1 . 931 8	2,0008	2 -0.693	2-1321	2.1388		_	_		_	100	RIE	X-AREA (S	GAMMA-CHORD (DEG

TABLE XXV (Cont'd)

SI Units (Meters)	2C YP Y3	.00020002 .00020003 .00030003		5000.	.007 .0013 .0033	.6015	.0017	.0144 .0019 .0053	.002	. 6622	.0023	.0023	*0252 *0423 *0466	.0023	.6623	•0022	.0021	.0020	.0015	.0018	100.	9501° SID1° Z550°	770.	E000.	. CC07	+000.	1000 1000	₹000•- 9	.6558 6002 .6002	11	(METERS)	(METERS)	(METERS) =	(METERS)	= .00 017	.00016	п
Inches)	۲S	.0070	.0737	.1029	1571	1744	.1932	• 2095 223E	.2351	.2444	.2515	.2564	2503°	.2595	.2567	.2526	.2454	.2369	.2264	.2139	.1995	1887.	1678	.1209	.0958	. 1685	38	.0098	•0068			1.0978	.1392	.0671	.007	.2661	18.10
English Units (Inches)	ΥP	- 1061 -1048	205	.0323	1040.	. 512	687	752	648	882	\$080 *	7160.	276.	.0911	835	872	.0842	. 0805	•-761	0727	50 50 50 50 50 50 50 50 50 50 50 50 50 5) () () () () ()	0400.	. 352	.0259	.0159	•£653	055	_•~06C	E (SCHONE)	= (SCHONI)	_	I (SUMONI)	(INCHES)	(INCHES) =	0. IN. 1	RD(SES.)=
Engli	22	. 0000	.1418	. 2126	4 48 44	. 4253	•4 96 2	. 5670	. 7088	7.877.	. 8506	.9214	1.0542	1,1341	1.2056	1.2758	1.3467	1-4176	1 • 4 88 5	1.5534	1.6302	1.77.20	1 - 84.79	1-9138	1.9846	2, 0555	2 -1264	190	2 • 1973	Ñ	_				RTE (I	X-AREA (CO. IN.)	GAMMA-CHC
SI Units (Meters)	2C YP Y.3	.66606662 .6662 .00020001 .0003	0000	.0054 .0067 .0075 .0072 .0010 .0071	.0012	.0014	.0125 .CO16 .CO46	.0013	.6626	•0020	.002	.0233 .0021 .0062	1200.	.0021	. 200.	• [[2]	.0020	.0015	5000.	100.	- 1417	5100	0100	.0006	• 3033•	*000*	• Tana•	011. IDD0 8	.05556002 -0002	S (METERS) =	O (METERS) =	(METERS) =	ERS) =	н		O.	SAMMA-CHORD(RAD.)= .3C37
Inches)	4.5	.0100	690	2750	.1448	Н.	1985	.2119	.2232	.2322	•2392	2442	-2487		.2458	.2415	• 2354	.2274	-2174	\sim	1751	1583	.1385	.1166	• 0 92 5	.0662	.0376	/ SOD •	.0068	15	7	-		= .0071			17
English Units (Inch	ZC YP	.0000	13	.2820		. 4230552		73	7050	. 80	•	9166 . 34	1.0576 .0350		1.1986 .0832	1.2691 .0813	73	• : 75	77.	9	1.6921615	75.76		1.9036332	1.9741 .0244		100	100-1 58/	185606	_	(SUCHES)	(INCHIS)	(SZHONE)	(EDHONE)	(SUHDAI)	A (50N.)	GAMMA-CHORD (DEG.)

TABLE XXV (Cont'd)

Englis	English Units	(Inches)	SI U	SI Units (Meters)	. (\$	Englis	English Units (Inches)	Inches)	SI Un	SI Units (Meters)	rs)
20	ΥP	۲۶	SZ	λb	17 >	22	ΥΡ	۲۶	22	Ϋ́	۲۵ ک
. 6000	3062	.0073	.000	0002	.0002	0000	062	*L00*	0000	0002	2000
•000	9407	.0109	5000.	1000*-	.0003	. 170.	.0125	.0485	.00.18	2003	.0012
51.0.	0 1 0	1040	9700.	1000	2100	.1428	.0301	• 0366	.0036	.0003	.0022
21 20	9 7	1144 L	4500	200	4200°	.2143	462	.1211	.0054	.0012	.0031
- 2 8 5 1	9450	1443	.0072	4100	.6637	. 2857	• 0609	.1523	.0073	.0015	.0039
1551	999	1709	.0091	.0617	. 0043	•3571	24200	.1803	.6591	.0015	.9400*
. 2303	772	.1945	6010	.002.	6403.	. 4285	.0361	.2052	.6109	.0022	• 0052
6864	7.80.	.2153	.3127	.002	.0055	6 66 h*	9960•	.2273	.0127	• 0025	• CO 58
.5701	8 4 6 7 •	2335	.0145	.0624	• 6005	. 5714	. 105a	.2465	.0145	.0027	.6063
6414	2101	. 2491	.0163	•8026	. 006 3	•6428	.1137	.2631	.0163	.0029	•0067
.7127	073	.2621	.0181	.0027	.0367	.7142	202	.2769	.0181	•003.	0.000
. 7839	.1118	. 2726	.0199	.0020	. tines	• 7856	.1253	.2882	0200	.0632	5/22
•8552	• 1149	.28C6	.6217	.0029	.6671	. 8570	.1232	. 2369	.0218	.0033	9 1 2 2 3 3
• 9265	. 1169	.2862	.0235	. 0030	.0073	.5284	317	. 3030	• 02.56	.cus.	
7 166.	.1176	.2895	.0253	•003C	#200 *	6 666 •	• 330	•3068	.0254	.0034	8700.
1.0690	.1175	• 2906	.0272	.5036	.0074	1-0713	• 1331	. 3081	-0272	- CO34	8,000
1.1403	•1164	.2896	05 20	.0030	4200	1.1427		.3072	05 20*	.00.34	S 100
1,2115	.1145	.2365	• 0308	.0029	.0073	1. 21 41	• 1352	.3041	.0308	.0033	- LDD.
1 •2 82 8	-1117	.2813	.0326	• CC28	1700.	2 58 2 - 1		9967	1250.	1000	0 0
1.3541	.1030	.2746	.0344	.0627	0.000	1.3570	2 . 2	2312	5 450 .	1500.	* 100
1. 4254	.1034	. 2645	.0362	.0026	.0067	1.4284	.1182	.2813	.0363	1500°	1,000
1 • 4 96 6	•0979	• 2 52 8	.0380	.0025	†300 •	1. 4993	.121	• 26 91	1880	*00.	2000
1.5679	3T67 *	•2390	.0398	.0023	.0061	1.5712	0507	2442	E	1777	0000
1.6392	843	.2229	.0415	.0521	.0057	1. 6426	. ני פוני	. 2376	740.	6200.	9000
1.7164	.3761	• 2046	.0434	.0013	.0052	1 • 7 1 4 1	1187	7817	55.40.	3200	
1 - 7 81 7	671	.1839	.0453	.0017	.0047	CC 97 • T	0 0	2011	* * * * * * * * * * * * * * * * * * * *	9 6	9 4
1.8530	.0571	.1609	.0471	.0015	.0341	1.6569	2997	91/18	27 40.	1100	***
1.5242	463	.1753	08 40.	.0012	• C D 34	1. 3233	700.7	0 1	3640	*100	
1,9955	.0345	.1072	.0507	.0003	.0027	1 - 9997	4.05	.1146	8050°	1100.	8 200
2 .0 KB B	219	.0765	.0525	9000•	•0019	2.0712	0.4200	.0818	9757	,000.	1700.
138	.033	.0431	.0543	2000.	.0011	2 - 1 4 2 6	+010+	6540	****	, in in in	7100
7 - 2 5 7 7	7 400 -	.0163	.0559	1000-	.000	2- 20 75		• 0106	.3561	TOPO -	. 0003
. 209	0061	.0276	.0561	0002	.0002	2 -2140	061	.6671	•0562	-,6602	2000.
RADIUS (1)	(SINCHIS)	= 16.000	RADIUS	(METERS)		N		+4	RADIUS	(RETERS)	и
	CALMONIA	~	CHORD	(METERS)	= .0561			2.214	CHORD	(METERS)	"
` ~	CULTONE	1 ~~	7C3L	(METERS)	0280			= 1.1062	7C 2F	(METERS)	11
1507	C ENCHES)		YC3L	(METERS)	= •CC41	_		•	YCSE	(METERS)	11
	CVITOR		RLE (M	TE45)		_		•	RLE (METERS)	TERSI	
RTE	(FINCHES)	0700. =	RTE (METERS)	TERGI				2000 =	RTE (ME	(METERS)	16
FE A	7		X-AREA (-AREA (SG.METERS)=	1 .000174	X-AREA (S	_ `	14	X-AREAL	X-AREA(53 METERS)	11 1
	RD(JES.)		SAM MA-C	SAMMA-CHORD(RAD.)=		GAMMA-CHURD LDEG	•	= 18.17	GAMMA- C	GAMMA-CHOND (MAD .)	

TABLE XXV (Cont'd)

_	sı	2000-	0003	100.	0200	.0043	.0051	•C058	• 0065	07 0 0.	.0075	6200.	38 3	.0085	.0097	6800*	.0089	• C D 8 9	• 000 •	.6687	.0085	.0682	6,007.9	.0075	070	.0065	.0058	.0051	0.043	.0034	6024	.0014	0.003	.0002	. 42.29	0.66.6	, ,	0.55		. C C C C C C C C C C C C C C C C C C C	4017	.3283	
SI Units (Meters)	ΥΡ	2003				•								7		m		-			0. 1400.		.0038			-		·	•	•	•	•	6661 .6		METERS) =	METERS		(METERS) -		1 11	α L.	RD (RAD.)=	
S L	22	0000		0036	-0055	.0073	.0091	•010•	.0128	.0146	.0164	.0182	• 020 C	• 6219	.0237	.0255	.0273	• 02 92	• 031C	.0328	• 0 34 6	.0365	.0383	.0461	-0419	-0437	• 0456	† 2 † 0 *	• 04 92	.3516	.0529		-0563 -	.0565 -	RADIUS	_			121	RTE (METERS)	CULLW CO) A PAA - X	GAMMA-CHORD (RAD.)	
nches)	۲S	6730.	1770°	.0968	.1354	.1705	• 2019	.2301	.2551	.2775	.2961	.3121	.3255	.3361	.3441	. 3493	.3518	.3516	. 3489	.3435	• 3354	.3248	.3114	.2952	.2762	.2543	.2293	.2012	.1698	.1349	4360⁴	• 0539	•C114	• 00 ·	16.650							19.81	
English Units (Inches)	۲۶	065							.1138	• 4316	6747.		• • 58			712	.1725	.1723	9071.	•1676	631	.1571	* 1438	0141-	.1307	.1189	.1057	6767.	94200	.0558	.0374	15		0061	= (STHONT		_			IN CHILD I	_	. ີ.	
Engli	20	0000	7 17 3	. 1435	.2153	.2870	. 3588	•4305	. 5023	-5740	• 6458	•7175	• 7893	•6611	. 9328	1.0046	1.0763	1.1481	1, 2198	1 •2 916	1. 3633	1 +4351	1.5063	1.5786	1.6504	1.7221	1 • 793 9	1.8656	1.9374	2,0091	2 •0803	2-1526	2 • 2 1 8 2	2-2244	RADIUS (CHORD	_	_	_	RTE	A E A	()	
ers)	YS	2000.	. 0014	6023	.0033	.0641	• 0043	9500.	.0062	.067	•6672	. 6075	6200.	.0381	.6083	• 008 4	•0085	. 608	•6084	.0082	0800	. 607 8	PC 3 3 *	0 200 •	9900*	.0051	\$500.	. C 0 4 3	0400	.0032	.0023	.6613	.0003	•0005	= .4178		•	64.00			α []		
SI Units (Meters)	γP	0002	4000 ·	5000	.0013	.0018	.0021	.6625	.0023	.0031	.0033	.6035	.0037	•6033	•0038	• 0033	5£39•	• 6003	•0039	.0038	1200	•0036	.0034	.0032	• 6625	•6027	.0024	.0020	.0017	.6313	• 000°	• 0003	600.	7000*-	(METERS)	(METERS)	(MFTSM)	(METERS)	;	1000	X-AREA (SG.MFTFRS)=	AM MA - CHORD (RAD.)	
า เร	22	3000.	3000°	.0036	.0055	.0673	.0091	.0109	.0127	.0146	.0164	.0182	.0200	.0218	.0236	• 0255	.0273	.0231	•0309	.0327	.0346	.0364	.0382	3040°	.0418	. 0437	• 04 55	.0473	.0451	• 0509	.0527	.0546	• 0562	+050·	RADIUS	CHORD	2 C.S.	¥031	CATTAN TIME	RIE (MITER)	X-ARFA (GAMMA-CF	
(Inches)	۲s		757.5	···	•	.1626	н	(V)	43	.2638	.2817	• 2363	• 3092	.3190	.3262	• 3308	.3327	.3322	.3293	.3239	.3166	.3057	.2928	.2773	.2592	.2384	(7	.1982	.1587	.1259	6680•	•0504	.0111	.0073	16.456	2	٠,	.132			12 AC	13.57	
English Units (In	ΥP			(3	.0524	ວ69∵•	.0841	•0977	•			+1374								6647•							•933						•	061	-	(2)	NCHUS	ũ			2	Β.C	
Engl	ZC	0000	.0716	.1432	. 2148	•2864	. 3580	-4297	. 5013	•5729	• 6 4 4 5	.7161	.7877	. 8593	• 930 9	1.0025	1 .0 74 1	1-1458	1.2174	1.2890	1.3606	1. 4322	1.5038	1.5754	1.6470	1.7136	1 - 7 90 2	1.8613	1.9335	2.0051	2-0767	2 - 1483	2, 2135	2 -2199	S	7) 0	3	:	_	RTE (I	4	HA-C	

TABLE XXVI

AIRFOIL COORDINATES ON MANUFACTURING SURFACES - ROTOR 2

nes) SI Units (Meters)	YS ZG YP YS	.0132 .00000003 .0033	-00030002	*0027 *0008	20 A	9000		0200 - 6510 -	.0186 .0059	-0213 -0068	.0239 .0078	*0266 *0087	.0292 °0096	5010* 6150*	2112 21112	5 14 0	#210° 880°	- / / 85	or to drag	- 7874 - 0505 - 0132 - 0231 - 7874 - 0505 - 0132 - 0200	.0531 .0131	.0558 .0129	.0584 .0125	.0611 .0120	.0638 .0113	1000	**************************************	1000	**************************************	200 APT	0822 - 0002	10821 - 1005))))	11	CHORD (METERS) =	1.6644 ZCSL (METERS) = .0423	YCSL (METERS) =	LED AMPTERAL	TER HETERS! - OCCUSS	Y-ADERICO METEOCIA	GAM MA-CHORDERAD. 3 =	
English Units (Inches)	ď.	0113	2200-	6120*	9660	2000	1593	1351	- 2315	•2682	. 3058	. 3435	. 3736	6214	5 T T T	9 4		5133		.5208	. 5170	•5078	• 4929	• 1 7 1 9	× = 3 × •	# n o v ·	. 2669	200	. 1 2 B B	C UB U •	0068	0134		11	11					_	111	
Eng	ZC	0000*	110	1016	7607*	2 d a	.5229	. 62 75	-132C	. 8366	9412	85 k D * I	1.1503	1.2549	6566.1		1990.	1-5/32		1.5870	2.0915	2.196	2.3007	2-4053	2.5099	h+19•2	2. 4.13U		3.0327	14.127	3.2352	3.2419		v	2	ZCSL	YC SL	15.8		A : Q	G AMM A- O	
rs)	SA	\$ 500.	35	-	•		v •		• 00																									. ,	ç	2.0	0134	****	11 0000 at /		.3264	i
Ę		٦.	5003	.0021	90039	900	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100	5110	0134	0149	.0152	.0174	N 8 10*	.0193	0200	-0206	•020	2120*	.0213	5020	.0235	01 23	.0191	•018I	.0158	-0153	-013	.0111	2000		200	conon•	= .210 5	0820	= .0420		•	11 1			
nits (Me	ΑÞ	. 8000		-			200 6500	_							-	_	-	_		.01463 .0213						.015					5 nn 5 nn 5	•	cnan• cann•-	HETERS) = .210	(METERS) = .082	()	1 11				HORD (RAD.)	1
SI Units (Meters)	ZC YP		- *0005	• 0000	.0016	\$200*			4900	700	• 00 85	5600	.0105	.011	•0122	•0123	- C 1 34	8810	7 b 1 0 •		2010		-0136	0130	-0123	.0113 .015	1010	, 800°	02 00 -	0.500		7000-	•	11	(METERS) =	ZCC: (METERS) =	T (SHELLER) TOOK	TUSE THE TENS I	TER PRETERS)	TER CHELERS	K-AREA SG . METEKS)	
		.000.	.00030002	0026 .0006	9 .0053 .0016	5200* 5700*	5000	AND STOR	4900	-0212 -0074	3 .0238 .0085	.0265 .0095	.0291 .0105	#110" "OHIO"	.0344 .0122	.0370 .0123	FE 10 . 265 0 .	.0423 .0138	1610 0580	8910° 9240°	2110		.0582 .0136	8 .0609 .0130	.0635 .0123	.0113 .015	.0688 .0101	.0714 .0087	07.00- 117.0-	nsan* /9/a*	5200 56/0	7000- 6190-	• • • • • • • • • • • • • • • • • • • •	8.286 RADIUS PRETERS) =	3.229 CHORD (METERS) =	1_6552 ZCS (METERS) =	CARLEN SON MECH.	. 52/1 TOSL THETERS = 1	OIZS LER METERS)	- DIGS TER THEIRRY	= .6796 X-AREA1SG.METEXS) = 18.70 IGAMMA-CHORD(RAD.))
English Units (Inches) SI Units (Me	ZC	£ 0000 - 0000 9	0073 .0210 .0003 0002	.0839 .0026 .0006	.0615 .1529 .0053 .0016	2700 8100 6120 8860	CSD2° 9310° 1382° 631°	# 1000	# # # # # # # # # # # # # # # # # # #	2926 5284 .0212 0074	.3336 .5853 .0238 .0085	3747 .6378 .0265 .0095	4135 .6854 .0291 .01C5	. NBS3 . 7259 0318 0119	.7599 .0344 .0122	. 5068 . 7875 .0370 .0123	.5282 .8092 .0397 .0134	. 5449 . 8245	.5567 .8340 .0350 .0141	. 5833 . 8373	2410° CORO*		. 5346 -7846 -0582 -0336	5121 , 7528 ,0609 ,0130	.4824 .7125 .0635 .0123	. 4449 .6623 .0652 .0113 .015	.3987 .6011 .0688 .0101	7 .5268 .0714 .0087	.2755 .4368 .0741 .0070	2 . 3270 . 2757 . 0050	. 5200	2000 - Elan 1620 - 6	- *D113# *O188 *O970 - *O002	8.286 RADIUS PRETERS) =	= 3,229 CHORD (METERS) =	1 1.6452 200 (METERS) =	1 (SMILEN) 1537 75591 -	TOUR TOUR TOUR TOUR TOUR	= .0125 LER (METERS)	a DIOS TEK (METERS)	.6796 X-AREA150.HEIEX31 18.70 GAMMA-CHORD(RAD.)	

TABLE XXVI (Cont'd)

SI Units (Meters)	ZC YP YS	.00000003 .0003 .00030002 .0005	-0012	.0019	-0027		4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•0056	• 0063	.0071	• 00 78	•0085	3600	103.75 .010.0 .0		010	0108	.0108	.0536 .0107 .0171	.0563 .0105 .0168	•0102	1600*	1600*	*000*	• 00 45	.006	1500	•0038	• 00 18	0002	.08310003 .0005	RADIUS (METERS) = .222 E	(MFTERS) =	T (VELLEX)	- CELEVILLE	THE PERSON	(METERS)	-	11	GAN MA-CHORD (R AD .) :: . 3781
(Inches)	۲S	.0125	. 1239	• 1855	2822	2067		. 4343	187	. 5211	•5603	. 5940	.6226	.6458	n	6843	- 6 R G 7	.6835	.6747	.6601	.6392	.6117	• 2 76 9	. 5342	• 4 BZ5	1205	3464	. 25 75	1500	• 028♠	0180	= 8.113	= 3.272		•			= .0122	11	= 21.67
English Units (Inches)	Q.	3 0080				7551.						Ĭ		0005					2 . 1208					-		Ĭ				•	0131	(INCHES)	(INCHES)	CINCHES		LINCHESI	CINCHES	(INCHES)	CSG. IN.	GAMMA-CHORDE DEG.
Engl	20	.0000	.2111	.3167	2221.	9/76*	5687	5##8.	. 9501	1.0556	1.1612	1.2667	1.3723	672801	P 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7945	006-1	2.0057	2.1112	2.2158	2-3224	2-4279	2.5335	2.6390	2 - 24 46	2.8502	2.9557	3-0613	3.166	3.2641	3.272	RADIUS							X-MREA	D-VHW 0
SI Units (Meters)	۲s	.000 3 .0005	-0034	6 100*	*0063	-00.77	מה מח	5110	0128	.0139	-0150	.0159	.0167	•0173	8210	1810	100	1810	0.1181	.0177	-0172	.0164	.0155	.0144	-0130	•0114	#6 DO*	.0070	1100-	.000	\$000	= ,2196						•		1= .3642
	d ×	0003	.0013	.0021	.0028	-0036	1800	2500	8900	1200	- 00 85	•0092	• 00 33	.010	6010	2110	1	7110	-0116	110.	0110	.0105	6600*	1600-	.0081	00100	•0056	•00 X 9	• 00 20	- •000 2	0003	(METERS)	I ME TE RS 1	CHETERA	THE LEADY	(METERS)	TERS)	(METERS)	SO-METERS	GAMMA-CHORD (RAD .) =
SI	20	0000	.0027	00 00	.010	FE 10.	-0160	120	1 1 2 0	.0267	•0.29 €	.0321	-0347	.0374	000				44.45	0561	.0588	.0615	.06 41	.0668	•0695	.0422	.07 ¥8	.0775	2 08 O •	.0827	•6883	RADIUS	2000	1000	757	#C>L	LER (METERS)	TER (ME	K-AREA!	GAMMA-C
Inches)	۲s	.0127	.0747	.1932	.2494	. 3036	.3560	997	4000	5187	5 90 3	.6260	•6561	9289*	86898	7134	0171	1212	717	6973	.6757	.6473	-6112	.5665	.5128	-4 4 75	. 3691	.2748	•1600	. 02 8 7	.0183	1						= .0118		- 20
English Units (Inches	d.	0113	-0194	. 0808	•1116	1124			6626						.429		9754	0861	4554	111111111111111111111111111111111111111			-		•	-2743	. 2197			'	- 0133	LACUECI	T M CULT 2		(INCHES)	(INCHES)	(INCHES)	(INCHES)	SG. IN.	
Englis	22	0000	.1052	.3157	.4209	. 5262	.6314	. 7366		1.0523	1.1575	1.2528	1 . 36 90	1.4732	1.5735	1.6837	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 6 8 6 7	110000	2.2049	2,3151	2. 1203	2.5256	2,6308	2.7360	2.8413	2.9465	3.0517	3.1569	3.2544		. 7 20 4 0		_		_			X-AREA (SG. IN	GANNA-CHORDIDE

TABLE XXVI (Cont'd)

SI Units (Meters)	2C YP YS	0003	0005	-0003	6000	• 0015	1200*	• 0057	.0032	- 00 3 7	2300*	2 100 -	-0092	1500	-0062	• 0066	6900*	*0012	• 00 7 3	.0075	• 00 75		*2 00 ·	-0072	0.00	9900	79000	9500	0000	7 600	_	2200	100	7000-	*0843 COO3 COO4	RADIUS !METERS) = .2376	CHORD (METERS) = .0843	ZCSL (METERS) = .0434	(METERS) =	(NETERS)	1 11	- 42031	.,	
nches)	45	-0118	-0171	•0630	.1124	.1593	-2039	.2462	. 2863	.3242	. 3600	3335	. 4258	. 1552	.4813	.5033	2025	. 5339	.5426	. 5469	.5467	. 5420	•5326	. 51 84	2664.	9		1801	1095	. 51 4 b	9567	6/81.	1011	• 02.56	8 7 0	9.354	3,321	= 1,7091	•		0121		2	
English Units (Inches)	4.6		ľ		Ī									.2251			2112	•				Ĭ												1	e 1 1 0 • -	(INCHES)	(INCHES)						X-AKEN 1 SEC. INC.	
Engli	20	0000	.0112	1201	.2142	. 3213	-4285	.5356	.6427	96 1/4 38	.8569	3640	1.0711	1.1783	1.2854	1.3925	1.4996	1.6067	1.7138	1.8210	1 . 92 31	2.0352	2.1423	2.2494	2 - 3565	2-4636	2.5708	2-6179	2. 1850	2-8921	7666.7	3-1053	Se 21 55	3-3104	3- 3206	RADIUS						L C	X-AKEA O	5 4 5 5 6
Meters)	۲.	£ C00° £ 00	50002	.000* ,000*													##10° 8100°				•			_	.0081 .0140	•		.0066 .0115		.00500 .0089	m	.5027 .005%		*0005 *0001	•0003 •0004	2815	ŀ į	ı 1	THE LE KS 1 - 0.04 35	1 1 1			11	(RAD.) = . 4172
Si Units (Meters)	ZC YP	.000 00003		000 1200	-		_																		10. 2620.	•0622 •00		30 9.90	.0703	.0730	.0039	30. 2810.	.0812 .0	*0836 00	١	. JR 3				#CS: *#E	LER (METERS)	TER (METERS)	X-AREA ISO. METERS)	GAM MA-CHORD (R AD .) =
nches)	48	.0120	0.178	.0568	1196	1700	2180	.2636	3070	3482	1227	2 2 2 3	209	7.64	.5225	5469	5665	58.1	2 1 6 5	1,68	.5977	593	1.88	5695	1645	.5235	# 16 A *	•4526	. 40.65	.3521	.2882	.2127	. 1232	0.258	.0161		3.110	300.0	1.6936	.3564	120	•0125	•6175	- 23.90
English Units (Inches)	4 b	0103	•				-														× .						_			.195		101.		900-	3 012					_		_	•	ANMA -CH ORD! DEG. #=
Eng	20	0000	-0112	1065	2130	2015	1259	5426	1053	444		7769.	1.0651	1,15	1.278	7 4 5 6 1	1 1017	7.65	2407		1.9177	2.0237	2 1 30	2.2367	2.343	2.4498	2.556	2.6628	2.763	2.8758	2.982	3-068	3, 195	1.797	3.301		KADIUS	CHORD	zcst	YC SL	LER	TER	X-AREA	GAMMA-

TABLE XXVI (Cont'd)

English Units (Inches) 2c	SI U	SI Units (Meters)	rs) rs	Engli 2c	English Units (Inches)	(Inches)	SI U	SI Units (Meters)	rs) *s
.0116	.000.	0003	8 000 0 •	0000	0105	.0114	0000	0003	.0033
• 0608	.0027	.000	5 100*	.1079	-0109	.0591	.0027	.0003	.0015
1082	5000	6000*	•0027	.2157	•0317	•1029	•0055	.0008	•0026
1552	200.82	*100*	.0033	• 3236	- 0517	.1154	.0082	.0013	.0037
7867	00100	200	ממנים	121	01/0-	• 1856	0110	.0018	7 100
2 7 4 4	0,164	00 30	02 00	. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60.00	25.24	1010	.0023	400
. 3104	.0191	•0035	6/00*	1550	1240	2923	200	1800	
3442	.0218	.00139	1800	• 8629	1 140 1	3231	0219	9800	-0082
.3 76 1	.0246	.00	9500*	1016.	.1556	.3525	-0247	0000	0600•
. 4061	.0273	* 0 D N:8	.0103	1-0786	. 1705	. 3796	.0274	.0043	96 30*
.4336	0 30 0	.0053	•0110	1,1865	.1849	-4045	1020-	. 00 ·	.0103
- 1582	.0327	1500*	-0116	1 • 2 9 4 3	- 1982	• 4269	.0329	.0050	.0108
88/18	• 0 355	• 0000	•0122	1.4022	5 2039	9544.	•0356	•0053	•0113
.4951	.0382	•0063	9 210 •	1.5100	. 2196	. 1603	.0384	9500*	.0117
•5073	60t0*	• 0066	•0129	1.6179	.2271	-4 71.1	1140.	•0058	•0120
- 5152	.0437	1900*	.0131	1.7258	. 2324	.1779	.04.38	.0059	.0121
.5189	1910.	*0068	-0132	1.8336	.2354	4 80 Y	9910.	•0060	•0122
-5183	.0491	• 0063	• 01 3/2	1.9415		. 1795	.0433	0900	.0122
.5134	•0518	• 0068	.0130	2.0493	-2345	.4 742	•0521	• 0060	•0120
. 5039	.0546	*000	-0128	2 • 1 5 7 2	• 2 3D t	. 4647	.0548	6500*	.0118
6688	.0573	•0066	.0124	2.2651	. 2237	. 1508	.0575	1600*	•0115
1710	0090	•0063	-0120	2.3729	-2145	•4 326	• 0 60 3	• 0024	-0110
	*0628	0900	*III 0 *	2. t 908	- 2025	. #C97	.06 30	*0021	*010°
.4177	• 0655	9600*	-0136	2.5886	. 1877	. 3819	•0658	8 100	.0097
. 3827	-0682	•0050	1600-	5969*2	.1698	.3489	.0585	.0043	6800*
. 3415	.0709		.0087	2.8044	- 1 438	.3104	-0712	.0038	6,00.
•2935	-0737	-0037	•00 75	2.9122	.1245	.2658	0 740	• 00 32	•000
. 2380	.0764	•0029	•00.20	3-0201	9960 -	-2147	1920.	•0025	• 0055
. 1 7 3 8	.0791	0230	.0344	3.1280	6190	.1562	•0 795	• 00 16	00000
1660*	•0813	6000*	•0025	3.2358	• 0530	1680.	.0822	1000	.0023
.0224	.0843	0002	.0036	3, 3330	- •00 71	•0201	7 FB D*	-•0002	-0000
1 10	•0846	0003	*000	3.3437	0110	.0132	.0819	0003	.0033
9.484	RADIUS	HETERS	= .240g	v	LINCHES	9.684	RADIUS	(METERS)	2160
3.330	CHORD	(ME TE RS)	= .0845		(INCHES)	3.344	CHORD	(METERS)	
	ZCSL	(METERS)	0435			= 1.7216	7651	AMETERS.	7.40
. 3001	YCSL	(ME TE RS)	= .0076			•	A CSL	METERS	6 9 0 0° =
.0118	LER (METERS)	ERS)	= *000 300	-		-0116	L FR AME	(MFTFRS)	26.2000 - =
.0123	TER (METERS)	ERSI	11	TER (I			TER (METERS)	TERS)	
.592	X-AREAIS	X-AREAISG.METERS)	11	X-AREA 15	_	= .5799	X-AREA	SQ .METERS)	Ī
26.55	GAM MA-CI	GAM MA-CHORD (RAD.)	= .4634	6 AMM A- CHO	AMMA-CHORDIDEG.)=	28	GAM MA-CI	GAMMA-CHORDIRAD. 1=	
								,	

TABLE XXVI (Cont'd)

SI Units (Meters)	2C YP YS	0003	2000-	7000*	2000	1100	• 0015	6100	• 0023	,0027	00 30	→ M C C C C C C C C C C C C C C C C C C	- 00 37	0400	21,00	•0045	Z 100°	.0048	60000			5 DO -	9 200		0000 PEOD: 8000	* CC	700° 1800°	0000	• 0025	6100	-00 IZ	5000°		.08540003 .0003	S (METERS) =	11	п	YCSL (NETERS) = .0061	LER IMETERS) = .000287	•	X-AREA (50 - METERS) = .000 362	GAM MA-CHORD (R AD .) = . 529t
(Inches)	¥S	_	-		_																9 . 1316				2695 - 6								1 .0187	5 .0123			= 1,7310		= .0113	11	11	30
English Units (Inches)	ZC YP		•											1-1927 -1566	1.3012 .1673	1-4036 -1766	-		1.7349 .1934	1.8433 .1951	1.9517 .1949				2.1855 . 1755		2-5023 -1348 2-707 -1348			-	3.1445 .0491	3.2529 .0207	3.3505 6074	3.3513 0105	RADIUS (INCHES)	CHORD SINCHES!		YESL (INCHES)	_		E.A	(,2
SI Units (Meters)	ZC YP YS		0002	*0005	1000	• 00 12	.0110 .0017 .0045	.0:137 .0021 .0054	_0165 _0025 _0053	.0029		, 0003	00.00	.0043	.0330 .0046 .0133	0357 .0049 .0108	.0385 .0051 .0111	• 0053	.0440 .0054 .0115	.0467 .0054 .0116	*600*	.0054	• 0023	.0051				00 34	.0028	•0022	. 0757 . 100. 1670.	.0324 .0006 .0021	.08490002 .0035	1	u	CHORD (METERS) = .0852	IMETERS) =	_	METERS) =	TER (METERS) = .000305		GAMMA-CHORDIRAD. F . 5102
(Inches)	15	0112	1 .0157	•0559	8860 - 1								• •						•	6 .4555	9 .1538						5 .3564 2250				_		. ~		6	11	1	H	1	1 11		6.)= 29.23
English Units (Inches)	ZC YP	#010*- 5000*	0 - 01	1008 2003		.3245 .0478		540.8		7571 1118		1210	751 9180	, c		0304		6223 -2070			.3468	_			.3794 .1925	۰ ی	2.5958 .1676	7 8 10 10 10 10 10 10 10 10 10 10 10 10 10		3.0284 .084) ~	200	3,3529010	(SHUNE) SHE	CANCEL COURT		VARIATION		CINTRE		X-4REA 154. IN. GAMMA-CHORDIDEG

TABLE XXVI (Cont'd)

SI Units (Meters)	St dt DZ	.00000002 .0033	0002	1000	1200° 5000° 5000° 5000°	.0012	- 00 15		• 00 50		•0025	#100 1203° 1203°	6700	.0031	2000 - 10	5000	9800	• 00 36	.0036	.0035	.0034	• 0033	1800*	•0059	.0027	• 200•	0200	100	• 00 1 3	8 000	100.	- 0005	*0860 0003 *0003	S IMETERS) =	(METERS)	I (SELLER)	I COLLEGE	1 (2)	(METERS) =	٠	CAM MALFURD AD AD A K 9 06	•
(Inches)	15	.0104		-	1152		_									3500				3580		.3373					_				•	•	1110- 6	= 10.582	3,385	= 1.785R		183	9010° =	0113	" !	.1= 54.55
English Units (Inches)	ZC YP	8600*- 0000*	'		2276 0136	•		·		.8734 .0900				1-3102 -1230		1.6377 .1381				2.0744 .1382	2-1936 -1345	2.2928 .1294				Ī		_		3-1662 -0312		1	3.3846009	RADIUS (INCHES)				. 1		TER (INCHES)	X-AREA (SG. IN.)	G AMMA -CHURDI DEG. I =
(Meters)	* S	•0003	1,000	0013	77		8118	56	M U	6.6	/ 5 0 :	7 0			- ~	. 67							6	-	97.00.	1 4 20 2	•0063	•UC53	× -	31		#** O	m	. 2612	•085 7	- Date 2	3 4 6 6	* C 2 C *	. 0002 79	• 000 29 7	. 000351	•
		0.3	•	•	•			120 -0056		26 .0259		1830 - 76		36 .0290		6630 131							-						•	-	•	-	03 .003	11	11	11	1	EKS 3	11	il	TERS) =	
SI Units (Meters)	ZC YP		- 0002	n• 2000• 97fn•	9000	200	1100*	0200*	-0023	.0221 .0026 .00	6200*	75 00.4		920° 520° 520° 520°		13000	• 00h 2	-00#2	- 00N2	.0041	0.00	•0039	.0037	.0035	-0032	*0058	• 0025	0200	• 0015	0100	1000	2000-	.08570003	S (METERS) =	CHORD (METERS) = .0	(METERS) ::	1 (001111111111111111111111111111111111	EKS)		TER (METERS) =	K-AREA4SG - METERSE :	
English Units (Inches) SI Units		0000	.00030002	. 2000 82Mm	. 8000. ECO.	.1577 .0111 .0013	\$100° 8510° £681°	.2190 .0166 .0020	.2466 .0194 .0023	-0026	6200 5620 0022	4270 4020 0215.	PEDD: PICO: PICO:	9500	0500+ 5550+ 2175+ 0565-	1300° 5140° 2161	.3962 .0442 .00NZ	.3976 .0470 .0042	.3955 .0498 .00N2	•3899 •0525 •DC#1	.38C8 .C553 .CONO	. 3679 .0591 .0039	.3514 .0608 .0037	.3311 .0636 .0035	.0663 .0032	.2787 .0691 .0028	2461 .0719 .0025	0200 94/0 2602	. 6100	• 0100• 2090• 0121•	. 0689 .0829 .0004	* 2000*- 1980*	0003	10.283 RADIUS (METERS) =	3.374 CHORD (METERS) =	1.7394 ZCS1 (MFTFRS) ::	i contrate total acre	SIZW TCSL (METERS)	.C110 LER (METERS)	= .OIL? TER TMETERS)	X-AREA4SO.METERS	36.30

TABLE XXVI (Cont'd)

SI Units (Meters)	ZC YP YS	.00000002 .0002 .00030002 .0003	. 000	-0005	1000		.0013	.001	\$100	-0017	7900° 8100° 200°	-0050	•0050	.0021	1200	.0021	0503 .0020 .0072	6100.	.0018	2 1 00 *	90018		1100	9000	• 0006	*0003	-0838 -0001 -0012	2000-	*0999 -*0005 *0005	S IMETERS) =	CHORD (METERS) = .0866	SCSL (METERS) = . DN18	(METERS) =	11	TER PRETERS! = .000 26%	X-AREA(SQ.METERS) = .000307 GAMMA-CHORD(RAD.) = .7009
Inches)	\$A	.0123	.0661	•0922	9911.	5557	0081	.1981	.2147	-2297	2551	.2661	.2747	.2807	.2841	. 2848	2829	-2712	.2614	.2489	.2337	1951	.1716	-1452	•1159	.0836	1810	6000	8 5 0 D •	-	3.408	= 1.7616	1327	1010. =	1010" =	= 40.16
English Units (Inches	4	1600 1	-			56604				1997							90800		-		•	1900		• 0333			9700*	000	TR 000-	(INCHES)	(INCHES)	(INCHES)	(INCHES)	(INCHES)	(INCHES)	X-AREA ISG. IN.) Gamma-chordideg.)
Englis	20	0000.	.2199	. 3238	8624	30 E 9 4	. 76 96	-8795	. 9895	#660°	1012-1	1-4292	1.5392	1.6491	1, 7530	1.8690	70.00	2.1988	2-3087	2.4187	2.5286	2. 7885	2.8584	2.9681	3.0783	3-1993	3.2982		30.40.05	S	_	ZCSL	_	LER		X-AREA I G AMM A- CH
SI Units (Meters)	45	*000 *	1 100.00	7 200	.0034	0,500	- Baa.	2000°	.0053	.0067	.0071	500.75	00080	2000	.0083	.0083	*0083	1800	2200	.0073	6900	•0063	1500		.003	-0025	.001	1000	.0003	. 2789	1086.					11 11
Units	4	0002	000		. 0010			- 100	.0021			.0025						. 8200.				.0021				9000		_	0002	(METERS) =		_		TERNI	TERS	SG. METERS
SI Units	ZC YP	1 1	.0028 .0001	.0007	-	-0012	5100	0223		2200	₹200		1 200	.0028	6200*	•0029	•0028		• 0026	.0024	•0053		8100	0013	6000*		2000°	2000			HETEDAL	ACC. LANGER DO.	CONTRACT TOO	- FR 4MFT	TER	SAM.
_	υ	- x 0000 •	•	.0033 .0007	0100 - 1110	2100 - 6210	2016 2015		.0250	.0278 .0022	1200 9010 161	5200	1200 2000	*0417 *0028	6200 - 5440 -	.0473 .0029	.0501 .0028	92005	200* #850*	.0612 .0024	*0640 *0023	.0021	8100° 9680°	1520	6000. 6110.	90000	5 .0002 .0002	2000	0002	10.381 RADIUS AMETERS)	COUNTY COUNTY SON'S	1 ARRC APAI LEFTERS	TENDER ALC: IMPERSON	1070 - 10	TER	5040
English Units (Inches) SI Units	S 2C	- 0000 - 0010	0023	. 0268 .1045 .0033 .0007	.1325 .0111 .0010	.0477 .1587 .00139 .0012	2016 2015	2269 22693	.2462 .0250	.0882 .2638 .0278 .0022	.0943 .2797 .0306 .024	200° FED 1967° 9080°	700° 700° 100° 700° 700° 700° 700° 700°	-1109 -3230 -0417 -0028	.1123 .3268 .0445 .0029	-1126 -3277 -0473 -0029	.3256 .0501 .0028	.1096 .3205 .0529 .0028	200° #850° #101° 6101°	.0962 .2872 .0612 .0C24	.0894 .2700 .0640 .0023	.0668 .0021	0100° 9690° 6627° 3190°		. C369 .1347 .0779 .0009	.0807 .0006	.0071 .0555 .0835 .0002		05 .08530002	10.381 RADIUS AMETERS)	CONTINUE COORD SON'S III	A TARK APPL ARTERS	TOTAL TERMS ALL THE TERMS IN TH	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TER TER	.) = .5040 6.1= 37.01

TABLE XXVI (Cont'd)

SI Units (Meters)	ZC YP YS	-00000002	.00020002	1000-		1000" 1800"	2000- 2110-	2000 0000	1000 a 2100	5000 9610	0224 0006	.0253 .0006	.0281 .0007	1000" 6010"	1000. 1550.	.0365 .0008	.0393 .000B	.0121 .0008	*ON 4 9 * 0008	.0477 .0008	.0505 .0008	.0533 .0008	.0561 .0007	1000. 6850.	1000 - 1190	9000" \$190"	.0673 .0005	2010.	#000° 0£10°	.00758 .0003	1000. 3810.	3100° 0000° #180°	.08420001	.08680002	0.0870	- (September Survey)	מבים בי	I CONTRACT COMP	CCSU (METERS) =	TCSE PREIERS!	LER (METERS)	TEN THEITERS!	X - AR EA(SO METERS)	SAN NA - CHOK DEKAD.
(Inches)	4.5	90099					8580		1178		1454				1.1877			2 .2078			7 .2111									0601. 0		1 .0632		1110. 6	1800. 8		7.825	•	1877		2600* =	11	11 1	11-64 -1
English Units (Inches)	Q. >=	S8 00° - 0	'			_			8 0161		6 .0217		1 .0261		1 .0291													8 -0173			2 • 0058		1	5 - 000 75	7 0083	(During L	TNUMENT	100000	LINCHES	TRUCHES	(INCHES)	(TNCHES)	I SO. IN.	S ARRAT CHORDINE 6.)
Eng	20	0000	• 0032	1105	6022	3314	6125	555	.6678	.773	60 M	E+66 •	1.104	1-215	1.3257	1-4361	1.5466	1.6571	1 • 16 76	1.8780	1.9885	2.099	2.2095	2.3199	2.430	2.5409	2-651	2 . 161	2 • 8 72	2.982	3-093	3.2037	3-31	3.415	3-4247	Part Cond	מימט אלי	מייים ייי	707	1631	8 1		X-AREA	O PARE D
ers)	¥S	2 000 5	•0003	.003 8	1100	•0020	•0025	.0030	•0035	•00319	.0043	2 h d 0 *	.0050	• 0 0:5 3	•0058	•0058	.0500	1900	2900.	.0063	*0062	1900*	•0020	.0058	.0055	1500*	8 100*	.0043	.0038	•0032	•0026	*0318	1100.	.000	*0005	= ,3643	- 0868				91000	•		•
SI Units (Meters)	۲P	0002	0005	0000	1000	.000	*000 *	9000	.000	8 30 D •	6000*	0100	.0011	*0015	-0012	. 00 1 3	-0013		100	100	.001	• 00 1 3	.0013	-0015	1001	0100	6000	8000	2000	• 0002	000	2000*	0000	0002	0002	(METERS)	(ME TERS)	HETFOCI	(NETERS	1000	(METERS)		A LAKEA COMPRESSION OF THE STATE OF THE STAT	
า เร	ZC	0000.	•0005	•0058	9500*	.008	.0112	0110	• 01/6 8	•0196	,0224	•0252	•0280	0 308	-0336	• 0 36 ¢	-0.392	0210		9/10	*050*	-0532	0950	• 0 58 8	-0618	.054	-06 72	0010-	•0728	•01756	.0784	2 180	280	• 0866	-0868	RADIUS			100		1 1 0			
(Inches)	45	.0092	•0113	.0334	.0567	.0785	2660*	. 11 86	.1367	.1535	1690	.1833	•19€1	2082	.2187	.2282	-2360	11470	7647.	24.62	-2449	.2412	-2351	.2267	. 2159	-2027	1871	1691	. 1487	.1258	100.	52/0	5150	-0120	2600*	11,980								
English Units (Inches)	Y.	-, 0089	- •008	ŧ	•		•						.0435			.0513						.0528					0370		• 0266		. 0139	. 0069	3	6/00*-	- •0086	NCHES)	NCHES)	NCHES	: -		- 44			;
Engl	22	0000	9600	•1102	-2205	. 3308	. 4410	. 5513	-6615	.7718	•8820	. 9923	1.1025	1.2128	1.3230	1 + 4 3 3 3	1.5435	0 4 7		1 - 6745	986.	8160.5	2.2051	2. 51.55	2-1256	2.5358	2-6161	2. (565	2.8666	2.3768	3.0871	5.1973	3.30 (6	3-4082	3 - 41 / B	RADIUS (I	CHORD 11				TEB 11	VI ADIA IV	GAMMA-CHORDICAL	

TABLE XXVI (Cont'd)

SI Units (Meters)	ZC YP YS	0002	2000* 2000*- 2000*	7000	1000-	2000	1000	.0141 .0001 .0021	.0169 .0002 .0024	20002	2000			2000	s ann.	5000	.000	.000	.0422 .0003 .0043	.0451 .0003 .0043	##30° £000° 62#0°	.000.3	2000	2000	2000			1000		0000		7777	000 6	100-	2 000 - 5		.08730002 .0002	S (METERS) =	CHORD (METERS) = .0873	ZCSL (METERS) = .0455	YCSL (METERS) = .0014	(METERS) =	TER (METERS) = .0002	EALCO - METERS) =	. II	•
(Inches)	۲S	.0081	5600	1170.	20.0	. 0559	.070	.0834	6980	10.7	28.		1 7 7 .	C90 1 •	5 7 7	.1515	.1577	.1631	.1675	.1703	1714	1 7 0 7	18.5	15.87	4 8 4	, 6	6061.	7 7 7 9	.1308	7911.	0101	1997	• 0 7 0 5	•0512	• 0303	9630	6 / 30 .		= 3,437	= 1.7931	= .0553		5800* =	3755	4	•
English Units (Inches)	۲ ۲	0080	1100	200-1	0020	. 0006	•0028	. 0050	.0068	F 8 U.U.	4700		0	1170	.0119	.0123	-0124	. 6123	01 20	• 0116	0110	010	000	2000	1200	1 0		6100	. 0032	1100-	. 0002	- 10013	0029	# 00° I	0060	- 000 75	0075	(INCHES)	(INCHES)	(INCHES)	(INCHES)	INCHES	(INCHES)	A NI ON	מיטון טביני	יים אות נתא
Englis	20	0000*	5800	60116	• 2218	• 3326	. 4435	.5544	6653	1377			n . n	9901-1	1.2197	1.3305		1.5523	1.6632	1 - 7 7 4 1	5 88 4	8200-1	2.1067	2.2175	2, 27 88	F0 40 4 4 6	CEC 1-7	7066.7	2.6611	2.1720	2-8828	7.8837	3-1018	3,2155	10	3.4288	3-4372	RADIUS (I	CHORD [I	ZCSL (I				A T 4		3
(51	YS	•0005	•0002	•0001	11 20-	•0015	6 1 20 -		77.70	•U326	67.00	+0032	•00 34	.0037	eg 00°	.0041	-0.092				7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9700	S 130*	5.00	**************************************	- DG 4.2	0,000	•0038	•0035	.0031	.0028	• DCZ 3	61 00*	#1 00°	•0008	2000	2000-	1386			1		6170000		•	= .8301
SI Units (Meters)	ď	0002	- *0005	1000	- • 0 0 0 0	0000	1000	2000	7000	7000	• 000 •	.0003	.000	# 000°	1000	.000	4000		200			, , ,	5 000 5	5000-	5000	.0003	• DOC2	*00C5	1000*	.000	• 0000	0000	0000	- 0001	1000*-	0002	0002	IMFTERSI	AMP TERMS	INCITEDA	A WETE DE	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	L KAN	E 83.7	X-AREA (SQ - METERS)	GAMMA-CHORD RAD.)=
N IS	22	0000	-0002	* 0058	• 00 56	.008	20113			5910*	7510	.0225	.0253	.0282	0310	.0338	0.366	4670	72.0			5000	1020	.0535	1000	.0591	•0619	.06 8	•0676	10/0	-0 732	.0750	•0788	•0816	-0845	0.87	.0873	PADTUS	Caomi	1001	1077	ייים לאנואנים י	TER CREICRES	TER THE	X-AREA(S	BAMMA-CH
(Inches)	Y.	0800	• 00 3	•0260	.0431	.0592	2070		000	9101.	11136	. 1248	.1350	-1442	.1 52 5	1597	1991	3171	0 42	7011		95.1.	1787	1 7 6 1	1111	. 1656	.1577	. 1 8 1	.1 36 7	.1235	.1086	.0920	.0 736	.0534	.0 31 A	4000	6200	= 14,172								= 47.56
English Units (In	4 6	62 00*-	00 76	1100	0011	60019	5400		6000	0600	9010	. 6123	-0136	0146	•0153	1510-	6510	64.0				110	0136	• 0126	***	.0101	96 00*	. 0071	.005	. 0037	6100	0000	0019	0038	1500-	47.00	- 00 76	(V L T N L	TATION A			TACHEST	LINCHES	LACHES		GAMMA-CHORD (DEG.)
Englis		0000	0.094	.1108	2217	3325	15.14		710	9650	• 1759	8867	39 75	.1084	£2135	3301	6011	5517	56.75	777	٠.		1566	2-1059	2.2168	2-3276	. 4385	2-5493	2-6601	2-1710	2,8818	2.9927	3,1035	3-2183	3.3252	27.5	3.4360	ANTUS 17	•	•	33		3:		X-AREA IS	1- CHO

TABLE XXVI (Cont'd)

SI Units (Meters)	SA dA DZ	-0000 00002	0002	1000	1000*-	0000	0000	1000	1000	1000	2000-	•0005	- 0003		15.00° -00.031				5000	• 0005		.0005	5 0 D D •		1500, 4000, 6490,		-0705 -0003 -0026			9100. 1000. 0610.	1100. 0000 8180.	-,0001	0002	.08740002 .0002	RADIUS (METERS) = .3491	HETERS) =	- (SOLITION)	THE PERSON IN	METERS) = .UCII	11	•000 501	X-AR EA (SG . MET ERS) = . 000189	н
(Inches)	X X	•007B	. 0087	•0 200	.0318	1540	.0538	. 05 1.1	-0 738	.0829	9150	9660	1201		5777		1366	M C M	1121	.1429	.1418	1 33 1	.1348	0621*	.1216	.1127	.1022	* 0902	• 0 76 7	.0617	-0452	.0272	£ 600°	• 00 19	= 13.715		1.7917	•		0082	2800* :	= .2930	20
English Units (Inches)	٧p	00 78	9/00	0056	0034	\$100°-	\$000	• 005 ▮	-00 N2	.0058	100	0600	-0104	8 1 0 0	1010			0.182	-0189	.0192	.0191	P 1 86.	.0178	1910	.0153	- 0135	•110	0600 •	.0063	- 0033	0001	0037	00 73	0016	(INCHES)						(INCHES) :	1 SQ. IN.)	RDIDEG.)=
Engl	20	0000	.0081	• 1110	-2220	.3331	=======================================	-5551	1999	1777.	7999*	2666.	1.1102	1.2212	1.5323	2488	7.6.7.7.	1.7763	1.887	1.9984	2-1094	2.2204	2.2515	2.4425	2.5535	2.6645	2,1755	2.8865	2 . 99 76	3.1086	3.2196	3.3307	3.4335	3-4417		CHORD				_	TER (I	X-AREA 1	GAMMA-CHORDIDEG.)
(Meters)	S. A.			-							7 700 - 700									Ī		_	٠						_	-		Ī		2000- 200	11	11	11		2	•	11		IRAD.1= .8677
SI Units (Meters)	ZC YP YS	•	0002	1000-	1000-	0000	1000	1000		2000	7200 7200 4360	7000	* 0000	2000		1000	000	.000	.000	1000	•0003	• 000 3	• 0003	.0003	-0002	2000*	1000	1000	0000	- 0000	0001	0001	- *000Z	*DB73*D002 *D002	S FMETERS) =		(METERS) =	L MCTEDS 1	2	(KETERS) = .	•	-	GAMMA-CHORD4RAD.1= .8677
	ΥP	. 2000 0000.	20005 - 20005	1000 8200-	1000- 9500*	0000 5000	1000	1000 1310	2000 50.00	7000 3500	2000 4360	*000 FEZO*	* COO C . 2020 -	2000 DIEDO	2000 950°	#CCC #680	.0423 .000%	.000.	#000" 67 NO"	1000 2000	.0535 .0003	1 .0564 .0003		.0620 .0003	.0648 .0002	*015 76 *0002	1000. 4010.	1000 8220	0000 1920	0000 6820-	8 .08170001	.0845 0001	7 • 0871 - • 0002	0002	RADIUS (METERS) =	3.439 CHORD (METERS) =	1.7947 ZCSL (METERS) =	- CARTER LANK COMP.	TOTAL TOTAL	.dubs LER PRIERS) = .	.COB6 TER (METERS) = .	. 3343 X-AREAISG.METERS1=	# 49.71 GAMMA-CHORD4RAD.1= .
English Units (Inches) SI Units (Meters)	ZC YP	. 50082 .00000002	2000*- 2000* - 2000	1000°- 820° 9220° 1600°-	1000 - 9200 - 1000	0000 5000 2000	.0113		2000 5000 1000	2000 Set 6000	2000 4360 1411 3010	****** *******************************	CDDD 0520 A065	2000 DIFO	2000 000 000 000 000 000 000 000 000 00	8741 8741 B	•1522 .0423 •000W	5 .1553 .0451 .0004	.1568 .0479 .0004	3 .1566 .0507 .0004	*1547 *0535 *0003	.1511 .0564 .0003	.1459 .0592 .0003	1391 .0620 .0003	.13C8 .0648 .0002	1208 .0576 .0002	1000. 4070. 2001.	1000 - 0 133 - 0001	7 -0316 -0761 -0000	0000 6840- 4590- 4	1000 10817 0001	2 .0286 .08450001	6 .0097 .08710002		= 13.553 RADIUS (METERS) =	3.439 CHORD (METERS) =	= 1.7947 ZCSL (METERS) =	- COUNTY INTER COUNTY	TOUR TOUR TOUR TOUR	- GUBS LER PRETERS) = -) = .COB6 TER (METERS) = .	S 3343 X-AREA (SG. METERS)=	9.71 GAMMA-CHORD(RAD.)= .

TABLE XXVI (Cont'd)

SI Units (Meters)	SA AA DZ		0005	0002	0005	0002	0005	0002	0001	0001	1000	-,0001	•	0000.	1000*		*000°	_	.000.	Ī	▶000*	,000.	• 000 •	• 0005	5000	• 000		\$ 000 \$	• 000 3	2000	1000	0000	1000-	•	"OB/16 - "DDD 2 "DDD 2	- 130 1110	C CHELEROL .	D (METERS) =	(METERS) =	YCSL (METERS) = .0008	LER (METERS) = .000196		X-AREA (50 METERS) = .000 163			
Inches)	7.5	. 00 74	0800*	.0158	•0239	.0319	96£ 0*	. 04 71	# # S O *	. 0615	.0683	.0750	-0814	.0877	•0937	• 0995	. 1053	11107	.1158	-1195	.1216	.1222	.1211	.1185	. 1143	.1085	-1012	1 26 O*	.0820	1020	.0567	1 1 0 0	• 0252	9800*	• 00 7		14.376		-		1100° =	0077		5.33)	
English Units (Inches)	4.6	007			•					Z 100 1			1			•	Ī	•			.0165				0810 - 0								•		0012		LACHEN	LINCHES	INCHES)	(INCHES)	(INCHES)	(INCHES)	X-AREA (SO. IN.)	G AMM A - CHORDE DEG.		
Engli	20	0000		.1113	. 2225	.3338	. 4451	.5564	92 99 *	.1789	8902	1.0015	1.1127	1.2240	1.3353	1 - 4 4 65	1.5578	1.6691	1.7904	1,8916	2.0029	2.1142	2.2255	2.3367	2-4480	2 - 5593	2-6705	2.7818	2.8931	3.004	3-1156	3.2269	3-3392	3.4418	3-1195		и	a	ZCSL (YCSL	_		X-AREA	C AMMA 2		
irs)	45		•0002	.6032	5000	-000	01 00	-0512	100	10017	6100	.0021	0023	.0025	•0026	.0028	£230°	•0031	.0032	.0333	#E 00	.0034	.0034	•00 34	.0233	•00 32	.0030	•0028	.0025	•0022	90019	•0015	.0511	1000	2000*	2000•		= ,3550	= .0875	= ,0456		= .000 206	•		•	•
SI Units (Meters)	EC >-		0002	0002	0002	0001	0001	0001	0000	0000	.0001	1000	.0001	.0002	• 0002	.0003	.0003	• 000	\$ 000°	5000	5000	.0005	9000	9000*	.0005	.0005	.0005	1000	• 000 €	.0003	-0002	1000.	2000*	0001	- •0002	0002		IMETERSI	(ME TE RS)	HETERS	(MTTERS)	TERS)	TERS)	CO. METERS		
SI U	DZ		0000	.0002	.0028	9500	.0085	.0113	0:14:1	0159	8610	.0226	0.254	.0282	0310	.0339	.0367	.0395	.0423	.0452	0 480	.0508	•0536	•0564	.0593	•0621	6490*	11900	.0706	.0734	.0752	0620*	.0818	2 48 0*	.0873	-0875		RADIUS	CHORD	Z CST	YCSI	LER (METERS)	TER (METERS)	X-APFAC	Z Z Z Z Z Z Z Z Z Z	CAN NA - C
(Inches)	15		8730	• 00 85	.0183	0286	0.38	67 10	.0571	.0658	1 1/2 0*	.0820	9580*	.0967	.1035	.1099	.1159	.1217	1270	1314	1344	.1357	.1353	.1 334	• 1299	-1247	. 11 80	1601.	.0998	*088¢	.0754	.0608	9410.	•0269	. 00 91	1100		= 13.977		1.794	-	.0081			7	25
English Units (Inches	ď		1100	0076	- 0006				60004-			0037	-0053	. 0070	8800*	.0106	-0125	0146	0169	.0187	.0203	. 0213				.0 2 C 4		-0112	. 0150	-0123	• 0092	•0056	. 0016	0028	í	- •00 75		(INCHES)	(INCHES)	_				_	. 1	7
Engl	32		0000	.0080	-1111	.2222	. 3333	5777	. 5555	18867	. 7778	6889	1.5000	1-1111	1 - 22 22	1.3334	1.4445	1.5556	1.6667	1.7778	1.08889	2.0000	2-1112	2.2223	2.3334	2.1115	2.5556	2.6667	2.1178	2 . 6890	3.0001	3.1112	3.2223	3.334	3.4365	3.4445		RADIUS (CHORD				1 1	9 70		GAMMA-CHOKUCUES

TABLE XXVI (Cont'd)

English Units (Inches) SI Units (Meters)	SA 4P 7S 2C 4P 7S	:COO° 2000° 6000° 6900° - 0000°	0011 -007200020002	0101 .0121 .00280003	- 0130	0155 .0225 .0085	0176 .0277 .01130004	0192 -0330 -03420005	-,0204 ,0383 ,0170 -,0005	-0212 -0436 -01990005	0215 .0490 .02270005	0215 .0543 .0255	0210 .0586 .02840005	0200	0187 - 0704 -0340 0605	0169 .0759 .0369 0004	.0814 .03970004	0118 -0871 -04260003	. NSNO. 80929 - 1	0051 .0980 .0M820001	0020 .1019 .05110001	1042 .0539 .0000	.1049 .0567	1000* 9650*	.0052 .1015 .0624 .0001	.0058 .0974 .0653 .0001	1000° 1890° 180° 6800° 1	1000. 6070. ##80. 2200.	. 1000. 8870. 2870. 1#00. 1	.0034 .0649 .0766 .0001	0000 1620 8250 9100	0000 5280* 0550* 2000	80034 .0236 .08510001	- 0063 .0077 .0878 -	3.46250065 .0067 .08790002 .00	" RADIUS (INCHES) = 15.475 RADIUS (METERS) =	CHORD SINCHES : 3.463	2001 (INCHES) = 1.8107 205L	IVAN CCIU I IVANIALI IVAN	TOST TANGENTS OF COOR I PRODUCT OF THE COOR INCIDENTS OF COORDINATE OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENTS OF COOR INCIDENT	TES CINCLES : COD TRE CAPTERS)	AND THE PROPERTY OF THE PROPER
rs)	4.5	*0005	-0002	•000	.0005	1000	8 DDQ*	01 00*	•0012	.00.13	-0015	-0016	•0018	6 1 20*	.0021	-0022	-0023	5200	•0026	/ 230*	0028	.0028	82 JO.	.0028	-0027	•0C 2 6	*005	2200*	-0020	100	100		9 5 5 5	2000-	2 000	н	3 400 =	0158	000	000190	11	9 10000 = (
SI Units (Meters)	4	0002	0002	0002	- 0000	0003	- 00003	0003	0003	- 00C3	0003	- *0003	000 3	0003	0002	0002	1000 -	1000-	0000.	1000	1000	2000	*0005	•0005	. 000 3	•0003	2000-	zana•	2002	1000			יים מנים ו	2000°-	2 000 -	(ME TE RS)	IMETERS	(METERS)	(METERS)	(METERS)	(ERS)	X-AREA(SO.METERS)
SI Un	32	0000	*0005	• 0D2 B	•0057	-0085	.0113	2010*	01 10*	9610	.0227	.0255	.0283	-0312	.0340	-0368	9620*	-0425	.0453	18 20	0150	.0538	• 0 56 6	•0595	•0623	.0651	0890	80/0	-04.36	6,0	7		0690	9000	8 . 80.	RADIUS	CHORO	1502	X CSL	LER (ME)	TER (METERS)	X-AREA(
English Units (Inches)	۸S	P7 00°	.0078	2010	• 0208	.0271	.0334	=		0250	.0581	• 0639	9690	-0752	1080	.0863	9160	5/60.	.1025	1901.	9601	0111	80114	1031	1058	0101.	3160	7980.	2110	7997	2000		0.70	2000	6900•	=	m	-	.C 199		•	•
<u>i</u>	4.6	0071	0012	0088	0103	0115	0121	- •0130	0133	0133	-, 01 30	0124	0 I ES	0103	0088	5900*-	/ han-	0021	8000	9000	5500*	2200	0803*	8600	2010	0010	1600	800.	5400		1000		7600		000 /				(INCHES) =		(INCHES) =	SQ- IN.) =
٦ ا																																				2	S	z				9

TABLE XXVI (Cont'd)

English	Eriglish Units (Inches)	nches)	O IS	SI Units (Meters)	ers)	Englis	English Units (Inches	(Inches)	O IS	SI Units (Meters)	ırs)
2C	d +	4.5	20	4	A S	26	ΥP	4.5	20	d.	4 S
-• 0000	0067	.0067	• 0000	0002	2000*	0000	- •0068	-0067	0000	0002	2000-
02 00	- 00 70	6 90 0	2 0 d a •	0002	*0C0Z	.0070	00 70	. 00 70	.0002	0002	2000-
.1120	0110	.0111	.0028	0003	. 000 3	.1120	0103	-0117	•0028	0003	*000*
.2239	0146	\$510	1 500*	*000°-	•000	.2241	0132	.0169	.0057	- 00003	*000*
.3359	0177	.0202	-0085	1000	• 000 •	. 3361	- •0156	•0222	*0085	1000	9000
82 47.	- •0 201	0.249	.0119	-,0005	9000	.1182	0174	.0277	.0114	# 000°-	1 000*
. 5598	0221	• 0298	-0142	- •0006	.003 8	. 5602	0196	0 334	•0142	0005	*000B
• 671B	- •0235	948	.0171	9000	6000	• 5 7 2 2	6132	.0393	.0171	- •0005	00.00
. 7837	0243	.040	.0199	- 0006	2120*	. 7843	- *0192	.0453	661:0*	0005	•0C12
18957	0246	.0456	.0228	9000-	-0012	.8963	0186	.0516	.0228	-,0005	.00113
1.0076	0242	.0512	.0256	- 0006	.001.3	1.0083	6174	•0580	•0256	*003*-	•0015
1,1196	0233	0570	.028	0006	.00.14	1.1204	0156	. 06 4 7	.0285	# 000° -	\$100°
1.2315	0218	• 0629	.0313	9000*-	.00116	1.2324	- •6132	•0715	•0313	0003	*0C18
1 - 34 35	96 1 0* -	.0691	-0341	0005	.0C18	1-3415	0101	.0786	1480	- 0003	0220
1.4555	0169	.0751	-0370	# 000° -	• 001 9	1.4565	- •00e	0980	-0310	0002	2200
1.5674	0137	.0820	.0398	0003	.0021	1 . 5685	0021	\$6035	• 0 39 8	-•0001	*005#
1.6791	-, 0095	.0889	.0427	0002	.0023	1.6305	. 0028	1014	.0427	.000	9200
1.7913	6 400* -	2 0 3 6 2	.0455	1000-	.0024	1.7926	1800*	8601*	.0455	-0002	8 200 •
1.9033	. 0002	. 1032	.0483	0000	•0026	1.9047	- 0149	. 1180	, C184	000	0630
2.0153	•0052	.1092	.0512	1000*	•0028	2.0167	-0210	.1251	-0512	• 0005	•0032
2-1272	#E00*	.1135	0.540	-0002	•0029	2-1287	- 0260	.1303	.0541	.000	.0033
2.2392	.0128	.1157	6950*	.0003	.0029	2,2408	0080	.I 33 I	•0569	* 000B	•0034
2.3511	PS 10*	.1160	1650	1000	•0029	2.3528	-0328	.1337	.0598	•000	.003
2.1531	- 5171	. 1143	.0626	1000	.0029	2.4649	F 0 3 # 4	.1319	•0626	6000.	•00/34
2.5751	0180	1107	.0654	5000*	.0028	2-5769	• 0349	.1278	.0655	6000	-0032
2.6870	- 0187	. 1049	.0683	.0005	.0027	2.6889	1 1 2 0 0	.1213	0683	6000*	*0031
2 1990	12 10.	2160	.0711	1000	.0025	2.8010	- 0322	.1125	.0711	• 000	• 002 9
2.9109	.0157	. 08 75	.0739	1000	2200*	2 91 30	•C 2 30	-1012	0 14 0	2000	•0026
3.0229	•0132	.0 75 7	*0 768	. 0003	6100•	3.0251	- 0245	.087	•0758	9000	• 00.22
3-1349	. 0098	.0617	.0796	*CC0 5	91 20	3-1371	•0188	•0 712	2 6710	\$200	8130
3.2468	.0053	9540	•0825	1000-	-0012	3-2491	-0117	.0523	•0822	.000	.051:3
3.3588	0001	. 02 71	.0853	0000*-	.003	3.3612	•0033	•0 308	.085	1000	8000
3.4638	0061	0800*	0880•	0002	•0005	3-4663	0029	- 00 8 3	0830	1000-	2000°
3-4707	0065	. 0068	.08082	0002	.0032	3.4 732	- •0065	8900*	• 0 9 8 2	2000*-	•0005
	LINCHES	_	RADIUS	(MCTERS)	= .4153	S	(INCHES)	= 16.425	RADIUS	(METERS)	= .4172
CHORD (I		3.47	CHORD	IMETERSI	= .0982	_	(INCHES)	= 3.473	CHORD	(METERS)	
	ī	-	7537	(METERS)			I I NC HE S	= 1.8221	ZCSL	(METERS)	
		•	YCSL	I METERS)	# 000° =	_	(INCHES)		X CST	(METERS)	
	; 5	•	LER	TERS	•	LER (I	INCHES	= .0070	L ER 4ME	(METERS)	. 0001 7
	_	2	TER HAETERS	TERSI	= .000 178		(INCHES)		TER (METERS)	TERS)	41
REA	_	• 2	X-AREA!	K-AREA (SO. METERS)	н	X-AREA IS	1 SQ. IN.	= .2513	X-AR EA (X-AR EA (SO . METERS)	
()	:	= 59.30	GAM MA-C	GAM MA-CHORCER AD . 1 =	11	G AMM A- CHORDEDEG.)	RDCDEG.)	25, 65 =	IGAM MA - C	GAMMA-CHORD (RAD.)=	1 1 0 3 9 3
	:	•									

TABLE XXVI (Cont'd)

ırs)	4.5	F 1	ü	8	000	8	000	8	1 20	2.1.00*	100	91 00*	71100		1230	ָ ֓֞֝֞֝֞֝֓֓֓֓֓֓֞֝֝֓֓֓֓֡֓֓֓֡֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	-002		003	003	003	.0036	003	003	•0035	.0033	200	2 0	7	; =	000	000	8	.421	.088	•	. 000	81 000	•	.000 16	1.0422
SI Units (Meters	۵. ۲	000	0002	000	000	000	000	•	000.	•	000	8		000					000	1000	000	100	1100	001	1100	.0011	100	3 5		8 8	1000	•000	000	- 1	ш	ETER	31.2	TERS)	TERS)	(SO.METERS)	HORD (R AD.)
SI L	SC	.0000						5	10	5		025	8 Z O		2 2		0.42	2 5	8 20	051	0.54			~	1	.0633	3 3) C	. 6	0.85	088	•0882	RADIUS	œ	ZCSL	YCSL	Ξ	Ē	K-AREA!	AM MA-
ches)	YS	90		2	~10	~,	029	ĸ,	7.0	70	20.0	190	8 . 9 . 0 .	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	? —	660	107	116	125	m	m	~	•	7		.1300	2 5	200	2 5	056	0 32	008	6	16.57	7.	1.8	080*	100.	200	.251	59.7
English Units (Inches	4	90			-012	- -	910-	• 016	10.	• 016	20.5		3 6		- 0011		~~		~	n	_	m	_		m		֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜	2 5	2.0	015	1500	. 005	900	S	S	::	2	INCHES) =	E 2)		DEG. 3
English	20	8	11 00 •	.1121	.2241	. 3362	. 4483	.5604	• 6 72 4	. 7845	9966	9900-1	7 2 0	707	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	563	681	. 793	. 905	•017	• 129	.241	. 353	-165	.577	2.6897		270	138	-250	3, 3622	.467	24.	I) SOIC	-	_	_	~	_	X-AREA (SG.	AHE

TABLE XXVII

thes) SI Units (Meters)	YS ZC YP YS	1000- 0000-	.0156 .00010001 .0004	.00020001	0000 8000	.0013 .0002	*C002	.0024 .0007	6003 6200	.0066 .0024	.0103 .0536	.0140 .0046	*0177	.0214 .0057	.0251 .0558	.0288 .0058	.0325 .0E54	.2747 .0362 .0048 .0U/U	0000 0000 0000 0000 0000 0000 0000 0000 0000	0000 0000	2100	21202 4240	#CCC	1000 may 0	1000° - 8840°	1000 - 0000	1000	0000 - 0640	1000	7000	RADIUS (METERS) =	CHORD (METERS) =	ZCSL (METERS) =	YCSL (METERS) =	RLE (METERS) = .0C017	RTE (METERS) =	57 X-AREA (SG.METERS)=	22.04 GAMMA-CHORE(RAD.) = .3 846
English Units (Inches)	ZC YP			.0085 6032		·	.0722 .0181			•					.9891 .2296			1-4262 -1897			1.8219 .0515				1. 3063		1. 5743 - 1.005			I-9308	s	CHORD (INCHES) =	ZCZL (INCHES) =	_			X-AREA (SO. IN.)	GAMMA-CHORD (DEG.)=
SI Units (Meters)	25 YP 75	.0001	1000*-	.00010001 .0005	1000	1000	9000	9000	.0011	.0027		.0051		.0062		.0063	3333.	• 0053	.0043	• CC28	.0015	• CC12	.000	5000	2000	* 1070*-	0301	1938-	•	.0491 .0061 .0661	RADIUS (METERS) = .2297	I KARTERS	CMETERS 1 =	CHETERS		(METERS)	REA (S 6. METERS)=	•
English Units (Inches)	YP YS	.0041 .0041 0011 .0118	•	0029 .0198	•	-0116 -0161				. 2							M	• 2	•5	•1099 •1563	•	0	•		-		•	7	0004 -0086	.5041 .0041		1	1	· ·		TINCHES - COUNTY		6.1= 23

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS	0000 0000	.0324 .0047 .0073 .0354 .0047 .0063 .038 .0033 .0050 .0455 .0C21 .0033 .0467 .0001 .0019 .0472 .0006 .0012 .0473 .0001 .0005 .0487 .0001 .0005 .0487 -0001 .0003 .0487 -0001 .0003 .0489 -00001 .0003	RADIUS (METERS) = .2451 CHORD (METERS) = .0489 CCSL (METERS) = .0220 YCSL (METERS) = .0051 RLE (METERS) = .000178 RTE (METERS) = .000178 X-AREA(S3.METERS) = .000119 GAMMA-CHORD(FAD.) = .3589
(Inches)	ž.	.0035 .0106 .0146 .0148 .0208 .0402 .0565 .0719 .0663 .1789 .2810 .2810 .3094 .3240	.2863 .2472 .1953 .1296 .0741 .0618 .0492 .0361 .0131 .0131	9.656 1.924 .8651 .2613 .0070 .0070
English Units (ΥP	.0035 -0031 -0031 -0036 -0036 -0054 -0128 -0277 -0277 -0277 -0277 -0277 -1742 -1890 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800 -1800	.1832 .1297 .2943 .2943 .2943 .2944 .2044 .2014 .2010 .2010 .2010	(INCHES) = (INCHES) = (INCHES) = (INCHES) = (INCHES) = (INCHES) = (INCHES) = (INCHES) = (50° IN°) = HORD (DEG*) = 10° IN°) = 10° IN°) = 10° IN° IN° IN° IN° IN° IN° IN° IN° IN° IN
Engli	ZC	0009 0015 0013 0083 0083 0299 0293 0934 1146 1146 1259 6959 6957 6957 6963	1, 2769 1, 4221 1, 4221 1, 7127 1, 8166 1, 8378 1, 8802 1, 9014 1, 9163 1, 9218 1, 9235	RADIUS (INCHES) = CHORD (INCHES) = ZCSL (INCHES) = YCSL (INCHES) = RLE (INCHES) = RTE (INCHES) = X-AREA (50° IN•) = 6AMMA-CHORD (560°)=
(Meters)	YP YS		.0056 .0076 .0036 .0052 .0036 .0035 .0012 .0037 .0007 .0013 .0007 .0013 .0004 .0010 .0001 .0006 .0001 .0003 .0001 .0003 .0001 .0003	(METERS) = .2403 (METERS) = .0489 (METERS) = .0220 (METERS) = .0054 (METERS) = .000118 ERS) = .000118 ORD (RAD.) = .3700
SI Units (Meters)	ZC	1 1 1 1	0.0325 0.0362 0.0362 0.0463 0.0467 0.0467 0.0489 0.0489 0.0489 0.0489 0.0489	RADIUS (METERS) CHORD (METERS) CSCL (METERS) YCSL (METERS) RE (METERS) RIE (METERS) RIE (METERS) RY X-AREA(S).METERS) GAHHA-CHORD(RAD.)
Inches)	۲S	.0037 .0109 .0109 .0185 .0183 .0212 .0418 .0590 .051047 .1876 .2946 .2946 .3243 .3397	.3008 .2602 .2602 .2653 .0783 .0653 .0518 .0238 .0135 .0135 .0102	9,462 1,927 8659 2136 0070 1,0070 1,1851 21,20
English Units (Inch	ΥP		.1979 .14752 .0472 .0472 .0472 .0472 .0267 .0048 .10033 .10036	_ ;
Englist	zc	-0011 -0013 -0003 -0006 -029 -029 -0510 -072 -0935 -1147 -1147 -1147 -1057	1. 2786 1. 4241 1. 4241 1. 4241 1. 8192 1. 8610 1. 8616 1. 9041 1. 9214 1. 9238	RADIUS (INCHES) CHORD (INCHES) CSCL (INCHES) YCSL (INCHES) RLE (INCHES) RTE (INCHES) X-AREA (SQ. IN-

TABLE XXVII (Cont'd)

Englis	English Units (Inch	nches)	SI Ur	SI Units (Meters)	(S.	Englis	English Units (Inches)	Inches)	SI U	SI Units (Meters)	rs)
20	Ϋ́	۲s	20	ΥP	Y3	22	ΥP	۲s	22	٩	Ŋ
-, 0008	. 2033	.0033	0 000 • -	.000	.0001	0007	.0031	.0031	0000	.0001	.0001
-0016	3020	.0101	0000	-,0001	.000	•0017	6022	8600*	0000	0001	•0003
0000	0034	.0140	.0001	0001	*000°	. 0041	0035	.0136	.0001	0001	•0003
• 900•	0039	.0170	.0002	6001	*000*	•0065	6042	•0166	-0002	0001	*000°
. 0088	0043	.0196	.0002	0001	• 0000	• 0083	9400*-	.0191	.0002	0001	• 0005
•0299	024	.0380	90000	0001	.0010	•0300	0032	•0369	9 000°	0001	6030•
.0511	.0030	u	.0013	1000	.0014	. 0511	.0016	. 0515	.0013	0000	.0013
•0722	•0093	*19O*	.0018	• 0005	.0017	•0722	•004	•0651	•0018	•0005	.0617
. 0934	.0158	.0809	• 005 4	.0004	.0021	. 0933	- 0133	.0780	.0024	• 0003	• 0020
-1145	•5223	.0936	.0029	9000	.0024	•1144	.0193	1060.	•0029	•000	.0623
. 2595	• 0656	~	9 900 •	.0017	.0042	•2592	•0594	.1664	•0066	•0015	.0041
404	•:D28		.0103	• 0026	.0056	• 4039	• 0942	.2132	-0103	.0024	• 0054
40.40	•1318	•2621	0140	• 6033	.0067	-5487	.1213	•2518	•0139	.0031	•0064
. 6943	.1531		.0176	.0039	.0073	• 69 34	.1415	.2773	.0176	•0036	• 0010
.8393	1991		-0213	.0042	.0077	-8382	-1543	*2 902	.0213	•0039	*L00*
. 9843	1729		.0250	*****	7,000	• 9829	*1604	• 2908	.0250	.0041	. 0074
1 -1292	1717		.0287	*****	*600	1.1277	•1596	•2790	•0286	.0041	.0071
1.27 42	.1628	• 26 50	.0324	.0041	• 006 9	1. 27 24	.1515	.2549	• 0 32 3	.0038	• 0065
1.4191	7771		.0360	.0037	•0059	1 -4172	-1344	•2193	•0360	•0034	•0056
1,5641	.1154		.0397	•0023	.0046	1.5619	. 1074	.1725	.0397	•0027	* 000*
1.7090	6750	-	.0434	.0019	.0030	1 • 706 7	•0697	.1141	•0433	.0018	•0029
1-8127	.0391		.0460	.0010	.0017	1.8102	- 0352	.0653	.0460	.0009	.0017
1 • 8339	•0298		99 40	8000	.0015	1.8313	-0274	• D 54 G	• 04 65	1000	•0014
1.8550	.0211	Ç	.0471	•0005	.0012	1.8524	.0194	• 0435	-0471	•0000	.0011
1.8761	-0122	.0336	17 40.	.0003	6000*	1 • 8735	-0111	.0322	92 40	•0003	8000
1.8973	.0031	.0213	.0482	1000	• 0000	1.8946	• 0025	• 0208	.0481	*000*	• 0002
1.9122	0035	w	98 40*	0001	•0003	1 • 3095	2036	•0122	.0485	0001	•0003
1.9146	0037	.0111	• 0486	0001	.0003	1.9119	0039	• 0108	.0486	0001	.0003
1.9170	0031	9600•	-0487	0001	•0 C C C	1.9143	6032	\$600	98 +0*	1000*-	2000
1.9194	3075	.0078	9840.	0000*-	• 0002	1.9167	# TBO	• 0076	1840.	0000	2000.
1.9210	.0033	•0033	• 04 88	*0001	•0001	1, 9183	.0031	• 0031	.0487	.0001	.0001
RAD TUS CI	= (SHONE)	9,952	RADIUS	(METERS)	= .2 528	RADIUS (I)	(INCHES) =	: 10.161	RADIUS	(METERS)	= .2581
	II CARRENTA	•	CHORD	(MFTFRS)	68404	CHOFD (I	(INCHES)	1.918	CHORD	(METERS)	= .0487
		•	70.51	(METERS)		ZC ST (I)	(INCHES) :	8629	ZC SF	(METERS)	= .0219
			1 0 L	CHETERS		YCSL (II	INCHES 1 :	= .1745	YCSL	CHETERS 3	##30° =
			DIF INCIEDAL	TEDEL		_	INCHES) :	0.000	RLE (METERS)	rers)	= .000178
-	- 1255		RTF CMF	(METERS)		_	(INCHES) :	0200* :	RIE (ME	(NETERS)	= .010178
. 4 3 0			X-ARF AC	COUNTRACTOR		EA	2. IN.3	1838	X-ARE AC	X-ARE ALSO . HETERS!	= .000119
GAMMA-CHORD (DFG	. 7	0	DAMMA-C	GAMMA-CHORD (RAD.)		GAMMA-CHORD (DEG.)=	RD (DEG .):	18	GAMMA-C	GAMMA- CHORD (RAD .)=	= .3215
		4									

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS	0000 .0001 .0001 .00000001 .0002	0001		0001	0001			.0003	*000*	.0013	.0021	.0138 .0027 .0061	.0032	•0035	•0037	.0037	.0035		201 - 201 - 20145	80JJ*	9000*		.0002	2000•		0001	0001	0000 9	.0483 .0001 .0001		(METERS) =	ZCSL (METERS) = .021	(METERS) =	(METERS) =	RTE (METERS) = .000
(Inches)	۲s	.0029	.0133	.0162	.0187	.0358	• 0498	•0628	.0751	.0867	• 1536	.2038	.2405	.2647	• 2769	•2772	. 26 57	-2423	1502.	1079	.0618	.0517	.0413	• 0306	.0197	•0118	.0106	•0093	• 0024	• 0059	11.559	1.903	-8560	1631	.00070	0.000
English Units (Inches)	۸×	.0029 3023	0037	4400*-	6400*-	0043	٠		.0100	•6153	• 0513	•C829	.1077	• 1263	• 1383	-1442	• 1439	•1371 •1371	0777	. 0632	-0317	9420.	-0172	9602•	-018	1.0038	0 10 0	0034	0072	•505•	(INCHES)	(INCHES)	(INCHES)	(INCHES) :	INCHES)	I INCHES) :
Engl	20	-,0006	-0041	• 0065	-008 8	.0298	• 0508	1170.	• 0926	•1136	. 2572	• 400 8	** 54 44	•6880	. 8317	-9753	1.1189	1 -2625	1.5097	1.6934	1 • 7961	1.8170	1.6380	1.8589	1.8798	1 -8346	1.8970	1 -8994	1.9017	1 • 9033	S	۵		_		_
ırs)	rs	.0001	•0003	*000*	.0005	6000*	.0013	.0016	.0019	.0022	•0039	.0052	.0061	.0067	0.00	.0070	.0067	.0061	.0053	.0027	•0016	.0013	•0000	.0008	5000	• 0003	•0003	*0 C C Z	• 0005	•0001	= .2 758	= .0485	= .0218	= .0041	= .000178	8 110 CO · =
SI Units (Meters)	γP	.0001	0001	0001	1000*-	0001	0000	1000.	•0003	*000°	.0013	.0021	.CC28	.0032	•0035	.0037	.0037	• 0035	-0031	.0016	• 6 6 0 8	9000	*000*	•0005	000	0001	1000	0001	2000*-	*0007	(METERS)	(METERS)	(METERS)	(METERS)	ERS 1	RTE (METERS) =
S U	22	0000-	.0001	*0005	.0002	.0008	.0013	.0018	.0024	• 0029	9900*	.0102	•0139	-0175	• 02 12	• 0243	•0285	.0322	.0358	.0432	.0458	• 0463	• 04 68	* 0 4 7 4	.0479	-0483	\$8 \$ O •	*0 * 0 *	• 0 485	• 04 85	RADIUS	CHORD	ZCSL	YCSL	RLE (METERS)	RTE (METERS)
(Inches)	۲۶	.0029	.0133	.0161	.0186	.0356	• 04 95	•0625	.0747	• 0863	.1531	. 2032	•2399	- 25 41	.2763	• 2767	•2652	• 2419	.2077	.1078	.0617	.0516	.0413	• 0306	.0197	• 0118	•0106	.0093	* 200 *	• 0029	10.860	1.909		.1631		.0070
		029	037	550	640	240	0000	•0020	•0102	-0156	•0518	• 2835	-1084	.1271	1531	1450	9 7 4 7 9	.1377	#2Z1 •	.0634	•û318	9420•	-0173	• 0003	•0018	. 2028	0000-	500.34	0015	-6029	(INCHES) =	(INCHES) =	(INCHES) =		ES 1 =	
English Units (1	ΥP	.002	003	# DD * -	* 00° -	2403*-	•	•	•	٠	•	•	•	•	•	•								٠		1	1	•	ř		ភ្	ទ្	ţ	INCHES	(INCHES)	흐

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS	.0001 -0001 -0001 -0001 -0001 -0001 -0001 -0001 -0013 -0013 -0013	.024b .0036 .0071 .0282 .0036 .0319 .0035 .0068 .0355 .0031 .0053 .0457 .0016 .0028 .0453 .0008 .0016 .0459 .0006 .0013 .0474 .0004 .0011 .0469 .0002 .0479 .0001 .0003 .0479 -0001 .0003 .0479 -0001 .0003 .0479 -0001 .0003	RADIUS (METERS) = 3291 CHORD (METERS) = 01480 CCSL (METERS) = 0148 YCSL (METERS) = 01642 RLE (METERS) = 010143 RLE (METERS) = 010113 X-AREA(S3.METCRS) = 010121 GAMMA-CHORD(RAD.) = 2536
(Inches)	۲S	.0030 .0037 .0184 .0189 .0364 .0536 .0536 .0536 .0556 .2551 .2656 .2656 .2656	. 2793 . 2740 . 2440 . 2095 . 10845 . 10842 . 0520 . 0416 . 0119 . 0119 . 0119 . 0119	12.956 1.891 .8502 .1637 .0078 .0070
English Units (Inches)	γP		.1436 .13436 .13437 .13437 .13467 .13	(INCHES) (INCHES) (INCHES) (INCHES) (INCHES) (INCHES) (SQ* IN*)
English	22	. 0007 . 00041 . 0064 . 0068 . 0088 . 0396 . 0712 . 0712 . 0712 . 0712 . 0712 . 0712 . 0712 . 0713 . 0713	1.9692 1.2119 1.25401 1.5401 1.68401 1.8057 1.86611 1.86811 1.86811 1.8828 1.8828 1.8828 1.8828	RADIUS (INCHES) = CHOFD (INCHES) = YCSL (INCHES) = YCSL (INCHES) = RLE (INCHES) = X-AREA (S9- IN-) = GAMMA-CHORD (DEG.)=
Meters)	S .		337 .0071 35 .0068 31 .0053 25 .0062 26 .0028 06 .0013 00 .0003 01 .0003 01 .0002 01 .0002	HETERS) = .3113 HETERS) = .0482 HETERS) = .0217 HETERS) = .0042 RRS) = .000178 RRS) = .000178 .METERS) = .000120
SI Units (Meters)	ZC YP		.028470537 .02830537 .03280335 .0336033 .03390038 .04550056 .04660066 .04670006 .04800006 .04810001 .04810001	O O CHETE CH
nches)	YS	1	25787 26436 10843 10843 10852 10852 1085 10119 10119 10119	12.257 1.896 .8530 .1638 .0070 .0070 .1865
English Units (Inches	۲۶		4 1 1 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Englis	ZC	-0007 -0001 -0017 -0006	.9720 1.2581 1.2581 1.5446 1.6871 1.88110 1.8821 1.8821 1.8883 1.8883 1.8883 1.8983 1.89307	RADIUS (INCHES) CHORD (INCHES) CSC (INCHES) YCSL (INCHES) RLE (INCHES) RLE (INCHES) RLE (INCHES) AAARAA-CHORD (GEG

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS		*000 - 1000 - 1000*	- 0001	0001	0001	0000*-	.0018 .0001 .0016	7000	-0013		.0627	•0032	•0035	.0245 .0036 .0072 .0281 .6636 .0069	•0035	.0031	.0025	.0016	.0451 .0008 .0016	9000	*0005	0000	.0476 0001 .0003	.04760001 .0003	.04770001 .0002	-04780600 -0602	.0478 .0001 .0001	RADIUS (METERC) - 15 46	(METERS) -	(METERN)	1	DIE INCTERNI - DOGGES	I 10	REAL SO METERS) =	н
(Inches)	YS	•0030	.0136	• 0166	.0192	• 0368	.0511	.0645	0889	.1570	• 2019	.2451	- 26 95	.2818	.2701	.2463	.2114	.1660	.1096	• U628	0419	-0311	.0199	.0119	.0166	• 0093	*200	• 0030	14.354	1.881	8456	9 7 1	0101	02.00	.1907	15.90
English Units (Inches)	ΥP	.0030	0036	0043	6400*-	0045	9000-	5 400.0	.0146	-0503	.0817	•1066	.1251	1373	### # T •	-1368	-1220	1260.	.0634	10018	-0173	1600.	•:018	0038	6040	0033	6014	.0030	(INCHES) =	(INCHES) =	(INCHES) =	_	I COMPANY		(SQ. IN.) =	0(056.)=
Englis	22	000 7	0 100	*900 ·	-000 V	.029	•0502	20703	. 1123	-2543	• 3963	-5384	• 58 Q4	9224	1-1064	1.2484	1- 3905	1.5325	1.6745	1-7968	1 - 8175	1.8382	1.8589	1-8735			1 • 880 6	1.8822	RADIUS LIN		_	_	. –		X-AREA (SO.	GAMMA-CHORD(DEG.)
rs)	۲S	.0001	.0003	*000*	•000	6000	5100.	0019	.0022	0400	.0052	•0062		1,00.	0068	29	53	4.2	28	13	0011	8000	•0005	0003	63	0.2	2020	1000	. 3468	.0479	.0215	.0 642	.000188		Ī	= .2802
SI Units (Meters)										•	٠	•	•		9	• 0062	•0053	.0042	8200.	.0013	0	00.	Ģ	ä	.000	• 0002	9	ē	11	11	11	11	H	- 11	11	
=	Ϋ́	- 0000	0001	0001	0001	0001	מנימה	•0007	+000+			1230			•				00. 9100.		•	•		•	•	•	•	7000	11	"	(METERS) =	(METERS) =		ERS) =	3.METERS)=	ORD (RAD .)
SI Uni	ZC YI	0000-0000-		•		1000 0001			_	.0013	0021		2500.	0036	.036	• 0035	.0031	•0025		9000	1000	• 0005	0000	0001	0001	. 1000-	9900-	•	S (METERS) =	CMETERS 1 =		_	(ME TERS)	RIE (METERS) =	X-ARE A(S3.METERS)=	GAMMA-CHORD (RAD .) =
les)		i	1000	2000*				.0018	881 .0029	558 .0065 .0013	064 .0101 .0021	454 • 0137 • 0027	2000 - 1000 - 1000 BBB	301 .0245 .0035	584 .0282 .0036	*47 .0318 .0035	.0354 .0031	520 - 0330 - 0025	9100	522 • 0457 • 0006	17 .0463 .0064	.0468 .0002	98 .0473 .0606	19 .04770001 .	06 .04780601 .	• 1000- 8740- 68	• 5500 6740- 67	· 1000 • 6/*0 • 000	-655 RADIUS (METERS) =	1.886 CHORD (METERS) =	.8478 ZCSL	.1639 YCSL (METERS)	.0074 RLE (METERS)	.0070 RTE (METERS)	.1892 X-AREA(S3.METERS)	16.05 GAMMA-CHORD(RAD.)
	S ZC	0000	.0135 .0001	.0165 .0002	2000. 0010.		1000	.0039 .0018	881 .0029	•1558 •0065 •0013	-2064 -0101 -0021	454 • 0137 • 0027	2800 - 0002 -2800 - 0003	• 2801 • 0245 • 0036	.2684 .0282 .C036	.2447 .0318 .0035	•2101 •0354 •0031	•1650 • 0390 • 0025	103 - 0426 - 0016 524 - 0452 - 0508	.0522 .0457 .0006	.0417 .0463 .0064	.0309 .0468 .0002	.0198 .0473 .0606	.0119 .04770001 .	d .0106 .04780601 .	• 1000°- 87*0 • 5500 •	• 500°- 67479 • 500° 6750	· 1000. 8/*0. DEDO. DE	= 13.655 RADIUS (METERS) =	= 1.886 CHORD (METERS) =	1 = .8478 ZCSL) = .1639 YCSL (METERS)	.0074 RLE (METERS)	= .0070 RTE (METERS)	.) = .1892 X-AREA(S3.METERS)	6.05

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS	-,0000 .0001 .0001 .0000 -,0001 .0003	0001		-•0001	0001		.0018 .0002 .0017	.0023 .0003 .0021	#000° 8	•0014	.0623	• 0030	.0035	.0208 .0038 .0075	0400	3400	.0316 .0038 .0066	•0034	•6627		6000*	.000	• 0000	•0003	1000	0001	0001	.04760001 .0062	.04760000 .0002	.0477 .6601 .0661	S (METERS) =	THORD (METERS) = .U476	THE LERS I	1	REF (METERS) = .000128	REA(S3.METER3) = .00012	ı.	
(Inches)	٨S	.0032	-0142	.0172	.0193	• 0384	•0536	. 0677	6080*	• 0935	.1653	.2189	•2580	• 2836	• 2966	• 2 96 8	• 2846	.2597	•2233	.1756	.1161	•0664	• 0555	-0442	.0327	• 0208	.0123	• 0109	• 0095	• 0076	•0032	= 15.402	1.8/6 : 1.8/6	*7*0*	-1755	# 00 V	1936	16	
English Units (Inches)	48	0020	6034	1400	0046	0038	•0006	.0000	-0117	.0174	•0562	.0902	-1169	. 1367	9647.	.1560	-1558	• 1485	• 1322	.1060	• 0689	•0348	.0271	.0191	.0109	• 0024	0036	-• ∴038	6031	0012	-0032	(INCHES)	LINCHES	TACHES	INCHES	LINCHEST	(N)	RD (DEG.)	
Englis	2C	0008	• 003 9	• 0063	•0086	. 0293	6640.	. 07 06	•0912	. 1119	•2535	. 3951	- 5367	. 6783	. 8199	• 9615	1, 1031	1.2447	1- 3863	1.5279	1.6695	1.7708	1-7914	1.8121	1 - 832 7	1.8534	1 -8679	1.8703	1.8726	1,8750	1.8766	N	_	. و	. .	KLE (I)	¥38	GAMMA-CHORD (DEG.)=	
ters)	٨ ۶	.0003	*0000	*000°	5000*	.0010	.0013	.0017	0000	.0023	.0041	* 002 *	•0063	0 200 •	.0073	. 007 3	0.000	\$900°	• 0055	.0043	.0028	•0016	4100.	.0011	*000	• 0000	.0003	.0003	-0002	.6.502	.0001			1 1		= .00 01.9		•	
SI Units (Meters)	۲	.0001	0001	0001	0001	0001	0000	.0001	•0003	+000•	.0013	.0021	.0028	.0033	•0036	.0037	.0037	•0636	.0032	• 0025	.0017	9000	•0000	• 0005	.0003	.0001	0001	0001	0001	0000	.0001	(METERS!	METERS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CME LEKS	(METERS)	X-AREA (SG.METERS)=	GAMMA-CHORD (RAD.) =	
SI U	22	0000-	.0001	.0002	*0005	• 000 1	•0013	.0018	.0023	.0028	*900	.0100	•0136	-0172	•0208	.0244	•0580	.0316	• 0352	.0388	.0424	04 50	.0455	.0461	• 0466	• 04 71	• 0475	92 40*	• 0476	.0477	.0477	RADIUS	7 7 7 5	707	YCSL	RLE (METERS)	X-AREA (GAMMA-C	
nches)	8	.0031	.0138	• 0169	•0195	.0374	•0521	. 0657	.0785	9060•	.1661	-2119	.2498	.2746	.2871	.2873	.2753	.2510	• 2156	.1694	.1119	3490*	. 0535	.0427	.0316	*020	• 0120	.010	+600	• 0075	•0031	#	-			0.00		16	
English Units (Inch	Ϋ́	.0031	-•6035	0042	0048	0043	0002	.0048	-6100	.3154	•6520	- 3842	•1096	.1236	0747	.1472	.1472	1017-	.1252	•1003	.0652	.0328	• 0254	•0179	.0101	.0020	0037	6039	0032	0014	1500.	S	7 5		<u>.</u>	I (SHOHEN)	. 7	: ;	
English	20		0400	. 0063	•0087	.0294	•0500	. 0707	•0914	.1120	•2538	. 3955	-5373	. 6790	-8207	• 9625	1. 1042	1.2459	1.3877	1 -5294	1.6712	1.7725	Le 7932	1.8139	1.8345	1.8552	1-8698	1 • 8 72 1	1.8745	1.8768	1.8784	v	_	_	YCSL LAN		EF.	GAMMA-CHORD(JE	

TABLE XXVII (Cont'd)

SI Units (Meters)	ZC YP YS		GAMMA-CHORD(RAD.)= .3131
English Units (Inches)	ZC YP YS	0010 0036 0036 0036 0010 0014 5016 0115 0010 0035 0115 0010 0035 0115 0084 0033 0135 0084 0033 0135 0084 0033 0135 013	BARRA-CHUKU (DEG.) II 1.94
SI Units (Meters)	ZC YP YS		SARRATCH UND LAND . FE .3L32
English Units (Inches)	ZC YP YS	-0009 -0034 -0034 -0034 -00014 -00018 -0107 -00081 -00032 -0108 -0107 -00081 -00081 -00081 -00081 -00081 -00082 -00082 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00083 -00082 -0	

TABLE XXVII (Cont'd)

SI Units (Meters)	SY 4Y 2Z	0000*-	10001	.00010001 .0005	0000-	• CC02	# 000°	3000	.0028 .0008 .0029	.0034	.0043	6 400 •	•0053	.0243 .0055 .0092 .0274 .0055 .0088	-0052	9400*	.0037	•0054	**************************************	2000	\$000°	.0469 .0001 .0006	0001	0001	0001	0000	.0475 .0001 .0001	S (METERS) =	D (METERS) =	(METERS) =	ERS 1 =	11	16		GAMMA-CHOKD(NAD.)= .3164
Inches)	48	.0039	.0164	.0232	.0457	• 064 5	.0819	•0983	-1137	• 2669	.3139	- 3448	.3605	.3514	.3189	.2759	.2187	.1457	. 0933	.0551	.0403	.0250	.0140	•0122	.0104	•0083	• 0039	= 16.869	1.869	- 8370	= .2246	*** 000 · =	± .0070	,	18.13
English Units (Inches)	٨	.0039	0027	0031	5000	•0071	.0152	•6236	. ii 320	.1326	.1681	• 1939	-2161	.2174	.2046	•1819	. 1461	6560.	95.5	.0282	-0169	• 0.053	6028	6030	023	-•0005	• 0039		_	(INCHES)	(INCHES)	(INCHES)		(20° - 10°)	GAMMA-CHCRD LDEG. 12
Engli	20	0012	. 0035	.0081	.0287	•C#93	6690	5060*	.1110	• 3933	-5344	• 6756	-8167	1 -09878	1-2401	1.3812	1. 5223	1.6635	1.7850	1.8056	1.8261	1-8467	1.8612	1.8636	1.8659	1.8682	1.8698	s	۵		_1		RTE	X-AREA (CAMPAICA
Meters)	YS	• •	•	9000			-	_	20057	-				-0087		9900*	-			100.			•0003		.0003	•	•0001	53 = .4178	н	53 = .0213	11	. ,,		Ť	D.)= .3167
Units (Meters)	YP YS	.0001	0001	- 00001	0000-	1000*	•0003	•0000	2000	0000	• 0039	.0045	6430*	0800	.0048	-0042	.0034	• 6022	.0011	5000	*000°	1000	0001 -0003	0001	0001		1000	(METERS) =	(METERS) =	(METERS) = .0213	11	. ! !	н	•	
SI Units (Meters)		.0001	0001		0000-	1000*	•0003	•0000		0203	• 0039	.0045	6430*	-	.0048	-0042	*0034	• 6022		8000	*000°	1000		0001				11	(METERS) =	u	(METERS) =	(METERS) =	н	•	GAMMA-CHORD(RAD.)= .3167
	ΥP	370000 -0001 .	. 100010001	- 00001	2020 1000-	1000*	.0018 .0003	.0023 .0005	2000	0200 0010	.0136 .0039	.0045	60200	0800	.0315 .0048	.0351 .0042	.0034	.0423 .0022	.0011	2000 +640 ·	*000°	T000 0240	.04730001	0001	.0474 0001	2000-	*000* \$2%0*	16.450 RADIUS (METERS) =	1.871 CHORD (METERS) =	.8384 ZCSL (METERS) =	*2695 YCSL (METERS) =	.00 R RLE (METERS)	. BC70 RTE (METERS) =	.1980 X-AREA(S3.METERS) = .	18.14 GAMMA-CHORD (FAD.)=
English Units (Inches) SI Units (Meters)	S ZC YP	.00370000 .0001 .	9 -0157 -00010001	91	2 -0434 -00070000	1 .0610 .0013 .0001	4 .0774 .0018 .0003	.0928 .0003 .0005	.0028 .0007	2550 0100 0030	3 -2967 -0136 -0039	.3260 .0172 .0045	•3409 •0208 •0648	.0244 .0050	• 3007 • 0315 • 0048	.2597 .0351 .0042	.2053 .0387 .0034	.1364 .0423 .C022	.0449 .0011		, 4000° 4940° 0450°	.0237 .0470 .0001	.04730001	.0117 .04740001	.0101 .04740001	007 -0081 -04750000	•0037 •0475 •0001	450 RADIUS (METERS) =	= 1.871 CHORD (METERS) =	.8384 ZCSL (METERS) =	Z .2695 YCSL (METERS) =	H .000 R RLE (METERS)	= .0070 RTE (METERS) =	1 = .1980 X+AREA(S3.METER3) = .	14 GAMMA-CHORD (RAD .)=

APPENDIX E

TWO-RING ACOUSTIC INLET AERODYNAMIC AND ACOUSTIC DESIGN

An acoustic inlet design was studied in addition to the translating center-body finally chosen. A schematic of this additional design, a two-ring configuration, is shown in Figure 71. Mach number distributions are included on the O.D. wall and splitter surfaces. Although the inlet flow is not choked, the blockage of the rings was estimated to be about 3 percent of the area. Boundary layer shape factors on all surfaces were well below the separation criterion of 2.2 to 2.5.

For acoustic purposes, the rings, the extended centerbody, and the inner and outer walls were all treated with various combinations of honeycomb and facing sheet. These acoustic treatment parameters are listed in Table XXVIII. An effective-treatment-length to passage-height of about six was achieved for the two outer passages and about four for the inner passage. Treatment was tuned to the predicted inlet fan noise spectrum to maximize the PNL reduction at approach. The inlet attenuation target and predicted treatment attenuation are shown in Figure 72. The attenuation target represents a PNL reduction of 15 PNdB at the peak inlet noise angle.

TABLE XXVIII

TWO-RING ACOUSTIC INLET TREATMENT PARAMETERS

	TREATMENT LENGTH METERS (INCHES)	BACKING DEPTH METERS (INCHES)	FACING SHEET % OPEN AREA	HONEYCOMB CELL SIZE METERS (INCHES)
Outer Wall	0.61 (24)	0.013 (0.5)	12	0.0095 (3/8)
Outer Ring	0.43 (17)	0.006/0.006 (0.25/0.25)	12/9	0.0095 (3/8)
Inner Ring	0.38 (15)	0.006/0.006 (0.25/0.25)	9/6	0.0095 (3/8)
Centerbody	0.30 (12)	0.013 (0.5)	6	0.0095 (3/8)

Two-Ring Acoustic Inlet Design Schematic

Figure 71

Figure 72 Two-Ring Acoustic Inlet Predicted Attenuation

REFERENCES

- 1. Brines, G. L.: "Studies for Determining the Optimum Propulsion System Characteristics for Use in a Long Range Transport Aircraft," NASA CR-120950, PWA-4449, July 1972
- 2. Keenan, M. J. and Burdsall, E. A.: "High-Loading Low-Speed Fan Study V Final Report," NASA CR-121148, PWA-4517, April 1973
- 3. Ruggeri, R. S. and Benser, W. A.: "Performance of a Highly Loaded Two-Stage Axial Flow Fan," NASA Technical Note (to be published)
- 4. Messenger, H. E. and Kennedy, E. E.: "Two-Stage Fan I Aerodynamic and Mechanical Design," NASA CR-120859, PWA-4148, January 1972
- 5. Harley, K. G.; Odegard, P.A.; and Burdsall, E. A.: "High-Loading Low-Speed Fan Study IV Data and Performance with Redesign Stator and Including a Rotor Tip Casing Treatment," NASA CR-120866, PWA-4326, July 1972
- 6. Monsarrat, N. T., Keenan, M. J.; and Tramm, P. C.: "High-Loading Low-Speed Fan Study I Design," NASA CR-72536, PWA-3535, July 1969
- 7. Keenan, M. H. and Bartok, J. A: "Experimental Evaluation of Transonic Stators Final Report," NASA CR-72298, PWA-3470, 1969
- 8. Tyler, J. M. and Sofrin, T.G.: "Axial Flow Compressor Noise Studies," SAE Trans. Vol. 70, pp. 309 322, 1962
- 9. Rice, E. J.: "Performance of Suppressors for a Full Scale Fan for Turbofan Engines," NASA TMX-52941, 1971

DISTRIBUTION LIST

1.	NASA-Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attention:		
	Report Control Office Technical Utilization Office Library Fluid System Components Div. Compressor Branch Director of Aeronautics R. S. Ruggeri M. J. Hartmann W. A. Benser D. M. Sandercock L. J. Herrig T. F. Gelder C. L. Ball L. Reid L. W. Schopen C. L. Meyer	MS 60-3	1 1 2 1 5 1 1 1 1 1 1
	W. L. Beede D. W. Drier E. E. Bailey N. T. Musial	MS 5-3 MS 21-4 MS 5-9 MS 500-311]]] 1
2.	NASA Scientific and Technical In P. O. Box 33 College Park, Maryland 20740 Attention: Acquisitions Branch		10
3.	NASA Headquarters Washington, D. C. 20546 Attention: N. F. Rekos (RLC)		1

4.	U. S. Army Aviation Material Laboratory Fort Eustis, Virginia 23604 Attention: John White	1
5.	Headquarters Wright-Patterson AFB, Ohio 45433 Attention: A. J. Wennerstrom ARL/LF S. Kobelak, AFAPL/TBP R. P. Carmichael, ASD/XRHP	1 1
6.	Department of the Navy Naval Air Systems Command Propulsion Division, AIR 536 Washington, D. C. 20360	1
7.	Department of Navy Bureau of Ships Washington, D. C. 20360 Attention: G. L. Graves	1
8.	NASA-Langley Research Center Technical Library Hampton, Virginia 23365 Attention: Mark R. Nichols John V. Becker	1
9.	The Boeing Company Commercial Airplane Group P. O. Box 3707 Seattle, Washington 98124 Attention: G. J. Schott, G-8410, MS 73-24	i

10.	3855 Lakewood Boulevard Long Beach, California 90801 Attention: J. E. Merriman Technical Information Ctr. C1-250	1
11.	Pratt & Whitney Aircraft Florida Research & Development Center P. O. Box 2691 West Palm Beach, Florida 33402 Attention: J. Brent H. D. Stetson W. R. Alley R. E. Davis R. W. Rockenbach B. A. Jones J. A. Fligg	1 1 1 1 1
12.	Pratt & Whitney Aircraft 400 Main Street East Hartford, Connecticut 06108 Attention: R. E. Palatine T. G. Slaiby H. V. Marman M. J. Keenan B. B. Smyth A. A. Mikolajczak Library (UARL) W. M. Foley (UARL)	1 1 1 1 1 1
13.	Allison Division, GMC Department 8894, Plant 8 P. O. Box 894 Indianapolis, Indiana 46206 Attention: J. N. Barney U-26 G. E. Holbrook T-22 J. A. Korn T-26 R. F. Alverson U-28 Library S-5 A. Medlock U-28 P. Tramm U-23	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14.	Northern Research and Engineering 219 Vassar Street Cambridge, Massachusetts 02139 Attention: K. Ginwala	1
15.	General Electric Company Flight Propulsion Division Cincinnati, Ohio 45215 Attention: D. Prince H-79 J. F. Klapproth H-42 J. W. McBride H-44 L. H. Smith H-50 J. B. Taylor J-168 Technical Information CTR. N-32 Marlen Miller H-50 C. C. Koch H-79	
16.	General Electric Company 1000 Western Avenue Lynn, Massachusetts 01910 Attention: D. P. Edkins - Bldg. 2-40 F. F. Ehrich - Bldg. 2-40 L. H. King - Bldg. 2-40 R. E. Neitzel- Bldg. 2-40 Dr. C. W. Smith - Library Bldg. 2-40M	
17.	Curtiss-Wright Corporation Wright Aeronautical Wood-Ridge, New Jersey 07075 Attention: S. Lombardo G. Provenzale	

10.	Alkesearch Manufacturing Company 402 South 36th Street Phoenix, Arizona 85034 Attention: Robert O. Bullock W. F. Waterman Jack Erwin Don Seyler Jack Switzer G. L. Perrone	1 1 1 1
19.	AiResearch Manufacturing Company 2525 West 190th Street Torrance, California 90509 Attention: R. Kobayashi Bob Carmody Library R. Jackson	1 1 1
20.	Union Carbide Corporation Nuclear Division Oak Ridge Gaseous Diffusion Plant P. O. Box "P" Oak Ridge, Tennessee 37830 Attention: R. G. Jordan D. W. Burton, K-1001, K-25] 1
21.	Avco Corporation Lycoming Division 550 South Main Street Stratford, Connecticut 06497 Attention: Clause W. Bolton	1
22.	Teledyne CAE 1330 Laskey Road Toledo, Ohio 43601 Attention: Eli H. Benstein Howard C. Walch	1

23.	Solar San Diego, California 92112 Attention: P. A. Pitt J. Watkins	1
24.	Goodyear Atomic Corporation Box 628 Piketon, Ohio 45661 Attention: C. O. Langebrake	2
25.	lowa State University of Science & Tech. Ames, Iowa 50010 Attention: Professor George K. Serovy Dept. of Mechanical Engineering	1
26.	Hamilton Standard Division of United Aircraft Corporation Windsor Locks, Connecticut 06096 Attention: Mr. Carl Rohrbach Head of Aerodynamics and Hydrodynamics	1
27.	Westinghouse Electric Corporation Small Steam and Gas Turbine Engineering B-4 Lester Branch P. O. Box 9175 Philadelphia, Pennsylvania 19113 Attention: Mr. S. M. DeCorso	1
28.	Williams Research Corporation P. O. Box 95 Walled Lake, Michigan 48088 Attention: J. Richard Joy Supervisor, Analytical Section	1

29.	Lockheed Missile and Space Company P. O. Box 879 Mountain View, California 94040 Attention: Technical Library	1
30.	Eaton Research Center 26201 Northwestern Highway Southfield, Michigan 48076 ATTN: Librarian	1
31.	Chrysler Corporation Research Office Dept. 9000 P. O. Box 1118 Detroit, Michigan 48231 Attention: James Furlong (418-19-40) Ronald Pampreen (418-38-31)	1
32.	Elliott Company Jeannette, Pennsylvania 15644 Attention: J. Rodger Schields Director-Engineering	1
33.	California Institute of Technology Pasadena, California 91109 ATTN: Prof. Duncan Rannie	,
		1

34.	Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Attention: Dr. J. L. Kerrebrock	1
35.	Caterpillar Tractor Company Peoria, Illinois 61601 Attention: J. Wiggins	1
36.	Penn State University Department of Aerospace Engineering 233 Hammond Building University Park, Pennsylvania 16802 Attention: Prof. B. Lakshminarayana	1
37.	Texas A&M University Department of Mechanical Engineering College Station, Texas 77843 Attention: Dr. Meherwan P. Boyce P.E.	,