Solutions to Artin's Algebra Second Ed

Yue Yu

Contents

	Groups			
	2.1	Laws of Composition	2	
		Exercise 1.1	2	
		Exercise 1.2	2	
		Exercise 1.3	2	

Chapter 2

Groups

2.1 Laws of Composition

Exercise 1.1

Proof. For any $a, b, c \in S$, we have

$$(ab)c = ac = a = ab = a(bc),$$

which implies that the law of composition is associative.

Let a be an arbitrary element in the set for which the law has an identity. Then, we have

$$a = a1 = 1a = 1,$$

which implies that the set must be $\{1\}$.

Exercise 1.2

- (1) *Proof.* la = 1 and ar = 1 imply $l = r = a^{-1}$.
- (2) *Proof.* Suppose that both a' and a'' are the inverses of a. Then a' = a'' by part (1) and so the inverse is unique.
- (3) Proof. $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = aa^{-1} = 1$ implies that $(ab)^{-1} = b^{-1}a^{-1}$.
- (4) See Exercise 1.3.

Exercise 1.3

Proof. s has no right inverse because there is no inverse when n=1. However, s has infinitely many left inverses because there are infinitely many mappings sending n+1 to n for $n \in \mathbb{N}$.