1000 IPS

Sarah EMERY et Valentin HAUDIQUET

1 Règles du jeu

Le jeu est inspiré du 1000 bornes. Dans ce jeu, l'objectif est de construire un processeur d'une vitesse de 1000 IPS (Instructions Par Seconde), en augmentant sa vitesse à l'aide d'extensions à celui-ci, tout en parant les attaques des adversaires qui cherchent à la faire diminuer.

1.1 Préparation

Au début, on mélange les cartes, puis on distribue 6 cartes à chaque joueurs. On tire au sort un joueur qui va commencer, puis on joue dans le sens des aiguilles d'une montre.

1.2 Tour d'un joueur

Lors de son tour, un joueur commence par piocher une carte. Ensuite, il peut :

- Jouer une carte **extension**; il la pose alors devant lui et la vitesse de son processeur augmente
- Jouer une carte **attaque**; il choisit alors quel adversaire attaquer, pose la carte sur l'extension cible de l'adversaire, et la vitesse de son processeur diminue
- Jouer une carte **parade**; il choisit alors l'attaque adaptée sur son propre processeur qu'il désire parer, et pose la parade par-dessus

Un joueur attaqué peut, s'il possède une parade adaptée, jouer alors immédiatement une carte parade, même si ce n'est pas son tour.

1.3 But du jeu

Dès qu'un joueur atteint une vitesse de 1000, il remporte la partie.

2 Liste des cartes

Type	Nom	Nécessite	Effet	Description
Extension	Pipeline	N/A	+100	Un pipeline permet à un processeur de réutiliser ses unités fonctionnelles en démarrant l'exécution d'une nouvelle instruction avant la fin de l'instruction précédente. Typiquement, l'exécution d'une instruction est découpée en étapes, comme "fetch, decode, execute", et au moment du decode de la première instruction, on peut déjà fetch la seconde.
Attaque	Aléa de contrôle	Pipeline	+50	Un aléa de contrôle arrive quand un processeur pipe- liné rencontre un branchement conditionnel (if). Il ne peut alors pas déterminer à l'avance quelle branche charger, et doit donc arrêter son pipeline jus- qu'à la fin de la condition.
Parade	Prédicteur de branchement	Aléa de contrôle	+80	Un prédicteur de branchement permet au processeur pipeliné de prédire à l'avance le résultat d'un branchement condition- nel (if), en utilisant l'histo- rique relative à cette branche.
Attaque	Aléa de données	Pipeline	+50	Un aléa de donnée arrive quand un processeur pipeliné rencontre une instruction dont l'opérande dépend du résultat de l'instruction précédente. Typiquement, un aléa RAW (Read After Write) consiste en une instruction écrivant son résultat en mémoire, puis l'instruction suivante lisant à la même addresse. Le processeur doit alors arrêter son pipeline jusqu'à la fin de l'écriture.
Parade	Bypass	Aléa de données	+70	Un bypass permet d'éviter une couteuse écriture mémoire lors d'un aléa de données, en passant directement le résultat de la première instruction à la seconde instruction.

Type	Nom	Nécessite	Effet	Description
Attaque	Aléa structurel	Pipeline	+50	Un aléa structurel arrive quand un processeur pipeliné n'a plus assez d'unité fonctionnelle pour exécuter les étapes des instructions en même temps. Typiquement, si on a trop d'accès mémoire en même temps ou plusieurs opérations arithmétiques en même temps. Dans ce cas, il doit arrêter son pipeline jusqu'à la fin de l'opération.
Parade	Unité supplémentaire	Aléa structurel	+90	Des unités fonctionnelles sup- plémentaires permettent au processeur de ne plus avoir d'aléa structurel, puisqu'il y a toujours une unité libre pour exécuter l'étape de l'instruc- tion.
Extension	Superscalaire	Pipeline	+100	Un processeur superscalaire permet d'exécuter, en profitant du pipeline, plusieurs instruc- tions en parallèle, depuis le même flux d'instructions.
Parade	Out-of-order	Superscalaire	+80	Un processeur out-of-order va réordonner les instructions pour éviter les aléas.
Extension	Cache	N/A	+50	Stackable 3 fois. Un cache permet d'éviter des accès mémoires couteux en stockant des valeurs fréquemment utilisées.
Attaque	Cache miss	Cache	+30	?
Parade	Prefetching	Cache miss	+40	?
Processeur vectoriel				
Processeur multicoeur			x1.5	