Instructors I. Goulden, M. Mosca, P. Schellenberg, J. Verstraete

Time 2 hours

Marks Each of the six questions are of approximately equal weight.

1. (a) Evaluate

$$\begin{pmatrix} \frac{4}{3} \\ 3 \end{pmatrix}$$
.

- (b) Determine $[x^5](1-2x)^{-3}$.
- (c) Determine $[x^n](1+3x)^m(1-x^2)^{-5}$.
- (d) Prove that

$$\left| \sum_{j \text{ even}} 2^j \binom{n}{j} - \sum_{j \text{ odd}} 2^j \binom{n}{j} \right| = 1.$$

2. (a) Let c_n be the number of compositions of n, $n \ge 0$, with an odd number of parts, and in which all parts are odd positive integers. Prove that

$$\sum_{n>0} c_n x^n = \frac{x - x^3}{1 - 3x^2 + x^4}.$$

- (b) From part (a), determine a linear recurrence equation for c_n , together with initial conditions that uniquely determine $\{c_n\}_{n\geq 0}$.
- (c) For fixed positive integers n and k, determine the number of compositions of n into 2k parts where the 2nd, 4th, ..., 2kth parts are either 1 or 2, and the remaining parts are any odd, positive integer.
- 3. (a) Let $\mathcal{R} = \{\epsilon, 0, 01\}\{0, 1, 01\}$. Are the elements of \mathcal{R} uniquely created in this decomposition? Explain.
 - (b) Let $S = \{0, 1, 01\}\{\epsilon, 0, 01\}$. Are the elements of S uniquely created in this decomposition? Explain.
 - (c) Let $\mathcal{T} = \{\epsilon, 11\}(\{0\}\{00\}^*\{11\}\{11\})^*\{\epsilon, 00\}$. Find the generating function for \mathcal{T} with respect to length.
 - (d) Let \mathcal{A} be the set of $\{0,1\}$ -strings in which every substring of length three has at least one 0 and at least one 1. Prove that the generating function for \mathcal{A} with respect to length is given by

$$\Phi_{\mathcal{A}}(x) = \frac{1 + x + x^2}{1 - x - x^2}.$$

4. (a) Verify that $n^2 + 5n$ is a particular solution to the nonhomogeneous recurrence equation

$$b^{n} - 2b_{n-1} - 5b_{n-2} + 6b_{n-3} = 2 - 12n, \quad n > 3.$$

- (b) Solve the recurrence equation given in part (a), subject to initial conditions $b_0 = 2$, $b_1 = 0$, $b_2 = 14$.
- (c) Determine an asymptotic form for b_n in part (b).
- 5. (a) Give the definition of a tree.
 - (b) Draw three nonisomorphic trees on 5 verticies.
 - (c) Determine the smallest number of verticies r in a tree having 5 verticies of degree 2, 2 verticies of degree 3, and 2 verticies of degree 5. Justify your answer by proving that every such tree has at least r verticies, and by giving an example of a tree with exactly r verticies.
 - (d) Prove that a connected graph in which every vertex has degree greater than or equal to 2 must have a cycle.
- 6. (a) Define a graph G_n , $n \ge 1$, in the following way. Let the vertices of G_n be the $\{0,1\}$ -strings of length 2n that have exactly n 1s and exactly n 0s. Two vertices are adjacent if and only if they differ in exactly 2 positions. Draw G_1 and G_2 .
 - (b) Determine the number of verticies and edges in G_n , $n \ge 1$.
 - (c) Without drawing G_4 , find a graph in G_4 from vertex u = 00001111 to vertex v = 11110000.
 - (d) Determine the values of $n \geq 1$ for which G_n is connected.