olan düğüm kümesine çizgenin $\underline{\mathit{çekirdeği}}$ (Λ), çekirdekteki düğüm sayısına $\mathit{çekirdek}$ yoğunluğu (λ) denir.

Her çizgede bir çekirdek bulunmaycağı gözden kaçmamalıdır. Şekil 2.4.1 deki çizgede Δ_6 baskın olduğu gibi bağımsızdır da. Öyleyse bu çizgenin çekirdeği,

$$\Lambda - \Delta_6 = (d_2, d_8)$$

çekirdek yoğunluğu ise $\lambda=2.$ Bu çizgede,

$$\Delta_7 = (d_1, d_3, d_4, d_6, d_7, d_9)$$

kümesi de yoğunluğu 6 olan bir çekirdektir.

Yoğunluğu en az olan çekirdeği $\frac{\ddot{o}z \zeta ekirdek}{\text{varsa}} \frac{\ddot{o}z \zeta ekirdek}{\Lambda_0'}$ ve ilişkin yoğunluğu $(\ddot{o}z \zeta ekirdek yoğunluğu)\lambda_0$ ile göstereceğiz. $\zeta(d,a)$ da eğer $\sqrt{\alpha}$ bulacak bir yöntem geliştirmeye çalışınız.

Tanım 0.0.1 Düğümleri n-bağımsız kümeye ayrılabilen çizgelere $\underline{n\text{-}k\text{"umeli cizge}}$ denir.

Şekil 2.4.2 de simgesel olarak n-kümeli bir çizge gösterilmiştir. Böylesine çizgilerin düğüm matrisi