Divisibility Dr. Vince

Definition 1. If $a, b \in \mathbb{Z}$, then we say a divides b and write $a \mid b$ if there exists $n \in \mathbb{Z}$ such that an = b. If there is no integer n such that an = b, then we say a does not divide b and write $a \nmid b$. Notice the similarity between "a divides b" and "b is divisible by a."

Example 2. $2 \mid 18 \text{ because } 2 \times 9 = 18.$

Example 3. $2 \nmid 19$ because $2 \times 9 = 18$ and $2 \times 10 = 20$, so there is no integer n with 2n = 19.

Example 4. $4 \mid 0$ because $4 \times 0 = 0$.

In fact, notice that $a \mid 0$ for every integer a, because $a \cdot 0 = 0$. Of special note is the case of 0; $0 \mid 0$ because $0 \cdot 0 = 0$, so 0 does divide 0. This is the only difference between "a divides b" and "b is divisible by a;" of course, 0 is not divisible by 0.

Theorem 5 (Properties). Let $a, b \in \mathbb{Z}$.

- (1) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (2) If $a \mid b$, then $a \mid kb$ for any $k \in \mathbb{Z}$.
- (3) If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.
- (4) If $a \mid b$ and $a \mid c$, then $a \mid (kb + \ell c)$ for any $k, \ell \in \mathbb{Z}$.

Proof. (1) Since $a \mid b$ and $b \mid c$, there exist $m, n \in \mathbb{Z}$ such that am = b and bn = c. Then a(mn) = (am)n = c, so $a \mid c$.

- (2) Since $a \mid b$, there exists $n \in \mathbb{Z}$ such that an = b. Then a(nk) = kb, so $a \mid kb$.
- (3) Since $a \mid b$ and $a \mid c$, there exist $m, n \in \mathbb{Z}$ such that am = b and an = c. Then a(m+n) = am + an = b + c, so $a \mid (b+c)$.
- (4) (Proof 1) Since $a \mid b$ and $a \mid c$, there exist $m, n \in \mathbb{Z}$ such that am = b and an = c. Then $a(km + \ell n) = kam + \ell an = kb + \ell c$, so $a \mid (kb + \ell c)$ for any $k, \ell \in \mathbb{Z}$. (Proof 2) Using property (2), $a \mid kb$ and $a \mid \ell c$. Using property (3), $a \mid (kb + \ell c)$.

Example 6 (IMO 1959). Prove that the fraction $\frac{21n+4}{14n+3}$ is irreducible for every natural number n.

Solution: If $d \mid (21n+4)$ and $d \mid (14n+3)$, then property (4) tells us that $d \mid [3(14n+3)-2(21n+4)]$. But [3(14n+3)-2(21n+4)]=1, so $d \mid 1$. The only positive integer d which satisfies this is d=1, so we have proved that the only positive common factor in the numerator and denominator is 1, that is, the fraction is irreducible.