⑩ 日本国特許庁(JP)

(1)特許出願公開

② 公開特許公報(A) 昭62-11675

東京都大田区中馬込1丁目3番6号 株式会社リコー内

@Int_Cl_4 B 41 M 5/18 識別記号 101 庁内整理番号 7447-2H ❸公開 昭和62年(1987)1月20日

審査請求 未請求 発明の数 1 (全8頁)

の発明の名称 感熱記録材料

②特 願 昭60-147070

②出願 昭60(1985)7月4日
申本公口 キョ 市資額+田区中原以1丁目3番6号 株式会社リコー内

⑫発 明 者 谷 口 圭 司 章 の発 明 者 古 屋 浩 美の出 願 人 株式会社 リコー

リコー 東京都大田区中馬込1丁目3番6号

00代理人 弁理士 池浦 敏明

明相

1.発明の名称

感熱記録材料 2. 特許請求の範囲

(1) ロイコ換料とその顕色剤との間の発色反応を 利用した感熱記録材料において、補助成分として 一般式、

(式中、R₁,R₂は各々独立に炭素数1~18のア ルキル基、シクロアルキル基、または置換ない し無置換のアラルキル基、もしくはアリール基 を表わす)

で表わされる化合物を併用することを特徴とする
成然記録材料。

3. 発明の詳細な説明

〔技術分野〕

本発明は感熱記録材料に関し、特に発色性にすぐれた感熱記録材料に関する。

(從来技術)

一般の感熱記録材料は紙、フィルム等の支持体 上に発色剤としてロイコ染料のような無色又は淡 色の発色性染料及びこれを熱時発色せしめる頭色 剤としてフェノール性化合物(特にピスフェノー ルA)、有機酸等の酸性物質からなる発色系に更に 結合剤、充填剤、癌度向上剤、溶剤、その他の助 剤を分散した感熱発色層を設けたもので、例えば、 特公昭43-4160号、特公昭45-14039号、特開昭 48-27736号に紹介され、広く実用に供されてい る。この種の感熱記録シートは加熱時(加熱には 熱ヘッドを内蔵したサーマルプリンターやファク シミリ等が利用される。)の発色剤と頭色剤との 瞬間的な化学反応により発色画像を得るものであ るから、他の記録材料に比べて現像、定着等の類 雑な処理を施すことなく、比較的簡単な装置で短 時間に記録が得られること、騒音の発生及び環境 汚染が少ないこと、コストが安いことなどの利点 により、図書、文書などの複写に用いられる他、 電子計算機、ファクシミリ、テレックス、医療計 翻機等の種々の情報並びに計測機器の記録材料と

して有用である。

一方、近年、社会の発展と共に記録の高速化及 び高密度化に対する要求が高まってきた。このた め、紀録装置自体の高速化は勿論、これに対応し 得る記録材料の開発が強く望まれている。その第 1の方法としては、顕色剤としての電子受容性化 合物の融点を保存性等の実用上の許容レベルまで 低融点化(例えば80~120℃)し、ロイコ染料との 溶融開始温度を低下せしめ、高速化することであ る。しかしながら、現在、感熱記録材料分野で広 飯に用いられている頭色刺であるフェノール性化 合物において、融点を調節する事は難しく、また、 フェノール性化合物自身が高価になり、実用性に ラしい。 煮2の方法としては、 倒えば、 特開 照53 - 39139号、特開昭53-26139号、特開昭53-5636 号、特開昭53-11036号公報等に記載されている ように、成熟発色層に各種ワックス類、脂肪酸ア ミド、アルキル化ピフェニル、置換ピフェニルア ルカン、クマリン類、ジフェニルアミン類等の低 融点の熱溶融性物質を増感剤(あるいは融点降下

本発明で補助成分として併用する前記一般式 (1)で扱わされる化合物は広範に使用されている 既色剤(電子受容性化合物)であるフェノール性化 合物及びロイコ染料(電子供与性無色染料)を熱時、 稀射する能力が高く、併用する一般式(1)の化合 物の階点を調節することにより、任意の感更の感 熱記癖材料を得ることができる。

本港明で用いる一般式(I)の化合物は感熱記録 材料としての集等安定性及び感覚の点から、融点 40~150℃のものが好ましく、特に50~120℃のも のが好ましい。以下が、本発明はこれらに限定され るものではない。

制)として振加する方法がある。しかし、これら の方法に基づいて製造した感無記録材料は、発色 適度、発色感度、地肌白色度等の点で未だ充分な ものであるとは言い難い。

(月 約1

本発明の目的は、発色濃度、発色感度が充分で、 高速記録用として適し、更に地肌白色度が高く、 機めて実用性の高い感熱記録材料を提供すること である。

「練 成)

本発明の感熱記録材料は、ロイコ染料と頭色剤 との発色反応を利用した感熱記録材料において、 補助試分として下記一般式(1)で表わされる化合 物を併用することを特徴とする。

(式中、R₁,R₂は各々独立に炭素数1~18のア ルキル基、シクロアルキル基、または置換ない し無重換のアラルキル基もしくはアリール基を 扱わす)

本発明において用いるロイコ染料は単独又は2 種以上混合して適用されるが、このようなロイコ 染料としては、この種の感熱材料に適用されてい るものが任意に適用され、例えば、トリフエニル メタン系、フルオラン系、フエノチアジン系、オ ーラミン系、スピロピラン系等の強料のロイコ化 合物が好ましく用いられる。このようなロイコ独 外の具体例としては、例えば、以下に示すような ものが挙げられる。

3,3ーピス(pージメチルアミノフエニル)ーフタ リド.

3,3-ビス(p-ジメチルアミノフエニル)-6-ジメチルアミノフタリド(別名クリスタルパイオ レットラクトン)。

3,3ーピス(pージメチルアミノフエニル)ー6ー ジエチルアミノフタリド、

3,3ーピス(pージメチルアミノフエニル)ー6ー クロルフタリド、

3,3ーピス(pージブチルアミノフェニル) フタリド、

3-シクロヘキシルアミノー6-クロルフルオラ

3ーシクロヘキシルアミノー6ークロルフルオラ

ν.

3 – ジメチルアミノー5,7 – ジメチルフルオラン、 3 – ジエチルアミノー7 – クロロフルオラン、

3-ジエチルアミノー1-ジロロブルスフン、

3-ジェチルアミノー7,8-ベンズフルオラン、 3-ジェチルアミノー6-メチルー?-クロルフ ルオラン、

3-(N-p-トリルーN-エチルアミノ)-6-メ チルー7-アニリノフルオラン、

3-ピロリジノー6-メチルー7-アニリノフルオラン、

2- (N-(3' -トリフルオルメチルフエニル) アミノ) -6-ジエチルアミノフルオラン、

2- (3,6-ビス(ジェチルアミノ)-9-(o-クロルアニリノ)キサンチル安息香酸ラクタム)、 3-ジェチルアミノ-6-メチル-7-(a-トリクロロメチルアニリノ)フルオラン、

3-ジエチルアミノ-7-(o-クロルアニリノ) フルオラン、

3-ジプチルアミノー7-(o-クロルアニリノ)

フルオラン、

3-N-メチルーN-アミルアミノー6-メチルー 7-アニリノブルオラン、

3-N-メチル-N-シクロヘキシルアミノ-6-メチル-7-アニリノフルオラン、

3-ジエチルアミノー6-メチルー7-アニリノ フルオラン、

3-(N,N-ジェチルアミノ)-5-メチル-7-(N,N-ジベンジルアミノ)フルオラン、

ベンゾイルロイコメチレンブルー、

6' -クロロ-8' -メトキシーベンゾインドリ ノーピリロスピラン、

6' -ブロモ-3' -メトキシーペンゾインドリ ノーピリロスピラン、

3-(2'-l+1)-3-(2'-l+1)-3-(2'-l+1) x=-l+1)-3-(2'-l+1)-3-(2'-l+1) x=-l+1)-3-(2'-l+1)

3-(2' -ヒドロキシ-4' -ジメチルアミノフ エニル)-3-(2' -メトキシ-5' -ニトロフエ ニル)フタリド、 3-(2' -ヒドロキシ-4' -ジエチルアミノフ エニル)-3-(2' -メトキシ-5' -メチルフエ ニル)フタリド、

3-(2' - メトキシー4' - ジメチルアミノフエニル)-3-(2' -ヒドロキシー4' -クロルー5' -メチルフエニル)フタリド、

3-モルホリノ-7-(N-プロピルートリフルオロメチルアニリノ)フルオラン、

3-ピロリジノー7-トリフルオロメチルアニリ ノフルオラン、

-3-ジエチルアミノー5-クロロー7-(Nーペン ジルートリフルオロメチルアニリノ)フルオラン、 3-ピロリジノー7-(ジーp-クロルフエニル)

メチルアミノフルオラン、 3-ジェチルアミノー5-クロルー7-(α-フエ ニルエチルアミノ)フルオラン、

3-(N-エチル-p-トルイジノ)-7-(α-フ エニルエチルアミノ)フルオラン、

3-ジェチルアミノー7-(o-メトキシカルボニ ルフエニルアミノ)フルオラン、 3ージェチルアミノー5ーメチルー7ー(αーフエニルエチルアミノ)フルオラン、

3-ジエチルアミノー7-ピペリジノフルオラン、 2-クロロー3-(N-メチルトルイジノ)-7-(p-

a ー ブチルアニリノ)フルオラン、 3 ー (N ー ベンジルーN ー シクロヘキシルアミノ)

3-(N-ベンジルーN-シクロヘキシルアミノ) -5、6-ベンゾー7- α -ナフチルアミノー1 ー ブロモフルオラン、

3-ジェチルアミノ-6-メチル-7-メシチジ ノ-4′、5′-ベンゾフルオラン等。

本発明において用いられる順色剤としては、電子受害性の酸々の化合物、例えば、フェノール性 化合物、チオフェノール性化合物、チオ展薬誘導 体等が好ましく適用され、以下にその具体例を示 す。

4,4' - イソプロピリデンビスフェノール、 4,4' - イソプロピリデンビス(o-メチルフェ ノール).

4,4' - セカンダリープチリデンピスフェノール、

4,4' - イソプロピリデンピス(2-ターシャリ - ブチルフェノール)、

4,4' - シクロヘキシリデンジフェノール、 4,4' - イソプロピリデンピス(2-クロロフェ

4,4' - イソプロピリテンピス(2-クロロッ ノール)、

2,2' - メチレンピス(4-メチル-6-ターシャ リープチルフェノール)、

2,2' - メチレンピス(4-エチルー6-ターシャ リープチルフェノール)、

4,4' ープチリデンピス(6ーtertプチルー2メチル)フェノール、

4.4' - チオピス(6-tertブチル-2-メチル) フェノール、

4,4′ージフェノールスルホン、

4,4′ージフェノールスルホキシド、

P-ヒドロキシ安息香酸イソプロピル、 P-ヒドロキシ安息香酸ペンジル、

プロトカテキユ酸ベンジル、

没食子酸ステアリル、

役食子酸ラウリル、

符合子酸オクチル、

N,N′ージフェニルチオ尿溝、

N,N' ージ(mークロロフェニル)チオ尿素、 サリチルアニリド、

5ークロローサリチルアニリド、

サリチルーo-クロロアニリド、

2-ヒドロキシ-3-ナフトエ酸、 2-ヒドロキシ-1-ナフトエ酸、

1-ヒドロキシ-2-ナフトエ酸、

1,7-ジ(4-ヒドロキシフェニルチオ)-3,5-ジオキサヘプタン、

1,5ージ(4ーヒドロキシフェニルチオ)ー3ーオ キサベンタン、

ヒドロキシナフトエ酸の亜鉛、アルミニウム、 カルシウム等の金属塩等。

本発明においては、前配ロイコ染料、眼色射及 だ補助成分を支持体上に結合支持させるために、 慣用の種々の結合制を適宜用い、デンプン はば、ポリビニルアルコール、デンプン さいその 鉄選体、メトキシセルロース、ヒドロキシエチル セルロース、カルポキシメチルセルロース、メチ ルセルロース、エチルセルロース等のセルロース 誘導体、ポリアクリル酸ソーダ、ポリピニルピロ リドン、アクリル酸アミド/アクリル酸エステル 共愈合体、アクリル酸アミド/アクリル酸エステ ル/メタクリル酸 3 元共重合体、スチレン/無水マ レイシ酸共重合体アルカリ塩、イソプチレン/無 水マレイン酸共重合体アルカリ塩、ポリアクリル アミド、アルギン酸ソーダ、ゼラチン、カゼイン 等の水溶性高分子の他、ポリ酢酸ピニル、ポリウ レタン、スチレン/ブタジエン共重合体、ポリア クリル微、ポリアクリル酸エステル、塩化ピニル /酢酸ビニル共重合体、ポリブチルメタクリレー ト、エチレン/酢酸ピニル共重合体、スチレン/ブ タジェン/アクリル系共重合体等のラテックスを 用いることができる。

また、本発明においては、前記ロイコ煥料、標 色剤及び補助成分と共に、必要に応じ、更に、こ の観の感熱記録材料に慣用される補助添加成分、 例えば、複料、界面話性制、熱可酸性物質(又は 商用)等を併用することができる。この場合、項 料としては、前えば、炭酸カルシウム、シリカ、 酸化三鉛。酸化チタン、木酸化アルミニウム、水 酸化亜鉛。碳酸パリウム、クレー、タルウ、 美国 処理されたカルシウムやシリカ等の無機系質効 の他、炭膚・ボルマリン樹脂、スチレン/メタク リル酸共産合体、ポリスチレン側脂等の有機系の 類形末を挙げることができる。

本発明の感熱記録材料は、例えば、前記した各成分を含む感熱層形成用強蔑を、紙、合成紙、ブラスチックフィルムなどの選当な支持体上に連合し、乾燥することによって製造される。この場合、ロイコ版料、銀色剤、現色態度増加剤の使用量は、それぞれ5~40重量%、20~60重量%、20~60重量%、20~60重量%、20~60重量%、20~60重量%、20~60重量%、20~60重

本発明の感熱記録材料は、感度の向上されたもので、高速記録用として適すると共に、地肌白色度も高く、振めて実用性の高いものである。
(実施例)

次に、本発明を実施例によりさらに詳細に説明 する。なお、以下に示す部及び%はいずれも重量 基準である。

実施例1

下記組成よりなる混合物を各々別々に磁性ポールミルを用いて2日間粉砕、分散して、下記(A)~ (D)被を調製した。

[A被]

3 — (ボー シクロ へキシ ルー H ー メチル) 下ミノ - 6 — メチル - 7 ー アニリノフルオラン 20部 ヒドロキシエチルセルロースの10% 水溶液 水 60部 (B 液) ピスフェノールム 20部 ヒドロキシエチルセルロースの10% 水溶液

*

(C被)

4-ベンジルオキシーベンジルメルカプト ベンゼン (化会物No.1 融点100~101℃) 20部 メチルセルロースの5%水溶液 水 (D被)

炭酸カルシウム 20 部
 メチルセルロース5%水溶液 20 部
 水 50 部

20 部

60都

次に1歳10部。8歳30部、6歳30形。1歳20部及び イソプチレン一様水マレイン酸共富合体の20系プ ルカリ水前板10部を混合して非熱発色層形成核と し、これを呼差50g/mの上質紙上に乾燥付着量が 4~5g/m/となるように塗布乾燥して感熱発色層を 設けた後、更にその設置平得度が500~500秒にな るよう層表面をカレンダー掛けして感熱配縁材料 (a)を作成した。

実施例 2

実施例1の(8被)のかわりに下記(8被)を使用する以外はすべて実施例1と同様にして感熱記録材料(b)を作成した。

[E被]

pーヒドロキシ安息香酸ペンジルエステル 20部

20部

60部

		特開昭 62-116	375 (6
ヒドロキシエチルセルロースの10%水溶液		*	60部
	20部	比較何 1	
*	60 as	実施例1の[C液]のかわりに水を用いたf	能は実施
実施例 3		例1と同様にして感熱記録材料(e)を作成	した。
実施例1の(B被)のかわりに下記(F被)を	使用す	比較何 2	
る以外はすべて実施例1と同様にして感熱	記錄材	実施例2の(C液)のかわりに水を用いた	以外は実
料(C)を作成した。		施例2と同様にして感熱記録材料(f)を事	改した。
(F被)		比較例 3	
1,7-ジ(4-ヒドロキシフェニルチオ)		実施例3の[C被]のかわりに水を用いた	他は実施
- 3,5 - ジオキサヘプタン	20部	例3と同様にして感熱記錄材料(g)を作成	した.
ヒドロキシエチルセルロースの10%水準	被	比較例 4	
	20部	実施例4の[C被]のかわりに水を用いた	他は実施
*	60部	例4と同様にして感熱記録材料(h)を作成	した.
実施例 4		比較例 5	
実施例1の(B被)のかわりに下記(G被)を	使用す	実施例1の(C被)のかわりに下記(H被)を	用いた
る以外はすべて実施例1と同様にして感熱	記錄材	他は実施例1と同様にして感熱記録材料(1)を作成
料(d)を作成した。		した。	
(G被)		(H被)	
4,4′ ージヒドロキシジフェニルスルホ	ン 20部	ステアリン酸アミド	20部
ヒドロキシエチルセルロースの10%水箱	* 被	メチルセルロースの5%水溶液	20部
	20部		

*	60部
比較例 6	

実施例2の(C被)のかわりに上記(H被)を用いた 他は実施例2と間様にして感熱記録材料(j)を作成

実施例3の[C被]のかわりに上記[H被]を用いた 他は実施例3と間様にして感熱記録材料(k)を作成

実施例4の[C被]のかわりに上記[H被]を用いた 他は実施例4と同様にして感熱記録材料(a)を作 成した.

以上のようにして得た感熱記録材料(a)~(g) を、松下電子部品棚製薄膜ヘッドを有する感熱印 字実験装置にてヘッド電力0.45v/ドット、1ライ ン記録時間20msec/ & 、走査線密度8×3.85ドット /mmの条件でパルス巾を1.6、2.0、2.4(msec)で印 字し、その印字濃度をマクベス濃度計RD-514(フィ ルター¥-106)で測定した。その結果を表-1に示

	感熱記	発	色 浪	度	地肌
	錄材料	1.6msec	2.0msec	2.4msec	濃度
1	(a)	0.93	1.11	1.17	0.07
2	(b)	1.12	1.20	1.24	0.07
3	(c)	1.14	1.22	1.28	0.07
4	(d)	0.64	1.03	1.15	0.08
1	(e)	0.50	0.73	0.93	0.07
2	(f)	1.00	1.10	1.15	0.07
3	(g)	1.04	1.12	1.18	0.07
4	(h)	0.19	0.29	0.48	0.08
5	(i)	0.67	0.98	1.09	0.09
6	(j)	1.02	1.16	1.20	0.09
7	(k)	1.09	1.18	1.22	0.08
8	(2)	0.53	0.87	1.07	0.09
	2 3 4 11 2 3 4 5 6	線材料 (a) (b) (c) (d) (d) (d) (d) (d) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	解材料 1.6 manc ft (a) 0.93 (2 (b) 1.12 (3 (c) 0.64 (4 (d) 0.50 (2 (f) 1.00 (3 (g) 0.50 (2 (f) 0.50 (2	解析料 1.6 marc 2.0 marc 11 (a) 0.93 1.11 2 (b) 1.12 1.20 3 (c) 1.14 1.22 4 (4) 0.54 1.03 11 (a) 0.50 0.73 2 (f) 1.00 1.10 3 (g) 1.04 1.12 4 (h) 0.19 0.29 5 (i) 0.07 0.98 6 (j) 1.02 1.16 7 (k) 1.09 1.18	解析時 1.6 sac 2.4 sac 11 (a) 0.93 1.11 1.17 2 (b) 1.12 1.20 1.24 3 (a) 0.54 1.12 1.25

次に感熱記録材料(a)~(ℓ)を60℃の乾燥条件 下で24時間の保存性試験を行ない、地肌濃度の変 化を調べた。その結果を表-2に示す。

表 - 2

	感熱記	地肌	濃度
	经材料	試験前	試験後
実施例1	(a)	0.07	0.12
" 2	(b)	0.07	0.11
" 3	(c)	0.07	0.11
w 4	(d)	0.08	0.12
比較例1	(e)	0.07	0.10
ø 2	(f)	0.07	0.09
# 3	(g)	0.07	0.08
. 4	(h)	0.08	0.09
n 5	(i)	0.09	0.18
<i>n</i> 6	(i)	0.09	0.19
. 7	(k)	0.08	0.16
<i>n</i> 8	(2)	0.09	0.14

地肌白色度も高く、極めて実用性の高い感熱記録 材料であることが判る。

> 特許出順人 株式会社 リ コ ー 代 理 人 弁 理 士 泡 浦 敏 明

以上の結果より本発明の感熱記録材料は発色感 度が高く、高速記録用として適しているとともに、

手 統 補 正 書

昭和61年 8月 5日

特許庁長官 馬田明雄 殿

- 1. 事件の表示
- 昭和60年特許顧第147070号
- 2、発明の名称
- 感熱記錄材料
- 3. 補正をする者
- 事件との関係 特許出願人

住 所 東京都大田区中馬込1丁目3番6号 氏 名 (674) 株式会社 リ コ ー

氏名 (674) 株式会社 リ コ ー 代表者 浜 田 ガ

4.代 遵 人 〒151

住 所 東京都渋谷区代々木1丁目58番10号 第一西脇ビル113号 型流

- 氏名 (7450) 弁理士 池 浦 敏 明 電話 (370) 2533 香
- 5. 補正命令の日付 自発
- 6。補正により増加する発明の数
- 7. 補正の対象

明細書の「発明の詳細な説明」の欄

- 8. 補正の内容 本顧明期書中において次の通り補正を行います。
- (1) 那4項下から那4行为至同末行の「(気中、8)、1、8は、...もしくはアリール番を表れた))を、「前配式中、8、8、1は多々独立に炭海敷約1-18のアルキル基、シクロアルキル基、とは護衛女しは短短のアリルキル基もしくはアリール番を表わす。置換基としては、例えばハロゲン原子・アルコキン基準分割で引わる。に打造します。
- (2) 第7頁下から第4行の

(16) CH₀O-O-SCH₀-O-O

同質下から第3行の「本発明において用いる....」 との間に以下の化学構造式を挿入します。

(17) O 0-0-O s-O -CH

(18) O O O O S-O O OCH