CE 361A: Engineering Hydrology

Precipitation

Lecture -7

Revision: Analysis of Rainfall Data

Data collected from rain gauges

- 1. Present rainfall data
- 2. Check consistency
- 3. Estimate missing values
- 4. Areal average rainfall
- 5. Adequacy of raingauge
- 6. Depth-area-duration relationships (DAD)
- 7. Frequency analysis: Intensity-duration-frequency (IDF) curves
- 8. Probable maximum precipitation
- 9. Variability, Periodicity and Trends

special topic

Design Storm: DAD & IDF curves

Design Storm: DAD & IDF curves

Characteristics of a storm

- 1. Intensity (or depth)
- 2. Duration
- 3. Frequency
 - How often (or frequently) the storm occurs?
- 4. Areal distribution
 - How average depth during a storm event changes with area?

Terminology

Annual series

- Composed of annual values
- Example: total, daily maximum, 12-h maximum

Year	Annual Rainfall (cm)	Year	Annual Rainfall (cm)
1960	130	1971	90
1961	84	1972	102
1962	76	1973	108
1963	89	1974	60
1964	112	1975	75
1965	96	1976	120
1966	80	1977	160
1967	125	1978	85
1968	143	1979	106
1969	89	1980	83
1970	78	1981	95

Terminology

Exceedance probability (p)

- Magnitude of rainfall in an event is considered a random variable (X)
- x represents a value that X can assume
- $p = P(X \ge x)$

Year	Annual Rainfall (cm)
1960	130
1961	84
1962	76
1963	89
1964	112
1965	96
1966	80
1967	125
1968	143
1969	89
1970	78

X - Annual rainfall

x = 100 cm

 $p = P(X \ge 100)$

 $P(X \ge 100)$? $P(X \ge 50)$

Terminology

Return period or recurrence interval (T)

- T = 1/p
- Represents average interval between occurrence of an event

Example

- $p = P(X \ge 100) = 0.1$
- Return period = T = 1/p = 10 years
- It represents average interval between occurrences of an event
- It DOES NOT imply that the event will occur once in 10 years
- Which of the following two events will have larger return period?

$$T(X \ge 100)$$
 ? $T(X \ge 50)$

Terminology

Non-exceedance probability (q)

•
$$q = P(X < x) = 1 - p$$

Example

•
$$p = P(X \ge 100) = 0.1$$

•
$$q = P(X<100) = 1 - 0.1 = 0.9$$

$$P(X < 100)$$
 ? $P(X < 50)$

Estimation of frequency of an event

1. Empirical method

Plotting position formulae

 Table 2.4
 Plotting Position Formulae

Method	P
California	m/N
Hazen	(m-0.5)/N
Weibull	m/(N+1)
Chegodayev	(m-0.3)/(N+0.4)
Blom	(m-0.44)/(N+0.12)
Gringorten	(m-3/8)/(N+1/4)

2. Theoretical distributions (Chapter 9)

- Extreme value distribution
- Pearson distribution
- Transformal distribution (log-normal)

Step 1. Create an annual time series

Year	Annual Rainfall (cm)	Year	Annual Rainfall (cm)
1960	130	1971	90
1961	84	1972	102
1962	76	1973	108
1963	89	1974	60
1964	112	1975	75
1965	96	1976	120
1966	80	1977	160
1967	125	1978	85
1968	143	1979	106
1969	89	1980	83
1970	78	1981	95

Step 2. Arrange the series in descending order of values

Rank (m)	Annual Rainfall (cm)	Rank (m)	Annual Rainfall (cm)
1	160	12	90
2	143	13	89
3	130	14	89
4	125	15	85
5	120	16	84
6	112	17	83
7	108	18	80
8	106	19	78
9	102	20	76
10	96	21	75
11	95	22	60

Step 3. Estimate exceedance probability (p) based plotting position formula

Weibull Equation
$$p = \frac{m}{N+1}$$

Rank (m)	Annual Rainfall (cm)	р	Rank (m)	Annual Rainfall (cm)	р
1	160	0.043	12	90	0.522
2	143	0.087	13	89	0.565
3	130	0.130	14	89	0.609
4	125	0.174	15	85	0.652
5	120	0.217	16	84	0.696
6	112	0.261	17	83	0.739
7	108	0.304	18	80	0.783
8	106	0.348	19	78	0.826
9	102	0.391	20	76	0.870
10	96	0.435	21	75	0.913
11	95	0.478	22	60	0.957

Step 4. Estimate return period T = 1/p

Rank (m)	Annual Rainfall (cm)	p	T (years)	Rank (m)	Annual Rainfall (cm)	р	T (years)
1	160	0.043	23.00	12	90	0.522	1.92
2	143	0.087	11.50	13	89	0.565	1.77
3	130	0.130	7.67	14	89	0.609	1.64
4	125	0.174	5.75	15	85	0.652	1.53
5	120	0.217	4.60	16	84	0.696	1.44
6	112	0.261	3.83	17	83	0.739	1.35
7	108	0.304	3.29	18	80	0.783	1.28
8	106	0.348	2.88	19	78	0.826	1.21
9	102	0.391	2.56	20	76	0.870	1.15
10	96	0.435	2.30	21	75	0.913	1.10
11	95	0.478	2.09	22	60	0.957	1.05

Step 5. Plot the graph between event magnitude and T in a loglog or semi-log axes and fit a straight line

Questions: Estimate annual rainfall with return period of 10 and 40 years

$$T = 10 \text{ years}$$

$$x = 138 \text{ cm}$$

$$T = 40 \text{ years}$$

$$x = 178 \text{ cm}$$

Questions: What is the return period for rainfall exceeding 200 cm

$$x = 200 cm$$

$$T = 82 \text{ years}$$

$$p = 1/T = .0122$$

Questions: What is the 50 % dependable annual rainfall

$$p = 0.5$$

$$T = 2$$
 years

$$x = 92 cm$$

If the probability of an occurrence of an event is p, what is the probability that the event will occur r times in n successive years?

Binomial distribution

$$P_{r,n} = {}^{n}C_{r}p^{r}q^{n-r} = \frac{n!}{(n-r)!r!}p^{r}q^{n-r}$$

Example: Return period of 205 cm annual rainfall depth is 100 years. Determine

- Probability that annual rainfall will be greater than 205 cm in a year
- Probability that such an event will occur once in 10 years
- Probability that such an event will occur twice in 10 years
- Probability that the event will occur at least once in 10 years

Probability that annual rainfall will be greater than 205 cm in a year

$$p = P(X \ge 205) = 1/T = 0.01$$

Probability that such an event will occur once in 10 years

$$P_{r,n} = P_{1,10} = \frac{n!}{(n-r)!r!} p^r q^{n-r}$$

$$= \frac{10!}{9!1!} 0.01^1 (1 - 0.01)^9 = 10 \times 0.01 \times 0.9135 = 0.091$$

Probability that such an event will occur twice in 10 years

$$P_{r,n} = P_{2,10} = \frac{n!}{(n-r)!r!} p^r q^{n-r}$$

$$= \frac{10!}{8!2!} 0.01^2 (1 - 0.01)^8 = 45 \times 0.0001 \times 0.923 = 0.0042$$

Probability that the event will occur at least once in 10 years

$$P_1 = 1 - q^n$$

= 1 - (1 - 0.01)¹⁰ = 0.0956

Maximum Intensity Duration Frequency Curve (IDF)

- Curves showing relationship between maximum intensity, duration and frequency <u>at a station</u>
- Similar to IDF, maximum depth duration frequency (DDF) curves can be obtained
- In India, IDF curves are provide by India Meteorological Department (IMD)
- Wherever possible IDF curves should be prepared for hydrologic design
- A minimum of 20 years hourly dataset is desirable to estimate IDF curves

Step 1. For each year select most intense storms

Time since start (in minutes)	Cumulative rainfall (in mm)
0	0
30	6
60	18
90	21
120	36
150	43
180	49
210	52
240	53
270	54

Step 1. For each year select most intense storms

Time since start	Cumulative rainfall	Incremental depth (mm)
(in min)	(in mm)	30 minutes
0	0	
30	6	6
60	18	12
90	21	3
120	36	15
150	43	7
180	49	6
210	52	3
240	53	1
270	54	1

Step 1. For each year select most intense storms

Time since	Cumulative rainfall	Incremental depth (mm)			
(in min)	(in mm)	30 min	60 min		
0	0				
30	6	6			
60	18	12	18		
90	21	3	15		
120	36	15	18		
150	43	7	22		
180	49	6	13		
210	52	3	9		
240	53	1	4		
270	54	1	2		

Step 1. For each year select most intense storms

Time since	Cumulative		Incremental depth (mm)							
start	rainfall	30	60	90	120	150	180	210	240	270
(in min)	(in mm)	min	min	min	min	min	min	min	min	min
0	0									
30	6	6								
60	18	12	18							
90	21	3	15	21						
120	36	15	18	30	36					
150	43	7	22	25	37	43				
180	49	6	13	28	31	43	49			
210	52	3	9	16	31	34	46	52		
240	53	1	4	10	17	32	35	47	53	
270	54	1	2	5	11	18	33	36	48	54

Step 1. For each year select most intense storms

Time since	Cumulative		Incremental depth (mm)							
start	rainfall	30	60	90	120	150	180	210	240	270
(in min)	(in mm)	min	min	min	min	min	min	min	min	min
0	0									
30	6	6								
60	18	12	18							
90	21	3	15	21						
120	36	15	18	30	36					
150	43	7	22	25	37	43				
180	49	6	13	28	31	43	49			
210	52	3	9	16	31	34	46	52		
240	53	1	4	10	17	32	35	47	53	
270	54	1	2	5	11	18	33	36	48	54

Step 1. For each year select most intense storms

Time since	Cumulative		Incremental depth (mm)							
start	rainfall	30	60	90	120	150	180	210	240	270
(in min)	(in mm)	min	min	min	min	min	min	min	min	min
0	0									
30	6	6								
60	18	12	18							
90	21	3	15	21						
120	36	15	18	30	36					
150	43	7	22	25	37	43				
180	49	6	13	28	31	43	49			
210	52	3	9	16	31	34	46	52		
240	53	1	4	10	17	32	35	47	53	
270	54	1	2	5	11	18	33	36	48	54

- Step 1. For each year select most intense storms
- Step 2. For each storm estimate the maximum intensity for a selected durations
- Step 3. Develop a relation between maximum intensity and duration

	(in min)								
Duration	30	60	90	120	150	180	210	240	270
Maximum Depth (mm)	15	22	30	37	43	49	52	53	54

- Step 1. For each year select most intense storms
- Step 2. For each storm estimate the maximum intensity for a selected durations
- Step 3. Develop a relation between maximum intensity and duration

	(in min)								
Duration	30	60	90	120	150	180	210	240	270
Maximum Depth (mm)	15	22	30	37	43	49	52	53	54
Maximum Intensity (mm/h)	30	22	20	18.5	17.2	16.3	14.9	13.3	12

Relationship between Intensity (Depth) and duration

- Step 1. For each year select most intense storms
- Step 2. For each storm estimate the maximum intensity for a selected durations
- Step 3. Develop a relation between maximum intensity and duration
- Step 4. For each year identify maximum intensity for a given duration
- Step 5. Prepare an annual series of maximum intensity and duration and do the frequency analysis as discussed earlier

Step 6. Analytically the relationships are expressed as

$$i = \frac{KT^x}{(D+a)^n}$$

i = maximum intensity (cm/h)

T = return period (years)

D = duration (hours)

K, x, and n coefficients for the area or station

Table 2.6	Typical valu	es of Coefficients	K, x , a and n	in Eq. (2	2.15)
-----------	--------------	--------------------	----------------------	-----------	-------

					[Ref. 10]
Zone	Place	K	x	а	n
Northern Zone	Allahabad	4.911	0.1667	0.25	0.6293
	Amritsar	14.41	0.1304	1.40	1.2963
	Dehradun	6.00	0.22	0.50	0.8000
	Jodhpur	4.098	0.1677	0.50	1.0369
	Srinagar	1.503	0.2730	0.25	1.0636
	Average for the zone	5.914	0.1623	0.50	1.0127
Central Zone	Bhopal	6.9296	0.1892	0.50	0.8767
	Nagpur	11.45	0.1560	1.25	1.0324
	Raipur	4.683	0. 1389	0.15	0.9284
	Average for the zone	7.4645	0.1712	0.75	0.9599

Depth Duration Frequency curves

Fig. 2.20 Maximum Depth-Duration-Frequency Curves

Alternate way of presenting IDF curves

Fig. 2.18 Maximum Intensity-Return Period-Duration Curves

DDF curves for India

Fig. 2.22 Isopluvial Map of 50 yr-l h Maximum Rainfall (mm) (Reproduced from Natural Resources of Humid Tropical Asia—Natural Resources Research, XII. © UNESCO, 1974, with permission of UNESCO)

DDF curves for India

