SOLUTIONS TO ATTENDANCE QUIZ (WEEK 8)

COLTON GRAINGER (MATH 1300)

This was an **ungraded** quiz given on 2019-03-07. I didn't collect statistics, but here's my impression (on a 0 to 4 scale with 4/4 high).

problem number	actual class performance	problem difficulty
1	2/4	2/4
2	2/4	2/4
3	1/4	3/4
4	2/4	4/4

Definitions

A function is a rule f that assigns to each element of a set A to exactly one element of a set B. We write

$$f: A \to B$$

to display all the ingredients together. The set A is called the **domain** of f, and the set B is called the **codomain** (or range) of f. We often represent the "data" of a function $f: A \to B$ by plotting its graph. For example, the graph of the function arctan: $\mathbf{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is the set of *coordinate pairs*

$$\{(t, \arctan(t)) : \text{ for all } t \text{ in the domain } \mathbf{R}\}.$$

For the following questions, you may find it helpful to look at plots of the graphs of arctangent, arcsine, and arccosine on the back of this sheet.

MULTIPLE CHOICE

- 1. arcsin assigns elements of the set [?] to the set [?]
 - (A) $[-1,1] \to [0,\pi]$

 - (B) $[-1,1] \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ (C) $[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1,1]$ (D) All of the above

 - (E) None of the above

Correct answer.¹ (B) $[-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$. Recall that, to construct an inverse function for the sin function, we need an interval for which the sin function is increasing from -1 to 1 or decreasing from -1 to 1. There are several choices, but we stick with the interval $[-\pi/2, \pi/2]$, which we call the principal branch of the sin function. The function $\arcsin: [-1,1] \to [-\pi/2,\pi/2]$ sends a to the unique $\theta \in [-\pi/2, \pi/2]$ such that $\sin a = \theta$.

- 2. arccos assigns elements of the set [?] to the set [?]
 - (A) $[-1,1] \to [0,\pi]$
 - (B) $[-1,1] \rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$
 - (C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \left[-1, 1\right]$
 - (D) All of the above

Date: 2019-03-06.

Git Repo: https://github.com/coltongrainger/fy19ta.

¹From Vipul Naik's Math 153 course notes. See http://files.vipulnaik.com/math-153-sequence/inversetrig.pdf.

(E) None of the above

Correct answer. (A) $[-1,1] \rightarrow [0,\pi]$. See plot.

- 3. One of these functions has a horizontal asymptote as $x \to +\infty$ and a horizontal asymptote as $x \to -\infty$, with the limiting values for $+\infty$ and $-\infty$ being different. Identify the function.
 - (A) $f(x) := \ln |x|$.
 - (B) $f(x) := \arctan x$.
 - (C) $f(x) := e^{-x}$.
 - (D) $f(x) := e^{-x^2}$.

Correct answer. (B) Only arctan x has distinct horizontal asymptotes of the four functions.

Other choices. One should rule out all of the even functions immediately. (A) is false because, for example, $\lim_{x\to +\infty} \ln x = \infty$. In other words, the inverse of the natural log, $\exp\{x\}$, is defined and finite for all real numbers. It follows that $\ln |x|$ (because $\ln |-x| = \ln |x|$ is an even function) has no horizontal asymptotes. (C) is false because $\exp\{-x\}$ only has a horizontal asymptote as $x\to +\infty$, but not as $x\to -\infty$. (D) belongs to a family of functions called Gaussian functions, most used for probability distributions. $\exp\{-x^2\}$ has two identical horizontal asymptotes y=0.

True or False

- 4. Recall that an **open interval** (a, b) is the set of real numbers $\{x : a < x < b\}$. Extending this notion, we say that a subset O of \mathbf{R} is **open** if
 - for each point $x \in O$,
 - there's an open interval (a, b) such that
 - the point x is an element of (a, b), and
 - the set (a, b) is contained in O.

TRUE or FALSE: The domain of arctan is open.

Correct answer. TRUE. The set of real numbers **R** is open in itself. In other words, at any point x in **R**, there's just enough "breathing room" to fit an open interval (a,b) such that a < x < b.

Other answer. Because \mathbf{R} has no "boundaries", it is just not possible to find a point x in \mathbf{R} that doesn't have any "wiggle room".

Graphs

The Cartesian plane, denoted \mathbb{R}^2 , is the set of coordinate pairs

 $\{(x,y): \text{ for all real numbers } x \text{ and } y\}.$

So, here are graphs of the inverse trigonometric functions. They are subsets of the Cartesian plane!

FIGURE 1. Arctangent

References

- Vipul Naik made the plots and wrote question 3. See https://vipulnaik.com/math-152/.
- I am borrowing *cuisine* as a quiz theme from Hiro Lee Tanaka.

FIGURE 2. Arcsine and Arcosine