For t < 1 s, the switch is open. The switch closes at t = 1 s and remains closed.

- (a) Find $v_a(0 s)$
- (b) Find $i_a(0 s)$
- (c) Find $v_a(2 s)$
- (d) Find $i_a(2 s)$

R1: 1 Ω
R2: 1 Ω
R3: 2 Ω
V1: 1 V
V2: 2 V
V3: 0 V
I1: 2 A

(a) For the circuit on the right, find the Thevenin equivalent model between A and B. Draw the model and don't forget to label A and B.

(b) Consider the two circuits on the right (you are not given the values of R_2 , R_3 , V_s or I_s). We connect the two circuits together, A' to A'' and B' to B'' and do two measurements. When the switch is open, we measure $v_x = X$. When the switch is closed, we measure $v_x = Y$.

On the right, the circuit between A' and B' is the same as the one above and the circuit between A and B is the same as the one in part (a).

If we connect them together, A' to A and B' to B, what is value of v_a ?

For t < 0 s, the switch is closed and you may assume the system has reached steady state. The switch opens at t = 0 s and remains open.

- (a) Find $i_a(0^- s)$ (i.e., just before the switch opens)
- (b) Find $v_b(0^+ s)$ (i.e., right after the switch opens)
- (c) Find $i_a(4 s)$
- (d) Find $v_b(4 s)$

Note: For any of the parts, you can leave your answers as a function of e.

R1: 4Ω

R2: 1Ω

R3: 1Ω

R4: 3Ω

ls: 12 A

k: 2 A/A

C: 4 F

L: 8 H

The AC circuit below is in steady state.

- (a) What is the maximum value of the waveform $i_a(t)$?
- (b) Find the complex power S supplied by the voltage source v_1 .
- (c) Find the average power P received by that same voltage source v_1 .

R: 2Ω

C: 100 mF

L: 100 mH

k: 3 A/A

A1: 10 V

B1: -15 degrees

T: 4 s

(d) In the circuit below, the waveform $i_S(t)$ is periodic with period T. The resistor R is the same as in the circuit above. Find the value of K such that the average power received by the resistor in the circuit below is the same as by the resistor in the circuit above.

In the circuit, v_1 and v_2 are AC sources with ω = 100 rad/s . The phasor diagram shows the phasors of v_1 and v_2 . It is not drawn to scale. You may assume the system is in steady state. V_3 is a DC source.

- (a) What is $v_2\left(\frac{T}{4}\right)$ where T is the period of the waveform ?
- (b) What is the waveform $i_a(t)$?
- (c) What is the maximum value of the waveform $v_a(t)$?

|V1|: 2 V

|V2|: 3 V

alpha: 30 degrees

V3: 3 V

C: 10 mF

L: 25 mH