프로세스의 주소 공간을 동일한 크기로 나누어 물리적 메모리의 각각 다른 위치에 페이지를 저장하는 방식.



페이지 테이블 기준 레지스터:페이지 테이블의 시작 위치. 페이지 테이블 길이 레지스터:페이지 테이블의 크기를 보관. TLB:고속의 주소 변환용 하드웨어 캐시.



Figure 8.14 Paging hardware with TLB.

EAT = 
$$(1 + \varepsilon)\alpha + (2 + \varepsilon)(1 - \alpha)$$
  
=  $2 + \varepsilon - \alpha$ 

hit ratio (주소변환이 이루어지는 비율) =  $\alpha$  miss =  $1-\alpha$ 

TLB 접근 시간 =  $\varepsilon$ 

메모리 접근 시간 = 1

### 역페이지 테이블

물리적 메모리의 페이지 프레임 하나당 페이지 테이블에 하나 씩의 항목을 두는 방식.

공유 코드:여러 프로세스에 의해 공통으로 사용될 수 있도록 작성된 코드. 공유 테이블:공유 코드를 담고 있는 페이지.

|            | 0 |                                |                     | 3       | ed 1                |
|------------|---|--------------------------------|---------------------|---------|---------------------|
| - Appendix | - |                                |                     | 3       | edi                 |
| data 1     | 1 |                                |                     | 4       | ed 2                |
| data 3     | 2 |                                |                     | 6       | ed 3                |
| ed 1       | 3 | P <sub>2</sub> 를 위한<br>페이지 테이블 | 프로세스 P <sub>2</sub> | 1       | data 1              |
| ed 2       | 4 | 3                              | ed 1                |         |                     |
|            | 5 | 4                              | ed 2                | P3을 위한  |                     |
| ed3        | 6 | 6                              | ed 3                | 페이지 테이블 | 프로세스 P <sub>3</sub> |
|            | 7 |                                | 10000000            | 3       | ed 1                |
| data 2     |   | 7                              | data 2              | 4       | ed 2                |
| data 2     | 8 |                                |                     |         | 10                  |
| data 2     | 9 |                                |                     | 6       | ed 3                |

보호비트: 각 페이지에 대한 접근권한 유효-무효 비트: 해당 페이지의 내용이 유효한가

세그먼트: 프로그램을 구성하는 의미 단위

〈세그먼트 번호, 오프셋〉

기준점: 물리적 메모리에서 세그먼트의 시작위치

한계점:세그먼트의 길이.

〈세그먼트 번호, 오프셋〉

페이지 테이블 기준 레지스터 페이지 테이블 길이 레지스터

보호비트: 각 세그먼트에 읽기/쓰기/실행 권한이 있는지 유효비트: 각 세그먼트의 주소 변환 정보가 유효한지

공유 세그먼트: 여러 프로세스가 특정 세그먼트를 공유

## 페이지드 세그먼테이션 기법

페이지드 세그먼테이션 기법

페이지드 세그먼테이션 기법

페이징 기법 장점 + 세그먼테이션 장점을 취하는 주소 변환 기법