Contents

1	Achnowledgements	1
2	Introduction	3
3	Implementation of Matmult.nat()	4
4	Function Permutations & compiler optimizations	5
5	Performance Analysis	6
6	Blocked version	7

Introduction

Implementation of Matmult.nat()

Function Permutations & compiler optimizations

Chapter 4 Performance Analysis

Blocked version

Write a blocked version of your matrix-matrix multiplication function, matmult blk(), e.g. optimizing for the L1 cache size. Does blocking improve the performance? It is necessary to experiment with the block size for a given set of m, n, and k, in order to and an approximate optimum (this is a drawback of blocking). Can it be faster than the fastest non-blocked version? Do you think you can beat the compiler or a library supplied function?

Bibliography

 $[1]\,$ T. Moeslund, $\mathit{Image}\,\,\mathit{and}\,\,\mathit{Video}\,\,\mathit{Processing},\, \mathsf{Aalborg}\,\,\mathsf{University},\, 2$ ed., 2010.