Elasticsearch

Elastic Stack의 핵심인 분산형 검색 및 분석 엔진

Apache Lucene(아파치 루씬) 기반의 Java 오픈소스 분산 검색 엔진

루씬 라이브러리를 단독으로 사용할 수 있으며 방대한 양의 데이터를 신속하게 거의 실시간으로 저장, 분석, 검색 할 수 있다.

^{*} Apache Lucene(아파치 루씬) 검색을 위한 라이브러리

다양한 소스(DB, csv파일 등)의 로그 또는 트랜잭션 데이터를 수집, 집계, 파싱하여 Elasticsearch로 전달

Elasticsearch이 빠른 이유!

inverted index(역색인)

index = 책의 목차

inverted index = 책 맨 뒤에 나와 있는 키워드 (찾아보기)

즉, Elasticsearch는 텍스트를 파싱해서 검색어 사전을 만든 다음, inverted index 방식으로 텍스트를 저장한다.

02 Elasticsearch와 관계형 DB

Relational Database	ElasticSearch
Database	Index
Table	Туре
Row	Document
Column	Field
Index	Analyze
Primary key	_id
Schema	Mapping
Physical partition	Shard
Logical partition	Route
Relational	Parent/Child, Nested
SQL	Query DSL

Cluster

- ▶ Elasticsearch에서 가장 큰 시스템 단위를 의미하며 최소 하나 이상의 노드로 이루어진 노드들의 집합
- 서로 다른 클러스터는 데이터의 접근, 교환을 할 수 없는 독릭적인 시스템으로 유지 된다.
- 여러대의 서버가 하나의 클러스터를 구성할 수 있고 한 서버에 여러대의 클러스터가 존재할 수 있다.

Node

- Elasticsearch를 구성하는 하나의 단위 프로세스
- 역할에 따라 Master-eligible, Data, Ingest, Coordinating Only Node 노드로 구분할 수 있다.

Node

Master-eligible

: 클러스터를 제어하는 마스터로 선택할 수 있는 노드 (인덱스 생성, 삭제 / 클러스터 노드들의 추적, 관리 / 데이터 입력 시 어느 샤드에 할당할 것인지)

Node

Data Node

: 사용자가 색인한 문서를 저장하고 검색 요청을 처리해 결과를 반환하는 역할을 수행하는 노드

색인된 문서는 샤드 단위로 각 데이터 노드에 분산 저장되고 데이터 노드에 의해 데이터에 대한 CRUD, 검색, 집계 연산 등을 수행할 수 있다

Node

- Ingest Node
 - : 일종의 데이터 전처리 파이프라인 역할을 수행하는 노드

Node

 Coordinating Only Node
 : 데이터 노드처럼 실제 데이터를 저장하거나 사용자의 요청에 대해 요청을 수행하진 않지만, 요청들에 대해 전달과 그 결과를 취합하는 역할을 하는 노드

로드 밸런서와 같은 역할

Node 1 Index A Shard 1 (Primary) Index Segment Shard 2 (Replica) Index Segment Shard 11 (Primary) Index Segment Segment Segment Segment

Index / Shard / Replica

- index는 RDBMS에서 database와 대응하는 개념
- 샤딩(sharding)은 데이터를 분산해서 저장하는 방법
- replica는 또 다른 형태의 shard.
 노드를 손실했을 경우 데이터의 신뢰성을 위해 샤드들을 복제

03 Elasticsearch 특징

Scale out

샤드를 통해 규모가 수평적으로 늘어날 수 있다.

● 고가용성

Replica를 통해 데이터의 안정성을 보장한다.

Schema Free

Json 문서를 통해 데이터 검색을 수행하므로 스키마 개념이 없다.

Restful

데이터 CURD 작업은 HTTP Restful API를 통해 수행한다.

Data CRUD	Elasticsearch Restful
Data CRUD	Elasticsearch Restitut
SELECT	GET
INSERT	PUT
UPDATE	POST
DELETE	DELETE

33주차 ELASTICSEARCH

04 출처

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://victorydntmd.tistory.com/308
https://tourspace.tistory.com/237
https://www.edureka.co/blog/elk-stack-tutorial/
https://www.slideshare.net/deview/2d1elasticsearch
https://github.com/exo-archives/exo-es-search
https://jeongxoo.tistory.com/12