WHAT IS CLAIMED:

1	1. A truncated α -crystallin polypeptide derived from a wild-type α -crystallin protein,
2	wherein said truncated polypeptide lacks an N-terminal sequence present in said wild-type protein.
1	2. The truncated α -crystallin polypeptide of claim 1 wherein said N-terminal sequence
2	is hydrophobic.
1	3. The truncated α -crystallin polypeptide of claim 2 wherein said N-terminal sequence
2	precedes a common domain in said wild-type protein.
1	4. The truncated α -crystallin polypeptide of claim 1 wherein said N-terminal sequence
2	comprises residues 1-51 of said wild-type protein.
1	5. The truncated α-crystallin polypeptide of claim 4 comprising the sequence set forth
2	in SEQ ID NO: 3.
1	6. An isolated polypeptide comprising an amino acid sequence encoded by a nucleic
2	acid that hybridizes, under stringent conditions, to the complement of a nucleic acid encoding the
3	polypeptide of claim 1.
1	7. An isolated polypeptide comprising an amino acid sequence encoded by a nucleic
2	acid that hybridizes, under stringent conditions, to the complement of a nucleic acid encoding the
3	polypeptide of claim 4.

I	8. The polypeptide of claim I which is at least 70% identical to a polypeptide
2	comprising the amino acid sequence set forth in SEQ ID NO: 1.
1	9. The polypeptide of claim 1 which comprises an amino acid sequence at least 80 %
2	identical to a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1 using a
3	BLAST algorithm.
1	10. The polypeptide of claim 1 which comprises an amino acid sequence more than
2	90% identical to a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 1 using a
3	BLAST algorithm.
1	11. The polypeptide of claim 1 further comprising a linker sequence at the N-terminus
2	which is designed to enhance the solubility of said polypeptide.
1	12. An isolated nucleic acid encoding the truncated α-crystallin polypeptide of claim 1.
1	13. An isolated nucleic acid encoding the truncated α-crystallin polypeptide of claim 4.
1	14. An isolated nucleic acid that hybridizes, under stringent conditions, to the
2	complement of a nucleic acid encoding the polypeptide of claim 1.
1	15. An isolated nucleic acid that hybridizes, under stringent conditions, to the
2	complement of a nucleic acid encoding the polypeptide of claim 4.

1	16. The isolated nucleic acid of claim 12 that hybridizes, under stringent hybridization
2	conditions, to the complement of a nucleic acid comprising the nucleotide sequence set forth in SEQ ID
3	NO: 2 (Fig. 2).
1	17. The isolated nucleic acid of claim 15 that hybridizes, under stringent hybridization
2	conditions, to the complement of a nucleic acid comprising the nucleotide sequence set forth in SEQ ID
3	NO: 2 (Fig. 2).
1	18. An expression vector comprising:
2	(a) a nucleic acid encoding a small heat shock protein (sHSP); and
3	(b) a nucleic acid encoding a protein, polypeptide, or fragment thereof;
4	wherein said nucleic acids are operatively associated with an expression control sequence.
1	19. The expression vector of claim 18 wherein said sHSP is selected from the group
2	consisting of a wild-type α -crystallin protein; a truncated α -crystallin polypeptide; thermophilic sHSP;
3	a chimeric polypeptide comprising (a) a wild-type α -crystallin protein or a truncated α -crystallin
4	polypeptide and (b) thermophilic sHSP; or combinations thereof.
1	20. The expression vector of claim 19 wherein said chimeric polypeptide comprises a
2	truncated α-crystallin polypeptide and thermophilic sHSP.
1	21. The expression vector of claim 20 wherein said truncated α-crystallin polypeptide
2	lacks an N-terminal sequence present in a wild-type α-crystallin protein.
l	22. The expression vector of claim 21 wherein said N-terminal sequence is
2	hydrophobic.

1	23. The expression vector of claim 22 wherein said N-terminal sequence precedes a
2	common domain in said wild-type protein.
1	24. The expression vector of claim 21 wherein said N-terminal sequence comprises
2	residues 1-51 of said wild-type protein.
1	25. The expression vector of claim 21 comprising the sequence set forth in SEQ ID
2	NO: 2.
1	26. A method of enhancing expression of a protein in a host cell comprising
2	coexpressing said protein with a small heat shock protein (sHSP).
1	27. The method of claim 26 wherein said sHSP is selected from the group consisting of
2	a wild-type α -crystallin protein; a truncated α -crystallin polypeptide; a thermophilic sHSP; a chimeric
3	polypeptide comprising (a) a wild-type α -crystallin protein or a truncated α -crystallin polypeptide and
4	(b) a thermophilic sHSP; and combinations thereof.
1	28. The method of claim 27 wherein said chimeric polypeptide comprises a truncated
2	α-crystallin polypeptide and a thermophilic sHSP.
1	29. The method of claim 28 wherein said truncated polypeptide lacks an N-terminal
2	sequence present in a wild-type protein.
1	30 The method of claim 29 wherein said N-terminal sequence is hydrophobic

1	31. The method of claim 30 wherein said N-terminal sequence precedes a common
2	domain in said wild-type protein.
1	32. The method of claim 29 wherein said N-terminal sequence comprises residues 1-
2	51 of said wild-type protein.
1	33. The method of claim 32 wherein said truncated polypeptide comprises the
2	sequence set forth in SEQ ID NO: 3.
1	34. A thermotolerant host cell genetically modified to express a small heat shock
2	protein.
1	35. The host cell of claim 34 wherein said sHSP is selected from the group consisting
2	of a wild-type α-crystallin protein; a truncated α-crystallin polypeptide; a thermophilic sHSP; a
3	chimeric polypeptide comprising (a) a wild-type α-crystallin protein or a truncated α-crystallin
4	polypeptide and (b) a thermophilic sHSP; and combinations thereof.
1	36. The host cell of claim 35 wherein said chimeric polypeptide comprises a truncated
2	α-crystallin polypeptide and a thermophilic sHSP.
1	37. The host cell of claim 36 wherein said truncated polypeptide lacks an N-terminal
2	sequence present in said wild-type protein.
1	38. The host cell of claim 37 wherein said N-terminal sequence is hydrophobic.

]	39. The host cell of claim 37 wherein said N-terminal sequence precedes a common
2	domain in said wild-type protein.
l	40. The host cell of claim 37 wherein said N-terminal sequence comprises residues 1-
2	51 of said wild-type protein.
l	41. The host cell of claim 40 wherein said truncated polypeptide comprises the
2	sequence set forth in SEQ ID NO: 3.