Graph Coloring

What is the color of the 3rd vertex? How many vertices will be colored with the color Red?

Remember the Greedy Coloring Algorithm:

The procedure requires us to number the colors consecutively

- 1. Order the vertices in some (arbitrary) way
- 2. Color the first vertex using Color 1
- 3. Pick the next uncolored vertex v.
- Color it using the lowest-numbered color that has not been used on any of the vertices adjacent to v.
- If you run out of colors, then add a new color
- 4. Repeat Step 3 until all vertices are colored

1- Green 2- Red 3- Blue 4- Piuk A) B, S, D, E, F, G, H, I

1) How many Green vertices?

2) What color is vertex I?

Recurrence relations

Example: an old exam problem

a) Solve for the general solution $a_n^{(h)}$ to the homogeneous recurrence relation

b) Find a particular solution $a_n^{(p)}$ to the nonhomogeneous recurrence relation a_n

3)
$$n + 4^h \longrightarrow Gress: 4^h (Cn + D) = C + h + 4^h + D + 4^h
 $3n^2 + 2^h + 3n + 3^h \rightarrow Gress: 2^h (Cn^2 + Dn + E) + 3^h (Fn + G)$$$

Recurence relations: close form solution

	recording relati	Treatment of the second of the		
	NH part of recurrence	Guess for a _n (p)	Example	
1)	$F_n = c_k n^k + c_{k-1} n^{k-1} + + c_1 n + c_0$	$d_k n^k + d_{k-1} n^{k-1} + + d_1 n + d_0$	$F_n = n^2 \Rightarrow a_n^{(p)} = A \cdot n^2 + B \cdot n + C$	
/2)	$F_n = b \cdot c^n$	$d \cdot c^n$	$F_n = 3 \cdot 2^n \implies a_n^{(p)} = A \cdot 2^n$	
(3)	$F_n = (c_k n^k + c_1 n + c_0)(b \cdot e^n)$	$(d_k n^k + d_1 n + d_0)(e^n)$	$F_n = 3n \cdot 2^n \implies a_n^{(p)} = (An + B) \cdot 2^n$	
	If NH is 3"	-> Guess is	C * 3 /7 Could overlap	
(2)			C * 4h If the term 4h	
(1)	n -> Gues:	Cn+D) already exists	
	n2+2n -> Guen:	Cn2+ Dn+E	* n -> C*n*4	
	322-5 -> Guen:	Cn2+ Dn+E	Again $+ h \rightarrow C + h^2 + 4$	

No possibility of overlap

If you don't need to solve for C
$$a_n = a_n^{(h)} + a_n^{(p)} = \underbrace{A*(-z)^h + B*4^h + C*3^h}_{NH}$$

Salving Recurence relations: close form solution

for C:
$$a_n = 2a_{n-1} + 8a_{n-2} + 3^n$$
Guess for NH: $C*3^n$ \rightarrow plug it in

$$C*3^h = 2 C*3^{h-1} + 8 C*3^{h-2} + 3^h$$

$$C * 3^2 = 2 * C * 3 + 8 * C + 3^2$$

$$\Rightarrow C = -\frac{9}{5}$$

Now we have:
$$a_n = a_n^{(h)} + a_n^{(p)} = A(-2)^n + B*4^n - \frac{9}{5}*3^n$$

an-1 = C * 3 h-1

an-2 = C+34-2

$$P(\Gamma_5) := P(\Gamma_5 | R) + P(R) + P(\Gamma_5 | M) + P(M) =$$

$$= \frac{1}{6} * \frac{1}{5} + \frac{2}{6} * \frac{2}{5} = \frac{5}{36} = \frac{1}{6}$$

Suppose you have a bag of 5 dice:

- One is a regular, fair **6-sided** die; let **R** represent the event that you draw this die from the bag.
- Two are fair 4-sided dice; let F represent the event that you draw one of these dice from the bag.

Nos

• Two are **6-sided** dice, with an extra pip drawn on the four-pip side so that each die has two 5's but no 4's (so they are fair, but numbered {1, 2, 3, 5, 5, 6}); let **M** represent the event that you draw one of these marked-up dice from the bag.

Suppose you draw a die at random from the bag and then you roll it.

Define r_3 as the event that you roll a 3.

$$P(r_3) = P(r_3|R) * P(R) + P(r_3|F) * P(F) + P(r_3|M) * P(M) = 1$$

$$= \frac{1}{6} \cdot \frac{1}{5} + \frac{1}{4} \cdot \frac{2}{5} + \frac{1}{6} \cdot \frac{2}{5} = 1$$

$$= \frac{1}{30} + \frac{1}{10} + \frac{1}{15} = \frac{1}{5}$$

(a) What is the probability that you roll a 3?

(b) Suppose you roll a 3. Given this information, what is the probability that you drew one of the 4-sided dice?

$$P(F|r_3) = \frac{P(r_3|F) \times P(F)}{P(r_3)} = \frac{4*\overline{5}}{5}$$

$$= \frac{1}{10} * 5 = \frac{1}{2}$$

(c) Are the events r3 and F independent? Fully justify your answer using math.

Binomial Theorem.

Consider the linear equation $x_1 + x_2 + x_3 + x_4 = 17$

- (a) How many solutions does that equation have? Fully justify your answer.
- (b) How many solutions does that equation have, subject to the additional constraint that all the $x_i \le 9$? Fully justify your answer.

positions:
$$17 + 3 = 20$$
 $(17 + 4 - 1)$

$$C(20,3)=C(26,17)$$

Answer:

Binomial Theorem. "Stars and bars" problem

Consider the linear equation $x_1 + x_2 + x_3 + x_4 = 17$

where all the x_i are non-negative integers, $x_i \ge 0$.

(a) How many solutions does that equation have? Fully justify your answer.

Binomial Theorem. "Stars and bars" problem

Consider the linear equation $x_1 + x_2 + x_3 + x_4 = 17$

where all the x_i are non-negative integers, $x_i \ge 0$.

(b) How many solutions does that equation have, subject to the additional constraint that all the $x_i \le 9$? Fully justify your answer. $s_i = s_i$

-> Side note: how many x; could be > 9? Only one

$$17-10=7$$
 stars left

7+3=10 total penitions => ((10,3)

$$4 * C(0,3) < \frac{\lambda_2}{\lambda_3} > 10$$

Binomial Theorem. "Stars and bars" problem

Consider the linear equation $x_1 + x_2 + x_3 + x_4 = 17$

where all the x_i are non-negative integers, $x_i \ge 0$.

(b) How many solutions does that equation have, subject to the additional constraint that all the $x_i \le 9$? Fully justify your answer.

