MATH240 – Lecture 3

Enlai Li

January 11, 2023

1 Mathematical logic

Premise
$$\rightarrow$$
 All men are \underbrace{mortal}_{M}

$$\rightarrow \underbrace{Socrates}_{S} \text{ is a } \underbrace{man}_{H(human)}$$

Conclusion \rightarrow Therefore Socrates is mortal

All x such that x is H is M. S is H Therefore S is M

$$\forall x, H(x) \Rightarrow M(x)$$

$$H(S)$$

$$M(S)$$

2 Propositional logic (True/False)

2.1 Atomic propositions

The building block of propositional logic are propositions: statements that are either true or false.

ex:

p: 21 is a multiple of 7 (True proposition)

q: 2 + 2 = 5 (False proposition)

r: there exists an extraterrestrial life form (proposition)

2.2 Compound propositions

Atomic propositions combined with logical connectors ex

2+2=5 and "there exists and extra terrestial lifeform

$$= q \wedge r$$

2.3 Logical connectors

2.3.1 conjunction (\land) and

2.3.2 Negation (\neg) not

$$\neg p = \text{Not } p = \overline{p}$$

 $q = "2 + 2 = 5"$

$$\neg q = "2 + 2 \neq 5"$$

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

2.3.3 Disjunction (\lor) or

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

2.3.4 More complex propositions

$$\neg(\neg p \land \neg q) = ?$$

p	q	$\neg p$	$\neg q$	$\neg p \land \neg q$	$\neg(\neg p \land \neg q)$
T	Т	F	F	F	T
T T F	F	F	T	F	T
F	T	T	F	F	T
F	F	Т	Т	${ m T}$	F

2.3.5 Set laws and logical equivalence

Set laws translate into logical equivalence:

Set	Logic
\overline{U}	True
Ø	False
\cup	\wedge
\cap	V
\overline{A}	$\neg A$

Since $p \vee q$ has the same truth table as $\neg(\neg p \wedge \neg q)$, they are logically equivalent:

$$p \lor q \equiv \neg(\neg p \land \neg q)$$

2.3.6 Exclusive or (\oplus) xor

Def: $p \oplus q \equiv (p \lor q) \land \neg (p \land q)$

$$\begin{array}{c|ccc} \mathbf{p} & \mathbf{q} & p \oplus q \\ \hline \mathbf{T} & \mathbf{T} & \mathbf{F} \\ \mathbf{T} & \mathbf{F} & \mathbf{T} \\ \mathbf{F} & \mathbf{T} & \mathbf{T} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} \end{array}$$

2.3.7 Conditional (\Rightarrow)

Def:
$$p \Rightarrow q \equiv \neg(p \land \neg q) \equiv \neg p \lor q$$

 $p \Rightarrow q$: "p implies q": "if p then q"
ex:

p: It rains

q: It's cloudy

 $p \Rightarrow q$: If it rains outside, then it is cloudy

p	q	$p \Rightarrow q$
Т	Т	Т
Τ	F	F
F	Τ	${ m T}$
F	F	${ m T}$

 $p \Rightarrow q$ is always true when p is false