Chapter 4.5

7. Exhibit all Sylow 2-subgroups of S_4 and find elements of S_4 which conjugate one of these into each of the others.

Proof. (Gillispie) Since $|S_4| = 4! = 2^3 \cdot 3$, if $P \in Syl_2(S_4)$, then |P| = 8. Notice that

$$\langle (1\,2\,3\,4), (1\,2)(3\,4) \rangle = \{(1), (1\,2)(3\,4), (1\,2\,3\,4), (1\,3)(2\,4), (1\,4\,3\,2), (2\,4), (1\,3), (1\,4)(2\,3) \}$$

is of order 8. Also

$$\langle (1342), (13)(42) \rangle = \{(1), (13)(24), (1342), (14)(23), (1243), (23), (14), (12)(34) \}$$
and
$$\langle (1423), (14)(23) \rangle = \{(1), (14)(23), (1423), (12)(34), (1324), (34), (12), (13)(24) \}$$

are distinct and of order 8.

Sylow's Theorem states that $n_2 \mid 3$. Either $n_2 = 1$, which we've shown to be untrue, or $n_2 = 3$, and so we have described every Sylow 2-subgroup.

Now, notice that

$$(234)(1234)(243) = (1342)$$
 and $(234)(12)(34)(243) = (13)(24)$.

And so $(234)\langle (1234), (12)(34)\rangle (234)^{-1} = \langle (1342), (13)(42)\rangle$.

Also,

$$(234)(1342)(243) = (1423)$$
 and $(234)(13)(24)(243) = (14)(23)$.

So
$$(234)\langle (1342), (13)(24)\rangle (234)^{-1} = \langle (1423), (14)(23)\rangle$$
.

Finally notice that

$$(234)(1423)(243) = (1234)$$
 and $(234)(14)(23)(243) = (12)(34)$.

And so
$$(2\,3\,4)\langle(1\,4\,2\,3), (1\,4)(2\,3)\rangle(2\,3\,4)^{-1} = \langle(1\,2\,3\,4), (1\,2)(3\,4)\rangle$$
.

We've shown that powers of $(2\,3\,4)$ conjugate the elements of $Syl_2(S_4)$ into other elements of $Syl_2(S_4)$, and that every element of $Syl_2(S_4)$ can be taken into any other element of $Syl_2(S_4)$ by conjugation by $(2\,3\,4)$.

8. Exhibit two distinct Sylow 2-subgroups of S_5 and an element of S_5 that conjugates one into the other.

Proof. (Mobley) The order of S_5 is 120 or $2^3 \cdot 3 \cdot 5$. Since we are looking for Sylow 2-subgoups of S_5 , we need the highest power of 2 that divides 120. The highest power of 2 is $2^3 = 8$. Recognizing that each of the subgroups from #7 is also contained in S_5 , let our first Sylow 2-subgroup be

$$A = \{e, (12), (12)(34), (34), (13)(24), (14)(23), (1324), (1423)\}$$

from the previous problem. Another subgroup is

$$B = \{e, (15), (12)(35), (23), (13)(25), (15)(23), (1253), (1352)\}.$$

(Note that this is just one of the subgroups from #7 with fives replacing the fours.) The element of S_5 that conjugates one into the other is $\sigma = (123)(45)$ with $\sigma A \sigma^{-1} \subset B$.

14. Prove that a group of order 312 has a normal Sylow p-subgroup for some prime p dividing its order.

Proof. (Hazlett) Note, $n_{13} \equiv 1 \mod 13$ and $n_{13}|24$. Hence $n_{13} = 1$. Then there exists a unique Sylow 13-subgroup P. Therefore $P \subseteq G$ and G is not simple.

17. Prove that if |G| = 105, then G has a normal Sylow 5-subgroup and a normal Sylow 7-subgroup.

Proof. (Baggett) We have that $|G| = 3 \cdot 5 \cdot 7$. From Sylow's Theorem, we have that $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 21$. Thus, $n_5 = 1$ or 21. Similarly, we have that $n_7 \equiv 1 \pmod{7}$ and $n_7 \mid 15$. Thus, $n_7 = 1$ or 15. We will show that $n_5 = 1$ or $n_7 = 1$. Suppose to the contrary that $n_5 = 21$ and $n_7 = 15$. Then there are 21(4) = 84 elements of order 5 in G and 15(6) = 90 elements of order 7 in G. This is a contradiction since 84 + 90 > 105. Thus, either $n_5 = 1$ or $n_7 = 1$.

Suppose that $n_5 = 1$. Then there is a unique Sylow 5-subgroup $P \triangleleft G$. Let $Q \in Syl_7(G)$. Then $Q \leq N_G(P) = G$, so $PQ \leq G$. Furthermore, $|PQ| = \frac{|P||Q|}{|P \cap Q|} = 35$ and [G:PQ] = 3, the smallest prime dividing |G|. Thus, $PQ \triangleleft G$. Moreover, $Q \leq PQ$, $n_7(PQ) \equiv 1 \pmod{7}$, and $n_7(PQ) \mid 5$. Thus, $n_7(PQ) = 1$ and Q is the unique Sylow 7-subgroup of PQ. Therefore, Q is characteristic in Q. Since Q char Q and Q and Q is the inique Sylow 5-subgroup Q in Q and a normal Sylow 7-subgroup Q in Q. The proof for the case when Q is similar.

20. Prove that if |G| = 1365 then G is not simple.

Proof. (Buchholz) Let $|G| = 1365 = 3 \cdot 5 \cdot 7 \cdot 13$.

Then $n_{13} \equiv 1 \mod 13$ and $n_{13} \mid 105$, implies that $n_{13} = 1$ or 105.

Then $n_7 \equiv 1 \mod 7$ and $n_7 \mid 195$, implies that $n_7 = 1$ or 15.

Then $n_5 \equiv 1 \mod 5$ and $n_5 \mid 273$, implies that $n_5 = 1, 21$ or 91.

First consider $n_{13} = 105$, $n_7 = 15$, and $n_5 = 21$. Then there are 12(105) = 1260 elements of order 13, 6(15) = 90 elements of order 7, and 4(21) = 84 elements of order 5. But 1260 + 90 + 84 = 1434, which is larger than the order of G. Hence either $n_{13} = 1, n_7 = 1$, or $n_5 = 1$ and so there is a normal subgroup. (We have either $P_{13} \in \text{Syl}_{13}(G)$, $P_7 \in \text{Syl}_7(G)$, or $P_5 \in \text{Syl}_5(G)$ is a non-trivial, proper normal subgroup of G.)

21. Prove that if |G| = 2907, then G is not simple.

Proof (Granade). Let G be a group such that |G| = 2907. Then, note that $2907 = 3^2 \cdot 17 \cdot 19$. Using the Sylow theorems, we list the possible candidates for n_3 , n_{17} and n_{19} :

Next, note that if any of n_3 , n_{17} , n_{19} is 1, then by Corollary 20 in the text, we have that there exists a normal subgroup of order 9, 17 or 19, respectively. Thus, in that case, we are done.

On the other hand, suppose that $n_3, n_{17}, n_{19} \neq 1$. Then, by the list of candidates above, we have that $n_3 = 19$, $n_{17} = 171$ and $n_{19} = 153$. Since 17 and 19 are both prime, we have that the intersection between two arbitrary elements of $\operatorname{Syl}_{17}(G) \cup \operatorname{Syl}_{19}(G)$ is $\{e\}$. Thus, G contains $16 \cdot 171 = 2736$ elements of order 17 and $18 \cdot 153 = 2754$ elements of order 19. Thus, $|G| \geq 2736 + 2754 + 1 = 5491$. This contradicts that |G| = 2907, and so we conclude that at least one of n_3, n_{17}, n_{19} is 1.

Proof (Granade). Let G be a group such that |G| = 132. Then, note that $132 = 2^2 \cdot 3 \cdot 11$. Using the Sylow theorems, we list the possible candidates for n_2 , n_3 and n_{11} :

Next, note that if any of n_2 , n_3 , n_{11} is 1, then by Corollary 20 in the text, we have that there exists a normal subgroup of order 4, 3 or 11, respectively. Thus, in that case, we are done.

On the other hand, suppose that $n_2, n_3, n_{11} \neq 1$. Then, by the list of candidates above, we have that $n_{11} = 12$. By the same counting argument as in Problem 21, we thus have that there are $10 \cdot 12 = 120$ elements of order 11 in G. We can therefore exclude exclude that $n_3 = 22$, since that would imply that $|G| \geq 2 \cdot 22 + 120 = 142$. Thus, $n_3 = 4$, and so we have 8 elements of order 3, leaving 3 non-identity elements to choose from for elements in our Sylow 2-subgroups. Since each Sylow 2-subgroup has order 4, that implies that we have a unique subgroup of order 4, contradicting that $n_2 \neq 1$. We can therefore conclude that at least one of n_2, n_3, n_{11} is 1, and so we are done.

25. Prove that if G is a group of order 385 then Z(G) contains a Sylow 7-subgroup of G and a Sylow 11-subgroup is normal in G.

Proof. (Bastille) We note that $|G| = 385 = 5 \cdot 7 \cdot 11$ and for p = 5, 7, 11, since $|\text{Syl}_p(G)| = n_p$ must satisfy $n_p \equiv 1 \mod p$ and $n_p \mid \frac{385}{p}$ (because each prime divisor divides exactly |G|), we have the following table of possibilities:

p	$1 \bmod p$	divisors of $\frac{385}{p}$
5	1,6,11,16,21,26,31,36,41,46,51,56,61,66,71,76	1,7,11,77
7	1,8,15,22,29,36,43,50,57	1,5,11,55
		1,5,7,35

Hence our choices for n_p are:

$$n_5 = 1, 11;$$
 $n_7 = 1;$ $n_{11} = 1.$

Since $n_7 = 1$, $\operatorname{Syl}_7(G) = \{P_7\}$ and P_7 must be cyclic since $|P_7| = 7$, a prime. Let $a \in P_7$ such that $P_7 = \langle a \rangle$. Let G act on P_7 by conjugation. Then the associated homomorphism:

$$\varphi: G \to S_{P_7} \cong S_7$$

is well-defined (since $gP_7g^{-1}=P_7$ for all $g\in G$ by Corollary 20). Furthermore, S_7 can be viewed as the group of automorphisms of P_7 , and since P_7 is cyclic, $\operatorname{Aut}(P_7)\cong \mathbb{Z}/(7-1)\mathbb{Z}$ by Proposition 17 (1) p. 136. Therefore, if K denotes the kernel of φ , we have

$$G/K \cong \varphi(G) \leq \mathbb{Z}/6\mathbb{Z}.$$

So

$$\frac{|G|}{|K|} \, \big| \, 6 \quad \Rightarrow \quad K = G \quad \text{ since } 2, 3 \nmid |G|.$$

But by definition, $K = \ker \varphi = \{g \in G \mid ga^kg^{-1} = a^k \ \forall k \in \mathbb{Z}\}, \text{ so}$

$$\forall a^k \in P_7: \quad ga^k = a^k g \quad \text{for all } g \in G.$$

Hence $P_7 \leq Z(G)$.

We also have that $n_{11} = 1$, so the unique Sylow 11-subgroup of G is normal in G (by Corollary 20). \square

- 26. Let G be a group of order 105. Prove that if a Sylow 3-subgroup of G is normal then G is abelian. (Schamel) Note that $|G| = 3 \cdot 5 \cdot 7$. Let P_3 be our unique Sylow 3-subgroup of G. Since 3 is the smallest prime dividing the order of G and $|P_3| = 3$ so P_3 is cyclic, by problem 4.5.44 we have that $N_G(P_3) = C_G(P_3)$. Since P_3 is normal in G, we conclude $C_G(P_3) = G$ and hence $P_3 \in Z(G)$. But then |G/Z(G)| divides 35. If |G/Z(G)| is one of 1,5, or 7, then G/Z(G) is cyclic. If |G/Z(G)| = 35, we also have the $G\mathbb{Z}(G)$ is cyclic, since this quotient group is of order pq for $p \nmid q 1$. Thus G/Z(G) is cyclic. Hence, by 3.1.36, G is abelian.
- 44. Let p be the smallest prime dividing the order of a group G. If $P \in Syl_p(G)$ and P is cyclic, prove that $N_G(P) = C_G(P)$.

Proof. (Lawless) Let $|G| = p^{\alpha}m$ where p is the smallest prime dividing |G|, and $p \nmid m$. Let P be a Sylow p-subgroup of G, and let P be cyclic. Notice $|P| = p^{\alpha}$.

Consider the action of $N_P(G)$ on P by conjugation. Notice this gives rise to a homomorphism ψ : $N_G(P) \to S_P$, with $ker(\psi) = C_G(P)$. By the first isomorphism theorem, $N_G(P)/C_G(P) \cong K = \text{Im}(\psi)$. Since conjugation by elements of $N_G(P)$ induce a subgroup of the automorphism group of P, then we know $K \leq Aut(P)$, and so |K| | |Aut(P)|. Since P is cyclic, we know $|Aut(P)| = \varphi(|P|) = p^{\alpha} - p^{\alpha-1}$. So $|K| | p^{\alpha-1}(p-1)$.

Since P is cyclic, we know P is abelian, and so $P \leq C_G(P)$. Moreover, we know $C_G(P) \leq N_G(P) \leq G$. Thus, there exist some integers m_1, m_2 such that $p^{\alpha}m_2 = C_G(P)$ and $p^{\alpha}m_1 = N_G(P)$, and so

$$|N_G(P)/C_G(P)| = \frac{m_1}{m_2} |p^{\alpha-1}(p-1).$$

If $m_1/m_2 = 1$, then we know $C_G(P) = N_G(P)$. Assume that $m_1/m_2 \neq 1$. However, since p^{α} was the highest power of p dividing the order of G, then we know $m_1/m_2 \nmid p^{\alpha-1}$. And since p was the smallest prime dividing the order of G, then we know $m_1/m_2 \nmid (p-1)$. So $m_1/m_2 \nmid p^{\alpha-1}(p-1)$, a contradiction.

Therefore, $m_1/m_2 = 1$, and thus $|C_G(P)| = |N_G(P)|$. Thus, $C_G(P) = N_G(P)$, as desired.