LFC (Linguaggi Formali e Compilatori) - Note del Corso

Edoardo Lenzi

November 18, 2017

Contents

1	Ana	Analisi Sintattica					
	1.1	Parsing Top-down	2				
	1.2	Parsing Top-down predittivo (o non ricorsivo)	2				
	1.3	Algoritmi di Parsing	2				

Chapter 1

Analisi Sintattica

```
S \to cAd \ A \to ab|a
```

1.1 Parsing Top-down

Parto dal starting symbol ed espando le derivazioni dando prioritá alle derivazioni piú a sinistra. Cerco quindi di ricostruire una derivazione leftmost della stringa w data in input.

```
w\$,\$ \not\in Vw = cabd
```

Per ricostruire la parola w parto dalla prima derivazione $S \to cAd$ derivo la A piú a sinistra (leftmost) e posso scegliere fra a ed ab; scelgo a e mi accorgo che ho sbagliato, torno in dietro e scelgo ab

1.2 Parsing Top-down predittivo (o non ricorsivo)

Cambio la grammatica sopra in: $S \to cAd\ A \to aB\ B \to b | \epsilon$ Cosí non sbaglio

1.2.1 Grammatica LL(1)

prima L: leggiamo la input string da sinistra seconda L: ricostruiamo una leftmost derivazione (1): decidiamo quale operazione effettuare guardando un solo simbolo in input Le grammatiche LL(1) sono un subset delle grammatiche libere.

1.3 Algoritmi di Parsing

```
input buffer w$
stack bottom[$ ] top
parsing table con tante righe quante non terminali, tante colonne quante terminali ($ incluso)
in ogni cella metto un'eventuale trasformazione o "error"
```

1.3.1 Algoritmo di parsing non-ricorsivo

```
input stringa w, tabella parsing non ricorsivo T, per G output derivazione leftmost di w se w \in L(G), error() altrimenti
```

```
//init
buffer = {w$};
stack.push($S);

let b il primo simbolo di w
let x il top dello stack

while(x != $){
   if(x == b){
      pop(x);
      let b il simbolo necessario di w;
   } else if(x e'' terminale){
```

```
error();
} else if(T[x,b] contiene X -> Y1...Yn){
    return X -> Y1...Yn;
    pop(x);
    push(Yn...Y1)
}
let x il top dello stack
}
```

1.3.2 Esempio

```
\begin{split} E &\to TE' \\ E' &\to +TE' | \epsilon \\ T &\to FT' \\ T' &\to *FT' | \epsilon \\ F &\to id \end{split}
```

	id	+	*	\$
E	$E \to TE'$			
E'		$E' \to TE'$		$E' \to \epsilon$
Т	$T \to FT'$			
T'		$T' \to \epsilon$	$T' \to *FT'$	$T' \to \epsilon$
F	$F \rightarrow id$			

pila	input	output
\$ <u>E</u>	$\underline{\mathrm{id}} + \mathrm{id}^* \mathrm{id}$ \$	$E \to TE'$
\$ E <u>T'</u>		$E \to TE'$
$\$ET'\underline{\mathbf{F}}$		$F \rightarrow id$
\$ ET' <u>id</u>		
$E'\underline{T}$	+ <u>id</u> *id \$	$T'' \to \epsilon$
\$ <u>E'</u>		$E' \to TE'$
\$ E'T <u>+</u>	<u>id</u> *id\$	
\$ E' <u>T</u>		
	Avanti cosi	

1.3.3 Esercizio

$$S \to aA|bB$$

$$A \to c$$

$$B \to d$$

$$w = ac\$$$

Parsing:
$$S \implies aA \implies ac$$

Nella tabella metto le produzioni della grammatica:

1.4 Calcolo First

Data una generica $\alpha \in V^*$ per G=(V, T, S, P), first(α) é l'insieme dei simboli terminali b tali che $\alpha \implies bv$. Inoltre se $\alpha \implies \epsilon$ allora $\epsilon \in first(\alpha)$

1.4.1 Esercizio

```
S \to A|B A \to a|C C \to \epsilon Allora first(A) = \{a,\epsilon\} ($\epsilon$ perché posso fare A \implies C \implies \epsilon).
```

1.4.2 Esercizio

```
S\to A|B A\to a|C C\to bB Allora first(A) = {a,b} (b perché posso fare A\implies C\implies bB, ma B non esiste).
```

1.4.3 Esercizio

```
S \to A|B

A \to a|C

C \to bB

B \to c

Allora first(A) = \{a,b\} (A \implies C \implies bB \implies bc, ma tengo solo il primo simbolo (b))
```

1.4.4 Esercizio

```
A \to A|C

C \to bB|\epsilon

B \to c

Allora first(A) = \{a, b, \epsilon\}

G=(V,T,S,P) Sia X \in V. L'insieme first(X) viene calcolato come segue:
```

- 1) inizializzo first(X) vuoto $\forall \ X \in V$
- 2) se $X \in T$ allora first(X) = $\{X\}$
- 3) se $X \to \epsilon \in P$ allora aggiungere ϵ ai first(X)
- 4) se $X \to Y_1...Y_n \in P$, con $n \ge 1$ allora uso la seguente procedura:

```
j = 1;
while(j <= n){
    aggiungere ai first(X) ogni b tale che b in first(Yj)
    if(epsilon in first(Yj)){
        j++;
    } else {
        break;
    }
}

if(j == n+1){
    aggiungere epsilon ai first(X);
}</pre>
```