What is claimed is:

1. Use of at least one arylsulfatase-inhibiting substance selected from hydroxydiphenyl ethers of general formula

(I)
$$R_2$$
 R_1 R_4

wherein

- R_1 , R_2 and R_3 independently from each other are hydrogen; hydroxy; C_1 - C_{20} alkyl; hydroxysubstituted C_1C_{20} alkyl; C_5 - C_7 cycloalkyl; C_1 - C_{20} alkoxy; C_1 - C_6 alkylcarbonyl; phenyl; or phenyl- C_1 - C_3 alkyl;
- R₄ hydrogen, C_1 - C_{20} alkyl; hydroxy-substitute C_1 - C_{20} alkyl; C_5 - C_7 cycloalkyl; hydroxy; formyl; acetonyl; allyl; carboxy; carboxy- C_1 - C_3 alkyl; carboxyallyl; C_2 - C_{20} alkenyl; C_1 - C_6 -alkyl-carbonyl; C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkyl; phenyl; or phenyl- C_1 - C_3 alkyl; and
- R_s is hydrogen; C_1 - C_{20} alkoxy; or C_1 - C_6 alkylcarbonyl.
- 2. Use according to claim 1, wherein the arylsulfatase-inhibiting substance is selected from hydroxydiphenyl ethers of general formula (

(II)
$$R^{3} \longrightarrow R^{4} \longrightarrow$$

wherein R_1 and R_2 are each independently of the other a hydrogen atom, a hydroxy group or a C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_{20} alkoxy, phenyl or phenyl- C_1 - C_3 alkyl group, R_3 is a hydrogen atom or a C_1 - C_{20} alkyl or C_1 - C_{20} alkoxy group and R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkyl or carboxyallyl group, hydroxydiphenyl ethers of general formula

(III)
$$R^{3} \longrightarrow 0$$

$$R^{1} \longrightarrow R^{4}$$

wherein R_2 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl or C_1 - C_6 alkylcarbonyl group, R_1 and R_3 are each independently of the other a hydrogen atom, a C_1 - C_6 alkylcarbonyl group or a C_1 - C_{20} alkyl group and R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 alkyl-carbonyl- C_1 - C_3 alkyl or carboxyallyl group, and hydroxydiphenyl ethers of general formula

(IV)
$$R^{3} \longrightarrow R^{1}$$

wherein R_1 is a hydrogen atom or a C_1 - C_6 alkylcarbonyl or C_1 - C_{20} alkyl group, R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_2 alkyl, C_3 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_2 alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkyl or carboxyallyl group and R_2 and R_3 are each independently of the other a hydrogen atom or a C_1 - C_6 alkylcarbonyl or C_1 - C_2 alkyl group, in a cosmetic deodorant or antiperspirant composition for reducing body odour caused by the hydrolytic decomposition of steroid esters.

- 3. Use according to claim 1 or 2, wherein the hydroxydiphenyl ethers of general formula (I) are selected from compounds wherein R_1 and R_2 are each independently of the other a hydrogen atom or a C_1 - C_{20} alkyl, C_1 - C_6 alkylcarbonyl or C_1 - C_{20} alkoxy group, R_3 is a hydrogen atom or a C_1 - C_{20} alkyl or C_1 - C_2 alkoxy group and R_4 is a hydrogen atom or a C_1 - C_2 alkyl, hydroxy-substituted C_1 - C_2 alkyl, C_1 - C_6 alkylcarbonyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl or carboxyallyl group.
- 4. Use according to claim 1 or 2, wherein the hydroxydiphenyl ethers of general formula (II) are selected from compounds wherein R_2 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl or C_1 - C_6 alkylcarbonyl group, R_1 and R_3 are each independently of the other a hydrogen atom, a C_1 - C_6 alkylcarbonyl group or a C_1 - C_{20} -alkyl group and R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl or C_1 - C_6 alkylcarbonyl group.

- 5. Use according to claim 1 or 2, wherein the hydroxydiphenyl ethers of general formula (III) are selected from compounds wherein R_1 is a hydrogen atom or a C_1 - C_6 alkyl-carbonyl or C_1 - C_{20} alkyl group, R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, C_1 - C_6 alkylcarbonyl or carboxyallyl group and R_2 and R_3 are each independently of the other a hydrogen atom or a C_1 - C_6 alkylcarbonyl or C_1 - C_{20} alkyl group.
- 6. A method of reducing body odour by means of the inhibition of arylsulfatase on the skin, wherein a cosmetic deodorant or antiperspirant composition comprising at least one arylsulfatase-inhibiting substance selected from hydroxydiphenyl ethers of general formula

(I)
$$R_2$$
 R_1 R_4 R_4

wherein

- R_1 , R_2 and R_3 independently from each other are hydrogen; hydroxy; C_1 - C_{20} alkyl; hydroxy-substituted C_1C_{20} alkyl; C_5 - C_7 cycloalkyl; C_1 - C_2 0alkoxy; C_1 - C_6 alkylcarbonyl; phenyl; or phenyl- C_1 - C_3 alkyl;
- R₄ hydrogen, C_1 - C_{20} alkyl; hydroxy-substitute C_1 - C_{20} alkyl; C_3 - C_7 cycloalkyl; hydroxy; formyl; acetonyl; allyl; carboxy; carboxy- C_1 - C_3 alkyl; carboxyallyl; C_2 - C_{20} alkenyl; C_1 - C_6 -alkyl-carbonyl; C_1 - C_3 alkyl; phenyl; or phenyl- C_1 - C_3 alkyl; and
- R, is hydrogen; C_1 - C_{20} alkoxy; or C_1 - C_6 alkylcarbonyl.
- 7. A method according to claim 6, wherein the arylsulfatase-inhibiting substance is selected from hydroxydiphenyl ethers of general formula (II)

wherein R_1 and R_2 are each independently of the other a hydrogen atom, a hydroxy group or a C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, C_1 - C_6 alkylcarbonyl, C_1 - C_{20} alkoxy, phenyl or phenyl- C_1 - C_3 alkyl group, R_3 is a hydrogen atom or a C_1 - C_{20} alkyl or C_1 - C_{20} alkoxy group and R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl,

 C_s - C_r cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkyl or carboxyallyl group, hydroxydiphenyl ethers of general formula

(III)
$$R^3 \longrightarrow O \longrightarrow OH$$

$$R^4 \longrightarrow R^4$$

wherein R_2 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl or C_1 - C_6 -alkylcarbonyl group, R_1 and R_3 are each independently of the other a hydrogen atom, a C_1 - C_6 alkylcarbonyl group or a C_1 - C_{20} alkyl group and R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 -alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl- C_1 - C_3 alkyl or carboxyallyl group,

and hydroxydiphenyl ethers of general formula

(IV)
$$R^{3} \longrightarrow 0$$

$$R^{1} \longrightarrow R^{4}$$

wherein R_1 is a hydrogen atom or a C_1 - C_6 alkylcarbonyl or C_1 - C_{20} alkyl group, R_4 is a hydrogen atom or a C_1 - C_{20} alkyl, hydroxy-substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy- C_1 - C_3 alkyl, C_1 - C_3 -alkylcarbonyl- C_1 - C_3 alkyl or carboxyallyl group and R_2 and R_3 are each independently of the other a hydrogen atom or a C_1 - C_6 alkylcarbonyl or C_1 - C_{20} alkyl group, is applied to the skin, especially to the skin of the armpits.

- 8. A method of reducing body odour according to claim 6 or 7 wherein the arylsulfatase-inhibiting substance is used gender-specifically in respect of the amount and/or nature thereof.
- 9. Method of reducing body odour according to claim 6 or 7, wherein the arylsulfatase-inhibiting substance is used for reducing body odour in men.