

Description

Features

- V_{DS} = -40V, I_{D} = -12A $R_{DS(ON)}$ < 14.3mΩ @ V_{GS} = -10V $R_{DS(ON)}$ < 22mΩ @ V_{GS} = -4.5V
- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

100% UIS 100% ΔVds

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM12P04-S8	VSM12P04	TAPING	SOP-8	13inch	4000	48000

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise specified)

Symbol	Parameter		Max.	Units
V _{DSS}	Drain-Source Voltage		-40	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Continuous Drain Current	T _A = 25℃	-12	Α
		T _A = 100℃	-7.8	Α
I _{DM}	Pulsed Drain Current note1		-48	Α
Eas	Single Pulsed Avalanche Energy note2		27.6	mJ
P _D	Power Dissipation	T _A = 25℃	3.7	W
R _{0JA}	Thermal Resistance, Junction to Ambient		33.8	°C/W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}\!\mathbb{C}$

Electrical Characteristics (T_J=25°C unless otherwise specified)

Off Characte	vriatio					Units				
	Off Characteristic									
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D = -250μA	-40	-	-	V				
I _{DSS} Z	Zero Gate Voltage Drain Current	V _{DS} = -40V, V _{GS} =0V	-	-	-1	μA				
I _{GSS} (Gate to Body Leakage Current	V _{DS} =0V, V _{GS} = ±20V	-	-	±100	nA				
On Characteristics										
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=-250\mu A$	-1.0	-1.7	-2.5	V				
S	Static Drain-Source on-Resistance	V _{GS} = -10V, I _D = -12A	-	11	14.3					
R _{DS(on)} n	note3	V _{GS} = -4.5V, I _D = -5A	-	15.5	22	mΩ				
Dynamic Characteristics										
C _{iss}	Input Capacitance	\\ - 20\\ \\ -0\\	-	3800	-	pF				
Coss	Output Capacitance	V_{DS} = -20V, V_{GS} =0V, f=1.0MHz	-	329	-	pF				
C _{rss} F	Reverse Transfer Capacitance	I= 1.0IVIMZ	-	289	-	pF				
Q _g 7	Total Gate Charge	V - 20V I - 42A	-	42	-	nC				
Q _{gs}	Gate-Source Charge	V_{DS} = -20V, I_{D} = -12A, V_{GS} = -10V	-	7.3	-	nC				
Q _{gd} (Gate-Drain("Miller") Charge		-	8.5	-	nC				
Switching Characteristics										
t _{d(on)}	Turn-on Delay Time		-	10	-	ns				
t _r 7	Turn-on Rise Time	V_{DD} = -20V, I_{D} = -12A,	-	21	-	ns				
t _{d(off)} 7	Turn-off Delay Time	V_{GS} = -10V, R_{GEN} =2.5 Ω	-	53	-	ns				
t _f 7	Turn-off Fall Time		-	29	-	ns				
Drain-Source	e Diode Characteristics and Maxin	num Ratings								
	Maximum Continuous Drain to Source Diode Forward Current			-	-12	А				
I _S										
I _{SM} N	Maximum Pulsed Drain to Source Diode Forward Current			-	-48	Α				
Ven	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S = -12A	-	-0.8	-1.2	V				
	Reverse Recovery Time	V _{GS} =0V, I _S = -12A,	-	39	-	ns				
	Reverse Recovery Charge	di/dt=100A/µs	-	42	-	nC				

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} EAS condition: T_J= $25\,^{\circ}$ C, V_{DD}= -20V, V_G= -10V, L= 0.5mH, R_G= 25Ω , I_{AS}= -10.5A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

