

Funções Elementares e Matrizes Avaliação 01 — Sexta-Feira, 10 de Maio de 2024

Professor: Adriano Barbosa

Aluno(a): _

P1		P5	
P2		P6	
Р3		P7	
P4		P8	
NOTA FINAL			

Instruções: A pontuação máxima desta prova é de 100 pontos, então fique a vontade para fazer quantas questões quiser! Em todas as questões, mostre seus cálculos e apresente uma resposta completa e clara. Certifique-se de que todas suas respostas estejam legíveis e organizadas.

Problema 1 (10 pontos). Se $A = \{x \in \mathbb{R} \mid |x - 2| < 3\} \in B = \{x \in \mathbb{R} \mid |x + 1| < 2\}$, determine $A \cap B \in A \cup B$.

Problema 2 (10 pontos). Resolva a equação $2^{x^2-3x+2}=8$.

Problema 3 (10 pontos). Considere a função $f: \mathbb{R}^+ \to \mathbb{R}$ dada por $f(x) = \ln(x+1)$. Determine uma função $g: \mathbb{R} \to \mathbb{R}^+$ tal que $g(f(x)) = x, \forall x \in \mathbb{R}^+$, e $f(g(x)) = x, \forall x \in \mathbb{R}$.

Problema 4 (20 pontos). Alice decidiu criptografar uma mensagem para Bob usando a função f(x) = 3x + 7. Antes de aplicar essa função, Alice mapeou cada letra do alfabeto em números, onde A é 1, B é 2, C é 3, e assim por diante, até Z ser 26. Para números maiores que 26, o alfabeto volta a se repetir, onde A é 27, B é 28 e assim sucessivamente para todos os números naturais.

A В \mathbf{C} D GΗ Ι J. K L Μ Ν 0 R. 1 2 3 5 10 11 12 13 14 15 17 18 21 22 W Χ Y \mathbf{Z} \mathbf{C} Α В 23 24 25 26 28 29 . . . 27

- (a) Decifre a mensagem "52 43 10" encontrando a inversa de f.
- (b) Tomando o domínio de f como $\{x \in \mathbb{R} \mid x \ge 1\}$, qual deve ser o domínio de f^{-1} para que as funções estejam bem definidas?

Problema 5 (30 pontos). Mostre que, para todo $n \in \mathbb{N}$, $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2-1)}{3}$.

Problema 6 (30 pontos). Denotando por A^{\complement} o complementar do conjunto A, ou seja, $A^{\complement} = \{x \mid x \notin A\}$. Dados conjuntos A e B quaisquer, mostre que $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$, ou seja, mostre que todo elemento de $(A \cup B)^{\complement}$ é também elemento de $A^{\complement} \cap B^{\complement}$ e vice-versa.

Problema 7 (40 pontos). Um ônibus de 50 lugares foi fretado para uma excursão. A agência de turismo cobrou de cada passageiro R\$400,00 mais R\$10,00 por cada lugar vago. Para que número de passageiros o faturamento da agência é máximo?

Problema 8 (40 pontos). Se $A = \{x \in \mathbb{R} \mid x^3 - 6x^2 + 11x - 6 = 0\}$ e $B = \{x \in \mathbb{R} \mid x^3 - 5x^2 + 8x - 4 = 0\}$, determine A - B.