P. Maurer

ENS Rennes

Recasages: 241 (?), 243, 264

Référence : Candelpergher, Théorie des probabilités pour le théorème.

Sujet de l'épreuve de Maths 2 du concours HEC, option économique, session 2004 pour l'application (essentiellement la partie II).

Fonction génératrice d'une variable aléatoire et moments

Dans tout ce qui suit, X est une variable aléatoire discrète, à valeurs dans \mathbb{N} . Commençons par quelques brefs rappels sur les fonctions génératrices :

Définition 1. On définit la fonction (ou série) génératrice de X comme la série entière $G_X(t) := \sum_{k \geq 0} \mathbb{P}(X = k) t^k$.

Proposition 2. Le rayon de convergence R de la série entière $G_X(t)$ est supérieur ou égal à 1. La fonction $t \mapsto \mathbb{E}[t^X]$ est bien définie et à valeurs finies pour $t \in]-R, R[\cup \{-1, 1\}, \text{ et vérifie alors } \mathbb{E}[t^X] = G_X(t).$

Démonstration.

Pour $t \in [-1, 1]$, on a $|\mathbb{P}(X = k) t^k| \leq \mathbb{P}(X = k)$ et $\sum_{k=0}^{+\infty} \mathbb{P}(X = k) = 1$, donc la série $G_X(t)$ converge absolument. On en déduit que $R \geq 1$.

Le théorème de transfert donne $\mathbb{E}[t^X] = \sum_{k=0}^{+\infty} \mathbb{P}(X=k)t^k$ pour tout t tel que la série $\sum_{k\geq 0} \mathbb{P}(X=k)t^k$ converge, donc en particulier sur $]-R, R[\cup \{-1,1\}$ d'après ce qui précède.

Proposition 3.

- 1. La fonction génératrice de X sur [-1,1] détermine entièrement la loi de X.
- 2. Si X et Y sont indépendantes, alors $G_{X+Y} = G_X G_Y$.

Démonstration.

1. La série entière G_X est dérivable sur le disque ouvert D(0,R), donc en particulier sur]-1,1[et on a $\mathbb{P}(X=n)=\frac{G_X^{(n)}(0)}{n!}$ pour tout $n\in\mathbb{N}$.

2. Soit X, Y deux variables indépendantes à valeurs dans \mathbb{N} . On calcule

$$G_{X+Y}(t) = \sum_{k\geq 0} \mathbb{P}(X+Y=k) t^k$$

$$= \sum_{k\geq 0} \mathbb{P}\left(\bigcup_{\ell\geq 0} \{Y=\ell\} \cap \{X=k-\ell\}\right) t^k$$

$$= \sum_{k\geq 0} \left(\sum_{\ell\geq 0} \mathbb{P}(Y=\ell) \mathbb{P}(X=k-\ell)\right) t^k$$

$$= \left(\sum_{k\geq 0} \mathbb{P}(Y=k) t^k\right) \left(\sum_{k\geq 0} \mathbb{P}(X=k) t^k\right)$$

$$= G_X(t) G_Y(t).$$

Théorème 4. La variable aléatoire X est d'espérance finie si et seulement si G_X est dérivable à gauche au point 1, et dans ce cas, on a $\mathbb{E}[X] = G'_X(1)$.

Démonstration.

 \Longrightarrow On suppose que X est d'espérance finie. Alors la série $\sum_{n\geq 1} n \mathbb{P}(X=n)$ converge, et pour tout $x\in [-1,1[$, on a

$$\frac{G_X(x) - G_X(1)}{x - 1} = \sum_{n=1}^{+\infty} \mathbb{P}(X = n) \frac{x^n - 1}{x - 1}$$
$$= \sum_{n=1}^{+\infty} \mathbb{P}(X = n) (1 + \dots + x^{n-1}).$$

Par ailleurs, on a $\mathbb{P}(X=n)(1+\cdots+x^{n-1}) \underset{x\to 1^{-}}{\longrightarrow} n\mathbb{P}(X=n)$, et la domination

$$|\mathbb{P}(X=n) (1+\cdots+x^{n-1})| \le n \, \mathbb{P}(X=n),$$

où $n\mathbb{P}(X=n)\in L^1(m)$, avec m la mesure de comptage sur \mathbb{N} . Le théorème de convergence dominée donne alors

$$\lim_{x \to 1^{-}} \frac{G_X(x) - G_X(1)}{x - 1} = \sum_{n=1}^{+\infty} n \mathbb{P}(X = n)$$
$$= \mathbb{E}[X].$$

On en déduit que G_X est dérivable en 1 à gauche et que $G'_X(1) = \mathbb{E}[X]$.

 \longleftarrow Réciproquement, supposons que G_X soit dérivable en 1 à gauche.

La fonction G_X est continue sur [0,1] et dérivable sur [0,1], donc d'après le théorème des accroissements finis, pour tout $x \in]0,1[$, il existe $s \in]x,1[$ tel que

$$\frac{G_X(x) - G_X(1)}{x - 1} = G_X'(s).$$

Comme la fonction $s \mapsto G_X'(s) = \sum_{n \geq 1} n \mathbb{P}(X = n) \, s^{n-1}$ est croissante, elle admet une limite $S \in \overline{\mathbb{R}_+}$. Par ailleurs, on a $\frac{G_X(x) - G_X(1)}{x - 1} \underset{x \to 1^-}{\longrightarrow} G_X'(1)$ donc en particulier, la fonction $t \mapsto G_X'(t)$ est majorée sur l'intervalle [0, 1[. On en déduit que S est fini.

Par croissance de $t \mapsto G_X'(t)$, on a $G_X'(t) \leq S$ pour tout $t \in [0,1[$. Comme les coefficients de $G_X'(t)$ sont positifs, pour tout $N \in \mathbb{N}^*$ on a donc

$$\sum_{n=1}^{N} n \mathbb{P}(X=n) t^{n-1} \leq S.$$

Par passage à la limite quand $t \rightarrow 1^-$, on en déduit que

$$\sum_{n=1}^{N} n \mathbb{P}(X=n) \leq S.$$

Aussi, la suite $\left(\sum_{n=1}^N n \mathbb{P}(X=n)\right)_{N \geq 1}$ est croissante et majorée donc converge. On en déduit que X admet une espérance, et le travail effectué pour l'implication directe montre qu'on a alors $G_X'(1) = \mathbb{E}[X]$.

Application 5. (Temps d'attente de deux faces consécutives)

On effectue des lancers indépendants d'une pièce, avec une probabilité $p \in]0,1[$ de faire face et 1-p de faire pile. On s'arrête lorsque l'on obtient deux faces consécutives, et on note X la variable aléatoire qui donne le rang de la première configuration « Face, Face ».

Alors
$$\mathbb{E}[X] = \frac{1+p}{p^2}$$
.

Démonstration. Notons, pour $n \in \mathbb{N}$, F_n l'évènement « face apparaît au lancer n », et P_n l'évènement « pile apparaît au lancer n ».

Pour $n \le 3$, on a $\mathbb{P}(X=0) = \mathbb{P}(X=1) = 0$, $\mathbb{P}(X=2) = \mathbb{P}(F_1 \cap F_2) = p^2$, et $\mathbb{P}(X=3) = \mathbb{P}(P_1 \cap F_2 \cap F_3) = (1-p) p^2$. Par ailleurs, pour $n \ge 4$, l'évènement $\{X=n\}$ est de la forme :

$$E = P_1 \cap A_{n-2} \cap P_{n-2} \cap F_{n-1} \cap F_n$$
 ou $F = F_1 \cap P_2 \cap A_{n-3} \cap P_{n-2} \cap F_{n-1} \cap F_n$

où les évènements A_k sont constitutés de k intersections de P_i et F_i , sans jamais qu'il y ait deux faces consécutives. Comme E et F sont disjoints de par leurs premiers éléments, on en déduit

$$\begin{array}{ll} \mathbb{P}(X = n) & = & \mathbb{P}(E) + \mathbb{P}(F) \\ & = & (1 - p) \, \mathbb{P}(X = n - 1) + p \, (1 - p) \, \mathbb{P}(X = n - 2). \end{array}$$

On calcule alors la fonction génératrice de X. Pour $t \in [-1, 1]$, on a

$$\begin{split} G_X(t) &= \sum_{n=0}^{+\infty} \mathbb{P}(X=n) \, t^n \\ &= p^2 \, t^2 + p^2 (1-p) \, t^3 + \sum_{n=4}^{+\infty} \mathbb{P}(X=n) \, t^n \\ &= p^2 \, t^2 + p^2 (1-p) \, t^3 + \sum_{n=4}^{+\infty} (1-p) \, \mathbb{P}(X=n-1) \, t^n + \sum_{n=4}^{+\infty} p(1-p) \, \mathbb{P}(X=n-2) \, t^n. \end{split}$$

Via un changement de variable adéquat, on a

$$\sum_{n=4}^{+\infty} \mathbb{P}(X=n-1) \, t^n = t \sum_{n=2}^{+\infty} \mathbb{P}(X=n) \, t^n \text{ et } \sum_{n=4}^{+\infty} \mathbb{P}(X=n-2) \, t^n = t^2 \sum_{n=2}^{+\infty} \mathbb{P}(X=n) \, t^n.$$

On en déduit l'équation suivante sur $G_X(t)$:

$$G_X(t) = p^2 t^2 + p^2 (1-p) t^3 + (1-p) t (G_X(t) - p^2 t^2) + p(1-p) t^2 G_X(t),$$

d'où:

$$G_X(t)[1 - (1-p)t - p(1-p)t^2] = p^2 t^2 + p^2(1-p)t^3 - (1-p)p^2 t^3$$

= $p^2 t^2$.

Pour t=1, on a $1-(1-p)\,t-p(1-p)\,t^2=p^2>0$, donc sur un voisinnage de 1, on peut écrire

$$G_X(t) = \frac{p^2 t^2}{1 - (1 - p) t - p(1 - p) t^2}.$$

D'une part, $G_X(1)=1$, donc $\sum_{n\geq 0} \mathbb{P}(X=n)=1$. Aussi, on a $\mathbb{P}\bigg(\bigcup_{n\geq 0} \{X=n\}\bigg)=1$, donc la

configuration « Face, Face » est atteinte presque sûrement au cours d'une infinité de lancers.

Par ailleurs, G_X est dérivable en 1 donc d'après ce qui précède, X admet une espérance et

$$\mathbb{E}[X] = G'_X(1)$$
$$= \frac{1+p}{p^2}.$$

Application 6. (Temps d'attente de la première configuration « Pile, Pile, Face »

On considère une suite infinie de lancers d'une pièce équilibrée. L'expérience est modélisée par un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$. Pour $n \in \mathbb{N}^*$, on désigne par R_n l'évènement « pile apparaît au lancer n » et par S_n l'évènement : « face apparaît au lancer n ».

Soit Y la variable aléatoire désignant le premier rang pour lequel la configuration pile, pile, face apparaît si cette configuration apparaît, et zéro sinon. Alors Y admet une espérance et $\mathbb{E}[Y] = 8$.

Démonstration. A faire en s'inspirant de la correction de HEC ECE 2004 M2. □