

Agenda de hoy

Base de datos

Preparación de datos

Modelo de regresión lineal

Análisis y conclusiones

Tecnológico de Monterrey . O3

Base de datos

Página: kaggle

Top Hits Spotify from 2000-2019

Top songs spotify playlists

https://www.kaggle.com/datasets/paradisejoy/ top-hits-spotify-from-20002019

Selección de los datos

DATOS A UTILIZAR: Artist • Song Year Popularity Genre Energy Danceabiliy

Selección de datos

```
artist = datos_spoti['artist']
year = datos_spoti['year']
popularity = datos_spoti['popularity']
genre = datos_spoti['genre']
energy = datos_spoti['energy']
dance = datos_spoti['danceability']
```

PROCESO EN PYTHON

```
spoti = {
    "artist": artist,
    "year": year,
    "popularity": popularity,
    "genre": genre,
    "energy": energy,
    "dance": dance
}
spoti = pd.DataFrame(spoti)
spoti
```

```
spotinum = {
    "popularity": popularity,
    "energy": energy,
    "dance": dance
}
spotinum = pd.DataFrame(spotinum)

ed = {
    "energy": energy,
    "dance": dance
}
ed = pd.DataFrame(ed)
```

Limpieza de datos

```
[4] spoti.isnull().values.any() #Si imprime "false" es porque todos los valores son válidos
    dataset = spoti.dropna() # creamos un nuevo dataframe descartando los valores nulos o vacíos de nuestro dataframe datos_seleccionados
    dataset.isnull().sum() # validamos que no tenemos valores nulos en ninguna columna, todos deben dar cero
    # Como da 0 en cada columna, podemos avanzar.
    artist
                  0
    year
    popularity
    genre
    energy
    dance
    dtype: int64
```

Preparación de datos

```
dataset.columns
    x = dataset[['year']].values
    y = dataset['dance'].values
[ ] x1 = dataset['dance']
    y1 = dataset[['energy']]
[ ] x2 = dataset['genre']
    y2 = dataset[['popularity']]
[ ] from sklearn.model_selection import train_test_split # importamos la herramienta para dividir los datos de SciKit-Learn
    X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=0) # asignación de los datos 80% para entrenamiento y 20%
```

Modelo de regresión lineal

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		======================================		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood: AIC: BIC:		e):	0.012 0.011 12.44 : 4.28e-06 -6361.3 1.273e+04 1.275e+04	
=======	========	std err		t	P> t	[0.025	0.975]	
Intercept x_1 x_2	0.9378		2160 1	1.005	0.000 0.315 0.000	2009.980 -0.892 -5.761	2013.632 2.768 -2.396	
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	0. -0.	.458 .000 .096 .813		,	:	0.226 120.538 6.69e-27 14.3	

Conclusiones

Después de realizar el análisis, nos dimos cuenta que las variables que seleccionamos no fueron las mejores. Los resultados que obtuvimos nos permitieron ver que las variables que escogimos no tenían mucha codependencia entre ellas.

Tal vez el modelo de regresión lineal no era la mejor opción o necesitábamos más variables.

^{**}Lo podríamos trabajar en una segunda versión del proyecto

Selección de los datos

Selección de datos

artist = datos_spoti['artist'] year = datos_spoti['year'] popularity = datos_spoti['popularity'] genre = datos_spoti['genre'] energy = datos_spoti['energy'] dance = datos_spoti['danceability'] instrumental = datos_spoti['instrumentalness'] speech = datos_spoti['speechiness']

PROCESO EN PYTHON

```
spoti = {
    "artist": artist,
    "year": year,
    "popularity": popularity,
    "genre": genre,
    "energy": energy,
    "dance": dance,
    "instrumental": instrumental,
    "speech": speech
}
spoti = pd.DataFrame(spoti)
spoti
```

Modelo de regresión lineal

Coeficiente de correlación de Pearson: 0.023207307550550543 P-value: 0.2995712822605574 Text(0, 0.5, 'Bailabilidad')

Modelo de regresión lineal

Coeficiente de correlación de Pearson: -0.10403836408435757 P-value: 3.124130364648804e-06 Text(0, 0.5, 'Bailabilidad')

Coeficiente de correlación de Pearson: -0.0035457302658119076 P-value: 0.8740854802420611 Text(0, 0.5, 'Bailabilidad')

OLS Regression Results Dep. Variable: 0.032 R-squared: Model: Adj. R-squared: 0LS 0.030 F-statistic: Method: 16.33 Least Squares Fri, 13 May 2022 Prob (F-statistic): 3.59e-13 Date: Log-Likelihood: Time: 15:21:53 1121.1 No. Observations: 2000 AIC: -2232. Df Residuals: 1995 BIC: -2204. Df Model: 4 Covariance Type: nonrobust P>|t| [0.025 coef std err 0.975] 0.747 Intercept 0.7120 0.018 39.942 0.000 0.677 Vx[0] 0.2080 0.032 6.441 0.000 0.145 0.271 -0.129 Vx[1] -0.0895 0.020 -4.409 0.000 -0.050 Vx[2] 0.0569 1.608 0.108 -0.012 0.126 0.035 Vx[3] -4.091e-05 0.000 -0.282 0.778 -0.000 0.000 Durbin-Watson: Omnibus: 85.701 1.823 Prob(Omnibus): Jarque-Bera (JB): 95.868 0.000 -0.522 Prob(JB): Skew: 1.52e-21 3.243 Cond. No. Kurtosis: 734.

Modelo de regresión lineal múltiple

Variables independientes:

- Popularity
- Energy
- Instrumentalness
- Speechiness

Variable dependiente:

Danceability

Conclusiones 2.0

Después de realizar este segundo análisis, seguíamos sin obtener buenos resultados. El coeficiente de correlación seguía siendo muy bajo.

Lo más probable es que el modelo de regresión lineal no es la mejor opción para analizar las variables que seleccionamos y tal vez con otro modelo se puede llegar a obtener mejores resultados.

Tecnológico de Monterrey

Algunos links

Google colab:

https://colab.research.google.com/drive/1XMVV 5Bpf-OMsWox5Xz8Cd-MB7_wADRPY? usp=sharing

Repositorio de Github:

https://github.com/AO1423214/retoAnalitica.git