

- Defn Hashing is a technique used to map data (keys) to a centique index in a fixed-size table called as hash table
 - primuly used to optimize search, insertion be deletion operation
 - Insertion
 Deletion (1)
 Search
 - A hunfable is a data structure that stress elements he allows inserts on, lookups, and deletion to be performed in O(1) time
 - In a hack table, a hack function is used to map I cays into positions in a table. This is called as halling

- Operations

Search - Compute f(1c) & See if a pair exist

Inust - Comput f(k) & place it at that Position Delete - Comput f(10) 4 delete it at that Position Example: keys => 8,13,3,6,4,10,50 hash funct=) Key %. Size of hash table bucket Size Input h(x) = key % 832 8ig = 10 2 3 4 5 6 7 8 9 8 %, 10 = 8 -> index 13 % 10 = 3 } - index is samx handle -> Sol Collision Linear probing 6 % 10 = 6 4%10=4 10%10=07 Same index - Collision

50% 10=0 Soln - Linear probing ot - many to one mapping one to one mapping

Common Hashing Techniques -

Dixet Hashin

Basic

Hash

Function

6

$$h(x) = 42 \% 10 = 2 \rightarrow index 2 \boxed{42}$$

3. Multiplicative Method

- A key is multiplied by a constant & the foactional past of the result is multiplied by the table size to get the index

4. Folding Method

$$\frac{987654}{\sqrt{87}}$$

$$\frac{987654}{654}$$

$$\frac{987}{654} = 1641$$

$$h(x) = 4-1$$
 $h(x) = 4-1$
 $h(x) = 4/10=4$
 $h(x) = 10(4 \times 0.61\%)$
 $= 401.36$
 $= 401$

- The key is divided into equal pasts, and the pasts are added to get the hash index.

5. Mid Squar Method

eq.
$$4567$$

$$(4567)^{2} = 2085/489$$

$$h(x) = 57\% + \text{ablesiz}$$

$$| 10085| 4567$$

$$| 10085| 4567$$

$$| 10085| 4567$$

The key value 12 squared and the middle digits ax extracted to form the index

Collision Handling Teehniques

- 1. Separate chainz (Open hashing)
- 2. Open Addressing (Closed hacking)
 - a) Linear probing
 - b) Quadratic probing
 - c) Double hashing

Standard Method with Array

Ex! 0,119,14,25,36,69,64,81 -> Chaining hash (key) = key %10

Open Adding -

- Callisons are resolved by finding another empty slot with the hash table

1. Linear Probing:

- Incomment the index sequentially until an empty stot is found.

2. Ouadontic Probina

-, Sunnamic 1

- The next index is found by incrementing the square of the attempted on umber h(x) = (h(key) + i2)% table_size.

$$h(x) = 2 \% 11$$
 $20 \% 11 = 9$
 $30 \% 11 = 8$
 $2 \% 11 = 2$
 $13 \% 11 = 2 \rightarrow 2 + 1^2 = 3$
 $25 \% 11 = 3 \rightarrow 3 + 1^2 = 4$
 $24 \% 11 = 2 \rightarrow 2 + 1^2 = 3$
 $24 \% 11 = 2 \rightarrow 2 + 1^2 = 3$
 $24 \% 11 = 10$

9 %11=9 - 9+1=10 X

	D
	1
2	2
13	3
25	1
	5
24	ر ک
9	7
30	7 & 9
20	9
10	10

3. Dondok Hashing

9+2= 13%11=2

9+32=18%11=7

- uce a second hash function to determine the Step eize often a collision

Laad Factor in Haeling -

Load factor (d) - measures that indicates how full a hack table is.

load factor
$$(x) = \frac{n}{m}$$

m= Total number of available Stots (buckets)

$$\alpha \approx 1$$

Open hashing

linked bost-

Sperate Cheining

dynamic size

Acres Time O(n)

Closed Hashing

Assays

linear probing quadratic, double

fixed size

Access Time O(n)

Time Complexity

Average care

worst core

Search

Frient O(1) O(n)

Delete O(1)

Space Complexity O(n) O(n)

Separate chaining - O(n+m)

n= keys, m= buckets

Tinear problem - O(m)

m= fable size