Recognizing Ancient Japanese Cursive Handwriting Using Machine Learning

The goal

Accurately predict the correct Japanese character found in images of ancient Japanese handwriting

49 different characters

48 Hiragana characters and 1 iteration mark

Image examples

Plan of attack

- 1) Test models with varying architecture
 - 2) Select best performing model
 - 3) Test different parameters
 - 4) Select best performing combination
 - 5) Train final model

Models

Model		Loss*	Accuracy*		
1		0.2397	0.9420		
2		0.2291	0.9463		
3		0.3111	0.9259		
4		0.2082	0.9510		
	5	0.2180	0.9456		
	6	0.1666	0.9598		

Additional testing

val_los	ss val_a	acc		loss		acc	optimizer
0.1455325173865305	3 0.96858478616293	328	0. <mark>1524</mark> 96947294	10723	0.96218295645	36413	adam
0.1580436795736486	55 0.9 <mark>6126890854</mark> 54	406	0.24177353503	84513	0.93420270820	41218	sgd
0.1823009560085062	0.9586253568033	356	0.26993105829	08758	0.9357738653	63527	rmsprop
0.1368233284619968	0.9684618263905	388	0.1237407274	97497	0.96791426257	73133	adadelta
val_loss	val_acc		loss		acc	Ir	amsgrad
0.6551614635019714	0.8318578612975905	1.0	016389008261812	(0.73346358111371	1e-05	False
15.671196214419574	0.02772654578058567	15.7	704261218827472	0.025	582522878253838	0.01	False
0.1472627740828798	0.9670478374363238	0.154	417947646901697	0.9	615886481216125	0.001	False
0.1526931913423682	0.9613303873909219	0.207	786495391301318	0.9	439780326345907	0.0001	True
0.12919356189783834	0.9684618310296315	0.122	250115302308892	0.9	677776398454941	0.001	True
0.13668666775517563	0.9665560093398583	0.1	151575747747906	0.9	584053483088264	0.0001	False
3.8005069047927154	0.02772654578058567	3.79	965173 <mark>1875</mark> 51233	0.02	6484229962586 <mark>1</mark> 5	0.01	True
0.8754514249417962	0.7775113708738705	1.2	287268808567689	0.60	634514892725636	1e-05	True

Final model

Training accuracy	Test accuracy		
0.9901	0.9546		

Future work

- 1) Test other architectures and parameter combinations
- 2) Augment the imageset
- 3) Seek new data