

Program: **B.Tech**

Subject Name: Mathematics-I

Subject Code: BT-102

Semester: 1st

Module 4: Vector Spaces

Vector Space, Vector Sub Space, Linear Combination of Vectors, Linearly Dependent, Linearly Independent, Basis of a Vector Space, Linear Transformations

Notation:

- **1-Space (** \Re **)** = { $x \mid x$ is a real number};
- **2-Space(** \Re^2 **)** = {(*x*, *y*) | *x*, *y*are real numbers};
- **3-Space** (\Re^3) = {(x, y, z) | x, y, z are real numbers};
- **4-Space** (\Re^4)={ $(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \text{ are real numbers}};$

•••

n-Space (\Re^n) ={ $(x_1, x_2, ..., x_n) \mid x_1, x_2, ..., x_n \text{ are real numbers}}$

The elements of \Re^n are called **points** or **vectors**. They are usually denoted by boldface letters as

$$\mathbf{x} = (x_1, x_2, ..., x_n) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}_{n \times 1} \leftarrow n - \mathbf{tuple} \text{ of real numbers}$$

The *i*th entry of the vector $\mathbf{x} = (x_1, x_2, ..., x_i, ..., x_n)$ is called its *i*th coordinate or its *i*th component.

The **zero vector** in \Re^n is

$$\mathbf{0} = (0, 0, ..., 0).$$

If $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$ are vectors in \Re^n , then their **sum** is defined as the vector

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n).$$

If c is a **scalar** (a real number), then the **scalar multiple** of the vector \mathbf{x} by the scalar c, denoted by $c\mathbf{x}$, isthe vector

$$c\mathbf{x} = (cx_1, cx_2, ..., cx_n)$$

Note:

$$(-1)\mathbf{x} = -\mathbf{x} = (-x_1, -x_2, ..., -x_n)$$

Vector Space: Let V be a set vectors in which the operations of sum of vectors and of scalar multiplication are defined (that is, given vectors \mathbf{x} and \mathbf{y} in V and a scalar c, the vectors $\mathbf{x} + \mathbf{y}$ and

cx are also in V - in this case V is said to be closed under vector addition and multiplication by scalars). Then with these operations V is called a vector space provided that - given any vectors x, y, and z in V and any scalars a andb - the following properties are true:

a. x + y = y + x

(commutativity)

b. x + (y + z) = (x + y) + z

(associativity)

(zero element)

c. x + 0 = 0 + x = x

(additive inverse)

d. x + (-x) = (-x) + x = 0e. a(x + y) = ax + ay

(distributivity)

f. (a + b)x = ax + by

g. $a(b\mathbf{x}) = (ab)\mathbf{x}$

h. (1)x = x

Theorem: The *n*-space \Re^n is a **vector space**.

Let W be a nonempty subset of the vector space V. If W is a vector space with the operations of addition and scalar multiplication as defined in V, then W is a subspace of V.

Examples:

1. $W = \{0\}$ is a subspace of \Re^n (called the **zero subspace**).

2. $W = \Re^n$ is a subspace of \Re^n (also called the **improper subspace**).

(all other subspaces of \Re^n are called **proper subspaces**)

Theorem: (Conditions for a subspace)

The nonempty subset W of the vector space V is a subspace of V if and only if it satisfies the following conditions:

a. **0** is in *W*;

a. If **x** and **y** are vectors in W, then **x** + **y** is also in W;

b. If **x**is in W and c is a scalar, then the vector c**x** is also in W.

Theorem: (Solution subspaces)

If A is an m x n matrix of constants, then the solution set of the homogeneous linear system

$$Ax = 0$$

is a subspace of \Re^n .

Example 3: Find two solution vectors **u** and **v** for the following homogeneous system such that the solution space is the set of all linear combinations of the form $a\mathbf{u} + b\mathbf{v}$:

$$2x + 4y \quad -5z + 3w = 0$$

$$3x + 6y - 7z + 4w = 0$$

$$5x + 10y - 11z + 6w = 0$$

We reduce the coefficient matrix to echelon form by applying the following sequence of EROs:

$$-3R_1 + 2R_2$$
, $-5R_1 + 2R_3$, $-3R_2 + R_3$.

The echelon matrix we obtain is

$$\begin{vmatrix}
2 & 4 & -5 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{vmatrix}$$

Hence x and z are the **leading variables**, and y and w are the **free variables**. Back substitution yields the general solution

$$y = a, w = b, z = b, x = -2a + b$$

Thus the general solution vector of the system has the form

$$\mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -2a+b \\ a \\ b \\ b \end{bmatrix} = a \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = a\mathbf{u} + b\mathbf{v}$$

where $\mathbf{u} = (-2, 1, 0, 0)$ and $\mathbf{v} = (1, 0, 1, 1)$.

The solution space of the system is completely determined by the vectors \mathbf{u} and \mathbf{v} by the formula $\mathbf{x} = a\mathbf{u} + b\mathbf{v}$.

The vector \mathbf{y} is called a **linear combination** of the vectors $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n}$ provided that there exists scalars $c_1, c_2, ..., c_n$ such that

$$\mathbf{y} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2} + \dots + c_n \mathbf{x_n}$$

Let $S = \{x_1, x_2, ..., x_n\}$ be a set of vectors in the vector space V. The set of all linear combinations of $x_1, x_2, ..., x_n$ is called the **span** of the set S, denoted by span(S) or span($x_1, x_2, ..., x_n$).

Theorem: span(S) is a subspace of V.

The set $S = \{x_1, x_2, ..., x_n\}$ of vectors in the vector space V is a **spanning set** for V provided that every vector in V is a linear combination of the vectors in S.

The set of vectors $S = \{x_1, x_2, ..., x_n\}$ in a vector space V is said to be **linearly independent** provided that the equation

$$c_1\mathbf{X}_1 + c_2\mathbf{X}_2 + \dots + c_n\mathbf{X}_n = \mathbf{0}$$

has only the trivial solution $c_1 = c_2 = \dots = c_n = 0$

Example 4: The standard unit vectors in \Re^n , viz.,

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \cdots e_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix},$$

are linearly independent.

Note:

Any subset of a linearly independent set is a linearly independent set.

The coefficients in a linear combination of the vectors in a linearly independent set are unique.

A set of vectors is called **linearly dependent** if it is not linearly independent.

Example 5: The vectors $\mathbf{u} = (1, -1, 0)$, $\mathbf{v} = (1, 3, -1)$, and $\mathbf{w} = (5, 3, -2)$ are linearly dependent since $3\mathbf{u} + 2\mathbf{v} - \mathbf{w} = 0$.

Exercise: Determine whether the following vectors in \mathfrak{R}^4 are linearly dependent or independent.

The vectors $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ are linearly dependent if and only if at least one of them is a linear combination of the others.

Theorem: The *n* vectors $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ in \mathfrak{R}^n are linearly independent if and only if the $n \times n$ matrix

$$A = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]$$

with the vectors as columns has nonzero determinant.

Theorem: Consider k vectors in \Re^n , with k < n. Let

$$A = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_k]$$

be the $n \times k$ matrix having the k vectors as columns. Then the vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are linearly independent if and only if some $k \times k$ submatrix of A has nonzero determinant.

A finite set S of vectors in a vector space V is called a **basis** for V provided that

- (a) The vectors in S are linearly independent;
- (b) The vectors in S span V.

Example 6: The set of standard unit vectors in \Re^n , viz.,

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \cdots e_{n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix},$$

form the **standard basis** for \Re^n .

Note: Any set of n linearly independent vectors in \mathfrak{R}^n is a **basis** for \mathfrak{R}^n . **Example 7:** $\mathbf{u} = (-2, 1, 0, 0)$ and $\mathbf{v} = (1, 0, 1, 1)$ is a basis of the solution space of the homogeneous system given in **Example 3**. The dimension of the solution space is 2.

Theorem: Let $S = \{x_1, x_2, ..., x_n\}$ be a basis for the vector space V. Then any set of more than n vectors in V is linearly dependent.

Theorem: Any two bases of a vector space consist of the same number of vectors.

A vector space V is called **finite dimensional** if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the **dimension** of V and is denoted by dim(V).

A vector space that is not finite dimensional is called infinite-dimensional.

Let $A = [a_{ii}]_{mn}$ be a matrix. The row vectors of A are the m vectors in \Re^n given by

$$\mathbf{r}_{1} = (a_{11}, a_{12}, ..., a_{1n})$$

$$\mathbf{r}_{2} = (a_{21}, a_{22}, ..., a_{2n})$$

$$\vdots$$

$$\mathbf{r}_{m} = (a_{m1}, a_{m2}, ..., a_{mn})$$

The subspace of \Re^n spanned by the m row vectors $\mathbf{r_1}, \mathbf{r_2}, ..., \mathbf{r_m}$ is called the **row space** of the matrix A and is denoted by **Row(A)**.

The dimension of the row space Row(A) is called the **row rank** of the matrix A.

Theorem: The nonzero row vectors of an echelon matrix are linearly independent and therefore form a basis for its row space Row (A).

Theorem: If two matrices are equivalent, then they have the same row space.

Note: To find a basis for the row space of a matrix, reduce the matrix to echelon form. Then the nonzero row vectors of the echelon matrix form a basis for the row space.

Let $A = [a_{ij}]_{mm}$ be a matrix. The column vectors of A are the n vectors in \Re^m given by

$$\mathbf{c_1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \mathbf{c_2} = \begin{bmatrix} a_{12}, \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \quad \cdots \quad \mathbf{c_n} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

The subspace of \Re^m spanned by the *n* column vectors $\mathbf{c_1}, \mathbf{c_2}, \dots, \mathbf{c_n}$ is called the **column space** of the matrix A and is denoted by Col(A).

The dimension of the row space Col(A) is called the **column rank** of the matrix A.

Note: To find a basis for the column space of a given matrix, reduce the matrix to echelon form. Then the column vectors of the given matrix that correspond to the pivot columns of the echelon matrix form a basis for the column space.

Subspace, W: A subset W of V is subspace of V \Leftrightarrow $\begin{cases} (1) & x+y \in W, & where \ x \in W \ and \ y \in W \\ (2) & ax \in W, & where \ a \in F \ and \ x \in W \\ (3) & 0 \ in \ V \Rightarrow 0 \in W \\ (4) & x+y=0 \ for \ x \in W \Rightarrow y \in W \end{cases}$

$$(1)$$
 $x + y \in W$, where $x \in W$ and $y \in W$

(2)
$$ax \in W$$
, where $a \in F$ and $x \in W$

(3)
$$0 \text{ in } V \Rightarrow 0 \in W$$

(4)
$$x + y = 0$$
 for $x \in W \Rightarrow y \in W$

Theorem: Any intersection of subspaces of a vector space V is a subspace of V.

Theorem: W_1 and W_2 are subspaces of V, then $W_1 \cup W_2$ is a subspace $\Leftrightarrow W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

1-2 Linear Dependence and Linear Independence

Linear dependence & linear independence: For $x_1, x_2, ..., x_n \in S$, $\sum_{i=1}^n a_i x_i = 0$ if $\exists a_1, a_2, ..., a_n$ are all

zeros, then S is linearly independent; otherwise, S is linearly dependent.

Eg. (3,2) and (-6,-4) are linearly dependent because of 2(3,2)+1(-6,-4)4)=0, but (1,2) and (3,2) are linearly independent because of only

Theorem *V* is a vector space, $S_1 \subset S_2 \subset V$.

- (a) If S_1 is linearly dependent, then S_2 is also linearly dependent.
- (b) If S_2 is linearly independent, then S_1 is also linearly independent.

Basis:A basis β for a vector space V is a linearly independent subset of V that generates V. **Dimension**, dim (V): The unique number of elements in each basis for V.

TheoremIf $V=W_1 \oplus W_2$, then $dim(V)=dim(W_1)+dim(W_2)$.

Example. $\forall \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$, we have $\begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Thus $\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \}$ is the basis of \mathbb{R}^2 and $\dim(\mathbb{R}^2) = 2$.

Example.
$$\forall \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3$$
, we have $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \mathbf{a} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \mathbf{b} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \mathbf{c} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Thus $\{\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}\}$ is the basis of \mathbb{R}^3

and $dim(R^3)=3$.

Example: For $W = \{(a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 : a_1 + a_3 + a_5 = 0, a_2 = a_4\}$, find a basis of W and dim(W).

Sol. : $a_1+a_3+a_5=0$. Set $a_1=r$, $a_3=s$, $a_5=-r-s$, and set $a_2=a_4=t$.

$$(a_1, a_2, a_3, a_4, a_5) = (r, t, s, t, -r - s) = r(1,0,0,0,-1) + t(0,1,0,1,0) + s(0,0,1,0,-1)$$

Basis of W: $\{(1,0,0,0,-1),(0,1,0,1,0),(0,0,1,0,-1)\}$ and dim(W)=3.

Example. Show that in case $\theta = \{x_1, x_2, x_3\}$ be a basis in R^3 , then $\theta' = \{x_1, x_1 + x_2, x_1 + x_2 + x_3\}$ is also a basis in R^3 .

Proof : Set $a_1x_1 + a_2(x_1 + x_2) + a_3(x_1 + x_2 + x_3) = 0$...(1). If $a_1 = a_2 = a_3 = 0$, then $x_1, x_1 + x_2, x_1 + x_2 + x_3$ are linearly independent

(1)
$$\Rightarrow$$
 $(a_1 + a_2 + a_3)x_1 + (a_2 + a_3)x_2 + a_3x_3 = 0$...(2)

$$\Rightarrow \begin{cases} a_1 + a_2 + a_3 = 0 \\ a_2 + a_3 = 0 \\ a_3 = 0 \end{cases} \Rightarrow \begin{cases} a_1 = 0 \\ a_2 = 0 \text{, } \therefore x_1, x_1 + x_2, x_1 + x_2 + x_3 \text{ are linearly independent.} \\ a_3 = 0 \end{cases}$$

 $\because dim(R^3)=3, \therefore \theta'$ is a basis of R^3 .

Another method:
$$\begin{bmatrix} x_1 \\ x_1 + x_2 \\ x_1 + x_2 + x_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \det \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}) = 1 \neq 0,$$

:6' is also a basis of R^3 .

Example . Determine whether the given set of vectors is linearly independent?

- (a) $\{(1,0,0),(1,1,0),(1,1,1)\}$ in \mathbb{R}^3 .
- (b) $\{(1,-2,1),(3,-5,2),(2,-3,6),(1,2,1)\}$ in \mathbb{R}^3 .
- (c) $\{(1,-3,2),(2,-5,3),(4,0,1)\}$ in \mathbb{R}^3 .

(Sol.) (a)
$$\det\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = 1 \neq 0$$
, \div linearly independent. (b) 4 vectors in \mathbb{R}^3 , \div linearly dependent.

(c)
$$\det \begin{bmatrix} 1 & 2 & 4 \\ -3 & -5 & 0 \\ 2 & 3 & 1 \end{bmatrix}$$
) = $-5 - 36 + 40 + 6 = 5 \neq 0$, \therefore Linearly independent

<u>Definition</u>: Let V, W be two vector spaces over F. We call T: $V \to W$ a **linear transformation** (linear operator)

if and only if $\forall x, y \in V$ and $c \in F$,

- a) T(x + y) = T(x) + T(y)
- b) T(cx) = cT(x)

Example: T: $\Re^2 \rightarrow \Re^2$

 $T((a_1, a_2)) = (a_1, -a_2) \Rightarrow \text{Reflection Transformation}.$

Let
$$x = (a_1, a_2), y = (b_1, b_2).$$

 $T(cx + y) = T(c(a_1, a_2) + (b_1, b_2))$

$$= T(ca_1 + b_1, ca_2 + b_2)$$

$$= (ca_1 + b_1, -(ca_2 + b_2))$$

$$= c(a_1 - a_2) + (b_1 - b_2)$$

= cT(x) + T(y) \Rightarrow This shows that T is a linear transformation.

Example: Let $V = C(\Re) = \{f(x) \in \Re : f(x) \text{ is continuous } \forall x \in \Re\}.$

Consider $T(f) = \int_{a}^{b} f(t) dt$.

Let f(x), $g(x) \in C(\Re)$ and $c \in F$.

$$T(cf + g) = \int_a^b [cf(t) + g(t)] dt$$

= $\int_a^b cf(t) dt + \int_a^b g(t) dt$

$$= c \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt$$

=
$$CJ_a f(t) dt + J_a g(t) dt$$

= $cT(f) + T(g)$ \Rightarrow This shows that T is a linear transformation.

<u>**Definition**</u>: $I_V: V \rightarrow V$ defined as $I_V(v) = v \ \forall v \in V$ is called the identity transformation.

 $T_0: V \to W$ defined as $T_0(v) = 0_W \forall v \in V$ is called the zero transformation.

Both of these are linear transformations.

<u>Definition</u>: Let V, W be vector spaces and let T: $V \rightarrow W$ be linear. The null space (or kernel) is defined as

$$N(T) = \{x \in V: T(x) = 0_W\}.$$

The range (or image) is $R(T) = \{y \in W : \exists x \in V \text{ such that } T(x) = y\} = \{T(x) : x \in V\}.$

Theorem: Let V, W be vector spaces and T: $V \rightarrow W$ be linear.

Then N(T) is vector subspace of V and R(T) is a vector subspace of W.

Proof: Let $0_V = 0 \in V$, $0_W = 0 \in W$.

To show $G \subseteq V$ is a vector subspace, need to show (Theorem 1.5)

- a) $0 \in G$
- b) $x + y \in G \ \forall x, y \in G$

Subject Code: BT-102

Subject: Mathematics-I

c) $cx \in G \ \forall x \in G \ \forall c \in F$

a) $T(O_V) = O_W$ Hence $O_V \in N(T)$ and $O_W \in R(T)$.

 $\exists z \text{ such that } T(z) = x + y.$

- b) Let $x, y \in N(T)$. $T(x) = T(y) = 0_W$ $T(x + y) = T(x) + T(y) = 0_W + 0_W = 0_W$ Hence $x + y \in N(T)$. Let $x, y \in R(T)$. Then $\exists x', y' \in V$ such that T(x') = x and T(y') = y. Set z = x' + y'. Then $z \in V$. T(z) = T(x' + y') = T(x') + T(y') = x + y
- Hence $x + y \in R(T)$. c) Let $c \in F$ and $x \in N(T)$. Then $T(x) = 0_W$ $T(cx) = cT(x) = c0_W = 0_W$ Hence $cx \in N(T)$. Let $c \in F$ and $y \in R(T)$. $\exists x \in V$ such that T(x) = y. T(cx) = cT(x) = cy. Set cx = z.

 $\exists z \in V \text{ such that } T(z) = T(cx) = cy.$

Hence $cy \in R(T)$.

We hope you find these notes useful.

You can get previous year question papers at https://qp.rgpvnotes.in.

If you have any queries or you want to submit your study notes please write us at rgpvnotes.in@gmail.com

