Earthquake Prediction and Seismic Analysis Using Hadoop

Faraz Ahmad(16BCE0920), Om Ashish Mishra(16BCE0789), Shivam Bhagwani (16BCE0717)

Abstract: Characteristic perils like earthquakes are for the most part the consequence of spreading seismic waves underneath the surface of the earth. Tremors are dangerous absolutely in light of the fact that they're erratic, striking without warning, triggering fires and tsunamis and leading to deaths of countless individuals. If researchers could caution people in weeks or months ahead of time about seismographic disturbances, clearing and different arrangements could bee made to spare incalculable lives. An early detection and prediction system using machine learning classification models can prove to be very useful for disaster management teams. The earthquake stations continuously collect data even when there is no event. From this data, we need to distinguish earthquake and non-earthquake. Machine learning techniques can be used to analyse continuous time series data to detect earthquakes effectively. The proposed work uses Pig-Hive optimisation in Hadoop for processing, mining and analysing earthquake data.

Keywords: earthquake, pig-hive, prediction, classification, machine learning

I. Literature Survey

Title of the paper	Journal	Algorithm &	Performance	Future
with Year	Name	Application used		Scope
Why is earthquake	Tectonophysics 338.3-	Analysing Crystal	Theoretical	The strong critical
prediction	4 (2015): 217-223.	deformations with	enumeration	attack lead
research not		the help of GPS		opened up new
progressing		and InSAR.		avenues and acted
faster?				as the foundations
				for research on
				algorithmic
				processing.
BIRCH: an	ACM Sigmod Record.	Clustering	Finds useful	If given proper
efficient data	Vol. 25. No. 2. ACM,	Algorithm called	pattern in large	attention the
clustering method	1996.	BIRCH for large	datasets. Works	algorithm can
for very large		dataset.	really well with	perform even
databases.			them.	better in improved
				and resourceful
				environment.
Efficient big data	VLDB	MapReduce	This journal has	MapReduce is
processing in	Endowment 5.12		highlighted the	being given
Hadoop	(2012): 2014-2015.		similarities and	various
MapReduce.			differences	improvements
			between Hadoop	daily and its
			MapReduce and	variations are
			Parallel DBMS.	being released
			MapReduce	with many
			algorithm is a	different names. It
			slow but mostly	is expected to

			an accurate way of decomposing tasks and carrying out	bloom in future as the tasks are becoming more complex in the
			there execution	world surrounded
			parallelly.	by computers.
Mammoth:	IEEE Transactions on	Mammoth	The algorithm	Developments are
Gearing Hadoop	Parallel and		used is called	being done. The
towards Memory-	Distributed 26.0 (2015)		Mammoth	researchers are
Intensive MapReduce	Systems 26.8 (2015): 2300-2315.		which has been recently	trying to upgrade
Applications	2300-2313.		developed for	algorithm's functionality and
Applications			processing	roll out updates
			highly related	almost every 6
			datasets which	months giving
			can be reduced	some more
			into even finer	abilities every
			clusters with	time.
			greater	
			efficiency.	
			Results show	
			that Mammoth	
			decreases	
			execution time	
			by 40% as	
			compared to	
			normal	
			MapReduce	
			algorithm.	

Artificial neural	E	Neural Networks	Α	A a a aanana1
networks for	Expert Systems with	Neurai Networks	A very	As a general
	Applications 38 (2011) 15032–15039		impressive	observation, we
earthquake	(2011) 13032–13039		approach and	can argue that the
prediction using time series			probably the	neural network
			most defining	models used in
magnitude data or			move towards	this study are able
Seismic Electric			earthquake	to predict the
Signals.			prediction was	magnitude and
			the use of neural	the time lag of a
			networks. This	major seismic
			paper presents a	event relatively
			new method for	accurately. This
			earthquake	fact
			prediction. In	confirms that
			the proposed	once the neural
			method the	networks are
			variation of	trained by using
			geomagnetic	the
			field declination,	appropriate data,
			horizontal	they are able to
			component and	generalise and
			hourly relative	predict unknown
			humidity,	seismic events
			temperature	accurately.
			ground, rainy	The accuracy
			rate per day such	rates presented in
			as hum, rrr (the	the current paper
			average of rainy	are all based
			hours' time per	on the out-of-
			day), and tgtg	sample
			(temperature	performance for
			ground) are used	each model. In
			to predict	other words,
			magnitude of	the data used for
			earthquake 2	testing the
			days before the	networks are
			occurrence of	different from
			earthquake .	data used
			occurrence by	for training.
			using a neural	According to
			network. As a	Tashman (2000),
			case study, earth	for a good
			geomagnetic	evaluation of
			field measured	a forecasting
			data is used.	study, the method
			Earthquake	should be
			prediction	assessed based on
			methods have	the
			vastly improved,	out-of-sample
			however there is	performance. In
			no method of	this way the
			maximised	predictive
			accuracy using	capability
			big data	of the model will
			intensive	match the

	approaches.	conditions of the real-world.

E411		T :	C1-:	Til 1
Earthquake	Computers and	Linear regression	Combines	The algorithms
prediction in	Geosciences, Elsevier	and Random	several linear	lead to accurate
California using		Forest	regression with	earthquake
regression	ISSN: 0098-3004		ensemble	prediction on a
algorithms and			learning in the	week based
cloud-based big			context of big	metric for the
data			data. These	hottest zones of
infrastructure			include	California. The
			generalized	results yielded
			linear models,	were promising
			gradient	with optimisation
			boosting	to 5% relative
			machine, deep	errors in predicted
			learning, random	magnitudes. Laid
			forests and	the benchmark for
			stacking	a cloud based big
			ensembles. A	data architecture
			total of 1GB of	for all earthquake
			data was	prediction
			analysed divided	pipeline.
			into 27 datasets	
			and processed	
			by means of	
			cloud based	
			infrastructure.	
			The stacking-	
			based ensemble	
			learning had	
			been applied,	
			reporting	
			relative errors	
			verging on 10%	
			and absolute	
			errors verging	
			on 0.5 .The	
			methods based	
			on trees yielded	
			better results and	
			lower regression	
			errors.	
		l	C11015.	

PERFORMANCE	ASIAN JOURNAL OF	Adaptive Neuro-	Hybrid neuro-	In the non-
INVESTIGATION	CIVIL	_	•	
OF NEURO-	ENGINEERING	Fuzzy Inference	fuzzy systems	logarithmic
FUZZY SYSTEM	(BHRC) VOL. 17,	System (ANFIS)	for estimating a	mode, amount of
FOR	NO. 2 (2016)		function, a	error is more
EARTHQUAKE	PAGES 213-223		Sugeno-type	than logarithmic
PREDICTION	1 AUES 213-223		fuzzy system a	mode, but the
IREDICTION			special five-	correlation factor
			layer network.	for the predicted
			This algorithm	amount which is
			increases	calculate from
			efficiency and	the obtained
			optimisation of	results by ANFIS
			predicting	is 98% that is not
			latitudes and	negligible. The
			longitudes of	seismic moment
			earthquake,	is one of the
			depth and	important
			intensity. It can	seismic
			also predict the	indicators that
			seismic time	use for
			between	evaluating an
			tremors thus	earthquake.
			acting as a	Prediction of this
			benchmark for	indicator can
			preparation and	help to predictors
			responsiveness	to find other
			of earthquakes.	qualities of the
			Lack of	next earthquake
			uniformity in	such as
			seismic	magnitude or
			catalogue made	released energy.
			the authors use	rereased energy.
			available	
			regression	
			equations.	
			These equations	
			which are used	
			to determine	
			moment	
			magnitude of	
			_	
			earthquake records	
			followed by	
			calculating	
			seismic moment	
			lead to error.	

Earthquake Prediction based on Spatio-Temporal Data Mining: An LSTM Network Approach	Transactions on Emerging Topics in Computing (IEEE)	Long Short Term Memory Neural Network Units	The accuracy on the testing data is 74.81%, with the true positive accuracy of 68.56% and true negative accuracy of 81.31%. The accuracy was improved by using more hidden layers. However a generic overhead was observed compared to other algorithms in obtaining and processing the input data.	The algorithm can be used to make predictions and analyse earthquake and other natural disturbances occurring. The algorithm can be used to make accurate predictions with different temporal and spatial prediction granularities
--	---	---	---	--

Literature Survey Report:

[1] and [5] analysed by Om Ashish Mishra 16BCE0789

[2],[3],[4] analysed by Shivam Bhagwani 16BCE0717

[6], [7], [8] analysed by Faraz Ahmad 16BCE0920

II. Conclusion

The main motive of doing this project is to experience the excellence of Hadoop which defiantly is a part of the parallel and distributing computing. The aim to obtain better models of prediction than the existing system can be achieved so that the whole idea can be used by the community.

From the data obtained and visualisations done till now it was seen that most of the earthquakes occur in the pacific ring also known as the pacific ring of fire. The different metrics have been analysed and a thorough study conducted also show signs of nuclear testing causing disturbances in the tectonics plates which can have severe repercussions. Thus, proper methods are to be researched and algorithms are to be implemented for performing predictions and obtaining a model that is efficient across all platforms and metrics. The **Pig Hive** optimization technique is used. Pig is used here rather than other Hadoop tools like Hive or Zookeeper as it is fast and it processes the data faster. Just like the literal meaning of the pig, an animal who eats garbage, similarly here also the pig automatically processes the data(arranges) irrespective of the arranged or not. The KNN algorithm is inefficient for large scale processing thus the proposed work aims at studying other areas such as evolutionary computing, high performance computing, artificial intelligence, swarm particle optimization etc to find a highly efficient algorithm that can be used.

References

- [1] Wyss, Max. "Why is earthquake prediction research not progressing faster?." Tectonophysics 338.3-4(2001):217-223.
- [2] Zhang, Tian, Raghu Ramakrishnan, and Miron Livny. "BIRCH: an efficient data clustering method for very large databases." ACM Sigmod Record. Vol. 25. No. 2. ACM, 1996.
- [3] Dittrich, Jens, and Jorge-Arnulfo Quiané-Ruiz. "Efficient big data processing in Hadoop MapReduce." Proceedings of the VLDB Endowment 5.12 (2012): 2014-2015.
- [4] Shi, Xuanhua, et al. "Mammoth: Gearing hadoop towards memory-intensive mapreduce applications." IEEE Transactions on Parallel and Distributed Systems 26.8 (2015): 2300-2315.
- [5] Moustra, Maria, Marios Avraamides, and Chris Christodoulou. "Artificial neural networks for earthquake prediction using time series magnitude data or Seismic Electric Signals." Expert systems with applications 38.12 (2011): 15032-15039.
- [6] Asencio-Cortés, G., et al. "Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure." Computers & Geosciences 115 (2018): 198-210.
- [7] Mirrashid, M., et al. "Performance investigation of neuro-fuzzy system for earthquake prediction." (2016): 213-223.
- [8] Wang, Qianlong, et al. "Earthquake prediction based on spatio-temporal data mining: an LSTM network approach." IEEE Transactions on Emerging Topics in Computing (2017).