SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

Beryllium, magnesium & calcium are group II elements.

 Write the general outer configuration of the elements. (01 mark)
 Each of these elements reacts with carbon to form carbides. Write the equation for the reaction which occurs when each carbide reacts with water. (03 marks)

 a. Define nuclear stability. (01 mark)

b (i). The graph below shows the variation of numbers of neutrons in an atom with proton numbers.

Explain why the bend of nuclear stability deviates from $\frac{n}{p} = 1$ after atomic number 20. (02 marks)

	(ii). Given that the respective mass numbers and atomic number thorium and lead are 232 and 90,208 and 82. Determine the number of alpha and beta particles that makes the control of the	ust be
	emitted by thorium to transform to lead.	(02 marks)
3.	50.0cm ³ of 0.1M aqueous ammonia was added to 50.0cm ³	
	hydrochloric acid and the resultant solution had a pH less th	nan 7.
	a. Give a reason for this observation.	(02 marks)
	b. Calculate the pH of the solution.	
	(Kh for the ammonium chloride is 6.34 X 10 ⁻⁸ mol/dm ³)	(03 marks)

т.	following compounds and the reagent commonly used in ide	
	organic compounds. a. Neutral iron (III) chloride and phenol. Observations:	(02 marks)
	Equation:	
	b. Sodium nitrite in presence of concentrated hydrochloric ethyl methylamine.Observations:	acid and (02 marks)
	Equation:	
	c. Fehling's solution and ethanol. Observations:	(02 marks)
	Equation:	
5.	a. (i).Define the term Ore.	(01 mark)
	(ii).Name the common ores for the following metals. (Aluminium	@0½ mark)
	Iron	
	Copper	

	Zinc	
	b. State the role of the following process in the extr	raction of metals. (@ 01 mark)
	i.Froth flotation.	
	ii.Roasting.	
	iii.Smelting.	
6.	a. Explain the term partition law.	(01½ marks)
	b.An aqueous solution contains 10.0g of H in a litre 100.0cm ³ of this solution was shaken with 20.0 ether extracted 0.8g of H . Calculate the volume of the ether that is required from 500.0cm ³ of the aqueous solution.	cm ³ of ether and the

	c. Give a reason why extracting using aliquots improves the y (01)	vield. 1½ marks)
7.	Both Aluminium and phosphorus form compounds in the oxid states of +3 .	ation
	a. Briefly explain in terms of the electronic configuration why $% \left(\mathbf{r}\right) =\mathbf{r}^{\prime }$	
	aluminium conducts electricity but all the common allotrop phosphorus do not.	es of 03 marks)
	phosphorus do not.	
	b. Write equation for the reaction between each element with hydroxide solution.	sodium 03 marks)
8.	Complete the following equations and name the main organic (@01	product. ½ marks)
	a. $(CH_3CH_2COO)_2Ca$ Heat	
	b. 2CH ₃ CHO Dil.NaOH	

	c (\sim CH-CH ₂ Br + 2 Na \sim Ether \sim	
	·. //		
		Br	
9	a Sta	te Graham's law of gaseous diffusion .	(01 mark)
٠.			
		kel forms a carbonyl; Ni(CO) _n . Deduce the value of n if	
	mc	onoxide diffuses 2.46 times faster than the carbonyl co	-
			(03 marks)
			••••••
	c.Stat	re:	
	i.	Oxidation state of Nickel in the compound.	(0½ mark)
	ii.	Co-ordination numbers of Nickel in the compound.	(0½ mark)
		SECTION B-54 MARKS	
		ATTEMPT ANY SIX QUESTIONS IN THIS S	SECTION.
10		e equations to show how the following synthesis can be	
		ch case indicates the necessary reagents and conditions	
	a. Be	nzene to 2-phenylpropene.	(03 marks)
	••••		

b.		to	-	
c.	Chloroethane	to	propanamide.	(03½ marks)
		•••••		
		• • • • • • • • • • • • • • • • • • • •		

11.A compound ${\bf Z}$ contains ${\bf 19.15\%}$ nitrogen, ${\bf 43.5\%}$ oxygen and the ${\bf rest}$ being manganese.

a. (1). Calculate the empirical formula of Z .	(01½ marks)
(ii) 10 0 - of 7 in 1000 0 - of makes largered to free	
(ii). 10.0g of Z in 1000.0g of water lowered to free by 0.127°C .	•
Calculate the molecular formular of \mathbf{Z} . ($\mathbf{K}_{\mathbf{f}}$ fo	
1.86°C/mol/kg)	(02 marks)
b. Z was dissolved in water to form a pink solution two parts. State would be observed and write eq reaction that took place when:	
i. Acidified potassium manganite (VII) solution	was added to the
first part.	(02 marks)
Observations:	
Equation:	

ii.	Concentrated nitric a	acid and lead (IV) oxid	le was added to t	the
	second part and the			marks)
	Observations:			,
				•••••
	Equation:			
12 Com	olete the following equ	iations and write the	cugaested mach:	nnicm
		iations and write the	suggested mecha	31115111
ior u	ne reaction.	11.00		
a. C	H ₃ CH ₂ CH ₂ CH ₂ OH Co	$\underbrace{\text{onc.H}_2\text{SO}_4}_{\text{2.2.}}$. (03½ marks
0	11301120112011	Heat		(00)2 11101110
••••				
	\sim Fuming H ₂ S	SO_4		
b. (3	• ····································	((03 marks)
`	35°C			
			••••••	

c. (<u>HBr</u> →	(02½ marks)
	\sim CH ₃	
_	dly cooled and found to contain 30.8moles of hydrogen we a reason why the tube was rapidly cooled.	
h Ca	lculate the:	
i.	Value of the equilibrium constant, Kc for the reaction in the flask.	taking place (03 marks)

ii.	Degree of dissociation of hydrogen iodide.	(02 marks)
	State what would happen to the equilibrium position of the nate of the flask above when sodium thiosulphate solution was	
	the flask. Give a reason for your answer.	(02 marks)
	······································	
_		
• •		
••		
14.Exp	plain the following observations:	
a. V	When sodium carbonate solution was added to a solution	of
	chromium (III) sulphate, bubbles of a colourless gas and gr	
p	orecipitate were observed.	(03 marks)
••		

	The bond angle of phosphorus triflouride is 96° while that shosphorus trichloride is 100° .	of (03 mark
c. A	luminium utensils should be cleaned using soap.	(03 marl
a) (State rate law .	(01 m

	• • • • • • • • • • • • • • • • • • • •			
				••••
b).Explain why reactions with high mol	ecularity	are rare.	(03 ma	rks)
c).A solution of hydrogen peroxide titrat manganate (VII) solution at different t	_		_	
manganate (VII) solution at different t results.	ime interv	als, give	the follov	
manganate (VII) solution at different t	_		_	
manganate (VII) solution at different t results. Times (Minutes)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving
manganate (VII) solution at different tresults. Times (Minutes) Volume of accidified KMnO ₄ used (cm ³)	o 23.8	rals, give	20 9.1 is first.	ving

ii.	Calcu	late the half-life of decomposition of	hydrogen peroxide. (01½ marks)
	State fluor solut	try of fluorine differs from that of chlo two differences between the chemis rine besides their reactions with sodi tion.	stry of chlorine and um hydroxide (02 marks)
(ii)	potas	e the equations of reaction between ssium hydroxide solution and: Fluorine	
	ii.	Chlorine	
sol	utions	uation for ionisation of hydrogen fl that are: Dilute	uoride in aqueous (@01½ marks)
i	i.	Concentrated	
	nte one lorine.	e reason why the chemistry of fluorin	e differs from that of (01 mark)
		e reason why the chemistry of fluorin	

). Define enthalpy of a reaction .	(01 ma
(ii	i). State three factors affecting the quantity o change of a reaction.	of an enthalpy (03 mar
V	the standard heat of formation of ethanol, can water are -227.0, -393.5, & -285.5KJ/mol resp Draw a Born-Haber cycle to relate the energ above.	pectively.
ii.	Calculate the standard heat of combustion drawn cycle.	of ethanol using th (01½ marl

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1			3 4 5 6										1.0 H	4.0 H			
6.9 Li 3	9.0 Be	1										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
	24.3 Mg 12											27.0 Al 13		31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20			50.9 V 23	52.0 Cr 24			58.9 Co 27	1	1		69.7 Ga 31		74.9 As 33		79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40		95.9 Mo 42	1	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89			i i i	7 13	1	19 -85				3 199					2 3
		6 1			141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62		157 Gd 64				167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		7.	227 Ac 89	232 Th 90		238 U 92		244 Pu 94				251 Cf 98	Es	Fm	Md		

===END===

WELCOME TO SENIOR SIX, YEAR 2018 This is the last page of the printed paper, Page 16