

Aniket Sharma 2019BCS-008

Supervisor: Prof. Shashikala Tapaswi

- Sign languages are natural languages, with their grammar and lexicon.
- Out of more than 150 sign languages worldwide, ASL is the most widely studied.
- This work focuses on Fingerspelling component of ASL and aims to use Computer Vision for Sign Language Translation.

Objective

The main objective of the work is to develop an AI system capable of translating Sign Language without requiring any specialized hardware.

Three different strategies exists for automated Sign Language translation.

Using Specialized Hand Tracking Devices

- High accuracy
- Infeasible due to high cost requirements

Using Depth Images

- High accuracy
- Still need specialized hardware

Using Computer Vision

- Use daily-use cameras
- Difficult to achieve good accuracy

- consists of 84,000 images
- 28 classes
 - 26 for alphabets
 - o 1 for 'space'
 - o 1 for 'nothing'
- 200x200 pixels size
- colored

Data used for Training

Pre-trained Model Performance

Model	Validation Accuracy	Training Time (sec.)	
EfficientNetBo	89.00%	177	
DenseNet201	88.73%	452	
EfficientNetB5	88.62%	575	
DenseNet169	88.45%	307	
EfficientNetB7	88.23%	999	
ResNet152	88.15%	688	
EfficientNetB3	88.08%	331	

Data Augmentation

Augmentation Type	Value
Rotation	20°
Width Shift	10%
Height Shift	10%
Brightness	20%-100%
Shear	45°
Zoom	50%-150%
Channel Shift	100 px

Augmented Data

Pre-trained Model Performance

Model	Validation Accuracy	Training Time (sec.)
MobileNet	65.95%	933
ResNet152	62.62%	1177
EfficientNetB5	62.57%	1082
EfficientNetB7	61.69%	1251
DenseNet201	61.49%	1067
ResNet101	61.01%	1100
ResNet101V2	60.46%	1056

Evaluation Metrics Models have been evaluation on **four** classification metrics: Accuracy **Precision Score** Recall Score F-Score

ASL Dataset

Accuracy	Precision	Recall	F-Score
95.71%	0.958	0.957	0.957
98.12%	0.982	0.981	0.981
95.72%	0.961	0.957	0.957
94.95%	0.951	0.949	0.949
99.99%	0.999	0.999	0.999
	95.71% 98.12% 95.72% 94.95%	95.71% 0.958 98.12% 0.982 95.72% 0.961 94.95% 0.951	95.71% 0.958 0.957 98.12% 0.982 0.981 95.72% 0.961 0.957 94.95% 0.951 0.949

ASL Alphabets

Model	Accuracy	Precision	Recall	F-Score
Basic CNN Model	37.02%	0.230	0.344	0.257
Transfer Learning CNN	42.31%	0.323	0.407	0.315
Basic CNN Model with Data Augmentation	36.78%	0.259	0.368	0.269
ransfer Learning CNN with Data Augmentation	43.39%	0.422	0.434	0.380
Ensemble Model	44.11%	0.365	0.441	0.353

- training the models on a diverse and large data containing different ways signers use to represent a character
 inclusion of object detection techniques to detect hands in a image
- adding more character like numbers and other commonly used characters.

