# A Simple Beamer Template for WP Carey School Affiliated Researchers

Harish Guda<sup>1</sup> X<sup>2</sup> Y<sup>2</sup>

<sup>1</sup>W.P. Carey School of Business, Arizona State University.

> <sup>2</sup>School, University.

An Important Field Conference, December 25, 2023



## A Brief Summary

Here's a new idea.



## A Brief Summary

Here's a new idea.

We show surprising result.



New Idea + Bunch of Old Ideas





New Idea + Bunch of Old Ideas



**New Findings** 



New Idea + Bunch of Old Ideas



**New Findings** 

Our Paper Extant Work



New Idea + Bunch of Old Ideas



**New Findings** 

# Our Paper

1. Finding 1

## Extant Work

1. Contradicts Paper 1



New Idea + Bunch of Old Ideas



#### **New Findings**

## Our Paper

- 1. Finding 1
- 2. Finding 2

#### Extant Work

- 1. Contradicts Paper 1
- 2. Adds to Paper 2 and Paper 3



## Introduction



## Resources

Customers buy bundles of resources in combination.



#### Resources

Customers buy bundles of resources in combination.

Example: Airline itinerary.



## Model



► Fix ω ∈ Ω.



► Fix ω ∈ Ω.

► Key parameter of agent K:  $\kappa \sim f(\cdot|\omega)$ .

## Agent K's Problem

 $\max_{\alpha_t \in \{0,1\}} \kappa^t \alpha_t$ 



► Fix ω ∈ Ω.

• Key parameter of agent K:  $\kappa \sim f(\cdot | \omega)$ .

 $\blacktriangleright \ \mbox{Key parameter of agent } D \colon \ \delta \sim g(\cdot | \omega).$ 

## Agent K's Problem

 $\max_{\alpha_t \in \{0,1\}} \kappa^t \alpha_t$ 

#### Agent D's Problem

$$\min_{b_t \in \{0,1\}} \sum_{t=1}^{\infty} \delta^t b_t.$$



ightharpoonup Fix  $\omega \in \Omega$ .

• Key parameter of agent K:  $\kappa \sim f(\cdot | \omega)$ .

► Key parameter of agent D:  $\delta \sim g(\cdot|\omega)$ .

► Market Clears at all ω.

## Agent K's Problem

 $\max_{\alpha_t \in \{0,1\}} \kappa^t \alpha_t$ 

#### Agent D's Problem

$$\min_{b_t \in \{0,1\}} \sum_{t=1}^{\infty} \delta^t b_t.$$



## Assumptions on Environment

## Assumptions

1. Assumption One.

## Interpretation/Implications

1. Practice 1.



## Assumptions on Environment

## Assumptions

1. Assumption One.

2. Assumption Two.

## Interpretation/Implications

1. Practice 1.

2. Practice 2.



## Assumptions on Environment

#### Assumptions

- 1. Assumption One.
- 2. Assumption Two.
- 3. Assumption Three.

## Interpretation/Implications

1. Practice 1.

- 2. Practice 2.
- 3. Practice 3.







## Key Non-Existence Result

Suppose  $\gamma>0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0\implies\delta\times\Delta<0.$$



## Key Non-Existence Result

Suppose  $\gamma>0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0 \implies \delta\times\Delta<0.$$

## Possible Misinterpretation

This is not to be misunderstood with  $\gamma < 0 \implies \delta \times \Delta > 0$ .



## Key Non-Existence Result

Suppose  $\gamma>0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0\implies\delta\times\Delta<0.$$

#### Possible Misinterpretation

This is not to be misunderstood with  $\gamma < 0 \implies \delta \times \Delta > 0$ .

## An Example

Consider the example ex1.



Results blocks use the standard block template that I highlight below.



Results blocks use the standard block template that I highlight below.

## Theorem (Key Non-Existence Result)

Suppose  $\gamma > 0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0 \implies \delta\times\Delta<0.$$

Results blocks use the standard block template that I highlight below.

## Theorem (Key Non-Existence Result)

Suppose  $\gamma > 0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0\implies\delta\times\Delta<0.$$

## Lemma (Possible Misinterpretation)

This is not to be misunderstood with  $\gamma < 0 \implies \delta \times \Delta > 0$ .



Results blocks use the standard block template that I highlight below.

## Theorem (Key Non-Existence Result)

Suppose  $\gamma > 0$ . There does not exist an outcome where  $\delta$  and  $\Delta$  are both positive or both negative. That is,

$$\gamma>0\implies\delta\times\Delta<0.$$

## Lemma (Possible Misinterpretation)

This is not to be misunderstood with  $\gamma < 0 \implies \delta \times \Delta > 0$ .

## Corollary (An Example)

Consider the example ex1.



# **Implications**



## Thank You!

Paper available at harishguda.me/research.

