P S G College of Technology

Dept. of Applied Maths & Computational Sciences III M.Sc [SS] – 18XW31 – MFOC – Grammar, Automata, PDA, TM – P Sheet 6

- 1) Let V = {S, A, B, a, b} and T = {a, b} Determine whether G = (V, T, S, P) is a type 0 grammar but not a type I grammar, a type 1 grammar but not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P, the set of productions, is
 - a) $S \rightarrow aAB, A \rightarrow Bb, B \rightarrow A$.
- c) $S \rightarrow aA$, $A \rightarrow a$, $A \rightarrow b$.

b) $S \rightarrow ABa, AB \rightarrow a.$

- d) S \rightarrow aA, aA \rightarrow B, B \rightarrow aA, A \rightarrow b.
- 2) Find the language generated by the following grammars:
 - a) Let $G = (\{B, S\}, \{x, y, z, 0, 1\}, S, \{S \rightarrow xBz, B \rightarrow y \mid 0B1\})$ Derive the word x00y11z.
 - b) Let G = (N, T, P, S) where $N = \{B, S\}$ $T = \{a, b, x, y, z\}$, $P: \{S \rightarrow xBz, B \rightarrow aybb \mid aBb \mid Bb \}$
 - c) Let G = (N, T, P, S) where N = { D, J, K, S } T = { a, b, c, d, e, f } P : {S -> DK, D -> J | aDd, J -> λ | bJc, K -> λ | eKf }
 - d) Let G = ({S,A,B,C},{0,1,2}, S, {S \rightarrow C, C \rightarrow 0CAB, C \rightarrow λ , BA \rightarrow AB, 0A \rightarrow 01, 1A \rightarrow 11, 1B \rightarrow 12, 2B \rightarrow 22 })
 - e) Determine whether the word cbab belongs to language generated by $G=(\{A,B,C,S\},\{a,b,c\},S,\{S\rightarrow AB;A\rightarrow Ca;B\rightarrow Ba;B\rightarrow Cb;B\rightarrow b;C\rightarrow cb;C\rightarrow b\})$
- 3) For the following grammars and target strings, decide whether or not the word is generated by the grammar:
 - a) $S \rightarrow SS$, $S \rightarrow a$, $S \rightarrow bb$;

w=abba

b) $S \rightarrow XS$, $X \rightarrow XX$, $X \rightarrow a$, $S \rightarrow b$.

w=baab

c) $S \rightarrow AB \mid CD \mid a \mid b, A \rightarrow a, B \rightarrow SA, C \rightarrow DS, D \rightarrow b$;

w=bababab

- 4) Define a grammar for each of the following languages.
 - a) $L = \{ a^{n+1}bc^n / n \in N \}$
- c) L = { $a^{n+1}(bc)^n | n \in \mathbb{N}$ }.
- b) $L1 = \{a^n / n \in \mathbb{N}\} \cup L2 = \{bc^n / n \in \mathbb{N}\}\ d) \ L = \{a^i b^j c^k d^m / i = k \ and \ j = m\}$
- 5) Let G = (V, T, S, P) be the phrase-structure grammar with $V = \{O, 1, A, B, S\}$, T = (O, 1) and set of productions P consisting of $S \rightarrow OA$, $S \rightarrow 1A$, $A \rightarrow OB$, $B \rightarrow 1A$, $B \rightarrow 1$.
 - a) Show that 10101 belongs to the language generated by G.
 - b) Show that 10110 does not belong to the language generated by G.
 - c) What is the language generated by G?
- 6) Give NFAs with the specified number of states recognizing the following languages.
 - a. The language $\{\omega \mid \omega \text{ ends with 00}\}\$ with three states.
 - b. The language {0} with two states.
 - c. The language 0*1*0*0 with three states.
 - d. The language $\{\lambda\}$ with one state.
 - e. The set of all strings where pairs of adjacent 0s must be separated by at least one 1, except in the last four characters.
 - f. The set of all strings that do not contain the substring 000.
- 7) Give state diagrams of DFAs recognizing the following languages. The alphabet is {0, 1}.
 - a. $\{\omega \mid \omega \text{ begin with a 1 and ends with a 0}\}$
 - b. $\{\omega \mid \omega \text{ contains at least three 1s}\}$
 - c. $\{\omega \mid \omega \text{ contains the substring 0101. i.e., } \omega = \text{x0101v for some x and v} \}$.
 - d. $\{\omega \mid \omega \text{ has length at least 3 and its third symbol is a 0}\}.$

- e. $\{\omega \mid \omega \text{ starts with 0 and has odd length, or starts with 1 and has even length}\}$
- f. $\{\omega \mid \omega \text{ doesn't contain the substring 110}\}.$
- g. $\{\omega \mid \text{the length of } \omega \text{ is at most 5}\}.$
- h. $\{\omega \mid \omega \text{ is any string except 11 and 111}\}.$
- i. $\{\omega \mid \text{every odd position of } \omega \text{ is a 1}\}.$
- j. $\{\omega \mid \omega \text{ contains at least two 0s and most one 1}\}.$
- k. $\{\lambda, 0\}$.
- I. $\{\omega \mid \omega \text{ contains an even number of 0s, or exactly two 1s}\}$.
- m. The empty set.
- n. All strings except the empty string.
- 8) The formal description of a DFA M is ($\{q_1, q_2, q_3, q_4, q_5\}$, $\{u, d\}$, δ , q_3 , $\{q_3\}$), where δ is given by the following table. Give the state diagram of this machine.

	u	d
q1	q1	q2
q2	q1	q3
q3	q2	q4
q4	q3	q5
q5	q4	q5

- 9) Show that each of the following grammars is ambiguous:
 - a) $S \rightarrow SabS | \lambda$.
 - b) $S \rightarrow SbS \mid A \quad A \rightarrow a \mid aA$.
- 10) Let s=(0,1). Give RG corresponding to the set
 - a) (00, 010, 0110, 011110, ...)
 - b) (0, 001, 000, 00001, 00000, 0000001,...)
- 11) Construct PDA for the following:
 - a. $L = \{a^m b^{m+n} c^n ; m>=0, n>=1 \}$ by final state
 - b. $L = \{a^nb^{2n}; n>=1\}$ by empty stack.
 - c. $L = \{a^{2n}b^{3n} / n >= 0\}$ by final state.
 - d. $L = \{ ww^{R} ; w \in \{ a, b \} + \}$
- 12) Construct TM for the following:
 - a. $L = \{a^m b^n; m, n>=1 \}.$
 - b. L on $\{a, b\}$ given by $L = \{w \mid w \text{ is a multiple of } 3\}$
 - c. $L = \{0^n 1^n; n > = 1\}$
 - d. To accept all bit strings that consist of an even number of 1s.
 - e. $L = \{1^n 2^n 3^n ; n \ge 1\}$
 - f. $L = \{0,1\}^*$ ending with 010.
 - g. To find an even palindrome over {0,1}
 - h. To copy a string of 1s. Input: B111111B; Output: B1111111111B
 - i. To do addition. Input:B111011B Output: B11111B
 - j. To do proper subtraction. Input:B1111011B Output: B11B
 - k. To perform n mod 2.
 - I. To convert a number to its binary equivalent. (from 11111 to 101)
 - m. To perform string concatenation.