CS720

Logical Foundations of Computer Science

Lecture 4: polymorphism

Tiago Cogumbreiro

We now have...

- A reasonable understanding of **proof techniques** (through tactics)
- A reasonable understanding of **functional programming** (today's class mostly concludes this part)
- A minimal understanding of logic programming (next class)

Logical Foundations of CS

This course of CS 720 is divided into two parts:

- 1. The first part: Coq as a workbench to express the logical foundation of CS
- 2. The second part: use this workbench to formalize a programming language I will give you other examples of how Coq is being used to formalize CS

Today's class

- 1. QA about Homework 1 (Basics.v) (no solutions can be discussed!)
- 2. QA about Induction.v and Lists.v
- 3. Cover Poly.v

QA about Homework 1 (Basics.v)

QA about Induction.v and Lists.v

Poly.v

Due Tuesday, September 25, 11:59 EST

Today we will...

- Learn to generalize functions/data types to accept any type
- Learn that Coq is an expression language (functions as data)

Why are we learning this?

- To be able to have interesting data-structures (containers)
- To be able to have reusable/generic definitions

Recall natlist from lecture 3

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

Recall natlist from lecture 3

```
Inductive natlist : Type :=
    | nil : natlist
    | cons : nat → natlist → natlist.
```

How do we write a list of bools?

```
Inductive boollist : Type :=
   | bool_nil : boollist
   | bool_cons : nat → boollist → boollist.
```

How to migrate the code that targeted natlist to boollist? What is missing?

Polymorphism

Inductive types can accept (type) parameters (akin to Java/C# generics, and type variables in C++ templates).

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
```

What is the type of list? How do we print list?

Constructors of a polymorphic list

```
Check list.
yields
list
   : Type → Type
```

What does Type → Type mean? What about the following?

```
Search list.
Check list.
Check nil nat.
Check nil 1.
```



```
cons nat 1 (cons nat 2 (nil nat))
```


Implement concatenation

Recall app:

How do we make app polymorphic?

Implement concatenation

Recall app:

```
Fixpoint app (11 12 : natlist) : natlist :=
  match 11 with
  | nil ⇒ 12
  | h :: t ⇒ h :: (app t 12)
  end.
```

How do we make app polymorphic?

```
Fixpoint app (X:Type) (11 12 : list X) : list X :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h  t ⇒ cons X h (app X t 12)
  end.
```


Implement concatenation

Recall app:

```
Fixpoint app (11 12 : natlist) : natlist :=
  match 11 with
  | nil ⇒ 12
  | h :: t ⇒ h :: (app t 12)
  end.
```

How do we make app polymorphic?

```
Fixpoint app (X:Type) (11 12 : list X) : list X :=
  match 11 with
  | nil _ ⇒ 12
  | cons _ h  t ⇒ cons X h (app X t 12)
  end.
```


Type inference (1/2)

Coq infer type information:

```
Fixpoint app X 11 12 :=

match 11 with

| nil _ ⇒ 12

| cons _ h t ⇒ cons X h (app X t 12)

end.

Check app.
```

outputs

```
app : forall X : Type, list X \to 1ist X \to 1ist X
```


Type inference (2/2)

```
Fixpoint app X (11 12:list X) :=
  match l1 with
  | nil _ ⇒ 12
  | cons _ h t ⇒ cons _ h (app _ t 12)
  end.

Check app.

app
  : forall X : Type, list X → list X → list X
```

Let us look at the output of

```
Compute cons nat 1 (cons nat 2 (nil nat)).
Compute cons _ 1 (cons _ 2 (nil _)).
```


Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

Type information redundancy

If Coq can infer the type, can we automate inference of type parameters?

```
Fixpoint app {X:Type} (11 12:list X) : list X :=
  match 11 with
  | nil ⇒ 12
  | cons h t ⇒ cons h (app t 12)
  end.
```

Alternatively, use Arguments after a definition:

```
Arguments nil {X}. (* braces should surround argument being inferred *)

Arguments cons {_} _ _ _ . (* you may omit the names of the arguments *)

Arguments app {X} 11 12. (* if the argument has a name, you *must* use the *same* name *)
```


Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Try the following

```
Inductive list (X:Type) : Type :=
    | nil : list X
    | cons : X → list X → list X.
Arguments nil {_}.
Arguments cons {X} x y.

Search list.
Check list.
Check nil nat.
Compute nil nat.
```

What went wrong? How do we supply type parameters when they are being automatically inferred?

Prefix a definition with **0**. Example: **0**nil nat.

Recall natprod and fst (lec 3)

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.
Notation "( x , y )" := (pair x y).
```

How do we make pair polymorphic with implicit type arguments?

Recall natprod and fst (lec 3)

```
Inductive natprod : Type :=
| pair : nat → nat → natprod.
Notation "( x , y )" := (pair x y).
```

How do we make pair polymorphic with implicit type arguments?

```
Inductive prod (X Y : Type) : Type :=
| pair : X → Y → prod X Y.
Arguments pair {_}} {__}.
Notation "( x , y )" := (pair x y).

Definition fst {X Y:Type} (p : prod X Y) : X := match p with
| pair x y ⇒ x end.
```

Should we make the arguments of prod implicit? Why?

Recall natprod

```
Theorem surjective_pairing : forall (p : natprod),
  p = (fst p, snd p).
```

How does polymorphism affect our theorems? What about the proof?

Recall natprod

```
Theorem surjective_pairing : forall (p : natprod),
  p = (fst p, snd p).
```

How does polymorphism affect our theorems? What about the proof?

```
Theorem surjective_pairing : forall (X Y:Type) (p : prod X Y),
  p = (fst p, snd p).
```

Low impact in proofs (usually, intros).

Recall indexof (lecture 3)

How do we make this function polymorphic?

```
Fixpoint indexof (n:nat) (1:natlist) : natoption :=
 match 1 with
   nil \Rightarrow None
  | h :: t ⇒
    match beq_nat h n with
     true \Rightarrow Some 0 (* element found at the head *)
     false ⇒
      match indexof n t with (* check for error *)
       Some i \Rightarrow Some (S i) (* increment successful result *)
      None ⇒ None (* propagate error *)
      end
    end
  end.
```


Higher-order functions

```
Require Import Coq.Lists.List. Import ListNotations.
  Fixpoint index of \{X: Type\} (beq: X \to X \to bool) (v:X) (1:list X) : option nat :=
  match 1 with
    nil ⇒ None
    cons h t \Rightarrow
   match beg h v with
      true ⇒ Some 0
                              (* element found at the head *)
     false ⇒
      match indexof beq v t with (* check for error *)
       Some i \Rightarrow Some (S i) (* increment successful result *)
        None ⇒ None (* propagate error *)
       end
    end
  end.
(* A couple of unit tests to ensure indexof is behaving as expected. *)
Goal indexof beq_nat 20 [10; 20; 30] = Some 1. Proof. reflexivity. Qed.
Goal indexof beq_nat 100 [10; 20; 30] = None. Proof. reflexivity. Qed.
```


Filter

```
Fixpoint filter {X:Type} (test: X→bool) (1:list X) : (list X) :=
match 1 with
| [] ⇒
    []
| h :: t ⇒
    if test h
    then h :: filter test t
    else    filter test t
end.
```

What is the type of this function?

Filter

```
Fixpoint filter {X:Type} (test: X→bool) (1:list X) : (list X) :=
match 1 with
| [] ⇒
    []
| h :: t ⇒
    if test h
    then h :: filter test t
    else    filter test t
end.
```

What is the type of this function?

```
forall X: Type \rightarrow (X \rightarrow bool) \rightarrow list X \rightarrow list \rightarrow X
```

What does this function do?

Filter

```
Fixpoint filter {X:Type} (test: X→bool) (1:list X) : (list X) :=
match 1 with
| [] ⇒
    []
| h :: t ⇒
    if test h
    then h :: filter test t
    else    filter test t
end.
```

What is the type of this function?

```
forall X: Type \rightarrow (X \rightarrow bool) \rightarrow list X \rightarrow list \rightarrow X
```

What does this function do?

Retains all elements that succeed test.

00700 | |

How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```
filter ??? [10; 1; 3; 4]
```


How do we use filter?

What if we want to retain 1 and 3? How do we do this?

```
filter ??? [10; 1; 3; 4]
```

Answer 1:

Revisit keep_1_3

```
Definition keep_1_3 (n:nat) : bool :=
  match n with
  | 1 ⇒ true
  | 3 ⇒ true
  | _ ⇒ false
  end.
```

Can we rewrite keep_1_3 by only using beq_nat and orb?

Revisit keep_1_3

```
Definition keep_1_3 (n:nat) : bool :=
  match n with
  | 1 ⇒ true
  | 3 ⇒ true
  | _ ⇒ false
  end.
```

Can we rewrite **keep_1_3** by only using **beq_nat** and **orb**?

```
Open Scope bool. (* ensure the || operator is loaded *)
Definition keep_1_3_v2 (n:nat) : bool :=
   beq_nat 1 n || beq_nat 3 n.
```


Anonymous functions

Are we ever going to use keep_1_3 again?

```
Definition keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n | | beq_nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
```


Anonymous functions

Are we ever going to use keep_1_3 again?

```
Definition keep_1_3_v2 (n:nat) : bool :=
  beq_nat 1 n || beq_nat 3 n.

Compute filter keep_1_3_v2 [10; 1; 3; 4].
```

If you are not, consider using anonymous functions:

```
Goal filter (fun (n:nat) : nat ⇒ beq_nat 1 n || beq_nat 3 n) [10; 1; 3; 4] = [1; 3].
Proof.
    reflexivity.
Qed.
```

Anonymous functions are helpful as one-shoot usages (like anonymous classes in Java and C#).

Currying

Let us retain only 3's

With an anonymous function:

```
Goal filter (fun n \Rightarrow match n with | 3 \Rightarrow true | _ \Rightarrow false) [10; 1; 3; 4] = [3]. 
Proof. reflexivity. Qed.
```

What about Check (beq_nat 3)? Coq is an expression-based language, so beq_nat 3 is an expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

Currying

Let us retain only 3's

With an anonymous function:

```
Goal filter (fun n \Rightarrow match n with | 3 \Rightarrow true | _ \Rightarrow false) [10; 1; 3; 4] = [3]. Proof. reflexivity. Qed.
```

What about Check (beq_nat 3)? Coq is an expression-based language, so beq_nat 3 is an expression, as is beq_nat and beq_nat 3 10. What is the type of each expression?

What we learned...

Poly.v

- New capability: types as (function/data) arguments
- New capability: type inference (omit types and let Coq guess the type)
- New syntax: braces {} and Arguments for type variable inference (implicit arguments)
- New syntax: 1 makes all type arguments *explicit*
- New syntax: fun declares anonymous functions
- New capability: currying (function calls with argument missing yields a function)

(No new tactics.)

Next class: read Tactics.v