

Welcome to C30/ME85 Spring 2024

(Introduction to Solid Mechanics)

• Shaofan Li

University of California at Berkeley

Class Logistic Information

- 1. Textbook: Statics and Mechanics of Materials (2021) Third Edition, Beer et al McGraw-Hill;
- 2. Class schedule: MWF: 1:00 pm 2:00 pm,
- 3. Class location: 50 Birge Hall;
- 3. My office: 783 Davis Hall;
- 4. My office hours: Tu/Thu: 9:30am-11:30am;
- 5. Email: shaofan@berkeley.edu, Tel: 510-642-5362;
- 6. Class website: Bcourses

This class is in-person!

Please DO NOT send any email through the Bcourses/Canvas!

Textbook

It is available in Cal bookstore.

${ m CE30/ME85-Introduction\ to\ Solid\ Mechanics}$ Section II

Date	Class #	Topic	Readings	Homework	Notes
1/17	1	Introduction and Review of vector algebra	Chapter 1		
1/19	2	Force and monents (1)	Chapert 2	HW1 (S)	
1/22	3	Force and moments (2)	Chapter 2 & 3	HW2 (S)	
1/24	4	Forces and moments (3)	Chapter 2 & 3	HW2 (S)	
1/26	5	Statics: Equilibrium (1)	Chapter 3 & 4		HW1 (In)
1/29	6	Equivalent force-moment systems	Chapter 3 & 4	HW3(S)	
1/31	7	Equilibrium of Rigid Bodies	Chapter 4		
2/2	8	Friction force	Chapter 4	HW4 (S)	HW2 (In)
2/5	9	2D Trusses (method of joints)	Chapter 6	HW4 (S)	
2/7	10	2D Trusses (method of sections)	Chapter 6		
2/9	11	Frames and machines	Chapter 6	HW5 (S)	HW3 (IN)
2/12	12	Distributed force: Centroids	Chapter 5	HW5 (S)	
2/14	13	Distributed force: Moment of Inertia	Chapter 7		
2/16	14	Internal forces and stress	Chapter 8	HW6(S)	HW4 (In)
2/19	15	Academic Holiday	Chapter 8		
2/21	16	Stresses (1)	Chapter 8	HW6 (S)	
2/23	17	Stresses (2)	Chapter 9		HW5 (In)
2/26	18	Deformation and strain	Chapter 9	HW7 (S)	
2/28	19	Stress-strain relation	Chapter 9	HW7 (S)	
3/1	20	Deflection of bars	Chapter 9		HW6 (In)
3/4	21	Static indeterminacy	Chapter 9	TBA	
3/6	22	Torsion of circular shafts (1)	Chapter 10	TBA	
3/8	23	Torsion of circular shafts (2)	Chapter 10	11W6 (S)	11W7 (In)
3/11	24	Midterm exam (through lecture 21)			
3/13	25	Torsion of circular shafts	Chapter 10	HW8 (S)	
3/15	26	Beam statics	Chapter 11		HW8 (In)
3/18	27	Bending of beams (I)	Chapter 11	HW9 (S)	
3/20	28	Bending of beams (II)	Chapter 12	HW9 (S)	

Structural Engineering, Mechanics and Materials Professor: S. Li

Date	Class #	Topic	Readings	Homework	Notes
3/22	29	Beam bending (III)	Chapter 11		HW9 (In)
3/25	30	Spring Break	Chapter 11		
3/27	31	Spring Break	Chapter 11		
3/29	32	Spring Break	Chapter 11	HW9 (S)	
4/1	33	Shear stress in beam (1)	Chapter 13	HW10 (S)	
4/3	34	Shear stress in beam (2)	Chapter 13	HW10 (S)	HW10 (In)
4/5	35	Shear stress in beam (3)	Chapter 13		
4/8	36	Deflection of beam (1)	Chapter 15	HW11 (S)	
4/10	37	Deflection of beam (2)	Chapter 15	HW11 (S)	HW11(In)
4/12	38	Transformation of stress	Chapter 14		
4/15	39	Mohr's cirlce (1)	Chapter 14	HW12 (S)	
4/17	40	Mohr's cirlce (2)	Chapter 14	HW12 (S)	HW12(In)
4/19	41	Mohr's cirlce (3)	Chapter 14		
4/22	42	Stability and Column Buckling (1)	Chapter 16	HW13 (S)	
4/24	43	Column Buckling (2)	Chapter 16	HW13 (S)	HW13(In)
4/26	44	Column Buckling (3)	Chpater 16	HW13 (S)	
4/29	45	Final Review	End of Instruction	HW13 (S)	
0/1	40	RRR Week Omce Hour		HW14	HW14(In)
5/7	47	Final Exam	Tuesday	8am-11am	

Required Textbook: Statics and Mechanics of Materials, by Beer et. al. Third Edition, McGraw-Hill, 2021.

FAQs:

Q1. If I have conflicts in final exam schedule, what should I do?

A1. No worry about final exam conflicts, and it always works out in the end.

Q2. I do not have a textbook yet, what should I do?

A2. Buy it online or buy it at Bookstore.

Q3. What is the chance I get A in this class?

A3. 35% to 45 % --- that is so NOT bad, but you have to work hard.

Q4. Is this class online or in person?

A4. This class is in-person.

FAQs:

Q5. I am still in the waitlist what is the chance that I ca get in?

A5. 90% chance.

Q6. Does this class require attendance?

A6. Yes. You must attend 33 out of 38 lectures to get Two-point attendance points..

Q7. What is the chance I can pass this class?

A7. 95 % to 99%.

Q8. Can I change (Switch) my discussion session?

A8. Yes, you can without additional enrollment procedure.

Q9. Any More Questions?

Discussion Session and GSIs:

TA 1: Mr. Qijun Chen Email: cdec76@berkeley.edu;

Office Hours (305 Davis Hall):

M: 11:00 am -1:00 pm and 2:00 pm - 4:00 pm;

W: 11:00 am -1:00 pm

Mr. Qijun Chen also serves as a reader.

TA 2: Mr. Caglar Tamur; Email: caglar.tamur@berkeley.edu; Discussion Session: Monday: 5:00-6:00 pm, 534 Davis Hall; Discussion Session: Tuesday: 5:00-6:00 pm, 534 Davis Hall;

Discussion Session: Wednesday: 5:00-6:00 pm, 534 Davis Hall;

Office Hours (504 Davis Hall): Tu/Wed 3:00 pm - 4:30 pm.

Class web-page is in Bcourses

Courses

191

Commons

Fall 2023

Home

Announcements

Assignments

Discussions

Grades

People

Pages

Files

Syllabus

Outcomes

Ø

Rubrics

Quizzes

Modules Ø

Course Syllabus

Jump to Today

Syllabus Description:

Edit View Insert Format Tools Table

75%

12pt \vee Paragraph \vee B I \cup A \vee $\mathscr{\underline{P}}$ \vee \top^2 :

0,00	-1	rorces and momento (o)	Chapter 2 & 0	11112 (0)	
9/1	5	Statics: Equilibrium (1)	Chapter 3 & 4		HW1 (In
9/4	6	Academic Holiday	Chapter 3 & 4	HW3(S)	
9/6	7	Equivalent force-moment systems	Chapter 3 & 4	HW3(S)	
9/8	8	Equilibrium of Rigid Bodies	Chapter 4		HW2 (In
9/11	9	Friction force	Chapter 4	HW4 (S)	
9/13	10	2D Trusses (method of joints)	Chapter 6	HW4 (S)	
9/15	11	2D Trusses (method of sections)	Chapter 6		HW3 (In
9/18	12	Frames and machines	Chapter 6	HW5 (S)	
9/20	13	Distributed force: Centroids	Chapter 5	HW5 (S)	
9/22	14	Distributed force: Moment of Inertia	Chapter 7		HW4(In
9/25	15	Internal forces and stress	Chapter 8	HW6(S)	
9/27	16	Stresses (1)	Chapter 8	HW6 (S)	
9/29	17	Stresses (2)	Chapter 9		HW5 (L
10/2	18	Deformation and strain	Chapter 9	HW7 (S)	
10/4	19	Stress-strain relation	Chapter 9	HW7 (S)	
10/6	20	Deflection of bars	Chapter 9		HW6 (I
10/9	21	Static indeterminacy	Chapter 9	TBA	
10/11	22	Torsion of circular shafts (1)	Chapter 10	TBA	
10/13	23	Torsion of circular shafts (2)	Chapter 10	HW8 (S)	HW7 (I
10/16	24	Midterm exam (through lecture 21)			<u> </u>
10/18	25	Torsion of circular shafts	Chapter 10	HW8 (S)	
10/20	26	Pure bending	Chapter 11	1	
10/23	27	Bending of beams (1)	Chapter 11	HW9 (S)	
10/25	28	Bending of beams (2)	Chapter 12	HW9 (S)	

CE30-2023-Fall-1.pdf

Homework and Grade

- Detailed HW assignments will be announced online every Friday (including this Friday);
- One mid-term exam and one final exam;
- Course grade system:
- HW 40%, Mid-terms 30 %, and Final 30 %;
- Two points of Bonus point for attendance.
- You must attend 33 out of 38 lectures to gain the two attendance bonus points.
- Total 102 points.
- We have additional Million-Dollar Question Points.

Homework and Grade

A+: 98 above

A: 92 above

A-: 87 above

B+: 82 above

B: 77 above

B-: 72 above

C+: 67 above

C: **60** above

......

Straight scale grading system, Everyone only competes with him- or herself.

How to be a smart student?

- Attending class --it will save you time and help you get better grades;
 Cherish your college life!
- Read the textbook before attending class;
- Do Homework -- It is an essential part of your engineering traning
- Renew your AMBITION ---Be the best you can be

The Truth about human intelligence vs. achievement

Human Intelligence

Why?

Why ? two people who have the same intelligence, one succeeds and one fails ?

1. Discipline and 2. Mind Set

Why Introduction to Solid Mechanics?

We aim to train and cultivate the next-generation first-class engineers to design, innovate, and create future engineering machines, structures, and wonders.

Underground megacity

Mechanics of Materials is a key knowledge component and fundamental skill set that will help you succeed in your future careers.

Leonardo da Vinci

Augustin Cauchy

Leonhard Euler

Jacob Bernoulli

James C. Maxwell

Stephen Timoshenko

The contents of the class is the `intellectual crystallization' contributed by many giants and geniuses in science.

However, we aim at train the next generation of engineers and inventors

George Stephenson

Alberto Castigliano

Zhuravskii

Arthur Ruge

Christian Otto Mohr

Elon Musk

Truss Structure: Fundamental to design structures from buildings, bridge, to space structures.

Torsion and Shaft Fundamental to Design devices for mechanical power transfer

Beam Theory: Fundamental to designing structures from nano-devices to bridges

Stresses: Fundamental to structural failure analysis

Strains: Fundamental to all mechanical sensors

Buckling of Columns (Stability): Fundamental to design: large-scale engineering structures

The Road Map of Statics and Mechanics of Materials Basic Technical Ingredients of MM

- Balance of Force: Equilibrium
- Compatibility of deformation: Kinematics
- Stress-strain relations: Materials properties
- How to build a mechanics model for engineering applications (design)
- How to apply mathematical analysis to solve engineering problems;

Lecture 1 Review Vector Algebra

- I. A vector is a mathematical quantity with two characteristics:
 - 1) magnitude: "how much", size of vector, or, the "length" of vector
 - -2) Direction: orientation in space.
- II. Can you think of science quantities which are vectors in nature?

Name some scalars & Vectors

Scalar Quantities

- Scalar quantities can be completely described by their magnitudes.
- Examples
 - Mass
 - Density
 - Length
 - Speed
 - Time

Vector Quantities

- A vector quantity has both <u>magnitude</u> and <u>direction</u> (line of action).
- A vector quantity obeys the parallelogram of addition
- Examples:
 - Force
 - Displacement
 - Velocity
 - Acceleration

How to express scalar and vector?

1.1 Scalars and Vectors

	Data Types	Examples	Physical Quantities
Scalar	constants variables functions	$\sqrt{2}, 3, \pi$ x, y, t, T e^{-x^2}	time, Temperature
Vector	constants variables functions	$ \sqrt{2}\mathbf{u_x} + 3\mathbf{u_y} x\mathbf{u_x} + y\mathbf{u_y} \cos(\omega t)\mathbf{u_x} + \sin(\omega t)\mathbf{u_y} $	velocity, Force

Later in this class, we shall introduce a quantity called **Tensor**

Geometrically, a vector can be represented as an arrow

A = -B says that vectors A and B are anti-parallel. They have same size but the opposite direction.

 $\mathbf{A} = -\mathbf{B}$ also implies

 $\mathbf{B} = -\mathbf{A}$

Vectors can be added geometrically (Triangle rule)

Find A + B

Vector C is the sum of $\mathbf{A} + \mathbf{B}$ $\mathbf{C} = \mathbf{A} + \mathbf{B}$

Vector Addition is Commutative

$$A + B = B + A$$

Vector C is the sum of $\mathbf{A} + \mathbf{B}$

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

This is the "parallelogram method" taught in trigonometry.

Add multiple vectors "head to head"

could represent four forces acting upon point O -tug-of-war

$$S = A + B + C + D$$

How to find $\mathbf{D} = \mathbf{A} - \mathbf{B}$?

This is the "parallelogram method"

Vectors can be added geometrically as well as analytically (coordinate-freeTriangle rule)

$$\mathbf{C} = \mathbf{A} + \mathbf{B}$$

Law of Sine

$$\frac{A}{\sin \theta_A} = \frac{B}{\sin \theta_B} = \frac{C}{\sin \theta_C} \quad \to \quad \frac{\sin \theta_A}{A} = \frac{\sin \theta_B}{B} = \frac{\sin \theta_C}{C}$$

Law of Cosine

$$C^2 = A^2 + B^2 - 2AB\cos\theta_C$$

When: A+B+C+E=0?

could represent four forces acting upon point O tug-of-war

$$S = A + B + C + D$$

A vector **A** in the x-y plane can be represented by its perpendicular <u>components</u> in a <u>coordinate</u> system.

Components A_X and A_Y
can be positive, negative,
or zero. The quadrant
that vector A lies in
X axis dictates the sign of the
components.

Components are scalars.

When the magnitude of vector A is given and its direction specified then its components can be computed easily

Magnitude and direction of a vector can be found by knowing its components

$$A = \sqrt{(A_X)^2 + (A_Y)^2}$$

$$\tan \theta = A_Y/A_X$$

$$\theta = \tan^{-1}(A_Y/A_X)$$

$$A = A_x \mathbf{i} + A_y \mathbf{j}$$

$$y \text{ axis}$$

$$A_Y$$

$$A_X$$

$$A_X \text{ axis}$$

CIVENG C30-LEC-002 > Assignments > HW1

Spring 2022

Home

Announcements

Assignments

Discussions

Grades

People

Pages

Files

Syllabus

Outcomes Ø

Ø

HW1 At

Class,

This is the first HW assignment:

P2.1, P2.2, P2. 7, P2.18, P2.21, and P2.28

Each problem counts for 10 pts.

In total we have 60 pts.

The first HW is due on next Friday (28/01/2022).

Shaofan Li

Two forces P and Q are applied as shown at point A of a book support. Knowing that P=15 lb and Q=25 lb, determine graphically the magnitude and direction of their resultant using (a) the parallelogram law, (b) the triangle rule.

SOLUTION

(a)

151b 0 251b

Using ruler and protractor

We measure:

$$R = 37 \, \text{lb}, \ \alpha = 76^{\circ}$$

PROBLEM 2.7

A trolley that moves along a horizontal beam is acted upon by two forces as shown. (a) Knowing that $\alpha = 25^{\circ}$, determine by trigonometry the magnitude of the force P so that the resultant force exerted on the trolley is vertical. (b) What is the corresponding magnitude of the resultant?

SOLUTION

Using the triangle rule and the law of sines:

(a)
$$\frac{1600 \text{ N}}{\sin 25^{\circ}} = \frac{P}{\sin 75^{\circ}}$$
 $P = 3660 \text{ N} \blacktriangleleft$

(b)
$$25^{\circ} + \beta + 75^{\circ} = 180^{\circ}$$

$$\beta = 180^{\circ} - 25^{\circ} - 75^{\circ}$$

$$= 80^{\circ}$$

$$\frac{1600 \text{ N}}{\sin 25^{\circ}} = \frac{R}{\sin 80^{\circ}}$$

$$R = 3730 \text{ N} \blacktriangleleft$$

Law of Sine

$$\frac{A}{\sin \theta_A} = \frac{B}{\sin \theta_B} = \frac{C}{\sin \theta_C} \quad \to \quad \frac{1600}{\sin 25^o} = \frac{P}{\sin 75^o} = \frac{R}{\sin \theta_C}$$

$$F_x = \sum_{i=1}^{3} F_{ix} = \sum_{i=1}^{3} F_i \cos \theta_i$$
 $F_y = \sum_{i=1}^{3} F_{iy} = \sum_{i=1}^{3} F_i \sin \theta_i$

$$F_x = 60\cos 25^o + 40\cos(-60^o) + 50\cos(-140^o) = ?$$

$$F_y = 60\sin 25^o + 40\sin(-60^o) + 50\sin(-140^o) = ?$$

Use Engineering Paper for HWs

Gradescope Access code: NPJB6J

CE30/ ME85

Dashboard Assignments **Roster** Extensions

CE30/ ME85

Fall 2023

Course ID: 563375

Description

CE30/ ME85

Things To Do

• Add students or staff to your course from the Roster page.

Entry Code: V5NKJ6

Course Settings

Marzieh Mirmobini

Course Actions

Instructor

Unenroll From Course

♦ Active Assignments	Released	Due (PDT) ▼	♦ Submissions	% Graded \$	Published	Regrades	
Homework#13	Nov 17 at 5:00PM	Dec 04 at 5:00PM	0	0%	\circ	ON	ı
Homework#12	Nov 17 at 5:00PM	Dec 01 at 5:00PM	0	0%	\circ	ON	ı
Homework#11	Nov 10 at 5:00PM	Nov 17 at 5:00PM	0	0%	0	ON	ı
Homework#10	Nov 03 at 5:00PM	Nov 13 at 5:00PM	0	0%	0	ON	ı
Homework#9	Oct 27 at 5:00PM	Nov 03 at 5:00PM	0	0%	0	ON	ı
Homework#8	Oct 13 at 5:00PM	Oct 27 at 5:00PM	0	0%	0	ON	ı
Homework#7	Oct 06 at 5:00PM	Oct 13 at 5:00PM	0	0%	0	ON	ı
Homework#6	Sep 29 at 5:00PM	Oct 06 at 5:00PM	0	0%	\circ	ON	ı
Homework#5	Sep 22 at 5:00PM	Sep 29 at 5:00PM	0	0%	\circ	ON	ı
Homework#4	Sep 15 at 5:00PM	Sep 22 at 5:00PM	0	0%	0	ON	: [

Today's Lecture Attendance Password

Happy New Year!