Lecture 2: Number System

Today's Topics

- Review binary and hexadecimal number representation
- Convert directly from one base to another base
- Review addition and subtraction in binary representation
- Determine overflow in unsigned and signed binary addition and subtraction.

Why do we need other bases

- Human: decimal number system
 - Radix-10 or base-10
 - Base-10 means that a digit can have one of ten possible values, 0 through 9.
- Computer: binary number system
 - Radix-2 or base-2
 - Each digit can have one of two values, 0 or 1
- Compromise: hexadecimal
 - Long strings of 1s and 0s are cumbersome to use
 - · Represent binary numbers using hexadecimal.
 - Radix-16 or base-16
 - This is only a convenience for humans not computers.
- All of these number systems are positional

Unsigned Decimal

- Numbers are represented using the digits 0, 1, 2, ..., 9.
- Multi-digit numbers are interpreted as in the following example
- 793₁₀
 - $= 7 \times 100 + 9 \times 10 + 3$
 - $= 7 \times 10^2 + 9 \times 10^1 + 3 \times 10^0$
- We can get a general form of this
 - $\mathsf{ABC}_{\mathsf{radix}}$
- A x $(radix)^2 + B x (radix)^1 + C x (radix)^0$ Remember that the position index starts from 0.

OK, now I see why we say that number systems are positional.

Unsigned Binary

- Numbers are represented using the digits 0 and 1.
- Multi-digit numbers are interpreted as in the following example

 OK then this means 5 bit

 OK then this means 5 bit
- example

 OK, then this means 5 bit binary even though it is not clearly mentioned.

 OK then this means 5 bit binary even though it is not clearly mentioned.
 - $= 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$ $= 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1$
- Bit: Each digit is called a bit(Binary Digit) in binary
- Important! You must write all bits including leading 0s, when we say *n*-bit binary.
 - Ex: 00010111₂ (8-bit binary)

Unsigned Hexadecimal

- Numbers are represented using the digits 0, 1, 2, ..., 9, A, B, C, D, E, F where the letters represent values: A=10, B=11, C=12, D=13, E=14, and F=15.
- Multi-digit numbers are interpreted as in the following example
- 76CA₁₆
 - = 7 x 16³ + 6 x 16² + C(=12) x 16¹ + A(=10) x 16⁰
 - \blacksquare = 7 x 4096 + 6 x 256 + 12 x 16 + 10
 - $= 30,410_{10}$

Notes on Bases

- Subscript is mandatory at least for a while.
 - We use all three number bases.
 - When a number is written out of context, you should include the correct subscript.
- Pronunciation
 - Binary and hexadecimal numbers are spoken by naming the digits followed by "binary" or "hexadecimal."
 - e.g., 1000_{16} is pronounced "one zero zero zero hexadecimal."
 - c.f., "one-thousand hexadecimal" refers the hexadecimal number corresponding 1000₁₀. (so, 3E8₁₆)

Ranges of Unsigned Number Systems

System	Lowest	Highest	Number of values
4-bit binary (1-digit hex)	0000 ₂ 0 ₁₀ 0 ₁₆	1111 ₂ 15 ₁₀ F ₁₆	16 ₁₀
8-bit binary (1 byte) (2-digit hex)	0000 0000 ₂ 0 ₁₀ 0 ₁₆	1111 1111 ₂ 255 ₁₀ FF ₁₆	256 ₁₀
16-bit binary (2 bytes) (1-digit hex)	0000 0000 0000 0000 ₂ 0 ₁₀ 0 ₁₆	1111 1111 1111 1111 ₂ 65535 ₁₀ FFFF ₁₆	65536 ₁₀
n-bit binary	0 ₁₀	2 ⁿ -1 ₁₀	2 ⁿ

2's Complement Binary Numbers

Negative Number Representation

- Most microprocessors use 2's complement numbers to represent number systems with positive and negative values.
- Hardware performs addition and subtraction on binary values the same way whether they are unsigned or 2's complement systems.
- In signed systems, MSB(Most Significant Bit) has a weight of $-2^{(n-1)}$.

2's Complement Binary Numbers

Bin	Signed	Unsigned
0000 0000	0	0
0000 0001	1	1
0000 0010	2	2
0111 1110	126	126
0111 1111	127	127
1000 0000	-128	128
1000 0001	-127	129
1111 1110	-2	254
1111 1111	-1	255

2's Complement Binary Numbers

- We will use '2C' subscript to indicate a 2's complement number.
- Examples
 - Convert 10011010_{2c} in decimal

• =
$$-2^{(8-1)} \times 1 + 2^4 + 2^3 + 2^1 = -102_{10}$$

- Convert 11011_{2c} in decimal
 - = $-2^{(5-1)} \times 1 + 2^3 + 2^1 + 2^0 = -5_{10}$
- Convert 01011_{2c} in decimal
 - = $-2^{(5-1)} \times 0 + 2^3 + 2^1 + 2^0 = 11_{10}$

A Group of Bits are A Group of Bits.

- To microprocessors, a group of bits are simply a group of bits.
- Humans interpret the group as an unsigned, signed values or also as just a group of bits.

Ranges of Signed Number Systems

System	Lowest	Highest	Number of values
4-bit binary	1000 ₂ -8 ₁₀	0111 ₂ 7 ₁₀	16 ₁₀
8-bit binary (1 byte)	1000 0000 ₂ -128 ₁₀	0111 1111 ₂ 127 ₁₀	256 ₁₀
16-bit binary (2 bytes)	1000 0000 0000 0000 ₂ -32768 ₁₀	0111 1111 1111 1111 ₂ 32767 ₁₀	65536 ₁₀
n-bit binary	-2 ⁽ⁿ⁻¹⁾ 10	2 ⁽ⁿ⁻¹⁾ -1 ₁₀	2 ⁿ

Sign Bit

- The leftmost bit (MSB) is a sign bit.
- We can tell the number is negative or positive by simply inspecting the leftmost bit.
- If MSB is 1, the number is negative. Otherwise, positive.
- Why?
 - The leftmost column has a negative weight, and the magnitude of that weight is larger than the weights of all the positive columns added altogether, any number with a 1 in the leftmost column will be negative.

Negating a 2's Complement Number

- Negate a number:
 - Generate a number with the same magnitude but with the opposite sign.
 - Ex: 25 ←→ -25
- · Two steps in binary systems
 - 1. Perform the 1's complement (flip all the bits)
 - 2. Add 1.
 - Ex: Negate 00101001_{2c} (41₁₀)
 - 1. Flip all the bits: 11010110
 - 2. Add 1: 11010110 + 1 \rightarrow 11010111_{2c} (- 41₁₀)

Converting Decimal to Binary

• Ex: Convert 53₁₀ to **8-bit** unsigned binary.

Converting Decimal to Binary

• Ex: Convert 172₁₀ to **2-digit** hexadecimal.

$$16172$$
 $10 - 12(=C)$
 $=A$
 AC_{16}

Converting a Negative Value

- · Converting a negative value
 - 1. convert the magnitude to correct number of bits
 - 2. negate the result.
- Ex: -127_{10} to **8-bit** signed binary

Binary to Hexadecimal

- · This conversion is the reason that hexadecimal is used.
- We can group 4 bits since four bits can represent 16 (=24) different values.
 - Examples:

```
    1001 0101 1110<sub>2</sub> = 9 5 E <sub>16</sub>
    0110 1010 1011<sub>2</sub> = 6 A B <sub>16</sub>
```

- If a binary number is not multiple of 4bits, padding the number with zeros regardless of the sign of the number.
 - Examples:

```
• 1 0101 1110<sub>2C</sub> = 0001 0101 1110<sub>2</sub> = 1 5 E _{16}
• 1 1011<sub>2C</sub> = 0001 1011<sub>2</sub> = 1 B _{16}
```

Hexadecimal to Binary

- · Hexadecimal is not interpreted as signed or unsigned.
- · Converting hexadecimal to binary
 - Examples

```
• BEFA<sub>16</sub> = 1011 1110 1111 1010<sub>2</sub>
• 7 3 FC<sub>16</sub> = 0111 0011 1111 1100<sub>2</sub>
```

- We can specify a binary system with any number of bits.
 - Examples

```
    0 7 B <sub>16</sub> to 9-bit signed = 0 0111 1011<sub>2C</sub>
    1 F <sub>16</sub> to 5-bit unsigned = 1 1111<sub>2</sub>
```

Binary Arithmetic & Overflow

- Overflow occurs when two numbers are added or subtracted and the correct result is a number that is outside of the range of allowable numbers.
 - Example:
 - 254 + 10 = 264 (<255); overflow in unsigned 8-bit.
 - -100 30 = -130(<-128); overflow in signed 8-bit.

Binary Arithmetic & Overflow

Overflow detection

- For unsigned:
 - It is simple. A carry occurs, so does overflow!
 - A carry (or borrow) out of the most significant column indicates that overflow occurred.
- For signed:
 - A carry does not mean overflow.
 - Ex: in 4-bit binary system
 - -2 + 3 = 1 (1110 + 0011 = 0001 with carry = 1 (carry ignored)
 - -4 3 = -7 (1100 + 1101 = 1001 with carry = -7 (carry ignored)
 - 6 + 3 = 9 (overflow), 0110 + 0011 = 1001 (=-7), incorrect.
 - -7 3 = -10 (underflow), (1001 + 1101 = 0110 (=6), incorrect.

Binary Arithmetic & Overflow

Overflow detection

- For signed:
 - It is hard to detect overflow(underflow).
 - Addition:
 - Adding same sign numbers and the result with different sign
 → overflow.
 - No overflow in case if the two numbers have different sign.
 - Subtraction:
 - Minuend subtrahend = difference
 - If sign(difference) == sign(minuend) → no overflow
 - If $sign(difference) == sign(subtrahend) \rightarrow overflow$.

Binary Arithmetic & Overflow

Examples

- For signed: examples
 - Addition:
 - 01101011 + 01011010 = 11000101.
 - Unsigned (no overflow), signed (overflow, because the sign of the result is different from numbers being added)
 - Subtraction:
 - $\bullet \ 01101011 \textbf{1}1011011 = \textbf{1}0010010.$
 - Unsigned(overflow), signed(overflow, because the sign of the result is same as that of the subtrahend)

Extending Binary Numbers

- The binary numbers must have the same number of bits when performing arithmetic operations.
- It is necessary to extend the shorter number so that it has the same number of bits as the longer number.
- For unsigned:
 - Always extend by adding zeros.
- For signed:
 - Always extend by repeating sign bit.

Extending Binary Numbers

Examples

• Extend the binary numbers below to 16 bits.

```
■ 0110 1111<sub>2</sub> \rightarrow 0000 0000 0110 1111<sub>2</sub>

■ 1 0010 1101<sub>2</sub> \rightarrow 0000 0001 0010 1101<sub>2</sub>

■ 0 1110<sub>2C</sub> \rightarrow 0000 0000 0000 1110<sub>2</sub>

■ 1001 1001<sub>2C</sub> \rightarrow 1111 1111 1001 1001<sub>2</sub>
```

Truncating Binary Numbers

- It is <u>not possible</u> to truncate binary numbers if it yields a shorter number that <u>does not represent the same value</u> as the original number.
- Unsigned:
 - All bits discarded must be 0s.
- Signed:
 - All bits discarded must be same as the new sign bit of the shorter number.

Truncating Binary Numbers

Examples

- Truncate 16-bit values to 8 bits
 - 0000 0000 1011 0111₂ → 1011 0111₂
 - 1111 1111 1011 0111 $_2 \rightarrow \text{not possible}$
 - 0000 0000 1011 0111 $_{2C} \rightarrow$ not possible
 - 0000 0000 0011 0111_{2C} → 0011 0111_{2C}
 - 1111 1110 1011 0111_{2C} → not possible
 - 1111 1111 1011 0111_{2C} → 1011 0111_{2C}

Questions?		

Wrap-up

What we've learned

- Binary and hexadecimal number representation
- Convert directly from one base to another base
- Addition and subtraction in binary representation
- Determine **overflow** in **unsigned** and **signed** binary addition and subtraction

What to Come

- Lab sessions start from Tuesday.
- Introduction to HCS12