# NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

**TECHNICAL NOTE 2133** 

INVESTIGATION OF SEPARATION OF THE TURBULENT

BOUNDARY LAYER

By G. B. Schubauer and P. S. Klebanoff

National Bureau of Standards

20000731

Reproduced From **Best Available Copy** 

Washington August 1950

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

DTIC QUALITY INSPECTED 4

AQM00-10-3364

#### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

# TECHNICAL NOTE 2133

# INVESTIGATION OF SEPARATION OF THE TURBULENT

## BOUNDARY LAYER

By G. B. Schubauer and P. S. Klebanoff

#### SUMMARY

An investigation was conducted on a turbulent boundary layer near a smooth surface with pressure gradients sufficient to cause flow separation. The Reynolds number was high, but the speeds were entirely within the incompressible flow range. The investigation consisted of measurements of mean flow, three components of turbulence intensity, turbulent shearing stress, and correlations between two fluctuation components at a point and between the same component at different points. The results are given in the form of tables and graphs. The discussion deals first with separation and then with the more fundamental question of basic concepts of turbulent flow.

## INTRODUCTION

In 1944 an experimental investigation was begun at the National Bureau of Standards with the cooperation and financial assistance of the National Advisory Committee for Aeronautics to learn as much as possible about turbulent-boundary-layer separation. Considering that previous experimentation had been limited to mean speeds and pressures, it was decided that the best way to bring to light new information was to investigate the turbulence itself in relation to the mean properties of the layer. Since little was known about turbulent boundary layers in large adverse pressure gradients, the investigation was exploratory in nature and was pursued on the assumption that whatever kind of measurements that could be made on turbulence and turbulent processes would carry the investigation in the right direction.

The investigation was therefore long range, there being no natural stopping point as long as there remained unknowns and means for investigating them. The decision to stop came when it was decided that the more basic properties of turbulent motions, such as production, decay, and diffusion, which form the subject of modern theories, could better be investigated first without the effect of pressure gradient. The

experimental work on separation was therefore halted after a certain fund of information had been obtained on turbulence intensity, turbulent shearing stress, correlation coefficients, and the scale of turbulent motions.

Use was made of the results from time to time as they could be made to serve a particular purpose. Certain of the results have appeared therefore in references 1 to 3. It is now felt that the results should be presented in their entirety for what they contribute to the separation problem and to the understanding of turbulent flow, even though they leave many questions unanswered.

The authors wish to acknowledge the active interest and support of Dr. H. L. Dryden during this investigation and the assistance given by Mr. William Squire in the taking of observations and the reduction of data.

## SYMBOLS

| x              | distance along surface from forward stagnation point                                              |
|----------------|---------------------------------------------------------------------------------------------------|
| У              | distance normal to surface measured from surface                                                  |
| z              | direction perpendicular to xy-plane                                                               |
| U              | mean velocity in boundary layer                                                                   |
| $v_1$          | mean velocity just outside boundary layer                                                         |
| U <sub>m</sub> | mean velocity just outside boundary layer at $x = 17\frac{1}{2}$ feet, used as reference velocity |
| v              | y-component of mean velocity in boundary layer                                                    |
| u,v,w          | x-, y-, and z-components of turbulent-velocity fluctuations                                       |
| u',v',w'       | root-mean-square values of u, v, and w                                                            |
| ρ              | density of air                                                                                    |
| ν              | kinematic viscosity of air                                                                        |
| р              | pressure                                                                                          |
| $q_1$          | free-stream dynamic pressure $\left(\frac{1}{2}\rho U_1^2\right)$                                 |

| $\mathbf{q}_{\mathbf{m}}$ | free-stream dynamic pressure at $x = 17\frac{1}{2}$ feet $\left(\frac{1}{2}\rho U_{m}^{2}\right)$                                                  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| τ                         | turbulent shearing stress (-puv)                                                                                                                   |
| uv                        | mean value of product of u and v                                                                                                                   |
| $C_{\tau l}, C_{\tau m}$  | coefficients of turbulent shearing stress $\left(C_{\tau 1} = \tau / \frac{1}{2} \rho U_1^2\right)$ , $C_{\tau m} = \tau / \frac{1}{2} \rho U_m^2$ |
| <sup>τ</sup> o            | skin friction                                                                                                                                      |
| Cf                        | coefficient of skin friction $\left(\tau_0 / \frac{1}{2} \rho U_1^2\right)$                                                                        |
| δ                         | boundary-layer thickness                                                                                                                           |
| δ*                        | boundary-layer displacement thickness $\left(\int_0^{\infty} \left(1 - \frac{U}{U_1}\right) dy\right)$                                             |
| θ                         | boundary-layer momentum thickness $\left(\int_0^\infty \frac{U}{U_1} \left(1 - \frac{U}{U_1}\right) dy\right)$                                     |
| H                         | boundary-layer shape parameter $(\delta*/\theta)$                                                                                                  |
| $L_x, L_y$                | scales of turbulence                                                                                                                               |
| Ry                        | transverse correlation coefficient $(\overline{u_1u_2}/u_1'u_2')$ , where subscripts 1 and 2 refer to positions $y_1$ and $y_2$                    |
| $R_{\mathbf{X}}$          | longitudinal correlation coefficients $(\overline{u_1u_2}/u_1!u_2!$ , where subscripts 1 and 2 refer to positions $x_1$ and $x_2$                  |

# APPARATUS AND TEST PROCEDURE

The setup for the investigation was arranged with two things in mind: (1) The Reynolds number was to be as high as possible and (2) the boundary layer was to be thick enough to permit reasonably accurate measurements of all components of the turbulence intensity and shearing stress by hot-wire techniques which were known to be reliable. Since this required a large setup, the 10-foot open-air wind tunnel at the National Bureau of Standards was chosen, and a wall of airfoil-like

section shown in figures 1 and 2 was constructed in the center of the test section. The wall was 10 feet high, extending from floor to ceiling, and was 27.9 feet long. It was constructed of 1/4-inch Transite on a wooden frame, and the surface on the working side was given a smooth finish by sanding and varnishing and, finally, waxing and polishing. The profile was chosen so that the adverse pressure gradient on the working side would be sufficient to cause separation and yet have sufficiently small curvature to make the pressure changes across the layer negligible.

Since the separation point was found to be very close to the trailing edge, a blister was constructed on the tunnel wall to move the separation point upstream to the location shown in figure 2. At the outset there was troublesome secondary flow from premature separation near the floor and, to a lesser degree, near the ceiling. A vent in the floor, allowing air to enter the tunnel and blow away the accumulated dead air, afforded a satisfactory remedy. The flow was then two-dimensional over the central portion of the wall from the leading edge to the separation point.

A steeply rising pressure, caused by the small radius of curvature of the leading edge and the induced angle of attack, produced transition about 2 inches from the leading edge. The boundary layer was therefore turbulent over practically the whole of the surface and, over the region of major interest, ranged in thickness from  $2\frac{1}{3}$  inches at the  $17\frac{1}{2}$  - foot position to 9 inches at the separation point. All measurements were made with a free-stream speed of about 160 feet per second at the  $17\frac{1}{2}$  - foot position. The boundary-layer thickness at  $17\frac{1}{2}$  feet was equivalent to that on a flat plate 14.3 feet long with fully turbulent layer and no pressure gradient, and the flat-plate Reynolds number corresponding to 160 feet per second was 14,300,000. The speed was always adjusted for changes in kinematic viscosity from day to day to maintain a fixed Reynolds number throughout the entire series of measurements. The turbulence of the free stream of the tunnel was about 0.5 percent.

All measurements were made at the midsection of the wall, where the flow most closely approximated two-dimensionality, and on the side labeled "Working side" in figure 2. While the measurements extended over a considerable period of time, there was no evidence from pressure and meanvelocity distributions that the geometry of the wall changed. There was, however, considerable scatter in the turbulence measurements from day to day, some of which was due to inherent inaccuracies associated with hotwire measurements, and some of which may have been caused by actual changes in the flow. The results therefore do not lend themselves to a determination of differential changes in the x-direction with high accuracy. It was the intention to obtain results applicable to a smooth surface; therefore the surface was frequently polished and kept clean at all times. However, because of the texture of the Transite, the surface could not be given a mirrorlike finish equal to that of a metal surface.

Considerable emphasis was placed on the precise determination of the position of separation. A method was finally evolved whereby the line of separation and the direction of the flow at the surface in the neighborhood of this line could be found. This consisted of pasting strips of white cloth on the surface with a starch solution. Small crystals of iodine were then stuck to the strips. Blue streaks on the starched cloth then showed the direction of the air flow. By this means separation could be located with an accuracy of  $\pm 2$  inches. Initially the line of separation was nowhere straight, but, after the removal of some of the reversed flow near the floor by the vent previously mentioned, the line was made straight for a distance of 2 feet in the center and was located  $25.7 \pm 0.2$  feet from the leading edge.

The pressure distribution was measured with a static-pressure tube 0.04 inch in diameter, constructed according to the conventional design for such a tube. Mean dynamic pressure was obtained by adding a total-pressure tube of the same diameter but flattened on the end to form a nearly rectangular opening 0.012 inch wide.

The hot-wire equipment used in the investigation of turbulence has been fully described in reference 1, and it suffices here merely to call attention to the manner of operation and the performance of the equipment. The thick boundary layer made it possible to obtain essentially point measurements without having to construct hot-wire anemometers on a microscopic scale. The several types used are shown in figure 3. The 1/16-inch scale shows the high magnification of types A, B, C, and D. A complete holder is shown by E with the inch scale above. Heads of type A were used for measuring u', those of type B or C were used for measuring turbulent shearing stresses, and those of type D were used for measuring v' and w'. In use the prongs pointed directly into the mean wind.

When the head of type C was used for measuring shearing stress, an observation of the mean-square signal from each of the wires was necessary. A similar pair of observations was necessary when using type B, but with only one wire the head had to be rotated through 180°. Since it was usually difficult to execute this rotation by remote control, most of the measurements of shearing stress were made with the head of type C.

The hot-wires themselves, shown at the tips of the prongs, were tungsten 0.00031 inch in diameter. Platinum wire could not be used because the air was taken into the tunnel from outdoors and platinum wires were broken by flying dirt particles. The diameter of 0.00031 inch was the smallest obtainable in tungsten at the time, and the length could not be reduced below about 1/16 inch and still maintain the required sensitivity. In all cases the boundary-layer thickness was at least 25 times the wire length.

The uncompensated amplifier had a flat response from 2 to 5000 cycles per second and an amplification decreasing above 5000 cycles per second to about 50 percent at 10,000 cycles per second. The time constant of the wires ranged from 0.001 to 0.003 second, depending on operating conditions, and the over-all response of wire and amplifier could be made equal to that of the uncompensated amplifier by means of the adjustable compensation provided in the amplifier. However with this relatively high time constant, the background noise level was high and had to be subtracted from the readings in order to obtain the true hot-wire signal.

The methods of determining u', v', w',  $\overline{uv}$ , and  $\overline{uv}/u'v'$  are fully described in reference 1. The determination of  $R_y$  and  $R_x$  involved the use of a pair of heads of type A, separated by known distances normal to the surface for  $R_y$  and along the tangent to the surface for  $R_x$ . The "sum-and-difference" method described in reference 4 was used, account being taken of the inequality of u' at the two wires and the differences in sensitivity.

The several measuring heads were mounted on various types of traversing equipment designed for convenience, rigidity, and a minimum of interference at the point where a measurement was being made.

# TEST RESULTS

The results of the measurements are given in tables 1 to 8 and figures 4 to 15. Figures 16 to 22 repeat certain of the results to aid in the analysis.

The tabulation is made to present all of the detail contained in the measurements and to make the results readily available to any style of plotting that suits the reader's needs. Figures 4 to 15 are summary plots intended to show an over-all picture rather than detail.

# Pressure Distribution

The values given in table 1 and figure 4 were obtained from measurements of pressure with a small static-pressure tube placed 1/4 inch from the surface at various positions along the midspan. The tube was also traversed in the y-direction, from which it was found that changes in pressure across the boundary layer were barely detectable in the region from x=18 to 23 feet, and were not measurable elsewhere. The pressure is therefore regarded as constant across the boundary layer, and all of the information on pressure gradient is given by the variation of  $q_1/q_m$  with x.

# Mean-Velocity Distribution

Mean velocities were obtained from dynamic-pressure measurements made at various distances y. No correction was made for the effect of turbulence. The distributions of mean velocity are given in table 2 and summarized by the contour plot shown in figure 5. From these data were derived the values of  $\delta^*$ ,  $\theta$ , and H given in table 3 and figure 6.

The distribution of mean velocity is plotted in figure 7 in the manner suggested by Von Doenhoff and Tetervin in reference 5. If H is a universal parameter specifying the boundary-layer profile, the curves of figure 7 should agree in all detail with those of figure 9 in reference 5. The agreement is good, although there are systematic differences slightly greater than the experimental dispersion.

#### Turbulence Intensities

The turbulence intensities are given in table 4 in terms of  $u^*/U_1$ ,  $v^*/U_1$ , and  $w^*/U_1$ . They are summarized in figures 8 to 10 in terms of  $u^*/U_m$ ,  $v^*/U_m$ , and  $w^*/U_m$  in order to show changes in the absolute magnitude of the fluctuations. As desired,  $u^*$ ,  $v^*$ , and  $w^*$  may be expressed in relation to any of the mean velocities U,  $U_1$ , or  $U_m$  by the aid of tables 1 and 2.

#### Coefficient of Turbulent Shearing Stress

# and uv-Correlation Coefficient

The directly observed quantity  $\overline{uv}$  has been expressed nondimensionally in terms of a coefficient of turbulent shearing stress

$$C_{\tau 1} = \frac{\overline{2uv}}{{U_1}^2}$$

$$C_{TM} = \frac{\overline{2uv}}{U_m^2}$$

The choice of coefficients is arbitrary, and  $C_{\tau 1}$  is tabulated in table 5 while contour plots for  $C_{\tau m}$  are given in figure 11. The choice of  $C_{\tau m}$  for the figure was made because it was desired to show an overall picture of variations in  $\tau$  independent of variations in mean velocity.

The values of the correlation coefficient  $\overline{uv}/u^{\dagger}v^{\dagger}$  are given in table 6 and figure 12.

# Correlation Coefficients $\ensuremath{\mathtt{R}}_y$ and $\ensuremath{\mathtt{R}}_x$

The correlation coefficients  $R_y$  and  $R_x$  express the correlation between values of u at the same instant at two different points. This correlation between points separated by distances in the direction of the local normal to the surface is expressed by  $R_y$ , and the correlation between points separated by distances in the direction of the local tangent to the surface is expressed by  $R_x$ . These directions were normal and tangential to streamlines only when the local mean direction of the flow was tangent to the surface. Where the boundary layer was thickening rapidly, as near the separation point, the flow in the outer portion of the boundary layer had a greater radius of curvature than the surface and the direction was not tangent to the surface. In such regions, therefore,  $R_y$  and  $R_x$  do not conform strictly to the conventional definition of such coefficients.

Values of  $R_y$  are given in table 7 and values of  $R_x$  are given in table 8. Figures 13 and 14 show representative correlation curves in order to give an idea of the distances over which  $\,u\,$  is correlated compared with the boundary-layer thickness.

It will be noted that a correlation exists over much of the boundary-layer thickness. With the region near separation excluded, fluctuations at the center of the layer are related to those everywhere else in the same section. Under such conditions a small negative correlation is found between points in the layer and those outside, as shown in figure 13. Subsequent measurements in a boundary layer with approximately one-tenth of the free-stream turbulence have shown no effect of the free-stream turbulence on the magnitude of the negative correlation. An explanation of this negative correlation on the basis of continuity requirements is offered in reference 3.

From tables 7 and 8 one may calculate integral scales defined by

$$L_{y} = \int_{0}^{\infty} R_{y} dy$$

$$L_{\mathbf{X}} = \int_{0}^{\infty} R_{\mathbf{X}} d\mathbf{x}$$

These are not given here because it is felt that the qualitative concept of scale obtained from figures 13 and 14 conveys about as much physical significance to scale as is possible at present.

## DISCUSSION OF RESULTS

# Mechanics of Separation

The separation point is defined as the point where the flow next to the surface no longer continues to advance farther in the downstream direction. This results from a failure of the medium to have sufficient energy to advance farther into a region of rising pressure. Certain characteristics of the mean flow serve as a guide to the imminence of separation. For example, the shape factor H can be expected to have a value greater than 2. In the present experiment H was found to have the value 2.7 at the separation point, comparing well with the value of 2.6 given in reference 5.

The empirical guides, however, give little insight into the physical factors involved. Separation is a natural consequence of the loss of energy in the boundary layer, and the burden of explanation rests rather with the question as to why separation does not occur at all times at a pressure minimum. At the surface the kinetic energy of the flow is everywhere vanishingly small. At a pressure minimum the potential energy is a minimum, and the air at the surface, having a vanishing amount of kinetic energy to draw upon, could never advance beyond a pressure minimum without receiving energy from the flow farther out. The necessary transfer is effected by the shearing stresses.

It is a well-known fact that viscous shearing stresses are so small that laminar flow can advance but a little distance beyond a pressure minimum. In contrast with this, turbulent shearing stresses can prevent separation entirely if the rate of increase of pressure is not too great. This emphasizes an important fact; namely, that when separation has not occurred, or has been delayed to distances well beyond the pressure minimum, as in the present experiment, viscous stresses play an insignificant role in the prevention or delay of separation.

Turbulent shearing stresses also determine the magnitude of shearing stresses in the laminar sublayer by forcing there a high rate of shear. This, in fact, gives boundary-layer profiles the appearance of near slip flow at the surface. Thus, turbulent stresses dominate all parts of the boundary layer. Viscous effects in the laminar sublayer and elsewhere still play an important role in determining the existing state of the turbulence. However, in dealing with the effects of turbulence, and not with the origin of turbulence, effects of viscosity can be neglected.

At the high Reynolds numbers of the present experiment the laminar sublayer was extremely thin and was never approached in any of the measurements. At the  $17\frac{1}{2}$ -foot position at 0.1 inch from the surface the turbulent shearing stress was 190 times the viscous shearing stress. Considering the low order of magnitude of the viscous stresses compared with that of the turbulent stresses, the equations of motion may be closely approximated by including only the Reynolds stresses, and may be written

$$U\frac{\partial x}{\partial y} + V\frac{\partial y}{\partial y} = -\frac{1}{\rho} \frac{\partial x}{\partial p} - \frac{\partial u^2}{\partial x} - \frac{\partial u^2}{\partial y}$$
 (1)

While all terms in equations (1) and (2) have been measured, they have not been measured with sufficient accuracy to test the adequacy of the equations. The relative importance of the terms involving Reynolds stresses depends on location in the boundary layer. The normal stresses  $\rho u^2$  and  $\rho v^2$  are pressures and their gradients make merely small contributions to  $\partial p/\partial x$  and  $\partial p/\partial y$ . Among the Reynolds stresses the shearing stress is the more important quantity and, accordingly, attention is devoted to it.

It is easy to see qualitatively on physical grounds how the shearing stress must be distributed across the boundary layer. The shearing stress is always in such a direction that fluid layers farther out pull on layers farther in. When the pressure is either constant or falling, all pull is ultimately exerted on the surface. Therefore the shearing stress must be at least as high at the surface as it is elsewhere, and it would be expected to be a maximum there, as it must fall to zero outside the boundary layer. When the pressure is rising, part of the pull must be exerted on the fluid near the surface that has insufficient energy of its own to advance to regions of higher pressure. In other words, the fluid in such layers must be pulled upon harder than it pulls upon the layer next nearer the surface. This means that the shearing stress must have a maximum away from the surface in regions of adverse pressure gradient.

Representative observed distributions are shown in figure 15. It will be seen that the maximum shear stress develops first near the surface and moves progressively outward. The region between the surface and the maximum is receiving energy from the region beyond the maximum, the amount per unit volume at each point being  $U\frac{\partial \tau}{\partial y}$ . Thus the fall in

the shearing stress toward the surface, producing a positive slope, is evidence that the shearing stress is acting to prevent separation. It is clear then that a falling to zero, as for example the curve at x=25.4 feet, is not the cause of separation. It is rather an indication that the velocity gradient is vanishing at the surface. This means that the velocity in the vicinity of the surface is vanishing and that a condition is developing in which no energy can be received. When this condition is fulfilled, the fluid can move no farther and separation has occurred.

The initial slope of the curves in figure 15 is given by equation (1), which becomes, when y = 0:

$$\frac{\partial \mathbf{x}}{\partial \mathbf{p}} = \frac{\partial \mathbf{y}}{\partial \mathbf{y}} \tag{3}$$

A theory of the distribution of shearing stress based on the inner boundary conditions  $\partial^2\tau/\partial y^2=0$  and equation (3) and on the outer boundary conditions  $\tau=0$  and  $\partial\tau/\partial y=0$  at  $y=\delta$  has been given by Fediaevsky (reference 6). The agreement between Fediaevsky's theory and experimental values from the present investigation was fair at the  $17\frac{1}{2}$ -foot position and excellent at the 25-foot position, but elsewhere was poor. Two examples of the agreement are given in figure 16. The Fediaevsky theory, which defines merely how the curves shall begin and end, either loses control over the middle portion or ignores other controlling factors.

Since equation (3) specifies the initial slope, it is an aid in finding the skin friction by the method of extrapolating the distribution curves to y=0. The values found in this way are given in figure 17. As would be expected, the skin friction falls to zero at the separation point. The lack of agreement with values calculated by the Squire-Young formula (reference 7) is to be expected, as this formula does not include the effect of pressure gradient.

The foregoing discussion has simply described the shearing stress in the light of the present experiment and pointed out the role of shearing stress as an energy-transferring agent. While these phenomena are characteristic in every adverse pressure gradient, the form of the shearing stress and also the velocity profiles will be different for different pressure distributions. The present experiment gives merely one example.

Origin of Turbulence and Turbulent Shearing Stress

The discussion of origin of turbulence and turbulent shearing stress will be based on concepts that have superseded the older mixing-length theories. Unfortunately, experiments have not kept pace with ideas and the concepts have not yet been fully verified.

In recent years definite ideas have taken shape regarding the decay of turbulence. These stem from an observation made by Dryden (reference 8); namely, that the rates of decay of different frequency components in isotropic turbulence require that the higher-frequency components gain energy at the expense of the lower-frequency components. It has now become generally accepted that decay involves a transfer of energy from larger eddies to smaller eddies by Reynolds stresses when the Reynolds number characteristic of the eddies is sufficiently high. This idea forms the physical basis for modern theories of isotropic turbulence (for example, references 9 to 15).

Information about turbulent flow points more and more to the conclusion that the concept is basic and may be carried over to shear flow. (See, for example, Batchelor's discussion of Kolmogoroff's theory, reference 9, and Townsend's discussion, reference 16.) The general idea may be expressed as follows: The highest Reynolds number is associated with the mean flow, and here the mean Reynolds stresses transfer energy to the flow system comprising the next smaller spatial pattern, for example, the largest eddies. This second system involves other Reynolds stresses which in turn transfer energy to smaller systems and so on through a spectrum of turbulence until the Reynolds number gets so low that the dissipation is completed by the action of viscosity alone. evolution of heat by the action of viscosity is small for the larger systems and gets progressively greater as the systems get smaller and smaller, with a weighting depending on some Reynolds number characterizing the whole system, say, a Reynolds number based on the outside velocity and the boundary-layer thickness. The higher the Reynolds number the more is the action of viscosity confined to the high-frequency end of the spectrum. Thus at sufficiently high Reynolds numbers the action of viscosity is not only removed from the mean flow but also from all but the smaller-scale components of the turbulence. An exception must, of course, be made for the laminar sublayer, and the likelihood that this is a valid picture increases with distance from the surface.

These ideas then might be regarded as describing a tentative model of a turbulent boundary layer to be examined in the light of experiment. The model is, of course, conceived only in general outline and should not be assumed the same for all conditions.

The rate of removal of kinetic energy per unit volume from the mean flow by Reynolds stresses is given by:

$$\rho \left[ \overline{u^2} \frac{\partial x}{\partial \Omega} + \overline{u^2} \frac{\partial x}{\partial \Lambda} + \overline{u^2} \left( \frac{\partial x}{\partial \Lambda} + \frac{\partial x}{\partial \Lambda} \right) \right]$$
 (4)

This energy goes directly into the production of turbulence. The term  $\overline{uv}\frac{\partial U}{\partial y}$  will generally outweigh the others, but in order to see the relative magnitudes near separation the terms in expression (4) were calculated for the 24.5-foot position. The term  $\overline{uv}\frac{\partial V}{\partial x}$  was found to be negligible. The other terms within the brackets together with their sum are shown in figure 18 divided by  $U_m^3$ . It is seen that the term  $\overline{uv}\frac{\partial U}{\partial y}$  is still the largest and therefore remains the most important contributor to turbulence.

The distribution of turbulence energy is also given in figure 18. This shows a maximum energy content where the rate of production is the greatest; otherwise the comparison has no particular significance. Such coincidence is not required and is not found farther upstream. Data are not available for establishing the balance between production, diffusion, convection, and dissipation of turbulence energy.

It is clear that the turbulence exists because of the Reynolds stresses, and it is self-evident that the normal stresses  $\rho u^2$  and  $\rho v^2$  exist because of the turbulence; but the source of the shearing stress  $\rho uv$  is not apparent without further examination.

Since

$$\tau = -\rho \overline{u} \overline{v} = -\rho \frac{\overline{u} \overline{v}}{u^{\dagger} v^{\dagger}} u^{\dagger} v^{\dagger}$$
 (5)

where  $\overline{uv}/u'v'$  is the correlation coefficient, it is seen that  $\tau$  depends on the correlation and intensity of u and v. If a flow is turbulent without a gradient in mean velocity, there can be no mean shearing stress and therefore no mean correlation between u and v. It is apparent then that a gradient is necessary to produce a correlation, and one might expect to find  $\overline{uv}/u'v'$  proportional to dU/dy. From figure 12 it appears that  $\overline{uv}/u'v'$  shows too little variation across the boundary layer to be proportional to the local value of the mean-velocity gradient. To apply a more direct test,  $\overline{uv}/u'v'$  was plotted in figure 19 against the mean local gradient. Obviously

 $\overline{uv}/u'v'$  cannot be regarded as proportional to  $(\theta/U_1)(dU/dy)$ , and, what is more, it becomes independent of the local gradient for a wide range of values of  $(\theta/U_1)(dU/dy)$ .

Assuming the correctness of the concept of transfer of energy from larger to smaller flow regimes, it is seen that energy flows into turbulence mainly by way of the largest eddies, and it is then mainly these that account for the average shearing stress. Returning to figure 13, it is seen by the curves of Ry that the turbulent motions are correlated over much of the boundary-layer thickness up to the position x = 23 feet, and are still correlated over a considerable portion of the thickness at larger values of x. The extent of the Ry-correlation is roughly a measure of the extent of the largest eddies. This means that the correlation coefficient  $\overline{uv}/u'v'$  arises from those components of the turbulence that extend over much of the boundarylayer thickness, and the correlation between u- and v-components of such a motion would be expected to depend on the mean-velocity gradient as a whole rather than upon the local gradient at any one point. Large mean gradients exist near the surface without producing correspondingly large correlation coefficients in the same locality, and it appears that the correlations here are very likely fixed by some over-all effect. If an over-all velocity gradient is represented at each position by  $\text{U}_{\text{l}}/\text{U}_{\text{m}}$  divided by  $\delta,$  and this is used as the independent variable in figure 20 to cross-plot values of uv/u'v' taken from the flat portion of the curves in figure 19, a definite proportionality between these two quantities is found. This bears out the foregoing argument.

Figure 21 was originally prepared to test one of the equations of state in Nevzgljadov's theory (reference 17), which expresses the shearing stress as proportional to the turbulent energy per unit volume and the mean-velocity gradient. The theory is not supported by the results for the same reason as that mentioned in connection with figure 19. In fact, shearing stress per unit energy is much like the correlation coefficient and would be two-thirds of uv/u'v' if u', v', and w' were all equal. The similarity between figures 19 and 21 is therefore not surprising. The hairpin loops in the curves in these two figures apparently result from the distribution of shearing stress imposed by the adverse pressure gradient.

Figure 22 emphasizes the great difference between turbulent shear flow and laminar shear flow. In laminar flow the shearing stress is directly proportional to the local velocity gradient. In turbulent flow, shown in figure 22, the shearing stress may rise abruptly for scarcely any change in the local velocity gradient and again fall with increasing velocity gradient. This illustrates the difficulty of adopting the concepts of viscous flow in turbulent flow. The difference probably arises because turbulent phenomena, unlike molecular phenomena, are on a scale of space and velocity of the same order as that of the mean flow.

The alternative picture in the form of the model previously described is still speculative and probably oversimplified. It has, however, received support in the present experiment, perhaps as much as could be expected from over-all measurements embracing the entire frequency spectrum. Observations of these same quantities as a function of frequency would be much more informative, but unfortunately the experimental conditions in an open-air wind tunnel discouraged work of this sort. Other types of hot-wire measurements, such as those described by Townsend in reference 16, would be of as great value in probing for the true picture of a turbulent boundary layer as they were in bringing to light phenomena in the turbulent wake of a cylinder.

The present model is but an extension of the concepts required to explain the spectrum and decay of isotropic turbulence. However, in going from the relative simplicity of isotropic turbulence to boundary-layer turbulence many new factors are introduced. Distance from transition point, pressure gradient, curvature, and surface roughness doubtless affect details and may have profound influences. It must be left to future experiments and theory to fill in the gaps, and when this has been done perhaps the data given herein will have more meaning than they have at present. It is with this thought in mind that the data are given in tables, in which form they are the more readily available for new uses.

# CONCLUDING REMARKS

Certain measured characteristics of a separating turbulent boundary layer have been presented. The average characteristics are mean velocity, pressure, and the derived parameters, displacement thickness, momentum thickness, and shape factor. The turbulent characteristics comprise intensities, shearing stresses, tranverse correlations, longitudinal correlations, and correlations between two fluctuation components at a point.

The results have been discussed, first, in connection with what they reveal about separation and, second, in connection with what they reveal about the nature of turbulent boundary layers. The modern concept of energy transfer through a spectrum was extended to the turbulent boundary layer. The resulting model of a turbulent boundary layer was supported by the results. This together with the support from theory and experiment in isotropic turbulence makes it appear that the model may be a very useful one for guiding future experiments.

It is seen that the investigation of separation of the turbulent boundary layer had to go beyond the mere investigation of separation. The real problem is the understanding of the mechanics of turbulent

shear flow under the action of pressure gradient. The solution of this problem depends on the understanding of the mechanics of turbulence, and in this only rudimentary beginnings have been made.

National Bureau of Standards
Washington, D. C., June 1, 1949

#### REFERENCES

- 1. Schubauer, G. B., and Klebanoff, P. S.: Theory and Application of Hot-Wire Instruments in the Investigation of Turbulent Boundary Layers. NACA ACR 5K27, 1946.
- 2. Dryden, Hugh L.: Some Recent Contributions to the Study of Transition and Turbulent Boundary Layers. NACA TN 1168, 1947.
- 3. Dryden, Hugh L.: Recent Advances in the Mechanics of Boundary Layer Flow. Advances in Applied Mechanics, vol. I, Von Mises and Von Kármán, eds., Academic Press Inc. (New York), 1948.
- 4. Dryden, Hugh L., Schubauer, G. B., Mock, W. C. Jr., and Skramstad, H. K.: Measurements of Intensity and Scale of Wind-Tunnel Turbulence and Their Relation to the Critical Reynolds Number of Spheres. NACA Rep. 581, 1937.
- 5. Von Doenhoff, Albert E., and Tetervin, Neal: Determination of General Relations for the Behavior of Turbulent Boundary Layers. NACA Rep. 772, 1943.
- 6. Fediaevsky, K.: Turbulent Boundary Layer of an Airfoil. NACA TM 822, 1937.
- 7. Squire, H. B., and Young, A. D.: The Calculation of the Profile Drag of Aerofoils. R. & M. No. 1838, British A.R.C., 1938.
- 8. Dryden, Hugh L.: Turbulence Investigations at the National Bureau of Standards. Proc. Fifth Int. Cong. Appl. Mech. (Sept. 1938, Cambridge, Mass.), John Wiley & Sons, Inc., 1939, pp. 362-368.
- 9. Batchelor, G. K.: Kolmogoroff's Theory of Locally Isotropic Turbulence. Proc. Cambridge Phil. Soc., vol. 43, pt. 4, Oct. 1947, pp. 533-559.
- 10. Batchelor, G. K., and Townsend, A. A.: Decay of Isotropic Turbulence in the Initial Period. Proc. Roy. Soc. (London), ser. A, vol. 193, no. 1035, July 21, 1948, pp. 539-558.
- 11. Batchelor, G. K.: The Role of Big Eddies in Homogeneous Turbulence. Proc. Roy. Soc. (London), ser. A, vol. 195, no. 1043, Feb. 3, 1949, pp. 513-532.
- 12. Von Kármán, Theodore: Progress in the Statistical Theory of Turbulence. Proc. Nat. Acad. Sci., vol. 34, no. 11, Nov. 1948, pp. 530-539.

13. Lin, C. C.: Note on the Law of Decay of Isotropic Turbulence. Proc. Nat. Acad. Sci., vol. 34, no. 11, Nov. 1948, pp. 540-543.

- 14. Heisenberg, W.: On the Theory of Statistical and Isotropic Turbulence. Proc. Roy. Soc. (London), ser. A, vol. 195, no. 1042, Dec. 22, 1948, pp. 402-406.
- 15. Kovasznay, Leslie S. G.: Spectrum of Locally Isotropic Turbulence. Jour. Aero. Sci., vol. 15, no. 12, December 1948, pp. 745-753.
- 16. Townsend, A. A.: Local Isotropy in the Turbulent Wake of a Cylinder. Australian Jour. Sci. Res., ser. A, vol. 1, no. 2, 1948, pp. 161-174.
- 17. Nevzgljadov, V.: A Phenomenological Theory of Turbulence. Jour. Phys. (U.S.S.R.), vol. 9, no. 3, 1945, pp. 235-243.

TABLE 1.- DISTRIBUTION OF DYNAMIC PRESSURE

| x<br>(ft)                                                                                                                                                                                 | $q_1/q_m$                                                                                                                                                                                                                     | x<br>(ft)                                                                                                                                            | $q_1/q_m$                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05<br>.08<br>.12<br>.17<br>.21<br>.5<br>1.0<br>1.5<br>2.5<br>3.5<br>4.5<br>5.0<br>5.0<br>5.0<br>7.5<br>8.5<br>9.5<br>10.5<br>11.5<br>12.5<br>11.5<br>12.5<br>11.5<br>11.5<br>11.5<br>11 | 0.218<br>.547<br>.762<br>.694<br>.514<br>.396<br>.442<br>.488<br>.534<br>.576<br>.622<br>.668<br>.709<br>.756<br>.810<br>.861<br>.894<br>.923<br>.930<br>.962<br>.951<br>.960<br>.954<br>.958<br>.976<br>.976<br>.972<br>.977 | 13.0<br>13.5<br>14.0<br>14.5<br>15.0<br>15.5<br>16.0<br>17.5<br>18.0<br>19.5<br>20.0<br>20.5<br>21.5<br>22.5<br>23.0<br>24.5<br>25.0<br>26.5<br>27.5 | 0.977<br>.980<br>.991<br>.992<br>.988<br>.988<br>.988<br>.991<br>.994<br>1.000<br>.988<br>.966<br>.927<br>.890<br>.852<br>.813<br>.777<br>.740<br>.659<br>.659<br>.558<br>.558<br>.529<br>.558<br>.529<br>.558<br>.493<br>.484<br>.478<br>.475<br>.472 |

TABLE 2.- MEAN-VELOCITY DISTRIBUTION NORMAL TO SURFACE

|                                                                                                                    |                                                                                                                                              |                                                                                   |                                                                                                      | Ι                                                                                                | <del>,</del>                                                                                           | 1                                                                                                |                                                                                                               |                                                                                                           |                                                                                                                                        | <u> </u>                                                                                          |                                                                                                                |                                 |                                                                                                                       | 1                                                                                                   |                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{x} = 0.5$                                                                                                 | ft                                                                                                                                           | x = 1                                                                             | .0 ft                                                                                                | x = 1                                                                                            | .5 ft                                                                                                  | <b>x</b> = 2                                                                                     | .0 ft                                                                                                         | x = 2                                                                                                     | .5 ft                                                                                                                                  | x = 3                                                                                             | .0 ft                                                                                                          | x = 3                           | 5 ft                                                                                                                  | x = 4                                                                                               | .5 ft                                                                                                                         |
| (in.)                                                                                                              | /U <sub>1</sub>                                                                                                                              | y<br>(in.)                                                                        | u/u1                                                                                                 | y<br>(in.)                                                                                       | υ/υ <sub>1</sub>                                                                                       | (in.)                                                                                            | <sup>U/U</sup> 1                                                                                              | (in.)                                                                                                     | υ/υ <sub>1</sub>                                                                                                                       | (in.)                                                                                             | u/u <sub>1</sub>                                                                                               | y<br>(in.)                      | u/u <sub>1</sub>                                                                                                      | y<br>(in.)                                                                                          | U/U <sub>1</sub>                                                                                                              |
| .02<br>.04<br>.08<br>.13<br>.19                                                                                    | . 552<br>. 645<br>. 725<br>. 814<br>. 899<br>. 959<br>. 991<br>. 000                                                                         | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36                             | 0.609<br>.671<br>.727<br>.795<br>.865<br>.924<br>.975<br>.996                                        | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46                                     | 0.612<br>.660<br>.714<br>.784<br>.856<br>.903<br>.950<br>.984<br>.999                                  | 0.01<br>.02<br>.04<br>.08<br>.14<br>.18<br>.27<br>.36<br>.46                                     | 0.589<br>.634<br>.693<br>.762<br>.828<br>.884<br>.940<br>.978<br>.995                                         | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46<br>.58                                       | 0.584<br>.630<br>.690<br>.777<br>.815<br>.867<br>.915<br>.961<br>.993<br>.999                                                          | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46                                      | 0.588<br>.642<br>.695<br>.752<br>.804<br>.866<br>.911<br>.956<br>.985                                          | .02<br>.04<br>.08<br>.13<br>.19 | 0.576<br>.582<br>.670<br>.737<br>.790<br>.847<br>.894<br>.941<br>.976<br>.998                                         | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.35<br>.46<br>.58                                 | 0,582<br>.641<br>.693<br>.743<br>.788<br>.844<br>.892<br>.933<br>.978<br>.991                                                 |
| <b>x</b> = 5.5                                                                                                     | ft                                                                                                                                           | <b>x</b> = 6                                                                      | .5 ft                                                                                                | <b>x</b> = 7                                                                                     | .5 ft                                                                                                  | x = 8                                                                                            | .5 ft                                                                                                         | <b>x</b> = 9                                                                                              | .5 <b>f</b> t                                                                                                                          | x = 1                                                                                             | 0.5 ft                                                                                                         | x = 1                           | 1.5 ft                                                                                                                | x = 1                                                                                               | 2.5 ft                                                                                                                        |
| (in.)                                                                                                              | /U1                                                                                                                                          | y<br>(in.)                                                                        | u/u <sub>1</sub>                                                                                     | y.<br>(in.)                                                                                      | บ/บ <sub>1</sub>                                                                                       | y<br>(in.)                                                                                       | υ/υ <sub>1</sub>                                                                                              | y (in.)                                                                                                   | υ/u <sub>1</sub>                                                                                                                       | y<br>(in.)                                                                                        | บ/บา                                                                                                           | y<br>(in.)                      | υ/υ <sub>1</sub>                                                                                                      | y<br>(in.)                                                                                          | υ/υ <sub>1</sub>                                                                                                              |
| .02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46                                                               | . 565<br>. 617<br>. 670<br>. 722<br>. 778<br>. 836<br>. 874<br>. 920<br>. 956<br>. 982<br>. 000                                              | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46<br>.58<br>.70<br>.84 | 0.554<br>.596<br>.653<br>.707<br>.761<br>.811<br>.898<br>.935<br>.963<br>.994<br>.998                | 0.01<br>.02<br>.04<br>.08<br>.12<br>.19<br>.27<br>.36<br>.46<br>.57<br>.70<br>.84<br>.99<br>1.15 | 0.536<br>.561<br>.617<br>.669<br>.715<br>.763<br>.852<br>.897<br>.939<br>.968<br>.991<br>.998          | 0.01<br>.02<br>.04<br>.08<br>.12<br>.19<br>.27<br>.36<br>.46<br>.57<br>.70<br>.84<br>.99<br>1.15 | 0.521<br>.538<br>.604<br>.665<br>.718<br>.761<br>.884<br>.930<br>.962<br>.986<br>.997                         | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.57<br>.70<br>.84<br>.99<br>1.15<br>1.32<br>1.50 | 0.504<br>.536<br>.577<br>.646<br>.693<br>.729<br>.764<br>.850<br>.889<br>.924<br>.953<br>.984<br>.997<br>.998<br>1.000                 | 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.57<br>.70<br>.84<br>.99<br>1.15<br>1.32 | 0.507<br>.532<br>.594<br>.652<br>.693<br>.764<br>.801<br>.837<br>.869<br>.905<br>.936<br>.986                  | 1.69                            |                                                                                                                       | 0.01<br>.02<br>.04<br>.08<br>.13<br>.27<br>.36<br>.57<br>.70<br>.99<br>1.43<br>2.08<br>2.51<br>2.94 | 0.504<br>.533<br>.566<br>.636<br>.680<br>.716<br>.815<br>.844<br>.875<br>.937<br>.979<br>.999<br>.998                         |
| x = 13.5                                                                                                           | 5 ft                                                                                                                                         | x = 1                                                                             | 4.5 ft                                                                                               | x = 1                                                                                            | 5.5 ft                                                                                                 | x = 1                                                                                            | 6.5 ft                                                                                                        | x = 1'                                                                                                    | 7.5 ft                                                                                                                                 | x = 18                                                                                            | 8.0 ft                                                                                                         | x = 1                           | 8.5 ft                                                                                                                | x = 19                                                                                              | 9.0 ft                                                                                                                        |
| (in.)                                                                                                              | /V1                                                                                                                                          | y<br>(in.)                                                                        | υ/υ <sub>1</sub>                                                                                     | y<br>(in.)                                                                                       | บ/บ <sub>1</sub>                                                                                       | y<br>(in.)                                                                                       | υ <b>/</b> υ <sub>l</sub>                                                                                     | у<br>(in.)                                                                                                | บ/บา                                                                                                                                   | (in.)                                                                                             | บ/บา                                                                                                           | y<br>(in.)                      | u/u <sub>1</sub>                                                                                                      | y<br>(in.)                                                                                          | U/U <sub>1</sub>                                                                                                              |
| .02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.46<br>.58<br>.71<br>1.00<br>1.32<br>1.32<br>1.70<br>2.09<br>2.52 | . 495<br>. 507<br>. 578<br>. 636<br>. 670<br>. 718<br>. 746<br>. 778<br>. 807<br>. 834<br>. 865<br>. 925<br>. 968<br>. 995<br>. 999<br>. 999 | 1.68<br>2.07                                                                      | 0.482<br>536<br>.616<br>.666<br>.702<br>.732<br>.792<br>.821<br>.844<br>.900<br>.950<br>.994<br>.996 | 1.68                                                                                             | 0.492<br>.487<br>.514<br>.597<br>.652<br>.690<br>.781<br>.810<br>.833<br>.888<br>.936<br>.975<br>1.002 |                                                                                                  | 0.465<br>.472<br>.529<br>.595<br>.655<br>.704<br>.752<br>.780<br>.809<br>.833<br>.881<br>.923<br>.965<br>.990 | 1.69<br>2.08<br>2.50                                                                                      | 0.495<br>.509<br>.573<br>.626<br>.664<br>.698<br>.724<br>.750<br>.782<br>.802<br>.831<br>.878<br>.927<br>.958<br>.997<br>.999<br>1.001 | 1.69<br>2.08<br>2.51                                                                              | 0.495<br>.508<br>.563<br>.627<br>.664<br>.673<br>.727<br>.756<br>.826<br>.873<br>.914<br>.991<br>.996<br>1.002 | 1.69<br>2.08                    | 0.483<br>.477<br>.501<br>.576<br>.628<br>.674<br>.709<br>.740<br>.766<br>.790<br>.815<br>.860<br>.924<br>.945<br>.971 | 1.68                                                                                                | 0.450<br>.455<br>.498<br>.562<br>.612<br>.645<br>.708<br>.738<br>.760<br>.789<br>.817<br>.846<br>.887<br>.930<br>.963<br>.990 |

TABLE 2.- MEAN-VELOCITY DISTRIBUTION NORMAL TO SURFACE - Concluded

| _                                                                                                                            |                                      |                                                                                                                     |                                                                                                                                |                                                                                                    |                                                                                                               | T                                                                                                  |                                                                                                                                                                        |                                                                                                                            |                                                                                                                               | I                                                                                                          |                                                                                                               | <u> </u>                             |                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{x} = 1$                                                                                                             | 9.5 ft                               | x = 2                                                                                                               | 0.0 ft                                                                                                                         | x = 2                                                                                              | 0.5 ft                                                                                                        | <b>x</b> = 2                                                                                       | 1.0 ft                                                                                                                                                                 | x = 2                                                                                                                      | 1.5 ft                                                                                                                        | $\mathbf{x} = 22$                                                                                          | 2.0 ft                                                                                                        | <b>x</b> = 2                         | 2.5 ft                                                                                                                                                                                                                         |
| y<br>(in.)                                                                                                                   | υ/υ <sub>1</sub>                     | y.<br>(in.)                                                                                                         | υ/υ <sub>1</sub>                                                                                                               | y<br>(in.)                                                                                         | U/U <sub>1</sub>                                                                                              | y<br>(in.)                                                                                         | ս/սլ                                                                                                                                                                   | y<br>(in.)                                                                                                                 | Մ/Մ <u>1</u>                                                                                                                  | y<br>(in.)                                                                                                 | ս/սլ                                                                                                          | y<br>(in.)                           | u/u <sub>1</sub>                                                                                                                                                                                                               |
| 0.01<br>.02<br>.04<br>.08<br>.13<br>.19<br>.27<br>.36<br>.58<br>.71<br>1.00<br>1.33<br>1.70<br>2.10<br>2.52<br>2.96          | .922<br>.960<br>.985                 | 0.01<br>.04<br>.07<br>.14<br>.18<br>.26<br>.35<br>.77<br>.70<br>.99<br>1.32<br>1.68<br>2.08<br>2.50<br>2.94<br>3.39 | 0.404<br>.489<br>.542<br>.582<br>.616<br>.654<br>.701<br>.728<br>.755<br>.812<br>.870<br>.909<br>.950<br>.982<br>.999<br>1.004 | .02<br>.04<br>.09<br>.15<br>.22<br>.31<br>.42<br>.54<br>.68<br>.83<br>1.17<br>1.56<br>2.00<br>2.47 | 0.409<br>.406<br>.450<br>.514<br>.556<br>.594<br>.664<br>.662<br>.724<br>.757<br>.809<br>.867<br>.925<br>.961 | .02<br>.05<br>.11<br>.15<br>.22<br>.31<br>.42<br>.54<br>.68<br>.83<br>1.18<br>1.57<br>2.00<br>2.48 | 0.396<br>.394<br>.428<br>.488<br>.528<br>.572<br>.598<br>.666<br>.695<br>.729<br>.786<br>.854<br>.905<br>.950                                                          | 0.01<br>.02<br>.04<br>.09<br>.15<br>.22<br>.31<br>.42<br>.54<br>.68<br>.83<br>1.17<br>1.56<br>2.00<br>2.47<br>2.97<br>3.59 | 0.368<br>.364<br>.411<br>.458<br>.503<br>.550<br>.574<br>.600<br>.627<br>.663<br>.687<br>.747<br>.823<br>.882<br>.931<br>.991 | .02<br>.05<br>.09<br>.15<br>.22<br>.31<br>.42<br>.54<br>.68<br>.83<br>1.17<br>1.56<br>2.00<br>2.46<br>2.96 | .844<br>.890                                                                                                  | 1.57<br>2.00<br>2.47                 | 0.314<br>.320<br>.375<br>.419<br>.448<br>.473<br>.504<br>.531<br>.546<br>.565<br>.631<br>.706<br>.768<br>.827<br>.896<br>.968<br>1.002                                                                                         |
| x = 23                                                                                                                       | 3.0 ft                               | x = 23                                                                                                              | 3.5 ft                                                                                                                         | $x = 2^{j}$                                                                                        | +.0 ft                                                                                                        | x = 2l                                                                                             | +.5 ft                                                                                                                                                                 | x = 2                                                                                                                      | 5.0 ft                                                                                                                        | x = 25                                                                                                     | 5.4 ft                                                                                                        | x = 2                                | 5.77 ft                                                                                                                                                                                                                        |
| y<br>(in.)                                                                                                                   | υ/υ <sub>1</sub>                     | y<br>(in.)                                                                                                          | U/U1                                                                                                                           | y<br>(in.)                                                                                         | υ/υ <sub>1</sub>                                                                                              | y<br>(in.)                                                                                         | U/U1                                                                                                                                                                   | y<br>(in.)                                                                                                                 | υ/υ <sub>1</sub>                                                                                                              | y<br>(in.)                                                                                                 | U/U1                                                                                                          | y<br>(in.)                           | บ/บา                                                                                                                                                                                                                           |
| 0.01<br>.02<br>.04<br>.09<br>.15<br>.22<br>.31<br>.42<br>.548<br>.83<br>1.07<br>2.97<br>2.97<br>3.50<br>4.03<br>4.57<br>5.10 | .694<br>.751<br>.827<br>.886<br>.930 | 0.01<br>.02<br>.05<br>.09<br>.15<br>.31<br>.54<br>.18<br>1.57<br>22.48<br>2.50<br>3.50<br>3.50<br>3.50<br>5.63      | 0.249<br>.274<br>.319<br>.346<br>.361<br>.423<br>.576<br>.648<br>.725<br>.920<br>.964<br>.992<br>.998<br>1.000                 | 3.50                                                                                               | .614                                                                                                          | 4.57<br>5.11<br>5.63                                                                               | 0.174<br>.209<br>.231<br>.251<br>.274<br>.287<br>.303<br>.325<br>.356<br>.373<br>.415<br>.499<br>.560<br>.710<br>.788<br>.858<br>.916<br>.958<br>.918<br>.988<br>1.003 | 4.54<br>5.07                                                                                                               | .718<br>.788                                                                                                                  | 1.55<br>1.99<br>2.46<br>2.46<br>2.95<br>3.47<br>4.00<br>4.54<br>5.07<br>5.59<br>6.56                       | .249<br>.283<br>.328<br>.353<br>.435<br>.528<br>.596<br>.678<br>.738<br>.818<br>.866<br>.938<br>.975<br>1.000 | 4.05<br>4.32<br>4.59<br>5.12<br>5.64 | 0.076<br>.084<br>.102<br>.088<br>.122<br>.130<br>.183<br>.225<br>.263<br>.284<br>.332<br>.318<br>.380<br>.416<br>.459<br>.492<br>.543<br>.570<br>.610<br>.696<br>.747<br>.8180<br>.928<br>.928<br>.988<br>.998<br>.999<br>.995 |

TABLE 3.- BOUNDARY-LAYER PARAMETERS

| X                                      | 8*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | θ<br>(in.)                                                                                                                                                                                                                                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ft)                                   | (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.026                                                                                                                                                                                                                                           | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.505050555555555555555555555555555555 | 0.039<br>.043<br>.051<br>.058<br>.067<br>.076<br>.075<br>.087<br>.097<br>.136<br>.170<br>.180<br>.220<br>.234<br>.255<br>.288<br>.302<br>.303<br>.313<br>.341<br>.385<br>.407<br>.446<br>.517<br>.581<br>.65<br>.77<br>.99<br>1.61<br>1.89<br>2.855<br>3.81<br>3.85<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385<br>.385 | .032<br>.037<br>.042<br>.047<br>.048<br>.055<br>.054<br>.064<br>.072<br>.093<br>.133<br>.163<br>.168<br>.192<br>.208<br>.226<br>.225<br>.229<br>.261<br>.282<br>.307<br>.357<br>.390<br>.443<br>.501<br>.62<br>.66<br>.71<br>.86<br>.95<br>.162 | 1.35<br>1.38<br>1.38<br>1.38<br>1.38<br>1.39<br>1.37<br>1.38<br>1.37<br>1.38<br>1.37<br>1.38<br>1.37<br>1.37<br>1.37<br>1.37<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49 |

TABLE 4.- TURBULENCE INTENSITIES

|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | x =                                                                                                                                                                                                                  | 17.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                  | 77111121-4                                                                                                                                                                                            | x =                                                                                                                                        | 20.0 ft                                                                                                                                                                                                                          |                                                                                                                                                                                             |                                                                                                                                                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| y<br>(in.)                                                                                                                                                                                        | u'/U1                                                                                                                                                                                                                                                                 | y<br>(in.)                                                                                                                                                                                                           | v'/U1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | y<br>(in.)                                                                                                                                                                                                                                                             | w'/Ul                                                                                                                                                                                            | y<br>(in.)                                                                                                                                                                                                                       | u'/U1                                                                                                                                                                                                 | y<br>(in.)                                                                                                                                 | v'/Ul                                                                                                                                                                                                                            | , (in.)                                                                                                                                                                                     | w'/U1                                                                                                                                                                                   |  |
| 0.05<br>.10<br>.15<br>.20<br>.25<br>.30<br>.35<br>.55<br>.65<br>.75<br>.85<br>1.05<br>1.25<br>1.65<br>1.85<br>2.25<br>2.45<br>2.85                                                                | 0.088 .092 .090 .085 .082 .082 .083 .074 .073 .066 .064 .062 .055 .047 .041 .033 .022 .016 .0095 .0072 .0061                                                                                                                                                          | 0.06 .11 .16 .21 .26 .31 .36 .56 .66 .76 .86 .96 1.06 1.26 1.86 2.26 2.81 3.01 3.21 3.41 3.61 3.81                                                                                                                   | 0.029<br>.029<br>.030<br>.031<br>.031<br>.031<br>.031<br>.030<br>.029<br>.029<br>.026<br>.023<br>.021<br>.017<br>.013<br>.010<br>.0080<br>.0073<br>.0059<br>.0052<br>.0045<br>.0042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.10<br>.15<br>.20<br>.25<br>.30<br>.35<br>.40<br>.50<br>.60<br>.70<br>.80<br>.90<br>1.00<br>1.10<br>1.50<br>1.70<br>1.90<br>2.10<br>2.30<br>2.50<br>2.70                                                                                                              | 0.058<br>.058<br>.062<br>.054<br>.059<br>.061<br>.059<br>.058<br>.059<br>.055<br>.055<br>.043<br>.035<br>.029<br>.016<br>.015<br>.015<br>.029                                                    | 0.05 .10 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80 .90 1.20 1.140 1.55 1.75 1.95 2.14 2.44 2.63 2.83 3.03 3.23 3.43 3.63                                                                                                           | 0.091<br>.088<br>.088<br>.096<br>.096<br>.096<br>.093<br>.087<br>.086<br>.083<br>.089<br>.080<br>.077<br>.069<br>.063<br>.062<br>.061<br>.064<br>.043<br>.036<br>.028<br>.028<br>.020<br>.033<br>.036 | 0.11 .16 .21 .26 .31 .36 .41 .51 .61 .71 .81 .91 1.01 1.31 1.51 1.71 1.91 2.51 2.71 2.71 2.91 3.31 3.51 3.71 3.91 4.31 4.31 4.51           | 0.047<br>.045<br>.044<br>.046<br>.047<br>.048<br>.049<br>.047<br>.046<br>.046<br>.046<br>.046<br>.046<br>.046<br>.047<br>.049<br>.031<br>.031<br>.031<br>.031<br>.028<br>.024<br>.019<br>.015<br>.019<br>.0068<br>.0068<br>.0068 | 0.06<br>.11<br>.16<br>.21<br>.26<br>.31<br>.36<br>.56<br>.66<br>.76<br>.86<br>.1.46<br>1.46<br>1.46<br>1.46<br>2.06<br>2.46<br>2.46<br>2.46<br>2.46<br>3.46<br>3.46<br>3.46<br>3.46<br>3.46 | 0.056 .056 .056 .056 .059 .057 .061 .058 .059 .057 .058 .059 .054 .051 .047 .042 .039 .036 .029 .023 .018 .011 .0071 .0068 .0062 .0065                                                  |  |
|                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                       | x = 2                                                                                                                                                                                                                | 21.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  | x = 22.5 ft                                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                            |                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                         |  |
| y<br>(in.)                                                                                                                                                                                        | u'/U <sub>l</sub>                                                                                                                                                                                                                                                     | y<br>(in.)                                                                                                                                                                                                           | v'/U <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y<br>(in.)                                                                                                                                                                                                                                                             | w'/Uj                                                                                                                                                                                            | y<br>(in.)                                                                                                                                                                                                                       | u'/U <sub>1</sub>                                                                                                                                                                                     | y<br>(in.)                                                                                                                                 | v'/U <sub>1</sub>                                                                                                                                                                                                                | y<br>(in.)                                                                                                                                                                                  | w'/Ul                                                                                                                                                                                   |  |
| 0.01<br>.06<br>.11<br>.16<br>.21<br>.26<br>.31<br>.41<br>.51<br>.61<br>.71<br>.91<br>1.01<br>1.21<br>1.41<br>1.61<br>2.01<br>2.41<br>2.61<br>2.81<br>3.01<br>3.21<br>3.91<br>4.01<br>4.21<br>4.41 | 0.082<br>.091<br>.095<br>.097<br>.095<br>.096<br>.095<br>.084<br>.089<br>.084<br>.079<br>.077<br>.064<br>.060<br>.052<br>.045<br>.041<br>.032<br>.025<br>.018<br>.018<br>.018<br>.018<br>.019<br>.019<br>.018<br>.018<br>.018<br>.018<br>.018<br>.018<br>.018<br>.018 | 0.05<br>.10<br>.20<br>.25<br>.305<br>.455<br>.655<br>.955<br>1.245<br>1.245<br>2.2465<br>2.255<br>3.325<br>3.325<br>.255<br>3.325<br>.255<br>3.325<br>.255<br>3.325<br>.255<br>3.325<br>.255<br>3.325<br>.255<br>.25 | 0.039<br>.042<br>.044<br>.046<br>.048<br>.049<br>.053<br>.052<br>.053<br>.054<br>.053<br>.048<br>.048<br>.048<br>.048<br>.048<br>.048<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.053<br>.054<br>.053<br>.048<br>.048<br>.049<br>.053<br>.054<br>.053<br>.048<br>.048<br>.049<br>.053<br>.048<br>.048<br>.049<br>.053<br>.048<br>.048<br>.049<br>.053<br>.048<br>.048<br>.049<br>.053<br>.048<br>.048<br>.049<br>.053<br>.048<br>.049<br>.049<br>.053<br>.048<br>.048<br>.049<br>.049<br>.049<br>.049<br>.053<br>.048<br>.048<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.053<br>.048<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.049<br>.058<br>.058<br>.049<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058<br>.058 | 0.06<br>.11<br>.16<br>.21<br>.26<br>.31<br>.46<br>.56<br>.66<br>.76<br>.86<br>.96<br>1.26<br>1.26<br>1.26<br>1.26<br>1.26<br>2.26<br>2.26<br>2.86<br>2.86<br>3.26<br>3.26<br>3.46<br>3.46<br>3.46<br>3.46<br>4.26<br>4.26<br>4.26<br>4.26<br>4.26<br>4.26<br>4.26<br>4 | 0.051<br>.054<br>.057<br>.057<br>.058<br>.058<br>.058<br>.061<br>.062<br>.062<br>.058<br>.059<br>.058<br>.059<br>.049<br>.043<br>.038<br>.038<br>.023<br>.014<br>.011<br>.0071<br>.0063<br>.0062 | 0.05<br>.10<br>.15<br>.20<br>.25<br>.30<br>.45<br>.55<br>.65<br>.75<br>.85<br>.95<br>1.05<br>1.65<br>1.65<br>2.25<br>2.85<br>3.30<br>3.50<br>4.35<br>4.35<br>4.35<br>5.55<br>5.55<br>5.55<br>5.55<br>5.65<br>5.25<br>5.25<br>5.2 | 0.096 .103 .108 .108 .113 .114 .116 .117 .117 .119 .103 .109 .100 .097 .089 .083 .078 .075 .063 .079 .052 .040 .029 .021 .015 .012 .010 .0090 .0089                                                   | 0.06 .11 .16 .21 .26 .35 .40 .50 .60 .70 .80 .90 1.10 1.30 1.45 1.60 2.20 2.40 2.40 2.80 3.20 3.40 3.80 4.20 4.60 4.60 4.60 5.05 5.25 5.65 | 0.034 .037 .038 .040 .041 .042 .042 .043 .044 .045 .044 .045 .045 .042 .042 .043 .046 .048 .049 .049 .049 .049 .040 .037 .037 .037 .037 .037 .036 .026 .026 .026 .026 .026 .026 .026 .02                                         | 0.10<br>.15<br>.20<br>.25<br>.30<br>.35<br>.40<br>.50<br>.60<br>.70<br>.80<br>.90<br>1.10<br>1.30<br>1.10<br>1.70<br>1.90<br>2.35<br>2.85<br>3.10<br>3.40<br>4.60<br>4.90<br>5.20<br>5.50   | 0.056<br>.058<br>.061<br>.062<br>.063<br>.064<br>.063<br>.068<br>.070<br>.071<br>.070<br>.065<br>.065<br>.056<br>.051<br>.044<br>.038<br>.032<br>.024<br>.017<br>.012<br>.0095<br>.0067 |  |

TABLE 4.- TURBULENCE INTENSITIES - Concluded

|                                                                                                                  |                                                                                                                                                                                                                                                                              | x = 2                                                                                                                                                                                 | 23.5 ft                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                       | x = 2                                                                                                                                  | 4.5 ft                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| y<br>(in.)                                                                                                       | u'/U1                                                                                                                                                                                                                                                                        | y<br>(in.)                                                                                                                                                                            | עי/טן                                                                                                                                                                                                  | y<br>(in.)                                                                                                                                                          | w'/Ul                                                                                                                                                                                                   | y<br>(in.)                              | u'/Մ <u>1</u>                                                                                                                                                                                                                                                                                         | y<br>(in.)                                                                                                                             | v'/U <sub>1</sub>                                                                                                                                                                                                                                                     | (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w'/U1                                                                                                     |
| 0.09<br>14<br>19<br>12<br>14<br>12<br>14<br>14<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 | 0.090<br>.083<br>.088<br>.088<br>.094<br>.091<br>.097<br>.099<br>.099<br>.104<br>.115<br>.112<br>.127<br>.130<br>.101<br>.102<br>.091<br>.083<br>.072<br>.061<br>.050<br>.039<br>.050<br>.039<br>.050<br>.039<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.050<br>.05 | 0.18<br>.26<br>.31<br>.36<br>.56<br>.56<br>.76<br>.86<br>1.06<br>1.36<br>1.76<br>1.76<br>2.16<br>2.16<br>2.91<br>3.16<br>4.06<br>4.06<br>4.06<br>4.06<br>5.56<br>5.56<br>5.56<br>6.76 | 0.037<br>.044<br>.043<br>.049<br>.049<br>.051<br>.052<br>.053<br>.055<br>.053<br>.055<br>.053<br>.053<br>.056<br>.047<br>.039<br>.034<br>.028<br>.022<br>.017<br>.014<br>.028<br>.022<br>.017<br>.0077 | 0.08<br>.13<br>.18<br>.23<br>.28<br>.38<br>.58<br>.68<br>.78<br>.98<br>1.28<br>1.48<br>1.48<br>2.03<br>2.58<br>3.38<br>3.38<br>3.98<br>4.58<br>5.18<br>5.78<br>6.08 | 0.049<br>.054<br>.056<br>.058<br>.060<br>.063<br>.063<br>.063<br>.066<br>.064<br>.067<br>.067<br>.067<br>.067<br>.069<br>.058<br>.054<br>.050<br>.042<br>.037<br>.029<br>.023<br>.011<br>.0080<br>.0060 | 0.0949494444444444444444444444444444444 | 0.061<br>.065<br>.074<br>.071<br>.071<br>.075<br>.077<br>.083<br>.084<br>.085<br>.085<br>.097<br>.098<br>.098<br>.098<br>.098<br>.099<br>.105<br>.112<br>.106<br>.097<br>.097<br>.091<br>.086<br>.081<br>.057<br>.046<br>.057<br>.046<br>.057<br>.046<br>.051<br>.042<br>.031<br>.032<br>.014<br>.031 | 0.35<br>.40<br>.50<br>.55<br>.75<br>.75<br>.85<br>.1.15<br>.89<br>1.29<br>1.35<br>1.35<br>1.35<br>1.55<br>1.35<br>1.35<br>1.35<br>1.35 | 0.045<br>.047<br>.048<br>.049<br>.051<br>.052<br>.057<br>.057<br>.057<br>.059<br>.057<br>.063<br>.063<br>.063<br>.063<br>.063<br>.063<br>.064<br>.063<br>.059<br>.051<br>.046<br>.022<br>.039<br>.039<br>.039<br>.030<br>.039<br>.039<br>.030<br>.039<br>.030<br>.030 | 0.10<br>.14<br>.29<br>.39<br>.59<br>.69<br>.99<br>.99<br>1.29<br>1.69<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1.89<br>1 | 0.056 .054 .058 .063 .061 .063 .062 .069 .070 .075 .077 .079 .077 .075 .061 .056 .052 .040 .090 .015 .015 |

|                                                                                          |                                                                                                                                                                                                                                                                                       | x = 2                                                                                                                                                                                                                                                                                            | 5.4 ft                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y<br>(in.)                                                                               | u'/U <sub>1</sub>                                                                                                                                                                                                                                                                     | y<br>(in.)                                                                                                                                                                                                                                                                                       | v'/U1                                                                                                                                                                                         | y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | w'/U <sub>l</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.05<br>.30<br>.50<br>.60<br>.905<br>.905<br>.905<br>.905<br>.905<br>.905<br>.905<br>.90 | 0.057<br>.062<br>.072<br>.081<br>.085<br>.091<br>.089<br>.099<br>.101<br>.108<br>.108<br>.117<br>.122<br>.126<br>.131<br>.129<br>.127<br>.129<br>.132<br>.121<br>.119<br>.105<br>.108<br>.087<br>.065<br>.065<br>.059<br>.045<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065<br>.065 | 0.13<br>.13<br>.13<br>.13<br>.13<br>.16<br>.22<br>.42<br>.62<br>.78<br>.92<br>1.13<br>1.52<br>1.52<br>1.52<br>2.37<br>2.68<br>2.3.12<br>2.68<br>2.3.12<br>2.68<br>2.3.12<br>4.62<br>5.58<br>4.92<br>5.58<br>6.42<br>4.52<br>6.42<br>6.73<br>6.73<br>6.73<br>6.73<br>6.73<br>6.73<br>6.73<br>6.73 | 0.034<br>.036<br>.036<br>.036<br>.039<br>.049<br>.045<br>.049<br>.057<br>.058<br>.065<br>.071<br>.069<br>.072<br>.081<br>.081<br>.073<br>.081<br>.073<br>.081<br>.073<br>.081<br>.073<br>.081 | 0.08<br>.18<br>.28<br>.28<br>.58<br>.78<br>.98<br>.98<br>.1.48<br>.98<br>.1.48<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68<br>.1.68 | 0.038<br>.042<br>.042<br>.045<br>.047<br>.049<br>.048<br>.053<br>.057<br>.059<br>.060<br>.060<br>.072<br>.069<br>.074<br>.073<br>.075<br>.074<br>.075<br>.075<br>.079<br>.069<br>.079<br>.059<br>.059<br>.060<br>.072<br>.069<br>.071<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.070<br>.060<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.075<br>.076<br>.075<br>.075<br>.075<br>.076<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079<br>.079 |

TABLE 5.- COEFFICIENT OF TURBULENT SHEARING STRESS

| x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 ft                                                                                                                                                                         | x =                                                                                                                               | 17.5 ft                                                                                                                                                                                                | x =                                                                                                                                                                           | 17.5 ft                                                                                                                                                                                                       | TORBOLEAT SHEARING STRESS $x = 18.5 \text{ ft} \qquad x = 19.5 \text{ ft} \qquad x = 20.0 \text{ ft}$   |                                                                                                                                                                                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>Tl</sub>                                                                                                                                                               | y<br>(in.)                                                                                                                        | CTl                                                                                                                                                                                                    | y<br>(in.)                                                                                                                                                                    | CTI                                                                                                                                                                                                           | y<br>(in.)                                                                                              | C <sub>71</sub>                                                                                                                                                                                                                                  | y<br>(in.)                                                                                                                                                                         | C <sub>Tl</sub>                                                                                                                                                                                                                     | y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>71</sub>                                                                                                                                                                                                                   |
| 0.16<br>.21<br>.26<br>.31<br>.36<br>.41<br>.56<br>.66<br>.76<br>.96<br>1.16<br>1.36<br>1.76<br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0040<br>.0039<br>.0037<br>.0040<br>.0037<br>.0035<br>.0031<br>.0029<br>.0025<br>.0024<br>.0020<br>.0016<br>.0004<br>.00067<br>.00062<br>.00001                              | 0.08<br>.15<br>.24<br>.36<br>.50<br>.67<br>.86<br>1.00<br>1.16<br>1.34<br>1.68<br>1.87<br>2.01<br>2.14<br>2.27<br>2.54<br>2.74    | 0.0037<br>.0037<br>.0031<br>.0032<br>.0031<br>.0027<br>.0024<br>.0021<br>.0018<br>.0020<br>.0011<br>.0007<br>.00054<br>.00028<br>.00016<br>.00009<br>.00002                                            | 0.08<br>.13<br>.28<br>.38<br>.38<br>.58<br>.68<br>.98<br>1.08<br>1.248<br>1.68<br>2.28<br>2.48<br>2.68<br>2.88<br>3.08<br>3.28                                                | 0.0034<br>.0033<br>.0033<br>.0030<br>.0033<br>.0037<br>.0034<br>.0032<br>.0030<br>.0025<br>.0022<br>.0023<br>.0019<br>.0014<br>.0010<br>.00053<br>.00025<br>.00011                                            | 0.08<br>.20<br>.32<br>.62<br>.77<br>.91<br>1.04<br>1.21<br>1.40<br>1.56<br>2.04<br>2.25<br>2.54<br>2.84 | 0.0041<br>.0040<br>.0033<br>.0033<br>.0033<br>.0026<br>.0028<br>.0016<br>.0014<br>.00094<br>.00048                                                                                                                                               | 0.06<br>.13<br>.30<br>.38<br>.53<br>.61<br>.77<br>.90<br>1.09<br>1.29<br>1.71<br>1.89<br>2.09<br>2.22<br>2.65<br>2.89<br>3.09                                                      | 0.0029<br>.0031<br>.0039<br>.0032<br>.0033<br>.0024<br>.0021<br>.0016<br>.0015<br>.0013<br>.00045<br>.00045<br>.00045                                                                                                               | 0.08 .14 .19 .24 .29 .34 .39 .59 .69 .79 .99 1.19 1.39 1.79 1.99 2.19 2.359 2.61 2.81 3.21 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0037<br>.0038<br>.0046<br>.0048<br>.0047<br>.0045<br>.0041<br>.0043<br>.0037<br>.0034<br>.0031<br>.0027<br>.0016<br>.0011<br>.00063<br>.00043<br>.00027<br>.00022                                                               |
| x = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 ft                                                                                                                                                                        | <b>x</b> =                                                                                                                        | 21.0 ft                                                                                                                                                                                                | x =                                                                                                                                                                           | 21.0 ft                                                                                                                                                                                                       | x =                                                                                                     | 21.5 ft                                                                                                                                                                                                                                          | x = 22.0 ft                                                                                                                                                                        |                                                                                                                                                                                                                                     | x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.5 ft                                                                                                                                                                                                                           |
| y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C <sub>Tl</sub>                                                                                                                                                               | y<br>(in.)                                                                                                                        | C <sub>Tl</sub>                                                                                                                                                                                        | y<br>(in.)                                                                                                                                                                    | $c_{\tau l}$                                                                                                                                                                                                  | y<br>(in.)                                                                                              | c <sub>tl</sub>                                                                                                                                                                                                                                  | y<br>(in.)                                                                                                                                                                         | CTl                                                                                                                                                                                                                                 | y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C <sub>T</sub> l                                                                                                                                                                                                                  |
| 0.25<br>.30<br>.35<br>.40<br>.55<br>.65<br>.75<br>.95<br>11.15<br>20.25<br>20.25<br>20.25<br>30.45<br>.55<br>.75<br>.95<br>11.15<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20. | 0.0030<br>.0031<br>.0031<br>.0032<br>.0029<br>.0029<br>.0029<br>.0029<br>.0031<br>.0031<br>.0024<br>.0018<br>.0014<br>.0012<br>.00084<br>.00045<br>.00025<br>.00003<br>.00002 | 0.08<br>.13<br>.28<br>.38<br>.38<br>.43<br>.55<br>.68<br>.68<br>.80<br>.80<br>.80<br>.80<br>.80<br>.80<br>.80<br>.80<br>.80<br>.8 | 0.0031<br>.0041<br>.0047<br>.0032<br>.0040<br>.0042<br>.0044<br>.0047<br>.0046<br>.0045<br>.0049<br>.0041<br>.0041<br>.0032<br>.0031<br>.0029<br>.0021<br>.0014<br>.0092<br>.00014<br>.00020<br>.00012 | 0.08<br>.13<br>.28<br>.38<br>.43<br>.53<br>.63<br>.63<br>.93<br>1.03<br>1.73<br>1.23<br>1.73<br>2.578<br>2.578<br>3.63<br>3.63<br>3.63<br>3.63<br>3.63<br>3.63<br>3.63<br>3.6 | 0.0040<br>.0049<br>.0048<br>.0053<br>.0052<br>.0054<br>.0052<br>.0059<br>.0052<br>.0050<br>.0047<br>.0052<br>.0050<br>.0049<br>.0036<br>.0036<br>.0036<br>.0039<br>.0022<br>.0020<br>.0017<br>.0013<br>.00012 | 0.15904594494444444444445557444444444444444                                                             | 0.0037<br>.0041<br>.0040<br>.0048<br>.0048<br>.0043<br>.0047<br>.0050<br>.0052<br>.0056<br>.0052<br>.0045<br>.0045<br>.0045<br>.0045<br>.0040<br>.0042<br>.0034<br>.0032<br>.0025<br>.0013<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003<br>.0003 | 0.07<br>.12<br>.17<br>.22<br>.27<br>.32<br>.47<br>.57<br>.67<br>.77<br>.97<br>1.07<br>1.87<br>1.87<br>2.32<br>2.57<br>2.32<br>2.57<br>2.32<br>3.57<br>4.01<br>4.14<br>4.28<br>4.39 | 0.0028<br>.0032<br>.0035<br>.0041<br>.0041<br>.0040<br>.0042<br>.0045<br>.0044<br>.0050<br>.0052<br>.0051<br>.0044<br>.0045<br>.0039<br>.0032<br>.0030<br>.0023<br>.0016<br>.0011<br>.00072<br>.00072<br>.00072<br>.00038<br>.00001 | 0.08<br>.13<br>.18<br>.23<br>.28<br>.333<br>.48<br>.558<br>.68<br>.78<br>.98<br>1.01<br>1.11<br>1.61<br>1.81<br>1.2.21<br>1.61<br>1.81<br>2.2.41<br>1.61<br>1.81<br>2.2.41<br>3.3.23<br>3.3.27<br>3.3.27<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23<br>3.23 | 0.0028<br>.0033<br>.0034<br>.0037<br>.0039<br>.0043<br>.0045<br>.0043<br>.0041<br>.0047<br>.0045<br>.0043<br>.0044<br>.0040<br>.0038<br>.0036<br>.0030<br>.0027<br>.0024<br>.0020<br>.0015<br>.0012<br>.00070<br>.00031<br>.00002 |

TABLE 5.- COEFFICIENT OF TURBULENT SHEARING STRESS - Concluded

| x = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.0 ft                                                                                                                                                                                                                                                                                                                | · x = 3                                                                                                                                                                                                                                                  | 23.5 ft                                                                                                                                                                                                                                                                                                                        | x =                                                                                                                                 | 24.0 ft                                                                                                                                                                                                                                                                                                    | x = 1                                                                                                                                          | 24.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x = 24.5 ft                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| y<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>T</sub> l                                                                                                                                                                                                                                                                                                       | y<br>(in.)                                                                                                                                                                                                                                               | C <sub>Tl</sub>                                                                                                                                                                                                                                                                                                                | y<br>(in.)                                                                                                                          | C <sub>Tl</sub>                                                                                                                                                                                                                                                                                            | y<br>(in.)                                                                                                                                     | C <sub>Tl</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y<br>(in.)                                                                                                                                                                                                                                                   | C <sub>Tl</sub>                                                                                                                                                                      |
| 0.08<br>.13<br>.18<br>.28<br>.33<br>.48<br>.58<br>.98<br>.98<br>.90<br>1.02<br>2.42<br>2.62<br>2.42<br>2.62<br>2.42<br>2.62<br>3.37<br>4.77<br>4.77<br>4.77<br>5.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0039<br>.0026<br>.0030<br>.0032<br>.0039<br>.0035<br>.0040<br>.0035<br>.0047<br>.0047<br>.0047<br>.0041<br>.0047<br>.0051<br>.0048<br>.0047<br>.0051<br>.0046<br>.0045<br>.0045<br>.0045<br>.0037<br>.0031<br>.0026<br>.0022<br>.0019<br>.0014<br>.00088<br>.00014<br>.00088<br>.00014<br>.00088<br>.00014<br>.00001 | 0.13<br>.18<br>.23<br>.28<br>.33<br>.53<br>.63<br>.70<br>.73<br>.80<br>.83<br>.90<br>1.20<br>1.40<br>2.00<br>2.24<br>2.26<br>2.26<br>2.26<br>3.31<br>3.36<br>3.36<br>4.13<br>5.38<br>4.13<br>5.38<br>5.33<br>5.33<br>5.33<br>5.33<br>5.33<br>5.33<br>5.3 | 0.0026 .0028 .0028 .0029 .0034 .0035 .0035 .0040 .0044 .0044 .0046 .0055 .0049 .0047 .0049 .0052 .0053 .0049 .0037 .0049 .0037 .0049 .0035 .0031 .0026 .0023 .0014 .00093 .00049 .00014                                                                                                                                        | 0.05<br>1.15<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20<br>1.20                                                        | 0.0017<br>.0026<br>.0034<br>.0031<br>.0027<br>.0040<br>.0029<br>.0039<br>.0034<br>.0039<br>.0041<br>.0045<br>.0046<br>.0047<br>.0047<br>.0048<br>.0051<br>.0057<br>.0065<br>.0065<br>.0065<br>.0047<br>.0035<br>.0038<br>.0038<br>.0038<br>.0038<br>.0025<br>.0017<br>.00087<br>.00037<br>.00022<br>.00013 | 0.12<br>.157<br>.22 .27<br>.37 .42<br>.47 .57<br>.678 .718 .88<br>1.28 1.48 1.68<br>1.28 1.48 2.28 2.42 2.62 2.42 2.62 2.42 2.62 2.42 2.62 2.6 | 0.00079<br>.0011<br>.0016<br>.0013<br>.0017<br>.0022<br>.0020<br>.0029<br>.0025<br>.0025<br>.0021<br>.0027<br>.0031<br>.0047<br>.0048<br>.0047<br>.0051<br>.0048<br>.0047<br>.0051<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0051<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.0052<br>.005 | 0.10<br>.15<br>.20<br>.25<br>.30<br>.50<br>.50<br>.70<br>.80<br>.90<br>1.10<br>1.30<br>1.70<br>2.10<br>2.10<br>2.10<br>2.10<br>3.10<br>3.10<br>3.10<br>4.60<br>4.90<br>5.40<br>5.67<br>5.77<br>5.40<br>5.67<br>5.79<br>6.117<br>6.49<br>6.79<br>6.49<br>6.79 | 0.0022 .0021 .0016 .0015 .0017 .0018 .0022 .0027 .0024 .0027 .0024 .0031 .0035 .0047 .0057 .0050 .0057 .0050 .0051 .0042 .0031 .0040 .0019 .00029 .00021 .00029 .00004 .00014 .00004 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0 ft                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                          | 25.0 ft                                                                                                                                                                                                                                                                                                                        | y =                                                                                                                                 | 25.0 ft                                                                                                                                                                                                                                                                                                    | x = 25.4 ft                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                              | 25.4 ft                                                                                                                                                                              |
| (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>T</sub> l                                                                                                                                                                                                                                                                                                       | (in.)                                                                                                                                                                                                                                                    | C <sub>Tl</sub>                                                                                                                                                                                                                                                                                                                | (in.)                                                                                                                               | C <sub>T</sub> 1                                                                                                                                                                                                                                                                                           | (in.)                                                                                                                                          | C <sub>71</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (in.)                                                                                                                                                                                                                                                        | C <sub>T1</sub>                                                                                                                                                                      |
| 0.10<br>.15<br>.20<br>.25<br>.30<br>.45<br>.60<br>.70<br>.80<br>.90<br>1.21<br>1.71<br>1.90<br>4.55<br>2.13<br>3.143<br>3.3.67<br>3.55<br>4.55<br>5.60<br>6.60<br>.70<br>.80<br>.90<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.21<br>1.2 | 0.0011 .0020 .0024 .0021 .0023 .0026 .0036 .0037 .0039 .0045 .0051 .0043 .0042 .0063 .0065 .0071 .0069 .0077 .0062 .0087 .0072 .0097 .0102 .0090 .0060 .0078 .0054 .0054 .0046 .0041 .0041 .0041 .0046 .0041 .0021 .0033 .0031 .0022 .0007                                                                             | 0.17<br>.227<br>.37<br>.407<br>.50<br>.60<br>.908<br>1.13<br>1.28<br>1.73<br>1.93<br>2.33<br>2.73<br>2.93<br>3.48<br>3.73<br>3.48<br>3.73<br>4.63<br>5.23<br>7.33<br>5.27<br>7.132<br>7.39                                                               | 0.0010 .0013 .0020 .0026 .0023 .0026 .0031 .0028 .0035 .0032 .0053 .0040 .0061 .0061 .0064 .0061 .0064 .0061 .0069 .0099 .0087 .0099 .0087 .0099 .0088 .0091 .0071 .0064 .0061 .0064 .0061 .0068 .0081 .0091 .0079 .0081 .0071 .0064 .0061 .0068 .0081 .0091 .0079 .0081 .0071 .0064 .0061 .0062 .0068 .0061 .0062 .0068 .0063 | 0.06 .11 .31 .31 .51 .61 .71 .83 .03 1.23 1.51 1.91 2.11 2.11 2.51 2.79 3.35 1.77 4.57 4.57 4.57 4.57 4.57 4.62 5.70 6.42 7.02 7.02 | 0.00077 0014 0019 0023 0021 0025 0036 0034 0041 0045 0068 0076 0075 0074 0076 0092 0077 0100 0098 0098 0104 0085 0074 0078 0079 0100 0098 0098 0104 0087 0072 0062 0041 0040 0029 0072 0062 0041 0040 0029 0062 0061                                                                                       | 0.18<br>.28<br>.38<br>.48<br>.56<br>.78<br>.98<br>1.08<br>1.38<br>1.58<br>1.68<br>2.28<br>2.28<br>2.88<br>3.08                                 | 0.00050 .00086 .00064 .0011 .00088 .0013 .0019 .0022 .0031 .0043 .0047 .0044 .0049 .0040 .0059 .0067 .0071 .0071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3. 28<br>3. 48<br>3. 48<br>3. 83<br>4. 68<br>4. 68<br>5. 48<br>5. 48<br>6. 68<br>6. 72<br>7. 52<br>7. 52<br>7. 52<br>7. 52                                                                                                                                   | 0.0084<br>.0086<br>.0088<br>.0078<br>.0072<br>.0077<br>.0063<br>.0065<br>.0054<br>.0040<br>.0037<br>.0015<br>.0013<br>.0012<br>.00066<br>.00043<br>.00017<br>.00009                  |

TABLE 6.- uv-correlation coefficient

| 2                                                                                                                                                 | K = ]                                                                                                                                     | 17.5 ft |                                                                     |                                                                                                           | x = 2                                                               | 0.0 ft                                                                           |        |                                                                                                                   | x = 2                                                                                                       | 21. | Oft .                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|
| y<br>(in.)                                                                                                                                        |                                                                                                                                           | ū√/u    | ı'v'                                                                |                                                                                                           | y<br>(in.)                                                          | ū√u'v                                                                            | .1     | ( i                                                                                                               | y<br>in.)                                                                                                   |     | <del>uv</del> /u'v'                                                                                           |
| 0.10<br>.25<br>.50<br>.75<br>1.00<br>1.25<br>1.50<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00                                                 | .25 .57<br>.50 .57<br>.75 .55<br>1.00 .55<br>1.25 .55<br>1.50 .53<br>1.75 .48<br>2.00 .42<br>2.25 .32<br>2.50 .21<br>2.75 .14<br>3.00 .04 |         | 775553882214                                                        | 0.10<br>.25<br>.50<br>.75<br>1.00<br>1.25<br>1.50<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25 |                                                                     | .50<br>.49<br>.49<br>.48<br>.47<br>.47<br>.46<br>.44<br>.42<br>.40<br>.35<br>.19 |        | 0.10<br>.25<br>.50<br>.75<br>1.00<br>1.25<br>1.50<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25<br>3.50 |                                                                                                             |     | 0.37<br>.42<br>.46<br>.47<br>.45<br>.45<br>.43<br>.42<br>.41<br>.39<br>.37<br>.31<br>.27<br>.18               |
| x = 2                                                                                                                                             | 2.5                                                                                                                                       | ft      | х                                                                   | = 23.5 ft                                                                                                 |                                                                     | x =                                                                              | 24.5 : | ft                                                                                                                | х                                                                                                           | = 2 | 25.4 ft                                                                                                       |
| y (in.)                                                                                                                                           | ัน                                                                                                                                        | īv/u'v' | y<br>(in.)                                                          | ) <u>uv/u'v'</u>                                                                                          |                                                                     | y<br>(în.)                                                                       | uv,    | /u'v'                                                                                                             | y<br>(in.)                                                                                                  |     | uv/u'v'                                                                                                       |
| 0.10<br>.25<br>.50<br>.75<br>1.00<br>1.25<br>1.50<br>1.75<br>2.00<br>2.25<br>2.50<br>2.75<br>3.00<br>3.25<br>3.50<br>3.75<br>4.00<br>4.25<br>4.50 | 0.42 0.<br>.44 .<br>.45 1.<br>.47 1.<br>.47 2.<br>.48 2.<br>.48 3.<br>.48 3.<br>.49 4.<br>.47 4.<br>.47 4.                                |         | 0.25<br>.50<br>1.00<br>2.00<br>2.50<br>3.50<br>4.00<br>4.50<br>5.50 |                                                                                                           | 0.39<br>.40<br>.43<br>.44<br>.42<br>.41<br>.40<br>.36<br>.30<br>.21 | (fn.)                                                                            |        | .25<br>.30<br>.34<br>.37<br>.41<br>.43<br>.44<br>.45<br>.42<br>.38                                                | 0.25<br>.50<br>1.00<br>2.00<br>2.50<br>3.00<br>3.50<br>4.50<br>5.50<br>6.00<br>6.50<br>7.00<br>7.50<br>8.00 |     | 0.11<br>.15<br>.24<br>.31<br>.36<br>.38<br>.40<br>.41<br>.42<br>.42<br>.42<br>.43<br>.42<br>.36<br>.26<br>.18 |

| THE PARTY OF                     |            | 1 |
|----------------------------------|------------|---|
|                                  |            | ı |
| Contract of the last of the last |            |   |
|                                  |            | • |
| -                                | THE PLEASE |   |

|          | y <sub>1</sub> = 2.96 in. | $^{\mathrm{Ry}}$                      | 0<br>886<br>756<br>888<br>756<br>756<br>881<br>876<br>876<br>876<br>876<br>876<br>876<br>876<br>876<br>876<br>876                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |
|----------|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|          |                           | y2 - y1<br>(in.)                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NACA |
|          | y <sub>1</sub> = 2.03 in. | Ry                                    | 88 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | į    |
|          |                           | y <sub>2</sub> - y <sub>1</sub> (1n.) | 0.00<br>20.1.3.8.8.8.9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,    |
| ft       | yl = 1.53 in.             | Ry                                    | 0.93<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75<br>9.75                                                                                                                                                                                                       |      |
| x = 20.0 |                           | y2 - y1<br>(in.)                      | 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|          | yl = 1.01 in.             | Ry.                                   | 0.93<br>2.53<br>2.53<br>3.33<br>3.33<br>5.53<br>5.53<br>5.53<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|          |                           | y2 - y <sub>1</sub>                   | 0 0 1 0 2 4 4 4 4 4 5 4 4 4 4 4 4 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
|          | yl = 0.76 in;             | Ry                                    | 0.09.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|          |                           | y <sub>2</sub> - y <sub>1</sub> (in.) | 0<br>881.<br>831.<br>831.<br>831.<br>831.<br>831.<br>831.<br>831.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|          | y1 = 2.02 in.             | Ry                                    | 0 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| .5 ft    |                           | y2 - y <sub>1</sub> (in.)             | 0.00<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00.11<br>.00. |      |
| x = 17   | y <sub>1</sub> = 0.98 in. | Ry                                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|          |                           | y <sub>2</sub> - y <sub>1</sub> (in.) | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |

 ${\rm R\!y}$ 

|                                    |             | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|-------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |             | y1 = 3.7              | J2 - J1       Ry       J2 - J1       Ry       J3 - J1       Ry       J3 - J1       J4 - J2         0.02       0.02       0.02       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97       0.97 <td></td> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| دو                                 |             | )5 in.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00 |
|                                    | x = 23.5 ft | y1 = 3.05             | l i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    |             | it in.                | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Continued                          |             | y1 = 1.54             | l ä                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                  |             | 34 in.                | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRANSVERSE CORRELATION COEFFICIENT |             | $\mathbf{y}_1 = 0.84$ | y <sub>2</sub> - y <sub>1</sub> (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03<br>6.04<br>6.04<br>6.04<br>6.04<br>6.04<br>6.04<br>6.04<br>6.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEION C                            |             | 92 in.                | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0<br>60.0 |
| CORREL                             |             | y <sub>1</sub> = 3.9  | y2 - y1<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01.00.01.00.01.00.00.00.00.00.00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SVERSI                             |             | 00 in.                | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.98<br>9.98<br>9.57<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.09<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00<br>9.00 |
| 7                                  |             | $y_1 = 2.90$          | y2 - y1<br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>4.4.5.6.6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TABLE                              | .5 ft       | 32 in.                | $_{\mathrm{Ry}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | x = 22.5    | $y_1 = 2.$            | y2 - y <sub>1</sub><br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02<br>1.12<br>1.22<br>1.02<br>1.02<br>1.02<br>1.02<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.04<br>1.05<br>1.05<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06 |
|                                    |             | 45 in.                | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.98<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053<br>.053 |
|                                    |             | •                     | y2 - y <sub>1</sub><br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10<br>1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    |             | in                    | Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.65<br>6.65<br>6.65<br>6.65<br>6.65<br>6.65<br>6.65<br>6.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -                                  |             | $y_1 = 0.85$          | y2 - y <sub>1</sub><br>(in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000110000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| -           |                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 |
|-------------|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| .4 ft       | 47 in.                                                    | $^{\mathrm{R}}\mathbf{y}$                | 0.98<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|             | y <sub>1</sub> = 6. <sup>1</sup>                          | y <sub>2</sub> - y <sub>1</sub><br>(in.) | 0 111111000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - |
|             | 93 in.                                                    | Ry                                       | 96.<br>98.<br>97.<br>98.<br>97.<br>98.<br>97.<br>98.<br>98.<br>98.<br>98.<br>98.<br>98.<br>98.<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|             | $y_1 = 5.9$                                               | y2 - y <sub>1</sub><br>(in.)             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| x = 25.     | y <sub>1</sub> = 3.66 in.                                 | $_{\mathrm{Ry}}$                         | 0<br>8.84.44.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|             |                                                           | y <sub>2</sub> - y <sub>1</sub> (in.)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|             | 8 in.                                                     | Ry                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|             | $y_1 = 0.98$                                              | y2 - y1<br>(1n.)                         | 0.001.44.44.44.44.44.44.44.44.44.44.44.44.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|             | 73 in. $y_1 = 3.00$ in. $y_1 = 4.01$ in. $y_1 = 5.02$ in. | Ry                                       | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|             |                                                           | y <sub>2</sub> - y <sub>1</sub> (in.)    | 0.08<br>1.18<br>1.18<br>1.19<br>1.19<br>1.19<br>1.19<br>1.19<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|             |                                                           | Ry                                       | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| x = 24.5 ft |                                                           | y <sub>2</sub> - y <sub>1</sub> (in.)    | 0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|             |                                                           | Ry                                       | 900<br>900<br>900<br>900<br>900<br>900<br>900<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|             |                                                           | y2 - y <sub>1</sub> (1n.)                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|             |                                                           | Ry                                       | 286.<br>27.<br>28.<br>28.<br>21.<br>220.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|             | y <sub>1</sub> = 1.                                       | y2 - y <sub>1</sub> (in.)                | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|             | y <sub>1</sub> = 0.81 in.                                 | Ry                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|             |                                                           | y <sub>2</sub> - y <sub>1</sub> (in.)    | 0.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.00<br>90.0 |   |



TABLE 8.- LONGITUDINAL CORRELATION COEFFICIENT

|                                                                                                                                                                              | x <sub>1</sub> = 17.5 ft                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sub>1</sub> = 20.0 ft                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| y = 0.97 in.                                                                                                                                                                 |                                                                                                                                                                     | y = 2.01 in.                                                                                                                                                                      |                                                                                                                                                                                                      | y = 0.47 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | y = 1.55 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | y = 2.56 in.                                                                                                                                                                            |                                                                                                                                                                                               |  |
| x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                        | Rx                                                                                                                                                                  | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                             | R <sub>X</sub>                                                                                                                                                                                       | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R <sub>X</sub>                                                                                                                                                                                       | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R <sub>X</sub>                                                                                                                                                     | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                                   | R <sub>X</sub>                                                                                                                                                                                |  |
| 0.07<br>.15<br>.31<br>.51<br>.81<br>1.51<br>2.01<br>2.51<br>3.01<br>3.51<br>4.51<br>5.01<br>08<br>13<br>28<br>198<br>198<br>198<br>-2.48<br>-2.98<br>-3.98<br>-3.98<br>-4.98 | 0.95<br>.84<br>.78<br>.70<br>.53<br>.49<br>.34<br>.23<br>.14<br>.12<br>.075<br>.058<br>.038<br>.74<br>.68<br>.59<br>.49<br>.35<br>.22<br>.14<br>.10<br>.043<br>.023 | 0.08 .15 .30 .50 .80 1.10 1.50 2.00 2.50 3.50 4.00 5.5008284878 -1.08 -1.48 -1.99 -2.48 -2.98 -3.98 -4.98 -3.98 -4.98 -5.48                                                       | 0.88<br>.83<br>.72<br>.53<br>.44<br>.29<br>.17<br>.13<br>.080<br>.049<br>0<br>.015<br>.035<br>0<br>.81<br>.80<br>.61<br>.49<br>.44<br>.32<br>.28<br>.28<br>.20<br>.15<br>.12<br>.059<br>.045<br>.025 | 0.03<br>.08<br>.15<br>.23<br>.33<br>.53<br>.73<br>1.01<br>1.33<br>1.63<br>2.03<br>2.43<br>2.83<br>3.33<br>5.83<br>4.33<br>5.83<br>05<br>14<br>29<br>-1.49<br>-1.99<br>-2.49<br>-2.99<br>-3.49<br>-3.49<br>-3.99<br>-4.69<br>-5.69<br>-5.69<br>-6.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.89<br>.85<br>.79<br>.71<br>.70<br>.59<br>.48<br>.32<br>.27<br>.20<br>.17<br>.12<br>.053<br>.050<br>0<br>.98<br>.96<br>.82<br>.71<br>.60<br>.44<br>.33<br>.22<br>.15<br>.11<br>.059<br>.025<br>.015 | 0.07<br>.12<br>.22<br>.32<br>.52<br>.72<br>.92<br>1.12<br>1.33<br>1.84<br>2.12<br>2.62<br>3.52<br>4.52<br>4.52<br>02<br>10<br>20<br>40<br>90<br>-1.20<br>-2.50<br>-2.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3.50<br>-3 | 0.89 .83 .76 .69 .63 .56 .48 .42 .36 .34 .25 .22 .11 .028 0 .97 .97 .95 .82 .71 .62 .51 .37 .32 .24 .15 .13 .10 .071 .028 0                                        | 0.05 .10 .20 .40 .60 .90 1.20 1.50 2.00 2.50 3.50 4.00 4.51 5.0004061121416191 -1.51 -2.01 -2.51 -3.51 -4.01                                                                            | 0.95<br>.88<br>.82<br>.65<br>.50<br>.44<br>.23<br>.18<br>.094<br>.077<br>.038<br>.046<br>.022<br>0<br>.91<br>.92<br>.88<br>.77<br>.60<br>.51<br>.34<br>.24<br>.21<br>.12<br>.065<br>.022<br>0 |  |
| <b>x</b> <sub>1</sub> = 22                                                                                                                                                   | .5 ft                                                                                                                                                               | $x_1 = 24.5 \text{ ft}$                                                                                                                                                           |                                                                                                                                                                                                      | $x_1 = 25.4 \text{ ft}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                               |  |
| y = 2.32                                                                                                                                                                     | 2 in.                                                                                                                                                               | y = 3.01 in.                                                                                                                                                                      |                                                                                                                                                                                                      | y = 0.98 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                      | y = 3.66 in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                    | y = 5.96 in.                                                                                                                                                                            |                                                                                                                                                                                               |  |
| x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                        | R <sub>X</sub>                                                                                                                                                      | $R_X$ $\begin{pmatrix} x_2 - x_1 \\ (in.) \end{pmatrix}$ $R_X$ $\begin{pmatrix} x_2 - x_1 \\ (in.) \end{pmatrix}$ $R_X$                                                           |                                                                                                                                                                                                      | R <sub>x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                                                                | R <sub>x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | x <sub>2</sub> - x <sub>1</sub> (in.)                                                                                                                              | R <sub>X</sub>                                                                                                                                                                          |                                                                                                                                                                                               |  |
| 0.03<br>.08<br>.16<br>.31<br>.51<br>.81<br>1.11<br>1.51<br>2.51<br>3.01<br>3.51<br>4.01<br>03<br>07<br>14<br>29<br>49<br>19<br>-1.99<br>-1.99<br>-2.49<br>-2.99<br>-3.49     | 0.94<br>.91<br>.87<br>.76<br>.65<br>.38<br>.28<br>.20<br>.12<br>.040<br>.019<br>.97<br>.95<br>.51<br>.38<br>.26<br>.13<br>.10                                       | 0.03<br>.08<br>.15<br>.30<br>.50<br>.85<br>1.10<br>1.50<br>2.00<br>2.50<br>3.50<br>4.00<br>03<br>09<br>17<br>32<br>52<br>82<br>-1.12<br>-2.52<br>-3.02<br>-3.52<br>-4.02<br>-4.52 | 0.96<br>.91<br>.86<br>.78<br>.67<br>.53<br>.36<br>.33<br>.20<br>.16<br>.10<br>.055<br>0<br>.97<br>.94<br>.84<br>.76<br>.65<br>.55<br>.39<br>.28<br>.18<br>.13<br>.038<br>.019                        | 0.03<br>.10<br>.17<br>.32<br>.52<br>.82<br>1.52<br>2.52<br>2.52<br>2.52<br>3.52<br>4.52<br>2.52<br>4.52<br>08<br>28<br>78<br>-1.98<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.48<br>-2.4 | 0.94<br>.92<br>.86<br>.75<br>.60<br>.54<br>.48<br>.26<br>.13<br>.077<br>.034<br>0<br>.93<br>.92<br>.81<br>.67<br>.47<br>.45<br>.26<br>.10<br>.15<br>.058                                             | 0.02<br>.07<br>.14<br>.29<br>.79<br>1.09<br>1.49<br>1.99<br>2.49<br>2.99<br>3.49<br>3.99<br>03<br>08<br>15<br>30<br>50<br>-2.50<br>-2.50<br>-3.50<br>-3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.97<br>.96<br>.89<br>.68<br>.56<br>.40<br>.37<br>.12<br>.17<br>.047<br>0<br>0<br>.96<br>.94<br>.99<br>.82<br>.69<br>.69<br>.49<br>.39<br>.25<br>.15<br>.14<br>.11 | 0.03<br>.09<br>.16<br>.31<br>.51<br>.81<br>1.11<br>1.51<br>2.01<br>2.51<br>3.01<br>3.51<br>4.01<br>4.51<br>5.01<br>03<br>07<br>15<br>30<br>50<br>80<br>-1.10<br>-2.50<br>-2.50<br>-3.50 | 0.97<br>.94<br>.92<br>.76<br>.62<br>.42<br>.50<br>.34<br>.26<br>.16<br>.076<br>.039<br>0<br>0<br>.99<br>.99<br>.99<br>.83<br>.75<br>.60<br>.51<br>.36<br>.23<br>.15<br>.10<br>.084            |  |



Figure 1.- Front view of "boundary-layer wall" in NBS 10-foot open-air wind tunnel.



Figure 2. - Sectional drawing of "boundary-layer wall."



Figure 3.- Types of hot-wire anemometers and complete holder used in investigation.



Figure 4.- Distribution of velocity and dynamic pressure just outside boundary layer.

NACA TN 2133



Figure 5.- Contour plot of mean velocities.



Figure 6.- Boundary-layer parameters.



Figure 7.- Variation of  $U/U_1$  with H for various values of  $y/\theta$ .



Figure 8.- Contour plot of u'.



Figure 9.- Contour plot of v'.



Figure 10:- Contour plot of w.



Figure 11.- Contour plot of coefficient of turbulent shearing stress.



Figure 12.- Contour plot of uv-correlation coefficient.



Figure 13.- Transverse correlation coefficient.



Figure 14.- Longitudinal correlation coefficient.



Figure 15.- Distribution of coefficient of turbulent shearing stress across boundary layer.



Figure 16.- Experimental values for coefficient of turbulent shearing stress compared with curves from Fediaevsky theory.



Figure 17.- Experimental values for coefficient of skin friction compared with values calculated with Squire-Young formula.



x = 24.5 feet. Right ordinate Figure 18.- Rate of production of turbulence and mean energy of turbulence at scale to be used only for top curve.



Figure 19.- Relation between w-correlation coefficient and local mean-velocity gradient.



Figure 20.- Relation between w-correlation coefficient near surface and general mean-velocity gradient.



Figure 21. - Relation between shearing stress per unit energy of turbulence and local mean-velocity gradient.



Figure 22.- Relation between coefficient of shearing stress and local mean-velocity gradient.