CURVED KOSZUL DUALITY FOR ALGEBRAS OVER UNITAL OPERADS

Najib Idrissi

May 2019 @ Higher Algebras in Topology, MPIM Bonn

GOAL

Goal

Find resolutions of "algebras".

GOAL

Goal

Find resolutions of "algebras".

Why?

- Compute derived invariants: derived tensor product, derived mapping space...
- · Define homotopy algebras over operads.

GOAL

Goal

Find resolutions of "algebras".

Why?

- Compute derived invariants: derived tensor product, derived mapping space...
- · Define homotopy algebras over operads.

Tool of choice: Koszul duality.

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

Examples

1. $A = F(E), R = 0 \implies A^! = 1 \oplus E^*$ with trivial multiplication;

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

- 1. $A = F(E), R = 0 \implies A^! = 1 \oplus E^*$ with trivial multiplication;
- 2. $A = S(E) = F(E)/(xy yx) \implies A^! = F(E^*)/(x^*y^* + y^*x^*) = \Lambda(E^*).$

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

- 1. $A = F(E), R = 0 \implies A^! = 1 \oplus E^*$ with trivial multiplication;
- 2. $A = S(E) = F(E)/(xy yx) \implies A^! = F(E^*)/(x^*y^* + y^*x^*) = \Lambda(E^*).$

$$\implies$$
 Koszul complex $K_A := (A \otimes A^i, d_\kappa)$;

Starting data: quadratic algebra A = F(E)/(R), $R \subset E \otimes E$ \leadsto Koszul dual $A^!$: cofree coalgebra on ΣE with "corelations" $\Sigma^2 R$ (Usually easier to understand $A^! = F(E^*)/(R^{\perp})$)

Examples

- 1. $A = F(E), R = 0 \implies A^! = 1 \oplus E^*$ with trivial multiplication;
- 2. $A = S(E) = F(E)/(xy yx) \implies A! = F(E^*)/(x^*y^* + y^*x^*) = \Lambda(E^*).$

 \implies Koszul complex $K_A := (A \otimes A^i, d_\kappa)$; A is Koszul if K_A is acyclic

Example

F(E) and S(E) are both Koszul.

Bar/cobar adjunction:

$$\Omega : \{ coaug.coalgebras \} \subseteq \{ aug.algebras \} : B$$

where $BA = (F^{c}(\Sigma \bar{A}), d_{B})$ and $\Omega C = (F(\Sigma^{-1}\bar{C}), d_{\Omega}).$

Bar/cobar adjunction:

 $\Omega: \{ \texttt{coaug.coalgebras} \} \leftrightarrows \{ \texttt{aug.algebras} \} : \textit{B}$

where $BA = (F^{c}(\Sigma \bar{A}), d_{B})$ and $\Omega C = (F(\Sigma^{-1}\bar{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...

Bar/cobar adjunction:

$$\Omega: \{ coaug.coalgebras \} \leftrightarrows \{ aug.algebras \} : B$$

where
$$BA = (F^{c}(\Sigma \bar{A}), d_{B})$$
 and $\Omega C = (F(\Sigma^{-1}\bar{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

Bar/cobar adjunction:

 $\Omega: \{ coaug.coalgebras \} \leftrightarrows \{ aug.algebras \} : B$

where $BA = (F^c(\Sigma \bar{A}), d_B)$ and $\Omega C = (F(\Sigma^{-1} \bar{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

A quadratic $\implies \exists$ canonical morphism $\Omega A^i \rightarrow A$

Bar/cobar adjunction:

$$\Omega : \{ coaug.coalgebras \} \subseteq \{ aug.algebras \} : B$$

where
$$BA = (F^{c}(\Sigma \overline{A}), d_{B})$$
 and $\Omega C = (F(\Sigma^{-1} \overline{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

A quadratic $\implies \exists$ canonical morphism $\Omega A^i \rightarrow A$

Theorem (Priddy '70s)

A is Koszul $\iff \Omega A^{\dagger} \xrightarrow{\sim} A$.

Bar/cobar adjunction:

$$\Omega: \{ coaug.coalgebras \} \leftrightarrows \{ aug.algebras \} : B$$

where
$$BA = (F^{c}(\Sigma \bar{A}), d_{B})$$
 and $\Omega C = (F(\Sigma^{-1}\bar{C}), d_{\Omega})$.

Canonical morphism $\Omega BA \xrightarrow{\sim} A$ is always a cofibrant resolution...but big!

A quadratic $\implies \exists$ canonical morphism $\Omega A^{i} \rightarrow A$

Theorem (Priddy '70s)

 $A ext{ is Koszul} \iff \Omega A^{\text{i}} \xrightarrow{\sim} A.$

Much smaller resolution!

$$A = F(E) \implies \Omega A^{i} = A = F(E) \text{ versus } \Omega BA = F(F^{c}(F(E)))$$

$$A = S(E) \implies \Omega A^{i} = F(\Lambda^{c}(E)) \text{ versus } \Omega BA = F(F^{c}(S(E))).$$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

• quadratic $\leadsto qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic \rightsquigarrow $qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{\dagger}}: qA^{\dagger} \rightarrow qA^{\dagger}$ is a coderivation;

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic $\rightsquigarrow qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\leadsto \theta_{A^{\mathrm{i}}}: qA^{\mathrm{i}} \to \mathbb{R}$ s.t. $d^2 = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i} = (qA^{i}, d_{A^{i}}, \theta_{A^{i}})$: curved dg-coalgebra

- quadratic \rightsquigarrow qA := F(E)/(qR) where $qR := \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{\dagger}}: qA^{\dagger} \to \mathbb{R}$ s.t. $d^2 = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x, y])$$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic \rightsquigarrow qA := F(E)/(qR) where $qR := \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\leadsto \theta_{A^{\dagger}}: qA^{\dagger} \to \mathbb{R}$ s.t. $d^2 = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x, y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g})$$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic $\rightsquigarrow qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^i}: qA^i \rightarrow qA^i$ is a coderivation;
- constant $\leadsto \theta_{A^{\dagger}}: qA^{\dagger} \to \mathbb{R}$ s.t. $d^2 = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x, y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g}) \rightsquigarrow qA^{\mathsf{i}} = S^{\mathsf{c}}(\Sigma\mathfrak{g}); d_{A^{\mathsf{i}}} = \text{coderivation induced by } d(x \wedge y) = [x, y]$$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic $\rightsquigarrow qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: qA^{i} \to \mathbb{R}$ s.t. $d^{2} = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x,y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g}) \rightsquigarrow qA^{\mathfrak{g}} = S^{\mathfrak{c}}(\Sigma\mathfrak{g}); d_{A^{\mathfrak{g}}} = \text{coderivation induced by } d(x \wedge y) = [x,y] \rightsquigarrow C_*^{CE}(\mathfrak{g})$$

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic \rightsquigarrow qA := F(E)/(qR) where $qR := \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{\dagger}}: qA^{\dagger} \rightarrow qA^{\dagger}$ is a coderivation;
- constant $\leadsto \theta_{A^{\dagger}}: qA^{\dagger} \to \mathbb{R}$ s.t. $d^2 = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

Example

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x,y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g}) \rightsquigarrow qA^{\mathfrak{i}} = S^{c}(\Sigma\mathfrak{g}); d_{A^{\mathfrak{i}}} = \text{coderivation induced by } d(x \wedge y) = [x,y] \rightsquigarrow C_{*}^{CE}(\mathfrak{g})$$

Bar/cobar adjunction: semi.aug.algebras ≒ curved dg-coalgebras.

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic $\rightsquigarrow qA \coloneqq F(E)/(qR)$ where $qR \coloneqq \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: qA^{i} \to \mathbb{R}$ s.t. $d^{2} = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

Example

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x,y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g}) \rightsquigarrow qA^{\mathfrak{g}} = S^{\mathfrak{c}}(\Sigma\mathfrak{g}); d_{A^{\mathfrak{g}}} = \text{coderivation induced by } d(x \wedge y) = [x,y] \rightsquigarrow C_*^{CE}(\mathfrak{g})$$

Bar/cobar adjunction: semi.aug.algebras ≒ curved dg-coalgebras.

Theorem (Polischuck, Positselski)

If qA is Koszul then $\Omega A^{\dagger} \xrightarrow{\sim} A$ is a cofibrant resolution.

Quadratic-linear-constant algebra: A = uF(E)/(R) with $R \subset E^{\otimes 2} \oplus E \oplus \mathbb{R}1$

Koszul dual $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$: curved dg-coalgebra

- quadratic $\rightsquigarrow qA := F(E)/(qR)$ where $qR := \operatorname{proj}_{E^{\otimes 2}}(R)$;
- linear $\rightsquigarrow d_{A^{i}}: qA^{i} \rightarrow qA^{i}$ is a coderivation;
- constant $\rightsquigarrow \theta_{A^{i}}: qA^{i} \to \mathbb{R}$ s.t. $d^{2} = (\theta \otimes \operatorname{id} \mp \operatorname{id} \otimes \theta)\Delta$ and $\theta d = 0$.

Example

$$A = U(\mathfrak{g}) = uF(\mathfrak{g})/(xy - yx - [x, y]) \rightsquigarrow qA = F(\mathfrak{g})/(xy - yx) = S(\mathfrak{g}) \rightsquigarrow qA^{\mathfrak{g}} = S^{c}(\Sigma\mathfrak{g}); d_{A^{\mathfrak{g}}} = \text{coderivation induced by } d(x \wedge y) = [x, y] \rightsquigarrow C_{*}^{CE}(\mathfrak{g})$$

Bar/cobar adjunction: semi.aug.algebras ≒ curved dg-coalgebras.

Theorem (Polischuck, Positselski)

If qA is Koszul then $\Omega A^{\dagger} \xrightarrow{\sim} A$ is a cofibrant resolution.

Goal: do this for more general types of algebras (e.g. Poisson algebras).

OPERADS

What are "more general types of algebras"?

OPERADS

What are "more general types of algebras"?

Operad $P = \{P(n)\}_{n \ge 0}$: combinatorial object that encodes a type of algebra.

OPERADS'

What are "more general types of algebras"?

Operad $P = \{P(n)\}_{n \ge 0}$: combinatorial object that encodes a type of algebra.

$$p$$
 \circ_3 q $=$ p

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.

OPERADS'

What are "more general types of algebras"?

Operad $P = \{P(n)\}_{n \ge 0}$: combinatorial object that encodes a type of algebra.

Examples

The "three graces": **Ass** = associative algebras; **Com** = commutative algebras; **Lie** = Lie algebras.

 E_n = homotopy associative and commutative (for $n \ge 2$) algebras.

OPERADS

What are "more general types of algebras"?

Operad $P = \{P(n)\}_{n \ge 0}$: combinatorial object that encodes a type of algebra.

Examples

The "three graces": Ass = associative algebras; Com = commutative algebras; Lie = Lie algebras.

 E_n = homotopy associative and commutative (for $n \ge 2$) algebras.

 $\mathbf{e}_n := H_*(\mathbf{E}_n), n \ge 2 = \text{Poisson } n\text{-algebras}.$

KD FOR QUADRATIC OPERADS

Quadratic operad: P = FOp(E)/(R) where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

KD FOR QUADRATIC OPERADS

Quadratic operad: P = FOp(E)/(R) where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

 $\mathsf{Com} = \mathrm{FOp}(\mu)/(\mu(\mu(x,y),z) = \mu(x,\mu(y,z)))$ is quadratic.

KD FOR QUADRATIC OPERADS

Quadratic operad: P = FOp(E)/(R) where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

 $\mathsf{Com} = \mathrm{FOp}(\mu)/(\mu(\mu(\mathsf{x},\mathsf{y}),\mathsf{z}) = \mu(\mathsf{x},\mu(\mathsf{y},\mathsf{z})))$ is quadratic.

Formally similar definitions: Koszul dual cooperad $P^i = \mathrm{FOp}^c(\Sigma E, \Sigma^2 R)$ and its linear dual $P^! = \mathrm{FOp}(E^*)/(R^{\perp})$.

KD FOR QUADRATIC OPERADS

Quadratic operad: P = FOp(E)/(R) where E is a generating set of operations and $R \subset E \circ E$ is a set of quadratic relations.

Examples

 $\mathsf{Com} = \mathrm{FOp}(\mu)/(\mu(\mu(\mathsf{x},\mathsf{y}),\mathsf{z}) = \mu(\mathsf{x},\mu(\mathsf{y},\mathsf{z})))$ is quadratic.

Formally similar definitions: Koszul dual cooperad $P^i = \mathrm{FOp}^c(\Sigma E, \Sigma^2 R)$ and its linear dual $P^! = \mathrm{FOp}(E^*)/(R^{\perp})$.

Examples

Ass! = Ass; Com! = Lie, Lie! = Com; $e_n! = e_n\{-n\}$.

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Canonical morphism $\Omega \mathsf{BP} \xrightarrow{\sim} \mathsf{P}$ always a resolution, but very big

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Canonical morphism $\Omega \mathsf{BP} \xrightarrow{\sim} \mathsf{P}$ always a resolution, but very big

Theorem (Ginzburg–Kapranov '94, Getzler–Jones '94, Getzler '95...)

If P is quadratic and Koszul, then $P_{\infty} := \Omega P^{i} \xrightarrow{\sim} P$.

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Canonical morphism $\Omega \mathsf{BP} \xrightarrow{\sim} \mathsf{P}$ always a resolution, but very big

Theorem (Ginzburg–Kapranov '94, Getzler–Jones '94, Getzler '95...)

If P is quadratic and Koszul, then $P_{\infty} := \Omega P^i \xrightarrow{\sim} P$.

In this case, P_{∞} -algebras = "homotopy P-algebras".

Formally similar definitions: bar/cobar adjunction

 $\Omega: \{ \texttt{coaug.cooperads} \} \leftrightarrows \{ \texttt{aug.operads} \} : \textit{B}$

Canonical morphism $\Omega \mathsf{BP} \xrightarrow{\sim} \mathsf{P}$ always a resolution, but very big

Theorem (Ginzburg–Kapranov '94, Getzler–Jones '94, Getzler '95...)

If P is quadratic and Koszul, then $P_{\infty} := \Omega P^i \xrightarrow{\sim} P$.

In this case, P_{∞} -algebras = "homotopy P-algebras".

Examples

 $\mathsf{Ass}_\infty = \mathsf{A}_\infty\text{-algebras, }\mathsf{Com}_\infty = \mathsf{C}_\infty\text{-algebras, }\mathsf{Lie}_\infty = \mathsf{L}_\infty\text{-algebras...}$

 $\mathsf{P} = \mathrm{FOp}(E)/(R)$ Koszul \leadsto bar/cobar adjunction: $\Omega_\kappa: \{ \mathrm{coaug.} \ \mathsf{P^i\text{-}coalgebras} \} \leftrightarrows \{ \mathrm{aug.} \ \mathsf{P\text{-}algebras} \} : \mathcal{B}_\kappa$

 $\mathsf{P} = \mathrm{FOp}(E)/(R)$ Koszul \leadsto bar/cobar adjunction: $\Omega_\kappa : \{ \mathrm{coaug.} \ \mathsf{P^i\text{-}coalgebras} \} \leftrightarrows \{ \mathrm{aug.} \ \mathsf{P\text{-}algebras} \} : \mathcal{B}_\kappa$ \leadsto resolution of $\mathsf{P\text{-}algebras} \colon \Omega_\kappa \mathcal{B}_\kappa(-)$, but very big.

P = FOp(E)/(R) Koszul \leadsto bar/cobar adjunction: $\Omega_{\kappa} : \{ coaug. \ P^i-coalgebras \} \leftrightarrows \{ aug. \ P-algebras \} : B_{\kappa}$ \leadsto resolution of P-algebras: $\Omega_{\kappa}B_{\kappa}(-)$, but very big. Monogenic P-algebras: A = P(V)/(S), $S \subset E(V)$

```
P = FOp(E)/(R) Koszul \leadsto bar/cobar adjunction: \Omega_{\kappa} : \{ \text{coaug. Pi-coalgebras} \} \leftrightarrows \{ \text{aug. P-algebras} \} : B_{\kappa}  \leadsto resolution of P-algebras: \Omega_{\kappa}B_{\kappa}(-), but very big. Monogenic P-algebras: A = P(V)/(S), S \subset E(V) (P binary \Longrightarrow monogenic = quadratic)
```

P = FOp(E)/(R) Koszul \rightsquigarrow bar/cobar adjunction:

$$\Omega_{\kappa}:\{ ext{coaug. P}^{ ext{i}} ext{-coalgebras}\}\leftrightarrows\{ ext{aug. P-algebras}\}:\mathcal{B}_{\kappa}$$

 \rightsquigarrow resolution of P-algebras: $\Omega_{\kappa}B_{\kappa}(-)$, but very big.

Monogenic P-algebras:
$$A = P(V)/(S)$$
, $S \subset E(V)$ (P binary \Longrightarrow monogenic = quadratic)

Koszul dual:

$$A^{i} := P^{i}(\Sigma V, \Sigma^{2}S), \quad A^{!} = P(V^{*})/(S^{\perp}).$$

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_{\kappa}A^{\text{!`}}\stackrel{\sim}{\longrightarrow} A$ is a resolution of A.

P = FOp(E)/(R) Koszul \rightsquigarrow bar/cobar adjunction:

 $\Omega_{\kappa}: \{ \text{coaug. P$^{\text{i}}$-coalgebras} \} \leftrightarrows \{ \text{aug. P$^{\text{-}}$algebras} \} : \mathcal{B}_{\kappa}$

 \rightsquigarrow resolution of P-algebras: $\Omega_{\kappa}B_{\kappa}(-)$, but very big.

Monogenic P-algebras: A = P(V)/(S), $S \subset E(V)$ (P binary \Longrightarrow monogenic = quadratic)

Koszul dual:

$$A^{i} := P^{i}(\Sigma V, \Sigma^{2}S), \quad A^{!} = P(V^{*})/(S^{\perp}).$$

Theorem (Millès '12)

If P is quadratic Koszul and if A is a Koszul monogenic algebra, then $\Omega_\kappa A^{\text{!`}} \stackrel{\sim}{\longrightarrow} A$ is a resolution of A.

P = Ass: recovers the classical Koszul duality of associative algebras.

Extension to operads with quadratic-linear-constant relations:

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\P})/(\mu(\mu(\mathsf{X}, \mathsf{Y}), \mathsf{Z}) = \mu(\mathsf{X}, \mu(\mathsf{Y}, \mathsf{Z})), \ \mu(\mathsf{X}, ^{\P}) = \mathsf{X})$$

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\P})/(\mu(\mu(\mathsf{X}, \mathsf{Y}), \mathsf{Z}) = \mu(\mathsf{X}, \mu(\mathsf{Y}, \mathsf{Z})), \ \mu(\mathsf{X}, ^{\P}) = \mathsf{X})$$

Koszul dual curved cooperad: $uP^i = (quP^i, d_{A^i}, \theta_{A^i})$

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\P})/(\mu(\mu(\mathsf{X}, \mathsf{Y}), \mathsf{Z}) = \mu(\mathsf{X}, \mu(\mathsf{Y}, \mathsf{Z})), \ \mu(\mathsf{X}, ^{\P}) = \mathsf{X})$$

Koszul dual curved cooperad: $uP^{i} = (quP^{i}, d_{A^{i}}, \theta_{A^{i}})$

• quadratic \rightsquigarrow quP: "quadratization" of uP;

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\dagger})/(\mu(\mu(x, y), z) = \mu(x, \mu(y, z)), \ \mu(x, ^{\dagger}) = x)$$

Koszul dual curved cooperad: $uP^{i} = (quP^{i}, d_{A^{i}}, \theta_{A^{i}})$

- quadratic \rightsquigarrow quP: "quadratization" of uP;
- linear $\rightsquigarrow d_{A^{i}}: quP^{i} \rightarrow quP^{i}$ coderivation;

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\dagger})/(\mu(\mu(x, y), z) = \mu(x, \mu(y, z)), \ \mu(x, ^{\dagger}) = x)$$

Koszul dual curved cooperad: $uP^i = (quP^i, d_{A^i}, \theta_{A^i})$

- quadratic \rightsquigarrow quP: "quadratization" of uP;
- linear $\rightsquigarrow d_{A^i}: quP^i \rightarrow quP^i$ coderivation;
- constants $\leadsto \theta_{A^{i}}: quP^{i} \to \mathbb{R} \operatorname{id}$ s.t. $d^{2} = (\theta \circ \operatorname{id} \mp \operatorname{id} \circ \theta)\Delta$ and $\theta d = 0$

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\dagger})/(\mu(\mu(x, y), z) = \mu(x, \mu(y, z)), \ \mu(x, ^{\dagger}) = x)$$

Koszul dual curved cooperad: $uP^{i} = (quP^{i}, d_{A^{i}}, \theta_{A^{i}})$

- quadratic \rightsquigarrow quP: "quadratization" of uP;
- linear $\rightsquigarrow d_{A^i}: quP^i \rightarrow quP^i$ coderivation;
- constants $\leadsto \theta_{A^i}: qu\mathsf{P}^i \to \mathbb{R} \operatorname{id}$ s.t. $d^2 = (\theta \circ \operatorname{id} \mp \operatorname{id} \circ \theta)\Delta$ and $\theta d = 0$

Bar/cobar extends to the curved setting

Extension to operads with quadratic-linear-constant relations:

Example

$$u\mathsf{Com} = \mathrm{FOp}(\mu, ^{\dagger})/(\mu(\mu(x, y), z) = \mu(x, \mu(y, z)), \ \mu(x, ^{\dagger}) = x)$$

Koszul dual curved cooperad: $uP^i = (quP^i, d_{A^i}, \theta_{A^i})$

- quadratic \rightsquigarrow quP: "quadratization" of uP;
- linear $\rightsquigarrow d_{A^i}: quP^i \rightarrow quP^i$ coderivation;
- constants $\leadsto \theta_{A^i}: qu\mathsf{P}^i \to \mathbb{R} \operatorname{id}$ s.t. $d^2 = (\theta \circ \operatorname{id} \mp \operatorname{id} \circ \theta)\Delta$ and $\theta d = 0$

Bar/cobar extends to the curved setting

Theorem (Hirsh-Millès '12)

If quP is Koszul, then $uP_{\infty} := \Omega(uP^{\dagger}) \xrightarrow{\sim} uP$: resolution of uP

 $uP = FOp(E \oplus ^{\dagger})/(R)$: "unital version" of a quadratic operad P

 $uP = \text{FOp}(E \oplus ^{\dagger})/(R)$: "unital version" of a quadratic operad P A = uP(V)/(S): algebra w/ QLC relations $S \subset E(V) \oplus V \oplus ^{\dagger}$

 $u\mathsf{P} = \mathrm{FOp}(E \oplus ^{\P})/(R)$: "unital version" of a quadratic operad P $A = u\mathsf{P}(V)/(S)$: algebra $\mathsf{w}/$ QLC relations $S \subset E(V) \oplus V \oplus ^{\P}$

Koszul dual: curved Pi-coalgebra $A^{i} = (qA^{i}, d_{A^{i}}, \theta_{A^{i}})$

 $uP = \text{FOp}(E \oplus ^{\dagger})/(R)$: "unital version" of a quadratic operad P A = uP(V)/(S): algebra w/ QLC relations $S \subset E(V) \oplus V \oplus ^{\dagger}$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

• quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;

 $uP = \text{FOp}(E \oplus ^{\dagger})/(R)$: "unital version" of a quadratic operad P A = uP(V)/(S): algebra w/ QLC relations $S \subset E(V) \oplus V \oplus ^{\dagger}$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

- quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A^i}$: coderivation;

 $uP = \text{FOp}(E \oplus ^{\dagger})/(R)$: "unital version" of a quadratic operad P A = uP(V)/(S): algebra w/ QLC relations $S \subset E(V) \oplus V \oplus ^{\dagger}$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

- quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;
- linear $\rightsquigarrow d_{A^i}$: coderivation;
- constant $\rightsquigarrow \theta: qA^{\dagger} \rightarrow \mathbb{R}^{\dagger}$ (+ relations)

 $u\mathsf{P} = \mathrm{FOp}(E \oplus \frac1)/(R)$: "unital version" of a quadratic operad P $A = u\mathsf{P}(V)/(S)$: algebra $\mathsf{w}/$ QLC relations $S \subset E(V) \oplus V \oplus \frac1$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

- quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;
- linear $\rightsquigarrow d_{Ai}$: coderivation;
- constant $\leadsto \theta: qA^{\dagger} \to \mathbb{R}^{\dagger}$ (+ relations)

Generalization of bar/cobar adjunction:

 $\Omega_{\kappa}: \{ \text{curved P}^{\text{i}}\text{-coalgebras} \} \leftrightarrows \{ \text{semi.aug. } u \text{P-algebras} \} : \mathcal{B}_{\kappa}$

 $u\mathsf{P} = \mathrm{FOp}(E \oplus \ ^{\P})/(R)$: "unital version" of a quadratic operad P $A = u\mathsf{P}(V)/(S)$: algebra $\mathsf{w}/\ \mathsf{QLC}$ relations $S \subset E(V) \oplus V \oplus \ ^{\P}$

Koszul dual: curved Pi-coalgebra $A^{i}=(qA^{i},d_{A^{i}},\theta_{A^{i}})$

- quadratic $\rightsquigarrow qA = P(V)/(qS)$: "quadratization" of A;
- linear $\rightsquigarrow d_{Ai}$: coderivation;
- constant $\rightsquigarrow \theta: qA^{\dagger} \rightarrow \mathbb{R}^{\dagger}$ (+ relations)

Generalization of bar/cobar adjunction:

 $\Omega_{\kappa}:\{ \text{curved P}^{\text{i}}\text{-coalgebras}\} \leftrightarrows \{ \text{semi.aug. } u \text{P-algebras}\}: \mathcal{B}_{\kappa}$

Theorem (I. '18)

If qA is Koszul then $\Omega_{\kappa}A^{\dagger} \xrightarrow{\sim} A$ is a resolution.

APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A: uE_n -algebra

APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A: uE_n -algebra

Goal

Compute $\int_M A = \operatorname{hocolim}_{(D^n)^{\sqcup k} \hookrightarrow M} A^{\otimes k}$.

APPLICATION 1: FACTORIZATION HOMOLOGY

M: framed n-manifold, A: uE_n -algebra

Goal

Compute $\int_M A = \operatorname{hocolim}_{(D^n)^{\sqcup k} \hookrightarrow M} A^{\otimes k}$.

Theorem (Francis 2015)

$$\int_M A \simeq E_M \circ^{\mathbb{L}}_{uE_n} A = \mathrm{hocoeq}\big(E_M \circ uE_n \circ A \rightrightarrows E_M \circ A\big), \, \text{where:} \,$$

$$u\mathsf{E}_n(k)=\mathrm{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^n\sqcup\cdots\sqcup\mathbb{R}^n}_{k\times},\mathbb{R}^n);\ \mathsf{E}_M(k)=\mathrm{Emb}^{\mathrm{fr}}(\underbrace{\mathbb{R}^n\sqcup\cdots\sqcup\mathbb{R}^n}_{k\times},M).$$

(∃ version for unframed manifolds.)

If we work over $\ensuremath{\mathbb{R}}$ and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ^{\mathbb{L}}_{C_*(uE_n)} C_*(A).$$

If we work over $\mathbb R$ and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ_{C_*(uE_n)}^{\mathbb{L}} C_*(A).$$

Theorem (Kontsevich '99; Tamarkin '03 (n=2); Lambrechts–Volić '14; Petersen '14 (n=2); Fresse–Willwacher '15)

The operad $C_*(uE_n)$ is formal: $C_*(uE_n) \simeq ue_n := H_*(uE_n)$.

If we work over \mathbb{R} and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ_{C_*(uE_n)}^{\mathbb{L}} C_*(A).$$

Theorem (Kontsevich '99; Tamarkin '03 (n=2); Lambrechts–Volić '14; Petersen '14 (n=2); Fresse–Willwacher '15)

The operad $C_*(uE_n)$ is formal: $C_*(uE_n) \simeq ue_n := H_*(uE_n)$.

Theorem (I.)

M closed, simply connected, smooth, $\dim M \geq 4 \implies$ explicit model of $C_*(\mathsf{E}_M)$ as a right $C_*(u\mathsf{E}_n)$ -module: Lambrechts-Stanley model LS_M .

If we work over \mathbb{R} and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ_{C_*(uE_n)}^{\mathbb{L}} C_*(A).$$

Theorem (Kontsevich '99; Tamarkin '03 (n=2); Lambrechts–Volić '14; Petersen '14 (n=2); Fresse–Willwacher '15)

The operad $C_*(uE_n)$ is formal: $C_*(uE_n) \simeq ue_n := H_*(uE_n)$.

Theorem (I.)

M closed, simply connected, smooth, $\dim M \geq 4 \implies$ explicit model of $C_*(\mathsf{E}_M)$ as a right $C_*(u\mathsf{E}_n)$ -module: Lambrechts–Stanley model LS_M .

Upshot:
$$C_*(\int_M A) \simeq \mathsf{LS}_M \circ_{\mathsf{ue}_n}^{\mathbb{L}} \widetilde{A}$$

Chains of factorization homology over ${\mathbb R}$

If we work over \mathbb{R} and we just want chains:

$$C_*(\int_M A) \simeq C_*(E_M) \circ_{C_*(uE_n)}^{\mathbb{L}} C_*(A).$$

Theorem (Kontsevich '99; Tamarkin '03 (n=2); Lambrechts–Volić '14; Petersen '14 (n=2); Fresse–Willwacher '15)

The operad $C_*(uE_n)$ is formal: $C_*(uE_n) \simeq ue_n := H_*(uE_n)$.

Theorem (I.)

M closed, simply connected, smooth, $\dim M \geq 4 \implies$ explicit model of $C_*(\mathsf{E}_M)$ as a right $C_*(u\mathsf{E}_n)$ -module: Lambrechts–Stanley model LS_M .

Upshot: $C_*(\int_M A) \simeq \mathsf{LS}_M \circ_{\mathsf{ue}_n}^{\mathbb{L}} \widetilde{A}$ \implies we need to resolve A as a ue_n -algebra.

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

WEYL ALGEBRA $\operatorname{Poly}(T^*\mathbb{R}^d[1-n])$

$$A = \mathscr{O}_{\mathrm{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(u \mathbf{E}_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij} \mathbf{1}$

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij} \mathbf{1}$ \implies quadratic-(linear-)constant presentation

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \Longrightarrow quadratic-(linear-)constant presentation

Quadratization $qA = S(x_i, \xi_i)$ free symmetric algebra + zero bracket

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \implies quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

• $qA^{i}=S^{c}(\bar{x}_{i},\bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \implies quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

- $qA^{i} = S^{c}(\bar{x}_{i}, \bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket
- \cdot d=0 (no linear terms in the relations)

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \implies quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

- $qA^{i} = S^{c}(\bar{x}_{i}, \bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket
- $\cdot d = 0$ (no linear terms in the relations)
- curvature: $\theta(\bar{x}_i \wedge \bar{\xi}_j) = -\delta_{ij}$, zero otherwise.

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(uE_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij} \mathbf{1}$ \implies quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

- $qA^{i} = S^{c}(\bar{x}_{i}, \bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket
- d = 0 (no linear terms in the relations)
- curvature: $\theta(\bar{x}_i \wedge \bar{\xi}_j) = -\delta_{ij}$, zero otherwise.

$$\implies$$
 "small" resolution $Q_A := \Omega_{\kappa} A^{\mathsf{i}} = (SLS^{\mathsf{c}}(\bar{\mathsf{x}}_i, \bar{\xi}_j), d) \xrightarrow{\sim} A$

$$A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n]) = S(x_1, \dots, x_d, \xi_1, \dots, \xi_d)$$

Action of $H_*(u\mathbf{E}_n)$: free symmetric algebra and $\{x_i, \xi_j\} = \delta_{ij}\mathbf{1}$ \implies quadratic-(linear-)constant presentation

Quadratization $qA=S(x_i,\xi_j)$ free symmetric algebra + zero bracket Koszul dual: $A^i=(qA^i,d,\theta)$

- $qA^{i} = S^{c}(\bar{x}_{i}, \bar{\xi}_{j})$ cofree symmetric coalgebra + trivial cobracket
- $\cdot d = 0$ (no linear terms in the relations)
- · curvature: $\theta(\bar{x}_i \wedge \bar{\xi}_j) = -\delta_{ij}$, zero otherwise.

$$\implies$$
 "small" resolution $Q_A := \Omega_{\kappa} A^{\mathsf{i}} = (\mathsf{SLS}^{\mathsf{c}}(\bar{\mathsf{x}}_i, \bar{\xi}_j), d) \xrightarrow{\sim} A$

(If we had applied curved KD at the level of operads instead:

$$\Omega_{\kappa}B_{\kappa}A\supset(\underbrace{SL}_{\text{cobar}}\underbrace{S^{c}L^{c}}_{\text{bar}}\underbrace{S(x_{i},\xi_{j})}_{\Delta},d)$$
, + resolution of the unit...)

Computation of $\int_{M} \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$

We can also compute

$$\int_{M} \mathscr{O}_{\text{poly}}(T^{*}\mathbb{R}^{d}[1-n]) \simeq \mathsf{LS}_{M} \circ_{u\mathbf{e}_{n}} (SLS^{c}(\bar{x}_{i},\bar{\xi_{j}}),d)$$

Computation of $\int_{M} \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$

We can also compute

$$\int_{M} \mathscr{O}_{\mathrm{poly}}(T^{*}\mathbb{R}^{d}[1-n]) \simeq \mathsf{LS}_{M} \circ_{u\mathbf{e}_{n}} (\mathsf{SLS}^{\mathsf{c}}(\bar{x}_{i},\bar{\xi}_{j}),d)$$

A bit of homological algebra + explicit description of LS_M :

Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)

$$\int_{M} \operatorname{Poly}(T^*\mathbb{R}^d[1-n]) \simeq C_*^{CE}(\Omega^{n-*}(M) \otimes \mathbb{R}\langle 1, X_i, \xi_j \rangle) \simeq \mathbb{R}.$$

Computation of $\int_{M} \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$

We can also compute

$$\int_{M} \mathscr{O}_{\mathrm{poly}}(T^{*}\mathbb{R}^{d}[1-n]) \simeq \mathsf{LS}_{M} \circ_{u\mathbf{e}_{n}} (\mathsf{SLS}^{\mathsf{c}}(\bar{x}_{i},\bar{\xi}_{j}),d)$$

A bit of homological algebra + explicit description of LS_M :

Theorem (I. '18, see also Markarian '17, Döppenschmitt '18)

$$\int_{M} \operatorname{Poly}(T^*\mathbb{R}^d[1-n]) \simeq C^{CE}_*(\Omega^{n-*}(M) \otimes \mathbb{R}\langle 1, X_i, \xi_j \rangle) \simeq \mathbb{R}.$$

Intuition: quantum observable with values in A \leadsto "expectation" lives in $\int_M A$, should be a number.

Operad P + P-algebra $A \implies$ notion of A-modules

Operad P + P-algebra $A \implies$ notion of A-modules

Examples

 $P = Ass \rightarrow (A,A)$ bimodules; $P = Com \rightarrow A$ -modules; $P = Lie \rightarrow representations of the Lie algebra.$

Operad P + P-algebra $A \implies$ notion of A-modules

Examples

 $P = Ass \rightarrow (A,A)$ bimodules; $P = Com \rightarrow A$ -modules; $P = Lie \rightarrow representations of the Lie algebra.$

 \exists an associative algebra $U_P(A)$ s.t. left $U_P(A)$ -modules = A-modules

Operad P + P-algebra $A \implies$ notion of A-modules

Examples

 $P = Ass \rightarrow (A,A)$ bimodules; $P = Com \rightarrow A$ -modules; $P = Lie \rightarrow representations of the Lie algebra.$

 \exists an associative algebra $U_P(A)$ s.t. left $U_P(A)$ -modules = A-modules

Proposition

For $A = \mathscr{O}_{\operatorname{poly}}(T^*\mathbb{R}^d[1-n])$, the derived enveloping algebra $U^{\mathbb{L}}_{\operatorname{ue}_n}(A)$ is q.iso to the underived one.

Operad P + P-algebra $A \implies$ notion of A-modules

Examples

 $P = Ass \rightarrow (A, A)$ bimodules; $P = Com \rightarrow A$ -modules; $P = Lie \rightarrow$ representations of the Lie algebra.

 \exists an associative algebra $U_P(A)$ s.t. left $U_P(A)$ -modules = A-modules

For $A = \mathscr{O}_{\text{poly}}(T^*\mathbb{R}^d[1-n])$, the derived enveloping algebra $U_{\text{up}_n}^{\mathbb{L}}(A)$ is

Proposition

q.iso to the underived one.

Explicit description: if
$$A = S(\Sigma^{1-n}\mathfrak{g})$$
, then

 $X_f g = \{f, g\} \pm gX_f, X_{\{f, g\}} = [X_f, X_g], dX_f = X_{df}.$

 $U_{ue_n}(A) = A \otimes U_{cLie_n}(\Sigma^{1-n}\mathfrak{g}),$ with $X_f \in U_{cLie_n}(\Sigma^{1-n}\mathfrak{g})$ for $f \in \mathfrak{g}$ satisfying $X_{\P} = 0$, $X_{fg} = fX_g \pm gX_f$,

THANK YOU FOR YOUR ATTENTION!

ALLENITON.

These slides: https://idrissi.eu