Lecture 16

Brute Force Algorithms & their Analysis: Finding Inversion in an Array, and Closest-Pair & Convex-Hull Problems.

Inversion Count in Array

- > Inversion Count for an array indicates how far (or close) the array is from being sorted.
 - If the array is already sorted, then the inversion count is 0,
 - if the array is sorted in reverse order, the inversion count is the maximum.
- > Given an array a[]. The task is to find the inversion count of a[]. Where two elements a[i] and a[j] form an inversion if a[i] > a[j] and i < j</p>

Concept of Inversion

Concept of Inversion

Concept of Inversion

Inversions in Array: Steps {Self Execution}

```
GetInvCount(ar, n):
    inv_count = 0
    for i in range(n):
        for j in range(i + 1, n):
            if (ar[i] > ar[j]):
                  inv_count += 1
        return inv_count
```

array from start to end.

OUTPUT:

Number of inversions are 5

- Time Complexity: O(n²), Two nested loops are needed to traverse the
- Auxiliary Space: O(1), No extra space is required.

TATAMARKIT

Inversion Count in Array: Examples

> **Input:** arr[] = {8, 4, 2, 1}

Output: 6

Explanation: Given array has six inversions:

- (8, 4), (4, 2), (8, 2), (8, 1), (4, 1), (2, 1).

> **Input:** arr[] = {1, 20, 6, 4, 5}

Output: 5

Explanation: Given array has five inversions:

- (20, 6), (20, 4), (20, 5), (6, 4), (6, 5).

Brute Force: Closest Pair

Brute Force: Closest Pair Problem

> Find distance between points

P1P2	P2P3	P3P4	P4P5	P5P6
P1P3	P2P4	P3P5	P4P6	
P1P4	P2P5	P3P6		
P1P5	P2P6			
P1P6				
P1P6				

> Formula to use: This is the basic distance formula

$$-d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- The least distance shows the closest pair

Brute Force: Closest Pair Algorithm

- \rightarrow Algorithm BF ClosestPair(p)
- \rightarrow dmin = ∞
- \rightarrow *FOR* i = 1 to n 1
 - -FOR j = i + 1 to n

$$\rightarrow d = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

- \rightarrow *IF* d < dmin THEN
 - dmin = d
 - -index1,=i
 - -index2 = j
- > RETURN indexi, index2

> Time Complexity

$$-C(n) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 2$$

$$- = 2 \sum_{i=1}^{n-1} (n-i-1+1)$$

$$- = 2 \sum_{i=1}^{n-1} (n-i)$$

$$- = 2(n-1) + (n-2) \dots + 1$$

$$- = 2 \cdot \frac{n(n-1)}{2} = n(n-1) = n^2 - n$$

$$-\Theta(n^2) \cong C(n)$$

Convex-Hull Problem: Divide & Conquer

- Convex-Hull is the smallest convex polygon that contain all the points in the plane.
 - Given a set of X of point $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, $P_n(x_n, y_n)$ in plane. We want to find convex hull.
 - Divide and Conquer algorithm take O(n log n) time to compute convex hull in clockwise order.
 - All the points are inside the polygon after connecting all outer points and called as Convex -Hull.
 - Input points must be pre-sorted by x-coordinates

Divide & Conquer: Convex Hull Steps

- 1. Partition X into half X_1 and X_2 according to X coordinates.
- 2. If X1 is Empty, THEN Upper Half is simply line with end points P_1 and P_2
- 3. If X is not Empty, THEN Find P_{max} in X_1 which is fastest from linear P_1P_n
- 4. If the TIE in P_{max} THEN point the maximum angle P_{max} , P_1 , P_2 can be
- 5. Now, Algorithm identifies all point if X_1 that are left of line P_1P_{max} goto Step2

Divide and conquer : Convex Hulls

- Divide the n points into two halves.
- Find convex hull of each subset.
- 3. Combine the two hulls into overall convex hull.

Convex-Hull Example

- > **Input** Set of points: {(-7,8), (-4,6), (2,6), (6,4), (8,6), (7,-2), (4,-6), (8,-7),(0,0), (3,-2),(6,-10),(0,-6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)}
- > Output Boundary points of convex hull are -
 - (-9, -5) (6, -10) (8, -7) (8, 6) (-7, 8) (-10, 4) (-10, 3)

https://www.tutorialspoint.com/online_cpp_compiler.php

Thank You!!!

Have a good day

