Simplifications of Context-Free Grammars

l

A Substitution Rule

Substitute

 $B \rightarrow b$

Equivalent grammar

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow aA$$

$$B \rightarrow b$$

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

,

A Substitution Rule $S \rightarrow aB \mid ab$ $A \rightarrow aaA$ $A \rightarrow abBc \mid abbc$ $B \rightarrow aA$ Substitute $B \rightarrow aA$ $S \rightarrow aB \mid ab \mid aaA$ $A \rightarrow aaA$ $A \rightarrow aaA$ $A \rightarrow abBc \mid abbc \mid abaAc$ Equivalent grammar

Nullable Variables

$$\lambda$$
 – production : $A \rightarrow \lambda$

$$A \rightarrow \lambda$$

Nullable Variable:
$$A \Rightarrow ... \Rightarrow \lambda$$

$$A \Rightarrow ... \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \rightarrow aMb$$

$$M \rightarrow aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \rightarrow aMb$$
 $M \rightarrow aMb$
Substitute
 $M \rightarrow \lambda$

 $S \to aMb$ $S \to ab$

 $M \rightarrow aMb$

 $M \rightarrow ab$

7

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

_

Example Grammar:

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \rightarrow A$$

$$B \rightarrow bb$$

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

Substitute
 $A \rightarrow B$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow A \mid B$$

$$B \rightarrow bb$$

$$Remove$$

$$B \rightarrow B$$

$$B \rightarrow A$$

$$B \rightarrow bb$$

$$B \rightarrow bb$$

Useless Productions

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

$$S \rightarrow A$$

 $A \rightarrow aA$ Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa ... aA \Rightarrow ...$$

15

Another grammar:

$$S \rightarrow A$$

$$A \rightarrow aA$$

$$A \rightarrow \lambda$$

$$B \rightarrow bA$$
 Useless Production

Not reachable from S

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

 $w \in L(G)$

then variable A is useful

otherwise, variable A is useless

17

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S \rightarrow aSb$$

$$S \rightarrow \lambda$$

Productions

Variables $S \rightarrow A$ useless

useless $(A) \rightarrow aA$ useless

useless $(B) \rightarrow C$ useless

useless $C \rightarrow D$ useless

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

First: find all variables that can produce strings with only terminals

$$S \rightarrow aS \mid A \mid C$$
 Round 1: $\{A, B\}$

$$A \to a$$
 $S \to A$

$$B \rightarrow aa$$
 $C \rightarrow aCb$ Round 2: $\{A\}$

Round 2: $\{A, B, S\}$

Keep only the variables

that produce terminal symbols: $\{A, B, S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \mathcal{S}$$

$$A \to a$$

$$B \to aa$$

$$A \rightarrow a$$

$$\rightarrow aa$$

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$C \rightarrow aCb$$

$$B \rightarrow aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

 $B \rightarrow aa$

Remove useless productions

22

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

27

Convertion to Chomsky Normal Form

Example: $S \rightarrow ABa$

 $A \rightarrow aab$

 $B \rightarrow Ac$

Not Chomsky Normal Form

Introduce variables for terminals:
$$T_a, T_b, T_c$$

$$S \rightarrow ABa$$
 $A \rightarrow T_a T_a T_b$
 $B \rightarrow A T_c$
 $T_a \rightarrow a$
 $T_b \rightarrow b$
 $T_c \rightarrow c$

 $S \rightarrow ABT_a$

Introduce intermediate variable: V_1

$$S \to ABT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

Introduce intermediate variable:
$$V_2$$

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_a V_2$$

$$V_2 \to T_a T_b$$

$$B \to AT_c$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

$$T_c \to c$$

Final grammar in C	homsky Normal Form:	
	$S \to AV_1$	
	$V_1 \rightarrow BT_a$	
Initial grammar	$A \rightarrow T_a V_2$	
	$V_2 \rightarrow T_a T_b$	
$S \rightarrow ABa$	$B \to AT_c$	
$A \rightarrow aab$	$T_a \rightarrow a$	
$B \rightarrow Ac$	$T_b \rightarrow b$	
	$T_c \rightarrow c$	

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar
in Chomsky Normal Form

22

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production
$$T_a \rightarrow a$$

In productions: replace
$$a$$
 with T_a

New variable:
$$T_a$$

Replace any production
$$A \rightarrow C_1 C_2 \cdots C_n$$

with
$$A \rightarrow C_1 V_1$$

 $V_1 \rightarrow C_2 V_2$

$$V_{n-2} \to C_{n-1}C_n$$

New intermediate variables:
$$V_1, V_2, ..., V_{n-2}$$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

37

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

39

Examples:

$$S \rightarrow cAB$$

$$A \rightarrow aA \mid bB \mid b$$

$$B \rightarrow b$$

Greinbach Normal Form $S \rightarrow abSb$

$$S \rightarrow aa$$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

$$S \to abSb$$

$$S \to aa$$

$$S \to aT_bST_b$$

$$S \to aT_a$$

$$T_a \to a$$

$$T_b \to b$$

Greibach Normal Form

Theorem: For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greinbach Normal Form

Observations

 Greinbach normal forms are very good for parsing

• It is hard to find the Greinbach normal form of any context-free grammar

12

The CYK Parser

The CYK Membership Algorithm

Input:

- \cdot Grammar G in Chomsky Normal Form
- String w

Output:

find if $w \in L(G)$

45

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$

 $A \rightarrow BB$

 $A \rightarrow a$

 $B \rightarrow AB$

 $B \rightarrow b$

• String w: aabbb

$$S oup AB$$
 $A oup BB$
 $A oup a$
 $A oup AB$
 $A oup a$
 $A oup AB$
 $A oup$

$S \rightarrow AB$					
$A \rightarrow BB$	а	a	b	b	b
·	Α	Α	В	В	В
$A \rightarrow a$		1			
$B \rightarrow AB$	aa	ab	bb	bb	
		S,B	Α	Α	
$B \rightarrow b$	aab	abb	bbb		
	S,B	Α	S,B		
	aabb	abbb			
	Α	S,B			
	aabbb				
	(s)B				
					50

Therefore: $aabbb \in L(G)$

Time Complexity: $|w|^3$

Observation: The CYK algorithm can be

easily converted to a parser

(bottom up parser)