Numerical Analysis Homework 3

Margaret Dorsey

November 19, 2016

Problem 1

Computation

Verifying Correctness

Problem 2

5 Point Stencils

Simpson's Rule

Actual value of $\int_0^{\pi} \sin x \cdot e^{\cos x} dx$: 2.350402.

n	Simpson's Result	Absolute Error
4	1.606199	.744203
10	2.215001	.135401
20	2.315927	.034475
30	2.334574	.015828
100	2.349178	.001224
200	2.350407	.000005

Analysis

Simpson's method remained fairly stable despite the noise, with the error showing a clear exponential decay as n increased, and achieving 10^{-5} accuracy at n = 200.

Problem 3

Simpson's Method Integration 0.316200Trapezoid Method Integration 0.318500Total Emitted Energy from Magnitude Spline $64.469777 \cdot L_{\odot}$ Total Emitted Energy from Luminosity Spline $64.476557 \cdot L_{\odot}$

Problem 4

Median Photon Energy

Mean Photon Energy

Standard Deviation in Wavelength

Problem 5

a.) $\int_{-1}^{1} \cos^2 x dx$ Actual value: 1.4546

Romberg 3,3 Value: .868757

b.) $\int_{-\frac{3}{4}}^{\frac{3}{4}} x \ln(x+1) dx$

Actual value: .324332 Romberg 3,3 Value: .270399

c.) $\int_{1}^{4} \sin^{2} x - 2x \sin x + 1 dx$ Actual value: 1.3668 Romberg 3,3 Value:

d.) $\int_{e}^{2e} \frac{1}{x \ln x} dx$ Actual value: .52659

Romberg 3,3 Value: .382850

Problem 6