Crash Course in High Performance Computing

Cyber-Infrastructure Days October 24, 2013

Dirk Colbry

colbrydi@msu.edu

Research Specialist

Institute for Cyber-Enabled Research

https://wiki.hpcc.msu.edu/x/QAMrAQ

- Introduction to the HPCC
- The Seven Steps to using the HPCC
- Hands on example

How this workshop works

- We are going to cover some basics, lots of hands on examples, in a very short period of time.
- When you get tired of listening to me talk, skip ahead to an exercise and give it a try.
- Exercises are denoted by the following icon in your notes:

Red and Green Flags

- Use the provided sticky notes to help me help you.
 - –NO Sticky = I am working
 - —Green = I am done and ready to move on
 - —Red = I am stuck and need more time and/or I could use some help

HPC Systems

- GPU Accelerated cluster (K20, M1060)
- PHI Accelerated cluster (5110p)
- Over 540 nodes, 10000 computing cores
- Access to high throughput condor cluster
- 363TB high speed parallel scratch file space
- 50GB replicated file spaces
- Access to large open-source software stack and specialized bioinformatics VMs

Available Software

- Center Supported Development Software
 - Intel compilers, openmp, openmpi, mvapich, totalview, mkl, pathscale, gnu...
- Center Supported Research Software
 - MATLAB, R, fluent, abaqus, HEEDS, amber, blast, Isdyna, starp...
- Customer Software
 - gromacs, cmake, cuda, imagemagick, java, openmm, siesta...
 - For a more up to date list, see the documentation wiki:
 - http://wiki.hpcc.msu.edu/

What if I need help?

- Ask us!
- Local Workshops
 - Software carpentry
 - Introduction to Linux and HPCC
 - Advanced HPCC
- Remote Training
 - VSCSE Virtual School for Computer Science Education
 - XSEDE training Workshops

MSU Seminars in Research and Instructional Technology Dec 17, 18, 2013

- Two days of no-cost seminars to faculty and graduate students on technology topics.
 - Morning sessions run from 8:30 to 11:30 am.
 - Afternoon sessions run from 1:30 to 4:30 pm.
 - Lunch is provided that will feature guest speakers on instructional technology.
 - Introduction to HPC
 - Advanced HPC

http://www.softwarecarpentry.org/

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Accounts

- Pls must request accounts for students:
 - http://www.hpcc.msu.edu/request
- All HPCC systems use MSU NetIDs and Passwords.
- We have temporary accounts for today.
- If you are Faculty/Staff and do not have an account, fill out the above request now. We can try to activate your account before the end of the workshop.

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Required Software

- Secure Shell (ssh)
- File transfer
 - Secure Copy (scp)
 - Mapping home directories
- Graphical User Interface (x11)
 - Optional

- Run Terminal program
 - ssh already installedssh –X userid@hpcc.msu.edu
 - scp already installed scp ./mylocalfile userid@hpcc.msu.edu:~/mylocalfile
- May need to install Xquarts (mac X11 Server)
 - Installer should be on USB drive

Windows Software

- PuTTY:
 - http://www.chiark.greenend.org.uk/~sgtatham/putty/
- Xming:
 - http://www.straightrunning.com/XmingNotes/
- Xming install:
 - https://wiki.hpcc.msu.edu/x/swAk
- WinSCP:
 - http://winscp.net

MobaXterm (windows)

- Complete toolbox for remote computing:
 - Multi-tab terminal
 - X11 server
 - SSH
 - File transfer
 - More

- Opensource
- http://mobaxterm.mobatek.net/

Exercise: Portable HPCC

- If you have Windows
- Plug in your USB thumb drive
- Open the thumb drive folder and select
 - PortableApps
- You should see a new menu in your system tray for navigating

Exercise: Connect to HPCC

Step 1: Log into gateway.hpcc.msu.edu

- Step 2: ssh into a dev node (developer node)
 - >ssh dev-intel10
- Step 3: execute a command
 - >echo "Hello world"

Command Line Interface

- Command Line Interface (CLI)
- Shell
 - Program to run Programs
- Bash (Bourne Again Shell)
- Use it because:
 - many tools only have command-line interfaces
 - allows you to combine tools in powerful new ways

Shell Navigation

Basic Navigation commands:

pwd	print working directory		
cd	change working directory		
Is	list directory		

 Use the following symbols to indicate special directories:

	current directory
	parent directory
~	home directory
-	previous directory

Exercise - Shell Navigation

- Show the path to the current directory
 - >pwd
- Change to the scratch directory
 - >cd /mnt/scratch/
- List the contents of the current directory:
 - >1s
- Change back to home
 - >cd ~

Directories

root

doortiCMICH

home scratch research

gmason

colbrydi

Exercise – man Pages

- Manual Pages (man pages)
- Built in documentation
- Very helpful if you know the command but do not know how to get it working
 - >man pwd
- NOTE: Use 'q' to quit

 Not helpful if you do not know the command name... use google

Example: File Manipulation

Try Commands

mkdi r	make directory
ср	copy file
cat	display contents of text file
r m	remove file

- See the contents of your ".bashrc" file
 - > man cat
 - > cat .bashrc
- Make a directory called "hpccworkshop", change to that directory and list the contents.
 - > mkdir hpccworkshop
 - > cd ./hpccworkshop

~ Home Shortcut

- / mnt / home/ col br ydi
 - >cd ~
 - >pwd
 - >cd ~/hpccworkshop
 - >pwd

Available Software

- Center Supported Development Software
 - Intel compilers, openmp, openmpi, mvapich, totalview, mkl, pathscale, gnu...
- Center Supported Research Software
 - MATLAB, R, fluent, abaqus, HEEDS, amber, blast, Isdyna, starp...
- Customer Software
 - gromacs, cmake, cuda, imagemagick, java, openmm, siesta...
 - For a more up to date list, see the documentation wiki:
 - http://wiki.hpcc.msu.edu/

Module System

- To maximize the different types of software and system configurations that are available to the users, HPCC uses a Module system
- Key Commands
 - module avail show available modules
 - module list list currently loaded modules
 - module load modulename load a module
 - module unload modulename unload a module
 - module spider keyword Search modules for a keyword

Exercise – Module

- List loaded modules
 - >module list
- Show available modules:
 - >module avail
- Try an example (Shouldn't work):
 - >powertools

Exercise: getexample

- Load a module:
 - > module load powertools
- Show powertools (should work now):
 - > powertools
- Run the "getexample" powertool
 - > getexample
- Download the helloworld example
 - > getexample helloworld

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Current files

Home Directory

hpccworkshop

helloworld

Exercise: Make a Bash Script

- Make a file called hello.sh using notepad++ on your thumb drive or another text editor
- Put the following lines in your text file:

```
#!/bin/bash
echo "Hello ${USER} and Hello World"
```


SCP/SFTP – Secure File transfer

- WinSCP for Windows
- Command-line "scp" and "sftp" on Apple/Linux
- Many other scp and sftp clients out there as well
- Functions over SSHv2 protocol, very secure

Transfer File

 Copy the file hello to your home directory on the HPCC using scp (or Winscp)

scp ./hello colbrydi@hpcc.msu.edu:~/hpccworkshop

File Permissions

	user	group	all
read			X
write		×	X
execute	X	X	X

Permissions

Common Commands

chmod	Change permissions
	(change mode)
ls -a	List all long
- 1	(including permissions)

Example: permissions

- Try to run hello.sh command
 - >cd ./hello.sh
- Show current permissions
 - >ls -la
- Make the hello.sh file executable
 - > chmod u+x hello.sh
- Check permissions again
 - > ls -la
- Now you can run hello.sh as a command

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Running Jobs on the HPC

- Submission scripts are used to run jobs on the cluster
- The developer (dev) nodes are used to compile, test and debug programs

 However, the developer nodes are powerful systems too. We don't want to waste their compute power.

Advantages of running Interactively

- You do not need to write a submission script
- You do not need to wait in the queue
- You can provide input to and get feedback from your programs as they are running

Disadvantages of running Interactively

- All the resources on developer nodes are shared between all users.
- Any single process is limited to 2 hours of cpu time. If a process runs longer than 2 hours it will be killed.
- Programs that overutilize the resources on a developer node (preventing other to use the system) can be killed without warning.

Developer Nodes

Name	Cores	Memory	GPUs	Notes
dev-amd05	4	8GB	-	
dev-intel07	8	8GB	-	
dev-gfx08	4	8GB	3	Graphics Node
dev-amd09	32	256GB	-	Fat Node
dev-intel09	8	32GB	-	Fastest Node
dev-gfx10	8	18GB	2	Graphics Node
dev-intel10	8	24GB	-	
dev-gfx11	4	8GB	2	Graphics Node
dev-gfx11-4x	8	18GB	4	Graphics Node

Compilers

- By default we use the gnu compilers. However, lots of other compilers are available including Intel and Portland compilers.
- The module system always sets environment variables such that you can easily test with other compilers.
 - -\${CC}
 - -\${FC}
 - Etc.

Exercise: Compile Code

 Make sure you are in the helloworld directory:

```
>pwd
```

Run the gcc compilers:

```
>${CC} -03 -o hello hello.c
```

Run the program:

```
> ./hello
```

Use "control-C" to cancel

Running in the background

- You can run a program in the background by typing an "&" after the command.
- You can make a program keep running even after you log out of your ssh session by using "nohup command"
- You can run an entire session in the background even if you log in and out of your ssh session by using the "screen" or "tmux" commands
- All three of these options are common to linux and tutorials can be found online

CLI – Command Line Interface

GUI – Graphical User Interface

What is X11?

 Method for running Graphical User Interface (GUI) across a network connection.

What is needed for X11

- X11 server running on your personal computer
- SSH connection with X11 enabled
- Fast network connection
 - Preferably on campus

Graphical User Interface

- X11 Windows: Install Xming
 - Installation instructions at: https://wiki.hpcc.msu.edu/x/swAk
- ssh -X username@hpc.msu.edu
- Turn on x11 forwarding

Note: Mac Lion Users should use XQuart

Exercise: Transfer a file

Try one of the following Commands

xeyes	Test X11
firef ox	Web browser

- >xeyes
- >firefox &
- >ps <- Find the process ID #### for firefox
- >kill ####

Programs that can use X11

- R statistical computing and graphics
- matlab Matrix Laboratory
- firefox Web browser
- totalview C/C++/fortran debugger
- gedit, gvim, emacs Text editors
- And others...

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Submission Script

- 1. List of required resources
- 2.All command line instructions needed to run the computation

Typical Submission Script

Shell Comment

Define Shell

```
#!/bin/bash -login
#PBS -l walltime=10:00:00, mem=3Gb, nodes=10:ppn=1
#PBS -j oe

cd ${PBS_0_WORKDIR}

./myprogram -my input arguments

qstat -f ${PBS_JOBID}
```

Resource Requests

Shell Commands

Example: Submit a job

- Go to the top helloworld directory
 - >cd ~/hpccworkshop/helloworld
- Look at the simple submission script
 - >nano hello.qsub
- Nano is a simple program you can use to edit text files on the HPCC
- See bottom line of nano for commands the "^" character indicates the "control" key

hello.qsub

```
#!/bin/bash -login
#PBS -1 walltime=00:05:00
#PBS -l nodes=1:ppn=1, feature=gbe
cd ${PBS O WORKDIR}
./hello
qstat -f ${PBS JOBID}
```


Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Resource Manager and scheduler

Not First In First Out!!

Common Commands

- qsub <Submission script>
 - Submit a job to the queue
- qdel <JOB ID>
 - Delete a job from the queue
- showq -u <USERNAME>
 - Show the current job queue
- checkjob <JOB ID>
 - Check the status of the current job
- showstart –e all <JOB ID>
 - Show the estimated start time of the job.

Submitting a job

- qsub –arguments <Submission Script>
 - Returns the job ID. Typically looks like the following:
 - 5945571.cmgr01

Time to job completion

Queue Run
Time

Example: Submit a job, cont.

- Submit the file to the queue
 - >qsub hello.qsub
- Record jobid number (######) and wait at most 30 seconds
- Check the status of the queue
 - >showq

Example: Monitor a job

- Get the status of the job:
 - >qstat -f ######
- When will a job start:
 - >showstart -e all ######

Scheduling Priorities

- Jobs that use more resources get higher priority (because these are hard to schedule)
- Smaller jobs are backfilled to fit in the holes created by the bigger jobs
- Eligible jobs acquire more priority as they sit in the queue
- Jobs can be in three basic states:
 - Blocked, eligible or running

Cluster Resources

Year	Name	Description	ppn	Memory	Nodes	Total Cores
2005	amd05	Dual-core 2.2GHz AMD Opteron 275	4	8GB	96	384
2007	intel07	Quad-core 2.3GHz Intel Xeons E5345	8	8GB	124	992
2009	amd09	Sun Fire X4600 (Fat Node)	16	128GB	1	16
			32	256GB	4	128
2010	gfx10	Nvidia Cuda Node (no IB)	8	18GB	41	256
2010	intel10	Intel Xeon E5620 (2.40 GHz)	8	24GB	192	1536
2011	intel11	Intel Xeon 2.66 GHz E7-8837	32	512GB	1	32
			32	1TB	1	32
			64	2TB	2	128

System Limitations

- Scheduling
 - 5 eligible jobs at a time
 - 144 running jobs
 - 256 submitted jobs (increasing soon)
- Resources
 - 1 week of walltime
 - 144 cores (nodes * ppn)
 - ppn=64
 - 1TB memory on a single core
 - ~200 GB Hard Drive

Job completion

- By default the job will automatically generate two files when it completes:
 - Standard Output:
 - Ex: jobname.o5945571
 - Standard Error:
 - Ex: jobname.e5945571
- You can combine these files if you add the join option in your submission script:
 - "#PBS -j oe"
- You can change the output file name
 - #PBS -o /mnt/home/netid/myoutputfile.txt

Other Job Properties

- resources (-I)
 - Walltime, memory, nodes, processor, network, etc.
- #PBS –I feature=gpgpu,gbe
- #PBS –l nodes=2:ppn=8:gpu=2
- #PBS –I mem=16gb
- Email address (-M)
 - Ex: #PBS -M colbrydi@msu.edu
- Email Options (-m)
 - Ex: #PBS -m abe

Many others, see the wiki: http://wiki.hpcc.msu.edu/

Steps in Using the HPCC

- 1. Get an account
- 2. Install needed software (SSH, SCP, X11)
- 3. Transfer input files and source code
- 4. Compile/Test programs on a developer node
- 5. Write a submission script
- 6. Submit the job
- 7. Get your results and write a paper!!

Example: getexample

- See list of examples
 - >getexample
- Pick one
 - >getexample examplename
- Change to the example directory
 - >cd examplename
- Run the example. Look for README file and/or submit qsub file
 - >qsub examplename.qsub

https://docs.google.com/forms/d/1NVE7TYF310vSw0t

We are here to help

- www.hpcc.msu.edu/contact
 - Questions
 - Schedule Consultations
 - Code Reviews
 - Programming help
 - Hardware Purchasing
 - Help with Grants
 - Support for Grants

