Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Constraint-based (Query-Directed) Mining

- Finding all the patterns in a database autonomously? unrealistic!
 - The patterns could be too many but not focused!
- Data mining should be an interactive process
 - User directs what to be mined
 - She/he uses a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - System optimization: explores such constraints for efficient mining—constraint-based mining

Constraints in Data Mining

- Knowledge type constraint:
 - classification, association, clustering etc.
- Data constraint using SQL-like queries
 - find product pairs sold together in stores in Chicago in Dec.'18
- Dimension/level constraint
 - in relevance to region, price, brand, customer category
- Interestingness constraint
 - strong rules: min_support ≥ 3%, min_confidence ≥ 60%

Constrained Mining vs. Other Operations

- Constrained mining vs. constraint-based search
 - Both are aimed at reducing search space
 - Constrained mining: finding all patterns satisfying constraints
 - Constraint-based search: finding some (or one) answer in constraint-based search in AI

Constrained Mining vs. Other Operations

- Constrained mining vs. query processing in DBMS
 - Both are aimed at finding all answers
 - Query processing: finding tuples in a database
 - Constrained mining: discovering patterns hidden in a database
 - Constrained mining shares a similar philosophy as pushing selections deeply in query processing

Anti-Monotonicity in Constraint Pushing

- Anti-monotonicity on a constraint
 - When an intemset S violates the constraint, so does any of its superset
 - sum(S.Price) ≤ v is anti-monotone
 - sum(S.Price) ≥ v is not anti-monotone
- Example. C: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates C
 - So does every superset of ab

TDB (min_sup=2)

TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Monotonicity for Constraint Pushing

TDB (min_sup=2)

- Monotonicity on a constraint
 - When an intemset S satisfies the constraint, so does any of its superset
 - sum(S.Price) ≥ v is monotone
 - min(S.Price) ≤ v is monotone
- Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10 🤇

Succinctness

- Succinctness on a constraint
 - When a set of items (say A_1) satisfies a constraint C_n any set S satisfying C is 'simply computed' based on A_1 (In this case, S contains a subset belonging to A_1)
 - $min(S.Price) \le v$ is succinct
 - $sum(S.Price) \ge v$ is not succinct
- Good thing
 - Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
- Optimization: If C is succinct, C is pre-counting pushable

The Apriori Algorithm — Example

March 29, 2020

Data Mining: Concepts and Techniques

Naïve Algorithm: Apriori + Constraint

March 29, 2020

Data Mining: Concepts and Techniques

Sum{S.price} <

The Constrained Apriori Algorithm: Push an Anti-monotone Constraint Deep

March 29, 2020

Data Mining: Concepts and Techniques

Sum{S.price} <

The Constrained Apriori Algorithm: Push a Succinct Constraint Deep

Converting "Tough" Constraints

- Convert tough constraints into antimonotone or monotone by properly ordering items
- Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh
 - It becomes anti-monotone!

TDB (min_sup=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

Item	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Chapter 5: Mining Frequent Patterns, Association and Correlations

- Basic concepts and a road map
- Efficient and scalable frequent itemset mining methods
- Mining various kinds of association rules
- From association mining to correlation analysis
- Constraint-based association mining
- Summary

Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (CHARM, ...)
- Mining a variety of rules and interesting patterns
- Constraint-based mining
- Extensions and applications

