

Best Available Copy

PCT/JP2004/010640

日本国特許庁
JAPAN PATENT OFFICE

30.07.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

2003年 8月12日

出願番号
Application Number:

特願2003-292069

[ST. 10/C]:

[JP2003-292069]

出願人
Applicant(s):

株式会社村田製作所

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 9月 9日

特許庁長官
Commissioner,
Japan Patent Office

小川

【書類名】 特許願
【整理番号】 03-0018
【提出日】 平成15年 8月12日
【あて先】 特許庁長官 殿
【国際特許分類】 H04R 3/12
【発明者】
【住所又は居所】 京都府長岡京市天神二丁目26番10号
株式会社 村田製作所 内
【氏名】 中村 武
【特許出願人】
【識別番号】 000006231
【氏名又は名称】 株式会社 村田製作所
【代表者】 村田 泰隆
【代理人】
【識別番号】 100092554
【弁理士】
【氏名又は名称】 町田 裕之治
【手数料の表示】
【予納台帳番号】 012140
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 9004884

【書類名】特許請求の範囲**【請求項 1】**

ピストン振動によって音波を放射する面を有する音源の音波放射側の前面に配置されるものであって、内ホーンとこの内ホーンの周囲に同心状に配置された外ホーンとを備え、前記内ホーンの内部から放射される音波の放射速度よりも前記外ホーンと内ホーンの間から放射される音波の放射速度が遅くなるように設定することにより、全体で内ホーンを中心とした疑似球面波を発生させるように構成されていることを特徴とする球面波発生ディフューザ。

【請求項 2】

前記内ホーンは音波放射方向に沿って先絞り両端開放円錐状に、前記外ホーンは音波放射方向に沿って先開き両端開放円錐状に、それぞれ形成されてなることを特徴とする請求項1記載の球面波発生ディフューザ。

【請求項 3】

請求項1記載または請求項2記載の球面波発生ディフューザがピストン振動によって音波を放射する面を有する音源の音波放射側の前面に配置されていることを特徴とする球面波スピーカ。

【書類名】明細書

【発明の名称】球面波発生ディフューザ、およびこれを用いた球面波スピーカ

【技術分野】

【0001】

本発明は、疑似球面波の音波を発生させるための球面波発生ディフューザ、およびこれを用いた球面波スピーカに関する。

【背景技術】

【0002】

一般に、ピュアオーディオ等の分野で使用されるスピーカには、十分な音量を確保しつつ、円やかで豊かな音色が得られるものが要求されている。

【0003】

ところで、従来のスピーカには、振動板をコーン状に形成したコーン型スピーカや、振動板を半球面状に形成してその凸面側を発音部とした、いわゆるドーム型スピーカなどが提供されている（例えば、非特許文献1および特許文献1参照）。

【0004】

さらに、従来技術では、同種類の同一口径のスピーカの複数個を直線状あるいは曲線状に配置した、いわゆるトーンゾイレスピーカや、互いに口径の異なるスピーカをスピーカボックスに互いに近接して配置した複合スピーカなども提案されている（例えば、非特許文献2、特許文献2、3等参照）。

【0005】

【非特許文献1】辻重夫編、電気・電子工学大百科事典第25巻『オーディオビデオ』、1983年11月発行、株式会社電気書院

【非特許文献2】日本放送協会編、放送技術叢書『音響機器』昭和38年7月1日発行、株式会社技報堂

【特許文献1】特開平11-196485公報

【特許文献2】特開平2-239798号公報

【特許文献3】特開平5-103391号公報

【発明の開示】

【発明が解決しようとする課題】

【0006】

従来のコーン型スピーカは、コーン状をした振動板の前後のピストン運動によって音波を発生するので、大きな音量を容易に得ることができるが、振動板が前後にピストン運動するだけであるから、音波の放射波面は略平面波となっている。つまり、上記のドーム型スピーカのような球面波ではないので、加振領域と非加振領域の間で空気の乱れ（渦流）が生じ、音波が乱れて円やかで豊かな音色を得るのが難しい。なお、ここで言う加振領域とは、振動板の振動によって直接空気が振動させられる振動板の面を底面とする略柱状の領域のことである。

【0007】

一方、後者のドーム型スピーカは、振動板が膨らんだり縮んだりする呼吸運動をして音波を発生するため、音波は自ずと球面波になっている。そして、このような球面波は、空気の乱れ（渦流）もなく上記のような円やかで豊かな音色を得る上では有利である。

【0008】

しかし、このドーム型スピーカは、コーン型スピーカのように振動板全体が動く構造ではなく、半球面状の振動板の外周縁部のみが強固に保持される構造であり、しかも、呼吸運動により音波を発生する特性上、大きな振幅が望めない。そのため、大きな音量や大きな振動を必要とする低温を得るのが難しい。

【0009】

また、前述した従来のトーンゾイレスピーカは、個々のスピーカの音量や位相を変えることによって特定の方向に鋭い指向性を与えてホールや劇場でのハウリングを減少させるためのものであって、空気の乱れは考慮されておらず、音質を改善しようとするものでは

ない。特に、複数のスピーカを曲線状に配置した構成とする場合には、各スピーカの取付角度や駆動方法が複雑で難しく、またスピーカボックスの構造が複雑で高価になる。

【0010】

なお、特許文献2には中央のスピーカの音圧を両端のスピーカの音圧より大きくするという記載がある。音圧という場合にはスピーカから一定距離離れた地点に伝わる音の圧力を指すと思われるが、口径の大きなスピーカの場合には小さな振幅でも大きな音圧が得られ、口径の小さなスピーカの場合は大きな振幅でも小さな音圧しか得られないということから分かるように、音圧は必ずしもスピーカの振幅を意味するものではない。したがって、音圧に差を持たせたからといって空気の乱れをなくせるものではない。

【0011】

さらに、複合スピーカは、大小の口径を有する各スピーカに音域を分担させて全体として一様な周波数特性をもつよう意図されたもので、上記と同様に、空気の乱れによる音質の劣化を改善しようとするものではない。

【0012】

本発明は、十分大きな音量を確保しつつ、加振領域と非加振領域の間で生じる空気の乱れを抑制し、円やかで豊かな音色を得ることができる球面波発生ディフューザ、およびこれを用いた球面波スピーカを提供することを目的とする。

【課題を解決するための手段】

【0013】

上記の目的を達成するために、請求項1記載の発明に係る球面波発生ディフューザは、ピストン振動によって音波を放射する面を有する音源の音波放射側の前面に配置されるものであって、内ホーンとこの内ホーンの周囲に同心状に配置された外ホーンとを備え、前記内ホーンの内部から放射される音波の放射速度よりも前記外ホーンと内ホーンの間から放射される音波の放射速度が遅くなるように設定することにより、全体で内ホーンを中心とした疑似球面波を発生させるように構成されていることを特徴としている。

【0014】

請求項2記載の発明に係る球面波発生ディフューザは、請求項1記載の発明の構成において、前記内ホーンは音波放射方向に沿って先絞り両端開放円錐状に、前記外ホーンは音波放射方向に沿って先開き両端開放円錐状に、それぞれ形成されてなることを特徴としている。

【0015】

請求項3記載の発明に係る球面波スピーカは、請求項1記載または請求項2記載の球面波発生ディフューザがピストン振動によって音波を放射する面を有する音源の音波放射側の前面に配置されていることを特徴としている。

【発明の効果】

【0016】

請求項1記載の発明に係る球面波発生ディフューザは、コーン型ダイナミックスピーカ等の音源に取り付けて使用することにより、同じ大きさのドーム型スピーカを使用する場合よりも十分大きな音量が得られる。また、内ホーンから放射される音波の放射速度よりも外ホーンから放射される音波の放射速度が小さくなるように設定されているので、全体として疑似球面波の音波が放射される。このため、空気の乱れが少なく、音を無理なく伝えることができ、円やかで豊かな音色が得られる。

【0017】

請求項2記載の発明に係る球面波発生ディフューザは、請求項1記載の発明の効果に加えて、音波放射方向に沿って先絞り両端開放円錐状の内ホーンと、音波放射方向に沿って先開き両端開放円錐状の外ホーンとを同心状に配置するという極めて簡単な構成でもって疑似球面波の音波を効果的に生成することができる。

【0018】

請求項3記載の発明に係る球面波スピーカは、球面波発生ディフューザを音源となる通常のスピーカ等に組み込むことで、疑似球面波の音波を発生する球面波スピーカを極めて

容易に実現することができる。また、複数のスピーカを組み合わせて疑似球面波を発生させる構成ではなく、音源は単一のスピーカを使用すればよいので安価であり、かつ小型化を図ることができる。

【発明を実施するための最良の形態】

【0019】

図1は本発明に係る球面波発生ディフューザを用いて球面波スピーカを構成した場合の実施の形態を示す正面図、図2は図1のA-A線に沿う断面図である。

【0020】

この実施の形態における球面波スピーカ1は、単一のコーン型ダイナミックスピーカ2と、球面波発生ディフューザ3とから構成されている。

【0021】

上記のコーン型ダイナミックスピーカ2は、スピーカボックス6内に、ボイスコイル等を含む駆動部7が設けられるとともに、この駆動部7にコーン状に形成された振動板8が取り付けられており、振動板8はスピーカボックス6の前側に形成された開口部6aに臨んで配置されている。そして、ここでのコーン型ダイナミックスピーカ2は、ピストン振動領域の周波数範囲で加振されて音波を放射するようになっている。なお、ピストン振動領域とは、振動板8が局部的ではなくて全体で前後に振動して音波を発生する状態が得られる比較的低い周波数領域をいう。さらに詳しく言えば、音速（常温で約34[m/s]）を振動板8の外周長さ（円形なら $2\pi r [m]$ ）で割って得られる値（単位[1/s]）で示される周波数より低い周波数がピストン振動領域となる。

【0022】

一方、球面波発生ディフューザ3は、内ホーン11とこの内ホーン11の周囲に同心状に配置された外ホーン12とを備え、内ホーン11は、音波の入射側の開口面積よりも出射側の開口面積が小さくなるように音波放射方向に沿って先絞り両端開放円錐状に形成され、また、外ホーン12は、音波の入射側の開口面積よりも出射側の開口面積が大きくなるように音波放射方向に沿って先開き両端開放円錐状にそれぞれ形成されている。なお、ここで言う外ホーン12で生じる音波とは、正確には外ホーン12と内ホーン11との間から放射される音波のことである。

【0023】

しかも、この場合、コーン型ダイナミックスピーカ2の加振に伴う空気粒子の振動速度を音波の放射速度として定義すると、上記の内ホーン11と外ホーン12については、音波の入射側の開口面積と出射側の開口面積との比を調整することにより、内ホーン11で生じる音波の放射速度に比べて外ホーン12で生じる音波の放射速度が略1/2となるよう設定されている。

【0024】

そして、この球面波発生ディフューザ3の内ホーン11と外ホーン12とは、コーン型ダイナミックスピーカ2の振動板8の前面側において、振動板8と同心で、かつ振動板8と接触しない程度の僅かな間隔を存した状態で、4本の細長い支持棒13を介して一体的に連結されるとともに、図示しないプラケット等を介してスピーカボックス6に位置決め固定されている。

【0025】

上記構成の球面波スピーカ1において、コーン型ダイナミックスピーカ2の駆動部7によって振動板8がピストン運動の周波数領域内で加振されると、これに伴って球面波発生ディフューザ3に向けて音波が放射される。

【0026】

このとき、球面波発生ディフューザ3において、内ホーン11は、先絞り両端開放円錐状になっているので、音波の入射側の開口面積よりも出射側の開口面積が小さくなるため、音波の放射速度が速くなる。これに対して、外ホーン12は、音波放射方向に沿って先開き両端開放円錐状になっているので、音波の入射側の開口面積よりも出射側の開口面積が大きくなるため、音波の放射速度が遅くなる。そのため、内ホーン11から放射される

音波の放射速度に比べて外ホーン12から放射される音波の放射速度は略1/2になる。その結果、図2の鎖線で示すように、この球面波スピーカ1全体として見た場合の放射波面は、内ホーン11を中心とした疑似球面波Wになる。

【0027】

このように、この実施の形態における球面波スピーカ1は、コーン型ダイナミックスピーカ2を音源としているので、ドーム型の同じ大きさのスピーカを使用する場合よりも十分大きな音量が得られる。

【0028】

また、球面波発生ディフューザ3を通過した後の音波は、球面波に近い放射波面Wとなるため、コーン型ダイナミックスピーカ2のみでは、加振領域と非加振領域の間で空気の乱れ（渦流）が生じてしまうのに対して、球面波発生ディフューザ3を通過することで、このような空気の乱れ（渦流）を抑制し、音波を乱すことなく伝えることができ、円やかで豊かな音色が得られる。また、音源が散在することができないため、音響定位が安定し、広いリスニングポジションが得られる。

【0029】

さらに、球面波発生ディフューザ3を用いれば、既存のスピーカ2を利用しつつ、球面波スピーカを容易に実現することができて応用範囲を広げることができるとともに、低価格化を図ることができる。

【0030】

なお、上記の実施の形態では、ピストン運動を行う音源として、コーン型ダイナミックスピーカを例にとって説明したが、これに限定されるものではなく、例えば、圧電体を使用した平面スピーカなどを音源として利用することも可能である。また、本発明は、上記の実施例で示した構成に限定されるものではなく、ホーンの数を増したり、ホーンの形状を変えるなどの、本発明の技術思想の範囲内で種々の変更を加えることが可能である。

【図面の簡単な説明】

【0031】

【図1】本発明の球面波発生ディフューザを用いて球面波スピーカを構成した場合の実施の形態を示す正面図である。

【図2】図1のA-A線に沿う断面図である。

【符号の説明】

【0032】

- 1 球面波スピーカ
- 2 コーン型ダイナミックスピーカ
- 3 球面波発生ディフューザ
- 8 振動板
- 11 内ホーン
- 12 外ホーン

【書類名】 図面
【図 1】

【図 2】

【書類名】要約書

【要約】

【課題】 十分大きな音量を確保しつつ、加振領域と非加振領域の間で生じる空気の乱れを抑制し、円やかで豊かな音色を得ることができる球面波発生ディフューザ、およびこれを用いた球面波スピーカを提供する。

【解決手段】 本発明の球面波発生ディフューザ3は、ピストン振動によって音波を放射する音源の音波放射側の前面に配置されるものであって、内ホーン11とこの内ホーン11の周囲に同心状に配置された外ホーン12とを備え、内ホーン11の内部から放射される音波の放射速度よりも外ホーン12と内ホーン11との間から放射される音波の放射速度が遅くなるように設定することにより、全体で内ホーン11を中心とした疑似球面波を発生させるように構成されている。

【選択図】 図2

特願 2003-292069

出願人履歴情報

識別番号

[000006231]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

京都府長岡京市天神二丁目26番10号

氏 名

株式会社村田製作所

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.