

RATES Bibliography Project Deliverable ID Bibliography

Andrew Ernest <anernest@ratesresearch.org>

Approval Page

Technical Review By:

Andrew N.S. Ernest, Ph.D., P.E., BCEE, D.WRE
Professor of Civil Engineering

Final Approval For Submission:

Andrew N.S. Ernest, Ph.D., P.E., BCEE, D.WRE
Principle Investigator

CONTENTS

1	Bibliography	1
2	Indices and tables	2
A	Glossary	3
Bi	ibliography	12
In	ndex	16

CHAPTER

ONE

BIBLIOGRAPHY

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

APPENDIX

A

GLOSSARY

API

Application Programming Interface

API.RGVFlood.com

RGVFlood.com data assimilation service.

AWS

Amazon Web Services

Azure

Microsoft's Cloud Computing Platform

Bernoulli

The Bernoulli equation is a simplification of the Navier-Stokes equations assuming inviscid fluid and steady (non-time-variant) flow.

BLE

Base Level Engineering

Celery

A task scheduling and messaging application used to maximize parallel task processing.

CentOS

A *Linux* distribution

CI

Cyberinfrastructure

CLI

Command-Line Interface

Clover

Cloud Virtual Water Model Executor

COP

Common Operating Picture

CPU

Centralized Processing Unit

Crowdsource

Data collection from open, relatively un-controlled, sources.

CUAHSI

Consortium of Universities for the Advancement of Hydrologic Science

Cyberinfrastructure

computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked by high speed networks

DEM

Digital Elevation Model

Deterministic

Approaches to describing processes that do not rely on randomness.

DFIRM

Digital Flood Insurance Rate Map

DHS

Department of Homeland Security

DIKW

Data, Information, Knowledge, Wisdom

Django

https://www.djangoproject.com/

Docker

Docker is a container deployment platform that allows for the rapid deployment of a applications in the cloud, independent of the physical infrastructure.

DRF

Django ReST Framework

DSS

Decision Support System

EC2

AWS Elastic Cloud Compute

Eeyore

URL: Eeyore.ratesresearch.org CPU: Dual Intel(R) Xeon(R) E-2124 CPU @ 3.30GHz Memory: 16GB HD: 4TB OS: Ubuntu Linux 20.04

FEMA

Federal Emergency Management Agency

FIF

Flood Infrastructure Fund

FOSS

Free and Open Source Software

GCE

Google Compute Engine

GCP

Google Cloud Platform

GCS

Google Cloud storage

GeoNode

https://geonode.org/">

GeoNode/db

PostgreSQL with PostGIS extensions database server storing GeoNode Django and GeoServer data.

GeoServer

Open source server for sharing geospatial data.

GeoTIFF

A public domain metadata standard which has the georeferencing information embedded within the *TIFF* file.

GIS

Geospatial Information System

GKE

Google Kubernetes Engine

Н&Н

Hydrologic and Hydraulic

HAND

Height Above Nearest Drainage http://handmodel.ccst.inpe.br/

HEC

Hydrologic Engineering Center

HEC-DSS

HEC Data Storage System

HEC-HMS

Hydrologic Engineering Center Hydrologic Modeling System. https://www.hec.usace.army.mil/software/hec-hms/>

HEC-RAS

Hydrologic Engineering Center River Analysis System. https://www.hec.usace.army.mil/software/hec-ras/

HEC-RTS

Hydrologic Engineering Center Real Time Simulation

HPC

High Performace Computing

HPCC

HPC cluster

HTML

Hypertext Markup Language

HUC

Hydrologic Unit Code

IDV

Integrated Data Viewer from UniData

InfoWorks ICM

https://www.innovyze.com/en-us/products/infoworks-icm

IT

Information Technology

K8s

Kuhernetes

Kubernetes

An orchestration system facilites the deployment and management of containerized applications, with a specific focus on scaling to increase demand for the provided services.

LaTeX

A high-quality typesetting system including features designed for the production of technical and scientific documentation

LiDAR

Light Detection and Ranging

Linux

An open source operating system that is made up of the kernel, the base component of the OS, and the tools, apps, and services bundled along with it.

LLM/BSC

Lower Laguna Madre/Brownsville Ship Channel watershed.

LRGV

Lower Rio Grande Valley

LRGVDC

Lower Rio Grande Valley Development Council

LSM

Land Surface Models focus on describing the processes driving the exchange of terrestrial water with atmospheric.

Mechanistic

Formulations describing physical, biological or chemical processes based on a theoretical understanding.

MIKE Urban+

https://www.mikepoweredbydhi.com/download/mike-2019/mike-urban-plus?ref=%7B5399F5D6-40C6-4BB2-8311-37B615A652C6%7D>

MPI

Message Passing Interface

NAT

Network Address Translation

Navier-Stokes

The Navier-Stokes equations are mathematically representations of conservation of mass and momentum for simple fluids such as water.

NCAR

National Center for Atmospheric Research

NetCDF

NetCDF (Network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. It is also a community standard for sharing scientific data. The Unidata Program Center supports and maintains netCDF programming interfaces for C, C++, Java, and Fortran. Programming interfaces are also available for Python, IDL, MATLAB, R, Ruby, and Perl. Reproduced from NetCDF.

NGINX

High performance web server.

NIC

Network interface controller

NLDAS

North American Land Data Assimilation System

NOAA

National Oceanic and Atmospheric Agency

NWC

National Water Center

NWM

National Water Model

NWS

National Weather Service

ODM

Observations Data Model

PostGIS

Spatial database extender for *PostgreSQL*

PostgreSQL

Open source object-relational database system, available with *PostGIS* extensions

Primo

Parallel raster inundation model

PWA

Progressive Web Application, an application format that allows installation as native applications onto mobile devices and desktop PCs directly from the web.

Python

https://www.python.org/>

R

A language and environment for statistical computing and graphics

RabbitMQ

An open-source inter-process message broker

RATES

Research, Applied Technology, Education and Service, Inc., a non-profit technology-based company.

RBAC

Role Based Access Control

REON

River and Estuary Observation Network. A partnership of organizations, supported by cloud software, committed to furthering the Democratization of Water Intelligence by sharing water data, analytics and models for local and regional decision making.

REON.cc

Cloud-based cyber-infrastructure that supports *REON*'s goals.

REON/db

PostgreSQL with *PostGIS* extensions database server storing *REON* specific data for *RTHS*, *REON/WM* & *REON.cc* data.

REON/RGV

Instantiation of REON with specific application to the Lower Rio Grande Valley - this includes the collection of RTHS stations, the REON partners with a stake in the LRGV, and the application of the REON/WM to the LRGV.

REON/WM

REON Water Model

ReST

REpresentational State Transfer

RGVFlood

Instantiation of the *REON* Cyberinfrastructure specific to the *LRGV*.

RGVFlood.com

The domain name and *URL* for *RGVFlood*.

RTHS

Real Time Hydrologic System

RTHS.us

Cloud server of RTHS network data

RWRAC

Regional Water Resources Advisory Committee

SA

Situational Awareness

SaaS

Software as a Service

SMT

Simultaneous Multi-Threading

SONAR

Sound Navigation Ranging, a technique for detecting and determining the distance and direction of underwater objects by acoustic means.

Sphinx

Documentation generator supporting multiple output formats

SPRNT

Simulation Program for River Networks

Spyce

Smartphone Python Computing Environment

Stochastic

Approaches to describing processes in statistical terms.

SWMM

Stormwater Management Model

Tastypie

a webservice API framework for Django

TGLO

Texas General Land Office

Tier I

Tier I Real-Time Regional Hydrologic Modeling Framework

Tier II

Tier II On-Demand Sub-Regional Hydraulic Modeling Framework

Tier III

Tier III Off-Line Urban Stormwater Modeling Framework

TIFF

Tag Image File Format, a computer file used to store raster graphics and image information.

Tigger

URL: Tigger.water-wizard.org CPU: Dual Intel(R) Xeon(R) CPU E3-1245 v3 @ 3.40GHz Memory: 16GB HD: 4TB OS: Ubuntu Linux 20.04

TIN

Triangular Irregular Networks are a form of vector-based digital geographic data and are constructed by triangulating a set of vertices.

TWDB

Texas Water Development Board

TWDB/FIF

The Texas Water Development Board Flood Infrastructure Fund.

Ubuntu

A *Linux* distribution

UCAR

University Corporation for Atmospheric Research

UI

User Interface

UniData

A *UCAR* community program focused on sharing geoscience data and the tools to access and visualize that data.

URL

Uniform Resource Locator

USACE

United States Army Corps of Engineers

USGS

United States Geological Survey

USIBWC

United States International Boundary Water Commission

vCPU

Virtual CPU

VIC

Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. https://vic.readthedocs.io/en/master/

VM

Virtual Machine

Water Wizard

A suite of decision support tools designed for regional decision makers.

Wizard.RGVFlood.com

A web, mobile and desktop client-side application that, working with the server-side components at *RGVFlood.com*, provides the end-user with the up-to-date analytics, visualization and decision support services from the core *REON.cc CI*.

WPS

WRF Preprocessing System

WRDA

Water Resources Development Act

WRF

Weather Research and Forecasting Model

WRF-Hydro

WRF Hydrological modeling system. https://ral..edu/projects/wrf_hydro/overview

BIBLIOGRAPHY

- [Ber66] Isaiah Berlin. *The Hedgehog and the Fox: An Essay on Tolstoy's View of History*. Simon and Schuster, 1966.
- [BEAD94] James S. Bonner, Andrew N. S. Ernest, Robin L. Autenreith, and Sharon Ducharme. Parameterizing Models for Contaminated Sediment Transport. In Joseph V. DePinto, Willie Lick, and John Paul, editors, *Transport and Transformation of Contaminants Near the Sediment-Water Interface*. Lewis Publishers, 1994.
- [Bos95] Jr. Bosquez, Juan. *Red Mud Reclamation Using Sewage Sludge Amendments and Bermudagrass*. PhD thesis, Texas A&M University Kingsville, Kingsville, August 1995. URL: http://proquest.umi.com.libsrv.wku.edu/pqdweb?did=743294441&sid=1&Fmt=2&clientId=1449&RQT=309&VName=PQD.
- [CSS00] Susan F Chipman, Jan Maarten Schraagen, and Valerie L Shalin. Introduction to cognitive task analysis. *Cognitive task analysis*, pages 3–23, 2000.
- [Col01] J. Collins. *Good to Great: Why Some Companies Make the Leap...And Others Don't.* HarperCollins, 2001. ISBN 978-0-06-662099-2. URL: http://books.google.com/books?id=Q7ja95uwUT4C.
- [Dav14] missing publisher in david_routing_2014
- [DYH13] Cédric H David, Zong-Liang Yang, and Seungbum Hong. Regional-scale river flow modeling using off-the-shelf runoff products, thousands of mapped rivers and hundreds of stream flow gauges. *Environmental Modelling & Software*, 42(11):6e132, 2013.
- [DeL14] Cecelia DeLuca. The earth system modeling framework: interoperability infrastructure for high performance weather and climate models. In *Proceedings of the 2nd ACM SIGSIM/PADS conference on Principles of advanced discrete simulation*, 213–214. ACM, 2014.
- [EVFS05] JR Eastman, ME Van Fossen, and LA Solarzano. Transition potential modeling for land cover change. *GIS*, *spatial analysis and modeling*, pages 357–386, 2005.
- [Ern93] Andrew N. S. Ernest. Generation and evaluation of biosurfactant inoculae for petroleum waste treatment. In *Gulf Coast Hazardous Substance Research Center's 1993 Sympo-*

- sium on Emerging Technologies: Metals, Oxidation, and Separation. Beaumont, Texas, 1993.
- [EFK+09] Andrew N. S. Ernest, Jana R. Fattic, Julia Kays, Alan Cranford, Christal Wade, and Karla Andrew. Water/Wastewater Technician Training Institute: The First Year Retrospective. In *WEFTEC 2009*, Proceedings of the Water Environment Federation, 7787–7801. Orlando, Florida, January 2009. Water Environment Federation. URL: http://www.ingentaconnect.com/content/wef/wefproc/2009/00002009/00000007/art00025, doi:10.2175/193864709793900122.
- [Fel07] David F Feldon. The implications of research on expertise for curriculum and pedagogy. *Educational Psychology Review*, 19(2):91–110, 2007.
- [Fri08] Thomas L Friedman. Hot, flat, and crowded: Why we need a green revolution—and how it can renew America. Macmillan, 2008.
- [GYS+12] Daniel Gilles, Nathan Young, Harvest Schroeder, Jesse Piotrowski, and Yi-Jia Chang. Inundation mapping initiatives of the Iowa Flood Center: Statewide coverage and detailed urban flooding analysis. *Water*, 4(1):85–106, 2012.
- [Gre85] Samuel R Green. An overview of the Tennessee-Tombigbee Waterway. *Environmental Geology and Water Sciences*, 7(1-2):9–13, 1985.
- [GEB+20] J. L. Gutenson, A. N. S. Ernest, B. L. Bearden, C. Fuller, and J. Guerrero. Integrating Societal and Scientific Elements into Sustainable and Effective Water Resource Policy Development. *Journal of Environmental Informatics Letters*, 2020. URL: http://www.jeiletters.org/index.php?journal=mys&page=article&op=view&path% 5B%5D=202000048 (visited on 2021-03-15), doi:10.3808/jeil.202000048.
- [GEO+17] J. L. Gutenson, A. N. S. Ernest, A. A. Oubeidillah, L. Zhu, X. Zhang, and S. T. Sadeghi. Rapid Flood Damage Prediction and Forecasting Using Public Domain Cadastral and Address Point Data with Fuzzy Logic Algorithms. *JAWRA Journal of the American Water Resources Association*, 54(1):104–123, August 2017. Publisher: Wiley. doi:10.1111/1752-1688.12556.
- [HHB07] Mark Hedges, Adil Hasan, and Tobias Blanke. Curation and preservation of research data in an iRODS data grid. In *e-Science and Grid Computing, IEEE International Conference on*, 457–464. IEEE, 2007.
- [KFOBrien+20] W. D. Kirkey, C. B. Fuller, P. O'Brien, P. J. Kirkey, A. Mahmoud, A. N. Ernest, and J. Guerrero. River & Estuary Observation Network: Refinement of Stage Height Sensor Subsystem for Low Cost and High Reliability. *Journal of Environmental Informatics Letters*, 2020. URL: http://www.jeiletters.org/index.php?journal=mys&page=article&op=view&path%5B%5D=202000045 (visited on 2021-03-15), doi:10.3808/jeil.202000045.
- [MSFS08] Kevin L Manross, TM Smith, JT Ferree, and GJ Stumpf. An on-demand user interface for requesting multi-radar, multi-sensor time accumulated products to support severe weather verification. In *Extended Abstracts*, 24th Conf. on Interactive Information Processing Sys. 2008.

Bibliography 13

- [Man05] Oslo Manual. The measurement of scientific and technological activities. *Proposed Guidelines for Collecting and Interpreting Technological Innovation Data. European Commission and Eurostat*, 2005.
- [MJM72] Ernest J McCormick, Paul R Jeanneret, and Robert C Mecham. A study of job characteristics and job dimensions as based on the Position Analysis Questionnaire (PAQ). *Journal of Applied Psychology*, 56(4):347, 1972.
- [PHJ+13] Antonio Parodi, Rick Hooper, Shantenu Jha, Ilya Zaslavsky, and others. Advancing hydrometeorological prediction capabilities through standards-based cyberinfrastructure development: The community WRF-Hydro modeling system. In *EGU General Assembly Conference Abstracts*, volume 15, 6011. 2013.
- [PHN13] Scott D Peckham, Eric WH Hutton, and Boyana Norris. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. *Computers & Geosciences*, 53:3–12, 2013.
- [PLBE18] Sarah Praskievicz, Cehong Luo, Bennett Bearden, and Andrew Ernest. Evaluation of low-flow metrics as environmental instream flow standards during long-term average and 2016 drought conditions: Tombigbee River Basin, Alabama and Mississippi, USA. *Water Policy*, 20(6):1240–1255, July 2018. Publisher: IWA Publishing. doi:10.2166/wp.2018.023.
- [SBB+08] Tracy Lorraine Smith, SG Benjamin, JM Brown, SS Weygandt, T Smirnova, and BE Schwartz. Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh Model. In *Preprints*, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc, volume 11. 2008.
- [Wil06] Greg Wilson. Software carpentry: getting scientists to write better code by making them more productive. *Computing in Science & Engineering*, 8(6):66–69, 2006.

[Alabamagov15] missing publisher in alabama.gov_alabama_2015

[CSDMS14] missing publisher in csdms_community_2014

[CUAHSIorg15] missing publisher in cuahsi.org_consortium_2015

[DataCarpentryorg14] missing publisher in datacarpentry.org_data_2014

[EarthSystemModelingorg14] missing publisher in earthsystemmodeling.org_earth_2014

[HorizonSystemscom15a] missing publisher in horizon-systems.com_national_2015-1

[HorizonSystemscom15b] missing publisher in horizon-systems.com_national_2015

[IowaFloodCenterorg14] missing publisher in iowafloodcenter.org_iowa_2014

[iRODSorg15] missing publisher in irods.org_integrated_2015

[JobAnalysisnet14] missing publisher in job-analysis.net_job_2014

[MWRDorg14] missing publisher in mwrd.org_municipal_2014

[NASA15] missing publisher in nasa_north_2015

Bibliography 14

[NOAAgov15] missing publisher in noaa.gov_national_2015

[NSFgov14] missing publisher in nsf.gov_national_2014

[NSFgov15] missing publisher in nsf.gov_epscor_2015

[OpenMIorg15] missing publisher in openmi.org_open_2015

[SoftwareCarpentryorg15] missing publisher in softwarecarpentry.org_software_2015

[UCAR] missing publisher in ucar_weather_nodate

[WaterML2org15] missing publisher in waterml2.org_waterml2_2015

[textbackslashglsCUAHSI14] missing publisher in glscuahsi_hydroshare_2014

[textbackslashglsESRL14] missing publisher in glsesrl_high-resolution_2014

[textbackslashglsNOAA14] missing publisher in glsnoaa_earth_2014

[textbackslashglsNOAA15] missing publisher in glsnoaa_national_2015

[textbackslashglsNSSL15] missing publisher in glsnssl_multi-radar/multi-sensor_2015

Bibliography 15

INDEX

Α	Eeyore, 4
API, 3	F
API.RGVFlood.com, 3	•
AWS, 3	FEMA, 4
Azure, 3	FIF, 4 FOSS, 4
В	, _
Bernoulli, 3	G
BLE, 3	GCE, 5
	GCP, 5
C	GCS, 5
Celery, 3	GeoNode, 5
CentOS, 3	GeoNode/db, 5
CI, 3	GeoServer, 5
CLI, 3	GeoTIFF, 5
Clover, 3	GIS, 5
COP, 3	GKE, 5
CPU, 3	Н
Crowdsource, 4	Н н&н, 5
Crowdsource, 4 CUAHSI, 4	
Crowdsource, 4	H&H, 5
Crowdsource, 4 CUAHSI, 4	H&H, 5 HAND, 5
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D	H&H, 5 HAND, 5 HEC, 5
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6 HTML, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4 Docker, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4 Docker, 4 DRF, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6 HTML, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4 Docker, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6 HTML, 6 HUC, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4 Docker, 4 DRF, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6 HTML, 6 HUC, 6
Crowdsource, 4 CUAHSI, 4 Cyberinfrastructure, 4 D DEM, 4 Deterministic, 4 DFIRM, 4 DHS, 4 DIKW, 4 Django, 4 Docker, 4 DRF, 4 DSS, 4	H&H, 5 HAND, 5 HEC, 5 HEC-DSS, 5 HEC-HMS, 5 HEC-RAS, 5 HEC-RTS, 5 HPC, 6 HPCC, 6 HTML, 6 HUC, 6

K8s, 6	RBAC, 8 REON, 8
Kubernetes, 6	REON.cc, 8
L	REON/db, 8 REON/RGV, 8
LaTeX, 6	REON/WM, 8 ReST, 8
Linux, 6	RGVFlood, 9
LLM/BSC, 6	RGVFlood.com, 9
LRGV, 6	RTHS, 9
LRGVDC, 6	RTHS.us, 9
LSM, 6	RWRAC, 9
M	S
Mechanistic, 7	SA, 9
MIKE Urban+, 7	SaaS, 9
MPI, 7	SMT, 9
N	SONAR, 9 Sphinx, 9
NAT, 7	SPRNT, 9
Navier-Stokes, 7	Spyce, 9
NCAR, 7	Stochastic, 9
NetCDF, 7	SWMM, 9
NGINX, 7	Т
NIC, 7	-
NLDAS, 7	Tastypie, 9 TGLO, 9
NOAA, 7 NWC, 7	Tier I, 9
NWM, 7	Tier II, 10
NWS, 7	Tier III, 10
	TIFF, 10
0	Tigger, 10
ODM, 7	TIN, 10
P	TWDB, 10 TWDB/FIF, 10
PostGIS, 8	U
PostgreSQL, 8	•
Primo, 8	Ubuntu, 10
PWA, 8	UCAR, 10
Python, 8	UI, 10 UniData, 10
R	URL, 10
R, 8	USACE, 10
RabbitMQ, 8	USGS, 10
RATES, 8	USIBWC, 10

Index 17

```
V
vCPU, 10
VIC, 11
VM, 11
W
Water Wizard, 11
Wizard.RGVFlood.com, 11
WPS, 11
WRDA, 11
WRF, 11
WRF-Hydro, 11
```

Index 18