MAT77C - Fundamentos de Análise - Lista 8

Fabio Zhao Yuan Wang*

1. Sejam $a,b \in \mathbb{R}$ em que a < b. Mostre que (a,b), $(-\infty,b)$, $(a,+\infty)$ são conjuntos abertos. Dem: Vejamos que A=(a,b) é um conjunto aberto. Note que para todo $x \in A$, $x \in \mathbb{R}$ e a < x < b, (1.0). Sejam $\overline{a} = x - a$ e $\overline{b} = b - x$. Como x > a, segue que $\overline{a} = x - a > 0$, ou seja $\overline{a} > 0$, analogamente temos $\overline{b} > 0$. Com isto, considere $r = \min(\overline{a}, \overline{b})$, vejamos então, que para todo $x \in A$, $\left(x - \frac{r}{2}, x + \frac{r}{2}\right) \subset A$. Ora, como $r = \min(\overline{a}, \overline{b})$, segue que $r \leq \overline{a}$ e $r \leq \overline{b}$. Ao considerar $r \leq \overline{a}$, isto é, $-r \geq -\overline{a}$, podemos verificar que,

$$x - \frac{r}{2} \ge x - \frac{\overline{a}}{2} = x - \frac{x - a}{2} = \frac{x + a}{2},$$

e, como x>a, segue que $x-\frac{r}{2}\geq\frac{x+a}{2}>\frac{a+a}{2}=a$, isto é, $x-\frac{r}{2}>a$. Agora, considere $r\leq\overline{b}$, ou seja,

$$x + \frac{r}{2} \le x + \frac{\overline{b}}{2} = x + \frac{b - x}{2} = \frac{b + x}{2},$$

mas como x < b, segue que $x + \frac{r}{2} < \frac{b+b}{2} = b$, portanto $x + \frac{r}{2} < b$. Ademais, visto que $\overline{b} > 0$ e $\overline{a} > 0$, temos que $r = \min(\overline{a}, \overline{b}) > 0$, ou seja, -r < r. Isto posto, temos que,

$$a < x - \frac{r}{2} < x + \frac{r}{2} < b \tag{1.1}$$

e como para todo $x \in A$ temos (1.0), então (1.1) pode ser expressa por $\left(x - \frac{r}{2}, x + \frac{r}{2}\right) \subset A$. Com isso, podemos concluir que $A \subset \operatorname{int}(A)$. Mais ainda, pela definição de pontos interiores, temos que $\operatorname{int}(A) \subset A$, portanto $A = \operatorname{int}(A)$ que, pela definição de abertos, segue que A = (a,b) é um aberto, como queríamos.

Vejamos que $B=(-\infty,b)$ é um conjunto aberto. Análogo ao caso anterior, considere $\overline{b}=b-x>0$ tal que $x\in B$. Como $x+\frac{\overline{b}}{2}=\frac{b+x}{2}<\frac{b+b}{2}=b$, $e-\overline{b}<\overline{b}$, então

$$x - \frac{\overline{b}}{2} < x + \frac{\overline{b}}{2} < b \tag{1.2}$$

e, visto que $x \in B$ se, e somente se, $x \in \mathbb{R}$ e x < b, segue que $\left(x - \frac{\overline{b}}{2}, x + \frac{\overline{b}}{2}\right) \subset B$, (1.3). Mais ainda, como para todo $x \in B$ temos (1.2), e por conseguinte (1.3), então $B \subset \operatorname{int}(B)$ e, da definição de pontos interiores, $\operatorname{int}(B) \subset B$, ou seja $B = \operatorname{int}(B)$. Em vista disso, pela definição de abertos, segue que B é aberto, como queríamos.

Vejamos agora que $C=(a,\infty)$ é um conjunto aberto. Como visto anteriormente, sejam $x\in A$ e $\overline{a}=x-a>0$. Visto que $x-\frac{\overline{a}}{2}=\frac{x+a}{2}>a$ e $-\overline{a}<\overline{a}$, então,

$$a < x - \frac{\overline{a}}{2} < x + \frac{\overline{a}}{2},\tag{1.4}$$

Portanto $\left(x-\frac{\overline{a}}{2},x+\frac{\overline{a}}{2}\right)\subset C$, (1.5). Já que para todo $x\in C$ temos (1.5), segue que $C\subset \operatorname{int}(C)$, e da definição de pontos interiores, $\operatorname{int}(C)\subset C$, ou seja $C=\operatorname{int}(C)$, sendo assim, C é aberto, como queríamos. \square

2. Seja $A \subset \mathbb{R}$. Mostre que $a \in A$ é um ponto de acumulação de A se, e somente se, toda vizinhança V de a, contém um ponto de $A \setminus \{a\}$, isto é, $V \cap (A \setminus \{a\}) \neq \emptyset$.

Dem: Suponhamos que $a \in A$ é um ponto de acumulação de A, ou seja, existe uma sequência $(x_n)_{n \in \mathbb{N}}$ tal que $x_n \in A \setminus \{a\}$ e $\lim_{n \to \infty} x_n = a$. Como $\lim_{n \to \infty} x_n = a$, para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que, para $n \in \mathbb{N}$, temos $|x_n - a| < \epsilon$ com $n \ge n_0$, ou seja

$$|x_n - a| < \epsilon \iff -\epsilon < x_n - a < \epsilon \implies a - \epsilon < x_n < a + \epsilon$$
 (2.1)

e, como (2.1) vale para todo $\epsilon>0$, é conveniente escolher um ϵ suficiente pequeno, tal que $(a-\epsilon,a+\epsilon)$ é uma vizinhança de a de raio ϵ centrada em a que esteja contida em A e que denotaremos por $V_{\epsilon}(a)$. Com isto, como $\epsilon>0$, existe um ponto $a-\frac{\epsilon}{2}\in(a-\epsilon,a+\epsilon)=V_{\epsilon}(a)=V_{\epsilon}(a)\cap A$ que é diferente de a, ou seja, em particular, $a-\frac{\epsilon}{2}\in(V_{\epsilon}(a)\cap A)\backslash\{a\}=V_{\epsilon}(a)\cap(A\backslash\{a\})$. Com isto, temos o que queríamos.

Por outro lado, suponhamos que toda vizinhança V de a contém um ponto de $A\setminus\{a\}$, (2.2). Ora, como (2.2) vale para qualquer vizinhança V(a), então, seja $V(a)=(\alpha,\beta)$, tal que $\alpha,\beta\in\mathbb{R}$ e $\alpha<\beta$. Da hipótese, sabemos que $V(a)\cap(A\setminus\{a\})\neq\emptyset$, portanto, podemos construir uma sequência $(x_n)_{n\in\mathbb{N}}$ em V(a) tal que $\lim_{n\to\infty}x_n=a$. Com isto, sejam $\overline{\alpha}=a-\alpha$ e $\overline{\beta}=\beta-a$, e $r=\min(\overline{\alpha},\overline{\beta})$, e, considere a sequência $(x_n)_{n\in\mathbb{N}}$ tal que $x_n=a+\frac{r}{n+1}$. Note que $\lim_{n\to\infty}x_n=a$,

mais ainda, por construção, para todo $n \in \mathbb{N}$, $x_n \in V(a) \setminus \{a\}$, portanto, $a \notin \text{um}$ ponto de acumulação, como queríamos. \square

3. Mostre que todo conjunto enumerável tem interior vazio. Dê exemplos de conjuntos com interior vazio.

Exemplos de conjuntos com interior vazio:

- (a) Qualquer conjunto unitário, isto é, $A = \{a\}$ onde $a \in \mathbb{R}$, tem interior vazio, visto que para todo $\epsilon > 0$, $(a \epsilon, a + \epsilon) \notin A$. **Exemplo:** $A_0 = \{0\}, A_1 = \{1\}, A_{-1} = \{-1\}$ tem interior vazio.
- (b) Qualquer conjunto finito contido nos reais, isto é, $A = \{x_0, \dots, x_n\}$ onde $n \in \mathbb{N}$ e $x_k \in \mathbb{R}$ para todo $k \in \mathbb{Z} \cap [0, n]$ e $x_i < x_j$ quando i < j, tem interior vazio.

Demonstração alternativa para este caso em específico: Considere $d = \min\{|x_i - x_{i+1}|; i = 0, 1, \ldots, n-1\}$, para cada $d > \epsilon_0 > 0$ e $k \in \mathbb{Z} \cap [0, n]$, não existe $a \in A$ tal que $a \neq x_k$ e $a \in (x_k - \epsilon_0, x_k + \epsilon_0)$, já que, caso contrário, violaríamos a definição de d; ou seja, $(x_k - \epsilon_0, x_k + \epsilon_0) \not\subset A$. Note que, para todo $\epsilon > 0$ existe pelo menos um ϵ_0 como descrito anteriormente, tal que $I_{0,k} = (x_k - \epsilon_0, x_k + \epsilon_0) \subset (x_k - \epsilon, x_k + \epsilon) = I_{1,k}$ com $k \in \mathbb{Z} \cap [0, n]$, portanto, como $I_{0,k} \not\subset A$, $I_{0,k} \subset I_{1,k}$ e $I_{0,k} \cap I_{1,k} \neq \emptyset$, segue que $I_{1,k} \not\subset A$, em outras palavras, para cada $k \in \mathbb{Z} \cap [0, n]$ e $\epsilon > 0$, temos que $(x_k - \epsilon, x_k + \epsilon) \not\subset A$, isto é, int $(A) = \emptyset$.

Exemplo: $A_0 = \{0, 1\}, A_1 = \{0, 1, 2\}, A_3 = \{0, 1, 2, 3\}$ tem interior vazio.

Antes da demonstração, devemos relembrar da seguinte proposição e de um teorema demonstrados em aula.

Proposição: Seja A um conjunto contável. Se $B \subset A$, então B é contável.

A proposição acima é logicamente equivalente a seguinte afirmação:

Proposição: Sejam dois conjuntos A e B tais que $B \subset A$. Se A é contável então B é contável. Mais ainda, a contrapositiva da reescrita proposta nos diz que:

Lema: Sejam dois conjuntos A e B tais que $B \subset A$. Se B não é contável, então A não é contável.

Teorema: Todo intervalo I, não-degenerado é não-enumerável.

Demonstração do exercício proposto: Seja um conjunto qualquer $A \subset \mathbb{R}$ enumerável, ou seja, contável, e, afim de contradição, suponha que $\operatorname{int}(A) \neq \emptyset$, isto é, existe pelo menos um $a \in \operatorname{int}(A) \subset A$. Note que, se $A = \emptyset$, temos uma contradição; Visto que há pelo menos um $a \in \operatorname{int}(A)$, da definição de ponto interior, existe $\epsilon > 0$ tal que $(a - \epsilon, a + \epsilon) \subset A$. Como $(a - \epsilon, a + \epsilon)$ é um intervalo não-degenerado, do teorema citado, segue que $(a - \epsilon, a + \epsilon)$ é não-enumerável, portanto $(a - \epsilon, a + \epsilon)$ não é contável. Daqui, visto que $\operatorname{int}(A) \subset A$ e $\operatorname{int}(A)$ não é contável, segue do lema acima que A não é contável, o que contradiz a hipótese. Portanto $\operatorname{int}(A) = \emptyset$, como queríamos. \square

4. Sejam $A, B \subset \mathbb{R}$. Mostre que

a) $int(A \cup B) = int(A) \cup int(B)$

Dem: Primeiro, vejamos o que é a união de interiores de dois conjuntos. Da definição de união, para todo $x \in (\text{int}(A) \cup \text{int}(B)), x \in \text{int}(A)$ ou $x \in \text{int}(B)$. Daqui, dividiremos o problema em 3 casos:

- i. Se $x \in \text{int}(A)$, da definição de interior, existe $\epsilon_A > 0$ tal que $(x \epsilon_A, x + \epsilon_A) \subset A$;
- ii. Se $x \in \text{int}(B)$, da definição de interior, existe $\epsilon_B > 0$ tal que $(x \epsilon_B, x + \epsilon_B) \subset B$;
- iii. Se $x \in \text{int}(A)$ e $x \in \text{int}(B)$, dos dois itens anteriores, existe $\epsilon_{AB} > 0$ tal que $(x \epsilon_{AB}, x + \epsilon_{AB}) \subset A \cap B$.

Agora, vejamos o que acontece quando $x \in \operatorname{int}(A \cup B)$. Da definição de interior, temos que existe $\epsilon > 0$ tal que $(x - \epsilon, x + \epsilon) = I \subset (A \cup B)$. Da definição de subconjunto, para todo $y \in I$, temos que $y \in (A \cup B)$, isto é, $y \in A$ ou $y \in B$. Desta forma, é evidente que $I \subset A$, $I \subset B$ ou $I \subset (A \cap B)$, o que são equivalentes a (i.), (ii.) e (iii.), respectivamente. Com isto, temos que $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$, como queríamos \square

b) $int(A \cap B) = int(A) \cap int(B)$

Dem: Seja $x \in \text{int}(A) \cap \text{int}(B)$. Da definição de interseção, $x \in \text{int}(A)$ e $x \in \text{int}(B)$, desta forma, da definição de interior, segue que existe $\epsilon_A > 0$ tal que $(x - \epsilon_A, x + \epsilon_A) = I_A \subset A$ e existe $\epsilon_B > 0$ tal que $(x - \epsilon_B, x + \epsilon_B) = I_B \subset B$. Note que $x \in I_A$ e $x \in I_B$, portanto, $x \in (I_A \cap I_B)$ e $(I_A \cap I_B) \subset (A \cap B)$, (\star). Daqui, seja $\epsilon = \min\{\epsilon_A, \epsilon_B\} > 0$, e por (\star), temos que $(x - \epsilon, x + \epsilon) \subset (A \cap B)$, isto é, $x \in \text{int}(A \cap B)$, deste modo $(\text{int}(A) \cap \text{int}(B)) \subset \text{int}(A \cap B)$. Vejamos que $\text{int}(A \cap B) \subset (\text{int}(A) \cap \text{int}(B))$. Ora, seja $x \in \text{int}(A \cap B)$, isto é, existe $\epsilon > 0$ tal que $(x - \epsilon, x + \epsilon) = I \subset (A \cap B)$, que, da definição de interseção, $I \subset A$ e $I \subset B$, ou seja $x \in \text{int}(A)$ e $x \in \text{int}(B)$, portanto $x \in (\text{int}(A) \cap \text{int}(B))$, e, por conseguinte, segue que int $(A \cap B) \subset (\text{int}(A) \cap \text{int}(B))$. Com isto, int $(A \cap B) = \text{int}(A) \cap \text{int}(B)$, como queríamos. \square

5. Sobre conjuntos abertos e fechados.

a) Encontre um exemplo de interseção infinita de conjuntos abertos que não é um conjunto aberto.

Seja A_n intervalos não-degenerados definidos por $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ onde $n \in \mathbb{N}$. Como visto no exercício 1, para todo $n \in \mathbb{N}$, A_n é um conjunto aberto. Considere a interseção infinita $I = \bigcap_{n \in \mathbb{N}} A_n$. Note que, para todo $n \in \mathbb{N}$, $0 < \frac{1}{n}$ e $-\frac{1}{n} < 0$, portanto, para todo $n \in \mathbb{N}$, temos $0 \in A_n$, ou seja, $\{0\} \subset I$. Vejamos que $I/\{0\} = \emptyset$. Afim de contradição, suponhamos que existe $x \in I/\{0\}$. Visto que $x \neq 0$, seja d = |x| > 0, e, da definição dos intervalos A_n , temos, por conseguinte, que 1 > |x| = d > 0, ou seja, $\frac{1}{d} > 1$. Daqui, seja $n_0 = \left\lceil \frac{1}{d} \right\rceil$ o menor inteiro maior que $\frac{1}{d}$, ou seja, $\frac{1}{d} < n_0$, e, como $n_0 \in \mathbb{N}$, segue que existe um intervalo $A_{n_0} = \left(-\frac{1}{n_0}, \frac{1}{n_0}\right)$. Já que $\frac{1}{d} < n_0$, então, $\frac{1}{n_0} < d = |x|$, portanto, $x \notin A_{n_0}$, ou seja $x \notin I$,

uma contradição. Com isto, podemos concluir que $I = \bigcap_{n \in \mathbb{N}} A_n = \{0\}$, e, como visto no exercício 3 desta lista, segue que $I \neq \operatorname{int}(I)$, portanto, I não é aberto, como queríamos.

b) Encontre um exemplo de união infinita de conjuntos fechados que não é um conjunto fechado.

Ora, das leis de De Morgan, sabemos que $(\bigcap_{\lambda \in \Lambda} X_{\lambda})^c = \bigcup_{\lambda \in \Lambda} X_{\lambda}^c$, e como um conjunto é fechado se seu complementar é aberto, considere $A_n^c = (-\infty, -\frac{1}{n}] \cup [\frac{1}{n}, \infty)$ onde $n \in \mathbb{N}$. Visto que os intervalos $A_n = \left(-\frac{1}{n}, +\frac{1}{n}\right)$ são abertos, segue que A_n^c é fechado para todo $n \in \mathbb{N}$. Mais ainda, como $\bigcap_{n \in \mathbb{N}} A_n = \{0\}$ não é aberto, da contrapositiva da definição de fechado, segue que $\bigcup_{n \in \mathbb{N}} A_n^c = \mathbb{R}/\{0\}$ não é fechado, como queríamos.

- 6. **Seja** $A = (1, 2) \cup \{3\}$. **Mostre que**
- a) Se $x \in \mathbb{R}$ é tal que x < 1, 2 < x < 3 ou x > 3, então $x \notin \overline{A}$.

Dem: Ora, afim de contradição suponhamos que $x \in \overline{A}$, portanto, existe uma sequência $(x_n)_{n \in \mathbb{N}}$, com $x_n \in A$ para todo $n \in \mathbb{N}$, tal que $\lim_{n \to \infty} x_n = x$. Da definição de limite, para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$, tal que $|x_n - x| < \epsilon$ para todo inteiro $n \ge n_0$, ou seja, em particular, para todo $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que $x - \epsilon < x_{n_0} < x + \epsilon$, deste modo, para todo ϵ existe $\tau \in A$, tal que $\tau \in (x - \epsilon, x + \epsilon) = I$, (*).

Vejamos o caso onde x < 1. Fixando $\epsilon = \frac{1-x}{2} > 0$ e, de (*), tendo em vista que

$$1 = \frac{1+1}{2} > \frac{1+x}{2} = x + \frac{1-x}{2} = x + \epsilon$$

e, mais ainda, que todo número real menor que 1 não está em A, segue que $I \cap A = \emptyset$. Mas, visto que $\tau \in I$ e $\tau \in A$, temos que $\tau \in \emptyset$, uma contradição, portanto, para todo x < 1, temos $x \notin \overline{A}$, como queríamos.

Para o caso x > 3. Fixando $\epsilon = \frac{x-3}{2} > 0$, e, de (*), tendo em vista que

$$3 = \frac{3+3}{2} < \frac{3+x}{2} = x - \frac{x-3}{2} = x - \epsilon$$

e, que todo número real maior que 3 não está em A, segue que $(x - \epsilon, x + \epsilon) \cap A = \emptyset$, porém, de (*), como existe $\tau \in A$ tal que $\tau \in (x - \epsilon, x + \epsilon)$, segue que $(x - \epsilon, x + \epsilon) \cap A \neq \emptyset$, uma contradição, portanto, para todo x > 3, temos $x \notin \overline{A}$, como queríamos.

Para 2 < x < 3, fixando $\epsilon = \min{\{\frac{x-2}{2}, \frac{3-x}{2}\}}$, e, de (*), tendo em vista que,

$$3 = \frac{3+3}{2} > \frac{3+x}{2} = x + \frac{3-x}{2} \ge x + \epsilon \tag{1}$$

e que,

$$2 = \frac{2+2}{2} < \frac{x+2}{2} = x - \frac{x-2}{2} \tag{2a}$$

De (2a), se $\epsilon = \frac{x-2}{2}$, então $2 < x - \epsilon$, mais ainda, se $\epsilon = \frac{3-x}{2} < \frac{x-2}{2}$, então $-\epsilon > -\frac{x-2}{2}$, desta forma,

$$2 < x - \frac{x - 2}{2} \le x - \epsilon \tag{2}$$

Note que, para todo $y \in (2,3)$ temos que $y \notin A$, e, de (1) e (2), temos que $(x-\epsilon,x+\epsilon) \subset (2,3)$ e existe $\tau \in A$ tal que $\tau \in (x-\epsilon,x+\epsilon)$, ou seja, $\tau \in A$ e $\tau \notin A$, uma contradição. Com isto, temos que $x \notin \overline{A}$, como queríamos \square

b) Se $x \in \mathbb{R}$ é tal que x < 1 ou x > 2, então $x \notin A'$.

Ora, afim de contradição, suponhamos que $x \in A'$, isto é, existe uma sequência $(x_n)_{n \in \mathbb{N}}$ com $x_n \in A \setminus \{x\}$ tal que $\lim_{n \to \infty} x_n = x$. Da definição de limite, temos que para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|x_n - x| < \epsilon$ com $x \in \mathbb{N}_{\geq n_0}$. Ou seja, em particular, tomando $\tau = x_{n_0}$, para todo $\epsilon > 0$, existe $\tau \in A \setminus \{x\}$ tal que $|\tau - x| < \epsilon$, (*).

Para o caso x > 2, considere x > 3, x = 3 ou 2 < x < 3. Se x > 3, fixando $\epsilon = \frac{x-3}{2} > 0$, de (*), existe $\tau \in A \setminus \{x\}$ tal que $\tau \in \left(x - \frac{x-3}{2}, x + \frac{x-3}{2}\right)$, portanto $\tau \in \left(\frac{x+3}{2}, \frac{3x-3}{2}\right)$. Mas, como $3 = \frac{3+3}{2} < \frac{x+3}{2}$

segue que $\left(\frac{x+3}{2},\frac{3x-3}{2}\right)\cap A\setminus\{x\}=\emptyset$, ou seja $\tau\in\emptyset$, uma contradição, como queríamos.

Se x=3, fixando $\epsilon=\frac{1}{2}>0$, de (*), temos que existe $\tau\in A\setminus\{x\}$ tal que $\tau\in\left(x-\frac{1}{2},x+\frac{1}{2}\right)$, mas, por construção, $\left(x-\frac{1}{2},x+\frac{1}{2}\right)\cap A\setminus\{x\}=\emptyset$, portanto $\tau\in\emptyset$, uma contradição, como queríamos.

Se 2 < x < 3, fixando $\epsilon = \min\{\frac{x-2}{2}, \frac{3-x}{2}\}$, de (*), existe $\tau \in A \setminus \{x\}$ tal que $\tau \in (x - \epsilon, x + \epsilon)$. Mas, como

$$3 = \frac{3+3}{2} = \frac{3+x}{2} = x + \frac{3-x}{2} \ge x + \epsilon \tag{1}$$

e, mais ainda, que

$$2 = \frac{2+2}{2} < \frac{2+x}{2} = x - \frac{x-2}{2} \le x - \epsilon \tag{2}$$

por (1) e (2), segue que $(x - \epsilon, x + \epsilon) \subset (2, 3)$. Porém, $(2, 3) \cap A \setminus \{x\} = \emptyset$, ou seja, $\tau \in \emptyset$, uma contradição, como queríamos.

Por fim, vejamos o caso x < 1. Ora, fixando $\epsilon = \frac{x-1}{2}$, por (*), temos que existe $\tau \in A \setminus \{x\}$ tal que $x \in (x - \epsilon, x + \epsilon) = \left(\frac{3x-1}{2}, \frac{x+1}{2}\right)$. Note que,

$$=\frac{1+1}{2} > \frac{x+1}{2} \tag{1}$$

sendo assim, $\left(\frac{3x-1}{2}, \frac{x+1}{2}\right) \cap A\{x\} = \emptyset$, ou seja, $\tau \in \emptyset$, uma contradição, como queríamos. \Box

7. Sejam $A, B \subset \mathbb{R}$

a) Mostre que $A \subset \overline{A}$.

Dem: Ora, se $x \in \overline{A}$, da definição de fecho, existe uma sequência $(x_n)_{n \in \mathbb{N}}$ com $x_n \in A$ para todo $n \in \mathbb{N}$ tal que $\lim_{n \to \infty} x_n = x$, sendo assim, em particular, considere a sequência $(x_n)_{n \in \mathbb{N}}$ tal que $x_n = x$ para todo $n \in \mathbb{N}$. Desta forma, para todo $x \in A$, segue que $x \in \overline{A}$, portanto $A \subset \overline{A}$, como queríamos. \square

b) Se $A \subset B$, então $\overline{A} \subset \overline{B}$.

Dem: Como para todo $x \in \overline{A}$, existe uma subsequência $(x_n)_{n \in \mathbb{N}}$, com $x_n \in A$ para todo $n \in \mathbb{N}$, tal que $\lim_{n \to \infty} x_n = x$, da definição de limite, segue que para todo $\epsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que para um inteiro $n \ge n_0$, temos que $(x_n - x, x_n + x) < \epsilon$. Em particular, seja $n = n_0$, e denotamos $x_{n_0} = \tau$, com isto, segue que para todo $\epsilon > 0$, existe $\tau \in A$ tal que $(\tau - x, \tau + x) < \epsilon$, isto é, $\tau \in (x - \epsilon, x + \epsilon)$. Dito isto, temos que, para cada $x \in \overline{A}$ e $\epsilon > 0$, segue que existe $\tau \in A$ tal que $\tau \in (x - \epsilon, x + \epsilon)$, (*). Mais ainda, de (*), infere-se que

$$x \in \overline{A} \iff \forall \epsilon > 0, \quad A \cap (x - \epsilon, x + \epsilon) \neq \emptyset$$
 (*)

Por ora, voltemos a (*). Da hipótese, temos que $A \subset B$, portanto $\tau \in B$ e $\tau \in (x - \epsilon, x + \epsilon)$, sendo assim, para todo $\epsilon > 0$ temos que $B \cap (x - \epsilon, x + \epsilon) \neq \emptyset$, e de (\star) , segue que $x \in \overline{B}$ em resumo,

$$x \in \overline{A} \overset{(\star)}{\iff} \forall \epsilon > 0, A \cap (x - \epsilon, x + \epsilon) \neq \emptyset \overset{A \subset B}{\implies} \forall \epsilon > 0, B \cap (x - \epsilon, x + \epsilon) \neq \emptyset \overset{(\star)}{\iff} x \in \overline{B}$$
 isto é, se $x \in \overline{A}$, então $x \in \overline{B}$, ou seja, $\overline{A} \subset \overline{B}$, como queríamos. \square

c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

Dem: De (\star) do exercício 7 item b, sabemos que, se $x \in \overline{A \cup B}$, então para todo $\epsilon > 0$, $(A \cup B) \cap (x - \epsilon, x + \epsilon) \neq \emptyset$. Seja $I = (x - \epsilon, x + \epsilon)$, note que $(A \cup B) \cap I = (A \cap I) \cup (B \cap I)$, portanto, para todo $\epsilon > 0$, segue que $(A \cap I) \neq \emptyset$ ou $(B \cap I) \neq \emptyset$, isto ϵ , ϵ , ϵ ou ϵ

d) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Dê um exemplo em que não vale a igualdade.

Dem: Ora, de (\star) , todo $x \in \overline{A \cap B}$ se, e somente se $(A \cap B) \cap (x - \epsilon, x + \epsilon) \neq \emptyset$. Denotando $I = (x - \epsilon, x + \epsilon)$, temos que $(A \cap B) \cap I = (A \cap I) \cap (B \cap I)$, portanto, se $\tau \in (A \cap B) \cap I$, segue que $\tau \in (A \cap I)$ e $\tau \in (B \cap I)$, para todo $\epsilon > 0$. Deste modo, segue da volta de (\star) do exercício 7 item b, que $x \in \overline{A}$ e $x \in \overline{B}$, isto é, $x \in \overline{A} \cap \overline{B}$, como queríamos. \Box Como um **exemplo** em que não vale <u>a</u> igualdade, considere $A \in (-1,0)$ e $B \in (0,1)$, portanto $A \cap B = \emptyset$ e daqui, temos que $\overline{A \cap B} = \emptyset$. Por outro lado, $\overline{A} = [-1,0]$ e $\overline{B} = [0,1]$, sendo assim, $\overline{A} \cap \overline{B} = \{0\}$ $\not\subset \emptyset = \overline{A \cap B}$, como queríamos.

- 8. Seja $A \subset \mathbb{R}$ um conjunto não vazio.
- (a) Se A é limitado superiormente, mostre que $\sup(A)$ é aderente de A, isto é $\sup(A) \in \overline{A}$. **Dem:** Seja A um conjunto não-vazio e limitado superiormente. Da definição de supremo, para todo $\epsilon > 0$, existe $a_0 \in A$ tal que,

$$\sup (A) - \epsilon < a_0 \le \sup (A)$$
.

Sendo assim, fixando um $\epsilon > 0$ de tal forma que $I = (\sup(A) - \epsilon, \sup(A)) \subset A$, podemos considerar a sequência $(x_n)_{n \in \mathbb{N}}$ tal que $x_n \in I \subset A$, onde $x_n = \sup(A) - \frac{\epsilon}{n+1}$. Desta forma, como existe uma sequência $(x_n)_{n \in \mathbb{N}}$ em A tal que $\lim_{n \to \infty} x_n = \sup(A)$, segue que $\sup(A)$ é aderente a $A \subset \mathbb{R}$, como queríamos. \square

(b) Se A é limitado inferiormente, mostre que $\inf(A)$ é aderente de A, isto é $\inf(A) \in \overline{A}$. Dem: Seja A um conjunto não-vazio e limitado inferiormente. Da definição de ínfimo, para todo $\epsilon > 0$, existe $a_0 \in A$ tal que,

$$\inf(A) \le a_0 < \inf(A) + \epsilon$$
.

Sendo assim, como visto anteriormente, fixando um $\epsilon > 0$ de tal forma que $I = (\inf(A), \inf(A) + \epsilon) \subset A$, podemos considerar a sequência $(x_n)_{n \in \mathbb{N}}$ tal que $x_n \in I \subset A$, onde $x_n = \inf(A) + \frac{\epsilon}{n+1}$. Ora, como existe uma sequência $(x_n)_{n \in \mathbb{N}}$ em A tal que $\lim_{n \to \infty} x_n = \inf(A)$, segue que $\inf(A)$ é aderente a $A \subset \mathbb{R}$, como queríamos. \square

9. Sejam $a, b \in \mathbb{R}$, em que a < b. Mostre que o fecho dos conjuntos (a, b), [a, b) e (a, b] é o conjunto [a, b].

Dem: Sejam $I_1 = (a,b)$, $I_2 = [a,b)$ e $I_3 = (a,b]$, onde $a,b \in \mathbb{R}$ e a < b. Ora, do exercício 1 da lista 5, sabemos que $\sup(I_k) = b$ e $\inf(I_k) = a$ para $k \in \mathbb{N}_{\leq 3}$, desta forma, do exercício 8, segue que a e b são aderentes de I_k . Mais ainda, do exercício 7 item a, tendo em mente que $(a,b) \subset I_k$ e $I_k \subset \overline{I_k}$ para todo $k \in \mathbb{N}_{\leq 3}$, da transitividade de (\subset) , temos que $(a,b) \subset \overline{I_k}$ para $k \in \mathbb{N}_{\leq 3}$. Sendo assim, $[a,b] \subset \overline{I_k}$ para todo $k \in \mathbb{N}_{\leq 3}$.

Agora, vejamos que não existe $x \notin [a,b]$ tal que $x \in \overline{I_k}$, com $k \in \mathbb{N}_{\leq 3}$. Afim de contradição, suponhamos que existe $x \notin [a,b]$ tal que $x \in \overline{I_k}$. Como $x \in \overline{I_k}$, para $k \in \mathbb{N}_{\leq 3}$, de (\star) do exercício 7 item b, temos que, para cada $\epsilon > 0$ e $k \in \mathbb{N}_{\leq 3}$, segue que $I_k \cap (x - \epsilon, x + \epsilon) \neq \emptyset$, para $k \in \mathbb{N}_{\leq 3}$, (\dagger) . Como $x \notin [a,b]$, então x < a ou x > b.

Se x < a, fixe $\epsilon = \frac{a-x}{2} > 0$. E, como

$$a = \frac{a+a}{2} > \frac{x+a}{2} = x + \frac{a-x}{2} = x + \epsilon > x - \epsilon,$$

e $a = \inf(I_k)$, segue que $(x - \epsilon, x + \epsilon) \cap I_k = \emptyset$ para todo $k \in \mathbb{N}_{\leq 3}$, porém (†), deste modo, temos uma contradição, (9.1).Caso x > b, fixando $\epsilon = \frac{x - b}{2}$, e tendo em mente que

$$b = \frac{b+b}{2} < \frac{b+x}{2} = x - \frac{x-b}{2} = x - \epsilon < x + \epsilon,$$

visto que $b = \sup(I_k)$, segue que $(x - \epsilon, x + \epsilon) \cap I_k = \emptyset$ para todo $k \in \mathbb{N}_{\leq 3}$, porém (†), deste modo, temos uma contradição, (9.2).

Sendo assim, de (9.1) e (9.2), segue que não existe $x \notin [a,b]$ tal que $x \in \overline{I}_k$, portanto $[a,b] = I_k$ para $k \in \mathbb{N}_{\leq 3}$, como queríamos. \square

10. Sejam $A \subset B \subset \mathbb{R}$. Dizemos que A é *denso* em B se $B \subset \overline{A}$. Mostre que \mathbb{Q} é denso em \mathbb{R} .

Dem: Note que para todo $x \in \mathbb{R}$, a vizinhança de x é um intervalo não-degenerado. Ou seja, para todo $\epsilon > 0$, $(x - \epsilon, x + \epsilon)$ é não-degenerado. Como visto nas aulas, temos que todo intervalo não-degenerado contém números racionais, portanto, para todo $\epsilon > 0$, segue que $(x - \epsilon, x + \epsilon) \cap \mathbb{Q} \neq \emptyset$. De (\star) do exercício 7 item b, como para todo $\epsilon > 0$, temos $(x - \epsilon, x + \epsilon) \cap \mathbb{Q} \neq \emptyset$, segue que $x \in \mathbb{Q}$. Com isto, já que se $x \in \mathbb{R}$, então $x \in \mathbb{Q}$, segue que $\mathbb{R} \subset \mathbb{Q}$, como queríamos. \square

11. Seja $A \subset \mathbb{R}$. Dizemos que $a \in A$ é um *ponto isolado* de A se existe uma vizinhança V de a tal que $V \cap (A \setminus \{a\}) = \emptyset$. Mostre que se todos os pontos de A são isolados, então A é fechado.

Dem: Afim de contradição, suponhamos que A é aberto, portanto, $A = \operatorname{int}(A)$, ou seja, para cada $a \in A$, existe r > 0 tal que $(a - r, a + r) \subset A$, isto é $(a - r, a + r) \cap A \setminus \{a\} \neq \emptyset$. Desta forma, para todo $\epsilon > r > 0$, como $(a - r, a + r) \subset (a - \epsilon, a + \epsilon)$, então $(a - \epsilon, a + \epsilon) \cap A \setminus \{a\} \neq \emptyset$. Mais ainda, para todo $\epsilon > 0$ tal que $r > \epsilon$, temos $(a - \epsilon, a + \epsilon) \subset (a - r, a + r) \subset A$, com isto, temos novamente que, $(a - \epsilon, a + \epsilon) \cap A \setminus \{a\} \neq \emptyset$. Do principio da boa ordem, sabemos que se temos dois números, em particular, reais positivos ϵ e r, os dois podem ser ordenados da seguinte forma: $\epsilon > r$, $\epsilon < r$ ou $\epsilon = r$. Nos três casos, independente da ordenação entre r e ϵ , temos que $(a - \epsilon, a + \epsilon) \cap A \setminus \{a\} \neq \emptyset$, portanto, para todo $\epsilon > 0$, segue que $(a - \epsilon, a + \epsilon) \cap A \setminus \{a\} \neq \emptyset$. Seja V a vizinhança de $a \in A$, e tendo em mente que uma vizinhança é um intervalo aberto, então V admite supremo e ínfimo. Daqui, fixando $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$, como para todo $\epsilon = \min(\sup (V) - a, a - \inf (V))/2$.