FREEDOM ALEN

ID:330726

Pattern recognition laboratory #58#6:

Fashion items classification with neural networks

1. Modifying given set of scripts

The scripts, originally designed for single-hidden-layer networks, have been modified to support an arbitrary number of hidden layers. However, due to Octave's xlswrite function limitations, only the first two layers' sizes are included in the XLS reports. The scripts allow for numerous trials by specifying different setups in the TESTBENCH.m file. The training process halts if there's no improvement after seven consecutive epochs. This balance minimizes unnecessary training while still allowing for potential long-term performance improvements.

2. Reference solution

Over fifty neural networks were trained, with a few consisting of a single hidden layer. However, these were unable to surpass the benchmark result of 87.42%. The transition to double-hidden-layer networks led to improved performance, exceeding the target by approximately 0.5 percentage points without implementing additional strategies from the article. The networks primarily tested had equal layer sizes. Reducing the size of subsequent layers did not significantly decrease the testing time needed to evaluate the network's potential. II suspect that one needs, in terms of double-hidden-layer network, at least a size of 90 to beat the predefined result. In this report I included layers with 140 neurons.

3. Reference solution

3.1 Discussion about parameters and their influence

During the laboratory I trained more than 50 neural networks – they differ in such parameters as:

- Number of neurons
- Number of layers
- Number of epoch
- Learning rate

The first observation was that for the networks having single-hidden-layer network the success rate was much smaller than one presented on the task description (87,42%). Therefore several approaches was performed in order to obtain sufficient result.

- a) **Multi-hidden-layer approach** (in particular, a double-hidden-layer network) During the experiments, I noticed that the number of layers in a neural network has a great impact on the success rate. Too many or too few layers have a negative influence on the obtained results. In this case, the best option was to choose a double-hidden-layer network. It allowed me to achieve much better results than in the case of a single-hidden-layer network without any additional modifications.
- b) **Number of neurons** in the network I performed several experiments that took into consideration the number of neurons in the network. I decided to start with a small number of neurons (50) and see what would happen. The obtained results showed that in order to get a higher OK value than the reference one, I needed more than 90 neurons. However, using too

many neurons is not a good idea either. Therefore, I decided to use 140 neurons as it was an optimal value.

- c) **Learning rate** For this parameter, I tried two possible approaches: dynamic learning rate and fixed value of learning rate. The outcome of both approaches showed that for this case, the better option is to use a fixed value of learning rate. The best results were obtained for a learning rate value between 0.01 and 0.1 depending on other parameters (such as the number of neurons). Although I noticed that the lower value of learning rate is better due to the fact that using a 0.1 value causes a high variance overfitting. Therefore, I chose a learning rate equal to 0.01.
- d) **Number of epochs** I decided to use 50 epochs as it is given in the script. In general, too high a number of epochs allowed to run may be the reason for overfitting the network. And I also set a condition to stop learning if there is no improvement for seven consecutive epochs.

3.2 Experiment results

Takin under consideration all mentioned above parameters I decided to use as a reference solution network having:

No. of layers: 2No. of neurons: 140Learning rate: 0.1

Table: Success rate and training time for training and testing sets.

Epoch no	Time	Train Set OK	Test Set OK
1	291.1112	0.7760	0.7658
2	291.168	0.8437	0.8286
3	292.7369	0.8554	0.8376
4	291.0661	0.8674	0.8532
5	291.5266	0.8745	0.8595
6	290.7171	0.8799	0.8656
7	290.9874	0.8861	0.8666
8	292.25	0.8882	0.8669
9	292.0845	0.8893	0.8678
10	290.8745	0.8930	0.8682
11	291.8059	0.8952	0.8685
12	291.8683	0.8968	0.8699
13	290.2479	0.8980	0.8710
14	291.8818	0.8991	0.8713
15	291.1922	0.9007	0.8728
16	290.0419	0.9036	0.8745
17	290.5668	0.9050	0.8763
18	291.8467	0.9048	0.8737
19	292.2578	0.9048	0.8727
20	290.3683	0.9039	0.8746
21	290.8111	0.9064	0.8741
22	292.6171	0.9112	0.8781

23	290.3368	0.9100	0.8777
24	291.6101	0.9142	0.8786
25	291.6882	0.9124	0.8780
26	291.3929	0.9130	0.8769
27	290.4603	0.9158	0.8777
28	301.2906	0.9140	0.8774
29	292.2072	0.9138	0.8740
30	291.3752	0.9131	0.8762
31	293.9685	0.9164	0.8787
32	293.0036	0.9147	0.8748
33	293.0142	0.9173	0.8768
34	294.0627	0.9175	0.8787
35	292.8802	0.9193	0.8787
36	294.2323	0.9202	0.8791
37	292.5626	0.9199	0.8784
38	293.1228	0.9216	0.8800
39	293.7389	0.9246	0.8798
40	293.0184	0.9234	0.8795
41	292.6469	0.9218	0.8780
42	297.9292	0.9244	0.8803
43	292.5008	0.9249	0.8794
44	292.1617	0.9256	0.8807
45	292.7337	0.9281	0.8791
46	293.0702	0.9269	0.8794
47	291.9018	0.9283	0.8789
48	292.3028	0.9281	0.8767
49	291.1906	0.9291	0.8807
50	291.185	0.9291	0.8788
A . 1 . 4 4 . 1	1 10	0.070/ 1:1:1:1	41 07 400/ FDI: :

At epoch 44, the test set accuracy reached 88.07%, which is higher than 87.42%. This is a positive indication that the added complexity of a second layer and additional neurons is helping the model to learn more intricate patterns in the data.

However, while the model's performance on the training set continues to improve, the test set accuracy seems to plateau after a certain point. This could be a sign of overfitting.

Confusion matrix for epoch 44:

Class	1	2	3	4	5	6	7	8	9	10	Rejected
1	835	1	29	11	4	3	109	0	8	0	0
2	3	969	2	13	3	0	9	0	1	0	0
3	16	1	823	7	96	1	54	0	2	0	0
4	30	6	19	851	36	0	56	0	2	0	0
5	2	0	80	21	835	0	58	0	4	0	0
6	0	0	0	0	0	935	0	35	2	28	0
7	110	0	106	19	92	0	662	0	11	0	0
8	0	0	0	0	0	13	0	968	0	19	0
9	6	0	3	4	2	2	10	5	968	0	0
10	0	0	0	0	0	7	1	31	0	961	0

From the confusion matrix, it appears that the model struggles most with class 7. There are significant misclassifications happening with this class. For instance, instances of class 7 are often incorrectly predicted as class 1, 3, and 5. This could indicate that there are some shared features or characteristics between these classes that the model is finding hard to distinguish.

Moreover, the model also seems to have some difficulty with class 1 and 4, where a number of instances are misclassified as class 7. This could be due to the model overgeneralizing certain features of class 7.

Comparison of training and test sets success rate:

The overfitting visible in the graph above, which shows a divergence between the training and test success rates over epochs, is similar to what we've observed in the laboratory script.

4. Improving reference model

From the attached article I decided to apply 2 changes – **Normalization** of the input and the **Shuffling**.

3.3 Normalization of the input

As a first improvement of the reference model I applied the normalization of the input. The neural network was trained again with the constant neuron number but for different learning rate. Once again I check values from range 0.1 to 0.01 as they gave the best results in the reference.

Table: Success rate and training time for training and testing sets.

Epoch no	Time	Train Set OK	Test Set OK
1	290.49788	0.8255	0.8136
2	293.37612	0.8576833	0.8419
3	292.94179	0.8696833	0.8522
4	292.60265	0.8773333	0.8589
5	289.20057	0.8834	0.8631
6	289.6689	0.88855	0.8671
7	288.59899	0.89315	0.8694
8	285.62127	0.897	0.8725
9	285.779	0.9006833	0.8755
10	285.58679	0.9039333	0.8775
11	286.38625	0.9071667	0.8798
12	290.44523	0.9102	0.881
13	293.9483	0.9134833	0.882
14	289.51794	0.9167167	0.8828
15	291.54928	0.91935	0.8831
16	288.3963	0.92185	0.8832
17	285.68293	0.92435	0.8835
18	287.87141	0.9268	0.8848
19	287.56329	0.9294833	0.8855
20	282.48105	0.9316167	0.8856
21	287.0459	0.9337667	0.8857
22	287.75439	0.9356167	0.8859
23	281.24215	0.9375167	0.8857
24	286.39625	0.9394167	0.8861
25	284.50668	0.9414667	0.8857
26	288.98435	0.9430667	0.886
27	286.05846	0.9444667	0.8863
28	316.38214	0.9463	0.886
29	320.11458	0.9480333	0.886
30	291.41211	0.9494167	0.8867
31	292.31118	0.9507667	0.8867
32	291.75514	0.9520667	0.8865
33	290.62517	0.9533833	0.8858

34	291.53644	0.9546833	0.8855
35	290.96165	0.9560667	0.8855
36	291.46767	0.9572167	0.8853
37	291.82784	0.9585333	0.8856
38	291.8716	0.9597833	0.8863

The table shows the performance of a double-layer network with 140 neurons over 38 epochs. The training was stopped early due to no improvement in test set accuracy for 7 successive epochs. The key events are:

- The model started with a training set accuracy of 82.55% and a test set accuracy of 81.36% at epoch 1.
- The test set accuracy improved significantly and reached a peak of 88.67% at epoch 30.
- Despite the continuous improvement in the training set accuracy, the test set accuracy plateaued and slightly decreased after epoch 22, indicating potential overfitting.
- The training was stopped at epoch 38 due to the early stopping strategy implemented.

Overall, the normalization of input data and the early stopping strategy helped improve the model's performance and prevent overfitting. However, there's still room for improvement to close the gap between the training and test accuracies.

Confusion matrix for epoch 30:

Class	1	2	3	4	5	6	7	8	9	10	Rejected
1	877	2	15	19	6	1	72	0	8	0	0
2	3	965	2	21	4	0	5	0	0	0	0
3	17	1	774	12	126	1	69	0	0	0	0
4	22	5	8	908	27	1	25	0	4	0	0
5	1	0	59	32	855	0	47	0	6	0	0
6	1	0	0	1	0	929	0	36	5	28	0
7	145	0	69	25	77	0	672	0	12	0	0
8	0	0	0	0	0	13	0	971	0	16	0
9	1	1	3	5	4	3	9	4	970	0	0
10	1	0	0	0	0	6	2	45	0	946	0

The confusion matrix shows that the model performs well on most classes. However, it seems to struggle with class 7, where a significant number of instances are misclassified. The model also seems to confuse between classes 3 and 5.

3.4 Shuffling

Shuffling the data can help improve the model's ability to generalize because it ensures that the model gets a mix of instances from all classes in each batch. This can lead to more robust learning and better performance on the test set.

Table: Success rate and training time for training and testing sets.

1			Test Set OK
	291.11121	0.71395	0.7113
2	291.16799	0.76485	0.7559
3	292.73692	0.8017167	0.7946
4	291.06605	0.8364167	0.8229
5	291.52664	0.84655	0.8335
6	290.71707	0.8524333	0.8376
7	290.98736	0.8576333	0.8414
8	292.24998	0.86165	0.8451
9	292.0845	0.8651	0.8486
10	290.87448	0.8678833	0.8513
11	291.80593	0.8703333	0.8534
12	291.86833	0.8731667	0.8559
13	290.24794	0.87515	0.8576
14	291.88178	0.87695	0.8604
15	291.19223	0.8787667	0.8615
16	290.04186	0.8804333	0.8619
17	290.5668	0.88195	0.8631
18	291.84668	0.8833167	0.864
19	292.25776	0.88495	0.8652
20	290.36829	0.8863167	0.8667
21	290.8111	0.8881167	0.868
22	292.61714	0.8891167	0.8687
23	290.33684	0.8904333	0.8692
24	291.61014	0.8916167	0.8703
25	291.68821	0.8923833	0.8713
26	291.39285	0.8937167	0.8728
27	290.46027	0.8947333	0.8729
28	301.29059	0.8957333	0.8731
29	292.2072	0.8968833	0.874
30	291.3752	0.8976667	0.8747
31	293.96852	0.8987	0.8754
32	293.00362	0.89955	0.8754
33	293.01419	0.90035	0.8766
34	294.06269	0.9014167	0.8772
35	292.88024	0.9022667	0.8775
36	294.23234	0.903	0.8779
37	292.56256	0.90365	0.8781
38	293.12277	0.9046	0.8785
39	293.73894	0.9053	0.8787

293.01844	0.9061	0.8794
292.64686	0.9070333	0.8797
297.92924	0.9079167	0.8799
292.50078	0.9084667	0.8804
292.16165	0.9090833	0.8808
292.73368	0.9098167	0.881
293.07017	0.9104	8088.0
291.90178	0.9111	0.8806
292.30284	0.9118833	0.8808
291.19057	0.9125667	0.8806
291.18503	0.9133833	0.8804
	292.64686 297.92924 292.50078 292.16165 292.73368 293.07017 291.90178 292.30284 291.19057	292.64686 0.9070333 297.92924 0.9079167 292.50078 0.9084667 292.16165 0.9090833 292.73368 0.9098167 293.07017 0.9104 291.90178 0.9111 292.30284 0.9118833 291.19057 0.9125667

The table shows the performance of your model over 50 epochs after shuffling the input data. Here are the key points:

- The training started with a training set accuracy of 71.40% and a test set accuracy of 71.13% at epoch 1.
- The test set accuracy improved significantly and reached a peak of 88.10% at epoch 45.
- Despite the continuous improvement in the training set accuracy, the test set accuracy plateaued and slightly decreased after epoch 44, indicating potential overfitting.
- The training continued until epoch 50, with the final training set accuracy at 91.34% and the test set accuracy at 88.04%.

Confusion matrix for epoch 45:

Class	1	2	3	4	5	6	7	8	9	10	Rejected
1	823	1	16	33	5	3	111	0	8	0	0
2	3	966	1	22	2	0	4	0	2	0	0
3	14	0	842	10	67	1	64	0	2	0	0
4	17	9	10	901	25	0	33	0	5	0	0
5	0	0	122	40	751	0	83	0	4	0	0
6	0	0	0	1	0	945	0	33	1	20	0
7	105	0	101	30	53	0	696	0	15	0	0
8	0	0	0	0	0	23	0	953	0	24	0
9	3	1	3	3	2	1	11	5	971	0	0
10	0	0	0	0	0	7	1	30	0	962	0

The confusion matrix for epoch 45 shows that the model performs well on most classes. However, it seems to struggle with class 5 and 7, where a significant number of instances are misclassified. The model also seems to confuse between classes 7 and 1, and 3 and 5. Despite these issues, the overall performance is good with a test set accuracy of 88.10%.

4 Conclusion

In conclusion, both the reference solution and the modified script, which incorporated shuffling and normalization, encountered challenges in accurately classifying instances of class 7 and class 1. There were also less pronounced difficulties with class 7 and classes 3, 4, and 5, as well as between classes 3 and 5.

A potential remedy for these classification issues could be to discard certain results where the network's prediction confidence is low. While this approach may boost the overall accuracy (OK value), it would also lead to an increase in the number of rejected instances.