Random Vector Assignment

Yash Patil

Consider a triangle with vertices,

$$\mathbf{A} = \begin{pmatrix} 4 \\ -5 \end{pmatrix},\tag{1}$$

$$\mathbf{A} = \begin{pmatrix} 4 \\ -5 \end{pmatrix}, \tag{1}$$

$$\mathbf{B} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}, \tag{2}$$

$$\mathbf{C} = \begin{pmatrix} -1 \\ -9 \end{pmatrix} \tag{3}$$

I. VECTOR

A. Table

Parameter	Value	Description
m _{AB}	$\begin{pmatrix} -10 \\ 7 \end{pmatrix}$	Direction vec of AB
m _{BC}	$\binom{11}{2}$	Direction vec of BC
m _{CA}	$\begin{pmatrix} -1 \\ -9 \end{pmatrix}$	Direction vec of CA
$ \mathbf{A} - \mathbf{B} $	12.21	length of AB
$ \mathbf{B} - \mathbf{C} $	11.18	length of BC
$\ \mathbf{C} - \mathbf{A}\ $	9.06	length of CA
$rank \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{A} & \mathbf{B} & \mathbf{C} \end{pmatrix}$	3	non-collinear
$\mathbf{n}_{\mathbf{A}\mathbf{B}}^{ op}$	(7 10) -22	AB
$\mathbf{n}_{\mathbf{BC}}^{ op}$	(-2 11) 34	BC BC
$\mathbf{n}_{\mathbf{C}\mathbf{A}}^{ op}$	(-9 1) -41	AC
Area	48.5	Area of ΔABC
Angle	61.35	∠ BAC
Angle	45.30	∠ ABC
Angle	73.35	∠ ACB

TABLE I.1

Equations related to triangle

Fig. I.1. Triangle generated using python

II. MEDIAN

A. Table

Parameter	Value	Description
D	$\begin{pmatrix} -0.5 \\ 3 \end{pmatrix}$	Midpoint AB
Е	(4.5) -0.5)	Midpoint BC
F	$\begin{pmatrix} -1 \\ -1.5 \end{pmatrix}$	Midpoint CA
$\mathbf{n}_{\mathbf{A}\mathbf{D}}^{ op}$	(8 4.5)	AD
c	9.5	AD
$\mathbf{n}_{\mathbf{B}\mathbf{E}}^{ op}$	(-2.5 -10.5)	BE
c	-6	DE
$\mathbf{n}_{\mathbf{CF}}^{ op}$	(-5.5 6)	CF
c	-3.5	
G	$\begin{pmatrix} 1 \\ 0.33 \end{pmatrix}$	Centroid

TABLE II.1 Equations related to median

Fig. II.1. Triangle with centroid generated using python

Fig. II.2. Proving EAFD is a parallelogram

III. ALTITUDE

A. Table

Parameter	Value	Description
$\mathbf{n}_{\mathbf{A}\mathbf{D_1}}^{ op}$	(-11 -2)	A D
С	-34	AD_1
$\mathbf{n}_{\mathrm{BE}_1}^{ op}$	$\begin{pmatrix} -1 & -9 \end{pmatrix}$	$\mathrm{B}E_1$
С	-12	$\mathbf{B}\mathbf{E}_1$
$\mathbf{n}_{\mathrm{CF_1}}^{\scriptscriptstyle op}$	$\begin{pmatrix} 10 & -7 \end{pmatrix}$	CF_1
С	22	Cr ₁
Н	(2.907) 1.01)	Orthocenter
		TABLE III.1

Equations related to altitude

Fig. III.1. Triangle with altitude generated using python

IV. PERPENDICULAR BISECTOR

A. Table

Parameter	Value	Description
\mathbf{n}^{T}	(10 -7)	Perpendicular bisector of AB
С	0.5	r espendicular disector of AB
\mathbf{n}^{T}	(-11 -2)	Perpendicular bisector of BC
С	-0.5	respendicular discetor of Be
\mathbf{n}^{T}	(1 9)	Perpendicular bisector of CA
c	0	respendicular discetor of CA
center(O)	$\begin{pmatrix} -0.046 \\ -0.005 \end{pmatrix}$	Circumcircle
radius	6.37	
		TABLE IV.1

Equations related to circumcircle

Fig. IV.1. Triangle with circumcircle generated using python

V. Angular Bisector

A. Table

Parameter	Value	Description
\mathbf{n}^{T}	(1.567 0.709)	Angular bisector of A
С	2.725	
\mathbf{n}^{T}	(0.752 -0.165)	A 1 1' (CD
c	-4.84	Angular bisector of B
\mathbf{n}^{T}	(1.173 -1.094)	Amoulan biggeton of C
С	1.486	Angular bisector of C
center(I)	(1.585)	
center(1)	(0.34)	Incircle
radius	2.989	
Angle	30.67	∠ BAI
Angle	30.67	∠ CAI
\mathbf{D}_3	$\begin{pmatrix} 1.06 \\ -1.48 \end{pmatrix}$	POC with AB
E ₃	$\begin{pmatrix} 1.06 \\ -4.51 \end{pmatrix}$	POC with BC
F ₃	$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$	POC with CA
Length	5.041	AF_3,AE_3
Length	7.166	BD_3,BE_3
Length	4.015	CF_3 , CD_3

TABLE V.1
Equations related to incircle

Fig. V.1. Triangle with incircle generated using python