We have the set of positive integers: [0, 1, 2, 3, ---] the set of integers: : {0, ±1, ±2, ±3, ---}=2 Today ne introduce the national numbers: $\Omega = \left\{ \frac{m}{n} : n \neq 0, m, n \in \mathbb{Z} \right\}.$ Every number in Q is colled a rational number. Otherwise, it is called an irrational numbers. Theorem: 12 is an irrational number. (V) is an irrational number, this means V2 is not a rational number.) (Proof by contradiction). Suppose that II is a notional mundon. Then we can write $\sqrt{2} = \frac{m}{n}$ with $m, n \in \mathbb{Z}$. We can further assume that gcd(m,n)=1Sime $\frac{m}{n} = \frac{\frac{m}{gcd(m,n)}}{\frac{n}{gcd(m,n)}}$ and we can replace (m,n) by $\left(\frac{m}{gd(m,n)}, \frac{n}{gcd(m,n)}\right)$.

$$\mathcal{L} = \frac{\mathsf{u}}{\mathsf{w}} \Rightarrow \mathcal{L} \cdot \mathsf{V} = \mathsf{w} \Rightarrow (\mathcal{L} \cdot \mathsf{v})_{\mathcal{I}} = \mathsf{w}_{\mathcal{I}}$$

= $2 m^2 = N^2$.

This shows: $2 | N^2 = > 2 | N$

Notice that n^2 is a square, $2/n \Rightarrow 4/n^2$ Then $4/2m^2 \Rightarrow 2/m^2 \Rightarrow 2/m$

This means 2 gcd (m, n). A contradiction!

Remark: This theorem shows the existence of an irrational number.

Indeed, there are "more" irrational numbers than rational numbers.

Relations to decimals:

We have 3 types of decimals:

- 11, Finite de cimal : 0.2, 0.414
- (2) Repeated decimal: 0.333--- 0.143143143143143...
- (3) non repeating de cimal: 1.414..., 3.1415926....

We can prove:

rational number (=> finite decimal or repeating decimal irrational number (=> non repeating decimal.

Definition: Let A be a let. An operation is a map $A \times A \longrightarrow A$.

Example: A = R, then $R \times R \longrightarrow R$ is an operation $(a,b) \mapsto a+b$

 $R \times R \rightarrow R$ is an operation. $(a, b) \mapsto ab$

Définition: Let F be a set with 2 operations ①, ②.

Then we say (F, \oplus, \otimes) is a field if for any $a, b, c \in F$

(1) For ①

in Associative: a (b) (b) c) = (a) b) (c) =

(b) Commutative $a \oplus b = b \oplus a$

(c) Additive identity: we can find $z \in F$ such that $a \oplus z = a$

(d) Additive inverse: for $a \in F$, we can always find an element, denoted by -a, such that $a \oplus (-a) = Z$.

(2) For 8

(a) Associative:
$$\alpha \otimes (b \otimes c) = (a \otimes b) \otimes c$$

lb) Commutative: a⊗b= b⊗a

(c) Multiplicative unit: we can find $e \in F$ such that $a \otimes e = a$ for any $a \in F$

(d) Multiplicative inverse: for any $0 \neq \alpha \in F$, we can find an element, denoted by α^{-1} , such that $\alpha \otimes \alpha^{-1} = e$.

(3) Compatibility between (4) and (8)

(a) distributive:
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

Theorem: $(\Omega, +, -)$ is a field. Here + is the usual addition and \cdot is the usual multiplication.

Proof: 11, For +(a) Take $a,b,c \in \mathbb{Q}$, a+(b+c)=(a+b)+c

(b) Take
$$a,b \in \mathbb{Q}$$
, $a+b=b+\alpha$

(c) We can check: for any
$$\alpha \in \Omega$$
, $\alpha + 0 = \alpha$ 0 is the additive unit.

(d) For any
$$a \in \mathbb{C}$$
, we have; $a + (-a) = 0$.

(a) Take
$$a,b,c \in \mathbb{Q}$$
, $a(bc)=(ab)c$

(C) We can show: for any
$$a \in \mathbb{Q}$$
.

$$\alpha \cdot 4 = \alpha$$

(d) If
$$0 \neq 0 = \frac{m}{n} \in \mathbb{N}$$
, then

$$\alpha \cdot \frac{n}{m} = \frac{m}{n} \cdot \frac{n}{m} = 1$$

Distribution law: a(b+c) = a.c+b.c.

Therefore,
$$(\Omega, +, \cdot)$$
 is a field.

口.

Some other examples of field: 11) (R, +, ·) real numbers 12, (C, +,·) complex numbers. (next class) 13) Set: $\mathbb{F}_p = \{ a \text{ (mod } p) : 0 \le a \le p-1 \}, p a prime.$ $\alpha \pmod{p} \oplus b \pmod{p} = (\alpha + b) \pmod{p}$ $\alpha \pmod{p} \odot b \pmod{p} = (ab) \mod{p}$ Then (f_p, Θ, O) is a field.

This is the 1st example of finite field.