PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-069308

(43) Date of publication of application: 09.03.1999

(51)Int.Cl.

HO4N 5/92 G11B 20/12 G11B 20/12 HO4N 7/24

(21)Application number: 10-169021

(71)Applicant: TOSHIBA CORP

TOSHIBA AVE CORP

(22)Date of filing:

16.06.1998

(72)Inventor: KIKUCHI SHINICHI

MIMURA HIDENORI TAIRA KAZUHIKO **KURANO TOMOAKI**

(30)Priority

Priority number: 08 78716

Priority date: 01.04.1996

Priority country: JP

(54) OPTICAL DISK

(57)Abstract:

PROBLEM TO BE SOLVED: To deal with plural types of various kinds of data.

SOLUTION: Multiple data units where video, audio and auxiliary video data packs are arranged following navigation data packs are recorded in an optical disk. The audio pack has an audio packet following a pack header. When audio data 134 belonging to an audio stream except an MPEG audio stream are recorded in the audio packet as packet data, a substream ID 131 is provided following a packet header 121. Audio data are specified by the private 1 mentioned in the stream ID in the packet header 121 and the sub-stream ID 131.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-69308

(43)公開日 平成11年(1999)3月9日

(51) Int.Cl.4	戲別記号	FΙ	
H 0 4 N 5/92		H 0 4 N 5/92	н
G11B 20/12		G11B 20/12	
	102		102
H 0 4 N 7/24		H 0 4 N 7/13	Z
		etraciano de	毎帝西の長り 八丁 (本 20 百)

審査請求 有 請求項の数8 OL (全38 頁)

(21)出願番号	特閣平10-169021	(71)出版人 000003078
(62)分割の表示	特膜平9-82844の分割	株式会社東芝
(22)出題日	平成9年(1997)4月1日	神奈川県川崎市幸区堀川町72番地
		(71)出版人 000221029
(31)優先権主張番号	特膜平8 -78716	東芝エー・ブイ・イー株式会社
(32) 優先日	平8 (1996) 4月1日	東京都港区新橋3丁目3番9号
(33)優先権主張国	日本 (JP)	(72)発明者 菊地 伸一
		東京都港区新橋3丁目3番9号 東芝工
		ー・ブイ・イー株式会社内
		(72)発明者 三村 英紀
		神奈川県川崎市幸区柳町70番地 株式会
		束芝柳町工場内
		(74)代理人 弁理士 鈴江 武彦 (外6名)
		最終頁に統

(54) 【発明の名称】 光ディスク

(57)【要約】

【課題】 さまざまな種別データを複数種類取り扱うことができる。

【解決手段】 光ディスクには、ナビゲーション・データ・パックに続いてビデオ、オーディオ及び副映像データ・パックが配置されたデータ・ユニットが多数記録されている。前記オーディオ・パックは、パック・ヘッダに続いてオーディオ・パケットを有し、このオーディオ・パケットには、MPEGオーディオ・ストリーム以外のオーディオ・ストリームに風するオーディオ・データがパケット・データとして記録されている場合には、パケット・ヘッダに続けてサーン、ストリームIDに記述された、パケット・ヘッダに続けてサーン、ストリームIDに記述されたプライベート1とサブ・ストリームIDとからオーディオ・データが特定される。

【特許請求の範囲】

【請求項1】再生対象としてのデータ・ストリームが記録され、このデータ・ストリームが少なくともオーディオ・パックを含むデータ・パック列から構成されている光ディスクにおいて、

前記オーディオ・パックは、1 つのパック・ヘッダ及び 1 つのデータ・パケットから構成され、

このデータ・パケットは、パケット・ヘッダ、これに続くサブ・ストリームID領域及びパケット・データ領域を具備し、このパケット・データ領域には、MPEGオーディオ・ストリーム以外のストリームに属するオーディオ・パケット・データが格納され、前記パケット・ヘッダには、前記パケット・データがMPEG規格に定められたプライベート・ストリームIに属するデータであられたプライベート・ストリームIに属するデータでありームID領域には、前記パケット・データが特定のオーディオ・ストリームに属するオーディオ・データである旨を示しているサブ・ストリームIDが記録されていることを特徴とする光ディスク。

【請求項2】前記オーディオ・データは、リニア・PC Mオーディオ・ストリーム及びAC3オーディオ・スト リームのいずれかに属することを特徴とする請求項1の 光ディスク。

【請求項3】前記データ・パケットは、前記サブ・ストリーム1D領域及び前記パケット・データ領域間にフレーム・ヘッグ数が記録されたヘッグ数領域を具備し、このヘッダ数領域には、当該パケット・データ中に含まれるオーディオ・フレーム数が格納されることを特徴とする請求項1の光ディスク。

【請求項4】前記データ・パケットは、前記サブ・ストリーム I D領域及び前記パケット・データ領域間にファースト・アクセス・ポインタが記録されたポインタ領域を具備し、このポインタ領域には、当該パケット・データ中の最初のオーディオ・フレームの先頭位置を示すポインタ情報が格納されることを特徴とする請求項1の光ディスク。

【請求項5】前記オーディオ・パックは、1論理セクタ に定められた同一のパック長を有し、1論理セクタは、 2048バイトの1物理セクタに等しく定められている ことを特徴とする請求項1の光ディスク。

【請求項6】前記パックのパック長が2048バイトに満たない場合、その満たないバイト数が6バイト以下の場合、前記パック・ヘッダにスタッフィング・バイトが追加されてパックのパック長が2048バイトに調整され、また、その満たないバイト数が7バイト以上の場合パック・ヘッダに1バイトのスタッフィング・バイトが追加され、パケットにその不足バイト数に対応するパディング・パケットが追加されて前記パックのパック長が2048バイトに調整されることを特徴とする請求項5の光ディスク。

【請求項7】前記光ディスクには、データ・ストリームを構成する副映像パックが記録され、この副映像パックのデータ・パケットは、パケット・ベッダ、これに続くサブ・ストリームID領域及びパケット・データ領域を具備し、このパケット・データ領域には、MPEGビデオ・ストリーム以外の副映像ストリームに属する副映像パケット・データが格納され、前記パケット・へッグには、前記パケット・データがMPEG規格に定めらわたアライベート・ストリームIに属するデータであり音でボナストリームIDが記録され、前記サブ・ストリームIDが記録され、前記サブ・ストリームに関するデータである音を示しているより、前記パケット・データが特定のデータムID領域には、前記パケット・データが特定のデータムアンストリームIDが記録されていることを特徴とする請求項1の光ディスク。

【請求項8】前記サブ・ストリームID領域には、前記サブ・ストリームIDに続いてそのストリーム番号が記載されていることを特徴とする請求項6の光ディスク。 【発明の詳細な説明】

[0001]

【発明の風する技術分野】この発明は、圧縮された動画 データや音声データ等の目的や種類の違うデータを記録 する光ディスク等の記録媒体、この記録媒体へデータを 記録する記録装置、その記録媒体へのデータの記録方 法、その記録媒体からデータを再生する再生装置、その 記録媒体からのデータの再生方法に関する。

[0002]

【従来の技術】従来、ディジタル動画像データや音声データを圧縮(符号化)する方式として、MPEG(Moving Picture Experts Group)方式が国際標準化されるに至っている。このMPEG圧縮方式はディジタル動画像データ(映像データ)や音声データを可変長圧縮する方式である。

【0003】これに伴って、MPEG圧縮方式に対応したシステムフォーマット方式もMPEGシステムレイヤとして規定されている。

【0004】このMPEGシステムレイヤは、通信系で 扱い易いように規定されており、動画、音声、その他の データを同期して転送かつ再生できるように、それぞれ のデータに基準時刻を用いて表現した転送開始時刻と再 生開始時刻が規定されている。

【0005】また、上記MPEGシステムレイヤでは、動画圧縮データストリーム(MPEG動画データ)と音声圧縮データストリーム(MPEGオーディオデータ)をストリームIDで、データ種別を規定しているが、そのほかのデータ種別に関しては、プライベートストリームとして、ユーザに解放する形をとっている。

【0006】しかしながら、これでは、ユーザが付け加える事ができるデータ種別が2種類しかサポートできず、拡張性を狭めている。

【0007】これでは、さまざまな種類のデータを自由

に扱う事ができず、マルチメディア時代に対応する事が できないという欠点がある。

【0008】また、MPEGオーディオデータ以外のオ ーディオデータにおいて、パケット長の最大のデータ長 が決められている場合、完結したフレームデータブロッ クのデータ数で上記パケットのデータ長が割り切れない 場合に、パケット内に前のデータブロックが入ったりし て、このフレームデータブロックの開始アドレスがわか らない可能性があり、途中で再生する場合に、再生でき ない可能性があるという欠点がある。

[0009]

【発明が解決しようとする課題】この発明は、さまざま な種別データを複数種類取り扱うことができることを目 的としている。

【0010】また、取り扱うデータがリニアオーディオ データの場合には、途中からの再生がスムーズにでき、 コンピュータデータの時には、使用できる環境が簡単に 検出できることを目的としている。

[0011]

【課題を解決するための手段】この発明によれば、再生 対象としてのデータ・ストリームが記録され、このデー タ・ストリームが少なくともオーディオ・パックを含む データ・パック列から構成されている光ディスクにおい て、前記オーディオ・パックは、1つのパック・ヘッダ 及び1つのデータ・パケットから構成され、このデータ ・パケットは、パケット・ヘッダ、これに続くサブ・ス トリーム【D領域及びパケット・データ領域を具備し、 このパケット・データ領域には、MPEGオーディオ・ ストリーム以外のストリームに属するオーディオ・パケ ット・データが格納され、前記パケット・ヘッダには、 前記パケット・データがMPEG規格に定められたプラ イベート・ストリーム1に属するデータである旨を示す ストリームIDが記録され、前記サブ・ストリームID 領域には、前記パケット・データが特定のオーディオ・ ストリームに属するオーディオ・データである旨を示し ているサブ・ストリームIDが記録されていることを特 徴とする光ディスクが提供される。

(00121

【発明の実施の形態】以下、図面を参照してこの発明の 実施例に係る光ディスク再生装置を説明する。

【0013】図1は、この発明の一実施例に係る光ディ スクからデータを再生する光ディスク再生装置のブロッ クを示し、図2は、図1に示された光ディスクをドライ ブするディスクドライブ部のブロックを示し、図3は、 図1及び図2に示した光ディスクの構造を示している。 【0014】図1に示すように光ディスク再生装置は、 キー操作/表示部4、モニター部6及びスピーカー部8 を具備している。ここで、ユーザがキー操作/表示部4 を操作することによって光ディスク10から記録データ が再生される。記録データは、映像データ、副映像デー

夕及び音声データを含み、これらは、ビデオ信号及びオ ーディオ信号に変換される。モニタ部6は、ビデオ信号 によって映像を表示し、スピーカ部8は、オーディオ信 号によって音声を発生している。

【0015】既に知られるように光ディスク10は、種 々の構造がある。この光ディスク10には、例えば、図 3に示すように、高密度でデータが記録される読み出し 専用ディスクがある。図3に示されるように光ディスク 10は、一対の複合層18とこの複合ディスク層18間 に介挿された接着層20とから構成されている。この各 複合ディスク層18は、透明基板14及び記録層、即 ち、光反射層16から構成されている。このディスク層 18は、光反射層16が接着層20の面上に接触するよ うに配置される。この光ディスク10には、中心孔22 が設けられ、その両面の中心孔22の周囲には、この光 ディスク10をその回転時に押さえる為のクランピング 領域24が設けられている。中心孔22には、光ディス ク装置にディスク10が装填された際に図2に示された スピンドルモータ12のスピンドルが挿入され、ディス クが回転される間、光ディスク10は、そのクランピン グ領域24でクランプされる。

【0016】図3に示すように、光ディスク10は、そ の両面のクランピング領域24の周囲に光ディスク10 に情報を記録することができる情報領域25を有してい る。各情報領域25は、その外周領域が通常は情報が記 録されないリードアウト領域26に、また、クランピン グ領域24に接するその内周領域が同様に、通常は情報 が記録されないリードイン領域27に定められ、更に、 このリードアウト領域26とリードイン領域27との間 がデータ記録領域28に定められている。

【0017】情報領域25の記録層16には、通常、デ ータが記録される領域としてトラックがスパイラル状に 連続して形成され、その連続するトラックは、複数の物 理的なセクタに分割され、そのセクタには、連続番号が 付され、このセクタを基準にデータが記録されている。 情報記録領域25のデータ記録領域28は、実際のデー 夕記録領域であって、後に説明するように再生情報、ビ デオデータ、副映像データ及びオーディオデータが同様 にピット (即ち、物理的状態の変化)として記録されて いる、読み出し専用の光ディスク10では、透明基板1 4にピット列が予めスタンパーで形成され、このピット 列が形成された透明基板14の面に反射層が蒸着により 形成され、その反射層が記録層16として形成されるこ ととなる。また、この読み出し専用の光ディスク10で は、通常、トラックとしてのグルーブが特に設けられ ず、透明基板14の面に形成されるピット列がトラック として定められている。

【0018】このような光ディスク装置12は、図1に 示されるように更にディスクドライブ部30、システム CPU部50、システムROM/RAM部52、システ

ムプロッセッサ部54、データRAM部56、ビデオデ コータ部58、オーディオデコーダ部60、副映像デコ ーダ部62及びD/A及びデータ再生部64から構成さ れている。システムプロッセッサ部54は、システムタ イムクロック54A及びレジスタ54Bを備え、また、 ビデオデコータ部58、オーディオデコーダ部60及び 副映像デコーダ部62は、同様にシステムタイムクロッ ク (STC) 58A、60A、62Aを備えている。 【0019】図2に示すようにディスクドライブ部30 は、モータドライブ回路11、スピンドルモータ12、 光学ヘッド32(即ち、光ピックアップ)、フィードモ -タ33、フォーカス回路36、フィードモータ駆動回 路37、トラッキング回路38、ヘッドアンプ40及び サーボ処理回路44を具備している。光ディスク10 は、モータ駆動回路11によって駆動されるスピンドル モータ12上に載置され、このスピンドルモータ12に よって回転される。光ディスク10にレーザビームを照 射する光学ヘッド32が光ディスク10の下に置かれて いる。また、この光学ヘッド32は、ガイド機構(図示 せず)上に載置されている。フィードモータ駆動回路3 7がフィードモータ33に駆動信号を供給する為に設け られている。モータ33は、駆動信号によって駆動され て光学ヘッド32を光ディスク10の半径方向に移動し ている。光学ヘッド32は、光ディスク10に対向され る対物レンズ34を備えている。対物レンズ34は、フ ォーカス回路36から供給される駆動信号に従ってその 光軸に沿って移動される。

【0020】上述した光ディスク10からデータを再生 するには、光学ヘッド32が対物レンズ34を介してレ ーザビームを光ディスク10に照射される。この対物レ ンズ34は、トラッキング回路38から供給された駆動 信号に従って光ディスク10の半径方向に微動される。 また、対物レンズ34は、その焦点が光ディスク10の 記録層16に位置されるようにフォーカシング回路36 から供給された駆動信号に従ってその光軸方向に沿って 微動される。その結果、レーザビームは、最小ビームス ポットをスパイラルトラック(即ち、ピット列)上に形 成され、トラックが光ビームスポットで追跡される. レ ーザビームは、記録層16から反射され、光学ヘッド3 2に戻される。光ヘッド32では、光ディスク10から 反射された光ビームを電気信号に変換し、この電気信号 は、光ヘッド32からヘッドアンプ40を介してサーボ 処理回路44に供給される。サーボ処理回路44では、 電気信号からフォーカス信号、トラッキング信号及びモ ータ制御信号を生成し、これらの信号を夫々フォーカス 回路36、トラッキング回路38、モータ駆動回路11 に供給している。

【0021】従って、対物レンズ34がその光軸及び光 ディスク10の半径方向に沿って移動され、その焦点が 光ディスク10の記録暦16に位置され、また、レーザ ビームが最小ビームスポットをスパイラルトラック上に 形成する。また、モータ駆動回路11によってスピンド ルモータ12が所定の回転数で回転される。その結果、 光ディスク10のピット列が光ビームで、例えば、線速 一定で追跡される。

【0022】図1に示されるシステムCPU部50からアクセス信号としての制御信号がサーボ処理回路44に供給される。この制御信号に応答してサーボ処理回路4からへッド移動信号がフィードモータ駆動回路37に供給されてこの回路37が駆動信号をフィードモータ33に供給することとなる。従って、フィードモータ33が駆動され、光ヘッド32が光ディスク10の半径方向に沿って移動される。そして、光学ヘッド32によって光ディスク10の記録層16に形成された所定のセクタから再生されて光学ヘッド32からヘッドアンブ40に供給され、このヘッドアンブ40で増幅され、ディスクドライブ部30から出力される。

【0023】出力された再生データは、システム用RO M及びRAM部52に記録されたプログラムで制御され るシステムCPU部50の管理下でシステムプロセッサ 部54によってデータRAM部56に格納される。この 格納された再生データは、システムプロセッサ部54に よって処理されてビデオデータ、オーディオデータ及び 副映像データに分類され、ビデオデータ、オーディオデ ータ及び副映像データは、夫々ビデオデコーダ部58、 オーディオデコーダ部60及び副映像デコーダ部62に 出力されてデコードされる。デコードされたビデオデー タ、オーディオデータ及び副映像データは、D/A及び 再生処理回路64でアナログ信号としてのビデオ信号、 オーディオ信号に変換されるとともにビデオ信号がモニ タ6に、また、オーディオ信号がスピーカ部8に夫々供 給される。その結果、ビデオ信号及び副映像信号によっ てモニタ部6に映像が表示されるとともにオーディオ信 号によってスピーカ部8から音声が再現される。

【0024】図1に示す光ディスク装置の詳細な動作については、次に説明する光ディスク10の論理フォーマットを参照して後により詳細に説明する。

【0025】図1に示される光ディスク10のリードインエリア27からリードアウトエリア26までのデータ 記録領域28は、図4に示されるようなボリューム及びファイル構造を有している。この構造は、論理フォーマットとして特定の規格、例えば、マイクロUDF(micro UDF)及び1SO9660に発送されて定められている。データ記録領域28は、既に説明したように物理的に複数のセクタに分割され、その物理的とタには、連続番号が付されている。下配の説明で論理アドレスは、マイクロUDF(micro UDF)及び1SO9660で定められるように論理セクタ番号(LSN)を意味し、論理セクタは、物理セクタのサイ

ズと同様に2048バイトであり、論理セクタの番号 (LSN)は、物理セクタ番号の昇順とともに連続番号 が付加されている。

【0026】図4に示されるようにこのボリューム及びファイル構造は、階層構造を有し、ボリューム及びファイル構造領域70、ビデオマネージャー71、少なくとも1以上のビデオタイトルセット72及び他の記録領域73を有している。これら領域は、論理セクタの境界上で区分されている。ここで、従来のCDと同様に1論理セクタは、2048バイトと定義されている。同様に、1論理ブロックも2048バイトと定義され、従って、1論理セクタは、1論理プロックと定義される。

【0027】ファイル構造領域70は、マイクロUDF 及びISO9660に定められる管理領域に相当し、こ の領域の記述を介してビデオマネージャー71がシステ ムROM/RAM部52に格納される。ビデオマネージ ャー71には、図5を参照して説明するようにビデオタ イトルセットを管理する情報が記述され、ファイル#0 から始まる複数のファイル74から構成されている。ま た、各ビデオタイトルセット72には、後に説明するよ うに圧縮されたビデオデータ、オーディオデータ及び副 映像データ及びこれらの再生情報が格納され、同様に複 数のファイル74から構成されている。ここで、複数の ビデオタイトルセット72は、最大99個に制限され、 また、各ビデオタイトルセット72を構成するファイル 74 (File #j から File #j+9)の 数は、最大10個に定められている。これらファイルも 同様に論理セクタの境界で区分されている。

【0028】他の記録領域73には、上述したビデオタイトルセット72を利用可能な情報が記録されている。 この他の記録領域73は、必ずしも設けられなくとも良い。

【0029】図5に示すようにビデオマネージャー71 は、夫々が各ファイル74に相当する3つの項目を含ん でいる。即ち、ビデオマネージャー71は、ビデオマネ ージャー情報(VMGI)75、ビデオマネージャー情 報メニューの為のビデオオブジェクトセット(VMGM _VOBS) 76及びビデオマネージャー情報のバック アップ (VMGI_BUP) 77から構成されている。 ここで、ビデオマネージャー情報 (VMGI) 75及び ビデオマネージャー情報のバックアップファ(VMGI _BUP) 77は、必須の項目とされ、ビデオマネージ ャー情報メニューの為のビデオオブジェクトセット(V MGM_VOBS) 76は、オプションとされている。 このVMGM用のビデオオブジェクトセット(VMGM _VOBS)76には、ビデオマネージャー71が管理 する当該光ディスクのボリュームに関するメニューのビ デオデータ、オーディオデータ及び副映像データが格納 されている。

【0030】このVMGM用のビデオオブジェクトセッ

ト (VMGM_VOBS) 76によって後に説明される ビデオの再生のように当該光ディスクのボリューム名、 ボリューム名表示に伴う音声及び副映像の説明が表示さ れるとともに選択可能な項目が副映像で表示される。例 えば、VMGM用のビデオオブジェクトセット(VMG M VOBS) 76によって当該光ディスクがあるボク サーのワールドチャンピョンに至るまでの試合を格納し たビデオデータである旨、即ち、ボクサーXの栄光の歴 史等のボリューム名とともにボクサーXのファイティン グボーズがビデオデータで再生されるとともに彼のテー マソングが音声で再生され、副映像で彼の年表等が表示 される。また、選択項目として試合のナレーションを英 語、日本語等のいずれの言語を選択するかが問い合わさ れるとともに副映像で他の言語の字幕を表示するか、ま た、いずれの言語の字幕を選択するか否かが問い合わさ れる。このVMGM用のビデオオブジェクトセット(V MGM_VOBS) 76によってユーザは、例えば、音 声は、英語で副映像として日本語の字幕を採用してボク サーXの試合のビデオを鑑賞する準備が整うこととな

【0031】ここで、図6を参照してビデオオブジェクトセット(VOBS)82の構造について説明する。図6は、ビデオオブジェクトセット(VOBS)82の一例を示している。このビデオオブジェクトセット(VOBS)82には、2つのメニュー用及びタイトル用として3つのタイプのビデオオブジェクトセット(VOBS)76、95、96がある。即ち、ビデオオブジェクトセット(VOBS)82は、後に説明するようにビデオタイトルセット(VTS)72中にビデオタイトルセットのメニュー用ビデオオブジェクトセット(VTSM _ VOBS)95及び少なくとも1つ以上のビデオタイトルセットのタイトルの為のビデオオブジェクトセット(VTSTT_VOBS)96があり、いずれのビデオオブジェクトセット82もその用途が異なるのみで同様の構造を有している。

【0032】図6に示すようにビデオオブジェクトセット(VOBS)82は、1個以上のビデオオブジェクト(VOB)83の集合として定義され、ビデオオブジェクトセット(VOBS)82中のビデオオブジェクト83は、同一の用途の供される。通常、メニュー用のビデオオブジェクト(VOB)83で構成され、複数のメニュー用の画面を表示するデータが格特される。これに対してSTT_VOBS)82は、通常、複数のビデオオブジェクト(VOB)83で構成される。

【0033】ここで、ビデオオブジェクト (VOB) 8 3は、上述したボクシングのビデオを例にすれば、ボク サーXの各試合の映像データに相当し、ビデオオブジェ クト (VOB) を指定することによって例えば、ワール

ドチャンピョンに挑戦する第11戦をビデオで再現する ことができる。また、ビデオタイトルセット72のメニ ュー用ビデオオブジェクトセット(VTSM_VOB S) 95には、そのボクサーXの試合のメニューデータ が格納され、そのメニューの表示に従って、特定の試 合、例えば、ワールドチャンピョンに挑戦する第11戦 を指定することができる。尚、通常の1ストーリの映画 では、1ビデオオブジェクト (VOB) 83が1ビデオ オブジェクトセット (VOBS) 82に相当し、1ビデ オストリームが1ビデオオブジェクトセット(VOB S)82で完結することとなる。また、アニメ集、或い は、オムニバス形式の映画では、1ビデオオブジェクト セット(VOBS)82中に各ストーリに対応する複数 のビデオストリームが設けられ、各ビデオストリームが 対応するビデオオブジェクトに格納されている。従っ て、ビデオストリームに関連したオーディオストリーム 及び副映像ストリームも各ビデオオブジェクト(VO B) 83中で完結することとなる。

【0034】ビデオオブジェクト(VOB)83には、識別番号(IDN#j)が付され、この識別番号によってそのビデオオブジェクト(VOB)83を特定することができる。ビデオオブジェクト(VOB)83は、1又は複数のセル84から構成される。通常のビデオストリームは、複数のセルから構成されることとなるが、メニュー用のビデオストリーム、即ち、ビデオオブジェクト(VOB)83は、1つのセル84から構成される場合もある。同様にセルには、識別番号(C_IDN#j)が付され、このセル鑑別番号(C_IDN#j)によってセル84が特定される。

【0035】図6に示すように各セル84は、1又は複 数のビデオオブジェクトユニット (VOBU) 85、通 常は、複数のビデオオブジェクトユニット(VOBU) 85から構成される。ここで、ビデオオブジェクトユニ ット (VOBU) 85は、1つのナビゲーションパック (NVパック) 86を先頭に有するパック列として定義 される。即ち、ビデオオブジェクトユニット (VOB U) 85は、あるナビゲーションパック86から次のナ ビゲーションパックの直前まで記録される全パックの集 まりとして定義される。このビデオオブジェクトユニッ ト(VOBU)の再生時間は、図6に示すようにビデオ オブジェクトユニット (VOBU) 中に含まれる単数又 は複数個のGOPから構成されるビデオデータの再生時 間に相当し、その再生時間は、0.4秒以上であって1 秒より大きくならないように定められる。MPEGで は、1GOPは、通常O、5秒であってその間に15枚 程度の画像が再生する為の圧縮された画面データである と定められている。

【0036】図6に示すようにビデオオブジェクトユニットがビデオデータを含む場合には、MPEG規格に定められたビデオパック(Vパック)87、副映像パック

(SPパック) 90、及びオーディオパック(Aパッ ク) 91 (コンピュータデータパック (Cパック) 8 8) から構成されるGOPが配列されてビデオデータス トリームが構成されるが、このGOPの数とは、無関係 にGOPの再生時間を基準にしてビデオオブジェクト (VOBU) 83が定められ、その先頭には、常にナビ ゲーションパック (NVパック) 86が配列される。ま た、オーディオ及び/又は副映像データのみの再生デー タにあってもこのビデオオブジェクトユニットを1単位 として再生データが構成される。即ち、オーディオパッ ク91のみでビデオオブジェクトユニットが構成されて も、ビデオデータのビデオオブジェクトと同様にそのオ ーディオデータが属するビデオオブジェクトユニットの 再生時間内に再生されるべきオーディオパック91がそ のビデオオブジェクトユニットに格納される。これらパ ックの再生の手順に関しては、ナビゲーションパック (NVパック) 86とともに後に詳述する。

【0037】再び図5を参照してビデオマネージャー71について説明する。ビデオマネージャー71の先頭に配置されるビデオマネージャー情報75は、タイトルをサーチする為の情報、ビデオマネージャーメニューの再生の為の情報のようなビデオタイトルセット(VTS)72を管理する情報が記述され、図5に示す順序で少なくとも3つのテーブル78、79、80が記録されている。この各テーブル78、79、80は、論理セクタの境界に一致されている。第1のテーブルであるビデオマネージャー情報管理テーブル(VMGI_MAT)78は、必須のテーブルであってビデオマネージャー71のサイズ、このビデオマネージャー情報のスタートアドレス、ビデオマネージャー情報のスタートアドレス、ビデオマネージャー情報メニュー用のビデオオブジェクトセット(VMGM_VOBS)76に関する属性情報等が記述されている。

【0038】また、ビデオマネージャー71の第2のテーブルであるタイトルサーチポインターテーブル(TT_SRPT)79には、装置のキー及び表示部4からのタイトル番号の入力に応じて選定可能な当該光ディスク10中のポリュームに含まれるビデオタイトルのエントリープログラムチェーン(EPGC)が記載されている。

【0039】ここで、プログラムチェーン187とは、図7に示すようにあるタイトルのストーリーを再現するプログラム189の集合であってプログラムチェーンが連続して再現されることによってある1タイトルの映画が完結される。従って、ユーザーは、プログラムチェーン187内のプログラム189を指定することによって映画の特定のシーンからその映画を鑑賞することができょ

【0040】ビデオマネージャー71の第3のテーブル であるビデオタイトルセット気性テーブル(VTS_A TRT)80には、当該光ディスクのボリューム中のビ デオタイトルセット (VTS) 72に定められた風性情報が記載される。即ち、風性情報としてビデオタイトルセット (VTS) 72の数、ビデオタイトルセット (VTS) 72の番号、ビデオの風性、例えば、ビデオデータの圧縮方式等、オーディオストリームの風性、例えば、副映像の表示タイプ等がこのテーブルに記載されている。

【0041】ビデオマネージャー情報管理テーブル (VMG1_MAT) 78及びタイトルサーチポインターテーブル (TT_SRPT) 79に記載の記述内容の詳細について、図8、図9、図10及び図11を参照して次に説明する。

【0042】図8に示すようにビデオマネージャー情報管理テーブル(VMGI_MAT)78には、ビデオマネージャー71の識別子(VMG_ID)、論理ブロック(既に説明したように1論理ブロックは、2048バイト)の数でビデオ管理情報のサイズ(VMGI_S2)、当該光ディスク、通称、ディジタルバーサタイルディスク(ディジタル多用途ディスク・以下、単にDVDと称する。)の規格に関するバージョン番号(VER)及びビデオマネージャー71のカテゴリー(VMG_CAT)が記載されている。

【0043】ここで、ビデオマネージャー71のカテゴ リー (VMG_CAT) には、このDVDビデオデイレ クトリーがコピーを禁止であるか否かのフラグ等が記載 される。また、このテーブル (VMGI_MAT) 78 には、ボリュームセットの識別子(VLMS_ID)、 ビデオタイトルセットの数 (VTS_Ns)、このディ スクに記録されるデータの供給者の識別子(PVR_I D) 、ビデオマネージャーメニューの為のビデオオブジ ェクトセット (VMGM_VOBS) 76のスタートア ドレス(VNGM_VOBS_SA)、ビデオマネージ ャー情報の管理テーブル (VMGI_MAT) 78の終 了アドレス (VMGI_MAT_EA)、タイトルサー チポインターテーブル (TT_SRPT) 79のスター トアドレス (TT_SRPT_SA) が記載されてい る。VMG_MAT78の終了アドレス (VMGI_M AT_EA) 及びTT_SRPT79のスタートアドレ ス(TT_SRPT_SA)は、先頭の論理ブロックか らの相対的な論理ブロック数で記載されている。

【0044】更に、このテーブル78には、ビデオタイトルセット(VTS)72の風性テーブル(VTS_ATRT」80のスタートアドレス(VTS_ATRT_SA)がVMGIマネージャーテーブル(VMGI_MAT)71の先頭バイトからの相対的なバイト数で記載され、ビデオマネージャーメニュー(VMGM)のビデオ風性(VMGM_V_ATR)が記載されている。更にまた、このテーブル78には、ビデオマネージャーメニュー(VMGM)のオーディオストリームの数(VM

GM_AST_Ns)、ビデオマネージャーメニュー (VMGM)のオーディオストリームの属性(VMGM _AST_ATR)、ビデオマネージャーメニュー(V MGM)の副映像ストリームの数(VMGM_SPST _Ns)及びビデオマネージャーメニュー(VMGM) の副映像ストリームの<u>同性(VMGM</u>_SPST_AT R)が記載されている。

【0045】タイトルサーチポインターテーブル(TT_SRPT)79には、図9に示すように始めにタイトルサーチポインターテーブルの情報(TSPTI)が記載され、次に入力番号1からn(n≤99)に対するタイトルサーチポインタ(TT_SRP)が必要な数だけ連続的に記載されている。この光ディスクのポリューム中に19イトルの再生データ、例えば、1タイトルのビデオデータしか格枘されていない場合には、1つのタイトルサーチポインタ(TT_SRP)93しかこのテーブル(TT_SRPT)79に記載されない。

【0046】タイトルサーチポインターテーブル情報 (TSPT1)92には、図10に示されるようにエントリープログラムチェーンの数(EN_PGC_Ns)及びタイトルサーチポインタ(TT_SRP)93の終了アドレス(TT_SRPT_EA)が記載されている。このアドレス(TT_SRPT_EA)は、このタイトルサーチポインタテーブル(TT_SRPT)79の先頭バイトからの相対的なバイト数で記載される。また、図11に示すように各タイトルサーチポインタ(TT_SRP)93には、ビデオタイトルセット番号(TTSN)、プログラムチェーン番号(PGCN)及びビデオタイトルセット72のスタートアドレス(VTS_SA)が記載されている。

【0047】このタイトルサーチボインタ(TT_SRP)93の内容によって再生されるビデオタイトルセット(VTS)72、また、プログラムチェーン(PGC)が特定されるとともにそのビデオタイトルセット72の格納位置が特定される。ビデオタイトルセット72のスタートアドレス(VTS_SA)は、ビデオタイトルセット番号(VTSN)で指定されるタイトルセットを治理ブロック数で記載される。

【0048】次に、図4に示されたビデオタイトルセット(VTS)72の論理フォーマットの構造について図12を参照して説明する。各ビデオタイトルセット(VTS)72には、図12に示すようにその記載順に4つの項目94、95、96、97が記載されている。また、各ビデオタイトルセット(VTS)72は、共通の風性を有する1又はそれ以上のビデオタイトルから構成され、このビデオタイトル72についての管理情報、例えば、エントリーサーチボイントの為の情報、タイトルインシェクトセットタ6を再生する為の情報、タイトルセットメニュー(VTSM)を再生する為の情報及びビデオオブジェクトセット72の風性情報がビデオタイトル

セット情報 (VTS1) に記載されている。
【0049】このビデオタイトルセット情報 (VTSI) 94のバックアップがビデオタイトルセット情報 (VTSI) 94とこの情報のバックアップ (VTSI_BUP) 97との間には、ビデオタイトルセットメニュー用のビデオオブジェクトセット (VTSM_VOBS) 95及びビデオタイトルセットタイトル用のビデオオブジェクトセット (VTSTT_VOBS) 96 (VTSTT_VOBS) 96 (VTSTT_VOBS) 95、96は、既に説明したように図6に示す構造を有している。

【0050】ビデオタイトルセット情報(VTSI)9 4、この情報のバックアップ(VTSI_BUP)97 及びビデオタイトルセットタイトル用のビデオオブジェ クトセット(VTSTT_VOBS)96は、ビデオタ イトルセットフ2にとって必須の項目され、ビデオタイトルセットスニュー用のビデオオブジェクトセット(V TSM_VOBS)95は、必要に応じて設けられるオ プションとされている。

【0051】ビデオタイトルセット情報(VTSI)94は、図12に示すように4つのテーブル98、99、100、101から構成され、4つのテーブル98、99、100、101から構成され、4つのテーブル98、99、100、101から構成され、4つのテーブルであるビデオタイトルセット情報管理テーブル(VTSI_MAT)98は、必須のテーブルであってビデオタイトルセット(VTS)72中の各情報の開始アドレス及びビデオタイトルセット(VTS)72中の各情報の開始アドレス及びビデオタイトルセット(VOBS)82の風性が記述されている。

【0052】第2のテーブルであるビデオタイトルセットダイレクトアクセスポインタテーブル(VTS_DAPT)99は、必要に応じて設けられるオプションのテーブルであって、装置のキー操作/表示部4からのタイトル番号の入力に応じて選定可能な当該ビデオタイトルセット72中に含まれるプログラムチェーン(PGC)及び又はプログラム(PG)が記載されている。

【0053】第3のテーブルであるビデオタイトルセットプログラムチェーン情報テーブル(VTS_PGCIT)100は、必須のテーブルであってVTSプログラムチェーン情報(VTS_PGCI)を記述している。第4のテーブルであるビデオタイトルセットタイムサーチマップテーブル(VTS_MAPT)101は、必要に応じて設けられるオプションのテーブルであって表示の一定時間に対するこのマップテーブル(VTS_MAPT)101が風するタイトルセット72の各プログラムチェーン(PGC)内のビデオデータの記録位置に関する情報が記述されている。

【0054】次に、図12に示したビデオタイトル情報マネージャーテーブル(VTSI_MAT)98及びビデオタイトルセットプログラムチェーン情報テーブル(VTS_PGCIT)100について図13から図20を参照して説明する。

【0055】図13は、ビデオタイトル情報マネージャ ーテーブル (VTSI_MAT) 98の記述内容を示し ている。このテーブル (VTIS_MAT) 98には、 記載順にビデオタイトルセット識別子(VTS I D)、ビデオタイトルセット72のサイズ(VTS_S Z)、このDVDビデオ規格のバージョン番号(VER N)、タイトルセット72の属性(VTS_CAT)が 記載される。また、このテーブル (VTSI_MAT) 98には、、VTSメニュー (VTSM) のビデオオブ ジェクトセット (VTSM_VOBS) 95の開始アド レス (VTSM_VOBS_SA) がこのビデオタイト ルセット(VTS)72の先頭論理ブロックからの相対 論理ブロック(RLBN)で記述され、ビデオタイトル セット (VTS) におけるタイトルの為のビデオオブジ ェクトのスタートアドレス (VTSTT_VOB_S A)がこのビデオタイトルセット(VTS)72の先頭 論理ブロックからの相対論理ブロック(RLBN)で記 述される.

【0056】 更に、このテーブル(VTSI_MAT)98には、ビデオタイトルセット情報管理テーブル(VTI_MAT)94の終了アドレス(VTI_MAT」 EA)がそのテーブル(VTI_MAT)の先頭バイトからの相対ブロック数で記載され、ビデオタイトルセットダイレクトアクセスポインタテーブル(VTS_DAPT」99のスタートアドレス(VTS_DAPT_SA)がビデオタイトルセット情報(VTSI)94の先頭バイトからの相対ブロック数で記載されている。

【0057】更にまた、このテーブル (VTSI_MA T) 98には、ビデオタイトルセットプログラムチェー ン情報テーブル (PGCIT) 100のスタートアドレ ス (VTS_PGCIT_SA) がビデオタイトルセッ ト情報(VTSI)94の先頭バイトからの相対ブロッ ク数で記載され、ビデオタイトルセット(VTS)のタ イムサーチマップ (VTS_MAPT) 101のスター トアドレス (VTS_MAPT_SA) がこのビデオタ イトルセット(VTS)72の先頭論理セクタからの相 対論理セクタで記述される。このテーブル(VTSI_ MAT) 98には、ビデオタイトルセット (VTS) 7 2中のビデオタイトルセットメニュー (VTSM) の為 のビデオオブジェクトセット (VTSM_VOBS) 9 5及びビデオタイトルセット (VTS) のタイトル (V TSTT) の為のビデオオブジェクトセット (VTST VOBS) 96のビデオ団件(VTS_V_ATR) 及びこのビデオタイトルセット (VTS) 72中のビデ オタイトルセットのタイトル (VTSTT) の為のビデ

オオブジェクトセット(VTSTT_VOBS)96の オーディオストリーム(VTS_AST_Ns)の数が 記載されている。

【0058】ここで、ビデオ属性(VTS_V_ATR)には、ビデオの圧縮モード、TVシステムのフレームレート及び表示装置に表示する際の表示のアスペクト比等が記載されている。

【0059】テーブル (VTSI_MAT) 98には、 ビデオタイトルセット (VTS) 72中のビデオタイト ルセット (VTS) 72のタイトル (VTSTT) の為 のビデオオブジェクトセット (VTST_VOBS) 9 6のオーディオストリーム属性(VTS_AST_AT R) が記載されている。この属性(VTS_AST_A TR)には、どのようにオーディオを符号化したかを記 載したオーディオの符号化モード、オーディオの量子化 を何ビットで実行したか、オーディオのチャネル数等が 記載される。 更に、テーブル(VTSI_MAT) 98 には、ビデオタイトルセット(VTS)72中のこのタ イトル (VTSTT) の為のビデオオブジェクトセット (VTST_VOBS) 96の副映像ストリームの数 (VTS_SPST_Ns)及び各副映像ストリームの 风性(VTS_SPST_ATR)が記載されている。 この各副映像ストリームの属性(VTS_SPST_A TR)には、副映像の符号化モード及び副映像の表示タ イプ等が記載される。

【0060】また、このテーブル(VTS I _MAT) 98には、ビデオタイトルセットメニュー(VTSM) のオーディオストリーム数(VTSM_AST_N s)、オーディオストリーム属性(VTSM_AST_ ATR)、副映像ストリームの数(VTSM_SPST _Ns)、及び副映像ストリームの風性(VTSM_S PST_ATR)が記述されている。

【0061】VTSプログラムチェーン情報テーブル (VTS_PGC IT) 100は、図14に示すような 構造を備えている。この情報テーブル(VTS_PGC IT) 100には、VTSプログラムチェーン(VTS _PGC)に関する情報(VTS_PGCI)が記載さ れ、始めの項目としてVTSプログラムチェーン(VT S_PGC) に関する情報テーブル (VTS_PGC I T) 100の情報 (VTS_PGCIT_I) 102が 設けられている。この情報 (VTS_PGCIT_I) 102に続いてこの情報テーブル(VTS_PGCI T) 100には、この情報テーブル (VTS_PGCI T) 100中のVTSプログラムチェーン(VTS P GC)の数(#1から#n)だけVTSプログラムチェ ーン(VTS_PGC)をサーチするVTS_PGCI サーチポインタ (VTS_PGCIT_SRP) 103 が設けられ、最後にVTSプログラムチェーン(VTS _PGC)に対応した数(#1から#n)だけ各VTS プログラムチェーン (VTS_PGC) に関する情報

(VTS_PGCI)104が設けられている。
【0062】VTSプログラムチェーン情報テーブル
(VTS_PGCIT)100の情報(VTS_PGCIT_I)102には、図15に示されるようにVTSプログラムチェーン(VTS_PGC)の数(VTS_PGC_Ns)が内容として記述され及びこのテーブル情報(VTS_PGCIT_I)102の終了アドレス(VTS_PGCIT_EA)がこの情報テーブル(VTS_PGCIT_EA)がこの情報テーブル(VTS_PGCIT_EA)がこの情報テーブル(VTS_PGCIT)100の先頭バイトからの相対的なバイト数で記述されている。

【0063】また、VTS_PGCITサーチボインタ(VTS_PGCIT_SRP)103には、図16に示すようにビデオタイトルセット(VTS)72のプログラムチェーン(VTS_PGC)の凤性(VTS_PGC_CAT)及びこのVTS_PGC情報テーブル(VTS_PGCIT)100の先頭バイトからの相対的バイト数でVTS_PGC情報(VTS_PGCI)のスタートアドレス(VTS_PGCI_SA)が記述されている。ここで、VTS_PGC属性(VTS_PGC_CAT)には、属性として例えば、最初に再生されるエントリープログラムチェーン(エントリーPGC)か否かが記載される。

【0064】通常、エントリプログラムチェーン(PGC)は、エントリープログラムチェーン(PGC)でないプログラムチェーン(PGC)に先だって記載される。

【0065】ビデオタイトルセット内のPGC情報(VTS_PGCI)104には、図17に示すように4つ項目が記載されている。このPGC情報(VTS_PGCI)104には、始めに必須項目のプログラムチェーン一般情報(PGC_GI)105が記述され、これに続いてビデオオブジェクトがある場合だけ必須の項目とされる少なくとも3つの項目106、107、108が記載されている。即ち、その3つの項目としてプログラムチェーンプログラムマップ(PGC_PGMAP)106、セル再生情報テーブル(C_PBIT)107及びセル位置情報テーブル(C_POSIT)108がPGC情報(VTS_PGCI)104に記載されている。

【0066】プログラムチェーン一般情報(PGC_G I)105には、図18に示すようにプログラムチェーン(PGC)のカテゴリー(PGCI_CAT)、プログラムチェーン(PGC)の内容(PGC_CNT)及びプログラムチェーン(PGC)の再生時間(PGC_PB_TIME)が記載されている。PGCのカテゴリーPGCI_CAT)には、当該PGCのコピーが可能であるか否か及びこのPGC中のプログラムの再生が連続であるか否か及びこのPGC中のプログラムの画生が連続であるか改いはランダム再生であるか否か等が記載される。PGCの内容(PGC_CNT)には、このプログラムチェーンの構成内容、即ち、プログラム数、セ

ルの数、このプログラムチェーン中のアングルの数が記載される。PGCの再生時間(PGC_PB_T1ME)には、このPGC中のプログラムのトータル再生時間等が記載される。この再生時間は、再生手順には無関係に連続してPGC内のプログラムを再生する場合のプログラムの再生時間が記述される。

【0067】また、プログラムチェーン一般情報(PGC_G1)105には、PGC副映像ストリーム制御(PGC_SPST_CTL)、PGCオーディオストリーム制御(PGC_SPST_CTL)及びPGC副映像パレット(PGC_SP_PLT)が記載されている。PGC副映像ストリーム制御(PGC_SPST_CTL)には、PGCで使用可能な副映像数が記載され、PGCオーディオストリーム制御(PGC_AST_CTL)には、同様にPGCで使用可能なオーディストリームの数が記載される。PGC可除のパレット(PGC_SP_PLT)には、このPGCの全ての副映像パレットが記載される。

【0068】更に、PGC一般情報(PGC_GI)1 05には、セル再生情報テーブル(C_PBIT)10 7のスタートアドレス(C_PBIT_SA)及びセル 位置情報テーブル(C_POSIT)108のスタート アドレス(C_POSIT_SA)が記載されている。 いずれのスタートアドレス(C_PBIT_SA及びC _POSIT_SA)もVTS_PGC情報(VTS_ PGCI)の先頭バイトからの相対的な論理ブロック数 で記載される。

【0069】プログラムチェーンプログラムマップ(PGC_PGMAP)106は、図19に示すようにPGC内のプログラムの構成を示すマップである。このマップ(PGC_PGMAP)106には、図19及び図20に示すようにプログラムの開始セル番号であるエントリーセル番号(ECELLN)がセル番号の記域順に記述されている。また、エントリーセル番号の記域順にプログラム番号が1から割り当てられている。従って、このマップ(PGC_PGMAP)106の最初のエントリーセル番号は、#1でなければならない。

【0070】セル再生情報テーブル(C_PBIT)107は、PGCのセルの再生順序を定義している。このセル再生情報テーブル(C_PBIT)107には、図21に示すようにセル再生情報(C_PBIT)が連続して記載されている。基本的には、セルの再生は、そのセル番号の順序で再生される。セル再生情報(C_PBIT)には、図22に示されるようにセルカテゴリー(C_CAT)が記載される。このセルカテゴリー(C_CAT)には、セルがセルブロック中のセルであるか、また、セルブロック中のセルであれば最初のセルであるかを示すセルブロックモード、セルがブロック中の一部ではない、或いは、アングルブロックであるかを示

すセルブロックタイプ、システムタイムクロック(STC)の再設定の要否を示すSTC不連続フラグが記載される。

【0071】また、このセルカテゴリー(C_CAT)には、セル内では連続して再生するか或いはセル内の各ビデオオブジェクトユニット(VOBU)単位で静止するかを示すセル再生モード、セルの再生の後に静止させるか否か或いはその静止時間を示すセルナビゲーション制御が記載されている。

【0072】また、図22に示すようにセル再生情報テ ーブル (C_PBIT) 107は、PGCの全再生時間 を記述したセル再生時間(C_PBTM)を含んでい る。アングルセルブロックがPGC中にある場合には、 そのアングルセル番号1の再生時間がそのアングルブロ ックの再生時間を表している。更に、セル再生情報テー ブル (C_PBIT) 107には、当該セルが記録され ているビデオオブジェクトユニット (VOBU) 85の 先頭論理セクタからの相対的な論理セクタ数でセル中の 先頭ビデオオブジェクトユニット (VOBU) 85のス タートアドレス (C_FVOBU_SA) が記載され、 また、当該セルが記録されているビデオオブジェクトユ ニット(VOBU)85の先頭論理セクタからの相対的 な論理セクタ数でセル中の最終ビデオオブジェクトユニ ット(VOBU)85のスタートアドレス(C_LVO BU SA)が記載される。

【0073】 セル位置情報テーブル(C_POSI)108は、PGC内で使用するセルのビデオオブジェクト(VOB)の識別番号(VOB_ID)及びセルの競別番号(C_ID)を特定している。セル位置情報テーブル(C_POS1)には、図23に示されるようにセル再生情報テーブル(C_PBIT)107に記載されるセル番号に対応するセル位置情報(C_POS1)がセル再生情報テーブル(C_PBIT)と同一順序で記載される。このセル位置情報(C_POS1)には、図24に示すようにセルのビデオオブジェクトユニット(VOBU)85の識別番号(C_VOB_IDN)及びセル識別番号(C_IDN)が記述されている。

【0074】図6を参照して説明したようにセル84は、ビデオオブジェクトユニット(VOBU)85の集合とされ、ビデオオブジェクトユニット(VOBU)85は、ナビゲーション(NV)パック86から始まるパック列として定義される。従って、セル84中の最初のビデオオブジェクトユニット(VOBU)85のスタートアドレス(C_FVOBU_SA)は、NVパック86のスタートアドレスを表すこととなる。このNVパック86は、図25に示すようにパックへッグ110、システムヘッグ111及びナビゲーションデータとしての2つのパケット、即ち、再生制御情報(PC1)パケット116及びデータサーチ情報(DSI)パケット117から成る構造を有し、図25に示すようなバイト数が

各部に付り当てられ、1パックが1論理セクタに相当する2048バイトに定められている。また、このNVパックは、そのグループオブピクチャー(GOP)中の最初のデータが含まれるビデオパックの直前に配置されている。オブジェクトユニット85がビデオパック87を含まない場合であってもNVパック86がオーディオパック91又は/及び副映像パック90を含むオブジェクトユニットがビデオパックを含まない場合であってもトユニットがビデオパックを含まない場合であっても同様にオブジェクトユニットがビデオパック87を含む場合であてと同様にオブジェクトユニットの再生時間は、ビデオが再生される単位を基準に定められる。

【0075】ここで、GOPとは、MPEGの規格で定められ、既に説明したように複数画面を構成するデータ列として定義される。即ち、GOPとは、圧縮されたデータに相当し、この圧縮データを伸張させると動画を再生することができる複数フレームの画像データが再生される。パックヘッダ110及びシステムヘッダ111は、MPEG2のシステムレーヤで定義され、パックヘッダ110には、パック開始コード、システムクロペタリファレンス(SCR)及び多重化レートの情報が格的され、システムヘッダ111には、ビットレート、ストリームIDが記載されている。PCIパケット116及びDSIパケット117のパケットへッダ112、114には、同様にMPEG2のシステムレーヤに定められているようにパケット開始コード、パケット長及びストリームIDが格納されている。

【0076】他のビデオバック87、オーディオバック91、副映像バック90、コンピュータデータバック88は、図26に示すようにMPEG2のシステムレーヤに定められるように同様にパックヘッダ120、パケットへッダ121及び対応するデータが格納されたパケット122から構成され、そのパック長は、2048バイトに定められている。これらの各バックは、論理ブロックの境界に一致されている。

【0077】PCIバケット116のPCIデータ(PCI)113は、VOBユニット(VOBU)85内のビデオデータの再生状態に同期してプレゼンテーション、即ち、表示の内容を変更する為のナビゲーションデータである。即ち、PCIデータ(PCI)113には、図27に示されるようにPCI一般情報(PCI_GI)が記述されている。PCI一般情報(PCI_GI)には、図28に示されるようにPCI113が記録されているVOBU85の論理セクタからの相対的論理ブロック数でそのPCI113が記録されているNVパック(NV_PCK)86のまた、PCI一般情報(PCI_GI)には、VOBU85のカテゴリー(VOBU_CAT)、VOBU85のカテゴリー(VOBU_SPTS)及び終了PT

S (VOBU_EPTS)が記述されている。ここで、 VOBU85のスタートPTS (VOBU_SPTS) は、当該PCI113が含まれるVOBU85中のビデ オデータの再生開始時間 (スタートプレゼンテーション タイムスタンプ (SPTS)) を示している。この再生 開始時間は、VOBU85中の最初の再生開始時間であ る。通常は、最初のピクチャーは、MPEGの規格にお けるIピクチャー(Intra-Picture)の 再生開始時間に相当する。VOBU85の終了PTS (VOBU_EPTS)は、当該PCI113が含まれ るVOBU85の再生終了時間(終了プレゼンテーショ ンタイムスタンプ:EPTS))を示している。 【0078】図25に示したDSIパケット117のD SIデータ(DSI) 115は、VOBユニット(VO BU)85のサーチを実行する為のナビゲーションデー タである。DS1データ(DSI)115には、図29 に示すようにDSI一般情報(DSI_GI)、VOB Uのサーチ情報(VOBU_SI)及び同期再生情報 (SYNCI)が記述されている。

【0079】DSI-般情報(DSI_GI)は、その DSI115全体の情報が記述されている。即ち、図3 Oに示すようにDSI一般情報(DSI_GI)には、 NVパック86のシステム時刻基準参照値(NV_PC K_SCR)が記載されている。このシステム時刻基準 参照値 (NV_PCK_SCR) は、図1に示す各部に 組み込まれているシステムタイムクロック(STC)に 格納され、このSTCを基準にビデオ、オーディオ及び 副映像パックがビデオ、オーディオ及び副映像デコーダ 部58、60、62でデコードされ、映像及び音声がモ ニタ部6及びスピーカ部8で再生される。DSI一般情 報(DSI_GI)には、DSI115が記録されてい るVOBセット(VOBS)82の先頭論理セクタから の相対的論理セクタ数 (RLSN)でDSI 115が記 録されているNVパック(NV_PCK)86のスター トアドレス (NV_PCK_LBN) が記載され、VO Bユニット (VOBU) の先頭論理セクタからの相対的 論理セクタ数 (RLSN) でDSI115が記録されて いるVOBユニット (VOBU) 85中の最終パックの アドレス(VOBU_EA)が記載されている。

【0080】更に、DSI一般情報 (DSI_GI)には、DSI115が記録されているVOBユニット (VOBU)の先頭論理セクタからの相対的論理セクタ数 (RLSN)でこのVOBU内での最初のIピクチャーの最終アドレスが記録されているVバック (V_PCK)88の終了アドレス (VOBU_IP_EA)が記載され、当該DSI115が記録されているVOBU83の識別番号 (VOBU_IP_IDN)及び当該DSI115が記録されているVOBU81115が記録されているVOBU8

【0081】VOBU85のサーチ情報(VOBU_S

1)には、セル内の先頭アドレスを特定する為の情報が 記述される。

【0082】同期情報 (SYNCI) には、DSI11 5が含まれるVOBユニット (VOBU) のビデオデー タの再生開始時間と同期して再生する副映像及びオーデ ィオデータのアドレス情報が記載される。即ち、図31 に示すようにDSI115が記録されているNVパック (NV_PCK) 86からの相対的な論理セクタ数(R LSN)で目的とするオーディオパック(A_PCK) 91のスタートアドレス (A_SYNCA) が記載され る。オーディオストリームが複数(最大8)ある場合に は、その数だけ同期情報(SYNCI)が記載される。 また、同期情報(SYNCI)には、目的とするオーデ ィオパック (SP_PCK) 91を含むVOBユニット (VOBU) 85のNVパック (NV_PCK) 86の アドレス (SP_SYNCA) がDSI115が記録さ れているNVパック(NV_PCK)86からの相対的 な論理セクタ数 (RLSN) で記載されている。副映像 ストリームが複数(最大32)ある場合には、その数だ け同期情報(SYNCI)が記載される。

【0083】上記パックのパック長は、2048バイト(1論理セクタ)となるように調整されている。パック長が2048バイトに満たない場合、満たないバイト数が、6バイト以下の場合、パックヘッダ内のスタッフィングバイトの追加によりパック長を調整し、7バイト以上の場合、スタッフィングバイトは1バイトで、パケットにその不足バイト数に対応するパディングパケットを追加することによりパック長を調整する。

【0084】バックヘッダは、4バイトのバックスタートコード(000001BAh)、6バイトのSCR(システムクロックリファレンス、システム時刻基準参照値)、3バイトの多重化レート(MUXレート:0468A8h)、1バイト~7バイトのスタッフィングバイト(00h)により構成される。パケットに、基準として2034バイトで構成され、このパケットには、パック長調整用のパディングパケット(各バイト単位にデータとして意味をなさない有効データ00hが記録される)が必要に応じて設けられるようになっている。

【0085】すなわち、図32に示すように、パケットを構成するデータ長が、2034バイトから2028バイトの場合、その不足するバイト数分、パックヘッダ内にスタッフィングバイトを追加(挿入)する。

【0086】また、図33に示すように、パケットを構成するデータ長が、2027バイト以下の場合、その不足するバイト数分のパディングパケットを追加する。

【0087】たとえば、ビデオデータのバック化について説明する。

【0088】すなわち、図34に示すように、データ長が2015バイトのビデオデータをバック化する場合、 1パケットの基準バイト数(2034バイト)とそのビ デオデータのバイト数(2015バイト)に6バイトのパケットへッダを加えたバイト数(2021バイト)とを比較し、この比較による13バイトの不足の算出により、13バイトのパディングパケットの追加と判断し、スタッフィングバイトが1バイトの通常の14バイトのパックへッダと、2021バイトのビデオパケットに13バイトのパディングパケットを追加した2034バイトのパナットとにより、2048バイトのパックを形成する。

【0089】また、図35に示すように、データ長が2025バイトのビデオデータをパック化する場合、1パケットの基準バイト数(2034バイト)とそのビデオデータのバイト数(2025バイト)に6バイトのパケットへッダを加えたバイト数(2031バイト)とを比較し、この比較による3バイトの不足の算出により、3バイトのスタッフィングバイトの追加と判断し、1バイトのスタッフィングバイトの他に3バイトのスタッフィングバイトのパックへッダと、2031バイトのビデオパケットとにより、2048バイトのパックを形成する。

【0090】次に、上記各バックについて詳細に説明する。

【0091】NVパック86は、図25に示すように、1つのGOPの先頭のデータを含むビデオパックの直前に配置されるものであり、14バイトのパックヘッダ110と、24バイトのシステムヘッダ111と、986バイト以内のPCIパケット116と、1024パイト以内のDSIパケット117により構成されている。PCIパケット116は、6バイトのパケットへッダ112と、1バイトのサブストリームID118と979パイトのPCIデータが格納可能なデータ領域113により構成され、DSIパケット117は、6バイトのパケットヘッダ114と、1バイトのサブストリームID19と1017バイトのDSIデータが格納可能なデータ領域115により構成されている。

【0092】パックヘッダ110は、上途したように、 4バイトのパックスタートコード(000001BA h)、6バイトのSCR(システムクロックリファレン ス、システム時刻基準参照値)、3バイトの多重化レート(MUXレート;0468A8h)、1バイト~7バイトのスタッフィングバイト(00h)により構成され

【0093】システムヘッダ111は、4バイトのシステムヘッダスタートコード(00001BBh)、2バイトのヘッダ長等により構成される。

【0094】パケットヘッダ112、114は、それぞれ3バイトのパケットスタートコード(000001h)、1バイトのストリームID(10111111b:プライベートストリーム2)、2バイトのPES(Packetized Elementary St

ream) パケット長により構成される。

【0095】サブストリーム I D I 18には、PC I ストリームを示すコード (0000000b) が付与されている。

【0096】サブストリーム1D119には、DSIストリームを示すコード(0000001b)が付与されている。

【0097】ビデオパック87は、図36の(a)

(b) に示すように、14パイトのパックヘッダ120と、9パイトのパケットヘッダ121と2025パイトまでのビデオデータが格納可能なデータ領域122によりなるビデオパケット、あるいは19パイトのパケットヘッダ121と2015パイトまでのビデオデータが格納可能なデータ領域122によりなるビデオパケットで、1つのパックが構成されている。パックヘッダ120は、上記NVパック86の場合と同じ構成である。

【0098】パケットヘッダ121が9バイトの場合は、3バイトのパケットスタートコード(000001h)、1バイトのストリームID(11100000b:MPEGビデオストリーム)、2バイトのPES(Packetized Elementary Stream)パケット長、3バイトのPESに関するデータにより構成される。

【0099】パケットヘッダ121が19バイトの場合は、上記9バイトの他に、5バイトのPTS(Presentation Time Stamp ; 再生出力の時刻管理情報)と5バイトのDTS(Decoding Time Stamp: 復号の時刻管理情報)がさらに追加構成されている。このPTSとDTSは、ビデオストリームのIピクチャ先頭のデータを含むビデオパケットのみに記述される。

【0100】オーディオパック91は、ドルビーAC3 準拠の圧縮符号化データの場合、図37の(a)に示すように、14バイトのパックヘッダ120と、14バイトのパケットヘッダ121と1バイトのサブストリーム ID131とパケットデータ内のオーディオフレームの数を示す1バイト構成のフレーム数132とパケットデータ内の最初のオーディオフレームの先頭の位置を示す2バイト構成のファーストアクセスユニットポインタ133と2016バイトまでのオーディオデータが格納可能なデータ領域134によりなるオーディオパケットで、1つのパックが構成されている。パックヘッダ120は、上記NVパック86の場合と同じ構成である。パケットヘッダ121にPTSが含まれない場合、パケットヘッダ121が9バイト構成となり、オーディオデータが格納可能なデータ領域134が2021バイトに拡張する。

【0101】オーディオバック91は、リニアPCMの 符号化データの場合、図37の(b)に示すように、1 4バイトのバックヘッダ120と、14バイトのパケッ トヘッダ121と1バイトのサブストリームID131とパケットデータ内のオーディオフレームの数を示す1バイト構成のフレーム数132とパケットデータ内のオーディオフレームの大頭の位置を示す2バイト構成のファーストアクセスユニットボインタ133とパケットデータ内のオーディオデータの情報が記述されている3バイト構成のオーディオデータインフォメーション135と2013バイトまでのオーディオデータが格納可能なデータ領域134によりなるオーディオパケットで、1つのパックが構成されている。パックヘッダ120は、上記NVパック86の場合まれない場合、パケットヘッダ121にPTSが含まれない場合、パケットへッダ121にPTSが含まれない場合、パケットへッグ121が9バイト構成となり、オーディオデータが格納可能なデータ領域134が2018バイトに拡張する。

【0102】オーディオデータインフォメーションのオーディオデータの情報としては、フレーム番号、1つのデータの長さが16ビット長か20ビット長か24ビット長かの処理単位、サンプリング周波数等が記述されている。

【0103】パケットヘッダ121は、3バイトのパケットスタートコード (000001h)、1バイトのストリームID (10111101b:プライベートストリーム1)、2バイトのPES (Packetized Elementary Stream)パケット長、3バイトのPESの内容、5バイトのPTS (Presentation Time Stamp ;再生出力

【0104】オーディオデータがドルビーAC3準拠の 圧縮符号化データの場合に付与されるサブストリームI D131には、AC3ストリームを示すコード(100 00×××b:×××がストリーム番号)が付与されて いる。

の時刻管理情報)により構成される。

【0105】オーディオデータがリニアPCMの場合に 付与されるサブストリームID131には、リニアPC Mストリームを示すコード(10100×××b:×× ×がストリーム番号)が付与されている。

【0106】オーディオデータの1フレームは、たとえば4バイトのフレームへッダと0~191までの左右の 4バイトずつの772バイトのオーディオデータにより 構成されている。

【0107】副映像パック90は、図38に示すように、14バイトのパックヘッダ120と、14バイトのパケットへッダ121と1バイトのサブストリームID 141と2019バイトまでの副映像データが格納可能なデータ領域142によりなる副映像パケットで、1つのパックが構成されている。パケットヘッダ121にPTSが含まれない場合、パケットヘッダ121が9バイト構成となり、副映像データが格納可能なデータ領域142が2024バイトに拡張する。パックヘッダ120

は、上記NVバック86の場合と同じ構成である。 【0108】サブストリームID141には、副映像ストリームを示すコード(001×××××b:×××××ストリーム番号)が付与されている。

【0109】パケットヘッダ121には、3バイトのパケットスタートコード(000001h)、1バイトのストリームID(10111101b:プライベートストリームI)、2バイトのPES(Packetized ElementaryStream)パケット長、3バイトのPESに関するデータ、5バイトのPTS(Presentation Time Stamp

: 再生出力の時刻管理情報) により構成されている。 このPTSは、各副映像ユニットの先頭データを含む副 映像パケットのみに記述される。

【0110】コンピュータデータバック88は、図39に示すように、14バイトのバックヘッダ120と、14バイトのパケットヘッダ121と1バイトのサブストリーム1D151と2バイトのコンピュータ環境情報152と2017バイトまでのコンピュータデータが格納可能なデータ領域153よりなるパケットで、1つのバックが構成されている。パケットヘッダ121だ9バイト構成となり、コンピュータデータが格納可能なデータ領域153が2022バイトに拡張する。パックヘッダ120は、上記NVバック86の場合と同じ構成している。

【0111】コンピュータ環境情報152としては、使用CPUと使用OSが記述される。たとえば、図40に示すように、4種類の種別が選択できるようになっており、使用CPUが「CPU1」で使用OSが「OS1」の場合、「0110(h)」が記述され、使用CPUが「CPU2」で使用OSが「OS3」の場合、「1002(h)」が記述され、使用CPUが「CPU2」で使用OSが「OS3」の場合、「1002(h)」が記述され、使用CPUが「CPU1」で使用OSが「OS3」の場合、「0102(h)」が記述される。

【0112】サブストリームIDには、コンピュータストリームを示すコード (11000000b) が付与されている。

【0113】パケットヘッダ121には、3バイトのバケットスタートコード(000001h)、1バイトのストリームID(10111101b:プライベートストリームI)、2バイトのPES(Packetized ElementaryStream)パケット長、3バイトのPESに関するデータ、5バイトのPTS(Presentation Time Stamp:再生出力の時刻管理情報)により構成されている。

・ ロールングリータイト となっていない。 このPTSは、各コンピュータデータストリームの先頭 データを含むコンピュータデータパケットのみに記述される。

【0114】上記各パックに記述されるSCRは、各ピ

デオタイトルセットごとの先頭パックの値を0とし、光 ディスク10への記録順に昇順に増加するようになっている。

【0115】上記各パックのパケットヘッダ121内に 記述されるストリームIDは、図41に示すように、 「10111100」の場合、プログラムストリームマ ップを示し、「10111101」の場合、プライベー トストリーム1を示し、「10111110」の場合、 パディングストリーム (ダミーデータ)を示し、「10 111111」の場合、プライベートストリーム2を示 し、「110×××××」の場合、MPEGオーディオ ストリーム (×××××; ストリーム番号) を示し、 「1110××××」の場合、MPEGビデオストリー ム (××××; ストリーム番号) を示し、「11110 000」の場合、エンタイトルメント(許諾)制御メッ セージを示し、「111110010」の場合、エンタ イトルメント(許諾)管理メッセージを示し、「111 10010」の場合、DSMコントロールコマンドを示 し、「11111111」の場合、プログラムストリー ムディレクトリを示している。

【0116】上記オーディオバック91、副映像バック90、コンピュータデータバック88のパケット内に記述されるサブストリーム1D131、141、151は、プライベートストリーム1に対応し、図42に示すように、「10100×××」の場合、リニアPCMオーディオストリームを示し、その「××××」がストリーム番号となり、「001×××××」がストリーム番号となり、「11000000」の場合、コンピュータストリームを示し、「10000×××」の場合、ドルビーAC3オーディオストリームを示し、その「×××」がストリーム番号となっている。

【0117】上記NVパック87内のPCIパケットとDSIパケットに記述されるサブストリームID118、119は、プライベートストリーム2に対応し、図43に示すように、「00000000」の場合、PCIストリームを示し、「00000001」の場合、DSIストリームを示している。

【0118】次に、リニアオーディオデータのバック9 1の構成の具体例を、図44を用いて説明する。 【0119】すなわち、パケットヘッダ121内のストリームIDとしてはプライベートストリーム1を示す「10111101」が記述され、サブストリーム1D131としてリニアPCMオーディオストリーム番号は「3」が記述され、ファーストアクセスユニットポインタ133として「01DB(h)」が記述されている。パケット内のデータ領域134には、前のフレームの残りデータ(472バイト制成)が格納されている。 【0120】次に、コンピュータデータのパック88の 構成の具体例を、図45を用いて説明する。

【0121】すなわち、パケットヘッダ121内のストリームIDとしてはプライベートストリーム1を示す「10111101」が記述され、サブストリームID151としてコンピュータデータストリームを示す「1000000」が記述され、コンピュータ環境情報152として使用CPUが「CPU1」で使用OSが「OS2」を示す「0111(h)」が記述されている。パケット内のデータ領域153には、コンピュータデータが格納されている。

【0122】次に、副映像データのパック90の構成の 具体例を、図46を用いて説明する。

【0123】すなわち、パケットヘッダ121内のストリームIDとしてはプライベートストリーム1を示す「10111101」が記述され、サブストリームID141として副映像ストリームを示す「00100101」が記述され、ストリーム番号は「5」が記述されている。パケット内のデータ領域142には、2019バイトまでの副映像データが格納されている。

【0124】上記システムプロセッサ部54には、パケットの種別を判断してそのパケット内のデータを各デコーダへ転送するパケット転送処理部200を有している。このパケット転送処理部200は、図47に示すように、メモリインターフェース部(メモリI/F部)201、スタッフェング長検知部202、パックへが終了アドレス算出部203、パック種別判別部204、パケットデータ転送制御部205、およびデコーダインターフェース部(デコーダI/F部)206により構成されている。

【0125】メモリI/F部201は、データRAM部56からのパックデータをデータバスによりスタッフィング長検知部202、パック種別判別部204、パケットデータ転送制御部205、およびデコーダI/F部206へ出力するものである。

【0126】スタッフィング長検知部202は、メモリ I/F部201から供給されるパックデータ中のパック ヘッダ120内のスタッフィング長が何バイトであるか を検知するものであり、この検知結果はパックヘッダ終 アアドレス算出部203に出力される。

【0127】パックヘッダ終了アドレス算出部203は、スタッフィング長検知部202から供給されるスタッフィング長により、パックヘッダ終了アドレスを算出するものであり、この算出結果はパック種別判別部204およびパケットデータ転送制御部205に出力される。

【0128】パック種別判別部204は、パックヘッダ 終了アドレス算出部203から供給されるパックヘッダ 終了アドレスに従って、上記メモリ1/F部201aか ら供給されるパックデータ中のそのアドレスの次に供給 される4バイトのデータの内容により、ビデオバック87、オーディオバック91、副映像バック90、NVバック86、コンピュータデータバック88のいずれであるかを判別するものであり、この判別結果はパケットデータ転送制御部205に出力される。

【0129】すなわち、プライベートストリーム2を示す1バイトのストリームIDが供給された場合、NVバック86と判別し、ビデオストリームを示す1バイトのストリームIDによりビデオパック87と判別し、プライベートストリーム1を示す1バイトのストリームIDによりオーディオバック91、副映像バック90あるいはコンピュータデータバック88と判別するようになっている。

【0130】このオーディオパック91、副映像パック90あるいはコンピュータデータパック88が判別された際、パケットヘッダ121に続くサブストリームID131、141、151によりドルビーAC3オーディオストリーム、リニアオーディオストリーム、副映像ストリーム、コンピュータデータストリームかを判別するようになっている。

【0131】たとえば、図42に示すように、「10100×××」(×××:ストリーム番号)の場合、リニアオーディオストリームを判別され、「10000×××」(×××:ストリーム番号)の場合、ドルビーAC3オーディオストリームを判別され、「001×××××」(××××:ストリーム番号)の場合、副映像ストリームと判別される。

【0132】パケットデータ転送制御部205は、パックヘッダ終了アドレス算出部203から供給されるパックヘッダ終了アドレスとパック種別判別部204から供給されるパックモリアドレスを判断し、さらに供給されるパックデータのパケットスタートアドレスを判断し、さらに供給されるパックデータのパケットへッグ121内のパケッド長を判断するものである。さらに、パケットデータ転送知部205は、転送コントロール信号としての転送先を示スタートアドレスかがパケット終了アドレスがメモリI/F部201に供給されるようになっている。

【0133】デコーダ I / F部206は、パケットデータ転送制御部205から供給される転送コントロール信号に応じて、メモリ I / F部201からパケットデータ 転送制御部205に制御されて供給されるパケットペッダ121を含むパケットデータとしての、ビデオデータ、オーディオデータ、副映像データを、対応するデコーダ部58、60、62に出力したり、パケットデータとしてのナビゲーションデータ及びコンピュータデータをデータRAM部56に出力するものである。

【0134】次に、再び図1を参照して図4から図24 に示す論理フォーマットを有する光ディスク10からの ムービデータの再生動作について説明する。尚、図1に おいてブロック間の実験の矢印は、データバスを示し、 破核の矢印は、制御バスを示している。

【0135】図1に示される光ディスク装置において は、電源が投入されると、システム用ROM及びRAM 52からシステムCPU部50は、初期動作プログラム を読み出し、ディスクドライブ部30を作動させる。従 って、ディスクドライブ部30は、リードイン領域27 から読み出し動作を開始し、リードイン領域27に続く ISO-9660等に準拠してボリュームとファイル構 造を規定したボリューム及びファイル構造領域70が読 み出される。即ち、システムCPU部50は、ディスク ドライブ部30にセットされた光ディスク10の所定位 置に記録されているボリューム及びファイル構造領域7 0を読み出す為に、ディスクドライブ部30にリード命 令を与え、ボリューム及びファイル構造領域70の内容 を読み出し、システムプロセッサ部54を介して、デー タRAM部56に一旦格納する。システムCPU部50 は、データRAM部56に格納されたパステーブル及び ディレクトリレコードを介して各ファイルの記録位置や 記録容量、サイズ等の情報やその他管理に必要な情報と しての管理情報を抜き出し、システム用ROM&RAM 部52の所定の場所に転送し、保存する。

【0136】次に、システムCPU部50は、システム 用ROM&RAM部52から、各ファイルの記録位置や 記録容量の情報を参照してファイル番号〇番から始まる 複数ファイルからなるビデオマネージャー71を取得す る。即ち、システムCPU部50は、システム用ROM 及びRAM部52から取得した各ファイルの記録位置や 記録容量の情報を参照してディスクドライブ部30に対 してリード命令を与え、ルートディレクトリ上に存在す るビデオマネージャー71を構成する複数ファイルの位 置及びサイズを取得し、このビデオマネージャー71を 読み出し、システムプロセッサ部54を介して、データ RAM部56に格納する。このビデオマネージャー71 の第1のテーブルでありビデオマネージャー情報管理テ ーブル (VMGI_MAT) 78がサーチされる。この サーチによってビデオマネージャーメニュー (VMG M) の為のビデオオブジェクトセット (VMGM_VO BS) 76の開始アドレス (VMGM_VOBS_S A)が獲得され、ビデオオブジェクトセット (VMGM _VOBS)76が再生される。このメニュー用のビデ オオブジェクトセット (VMGM_VOBS) 76の再 生に関しては、ビデオタイトルセット (VTS)中のタ イトルの為のビデオオブジェクトセット (VTSM V OBS)と同様であるのでその再生手順は省略する。こ のビデオオブジェクトセット (VMGM_VOBS)7 6で言語の設定をすると、或いは、ビデオマネージャー メニュー (VMGM) がない場合には、ボリュームマネ ージャー情報管理テーブル(VMGI_MAT)がサー

チされてタイトルセットサーチポインタテーブル (TT _SRPT) 79の開始アドレス (TT_SRPT_S A) がサーチされる。

【0137】このサーチによってタイトルセットサーチ ポインタテーブル (TT_SRPT) 79がシステム用 ROM&RAM部52の所定の場所に転送され、保存さ れる。次に、システムCPU部50は、タイトルサーチ ポインタテーブル情報 (TSPTI) 92からタイトル サーチポインタテーブル (TT_SRPT) 79の最終 アドレスを獲得するとともにキー操作/表示部4からの 入力番号に応じたタイトルサーチポインタ (TT_SR P) 93から入力番号に対応したビデオタイトルセット 番号(VTSN)、プログラムチェーン番号(PGC N) 及びビデオタイトルセットのスタートアドレス (V TS_SA) が獲得される。タイトルセットが1つしか ない場合には、キー操作/表示部4からの入力番号の有 無に拘らず1つのタイトルサーチポインタ (TT_SR P) 93がサーチされてそのタイトルセットのスタート アドレス (VTS_SA) が獲得される。このタイトル セットのスタートアドレス (VTS_SA) からシステ ムCPU部50は、目的のタイトルセットを獲得するこ ととなる。

【0138】尚、システムCPU部50は、ビデオマネージャー情報(VMGI)75の情報管理テーブル(VMGI_MAT)78に記述されたビデオマネージャーメニュー用のビデオ、オーディオ、副映像のストリーム数及びそれぞれの風性情報を取得して風性情報を基に、各々のビデオデコーダ部58、オーディオデコーダ部60及び副映像デコーダ部62にビデオマネージャーメニュー再生のためのパラメータを設定する。

【0139】次に、図11に示すビデオタイトルセット 72のスタートアドレス (VTS_SA) から図12に 示すようにそのタイトルセットのビデオタイトルセット 情報(VTSI)94が獲得される。このビデオタイト ルセット情報 (VTSI) 94のビデオタイトルセット 情報の管理テーブル (VTSI_MAT) 98から図1 3に示すビデオタイトルセット情報管理テーブル(VT SI_MAT) の98終了アドレス (VTI_MAT_ EA) が獲得されると共にオーディオ及び副映像データ のストリーム数 (VTS_AST_Ns、VTS_SP ST_Ns)及びビデオ、オーディオ及び副映像データ の風性情報 (VTS_V_ATR, VTS_A_AT R. VTS_SPST_ATR) に基づいて図1に示さ れる再生装置の各部がその风性に従って設定される。 【0140】また、ビデオタイトルセット(VTS)の 為のメニュー (VTSM) が単純な構成である場合に は 図13に示すビデオタイトルセット情報管理テーブ ル(VTSI_MAT) 98からビデオタイトルセット のメニュー用のビデオオブジェクトセット(VTSM_

VOB) 950A9-FPFVA (VTSM_VOB_

SA) が獲得されてそのビデオオブジェクトセット (VTSM_VOB) 95によってビデオタイトルセットのメニューが表示される。このメニューを参照して特にアログラムチェーン (PGC) を選択せずに単純にタイトルセット (VTS) におけるタイトル (VTST) の為のビデオオブジェクトセット (VTT_VOBS) 96を再生する場合には、図13に示すそのスタートアドレス (VTSTT_VOB_SA) からそのビデオオブジェクトセット96が再生される。

【0141】プログラムチェーン (PGC)をキー操作 /表示部4で指定する場合には、次のような手順で対象 とするプログラムチェーンがサーチされる。このプログ ラムチェーンのサーチは、ビデオタイトルセットにおけ るタイトルの為のプログラムチェーンに限らず、メニュ ーがプログラムチェーンで構成される比較的複雑なメニ ューにおいてもそのメニューの為のプログラムチェーン のサーチに関しても同様の手順が採用される。ビデオタ イトルセット情報(VTSI)94の管理テーブル(V TSI_MAT) 98に記述される図13に示すビデオ タイトルセット (VTS) 内のプログラムチェーン情報 テーブル (VTS_PGCIT) 100のスタートアド レスが獲得されて図14に示すそのVTSプログラムチ ェーン情報テーブルの情報 (VTS_PGCIT_I) 102が読み込まれる。この情報 (VTS_PGCIT __I) 102から図15に示すプログラムチェーンの数 (VTS_PGC_Ns)及びテーブル100の終了ア ドレス (VTS_PGCIT_EA) が獲得される。 【0142】キー操作/表示部4でプログラムチェーン の番号が指定されると、その番号に対応した図14に示 すVTS_PGCITサーチポインタ(VTS_PGC IT SRP) 103から図16に示すそのプログラム チェーンのカテゴリー及びそのサーチポインタ (VTS _PGCIT_SRP) 103に対応したVTS_PG C情報104のスタートアドレスが獲得される。このス タートアドレス (VTS_PGCI_SA) によって図 17に示すプログラムチェーン一般情報(PGC_G I)が読み出される。この一般情報(PGC_GI)に よってプログラムチェーン (PGC) のカテゴリー及び 再生時間 (PGC_CAT、PGC_PB_TIME) 等が獲得され、その一般情報 (PGC_GI) に記載し たセル再生情報テーブル (C_PBIT) 及びセル位置 情報テーブル (C_POSIT) 108のスタートアド レス (C_PBIT_SA, C_POSIT_SA)が 獲得される。 スタートアドレス (C_PBIT_SA) から図23に示すセル位置情報(C_POSI)として

【0143】また、スタートアドレス(C_POSIT _SA)から図21に示すセル再生情報(C_PBI)

獲得される.

図24に示すようなビデオオブジェクトの識別子(C_ VOB_IDN)及びセルの識別番号(C_IDN)が が獲得され、その再生情報(C_PBI)に記載の図2 2に示すセル中の最初のVOBU85のスタートアドレ ス (C_FVOBU_SA) 及び最終のVOBUのスタ ートアドレス (C_LVOBU_SA) が獲得されてそ の目的とするセルがサーチされる。セルの再生順序は、 図17に示されるPGCプログラムマップ(PGC_P GMAP) 106の図19に示すプログラムのマップを 参照して次々に再生セル84が決定される。このように 決定されたプログラムチェーンのデータセル84が次々 にビデオオブジェクト144から読み出されてシステム プロセッサ部54を介して、データRAM部56に入力 される。このデータセル84は、再生時間情報を基にビ デオデコーダ部58、オーディオデコーダ部60及び副 映像デコーダ部62に与えられてデコードされ、D/A 及び再生処理部64で信号変換されてモニタ部6に画像 が再現されるとともにスピーカ部8から音声が再生され ۵.

【0144】更に、ナビゲーションパック86を利用したビデオデータの通常再生に関してフローチャートを参照してより詳細説明する。

【0145】ビデオデータの通常再生では、図48に示 すように通常再生が開始される場合には、ステップS1 1に示すスタートの後に既に説明したようにビデオマネ ージャー情報(VMGI)75がシステムCPU部50 によってサーチされてシステムROM/RAM部52に 格納される(ステップS12)。同様にこのビデオマネ ージャー情報(VMGI)75に基づいてビデオタイト ルセット (VTS) 72のビデオタイトルセット情報 (VTSI) 94が読み込まれるとともにビデオタイト ルセットメニューがそのビデオオブジェクトセット(V TSM_VOBS) 95を利用してモニター部6に表示 される。この表示を基にステップS13で示すように再 **牛すべきタイトルセット72及び再生条件の等をユーザ** ーが決定する。この決定したタイトルセット72をキー 操作/表示部4を用いて選択すると、ステップS14に 示すように選択したタイトルセット72中の図12に示 すプログラムチェーン情報テーブル (VTS_PGCI T) 100から図17、図21及び図22に示すセル再 生情報テーブル (C_PBIT) 107のデータがシス テムCPU部50によって読み込まれ、これがシステム ROM/RAM部52に格納される。

【0146】システムCPU部50は、ステップS15に示すようにキー操作/表示部4から入力された再生条件に応じて再生を開始するプログラムチェーン番号(VTS_PGC_NS)、アングル番号(ANGNS)、オーディオストリーム番号及び副映像ストリーム番号が決定される。例えば、プログラムチェーンとしてボクシングのワールドチャンピョン第11戦がタイトルとして過定され、英語のナレーションの基に副映像として日本語の字幕を映し出すことを決定する。また、アングルと

して常に両者の戦いが良く鑑賞できる映像に決定する等の選択がユーザによって実行される。この決定された副映像番号及びオーディオストリーム番号がステップS16に示すようにシステムプロセッサ部54のレジスタ54Bに設定される。同様に、再生スタート時間がシステムプロセッサ部54、ビデオデコーダ部58、オーディオデコーダ部60及び副映像デコーダ部62のシステムタイムクロック(STC)54A、58A、60A、62Aに設定される。また、スタートアドレスとしてのセル中の最初のVOBUのスタートアドレス及びPGC番号、即ち、セル番号がシステム用ROM/RAM部52に格納される。

【0147】ステップS17に示すようにビデオタイト ルセットの読み込み準備が整った時点でリードコマンド がシステムCPU部50からディスクドライブ部30に 与えられ、上述したスタートアドレスを基に光ディスク 10がディスクドライブ部30によってシークされる。 このリードコマンドによって光ディスク10からは、指 定されたプログラムチェーン (PGC) に係るセルが次 々に読み出され、システムCPU部50及びシステム処 理部54を介してデータRAM部56に送られる。この 送られたセルデータは、図6に示すようにビデオオブジ ェクトユニット (VOBU) 85の先頭パックであるナ ビゲーションパック86からパックがデータRAM部5 6に格納される。その後、ビデオオブジェクトユニット (VOBU)のピデオパック87、オーディオパック9 1、副映像パック90、及びコンピュータデータパック 88が夫々ビデオデコーダ部58、オーディオデコーダ 部60、副映像デコーダ部62及びデータRAM部56 に分配され、夫々のデコーダでデコードされてD/A及 びデータ再生部64に送られる。その結果、モニタ部6 に映像信号が送られ、スピーカ部8に音声信号が送ら れ、副映像を伴った映像の表示が開始されるとともに音 声の再現が開始される.

【0148】上記コンピュータデータパック88の内容は、データRAM部56内のシステムCPU部50による作業エリアに格納される。

【0149】これにより、システムCPU部50はこの コンピュータデータとしてのプログラムデータを用いて 別の処理を実行したり、システムROM/RAM部52 内の別のプログラムを起動するようになっている。

【0150】たとえば、ビデオの途中において、双六ゲームが行われる際に、その簡単な双六ゲームのプログラムが、システムROM/RAM部52に記録されておらず、上述したようにコンピュータデータとして読み出されるようになっている。

【0151】また、上述したようにコンピュータデータ として読み出されることにより、システムROM/RA M部52に記録されている所定のプログラムを起動する ようになっている。 【0152】このような映像及び音声の再生中においては、キー操作/表示部4からの割り込み処理があった場合には、その得られたキーデータがシステムRAM/ROM部52に格納される。キーデータがない場合には、ドライブ部からの再生終了の割り込みがない場合には、ドライブ部からの再生終了の割り込みがない場合には、ナビゲーションパック86の転送を持つこととなる。ナビゲーションパック86の転送が終行している場合には、ナビゲーションパック86中の論理セクタ番号(NV上PK_LSN)を現在の論理プロック番号(NVLBN)としてシステムRAM/ROM部52に格納される。

【0153】NVパック86の転送が終了すると、その セル内の最終NVパック86かがチェックされる。即 ち、セル84中の最終ナビゲーションパック86である か否かがチェックされる。このチェックは、図22に示 すセル再生情報テーブル (C_PBI) 107のC_L VOBUOZ9-FTFVZ (C LVOBU SA) とナビゲーションパック86のアドレス (V_PCK_ LBN)を比較することによってチェックされる。NV パック86がセル84内での最終である場合には、アン グルの変更があるか否かがチェックされる。アングルの 変更は、キー操作/表示部4からシステムCPU部50 にアングル変更の入力があるか否かに基づいて判断され る。アングルの変更がない場合には、そのセル84が風 するプログラムチェーン(PGC)の最終セルであるか がチェックされる。このチェックは、図17及び図21 に示すそのセル84がセル再生情報テーブル(C_PB IT) 107の最終セルであるかによって判断される。 即ち、プログラムチェーンを構成するセル数及び再生さ れたセルの識別番号によってチェックされる。

【0154】再生終了である場合、或いは、次に再生されるプログラムチェーンがない場合には、ステップS18に示すようにPCI113の一般情報(PCI-GI)に記載されるエンドPTS(VOBU_EPTS)が参照され、このエンドPTS(VOBU_EPTS)がシステムタイムクロック(STC)に一致すると、ステップ19に示されるようにモニタ6の画面の表示が中止され、ステップS20に示すようにシステムCPUからディスクドライブ部30にデータ転送中止コマンドが与えられ、データ転送が中止され、再生動作が終了され

【0155】次に、上記各パックの転送処理について、図49に示すフローチャートを参照して説明する。 【0156】すなわち、システムCPU部50は、ディスクドライブ部30にリードコマンドと再生するパックの論理セクタアドレスを転送する(ステップS31)。 【0157】すると、ディスクドライブ部30は、目的アドレスをシークする(ステップS32)。 【0158】ついで、ディスクドライブ部30は、目的 アドレスのデータをエラー訂正し、論理セクタデータ内の主データ部分を、システムプロセッサ部54に転送する(ステップS33)。

【0159】システムプロセッサ部54は、読出した論理セクタのデータをデータRAM部56に保存する(ステップS34)。

【0160】システムプロセッサ部54は、データRA M部56内に保存されている論理セクタのデータの先頭よりパックヘッダ110、120を読出し、そのSCR (システム時刻基準参照値)を保存する(ステップS35)。

【0161】このとき、論理セクタの先頭とパックデータの先頭が一致しているため、データの取り出しが容易に行える。

【0162】そして、システムプロセッサ部54は、自身のPTSと上記保存した各パックのSCRとを比較し、PTSに達したSCRに対応するパックつまり再生出力するパックを判断し、この判断したパックデータをデータRAM部56から説出し、パケット転送処理部200でデータの種別を判別し、この判別した種類に応じてデコーダ部58、60、62あるいはデータRAM部56に転送する(ステップS36)。

【0163】そして、各デコーダ部58、60、62はそれぞれのデータフォーマットと上記設定されている符号化方式に従ってデータをデコードし、D/A&再生処理部64に送る。D/A&再生処理部64でビデオデータのデコード結果のディジタル信号をアナログ信号に変換した後、上記設定されている条件によりフレームレート処理、アスペクト処理、パンスキャン処理等を施して、モニタ部6に出力される。D/A&再生処理部64でオーディオデータのデコード結果を上記設定されている条件によりディジタル信号をアナログ信号に変換した後、D/A&再生処理部64で上記設定されている条件によりディジタル信号をアナログ信号に変換した後、D/A&再生処理部64は、副映像データのデコード結果のディジタル信号をアナログ信号に変換した後、モニタ部6に出力される(ステップS37)。

【0164】また、データRAM部56は、コンピュータデータとしてのプログラムデータが供給された際、そのデータをそのCPU種別と使用OSを示すコンピュータ環境種別とともに記録し、システムCPU部50ヘコンピュータ環境種別とそのデータを出力する。

【0165】再生が終了するまで、上記S33~S37 が繰り返される。

【0166】次に、パケット転送処理部200の処理を 説明する。

【0167】すなわち、データRAM部56から説出されたパックデータがメモリI/F部201を介してスタッフィング長検知部202、パック種別判別部204、パケットデータ転送制即部205、およびデコーダ1/

下部206に供給される (ステップS41)。

【0168】これにより、スタッフィング長検知部202によって、スタッフィング長が検知され、そのスタッフィング長が検知され、そのスタッフィング長を示すデータがパックヘッダ終了アドレス算出部203に出力される(ステップS42)。

【0169】パックヘッダ終了アドレス算出部203は 供給されるスタッフィング長により、パックヘッダ終了 アドレスを算出し、このパックヘッダ終了アドレスがパック種別判別部204、パケットデータ転送制御部20 5に供給される(ステップS43)。

【0170】パック種別判別部204は、供給されるパックヘッダ終了アドレスに従って、そのアドレスの次に供給される4~6バイトのデータの内容により、NVパック86、ビデオパック87、ドルビーAC3のオーディオパック91、リニアPCMのオーディオパック91、副映像パック90、コンピュータデータパック88のいずれであるかを判別し、この判別結果がパケットデーを試制御部205に供給される(ステップS44).

【0171】すなわち、4バイトのシステムヘッダスタートコードが供給された場合、NVバック86と判別し、3バイトのパケットスタートコードと1バイトのビデオストリームを示すストリームIDによりビデオバック87と判別し、3バイトのパケットスタートコードと1バイトのストリームIDとしてのプライベートストリーム1によりドルビーAC3のオーディオバック91、リニアPCMのオーディオバック91、副映像バック90、コンピュータデータバック88のいずれかであると判別する。

【0172】また、ストリームIDがプライベートストリーム1の際に、パケットへッダ121に続くサブストリームID(131、141、151)が「10100×××」の場合、リニアPCMのオーディオバックと判別し、その「×××」によりストリーム番号を判別する。

【0173】また、ストリームIDがプライベートストリーム1の際に、パケットヘッダ121に続くサブストリームID(131、141、151)が「10000×××」の場合、ドルビーAC3のオーディオバックと判別し、その「×××」によりストリーム番号を判別する。

【0174】また、ストリームIDがプライベートストリーム1の際に、パケットヘッダ121に続くサブストリームID(131、141、151)が「001×××××」の場合、副映像ストリームと判別し、その「××××」によりストリーム番号を判別する。

【0175】また、ストリームIDがプライベートストリーム1の際に、パケットヘッダ121に続くサブストリームID(131、141、151)が「11000000」の場合、コンピュータデータストリームと判別

する.

【0176】上記リニアPCMのオーディオバック91 あるいはドルビーAC3のオーディオバック91を判別 した際、そのサブストリームID131の後のフレーム ヘッダ数132に続く2バイトのファーストアクセスユニットポインタ133により最初のフレームの先頭位置 を示すオフセットバイト番号が判別される。

【0177】そして、パケットデータ転送制御部205は、供給されるパック種別の判別結果とパックヘッダ終了アドレスとファーストアクセスユニットボインタ133に応じて、転送先とパケットスタートアドレスを判断し、さらに供給されるパックデータのパケットへッダ121内のパケット長を判断する。これにより、パケットデータ転送制御部205は、転送コントロール信号としての転送先を示す信号をデコーダ1/下部206に供給し、パケットスタートアドレスからパケット終了アドレスがメモリ1/下部201に供給される(ステップS45)。

【0178】したがって、実質的に有効なパケットデータが、メモリ1/F部201からデータバスを介して、デコーダ1/F部206に供給され、その後、その種別に応じた転送先としての各デコーダ58、60、62あるいはデータRAM部56に転送される(ステップS46)。

【0179】すなわち、ビデオデータのパケットデータはデコーダ58へ転送され、オーディオデータのパケットデータはデコーダ60へ転送され、副映像データのパケットデータはデコーダ62へ転送され、コンピュータデータのパケットデータはデータRAM部56へ転送される。

【0180】この際、上記パックデータが一定長のため、データRAM部56での記憶状態がつまり開始アドレスが一定間隔なため、データRAM部56内のパックデータの先頭が常に同じ間隔のアドレスに保存される事となり、パックデータの管理がアドレス管理せずに、パック番号だけの管理で良い。

【0181】尚、データの種別の判別過程では、データがビデオデータの再生位置等を示すNVデータとしてのPCIデータおよびDSIデータの場合には、このNVデータはでラインをは、このNVデータは、データRAM部56に格納される。このNVデータは、システムCPU部50によって必要に応じて参照されてビデオデータの特殊再生をする際に利用される。この際、PCIデータとDSIデータとはそれらに付与されているサブストリームIDにより識別されるようになっている。

【0182】また、1つのセルの再生が終了すると、次に再生するセル情報がプログラムチェーンデータ中のセル再生順序情報から取得し、同様にして再生が続けられる。次に、図50から図55を参照して図4から図31

に示す論理フォーマットで映像データ及びこの映像データを再生するための光ディスク10への記録方法及びその記録方法が適用される記録システムについて説明する。

【0183】図50は、映像データをエンコーダしてあ るタイトルセット84の映像ファイル88を生成するエ ンコーダシステムが示されている。図50に示されるシ ステムにおいては、ビデオデータ、オーディオデータ、 副映像データ、及びコンピュータデータのソースとし て、例えば、ビデオテープレコーダ (VTR) 211、 オーディオテープレコーダ (ATR) 212、副映像再 生器 (Subpicture source) 21 3、及びコンピュータデータ再生器214が採用され る。これらは、システムコントローラ (Sys con) 215の制御下でビデオデータ、オーディオデー タ、副映像データ、及びコンピュータデータを発生し、 これらが夫々ビデオエンコーダ (VENC) 216、オ −ディオエンコーダ(AENC)217、副映像エンコ ーダ (SPENC) 218及びコンピュータデータエン コーダ (CENC) 219に供給され、同様にシステム コントローラ (Sys con) 215の制御下でこ れらエンコーダ216、217、218、219でA/ D変換されると共に夫々の圧縮方式でエンコードされ、 エンコードされたビデオデータ、オーディオデータ、副 映像データ及びコンピュータデータ (Comp Vid eo, Comp Audio, Comp Subpict . Comp computer) としてメ モリ221、221、222、223に格納される。 【0184】このビデオデータ、オーディオデータ、副 映像データ及びコンピュータデータ(Comp Vid eo, Comp Audio, Comp Subpict、Comp computer)は、シス テムコントローラ (Syscon) 215によってフ ァイルフォーマッタ (FFMT) 224に出力され、既 に説明したようなこのシステムの映像データのファイル 構造に変換されるとともに各データの設定条件及び属性 等の管理情報がファイルとしてシステムコントローラ (Sys con) 215によってメモリ226に格 枘される。

【0185】以下に、映像データからファイルを作成するためのシステムコントローラ(Sys con)215におけるエンコード処理の標準的なフローを説明する。

【0186】図51に示されるフローに従ってビデオデータ及びオーディオデータがエンコードされてエンコードビデオ及びオーディオデータ(Comp Video、Comp Audio)のデータが作成される。即ち、エンコード処理が開始されると、図51のステップ50に示すようにビデオデータ及びオーディオデータのエンコードにあたって必要なパラメータが設定される。

この設定されたパラメータの一部は、システムコントローラ(Sys con)215に保存されるとともにファイルフォーマッタ (FFMT)224で利用される、ステップS51で示すようにパラメータを利用してビデオデータがアリエンコードされ、最適な符号量の分配が計算される。ステップS52に示されるようにアリエンコードで得られた符号量分配に基づき、ビデオのエンコードが実行される。このとき、オーディオデータのエンコードも同時に実行される。ステップS53に示すように必要であれば、ビデオデータの部分的な再エンコードが実行され、再エンコードした部分のビデオデータが置き換えられる。この一連のステップによってビデオデータ及びオーディオデータがエンコードされる。

【0187】また、ステップS54及びS55に示すように副映像データがエンコードされエンコード副映像データ(Comp Sub-pict)が作成される。即ち、副映像データをエンコードするにあたって必要なパラメータが同様に設定される。ステップS54に示すように設定されたパラメータの一部がシステムコントローラ(Sys con)215に保存され、ファイルフォーマッタ(FFMT)224で利用される。このパラメータに基づいて副映像データがエンコードされる。この処理により副映像データがエンコードされる。この処理により副映像データがエンコードされる。

【0188】また、ステップS56及びS57に示すようにコンピュータデータがエンコードされエンコードコンピュータデータ(Comp computer)が作成される。即ち、データをエンコードするにあたって必要なパラメータが同様に設定される。ステップS56に示すように設定されたパラメータの一部がシステムコントローラ (Sys con)215に保存され、ファイルフォーマッタ(FFMT)224で利用される。このパラメータに基づいコンピュータでデータがエンコードされる。この処理によりコンピュータデータがエンコードされる。

【0189】図52に示すフローに従って、エンコード されたビデオデータ、オーディオデータ、副映像デー タ、及びコンピュータデータ (Com Video, Comp Audio, Comp Sub-pic t、Comp computer)が組み合わされて図 4及び図12を参照して説明したような映像データのタ イトルセット構造に変換される。即ち、ステップS61 に示すように映像データの最小単位としてのセルが設定 され、セルに関するセル再生情報 (C_PBI) が作成 される。次に、ステップS62に示すようにプログラム チェーンを構成するセルの構成、ビデオ、副映像及びオ ーディオ属性等が設定され(これらの属性情報の一部 は、各データエンコード時に得られた情報が利用され る。)、図12に示すようにプログラムチェーンに関す る情報を含めたビデオタイトルセット情報管理テーブル 情報 (VTSI_MAT) 98及びピデオタイトルセッ

ト時間サーチマップテーブル (VTS_MAPT) 10 1が作成される。このとき必要に応じてビデオタイトル セットダイレクトアクセスポインタテーブル (VTS_ DAPT) も作成される。次にステップS63に示すよ うに、エンコードされたビデオデータ、オーディオデー タ、副映像データ、及びコンピュータデータ(Com Video, Comp Audio, Comp S ub-pict、Comp computer)が 一定のパックに細分化され、各データのタイムコード順 に再生可能なように、VOBU単位毎にその先頭にNV パック86を配置しながら各データセルが配置されて図 6に示すような複数のセルで構成されるビデオオブジェ クト (VOB) が構成され、このビデオオブジェクトの セットでタイトルセットの構造にフォーマットされる。 【0190】尚、図52に示したフローにおいて、プロ グラムチェーン情報は、ステップS62の過程で、シス テムコントローラ (Sys con) 215のデータ ベースを利用したり、或いは、必要に応じてデータを再 入力する等を実行し、プログラムチェーン情報(PG 1)として記述される。

【0191】図53は、上述のようにフォーマットされ たタイトルセットを光ディスクへ記録するためのディス クフォーマッタのシステムを示している。 図53に示す ようにディスクフォーマッタシステムでは、作成された タイトルセットが格納されたメモリ230、232から これらファイルデータがポリュームフォーマッタ(VF MT) 236に供給される。ボリュームフォーマッタ (VFMT) 236では、タイトルセット84、86か ら管理情報が引き出されてビデオマネージャー71が作 成され、図4に示す配列順序でディスク10に記録され るべき状態の論理データが作成される。ボリュームフォ ーマッタ(VFMT)236で作成された論理データに エラー訂正用のデータがディスクフォーマッタ(DFM T) 238において付加され、ディスクへ記録する物理 データに再変換される、変調器 (Modulater) 240において、ディスクフォーマッタ(DFMT)2 38で作成された物理データが実際にディスクへ記録す る記録データに変換され、この変調処理された記録デー タが記録器(Recoder)242によってディス ク10に記録される。

【0192】上述したディスクを作成するための標準的なフローを図54及び図55を参照して説明する。図54には、ディスク10に記録するための論理データが作成されるフローが示されている。即ち、ステップS80で示すように映像データファイルの数、並べ順、各映像データファイル大きさ等のパラメータデータが始めに設定される。次に、ステップS81で示すように設定されたパラメータと各ビデオタイトルセット72のビデオタイトルセット情報81からビデオマネージャー71が作成される。その後、ステップS82に示すようにビデオ

マネージャー71、ビデオタイトルセット72の順にデータが該当する論理ブロック番号に沿って配置され、ディスク10に記録するための論理データが作成される。【0193】その後、図55に示すようなディスクへ記録するための物理データを作成するフローが実行される。即ち、ステップS83で示すように論理データが一定バイト数に分割され、エラー訂正用のデータが生成される。次にステップS84で示すように一定バイト数に分割した論理データと、生成されたエラー訂正用、データが合わされて物理セクタが作成される。その後、ステッグを含された物理データに対し、一定規則に基づいた変調処理が実行されて記録データが作成される。その後、この記録データがディスク10に記録される。その後、この記録データがディスク10に記録される。その後、この記録データがディスク10に記録される。

【0194】上述したデータ構造は、光ディスク等の記 緑媒体に記録してユーザに頒布して再生する場合に限ら ず、図56に示すような通信系にも適用することができ る。即ち、図50から図53に示した手順に従って図4 に示すようなビデオマネージャー71及びビデオタイト ルセット72等が格納された光ディスク10が再生装置 300にロードされ、その再生装置のシステムCPU部 50からエンコードされたデータがディジタル的に取り 出され、モジュレータ/トランスミッター310によっ て電波或いはケーブルでユーザ或いはケーブル加入者側 に送られても良い。また、図50及び図53に示したエ ンコードシステム320によって放送局等のプロバイダ 一側でエンコードされたデータが作成され、このエンコ ードデータが同様にモジュレータ/トランスミッター3 10によって電波或いはケーブルでユーザ或いはケーブ ル加入者側に送られても良い。このような通信システム においては、始めにビデオマネージャー71の情報がモ ジュレータ/トランスミッター310で変調されて或い は直接にユーザ側に無料で配布され、ユーザがそのタイ トルに興味を持った際にユーザー或いは加入者からの要 求に応じてそのタイトルセット72をモジュレータ/ト ランスミッター310によって電波或いはケーブルを介 してユーザ側に送られることとなる。タイトルの転送 は、始めに、ビデオマネージャー71の管理下でビデオ タイトルセット情報94が送られてその後にこのタイト ルセット情報94によって再生されるビデオタイトルセ ットにおけるタイトル用ビデオオブジェクト95が転送 される。このとき必要であれば、ビデオタイトルセット メニュー用のビデオオブジェクト95も送られる。送ら れたデータは、ユーザ側でレシーバ/復調器400で受 信され、エンコードデータとして図1に示すユーザ或い は加入者側の再生装置のシステムCPU部50で上述し た再生処理と同様に処理されてビデオが再生される。 【0195】ビデオタイトルセット72の転送において

(0195) ピナオダイトルセット 720 転送において ビデオオブジェクトセット95、96は、図6に示すビ デオオブジェクトユニット85を単位として転送され る。このビデオオブジェクトユニット85には、ビデオ の再生及びサーチ情報が格納されたNVパック86がそ の先頭に配置されている。しかも、このNVパック86 には、そのNVパック86が属するビデオオブジェクト ユニット85を基準として前後に再生されるべきビデオ オブジェクトユニットのアドレスが記載されていること から、ビデオオブジェクトユニット85の転送中に何ら かの原因でビデオオブジェクトユニット85が欠けたと しても欠けたビデオオブジェクトユニット85の再転送 を要求することによって確実にユーザ側でビデオデータ を再生することができる。また、転送は、ビデオオブジ ェクトユニットの再生順に実施されなくともユーザ側の システムROM/RAM部52が正確なプログラムチェ ーンの再生情報を保持することでそのNVパック86の アドレスデータを参照して再生順序をシステムCPU部 50が指示することができる。

【0196】上述した説明においては、ビデオオブジェクトユニットは、ビデオ、オーディオ、副映像及びコンピュータデータを含むデータ列として説明したが、ビデオ、オーディオ、副映像及びコンピュータデータのいずれかが含まれれば良く、オーディオバックのみ或いは副映像バックのみコンピュータデータバックのみで構成されても良い。

【0197】上記したように、ディスクのデータ領域に、プログラムチェーン、プログラム、セル、バックの 階層構造でデータが記録され、上記各バックが、各バックを識別するためのバックへッダとデータストリームが記録されるパケットよりなり、上記パケットが少なくともプライベートストリームを示すデータを有するパケットへッダとプライベートストリームの種別を示すデータとこの種別に対応するパケットデータよりなるようにしたものである。

【0198】これにより、さまざまな種別データを複数 種類取り扱うことができる。

【0199】また、取り扱うデータがドルビーAC3オーディオデータ、リニアPCMオーディオデータの場合には、途中からの再生がスムーズにでき、コンピュータデータの時には、使用できる環境が簡単に検出できる。【0200】上述した実施例においては、記録媒体として高密度記録タイプの光ディスクについて説明したが、この発明は、光ディスク以外の他の記憶媒体、例えば、磁気ディスク或いはその他の物理的に高密記録可能な記憶媒体等にも適用することができる。

[0201]

【発明の効果】以上詳述したように、この発明によれば、さまざまな種別データを複数種類取り扱うことができる。

【0202】また、取り扱うデータがリニアオーディオ データの場合には、途中からの再生がスムーズにでき、 コンピュータデータの時には、使用できる環境が簡単に 検出できる。

【図面の簡単な説明】

- 【図1】この発明の一実施例に係る光ディスク装置の概略を示すブロック図。
- 【図2】図1に示したディスクドライブ装置の機構部の「詳細を示すブロック図。
- 【図3】図1に示したディスクドライブ装置に装填される光ディスクの構造を概略的に示す斜視図。
- 【図4】図3に示す光ディスクの論理フォーマットの構造を示す図。
- 【図5】図4に示されるビデオマネージャーの構造を示す図。
- 【図6】図5に示されビデオオブジェクトセット (VOBS) の構造を示す例である。
- 【図7】図6に示されたビデオオブジェクトユニットの 構造を示す説明図。
- 【図8】図5に示されたビデオマネージャ (VMGI) 内のビデオマネージャ情報管理テーブル (VMGI_M AT) のパラメータ及び内容を示す図。
- 【図9】図5に示されたビデオマネージャ (VMGI) 内のタイトルサーチポインタテーブル (TSPT) の構造を示す図。
- 【図10】図9に示したタイトルサーチポインタテーブル (TSPT) のタイトルサーチポインタテーブルの情報 (TSPTI) のパラメータ及び内容を示す図。
- 【図11】図9に示したタイトルサーチポインタテーブル(TSPT)の入力番号に対応したタイトルサーチポインタ(TT_SRP)のパラメータ及び内容を示す図。
- 【図12】図4に示したビデオタイトルセットの構造を示す図。
- 【図13】図12に示したビデオタイトルセット情報 (VTSI)のビデオタイトルセット情報の管理テーブル(VTSI_MAT)のパラメータ及び内容を示す
- 【図14】図12に示したビデオタイトルセット情報 (VTSI)のビデオタイトルセットプログラムチェーン情報のテーブル (VTS_PGCIT)の構造を示す 図。
- 【図15】図14に示したビデオタイトルセットプログ ラムチェーン情報のテーブル(VTS_PGC1T)の 情報(VTS_PGCITI)のパラメータ及び内容を 示す図。
- 【図16】図14に示したビデオタイトルセットプログ ラムチェーン情報のテーブル(VTS_PGCIT)の プログラムチェーンに対応したサーチポインタ(VTS_ PGCIT_SRP)のパラメータ及び内容を示す
- 【図17】図14に示したビデオタイトルセットプログ

- ラムチェーン情報のテーブル (VTS_PGCIT)の プログラムチェーンに対応したビデオタイトルセットの 為のプログラムチェーン情報 (VTS_PGCI) の構造を示す図。
- 【図18】図17に示したプログラムチェーン情報(VTS_PGCI)のプログラムチェーンの一般情報(PGC_GI)のパラメータ及び内容を示す図。
- 【図19】図17に示したプログラムチェーン情報(V TS_PGCI)のプログラムチェーンのマップ(PG C_PGMAP)の構造を示す図。
- 【図20】図19に示したプログラムチェーンのマップ (PGC_PGMAP)に記述されるプログラムに対す るエントリーセル番号(ECELLN)のパラメータ及 び内容を示す図。
- 【図21】図17に示したプログラムチェーン情報(VTS_PGCI)のセル再生情報テーブル(C_PBIT)の樹油を示す図。
- 【図22】図21に示したセル再生情報テーブル (C_PBIT) のパラメータ及び内容を示す図。
- 【図23】図18に示したプログラムチェーン情報(VTS_PGCI)のセル位置情報(C_POSI)の構造を示す図。
- 【図24】図23に示したセル位置情報(C_POS I)のパラメータ及び内容を示す図。
- 【図25】図6に示したナビゲーションパックの構造を示す図。
- 【図26】図6に示したビデオ、オーディオ、副映像パックの構造を示す図。
- 【図27】図26に示されるナビゲーションパックの再生制御情報(PCI)のパラメータ及び内容を示す図。
- 【図28】図27に示される再生制御情報 (PCI) 中の一般情報 (PCI_GI)のパラメータ及び内容を示す図。
- 【図29】図26に示されるナビゲーションパックのディスクサーチ情報 (DSI) のパラメータ及び内容を示す図。
- 【図30】図29に示されるディスクサーチ情報 (DSI)のDSI-般情報 (DSI_GI)のパラメータ及 び内容を示す図。
- 【図31】図29に示されるビデオオブジェクト (VOB) の同期再生情報 (SYNCI) のパラメータ及びその内容を示す図。
- 【図32】調整データ長が7バイト以上の際の調整例を 説明するための図。
- 【図33】調整データ長が6バイト以下の際の調整例を 説明するための図。
- 【図34】パックの構成を説明するための図。
- 【図35】パックの構成を説明するための図。
- 【図36】ビデオパックの構成を説明するための図。
- 【図37】オーディオパックの構成を説明するための

図.

【図38】副映像パックの構成を説明するための図。

【図39】コンピュータデータのパックの構成を説明するための図。

【図40】コンピュータデータの環境種別を説明するための図。

【図41】ストリームIDの構成を説明するための図。

【図42】 プライベートストリーム1 に対するサブストリーム I Dの内容を説明するための図。

【図43】 プライベートストリーム2に対するサブストリーム I Dの内容を説明するための図。

【図44】オーディオパックとパケットの構成を説明するための図。

【図45】コンピュータデータのパックとパケットの構成を説明するための図。

【図46】副映像パックとパケットの構成を説明するための図。

【図47】パケット転送処理部の構成を説明するための ブロック図。

【図48】ビデオデータ、オーディオデータ、副映像データ、コンピュータデータの再生処理の手順を示すフローチャート。

【図49】パケット転送処理を説明するためのフローチャート。

【図50】映像データをエンコーダして映像ファイルを 生成するエンコーダシステムを示すブロック図。

【図51】図50に示されるエンコード処理を示すフローチャートである。

【図52】図51に示すフローでエンコードされたビデ

オデータ、オーディオデータ及び副映像データを組み合わせて映像データのファイルを作成するフローチャートである。

【図53】フォーマットされた映像ファイルを光ディスクへ記録するためのディスクフォーマッタのシステムを示すブロック図。

【図54】図53に示されるディスクフォーマッタにおけるディスクに記録するための論理データを作成するフローチャートである。

【図55】論理データからディスクへ記録するための物理データを作成するフローチャートである。

【図56】図4に示すビデオタイトルセットを通信系を介して転送するシステムを示す概略図。

【符号の説明】

10…光ディスク

71…管理領域

72…データ領域

84…セル

86…ナビゲーションパック

87…ビデオパック

88…コンピュータデータパック

90…副映像パック

91…オーディオパック

120…パックヘッダ

121…パケットヘッダ 131、141、151…サブストリームID

133…フレームデータの開始アドレス

187…プログラムチェーン

189…プログラム

....

【図5】

【図7】

【図6】

【図27】

						Ł'	7.44	7°9°1) t yl	(VOE	IS)						- 1	PCI	内容
	83					_				_						7	-	PCI_GI	PCIの一般情報
	ĩ.															2		NSLS_ANGLI	アングル情報
(AOB:						17. À.										iDN]			
	84				40														
	ts IDN	1)				tb IDN2)							,	64 0[0]				
	85				*****				•						·				
T-21(V				"5" ## 1_7}(· 7 · 44								77.9° VОВ			
6	87		90	91	•••••												_		
: 1 : 1	٧	V /1	S	A				A	S	/t	CX	٧ /۲	N A				A		
	2	7	パック	2				2	パック	7	2	7	V / 7	•	•		7		

【図8】

【図9】

【図11】

【図15】

TT_SRP	(E51)	VTS_PGCIT_I		(12:31)
	内容		内容	
VTSN	ビデオタイトルセット番号	VTS_PGC_Ns	VTS_PGCの数	
PGCN	プログラムチェーン番号	VTS_PGCIT_EA	VTS_PGCITの終了アドレス	
VTS_SA	ビデオタイトルセットの開始アドレス			

(図16)

【図20】

VTS_PGCIT_SRP		(記述期)	エントリーセル番号		
	内容			内容	
VTS_PGC_CAT	VTS_PGCのカチゴリー		ECELLN	エントリーセル番号	
VTS_PGCI_SA	VTS_PGC情報の開始アドレス				

【図12】

【図13】

[図14]

VTSI_MAT	
	内容
VTS_ID	ビデオタイトルセット臓別子
VTS_SZ	当はVTSのサイズ
VERN	DVDビデオ規格のパージョン番号
VTS_CAT	ピデオタイトルセットのカテゴリー
VTSM_VOB_SA	VTSM_VOBSの開始アドレス
VISTT_VOB_SA	VTSTTVOBSの開始アドレス
VTLMAT_EA	VTSI_MATの終了アドレス
VTS_DAPT-SA	VTS_DAPTの開始アドレス
VTS_PGCIT_SA	VTS_PGCITの開始アドレス
VTS_PGCIT_UT_SA	VTS_PGC/T_UTの開始アドレス
VTS_MAPT_SA	VTS_MAPTの開始アドレス
VTS_V_ATR	ビデオ属性
VTS_AST_Ns	VTSについてのオーディオストリーム数
VTS_AST_ATR	VTSについてのオーディオストリーム属性
VTS_SPST_Na	VTSについての副映像ストリーム数
VTS_SPST_ATH	VTSについての副映像ストリーム属性
VTSM_AST_Ns	VTSMについてのオーディオストリーム数
PTA_TEA_METV	VTSMについてのオーディオストリーム属性
VTS_SPST_Ns	VTSMについてのの耐味像ストリーム数
VTS_SPST_ATR	VTSMについての副映像ストリーム属性

【図17】

【図18】

PGCLGI		(紀述章)
	内容	
PGCI_CAT	PGCカテゴリー	
PGC_CNT	PGCの内容	
PGC_PB_TIME	PGCの再生時間	
PGC_SPST_CTL	PGC副映像ストリーム制御	
PGC_AST_CTL	PGCオーディオストリーム制御	
PGC_SP_PLT	PGC即映像パレット	
C_PBIT_SA	C_PBITの開始アドレス	
C_POSIT_SA	C_POSITの開始アドレス	

VOBU IP EA VOBU VOB IDN VOBU C IDN

【図31】

SYNCI	
	内容
A SYNCA 0 to 7	四朝対象のオーディオパックのアドレス
SP_SYNCA 0 to 31	VO8U内の対象副映像パックの開始アドレス

【図33】

パディングパケットを挿入した場合

【図42】

プライベートストリーム1に対するサブストリームの内容

メトバーアコート、	メドリーAID(b)	3/7}
リニアPCMオーテ・イオストリーム	10100XXX	XXX=ストリーム番号
副映像ストリーム	001XXXXX	XXXXX=XI)-A番号
コナ・1-27トト	11000000	
P. PF 4C34-1. (4Yh)-P	10000XXX	XXX=ストリーム善号

【図35】

【図39】

【図43】

プライベートストリーム2に対するサブストリームの内容

3H)-43-4.	1H-MD(b)
PCIXHI-A	00000000
DSIXH)-L	00000001

【図32】

パディングパケットを挿入しない場合

	120 /	シックへ	75	, 121, 120
^'*/) 	SCR	多量化	2977 <i>(/</i> 1"	と"テ"もの"ケット、オーテ"ィさの"ケット、副映像 ハ" ケット、エンヒ"ューラデニョン、"ケットのいずれか
45°()	87.11	30'11	# \$7A'1	2034 # \$ 2028n'()

【図34】

【図37】

リニアPCMの場合

				1つのパッ	2	
	_			オーディス	ナデータ	
(120	(121	(131	13:	2 (133	(135	(134
*	A*A-A	177	72-6	7-21741	1-7'-71	
4,3	1777	자사	443.	72319,474	7*-3	オーディオデータ
	-					
47.14	144 11	10 (1-	14.46	20'11	. 3v. (F.	41°4E102

(b)

【図53】

【図48】

. .

【図55】

【手続補正書】

【提出日】平成10年6月29日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0082

【補正方法】変更

【補正内容】

【0082】同期情報(SYNCI)には、DSI11 5が含まれるVOBユニット(VOBU)のビデオデータの再生開始時間と同期して再生する副映像及びオーディオデータの下ドレス情報が記載される。即ち、図31に示すようにDSI115が記録されているNVパック(NV_PCK)86からの相対的な論理セクタ数(RLSN)で目的とするオーディオパック(A_PCK)91のスタートアドレス(A_SYNCA)が記載される。オーディオストリームが複数(最大8)ある場合には、その数だけ同期情報(SYNCI)が記載される。また、同期情報(SYNCI)には、目的とする副映像パック(SP_PCK)90を含むVOBユニット(DBU)85のNVパック(NV_PCK)86のアドレス(SP_SYNCA)がDSI115が記録されて

いるNVパック(NV_PCK)86からの相対的な論理セクタ数(RLSN)で記載されている。副映像ストリームが複数(最大32)ある場合には、その数だけ同期情報(SYNCI)が記載される。

【手続補正2】

【補正対象哲類名】図面

【補正対象項目名】図26

【補正方法】変更

【補正内容】

【図26】

【手校補正3】 【補正対象母類名】図面

【補正対象項目名】図32 【補正方法】変更 【補正内容】 【図32】

.0

パディングパケットを挿入しない場合

【手続補正4】

【補正対象掛類名】図面

【補正対象項目名】図37

【補正方法】変更

【補正内容】

【図37】

リニアPCMの場合

1つのパック

ボーディオパケット

120 | 121 | 131 | 132 | 133 | 135 | 134 |

パップ ハット | 20 | 2 | 137 | 13

【手続補正掛】

【提出日】平成10年9月9日

【手続補正1】

【補正対象由類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】再生対象としてのデータ・ストリームが記録され、このデータ・ストリームが少なくともオーディオ・パックを含むデータ・パック列から構成されている

光ディスクにおいて、

前記オーディオ・バックは、1つのバック・ヘッダ及び 1つのデータ・パケットから構成され、

このデータ・パケットは、パケット・ヘッダ、これに続くサブ・ストリーム I D 領域及びパケット・データ領域を具備し、このパケット・データ領域には、MPEGオーディオ・ストリーム以外のストリームに属するオーディオ・パケット・データが格納され、前記パケット・ヘッダには、前記パケット・データがMPEG 規格に定められたプライベート・ストリーム 1 に属するデータであ

る旨を示すストリームIDが記録され、前記サブ・ストリームID領域には、前記パケット・データが特定のオーディオ・ストリームに属するオーディオ・データである旨を示しているサブ・ストリームIDが記録されていることを特徴とする光ディスク。

....

【請求項2】前記オーディオ・データは、リニア・PC Mオーディオ・ストリーム及びAC3オーディオ・スト リームのいずれかに属することを特徴とする請求項1の 光ディスク。

【請求項3】前記データ・パケットは、前記サブ・ストリーム I D領域及び前記パケット・データ領域間にフレーム・ヘッダ数が記録されたヘッダ数領域を具備し、このヘッダ数領域には、当該パケット・データ中に含まれるオーディオ・フレーム数が格納されることを特徴とする請求項1の光ディスク。

【請求項4】前記データ・パケットは、前記サブ・ストリーム I D領域及び前記パケット・データ領域間にファースト・アクセス・ポインタが記録されたポインタ領域を具備し、このポインタ領域には、当該パケット・データ中の最初のオーディオ・フレームの先頭位置を示すポインタ情報が格納されることを特徴とする請求項1の光ディスク。

【請求項5】前記オーディオ・バックは、1論理セクタ に定められた同一のバック長を有し、1論理セクタは、 2048バイトの1物理セクタに等しく定められている ことを特徴とする請求項1の光ディスク。

【請求項6】前記パックのパック長が2048バイトに

満たない場合、その満たないバイト数が6バイト以下の場合、前記パック・ヘッダにスタッフィング・バイトが追加されてパックのパック長が2048バイトに調整され、また、その満たないバイト数が7バイト以上の場合パック・ヘッダに1バイトのスタッフィング・バイトが追加され、パケットにその不足バイト数に対応するパディング・パケットが追加されて前記パックのパック長が2048バイトに調整されることを特徴とする請求項5の光ディスク。

【請求項7】前記光ディスクには、データ・ストリームを構成する闘映像パックが記録され、この副映像パックのデータ・パケットは、パケット・ヘッダ、これに続くサブ・ストリームID領域及びパケット・データ領域を具備し、このパケット・データ領域には、MPEGビデオ・ストリーム以外の副映像ストリームに属する副映像パケット・データが格納され、前記パケット・へっられ、前記パケット・データが格納され、前記パケット・でライベート・ストリーム1に属するデータであらりで、オーストリーム1Dが記録され、前記サブ・ストリーム1Dが記録され、前記サブ・ストリームに属する副映像データをある旨を示しているより、ストリームIDが記録されていることを特徴とする前求項1の光ディスク。

【請求項8】前記サブ・ストリーム I D領域には、前記 サブ・ストリーム I Dに続いてそのストリーム番号が記 載されていることを特徴とする請求項1の光ディスク。

フロントページの続き

(72)発明者 平良 和彦

東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内

(72)発明者 蔵野 智昭

神奈川県川崎市幸区柳町70番地 株式会社 東芝柳町工場内