Теоретические домашние задания

Теория типов, ИТМО, совместно М3232-М3239 и М3332-М3339, весна 2025 года

Домашнее задание N1: лямбда исчисление — бестиповое и простотипизированное

1. Бесконечное количество комбинаторов неподвижной точки. Дадим следующие определения

$$\begin{split} L := \lambda abcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator) \\ R := LLLLLLLLLLLLLLLLLLLLLLLLLLLLL\\ \end{split}$$

В данном определении терм R является комбинатором неподвижной точки: каков бы ни был терм F, выполнено R $F =_{\beta} F$ (R F).

- (а) Докажите, что данный комбинатор действительно комбинатор неподвижной точки.
- (b) Пусть в качестве имён переменных разрешены русские буквы. Постройте аналогичное выражение по-русски: с 32 параметрами и осмысленной русской фразой в терме L; покажите, что оно является комбинатором неподвижной точки.
- 2. Найдите необитаемый тип в просто-типизированном лямбда-исчислении (напомним: тип τ называется необитаемым, если ни для какого P не выполнено $\vdash P : \tau$).
- 3. Покажите на основании следующего преобразования полноту комбинаторного базиса SKI (проведите полное рассуждение по индукции, из которого будет следовать отсутствие в результате других термов, кроме SKI, бета-эквивалентность и определённость результата для всех комбинаторов σ):

$$[\sigma] = \begin{cases} x, & \sigma = x \\ [\varphi] \ [\psi], & \sigma = \varphi \ \psi \\ K \ [\varphi], & \sigma = \lambda x.\varphi, \quad x \notin FV(\varphi) \\ I, & \sigma = \lambda x.x \\ [\lambda x. \ [\lambda y.\varphi]], & \sigma = \lambda x.\lambda y.\varphi, \quad x \in FV(\varphi), x \neq y \\ S \ [\lambda x.\varphi] \ [\lambda x.\psi], & \sigma = \lambda x.\varphi \ \psi, \quad x \in FV(\varphi) \cup FV(\psi) \end{cases}$$

Заметим, что данные равенства объясняют смысл названий комбинаторов:

- S verSchmelzung, «сплавление»
- K Konstanz
- I Identität
- 4. Покажите, что следующая система комбинаторов образует полный базис в бестиповом лямбдаисчислении, но соответствующая им система аксиом в исчислении гильбертового типа не образует полного базиса для импликативного фрагмента:

$$\begin{split} I &:= \lambda x.x \\ K &:= \lambda x.\lambda y.x \\ S' &:= \lambda i.\lambda x.\lambda y.\lambda z.i \ (i \ ((x \ (i \ z)) \ (i \ (y \ (i \ z))))) \end{split}$$

Указание: покажите невыводимость $(\varphi \to \varphi \to \psi) \to (\varphi \to \psi)$.

5. Напомним определение аппликативного порядка редукции: редуцируется самый левый из самых вложенных редексов. Например, в случае выражения $(\lambda x.I\ I)\ (\lambda y.I\ I)$ самые вложенные редексы — применения $I\ I$:

$$(\lambda x.I\ I)\ (\lambda y.I\ I)$$

и надо выбрать самый левый из них:

$$(\lambda x.\underline{I}\ \underline{I})\ (\lambda y.\overline{I}\ I)$$

- (а) Проведите аппликативную редукцию выражения 2 2.
- (b) Докажите или опровергните, что параллельная бета-редукция из теоремы Чёрча-Россера не медленнее (в смысле количества операций для приведения выражения к нормальной форме), чем нормальный порядок редукции с мемоизацией.

- (с) Найдите лямбда-выражение, которое редуцируется медленнее при нормальном порядке редукции, чем при аппликативном, даже при наличии мемоизации.
- 6. Сформулируем определение бета-редукции на языке пред-лямбда-термов. $A \to_{\beta} B$, если:
 - $A \equiv (\lambda x.P) \; Q, \; B \equiv P \; [x:=Q]$, при условии свободы для подстановки;
 - $A \equiv (P \ Q), B \equiv (P' \ Q')$, при этом $P \rightarrow_{\beta} P'$ и Q = Q', либо P = P' и $Q \rightarrow_{\beta} Q'$;
 - $A \equiv (\lambda x.P), B \equiv (\lambda x.P'),$ и $P \rightarrow_{\beta} P'.$
 - (а) Найдите лямбда-выражение, бета-редукция которого не может быть произведена из-за нарушения правила свободы для подстановки (для продолжения редукции потребуется производить переименование связанных переменных). Поясните, какое ожидаемое ценное свойство будет нарушено, если ограничение правила проигнорировать.
 - (b) Покажите, что недостаточно наложить требования на исходное выражение, и свобода для подстановки может быть нарушена уже в процессе редукции исходно полностью корректного лямбда-выражения.
- 7. Две задачи на вычисление СЗНФ при помощи нормального порядка редукции.
 - (a) Постройте функцию прибавления 1 к значениям из списка в лямбда-исчислении: let plus1 1 = map (fun x -> x+1) 1. Постройте бесконечный список из нечётных чисел [1,3,..]. Примените функцию plus1 к списку и получите результат в СЗНФ.
 - (b) Напишите функцию вычисления суммы первых двух элементов списка: let compute (11::12::1s) = (11+12, 1s), примените её к результату предыдущего пункта, получите результат в СЗНФ.
- 8. Как мы уже разбирали, $\forall x \; x : \tau$ в силу дополнительных ограничений правила

$$\overline{\Gamma,x:\tau \vdash x:\tau} \ x \not\in FV(\Gamma)$$

Найдите лямбда-выражение N, что $\not\vdash N$: τ в силу ограничений правила

$$\frac{\Gamma, x : \sigma \vdash N : \tau}{\Gamma \vdash \lambda x. N : \sigma \rightarrow \tau} \ x \not\in FV(\Gamma)$$

9. Рассмотрим подробнее отличия исчисления по Чёрчу и по Карри. Определим точно бета-редукцию в исчислении по Чёрчу: $A \to_{\beta} B$, если

$$\begin{array}{ll} A=(\lambda x^{\sigma}.P)\ Q, & B=P[x:=Q] \\ A=P\ Q, & B=P\ Q'\ \text{или}\ B=P'\ Q\ \text{при}\ P\to_{\beta} P'\ \text{и}\ Q\to_{\beta} Q' \\ A=\lambda x^{\sigma}.P, & B=\lambda x^{\sigma}.P'\ \text{при}\ P\to_{\beta} P' \end{array}$$

- (a) Покажите, что в исчислении по Карри не выполняется свойство расширения типизации (subject expansion) даже в такой формулировке: если $\vdash_{\kappa} M : \sigma, \ M \twoheadrightarrow_{\beta} N$ и $\vdash_{\kappa} N : \tau$, то необязательно, что $\sigma = \tau$.
- (b) Покажите, что в исчислении по Чёрчу свойство расширения типизации в такой формулировке также не выполняется:

найдутся такие
$$M, N, \sigma$$
, что $\vdash_{\mathbf{q}} N : \sigma, M \rightarrow_{\beta} N$, но $\not\vdash_{\mathbf{q}} M : \sigma$.

Но при этом в исчислении по Чёрчу выполнено свойство расширения типизации в такой формулировке:

если
$$\vdash_{\kappa} M : \sigma, M \twoheadrightarrow_{\beta} N$$
 и $\vdash_{\kappa} N : \tau$, то тогда $\sigma = \tau$.