

تمرین ششم درس یادگیری ماشین دکتر باباعلی

سيدعليرضا مولوى

فهرست مطالب ۱ داده ها ۱.۱ پیش پردازش ۲ مدل **K-Nearest Neighbor** ۱.۲ مدل بدون وزن ۲.۲ مدل وزن دار

۱ داده ها

داده های mnist را از سایت openml تهیه کردم، در واقع فرآیند دانلود را به عهده کتابخانه scikit-learn گذاشتم. تعداد داده ها $V \cdot \cdot \cdot V$ نمونه را به عنوان داده های آموزشی و $V \cdot \cdot \cdot V$ نمونه را به عنوان داده های تست انتخاب کرده ایم.

داده ها تصاویر سیاه و سفید از اعداد انگلیسی با رزولوشن $\mathsf{YA} \times \mathsf{YA}$ اند. در شکل $^{\mathsf{I}}$ نمونه از داده ها نمایش داده شده اند.

اعداد از شماره ۰ تا ۱۰ است، بنابراین مسئله دسته بندی ۱۰ کلاسه داریم. در شکل ۲ تعداد کلاس های موجود در داده های آموزشی و تست نمایش داده شده است، با توجه به شکل ۲ داده ها متعادل اند.

شکل ۲: تعداد کلاس ها در داده های آموزشی و تست

1.1 پیش پردازش

ویژگی داده ها ماتریسی از بعد 70×70 اند، بنابراین ویژگی داده ها رو به بردار یک بعدی 70×70 تغییر شکل می دهیم.

به دلیل اینکه از مدل K-Nearest Neighbor استفاده می کنیم، این مدل به شدت به مقیاس اندازه های ویژگی ها وابسته است، بنابراین پیش از استفاده از مدل داده ها نرمالیز می کنیم.

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}} \tag{1}$$

که در داده mnist به صورت زیر در می آید:

$$x_{min} = \cdot, \quad x_{max} = \text{YDD} \implies x' = \frac{x}{\text{YDD}}$$
 (Y)

K-Nearest Neighbor مدل

۱.۲ مدل بدون وزن

ما k همسایه ورودی را انتخاب می کنیم و کلاس ورودی را برابر با مد $^{f l}$ کلاس k همسایه (کلاس متناظر با اکثریت k همسایه) قرار می دهیم.

برای یافتن k بهینه از بین ۳۲،۱۶٬۵٬۴٬۲۰۱ از 5-Fold Cross validation استفاده کرده ایم. نتیجه در جدول k=0 است و دقت داده آموزشی و تست برابر است با:

 $Train\ Acc = \sqrt{9919}$ $Test\ Acc = \sqrt{9910}$

۲.۲ مدل وزن دار

در این حالت ما به هر یک از k همسایگی وزنی اختصاص می دهیم که این وزن رابطه معکوس با فاصله دارد، یعنی هر چه همسایگی دور تر باشد وزن کمتری و هر چه نزدیک تر باشد وزن بیشتری دارد. در نهایت کلاسی را انتخاب می کنیم که مجموع وزن هایش بیشینه باشد.

$$w_i = \frac{1}{d(x^{(i)}) + \epsilon}$$
 (*)

که در معادله $d(x^{(i)})$ فاصله نمونه i ام با ورودی است و ϵ مقدار بسیار کوچکی برای جلوگیری از $d(x^{(i)})$ شدن مخرج است.

رابطه زیر برای مدل وزن دار است (رابطه در جزوه است).

$$\hat{y}_{x-new} = argmax_j W(j) \tag{f}$$

$$W(j) = \sum_{i \in N_k} w_i I(y_i = j) \tag{2}$$

توجه: حالت بدون وزن در واقع حالت خاصی از حالت وزن دار است، به طوری که تمام وزن ها مستقل از فاصله، مقداری مساوی (مثلا ۱) داشته باشند.

برای یافتن k بهینه از بین ۳۲،۱۶٬۵٬۴٬۲۰۱ از ۳۲،۱۶٬۵٬۴٬۲۰۱ استفاده کرده ایم.

نتیجه در جدول $k=\mathfrak{r}$ است و دقت داده شده است؛ بنابراین مقدار بهینه $k=\mathfrak{r}$ است و دقت داده آموزشی و تست برابر است با:

 $Train\ Acc = 1/\cdots$ $Test\ Acc = -/944$

Mode	
MOUC	

شکل $^{\circ}$: دقت و انحراف از معیار مدل آموزش داده شده با $^{\circ}$. شکل سمت چپ دقت – شکل سمت راست انحراف از معیار

.cv= ه انحراف از معیار مدل آموزش داده شده با .cv=

(اً) مدل بدون وزن

انحراف معيار آموزش	دقت آموزش	تعداد همسایه K
./۵۲	1/9471	١
•/•• 61	1/9770	۲
./ ۵۵	1/9391	۴
٠/٠٠۵٨	۰/۹۳۸۰	۵
٠/٠٠۵٨	1/9701	18
1/1.06	1/9184	44

(ب) مدل <u>وزن</u> دار

انحراف معيار أموزش	دقت آموزش	تعداد همسایه K
٠/٠٠٣۵	1/9494	١
./ ٣۵	./9494	۲
./۴۴	1/9404	۴
./ ٣۶	1/9449	۵
./ 07	1/9719	18
./۴۴	1/9109	٣٢