ДЗ н5 (7 февраля).

Задача ДЗ-н5-1 (1 балл).

Пусть на сфере Блоха задано квантовое состояние двухуровневой системы. Какое квантовое состояние на этой сфере будет ему ортогонально?

Задача ДЗ-н5-2 (5 баллов).

Пусть гамильтониан двухуровневой системы имеет вид $\hat{H}=\begin{pmatrix}E_0&0\\0&-E_0\end{pmatrix}$, и в начальный момент времени состояние системы есть $\psi(0)=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$.

- ${\bf a}$) (1 балл) Найдите $\psi(t)$ и опишите, какому движению по сфере Блоха соответствует эта эволюция.
- **б**) (2 балла) В некоторый момент времени T измеряется наблюдаемая величина σ_y , оператор которой есть $\hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. (Комментарий: это эрмитов оператор, поэтому он может соответствовать некоторой физической, т.е. наблюдаемой, величине. Физически условие задачи можно представить, например, так: \hat{H} описывает спин 1/2 в магнитном поле, направленном по оси z, а σ_y это удвоенная проекция спина на ось y.) Найдите минимальное T, при котором результат измерения σ_y с определённостью будет равен 1.
- в) (1 балл) Используя представление Шрёдингера, найдите (зависящее от времени) квантовомеханическое среднее величины σ_v .
- ${f r}$) (1 балл) Найдите гайзенберговский оператор $\hat{\sigma}_y(t)$. Используя представление Гайзенберга, найдите (зависящее от времени) квантовомеханическое среднее величины σ_y , сравните с результатом предыдущего пункта.

Задача ДЗ-н5-3 (2 балла).

Молекула аммиака в электрическом поле \mathcal{E} , направленном вдоль оси симметрии, описывается следующим гамильтонианом:

$$\hat{H} = \begin{pmatrix} E + \mathcal{E}d & \Delta \\ \Delta & E - \mathcal{E}d \end{pmatrix},$$

в котором E, Δ, d вещественны (и для определённости положительны). Физически d — это дипольный момент молекулы (знак которого зависит от того, с какой стороны водородной плоскости находится атом азота), а Δ — это расщепление вырожденного уровня энергии за счёт туннелирования атома азота между двумя положениями в пространстве. Энергию основного состояния системы как функцию электрического поля обозначим $E_0(\mathcal{E})$. Найдите поляризуемость основного состояния

$$\alpha = -\frac{\partial^2 E_0}{\partial \mathcal{E}^2} \bigg|_{\mathcal{E}=0}$$