Optimization Models: Homework #2

Due on September 23, 2025 at $11:59 \mathrm{pm}$

Zachary Brandt

Consider the subspace $S = \text{span}(x^{(1)}, x^{(2)}, x^{(3)})$, where

$$x^{(1)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \quad x^{(3)} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
 (1)

- i) Find the dimension of S.
- ii) Calculate the projection of the point $\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$ on $\mathcal{S}.$

Solution

The dimension of the subspace S is 2, because the span is not linearly independent. Vector $x^{(3)}$ is within the span of $x^{(1)}$ and $x^{(2)}$

$$x^{(1)} + x^{(2)} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\1\\2 \end{bmatrix} = x^{(3)}.$$

The other two vectors span a plane with dimension 2. To calculate the projection of the point x = (2,3,5) onto S, I solve a system of equations to find $x^* = \alpha_1 x^{(1)} + \alpha_2 x^{(2)}$. The vector pointing between x and its projection onto the span should be normal to $x^{(1)}$ and $x^{(2)}$:

$$\langle x - x^*, x^{(1)} \rangle = \langle x - \alpha_1 x^{(1)} - \alpha_2 x^{(2)}, x^{(1)} \rangle = 0$$

$$\langle x - x^*, x^{(2)} \rangle = \langle x - \alpha_1 x^{(1)} - \alpha_2 x^{(2)}, x^{(2)} \rangle = 0$$

$$\Rightarrow \langle x, x^{(1)} \rangle = \alpha_1 \langle x^{(1)}, x^{(1)} \rangle + \alpha_2 \langle x^{(2)}, x^{(1)} \rangle$$

$$\Rightarrow \langle x, x^{(2)} \rangle = \alpha_1 \langle x^{(1)}, x^{(2)} \rangle + \alpha_2 \langle x^{(2)}, x^{(2)} \rangle$$

which then equals

$$10 = \alpha_1 \cdot 3 + \alpha_2 \cdot 0$$
$$3 = \alpha_1 \cdot 0 + \alpha_2 \cdot 2$$

Solving this system of equations gives $\alpha_1 = \frac{10}{3}$ and $\alpha_2 = \frac{3}{2}$. Therefore, the projection of the point x onto S is given by

$$x^* = \frac{10}{3}x^{(1)} + \frac{3}{2}x^{(2)} = \left(\frac{11}{6}, \frac{10}{3}, \frac{19}{6}\right).$$

Consider the box S_1 and ball S_2 defined as

$$S_1 = \{ x \in \mathbb{R}^2 \mid -3 \le x_1 \le 3, \ -1 \le x_2 \le 1 \}, \quad S_2 = \{ x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \le 2 \}$$
 (2)

Given a point $z \in \mathbb{R}^2$, write an optimization problem in a standard form that finds the projection of z onto the set $S_1 \cap S_2$ (i.e., the solution of the optimization problem should correspond to the closest point in $S_1 \cap S_2$ to z; note that you do not need to solve the optimization problem).

Solution

where

- $(x_1, x_2) \in \mathbb{R}^2$ is the decision variable;
- $f_0: \mathbb{R}^2 \to \mathbb{R}$ is the objective function, or the Euclidean distance between x and z;
- $f_1 \& f_2 : \mathbb{R}^2 \to \mathbb{R}$ represent the left and right bounds on the box S_1 ;
- $f_3 \& f_4 : \mathbb{R}^2 \to \mathbb{R}$ represent the upper and lower bounds on the box \mathcal{S}_1 ;
- $f_5: \mathbb{R}^2 \to \mathbb{R}$ represents the constraint on the ball \mathcal{S}_2 .

A company has n factories. Factory i (for i = 1, 2, ..., n) is located at point (a_i, b_i) in the two-dimensional plane \mathbb{R}^2 . The company wants to locate a warehouse at a point (x_1, x_2) that minimizes

Optimization Models: Homework #2

$$\sum_{i=1}^{n} (\text{distance from factory } i \text{ to the warehouse})^2$$

Find all possible values of the point (x_1^*, x_2^*) that satisfy the necessary condition for local optimality.

Given a natural number $k \in \{1, 2, ...\}$, a symmetric matrix $P \in \mathbb{R}^{n \times n}$, a vector $q \in \mathbb{R}^n$ and a scalar $r \in \mathbb{R}$, consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \quad (x^\top P x)^k + q^\top x + r \tag{3}$$

Assume that q is a nonzero vector.

- i) Calculate the gradient of the function $q^{\top}x$.
- ii) Calculate the gradient of the function $x^{\top}Px$.
- iii) Calculate the gradient of the objective function of the optimization problem (3).
- iv) Given a point x^* , write the necessary optimality condition for x^* to be a local minimum of the optimization problem (3).
- v) Assume that q is not in the range of P. Prove that the optimization problem (3) cannot have any local minimum (hint: show that the necessary optimality condition has no solution).
- vi) Assume that P is invertible. Given a local minimum x^* of the optimization problem (3), show that there is a scalar α such that $x^* = \alpha P^{-1}q$.
- vii) Again assume that P is invertible. Solve for α in Part (vi) and calculate it in terms of only the known parameters P, q, r, k (hint: Substitute the formula $x^* = \alpha P^{-1}q$ into the optimality condition and write it in terms of α).