Lab 2 - Surfaces

Use the Chapter 2 notes to help you complete the questions.

- 1. Implicit equation for 2D line
 - a. Line 1
 - i. Give the implicit equation for the line going between (2, 3) and (-4, 1)

$$(3-1)x + (-4-2)y + 2*1 - (-4)*3 = 0$$

2x - 6y = -14

- ii. Determine if the following points fall on the line: (2, 3), (-5, 1), (8, 5)
 - $(2,3) \rightarrow 2*2 6*3 = -14$ so it's on the line
 - $(-5,1) \rightarrow 2*(-5) 6*(1) = -16 = -14$ so it's not on the line
 - $(8,5) \rightarrow 2*8 6*5 = -14$ so it is on the line
- b. Line 2
 - i. Give the implicit equation for the line going between (2, -3) and (2, 10)

$$(-3-10)x + (2-2)y + 2*10 - 2*(-3) = 0$$

-13x = -26 \rightarrow x = 2

- ii. Determine if the following points fall on the line: (2, 13) (4, 10) (2,13) is on the line since x=2, but (4,10) is not
- 2. Implicit equation for 2D circle
 - a. Give the implicit equation for the circle centered (2, 3) having radius 5.

$$(x-2)^2 + (y-3)^2 = 25$$

- b. Determine if the following points fall on, in, or out of the circle.
 - i. (0, 5) $(-2)^2 + (2)^2 = 8 < 25$ so (0,5) is inside the circle
 - ii. (-2, 8) $(-4)^2 + (5)^2 = 41 > 25$ so (-2, 8) is outside the circle
 - iii. (2, -10) $(0)^2 + (-13)^2 = 169 > 25$ so (2, -10) is outside the circle

3. Implicit equation for 2D ellipse

a. Give the implicit equation for the 2D ellipse centered (2, 3) having x-radius 5 and y-radius 2.

$$(x-2)^2 / 25 + (y-3)^2 / 4 = 1$$

- b. Determine if the following points fall on, in, or out of the ellipse.
 - i. (2, 3) In the ellipse, it is the center.

ii.
$$(2, 8)$$

 $(2-2)^2/25 + (8-3)^2/4 = 25/4 > 1$ so $(2,8)$ is outside the ellipse

iii.
$$(2, 1)$$
 $(2 - 2)^2 / 25 + (1 - 3)^2 / 4 = 4/4 = 1$ so $(2, 1)$ is on the ellipse

- 4. Implicit equation for 3D ellipsoid
 - a. Give the implicit equation for the ellipse centered (2, 3, 4) having x-radius 5, y-radius 2, and z-radius 4.

$$(x-2)^2 / 25 + (y-3)^2 / 4 + (z-4)^2 / 16 = 1$$

- b. Determine if the following points fall on, in, or out of the ellipsoid.
 - i. (3, 4, 5) $(3-2)^2 / 25 + (4-3)^2 / 4 + (5-4)^2 / 16 = 1/25 + 1/4 + 1/16 < 1$ so (3,4,5) is in the ellipse
 - ii. (7, 3, 4) $(7-2)^2/25 + (3-3)^2/4 + (4-4)^2/16 = 25/25 = 1$ so (7,3,4) is on the ellipse
- 5. Implicit 3D plane
 - a. Plane 1 Give the implicit equation for the plane that has a <1, -2, 3> as a normal vector and includes the point (2, 3, 4) on it surface.

$$\langle x-2, y-3, z-4 \rangle \cdot \langle 1, -2, 3 \rangle = 0$$
 for point $p = (x, y, z)$
 $(x-2) + (-2y + 6) + (3z - 12) = 0$
 $x-2y+z-8=0$

b. Plane 2 - Give the implicit equation for the plane that contains the following three points, given in counterclockwise order: (1, 2, 3), (-1, 0, 4), (3, 3, 1)

$$v1 = <1 - (-1), 2 - 0, 3 - 4> = <2, 2, 1>$$

 $v2 = <3 - (-1), 3 - 0, 1 - 4> = <4, 3, -3>$
 $v1 \times v2 = <-9, 10, -2>$
 $(p - (-1, 0, 4)) \cdot <-9, 10, -2> = 0$
 $-9(x + 1) + 10(y) - 2(z - 4) = 0$
 $-9x + 10y - 2z - 1 = 0$

c. Confirm that all three points are on the plane defined in part b.

$$(1,2,3) (-1,0,4) (3,3,1)$$

- 6. Surface properties
 - a. Gradient Determine the gradient vector for the given surface: $f(x,y,z) = x^3 + y + 3z^2$

$$\nabla f(x,y,z) = \langle 3x^2, 1, 6z \rangle$$

b. Determine the tangent plane to a curve at point (1, 2, 3), having a surface normal <4, 5, 6>

$$4(x-1) + 5(y-2) + 6(z-2) = 0$$
$$4x + 5y + 6z = 26$$

	c.	Approximately, determine the unit-length normal vector for a radius 1 3D sphere centered at the origin at the following points:			
		i. (1, 0, 0) <1,0,0>			
		ii. (0, -1, 0) <0, -1, 0>			
7.	In Engl	ish, describe the shape of the following parametric curve:	[5*sin(t)	t] for t≥

It's a vertical, cylindrical, circular helix.