A Report

On

Power BI Inflation Analysis: Journeying Through Global Economic Terrain

By

2204500100027 | Ashu Saxena

2200140100086 | Rishabh Verma

2200140100103 | Soumya Wilson

2200140100084 | Radhika Khanna

Department of Computer Science and Engineering

Shri Ram Murti Smarak College of Engineering & Technology, Bareilly

Dr. APJ Abdul Kalam Technical University, Lucknow

TABLE OF CONTENT

S.No. **CONTENT** PAGE NO. 1. INTRODUCTION 1.1 Project Overview 1.2 Purpose 2. IDEATION PHASE 2.1 Problem Statement 2.2 Empathy Map Canvas 2.3 Brainstorming 3. REQUIREMENT ANALYSIS 3.1 Customer Journey map 3.2 Solution Requirement 3.3 Data Flow Diagram 3.4 Technology Stack 4. PROJECT DESIGN 4.1 Problem Solution Fit 4.2 Proposed Solution 4.3 Solution Architecture 5. PROJECT PLANNING & SCHEDULING 5.1 Project Planning 6. FUNCTIONAL AND PERFORMANCE TESTING 6.1 Performance Testing 7. RESULTS 7.1 Output Screenshots 8. ADVANTAGES & DISADVANTAGES 9. CONCLUSION 10. FUTURE SCOPE

GitHub & Project Demo Link

Source Code(if any)

Dataset Link

11. APPENDIX

1.INTRODUCTION

1.1 Project Overview

Inflation, the rate at which the general price level of goods and services rises over time, significantly impacts economies worldwide. This Power BI dashboard provides a comprehensive analysis of global inflation trends, offering insights into inflation rates, regional variations, and trends over the years. The dashboard aims to enable data-driven decision-making by visualizing inflationary changes and their economic implications across various regions and countries.

1.2 Purpose

The primary objectives of this project are:

- To analyze the average inflation rate across all countries.
- Identify countries with the highest inflation rates.
- Visualize the number of distinct economic regions.
- Observe inflation rate changes over the years.
- Categorize and distribute inflation rates for better analysis.
- Implement filters for country-wise data analysis.
- Compare inflation and adjusted inflation rates over time.
- Identify top 3 countries with the highest inflation rates

2.1 Problem Statement

Understanding global inflation trends is crucial for economic planning and decision-making. The challenge is to analyze inflation rates across different countries and time periods to extract meaningful insights.

2.2 Empathy Map Canvas

Empathy Map

A structured framework was used to understand the perspective of stakeholders, including economists, policymakers, and financial analysts.

2.1 Brainstorming

A

brainstorming session was conducted to determine the best approach for visualizing inflation trends and key insights within Power BI.

3. Requirement Analysis

3.1 Customer Journey Map

Mapping the journey of users interacting with the dashboard, identifying pain points, and improving usability.

3.2 Solution Requirement

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Collection & Ingestion	Fetch real-time inflation data from IMF, World Bank, and national statistical agencies.
		Allow manual data uploads for custom datasets.
FR-2	Data Processing & Cleaning	Perform data transformation, handling missing values, and normalizing currency values.
		Store processed data in structured databases.
FR-3	Analytical Insights & Forecasting	Apply statistical and machine learning models for inflation trend prediction.
		Compare inflation trends across different regions and time periods.
FR-4	Data Visualization & Dashboards	Develop Power BI dashboards with dynamic filtering and interactive visuals.
		Provide graphical representations such as line charts, heat maps, and bar charts.
FR-5	User Interaction & customization	Allow users to export reports in Excel, PDF, and PowerPoint formats.
		Enable users to set custom alerts for inflation rate thresholds.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The dashboard should be user-friendly and provide an intuitive interface for non-technical users.
NFR-2	Security	Data access should be secured using authentication and role-based permissions.
NFR-3	Reliability	The system must ensure accurate and up-to-date inflation data retrieval without downtime.
NFR-4	Performance	Power BI reports should load within 5 seconds for a seamless experience.
NFR-5	Availability	The system should be accessible 24/7 with 99.9% uptime.
NFR-6	Scalability	The solution must handle an increasing volume of data and support new data sources in the future.

Defining the functional and non-functional requirements for the Power BI dashboard.

3.3 Data Flow Diagram

Illustrates the flow of data from raw sources to visualizations, ensuring clarity in processing.

3.4 Technology Stack

Table-1:	Components	. &	Technologies:

(+)		
S.No	Component	Description	Technology
1.	User Interface	Web-based dashboards for inflation insights	HTML, CSS, JavaScript, ReactJS.
2.	Application Logic-1	Data ingestion from external sources (APIs, CSV)	Python, Pandas, Power Query
3.	Application Logic-2	Data cleaning, transformation & storage	SQL, NoSQL, Azure Data Factory
4.	Application Logic-3	Forecasting models for trend analysis	Machine Learning, Python (Scikit-Learn, TensorFlow)
5.	Database	Stores processed inflation data	MySQL, PostgreSQL
6.	Cloud Database	Cloud-hosted database for real-time data	Azure SQL Database, AWS RDS
7.	File Storage	Stores uploaded reports and raw datasets	AWS S3, Azure Blob Storage
8.	External API-1	Fetching inflation data	World Bank API, IMF API
9.	External API-2	Currency exchange rates for normalization	Open Exchange Rates API
10.	Machine Learning Model	Predictive inflation analysis	Scikit-Learn, TensorFlow
11.	Infrastructure (Server / Cloud)	Cloud deployment and data hosting	AWS, Azure, Kubernetes.

- Power BI
- DAX
- SQL
- data preprocessing tools

4. Project Design

4.1 Problem Solution Fit

Ensuring the dashboard effectively addresses the problem statement by providing clear and meaningful insights.

4.2 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Financial analysts, policymakers, and businesses struggle to track real-time inflatio trends due to scattered data sources, manua data processing, and lack of predictive analytics. This results in delayed economic decisions and inefficient inflation management.
2.	Idea / Solution description	The Power BI Inflation Analysis System is an automated, real-time dashboard that: Integrates multiple data sources (IMF, World Bank, National Agencies). Automates data transformation and visualization in Power BI. Applies predictive models for inflation forecasting. Provides interactive dashboards for real-time insights and decision-making.
3.	Novelty / Uniqueness	Unlike traditional methods, this solution: Automates the entire inflation tracking process. Uses Al-driven forecasting for predictive analytics. Provides real-time collaboration with interactive Power Bl dashboards.
4.	Social Impact / Customer Satisfaction	Helps governments & businesses make informed policy & financial decisions. Increas accessibility of inflation insights for economic planning. Reduces time spent on manual dat processing, improving efficiency.
5.	Business Model (Revenue Model)	The solution can be monetized through: Subscription-based model for financial institutions & enterprises. Freemium model with basic features and premium analytics for advanced users. Enterprise licensing for government agencies.
6.	Scalability of the Solution	Easily scalable for global economic tracking. Can integrate more financial datasets for deeper insights. Supports future Al enhancements for improved accuracy.

A Power BI dashboard with multiple visualizations for inflation analysis, featuring interactive filters and KPIs.

4.3 Solution Architecture

High-level architecture outlining data sources, transformations, and visualization layers.

5. Project Planning & Scheduling

5.1 Project Planning

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register with my email and password in a simple, intuitive form.	2	High	Ashu Saxena
Sprint-1	Registration	USN-2	As a user, I receive a confirmation email after successful registration.	1	High	Rishab Verma
Sprint-2	Registration	USN-3	As a user, I can register using my Facebook account.	2	Medium	Radhika Khanna
Sprint-2	Registration	USN-4	As a user, I can register using my Google account.	2	Medium	Soumya Wilson
Sprint-3	Registration	USN-5	As a user, I see clear error messages if registration fails.	2	High	Ashu Saxena

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	21 Feb 2025	26 Feb 2025	20	26 Feb 2025
Sprint-2	20	6 Days	27 Feb 2025	04 March 2025	20	[Actual Date]
Sprint-3	20	6 Days	05 March 2025	10 March 2025	20	[Actual Date]

A well-structured plan was followed to ensure smooth execution of the project. The key phases included:

1. Data Collection & Preprocessing

- o Gathered inflation data for different countries and years.
- Cleaned the dataset by handling missing values and ensuring data consistency.

2. Data Analysis & Visualization Development

- Created necessary measures and calculated columns using DAX functions.
- o Developed multiple visualizations to analyze inflation trends.

3. Dashboard Design & User Experience

- Implemented slicers and filters to allow users to explore different regions and years interactively.
- o Integrated KPI cards, line charts, and bar charts for visual insights.

4. Performance Testing

- o Ensured smooth performance of the dashboard.
- o Analyzed loading times and optimized DAX calculations.

6. Functional and Performance Testing

6.1 Performance Testing

S.No.	Parameter	Screenshot / Values
1.	Data Rendered	 The dataset is processed efficiently, with data loading times within acceptable limits. Visuals update dynamically when interacting with slicers.
2.	Data Preprocessing	Data was cleaned and formatted before visualization. Handling of missing or null values was tested.
3.	Utilization of Data Filters	Filters on Country , Region , and Year were tested. Response time for filtering is fast with minor delays when selecting multiple countries.
4.	DAX Queries Used	VAR TopCountries = TOPN(3, SUMMARIZE('global_inflation_data', 'global_inflation_data'[country_name], "Total Inflation", AVERAGE('global_inflation_data'[Inflation Rate])), [Total Inflation], DESC) RETURN TopCountries AdjustedInflationRate = global_inflation_data[Inflation Rate]*0.01 Inflation Rate Category = IF('global_inflation_data'[Inflation Rate]<2,"Low",IF('global_inflation_data'[Inflation Rate]<5,"Moderate","High"))

5.	Dashboard design	No of Visualizations / Graphs <u>- 11</u>
6	Report Design	No of Visualizations / Graphs - 17

- Evaluated load times for different dataset sizes.
- Optimized DAX queries for efficiency.
- Ensured smooth filtering and interactive elements without lag.

7. Results

7.1 Output ScreenShots

8. Advantage and Disadvantage

8.1 Advantages

- Provides clear visual insights into inflation trends.
- Interactive and filterable for detailed analysis.
- Helps in making data-driven economic decisions.

8.2 Disadvantages

- Requires periodic data updates for accuracy.
- Performance may slow with very large datasets.

9. Conclusion

This Power BI dashboard successfully analyzes global inflation trends, offering valuable insights into economic variations over time. It serves as a powerful tool for policymakers and analysts to make informed decisions.

10.Future Scope

- Integration with live inflation rate updates via APIs.
- Advanced predictive analytics for inflation forecasting.
- Drill-through functionality for deeper analysis by country and time periods.

11.Appendix

Dataset Link

https://drive.google.com/drive/u/0/folders/11Bztc6mg686xjm0qnRm0jq5N4 b-ZjGT

GitHib & Project Demo Link

Project Demo Link

https://drive.google.com/drive/u/0/folders/1xGuU4Zk0QO3a-OFdxsbrOeG3cZqHdR2F

GitHib Link

https://github.com/Saxena-Ashu/Power-BI-Inflation-Analysis-Journeying-Through-Global-Economic-Terrain