### Rachunek prawdopodobieństwa

### Stanisław Jaworski

Rachunek prawdopodobieństwa: dział matematyki zajmujący się badaniem modeli zjawisk losowych (przypadkowych) i praw nimi rządzących (*Encyklopedia Popularna PWN*, 1998)

Rachunek prawdopodobieństwa zajmuje się zdarzeniami, pojawiającymi się przy wykonywaniu doświadczeń, których wyniku nie da się z góry przewidzieć, a jednocześnie dających się powtarzać w tych samych warunkach.

Pojęciem pierwotnym w rachunku prawdopodobieństwa jest **przestrzeń zdarzeń elementarnych**. Będziemy ją oznaczać przez  $\Omega$ .

Przykład. Rzut monetą.

$$\Omega = \{O, R\}$$

Przykład. Rzut kostką.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

Przykład. Rzut monetą do chwili pojawienia się orła.

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\},\$$

gdzie  $\omega_n$  oznacza, że w pierwszych n-1 rzutach wypadły reszki, a za n- tym razem wypadł orzeł. Możliwych wyników jest nieskończenie wiele. Dadzą się ustawić w ciąg, tzn. że jest ich **przeliczalnie wiele.** 

**Przykład.** Ze zbioru n ponumerowanych elementów losujemy dwa elementy.

$$\Omega = \{(\omega_i, \omega_j) | i, j = 1, 2, \dots, n, i < j\}$$

 $\omega_i$  oznacza wylosowanie elementu o numerze i.

Przykład. Czas oczekiwania na autobus.

$$\Omega = [0, \infty)$$

**Przykład.** Niech  $T_k \in \langle [0, 45], k = 1, 2, ..., 10,$  oznacza spóźnienie k – tego studenta na losowo wybrany wykład (w minutach).

$$(T_1, T_2, \ldots, T_{10}) \in \Omega$$

$$\Omega = [0, 45] \times [0, 45] \times \ldots \times [0, 45] = [0, 45]^{10}$$

# Podstawowe pojęcia rachunku prawdopodobieństwa

**Definicja.** Rodzinę  $\mathcal{F}$  spełniającą warunki

- 1.  $\mathcal{F} \neq \emptyset$
- **2.** Jeśli  $A \in \mathcal{F}$ , to  $\Omega \setminus A \in \mathcal{F}$
- **3.** Jeśli  $A_i \in \mathcal{F}$  dla  $i = 1, 2, \ldots$ , to  $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

nazywamy  $\sigma$  – ciałem podzbiorów zbioru  $\Omega$ .

Zdarzenie losowe jest elementem rodziny  $\mathcal{F}$ 

**Definicja.** Prawdopodobieństwem nazywamy dowolną funkcję P, określoną na  $\sigma$ -ciele zdarzeń  $\mathcal{F}\subseteq 2^{\Omega}$ , spełniającą warunki

A1. 
$$P: \mathcal{F} \to \mathbf{R}_+;$$

A2. 
$$P(\Omega) = 1$$

A3. Jeśli  $A_i \in \mathcal{F}, i = 1, 2, \ldots$  oraz  $A_i \cap A_j = \emptyset$  dla  $i \neq j$ , to

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Mówimy, że matematyczny model doświadczenia losowego to trójka  $(\Omega, \mathcal{F}, P)$ , którą nazywamy **przestrzenią probabilistyczną** 

## Przykład. Rozkład prawdopodobieństwa w skończonej przestrzeni zdarzeń

Niech

$$\Omega = \{\omega_1, \ \omega_2, \dots, \ \omega_n\}.$$

Niech

$$p_i \geqslant 0, \ i = 1, 2, \dots, n,$$

będą tak dobrane, że

$$\sum_{i=1}^{n} p_i = 1$$

Wówczas funkcję P określamy w następujący sposób:

$$P(\{\omega_i\}) = p_i \text{ oraz}$$

dla  $A \subseteq \Omega$  postaci  $A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}\}$ 

$$P(A) = p_{i_1} + p_{i_2} + \ldots + p_{i_k}$$

Tak określona funkcja spełnia układ aksjomatów Kołmogorowa dla  $\mathcal{F}=2^{\Omega}$ 

Przykład. Rzut kostką.

$$P({1,2,5}) = 1/6 + 1/6 + 1/6 = 3/6 = 1/2$$

$$P({1,2,5}) = 1/12 + 1/12 + 3/12 = 5/12 < 1/2$$

### Przykład. Przeliczalna przestrzeni zdarzeń

$$\Omega = \{\omega_1, \ \omega_2, \dots\}$$

$$p_i \geqslant 0, \quad \sum_{i=1}^{\infty} p_i = 1$$

$$P(\{\omega_i\}) = p_i, \ P(A) = \sum_{i: i \in A} p_i$$

('?') Tak określona funkcja spełnia układ aksjomatów Kołmogorowa dla  $\mathcal{F}=2^{\Omega}$ 

**Przykład.** Liczba zarejestrowanych cząstek w odcinku czasu [0, t].

$$\Omega = \{0, 1, \dots\}$$

$$P(\{k\}) = e^{-\alpha t} \frac{(\alpha t)^k}{k!}, \quad k = 0, 1, \dots$$

(?) Zachodzi 
$$\sum_{k=0}^{\infty} e^{-\alpha t} \frac{(\alpha t)^k}{k!} = 1$$

### Ciągła przestrzeń zdarzeń

Przykład. Czas oczekiwania na pierwszą cząstkę.

$$\Omega = [0, \infty)$$

Zdarzenie  $(t, \infty)$ : pierwsza cząstka pojawi się później niż w chwili t

$$P((t,\infty)) = e^{-\alpha t} \frac{(\alpha t)^0}{0!} = e^{-\alpha t}$$

Stąd dla dowolnych s < t

$$P((s,t]) = e^{-\alpha s} - e^{-\alpha t}$$

Przykład. Rzut strzałką do tarczy o promieniu 1.

Model 1.

$$\Omega = \{(x, y) : x^2 + y^2 \le 1\}$$

 $(x,y)\!\!-\!$ współrzędne kartezjańskie punktu trafienia strzałki w tarczę

Szansa trafienia w zbiór  $A \subseteq \Omega$ 

$$P(A) = \frac{\text{pole } A}{\text{pole } \Omega} = \frac{|A|}{|\Omega|} = \frac{|A|}{\pi}$$

Zdarzenie  $A_r = \{(x,y): x^2 + y^2 \le r^2\}$ : trafienie w dziesiątkę

$$P(A_r) = \frac{\pi r^2}{\pi} = r^2$$

Model 2.

$$\Omega = \{(\varrho, \phi) : 0 \le \varrho \le 1, 0 \le \phi \le 2\pi\} = [0, 1] \times [0, 2\pi]$$

 $(\varrho,\phi)$ – współrzędne biegunowe punktu trafienia strzałki w tarczę

Szansa trafienia w zbiór  $A \subseteq \Omega$ :

$$P(A) = \frac{\text{pole } A}{\text{pole } \Omega} = \frac{|A|}{|\Omega|} = \frac{|A|}{2\pi}$$

Zdarzenie  $A_r = \{(\varrho, \phi) : \varrho \leq r\}$ : trafienie w dziesiątkę

$$P(A_r) = \frac{2\pi r}{2\pi} = r$$

Model 3.

$$\Omega = \{ \varrho : 0 \le \varrho \le 1 \} = [0, 1]$$

 $\varrho$ – odległość punktu trafienia od środka tarczy

Zdarzenie  $A_r = \{ \varrho : \varrho \leq r \}$ : trafienie w dziesiątkę

$$P(A_r) = \frac{\pi r^2}{\pi} = r^2$$

Zdarzenie  $A_{rk} = \{\varrho : r < \varrho \leq k\}$ : trafienie w dziewiątkę

$$P(A_{rk}) = k^2 - r^2 = 2(k - r)\frac{k + r}{2}$$

Co łączy podane przykłady dla przestrzeni ciągłych?

$$P(A) = \int_A f$$
, gdzie  $f \ge 0$ 

Czas oczekiwania na pierwszą cząstkę

$$f(x) = \alpha x e^{-\alpha x}, \quad P((s,t]) \stackrel{?}{=} \int_{s}^{t} f(x) dx$$

Rzut strzałką do tarczy (Model 1.)

$$f(x,y) = \frac{1}{\pi}, \quad P(A_r) \stackrel{?}{=} \int_{A_r} f(x,y) dx dy$$

Rzut strzałką do tarczy (Model 2.)

$$f(\varrho, \phi) = \frac{1}{2\pi}, \quad P(A_r) \stackrel{?}{=} \int_{A_r} f(\varrho, \phi) \, d\varrho \, d\phi$$

Rzut strzałką do tarczy (Model 3.)

$$f(\varrho) = 2\varrho, \quad P(A_r) \stackrel{?}{=} \int_{A_r} f(\varrho) d\varrho$$

**Problem:** Jak określić  $\mathcal{F}$ ?

Czas oczekiwania na pierwszą cząstkę

$$\mathcal{F} = \mathcal{B}(R_+)$$

Rzut strzałką do tarczy (Model 1.)

$$\mathcal{F} = \mathcal{B}(K(0,1))$$

Rzut strzałką do tarczy (Model 2.)

$$\mathcal{F} = \mathcal{B}([0,1] \times [0,2\pi])$$

Rzut strzałką do tarczy (Model 3.)

$$\mathcal{F} = \mathcal{B}([0,1])$$

# Własności prawdopodobieństwa

**Twierdzenie 1.** Jeśli  $(\Omega, \mathcal{F}, P)$  jest przestrzenią probabilistyczną i  $A, B, A_1, A_2, \ldots, A_n \in \mathcal{F}$ , to:

W1. 
$$P(\emptyset) = 0$$

W2. Jeśli  $A_1, A_2, \ldots, A_n$  wykluczają się wzajemnie, tj.  $A_i \cap A_j = \emptyset$  dla  $i \neq j$ , to

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

W3. 
$$P(A') = 1 - P(A)$$
, gdzie  $A' = \Omega \setminus A$ 

W4. Jeśli 
$$A \subseteq B$$
, to  $P(B \setminus A) = P(B) - P(A)$ 

W5. Jeśli 
$$A \subseteq B$$
, to  $P(A) \leqslant P(B)$ 

W6. 
$$P(A) \leqslant 1$$

W7. 
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

### Dowód.

ad W1.

Niech 
$$A_1 = \Omega$$
,  $A_i = \emptyset$  dla  $i = 2, 3, ...$   $\downarrow$  aksjomat A3.

$$P(\Omega) = P(\Omega) + \sum_{i=2}^{\infty} P(\emptyset)$$

 $\Downarrow$  aksjomat A1.

$$P(\emptyset) = 0$$

ad W2.

Niech  $A_k = \emptyset$ , dla  $k \geqslant n$ 

↓ aksjomat A3. oraz własność W1.

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

ad W3.

$$1 = P(\Omega) = P(A \cup A') \stackrel{\text{W2.}}{=} P(A) + P(A')$$

ad W4.

Jeśli  $A \subset B$ , to  $B = A \cup (B \setminus A)$ . Zatem

$$P(B) \stackrel{\text{W2.}}{=} P(A) + P(B \setminus A)$$

ad W5.

$$P(B) - P(A) \stackrel{\text{W4.}}{=} P(B \setminus A) \stackrel{\text{A1.}}{\geqslant} 0$$

ad W6.

Wystarczy zastosować W5. dla  $B = \Omega$  ad W7.

$$A \cup B = [A \setminus (A \cap B)] \cup (A \cap B) \cup [B \setminus (A \cap B)]$$
 
$$\Downarrow W2, W4.$$

$$P(A \cup B) = P(A) - P(A \cup B) +$$

$$+ P(A \cap B) + P(B) - P(A \cap B) =$$

$$= P(A) + P(B) - P(A \cap B)$$

Zauważmy, że

$$A \cup B = \underbrace{[A \cap B'] \cup [A \cap B] \cup [A' \cap B]}_{\text{trzy składowe sumy}}$$

Zatem każda składowa sumy  $A_1 \cup A_2 \cup \ldots \cup A_n$  da się przedstawić, po odpowiednim przenumerowaniu zbiorów, w postaci

$$A_1 \cap A_2 \cap \ldots \cap A_k \cap A'_{k+1} \cap A'_{k+2} \cap \ldots \cap A'_n,$$
 gdzie  $k \geqslant 1$ 

### Twierdzenie 2. (Wzór włączeń i wyłączeń)

$$P(A_1 \cup A_2 \cup \ldots \cup A_n)$$

$$= \sum_{1 \le i \le n} P(A_i) - \sum_{1 \le i_1 \le i_2 \le n} P(A_{i_1} \cap A_{i_2}) + \cdots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

**Dowód.** Zbiór  $A_1 \cup A_2 \cup \ldots \cup A_n$  daje się zapisać w postaci sumy rozłącznych składowych. Zatem Lewa strona równania włącza każdą składową dokładnie raz. Musimy pokazać, że prawa strona równania wprowadza każdą składową też dokładnie raz.

W pierwszym składniku wzoru, czyli

$$\sum_{1 \leqslant i \leqslant n} P(A_i)$$

każda składowa postaci

$$A_1 \cap A_2 \cap \ldots \cap A_k \cap A'_{k+1} \cap A'_{k+2} \cap \ldots \cap A'_n$$

zostanie włączona k razy, w drugim, czyli

$$\sum_{1 \leqslant i_1 \leqslant i_2 \leqslant n} P(A_{i_1} \cap A_{i_2}),$$

wyłączona  $\binom{k}{2}$  razy, itd. Ostatecznie liczba włączeń wyniesie

$$\binom{k}{1} - \binom{k}{2} + \binom{k}{3} + \dots + (-1)^{k+1} \binom{k}{k} = 1.$$

**Uwaga.** Korzystam ze wzoru dwumianowego Newtona:

$$(a+b)^k = \sum_{i=0}^k \binom{k}{i} a^{k-i} b^i$$

**Przykład.** n listów losowo wkładamy do kopert. Jakie jest prawdopodobieństwo, że choć jeden list dotrze do adresata?

Niech  $A_i$  oznacza zdarzenie, że i-ty list dotrze do adresata. Zatem

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = n \frac{\overbrace{(n-1)!}^{P(A_{1})} - \binom{n}{2} \frac{\overbrace{(n-2)!}^{P(A_{1} \cap A_{2})}}{n!} + \dots + (-1)^{n} \binom{n}{n-1} \frac{1}{n!} + (-1)^{n+1} \frac{1}{n!} = n$$

$$= 1 - \frac{1}{2!} + \frac{1}{3!} + \dots + (-1)^n \frac{1}{(n-1)!} + (-1)^{n+1} \frac{1}{n!}$$

$$= \sum_{i=1}^n \frac{(-1)^{i+1}}{i!} = 1 + \sum_{i=0}^n \frac{(-1)^{i+1}}{i!} = 1 - \sum_{i=0}^n \frac{(-1)^i}{i!}$$

$$\approx 1 - e^{-1}$$

Błąd oszacowania

$$\left| P\left( \bigcup_{i=1}^{n} A_i \right) - (1 - e^{-1}) \right| \le \frac{1}{(n+1)!}$$

Skorzystałem z oszacowania:

$$\left| e^x - \sum_{i=0}^n \frac{x^i}{i!} \right| \le \frac{|x|^{n+1}}{(n+1)!}$$

Twierdzenie 3. (O ciągłości). Niech $(\Omega, \mathcal{F}, P)$  będzie przestrzenią probabilistyczną.

(i) Jeśli  $(A_n)_{n=1}^{\infty}$  jest wstępującą rodziną zdarzeń oraz  $\bigcup_{n=1}^{\infty} A_n = A$ , to

$$P(A) = \lim_{n \to \infty} P(A_n).$$

(ii) Jeśli  $(A_n)_{n=1}^{\infty}$  jest zstępującą rodziną zdarzeń oraz  $\bigcap_{n=1}^{\infty} A_n = A$ , to

$$P(A) = \lim_{n \to \infty} P(A_n).$$

Rodzinę zdarzeń  $A_i$  nazywamy wstępującą, jeśli

$$A_1 \subseteq A_2 \subseteq \ldots \subset A_n \subseteq A_{n+1} \cdots$$

i zstępującą, jeśli

$$A_1 \supseteq A_2 \supseteq \ldots \supset A_n \supseteq A_{n+1} \cdots$$

### Dowód. (i) Niech

$$B_1 = A_1, \ B_2 = A_2 \setminus A_1 \text{ i og\'olnie: } B_n = A_n \setminus A_{n-1}$$

Wtedy zdarzenia  $B_i$  wykluczają się,

$$\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i = A_n,$$

a także  $\bigcup_{i=1}^{\infty} B_i = A$ . Z przeliczalnej addytywności wynika, że

$$P(A) = P\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} P(B_i) =$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} P(B_i) = \lim_{n \to \infty} P(A_n)$$

(ii) Rozpatrzmy rodzinę wstępującą  $(C_n)_{n=1}^{\infty}$ , gdzie  $C_n = A'_n$ . Wtedy

$$\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} A'_n = \left[\bigcap_{n=1}^{\infty} A_n\right]' = A'$$

i wystarczy skorzystać z (i)

# Prawdopodobieństwo warunkowe

**Definicja.** Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B) > 0, nazywamy liczbę

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

(?) **Uwaga.** Przy ustalonym B prawdopodobieństwo warunkowe P(A|B) jest zwykłym prawdopodobieństwem na  $(\Omega, \mathcal{F})$ , a także na  $(B, \mathcal{F}_B)$ , gdzie

$$\mathcal{F}_B = \{ A \cap B : A \in \mathcal{F} \}$$

(?) Wzór łańcuchowy. Jeśli  $P(A_1 \cap \ldots \cap A_{n-1}) > 0$ , to

$$P(A_1 \cap \ldots \cap A_n) = P(A_1)P(A_2|A_1) \times \times P(A_3|A_1 \cap A_2) \cdot \ldots \cdot P(A_n|A_1 \cap \ldots \cap A_{n-1})$$

**Definicja.** Rozbiciem przestrzeni  $\Omega$  nazywamy rodzinę zdarzeń  $\{H_i\}_{i\in I}$ , które wzajemnie wykluczają się, zaś ich suma jest równa  $\Omega$ .

#### Twierdzenie 4.

Jeżeli  $\{H_1, H_2, \ldots, H_n\}$  jest rozbiciem  $\Omega$  na zdarzenia o dodatnim prawdopodobieństwie, to dla dowolnego zdarzenia A

$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$

Dowód.

$$P(A) = P(\bigcup_{i=1}^{n} (A \cap H_i)) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$

(?) Uwaga. Twierdzenie jest prawdziwe i dla rozbicia  $\Omega$  na przeliczalną liczbę zdarzeń  $H_i, i = 1, 2, \ldots$ 

**Przykład.** W loterii fantowej szansa wygranej jest równa p, przegranej -q, a z prawdopodobieństwem r wyciągamy los "graj dalej". Los "graj dalej" wrzucamy z powrotem do urny i dokonujemy ponownego losowania. Jakie jest prawdopodobieństwo wygranej?

A—wyciągneliśmy los wygrywający

B—wyciągneliśmy los przegrywający

C-wyciągneliśmy los "graj dalej"

W-wygraliśmy na loterii

$$P(W) = P(W|A)P(A) + P(W|B)P(B) + + P(W|C)P(C) = 1 \cdot p + 0 \cdot q + P(W) \cdot r$$

Stąd

$$P(W) = \frac{p}{1-r} = \frac{p}{p+q}$$

**Twierdzenie 5.** Niech  $\{H_i\}_{i\in I}$  będzie rozbiciem  $\Omega$  na zdarzenia o dodatnim prawdopodobieństwie. Gdy P(B) > 0, to

$$P(A|B) = \sum_{i \in I} P(A|B \cap H_i) P(H_i|B),$$

gdzie zbiór indeksów I jest skończony lub przeliczalny.

**Przykład.** Grześ i Jaś rzucają na przemian monetą. Jaś wygrywa, gdy pojawią się kolejno *OOR*, Grześ – gdy *ROR*. Jakie są prawdopodobieństwa wygranej dla obu chłopców?

#### Niech

 $W_1$  – wygra Jaś,  $W_2$  – wygra Grześ,

 $O_k$  – w k-tym rzucie wypadł orzeł,

 $R_k$  – w k-tym rzucie wypadła reszka.

$$x = P(W_1|O_1 \cap O_2)$$
  $y = P(W_1|O_1 \cap R_2)$   
 $z = P(W_1|R_1 \cap O_2)$   $w = P(W_1|R_1 \cap R_2)$ 

Zatem

$$y = P(W_1|O_1 \cap R_2 \cap O_3)P(O_3|O_1 \cap R_2) + P(W_1|O_1 \cap R_2 \cap R_3)P(R_3|O_1 \cap R_2)$$
$$= z\frac{1}{2} + w\frac{1}{2}$$

Analogicznie

$$x = \frac{1}{2}x + \frac{1}{2} \cdot 1, \ z = \frac{1}{2}x + 0, \ w = \frac{1}{2}w + \frac{1}{2}z$$

Stad 
$$P(W_1) = (x + y + z + w)/4 = 5/8$$
.

**Twierdzenie 6.** Wzór Bayesa. Niech  $\{H_i\}_{i\in I}$  będzie rozbiciem  $\Omega$  na zdarzenia o dodatnim prawdopodobieństwie i P(A) > 0, to dla dowolnego  $j \in I$  mamy

$$P(H_j|A) = \frac{P(A|H_j)P(H_j)}{\sum_{i \in I} P(A|H_i)P(H_i)}$$

**Przykład.** Amperomierze pochodzą z trzech taśm produkcyjnych w stosunku 1:1:1. Dostawy z pierwszej taśmy zawierają 0.5% braków, z drugiej 0.7%, a z trzeciej 1%. Wybrany losowo amperomierz okazał się brakiem. Obliczyć prawdopodobieństwo, że został on wyprodukowany na taśmie drugiej.

A-amperomierz jest brakiem  $H_i$ -amperomierz pochodzi z i-tej taśmy

$$P(H_1) = P(H_2) = P(H_3) = 1/3$$

 $P(A|H_1) = 0.005; \ P(A|H_2) = 0.007; \ P(A|H_3) = 0.01$ Stąd

$$P(A) = \frac{1}{3} (0.005 + 0.007 + 0.01) = \frac{0.022}{3}$$

$$P(H_2|A) = \frac{P(H_2)P(A|H_2)}{P(A)} = \frac{\frac{1}{3} 0.007}{\frac{1}{3} 0.022} = \frac{7}{22}$$

### Niezależność zdarzeń.

Zdarzenie B nie zależy od zdarzenia A, gdy wiedza o tym, że zaszło A nie wpływa na prawdopodobieństwo zajścia B.

$$P(B|A) = P(B), \quad P(A) > 0$$

$$\downarrow \downarrow$$

$$P(A \cap B) = P(A)P(B)$$

**Definicja.** Zdarzenia A oraz B nazywamy niezależnymi, gdy

$$P(A \cap B) = P(A)P(B)$$

**Definicja.** Zdarzenia  $A_1, A_2, \ldots, A_n$  nazywamy niezależnymi, gdy

$$P(A_{i1} \cap A_{i2} \cap \ldots \cap A_{ik}) = P(A_{i1}) \ldots P(A_{ik})$$

dla 
$$1 \le i_i < i_2, \ldots < i_k \le n, \ k = 2, 3, \ldots, n$$

**Przykład.** Spośród rodzin mających n dzieci wybieramy jedną rodzinę. Niech zdarzenie A polega na tym, że w losowo wybranej rodzinie jest co najwyżej jedna dziewczynka, B – w rodzinie są dziewczynki i chłopcy. Czy zdarzenia A i B są niezależne?

Przestrzeń probabilistyczną tworzą ciągi n- elementowe – uporządkowane według starszeństwa dzieci.

$$P(A \cap B) = P(A)P(B) \Leftrightarrow \frac{n}{2^n} = \left(\frac{n+1}{2^n}\right) \left(\frac{2^n - 2}{2^n}\right)$$
$$\Leftrightarrow n = 3$$

**Przykład.** W urnie są cztery kule – niebieska, zielona, czerwona i pstrokata (niebiesko-zielono-czerwona). Zdarzenia

 $A_n$  – wyciągneliśmy kulę z kolorem niebieskim  $A_z$  – wyciągneliśmy kulę z kolorem zielonym  $A_n$  – wyciągneliśmy kulę z kolorem czerwonym Mamy

$$P(A_n) = P(A_z) = P(A_c) = 1/2$$
 
$$P(A_n \cap A_z) = P(A_n \cap A_c) = P(A_z \cap A_c) = 1/4$$

Zatem rozważane zdarzenia są parami niezależne.

Zauważmy jednak, że

$$P(A_n \cap A_z \cap A_c) = \frac{1}{4} \neq \frac{1}{8} = P(A_n)P(A_z)P(A_c)$$

**Przykład.**  $\Omega = [0,1]^2$ ,  $\mathcal{F} = \mathcal{B}([0,1]^2)$ , P- rozkład równomierny na  $[0,1]^2$ . Zdarzenia

$$A = B = \{(x, y) \in [0, 1]^2 : x > y\}$$
$$C = \{(x, y) \in [0, 1]^2 : x < 0.5\}$$

Zauważmy, że

$$P(A \cap B \cap C) = \frac{1}{8} = P(A)P(B)P(C)$$

natomiast żadne dwa nie są niezależne

Przyjmijmy konwencję:  $A^0 = A$ ,  $A^1 = A'$ 

### Twierdzenie 7.

Następujące warunki są równoważne:

- (i) Zdarzenia  $A_1, A_2, \ldots, A_n$  są niezależne;
- (ii) Dla każdego ciągu  $\varepsilon_1, \ \varepsilon_2, \ldots, \ \varepsilon_n, \ \text{gdzie} \ \varepsilon_i \in \{0,1\}, \ i=1,2,\ldots,n, \ \text{zdarzenia} \ A_1^{\varepsilon_1},\ldots,A_n^{\varepsilon_n}$ są niezależne;
- (iii) Dla każdego ciągu  $\varepsilon_1, \ \varepsilon_2, \ldots, \ \varepsilon_n, \ \text{gdzie} \ \varepsilon_i \in \{0,1\}, \ i=1,2,\ldots,n, \ \text{zachodzi równość}$

$$P(A_1^{\varepsilon_1} \cap \ldots \cap A_n^{\varepsilon_n}) = P(A_1^{\varepsilon_1}) \ldots P(A_n^{\varepsilon_n})$$

**Dowód.**  $(i) \Rightarrow (ii)$  (indukcja względem n)

- $(1^o)$  Pokażemy dla n=2
- $(2^{o})$  Założymy, że tw. jest prawdziwe dla n-1
- $(3^{o})$  Pokażemy, że

$$A_1, \ldots, A_{n-1}, A_n$$
 niezależne  $\Downarrow$ 

$$A_1, \ldots, A_{n-1}, A'_n$$
 niezależne

 $(4^{o})$  Zauważymy, że z  $3^{o}$  wynika

$$A_1^{\varepsilon_1}, \ldots, A_{n-1}^{\varepsilon_{n-1}}, A_n^{\varepsilon_n}$$
 niezależne

Dla n=2

$$P(A_1 \cap A_2') = P(A_1 \setminus A_1 \cap A_2) =$$

$$= P(A_1) - P(A_1 \cap A_2) =$$

$$= P(A_1)[1 - P(A_2)] = P(A_1)P(A_2')$$

Zatem  $A_1$ ,  $A_2'$  są niezależne. Na mocy symetrii także  $A_1'$ ,  $A_2$  są niezależne. Stosując jeszcze raz powyższe rozumowanie do  $A_1'$ ,  $A_2$ , otrzymujemy niezależność  $A_1'$ ,  $A_2'$ 

Zakładamy, że tw. jest prawdziwe dla n-1 i dowodzimy dla n.

W tym celu wystarczy pokazać:

$$P(A_{1} \cap ... \cap A_{n-1} \cap A'_{n}) =$$

$$= P(A_{1} \cap ... \cap A_{n-1} \setminus A_{1} \cap ... \cap A_{n-1} \cap A_{n}) =$$

$$= P(A_{1} \cap ... \cap A_{n-1}) - P(A_{1} \cap ... \cap A_{n}) =$$

$$= P(A_{1} \cap ... \cap A_{n-1})[1 - P(A_{n})]$$

$$= P(A_{1} \cap ... \cap P(A_{n-1}))[1 - P(A'_{n})]$$

**Definicja.** Zdarzenia  $A_1, A_2, \ldots$  nazywamy niezależnymi, gdy dla każdego n zdarzenia  $A_1, A_2, \ldots, A_n$  są niezależne.

# Zmienne losowe.

Cel: Ujednolicić sposób rozważań dla różnych przestrzeni zdarzeń elementarnych.

Definicja. Zmienna losowa jest to funkcja rzeczywista

$$X:\Omega\to\mathcal{X}$$

o własności:

$$\bigwedge_{x \in \mathbf{R}} \{ \omega \in \Omega : \ X(\omega) \le x \} \in \mathcal{F}$$

 $\mathcal{X}$  – zbiór wartości zmiennej losowej

Często

$$\mathcal{X} = \{0, 1, \dots\}, \ \mathcal{X} = [0, \infty), \ \mathcal{X} = [a, b], \ \mathcal{X} = R$$

**Definicja.** Rozkładem prawdopodobieństwa zmiennej losowej X nazywamy rozkład prawdopodobieństwa  $P_X$  określony wzorem

$$P_X(A) = P(\{\omega \in \Omega : X(\omega) \in A\})$$
 dla  $A \subset \mathcal{X}$   
=  $P(X^{-1}(A))$ 

! dokładniej dla  $A \in \mathcal{B}(\mathcal{X})$ 

**Definicja.** Trójkę  $(\mathcal{X}, \mathcal{B}(\mathcal{X}), P_X)$  nazywamy modelem probabilistycznym.

Przykład. Ze zbioru pięciu ponumerowanych elementów losujemy jeden element

$$\Omega = \{\omega_1, \dots, \omega_5\} \quad P(\{\omega_i\} = 1/5)$$

 $\omega_i$ -wylosowano *i*-ty element

Wtedy dla  $X(\omega_i) = i \text{ mamy } \mathcal{X} = \{1, 2, 3, 4, 5\}$  oraz

$$P_X(i) = 1/5, \quad i = 1, 2, 3, 4, 5$$
  
 $P_X(A) = \sum_{i \in A} P_X(i), \quad \text{dla } A \subset \mathcal{X}$ 

**Definicja.** Dystrybuanta zmiennej losowej X, jest to funkcj  $F: \mathbf{R} \to [0,1]$  określona wzorem

$$F_X(x) = P(X \le x)$$

### Własności dystrybuanty

W1. F jest niemalejąca

$$x_1 < x_2, \ A = (-\infty, x_1], \ B = (-\infty, x_2], \ A \subset B$$

$$F(x_1) = P(A) \leqslant P(B) = F(x_2)$$

W2. 
$$\lim_{x \to -\infty} F(x) = 0$$
,  $\lim_{x \to \infty} F(x) = 1$ 

$$\{x_n\} \nearrow \infty$$

$$\lim_{x \to \infty} F(x) = \lim_{n \to \infty} F(x_n) = P\left(\bigcup_n (-\infty, x_n]\right)$$

$$= P((-\infty, \infty)) = 1$$

$$\{x_n\} \searrow \infty$$

$$\lim_{x \to -\infty} F(x) = \lim_{n \to \infty} F(x_n) = P\left(\bigcap_n (-\infty, x_n]\right)$$

$$= P(\emptyset) = 0.$$

### W3. F jest prawostronnie ciągła

$$\begin{cases} x_n \} \searrow x_0 \\ \lim_{x \to x_0^+} F(x) = \lim_{n \to \infty} F(x_n) = P\left(\bigcap_n (-\infty, x_n]\right) \\ = P((-\infty, x_0]) \\ = F(x_0), \end{cases}$$

**Twierdzenie 8.** Każda funkcja  $F: \mathbf{R} \to [0,1]$  o własnościach 1–3 jest dystrybuantą pewnej zmiennej losowej.

#### Dowód.

$$F^{-1}(u) := \inf\{x : F(x) \ge u\} \quad \text{dla } 0 < u < 1$$
$$F^{-1}(u) \le x \quad \Leftrightarrow \quad u \le F(x)$$

Niech U oznacza zmienną losową o rozkładzie równomiernym na zbiorze (0,1):

$$F_U(u) = P(U \le u) = u$$

Niech  $X = F^{-1}(U)$ .

$$F_X(x) = P(X \le x) = P(F^{-1}(U) \le x)$$
  
=  $P(U \le F(x)) = F(x)$ 

### Własności dystrybuanty, ciąg dalszy

oznaczmy 
$$F(a+) := \lim_{x \to a^+} F(x)$$

(?)

(i) 
$$P(a < X \le b) = F(b) - F(a)$$

(ii) 
$$P(X = a) = F(a) - F(a-)$$

(iii) 
$$P(a \le X \le b) = F(b) - F(a-)$$

(iv) 
$$P(a < X < b) = F(b-) - F(a)$$



## Zmienne losowe typu skokowego

**Definicja.** Mówimy, że zmienna losowa jest typu skokowego (dyskretna), jeżeli istnieje zbiór skończony lub przeliczalny  $\mathcal{X} \subset \mathbf{R}$  taki, że

$$P_X(\mathcal{X}) = 1$$

Przykłady zmiennych losowych typu skokowego:

- rozkład dwumianowy
- rozkład Poissona
- rozkład ujemny dwumianowy
- rozkład wielomianowy

## Rozkład dwumianowy

Powtarzające się i niezależne próby nazywamy **próbami Bernoulliego**, jeżeli każda próba ma tylko dwa możliwe wyniki: "sukces" z prawdopodobieństwem p oraz "porażka" z prawdopodobieństwem q

Niech X oznacza ilość sukcesów osiągniętych w ciągu n prób Bernoulliego.

Zmienna losowa X ma następujący rozkład prawdopodobieństwa:

$$P(X = k) = \binom{n}{k} p^k q^{n-k},$$

gdzie  $p \in (0,1)$  oraz k = 0, 1, ..., n.

O zmiennej losowej X mówimy, że ma rozkład dwu-mianowy  $(X \sim B(n, p)).$ 

**Przykład.** Dziesięciu robotników używa z przerwami energię elektryczną. Jakiego należy oczekiwać obciążenia, jeżeli

- 1. W każdej danej chwili każdy robotnik ma to samo prawdopodobieństwo *p* zapotrzebowania na jednostkę energii.
- 2. Robotnicy pracują niezależnie od siebie.
- 3. Przeciętnie jeden robotnik używa dostarczanej energii w ciągu 12 minut na godzinę.

Niech X oznacza liczbę robotników, którzy potrzebują energii w tym samym czasie.

$$X \sim B(10, 1/5).$$

Wówczas, jeżeli dopływ energii jest ustalony na poziomie sześciu jednostek, to przeciążenie ma szanse:

$$P(X \geqslant 7) = 0.0008643584$$

(?) W ciągu 20 godzin powinno trwać łącznie przez około minutę.

#### Rozkład Poissona

Zmienna losowa X ma rozkład Poissona z parametrem  $\lambda > 0 \ (X \sim P_0(\lambda))$ , jeżeli:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, \dots$$

## Rozkład Poissona a rozkład dwumianowy.

Załóżmy, że liczba doświadczeń n w poszczególnych seriach schematu Bernoulliego wzrasta dążąc do nieskończoności a prawdopodobieństwo p dąży do zera tak, że iloczyn np jest wielkością stałą równą  $\lambda>0$ . Wtedy zachodzi

$$\lim_{n \to \infty} \binom{n}{k} p^k (1-p)^{n-k} = \frac{e^{-\lambda} \lambda^k}{k!}.$$

Wynika to z rozpisania:  $\binom{n}{k} p^k (1-p)^{n-k} =$ 

$$= \frac{1}{k!}(n-k+1)(n-k+2)\dots n\left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k}$$

$$= \frac{\lambda^k}{k!} \left(1-\frac{k-1}{n}\right) \left(1-\frac{k-2}{n}\right)\dots$$

$$\dots \left(1-\frac{1}{n}\right) 1 \left(1-\frac{\lambda}{n}\right)^{n-k}$$

**Przykład.** Jakie jest prawdopodobieństwo  $p_k$ , że wśród 500 ludzi dokładnie k będzie miało urodziny w dniu Nowego Roku?

Jeżeli 500 ludzi zostało wybranych losowo, to możemy zastosować schemat 500 prób Bernoulliego z prawdopodobieństwem sukcesu 1/365. Wówczas

$$p_0 = (364/365)^{500} = 0.2537\dots$$

Dla przybliżenia Poissona bierzemy

$$\lambda = 500/365 = 1.3699\dots$$

Wtedy

$$p_0 \approx \frac{e^{-1.3699}1.3699^0}{0!} \approx 0.2541$$

### Ujemny rozkład dwumianowy.

Prowadzimy doświadczenia według schematu Bernoulliego do momentu pojawienia się r—tego sukcesu. Niech X oznacza liczbę porażek poprzedzających r—ty sukces.

$$P(X = k) = {r + k - 1 \choose k} p^{r-1} q^k \cdot p = {r + k - 1 \choose k} p^r q^k$$

gdzie 
$$q = 1 - p, k = 0, 1, \dots$$

O zmiennej losowej X mówimy, że ma  $ujemny \ rozkład$   $dwumianowy \ (X \sim f(r,p))$ . Zakładamy, że r>0 oraz 0 .

**Uwaga.** Możemy przyjąć, że r>0 nie musi być liczbą całkowitą. Wtedy przyjmujemy następującą definicję **symbolu Newtona** (dla  $a \in \mathbf{R}$  oraz  $k \geqslant 0$ )

$$\begin{pmatrix} a \\ k \end{pmatrix} := \begin{cases} \frac{a(a-1)(a-2)\dots(a-(k-1))}{k!} &, k \in \mathbf{N} \\ 1 &, k = 0 \\ 0 &, k \notin \mathbf{Z} \end{cases}$$

Przykład. Zadanie Banacha o pudełkach zapałek.

Mamy dwa pudełka zapałek – jedno w prawej kieszeni i jedno w lewej. Kiedy potrzebujemy zapałkę, wybieramy jedną z kieszeni losowo. Przypuśćmy, że początkowo każde z pudełek zawiera N zapałek. Ile wynosi prawdopodobieństwo, że gdy wyciągniemy puste pudełko, w drugim będzie dokładnie m zapałek.

X – liczba wyciągnięć pudełka z prawej kieszeni do momentu aż w drugim pudełku będzie m zapałek

 $Y - \dots$  z lewej kieszeni ...

$$X \sim f(N - m, 0.5), \quad Y \sim f(N - m, 0.5)$$

Poszukiwane prawdopodobieństwo wynosi

$$P({X = N + 1} \cup {Y = N + 1}) =$$

$$= P(X = N + 1) + P(Y = N + 1)$$

## Rozkład wielomianowy

uogólnienie rozkładu dwumianowego

Wykonujemy serię n niezależnych prób. Każda próba może mieć jeden z kilku wyników, np.  $E1, E2, \ldots, E_r$ .

Prawdopodobieństwo realizacji  $E_i$  w każdej próbie wynosi  $p_i, i = 1, 2, \ldots, r$ .

Prawdopodobieństwo, że w n próbach  $E_1$  występuje  $k_1$  razy,  $E_2$  występuje  $k_2$  razy itd. wynosi

$$\frac{n!}{k_1!k_2!\dots k_r!}p_1^{k_1}p_2^{k_2}\dots p_r^{k_r}$$

## Zmienne losowe typu ciągłego

**Definicja.** Mówimy, że zmienna losowa o dystrybuancie F jest typu ciągłego, jeżeli istnieje taka funkcja  $f \geq 0$ , że dla każdego x zachodzi równość

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$

Funkcję f nazywamy gęstością prawdopodobieństwa zmiennej losowej X lub w skrócie **gęstością** 

### Uwagi

(1) W punktach, w których f jest ciągła zachodzi

$$\frac{d}{dx}F(x) = f(x)$$

- (2)  $\int_{-\infty}^{\infty} f(x) \, dx = 1$
- (3) Każda funkcja f nieujemna i spełniająca (2) wyznacza dystrybuantę F za pomocą wzoru

$$F(x) = \int_{-\infty}^{x} f(u) \, du$$

**Przykład.** Sprawdzić, czy funkcja f określona wzorem

$$f(x) = \begin{cases} 0 & \text{dla } x < 0 \\ e^{-x} & \text{dla } x \ge 0 \end{cases}$$

jest gęstością.

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{0}^{\infty} e^{-x} \, dx = \left[ -e^{-x} \right]_{0}^{\infty} = 1$$

## Przykłady zmiennych losowych ciągłych:

- $rozkład\ normalny\ N(\mu, \sigma^2)$
- $rozkład\ jednostajny\ U(a,b)$
- $\bullet$  rozkład gamma G(b,p)
- $\bullet$  rozkład beta B(p,q)
- rozkład Cauchyego  $C(\mu, \lambda)$

$$N(\mu, \sigma^2), \ \sigma > 0$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$$

U(a,b), a < b

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b], \\ 0, & x \notin [a,b] \end{cases}$$

G(b, p), b > 0, p > 0

$$f(x) = \begin{cases} \frac{b^p}{\Gamma(p)} x^{p-1} e^{-bx}, & x > 0\\ 0, & x \le 0 \end{cases}$$

gdzie

$$\Gamma(p) = \int_{0}^{\infty} x^{p-1} e^{-x} dx$$

B(p,q), b > 0, p > 0

$$f(x) = \begin{cases} \frac{1}{B(p,q)} x^{p-1} (1-x)^{q-1}, & x \in (0,1) \\ 0, & x \notin (0,1) \end{cases}$$

gdzie

$$B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$$

a także

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

 $C(\mu, \lambda), \ \lambda > 0$ 

$$f(x) = \frac{1}{\pi} \frac{\lambda}{\lambda^2 + (x - \mu)^2}$$

**Przykład.** Sprawdzimy, że rozkład  $N(\mu, \sigma^2)$  jest rzeczywiście rozkładem prawdopodobieństwa:

$$\int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx =$$

podstawienie:  $y = (x - \mu)/\sigma$ 

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2}\right) dy =$$

Należy zatem sprawdzić, że ostatnia całka równa jest  $\sqrt{2\pi}$ . Ponadto zauważmy, że przy okazji otrzymaliśmy następujący fakt

$$X \sim N(\mu, \sigma^2) \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$\left(\int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2}\right) dy\right)^2 =$$

$$= \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx \cdot \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2}\right) dy =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2 + y^2}{2}\right) dx dy =$$

przejście na współrzędne biegunowe:

$$\varphi(r,t) = (r\cos t, r\sin t)$$

$$J\varphi(r,t) = \begin{vmatrix} \cos(t) & -r\sin(t) \\ \sin(t) & r\cos(t) \end{vmatrix} = r$$

$$= \int_{0}^{\infty} \int_{0}^{2\pi} \exp\left(-\frac{r^2}{2}\right) r \, dr \, dt = 2\pi \int_{0}^{\infty} \exp\left(-\frac{r^2}{2}\right) r \, dr =$$

$$= 2\pi \left[-\exp\left(-\frac{r^2}{2}\right)\right]_{0}^{\infty} = 2\pi$$

# Funkcje zmiennej losowej

**Przykład.** Niech Y = aX + b, gdzie  $a \neq 0$  oraz X jest zmienną losową o rozkładzie

$$P(X = 0) = 1/4, P(X = 1) = 3/4.$$

Chcemy znaleźć rozkład zmiennej losowej Y.

$$P(X = 0) = P(Y = b) = 1/4$$
  
 $P(X = 1) = P(Y = a + b) = 3/4$ 

**Przykład.** Niech X będzie zmienną losową typu ciągłego o gęstości  $f_X$ , dystrybuancie  $F_X$  oraz niech Y = aX + b, a < 0. Chcemy znaleźć rozkład Y

$$F_Y(y) = P(Y \le y) = P(X \ge \frac{y - b}{a}) =$$

$$= 1 - P\left(X < \frac{y - b}{a}\right) = 1 - F_X\left(\frac{y - b}{a}\right)$$

Zatem 
$$f_Y(y) = \frac{d}{dy} F_Y(y) = -\frac{1}{a} f_X\left(\frac{y-b}{a}\right)$$

**Przykład.** Niech X oznacza zmienną losową ciągłą o dystrybuancie  $F_X$  oraz gęstości  $f_X$ . Niech  $f_X$  jest funkcją ciągłą, a g funkcją ściśle monotoniczną oraz niech  $h = g^{-1}$ . Wtedy dystrybuantą zmiennej losowej Y = g(X) jest:

 $(dla\ g - rosnącej)$ 

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$
$$= P(X \le h(y)) = F_X(h(y))$$

Jeżeli h jest funkcją różniczkowalną, to

$$\frac{d}{dy}F_Y(y) = f_X(h(y))h'(y)$$

jest gęstością zmiennej losowej Y=g(X) (dla g - malejącej)

$$F_Y(y) = P(Y \le y) = P(g(X) \le y)$$
  
=  $P(X \ge h(y)) = 1 - F_X(h(y))$ 

Jeżeli h jest funkcją różniczkowalną, to

$$\frac{d}{dy}F_Y(y) = f_X(h(y))(-h'(y))$$

jest gęstością zmiennej losowej Y = g(X)

Zatem w obu przypadkach

$$f_Y(y) = f_X(h(y))|h'(y)|$$

**Przykład.** Niech X – nieujemna zmienna losowa typu ciągłego oraz  $Y = \sqrt{X}$ . Zatem  $h(y) = y^2$  oraz

$$f_Y(y) = 2y \cdot f_X(y^2) \cdot I_{(0,\infty)}(y)$$

Uwaga. 
$$I_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

**Przykład.** Niech X – zmienna losowa typu ciągłego oraz  $Y = X^2$ .

$$F_Y(y) = P(X^2 \le y) = P(-\sqrt{y} \le X \le \sqrt{y}) =$$

$$= P(X \le \sqrt{y}) - P(X \le -\sqrt{y})$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \frac{d}{dy} \left( F_X(\sqrt{y}) - F(-\sqrt{y}) \right) =$$

$$= \frac{1}{2\sqrt{y}} \left( f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right)$$

#### Twierdzenie 9.

Niech X będzie zmienną losową typu ciągłego. Niech g będzie funkcją określoną na zbiorze

$$\bigcup_{k=1}^{n} [a_k, b_k],$$

która na każdym przedziale otwartym  $(a_k, b_k)$  jest funkcją ściśle monotoniczną oraz ma ciągłą pochodną  $g(x)' \neq 0$ . Niech  $h_k(y)$  będzie funkcją odwrotną do funkcji g(x) na przedziale

$$I_k = g((a_k, b_k)) = \{y : x \in (a_k, b_k), g(x) = y\}.$$

Wówczas funkcja gęstości zmiennej losowej Y=g(X) ma następującą postać

$$f_Y(y) = \sum_{k=1}^n f_X(h_k(y)) \cdot |h'(y)| \cdot I_{I_k}(y)$$

**Przykład.** 
$$X$$
 – ciągła,  $Y = X^2$ . Wtedy  $g(x) = x^2$ ,  $h_1(y) = -\sqrt{y}, \ h_2(y) = \sqrt{y}, \ I_1 = I_2 = (0, \infty)$ .

**Dowód.** Niech  $A \in \mathcal{B}(\mathbf{R})$ 

$$P(Y \in A) = P(g(X) \in A) = P(X \in g^{-1}(A))$$

$$= \sum_{k=1}^{n} P(X \in (a_k, b_k) \cap g^{-1}(A))$$

$$= \sum_{k=1}^{n} P(X \in g^{-1}(I_k) \cap g^{-1}(A))$$

$$= \sum_{k=1}^{n} P(X \in g^{-1}(I_k \cap A))$$

$$= \sum_{k=1}^{n} P(X \in h_k(I_k \cap A))$$

$$= \sum_{k=1}^{n} \int_{h_k(I_k \cap A)} f_X(x) dx$$

$$= \sum_{k=1}^{n} \int_{I_k \cap A} f_X(h_k(y)) \cdot |h'_k(y)| dy$$

$$= \int_{A} \sum_{k=1}^{n} f_X(h_k(y)) \cdot |h'_k(y)| \cdot I_{I_k} dy$$

**Pytanie:** Czy coś by się zmieniło, gdyby  $n = \infty$ ?

# Wektory losowe

**Definicja.** Wektor losowy  $X = (X_1, \ldots, X_n)$  to odwzorowanie

$$X:\Omega \to \mathcal{X} \subseteq \mathbf{R}^n$$

o własności:

$$\{\omega \in \Omega : X_1(\omega) \le x_1, \dots, X_n(\omega) \le x_n\} \in \mathcal{F}$$

dla dowolnego  $(x_1, x_2, \dots, x_n) \in \mathbf{R}^n$ 

 $\mathcal{X}$  – zbiór wartości wektora losowego

Często

$$\mathcal{X} = \{0, 1, \dots\}^n, \, \mathcal{X} = [0, \infty)^n, \, \mathcal{X} = [a, b]^n, \, \mathcal{X} = \mathbb{R}^n$$

 $\mathbf{Definicja}.$ Rozkładem prawdopodobieństwa wektora losowego  $\boldsymbol{X}$  nazywamy rozkład prawdopodobieństwa  $P_{\boldsymbol{X}}$ określony wzorem

$$P_{\mathbf{X}}(A) = P(\{\omega \in \Omega : \mathbf{X}(\omega) \in A\}) \quad \text{dla } A \in \mathcal{B}(\mathcal{X})$$

**Definicja.** Trójkę  $(\mathcal{X}, \mathcal{B}(\mathcal{X}), P_{\mathbf{X}})$  nazywamy modelem probabilistycznym.

**Definicja.** Funkcja  $F_{\boldsymbol{X}}: \mathbf{R}^n \to [0,1]$  postaci

$$F_{\boldsymbol{X}}(x_1,\ldots,x_n)=P(X_1\leq x_1,\ldots,X_n\leq x_n)$$

nazywamy dystrybuantą wektora losowego  $\boldsymbol{X}$ 

**Definicja.** Wektor losowy jest typu skokowego, jeżeli istnieje zbiór przeliczalny  $\mathcal{X} \subset \mathbf{R}^n$ , taki że  $P_{\mathbf{X}}(\mathcal{X}) = 1$ 

**Definicja.** Wektor losowy jest typu ciągłego, jeżeli istnieje nieujemna funkcja  $f_{\mathbf{X}}(x_1, x_2, \dots, x_n)$ , zwana gęstością, taka że dla każdego  $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbf{R}^n$ 

$$F_{\mathbf{X}}(\mathbf{x}) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_2} f_{\mathbf{X}}(u_1, \dots, u_n) du_1 \dots du_n$$

### Uwagi

Prawie wszędzie ma miejsce równość

$$\frac{\partial F_{\mathbf{X}}(x_1,\ldots,x_n)}{\partial x_1,\ldots,\partial x_n} = f_{\mathbf{X}}(x_1,\ldots,x_n)$$

Dla dowolnego  $A \in \mathcal{B}(\mathbf{R}^n)$  zachodzi

$$\int\limits_A f_{\boldsymbol{X}}(\boldsymbol{x}) \, d\boldsymbol{x}$$

Zauważmy, że

$$P(X_1 \in A) = P(X_1 \in A, X_2 \in \mathbf{R}, \dots, X_n \in \mathbf{R})$$

$$= \int_{A} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \dots dx_n$$

$$= \int_{A} \left( \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) dx_2 \dots dx_n \right) dx_1$$

Zatem

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1, \dots, x_n) dx_2 \dots dx_n$$

Jest to tzw. brzegowa gęstość prawdopodobieństwa.

Dla rozkładów brzegowych wielowymiarowych mamy:

$$f_{(X_1,X_2)}(x_1,x_2) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,\ldots,x_n) dx_3 \ldots dx_n$$

$$f_{(X_1,X_2,X_3)}(x_1,x_2,x_3) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{\mathbf{X}}(x_1,\ldots,x_n) dx_4 \ldots dx_n$$

itd.

Podobnie postępuje się przy rozkładach skokowych:

**Przykład.** Niech wektor losowy (X, Y) ma rozkład określony liczbami

$$p_{ik} = P(X = x_i, Y = y_k), \text{ gdzie } i \in I, k \in K.$$

Wówczas rozkład zmiennej losowej X określają liczby

$$p_i = P(X = x_i) = \sum_{k \in K} p_{ik}, \text{ gdzie } i \in I$$

## Przykład.

Niech (X, Y) ma rozkład równomierny na  $\Omega = [0, 2] \times [0, 3]$ :

$$f_{X,Y}(x,y) = \frac{1}{6}I_{\Omega}(x,y).$$

Wówczas

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy = \frac{1}{6} \int_{-\infty}^{\infty} I_{\Omega}(x,y) \, dy =$$

$$= \frac{1}{6} \int_{-\infty}^{\infty} I_{[0,2]}(x) \cdot I_{[0,3]}(y) \, dy =$$

$$= \frac{1}{6} I_{[0,2]}(x) \int_{-\infty}^{\infty} I_{[0,3]}(y) = \frac{1}{2} I_{[0,2]}(x)$$

**Przykład.** Niech  $(X_1, X_2)$  ma dwuwymiarowy rozkład normalny, tzn:

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2(1-\varrho^2)^{\frac{1}{2}}} \cdot \exp\left\{-\frac{1}{2(1-\varrho^2)} \left[ \left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 - 2\varrho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} \right] \right\}$$

gdzie  $\sigma_1, \sigma_2 > 0$  oraz  $\varrho \in (-1, 1)$ 

Rozpisujemy wyrażenie w nawiasie kwadratowym:

$$\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 - 2\varrho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} =$$

$$= \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2$$

$$+ \varrho^2 \frac{(x_2 - \mu_2)^2}{\sigma_2^2} - \varrho^2 \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$$

$$- 2\varrho \frac{(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} =$$

$$= \left(\frac{x_1 - \mu_1}{\sigma_1} - \varrho \frac{x_2 - \mu_2}{\sigma_2}\right)^2 + (1 - \varrho^2) \frac{(x_2 - \mu_2)^2}{\sigma_2^2} =$$

$$= \frac{1}{\sigma_1^2} \left(x_1 - \mu_1 - \varrho \frac{\sigma_1}{\sigma_2} (x_2 - \mu_2)\right)^2 + (1 - \varrho^2) \frac{(x_2 - \mu_2)^2}{\sigma_2^2}$$

Zatem wyrażenie w nawiasie klamrowym ma postać:

$$\frac{1}{-\frac{1}{2(1-\varrho^2)\sigma_1^2} \left(x_1 - \mu_1 - \varrho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2)\right)^2} - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2} - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2$$

Zatem

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2(1-\varrho^2)^{\frac{1}{2}}} \cdot \exp\left\{h(x_1,x_2) - \frac{1}{2\sigma_2^2}(x_2-\mu_2)^2\right\}$$

Zauważmy, że

$$g(x_1) := \frac{1}{\sqrt{2\pi(1-\varrho^2)}\sigma_1} \exp(h(x_1, x_2))$$

jest gęstością rozkładu

$$N\left(\mu_1 + \varrho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2), (1 - \varrho^2)\sigma_1^2\right)$$

Zatem

$$f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_1 =$$

$$= \frac{1}{\sqrt{2\pi\sigma_2}} \exp\left\{\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2\right\} \int_{-\infty}^{\infty} g(x_1) dx_1$$
= 1

Wniosek: Rozkład brzegowy dwuwymiarowego rozkładu normalnego jest jednowymiarowym rozkładem normalnym

# Niezależność zmiennych losowych

**Definicja.** Niech  $(\Omega, \mathcal{F}, P)$  będzie przestrzenią probabilistyczną, a  $X_1, X_2, \ldots, X_n$  będą zmiennymi losowymi określonymi na tej przestrzeni. Mówimy, że te zmienne losowe są niezależne, jeżeli dla dowolnych zbiorów borelowskich  $A_1, A_2, \ldots, A_n$  zachodzi:

$$P(X_1 \in A_1, \dots X_n, \in A_n) =$$

$$= P(X_1 \in A_1) \dots P(X_n \in A_n)$$

**Definicja.** Mówimy, że zmienne losowe  $X_1, X_2, ...$  są niezależne, jeżeli każdy skończony podciąg ciągu  $X_1, X_2, ...$  składa się z niezależnych zmiennych losowych

### Twierdzenie 10.

Dla zmiennych losowych  $X_1,\ X_2,\ldots,\ X_n$  następujące warunki są równoważne

- (i) zmienne losowe są niezależne
- (ii) dla  $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = F_{X_1}(x_1) \dots F_{X_n}(x_n)$$

**Twierdzenie 11.** Jeżeli  $X = (X_1, X_2, ..., X_n)$  jest wektorem losowym typu skokowego to warunkiem koniecznym i wystarczającym niezależności zmiennych losowych  $X_1, X_2, ..., X_n$  jest:

$$P(X_1 = x_1, ..., X_n = x_n) =$$
  
=  $P_1(X_1 = x_1) ... P_n(X_n = x_n),$ 

dla każdego  $(x_1, \ldots, x_n) \in \mathbf{R}^n$ , gdzie  $P_k$  oznacza brzegowy rozkład prawdopodobieństwa zmiennej losowej  $X_k$   $(k = 1, 2, \ldots, n)$ .

**Twierdzenie 12.** Jeżeli  $X = (X_1, X_2, ..., X_n)$  jest wektorem losowym typu ciągłego o gęstości  $f_X$ , to warunkiem koniecznym i wystarczającym niezależności zmiennych losowych  $X_1, X_2, ..., X_n$  jest:

$$f_{\mathbf{X}}(\mathbf{x}) = f_{X_1}(x_1) \dots f_{X_n}(x_n),$$

dla każdego  $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$ , gdzie  $f_{X_k}$  jest gęstością rozkładu brzegowego zmiennej losowej  $X_k$   $(k = 1, \dots, n)$ 

**Przykład.** Niech  $X_1, X_2$  ma łączny rozkład normalny. Chcemy znaleźć warunek konieczny i wystarczający na niezależność zmiennych  $X_1$  oraz  $X_2$ . Z twierdzenia mamy, że powinno zachodzić

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$$

Ponieważ

$$f_{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2(1-\varrho^2)^{\frac{1}{2}}} \cdot \exp\left\{-\frac{1}{2(1-\varrho^2)} \left[ \left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2 - 2\varrho \frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} \right] \right\}$$

oraz

$$f_{X_1}(x_1) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left[\frac{-(x_1 - \mu_1)^2}{2\sigma_1^2}\right]$$

$$f_{X_2}(x_2) = \frac{1}{\sigma_2 \sqrt{2\pi}} \exp\left[\frac{-(x_2 - \mu_2)^2}{2\sigma_2^2}\right]$$

zauważamy, że warunkiem tym jest  $\varrho = 0$ 

**Przykład.** Niech  $X_i \sim N(\mu_i, \sigma_i^2), i = 1, 2, \dots, n.$ 

Wówczas

$$\prod_{i=1}^{n} f_{X_i}(x_i) =$$

$$= \frac{1}{\prod_{i=1}^{n} (\sigma_i \sqrt{2\pi})} \exp \left[ -\frac{1}{2} \sum_{i=1}^{n} \frac{(x_i - \mu_i)^2}{\sigma_i^2} \right] =$$

$$= \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp \left[ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}) \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})' \right],$$

gdzie  $\mathbf{x} = (x_1, x_2, ..., x_n), \ \boldsymbol{\mu} = (\mu_1, \mu_2, ..., \mu_n)$  oraz

$$\Sigma = \begin{pmatrix} \sigma_1^2 & & 0 \\ & \ddots & \\ 0 & & \sigma_n^2 \end{pmatrix}$$

Wniosek: Jeżeli  $X = (X_1, X_2, ..., X_n) \sim N_n(\boldsymbol{\mu}, \Sigma)$ , to warunkiem koniecznym i dostatecznym niezależności zmiennych losowych  $X_i$ , i = 1, 2, ..., n jest to, aby macierz  $\Sigma$  była diagonalna.

#### Twierdzenie 13.

(a) Jeżeli zmienne losowe  $X_1, X_2, \ldots, X_n$  są niezależne oraz  $g_1, g_2, \ldots, g_n$  są funkcjami borelowskimi, to zmienne losowe

$$Y_1 = g_1(X_1), \dots, Y_n = g_n(X_n)$$

są również niezależne.

(b) Jeżeli  $X_1, \ldots, X_m, Y_1, \ldots, Y_n$  są niezależnymi zmiennymi losowymi oraz

$$f: \mathbf{R}^m \to \mathbf{R}$$
 i  $g: \mathbf{R}^n \to \mathbf{R}$ 

są funkcjami borelowskimi, to

$$U = f(X_1, ..., X_m)$$
 i  $V = g(Y_1, ..., Y_n)$ 

są niezależnymi zmiennymi losowymi, a także

$$U, Y_1, \ldots, Y_n$$

są niezależnymi zmiennymi losowymi.

**Przykład.** Niech  $X_i \sim N(0,1), \ i=1,2$  będą zmiennymi niezależnymi.

Chcemy znaleźć rozkład zmiennej losowej  $X_1^2 + X_2^2$ .

Ponieważ zmienne  $X_1,X_2$  są niezależne, to zmienne  $Y_1=X_1^2,Y_2=X_2^2$  też są niezależne. Zatem

$$f_{Y_1,Y_2}(y_1,y_2) = f_{Y_1}(y_1)f_{Y_2}(y_2)$$

Ponieważ

$$f_{Y_i}(y_i) = \frac{1}{2\sqrt{y_i}} \left( f_{X_i}(\sqrt{y_i}) + f_{X_i}(-\sqrt{y_i}) \right) I_{(0,\infty)}(y_i)$$

oraz

$$f_{X_i}(x_i) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{-x_i^2}{2}\right]$$

mamy

$$f_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi y_i}} \exp\left[-\frac{y_i}{2}\right] I_{(0,\infty)}(y_i)$$

Niech 
$$Z = X_1^2 + X_2^2 = Y_1 + Y_2$$
.

$$F_{Z}(z) = P(Y_{1} + Y_{2} \leq z) = \int_{Y_{1}, Y_{2}} f_{Y_{1}, Y_{2}}(y_{1}, y_{2}) dy_{1} dy_{2} = \int_{Y_{1} + Y_{2} \leq z}^{\infty} \left( \int_{-\infty}^{z - y_{2}} f_{Y_{1}, Y_{2}}(y_{1}, y_{2}) dy_{1} \right) dy_{2} = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{z - y_{2}} f_{Y_{1}}(y_{1}) dy_{1} \right) f_{Y_{2}}(y_{2}) dy_{2} = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{z} f_{Y_{1}}(y_{1} - y_{2}) dy_{1} \right) f_{Y_{2}}(y_{2}) dy_{2} = \int_{-\infty}^{z} \left( \int_{-\infty}^{\infty} f_{Y_{1}}(y_{1} - y_{2}) f_{Y_{2}}(y_{2}) dy_{2} \right) dy_{1}$$

Zmiana oznaczeń dla funkcji w nawiasach:

$$z := y_1, \ x := y_2$$

Zatem 
$$f_Z(z) = \int_{-\infty}^{\infty} f_{Y_1}(z-x) f_{Y_2}(x) dx$$

Robimy odpowiednie podstawienie i otrzymujemy dla z > 0:

$$f_Z(z) = \frac{1}{2\pi} \int_0^z \frac{1}{\sqrt{(z-x)x}} \exp\left[-\frac{z-x+x}{2}\right] dx =$$

$$= \frac{1}{2\pi} \exp\left[-\frac{z}{2}\right] \int_0^z \frac{1}{\sqrt{(z-x)x}} dx =$$

podstawienie t := x/z

$$= \frac{1}{2\pi} \exp\left[-\frac{z}{2}\right] \int_{0}^{1} t^{-\frac{1}{2}} (1-t)^{-\frac{1}{2}} dt =$$

$$= \frac{1}{2\pi} \exp\left[-\frac{z}{2}\right] B(1/2, 1/2) =$$

$$= \frac{1}{2\pi} \exp\left[-\frac{z}{2}\right] \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2} + \frac{1}{2})} =$$

$$= \frac{1}{2} \exp\left[-\frac{z}{2}\right]$$

Zatem

$$f_Z(z) = \frac{1}{2} \exp\left[-\frac{z}{2}\right] I_{(0,\infty)}(z)$$

Można pokazać przez indukcję ze względu na n, że zmienna losowa  $Z=X_1^2+\ldots+X_n^2$  ma rozkład o gęstości

$$f_Z(z) = \frac{1}{2^{n/2}\Gamma(n/2)} z^{n/2-1} e^{-z/2} I_{(0,\infty)}(z)$$

Jest to tzw. rozkład chi-kwadrat o n stopniach swobody. Symbolicznie piszemy

$$X_1^2 + \ldots + X_n^2 \sim \chi^2(n)$$

Fakt.

$$\sum_{i=1}^{m} \lambda_i X_i^2 \sim \chi^2(n), \ X_i^2 \sim \chi^2(1) \quad \Rightarrow \quad m = n, \lambda_i = 1 \blacksquare$$

# Parametry rozkładów

Wartość oczekiwaną (wartość przeciętna, nadzieję matematyczną) zmiennej losowej X oznaczamy symbolem E(X) i określamy w następujący sposób:

# Dla zmiennej losowej skokowej

Jeżeli X jest zmienną losową typu skokowego,  $\mathcal{X} = \{x_1, x_2, \dots\}$ , przy czym szereg

$$\sum_{k} |x_k| P(X = x_k)$$

jest zbieżny, to

$$E(X) = \sum_{k} x_k P(X = x_k)$$

## Dla zmiennej losowej ciągłej

Jeżeli X jest zmienną losową typu ciągłego o gęstości f i zbieżna jest całka

$$\int\limits_{\mathbf{R}} |x| f(x) \, dx,$$

to

$$E(X) = \int_{\mathbf{R}} x f(x) dx$$

Ogólnie:  $E(X) = \int_{\Omega} X(\omega) dP(\omega)$ 

**Przykład.** Niech 
$$\mathcal{X} = \{0, 1\}, P(X = 0) = q,$$
  
 $P(X = 1) = p = 1 - q.$  Wówczas 
$$E(X) = 0 \cdot q + 1 \cdot p = p$$

**Przykład.** Niech  $X \sim B(n, p)$ . Wówczas

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} q^{n-k} =$$

$$= \sum_{k=1}^{n} k \frac{n!}{k!(n-k)!} p^{k-1} q^{n-k} =$$

$$= np \sum_{k=1}^{n} \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} q^{n-k} =$$

$$= np (p+q)^{n-1} = np$$

**Przykład.** Niech  $X \sim P_o(\lambda)$ . Wówczas

$$E(X) = \sum_{k=0}^{\infty} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = \lambda e^{-\lambda} \cdot \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} =$$
$$= \lambda e^{-\lambda} \sum_{r=0}^{\infty} \frac{\lambda^r}{r!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

**Przykład.** Niech  $X \sim N(\mu, \sigma^2)$ . Wówczas

$$E(X) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} x \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx$$

Stosujemy podstawienie  $z = \frac{x - \mu}{\sigma}$  i otrzymujemy

$$E(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (\mu + \sigma z) e^{-\frac{z^2}{2}} dz =$$

$$= \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{2}} dz + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} z e^{-\frac{z^2}{2}} dz =$$

$$= \frac{\mu}{\sqrt{2\pi}} \cdot \sqrt{2\pi} + \frac{\sigma}{\sqrt{2\pi}} \cdot 0 = \mu$$

**Przykład.** Niech  $X \sim C(0,1)$ . Wówczas

$$\int_{-\infty}^{\infty} \frac{|x|}{\pi(1+x^2)} dx = 2 \lim_{A \to \infty} \int_{0}^{A} \frac{x}{\pi(1+x^2)} dx =$$

$$= 2 \lim_{A \to \infty} \frac{1}{2\pi} \ln(1+A^2) = \infty$$

Wniosek: Dla rozkładu Cauchy'ego wartość oczekiwana nie istnieje.

## Własności wartości oczekiwanej

Jeżeli  $E(X) < \infty$ ,  $E(Y) < \infty$ , to

(i) 
$$E(X + Y) = E(X) + E(Y)$$

(ii) 
$$E(aX + b) = aE(X) + b$$
, dla  $a, b \in \mathbf{R}$ 

(iii) Jeżeli 
$$X \ge 0$$
, to  $E(X) = \int_{0}^{\infty} P(X > t) dt$ 

(iv) Jeżeli X oraz Y są niezależne, to

$$E(XY) = E(X)E(Y)$$

**Przykład.** Niech  $X_i$ , i = 1, 2, ...n, ma rozkład dwupunktowy:

$$P(X_i = 0) = q, \quad P(X_i = 1) = p$$

Jeżeli zdarzenia  $A_i = \{X_i = 1\}$  są niezależne, to

$$X = \sum_{k=1}^{n} X_i \sim B(n, p)$$

Zatem

$$E(X) = \sum_{k=1}^{n} E(X_k) = \sum_{k=1}^{n} p = np$$

Twierdzenie 14. Jeżeli funkcja  $\varphi$  jest borelowska, to

(i) Dla X z rozkładu skokowego

$$E(\varphi(X)) = \sum_{k} \varphi(x_k) P(X = x_k)$$

(ii) Dla X z rozkładu ciągłego o gęstości f(x)

$$E(\varphi(X)) = \int_{\mathbf{R}} \varphi(x) f(x) dx$$

**Przykład.** Znaleźć wartość oczekiwaną pola prostokąta, którego obwód jest równy 10, a jeden bok jest zmienną losową X o rozkładzie U[1, 10].

Pole = 
$$X(10 - X)$$
,  $f_X(x) = \frac{1}{9}I_{[1,10]}(x)$ 

$$E(X(10 - X)) = \int_{-\infty}^{\infty} x(10 - x) f_X(x) dx =$$

$$= \frac{1}{9} \int_{1}^{10} x(1 - x) dx = 18$$

**Problem.** Jak możliwie najdokładniej zmierzyć długości dwóch prętów za pomocą zwykłej miarki, jeśli wolno mierzyć tylko dwa razy?

#### Propozycje

- 1. Mierzymy osobno każdy pręt.
- 2. Mierzymy sumę długości prętów, składając je razem, a potem różnicę.

Miernik precyzji pomiaru.

Wynik pomiaru = rzeczywista długość + błąd $X = x + \varepsilon$ 

$$E(X - x)^2 = E(\varepsilon)^2$$

ad 1.

Niech  $X_i$  oznacza pomiar i – tego pręta, i=1,2. Zatem  $X_i=x_i+\varepsilon_i$ . Wielkość błędu pomiaru pierwszego pręta wynosi  $E(\varepsilon_1)^2$ , a drugiego  $E(\varepsilon_2)^2$ . Rozsądnie jest przyjąć

$$E(\varepsilon_1)^2 = E(\varepsilon_2)^2 = \sigma^2$$

ad 2.

Niech S oznacza pomiar sumy długości prętów oraz R różnicę.

$$S = x_1 + x_2 + \varepsilon_1$$
$$R = x_1 - x_2 + \varepsilon_2$$

Jako oszacowanie  $x_1$  przyjmujemy

$$\frac{S+R}{2} = x_1 + \frac{\varepsilon_1 + \varepsilon_2}{2}$$

Jako oszacowanie  $x_2$  przyjmujemy

$$\frac{S-R}{2} = x_2 + \frac{\varepsilon_1 - \varepsilon_2}{2}$$

Rozsądnie jest przyjąć, że

$$E(\varepsilon_1) = E(\varepsilon_2) = 0$$
, oraz  $\varepsilon_1, \varepsilon_2$  niezależne

Na mocy twierdzenia 19, 20 oraz założeń:

$$E\left(\frac{\varepsilon_1 \pm \varepsilon_2}{2}\right)^2 = \frac{1}{4}E(\varepsilon_1)^2 + \frac{1}{4}E(\varepsilon_2)^2 \pm \frac{1}{2}E(\varepsilon_1)E(\varepsilon_2)$$
$$= \frac{1}{4}E(\varepsilon_1)^2 + \frac{1}{4}E(\varepsilon_2)^2 \pm 0 \cdot 0 = \frac{\sigma^2}{2}$$

Średni kwadrat błędu jest dwa razy mniejszy niż poprzednio.

Zauważmy, że jeżeli  $E(\varepsilon) = 0$  to E(X) = x. Zatem

$$E(X - x)^2 = E(X - E(X))^2$$

**Definicja.** Jeżeli  $E(X - EX)^2 < \infty$ , to tę liczbę nazywamy wariancją zmiennej losowej X i oznaczamy:

$$D^2X = E(X - EX)^2.$$

Uwaga.

$$D^{2}X = E(X - EX)^{2} = E(X^{2} - 2X \cdot EX + (EX)^{2})$$
$$= EX^{2} - (EX)^{2}$$

**Definicja.** Pierwiastek z wariancji nazywamy odchyleniem standardowym i oznaczamy przez DX.

# Własności wariancji

Jeżeli X jest zmienną losową, dla której  $EX^2 < \infty$ , to istnieje  $D^2X$  oraz:

- (i)  $D^2 X \ge 0$
- (ii)  $D^2(cX) = c^2 D^2 X$
- (iii)  $D^2(X+a) = D^2X$
- (iv)  $D^2X = 0$  wtedy i tylko wtedy, gdy zmienna losowa X jest z prawdopodobieństwem 1 stała

#### Uwaga.

$$E(X - t)^{2} = E(X - EX + EX - t)^{2}$$

$$= E(X - EX)^{2} + E(X - t)^{2} - 2E((X - EX)(EX - t))$$

$$= E(X - EX)^{2} + E(X - t)^{2} - 2E(X - EX) \cdot E(EX - t)$$

$$\geq E(X - EX)^{2}$$

Zatem funkcja  $f(t) = E(X - t)^2$  przyjmuje minimum – równe wariancji – dla t = EX.

Przykład. Zagadnienie regresji liniowej. Chcemy zmienną Y w rozsądny sposób przybliżyć przy pomocy funkcji liniowej zmiennej X. Za kryterium jakości przybliżenia przyjmiemy średni kwadrat błędu:

wyznaczyć takie liczby a i b, ażeby  $E(Y - aX - b)^2$ była minimalna.

Na podstawie uwagi

$$b = E(Y - aX) = EY - aEX$$

Zatem szukamy takiego a, które minimalizuje

$$E(Y - aX - (EY - aEX)))^{2} =$$

$$= E(Y - EY - a(X - EX))^{2}$$

$$= D^{2}Y + a^{2}D^{2}X - 2aE((Y - EY)(X - EX))$$

Mamy tu funkcję kwadratową względem a. Zatem

$$a = \frac{E((Y - EY)(X - EX))}{D^2X}$$

Oznaczając

$$\varrho(X,Y) = \frac{E((Y - EY)(X - EX))}{\sqrt{D^2X \cdot D^2Y}}$$

mamy

$$aX + b = \varrho(X, Y) \frac{DY}{DX} (X - EX) + EY$$

oraz

$$\min_{a,b} E(Y - aX - b)^2 = (1 - \varrho(X, Y)^2)D^2Y$$

**Definicja.** Kowariancją całkowalnych zmiennych losowych X,Y, spełniających warunek  $E|XY|<\infty,$  nazywamy wielkość

$$Cov(X,Y) = E((Y - EY)(X - EX)).$$

**Definicja.** Współczynnikiem korelacji zmiennych X,Y nazywamy wielkość

$$\varrho(X,Y) = \frac{E((Y - EY)(X - EX))}{\sqrt{D^2X \cdot D^2Y}}.$$

Uwaga. Z ostatniej równości w przykładzie wynika:

- (i)  $-1 \le \varrho(X, Y) \le 1$
- (ii)  $|\varrho(X,Y)|=1$  wtedy i tylko wtedy, gdy istnieją liczby  $a\neq 0$  oraz b takie, że P(Y=aX+b)=1

## Wariancja sumy zmiennych losowych

Jeżeli każda ze zmiennych losowych  $X_1, X_2, \ldots, X_n$  ma wariancję, to istnieje wariancja sumy i

$$D^{2}(X_{1} + \ldots + X_{n}) = \sum_{i=1}^{n} D^{2}X_{i} + 2 \sum_{1 \leq i < j \leq n} \operatorname{Cov}(X_{i}, X_{j})$$

**Definicja.** Zmienne losowe X, Y, dla których

$$Cov(X, Y) = 0$$
, czyli  $\varrho(X, Y) = 0$ ,

nazywamy nieskorelowanymi.

**Wniosek.** Jeśli zmienne losowe  $X_1, X_2, \ldots, X_n$  mają wariancję i są parami nieskorelowane, to

$$D^{2}(X_{1} + \ldots + X_{n}) = \sum_{i=1}^{n} D^{2}X_{i}$$

(?) **Uwaga.** Jeżeli X, Y są niezależne, to są nieskorelowane.

Odwrotny fakt nie zachodzi (chyba, że mamy do czynienia z rozkładem normalnym)

**Przykład.** Niech  $(X_1, X_2)$  ma dwuwymiarowy rozkład normalny. Policzmy  $Cov(X_1, X_2)$ . Zgodnie z przekształceniami z przykładu na rozkład brzegowy dwywymiarowego rozkładu normalnego mamy:

$$f_{X_1,X_2}(x_1,x_2) = f_{X_2}(x_2) \underbrace{g(x_1,x_2)}_{g(x_1)-\text{prz.}}$$

gdzie  $f_{X_2}(x_2)$  jest gęstością rozkładu  $N(\mu_2, \sigma_2^2)$  oraz  $g(x_1, x_2)$  traktowana jako funkcja zmiennej  $x_1$  z parametrem  $x_2$ , jest funkcją gęstości zmiennej

$$N\left(\mu_1 + \varrho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2), (1 - \varrho^2)\sigma_1^2\right)$$

Zatem

$$Cov(X_1, X_2) = E((X_1 - \mu_1)(X_2 - \mu_2)) =$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 - \mu_1)(x_2 - \mu_2) f_{X_2}(x_2) g(x_1, x_2) dx_1 dx_2 =$$

$$= \left(\int_{-\infty}^{\infty} (x_2 - \mu_2) f_{X_2}(x_2) \cdot \left(\int_{-\infty}^{\infty} (x_1 - \mu_1) g(x_1, x_2) dx_1\right)\right) dx_2$$

Zatem

$$= \left( \int_{-\infty}^{\infty} (x_2 - \mu_2) f_{X_2}(x_2) \cdot \left( \mu_1 + \varrho \frac{\sigma_1}{\sigma_2} (x_2 - \mu_2) - \mu_1 \right) \right) dx_2$$

A zatem

$$= \varrho \frac{\sigma_1}{\sigma_2} \int_{-\infty}^{\infty} (x_2 - \mu_2)^2 f_{X_2}(x_2) dx_2 = \varrho \frac{\sigma_1}{\sigma_2} \sigma_2^2 = \varrho \sigma_1 \sigma_2$$

Stąd  $\varrho(X,Y) = \varrho$ . Zatem X,Y niezależne  $\Leftrightarrow X,Y$  nieskorelowane.

# Rozkłady warunkowe

**Przykład.** Niech (X, Y) – dwuwymiarowy wektor losowy typu skokowego

$$X \in \{x_1, x_2, \dots\}, Y \in \{y_1, y_2, \dots\}$$

Rozkład

$$p_{ij} := P(X = x_i, Y = y_j)$$

Prawdopodobieństwa brzegowe

$$P(X = x_i) = \sum_{k} p_{ik}, \quad P(Y = y_k) = \sum_{i} p_{ik}$$

Zachodzi

$$P(X = x_i | Y = y_k) \ge 0, \quad \sum_i P(X = x_i | Y = y_k) = 1$$

$$P(Y = y_k | X = x_i) \ge 0, \quad \sum_k P(Y = y_k | X = x_i) = 1$$

Zatem dla ustalonego  $y_k$ 

$$P(\cdot | Y = y_k)$$

jest rozkładem prawdopodobieństwa.

Podobnie

$$P(\cdot \mid X = x_i)$$

# Przykład. Rzut dwiema kostkami.

X – wynik rzutu pierwszą kostką

Y – wynik rzutu drugą kostką

$$U := \min\{X, Y\}, \quad V := \max\{X, Y\}$$

| $u \setminus v$ | 1              | 2              | 3                                                                                  | $\mid 4 \mid$  | 5                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                              | P(U=u)                                                                                                                                                                                |
|-----------------|----------------|----------------|------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | $\frac{1}{36}$ | $\frac{1}{36}$ | $\frac{2}{36}$                                                                     | $\frac{2}{36}$ | $\frac{2}{36}$                                                                                                                                                                                                                                                                                                                                          | $\frac{2}{36}$                                                                                                                                                                 | $\frac{11}{36}$                                                                                                                                                                       |
| 2               | 0              | $\frac{1}{36}$ | $\begin{array}{ c c }\hline 2\\\hline 36\\\hline 2\\\hline 36\\\hline \end{array}$ | $\frac{2}{36}$ | $ \begin{array}{c c}     \hline         & 2 \\         \hline         & 36 \\         \hline         & 1 \\         \hline         & 36 \\         \end{array} $ | $ \begin{array}{r}     \frac{2}{36} \\     \frac{2}{36} \\     \frac{2}{36} \\     \frac{2}{36} \\     \frac{2}{36} \\     \frac{2}{36} \\     \frac{1}{36} \\   \end{array} $ | $\frac{9}{36}$                                                                                                                                                                        |
| 3               | 0              | 0              | $\frac{1}{36}$                                                                     | $\frac{2}{36}$ | $\frac{2}{36}$                                                                                                                                                                                                                                                                                                                                          | $\frac{2}{36}$                                                                                                                                                                 | $     \begin{array}{r}       \frac{9}{36} \\       \hline       7}{36} \\       \hline       5}{36} \\       \hline       3}{36} \\       \hline       \frac{1}{36}     \end{array} $ |
| 4               | 0              | 0              | 0                                                                                  | $\frac{1}{36}$ | $\frac{2}{36}$                                                                                                                                                                                                                                                                                                                                          | $\frac{2}{36}$                                                                                                                                                                 | $\frac{5}{36}$                                                                                                                                                                        |
| 5               | 0              | 0              | 0                                                                                  | 0              | $\frac{1}{36}$                                                                                                                                                                                                                                                                                                                                          | $\frac{2}{36}$                                                                                                                                                                 | $\frac{3}{36}$                                                                                                                                                                        |
| 6               | 0              | 0              | 0                                                                                  | 0              | 0                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{36}$                                                                                                                                                                 | $\frac{1}{36}$                                                                                                                                                                        |
| P(V=v)          | $\frac{1}{36}$ | $\frac{3}{36}$ | $\frac{5}{36}$                                                                     | $\frac{7}{36}$ | $\frac{9}{36}$                                                                                                                                                                                                                                                                                                                                          | $\frac{11}{36}$                                                                                                                                                                |                                                                                                                                                                                       |

$$E(V|U=3) = \frac{33}{7}$$
  $F(4|U=3) = \frac{3}{7}$ 

**Przykład.** Jaka jest średnia liczba sukcesów w pierwszej próbie, jeżeli wiemy, ile zaszło sukcesów w całej serii n doświadczeń według schematu Bernoulliego?

#### Oznaczenia

 $S_n$  – łączna liczba sukcesów Y – liczba sukcesów w pierwszej próbie

$$A_k := \{ S_n = k \}, \quad B_k := A_k \cap \{ Y = 1 \}$$

$$E(Y|A_k) = \sum_{\omega \in A_k} Y(\omega) P(\omega|A_k) =$$

$$= \frac{1}{P(A_k)} \sum_{\omega \in A_k} Y(\omega) P(\omega) =$$

$$= \frac{1}{P(A_k)} \sum_{\omega \in B_k} P(\omega) = \frac{P(B_k)}{P(A_k)} =$$

$$= \frac{p\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)}}{\binom{n}{k} p^k q^{n-k}} = \frac{k}{n}$$

Zatem  $E(Y|S_n) = \frac{S_n}{n}$  oraz

$$E(E(Y|S_n)) = E(S_n/n) = \frac{E(S_n)}{n} = \frac{np}{n} = p = E(Y)$$

**Przykład.** Niech f(x,y) – gęstość wektora (X,Y).

Rozkłady brzegowe

dla zmiennej 
$$X:$$
  $f_1(x):=\int\limits_{-\infty}^{\infty}f(x,y)\,dy$  dla zmiennej  $Y:$   $f_2(y):=\int\limits_{-\infty}^{\infty}f(x,y)\,dx$ 

dla zmiennej 
$$Y: \quad f_2(y) := \int_{-\infty}^{\infty} f(x, y) dx$$

Niech  $P(x < X \le x + h) > 0$ .

Wtedy

$$P(Y \le y | x < X \le x + h) = \frac{\int\limits_{x}^{x+h} \left(\int\limits_{-\infty}^{y} f(x, y) \, dy\right) \, dx}{\int\limits_{x}^{x+h} f_1(x) \, dx}$$

(?) Przy założeniu, że f(x,y)... oraz  $f_1(x)$ ...

$$P(Y \le y | X = x) := \lim_{h \to 0^+} P(Y \le y | x < X \le x + h)$$

$$= \lim_{h \to 0^+} \frac{\frac{1}{h} \int_{x}^{x+h} \left( \int_{-\infty}^{y} f(x, y) \, dy \right) dx}{\frac{1}{h} \int_{x}^{x+h} f_1(x) \, dx}$$

$$= \frac{\int_{-\infty}^{y} f(x, y) \, dy}{f_1(x)} = \int_{-\infty}^{y} \frac{f(x, y)}{f_1(x)} \, dy$$

Oznaczając

$$F(y|x) = P(Y \le y|X = x), \quad f(y|x) = f(x,y)/f_1(x)$$

mamy

$$F(y|x) = \int_{-\infty}^{y} f(y|x) dy$$

Zauważamy, że

$$f_1(x)F(y|x) = \int_{-\infty}^{y} f(x,y) dy$$

Po scałkowaniu obu stron

$$\int_{-\infty}^{\infty} f_1(x)F(y|x) dx = F_Y(y)$$

Przyjmując

$$E(Y|x) := \int_{-\infty}^{\infty} y f(y|x) \, dy$$

mamy

$$\int_{-\infty}^{\infty} E(Y|x)f_1(x) dx = \int \left(\int yf(y|x) dy\right) f_1(x) dx$$
$$= \int \left(\int y \frac{f(x,y)}{f_1(x)} dy\right) f_1(x) dx$$

$$\int \left( \int y f(x, y) \, dy \right) \, dx = \int y \left( \int f(x, y) \, dx \right) \, dy =$$

$$= \int_{-\infty}^{\infty} y f_2(y) \, dy = E(Y)$$

Otrzymaliśmy 
$$E(E(Y|X)) = E(Y)$$

**Definicja.** Jeżeli (X,Y) jest wektorem losowym o gęstości f(x,y) to funkcję

$$f(y|x) = \begin{cases} \frac{f(x,y)}{f_1(x)} & \text{gdy } f_1(x) > 0\\ 0 & \text{w przeciwnym przypadku} \end{cases}$$

nazywamy gęstością warunkową zmiennej Y dla danego X=x.

$$(?) \int_{-\infty}^{\infty} f(y|x) \, dy = 1$$

Nadal zachodzi E(E(Y|X)) = E(Y)

Ponadto rozumiemy, że

$$P(Y \in B|x) = \int_B f(y|x) dy$$
- rozkład warunkowy

Przyjmując  $Z(\omega) = I_B(Y(\omega))$  mamy

$$E(Z) = \int_{-\infty}^{\infty} I_B(y) f_2(y) dy = \int_{B}^{\infty} f_2(y) dy$$
$$= P(Y \in B)$$
$$E(Z|x) = \int_{-\infty}^{\infty} I_B(y) f(y|x) dy = \int_{B}^{\infty} f(y|x) dy$$
$$= P(Y \in B|x)$$

Zatem

$$E(P(Y \in B|X)) = P(Y \in B)$$

Dla  $B = (-\infty, y]$  mamy

dystrybuantę zmiennej Y

$$F_Y(y) = P(Y \in B)$$

dystrybuantę zmiennej Y pod warunkiem X = x

$$F(y|x) = P(Y \in B|x)$$

oraz wzór

$$E(F(y|X)) = F_Y(y)$$

**Przykład.** Z odcinka [0,1] wybrano losowo (zgodnie z rozkładem równomiernym) punk X, a następnie z odcinka [0,X], również losowo, punkt Y. Jaka jest średnia długość odcinka [0,Y]?

$$E(Y|X) = \frac{1}{2}X$$
 
$$E(Y) = E(E(Y|X)) = E(\frac{1}{2}X) = \frac{1}{4}$$

**Przykład.** Owad składa X jajeczek zgodnie z rozkładem Poissona z parametrem  $\lambda$ , a owad z jajeczka wylęga się z prawdopodobieństwem p, niezależnie od innych. Znaleźć średnią liczbę potomków.

Niech Y oznacza liczbę potomków owada. Zatem

$$E(Y|X) = Xp$$

Stąd

$$EY = E(E(Y|X)) = E(Xp) = \lambda p$$

Ten przykład pokazuje, jak można obliczać wartość oczekiwaną, korzystając z warunkowej wartości oczekiwanej. Właściwy wybór zmiennej losowej X często bardzo upraszcza rachunki.

**Uwaga.** Skorzystaliśmy ze wzoru EY = E(E(Y|X)), gdy X typu skokowego.

Ja w takim przypadku rozumieć "gęstość łączną"?

Umowa: 
$$\int_{a}^{b} f(x, y) dy = P(X = x, a \le Y \le b)$$

Przy takiej umowie możemy zachować bez zmian określenia "gęstości warunkowych"

$$f(x|y) = \frac{f(x,y)}{f_2(y)}, \quad f(y|x) = \frac{f(x,y)}{f_1(x)}$$

gdzie

$$f_1(x) = \int f(x, y) dy, \quad f_2(y) = \sum_x f(x, y)$$

# Rodzaje zbieżności

**Przykład.** Niech P-rozkład jednostajny na [0,1] oraz

$$X_{kn}(\omega) = \begin{cases} 1 & \text{dla } \omega \in \left[\frac{k}{n}; \frac{k+1}{n}\right); \\ 0 & \text{dla } \omega \in \Omega \setminus \left[\frac{k}{n}; \frac{k+1}{n}\right) \end{cases}$$

dla  $0 \le k \le n - 1$ ,  $n = 1, 2, \dots$ 

$$P(X_{nk} = 0) = 1 - \frac{1}{n}, \quad P(X_{nk} = 1) = \frac{1}{n}$$
$$P(|X_{nk}| > \varepsilon) = \frac{1}{n} \xrightarrow[n \to \infty]{} 0, \quad \text{dla } 0 < \varepsilon < 1$$

O ciągu  $X_{01}$ ,  $X_{02}$ ,  $X_{12}$ ,  $X_{03}$ ,  $X_{13}$ ,  $X_{23}$ , ... powiemy, że jest zbieżny do zera według prawdopodobieństwa.

Ciąg ten jest rozbieżny w każdym punkcie przedziału.

Na przykład dla  $\omega = 1/2$  mamy ciąg:  $0, 0, 1, 0, \ldots$ , który na dowolnie dalekich miejscach ma zera i jedynki.

**Definicja.** Ciąg zmiennych losowych  $(X_n)_{n=1}^{\infty}$  jest zbieżny do zmiennej losowej X:

# według prawdopodobieństwa, jeśli

dla każdego 
$$\varepsilon > 0$$
  $\lim_{n} P(|X_n - X| > \varepsilon) = 0$ ,

co oznaczamy  $X_n \stackrel{P}{\longrightarrow} X$ ,

prawie na pewno, jeśli

$$P\left(\left\{\omega: \lim_{n} X_n(\omega) = X(\omega)\right\}\right) = 1$$

co oznaczamy  $X_n \xrightarrow{p.n.} X$ 

$$X_{n} \xrightarrow{p.n.} X \Leftrightarrow P\left(\bigcup_{N=1}^{\infty} \bigcap_{n=N}^{\infty} \{|X_{n} - X| \le \varepsilon\}\right) = 1 \Leftrightarrow$$

$$\Leftrightarrow \lim_{N \to \infty} P\left(\bigcap_{n=N}^{\infty} \{|X_{n} - X| \le \varepsilon\}\right) = 1 \Leftrightarrow$$

$$\Leftrightarrow \lim_{N \to \infty} P\left(\bigcup_{n=N}^{\infty} \{|X_{n} - X| > \varepsilon\}\right) = 0 \Rightarrow$$

$$\Rightarrow \lim_{N \to \infty} P\left(\{|X_{N} - X| > \varepsilon\}\right) = 0 \Leftrightarrow$$

$$\Leftrightarrow X_{n} \xrightarrow{P} X$$

Wniosek. Zbieżność prawie na pewno pociąga zbieżność według prawdopodobieństwa.

**Przykład.** Niech  $X_n$  ma rozkład  $P(X_n = a_n) = 1$ . Zatem  $F_{X_n}(t) = I_{[a_n,\infty)}(t)$ 



Gdy  $a_n \downarrow a$  okazuje się, że  $F_{X_n}(a) \equiv 0 \neq 1 = F_X(a) \blacksquare$ 

**Przykład.** Niech F będzie dowolną dystrybuantą. Zdefiniujmy dystrybuantę  $F_n(t) = F(t - \frac{1}{n}), n = 1, 2, ...$  Wtedy

$$F_n(t) \to F(t-)$$
.

Zauważmy, że F(t-) = F(t) tylko wtedy, gdy t jest punktem ciągłości t.

**Definicja.** Ciąg zmiennych losowych  $(X_n)_{n=1}^{\infty}$  jest zbieżny do zmiennej losowej X według dystrybuant, jeśli ciąg dystrybuant  $(F_{X_n})_{n=1}^{\infty}$  jest zbieżny do dystrybuanty  $F_X$  w każdym punkcie jej ciągłości, co oznaczamy:

$$X_n \stackrel{D}{\longrightarrow} X$$

#### Można pokazać

$$(X_n \stackrel{p.n.}{\to} X) \Rightarrow (X_n \stackrel{P}{\to} X) \Rightarrow (X_n \stackrel{D}{\to} X)$$

# Prawa wielkich liczb

Oznaczmy

$$S_n = X_1 + X_2 + \dots + X_n, \quad \bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Niech  $X_1, X_2, \ldots$  będzie ciągiem niezależnych zmiennych losowych o tym samym rozkładzie, o wartości średniej  $\mu$  i wariancji  $0 < \sigma^2 < \infty$ . Wtedy dla każdego  $\varepsilon > 0$  mamy

#### Słabe prawo wielkich liczb

$$\lim_{n \to \infty} P\left( \left| \frac{X_1 + X_2 + \dots + X_n}{n} - \mu \right| < \varepsilon \right) = 1$$

$$\left| \bar{X}_n \stackrel{P}{\longrightarrow} \mu \right|$$

#### Mocne prawo wielkich liczb

$$P\left(\lim_{n\to\infty}\frac{X_1+X_2+\cdots+X_n}{n}=\mu\right)=1$$

$$\left| \bar{X}_n \stackrel{p.n.}{\longrightarrow} \mu \right|$$

Wniosek. Prawdopodobieństwo jest odpowiednikiem teoretycznym częstości.

Faktycznie, jeżeli w wyniku powtórzenia niezależnie n razy doświadczenia otrzymaliśmy  $\omega_1, \ \omega_2, \ldots, \ \omega_n$ , to

$$\frac{I_A(\omega_1) + I_A(\omega_2) + \dots + I_A(\omega_n)}{n} \xrightarrow{p.n.} EI_A = P(A)$$

#### Metoda Monte Carlo obliczania całek.

Niech  $X_i$  będą niezależnymi zmiennymi losowymi o wartościach w (0,1) i o gęstości g. Wtedy z MPWL

$$S_n = \frac{1}{n} \sum_{i=1}^n \frac{f(X_i)}{g(X_i)} \xrightarrow[n \to \infty]{} E\left[\frac{f(X_1)}{g(X_1)}\right] =$$

$$= \int_0^1 \frac{f(x)}{g(x)} \cdot g(x) \, dx = \int_0^1 f(x) \, dx$$

W szczególności, gdy  $X_i \sim U(0,1)$ , to

$$\frac{1}{n} \sum_{i=1}^{n} f(X_i) \xrightarrow[n \to \infty]{} \int_{0}^{1} f(x) dx$$

**Przykład.** Obliczanie liczby  $\pi$  przy pomocy komputera: generujemy 50 wartości z rozkładu U(0,1) (kolumna x). Następnie wyliczamy  $y = \sqrt{1-x^2}$ . Z kolumny y wyliczamy średnią i mnożymy ją przez cztery. Otrzymujemy wartość 3.155. Jeśli przybliżenia to nie nie jest zadowalające, można wygenerować na przykład 1000 wartości.

| $\underline{}$ | y     | x     | y     | x     | y     |
|----------------|-------|-------|-------|-------|-------|
| 0.382          | 0.924 | 0.017 | 1.000 | 0.952 | 0.307 |
| 0.101          | 0.995 | 0.285 | 0.959 | 0.053 | 0.999 |
| 0.596          | 0.803 | 0.343 | 0.939 | 0.705 | 0.709 |
| 0.899          | 0.438 | 0.554 | 0.833 | 0.817 | 0.577 |
| 0.885          | 0.466 | 0.357 | 0.934 | 0.973 | 0.233 |
| 0.958          | 0.285 | 0.372 | 0.928 | 0.466 | 0.885 |
| 0.014          | 1.000 | 0.356 | 0.935 | 0.300 | 0.954 |
| 0.407          | 0.913 | 0.910 | 0.414 | 0.750 | 0.661 |
| 0.863          | 0.505 | 0.466 | 0.885 | 0.351 | 0.936 |
| 0.139          | 0.990 | 0.426 | 0.905 | 0.776 | 0.631 |
| 0.245          | 0.970 | 0.304 | 0.953 | 0.074 | 0.997 |
| 0.045          | 0.999 | 0.976 | 0.219 | 0.198 | 0.980 |
| 0.032          | 0.999 | 0.807 | 0.591 | 0.064 | 0.998 |
| 0.164          | 0.986 | 0.991 | 0.132 | 0.358 | 0.934 |
| 0.220          | 0.976 | 0.256 | 0.967 | 0.487 | 0.873 |
| 0.511          | 0.859 | 0.373 | 0.928 | 0.986 | 0.167 |
| 0.041          | 0.999 | 0.231 | 0.973 |       |       |

# Dystrybuanta empiryczna $F_n(x)$

Powtarzamy pewne doświadczenie niezależnie n razy. W wyniku tego otrzymujemy ciąg

$$X_1, X_2, \ldots, X_n$$

niezależnych zmiennych losowych o nieznanej dystrybuancie F.

Chcemy odtworzyć F. W tym celu dla każdego  $x \in \mathbf{R}$  definiujemy

$$F_n(x)(\omega) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}}(\omega)$$

Ponieważ

$$E[I_{\{X_1 \le x\}}] = P(X_1 \le x) = F(x),$$

to z MPWL

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i \le x\}} \xrightarrow[n \to \infty]{} F(x)$$

# Centralne twierdzenie graniczne

#### Centralne Twierdzenie Graniczne

Niech  $X_1, X_2, \ldots$  będą niezależnymi zmiennymi losowymi o tym samym rozkładzie, o wartości średniej  $\mu$  i wariancji  $0 < \sigma^2 < \infty$ . Wtedy

$$\sup_{x \in \mathbf{R}} \left| P\left( \frac{S_n - n\mu}{\sigma \sqrt{n}} \le x \right) - \Phi(x) \right| \xrightarrow[n \to \infty]{} 0$$

$$\boxed{\frac{\bar{X}_n - \mu}{\sigma} \sqrt{n} \stackrel{D}{\longrightarrow} N(0, 1)}$$

Twierdzenie de Moivre – Laplace'a

Niech  $Y_n \sim B(n, p)$ . Wtedy

$$\sup_{x \in \mathbf{R}} \left| P\left( \frac{Y_n - np}{\sqrt{npq}} \le x \right) - \Phi(x) \right| \xrightarrow[n \to \infty]{} 0$$

**Przykład.** Wykonano n=100 niezależnych rzutów monetą. Oznaczmy przez  $Y_n$  liczbę orłów w n rzutach.

Obliczymy  $P(Y_n \ge 61)$ 

$$P(Y_n \ge 61) = 1 - P(Y_n \le 60) =$$

$$= 1 - P\left(\frac{Y_n - 100 \cdot 0.5}{10 \cdot 0.5} \le \frac{60 - 100 \cdot 0.5}{10 \cdot 0.5}\right) =$$

$$= 1 - P\left(\frac{Y_n - 100 \cdot 0.5}{10 \cdot 0.5} \le 2\right) \approx$$

$$\approx 1 - \Phi(2) \approx 0.0228$$

**Uwaga.** Dość dobre przybliżenie uzyskujemy ze wzoru:

$$P\left(a \le \frac{Y_n - np}{\sqrt{npq}} \le b\right) \sim \Phi(b + \frac{1}{2}h) - \Phi(a - \frac{1}{2}h),$$

$$gdzie h = \frac{1}{\sqrt{npq}}$$

# Szybkość zbieżności w centralnym twierdzeniu granicznym

## Twierdzenie Berry-Esséen'a

Jeżeli  $X_1, X_2, \ldots$  są niezależnymi zmiennymi losowymi o tym samym rozkładzie oraz  $E|X_1|^3 < \infty$ , to

$$\sup_{x \in \mathbf{R}} \left| P\left( \frac{S_n - n\mu}{\sigma \sqrt{n}} \le x \right) - \Phi(x) \right| \le C \frac{E|X_1 - EX_1|^3}{\sigma^3 \sqrt{n}},$$

gdzie  $1/\sqrt{2\pi} \le C < 0.8$ .

## Dla rozkładu dwumianowego:

$$\sup_{x \in \mathbf{R}} \left| P\left( \frac{Y_n - np}{\sqrt{npq}} \le x \right) - \Phi(x) \right| \le C \frac{p^2 + q^2}{\sqrt{npq}}$$



Dla  $p \approx 1$  lub  $p \approx 0$  przybliżenie rozkładem normalnym nie musi być zadowalające. Alternatywą jest przybliżenie rozkładem Poissona:

**Twierdzenie 15.** Niech  $Y_n \sim B(n,p)$  oraz  $\lambda = np$ . Wtedy dla każdego zbioru  $M \subseteq \mathbf{N}$  mamy

$$\left| P(Y_n \in M) - \sum_{k \in M} \frac{\lambda^k}{k!} e^{-\lambda} \right| \le \frac{\lambda^2}{n}$$

**Przykład.** Prawdopodobieństwo trafienia "szóstki" w Toto-Lotku jest równe

$$1/\binom{49}{6} = 1/13983816 \approx 7.151 \cdot 10^{-8}.$$

Ilu "szóstek" można się spodziewać w każdym tygodniu, jeżeli grający wypełniają kupony całkowicie losowo i niezależnie od siebie, a kuponów jest  $n = 10^7$ .

Liczba "szóstek" ma rozkład dwumianowy, w przybliżeniu rozkład Poissona z parametrem  $\lambda=np\approx 0.7151$ .

| k | $\frac{\lambda^k}{k!}e^{-\lambda}$ | k | $\frac{\lambda^k}{k!}e^{-\lambda}$ |
|---|------------------------------------|---|------------------------------------|
| 0 | 0.4891                             | 3 | 0.0298                             |
| 1 | 0.3498                             | 4 | 0.0053                             |
| 2 | 0.1251                             | 5 | 0.0008                             |

Błąd przybliżenia rozkładem Poissona:

$$\lambda^2/n \le 0.5 \cdot 10^{-7}.$$

# Twierdzenie Słuckiego

Niech  $X_n \xrightarrow{D} X$  oraz  $Y_n \xrightarrow{D} c$ , gdzie c jest pewną skończoną stałą. Wówczas:

(i) 
$$X_n + Y_n \xrightarrow{D} X + c$$

(ii) 
$$X_n Y_n \stackrel{D}{\to} cX$$

(iii) 
$$X_n/Y_n \xrightarrow{D} X/c$$

Z twierdzenia Słuckiego wynika, że ciąg zmiennych losowych  $(X_n)_n$  zbiega według rozkładu do  $N(\mu, \sigma^2)$ , jeżeli równoważnie ciąg  $\frac{X_n - \mu}{\sigma}$  zbiega do rozkładu N(0,1).

### Asymptotyczna normalność

Mówimy, że ciąg zmiennych  $(X_n)_n$  jest asymptotycznie normalny o średniej  $\mu_n$  i wariancji  $\sigma_n^2$ , jeżeli  $\sigma_n^2 > 0$  dla dostatecznie dużych n oraz

$$\frac{X_n - \mu_n}{\sigma_n} \to N(0, 1).$$

Zapisujemy to jako:  $X_n$  jest  $AN(\mu_n, \sigma_n^2)$ .

# Asymptotyczna normalność przy przekształaceniach

Niech  $X_n$  będzie  $AN(\mu, \sigma_n^2)$ ,  $\sigma_n \to 0$ . Niech g będzie funkcją różniczkowalną w punkcie  $x = \mu$  oraz niech  $g'(\mu) \neq 0$ . Wówczas

$$g(X_n)$$
 jest  $AN(g(\mu), (g'(\mu))^2 \sigma_n^2)$ 

**Przykład.** Niech  $X_n$  ma rozkład Poissona o wartości oczekiwanej  $\theta n$ , gdzie  $\theta > 0$ . Wówczas  $X_n$  jest

$$AN(\theta n, \theta n)$$

(wariancja rozkładu Poissona jest równa wartości średniej) lub równoważnie

$$\frac{X_n}{n}$$
 jest  $AN(\theta, \frac{\theta}{n})$ .

Niech g będzie rozwiązaniem równania

$$\frac{dg(\theta)}{d\theta} = \frac{1/2}{\theta^{1/2}}.$$

To znaczy  $g(x) = x^{1/2}$ . Zatem  $(X_n/n)^{1/2}$  jest

$$AN(\theta^{1/2}, 1/(4n))$$

lub równoważnie  $X_n^{1/2}$  jest

$$AN((\theta n)^{1/2}, 1/4).$$

# Własności rozkładów

# Rozkład sumy niezależnych zmiennych losowych.

Niech X, Y mają rozkłady dyskretne:

$$\sum_{x \in \mathcal{X}} P(X = x) = 1, \quad \sum_{y \in \mathcal{Y}} P(Y = y) = 1$$

Szukamy rozkładu zmiennej losowej Z = X + Y:

$$P(Z = z) = P(X + Y = z) =$$

$$= \sum_{x \in \mathcal{X}} P(X = x, Y = z - x) =$$

$$= \sum_{x \in \mathcal{X}, z - x \in \mathcal{Y}} P(X = x) P(Y = z - x) =$$

W przypadku, gdy  $\mathcal{X} = \{0, 1, \dots\}$  oraz  $\mathcal{Y} = \{0, 1, \dots\}$  mamy

$$P(X + Y = r) = \sum_{i=0}^{r} P(X = i)P(Y = r - i)$$

Przykład.  $X \sim B(n_1, p), \quad Y \sim B(n_2, p).$ 

$$P(X + Y = r) =$$

$$= \sum_{i=0}^{r} {n_1 \choose i} p^i (1-p)^{n_1-i} {n_2 \choose r-i} p^{r-i} (1-p)^{n_1-r+i}$$

$$= p^r (1-p)^{n_1+n_2-r} \sum_{i=0}^{r} {n_1 \choose i} {n_2 \choose r-i}$$

$$= {n_1+n_2 \choose r} p^r (1-p)^{n_1+n_2-r}$$

Zatem  $X + Y \sim B(n_1 + n_2, p)$ 

**Przykład.**  $X \sim Po(\lambda_1), \quad Y \sim Po(\lambda_2)$ 

$$P(X + Y = r) =$$

$$= \sum_{i=0}^{r} \frac{\lambda_1^i}{i!} e^{-\lambda_1} \cdot \frac{\lambda^{r-i}}{(r-i)!} e^{-\lambda_2}$$

$$= e^{-(\lambda_1 + \lambda_2)} \frac{1}{r!} \sum_{i=0}^{r} {r \choose i} \lambda_1^i \lambda_2^{r-i}$$

$$= \frac{(\lambda_1 + \lambda_2)^r}{r!} e^{-(\lambda_1 + \lambda_2)}$$

Zatem  $X + Y \sim Po(\lambda_1 + \lambda_2)$ 

Niech X, Y mają rozkłady ciągłe:

$$X \sim f_X(x), Y \sim f_Y(y)$$

Wówczas (porównać – strona 86)

$$F_{Z}(z) = P(X + Y \le z) = \int_{X+Y \le z} f_{X,Y}(x,y) \, dx dy = \int_{X+Y \le z}^{\infty} \left( \int_{-\infty}^{z-y} f_{X,Y}(x,y) \, dx \right) dy = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{z-y} f_{X}(x) \, dx \right) f_{Y}(y) dy = \int_{-\infty}^{\infty} \left( \int_{-\infty}^{z} f_{X}(x-y) \, dx \right) f_{Y}(y) dy = \int_{\infty}^{z} \left( \int_{-\infty}^{\infty} f_{X}(x-y) f_{Y}(y) \, dy \right) dx$$

Zatem 
$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) dy$$

**Przykład.**  $X \sim U[0, 1], Y \sim U[0, 1]$ 

Ponieważ  $I_{[0,1]}(z-y) = I_{[-1,0]}(y-z) = I_{[z-1,z]}(y)$ , mamy

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} I_{[0,1]}(z-y)I_{[0,1]}(y) dy =$$

$$= \int_{0}^{1} I_{[z-1,z]}(y) dy = \begin{cases} z & \text{dla } 0 \le z \le 1, \\ 2-z & \text{dla } 1 \le z \le 2 \\ 0 & \text{dla } z \notin [0,2] \end{cases}$$

Jest to rozkład trójkątny

**Przykład.** Niech  $X_0, X_1, \ldots, X_n$  mają rozkład wykładniczy:

tzn. o gestości 
$$f(x) = \lambda e^{-\lambda x}$$
 dla  $x > 0$ 

Wtedy  $X_0 + X_1 + \cdots + X_n$  ma rozkład o gęstości

$$g_n(x) = \lambda \frac{(\lambda x)^n}{n!} e^{-\lambda x} \text{ dla } x > 0$$

Jest to rozkład gamma G(1, n + 1)

Dowód. 
$$n=0$$

$$g_0(x) = f(x)$$

$$n = k$$
,  $n = k + 1$ 

$$g_{k+1}(x) = \int_{0}^{\infty} f(x - y)g_{k}(y) dy =$$

$$= \int_{0}^{x} \lambda e^{-\lambda(x - y)} \cdot \lambda \frac{(\lambda y)k}{k!} e^{-\lambda y} dy$$

$$= \frac{\lambda^{k+2}}{k!} e^{-\lambda x} \int_{0}^{x} y^{k} dy = \lambda \frac{(\lambda x)^{k+1}}{(k+1)!} e^{-\lambda x}$$

Ponadto można pokazać, że

$$G_n(x) = 1 - e^{-\lambda x} \left(1 + \frac{\lambda x}{1!} + \dots + \frac{(\lambda x)^n}{n!}\right), \quad x > 0$$

jest dystrybuantą rozkładu gamma  $G(\lambda, n+1)$ .

# Przykład. Proces Poissona

Oznaczmy przez  $X_1, X_2, \ldots$  niezależne zmienne losowe o wspólnym rozkładzie wykładniczym oraz przyjmijmy

$$S_0 = 0, \quad S_n = X_1 + X_2 + \ldots + X_n$$

Niech N(t) oznacza liczbę wskaźników  $k \geq 1$  takich, że  $S_k \leq t$ . Zdarzenie  $\{N(t) = n\}$  następuje wtedy i tylko wtedy, gdy

$$S_n \leq t, \ S_{n+1} > t.$$

Ponieważ  $S_n$  ma rozkład  $G_{n-1}$ , to

$$P(N(t) = n) = G_{n-1}(t) - G_n(t) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

#### Interpretacja

$$\begin{bmatrix} \end{bmatrix}_{X_n} \qquad \begin{bmatrix} \end{bmatrix}_{X_{n-1}} \qquad \cdots \qquad \begin{bmatrix} \end{bmatrix}_{X_2} \begin{bmatrix} \end{bmatrix}_{X_1}$$

 $X_i$  – czas oczekiwania na klienta "<br/> i+1" od chwili przybycia klienta "i"

N(t) – liczba przybyłych klientów do chwili t

**Problem.** Czy w praktyce  $X_i$  może mieć rozkład wykładniczy?

Niech T oznacza czas oczekiwania na klienta.

Zakładamy, że prawdopodobieństwo tego, że klient, na którego czekamy już t jednostek czasu, przybędzie w ciągu czasu  $\Delta t$  jest równe  $\lambda \Delta t + o(\Delta t)$ , gdzie

$$o(\Delta t): \lim_{\Delta t \to 0} \frac{o(\Delta t)}{\Delta t} = 0$$

(niezależnie od tego, jak długo czekamy).

Zatem

$$P(T > t + \Delta t) = P(T > t + \Delta t, T > t) =$$

$$= P(T > t + \Delta t | T > t)P(T > t) =$$

$$= (1 - \lambda \Delta t - o(\Delta t))P(T > t)$$

Zatem

$$\frac{P(T > t + \Delta t) - P(T > t)}{\Delta t} =$$

$$= -\lambda P(T > t) - \frac{o(\Delta t)}{\Delta t} P(T > t)$$

Oznaczając P(t) := P(T > t), dla  $\Delta t \to 0$  mamy:

$$P'(t) = -\lambda P(t)$$

Stad  $P(t) = ce^{-\lambda t}$ .

Zatem

$$F_T(t) = \begin{cases} 1 - P(t) = 1 - ce^{-\lambda t} & \text{dla } t \ge 0, \\ 0 & \text{dla } t < 0 \end{cases}$$

Ponieważ musi zachodzić  $F_T(0) = 0$ , więc c = 1. Zatem T ma rozkład wykładniczy.

Przykład. Rozkład wykładniczy a własność braku pamięci. Niech T ma rozkład wykładniczy z parametrem  $\lambda$ . Zauważmy, że

$$P(T > t + s | T > t) = \frac{P(T > t + s, T > t)}{P(T > t)} =$$

$$= \frac{P(T > t + s)}{P(T > t)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda t}} =$$

$$= e^{-\lambda s} = P(T > s)$$

Zatem P(T > t + s | T > t) = P(T > s), z czego wynika następująca równość

$$P(T > s + t) = P(T > s)P(T > t)$$

Załóżmy teraz, że nie wiemy jaki rozkład ma zmienna T, ale niech to będzie zmienna losowa ciągła, która spełnia powyższa równość.

Jeżeli u(t) = P(T > t) nie jest tożsamościowo równe zeru, to istnieje punkt x taki, że u(x) > 0.

Niech  $\alpha = -\ln u(x)$  i niech  $v(t) = e^{\alpha t}u(xt)$ . Wówczas

$$v(t+s) = v(t)v(s), \quad v(1) = 1$$

Pokażemy, że v(t) = 1 dla wszystkich t > 0.

Zauważmy

$$v^{2}(\frac{1}{2}) = v(1) = 1;$$
  
 $v^{n}(1/n) = v(1) = 1 \text{ dla } n \in \mathbf{N};$   
 $v(m/n) = v^{m}(1/n) = 1 \text{ dla } m, n \in \mathbf{N}$ 

Zatem v(w)=1 dla wszystkich w wymiernych dodatnich. Z ciągłości v wynika, że jest to prawda dla każdej rzeczywistej dodatniej. Zatem

$$v(t) = e^{\alpha t} u(xt) = 1$$

Przyjmując  $y = xt \in (0, \infty)$  oraz  $\lambda = \alpha/x$  mamy

$$P(T > y) = u(y) = e^{-\lambda y}$$

Zatem zmienna T ma rozkład wykładniczy. Powyższe przekształcenia pokazały, że rozkład wykładniczy jest jedynym rozkładem ciągłym (nieujemnym) o własności braku pamięci.

Przykład. Własność braku pamięci dla rozkładu dyskretnego.

Skorzystamy z poprzedniego wyniku:

$$P(T > y) = (e^{\lambda})^y$$

Niech  $k \in \mathbb{N}$  oraz  $1 - p = e^{\lambda}$ . Wówczas

$$P(T = k) = P(T > k - 1) - P(T > k) = (p - 1)^{k - 1}p$$

Otrzymaliśmy **rozkład geometryczny**, który interpretujemy jako liczbę doświadczeń, które należy wykonać, by doczekać się sukcesu. Przy czym doświadczenia wykonujemy według schematu Bernoulliego z prawdopodobieństwem sukcesu p.

# Parametry wektorów losowych Wielowymiarowy rozkład normalny

# Rozkłady form kwadratowych

Oznaczenia

$$X = (X_1, X_2, ..., X_n)'$$
  
 $x = (x_1, x_2, ..., x_n)'$   
 $\mu = (\mu_1, \mu_2, ..., \mu_n)'$ 

# Wartość oczekiwana wektora losowego

$$E(\boldsymbol{X}) = (EX_1, EX_2, \dots, EX_n)'.$$

# Macierz kowariancji wektora losowego

$$D^{2}(\mathbf{X}) = E[(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})']$$
$$= [Cov(X_{i}, X_{j})]_{i,j=1,\dots,n}$$

o ile  $D^2X_i < \infty$  dla każdego  $i = 1, \dots, n$ 

Zauważmy

$$0 \le D^2 \left( \sum_{i=1}^n t_i X_i \right) = E \left( \sum_{i=1}^n t_i (X_i - EX_i) \right)^2$$
$$= \sum_{i,j} t_i t_j \operatorname{Cov}(X_i, X_j)$$

Zatem macierz kowariancji jest symetryczna i nieujemnie określona, co na przykład daje

$$\begin{vmatrix} D^2(X_i) & \operatorname{Cov}(X_i X_j) \\ \operatorname{Cov}(X_i X_j) & D^2 X_j \end{vmatrix} \ge 0$$

a po przekształceniu

$$|\operatorname{Cov}(X_i, X_j)| \le \sqrt{D^2 X_i \cdot D^2 X_j}$$

i w konsekwencji  $|\varrho(X_i, X_j)| \leq 1$ 

#### Podstawowe własności

Jeżeli Ajest macierzą  $p \times n$ , B-macierzą  $n \times n$  to

$$E(AX) = AE(X), \quad E(AXB) = AE(X)B$$
  
 $D^{2}(AX) = AD^{2}(X)A'$ 

# Wielowymiarowy rozkład normalny $N(\mu, \Sigma)$

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})' \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right]$$

Niech  $X \sim N(\boldsymbol{\mu}, \Sigma)$ , A – macierz  $(n \times n)$  nieosobliwa oraz Y = AX.

$$P(\mathbf{Y} \in B) = P(\mathbf{X} \in A^{-1}B) = \int_{A^{-1}B} f(\mathbf{x}) d\mathbf{x}$$
$$= \int_{B} f(A^{-1}\mathbf{y}) ||A^{-1}|| d\mathbf{y}$$

Łatwo sprawdzić, że  $g(\boldsymbol{y}):=f(A^{-1}\boldsymbol{y})\Big|\ |A^{-1}|\Big|$  jest gęstością rozkładu  $N(A\boldsymbol{\mu},A\Sigma A')$ 

Niech teraz  $A_1$  – macierz  $(k \times n)$ ,  $r(A_1) = k$ . Bierzemy macierz  $A_2$  taką, że

$$A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

jest macierzą  $(n \times n)$  nieosobliwą.

Mamy 
$$\boldsymbol{Y} = A\boldsymbol{X} = \begin{pmatrix} A_1\boldsymbol{X} \\ A_2\boldsymbol{X} \end{pmatrix} \sim N(A\boldsymbol{\mu}, A\Sigma A')$$
, gdzie

$$A\mu = \begin{pmatrix} A_1 \boldsymbol{\mu} \\ A_2 \boldsymbol{\mu} \end{pmatrix} \quad A\mu = \begin{pmatrix} A_1 \Sigma A_1' & A_1 \Sigma A_2' \\ A_2 \Sigma A_1' & A_2 \Sigma A_2' \end{pmatrix}$$

Zatem  $A_1 \mathbf{X} \sim N(A_1 \boldsymbol{\mu}, A_1 \Sigma A_1')$  o ile zachodzi taki

Fakt. Jeżeli  $Y \sim N(\mu, \Sigma)$ , gdzie

$$m{Y} = egin{bmatrix} m{Y}_1 \ m{Y}_2 \end{bmatrix}, \quad m{\mu} = egin{bmatrix} m{\mu}_1 \ m{\mu}_2 \end{bmatrix}, \quad \Sigma = egin{bmatrix} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

to  $Y_1 \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$  oraz  $Y_2 \sim N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$ 

Niech  $f(y_1, y_2)$  oznacza gęstość rozkładu  $N(\mu, \Sigma)$ . Przedstawimy tę funkcję w postaci

$$f(y_1, y_2) = g(y_1|y_2)f_2(y_2)$$

Przyjmijmy  $Y_1$   $(m \times 1), Y_2$   $(k \times 1)$  oraz oznaczmy

$$\Sigma^{-1} = R = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}$$

Wtedy 
$$(\mathbf{y} - \boldsymbol{\mu})' \Sigma^{-1} (\mathbf{y} - \boldsymbol{\mu}) = (\mathbf{y} - \boldsymbol{\mu})' R(\mathbf{y} - \boldsymbol{\mu}) =$$

$$= (y - \mu)' \begin{bmatrix} R_{11}(y_1 - \mu_1) + R_{12}(y_2 - \mu_2) \\ R_{21}(y_1 - \mu_1) + R_{22}(y_2 - \mu_2) \end{bmatrix}$$

= 
$$(\mathbf{y}_1 - \boldsymbol{\mu}_1)'[R_{11}(\mathbf{y}_1 - \boldsymbol{\mu}_1) + R_{12}(\mathbf{y}_2 - \boldsymbol{\mu}_2)] + (\mathbf{y}_2 - \boldsymbol{\mu}_2)'[R_{21}(\mathbf{y}_1 - \boldsymbol{\mu}_1) + R_{22}(\mathbf{y}_2 - \boldsymbol{\mu}_2)]$$

$$= (\mathbf{y}_1 - \boldsymbol{\mu}_1)' R_{11} (\mathbf{y}_1 - \boldsymbol{\mu}_1) + (\mathbf{y}_1 - \boldsymbol{\mu}_1)' R_{12} (\mathbf{y}_2 - \boldsymbol{\mu}_2) + (\mathbf{y}_2 - \boldsymbol{\mu}_2)' R_{22} (\mathbf{y}_2 - \boldsymbol{\mu}_2) + (\mathbf{y}_2 - \boldsymbol{\mu}_2)' R_{21} (\mathbf{y}_1 - \boldsymbol{\mu}_1)$$

 $(\text{liczba})' = \text{liczba oraz } (ABC)' = C'B'A', \quad R'_{12} = R_{12}$ 

$$= (\mathbf{y}_1 - \boldsymbol{\mu}_1)' R_{11} (\mathbf{y}_1 - \boldsymbol{\mu}_1) + 2(\mathbf{y}_1 - \boldsymbol{\mu}_1)' R_{12} (\mathbf{y}_2 - \boldsymbol{\mu}_2) + (\mathbf{y}_2 - \boldsymbol{\mu}_2)' R_{21} (\mathbf{y}_1 - \boldsymbol{\mu}_1)$$

$$= y_1' R_{11} y_1 - 2y_1' R_{11} \mu_1 + \mu_1' R_{11} \mu_1 + 2y_1' R_{12} (y_2 - \mu_2) - 2\mu_1' R_{12} (y_2 - \mu_2) + (y_2 - \mu_2)' R_{21} (y_1 - \mu_1)$$

$$= y_1' R_{11} y_1 - 2y_1' (R_{11} \mu_1 - R_{12} (y_2 - \mu_2)) + \mu_1' R_{11} \mu_1 - 2\mu_1' R_{12} (y_2 - \mu_2) + (y_2 - \mu_2)' R_{21} (y_1 - \mu_1)$$

$$= y_1' R_{11} y_1 - 2y_1' R_{11} (\mu_1 - R_{11}^{-1} R_{12} (y_2 - \mu_2)) + \mu_1' R_{11} \mu_1 - 2\mu_1' R_{12} (y_2 - \mu_2) + (y_2 - \mu_2)' R_{21} (y_1 - \mu_1)$$

$$\boldsymbol{\mu}_1^{\star} := \boldsymbol{\mu}_1 - R_{11}^{-1} R_{12} (\boldsymbol{y}_2 - \boldsymbol{\mu}_2)$$

$$= y_1' R_{11} y_1 - 2y_1' R_{11} \mu_1^* + \mu_1' R_{11} \mu_1 -$$

$$-2\mu_1' R_{12} (y_2 - \mu_2) + (y_2 - \mu_2)' R_{21} (y_1 - \mu_1)$$

$$(\boldsymbol{\mu}^{\star})' R_{11} \boldsymbol{\mu}^{\star} = \boldsymbol{\mu}_{1}' R_{11} \boldsymbol{\mu}_{1} - 2 \boldsymbol{\mu}_{1}' R_{12} (\boldsymbol{y}_{2} - \boldsymbol{\mu}_{2}) + (\boldsymbol{y}_{2} - \boldsymbol{\mu}_{2})' R_{21} R_{11}^{-1} R_{12} (\boldsymbol{y}_{1} - \boldsymbol{\mu}_{1})$$

$$= y_1' R_{11} y_1 - 2y_1' R_{11} \mu_1^* + (\mu_1^*)' R_{11} \mu_1^* + + (y_2 - \mu_2)' (R_{22} - R_{21} R_{11}^{-1} R_{12}) (y_1 - \mu_1)$$

$$= (\mathbf{y}_1 - \boldsymbol{\mu}^*)' R_{11} (\mathbf{y}_1 - \boldsymbol{\mu}^*) +$$

$$+ (\mathbf{y}_2 - \boldsymbol{\mu}_2)' (R_{22} - R_{21} R_{11}^{-1} R_{12}) (\mathbf{y}_1 - \boldsymbol{\mu}_1)$$

Zatem możemy przyjąć

$$f(\mathbf{y}_1|\mathbf{y}_2) = \frac{1}{\sqrt{(2\pi)^k |R_{11}^{-1}|}} \exp\left[-\frac{1}{2}(\mathbf{y}_1 - \boldsymbol{\mu}^*)' R_{11}(\mathbf{y}_1 - \boldsymbol{\mu}^*)\right]$$

$$f(\mathbf{y}_2) = \frac{1}{\sqrt{(2\pi)^m |R_{11}^{-1}|^{-1}|\Sigma|}} \times \exp\left[-\frac{1}{2}(\mathbf{y}_2 - \boldsymbol{\mu}_2)'(R_{22} - R_{21}R_{11}^{-1}R_{12})(\mathbf{y}_1 - \boldsymbol{\mu}_1)\right]$$

$$\begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix} = \begin{pmatrix} I & O \\ O & I \end{pmatrix}$$

$$\Sigma_{11}R_{11} + \Sigma_{12}R_{21} = I$$

$$\Sigma_{21}R_{11} + \Sigma_{22}R_{21} = O$$

$$\Downarrow$$

$$\Sigma_{11} + \Sigma_{12}\underline{R_{21}}R_{11}^{-1} = R_{11}^{-1}$$

$$-\Sigma_{22}^{-1}\Sigma_{21}R_{11} = \underline{R_{21}}$$

$$\Downarrow$$

$$\Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} = R_{11}^{-1}$$

Ponadto

$$\mu_1^* = \mu_1 - R_{11}^{-1} R_{12} (\boldsymbol{y}_2 - \boldsymbol{\mu}_2)$$

$$= \mu_1 - R_{11}^{-1} (-\Sigma_{22}^{-1} \Sigma_{21} R_{11})' (\boldsymbol{y}_2 - \boldsymbol{\mu}_2)$$

$$= \mu_1 + \Sigma_{22}^{-1} \Sigma_{21} (\boldsymbol{y}_2 - \boldsymbol{\mu}_2)$$

Ponieważ

$$-\Sigma_{22}^{-1}\Sigma_{21}R_{11} = R_{21}$$

Zatem

$$-\Sigma_{22}^{-1}\underline{\Sigma_{21}}R_{12} = R_{21}R_{11}^{-1}R_{12}$$
$$-\Sigma_{22}^{-1}(I - \Sigma_{22}R_{22}) = R_{21}R_{11}^{-1}R_{12}$$
$$R_{22} - R_{21}R_{11}^{-1}R_{12} = \Sigma_{22}^{-1}$$

Otrzymaliśmy

$$Y_2 \sim N(\boldsymbol{\mu}_2, \Sigma_{22})$$

oraz

$$Y_1|Y_2 \sim N(\boldsymbol{\mu}_1 + \Sigma_{22}^{-1}\Sigma_{21}(\boldsymbol{y}_2 - \boldsymbol{\mu}_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

**Przykład.** Niech  $X \sim N(\boldsymbol{\mu}, \Sigma)$ , gdzie  $\Sigma = (\sigma_{ij})$ . Przyjmijmy  $A = [1, 0, \dots, 0]$ . Mamy

$$X_1 = AX \sim N(\mu_1, \sigma_{11})$$

Analogicznie

$$X_2 \sim N(\mu_2, \sigma_{22})$$
  
 $X_3 \sim N(\mu_3, \sigma_{33})$   
 $\dots \dots$   
 $X_n \sim N(\mu_n, \sigma_{nn})$ 

Zatem  $EX = \mu$  oraz  $D^2X_i = \sigma_{ii}$ 

Ponadto dla

$$e_{ij} = [\dots, 1, \dots, 1, \dots]$$
  
jedynka na  $i$  – tym oraz  $j$  – ym miejscu,  
na pozostałych zera,

mamy 
$$e_{ij}\mathbf{X} \sim N(\mu_i + \mu_j, e_{ij}\Sigma e'_{ij} = \sigma_{ii} + \sigma_{jj} + 2\sigma_{ij}).$$

Ponieważ 
$$D^2(X_i + X_j) = D^2X_i + D_j^2 + 2\operatorname{Cov}(X_i, X_j),$$
 to  $\operatorname{Cov}(X_i, X_j) = \sigma_{ij}.$ 

Stąd 
$$D^2 \mathbf{X} = \Sigma$$

**Przykład.** Niech  $X \sim N(\mu, \sigma^2 I)$  oraz niech A będzie macierzą ortogonalną. Wtedy

$$Y = AX \sim N(A\mu, A\sigma^2 IA' = \sigma^2 I).$$

Zatem jeżeli  $X_1, X_2, \ldots, X_n$  niezależne o rozkładzie  $N(\cdot, \sigma^2)$ , to  $Y_1, Y_2, \ldots, Y_n$  też są niezależne.

#### Twierdzenie Fishera – Cochrana.

Niech  $X \sim N(0, I)$  oraz  $Q_1, \ldots, Q_k$  będą formami kwadratowymi rzędu  $n_1, \cdots, n_k$  takimi, że

$$X'X = Q_1 + \dots, Q_k$$

Wówczas warunkiem koniecznym i dostatecznym na to, by zmienne losowe  $Q_i$  miały rozkłady  $\chi^2(n_i)$  i były niezależne, jest  $\sum n_i = n$ 

**Dowód.** Istnieje 
$$B_i = \begin{bmatrix} w_1^i \\ \cdots \\ w_{n_i}^i \end{bmatrix}$$
  $(n \times n_i)$  taka, że

$$Q_i = \pm (w_1^i \boldsymbol{X})^2 \pm \dots \pm (w_{n_i}^i \boldsymbol{X})^2$$

Ponieważ 
$$n = \sum n_i$$
, to przyjmując  $B = \begin{bmatrix} B_1 \\ \cdots \\ B_{n_k} \end{bmatrix}$  mamy

$$X'X = \sum Q_i = X'B'\Delta BX$$

gdzie

$$\Delta = \begin{bmatrix} \pm 1 & & & \\ & \ddots & & \\ & & \pm 1 & \\ & & & \ddots \end{bmatrix}$$

Ponieważ  $X'X = X'B'\Delta BX$  jest spełniona dla dowolnych X, mamy

$$I = B' \Delta B$$

Ponieważ  $n=r(I)=r(B'\Delta B)\leq r(B)\leq n$ , to B jest macierzą nieosobliwą. Zatem  $\Delta=(B^{-1})'B^{-1}$  jest macierzą dodatnio określoną. W konsekwencji  $\Delta=I$  oraz macierz B jest ortogonalna. Zatem dla  $\boldsymbol{Y}=B\boldsymbol{X}$ 

$$Q_1 = y_1^2 + \dots + y_{n_1}^2$$

$$Q_2 = y_{n_1+1}^2 + \dots + y_{n_1+n_2}^2$$
.....

są niezależne i mają rozkłady  $\chi^2(n_1), \chi^2(n_2), \ldots$ W ten sposób została udowodniona dostateczność warunku. Konieczność jest oczywista. Twierdzenie 16. Warunkiem koniecznym i dostatecznym na to, aby zmienna losowa X'AX miała rozkład  $\chi^2(\nu)$  jest, by macierz A była idempotenta. Wtedy  $\nu = r(A) = tr(A)$ .

#### Dowód.

#### dostateczność

$$X'X = X'AX + X'(I - A)X$$
$$A^{2} = A \Leftrightarrow r(A) + r(I - A) = n$$

Teza wynika z tw. F-C.

#### konieczność

Istnieje macierz ortogonalna C, że przy przekształceniu  $\boldsymbol{X} = C\boldsymbol{Y}$ 

$$\mathbf{X}'A\mathbf{X} = \mathbf{Y}'C'AC\mathbf{Y} = \lambda_1 y_1^2 + \ldots + \lambda_m y_m^2$$

gdzie  $\lambda_i$  są niezerowymi wartościami własnymi macierzy A.

Ponieważ  $Y_i \sim \chi^2(1)$ , więc m = k,  $\lambda_i = 1$ . Zatem C'AC jest macierzą diagonalną o elementach 0 lub 1. Zatem A jest idempotentna, bo

$$C'AC = C'ACC'AC = C'A^2C \implies A = A^2$$

Twierdzenie 17. Jeżeli  $X'X = Q_1 + Q_2$  oraz  $Q_1 \sim \chi^2(k)$ , to  $Q_2 \sim \chi^2(n-k)$ 

**Dowód.** Niech  $Q_1 = X'AX$ . Wtedy

$$Q_2 = \boldsymbol{X}'(I - A)\boldsymbol{X}$$

oraz 
$$(I - A)^2 = I^2 + A^2 - IA - AI = I - A$$
.

Twierdzenie 18. Jeżeli  $Q = Q_1 + Q_2$ ,  $Q \sim \chi^2(m)$ ,  $Q_1 \sim \chi^2(k)$  oraz  $Q_2 \geq 0$ , to  $Q_2 \sim \chi^2(m-k)$ .

**Dowód.** Niech Q = X'AX,  $Q_1 = X'BX$ 

$$Q = \mathbf{X}'A\mathbf{X} = \mathbf{X}'B\mathbf{X} + \mathbf{X}'(A - B)\mathbf{X}$$

Istnieje macierz ortogonalna C, że przy przekształceniu  $\boldsymbol{X} = C\boldsymbol{Y}$ 

$$m{X}'Am{X} = m{Y}'C'ACm{Y} = Y_1^2 + \ldots + Y_m^2$$
  
 $m{X}'Bm{X} = m{Y}'C'BCm{Y}$   
 $m{X}'(I-B)m{X} = m{Y}'C'(A-B)Cm{Y}$ 

Oznaczmy  $B_1 := C'AC$ ,  $B_2 := C'(A - B)C$ . Zatem

$$Y_1^2 + Y_2^2 + \ldots + Y_m^2 = \mathbf{Y}'B_1\mathbf{Y} + \mathbf{Y}'B_2\mathbf{Y}$$

Ponieważ  $Y'B_1Y$ ,  $Y'B_2Y$  są nieujemne, każda z form zawiera wyłącznie elementy  $Y_1, \ldots, Y_m$ . Z poprzedniego twierdzenia  $Q_2 \sim \chi^2(m-k)$ 

#### Twierdzenie 19. Niech

$$\boldsymbol{X}'A_1\boldsymbol{X} \sim \chi^2(k), \ \boldsymbol{X}'A_2\boldsymbol{X} \sim \chi^2(m).$$

Warunkiem koniecznym i dostatecznym na to, aby obie zmienne losowe były niezależne, jest, by

$$A_1 A_2 = 0$$

#### Dowód. Ponieważ

$$A_1(I - A_1 - A_2) = A_2(I - A_1 - A_2) = 0,$$

to

$$r(A_1) + r(A_2) + r(I - A_1 - A_2) = n$$

Ale

$$X'X = X'A_1X + X'A_2X + X'(I - A_1 - A_2)X$$

Zatem z tw. F - C są niezależne.

Jeżeli są niezależne, to  $\boldsymbol{X}'(A_1+A_2)\boldsymbol{X}\sim \chi^2(k+m)$ 

Zatem  $A_1A_2 = 0$ , ponieważ

$$A_1 + A_2 = (A_1 + A_2)^2 = A_1 + A_2 + A_1 A_2 + A_2 A_1$$
  
$$0 = A_1 A_2 + A_2 A_1$$

$$\begin{cases} A_1 0 = A_1 A_2 + A_1 A_2 A_1 \\ 0 A_1 = A_1 A_2 A_1 + A_2 A_1 \end{cases}$$

dodaję stronami

$$0 = 2A_1A_2A_1$$
podstawiam  $A_2A_1 = -A_1A_2$ .
$$0 = -2A_1A_2$$

#### Twierdzenie 20. Niech

$$X'X = X'A_1X + \ldots + X'A_kX.$$

Każdy z następujących warunków jest warunkiem koniecznym i dostatecznym na to, aby zmienne losowe

$$X'A_1X,\ldots,X'A_kX$$

były niezależne i aby  $X'A_iX \sim \chi^2(n_i)$ , gdzie  $n_i$  jest rzędem macierzy  $A_i$ :

- (a) Macierze  $A_1, \ldots, A_k$  są idempotentne,
- (b)  $A_i A_j = 0$  dla wszystkich  $i \neq j$ .

**Dowód.** Ponieważ  $A_i^2 = A_i$ , więc  $tr(A_i) = r(A_i)$ . Ale

$$I = A_1 + \dots A_k,$$

więc

$$tr(I) = n = \sum tr(A_i) = \sum n_i$$

i z tw. F – C wynika konieczność i dostateczność warunku (a). Ponieważ

$$I = I = A_1 + \dots A_k \text{ oraz } A_i A_j = 0,$$

więc  $A_i(I - A_i) = 0$ , zatem macierze  $A_i$  są indempotentne. Wynika stąd, że  $(a) \Leftrightarrow (b)$ 

Twierdzenie 21. Niech  $X \sim N(\mu, \Sigma)$ . Warunkiem koniecznym i dostatecznym na to, aby zmienna losowa

$$(\boldsymbol{X} - \boldsymbol{\mu})' A(\boldsymbol{X} - \boldsymbol{\mu})$$

miała rozkład  $\chi^2$ , jest, by

$$A\Sigma A = A$$
.

Liczba stopni swobody jest wtedy równa  $tr(A\Sigma)$ .

Dowód.

$$X \sim N(\mu, \Sigma) \Rightarrow (X - \mu) \sim N(0, \Sigma) \Rightarrow$$
  
 $Y = B^{-1}(X - \mu) \sim N(0, I)$   
gdzie  $\Sigma = BB'$ ,  $B$  nieosobliwa

Zatem

$$X = \mu + BY, Y \sim N(0, I)$$
  
 $(X - \mu)'A(X - \mu) = Y'B'ABY$ 

Zatem

$$(\boldsymbol{X} - \boldsymbol{\mu})' A (\boldsymbol{X} - \boldsymbol{\mu}) \sim \chi^2 \Leftrightarrow B' A B$$
 idempotentna

$$B'AB \cdot B'AB = B'AB \Leftrightarrow A\Sigma A = A$$
  
Ponadto  $tr(B'AB) = tr(ABB') = tr(A\Sigma)$ 

Twierdzenie 22. Niech  $X \sim N(\mu, \Sigma)$ . Warunkiem koniecznym i dostatecznym na to, aby zmienne losowe

$$P'X \text{ oraz } (X - \mu)'A(X - \mu)$$

były niezależne, jest, by

$$A\Sigma P = 0$$

Twierdzenie 23. Niech  $X \sim N(\mu, \Sigma)$ . Warunkiem koniecznym i dostatecznym na to, aby zmienne losowe

$$(\boldsymbol{X} - \boldsymbol{\mu})' A(\boldsymbol{X} - \boldsymbol{\mu}) \text{ oraz } (\boldsymbol{X} - \boldsymbol{\mu})' B(\boldsymbol{X} - \boldsymbol{\mu})$$

były niezależne, jest, by

$$A\Sigma B = 0$$