Bachelor Seminar : Kalman Filter

Overview []

- 1. Introduction
 - Examples?
- 2. g-h-Filter
- 3. HMM
- 4. Kalman-Filter
- 5. Outlook: Extended / Unscented Kalman Filter
- 6. End.

Introduction []

- Assume we track sth from above (2D)
- vel+pos -> predict []
- now we get new sensor data what to do? []
- result: weighted mean value []
- Concept: Combine inaccurate measures and worldmodel-based predictions to achieve better accuracy.
- later: variance / imprecision part of the model
- result: new mean & variance []

G-H-Filter []

- this mechanism is the gh-filter
- State variables: []
 - $-\hat{x}_k$ like position
 - $-\hat{v}_k$ like velocity
- Input:
 - Measures x_k
- World Model:
 - constant velocity
- Predict: \hat{x}_k in Δt becomes $\hat{x}_k = \hat{x}_{k-1} + \Delta t \cdot \hat{v}_{k-1}$ []
- The Update-step with assumedly inaccurate measure x_k uses the **Residual** $\hat{r}_k = x_k \hat{x}_k$ scaled by **Parameters** g and h to correct predictions: []
 - $\begin{array}{l} -\ \hat{x}_k = \hat{x}_{k-1} + \Delta t \cdot \hat{v}_{k-1} + g \cdot \hat{r}_k \\ -\ \hat{v}_k = \hat{v}_{k-1} + \frac{h}{\Delta t} \cdot \hat{r}_k \end{array}$

Notes []

- G-H-Filter is also used to *predict*: after update comes next predict already, with time-constant used.
 - many sensors (radar, etc) measure in constant intervals.

Choice of g and h []

- [] Small g, small(no) h -> noise reduced, but lagging
- [] Large g, no h -> no noise reduction.. no filtering
- [] no g, larger h -> total divergence
- [] decent choices -> decent tracking and great noise reduction
- [] last choice = Benedict-Bordner. Reduces transient error given g

Disadvantages

• Acceleration not part of the model

HMM

Markov Model (probability theory)

• stochastic model for randomly changing systems

Markov Chain []

for fully observable systems

- State-Space S: **countable** and often finite
- Observed Variable $x_k \in S$ at step k
- Markov Chain = chain $x_k \in S, k \in \{1, 2, ...\}$
- [] [] markov property : future state(s) depend only on current
- Instead of hidden state variable, the probability for each state is stored
- [] Transition-probabilities: Matrix F_k between states
 - per Timestep k
 - or globally, if time-homogeneous
- If S is finite \rightarrow directed graph, nodes in S, edges the probability
 - simple Dynamic Bayesian Network
- [] EXAMPLE [] [] []
- other example: PageRank algorithm by Google

Hidden Markov Model []

for partially observable systems!

- Not the state variables $x \in S$ are observable, just **output tokens** z that depend on the state []
 - [] emission probabilities: probability-dist of observed variable (tokens) over hidden states p(z|x) * interesting for filtering: a-posteriori p(x|z) get state from emission
 - sequence of tokens/emissions gives only **some** information.

examples

- pattern recognition (speech, handwriting, gestures)
- reinforcement learning
- bioinformatics

Kalman-Filter

Theory

From HMM []

- [] The model of the Kalman-Filter is closely related to the HMM
- [] only in continuous space and adding control and process noise
- state now as Propability Distributions with mean x and (co)variance P
- state transition now operates on mean statespace directly, not on probabilities of states

From G-H-Filter []

- now uses one state vector for all
- allows any linear operation on state vars
- adds control vector & model

- adds observation-model doesn't assume observations of same unit as state
- g and h are now time-dependent and functions of (co)variances of both measurement and prior state -> now called **kalman-gain**: scales each component of the innovation individually

World-Model []

- The Prediction-Matrix (State-transition model) $F_k \in \mathbb{R}^{n \times n}$
 - converts \hat{x}_k to \hat{x}_{k+1} . This can be used to realize position & velocity as in the g-h-filter, but also Acceleration or rather derivations of any degree.
 - The Prediction-Matrix also converts P_k to P_{k+1}
- Control Vector u_k : deterministic and known influence on the state
- The Control-Matrix (Control-input model) B_k converts the control-vector u_k to the units of the state variable.
 - z.B. Voltagelevel on Engine leading to increased velocity
- Some **Process Noise** is assumed in every step. mean 0, cov Q_k . Only cov used

Observation-Model []

- Measurement / Sensor Reading z_k (generally not of the same unit as x_k)
- The **Observation model** H_k converts the state-variable to the units of the measurement-vector (in general the sensors use different units than the kalman filter's state model)
 - For example a gps measures position but not velocity, some in feet others in meters...
- Observation noise = imprecision of sensors with Covariance R_k , only this used

[] (diagram with formulas)

Kalman Filter Process

- 0. Past state []
- 1. Prediction []
 - Changes estimated filter state analog to assumed real change
- 2. Update []

Innovation (Residual)

- mean (in observe-space) observation minus assumed obs from prediction
- $\bullet~$ cov (in observe-space) sensor Cov minus assumed cov from prediction
- [] The **Kalman-Gain** K_k scales the Residual in proportion to the prediction like **g** and **h** only dynamically, proportional to increase in precision ($scov^{-1}$) by new sensor readings

New best estimates []

- $\bullet\,$ new mean analog to g-h-filter only with kalman gain
- new covariance

Overview of Variables in Diagram []

1-D example: In 1-D with state estimate $(x_{k|k-1}, Var(x_{k|k-1}))$ comes measurement $(y_k, Var(y_k))$. Weigh both with the **inverse Variance** (higher Var -> lower Precision) to recieve:

Notes

- Kalman Filter is a common Sensor Fusion Algorithm
- Kalman Filter is optimal linear filter, assumed
 - 1. the model perfectly matches the real system
 - 2. the entering noise is white (uncorrelated)
 - 3. the covariances of the noise are exactly known