The Large Scale Structure of the Cosmic Microwave Background

Edvard B. Rørnes,* Anton A. Brekke,† and Isak O. Rukan[‡] Institute of Physics, University of Oslo, 0371 Oslo, Norway (Dated: September 3, 2024)

coefficients β_i :

asdfasdf

CONTENTS

			, -
1.	Introduction	1	$p{-}1$
2.	Theory	1	$\tilde{y}_i = \sum_{i=0}^{p-1} \beta_j x_i^j \tag{2}$
	2.1. OLS	1	j=0
	2.2. Ridge	1	1-f-:
	2.3. LASSO	1	defining the $n \times p$ design matrix $(\mathbf{X})_{ij} = (x_i)^j$ we can
	2.4. Resampling	1	rewrite this as
	2.5. Bias-Variance	1	$\tilde{\boldsymbol{y}} = \boldsymbol{X}\boldsymbol{\beta} \tag{3}$
3.	Implementation	1	.,,
4.	Results	1	2.1. OLS
	4.1. OLS	1	
	4.2. Ridge	1	2.2. Ridge
	4.3. LASSO	1	
5.	Discussion	1	2.3. LASSO
6.	Conclusion	1	2.4. Resampling
		1	0 % D! W !
	Part d)	1	2.5. Bias-Variance
	Part e)	2	3. IMPLEMENTATION

1. INTRODUCTION

intro thingy

2. THEORY

The general structure of all our models is that we have some data set $\{x_i, y_i\}$ where $i \in \{0, 1..., n-1\}$ where x_i are independent variables whilst y_i are dependent variables. The data is assumed to be described by

$$y = f(x) + \varepsilon \tag{1}$$

where f is some continuous function which takes \boldsymbol{x} as input and ε is a normal distributed error $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. The function f will then be approximated with a model

4. RESULTS

 \tilde{y} in which we will consider a polynomial expansion with

4.1. OLS

4.2. Ridge

4.3. LASSO

5. DISCUSSION

CONCLUSION

PART D)

Show that the expectation value and variance of \boldsymbol{y} is

$$\mathbb{E}(y_i) = \sum_j x_{ij} \beta_j = \boldsymbol{X}_{i,*} \boldsymbol{\beta}, \quad \text{Var}(y_i) = \sigma^2$$

where y is defined by $y = f(x) + \varepsilon$. Here $\varepsilon \sim N(0, \sigma^2)$ is a normal distributed error and f(x) is the approximated function given our model \tilde{y} obtained by minimizing (y -

^{*} e.b.rornes@fys.uio.no

[†] asdf

 $^{^{\}ddagger}$ asd fafs

 $\tilde{y})^2$ with $\tilde{y} = X\beta$. With the OLS expression for $\hat{\beta}$ also show that

$$\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$$

Show that you can rewrite

and

Solution:

$$Var(\hat{\boldsymbol{\beta}}) = \sigma^2(\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

$\operatorname{var}(\beta) = 0 \quad (21 \quad 21)$

Trivially $\mathbb{E}(\varepsilon_i) = 0$ from its definition. Thus from the definition of \boldsymbol{y} we have that

$$\mathbb{E}(y_i) = \mathbb{E}(f(x_i)) = X_{i,*}\beta$$
 as

Similarly the variance is given by

$$Var(y_i) = \mathbb{E}\{[y_i - \mathbb{E}(y_i)]^2\} = \mathbb{E}\{(\boldsymbol{X}_{i,*}\boldsymbol{\beta} + \varepsilon_i)^2\} - (\boldsymbol{X}_{i,*}\boldsymbol{\beta})^2$$
$$= (\boldsymbol{X}_{i,*}\boldsymbol{\beta})^2 + \mathbb{E}(\varepsilon_i^2) + 2\mathbb{E}(\varepsilon_i)\boldsymbol{X}_{i,*}\boldsymbol{\beta} - (\boldsymbol{X}_{i,*}\boldsymbol{\beta})^2$$
$$= Var(\varepsilon_i^2) = \sigma^2$$

$$\mathbb{E}[(\boldsymbol{y} - \tilde{\boldsymbol{y}})^2] = \operatorname{Bias}[\tilde{y}] + \operatorname{Var}[\tilde{y}] + \sigma^2$$

PART E)

 $C(\boldsymbol{X}, \boldsymbol{\beta}) = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = \mathbb{E}[(\boldsymbol{y} - \tilde{\boldsymbol{y}})^2]$

The optimal parameters β for OLS are given by

$$\hat{\boldsymbol{\beta}}_{\text{OSL}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

which yields the expectation value

$$\operatorname{Bias}[\tilde{y}] = \mathbb{E}[(\boldsymbol{y} - \mathbb{E}[\tilde{\boldsymbol{y}}])^2]$$

$$\mathbb{E}(\hat{\boldsymbol{\beta}}_{\text{OLS}}) = \mathbb{E}[(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y}] = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}[\boldsymbol{y}] = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{\beta}.$$
and

and the variance

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}_{\mathrm{OLS}}) = \mathbb{E}\{[\boldsymbol{\beta} - \mathbb{E}(\boldsymbol{\beta})][\boldsymbol{\beta} - \mathbb{E}(\boldsymbol{\beta})]^T\}
= \mathbb{E}\{[(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{\beta}][(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{y} - \boldsymbol{\beta}]^T\} \qquad \operatorname{Var}[\tilde{\boldsymbol{y}}] = \mathbb{E}[(\tilde{\boldsymbol{y}} - \mathbb{E}[\tilde{\boldsymbol{y}}])^2] = \frac{1}{n}\sum_{i}(\tilde{\boldsymbol{y}}_i - \mathbb{E}[\tilde{\boldsymbol{y}}])^2
= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\mathbb{E}\{\boldsymbol{y}\boldsymbol{y}^T\}\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \boldsymbol{\beta}\boldsymbol{\beta}^T
= (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T[\boldsymbol{X}\boldsymbol{\beta}\boldsymbol{\beta}^T\boldsymbol{X}^T + \sigma^2]\boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \boldsymbol{\beta}\boldsymbol{\beta}^T
= \boldsymbol{\beta}\boldsymbol{\beta}^T + \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1} - \boldsymbol{\beta}\boldsymbol{\beta}^T = \sigma^2(\boldsymbol{X}^T\boldsymbol{X})^{-1}$$

where