Promoting Fairness through Hyperparameter Optimization

André Cruz, Pedro Saleiro, Catarina Belém, Carlos Soares, and Pedro Bizarro

Motivation & Contributions

- 1. Current hyperparameter optimization is fairness blind, and unwittingly optimizes for unfair models.
- 2. Guiding the search towards fairer regions is a natural solution that can be achieved through multi-objective optimization.
- 3. Fair HO promotes fairness without changing the pipeline or the methods themselves, providing no obstacles to its widespread adoption.
- 4. Results on real-world data show **steep fairness increases** (68% to 147%) at small predictive accuracy costs (4.7% to 7.5%).

Approach

We propose fairness-aware variants of popular algos:

Fairband, Fair TPE, Fair Random Search.

 We use a scalarizing function to optimize for the best fairness-accuracy trade-off.

$$g(\lambda) = \alpha \cdot a(\lambda) + (1 - \alpha) \cdot f(\lambda)$$

• We propose a heuristic to automatically set the trade-off parameter, *α*, based on the expected value of the model's accuracy and fairness.

$$\alpha = 0.5 \cdot (\mathbb{E}_{D \subseteq \Lambda}[f(\lambda)] - \mathbb{E}_{D \subseteq \Lambda}[a(\lambda)]) + 0.5$$

• FB-auto requires no domain knowledge and can be effortlessly integrated into current pipelines.

		$\mathbf{A}\mathbf{c}$	lult		COMPAS				Donors Choose			
Algo.	Validation		\mathbf{Test}		Validation		\mathbf{Test}		Validation		\mathbf{Test}	
	Acc.	Fair.	Acc.	Fair.	Acc.	Fair.	Acc.	Fair.	Acc.	Fair.	Acc.	Fair.
FB-auto	92.0♦	94.7 ♦	91.6 ♦	90.9♦	74.0 ♦	95.8♦	70.1^{\diamondsuit}	90.0♦	54.2 [♦]	98.2♦	50.7♦	86.5♦
FB	92.7^{\spadesuit}	94.0^{\spadesuit}	92.3^{\spadesuit}	89.5^{lack}	$71.2^{igothampi}$	95.5^{igode}	67.6^{\spadesuit}	80.7 ♦	54.2^{\spadesuit}	$97.7^{igoplus}$	$50.4^{igothampi}$	$85.5^{igothambol{\diamond}}$
FairRS	$93.6^{igothampi}$	$79.4^{igothampi}$	$93.8^{igothampi}$	$78.6^{igothampsi}$	67.4^{\spadesuit}	$77.4^{igothampsq}$	64.2^{\spadesuit}	67.8^{\spadesuit}	51.7^{\spadesuit}	$97.0^{igoplus}$	$50.4^{igothampi}$	$79.5^{igothampi}$
FairTPE	$93.3^{igothampi}$	82.2^{\spadesuit}	93.5^{lack}	$80.7^{igodelambda}$	67.1^{\spadesuit}	$81.8^{igodelambda}$	63.9 ♦	69.5^{lack}	$52.3^{igothampi}$	$96.3^{igothermsymbol{\phi}}$	50.6^{\spadesuit}	$79.1^{igothermset}$
$_{ m HB}$	99.4	53.5	99.0	54.1	78.1	45.4	73.6	51.2	60.9	28.7	53.6	35.0
RS	99.4	55.7	99.1	56.6	77.7	43.8	73.2	43.4	59.9	24.9	53.4	32.4
TPE	99.4	54.9	99.1	55.6	78.0	42.8	73.5	46.6	61.0	27.1	53.3	33.4

Figure 1: Results for all hyperparameter tuners on the Adult Income, COMPAS, and Donors Choose datasets. Over 10K models were trained on each dataset. FB-auto consistently achieves Pareto efficient results.

Figure 2: [Adult] Fairness vs predictive accuracy per tuner.

Figure 3: [Adult] Fairness vs predictive accuracy of models selected by FB-auto. Off-the-shelf bias-blind ML algorithms can dominate bias reduction methods via hyperparameter tuning.