(Deep) Policy Search and Policy Gradient

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Standard RL Class overview

► From Sutton&Barto to deep RL...

Sutton, R. S. & Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press.

4日 > 4周 > 4 至 > 4 至 >

Deep Policy Search overview

- Builds on "Deep RL bootcamp" youtube videos https://www.youtube.com/watch?v=S_gwYj1Q-44
- ▶ Differences between "pure" policy gradient and actor critic

Next video

- Overview of the most important state-of-the-art deep policy search algorithms
- Main concepts and properties
- ▶ Plus videos for individual algorithms

General Goal of Policy Search

Let:

- \blacktriangleright π_{θ} be the parametrized policy of an agent
- lacktriangledown $au_{ heta}$ is an agent trajectory
- $R(au_{ heta})$ is the corresponding return
- $J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}}[R(\tau)]$ is the global utility (or cost) function
- We have to sample the expectation, thus the goal is to find

$$\theta^* = \operatorname*{argmax}_{\theta} J(\theta) = \operatorname*{argmax}_{\theta} \sum_{\tau} P(\tau, \theta) R(\tau) \tag{1}$$

- \blacktriangleright where $P(\tau,\theta)$ is the probability of τ under policy π_θ
- We are in a black-box context: we choose a θ , we generate trajectories and get the return $J(\theta)$ of these trajectories
- ▶ Then we look for a better θ

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013) A survey on policy search for robotics. Foundations and Trends® in Robotics, 2(1-2):1-142

(Truly) Random Search

- ▶ Select θ_i randomly
- ▶ Perform a set of au and get $\hat{J}(\theta_i)$
- ▶ If $\hat{J}(\theta_i)$ is the best so far, keep θ_i
- ▶ Loop until $\hat{J}(\theta_i) > target$
- lacktriangle Of course, this is not efficient if the space of heta is large
- ▶ General "blind" algorithm, no assumption on $J(\theta)$
- lacktriangle We can do better if $J(\theta)$ shows some local regularity

Direct Policy Search

Gradient descent

- Start with a policy π_{θ} with performance $J(\theta)$
- lacktriangle Generate random variations of π_{θ_i} and evaluate their performance $J(\theta_i)$

Direct Policy Search

Gradient descent

- ▶ Select the best variations, ignore the rest
- ▶ Get a new policy π_{θ} from selected variations

Direct Policy Search

Gradient descent

- ▶ Repeat the same process
- ► Approximates the gradient

Direct Policy Search

Gradient descent

- ▶ If variations are wide enough, may escape from easy local minima
- Covariance matrices adapt the width of variations

Direct Policy Search

Gradient descent

- ▶ If variations are wide enough, may escape from easy local minima
- ► Covariance matrices adapt the width of variations

Direct Policy Search

Gradient descent

- Until stuck into a wide local minimum
- ► Genetic Algorithms, Evolution Strategies, Finite Differences...

Direct Policy Search

Gradient descent

- ► Compute the local derivative
- Provides steepest descent

Direct Policy Search

Gradient descent

- ▶ Follow the gradient with a step
- Necessity to tune step size

Direct Policy Search

Gradient descent

- Iterate until no more improvement
- Stochastic variant escapes too local minima

Two families of methods Direct Policy Search

- Needs many samples
- More easily escapes local minima
- A separate class about this topic

Gradient descent

- No sample needed
- Gets stuck into local minima
- $J(\theta)$ unknown in policy search
- ► Solution: policy gradient methods

Policy gradient methods

- \blacktriangleright Direct policy search uses $<\theta,J(\theta)>$ pairs and directly looks for θ with the highest $J(\theta)$
- It ignores the fact that the return comes from state and action trajectories generated by a controller π_{θ}
- ▶ We can use explicit gradients if we take this information into account
 - Represent a family of stochastic policies
 - ▶ Increase the probabilities of actions producing trajectories with a high return
 - Not black-box anymore: access the state, action and immediate reward at each step
 - ► The transition and reward functions are still unknown (gray-box approach)
- ► Watch Pieter Abbeel's deep RL bootcamp video #4A:

https://www.youtube.com/watch?v=S_gwYj1Q-44

Plain Policy Gradient (step 1)

▶ Reminder: we look for $\theta^* = \operatorname{argmax}_{\theta} J(\theta) = \operatorname{argmax}_{\theta} \sum_{\tau} P(\tau, \theta) R(\tau)$

$$\begin{array}{lll} \nabla_{\theta}J(\theta) & = & \nabla_{\theta}\sum_{\tau}P(\tau,\theta)R(\tau) \\ & = & \sum_{\tau}\nabla_{\theta}P(\tau,\theta)R(\tau) & * \text{ gradient of sum is sum of gradients} \\ & = & \sum_{\tau}\frac{P(\tau,\theta)}{P(\tau,\theta)}\nabla_{\theta}P(\tau,\theta)R(\tau) & * \text{ Multiply by one} \\ & = & \sum_{\tau}P(\tau,\theta)\frac{\nabla_{\theta}P(\tau,\theta)}{P(\tau,\theta)}R(\tau) & * \text{ Move one term} \\ & = & \sum_{\tau}P(\tau,\theta)\nabla_{\theta}\log P(\tau,\theta)R(\tau) & * \text{ by property of gradient of log} \\ & = & \mathbb{E}_{\tau}[\nabla_{\theta}\log P(\tau,\theta)R(\tau)] & * \text{ by definition of the expectation} \end{array}$$

ightharpoonup The expectation can be approximated over m trajectories

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}, \theta) R(\tau^{(i)})$$

https://www.youtube.com/watch?v=S_gwYj1Q-44 (12')

Plain Policy Gradient (step 2)

- We do not have an analytical expression for $P(\tau, \theta)$
- ▶ Thus the gradient $\nabla_{\theta} \log P(\tau^{(i)}, \theta) R(\tau^{(i)})$ cannot be computed
- ▶ Let us reformulate $P(\tau, \theta)$ using the policy π_{θ}

$$P(\tau^{(i)}, \theta) = \prod_{t=1}^{H} p(s_{t+1}^{(i)} | s_t^{(i)}, a_t^{(i)}) . \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$
 (2)

- (Strong) Markov assumption here
- At each step, probability of taking each action (defined by the policy) times probability of reaching the next state given the action
- ightharpoonup Then product over states for the whole horizon H

Plain Policy Gradient (step 2 continued)

▶ Thus

$$\begin{split} \nabla_{\theta} \log \, \mathrm{P}(\tau^{(i)}, \theta) &= \quad \nabla_{\theta} \log [\prod_{t=1}^{H} p(s_{t+1}^{(i)}|s_{t}^{(i)}, a_{t}^{(i)}).\pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})] \\ &\quad * \log \, \mathrm{of} \, \mathrm{product} \, \mathrm{is} \, \mathrm{sum} \, \mathrm{of} \, \mathrm{logs} \end{split} \tag{3} \\ &= \quad \nabla_{\theta} [\sum_{t=1}^{H} \log \, \mathrm{p}(s_{t+1}^{(i)}|s_{t}^{(i)}, a_{t}^{(i)}) + \sum_{t=1}^{H} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})] \\ &= \quad \nabla_{\theta} \sum_{t=1}^{H} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)}) \, * \, \mathrm{because} \, \mathrm{first} \, \mathrm{term} \, \mathrm{independent} \, \mathrm{of} \, \theta \\ &= \quad \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)}) \, * \, \mathrm{no} \, \mathrm{dynamics} \, \mathrm{model} \, \mathrm{required!} \end{split}$$

https://www.youtube.com/watch?v=S_gwYj1Q-44 (18')

Plain Policy Gradient (step 2 continued)

► Reminder

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} \log P(\tau^{(i)}, \theta) R(\tau^{(i)})$$

► Thus

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)})$$
 (5)

- ▶ The policy structure π_{θ} is known, thus the gradient $\nabla_{\theta} \log \pi_{\theta}$ can be computed
- ► Can be turned into a practical (but inefficient) algorithm
- ▶ We moved from direct policy search on $J(\theta)$ to gradient descent on π_{θ}

Pratical algorithm 1: overview

- \blacktriangleright Collect a set of m trajectories $(s_t^{(i)}, a_t^{(i)}, r_t^{(i)}), i \in \{1, H\}$
- ▶ Compute the resulting return $R(\tau^{(i)}) = \sum_{t=1}^{H} r_t^{(i)}$.
- For each visited $(s_t^{(i)}, a_t^{(i)})$ pair, apply $\nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)}).R(\tau^{(i)})$
- Given (5), this ensures $J(\theta)$ will improve
- ▶ Loop until $J(\theta)$ reaches a local optimum or after some budget

Pratical algorithm 1: intuition

$$\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\sum_{t=1}^{H}\nabla_{\theta}\mathsf{log}\pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})R(\tau^{(i)})$$

- PG is quite different from DPS: search in the state-action space versus parameter space, using some structural assumptions
- lacktriangleright Increasing the log proba. of rewarded actions taken in states increases $J(\theta)$
- $lackbox{ }R(au)$ is the step size of each gradient update
- A bigger $R(\tau)$ results in a bigger update

Pratical algorithm 1: further intuition

- Probabilities π_{θ} must sum to 1, thus increasing one decreases the others
- ▶ Moves the action probabilities π_{θ} in each state towards those providing the highest $R(\tau)$

https://www.youtube.com/watch?v=S_gwYj1Q-44

Distributions over actions: Bernoulli

- ▶ Binary choice between two actions
- lacktriangledown p is a probability, must keep between 0 and 1
- ▶ Use sigmoid, or tanh...
- $\blacktriangleright \ \ \text{Increasing} \ p(left) \ \text{decreases} \ p(right)$

Distributions over actions: Categorical

- ► Choice between K discrete actions
- All the probabilities must sum to 1
- When increasing one probability, how should we decrease the others? (renormalize?)

Distributions over actions: Normal

- Choice of a continuous action (extension to mutidimensional with multivariate Gaussian)
- ▶ The integral must keep to 1
- ightharpoonup Standard approach: keep variance σ constant

Policy representation (continuous action)

The stochastic policy is represented as a multivariate Gaussian: $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = \mathcal{N}(\boldsymbol{\mu}_{\theta}, \boldsymbol{\Sigma}) =$ $\rho^{-\frac{1}{2}(\boldsymbol{\mu}_{\theta}-\mathbf{a}_{t})^{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\theta}-\mathbf{a}_{t})$

$$\begin{split} \log & \pi_{\theta}(a_t|s_t) = -\frac{1}{2}(\boldsymbol{\mu}_{\theta} - \mathbf{a}_t)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\theta} - \mathbf{a}_t) \\ & \nabla_{\theta} \log & \pi_{\theta}(a_t|s_t) = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\theta} - \mathbf{a}_t) \end{split}$$
 Just backpropagate $\boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_{\theta} - \mathbf{a}_t) \sum_{t} (r(\mathbf{s}_t, \mathbf{a}_t))$

- NB: We considered a fixed Σ
- **Learning** Σ_{θ} results in a more involved derivation (but provided by librairies)

https://www.youtube.com/watch?v=SQt0I9jsrJ0 40 + 40 + 40 + 40 +

Policy representation (1D continuous action case)

The stochastic policy is represented as a Gaussian: $\frac{1}{2} \frac{(\mu_0 - a_1)^2}{2}$

$$\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = e^{-\frac{1}{2}\frac{(\mu_{\theta} - a_t)^2}{\sigma}}$$

$$\begin{split} log \pi_{\theta}(a_t|s_t) &= -\frac{1}{2}\frac{(\mu_{\theta} - a_t)^2}{\sigma} \\ \nabla_{\theta} log \pi_{\theta}(a_t|s_t) &= -\frac{\mu_{\theta} - a_t}{\sigma} \end{split}$$
 Just backpropagate
$$-\frac{\mu_{\theta} - a_t}{\sigma} \sum_t r(s_t, a_t)$$

https://www.youtube.com/watch?v=SQt0I9jsrJ0

- ▶ Algo. 1 takes a large batch of trajectories: suffers from large variance
- Computing from complete trajectories is not the best we can do

$$\begin{split} \nabla_{\theta} J(\theta) &= \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \mathrm{log} \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) R(\tau^{(i)}) \\ &= \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \mathrm{log} \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [\sum_{t=1}^{H} r(s_{t}^{(i)}, a_{t}^{(i)})] \\ &* \mathrm{split} \ \mathrm{into} \ \mathrm{two} \ \mathrm{parts} \\ &= \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \mathrm{log} \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [\sum_{k=0}^{t-1} r(s_{k}^{(i)}, a_{k}^{(i)}) + \sum_{k=t}^{H} r(s_{k}^{(i)}, a_{k}^{(i)})] \\ &* \mathrm{past} \ \mathrm{rewards} \ \mathrm{do} \ \mathrm{not} \ \mathrm{depend} \ \mathrm{on} \ \mathrm{the} \ \mathrm{future} \\ &= \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \mathrm{log} \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [\sum_{t=1}^{H} r(s_{k}^{(i)}, a_{k}^{(i)})] \end{split}$$

https://www.youtube.com/watch?v=S_gwYj1Q-44 (26')

Algorithm 2: from step 2 to step 3

- ▶ Same as Algorithm 1
- But computes the sum backwards
- ► Slightly better algorithm

Plain Policy Gradient (step 3 continued)

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [\sum_{k=t}^{H} r(s_{k}^{(i)}, a_{k}^{(i)})]$$
(8)

We can reduce the variance by discounting the rewards along the trajectory

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [\sum_{k=t}^{H} \mathbf{\gamma}^{k} r(s_{k}^{(i)}, a_{k}^{(i)})]$$

$$\sum_{k=t}^{H} \gamma^k r(s_k^{(i)}, a_k^{(i)}) \text{ can be rewritten } Q^{\pi}(s_t^{(i)}, a_t^{(i)})$$

Thus we get

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) Q^{\pi}(s_{t}^{(i)}, a_{t}^{(i)})$$

https://www.youtube.com/watch?v=S_gwYj1Q-44 (26')

Algorithm 3: discounting the reward

- $ightharpoonup Q^{\pi}$ is estimated from Monte Carlo
- ► Even smaller variance

Policy Gradient with constant baseline

 Besides, we can substract a "baseline" to (8) without changing its mean, but improving its variance

$$\nabla_{\theta}J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\sum_{t=1}^{H}\nabla_{\theta}\mathrm{log}\pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})[\sum_{k=t}^{H}r(s_{k}^{(i)},a_{k}^{(i)}) - b(s_{t}^{(i)})]$$

- ightharpoonup A first baseline is the average return \bar{r} over all states of the batch
- We then normalize each local return with $r_t^{(i)} \bar{r}$ and divide by the standard deviation so as to get a mean of 0 and a standard deviation of 1.
- ▶ Greater than average returns get positive, smaller get negative
- Suggested in https://www.youtube.com/watch?v=tqrcjHuNdmQ

Algorithm 4: adding a constant baseline

- lacktriangle Estimate $ar{r}$ and std(r) from all rollouts
- \blacktriangleright Same as Algorithm 2, using $(r_t^{(i)} \bar{r})/std(r)$

▶ Suffers from even less variance

Policy Gradient with state-dependent baseline

- A better baseline is $b(s_t) = \mathbb{E}_{\tau}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... + \gamma^{H-t} r_H] = V^{\pi}(s_t)$
- ▶ The expectation can be approximated from the batch of trajectories
- ► Thus we get

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) [Q^{\pi_{\theta}}(s_{t}^{(i)} | a_{t}^{(i)}) - V^{\pi}(s_{t}^{(i)})]$$

- $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t|a_t) V^{\pi}(s_t)$ is the advantage function
- And we get

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \sum_{t=1}^{H} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)}) A^{\pi}(s_{t}^{(i)}, a_{t}^{(i)})$$

https://www.youtube.com/watch?v=S_gwYj1Q-44 (27')

Algorithm 5: adding a state-dependent baseline

- Estimate $V^{\pi}(s_t)$ from all rollouts
- Estimate $A^{\pi}(s_t^{(i)}|a_t^{(i)})$ from all rollouts
- ▶ Same as Algorithm 1 with $A^{\pi}(s_t^{(i)}|a_t^{(i)})$ instead of $R(\tau^{(i)})$
- Suffers from even less variance
- Still no bootstrap update of an estimate \hat{V}_{ϕ} or \hat{Q}_{ϕ}

State-dependent baseline: towards bootstrap

Algorithm 1 "Vanilla" policy gradient algorithm

Initialize policy parameter θ , baseline b for iteration=1,2,... do Collect a set of trajectories by executing the current policy At each timestep in each trajectory, compute the return $R_t = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'}$, and the advantage estimate $\hat{A}_t = R_t - b(s_t)$. Re-fit the baseline, by minimizing $\|b(s_t) - R_t\|^2$,

summed over all trajectories and timesteps. Update the policy, using a policy gradient estimate \hat{g} , which is a sum of terms $\nabla_{\theta} \log \pi(a_r \mid s_t, \theta) \hat{A}_t$

end for

- lacktriangle A \hat{V}_ϕ or \hat{Q}_ϕ baseline provides a value even in unseen states
- ▶ Recompute the baseline from all trajectories
- Or update the baseline from one trajectory
- ▶ If the critic is estimated based on the previous critic, it becomes bootstrap | S |

https://www.youtube.com/watch?v=S_gwYj1Q-44 (36')

Monte Carlo versus Bootstrap approaches

- Trajectory-based approach: Monte Carlo methods
- Does not record a critic from an iteration to the next
- Gets an unbiased estimate for all visited state-action pairs using the current batch
- Bootstrap approaches: record a parametrized critic
- Bootstrap is sample efficient but suffers from bias and is unstable
- Monte Carlo is stable, but suffers from variance and is slower

Estimating $V^{\pi}(s)$ or $Q^{\pi}(s,a)$

- Let us define \hat{V}_{ϕ} or \hat{Q}_{ϕ} as estimators of $V^{\pi}(s)$ or $Q^{\pi}(s,a)$
- Two approaches to estimate them:
 - ► Monte Carlo estimate: Regression against empirical return

$$\phi_{j+1} \to \arg\min_{\phi_j} \frac{1}{m} \sum_{i=1}^m \sum_{t=1}^H (\hat{V}_{\phi_j}^{\pi}(s_t^{(i)}) - (\sum_{k=t}^H r(s_t^{(i)}, a_t^{(i)})))^2$$

 \blacktriangleright Temporal difference estimate: init $\hat{V}^\pi_{\phi_0}$ and fit using (s,a,r,s') data

$$\phi_{j+1} \to \min_{\phi_j} \sum_{(s,a,r,s')} ||r + \gamma \hat{V}^{\pi}_{\phi_j}(s') - \hat{V}^{\pi}_{\phi_j}(s)||^2$$

May need some regularization to prevent large steps in ϕ

▶ Similar equations for \hat{Q}_{ϕ}

Martin Riedmiller. Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005

András Antos, Csaba Szepesvári, and Rémi Munos. Fitted Q-iteration in continuous action-space MDPs. In Advances in neural information processing systems, pp.9–16, 2008.

Being truly actor-critic

- "Although the REINFORCE-with-baseline method learns both a policy and a state-value function, we do not consider it to be an actor-critic method because its state-value function is used only as a baseline, not as a critic."
- "That is, it is not used for bootstrapping (updating the value estimate for a state from the estimated values of subsequent states), but only as a baseline for the state whose estimate is being updated."
- "This is a useful distinction, for only through bootstrapping do we introduce bias and an asymptotic dependence on the quality of the function approximation."

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction (Second edition). MIT Press, 2018, p. 331

Practical implementation of critics

ullet \hat{V}_ϕ is smaller, but not necessarily easier to estimate

Synthesis

$$\nabla_{\theta}J(\theta) = \mathbb{E}[\psi_t \nabla_{\theta} \mathsf{log} \pi_{\theta}(a_t^{(i)}|s_t^{(i)})]$$

where ψ_t can be:

- 1. $\psi_t = \sum_{t=0}^{H} \gamma^t r_t$: total reward of trajectory
- 2. $\psi_t = \sum_{t'=t}^{H} \gamma^{t'-t} r_{t'}$: sum of rewards after a_t
- 3. $\psi_t = \sum_{t'=t}^{H} \gamma^{t'-t} r_{t'} b(s_t)$: sum of rewards after a_t with baseline
- 4. $\psi_t = r_t + \gamma V^\pi(s_{t+1}) V^\pi(s_t) = \delta_t$: TD error, with $V^\pi(s_t) = \mathbb{E}_{a_t}[\sum_{l=0}^H \gamma^l r_{t+l}]$
- 5. $\psi_t = Q^\pi(s_t, a_t)$: state-action value function, with $Q^\pi(s_t, a_t) = \mathbb{E}_{a_{t+1}}[\sum_{l=0}^H \gamma^l r_{t+l}]$
- 6. $\psi_t = A^{\pi}(s_t, a_t)$: advantage function, with $A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) V^{\pi}(s_t) = \mathbb{E}[\delta_t]$

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015

Monte Carlo, One-step TD and N-step return

- One-step TD suffers from bias
- MC suffers from variance due to exploration (+ stochastic trajectories)
- lacktriangle MC is on-policy ightarrow less sample efficient
- ightharpoonup N-step TD: tuning N to control the bias-variance compromize

Bias-variance compromize

- ▶ Total error = $bias^2 + variance + irreducible error$
- A more complex model (e.g. bigger network) generally has more variance, but less bias
- $\,\blacktriangleright\,$ Tuning N in the N-step return helps finding the right compromize.

Generalized Advantage Estimation: λ return

- ightharpoonup The N-step return can be reformulated using a continuous parameter λ
- $\hat{A}_{\phi}^{(\gamma,\lambda)} = \sum_{l=0}^{H} (\gamma \lambda)^{l} \delta_{t+l}$
- lacksquare $\hat{A}_{\phi}^{(\gamma,0)}=\delta_{t}=$ one-step return
- $\hat{A}_{\phi}^{(\gamma,1)} = \sum_{l=0}^{H} (\gamma)^{l} \delta_{t+l} = \mathsf{MC}$ estimate
- ▶ The λ return comes from eligilibity trace methods
- Provides a continuous grip on the bias-variance trade-off

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015

Computing \hat{V}_{ϕ} or \hat{Q}_{ϕ}

Monte Carlo: no bias, higher variance, lower sample efficiency

bootstrap: bias, lower variance, higher sample efficiency

	One-step, N-step, or λ return
Batch Monte Carlo estimate	Incremental Monte Carlo estimate
TRPO	PPO
Batch Temporal Difference estimate	Incremental Temporal Difference estimate (actor-critic)
	A2C, SAC

- ▶ There are many possibilities to approximate the policy gradient
 - Six proxies to advantage estimators
 - Batch, N-step return, λ return, one-step TD update...
- Results in a large variety of algorithms

Take home messages: DPS vs PG

- ► Direct policy search:
 - optimization without a utility model
 - derivative-free
 - poor sample reuse, low sample efficiency
- ▶ Policy Gradient:
 - Uses analytical derivative of the policy function
 - Uses information from each step, not just trajectories
 - A baseline is used to reduce variance
 - When bootstrap comes into play, becomes actor-critic

Global view

▶ A secon video will focus on state-of-the-art algorithms

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

András Antos, Csaba Szepesvári, and Rémi Munos.

Fitted q-iteration in continuous action-space mdps.

In Advances in neural information processing systems, pp. 9-16, 2008.

Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al.

A survey on policy search for robotics.

Foundations and Trends® in Robotics, 2(1-2):1-142, 2013.

Martin Riedmiller.

Neural fitted q iteration-first experiences with a data efficient neural reinforcement learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

Olivier Sigaud and Freek Stulp.

Policy search in continuous action domains: an overview.

Neural Networks, 113:28-40, 2019.

Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction.
MIT Press, 1998.

Richard S. Sutton and Andrew G. Barto.

Reinforcement Learning: An Introduction (Second edition). MIT Press, 2018.

Ronald J. Williams.

Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning*, 8(3-4):229–256. May 1992.

ISSN 0885-6125.

doi: 10.1007/BF00992696.

