This is a title

Evan H. Anders, Adam S. Jermyn, Daniel Lecoanet, And Benjamin P. Brown

¹CIERA, Northwestern University

²CCA, Flatiron Institute

³ESAM & CIERA, Northwestern University

⁴APS Dept and LASP, University of Colorado, Boulder

(Received; Revised; Accepted; Published)

Submitted to ApJ

ABSTRACT

Blah Blah short description

Keywords: UAT keywords

1. INTRODUCTION

Convection is a crucial heat transport mechanism over some fraction of the stellar radius for all stars at some point in the stellar lifetime [CITE]. These motions drive the magnetic dynamo of the Sun and other stars [CITE], leading to the host of emergent phenomena known as stellar activity. Furthermore, convective motions impinge upon nearby stable layers, exciting gravity waves [CITE]. Convection is also responsible for mixing chemical compositions, which becomes increasingly important in the cores of evolved stars [CITE]. A complete and nuanced understanding is therefore crucial for understanding stellar structure, evolution, and observations.

One particular aspect of stellar convection which remains poorly understood even after decades of study is the class of mechanisms generally referred to as "convective overshoot." Useful parameterizations of the way in which convective motions extend beyond the nominally Schwarzschild- or Ledoux- stable boundaries of the convective zone have historically been elusive. Improved models of this "overshoot" could help to resolve many discrepancies between observations and theoretical model. In the Sun and solar-type stars, better models of convective boundaries could help solve the mystery of low abundances of Li at the surface of solar-type stars (Pinsonneault 1997; Dumont et al. 2021), the "solar modeling problem" (Basu & Antia 2004; Bahcall et al. 2005; Zhang & Li 2012; Vinyoles et al. 2017; Asplund et al. 2021) and problems in helioseismic profiles near the base of the convection zone (Christensen-Dalsgaard et al. 2011). There is also ample evidence that we do not understand the nature of convective mixing at the boundary of core convection zones (Claret & Torres 2018; Jermyn et al. 2018; Viani & Basu 2020; Martinet et al. 2021; Pedersen et al. 2021) which could have profound implications for the post-main sequence evolution and remnants of massive stars Farmer et al. (2019); Higgins & Vink (2020). In order to ensure that models can be evolved on fast (human) timescales, 1D stellar evolution codes rely on simple parameterizations of convective overshoot and mixing beyond convective boundaries (Shaviv & Salpeter 1973; Maeder 1975; Herwig 2000; Paxton et al. 2011, 2013, 2018, 2019). While some preliminary work has been done to couple 3D dynamical convective simulations with 1D stellar evolution codes [CITE], these calculations are currently prohibitively expensive to perform e.g., at every timestep in a stellar evolution calculation. In short, an improved theoretical understanding of the behavior of convective boundaries which can inform easy-to-calculate parameterizations is essential.

Convective overshoot and penetration have been studied in laboratory experiments and numerical simulations for decades, and has been reviewed by many authors (Marcus et al. 1983; Zahn 1991; Browning et al. 2004; Rogers et al.

Corresponding author: Evan H. Anders evan.anders@northwestern.edu

2 Anders et al

2006; Viallet et al. 2015; Korre et al. 2019). A slew of simulations in Cartesian (Musman 1968; Moore & Weiss 1973; Hurlburt et al. 1986, 1994; Singh et al. 1995; Saikia et al. 2000; Brummell et al. 2002; Rogers & Glatzmaier 2005; Käpylä et al. 2007; Tian et al. 2009; Kitiashvili et al. 2016; Lecoanet et al. 2016; Käpylä et al. 2017; Couston et al. 2017; Toppaladoddi & Wettlaufer 2018; Käpylä 2019; Cai 2020) and spherical (Browning et al. 2004; Rogers et al. 2006; Brun et al. 2017; Pratt et al. 2017; Dietrich & Wicht 2018; Higl et al. 2021) geometry have been studied. Despite this lengthy list of experiments, no consensus model of convective overshoot or penetration has emerged. Throughout the remainder of this work, we will use terminology from this hydrodynamical literature. "Convective penetration" refers to convective motions which extend beyond the nominal Schwarzschild boundary of the convection zone and flatten the temperature gradient towards the adiabatic. "Convective overshoot" refers to the motions that extend beyond the convective boundary but do not modify the thermal structure. Our main focus in this paper will be on convective penetration.

Zahn (1991) theorized that convective penetration should depend only on how steeply the radiative temperature gradient varies at the convective boundary. Some simulations (Hurlburt et al. 1994; Rogers et al. 2006) have shown at least partial agreement with this theory. A semianalytic model of solar overshoot (Rempel 2004) also agreed with the early ideas of Zahn. Furthermore, some select simulations have found hints that convective overshoot or penetration may be sensitive the magnitude of the flux in some way (Singh et al. 1998; Hotta 2017; Käpylä 2019). These results suggest that the gradients of fluxes near convective boundaries deserve further examination.

In this work, we design two numerical experiments to test the theory of Zahn (1991). We use a modified incompressible, Boussinesq model to study the simplest possible system, and re-derive his theory in our simplified limit. The results of our simulations are in full agreement with Zahn's theory.

Specifically, we find that the depth of convective penetration depends on the gradient of the radiative flux near the convective boundary.

Thus, the penetration depth can be approximated so long as the radiative conductivity, or likewise the opacity, is known at the convective boundary.

We present these findings as follows. In Sec. 2, we describe our modified Boussinesq equations, re-derive the theory of Zahn (1991), and retrieve predictions for our two experimental designs from that theory. In Sec. 3, we describe our simulation setup and parameters. In Sec. 4, we present the results of these simulations, with a particular focus on the depth of the penetrative regions. In Sec. 5, we create and discuss a solar MESA model which uses this theory to determine the bottom of the solar convection zone. Finally, we discuss how future simulations can put finer constraints on this theory in Sec. 6.

2. THEORY

Throughout this work, we will utilize a modified version of the Boussinesq equations of motion, similar to the model derived by Spiegel & Veronis (1960) and utilized by e.g., Korre et al. (2019). In dimensional form,

$$\nabla \cdot \boldsymbol{u} = 0 \tag{1}$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\frac{1}{\rho_0} \boldsymbol{\nabla} p + \frac{\rho'}{\rho_0} \boldsymbol{g} + \nu \boldsymbol{\nabla}^2 \boldsymbol{u}$$
 (2)

$$\partial_t T + \boldsymbol{u} \cdot \boldsymbol{\nabla} T + w \nabla_{\text{ad}} = \chi \boldsymbol{\nabla}^2 T' + \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \overline{T}] + Q \tag{3}$$

$$\frac{\rho'}{\rho_0} = -|\alpha|T. \tag{4}$$

In this model, ρ_0 is a (constant) background density and ρ' are fluctuations which act only in the buoyancy force and varies linearly with the temperature T according to the coefficient of thermal expansion, $\alpha = \partial \ln \rho / \partial T$. Furthermore, u is the velocity vector, ν and χ are respectively the viscous and thermal diffusivity, Q is a bulk internal heating term [CITE], and $\nabla_{\rm ad}$ is the adiabatic temperature gradient (we define $\nabla_{\rm ad}$ as a positive value to align with stellar structure conventions; this means marginal stability is achieved when $\partial_z T = -\nabla_{\rm ad}$). We modify the model of Spiegel & Veronis (1960) to allow the mean temperature profile \overline{T} to carry a radiative flux $F_{\rm rad} = -k\nabla \overline{T}$, where k is a radiative diffusivity which can vary with height. We assume that the classical thermal diffusion term $\chi \nabla^2 T'$ only acts on the fluctuations away from the mean temperature profile, $T' \equiv T - \overline{T}$.

SHORT TITLE 3

3. SIMULATION DETAILS

$$\nabla \cdot \boldsymbol{u} = 0 \tag{5}$$

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \varpi + T\hat{z} + \mathcal{R}^{-1} \nabla^2 \mathbf{u}$$
(6)

$$\partial_t T + \boldsymbol{u} \cdot \boldsymbol{\nabla} T + w \boldsymbol{\nabla}_{ad} = (\Pr \mathcal{R})^{-1} \boldsymbol{\nabla}^2 T' + \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \overline{T}] + Q \tag{7}$$

4. RESULTS

5. A MODIFIED SOLAR MODEL

6. DISCUSSION

¹ We'd like to thank

APPENDIX

A. ACCELERATED EVOLUTION B. TABLE OF SIMULATION PARAMETERS

REFERENCES

Asplund, M., Amarsi, A. M., & Grevesse, N. 2021, arXiv e-prints, arXiv:2105.01661.

https://arxiv.org/abs/2105.01661

Bahcall, J. N., Serenelli, A. M., & Basu, S. 2005, ApJL, 621, L85, doi: 10.1086/428929

Basu, S., & Antia, H. M. 2004, ApJL, 606, L85, doi: 10.1086/421110

Browning, M. K., Brun, A. S., & Toomre, J. 2004, ApJ, 601, 512, doi: 10.1086/380198

Brummell, N. H., Clune, T. L., & Toomre, J. 2002, ApJ, 570, 825, doi: 10.1086/339626

Brun, A. S., Strugarek, A., Varela, J., et al. 2017, ApJ, 836, 192, doi: 10.3847/1538-4357/aa5c40

Cai, T. 2020, ApJ, 891, 49, doi: 10.3847/1538-4357/ab711c

Christensen-Dalsgaard, J., Monteiro, M. J. P. F. G., Rempel, M., & Thompson, M. J. 2011, MNRAS, 414, 1158, doi: 10.1111/j.1365-2966.2011.18460.x

Claret, A., & Torres, G. 2018, ApJ, 859, 100, doi: 10.3847/1538-4357/aabd35

Couston, L. A., Lecoanet, D., Favier, B., & Le Bars, M. 2017, Physical Review Fluids, 2, 094804, doi: 10.1103/PhysRevFluids.2.094804

Dietrich, W., & Wicht, J. 2018, Frontiers in Earth Science, 6, 189, doi: 10.3389/feart.2018.00189

Dumont, T., Palacios, A., Charbonnel, C., et al. 2021, A&A, 646, A48, doi: 10.1051/0004-6361/202039515 Farmer, R., Renzo, M., de Mink, S. E., Marchant, P., & Justham, S. 2019, ApJ, 887, 53,

doi: 10.3847/1538-4357/ab518b

Herwig, F. 2000, A&A, 360, 952.

https://arxiv.org/abs/astro-ph/0007139

Higgins, E. R., & Vink, J. S. 2020, A&A, 635, A175, doi: 10.1051/0004-6361/201937374

Higl, J., Müller, E., & Weiss, A. 2021, A&A, 646, A133, doi: 10.1051/0004-6361/202039532

Hotta, H. 2017, ApJ, 843, 52, doi: 10.3847/1538-4357/aa784b

Hurlburt, N. E., Toomre, J., & Massaguer, J. M. 1986, ApJ, 311, 563, doi: 10.1086/164796

Hurlburt, N. E., Toomre, J., Massaguer, J. M., & Zahn, J.-P. 1994, ApJ, 421, 245, doi: 10.1086/173642

Jermyn, A. S., Tout, C. A., & Chitre, S. M. 2018, MNRAS, 480, 5427, doi: 10.1093/mnras/sty1831

Käpylä, P. J. 2019, A&A, 631, A122, doi: 10.1051/0004-6361/201834921

Käpylä, P. J., Korpi, M. J., Stix, M., & Tuominen, I. 2007, in Convection in Astrophysics, ed. F. Kupka,

I. Roxburgh, & K. L. Chan, Vol. 239, 437–442, doi: 10.1017/S1743921307000865

Käpylä, P. J., Rheinhardt, M., Brandenburg, A., et al. 2017, ApJL, 845, L23, doi: 10.3847/2041-8213/aa83ab 4 Anders et al

- Kitiashvili, I. N., Kosovichev, A. G., Mansour, N. N., & Wray, A. A. 2016, ApJL, 821, L17, doi: 10.3847/2041-8205/821/1/L17
- Korre, L., Garaud, P., & Brummell, N. H. 2019, MNRAS, 484, 1220, doi: 10.1093/mnras/stz047
- Lecoanet, D., Schwab, J., Quataert, E., et al. 2016, ApJ, 832, 71, doi: 10.3847/0004-637X/832/1/71
- Maeder, A. 1975, A&A, 40, 303
- Marcus, P. S., Press, W. H., & Teukolsky, S. A. 1983, ApJ, 267, 795, doi: 10.1086/160915
- Martinet, S., Meynet, G., Ekström, S., et al. 2021, A&A, 648, A126, doi: 10.1051/0004-6361/202039426
- Moore, D. R., & Weiss, N. O. 1973, Journal of Fluid Mechanics, 61, 553, doi: 10.1017/S0022112073000868
- Musman, S. 1968, Journal of Fluid Mechanics, 31, 343, doi: 10.1017/S0022112068000194
- Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3, doi: 10.1088/0067-0049/192/1/3
- Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4, doi: 10.1088/0067-0049/208/1/4
- Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34, doi: 10.3847/1538-4365/aaa5a8
- Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10, doi: 10.3847/1538-4365/ab2241
- Pedersen, M. G., Aerts, C., Pápics, P. I., et al. 2021, arXiv e-prints, arXiv:2105.04533.
 - https://arxiv.org/abs/2105.04533
- Pinsonneault, M. 1997, ARA&A, 35, 557, doi: 10.1146/annurev.astro.35.1.557

- Pratt, J., Baraffe, I., Goffrey, T., et al. 2017, A&A, 604, A125, doi: 10.1051/0004-6361/201630362
- Rempel, M. 2004, ApJ, 607, 1046, doi: 10.1086/383605
- Rogers, T. M., & Glatzmaier, G. A. 2005, ApJ, 620, 432, doi: 10.1086/423415
- Rogers, T. M., Glatzmaier, G. A., & Jones, C. A. 2006, ApJ, 653, 765, doi: 10.1086/508482
- Saikia, E., Singh, H. P., Chan, K. L., Roxburgh, I. W., & Srivastava, M. P. 2000, ApJ, 529, 402, doi: 10.1086/308249
- Shaviv, G., & Salpeter, E. E. 1973, ApJ, 184, 191, doi: 10.1086/152318
- Singh, H. P., Roxburgh, I. W., & Chan, K. L. 1995, A&A, 295, 703
- —. 1998, A&A, 340, 178
- Spiegel, E. A., & Veronis, G. 1960, ApJ, 131, 442, doi: 10.1086/146849
- Tian, C.-L., Deng, L.-C., & Chan, K.-L. 2009, MNRAS, 398, 1011, doi: 10.1111/j.1365-2966.2009.15178.x
- Toppaladoddi, S., & Wettlaufer, J. S. 2018, Physical Review Fluids, 3, 043501, doi: 10.1103/PhysRevFluids.3.043501
- Viallet, M., Meakin, C., Prat, V., & Arnett, D. 2015, A&A, 580, A61, doi: 10.1051/0004-6361/201526294
- Viani, L. S., & Basu, S. 2020, ApJ, 904, 22, doi: 10.3847/1538-4357/abba17
- Vinyoles, N., Serenelli, A. M., Villante, F. L., et al. 2017, ApJ, 835, 202, doi: 10.3847/1538-4357/835/2/202
- Zahn, J. P. 1991, A&A, 252, 179
- Zhang, Q. S., & Li, Y. 2012, ApJ, 746, 50, doi: 10.1088/0004-637X/746/1/50