Sheet 5: Representations of Lie groups

J. Evans

Question 1.

Let x, y be a basis for the standard representation \mathbf{C}^2 of SU(2) and let $x \otimes x$, $\frac{1}{2}(x \otimes y + y \otimes x)$, $y \otimes y$ be a basis for $\mathrm{Sym}^2 \mathbf{C}^2$. Write down a matrix for the action of $\begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \in SU(2)$ on $\mathrm{Sym}^2 \mathbf{C}^2$ in terms of this basis.

Question 2.

- (a) Suppose that $R: G \to GL(V)$ is a representation. Show that $R^*: G \to GL(V^*)$ is a representation.
- (b) Suppose that $R_1: G \to GL(V_1)$ and $R_2: G \to GL(V_2)$ are representations and that $L\colon V_1 \to V_2$ is a morphism of representations. Show that the kernel and image of L are subrepresentations of V_1 and V_2 respectively. If G is compact and L is surjective, deduce that $V_1 \cong \ker L \oplus V_2$ as representations.
- (c) Prove that the trace map $\operatorname{Tr} \colon \mathfrak{gl}(n,\mathbf{R}) \to \mathbf{R}$ is a morphism from the adjoint representation of $GL(n,\mathbf{R})$ to the trivial one-dimensional representation. Deduce that $\mathfrak{sl}(n,\mathbf{R})$ is a subrepresentation.
- (d) Let V denote the standard representation of SU(2). Check that the map

$$\operatorname{Sym}^{p} V \otimes \operatorname{Sym}^{q} V \to \operatorname{Sym}^{p+q} V,$$

$$x_{1} \cdots x_{p} \otimes x_{p+1} \cdots x_{p+q} \mapsto x_{1} \cdots x_{p} x_{p+1} \cdots x_{p+q}$$

is a morphism of SU(2)-representations. In the case that p=1, q=2:

- (i) find the kernel;
- (ii) show that the kernel is isomorphic to V;
- (iii) deduce that $V \otimes \operatorname{Sym}^2 V \cong V \oplus \operatorname{Sym}^3 V$.

Question 3.

(a) Suppose that **K** is a field of characteristic zero and $V = \mathbf{K}\langle e_1, e_2 \rangle$. Show that

$$V^{\otimes 2} = \operatorname{Sym}^2(V) \oplus \Lambda^2(V).$$

(b) Let e_i be a basis of \mathbb{R}^n and, for $i=1,\ldots,n$, let a_i be the vector $\sum_{i=1}^n a_i^j e_j$. By inspecting the formula for the alternating map, show that $a_1 \wedge \cdots \wedge a_n = \det(a_i^j)(e_1 \wedge \cdots \wedge e_n)$.

Question 4.

Let $V = \mathbf{K}\langle e_1, e_2 \rangle$ and $W = \mathbf{K}\langle f_1, f_2 \rangle$ be vector spaces and consider an element $t = \sum_{i,j=1}^2 t_{ij} e_i \otimes e_j \in V \otimes W$ in their tensor product. Show that there exist $v \in V$ and $w \in W$ such that $t = v \otimes w$ (i.e. t is a pure tensor) if and only if $t_{11}t_{22} = t_{12}t_{21}$.

This equation is called the Plücker relation. For tensor products of higher dimensional vector spaces there are many more Plücker relations $t_{ij}t_{k\ell}=t_{i\ell}t_{kj}$. This tells us that the pure tensors form a subvariety of $V\otimes W$ cut out by a collection of homogeneous polynomials of degree 2.

Question 5.

Suppose that $R: G \to GL(V)$ and $S: G \to GL(W)$ are representations and denote by T the representation of G on Hom(V, W) defined by

$$(T(g)F)(v) = S(g)F(R(g^{-1})v).$$

- (a) Show that a vector $F \in \text{Hom}(V, W)$ satisfies T(g)F = F for all $g \in G$ if and only if F is a morphism of representations. If V and W are irreducible, show that either F = 0 or F is an isomorphism.
- (b) Define a map $\Phi \colon V^* \otimes W \to \operatorname{Hom}(V,W)$ by defining it on pure tensors as

$$\Phi(f \otimes w)(v) = f(v)w$$

and extending linearly. Check that this is an isomorphism of representations $R^* \otimes S \cong T$.

Hint: Once you know it's a morphism of representations, to show it's an isomorphism, pick bases e_i of V and f_j of W and check that $\Phi(e_i^* \otimes f_j)$ is a basis for $\operatorname{Hom}(V, W)$. Why does this tell you it is an isomorphism?