Lighting and Rasterization - Visibles Same acrose etermination

https://powcoder.com

Add WeChat powcoder

Intended Learning Outcomes

- Understand the goal of visible surface determination
- Describe the method of back-face detection
- Describe the method of Project Fxethollelp
- Describe the method of ray casting https://powcoder.com
- Able to program visible surface determination techniques
 Add WeChat powcoder

Visible Surface Detection

- Also called Hidden Surface Elimination
- Only visible surfaces ish But determined p

- https://powcoder.com
 The problem is not easy as has to handle partially visible scenarios - Add WeChat powcoder
 - Concave objects
 - one object partially in front of each other

Three Methods

- Back-face detection (also called Culling)
- Z buffer (also called depth buffer)
- Ray Castingsignment Project Exam Help

https://powcoder.com

- Back-face detection is always run as a preliminary test. It is fast and reduces about half of the workload before further processing.
- Other methods also exist: e.g. painter's algorithm, A buffer method, ...

Back-Face Detection / Culling

- Fast and simple
- Use as a preliminary step before more sophisticated visibility tests
- Eliminates A SO Profere Proferent Exther Proference

- Sometimes, v is replaced by the VPN for faster approximate processing
- Disadvantage: cannot handle concave object or partially overlapping object
 Assignment Project Exam Help

Z Buffer

- Also called depth buffer method
- Two buffers
 - Z/Depth build store depth values de lach (x, y) position
 https://powcoder.com
 - Frame / Refresh buffer: store colour values for each (x,y) positionAdd WeChat powcoder
- Buffer stores the current visible surface information, values are updated as soon as new visible information found

Z buffer algorithm

Three surfaces overlapping pixel position (x, y) on the view plane. The visible surface, S_1 , has the smallest depth value.

Algorithm

 Initialize the depth buffer and frame buffer so that for all buffer positions (x, y)

- 2. Process each polygon in a scene, one at a time.
 - a. for each projection, ypoxerose for each projection in the each pro
 - b. If z < depthBuff(x)) Worndwat the surface colour at that position and set

```
depthBuff (x, y) = z, frameBuff (x, y) = surfColor(x, y)
```

After all surfaces have been processed, the depth buffer contains depth values for the visible surfaces and the frame buffer contains the corresponding colour values for those surfaces.

Ray Casting

- retrace the light paths of the rays that arrive at the pixel
- for each pixels is and entary from the pixel
- find all intersections of phevroydwith the surfaces
- the nearest intersections is the visible part of the surface for that pixel
 Add WeChat powcoder

Ray casting

A ray along the line of sight from a pixel position through a scene.

Comparison of Z buffer and Ray Casting

Method	Good for situations
https://pow	Objects that cannot code code cade quately described by simple at povered fons
Ray casting	Objects that can easily be described by simple equations

OpenGL Functions

- Back face removal glEnable (GL_CULL_FACE); glCullFace (GlighMcK), Project Exam Help
- Z Buffer https://powcoder.com
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

```
glClear (GL_DEPTH_BUFFER_BIT);
glEnable (GL_DEPTH_TEST);
```

References

- Text: Ch. 16.1- 16.3, 16.10-11 for various visibility determination methods
- Text: Ch. 16st 1gfor Project Proj

https://powcoder.com

Add WeChat powcoder