

Δίκτυα τύπου Hopfield

Επίλυση προβλημάτων συνδυαστικής βελτιστοποίησης

Δίκτυο Hopfield

$$w_{ij} = w_{ji}, i, j = 1, ..., N$$

 $w_{ii} = 0, i = 1, ..., N$

Διακριτό δίκτυο Hopfield

Διακριτός χρόνος

Δυαδικές / διπολικές τιμές κόμβων

Συμμετρικά βάρη $(w_{ij}=w_{ji}, w_{ii}=0, i,j=1,...,N)$

$$u_{i}(t+1) = \sum_{j=1}^{N} w_{ij} y_{j}(t) + \theta_{i}$$

$$y_{i}(t+1) = \begin{cases} 1 & u_{i}(t+1) > 0 \\ y_{i}(t) & u_{i}(t+1) = 0 \\ 0 & u_{i}(t+1) < 0 \end{cases}$$

Διακριτό δίκτυο Hopfield

Συνάρτηση ενέργειας

$$E(\vec{y}) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} y_i y_j - \sum_{i=1}^{N} \theta_i y_i$$

Ασύγχρονη ενημέρωση (δυαδικές τιμές)

$$\Delta E_{i} = (2y_{i} - 1) \left(\sum_{j \neq i} w_{ij} y_{j} + \theta_{i} \right)$$

Διακριτό δίκτυο Hopfield

Αν $\Delta E_i < 0$ η ενημέρωση γίνεται δεκτή, αλλιώς απορρίπτεται.

 $\Rightarrow \quad \Sigma ύγκλιση σε κατάσταση ισορροπίας \\ \mu \epsilon \, \Delta E_i \!\! \geq \!\! 0 \, για κάθε \, i \\ (τοπικό ή ολικό ελάχιστο)$

Πρόβλημα εγκλωβισμού σε τοπικά ελάχιστα

⇒ Simulated Annealing

Αναλογικό δίκτυο Hopfield (Hopfield & Tank, 1985)

Συνεχής χρόνος Συνεχείς τιμές κόμβων (\in [0,1] ή [-1,1]) Συμμετρικά βάρη ($w_{ii}=w_{ii}, w_{ii}=0, i,j=1,...,N$)

$$\dot{u}_i = \sum_{j=1}^{N} w_{ij} y_j + \theta_i$$

$$y_i = f(u_i)$$

f: sigmoid / tanh (μονοτονία)

Αναλογικό δίκτυο Hopfield

Συνάρτηση ενέργειας

$$E(\vec{y}) = -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} w_{ij} y_i y_j - \sum_{i=1}^{N} \theta_i y_i$$

Σύγκλιση σε κατάσταση ισορροπίας

$$\begin{cases} y_i = 1, & \frac{du_i}{dt} \ge 0 \\ 0 < y_i < 1, & \frac{du_i}{dt} = 0 \end{cases}$$
$$\begin{cases} y_i = 0, & \frac{du_i}{dt} \le 0 \end{cases}$$

Πρόβλημα εγκλωβισμού σε τοπικά ελάχιστα $\Rightarrow Επεκτάσεις$

Το τοπίο της ενέργειας

Προσομοιωμένη ανόπτηση Simulated Annealing

Kirkpatrick, Gelatt, & Vecchi (1983)

- $oldsymbol{\cdot}$ Αντικειμενική συνάρτηση E
- Επιλογή νέου σημείου (neighborhood / move set)
- Κριτήριο αποδοχής p(ΔΕ, Τ) του νέου σημείου
 Τ: παράμετρος θερμοκρασίας
- Πρόγραμμα μείωσης θερμοκρασίας (annealing /cooling schedule)
- \bullet Σύγκλιση στο ελάχιστο καθώς $T{
 ightharpoonup}$

Από τις ιδιότητες των ατόμων στις ιδιότητες της ύλης

Στατιστική μηχανική

<u>Θερμική ισορροπία</u>: Κατανομή Boltzmann-Gibbs

k_B: σταθερά Boltzmann

Τ: θερμοκρασία (Kelvin)

Ludvig Boltzmann 1844-1906

Προσομοιωμένη ανόπτηση

Στοχαστική κατάβαση κλίσης $P_x/P_y = \exp[-(E_x - E_y)/T] = \exp[-(\Delta E)/T]$

Ικανή συνθήκη θερμικής ισορροπίας $P_x P(x \rightarrow y) = P_y P(y \rightarrow x)$

Αλγόριθμος Metropolis (1953)

Η συμβολή της Φυσικής ΙΙ

Nicholas C. Metropolis (Νικόλαος Κ. Μητρόπουλος) 1915-1999

Woody Allen, 1992

Η μέθοδος Monte-Carlo

Στοχαστικό δίκτυο Hopfield Διακριτό Hopfield + Simulated Annealing

- Αν ΔΕ_i<0 η ενημέρωση γίνεται δεκτή
- Αν $\Delta E_i \ge 0$ η ενημέρωση γίνεται δεκτή με πιθανότητα $p(\Delta E, T) = \exp(-\Delta E_i/(T)$
- (Ικανοποίηση συνθήκης θερμικής ισορροπίας) Διακριτό Hopfield για $T \rightarrow 0$
- Θεώρημα (Ασυμπτωτική σύγκλιση)
- Για *T*→0 η στατική κατανομή πιθανότητας συγκλίνει στο σύνολο των βέλτιστων λύσεων.

Στοχαστικό δίκτυο Hopfield Προσέγγιση πεπερασμένου χρόνου

- Αρχική θερμοκρασία T_0 (π.χ. $T_0 = \Sigma/w_{ij}/$)
- Σε κάθε θερμοκρασία T πραγματοποιούμε L δοκιμές (L=2N)
- Μείωση θερμοκρασίας

π.χ.
$$T_{n+1} = \alpha T_n$$
, $0.8 < \alpha < 0.99$
ή $T_{n+1} = T_n/(1 + \log f(n))$, $f(n) = f(n-1)(1+\rho)$
 $f(0) = 1$, $\rho < 0.001$

• Τερματισμός αν δεν συμβαίνει καμμία ενημέρωση για *k* διαδοχικές τιμές της θερμοκρασίας

aka — Μηχανή Boltzmann

Προβλήματα (διακριτής) συνδυαστικής βελτιστοποίησης

Μέγεθος προβλήματος Ν

Εκθετική πολυπλοκότητα:

πλήθος λύσεων τάξης e^N ή N!

Papadimitriou & Steiglitz (1982)

Απεικόνιση προβλημάτων σε νευρωνικά δίκτυα

Πρόβλημα συνδυαστικής βελτιστοποίησης:

- Σύνολο περιορισμών
- Συνάρτηση κόστους (αντικειμενική) $oldsymbol{J}$

Νευρωνικό δίκτυο τύπου Hopfield:

• Συνάρτηση ενέργειας $oldsymbol{E}$

Προσδιορισμός των παραμέτρων του δικτύου ώστε η ενέργεια E του δικτύου να εκφράζει ένα μέτρο του κόστους J της λύσης του προβλήματος

Απεικόνιση προβλημάτων σε νευρωνικά δίκτυα

Άμεση απεικόνιση:

- Ενσωμάτωση των περιορισμών στο κόστος *J* μέσω όρων ποινής (penalty terms)
- Ταύτιση των συναρτήσεων **E** και **J** (ταύτιση των συντελεστών ομοβάθμιων όρων)

Έμμεση απεικόνιση:

- Κάθε τοπικό ελάχιστο της ενέργειας *E* αντιστοιχεί σε εφικτή λύση ικανοποίηση περιορισμών (feasibility).
- Όσο χαμηλότερο ένα τοπικό ελάχιστο της ενέργειας E, τόσο καλύτερο το κόστος της J αντίστοιχης λύσης (order preservation).

Διαμερισμός γράφου

Graph bipartitioning

Διαμερισμός των κορυφών του γράφου σε δύο σύνολα ίσου μεγέθους, ώστε να ελαχιστοποιείται ο αριθμός των ακμών που συνδέουν τα δύο σύνολα κορυφών.

Διαμερισμός γράφου

 $y_i \in \{-1,+1\}$ (συμμετοχή στα δύο σύνολα) *a*_{ii}: πίνακας διπλανών κορυφών

Ελαχιστοποίηση
$$L = -\frac{1}{2} \sum_{i} \sum_{j} a_{ij} y_{i} y_{j}$$
 πλήθους ακμών:

Περιορισμός:
$$\sum y_i = 0$$

Περιορισμός:
$$\sum_i y_i = 0 \qquad \Rightarrow \text{ όροι ποινής}$$
 Συνάρτηση κόστους:
$$J = L + \mu \left(\sum_i y_i\right)^2$$

Αμεση απεικόνιση
$$\Rightarrow$$
 $w_{ij} = a_{ij}$ - 2μ

Πρόβλημα αντιστοίχισης Weighted matching problem

Δίνονται Ν σημεία. Να συνδεθούν ανά δύο, ώστε κάθε σημείο να συνδέεται με ένα και μόνο ένα άλλο και να ελαχιστοποιείται το συνολικό μήκος των συνδέσμων.

- (a) καλή λύση
- (b) κακή λύση

Πρόβλημα αντιστοίχισης

 $y_{ij} \in \{0,1\}$ (N(N-1)/2 ζεύγη σημείων)

d_{ij}: απόσταση σημείων

Συνολικό μήκος συνδέσμων:
$$L = \frac{1}{2} \sum_{i} \sum_{j} d_{ij} y_{ij}$$

Περιορισμός: $\sum_{i} y_{ij} = 1$, $\forall i$

Συνάρτηση κόστους:

$$J = L + \frac{\gamma}{2} \sum_{i} \left(1 - \sum_{j} y_{ij} \right)^{2}$$

Άμεση απεικόνιση \Rightarrow

 $w_{ij,kl} = -\gamma$ (ζεύγη με κοινούς δείκτες), $\theta_{ij} = -d_{ij} + \gamma$

Πρόβλημα του περιοδεύοντος πωλητή Traveling Salesperson Problem (TSP)

Δίνονται Ν σημεία (πόλεις). Ζητείται η ελάχιστη κλειστή διαδρομή που επισκέπτεται κάθε πόλη μια φορά και επιστρέφει στο αρχικό σημείο (Hamiltonian circuit).

Ν!/2Ν διαδρομές

- (a) καλή λύση
- (b) κακή λύση

Διδιάστατη απεικόνιση

 $y_{ai} \in \{0,1\}$ (η πόλη a στην i θέση της διαδρομής)

d_{ab}: απόσταση σημείων

Περιοδικές οριακές συνθήκες:

 $i \pm l = (i \pm 1) \mod N$

- > O(N³) συνδέσεις
- permutation matrix

Περιορισμοί:
$$\sum_{a} y_{ai} = 1, \forall i, \qquad \sum_{i} y_{ai} = 1, \forall a$$

Μήκος διαδρομής:

$$L = \frac{1}{2} \sum_{a} \sum_{i} y_{ai} \sum_{\substack{b \ b \neq a}} d_{ab} (y_{b,i-1} + y_{b,i+1})$$

Συνάρτηση κόστους:

$$J = L + \frac{\gamma}{2} \left(\sum_{i} \left(1 - \sum_{a} y_{ai} \right)^{2} + \sum_{a} \left(1 - \sum_{i} y_{ai} \right)^{2} \right)$$

Άμεση απεικόνιση \Rightarrow Συνδέσεις:

- -d_{ab} μεταξύ νευρώνων διπλανών στηλών
- - γ μεταξύ νευρώνων της ίδιας γραμμής ή στήλης
- θετικές πολώσεις θ

Αρχική διατύπωση (αναλογικό δίκτυο): Hopfield & Tank (1985), Wilson & Pawley (1988)

Προβλήματα ικανοποίησης περιορισμών (Constraint Satisfaction Problems – CSP)

Δυαδικοί περιορισμοί

- Σύνολο μεταβλητών v_i , i=1,...,N, με τιμές από τα πεδία D_i
- Σύνολο περιορισμών $(d_{ij}, d_{kl}) \in C$
- Αναζήτηση μιας ανάθεσης τιμών που ικανοποιεί τους περιορισμούς

Παραδείγματα: N-Queens, Graph coloring

Προβλήματα ικανοποίησης περιορισμών

Διδιάστατη αναπαράσταση (jagged matrix): ο νευρώνας (*i,j*) αντιστοιχεί στην *j* τιμή της *i* μεταβλητής

Έμμεση απεικόνιση \Rightarrow Συνδέσεις:

$$w_{ij,ij} = 0$$

$$\mathcal{G}_{ij} = b$$

$$w_{ij,mn} = \begin{cases}
-a & \text{an } (d_{ij}, d_{mn}) \in C \\
-e & \text{an } i = m, j \neq n \\
0 & \text{alling}
\end{cases}$$

Ικανοποίηση απαιτήσεων

