Generalized Integrals

Chapter 1: Definition and properties

Nasko Karamanov

3 septembre 2023

In this lecture course ...

What is a generalized integral?

How to decide for a convergence : comparaisor

Partial integration

We will introduce and study generalized (improper) integrals

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x$$

For now, keep in mind the infinity bound +∞

We will introduce and study integrals with a parameter

$$\int_{a}^{+\infty} f(x,t) dx$$

We will study the convergence of sequences of such integrals

$$\lim_{n\to+\infty}\int_{a}^{+\infty}f_{n}(x)\,\mathrm{d}x$$

Learning Outcomes

As a direct application of this course :

- · determine if a given generalized integral is well defined
- determine the convergence of a sequence of integrals and find the limit (if it exists)
- identify the properties of a integral depending on a parameter in most usual cases (as Fourier and Laplace transform)
- simplify expressions involving limits of sequences of integrals and parameter integrals
- validate a reasoning implicating questions of convergences of integrals or parameter integrals.

In situations of modelization in mathematics for signal processing, probability and automatics :

- calculate moments and probabilistic quantities related to a random variable with density
- identify hypothesis and arguments used in studying the convergence in probability
- calculate Fourier and Laplace transform of a function

In this lecture course ...

What is a generalized integral?

How to decide for a convergence : comparaisor

Partial integration

Type 1: what happens at infinity

Definition

Let f be a continuous function over $[a, +\infty[$.

The generalized integral $\int_{a}^{+\infty} f(t) dt$ converges if the limit

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$
 exists and is finite.

In this case we let:

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

Type 1: what happens at infinity

Definition

Let f be a continuous function over $[a, +\infty[$.

The generalized integral $\int_{a}^{+\infty} f(t) dt$ converges if the limit

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$
 exists and is finite.

In this case we let:

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

Example

$$\int_0^{+\infty} e^{-t} dt = \lim_{x \to +\infty} \int_0^x e^{-t} dt = \lim_{x \to +\infty} (1 - e^{-x}) = 1$$

Type 2: what happens on finite borders

Definition

Let f be a continuous function on [a, b[where f is discontinued/not defined in b.

The generalized integral $\int_a^b f(t) dt$ converges if the limit

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$
 exists and is finite.

In this case we let:

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Type 2: what happens on finite borders

Definition

Let f be a continuous function on [a, b[where f is discontinued/not defined in b.

The generalized integral $\int_{a}^{b} f(t) dt$ **converges** if the limit

$$\lim_{x \to b} \int_{a}^{x} f(t) dt$$
 exists and is finite.

In this case we let:

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Example

$$\int_{0}^{4} \frac{1}{\sqrt{4-t}} \, \mathrm{d}t = \lim_{x \to 4} \int_{0}^{x} \frac{1}{\sqrt{4-t}} \, \mathrm{d}t = \lim_{x \to 4} \left[-2\sqrt{4-t} \right]_{0}^{x} = \lim_{x \to 4} \left(4 - 2\sqrt{4-x} \right) = 4$$

In brief

If
$$-\infty < a < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Memo

Generalized integral = limit (Riemann integral)

In brief

If
$$-\infty < a < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Memo

Generalized integral = limit (Riemann integral)

you know this

In brief

If
$$-\infty < a < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

you know this

you know this

If
$$-\infty < a < b < = +\infty$$

$$\int_{a}^{b} f(t) dt = \lim_{x \to b} \int_{a}^{x} f(t) dt$$

Remark: Generalized integrals with a problem in the first border *a* are treated in the same manner.

To follow in this RMD

- Generalized integrals in boths bounderies
- Chasles
- Partial integration
- Change of variables
- Comparaison

Warmup ...

Wooclap[1-2]

Some properties: Chasles relation

Proposition -

Let $f: [a, b[\to \mathbb{R}] \to \mathbb{R}$ be coninuous on $-\infty < a < c < b \le +\infty$.

The integrals $\int_a^b f(t) dt$ and $\int_c^b f(t) dt$ are of same nature.

In the case of convergence :

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Some properties: Chasles relation

Proposition -

Let $f: [a, b] \to \mathbb{R}$ be coninuous on $-\infty < a < c < b \le +\infty$.

The integrals $\int_a^b f(t) dt$ and $\int_c^b f(t) dt$ are of same nature.

In the case of convergence:

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

Démonstration.

For all x such that $a < c < x < +\infty$ Chasles relation for Riemann integrals gives

$$\int_{a}^{x} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{x} f(t) dt$$

As f is continuous on [a,c] the integral in the middle is finate. Passing to the limit gives the result.

Some properties: linearity

Proposition

Let $f,g:[a,b[\to \mathbb{R}]$ be continuous on $-\infty < a < b \le +\infty$ and

 $\lambda, \mu \in \mathbb{R}$. If the integrals $\int_a^b f(t) dt$ and $\int_a^b g(t) dt$ converge

then $\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt$ converge too and

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Some properties: linearity

Proposition

Let $f,g:[a,b[\to\mathbb{R}$ be continuous on $-\infty < a < b \le +\infty$ and $\lambda,\mu\in\mathbb{R}$. If the integrals $\int_a^b f(t)\,\mathrm{d}t$ and $\int_a^b g(t)\,\mathrm{d}t$ converge then $\int_a^b (\lambda f(t) + \mu g(t))\,\mathrm{d}t$ converge too and

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Démonstration.

This is a consequence of the relation for classical Riemann integrals and then taking the limit. \Box

Integrals over $]-\infty,+\infty[$

Wooclap[3]

Integrals with two improper bounderies]a,b[

If there exists $c \in]a,b[$ such that $\int_a^c f(t)dt$ and $\int_c^b f(t)dt$ converged then we say that the integral $\int_a^b f(t)dt$ converge. In the case of convergence

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

The defintion does not depend on c (consequence of Chasles relation).

Integrals with two improper bounderies]a,b[

If there exists $c \in]a,b[$ such that $\int_a^c f(t) dt$ and $\int_c^b f(t) dt$ converge then we say that the integral $\int_a^b f(t) dt$ converge. In the case of convergence

$$\int_{a}^{b} f(t) dt = \int_{a}^{c} f(t) dt + \int_{c}^{b} f(t) dt$$

The defintion does not depend on c (consequence of Chasles relation).

Example

$$\int_{-1}^{1} \frac{1}{x^2} dx = \int_{-1}^{0} \frac{1}{x^2} dx + \int_{0}^{1} \frac{1}{x^2} dx = \dots$$

Reference integrals : Riemann

Wooclap[4]

Reference integrals: Riemann

Theorem Let $\alpha \in \mathbb{R}$ $\int_{1}^{+\infty} \frac{1}{t^{\alpha}} \, \mathrm{d}t \ converges \ iff} \ \alpha > 1$ $\int_{0}^{1} \frac{1}{t^{\alpha}} \, \mathrm{d}t \ converges \ iff} \ \alpha < 1$

Reference integrals: Riemann

Theorem

Let $\alpha \in \mathbb{R}$

•

$$\int_{1}^{+\infty} \frac{1}{t^{\alpha}} dt \text{ converges iff } \alpha > 1$$

•

$$\int_0^1 \frac{1}{t^{\alpha}} dt \ converges \ iff \ \alpha < 1$$

Memo: Riemann series

The series $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converges iff $\alpha > 1$

Reference integrals : Riemann

Wooclap[5]

Reference integrals : exponential (to be done on TD)

In this lecture course ...

What is a generalized integral?

How to decide for a convergence : comparaison

Partial integration

How to decide for a convergence?

Question

What if Riemann itnegrals are hard to evaluate (for example a primirive is not known ...)?

How to decide for a convergence?

Question

What if Riemann itnegrals are hard to evaluate (for example a primirive is not known ...)?

Solution

We compare f with a function g (to be determined depending on f) for which the convergence of its integral is easier to decide.

Proposition

Let f be continuous and **positive** a over [a, b[then

$$\int_{a}^{x} f(t) dt \text{ bounded } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converges}$$

a. or positive f in a **neighbourhood** of b, i.e. on some]A, b[

Proposition

Let f be continuous and **positive** a over [a, b[then

$$\int_{a}^{x} f(t) dt \text{ bounded } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converges}$$

a. or positive f in a **neighbourhood** of b, i.e. on some]A, b[

Wooclap[6]

Proposition

If f and g are positives on [a,b[and $0 \le f \le g$ on [a,b[

$$\int_{a}^{b} g(t) dt \text{ converges } \Rightarrow \int_{a}^{b} f(t) dt \text{ converges }^{a}$$

a. What thus the opposite result say?

Proposition

If f and g are positives on [a,b[and $0 \le f \le g$ on [a,b[

$$\int_{a}^{b} g(t) dt \text{ converges } \Rightarrow \int_{a}^{b} f(t) dt \text{ converges }^{a}$$

a. What thus the opposite result say?

Démonstration.

For each $x \in [a, b[$ we have $0 \le f(x) \le g(x)$. Thus

$$0 \le \int_a^x f(t) dt \le \int_a^x g(t) dt$$

If $\int_a^b g(t) dt$ converges then $\int_a^x g(t) dt$ is bounded and we use the previous proposition.

Proposition

If f and g are positives on [a,b[and $0 \le f \le g$ on [a,b[

$$\int_{a}^{b} g(t) dt \text{ converges } \Rightarrow \int_{a}^{b} f(t) dt \text{ converges }^{a}$$

a. What thus the opposite result say?

Démonstration.

For each $x \in [a, b[$ we have $0 \le f(x) \le g(x)$. Thus

$$0 \le \int_a^x f(t) dt \le \int_a^x g(t) dt$$

If $\int_a^b g(t) dt$ converges then $\int_a^x g(t) dt$ is bounded and we use the previous proposition.

Proposition

• If f and g are positives on [a, b[and f = O(g) or f = o(g) then

$$\int_{a}^{b} g(t) dt \text{ converges } \Rightarrow \int_{a}^{b} f(t) dt \text{ converges}^{a}$$

Proposition

• If f and g are positives on [a, b[and f = O(g) or f = o(g) then

$$\int_{a}^{b} g(t) dt \text{ converges } \Rightarrow \int_{a}^{b} f(t) dt \text{ converges }^{a}$$

• If $f \sim g$ then

$$\int_{a}^{b} g(t) dt \text{ converges } \Leftrightarrow \int_{a}^{b} f(t) dt \text{ converges}$$

a. What does the opposite result say?

Recall

If $f,g:[a,b[\rightarrow \mathbb{R}]$ are two functions and g is non zero in a neighbourhood of b

$$f = O(g) \Leftrightarrow \frac{f}{g}$$
 is bounded in a neighbourhood of b

$$f = o(g) \Leftrightarrow \lim_{x \to b} \frac{f(x)}{g(x)} = 0$$

$$f \approx \lim_{x \to b} \frac{f(x)}{g(x)} = 1$$

Examples

Question

What is the nature of $\int_0^1 \ln(t) dt$?

Examples

Question

What is the nature of $\int_0^1 \ln(t) dt$?

By comparative growth for all $\alpha > 0$ we have

$$t^{\alpha} \ln(t) \underset{t \to 0}{\longrightarrow} 0$$

In particular, for $\alpha = \frac{1}{2}$ we have

$$t^{\frac{1}{2}}\ln(t) \underset{t\to 0}{\longrightarrow} 0$$

Thus $\ln(t)=O(\frac{1}{t^{\frac{1}{2}}})$ (we can also say that in a neighbourhood of 0 $\ln(t)<\frac{1}{t^{\frac{1}{2}}}$

But the integral $\int_0^1 \frac{1}{\frac{1}{2}} dt$ converges.

Proposition Absolue convergence

$$\int_{a}^{+\infty} |f(t)| dt \text{ converges } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converges}$$

Proposition Absolue convergence

$$\int_{a}^{+\infty} |f(t)| dt \text{ converges } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converges}$$

Memo

Recall similar properties for series

Proposition Absolue convergence

$$\int_{a}^{+\infty} |f(t)| dt \text{ converges } \Rightarrow \int_{a}^{+\infty} f(t) dt \text{ converges}$$

Memo

Recall similar properties for series

Wooclap[7-9]

In this lecture course ...

What is a generalized integral?

How to decide for a convergence : comparaisor

Partial integration

Proposition

If $\int_a^b u(t)v'(t)dt$ is a generalized integral (u and v are C^1) and if

$$[u(t)v(t)]_a^b = \lim_{x \to b} u(x)v(x) - \lim_{x \to a} u(x)v(x)$$

is finite then the integrals $\int_a^b u(t)v'(t)\mathrm{d}t$ and $\int_a^b u'(t)v(t)\mathrm{d}t$ are of same nature.

In the case of convergence:

$$\int_{a}^{b} u(t)v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t) dt$$

Remark: We always start by checking if $[u(t)v(t)]_a^b$ has a finite limite.

PI : example

 $\mathsf{Wooclap}[10]$

Change of variables

Proposition

If $\int_a^b f(t) dt$ is a generalized integral and $\varphi: I =]\alpha, \beta[\rightarrow]a, b[$ bijective of class C^1 such that

$$\lim_{t \to \alpha} \varphi(t) = a \text{ et } \lim_{t \to \beta} \varphi(t) = b$$

Then

$$\int_a^b f(t) dt$$
 et $\int_a^\beta f(\varphi(t)) \varphi'(t) dt$

are of same nature nature. In the case of convergence both integrals have same value.

Change of variables

Proposition

If $\int_a^b f(t) dt$ is a generalized integral and $\varphi: I =]\alpha, \beta[\rightarrow]a, b[$ bijective of class C^1 such that

$$\lim_{t \to \alpha} \varphi(t) = a \text{ et } \lim_{t \to \beta} \varphi(t) = b$$

Then

$$\int_a^b f(t) dt$$
 et $\int_lpha^eta f(arphi(t)) arphi'(t) dt$

are of same nature nature. In the case of convergence both integrals have same value.

Wooclap[11]

What we learned

- Generalized integral = limit (Riemann Integral)
- Same properties and techniques: linarity, Chasles, Pi, change of variables
- Pay attention when dealing with such integrals, check convergence before doing calculation ...

What we learned

- Generalized integral = limit (Riemann Integral)
- Same properties and techniques: linarity, Chasles, Pi, change of variables
- Pay attention when dealing with such integrals, check convergence before doing calculation ...

To follow:

- Sequence of generalized integrals
- Parameter integrals