Experiment 6

Name: Ali Asmaee

Student number: 972023004

Question 1 - part one

Show a temperature in lcd with module LM35

First we need analog to digital convert -> For setup this in atmega16 we need use these steps:

1-Enable ADC with ADCSRA Register and bit ADEN

7	6	5	4	3	2	1	0
ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0

2- Use ADMUX to set which analog port to use:

3- Start conversion with enable ADSC in ADCSRA Register

4- Wait until the conversion to check this we need use ADSC bit in ADCSRA Register

Second we use a bottom circuit that can increase or

decrease temperature:

Note: Each step of LM35 is 10mv and also we know

$$10mv = \frac{Vref}{1024} \rightarrow Vref = 10.24$$

atmega16 have 1024 resolution so use this formula:

Note2: Result video of project attached in directory.

References:

- Avr Atmega Atmega1632 Adc | Avr Atmega
- Avr Atmega Lm35 Temperature Sensor Interfacing With Atmega1632 | ...

Question 1 - part two

Add a cooling system when the temperature gets higher than the custom value.

In this part first we need to initialize a sensor temp when the microcontroller runs, and for this we use a 3 push button:

UP -> Increase default temp sensor value DOWN -> Decrease value Submit -> Submit and start system

Second we need to add a stepper motor that only starts when the LM35 gets higher than the sensor value (initialized in the first step)

Note: Result video of project attached in directory.