Robert Duquette

Aerospace Engineering at University of Michigan

robdug@umich.edu (734)-635-7273 linkedin.com/in/robertqduquette

Floppy Teraminx - Complex Interlocking Mechanical Twisting Puzzle

CAD Rendering of partial mechanism

Partially assembled mechanism prototype

Final Puzzle

What?

- Designed and refined a custom 3D-printed mechanical puzzle over 4 prototype iterations.
- Focused on ease of assembly, structural stability, smooth operation, and DFM.

How?

- Solid and Surface Modeling in Fusion 360.
- Spring pre-loading system for high performance turning.
- Added extra rails and anchors to Positive community feedback on stabilize the puzzle during use.

Results

- High-performance puzzle.
- Eliminated centerpiece popping in the final design, following frequent issues in earlier prototypes.
- potential commercialization.

Robotic Kickball Intake - FIRST FRC Deep Space, Team 3322

CAD Rendering

Assembled intake mechanism

How?

- Prototyped with wood, dolly, spare parts, and power drills
- Designed in Autodesk Fusion 360 to be cut out on a CNC router
- Performed kinematic analysis to optimize ball collection

Fully Assembled Robot

Results

- Reliable ball intake throughout the competition season and off-season
- Durable and lightweight polycarbonate design lasted the whole competition season

What?

- Robotic mechanism to collect kickballs off the ground then feed them to an outtake
- Pneumatic actuation to extend outside the frame for collection and back inside to avoid damage

Robert Duquette

Aerospace Engineering at University of Michigan

robdug@umich.edu (734)-635-7273 linkedin.com/in/robertqduquette

3D Printed Geranium Puzzle

CAD model

Operation 3/5 of the printing process

Solved puzzle

Scrambled puzzle

What?

- Designed and created a 3D printed-in-place geranium puzzle (similar to a Rubik's Cube).
- Demonstrated multi-material printing capabilities on a single nozzle printer.

How?

- Modeled in Autodesk Fusion 360 and toleranced to print in place
- Created STL files for each different color on the puzzle
- Wrote custom G-CODE to run multiple operations and ensure a consistent origin reference point

Results

- Validated multi-material 3D printing technique
- Smooth turning, non-locking, visually pleasing puzzle
- Produced several prototypes to validating the mechanism and tolerances

Blimp Thrust-Vectoring Propulsion Subsystem - ENGR 100

Assembled gondola and propulsion system

Maneuverability testing

Final blimp in competition

What?

- system for a remotely operated blimp.
- Lightweight construction minimizing weight and maximizing maneuverability.

How?

- 2 DOF thrust vectoring propulsion Dual servo motor actuation with lightweight timing belts/pulleys for precise positioning.
 - Maneuverability verified through hanging test stand.
 - Nylon bushings with low friction coefficient for smooth rotation.

Results

- Won 1st place in all events in competition (speed and recon) against 11 other teams
- Superb maneuverability for quick and precise reconnaissance flight mission.

Robert Duquette

Aerospace Engineering at University of Michigan

robdug@umich.edu (734)-635-7273 linkedin.com/in/robertqduquette

Maze Escape Robot - ROB 330

What?

- Wrote probabilistic SLAM and navigation algorithms for an autonomous mobile robot to map and escape a maze
- Implemented an on-robot AI image classification model.

A* path generation

How?

- Two layered PID controls for wheel speed and robot speed.
- Monte Carlo and occupancy grid SLAM using LIDAR data.
- Navigate to frontiers with A* through obstacle distance grid.

Robot exploring and mapping maze

Results

- Successful exploration and mapping of a 3x3 maze.
- 65.8% accuracy on 10000 test images using a CNN model
- Successful real-time SLAM and navigation implementation.

Satellite Rendezvous (RPOS) Simulation and Control System Design

Simulink Model Setup

Chaser Reference Trajectory Initial Position 30 <u>투</u>20 Radial (1km ahead target position Reference Trajectory -60 -20 -40 -Along Track (km)

Transfer Reference Trajectory

Stable Nyquist Plot

What?

- Design of a dual-approach control system for satellite rendezvous maneuvers in Low Earth Orbit (LEO).
- 6-DOF dynamics simulation in MATLAB and Simulink.

How? (My Contributions).

- Designed 6-DOF satellite dynamics simulation, then implemented and tuned PID and LQR controllers.
- Integrated disturbances (drag, J2 effect) to analyze control robustness.
- First-order dynamics approximated with Clohessy-Wiltshire equations.

Results

- Smooth and stable tracking control with LQR controller.
- Achieved accurate tracking control with the PID controller, though with some oscillations.
- Bode and Nyquist analyses support simulation results.