Определение 1

Операция — это функция $X_1 \times \ldots \times X_n \to X$.

Чаще всего рассматривается ситуация, когда $X_1 = \ldots = X_n = X$. В этом случае операция называется n-арной операцией на множестве X.

Пример 1. 0-арная операция это выбор фиксированного элемента

Определение 2

1-арная операция обычное называется унарной операцией

 Π ример 2. $f: \mathbb{Z} \to \mathbb{Z}: f(n) = -n - y$ нарная операция

Определение 3

2-арная операция обычное называется бинарной операцией.

Бинарные операции обычно обозначаются не буквами, а значками, например \star , и вместо $\star(x,y)$ пишут $x\star y$.

 Π ример 3. $+: \mathbb{Z} \to \mathbb{Z}: +(a,b) = a+b-$ бинарная операция

Определение 4

Пусть X — множество, а \star — бинарная операция на X. Определим следующие свойства.

- (1) $\forall x, y, z \in X : (x \star y) \star z = x \star (y \star z) accoulanter b$.
- (2) $\exists e \in X \forall x \in X : e \star x = x \star e = x \ (e \text{ называется } \textbf{нейтральным элементом}).$
- (3) $\forall x \in X \exists x' \in X : x \star x' = x' \star x = e \ (x' \text{ называется элементом обратным к } x).$ Если выполнено только одно из равенств $x' \star x = e$ или $x \star x' = e$, то x' называют левым или, соответственно, правым обратным к x.
- (4) $\forall x, y \in X : x \star y = y \star x \kappa$ оммутативность.

 $\Pi pumep~4. \circ ($ композиция) на множестве параллельных переносов — accouuamueна

Пример 5. 0 — нейтральный элемент по сложению на множестве целых чисел

Пример 6. 2 обратный элемент к 3 на множестве остатков по модулю 5 с операцией умножения (с операцией сложения, кстати, тоже)

Определение 5

Множество X с операцией \star называется

полугруппой, если операция ассоциативна;

моноидом, если операция ассоциативна и существует нейтральный элемент;

 $\it epynnoŭ$, если выполнены свойства (1)-(3)

 $\Gamma pynna$ называется **Абелева**, если выполнено (4).

Пример 7. Группой является множество целых чисел с операцией сложения. Нейтральным элементом является 0, обратным элементом к x является -x. Группа κ оммутативна (Абелева).

Пример 8. Моноидом является множество целых чисел с операцией умножения. Нейтральным элементом является 1.

Задача 1

Какие из множеств с бинарной операцией являются группами?

 $(\mathbb{N},+)$ $(\mathbb{Q},+)$ $(\mathbb{Q},+)$ $(\mathbb{Q},+)$ $(\mathbb{Q},+)$ $(\mathbb{Q},+)$ $(\mathbb{Q},+)$ $(\mathbb{R},+)$ $(\mathbb{R},+)$ $(\mathbb{R},+)$ $(\mathbb{R},+)$ $(\mathbb{R},+)$ $(\mathbb{R},+)$

Задача 2

Нейтральный элемент единственен (это утверждение не зависит даже от ассоциативности).

Задача 3

Если элемент моноида имеет левый и правый обратный, то они совпадают. В частности, обратный элемент единственен.

Задача 4

Если в моноиде элементы x и y обратимы, то $x \star y$ обратим, причем $(x \star y)^{-1} = y^{-1} \star x^{-1}$. Множество обратимых элементов моноида является группой.

Задача 5

Пусть G — группа относительно операции \circ . Операцию * определим так: $a*b=b\circ a$. Доказать, что относительно * множество G также является группой (противоположной группой).

Задача 6

Пусть G — конечное множество с ассоциативной бинарной операцией, причем из $ax_1=ax_2$ следует $x_1=x_2$, а из $y_1a=y_2a$ следует $y_1=y_2$ при любом $a\in G$. Доказать, что G — группа.

Задача 7

Доказать, что непрерывные строго возрастающие вещественные функции f, определенные на отрезке [0,1] и имеющие значения f(0)=0 и f(1)=1, образуют группу относительно суперпозиции.

Определение 6

Определим *таблицу Кэли*, как квадратную таблицу, описывающая структуру конечной алгебраической системы и состоящая из результатов применения бинарной операции к её элементам.

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Таблица 1: Таблица Кэли для остатков по модулю 3 с операцией сложения

 Π ример 9.

Задача 8

Построить таблицу Кэли: (1) группы S биекций множества из n элементов относительно композиции (симметрической группы степени n) для n=3, (2) группы D самосовмещений правильного n-угольника относительно композиции для n=3.

Определение 7

Пусть G с операцией \star и H с операцией # – группы. Функция $f:G \to H$ называется **гомоморфизмом**, если $f(a \star b) = f(a) \# f(b)$ для любых $a, b \in G$. Если **гомоморфизм** является биекцией, то его называют **изоморфизм**.

Пример 10. Рассмотрим множество целых чисел \mathbb{Z} с операцией сложения и множество всех степеней пятерок $A = \{ \dots 5^{-1}, 1, 5, 5^2, 5^3, \dots \}$ с операцией умножения. Тогда есть гомоморфизм $f: \mathbb{Z} \to A$. $f(x) = 5^x$ Нетрудно проверить, что $f(a+b) = f(a) \cdot f(b)$

Пример 11. Рассмотрим множество целых чисел \mathbb{Z} с операцией сложения и множество состоящее из 0 и 1 с операцией сложения (будем обозначать его \mathbb{F}_2). Тогда есть гомоморфизм $f: \mathbb{Z} \to \mathbb{F}_2$. $f(x) = x \mod 2$ Нетрудно проверить, что f(a+b) = f(a) + f(b)

Задача 9

Опишите все возможные группы состоящие из 1, 2 и 3 элементов с точностью до изоморфизма

Задача 10

- Докажите, что множество остатков по модулю 6 с операцией сложения является группой.
- Докажите, что множество остатков по модулю 7 за исключением 0 с операцией умножения является группой.

Задача 11

Докажите, что две группы из прошлого задания изоморфны.

Задача 12

Опишите все возможные группы состоящие из четырёх элементов с точностью до изоморфизма

Задача 13 *

Опишите все возможные группы состоящие из пяти элементов с точностью до изоморфизма

Определение 8

Непустое подмножество H группы G называется nodepynnoŭ, если $a,b\in H\Rightarrow ab,a^{-1}\in H.$

Пример 12. Если $a \in H$, то $a^{-1} \in H$, а, следовательно, и их произведение, равное нейтральному элементу, лежит в подгруппе H. Ясно, что подгруппа сама является группой относительно тех же операций, которые заданы в объемлющей группе. Если H – подгруппа в G, то пишут $H \leq G$.

Пример 13. В любой группе есть две тривиальные подгруппы: сама группа и множество, состоящее из одного нейтрального элемента.

Пример 14. Во множестве целых чисел с операцией сложения есть подгруппа чисел делящихся на $3.3\mathbb{Z} \leq \mathbb{Z}$.

Определение 9

Пусть X — подмножество группы G. Подгруппой, **порожеденной** множеством X, называется наименьшая подгруппа в G, содержащая X.

Подгруппа, порожеденная X, обозначается $\langle X \rangle$.

Подгруппа, *порожеденная* одним элементом (точнее, одноэлементным множеством) называется *циклической*.

Теорема 1

Любая циклическая группа изоморфна аддитивной группе \mathbb{Z} или $\mathbb{Z}/n\mathbb{Z}$.

Определение 10

Пусть G — группа. Количество элементов в этой группе называется $nopядком\ \it epyn \it nu\ G$ и обозначается |G|.

Определение 11

Пусть g — элемент группы G. Порядок циклической подгруппы, порожденной g, называется порядком элемента g, т.е. $\operatorname{ord}_g = |\langle g \rangle|$. Порядок элемента g — это наименьшее натуральное число n такое, \exists то $g^n = 1$

Определение 12

Пусть $H \leq G$. Множества gH и Hg называются левыми (соотвественно правыми) **смежными классами** по подгруппе H.

Множество левых смежных классов обозначается через G/H, а правых — $H\backslash G$.

Теорема 2 (Лагранж)

Если H — подгруппа конечной группы G, то $|G| = |H| \cdot |G/H|$.

Пример 15. Если H — подгруппа конечной группы G, то в частности |G| \vdots |H|.

Задача 14

Докажите, что $\forall a \in G$ выполнено тождество $a^{|G|} = e$.

Задача 15

Докажите, что для каждого простого числа p группа состоящая из p элементов существует и единственна с точностью до изоморфизма.

Задача 16

Доказать, что в группе чётного порядка найдётся ненейтральный элемент с единичным квадратом.

Задача 17

Пусть G — группа относительно операции \circ , $a \in G$. Определим на G новую операцию: $x*y=x\circ a\circ y$. Доказать, что относительно операции * множество G также является группой, и что новая группа изоморфна старой.

Задача 18 *

Доказать, что если в мультипликативно записанной группе квадрат любого элемента равен 1, то эта группа — абелева.

Определение 13

Пусть теперь на множестве R заданы операции «сложения» и «умножения», причем R является абелевой группой по сложению и полугруппой по умножению. Предположим, что выполнено следующее свойство:

(5) $\forall x, y, z \in R : (x + y)z = xz + yz$ и z(x + y) = zx + zy (правая и левая дистрибутивность).

Тогда R называется (ассоциативным) кольцом. Если существует нейтральный элемент по умножению, то кольцо называется кольцом c единицей, если умножение коммутативно, то коммутативным кольцом.

Пример 16. Множество целых чисел с операцией сложения и умножения. По сложению это Абелева группа. По умножению есть 1. Так что это коммутативное кольцо с 1.

Определение 14

Как следует из задания 4, множество обратимых (по умножению) элементов кольца R является группой. Эта группа называется **мультипликативной подгруппой** кольца и обозначается через R^{\times} .

Пример 17. Мультипликативная подгруппа кольца $\mathbb{Z}/12\mathbb{Z}$ это $\{1,5,7,11\}$ с операцией умножения по модулю 12.

Задача 19

Для любого элемента r произвольного кольца R: $0 \cdot r = r \cdot 0 = 0$. Если R – кольцо с единицей, то $(-1) \cdot r = -r$.

Задача 20

Сколько элементов в мультипликативной подгруппе кольца $\mathbb{Z}/n\mathbb{Z}$

Задача 21

Докажите теорему Эйлера с помощью теоремы Лагранжа.

Определение 15

 \pmb{Hone} — это κ оммутативное κ ольцо c единицей, в котором каждый ненулевой элемент обратим.

Пример 18. \mathbb{Q}, \mathbb{R} — поля

 $\Pi pumep$ 19. Через $\mathbb{Z}/n\mathbb{Z}$ будем обозначать кольцо остатков по модулю n со стандартными операциями.

Задача 22

Докажите, что $\mathbb{Z}/n\mathbb{Z}-n$ оле $\iff n-$ простое

Определение 16

Подгруппа H группы G называется **нормальной**, если для любых $g \in G$ и $h \in H$ имеет место включение $g^{-1}hg \in H$.

В других обозначениях: $\forall g \in G : g^{-1}Hg \subseteq H$. Если H — нормальная подгруппа в G, то пишут $H \trianglelefteq G$.

Пример 20. Заметим, что любая подгруппа абелевой группы является нормальной.

Задача 23

Докажите, что у нормальной подгруппы левые и правые классы смежности равны и наоборот.

 $\forall g \in G : gH = Hg \iff H$ — нормальная подгруппа.

Задача 24

Приведите пример группы и её подр
гуппы, которая не является нормальной.

Задача 25 *

Найти все (с точностью до изоморфизма) группы порядка 2p, где p — простое число.