Sarcasm Detection on Reddit

Group 18:

Amas Lua Yong Da Chua Wee Kian, Glendon Divakaran Haritha Lee Joon Jie Senthil Araavind

TABLE OF CONTENTS

1. Introduction

Motivation

"Sarcasm detection is an important component in many natural language processing (NLP) systems, directly relevant to natural language understanding, dialogue systems, and text mining."

A Large Self-Annotated Corpus for Sarcasm

Sarcasm is defined as the **use of irony to mock or convey contempt**.

Automatic detection of sarcasm may help to prevent internet users from misinterpreting comments which enables a more friendly user base.

Motivation

Another practical use of sarcasm detection is to avoid PR disasters

The Task

This project aims to build effective models to determine if a comment made by a Reddit user is sarcastic.

We wish to find out which features are correlated to sarcasm and we thus attempt to perform NLP and feature engineering to help with the task.

4 models will be explored and compared to find out which one can best predict sarcasm. In addition, we perform ensembling on the models to see if it improves performance.

Prior Work

 The paper <u>A Large Self-Annotated Corpus for Sarcasm</u> explores using logistic regression with 3 text representation methods

Method	all-bal*
Bag-of-Words	73.2
Bag-of-Bigrams	75.8
Sentence Embedding	71.0
Human (Average)	81.6
Human (Majority)	92.0
Random	50.0

Table: Accuracy percentage of baseline methods for sarcasm detection

2. Data

Data Source

- Self-Annotated Reddit Corpus' from <u>A Large Self-Annotated Corpus for Sarcasm</u>
- Over 1 million comments scraped from Reddit
- Balanced training and test sets with instances that are labelled with 1 (sarcastic) or
 O (not sarcastic)
- Sarcastic comments are identified with the '/s' tag
- Useful features: comment, parent comment, subreddit, upvotes, downvotes
- Primary data is the comment text but we also explore incorporating other potentially useful features

Data Split

3. General Approach

Models

 $\begin{array}{c} 0.1\\ SVM\\ \text{Margin classifier} \end{array}$

02
Logistic Regression
Statistical classifier

03 LSTM Gated RNN 04 BERT Pre-trained NN

05 Ensemble Weighted voting

Training Process

Evaluation Metrics

- Binary classification task with balanced labels
- Precision and recall both important and should be considered

Accuracy	Precision	Recall	F1 Score	AUC-ROC
Proportion of correct predictions	Proportion of positive predictions that are actual positive instances	Proportion of actual positive instances that are predicted positive	Harmonic mean of precision and recall	Measure of a model's ability to distinguish between classes as its threshold varies

4. Models

Logistic Regression & Support Vector Machine

Feature Engineering

Extract most relevant features from the dataset

- Capitalized Frequency
- Punctuation Frequency
- Word Count

Clean raw data

- Remove punctuation
- Change all characters in text to lower-case
- Columns with empty entries filled with empty strings

Implementation - LR&SVM

Two <u>approaches</u> to each model:

Approach 1: Use sarcastic comment_processed only -> **Base** model

Approach 2: Use numerical features extracted earlier, such as punctuation frequency etc.

Methods used:

- Text Representation using TFIDF-Vectorizer (Term Frequency Inverse Document Frequency)
- Lemmatization of text did not remove stop words
- Usage of pipeline

Validation - IR

Accuracy	Precision	Recall	F1
0.720	0.738	0.682	0.709

Using Approach 2:

Accuracy	Precision	Recall	F1	
0.672	0.707	0.588	0.642	<u> </u>

Test Evaluation - LR

Using Approach 1:

Accuracy	Precision	Recall	F1
0.722	0.739	0.685	0.711

Validation - SVM

Accuracy	Precision	Recall	F1
0.715	0.731	0.679	0.704

Using Approach 2:

Accuracy	Precision	Recall	F1
0.714	0.720	0.702	0.711

Test Evaluation - SVM

Using Approach 1:

Accuracy	Precision	Recall	F1
0.718	0.734	0.683	0.708

LSTM

Long Short Term Memory

Architecture

Architecture: Embedding

- Mapping from text tokens into low dimensional vector space
- Vectors can then be used as input to downstream layers
- Randomly initialised and trained with the rest of the network through back propagation

Architecture: LSTM

- Specialised RNN architecture
- Capture subtle patterns in sequences
- Allow conditioning on the entire history without making Markov assumptions
- Consider infinite windows of input while outputting a fixed-sized vector
- In text, word order and context is important
- Feature extractor
- Many-to-One RNN

Architecture: LSTM

- Designed to solve the vanishing gradient problem
- Differentiable gating mechanisms to decide what to remember or forget
- Smooth mathematical functions that simulate logical gates
- Able to capture long-term dependencies between word sequences

Architecture: MLP

- Uses feature vector of the text input from LSTM to make predictions
- Sigmoid layer with one output to represent the probability of the input being sarcastic
- Trained with binary cross entropy loss based on the actual sarcasm labels

Architecture

Implementation

- Built using PyTorch
- Hyperparameters
 - Number of epochs: 2
 - O Batch size: 512
 - Learning rate: 0.001
 - Optimizer: Adam
 - Embedding vector dimension: **300**
 - MLP dropout regularisation: 0.30 probability
 - MLP activation function: ReLU
 - MLP hidden layers: 1
 - Decision Threshold: 0.50 (chosen to maximise TPR-FPR)

Validation

Validation

Evaluation

Accuracy	Precision	Recall	F1
0.757	0.774	0.726	0.749

Evaluation

AUC Score

0.836

BERT

Bidirectional Encoder Representations from Transformers

BERT

- State of the art NLP model published by Google in 2018
- Applies bidirectional training of the Transformer model to perform language modelling

Architecture

BERT base Architecture

Transfer Learning

BERT is pre-trained on Masked
Language Modelling and Next
Sentence Prediction over a
massive unlabelled plain text
corpus comprising BooksCorpus
and English Wikipedia

Base-layer of knowledge accumulated and stored from pre-training can be applied to solve other different yet related NLP problems

Why transfer learning?
Better starting point and improved

baseline performance Speeds up training process

02

Fine-tuning and training

Pre-trained models like BERT can be easily fine-tuned to perform various NLP tasks including **sentiment analysis**. We fine-tuned BERT on the training and validation datasets of labelled reddit comments **specifically** for our sarcasm classification task.

Implementation

- Built using PyTorch-transformers
- Model: BERT base uncased
- Hyperparameters
 - Training batch size: 32
 - Learning rate: 0.000005
 - O Number of epochs: 2
 - Optimizer: AdamW
 - Feed-forward neural network
 - 1 Hidden layer of size: 50
 - Dropout layer for regularisation: 0.30 probability
 - Activation function: ReLU
 - Decision Threshold: 0.535 (chosen to maximise TPR-FPR)

BERT's output for the [CLS] token of is fed into an additional feed-forward neural network to classify each sentence as sarcastic or not sarcastic.

=> Improved accuracy by ~2%

Validation

Model	Num of Epoch	Learning Rate	Batch Size					
BERT base uncased	1	2e-5	16	accuracy macro avg weighted avg	0.7692 0.7409 0.7551 0.7550	recall 0.7263 0.7822 0.7543 0.7543	fl-score 0.7472 0.7610 0.7543 0.7541 0.7541	50531 50547 101078 101078 101078
BERT base uncased	1	2e-4	16	accuracy macro avg	0.0000 0.5001 0.2500 0.2501	0.0000 1.0000 0.5000 0.5001	0.0000 0.6667 0.5001 0.3334 0.3334	50531 50547 101078 101078 101078
BERT base uncased	1	2e-5	8	Classificatio 1 0 accuracy macro avg weighted avg	0.7800 0.7215 0.7508 0.7508	recall 0.6889 0.8058 0.7474 0.7474	fl-score 0.7317 0.7613 0.7474 0.7465 0.7465	50531 50547 101078 101078 101078
BERT base uncased	1	2e-5	32	accuracy macro avg	0.7608 0.7467 0.7637 0.7637	recall 0.7301 0.7951 0.7626 0.7626	fl-score 0.7546 0.7701 0.7626 0.7624 0.7624	Support 50531 50547 101078 101078 101078

Evaluation

Accuracy	Precision	Recall	F1
0.783	0.781	0.780	0.780

Evaluation

AUC Score

0.862

Ensemble

Ensemble

- Weighted voting of the 4 models
- BERT (most performant model) has 2 votes, rest of the models have 1 vote each

Accuracy	Precision	Recall	F1
0.776	0.795	0.744	0.769

5. Analysis

Evaluation Summary

	Accuracy	Precision	Recall	F1 Score	AUC-ROC
SVM	0.718	0.734	0.683	0.708	-
Logistic Reg	0.722	0.739	0.685	0.711	0.722
LSTM	0.757	0.774	0.726	0.749	0.836
BERT	0.783	0.781	0.780	0.780	0.862
Ensemble	0.776	0.795	0.744	0.769	-

SVM ≈ Logistic Reg < LSTM < Ensemble ≈ BERT

Model Comparison

LSTM and BERT perform better than SVM and logistic regression in all metrics

- Ability to learn non-linear target function
- Number of parameters in models
- Examples where LSTM and BERT predicted correctly but SVM and LR did not :
 - " thank you NY for giving us Trump"
 - " As an american, I can proudly say the rest of the world doesn't matter"

Model Comparison

BERT achieves the best performance overall

- Advantage of transfer learning
- Base-layer of knowledge from pre-training
- Examples where BERT predicted correctly but LSTM, SVM and LR did not :
 - o "Wasn't aware that gold had a lowly 13Bn market cap."
 - " Funny original meme haha:)."
 - \circ " I see you understood my point perfectly. "

Model Comparison

Ensemble scores higher than BERT for precision

- Voting system outputs positive only if majority of the models are in agreement
- Using the F0.5 metric, the ensemble scores slightly higher than BERT (0.784 vs 0.780)
- Diverse hypotheses of the individual models may decrease variance
- Consider choosing ensemble over BERT if precision is a priority for some practical use

Prior Work Comparison

- **SVM** and **Logistic Regression** performed slightly worse than baseline methods in terms of **accuracy**
- LSTM, BERT and Ensemble models performed better
- Overall, our models all performed worse than average humans

Method	all-bal*
Bag-of-Words	73.2
Bag-of-Bigrams	75.8
Sentence Embedding	71.0
Human (Average)	81.6
Human (Majority)	92.0
Random	50.0

Table: Accuracy percentage of baseline methods for sarcasm detection

Difficulty of Task

- Sarcasm detection is a difficult task
- Written text is not able to convey sarcasm as well as speech
- More difficult than normal sentiment analysis
- Insufficient to use the positive/negative degree of words to detect sarcasm
- Difficulty of picking up sarcasm is likely the reason why recall < precision for all models

Difficulty of Task

Excerpt from The Big Bang Theory

Leonard: "Hey, Penny. How's work?"

Penny: "Great! I hope I'm a waitress at the Cheesecake

Factory for my whole life!"

Sheldon: "Was that sarcasm?"

Penny: "No."

Sheldon: "Was that sarcasm?"

Penny: "Yes."

Penny's words have overall positive sentiment on the surface but is actually sarcastic and has the opposite meaning

Limitation of Data

"Despite our efforts to filter noisy '/s' labels, there remain instances where no simple rule reliably eliminates incorrect labels."

A Large Self-Annotated Corpus for Sarcasm

- False positives comment is incorrectly labeled as sarcastic due to presence of '/s' tag
 - '/s' may have other connotations, e.g. '<s>...</s>' code in HTML
 - Example: "Yeah I know lol it's a joke that's why I put /s " was wrongly labelled sarcastic
- False negatives comment is sarcastic, but not annotated with '/s' tag
 - More difficult to detect than false positives
 - User may be unaware of the '/s' convention
 - User may choose not to include the '/s' tag

6. Conclusion

Conclusion

- Further analysis of data features
 - Subreddit may affect whether the comment is sarcastic or not
- Applications of this model in real world scenarios
 - Notify people if a comment seems to be highly sarcastic
 - Sarcastic text generator

Figure: Sarcasm percentage for subreddits with more than a million comments in dataset

THANK YOU

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

