Задание 3. Поле в диэлектрике

Диэлектрик, помещенный во внешнее электрическое поляризуется, т.е. происходит частичное смещение электрических зарядов (электронов и ядер). Вследствие чего на поверхности однородного диэлектрика возникают индуцированные заряды, (поляризационные) которые создают собственное электрическое поле, как внутри диэлектрика, так и вне его. Если силовые линии электрического поля везде на границе диэлектрика перпендикулярны этой границе, то напряженность электрического поля внутри диэлектрика оказывается в є раз меньше, чем напряженность поля при отсутствии диэлектрика (где є диэлектрическая проницаемость диэлектрика).

В данном задании Вам необходимо продемонстрировать понимание описанного механизма изменения поля в диэлектрике.

Если электрические заряды распределены по поверхности, то удобно ввести такую характеристику зарядов, как их поверхностная плотность:

где Δq - заряд, находящийся на малой площадке площади ΔS .

Во всех частях этого задания предполагается, что электрические заряды распределены по плоским поверхностям равномерно $\sigma = const$, а создаваемое ими электрическое поля является однородным. Т.е. краевыми эффектами следует пренебрегать. Считайте, что вне диэлектриков находится вакуум.

Часть 1. Нормальное поле

В учебнике физики для 10 класса приведена формула для емкости плоского конденсатора

$$C = \frac{\varepsilon \varepsilon_0 S}{d} \,. \tag{2}$$

где S - площадь пластин (обкладок) конденсатора, d - расстояние между обкладками, ε - диэлектрическая проницаемость вещества, находящегося между обкладками, ε_0 - электрическая постоянная.

1.1 Бесконечная равномерно заряженная с поверхностной плотностью заряда σ плоскость создает однородное электрическое поле, напряженности \vec{E} .

1.1 Используя формулу для емкости плоского конденсатора (2), выразите модуль напряженности электрического поля E, создаваемого зарядами на плоскости, через их поверхностную плотность σ .

1.2 В однородное электрическое поле напряженности \vec{E}_0 помещена незаряженная плоскопараллельная пластина, изготовленная из диэлектрика с диэлектрической проницаемостью ε . Силовые линии поля перпендикулярны пластине.

- **1.2** Найдите поверхностную плотность индуцированных зарядов на пластине σ' . Выразите значение этой плотности а) через напряженность поля E_0 вне пластины; б) через напряженность поля E внутри пластины.
- **1.3** Силовые линии электрического поля перпендикулярны плоской границе однородного диэлектрика с диэлектрической проницаемостью ε (нижняя граница находится бесконечно далеко). Над диэлектриком напряженность поля равна \vec{E}_1 .

- **1.3** Найдите поверхностную плотность индуцированных на границе зарядов σ' . Выразите ее через напряженность поля внутри диэлектрика E_2 .
- 1.4 Плоский конденсатор состоит из двух проводящих параллельных пластин площади S, находящихся расстоянии d друг от друга, которое значительно меньше пластин. размеров Между пластинами находится непроводящая плоскопараллельная пластинка толщины расположенная параллельно пластинамобкладкам конденсатора. На обкладках конденсатора равномерно распределены электрические поверхностные заряды, плотности которых равны $\pm \sigma_0$.

- **1.4.1** Найдите поверхностные плотности зарядов σ_1', σ_2' на поверхностях диэлектрической пластинки (укажите знаки этих зарядов).
- **1.4.2** Найдите электрическую емкость этого конденсатора C_0 .
- **1.4.3** Найдите давление, которое оказывает электрическое поле на одну из граней диэлектрической пластинки. Укажите, растягивается или сжимается пластинка под действием электрического поля.

Часть 2. Наклонное поле

2.1 Силовые линии однородного электрического поля напряженности \vec{E}_1 образуют угол α_1 с нормалью к плоской границе диэлектрика с диэлектрической проницаемостью ε . Внутри диэлектрика вектор напряженности однородного электрического поля \vec{E}_2 направлен под углом α_2 к нормали к границе диэлектрика.

- **2.1.1** Получите «закон преломления» силовых линий, т.е. соотношение, связывающее углы α_1, α_2 и диэлектрическую проницаемость ε .
- **2.1.2** Найдите отношение модулей напряженностей полей $\frac{E_2}{E_1}$ как функцию диэлектрической проницаемости ε и угла α_1 .

2.2 Диэлектрическую пластину конденсатора, описанного в п. 1.4, повернули на угол α .

- **2.2.1** Найдите емкость конденсатора C с повернутой пластиной.
- **2.2.2** Найдите относительное изменение емкости конденсатора $\frac{C-C_0}{C_0}$ при повороте пластины на малый угол α . (C_0 емкость конденсатора, найденная в п. 1.4.2.

<u>Примечание</u>. Считайте, что при повороте пластины распределение зарядов на обкладках конденсатора и на гранях диэлектрической пластины остается равномерным, а электрическое поле в зазорах между обкладками пластинкой остается однородными перпендикулярным обкладкам конденсатора.