Terran Viper

Semi Autonomous Terrain Reconnaissance and Surveillance Security Robot

DFP - 81

Aditya NarayanTushar Sharma 22BME002 22BSM062 Kritansh Singh 22BME034 22BEC048 Harsh Mishra 22BSM053 Sanyam Sneh 22BCS057

Ayush Kushwaha

Terran Viper

Semi Autonomous Terrain Reconnaissance and Surveillance Security Robot

01

Identification

- What is the problem?
 - Traditional surveillance devices struggle with navigating narrow tunnels, debris-filled areas, or confined spaces, lacking the flexibility needed for effective reconnaissance in variable environments.

Design Fabrication project

- Who is Affected?
 - Security forces, rescue teams, and military personnel requiring enhanced surveillance and reconnaissance in hazardous or hard-to-reach areas.

02

Justification

- Why it is important and What are its benefits?
 - Flexible robots excel in risky areas, accessing challenging sites like collapsed buildings. Realtime video, audio, and depth mapping enhance situational awareness and decision-making.

03

Novelty

- Unlike most traditional robots with limited movement mechanisms, this robot integrates three distinct modes of motion: serpentine, sidewinding, and rectilinear.
- These motion types are inspired by biological snakes, enabling unparalleled adaptability to diverse terrains such as narrow spaces, loose sand, or steep inclines.

A snake-inspired robot with three motion modes for versatile terrain adaptability. Equipped with a camera, it's ideal for surveillance, search and rescue and can move in confined spaces.

04

Functionality

- Yaw and pitch motion with two servo motors in alternate links for precise flexibility.
- Supports serpentine, rectilinear, and sidewinding motions for varied terrains.
- Operates in wireless and wired modes for versatile functionality.
- Controlled via precoded equations with a user-friendly interface.
- Equipped with a camera for real-time video and depth detection on a remote PC.

DFP - 81

Aditya Narayan
Tushar Sharma
Kritansh Singh
Harsh Mishra
Sanyam Sneh
Ayush Kushwaha
22BME002
22BSM062
22BME034
22BEC048
22BSM053
22BCS057

Motion Mechanism of Links

Yaw and Pitch Motion:

Two high torque MG995 Servo Motors mounted orthogonally, responsible for Yaw and Pitch motion of the links.

Camera Integration and Live Video Transmission

 A monocular camera is utilized to capture video, which is transmitted wirelessly via a ESP32 Cam Module. The received video feed is processed to generate a depth map for enhanced spatial analysis.

Quantity

Design Detailing

Microcontroller (Arduino Atmega 2560)

- More I/O Pins: Offers a larger number of digital and analog I/O pins, ideal for connecting multiple servos and sensors.
- **Higher Processing Power:** Equipped with more memory (256 KB flash, 8 KB SRAM) and faster processing capabilities, making it suitable for handling complex tasks.
- Better for Complex Projects: Ideal for applications requiring simultaneous control of multiple components, like our snake robot.

Bill of Materials

Name	Price	Quantity	iotal Cost
Arduino Mega R3 (Atmega 2560-16U2) Model: - Atmega2560	₹ 1199	1	₹1199
TowerPro Servo Motor Model:- Pro-Range MG995	₹272.5	12	₹3720
SX1278 LoRa module (For wireless Communication)	₹398	2	₹796
LoRa Antenna (For wired Communication)	₹54	2	₹108
600TVL 170 Degree Mini FPV AV Camera with Audio for Mini 200 250 300 Drone (Camera)	₹838	1	₹838
Boscam FPV 32CH 5.8G 600mW Wireless Transmitter (Video Transmitter)	₹2028	1	₹ 2028
5.8G UVC OTG Android AV Phone Receiver	₹2370	1	₹2370
DMEGC INR21700-45E 3.7V 4500mAh Li-Ion Battery (Power Supply)	₹272	5	₹1360
MAX485 TTL To RS485	₹24	2	₹48
Arduino Uno	₹ 229	2	₹458
eSun PLA+ 1.75mm 3D Printing Filament 1kg-White	₹ 1239	1	₹ 1239
DC-DC Step-up Module with Adjustable Booster Power Supply Module	₹139	1	₹139
Male to Male Jumper Wires 40 Pin 30cm	₹67	1	₹67
LWC-CA-SMA-JACK-BH-ST-UFL-1.13mm RF Cable Assemblies-15cm	₹ 69	2	₹ 138
Male to Female Jumper Wires 40 Pin 40cm	₹ 107	1	₹ 107
EasyMech M4 X 16mm CHHD Bolt and Nut Set-20 pc	₹ 29	2	₹ 58
RF433Mhz Module	₹ 271	2	₹ 542
Total	-	-	₹ 15,412

DFP - 81

 Aditya Narayan 	22BME002	
 Tushar Sharma 	22BSM062	
 Kritansh Singh 	22BME034	
 Harsh Mishra 	22BEC048	
 Sanyam Sneh 	22BSM053	
 Ayush Kushwaha 	22BCS057	

Motion Visualization

1. Serpentine

2. Rectilinear

3. Side Winding

4. Circuit Diagram

DFP - 81

Aditya Narayan
Tushar Sharma
Kritansh Singh
Harsh Mishra
Sanyam Sneh
Ayush Kushwaha
22BME002
22BSM062
22BME034
22BEC048
22BSM053
22BCS057

