

Introduction to Machine Learning

Recommender Systems

Modules for this course

- 1. Overview: What is Machine learning
- 2. Categories of machine learning
- 3. Building a Classification Model
- 4. Machine Learning application approach
- 5. Recommender Systems
- 6. Building a Recommender Engine

Recommender Systems

Objectives

Objectives

- What is a Recommender System
- What is the difference between content based and collaborative filtering Recommender systems
- Which limitations recommender systems frequently encounter
- How collaborative filtering can identify similar users and items

Outline

- What is a recommender system?
- Types of collaborative filtering
- Limitations of recommender systems
- Fundamental concepts
- Essential points
- Conclusion
- Hands-On Exercise: Implementing a Basic Recommender

What is a Recommender System?

Types of Recommendations

1. Content-based (CB)

Analyze attributes of items for building user profiles

2. Collaborative filtering (CF)

Inspect rating patterns to find similar users/items

In general, CF performs better than CB

- CF fail to provide accurate predictions with insufficient ratings
- CB can alleviate the sparsity problem

Content-Based Recommendations

1. Focus:

 Content-based systems recommend items to users based on the attributes and characteristics of the items themselves and the user's historical preferences for those attributes.

2. User Profile:

These systems create a user profile by analyzing the content or features
of items the user has interacted with. The user profile captures the
user's preferences for different attributes.

3. Similarity Calculation:

 Recommendations are made by calculating the similarity between the user's profile and the attributes of different items.

Content-Based Recommendations

 Main idea: Recommend items to customer x like previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Items Profile

For each item, create an item profile

Profile is a set (vector) of features

- Movies: author, title, actor, director,...
- **Text:** Set of "important" words in document

How to pick important features?

- Usual heuristic from text mining is **TF-IDF** (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest **TF-IDF** scores, together with their scores

Note: we normalize TF to discount for "longer" documents

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- Prediction heuristic: Cosine similarity of user and item profiles)
 - Given user profile \mathbf{x} and item profile \mathbf{i} , estimate $u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$
- How do you quickly find items closest to x?
 - Job for LSH!

Pros & Cons: Content-based Approach

1.Advantages:

- 1. Can provide personalized recommendations even for new or less popular items, if their attributes are known.
- 2. Less reliant on large user interaction data.
- 3. Can handle the cold-start problem for new users.

2.Limitations:

- 1. Limited to the features available for item descriptions.
- 2. May not capture changes in a user's preferences over time.
- 3. Tends to produce recommendations that are like past interactions.

Collaborative Filtering

- **Principle**: Collaborative filtering recommends items to users based on the preferences and behaviors of other users. It assumes that users who agree in the past will agree in the future.
- **User-Item Matrix**: It creates a user-item interaction matrix where each entry represents the user's preference for an item (e.g., ratings, likes, purchase history).
- User-Based vs. Item-Based:
 - User-Based Collaborative Filtering: Recommends items to a user based on the preferences of similar users.
 - Item-Based Collaborative Filtering: Recommends items to a user based on the preferences of other items they have interacted with.

Types of Collaborative Filtering

- Collaborative filtering can be subdivided into two main types
- User-based: "What do users similar to you like?"
 - For a given user, find other people who have similar tastes
 - Then, recommend items based on past behavior of those users
- Item-based: "What is similar to other items you like?"
 - Given items that a user likes, determine which items are similar
 - Make recommendations to the user based on those items

User-Based Collaborative Filtering

- Consider user **x**
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure
 - $\operatorname{sim}(\boldsymbol{x}, \, \boldsymbol{y}) = \cos(\boldsymbol{r}_{\boldsymbol{x}}, \, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$
 - Problem: Treats some missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:
 - $r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$
 - Or even better: $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$
- Many other tricks possible...

- User-based collaborative filtering is social
 - It takes a "people first" approach, based on common interests
- In this example, Amina and Debra have similar tastes
 - Each is likely to enjoy a movie that the other rated highly

Pros & Cons: Collaborative Filtering

1.Advantages:

- 1. Captures complex user behaviors and preferences.
- 2. Can discover hidden patterns in user interactions.

2.Limitations:

- 1. Can suffer from the cold-start problem for new items or users.
- 2. Sensitive to sparsity in the user-item interaction matrix.

- So far: User-based collaborative filtering
- Another view: Item-based
 - For item i, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *x* on item *j*N(i;x)... set items rated by *x* similar to *i*

⁻ estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2) Compute cosine similarities between rows

Compute similarity weights:

Compute similarity weights:

$$s_{1.3}$$
=0.41, $s_{1.6}$ =0.59

Summary

Recommendation systems use several different technologies. We can classify these systems into two broad groups.

- Content-based systems examine properties of the items recommended.
- Collaborative filtering systems recommend items based on similarity measures between users and/or items.

Questions