Customer Service request Analysis - Project Report

June 26, 2021

1 Customer Service request Analysis - Project Report

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
import datetime
from scipy import stats
%matplotlib inline
```

1.1 Task 1

1.1.1 Importing the NYC311 Data

```
[2]: customerSR = pd.read_csv("311_Service_Requests_from_2010_to_Present.csv",
      →low_memory=False)
[3]: customerSR.head()
[3]:
       Unique Key
                              Created Date
                                             Closed Date Agency \
    0
         32310363 12/31/2015 11:59:45 PM 01-01-16 0:55
                                                           NYPD
         32309934 12/31/2015 11:59:44 PM 01-01-16 1:26
    1
                                                           NYPD
    2
         32309159 12/31/2015 11:59:29 PM
                                           01-01-16 4:51
                                                           NYPD
         32305098 12/31/2015 11:57:46 PM
    3
                                           01-01-16 7:43
                                                           NYPD
                                           01-01-16 3:24
         32306529 12/31/2015 11:56:58 PM
                                                           NYPD
                           Agency Name
                                                 Complaint Type
    O New York City Police Department
                                        Noise - Street/Sidewalk
    1 New York City Police Department
                                                Blocked Driveway
    2 New York City Police Department
                                                Blocked Driveway
    3 New York City Police Department
                                                 Illegal Parking
    4 New York City Police Department
                                                 Illegal Parking
                                       Location Type Incident Zip \
                         Descriptor
```

```
0
               Loud Music/Party Street/Sidewalk
                                                          10034.0
                                  Street/Sidewalk
1
                       No Access
                                                          11105.0
2
                       No Access
                                  Street/Sidewalk
                                                          10458.0
3
   Commercial Overnight Parking
                                  Street/Sidewalk
                                                          10461.0
4
               Blocked Sidewalk
                                  Street/Sidewalk
                                                          11373.0
                           ... Bridge Highway Name Bridge Highway Direction
        Incident Address
0
     71 VERMILYEA AVENUE
                                              NaN
                                                                         NaN
         27-07 23 AVENUE
                                                                         NaN
1
                                              NaN
2
   2897 VALENTINE AVENUE
                                              NaN
                                                                         NaN
3
     2940 BAISLEY AVENUE
                                              NaN
                                                                         NaN
4
           87-14 57 ROAD
                                              NaN
                                                                         NaN
  Road Ramp Bridge Highway Segment Garage Lot Name Ferry Direction
0
        NaN
                                 NaN
                                                  NaN
                                                                   NaN
1
        NaN
                                 NaN
                                                  NaN
                                                                   NaN
2
        NaN
                                 NaN
                                                  NaN
                                                                   NaN
3
        NaN
                                 NaN
                                                  NaN
                                                                   NaN
4
        NaN
                                 NaN
                                                  NaN
                                                                   NaN
  Ferry Terminal Name
                         Latitude Longitude
0
                        40.865682 -73.923501
                   NaN
1
                        40.775945 -73.915094
                   {\tt NaN}
2
                   NaN
                        40.870325 -73.888525
3
                        40.835994 -73.828379
                   {\tt NaN}
4
                   NaN
                        40.733060 -73.874170
                                     Location
0
    (40.86568153633767, -73.92350095571744)
   (40.775945312321085, -73.91509393898605)
1
2
   (40.870324522111424, -73.88852464418646)
    (40.83599404683083, -73.82837939584206)
   (40.733059618956815, -73.87416975810375)
[5 rows x 53 columns]
```

Checking Shape of the dataframe

[4]: customerSR.shape

[4]: (300698, 53)

Checking datatypes and null values of each column

[5]: customerSR.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300698 entries, 0 to 300697

Data columns (total 53 columns):

	Calama	N N11 C	D+
#	Column	Non-Null Count	Dtype
0	Unique Key	300698 non-null	 int64
1	Created Date	300698 non-null	
2	Closed Date	298534 non-null	3
3		300698 non-null	-
4	Agency Name	300698 non-null	-
5	Agency Name Complaint Type	300698 non-null	object
		294784 non-null	· ·
6	Descriptor		3
7	Location Type	300567 non-null	object float64
8	Incident Zip	298083 non-null	
9	Incident Address	256288 non-null	3
10	Street Name	256288 non-null	3
11	Cross Street 1	251419 non-null	3
12	Cross Street 2	250919 non-null	0
	Intersection Street 1	43858 non-null	3
14	Intersection Street 2	43362 non-null	3
15	Address Type	297883 non-null	0
16	City	298084 non-null	· ·
17	Landmark	349 non-null	object
18	Facility Type	298527 non-null	3
19	Status	300698 non-null	0
20	Due Date	300695 non-null	•
21	Resolution Description	300698 non-null	0
22	Resolution Action Updated Date	298511 non-null	-
23	Community Board	300698 non-null	object
24	Borough	300698 non-null	object
25	X Coordinate (State Plane)	297158 non-null	
26	Y Coordinate (State Plane)	297158 non-null	
27	Park Facility Name	300698 non-null	object
28	Park Borough	300698 non-null	object
29	School Name	300698 non-null	object
30	School Number	300698 non-null	object
31	School Region	300697 non-null	object
32	School Code	300697 non-null	object
33	School Phone Number	300698 non-null	object
34	School Address	300698 non-null	object
35	School City	300698 non-null	object
36	School State	300698 non-null	object
37	School Zip	300697 non-null	object
38	School Not Found	300698 non-null	object
39	School or Citywide Complaint	0 non-null	float64
40	Vehicle Type	0 non-null	float64
41	Taxi Company Borough	0 non-null	float64
42	Taxi Pick Up Location	0 non-null	float64
43	Bridge Highway Name	243 non-null	object

```
object
44 Bridge Highway Direction
                                   243 non-null
45 Road Ramp
                                   213 non-null
                                                    object
46 Bridge Highway Segment
                                   213 non-null
                                                    object
47 Garage Lot Name
                                   0 non-null
                                                    float64
48 Ferry Direction
                                   1 non-null
                                                    object
49 Ferry Terminal Name
                                   2 non-null
                                                    object
50 Latitude
                                   297158 non-null float64
51 Longitude
                                   297158 non-null float64
52 Location
                                   297158 non-null object
```

dtypes: float64(10), int64(1), object(42)

memory usage: 121.6+ MB

Checking Missing Values

```
[6]: missing = customerSR.isnull().sum() # findig out missing values
missing = missing.sort_values() # sorting the missing values
missing = missing[missing > 0] # columns with 0 missing values are removed
```

Converting it into percent so that we can get the idea of what percent of missing values are present in the columns

```
[7]: missing_percent = (missing/customerSR.shape[0])*100
missing_percent
```

[7]:	School Zip	0.000333
	School Region	0.000333
	School Code	0.000333
	Due Date	0.000998
	Location Type	0.043565
	Closed Date	0.719659
	Facility Type	0.721987
	Resolution Action Updated Date	0.727308
	City	0.869311
	Incident Zip	0.869643
	Address Type	0.936155
	Latitude	1.177261
	Y Coordinate (State Plane)	1.177261
	X Coordinate (State Plane)	1.177261
	Longitude	1.177261
	Location	1.177261
	Descriptor	1.966757
	Street Name	14.768971
	Incident Address	14.768971
	Cross Street 1	16.388203
	Cross Street 2	16.554483
	Intersection Street 1	85.414602
	Intersection Street 2	85.579552

Landmark	99.883937
Bridge Highway Direction	99.919188
Bridge Highway Name	99.919188
Road Ramp	99.929165
Bridge Highway Segment	99.929165
Ferry Terminal Name	99.999335
Ferry Direction	99.999667
Vehicle Type	100.000000
Garage Lot Name	100.000000
School or Citywide Complaint	100.000000
Taxi Pick Up Location	100.000000
Taxi Company Borough	100.000000
dtype: float64	

since there are missing values ranging from 0% to 100%, I am putting filter for the missing values greater than 2%

```
[8]: missing_percent = missing_percent[missing_percent>2]
```

```
[9]: # plotting the missing values as bar graph
plt.figure(figsize=(10,5),dpi=140)
    sns.barplot(x= missing_percent.index, y = missing_percent.values)
    plt.xticks(rotation=70,fontsize=12)
plt.title('Null Values in Columns', fontsize=18, fontweight="bold")
    plt.ylabel('Number of Null Values', fontsize=16, fontweight="bold")
    plt.xlabel('Columns', fontsize=16, fontweight="bold")
    plt.xticks(fontsize=12, fontweight="bold")
    plt.tight_layout()
```


I see that there are columns that have more then 85% missing values, therefore, dropping them

```
[10]: cols_to_drop = missing_percent[missing_percent>85].index customerSR = customerSR.drop(cols_to_drop.to_list(), axis=1) print(f'{len(cols_to_drop)} columns have been dropped. as they were having more_u → than 85% missing values.')
```

14 columns have been dropped. as they were having more than 85% missing values.

Visualizing the missing numbers in remaining columns

```
[11]: plt.figure(figsize=(15,9), dpi=150)
    msno.matrix(customerSR)
    plt.show()
```

<Figure size 2250x1350 with 0 Axes>

1.1.2 From the above matrix of missing values, we get the following observations:

- From the above matrix, 4 colums have lot of missing values across the same rows.
- Also, the missing values across these 4 column almost lies in same row.
- Imputation may not be appropriate, we may have lot of dummy/guessed data

Columns having lesser than 85% missing values (which are not removed)

```
[12]: less_85_missing = (missing_percent[~(missing_percent>85)]).round(2)
heading = pd.Series({'Columns':'Percent Missing Values'})
heading.append(less_85_missing)
```

```
[12]: Columns Percent Missing Values
Street Name 14.77
Incident Address 14.77
Cross Street 1 16.39
Cross Street 2 16.55
dtype: object
```

1.2 Task 2

1.2.1 Converting the columns 'Created Date' and Closed Date' to datetime, and creating new column 'Request_Closing_Time'

Checking if there are any null values in date related columns

```
[13]: dates = customerSR[['Created Date','Closed Date','Due Date','Resolution Action

→Updated Date']].isnull().sum()
```

Converting in Percent Format, for better understanding

```
[14]: (dates/customerSR.shape[0])*100
```

```
[14]: Created Date 0.000000
Closed Date 0.719659
Due Date 0.000998
Resolution Action Updated Date 0.727308
```

dtype: float64

Since missing dates are less then 1%, I am dropping them, because imputation will still be a guess

```
[15]: customerSR.dropna( how='any', subset=['Created Date','Closed Date','Due_

→Date','Resolution Action Updated Date'], inplace=True)
```

All the missing dates have been removed

```
[16]: customerSR[['Created Date','Closed Date','Due Date','Resolution Action Updated

→Date']].isnull().sum()
```

dtype: int64

```
Checing the data type of the dates column
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 298495 entries, 0 to 300697

Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Created Date	298495 non-null	object
1	Closed Date	298495 non-null	object
2	Due Date	298495 non-null	object
3	Resolution Action Updated Date	298495 non-null	object

dtypes: object(4)
memory usage: 11.4+ MB

Converting the date-related columns to 'datetime' object

```
[18]: # Below is the loop-way of converting to datetime, but it took longer time. so⊔
→ commenting

# dates_index = ['Created Date', 'Closed Date', 'Due Date', 'Resolution Action
→ Updated Date']

# for index in dates_index:
# customerSR[index] = pd.to_datetime(customerSR[index])
```

```
[19]: dates_index = ['Created Date','Closed Date','Due Date','Resolution Action

→Updated Date']

customerSR[dates_index] = customerSR[dates_index].apply(pd.to_datetime)
```

All the date related columns have been converted to datetime object type

```
[20]: customerSR[['Created Date','Closed Date','Due Date','Resolution Action Updated

→Date']].head()
```

```
[20]: Created Date Closed Date Due Date \
0 2015-12-31 23:59:45 2016-01-01 00:55:00 2016-01-01 07:59:00 1 2015-12-31 23:59:44 2016-01-01 01:26:00 2016-01-01 07:59:00 2 2015-12-31 23:59:29 2016-01-01 04:51:00 2016-01-01 07:59:00 3 2015-12-31 23:57:46 2016-01-01 07:43:00 2016-01-01 07:57:00 4 2015-12-31 23:56:58 2016-01-01 03:24:00 2016-01-01 07:56:00
```

```
Resolution Action Updated Date
      0
                  2016-01-01 00:55:00
      1
                  2016-01-01 01:26:00
      2
                  2016-01-01 04:51:00
      3
                  2016-01-01 07:43:00
                  2016-01-01 03:24:00
     Creating 'Request Closing Time' as the time difference between creation and closing
     of request
[21]: customerSR['Request_Closing_Time'] = customerSR['Closed Date'] -__
      customerSR[['Created Date','Closed Date','Due Date','Resolution Action Updated □
       →Date','Request_Closing_Time']].head()
[21]:
              Created Date
                                   Closed Date
                                                          Due Date
      0 2015-12-31 23:59:45 2016-01-01 00:55:00 2016-01-01 07:59:00
      1 2015-12-31 23:59:44 2016-01-01 01:26:00 2016-01-01 07:59:00
      2 2015-12-31 23:59:29 2016-01-01 04:51:00 2016-01-01 07:59:00
      3 2015-12-31 23:57:46 2016-01-01 07:43:00 2016-01-01 07:57:00
      4 2015-12-31 23:56:58 2016-01-01 03:24:00 2016-01-01 07:56:00
       Resolution Action Updated Date Request_Closing_Time
      0
                  2016-01-01 00:55:00
                                           0 days 00:55:15
                  2016-01-01 01:26:00
                                           0 days 01:26:16
      1
      2
                  2016-01-01 04:51:00
                                           0 days 04:51:31
                                           0 days 07:45:14
      3
                  2016-01-01 07:43:00
      4
                                           0 days 03:27:02
                  2016-01-01 03:24:00
[22]: customerSR.columns
[22]: Index(['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name',
             'Complaint Type', 'Descriptor', 'Location Type', 'Incident Zip',
             'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2',
             'Address Type', 'City', 'Facility Type', 'Status', 'Due Date',
             'Resolution Description', 'Resolution Action Updated Date',
             'Community Board', 'Borough', 'X Coordinate (State Plane)',
             'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough',
             'School Name', 'School Number', 'School Region', 'School Code',
             'School Phone Number', 'School Address', 'School City', 'School State',
```

'Request_Closing_Time' is in days, hours:mins:sec format, converting it into total no. of seconds

'Request_Closing_Time'],

dtype='object')

'School Zip', 'School Not Found', 'Latitude', 'Longitude', 'Location',

```
[23]: customerSR['Request_Closing_Time_tot_hrs'] = customerSR['Request_Closing_Time']/
       →np.timedelta64(1, 'h')
      customerSR['Request_Closing_Time'] = customerSR['Request_Closing_Time']/np.
      →timedelta64(1, 's')
      customerSR[['Created Date','Closed Date','Due Date','Resolution Action Updated_
       →Date','Request_Closing_Time']].head()
[23]:
               Created Date
                                    Closed Date
                                                           Due Date \
      0 2015-12-31 23:59:45 2016-01-01 00:55:00 2016-01-01 07:59:00
      1 2015-12-31 23:59:44 2016-01-01 01:26:00 2016-01-01 07:59:00
      2 2015-12-31 23:59:29 2016-01-01 04:51:00 2016-01-01 07:59:00
      3 2015-12-31 23:57:46 2016-01-01 07:43:00 2016-01-01 07:57:00
      4 2015-12-31 23:56:58 2016-01-01 03:24:00 2016-01-01 07:56:00
       Resolution Action Updated Date Request_Closing_Time
      0
                   2016-01-01 00:55:00
                                                      3315.0
                   2016-01-01 01:26:00
                                                      5176.0
      1
      2
                   2016-01-01 04:51:00
                                                     17491.0
      3
                   2016-01-01 07:43:00
                                                     27914.0
                   2016-01-01 03:24:00
                                                     12422.0
     1.3 Task 3:
     1.3.1 Analysis - Major Insights
[24]: customerSR.columns
[24]: Index(['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name',
             'Complaint Type', 'Descriptor', 'Location Type', 'Incident Zip',
             'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2',
             'Address Type', 'City', 'Facility Type', 'Status', 'Due Date',
             'Resolution Description', 'Resolution Action Updated Date',
             'Community Board', 'Borough', 'X Coordinate (State Plane)',
             'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough',
             'School Name', 'School Number', 'School Region', 'School Code',
             'School Phone Number', 'School Address', 'School City', 'School State',
             'School Zip', 'School Not Found', 'Latitude', 'Longitude', 'Location',
             'Request_Closing_Time', 'Request_Closing_Time_tot_hrs'],
            dtype='object')
     customerSR['Agency'].unique()
[25]: array(['NYPD'], dtype=object)
      (customerSR['Agency Name'].value_counts()/customerSR.shape[0])*100
[26]:
```

[26]: New York City Police Department 99.99799
Internal Affairs Bureau 0.00201

Name: Agency Name, dtype: float64

- Agency is NYPD for all records
- Agency Names are 'New York City Police Department', and 'Internal Affairs Bureau'
- $\bullet~99.99\%$ records are for 'New York City Police Department'
- Of 300698 records, only 6 are for 'Internal Affairs Bureau'

Checking 'Compaint Types' and respective number of compaints/requests

```
[27]: customerSR['Complaint Type'].isnull().any() # Checking if there is any null →value in 'complaint types'
```

[27]: False

```
[28]: complaint_types = customerSR.groupby('Complaint Type').agg('count')['Unique

→Key']

complaint_types = pd.DataFrame(complaint_types)

complaint_types
```

[28]:		Unique Key
	Complaint Type	
	Agency Issues	6
	Animal Abuse	7768
	Animal in a Park	1
	Bike/Roller/Skate Chronic	424
	Blocked Driveway	76804
	Derelict Vehicle	17586
	Disorderly Youth	286
	Drinking	1275
	Graffiti	113
	Homeless Encampment	4414
	Illegal Fireworks	168
	Illegal Parking	74521
	Noise - Commercial	35245
	Noise - House of Worship	929
	Noise - Park	4021
	Noise - Street/Sidewalk	48068
	Noise - Vehicle	17032
	Panhandling	305
	Posting Advertisement	647
	Squeegee	4
	Traffic	4493
	Urinating in Public	592
	Vending	3793

Visualizing with the help of Bar-Graph

Same can also be achieved by value_counts() function, which gives Complaint Types in decending order by default

```
[30]: complaint_types = customerSR['Complaint Type'].value_counts()
complaint_types = pd.DataFrame(complaint_types)
complaint_types
```

[30]:		Complaint Type
	Blocked Driveway	76804
	Illegal Parking	74521
	Noise - Street/Sidewalk	48068
	Noise - Commercial	35245
	Derelict Vehicle	17586
	Noise - Vehicle	17032
	Animal Abuse	7768
	Traffic	4493
	Homeless Encampment	4414
	Noise - Park	4021
	Vending	3793
	Drinking	1275
	Noise - House of Worship	929
	Posting Advertisement	647
	Urinating in Public	592
	Bike/Roller/Skate Chronic	424
	Panhandling	305
	Disorderly Youth	286
	Illegal Fireworks	168
	Graffiti	113
	Agency Issues	6
	Squeegee	4
	Animal in a Park	1

Let us visualize it with percent and cumulative percent, to get better idea

\

[31]:		Complaint Type	Percent of Complaints
	Blocked Driveway	76804	25.73
	Illegal Parking	74521	24.97
	Noise - Street/Sidewalk	48068	16.10
	Noise - Commercial	35245	11.81
	Derelict Vehicle	17586	5.89
	Noise - Vehicle	17032	5.71
	Animal Abuse	7768	2.60
	Traffic	4493	1.51
	Homeless Encampment	4414	1.48
	Noise - Park	4021	1.35
	Vending	3793	1.27
	Drinking	1275	0.43
	Noise - House of Worship	929	0.31

Posting Advertisement	647	0.22
Urinating in Public	592	0.20
Bike/Roller/Skate Chronic	424	0.14
Panhandling	305	0.10
Disorderly Youth	286	0.10
Illegal Fireworks	168	0.06
Graffiti	113	0.04
Agency Issues	6	0.00
Squeegee	4	0.00
Animal in a Park	1	0.00

Cumulative Percent

* *************************************	
Blocked Driveway	25.73
Illegal Parking	50.70
Noise - Street/Sidewalk	66.80
Noise - Commercial	78.61
Derelict Vehicle	84.50
Noise - Vehicle	90.21
Animal Abuse	92.81
Traffic	94.32
Homeless Encampment	95.80
Noise - Park	97.15
Vending	98.42
Drinking	98.85
Noise - House of Worship	99.16
Posting Advertisement	99.38
Urinating in Public	99.58
Bike/Roller/Skate Chronic	99.72
Panhandling	99.82
Disorderly Youth	99.92
Illegal Fireworks	99.98
Graffiti	100.02
Agency Issues	100.02
Squeegee	100.02
Animal in a Park	100.02

```
[32]: # total number of compaint types len(complaint_types)
```

[32]: 23

[33]: 'Animal in a Park'

```
[34]: # complaint type corresponding to the maximum number of complains
      complaint_types[complaint_types['Complaint Type'] == complaint_types['Complaint_u
       →Type'].max()].index[0]
[34]: 'Blocked Driveway'
[35]: # top 5 compalint types
      complaint_types.head().index.to_list()
[35]: ['Blocked Driveway',
       'Illegal Parking',
       'Noise - Street/Sidewalk',
       'Noise - Commercial',
       'Derelict Vehicle']
[36]: # Requests contributing top 95% complaint types
      complaint_types[complaint_types['Cumulative Percent']>=95].index.to_list()
[36]: ['Homeless Encampment',
       'Noise - Park',
       'Vending',
       'Drinking',
       'Noise - House of Worship',
       'Posting Advertisement',
       'Urinating in Public',
       'Bike/Roller/Skate Chronic',
       'Panhandling',
       'Disorderly Youth',
       'Illegal Fireworks',
       'Graffiti',
       'Agency Issues',
       'Squeegee',
       'Animal in a Park']
[37]: # Number of complaint types comprising of 95% of total complains
      len(complaint_types[complaint_types['Cumulative Percent']>=95].index)
[37]: 15
[38]: # lower 5 compalint types
      complaint_types.tail().index.to_list()[::-1]
[38]: ['Animal in a Park',
       'Squeegee',
       'Agency Issues',
       'Graffiti',
       'Illegal Fireworks']
```

Analysis - Complaint type and Number of requests

- There are total of 23 compaint types/categories
- Of these 23 Categories, 15 complaint types are contributing to 95% of all the requests. There 15 complaint types should be focussed upon, such that lesser requests are created for these types
- Maximum compaint type is for 'Blocked Driveway'. This should be checked if permanent solution can be arranged, to reduce the count of such tickets/requests
- Minimum complaint type is for 'Animal in a Park'.
- Top 5 complaint categories are as follows:
 - 'Blocked Driveway'
 - 'Illegal Parking'
 - 'Noise Street/Sidewalk'
 - 'Noise Commercial'
 - 'Derelict Vehicle'
- Lowest 5 complaint categories are as follows:
 - 'Animal in a Park'
 - 'Squeegee'
 - 'Agency Issues'
 - 'Graffiti'
 - 'Illegal Fireworks'

Exploring Dates - Created, Closed and Time Elapsed between these

```
[39]: # Checking if there is any missing value customerSR[['Created Date', 'Closed Date', 'Request_Closing_Time']].isnull().any()
```

[39]: Created Date False
Closed Date False
Request_Closing_Time False

dtype: bool

```
[40]: customerSR[['Created Date', 'Closed Date', 'Request_Closing_Time']].head()
```

```
[40]: Created Date Closed Date Request_Closing_Time
0 2015-12-31 23:59:45 2016-01-01 00:55:00 3315.0
1 2015-12-31 23:59:44 2016-01-01 01:26:00 5176.0
2 2015-12-31 23:59:29 2016-01-01 04:51:00 17491.0
3 2015-12-31 23:57:46 2016-01-01 07:43:00 27914.0
4 2015-12-31 23:56:58 2016-01-01 03:24:00 12422.0
```

Extracting Month Name and number (1-12), and year

```
[41]:  # To get number of respective month, 1-12

customerSR['Created_Date_Month_num'] = customerSR['Created Date'].dt.month

#To get number of respective year

customerSR['Created_Date_Year'] = customerSR['Created Date'].dt.year
```

```
# To get name of the respective month, Jan to Dec
      customerSR['Created Date Month'] = customerSR['Created Date'].dt.month name()
[42]: customerSR[['Created_
       →Date', 'Created_Date_Month', 'Created_Date_Year', 'Created_Date_Month_num']].
       →head()
[42]:
               Created Date Created_Date_Month Created_Date_Year \
      0 2015-12-31 23:59:45
                                       December
                                                              2015
                                       December
      1 2015-12-31 23:59:44
                                                              2015
      2 2015-12-31 23:59:29
                                       December
                                                              2015
      3 2015-12-31 23:57:46
                                       December
                                                              2015
      4 2015-12-31 23:56:58
                                       December
                                                              2015
         Created_Date_Month_num
      0
                             12
      1
                              12
                              12
      2
      3
                              12
                             12
[43]: customerSR['Created_Date_Month'].unique().tolist()
[43]: ['December',
       'November',
       'October',
       'September',
       'August',
       'July',
       'June',
       'May',
       'April',
       'March']
     Let us see Requests/tickets created on monthly basis
[44]: month wise ticket = customerSR.
       →groupby(['Created_Date_Month_num', 'Created_Date_Month']).count()['Unique_
       ⊸Key']
      month_wise_ticket = pd.DataFrame(month_wise_ticket.reset_index(level=0,__
       →drop=True))
      month_wise_ticket
[44]:
                          Unique Key
      Created_Date_Month
      March
                                 2457
```

April	27168
May	36069
June	35142
July	34378
August	34773
September	35176
October	32398
November	30594
December	30340

Visualizing in the form of Bar Graph

Also, let us plot the trend chart, monthwise, to see how the patten of request creation looks like

```
[46]: plt.figure(figsize=(10,5), dpi=150)
sns.set_style("whitegrid")
```



```
[47]: month_wise_ticket = pd.DataFrame(month_wise_ticket).sort_values(by = 'Unique_\to \text{Key'}, ascending=False)

month_wise_ticket['Percent of Requests'] = ((month_wise_ticket['Unique Key']/

→sum(month_wise_ticket['Unique Key']))*100).round(2)

month_wise_ticket['Cumulative Percentage'] = month_wise_ticket['Percent of_\to \text{Requests'}].cumsum()

month_wise_ticket
```

[47]:	Unique Key	Percent of Requests	Cumulative Percentage
Created_Date_Mont	h		
May	36069	12.08	12.08
September	35176	11.78	23.86
June	35142	11.77	35.63
August	34773	11.65	47.28
July	34378	11.52	58.80
October	32398	10.85	69.65
November	30594	10.25	79.90
December	30340	10.16	90.06

```
April
                                27168
                                                        9.10
                                                                               99.16
      March
                                                        0.82
                                                                               99.98
                                 2457
[48]: # month having maximum requests/complains
      month_wise_ticket[month_wise_ticket['Unique Key'] == month_wise_ticket['Unique_L
       \hookrightarrowKey'].max()].index[0]
[48]: 'May'
[49]: # month having Minimum requests/complains
      month wise ticket[month wise ticket['Unique Key'] == month wise ticket['Unique
       \hookrightarrowKey'].min()].index[0]
[49]: 'March'
[50]: # 75% of the tickets/requests created are in the following months
      month_wise_ticket[month_wise_ticket['Cumulative Percentage']<=75].index.
       →to list()
[50]: ['May', 'September', 'June', 'August', 'July', 'October']
      customerSR['Created Date Year'].value counts()
[51]: 2015
              298495
      Name: Created_Date_Year, dtype: int64
```

1.3.2 Analysis - Number of requests 'Created' on Monthly Basis

- Requests are created on the following months:
 - March
 - April
 - May
 - June
 - July
 - August
 - September
 - October
 - November
 - December
- There were no requests/tickets created in the month of 'January' and 'February', based on the given data
- As we observe from trendchart, we see the tickets/requests were minimum in the month of 'March'. It rose up to attain highest value in the month of 'May'.
- From month 'May' till 'September', the ticket count was almost consistant.
- From month 'September' to 'December', we observe slow decrease in the count of requests/ticket created.

- Maximum tickets/requests created was recorded in the month of 'May'
- Minimum tickets/requests created was recorded in the month of 'March'
- 75% of the tickets/requests created are in the following months:
 - 'May', 'September', 'June', 'August', 'July', 'October'
- We have data for year 2015 only. Therefore, yearwise granuality analysis couldn't be achieved.

```
Let us see Requests/tickets 'Closed' on monthly basis
[52]: customerSR[['Unique Key', 'Closed Date']].isnull().any()
[52]: Unique Key
                     False
      Closed Date
                     False
      dtype: bool
[53]: customerSR[['Unique Key', 'Closed Date']].head()
[53]:
         Unique Key
                            Closed Date
           32310363 2016-01-01 00:55:00
           32309934 2016-01-01 01:26:00
      1
      2
           32309159 2016-01-01 04:51:00
      3
           32305098 2016-01-01 07:43:00
           32306529 2016-01-01 03:24:00
     Extracting Month Name and number (1-12), and year
[54]: # To get number of respective month, 1-12
      customerSR['Closed Date Month num'] = customerSR['Closed Date'].dt.month
      #To get number of respective year
      customerSR['Closed_Date_Year'] = customerSR['Closed_Date'].dt.year
```

```
# To get name of the respective month, Jan to Dec
customerSR['Closed Date Month'] = customerSR['Closed Date'].dt.month name()
```

```
[55]: customerSR[['Unique Key', 'Closed_
       →Date', 'Closed Date Month num', 'Closed Date Year', 'Closed Date Month']].head()
```

```
[55]:
         Unique Key
                             Closed Date Closed_Date_Month_num
                                                                  Closed_Date_Year
           32310363 2016-01-01 00:55:00
      0
                                                               1
                                                                               2016
      1
           32309934 2016-01-01 01:26:00
                                                               1
                                                                               2016
      2
           32309159 2016-01-01 04:51:00
                                                               1
                                                                               2016
      3
           32305098 2016-01-01 07:43:00
                                                               1
                                                                               2016
           32306529 2016-01-01 03:24:00
                                                                1
                                                                               2016
```

```
Closed_Date_Month
0
            January
1
            January
```

```
2
                 January
     3
                 January
     4
                 January
[56]: month_wise_ticket_closed = customerSR.
      →groupby(['Closed_Date_Month_num', 'Closed_Date_Month']).count()['Unique Key']
     month_wise_ticket_closed = pd.DataFrame(month_wise_ticket_closed.
      →reset_index(level=0, drop=True))
     month_wise_ticket_closed
[56]:
                        Unique Key
     Closed_Date_Month
     January
                               126
     March
                              2286
     April
                             27101
     May
                             36132
     June
                             35021
     July
                             34378
     August
                             34827
     September
                             35210
     October
                             32342
     November
                             30650
     December
                             30422
[57]: plt.figure(figsize=(10,5), dpi=150)
     sns.barplot(x = month_wise_ticket_closed['Unique Key'].index,
                 y = month_wise_ticket_closed['Unique Key'].values,
                 alpha = 0.8)
     plt.title('Tickets/Requests Closed - Monthly Basis', u
      plt.ylabel('Number of tickets', fontsize=12,fontweight="bold")
     plt.xlabel('Month', fontsize=12,fontweight="bold")
     plt.show()
```


Also, let us plot the trend chart, monthwise, to see how the patten of request closure looks like


```
[59]: month_wise_ticket_closed = pd.DataFrame(month_wise_ticket_closed).

⇒sort_values(by = 'Unique Key', ascending=False)

month_wise_ticket_closed['Percent of Requests'] = □

⇒((month_wise_ticket_closed['Unique Key']/

⇒sum(month_wise_ticket_closed['Unique Key']))*100).round(2)

month_wise_ticket_closed['Cumulative Percentage'] = □

⇒month_wise_ticket_closed['Percent of Requests'].cumsum()

month_wise_ticket_closed
```

```
[59]:
                          Unique Key Percent of Requests Cumulative Percentage
      Closed_Date_Month
      May
                               36132
                                                     12.10
                                                                              12.10
                                                     11.80
                                                                              23.90
      September
                               35210
      June
                               35021
                                                     11.73
                                                                              35.63
                                                     11.67
                                                                              47.30
      August
                               34827
      July
                                                     11.52
                                                                              58.82
                               34378
      October
                               32342
                                                     10.84
                                                                              69.66
                                                     10.27
      November
                               30650
                                                                              79.93
      December
                               30422
                                                     10.19
                                                                              90.12
                                                      9.08
                                                                              99.20
      April
                               27101
      March
                                2286
                                                      0.77
                                                                              99.97
      January
                                  126
                                                      0.04
                                                                             100.01
```

```
[60]: # month having maximum requests/complains closed
month_wise_ticket_closed[month_wise_ticket_closed['Unique Key'] ==

→month_wise_ticket_closed['Unique Key'].max()].index[0]
```

1.3.3 Analysis - Number of requests 'Created' on Monthly Basis

- Requests were closed in the following months:
 - January
 - March
 - April
 - May
 - June
 - July
 - August
 - September
 - October
 - November
 - December
- No ticket/requests were closed in the month of February, as per the given data.
- Maximum requests were closed in the month of 'May'
- Minimum requests were closed in the month of 'January'
- From the trend chart, we observe that lowest number of requests were closed in the month of 'January'.
- Then, gradual increase in the ticket/requests closure rose upto highest mark in the month of 'May'.
- From month 'May' to 'September', the closure count was observed as almost constant.
- Very slowly, after 'September', the count of ticket/requeest closure dropped till month 'December'.
- Top 75% requests were closed in the month of 'May', 'September', 'June', 'August', 'July', 'October'.

Analysing the time elapsed between requests created and closed

```
[63]: # Distribution of closing time customerSR[['Request_Closing_Time']].dtypes
```

```
[63]:
            Request Closing Time
                    298495.000000
      count
      mean
                     15532.086604
      std
                     21923.264767
      min
                        60.000000
      25%
                      4593.000000
      50%
                      9775.000000
      75%
                     19260.000000
                   2134342.000000
      max
```

defined a function to change number of seconds to time, days-hours-minutes-seconds format

```
[64]: def seconds_to_time(sec):
    res = datetime.timedelta(seconds = sec)
    return res
```

Since the no. of seconds are not conveying any information about 'Request_Closing_Time', adding more column to understand time better

```
[65]: dist_of_closing_time['Time_in_Days'] = list(map(lambda x: seconds_to_time(x),

dist_of_closing_time['Request_Closing_Time'].astype(float)))

dist_of_closing_time['Time_in_Hours'] = dist_of_closing_time['Time_in_Days']/np.

dist_of_closing_time['Time_in_Hours'] = np.

round(dist_of_closing_time['Time_in_Hours'],2)
```

```
[66]: dist_of_closing_time
```

```
[66]:
            Request_Closing_Time
                                             Time_in_Days Time_in_Hours
                   298495.000000
                                          3 days 10:54:55
                                                                    82.92
      count
                     15532.086604 0 days 04:18:52.086604
                                                                     4.31
      mean
                     21923.264767 0 days 06:05:23.264767
                                                                     6.09
      std
      min
                        60.000000
                                          0 days 00:01:00
                                                                     0.02
      25%
                      4593.000000
                                         0 days 01:16:33
                                                                     1.28
      50%
                      9775.000000
                                         0 days 02:42:55
                                                                     2.72
      75%
                     19260.000000
                                         0 days 05:21:00
                                                                     5.35
                                        24 days 16:52:22
                  2134342.000000
                                                                   592.87
      max
```

- So the mean time to serve any request is 04 hours, with standard deviation of 06 hours
- The mean is almost double of the median, indicating there must be outliars

Plotting boxplot to see if there are any outliars

```
[67]: plt.figure(figsize=(15,8))
    #sns.set_style("whitegrid")
    sns.boxplot(y=customerSR['Request_Closing_Time_tot_hrs'].values)
    plt.ylim(0, 600)
    plt.show()
```


In the above figure, the boxplot is barely visible. Though we see lot of dots, indicating outliars, however, the boplot is not clear. Let us try to decrease the ylim to lower value

```
[68]: plt.figure(figsize=(12,5))
#sns.set_style("whitegrid")
sns.boxplot(y=customerSR['Request_Closing_Time_tot_hrs'].values)
plt.ylim(0, 12)
plt.show()
```


Boxplot is now clear. There are lot of outliars in our data. Let us use z-scores to figure th count of outliars in closing time.

```
customerSR['Request_Closing_Time'].describe().apply(lambda x: format(x, 'f'))
[69]:
[69]: count
                298495.000000
     mean
                 15532.086604
      std
                 21923.264767
     min
                    60.000000
      25%
                  4593.000000
      50%
                  9775.000000
      75%
                 19260.000000
     max
               2134342.000000
      Name: Request_Closing_Time, dtype: object
```

Calculating the number of outliars in the column

```
[70]: z = np.abs(stats.zscore(customerSR['Request_Closing_Time']))
threshold = 2.7
rownums = np.where(z > threshold)
rownums[0]

[70]: array([ 24, 33, 937, ..., 297683, 298029, 298149], dtype=int64)

[71]: len(rownums[0])
```

 \bullet considering 2.7 as the threshold (2.7 std deviations from mean), we have around 5087 values as outliars

```
[72]: Q1 = customerSR['Request_Closing_Time'].quantile(0.25)
Q3 = customerSR['Request_Closing_Time'].quantile(0.75)
IQR = Q3 - Q1
print(seconds_to_time(IQR))
```

4:04:27

- because we have lot of outliars in our data,
- considering median and IQR, time taken to close any request on an average is 02 hours 42 minutes
- with 04 hours 4 minutes of deviation (IQR)
- some request exceptionally take longer times, maximum exceeding upto 24 days

```
[73]: customerSR['Request_Closing_Days_Time'] = customerSR['Request_Closing_Time']*np.

⇔timedelta64(1, 's')
```

```
[74]: customerSR['Request_Closing_Days_Time'].head()
```

```
[74]: 0 0 days 00:55:15

1 0 days 01:26:16

2 0 days 04:51:31

3 0 days 07:45:14

4 0 days 03:27:02
```

Name: Request_Closing_Days_Time, dtype: timedelta64[ns]

```
[76]: customerSR[['Request_Closing_Time','Closing_days','Closing_time_hours','Closing_time_mins']].

⇔head()
```

```
[76]:
         Request_Closing_Time Closing_days Closing_time_hours Closing_time_mins
      0
                        3315.0
                                           0
                                                                                   55
      1
                                                                1
                       5176.0
                                           0
                                                                                   26
      2
                       17491.0
                                                                                   51
      3
                      27914.0
                                           0
                                                                7
                                                                                   45
                      12422.0
                                                                                   27
```

```
[77]: | tickets_closed_days = customerSR['Closing_days'].value_counts()
      tickets_closed_days
[77]: 0
            281050
             16031
      1
      2
              1074
      3
               216
      4
                58
      5
                38
      6
                14
      7
                 5
      8
                 3
                 2
      9
      14
                 1
      22
                 1
      24
                 1
      25
                 1
      Name: Closing_days, dtype: int64
[78]: plt.figure(figsize=(10,5),dpi=150)
      #tickets_closed_days.plot.bar()
      sns.barplot(x = tickets_closed_days.index,
                 y = tickets_closed_days.values)
      plt.title('Time taken for Tickets/Requests to be Closed - Daywise',
       →fontsize=16,fontweight="bold")
      plt.ylabel('Number of tickets/requests closed', fontsize=12,fontweight="bold")
      plt.xlabel('Number of Days', fontsize=12,fontweight="bold")
      plt.xticks(rotation=0)
      plt.tight_layout()
```



```
sum(tickets_closed_days[tickets_closed_days.index >= 14])
[79]: 4
[80]: # Unique Keys of the requests which took exceptionally longer time to close,
       →14 days
      customerSR[customerSR['Closing_days']>=14][['Unique Key', 'Complaint Type']]
[80]:
              Unique Key
                                    Complaint Type
                32167187
                                      Animal Abuse
      21268
                                   Illegal Parking
      23664
                32154771
      244488
                30684975
                          Noise - Street/Sidewalk
                                  Animal in a Park
      283132
                30427220
      (tickets_closed_days/sum(tickets_closed_days))*100
[81]: 0
            94.155681
             5.370609
      1
      2
             0.359805
      3
             0.072363
      4
             0.019431
      5
             0.012731
      6
             0.004690
      7
             0.001675
             0.001005
      8
      9
             0.000670
      14
             0.000335
      22
             0.000335
      24
             0.000335
             0.000335
      Name: Closing_days, dtype: float64
```

1.3.4 Analysis - Time elapsed to resolve the requests/tickets.

[79]: # number of tickets/requests which took longer time to close

- Maximum number of tickets are closed within a day.
- 99.5% tickets are closed between 0-1 days.
- Remaining exceptional 0.5% tickets are closed between 2 days to 25 days.
- There are 4 requests which took more than 14 days to resolve.
- Unique Keys of the requests which took exceptionally longer time to close, > 14 days, along with the 'Complaint Type', or complaint category.
 - 21268: 'Animal Abuse'
 - 23664:'Illegal Parking'
 - 244488:'Noise Street/Sidewalk'
 - 283132: 'Animal in a Park'

```
Understanding Citywise Closing time of the requests
[82]: customerSR[['Unique Key', 'Request_Closing_Time', 'Location Type', 'City']].head()
[82]:
         Unique Key Request_Closing_Time
                                              Location Type
                                                                 City
      0
           32310363
                                    3315.0 Street/Sidewalk NEW YORK
      1
           32309934
                                    5176.0 Street/Sidewalk
                                                              ASTORIA
                                   17491.0 Street/Sidewalk
      2
           32309159
                                                                BRONX
      3
                                  27914.0 Street/Sidewalk
           32305098
                                                                 BRONX
                                  12422.0 Street/Sidewalk ELMHURST
           32306529
[83]: customerSR[['Unique Key', 'Request Closing Time', 'Location Type', 'City']].
       →isnull().sum()
[83]: Unique Key
                                0
      Request_Closing_Time
                                0
      Location Type
                               91
                              506
      City
      dtype: int64
     imputing missing cities and Location Type with mode (most occuring categories)
[84]: mode = customerSR.filter(['Location Type', 'City']).mode()
      customerSR[['Location Type','City']]=customerSR[['Location Type','City']].
       \rightarrowfillna(mode.iloc[0])
[85]: customerSR[['Unique Key', 'Request_Closing_Time', 'Location Type', 'City']].
       →isnull().sum()
[85]: Unique Key
                              0
      Request_Closing_Time
                              0
      Location Type
                              0
      City
                              0
      dtype: int64
[86]: customerSR['City'].unique()
[86]: array(['NEW YORK', 'ASTORIA', 'BRONX', 'ELMHURST', 'BROOKLYN',
             'KEW GARDENS', 'JACKSON HEIGHTS', 'MIDDLE VILLAGE', 'REGO PARK',
             'SAINT ALBANS', 'JAMAICA', 'SOUTH RICHMOND HILL', 'RIDGEWOOD',
             'HOWARD BEACH', 'FOREST HILLS', 'STATEN ISLAND', 'OZONE PARK',
             'RICHMOND HILL', 'WOODHAVEN', 'FLUSHING', 'CORONA',
             'QUEENS VILLAGE', 'OAKLAND GARDENS', 'HOLLIS', 'MASPETH',
             'EAST ELMHURST', 'SOUTH OZONE PARK', 'WOODSIDE', 'FRESH MEADOWS',
             'LONG ISLAND CITY', 'ROCKAWAY PARK', 'SPRINGFIELD GARDENS',
             'COLLEGE POINT', 'BAYSIDE', 'GLEN OAKS', 'FAR ROCKAWAY',
             'BELLEROSE', 'LITTLE NECK', 'CAMBRIA HEIGHTS', 'ROSEDALE',
             'SUNNYSIDE', 'WHITESTONE', 'ARVERNE', 'FLORAL PARK',
```

```
'NEW HYDE PARK', 'CENTRAL PARK', 'BREEZY POINT', 'QUEENS',
            'Astoria', 'Long Island City', 'Woodside', 'East Elmhurst',
            'Howard Beach'], dtype=object)
[87]: citywise_avg_closing_time = customerSR.groupby('City').
      →agg('mean')['Request_Closing_Time'].sort_values(ascending=True)
[88]: len(citywise_avg_closing_time)
[88]: 53
[89]: citywise_avg_closing_time.head()
[89]: City
     ARVERNE
                        8153.736364
     ROCKAWAY PARK
                        8348.024161
     LITTLE NECK
                        9279.618962
     OAKLAND GARDENS
                        9471.188748
     BAYSIDE
                        9645.599509
     Name: Request_Closing_Time, dtype: float64
[90]: plt.figure(figsize=(10,6),dpi=150)
     sns.barplot(x = citywise_avg_closing_time.index, y = citywise_avg_closing_time.
      →values)
     plt.title('Citywise Average Closing time of Requests/Tickets', __
      plt.ylabel('Avg. number of tickets closed', fontsize=14,fontweight="bold")
     plt.xlabel('City', fontsize=14,fontweight="bold")
     plt.xticks(rotation=70)
     plt.show()
```


Converting number of seconds to days, hh:mm:ss to get more insight

```
[91]: citywise_avg_closing_time = citywise_avg_closing_time.apply(lambda x:⊔

⇒seconds_to_time(x))
```

[92]: citywise_avg_closing_time

```
[92]: City
      ARVERNE
                            0 days 02:15:53.736364
      ROCKAWAY PARK
                            0 days 02:19:08.024161
     LITTLE NECK
                            0 days 02:34:39.618962
      OAKLAND GARDENS
                            0 days 02:37:51.188748
      BAYSIDE
                            0 days 02:40:45.599509
     FAR ROCKAWAY
                            0 days 02:47:23.986429
     NEW YORK
                            0 days 02:58:21.843718
     FLUSHING
                            0 days 03:01:04.909548
     FOREST HILLS
                            0 days 03:13:26.941943
      CORONA
                            0 days 03:13:42.617373
      WHITESTONE
                            0 days 03:14:41.330601
```

```
FRESH MEADOWS
                       0 days 03:15:33.269900
COLLEGE POINT
                      0 days 03:16:25.070492
                       0 days 03:16:25.197867
JACKSON HEIGHTS
CENTRAL PARK
                      0 days 03:17:39.515464
                      0 days 03:18:38.449102
ELMHURST
REGO PARK
                      0 days 03:27:39.940108
BREEZY POINT
                      0 days 03:29:47.366667
EAST ELMHURST
                       0 days 03:34:39.582510
STATEN ISLAND
                       0 days 03:52:48.963032
                              0 days 04:01:45
Howard Beach
BROOKLYN
                       0 days 04:04:25.881500
Long Island City
                      0 days 04:06:02.731343
Astoria
                      0 days 04:11:04.578212
RIDGEWOOD
                      0 days 04:26:30.456800
                       0 days 04:35:56.086730
ASTORIA
SAINT ALBANS
                       0 days 04:43:15.125899
                       0 days 05:02:34.713359
KEW GARDENS
Woodside
                              0 days 05:12:05
JAMAICA
                       0 days 05:12:46.395607
                      0 days 05:19:40.719742
SOUTH OZONE PARK
MIDDLE VILLAGE
                      0 days 05:23:05.854958
                      0 days 05:29:39.516824
RICHMOND HILL
WOODHAVEN
                      0 days 05:35:48.759545
                      0 days 05:35:59.148314
MASPETH
                      0 days 05:37:02.952055
SOUTH RICHMOND HILL
OZONE PARK
                      0 days 05:40:51.822142
HOLLIS
                      0 days 05:45:36.609684
                      0 days 06:02:52.071429
East Elmhurst
BRONX
                      0 days 06:05:47.025237
                      0 days 06:09:39.137487
HOWARD BEACH
                      0 days 06:32:16.464887
LONG ISLAND CITY
                      0 days 06:51:07.219917
SUNNYSIDE
                      0 days 06:53:41.781259
WOODSIDE
NEW HYDE PARK
                      0 days 07:33:21.938776
                      0 days 08:48:56.633987
GLEN OAKS
SPRINGFIELD GARDENS
                      0 days 09:11:34.403628
                      0 days 10:01:52.053145
ROSEDALE
                      0 days 10:07:25.593291
CAMBRIA HEIGHTS
                      0 days 10:33:23.194667
BELLEROSE
                       0 days 10:54:24.676406
QUEENS VILLAGE
                       0 days 11:43:10.276316
FLORAL PARK
QUEENS
                       0 days 13:35:35.187500
Name: Request_Closing_Time, dtype: timedelta64[ns]
```

```
[93]: # since the average time to resolve the requests is lesser then 1 day, □ → converting it into hours
citywise_avg_closing_time = citywise_avg_closing_time/np.timedelta64(1, 'h')
```

citywise_avg_closing_time

[93]	:	City

City	
ARVERNE	2.264927
ROCKAWAY PARK	2.318896
LITTLE NECK	2.577672
OAKLAND GARDENS	2.630886
BAYSIDE	2.679333
FAR ROCKAWAY	2.789996
NEW YORK	2.972734
FLUSHING	3.018030
FOREST HILLS	3.224151
CORONA	3.228505
WHITESTONE	3.244814
FRESH MEADOWS	3.259242
COLLEGE POINT	3.273631
JACKSON HEIGHTS	3.273666
CENTRAL PARK	3.294310
ELMHURST	3.310680
REGO PARK	3.461094
BREEZY POINT	3.496491
EAST ELMHURST	3.577662
STATEN ISLAND	3.880268
Howard Beach	4.029167
BROOKLYN	4.073856
Long Island City	4.100759
Astoria	4.184605
RIDGEWOOD	4.441794
ASTORIA	4.598913
SAINT ALBANS	4.720868
KEW GARDENS	5.042976
Woodside	5.201389
JAMAICA	5.212888
SOUTH OZONE PARK	5.327978
MIDDLE VILLAGE	5.384960
RICHMOND HILL	5.494310
WOODHAVEN	5.596878
MASPETH	5.599763
SOUTH RICHMOND HILL	5.617487
OZONE PARK	5.681062
HOLLIS	5.760169
East Elmhurst	6.047798
BRONX	6.096396
HOWARD BEACH	6.160872
LONG ISLAND CITY	6.537907
SUNNYSIDE	6.852006
WOODSIDE	6.894939

```
NEW HYDE PARK
                         7.556094
GLEN OAKS
                         8.815732
SPRINGFIELD GARDENS
                         9.192890
ROSEDALE
                        10.031126
CAMBRIA HEIGHTS
                        10.123776
BELLEROSE
                        10.556443
QUEENS VILLAGE
                        10.906855
FLORAL PARK
                        11.719521
QUEENS
                        13.593108
```

Name: Request_Closing_Time, dtype: float64

```
[94]: # top 5 cities with minimum average time taken to resolve requests citywise_avg_closing_time.head(5).index.to_list()
```

[94]: ['ARVERNE', 'ROCKAWAY PARK', 'LITTLE NECK', 'OAKLAND GARDENS', 'BAYSIDE']

```
[95]: # top 5 cities with maximum average time taken to resolve requests citywise_avg_closing_time.tail(5).index.to_list()
```

[95]: ['CAMBRIA HEIGHTS', 'BELLEROSE', 'QUEENS VILLAGE', 'FLORAL PARK', 'QUEENS']

```
[96]: # Range of the Average time to resolve the request round(citywise_avg_closing_time.max() - citywise_avg_closing_time.min(),2)
```

- [96]: 11.33
 - We have 53 total cities and their average time to resolve the requests -top 5 cities with minimum average time taken to resolve requests 'ARVERNE', 'ROCKAWAY PARK', 'LITTLE NECK', 'OAKLAND GARDENS', 'BAYSIDE'
 - top 5 cities with maximum average time taken to resolve requests 'CAMBRIA HEIGHTS', 'BELLEROSE', 'QUEENS VILLAGE', 'FLORAL PARK', 'QUEENS'
 - minimum average time taken to resolve the requests is 2.26 hours, and its happens in the city 'ARVERNE'
 - maximum average time taken to resolve the requests is 13.59 hours, and its happens in the city 'Queens'

1.4 Task 4

1.4.1 Order the complaint types based on the average 'Request_Closing_Time', grouping them for different locations.

```
[97]: location_based_complaints = customerSR.groupby('Location Type').

→agg('count')['Unique Key'].sort_values()
location_based_complaints
```

```
[97]: Location Type
     Park
                                          1
                                          2
     Bridge
      Subway Station
                                         34
     Roadway Tunnel
                                         35
      Commercial
                                         62
      Vacant Lot
                                         77
      House and Store
                                         93
     Parking Lot
                                        117
     Highway
                                        214
      Residential Building
                                        227
     House of Worship
                                        927
      Park/Playground
                                       4751
      Residential Building/House
                                       6953
      Club/Bar/Restaurant
                                      17227
      Store/Commercial
                                      20183
      Street/Sidewalk
                                     247592
      Name: Unique Key, dtype: int64
```

Converting it into percentage to get more insight

[98]:	Location Type	
	Park	0.00
	Bridge	0.00
	Subway Station	0.01
	Roadway Tunnel	0.01
	Commercial	0.02
	Vacant Lot	0.03
	House and Store	0.03
	Parking Lot	0.04
	Highway	0.07
	Residential Building	0.08
	House of Worship	0.31
	Park/Playground	1.59
	Residential Building/House	2.33
	Club/Bar/Restaurant	5.77
	Store/Commercial	6.76
	Street/Sidewalk	82.95
	Name: Unique Key, dtype: floa-	t64

• 83% of the compaints are for location type Street/Sidewalk

Let us club the complains lesser than 0.5% as 'Others'

```
[99]: percent_location_based_complaints_new =
        →percent_location_based_complaints[percent_location_based_complaints>0.5]
       percent_location_based_complaints_new['Others'] =__
        →sum(percent location based complaints[percent location based complaints<=0.
        <del>-5</del>1)
       percent_location_based_complaints new = percent_location_based_complaints new.
        →sort_values()
       percent_location_based_complaints_new
[99]: Location Type
      Others
                                      0.60
                                      1.59
      Park/Playground
       Residential Building/House
                                      2.33
       Club/Bar/Restaurant
                                      5.77
       Store/Commercial
                                      6.76
       Street/Sidewalk
                                     82.95
      Name: Unique Key, dtype: float64
      Since 'Others' category is having value less than 1%, dropping it
[100]: percent_location_based_complaints_new =
        →percent location based complaints new[percent location based complaints new>1]
[101]: pie, ax = plt.subplots(figsize=[12,6])
       labels = percent_location_based_complaints_new.index
       plt.pie(x=percent_location_based_complaints_new, autopct="%.1f%%",explode=[0.
       →1]*len(percent_location_based_complaints_new), labels=labels, pctdistance=0.
       plt.title("Complains based on Location Type", fontsize=16);
```

plt.show()

Complains based on Location Type


```
[102]: # top 3 'Location Types' from where the complains are maximum percent_location_based_complaints_new.tail(3).index.to_list()[::-1]
```

[102]: ['Street/Sidewalk', 'Store/Commercial', 'Club/Bar/Restaurant']

- 1.5 Task 4
- 1.5.1 Statistical Tests
- 1.5.2 Task 4.1
- 1.5.3 Whether the average response time across complaint types is similar or not (overall)

```
'Community Board', 'Borough', 'X Coordinate (State Plane)',
              'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough',
              'School Name', 'School Number', 'School Region', 'School Code',
              'School Phone Number', 'School Address', 'School City', 'School State',
              'School Zip', 'School Not Found', 'Latitude', 'Longitude', 'Location',
              'Request_Closing_Time', 'Request_Closing_Time_tot_hrs',
              'Created_Date_Month_num', 'Created_Date_Year', 'Created_Date_Month',
              'Closed Date Month num', 'Closed Date Year', 'Closed Date Month',
              'Request_Closing_Days_Time', 'Closing_time_hours', 'Closing_time_mins',
              'Nearest Days', 'Closing_days'],
             dtype='object')
[104]: customerSR[['Unique Key', 'Complaint Type', 'Request_Closing_Time']].head()
[104]:
                               Complaint Type Request_Closing_Time
          Unique Key
            32310363 Noise - Street/Sidewalk
       0
                                                              3315.0
       1
            32309934
                             Blocked Driveway
                                                              5176.0
                             Blocked Driveway
       2
            32309159
                                                             17491.0
                              Illegal Parking
       3
            32305098
                                                             27914.0
            32306529
                              Illegal Parking
                                                             12422.0
[105]: # checking if there are any null values
       customerSR[['Unique Key', 'Complaint Type', 'Request_Closing_Time']].isnull().
        ⇒sum()
[105]: Unique Key
                               0
       Complaint Type
                               0
       Request_Closing_Time
       dtype: int64
[106]: complaint_types_list = list(customerSR['Complaint Type'].unique())
       print(f'There are {len(complaint types list)} unique complaint types')
```

'Resolution Description', 'Resolution Action Updated Date',

There are 23 unique complaint types

1.5.4 Whether the average response time across complaint types is similar or not (overall)

- Null Hypothesis: Average response time of all the compaint types are similar (equal)
- Alternate Hypothesis: At least one of the average response time of the compaint types is different

^{*} In order to perform ANOVA, I would need Complaint Types and the respective data points (Request Closed Time)

* So, I am creating dictionary, such that Complaint Type category is key and data points are values

```
[107]: compliant type datapoints = {}
       for complaint in complaint_types_list:
           compliant_type_datapoints[complaint]=list(customerSR[customerSR['Complaint_
        →Type']==complaint]['Request_Closing_Time'])
[108]: compliant_type_datapoints.keys()
[108]: dict keys(['Noise - Street/Sidewalk', 'Blocked Driveway', 'Illegal Parking',
       'Derelict Vehicle', 'Noise - Commercial', 'Noise - House of Worship', 'Posting
       Advertisement', 'Noise - Vehicle', 'Animal Abuse', 'Vending', 'Traffic',
       'Drinking', 'Bike/Roller/Skate Chronic', 'Panhandling', 'Noise - Park',
       'Homeless Encampment', 'Urinating in Public', 'Graffiti', 'Disorderly Youth',
       'Illegal Fireworks', 'Agency Issues', 'Squeegee', 'Animal in a Park'])
[109]: stats.f_oneway(
       compliant type datapoints['Noise - Street/Sidewalk'],
       compliant_type_datapoints['Blocked Driveway'],
       compliant_type_datapoints['Illegal Parking'],
       compliant_type_datapoints['Derelict Vehicle'],
       compliant_type_datapoints['Noise - Commercial'],
       compliant_type_datapoints['Noise - House of Worship'],
       compliant_type_datapoints['Posting Advertisement'],
       compliant_type_datapoints['Noise - Vehicle'],
       compliant_type_datapoints['Animal Abuse'],
       compliant_type_datapoints['Vending'],
       compliant_type_datapoints['Traffic'],
       compliant_type_datapoints['Drinking'],
       compliant_type_datapoints['Bike/Roller/Skate Chronic'],
       compliant_type_datapoints['Panhandling'],
       compliant_type_datapoints['Noise - Park'],
       compliant_type_datapoints['Homeless Encampment'],
       compliant_type_datapoints['Urinating in Public'],
       compliant_type_datapoints['Graffiti'],
       compliant_type_datapoints['Disorderly Youth'],
       compliant_type_datapoints['Illegal Fireworks'],
       compliant_type_datapoints['Agency Issues'],
       compliant_type_datapoints['Squeegee'],
       compliant_type_datapoints['Animal in a Park']
```

[109]: F_onewayResult(statistic=514.1217802705925, pvalue=0.0)

- Since p value is low, 0, in our case, we reject Null Hypotheses
- This implies that
- At least one of the average response time of the compaint types is different

This is also evident from the below code:

→apply(lambda x: seconds_to_time(x))

[110]: customerSR.groupby('Complaint Type').agg('mean')['Request_Closing_Time'].

```
[110]: Complaint Type
       Agency Issues
                                   0 days 05:15:37.166667
       Animal Abuse
                                   0 days 05:12:47.677781
       Animal in a Park
                                          14 days 00:50:05
                                   0 days 03:45:59.264151
       Bike/Roller/Skate Chronic
                                   0 days 04:44:27.346727
       Blocked Driveway
       Derelict Vehicle
                                   0 days 07:21:52.617878
      Disorderly Youth
                                   0 days 03:33:30.902098
      Drinking
                                   0 days 03:51:42.598431
       Graffiti
                                   0 days 07:09:04.504425
      Homeless Encampment
                                   0 days 04:22:01.862936
       Illegal Fireworks
                                   0 days 02:45:40.101190
                                   0 days 04:30:03.624670
       Illegal Parking
       Noise - Commercial
                                   0 days 03:08:49.749014
       Noise - House of Worship
                                   0 days 03:11:35.874058
                                   0 days 03:24:32.394429
       Noise - Park
                                   0 days 03:26:43.428934
       Noise - Street/Sidewalk
       Noise - Vehicle
                                   0 days 03:35:20.434124
                                   0 days 04:22:21.963934
       Panhandling
      Posting Advertisement
                                   0 days 01:58:33.582689
                                   0 days 04:02:44.250000
       Squeegee
       Traffic
                                   0 days 03:27:00.082573
      Urinating in Public
                                   0 days 03:37:35.991554
       Vending
                                   0 days 04:00:51.161877
       Name: Request_Closing_Time, dtype: timedelta64[ns]
```

- From the above series, we see that 'Animal in a Park' complaint type has an average request closing time
- of 14 days, compared to other compalint types, which is having average of lesser than a day

Are the type of complaint or service requested and location related?

- Null Hypothesis: There is no relationship between the 'Complaint Type' and 'Location Type'
- Alternate Hypothesis: There is a relationship between the 'Complaint Type' and 'Location Type'

```
[111]: customerSR[['Complaint Type','Location Type']].dtypes
```

[111]: Complaint Type object
Location Type object
dtype: object

'Complaint Type' and 'Location Type' are boject types. We will need to use Chi Square test to check if there is any relationship between them

```
[112]: # Checking if there are any null values
       customerSR[['Complaint Type','Location Type']].isnull().any()
[112]: Complaint Type
                         False
      Location Type
                         False
       dtype: bool
[113]: customerSR[['Complaint Type', 'Location Type']].head()
[113]:
                   Complaint Type
                                     Location Type
      O Noise - Street/Sidewalk Street/Sidewalk
                 Blocked Driveway Street/Sidewalk
       1
                 Blocked Driveway Street/Sidewalk
       2
       3
                  Illegal Parking Street/Sidewalk
       4
                  Illegal Parking Street/Sidewalk
```

Creating a cross-table between 'Complaint Types' and 'Location Type'

```
[114]: table = customerSR.pivot_table(index = 'Complaint Type', columns='Location

→Type', aggfunc='count')['Unique Key']

table
```

[114]: Location Typ		Bridge	Club/Bar/Restaurant	Commercial	Highway	\
Complaint Ty	<i>r</i> pe					
Agency Issue	es	NaN	NaN	NaN	NaN	
Animal Abuse)	NaN	NaN	62.0	NaN	
Animal in a	Park	NaN	NaN	NaN	NaN	
Bike/Roller/	Skate Chronic	NaN	NaN	NaN	NaN	
Blocked Driv	reway	NaN	NaN	NaN	NaN	
Derelict Veh	nicle	NaN	NaN	NaN	13.0	
Disorderly Y	outh	NaN	NaN	NaN	NaN	
Drinking		NaN	365.0	NaN	NaN	
Graffiti		NaN	NaN	NaN	NaN	
Homeless End	campment	2.0	NaN	NaN	15.0	
Illegal Fire	eworks	NaN	NaN	NaN	NaN	
Illegal Park	ring	NaN	NaN	NaN	NaN	
Noise - Comm	nercial	NaN	16841.0	NaN	NaN	
Noise - Hous	se of Worship	NaN	NaN	NaN	NaN	
Noise - Park		NaN	NaN	NaN	NaN	
Noise - Stre	et/Sidewalk	NaN	NaN	NaN	NaN	
Noise - Vehi	cle	NaN	NaN	NaN	NaN	
Panhandling		NaN	NaN	NaN	NaN	
Posting Adve	ertisement	NaN	NaN	NaN	NaN	
Squeegee		NaN	NaN	NaN	NaN	
Traffic		NaN	NaN	NaN	186.0	

Urinating in Public	NaN	21.0	NaN NaN	
Vending	NaN	NaN	NaN NaN	
Location Type	House and Store	House of Worship	Park \	
Complaint Type				
Agency Issues	NaN	NaN	NaN	
Animal Abuse	93.0	NaN	NaN	
Animal in a Park	NaN	NaN	1.0	
Bike/Roller/Skate Chronic	NaN	NaN	NaN	
Blocked Driveway	NaN	NaN	NaN	
Derelict Vehicle	NaN	NaN	NaN	
Disorderly Youth	NaN	NaN	NaN	
Drinking	NaN	NaN	NaN	
Graffiti	NaN	NaN	NaN	
Homeless Encampment	NaN	NaN	NaN	
Illegal Fireworks	NaN	NaN	NaN	
Illegal Parking	NaN	NaN	NaN	
Noise - Commercial	NaN	NaN	NaN	
Noise - House of Worship	NaN	927.0	NaN	
Noise - Park	NaN	NaN	NaN	
Noise - Street/Sidewalk	NaN	NaN	NaN	
Noise - Vehicle	NaN	NaN	NaN	
Panhandling	NaN	NaN	NaN	
Posting Advertisement	NaN	NaN	NaN	
Squeegee	NaN	NaN	NaN	
Traffic	NaN	NaN	NaN	
Urinating in Public	NaN	NaN	NaN	
Vending In Tubile	NaN	NaN	NaN	
vending	Ivalv	Ivalv	Ivaiv	
Location Type	Park/Plavground	Parking Lot Resi	dential Building	\
Complaint Type	. 30	J	O	·
Agency Issues	NaN	NaN	NaN	
Animal Abuse	122.0	110.0	227.0	
Animal in a Park	NaN	NaN	NaN	
Bike/Roller/Skate Chronic	NaN	NaN	NaN	
Blocked Driveway	NaN	NaN	NaN	
Derelict Vehicle	NaN	NaN	NaN	
Disorderly Youth	NaN	NaN	NaN	
· ·				
Drinking	98.0	NaN	NaN N-N	
Graffiti	NaN	NaN	NaN	
Homeless Encampment	353.0	NaN	NaN	
Illegal Fireworks	8.0	NaN	NaN	
Illegal Parking	NaN	NaN	NaN	
Noise - Commercial	NaN	NaN	NaN	
Noise - House of Worship	NaN	NaN	NaN	
Noise - Park	4021.0	NaN	NaN	
Noise - Street/Sidewalk	NaN	NaN	NaN	

Noise - Vehicle	NaN	NaN	NaN
Panhandling	6.0	NaN	NaN
Posting Advertisement	NaN	7.0	NaN
Squeegee	NaN	NaN	NaN
Traffic	NaN	NaN	NaN
Urinating in Public	38.0	NaN	NaN
_			
Vending	105.0	NaN	NaN
Location Type	Residential Build	ling/Uougo Dood	way Tunnel \
Location Type	nesidential bullo	illig/flouse fload	way rummer (
Complaint Type		N - N	N - N
Agency Issues		NaN	NaN
Animal Abuse		5081.0	NaN
Animal in a Park		NaN	NaN
Bike/Roller/Skate Chronic		25.0	NaN
Blocked Driveway		NaN	NaN
Derelict Vehicle		NaN	5.0
Disorderly Youth		77.0	NaN
Drinking		289.0	NaN
Graffiti		56.0	NaN
Homeless Encampment		983.0	1.0
Illegal Fireworks		33.0	NaN
_			NaN
Illegal Parking		NaN N-N	
Noise - Commercial		NaN	NaN
Noise - House of Worship		NaN	NaN
Noise - Park		NaN	NaN
Noise - Street/Sidewalk		NaN	NaN
Noise - Vehicle		NaN	NaN
Panhandling		16.0	NaN
Posting Advertisement		54.0	NaN
Squeegee		NaN	NaN
Traffic		NaN	29.0
Urinating in Public		138.0	NaN
Vending		201.0	NaN
8			
Location Type	Store/Commercial	Street/Sidewall	k Subway Station \
Complaint Type			
Agency Issues	NaN	6.0	NaN
Animal Abuse	521.0	1530.0	
Animal in a Park	NaN	Na)	
Bike/Roller/Skate Chronic	53.0	346.0	
Blocked Driveway	NaN	76804.0	
Derelict Vehicle	NaN	17491.0	
Disorderly Youth	8.0	201.0	
Drinking	90.0	433.0	
Graffiti	32.0	25.0	NaN
Homeless Encampment	512.0	2548.0	O NaN
Illegal Fireworks	2.0	125.0	NaN
<u> </u>			

Illegal Parking	NaN	74521.0	NaN
Noise - Commercial	18401.0	3.0	NaN
Noise - House of Worship	NaN	2.0	NaN
Noise - Park	NaN	NaN	NaN
Noise - Street/Sidewalk	NaN	48068.0	NaN
Noise - Vehicle	NaN	17032.0	NaN
Panhandling	60.0	223.0	NaN
Posting Advertisement	6.0	580.0	NaN
Squeegee	NaN	4.0	NaN
Traffic	NaN	4278.0	NaN
Urinating in Public	66.0	317.0	12.0
Vending	432.0	3055.0	NaN
Location Type	Vacant Lot		
Complaint Type			
Agency Issues	NaN		
Animal Abuse	NaN		
Animal in a Park	NaN		
Bike/Roller/Skate Chronic	NaN		
Blocked Driveway	NaN		
Derelict Vehicle	77.0		
Disorderly Youth	NaN		
Drinking	NaN		
Graffiti	NaN		
Homeless Encampment	NaN		
Illegal Fireworks	NaN		
Illegal Parking	NaN		
Noise - Commercial	NaN		
Noise - House of Worship	NaN		
Noise - Park	NaN		
Noise - Street/Sidewalk	NaN		
Noise - Vehicle	NaN		
Panhandling	NaN		
Posting Advertisement	NaN		
Squeegee	NaN		
Traffic	NaN		
Urinating in Public	NaN		
Vending	NaN		
[115]: table = table.fillna(0)			
<pre>table = table.astype(int)</pre>			
<pre>table = table.loc[:, (tabl table</pre>	e != 0).any(axis=0)]		

[115]: Location Type	Bridge	Club/Bar/Restaurant	Commercial	Highway	\
Complaint Type					
Agency Issues	0	0	0	0	

Animal Abuse	0	0	62	0
Animal in a Park	0	0	0	0
Bike/Roller/Skate Chronic	0	0	0	0
Blocked Driveway	0	0	0	0
Derelict Vehicle	0	0	0	13
Disorderly Youth	0	0	0	0
Drinking	0	365	0	0
Graffiti	0	0	0	0
Homeless Encampment	2	0	0	15
Illegal Fireworks	0	0	0	0
Illegal Parking	0	0	0	0
Noise - Commercial	0	16841	0	0
Noise - House of Worship	0	0	0	0
Noise - Park	0	0	0	0
Noise - Street/Sidewalk	0	0	0	0
Noise - Vehicle	0	0	0	0
Panhandling	0	0	0	0
Posting Advertisement	0	0	0	0
Squeegee	0	0	0	0
Traffic	0	0	0	186
Urinating in Public	0	21	0	0
Vending	0	0	0	0
Location Type	House and Store	House of Worship	Park	\
Complaint Type	222 222 222	р		,

Location Type	House and Store	House of	Worship	Park	\
Complaint Type					
Agency Issues	0		0	0	
Animal Abuse	93		0	0	
Animal in a Park	0		0	1	
Bike/Roller/Skate Chronic	0		0	0	
Blocked Driveway	0		0	0	
Derelict Vehicle	0		0	0	
Disorderly Youth	0		0	0	
Drinking	0		0	0	
Graffiti	0		0	0	
Homeless Encampment	0		0	0	
Illegal Fireworks	0		0	0	
Illegal Parking	0		0	0	
Noise - Commercial	0		0	0	
Noise - House of Worship	0		927	0	
Noise - Park	0		0	0	
Noise - Street/Sidewalk	0		0	0	
Noise - Vehicle	0		0	0	
Panhandling	0		0	0	
Posting Advertisement	0		0	0	
Squeegee	0		0	0	
Traffic	0		0	0	
Urinating in Public	0		0	0	

Location Type	Park/Playground	Parking Lot	Residential Building	\
Complaint Type				
Agency Issues	0	0	0	
Animal Abuse	122	110	227	
Animal in a Park	0	0	0	
Bike/Roller/Skate Chronic	0	0	0	
Blocked Driveway	0	0	0	
Derelict Vehicle	0	0	0	
Disorderly Youth	0	0	0	
Drinking	98	0	0	
Graffiti	0	0	0	
Homeless Encampment	353	0	0	
Illegal Fireworks	8	0	0	
Illegal Parking	0	0	0	
Noise - Commercial	0	0	0	
Noise - House of Worship	0	0	0	
Noise - Park	4021	0	0	
Noise - Street/Sidewalk	0	0	0	
Noise - Vehicle	0	0	0	
Panhandling	6	0	0	
Posting Advertisement	0	7	0	
Squeegee	0	0	0	
Traffic	0	0	0	
Urinating in Public	38	0	0	
Vending	105	0	0	

Location Type	Residential Building/House	Roadway Tunnel \	\
Complaint Type			
Agency Issues	0	0	
Animal Abuse	5081	0	
Animal in a Park	0	0	
Bike/Roller/Skate Chronic	25	0	
Blocked Driveway	0	0	
Derelict Vehicle	0	5	
Disorderly Youth	77	0	
Drinking	289	0	
Graffiti	56	0	
Homeless Encampment	983	1	
Illegal Fireworks	33	0	
Illegal Parking	0	0	
Noise - Commercial	0	0	
Noise - House of Worship	0	0	
Noise - Park	0	0	
Noise - Street/Sidewalk	0	0	
Noise - Vehicle	0	0	

Panhandling	16	0
Posting Advertisement	54	0
Squeegee	0	0
Traffic	0	29
Urinating in Public	138	0
Vending	201	0

Location Type	Store/Commercial	Street/Sidewalk	Subway Station \	١
Complaint Type				
Agency Issues	0	6	0	
Animal Abuse	521	1530	22	
Animal in a Park	0	0	0	
Bike/Roller/Skate Chronic	53	346	0	
Blocked Driveway	0	76804	0	
Derelict Vehicle	0	17491	0	
Disorderly Youth	8	201	0	
Drinking	90	433	0	
Graffiti	32	25	0	
Homeless Encampment	512	2548	0	
Illegal Fireworks	2	125	0	
Illegal Parking	0	74521	0	
Noise - Commercial	18401	3	0	
Noise - House of Worship	0	2	0	
Noise - Park	0	0	0	
Noise - Street/Sidewalk	0	48068	0	
Noise - Vehicle	0	17032	0	
Panhandling	60	223	0	
Posting Advertisement	6	580	0	
Squeegee	0	4	0	
Traffic	0	4278	0	
Urinating in Public	66	317	12	
Vending	432	3055	0	

Location Type	Vacant Lot
Complaint Type	
Agency Issues	0
Animal Abuse	0
Animal in a Park	0
Bike/Roller/Skate Chronic	0
Blocked Driveway	0
Derelict Vehicle	77
Disorderly Youth	0
Drinking	0
Graffiti	0
Homeless Encampment	0
Illegal Fireworks	0
Illegal Parking	0

Noise - Commercial	0
Noise - House of Worship	0
Noise - Park	0
Noise - Street/Sidewalk	0
Noise - Vehicle	0
Panhandling	0
Posting Advertisement	0
Squeegee	0
Traffic	0
Urinating in Public	0
Vending	0

[116]: chi_calculated, p_val, degree_f, expected_mat = stats.chi2_contingency(table)

[117]: print(p_val)

0.0

Since the p-value is low, 0 in our case, lower than 0.05, we reject Null Hypothesis

There is a relationship between the 'Complaint Type' and 'Location Type'