Name: Ting Jun Rui Student ID: A0179506W

Question 1.

Solution:

- (a) From c, \hbar and G (Newton's constant of universal gravitation), construct a quantity ℓ_p with the dimension of length, a quantity t_p with the dimension of time, a quantity m_p with the dimension of mass. These are known as $Planck\ length$, the $Planck\ time$ and $Planck\ mass$, respectively, after Max Planck, who first published then in 1899 the year before the eponynmous constant itself. Work out the actual numbers in meters, seconds, and kilograms. Also calculate the $Planck\ energy\ (E_p=m_pc^2)$ in GeV. [These quantities set the scale at which quantum gravity is expect to be relevant.]
- (b) What is the gravitational analog to the fine structure constant? Find the actual number, using
 - i. the mass of the electron,
 - ii. the Planck mass.

[This question is from the D J Griffiths, Introduction to Elementary Particles, $2^{\rm nd}$ Edition, Problem 12.9, page 420]

Question 2.	What is the Gell-Mann-Nishijima formula? Can it be generalized?
Solution:	