- Suppose n = 49 observations are taken from a normal distribution where $\sigma = 8.0$ for the purpose of testing H_0 : $\mu = 60$ versus H_1 : $\mu > 60$.
- a) What is the significance level associated with the rejection region "Reject H₀ if $\bar{x} > 62$ "?

significance level = α = P(Reject H₀ | H₀ is true) = P($\overline{X} > 62 \mid \mu = 60$)

=
$$P\left(Z > \frac{62-60}{8/\sqrt{49}}\right)$$
 = $P(Z > 1.75)$ = **0.0401**.

b) Find the power of the rejection region in part (a) if the true mean is $\mu_1 = 61$ and if $\mu_1 = 62$.

Power $(\mu = 61)$ = P(Reject H₀ | H₀ is false) = P($\overline{X} > 62 | \mu = 61$)

=
$$P\left(Z > \frac{62-61}{8/\sqrt{49}}\right)$$
 = $P(Z > 0.875)$ = **0.1908**.

Power $(\mu = 62)$ = P(Reject H₀ | H₀ is false) = P($\overline{X} > 62 | \mu = 62$) = **0.50**.

c) Find the "best" rejection region with the significance level $\alpha = 0.05$.

Rejection Region: Reject H₀ if

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} \qquad \Rightarrow \qquad \overline{X} > \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow \qquad \overline{X} > 60 + 1.645 \frac{8}{\sqrt{49}} \qquad \Rightarrow \qquad \overline{X} > 61.88$$

d) Find the power of the test if the true mean is $\mu_1 = 61$ at the $\alpha = 0.05$ level of significance.

Power (
$$\mu = 61$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.88 | \mu = 61$)
= P($Z > \frac{61.88 - 61}{8 / \sqrt{49}}$) = P($Z > 0.77$) = **0.2206**.

e) Repeat part (d) for the case when the true value of the mean is $\mu_1 = 62$ and $\mu_1 = 63$.

Power (
$$\mu = 62$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.88 | \mu = 62$)
= P($Z > \frac{61.88 - 62}{8/\sqrt{49}}$) = P($Z > -0.105$) = **0.5418**.

Power(
$$\mu = 63$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.88 | \mu = 63$)
= P($Z > \frac{61.88 - 63}{8/\sqrt{49}}$) = P($Z > -0.98$) = **0.8365**.

f) Repeat parts (c) – (e) using a larger sample size of n = 100.

Rejection Region: Reject H₀ if

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} \qquad \Rightarrow \qquad \overline{X} > \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow \qquad \overline{X} > 60 + 1.645 \frac{8}{\sqrt{100}} \qquad \Rightarrow \qquad \overline{X} > 61.316$$

Power (
$$\mu = 61$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.316 | \mu = 61$)
= P($Z > \frac{61.316 - 61}{8/\sqrt{100}}$) = P($Z > 0.395$) = **0.3464**.

Power(
$$\mu = 62$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.316 | \mu = 62$)
= P($Z > \frac{61.316 - 62}{8/\sqrt{100}}$) = P($Z > -0.855$) = **0.8037**.

Power(
$$\mu = 63$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.316 | \mu = 63$)
= P($Z > \frac{61.316 - 63}{8/\sqrt{100}}$) = P($Z > -2.105$) = **0.98235**.

g) Repeat parts (c) – (e) at the $\alpha = 0.10$ level of significance.

Rejection Region: Reject H₀ if

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha} \qquad \Rightarrow \qquad \overline{X} > \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow \qquad \overline{X} > 60 + 1.282 \frac{8}{\sqrt{49}} \qquad \Rightarrow \qquad \overline{X} > 61.465$$

Power (
$$\mu = 61$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.465 | \mu = 61$)

$$= P\left(Z > \frac{61.465 - 61}{8/\sqrt{49}}\right) = P(Z > 0.407) = 0.3409.$$

Power (
$$\mu = 62$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.465 | \mu = 62$)

$$= P\left(Z > \frac{61.465 - 62}{8/\sqrt{49}}\right) = P(Z > -0.468) = 0.6808.$$

Power (
$$\mu = 63$$
) = P(Reject H₀ | H₀ is false) = P($\overline{X} > 61.465 \mid \mu = 63$)

$$= P\left(Z > \frac{61.465 - 63}{8/\sqrt{49}}\right) = P(Z > -1.343) = 0.9099.$$

2. (continued)

Suppose that the sample mean is $\bar{x} = 61.6$ for a random sample of size n = 49.

h) Find the p-value of the appropriate test.

The observed value of the test statistic is $z = \frac{61.6 - 60}{8 / \sqrt{49}} = 1.40$.

Right – tailed test.

P-value = $P(Z \ge 1.40) = 0.0808$.

i) State your decision (Reject H_0 or Do NOT Reject H_0) for α = 0.05.

P-value = $0.0808 > 0.05 = \alpha$

Do NOT Reject H₀ at $\alpha = 0.05$.

OR

$$z = 1.40 < 1.645 = z_{0.05}$$

Do NOT Reject H₀ at $\alpha = 0.05$.

OR

$$\bar{x} = 61.6 < 61.88$$

Do NOT Reject H₀ at $\alpha = 0.05$.

- 3. Suppose n = 49 observations are taken from a normal distribution where $\sigma = 8.0$ for the purpose of testing H_0 : $\mu = 60$ versus H_1 : $\mu \neq 60$.
- a) What is the significance level associated with the rejection region "Reject H₀ if $\bar{x} < 58$ or $\bar{x} > 62$ "?

significance level = $\alpha = P(Reject H_0 | H_0 \text{ is true})$

$$= P(\overline{X} < 58 \mid \mu = 60) + P(\overline{X} > 62 \mid \mu = 60)$$

$$= P \left(Z < \frac{58 - 60}{8 / \sqrt{49}} \right) + P \left(Z > \frac{62 - 60}{8 / \sqrt{49}} \right)$$

$$= P(Z < -1.75) + P(Z > 1.75)$$
$$= 0.0401 + 0.0401 = 0.0802.$$

b) Find the "best" rejection region with the significance level $\alpha = 0.05$.

Rejection Region: Reject H₀ if

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha/2} \qquad \text{or} \qquad Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > z_{\alpha/2}$$

$$\Rightarrow \quad \overline{X} < \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad \text{or} \qquad \overline{X} > \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\Rightarrow \quad \overline{X} < 60 - 1.96 \frac{8}{\sqrt{49}} \qquad \text{or} \qquad \overline{X} > 60 + 1.96 \frac{8}{\sqrt{49}}$$

$$\Rightarrow \quad \overline{X} < 57.76 \qquad \text{or} \qquad \overline{X} > 62.24$$

what is the power of the test when $\mu = 61$ if the significance level is $\alpha = 0.05$?

Power (
$$\mu = 61$$
) = P(Reject H₀ | H₀ is false)
= P($\overline{X} < 57.76 | \mu = 61$) + P($\overline{X} > 62.24 | \mu = 61$)
= P($Z < \frac{57.76 - 61}{8/\sqrt{49}}$) + P($Z > \frac{62.24 - 61}{8/\sqrt{49}}$)
= P($Z < -2.835$) + P($Z > 1.085$)
= 0.0023 + 0.1390 = **0.1413**.

Power (
$$\mu = 62$$
) = P(Reject H₀ | H₀ is false)
= P($\overline{X} < 57.76 \mid \mu = 62$) + P($\overline{X} > 62.24 \mid \mu = 62$)

$$= P\left(Z < \frac{57.76 - 62}{8/\sqrt{49}}\right) + P\left(Z > \frac{62.24 - 62}{8/\sqrt{49}}\right)$$

$$= P(Z < -3.71) + P(Z > 0.21)$$

$$= 0.0001 + 0.4168 = 0.4169.$$

d) What is the p-value of the test if the observed value of the sample mean is $\bar{x} = 61.6$?

The observed value of the test statistic is $z = \frac{61.6 - 60}{8 / \sqrt{49}} = 1.40$.

2 – tailed test.

P-value = $2 \times P(Z \ge 1.40) = 2 \times 0.0808 = 0.1616$.