七、单点交叉口信号控制

- 7.1信号控制主要特点及基本参数
- 7.2信控交叉口车流阻滞及控制策略
- 7.3单点交叉口信号控制方案设计

交通信号灯的优缺点

- 1) 使交通有序运行(时间),降低特定交通事故频率;
- 2) 提高交叉口的通行能力;
- **3**)中断干道上的主要车流,使次要道路上的车辆和行人 通过。
- **4**)通过相邻交叉口的协调控制,使车流以要求的速度沿 给定的路线连续(中断)运行:

交通信号灯的优缺点

- 1)增加道路使用者的延误和油耗,特别是在平峰期间;
- **2**)提高某些特定类型交通事故的频率,特别是机动车和慢行交通;
- 3)降低了道路使用者自主控制其运行的自由度。

東南大學

東南大學 Southeast University Nanjing

单点信号控制交叉口一基本参数

- 信号周期(C, Cycle):红绿(黄)灯显示一周所需时间,各进口道转向车流通行权利转换的一个完整循环。
- ★信号相位 (Phase) 一周期内同时获得相同信号显示的一个 或多个交通流的信号状态的序列。
- 周期损失时间 L: 各相位在通行权转换过程中,所产生的启动损失、车队清空等时间之和。
- <mark>绿信比(Green Split):</mark>一周期内<u>各相位</u>绿灯显示时间与周期时间之比。G/C。
- 其 \mathbf{c} : 进口道饱和流量 \mathbf{s} (\mathbf{Q}); 进口道车流实际到达率 \mathbf{q} ; ...

完全停车与不完全停车

■ 完全停车:

- (1) 车辆受阻后车速由正常速度 降至0, 然后立即加速,直至重新 恢原来车速。 d=dh=da+db
- (2) 车辆行驶速度减至0后没有 立即加速,而是有一段完全停驶的 时间,即ds≠0,此时总延误时间 d=dh+ds>dh。

Uc-正常速度; d-总延误;da-减速延误;db-加速延误;ds-排队延误;dh-加减速 延误;

東南大學 Southeast University Nanjing

基于停车-信号控制策略

- 任何大小的延误都包含至少一类"停车"过程。
- 用实际延误时间d和dh的比值来反应这种关系, 该比值称为停车率,记为h。
- 当h=d/dh≠0,表明存在"一定程度"的停车。
- 信号交叉口控制策略1:停车率最小化(结合车辆 实际到达过程,实施控制。)

$$\Sigma d_i = \Sigma N_i = \triangle OCD$$
的面积
= $\frac{1}{2} \mathbf{r} \cdot \overline{EC}$

式中r为红灯时间, \overline{EC} 为三角形的高。此外,由 图3-5 中的关系不难看出。

$$E\overline{C} = \overline{DE} \cdot \text{tg} = \frac{q \cdot r}{S - q} \cdot S$$

$$\Sigma_{di} = \Sigma N_i = \frac{r}{2} \cdot \frac{q \cdot r}{S - q} \cdot S$$
$$= \frac{q \cdot s \cdot r^2}{2 \cdot (s - q)}$$

$$\Rightarrow \frac{DE \cdot S}{DE + r} = q \Rightarrow DE = \frac{qr}{S - r}$$

式 (3-6) 求出 的结果为一个周期内车辆总延误时间, 其单位为veh-s。单位时间(每 秒) 内车辆的平均延误时间则为

$$\overline{d} = \frac{\sum d_{s}}{C} = \frac{q \, S \, r^{2}}{2C \, (S - q)}$$
(3-7)

将g/C=u: r=C-g及 q/S=y等关系代入式 (3-7), 并经整理后便得到如下表达式:

$$\overline{d} = \frac{C(1-u)^2}{2(1-y)}$$

(3-8)

東南大學

2)R. 阿克塞立科公式(单车、车队延误、排队车辆数)

$$d_s = \frac{C(1-\mu)^2}{2(1-y)} + \frac{N_s x}{q}$$
 d: 单车平均延误;

$$D_s = d_s q = \frac{qC(1-\mu)^2}{2(1-y)} + N_s x$$
 D: 车队整体平均延误;

$$N_{s} = \begin{cases} \frac{1.5(X - X_{0})}{1 - X} & X > X_{0} \\ 0 & X \le X_{0} \end{cases} \qquad X_{0} = 0.67 + \frac{S \cdot g}{600}$$

Ns: 平均过剩滞留车辆数:

X₀: 阈值;

1) 市氏公式(单车、车队延误时间)

$$\overline{d} = \frac{C(1-\mu)^2}{2(1-y)} + \frac{x^2}{2q(1-x)} - 0.65(\frac{C}{q^2})^{1/3} \cdot x^{(2+5\mu)}$$

正常延误

$$D = q \cdot \overline{d} = \frac{qC(1-\mu)^2}{2(1-y)} + \frac{x^2}{2(1-x)} - 0.65(qC)^{1/3} \cdot x^{(2+5\mu)}$$

d: 每辆车平均延误(秒):

D: 车队平均延误:

车流随机波动一附加延误

東南大學

韦伯斯特计算公式

$$d = \frac{c(1-u)^2}{2(1-y)} + \frac{x^2}{2q(1-y)} - 0.65\left(\frac{C}{q^2}\right)^{\frac{1}{3}}x^{(2+5u)}$$

美国《道路通行能力手册》

$$d = 0.38C \frac{(1-u)^2}{(1-ux)} + 173x^2 \left[(x-1) + \sqrt{(x-1)^2 + 16x/S} \right]$$

韦伯斯特公式适用范围为饱和度∈[0,0.67];美国《道路通行能力 手册》建议公式的适用范围为饱和度∈[0,1,20]

二、定数理论

- 适用性: 过饱和交叉口延误计算。
- 稳态理论将过饱和阻滞作为随机延误处理:
- 定数理论将其作为确定情况处理;

- 第i个周期末,过饱和滞留车数n;
 - 滞留车数=前一周期滞留车数+到达车数-通过车数

$$n_i = n_{i-1} + qC - Sg$$

- 周期延误时间和D:
 - 延误=滞留车辆延误+平均到达车延误-平均通过车延误

$$D_{i} = \frac{1}{2}(n_{i-1} + n_{i}) \cdot C + \frac{1}{2}(C - g) \cdot sg = n_{i-1} \cdot C + \frac{1}{2}(qC^{2} - Sg^{2})$$

- 信号交叉口控制策略3:
- 一滯留车辆数最少(g-C)

(q-S)

- 利用交通强度法优化周期时长方法的主要特点:
- 以不同目标函数优化不同交通状况下的交叉口信号控制
 - (1)交通强度在[0, 0.47] 间选择感应控制,此时目标函数为停车率;
 - (2)交通强度在[0.47-0.67)之间以车辆延误最小为周期优化目标函数:
 - (3)交通强度在[0.67-)之间以最大通行能力(滞留车辆排队最少)为周期优化目标函数。

7.3单点交叉口信号控制方案设计

交叉口空间资源优化设计

交叉口时间资源优化设计

7.3.1 信号相位设计

周期时长的分解

一股或几股车流在一个信号周期内, 不管任何<mark>瞬间均获得完全相同的信号色灯显示</mark>

相位构成:基本、专用相位、复合相位(早启迟断相位+车道组,可变车道......)

保护相位(专用相位)

- 左转车流量和直行车流量均较大时,两相位信号控制无法保证一个周期内的左转车流在该周期内顺利通过交叉口。
 - 1) 左转车少于100pcu/h时一般可不设置左转保护相位。
 - 2) 左转车大于250-300pcu/h时通常应考虑设置左转保护相位。
 - **3**)左转车数介于两者之间时,左转保护相位的设置应考虑对向直 行交通量及车道数、历史<mark>事故</mark>情况、区域<mark>信号协调控制</mark>和其他相关 的因素。
 - **4**)行车<mark>视距</mark>受到限制,或在不规则几何地形处左转车流和对向直 行车流之间存在严重冲突时。

第见相位 组合相位 果个典型相位结束前,启动另一个相位的一股或多股车流; ■增加一种特别小的相位,组合在两个基本相位之间; ■可看作一个单独的相位,而不是附加的信号时段;

方法2:

基于延误理论的周期时长计算

 C_0

- 使交叉口各方向的车辆通过路口时的总 延误最小的周期时间。
- 对于交通流稳定、车辆到达随机的孤立交叉口:

$$C_0 = \frac{1.5L + 5}{1 - Y}$$

- L: 一个周期总损失时间;
- $Y = \sum_{i=1}^{k} y_i$: 各相位的yi值总和,为实际流量与饱和流量比值。

東南大學 Southeast University Nanjing

最小周期时间 C_m

■ 能够使到达交叉口的车流量刚好全部通过路口的周期时间。

$$C_m = \frac{L}{1 - Y}$$

最佳周期时长的计算

量佳周期时长是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长 以延误作为交通效益指标。用 Webster 定时信号交叉口延误公式:

$$d = \frac{C(1-\lambda)^2}{2(1-\lambda r)} + \frac{x^2}{2q(1-x)} - 0.65 \left(\frac{C}{q^2}\right)^{\frac{1}{2}} x^{(21-\lambda r)}$$

式中: d——每辆车的平均延误(s);

C 周期时长(s);

à 绿信比;

q 一流量(pcu/h);

.r----饱和度。

- 总延误 D=qd
- 令d(D)/dC=0近似得到

$$C_0 = \frac{1.5L + 5}{1 - Y}$$

足通过能力的要求。我们把上述最低限值称作"最短信号周期"(以C_m表示)。采用 最 短信号周期C_m时,在一个周期内,到达交叉口的车辆恰好在一个周期内被放行完,既无 滞 留车辆,信号周期时间也无富余。因此,C_m应当恰好等于一个周期内绿灯损失时间总 和 加 上全部到达车辆以饱和流量通过交叉口所需时间,即

周期损失时间L计算

A: 黄灯时间(后补偿)3秒

$$L = \sum_{i=1}^{k} (l + I - A)$$
 启动损失3秒

- L一每个周期总损失时间(s);
- I-绿灯间隔时间;
- k一周期相位总数;
- *I*一前损失时间;
- A-后补偿时间。

- 从失去通行权的相位的绿灯<u>结束</u>到<u>得到</u>通行 权的相位的绿灯开始所用的时间。
 - 条件: 间隔时间长短取决于交叉口几何尺寸**/**车 流转向
 - 设置: 太短则不安全,太长则增大损失时间。
 - 构成: 黄灯、全红、红黄构成(通常**3**秒为临界)。

■绿灯间隔时间的<mark>增加</mark>

- 1. 交叉口平面尺寸不均衡,某一股车流通过交叉口 (冲突点)所要行驶的距离,远远大于与其相冲突的另 一股车流到达该冲突点所要行驶的距离;
- 2. 左转车所占比重较大,尽管采取了提前切断对向车流或延迟放行对向车流措施,为了确保转弯车流的通行安全,有必要考虑增加绿灯间隔时间;
- **3**. 在过街行人交通量很大,又未能为行人交通单独设置专用信号相位的交叉口.

東南大學 Southeast University Nanjing

■ 清空时间 (clearance time)

$$AR = \frac{w+l}{s}$$

AR一全红时间(s);w一交叉口需清空的距离差(m);l一车身长度(m);s 一进口道车速(m/s)。e

对应每个相位

$$y_i = q_i / S_i$$

- **S**; 车道最大通过能力;
- \mathbf{q}_{i} 实际到达车流量。

车流量系数 (y)

 $C = \frac{1.5L + 5}{1 - Y} = \frac{1.5L + 5}{1 - \sum_{i} y_{i}}$

■ 某一路口进口引道的车流量与其饱和流量 的比值。(可衡量交叉口阻塞):

$$y = \frac{q}{S} = \frac{\text{年实际流量}}{\text{饱和流量}}$$

- 当一个相位中有多个车流同时运行时,取 各车流最大y值为该相位的y_i值。(车道组)
- Y: 一周期内各相位y,值求和.

单车道基本<mark>饱和流量值 S_b (Tcu/h)</mark>

交叉口	车道类型						
地点条 件	1 (直转专用)	2(各种转弯)	3(干扰较大转弯)				
A优	1850	1810	1700				
B一般	1700	1670	1570				
C差	1580	1550	1270				

对基本流量的修正(车道宽、坡度、车流构成)

修正流量 = 基本流量 × 车道修正系数 × 坡度修正系数 车流构成系数

$$f_g = 1 \pm 0.5(G_t/100)$$
 (Gt 车道坡度值)

$$f_c = \frac{\sum e_i q_i}{q}$$

ei:转弯车折算为直行车当量:

qi: 转弯车实际交通量。

■ 5. 利用周期计算公式计算周期时间

$$C_0 = \frac{1.5L + 5}{1 - Y}$$

■ 6. 用周期时间减去总损失时间得到可利 用的有效绿灯时间,并将这一时间按各 值的比例分配给各个相位。

$$g_i = \frac{y_i}{Y}(C_0 - L)$$
, $i = 1, 2, K, n$

配时计算步骤 $C_0 = \frac{1.5L + 5}{1 - Y}$ 東南太學 Southwest University Narjing

$$C_0 = \frac{1.5L + 5}{1 - Y}$$

- 1. 估算交叉口每个进口道的车流量和饱和流 量5(假设交通流相对稳定,接近平均值)
- 2. 求每个进口道的车流量系数,并为每个相 位选择vi值
- 3. 将各相位的v,值相加得到整个交叉口的V值
- 4. 确定路口的绿灯间隔时间和损失时间L

■ 一个两相位信号控制交叉口,各进口道交通量和 饱和流量列于下表, 绿灯间隔时间为7秒, 黄灯时 间为3秒,启动损失为3秒,试计算信号配时。

项目	北进口	南进口	东进口	西进口
交通量(标准车/小时)	620	720	390	440
饱和流量(S)	2400	2400	1000	1000

项目	北进口	南进口	东进口	西进口								
交通量(标准车/小时)	620	720	390	440								
包和流量(S)	2400	2400	1000	1000				_				
项目		北边	生口	南	南进口 东进口 西进口					南进口 东进口 西		
流量比		0. 26		0.3		0.3 0.39 0.44				. 3 0. 39 0. 44		
max[y1,y	2]		C	. 3		0.	44					
2. 毎周期总损失时间 $L=\Sigma(l+I-A)=2\times 7=14$ s。												
3. 最佳周期时长 $C_0 = \frac{1.5L+5}{1-Y} = \frac{1.5 \times 14+5}{1-0.74} = \frac{26}{0.26} = 100s$ 。												
4. 有效绿灯时长												
$G_{\rm e} = C_{\rm 0} - L = 100 - 14 = 86 {\rm s}$												
### $\frac{34}{100}$ $\frac{3}{100}$												
商前 $\frac{41s}{52s}$ $\frac{52s}{s}$ $\frac{3s}{s}$ $\frac{0.44}{0.74} \times 86 = 52s$												
5. 显示绿灯时长												
$g_{\rm Ns} = g_{\rm eNs} - A + l = 34s$												
$g_{ ext{Ew}} = g_{ ext{eEw}} - A + l = 52 ext{s}$												

7.3.3 交叉口服务水平分析

東南大學

- 交叉口通行能力计算
- 交叉口饱和度分析
- 交叉口延误分析
- 交叉口服务水平评价

■ 进口道通行能力计算(相位划分)

$$CAP = \sum_{i} CAP_{i} = \sum_{i} S_{i} \cdot \lambda_{i} = \sum_{i} S_{i} (\frac{g_{e}}{C})_{i}$$

- 直行车道通行能力
- 左转车道通行能力
- ■右转车道通行能力
- 组合车道通行能力

$CAP = \sum_{i} CAP_{i} = \sum_{i} S_{i} \cdot \lambda_{i} = \sum_{i} S_{i} \left(\frac{g_{e}}{C}\right)_{i}$							
项目	北进口	南进口	东进口	西进口			
交通量(标准车/小时)	620	720	390	440			
饱和流量 (S)	2400	2400	1000	1000			

- 3. 最佳周期时长 $C_0 = \frac{1.5L+5}{1-Y} = \frac{1.5\times14+5}{1-0.74} = \frac{26}{0.26} = 100s$ 。
- 4. 有效绿灯时长

$$G_e = C_0 - L = 100 - 14 = 86s$$

$$g_{eNs} = \frac{0.3}{0.74} \times 86 = 34s$$

$$g_{eEw} = \frac{0.44}{0.74} \times 86 = 52s$$

■ 总通过 能力

$$CAP = \sum_{i} CAP_{i} = \sum_{i} S_{i} \cdot \lambda_{i}$$

= 2 × 2400 × 0.34 + 2 × 1000 × 0.52 = 2672

$x = \frac{q}{\lambda \cdot S} = \frac{q}{CAP}$							
项目	北进口	南进口	东进口	西进口			
交通量(标准车/小时)	620	720	390	440			
饱和流量 (S)	2400	2400	1000	1000			

- 3. 最佳周期时长 $C_{\circ} = \frac{1.5L+5}{1-Y} = \frac{1.5 \times 14+5}{1-0.74} = \frac{26}{0.26} = 100s$ 。
- 4. 有效绿灯时长

$$G_{\rm e} = C_{\rm o} - L = 100 - 14 = 86s$$

$$g_{\rm eNs} = \frac{0.3}{0.74} \times 86 = 34s$$

$$g_{\rm eEw} = \frac{0.44}{0.74} \times 86 = 52s$$

■ 各进口道饱和度?

$$x_1 = \frac{620}{2400 \times 0.34} = 0.76$$
, $x_2 = 0.88$, $x_3 = 0.75$, $x_4 = 0.77$

饱和度 x

▼叉口进口道车流量与可从该进口通过 的最大车流量的比值。

$$x = \frac{q}{\lambda \cdot S} = \frac{$$
实际车流量} 有效绿灯占周期时间比例 · 饱和流量 $= \frac{q}{CAP}$

東南大學 Southeast University Nanjing

服务水平分析一延误计算D

均匀延误 随机延误 初始排队附加延误

- 设计交叉口: 不考虑初始排队附加延误
- 已有交叉口: 均考虑(增加了规定时间 段内的积余车辆持续时间参数)

韦伯斯特计算公式

$$d = \frac{c(1-u)^2}{2(1-y)} + \frac{x^2}{2q(1-y)} - 0.65\left(\frac{C}{q^2}\right)^{\frac{1}{3}}x^{(2+5u)}$$

美国《道路通行能力手册》

$$d = 0.38C \frac{(1-u)^2}{(1-ux)} + 173x^2 \left[(x-1) + \sqrt{(x-1)^2 + 16x/S} \right]$$

韦伯斯特公式适用范围为饱和度 \in [0,0.67]; 美国《道路通行能力手册》建议公式的适用范围为饱和度 \in [0,1.20]

交叉口服	8务水平评价
服务水平等级	平均每车的信号控制延误(s)
A	≤10
В	>10~20
C	>20~35
D	>35~55
E	>55~80
F	>80

*设计交叉口应高于C级服务水平

项目	北进口	南进口	东进口	西进口
交通量(标准车/小时)	620	720	390	440
饱和流量(S)	2400	2400	1000	1000

- 3. 最佳周期时长 $C_0 = \frac{1.5L+5}{1-Y} = \frac{1.5\times14+5}{1-0.74} = \frac{26}{0.26} = 100s$.
- 4. 有效绿灯时长

$$G_e = C_0 - L = 100 - 14 = 86s$$
 $g_{eNs} = \frac{0.3}{0.74} \times 86 = 34s$
 $g_{eEw} = \frac{0.44}{0.74} \times 86 = 52s$

对于均衡延误的计算

$$d = \frac{C(1-\lambda)^2}{2(1-\min[1,x]\lambda)}$$

$$x_1 = \frac{620}{2400 \times 0.34} = 0.76$$
, $x_2 = 0.88$, $x_3 = 0.75$, $x_4 = 0.77$

$$d_1 = 29.37, d_2 = 31.14, d_3 = 18.88, d_4 = 19.2$$

- 交叉口信号控制策略及适用性
- 信号控制关键参数理解及方案优化的作用
- 信号相位与多方式交通需求关系及划分
- 信号配时计算及方案评价计算方法

- 全永樂. 城市交通控制. 人民交通出版社
- 王京元.信号交叉口时空资源综合优化实用方法研究.博士 学位论文. 东南大学
- Manual on for Streets and Highways Manual on Uniform Traffic Control Devices. Federal Highway Administration.
- 陈峻.城市道路交通量非均衡运行特性及时空资源协调控制 方法.人民交通出版社

完成课后作业