

Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

DIFFERENTIAL EQUATIONS (MA 121)

Week 3 / April 2022

Problem Set 3

G.R.

- **Notations:** ODE \equiv Ordinary Differential Equation, $y' \equiv \frac{dy}{dx}$, $y'' \equiv \frac{d^2y}{dx^2}$, $y^{(i)} \equiv \frac{d^iy}{dx^i}$ for $i = 3, 4, 5, \ldots$
- Existence and uniqueness of solutions of First order and First degree ODE, Basic theory of linear second order ODE
 - 1. Show that each of the following functions satisfies Lipschitz condition in the rectangle D defined by $|x| \le a$, $|y| \le b$.
 - (a) $f(x,y) = x^2 + y^2$
 - (b) $f(x,y) = x \sin y + y \cos x$
 - (c) $f(x,y) = x^2 e^{x+y}$
 - (d) $f(x,y) = A(x)y^2 + B(x)y + C(x)$, where the functions A, B and C are continuous on $|x| \le a$
 - (e) f(x,y) = x |y|.
 - 2. Show that each of the following functions does not satisfy Lipschitz condition in any domain which includes the line y = 0.
 - (a) $f(x,y) = y^{\frac{2}{3}}$
 - (b) $f(x,y) = \sqrt{|y|}$
 - 3. Discuss the existence and uniqueness of a solution of the following initial-value problems.
 - (a) $\frac{dy}{dx} = x^2 + y^2$, $y(x_0) = y_0$
 - (b) $\frac{dy}{dx} = P(x)y^2 + Q(x)y$, $y(x_0) = y_0$, where P(x) and Q(x) both are polynomials of degree 3.
 - (c) $\frac{dy}{dx} = y^{\frac{4}{3}}, \quad y(x_0) = y_0$
 - (d) $\frac{dy}{dx} = y^{\frac{2}{3}}, \quad y(x_0) = y_0.$
 - 4. Suppose that f and g are linearly independent on an interval I. Prove that $y_1 = f + g$ and $y_2 = f g$ are are also linearly independent on I.

5. Consider the differential equation

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0. (1)$$

- (a) Show that e^{2x} and e^{3x} are linearly independent solutions of the equation (1) on the interval $-\infty < x < \infty$.
- (b) Write the general solution of the equation (1).
- (c) Find the solution that satisfies the conditions y(0) = 2, y'(0) = 3. Explain why this solution is unique. Over what interval is it defined?
- 6. Consider the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0. (2)$$

- (a) Show that e^x and xe^x are linearly independent solutions of the equation (2) on the interval $-\infty < x < \infty$.
- (b) Write the general solution of the equation (2).
- (c) Find the solution that satisfies the conditions y(0) = 1, y'(0) = 4. Explain why this solution is unique. Over what interval is it defined?
- 7. Consider the differential equation

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0. ag{3}$$

- (a) Show that x and x^2 are linearly independent solutions of the equation (3) on the interval $0 < x < \infty$.
- (b) Write the general solution of the equation (3).
- (c) Find the solution that satisfies the conditions y(1) = 3, y'(1) = 2. Explain why this solution is unique. Over what interval is this solution defined?
- 8. Consider the differential equation

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0.$$

$$\tag{4}$$

Show that $y(x) = x^2$ can never be a solution of (4) if the functions p(x) and q(x) are continuous at x = 0.

- 9. (a) Let $y_1(x)$ and $y_2(x)$ be solutions of (4) on the interval I with $y_1(x_0) = 1$, $y'_1(x_0) = 0$, $y_2(x_0) = 0$, and $y'_2(x_0) = 1$ for some $x_0 \in I$. Show that $y_1(x)$ and $y_2(x)$ form a fundamental set of solutions of (4) on the interval I.
 - (b) Show that $y(x) = a_0 y_1(x) + b_0 y_2(x)$ is the solution of (4) satisfying $y(x_0) = a_0$ and $y'(x_0) = b_0$ for some $x_0 \in I$.
- 10. Suppose that Wronskian of any two solutions of (4) is constant in some interval I. Prove that ODE (4) becomes $\frac{d^2y}{dx^2} + q(x)y = 0$ on I.

11. Let y_1 and y_2 be solutions of Bessel's equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0$$

on the interval $(0, \infty)$, with $y_1(1) = 1$, $y'_1(1) = 0$, $y_2(1) = 0$, and $y'_2(1) = 1$. Compute $W[y_1, y_2](x)$.

12. Assume that p and q are continuous, and that the functions y_1 and y_2 are solutions of the ODE

$$\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$$

on the interval I.

- (a) Prove that if y_1 and y_2 vanish at the same point in the interval I, then they cannot form a fundamental set of solutions on this interval.
- (b) Prove that if y_1 and y_2 achieve a maximum or minimum at the same point in the interval I, then they cannot form a fundamental set of solutions on this interval.
- (c) Suppose that y_1 and y_2 are a fundamental set of solutions on the interval $(-\infty, \infty)$. Show that there is one and only one zero of y_1 between consecutive zeros of y_2 .

