अर्धवार्षिक पत्रिका

सितंबर, 2021 अंक: 4

समुद्रिका

राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान

(पृथ्वी विज्ञान मंत्रालय) चेन्नई

संपादकीय

नवंबर 1993 में राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान (रा.स.प्रौ.सं) की स्थापना पृथ्वी विज्ञान मंत्रालय (पृ.वि.मं.), भारत सरकार के अधीन एक स्वायत्त संस्थान के रूप में की गई थी। राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान का प्रशासन पृथ्वी विज्ञान मंत्रालय के सचिव की अगुवाई में एक शासी परिषद द्वारा किया जाता है और निदेशक इस संस्थान के प्रमुख हैं।

पृथ्वी विज्ञान मंत्रालय के अधीन रा.स.प्रौ.सं की स्थापना करने का मुख्य उद्देश्य, भारत के भूभाग के लगभग दो तिहाई भाग बनाने वाले भारतीय विशिष्ट आर्थिक क्षेत्र (ईईज़ेड) में जीवित और निर्जीव संसाधनों की उपज से संबन्धित विभिन्न अभियांत्रिक समस्याओं का समाधान निकालने हेतु धारणीय देशीय प्रौद्योगिकी विकसित करना है।

रा.स.प्रौ.सं. में वर्ष 2020 से अर्धवार्षिक हिंदी पत्रिका 'समुद्रिका' प्रकाशित करने का निर्णय लिया गया था। इसका पहला संस्करण जनवरी 2020 में संसदीय स्थायी समिति के निरीक्षण के दौरानऑनलाइन रूप से प्रकाशित किया गया था एवं इसके दूसरे संस्करण का विमोचन सितंबर 2020 में हिंदी पखवाड़े के दौरान किया गया था। मुझे इस पत्रिका का चौथा संस्करण आप सबके समक्ष प्रस्तुत करने में हार्दिक खुशी हो रही है।

- डॉ जी ए रामदास, निदेशक

क्रम	विषय	पृष्ठसंख्या
सं.		Č
1	सुर्खियां	4
2	पुरस्कार एवं सम्मान	5
3	व्यवहार्यता अध्ययन और प्रणाली विश्लेषण: अनुसंधान पोतों के प्रदर्शन में वृद्धि के लिए एक कुशल दृष्टिकोण	6
4	द्वीपों में समुद्री शैवाल की खेती के लिए संभावित उपयुक्त स्थलों का निर्धारण	14
5	ओएमएनआई बॉय सिस्टम में तापमान प्रोफ़ाइल मापन पर मूरिंग मोशन का प्रभाव: एक केस स्टडी	18
6	खंभात की खाड़ी के लिए सह-ज्वारीय प्रतिरूप	19
7	भूमि-आधारित बैलास्ट वाटर प्रौद्योगिकी परीक्षण सुविधा के लिए आवश्यक संसाधनों पर पूर्व व्यवहार्यता अध्ययन	21
8	समुद्र नवीकरणीय ऊर्जाकी अनुसंधानमें रा. स. प्रौ. सं की गतिविधियां	25
9	एक आकांक्षी की आंतरिक आवाज़	26
10	स्पर्शवाद	27
11	सतत् प्रेम	
12	பச்சிளம்	28

सुर्खियां

वार्ता / व्याख्यान

- सागर तारा और सागर अन्वेशिका दो नए पोतों का अभिगृहण कर इन्हें रासप्रौसं के नौका-समुदाय में शामिल किया गया।
- सीआरवी सागर अन्वेषिका को 9 जनवरी 2021
 को चेन्नई पोर्ट में पृथ्वी विज्ञान, विज्ञान और प्रौद्योगिकी और स्वास्थ्य और परिवार कल्याण मंत्री माननीय डॉ. हर्षवर्धन द्वारा राष्ट्र को समर्पित किया गया था।
- 5 नवंबर 2020 को रासप्रौसं ने अपना 27वां स्थापना दिवस मनाया। भारतीय अन्तरिक्ष अनुसंधान संगठन (इसरो) के पूर्व अध्यक्ष डॉ. जी.माधवन नायर ने स्थापना दिवस के अवसर परव्याख्यान दिया। डॉ. एम. राजीवन, सचिव पृविमं ने आयोजन की अध्यक्षता की। भारत सरकार द्वारा आयोजित वैभव सम्मेलन के अर्थ साइंस वर्टिकल

- (पृथ्वीविज्ञान और प्रौद्योगिकी क्षैतिज) के अंतर्गत विलवणीकरण और समुद्री नवीकरणीय ऊर्जा, अन्तर्जलीय रोबोटिक्स और इससे जुड़ी तकनीकें, मरीन और गहरी समुद्र जैव प्रौद्योगिकी, तटीय सुरक्षा, समुद्र धवनिकी, मूल्यांकन प्लैटफ़ार्म जैसे विषयगत सत्र आयोजित किए गए।
- 5 फरवरी 2021 को सीईई समूह द्वारा "नवीनतम और उद्विकासी तकनीक द्वारा तटीय संरक्षण-मूल्यांकन एवं विकीर्णन 2021 (स्प्रेड 2021)" पर एक वेबिनार आयोजित किया गया।
- केंद्रशासित प्रदेश लक्षद्वीप केंकल्पेनी द्वीप में 1.5 लाख लीटर प्रतिदिन क्षमता वाले निम्न तापमान थर्मल विलवणीकरण संयंत्र (एलटीटीडी) का प्रमाणीकरण किया गया।

पुरस्कार एवं सम्मान

- डॉ पूर्णिमा जालिहाल, वैज्ञानिक-जी, ऊर्जा एवं शुद्ध जल समूह प्रमुख को आईईए के तहत महासागर ऊर्जा प्रणालियों - प्रौद्योगिकी सहयोग कार्यक्रम (ओईएस-टीसीपी) के उपाध्यक्ष के रूप में चुना गया है।ओईएस टीसीपी में 24 सदस्य देश शामिल हैं और वह फ्रांस से अध्यक्ष और पुर्तगाल के सदस्य सचिव के साथ यूरोपीय आयोग के एक अन्य उपाध्यक्ष सहित मंत्रिमंडल का हिस्सा हैं।
- श्री डी नरेंद्रकुमार, पिरयोजना वैज्ञानिक- II, वीएमसी, एनआईओटी ने पृविमं द्वारा राष्ट्रपिता महात्मा गांधी की 150 वीं जयंती के उपलक्ष्य में आयोजित राष्ट्रीय स्तर की प्रतियोगिता [गांधीवादी दर्शन पर अभिनव विचार] में तृतीय-पुरस्कार जीता।
- एग्री इंडिया हैकथॉन 2020 का आयोजन पूसा कृषि, आईसीएआर और कृषि और किसान कल्याण मंत्रालय द्वारा किया गया।एनआईओटी की टीम जिसमें श्री नितेश वर्मा, श्री श्रीनिवासबोलम और डॉ टाटा सुधाकर शामिल थे, इन्होने "सेंसर, डब्ल्यूएसएन, आईसीटी, कृत्रिम बुद्धिमत्ता, आईओटी और ड्रोन" श्रेणी में प्रेसिजन कृषि अनुप्रयोगों सिहत" अपने उत्पाद "बायोमास एस्टिमेशन सिस्टम फॉर सबमर्ज्ड फिश केज-दृष्टि" के साथ इस कार्यक्रम में भाग लिया। और यह 24 सबसे आशाजनक विचारों और नवाचारों में से एक थे जिन्हें विजेता घोषित किया गया था; कुल आवेदक 6000 थे।

- सोसायटी फॉर बायोटेक्नोलॉजिस्ट (भारत) द्वारा हाल ही में जैव प्रौद्योगिकी पर आयोजित किए गए आभासी सम्मेलन में डॉ.सुधाकर, आरए, एमबीटी को लैक्टोबैसिलस प्लांटम 'का उपयोग करके लैक्टिक एसिड के उत्पादन के लिए समुद्री शैवाल बायो पॉलिमर के निष्कर्षण के लिए औद्योगिक जैव प्रौद्योगिकी में सर्वश्रेष्ठ मौखिक प्रस्तुति हेतु एसबीटीआई केएपीएल पुरस्कार मिला।
- 25 मार्च 2021 को बैंगलोर में आयोजित सीआईआई-एसआर ईएचएस एक्सलेन्स अवार्ड के दौरान राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान (जहाजों और उन्नत प्रौद्योगिकी) को "बेस्ट इनोवेटिव प्रैक्टिस अवार्ड" के साथ-साथ भारतीय उद्योग पिरसंघ द्वारा "प्रशंसा प्रमाण पत्र" प्रदान किया गया है। यह पुरस्कार एनआईओटी जहाजों में अभिनव तरीकों के माध्यम से ग्रीन टेक्नोलॉजी सॉल्यूशंस के विकास और कार्यान्वयन के लिए प्रदान किया गया था।भारत की शीर्ष एमएनसी सिहत एलएंडटी, आईटीसी, एचपीसीएल, सिप्ला, इंफोसिस, सीटीएस, वैटेकवाबग, सीमेंस, राणे, अल्ट्राटेक सीमेंट्स, टाटा मोटर्स आदि जैसी लगभग 174 कंपनियों ने इस प्रतिस्पर्धा में भाग लिया था।
- चेन्नई नगर निगम ने एनआईओटी को चेन्नई में सर्वश्रेष्ठ सरकारी परिसर के रूप में विनिर्णीत किया। हाउसकीपिंग और बागवानी रखरखाव के लिए संपदा समूह के सेल्फ हेल्प ग्रुप्स द्वारा एनआईओटी कैंपस का रखरखाव किया जाता है।

व्यवहार्यता अध्ययन और प्रणाली विश्लेषण: अनुसंधान पोतों के प्रदर्शन में वृद्धि के लिए एक कुशल दृष्टिकोण डी.राजशेखर,डी.नरेंद्रकुमार, अनंथकृष्णा, पी.एस. दीपकसंकर, प्रतीक बोस

वीएमसी-एनआईओटी के अंतर्गत आने वाले अनुसंधान पोत समुद्र में चलने वाले किसी भी उपक्रम में सबसे प्रमुख है। वे बहुउपयोगी समुद्र अवलोकन प्लैटफ़ार्म हैं जो उन्नत नौवहन उपकरण, अत्याधुनिक वैज्ञानिक उपकरण और यांत्रिक संचालन प्रणाली से लैस हैं जो वैज्ञानिकों/समुद्र विज्ञानियों को प्रौद्योगिकी प्रदर्शन, समुद्री सर्वेक्षण, नमूनाकरण, अवलोकन और अन्वेषण जैसे विभिन्न उद्देश्योंके लिए समुद्री वातावरण का पता लगाने में सहायक हैं, जैसा कि चित्र 1 में दर्शाया गया है। इन अनुसंधान जहाजों का उपयोग करके जो कि समुद्र अवलोकन का प्राथमिक स्त्रोत हैं, समुद्र में अंतःविषय दृष्टिकोण और संबंधित गतिविधियों का परीक्षण किया जा रहा है और ये स्त्रोत अज्ञेय विकास तक ऐसे ही रहेंगे।

The second secon

चित्र. 1: एनआईओटी का परिचालन जहाज़ समूह

वीएमसी टीम एनआईओटी पोतावली के अनुसंधान जहाजों के संचालन और तकनीकी प्रबंधन के लिए जिम्मेदार है। विभिन्न तकनीकी/ संचालन मुद्दों पर टीम द्वारा निरंतर प्रयास एवं नियमित अनुवर्ती कार्रवाई का

परिणाम यह निकला कि अनुमोदित कार्यक्रम के अनुरूप अनुसंधान जहाज़ों का संचालन किया गया।

इसके अलावा, जहाजों पर होने वाले विभिन्न तकनीकी विषयों के लिए कम लागत वाली नवीन अभियांत्रिकी और हरित प्रौद्योगिकी समाधानों को विकसित और कार्यान्वित करने के लिए एक सतत दृष्टिकोण रखा गया है।इन इंजीनियरिंग समाधानों ने शिपबोर्ड सिस्टम की विश्वसनीयता, सुरक्षा और तकनीकी प्रदर्शन में वृद्धि की है और डाउनटाइम को कम करके परिचालन समय को बढ़ाया है जिससे वैज्ञानिक समुदाय को काफी हद तक लाभ हुआ है।

स्थिति आधारित मशीन जोखिम विश्लेषण - एक सफल दृष्टिकोण:

मशीन जोखिम विश्लेषण नवाचार, गुणवत्ता और विश्वसनीयता का विश्लेषण करने के लिए प्रभावी उपकरणों में से एक है।विभिन्न सर्वेक्षणों के लिए समुद्र में शिपिंग समय का प्रभावी ढंग से उपयोग करने के लिए अनुसंधान जहाजों के मूल प्रारूप और निर्माण को समझना अत्यंत महत्वपूर्ण है, जो प्रकृति में बहु-विषयक हैं।तटीय सर्वेक्षण और समुद्री अनुसंधान की मांग प्रणोदन प्रणाली है जो भीषण वातावरण में भी काम करने में सक्षम है।पूरे सिस्टम प्रारूपण का सबसे चुनौतीपूर्ण हिस्सा प्रतिकूल वातावरण में वैज्ञानिक मिशन की आवश्यकताओं को पूरा करना है।

सागर तारा और सागर अन्वेषिका तटीय अनुसंधान पोत हैं जिनका उपयोग व्यापक रूप से राष्ट्रीय महत्व वाले सम्पूर्ण

भारतीय तटों पर विभिन्न वैज्ञानिक कार्यक्रमों जैसे समुद्री प्रदूषण के स्तर की निगरानी, भारत के विशेष आर्थिक क्षेत्र (ईईजेड)के बाथमेट्री सर्वेक्षण,वायुमंडलीय अध्ययन एवं मौसम पूर्वानुमान के लिए डेटा संग्रह हेतु किया जाता है।इस परिचालन क्षेत्र में हर समय प्रचुर मात्रा में चलायमान निभार, मछली पकड़ने के जाल, पृथक रिस्सियाँ एवं अन्य अवशेष मौजूद होना अनिवार्य है। प्रोपेलर में निरंतर संलिप्तताचित्र 2 में दिखाई गई प्रमुख परिचालन चुनौतियों में से एक है।इसके अलावा, ये शोध क्षेत्र उथले जल के क्षेत्र हैं जिन्हें प्रतिच्छाया जाल (जैसा कि पृथक मछली पकड़ने के जाल को कहा जाता है), विदीर्ण रेखाएं, रिस्सियां, पृथक किए गए प्लास्टिक के मछली के जाल एवं अन्य समुद्री मलबे के साथ डम्प किया जाता है। लघु स्तरीय मछुआरों के लिए उथले पानी का क्षेत्र महत्वपूर्ण शिकार के मैदान होता है।

चित्र. 2: प्रोपेलर में फंसे मतस्य जाल

स्टर्न ट्यूब और प्रोपेलर शाफ्ट के बीच सीलिंग व्यवस्था उथले पानी की वांछित और कठिन परिस्थितियों में सिस्टम की विश्वसनीयता बढ़ाने के लिए एक महत्वपूर्ण भूमिका निभाती है।फॉरवर्ड सील स्टर्न ट्यूब तेल को बर्तन में प्रवेश करने से रोकता है और आफ्टर सील स्टर्न ट्यूब,तेल को समुद्र के पानी में बाहर निकलने से रोकता है और समुद्र के पानी को स्टर्न ट्यूब में प्रवेश करने से भी रोकता है जैसा कि चित्र 3 में दिखाया गया है।

चित्र. ३: शापिटंग और स्टर्न ट्यूब व्यवस्था

स्टर्न ट्यूब व्यवस्था के लिए विचारों की सूची में वित्तीय हस्तक्षेप अधिक है और सिस्टम विश्लेषण इसकी लागत और लाभों का आकलन करके निवेश निर्णय को निर्धारित करने में महत्वपूर्ण भूमिका निभाता है। भारतीय जल में तटीय संचालन को देखते हुए प्रणाली में आगे और पीछे की ओर लगी शाफ्ट सील सबसे अधिक जोखिम में है।

इस प्रकार, समय पर उपयुक्त रूप से उचित कार्रवाई करना स्मार्ट कदम और अतिरिक्त लागत को कम करने का एक तरीका है।इस प्रकार, प्रोपेलर शाफ्ट में मछली पकड़ने के जाल और रिस्सियों को उलझने से बचाने के लिए, वीएमसी टीम द्वारा रोप गार्ड की मौजूदा व्यवस्था और नए रोप कटर के डिजाइन से संबंधित विस्तृत शोध किया गया था।पूरी तरह से अध्ययन और विस्तृत विश्लेषण के बाद, एल-शेप्ड

8 नंबर के स्टेनलेस-स्टील कटर को उसके अनिवार्य ड्राई डॉक के दौरान समान दूरी के साथ रोप गार्ड परिधि में लैप वेल्ड किया जाता है जैसा कि चित्र 4 में दिखाया गया है ताकि जाल/रिस्सियों को कुशल कटाव क्षमता और पर्याप्त ताकत प्रदान की जा सके।प्रोपेलर हब, ब्लेड और कटर टिप के बीच पर्याप्त क्षैतिजक और ऊर्ध्वाधर निकासी ओईएम की अनुशंषा के अनुसार बनाए रखी जाती है।

चित्र. 4: रस्सियों/मछली पकड़ने के जाल को प्राप्त करने के लिए रोप कटर की संशोधित व्यवस्था

प्रस्तावित रोप कटर की व्यवस्था ओईएम को पूर्व निर्धारण के लिए प्रस्तुत कर दी गई है और उसे बिना किसी अन्य संशोधन के अनुमोदित कर दिया गया है।इस अभियांत्रिकी समाधान के परिणामस्वरूप जहाज के समय की बर्बादी कम हो गई है क्योंकि पुर्जों की खरीद की कोई आवश्यकता नहीं रही और लागत और परिचालन समय की बचत से वैज्ञानिक समुदाय को बड़े पैमाने पर लाभ हुआ है।

फ्लैप रूडर के साथ जहाज की बढ़ी हुई कौशल क्षमता:

जहाज की गतिशीलता में सुधार करने के लिए, एक फ्लैप रडर तैयार किया गया है और सीआरवी सागर तारा और सागर अन्वेशिका पर स्थापित किया गया है जैसा कि चित्र 5 में दिखाया गया है।इसे रडर द्वारा उत्पन्न प्रभावी लिफ्ट को बेहतर बनाने के लिए डिज़ाइन किया गया है।कम इंजन ड्रॉप के साथ कम बिजली का उपयोग ईंधन की खपत को कम करना फ्लैप रडर के उपयोग के लिए एक प्रमुख कारक है।

चित्र. 5: सागर तारा और सागर अन्वेषिका पर स्थापित फ्लैप रडर

रडर बल जिस पर रडर स्केनलिंग आधारित है, की गणना निम्न सूत्र से की जा सकती है::

$$F 132 * k_1 * k_2 * k_3$$

$$F * A * V^2$$

जहां.

 $\mathbf{F_r} = \mathsf{t}\mathsf{s}\mathsf{t}$ बल

A = फ्लैप और रडर बल्ब के क्षेत्र सहित रडर ब्लेड का क्षेत्र

V = अधिकतम सर्विस गति, समुद्री मील में

 $K_{_{1}} = \tau \text{s} \tau \,\, \text{क्षेत्र के पक्ष अनुपात } \Lambda \,\, \text{प} \tau \,\, \text{आधारित}$ कारक

 $\mathbf{K}_{1} = (\boldsymbol{\lambda} + 2) / 3$, $\boldsymbol{\lambda}$ के साथ, 2 से अधिक नहीं

 $\pmb{\lambda} = b2 \; / \; At, \; b = मीटर में रडर क्षेत्र की औसत ऊंचाई.$

 ${f A}_{{f t}}=$ रडर ब्लेड एरिया ए और रडर पोस्ट या रडर हॉर्न का क्षेत्रफल का योग

 $\mathbf{K_2} =$ रडर प्रोफ़ाइल के प्रकार के आधार पर गुणांक

 \mathbf{K}_3 = प्रोपेलर जेट के बाहर रडर्स के लिए 0.8, फिक्स्ड प्रोपेलर नोजल के पीछे रडर्स के लिए 1.15, अन्यथा 1.0

जब जहाज अधिकतम सर्विस गित पर था तब सीआरवी के टर्निंग सर्कल ट्रायल के परीक्षण के दौरान, फ्लैप रडर को हार्ड पोर्ट से हार्ड स्टारबोर्ड तक संचालित किया गया था, और पोत का सामिरक व्यास और अग्रगित तालिका 1 में दिखाए गए आंकड़ों के अनुसार प्राप्त की गई थी।

तालिका 1: Tactical diameter and advance of new CRVs recorded during trial for turning circle

विवरण	Measured Value	Obtained Result	Maritime Safety Committee [MSC] guidelines for ships
सामरिक	62.87	जहाज़ की	सामरिक व्यास
व्यास		लंबाई का	जहाज की लंबाई
[m]		1.46 गुना	के 5 गुना से
			अधिक नहीं होना
			चाहिए
अग्रगति	68.37	जहाज की	अग्रगति जहाज
[m]		लंबाई का	की लंबाई के 4.5
		1.59 गुना	गुना से अधिक
			नहीं होनी चाहिए

टर्निंग सर्कल परीक्षण उच्चतम पतवार कोण के साथ अधिकतम सेवा गित पर किए जाते हैं।अंतर्राष्ट्रीय समुद्री संगठन [आईएमओ] के समुद्री सुरक्षा समिति [एमएससी] के दिशानिर्देशों के अनुसार, जहाज की गितशीलता जहाज की गितशील विशेषताओं जैसे जलमार्ग में स्थिर रहने की क्षमता, जलमार्ग बदलने की क्षमता और गितशील स्थिरता के मूल्यांकन के लिए कारकों की पहचान करती है।यह देखा गया है कि जहाज की प्रतिक्रिया संतोषजनक है और आईएमओ द्वारा निर्धारित दिशा-निर्देशों के अनुरूप है।

अनुसंधानपोत के लिएहाइब्रिड बैटरी समाधान का व्यवहार्यता

एक हाइब्रिड प्रणाली जहाज के प्रदर्शन में सुधार करती है, ईंधन की खपत को कम करती है और हानिकारक उत्सर्जन को कम करती है। आईएमओ द्वारा स्थापित दृढ़ नियमों कू पूरा करने की दृष्टि से पर्यावरणीय अनुकूल जहाजों का निर्माण किया जाता है। वर्तमान अध्ययन में ऊर्जा प्रबंधन के इष्टतमीकरण के लिए समुद्र विज्ञान अनुसंधान पोत सागर

निधि पर विचार किया गया है।पारंपरिक डीजल-इलेक्ट्रिक प्रणोदन के साथ-साथ विद्युत/रासायनिक ऊर्जा के भंडारण के लिए अनुकूलित बैटरी का उपयोग किया जाता है।प्रायोगिक डेटा का उपयोग मॉडल अनुकूलन हेतु और ईधन दक्षता निर्धारित करने के लिए किया जाता है।

डीजल-इलेक्ट्रिक प्रणोदन का योजनाबद्ध प्रतिनिधित्व चित्र 6 में दिखाया गया है।डीजल-विद्युत प्रणोदन में, विद्युत शक्ति उत्पन्न होती है जिसके द्वारा एसी मोटर को आपूर्ति प्रदान की जाती है जो थ्रस्टर्स (अजीमुथ और बो थ्रस्टर्स) को चलाती है।सागर निधि पर डीजल-विद्युत प्रणोदन प्रणाली का विवरण तालिका 2 में दर्शाया गया है।

तालिका 2: प्रणोदन प्रणाली के विनिर्देश

प्रणाली घटक	विशेष विवरण
ऊर्जा उत्पादन	4 x 1710 KVA
ऊर्जा वितरण	690 V MSB
अज़ीमुथ थ्रस्टर मोटर	3 phase, 1600 kW
बो थ्रस्टर मोटर	3 phase, 800 kW

साहित्य अध्ययन और विभिन्न शोध कार्यों की समीक्षा के आधार पर, उपलब्ध ऊर्जा डेटा पर शामिल वास्तविक बिजली आवश्यकता के आकलन के लिए एक सैद्धांतिक मॉडल का उपयोग किया जा सकता है।डिजाइन मॉडल मुख्य रूप से निम्नलिखित कारकों पर आधारित है।

- पोत संचालन: ट्रांजिट, डीपी, कौशल, हार्बर
- लोड प्रोफाइल: सामान्य और अधिकतम लोड
- इंजन/जनरेटर का प्रदर्शन वक्र
- लागत प्रति यूनिट समय

ईंधन की खपत को अधिकतम करने के लिए, इंजन को न्यूनतम एसएफसी पर संचालित किया जाना है।जब बैटरियों को मेन स्विच बोर्ड [एमएसबी] से जोड़ा जाता है, तो बिजली की कम मांग के दौरान बैटरियों को चार्ज किया जाएगा।पीक लोड के दौरान बैटरियां ऊर्जा का भंडारण और आपूर्ति करेंगी।चित्रा 7 बैटरी के साथ प्रणोदन प्रणाली के एक योजनाबद्ध प्रतिनिधित्व को दर्शाता है।

0		•	G	-00000
Main Propulsion M	Main Swite board part		G	Main Engines
Thrusters M	Switch d part 1			Battery
Pump, and Aux loads — M	-			
Pump, and Aux loads(M)	Main			Battery
Thrusters M	Main Switch board part 2		G	H00000
Main Propulsion M	2 5	-	G	Main Engines

चित्र6: बैटरी के साथ प्रणोदन प्रणाली

बैटरी के साथ ईंधन की खपत की गणना:

हाइब्रिड बैटरी ऊर्जा समाधान के आधार पर एक अवधारणात्मक अध्ययन किया गया है।विभिन्न जहाजों के संचालन जैसे ट्रांजिट, डीपी, स्टैंडबाय और पोर्ट स्टे के दौरान सागर निधि के बैटरी उपयोग के साथ औसत ईंधन खपत को तालिका 3 में दर्शाया गया है।बिजली उत्पादन एसएफसी के न्यूनतम मूल्य के लिए अनुकूलित है।ऊर्जा भंडारण प्रणालियों के लिए बिजली उत्पादन और वितरण प्रणालियों को बैटरी के साथ सिंक्रनाइज़ किया जाता है।

तालिका 3: ईंधन की खपत (जनरेटर और बैटरी संयोजन)

चालन	मय (घ टों में)	की मांग (kW)	लोड / जेनरेटर	नरेटर की सं	कुल ईधन खपत (एमटी)	बैटरी की स्थिति	वश्यक शक्ति के लिए ईधन की खपत	टरी के बिना कुल ईधन की खपत
2 समुद्री मील पर पारगमन	40	000	163		90.1	र्जिंग सचार्जिंग	49	52.1
0 समुद्री मील पर पारगमन	220	100	163		415.6 07.8	र्जिंग सचार्जिंग	278	284.8
समुद्री मील	060	600	163		65.9	र्जिंग	20	39.2

पर पारगमन					232.9	डिसचा		
						र्जिंग		
			1163	1				
पी संचालन	460	00			40.7	र्जिंग	72	93.6
डबाइ	00	50	163		09.9	र्जिंग	1	5.8
र्ट पर	080	00	163		37.3	र्जिंग	2	5
योग			2372			2440.5		

सागर निधि पर बैटरी समाधान के कार्यान्वयन से संबंधित व्यवहार्यता अध्ययन के आधार पर, यह देखा गया है कि हाइब्रिड बैटरी ऊर्जा समाधान की अवधारणा के साथ शामिल ईंधन खपत के अनुकूलन के परिणामस्वरूप काफी मात्रा में ईंधन की बचत होगी।यह न्यूनतम एसएफसी पर इंजन/जनरेटर के संचालन के माध्यम से प्राप्त किया गया था।इसके परिणामस्वरूप हानिकारक जहाज-जनित उत्सर्जन जैसे, SOx/NOx, CO, CO2, PM, आदि में काफी कमी आई, जिससे हरित जहाज प्रौद्योगिकी की दिशा में एक पहल सुनिश्चित हुई।

गियरबॉक्स क्लच के रिस्पांस टाइम में सुधार के लिए अभियांत्रिकी समाधान:

सागर पूर्वी को एक तकनीकी चुनौती का सामना करना पड़ रहा था जिसमें स्टारबोर्ड साइड गियरबॉक्स का रिस्पांस टाइम पोर्ट साइड के संबंध में पिछड़ रहा था जो उथले पानी के संचालन के दौरान महत्वपूर्ण था।वीएमसी टीम ने सम्पूर्ण रूप से जहाज की जांच की थी और क्लच और टॉर्क ट्रांसमिशन समय के प्रतिक्रिया समय में सुधार के लिए एक अभिनव अभियांत्रिकी समाधान लागू किया था।प्रस्तावित संशोधन के लिए ओईएम की सहमति के आधार पर, गियर बॉक्स क्लच प्लेट को एक अतिरिक्त परिधिगत खांचा दिया गया थाजो अतिरिक्त हाइड्रोलिक तेल से भरा हुआ था और इस तेल को एक अलग दबाव प्रणाली द्वारा अनुक्रमिक वाल्व के माध्यम से संचालित किया गया था और सिस्टम को मौजूदा गियर बॉक्स सिस्टम के साथ एकीकृत किया गया था जैसा कि चित्र 8 में दर्शाया गया है।

अनुक्रमिक जुड़ाव, स्वचालित रूप से निर्मित/अतिरिक्त उच्च दबाव वाल्व द्वारा संचालित होता है और इसके लिए किसी अतिरिक्त हैंडलिंग की आवश्यकता नहीं होती है।

चित्र. 7: स्टारबोर्ड साइड गियर बॉक्स से सीक्वेंसिंग के साथ संशोधित क्लच

प्रस्तावित संशोधन के बाद, प्रतिक्रिया समय दर्ज किया गया था और प्रतिक्रिया समय में एक महत्वपूर्ण सुधार प्राप्त किया गया है।

- 4 से 5 गुना कम दबाव पर परंपरागत क्लच पूरी तरह से भर जाएंगे
- अनुक्रमित वाल्व के बिना गियरबॉक्स क्लच के लिए प्रतिक्रिया समय = 0.86सेकंड

- अनुक्रमित वाल्व के साथ गियरबॉक्स क्लच के लिए प्रतिक्रिया समय = 0.43 सेकंड
- अनुक्रमित वाल्व के बिना टोक़ संचरण समय =
 2.1 सेकंड
- अनुक्रमित वाल्व के साथ टोक़ संचरण समय = 1.4 सेकंड

यह नवाचार जहाज़ों के स्थान को बदलने के समय और डॉकिंग समय के दौरान भारी प्रतिक्रिया परिवर्तन का कारण बना था जिसने प्रणाली की विश्वसनीयता और जहाज और जहाज पर कार्यरत कर्मियों की सुरक्षा में वृद्धि की है।

निष्कर्ष

सिस्टम की विश्वसनीयता और जहाजों के परिचालन समय को बढ़ाने के लिए वीएमसी टीम कम लागत वाले अभिनव समाधान प्रदान करने के लिए निरंतर प्रयास कर रही है।वर्गीकरण समाज द्वारा अनुमोदित कई अभियांत्रिकी समाधान समुद्री क्षेत्र के लिए मानक अभ्यास का हिस्सा रहे हैं।नए उपायों की पहचान करने और प्रणाली प्रारूप में संशोधन को लागू करने से प्रणाली के प्रदर्शन में वृद्धि हुई है।इन नवोन्मेषी समाधानों ने समुद्र विज्ञान के अग्रणी क्षेत्रों में अध्ययन को सुगम बनाने में मदद की है और सतत विकास के लिए स्वच्छ और हरित नौवहन को प्रोत्साहित किया है।

द्वीपों में समुद्री शैवाल की खेती के लिए संभावित उपयुक्त स्थलों का निर्धारण

दिलीप कुमार झा, जे. संताना कुमार,विकास पांडेय,एवं जी. धरणी

समुद्री शैवाल समुद्री पौधे हैं जिन्हें आमतौर पर समुद्री मैक्रोस्कोपिक शैवाल या मैक्रोएल्गे कहा जाता है। समुद्री शैवाल या तो समुद्री या खारे पानी के वातावरण में रहते हैं और क्रिप्टोगैम नामक बड़े विविध समूहों से संबंधित हैं। वे सच्चे पौधे नहीं हैं और उनकी जड़ प्रणाली नहीं है। वे चट्टानों, पत्थरों, मृत मूंगों, और एक अन्य कठोर आधार से होल्डफास्ट से जुड़े हुए हैं। वे बीजाणु छोड़ते हैं जो नर और मादा अगुणित वयस्कों में विकसित होते हैं जिन्हें गैमेटोफाइट्स कहा जाता है। वयस्क गैमेटोफाइट अंडे और शुक्राणु पैदा करते हैं जो जीवन चक्र को पूरा करते हुए द्विगुणित वयस्कों, स्पोरोफाइट्स में विकसित होने के लिए एकजुट हो सकते हैं। रंजकता के आधार पर, समुद्री शैवाल को तीन भागों में वर्गीकृत किया जाता है।

- 1) क्लोरोफाइसी (हरित शैवाल),
- 2) फियोफाइसी (भूरा शैवाल), और
- 3) रोडोफाइसी (लाल शैवाल)

नाम के विपरीत, ये अपने महानगरीय वितरण, नवीकरणीय प्रकृति और अनुप्रयोगों की विस्तृत श्रृंखला के कारण कई उपयोगों वाले पौधे हैं। समुद्री शैवाल के कुछ उत्पादों में 1) अगर, 2) एल्गिन, 3) कैरेजेनन, 4) खाद, 5) जैव उर्वरक, 6) चारा और 7) बायोएक्टिव मेटाबोलाइट्स शामिल हैं। भारतीय जल में मौजूद 68 परिवारों की 216 प्रजातियों से संबंधित 841 समुद्री शैवाल प्रजातियां हैं।

तीन प्रमुख फ़ाइकोकोलॉइड एिलानेट, अगर और कैरेजेनन हैं जो भारत में उद्योग के लिए उच्च मांग में हैं, लेकिन प्राकृतिक स्रोत से वर्तमान उत्पादन बहुत कम है और स्थानीय उद्योग की जरूरतों को पूरा करने के लिए अपर्याप्त है। बायोएनेर्जी और जैव आधारित उत्पादों के लिए अपतटीय समुद्री शैवाल की खेती को बढ़ावा देकर मांग और आपूर्ति के बीच इस अंतर को पाट दिया जा सकता है। कुछ शोधकर्ताओं ने 1 किमी 2 अपतटीय समुद्री शैवाल खेत की कल्पना की थी जो गतिशील रूप से लंबवत और क्षैतिज दोनों तरह से स्थित होगा, बाद में पर्याप्त पोषक तत्वों के साथ पानी में प्रणाली को बनाए रखने और पूर्व में तूफान से सुरक्षा प्रदान करने के साथ।

ऐसे क्षेत्रों की पहचान करने की तत्काल आवश्यकता है जो बढ़ती विश्व जनसंख्या की खाद्य आवश्यकताओं को पूरा करने में मदद कर सकते हैं। फोरस्टर (2007) बताते हैं कि यदि महासागरों को भूमि की तरह खेती की जानी है, तो अपतटीय क्षेत्रों को पौधों के लिए खेती की जानी चाहिए जो मानव भोजन के साथ-साथ औद्योगिक उत्पाद भी प्रदान करेंगे। यह तटीय और समुद्री क्षेत्र में तैरती संरचनाओं पर समुद्री शैवाल की खेती की क्षमता का आकलन करने का संकेत देता है। पर्यावरणीय मापदंडों के आधार पर समुद्री शैवाल की खेती के लिए संभावित स्थलों का सीमांकन करने के लिए स्थानिक विश्लेषण लागू किया जा सकता है।

समुद्री शैवाल संवर्धन के लिए स्थल का चयन बहुत महत्वपूर्ण है क्योंकि यह फसल की उपज को दृढ़ता से प्रभावित करेगा। समुद्री शैवाल कम तरंग जोखिम, इष्टतम तापमान सीमा, प्रकाश की तीव्रता, उथले पानी की गहराई (≤ 20 मीटर), अच्छे जल प्रवाह और कम निलंबित ठोस वाले क्षेत्रों में उगते हैं।

- 1) अधिकांश समुद्री शैवाल तापमान की एक विस्तृत श्रृंखला को सहन कर सकते हैं।
- 2) प्रकाश संश्लेषण के लिए प्रकाश की उपलब्धता महत्वपूर्ण है; प्रकाश की कमी से खराब विकास हो सकता है।
- 3) उच्च स्तर के अवसादन वाले उथले क्षेत्रों में स्थापित होने से बचें।
- 4) समुद्री शैवाल को अवशोषित करने के लिए पोषक तत्वों और कार्बन डाइऑक्साइड की ताजा आपूर्ति लाने के लिए

जल प्रवाह पर्याप्त होना चाहिए। अच्छे प्रवाह से अतिक्रमण करने वाले जीवों और तलछट के निपटान में भी कमी आएगी। भारतीय तटीय जल में सामान्यतः उपलब्ध समुद्री शैवालः

उल्वा sp

सारगैसम sp.

कुल मिलाकर, 43 देशों में दुनिया भर में 291 समुद्री शैवाल प्रजातियों का व्यावसायिक रूप से उपयोग किया जाता है। 12 बिलियन अमेरिकी डॉलर (FAO-2019) के बाजार के साथ समुद्री शैवाल की व्यावसायिक कटाई 32.4 मिलियन टन / वर्ष उत्पादन (खेती के लिए 95% खाते) के साथ नए मील के पत्थर पर पहुंच गई है। वर्तमान में, ९९.५१% संवर्धित समुद्री शैवाल का उत्पादन एशिया में होता है, जिसमें अकेले चीन प्रमुख हिस्सा (५७.३६%) पैदा करता है, इसके बाद इंडोनेशिया (२८.७८%) और दक्षिण कोरिया (५.२८%) का स्थान आता है। 2018 तक, भारत ०.०२% (यानी ५३०० टन) संवर्धित समुद्री शैवाल उत्पादन (एफएओ-सोफिया, २०२०) के साथ ९वें स्थान पर है। वर्ष 2025 तक भारत का समुद्री शैवाल उत्पादन लक्ष्य 11,20,000 टन होने का अनुमान है। दुनिया भर में समुद्री शैवाल संवर्धन के प्रचलित तरीके नीचे दिए गए हैं:

क्रमांक समुद्री शैवाल की खेती की विधि

1	फिक्स्ड बॉटम लॉन्गलाइन मेथड
2	सिंगल रोप फ्लोटिंग राफ्ट विधि
3	स्पिनोसुम के लिए रॉक आधारित खेती
4	इंटीग्रेटेड मल्टी ट्रॉफिक एक्वाकल्चर
	(IMTA) विधि

पोर्ट ब्लेयर के पास निम्नलिखित क्षेत्रों को समुद्री शैवाल संसाधन माना जाता है जैसे कॉर्बिन कोव, चैथम द्वीप, जंगलीघाट, बांस फ्लैट, रॉस द्वीप, वाइपर द्वीप, फीनिक्स बे, नेवी बे, नॉर्थ बे, मरीना पार्क, चौलधारी, बर्मनल्ला, चिडियाटापु, जॉली बॉय द्वीप और महात्मा गांधी समुद्री राष्ट्रीय उद्यान क्षेत्र (बिस्वास 1945: श्रीनिवासन 1960)। द्वीप समुद्री शैवाल संवर्धन, महत्व और आर्थिक लाभ, और रोजगार के अवसर में जन जागरूकता कार्यक्रम और व्यावहारिक प्रशिक्षण आयोजित करने की आवश्यकता है। द्वीपों में समुद्री शैवाल संवर्धन के सफल कार्यान्वयन के लिए स्वयं सहायता समूह (एसएचजी), ग्राम पंचायत के माध्यम से स्थानीय युवाओं और गैर-सरकारी संगठन (एनजीओ) की भागीदारी को प्रोत्साहित किया जाना चाहिए।

समुद्री शैवाल की खेती में बाधाएं

- ☐ प्रारंभिक बीज बैंक विकास के लिए आवश्यक मात्रा में व्यावसायिक रूप से बेहतर प्रजातियों के जंगली बीजों का पता लगाने की आवश्यकता है।
- ☐ वर्तमान में कोई भी उद्योग लक्षद्वीप एवं अंडमान और निकोबार द्वीप समूह में समुद्री शैवाल से संबंधित प्रसंस्करण या उत्पादन गतिविधियों में काम नहीं कर रहा है और इसलिए स्टार्ट-अप संभावनाओं और विपणन संभावनाओं को विकसित करने की आवश्यकता है।
- ☐ वर्तमान में कुछ जनजातीय समूहों को छोड़कर स्थानीय लोगों द्वारा समुद्री शैवाल का कोई उपभोग नहीं किया जाता है। इसलिए स्थानीय लोगों में समुद्री शैवाल के भोजन के रूप में उपयोग के बारे में जागरूकता पैदा की जानी चाहिए।
- ☐ द्वीप समूह से मुख्य भूमि भारत में समुद्री शैवाल से संबंधित उत्पाद के परिवहन/निर्यात में लागत-लाभ पर विचार।

समुद्री शैवाल संवर्धन के लिए आगे का रास्ता

- जैसा कि पूर्व-व्यवहार्यता अध्ययन से परिकल्पित है, द्वीपों में वाणिज्यिक समुद्री शैवाल की खेती स्थापित करना तकनीकी रूप से संभव है।
- □ समुद्री शैवाल के स्थानीय जंगली स्टॉक का उपयोग
 मौजूदा स्थान पर रोपण/बीज बैंकों के विकास के
 लिए किया जाना चाहिए। समुद्री जल गुणवत्ता
 पैरामीटर की नियमित रूप से निगरानी की जानी
 चाहिए।
- ☐ द्वीप समूह में समुद्री शैवाल विविधता की बेहतर योजना और प्रबंधन के लिए एक विस्तृत परियोजना रिपोर्ट (डीपीआर) विकसित करना।

- ☐ व्यावसायिक पैमाने पर जाने से पहले प्रयोगशाला पैमाने पर समुद्री शैवाल संवर्धन और समुद्र में प्रायोगिक पैमाने पर संवर्धन का परीक्षण किया जाना चाहिए।
- स्थानीय युवाओं को समुद्री शैवाल की खेती पर प्रशिक्षण प्रदान किया जाना चाहिए।
- एफएओ दिशानिर्देशों के आधार पर पर्यावरणीय मापदंडों का उपयोग करते हुए समुद्री शैवाल संवर्धन स्थलों के लिए विस्तृत भू-स्थानिक योजना तैयार की जानी है।

ओएमएनआई बॉय सिस्टम में तापमान प्रोफ़ाइल मापन पर मूरिंग मोशन का प्रभाव: केस स्टडी बिस्वजित हालदार, अभिषेक टंडन, आर. वेंकटेशन

मिश्रित परत और ऊपरी थर्मोकलाइन में तापमान परिवर्तनशीलता ऊपरी महासागर की गतिशीलता में महत्वपूर्ण भिमका निभाती है और मौसम प्रणालियों को प्रभावित करती है। वैश्विक जलवायु और समुद्री पारिस्थितिकी तंत्र की गतिशील प्रकृति को समझने में महासागर के तापमान प्रोफ़ाइल माप महत्वपूर्ण हैं। थर्मोहेलिन परिसंचरण बड़े पैमाने पर महासागर परिसंचरण का एक हिस्सा है जो सतही गर्मी और मीठे पानी के प्रवाह द्वारा निर्मित वैश्विक घनत्व ढाल द्वारा संचालित होता है। सतह से 26 $^{\circ}$ C इज़ोटेर्म (D26) की गहराई तक समुद्र की गर्मी सामग्री को उष्णकटिबंधीय चक्रवात ताप क्षमता (TCHP) के रूप में जाना जाता है, जिसका उष्णकटिबंधीय चक्रवात (TC) गहनता पर एक बड़ा प्रभाव पड़ता है। समुद्र विज्ञान के क्षेत्र में काम कर रहे वैज्ञानिक समुदाय और शोधकर्ताओं के लिए समुद्र के तापमान प्रोफ़ाइल का सटीक माप बहुत महत्वपूर्ण है। नेशनल इंस्टीट्यूट ऑफ ओशन टेक्नोलॉजी (एनआईओटी) 12 ओएमएनआई (उत्तरी हिंद महासागर के लिए ओशन मूर्ड बॉय नेटवर्क) के नेटवर्क का प्रबंधन करता है, जो उत्तर हिंद महासागर में तापमान और लवणता प्रोफ़ाइल माप के साथ मौसम संबंधी और समृद्र संबंधी चर को मापता है। OMNI बॉय सिस्टम से उपसतह तापमान माप मूरिंग लाइन के ऊपर की ओर गति के कारण परिवर्तन के अधीन हैं जो पर्यावरणीय स्थिति और मूरिंग डिज़ाइन दोनों पर निर्भर करता है। सभी OMNI बॉय सिस्टम स्लैक-लाइन मृरिंग्स के साथ तैनात किए गए हैं, जो तना हुआ-लाइन मूरिंग की तुलना में हवा, लहर और करंट बल के प्रति अधिक प्रतिक्रिया करते हैं। OMNI बॉय सिस्टम में समुद्र की सतह का तापमान सेंसर 1 मीटर गहराई पर और उप-सतह तापमान सेंसर 500 मीटर (5, 10, 15, 20, 30, 50, 75, 100, 200) तक की विभिन्न गहराई पर होता है।और ५०० मीटर) एक जैकेट वाली तार की रस्सी में और ५०० मीटर पर केवल एक दबाव सेंसर तय किया गया है। मूरिंग लाइन की उर्ध्व गति का आकलन करने के लिए, केंद्रीयबंगालकीखाड़ी में एक वर्ष की अवधि के लिए 500 मीटर की मानक गहराई

के अलावा चार अतिरिक्त दबाव सेंसर (10 मीटर, 50 मीटर, 100 मीटर और 200 मीटर) के साथ एक केस स्टडी की गयी है। विश्लेषण से पता चलता है कि औसत तापमान विचलन का अधिकतम मूल्य 0.53 °C सबसे कम यंत्रीकृत गहराई में है जहांमूरिंग गित की एक बड़ी रेंज का अनुभव करती है और उथले गहराई में वास्तविक तापमान परिवर्तनशीलता नगण्य है, विशेष रूप से 75 मीटर (<0.01 °C) तक।

खंभातकीखाड़ीकेलिएसह-ज्वारीयप्रतिरूप

अखिल अग्निहोत्री, अमोल अनिल ढोले, विशाल पवन जैल, जे रामकुमार, बसंत कुमार जेना

उत्तर हिंद महासागर, अरब सागर और बंगाल की खाड़ी से मिलकर बना है जो कि बंगाल की एक अर्ध-संलग्न घाटी है, जो भूभाग से घिरी है। नतीजतन भारत के प्रायद्वीपीय सिरे के पास लगभग 0.3 मीटर से लेकर उत्तर में खम्बात की खाड़ी में 13 मीटर तक ज्वार दक्षिण से बढ़ता है। खम्बात की खाड़ी के लिए सहज्वारीय प्रतिरूप, मेटलैब सॉफ्टवेयर द्वारा उत्तर हिंद महासागर खाड़ीमें 25 स्थानों परसमय श्रृंखला ज्वार संचरण का अवलोकन करके तैयार किया गया है।

ज्वारीय आयामों में भिन्नता को देखते हुए खंभात की खाड़ी में 700 किलोमीटर के क्षेत्र में जो कि दियू से लेकर वाधावन तक फैला हुआ है जिसमें 25 विभिन्न स्थानों पर ज्वारीय परीक्षण शालाएं स्थापित की गई हैं। दाब मापीयंत्र, तटीय संरचना पर रडार स्तर सेंसर और जलमन्न अपतटीय दबाव गेजपेडस्टल का उपयोग 2 हर्ट्ज नमूना चयन आवृत्ति के साथ किया गया था। वेधशाला प्रणाली के स्थल पर माप किया गया था और कम समय के स्वतंत्र निरीक्षण के परिणाम के बाद प्रणाली को मान्य किया गया था।

सह-ज्वारीय नमूना संचालन के क्षेत्र के भीतर एक क्यूबिक स्पलाइन एल्गोरिथम का उपयोग करके घटकों के आयाम और चरण को प्रक्षेपित करता है।

एक उपयोगकर्ता इंटरफ़ेस के लिए एक मैटलैब रूटीन विकसित किया गया है, जो उपयोगकर्ता को किसी भी देखे गए स्थान से ज्वारीय डेटा इनपुट करने और डोमेन के भीतर किसी भी बिंदु पर ज्वार को पुन: संश्लेषित करने में सक्षम बनाता है।

यह माप ज्वार की गणना ऊंचाई के लिए नमूने का उपयोग करके की गई है, जो ज्वारीय ऊंचाई की तुलना का अच्छा परिणाम दिखाता है। यह प्रतिरूप साबरमती और माही निदयों के मुहाने के चरम उत्तर को छोड़कर अधिकांश खाड़ी क्षेत्र में लागू होता है, जहां ज्वारीय तरंग अपने आरेखीय व्यवहार और इसकी विषमता के कारण लयबद्ध विश्लेषण के लिए उत्तरदायी नहीं है। सह-ज्वारीय नमूना चरम ज्वारीय भिन्नता, पथप्रदर्शन और हाइड्रोडायनामिक नमूनों के परिभाषा में शोर में कमी के लिए उपयोगी होगा।

हाइड्रोडायनामिक नमूना सीमा की स्थिति के लिए, सह-ज्वार मॉडल उच्च संकल्प के और छोटे अनुक्षेत्र निकटवर्ती नमूने के लिए आवश्यक घटक उत्पन्न कर सकता है, जो मौजूदा खुले महासागर ज्वारीय प्रतिरूप के साथ संभव नहीं है।

जैसा कि परिभाषा 36 ज्वारीय घटकों के साथ की गयी है, हाइड्रो डायनामिक नमूना सीमा परिभाषाओं के लिए मौजूदा खुले महासागर नमूने पर निर्भर होने की तुलना में उच्च सटीकता के साथ परिणाम प्राप्त कर सकता है जो प्रमुख खगोलीय घटकों तक सीमित हैं।

सहज्वार नमूना सर्वेक्षणकर्ता/पथप्रदर्शन को समय और स्थान में प्रक्षेपित करके पथ के साथ ज्वारकी भविष्यवाणी करने में निरंतर रूप से सक्षम बनाताहै।

यह नमूना अधिकतम 36 घटक प्रदान कर सकता है, जबिक गहरे समुद्र के नमूना के आधार पर 13 घटकों को प्राप्त किया जा सकता है। परिचालन उपयोग के लिए एक मोबाइल एप्लिकेशन विकसित किया गया है।

चित्र 1. जलराशिक सर्वेक्षण और ज्वारीय प्रसार।

चित्र 2. परिचालन उपयोग के लिए विकसित किया गया मोबाइल एप्लिकेशन।

चित्र 3. खंभात की खाड़ी में स्थापित ज्वारीय परीक्षण शालाएं|

चित्र 4. खंभात की खाड़ी में एमएसएल और सीडी स्तर से नीचे ज्वार का अवलोकन

अभिस्वीकृति

हम इस परियोजना के समयांतर्गत पूर्ण होने पर अपने संस्थान के निदेशक महोदय के आभारी हैं जिनकी अनुमित मिलने पर ही उचित समय पर परियोजना का शुभारंभ हो पाया और हम अपने विभाग प्रमुख श्री डॉ एमवी आर रमनमूर्ती का भीआभार व्यक्त करते हैं जो कि हमें सदैव मार्गदर्शक के तौर पर अपना बहुमूल्य समय प्रदान कर के मार्गदर्शन तथा ऐसे ही नवीन परियोजनाओं को पूर्ण करने हेतु प्रोत्साहन भी देते रहते हैं। हम निदेशक, राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान (एनआईओटी), चेन्नई को इसके लिए धन्यवाद देते हैं। सचिव पृथ्वी विज्ञान मंत्रालय भारत सरकार के मार्गदर्शन व प्रोत्साहन के लिए भी धन्यवाद व्यक्त करते हैं। हमई.एस.एस.ओ बैठक 2019 के दौरान जनहित के लिए एंड्रॉइड मोबाइल ऐप जारी करने के लिए डॉ एम राजीवन सचिव पृथ्वी विज्ञान मंत्रालय (एमओईएस) के आभारी हैं।

भूमि-आधारित बैलास्ट वाटरपरीक्षणसुविधा प्रौद्योगिकी के लिए आवश्यक संसाधनों पर पूर्व व्यवहार्यता अध्ययन

कृपारत्नम, आर सरवनन, जी धरणी, विजया रविचंद्रन

राष्ट्रीय समुद्र प्रौद्योगिकी संस्थान (NIOT) ने नेल्लोर जिले के पमनजी गांव में भूमि-आधारित बैलास्ट वाटर उपचार प्रौद्योगिकी – परीक्षण सुविधा (BWTT-TF) स्थापित करने का प्रस्ताव रखा है। यह स्थल उत्तर में स्वर्णमुखी नदी, पश्चिम में बिकंघम नहर और पूर्व में बंगाल की खाड़ी से घिरा हुआ है जैसा कि चित्र-1 में दिखाया गया है। परीक्षण सुविधा तटीय विनियमित क्षेत्र के मानदंडों का पालन करने वाली उच्च ज्वार रेखासे पर्याप्त रूप से दूर स्थित होगी। परीक्षण के लिए आवश्यक समुद्री जल को बंगाल की खाड़ी से पंप किया जा सकता है। इस परीक्षण सुविधा को स्थापित करने के लिए अनुमानित भूमि क्षेत्र10,000 वर्ग मीटर होगा।

परीक्षणऔर प्रक्रिया की अवधि

BWTT-TF में शामिल परीक्षण प्रक्रिया और परीक्षण सुविधा के विन्यास को अंतिम रूप देने के लिए बुनियादी इनपुट होगी। अंतर्राष्ट्रीय मैरिटाइम संगठन (International Maritime Organization, IMO) दिशानिर्देशों के अनुसार, पानी की तीन अलग-अलग सैलिनिटी - समुद्री (36-28 PSU), खारा (20-10 PSU) और ताजा (<1 PSU) का उपयोग करके परीक्षण किया जाना है। निकटवर्ती सैलिनिटी श्रेणियों के अंतर्गत परीक्षणों को कम से कम 10 PSU द्वारा अलग किया जाना चाहिए।

समुद्री पानी का उपयोग कर परीक्षण प्रक्रिया और अवधि

समुद्री जल का उपयोग करते हुए परीक्षण प्रक्रिया का वैचारिक अवसंरचना लेआउट चित्र-2 में दिखाया गया है। प्रबलित सीमेंट कंक्रीट (Reinforced Cement Concrete, RCC)टैंकों के स्थानों को उसी चित्र-2 में संदर्भित किया जा सकता है। (A) नामक इनटेक वाल्व का उपयोग कर के समुद्री

जल को 5 मीटर पानी की गहराई से पंप किया जाएगा। इस समुद्री जल को पाइपलाइन ढांचे (trestle) के माध्यम से ले जाया जाएगा और दो RCC फीडटैं कों (C) और (D) में संग्रहीत किया जाएगा. जिनमें से प्रत्येक की क्षमता 1800 m3 है। इन दो टैंकों में संग्रहीत समुद्री जल को (H) के रूप में दिखाए गए सरोगेट टैंक से एल्गल कल्चर के साथ सरोगेट किया जाएगा, यदि प्राकृतिक संख्या IMO के G-8 दिशानिर्देश में निर्धारित अनुसार कम हो रही है। बैलास्ट वाटर ट्रीटमेंट सिस्टम (BWTS) का स्थान जिसके लिए प्रमाणीकरण की आवश्यकता है, लेआउट में (E) के रूप में दिखाया गया है। पहले फीडटैंक (C) से समुद्री जल को BWTS, (E) को दरिकनार करते हुए C1, C2 और C3 के रूप में दिखाए गए तीन 'कंट्रोल टैंक' के माध्यम से पारित किया जाएगा, जिनमें से प्रत्येक की क्षमता 600 m3 है। दूसरे फीड टैंक से समुद्री जल को BWTS के माध्यम से 'टेस्ट टैंक' में पंप किया जाएगा। प्रवाह की न्यूनतम दर 250 m3 प्रति घंटा होगी। हालांकि, नियंत्रण और परीक्षण टैंकों को भरने के लिए फीडटैंकों से पानी की पंपिंग एक साथ की जानी है। परीक्षण टैंकों और नियंत्रण टैंकों में पंप किए गए समुद्री जल को 5 दिनों तक संग्रहीत किया जाएगा, जिसके दौरान नमूने एकत्र किए जाएंगे और उनका परीक्षण किया जाएगा। परीक्षण किए गए समुद्री जल को एकत्र किया जाएगा और डिस्चार्ज टैंक, (F) में उपचारित किया जाएगा और बाद में आउटफॉल पाइप के माध्यम से समुद्र में पंप किया जाएगा। एक परीक्षण चक्र में प्रत्येक सैलिनिटी स्तर के लिए पांच प्रतिकृतियां होती हैं। समुद्री जल का उपयोग करके परीक्षण की अवधि का अनुमान टेबल-1 में दर्शाए अनुसार प्रवाह दर और टैंकों की मात्रा के आधार पर लगाया जाता है। समुद्री जल का उपयोग करते हुए परीक्षण के 5 चक्रों की अनुमानित अवधि 370 घंटे

पाई गई है। 24 घंटे के निरंतर संचालन को मानते हुए, समुद्री जल के साथ परीक्षण के लिए कुल दिन लगभग 15 होंगे।

मीठे पानी का उपयोग करके परीक्षण प्रक्रिया और अवधि

ऊपर वर्णित समुद्री जल की परीक्षण प्रक्रिया को दोहराया जाना है, हालांकि, मीठे पानी के लिए, स्रोत जल समुद्री जल के जगह पर शुद्ध जल होगा। मीठे पानी का उपयोग करके परीक्षण की अवधि 15 दिनों के लिए समुद्री जल का उपयोग करके परीक्षण करने की अवधि के समान है। लेकिन मीठा पानी वर्षा काल के दौरान ही स्वर्णमुखी नदी में उपलब्ध होगा। एक वैकल्पिक विकल्प के रूप में, आरओ प्लांट (Reverse Osmosis plant, RO) को 'B' के रूप में नियोजित किया गया है जिसे मीठे पानी की आवश्यकता के लिए चित्र-3 में दिखाया गया है। हालांकि परीक्षण के 5 चक्रों के लिए 18,000 घन मीटर ताजे पानी की आवश्यकता पर विचार करते हुए, 25 m3/ घंटे के लिए RO संयंत्र क्षमता और 50 m3 / घंटे उत्पादन क्षमता सहित संभावना का भी पता लगाया गया है। तदनसार मीठा पानी पैदा करने के लिए RO प्लांट की विभिन्न क्षमताओं के विकल्पों के साथ समुद्री जल का उपयोग करके पूरे चक्र के साथ परीक्षण की कुल अवधि और नदी सेस्रोत का पता लगाया गया है टेबल-2 में उसकी तुलना की गई है। यह देखा जा सकता है कि नदी से समुद्री जल की सोर्सिंग 24 घंटे के संचालन के लिए कुल 31 दिनों की अवधि प्रदान करती है जब RO संयंत्रों से मीठे पानी के उत्पादन के साथ तुलना की जाती है।

निष्कर्ष

इस अध्ययन से, यह निष्कर्ष निकाला है कि समुद्री और खारे पानी के लिए BWTS का परीक्षण पूरे वर्ष किया जा सकता है, हालांकि, मीठे पानी के लिए, परीक्षण बरसात का मौसम ही है या आवश्यकता को पूरा करने के लिए RO संयंत्र की आवश्यकता हो सकती है।

चित्र-1. BWTT-TF का स्थान (पमनजी गांव)

चित्र-2 ताजे पानी के लिए नदी के पानी का उपयोग करते हुए BWTT-TF का लेआउट

चित्र-3 ताजे पानी के लिए आरओ प्लांट का उपयोग करते हुए बीडब्ल्यूटीटी-टीएफ का लेआउट

टेबल-1. समुद्रीजलकेसाथपरीक्षणकीअवधि

प्रवाह आईडी	प्रक्रिया	अवधि (घंटे में)
A से C	समुद्री जल का पम्पिंग	7.2
	समुद्र से फ़ीड टैंक 1	
A से D	समुद्री जल का पम्पिंग	7.2
	समुद्र से फ़ीड टैंक 2	
C से	समुद्री जल की पम्पिंग	
C1, C2 & C3	टैंक को नियंत्रित करने के लिए फ़ीड टैंक	7.2
D से	समुद्री जल की पम्पिंग	1.2
D1, D2 & D3	टेस्ट टैंक को फ़ीड टैंक	
C1, C2 & C3	टेस्ट टैंक - 6 मीटर गहराई	1.0
से F		
D1, D2 & D3	डिस्चार्ज टैंक, 4 मीटर गहराई	1.0
से F		
F सेसमुद्र	समुद्र में परीक्षण किए गए पानी की निकासी	14.4
	टंकियों की सफाई	24.0
	गतिविधि के बीच अतिरिक्त घंटे	12.0
	परीक्षण के एक चक्र की अवधि	74.0
	परीक्षण के पांच चक्रों की अवधि	370.0

टेबल -2. समुद्री जल और ताजे पानी के साथ परीक्षण की कुल अवधि

	अवधि (घंटों में)					
विवरण	मीठेपानीकेस्रोतकेविकल्प					
	नदी	आरओ	आरओ	आरओप्लां		
		प्लांट	प्लांट	ट		
		4.2	25	50		
		एम3/घंटा	एम3/घं	एम3/घंटा		
			टा			
	37			850		
	0	4776	1210			
समुद्रीजलपरीक्षणकीअव	37	370	370	370		
धि	0					
अवधि (घंटों में)	74	5146	1580	1220		
	0					
24 घंटे के संचालन के	31	214	66	51		
लिए दिनों में अवधि						

समुद्र नवीकरणीय ऊर्जाकी अनुसंधानमें रा. स. प्रौ. सं की गतिविधियोंका सारांश बिरेन पट्टनायक, अश्वनी विश्वनाथ, पूर्णिमा जालीहाल

सभी राष्ट्रों, सरकारों, व्यापारियों, और नागरिकों द्वारा जलवायु परिवर्तन, संसार की सबसे बड़ी चुनौती के रूप में देखा गया है। जलवायु परिवर्तन के खतरों और ग्लोबल वार्मिंग का मुकाबला करने के लिए, प्रदूषणकारी ईंधन के रूप में मुख्य स्रोत हाइड्रोकार्बन को नियंत्रण करने के लिए नये स्थायी नवीकरणीय ऊर्जा की आवश्यकता है। जमीन के उपयोग और बढ़ती भूमि लागत पर संघर्ष के चलते भूमि आधारित नवीकरणीय ऊर्जा जल्द ही बाधाओं का सामना करेगा।

पृथ्वी की सतह का लगभग 71% प्रतिशत भाग समुद्र है। नवीकरणीय ऊर्जा जो विशाल महासागरों से उपयोग किए जा सकते हैं अब दुनिया भर में वैज्ञानिक समुदाय केआकर्षितका केंद्र बन गए हैं।महासागर विशाल जगहों की पेशकश करते हैं जहां मानव प्रौद्योगिकियों या पर्यावरण को प्रभावित किए बिना नई तकनीकों नवीकरणीय ऊर्जा का परीक्षण किया जा सकता है। इसलिए समय की मांग समुद्री नवीकरणीय ऊर्जा के दोहन के लिए प्रौद्योगिकी विकसित करना है।कई विकसित देशों ने पहले ही इस दिशा में काम करना शुरू कर दिया है और भारत में समुद्र नवीकरणीय ऊर्जा विकास का नेतृत्वराष्ट्रीय समुद्र प्रौद्योगिकी संस्थान(रा. स. प्रौ. सं) कर रही है।समुद्री ऊर्जा एक नवीकरणीय ऊर्जा है जो ग्रीनहाउस गैस उत्सर्जन में कमी करने के लिए विशाल क्षमता रखते हुए सार्थक योगदान देती है। तरंगों, धाराएंऔर ताप ऊर्जा महासागर ऊर्जा का मुख्य रूप हैं। भारत के समुद्र में नवीकरणीय ऊर्जा अनुसंधान के बारे में चर्चा की जाएगी।तरंगों, धाराएंऔर ताप ऊर्जा महासागर ऊर्जा का मुख्य रूप हैं।एन.आई.ओ.टी में समुद्री तरंगों से ऊर्जा OWC, हाइड्रोकाइनेटिक्स के सिद्धांतों का उपयोग करके समुद्री धाराओं से, और थर्मल ऊर्जा (OTEC) उत्पादन का उपयोग करने पर काम कर रहा है।एनआईओटी नवीकरणीय ऊर्जा के क्षेत्रपरीक्षणों पर बहुत सफलता हासिल की है।मुख्य रूप से हाल की विकास गतिविधियों और खासकर लहर/ तरंग ऊर्जा के क्षेत्र मेंतरंग संचालित नेविगेशन बॉयकी विकास की गयी है।यह बॉय जोकि एक उत्पाद के रूप में विकसित हुई है बंदरगाहों के लिए काफी उपयोगी साबित हो सकती है।

चित्र 1 : तरंग ऊर्जा पे आधारित बॉय

एक आकांक्षी की आंतरिक आवाज़ राहुल भारती

अब क्या बताऊँ अपना आलम

इस सर्दी की शाम सा शांत है,

रोज़ हार कर आता हूँ,

बस अब तो सुबह की किरण का इंतजार है।।

मंजिल की तलाश में निकला एक बंजारा,

कौन जाने वो कितना हुआ था हारा

बेचैन सा था वो बेचारा

कई मुद्दतों से लड़कर हराया था जिंदगी ने

लेकिन अभी भी पूछने पर यही बताया था उसने,

मैं हार को हराऊंगाऔरजीत कर दिखाऊँगा॥

हैं जुल्म उठाया कायनातों ने तुझ पर,

ये सच ही तो बात है मत पूछो किस कदर,

और हैं मुश्किल राहों में खूब मगर,

क्योंकि मुकाल से नहीं, बनते हैं इंसान रास्तों से ही निडर॥

इस चक्रव्यूह में फंस सा चूका हूँ मैं,

लड़ते लड़ते थक सा चुका हूँ मैं,

हाँ घुसा था मैं खुद अपनी मर्जी से इसमें

क्योंकि जुआ तो खेलना ही पड़ता है ज़िंदगी में

ना मंजिल का पता, ना आगे बढ्ने की राहों की मुश्किलों से वाकिफ,

ना कर भरोसा मुककद्दर पर और मेहनत करता जा बंदे इस कदर,

कि रास्ते बदल जाएँ,

पर मंजिल मिल जाए॥

स्पर्शवाद हेमंत मीना

'स्पर्श' कितना आम लगता है ये शब्द , यह क्रिया है जिसका संबंध है हम से , कभी जाना है तुमने यही मानक है हमारे परिवेश का| हम विभाजित करते है लोगो को स्पर्श से, वे लोग निकटतम है और वे लोग जो दूर हैं हमसे | यह मनोविज्ञान भी है की हम किसे निकट चाहते हैं और किसे दूर | यह अपनेपन का आभास है , इसी के माध्यम से हम लोगो को सम्मान देते है , प्रेम करते हैं जैसे चरण स्पर्श , आलिंगन आदि |

एक प्रयोग करते हैं अपने जीवन शैली से कोई भी दो व्यक्ति चुनो | एक वर्ष के अन्तराल में तुम दोनों व्यक्तियों से समान बात करो किन्तु उनमें से एक व्यक्ति से जब भी मिलो , हाथ मिलाओ और गले भी मिल सकते हैं और दुसरे व्यक्ति से केवल वार्तालाप करो बिना किसी स्पर्श के | तुम पाओगे की जिस व्यक्ति से तुमने हाथ मिलाया है वो तुम्हारे निकटतम व्यक्तियों में शामिल होगा और दूसरा व्यक्ति केवल औपचारिक मित्र की भांति रह जायेगा |

शीर्षक एक विचारधारा है हमारे और परिवेश के मध्य संबंधों के लिए | यह स्पर्श ही है जो एक पारदर्शी दीवार को तोड़ता है जो हमारे और लोगों के मध्य है ,यह वही भावना है जैसे राष्ट्रवाद , मार्क्सवाद ,आदि | यह विचार हमे ठीक उसी प्रकार लोगों से जोड़ता है जिस प्रकार राष्ट्रवाद लोगों को राष्ट्र से जोड़ता है |

सतत् प्रेम हेमंत मीना

याद तुमसे पृथक तो न थी, सलीका जो संदर्भित है मेरा तुम्हारा इन उपहारों व आभूषणों में, रंज, क्रोध जो गिरा है इन पाषाणवत कांच के टुकड़ो में, बहिरंग जो केनवास पर उकेरे नहीं जा सकते बहदवास हो जाता ये मन मंजर जब समय टिक टिक करता मालूम होता है मस्तिष्क के अंदरूनी भागों में, यद्दपि ये वहम हो परन्तु अनादि काल के प्रारंभिक आलोक की तीव्रता जब तुम्हारें मुखारबिंद पर आरोपित होती है, मै सहम कर छलित किंकर्तव्यविमूढ़ सा, मंतव्यहीन इक अनंत शून्य में खो जाता हूँ, उस विलोपन से अचेतन सा साधारणत्व प्राप्ति के प्रयास हेत् मै एकांत में गमन करता हूँ, किन्तु आसान नहीं है तुम्हारे इस वांछनीय प्रकोप से परे हो जाना सामान्य मनुज कभी मुक्त हुए है देवियों के परालौकिक प्रभाव से, तुम सतरूपा तो नहीं जो प्रयोजन है इस आधारभूत उत्पत्ति का, संभवतया तुम ही उत्तरदायी हो उस विशेष के जन्म के लिए, कई शताब्दींया गुजर गई और गुजर जायेंगी हे मनु, उस जन्म के लिए धन्यवाद प्रार्थी ह्रँ वो है मेरा और तुम्हारा सतत् प्रेम |

ப**ச்சிளம்** वत्चला कुप्पुरमन

மௌனத்தில்மொட்டாகி புன்னகயைில்பூவாகி அன்பினால்அழகபற்ற காம்பினின்றதள்ளிவகைக்கம் போத வாடம்மலரம்மழலயைம்ஒன் றடே

सम्पादकीय मंडल जी ए रामदास (निदेशक), तमशुख चौधरी, अश्वनी विश्वनाथ, सरोजनी मौर्य, तव्वा अभिषेक, अभिजीत सज्जन, दिलीप कुमार झा, हेमंत कुमार मीना, नीतू एवं सुलभ श्रीवास्तव