高 2016 级高二上期周练(二)

_	选择题,	共六题
---	------	-----

1. 圆
$$2x^2 + 2y^2 - 4ax + 12ay + 16a^2 = 0$$
 (a < 0) 的周长等于

A. $2\sqrt{2}a$

B.
$$-2\sqrt{2}a$$

C.
$$2a^2\pi$$

D.
$$-2\sqrt{2}a\pi$$

2. 已知直线
$$ax + by + c = 0$$
($abc \neq 0$) 与圆 $x^2 + y^2 = 1$ 相切,则三条边长分别为 $|a|, |b|, |c|$ 的三角形是

A. 锐角三角形

B. 直角三角形 C. 钝角三角形

D. 不存在

3. 函数
$$f(x)$$
 在 $(-\infty, +\infty)$ 单调递减,且为奇函数. 若 $f(1) = -1$,则满足 $-1 \le f(x-2) \le 1$ 的 x 的取值范围是

A. [-2, 2]

B. [-1, 1]

C. [0, 4]

D. [1, 3]

4. 若实数
$$x, y$$
 满足 $x^2 + y^2 + 4x - 2y - 4 = 0$, 则 $\sqrt{x^2 + y^2}$ 的最大值是 ()

B.
$$\sqrt{5} + 14$$

C.
$$-\sqrt{5} + 3$$

B.
$$\sqrt{5} + 14$$
 C. $-\sqrt{5} + 3$ D. $-\sqrt{5} + 14$

A. $[-3\sqrt{2}, 3\sqrt{2}]$

B.
$$[-3, 3]$$

C.
$$(-3, 3\sqrt{2}]$$

B.
$$[-3, 3]$$
 C. $(-3, 3\sqrt{2}]$ D. $[-3\sqrt{2}, 3)$

6. 设函数
$$f(x) = \begin{cases} 1 - |x - 1|, & x \in (-\infty, 2) \\ \frac{1}{2}f(x - 2), & x \in [2, +\infty) \end{cases}$$
, 则函数 $g(x) = xf(x) - 1$ 的零点个数

A. 4

B. 5

C. 6

D. 7

二 填空题, 共三题

8. 经过
$$A(6,5), B(0,1)$$
 两点,且圆心在直线 $3x + 10y + 9 = 0$ 上的圆的方程是

9. 已知
$$a \in \mathbf{R}$$
, 函数 $f(x) = |x + \frac{4}{x} - a| + a$, 在区间 [1, 4] 上的最大值是 5,则 a 的取值范围是

题号	1	2	3	4	5	6
答案	D	В	D	A	С	С

$$7.\underline{x+y-3=0},\underline{x-y-3=0}$$

$$8.\underline{(x-7)^2 + (y+3)^2 = 65}$$

$$9.(-\infty, \frac{9}{2}]$$

三 解答题, 共四题

- 10. 已知函数 $f(x) = \sin^2 x \cos^2 x 2\sqrt{3} \sin x \cos x (x \in \mathbf{R})$.
 - (1) 求 $f(\frac{2\pi}{3})$ 的值;
 - (2) 求 f(x) 的最小正周期及单调递增区间.

解:(1) 因为 $f(x) = \sin^2 x - \cos^2 x - 2\sqrt{3}\sin x \cos x = -\cos 2x - \sqrt{3}\sin 2x = -2\sin(2x + \frac{\pi}{6})$,

所以
$$f(\frac{2\pi}{3}) = -2\sin\frac{3\pi}{2} = 2;$$

(2) 由 (1) 得 f(x) 的最小正周期为 π ,

$$\diamondsuit \frac{\pi}{2} + 2k\pi \le 2x + \frac{\pi}{6} \le \frac{3\pi}{2} + 2k\pi \ (k \in \mathbb{Z}),$$

解得 f(x) 的单调递增区间为 $\left[\frac{\pi}{6} + k\pi, \frac{2\pi}{3} + k\pi\right] \ (k \in \mathbb{Z}).$

- 11. 已知点 M(3,1), 直线 ax y + 4 = 0 及圆 $C: (x-1)^2 + (y-2)^2 = 4$.
 - (1) 求过 M 点的圆 C 的切线方程;
 - (2) 若直线 ax y + 4 = 0 与圆 C 相切, 求 a 的值;
 - (3) 若直线 ax y + 4 = 0 与圆 C 相交于 A, B 两点,且弦 AB 的长为 $2\sqrt{3}$,求 a 的值;

解: (1) 因为
$$(3-1)^2 + (1-2)^2 > 4$$
,

所以点
$$M$$
 在圆 $(x-1)^2 + (y-2)^2 = 4$ 外,

当斜率不存在时, x=3 满足与圆 C 相切,

当斜率存在时,设切线方程为y-1=k(x-3),即kx-y-3k+1=0,

故所求的切线方程为 x = 3 或 3x - 4y - 5 = 0.

(2) 由直线 ax - y + 4 = 0 与圆 C 相切,

所以
$$\frac{|a-2+4|}{\sqrt{1+a^2}}=2$$
, 解得 $a=0$ 或 $a=\frac{4}{3}$.

(3) 圆心到直线的距离 $d=\frac{|a+2|}{\sqrt{1+a^2}}$, 弦长 $L=2\sqrt{3}, r=2$, 由 $r^2=d^2+(\frac{L}{2})^2$, 得 $a=-\frac{3}{4}$.

- 12. 如图所示,等腰梯形 ABCD 的底边 AB 在 x 轴上,顶点 A 与顶点 B 关于原点 O 对称,且底边 AB 和 CD 的长分别为 6 和 $2\sqrt{6}$, 高为 3.
 - (1) 求等腰梯形 ABCD 的外接圆 E 的方程;
 - (2) 若点 N 的坐标为 (5,2), 点 M 在圆 E 上运动, 求线段 MN 的中点 P 的轨迹方程.

解: (1) 连接 AE, DE, 设圆的半径为 r, 设 CD 与 y 轴交于点 F,

$$EF = \sqrt{r^2 - 6}, OE = \sqrt{r^2 - 9}, \sqrt{r^2 - 6} + \sqrt{r^2 - 9} = 3,$$

解得 $r = \sqrt{10}$, 所以 OE = 1,

所以圆 E 的方程为 $x^2 + (y-1)^2 = 10$.

(2) 设 P(x,y), M(2x-5,2y-2), 因为点 M 在圆上运动,所以可把 M 代入圆的方程中,得:

$$(2x-5)^2 + (2y-3)^2 = 10$$
 \mathbb{H} $x^2 + y^2 - 5x - 3y + 6 = 0$.

故 P 的轨迹方程为 $x^2 + y^2 - 5x - 3y + 6 = 0$.

- 13. (选做题) 已知直线 $l_1: mx y = 0, l_2: x + my m 2 = 0$.
 - (1) 求证:对任意的实数 m, l_1 和 l_2 的交点 M 总在一个定圆上;
 - (2) 若 l_1 与 (1) 中定圆的另一个交点为 P_1 , l_2 与 (1) 中定圆的另一个交点为 P_2 , 求当实数 m 取值变化, $\triangle M P_1 P_2$ 的面积取最大值时,直线 l_1 的方程.

证明: (1) 由题意可得

$$\begin{cases} mx - y = 0 \\ x + my - m - 2 = 0 \end{cases}$$

消去 m 可得 $x^2 + y^2 - 2x - y = 0$. 方程表示一个以 $(1, \frac{1}{2})$ 为圆心, $\frac{\sqrt{5}}{2}$ 为半径的圆,故得证.

(2) 由题可知, 直线 l_1, l_2 分别恒过定点 (0,0), (2,1), 并且两定点都在圆上,

故 $P_1(0,0), P_2(2,1)$

因为 P_1P_2 是圆 C 的直径,

当且仅当圆心 $C(1,\frac{1}{2})$ 到 l_1 的距离等于 C 到 l_2 的距离时, $\triangle MP_1P_2$ 的面积取最大值,所以

$$\frac{|m-\frac{1}{2}|}{\sqrt{m^2+1}} = \frac{|\frac{1}{2}m+1|}{\sqrt{m^2+1}}$$

解得:m = 3 或 $m = -\frac{1}{3}$,

所以直线 l_1 的方程为 3x - y = 0 或 x + 3y = 0.