LINAL - Spick

Johanna Koch

Contents

1	Vek	toren,	Matrizen und Gleichungssysteme	2
	1.1	Skala	re und Vektoren	2
		1.1.1	Vektoraddition	2
		1.1.2	Vektor mit Skalar multiplizieren	2
		1.1.3	Rechenregeln für das Rechnen mit Vektoren	2
		1.1.4	Skalarprodukt	3
		1.1.5	Betrag (Länge) eines Vektors	3
		1.1.6	Einheitsvektor	3
		1.1.7	Rechenregeln für das Skalarprodukt und Einheitsvektor	3
		1.1.8	Paarweise Senkrechte Vektoren	3
	1.2	Matri	zen	4
		1.2.1	Matrizen addieren	4
		1.2.2	Matrix mit einer Zahl multiplizieren	4
		1.2.3	Rechnen mit Matrizen	4
		1.2.4	Matrix mit Vektor multiplizieren	5
		1.2.5	Matrixmultiplikation	5
	1.3	Gleich	nungssysteme	5
		131	Lineare Gleichung	5

Chapter 1

Vektoren, Matrizen und Gleichungssysteme

1.1 Skalare und Vektoren

Skalar: ist eine reelle (oder komplexe) Zahl.

Vektor: hat einen (reellen) Betrag und eine Richtung.

Wir betrachten Vektoren in der Ebene $\vec{a} \in \mathbb{R}^2$

1.1.1 Vektoraddition

$$\vec{a} + \vec{b} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \end{bmatrix}$$

1.1.2 Vektor mit Skalar multiplizieren

$$\lambda \vec{a} = \lambda \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \lambda a_1 \\ \lambda a_2 \end{bmatrix}$$

1.1.3 Rechenregeln für das Rechnen mit Vektoren

Zusammen mit dem Nullvektor (Neutralelement der Vektoraddition), 0, gelten die folgenden Regeln für das Rehcnen mit Vektoren:

- $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ Kommuntativgesetz
- $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ Assoziativgesetz
- $\vec{a} + 0 = \vec{a}$ Existenz eines Neutralelements 0
- $\vec{a} + (-\vec{a}) = 0$ Existens des Inversen
- $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

- $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$
- $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a}) = \mu(\lambda \vec{a})$
- $1\vec{a} = \vec{a}$

1.1.4 Skalarprodukt

Das Skalarprodukt zweier Vektoren \vec{a} und \vec{b} ist definiert durch $\vec{a} \bullet \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \phi$. Dabei ist ϕ der Winkel zwischen den Vektoren a und b. Beachte den Unterschied zwischen den Symbolen " \bullet " (Skalarprodukt zweier Vektoren) und " \cdot " (normales Produkt zweier reellen Zahlen). Hier stehen $|\vec{a}|$ und $|\vec{b}|$ für die Längen von a und b.

$$\vec{a}\bullet\vec{b}=\begin{bmatrix}a_1\\a_2\end{bmatrix}\bullet\begin{bmatrix}b_1\\b_2\end{bmatrix}=a_1b_1+a_2b_2$$

1.1.5 Betrag (Länge) eines Vektors

Mit Hilfe des Skalarprodukts lässt sich der Betrag a des Vektors \vec{a} wie folgt definieren:

$$a \equiv |a| = \sqrt{\vec{a} \bullet \vec{a}} \text{ oder } |\vec{a}|^2 = \vec{a} \bullet \vec{a}$$

Dann gilt im 2D-Fall (Satz von Pythagoras): $a \equiv |a| = \sqrt{\vec{a} \cdot \vec{a}} = \sqrt{a_1^2 + a_2^2}$

1.1.6 Einheitsvektor

 $\vec{e} = \mathsf{Einheitsvektor}$ $|\vec{e}| = 1$

1.1.7 Rechenregeln für das Skalarprodukt und Einheitsvektor

Für beliebige reelle Zahlen λ sowie beliebige Vektoren \vec{a}, \vec{b} und \vec{c} gilt:

- $\vec{a} \bullet \vec{b} = \vec{b} \bullet \vec{a}$ Kommuntativgesetz
- $\vec{a} \bullet (b+c) = \vec{a} \bullet \vec{b} + \vec{a} \bullet \vec{c}$ Distributivgesetz
- $\lambda(\vec{a} \bullet \vec{b}) = (\lambda \vec{a}) \bullet \vec{b} = \vec{a}(\lambda \vec{b})$

1.1.8 Paarweise Senkrechte Vektoren

Zwei Vektoren \vec{a} und \vec{b} stehen genau dann senkrecht aufeinander, sind also orthogonal, falls ihr Skalarprodukt verschwindet.

$$\vec{a} \bullet \vec{b} = 0 \iff \vec{a} \perp \vec{b}$$

Hier haben wir angenommen, dass der Nullvektor zu jedem Vektor senkrecht steht.

1.2 Matrizen

Eine $(m \times n)$ -Matrix ist ein rechteckiges Schema von Zahlen. Es besteht aus m Zeilen und n Spalten. Das Element $a_{i,j} \in \mathbb{R}$ steht in der i. Zeile und der j. Spalte.

Für eine quadratische Matrix gilt m=n

Der erste Index i von $a_{i,j}$ ist der Zeilenindex, der zweite j der Spaltenindex.

Man schreibt kurz auch $\mathbf{A} = [a_{i,j}].$

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,j} & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,j} & a_{2,n} \\ a_{i,1} & a_{i,2} & a_{i,j} & a_{i,n} \\ a_{m,1} & a_{m,2} & a_{m,j} & a_{m,n} \end{bmatrix}$$

1.2.1 Matrizen addieren

Matrixaddition ist nur definiert, wenn beide Matrizen dieselbe Dimension haben!

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} + \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \end{bmatrix} = \begin{bmatrix} (a_{1,1} + b_{1,1}) & (a_{1,2} + b_{1,2}) \\ (a_{2,1} + b_{2,1}) & (a_{2,2} + b_{2,2}) \end{bmatrix}$$

1.2.2 Matrix mit einer Zahl multiplizieren

Eine $(m \times n)$ -Matrizen $\mathbf{A} = [a_{i,j}]$ wird mit einer Zahl $\alpha \in \mathbb{R}$ multipliziert, indem man jedes Matrixelement mit dieser Zahl multipliziert.

$$\alpha \mathbf{A} = \alpha \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} = \begin{bmatrix} \alpha a_{1,1} & \alpha a_{1,2} \\ \alpha a_{2,1} & \alpha a_{2,2} \end{bmatrix}$$

1.2.3 Rechnen mit Matrizen

- Durch die Matrixaddition wird zwei $(m \times n)$ -Matrizen wieder eine $(m \times n)$ -Matrix zugeordnet.
- Die **Nullmatrix** (d.h. eine Matrix mit lauter Nullen) ist das **Neutralelement** der Matrixaddition: A + 0 = 0 + A = A.
- Das Negative einer Matrix **A** ist die Matrix, bei der jedes Matrixelement mit (-1) multipliziert wird: $\mathbf{A}=(a_{i,j})\to -\mathbf{A}=(-a_{i,j})$. Man nennt **A** das **Inverse** von **A** bezüglich Addition.
- Die Subtraktion ist definiert durch $\mathbf{A} \mathbf{B} := \mathbf{A} + (-1)\mathbf{B}$. Addiere zu \mathbf{A} das Negative der Matrix \mathbf{B}
- Assoziativgesetz: A + (B + C) = (A + B) + C
- Kommutativgesetz: A + B = B + A

1.2.4 Matrix mit Vektor multiplizieren

Eine $(m \times n)$ -Matrizen $\mathbf{A} = [a_{i,j}]$ wird mit einem n-dimensionalen (Spalten-) Vektor \vec{x} wie folgt multipliziert:

$$\mathbf{A}\vec{x} = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1a_{1,1} & x_2a_{1,2} \\ x_1a_{2,1} & x_2a_{2,2} \end{bmatrix}$$

1.2.5 Matrixmultiplikation

Vorerst überspringen

1.3 Gleichungssysteme

1.3.1 Lineare Gleichung

Allgemeine Form: ax + b = 0