СРАВНИТЕЛЬНЫЙ АНАЛИЗ ХАРАКТЕРА ПИТАНИЯ ТРЕХИГЛОЙ КОЛЮШКИ (GASTEROSTEUS ACULEATUS L.) В ПЕЛАГИЧЕСКОЙ И ПРИБРЕЖНОЙ ЗОНАХ КАНДАЛАКШСКОГО ЗАЛИВА БЕЛОГО МОР....

Федеральное государственное бюджетное учреждение Институт океанологии им. П.П. Ширшова РАН

VI Всероссийская конференция молодых ученых "Комплексные исследования Мирового океана"

МАТЕРИАЛЫ КОНФЕРЕНЦИИ

РОССИЙСКАЯ АКАДЕМИЯ НАУК Институт океанологии им. П.П. Ширшова

УДК 551.46 ББК 26.221 К 63

Комплексные исследования Мирового океана. Материалы VI Всероссийской научной конференции молодых ученых, г. Москва, 18—24 апреля 2021 г. Москва: Институт океанологии им. П.П. Ширшова РАН, 2021, 538 с. DOI:10.29006/978-5-6045110-3-9. ISBN 978-5-6045110-3-9.

В сборнике представлены материалы VI Всероссийской научной конференции молодых ученых «Комплексные исследования Мирового океана» (КИМО-2021), посвященной обсуждению основных научных достижений молодых специалистов в области океанологии, современных методов и средств изучения Мирового океана. В рамках конференции рассматривались вопросы современной океанологии по секциям: физика океана, биология океана, химия океана, морская геология, морская геофизика, экология моря и рациональное природопользование, океанологическая техника и приборостроение, а также были представлены междисциплинарные физико-биологические исследования океана. Наравне с результатов, полученных освещением В ходе традиционных океанологических экспедиционных исследований, уделялось внимание развитию современных методов изучения океана: численного моделирования и дистанционных методов зондирования Земли из космоса.

Редколлегия: к.ф.-м.н. Алексеев Д.А., к.б.н. Андреева А.Ю., Анисимов И.М., к.ф.-м.н. Багаев А.В., Баяндина Ю.С., Беззубова Е.М., к.г.-м.н. Будько Д.Ф., к.б.н. Веденин А.А., к.ф.-м.н. Владимирова И.С., к.ф.-м.н. Габсатаров Ю.В., к.ф.-м.н. Глуховец Д.И., Гуров К.И., к.г.н. Кивва К.К., Кодрян К.В., к.г.-м.н. Козина Н.В., Колтовская Е.В., к.ф.-м.н. Крылов А. А., к.ф.-м.н. Кубряков А.А., к.ф.-м.н. Кубрякова Е.А., к.б.н. Кухарева Т.А., Кулешова Л.А., Латушкин А.А., Лишаев П.Н., к.г.н. Лобанова П.В., к.ф.-м.н. Медведев И.П., Медведева А.Ю., к.ф.-м.н. Мизюк А.И., Муравья В.О., к.ф.-м.н. Мысленков С.А., к.г.-м.н. Овсепян Е.А., к.г.н. Полухин А.А., Пономаренко Е.П., Рукавишникова Д.Д., Сандалюк Н.В., Свергун Е.И., к.г.н. Сильвестрова К.П., к.ф.-м.н. Степанова Н.Б., РhD Тарасенко А.Д., к.г.н. Толстиков А.В., Турко Н.А., к.г.н. Ульянова М.О., Федоров А.М., к.б.н. Челебиева Э.С., Шармар В.Д., Шатравин А.В., к.г.-м.н. Шульга Н.А., к.ф.-м.н. Юровская М.В., Юшманова А.В.

Материалы публикуются в авторской редакции.

Разработка оригинального макета обложки – Колтовская Е.В. (Институт океанологии им. П.П. Ширшова РАН) и Турко Н.А. (Московский физико-технический институт).

Адрес редакции: 117997, Москва, Нахимовский пр., д. 36 Институт океанологии им. П.П. Ширшова Российской академии наук, тел.: +7 (495) 719-00-35, e-mail: office@ocean.ru официальный сайт: https://ocean.ru/

ISBN: 978-5-6045110-3-9 © ИО РАН, 2021

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ХАРАКТЕРА ПИТАНИЯ ТРЕХИГЛОЙ КОЛЮШКИ

(GASTEROSTEUS ACULEATUS L.) В ПЕЛАГИЧЕСКОЙ И ПРИБРЕЖНОЙ ЗОНАХ КАНДАЛАКШСКОГО ЗАЛИВА БЕЛОГО МОРЯ В ЛЕТНИЙ ПЕРИОД

Демчук А.С., Полякова, Н.В., Иванов М.В., Иванова Т.С., Лайус Д.Л.

Cанкт-Петербургский государственный университет, г. Cанкт-Петербург anndemch@gmail.com

Ключевые слова: трехиглая колюшка; Gasterosteus aculeatus; спектр питания; Белое море

Трехиглая колюшка Gasterosteus aculeatus (Linnaeus, 1758) на данный момент самая многочисленная пелагическая рыба Белого моря [1]. Взрослая колюшка проводит большую часть года в пелагиали за исключением нескольких недель в году, когда приходит к берегам на нерест. Под пелагиалью в данном исследовании принимаются все воды, отдаленные от берега более чем на 200 м, и с глубинами более 10 м, т.е. там, где точно не могли нереститься колюшки. Целью данной работы является сравнение спектра питания трехиглой колюшки в пелагической и прибрежной зонах в летний период на примере Кандалакшского залива Белого моря.

Материал собирали в 2019 и 2020 гг. неподалеку от учебно-научной базы (УНБ) СПбГУ в Керетском архипелаге Кандалакшского залива Белого моря. Сбор проб колюшки на нерестилищах осуществляли однократным ловом мальковым равнокрылым неводом длиной 7.5 м, невод заводили на 30 м от берега. Количественные исследования в пелагиали проводили небольшим близнецовым тралом (4 х 1м) в поверхностном слое с длиной протяжки 450 м и скоростью 2,7 км/ч. Кроме проб для изучения питания параллельно собирали пробы зоопланктона для оценки кормовых ресурсов. Пробы зоопланктона отбирали на разных горизонтах в пелагиали (30-40 м, 20-30 м, 10-20 м, 0-10 м) и только в верхнем горизонте в прибрежье. Все пробы собранные для анализа питания и пробы зоопланктона обрабатывали по описанной ранее методике [2,3].

Питание взрослой колюшки на нерестилищах оказалось значительно разнообразнее, чем в пелагиали. Показатели индекса разнообразия Шеннона-Уивера для спектра питания самок в 4 раза больше в прибрежье (0,52 и 1,93), а для самцов в 2 раза (0,79 и 1,57). В период подхода рыб к местам нереста мы наблюдаем увеличение разнообразия пищевых компонентов, а при отходе с нерестилищ, наоборот, наблюдается уменьшения числа компонентов питания. Например, у рыб в пелагиали в начале июня и в августе рацион состоял из 7 и 11 компонентов соответственно, с явным доминированием (до 90%) в спектре питания одного - Calanus glacialis в июне и Podon leuckarti в августе. В прибрежных пробах в июне-июле число объектов питания доходило до 33 компонентов, снижаясь до 17 в местах временного скопления рыб в открытых акваториях недалеко от мест нереста. Причем, видимо, вследствие значительно большего разнообразия спектра питания рыб в прибрежье, в нем стабильно доминируют два-три компонента, а не один, как в пелагиали.

В зоопланктоне в открытых частях моря в начале июня преобладали мелкие формы, такие как Microsetella norvegica, Triconia borealis и др. Однако, в питании колюшек мелкие формы зоопланктона были обнаружены единично, следовательно, можно предположить наличие возможной размерной избирательности рыб в пользу более крупных кормовых объектов. Из всего сообщества пелагического зоопланктона начала июня колюшка активно потребляла два компонента (до 99% спектра питания) — это Calanus glacialis и Limacina helicina. Веслоногий рачок С. glacialis в поверхностном слое воды был представлен в основном младшими копеподитными стадиями (2-3 ст.), старшие копеподиты и половозрелые особи также присутствовали, но в меньшем количестве и уже преимущественно в горизонтах 20-30 м и 30-40 м. Крылоногие моллюски L.helicina в пробах были представлены исключительно ювенильными формами, их так же отмечали на разных

горизонтах, но наиболее массово их скопления были отмечены на горизонте 30-40 м. Также следует отметить Parasaggita elegans (щетинкочелюстные), она присутствовала постоянно и в питании рыб, и в зоопланктоне, причём единичные крупные особи, которые и потреблялись рыбами, были отмечены в более глубоких горизонтах, а ближе к поверхности наблюдалось скопление мелких особей численностью до 320 экз./м³. Базируясь на спектрах питания рыб, экологических особенностях кормовых организмов и их распределении в толще воды на основе зоопланктонных проб можно предположить, что производители колюшки подходят в прибрежную зону не по поверхностности, а на достаточно больших глубинах, близких к термоклину. Когда колюшка приходит в прибрежье на места нереста, она предпочитает бентосное питание планктонному, и довольно легко переключается на наиболее доступные в данный момент источники пищи, демонстрируя таким образом, свою всеядность.

Самцы в прибрежной зоне питаются менее разнообразно, чем самки, очевидно в связи с ограниченной подвижностью вследствие заботы о потомстве. Однако, следует отметить, что это касается не всех особей, поскольку не у всех самцов есть гнезда, и те самцы, у которых гнезд нет, питаются, практически так, как и самки. Судя по рациону самок после нереста, находящихся в расположенных рядом пелагических акваториях, они раньше отходят с нерестилищ, чем самцы, у которых в тех же местах в желудках еще много прибрежных организмов. Различается питание самцов и самок и в открытом море. Судя по содержимому желудков и распределению объектов питания в море, самцы и самки, пойманные в поверхностном слое, могут питаться на разных глубинах. Например, на одной из станций у самок основным компонентом питания был веслоногий рачок $Pseudocalanus\ sp.$, доля которого в планктонном сообществе значительно выше в нижних горизонтах (20-40 м), а у самцов - ветвистоусый рачок $P.\ leuckarti$, массово обитающий в верхних горизонтах (0-10 м).

Таким образом, результаты нашей работы свидетельствую о том, что питание взрослой колюшки на нерестилищах значительно разнообразнее, чем в пелагиали, и самцы питаются менее разнообразно, чем самки, к тому же можно предположить, что самцы и самки в пелагиали могут питаться на разных глубинах.

Работа была выполнена при поддержке гранта РНФ 19-14-00092 «Осиная талия» экосистем северных морей: долговременная динамика, популяционная структура и трофические связи массовых пелагических рыб Белого и Балтийского морей». Авторы выражают благодарность администрации УНБ СПбГУ «Беломорская» за возможность круглогодичной научной работы на Белом море.

Список литературы

- 1) Лайус Д.Л. et al. Трехиглая колюшка Белого моря: популяционные характеристики и роль в экосистеме // Сибирский экологический журнал. 2020. Vol. 2. P. 167–183.
- 2) Демчук А.С. et al. Питание Беломорской Трехиглой Колюшкии Gasterosteus aculeatus (Linnaeus, 1758) на нерестилищах // Труды Карельского научного центра РАН. 2018. № 4. Р. 42–58.
- 3) Demchuk A. et al. Feeding patterns in seagrass beds of three-spined stickleback Gasterosteus aculeatus juveniles at different growth stages // J. Mar. Biol. Assoc. United Kingdom. 2015. Vol. 95, № 8. P. 1635–1643.