ENSEMBLE METHODS

INTRODUCTION TO DATA SCIENCE

TIM KRASKA

Recap: Information Gain

Weighted Entropy: 466/1309 * 0.25 + 843 / 1309 * 0.21 = 0.22

Information Gain for split: 0.96 - 0.22 = 0.74

outlook	temperature	humidity	windy	play
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.94$$

If we choose **outlook**:

overcast: 4 records, 4 are "yes"

$$-\left(\frac{4}{4}\log_2\frac{4}{4}\right) = 0$$

rainy : 5 records, 3 are "yes"

$$-\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right) = 0.97$$

sunny : 5 records, 2 are "yes"

$$-\left(\frac{2}{5}\log_2\frac{2}{5} + \frac{3}{5}\log_2\frac{3}{5}\right) = 0.97$$

$$\frac{4}{14} \times 0.0 + \frac{5}{14} \times 0.97 + \frac{5}{14} \times 0.97$$

outlook	temperature	humidity	windy	play
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.94$$

If we choose windy:

FALSE: 8 records, 6 are "yes"

$$0.81 = -(6/8*\log(6/8)+2/8*\log(2/8))$$

TRUE: 6 records, 3 are "yes"

1

$$0.81(8/14) + 1(6/14)$$

outlook	temperature	humidity	windy	play
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.94$$

If we choose **temperature**:

cool : 4 records, 3 are "yes"

0.81

rainy : 4 records, 2 are "yes"

1.0

sunny : 6 records, 4 are "yes"

0.92

outlook	temperature	humidity	windy	play
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.94$$

If we choose **humidity**:

normal: 7 records, 6 are "yes"

0.59

high: 7 records, 2 are "yes"

0.86

$$0.59(7/14) + 0.86(7/14)$$

outlook	temperature	humidity	windy	play
overcast	cool	normal	TRUE	yes
overcast	hot	high	FALSE	yes
overcast	hot	normal	FALSE	yes
overcast	mild	high	TRUE	yes
rainy	cool	normal	TRUE	no
rainy	mild	high	TRUE	no
rainy	cool	normal	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
sunny	mild	normal	TRUE	yes

$$-\left(\frac{9}{14}\log_2\frac{9}{14} + \frac{5}{14}\log_2\frac{5}{14}\right) = 0.94$$

outlook

$$0.94 - 0.69 = 0.25$$
 highest gain

temperature

$$0.94 - 0.91 = 0.03$$

humidity

$$0.94 - 0.725 = 0.215$$

windy

$$0.94 - 0.87 = 0.07$$

Clicker: Document Classification

Question (assuming equal size splits):

- a) Falcon's Information Gain is higher
- b) Mars' Information Gain is higher

Building a Decision Tree (ID3 Algorithm)

- Assume attributes are discrete
 - Discretize continuous attributes
- Choose the attribute with the highest Information Gain
- Create branches for each value of attribute
- Examples partitioned based on selected attributes
- Repeat with remaining attributes
- Stopping conditions
 - All examples assigned the same label
 - No examples left

Problems

- Expensive to train
- Prone to overfitting
 - Drive to perfection on training data, bad on test data
 - Pruning can help: remove or aggregate subtrees that provide little discriminatory power (C45)

C4.5 Extensions

Continuous Attributes

outlook	temperature	humidity	windy	play
overcast	cool	60	TRUE	yes
overcast	hot	80	FALSE	yes
overcast	hot	63	FALSE	yes
overcast	mild	81	TRUE	yes
rainy	cool	58	TRUE	no
rainy	mild	90	TRUE	no
rainy	cool	54	FALSE	yes
rainy	mild	92	FALSE	yes
rainy	mild	59	FALSE	yes
sunny	hot	90	FALSE	no
sunny	hot	89	TRUE	no
sunny	mild	90	FALSE	no
sunny	cool	60	FALSE	yes
sunny	mild	62	TRUE	yes

Consider every possible binary partition; choose the partition with the highest gain

outlook	temperature	humidity	windy	play		
rainy	mild	54	FALSE	yes	1	7
overcast	hot	58	FALSE	yes		
overcast	cool	59	TRUE	yes	FIC (C)	
rainy	cool	60	FALSE	yes	E(6/6)	
overcast	mild	60	TRUE	yes	= 0.0	5/0/40) 5/4/40)
overcast	hot	62	FALSE	yes _	- 0.0	E(9/10)+ E(1/10)
rainy	mild	63	TRUE	no 🔻		0.47
sunny	cool	80	FALSE	yes		= 0.47
rainy	mild	81	FALSE	yes		
sunny	mild	89	TRUE	yes	F/2/0\ . F/F/0\	
sunny	hot	90	FALSE	no	- E(3/8) + E(5/8)	5
rainy	cool	90	TRUE	no		=(0,40)
sunny	hot	90	TRUE	no	= 0.95	► E(4/4)
sunny	mild	92	FALSE	no		= 0.0
					-	- 0.0

Expect =
$$8/14*0.95 + 6/14*0$$
 Expect = $10/14*0.47 + 4/14*0$ = 0.33

Ensemble Methods

Ensemble Methods

Bagging (Breiman 1994,...)

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Random forests (Breiman 2001,...)

Predict class label for unseen data by aggregating a set of predictions (classifiers learned from the training data).

General Idea

Build Ensemble Classifiers

• Basic idea:

Build different "experts", and let them vote

Advantages:

Improve predictive performance

Other types of classifiers can be directly included

Easy to implement

No too much parameter tuning

• Disadvantages:

The combined classifier is not so transparent (black box)

Not a compact representation

Why do they work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

Bagging

Training

- \circ Given a dataset S, at each iteration i, a training set s_i is sampled with replacement from S (i.e. bootstraping)
- A classifier c_i is learned for each s_i
- Classification: given an unseen sample x,
 - Each classifier c_i returns its class prediction
 - The bagged classifier h counts the votes and assigns the class with the most votes to x
- Regression: can be applied to the prediction of continuous values by taking the average value of each prediction.

Bagging

- Bagging works because it reduces variance by voting/averaging
 - In some pathological hypothetical situations the overall error might increase
 - Usually, the more classifiers the better
- Problem: we only have one dataset.
- Solution: generate new ones of size n by bootstrapping, i.e. sampling it with replacement
- Can help a lot if data is noisy.

When does Bagging work?

- Learning algorithm is unstable: if small changes to the training set cause large changes in the learned classifier.
- If the learning algorithm is unstable, then Bagging almost always improves performance
- Some candidates:

Decision tree, linear regression, SVMs, decision stump, regression tree,

Questions: Why are decision trees or SVMs unstable?

Randomization

- Can randomize learning algorithms instead of inputs
- Some algorithms already have random component: e.g. random initialization
- Most algorithms can be randomized
 - Pick from the N best options at random instead of always picking the best one
 - Split rule in decision tree
- Random projection in kNN (Freund and Dasgupta 08)

Ensemble Methods

Bagging (Breiman 1994,...)

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Random forests (Breiman 2001,...)

Boosting

Idea: Build a classifier based on many weak learners

Boosting

- Idea: Build a classifier based on many weak learners
- Defines a classifier using an additive model:

Boosting

It is a sequential procedure:

Each data point has

a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight: $w_t = 1$

Weak learners from the family of lines

Each data point has

a class label:

$$\mathbf{y_t} = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight: $w_t = 1$

 $h \Rightarrow p(error) = 0.5$ it is at chance

This one seems to be the best

This is a 'weak classifier': It performs slightly better than chance.

Each data point has

a class label:

$$\mathbf{y_t} = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$W_t \leftarrow W_t \exp\{-y_t H_t\}$$

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

$$\mathbf{y_t} = \left\{ \begin{array}{c} +1 & \bullet \\ -1 & \bullet \end{array} \right)$$

We update the weights:

$$W_t \leftarrow W_t \exp\{-y_t H_t\}$$

We set a new problem for which the previous weak classifier performs at

Each data point has

a class label:

$$\mathbf{y_t} = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$W_t \leftarrow W_t \exp\{-y_t H_t\}$$

We set a new problem for which the previous weak classifier performs at chance again

We set a new problem for which the previous weak classifier performs at chance again

Toy example

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

AdaBoost Algorithm

Given: m examples $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize
$$D_1(i) = 1/m$$

For t = 1 to T

The goodness of h_t is the bad guesses.

- 1. Train learner h_t with min
- error 2. Compute the hypothesis weight $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$ The weight Adapts. The bigger ε_t becomes the
- 3. For each example i = 1 to m

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{cases}$$

Output

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

calculated over D, and $\varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]$

smaller α_t becomes.

Boost example if incorrectly predicted.

Z_t is a normalization factor.

Linear combination of models.

Final Classifier

Clicker

Assume a weak classifier can only use one feature (e.g., $\{x \le 5 \Rightarrow +1 \text{ and } x > 5 \Rightarrow -1\}$) How many weak classifiers are needed to correctly identify all data items in the example above

- A) One weak classifier
- B) Two weak classifiers with equal weights
- C) Two weak classifiers with unequal weights
- D) Three weak classifiers with equal weights
- E) Three weak classifiers with unequal weights

Advantages of Boosting

- Simple and easy to implement
- Flexible—can combine with any learning algorithm
- No requirement on data metric—data features don't need to be normalized, like in kNN and SVMs (this has been a central problem in machine learning)
- Feature selection and fusion are naturally combined with the same goal for minimizing an objective error function
- No parameters to tune
- No prior knowledge needed about weak learner
- Provably effective
- Versatile— can be applied on a wide variety of problems
- Non-parametric

Caveats

- Performance of AdaBoost depends on data and weak learner
- Consistent with theory, AdaBoost can fail if
 - weak classifier too complex— overfitting
 - o weak classifier too weak -- underfitting
- Empirically, AdaBoost seems especially susceptible to uniform noise

Ensemble Methods

Bagging (Breiman 1994,...)

Boosting (Freund and Schapire 1995, Friedman et al. 1998,...)

Random forests (Breiman 2001,...)

Motivation: You have To Hire A New Expert

Willow is one of the interviewers

But he is not really good in interviewing (yet)

So We Need More Interviewers

Setting I

Setting 2

Random Forests

- Random forests (RF) are a combination of tree predictors
- Each tree depends on the values of a random vector sampled in dependently
- The generalization error depends on the strength of the individual trees and the correlation between them

The Random Forests Algorithm

Given a training set S

For i = 1 to k do:

Build subset s_i by sampling with replacement from S

Learn tree t_i from s_i

At each node:

Choose best split from random subset of F features

Each tree grows to the largest extend, and no pruning

Make predictions according to majority vote of the set of k trees.

Features of Random Forests

- Boosting-decision tree (C4.5) often works very well.
- It runs efficiently on large data bases.
- It can handle thousands of input variables without variable deletion.
- It gives estimates of what variables are important in the classification.
- It generates an internal unbiased estimate of the generalization error as the forest building progresses.
- It has an effective method for estimating missing data and maintains accuracy when a large proportion of the data are missing.
- It has methods for balancing error in class population unbalanced data sets.

Compared with Boosting

Pros:

- It is more robust.
- It is faster to train (no reweighting, each split is on a small subset of data and feature).
- Can handle missing/partial data.
- Is easier to extend to online version.

Cons:

- The feature selection process is not explicit.
- Feature fusion is also less obvious.
- Has weaker performance on small size training data.

Ensemble Methods

- Random forests (also true for many machine learning algorithms) is an example of a tool that is useful in doing analyses of scientific data.
- But the cleverest algorithms are no substitute for human intelligence and knowledge of the data in the problem.
- Take the output of random forests not as absolute truth, but as smart computer generated guesses that may be helpful in leading to a deeper understanding of the problem.

Leo Brieman