

Predict who I will add as friend next

Facebook's algorithm: find friends-of-friends

Adjacency Matrix

 $\mathbf{A}_{uv}=\mathbf{1}$ when u and v are connected $\mathbf{A}_{uv}=\mathbf{0}$ when u and v are not connected

A is square and symmetric

Square of Adjacency Matrix

$$\left(\mathbf{A}\mathbf{A}\right)_{uv} = \mathbf{A}_{u:} \ \mathbf{A}_{:v}$$
 equals the number of common friends of u and v

Square of Adjacency Matrix: Example

Count the number of ways a person can be found as the friend of a friend

Matrix product $\mathbf{A}\mathbf{A} = \mathbf{A}^2$

$$\mathbf{A}^{2} = \begin{vmatrix} \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{vmatrix}^{2} = \begin{vmatrix} \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{3} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{2} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{3} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{2} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \end{vmatrix}$$

Friend of a Friend of a Friend

Compute the number of friends-of-friends:

$$\mathbf{A}^{3} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 1 & 1 & 1 & 0 & 1 \\ 3 & 2 & 4 & 5 & 1 & 1 & 1 & 2 \\ 1 & 4 & 2 & 4 & 1 & 1 & 1 & 3 \\ 1 & 5 & 4 & 2 & 4 & 0 & 1 & 3 \\ 1 & 1 & 1 & 4 & 0 & 2 & 5 & 5 \\ 0 & 1 & 1 & 0 & 2 & 0 & 6 \end{bmatrix}$$

Problem: A^3 is not sparse! Hard to compute for very large matrices

Geometrical Interpretation of Matrices as Vector-Functions

Interpret a real $n \times n$ matrix **A** as a function f from n-vectors to n-vectors:

$$f(x) = \mathbf{A}x$$

Example with
$$A = \begin{bmatrix} 1.5 & 0 \\ 0 & 1 \end{bmatrix}$$

Diagonal Matrices

Definition: A matrix \mathbf{X} is diagonal if $\mathbf{X}_{uv} = 0$ whenever $u \neq v$

Diagonal matrices are easy to take powers of:

If X is diagonal, then X^k is diagonal and given by

$$\left(\mathbf{X}^{k}
ight)_{uu}=\left(\mathbf{X}_{uu}
ight)^{k}$$

Geometrical interpretation: stretch/mirror along the axes

Orthogonal Matrices

Definition: a matrix \mathbf{U} is orthogonal when $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}$ Interpret a matrix \mathbf{U} as a vector-function: $f(x) = \mathbf{U}x$ This means:

- (a) $\mathbf{U}_{:u}^{\mathrm{T}} \mathbf{U}_{:v} = 1$ when u = v
- (b) $\mathbf{U}_{:u}^{\mathrm{T}} \mathbf{U}_{:v} = 0$ when $u \neq v$

In other words:

- (a) The columns of U have unit length
- (b) The columns of ${\bf U}$ are orthogonal to each other It follows:
 - (a) f preserves vector length
 - (b) *f* preserves angles

Geometrical interpretation: f is a rotation, reflection or a combination of both

Orthogonal Matrices: Example 1

Orthogonal Matrices: Example 2

$$\mathbf{U} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$

Eigenvalue Decomposition

For a real, symmetric matrix \mathbf{A} , the eigenvalue decomposition of \mathbf{A} is

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$

where

U is orthogonal (the eigenvectors)

 Λ is diagonal (the eigenvalues)

Interpretation as a vector-function $f(x) = \mathbf{A}x$:

- Rotate, stretch/mirror, rotate back
- I.e.: stretch in arbitrary direction Every real symmetric matrix is a stretch/mirror in arbitrary direction!

Eigenvalue Decomposition: Example

 ${f U}$ contains eigenvectors, ${f \Lambda}$ contains eigenvalues

Use the eigenvalue decomposition ${f A}={f U}{f \Lambda}{f U}^{\scriptscriptstyle {
m T}}$

$$\mathbf{A}^3 = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} = \mathbf{U} \mathbf{\Lambda}^3 \mathbf{U}^{\mathrm{T}}$$

Exploit \mathbf{U} and $\boldsymbol{\Lambda}$:

•
$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$$
 because \mathbf{U} is orthogonal

•
$$({\color{red} {m{\Lambda}^k}})_{ii} = {\color{red} {m{\Lambda}_{ii}}^k}$$
 because ${\color{red} {m{\Lambda}}}$ is diagonal

Result: Just cube all eigenvalues

Requirements for a Link Prediction Function

A good link prediction function should:

- Give a higher score when there are more paths connecting two nodes
- Give a higher score when paths are shorter

I.e.,

$$F(\mathbf{A}) = a\mathbf{A}^2 + b\mathbf{A}^3 + c\mathbf{A}^4 + \dots$$

with
$$a > b > c > ... > 0$$

Matrix Exponential

$$\exp(\mathbf{A}) = \mathbf{I} + \mathbf{A} + 1/2 \mathbf{A}^2 + 1/6 \mathbf{A}^3 + \dots$$

Link Prediction Functions as Spectral Transformations

$$\mathbf{A}^2 = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^{\mathrm{T}}$$
 Friend of a friend $\mathbf{A}^3 = \mathbf{U} \mathbf{\Lambda}^3 \mathbf{U}^{\mathrm{T}}$ Friend of a friend of a friend $\exp(a\mathbf{A}) = \mathbf{U} \exp(a\mathbf{\Lambda}) \mathbf{U}^{\mathrm{T}}$ Matrix exponential $(\mathbf{I} - a\mathbf{A})^{-1}$ Neumann kernel

Link prediction functions change the eigenvalues, but do not change the eigenvectors. They are spectral transformations.