The Algorithm

 $\label{eq:define} \mbox{Define} \, T_p = number \, of \, time slots \, recruiter \, p \, is \, available \, for \,$

We reduce this to a max flow problem, where one unit of flow means one interview. We construct a graph. There is a source s, sink t, and three layers between.

- 1. The first layer has n nodes for the n candidates
- 2. the second layer has $k * T_p$ nodes for the k recruiters and their available timeslots
- 3. the third layer has *k* nodes for the *k* recruiters
- 1. There is a directed edge (s, c_i) of capacity 1 from s to every node c_i in the first layer
- 2. There is a directed edge $(c_i, r_p t_j)$ of capacity 1 from the first to second layer if recruiter p is qualified to interview candidate i and candidate i is available at timeslot j
- 3. There is a directed edge $(r_p t_j, r_p)$ of capacity 1 from the second to third layer for all recruiters p.
- 4. There is a directed edge (r_p, t) of capacity c_p (recruiter p's interviewing capacity) for all recruiters p.

Run Ford-Fulkerson on this graph. If the max flow is less than the number of candidates n, then there is no interview schedule where every candidate gets interviewed; if the max flow is equal to n, then there is.

Example: there are three candidates: c_0 , c_1 , and c_2 . There are two recruiters: r_3 and r_4 . c_0 could be interviewed by r_3 and r_4 and is available at 10 AM and 1 PM. c_1 could be interviewed by r_4 and is available at 10 AM and 2 PM. c_2 could be interviewed by r_4 and is available at 1 PM. r_3 has capacity 3 and is available at 10 AM and 2 PM. r_4 has capacity 2 and is available at 10 AM and 1 PM. The constructed graph for this problem would look as such:

Proof of Correctness

This problem is under several constraints:

- 1. Each candidate gets at most 1 interview
 - \Rightarrow This is satisfied by the edges from layer s to layer 1, which all have capacity 1.
- 2. Each candidate can only be interviewed at a timeslot he is available for
 - ⇒This is satisfied by the edges from layer 1 to layer 2, which only exist if the candidate is available at the time slot the edge is connecting him to
- 3. Each candidate can only be interviewed by qualified recruiters
 - ⇒This is also satisfied by the edges from layer 1 to layer 2, which only exist if the recruiter is qualified to interview the candidate the edge is connecting her to
- 4. Each recruiter r_p conducts at most c_p interviews
 - \Rightarrow This is satisfied by the edges from layer 3 to t, which have capacities c_n
- 5. Each recruiter can only conduct interviews at timeslots she is available for
 - \Rightarrow This is satisfied by the layer 2 itself, where each node $r_p t_j$ only exists if recruiter p is available at timeslot j.
- 6. Each timeslot can have multiple interviews, but they must be of different recruiters and different candidates, i.e. a timeslot can't have one recruiter interviewing more than one candidate and a timeslot can't have a candidate interviewed by more than one recruiter.
 - ⇒This is satisfied by the edges between layers 1 and 3 all having capacities 1, meaning if a flow of value 1 goes into a node in layer 2, then only 1 can flow out (thus one candidate only has one recruiter), and if a flow of value 1 goes out from layer 2, that means a flow of 1 went in (thus one recruiter only interviews one candidate)

Runtime Analysis

The runtime of Ford-Fulkerson is O(mC), where m is the number of edges in the graph and C is the sum of the capacities of all edges leaving the source. m here is n*(n*kT)*(kT*k)*k. C here is n, This algorithm is thus $O(k^3T^2n^3)$, which is polynomial is all the variables involved.