

Universidade Federal do Paraná

Laboratório de Estatística e Geoinformação - LEG

Considerações finais

Eduardo Vargas Ferreira

Como obter boas predições

- Entenda os dados: explore as características, crie gráficos para entender a natureza das variáveis etc.;
- 2 Decida sobre a validação cruzada: uma boa estratégia de validação, garante resultados mais confiáveis, p ex.,
 - * Repita o processo de validação 10 vezes, e veja como o modelo se comporta. Calcule a médias desses resultados;
 - Se os dados mudam rápido com o tempo, ou são assimétricos etc., contemple isso nos exemplos de treinamento e validação.
- 3 Feature Engineering: tente aprimorar a acurácia do modelo, p. ex.
 - * Tratar outlier, dados faltantes, criar interação, transformar dados contínuos para discretos etc. (pré-processamento);
- Combine modelos: agrupe vários algoritmos, certificando-se que são correlacionados.

Combinando vários modelos

- As camadas de modelos envolvem técnicas do tipo:
 - * Regressão Linear;
 - ★ Regressão logística;
 - ⋆ KNN;
 - ⋆ Gradiente Boosting;

- ⋆ Naive Bayes;
- ★ Redes Neurais Artificiais;
- ★ Árvores de decisão;
- * Random Forests etc.

Redes Neurais Artificiais

O que são Redes Neurais Artificiais?

 Em problemas reais, a RNA combina separadores lineares para classificações mais complexas.

 Em problemas reais, a RNA combina separadores lineares para classificações mais complexas.

 Em problemas reais, a RNA combina separadores lineares para classificações mais complexas.

 Dependendo do peso atribuído a cada neurônio, obtemos diferentes regiões.

Quantas camadas devemos utilizar?

- Single layer: capaz de posicionar um hiperplano no espaço das entradas;
- 2 Two layers (one hidden layer): capaz de descrever uma regra de decisão em somente uma região convexa do espaço;
- Three layers (two hidden layers): a partir de três camadas, somos capazes de generalizar regiões arbitrárias do espaço.

Quantas camadas devemos utilizar?

- Single layer: capaz de posicionar um hiperplano no espaço das entradas;
- 2 Two layers (one hidden layer): capaz de descrever uma regra de decisão em somente uma região convexa do espaço;
- Three layers (two hidden layers): a partir de três camadas, somos capazes de generalizar regiões arbitrárias do espaço.

Backpropagation algorithm

 Considerando que ao final da rede temos um erro. Desejamos encontrar os pesos que minimize essa quantidade;

$$\frac{\partial Erro}{\partial Peso} = \frac{\partial a}{\partial Peso} \times \frac{\partial b}{\partial a} \times \frac{\partial c}{\partial b} \times \frac{\partial d}{\partial c} \times \cdots \times \frac{\partial y}{\partial x} \times \frac{\partial z}{\partial y} \times \frac{\partial Erro}{\partial z}$$

Backpropagation algorithm

Combinando vários modelos

- As camadas de modelos envolvem algoritmos do tipo:
 - * Regressão Linear;
 - ★ Regressão logística;
 - ⋆ KNN;
 - ⋆ Gradiente Boosting;

- ⋆ Naive Bayes;
- ★ Redes Neurais Artificiais;
- ★ Árvores de decisão;
- * Random Forests etc.

Linhas de comando

Linhas de comando

 Os algoritmos disponíveis requerem algumas especificações. Precisamos entendê-las, para obter resultados promissores, por exemplo:

Comando	Explicação
task	Pode ser regressão ou classificação.
metric	Métrica de saída na validação cruzada, para cada modelo- neurônio. Pode ser logloss, AUC, rmse etc.
stackdata	TRUE se saída do modelo na camada $k-1$ entrará também nas camadas $k+1,\ k+2$ etc.
bins	Parâmetro que permite que os classificadores sejam usados em problemas de regressão.
threads	Número de modelos a serem executados em paralelo.
folds	Número de <i>folds</i> no treinamento e teste.

Stackdata

• TRUE se saída do modelo na camada k-1 entrará também nas camadas $k+1,\;k+2$ etc.

Desenvolver, testar e implementar

Desenvolver, testar e implementar

 É comum durante o treinamento dos modelos, obtermos determinado resultado, e na prática, o resultado ser outro;

 Para aumentar a convicção de que os modelos farão um bom trabalho, devemos ser capazes de treiná-los em condições próximas das reais;

Cultura da Ciência de Dados

Cultura da Ciência de Dados

 A grande dificuldade durante o processo de execução de um projeto de Machine Learning é a mudança cultural;

"Dando-se oportunidade de escolha entre mudar e provar que não é necessário mudar, a maioria das pessoas prefere a segunda alternativa". **John Galbraith**

Obrigado pela atenção!

