Chaos, fraktale i statystyka

Bogumiła Koprowska Elżbieta Kukla

- Przykłady
 - Odwzorowanie logistyczne
 - Odwzorowanie trójkątne
- Historia
- Fraktale
 - 7biór Mandelbrota i zbiór Julii
 - Przykłady fraktali
- Podstawowe pojęcia
 - Układy dynamiczne
 - Atraktory
- Wymiary i ich szacowanie
 - Wymiary
 - Estymacja wymiarów
- Zastosowania

Artykuł

Chaos, Fractals and Statistics Sangit Chatterjee i Mustafa R. Yilmaz Statistical Science (Vol. 7, No. 1, Feb. 1992, pp.49-68)

O czym będzie mowa?

- odwzorowanie logistyczne i trójkątne ("tent map")
- zbiór Mandelbrota, zbiór Julii, fraktale, atraktory
- w jakich warunkach pojawia się chaos?
- różne wymiary fraktalne, związki zachodzące między nimi; ich użycie w mierzeniu zjawiska chaosu; estymacja wymiarów
- zastosowania układów dynamicznych, nieliniowych w różnych dziedzinach nauki

Odwzorowanie logistyczne

Spis treści

Odwzorowanie logistyczne

$$x_{t+1} = \omega x_t (1 - x_t)$$

gdzie $0 \leqslant x_t \leqslant 1$, $0 \leqslant \omega \leqslant 4$

Zachowanie odwzorowania logistycznego dla różnych ω :

- 0 < $\omega \leqslant$ 1: istnieje tylko jeden punkt stacjonarny $\beta_0 = 0$ (przyciągający)
- $1<\omega\leqslant 3$: obok punktu $\beta_0=0$ (odpychający) pojawia się drugi punkt stały $\beta_1=1-\frac{1}{\omega}$ (przyciągający)
- $3<\omega\leqslant 1+\sqrt{6}$: β_1 (punkt odpychający), poza tym tworzy się cykl długości 2, złożony z punktów $\beta_2^{1/2}=\frac{\omega+1\pm\sqrt{\omega^2-2\omega-3}}{2\omega}$
- $1+\sqrt{6}<\omega$: cykl długości 2 staje się odpychający i tworzy się cykl długości 4, kolejne podwajanie długości cyklu następuje aż do $\omega\approx3,574$

Odwzorowanie logistyczne, $\omega = 0,95$

Odwzorowanie logistyczne, $\omega = 1,60$

Odwzorowanie logistyczne, $\omega = 2,80$

Odwzorowanie logistyczne, $\omega = 3,40$

Odwzorowanie logistyczne, $\omega = 3,47$

Odwzorowanie logistyczne, $\omega = 3,90$

Diagram bifurkacyjny

$$x_{t+1} = \left\{ egin{array}{ll} x_t/\omega, & ext{for } 0 \leqslant x_t < \omega, \ (1-x_t)/(1-\omega), & ext{for } \omega \leqslant x_t \leqslant 1, \end{array}
ight.$$

 ω jest stałą $0<\omega<1$, $x_t\in[0,1]$

Jak otrzymać odwzorowanie trójkątne z odwzorowania logistycznego?

Odwzorowanie logistyczne z $\omega = 4$, $x_n \in [0, 1]$

$$x_{n+1}=4x_n(1-x_n)$$

- Podstawienie: $x_n = \sin^2 \theta_n$ z $\theta_n \in [0, \pi/2]$
- $\sin^2 \theta_{n+1} = 4\sin^2 \theta_n \cos^2 \theta_n = \sin^2(2\theta_n)$
- Cheemy aby $\theta \in [0, \pi/2]$, zatem przyjmujemy:

$$\theta_{n+1} = \begin{cases} 2\theta_n & \text{gdy } 0 \leqslant \theta_n \leqslant \pi/4 \\ \pi - 2\theta_n & \text{gdy } \pi/4 < \theta_n \leqslant \pi/2 \end{cases}$$

• Podstawienie $y_n = 2\theta_n/\pi$ (aby dostać $y_n \in [0,1]$)

Dostajemy:

$$f(y_n) = y_{n+1} = \begin{cases} 2y_n & \text{gdy } 0 \leqslant y_n \leqslant 1/2 \\ 2(1 - y_n) & \text{gdy } 1/2 < y_n \leqslant 1 \end{cases}$$

• Popatrzmy na rozwinięcie dwójkowe y_n :

$$y_n = a_0.a_1a_2a_3a_4...$$
, gdzie $y_n = \sum_{j=0}^{\infty} a_j 2^{-j}$. Podwojenie y_n odpowiada przesunięciu przecinka o jedno miejsce w prawo:

$$y_n = a_0.a_1a_2a_3a_4...,$$

 $2y_n = a_1.a_2a_3a_4a_5....$

• Oznaczmy $\bar{a} = 1$, gdy a = 0 oraz $\bar{a} = 0$, gdy a = 1; zauważmy, że:

$$(2-2y_n)=2-a_1.a_2a_3a_4a_5...=\bar{a_1}.\bar{a_2}\bar{a_3}\bar{a_4}\bar{a_5}...$$

- Dla $y \in [0,1]$ mamy zawsze $a_0 = 0$ (1 to $0.(1)^{\infty}$). Używamy notacji $(r_1 \dots r_n)^{\infty}$ do zaznaczania, że $r_1 \dots r_n$ powtarza się nieskończenie wiele razy.
- Jeśli $y_n < 1/2$, to $a_1 = 0$, więc $y_{n+1} = 0.a_2a_3a_4a_5...$ Jeśli $v_n \geqslant 1/2$, to $a_1 = 1$, więc $y_{n+1} = 2 - 1.a_2a_3a_4a_5... = 0.\bar{a_2}\bar{a_3}\bar{a_4}\bar{a_5}...$

• Jeśli $y_n = 0.a_1a_2a_3a_4...$, to mamy przekształcenie

$$y_{n+1} = \begin{cases} 0.a_2a_3a_4a_5... & \text{dla } a_1 = 0 \\ 0.\bar{a_2}\bar{a_3}\bar{a_4}\bar{a_5}... & \text{dla } a_1 = 1 \end{cases}$$

Rozważmy trzy przypadki:

- y₀ niewymierne orbita rozpoczynająca się w y₀ nie jest periodyczna
- y_0 wymierne o skończonym rozwinięciu dwójkowym $y_0 = 0.a_1 \dots a_n$, $y_j = 0$ dla wszystkich $j \geqslant n$ orbita kończy się w zerze po skończonej liczbie iteracji
- y₀ wymierne o nieskończonym, okresowym rozwinięciu dwójkowym

 $a_{n+1} \neq b_{n+1}$.

 y₀ wymierne o nieskończonym, okresowym rozwinięciu dwójkowym

$$y_0=0.b_1b_2b_3b_4b_5\dots b_n(a_1a_2\dots a_m)^\infty$$
 $y_1=0.b_2b_3b_4b_5\dots b_n(a_1a_2\dots a_m)^\infty$ lub $0.\overline{b_2b_3b_4b_5\dots b_n}(\overline{a_1a_2\dots a_m})^\infty$ itd. $y_n=0.(a_1a_2\dots a_m)^\infty$ lub $0.(\overline{a_1a_2\dots a_m})^\infty$ Co dzieje się gdy $y_n=0.(a_1a_2\dots a_m)^\infty$? $f^m(y_n)=y_n$ lub $f^m(y_n)=\bar{y}_n$ W drugim przypadku, ponieważ $f(\bar{y})=f(y)$ dla każdego y , to

$$f^{m}(y_{n+1}) = f^{m}(f(y_{n})) = f(f^{m}(y_{n})) = f(\bar{y}_{n}) = f(y_{n}) = y_{n+1}$$

• Wniosek: każda liczba wymierna leży na orbicie periodycznej; żadna z nich nie jest stabilna - np. weźmy $y_0 = 0.a_1 a_2 \dots a_n a_{n+1} \dots$ i $z_0 = 0.a_1 a_2 \dots a_n b_{n+1} \dots$

Podsumowanie:

Nie ma orbit stabilnych, ale wszystkie wymierne liczby mają albo okresowe orbity albo osiągają zero po skończonej liczbie iteracji. Wszystkie liczby niewymierne y_0 mają orbity nieperiodyczne, można pokazać że rozkład punktów wzdłuż takiej orbity jest losowy, chociaż ewolucja jest deterministyczna.

Spis treści

Jawzorowanie trojkątne

Odwzorowanie przedstawione w artykule jest ogólniejsze i nazywane asymetrycznym odwzorowaniem trójkątnym ("assymetric tent map"), $x_t \in [0,1]$

$$x_{t+1} = \left\{ egin{array}{ll} x_t/\omega, & ext{for } 0 \leqslant x_t \leqslant \omega, \ (1-x_t)/(1-\omega), & ext{for } \omega < x_t \leqslant 1, \end{array}
ight.$$

gdzie ω jest stałą, $0 < \omega < 1$.

Trajektoria dla $\omega = 0,4$ oraz warunku początkowego $x_0 = 0,19$.

Stała Feigenbauma

Stała Feigenbauma

Mitchell Feigenbaum w 1978 r. zbadał granicę wyrażenia:

$$\delta_n = \frac{\omega_n - \omega_{n-1}}{\omega_{n+1} - \omega_n}$$

 $n = 1, 2, ..., \omega_n$ - n-ty punkt bifurkacji.

 $\delta_n \longrightarrow_{n \to \infty} 4.669201609...$ – stała Feigenbauma

Cytaty

Umysł, który w jakimś danym momencie znałby wszystkie siły ożywiające Przyrodę i wzajemne położenia składających się na nią bytów i który byłby wystarczająco potężny, aby poddać te dane analizie, mógłby streścić w jednym równaniu ruch największych ciał wszechświata oraz najdrobniejszych atomów: dla takiego umysłu nic nie byłoby niepewne, a przyszłość, podobnie jak przeszłość, miałby przed oczami.

Pierre Simon de Laplace, 1776

...ale nie zawsze tak jest. Może się zdarzyć, że mała różnica w warunkach początkowych spowoduje wielką zmianę w ostatecznym zjawisku. Mały błąd w przeszłości spowoduje wielki błąd później. Predykcja staje się niemożliwa.

Henri Poincaré, 1903

Historia

Historia badań nad nieliniowymi układami dynamicznymi i chaosem:

- 1899 analiza układów planetarnych, Poincaré
- 1963 początkowo niedoceniona praca Lorenza dotycząca meteorologii
- lata 70. i 80. XX wieku eksplozja zainteresowania tą tematyką

Praca Lorenza

Edward Lorenz opublikował w 1963 r. pracę pt. *Deterministic Nonperiodic Flow w Journal of the Atmospheric Sciences*.

Streszczenie artykułu Lorenza: Można sformułować skończone układy nieliniowych deterministycznych równań różniczkowych zwyczajnych. opisującyh wymuszony, dyssypatywny przepływ hydrodynamiczny. Rozwiązania tych równań mogą być utożsamione z trajektoriami w przestrzeni fazowej. Dla układów z ograniczonymi rozwiązaniami stwierdzono, że rozwiązania nieokresowe są niestabilne w stosunku do małych odkształceń, tak że stany początkowe różniące się nieznacznie mogą rozwijać się w stany znacznie różne od siebie. Pokazano, że układy o ograniczonych rozwiązaniach mają ograniczone rozwiązania liczbowe. Rozwiązano numerycznie prosty układ przedstawiający konwekcję komórkową. Wykryto, że wszystkie z rozwiązań są niestabilne i że prawie wszystkie są nieokresowe.

Zbadano możliwość dokonywania bardzo długoterminowych prognoz pogody w świetle tych rezultatów.

Zbiór Mandelbrota

Spis treści

Zbiór Mandelbrota

Zbiór ten tworzą punkty $c \in \mathbb{C}$, dla których ciąg opisany równaniem rekurencyjnym

$$\begin{cases} z_0 = 0 \\ z_{n+1} = z_n^2 + c \end{cases}$$

jest ograniczony ($\lim_{n\to\infty} z_n \neq \infty$).

Zbiór Mandelbrota

Zbiór Julii

Zbiór Julii

Zbiór ten tworzą punkty $p \in \mathbb{C}$, dla których ciąg opisany równaniem rekurencyjnym

$$\begin{cases} z_0 = p \\ z_{n+1} = z_n^2 + c \end{cases}$$

jest ograniczony ($\lim_{n\to\infty} z_n \neq \infty$); gdzie $c\in\mathbb{C}$ jest parametrem zbioru.

Zbiór Julii

Zbiór Julii dla c = -0.73 + 0.19i.

Zbiór Cantora

Wymiar fraktalny: $\frac{\ln 2}{\ln 3} \approx 0,631$.

Dywan Sierpińskiego

Wymiar fraktalny: $\frac{\ln 8}{\ln 3} \approx 1,893$.

Trójkąt Sierpińskiego

Wymiar fraktalny: $\frac{\ln 3}{\ln 2} \approx 1,585$.

Trójkąt Sierpińskiego

Piramida Sierpińskiego

Wymiar fraktalny: $\frac{\log_4}{\log_2} = 2$.

Gąbka Mengera

Wymiar fraktalny: $\frac{\ln 20}{\ln 3} \approx 2,727$.

Krzywa Kocha

Wymiar fraktalny: $\frac{\log 4}{\log 3} \approx 1.262$.

Paproć Barnsleya

Płonący statek

Układy dynamiczne

Typy układów dynamicznych:

- dyssypatywny energia procesu zmniejsza się (np. obecność tarcia)
- konserwatywny (zachowawczy) brak straty energii

Model ewolucyjny

Model ewolucyjny:

model ciągły:

$$\dot{x} = f_{\omega}(x(t))$$

model dyskretny:

$$x_{t+\tau} = f_{\omega}(x_t)$$

gdzie au jest pewnym określonym przyrostem czasu.

Atraktor

Definicje

A nazywany jest zbiorem atraktującym (atraktorem) z podstawowym otoczeniem U, jeśli:

- $\forall_t f_{\omega}^t(A) = A$
- $\forall_{V \supset A, \text{ V-otwarty}}$ mamy $f_{\omega}^{t}(U) \subset V$ dla dostatecznie dużego t Suma zbiorów $(f_{\omega}^{t})^{-1}(U)$ dla każdego t nazywana jest basenem atraktorów \mathbf{A} .

Klasyfikacja atraktorów

Spis treści

Klasyfikacja atraktorów:

- (a) pojedynczy punkt stabilny punkt
- (b) okresowy atraktor ze stałym okresem okrąg
- (c) quasi-okresowy atraktor (superpozycja okresowych atraktorów z różnymi okresami) torus
- (d) nieokresowy (chaotyczny) atraktor

Problemy

- \bullet f_{ω} , ω , x_0 prowadzące do chaotycznego atraktora.
- Cechy chaotycznego atraktora.
- Obserwacja atraktorów w praktyce i identyfikacja modeli deterministycznych, które je generują.
- Wybór modelu deterministycznego lub probabilistycznego do reprezentacji danego procesu.

1. Własności f_{ω} , ω , x_0

Wyniki Li i Yorke (1975)

- f_{ω} jest ciągła, \hat{x} punkt okresowy o okresie 3, $\Rightarrow \hat{x}$ punkt okresowy z każdym innym okresem k = 1, 2, ...
- nieprzeliczalny zbiór punktów początkowych prowadzących do chaosu

Jacobson(1981)

- dla modelu logistycznego:
 - zbiór wartości parametru ω , które dają chaotyczny atraktor ma dodatnią miarę
- dla modelu namiot:
 - prawie wszystkie $\omega \in (0,1)$ dają chaotyczne trajektorie

2. Cechy chaotycznego atraktora

Jeżeli f_{ω} jest:

- unimodalna
- dwukrotnie różniczkowalna w sposób ciągły poza jednym punktem
- | nachylenia f | < 1

to zachowanie graniczne układu dla prawie wszystkich warunków początkowych może być opisane **gęstością niezmienniczą**

2. cd - teoria ergodyczna

 ρ - miara probabilistyczna na \mathbb{R}^n $f^{-1}(B) = \{x : f(x) \in B\}$

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ zachowuje miarę, jeśli

$$\forall_{B\subset\mathbb{R}^n}\rho(f^{-1}(B))=\rho(B)$$

 ρ - niezmiennicza miara probabilistyczna

 ρ - **ergodyczna**, jeżeli

$$\forall_{B \subset \mathbb{R}^n, B \text{-} zwartv} f^{-1}(B) = B \Longrightarrow \rho(B) = 0 \text{ lub } \rho(B) = 1$$

- dla f ciągła, zwężająca:
 - $\forall_{B \subset \mathbb{R}^n, \text{ B-zwarty }} \mu(B) \geqslant \mu(f(B))$
 - $\exists_{A \subset \mathbb{R}^n, \text{ A-zwarty}} f(A) = A$
 - $\forall_{U \subset \mathbb{R}^n} \lim_{n \to \infty} f^n(U) = A$
- możemy znaleźć ergodycznie niezmienniczą miarę ρ taką, że $\rho(A)=\rho(f^{-1}(A))=1$

2. cd - zastosowanie teorii ergodycznej

$$x_{t+1} = \left\{ egin{array}{ll} x_t/\omega, & ext{for } 0 \leqslant x_t \leqslant \omega, \ (1-x_t)/(1-\omega), & ext{for } \omega \leqslant x_t \leqslant 1, \end{array}
ight.$$

dla $\omega=1/2$: gęstość $\rho(x)=1$

$$x_{t+1} = \omega x_t (1 - x_t)$$

dla $\omega = 4$: gęstość $\rho(x) = 1/(\pi \sqrt{x(1-x)})$

3. Obserwacja atraktorów w praktyce

- rekonstrukcja z opóźnieniem
 - obserwujemy $y_t = h(x_t)$, gdzie $h : \mathbb{R}^n \longrightarrow \mathbb{R}$
 - zapisujemy $\omega_t = (y_t, y_{t+1}, \dots, y_{t+m-1})$
 - ω_t ma podobne własności do x_t , o ile $m \geqslant 2D + 1$, D-wymiar fraktalny

Wymiar fraktalny - Hausdorffa-Besicovitcha

- **1** Pokrywamy A pudełkami o rozmiarze arepsilon
- extstyle ext

•
$$N(\varepsilon) = c \frac{1}{\varepsilon^n}$$

Wymiar fraktalny

$$D = \lim_{\varepsilon \to 0} \frac{\ln \mathit{N}(\varepsilon)}{\ln(1/\varepsilon)}$$

- Własności D:
 - D ≤ n
 - $D \notin \mathbb{Z}$
- Przykłady
 - *D* = 0 odcinek
 - ullet D=1 prosta lub krzywa segmentowa
 - D=2 ograniczona powierzchnia
 - $D = \frac{\ln 2}{\ln 3} = 0,6309...$ zbiór Cantora

Wymiar korelacyjny - Grassberger i Procaccia (1983)

Wymiar korelacyjny

$$\nu = \lim_{\varepsilon \to 0} \frac{\ln C(\varepsilon)}{\ln(\varepsilon)}, \text{ gdzie}$$

$$C(\varepsilon) = \lim_{N \to \infty} \frac{1}{N^2} \cdot |\{(x_i, x_j) : |x_i - x_j| < \varepsilon\}|$$

N-całkowita liczba obserwacji na atraktorze

- **1** $N(\varepsilon)$ najmniejsza liczba pudełek o boku ε potrzebnych do pokrycia zbioru A
- $oldsymbol{Q}$ k_i liczba punktów w i-tym pudełku bedących w odległości arepsilonod siebie

$$C(\varepsilon) = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=1}^{N(\varepsilon)} k_i^2 = \sum_{i=1}^{N(\varepsilon)} \lim_{N \to \infty} \left(\frac{k_i}{N}\right)_0^2 = \sum_{i=1}^{N(\varepsilon)} \pi_i^2$$

Wymiar informacyjny - Balatoni i Renyi

Wymiar informacyjny

$$\sigma = \lim_{\varepsilon \to 0} \frac{\ln S(\varepsilon)}{\ln(1/\varepsilon)}$$

$$S(\varepsilon) = -\sum_{i=1}^{N(\varepsilon)} \pi_i \ln \pi_i$$
 - entropia Kołmogorowa-Sinai

Gressberger i Procaccia:

- $\nu \leq \sigma \leq D$
- ν, σ, D niezmiennicze przy odwracalnych i różniczkowalnych przekształceniach \mathbb{R}^n

Wymiar Lapunowa

- dla $f_{\omega}: R^n \to R^n$ mamy:
 - $\lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_n$
 - $\lambda_i < 0$: średni wskaźnik kontrakcji w kierunku odpowiedniego wektora własnego
 - $\lambda_i > 0$: powtarzaną ekspansję w kierunku odpowiedniego wektora własnego
- układ dyssypatywny:
 - $\exists_i \lambda_i < 0$
 - $\sum_i \lambda_i < 0$
- warunek chaotyczności układu: $\exists_i \lambda_i > 0$

Wymiar Lapunowa

$$D_L = j + rac{\lambda_1 + \ldots + \lambda_j}{|\lambda_{j+1}|}$$
 $j = rgmax\{\lambda_1 + \lambda_2 + \ldots + \lambda_j \geqslant 0\}$

Podsumowanie

Zastosowania

Problemy

- Dla wymiaru Lapunowa D_L
 - uciążliwe dla układów z danymi równaniami ewolucyjnymi
 - ullet nieznany sposób estymacji D_L z danych eksperymentalnych
- Dla pozostałych wymiarów
 - niepewne istnienie granic
 - szum w danych

Metody estymacji

- "fixed-size"
 - ullet dzielimy przestrzeń na siatkę pudeł o boku arepsilon
 - liczymy $N(\varepsilon)$ liczbę niepustych zbiorów
 - ullet liczymy k_i liczbę punktów w i-tym pudle
 - \bullet liczymy k_i/N ułamek punktów danych w każdym pudle
 - uzmienniamy ε i dopasowujemy prostą do wykresu ln $N(\varepsilon)$ w zależności od $\ln(1/\varepsilon)$
 - otrzymujemy estymatory:
 - D nachylenie dopasowanej prostej
 - $\hat{\nu}$ nachylenie ln $C_N(\varepsilon)$ w zależności od ln ε
 - $\hat{\sigma}$ nachylenie In $S_N(\varepsilon)$ w zależności In $(1/\varepsilon)$
- "fixed-mass"
 - ustalamy liczbę k punktów zawartych w każdym otoczeniu o określonej odpowiednio średnicy

- obserwujemy $y_t = h(x_t)$, gdzie $h: \mathbb{R}^n \longrightarrow \mathbb{R}$
- zapisujemy $\omega_t = (y_t, y_t + 1, ..., y_{t+m-1})$

Wnioski:

- ω_t ma podobne własności do x_t , o ile $m \ge 2D + 1$, D-wymiar fraktalny
- dla nieznanego m:
 - dla m=1 konstruujemy estymator $\hat{\nu}$ wymiaru korelacji zrekonsruowanego atraktora
 - kontynuujemy dla $m=2,3,\ldots$, aż $\hat{\nu}$ nie zmienia się istotnie

Chaos w matematyce

- badanie wymiarów przestrzeni
- teoria automatów komórkowych
 - przybliżanie układów ciągłych
 - badanie złożonych układów

- rozróżnianie zdrowych i chorych układów (krwionośnych, nerwowych, kanałów wewnętrznych)
- mutacje uśrednione i znaczące dla ewolucji
- zachowania gatunków

- ullet równanie Verhulsta model logistyczny $x_{t+1} = \omega x_t (1-x_{t-1})$
- przewidywanie proporcji chorych w populacji i efektów programów szczepień

Chaos w filozofii i logice

- nierozstrzygalność determinizmu względem niedeterminizmu
- nieobliczalny brzeg zbioru Mandelbrota
- nieuchwytne zachowanie chaosu na poziomie mechaniki kwantowej

Chaos w statystyce

- generowanie liczb pseudolosowych
- metoda opóźnionej rekolnstrukcji atraktorów
- idea fraktalnej intrerpolacji

Chaos - inne zastosowania

- przechowywanie obrazów na małej przestrzeni (Barnsley i inni)
- opisanie żeli, polimerów (Orbach)
- statystyczne samopodobieństwo zjawisk przestrzennych w geografii (Goodchild, Mark)

Podsumowanie

Spis treści

Stosujemy model deterministyczny, gdy:

- Warunki początkowe są nieznane.
- Proces nie może być zaobserwowany bez losowego błędu lub szumu.
- Proces nie może być obserwowany wystarczająco długo.
- Nie umiemy dopasować modelu deterministycznego.

