Research for "Does simulating Newtonian Physics mean we finally understand it?"

Blaire Villareal

April 2025

Introduction

This paper serves as the research for my report on "Does simulating Newtonian Physics mean we finally understand it?", containing:

- 1. An overview on the workings of Newtonian Physics (Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". In: *Annalen der Physik* 322.10 [1905], pp. 891–921. DOI: http://dx.doi.org/10.1002/andp.19053221004);
- 2. Use-cases of Newtonian Physics;
- 3. The advantages/benefits of simulating Newtonian Physics;
- 4. A discussion on whether we could "master" Newtonian Physics towards the future.

In each section, it will contain both a reference and a brief summary about why said reference would be useful in answering that sub-topic.

1 Overview on Newtonian Physics

[1.] (Juha Saatsi. "On Explanations from Geometry of Motion". In: *The British Journal for the Philosophy of Science* 69.1 [2015]. DOI: https://dx.doi.org/10.1093/bjps/axw007. accessed: 25/3/25)

This paper explores in-depth on how kinematics and dynamics work in conjunction with one another, the applications and the purpose of the "geometry of motion" within a wider scope.

[2.]

References

Einstein, Albert. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". In: *Annalen der Physik* 322.10 (1905), pp. 891–921. DOI:

http://dx.doi.org/10.1002/andp.19053221004.

Saatsi, Juha. "On Explanations from Geometry of Motion". In: *The British Journal for the Philosophy of Science* 69.1 (2015). DOI:

https://dx.doi.org/10.1093/bjps/axw007. accessed: 25/3/25.