Défauts des Amplificateurs Opérationnels

Nous allons re-étudier un montage simple et que nous connaissons bien en enlevant les hypothèses que nous avons quasiment-systématiquement faites et voir quelles sont les limites des AOP. Nous utiliserons un simple amplificateur :

- 1. Dans un premier temps, on fait le calcul de manière classique, comme référence :
 - (a) Il y a de manière évidente une contre-réaction, donc l'AOP travaille en régime linéaire. Quelle hypothèse faisons nous à ce stade d'habitude?
 - (b) Sous cette hypothèse, en déduire la fonction de transfert :

$$H\left(\jmath\omega\right) = \frac{v_{out}}{v_{in}}$$

Dépendance en fréquence du gain en boucle ouverte

2. Même si nous l'avons notée dans le cours, l'hypothèse que nous avons rappelée à la question 1.a est fausse... ce qui est vrai par contre, c'est que l'AOP se comporte comme un amplificateur avec en signal d'entrée ε , avec un gain de A_0 avec un comportement de type passe-bas du premier ordre. On peut donc écrire :

$$\frac{v_{out}}{\varepsilon} = \frac{A_0}{1 + j\frac{f}{f_0}}$$

Par ailleurs, on notera afin de simplifier l'écriture :

$$k = \frac{R_1}{R_1 + R_2}$$

Nous allons retrouver la vraie fonction de transfert et voir si cela change beaucoup par rapport à ce que nous faisions précédement. Pour la suite de l'exercice, nous utiliserons un TL081M dont des extraits de datasheet sont donnés en annexe.

- (a) Exprimer ε en fonction de v_+ et v_- .
- (b) Idem en fonction de v_{in} et v_{out} .
- (c) En utilisant le résultat précédent et $\frac{v_{out}}{\varepsilon}$, en déduire la fonction de transfert

$$H'(\jmath\omega) = \frac{v_{out}}{v_{in}}$$

et la mettre sous la forme

$$H'(\jmath\omega) = \frac{A'}{1 + \jmath\frac{f}{f'}}$$

- (d) Ce résultat est clairement différent ce celui trouvé en question 1.b. A quoi correspond l'AOP idéal sur l'équation $\frac{v_{out}}{\varepsilon}$? Calculer les limites de A' et f' pour voir ce qui se passe dans ce cas.
- (e) Calculer le produit $A' \cdot f'$. Que constate t'on?
- (f) Que vaut la fréquence à gain unitaire?
- (g) Que vaut A_0 en large signal? En déduire f_0 .
- (h) On décide de prendre $R_2=100~{\rm k}\Omega$ et $R_1=1~{\rm k}\Omega$. Comparer 1/k et A', calculez f', que peut-on en conclure?
- 3. On se place en basse fréquence, à 10 kHz, on met en entrée une tension sinusoïdale d'amplitude de 150 mV.
 - (a) Représentez *a priori* deux périodes du signal de sortie sur le diagramme donné ci-dessous.
 - (b) On alimente l'AOP avec une tension ± 15 V, déterminer valeurs min et max du signal de sortie.
 - (c) Re-dessinez sur le même diagramme le signal de sortie réel.
 - (d) Quel phénomène affecte le signal de sortie?

Courants de polarisation et tension continue de sortie

- 4. Par ailleurs nous faisons régulièrement l'hypothèse $i_+=i_-=0$, ceci aussi est faux...
 - (a) Que vaut typiquement le courant de polarisation i_- ?
 - (b) Calculez la tension de sortie v_{out} lorsque $v_{in}=0$ V.
 - (c) Si $v_{out} = 13.5$ V, quelle est la valeur maximale admise pour R_2 ?
 - (d) Que peut-on en conclure?

5 Pin Configuration and Functions

TL081 and TL081x D, P, and PS Package 8-Pin SOIC, PDIP, and SO Top View

TL082 and TL082x D, JG, P, PS and PW Package 8-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

TL084 and TL084x D, J, N, NS and PW Package 14-Pin SOIC, CDIP, PDIP, SO, and TSSOP Top View

Pin Functions

	i iii i dilottotis												
		PII	N										
	TL081	TL081 TL		TL	.084								
NAME	SOIC, PDIP, SO	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	SOIC, CDIP, PDIP, SO, TSSOP	LCCC	I/O	DESCRIPTION						
1IN-	_	2	5	2	3	I	Negative input						
1IN+	_	3	7	3	4	I	Positive input						
1OUT	_	1	2	1	2	0	Output						
2IN-	_	6	15	6	9	I	Negative input						
2IN+	_	5	12	5	8	I	Positive input						
2OUT	_	7	17	7	10	0	Output						
3IN-	_	_	_	9	13	1	Negative input						
3IN+	_	_	_	10	14	I	Positive input						
3OUT	_	_	_	8	12	0	Output						
4IN-	_	_	_	13	19	I	Negative input						
4IN+	_	_	_	12	18	I	Positive input						
4OUT	_	_	_	14	20	0	Output						

Copyright © 1977–2015, Texas Instruments Incorporated

Submit Documentation Feedback

Electrical Characteristics for TL08xC, TL08xxC, and TL08xI (continued)

 $V_{CC+} = \pm 15 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T _A ⁽¹⁾	TL081C, TL082C, TL084C		TL081AC, TL082AC, TL084AC		TL081BC, TL082BC, TL084BC			TL081I, TL082I, TL084I			UNIT		
		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120			120			120		dB

6.6 Electrical Characteristics for TL08xM and TL084x

 $V_{CC+} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST CONDITIONS(1)	T _A	TLO	081M, TL082	:M	TL084Q, TL084M				
	PARAMETER	TEST CONDITIONS ⁽¹⁾		MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
	land office to the second	V 0. B 50.0	25°C		3	6		3	9	mV	
V_{IO}	Input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range			9			15	mv	
α_{VIO}	Temperature coefficient of input offset voltage	$V_{O} = 0, R_{S} = 50 \Omega$	Full range		18			18		μV/°C	
	Input offset current (2)	V _O = 0	25°C		5	100		5	100	pА	
I _{IO}	input onset current	V _O = 0	125°C			20			20	nA	
	In a st bin a summer (2)		25°C		30	200		30	200	pA	
I _{IB}	Input bias current ⁽²⁾	$V_O = 0$	125°C			50			50	nA	
V _{ICR}	Common-mode input voltage range		25°C	±11	-12 to 15		±11	-12 to 15		V	
V _{OM}	Maximum peak output voltage swing	$R_L = 10 \text{ k}\Omega$	25°C	±12	±13.5		±12	±13.5			
		R _L ≥ 10 kΩ		±12			±12			V	
		R _L ≥ 2 kΩ	Full range	±10	±12		±10	±12			
	Large-signal differential	V .40 V D > 0 I-0	25°C	25	200		25	200		V/mV	
A_{VD}	voltage amplification	$V_O = \pm 10 \text{ V}, R_L \ge 2 \text{ k}\Omega$	Full range	15			15				
B ₁	Unity-gain bandwidth		25°C		3			3		MHz	
ri	Input resistance		25°C		10 ¹²			10 ¹²		Ω	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$ $V_O = 0, R_S = 50 \Omega$	25°C	80	86		80	86		dB	
k _{SVR}	Supply-voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $V_{O} = 0, R_{S} = 50 \Omega$	25°C	80	86		80	86		dB	
I _{CC}	Supply current (each amplifier)	V _O = 0, No load	25°C		1.4	2.8		1.4	2.8	mA	
V _{O1} /V _{O2}	Crosstalk attenuation	A _{VD} = 100	25°C		120			120		dB	

 ⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
(2) Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown

6.7 Operating Characteristics

 $V_{CC+} = \pm 15 \text{ V}, T_{\Delta} = 25^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_I = 10 \text{ V}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF},$ See Figure 19	8 ⁽¹⁾	13		
SR	Slew rate at unity gain	V_{l} = 10 V, R_{L} = 2 k Ω , C_{L} = 100 pF, T_{A} = -55°C to 125°C, See Figure 19	5 ⁽¹⁾			V/µs

(1) On products compliant to MIL-PRF-38535, this parameter is not production tested.

in Figure 13. Pulse techniques must be used that maintain the junction temperatures as close to the ambient temperature as possible.