Steel Beam Flexural Capacity.xlsx

August 1, 2016

Calculations prepared by Maxim Millen on August 1, 2016						
Calculations reviewed by	On					

Contents

1 Bending Capacity Calculations						
	1.0.1	Inputs	1			
	1.0.2	Fully restrained section calculations	1			
	1.0.3	Fully braced at ends calculations	3			

Steel Beam Flexural Capacity
Maxim Millen

Page
Version
Produced
Reviewed

1/4 V001 August 1, 2016

1 Bending Capacity Calculations

1.0.1 Inputs

Single inputs	Value	Units	Comments	Cell Ref.
E	200	GPa	Young's Modulus of section.	C10
G	80	GPa	Shear modulus of section.	C12
I_w	9.29×10^{10}	mm^6	Warping constabt.	C14
I_y	4.42	mm^4	Moment of inertia (y-y).	C11
J	86500	mm^4	Torsional constant.	C13
L	3	m	Section length.	C3
S_x	475000	mm^3	Plastic section modulus.	C8
Z_x	424000	mm^3	Elastic section modulus.	С9
b_f	149	mm	Width of flange.	C4
d	298	mm	Depth of section.	C6
f_{yf}	320	MPa	Yield Stress (flange).	C15
t_f	8	mm	Thickness of flange.	C5
t_w	5.5	mm	Thickness of web.	C7
Ø	0.9	-	Strength reduction factor.	C16

1.0.2 Fully restrained section calculations

Single inputs	Value	Units	Comments	Cell Ref.
λ_{efp}	9	-	Flange plastic slenderness.	C22
λ_{efy}	16	-	Flange yield slenderness.	C21
λ_{ewp}	82	-	Web plastic slenderness.	C24
λ_{ewy}	130	-	Web yield slenderness.	C23

Table 5.2

 $Table\ 5.2$

Table 5.2

 $Table\ 5.2$

Flange slenderness.

$$\lambda_{ef[C19]} = \frac{b_f - t_w}{2 \cdot t_f} \cdot \sqrt{\frac{f_{yf}}{250}}$$

Sec. 5.2.2

Steel Beam Flexural Capacity
Maxim Millen

.....

Page Version Produced Reviewed 2/4 V001 August 1, 2016

$$= \frac{149 - 5.5}{2 \cdot 8} \cdot \sqrt{\frac{320}{250}}$$

= 10.1

Web slenderness.

$$\lambda_{ew[C20]}$$
 = $\frac{d-2 \cdot t_f}{t_w} \cdot \sqrt{\frac{f_{yf}}{250}}$ = $\frac{298-2 \cdot 8}{5.5} \cdot \sqrt{\frac{320}{250}}$

Sec. 5.2.2

= 58.0

(flange is more critical). check governing slenderness.

$$\lambda_{ef}/\lambda_{efy[C26]}$$
 = $\frac{\lambda_{ef}}{\lambda_{efy}}$ = $\frac{10.1}{16}$

= 0.634

$$\lambda_{ew}/\lambda_{ewy}$$
_[C27]
$$= \frac{\lambda_{ew}}{\lambda_{ewy}}$$
$$= \frac{58.0}{130}$$

= 0.446

Section slenderness limits.

$$\lambda_{sy[C29]}$$
 = IF($\lambda_{ef}/\lambda_{efy} > \lambda_{ew}/\lambda_{ewy}, \lambda_{efy}, \lambda_{ewy}$)
= IF(0.634 > 0.446, 16, 130)

= 16

$$\lambda_{s[C30]}$$
 = IF($\lambda_{ef}/\lambda_{efy} > \lambda_{ew}/\lambda_{ewy}, \quad \lambda_{ef}, \quad \lambda_{ewp}$)

= IF(0.634 > 0.446, 10.1, 82)

= 10.1

$$\lambda_{sp[C31]}$$
 = IF($\lambda_{ef}/\lambda_{efy} > \lambda_{ew}/\lambda_{ewy}, \quad \lambda_{efp}, \quad \lambda_{ewp}$)

= IF(0.634 > 0.446, 9, 82)

Compact section plastic modulus.

$$Z_{c[C33]}$$
 = MIN(1.5 · Z_x , S_x)
= MIN(1.5 · 424000, 475000)

=475000

(since $\lambda s=10.15>\lambda sp=9$). Effective section plastic modulus.

$$Z_{e[C34]} = Z_x + \frac{(\lambda_{sy} - \lambda_s) \cdot (Z_c - Z_x)}{\lambda_{sy} - \lambda_{sp}}$$
$$= 424000 + \frac{(16 - 10.1) \cdot (475000 - 424000)}{16 - 9}$$

 $=467000.0 \text{ mm}^3$

Sectional flexural strength.

Steel Beam Flexural Capacity
Maxim Millen

.....

Page Version Produced Reviewed 3/4 V001 August 1, 2016

$$M_{s[C35]}$$
 = $\frac{Z_e \cdot f_{yf}}{1000000}$ = $\frac{467000.0 \cdot 3}{1000000}$

= 149.0 kNm

(As the beam is fully restrained, Mb=Ms) . Beam flexural strength.

$$\emptyset M_{s[C36]}$$

$$= \emptyset \cdot M_s$$

$$= 0.9 \cdot 149.0$$

= 134.0 kNm

1.0.3 Fully braced at ends calculations

Single inputs	Value	Units	Comments	Cell Ref.	
k_l	1	-		C41	Table 5.6.3
k_r	1	-		C42	Table 5.6.3
k_t	1	-	Effective length factors.	C40	Table 5.6.3

Moment modification factor.

$$\alpha_{m[C39]}$$
 = $\frac{1.7}{\sqrt{1^2+1^2+1^2}}$ Eq. 5.6.1.1(2)
= $\frac{1.7}{\sqrt{1^2+1^2+1^2}}$ = 0.981

Effective section length.

$$L_{e[C43]}$$
 = $k_t \cdot k_l \cdot k_r \cdot L$ = $1 \cdot 1 \cdot 1 \cdot 3$

 $=3 \mathrm{m}$

Reference buckling moment.

$$M_{o[C44]} = \frac{\sqrt{\frac{\pi^{2} \cdot E \cdot 10^{3} \cdot I_{y}}{L_{e}^{2}} \cdot (\frac{G \cdot J}{1000} + \frac{\pi^{2} \cdot E \cdot I_{w}}{1000000000})}}{1000}}{1000}$$

$$= \frac{\sqrt{\frac{\pi^{2} \cdot 200 \cdot 10^{3} \cdot 4.42}{L_{e}^{2}} \cdot (\frac{80 \cdot 86500}{1000} + \frac{\pi^{2} \cdot 200 \cdot 9.29 \times 10^{10}}{3^{2}})}}{1000}}{1000}$$

$$= 163.0 \text{ kNm}$$

Slenderness reduction factor.

$$\alpha_{s[C45]} = 0.6 \cdot \left(\sqrt{\left(\frac{M_s}{M_o}\right)^2 + 3} - \frac{M_s}{M_o}\right)$$

$$= 0.6 \cdot \left(\sqrt{\left(\frac{149.0}{163.0}\right)^2 + 3} - \frac{149.0}{163.0}\right)$$

$$= 0.625$$

Member flexural capacity.

Steel Beam Flexural Capacity

Maxim Millen

.....

Page Version Produced Reviewed 4/4 V001 August 1, 2016

 $M_{b[C46]}$ = MIN $(\alpha_s \cdot \alpha_m \cdot M_s, M_s)$

 $= MIN(0.625 \cdot 0.981 \cdot 149.0, \quad 149.0)$

=91.7 kNm

Reduced member flex. capacity.

 $\emptyset M_{b[C47]} = 0.9 \cdot M_b$

 $= 0.9 \cdot 91.7$

=82.5 kNm