Le Soleil et les étoiles

Etoile la plus proche de la Terre

Diamètre : 1.390.000 km 108 x le diamètre de la Terre

Densité 1,41

~ la densité de Jupiter

Densité proche de celle de l'eau

Volume
1.260.000 x le volume
de la Terre

Masse 332.830 x la masse de la Terre

Si la Terre avait le poids d'un petit poids ~ 3 grammes

Le Soleil pèserait le poids d'une voiture ~ 1 tonne

Placée au point de Lagrange L1

Images en temps réel du Soleil sohowww.nascom.nasa.gov

Période de rotation sidérale 25 jours à l'équateur 36 jours près des pôles

Rotation du Soleil

Photosphère du Soleil

Taches solaires

Taches solaires

Taille des taches solaires 10.000 à 300.000 km

Taille des taches solaires 10.000 à 300.000 km

Tache solaire Zone de convection

Tache solaire Zone de convection

Grains de riz Cellules de convection

Photosphère d'autres étoiles Etoile variable RS CVn

Cycle solaire de 11 ans

Cycle solaire de 11 ans

Vue de la Terre

La chromosphère

La chromosphère

De la chromosphère, les protubérances

Les protubérances

La chromosphère

La chromosphère

La chromosphère

La chromosphère

La chromosphère

La couronne

La couronne

La couronne

La couronne et le déplacement du Soleil

La couronne

La couronne

L'héliosphère

Le vent solaire

Rayonnement solaire 0,05 % de Z>2 < 10¹⁰ eV/nucléon

<u>Eruption solaire</u> protons, ions lourds 10⁹ eV/nucléon

<u>Vent solaire</u> Électrons, protons 10³ eV/nucléon

Champ magnétique

Interaction avec le champ magnétique terrestre

Interaction avec le champ magnétique terrestre

Taches solaires et champ magnétique

Magnitude

-27

Magnitude absolue (à 10 parsecs 32,6 a-1) 4,83

Longueur d'onde

Rayonnement

Spectre du Soleil

Température

En surface (photosphère) 6000 K

Au centre 15 millions de K

Energie reçue par la Terre

1,4 KW/m2

1 tranche de centrale nucléaire par km²

Tous les 1000 mètres un réacteur nucléaire

Energie reçue par la Terre

1,7 10¹⁴ KW

140 millions de tranches de centrale nucléaires

Energie totale rayonnée par le Soleil 3,9 10²³ KW

2 milliards de fois l'énergie reçue par la Terre

Fusion nucléaire $E = mc^2$ Perte de masse 4 protons -> ⁴ He + $2e^-$ Perte de masse 0,712%

La fusion de 1g de H produit 6 10¹¹ joules

soit l'équivalent de 80.000 litres d'essence

Le Soleil perd 4 millions de tonnes par seconde

Depuis qu'il existe environ 5 milliards d'années, le Soleil a perdu 6 10¹⁷ tonnes

soit 0,03% de sa masse

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + {}_{1}^{0}e \times 2$$
 ${}_{1}^{1}H + {}_{1}^{2}H \rightarrow {}_{2}^{3}He + {}_{1}^{2} \times 2$
 ${}_{2}^{3}He + {}_{2}^{3}He \rightarrow {}_{2}^{4}He + {}_{1}^{2}H \times 1$

Le cycle proton-proton

Dans 5 milliards d'années, fin des réactions de fusion

$$H \rightarrow He$$

Température interne (15 millions de K) insuffisante pour démarrer la fusion $He \rightarrow C$

[™] Contraction du Soleil

La température interne va atteindre 100 millions de K

Démarrage de la fusion $He \rightarrow C$

Flash de Hélium Ejection des couches externes

Expansion du Soleil au delà de l'orbite de Vénus

Le Soleil devient une géante rouge Pendant 1 milliard d'année

Epuisement de l'He contraction du Soleil qui ramène au cœur H et He superficiels qui n'ont pas encore réagit

8

Dilatation brutale du Soleil au delà de l'orbite de Mars

Ejection des couches superficielles

Masse insuffisante du Soleil pour la fusion $C \rightarrow Fe$

Contraction du Soleil en naine blanche

Naine blanche - Sirius B

Avenir du Soleil

Sirius B

Naine blanche Même masse que le Soleil Diamètre de 12.000 km (~ Terre) Densité 2 millions de fois celle du soleil 1 litre pèse 100 tonnes

Le Soleil

Contraction gravitationnelle de nuages galactiques

Contraction gravitationnelle de nuages galactiques

Vie et évolution des étoiles

Dépend de la masse initiale de l'étoile

- > masse < 1/20 M_{Soleil}
- > 1/20 M_{Soleil}< masse < 1/3 M_{Soleil}
- > 1/3 M_{Soleil} < masse < 8 M_{Soleil}
- > masse > 8 M_{Soleil}

masse < 1/20 M_{Soleil}

Température insuffisante pour le démarrage des réactions thermonucléaires

Exemple: Jupiter (1/1000eme M_{Soleil})

masse < 1/3 M_{Soleil}

Réaction $H \rightarrow He$

Masse insuffisante

Température insuffisante pour démarrer la consommation de He

1/3 M_{Soleil} < masse < 8M_{Soleil}

Réaction $H \rightarrow He$

Réaction He \rightarrow C Géante rouge

Masse insuffisante pour démarrer la consommation de C

Naine blanche

1/3 M_{Soleil} < masse < 8M_{Soleil}

Réaction $H \rightarrow He$

Réaction He \rightarrow C Géante rouge

Masse insuffisante pour démarrer la consommation de C

Naine blanche

masse > 8M_{Soleil}

Réaction $H \rightarrow He$ Réaction He \rightarrow C Géante rouge Réactions $C \rightarrow Ne \rightarrow 0 \rightarrow Si \rightarrow Fe$ Supernova

Naissance

Vie de l'étoile

Fin de l'étoile

La masse de l'étoile ne reste pas constante

- · Vent solaire
- Ejections de couche lors de transitions réactionnelles

Evolution parfois complexes

Echange de matière dans les systèmes stellaires multiples

Etoile variable Mira Ceti

Etoiles instables Nova récurrentes

Supernovae, novae, étoiles instables

→ Ejection de matière

Nébuleuses

Nébuleuses

Nébuleuses

Nébuleuses

Nébuleuses

Nébuleuses

Au début de l'Univers uniquement H, He, Li (nucléo-synthèse primordiale)

> Tous les éléments plus massiques que Li ont été créés au coeur des étoiles

Naissance des étoiles et des planètes

Initialement nuages de H, He et Li puis nuages de H, He, C, O, N, Fe

Naissance des étoiles et des planètes

Nous sommes des poussières d'étoiles