Systèmes Radar 24 – 25 juin 2021

Bureau d'études Radar Doppler MDU1130

Franck Daout fdaout@parisnanterre.fr

https://cva-geii.parisnanterre.fr/

CFD - Bourges

Mode Doppler

Fréquence Doppler

Bande S (2800MHz)

 $f_d \sim 1 \text{ kHz} / 40 \text{ m/s}$

Fréquence Doppler

$$\mathbf{f_d} = \frac{2V}{\lambda}$$

Fréquence Doppler

Cible qui s'éloigne

- Tgt1 : zero Doppler
- Tgt2 : Max Doppler
- Tgt3 : Valeur intermédiaire

Radar Doppler bande X

- Le principe d'un radar est d'illuminer une cible à l'aide d'une onde électromagnétique. Celle-ci reflète une partie de l'énergie et est donc détectable par la partie réception du Radar. L'écho renvoyé par la cible est de même fréquence que le signal émis si la cible est immobile mais de fréquence différente si celle-ci est en mouvement. Cette caractéristique constitue l'effet Doppler.
- La variation de la fréquence étant proportionnelle à la vitesse de l'objet, il est donc possible de mesurer cette vitesse.

Radar Doppler bande X

X-Band Doppler Motion Detector Units Model Numbers MDU1100/20/30

Model	Country	Frequency
MDU 1100	UK	10.587 GHz
	UK Ceiling Mount	10.587 GHz
MDU 1120	Belgium, Holland, Italy	10.525 GHz
	Ceiling mount version	10.525 GHz
MDU 1130	Italy, France	9.90 GHz

BE radar

MDU 1130

Transmitter

See table over
3 MHz
13 dBm EIRP
+5 V ± 0.25 V
60mA (max)
40mA (typ)
<-30dBm

Pulse Mode Operation

Average Current (5% DC)	2 mA typ.
Pulse Width (Min.)	5 μsecs
Duty Cycle (Min)	1%

Coverage Pattern

Receiver (3Hz to 80Hz bandwidth)

Sansitivity (10 dR S/N ratio)

Sensitivity (10 db 5/14 fatio)	-00 dbiii
Noise	< 10 μV
Antenna : standard	
Gain	8 dBi
-3 dB Beamwidth	
E Plane	72°

-86 dRm

36°

Antenna: ceiling mount

H Plane

Gain 5 dBi

MDU 1130

Block diagram and connection

Ne pas dépasser la tension d'alimentation → vérifier la valeur de votre alimentation

MDU 1130 : Étude de la datasheet

- A partir des descriptions constructeurs, déterminer :
 - La fréquence d'émission, en déduire la longueur d'onde
 - Le gain des antennes
 - La sensibilité du récepteur pour un RSB de 10dB et pour un RSB de 0dB
 - La puissance émise

MDU 1130 : Calcul de la portée

- En utilisant vos notions sur la SER, déterminer la SER d'une plaque métallique carré de 9cm de coté
- A partir de l'équation radar, déterminer la portée du système radar étudié
- En supposant que la cible ce déplace entre 0.001m/s et 10m/s, déterminer la plage de fréquence Doppler

Expérimentation: le banc que l'on doit fabriquer

Lab. 1: Atténuation distance (1/3)

Attention au branchement de la sonde

Powermeter (milliwattmètre)

Caractéristique de la sonde

Sonde du powermeter

Déterminer les caractéristiques de la sonde :

- Bande de fréquence
- Puissance minimum, maximum

Lab. 1: Atténuation distance (2/3)

La puissance reçue par le récepteur dépend de la distance émetteur-récepteur. La puissance reçue P_r est inversement proportionnelle au carré de la distance parcourue ce qui se traduit par l'expression:

$$P_r = \frac{K}{L^2}$$

où L est la distance entre les deux antennes.

Question

- 1. Quelle est l'unité de K?
- 2. Définissons une distance de référence L_{ref} avec $P_{ref} = P_r(L_{ref})$ la puissance mesurée à cette distance. Il est possible d'exprimer la puissance P_r à une distance L en fonction de P_{ref} :

$$P_r = P_{ref} \frac{L_{ref}^2}{L^2}$$

3. Justifier que cette relation peut s'écrire:

$$P_r(L)_{dBm} = P_{ref(dBm)} - 20\log(\frac{L}{L_{ref}})$$

Comme le montre cette équation, une multiplication par 2 de la distance entraıne une perte de 6dB et une multiplication par 10 une atténuation de 20dB.

Lab. 1: Atténuation distance (3/3)

Distance L qui varie

1. Remplir le tableau ci-dessous

L	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
L/L_{ref}	1	1.5	2	2.5	3	3.5	4	4.5	5
P_r (dBm)									

Question

- 1. Tracer* la caractéristique $P_r(dBm)$ en fonction de $20\log\left(L/L_{ref}\right)$.
- 2. Comparer à la théorie.

Lab. 2: Mesure du diagramme d'antenne (1/3)

L'antenne est le dispositif qui assure la transition entre la ligne de propagation et l'espace libre dans lequel les ondes vont se propager, et inversement. Le diagramme de rayonnement de l'antenne donne la répartition dans l'espace de l'énergie rayonnée ou reçue par l'antenne. Il donc peut être défini par le rapport :

$$r(\theta) = \frac{P_r(\theta)}{\max(P_r(\theta))}$$

Où P_r est la puissance mesurée en sortie de l'antenne utilisée en réception et θ l'angle permettant de repérer l'orientation de l'antenne. Généralement l'angle $\theta=0$ correspond à $P_r=\max(P_r(\theta))$.

Ce diagramme est le plus souvent exprimé en dB:

$$r_{dB}(\theta) = 10\log(r(\theta))$$

Coverage Pattern

Diagramme polaire du capteur MDU1130- figure de gauche, plan E; figure de droite, plan H.

Il y a plusieurs représentations graphiques possible. Le diagramme de rayonnement peut être représenté en coordonnées polaires ou en coordonnées cartésiennes.

Le diagramme d'antenne est généralement représenté dans deux plans orthogonaux liés à la structure de l'onde (onde TEM) :

- plan E
- plan H

Lab. 2: Antenne (2/3)

Le diagramme d'antenne du radar est réalisé en tournant le module radar. Le pas de rotation est de 20°. Pour chaque position, il suffit de relever la puissance reçue sur le powermeter.

La distance entre l'antenne et le radar est de 20cm

Faire les mesures et remplir le tableau suivant

θ (deg)	0				
P_r (dBm)					

- Représenter le diagramme polaire de l'antenne (cf diagramme polaire*).
- En déduire, l'ouverture à -3dB

Lab. 2 : Antenne (3/3)

L'antenne du radar est à la position 60°

Lab. 3: Mesure de la vitesse (1/2)

Tension u(t)

Durée d'acquisition L'antenne de réception est remplacée par une cible. Il existe différente taille de cible. Dans cette partie choisir la cible qui présente la plus grande surface. La nature de la cible modifie l'amplitude du champ réfléchie.

La mesure de la vitesse est réalisée en observant l'oscilloscope

Dans la mesure du possible, déplacer la cible dans l'axe du radar avec une vitesse constante.

Exemple de maquette permettant de mesurer la vitesse

Équation de la vitesse en fonction de H:

$$v = \sqrt{2gH}$$

$$\frac{1}{2}mv^2 = mgH - Fd$$
F force de frottement
$$d = \sqrt{H^2 + L^2}$$

Variation de la vitesse en fonction de la hauteur

$$v = \sqrt{2gH}$$

Les forces de frottement sont considérées comme nulles

Cible qui se rapproche dans l'axe radar (signal IF)

Cible qui s'éloigne dans l'axe radar (signal IF)

Cible qui ce déplace à 90° de l'axe radar (Signal IF)

