Floating Point I

CSE 351 Autumn 2021

Instructor: Teaching Assistants:

Justin Hsia Allie Pfleger

Atharva Deodhar

Francesca Wang

Joy Dang

Monty Nitschke

Anirudh Kumar Assaf

Celeste Zeng

Hamsa Shankar

Julia Wang

Morel Fotsing

Assaf Vayner

Dominick Ta

Isabella Nguyen

Maggie Jiang

Sanjana Chintalapati

Relevant Course Information

- hw5 due Wednesday, hw6 due Friday
- Lab 1a due tonight at 11:59 pm
 - Submit pointer.c and lab1Asynthesis.txt
 - Make sure there are no lingering printf statements in your code!
 - Make sure you submit something to Gradescope before the deadline and that the file names are correct
 - Can use late day tokens to submit up until Wed 11:59 pm
- Lab 1b due next Monday (10/19)
 - Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt

Lab 1b Aside: C Macros

- C macros basics:
 - Basic syntax is of the form: #define NAME expression
 - Allows you to use "NAME" instead of "expression" in code
 - Does naïve copy and replace before compilation everywhere the characters "NAME" appear in the code, the characters "expression" will now appear instead
 - NOT the same as a Java constant
 - Useful to help with readability/factoring in code
- You'll use C macros in Lab 1b for defining bit masks
 - See Lab 1b starter code and Lecture 4 slides (card operations) for examples

Reading Review

- Terminology:
 - normalized scientific binary notation
 - trailing zeros
 - sign, mantissa, exponent ↔ bit fields S, M, and E
 - float, double
 - biased notation (exponent), implicit leading one (mantissa)
 - rounding errors
- Questions from the Reading?

Review Questions

$$2^{-1} = 0.5$$

 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

* Convert 11.375_{10} to normalized binary scientific notation 8+2+1+6.25+0.125

$$2^{3}+2^{4}+2^{6}+2^{-2}+2^{-3}=1011 \cdot 011 \cdot 2^{3}$$

• What is the value encoded by the following floating point number?

- bias = $2^{\frac{8}{W-1}} 1 = 2^{\frac{7}{4}} 1 = 12^{\frac{7}{4}}$
- exponent = $E bias = 2^{7} 127 = 128 127 = 1$
- mantissa = $1.M = 1.110...0_2$

$$(-1)$$
 × 1.11₂ × 2¹ = 11.1₂ = $[+3.5]$

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g., 3.14159)
 - Very large numbers (e.g., 6.02×10²³)
 - Very small numbers (e.g., 6.626×10⁻³⁴)
 - Special numbers (e.g., ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

* Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?

$$00.0000_{z} = 0$$

11.111 =
$$4-2^{-4}$$

Can't represent anything in-between!

10.0001 = $2+2^{-4}$

Binary Scientific Notation (Review)

- Normalized form: exactly one digit (non-zero) to left of binary point
- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

IEEE Floating Point

- IEEE 754 (established in 1985)
 - Standard to make numerically-sensitive programs portable
 - Specifies two things: representation scheme and result of floating point operations
 - Supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast competing
 - Scientists mostly won out:
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

 FLOPs

 used in computer benchmarks

Floating Point Encoding (Review)

- Use normalized, base 2 scientific notation:
 - $\pm 1 \times Mantissa \times 2^{Exponent}$ Value:
 - $(-1)^S \times 1.M \times 2^{(E-bias)}$ Bit Fields:
- * Representation Scheme: (3 separate fields within 32 bits)
 - Sign bit (0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field (Review)

Use biased notation

- Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
- Representable exponents roughly ½ positive and ½ negative
- $Exp = E bias \leftrightarrow E = Exp + bias$
 - Exponent 0 (Exp = 0) is represented as $E = 0b \ 0111 \ 1111 = 2^{3} 1$

- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement hardware

The Mantissa (Fraction) Field (Review)

- Note the implicit leading 1 in front of the M bit vector
 Example: 0b 0011 1111 1100 0000 0000 0000 0000
 - is read as $1.1_2 = 1.5_{10}$, not $0.1_2 = 0.5_{10}$
 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}

 - High values near M = 0b1...1 are close to 2^{Exp+1}

Normalized Floating Point Conversions

- ❖ FP → Decimal
 - 1. Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign (-1)^S.
 - 4. Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ◆ Decimal → FP
 - 1. Convert decimal to binary.
 - 2. Convert binary to normalized scientific notation.
 - 3. Encode sign as S(0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Practice Question

Convert the decimal number -7.375 into floating point representation

representation
$$-7.375 = -(4+2+1+0.25+0.125) = -(2+2+2^{2}+2^{2}+2^{-2}+2^{-3}) = -111.011_{2} = -1.1101_{2} \times 2^{2}$$

$$S = 1, E = 2+127 = 129 = 061000 0001, M = 06110140...0$$

$$061100 00001110 11000...0 = 0 \times COEC 0000$$

Exploration Question

* Find the sum of the following binary numbers in normalized scientific binary notation:

$$\begin{array}{c} \text{(2) sum mantissas} \\ \text{(3) normalize} \\ \text{(3) normalize} \\ \text{(4) (1) } \text{(2)} \\ \text{(3) normalize} \\ \text{(4) (1) } \text{(2)} \\ \text{(4) (1) } \text{(2)} \\ \text{(4) (1) } \text{(2)} \\ \text{(5) (1) } \text{(2)} \\ \text{(4) (1) } \text{(2)} \\ \text{(5) (1) } \text{(2) } \text{(3) } \text{(4) } \text{(4) } \text{(4) } \text{(5) } \text{(4) } \text{(4)$$

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$, bias = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Current Limitations

- * Largest magnitude we can represent? F=061111 1111, M=061...1
- * Smallest magnitude we can represent? E= 06000 000, M=060...0
 - Limited range due to width of E field
- ♦ What happens if we try to represent 2⁰ + 2⁻³⁰? 1.0...
 Pounding due to limited precision: stores 2⁰

Rounding due to limited precision: stores 2⁰

M stores first 23 zeros

29 zeros

- There is a need for special cases
 - How do we represent the value zero? #±1.M ×2 E-bias
 - What about ∞ and NaN? ????

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1} 1)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding