Electrónica Digital y Microcontroladores Tema 4.1: Lógica Secuencial - Latch y Flip-Flops

Josué Meneses Díaz <u>josue.meneses@usach.cl</u> Universidad de Santiago de Chile 05-06-2024

Objetivos

- Diferenciar entre circuitos combinacionales y secuenciales.
- Estudiar el funcionamiento de los principales Latch
- Diferenciar entre un Latch y un Flip-Flop.
- Comprender el funcionamiento de los principales Flip-Flops (FF)
 - Flip-Flops D
 - Flip-Flops JK
 - Flip-Flops T
- Realizar análisis de circuitos secuenciales síncronos.

Lógica secuencial vs Lógica combinacional

Circuitos combinacionales

Su salida depende exclusivamente de las entadas del circuito:

- Sumadores
- Restadores
- Multiplexores
- Etc.

Problema: No tienen memoria

Solución : Lógica secuencial

Lógica secuencial

Circuitos lógicos que permiten almacenar bits de datos de forma temporal. Son utilizados en conjunto con los circuitos combinacionales para ampliar su funcionamiento

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

LATCH

Latch

¿Qué es un Latch?

- Es el elemento base de los circuitos secuenciales.
- Permiten almacenar temporalmente un bit de información.
 - Necesitan de alimentación para mantener la información.
- Son utilices para construir circuitos asíncronos.
 - No dependen de un reloj
- Empaquetados en CI.

SN74LS75. Latch tipo D cuadruple. SN74LS75 - datasheet TI

Latch SR

Ent	radas	Salidas		Comentario
А	В	Q	\overline{Q}	
1	0			
1	1			
0	1			
1	1			
0	0			

Latch SR

Ent	radas	Salidas		Comentario
А	В	Q	\overline{Q}	
1	0	1	0	SET
1	1	1	0	MANTIENE
0	1	0	1	RESET
1	1	0	1	MANTIENE
0	0	1	1	NO DESEADO

El siguiente estado Q(t+1) depende del estado de Q(t)

Latch SR

Ent	radas	Salidas		Carrantaria
А	В	Q	\overline{Q}	Comentario
1	0	1	0	Almacena A en Q
1	1	1	0	Mantiene Q
0	1	0	1	Restablece la salida Q
1	1	0	1	Mantiene Q
0	0	1	1	No permitido

• Poseen una entrada de

- A = Set (Establece/selecciona)
- B = Reset (Reestablece o Resetea)

• Problema:

Estado no permitido (deseado)

$$Q = \overline{Q}$$

Latch SR con NOR

Ent	radas	Salidas		Comentario
S	R	Q	\overline{Q}	
1	0			
0	0			
0	1			
0	0			
1	1			

Latch SR con NOR

Ent	radas	Salidas		Comentario
S	R	Q	\overline{Q}	
1	0	1	0	SET
0	0	1	0	MANTIENE
0	1	0	1	RESET
0	0	0	1	MANTIENE
1	1	0	0	NO DESEADO

Tabla de función SR con NOR

Ent	radas	Salidas		Comentario
S	R	Q	\overline{Q}	
1	0	1	0	SET
0	0	1	0	MANTIENE
0	1	0	1	RESET
0	0	0	1	MANTIENE
1	1	0	0	NO DESEADO

Ent	Entradas Salidas		Comentario
S	R	Q(t+1)	
1	0	1	Almacena S en Q
0	0	Q(t)	Mantiene el valor de Q
0	1	0	Restablece el valor de Q
1	1	0	NO DESEADO

Tabla de función SR con NAND

Ent	radas	Salidas		Comentario
S	R	Q	\overline{Q}	
1	0	1	0	SET
0	0	1	0	MANTIENE
0	1	0	1	RESET
0	0	0	1	MANTIENE
1	1	0	0	NO DESEADO

Ent	Entradas Salidas		Comentario
S	R	Q(t+1)	
1	0	1	Almacena S en Q
1	1	Q(t)	Mantiene el valor de Q
0	1	0	Restablece el valor de Q
0	0	0	NO DESEADO

Latch RS

No es más que un circuito con realimentación entre la puerta NAND2 y la puerta NAND1 • ¿Qué hace especial esta configuración de puertas lógicas?

Aplicación Latch SR

Oscilación generada por un interruptor conectado a un circuito digital. Electrónica digital - J. W. Bignell

Latch RS con entrada Control

Eı	ntrac	las	Salidas		Comentario
clk	S	R	Q	\overline{Q}	
0	Χ	Χ			
1	1	0			
1	1	1			
1	0	1			
1	1	1			
1	0	0			

Latch RS con entrada Control

Eı	ntrac	las	Salidas		Comentario
clk	S	R	Q	\overline{Q}	
0	Х	Х	Х	Х	Sin cambio
1	1	0	1	0	Set
1	0	0	1	0	Mantiene
1	0	1	0	1	Reset
1	0	0	0	1	Mantiene
1	1	1	1	1	No deseado

Latch D

• Entrada C : Habilita puertas 3 y 4

Ent	radas	Sa	lidas	Comentario
С	D	Q	\overline{Q}	
	Х			
	1			
	0			

Latch D - Aplicación

Bignell, James W., Robert L. Donovan, y Gerardo Urbina Medel. *Electrónica digital*, 1997.

Latch RS, RS con E y D

Entrada Preset (Preestablecimiento)

- Se utiliza para iniciar el Latch/Flip-Flop en un estado definido.
- Preset = 0: Establece un valor de Q = 0 y $\overline{Q} = 1$ independiente de los valores de C y D.

Preset = 1: Latch normal.

6/5/2024

¿Cuál es el problema con los Latch?

Señal de reloj – Pulsos cuadrados

RONALD, J., WIDMER TOCCI, S. NEAL, y GREGORY L. MOSS. SISTEMAS DIGITALES: principios y aplicaciones . Pearson Educacion, 2007.

Tren de pulso periódico ⇒ reloj (clk)

¿Cuál es el problema con los Latch?

Metaestabilidad

- Siempre presente en los circuitos lógicos.
- Existe en los relojes un tiempo de preparación t_{setup} antes de su correcto funcionamiento

Horowitz, Paul, y Winfield Hill. *The art of electronics*. Cambridge Univ. Press, 2015.

¿Cuál es el problema con los Latch?

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

- La metaestabilidad siempre estará presente.
 - Genera mayor tiempo de procesamiento.
 - Queremos disminuir lo más posible los tiempos de acción del reloj (clk).
- Los Flip-Flop son arreglos de Latch que permiten utilizar los "bordes" (flancos) de la señal de reloj para controlar las señales
- Veremos dos formas de reducir este problema

método 1

Detectores de flanco

Método 2

Flip-Flop D

- Flip-Flop D utilizando Latch D en cascada.
- El primer Latch es denominado Amo o Master
- El segundo Latch es denominado Esclavo o Slave.
- Se utiliza un inversor para invertir el reloj.

Mano, M. Morris. Diseño digital. Pearson Educación, 2003

Simbología

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

Flip-Flop JK

J	K	Q(t+1)	Comentario
1	0		
0	1		
0	0		
1	1		

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

Flip-Flop JK

J	K	Q(t+1)	Comentario
1	0	1	Set
0	1	0	Reset
0	0	Q(t)	Mantiene
1	1	$ar{Q}(t)$	Complementa

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

Flip-Flop T

Т	Q(t+1)	Comentario
0		
1		

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

Flip-Flop T

Т	Q(t+1)	Comentario
0	Q(t)	Mantiene
1	$ar{Q}(t)$	Complementa

Mano, M. Morris. Diseño digital. Pearson Educación, 2003.

Ecuación/tabla característica

D	Q(t+1)	Comentario
0	0	Restablece
1	1	Establece

$$Q(t+1) = D$$

J	K	Q(t+1)	Comentario
0	0	Q(t)	mantiene
1	0	1	Establece
0	1	0	Reestablece
1	1	$\overline{Q(t)}$	Complementa

$$Q(t+1) = J\overline{Q} + \overline{K}Q$$

Т	Q(t+1)	Comentario
0	Q(t)	mantiene
1	0	Complementa

$$Q(t+1) = T \oplus Q$$

$$Q(t+1) = T\overline{Q} + \overline{T}Q$$

Resumen

- Lógica secuencial permite almacenar bit de información
- Los Latch son la configuración más simple de retener estados. Existen tres configuraciones básicas:
 - RS
 - RS con Enable
 - D
- Los Latch poseen en su implementación:
 - Desincronización.
 - Metaestabilidad.
- Los Flip-Flop
 - D
 - JK
 - T
- Tabla característica y Ecuación característica.

Resumen

- Los Flip-Flop funcionan con señales de reloj.
- Utilizan los flancos de bajada/subida
- Los tipos básicos de Flip-Flops son:
 - D
 - JK
 - T
- Cada uno posee una Tabla característica y Ecuación característica que describe su funcionamiento.

Simulación

- Construir en Logisim-evolution cada uno de los Latch y FF vistos en clases.
 - Latch SR con NOR
 - Latch SR con NOR
 - Latch SR con entrada de control
 - Latch D
 - FlipFlip D
 - FlipFlip JK
 - FlipFlip T

Referencias y Material Complementario

- Capitulo 5. RONALD, J., WIDMER TOCCI, S. NEAL, y GREGORY L. MOSS. SISTEMAS DIGITALES: principios y aplicaciones. Pearson Educacion, 2007
- Capitulo 5. Mano, M. Morris. Diseño digital. Pearson Educación, 2003.
- Capitulo 7 y 8. Bignell, James W., Robert L. Donovan, y Gerardo Urbina Medel. Electrónica digital, 1997.
- Capitulo 13. Schilling, Donald L., y Charles Belove. «Circuitos electrónicos: discretos e integrados», 1993.
- Chapter 10.4. Horowitz, Paul, y Winfield Hill. *The art of electronics*. Cambridge Univ. Press, 2015.
- Institute, REDS. reds-heig/logisim-evolution. Java, 2020. https://github.com/reds-heig/logisim-evolution.
- Schemdraw documentation SchemDraw 0.7.1 documentation.