DPI for $\alpha - z$ Rényi divergence

Anna Jenčová

November 23, 2023

Let ψ be a faithful normal state on a von Neumann algebra \mathcal{M} . We will prove the following inequality:

$$\|h_{\psi \circ \gamma}^{\frac{1}{2p}} b h_{\psi \circ \gamma}^{\frac{1}{2p}}\|_{p} \le \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}}\|_{p} \tag{1}$$

for all $p \in [1/2, 1]$, all $b \in \mathcal{N}^+$ and any unital positive map $\gamma : \mathcal{N} \to \mathcal{M}$ (Eq. (19) in [2]). This then implies DPI for the $\alpha - z$ -Rényi divergence for $\alpha/2, \alpha - 1 \le z \le \alpha$.

Let γ_{ψ}^{*} be the Petz dual of γ with respect to ψ , then its predual satisfies

$$(\gamma_{\psi}^*)_*(h_{\psi\circ\gamma}^{1/2}bh_{\psi\circ\gamma}^{1/2}) = h_{\psi}^{1/2}\gamma(b)h_{\psi}^{1/2}$$

(this is eq. (21) in [2]). Put $h_{\omega} := h_{\psi \circ \gamma}^{1/2} b h_{\psi \circ \gamma}^{1/2} \in L_1(\mathcal{N})^+$. We then have, using Thm. 4.1 in [1]

$$\begin{aligned} \|h_{\psi}^{\frac{1}{2p}}\gamma(b)h_{\psi}^{\frac{1}{2p}}\|_{p}^{p} &= \|h_{\psi}^{\frac{1-p}{2p}}(\gamma_{\psi}^{*})_{*}(h_{\omega})h_{\psi}^{\frac{1-p}{2p}}\|_{p}^{p} &= \tilde{Q}_{p}((\gamma_{\psi}^{*})_{*}(h_{\omega})\|(\gamma_{\psi}^{*})_{*}(h_{\psi\circ\gamma})) \\ &\geq \tilde{Q}_{p}(h_{\omega}\|h_{\psi\circ\gamma}) = \|h_{\psi\circ\gamma}^{\frac{1-p}{2p}}h_{\omega}h_{\psi\circ\gamma}^{\frac{1-p}{2p}}\|_{p}^{p} &= \|h_{\psi\circ\gamma}^{\frac{1}{2p}}bh_{\psi\circ\gamma}^{\frac{1}{2p}}\|_{p}^{p}. \end{aligned}$$

References

- [1] A. Jenčová, Rényi relative entropies and noncommutative L_p -spaces II, Ann. Henri Poincaré 22, 3235–3254 (2021)
- [2] Shinya Kato, On α z-Rényi divergence in the von Neumann algebra setting, arXiv:2311.01748.