MATH 287 HOMEWORK 6

ANDREW MOORE

Date: October 8, 2021.

Exercise 1. The derivative of x^2 is 2x.

Proof. Let $f(x) = x^2$. Using the limit definition of derivative, we have

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 - x^2 + 2xh + h^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh + h^2}{h}$$

$$= \lim_{h \to 0} \frac{2xh}{h} + \frac{h^2}{h}$$

$$= \lim_{h \to 0} 2x + h$$

$$= 2x + 0$$

$$= 2x.$$

Exercise 2. Project 6.9. On $\mathbf{Z} \times (\mathbf{Z} - \{0\})$ we define the relation $(m_1, n_1) \sim (m_2, n_2)$ if $m_1 n_2 = n_1 m_2$. Prove that the relation defined in the book is transitive.

Proof.

Exercise 3. Prop. 6.17. Let $m \in \mathbf{Z}$. This number m is even, iff m^2 is even.

Proof. Assume that m is even, i.e. $2 \mid m$. This means that m = 2n for some $n \in \mathbf{Z}$. So, by the definition of powers we can write

$$m^2 = (2n)^2 = 4n^2 = 2 \cdot (2n^2).$$

Because n is an integer, the term $2n^2$ is also an integer, and since it is being multiplied by 2, we know the product is even.

Conversely, assume that m is not even. This means that m is odd, and we can write m=2q+1 for some $q\in\mathbf{Z}$. Again, by the definition of powers we have

$$m^2 = (2q+1)^2 = 4q^2 + 4q + 1 = 2(2q^2 + 2q) + 1.$$

Let $z = (2q^2 + 2q)$. We know that the integers are closed under multiplication, and thus the product of 2z is also an integer. Therefore, we have

$$m^2 = 2z + 1,$$

which we know must be odd (Proposition 6.15).

We have shown that if m is even, m^2 must also be even. Additionally, we have shown that if m is odd, m^2 must also be odd. This means that m is even if and only if m^2 is even.

Exercise 4. Explain the proof of Proposition 6.29(i). The textbook gives a proof of Proposition 6.29(i). Rewrite the proof in more detail and with more explanation.

Answer.