Reconsidering the Milky Way's Thick Disk: What We Can Learn from Observations & Simulations

Sarah Loebman
University of Washington
2/13/2013

Rok Roškar, Victor P. Debattista, Željko Ivezić, Thomas R. Quinn, & James Wadsley

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

What sort of distribution should we expect?

Thick Disks

- Ubiquitous Feature in Spiral Galaxies
- Fossil Record of Violent Past?
- Passively Evolving via Secular Processes?

Internal vs External

Early vs Ongoing

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

	THIN	THICK
Scale Height	270 pc	1200 pc
<[Fe/H]>	-0.2 dex	-0.7 dex (1.5 kpc)
<v<sub>Φ></v<sub>	-220 km/s	-175 km/s (1.5 kpc)

Should we consider these properties together or separately?

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

4 Theories of Thick Disk Formation

- Violent Relaxation (Jones & Wyse 1983) thin disk rapid heating
- Direct Accretion (Statler 1988)

 satellite stars
- Heating by Substructure (Quinn 1993) thin disk heated by dark matter halos
- Radial Migration (Sellwood & Binney 2002) thin disk redistribution by spiral structure

Violent Relaxation

Theory: Jones & Wyse 1983

Models: Brook et al. 2004, Bournaud et al. 2009

Direct Accretion of Satellites

Theory: Statler 1988

Model: Abadi et al. 2003

Heating by Substructure

Theory: Quinn (1993)

Models: Kazantzidis et al. (2008), Villalobos & Helmi (2008),

and Villalobos et al. (2010), Bird (2011)

Radial Migration

Theory: Sellwood & Binney (2002)

Models: Roškar et al. (2008), Schönrich (2009), and Bird (2011)

4 Theories of Thick Disk Formation

Violent Relaxation: Early, Internal

Direct Accretion: Ongoing*, External

3. Heating by Substructure: Ongoing*, External

Radial Migration: Ongoing, Internal

Radial Migration

Caused by transient spiral arms

< 200,000 yr timescales inward/outward maintains ellipticity

Not scattering

molecular clouds

bar structure

"heating"

Roškar et al. (2008)

Roškar et al. (2008)

Radial Migration: Thick Disk

- Resonant Interaction works best on stars on Circular Orbits
- Migrated stars conserve J_z & J_R-action
 Maintain Circularity of Orbit
- Migrated Stars experience a Change in Angular Momentum
- Stars moved to larger radii feel less restoring force

Greater/longer excursions in the z direction

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

Roškar et al. Simulations

Studying Disk Formation
with N-body + SPH Simulations

<u>after</u>
the Last Major Merger

Roškar et al. (2008)

Roškar et al. Simulations

CON	PRO
·No Mergers ·No Substructure ·No Stellar Halo Forms ·No Pre-Enrichment ·Gas Infall Non-cosmological	·Very High Resolution (50 pc) ·~3 Million Particles Total ·Each star ~few x 10 ⁴ Msol ·Gas infall physically motivated ·Cooling gas injects dynamically cool stars into the system ·Stellar Formation/Feedback Comparable to Observations ·Fully Self-Consistent ·Complete Modeling of Dynamics

N-body Simulations with Resolution Sufficient Enough to Detect Radial Migration!

Loebman et al. (2011)

R [kpc]	N1 $[M_{\odot}/pc^3]$	h1 [pc]	$N2 \left[M_{\odot}/pc^3 \right]$	h2 [pc]
2 - 4	0.638	239	1.000	266
4 - 6	0.237	316	0.044	763
7 - 9	0.098	381	0.014	913
9 - 12	0.035	444	0.004	1197

Roškar et al. Simulations: Chemistry

- Raiteri et al. (1996) Oxygen Abundances
- SNII Mostly Produce Oxygen (Hoffman et al. 1999)

Oxygen Proxy for α-elements

- SNIa Iron Abundance derived from binary model (*Greggio & Renzini, 1983*)
- Metal Diffusion derived from subgrid model of eddy turbulence (Smagorinsky 1963)
- Qualitative not Quantitative Comparisons

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

Assign membership based on?

- If distinct populations, position alone not sufficient
- Kinematics & Position influenced by nonformation driven mechanisms
- Chemistry immutable!

Is [α/Fe] better to consider than [Fe/H]?

Bovy et al. (2012)

	THIN	THICK
Scale Height	270 pc	1200 pc
<[Fe/H]>	-0.2 dex	-0.7 dex (1.5 kpc)
< V _Φ >	-220 km/s	-175 km/s (1.5 kpc)
<[α/Fe]>	0.05 dex	0.3 dex

What Does High [α/Fe] Mean?

- Early vigorous star formation
- How could this have happened?

Accretion of satellites (dSph)

Rapid insitu formation

Inside-out growth & radial migration

In solar cylinder [\alpha/Fe] constrains but doesn't eliminate formation theories

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

Predictions of Radial Migration

- Imprint on density distributions
 varying scale height as a function of radius
- Imprint on chemistry

flattening of [Fe/H] vs R gradient $[\alpha/Fe]$ similar to interior of disk

Need to Consider Radial Distributions!

APOGEE

- Density Distribution (~100,000 stars)
 Uniform sample of a single stellar population (red giants)
- Positions (wide range of R)
 spectroscopic parallax (distance) + I,b
- Chemistry (15 species)
 R = 24,000 (order of magnitude greater than SEGUE)
- Velocities
 radial velocities + proper motions (hipparcos, tycho, GAIA)
- Ages
 Kepler astroseismology

- Background
- Observational Properties (SDSS)
- Theories of Formation
- Radial Migration Simulations (Roškar et al.)
- [α/Fe] (SEGUE)
- Predictions & Future Observations (APOGEE)
- Conclusions & Future Work

Conclusions & Future Work

- Thick Disk Formation Mechanism Still Unknown
- [α/Fe] Provides New Constraints
- Solar Cylinder Data Not Enough
- APOGEE Data Will Provide Chemistry & Radial Information in next 3-5 Years
- In meantime, Cosmological Simulations
 Needed to Parameterize Relative Importance of Each Formation Mechansim