Question Number	Answer	Marks
8 (a)	$AB = 2OA \Rightarrow OC = 3OA$	
	$\overrightarrow{OC} = 3(\mathbf{a} + \mathbf{e}) \Rightarrow \overrightarrow{AB} = 2(\mathbf{a} + \mathbf{e})$	M1A1 (2)
(b)	$\overrightarrow{BE} = \overrightarrow{BA} + \overrightarrow{AO} + \overrightarrow{OE} = -2(\mathbf{a} + \mathbf{e}) - \mathbf{a} + \mathbf{e} = -(3\mathbf{a} + \mathbf{e})$	M1,A1 (2)
(c)	$\overrightarrow{PC} = \overrightarrow{PB} + \overrightarrow{BC} = \frac{3}{5} \times 2(\mathbf{a} + \mathbf{e}) + \mathbf{e}, = \frac{6}{5}\mathbf{a} + \frac{11}{5}\mathbf{e}$	M1A1,A1 (3)
(d)	$\overrightarrow{PQ} = k\overrightarrow{PC} = \frac{k}{5}(6\mathbf{a} + 11\mathbf{e})$	
	$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ} = \mathbf{a} + \frac{2}{5} \times 2(\mathbf{a} + \mathbf{e}) + \frac{k}{5}(6\mathbf{a} + 11\mathbf{e})$	M1A1
	$\overrightarrow{OQ} = \overrightarrow{OE} + \overrightarrow{EQ} = \mathbf{e} + p(\mathbf{a} + \mathbf{e})$	B1
	$\therefore \frac{1}{5} (9+6k)\mathbf{a} + \frac{1}{5} (4+11k)\mathbf{e} = (1+p)\mathbf{e} + p\mathbf{a}$	
	$\frac{1}{5}(9+6k) = p$ $\frac{1}{5}(4+11k) = 1+p$	M1
	Eliminate <i>p</i> to obtain $k = 2$ or eliminate <i>k</i> to obtain $p = \frac{21}{5}$	A1
	$\therefore \overrightarrow{OQ} = \frac{21}{5}\mathbf{a} + \frac{26}{5}\mathbf{e} \qquad \lambda = \frac{21}{5}, \ \mu = \frac{26}{5}$	A1 (6) [13]

Notes

a, e need not be bold or written \underline{a} in students' work but \overline{AB} etc must have the vector arrows when referring to the vector

(a)

M1 for any complete, valid method for obtaining \overrightarrow{AB} in terms of \mathbf{a} and \mathbf{e}

A1 for $\overrightarrow{AB} = 2(\mathbf{a} + \mathbf{e})$ oe **must** be simplified.

(b)

M1 for any complete, valid method for obtaining \overrightarrow{BE} in terms of **a** and **e**

A1 for $\overrightarrow{BE} = -(3\mathbf{a} + \mathbf{e})$ oe **must** be simplified.

(c)

M1 for any complete, valid method for obtaining \overrightarrow{PC} in terms of **a** and **e**. Must include the correct use of the ratio.

A1 for a correct unsimplified expression for \overrightarrow{PC} in terms of **a** and **e**

A1 for
$$\overrightarrow{PC} = \frac{6}{5}\mathbf{a} + \frac{11}{5}\mathbf{e}$$
 oe

(d)

M1 for obtaining \overrightarrow{OQ} in terms of **a** and **e**, using the collinearity of P, Q and C

A1 for an unsimplified correct expression for \overrightarrow{OQ} in terms of **a** and **e**

B1 for a second correct expression for \overrightarrow{OQ} in terms of **a** and **e** using O, E and Q

M1 for equating components in the two expressions

A1 for a correct value for either of the 2 unknowns that were introduced

A1cao for deducing that
$$\lambda = \frac{21}{5}$$
, $\mu = \frac{26}{5}$ need not be shown explicitly

Alternative:

$\overrightarrow{PQ} = 2\overrightarrow{PC} = \frac{2}{5} (6\mathbf{a} + 11\mathbf{e})$	B1Award when $\frac{2}{5}(6\mathbf{a}+11\mathbf{e})$ seen
$\overrightarrow{OQ} = \overrightarrow{OP} + \overrightarrow{PQ} = \mathbf{a} + \frac{4}{5}(\mathbf{a} + \mathbf{e}) + \frac{2}{5}(6\mathbf{a} + 11\mathbf{e})$	M1A1
$=\mathbf{a}\left(1+\frac{4}{5}+\frac{12}{5}\right)+\mathbf{e}\left(\frac{4}{5}+\frac{22}{5}\right)$	M1
$\therefore \overrightarrow{OQ} = \frac{21}{5}\mathbf{a} + \frac{26}{5}\mathbf{e} \ \lambda = \frac{21}{5}, \ \mu = \frac{26}{5}$	A1A1