

Computer Architecture

Spring 2020

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Register Transfer Language (RTL)

Register Transfer Level

If
$$(P = 1)$$
 then $(R2 \leftarrow R1)$

$$P: R2 \leftarrow R1$$

$$T: R2 \leftarrow R1, R1 \leftarrow R2$$

Register Transfer Level

Symbol	Description	Examples		
Letters (and numerals)	Denotes a register	MAR, R2		
Parentheses () Arrow ← Comma,	Denotes a part of a register Denotes transfer of information Separates two microoperations	$R2(0-7), R2(L)$ $R2 \leftarrow R1$ $R2 \leftarrow R1, R1 \leftarrow R2$		

RTL-BUS

$$BUS \leftarrow C$$
, $R1 \leftarrow BUS$

$$R1 \leftarrow C$$

RTL-BUS

RTL- Memory Transfer

Read: DR \leftarrow M[AR]

Write: $M[AR] \leftarrow R1$

RTL- Arithmetic

$$R3 \leftarrow R1 + \overline{R2} + 1$$

Symbolic designation	Description
$R3 \leftarrow R1 + R2$	Contents of R1 plus R2 transferred to R3
$R3 \leftarrow R1 - R2$	Contents of R1 minus R2 transferred to R3
$R2 \leftarrow \overline{R2}$	Complement the contents of R2 (1's complement)
$R2 \leftarrow \overline{R2} + 1$	2's complement the contents of R2 (negate)
$R3 \leftarrow R1 + \overline{R2} + 1$	R1 plus the 2's complement of R2 (subtraction)
$R1 \leftarrow R1 + 1$	Increment the contents of R1 by one
$R1 \leftarrow R1 - 1$	Decrement the contents of R1 by one

RTL- Binary Adder/Subtractor

RTL- Binary Incrementer

RTL- Binary Arithmetic Circuit

Select			Innut			
S_1 S_0 C_{in}		$C_{\rm in}$	Input Y	Output $D = A + Y + C_{in}$	Microoperation	
0	0	0	В	D = A + B	Add	
0	0	1	В	D=A+B+1	Add with carry	
0	1	0	\overline{B}	$D = A + \overline{B}$	Subtract with borrow	
0	1	1	\overline{B}	$D = A + \overline{B} + 1$	Subtract	
1	0	0	0	D = A	Transfer A	
1	0	1	0	D = A + 1	Increment A	
1	1	0	1	D = A - 1	Decrement A	
1	1	1	1	D = A	Transfer A	

RTL- Binary Logic Functions and μop

х	у	F ₀	F_1	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F,	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	1 1 0 0	1	0	1

Boolean function	Microoperation	Name
$F_0 = 0$	<i>F</i> ←0	Clear
$F_1 = xy$	$F \leftarrow A \land B$	AND
$F_2 = xy'$	$F \leftarrow A \wedge \overline{B}$	TD
$F_3 = x$ $F_4 = x'y$	$F \leftarrow A \\ F \leftarrow \overline{A} \land B$	Transfer A
$F_5 = y$	$F \leftarrow B$	Transfer B
$F_6 = x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_7 = x + y$	$F \leftarrow A \vee B$	OR
$F_8=(x+y)'$	$F \leftarrow \overline{A \vee B}$	NOR
$F_9 = (x \oplus y)'$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10} = y'$	$F \leftarrow \overline{B}$	Complement B
$F_{11}=x+y'$	$F \leftarrow \underline{A} \lor \overline{B}$	
$F_{12}=x'$	$F \leftarrow \overline{\underline{A}}$	Complement A
$F_{13}=x'+y$	$F \leftarrow \overline{A} \vee B$	
$F_{14}=(xy)'$	$F \leftarrow \overline{A \wedge B}$	NAND
$F_{15} = 1$	F←all 1's	Set to all 1's

RTL- Binary Logic Circuit

S_1	S_0	Output	Operation
0	0	$E = A \wedge B$	AND
0	1	$E = A \vee B$	OR
1	0	$E = A \oplus B$	XOR
1	1	$E = \overline{A}$	Complement

RTL- Shift Microoperations

Symbolic designation	Description				
R←shl R	Shift-left register R				
$R \leftarrow \operatorname{shr} R$	Shift-right register R				
$R \leftarrow \text{cil } R$	Circular shift-left register R				
$R \leftarrow \operatorname{cir} R$	Circular shift-right register R				
$R \leftarrow ashl R$	Arithmetic shift-left R				
$R \leftarrow a shr R$	Arithmetic shift-right R				

RTL- Shifter Circuit

Select		Outp	out	
S	H_0	H_0 H_1 H_1		<i>H</i> ₃
0	I_R	A_0	A_1	A ₂
1	A_1	A_2	A ₃	I _L

RTL- Arithmetic Logic Shift Unit

