Niveau: Première année de PCSI

COLLE 5 = SUITES NUMÉRIQUES ET FONCTIONS CONTINUES

Questions de cours :

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(u'_n)_{n\in\mathbb{N}}$ et $(v'_n)_{n\in\mathbb{N}}$ trois suites réelles ou complexes et $\lambda\in\mathbb{C}$.

- 1. Démontrer les affirmations suivantes :
 - (a) Si $u_n = o(u'_n)$ et $v_n = o(u'_n)$ alors $u_n + v_n = o(u'_n)$
 - (b) Si $u_n = o(u'_n)$ alors $\lambda u_n = o(u'_n)$
 - (c) Si $u_n = o(u'_n)$ alors $u_n v_n = o(u'_n v_n)$
- 2. Rappeler le théorème de Cesàro et donner sa démonstration
- 3. Démontrer les affirmations suivantes :
 - (a) Si $u_n \sim_{+\infty} u'_n$ alors $u'_n \sim_{+\infty} u_n$
 - (b) Si $u_n \sim_{+\infty} u'_n$ et $v_n \sim_{+\infty} v'_n$ alors $u_n v_n \sim_{+\infty} u'_n v'_n$
 - (c) Si $u_n \sim_{+\infty} u'_n$ alors $\frac{1}{u_n} \sim_{+\infty} \frac{1}{u'_n}$
 - (d) Si $u_n \sim_{+\infty} u'_n$ et $v_n \sim_{+\infty} v'_n$ alors $\frac{u_n}{v_n} \sim_{+\infty} \frac{u'_n}{v'_n}$
- 4. Rappeler la formule de Stirling et donner un équivalent de $\binom{2n}{n}$
- 5. Démontrer la propriété suivante :

Propriété.

f tend vers l en a si et seulement si pour toute suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers a, $(f(u_n))_{n\in\mathbb{N}}$ converge vers l

Suites numériques :

Exercice 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à termes réels strictement positifs telle que $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ converge vers un réel $l\in\mathbb{R}^+$.

- 1. On suppose l < 1 et on fixe $\epsilon > 0$ tel que $l + \epsilon < 1$.
 - (a) Démontrer qu'il existe un entier $n_0 \in \mathbb{N}$ tel que, pour $n \geq n_0$, on a

$$u_n \le (l+\epsilon)^{n-n_0} u_{n_0}$$

- (b) En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.
- 2. On suppose l > 1. Démontrer que (u_n) diverge vers $+\infty$.
- 3. Étudier le cas l=1 (Indication : étudier les suites $(n^{\alpha})_{n\in\mathbb{N}^*}$)

Exercice 2.

Soient (u_n) et (v_n) deux suites réelles convergeant respectivement vers u et v. Montrer que la suite $w_n = \frac{u_0v_n + ... + u_nv_0}{n+1}$ converge vers uv.

(Indication : on coupera ici la somme en 3 en isolant les bords)

Exercice 3.

Soit (u_n) une suite de réels positifs vérifiant

$$u_n \le \frac{1}{k} + \frac{k}{n}$$

pour tous $(k, n) \in (\mathbb{N}^*)^2$.

Démontrer que (u_n) tend vers 0.

Exercice 4.

Démontrer que

- 1. $\ln(n+e^n) \sim_{+\infty} n$
- 2. $b^n a^n \sim_{+\infty} a^n + b^n$, 0 < a < b
- 3. $4\ln(1+\sqrt{n}) \sim_{+\infty} \ln(1+n^2)$

Exercice 5.

Montrer que

$$\sum_{k=1}^{n-1} k! =_{+\infty} o(n!)$$

En déduire que

$$\sum_{k=1}^{n} k! \sim_{+\infty} n!$$

Niveau: Première année de PCSI

Fonctions continues:

Exercice 6.

Soit $f:\mathbb{R}^* \to \mathbb{R}$ la fonction définie par

$$f(x) = x\sqrt{1 + \frac{1}{x^2}}$$

La fonction f admet-elle un prolongement par continuité en 0?

Exercice 7.

Donner si elles existe les limites suivantes :

1.
$$\lim_{x \to +\infty} \frac{\lfloor 2x \rfloor}{\lfloor x \rfloor}$$

3.
$$\lim_{x \to 0} x \left| \frac{1}{x} \right|$$

$$2. \lim_{x \to 0} \left| \frac{1}{x} \right|$$

$$4. \lim_{x \to 0} x^2 \left| \frac{1}{x} \right|$$

Exercice 8.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$$

Montrer que la fonction f est continue sur \mathbb{R} . (Indication : Étudier f(x+1))

Exercice 9.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon} \end{cases}$$

Montrer que la fonction f est discontinue en tout point de \mathbb{R} .

Exercice 10.

Soit $f: \mathbb{R} \to \mathbb{R}$ périodique et admettant une limite finie l en $+\infty$. Montrer que f est constante.

Exercice 11.

Étudier les limites suivantes

1.
$$\lim_{x \to +\infty} \frac{e^{3x} + 2x + 7}{e^x + e^{-x}}$$

$$\lim_{x \to 0} \frac{\sqrt{1+x} - \left(1 + \frac{x}{2}\right)}{x^2}$$

Exercice 12.

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = \begin{cases} 0 & \text{Si } x \text{ est irrationnel ou } x = 0. \\ \frac{1}{q} & \text{Si } x = \frac{p}{q}, \text{ avec } p \in \mathbb{Z}, q \ge 1 \text{ et } pgcd(p,q) = 1 \end{cases}$$

Montrer que la fonction f est continue sur $\mathbb{R}\setminus\mathbb{Q}$, discontinue sur \mathbb{Q}^*