LaPIS Diagnostic Test Workbook - Mathematics

Name : Dharun Anand A

Class: 7

Section : C

School : AKV Public School

Login ID : AKV170

Dharun Anand A's Performance Report

Score: 28/40 Percentage: 70.0%

Dharun Anand A's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Data handling

Topics to be Improved	
Chance of probability	Basis of probability
Arithmetic mean, mode and median	Mean, Median and Mode

and median	Mean, Median and Mode
Hi, here in this video you	will learn Basics of probability
Question: 1	
Identify the sure events and im	possible events
(i) The sun rises in the west.	
(ii) Water is colourless.	
(iii) Clock rotates in clock wis	se direction.
(iv) Ball is square in shape.	
Answer:	
Events that cannot occur are c Here, The sun rises in the west event.	alled (sure/ impossible) events. alled (sure/ impossible) events. a is event. Water is colourless is ection is event. Ball is square in shape is
Question: 2	
Probability of sure events is	(greater / smaller) than probability of impossible events
Answer:	
	=(0/ 1/ any number). = (0/ 1/ any number). event Probability of impossible event.
Question: 3	
Raju has pencil, an eraser, a so probability of getting a pen fro	cale, sharpener, colour pencil and protractor in his box. What is the om his box.

 $\underline{Answer:}$

Does Raju have p	e pen in his box, of getting pen from h	(Yes/ N		0/1)		
Hi, here in th	nis video you will le	earn M	Iean, Mo	edian, N	Mode	
Question: 4						
Find the mode of	f the following data: 5	, 15, 23,	5, 32, 44,	72, 55, 6, 3	3, 5, 65, 45,	67, 24, 19 and 98.
$\underline{Answer:}$						
Arranging the da	ber that occurs ta in ascending order: occurs most number of					
Question: 5						
Which shape con	tains median of the gi	ven data	a 3, 5, 6, 2,	7, 9, 6, 4	and 1	
ascending or desc Arrange the given	(first/cen cending order. n data in ascending or the given data is	der :				ŭ
Question: 6						
	Marks scored	100	90	80	70	
	Number of students	4	5	2	1	
$Mean = \underline{\hspace{1cm}},$, Median = ar	nd Mode	· =			
Answer: Mean =	of all observation umber of observation					
Therefore, mean Arrange the data	observation = = in ascending order : _		· 		ation =	
Here, $median = 1$, mode	e =				

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles	

Hi, here in this video you will learn Basics of Transversal angle

Question: 7

......

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

$\underline{Question \colon 8}$

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
\angle a and \angle g , \angle b and \angle h,	\angle a and \angle e, \angle b and \angle f,

Question: 9

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

	(Vertex/ edges/ faces)
Answer:	
has two end point (line/line segment/ray).	
Ais a point where two or more line segments meet(Vertex/ edges/ faces).
Mark the vertices in the diagram,	
$Question: \ 11 $	
Mark and find the number of vertices, edges and faces in a cube.	
Answer:	
Answer: Mark the vertex, edges and faces in a cube.	
Mark the vertex, edges and faces in a cube.	

How many vertices, edges and faces does dices have?

The shape of dice is Dices have vertices, edges and faces. Hi, here in this video you will learn Pythagoras property Question: 13 In a right angled triangle, square of the = sum of the squares of the legs. Answer: Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	Answer:				
Hi, here in this video you will learn Pythagoras property Question: 13 In a right angled triangle, square of the = sum of the squares of the legs. Answer: Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	The shape of dice is	_•			
Question: 13 In a right angled triangle, square of the = sum of the squares of the legs. Answer: Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	Dices have vertices,	$_{-}$ edges and $_{}$	faces.		
In a right angled triangle, square of the = sum of the squares of the legs. Answer: Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	Hi, here in this video you wil	ll learn Pytha g	goras proper	rty	
legs. Answer: Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	<i>Question:</i> 13	• • • • • • • • • • • • • • • • • • • •			
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:		the		$_{-} = sum of the$	squares of the
Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that Question: 14 Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	Answer:				
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m. Answer:	Longest side of the triangle is(hypotenuse/ legs).	(hypote	enuse/ legs) and		
Answer:	Question: 14				
	Find the hypotenuse of the triangle	ABC if base is 12	m and altitude	is 5 m.	
A_{\nearrow}	Answer:				
m		_ m	C		
Pythagoras theorem states that square of the = sum of the squares of its	Pythagoras theorem states that squa	are of the	= sum	of the squares o	f its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

.....

Therefore, hypotenuse of the triangle is ______

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Criteria of congruence

Question: 16

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are _____ (identical/non-identical) in shapes and size.

Example: Square and Rectangle are _____ (congruent/not congruent).

Question: 17	

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under _____ (SSS/ASA/SAS) criteria .

Answer:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/5) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria $\underline{\hspace{0.2cm}}$ (2/ 3/ 5) angles and $\underline{\hspace{0.2cm}}$ (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Number system

Topics to be Improved		
Exponents	Solving exponents	
Positive and negative rational numbers	Identification of positive rational numbers	

Hi, here in this video you will learn Exponents and power

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ ____ \times ____ \times ____ 10 is raised to the power of ___ = (10) ___

Question: 20

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

......

.....

In this exponential form $(-2)^3$, base = ____, power = ____. $(-2)^3$ = ____ × ___ = ___.

Question: 21

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ___

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 22

Segregate positive and negative rational number.

......

Answer:

- If both the numerator and the denominator of a rational number are _____ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

..... Question: 23

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a _____ number. Division of $\frac{-3}{-4} = \boxed{\ }$ and this _____ rational number.

(Positive / Negative / Neither positive nor neg	ative rational numbe	r)
Question: 24		
The product of a positive rational number and a negative rational number. (Positive/ Negative/ neither positive nor		
Answer:		
Examples for positive rational numbers:		
Examples for negative rational numbers:		
Positive rational number \times Negative rational number = _ rational number	×=	and this is

Algebra

	Topics to be Improved
Basics of simple equation	Solving of simple equation
subtraction of algebraic expressions	subtraction of algebraic expressions
Addition and subtraction of algebraic expressions	Like terms and Unlike terms
Monomials, binomials, trinomials and polynomials	Types of algebraic expression

Hi, here in this video you will learn Solving an equation

Question:	25	

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 26

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

$$7 \cap + 3 = -4$$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times __+3 = __$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 27

Arrange the terms in the descending order when the value of x is 2.

$$2x 5x \times 1 x+3 2x-4 \frac{1}{2}$$

Answer:

The given expression a The value of x is substituting value of x				
2x =	2×=	- $2x$	$-4 = 2 \times $ 4	
x +	3 =	_	$\frac{1}{2}x = \frac{1}{2} \times \underline{\hspace{1cm}}$	_=
$5x \times 1 = 5 \times$	×1=	_		
Arranging in descending Their respective algebra				
Hi, here in this vie	deo you will learn	Subtractio	on on expressio	
Question: 28				
Find the sum of two ex	xpressions a + b + c a	and $b + c + c$	l	
Answer:				
The given two expressions The two terms will get The sum of two expressions. The answer is	a added only if they are a as a	re(Li	ke/ Unlike) terms.	
Question: 29				
		School A	School B	
	Number of boys	100b	250b	
	Number of girls	150g	200g	
	Number of teachers	25t	45t	
(i) Total number of	boys in school A and	B is		
(ii) Total number of	students in school B i	s		
(iii) How many more	teachers are there in s	school B than	school A?	

$\underline{Answer:}$

(i)	Number of boys in school $A = \underline{\hspace{1cm}}$,
	Number of boys in school $B = \underline{\hspace{1cm}}$.
	Total number of boys in school A and school B is $___$ + $___$ = $___$

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___+$ $___=$

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 30

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

Hi, here in this video you will learn **Addition on expression**

Question: 31

Shade the like terms.

Answer:

Given terms are

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 32

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

			_	
$7r^2+$ r \square $-$	2	= $($ 7	+ 2	$)_{r^2} = $

Question: 33	
Question: 55	

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

- (i) Total chocolates Ram and Sam have : _____.
- (ii) How many icecreams Sam have more than Ram:

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i) Total chocolates Ram and Sam have :

Ram's chocolate + Sam's chocolates = _____ + ____ = ___

(ii) How many icecreams Sam have more than Ram:

_____ icecream - ____ icecream = ____ - __ = ___

.....

Hi, here in this video you will learn **Types of expression**

Question: 34

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are _______, ______, and _______.

Therefore, there are ______ terms in the expression.

Question: 35

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

$\underline{Answer:}$

1. The terms in expression $8x^2 + 0$ are
Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
Question:~36
$5m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)
$\underline{Answer:}$
The terms in expression $5m^2 + m + 0$ are Here, the expression has terms and it is called a expression.
riere, the expression has terms and it is called a expression.