MA 69204 Statistical Software Lab

Assignment No. 4

(a) Generating a Random Permutation

Step 1: Let $p_1, p_2, ..., p_n$ be any permutation of 1, 2, ..., n (for example, $p_j = j, j = 1, ..., n$).

Step 2: Set k = n.

Step 3: Generate a random number $U \sim U(0, 1)$ and let $I = \lceil kU \rceil + 1$.

Step 4: Interchange the values of p_I and p_k .

Step 5: Let k = k - 1 and if k > 1 go to Step 3.

Step 6: $p_1, p_2, ..., p_n$ is the desired permutation.

(b) Generation of Stationary Poisson Process

Let the rate be $\lambda > 0$, t refer to time, I is the number of events that have occurred by time t, and S(I) is the most recent time.

Step 1: t = 0, I = 0.

Step 2: Generate a random number *U*.

Step 3:
$$t = t - \frac{1}{4} \ln U$$
. If $t > T$, stop.

Step 4: I = I + 1, S(I) = t.

Step 5: Go to step 2.

(c) Generation of Non-stationary Poisson Process

Algorithm 1:

Let the rate be $\lambda(t)$ is the intensity function and λ is such that $\lambda(t) \leq \lambda$, the final value of I represents the number of events that occurred by time T and S(1), ..., S(I) are the event times.

Step 1: t = 0, I = 0.

Step 2: Generate a random number *U*.

Step 3:
$$t = t - \frac{1}{\lambda} \ln U$$
. If $t > T$, stop.

Step 4: Generate a random number *U*.

Step 5: If
$$U \leq \frac{\lambda(t)}{\lambda}$$
, set $I = I + 1$, $S(I) = t$.

Step 6: Go to step 2.

Algorithm 2:

In the algorithm t represents the present time, J the present interval (i.e., J = j when $t_{j-1} \le t \le t_j$), I is the number of events so far, and S(1), ..., S(I) are the event times.

Step 1:
$$t = 0$$
, $J = 1$, $I = 0$.

Step 2: Generate a random number U and set $X = -\frac{1}{\lambda_J} \ln U$.

Step 3:
$$t + X > t_I$$
, go to step 8.

Step 4:
$$t = t + X$$

Step 5: Generate a random number *U*.

Step 6: If
$$U \le \frac{\lambda(t)}{\lambda}$$
, set $I = I + 1$, $S(I) = t$.

Step 7: Go to step 2.

Step 8: If
$$J = k + 1$$
, stop.

Step 9:
$$X = \frac{(X - t_J + t)\lambda_J}{\lambda_{J+1}}, J = J + 1.$$

Step 10: Go to Step 3.