\mathcal{T} iempo: 2.5 horas \mathcal{P} untaje \mathcal{T} otal: 26 puntos \mathcal{M} ayo de 2014

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo, por lo tanto, debe presentar todos los pasos y procedimientos que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No son procedentes las apelaciones que se realicen sobre exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Si se tiene que $W = \{a + bx + cx^2 \in \mathcal{P}_2(\mathbb{R}) / a 2b + 3c = 0\}$, verifique que W es subespacio de $\mathcal{P}_2(\mathbb{R})$ (4 pts)
- 2. Si se sabe que $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) \middle/ a b = 0, c + 2d = 0 \right\}$ es subespacio de $\mathcal{M}_2(\mathbb{R})$, determine una base de W y dim (W) (4 pts)
- 3. Sean A_1 y A_2 vectores definidos como $A_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ y $A_2 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$
 - (a) Verifique que $A = \begin{pmatrix} 4 \\ 10 \\ 6 \end{pmatrix}$ es combinación lineal de A_1 y A_2 (2 pts)
 - (b) Si el vector B está definido como $B = \begin{pmatrix} -2\alpha \\ 1 8\alpha \\ -5\alpha 3 \end{pmatrix}$, determine todos los valores de la constante real α para que $B \in \mathcal{G}en\left(\{A_1,A_2\}\right)$ (3 pts)
- 4. Sea $\{x, y, z\}$ un conjunto linealmente independiente de \mathbb{R}^3 . Demuestre que $\mathcal{B} = \{x, x + y, y z\}$ es una base de \mathbb{R}^3 (3 pts)
- 5. Considere los vectores $u, w \in \mathbb{R}^3$, tales que $u = (-4, \alpha 1, 0)$ y $w = (2, 2 \beta, 0)$, con $\alpha, \beta \in \mathbb{R}$. Encuentre los valores de α y β para que se cumplan, de manera simultánea, las condiciones siguientes: (4 pts)
 - (a) u y w son linealmente dependientes.
 - (b) $u \in \mathcal{G}en(\{(2,1,3),(-1,0,1)\})$
- 6. Si se sabe que $\mathcal{V} = \left\{ A \in \mathcal{M}_2(\mathbb{R}) \middle/ \left(\begin{array}{cc} 1 & -1 \\ 2 & 0 \end{array} \right) A = A \left(\begin{array}{cc} 1 & -1 \\ 2 & 0 \end{array} \right) \right\}$ es subespacio de $\mathcal{M}_2(\mathbb{R})$,
 - (a) Halle tres matrices A que sean elementos de \mathcal{V} (2 pts)
 - (b) Determine una base de V y dim (V) (4 pts)