Rechnerarchitekturen Labor

Matrikelnummern:

- 4962704
- 3277496

Aufbau

Der Aufbau besteht aus:

- PIC32MM0256GPM064 uC
- LCD Display
- HC-SR04 Ultraschall Sensor

Das LCD ist folgendermaßen angeschlossen:

Pin#	Funktion	PIC32 Belegung
1	VDD	3.3V
2	VSS	GND
3	SDA	RB7 (SDA3)
4	SCL	RB13 (SCL3)
5	RST	3.3V über R=3.3kOhm
6	A (Backlight +)	3.3V
7	K (Backlight -)	GND

Der Ultraschall Sensor ist wie folgt angeschlossen:

Funktion	PIC32 Belegung
VCC	5V
Trig	RA12 (OCM1A)
Echo	RA9 (5V tolerant)
GND	GND

Programmierung

Implementierte Funktionalitäten

- Auslesen des Ultraschall Sensors
 - Trigger Signal durch Output Compare Unit
 - Mode: Dual Edge Compare
 - Trigger Signal: 10us
 - Zeit, die Ultraschall Sensor wartet: 8 * 1/40kHz
 - Antwortzeit von Ultraschall Sensor: 38ms
 - Zeit für eine Periode: t = 10us + 8 * 1/40kHz + 38ms = 38.21 ms

- Periode: PR = 0xFFFF weil 0xFFFF × 16/24MHz = 43.69 ms, so hat man 43.69 ms 38.21 ms = 5.48ms Puffer für andere Operationen
- Steigende Flanke: RA = 0
- Fallende Flanke: RB = 0xF weil 0xF × 16/24MHz = 10 μs
- Echo Signal wird über die **Input Capture Unit** aufgenommen
 - Die Input Capture Unit nutzt als Eingabe den Pin RA9 (5V tolerant)
 - Sie wird im *Every Rise/Fall (16-bit capture)* Modus betrieben
 - Nach 2 Capture Events wird ein Interrupt ausgelöst. So enthält der Buffer die Zeistempel der steigenden und fallenden Flanke
 - Die Input Capture Unit wird mit einem Prescaler von 1:64 betrieben
 - Die Impulsweite wird in einer Interrupt Routine berechnet
 - Die Umrechnung der Impulsweite in eine Distanz erfolgt in Assembly. Hier aber die Implementierung in C:

- Ausgabe auf dem LCD
 - Speichern der Distanz in einem String und ausgeben
- Ausschluss fehlerhafter Messungen und Mittelwert
 - Für die maximale Distanz beträgt die Pulsweite 25ms
 - Die daraus resultierende Distanz ist ungefähr 430 cm
 - Alle Werte über 420 cm können also höchstwahrscheinlich ignoriert werden

- Alle Werte über 420 cm werden abgeschnitten.
- Es wird ein Ringpuffer mit 4 Werte verwendet, um einen Mittelwert zu bilden
- Anzeigen eines Balkens zur Visualisierung der Distanz
 - Als maximale Distanz wurde 64 cm gewählt
 - o Bei 16 Spalten des LCDs ergibt das eine Spalte pro 4 cm
 - Es wird die Differenz zwischen der Distanz und dem Maxmimalwert 64 gebildet
 - $\circ barLength = (64 distance)/4$
- Anzeigen der Uhrzeit in der zweiten Zeile des LCDs
 - Die Register der RTCC werden mit dem Wert des Präprozessor Makros ___TIME__ initialisiert.
 - Die aktuelle Zeit wird bei jedem Durchlauf der while(1) Schleife abgefragt, in einen String umgewandelt und auf dem LCD ausgegeben.
- Konfiguration der Uhrzeit über ein extra Menü
 - Über den Taster S1 kann das Menü aufgerufen werden
 - o Mit dem Taster S2 kann man zwischen Stunden, Minuten und Sekunden wechseln
 - Mit dem Potentiometer kann der jeweilige Wert eingestellt werden

Zusatzfunktionen

- Input Capture Unit für Rückgabewert des Ultraschall Sensor
- Output Compare für Impulse des Trigger Eingangs am Ultraschall Sensor
- Werte über 420 werden ausgeschlossen, Mittelwert wird immer über die letzten 4 Werte gebildet (Ring Buffer)
- Anzeigen der Zeit (Initialisiert mit Compile-Zeit)
- Anzeigen der Entfernung mit einem Balken (nah -> Balken "voll")
- Individuelles Setzen der Zeit über Taster
- Verwendung von Interrupts f
 ür Input Capture Unit

Bedienung

Nach dem Runterladen des Programs sollte auf dem Display die Distanz in cm und der Balken zu sehen sein:

Drückt man jetzt auf den Button S3, wird im Display statt dem Balken die aktuelle Zeit angezeigt:

Änderung der Zeit

Drückt man auf den Button S1 kann eine eigene Zeit konfiguriert werden:

Mithilfe des Potentiometers kann eine Zahl zwischen 0 und 23 eingestellt werden:

Drückt man auf S2 wechselt man zur Konfiguration der Minuten, mit dem Potentiometer kann dann wieder die Minutenzahl zwischen 0 und 59 eingestellt werden:

Drückt man erneut auf S2 wechselt man zur Konfiguration der Sekunden, mit dem Potentiometer kann die Sekundenzahl eingestellt werden:

Die Zeit wird automatisch geändert sobald die Zahlen geändert wurden.

Drückt man auf S1 wird das Konfigurationsmenu verlassen und die neue Zeit übernommen:

Die aktuelle Zeit ist dann überschrieben, man kann nur per "Reset" wieder zurück zur Compile Zeit, allerdings ist diese ja nicht mehr korrekt.