Lab 9

Jiarong Ye

October 19, 2018

Import packages

Read in the dataset with pandas

In [64]: Ben_Pass.head()

	down	ydstogo	Yards.Gained.PrevPlay	AirYards	PassLocation	PassOutcome
0	1	10	18	-4	1	1
1	1	10	0	9	1	1
2	3	22	6	1	1	1
3	1	10	0	7	-1	1
4	1	10	13	6	-1	1

In [25]: Ben_Pass_2.head()

	down	ydstogo	Yards.Gained.PrevPlay	AirYards	PassLocation	PassOutcome
0	1	10	18	-4	1	1
1	1	10	0	9	1	1
2	3	22	6	1	1	1
3	1	10	0	7	- 1	1
4	1	10	13	6	-1	1

Conduct Correlation Analysis

In [65]: Ben_Pass.corr(method='pearson')

	down	ydstogo	Yards.PrevPlay	AirYards	PassLocation	PassOutcome
down	1.000000	-0.293906	-0.306207	-0.032894	-0.060043	-0.076448
ydstogo	-0.293906	1.000000	-0.060572	0.091813	-0.058176	0.249902
Yards.PrevPlay	-0.306207	-0.060572	1.000000	0.022748	-0.081227	0.144037
AirYards	-0.032894	0.091813	0.022748	1.000000	0.056054	-0.286445
PassLocation	-0.060043	-0.058176	-0.081227	0.056054	1.000000	-0.223061
PassOutcome	-0.076448	0.249902	0.144037	-0.286445	-0.223061	1.000000

In [27]: Ben_Pass_2.corr(method='pearson')

	down	ydstogo	Yards.PrevPlay	Yards.Gained	AirYards	PassLocation	PassOutcome
down	1.000000	-0.293906	-0.306207	-0.054182	-0.032894	-0.060043	-0.076448
ydstogo	-0.293906	1.000000	-0.060572	0.222043	0.091813	-0.058176	0.249902
Yards.PrevPlay	-0.306207	-0.060572	1.000000	0.131102	0.022748	-0.081227	0.144037
Yards.Gained	-0.054182	0.222043	0.131102	1.000000	0.363336	0.019662	0.537075
AirYards	-0.032894	0.091813	0.022748	0.363336	1.000000	0.056054	-0.286445
PassLocation	-0.060043	-0.058176	-0.081227	0.019662	0.056054	1.000000	-0.223061
PassOutcome	-0.076448	0.249902	0.144037	0.537075	-0.286445	-0.223061	1.000000

Build Decision Trees

```
In [113]: def evaluate(dataset, seed, arg):
              X = dataset.values[:, :-1]
              y = dataset.values[:, -1]
              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
              clf = DecisionTreeClassifier(criterion = 'entropy', random_state = 100,
                                         max_depth=5, min_samples_leaf=3)
              clf.fit(X_train, y_train)
              dot_data= tree.export_graphviz(clf, out_file=None, feature_names=dataset.columns[:-1])
              graph = graphviz.Source(dot_data)
              graph.render('BenPass{}'.format(str(arg)))
              predicted_completion = clf.predict(X_test)
              print('Ben Pass dataset {} classification report: \n'.format(str(arg)),
               metrics.classification_report(y_true=y_test, y_pred=predicted_completion))
In [114]: evaluate(Ben_Pass, 2018, 1)
          evaluate(Ben_Pass_2, 2018, 2)
Ben Pass dataset 1 classification report:
               precision
                            recall f1-score
                                               support
           0
                   0.75
                             0.75
                                       0.75
                                                    4
           1
                   0.90
                             0.90
                                       0.90
                                                   10
```

micro	avg	0.86	0.86	0.86	14
macro	avg	0.82	0.82	0.82	14
weighted	avg	0.86	0.86	0.86	14
Ben Pass	dataset 2	2 classif	ication r	eport:	
	pre	ecision	recall	f1-score	support
	0	1.00	1.00	1.00	4
	1	1.00	1.00	1.00	10
micro	avg	1.00	1.00	1.00	14
macro	avg	1.00	1.00	1.00	14
weighted	avg	1.00	1.00	1.00	14

So from the classification report we could see that the Decision Tree built for the second dataset (with Yard.Gained) has no misclassified instances, reaching 100% accuracy score.

Discussion of the Correlation and DecisionTree

Ben_Pass_1 (Without the Yard.Gained variable)

The second Ben Pass dataset that includes the Yards.Gained variable stop after two splits (if the random state is changed to another number, then the tree actually stops after one single split), the reason for which is:

Revisit the correlation matrix:

```
In [87]: Ben_Pass_2.corr(method='pearson')
```

	down	ydstogo	Yards.PrevPlay	Yards.Gained	AirYards	PassLocation	PassOutcome
down	1.000000	-0.293906	-0.306207	-0.054182	-0.032894	-0.060043	-0.076448
ydstogo	-0.293906	1.000000	-0.060572	0.222043	0.091813	-0.058176	0.249902
Yards.PrevPlay	-0.306207	-0.060572	1.000000	0.131102	0.022748	-0.081227	0.144037
Yards.Gained	-0.054182	0.222043	0.131102	1.000000	0.363336	0.019662	0.537075
AirYards	-0.032894	0.091813	0.022748	0.363336	1.000000	0.056054	-0.286445
PassLocation	-0.060043	-0.058176	-0.081227	0.019662	0.056054	1.000000	-0.223061
PassOutcome	-0.076448	0.249902	0.144037	0.537075	-0.286445	-0.223061	1.000000

Conclusion:

from the correlation matrix above, we could observe that the correlation coefficient between *Yards.Gained* and *PassOutcome* is 0.537075 (positively correlated), thus we should be able to conclude that *Yards.Gained* has a significant influence on the *PassOutcome*. The more correlated a variable is to the target variable, the higher up it should be in the constructed Decision Tree, hence explains that the *Yards.Gained* is the root node, and the second largest correlation coefficient among the other variables to *PassOutcome* is *AirYards* as 0.286445 (negatively correlated), so the first child right after the root node is *AirYards*.