

# 신용카드 매출예측

박ㅇㅇ 황ㅇㅇ 김윤명 이ㅇㅇ

1조



우수 코드 분석

DACON X funda 신용카드 매출예측 우승자 2명의 코드 <mark>장·단점</mark>을 비교·분석 02

우수 코드 병합

분석한 내용을 토대로 코드의 <mark>일부분을 취합</mark>하여

오류 수정 및 연결

03

내용 추가 및 보완

자료조사를 통해 관련 자료, 코드 등을 <mark>추가</mark>하고

보완을 통해 성능을 소폭 개선

04

자체 코드 완성

SMA, EMA(ETS), ARMA, ARIMA, Regre-

ssion, LSTM 등 다양한 모델을 이용해 <mark>모델링</mark>





신용카드 매출 예측



예측해야 하는 범위는 <mark>3개월</mark> 인데 데이터는 시간 단위로 나뉘어져 있음

-> month 단위로 resampling 후 예측 범위를 3개월로 지정 02

1967개의 store\_id가 각각 다른 trend와 seasonality 를 가지고 있음

-> 모델을 여러 개 적용해 보 면서 <mark>정확도</mark>와 <mark>성능</mark>이 가장 좋 았던 모델을 적용



예측 날짜는 2019-03~2019-05로 동일하나, 제공 데이터의 <mark>마지막 날짜</mark>는 차이가 있음

-> <mark>마지막 날짜부터 3개월만</mark> 예측하여 제출한다. 03

ex: store\_id 111의 마지막 날짜는 2018-09월로 뒤 3개 월인 2018-10~2018-12만 예측하여 제출

- 예측 기간이 길어질수록 오차가 크게 발생하여 <mark>바로 뒤 3</mark>개월만 예측하는 것이 정확도가 높았음



amount<0인 값에 대한 해석과 처리가 애매

-> amount<0인 값을 포함 시켜도 보고 분리시켜도 보아 둘 중 성능이 좋은 쪽으로 결 정: 분리시킬 때가 더 좋았음 05

딥러닝 시 raw-data 값이 적어 학습할 data 양이 충분 하지 못함

-> time-series 모델을 통해 모델링하여 예측 정확도 향상





#### \* 분석 목적

상환 기간의 매출을 <mark>예측</mark>하여 신용 점수가 낮거나 담보를 가지지 못하는 우수 상점들에 금융 기회를 제공 02

#### \* 분석 목표

2019-02-28까지의 카드 거래 데이터를 이용해 시계열 매출 분석을 통해 2019-03-01~2019-05-31 각 상점별 3개월 총 매출 예측



Resampling (time to day) Date Index로 변환 원본 data 확인 환불치 분리 Resampling (day to month)





#### **Data List**

- store\_id : 상점의 고유 아이디

- installment\_term : 할부 개월 수

- card\_id : 사용한 카드의 고유 아이디 - region : 상점의 지역

- card\_company : 비식별화된 카드 회사 - type\_of\_business : 상점의 업종

- trasacted\_date : 거래 날짜

- <mark>amount</mark> : 거래액(단위는 원이 아님)

- transacted\_time : 거래 시간( 시:분 )

-> 종속변수





#### Evaluation Metric(측정 척도)

#### MAE(Mean Absolute Error)

- 모든 절대 오차의 평균
- 통계적 추정의 정확성에 대한 질적인 척도(수치가 작을수록 정확성이 높은 것)
- 에러에 따른 손실이 <mark>선형적</mark>으로 올라가는 상황에서 쓰기 적합한 방식
- MAE를 토대로 validation



#### Evaluation Metric(측정 척도)



```
def mae(prediction, correct): # prediction, correct를 인자로 발음
prediction = np.array(prediction)
correct = np.array(correct)

difference = correct - prediction
abs_val = abs(difference) # 절댓값 오차

score = abs_val.mean() # 절댓값 오차의 평균(MAE)

return score

executed in 13ms, finished 16:00:41 2021-12-29
```

```
1 mae_scorer = make_scorer(mae) # MAES 도대로 validation
2 mae_scorer
3 make_scorer(mae)
executed in 13ms, finished 16:00:41 2021-12-29
```

make\_scorer(mae)





### 1) 원본 data 확인

| amoun      | type_of_business | region  | installment_term | transacted_time | transacted_date | card_company | card_id | store_id |         |
|------------|------------------|---------|------------------|-----------------|-----------------|--------------|---------|----------|---------|
| 1857.14286 | 기타 미용업           | NaN     | 0                | 13:13           | 2016-06-01      | b            | 0       | 0        | 0       |
| 857.14286  | 기타 미용업           | NaN     | 0                | 18:12           | 2016-06-01      | h            | 1       | 0        | 1       |
| 2000.00000 | 기타 미용업           | NaN     | 0                | 18:52           | 2016-06-01      | С            | 2       | 0        | 2       |
| 7857.14286 | 기타 미용업           | NaN     | 0                | 20:22           | 2016-06-01      | а            | 3       | 0        | 3       |
| 2000.0000  | 기타 미용업           | NaN     | 0                | 11:06           | 2016-06-02      | С            | 4       | 0        | 4       |
| -          |                  |         |                  |                 |                 |              |         |          |         |
| -4500.0000 | 기타 주점업           | 주 제주시   | 0 제주             | 23:20           | 2019-02-28      | d            | 4663855 | 2136     | 6556608 |
| 4142.8571  | 기타 주점업           | 주 제주시   | 0 제주             | 23:24           | 2019-02-28      | d            | 4663855 | 2136     | 6556609 |
| 4500.0000  | 기타 주점업           | 주 제주시   | 0 제주             | 23:24           | 2019-02-28      | а            | 4663489 | 2136     | 6556610 |
| 571.4285   | 기타 주점업           | 주 제주시   | 0 제주             | 23:27           | 2019-02-28      | d            | 4663856 | 2136     | 6556611 |
| 5857.1428  | 기타 주점업           | 주 제주시   | 0 제주             | 23:54           | 2019-02-28      | С            | 4658616 | 2136     | 6556612 |
|            | 1-1100           | 1 1 1 1 | 2 7117           |                 |                 |              |         |          |         |



#### 2) Data Index로 변환

```
df_train['transacted_date'] = pd.to_datetime(df_train.transacted_date + " " +
                                df_train.transacted_time, format='%Y-%m-%d %H:%M:%S')
```

#### 3) 환불치 분리

```
def refund_remove(df):
   refund=df[df<mark>['amount']<0]</mark>
   non_refund=df[df['amount']>0]
   remove_data=pd.DataFrame()
   for i in tqdm(df.store_id.unique()):
       divided_data=non_refund[non_refund['store_id']==i] ##non_refund 스토어 데이터를 스토어별로 나눔
       divided_data2=refund[refund['store_id']==i] ##refund 스토어 데이터를 나눔 스토어별로 나눔
```





#### 3) 환불치 분리



> 환불치를 분리하지 않았을 때 보다 분리했을 때가 예측 정확도가 더 좋았다.



#### 결측치 제거





대칭성(정규성)확인

상점별 trend(1)

상관도 분석

Value 분포 확인

상점별 trend(2)

### EDA(Exploratory Data Analysis)











### 2) 대칭성(정규성)확인

Skewness: 0.48245510908401146

1e-6 4 3 2 1 0 0.4 0.5 0.6 0.7 0.8 0 amount

Skewness: 0.5102521050694766



Skewness : 0.9982599271676978





#### 3) 각 변수의 value 분포



0.0

2016-09

2017-01

2017-05

### EDA(Exploratory Data Analysis)



2019-01

2018-09





2017-09

2018-01

2018-05





### 5) Store 0,1,2의 amount, 전체 일수, 매출 횟수 별 trend



-> 다른 변수가 amount와 같은 <mark>패턴</mark>을 갖는지 확인







\* MA(Moving Average;이동평균) : 구하고자 하는 전체 데이터의 <mark>일부분(subset)</mark>

에 대해 순차적(series)으로 평균을 구하는 것

- Stationary 시계열을 대상으로 분석
- MA에는 SMA(Simple Moving Average, 단순이동평균),

WMA(Weighted Moving Average,가중이동평균) 등이 있음

- <mark>SMA</mark>는 가격의 이동평균을 계산할 때 가장 일반적인 방법



- SMA는 <mark>특정 기간</mark> 동안의 대표적인 data를 단순 평균하여 계산하며, 그 안에는
  - 그 동안의 data의 움직임이 포함되어 있음
- 이 때 수학적으로 n/2 시간 만큼의 <mark>지연(lag)</mark>이 발생
- 단순이동평균은 모든 데이터의 중요도를 동일하다고 간주

$$SMAt = Dt - (n-1) + Dt - (n-2) + \cdots + Dt - 1 + Dtn$$



```
def make_sma_arr(window_num):
    ma_arr = np.array([])
    for i in df_month.store_id.unique():
        df_set = df_month[df_month.store_id == i]
        ma_arr = np.concatenate((ma_arr, df_set.amount.rolling(window=window_num).mean().values)) # 이동평균 계산

return ma_arr

executed in 13ms, finished 08:59:38 2021-12-30

1    sma_month = df_month.copy()
2    sma_month.insert(7, 'amount_2ma', make_sma_arr(2)) # 2개월치 평균치
4    sma_month.insert(8, 'amount_3ma', make_sma_arr(3))
5    sma_month.insert(9, 'amount_5ma', make_sma_arr(6))

executed in 4.62s, finished 08:59:42 2021-12-30

1    sma_month.head(7)
2    # 2탈의 평균으로 876000 발들고, 3탈의 평균으로 938285 발돌고...

executed in 28ms, finished 08:59:43 2021-12-30
```



|                 | store_id | real_tot_day | real_business_day | num_of_pay | num_of_revisit | installment_term | amount        | amount_2ma   | amount_3ma   | amount_6ma   |
|-----------------|----------|--------------|-------------------|------------|----------------|------------------|---------------|--------------|--------------|--------------|
| transacted_date |          |              |                   |            |                |                  |               |              |              |              |
| 2016-06-30      | 0        | 25           | 17.00000          | 145.00000  | 77.00000       | 13.00000         | 747000.00000  | NaN          | NaN          | NaN          |
| 2016-07-31      | 0        | 26           | 16.00000          | 178.00000  | 105.00000      | 24.00000         | 1005000.00000 | 876000.00000 | NaN          | NaN          |
| 2016-08-31      | 0        | 24           | 16.00000          | 171.00000  | 97.00000       | 69.00000         | 871571.42857  | 938285.71429 | 874523.80952 | NaN          |
| 2016-09-30      | 0        | 25           | 19.00000          | 160.00000  | 103.00000      | 15.00000         | 897857.14286  | 884714.28571 | 924809.52381 | NaN          |
| 2016-10-31      | 0        | 26           | 16.00000          | 167.00000  | 115.00000      | 9.00000          | 835428.57143  | 866642.85714 | 868285.71429 | NaN          |
| 2016-11-30      | 0        | 23           | 15.00000          | 132.00000  | 93.00000       | 21.00000         | 697000.00000  | 766214.28571 | 810095.23810 | 842309.52381 |
| 2016-12-31      | 0        | 27           | 18.00000          | 145.00000  | 103.00000      | 11.00000         | 761857.14286  | 729428.57143 | 764761.90476 | 844785.71429 |









```
def make_minus_rolling(data_frame, rolling_num):
        def minus_shift_rolling(df_num, num):
           a = np.average(df_num.values[-num:])
           b = np.average(np.append(df_set.values[-(num-1):], a))
           if num > 2:
               c = np.average(np.append(np.append(df_set.values[-(num-2):], a), b))
           else:
               c = np.average((a, b))
                                             독자적인 code, 기준 달을 구하기 위해서 과거의 두 달의
           return np.sum((a, b, c))
                                             매출을 기준 삼아 누적시키는 방향으로 이동평균 구함
       minus_rolling_arr = np.array([])
        for i in data_frame.store_id.unique():
13
           df_set = pd.DataFrame(data_frame[data_frame.store_id == i].amount)
           minus_rolling_arr = np.concatenate((minus_rolling_arr, np.array([minus_shift_rolling(df_set, rolling_num)])))
14
15
16
       df_rolling = pd.DataFrame({'store_ld' : df_sub.store_id, 'amount' : minus_rolling_arr})
       return df_rolling
18
executed in 13ms, finished 08:59:44 2021-12-30
```





- 2 window SMA MAE Score: 180687.25906004856

- 3 window SMA MAE Score: 251607.4552831229

- 6 window SMA MAE Score: 387465.0993765708

- SMA 2 rolling Score: 836184.506520

- SMA 3 rolling Score: 831158.397180

- SMA 4 rolling Score: 854300.339380



- <mark>지수이동평균, ETS</mark>(Exponential Smoothing; 지수평활법)라고도 함
- 가중이동평균 중의 하나로 과거보다 최근의 데이터에 높은 가중치를 부여하는 방법 (Exponentially 하게 Weight가 감소)
- 데이터 평균값이 시간에 따라 변화 경향 (주식의 5,10,20일 <mark>이동평균선</mark>)
- Smoothing: 평균값이 서서히 변화하는 data에 적용 가능(결과 bad)

 $EMAt=Dt\times2N+1+EMAt-1\times(1-2N+1)$ 





- Simple exponential smoothing : Trend, Seasonal 패턴이 <mark>없을 때</mark> 씀
- Double(Holt's) exponential smoothing : linear한 trend o, seasonal 패턴 x 일때 씀.
- Triple(Holt-Winters) exponential smoothing: 수준(Level), 추세(Trend), 계절성

(Seasonality) 3가지 정보를 고려. <mark>추세와 계절성이 뚜렷한 데이터</mark>에 대해 좋은 예측값을 제

공함(프로젝트 data:x) → Time series는 보통 trend, seasonal pattern을 동반하기 때문에

Time series를 고려한 Exponential Smoothing을 이야기할 때 보통 Holt-Winters 를 말함



#### Holt-Winters model 적용 예시: data를 log scale로 변환 후 사용

#### **Holt-Winters filtering**



#### Modeling-Time Series





### 2) EMA(Exponential Moving Average)

```
| def make_ewm_arr(data_frame, span_num):
| arr_ewm = np.array([])
| for i in data_frame.store_id.unique():
| df_set = data_frame[data_frame.store_id == i]
| # 여기에서 지정하는 span값은 위 수식에서 N에 해당한다.
| arr_ewm = np.concatenate((arr_ewm, df_set.amount.ewm(span=span_num).mean().values))
| return arr_ewm
| executed in 12ms, finished 08:59:50 2021-12-30
```

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html

### Modeling-Time Series





### 2) EMA(Exponential Moving Average)

|                 | store_id | real_tot_day | real_business_day | num_of_pay | num_of_revisit | installment_term | amount        | amount_3ewm  | amount_6ewm  |
|-----------------|----------|--------------|-------------------|------------|----------------|------------------|---------------|--------------|--------------|
| transacted_date |          |              |                   |            |                |                  |               |              |              |
| 2016-06-30      | 0        | 25           | 17.00000          | 143.00000  | 74.00000       | 9.00000          | 747000.00000  | 747000.00000 | 747000.00000 |
| 2016-07-31      | 0        | 26           | 16.00000          | 178.00000  | 105.00000      | 24.00000         | 1005000.00000 | 919000.00000 | 897500.00000 |
| 2016-08-31      | 0        | 24           | 16.00000          | 168.00000  | 94.00000       | 69.00000         | 869714.28571  | 890836.73469 | 885009.17431 |
| 2016-09-30      | 0        | 25           | 19.00000          | 160.00000  | 103.00000      | 15.00000         | 897857.14286  | 894580.95238 | 889971.84685 |
| 2016-10-31      | 0        | 26           | 16.00000          | 165.00000  | 115.00000      | 9.00000          | 835428.57143  | 864050.69124 | 870828.68002 |
| 2016-11-30      | 0        | 23           | 15.00000          | 128.00000  | 89.00000       | 21.00000         | 697000.00000  | 779199.54649 | 813557.08461 |

#### 가중치를 현재의 데이터에 더 두고 있음











# 낮을수록 좋은 것: 5를 span으로 했을 때 가장 좋은 값

result = wma\_sub.amount.mean() \* df\_month.real\_tot\_day.iloc[-i+2:-i].mean()

for i in range(len(df\_month.amount)):

print(result)

9

10

```
def make_wma_sub(data_frame, span_num):
       concat_3mon = pd.DataFrame(index=pd.to_datetime(['2019-03-31', '2019-04-30', '2019-05-31'])) # 附為堂 데이터
       wma\_sub = np.array([])
       for i in df_month.store_id.unique():
           df_set = pd.DataFrame(data_frame[data_frame.store_id == i].amount)
           wma_train = pd.concat([df_set, concat_3mon], axis=0)
 9
          num_sub = np.arrav([wma_train.amount.ewm(span=span_num).mean()['2019-03':].sum()])
10
11
           wma_sub = np.concatenate((wma_sub, num_sub))
12
       df_wma_sub = pd.DataFrame({'store_id' : df_sub.store_id, 'amount' : wma_sub})
13
14
                                                         독자적인 code, 지수평활 시 구간을
       return df_wma_sub
                                                         여러 개로 나눠보면서 가장 성능 높은 것 찾기
executed in 14ms, finished 08:59:54 2021-12-30
   for i in range(2, 7): # 한탈치씩 추가해서 2개월치, 3개월치, ..., 8개월치 EMA 구하기 > 가장 섬등 높은 것 찾기/
       wma_sub = make_wma_sub(df_month, i)
       wma_sub.to_csv('funda_{}wma_sub.csv'.format(i), index=False)
```



- 3 N EWM MAE Score: 134855.11946915495
- 6 N EWM MAE Score: 193447.63093078104
- 2 span 제출 Score: 820102.106670
- 3 span 제출 Score: 785488.281930
- 4 span 제출 Score: 770667.895320
- 5 span 제출 Score : <mark>767498.551420</mark> <- 5개월로 구간을 잡았을 때
- 6 span 제출 Score: 770414.027040



store\_id 0 mean value : 732503.463203463

MAE Score of test: 78181.66728282764

```
Library 사용하여 Smoothing

test = df_set[size:]

ses_model = SimpleExpSmoothing(train.amount)

ses_result = ses_model.fit()

ses_pred = ses_result.forecast(len(test))

executed in 43ms, finished 17:29:32 2021-12-30

C:#Users#ym#anaconda3#envs#store_amount_prediction#lib#site-packages#st

freq, ValueWarning)

C:#Users#ym#anaconda3#envs#store_amount_prediction#lib#site-packages#st

ConvergenceWarning)

print("store_id O mean value : ", df_set.amount.mean())

print("MAE Score of test :", mae(test.amount, ses_pred))

executed in 12ms, finished 17:29:32 2021-12-30
```



def plot\_train\_test\_pred\_graph(trainset, testset, pred):

```
Simple Exponential Smoothing
        plt.figure(figsize=(15,3))
        plt.plot(trainset.amount, label='train')
        plt.plot(testset.amount, label='test')
        plt.plot(testset.index, pred, label='prediction')
        plt.legend()
        plt.show()
executed in 14ms, finished 17:29:32 2021-12-30
    plot_train_test_pred_graph(train, test, ses_pred)
executed in 215ms, finished 17:29:32 2021-12-30
1.0
                                           train
                                                                                              test
 0.9
 0.8
 0.7
 0.6
         prediction
             2016-09
                           2017-01
                                        2017-05
                                                      2017-09
                                                                                 2018-05
                                                                                                            2019-01
                                                                    2018-01
                                                                                              2018-09
```



```
df_set = df_month[df_month.store_id == 0]
                                                                    Holt's Exponential Smoothing
 3 | size = int(len(df_set) * 0.7)
 4 train = df_set[:size]
 5 test = df_set[size:]
 7 holt_model = Holt(np.array(train.amount))
 8 holt_result = holt_model.fit()
 9 holt_pred = holt_result.forecast(len(test))
executed in 29ms, finished 17:29:58 2021-12-30
 1 print("Mean value of store_id 0 : ", df_set.amount.mean())
 2 print("MAE Score of test :", mae(test.amount, holt_pred))
 4 plot_train_test_pred_graph(train, test, holt_pred)
executed in 198ms, finished 17:29:58 2021-12-30
Mean value of store_id 0 : 732503.463203463
MAE Score of test : 104762,88757316317
1.0
                                          train
 0.9
0.8
0.7
0.6
         prediction
             2016-09
                          2017-01
                                       2017-05
                                                     2017-09
                                                                  2018-01
                                                                               2018-05
                                                                                            2018-09
                                                                                                          2019-01
```



```
print("Mean value of store_id 0 :", df_set.amount.mean())
print("MAE Score of test :", es_score)
print("Best seasonal period :", best_period)

plot_train_test_pred_graph(train, test, es_pred)
Holt Winter's Exponential Smoothing
```

Mean value of store\_id 0 : 732559.7402597402

MAE Score of test : 63279.99370008395

executed in 261ms, finished 09:02:00 2021-12-30

Best seasonal period : 4







- Simple Exponential Smoothing Score: 818205.82245

- Holt's Exponential Smoothing Score: 922772.7023052298

- Holt-Winter's Exponential Smoothing Score: 962259.599880





ARMA: stationary 시계열을 대상으로 분석. AR(p) 모형과 MA(q) 모형의 특징을 모두 가지는 모형으로, <mark>자기 자신의 p개의 과거값과 q개의 과거 백색 잡음의 선형 조합</mark>으로 현재의 값이 정해지는 모형

이 data에서 많은 store\_id들이 |φ|<1 의 AR 정상상태(stationary) 조건에 맞지 않아 1 이상의 p 값을 적용할 수 없다. → 따라서 차분(difference)을 이용해 비정상상태(non-stationary)의 설명이 가능한 ARIMA를 추가로 진행한다.</li>





ARIMA: non-stationary 시계열을 대상으로 분석

- d차 차분한 데이터에 AR(p)모형과 MA(q)모형을 합친 모형
- AR(자기상관) + I(d차 차분) + MA(이동평균)
- 자기상관: 자기 자신 이전의 값이 이후의 값에 영향을 미치는 상황
- non-stationary 시계열을 차분해서 stationary 시계열로 변환한 후, stationary 모형 (ARMA)으로 분석한 다음 차분 시계열을 다시 누적해서 원 시계열로 복원



**ARMA** 

Mean value of store\_id 0 : 732559.7402597402

MAE Score of test : 83125.43549192042





**ARIMA** 

Mean value of store\_id 0 : 732559.7402597402

AIC Score of test : 556.1804194299168
Best parameter of (p, d, q): (0, 2, 2)





-ARMA Score : 984368.752690

-ARIMA MAE Score: 1080182.482790



## 4) Facebook Prophet

- 페이스북에서 개발한 시계열 예측 패키지
- ARIMA와 같이 확률론적이고 이론적인 모형이 아닌 몇가지 <mark>경험적 규칙</mark> (heuristic rule)을 사용하는 단순 회귀 모형이지만, 단기적 예측에서는 큰 문제 없이 사용할 수 있음
- 회귀분석 모형 만드는 순서: 시간 데이터의 각종 특징을 임베딩> 계절성 추정 > 나머지 데이터는 구간별 선형회귀분석(piecewise linear regression)



## 4) Facebook Prophet

# y(t)=g(t)+s(t)+h(t)+error

- g(t): Growth, 'linear'와 'logistic'으로 구분되어 있다.
- s(t): Seasonality
- h(t): Holidays, 계절성을 가지진 않지만 전체 추이에 영향을 주는 이벤트를 의미하며 이벤트의 효과는 독립적이라 가정
- 결과가 그닥 좋지 않았음.



#### 5) Time-Series Model 최종 Score

- \* Simple Moving Average(3 rolling): 831,158.397180
- \* Exponential Moving Average(5 span): 767,498.551420
- \* Simple Exponential Smoothing: 818,205.822450
- \* Holt's Exponential Smoothing: 926,470.756080
- \* Holt-Winter's Exponential Smoothing: 962,259.599880
- \* ARMA model: 984,368.752690
- \* ARIMA model: 1,080,182.482790
- \* Facebook prophet: 1,221,173.032530



# 1) Models

- Linear Regression, Ridge, Lasso, ElasticNet,
- Gradient Boosting Regression, Support Vector Regression,
- XGB Regressor



## 2) Results

- 적은 data로 인해 점수가 굉장히 좋지 않게 나왔다.
- 예측에 사용할 수 있는 변수들의 수가 적거나 정확한 값을 채울 수 없어서였던걸로 추정



#### **Issues & Results**

- Test 값 부분이 거의 직선(<mark>학습 data가 너무 적어</mark> 예측을 제대로 못함)
- 1967개의 상점을 학습했지만 <mark>월 단위로 resampling</mark> 하고 나니 데이터가 33개월치 정도로 줄었고 test\_size=0.3을 적용시키니 대부분의 값이 0으로 나옴
  - > 딥러닝을 하기에 데이터가 부족





#### **Issues & Results**

```
Value of store_id 0 prediction : [0. 0. 0.]
Value of store_id 1 prediction : [0, 0, 0,]
Value of store id 2 prediction: [0, 0, 0,]
Value of store_id 4 prediction : [0.22865641 0.22865641 0.22865641]
Value of store_id 5 prediction : [0, 0, 0,]
Value of store_id 6 prediction : [1.6137322 1.6137322 1.6137322]
Value of store id 7 prediction: [2.5254931 2.5254931 2.5254931]
Value of store id 8 prediction: [3.88921 3.88921 3.88921]
Value of store id 9 prediction: [3,628832 3,628832 3,628832]
Value of store_id 10 prediction: [0. 0. 0.]
Value of store id 11 prediction: [10.266693 10.266693 10.266693]
Value of store_id 12 prediction : [0.734782 0.734782 0.734782]
Value of store id 13 prediction: [0, 0, 0,]
Value of store_id 14 prediction : [0. 0. 0.]
Value of store id 15 prediction: [3,4008975 3,4008975 3,4008975]
Value of store_id 16 prediction : [0, 0, 0,]
Value of store_id 17 prediction : [0. 0. 0.]
Value of store_id 18 prediction : [8.488293 8.488293 8.488293]
Value of store id 19 prediction: [0.23646662 0.23646662 0.23646662]
Value of store id 20 prediction: [0.44612283 0.44612283 0.44612283]
CPU times: user 3min 13s, sys: 6.28 s, total: 3min 20s
Wall time: 3min 7s
```





상대적으로 <mark>단순한</mark> 모형들의 점수가 높았고, 그 중 EMA의 결과가 가장 좋았다.

Check

60%



뚜렷한 trend나 seasonality가 없고
data의 수가 적어서 파악하기 힘든 관계로
신경망 학습 자체는 가능하나 <mark>올바른 예측이 불가능</mark>했다.

40%





