Cor 6.3.2 Under the anditions of Thm 6.3. 2, there exists a nonsigngular main'x Q such that QH=P, where PP'= I and hence the GLR test of Ho=HB= # Vs HI: HB # # is equivalent to the GLR test of Ho: PB = & vs Ha: PB + k, where Qh=k and PP'=1.

no proof provided actually in
there butys Provf : For any axp moonix H of rank &, I nonsign main'x Q such that P=QH and PP'=I, that Is P is the first of rows of an orthogonal moren's. Then, HB = = QHB = QA = R Then wounder Ho: HB= # will be the same as that of Ho: PB=k => LRT test will be equivalent

Sec 6.4 Special cases for Hypothesis testing of Ho: HB = f. (testing a linear combination of B:

(where the life = lo vs Hi: life + lo where

L is a given px1 vector and lo is a constant. In this case. Thm 6.3.1 can be easily applied, and noting that H=l', $f=l_0$, g=1. In this case, the $\frac{(2.5.11)}{3} = \frac{(2.5.11)}{3} = \frac{($ LRT W (given in (6.3.91) is = Ho is rejected if $W > T_{n,n-p} = T_{\alpha/2,n-p}$ => Ho à réjected if (l'E-lo)2 = tay, n-p => or Don't reject Ho if and only if lo is in the confictince interval (1-x level).

(l'B-top.n-p. Da'l'(l, l'B+top.n-p. Da'(l'(l))

(642) Remark It's been shown that the test above is an UMPU test of size of fight in the OB=lovs His light.

L'unbinsel &

and the above C.I is a UMAU to confidence interval on 213.

2. Testing a subset of the parameter veeter B.

=> We want to test Ho: B== bz vs H1: B= + bz,

where $\beta = \begin{bmatrix} \beta & \overline{q} & (p-q)x \\ \beta & \overline{q} & qx \end{bmatrix}$

Let the matrix X be partitioned accordingly as.

 $X = [X_1 \ X_2]$

Then, the GIM Y=XB+E

= [X1 X2] [B] + E

= X1B1 + X2 B2 + E

Testing B= 12 can be thought as testing HB= &

with

 $H = [0, \frac{1}{2}]$ and $h = b_2$

gx1p. Es

Let XX)= [= [Cil (12) be perroteined accordingly . C = (x'x)-1

=> H(X'X)" H' = HCH' = [0 Iq.] [C" C"] [0] = C22

=> The test statistic W((6.3.9)) is now.

 $W = \frac{(HB - \frac{1}{2})'[H(x'x)'']''(HB - B)}{Y'(I - xx')Y} \frac{n-\frac{1}{2}}{2}$ $= \frac{(B_2 - b_2)'C_{22}^{-1}(B_2 - b_2)}{9.3^2} \sqrt{F_{2,n-p,3}}$

Go is next

PUV

with $\lambda = \frac{(B_2 - b_2)(z_2)(B_2 - b_2)}{22^2}$

and W To Fq, n-12, where

Be is the last & elements of the MCE: B=X'Y

Further note that from (7hm 1.3.1, inverse of pareition matrix), we can & write.

Cir' = Su - Su Si'Su = Xi'X. - Xi'X1 (Xi'X) - Xi'X2

If we use (6.3.8) to express the test statistic
in this case, there will be computational advantages
For be = 0 case, see (64.6) in the book

In chapter 7, we will study some amputational details.

(6-37)

Sec 6.5 Confidence Interval Associated with the test Ho: HB = 4

We have seen earlier how acceptance of Ho is equivalent to a confidence interval estimation if we let 0 = HB - h, then Ho: HB = h vs H_1 can be written as: Ho: 0 = 0 vs $H_1: 0 \neq 0$ The test statistic

W= (HB-4)'(H(XX)"H')'(HB-B)

(6.3.9)

where $\hat{\mathcal{C}} = H\hat{\mathcal{C}} - \hat{\mathcal{C}} = HX^{-}Y - \hat{\mathcal{C}}$, $V = H(X'X)^{-1}H'$ $\hat{\mathcal{C}} = Y'(I - XX^{-})Y/(n-p)$

Ho is rejected if w > Zxxxxxxp

or Ho is accepted if only if w < Zxxxxxp.

the later leads is

the later leads in our desire et derive confidence intervals for S=+1/2 8, ... Sq. or a linear ambine if the Sis, i=1,... 9.

In general, we have two types of 0.2's;

1. Individual (one-at-a-time) C.I.s on each &:

In this case, or = RiB, Ri is the ith row of H, i=1. 2

Similar to (6.4.2), we can easily obtain the C.Z.

for O: is.

P(B: G (1)=1=0 Var[B: B] , i=1,... 2 16.52)

S.e. $P(B_i \in C[I]) = 1-\alpha$, $i=1,\dots,2$ There (6.5.2) are individual (1- α) level C.I.s

Remark C.I.s given in (6.4.2) are also one-at-a-time CI for l'B foany coefficient &

where Von (lifs) =

2. Simultaneous C.Z.s

The controline intervals, I:'s, are called SCZs for all &: if P[6: EZi, i=1. ... 2] =1-0 We will derive SCIs for &, i=1, -. 2 here We first stack the following This without proof 7 Thm 6.5.1 The test statistic W in equation (6.3.9) is equil to W* where W* is given by W# = 22 max [[(HB-E)]2] (6.5.3, where E2" is the q-dimensional vector space E2 with 2 removed < \$ see (6-32) 0+(2) for proof > Using the above 7hm, we can establish the following SCIs on little) or & S The set of confidence intervals given by: (6.5.6) 50 I(1)= e'(HB)=18Fx, 8, n-p) 22 [H(X'X)"H'] & SICHB) S Var I e (117) are SCIs for l'(HB) with level 1-x, where lEEx, His Exp of rank &

Proof: We know that when Ho: HB = h is enne

P[WSFa, q, n-p] = 1- α From 7hm65.1, $W=W^*$ $\Rightarrow 1-\alpha = P[W^* \leq F\alpha, q, n-p]$

 $= P\left[\frac{mcix}{2CE_{2}^{4}}\left\{\frac{[2'H(\hat{B}-B)]^{2}}{2'[H(X'X)^{-1}H']!}\frac{1}{2\hat{\alpha}_{2}}\right\} \in \mathcal{F}_{\alpha,2,n-1}\right]$ $= P\left[\frac{[2'H(\hat{B}-B)]^{2}}{2[H(X'X)^{-1}H']!}\frac{1}{2\hat{\alpha}_{2}}\right] \in \mathcal{F}_{\alpha,2,n-1}$ $= P[2'H\hat{B}-A2F] = P[2'H\hat{B}-A2F] = P[1'H(XX)^{-1}H^{2}] = P[1'H\hat{B}-A2F] = P[1'H\hat{B}-A2F$

Note. Thm 6.5.2 gives infinite many SCIS.

80 The SCIs in 7hm 6.5.2 are narred as Scheffé.

(3) The S(Is in (6.5.6) can be written as L'(HB) 75 \(\text{Var}[L'(HB)]\) (6.5.10)

(4). You don't have to use all infinite many SCIs as in (6.5.2) For Eustained, If In that case, the SCI level is at least 1-x.

Sec 6.8 The GLM under Normality when \$\ \pm a^2 I.

Now, we consider GLM: y = xB + E with the assumption that: ENNn(0, E), E = a I

1. When $\Sigma = \alpha^2 V$, V is known and p.d.

As V is p.d., there exists an nxn nonsingular matrix

G S.t. V=G'G (7hm1.4.2(2a)). V'=G'G'

Let 3 = G' y, then:

3 ~ N, (G'XB, QZG''VG')=NalG''XB, QZG''G'GGG') = N, (G' XB, 021).

Let $A = G'' \times$, and $9 = G'' \in$, then the GLM, after multiplying G'- to it, be comes:

G' = G' X B + G' E

Note: A'A = X'G'G''X = X'V''X

Then testing of Ho: HB = h vs H1: HB + A can be clone by using GLM 3 = A 13 + 1 with 1 -Na 10, 02]

the test statistic W given by (6.3.9) is then.

W= n-p (HB-E)'[H(A'A)-H']-(HB-B)

3'(I-AA-)3

USS P=(A'A)'A'3 n-p[H(A'A)'A'3-B][H(A'AV'H')]'[H(A'A)'A'3-B]

2 3'(I-AA-)3 3'(I-AA-)3

A=G'-X & Y'G'(I-G'-X(X'V-X)-X'G-)G'-Y

= n-p [H(X'V'X)"X'V-19-B](H(X'V'X)"H']"[H(X'V'X)"X'V-19-B]

W~ Fa, n-p, n with n= 1/202(HB-4)'[H(A'A)'H']'(HB-4) ==== (HB-B)'[H(X'V"X)"H] (HB-B)

From above, me can also write:

B=(A'A)'A' 3 =(X'V'X)'X'V' y

2 = -- y [V-1 - V-1X(X'V-1X)-1X'V-1) y

Cov(B) = (x'v'x) x'v' cov(=) [(x'v'x) x'V']

 $= (X'V''X)^{-1}X'V''A^{2}VV'^{-1}X(X'V^{-1}X)^{-1} \qquad (Y'=V)$

 $= \alpha^2 (X'V^-X)^- X' V^-X (X'V^-X)^{-1}$ $= \alpha^2 (X'V^-X)^{-1}$ Here β and β^2 are UMVUE's for β and α^2 according to 7hm6.2.2.

2. The GLM: Point estimation when I is unknown (but p.d.) This case is more complicated. Let's have the following definition of OLS estimators first.

Definition 6.8. (Ordinary Least Squares (OLS) Estimators

Consider the model $y = x / 3 + \epsilon$, with $E(\epsilon) = 0$, $Cov(\epsilon) = \Sigma$

For this model B=(X'X)'X'y is defined to be the

OLS estimator of B, and for any constant vector

I of px1, the OLS estimator of I'B is defined

to be & (x'x) x'y

Note: 13 is obtained through the ordinary least-square principle, that is B is such that (y-xB)(y-xB) is minimized.

The following Thransem discusses when an UMVUE of β exists for β LM: $\frac{y}{z} = x\beta + \varepsilon$ with $\varepsilon \sim N_n(0, \Sigma)$.

Thm 6.8.1 For GLM: Y = XB + E with $E \sim N_r(0, \Sigma)$ The UMVUE of B is the OLS estimator iff there exists a pxp runsingular matrix F s.t.

 $\sum X = XF \qquad (6.8.5)$

Proof: For every known Σ , the UMVUE estimator of G is given by:

(X'\(\S'\X\)^-\(X'\S'\)

The OLS estimator of B is given by (X'X)-'X'y

So, we eventually want to show.

(X' \(\S'\X'\) \(\X'\) \(\S'\) \(\X'\) \(\X'\)

That is to show:

 $(X'\Sigma^{-1}X)^{-1}X'\Sigma^{-1}=(X'X)^{-1}X'$

for any y

Assume the above equation (x) is true

multiply X'X to the $X'X (X'\Sigma'X)^T X'\Sigma' = X'$ left of both sides $\Rightarrow x = \Sigma^{-1}X(X'\Sigma^{-1}X)^{-1}X'X$ $(\Sigma' = \Sigma)$ F is pxp and nunsingular Now, assume $\Sigma X = XF$, reverse about a get. $X' = X'X(X'\Sigma'X)'X'\Sigma''$ with F=(X'I'X)-XX \Rightarrow $F' = X'X(X'\Sigma'X)'$ $F'' = X'\Sigma'X(X'X)^{-1}$ $\Rightarrow F''X'X = X'\Sigma''X$ and Z' X' = X' 2 -1 Then, (X'X)"X'=(X'X)" F'F'"X' =(F"'X'X)" F"X' 00 (X'\(\sigma^{-1}\X)^{-1}\X'\(\sigma^{-1}\) = (*) holds. // Cox 6.8.1.1 Consider the GLM model in Thm 6.8.1 and Let Σ be defined by $\Sigma = X \Delta_1 X' + (2-XX') \Delta_2 (2-XX') + 02$ where II, Dr. and Q are reserricted only so that I is pd. and Dixx'+01 is nonsingular. Then the UMVU estimator of Life is equal to the OLS estimator of I'B for any px1 constant vector I. Proof: 5x = xa, X'X + (1-XX-)a2(2-XX-)X+01X $= X \Delta_1 X'X + (I-XX-) \Delta_2 (X-XX-X) + OX$ $= X \Delta_1 X' X + \Theta X$

=X(A,X'X+OI)

As $\triangle: X'X + OI$ is annsingular. Let $F = \triangle: X'X + OI$ Then: IX = XFThen: IX = XF

Cor 6. S. 1. 2 For the GLM: Y = XB + E, $E = N_n(E, \Sigma)$, $X = [1, X_2, ..., X_p]$, that is, the model has an invarcept term, say $B = If \Sigma$ is defined by $\Sigma = \Lambda^2(I-\ell)I + \Lambda^2PJ$. for -1/(n-I) < P < I, then I'B = I'(X'X)'X'Y' is the UMVU estimator of I'B for any I'A = I'(X'X)'X'Y' is the I'A = I'(X'X)'X'Y'.

Proof: Let $\Delta_2 = 0$, $\Delta_1 = \begin{pmatrix} \alpha^2 \ell & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $\alpha = \alpha^2 (1 - \ell)$

and then $\frac{X \angle I_1 X' + \partial I}{= \begin{bmatrix} 1 & X_{12} & X_{11} \\ 1 & X_{22} & X_{11} \\ 1 & X_{22} & X_{11} \end{bmatrix} \angle I_1 X' + \partial I}{= \begin{bmatrix} 1 & X_{12} & X_{11} \\ 1 & X_{12} & X_{11} \\ 1 & X_{12} & X_{11} \end{bmatrix}} \angle I_1 X' + \partial I$

 $= \begin{bmatrix} \alpha^2 \beta & 0 & 0 \\ \alpha^2 \beta & 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_{12} \chi_{12} & \chi_{13} \\ \chi_{12} \chi_{12} & \chi_{13} \end{bmatrix} + \alpha^2 (i-\beta) 2$ $\begin{bmatrix} \chi_{12} \chi_{12} & \chi_{13} & \chi_{13} \\ \chi_{12} & \chi_{13} & \chi_{13} \end{bmatrix}$

 $= x^2 P J + \alpha^2 (1 - P) I = x^2 \left[p \right]$

= 5

6-38

To ensure Z be p.d. we must have - -- P<1 -- C see proof to Let F = dixx+ a2(1-P)I, F is pxp then XF = X SIX'X + QZ(1-P)X = O2PJX + O2CI-P)IX = [02 PJ + 02(1-P)] X To ensure F be innsingular, let's see: $F = \Delta_1 X'X + \Delta^2 (1-P)I = \begin{cases} \alpha^2 P & 0 & 0 \\ 0 & 0 & -\omega \end{cases} \begin{pmatrix} X_{12} & X_{22} & X_{13} \\ X_{12} & X_{23} & X_{13} \end{pmatrix}$ +02(1-4)L $= \begin{pmatrix} \alpha^2 \rho & \alpha^2 \rho & \cdots & \alpha^2 \rho \\ 0 & 0 & 0 & 1 & \chi_{12} & \cdots & \chi_{1p} \\ 0 & 0 & 0 & 1 & \chi_{12} & \cdots & \chi_{1p} \end{pmatrix} + \alpha^2 (1-\rho) I$ => $Det(F) = [n\alpha^2 P + \alpha^2 (1-P)] \alpha^{2(p-1)} (1-P)^{p-1} = 0$ => P = 1 and nor P + 02(1-P) = (N-1) 02P + 02 = 0 => P = - in and P = | => with O, we are guranteed => When - in < P < 1, EX = X = holds, and Ep.d. Cor. 6. 8.1.1 l'B is the UMVUE.

 $\Sigma = \alpha^2 \left[\begin{array}{c} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] = \alpha^2 A, \text{ as } \alpha^2 > 0, \Sigma p.d.$ ff A is p.d.

We need the necessary and sufficient condition for A to be p.d. From 7hm 1.4. 2 (3b), we just need to find the condition that each principal minor of A has positive determinant.

Now: Q1 = 1 > 0

 $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = (i-p)^2 (i+2p) > 0 \text{ iff } i+2p>0 \text{ or } p>-\frac{1}{2}$ $(as 1-p>oby 0) \qquad (2)$

 $|A| = (1-p)^{n-1}(1+(nip)>0)$ aiff 1+(nip)>0 (as 1-p>0 by 0)

Combining (0, 0), (0) we get:

that is, at determinants of all minus pricipals of A

are positive iff - inc pel

Subsection 6.8.3 Student read

Sect. 9 Examination of Assumptions

Sec 6.91 Residual analysis

Defn 6.9.1 For the GLM Y=XB+E The vecer I defined by $Y = Y - \hat{Y} = Y - X\hat{B}$, where $\hat{B} = X - Y$ is called the vector of residents.

7hm 6.9.1 r = (I-XX-)Y = (I-XX-) E

Proof: r= (#3xx) Y-xB = ナース(オーナ)

= Y - xx - Y

 $=(\underline{r}-xx^{-})\underline{r}$

= (1-XX-)(XB+E)

= XB-XX-XB-XX-18 +8

= XB-XB + E-XX-E

 $= (I - \chi \chi^{-}) \mathcal{E}$

profs of Thm 6.9.2 Under the assumption of &~ Na 10, 221) COMP LOOK and I and B and I and B are independent

> Proof: When & ~ N(Q, or I) Y=XB+E~N(XB, 92I)

a = (1-xx_) = ~ N(2, (1-xx-)021(1-xx-)-) (6-40) = N(2, a M). $= > \Gamma = (I - XX^{-})Y \sim N(Mo, \Sigma_{o})$ with $\mathcal{U} = (I - XX^{-})XB$ = XB - XXXB = 0 $\sum = (I - XX^{-})(\alpha^{2}I)(I - XX^{-})'$ $= a(I - XX^{-})(I - X^{-}/X^{\prime})$ = O'LI-XX - - X - X + XXXX X X X = 02[]-X(X/X)-X']=02[]-XX-] = 22 M $\underline{r} = (1 - XX^{-})\underline{r}$ $\underline{\hat{\beta}} = (x/X)^{-1}X^{-1}\underline{r}$ consider to dead qualratic form Y'(1-XX)Y B is linear from of Y. Thin 4.5. $B = (x'x)^{-1} x'(x^2 I)(I - xx^{-1})$ = 2 [(x'x) x' - (x'x) x'x (x'x) x') $=\alpha^2 \cdot 0 = 0$ are independent. As I'vis a function of Or => B and I'r are independent. Alternative I ~ NIE, (Z-XX-)(Z-XX-) a-2) Proof = $= N(Q, (Z-XX^{-})A^{2})$ Consider. $\frac{3}{2} \sim N_{p}(x-x/3, \alpha^{2}x-x-1) = N(3, \alpha^{2}(x/3)^{2}x \times (x/x)^{2}) = P(0)$ $= N(3, \alpha^{2}(x/3)^{2}x \times (x/x)^{2}) = P(0)$ $= N(3, \alpha^{2}(x/3)^{2}x \times (x/x)^{2}) = P(0)$ = P(0) =Z-XCO Z Z-KX

That is, we have $Y = (I - xx^{-})^{\frac{1}{2}} \sim N(Q, \alpha^{2}M)$ $= N(0, \alpha^2(Z-XX^{-1}))$ $= N(0, \alpha^2(Z-XX^{-1}))$ of rank $(Z-XX^{-1})$ $= N(0, \alpha^2(Z-XX^{-1}))$ $= N(0, \alpha^2(Z-XX^{-1}))$ strace (Z) - trace (XX) $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} (1-xx-yy) \\ x-y \end{pmatrix} = \begin{pmatrix} 2-xx-yy \\ x-y \end{pmatrix} = \begin{pmatrix} y-y-y \\ y-y-y \end{pmatrix}$ No (Z-XX-)XB, (Z-XX-), (Z-XX-) $= N_{\text{conf}} \left[\begin{bmatrix} z - xx^{-} \end{bmatrix} \times \beta^{2}, \quad \alpha^{2} \mathcal{B} \right] \text{ of rank } \left[\begin{bmatrix} z - xx \\ x^{-} \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right] \times \left[\begin{bmatrix} z - xx \\ x - \end{bmatrix} \right]$ where B = [2-xx-][2-xx-]/ $= \left\{ \frac{Z - X X^{-}}{Z} \right\} \left[\left(Z - X X^{-} \right)' X^{-} \right]$ $= \left\{ (1-XX^{2})(1-XX^{2})^{2} (1-XX^{2})X^{2} \right\}$ X-(Z-XX)' X-X-' with (I-XX-)X-' = X-'-XX-X-' $= X^{-\prime} - X(X'X)^{-\prime}X'X(X'X)^{-\prime}$ $= X^{-'} - X(X'X)' = X^{-'} - X^{-'} = O_{pxn}$ and $X^{-}(1-XX^{-})' = [(1-XX^{-})X^{-}]' = O_{1X}$ $= O_{1}(XX^{-})' = O_{1}(XX^{-})' = O_{1}(XX^{-})' = O_{1}(XX^{-})'$ $= O_{1}(XX^{-})' = O_{1}(XX^$

Sec 6.10 Inference about the GLM: Case 2

In case 2, we don't cosume the normality on ξ , but just usume: $E(\xi) = Q$, $Cov(\xi) = q^2$,

For this case, we can not make estimation for B and a' using likelihood estimation (like we did in 6.1-6.9) as in distributions on E are available.

We will, instead, using a very old (but useful, conterior in mathematics, the least squares principle to do the estimation.

Thm 6.10.1 In the GILM Y = XB + E, where E(E) = 0 and $COV(E) = 2^2I$, the least squares estimators of Band are given by.

 $= \widehat{\beta} = CX'Y = (X'X)^TX'Y = X^TY, \text{ with } C = (X'X)^T,$ る2= mp (Y-XB)(Y-XB)= tp Y((I-XX)Y。

Proof: The least square estimator, b, is that $S = Y'Y = \sum_{i=1}^{\infty} Y_{i}^{2} = (Y - X \not b)'(Y - X \not b)$ is minimized dS = 2 x(Y-xb) = -2x/Y + 2x/x b = 0

 $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x^{-1} Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y \implies b = (x'x)^{-1} x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y = x' Y = x' Y = \beta$ $= \sum_{X'} x b = x' Y = x' Y$

=> The least squares estimator of 0 = 21/3 is given by l'B = l'x-y (2) Consider any restinator of the form at 4 + av where & and as are to be determined so that of is an unbiased estimator of l'B and has min variance among all unbiased escionary of l'B Let C'=l'X-+b, then we decorring b and as instand Now, E[ax+as]=E[(l'X-+b')Y+as] = E[& X - Y + 6 Y + a.o.] Note: = [[(X + Y] + [E(Y) + ao => E(X) = XB = 1/2/23 + 6/23 + 90 Var(Y)=22] = L'BTbXB+Qu => b'xB +ao = 0 for all B in Ep $= \sum_{b'X=0}^{b'X=0} \text{ and } C_{io} = 0.$ $= \sum_{b'X=0}^{b'X=0} \text{ Also } X'b=0 \qquad \text{Vom [T]}$ Var [a'y+au] = Var [a'y] = Var [a'x + b')y] = (l(x-+b')CN(Y)(l(x-+b')' = (e'x-+b') a21 (x-'&+b) ニコンピメーメーノとナロンメーノとナロンドカナからら ナベタベメバメンタナベラウラ = 02 l(xxx)" & + 22 b b M28616 constant & p.d. (cor 1.4.2(3)) 1 1 1 + 1

= The minimum variance Var(T) is attained if $a^2b'b \ge 0$ is minimal = b'b = 0 = b = 0 (also consistent requirement for unbiased Therefore, the minimum variance of T, VarlT) subject to ELT] = l'B, is a2 l'(X'X)" l and is attained by Var(T) when: b=0 and ao =0. The BLU estimator of l'B is T = l'x-y=1'B Remarks & What about the LS estimates a of or? It (2) is called the best quadratic unbinsed estimator of az (See Defn 6.10.2 & 7hm 6.10.3)