

Stock Al Assistant

3nd Hons Meeting

Finn Zhan Chen – 11th February 2019 Supervised by Shay Cohen

Project Overview

Major Change (Bad news...)

- 1. Shift from cloud to local computing
- 2. No mobile apps
- 3. No enough easily accessible fundamental analysis

Major Change (Good news!)

- 1. Focus narrowed to only technical analysis
- 2. Now model uses real-time technical indicators to predict stock price in the past (testing purpose), present (tomorrow), and future (multiple days in advance)
- 3. Evaluation infrastructure is set up

Current Progress: Summary

LSTM Training and Testing Data Preparation

- 1. Transform the time series data so that it is <u>stationary</u>.
- 2. Transform the observations to have a specific scale.
- 3. Transform the time series into a supervised learning problem

Univariate Models

- 1. Persistence baseline models for univariate one-step and multi-step forecasting
- 2. LSTM one-step forecasting (predicting stock price for one day in advance)
- 3. LSTM multi-step forecasting (predicting stock price for more than one day in advance)

Model Evaluation

- 1. Mean squared error
- 2. Trend accuracy (tomorrow's price is predicted to be up and the actual price is up too, thus the trend is correct)

LSTM Training and Testing Data Preparation

- 1. Raw price data 2018-01-02 43.67 2018-01-03 44.98 2018-01-04 46.88 2018-01-05 45.80 2018-01-08 45.55 2018-01-09 42.97 2018-01-10 43.31
- 2. Transform the time series data so that it is <u>stationary by differencing</u>.

```
[ 1.31],
[ 1.9 ],
[-1.08],
[-0.25],
[-2.58],
[ 0.34]
```

3 Transform the observations to have a specific scale.

[0.73660714]

[1.]

[-0.33035714]

[0.04017857]

[-1.]

[0.30357143]

4 Transform the time series into a supervised learning problem

•	01	
	var1(t-1)	var1(t)
1	0.736607	1.000000
2	1.000000	-0.330357
3	-0.330357	0.040179
4	0.040179	-1.000000
5	-1.000000	0.303571

Univariate 1-step Baseline (a quick example)

1. LSTM RMSE Score: 1.572 US dollar

2. LSTM trend Score: 0 %

Univariate 1-step Baseline (more data)

1. LSTM RMSE Score: 1.443 US dollar

2. LSTM trend Score: 0%

Univariate 1-step Forecasting (a quick example)

LSTM RMSE Score: 2.468 US dollar

LSTM trend Score: 36.8 %
 Took 74 seconds to train!

Univariate 1-step Forecasting (more training data)

- 1. LSTM RMSE Score: 1.459 US dollar
- 2. LSTM trend Score: 51.0 %
- 3. Took 1 hour to train...

Univariate 3-step Baseline (a quick example)

- 1. RMSE: t+1: 5.095, t+2: 4.266, t+3: 6.202 US dollar
- 2. Trend Score: t+1: 31.5%, t+2: 31.5%, t+3: 42.1%
- 3. Took 72 second to train!

Univariate 3-step Baseline (more training data)

1. RMSE: t+1: 1.446, t+2: 1.775, t+3: 2.047 US dollar

2. Trend Score: t+1: 0% , t+2: 0% , t+3: 0%

Univariate 3-step Forecasting (a quick example)

- 1. RMSE: t+1: 5.095, t+2: 4.266, t+3: 6.202 US dollar
- 2. Trend Score: t+1: 31.5%, t+2: 31.5%, t+3: 42.1%
- 3. Took 72 second to train!

Univariate 3-step Forecasting (more training data)

- 1. RMSE: t+1: 1.577, t+2: 2.174, t+3: 2.740 US dollar
- 2. Trend Score: t+1: 48.6%, t+2: 49.4%, t+3: 52.1%
- 3. Took 1 hour to train...

Current Progress: Next Steps

Evaluation

- 1. Compare to baseline models like Persistence Model Forecast
- 2. Training, validation, and testing set
- 3. Parameter optimisation

Multivariate One-step and Multi-step forecasting

- Training data not only just include share price data but also other additional 52 indicators such as SMA,
- 2. Also not just price of the day prior but multiple steps prior

Timeline

Gantt Chart

