Xiongjie (Jack) Dai

🛘 217-305-0416 | @ xdai12@illinois.edu | 🗖 linkedin.com/in/xiongjie-dai | 🗘 github.com/Xiongjiedai

EDUCATION

University of Illinois Urbana-Champaign (UIUC)

Master of Science in Statistics; GPA: 3.84/4.00

Jinan University / University of Birmingham

Bachelor of Economics GPA: 3.93/4.25

Urbana-Champaign, Illinois, USA

August 2021 - May 2023

Guangzhou, China/Birmingham, England

September 2017 - June 2021

Bachelor of Science in Applied Mathematics with Statistics (First-class degree)

SKILLS

Machine Learning Research: Artificial Intelligence, Deep Learning, Natural Language Processing, Statistical Learning

Data Science: Data Science Programming Methods, Statistical Data Management, Statistical Consulting

Programming: Python, R, SQL, Computer Science

Technologies: Git, Shell, PyTorch, NumPy, Pandas, Matplotlib, ggplot2, Tidyverse, Shiny app, TensorFlow, Docker, AWS

Work Experience

GPU Benchmarks on LLM Inference

Freelance

Artificial Intelligence / Machine Learning Engineer

July 2023 - Present

- Engineered comprehensive **LLaMA** model tests, comparing NVIDIA GPUs to Apple Silicon using the **llama.cpp** toolkit, adapting an innovative cloud-based strategy for performance evaluation to establish proof of concept for local LLMs on devices; garnered industry accolades evidenced by over 260 Github stars.
- Documented and analyzed inference speeds for various model sizes across different quantization and multiple hardware configurations, providing actionable insights on the optimal setups for efficient LLM inference.

Graduate Course Assistant

University of Illinois Urbana-Champaign

Fundamentals of Deep Learning, Statistical Learning

September 2022 - December 2022

• Collaborated with faculty to devise engaging machine learning course content and innovative coding assessments in R and Python; Graded students, and resolved academic issues during weekly office hours, with a 0 course-complaint rate.

Projects

Neural Machine Translation: RNN and Transformer Models | Python, PyTorch

May 2023

- Led the development of a Neural Machine Translation (NMT) system, leveraging PyTorch to architect both Recurrent Neural Network (RNN) and **Transformer** models, focusing on the translation of Spanish to English text.
- Designed and implemented the RNN using Gated Recurrent Units (GRUs) and attention mechanisms, constructing encoder and decoder components. Enhanced translation quality in the Transformer model with multi-head attention and positional encoding to capture sentence structure and preserve word order.
- Achieved BLEU-4 scores of 0.058 for the RNN model and 0.059 for the Transformer model.

Reinforcement Learning in Snake | Python, Numpy

December 2022

- Engineered a reinforcement learning AI agent to master the Snake game, employing a Temporal-Difference (TD) Q-learning algorithm in a defined Markov Decision Process (MDP) framework of states, actions, and rewards.
- Implemented an exploration policy to balance between exploring new states and exploiting known ones, ensuring comprehensive learning coverage, and used a decaying learning rate to optimize the Q-value update process over time.
- Analyzed agent's performance through rigorous testing phases to ensure robustness and adaptability of the model.

Sentiment Analysis for Amazon Review & Drug Dataset | R markdown, Word2Vec

December 2022

- Advanced sentiment analysis on Amazon and Drug Review datasets by and comparing four classic embedding and NLP methods (BoW, Word2Vec, GloVe, fastText), achieving best performance with FastText (86.49% accuracy on Amazon, 78.69% on Drug), demonstrating FastText's ability to handle unseen words by utilizing subword information.
- Employed data preprocessing techniques for text normalization and vectorization. Filtered out common words using two-simple t-tests to interpret Word Cloud. Leveraged Naive Bayes and Random Forest algorithms for classification.

Explaining the Effects of Data Augmentation with CNN | Python, PyTorch, Matplotlib

May 2022

- Developed and evaluated three distinct Convolutional Neural Network (CNN) models across various seeds to determine the impact of augmentation techniques on model performance, focusing on a binary cat-dog classification challenge.
- Applied regularization (dropout, L1, L2) to avoid overfitting, with binary cross entropy as cost function and SGD as optimizer; using flipping data augmentation, best CNN model showed accuracy improvement from 59.6% to 74.8%.