Feuille d'exercices n° 2 : fonction d'une variable réelle

Exercice 1. Résoudre dans \mathbb{R} les équations et inéquations suivantes :

1.
$$\ln(x+2) + \ln(x-3) = 2\ln(2)$$

$$3. \ln\left(\frac{x^2 - x + 1}{x - 2}\right) \ge 0$$

2.
$$e^{2x} - 4e^x + 3 > 0$$

4.
$$\ln(2x) \leq \ln(3-x) - \ln(x+1)$$

Exercice 2. Résoudre dans \mathbb{R} les équations suivantes :

1.
$$2^x - 6 \times 2^{-x} = 4$$
.

3.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

2.
$$5^x - 5^{x+1} + 2^{3x-1} = 0$$

4.
$$3^{x} + 3^{x+1} + 3^{x+2} + 3^{x+3} = 2^{x-1} + 2^{x} + 2^{x+1} + 2^{x+2}$$

Exercice 3. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x)f(y) - f(xy) = x + y$$

Indication : On pourra commencer par considérer une fonction $f: \mathbb{R} \to \mathbb{R}$ solution de l'équation fonctionnelle et déterminer la valeur de f(0) pour une telle fonction.

Exercice 4. Déterminer la parité des fonctions suivantes :

1.
$$f_1(x) = \left(\frac{x^3}{x^2 + 1}\right)^2$$

4.
$$f_4: x \mapsto \ln \frac{x+1}{x-1}$$
.

2.
$$f_2(x) = \ln |x|$$

5.
$$f_5: x \mapsto \frac{e^x + 1}{e^x - 1}$$

3.
$$f_3(x) = x^3 - x + 1$$
.

6.
$$f_6: x \mapsto \ln(\sqrt{x^2 + 1} - x)$$

Exercice 5. Soit f une fonction impairs sur \mathbb{R} .

- 1. Montrer que f(0) = 0.
- 2. On suppose que $f: \mathbb{R} \to \mathbb{R}$ est bijective. Montrer que f^{-1} est impaire.
- 3. On suppose ici f dérivable. Montrer que f' est paire.
- 4. Imaginer un résultat analogue pour une fontion g paire, dérivable sur \mathbb{R} .

Exercice 6. Faire l'étude complète des fonctions suivantes :

1.
$$f_1(x) = \ln(1+x^2)$$

$$3. f_3(x) = \exp\left(x + \frac{1}{x}\right).$$

2.
$$f_2(x) = \frac{e^{2x}}{x^2 - 1}$$

4.
$$f_4(x) = \sqrt{x^2 + x - 2}$$
.

Exercice 7. Faire l'étude complète des fonctions suivantes :

1.
$$f: x \mapsto x^{\frac{1}{x}}$$
.

$$2. \ g: x \mapsto x^{\ln x}.$$

3.
$$h: x \mapsto (\ln x)^{\ln x}$$
.

Exercice 8. Soit f la fonction définie par $f(x) = x + \ln \frac{1-x}{1+x}$ et \mathcal{C} sa courbe représentative.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que l'équation de la tangente T à \mathcal{C} au point d'abscisse 0 est y=-x.
- 3. Étudier le sens de variation puis le signe de la fonction ϕ définie sur \mathcal{D}_f par $\phi(x) = f(x) + x$.
- 4. En déduire la position de T par rapport à C.

Exercice 9. Montrer que la fonction suivante est une bijection entre des ensembles à préciser, et calculer la bijection réciproque :

$$f \colon x \mapsto \frac{e^x}{e^x + 1}.$$

Exercice 10. Pour tout réel x, on pose : $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

- 1. Démontrer que la fonction f est bijective sur des ensembles à préciser.
- 2. On note g la bijection réciproque de f. Montrer que g est définie, continue et dérivable sur]-1,1[.
- 3. Démontrer que pour tout réel x, on a : $f'(x) = 1 f(x)^2$
- 4. En déduire la dérivée de g sur I.
- 5. Retrouver ce résultat en explicitant g(y) avec $y \in]-1,1[$.

Exercice 11. Pour $m \in \mathbb{R}$ on note f_m l'application définie sur \mathbb{R} par : $f_m(x) = e^{-x} + mx$. Déterminer l'ensemble des valeurs de m pour lesquelles f_m admet un extremum et préciser la nature de cet extremum.

Exercice 12. Soient f et g les deux fonctions définies par : $f(x) = \ln(x+1)$ et $g(x) = e^{-x}$.

Montrer que leurs courbes respectives ont un unique point commun.

Montrer que l'abscisse de ce point appartient à l'intervalle]0,1[.

Exercice 13. Montrer que pour $x \in]0,1[$ on $a: x^x(1-x)^{1-x} \ge \frac{1}{2}$.

Exercice 14.

- 1. Montrer que pour tout x > -1, on a $\ln(1+x) \leqslant x$. Dans quel cas y a-t-il égalité?
- 2. Représenter sur un même dessin la courbe représentative de $x \mapsto \ln(1+x)$ ainsi que la droite d'équation y=x.

Exercice 15.

- 1. Soit (u_n) une suite telle que $\begin{cases} u_0 = 1, \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n + 6}. \end{cases}$ Montrer que : $\forall n \in \mathbb{N}, \ u_n \text{ existe et } u_n \leq 3.$
- 2. Démontrer que pour x > -1, on a : $\forall n \in \mathbb{N}, (1+x)^n \ge 1 + nx$.

Exercice 16. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n^2 - 2 \end{cases}$$

Démontrer que : $\forall n \in \mathbb{N}, \ u_n = (2 + \sqrt{3})^{2^n} + (2 - \sqrt{3})^{2^n}.$

Pour s'entrainer

Exercice 17. Montrer que la fonction suivante est une bijection entre des ensembles à préciser, et calculer la bijection réciproque :

$$h: x \mapsto \frac{e^x - e^{-x}}{2}$$

Exercice 18. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{3}(u_n + 4n + 6) \end{cases}$$

Démontrer que : $\forall n \in \mathbb{N}, \ u_n = 2n + \frac{1}{3^n}$.

Exercice 19. Soit f définie par : $f(x) = x + \ln\left(\frac{2x}{x-2}\right)$. On considère aussi la droite d'équation Δ : $y = x + \ln 2$ et on pose $g(x) = x + \ln 2$.

- 1. Etudier l'existence d'asymptote verticales pour f.
- 2. Montrer que f g tend vers 0 en l'infini.
- 3. Déterminer la position relative de la courbe représentative de f par rapport à Δ .

Exercice 20. Dans un polygone, on appelle diagonale tout segment qui relie deux sommets non consécutifs. Pour tout entier $n \ge 3$, on note d_n le nombre de diagonales d'un polygone à n sommets.

- 1. Calculer d_n pour n = 3, 4, 5, 6.
- 2. Démontrer que, pour tout entier $n \ge 3$:

$$d_n = \frac{n(n-3)}{2}$$

3. Combien de diagonales possède un myriagone (10000 sommets)?

Exercice 21. Soit $\lambda > 0$ et $f: x \mapsto e^{\lambda x}$. On considère l'équation $(E): e^{\lambda e^{\lambda x}} = x$.

- 1. Étudier les variations de f.
- 2. Soit $x \in \mathbb{R}$. Montrer que x est solution de (E) si et seulement si f(x) = x.
- 3. Étudier les variations de $g: x \mapsto f(x) x$ et en déduire, selon les valeurs de λ , le nombre de solutions de l'équation (E).

Exercice 22.

- 1. (a) Soit g la fonction numérique de la variable réelle telle que : $g(x) = \frac{x-1}{x} + \ln|x|$.
 - (b) Déterminer le domaine de définition de g.
 - (c) Etudier les variations de g.
 - (d) Déterminer les limites de g aux bornes de son domaine de définition.
 - (e) En déduire le signe de g(x). Montrer en particulier qu'il existe un réel unique α tel que $g(\alpha) = 0$.
- 2. (a) Soit f la fonction numérique de la variable réelle telle que : $f(x) = |x|^{x-1}$.

- (b) Déterminer l'ensemble de définition de f.
- (c) Calculer f' et montrer que f' est du signe de g.
- (d) En déduire les variations de f.

Exercice 23. Soit

$$\varphi: x \mapsto x \ln(x)$$
.

- 1. Etudier φ , c'est-à-dire :
 - (a) Donner le domaine de définition de φ ;
 - (b) Etudier les propriétés éventuellement évidentes (parité, monotonie, périodicité, signe, etc.);
 - (c) Dresser tableau de variation (avec limites aux bornes) et graphe.
- 2. Justifier que φ établit une bijection de $[1/e; +\infty[$ sur $[-1/e; +\infty[$. On notera $\varphi^{-1}: [-1/e, +\infty[\rightarrow [1/e; +\infty[$ sa bijection réciproque.
- 3. Donner $\varphi^{-1}(0)$.
- 4. Prouver que φ^{-1} est dérivable sur $]-1/e,+\infty[$, et que

$$\forall y \in]-1/e; +\infty[, \quad (\varphi^{-1})'(y) = \frac{\varphi^{-1}(y)}{y + \varphi^{-1}(y)}.$$

- 5. Donner une équation cartésienne C de la tangente T_0 au graphe de φ^{-1} au point d'abscisse 0.
- 6. **Application :** soit $y \in \mathbb{R}$. Discuter, en fonction de y, du nombre de solutions de l'équation

$$(E): x^x = y,$$

d'inconnue $x \in \mathbb{R}_+^*$. On pourra utiliser l'étude de φ .

Exercice 24. Calculer les nombres suivants :

1.
$$\left| \left(\frac{\sqrt{n} + \sqrt{n+1}}{2} \right)^2 \right|$$

$$2. \left| \frac{n-1}{2} \right| + \left| \frac{n+2}{4} \right| + \left| \frac{n+4}{4} \right|$$

Exercice 25. Tracer la fonction définie par $f(x) = \lfloor \sqrt{x} \rfloor$.

Exercice 26. Calculer les limites suivantes :

$$\lim_{x \to +\infty} (2^x + 3^x)^{\frac{1}{x}} \qquad \lim_{n \to +\infty} \frac{a^n - b^n}{a^n + b^n} \quad (a \neq -b)$$

Exercice 27. Soit
$$f(x) = \frac{2x^2 + 3x + 9}{x + 1}$$
.

- 1. Déterminer le domaine de définition de f et étudier ses variations.
- 2. Prouver que $\Omega(-1, -1)$ est centre de symétrie de la courbe représentative de f.