# Simulation-based Inference

**Inverting Simulators** 

Talk by Stefan Wezel

mlcolab @ Tübingen University Cluster of Excellence

April 29, 2021

### Overview

- The problem setting
- o Traditional approaches and their issues
- o Using Bayesian Neural Nets to alleviate them
- o A worked example
- o A more interesting, real-world example
- o Outlook

# What and Why?

#### An Example

- o Imagine you are a astronomer
- You observe planetary movements
- and find that two parameters determine the movement (mass and velocity) (and some noise)
- So you build a mechanistic model that can simulate observations
- o But what do we actually care about?
  - What was the mass and velocity of that planet

## What and Why?

#### Formalizing our Example

- $\circ\,$  Mechanistic model (simulator) has parameters  $\theta$  and produces data  $\hat{x}$ 
  - It implicitly defines  $p(\hat{x}|\theta)$  (it yields samples from this distribution)
- $\circ$  Given a (real) observation  $x_0$ , we would be interested in the parameters that produced it
  - $p(\theta|x_0)$  -> posterior over parameters
  - In simple cases, we could apply Bayes' rule and compute it analytically
  - What is simple? If we know Likelihood
  - But often we would not

# What and Why?

#### Simulation-based Inference to the rescue

- o This is exactly a problem setting that scientists often deal with
  - They have a sophistic model (the simulator) that encapsulates a lot of prior knowledge
  - But inference in this setting often boils down to: What were parameters that produced this observation
- Simulation-based Inference inference tries to solve this problem
- o by inverting the simulator

### Simulation-based Inference

Traditional Approach

- o Broader term: Approximate Bayesian Computation (ABC)
  - Rejection ABC
  - Sampling ABC (perturbe intitial params)
  - Sequential ABC
  - But gives only point estimates, not full posterior
  - within  $\epsilon$

## Learning a Posterior

Bayesian Neural Nets to the Rescue

- $\circ$  Create n training samples
- $\circ\,$  learn posterior over parameters by parametrizing GMM with DNN

### How to use SBI?

#### Some advertisement

- Now that you are pretty excited about SBI and its applications
- mlcolab and mackelab is developing a python (and eventually Julia) library (that I've used earlier)
- o If you are interested: try it out and give us your feedback
- o link to colab
- o link to github



### References

[1] G. Papamakarios and I. Murray. Fast epsilon-free inference of simulation models with bayesian conditional density estimation. arXiv preprint arXiv:1605.06376, 2016.

### How

### Approximate Bayesian Computation

- o Finding parameters/posterior over parameters with
  - Rejection ABC
  - Markov Chain Monte Carlo ABC
  - Sequential Monte Carlo ABC
  - ..
- o Problems

•

#### What

#### is Simulation-based Inference?

- o If we know generating factors, we can build a simulator
- But we want to constrain simulator output on observations from real world
- o Thus we need realistic values for simulator parameters
- -> inverse problem
- o SBI solvers this inverse problem using Bayesian inference

## How

does Simulation-based Inference work?