HW 5

3.2

(i) If $f: I \to X$ is a path with $f(0) = f(1) = x_0 \in X$, then there is a continuous $f': S^1 \to X$ given by $f'(e^{2\pi it}) = f(t)$. If $f, g: I \to X$ are paths with $f(0) = f(1) = x_0 = g(0) = g(1)$ and if $f \simeq g$ rel \dot{I} , then $f' \simeq g'$ rel $\{1\}$.

Proof. Let $g: S^1 \to 2\pi I$ be the principle branch of the argument function. Let $h: S^1 \to \dot{I}$ be the composition of $\frac{1}{2\pi}g$ with the natural quotient map. Since f(0) = f(1), the map f induces a map $\bar{f}: \dot{I} \to X$. Then $f':=\bar{f}\circ h$ is the desired map.

For the second part, let $F: f \simeq g$ rel \dot{I} . Define F' by applying the first part of this exercise to the function $F(\cdot,t)$. Then $F': f' \simeq g'$ rel $\{1\}$. \square

(ii) If f and g are as above, then $f \simeq f_1$ rel \dot{I} and $g \simeq g_1$ rel \dot{I} implies that $f' * g' \simeq f'_1 * g'_1$ rel $\{1\}$.

Proof. I will assume f' * g' is a map from S^1 given by following f' on the arc $[0, \pi]$ and g' on the arc $[\pi, 2\pi]$. Then it is clear that f' * g' = (f * g)'. Since $f * g \simeq f_1 * g_1$ rel \dot{I} by Theorem 3.1, we have $f' * g' = (f * g)' \simeq (f_1 * g_1)' = f_1' * g_1'$ rel $\{1\}$ by (i).

3.4 Let $\sigma: \Delta^2 \to X$ be continuous where $\Delta^2 = [e_0, e_1, e_2]$. Define $\epsilon_0: I \to \Delta^2$ as the affine map with $\epsilon_0(0) = e_1$ and $\epsilon_0(1) = e_2$; similarly, define ϵ_1 by $\epsilon_1(0) = e_0$ and $\epsilon_1(1) = e_2$, and define ϵ_2 by $\epsilon_2(0) = e_0$ and $\epsilon_2(1) = e_1$. Finally, define $\sigma_i = \sigma \circ \epsilon_i$.

(i) Prove that $(\sigma_0 * \sigma_1^{-1}) * \sigma_2$ is nullhomotopic rel \dot{I} . (Hint: Theorem 1.6.)

Proof. Let $p:=(\epsilon_0*\epsilon_1^{-1})*\epsilon_2$. We have $\sigma p=(\sigma_0*\sigma_1^{-1})*\sigma_2$. Let $F:\Delta^2\times I\to\Delta^2$ be defined by $F(x,t)=te_1+(1-t)x$. Define $G:I\times I\to X$ by $G(s,t)=\sigma F(p(s),t)$. Then $G(s,0)=\sigma (F(p(s),0))=\sigma p$, and $G(s,1)=\sigma (F(p(s),1))=\sigma (e_1)$. Lastly, $G(0,t)=\sigma F(p(0),t)=\sigma F(e_1,t)=\sigma (e_1)$ and similarly $G(1,t)=\sigma (e_1)$. Thus $G:(\sigma_0*\sigma_1^{-1})*\sigma_2\simeq i_{\sigma(e_1)}$ rel I. \square

(ii) Prove that $(\sigma_1 * \sigma_0^{-1}) * \sigma_2^{-1}$ is null homotopic rel \dot{I} .

Proof. The proof is completely analogous to that of (i). \Box

(iii) Let $F: I \times I \to X$ be continuous, and define paths $\alpha, \beta, \gamma, \delta$ in X as indicated in the figure (in the book). Thus $\alpha(t) = F(t, 0), \ \beta(t) = F(t, 1), \ \gamma(t) = F(0, t), \ \text{and} \ \delta(t) = F(1, t)$. Prove that $\alpha \simeq \gamma * \beta * \delta^{-1}$ rel \dot{I} .

Proof. It suffices to show that $\gamma * \beta * \delta^{-1} * \alpha^{-1}$ is nullhomotopic rel \dot{I} . Let $\epsilon(t) = F(t,t)$. Then by parts (i) and (ii), we have

$$\gamma * \beta * \delta^{-1} * \alpha^{-1} \simeq (\gamma * \beta * \epsilon^{-1}) * (\epsilon * \delta^{-1} * \alpha^{-1}) \text{ rel } \dot{I}$$
$$\simeq i_{F(0,0)} \text{ rel } \dot{I}.$$

3.6

(i) If $f \simeq g$ rel \dot{I} , then $f^{-1} \simeq g^{-1}$ rel \dot{I} , where f, g are paths in X.

Proof. Let
$$F: f \simeq g$$
 rel \dot{I} . Then $F(1-s,t): f^{-1} \simeq g^{-1}$ rel \dot{I} .

(ii) If f and g are paths in X with $\omega(f) = \alpha(g)$, then

$$(f * g)^{-1} = g^{-1} * f^{-1}.$$

Proof. We have
$$(f * g)^{-1}(t) = (f * g)(1 - t) = (g^{-1} * f^{-1})(t)$$
.

(iii) Give an example of a closed path f with $f * f^{-1} \neq f^{-1} * f$.

Proof. The map
$$\exp: I \to S^1$$
 qualifies.

(iv) Show that if $\alpha(f) = p$ and f is not constant, then $i_p * f \neq f$.

Proof. This is false without the assumption that X is Hausdorff (consider a path f to a two point set with the trivial topology with f(t) = p for t < 1 and f(1) = q).

So let's assume X is Hausdorff. I claim there exists t < 1 with $f(t) \neq p$. Suppose not. Then $f(1) \neq p$. Let U, V be disjoint open neighborhoods of p and f(1). Then since the range of f is connected, there must exist a point q in the range of f but not in $U \cup V$, a contradiction. Therefore, there exists t < 1 with $q := f(t) \neq q$.

Since $f^{-1}(q)$ is compact, there exists a minimal such t with f(t) = q, say t_0 . If $t_0 \leq 1/2$, then $(i_p * f)(t_0) = p \neq q = f(t_0)$. Otherwise, $(i_p * f)(t_0) = f(2t_0 - 1)$. Note that $2t_0 - 1 < t_0$ since $t_0 < 1$. Since t_0 was the minimal t with f(t) = q, this implies $(i_p * f)(t_0) \neq q = f(t_0)$.

3.14 If f is a closed path in S^1 at 1 and if $m \in \mathbb{Z}$, then $t \mapsto f(t)^m$ is a closed path in S^1 at 1 and

$$\deg(f^m) = m \deg f.$$

Proof. Since the function $x\mapsto x^m$ on S^1 is continuous and fixes 1, we have f^m is a closed path in S^1 .

Moreover, using the notation of Corollary 3.15, we have $\exp m\tilde{f} = (\exp \tilde{f})^m = f^m$ and $(m\tilde{f})(0) = 0$. Hence by the uniqueness of the lifting, $\widetilde{f^m} = m\tilde{f}$. Hence $\deg f^m = m \deg f$.

3.23 Let G be a topological group and let H be a normal subgroup. Prove that G/H is a topological group, where G/H is regarded as the quotient space of G by the kernel of the natural map.

Proof. The set of cosets G/H is a group since H is normal. In particular, both multiplication and inversion respect the identification of the elements of a coset. Thus, multiplication and inversion on G/H are continuous.