ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 1 Hours 30 Minutes

FULL MARKS:100

8

Math 4141: Geometry and Differential Calculus

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks. Draw the figure or figures where necessary.

1.	a)	Find the change in the coordinates of a point when the direction of axes is turned through an	15
		angle θ without changing the origin. Transform the equation $2x^2+4xy+4y^2-2x-4y-2=0$ to	
		rectangular axes through the point (2,-1) and inclined at angle 45°.	
	b)	Find the value of K, so that the conic $12x^2+36xy+ky^2+6x+6y+3=0$ represent a pair of	8.33
		straight lines.	
	c)	Write the different conditions need to be fulfilled so that the general equation of second	10
	•	degree represents a conic. Discuss the nature of the conic $x^2+6xy+9y^2+4x+12y-5=0$.	
2	a)	Define direction ratios and cosines of a line Suppose OP he any line where O he the origin	10

- a) Define direction ratios and cosines of a line. Suppose OP be any line, where O be the origin and P (2, 1,-1) be any point, find the direction angles of the line.
 - b) Find the Projection of a line AB on a line CD by using two different methods, where the points A, B, C, and D are respectively (1, 1,-1), (2, 1, 0), (-1, 0, 1) and (1, 2, 3).
 - c) If the edges of a rectangular parallelepiped are L, H and W then show that the angles 13.33 between the four diagonals are given by $cos^{-1}\left(\frac{\pm L^2 \pm H^2 \pm W^2}{L^2 + H^2 \pm W^2}\right)$.
- 3. a) Classify the following function as even, odd or neither. i. $f(x) = \frac{-3x^2}{x^3 + 1}$ ii. $g(x) = \cos x + 1$ iii. $F(x) = \frac{x - 3}{|x - 3|}$ iv) $h(x) = x^4 + 1$
 - b) If $f(x) = \begin{cases} -x 4 & -4 \le x \le -1 \\ 3x & -1 \le x \le 1 \\ -x + 4 & 1 < x \le 4 \end{cases}$ then graph f(x) and |f(x)|.
 - i. Graph the function f(x) = -(x-2)²(x-1)²(x+3) by showing necessary steps.
 ii. Find the inverse of the function f(x) = 2e^{x+2} -1 and graph the f and f⁻¹ in the same plane.
- Define Limit of a function. If $f(x) = \frac{3x + |x|}{7x 5|x|}$, does the limit $\lim_{x \to 0} f(x)$ exist?
 - b) Find the Limit of the following functions
 i. $\lim_{x\to 2} \frac{1}{(x-2)^4}$ ii. $\lim_{x\to \infty} \frac{x^2 + 2x x^3}{3x^4 7}$ iii. $\lim_{x\to 2} \ln|x-2|$

c) If $f(x) = \begin{cases} x^2 - 1 & -1 \le x < 0 \\ 2x & 0 < x < 1 \\ 1 & x = 1 \\ -2x + 4 & 1 < x < 2 \\ 0 & 2 < x < 3 \end{cases}$, then graph the function. Answer the following questions:

9

- i. Does f(-1) and f(-1) exist? ii. Does Limit $\lim_{x\to 0} f(x)$, $\lim_{x\to 1} f(x)$ and $\lim_{x\to 2} f(x)$ exist? If so what is it? If not, explain why?
- d) A raindrop forms in the atmosphere and begins to fall to earth. If we assume air resistance is proportional to the speed of the raindrop, then the drop's velocity as a function of time is given by $v(t) = \frac{mg}{k} (1 e^{-kt/m})$ where m is the mass of the raindrop, g is acceleration of gravity and k is a positive constant. Find $\lim_{t \to \infty} v(t)$ and draw the graph of v(t).