

第 6 章 RVOS 介绍

汪辰

本章内容

- > 操作系统的定义
- > 操作系统的分类
- > 典型的 RTOS 介绍
- > 课程项目简介

➤ 【参考 1】: The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version 20190608-Priv-MSU-Ratified

操作系统的定义

- 操作系统(英语: Operating System, 缩写: OS) 是一组系统软件程序:
 - 主管并控制计算机操作、运用和运行硬件、软件资

源

• 提供公共服务来组织用户交互。

- > 操作系统有广义和狭义之分。
 - •狭义:内核
 - •广义:发行包=内核+一组软件。

图片来自: https://zh.wikipedia.org/wiki/操作系统

操作系统的分类

分类	特点	应用场景	RISC-V ISA 对其支持
裸机系统(Bare Metal)	非常小,没有明显的分层设计,没有通用性。通常为单 任务+中断处理	微型控制器,简单外设, 简单实时任务。	简单的 Machine 模式支持。
实时操作系统(Real- Time Operating Systems)	中等规模,支持多任务,具备一定的通用性,和通用性相比更强调实时性。	比较复杂的多任务和实 时场景,丰富的外设。	Machine + User; 或许需要 支持物理内存保护(Physical Memory Protection, PMP)。
高级操作系统(Rich Operating Systems)	大型规模,强调用户体验或 者复杂通用性。	智能手持设备, PC工作站, 云计算服务器	Machine + Supervisor + User, 需要支持虚拟内存机制。

Number of levels	Supported Modes	Intended Usage	
1	M	Simple embedded systems	
2	M, U	Secure embedded systems	
3	M, S, U	Systems running Unix-like operating systems	

[参考 1] Table 1.2: Supported combinations of privilege modes.

FreeRTOS (https://www.freertos.org/) 是一个很流行的应用在嵌入式设备上的实时操作系统内核。诞生于 2003 年。采用 MIT 许可证发布。

- •设计小巧,整个核心代码只有3到4个C文件
- 可读性强,易维护,大部分的代码都是 C 语言编写,很少的部分 采用汇编语言。
- 支持优先级多线程(threads)、互斥锁(mutex)、信号量(semaphore)和软件计时器(software timer),支持低功耗处理以及一定程度的内存保护。
- 支持多种平台架构,包括 ARM,x86,RISC-V等
- 已经被移植到多款微处理器上。

典型的 RTOS 介绍

Tiny and Elegant Internet of Things Operating System

RT-Thread (https://www.rt-thread.org/) "是一个集实时操作系统(RTOS)内核、中间件组件和开发者社区于一体的技术平台,…… 也是一个组件完整丰富、高度可伸缩、简易开发、超低功耗、高安全性的物联网操作系统"。诞生于 2006 年。采用 Apache 2.0 许可证发布。

- 面向对象的实时内核;
- 8,32 或 256 个优先级的多线程调度。对于同优先级线程使用时间片轮转调度法;
- 提供信号量,也提供互斥信号量以防止优先级反转;
- 支持其他高效通信方式,比如邮箱、消息队列和事件标志;
- 支持静态内存分配方法,也支持线程安全的动态内存管理;
- 对高层应用提供设备框架。
- 支持多种平台架构,包括 ARM, MIPS, X86, Xtensa, C-Sky, RISC-V等
- 几乎支持市场上所有主流的 MCU 和 Wi-Fi 芯片。

课程项目简介

RVOS

RVOS(https://www.rt-thread.org/)是一个用于教学演示的操作系统内核。诞生于2021 年。采用 BSD 2-Clause 许可证发布。

- 设计小巧,整个核心有效代码~1000行;
- · 可读性强, 易维护, 绝大部分代码为 C 语言, 很少部分采用汇编;
- 演示了简单的内存分配管理实现;
- 演示了可抢占多线程调度实现,线程调度采用轮转调度法;
- 演示了简单的任务互斥实现;
- 演示了软件定时器实现;
- 演示了系统调用实现(M + U 模式);
- 支持 RV32;
- 支持 QEMU-virt 平台。

谢谢

欢迎交流合作