班级:

姓名:

学号:

2020 级计算机学院 大学物理作业

第2章 质点动力学

评	
分	

一、计算题 (40分)

- 1. 质量为m 的子弹以速度 v_0 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:
 - (1) 子弹射入沙土后,速度随时间变化的函数式;
 - (2) 子弹进入沙土的最大深度.

2. 如图所示,在光滑的水平桌面上,放着质量为m的木块,木块与一劲度系数为k轻弹簧相连,弹簧原长为 l_0 ,弹簧的另一端固定在 O 点,现有一指令为m的子弹一初速度为 v_0 垂直于 OA 方向射向木块m并留在木块内,木块运动到 B 点处时,弹簧长度变为l,求在 B 点处木块的运动速度 v_2 。

1. 某质点在力 $F = (4+5x)\mathbf{i} + 3\mathbf{j}$ 的作用下沿 x 轴作直线运动。在从 $x = 0$ 移动到 $x = 10$ m 的过程中,力 F 所做功为 (SI)。
2. 物体质量为 3 kg, $t=0$ 时位于 $r=4i$, $v=i+6j$,如一恒力 $F=5j$ 作用在物体上, 3 秒后,物体动量为,角动量为(SI)。
3. 质量为 10 kg 的物体,受到方向不变的力 $F = 30 + 40t$ (SI)的作用,在开始的 2 s 内,此力的冲量大小等于
4.一质量为 m 的质点在 x 0 y 平面上运动,其位置矢量为 $r = a\cos(\omega t)i + b\sin(\omega t)j$,则由 $t = 0$ 到 $t = \frac{\pi}{\omega}$
时间内质点所受的合力的冲量为。
5. 一质点受力 $F = 7i - 6j$ 作用, 当质点从原点运动到 $r = -3i + 4j + 16k$ 时, F 所作的功(SI)。
6. 一质量为 m 的质点,仅受到力 $\mathbf{F} = \frac{k}{r^3}\mathbf{r}$ 的作用,其中 k 为正的常数, \mathbf{r} 为矢径。那么该质点由 $\mathbf{r} = \mathbf{r}_0$ 处
由静止释放,那么质点运动到无穷远处的速度大小为。
7. 一质量为 m 的质点沿 x 轴正向运动,假设该质点通过坐标为 x 时的速度大小为 kx (k 为正常量),则此时作用于该质点上的力 $F=$ 。
8. 一质点受力 $F = (x + y)i + xyj$ 作用,由原点运动至点 $(1,2)$,若沿折线路径 "原点 \rightarrow $(1,0) \rightarrow$ $(1,2)$ " 此力做功为
三、单项选择题 (20分)
1. 一质量为 10 kg 的物体在力 $f = (120t + 40)i$ 作用下,沿 x 轴运动。 $t = 0$ 时,其初速度 $v_0 = 6i$,则 $t = 3$ 时,其速度为()(SI) (A) $10i$ (B) $66i$ (C) $72i$ (D) $4i$
2. 一质点同时在几个力的作用下产生位移 $\Delta r = 4i - 5j + 6k$,其中一个力为恒力 $F = 3i - 5j + 9k$ (SI)则这个恒力在该位移过程中做功为(
3. 质点系的内力可以改变 () (A) 系统的总质量 (B) 系统的总动量 (C) 系统的总动能 (D) 系统的总角动量
4. 以下几种说法: ① 保守力做正功时,其系统对应的势能增加; ② 质点运动经一闭合路径,保守力对 质点做功为 0; ③ 作用力与反作用力大小相等方向相反,则二者做功之和必为 0。其中正确的是()
(A) ①和② (B) ②和③ (C) ② (D) ③

二、填空题 (40分)