Some Flow Control Algorithms

- 1. Flow control for the ideal network
- 2. Stop and Wait for noiseless channels
- 3. Stop and Wait for noisy channels
- 4. Sliding window protocols
- 5. Sliding window with error control
 - · Go Back N
 - Selective Repeat

1. Flow control in the ideal network

Assumptions:

- (1) Error free transmission link,
- (2) Infinite buffer at the receiver

No acknowledgement necessary

Since the data link is error-free and the receiver can buffer as many packet as it likes, no packet will ever be lost

2. Stop-and-Wait Noiseless Channel

Packet Length = L; Bandwidth =R; RTT = 2*Prop Delay

3. Stop-and-Wait Noisy Channel

sender receiver Timeout **ACK**

Packet retransmitted

Packet retransmitted

Is Stop and Wait the best we can do?

Stop and Wait is an effective form of flow control, but... It's not very efficient.

- 1. Only one data frame can be in transit on the link at a time
- 2. When waiting for an acknowledgement, the sender cannot transmit any frames

Better solution? Pipelined Protocol: Sliding Window

Sliding Window example

(d)

(a) Initial state, no frames transmitted, receiver expects frame 0

(c)

- (b) Sender transmits frame 0, receiver buffers frame 0
- (c) Receiver ACKS frame 0

(a)

(d) Sender receives ACK, removes frame 0

(b)

This protocol behaves identically to stop and wait for a noisy channel

Sliding Window with Maximum Sender Window Size SWS

Sender Window size: The maximum number of frames the sender may transmit without receiving any acknowledgements

Sender-Side Window with $W_S=2$

- (a) Initial window state
- (b) Send frame 0
- (c) Send frame 1
- (d) ACK for frame 0 arrives

- (e) Send frame 2
- (f) ACK for frame 1 arrives
- (g) ACK for frame 2 arrives, send frame 3
- (h) ACK for frame 3 arrives

Sliding Window with Maximum Receiver Window Size

Receiver Window size: The maximum number of frames the receiver may receive before returning an acknowledgement to the sender

Receiver-Side Window with $W_R=2$

- (a) Initial window state
- (b) Nothing happens
- (c) Frame 0 arrives, ACK frame 0
- (d) Nothing happens

- (e) Frame 1 arrives, ACK frame 1
- (f) Frame 2 arrives, ACK frame 2
- (g) Nothing happens
- (h) Frame 3 arrives, ACK frame 3

Sender-Side Window with $W_S=2$

Receiver-Side Window with $W_R=2$

What about Errors?

What if a data or acknowledgement frame is lost when using a sliding window protocol?

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

Two Solutions:

Go Back N
Selective Repeat

Sliding Window with Go Back N

- When the receiver notices a missing or erroneous frame, it simply discards all frames with greater sequence numbers and sends no ACK
- The sender will eventually time out and retransmit all the frames in its sending window

Go Back N

Go-Back-N

Sender:

- k-bit seq # in pkt header
- "window" of up to N, consecutive unack'ed pkts allowed

- □ ACK(n): ACKs all pkts up to seq # n "cumulative ACK"
- timeout(n): retransmit pkt n and all higher seq # pkts in window
- ☐ One timer for all in-flight pkts

Go Back N (cont'd)

Go Back N can recover from erroneous or missing frames

But...

It is wasteful. If there are errors, the sender will spend time retransmitting frames the receiver has already seen

Sliding Window with Selective Repeat

The sender retransmits only the frame with errors

- The receiver stores all the correct frames that arrive following the bad one.
 - The receiver requires a frame buffer for each sequence number in its receiver window.
- When the receiver notices a skipped sequence number, it keeps acknowledging the last good sequence number
- When the sender times out waiting for an acknowledgement, it just retransmits the one unacknowledged frame, not all its successors.

Selective Repeat

Selective repeat: sender, receiver windows

(b) receiver view of sequence numbers

TCP (Transmission Control Protocol)

- TCP provides the end-to-end reliable connection
- The protocol
 - Connection management
 - 2. Retransmission
 - 3. Flow control
 - Congestion control
 - 5. Frame format