Class Schedule

Week	Topic	Readings
5/22	Introduction to the course	
	Introduction to Python	Bodie 6
	Capital Allocation to Risky Assets (cont)	
5/24	Capital Allocation to Risky Assets (cont)	Bodie, 6, 14.4 (or
	Introduction to credit risk	14.5 for Bodie, 12
		edition)
5/31	Efficient Diversification: Markowitz model	Bodie, 7, 8
	Index Models	
6/2	The Capital Asset Pricing Model	Bodie, 9, 10
	Arbitrage Pricing Theory and Multifactor Models of Risk and	
	Return	
6/5	Case: Innovating into Active ETFs	
	Empirical asset pricing and machine learning	*1
6/7	Company valuations	Bodie, 18
6/12	Momentum Funds:	
	Case: AQR Momentum Funds A	
		707 7 10 7 1 7 1
6/14	Lasso and Ridge Regression	ISLR, 6.2, 7.1-7.4
- 10 d	Polynomial Regression, Step Functions and Splines	1500 10110
6/21	Natural language processing: Extracting information and	MRS, 6.2-6.4.3,
	investment signals	13-15
	N IN I ID I	*2, *3
(122	Neural Networks and Deep Learning	ISLR, 10
6/23	Portfolio Performance Evaluation	Bodie, 24, 27.3,
	Black Litterman model	27.4, 28.1, 28.4
	Investment Policy	*4, *5
	Clustering analysis & Portfolio optimization	ISLR, 12.4
	Company valuations:	
	Case: Valuing Walmart 2010	
6/26	Case: AQR's Delta strategy	
0/20	Microstructure and high-frequency finance	*6, *7, *8
	Technical analysis and algorithmic trading	J, 7, 0
	Feature importance, model calibration & backtesting	
	Financial data structures and cross-validation	
6/28	Cryptocurrencies and blockchain	
0,20	Final exam	
L		

Bodie, Kane and Marcus, Investments, 13th Edition, McGraw-Hill.

ISLR: Introduction to Statistical Learning with Applications in R (<u>link</u>)

MRS: Manning, Raghavan and Schutze, Introduction to Information Retrieval

*1: S. Gu, B. Kelly, D. Xiu, Empirical Asset Pricing via MachineLearning, The Review of Financial Studies 33 (2020): 2223–2273.

https://dachxiu.chicagobooth.edu/download/ML.pdf

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2668919

*2: Lauren Cohen, Christopher Malloy & Quoc Nguyen, Lazy Prices, NBER paper # 25084, 2019. https://www.nber.org/papers/w25084

- *3: Eisdorfer, Assaf and Froot, Kenneth and Ozik, Gideon and Sadka, Ronnie, Competition Links and Stock Returns 2019. https://ssrn.com/abstract=3469642
- *4: G. Creamer (2015). "Can a Corporate Network and News Sentiment Improve Portfolio Optimization Using the Black Litterman Model?" Quantitative Finance 15 (8): 1405-1416. https://ssrn.com/abstract=2668919
- *5: Marco Lopez de Prado, Building Diversified Portfolios that Outperform Out-of-Sample Journal of Portfolio Management, 2016 https://jpm.pm-research.com/content/42/4/59
- *6: G. Creamer and Y. Freund (2007). "A Boosting Approach for Automated Trading." Journal of Trading 2 (3): 84-96.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=938042

- *7: Johnson, chapter 1, Algorithmic Trading and DMA: An introduction to direct access trading strategies http://www.mediafire.com/file/kxa9gve6fxccbg6/algo-dma preview.pdf
- *8: G. Creamer (2012). "Model Calibration and Automated Trading Agent for Euro Futures." Quantitative Finance 12 (4): 531-545.