Assignment-1

1

(1983 - 1Mark)

(1983 - 1Mark))

AI24BTECH11019-PRATHEEK

C.Multipe Choice Questions 1) Given positive integers r > 1, n > 2 and that coefficient of (3r) th terms in the

c) n = 3r

d) none of these

c) $\frac{450}{263}$ d) none of these

binomial expansion of $(1 + x)^{2n}$ are equal. Then

2) The coefficient of x^4 in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is

a) n = 2rb) n = 2r + 1

b) (n-4)/5

3) The expression $\left(x + \left(x^3 - 1\right)^3\right)$ (1992 – 2 <i>Marks</i>)	$\left(x - \left(x^3 - 1\right)^{\frac{1}{2}}\right)^3$ is a polynomial of	degree
a) 5 b) 6	c) 7 d) 8	
4) If in the expansion of $(1 + x)$ respectively, then m is	$(1-x)^n$, the coefficients of x and x^2 are $3 = (1999 - 2)$	
a) 6 b) 9	c) 12 d) 24	
5) For $2 \le r \le n$, ${}^{n}C_{r} + 2{}^{n}C_{r-1} +$	${}^{n}C_{r-2} = \tag{2}$	2000S)
a) ${}^{n+1}C_{r-1}$ b) $2^{n+1}C_{r+1}$	c) $2^{n+2}C_r$ d) $^{n+2}C_r$	
6) In the binomial expansion of (zero.Then <i>a/b</i> equals	$(a-b)^n, n \ge 5, t$ the sum of of the 5 th and 6 th to (1)	erms is 2001 <i>S</i>)
a) $(n-5)/6$	c) $5/(n-4)$	

d) 6/(n-5)

7) The sum $\sum_{i=0}^{9} {}^{10}C_i{}^{20}C_{m-i}$, (where ${}^{p}C_q = 0$ if p < q) is maximum when m is (2002S)

(2003S)

(2004S)

10) The value of ${}^{30}C_0{}^{30}C_{10}$ - ${}^{30}C_1{}^{30}C_{11}$ + ${}^{30}C_2{}^3$	${}^{0}C_{12}{}^{30}C_{20}{}^{30}C_{30}$ is where ${}^{n}C_{r} = {}^{n}C_{r}(2005S)$	
a) ${}^{30}C_{10}$ b) ${}^{30}C_{15}$	c) ${}^{60}C_{30}$ d) ${}^{31}C_{10}$	
	enote, respectively the coefficients of x^r in the $-x$) ³⁰ . Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C10A_r)$ is equal (2010)	
a) $B_{10} - C_{10}$	c) 0	
b) $A_{10} \left(B_{10}^2 C_{10} A_{10} \right)$	d) $C_{10} - B_{10}$	
12) Coefficient of x^{11} in the expansion of $(1 + x^2)^4 (1 + x^3)^7 (1 + x^4)^{12}$ is (<i>JEEAdv</i> .2014)		
a) 1051	c) 1113	
b) 1106	d) 1120	
D.MCQs with One or More than One Correct		
1) If c_r stands for nC_r $\frac{2(\frac{n}{2}!)(\frac{n}{2}!)}{n!} \left[C_0^2 - 2C_1^2 + 3C_2^2 - \dots + (-1)^n\right]$ integer is equal to	the the sum of the series $(n+1)C_n^2$, where n is an even positive $(1992 - 2Marks)$	
a) 0	d) $(-1)^n n$	
b) $(-1)^{\frac{n}{2}}(n+1)$ c) $(-1)^{\frac{n}{2}}(n+2)$	e) none of these	
2) If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals	(1998 – 2 <i>Marks</i>)	

c) 15d) 20

c) ${}^{12}C_6$ d) ${}^{12}C_6+2$

c) $\left[-\sqrt{3}, \sqrt{3}\right]$ d) $(\sqrt{3}, 2]$

 $^{n-1}C_r = (k^2 - 3)^n C_{r+1}$

a) 5

b) 10

9) If

a) ${}^{12}C_6+3$ b) ${}^{12}C_6+1$

then $(k \in)$

a) (-8, -2]b) $[2, \infty)$

8) Coefficient of t^{24} in $(1+t^2)^{12}(1+t^{12})(1+t^{24})$ is

- a) $(n-1) a_n$
- b) na_n

- c) $\frac{1}{2}na_n$ d) None of The above