Useful theorems and proofs for morpho-utils

Morpho Labs

This document aims to provide useful theorems and proofs for morphoutils.

Overflow prevention

Lemma 1.

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, |x| < n \Leftrightarrow x < n$$

Proof. Let $n \in \mathbb{N}$, $x \in \mathbb{R}$. We suppose that x < n. Then because $\lfloor x \rfloor \leq x$, we have |x| < n.

Now, we suppose that |x| < n. We have:

$$|x| \le x < |x| + 1$$

Also, because |x| is an integer, we have:

$$|x| + 1 \le n$$

So:

Theorem 1.

 $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}^*, \forall M \in \mathbb{N}, x > \lfloor M/y \rfloor \Leftrightarrow x \times y > M$

Proof. Let $x \in \mathbb{N}, y \in \mathbb{N}^*, M \in \mathbb{N}$. With lemma 1, we have:

$$x > |M/y| \Leftrightarrow x > M/y$$

So:

$$x > |M/y| \Leftrightarrow x \times y > M$$

Example

$$\forall x \in \mathbb{N}, \forall y \in \mathbb{N}^*, x > \frac{2^{256} - 1 - \frac{10^{18}}{2}}{y} \Leftrightarrow x \times y + \frac{10^{18}}{2} > 2^{256} - 1$$