CSCI 567 Assignment 5 Fall 2016

Snehal Adsule 2080872073 adsule@usc.edu

November 9, 2016

1 Problem 1

1.1 1 (a)

Consider the given distortion function as follows: $D = \sum_{n=1}^N \sum_{k=1}^K r_{nk} ||x_n - \mu_k||_2^2$ Differentiating with respect to μ_k

$$\frac{\partial D}{\partial \mu_k} = \sum_{n=1}^N r_{nk} (2\mu_k - 2x_n) = 0$$

$$\sum_{n=1}^N r_{nk} \mu_k = \sum_{n=1}^N r_{nk} x_n$$

$$\mu_k = \frac{\sum_{n=1}^N r_{nk} x_n}{\sum_{n=1}^N r_{nk}}$$

The above equation shows that μ_k is nothing but mean of the points in a particular cluster

1.2 1 (b)

Consider the L1 norm for the distortion as follows: $D = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||_1$ differentiating with respect to μ_k

$$\frac{\partial D}{\partial \mu_k} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} sign(x_n - \mu_k) = 0$$

Now,

$$\sum_{n=1}^{N} sign(x_n - \mu_k) = 0$$

$$sign(x_n - \mu_k) = +1 \quad \text{if } x_n - \mu_k > 0$$

$$= -1 \quad \text{if } x_n - \mu_k < 0$$

Therefore, if we sort all the points we will have the optimum right at the centre , which is nothing but the median of all the points.

1.3 1 (c) 1

Kernal K means

$$\tilde{D} = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\phi(x_n) - \tilde{\mu_k}||^2, \text{ where }, \tilde{\mu_k} = \frac{\sum_{i=1}^{N} r_{ik} \phi(x_i)}{\sum_{i=1}^{N} r_{ik}}$$

Consider, $||\phi(x_n) - \tilde{\mu_k}||^2$

$$\begin{aligned} ||\phi(x_n) - \tilde{\mu_k}||^2 &= (\phi(x_n) - \tilde{\mu_k})^T (\phi(x_n) - \tilde{\mu_k}) \\ &= \phi(x_n)^T \phi(x_n) - 2\tilde{\mu}^T \phi(x_n) + \tilde{\mu}^T \tilde{\mu} \\ &= \phi(x_n)^T \phi(x_n) - 2\frac{\sum_{i=1}^N r_{ik} \phi(x_i)^T \phi(x_n)}{\sum_{i=1}^N r_{ik}} + \frac{\sum_{i=1}^N \sum_{j=1}^N r_{ik} r_{jk} \phi(x_i)^T \phi(x_j)}{\sum_{i=1}^N \sum_{j=1}^N r_{ik} r_{jk}} \end{aligned}$$

Lets assume that $n_k = \sum_{i=1}^{N} r_{ik}$, so that it simplifies to:

$$||\phi(x_n) - \tilde{\mu_k}||^2 = \phi(x_n)^T \phi(x_n) - 2 \frac{\sum_{i=1}^N r_{ik} \phi(x_i)^T \phi(x_n)}{n_k} + \frac{\sum_{i=1}^N \sum_{j=1}^N r_{ik} r_{jk} \phi(x_i)^T \phi(x_j)}{n_k^2}$$

$$= K(x_n, x_n) - 2 \frac{\sum_{i=1}^N r_{ik} K(x_i, x_n)}{n_k} + \frac{\sum_{i=1}^N \sum_{j=1}^N r_{ik} r_{jk} K(x_i, x_j)}{n_k^2}$$

We can express the Distortion function just in terms of kernel matrix as follows,

$$\tilde{D} = \sum_{n=1}^{N} K(x_n, x_n) - 2 \frac{\sum_{i=1}^{N} r_{ik} K(x_i, x_n)}{n_k} + \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} r_{ik} r_{jk} K(x_i, x_j)}{n_k^2}$$

1.4 1 (c) 2

We compute the distance for all points x_n for each cluster and choose the minimum using above equation for \tilde{D} , where $n_k = \sum_{i=1}^N r_{ik}$, therefore membership assignment will be

$$r_{nk} = \begin{cases} 1 & k = \arg\min_{k} ||\phi(x_n) - \tilde{\mu_k}||_2^2 \\ 0 & \text{otherwise} \end{cases}$$

1.5 1 (c) 3

1) Randomly choose k points of N as cluster centroids[1..k]

2) Choose a kernel function (RBF, polynomial, sigmoid etc), and compute the kernel matrix K(i...N,j..N)

3) Now compute the distance \tilde{D} as for each point x_n , with respect to k cluster $K(x_n, x_n) - 2\frac{\sum_{i=1}^N r_{ik}K(x_i, x_n)}{n_k} + \frac{\sum_{i=1}^N \sum_{j=1}^N r_{ik}r_{jk}K(x_i, x_j)}{n_k^2}$ 4) For each data point determine the membership ,compute matrix r_{nk}

5) update μ_k for new cluster centroid

6) Check for convergence, repeat from step 3)

2 Problem 2

2 (a) 1 2.1

Given

$$f(x|\theta_1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-1}{2}}x^2$$
 and, $f(x|\theta_2) = \frac{1}{\sqrt{\pi}}e^{-x^2}$

We can express max likelihood as follows:

$$L(x) = \alpha \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}} x^2 + (1 - \alpha) \frac{1}{\sqrt{\pi}} e^{-x^2}$$

differentiating with respect to α , for maximum likelihood

$$\frac{\partial L(x)}{\partial \alpha} = \frac{1}{\sqrt{2\pi}} e^{\frac{-1}{2}} x^2 - \frac{1}{\sqrt{\pi}} e^{-x^2}$$

We observe that the maximum likehood is independent of alpha and it dependant on the value of L. If $\frac{1}{\sqrt{2\pi}}e^{\frac{-1}{2}}x^2>\frac{1}{\sqrt{\pi}}e^{-x^2}$, α will take part in increasing the likelihood , if both are equal then there is no impact of $\alpha.$ If $\frac{1}{\sqrt{2\pi}}e^{\frac{-1}{2}}x^2<\frac{1}{\sqrt{\pi}}e^{-x^2}$, α will tend to zero.

3 Problem 3

3.1 3 (a)

Let z_i be a latent variable such that $z_i = 1$ if x_i is from the zero state (zero inflated state), and $z_i = 0$ if x_i is from the Poisson state (for zero truncated state). Let $z_i = 1$ with probability π , and $z_i = 0$ with probability $(1 - \pi)\lambda$.

$$p(x_i) = \begin{cases} \pi + (1 - \pi)e^{-\lambda} & x_i = 0\\ (1 - \pi)\frac{\lambda^{x_i}e^{-\lambda}}{x_i!} & x_i > 0 \end{cases}$$

$$Z_i = \begin{cases} 1 & X_i \text{ is zero with } \pi_i \\ 0 & \text{if } X_i > 0 \text{ , } (1 - \pi)e^{-\lambda} \end{cases}$$

Therefore,

$$p(X_i) = p(Z_i = 1) \times p(X_i = 0 | Z_i = 1) + p(Z_i = 0) \times p(X_i = 0 | Z_i = 0) = \pi \times 1 + (1 - \pi)e^{-\lambda} \times 1$$

Assuming I as indicator function of membership,

$$L((X,Z)|\theta) = \prod_{x_i=0} \pi^{z_i} \times ((1-\pi)e^{-\lambda})^{1-z_i} \times \prod_{x_i>0} (1-\pi)e^{\frac{\lambda_i^x e^{-\lambda}}{x_i!}}$$

$$LL = \log L = \sum_{I(x_i=0)} z_i \log(\pi) + (1-z_i)(\log(1-\pi) - \lambda)$$

$$+ \sum_{I(x_i>0)} (\log(1-\pi) + (\lambda_i^{x_i}) - \lambda - \log(x_i!))$$

3.2 3 (b)

Say, $\theta = (\pi, \lambda)$, and θ_0 for the old parameter from previous iteration of the EM algorithm.

Consider E step

$$Q(\theta, \theta_0) = \sum_{z} [P(Z|X, \theta) \log P((X, Z), \theta)]$$

$$= \sum_{I(x_i = 0)} E_{P(Z|X)}[z_i] \log(\pi) + (1 - E_{P(Z|X)}[z_i]) (\log(1 - \pi) - \lambda)$$

$$+ \sum_{I(x_i > 0)} (\log(1 - \pi) + (\lambda_i^{x_i}) - \lambda - \log(x_i!))$$

Solving for $E_{P(Z|X_i)}[z_i]$

$$\begin{split} E_{P(Z|X_i)}[z_i] &= 0 \times p(Z_i = 0|X) + 1 \times p(Z_i = 1|X_i = 0) \\ &= \frac{p(X_i = 0|Z_i = 1)p(Z_i = 1)}{p(X_i = 0|Z_i = 0)p(Z_i = 0) + p(X_i = 0|Z_i = 1)p(Z_i = 1)} \\ &= \frac{\pi_0}{\pi_0 + (1 - \pi_0)e^{-\lambda_0}} \end{split}$$

Now, we can re-write $Q(\theta, \theta_0)$

$$Q(\theta, \theta_0) = \sum_{I(x_i = 0)} \frac{\pi_0}{\pi_0 + (1 - \pi_0)e^{-\lambda_0}} \log(\pi) + \left(\frac{(1 - \pi_0)e^{-\lambda_0}}{\pi_0 + (1 - \pi_0)e^{-\lambda_0}}\right) \left(\log(1 - \pi) - \lambda\right) + \sum_{I(x_i > 0)} \left(\log(1 - \pi) + x_i \log(\lambda) - \lambda - \log(x_i!)\right)$$

In M step, we will maximize Q to compute update for all parameters as follows: Differentiate wrt λ

$$\begin{split} \frac{\partial Q}{\partial \lambda} &= 0 \\ &= \sum_{I(x_i=0)} (1 - E[z_i])(-1) + \sum_{I(x_i>0)} (\frac{x_i}{\lambda} - 1) = 0 \\ \Longrightarrow \hat{\lambda} &= \frac{\sum_{I(x_i>0)} x_i}{n - \sum_{I(x_i=0)} E[z_i]} \\ \hat{\lambda} &= \frac{\sum_{I(x_i>0)} x_i}{n - \sum_{I(x_i=0)} \hat{z}_i} \\ \text{where } \hat{z} &= \frac{\pi_0}{\pi_0 + (1 - \pi_0)e^{-\lambda_0}} \end{split}$$

Differentiate wrt π

$$\begin{split} \frac{\partial Q}{\partial \pi} &= 0 \\ &= \sum_{I(x_i = 0)} \left(\frac{E[z_i]}{\pi} - \frac{1 - E[z_i]}{1 - \pi}\right) - \sum_{I(x_i > 0)} \frac{1}{1 - \pi} = 0 \\ &= \sum_{I(x_i = 0)} \left(\frac{E[z_i]}{\pi} + \frac{E[z_i]}{1 - \pi}\right) - \frac{n}{1 - \pi} = 0 \\ \Longrightarrow \hat{\pi} &= \sum_{I(x_i = 0)} \frac{\hat{z}_i}{n} \end{split}$$

Therefore, the updates rules are :
$$\hat{z}_1 = \frac{\pi_0}{\pi_0 + (1 - \pi_0)e^{-\lambda_0}}, \, \hat{\lambda}_1 = \frac{\sum_{I(x_i > 0)} x_i}{n - \sum_{I(x_i = 0)} \hat{z_1}}, \, \hat{\pi} = \sum_{I(x_i = 0)} \frac{\hat{z_i}}{n}$$