МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЦИФРОАНАЛОГОВЫЙ ПРЕОБРАЗОВАТЕЛЬ

ОТЧЕТ

студента 3 курса 331 группы
специальности 10.05.01 — Компьютерная безопасность
факультета КНиИТ
Бородина Артёма Горовича
Проверил

аспирант

А. А. Мартышкин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Задание 1	4
Задание 2	5
Задание 3	8
Тестовые задания1	
ЗАКЛЮЧЕНИЕ1	. 1

введение

Целью данной работы служит ознакомление с принципом работы интегрального цифроаналогового преобразователя, а также его испытание.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **35.3.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания интегрального *циф-роаналогового преобразователя* и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему в отчет.

Рисунок 1 – Схема интегрального цифроаналогового преобразователя.

Задание 2.

Получить на экране осциллографа **XSC1** ступенчатое выходное напряжение ЦАП. Для этого нужно вначале замкнуть переключатель **0**, то есть подать напряжение 5 В на вход **D0** ЦАП, и запустить программу моделирования. На выходе ЦАП формируется напряжение, равное ЗМР. Затем во время остановок моделирования замыкать поочередно переключатели **1**, **2**, ..., **7**, подавая входные десятичные комбинации **3**, **7**, ..., **255** на входы **D0**, ..., **D7** ЦАП.

Рисунок 2 – Ступенчатое выходное напряжение ЦАП.

Повторить эксперимент, подавая на входы ЦАП сформированые с помощью переключателей шестнадцатеричные коды от 0 до FF (255_{10}) через шаг $10_{16}(16_{10})$ и занося в табл. 1 показания вольтметра **V1** (значения выходного напряжения $u_{\text{вых}}$ ЦАП) при напряжении источника **VCC** $u_{\text{о}}$ = 5 В. **Найти** частичные и усредненное значения МЗР. **Построить** график $u_{\text{вых}}(N)$, выбрав соответствующие масштабы для напряжений и входных десятичных чисел N, откладываемых по осям координат.

№ п/п	N	$u_{\text{вых.}}$, В	$u_{ exttt{Bых.1}} - u_{ exttt{Bых.2}}, \mathbf{B}$	$(u_{\text{вых.1}} - u_{\text{вых.2}})/16$, В
1	0	0	0	_
2	15	0.312	4.688	0.293
3	31	0.623	4.377	0.27356
4	47	0.935	4.065	0.25406
5	63	1.247	3.753	0.23456
6	79	1.559	3.441	0.21506
7	95	1.87	3.13	0.19562
8	111	2.182	2.818	0.17612
9	127	2.494	2.506	0.15662
10	143	2.805	2.195	0.13718
11	159	3.117	1.883	0.11768
12	175	3.429	1.571	0.09818
13	191	3.741	1.259	0.07868
14	207	4.052	0.948	0.05925
15	223	4.364	0.636	0.03975
16	239	4.676	0.334	0.02087
17	255	4.988	0.12	0.0075

Таблица 1 – Значения выходного напряжения $u_{\text{вых}}$ ЦАП.

В этой таблице N - входной десятичный код, $u_{\rm вых.}$ - выходное напряжение, $u_{\rm вых.1}-u_{\rm вых.2}$ - напряжение ступени, $(u_{\rm вых.1}-u_{\rm вых.2})/16$ - значение младшего рязряда M3P.

Построим график $u_{\text{вых.}}(N)$. По оси x располагаются входные десятичные коды, а по оси y - получающиеся значения выходного напряжения.

Задание 3.

Открыть файл **35.4.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *цифроаналогового преобразователя* и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему в отчет.

Рисунок 4 – Схема для испытания цифроаналогового преобразователя.

Провести моделирование ЦАП, запрограммировав генератор **XWG1** (частота генерации сигналов $f_{\Gamma}=1$ к Γ ц) на возрастание и убывание шестнадцатеричных чисел от 0 до FF (255_{10}) при шаге 10_{16} (16_{10}) .

Рисунок 5 – Моделирование ЦАП на возрастающих и убывающих шестнадцатиричных числах.

Установить напряжение $u_0=10~{\rm B}$ источника **VCC** и **повторить** моделирование ЦАП при опорном напряжении $10~{\rm B}.$

Рисунок 6 – График $u_{\text{вых.}}(N)$ при $u_0 = 10$.

Тестовые задания.

- 1. Укажите назначение ЦАП: для преобразования цифрового кода N в пропорциональное аналоговое значение напряжения u(N);
- 2. Укажите, какая **структура резистивных матриц** ЦАП имеет преимущество при изготовлении преобразователя посредством интегральной технологии: **матрица** R-2R.
- 3. Определите понятие «абсолютная разрешающая способность» ЦАП: это среднее значение минимального изменения сигнала на выходе ЦАП, обусловленное увеличением или уменьшением его кода на единицу;
- 4. Укажите, для чего выбирают опорное напряжение **двуполярным**: **что- бы получать на выходе двуполярное напряжение** $\pm u_{\text{вых}}$ **при различных входных кодах**;
- 5. Укажите перспективы развития ЦАП: повышение быстродействия ключей и уменьшение времени установки ОУ; применение стабилизированных источников опорного напряжения.

ЗАКЛЮЧЕНИЕ

В ходе данной лабораторной работы мы ознакомились с принципом работы интегрального цифроаналогового преобразователя, а также испытали его на практике.