Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

```
 \begin{array}{l} f([], -1)\text{:-!}. \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<1, !, Y is S+2.} \\ f([H|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{S<0, !, Y is S+H.} \\ f([\_|T], \text{Rez})\text{:-} \ \underline{\textbf{f(T,S)}}, \text{Y is S.} \end{array}
```

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în clauze. Nu redefiniți predicatul. Justificați răspunsul.

C. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista aranjamentelor cu **N** elemente care se termină cu o valoare impară și au suma **S** dată. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[2,7,4,5,3], N=2 și $S=7 \Rightarrow [[2,5], [4,3]]$ (nu neapărat în această ordine)

D. Se consideră o listă neliniară. Să se scrie o funcţie LISP care să aibă ca rezultat lista iniţială din care au fost eliminaţi toţi atomii numerici pari situaţi pe un nivel impar. Nivelul superficial se consideră a fi 1. Se va folosi o funcţie MAP.
 <u>Exemplu</u>

 a) dacă lista este (1 (2 A (4 A)) (6)) => (1 (2 A (A)) (6))
 b) dacă lista este (1 (2 (C))) => (1 (2 (C)))