OCR1A 的双缓冲特性会更适合于这个应用。

输入捕捉模式

输入捕捉用来捕获外部事件,并为其赋予时间标记以说明此事件发生的时刻,可以在前面的计数模式下进行,不过要除去使用 ICR1 值作为计数 TOP 值的波形产生模式。

外部事件发生的触发信号由引脚 ICP1 输入,也可以通过模拟比较器单元来实现。当引脚 ICP1 上的逻辑电平发生变化,或模拟比较器的输出 ACO 电平发生变化,并且这个电平变化被输入捕捉单元所捕获,输入捕捉即被触发,此时 16 位的计数值 TCNT1 数据被复制到输入捕捉寄存器 ICR1,同时输入捕捉标志 ICF1 置位,若 ICIE1 位为"1",输入捕捉标志将产生输入捕捉中断。

通过设置模拟比较控制与状态寄存器 ACSR 的模拟比较输入捕捉控制位 ACIC 来选择输入捕捉触发源 ICP1 或 ACO。需注意的是,改变触发源有可能造成一次输入捕捉,因此在改变触发源后必须对 ICF1 进行一次清零操作来避免出现错误的结果。

输入捕捉信号经过一个可选的噪声抑制器之后送入边沿检测器,根据输入捕捉选择控制位 ICES1 的配置,看检测到的边沿是否满足触发条件。噪声抑制器是一个简单的数字滤波,对输入信号进行 4 次采样,只有当 4 次采样值都相等时其输出才会送入边沿检测器。噪声抑制器由 TCCR1B 寄存器的 ICNC1 位控制其使能或禁止。

使用输入捕捉功能时,当 ICF1 被置位后,应尽可能早的读取 ICR1 寄存器的值,因为下一次捕捉事件发生后 ICR1 的值将会被更新。推荐使能输入捕捉中断,在任何输入捕捉工作模式下,都不推荐在操作过程中改变计数 TOP 值。

输入捕捉到的时间标记可用来计算频率、占空比及信号的其它特征,以及为触发事件创建日志。测量外部信号的占空比时要求每次捕捉后都要改变触发沿,因此读取 **ICR1** 值以后须尽快改变触发的信号边沿。

PWM 输出的自动关闭与重启

当设置 TCCR1C 寄存器的 DOC1x 位为高时,PWM 输出的自动关闭功能会被使能,满足触发条件时,硬件会清零相应的 COM1x 位,将 PWM 输出信号 OC1x 与其输出引脚断开,切换成通用 IO 输出,实现 PWM 输出的自动关闭。此时,输出引脚的状态可由通用 IO 口的输出来控制。

PWM 输出的自动关闭被使能后,还需要设置其触发条件,由 TCCR1D 寄存器的 DSX1n 位来选择触发源。触发源有模拟比较器中断,外部中断,引脚电平变化中断以及定时器溢出中断,具体情形请参考 TCCR1D 寄存器描述。当某个或某些触发源被选用作为触发条件后,在这些中断标志位被置位的同时,硬件会清零 COM1x 位来关闭 PWM 的输出。

当发生了触发事件关闭 PWM 输出后,定时器模块没有相应的中断标志位,软件需要通过读取触发源的中断标志位来得知触发条件和触发事件。

当 PWM 输出被自动关闭而需要再次重启输出时,软件只需要重新设置 COM1x 位,来切换