

[40pts]

Departamento de Matemática, Universidade de Aveiro Álgebra Linear e Geometria Analítica — Agrup. IV 3.ª Prova de Avaliação Discreta; 17 de janeiro de 2018

Duração: 1h40min

- Justifique todas as respostas e indique os cálculos efetuados -

- 1. Seja \mathcal{P} o plano que contém os pontos A(1,2,1), B(0,0,3) e C(1,-1,1).
- [15pts] (a) Determine uma equação cartesiana do plano \mathcal{P} .
- [10pts] (b) Determine uma equação vetorial da reta perpendicular ao plano \mathcal{P} que passa em Q(1,2,3).
- [15pts] (c) Calcule a distância do ponto Q ao plano \mathcal{P} .
 - 2. Considere em \mathbb{R}^3 seguintes vetores: $X_1 = (1,0,2)$, $X_2 = (0,1,0)$, $X_3 = (1,0,-1)$, $X_4 = (-2,3,2)$.
- [30pts] (a) Mostre que $\mathcal{B}=(X_1,X_2,X_3)$ é uma base de \mathbb{R}^3 e calcule a matriz de mudança de base da base canónica de \mathbb{R}^3 para \mathcal{B} , $M_{\mathcal{B}\leftarrow\mathcal{C}}$.
- [15pts] (b) Calcule as coordenadas de X_4 na base \mathcal{B} .

(c) Seja $\mathcal{V} = \langle X_2, X_3, X_4 \rangle$.

- i. Determine uma base de ${\mathcal V}$ que contenha o vetor X_2 e que seja ortonormada.
 - ii. Verifique se o vetor X = (1,0,0) pertence a \mathcal{V} .
 - iii. Determine a projeção ortogonal de X = (1, 0, 0) sobre \mathcal{V} .
 - 3. Sejam \mathcal{P}_2 e \mathcal{P}_1 os espaços vetoriais dos polinómios de coeficientes reais de grau menor ou igual a 2 e de grau menor ou igual a 1, respetivamente. Considere a aplicação linear $\phi \colon \mathcal{P}_2 \to \mathcal{P}_1$ tal que

$$\phi(at^2 + bt + c) = (c - b)t + (c - a).$$

- [15pts] (a) Determine o núcleo de ϕ , identifique uma sua base e indique a sua dimensão.
- [10pts] (b) Indique a dimensão da imagem de ϕ (sem determinar a imagem) e diga se ϕ é sobrejetiva.
- [15pts] (c) Determine a matriz representativa de ϕ para as bases $\mathcal{S}=(t^2,t^2+3,t^2+t+1)$ de \mathcal{P}_2 e $\mathcal{C}=(t,1)$ base canónica de \mathcal{P}_1 .
- [10pts] (d) Seja $p(t) \in \mathcal{P}_2$ tal que o seu vetor das coordenadas na base \mathcal{S} é $[p(t)]_{\mathcal{S}} = \begin{bmatrix} 5 \\ 4 \\ -3 \end{bmatrix}$. Calcule $\phi(p(t))$.
- [25pts] 4. Obtenha uma equação reduzida da quádrica de equação $x^2 + y^2 + 4x + 2y z + 1 = 0$ e classifique-a.