ТЕСТ МОЖНО СДАТЬ ТОЛЬКО 1 РАЗ, НАЖАВ НА КНОПКУ "Сохранить решение"

Оптимизационная задача метода опороных векторов:

=

$$egin{cases} rac{1}{2}w^Tw + C\sum_{i=1}^N \xi_i
ightarrow \min_{w,w_0,\xi} \ y_i\left(w^ op x_i + w_0
ight) = M\left(x_i,y_i
ight) \geq 1 - \xi_i, i = 1,2,\dots N \ \xi_i \geq 0, i = 1,2,\dots N \end{cases}$$

Величины нарушений: ξ . Параметр C - коэффициент при штрафах за нарушения ограничений. N - число объектов обучающей выборки.

Гибкость модели- выразительная способность модели

1. Пусть D-число признаков, N-число объектов, М-число опорных объектов в методе опорных

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

	векторов. Минимальная вычислительная
	сложность, с которой можно строить прогноз
	при уже настроенной модели, в случае
	решения двойственной задачи для метода
	опорных векторов с Гауссовым (RBF) ядром
	равна
	□ O(D*N)
	□ O(D*N*N)
	□ O(D*M*M)
	O(D)
	✓ O(D*M)
	Балл: 2.0
	Комментарий к правильному ответу:
2	Выборите успория, при который видейный
۷.	Выберите условия, при который линейный
	классификатор будет проводить разделяющую гиперплоскость, чтобы
	разделяющую гиперплоскость, чтооы

максимизировать зазор (ширину) между объектами разных классов в обучающей выборке при бинарной классификации:

функция потерь hinge, без регуляризации

Погистическая функция потерь, без регуляризации

≡

	равна С
	равна нулю
	□ больше С
	Балл: 2.0 Комментарий к правильному ответу:
6.	Пусть С - коэффициент при штрафах за нарушение ограничений (он же - при ф-ции потерь в прямой задаче оптимизации) в методе опорных векторов. С ростом С число опорных векторов будет
	число опорных векторов не будет зависеть от выбора С
	увеличиваться
	уменьшаться
	Балл: 0 Комментарий к правильному ответу:
7.	Пусть D-число признаков, N-число объектов в обучении, M-число опорных объектов в методе опорных векторов. Минимальная вычислительная сложность, с которой можно строить прогноз при уже настроенной модели, в случае решения прямой задачи для метода опорных векторов (без использования ядер) равна
	□ O(D*M)
	✓ O(D)
	□ ○ O(D*M*M)
	□ O(D*N*N)
	□ □ O(N)
	□ □ O(M)
	□ O(D*N)

Балл: 2.0

ਛ

Комментарий к правильному ответу:

E	8. Построение разделяющей гиперплоскости, максимизирующей зазор (ширину) между объектами разных классов в обучающей выборке при бинарной классификации
	позволяет:
	ускорить процесс построения прогнозов
	 сделать обучение устойчивым к наличию выбросов
	☑ ☑ повысить ожидаемую точность классификации на тестовой выборке ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	Балл: 2.0

Комментарий к правильному ответу: