B. Sc. Semester II Examinations, 2023-24

Subject: Mathematics

Course ID: 22114 Course Code: SH/MTH/203/GE-2

3

Course Title: Algebra (NEW CBCS Syllabus 2022-25)

Time: 2 Hours.

Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answer in their own words as far as practicable.

Notations and Symbols have their usual meaning.

1. Answer any 5 (five) of the following questions:

$$(2\times5=10)$$

- a) If α , β , γ be the roots of the equation $x^3 + qx + r = 0$ then find the value of $\sum \frac{\alpha}{\beta}$.
- **b)**) Find the value of $(\sqrt{3} i)^{\frac{1}{7}}$.
- c) If S = a + b + c, prove that $\frac{s}{s-a} + \frac{s}{s-b} + \frac{s}{s-c} > \frac{9}{2}$ where a, b, c are unequal positive real numbers.
- d) Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (e^x, e^y)$ is not linear.
- e) Find the rank of the matrix $\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & 1 & -2 & 8 \\ 0 & 5 & 12 & -10 \end{pmatrix}$.

f) If a/b and a/c then prove that a/(bx + cy) for any integers x and y.

- g) Let $A = \{1,2,3\}$. Verify whether the relation $R = \{(1,1), (2,2), (3,3), (2,3), (3,2), (1,2), (2,1)\}$ is transitive.
- h) If f: $R \rightarrow R$ and g: $R \rightarrow R$ be two mappings, then compute $f \circ g$ with usual notations where

$$f(x) = x^2 + 3x + 2$$
 and $g(x) = 3x - 1 \ \forall \ x \in R$.

UNIT II

2. Answer any 4 (four) of the following questions:

 $(5\times 4=20)$

- a) State De Moivre's theorem. Prove it for integral values of the index.

 1 + 4
- b) If α , β , γ are the roots of the equation $2x^3 + 3x^2 x 1 = 0$, then obtain the equation whose roots are $\frac{\alpha}{\beta + \gamma}$, $\frac{\beta}{\gamma + \alpha}$, $\frac{\gamma}{\alpha + \beta}$. Hence find the value of $\sum \frac{\alpha}{\beta + \gamma}$.
- c) Prove that the mapping $f: A \to B$ is invertible if and only if it is bijective.
- d) i) Express the vector (1, 7, -4) as a linear combination of the vectors (1, -3, 2) and (2, -1, 1) in the vector space \mathbb{R}^3 .
 - ii) For what value of c the set of vectors $\{(1,1,2),(1,c,3),(2,0,c)\}$ is linearly independent. 3+2
- e) Obtain the Sturm's function of the equation $x^3 + 11x^2 102x + 181 = 0.$

- f) i) State the Descartes' rule of signs. Also find the nature of the roots of $x^4 + 15x^2 + 7x 11 = 0$.
 - ii) Prove that $3^{2n-1} + 2^{n+1}$ is divisible by $7 \forall n \in \mathbb{N}$. 2 + 3

UNIT III

3. Answer any 1 (one) of the following questions:

$$(10 \times 1 = 10)$$

- a) (i) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then prove that $a + c \equiv b + d \pmod{m}$.
 - (ii) Find the rank of the matrix $\begin{pmatrix} 3 & 1 & 2 \\ 6 & 2 & 4 \\ 3 & 4 & 5 \end{pmatrix}$.
 - (iii) Determine the conditions for which the system of equations

$$x + y + z = 6$$

$$x' + 2y + 3z = 10$$

$$x + 2y + az = b$$

has no solution, unique solution & infinite no. of solutions.

$$2 + 2 + 6$$

b) (i) Find the dimension of the subspace of S of \mathbb{R}^4 , where

$$S = \{(x, y, z, w) \in \mathbb{R}^4 : x + 2y - z + 2w = 0\}.$$

- (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$.
- (iii) Solve the cubic equation $x^3 6x 9 = 0$ by Cardan's method. 3 + 2 + 5