In [66]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

In [67]: from sklearn.linear_model import LogisticRegression

In [115]: df=pd.read_csv(r"C:\Users\Admin\Downloads\C8_loan-test - C8_loan-test.csv")
 df

Out[115]:

Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term
Graduate	No	5720	0	110.0	360.0
Graduate	No	3076	1500	126.0	360.0
Graduate	No	5000	1800	208.0	360.0
Graduate	No	2340	2546	100.0	360.0
Not Graduate	No	3276	0	78.0	360.0
	•••				
Not Graduate	Yes	4009	1777	113.0	360.0
Graduate	No	4158	709	115.0	360.0
Graduate	No	3250	1993	126.0	360.0
Graduate	No	5000	2393	158.0	360.0
Graduate	Yes	9200	0	98.0	180.0

```
In [116]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 367 entries, 0 to 366
          Data columns (total 12 columns):
           #
                Column
                                   Non-Null Count
                                                    Dtype
           - - -
           0
               Loan ID
                                   367 non-null
                                                    object
           1
               Gender
                                   356 non-null
                                                    object
           2
               Married
                                                    object
                                   367 non-null
           3
               Dependents
                                   357 non-null
                                                    object
           4
               Education
                                   367 non-null
                                                    object
           5
                Self Employed
                                   344 non-null
                                                    object
           6
               ApplicantIncome
                                   367 non-null
                                                    int64
           7
               CoapplicantIncome 367 non-null
                                                    int64
           8
               LoanAmount
                                   362 non-null
                                                    float64
           9
               Loan Amount Term
                                   361 non-null
                                                    float64
           10 Credit History
                                   338 non-null
                                                    float64
           11 Property_Area
                                   367 non-null
                                                    object
          dtypes: float64(3), int64(2), object(7)
          memory usage: 34.5+ KB
In [117]: df1=df.dropna()
In [128]: |d1=df1.iloc[:,7:11]
          d2=df1.iloc[:,-2]
In [129]: d1.shape
Out[129]: (289, 4)
In [130]: d2.shape
Out[130]: (289,)
          from sklearn.preprocessing import StandardScaler
In [131]:
In [132]:
          a=StandardScaler().fit transform(d1)
In [133]: | lr=LogisticRegression()
          lr.fit(a,d2)
Out[133]: LogisticRegression()
In [138]: obs=[[10,12,22,33]]
          pdt=lr.predict(obs)
In [139]:
          print(pdt)
          [1.]
```

```
In [140]: lr.classes_
Out[140]: array([0., 1.])
In [141]: lr.predict_proba(obs)[0][0]
Out[141]: 0.0
In [142]: lr.predict_proba(obs)[0][1]
Out[142]: 1.0
In []:
In []:
```