Implementing

Binary Search Trees

& Dictionaries

BST: Binary Tree that has the...

Binary Search Property

Every item in left child < parent, vice versa

Everything over here had better be < 14 (Even in children of this node)

Implementing lookup

```
# Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
    if t == null: return false
    if t.elem == i: return true
    else if t.elem < i: return lookup(t.left, i)
    else if t.elem > i: return lookup(t.right, i)
```

```
# Assume t is a tree with .left, .right, and .elem
def lookup(t,i):
    if t == null: return false
    if t.elem == i: return true
    else if t.elem < i: return lookup(t.left, i)
    else if t.elem > i: return lookup(t.right, i)
```

Challenge: Implement lookup w/ loops

```
# Assume node(elem,left,right) is a constructor
def add(t,i):
    if t == null: new node(i,null,null)
    if t.elem == i: return t
    else if t.elem < i:
        return node(t.elem,add(t.left,i),t.right)
    else if t.elem > i:
        return node(t.elem,t.right,add(t.right,i))
```

```
# Assume node(elem,left,right) is a constructor
def add(t,i):
    if t == null: new node(i,null,null)
    if t.elem == i: return t
    else if t.elem < i:
        return node(t.elem,add(t.left,i),t.right)
    else if t.elem > i:
        return node(t.elem,t.right,add(t.right,i))
```

Challenge: Implement add w/ loops

Observation: BSTs can store more than just numbers

Only need total ordering (any two can be compared)

- **⇒**Strings
- **→**Doubles
- →Other user defined types
 - →Some langs allow overloading <

Can also use as basis for other data structures (e.g., dictionary: nodes key/value pairs)

insert O(height)
lookup O(height)

O(log(size)) when balanced

insert O(height)
lookup O(height)

O(log(size)) when balanced

Naive insertion does not balance tree :(

Let's say I start with a I-element tree...

Then extend it...

Generally: inserting in sorted order is **bad**

Question

Can we ensure good performance generally?

- Precompute **best** BST (dynamic programming)
- Randomize insertion order
- Build even smarter data structures:
 - Red-Black trees maintain "balanced-ish" trees
 - AVL trees "rebalance" the tree

Balanced Binary Trees

Almost as much stuff on left as right

Balanced Binary Trees

Definition. A tree is "height-balanced" if:

- For each subtree
 - The height of the left subtree is within I of the right subtree

Definition. A tree is "height-balanced" if:

- For each subtree
 - The height of the left subtree is within I of the right subtree

Claim (Unproven): If you're using a height-balanced tree, lookups are O(log(height))

Observation: Inserting into a tree can cause it to become unbalanced

Trick: "Rebalance" the tree upon insertion

Note: I won't ask questions about AVL trees / rebalancing on exam (but I might ask questions about whether trees are height-balanced)

Inserting 10 is ok...

Unbalanced!

Trick: "Rebalance" the tree

Trick: "Rebalance" the tree

Trick: "Rebalance" the tree

This is a Right-Right (RR) Rotation

Also need to consider RL rotation

And LL rotation

Last: LR rotation

Generally: AVL trees

- AVL trees are rebalancing binary trees that use rotations to ensure balance invariants
- Generalizes these cases but this is the basic idea
- To insert:
 - Perform BST insertion and then...
 - •Go "back up" the spine balancing along the way
- O(log(height)) performance w/ higher constant factors
 - Rebalancing a node constant time

Other options too..

- Red/Black trees:
 - •"Colors" each node either red or black
 - Root is red
 - Every red node's children must be black
 - Never two black nodes in a row

Observation

- Both red-black and AVL trees are imperative
- Rebalancing is an inherently imperative operation
 - Changes structure of tree
- Other ultra-fancy data structures fix some of this:
 - E.g., Hash Array-Mapped Trie (HAMT)
 - Will possibly see this later in class...

List

insert O(I)

lookup O(n)

Simple

lnsertions frequent

Lookups frequent

List

insert O(I)

lookup O(n)

Simple

Insertions frequent

Lookups frequent

Sorted Array

Also allocates lots of memory

insert O(n)

lookup O(log(n))

Lookups frequent

Insertions frequent

List

insert O(1)

lookup O(n)

Simple

Insertions frequent

Lookups frequent

Sorted Array

Also allocates lots of memory

insert

Lookups frequent

O(log(n))lookup

Insertions frequent

Balanced Binary Tree

balanced

Lookups frequent

insert $\sim O(\log(n))$

Insertions frequent

lookup $\sim O(\log(n))$

Maintaining balance hard

Dictionaries

Definition: Dictionary

A dictionary is a key / value mapping
You can think of it as a mathematical function

Key -> Value

Two main operations

set(Key, Value)

get(Key) -> Value

set(Key, Value)
get(Key) -> Value

This is the ADT of a dictionary

(Abstract Data Type)

How do we implement it?

(Many possible ways!!)

Implementation I: Association Lists

Key idea: Store a list of pairs of keys and values

(In groups...)

How would you implement insert / lookup? What are their running times?

Are your operations imperative or persistent?

Implementation 2: Lambdas

Key idea: Actually create a function

Why does this work..? What is the running time?

Implementation 3: Balanced BST

Key idea: Each node in BST stores (key,value) pair

Need to order tree in some way (lexicographic order here)

(BTW, lexicographic order essentially means alphabetical order..)

Three Implementations Contrasted

Association List / Functions

Insert O(n)
Lookup O(n)

Balanced BST

Insert O(log(n))

Lookup O(log(n))

Where n is number of inserted elements

Next Time: Better Solution via Hash-Tables

Hash tables get us a dictionary with..

Set
$$\sim O(1)$$

Insert $\sim O(1)$

Under appropriate conditions