EE901 PROBABILITY AND RANDOM PROCESSES

MODULE 6
MULTIPLE RANDOM
VARIABLES

Abhishek Gupta

ELECTRICAL ENGINEERING IIT KANPUR

1

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $X(\omega) = \omega$ for each $\omega \in \Omega$.

CDF is
$$F_X(x) = \begin{cases} 0 & x \le 0 \\ x & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $Y(\omega) = 1 - \omega$ for each $\omega \in \Omega$.

3

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $Y(\omega) = 1 - \omega$ for each $\omega \in \Omega$.

4

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

$$Y(\omega) = 1 - \omega$$
 for each $\omega \in \Omega$.

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{g'(g^{-1}(y))}$$

$$Y(\omega) = 1 - X(\omega) \ \forall \ \omega$$

 $Y = X$

5

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $Z(\omega) = \omega^2$ for each $\omega \in \Omega$.

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $Z(\omega) = \omega^2$ for each $\omega \in \Omega$.

$$\begin{array}{c|c} & 0 & z \leq 0 \\ \hline 0 & z & 1 \end{array}$$
 CDF is $F_Z(x) = \begin{cases} 0 & z \leq 0 \\ \sqrt{z} & 0 < z < 1 \\ 1 & z \geq 1 \end{cases}$

7

Example: Pick a Number

Pick a number in (0,1) Probability space $(\Omega, \mathcal{B}(\Omega), \mathbb{P})$

 $Z(\omega) = \omega^2$ for each $\omega \in \Omega$.

 $Z(\omega) = X(\omega)^2$ for each $\omega \in \Omega$. $Z = X^2$

 $X(\omega) = \sqrt{Z(\omega)}$, for each $\omega \in \Omega$. $X = \sqrt{Z}$

$$Y = 1 - \sqrt{Z}$$

$$Z = (1 - Y)^2$$

Multiple RVs on the same Probability Space

• There can be many RVs defined on the same probability space.

$$X(\omega) = \omega$$
,

$$Y(\omega) = 1 - \omega$$

$$Z(\omega) = \omega^2$$

• In some cases, we can express one random variable using other random variables.

$$Y = 1 - X, \qquad Y = 1 - \sqrt{Z}$$

$$X = \sqrt{Z}$$
.

$$X = \sqrt{Z}, \qquad X = 1 - Y$$

- In some cases, it may not be possible to determine the value of one RV from other.
 - Consider the experiment to pick a number in the range (-1, 1)

9

Multiple RVs on the same Probability Space

• Consider following RVs defined on the same probability space.

$$X(\omega) = \omega$$
,

$$Y(\omega) = 1 - \omega$$

$$Z(\omega) = \omega$$

· They all the same CDF, however,

$$V - 7$$

$$X = Z$$
, $Y \neq Z$ instead $Y = 1 - Z$

- How do we distinguish the two RVs?
- If we don't have knowledge about the definitions of two random variables, just by looking at their CDF we cannot infer the relation between them.
- · We need to look at what values they take simultaneously. Some kind of joint distribution.

Joint Distribution

• In addition, there are cases where there is no direct relation

Dice roll Probability space $(\Omega, 2^{\Omega}, \mathbb{P})$

 $X(\omega) = 1$ if ω is even, otherwise 0

 $Y(\omega) = 1$ if ω is less than 4, otherwise 0

Notice further that both *X* and *Y* have the same distribution, but they are not equal.

In fact there is no relation between the two.

You can not derive the exact value of Y from X. At least no always.

We can talk about the set of pair of values X and Y can take together and their corresponding probabilities.

11

Joint Distribution

```
Dice roll. Probability space (\Omega, 2^{\Omega}, \mathbb{P}) X(\omega) = 1 if \omega is even otherwise 0 Y(\omega) = 1 if \omega < 4
```

Pair of values that X and Y can take together and their corresponding probabilities.

X = 1, Y = 1. ω is even and less than 4 which means ω is 2.

Probability = 1/6.

X = 1, Y = 0. ω is even and not less than 4 which means ω is 4 or 6.

Probability = 1/3.

X = 0, Y = 1. ω is odd and less than 4 which means ω is 1 and 3.

Probability = 1/3.

X = 0, Y = 0. ω is odd and not less than 4 which means ω is 5.

Probability = 1/6.

Not all values are equi-probable!!

Joint Distribution of RVs

- Let X and Y be two random variables on the same probability space.
- The joint probability law is defined as

$$\mathbb{P}_{X,Y}(A) = \mathbb{P}\left(\left\{\omega : (X(\omega), Y(\omega)) \in A\right\}\right)$$

if $A = B \times C$,

 $\mathbb{P}_{X,Y}\left(B\times C\right) = \mathbb{P}\left(\left\{\omega: X(\omega)\in B, Y(\omega)\in C\right\}\right)$

where B and C are some borel sets.

13

Joint CDF

• The joint CDF is given by

$$F_{XY}(x,y) = \mathbb{P}(\{\omega : X(\omega) \le x \text{ and } Y(\omega) \le y\})$$

• In other words, if $E_{x,y}=\{\omega:X(\omega)\leq x,Y(\omega)\leq y\}$ then $F_{X,Y}(x,y)=\mathbb{P}\left(E_{x,y}\right)$

Example: Coin Toss

$$\Omega = \{HH, TH, HT, TT\}$$

$$X(\omega) = \begin{cases} 1 & \text{if } \omega = HH \text{ or } HT \\ 0 & \text{if } \omega = TH \text{ or } TT \end{cases}, \ Y(\omega) = \begin{cases} 1 & \text{if } \omega = HH \text{ or } TH \\ 0 & \text{if } \omega = HT \text{ or } TT \end{cases}$$

ω	$X(\omega)$	$Y(\omega)$
НН	1	1
НТ	1	0
TH	0	1
TT	0	0

15

Example: Coin Toss

$$E_{x,y} = \{\omega : X(\omega) \le x, Y(\omega) \le y\}$$

ω	$X(\omega)$	$Y(\omega)$
НН	1	1
НТ	1	0
TH	0	1
TT	0	0

Example: Coin Toss

$$E_{x,y} = \{\omega : X(\omega) \le x, Y(\omega) \le y\}$$

ω	$X(\omega)$	$Y(\omega)$
НН	1	1
НТ	1	0
TH	0	1
TT	0	0

17

Example: Coin Toss

$$\mathbb{P}\left(\{HH\}\right) = p_1, \mathbb{P}\left(\{HT\}\right) = p_2$$
$$\mathbb{P}\left(\{TH\}\right) = p_3, \mathbb{P}\left(\{TT\}\right) = p_4$$

Then

$$F_{X,Y}(x,y) = \begin{cases} 0 & x < 0 \text{ or }, y < 0 \\ p_4 & 0 \le x < 1, 0 \le y < 1 \\ p_2 + p_4 & 1 \le x, 0 \le y < 1 \\ p_3 + p_4 & 0 \le x < 1, 1 \le y \\ 1 & 1 \le x, 1 \le y \end{cases}$$

Example: Dart Throw

- Consider a random experiment where a dart is thrown on a board B. The outcome is the location where the dart hits the board. Board area is 1.
- $\Omega = B$. Each outcome ω is a 2D coordinate (x,y). Assume a uniform probability measure which means
 - $\mathbb{P}(A) = |A|$ for any set A on the board.
 - Let $X(\omega)$ and $Y(\omega)$ denote the x and y coordinate of the outcome.
- Joint CDF of X and Y can be computed as

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y) = \begin{cases} 0 & \text{if } x \text{ OR } y < 0\\ \min(x,a) \min(y,a) & \text{if } a > x, y > 0\\ 1 & \text{if } x, y > a \end{cases}$$

19

Properties of Joint CDF

$$E_{x,y} = \{\omega : X(\omega) \le x, Y(\omega) \le y\}$$
 $F_{X,Y}(x,y) = \mathbb{P}(E_{x,y})$

$$\lim_{x \to \infty, y \to \infty} F_{X,Y}(x,y) = 1$$

$$\lim_{x \to -\infty, y \to -\infty} F_{X,Y}(x,y) = 0$$

$$\lim_{x \to \infty, y \to -\infty} F_{X,Y}(x,y) = 0$$

$$\lim_{x \to -\infty, y \to \infty} F_{X,Y}(x,y) = 0$$

Properties of Joint CDF

If x < x' and y < y', then $F(x, y) \le F(x', y')$.

$$\lim_{x\to\infty} F_{X,Y}(x,y) = F_Y(y)$$

$$\lim_{y\to\infty} F_{X,Y}(x,y) = F_X(x)$$

Joint CDF is right continuous.

21

Joint PMF of DRVs

- Let *X* and *Y* be two DRVs on the same probability space.
- Then the joint PMF is defined as

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$

= $\mathbb{P}(\{\omega : X(\omega) = x, Y(\omega) = y\})$

Example: Coin toss

$$\Omega = \{HH, TH, HT, TT\}$$

$$X(\omega) = \begin{cases} 1 & \text{if } \omega = HH \text{ or } HT \\ 0 & \text{if } \omega = TH \text{ or } TT \end{cases}, \ Y(\omega) = \begin{cases} 1 & \text{if } \omega = HH \text{ or } TH \\ 0 & \text{if } \omega = HT \text{ or } TT \end{cases}$$

ω	$X(\omega)$	$Y(\omega)$
НН	1	1
НТ	1	0
TH	0	1
TT	0	0

23

Example: Coin toss

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$

ω	$X(\omega)$	$Y(\omega)$
НН	1	1
НТ	1	0
TH	0	1
TT	0	0

x	у
1	1
1	0
0	1
0	0

$E = \{X = x, Y = y\}$
{HH}
{HT}
{TH}
{TT}

$\mathbb{P}(\{X=x,Y=y\})$

Example: Coin Toss

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$
 $\mathbb{P}(\{HH\}) = p_1, \mathbb{P}(\{HT\}) = p_2$ $\mathbb{P}(\{TH\}) = p_3, \mathbb{P}(\{TT\}) = p_4$

х	у
1	1
1	0
0	1
0	0

$E = \{X = x, Y = y\}$
{HH}
{HT}
{TH}
{TT}

$p_{X,Y}(x,y)$
p_1
p_2
p_3
p_4

25

Probability Law in terms of PMF

• For any 2D set A, the probability that X, Y takes value in A is given as

$$\mathbb{P}_{X,Y}\left(A\right) = \sum_{(x,y) \in \mathcal{R}(X,Y)} p_{X,Y}(x,y) \mathbb{1}\left((x,y) \in A\right)$$

Consider the PMF. Each point is equi-probable. Compute the probability that *X* and *Y* are equal.

Here, $A = \{(x, y): x = y\}$ which is a line.