Vol. 63 No. 8 JUCHE106 (2017).

(자연과학)

주체106(2017)년 제63권 제8호

(NATURAL SCIENCE)

벼종자처리에 유용미생물들을 복합하여 리용하기 위한 연구

주수한, 김철성

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《농업부문에서는 흙보산비료생산에 힘을 넣으며 유기질복합비료생산기지를 튼튼히 꾸리고 그 생산을 늘여야 합니다.》

효능높은 미생물비료를 개발하는데서 유용미생물들을 어떻게 복합하는가 하는것이 리론실천적으로 매우 중요한 문제로 제기된다.

일반적으로 뿌리권미생물들사이에는 서로 도와주는 관계[1]가 많으므로 미생물비료를 리용할 때 단독미생물비료를 리용하는것보다 여러가지 유용미생물들이 복합되여있는 복합미생물비료를 리용하는것이 더 유리한것으로 알려져있다.[3]

이로부터 우리는 빛합성세균과 질소고정균, 린, 칼리움분해균을 복합하여 효능높은 미 생물비료를 개발하기 위한 기초연구를 하였다.

재료 및 방법

균주들로는 질소고정균(Azospirillum brasilense 371), 린분해균(Bacillus polymyxa 1614), 칼리움분해균(Bacillus mucilaginosus), 빛합성세균(Rubrivivax gelatinosus)을 리용하였다.

미생물들사이의 호상관계는 투석막을 리용한 격막법으로 액체배양하여 현미경으로 균수를 측정하는 방법[2]으로 검토하였다.

논벼뿌리권 *Azospirilum*의 수측정은 무질소반고체사과산우무배지(NFB)를 리용한 한계 희석법으로 하였는데 미생물수는 최확치표(MPN)[2]에 준하여 계산하였다.

결과 및 론의

질소고정균, 린, 칼리움분해균들사이의 호상관계를 투석막을 리용한 액체배양방법으로 평가한 결과는 표 1과 같다.

표 1. 액체배양조건에서 질소고정균, 린, 칼리움분해균들사이의 호상관계

배양시간 -	미생물수/(·10 ⁸ CFU·mL ⁻¹)								
배경시킨 - /d -		단독배양			혼합배양				
/u -	질소고정균	린분해균	칼리움분해균	1	2	3			
1	1.72	0.52	1.32	2.28	1.40	2.48			
3	14.40	1.72	13.6	38.40	7.20	41.00			

두부순물배지, 30℃에서 정치배양

표 1에서 보는바와 같이 질소고정균, 린, 칼리움분해균들을 각각 단독배양했을 때보다

혼합배양했을 때 그 효과가 더 높았다. 이것은 세종의 균주들을 혼합배양할 때 균주들의 호 상작용결과 서로 보다 유리한 생장조건을 보장받는다는것을 의미한다.

빛합성세균과 질소고정균, 린, 칼리움분해균들사이의 호상관계를 본 결과는 표 2, 3 과 같다.

						,							
		미생물수/(·10 ⁸ CFU·mL ⁻¹)											
배양시간		단독	배양		혼합배양								
/d		A 70	Вр	Bm -	R+Azo		R+Bp		R+Bm				
		Azo			R	Azo	R	Вр	R	Bm			
1	1.9	2.1	2.8	1.9	2.9	2.7	8.4	2.9	3.4	2.2			
2	21.2	2.8	3.2	4.5	50.4	13.6	30.8	7.2	22.0	35.2			
3	48.8	12.8	1.2	10.0	192.0	25.2	132.8	1.5	59.2	21.2			

표 2. 빛합성세균과 개별적질소고정균, 린, 칼리움분해균사이의 호상관계

R: 빛합성세균, Azo: 질소고정균, Bp: 린분해균, Bm: 칼리움분해균; 배양온도: 30℃, 감자우림물배지, 정치배양

표 2에서 보는바와 같이 빛합성세균을 단독배양했을 때보다 질소고정균이나 린, 칼리움분해균과 각각 혼합배양했을 때 더 잘 자랐으며 질소고정균, 린, 칼리움분해균들도 빛합성세균과 혼합배양했을 때 다같이 더 잘 증식하였다.

	표 3. 옷답은세븐파 든답한 글도표증한, 한, 글디움한테한지어의 모증한게										
	미생물수/(·10 ⁸ CFU·mL ⁻¹)										
배양시간	단독배양				혼합배양						
/d)	R	R Azo	Вр	Bm	R+Azo+Bp			R+Azo+Bp+Bm			
	K AZ0	ър	Dill	R	Azo	Bp	R	Azo	Bp	Bm	
1	2.0	1.4	0.8	1.7	25.2	3.7	2.0	42.4	4.2	2.8	3.3
2	19.6	9.2	1.5	2.8	42.0	30.4	3.4	49.6	34.0	12.4	18.0

표 3. 빛합성세균과 혼합한 질소고정균, 린, 칼리움분해균사이의 호상관계

략어표기의 의미와 배양조건은 표 2에서와 같음

표 3에서 보는바와 같이 빛합성세균과 질소고정균과 린, 칼리움분해균을 모두 혼합하여 배양했을 때 효과가 더 좋았다. 이것은 질소고정균, 린, 칼리움분해균들사이에는 물론 질소고정균, 린, 칼리움분해균들과 빛합성세균사이에 보다 유리한 호상관계가 존재한다는 증거로 된다.

이에 기초하여 질소고정균, 린, 칼리움분해균과 빛합성세균을 혼합배양한 배양액을 논 벼종자에 처리한 결과 토양에서 질소고정균수의 증가에 긍정적인 영향을 주었다.(표 4)

표 4. 질소고정균, 린, 칼리움, 빛합성분해균 혼합배양액의 처리가 논벼뿌리권 로양의 *Azospirillum*수의 변화에 미치는 영향

처리	Azospirillum 4 /(·10 ⁴ MPN g ⁻¹)
대조구	1.7
시험구	9.6

표 4에서 보는바와 같이 복합미생물배양액의 논벼종자처리로 하여 벼뿌리권의 질소고정균수가 약 5.6배로 증가되였는데 이것은 미생물비 - 료의 작용에 의하여 뿌리대사기능이 강화됨으로 - 써 뿌리권미생물인 Azospirillum의 생장을 자극하는것으로 설명할수 있다.

맺 는 말

- 1) 빛합성세균과 질소고정균, 린, 칼리움분해균사이에는 서로 도와주는 관계가 존재한다.
- 2) 질소고정균, 린 칼리움분해균, 빛합성세균혼합배양액의 논벼종자처리는 벼뿌리권의 질소고정균수를 약 5.6배 증가시킨다.

참고문 헌

- [1] 김일성종합대학학보(자연과학), 50, 7, 114, 주체93(2004).
- [2] 리홍렬 등; 토양학전공실험, **김일성**종합대학출판사, 184~191, 주체97(2008).
- [3] G. H. Dar; Soil Microbiology and Biochemistry, Elsevier, 207~212, 2010.

주체106(2017)년 4월 5일 원고접수

Study on the Complex Application of Useful Microbes to Treatment of Rice Seeds

Ju Su Han, Kim Chol Song

There is symbiotic relation between a photosynthetic bacteria, N-fixing microbe, phosphorate mobilizing, potassium mobilizing microbe and when the rice is treated with their cultural mix, the number of rhizosphere N-fixing microbe in rice seeds increases about 5.6 times.

Key words: useful microbes, rhizosphere, N-fixing microbe