Problem 1.2

- (a) ITHINKTHATISHALLNEVERSEEABILLBOARDLOVELYASATREE
- (b) LOVEISNOTLOVEWHICHALTERSWHENITALTERATIONFINDS
- (c) INBAITINGAMOUSETRAPWITHCHEESEALWAYSLEAVEROOMFORTHEMOUSE

Problem 1.4

Problem 1.5

For simplicity's sake, I'll be using A, B, C, D as the alphabet.

- (a) $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ possible substitution ciphers
- (b) (i) For no fixed letters, A can map to B, C, or D, so...
 - $3 \cdot 2 \cdot 1 = 6$ possible substitution ciphers that have no letters fixed
 - (ii) For at least one fixed letter, we have 4 choices for the fixed letter, and then we simply deal with a 3-letter alphabet
 - 4.3.2.1 = 24 possible substitution ciphers that have at least one letter fixed
 - (iii) For only one fixed letter, we have 4 choices for the fixed letter, and then we simply deal with a 3-letter alphabet without any fixed letters, so...
 - $4 \cdot 2 \cdot 1 = 8$ possible substitution ciphers that have one letter fixed