Announcements

Wednesday, 31 October 2018 16:0

Next week:

By on 10:00 - Homework discussion

• Tye 12:15 7 • Wed 16:00 J Lecture and Practical

Starting from HW # 3 (Linear tegt.)

Deadline on SUNDAY 23:59

Decision trees

Dataset

i	$x_{i,1}$	$x_{i,2}$	$x_{i,3}$	y_i	D	
A	5.5	0.5	4.5	2	X; ER 17-3	- Samples
В	7.4	1.1	3.6	0		ximp.cs
C	5.9	0.2	3.4	2	11 /	
D	9.9	0.1	0.8	0	yi eq 0,1,23	
E	6.9	-0.1	0.6	2		
F	6.8	-0.3	5.1	2		
G	4.1	0.3	5.1	1	+- LNXD	
H	1.3	-0.2	1.8	1	\times ϵ_{Ω}	N=15
I	4.5	0.4	2.0	0	77 - IV	
J	0.5	0.0	2.3	1		D=3
K	5.9	-0.1	4.4	0		
L	9.3	-0.2	3.2	0	11 C S 2 1 C Z N	
\mathbf{M}	1.0	0.1	2.8	1	4 E 20,1,25°	
N	0.4	0.1	4.3	1	0 -	
O	2.7	-0.5	4.2	1		
0	2.7	-0.5	4.2	1		

Problem 1: Build a decision tree T for your data $\{X,y\}$. Consider all possible splits for all features and use the Gini index to build your tree. Build the tree only to a depth of two! Provide at least the value of the final Gini index at each node and the distribution of classes at each leaf.

consider all possible splits

Problem 2: Use the final tree T from the previous problem to classify the vectors $x_a = (4.1, -0.1, 2.2)^T$ and $x_b = (6.1, 0.4, 1.3)^T$. Provide both your classification \hat{y}_a and \hat{y}_b and their respective probabilities $p(c = \hat{y}_a \mid x_a, T)$ and $p(c = \hat{y}_b \mid x_b, T)$

$$\hat{y}_a - arg max P(y_a = cl \times a) = 1$$

wit proba. 1

$$P(y_b) \times b = \left[\frac{2}{6}, 0, \frac{4}{6}\right]$$

$$y_b = 2$$
 with Proba. $\frac{2}{3}$

Ytest E { 0,1,2} Vtest [0,1,1,0,1,2] ytest = 20,1,25 Ntest [0,0,1,0,2,2--] $acc(y,y) = \frac{1}{N} \underbrace{y}_{i=1}^{N} (y_{i} = y_{i})$ T(x) = 5 1 if x is true

U(x) = 7 0 else

Problem 4: Classify the two vectors x_a and x_b given in Problem 2 with the k-nearest neighbors algorithm. Use k = 3 and Euclidean distance

 $X_{\alpha} = [4.1, -0.1, 2.2]$

Xb=[6.1, 0.4, 1.3]

1) For xnew, find k points in the training set, who are the dosest to xnew (in terms of euclidean dist.)

i	$x_{i,1}$	$x_{i,2}$	$x_{i,3}$	y_i
A	5.5	0.5	4.5	2
\mathbf{B}	7.4	1.1	3.6	0
C	5.9	0.2	3.4	2
D	9.9	0.1	0.8	0
\mathbf{E}	6.9	-0.1	0.6	2
F	6.8	-0.3	5.1	2
G	4.1	0.3	5.1	1
H	1.3	-0.2	1.8	1
I	4.5	0.4	2.0	0
J	0.5	0.0	2.3	1
K	5.9	-0.1	4.4	0
L	9.3	-0.2	3.2	0
M	1.0	0.1	2.8	1
N	0.4	0.1	4.3	1
O	2.7	-0.5	4.2	1

Point	Distance 1	Label
<u>C</u> 0	0,671 2,484 2.474	0 2 1

-
$$P(y_a = C \mid X_a) = \frac{\# G + n br}{(\# A + n brs)} = : k$$

$$P(y_a|x_a) = \begin{bmatrix} \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \end{bmatrix}$$

Because we have a tie, pick O

(lowest label)

-				(3	11 000
Point	Distance	Label	P(yb=c X	$(x) = \begin{cases} 0 \\ 0 \end{cases}$	if $c=1$ if $c=2$
E	1.175	2		$\frac{2}{3}$	if c=2
Ţ	1.746	0	1		0
С	2.119	2	9b = 2 (with	proba.	$\left(\frac{2}{3}\right)$

Problem 5: Now, consider y_i to be real-valued targets rather than classes. Perform 3-NN regression to label the vectors from Problem 2

Recall: Regression means that the targets yiell (in classification they were discrete categories yie {1,2,--,C})

Problem 6: Look at the data. Which problem do you see w.r.t. building a Euclidean distance-based k-NN model on X? How can you compensate for this problem? Does this problem also arise when training a decision tree?

- 1) Normalite the column
 - L₂ horm = 1
 - · min =0 , max = 1
- 2) Use Mahalambis distance

$$d_{M}(x_{1},x_{2}|\xi) = (x_{1}-x_{2})^{T}\xi^{-1}(x_{1}-x_{2})$$

i	$x_{i,1}$	$x_{i,2}$	$x_{i,3}$	y_i
A	5.5	0.5	4.5	2
В	7.4	1.1	3.6	0
C	5.9	0.2	3.4	2
D	9.9	0.1	0.8	0
E	6.9	-0.1	0.6	2
F	6.8	-0.3	5.1	2
G	4.1	0.3	5.1	1
H	1.3	-0.2	1.8	1
I	4.5	0.4	2.0	0
J	0.5	0.0	2.3	1
K	5.9	-0.1	4.4	0
L	9.3	-0.2	3.2	0
M	1.0	0.1	2.8	1
N	0.4	0.1	4.3	1
O	2.7	-0.5	4.2	1

$$\times_{1}$$
 [0.4, 9.9] \times_{z} [-05, 1.1]