Métodos Numéricos Modalidad virtual por pandemia COVID-19

Normas vectoriales

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ es una norma si:

- $f(x) \geq 0$
- $f(x) = 0 \Rightarrow x = 0$
- $f(\alpha x) = |\alpha| f(x)$ para todo $\alpha \in \mathbb{R}$.
- f(x + y) < f(x) + f(y)

•
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

•
$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$\bullet ||x||_{\infty} = \max_{i=1...n} |x_i|$$

Normas matriciales

 $F: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}$ es una norma si:

- $F(A) \ge 0$
- $F(A) = 0 \Rightarrow A = 0$
- $F(\alpha x) = |\alpha|F()$ para todo $\alpha \in \mathbb{R}$.
- F(A + B) < F(A) + F(B)
- $F(AB) \le F(A)F(B)$ (propiedad adicional, son normas sub-multiplicativas, m = n)

Ejemplo

• Norma de Frobenius $||A|| = \sqrt{\left(\sum_{i=1}^{m} \sum_{i=1}^{n} a_{ij}^{2}\right)}$

Normas matriciales inducidas

Sean f_1 un norma definida en \mathbb{R}^m y f_2 un norma definida en \mathbb{R}^n $F: \mathbb{R}^{m \times n} \longrightarrow \mathbb{R}$ es una norma inducida si:

$$F(A) = \max_{x \neq 0} \frac{f_1(Ax)}{f_2(x)}$$

$$F(A) = \max_{x: f_2(x)=1} f_1(Ax)$$

Ejemplo para n=m

- $\bullet \text{ Norma } 1 \longrightarrow ||A||_1 = \max_{x:||x||_1 = 1} ||Ax||_1$
- $\bullet \ \, \mathsf{Norma} \ 2 \longrightarrow ||A||_2 = \max_{x:||x||_2=1} ||Ax||_2$
- Norma p $\longrightarrow ||A||_p = \max_{x:||x||_p=1} ||Ax||_p$
- Norma $\infty \longrightarrow ||A||_{\infty} = \max_{x:||x||_{\infty}=1} ||Ax||_{\infty}$

Número de condición

Sea $A \in \mathbb{R}^{n \times n}$ matriz no singular y ||.|| una norma matricial. Se define número de condición de A como

$$\kappa(A) = ||A||||A^{-1}||$$

- Si ||.|| es una norma inducida, $\kappa(I) = 1$
- Si ||.|| es una norma sub-multiplicativa $\kappa(I) \geq 1$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
 Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
 Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-666, 834)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
 Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-666, 834)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.169 \\ 0.066 \end{bmatrix}$$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
 Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-666, 834)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.169 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-932, 1167)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-666, 834)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.169 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-932, 1167)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.167 \\ 0.068 \end{bmatrix}$$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.067 \end{bmatrix}$$
 Solución $(x_1, x_2) = (1, -1)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.168 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-666, 834)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.169 \\ 0.066 \end{bmatrix}$$
Solución $(x_1, x_2) = (-932, 1167)$

$$\begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.167 \\ 0.068 \end{bmatrix}$$
Solución $(x_1, x_2) = (934, -1169)$

$$A = \begin{bmatrix} 0.835 & 0.667 \\ 0.333 & 0.266 \end{bmatrix}$$

$$||A||_{\infty} = 1.502$$

$$||A^{-1}||_{\infty} = 1168000$$

$$\kappa_{\infty} \approx 1.7 \times 10^6$$

Cota del error

Sea $A \in \mathbb{R}^{n \times n}$ matriz no singular y ||.|| una norma matricial inducida. Sea \tilde{x} solución aproximada del sistema Ax = b con $b \neq 0$ $y r = Ax - A\tilde{x} = b - \tilde{b}$

$$\frac{||x - \tilde{x}||}{||x||} \le ||A|| \, ||A^{-1}|| \frac{||b - \tilde{b}||}{||b||}$$