Digital Systems Design and Laboratory [2. Boolean Algebra]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Spring 2019

☐ Introduction
 ☐ Basic Operation
 ☐ Boolean Expressions and Truth Tables
 ☐ Basic Theorems
 ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
 ☐ Simplification Theorems
 ☐ Multiplying Out and Factoring
 ☐ Complementing Boolean Expressions

Introduction

- Boolean algebra
 - > Is the basic mathematics for logic design of digital systems
- ☐ History
 - ➤ George Boole developed Boolean algebra in 1847 and used it to solve problems in mathematical logic
 - ➤ Claude Shannon first applied Boolean algebra to the design of switching circuits in 1939
 - Master's thesis (21 years old)
- ☐ Switching devices we will use are essentially two-state devices
 - > Represent an input or output by a Boolean variable
 - > 1/0 for High/Low or True/False or Yes/No or Closed/Open
 - Just symbols
 - No numeric value

□ Introduction
 □ Basic Operation
 □ Boolean Expressions and Truth Tables
 □ Basic Theorems
 □ Commutative, Associative, Distributive, and DeMorgan's Laws
 □ Simplification Theorems
 □ Multiplying Out and Factoring
 □ Complementing Boolean Expressions

Logic NOT

☐ Complement = Inverse = Negate = NOT ('; -; -; -)

$$> 0' = 1, 1' = 0$$

> Symbol (NOT gate, inverter)

> Truth table

X (Input)	X' (Output)			
0	1			
1	0			

Logic AND

 \square AND (• ; \wedge ; sometimes omitted)

$$\triangleright$$
 0 • 0 = 0, 0 • 1 = 0, 1 • 0 = 0, 1 • 1 = 1

> Symbol (AND gate)

> Truth table

А	В	C = A • B
0	0	0
0	1	0
1	0	0
1	1	1

Logic OR

$$\square$$
 OR (+; \vee)

$$\rightarrow$$
 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 1

> Symbol (OR gate)

> Truth table

Α	В	C = A + B
0	0	0
0	1	1
1	0	1
1	1	1

 $C = 0 \rightarrow \text{ open circuit between 1 and 2}$ $C = 1 \rightarrow \text{ closed circuit between 1 and 2}$

- ☐ Introduction
- Basic Operation
- Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Boolean Expressions vs. Logic Gates

- ☐ A Boolean expression is formed by basic operations on constants or variables, e.g., 0, 1, X, Y'
- ☐ Realize a Boolean expression by a circuit of logic gates
 - \triangleright Perform operations in order: parentheses \rightarrow NOT \rightarrow AND \rightarrow OR

> Example: [A(C+D)]' + BE

Boolean Expressions vs. Truth Tables

- ☐ A truth table specifies the output values of a Boolean expression for all possible combinations of input values
 - > How to check the equivalence between two expressions?
 - \triangleright Example: AB'+C = (A + C)(B'+ C)

Α	В	С	В'	AB'	LHS	A+C	B'+C	RHS
0	0	0	1	0	0	0	1	0
0	0	1	1	0	1	1	1	1
0	1	0	0	0	0	0	0	0
0	1	1	0	0	1	1	1	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	0	0	1	0	0
1	1	1	0	0	1	1	1	1

- ☐ Introduction
- ☐ Basic Operation
- Boolean Expressions and Truth Tables
- **☐** Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Basic Theorems

Operations with 0 and 1

$$> X + 0 = X$$

$$> X \bullet 1 = X$$

$$> X + 1 = 1$$

$$> X \bullet 0 = 0$$

☐ Idempotent laws

$$> X + X = X$$

$$> X \bullet X = X$$

☐ Involution law

☐ Laws of complementarity

$$> X + X' = 1$$

$$> X \bullet X' = 0$$

- Introduction
 Basic Operation
 Boolean Expressions and Truth Tables
 Basic Theorems
 Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Commutative and Associative Laws

☐ Commutative laws for AND and OR

$$> XY = YX$$

$$>$$
 X + Y = Y + X

■ Associative laws for AND and OR

$$\rightarrow$$
 (XY)Z = X(YZ) = XYZ

$$\rightarrow$$
 (X + Y) + Z = X + (Y + Z) = X + Y + Z

Distributive and DeMorgan's Laws

☐ Distributive laws

- \triangleright Ordinary one : X(Y + Z) = XY + XZ
- \triangleright Second one: X + YZ = (X + Y)(X + Z)

 - You can also use a truth table to prove it

☐ DeMorgan's laws

- \rightarrow (X + Y)' = X'Y'
- \rightarrow (XY)' = X' + Y'

Duality (1/2)

- ☐ The dual of a Boolean expression is obtained by
 - Interchanging the constants 0 and 1
 - Interchanging the operations of AND and OR
 - > Leaving variables and complements unchanged
- ☐ Given a Boolean identity, another identity can be obtained by taking the dual of both sides of the identity

Duality (2/2)

TABLE 2-3

Operations with 0 and 1:

Laws of Boolean

1.
$$X + 0 = X$$

1D.
$$X \cdot 1 = X$$

2. X + 1 = 1

$$2D. X \cdot 0 = 0$$

© Cengage Learning 2014

Idempotent laws:

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

Involution law:

4.
$$(X')' = X$$

Laws of complementarity:

5.
$$X + X' = 1$$

5D.
$$X \cdot X' = 0$$

Commutative laws:

6.
$$X + Y = Y + X$$

6D.
$$XY = YX$$

Associative laws:

7.
$$(X + Y) + Z = X + (Y + Z)$$

= $X + Y + Z$

7D.
$$(XY)Z = X(YZ) = XYZ$$

Distributive laws:

$$8. X(Y + Z) = XY + XZ$$

8D.
$$X + YZ = (X + Y)(X + Z)$$

DeMorgan's laws:

9.
$$(X + Y)' = X'Y'$$

9D.
$$(XY)' = X' + Y'$$

- ☐ Introduction
- Basic Operation
- Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- **☐** Simplification Theorems
- Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Simplification Theorems

Uniting

$$> XY + XY' = X$$

$$\rightarrow$$
 (X + Y)(X + Y') = X

☐ Absorption

$$> X + XY = X$$

$$> X(X + Y) = X$$

■ Elimination

$$> X + X'Y = X + Y$$

$$> X(X' + Y) = XY$$

Consensus

$$\rightarrow$$
 XY + X'Z + YZ = XY + X'Z

$$\rightarrow$$
 (X + Y)(X' + Z)(Y + Z) = (X + Y)(X' + Z)

Simplification Practices

- \square Simplify Z = A'BC + A'
- \square Simplify Z = [A + B'C + D + EF][A + B'C + (D + EF)']
- \square Simplify Z = (AB + C)(B'D + C'E') + (AB + C)'

- ☐ Introduction
- ☐ Basic Operation
- Boolean Expressions and Truth Tables
- Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- **☐** Multiplying Out and Factoring
- ☐ Complementing Boolean Expressions

Multiplying Out

- ☐ Use the distributive laws to multiply out an expression to obtain a <u>sum-of-products</u> (SOP) form
 - Ordinary distributive law: X(Y + Z) = XY + XZ
 - \triangleright Second distributive law: X + YZ = (X + Y)(X + Z)
- ☐ Example: multiply out (A+BC)(A+D+E)
 - > Use the ordinary distributive law

```
• (A + BC)(A + D + E) = A + AD + AE + ABC + BCD + BCE
= A(1 + D + E + BC) + BCD + BCE
= A + BCD + BCE
```

Use the second distributive law

```
• (A + BC)(A + D + E) = A + BC(D + E) = A + BCD + BCE
```

Factoring

☐ Use the second distributive law to factor an expression to obtain a product-of-sums (POS) form

$$\triangleright \underline{X} + YZ = (X + Y)(X + Z)$$

- ☐ Example: factor A + B'CD
- ☐ Example: factor AB'+ C'D
- ☐ Example: factor C'D + C'E' + G'H

SOP vs. Logic Gates

☐ Realize SOPs by two-level circuits (AND-OR)

$$>$$
 A + B' + C + D'E

POS vs. Logic Gates

☐ Realize POSs by two-level circuits (OR-AND)

$$\rightarrow$$
 (A + B')(C + D + E)(A + C' + E')

$$\rightarrow$$
 AB'C(D' + E)

- ☐ Introduction
- ☐ Basic Operation
- Boolean Expressions and Truth Tables
- ☐ Basic Theorems
- ☐ Commutative, Associative, Distributive, and DeMorgan's Laws
- ☐ Simplification Theorems
- Multiplying Out and Factoring
- **☐** Complementing Boolean Expressions

Complementing Boolean Expressions

☐ DeMorgan's laws with n variables

$$(X_1 + X_2 + ... + X_n)' = X_1'X_2' ... X_n'$$

 $(X_1X_2 ... X_n)' = X_1' + X_2' + ... + X_n'$

- □ Complement an expression by iteratively applying DeMorgan's laws
 - ➤ Example: complement (AB' + C)D' + E so that NOT is applied only to single variables

```
• [(A \bullet B' + C) \bullet D' + E]' = [(A \bullet B' + C) \bullet D']' \bullet E'
= [(A \bullet B' + C)' + D] \bullet E'
= [(A \bullet B')' \bullet C' + D] \bullet E'
= [(A'+B) \bullet C' + D] \bullet E'
```

Q&A