Voltage Gain: 
$$A_v = \frac{v_o}{v_i}$$
 Current Gain:  $A_i = \frac{i_o}{i_i}$  Power Gain:  $G = A_v A_i$ 

Decibel: 
$$A_{vdB} = 20 \log(|A_v|)$$
  $A_{idB} = 20 \log(|A_i|)$   $G_{dB} = 10 \log(|G|)$ 

Energy Conservation: 
$$P_i + P_s = P_o + P_d \longrightarrow \begin{cases} P_i &= \text{Power from Source} \\ P_s &= \text{Power from DC Supplies} \\ P_o &= \text{Output Power at Load} \\ P_d &= \text{Power Dissipated in the Op-Amp} \end{cases}$$

#### Frequency Dependence:

Capacitor: 
$$Z_c = \frac{1}{j\omega C}$$
 Inductor:  $Z_L = j\omega L$ 

### Summing Point Constraint:

- Only applies when the op-amp is in negative feedback
- Assuming ideal op-amp,  $V_{+} V_{-} = 0$  (no current at terminals)
- For non-ideal op-amps:  $V_o = A(s)(V_+ V_-)$

$$f_{3dB} = \frac{\omega_{3dB}}{2\pi} \qquad \qquad GBW = |A_v||f_{3dB}$$

#### Diodes:

- In Forward Bias (FB): Permit current flow, have a positive voltage drop
- In Reverse Bias (RB): No current flow (open circuit)
  - Constant Voltage Drop (CVD): Diodes have same forward-bias drop ( $\approx .7[V]$ )
- Assume bias mode for each diode in diagram, calculate values to verify assumptions
- CVD + resistance model:  $r_d = \frac{nV_T}{I_{DQ}}$  (approximated around quiescent point, Q)

$$I_D = I_s e^{\frac{V_D}{nV_T}} + 1$$
 Room Temp:  $V_T \approx 26 [\text{mV}]$   $1 < n < 2$   $10^{-6} < I_s 10^{-18} [\text{A}]$ 

Temp Dependence: constant  $I \to V$  drop decreases  $\approx 2 [\text{mV}]$  per  $1 [^{\circ}\text{C}]$  temperature increase

Zener Diodes: 
$$V_D = -V_{zo} - I_z r_z$$
 in breakdown, with  $I_z = -I_D > 0$ 

Transformers: step voltages according to turns ratio  $(N_p:N_s)$  or (n:1), with  $V_s=V_p/n$ 

For BJTs:

BJT Regions

| EBJ | CBJ | Mode       |
|-----|-----|------------|
| FB  | RB  | Active     |
| FB  | FB  | Saturation |
| RB  | RB  | Cutoff     |

Note: When designing an amplifier confirm that the BJT is in the active region

**BJT** Formulas

$$I_E = I_C + I_B$$

$$I_E = I_{ES} \left[ e^{\frac{V_{BE}}{V_T}} - 1 \right]$$

Active Region Only:

$$I_C = \alpha I_E$$

$$I_B = (1 - \alpha)I_E$$

$$I_C = \beta I_B$$

$$I_S = \alpha I_{ES}$$

Typically:  $\alpha \approx 1$ , and  $I_C \approx I_E$  but  $I_C < I_E$ 





Figure 1: *npn* in Active Mode

Figure 2: npn in Saturation



Figure 3: npn in Cutoff



Figure 4: *pnp* in Active Mode



Figure 5: pnp in Saturation



Figure 6: pnp in Cutoff



Figure 7: Small Signal Equivalent for npn/pnp's



Figure 8: Hybrid  $\pi$  Model

# Small-Signal Formulas

$$g_m = \frac{I_{CQ}}{V_T} = \frac{\alpha}{r_e}$$
 
$$r_\pi = \frac{V_T}{I_{BQ}} = \frac{\beta}{g_m}$$

- MOSFET Regions
  - 1. Cutoff  $(V_{GS} < V_{to})$
  - 2. Triode  $(V_{GS} > V_{to}, V_{DS} < V_{GS} V_{to})$
  - 3. Saturation  $(V_{GS} > V_{to}, V_{DS} > V_{GS} V_{to})$
- Drain Currents
  - Cutoff  $I_D = 0$



Figure 9: T-Model

$$r_{ce} = \frac{V_{early}}{I_{CQ}}$$
 
$$r_e = \frac{V_T}{I_{EQ}} = \frac{V_T}{(1+\beta)I_{BQ}} = \frac{r_\pi}{1+\beta}$$

When  $r_{ce}$  not specified or  $r_{ce} >> R_L$  and  $r_e$ , then it can be removed

- Triode - 
$$\left(\frac{W}{L}\right)\left(\frac{KP}{2}\right)\left[2(V_{GS} - V_{to})V_{DS} - V_{DS}^2\right](1 + \lambda V_{DS})$$

- Saturation — 
$$(\frac{W}{L})(\frac{KP}{2})(V_{GS} - V_{to})^2(1 + \lambda V_{DS})$$

– TS Boundary — 
$$\left(\frac{W}{L}\right)\left(\frac{KP}{2}\right)V_{DS}^2$$

• For PMOS case,  $V_{SG} = -V_{GS}$  and  $V_{SD} = -V_{DS}$ ,  $V_{to} < 0 \rightarrow |V_{to}|$  in formulas, and reversed reference direction

## MOSFET Small Signal Model



Figure 10: P (top) and N (bot) in Sat

Figure 11: T-Model for MOSFETs

#### MOSFET Saturation Formulas:

$$r_{gs} = \frac{1}{g_m}$$

$$r_{ds} = \frac{1}{\lambda I_D} = \frac{|V_A|}{I_D}$$

$$g_m = \frac{2I_D}{V_{GSQ} - V_{to}} = KP\frac{W}{L}(V_{GSQ} - V_{to}) = \sqrt{2KP\frac{W}{L}I_D}$$

# MOSFET Triode Formulas:

Simply becomes a resistor with value  $r_{on}$ .

$$r_{on} = \left[ KP \frac{W}{L} (V_{GSQ} - V_{to}) \right]^{-1}$$