ADDITION OF VECTORS

OBJECTIVES

1.	The point having position vectors 2i +	+ 3i + 4k	3i + 4i + 2k	4i + 2i + 3k are	the vertices of
I.	THE DOME HAVING DUSINOM VECTORS 21	1 J 1 TK.	31 T T T ZK,	TITZITIN CIL	

- (a) Right angled triangle
- (b) Isosceles triangle
- (c) Equilateral triangle
- (d) Collinear

If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then the unit vector along its resultant is 2.

- (a) 3i + 5j + 4k
- (b) $\frac{3i + 5j + 4k}{50}$
- (c) $\frac{3i + 5j + 4k}{5\sqrt{2}}$
- (d) None of these

If ABCDEF is a regular hexagon and $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \lambda \overrightarrow{AD}$, then $\lambda =$ 3.

(a)2

- (b)3
- (c)4
- (d)6

A unit vector a makes an angle $\frac{\pi}{4}$ with z-axis. If a+i+j is a unit vector, then a is equal to 4.

- (a) $\frac{i}{2} + \frac{j}{2} + \frac{k}{\sqrt{2}}$ (b) $\frac{i}{2} + \frac{j}{2} \frac{k}{\sqrt{2}}$
- (c) $-\frac{\mathbf{i}}{2} \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}$ (d) None of these

The perimeter of the triangle whose vertices have the position vectors (i+j+k), (5i+3j-3k)5. and (2i+5j+9k), is given by

- (a) $15 + \sqrt{157}$
- (b) $15 \sqrt{157}$
- (c) $\sqrt{15} \sqrt{157}$
- (d) $\sqrt{15} + \sqrt{157}$

In a trapezium, the vector $\overrightarrow{BC} = \lambda \overrightarrow{AD}$. We will then find that $\mathbf{p} = \overrightarrow{AC} + \overrightarrow{BD}$ is collinear with \overrightarrow{AD} , 6. If $\mathbf{p} = \mu \overrightarrow{AD}$, then

- (a) $\mu = \lambda + 1$
- (b) $\lambda = \mu + 1$
- (c) $\lambda + \mu = 1$
- (d) $\mu = 2 + \lambda$

If OP = 8 and \overrightarrow{OP} makes angles 45° and 60° with OX-axis and OY-axis respectively, then $\overrightarrow{OP} =$

- (a) $8(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$ (b) $4(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$
- (c) $\frac{1}{4}(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$ (d) $\frac{1}{8}(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$

8.	The position vector	rs of two points A and B are $i+j-k$ and $2i-j+k$ respectively. Then			
	$ \overrightarrow{AB} =$				
	(a) 2	(b) 3			
	(c) 4	(d) 5			
9.	The direction cosin	es of the resultant of the vectors $(i+j+k)$, $(-i+j+k)$, $(i-j+k)$ and $(i+j-k)$,			
	are				
	(a) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{6}}\right)$	$(b)\left(\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}}\right)$			
	$(c)\left(-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$	$(d)\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$			
10.	The position vecto	rs of A and B are $2i-9j-4k$ and $6i-3j+8k$ respectively, then the			
	magnitude of \overrightarrow{AB} is				
	(a) 11	(b) 12			
	(c) 13	(d) 14			
11.	If the position vecto	rs of A and B are $i+3j-7k$ and $5i-2j+4k$, then the direction cosine of \overrightarrow{AB}			
	along y-axis is				
	(a) $\frac{4}{\sqrt{162}}$	(b) $-\frac{5}{\sqrt{162}}$			
	(c) - 5	(d) 11			
12.	The position vectors	s of the points A, B, C are $(2i+j-k)$, $(3i-2j+k)$ and $(i+4j-3k)$ respectively.			
	These points				
	(a) Form an isosceles triangle				
	(b) Form a right-angled triangle				
	(c) Are collinear				
	(d) Form a scalene tri	angle			
13.	$3 \overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} =$				
	(a) $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{OC}$	(b) $\overrightarrow{OA} + \overrightarrow{OB} - \overrightarrow{BD}$			
	(c) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$	(d) None of these			

(b) $\sqrt{72}$ (c) $\sqrt{33}$

median through A is

(a) $\sqrt{18}$

The vectors $\overrightarrow{AB} = 3\mathbf{i} + 4\mathbf{k}$, and $\overrightarrow{AC} = 5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ are the sides of a triangle *ABC*. The length of the

(d) $\sqrt{288}$

- The magnitudes of mutually perpendicular forces a, b and c are 2, 10 and 11 respectively. 15. Then the magnitude of its resultant is
 - (a) 12
- (b) 15

(c)9

- (d) None
- ABC is an isosceles triangle right angled at A. Forces of magnitude $2\sqrt{2}$, 5 and 6 act along \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{AB} respectively. The magnitude of their resultant force is
 - (a) 4

- (b)5
- (c) $11 + 2\sqrt{2}$
- (d)30
- If a, b and c be three non-zero vectors, no two of which are collinear. If the vector $\mathbf{a} + 2\mathbf{b}$ is collinear with c and b+3c is collinear with a, then (λ being some non-zero scalar) a + 2b + 6c is equal to
 - (a) λa
- (b) λb
- $(c) \lambda c$
- (d)0
- 18. In a regular hexagon *ABCDEF*, $\overrightarrow{AE} =$
 - (a) $\overrightarrow{AC} + \overrightarrow{AF} + \overrightarrow{AB}$ (b) $\overrightarrow{AC} + \overrightarrow{AF} \overrightarrow{AB}$

 - (c) $\overrightarrow{AC} + \overrightarrow{AB} \overrightarrow{AF}$ (d) None of these
- 19. If a = 2i + 5j and b = 2i j, then the unit vector along a + b will be
 - (a) $\frac{\mathbf{i} \mathbf{j}}{\sqrt{2}}$
- (b) i + j (c) $\sqrt{2}(i + j)$
- In the triangle ABC, $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{AC} = \mathbf{c}$, $\overrightarrow{BC} = \mathbf{b}$, then
 - (a) a + b + c = 0
- (b) $\mathbf{a} + \mathbf{b} \mathbf{c} = \mathbf{0}$
- (c) a-b+c=0
- If the position vectors of the point A, B, C be i, j, k respectively and P be a point such that $\overrightarrow{AB} = \overrightarrow{CP}$, then the position vector of **P** is
 - (a) -i + j + k
- (b) $-\mathbf{i} \mathbf{j} + \mathbf{k}$
- (c) i+j-k
- (d) None of these
- If in the given figure $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and AP : PB = m : n, then $\overrightarrow{OP} =$

- $(c) m \mathbf{a} n \mathbf{b}$ $(d) \frac{m \mathbf{a} n \mathbf{b}}{m n}$

23. If a = 3i - 2j + k, b = 2i - 4j - 3k and c = -i + 2j + 2k, then a + b + c is

	(a) 3i - 4j	(b) $3\mathbf{i} + 4\mathbf{j}$			
	(c) 4i-4j	(d) $4\mathbf{i} + 4\mathbf{j}$			
24.	If A,B,C are the vertices of a triangle whose position vectors are a, b, c and G is the				
	centroid of the <i>AABC</i>	then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is			
	(a) 0	(b) $\vec{A} + \vec{B} + \vec{C}$			
	(c) $\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}$	(d) $\frac{\mathbf{a} + \mathbf{b} - \mathbf{c}}{3}$			
25.	If a and b are the position vectors of A and B respectively, then the position vector of a				
	point C on AB produced such that $\overrightarrow{AC} = 3\overrightarrow{AB}$ is				
	(a) $3\mathbf{a} - \mathbf{b}$	(b) 3b – a			
	(c) $3a - 2b$	(d) $3b - 2a$			
26.	If the position vecto	s of the points A , B , C be $i+j$, $i-j$ and $ai+bj+ck$ respectively, then the			
	points A, B, C are co	points A, B, C are collinear if			
	(a) $a = b = c = 1$				
	(b) $a = 1, b \text{ and } c \text{ are } a$	rbitrary scalars			
	(c) $a = b = c = 0$				
	(d) $c = 0$, $a = 1$ and b is	arbitrary scalars			
2 7.	In a triangle ABC, it	$2\overrightarrow{AC} = 3\overrightarrow{CB}$, then $2\overrightarrow{OA} + 3\overrightarrow{OB}$ equals			
	(a) $5\overrightarrow{OC}$	(b) $-\overrightarrow{OC}$			
	(c) \overrightarrow{oc}	(d) None of these			
28.	If <i>ABCDEF</i> is regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} =$				
	(a) 0	(b) $2\overrightarrow{AB}$			
	(c) $3\overrightarrow{AB}$	(d) $4\overrightarrow{AB}$			
29.	If O be the circu	mcentre and O' be the orthocentre of the triangle ABC , then			
	$\overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} =$				
•	(a) \overrightarrow{OO}	(b) $2\overrightarrow{OOO}$ (c) $2\overrightarrow{OOO}$ (d) 0			
30.	If ABCD is a paral	elogram and the position vectors of A, B, C are $i+3i+5k$, $i+i+k$ and			

(c) 9i + 11j + 13k (d) 8i + 8j + 8k

7i + 7j + 7k, then the position vector of D will be

(b) 7i + 9j + 11k

(a) 7i + 5j + 3k

31.	If $\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{BO} + \overrightarrow{OC}$, t	then A , B , C for	orm			
	(a) Equilateral triang	le		(b) Right angled triangle	e	
	(c) Isosceles triangle			(d) Line		
32.	If D, E, F are respect	ively the mid	points of AB, A	C and BC in $\triangle ABC$, then	$\overrightarrow{BE} + \overrightarrow{AF} =$	
	(a) \overrightarrow{DC}	(b) $\frac{1}{2}\overrightarrow{BF}$ (c)	$(2) 2\overrightarrow{BF}$	$(d)\frac{3}{2}\overrightarrow{BF}$		
33∙	If G and G' be the c	entroids of th	e triangles <i>Al</i>	BC and A'B'C' respective	ly, then $\overrightarrow{AA}' + \overrightarrow{BB}' + \overrightarrow{CC}' =$	
	(a) $\frac{2}{3}\overrightarrow{GG'}$	(b) \overrightarrow{GG}				
	(c) $2\overrightarrow{GG}'$	(d) $3\overrightarrow{GG}'$				
34.	If D , E , F be the r	niddle points	of the sides	BC, CA and AB of the	triangle ABC, then	
	$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}$ is				P	
	(a) A zero vector	(b) A unit ve	ctor	*		
	(c) 0	(d) None of t	hese			
35∙	A and B are two po	ints. The posi	tion vector of	A is $6b-2a$. A point P d	ivides the line AB in	
	the ratio 1:2. If a	-ь is the posi	tion vector of	P, then the position vec	ctor of B is given by	
	(a) $7a - 15b$	(b) $7a + 15b$				
	(c) $15a - 7b$	(d) $15a + 7b$				
36.	The sum of two fo	rces is 18 N	and resultan	t whose direction is at	right angles to the	
	smaller force is 12N	7. The magnit	ude of the two	o forces are		
	(a) 13, 5	(b) 12, 6				
	(c) 14, 4	(d) 11, 7				
37•	If three points A ,	B, C are co	ollinear, who	se position vectors are	i-2j-8k, $5i-2k$ and	
11i+3j+7k respectively, then the ratio in which B divides AC is						
	(a) 1 : 2	(b) 2:3	(c)2:1	(d)1:1		
38.	The vectors $3i + j - 5$	\mathbf{k} and $a\mathbf{i} + b\mathbf{j} -$	15 k are colline	ar, if		
	(a) $a = 3, b = 1$	(b) $a = 9, b = 1$				
	(c) $a = 3, b = 3$	(d) $a = 9, b = 3$				
39.	If a, b, c are thre	e non-coplar	nar vectors s	uch that $a+b+c=\alpha d$ ar	$\mathbf{nd} \mathbf{b} + \mathbf{c} + \mathbf{d} = \beta \mathbf{a}, \mathbf{then}$	
	a+b+c+d is equal to					
	(a) 0	(b) α a	(c) β b	$(d)(\alpha + \beta)c$		

40. If $(x, y, z) \neq (0, 0, 0)$ and $(\mathbf{i} + \mathbf{j} + 3\mathbf{k})x + (3\mathbf{i} - 3\mathbf{j} + \mathbf{k})y + (-4\mathbf{i} + 5\mathbf{j})z = \lambda(x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$, then the value of λ will be

- (a) 2, 0
- (b) 0, -2
- (c) 1, 0
- (d) 0, -1

41. The vectors i+2j+3k, $\lambda i+4j+7k$, -3i-2j-5k are collinear, if λ equals

(a) 3

(b) 4

(c)5

(d)6

42. The points with position vectors 10i+3j, 12i-5j and ai+11j are collinear, if a=

- (a) 8
- (b) 4

(c) 8

(d) 12

43. If three points A, B and C have position vectors (1,x,3),(3,4,7) and (y,-2,-5) respectively and if they are collinear, then (x,y) =

- (a) (2, -3)
- (b)(-2,3)
- (c)(2,3)
- (d)(-2,-3)

ADDITION OF VECTORS

HINTS AND SOLUTIONS

1. (c)
$$\overrightarrow{AB} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
, $\overrightarrow{BC} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}$, $\overrightarrow{CA} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$

Clearly
$$|AB| = |BC| = |CA| = \sqrt{6}$$

2. (c)
$$\mathbf{R} = 3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} \Rightarrow \hat{\mathbf{R}} = \frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}$$
.

3. (b) By triangle law,
$$\overrightarrow{AB} = \overrightarrow{AD} - \overrightarrow{BD}$$
, $\overrightarrow{AC} = \overrightarrow{AD} - \overrightarrow{CD}$

Therefore,
$$\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$$

$$= 3\overrightarrow{AD} + (\overrightarrow{AE} - \overrightarrow{BD}) + (\overrightarrow{AF} - \overrightarrow{CD}) = 3\overrightarrow{AD}$$

Hence
$$\lambda = 3$$
, [Since $\overrightarrow{AE} = \overrightarrow{BD}, \overrightarrow{AF} = \overrightarrow{CD}$].

4. (c) Let
$$\mathbf{a} = l\mathbf{i} + m\mathbf{j} + n\mathbf{k}$$
, where $l^2 + m^2 + n^2 = 1$.

a makes an angle
$$\frac{\pi}{4}$$
 with z-axis.

$$\therefore n = \frac{1}{\sqrt{2}}, \quad l^2 + m^2 = \frac{1}{2}$$

$$\therefore \mathbf{a} = l \mathbf{i} + m \mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}$$

$$\mathbf{a} + \mathbf{i} + \mathbf{j} = (l+1)\mathbf{i} + (m+1)\mathbf{j} + \frac{\mathbf{k}}{\sqrt{2}}$$

Its magnitude is 1, hence
$$(l+1)^2 + (m+1)^2 = \frac{1}{2}$$
(ii)

From (i) and (ii),
$$2lm = \frac{1}{2} \Rightarrow l = m = -\frac{1}{2}$$

Hence
$$\mathbf{a} = -\frac{\mathbf{i}}{2} - \frac{\mathbf{j}}{2} + \frac{\mathbf{k}}{\sqrt{2}}$$
.

5. (a)
$$\mathbf{a} = 4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k} \Rightarrow |\mathbf{a}| = \sqrt{16 + 16 + 4} = 6$$

$$\mathbf{b} = -3\mathbf{i} + 2\mathbf{j} + 12\mathbf{k} \Rightarrow |\mathbf{b}| = \sqrt{144 + 4 + 9} = \sqrt{157}$$

$$\mathbf{c} = -\mathbf{i} - 4\mathbf{j} - 8\mathbf{k} \Rightarrow |\mathbf{c}| = \sqrt{64 + 16 + 1} = 9$$

Hence perimeter is $15 + \sqrt{157}$.

6. (a) We have,
$$\mathbf{p} = \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{AC} + \lambda \overrightarrow{AD} + \overrightarrow{CD}$$

= $\lambda \overrightarrow{AD} + (\overrightarrow{AC} + \overrightarrow{CD}) = \lambda \overrightarrow{AD} + \overrightarrow{AD} = (\lambda + 1)\overrightarrow{AD}$.

Therefore $\mathbf{p} = \mu \overrightarrow{AD} \Rightarrow \mu = \lambda + 1$.

- 7. (b) Here is the only vector $4(\sqrt{2}\mathbf{i} + \mathbf{j} \pm \mathbf{k})$, whose length is 8.
- 8. (b) $\overrightarrow{AB} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k} \Rightarrow \overrightarrow{AB} = 3$.
- 9. (d) Resultant vector = $2\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.

Direction cosines are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

10. (d)
$$\overrightarrow{AB} = (6-2)\mathbf{i} + (-3+9)\mathbf{j} + (8+4)\mathbf{k} = 4\mathbf{i} + 6\mathbf{j} + 12\mathbf{k}$$

 $|\overrightarrow{AB}| = \sqrt{16+36+144} = 14.$

11. (b)
$$\overrightarrow{AB} = 4i - 5j + 11k$$

Direction cosine along $y - axis = \frac{-5}{\sqrt{16 + 25 + 121}} = \frac{-5}{\sqrt{162}}$

12. (c)
$$\overrightarrow{AB} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$$

 $\overrightarrow{BC} = -2\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}$

$$\overrightarrow{CA} = \mathbf{i} - 3\mathbf{j} - 2\mathbf{k}$$

$$|\overrightarrow{AB}| = \sqrt{1+9+4} = \sqrt{14}$$

$$|\overrightarrow{BC}| = \sqrt{4 + 36 + 16} = \sqrt{56} = 2\sqrt{14}$$

$$|\overrightarrow{CA}| = \sqrt{1+9+4} = \sqrt{14}$$

$$|\overrightarrow{AB}| + |\overrightarrow{AC}| = |\overrightarrow{BC}|$$

Hence A, B, C are collinear.

13. (c)
$$3\overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC}$$

= $\overrightarrow{OD} + \overrightarrow{DA} + \overrightarrow{OD} + \overrightarrow{DB} + \overrightarrow{OD} + \overrightarrow{DC} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$.

14. (c) P.V. of
$$\overrightarrow{AD} = \frac{(3+5)i + (0-2)j + (4+4)k}{2} = 4i - j + 4k$$

$$|\overrightarrow{AD}| = \sqrt{16 + 16 + 1} = \sqrt{33}$$
.

15. (b) $R = \sqrt{4 + 100 + 121} = 15$.

16. (b) $R\cos\theta = 6\cos0^{\circ} + 2\sqrt{2}\cos(180^{\circ} - B) + 5\cos 270^{\circ}$

ABC is a right angled isosceles triangle

i.e.,
$$\angle B = \angle C = 45^{\circ}$$

$$\therefore R^2 = 61 + 8(1) - 24\sqrt{2} \cdot \frac{1}{\sqrt{2}} - 20\sqrt{2} \cdot \frac{1}{\sqrt{2}} = 25$$

$$\therefore R = 5$$
.

17. (d) Let $\mathbf{a} + 2\mathbf{b} = x\mathbf{c}$ and $\mathbf{b} + 3\mathbf{c} = y\mathbf{a}$, then $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (x + 6)\mathbf{c}$ and $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c} = (1 + 2y)\mathbf{a}$ So, $(x + 6)\mathbf{c} = (1 + 2y)\mathbf{a}$

Since a and c are non-zero and non-collinear, we have x+6=0 and 1+2y=0 *i.e.*, x=-6 and $y=-\frac{1}{2}$. in either case, we have a+2b+6c=0.

18. (b) $\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE}$

19. (d) $\mathbf{a} + \mathbf{b} = 4\mathbf{i} + 4\mathbf{j}$, therefore unit vector $\frac{4(\mathbf{i} + \mathbf{j})}{\sqrt{32}} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$.

20. (b)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0 \Rightarrow \mathbf{a} + \mathbf{b} - \mathbf{c} = 0$$
.

21. (a) Let the position vector of P is $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, then $\overrightarrow{AB} = \overrightarrow{CP} \Rightarrow \mathbf{j} - \mathbf{i} = x\mathbf{i} + y\mathbf{j} + (z - 1)\mathbf{k}$ By comparing the coefficients of \mathbf{i} , \mathbf{j} and \mathbf{k} , we get x = -1, y = 1 and $z - 1 = 0 \Rightarrow z = 1$ Hence required position vector is $-\mathbf{i} + \mathbf{j} + \mathbf{k}$.

22. (b) Concept

23. (c)
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = (3 + 2 - 1)\mathbf{i} + (-2 - 4 + 2)\mathbf{j} + (1 - 3 + 2)\mathbf{k} = 4\mathbf{i} - 4\mathbf{j}$$
.

24. (a) Position vectors of vertices A, B and C of the triangle $ABC = \mathbf{a}$, \mathbf{b} and \mathbf{c} . We know that position vector of centroid of the triangle $(G) = \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}$.

Therefore, $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$

25. (d) Since given that $\overrightarrow{AC} = 3\overrightarrow{AB}$ it means that point C divides AB externally. Thus $\overrightarrow{AC} : \overrightarrow{BC} = 3:2$

Hence $\overrightarrow{OC} = \frac{3 \cdot \mathbf{b} - 2 \cdot \mathbf{a}}{3 - 2} = 3 \cdot \mathbf{b} - 2 \cdot \mathbf{a}$.

26. (d) Here $\overrightarrow{AB} = -2\mathbf{j}$, $\overrightarrow{BC} = (a-1)\mathbf{i} + (b+1)\mathbf{j} + c\mathbf{k}$

The points are collinear, then $\overrightarrow{AB} = k (\overrightarrow{BC})$

$$-2\mathbf{j} = k\{(a-1)\mathbf{i} + (b+1)\mathbf{j} + c\mathbf{k}\}$$

On comparing, k(a-1) = 0, k(b+1) = -2, kc = 0.

Hence c = 0, a = 1 and b is arbitrary scalar.

27. (a) $2\overrightarrow{OA} + 3\overrightarrow{OB} = 2(\overrightarrow{OC} + \overrightarrow{CA}) + 3(\overrightarrow{OC} + \overrightarrow{CB})$

$$=5\overrightarrow{OC} + 2\overrightarrow{CA} + 3\overrightarrow{CB} = 5\overrightarrow{OC}$$
, $\{\because 2\overrightarrow{CA} = -3\overrightarrow{CB}\}$.

28. (d) A regular hexagon ABCDEF.

We know from the hexagon that \overrightarrow{AD} is parallel to \overrightarrow{BC} or $\overrightarrow{AD} = 2 \overrightarrow{BC}$; \overrightarrow{EB} is parallel to \overrightarrow{FA} or $\overrightarrow{EB} = 2\overrightarrow{FA}$, and \overrightarrow{FC} is parallel to \overrightarrow{AB} or $\overrightarrow{FC} = 2 \overrightarrow{AB}$.

Thus
$$\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2 \overrightarrow{BC} + 2 \overrightarrow{FA} + 2 \overrightarrow{AB}$$

= $2(\overrightarrow{FA} + \overrightarrow{AB} + \overrightarrow{BC}) = 2(\overrightarrow{FC}) = 2(2\overrightarrow{AB}) = 4 \overrightarrow{AB}$.

29. (b) $\overrightarrow{O'A} = \overrightarrow{O'O} + \overrightarrow{OA}$

$$\overrightarrow{O'B} = \overrightarrow{O'O} + \overrightarrow{OB}$$

$$\overrightarrow{O'C} = \overrightarrow{O'O} + \overrightarrow{OC}$$

$$\Rightarrow \overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C}$$
$$= 3\overrightarrow{O'O} + \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

Since
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OO'} = -\overrightarrow{O'O}$$

$$\therefore \overrightarrow{O'A} + \overrightarrow{O'B} + \overrightarrow{O'C} = 2\overrightarrow{O'O}.$$

30. (b) Let position vector of D is $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, then $\overrightarrow{AB} = \overrightarrow{DC} \Rightarrow -2\mathbf{j} - 4\mathbf{k} = (7 - x)\mathbf{i} + (7 - y)\mathbf{j} + (7 - z)\mathbf{k}$ $\Rightarrow x = 7, y = 9, z = 11.$

Hence position vector of D will be 7i + 9j + 11k.

- 31. (c) $\overrightarrow{AB} = \overrightarrow{BC}$ (As given). Hence it is an isosceles triangle.
- **32.** (a) $\overrightarrow{BE} + \overrightarrow{AF} = \overrightarrow{OE} \overrightarrow{OB} + \overrightarrow{OF} \overrightarrow{OA}$

$$= \frac{\overrightarrow{OA} + \overrightarrow{OC}}{2} - \overrightarrow{OB} + \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2} - \overrightarrow{OA}$$

$$=\overrightarrow{OC}-\frac{\overrightarrow{OA}+\overrightarrow{OB}}{2}=\overrightarrow{OC}-\overrightarrow{OD}=\overrightarrow{DC}.$$

33. (d)
$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \mathbf{0}$$
 and $\overrightarrow{G'A'} + \overrightarrow{G'B'} + \overrightarrow{G'C'} = \mathbf{0}$

$$\Rightarrow (\overrightarrow{GA} - \overrightarrow{G'A'}) + (\overrightarrow{GB} - \overrightarrow{G'B'}) + (\overrightarrow{GC} - \overrightarrow{G'C'}) = \mathbf{0}$$

$$\Rightarrow (\overrightarrow{GA} + \overrightarrow{G'G} - \overrightarrow{G'A'}) + (\overrightarrow{GB} + \overrightarrow{G'G} - \overrightarrow{G'B'}) + (\overrightarrow{GC} + \overrightarrow{G'G} - \overrightarrow{G'C'}) = 3\overrightarrow{G'G}$$

$$\Rightarrow (\overrightarrow{GA} - \overrightarrow{GA'}) + (\overrightarrow{GB} - \overrightarrow{GB'}) + (\overrightarrow{GC} - \overrightarrow{GC'}) = 3\overrightarrow{G'G}$$

$$\Rightarrow \overrightarrow{A'A} + \overrightarrow{B'B} + \overrightarrow{C'C} = 3\overrightarrow{G'G} \Rightarrow \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 3\overrightarrow{GG'}.$$

34. (a)
$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = \frac{\mathbf{b} + \mathbf{c}}{2} - \mathbf{a} = \frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{2}$$
,

(Where o is the origin for reference)

Similarly,
$$\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \frac{\mathbf{c} + \mathbf{a}}{2} - \mathbf{b} = \frac{\mathbf{c} + \mathbf{a} - 2\mathbf{b}}{2}$$
 and $\overrightarrow{CF} = \frac{\mathbf{a} + \mathbf{b} - 2\mathbf{c}}{2}$.

35. (a) Standard problem.

36. (a)
$$P + Q = 18$$
, $R = 12$, $\theta = 90^{\circ}$, (say)

$$\tan \theta = \tan 90^{\circ} = \infty$$

$$\Rightarrow P + Q \cos \alpha = 0$$
, $\therefore \cos \alpha = \frac{-P}{O}$

Also,
$$(12)^2 = P^2 + Q^2 + 2PQ \cos \alpha$$

Or
$$144 = P^2 + Q^2 + (2P)(-P)$$

$$\Rightarrow 144 = Q^2 - P^2 = (Q + P)(Q - P)$$

Or
$$144 = 18(Q - P)$$
 Or $Q - P = 8$

After solving Q = 13, P = 5.

37. (b) Let the *B* divide *AC* in ratio $\lambda:1$, then

$$5\mathbf{i} - 2\mathbf{k} = \frac{\lambda(11\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}) + \mathbf{i} - 2\mathbf{j} - 8\mathbf{k}}{\lambda + 1}$$

$$\Rightarrow 3\lambda - 2 = 0 \Rightarrow \lambda = \frac{2}{3}$$
 i.e., ratio = 2 : 3.

38. (d)
$$\frac{3}{a} = \frac{1}{b} = \frac{-5}{-15} \Rightarrow a = 9, b = 3.$$

39. (a) We have
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \alpha \mathbf{d}$$
 and $\mathbf{b} + \mathbf{c} + \mathbf{d} = \beta \mathbf{a}$

$$\therefore$$
 $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = (\alpha + 1)\mathbf{d}$ and $\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = (\beta + 1)\mathbf{a}$.

$$\Rightarrow (\alpha + 1)\mathbf{d} = (\beta + 1)\mathbf{a}$$

If
$$\alpha \neq -1$$
, then $(\alpha + 1)\mathbf{d} = (\beta + 1)\mathbf{a} \Rightarrow \mathbf{d} = \frac{\beta + 1}{\alpha + 1}\mathbf{a}$

$$\Rightarrow \mathbf{a} + \mathbf{b} + \mathbf{c} = \alpha \mathbf{d} \Rightarrow \mathbf{a} + \mathbf{b} + \mathbf{c} = \alpha \left(\frac{\beta + 1}{\alpha + 1} \right) \mathbf{a}$$

$$\Rightarrow \left(1 - \frac{\alpha(\beta + 1)}{\alpha + 1}\right)\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$$

 \Rightarrow **a**, **b**, **c** are coplanar which is contradiction to the given condition, $\therefore \alpha = -1$ and so **a** + **b** + **c** + **d** = 0.

40. (d) From given equation

$$(1 - \lambda)x + 3y - 4z = 0$$

$$x - (\lambda + 3)y + 5z = 0$$

$$3x + y - \lambda z = 0$$

$$\Rightarrow \begin{vmatrix} (1-\lambda) & 3 & -4 \\ 1 & -(\lambda+3) & 5 \\ 3 & 1 & -\lambda \end{vmatrix} = 0 \Rightarrow \lambda = 0, -1.$$

41. (a)
$$\begin{vmatrix} 1 & 2 & 3 \\ \lambda & 4 & 7 \\ -3 & -2 & -5 \end{vmatrix} = 0 \Rightarrow \lambda = 3.$$

42. (c) If given points be A, B, C then $\overrightarrow{AB} = k(\overrightarrow{BC})$ or $2\mathbf{i} - 8\mathbf{j} = k[(a-12)\mathbf{i} + 16\mathbf{j}] \Rightarrow k = \frac{-1}{2}$

Also, $2 = k(a-12) \Rightarrow a = 8$.

43. (a) If A, B, C are collinear. Then $\overrightarrow{AB} = \lambda \overrightarrow{BC}$

