王 舒揚

カラムクロマトグラフィー

12291046 王 舒揚

原理

カラムクロマトグラフィー

カラムクロマトグラフィーは、化合物を分離するためにクロマトグラフィーで使用される装置である。カラムクロマトグラフィーは、固定相を含み、移動相を通過させるものである。

展開溶媒

展開溶媒は Rf 値の制御への影響があるので、今回の実験で展開溶媒の組成と試薬分子の Rf 値との関係を調べた。

実験前

クロマトグラフィーに使用する展開溶媒の組成と Rf 値、流出容量との関係を調べる ために、クロマトグラフ管の位置によって、3つの点を設置した。

クロマトグラフ管=図①

A · · · 12cm

B ⋯ 8*cm*

 $C \cdots 4cm$

実験操作・結果

実験 1

TLC を準備した。

TLCを鉛筆で上から5mm、下10mmに線を書いて、下の線に3つの点を書いた。

 $TLC = \mathbb{Z}(2)$

このような TLC を 8 枚準備した。

シート①

1	ヘキサン
2	クロロホルム
3	クロロホルム: ヘキサン= 3 : 1
4	クロロホルム: ヘキサン= 1:1
(5)	クロロホルム:ヘキサン=1:3
6	クロロホルム:メタノール=50: 1
7	クロロホルム:メタノール=20: 1
8	クロロホルム:メタノール=5:1

8つの TLC に 2-ナフトールの溶液をスポットした。

シート①のように、各展開溶媒に入れた。

UV ランプ (254 nm) で発色させ、各展開溶媒での Rf 値を調べた。=シート②

班	1	2	3	4	5	6	7	8
Rf 値								
ヘキサン	0.25	0.20	0.425	0.175	0.23	0.16	0.21	0.23

クロロホルム	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
クロロホル	0.13	0.09	0.18	0.02	0.13	0.11	0.16	0.00
ム:ヘキサン								
= 3 : 1								
クロロホル	0.08	0.05	0.10	0.03	0.10	0.10	0.08	0.05
ム:ヘキサン								
= 1 : 1								
クロロホル	0.03	0.02	0.00	0.08	0.03	0.02	0.00	0.00
ム:ヘキサン								
= 1 : 3								
クロロホル	0.30	0.34	0.40	0.28	0.48	0.25	0.34	0.40
ム:メタノー								
ル=50:1								
クロロホル	0.43	0.50	0.52	0.02	0.52	0.44	0.51	0.57
ム:メタノー								
ル=20:1								
クロロホル	0.65	0.63	0.85	0.02	0.80	0.66	0.51	0.98
ム:メタノー								
ル=5:1								

実験 2

展開溶媒を 500 mL 程度調製した

クロロホルム:メタノール=50:1

クロマトグラフ管を設置した。

コックを閉めて、展開溶媒をクロマトグラフ管に入れた。

シリカゲルがあるビーカーに展開溶媒を加えて、ガラス棒で懸濁させたまでに撹拌して、クロマトグラフ管に入れた。

コックを開けて、展開溶媒を加えて、シリカゲルを沈降させた。

色素をカラムクロマトグラフィーで展開させた。

色素溶液をシリカゲル議上部に乗せた後、流出するまでに使用した溶媒量と A、B、C(図 1)に対する幅の a、b、c を測定した。

 $\mathbb{Z}3$

他の班のデータを整理した。=シート③

班	1	2	3	4	5	6	7	8
溶媒	クロロ							
	ホルム	ホル	ホル	ホル	ホルム	ホル	ホル	ホル
		ム:メ	ム:メ	ム:メ		ム:メ	ム:メ	ム:メ
		タノー	タノー	タノー		タノー	タノー	タノー
		ル=5	ル=2	ル=1		ル=5	ル=1	ル=2
		0:1	0:1	0:1		0:1	0:1	0:1
A/a	1.60	0.80	1.67	1.90	1.00	1.63	4.20	1.00
B/b	1.40	1.50	2.86	2.67	1.60	1.84	4.50	2.29
C/c	2.40	3.00	2.86	2.67	2.00	1.97	6.30	2.67

実験結果の分析

考察によって、以下の分析が出した。

溶媒強度と Rf 値との関係は?

シート②によって、ヘキサンの濃度が高くなって、Rf 値も高くなった。によって、 溶媒強度が高くなると、Rf 値が高くなる。

Rf 値とバンド幅の関係は?

シート③の A/a、B/b、C/c 行によって、バンド幅が長くなると、Rf 値が高くなる。

設問

今回の実験で、カラムクロマトグラフィーの原理によって、Rf 値と溶媒強度、バンド幅との関係を調べた。

参考文献

ナノバイオラボベーシックAのテキスト