Oppgaver for kapittel 0

0.1.1

Utnytt koblingen mellom gjentatt addisjon og multiplikasjon (se regel ?? og regel ??) til å skrive uttrykkene mer kompakt.

a)
$$a + a + a$$

b)
$$a + a + a + a$$

d)
$$-b - b$$

d)
$$-b - b$$
 e) $-b - b - b - b - b$ f) $-k - k - k$

f)
$$-k - k - k$$

0.1.2

Skriv uttrykkene så kompakt som mulig

a)
$$2a + b - a$$

a)
$$2a + b - a$$
 b) $-4a + 2b + 3a$ c) $7b - 3a + 2b$

c)
$$7b - 3a + 2b$$

0.1.3

Skriv uttrykkene så kompakt som mulig

a)
$$4c + 2b - 5a - 3c$$

a)
$$4c+2b-5a-3c$$
 b) $-9a-3c+3b+3c$ c) $9b-3a+2b$

c)
$$9b - 3a + 2b$$

0.1.4

Bruk regel ?? til å skrive om uttrykket til et uttrykk uten paranteser.

a)
$$7(a+2)$$

b)
$$9(b+3)$$

c)
$$8(b-3c)$$

a)
$$7(a+2)$$
 b) $9(b+3)$ c) $8(b-3c)$ d) $(-2)(3a+5b)$

e)
$$(9a + 2)$$

f)
$$(3b + 8)a$$

e)
$$(9a + 2)$$
 f) $(3b + 8)a$ g) $(b - 3c)(-a)$

h)
$$2(a+3b+4c)$$

i)
$$9(3b - c + 7a)$$

h)
$$2(a+3b+4c)$$
 i) $9(3b-c+7a)$ j) $(3b-c+7a)(-2)$

0.1.5

Bruk regel ?? til å faktorisere uttrykket.

a)
$$2a + 2b$$

a)
$$2a + 2b$$
 b) $4ab + 5b$ c) $9bc - c$ d) $4ac - 2a$

c)
$$9bc - c$$

d)
$$4ac - 2a$$

0.1.6

Vis at

a)
$$(a+b)^2 = a^2 + 2ab + b^2$$

b)
$$(a-b)^2 = a^2 - 2ab + b^2$$

c)
$$(a+b)(a-b) = a^2 - b^2$$

Merk: De tre likningene over kalles henholdsvis for 1. kvadratsetning, 2. kvadratsetning og 3. kvadratsetning (3. kvadratsetning kalles også konjugatsetingen)

0.1.7

Bruk 3. kvadratsetning til å regne ut $26^2 - 24^2$ uten å kvadrere 26 og 24.

0.1.8 (GV21D1)

a) Skriv så enkelt som mulig.

$$\frac{a+a+a+a}{4a}$$

b) Hvilken verdi har uttrykket $\frac{y^2-2y}{y^2}$ dersom x=4 og y=-2?

0.1.9 (E22)

Gitt uttrykket $(a + b)^2 = 16$. Vurder om alternativene nedenfor gjør at uttrykket stemmer.

•
$$a = 2 \text{ og } b = 2$$

•
$$a = 8 \text{ og } b = 4$$

•
$$a = 8 \text{ og } b = -4$$

0.2.1

Skriv som potenstall

a)
$$3 \cdot 3 \cdot 3 \cdot 3$$

a)
$$3 \cdot 3 \cdot 3 \cdot 3$$
 b) $5 \cdot 5$ c) $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7$

d)
$$a \cdot a \cdot a$$

d)
$$a \cdot a \cdot a$$
 e) $b \cdot b$ f) $(-c)(-c)(-c)$

0.2.2

Finn verdien til potenstallet.

- a) 8^2 b) 2^5 c) 4^3 d) $(-2)^3$ e) $(-3)^5$ f) $(-4)^4$

0.2.3

Skriv om uttrykket til et potenstall.

- a) $2^7 \cdot 2^9$ b) $3^4 \cdot 3^7$ c) $9 \cdot 9^5$ d) $6^8 \cdot 6^{-3}$ e) $5^3 \cdot 5^{-7}$
- f) $10^8 \cdot 10^{-3} \cdot 10^6$ g) $a^9 \cdot a^7$ h) $k^5 \cdot k^2$ i) $x^5 \cdot x^{-2}$

- k) $x^{-4} \cdot x^5$ l) $a^{-5} \cdot a \cdot a^4$ m) $a^3 \cdot b^5 \cdot a^2 \cdot b^{-8}$

0.2.4

Regn ut.

- a) $\sqrt{25}$ b) $\sqrt{100}$ c) $\sqrt{144}$

- d) $\sqrt[3]{27}$ e) $\sqrt[3]{729}$ f) $\sqrt[5]{100000}$

Gruble 1

(1TH21D1) Skriv så enkelt som mulig

$$\frac{9^{\frac{1}{2}} \cdot 3^{-1} + 9^0}{8^{\frac{3}{4}}}$$

Gruble 2

Ved å addere sifrene i et tall, finner vi **tverrsummen** til tallet. For eksempel er tverrsummen til 14 lik 1+4=5, og tverrsummen til 918 er lik 9+1+8=18. Vis at hvis tverrsummen i et tresifret heltall er delelig med 3, så er også tallet delelig med 3.

Merk: Det er ganske lett å generalisere dette tilfellet, og slik vise at det gjelder for et heltall med et hvilket som helst antall siffer.