Nombre y Apellido:

<u>Carrera:</u> <u>Legajo:</u> (Poner legajo y nombre en todas las hojas)

- La caída de presión Δp en un flujo unidimensional compresible en un ducto circular es función de las variables siguientes: ρ densidad, c velocidad del sonido, μ viscosidad, v velocidad del flujo, D diámetro del ducto ¿Cuáles son los grupos adimensionales involucrados?
 Trabaje los resultados hasta obtener los números de Euler, de Reynolds y de Mach como tres de los π.
 (20 puntos)
- En flujo compresible, para número de M>1, dibuje el cono de Mach, indique cómo calcular el valor del ángulo alfa y explique su relación con M
 (10 puntos)
- 3) Una bomba centrífuga tiene un rodete de dimensiones: r1 = 75 mm; r2 = 200 mm; β 1 = 50 $^{\circ}$; β 2 = 40 $^{\circ}$. La anchura del rodete a la entrada es, b1 = 40 mm y a la salida, b2 = 20 mm.

Rendimiento manométrico, 0,78

Determinar, para un caudal $Q = 0.1 \text{ m}^3/\text{seg}$ lo siguiente:

- a) La altura total que se alcanzará a chorro libre. Ht(max)
- b) Calcular A, B y C. Dibujar curva característica de la bomba (esquemática).

Considerar: Hm=A-Bq-Cq²; A= U_2^2/g [m]; B=(U_2 cotg β_2)/(k_2 g Ω_2) [s/m²] donde k_2 =1; C=100; Ω_2 Sección media de salida del rodete[s²/m⁵] Aclaración: cotg=coseno/seno. Utilizar los caudales en m³/s (20 puntos)

4) Para la siguiente instalación:

Caudal deseado de (12) m^3/h

Presión del tanque de entrada: 101325 N/m2; Presión del tanque de salida: 101325 N/m^2 Presión de vapor: $2,34E+02 \text{ N/m}^2$; Fluido aceite: 0,9; Viscosidad cinemática: $9,75E-07 \text{ m}^2/\text{s}$

Material acero galvanizado, diámetro interior 0,05 m; Longitud de aspiración: 20 m

Longitud de impulsión: 40 m; Diferencia de altura entre tanques: 18 m

Accesorios en aspiración: 4 codos radio largo; 3 "T" salida lateral; 1 válvula anti retorno

Accesorios en impulsión: 2 válvulas de diafragma; 1 válvula de compuerta; 8 codos radio corto

Dibujar la curva característica del sistema sobre el gráfico y seleccionar la bomba más adecuada. Indicar punto de funcionamiento y caudal real de trabajo.

¿A qué altura tengo que poner la bomba para que no se produzca cavitación?. Indicar si el tanque está por encima o por debajo de la bomba.

(30 puntos)

- 5) Entrega laboratorio nº1 (10puntos)
- 6) Entrega laboratorio nº4 (10puntos)

Nombre y Apell	ido:	
Carrera:	Legajo:	(Poner legajo y nombre en todas las hojas)

- Se sabe que las variables siguientes intervienen en un flujo: ρ densidad, L longitud característica, c velocidad del sonido, μ viscosidad, g, aceleración de la gravedad, V, velocidad promedio, Δp, cambio en la presión ¿Cuáles son los π involucrados? Forme los números de Reynolds, de Froude, de Mach y de Euler en sus resultados.
 (20 puntos)
- 2) a-¿Qué es el Golpe de ariete?

b- Definir matemáticamente tiempo de cierre lento y rápido. Escribir que significa cada término de la ecuación con sus respectivas unidades en el sistema internacional.

(10 puntos)

3) Una bomba centrífuga tiene un rodete de dimensiones: r1 = 75 mm; r2 = 200 mm; β 1 = 50 $^{\circ}$; β 2 = 40 $^{\circ}$. La anchura del rodete a la entrada es, b1 = 40 mm y a la salida, b2 = 20 mm.

Rendimiento manométrico, 0,78

Determinar, para un caudal $Q = 0.1 \text{ m}^3/\text{seg}$ lo siguiente:

- a) La altura total que se alcanzará a chorro libre. Ht(max)
- b) Calcular A, B y C. Dibujar curva característica de la bomba (esquemática).

Considerar: Hm=A-Bq-Cq²; A= U_2^2/g [m]; B=(U_2 cotg β_2)/(k_2 g Ω_2) [s/m²] donde k_2 =1; C=100; Ω_2 Sección media de salida del rodete[s²/m⁵] Aclaración: cotg=coseno/seno. Utilizar los caudales en m³/s (20 puntos)

4) Para la siguiente instalación:

Caudal deseado de 24 m^3/h

Presión del tanque de entrada: 101325 N/m2; Presión del tanque de salida: 50662 N/m^2 Presión de vapor: $2,34E+02 \text{ N/m}^2$; Fluido aceite: 0,9; Viscosidad cinemática: $9,75E-07 \text{ m}^2/\text{s}$

Material acero galvanizado, diámetro interior 0,05 m; Longitud de aspiración: 20 m

Longitud de impulsión: 20 m; Diferencia de altura entre tanques: 18 m

Accesorios en aspiración: 4 codos radio largo; 3 "T" salida lateral; 1 válvula anti retorno

Accesorios en impulsión: 2 válvulas de diafragma; 1 válvula de compuerta; 8 codos radio corto

Dibujar la curva característica del sistema sobre el gráfico y seleccionar la bomba más adecuada. Indicar punto de funcionamiento y caudal real de trabajo.

¿A qué altura tengo que poner la bomba para que no se produzca cavitación?. Indicar si el tanque está por encima o por debajo de la bomba.

(30 puntos)

- 5) Entrega laboratorio nº1 (10puntos)
- 6) Entrega laboratorio nº4 (10puntos)

TABLA 11. PÉRDIDAS DE CARGA DE LOS CODOS Y «T» EXPRESADOS EN LONGITUD EQUIVALENTE DE TUBO (m)
Uniones con extremos roscados, soldados, embridados o cónicos

DIÁMETRO EXTERIOR		25 S T		COD	os	g vilo do to this combite T iani vilo do tivis is to te					
		Radio pequeño 90°	Radio grande 90°	Macho Hembra 90°	Radio pequeño 45°	Macho Hembra 45°	Radio pequeño 180°	Cambio de dirección	PASO DIRECTO		
	Sin								Reducción 1/4	Reducción 1/2	
Acero	Cobre	D	B				(A)			4[D]24	100
17,2 21,3	1/2 5/8	0,42 0,48	0;27 0,30	0,70 0,76	0,21 0,24	0,33 0,40	0,70 0,76	0,82 0,91	0,27 0,30	0,36 0,43	0,42 0,48
26,9	7/8	0,61	0,42	0,98	0,27	0,49	0,98	1,2	0,42	0,58	16,0
33,7 42,4	1 1/8	0,79 1,0	0,51 0,70	1,2	0,39 0,51	0,64 0,91	1,2	1,5 2,1	0,51 0,70	0,70 0,95	0,79 1,0
48,3	1 5/8	1,2	0,80	1,9	0,64	1,0	1,9	2,4	0,80	1,1	1,2
73	2 1/8	1,5 1,8	1,0	2,5 3,0	0,79 0,98	1,4	2,5 3,0	3,0 3,6	1,0 1,2	1,4	1,5 1,8
88,9	3 1/8	2,3	1,5	3,6	1,2	2,0	3,6	4,6	1,5	2,1	2,3
101,6 114,3 141,3	3 5/8 4 1/8 5 1/8	2,7 3,0 4,0	1,8 2,0 2,5	4,6 5,1 6,4	1,4 1,6 2,0	2,2 2,6 3,3	4,6 5,1 6,4	5,4 6,4 7,6	1,8 2,0 2,5	2,4 2,7 3,6	2,7 3,0 4,0

TIPO DE ELEMENTO			Longitud de tubería equivalente en m Diámetro interior de tubería en mm									
Válvula de compuerta		0.3	0.5	0.6	1.0	1.3	1.6	1.9	2.6	3.2	3.9 60	5.2 80
Válvula de diafragma		1.5	2.5	3.0	4.5	6	8	10		-		
Válvula acodada	耳	4	6	7	12	15	18	32	30	36	-	•
Válvula esférica	r <u>S</u>	7.5	12	15	24	30	36	45	60	-	-	
Válvula anti retorno pivotante		2.0	3.2	4.0	6.4	8.0	10	12	16	20	24	32