

Interno glasilo Instituta "Jožef Stefan"

Številka 196, marec 2021

Napovednik Dnevov Jožefa Stefana 2021 ~ Nagovor direktorja IJS ~ Utemeljitve državnih nagrad in priznanj ~ Kemija kriptona ~ S posveta o integraciji slovenskega inovacijskega okolja ~ Kultura

KAZALO

Napovednik Dnevov Jožefa Stefana 20213
Nagrade
termoodzivne hidrogele
Utemeljitve državnih nagrad in priznanj11
Prispevki; kemija kriptona
Minuli dogodki
Jih poznamo - Fanny Susan Copeland24
Prišli - odšli
Obiski po odsekih
Varnost in zdravje na delovnem mestu
Kulturno dogajanje na IJS - razstava Bogdana Čobala29

Novice IJS, glasilo Instituta "Jožef Stefan"

Urednika: dr. Polona Umek in mag. Marjan Verč

Lektorica: Špela Komac

Foto: mag. Marjan Verč in avtorji prispevkov

Naslovnica: Sinteza kriptonovega difluorida s fotokemično reakcijo zmesi trdnega kriptona in tekočega fluora pri temperaturi tekočega dušika. Vir ultravijolične svetlobe za tvorbo fluorovih radikalov je živosrebrna svetilka, ki v osrednjem delu vidnega spektra oddaja predvsem zeleno svetlobo. Foto: doc. dr. Matic Lozinšek

http://www-novice.ijs.si, e-pošta: novice@ijs.si.

Ponatis vsebine je dovoljen z opombo, da gre za prispevek iz Novic IJS.

Članke, predloge in pripombe lahko pošljete po e-pošti: novice@ijs.si.

Za vsebino strokovnih in (poljudno)znanstvenih člankov odgovarjajo avtorji.

ISSN 1581-2707

PRISPEVKI

KEMIJA KRIPTONA

doc. dr. Matic Lozinšek, Odsek za anorgansko kemijo in tehnologijo (K1), Institut "Jožef Stefan"

Prispevek posvečam pionirjem kemije kriptona v Sloveniji: prof. dr. Borisu Žemvi, prof. dr. Borisu Frlecu in prof. dr. Andreju Šmalcu.

Žlahtni plini, družina elementov, ki so povsem desno v periodnem sistemu, torej v 18. skupini, imajo polne zunanje ali valenčne elektronske lupine. So pregovorno nereaktivni in zaradi številnih neuspelih prvotnih poskusov sintez njihovih spojin je obveljala dogma o njihovi popolni inertnosti. V starejši literaturi so zato poimenovani kot inertni plini. Prva kemijska spojina žlahtnih plinov je bila sintetizirana leta 1962 s prelomnim eksperimentom reakcije med Xe in PtF₆ [1]. Že takoj naslednje leto je sledila objava prve spojine kriptona, ki pa je bila sprva napačno karakterizirana kot KrF₄ [2] namesto KrF₂ [3,4,5].

Kripton je najlažji predstavnik žlahtnih plinov, ki tvori spojine, ki jih je mogoče pripraviti in izolirati v makroskopskih količinah [6]. Edina znana binarna spojina kriptona, to je spojina, sestavljena iz zgolj dveh elementov, je kriptonov difluorid. Hkrati je KrF_2 tudi edina spojina tega žlahtnega plina, ki jo je mogoče pripraviti direktno iz elementov in predstavlja izhodno snov za vse trenutno znane kriptonove spojine [7]. Lahko trdimo, da je kemija kriptona pravzaprav kemija kriptonovega difluorida. Kripton tako tvori le spojine z oksidacijskim številom +2, za razliko od svojega težjega sorodnika ksenona, ki se v spojinah nahaja v celi paleti oksidacijskih stanj od 0, + $\frac{1}{4}$, + $\frac{1}{2}$, +2, +4, +6 do +8 [8].

Molekula KrF₂ je linearna in centrosimetrična (slika 1) z dolžino Kr-F vezi 1,89 Å, določeno z elektronsko difrakcijo v plinastem stanju pri -40 °C [9] ter z rentgensko difrakcijo na monokristalu pri -80 °C [10] in -125 °C [11]. Kriptonov difluorid je termodinamično nestabilen, njegova tvorbena entalpija je pozitivna in pri sobni temperaturi počasi razpada v elementa, kinetično obstojen pa je pri nizkih temperaturah in ga zato hranimo pri temperaturi suhega

ledu (-78 °C). Je agresivno fluorirno sredstvo in izjemno močan oksidant, reaktivnejši od elementarnega fluora. Atomizacijska entalpija oziroma energija, potrebna za razpad mo-

Slika 1: Molekula KrF₂ je linearna in centrosimetrična.

lekule KrF₂ (98 kJ/mol), je namreč manjša kot pri molekuli F₂ (158 kJ/mol). Kriptonov difluorid je zato boljši vir atomarnega fluora oziroma F⁻ radikalov in torej močnejši fluorirni reagent od fluora, učinkovit celo pri nizkih temperaturah [7]. Z njegovo uporabo je mogoče pripraviti spojine z elementi v najvišjih oksidacijskih stanjih. Kriptonov difluorid je bela kristalinična trdna snov (slika 2) z dvema znanima kristalnima modifikacijama [10,11]. Ob stiku z vodo ali organskimi snovmi reagira eksplozivno. Razpadanje KrF₂ je pri sobni temperaturi razmeroma počasno in

zaradi relativno visokega parnega tlaka (~170 mbar pri 25 °C) KrF, navadno dodajamo v reakcijske zmesi s sublimacijo v statičnem ali dinamičnem vakuumu na vakuumskem sistemu. Kemijo kriptona je mogoče proučevati le v peščici topil, ki so dovolj obstojna in ne reagirajo s KrF₃. To so brezvodni HF (aHF), BrF₄ in SO,CIF. Zaradi njihove neobstojnosti so za strukturno karakterizacijo kriptonovih spojin potrebne nizkotemperaturne spektroskopske metode, kot so infrardeča ter ramanska spektroskopija in jedrska magnetna resonanca (NMR), ali pa nizkotemperaturna rentgenska difrakcija na monokristalu. Za določitev kristalne strukture spojin kriptona je tako treba celoten postopek opraviti pri nizkih temperaturah – od gojenja kristalov (na primer od –30 °C do -80 °C), njihove izolacije (-78 °C), izbiranja pod mikroskopom (–80 °C) do montiranja (–196 °C) in meritve na difraktometru (–173 °C).

Slika 2: Trden kriptonov difluorid, shranjen v cevki iz fluoriranega etilen-propilena (FEP), z zunanjim premerom 4 mm. Kopolimer tetrafluoroetilena in heksafluoropropilena je odporen material, v katerem je mogoče varno hraniti to agresivno snov in izvajati reakcije z njo.

Spojine kriptona

Kripton tvori kemijske vezi le z najbolj elektrone-gativnimi elementi – to so fluor, kisik in dušik. Najbolj številne so spojine z vezmi Kr–F, medtem ko je število znanih spojin s Kr–O in Kr–N vezavo precej omejeno [7].

Sinteza KrF,

Zaradi termodinamične nestabilnosti KrF₂ priprava slednjega po vzoru sintez ksenonovih fluoridov z reakcijo med žlahtnim plinom in fluorom pri povišani temperaturi in tlaku ni mogoča. Kriptonov difluorid nastane v reakciji kriptona s fluorovimi

radikali, ki se jo navadno izvaja pri temperaturi tekočega dušika. Nizka temperatura stabilizira nastali produkt, hkrati pa sta zaradi reakcije fluorovih atomov s trdnim kriptonom hitrost nastanka KrF_2 in dobitek reakcije večja. Za disociacijo molekule fluora $(F_2 \rightarrow 2F^*)$ pri nizkotemperaturni sintezi KrF_2 je bilo uporabljenih več metod [7], in sicer: obstreljevanje s curki visokoenergijskih delcev, kot so elektroni [4], protoni in delci alfa; električna razelektritev [2,5]; termična disociacija na vroči žici [12]; in fotoliza z ultravijolično svetlobo [3,13]. Za sintezo gramskih količin te reaktivne spojine sta se uveljavili le zadnji dve navedeni metodi [14].

Slika 3: Žareče navitje iz nikljeve žice, na kateri poteka termična disociacija molekul fluora. Nastali atomarni fluor reagira s trdnim kriptonom, kondenziranim na notranji steni reaktorja iz nerjavnega jekla, ki je med sintezo KrF, potopljen v tekoči dušik. Za učinkovito reakcijo je potrebna kratka razdalja med vročo Ni žico (~700 °C) in hladno reaktorsko steno (–196 °C).

Pri sintezi v reaktorju z vročo žico [12] poteka termični razpad plinastega F₂ pri nizkem tlaku (30–60 mbar) na navitju nikljeve žice, ki je uporovno greta z enosmernim tokom (6 V, 30 A) do rdečega žara (slika 3). Fluorovi atomi nato prepotujejo kratko razdaljo (1–2 cm) do mrzle notranje stene reaktorja oblike valja, ohlajenega na temperaturo tekočega dušika, kjer reagirajo s trdnim kriptonom. Zaradi nerjavnega jekla, iz katerega je izdelana reakcijska posoda, pa je tako sintetizirani KrF₂ rahlo onečiščen s kromovimi spojinami in zato svetlo roza obarvan. Produkt je mogoče očistiti z razmeroma preprosto destilacijo. Dobitek tega postopka tipično znaša 2–3 g čistega KrF₂ v 12-urnem eksperimentu [11], a

je lahko ob optimizaciji pogojev in v krajših eksperimentih tudi precej večji (~2 g/h) [14].

Na Institutu "Jožef Stefan" pa je bila razvita najbolj učinkovita metoda za sintezo KrF₂ [13]. Nizkotemperaturna UV-fotoliza zmesi tekočega fluora in trdnega kriptona se izvaja v borosilikatni stekleni posodi v obliki votlega plašča, v katerega je vstavljen vodno hlajen sklop s srednjetlačno živosrebrno svetilko (400–500 W) (slika 4 in naslovnica). Ker je celoten sestav potopljen v tekoči dušik, je vodno hlajenje izolirano še z vakuumskim plaščem [15]. Fotosinteza KrF₂ v utekočinjenem fluoru je zaradi visoke koncentracije reagentov zelo učinkovita (navadno 1 g/h) [16] in s celodnevnim eksperimentom je mogoče pripraviti precejšnje količine zelo čiste spojine (10–30 g) [13,14].

Iz opisanega je jasno, da kljub varljivo enostavni kemijski reakciji (Kr + $F_2 \rightarrow KrF_2$) sinteza kriptonovega difluorida še vedno pomeni svojevrsten eksperimentalni izziv. Za naštetje laboratorijev po svetu, ki lahko izvajajo sintezo KrF_2 , verjetno zadoščajo prsti ene same roke.

Slika 4: Fotokemična sinteza KrF₂ z obsevanjem zmesi trdnega Kr in tekočega F₂ z živosrebrno UV-svetilko pri temperaturi tekočega dušika krasi naslovnico izvoda revije *Proteus* (št. 8, l. 38, 1976), v kateri je opisan ta postopek, razvit na Institutu "Jožef Stefan" [17].

Spojine KrF⁺ in Kr₂F₃⁺ kationov in adukti s KrF₂ Poglavitna lastnost KrF₂, ki jo izkoriščamo pri sintezi kriptonovih spojin, je Lewisova bazičnost. Kriptonov difluorid deluje namreč kot donor fluoridnega iona in je po tej zmožnosti podoben XeF₂ [18], a nekoliko šibkejši. Lewisova bazičnost binarnih fluoridov žlahtnih plinov pada v zaporedju XeF₄ > XeF₂ ≥ KrF₂ >> XeF₄. Pri reakciji KrF₂ z močnimi Lewisovimi kislinami oziroma akceptorji fluoridnega iona, kot so pentafluoridi pniktogenov, in nekaterih kovin prehoda se tvorijo soli s KrF⁺ kationom:

$$KrF_2 + MF_5 \rightarrow [KrF]^+[MF_6]^-$$

(M = As, Sb, Bi, Ta, Ru, Rh, Pt, Au) in

$$KrF_2 + 2MF_5 \rightarrow [KrF]^+[M_2F_{11}]^-$$

(M = As, Sb, Nb, Ta, Ru, Pt) [7].

Vendar pa KrF⁺ kationa v strukturah teh soli ne zasledimo izoliranega, pač pa asociiranega z anionom v obliki tesnega ionskega para (slika 5).

Kation KrF⁺ je Lewisova kislina in s KrF₂ tvori simetrični [FKrFKrF]⁺ oziroma Kr₂F₃⁺ kation, ki ima obliko črke V (slika 6). V teh soleh sta kation in anion ločena, sintetizirati pa jih je mogoče z reakcijo presežnega KrF₂ z močnimi Lewisovimi kislinami:

$$2KrF_{2} + MF_{5} \rightarrow [Kr_{2}F_{3}]^{+}[MF_{6}]^{-}$$

(M = P, As, Sb, Ta, Au) [7].

povezana prek fluori-V KrF⁺ spojinah oziroma ob dnega mostu v tesen interakciji KrF₂ z močnimi ionski par [11].

Slika 5: V kristalni strukturi [KrF]⁺[SbF₆]⁻ sta kation in anion povezana prek fluoridnega mostu v tesen

Kr

Lewisovimi kislinami pride do podaljšanja mostovne Kr–F vezi in skrajšanja terminalne Kr–F vezi. V [KrF]⁺[SbF₆]⁻ znašata dolžini Kr–F vezi 2,14 Å in 1,77 Å, določeni z rentgensko difrakcijo pri –113 °C, v prostem KrF₂ pa 1,89 Å [11]. Kljub temu pa ostaja razporeditev atomov okoli atoma kriptona vedno praktično linearna, v skladu z modelom odboja valenčnih elektronskih parov. Zaradi izrazitejšega pozitivnega naboja na kriptonu so spojine KrF⁺

in Kr₂F₃+ še reaktivnejše od KrF₂ ter spadajo med najmočnejše

Slika 6: Kation Kr,F,

oksidante in fluorirna sredstva, kar jih premore kemija.

Nekatere KrF¹ spojine se uvrščajo med redke primere pri sobni temperaturi razmeroma stabilnih kriptonovih spojin, na primer: [KrF][SbF₆], [KrF]-[Sb₂F₁₁], [KrF][BiF₆], [KrF][PtF₆] in [KrF][AuF₆] [7]. Soli KrF¹ in Kr₂F₃¹ kationov so najbolj raziskana družina kriptonovih spojin [7], zato navajam le nekaj izbranih literaturnih virov [19–24,11]. Določene in objavljene so bile naslednje kristalne strukture: [KrF][AsF₆], [KrF][SbF₆], [KrF][BiF₆], [Kr₂F₃][SbF₆]·KrF₂, [Kr₂F₃][SbF₆]·KrF₂, [Kr₂F₃][AsF₆]·[KrF][AsF₆] [11] in [KrF][AuF₆] [24].

Izolirane so bile tudi adicijske spojine kriptonovega difluorida s šibkejšimi Lewisovimi kislinami, kot so nekateri kovinski fluoridi in fluorid-oksidi. V to skupino spojin uvrščamo: KrF, VF, [25], KrF, MnF₄, $2KrF_{2}\cdot MnF_{4}$ [26], $KrF_{2}\cdot nMoOF_{4}$ (n = 1-3), $KrF_{2}\cdot WOF_{4}$ [27], KrF, ·CrOF₄ [28,29] in KrF, ·2CrOF₄ [29]. Trenutno sta objavljeni le kristalni strukturi aduktov s CrOF,, v katerih je molekula KrF, koordinirana na kromov(VI) atom, FKrF...CrOF₄ (slika 7). V kristalni strukturi adukta KrF, 2CrOF₄ je KrF, mostovni ligand, vezan z vsakim fluorovim atomom na kromov atom dveh CrOF₄ molekul, v trans legi glede na kisikov atom, F_4 OCr...FKrF...CrOF₄ (slika 7) [29]. Medtem pa NMR spektroskopski podatki kažejo, da je pri aduktu KrF₃·2MoOF₄ v raztopini razporeditev atomov drugačna. Molekula KrF, je vezana le na en molibdenov atom, in sicer v cis legi glede na kisikov atom in v cis legi glede na mostovni fluorov atom, ki povezuje obe MoOF₄ molekuli, FKrF···MoOF₃–F–MoOF₄ [27].

Slika 7: V aduktih KrF₂·CrOF₄ in KrF₂·2CrOF₄ je KrF₂ s fluorovim atomom koordiniran na kromov atom nasproti vezi krom–kisik [29].

Koordinacijske spojine s KrF,

Pravo malo renesanso kemije kriptona je povzročilo odkritje, da je mogoče pripraviti koordinacijske

spojine s kriptonovim difluoridom kot ligandom. Prva kristalografsko karakterizirana spojina tega tipa je [BrOF₂(KrF₂)₂AsF₆] (slika 8), v kateri sta dve molekuli KrF₂ koordinirani na bromov(V) atom BrOF₂, kationa [30].

Slika 8: V kristalni strukturi koordinacijske spojine [BrOF₂(KrF₂)₂AsF₆] sta liganda KrF₂ koordinirana na bromov atom BrOF₂, kationa [30].

Sledili sta priprava in strukturna karakterizacija kompleksa Hg(OTeF₅)₂·1,5KrF₂ s kriptonovim difluoridom kot mostovnim ligandom, koordiniranim na kovinska atoma dveh nevtralnih kovalentnih molekul Hg(OTeF₅)₂ [31]. Kristalni strukturi te živosrebrove spojine in adukta KrF₂·2CrOF₄ [29] predstavljata edina objavljena kristalografsko karakterizirana primera mostovne koordinacije KrF₂. Slednja je precej pogosta pri spojinah težjega analoga XeF₂ [18]. Pri nizkotemperaturni kristalizaciji raztopine Mg(AsF₆)₂ in KrF₂ v brezvodnem vodikovem fluoridu ali bromovem pentafluoridu nastanejo kristali koordinacijske spojine [Mg(KrF₂)₄(AsF₆)₂] (slika 9) ali njen solvat [Mg(KrF₃)₄(AsF₆)₂]·2BrF₅ [32].

Slika 9: Kristalna struktura molekulskega kompleksa [Mg(KrF₂)₄(AsF₆)₂], kjer so štiri KrF₂ molekule in AsF₆⁻ aniona oktaedrično koordinirani na kovinski kation Mg²⁺ [32].

Slika 10: Homoleptično koordiniran kation [Hg(KrF₂)₈]²⁺ z razporeditvijo koordiniranih fluorovih atomov v obliki kvadratne antiprizme okoli živosrebrovega kationa v kristalni strukturi kompleksa [Hg(KrF₂)₈][AsF₄], 2HF [34].

S prvo strukturno določitvijo koordinacijske spojine, v kateri so molekule KrF₂ koordinirane na kovinski kation [32], se je potrdila možnost priprave cele družine spojin kriptona – kovinskih kompleksov KrF₂ [33]. To dokazuje sinteza homoleptičnega kovinskega kompleksa s kationom Hg²⁺, ki je koordiniran kar z osmimi molekulami KrF₂ (slika 10). Spojina [Hg(KrF₂)₈][AsF₆]₂·2HF [34] je trenutno najbolj z ligandom KrF₂ bogat kompleks. Pri teh spojinah je ključna uporaba soli šibko koordinirajočega aniona AsF₆⁻ in topil (aHF, BrF₅), ki jih lahko KrF₂ (deloma) izpodrine iz primarne koordinacijske okolice kationov in tako tvori kompleks. Tudi v teh koordinacijskih spojinah je opazna deformacija KrF₂ molekule, ki se kaže v krajši terminalni Kr–F vezi, daljši mostovni

Kr–F vezi in večjem pozitivnem naboju na atomu kriptona. Kako močna je deformacija in polarizacija molekule KrF₂ je odvisno od Lewisove kislosti kationa, na katerega je KrF₂ koordiniran, in od števila vezanih KrF₂ ligandov. Zaradi te polarizacije so KrF₂ kompleksi bolj reaktivni, kot je kriptonov difluorid.

Podobno, kot to velja za tvorbo KrF⁺ spojin, je tudi za nastanek koordinacijskih spojin odločilna Lewisova bazičnost KrF₂. Vendar pa mora biti za koordinacijo tega dokaj šibkega liganda Lewisova kislost centralnega kationa ravno pravšnja [32]. Pri reakciji s premočno Lewisovo kislino lahko pride do prenosa F⁻ in nastanka KrF⁺ soli. S prešibkim akceptorjem fluoridnega iona pa do koordinacije KrF₂ sploh ne pride in izoliramo le izhodne snovi ali pa morda kokristale. Obenem pa morajo biti tako kationi kot anioni teh koordinacijskih spojin odporni proti reakciji z ligandom KrF₂.

Predstavljene koordinacijske spojine s KrF₂ imajo tudi svoje analoge s XeF₂. V splošnem je mogoče med kemijo Kr(II) in Xe(II) potegniti precej vzporednic. Zato, in ker je koordinacijska kemija XeF₂ precej obširna z izjemno strukturno pestrostjo [8,18], se lahko upravičeno nadejamo, da na odkritje čaka še precej zanimivih spojin kriptona.

Spojine z dvema žlahtnima plinoma – ksenonom in kriptonom

Prva kemijska spojina kriptona je bila sintetizirana [2] v slabem letu po sintezi prve spojine ksenona in odkritju kemijske reaktivnosti žlahtnih plinov [1]. Kljub temu pa do prepleta kemije kriptona in ksenona ni prišlo, saj do nedavnega ni bilo znane snovi, v kateri bi bila hkrati prisotna kemijsko vezana oba »reaktivna« žlahtna plina. Prva primera takšnih spojin sta kompleksa [XeF₅(KrF₂)AsF₆] in

Slika 11: Koordinacijska okolica ksenonovih atomov v kristalnih strukturah spojin [XeF₅(KrF₂)AsF₆] in [XeF₅(KrF₂),AsF₆], kjer sta prvič hkrati prisotna dva kemijsko vezana žlahtna plina Xe(VI) in Kr(II) [35].

NOVICE IJS marec 2021

[XeF₅(KrF₂)₂AsF₆], kjer je na ksenonov atom XeF₅ * kationa poleg anionov koordiniran tudi KrF₂ [35] (slika 11). Zaradi prisotnosti dveh žlahtnih plinov, Kr(II) in Xe(VI), sta ti snovi zelo reaktivni in sta močna oksidanta. Kristalček te koordinacijske spojine ob stiku s papirnato brisačko, omočeno z acetonom, eksplodira z intenzivnim bliskom bele svetlobe, kakršne smo vajeni pri s ksenonom napolnjenih fotografskih bliskavicah.

Pri nizkih temperaturah pa je mogoče iz raztopine [XeF][AsF₄] in prebitnega KrF, v brezvodnem vodikovem fluoridu izolirati celo kristale spojine [FKrFXeF][AsF₄]·0,5KrF₃·2HF z nenavadnim kationom [FKrFXeF]⁺ (slika 12), v katerem sta prisotna Kr(II) in Xe(II) [36]. Ta novi mešani kation je križanec dobro znanih zvrsti Xe,F, in Kr,F, (slika 6). Vendar pa ksenonov(II) kation XeF⁺ le pri nizkih temperaturah vzdrži oksidacijski potencial kriptona(II) in že pri temperaturi -60 °C poteče oksidacija Xe(II) do Xe(IV), pri čemer se ob kristalizaciji tvorijo kokristali {[Kr,F₃][AsF₄]}, XeF₄ in KrF, XeF₄. Nadaljnja oksidacija Xe(IV) do Xe(VI) s presežkom KrF₃, pri sobni temperaturi, pa vodi do nastanka že predstavljenih kompleksov [XeF₅(KrF₂)AsF₆] ter [XeF₅(KrF₂)₂AsF₆] in tudi [(XeF₅)₅KrF₅(AsF₆)₅]. Tako sedaj poznamo spojine in kokristale, ki hkrati vsebujejo dva različna kemijsko vezana žlahtna plina, in sicer: Kr(II) in Xe(II), Kr(II) in Xe(IV) ter Kr(II) in Xe(VI).

Slika 12: Nenavaden kation [FKrFXeF]⁺, ki vsebuje Kr(II) in Xe(II) [36].

Kokristali s KrF,

Še dokaj neraziskano je področje kokristalov s kriptonovim difluoridom navkljub že dolgo časa znanim primerom, kot so KrF, XeF [37], KrF, HOSeF in KrF, HOTeF, [38] ter celo kristalografsko karakteriziranim kokristalom [Kr,F,][SbF,]·KrF,, {[Kr,F,]- $[SbF_2]_3$, KrF_4 , [11], $[FKrFXeF][AsF_2]_2$.0,5 KrF_4 2 HF_4 in KrF, XeF₄ [36]. Nabor spojin, ki lahko s KrF, tvorijo kokristale, je v splošnem omejen na fluorove spojine z elementi v visokih oksidacijskih stanjih in zato odporne proti oksidaciji in fluoriranju. Med slednje spada tudi »topilo« BrF₅, v katerem se KrF₅ dobro raztaplja in tvori solvate [39]. Iz teh raztopin je pri nizkih temperaturah mogoče kristalizirati solvate oziroma kokristale [40]. Določitev kristalnih struktur kokristalov s kriptonovim difluoridom in njihova spektroskopska karakterizacija omogoča

proučevanje in razumevanje medmolekulskih interakcij, ki jih tvori KrF₂. Kokristali tako predstavljajo zanimivo področje raziskav, s katerimi bi lahko razširili trenutno še razmeroma omejeno strukturno kemijo kriptona.

Spojine z vezjo kripton-kisik in spojine z vezjo kripton-dušik

Obstoj edine znane spojine kriptona in kisika $Kr(OTeF_s)_2$ [41,38], ki je stabilna le pri zelo nizkih temperaturah (< –90 °C) in nastane pri reakciji izmenjave med KrF_2 in $B(OTeF_5)_3$ v topilu SO_2ClF , pri čemer je stranski produkt reakcije BF_3 , je bil potrjen z nizkotemperaturno ¹⁹F in ¹⁷O-NMR spektroskopijo [42].

Le štiri spojine kriptona z dušikom tipa [R−C≡N−Kr−F]*[AsF₆]⁻ so bile sintetizirane in spektroskopsko karakterizirane pri temperaturah, nižjih od −40 °C. Kationski kompleksi HCNKrF*, CF₃CNKrF*, C₂F₅CNKrF* in *n*-C₃F₇CNKrF* nastanejo ob koordinaciji vodikovega cianida [43] oziroma ustreznih perfluoronitrilov [44] na KrF* kation. Kot pri tvorbi Kr₂F₃* spojin tudi nastanek Kr−N vezi omogoča Lewisova kislost KrF* kationa. Omejitev temu tipu reakcij predstavlja izjemna elektronska afiniteta KrF* (13,2 eV). Za tvorbo spojin kriptona in dušika mora tako prva ionizacijska energija dušikove donorske molekule praviloma dosegati ali presegati vrednost elektronske afinitete KrF* (na primer pri HCN znaša 13,6 eV).

Uporaba spojin kriptona v sintezi

Ker se KrF, in spojine KrF⁺ ali Kr,F, * kationov uvrščajo med najmočnejše znane oksidante, jih je mogoče uporabiti za pripravo fluoridov elementov v najvišjih oksidacijskih stanjih. Tako spojine KrF+ na primer oksidirajo molekulo kisika do O,+ in ksenon do XeF₅⁺ spojin. Nadalje je z njihovo pomočjo mogoče sintetizirati spojine Ag(III), Ni(IV), Au(V), fluorid--okside TcOF₅, OsO₅F₄ ter spojine koordinativno nasičenih fluorido-kationov NF_4^+ , ClF_6^+ in BrF_6^+ [7,8]. Nevtralni fluoridi slednjih niso znani, zato njihova priprava ni mogoča po klasični poti prek odvzema fluoridnega iona z močno Lewisovo kislino. Vsekakor pa sinteza, rokovanje in uporaba teh spojin ni trivialna in zahteva svojevrstne eksperimentalne veščine. Odziv kolegic in kolegov na ta tip kemije in takšne reakcije je navadno strahospoštovanje, lahko pa tudi navdušenje: »Žemva je uporabil KrF, za reakcijo z AgF, v brezvodnem HF v prisotnosti XeF za pripravo XeF₅+AgF₄-. Kako neverjeten nabor reagentov!« je zapisal Nobelov nagrajenec za kemijo Roald Hoffmann [45,46].

Namesto zaključka

Kemija kriptona se razvija že skoraj šest desetletij in je neločljivo povezana s kemijo fluora. Po izjemnem, malodane eksplozivnem začetnem razvoju in navdušenju je sledil umirjen napredek, ki sega vse do današnjih dni. Slednje je vsekakor pričakovan potek za nišno področje, ki zahteva specialna eksperimentalna znanja in spretnosti. Izsledke bazičnih študij spojin kriptona objavljajo vodilne znanstvene revije na področju kemije in povzemajo kemijski učbeniki. Raziskovanje kriptonovih spojin zagotovo še ni končano poglavje. Kot velja za znanost v splošnem, pa bo nadaljnji napredek na tem področju odvisen predvsem od kreativnosti raziskovalk in raziskovalcev.

Literatura:

- [1] N. Bartlett: Xenon Hexafluoroplatinate(V) Xe⁺[PtF_.]⁻. *Proc. Chem. Soc.*, (1962), 218
- [2] A. V. Grosse, A. D. Kirshenbaum, A. G. Streng, L. V. Streng: Krypton Tetrafluoride: Preparation and Some Properties. *Science*, 139 (1963), 1047–1048
- [3] J. J. Turner, G. C. Pimentel: Krypton Fluoride: Preparation by the Matrix Isolation Technique. *Science*, 140 (1963), 974–975
- [4] D. R. MacKenzie: Krypton Difluoride: Preparation and Handling. *Science*, 141 (1963), 1171
- [5] F. Schreiner, J. G. Malm, J. C. Hindman: The Preparation and Nuclear Magnetic Resonance of Krypton Difluoride. *J. Am. Chem. Soc.*, 87 (1965), 25–28
- [6] M. Lozinšek, G. J. Schrobilgen: The world of krypton revisited. *Nat. Chem.*, 8 (2016), 732
- [7] J. F. Lehmann, H. P. A. Mercier, G. J. Schrobilgen: The chemistry of krypton. *Coord. Chem. Rev.*, 233–234 (2002), 1–39
- [8] D. S. Brock, G. J. Schrobilgen, B. Žemva: Noble-Gas Chemistry. v: *Comprehensive Inorganic Chemistry II*, (J. Reedijk, K. Poeppelmeier ur.), Elsevier, 1 (2013), 755–822
- [9] W. Harshbarger, R. K. Bohn, S. H. Bauer: The Structure of KrF₂ as Investigated by Electron Diffraction. J. Am. Chem. Soc., 89 (1967), 6466– 6469
- [10] R. D. Burbank, W. E. Falconer, W. A. Sunder: Crystal Structure of Krypton Difluoride at -80°C. *Science*, 178 (1972), 1285-1286
- [11] J. F. Lehmann, D. A. Dixon, G. J. Schrobilgen: X-ray Crystal Structures of α -KrF $_2$, [KrF]- [MF $_6$] (M = As, Sb, Bi), [Kr $_2$ F $_3$][SbF $_6$]-KrF $_2$, [Kr $_2$ F $_3$][SbF $_6$]-KrF $_2$, and [Kr $_2$ F $_3$][AsF $_6$]: [KrF]- [AsF $_6$]; Synthesis and Characterization of [Kr $_2$ F $_3$][PF $_6$]-nKrF $_2$; and Theoretical Studies of KrF $_2$, KrF $_1$ *, Kr $_2$ F $_3$ *, and the [KrF][MF $_6$] (M = P,

- As, Sb, Bi) Ion Pairs. *Inorg. Chem.*, 40 (2001), 3002–3017
- [12] V. N. Bezmel'nitsyn, V. A. Legasov, B. B. Chaivanov: Synthesis of krypton difluoride using a thermally generated flow of atomic fluorine. *Dokl. Chem.*, 235 (1977), 365–367
- [13] J. Slivnik, A. Šmalc, K. Lutar, B. Žemva, B. Frlec: A New Method for the Preparation of Krypton Difluoride. *J. Fluorine Chem.*, 5 (1975), 273–274
- [14] S. A. Kinkead, J. R. FitzPatrick, J. Foropoulos, Jr., R. J. Kissane, J. D. Purson: Photochemical and Thermal Dissociation Synthesis of Krypton Difluoride. *ACS Symp. Ser.*, 555 (1994), 40–55
- [15] A. Šmalc, K. Lutar, B. Žemva: Krypton Difluoride. *Inorg. Synth.*, 29 (1992), 11–15
- [16] A. Šmalc, K. Lutar: Raziskave fotokemijskih reakcij z elementarnim fluorom. *Vestn. Slov. Kem. Drus.*, 30 (1983), 345–355
- [17] A. Šmalc, J. Slivnik: Nova sinteza kriptonovega difluorida. *Proteus*, 38 (1976), 309–311
- [18] M. Tramšek, B. Žemva: Synthesis, Properties and Chemistry of Xenon(II) Fluoride. *Acta Chim. Slov.*, 53 (2006), 105–116
- [19] H. Selig, R. D. Peacock: A Krypton Difluoride– Antimony Pentafluoride Complex. *J. Am. Chem. Soc.*, 86 (1964), 3895
- [20] B. Frlec, J. H. Holloway: New krypton difluoride adducts. *J. Chem. Soc., Chem. Commun.*, (1973), 370–371
- [21] B. Frlec, J. H. Holloway: Preparation of 2KrF₃,SbF₅ and KrF₂,SbF₅: the Kr₂F₃⁺ and KrF⁺ Cations. *J. Chem. Soc., Chem. Commun.*, (1974), 89–90
- [22] R. J. Gillespie, G. J. Schrobilgen: The KrF⁺ and Kr₂F₃⁺ Cations. The Preparation of KrF⁺MF₆⁻, KrF⁺Sb₂F₁₁⁻, Kr₂F₃⁺MF₆⁻, and Kr₂F₃⁺xKrF₂·MF₆⁻ Salts and Their Characterization by Fluorine-19 Nuclear Magnetic Resonance and Raman Spectroscopy. *Inorg. Chem.*, 15 (1976), 22–31
- [23] B. Frlec, J. H. Holloway: Preparation and Characterization of 2KrF₂SbF₅, KrF₂·MF₅ (M = Sb, Ta), and KrF₂·2MF₅ (M = Sb, Ta, Nb): the [Kr₂F₃]⁺ and [KrF]⁺ Cations. *Inorg. Chem.*, 15 (1976), 1263–1270
- [24] J. F. Lehmann, G. J. Schrobilgen: Structural and vibrational characterization of [KrF][AuF₆] and α-[O₃][AuF₆] using single crystal X-ray diffraction, Raman spectroscopy and electron structure calculations. J. Fluorine Chem., 119 (2003), 109–124
- [25] B. Žemva, J. Slivnik, A. Šmalc: Krypton Difluoride Vanadium Pentafluoride Adduct. *J. Fluorine Chem.*, 6 (1975), 191–193

NOVICE IJS marec 2021

- [26] K. Lutar, A. Jesih, B. Žemva: KrF₂/MnF₄ adducts from KrF₂/MnF₂ interaction in HF as a route to high purity MnF₄. *Polyhedron*, 7 (1988), 1217–1219
- [27] J. H. Holloway, G. J. Schrobilgen: Preparation and Study by Raman Spectroscopy of $KrF_2\cdot MOF_4$, $XeF_2\cdot MOF_4$, and $XeF_2\cdot 2MOF_4$ (M=Mo,W) and a Solution ¹⁹F NMR Study of $KrF_2\cdot nMoOF_4$ (n=1-3) and $KrF_2\cdot WOF_4$. Inorg. Chem., 20 (1981), 3363–3368
- [28] K. O. Christe, W. W. Wilson, R. A. Bougon: Synthesis and Characterization of CrF₄O, KrF₂·CrF₄O, and NO⁺CrF₅O⁻. *Inorg. Chem.*, 25 (1986), 2163–2169
- [29] H. P. A. Mercier, U. Breddemann, D. S. Brock, M. R. Bortolus, G. J. Schrobilgen: Syntheses, Structures, and Bonding of NgF₂·CrOF₄, NgF₂·2CrOF₄ (Ng = Kr, Xe), and (CrOF₄)_∞. *Chem. Eur. J.*, 25 (2019), 12105–12119
- [30] D. S. Brock, J. J. Casalis de Pury, H. P. A. Mercier, G. J. Schrobilgen, B. Silvi: A Rare Example of a Krypton Difluoride Coordination Compound: [BrOF₂][AsF₆]·2KrF₂. J. Am. Chem. Soc., 132 (2010), 3533–3542
- [31] J. R. DeBackere, H. P. A. Mercier, G. J. Schrobilgen: Noble-Gas Difluoride Complexes of Mercury(II): The Syntheses and Structures of Hg(OTeF₅)₂·1.5NgF₂ (Ng = Xe, Kr) and Hg(OTeF₅)₃. J. Am. Chem. Soc., 136 (2014), 3888–3903
- [32] M. Lozinšek, H. P. A. Mercier, D. S. Brock, B. Žemva, G. J. Schrobilgen: Coordination of KrF₂ to a Naked Metal Cation, Mg²⁺. Angew. Chem. Int. Ed., 56 (2017), 6251–6254
- [33] Sh. Sh. Nabiev, V. B. Sokolov, S. N. Spirin, B. B. Chaivanov: Synthesis and Spectral Properties of Hexafluoroaurates. *Russ. J. Phys. Chem. A*, 85 (2011), 1931–1941
- [34] J. R. DeBackere, G. J. Schrobilgen: A Homoleptic KrF₂ Complex, [Hg(KrF₂)₈][AsF₆]₂·2HF. *Angew. Chem. Int. Ed.*, 57 (2018), 13167–13171
- [35] M. Lozinšek, H. P. A. Mercier, G. J. Schrobilgen: Mixed Noble-Gas Compounds of Krypton(II) and Xenon(VI); [F₅Xe(FKrF)AsF₆] and [F₅Xe(FKrF)₂AsF₆]. Angew. Chem. Int. Ed., 60 (2021), doi: 10.1002/anie.202014682

- [36] M. R. Bortolus, H. P. A. Mercier, B. Nguyen, G. J. Schrobilgen: Syntheses and Characterizations of the Mixed Noble-Gas Compounds, [FKr"FXe"F][AsF₆]·0.5Kr"F₂·2HF, ([Kr"₂F₃]-[AsF₆])₂·Xe"F₄, and Xe"F₄·Kr"F₂. Angew. Chem. Int. Ed., 60 (2021), doi: 10.1002/anie.202102205
- [37] V. D. Klimov, V. N. Prusakov, V. B. Sokolov: The reaction of krypton difluoride with xenon hexafluoride in nonaqueous solvents. *Dokl. Chem.*, 217 (1974), 549–551
- [38] E. Jacob, D. Lentz, K. Seppelt, A. Simon: Edel-gasverbindungen mit dem Liganden –OTeF₅. *Z. Anorg. Allg. Chem.*, 472 (1981), 7–25
- [39] V. N. Prusakov, V. B. Sokolov: Krypton difluoride. *At. Energy*, 31 (1971), 990–999
- [40] M. Lozinšek, G. J. Schrobilgen: Complexes and co-crystals of krypton difluoride. *Book of abstracts, 18th European Symposium on Fluorine Chemistry,* Aug. 2016, Kijev, Ukrajina, str. 68
- [41] D. Lentz, K. Seppelt: Xe(OTeF₅)₆, A Deep-Colored Noble Gas Compound, and O=Xe(OTeF₅)₄—The Existence of Kr(OTeF₅)₂. *Angew. Chem. Int. Ed. Engl.*, 18 (1979), 66–67
- [42] J. Č. P. Sanders, G. J. Schrobilgen: Krypton Bis[pentafluoro-oxotellurate(VI)], Kr(OTeF₅)₂, the First Example of a Kr–O Bond. *J. Chem. Soc., Chem. Commun.*, (1989), 1576–1578
- [43] G. J. Schrobilgen: The Fluoro(hydrocyano)-krypton(II) Cation [HC≡N−Kr−F]⁺; the First Example of a Krypton-Nitrogen Bond. *J. Chem. Soc., Chem. Commun.,* (1988), 863–865
- [44] G. J. Schrobilgen: The Fluoro(perfluoroalkylnitrile)noble-gas(II) Cations, $R_F C \equiv N NgF^+$ (Ng = Kr or Xe; $R_F = CF_3$, C_2F_5 , $n-C_3F_7$), and the Fluoro(trifluoro-s-triazine)xenon(II) Cation, $s-C_3F_3N_2N-XeF^+$; Novel Noble Gas-Nitrogen Bonds. J. Chem. Soc., Chem. Commun., (1988), 1506–1508
- [45] R. Hoffmann: Hi O Silver. Am. Sci., 89 (2001), 311–313: »And Žemva used Kr²+ (in KrF₂) to react with AgF₂ in anhydrous HF in the presence of XeF₆ to make XeF₆ *AgF₆ *. What a startling list of reagents!«
- [46] K. Lutar, A. Jesih, B. Žemva: On the synthesis of Xenon (VI) fluoroargentate (III). *Rev. Chim. Miner.*, 23 (1986), 565–571

20 NOVICE IJS marec 2021