Lecture 36

Simple Linear Regression

STAT 8010 Statistical Methods I November 20, 2019

> Whitney Huang Clemson University

Linear ession	Notes
36.1	

Agenda

- What is regression analysis
- 2 Simple Linear Regression (SLR)
- Parameter Estimation in SLR

Notes			

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

We will focus on simple linear regression in the next few lectures

Notes			

Scatterplot: Is Linear Trend Reasonable?

Simple Linear Regression
CLEMS#N
Simple Linear Regression (SLR)
36.4

notes			

Simple Linear Regression (SLR)

Y: dependent (response) variable; *X*: independent (predictor) variable

• In SLR we assume there is a linear relationship between *X* and *Y*:

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

- We will need to estimate β_0 (intercept) and β_1 (slope)
- Then we can use the estimated regression equation
 to
 - make predictions
 - study the relationship between response and predictor.
 - control the response
- Yet we need to quantify our uncertainty regarding the linear relationship

Notes			

Regression equation: $Y = \beta_0 + \beta_1 X$

- β_0 : E[Y] when X = 0
- β_1 : $E[\Delta Y]$ when X increases by 1

Simple Linear Regression	
Simple Linear Regression (SLR)	

Notes				

Assumptions about the Random Error ε

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$E[Y_i] = \beta_0 + \beta_1 X_i$$
, and $Var[Y_i] = \sigma^2$

The regression line $\beta_0+\beta_1 X$ represents the **conditional expectation curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

Notes	

Estimation: Method of Least Square

For the given observations $(x_i, y_i)_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$\mathrm{L}(\beta_0,\beta_1) = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n \left(X_i - \bar{X}\right) \left(Y_i - \bar{Y}\right)}{(X_i - \bar{X})^2}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

We also need to $\mathbf{estimate}\ \sigma^2$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}{n-2}$$
, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

Notes

Properties of Least Squares Estimates

- Gauss-Markov theorem states that in a linear regression these least squares estimators
 - Are unbiased, i.e.,
 - $E[\hat{\beta}_1] = \beta_1$; $E[\hat{\beta}_0] = \beta_0$
 - $E[\hat{\sigma}^2] = \sigma^2$
 - Have minimum variance among all unbiased linear estimators

Note that we do not make any distributional assumption on ε_i

Simple Linear Regression
What is regression analysis Simple Linear
Regression (SLR) Parameter Estimation in SLR

Notes				

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

MaxHeartRate = 220 - Age.

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm) (link to the "dataset": http://whitneyhuang83.github.io/maxHeartRate.csv)

- Compute the estimates for the regression coefficients
- Ompute the fitted values

Notes

Estimate the Parameters $\beta_1,\,\beta_0,$ and σ^2

 Y_i and X_i are the Maximum Heart Rate and Age of the i^{th} individual

- To obtain $\hat{\beta}_1$
 - Ompute $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$, $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
 - ② Compute $Y_i \bar{Y}$, $X_i \bar{X}$, and $(X_i \bar{X})^2$ for each observation
 - **3** Compute $\sum_{i=1}^{n} (X_i \bar{X})(Y_i \bar{X})$ divived by $\sum_{i=1}^{n} (X_i \bar{X})^2$
- $\hat{\beta}_0$: Compute $\bar{Y} \hat{\beta}_1 \bar{X}$
- a 22
 - Ompute the fitted values: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_{1,LS} X_i, \quad i = 1, \dots, n$
 - **2** Compute the **residuals** $e_i = Y_i \hat{Y}_i$, $i = 1, \dots, n$
 - Ocompute the **residual sum of squares (RSS)** = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$ and divided by n 2 (why?)

Let's Do the Calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

Х	18	23	25	35	65	54	34	56	72	19	23	42	18	39	37
Υ	202	186	187	180	156	169	174	172	153	199	193	174	198	183	178
	-19.33	-14.33	-12.33	-2.33	27.67	16.67	-3.33	18.67	34.67	-18.33	-14.33	4.67	-19.33	1.67	-0.33
	21.73	5.73	6.73	-0.27	-24.27	-11.27	-6.27	-8.27	-27.27	18.73	12.73	-6.27	17.73	2.73	-2.27
	-420.18	-82.18	-83.04	0.62	-671.38	-187.78	20.89	-154.31	-945.24	-343.44	-182.51	-29.24	-342.84	4.56	0.76
	373.78	205.44	152.11	5.44	765.44	277.78	11.11	348.44	1201.78	336.11	205.44	21.78	373.78	2.78	0.11
	195.69	191 70	190 11	182 13	158 20	166 97	182 93	165 38	152 61	104 80	191 70	176 54	195.69	178 94	180 53

- $\hat{\beta}_1 = \frac{\sum_{i=1}^n (X_i \bar{X})(Y_i \bar{Y})}{\sum_{i=1}^n (X_i \bar{X})^2} = -0.7977$
- $\hat{\beta}_0 = \bar{Y} \hat{\beta}_1 \bar{X} = 210.0485$
- $\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$

Notes		

Notes			

Let's Double Check

Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis

Notes

Notes			

_	_	·	