Calcul différentiel

Théorie des surfaces

Question 1/14

Lien entre formes fondamentales et endomorphisme de Weingarten

Réponse 1/14

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix} = \operatorname{Mat}_{(\partial_u f, \partial_v f)}(W_X) \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

Question 2/14

Espace tangent en (u_0, v_0)

Réponse 2/14

$$\Pi_0 = \operatorname{im} \left(\operatorname{d} f_{(u_0, v_0)} \right) =$$

$$\partial_u f(u_0, v_0) \mathbb{R} + \partial_v f(u_0, v_0) \mathbb{R}$$

Question 3/14

Première forme fondamentale
$$X = (u, v) \in U, M = f(X), \Sigma = f(U),$$

$$\Pi_0 = T_M \Sigma$$

Réponse 3/14

Forme bilinéaire symétrique définie par $g_X: T_M \Sigma \times T_M \Sigma \longrightarrow \mathbb{R}$ $(x,y) \longmapsto \langle x,y \rangle$ $q_X = \mathrm{d}s^2 = E \mathrm{d}u^2 + 2F \mathrm{d}u \mathrm{d}v + G \mathrm{d}v^2$

Question 4/14

Matrice de la deuxième forme fondamentale dans la base $(\partial_u f, \partial_v f)$

Réponse 4/14

$$H = (\langle n, \partial_{ij} f \rangle)_{(i,j) \in [1,2]^2} =$$

$$(\langle \partial_i n, \partial_j f \rangle)_{(i,j) \in [1,2]^2}$$

$$H(X) = \begin{pmatrix} L & M \\ M & N \end{pmatrix}$$

$$h_X = L du^2 + 2M du dv + N dv^2$$

Question 5/14

Application de Gauss

Réponse 5/14

$$n: U \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto n(u, v)$$

$$\operatorname{im}(\operatorname{d} n_X) \subset T_M \Sigma$$

Question 6/14

Deuxième forme fondamentale

Réponse 6/14

$$h_X(x,y) = -\langle \mathrm{d}n_X(\mathrm{d}f_X^{-1}(x)), y \rangle$$
 avec
 $(x,y) \in T_M \Sigma^2$

Question 7/14

Champ normal d'une surface \varSigma

Réponse 7/14

Ensemble des vecteurs
$$n(X) = \frac{\partial_u f \wedge \partial_v f}{\|\partial_u f \wedge \partial_v f\|}(X)$$

 $(\partial_u f, \partial_v f, n)$ s'appelle repère de Gauss

Question 8/14

Valeurs et vecteurs propres de l'endomorphisme de Weingarten

Réponse 8/14

 K_1 et K_2 sont les courbures principales au point M

 $K = K_1 K_2$ est la courbure de Gauss $\frac{K_1 + K_2}{2}$ est la courbure moyenne Les directions des vecteurs propres de W_X sont

Les directions des vecteurs propres de W_X sont appelées directions propres de la courbure

Question 9/14

Endomorphisme de Weingarten

Réponse 9/14

$$W_X: T_M \Sigma \longrightarrow T_M \Sigma$$

 $(u, v) \longmapsto -\mathrm{d} n_X \circ \mathrm{d} f_X^{-1}((u, v))$

Question 10/14

Plan tangent affine en (u_0, v_0)

Réponse 10/14

$$\Pi_0 + f(u_0, v_0)$$

Question 11/14

Matrice de Gauss de la famille $(\partial_1 f, \partial_2 f)$

Réponse 11/14

Matrice
$$G(X)$$
 de l'application g_X

$$G(X) = (\langle \partial_i f, \partial_j f \rangle)_{(i,j) \in [1,2]^2}$$

$$G(X) = (\langle \partial_i f, \partial_j f \rangle)_{(i,j) \in [1,2]^2}$$

$$G(X) = \begin{pmatrix} E & F \\ F & G \end{pmatrix}$$

Question 12/14

Nature d'un point selon la courbure de Gauss

Réponse 12/14

Si K < 0, on a un point hyperbolique Si K > 0, on a un point elliptique Si K = 0, on a un point parabolique

Question 13/14

Classification des surfaces quadratiques de \mathbb{R}^3

Réponse 13/14

Ellispoïde :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Hyperboloïde : $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$

Hyperboloïde :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} =$$
Paraboloïde :
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Question 14/14

Surface paramétrée

Réponse 14/14

Immersion différentiable $f: U \to \mathbb{R}^3$ avec U un ouvert de \mathbb{R}^2