Chapter 34. P and NP

Tractability

- Some problems are *intractable*: as they grow large, we are unable to solve them <u>in reasonable</u> time
- What constitutes reasonable time?
 - Standard working definition: *polynomial time*
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - $O(n^2), O(n^3), O(1), O(n\log n), O(2^n), O(n^n), O(n!)$
 - Polynomial time: O(n²), O(n³), O(1), O(nlogn)
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
 - Of course: many algorithms we've studied provide polynomial-time solutions to some problems
- Are all problems solvable in polynomial time?
 - No!: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given
- Most problems that do not yield polynomial-time algorithms are either optimization or decision problems.

Optimization/Decision Problems

- Optimization Problems
 - An optimization problem is one which asks,
 "What is the optimal solution to problem X?"
 - Examples:
 - 0-1 Knapsack
 - Fractional Knapsack
 - Minimum Spanning Tree
- Decision Problems
 - An decision problem is one with yes/no answer
 - Examples:
 - Does a graph G have an MST of weight ≤ W?

Optimization/Decision Problems

- Introduce parameter k and ask if the optimal value for the problem is a most or at least k.
 Optimization problem turns into decision problem
- Many problems will have decision and optimization versions
 - Ex: Traveling salesman problem
 - optimization: find Hamiltonian cycle of minimum weight
 - decision: is there a Hamiltonian cycle of weight $\leq k$

The Class P

- **P**: the class of decision problems that have polynomial-time deterministic algorithms.
 - That is, they are solvable in O(p(n)), where p(n) is a polynomial on n
 - A deterministic algorithm is (essentially) one that always computes the correct answer

Why polynomial?

- if not, very inefficient
- nice closure properties
 - the sum and composition of two polynomials are always polynomials, too.

The class NP

- NP stands for Nondeterministic Polynomial
- Nondeterministic computation: "guess" or "parallelize"
- A problem can be solved in nondeterministic polynomial time if: given a guess at a solution for some instance of size n, we can check that the guess is correct in polynomial time (i.e. the check runs O(n^k))
- The class of problems where the solution can verified "quickly"
 - In polynomial time in the size of the input

NP-Completeness (informally)

- NP-complete problems are defined as the hardest problems in NP
- Most practical problems turn out to be either P or NP-complete.

Reductions

- Reduction is a way of saying that one problem is **easier** than another.
- We say that problem A is easier than problem B, (i.e., we write " $A \le B$ ") if we can solve A using the algorithm that solves B.
- Idea: transform the inputs of A to inputs of B

Polynomial Reductions

- Given two problems A, B, we say that A is polynomially reducible to B $(A \le_p B)$ if:
 - 1. There exists a function f that converts the input of A to inputs of B in polynomial time
 - 2. $A(i) = YES \Leftrightarrow B(f(i)) = YES$

NP-Completeness (formally)

- A problem B is <u>NP-complete</u> if:
 - $(1) B \in NP$
 - (2) $A \leq_p B$ for all $A \in NP$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

P & NP-Complete Problems

Shortest simple path

- Given a graph G = (V, E) find a shortest path from a source to all other vertices
- Polynomial solution: O(VE)

Longest simple path

- Given a graph G = (V, E) find a longest path from a source to all other vertices
- NP-complete

P & NP-Complete Problems

- Euler tour
 - G = (V, E) a connected, directed graph find a cycle that traverses <u>each edge</u> of G exactly once (may visit a vertex multiple times)
 - Polynomial solution O(E)
- Hamiltonian cycle
 - -G = (V, E) a connected, directed graph find a cycle that visits <u>each vertex</u> of G exactly once
 - NP-complete

The Satisfiability (SAT) Problem

- Satisfiability (SAT):
 - Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
 - Ex: $((x1 \rightarrow x2) \lor \neg((\neg x1 \leftrightarrow x3) \lor x4)) \land \neg x2$
 - Seems simple enough, but <u>no known deterministic</u> <u>polynomial time algorithm exists</u>
 - But easy to verify in polynomial time!
 - SAT was the first problem shown to be NP-complete!

P vs. NP

- P =problems that can be solved in polynomial time
- NP = problems for which a solution can be verified in polynomial time
- Problems in P: efficient <u>discovery</u> of a solution
- Problems in NP: efficient verification of a solution

Is P = NP?

• Any problem in P is also in NP:

$$P \subseteq NP$$

- The big (and **open question**) is whether $P \subseteq NP$ or P = NP
- the Clay Mathematics Institute has offered a \$1 million prize for the first proof
- <u>Most computer scientists believe that this is false but we do not have a proof ...</u>

Classes of problems

