Cálculo Numérico - IME/UERJ

Trabalho Extra N^{0} 3 - Prazo de entrega: 11/06/2025

1. (1,0 ponto) O calor perdido pela superfície do corpo humano é afetado não somente pela temperatura ambiente, mas também pela velocidade do vento.

Na tabela a seguir, dada a temperatura t e a velocidade do vento v, é possível computar a temperatura f(t,v) que, na ausência do vento, tem o efeito resfriador equivalente. Por exemplo, a perda de calor de 0°C acompanhada de um vento de velocidade 30 km/h é equivalente à perda de calor em f(0, -30) = -14°C sem vento.

Temperatura t (°C)								
		-30	-25	-20	-15	-10	-5	0
Velocidade do vento $v~(\mathrm{km/h})$	0	-30	-25	-20	-15	-10	-5	0
	10	-38	-33	-27	-22	-16	-11	-5
	20	-46	-40	-35	-29	-22	-16	-10
	30	-54	-48	-41	-34	-27	-20	-14
	40	-58	-52	-45	-36	-30	-23	-17
	50	-62	-56	-48	-41	-33	-25	-19
	60	-65	-58	-50	-42	-34	-26	-20
	70	-66	-59	-51	-43	-35	-27	-21
	80	-67	-60	-52	-44	-36	-28	-22

Exemplo com interpolação linear: Suponha que se deseja calcular uma estimativa para a temperatura na ausência de vento para $-12,5^{\circ}$ C e um vento de 25 km/h, ou seja, uma estimativa para $f(t,v) = f(-12,5^{\circ}\text{C},25 \text{ km/h})$ usando interpolação linear de Newton. Este cálculo pode ser dividido nas seguintes etapas:

- i. Como 25 km/h está no intervalo (20 km/h, 30 km/h) da coluna das velocidades da tabela e neste exemplo usamos interpolação linear, aqui devemos escolher como nós de interpolação $v_0 = 20$ km/h e $v_1 = 30$ km/h.
- ii. Para o nó $v_0 = 20 \text{ km/h}$, extraímos os seguintes dados da tabela:

t	-30	-25	-20	-15	-10	-5	0
f(t, 20)	-46	-40	-35	-29	-22	-16	-10

Por simplicidade, podemos denotar $f(t, 20) = g_a(t)$. Aqui, calculamos uma estimativa para $g_a(-12, 5) \approx P_1(-12, 5)$ usando interpolação de Newton e uma estimativa de erro dessa interpolação.

iii. Para o nó $v_1 = 30$ km/h, extraímos os seguintes dados da tabela:

t	-30	-25	-20	-15	-10	-5	0
f(t,30)	-54	-48	-41	-34	-27	-20	-14

Por simplicidade, podemos denotar $f(t,30) = g_b(t)$. Aqui, calculamos uma estimativa para $g_b(-12,5) \approx P_1(-12,5)$ usando interpolação de Newton e uma estimativa de erro dessa interpolação.

iv. Usando os cálculos $g_a(-12,5)$ e $g_b(-12,5)$ dos itens anteriores, já podemos calcular uma estimativa para $f(-12,5^{\circ}\text{C},25\text{ km/h})$ usando interpolação de Newton com os dados:

v	20	30
f(-12,5,v)	$g_a(-12,5)$	$g_b(-12,5)$

Por simplicidade, podemos denotar f(-12,5,v)=h(v). Aqui, finalmente calculamos uma estimativa para $h(25)=f(-12,5,25)\approx P_1(25)$ usando interpolação de Newton.

Tarefa para este trabalho: Para cada matrícula, serão fornecidas uma temperatura t em °C e sua respectiva velocidade do vento v em km/h para o cálculo da estimativa da temperatura equivalente sem vento f(t, v).

Obs. 1: Os cálculos podem ser feitos com aproximação de 2 casas decimais.

Obs. 2: Você pode opcionalmente resolver os itens a seguir usando planilha do Excel ou Calc, ou usando programação.

Obs. 3: A entrega deve ser feita somente em arquivo PDF. Toda a listagem com o desenvolvimento das tabelas de diferenças divididas de Newton devem constar no arquivo. Sem as tabelas e os cálculos desenvolvidos, o trabalho não será considerado. Caso opte por programação, o código também deverá ser incluído na listagem.

- (a) Baseando-se no exemplo acima, mas desta vez usando **interpolação quadrá- tica de Newton**, calcule:
 - (a-1) Uma estimativa para $f(t, v_0)$, onde v_0 é o nó de interpolação inicial de velocidade do vento e deve ser escolhido de maneira que esteja o mais próximo possível da velocidade v fornecida para sua matrícula e $v_0 < v$.
 - (a-2) Calcule a estimativa de erro de interpolação do item anterior.
 - (a-3) Uma estimativa para $f(t, v_1)$, onde v_1 é o segundo nó de interpolação de velocidade do vento.
 - (a-4) Calcule a estimativa de erro de interpolação do item anterior.
 - (a-5) Uma estimativa para $f(t, v_2)$, onde v_2 é o terceiro nó de interpolação de velocidade do vento.
 - (a-6) Calcule a estimativa de erro de interpolação do item anterior.
 - (a-7) Usando os cálculos dos itens anteriores, calcule uma estimativa para f(t, v), ou seja, a temperatura equivalente na ausência de vento para a temperatura t e a velocidade de vento v fornecidas para sua matrícula.
- (b) De forma análoga aos itens anteriores, agora use **interpolação cúbica de Newton** para encontrar uma estimativa para f(t, v). Lembre-se de que desta vez serão usados 4 nós de interpolação.