Planeamento e Gestão de Projecto

Relatório Fase 2

Alexandre Machado, nº 43551 Nuno Silva, nº 44285 Francisco Pires, nº 44314

6 de Dezembro de 2015

Conteúdo

1	Intr	rodução	3
2	Ana	álise de requisitos	4
	2.1	Requisitos funcionais e não funcionais	4
		2.1.1 Requisitos funcionais	
		2.1.2 Requisitos não funcionais	5
3	Pla	neamento	7
	3.1	Recursos	7
	3.2	Estimação	
		3.2.1 Esforço disponível	9
		3.2.2 Linhas de código	9
		3.2.3 Modelos Empíricos	10
	3.3	Processo de Desenvolvimento de Software	
	3.4	Gestão de Riscos	12
4	Cor	nclusão	15
5	Bib	liografia	16

Introdução

Foram feitas alterações nas partes entregues na primeira fase.

Este projecto tem como objectivo o desenvolvimento e a implementação de um Sistema de Informação (SI), dirigido aos utentes do Serviço Nacional de Saúde (SNS). Este SI é baseado em tecnologias web e pretende melhorar a qualidade dos serviços prestados ao utilizador. Após a consulta do Portal da Saúde, e a identificação das capacidades existentes, propomos ampliar os requisitos funcionais disponíveis para o utilizador e melhorar os requisitos não funcionais. Para isso, pretendemos assegurar a melhor disponibilidade dos servidores, correcções na interface do website e confidencialidade dos dados associados ao utilizador.

Análise de requisitos

2.1 Requisitos funcionais e não funcionais

2.1.1 Requisitos funcionais

De acordo com os objectivos definidos para este projecto, selecionamos as seguintes funcionalidades que o utilizador terá disponíveis neste SI.

- Registo de contactos e dados pessoais
 - Nº do Cartão de Cidadão, Nº de Utente de Saude, Nº de telefone, NIF,
 Email.
- Definir agregado familiar
 - Pai, mãe, filhos, irmãos, etc...
- Identificação de cuidador familiar
- Registo de informação pessoal relevante
 - Testamento Vital, Contados de emergência
- Registo de indicadores básicos de saúde
 - Medicação, alergias, diagnósticos, cirurgias, vacinação, doenças raras
- Registo de exames complementares de diagnóstico
 - Todo o tipo de exames(documentos relevantes) que o utente faça podem ser guardados
- Consulta de registos clínicos
- Pedido de prescrição de medicação crónica

- Marcação de consultas
- Inscrição e consulta das listas para cirurgia (eSIGIC)
- Definir estado no Registo Nacional de Não Dadores (RENNDA)
- Pesquisa de serviços médicos (directório)
 - Poder pesquisar serviços médicos por área
- Pedido de mudança de médico de família
- Pedido de isenção de taxas moderadoras

2.1.2 Requisitos não funcionais

Para execução das funcionalidades neste SI, será necessário assegurar os requisitos não funcionais que listamos de seguida.

- Confidencialidade dos dados
 - Todos os dados médicos que o utente introduz na plataforma, este pode escolher que informação pode partilhar com o medico
- Segurança dos dados e dos acessos
 - Os dados introduzidos são salvagardados de qualquer tipo de intrusão ou acesso não autorizado
- Garantia de disponibilidade
 - Garantir que a plataforma está sempre acessível online (24/7)
- Escalável e modular
 - Capacidade de poder aumentar a capacidade de servir um maior numero de clientes
- Tempo de resposta
 - A plataforma terá um tempo de resposta o mais imediato possível
- Assegurar o cumprimentos das normas legais
- Resolução de conflitos
 - Garantir que a informação que o utente e o medico introduzem não divergem
- Persistência e sincronização dos dados

- A informação ser partilhada entre servidores de maneira a garantir não haver falhas de dados
- Notificações e alertas de acontecimentos do utilizador
 - Estas serão enviadas para o utente ou o medico via email ou telemóvel
- Responsive Web Design

Planeamento

3.1 Recursos

Recursos Humanos

Os recursos humanos para o projecto incluem seis alunos de Tecnologias de Informação (LTI), sendo que os três alunos não presentes neste relatório pertencem ao grupo 003. No final da cadeira de Planeamento e Gestão do Projecto (PGP), os dois grupos irão juntar-se e trabalhar em conjunto nas cadeiras de Projecto Tecnologias de Informação (PTI) e Projecto Tecnologias de Redes (PTR). A duração total do projecto será de sete meses, sendo três meses e meio dedicados ao planeamento (PGP).

Disponibilidade

A disponibilidade dos alunos é conforme apresentada na seguinte tabela:

	Disponibilidade		
	1°Semestre	2°Semestre	
Pedro Neves	20%	40%	
Rita Capela	20%	$28,\!6\%$	
Tiago Maurício	20%	$28,\!6\%$	
Francisco Pires	20%	$33,\!3\%$	
Alexandre Machado	20%	$28,\!6\%$	
Nuno Silva ¹	10%	*	

Tabela 3.1: Tabela de Disponibilidade

 $^{^1{\}rm O}$ aluno em questão encontra-se a trabalhar em $part\textsc-time,$ pelo que no primeiro semestre tem menos disponibilidade. Não sendo possível prever, por agora, a sua disponibilidade no segundo semestre, foi decidido não ser calculada.

Organização da equipa

A organização dos membros envolvidos vai ser feita em três grupos. Um grupo para PTR, um para PTI, e um ultimo grupo para os "elementos moveis". Estes alunos vão contribuir em conjunto para o trabalho de ambas as cadeiras, e ao mesmo tempo, gerir o funcionamento e as decisões dos grupos. A decisão de organizar o projecto distribuído em três grupos surgiu para dar resposta ao facto de dois membros terem competências equivalentes em PTI e PTR e disponibilidade acrescida para gerir o projecto no seu conjunto.

• Grupo PTR

- Francisco Pires
- Nuno Silva

• Grupo PTI

- Tiago Maurício
- Rita Capela

• Elementos Moveis

- Alexandre Machado
- Pedro Neves

Tabela de Competências

	PHP	Java	HTML	CSS	Python	Interface	Gestão	Design	RH
Pedro Neves	3	4	3	2	4	1	4	?	?
Rita Capela	3	2	4	4	3	4	4	?	?
Tiago Maurício	3	4	4	3	4	2	3	?	?
Francisco Pires	2	3	4	3	4	3	3	?	?
Alexandre Machado	2	4	4	4	4	3	4	3	?
Nuno Silva	2	4	4	4	4	3	3	?	?

Tabela 3.2: Tabela de Competências

3.2 Estimação

Para a realização da tabela relativa aos dados históricos, foram escolhidas as cadeiras em que a matéria dos projectos se encaixa no âmbito do projecto.

	AD	ASW	ITW	ADS	SO
Alexandre Machado	1002/160h	2576/160h	756/72h	454/18h	560/42h
Francisco Pires	1002/160h	NA	687/5h	NA	775/50h
Nuno Silva	942/150h	NA	542/10h	500/35h	700/60h

Tabela 3.3: Dados Históricos (*Lines of Code* e horas).

3.2.1 Esforço disponível

• 1º semestre (duração: 3,5 meses)

$$20 + 20 + 20 + 20 + 20 + 10 = 110 (1, 1 pessoas)$$
 (3.1)

$$E = 1, 1 \cdot 3, 5 = 3,85 PM$$
 (3.2)

• 2º semestre (duração: 3,5 meses)

$$40 + 28, 6 + 28, 6 + 33, 3 + 28, 6 = 188 (1, 88 pessoas)$$
 (3.3)

$$E = 1,88 \cdot 3,5 = 6,58 PM$$
 (3.4)

3.2.2 Linhas de código

As linhas de código previstas para o projecto são conforme apresentadas na seguinte tabela:

	Optimista	Provável	Pessimista	Final
Criar a Base de Dados	50	120	200	123
Configurar HTTP Server	5	20	50	25
Ligação à Base de Dados ²	5	10	20	12
Segurança	200	300	350	283
Sistema Distribuído ³	2000	3750	5000	3583
Views	1000	1500	2500	1600
Controlador	500	750	1000	750
Modelo	200	300	500	333
Total	3960	6750	9620	6777

Tabela 3.4: Linhas de Código

 $^{^2{\}rm Linhas}$ a não serem consideradas usando a linguagem Java.

³Considera-se por SD a programação integral de um Sistema Distribuído. Caso se use um serviço que somente precise de configuração (p.ex. *Amazon Web Services*), estas linhas devem ser alteradas.

3.2.3 Modelos Empíricos

Calculo do esforço orgânico:

$$E = a \cdot KLOC^b \tag{3.5}$$

$$E = 2, 4 \left(\frac{N.Linhas}{1000}\right)^{1.05} \tag{3.6}$$

$$E = 2.4 \left(\frac{6777}{1000}\right)^{1.05} = 17.89 \ P.M \tag{3.7}$$

Calculo da Duração:

$$D = c \cdot E^d \tag{3.8}$$

$$D = 2.5 (17.89)^{0.38} = 7.48 M (3.9)$$

3.3 Processo de Desenvolvimento de Software

Como processo de desenvolvimento do nosso projeto decidimos usar o Processo Unificado. Esta decisão foi baseada numa reflexão da nossa parte, em que, pensámos na forma como trabalhamos e, visto que este projeto não é de forma alguma fulltime, tivemos de ter isso em conta. O Processo Unificado permite-nos avançar iterativamente e ao mesmo tempo voltar a trás sem que hajam muitos problemas, havendo assim um balanço entre o avançar no projeto e ajustar problemas anteriores, o que achamos que seria perfeito no nosso caso.

Figura 3.1: Exemplo de um Processo Unificado

O Processo Unificado divide-se em quarto fases:

- 1. *Inception* justifica-se a execução do projeto, ou seja, tenta-se adquirir um conhecimento do que irá ser preciso para concluir o projeto e quando concluído, os resultados deste.
- 2. Elaboration conclui-se de certa forma a fase de *inception*, visitando com mais detalhe todos os fatores de risco, *reward* e recursos que este irá trazer. Convém ser o mais completo e detalhado possível visto que na fase seguinte vai proceder-se à construção do projecto.
- 3. Construction começa-se a construção do que irá ser uma versão operacional do projeto. O foco principal nesta fase é a construção de features discutidas anteriormente. É de valor notar que em projetos de maior dimensão esta fase poderá ter varias iterações.
- 4. Transition o foco nesta fase será transitar o projeto de um ambiente de desenvolvimento para um ambiente de produção, pondo o produto disponível ao cliente final, para que este o perceba e o use. Nesta fase faz-se o treino do cliente final e o beta testing para validar o projeto em relação às expectativas do cliente final. De seguida compara-se o estado do projeto nesta fase à fase de Inception e se tudo estiver bem, faz-se uma release.

Vantagens do Processo Unificado:

- O cliente não precisa de esperar muito tempo para entrar em contacto com um resultado prático.
- Quando terminado o desenvolvimento do projeto é muito dificil encontrar erros dada a facilidade de os corrigir anteriormente.
- Os riscos de grau mais elevado são trabalhados em primeiro lugar, dando assim alguma confiança no desenvolvimento do projeto

Desvantagens do Processo Unificado:

- Poderá haver desorganização em períodos mais avançados no projeto.
- Aumento de gastos em implementações de varias versões do projetos.

3.4 Gestão de Riscos

Nesta avaliação dos riscos para o nosso projeto, identificámos que existem três grandes áreas: a de Relações Humanas, a de Tecnologia e a de Desenvolvimento do projeto.

Na categoria de RH identificámos que os principais problemas têm a haver com a relação entre membros do grupo e o comportamento de cada um.

Consideramos estes riscos bastante importantes visto que uma má dinâmica de grupo pode arruinar o potencial de um projeto.

Na categoria de Tecnologia identificámos que bugs e a segurança são os principais riscos a ter em conta e, iremos dar ênfase à segurança no projeto, visto que uma das partes mais criticas é o tipo de informação que iremos tratar.

Por ultimo, na categoria de desenvolvimento do projeto, identificámos que, sem surpresa, o maior problema são os atrasos que poderão acontecer, podendo estragar planos e horários planeados para a completação do projeto.

Em geral achamos que os nossos riscos irão ser de natureza comum a todos os grupos, são riscos que a maioria dos projetos, quer a nível académico ou profissional, encontram, não significando que os podemos levar menos a serio, sendo esta a causa de projetos falhados em varias áreas.

Riscos de RH:

- Má comunicação
- Falta de empenho
- Falta de conhecimento
- Baixa de um membro do grupo
- Falta de "química" entre membros do grupo
- Atraso na entrega de trabal de um membro do grupo
- Desistência de um membro do grupo

Riscos de Tecnologia:

- Má implementação (bugs) de uma funcionalidades
- Updates que pioram o funcionamento de funcionalidades
- Falta de segurança do projetos

Riscos no desenvolvimento do projeto:

- Atrasos na entrega do projeto
- Falta de funcionalidades na entrega do projeto final
- Requisitos incompletos

Tabela de Riscos:

- 1. Má comunicação
- 2. Falta de empenho
- 3. Falta de conhecimento
- 4. Baixa de um membro do grupo
- 5. Falta de "química" entre membros do grupo
- 6. Atraso de prazos internos
- 7. Desistência de um membro do grupo
- 8. Má implementação (bugs) de uma funcionalidade
- 9. Updates que pioram o funcionamento de funcionalidades
- 10. Falta de segurança na implementação
- 11. Atrasos na entrega de etapas do projeto
- 12. Falta de funcionalidades na iteração final do projeto
- 13. Requisitos incompletos

Riscos	Tipo	Probabilidade	Impacto
1	Recursos Humanos	Baixa	2
2	Recursos Humanos	Média	2
3	Recursos Humanos	Média	3
4	Recursos Humanos	Baixa	2
5	Recursos Humanos	Média	3
6	Recursos Humanos	Média	2
7	Recursos Humanos	Baixa	3
8	Tecnologia	Elevada	2
9	Tecnologia	Baixa	2
10	Tecnologia	Elevada	3
11	Desenvolvimento	Elevada	1
12	Desenvolvimento	Média	2
13	Desenvolvimento	Baixa	1

Tabela 3.5: Tabela de Riscos

Conclusão

Perante o projecto que nos foi proposto, definimos os requisitos funcionais e não funcionais como pilares da nossa proposta de trabalho. Através de uma pesquisa ao website do Portal do Utente e um conjunto de boas práticas de serviços web, adicionamos funcionalidades possíveis de implementar no SI, e que determinam uma melhoria, tanto no serviço, como na interacção com o utilizador.

Capítulo 5
Bibliografia