

Клинические рекомендации

## Гипертрофическая кардиомиопатия

МКБ 10:**I42.1, I42.2** 

Год утверждения (частота пересмотра):2020

ID:KP283/1

URL

Профессиональные ассоциации

• Российское кардиологическое общество • При участии: Ассоциации сердечно-сосудистых хирургов России

Одобрено Научно-практическим Советом Минздрава РФ

## Оглавление

- Ключевые слова
- Список сокращений
- Термины и определения
- 1. Краткая информация
- 2. Диагностика
- 3. Лечение
- 4. Реабилитация
- 5. Профилактика
- 6. Дополнительная информация, влияющая на течение и исход заболевания
- Критерии оценки качества медицинской помощи
- Список литературы
- Приложение А1. Состав рабочей группы
- Приложение А2. Методология разработки клинических рекомендаций
- Приложение А3. Связанные документы
- Приложение Б. Алгоритмы ведения пациента
- Приложение В. Информация для пациентов
- Приложение Г.

# Ключевые слова

## Список сокращений

АВ - атриовентрикулярный

АВБ - атриовентрикулярная блокада

АГ артериальная гипертензия

АД - артериальное давление

АТФ - аденозинтрифосфорная кислота

АКФ - ангиотензин-конвертирующий фермент

БЛНПГ - блокада левой ножки пучка Гиса

БПНПГ - блокада правой ножки пучка Гиса

ВСС - внезапная сердечная смерть

ВТЛЖ - выходной тракт левого желудочка

ГКМП - гипертрофическая кардиомиопатия

ГЛЖ - гипертрофия левого желудочка

ГД - градиент давления

ДНК - дезоксирибонуклеиновая кислота

ДЭКС - двухкамерный имплантируемый

электрокардиостимулятор

ЖНР - желудочковые нарушения ритма

ЖТ - желудочковая тахикардия

3СЛЖ - задняя стенка левого желудочка

ИКД - имплантируемый кардиовертер-дефибриллятор

ИМБОКА - инфаркт миокарда без обструкции коронарных

артерий

КАГ - коронароангиография

КДД - конечно-диастолическое давление

КДО - конечно-диастолический объем

КТ/МСКТ - компьютерная томография/мультиспиральная

компьютерная томография

ЛЖ - левый желудочек

ЛП - левое предсердие

МЖП - межжелудочковая перегородка

МК - митральный клапан

МНУП - мозговой натрийуретический пептид

МР - митральная регургитация

МРТ - магнитно-резонансная томография

НУЖТ - неустойчивая желудочковая тахикардия

ОГКМП - обструктивная ГКМП

ПНГ - позднее накопление гадолиния

ПСД - переднее систолическое движение

РМЭ - расширенная миоэктомия

САА - септальная алкогольная аблация

СМЭ - септальная миоэктомия

ТТ-ЭХОКГ - трансторакальная эхокардиография

УО - ударный объем

ФВЛЖ - фракция выброса левого желудочка

ФК - функциональный класс

ФЖ - фибрилляция желудочков

ФП - фибрилляция предсердий

ХМЭКГ - холтеровское мониторирование ЭКГ

хСН - хроническая сердечная недостаточность

ЧП-ЭХОКГ - чреспищеводная эхокардиография

ЧСС - частота сердечных сокращений

ЭКГ - электрокардиография

ЭКС - электрокардиостимулятор, электрокардиостимуляция

ЭХОКГ - эхокардиография

INOCA - ischemia with non-obstructive coronary arteries (ишемия без обструкции коронарных артерий)

LAMP2 - ген лизосом-2-ассоциированного мембранного белка 2

MINOCA - myocardial infarction with non-obstructive coronary arteries (инфаркт миокарда без обструкции коронарных артерий)

Nt-proBNP - N-концевой фрагмент предшественника МНУП

AHA - American Heart Association (Американская ассоциация

сердца)

ACC - American College of Cardiology (Американская коллегия

кардиологов)

ATTR - транстиретиновый амилоидоз

EACVI - European Association of Cardiovascular Imaging (Европейская ассоциация по сердечно-сосудистой визуализации)

ESC - European Society of Cardiology (Европейское общество кардиологов)

кардиологов)

HCM Risk-SCD - шкала риска ВСС при ГКМП

MOGE'S - классификация кардиомиопатий

NYHA - Нью-Йоркская ассоциация кардиологов

## Термины и определения

Гипертрофическая кардиомиопатия (ГКМП) — генетически обусловленное заболевание миокарда, характеризующееся гипертрофией миокарда левого (более 1,5 см) и/или правого желудочка, чаще асимметрического характера за счет утолщения межжелудочковой перегородки, что не может объясняться исключительно повышением нагрузки давлением, и возникающее при отсутствии другого сердечного или системного заболевания, метаболического или полиорганного синдрома, связанного с ГЛЖ.

**Обструктивная гипертрофическая кардиомиопатия (ОГКМП)** — форма ГКМП, сопровождающаяся нарушением внутрисердечной гемодинамики в виде препятствия систолическому изгнанию из ЛЖ и/или правого желудочка (ПЖ), что приводит к увеличению градиента давления (ГД) в выходном тракте левого и/или ПЖ желудочка (ВТЛЖ; ВТПЖ).

**ГЛЖ вторичного генеза** — универсальная компенсаторноприспособительная реакция в ответ на известный гемодинамический или другой фактор.

**Догипертрофическая стадия ГКМП** — этап в развитии заболевания, при котором отсутствуют признаки гипертрофии миокарда, определяемые с помощью визуализирующих методик.

**Субклиническая стадия ГКМП** — этап в развитии заболевания, при котором нет клинической симптоматики, характерной для ГКМП.

**Генотип (+)/фенотип (-)** — носители патологической мутации, ассоциированной с ГКМП, догипертрофической и субклинической стадиями ГКМП.

**Возрастзависимая пенетрантность** — увеличение частоты выявления фенотипических признаков ГКМП, определяемых с помощью рутинных методов (ЭКГ, ЭХОКГ), среди носителей патогенных генетических вариантов по мере повышения возраста.

**Внезапная сердечная смерть** (ВСС) — ненасильственная, обусловленная заболеваниями сердца смерть, манифестирующая внезапной потерей сознания в течение первого часа с момента появления острых симптомов.

**Стратификация риска ВСС** — определение независимых предикторов, определяющих вероятность риска ВСС у пациентов с определенной сердечно-сосудистой патологией. Шкала риска ВСС при ГКМП (HCM Risk—SCD) рекомендуется в качестве метода оценки риска ВСС.

**Передне-систолическое движение створок митрального клапана** — движение створок МК в систолу к МЖП вплоть до касания (митральносептальный контакт), участвующее в создании обструкции ВТЛЖ. Англоязычный термин — systolic anterior motion syndrome (SAM-syndrome).

**Базальная обструкция (обструкция в ВТЛЖ)** — препятствие на уровне ВТЛЖ систолическому изгнанию из ЛЖ.

**Среднежелудочковая обструкция** — препятствие систолическому кровотоку в средней части полости ЛЖ, на уровне срединных сегментов ЛЖ.

«Классический фенотип» ГКМП — морфофункциональный фенотип ГКМП, при котором сочетаются асимметричная ГЛЖ (гипертрофия МЖП), уменьшенный размер полости ЛЖ и обструкция ВТЛЖ.

**Латентная обструкция** — гемодинамическая форма обструктивной ГКМП, при которой препятствие систолическому изгнанию из ЛЖ возникает только при нагрузке или провокационных пробах.

**Негативное ремоделирование** (англ. adverse remodeling) — финальная стадия адаптивных и дезадаптивных изменений в пораженном органе. При этом наблюдаются «смешанные» морфофункциональные фенотипы — гипертрофический + дилатационный, гипертрофический + рестриктивный, и, как правило, уменьшение степени гипертрофии.

**Расширенная миоэктомия** — операция, включающая резекцию МЖП в большем объеме, чем при септальной миоэктомии по A.Morrow, мобилизацию и резекцию гипертрофированных папиллярных мышц и гипертрофированных мышечных трабекул (апикально-базального мышечного пучка).

**Редукция МЖП** — хирургическое (СМЭ, РМЭ) или эндоваскулярное (САА) воздействие по уменьшению толщины МЖП.

**Секвенирование нового поколения** расшифровка структуры десятков и сотен генов определяемая одномоментно.

**Септальная миоэктомия** — операция резекции миокарда в базальных сегментах МЖП.

**Уровень достоверности доказательств (УДД)** — степень уверенности в том, что найденный эффект от применения медицинского вмешательства является истинным.

**Уровень убедительности рекомендаций (УУР)** — степень уверенности в достоверности эффекта вмешательства и в том, что следование рекомендациям принесет больше пользы, чем вреда в конкретной ситуации.

**Фенокопия ГКМП** — заболевание с известным этиопатогенезом, фенотипически похожее на ГКМП.

**Феномен «disarray»** — беспорядочное расположение кардиомиоцитов и мышечных волокон.

## 1. Краткая информация

# 1.1 Определение заболевания или состояния (группы заболеваний или состояний)

Гипертрофическая кардиомиопатия (ГКМП) — генетически обусловленное заболевание миокарда, характеризующееся гипертрофией миокарда левого (более 1,5 см) и/или правого желудочка, чаще асимметрического характера за счет утолщения межжелудочковой перегородки, что не может объясняться исключительно повышением нагрузки давлением, и возникающее при отсутствии другого сердечного или системного заболевания, метаболического или полиорганного синдрома, связанного с ГЛЖ.

# 1.2 Этиология и патогенез заболевания или состояния (группы заболеваний или состояний)

#### Этиология ГКМП

ГКМП является генетически обусловленной патологией; идентифицированы более 20 причинных генов, связанных с развитием ГКМП. Генетический скрининг 8 наиболее частых причинных генов, кодирующих различные белки кардиомиоцитов, дает возможность определить причину заболевания примерно в 60% случаев [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13].

В основе развития ГКМП наиболее часто лежат патогенные варианты в генах, кодирующих сократительные белки саркомера — миозин (MYH7), миозинсвязывающий белок С (MYBPC3), актин (ACTC), тропонин (TNNI3, TNNT2, TNNC) [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17].

На долю патогенных вариантов в генах МҮН7 и МҮВРСЗ приходится около половины ГКМП. всех случаев развития Манифестация проявлений клинических при двух самых распространенных мутациях МҮН и МҮВР-С возможна в любом возрасте. Дебют заболевания в детском и подростковом возрасте, а также у молодых взрослых часто ассоциирован с семейной формой заболевания и более тяжелым течением [2, 3, 4, 6, 7, 8, 12, 16, 17, 18, 19].

Развитие ГКМП на фоне мутаций в гене TNNT2 ассоциировано с большим риском развития синдрома ВСС на фоне умеренного увеличения толщины МЖП и более низкими показателями массы миокарда ЛЖ [2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 20, 21, 22, 23, 24].

В большинстве случаев патогенные варианты, ассоциированные с ГКМП, представляют собой уникальные замены, описанные однократно или всего для нескольких случаев; частота каждой такой замены среди всех генетических причин ГКМП не превышает 1% [5, 25, 26].

В ряде случаев (5–7%) заболевание может развиваться на фоне 2, 3 и более патогенных вариантов. Часто встречаются комбинации мутаций в генах, кодирующих саркомерные белки. В этом случае заболевание характеризуется более ранним дебютом (часто в детском возрасте), большей степенью гипертрофии МЖП и более высоким риском развития синдрома ВСС [3, 4, 7, 16, 23, 27, 28].

Развитие ГКМП на фоне патогенных вариантов в генах цитоскелета часто ассоциировано с сочетанными пороками сердца (ДМПП, ДМЖП), а также признаками некомпактного миокарда [3, 4, 29, 30].

Патогенные варианты в генах, кодирующих белки цитоскелета, ионных каналов, структуру Z-дисков и другие внутриклеточные структуры, определяют развитие ГКМП в 15–20% [3, 4, 19, 27, 29, 30].

#### Молекулярный патогенез ГКМП

В основе молекулярного патогенеза ГКМП, ассоциированной с патогенными вариантами в генах, кодирующих белки саркомера, часто лежит нарушение кальциевого гомеостаза, повышение чувствительности миофиламентов к ионам кальция. Это проявляется в усилении силы сокращения саркомера в систолу, снижении степени его расслабления в диастолу на фоне повышенных потребностей кардиомиоцита в АТФ, что влечет нарушение внутриклеточных сигнальных процессов и реактивацию компенсаторных эмбриональных программ гипертрофического роста [16, 31].

На уровне кардиомиоцитов данные процессы приводят к повышению синтеза эмбриональных форм саркомерных белков и активации киназных сигнальных каскадов, обеспечивающих процессы собственно гипертрофии КМЦ, пролиферации фибробластов, трансформации фибробластов в миофибробласты и дисбаланс в системе коллагенолиза [16, 31, 32, 33, 34, 35, 36].

На гистологическом уровне отражением прямого действия «причинного» генетического варианта и молекулярного патогенеза является дискомплексация кардиомицитов и мышечных волокон — феномен «disarray», фиброз разной степени выраженности [3, 4, 16, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42].

#### Этиология и молекулярный патогенез фенокопий ГКМП

Заболевания генетической и негенетической природы, по морфофункциональному фенотипу схожих с ГКМП, но имеющие отличный от нее этиопатогенез и, следовательно, подходы к терапии, называют

фенокопиями ГКМП.

Наиболее часто встречающиеся фенокопии ГКМП и их молекулярный патогенез представлены в таблице П1, Приложение Г3 [37, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

#### Патогенез симптомов и синдромов ГКМП

Патогенез ГКМП на органном уровне заключается в совокупности нескольких синдромов: обструкции ВТЛЖ, ишемии миокарда, систолической и диастолической дисфункции ЛЖ, аритмическом и ХСН.

#### Синдром обструкции ВТЛЖ

В создании обструкции ВТЛЖ участвуют структурные, кинетические и геометрические факторы [61]:

- 1. Структурные аномалии:
- а. сужение ВТЛЖ гипертрофированной МЖП (уменьшение степени обструкции ВТЛЖ после миоэктомии/САА обусловлено воздействием на этот фактор);
- b. ПСД (передне-систолическое движение) створок MK;
- с. уменьшенная полость ЛЖ;
- d. аномалии папиллярных мышц (и другие малые аномалии сердца) (гипертрофия и дислокация, добавочная ПМ);
- е. апикально-базальный мышечный пучок.
- 2. Кинетические факторы гиперсократимость ЛЖ и ускорение кровотока в ВТЛЖ;
- 3. Геометрические факторы:
- а. переднее смещение МК, точка коаптации створок МК смещена ближе к МЖП [62];
- b. малый аорто-митральный угол (<120°).

Чем больше факторов имеется у конкретного пациента, тем более выражен синдром обструкции ВТЛЖ.

Передне-систолическое движение створок МК обусловлено следующими факторами:

- а. аномалии створок МК (удлинение, избыточность);
- b. нарушение координации кровотока в полости ЛЖ в раннюю систолу, в результате чего на створки МК действует сила, сдвигающая их в сторону ВТЛЖ [63, 64];
- с. аномалии хорд МК;
- d. меньшее соотношение длины передней и задней створок МК (<1,3), при этом точка коаптации створок МК смещается кпереди ближе к ВТЛЖ [65, 66, 67].

У пациентов с латентной обструкцией провоцирующими ее факторами являются: увеличение сократимости ЛЖ при нагрузке, приводящее к уменьшению конечно-систолического размера ЛЖ и переднему смещению МК; ускорение кровотока в ВТЛЖ в период систолы, усугубляющее ПСД МК [68].

У пациентов с ГКМП может быть лабильная обструкция, характеризующаяся значительными спонтанными колебаниями внутрижелудочкового ГД без видимой причины [69].

Кроме обструкции ВТЛЖ, у пациентов с ГКМП может наблюдаться среднежелудочковая обструкция. Среднежелудочковая обструкция развивается у пациентов с гипертрофией срединных сегментов МЖП и, как правило, в сочетании с гипертрофией папиллярных мышц [70, 71, 72]

При комбинированной гипертрофии (МЖП + апикальные сегменты) может быть 2-уровневая обструкция (срединно-желудочковая + на уровне ВТЛЖ) [73].

#### Синдром ишемии миокарда ЛЖ

У пациентов с ГКМП при интактных коронарных артериях может развиваться ишемия миокарда. В англоязычной литературе используют термин INOCA (ischemia and no obstructive coronary artery) [74].

Факторы, приводящие к ишемии миокарда:

- а. относительная коронарная недостаточность (уменьшение резерва коронарного кровотока при выраженной гипертрофии);
- b. ишемия субэндокардиальных слоев миокарда за счет компрессии интрамуральных коронарных артерий;
- с. периваскулярный фиброз, при этом интрамуральные коронарные артерии не могут расшириться во время физической нагрузки, когда возрастает потребность миокарда в кислороде и требуется увеличение коронарного кровотока;
- d. врожденная патология коронарных артерий «миокардиальные мышечные мостики» и интрамуральное расположение ветвей крупных коронарных артерий;
- е. помимо перечисленных причин, у 15–25% пациентов наблюдают сопутствующий атеросклероз в эпикардиальных коронарных артериях (в старшей возрастной группе пациентов).

У пациентов с ГКМП может развиваться инфаркт миокарда (ИМ) как 2 типа, (без атеротромбоза), так и 1 типа. Факторы риска равития инфаркта миокарда 2 типа у пациентов с ГКМП представлены в таблице П9, Приложение Г1. [75-90].

#### Синдром дисфункции ЛЖ

**Диастолическая функция ЛЖ** может быть нарушена уже у носителей мутации, в догипертрофической стадии ГКМП — генотип (+)/фенотип (-) [91].

При ГКМП нарушения касаются ДВУХ основных детерминант диастолического наполнения ЛЖ — активной релаксации и растяжимости миокарда. Гипертрофия миокарда per se вызывает нарушение активного расслабления. Хаотическое расположение сократительных элементов (disarray) и интерстициальный фиброз приводят к снижению податливости ЛЖ, и, как следствие, к возрастанию сопротивления наполнению ЛЖ и повышению давления наполнения. В начальных стадиях ГКМП нарушено только активное расслабление миокарда, при этом давление в ЛП не увеличено. По мере прогрессирования гипертрофии, развития фиброза, нарастания степени митральной регургитации, присоединения ишемии миокарда диастолические нарушения нарастают, приводя к увеличению давления в ЛП (соответственно, и к увеличению КДД ЛЖ). Также выраженная диастолическая дисфункция может приводить к развитию легочной гипертензии у некоторых пациентов (ЛГ у 50% симптомных пациентов) [91-96].

**Систолическая функция ЛЖ** может оцениваться как по параметрам сократимости, так и по объемным показателям.

- Глобальная систолическая функция ЛЖ, оцениваемая по параметрам сократимости, у пациентов с ГКМП сверхнормальная, что выражается высокой ФВЛЖ. Следует учесть, что показатель ФВ при ГЛЖ и маленьком ЛЖ может некорректно характеризовать сократимость. Региональная систолическая функция ЛЖ гетерогенна: гипертрофированные сегменты ЛЖ гипокинетичны (снижена степень систолического утолщения и деформация), а негипертрофированые сегменты имеют нормальную/сверхнормальную сократимость.
- Объемным показателем систолической функции ЛЖ является величина ударного объема (УО). При ГКМП и уменьшенном ЛЖ (малый КДО) УО снижен, несмотря на высокую ФВЛЖ. Также снижена возможность прироста УО при физической нагрузке.
- Систолическая функция ЛЖ, анализируемая по систолической деформации, может быть нарушена уже у носителей ГКМП-мутации, на догипертрофической стадии.
- При прогрессировании заболевания (негативное ремоделирование, adverse remodeling) в дилатационной стадии наблюдается уменьшение степени гипертрофии («выгорание»), сопровождаемое снижением общей сократимости ЛЖ (ФВ < 50%) [21, 24, 92-94, 97-101].

#### ПЖ при ГКМП

У 30–44% пациентов с ГКМП наблюдаются структурные и функциональные нарушения в ПЖ. Критерием гипертрофии миокарда ПЖ считается увеличение толщины стенки ПЖ > 5 мм. Толщина миокарда ПЖ > 10 мм считается экстремальной ГПЖ [102].

Гипертрофия ПЖ в единичных случаях бывает изолированной, без ГЛЖ.

Структурное ремоделирование ПЖ в 15–90% приводит к внутрижелудочковой обструкции, которая может быть на уровне срединных сегментов ПЖ или на уровне выходного тракта ПЖ [103]. Критерием наличия обструкции ВТПЖ считается увеличение градиента давления в ВТПЖ >16 мм рт. ст. в покое [104].

Систолическая дисфункция ПЖ проявляется уменьшением продольной деформации ПЖ; при этом другие показатели систолической функции ПЖ (ТАРЅЕ и ѕ'латеральной части трикуспидального кольца), как правило, в пределах нормальных значений.

**Диастолическая дисфункция ПЖ** в начальных стадиях характеризуется Е/ A<1, увеличением RV DecT (время замедления кровотока в фазу раннего наполнения ПЖ), Е/е' >6,0. Показано, что наличие диастолической дисфункции ПЖ является предиктором ВСС и ХСН [96, 102-109].

#### Внезапная сердечная смерть

В основе патогенеза ВСС лежат фатальные нарушения ритма, вызванные ишемией миокарда и электрической нестабильностью. ВСС чаще обусловлена ФЖ (62,4%), брадиаритмиями (16,5%), ЖТ типа «Torsades de pointes» (12,7%), ЖТ (8,3%) и асистолией [79, 110 -121].

#### Синкопы

Синкопальные состояния могут быть обусловлены как аритмическими, так и гемодинамическими причинами. К гемодинамическим причинам относят ситуативное увеличение обструкции ВТЛЖ (физическая нагрузка), вызывающее значимое уменьшение ударного объема и падение АД, а также снижение периферического сопротивления в результате неадекватной вазодилатации, в том числе вазовагальные обмороки [122-125].

#### Фибрилляция предсердий

#### Факторы:

- а. «предсердная миопатия» показано, что функция ЛП нарушена у носителей мутации в доклинической стадии до развития гипертрофии [126].
- b. структурное (дилатация) и функциональное ремоделирование ЛП, приводящее к электрической нестабильности
- с. интерстициальный фиброз ЛП [127, 128].

#### Хроническая сердечная недостаточность

#### Факторы:

- а. уменьшенный ЛЖ (малый КДО) и, несмотря на высокую ФВЛЖ, малый УО ЛЖ;
- b. неспособность увеличить в должной степени УО при физической нагрузке;
- с. обструкция ВТЛЖ, вносящая вклад в уменьшение УО;
- d. систолическая дисфункция ЛЖ при прогрессировании ГКМП, особенно в дилатационной стадии (ишемия миокарда, диссинхрония ЛЖ);
- е. диастолическая дисфункция ЛЖ (фиброз миокарда, повышение давления в ЛП и КДД)
- f. митральная регургитация (вносит вклад в повышение давления в ЛП);
- g. нарушения ритма (ΦΠ);
- h. легочная гипертензия.

[21, 92, 101, 127, 129-133].

# 1.3 Эпидемиология заболевания или состояния (группы заболеваний или состояний)

При ГКМП нет четкой географической, этнической или половой структуры распределения.

ГКМП — практически единственное кардиоваскулярное заболевание, которое может манифестировать в любом возрасте человека от младенчества до глубокой старости (с первых дней до 90 и более лет); при этом средний возраст пациентов при установке диагноза составляет 30–40 лет.

Согласно данным эпидемиологических исследований, проводимых в разных частях света, распространенность ГКМП составляет 1:500 в общей популяции. В разных возрастных когортах она варьируется от 1:500 до 1:200.

При применении более чувствительных методов визуализации (MPT, КТ) и более широком использовании генетического тестирования и каскадного скрининга для родственников первой линии родства распространенность ГКМП соответствует 0,6% (1:167).

Частота в общей популяции превышает встречаемость ГКМП в кардиологической практике, так как большая часть пациентов остается неидентифицированной ввиду бессимптомности. При выявлении гипертрофии сердца в старших возрастных группах и толщине стенки ЛЖ 12 мм и более необходимо учитывать возможность фенокопий ГКМП и вторичной ГЛЖ [3, 4, 28, 31, 134, 135].

# 1.4 Особенности кодирования заболевания или состояния (группы заболеваний или состояний) по Международной статистической классификации болезней и проблем, связанных со здоровьем

- I42.1 Обструктивная гипертрофическая кардиомиопатия.
- I42.2 Другая гипертрофическая кардиомиопатия.

# 1.5 Классификация заболевания или состояния (группы заболеваний или состояний)

В повседневной клинической практике применяют несколько классификационных подходов — клинический, гемодинамический, морфологический, генетический.

Клинические варианты течения ГКМП – см. раздел 1.6.

#### Гемодинамический принцип классификации

В зависимости от наличия или отсутствия обструкции ВТЛЖ в покое и при нагрузке выделяют следующие варианты ГКМП:

- необструктивная ГКМП: ГД в ВТЛЖ <30 мм рт.ст. в покое и при нагрузке
- обструктивная ГКМП: ГД в ВТЛЖ >30 (50) мм рт. ст. в покое и при нагрузке.
- латентная обструкция: ГД в ВТЛЖ <30 в покое и >30 (50) мм рт. ст. при нагрузке.

(подробнее критерии обструкции ВТЛЖ см. в разделе «Диагностика»)

#### Морфологический принцип классификации ГКМП

- 1. Асимметричная форма ГКМП
  - а. Гипертрофия МЖП (+/- вовлечение ПЖ):
    - і. Базальной части МЖП (субаортальная)
    - іі. Сигмовидная МЖП
    - ііі. Гипертрофия всей МЖП
    - iv. Двояковыпуклая МЖП (англ. «reverse curve») преимущественно среднежелудочковая гипертрофия МЖП без вовлечения свободной стенки ЛЖ [136, 137]
    - v. Комбинированная (МЖП + другой отдел ЛЖ или ПЖ)
  - b. Апикальная гипертрофия (+/- срединные сегменты ЛЖ)
  - с. Среднежелудочковая ГКМП (с вовлечением срединных отделов не только МЖП, но и свободной стенки ЛЖ, ЛЖ типа «песочные часы»)
  - d. Гипертрофия другой стенки ЛЖ (боковая, задняя)

2. Симметричная форма ГКМП

В отечественной и зарубежной литературе иногда используется термин «диффузная гипертрофия ЛЖ», под которым можно понимать комбинированную (пункт 1.a.v.) или симметричную гипертрофию ЛЖ [138].

#### По степени выраженности гипертрофии

- 1. «Умеренная» (в англоязычной литературе используется термин «mild») (максимальная толщина стенки ЛЖ <18 мм).
- 2. Промежуточная.
- 3. Экстремальная (максимальная толщина стенки ЛЖ ≥30 мм).

Предложена классификация кардиомиопатий MOGE(s) (2013), которая выделяет не только «классические» морфофункциональные фенотипы (гипертрофический, дилатационный, рестриктивный, аритмогенная дисплазия, некомпактный миокард), но и смешанные фенотипы (при ГКМП – см. таблицу П 2, Приложение ГЗ) [15, 43, 139].

# 1.6 Клиническая картина заболевания или состояния (группы заболеваний или состояний)

ГКМП — заболевание, характеризующееся выраженной гетерогенностью клинических проявлений.

#### Клинические варианты течения ГКМП:

- 1. ВСС может отмечаться при любом варианте течения ГКМП, в том числе без предшествующей симптоматики (наиболее часто встречается у молодых пациентов < 35 лет, включая спортсменов).
- 2. Бессимптомное течение встречается у пациентов с исходно необструктивной формой ГКМП (небольшая степень гипертрофии миокарда, без сопутствующих аномалий МК). Продолжительность жизни у этих пациентов как в общей популяции 75 лет и более. Также бессимптомными могут быть пациенты с небольшой степенью обструкции ВТЛЖ (в покое и/или при нагрузке).
- 3. Симптомное стабильное (на фоне медикаментозной терапии) доброкачественное течение
  - а. у пациентов с исходно необструктивной формой ГКМП
  - b. при ОГКМП с небольшой степенью обструкции ВТЛЖ.
- 4. Симптомное осложненное течение ГКМП проявляется:
  - а. фибрилляцией предсердий пароксизмальная, персистирующая или постоянная (от 25 до 30%), ассоциированная с сердечной недостаточностью различной степени выраженности и повышенным риском тромбоэмболических осложнений, включая инсульт

- b. XCH появление одышки, слабости, утомляемости, в сочетании, пресинкопы и синкопы, аритмии. Нарастание тяжести XCH до III–IV ФК (NYHA) при сохраненной систолической функции ЛЖ
- с. Синдром стенокардии (в том числе атипичный болевой синдром) или безболевая ишемия. Ишемия миокарда при ГКМП может осложняться ИМ 2 типа.

#### 5. Симптомное течение с негативным ремоделированием

- а) «Конечная стадия»: дальнейшее прогрессирование явлений застойной сердечной недостаточности, связанной с негативным ремоделированием и выраженной систолической и/или диастолической дисфункцией ЛЖ (фенотипы ГКМП+ДКМП или ГКМП+РКМП).
- б) Развитие верхушечной аневризмы ЛЖ при обструкции средней части полости ЛЖ (редкий вариант течения ГКМП).

Формализованный подход, предложенный Rowin E.J., Maron M.S. и соавт. [140], к оценке вариантов клинического течения предлагает учитывать у пациента одного и более одного синдрома (ХСН+ФП), (ХСН+ВСС), (ФП+ВСС), (ХСН+ФП+ВСС) и использование термина «прогрессирующее течение симптомной ГКМП».

Основные клинико-морфологические варианты течения и исходы заболевания при ГКМП представлены в таблице П13, Приложение Г1 [3, 4, 24, 29, 34, 97, 98, 116, 138, 140-151].

## 2. Диагностика

#### Критерии диагноза ГКМП

Критерием диагноза ГКМП у взрослых является увеличение толщины стенки ЛЖ в одном или более сегментах ≥ 15 мм (определяемое любым визуализирующим методом — ЭХОКГ/МРТ/КТ), которая не объясняется исключительно увеличением нагрузки давлением. У родственников пробанда критерием диагноза ГКМП является толщина стенки ЛЖ, равная 13–14 мм [4].

Диагностика может быть затруднена в ситуациях сочетания ГКМП и АГ, у спортсменов и др. Также диагноз ГКМП требует исключения фенокопий ГКМП (см. раздел «ГКМП и АГ»).

Критерием вовлечения ПЖ при ГКМП является увеличение толщины стенки ПЖ >5 мм, а толщина миокарда ПЖ >10 мм считается экстремальной ГПЖ [134,152].

Критерием диагноза обструктивной ГКМП большинство европейских исследователей считает ГД в ВТЛЖ  $\geq 30$  мм рт. ст., в покое или провоцируемый. ГД  $\geq 50$  мм рт. ст. считается критерием гемодинамически значимой обструкции [4, 153].

Американские исследователи критерием диагноза обструктивной ГКМП считают ГД в ВТЛЖ ≥50 мм рт. ст., в покое или провоцируемый. Для провокации предлагается нагрузочная проба, а не проба Вальсальвы, т.к. было показано, что проба Вальсальвы не обладает достаточной чувствительностью [3, 4, 154].

При ГКМП, кроме субаортальной обструкции, может наблюдаться среднежелудочковая обструкция (изолированная или в сочетании с субаортальной). Критерия ГД для среднежелудочковой обструкции не выработано.

Критерием обструкции ВТПЖ считается увеличение ГД в ВТПЖ > 16 мм рт.ст. в покое [104].

#### 2.1 Жалобы и анамнез

• У всех пациентов рекомендован детальный анализ жалоб и анамнеза [1, 3, 4, 79, 155, 156].

ЕОК нет (УДД 5 УУР С)

**Комментарий:** многие пациенты не имеют жалоб или они малозначительны. В таких случаях диагноз ставится случайно или по результатам скрининга.

Должен быть решен вопрос об отличии истинного отсутствия симптомов от адаптации за счет образа жизни, путем проведения теста с максимальной переносимой физической нагрузкой и оценки биомаркеров XCH в динамике.

В развернутой стадии заболевания при ГКМП наиболее частыми жалобами являются одышка, снижение толерантности к ФН, разнообразные болевые ощущения в грудной клетке кардиалгического и/или стенокардитического характера, нарушения ритма сердечной деятельности (перебои, учащенное сердцебиение), головокружение, пресинкопы и синкопы.

Важно помнить, что манифестация клинических проявлений ГКМП в молодом и пожилом возрасте имеет существенные различия.

Молодой возраст ассоциирован с семейной формой заболевания и является важной детерминантой тяжести течения, риска нежелательных кардиоваскулярных событий, доказанным фактором риска ВСС.

Необходимо учитывать все, в том числе дополнительные «новые», факторы риска ВСС, особенно у носителей патогенных вариантов, в том числе у родственников пробанда — генотип (+)/фенотип(-) (см. соотв. разделы)

При сборе семейного анамнеза обращают внимание на то, были ли у родственников указания на ВСС, ХСН, синкопальные состояния, имплантированные ЭКС, инсульт в молодом возрасте и другие системные заболевания.

Пожилой возраст ассоциирован с несемейной формой заболевания и коморбидностью (АГ, ИМТ/ожирение, дислипидемия, ИБС).

#### 2.2 Физикальное обследование

• У всех пациентов рекомендуется стандартное физикальное обсдедование сердечно-сосудистой системы, включающее аускультацию сердца, измерение АД (при необходимости — повторное, а также лежа, сидя, стоя), пальпацию пульса, измерение ЧСС (при ФП — дефицит пульса) [3, 4, 157-161].

#### УДД 5 УУР С

**Комментарий**: основной диагностический признак обструктивной ГКМП — грубый систолический шум выброса, который выявляют над всей поверхность сердца, с максимумом на верхушке и в четвертом межреберье

слева от грудины. Систолический шум — низкочастотный, носит характер крещендо-декрещендо, выслушивается вдоль левого края грудины и усиливается под воздействием факторов, увеличивающих внутрижелудочковый градиент давления: переход в вертикальное положение, динамическая физическая нагрузка, тахикардия, прием пищи, проба Вальсальвы, прием периферических вазодилататоров.

Большинство пациентов с обструкцией ВТЛЖ также имеют аускультативные признаки митральной регургитации. Со стороны других систем и органов при ГКМП обычно клинически значимых отклонений нет [3, 4, 157, 162].

У пациентов с обструкцией ВТЛЖ часто выявляется неустойчивость артериального пульса (значительные колебания ЧСС в ортостазе и клиностазе, во время бодрствования и сна).

• Рекомендуется обратить внимание на внесердечные проявления заболевания, указывающие на фенокопии ГКМП [37, 43, 44, 46, 47, 49-51, 58-60, 163-166].

ЕОК ІВ (УДД 4 УУР С)

#### 2.3 Лабораторные диагностические исследования

• У всех пациентов с ГКМП для выявления сопутствующих заболеваний рекомендуется рутинное лабораторное обследование, включающее клинический анализ крови и общий анализ мочи, биохимический анализ крови (холестерин, триглицериды, калий, натрий, АСТ, АЛТ, мочевина, креатинин, билирубин, глюкоза) [3, 4, 167].

#### УДД 5 УУР С

**Комментарий**: рутинное лабораторное обследование помогает выявить сопутствующие заболевания, которые могут вызвать или усугубить миокардиальную дисфункцию и состояние пациента.

Определение концентрации N-терминального про-мозгового натрийуретического пептида (Nt-proBNP) и высокоспецифичного сердечного тропонина в плазме не входит в рутинное лабораторное обследование, однако, их высокие уровни ассоциированы с выраженностью ДД, ГЛЖ, тяжестью функциональных нарушений (ишемии миокарда, прогрессирование ХСН) и неблагоприятным прогнозом [4, 32, 34, 92, 96, 141, 168].

• При подозрении на конкретную фенокопию ГКМП с целью проведения дифференциального диагноза рекомендуется специальное лабораторное обследование. [3, 4, 44, 46, 47, 59, 60, 64, 92, 163, 169].

#### ЕОК ІС (УДД 1 УУР С)

**Комментарий:** некоторые показатели, позволяющие предположить конкретный диагноз фенокопии ГКМП, приведены в таблице П1, Приложение Г1.

 $\Gamma KM\Pi$  — это диагноз исключения. Фенокопии, вторичные и специфические причины  $\Gamma \Pi K$  и  $\Gamma \Pi K$  должны быть исключены.

#### Стратегия генетического тестирования и семейного скрининга

• Медико-генетическое консультирование рекомендовано проводить профессионалами, обученными в этой специальной области и работающими в мультидисциплинарной команде [3, 4, 30].

#### ЕОК ПаС (УДД 5 УУР С)

• Медико-генетическое консультирование рекомендовано проводить всем пациентам с ГКМП с целью выявления причинной мутации [3, 4, 18, 17, 27, 30, 31, 116, 170-173].

#### ЕОК ІВ (УДД 5 УУР С)

**Комментарий:** все пациенты должны быть полноценно осведомлены о смысле и значимости скрининга, возможных его результатах, их клиническом значении, а также в целом о вопросах наследственности сердечно-сосудистых заболеваний.

#### Рекомендации по генетическому тестированию пробандов

• Рекомендуется, чтобы генетическое тестирование выполнялось в сертифицированных диагностических лабораториях с экспертными навыками в интерпретации мутаций, связанных с кардиомиопатиями [17, 19, 27, 30, 31, 116, 171, 172].

#### ЕОК ІС (УДД 5 УУР С)

• При подозрении на конкретную фенокопию ГКМП с целью проведения дифференциального диагноза рекомендуется генетическое тестирование [3, 4, 18, 27, 30, 31, 46, 51, 59, 60, 171].

#### ЕОК ІВ (УДД 5, УУР С)

**Комментарий:** генетическое тестирование у пациентов с ГЛЖ неясного генеза и толщиной стенки 13–14 мм рекомендовано проводить только после детального обследования (включая МРТ с контрастированием) и консилиума мультидисциплинарной командой специалистов.

• Посмертное генетическое исследование образцов законсервированных тканей или ДНК рекомендовано проводить для умерших пациентов с патоморфологически подтвержденной ГКМП, чтобы иметь возможность выполнить каскадный генетический скрининг родственников [3, 4, 27, 30, 163].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** проведение генетического скрининга при ГКМП может носить диагностический и предиктивный характер.

В первом случае генетическая диагностика является частью инструментов диагностического поиска и призвана помочь в **подтверждении диагноза ГКМП** при наличии стертой или неполной клинической картины, а также при наличии системных проявлений заболевания или для исключения фенокопий ГКМП [1-4, 14, 15].

Оценка вклада конкретного генетического варианта должна проводиться в соответствии с рекомендациями Американской коллегии медицинской генетики (American College of Medical Genetics and Genomics — ACMG) от 2015 года, отечественными рекомендациями, разработанными на их основе, а также рядом их модификаций и дополнений, разработанных для отдельно взятых генов [30].

При ГКМП, в дополнение к вышеперечисленным источникам, обязательным документом для интерпретации результатов генетического исследования является руководство по оценке вариантов в гене МҮН7 [8].

Оценка патогенной значимости выявленных вариантов должна происходить с обязательным использованием международных баз данных о частоте и патогенной роли генетических вариантов, таких как Clinvar, ClinGen, Varsome, Exac, and Gnomad [22, 23].

#### Рекомендации по генетическому и клиническому тестированию взрослых родственников

• Каскадный генетический скрининг после предварительного медикогенетического консультирования рекомендуется взрослым родственникам первой степени родства пациентов, имеющих явную патогенную мутацию [3, 4, 8, 18, 27, 31, 174].

#### ЕОК ІВ (УДД 5 УУР С)

• Клиническое обследование, включающее ЭКГ, ЭХОКГ и длительное динамическое наблюдение рекомендовано родственникам первой степени родства, у которых выявлена та же явная патогенная мутация, что и у пробанда [3, 4, 18, 27, 149, 150, 172, 174].

#### ЕОК ІС (УДД 5 УУР С)

• Родственников первой степени родства, у которых не выявлена та же явная патогенная мутация, что и у пробанда, рекомендуется вывести из дальнейшего динамического наблюдения, но с рекомендацией обратиться за повторным обследованием, если у них разовьются

симптомы или появятся новые релевантные данные [3, 4, 27, 28, 170, 174].

#### ЕОК ПаВ (УДД 5 УУР С)

• Если явной патогенной мутации у пробанда не выявлено или генетический скрининг не проводился, клиническое обследование с ЭКГ и ЭХОКГ рекомендовано предложить родственникам первой степени родства каждые 2–5 лет (или 6–12 месяцев, если имеются диагностически незначимые аномалии) [3, 4, 27, 174].

#### ЕОК ПаС (УДД 5 УУР С)

Комментарий: предиктивный генетический скрининг основан на использовании информации 0 конкретной генетической причине заболевания, идентифицированной y пробанда, для определения носительства данного варианта у его родственников. Целью данного является определение необходимости регулярной скрининга диспансеризации и прицельного клинического наблюдения в случае носительства патогенного варианта, а также исключение необходимости такого скрининга при отсутствии носительства патогенного варианта.

При проведении каскадного скрининга членов семьи пробанда рекомендуется сочетать его с клиническом обследованием сердечнососудистой системы (анамнестические данные, объективный осмотр, ЭКГ и ЭХОКГ — см. таблицу П8, Приложение Г1) для определения сегрегации выявленного варианта с фенотипом заболевания или для исключения данной сегрегации. Данная информация может быть важна при оценке степени патогенности выявленных вариантов и их классификации в соответствие с критериями Американской коллегии медицинской генетики (American College of Medical Genetics and Genomics — ACMG) [22].

Существует «балльная модель» прогнозирования вероятности обнаружения генетических вариантов в генах, наиболее распространенных при ГКМП, которая включает возраст пациента, женский пол, наличие артериальной гипертензии, морфологию МЖП по типу «reverse curve» и соотношение толщины МЖП/ЗСЛЖ. Сумма баллов ≤2 предсказывает низкую вероятность обнаружения генетических вариантов в причинных генах, наиболее распространенных при ГКМП (таблица П1, Приложение Г2) [8, 29, 93, 144, 170, 175].

## 2.4 Инструментальные диагностические исследования

#### Электрокардиография и мониторирование ЭКГ

• Проведение ЭКГ (в 12 отведениях) рекомендуется при первичном обследовании всех пациентов с подозрением на ГКМП и в процессе динамического наблюдения [3, 4, 160, 176-180].

#### ЕОК ІВ (УДД 5 УУР С)

• Всем пациентам с ГКМП при ухудшении симптоматики рекомендуется повторная регистрация ЭКГ с целью выявления нарушений сердечного ритма и проводимости, ишемии миокарда [3, 4, 160, 176-179].

#### ЕОК ІВ (УДД 5 УУР С)

• Регистрация ЭКГ рекомендуется как компонент скрининг-алгоритма у родственников первой степени родства пациентов с ГКМП [3, 4, 27, 135, 160, 170, 174, 177].

#### ЕОК ІС (УДД 5 УУР С)

• ХМЭКГ рекомендуется всем пациентам с ГКМП, в том числе асимптомным, с целью выявления нарушений ритма сердца (ФП и ЖТ) и проводимости для стратификации риска ВСС и отбора кандидатов для имплантации ИКД\*\*\* [3, 4, 112, 114, 161, 181-183].

#### УДД 5 УУР С

• Проведение ХМЭКГ (оптимально продолжительностью 48–72 часа) рекомендуется при первичном клиническом обследовании и каждые 12–24 месяцев [4, 161, 176, 181, 184].

#### ЕОК IIaC (УДД 5 УУР C)

• Рекомендовано использование петлевого регистратора с целью выявления нарушений сердечного ритма у пациентов с жалобами на частые сердцебиения, у которых при длительном мониторировании ЭКГ причина осталась неуточненной [3, 4, 20, 185-187].

#### ЕОК IIaC (УДД 5 УУР C)

**Комментарий:** адекватная оценка нарушений ритма и проводимости критически необходима для стратификации риска ВСС, поэтому в некоторых случаях необходим длительный ЭКГ-мониторинг. Кроме рутинного суточного мониторирования ЭКГ, возможны варианты: 48/72-часовой мониторинг, наружный петлевой регистратор, регистратор событий, имплантируемый петлевой регистратор. ЭКГ-диагностика должна повторяться каждые 12–24 месяца, оптимально продолжительностью 48 часов.

Показанием к ХМЭКГ является появление у пациента жалоб на сердцебиение и/или головокружение.

Необходимо учитывать, что нарушения ритма и проводимости могут быть обусловлены проводимой терапией.

ЭКГ-признаки, помогающие в дифференциальной диагностике ГКМП и фенокопий ГКМП, представлены в таблице  $\Pi$ 2, Приложение  $\Gamma$ 1 [3, 4, 20, 49, 125, 141, 147, 163, 185, 188-190].

#### <u>Эхокардиография</u>

ЭХОКГ-исследование пациентам необходимо выполнять в соответствии с рекомендациями по эхокардиографии АНА, ASE (American Society of Echocardiography) и EACVI (European Association of Cardiovascular Imaging) до выхода отечественных рекомендаций [152, 191-196].

• Всем пациентам с подозрением на ГКМП для выявления ГЛЖ и внутрижелудочковой обструкции при первичном обследовании рекомендована ТТ-ЭХОКГ с провокационной пробой Вальсальвы [3, 4, 98, 137, 149, 181, 197-201].

#### ЕОК ІВ (УДД 4 УУР С)

• Всем пациентам с ГКМП измерение максимальной диастолической толщины миокарда ЛЖ рекомендуется проводить во всех сегментах, от базальных до верхушки в 2D-режиме по короткой оси ЛЖ [94, 149, 191, 193, 202-204].

#### ЕОК ІВ (УДД 4 УУР С)

• Всем пациентам с ГКМП рекомендуется тщательная оценка диастолической функции ЛЖ, включая трансмитральный кровоток, в легочных венах, тканевую допплерографию, измерение размера и объема ЛП для стратификации риска ВСС [91, 94, 95, 98, 108, 137, 195, 205].

#### ЕОК ІВ (УДД 4 УУР С)

• Симптомным пациентам с максимальным ГД в ВТЛЖ (в покое или спровоцированным) <50 мм рт. ст. рекомендуется проведение стресс-ТТ-ЭХОКГ для выявления провоцируемой обструкции ВТЛЖ и стрессиндуцируемой МР [68, 109, 116, 137, 152, 199, 206-212]

#### ЕОК ІВ (УДД 4 УУР С)

• Асимптомным пациентам с максимальным градиентом давления в ВТЛЖ (покоя или индуцированным) < 50 мм рт.ст. рекомендовано проведение стресс-ТТ-ЭХОКГ, если наличие обструкции имеет значение для рекомендаций по образу жизни и назначения лекарственной терапии [68, 199, 206, 208].

#### ЕОК ІІЬС (УДД 4 УУР С)

• У пациентов с субоптимальным качеством изображения или с предполагаемой апикальной гипертрофией ЛЖ или аневризмой, рекомендуется ЭХОКГ с контрастированием полости ЛЖ, как альтернатива МРТ сердца [115, 148, 213-216].

#### ЕОК ПаС (УДД 5 УУР С)

• Интракоронарное контрастирование миокарда при ТТ-ЭХОКГ во время диагностической КАГ рекомендуется пациентам, у которых планируется САА, для идентификации подходящей для аблации септальной ветви коронарной артерии [196, 216-219].

#### ЕОК ІВ (УДД 4 УУР С)

• Повторные ЭХОКГ-исследования рекомендуются пациентам с ГКМП с изменениями в клиническом статусе или появлением новой сердечно-сосудистой симптоматики для своевременного выявления осложнений и динамики ремоделирования сердца [68, 149, 178, 184, 199].

#### ЕОК ІВ (УДД 4 УУР С)

• ЭХОКГ рекомендуется как компонент скрининг-алгоритма членов семьи пациента с ГКМП, у которого выявлена ассоциированная с заболеванием генная мутация [3, 4, 27, 135, 170, 174].

#### ЕОК ІС (УДД 5 УУР С)

**Комментарий:** требуется использовать расширенный протокол ЭХОКГ, адаптированный к диагностике ГКМП. Перечень показателей, входящих в протокол ТТ-ЭХОКГ, представлены в таблице ПЗ, Приложение Г1.

Для дифференциальной диагностики с фенокопиями и при выборе хирургической тактики при ГКМП могут использоваться дополнительные опции при ЭХОКГ, представлены в таблице П4, Приложение Г1.

ЭХОКГ-находки, позволяющие дифференцировать ГКМП и фенокопии ГКМП, представлены в таблице П5, Приложение Г1 [1, 4, 29, 144, 163].

#### Рекомендации по чреспищеводной эхокардиографиии при ГКМП

• ЧП-ЭХОКГ рекомендована для пациентов, у которых неясен механизм обструкции ВТЛЖ или для оценки состояния МК до процедуры САА, или если регистрируется выраженная МР, предположительно не связанная с ПСД створок, а обусловленная собственными аномалиями МК [192, 220-223].

#### ЕОК ІІаС (УДД 4 УУР С)

• Пациентам с ГКМП при выполнении САА для корректного определения целевой зоны воздействия рекомендовано интраоперационное ЧП-ЭХОКГ с интракоронарным контрастированием миокарда [196, 216-219].

#### ЕОК IIaC (УДД 4 УУР C)

#### Консенсус экспертов EACVI 2015

• Интра/периоперационная ЧП-ЭХОКГ при СМЭ рекомендована пациентам для уточнения механизма обструкции ВТЛЖ, контроля хирургической стратегии, оценки постхирургических осложнений и выявления остаточной обструкции ВТЛЖ [192, 216, 217, 220-224].

#### ЕОК ІС (УДД 4 УУР С)

# Проведение провокационной пробы Вальсальвы для диагностики латентной обструкции ВТЛЖ

Пробу Вальсальвы при ТТ-ЭХОКГ следует проводить в положении пациента лежа на левом боку. Пациенту следует напрячь мышцы передней брюшной стенки, ЧТО повышает внутрибрюшное внутригрудное давление. Контроль уровня напряжения целесообразно осуществлять с помощью устройства, представляющего манометр, соединенный с мундштуком; при этом пациента просят удерживать напряжение, чтобы давление на манометре составляло 20-40 мм рт.ст. Во время пробы Вальсальвы регистрируется максимальная скорость кровотока в ВТЛЖ с использованием постоянно-волнового допплера. пациента лежа проба положении отрицательная, рекомендуется провести пробу в положении сидя и стоя.

#### Магнитно-резонансная томография

• МРТ сердца с контрастированием (при отсутствии противопоказаний) рекомендуется выполнить как минимум один раз после постановки диагноза ГКМП для уточнения данных ЭХОКГ (анатомии сердца, функции желудочков), а также выявления и оценки распространенности фиброза миокарда и исключения других заболеваний [57, 189, 216, 225-231].

#### ЕОК ІВ (УДД 4 УУР С)

#### Консенсус экспертов EACVI 2015

• Проведение МРТ родственникам пробанда первой линии родства рекомендуется, если постановка диагноза значимо влияет на образ жизни (напр. запрещение соревновательного спорта), а при ЭХОКГ имеется низкое качество изображения, или данные пограничные/ сомнительные, или есть изменения на ЭКГ, а ЭХОКГ — без отклонений от нормы [3, 216, 226, 229, 233].

#### УДД 5 УУР С

#### Консенсус экспертов EACVI 2015

• Пациентам с предполагаемым амилоидозом сердца рекомендовано МРТ сердца с контрастированием с целью выявления зон ПНГ [49, 53, 56, 57, 164, 234-236].

#### ЕОК ПаС (УДД 2 УУР А)

• МРТ сердца с контрастированием рекомендуется до операции хирургической и нехирургической редукции МЖП для оценки характера и распространенности гипертрофии и фиброза миокарда [41, 189, 228, 230, 237].

#### ЕОК ПаС (УДД 4 УУР С)

• МРТ сердца и сосудов должна интерпретироваться специалистами, имеющими опыт в визуализации сердца и оценке заболеваний миокарда [4, 54, 226, 231, 238].

#### ЕОК ІС (УДД 5 УУР С)

**Комментарий:** МРТ не имеет присущих ЭХОКГ ограничений и является «золотым стандартом» оценки толщины миокарда и объемов ЛЖ и ПЖ (больше точность измерений и воспроизводимость, меньше операторозависимость), поэтому при отсутствии противопоказаний, если позволяют ресурсы и опыт, МРТ должна рассматриваться для пациентов с ГКМП в качестве базового метода исследования [216, 227, 231, 238, 239].

МРТ также позволяет исследовать текстуру миокарда, т.е. наличие и распространенность миокардиального фиброза. Методика основана на том, что в сегментах миокарда с >15% фиброза выявляется феномен позднего накопления гадолиния (ПНГ) — задержка вымывания Gd-контраста. Наличие распространенного фиброза является предиктором негативного ремоделирования, развития систолической дисфункции и XCH, а также относится к дополнительным факторам риска ВСС.

При МРТ выявляются 2 основных паттерна фиброза:

- 1. Интрамуральный фиброз в пределах гипертрофированных сегментов, который на гистологическом уровне является отражением прямого действия «причинного» генетического варианта и молекулярного патогенеза, проявляющего дискомплексацией кардиомицитов и мышечных волокон феномен «disarray», фиброзом разной степени выраженности.
- 2. Зоны фиброза могут быть выявлены в МЖП в передней и/или задней областях, граничащих со свободной стенкой ПЖ (т. наз. «right ventricular insertion points»). Считается, что это интерстициальный фиброз или промежуточный фенотип ПНГ, начальная стадия [99, 216, 230].

Параметры, которые необходимо оценить при MPT сердца у пациента с ГКМП, представлены в таблице П6, Приложение Г1.

У носителей мутаций в догипертрофической стадии ГКМП при МРТ можно выявить «малые аномалии сердца» — крипты миокарда, аномалии МК, апикальное смещение папиллярных мышц. На доклинической стадии у некоторых пациентов с генотипом(+)/фенотипом(-) могут быть выявлены зоны ПНГ. (см. алгоритм диагностики на доклинической стадии) [239-241].

При MPT сердца также выявляются аномалии аппарата МК (см. таблицу П6, Приложение Г1).

Кроме значимости в диагностике ГКМП, МРТ сердца играет роль в диагностике фенокопий ГКМП. При амилоидозе зоны ПНГ определяются в эндокардиальных и субэндокардиальных отделах и не зависит от зон кровоснабжения миокарда [57, 236]. При болезни Андерсона-Фабри — наличие интрамиокардиального ПНГ чаще всего по заднебоковому сегменту на базальном и среднем уровнях [171]. У спортсменов с ГЛЖ, отсутствуют зоны ПНГ.

# <u>Компьютерная томография / Мультиспиральная компьютерная томография</u>

• Пациентам с ГКМП, у которых низкое качество ЭХОКГ изображения, а проведение МРТ противопоказано для оценки толщины миокарда и размеров полостей сердца рекомендуется выполнять КТ/МСКТ сердца с контрастированием [216, 242].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** *КТ* сердца, кроме анатомических данных сердца, позволяет также визуализировать коронарные артерии, оценивать их проходимость и анатомические особенности, наличие миокардиальных «мышечных мостиков», что играет важную роль в диагностике ИБС, в том числе при ГКМП у пациентов старшей возрастной группы.

МСКТ сердца, имеющая высокое пространственное разрешение, позволяет обеспечить точное измерение толщины, массы миокарда, объема желудочков и фракцию выброса. Сравнительное исследование показало высокую точность метода МСКТ, сопоставимую с результатами метода МРТ сердца [243, 244].

По сравнению с MPT, минусом MCKT является более низкое временное разрешение, более низкое контрастирование мягких тканей и наличие ионизирующего излучения [244].

#### <u>Сцинтиграфия</u>

• Сцинтиграфию костей (с 99mTc-DPD или 99mTc-пирофосфатом) рекомендуется выполнять пациентам, у которых подозревается ATTR-амилоидоз [163, 164, 235, 245, 246].

#### ЕОК IIaB (УДД 2 УУР В)

**Комментарий:** по данным сцинтиграфии с 99mTc-пирофосфатом возможна точная дифференциальная диагностика AL- и ATTR-амилоидоза сердца (при условии исключения моноклональной гаммапатии неопределенного значения) [45, 235].

#### Позитронная эмиссионная томография

ПЭТ может использоваться для исследования метаболизма миокарда (радиофармпрепараты —  $F^{18}$ -дезоксиглюкоза и  $C^{11}$ -ацетат) и диагностики автономной дисфункции сердца.

При ГКМП может выявляться нарушение обратного захвата нейромедиаторов и уменьшение плотности бета-адренорецепторов.

#### Коронарная ангиография

КАГ является методом выбора диагностики наличия и выраженности обструктивного поражения эпикардиальных коронарных артерий.

• Взрослым пациентам с ГКМП с предотвращенной ВСС (после успешных реанимационных мероприятий), пациентам с устойчивой ЖТ и пациентам со стабильной стенокардией ≥3 класса (по классификации Канадского сердечно-сосудистого общества — ССЅ) рекомендуется инвазивная КАГ с целью диагностики обструктивного поражения эпикардиальных коронарных артерий [3, 4, 74, 113, 242, 247, 248].

#### ЕОК ІС (УДД 5 УУР С)

• Пациентам с ГКМП с типичными болями в грудной клетке (<3 класс стенокардии по классификации Канадского сердечно-сосудистого общества — ССЅ), у которых есть промежуточная предтестовая вероятность атеросклеротической ишемической болезни сердца с учетом возраста, пола и факторов риска атеросклероза рекомендуется КАГ или КТ-ангиография с целью диагностики обструктивного поражения эпикардиальных коронарных артерий [4, 74, 242, 249].

#### ЕОК ПаС (УДД 5 УУР С).

• Для всех пациентов с ГКМП старше 40 лет рекомендуется КАГ или КТангиография до редукции МЖП, независимо от наличия типичного стенокардитического болевого синдрома с целью диагностики обструктивного поражения эпикардиальных коронарных артерий [4, 242, 248, 250].

#### ЕОК IIaC (УДД 4 УУР C)

**Комментарий:** необходимость КАГ диктуется особенностью врачебной тактики. При INOCA у пациентов с ГКМП появляется необходимость в постановке стентов при меньшей, чем принято у пациентов с ИБС, степенью стеноза, т.е. при стенозах <50%. (см. раздел «Диагностика ГКМП у отдельных категорий пациентов» и раздел «Патогенез») [74, 76, 82, 85, 251].

#### Инвазивное измерение давления в полостях сердца

• Катетеризация сердца для оценки функции желудочков и давления заклинивания легочной артерии рекомендуется у пациентов, которым планируется трансплантация сердца или механическая поддержка кровообращения [252-257].

#### ЕОК ІВ (УДД 5 УУР С)

• У симптомных пациентов с неопределенными результатами неинвазивной визуализации сердца рекомендовано рассмотреть возможность катетеризации левого и правого желудочков для оценки тяжести обструкции ВТЛЖ/ВТПЖ и измерения давления наполнения ЛЖ/ПЖ [69].

#### ЕОК ІІЬС (УДД 4 УУР С)

#### Электрофизиологическое тестирование

• Внутрисердечное электрофизиологическое исследование рекомендуется C пациентам документированными персистирующими ИЛИ периодическими наджелудочковыми тахикардиями (трепетание предсердий, предсердная тахикардия, атриовентрикулярная узловая тахикардия, опосредованная риентри тахикардия, проводящими путями) и пациентам с синдромом раннего возбуждения желудочков, для идентификации субстрата аблации и лечения [20, 113, 176, 185, 258-261].

#### ЕОК ІС (УДД 4 УУР С)

• Для отдельных пациентов с документированными, симтомными, мономорфными устойчивыми (>30 с) ЖТ рекомендовано рассмотреть возможность внутрисердечного электрофизиологического исследования для идентификации субстрата аблации и лечения [176, 259, 260, 262, 263].

#### ЕОК ІІЬС (УДД 4 УУР С)

**Комментарий:** пациентам с ГКМП не рекомендовано внутрисердечное электрофизиологическое исследование с программируемой желудочковой стимуляцией в качестве рутинной процедуры для стратификации риска ВСС [4, 111, 176, 262].

#### Нагрузочные тесты

• Тредмил-тест с мониторированием ЭКГ и АД рекомендуется для стратификации риска ВСС пациентов с ГКМП, при недоступности эргоспирометрии [4, 264, 265].

#### ЕОК ИаВ (УДД 5 УУР С)

• Пациентам с ГКМП, у которых в покое максимальный ГД в ВТЛЖ <30 мм рт.ст., при пробе Вальсальвы ГД <50 мм рт.ст. рекомендуется проведение ТТ-ЭХОКГ в условиях нагрузки (стресс-ЭХОКГ) для определения и количественной оценки динамической обструкции ВТЛЖ [152, 208, 211, 266, 267].

#### ЕОК НаВ (УДД 5 УУР С)

**Комментарий:** варианты нагрузочных тестов представлены в таблице П7, Приложение Г1.

Вопросы, на которые должна ответить стресс-ЭХОКГ (должны быть отражены в заключении):

- 1. Величина нарастания ГД в ВТЛЖ на пике нагрузки и в восстановительном периоде.
- 2. Реакция АД на нагрузку.
- 3. Индуцируется ли нагрузкой ишемия миокарда ЛЖ.
- 4. Усугубляется ли диастолическая дисфункция (Е/А, Е/е').
- 5. Степень изменения митральной регургитации на фоне стресс-ЭХОКГ (динамическая MP).

Наиболее подходит для стресс-ЭХОКГ у пациентов с ГКМП «лежачий велоэргометр», который позволяет получать ЭХОКГ-изображения на разных ступенях нагрузочной пробы (рекомендуется регистрация показателей на ступени нагрузки 50 вт., на пике нагрузки и в восстановительном периоде). Использование тредмила и сидячего велоэргометра не позволяет регистрировать ЭХОКГ-показатели в процессе проведения нагрузки, поэтому регистрация проводится немедленно после ее прекращения и в восстановительном периоде. Показано, что максимальный ГД в ВТЛЖ на пике нагрузки и сразу после ее прекращения почти совпадают [208].

При тредмил-тесте применяют протокол Брюса или модифицированный протокол Брюса. При велоэргометрии ступени теста — 50–100–150 вт.

У пациентов с ГКМП не рекомендуется проводить стресс-ЭХОКГ с добутамином из-за высокого риска индукции ЖНР. Кроме того, добутамин может спровоцировать увеличение ГД в ВТЛЖ у пациентов без ГКМП.

Во время проведения нагрузочного теста регистрируется ЭКГ (постоянно), АД (каждые 2 мин) и изменения клинической симптоматики.

Реакция АД на нагрузку является важнейшей частью нагрузочного тестирования. Неадекватная реакция АД входит в шкалу стратификации риска ВСС у пациентов с ГКМП.

Неадекватной реакцией АД считается:

- гипотензивная (АД на пике нагрузки ниже исходного или если на первых ступенях нагрузки АД несколько повышается, а на пике нагрузки более чем на 20 мм рт.ст. ниже этого уровня);
- недостаточный прирост АД на пике нагрузки (менее 20 мм рт.ст.).

#### Критерии прекращения нагрузочного теста:

- 1. Достижение субмаксимальной ЧСС
- 2. Выраженная усталость и одышка

- 3. Боли в области сердца
- 4. Гипотензия (снижение A I > 20 мм рт.ст. от исходного)
- 5. Жизнеопасные ЖНР [68, 87, 109, 116, 152, 199, 206, 207-212].

#### <u>Эргоспирометрия</u>

• Пациентам с ГКМП с выраженной симптоматикой с систолической и/или диастолической дисфункцией ЛЖ, для определения показаний к трансплантации сердца или механической поддержке кровообращения рекомендуется эргоспирометрия (кардиопульмональное нагрузочное тестирование с одновременным измерением респираторных газов) [4, 252-254, 256,257, 268-271].

#### ЕОК ІВ (УДД 3 УУР В)

• Пациентам с ГКМП, независимо от симптоматики, рекомендована эргоспирометрия (или стандартный тредмил-тест, или велоэргометрия при его отсутствии) с целью оценки тяжести и механизма непереносимости физической нагрузки и изменений систолического АД [4, 269, 272, 273].

#### ЕОК ИаВ (УДД 4 УУР С)

• Эргоспирометрия (или стандартный тредмил-тест, или велоэргометрия при его отсутствии) рекомендовано симптомным пациентам, которым планируется СМЭ/РМЭ для определения ограничений по нагрузке [4, 269, 272, 273, 274].

#### ЕОК ПаС (УДД 4 УУР С)

### 2.5 Иные диагностические исследования

#### 2.5.1 Биопсия миокарда и абдоминального жира

• Биопсия миокарда рекомендована при подозрении на инфильтративные, воспалительные заболевания сердца или болезни накопления которые не могут быть подтверждены другими методами [4, 50, 275, 276].

#### ЕОК ПаС (УДД 4 УУР С)

• Биопсия абдоминального жира рекомендована при подозрении на амилоидоз [4, 25, 37, 53, 276, 277].

#### ЕОК IIaB (УДД 2 УУР C)

#### 2.5.2 Диагностика заболевания у отдельных категорий пациентов

Дифференциальный диагноз ГКМП и ГЛЖ вследствие артериальной гипертензии

На естественное течение ГКМП оказывает влияние наличие факторов кардиометаболического риска (АГ, ожирение/избыточная масса тела), встречаемость которых увеличивается с возрастом [278-282].

В старшей возрастной группе пациентов с доказанной ГКМП встречаемость АГ составляет 70–90%. По определению при ГКМП гипертрофия миокарда ЛЖ не обусловлена нагрузкой давлением, но АГ — это нагрузка давлением, поэтому в случае сочетания ГКМП с АГ требуется модификация критериев ГКМП.

Вероятность ГКМП у пациентов с АГ повышается при наличии одного и более из следующих критериев:

- 1. указание на семейный анамнез ГКМП или внезапную сердечную смерть (ВСС) в молодом возрасте у родственников первой линии родства;
- 2. несоответствие между выраженной гипертрофией ЛЖ (максимальная толщина стенок ≥15 мм) и недавно возникшей легкой и умеренной АГ при адекватной приверженности пациента терапии, а также других причин, способных вызвать подобную степень ГЛЖ.

**Возможным вариантом** критерия ГКМП при сопутствующей АГ является толщина миокарда ЛЖ  $\geq$ 20 мм; толщина миокарда 15–20 мм представляет «серую зону».

Выбор критерия ГКМП «толщина стенки ЛЖ ≥20 мм» при сопутствующей АГ обусловлен тем, что показано: при перегрузке давлением (АГ, аортальный стеноз или их сочетание) толщина миокарда ЛЖ, как правило, не превышает 20 мм (в некоторых исследованиях превышает 20 мм лишь у единичных пациентов) [82, 212, 247, 278, 279, 283-288].

Если выявленная толщина миокарда у пациента в «серой зоне» (15–20 мм), то вывод о диагнозе ГКМП можно сделать только на основании тщательного анализа большого числа факторов: семейный анамнез, длительность АГ, уровень «нагрузки давлением» (эпизодические повышения АД или стабильно повышенное АД), приверженность пациента терапии АГ, наличие изменений ЭКГ/ЭХОКГ до развития АГ, динамика размеров полостей сердца и увеличения толщины стенок ЛЖ при ЭХОКГ/МРТ и др.).

Следует также учитывать, что при АГ может наблюдаться асимметричная ГЛЖ — по некоторым данным, до 20% (т.е. соотношение тМЖП/т3С >1,5) [247, 287].

# ГКМП и базальная септальная гипертрофия (S-образная МЖП с «выпуклостью» в базальном сегменте)

У пожилых пациентов с S-образной МЖП может выявляться «выпуклость» (англ. bulge) в базальной части перегородки, которая не обусловлена ГКМП. Как правило, у этих пациентов присутствует

сопутствующая АГ и/или патология аортального клапана (небольшая аортальная регургитация и/или невыраженный аортальный стеноз) [202, 203, 247, 286, 289].

Базальная септальная гипертрофия может приводить к увеличению ГД в ВТЛЖ, как правило, не выше 15–20 мм рт.ст. в покое и возрастать до 35 мм рт.ст. при нагрузочных пробах [212].

Схема дифференциального диагноза ГКМП и базальной септальной гипертрофии представлена в таблице П 10, Приложение Г1.

#### ГКМП и инфаркт миокарда 1 и 2 типов

Клинически у пациентов с ГКМП и ишемией миокарда (INOCA) может развиваться острый коронарный синдром и инфаркт миокарда (ИМ) [74, 76, 88, 249].

ИМ при необструктивном поражении эпикардиальных коронарных артерий, ИМБОКА (MINOCA) — это «рабочий диагноз», требующий уточнения причины, лежащей в основе у конкретного пациента.

В генезе ИМ при ГКМП могут обсуждаться следующие патогенетические механизмы (см. также таблицу П9, Приложение Г1.

- 1. Ишемия при необструктивном поражении эпикардиальных коронарных артерий (INOCA Ischemia with Non-Obstructive Coronary Arteries) (см. раздел «Патогенез»).
- 2. Ишемия при обструктивном поражении эпикардиальных коронарных артерий ИБС в старшей возрастной группе пациентов с ГКМП.

При ГКМП может развиться ИМ 1 типа, диагностика и лечение которого изложены в соответствующих клинических рекомендациях.

Для исключения/подтверждения обструктивного поражения эпикардиальных коронарных артерий пациентам с ГКМП показана инвазивная КАГ или КТ ангиография

Одновременно с КАГ пациентам с ГКМП рекомендуется выполнять ЛЖ-вентрикулорафию, которая выявляет у пациента либо «эпикардиальный паттерн» (зоны нарушения сократимости в пределах стенозированных коронарных артерий), либо «микроваскулярный паттерн» (зоны нарушения сократимости в бассейнах разных коронарных артерий, в том числе и без стенозов) [74, 76, 77, 85, 86, 88, 251, 290-295].

Данный феномен в отечественной литературе называется «ИМБОКА» — инфаркт миокарда без обструкции коронарных артерий (англоязычный термин — MINOCA) или ИМ 2 типа. ИМ 2 типа (ИМБОКА, MINOCA) — это ИМ, развивающийся без атеротромбоза, из-за несоответствия между потребностью миокарда в кислороде и его доставкой.

Ишемия при необструктивном поражении эпикардиальных коронарных артерий (INOCA — Ischemia with Non-Obstructive Coronary Arteries) имеет общий патогенетический механизм как при кардиомиопатиях, так и при фенокопиях ГКМП, например, при амилоидной кардиомиопатии. [56].

Гипертрофическая кардиомиопатия и ГЛЖ у спортсменовРекомендации по занятию спортом, физкультурой, участию в спортивных соревнованиях

• Пациентам с ГКМП независимо от возраста, пола, расовой принадлежности, наличия обструкции ВТЛЖ, проведенных ранее операции СМЭ/РМЭ или САА, или имплантации ИКД\*\*\*, не рекомендовано (противопоказано) участие в спортивных соревнованиях и упражнениях высокой интенсивности [3, 4, 113, 158, 182, 258, 296-299].

#### ЕОК ІС (УДД 5 УУР С)

**Комментарий:** из-за высокого риска ВСС занятия соревновательными видами спорта пациентам с ГКМП противопоказаны.

Для носителей явных патогенных мутаций без проявлений заболевания по ЭКГ и ЭХОКГ рекомендации по оптимальному уровню физической активности и характеру физических нагрузок должны быть сформулированы после консилиума с участием мультидисциплинарной команды специалистов (врач-генетик, врач-кардиолог, врач по спортивной медицине, медицинский психолог и др) на основе рассмотрения выявленной мутации, результатов регулярных и повторных клинических исследований (МРТ с контрастированием, проведение стресс-ТТ-ЭХОКГ), с учетом стратификации риска ВСС на основе европейской и американской моделей.

Спортсмены высокого класса с ГЛЖ и толщиной стенки ЛЖ > 13 мм (13–15 мм) составляют лишь небольшую часть (1,5–1,7%). Как правило, это спортсмены с большой массой тела. Именно у этой группы требуется дифференциальный диагноз с ГКМП [182, 297, 299].

Наиболее часто используемые показатели для дифференциальной диагностики ГКМП и адаптивной ГЛЖ у спортсменов представлены в таблице П 11, Приложение Б.

Важным дифференциально-диагностическим признаком является выявление ПНГ при MPT с контрастированием. Это свидетельствует в пользу ГКМП, однако отсутствие ПНГ не исключает заболевания.

Анализируя спортивную ГЛЖ, необходимо также принимать в расчет следующие факторы: вид спорта и интенсивность тренировок, возраст, пол (у мужчин ГЛЖ больше), рост и вес спортсмена. Окончательный вывод о диагнозе ГКМП у спортсмена делается на основе комплексной оценки как можно большего числа показателей

## 2.6. Стратификация риска и стратегии первичной и вторичной профилактики ВСС

Показатели ежегодной смертности от сердечно-сосудистых причин у взрослых пациентов с ГКМП составляют 1–2%. ВСС, ХСН и тромбоэмболические осложнения являются основными причинами.

Внезапная сердечная смерть (ВСС) — это смерть, наступающая неожиданно и мгновенно из-за кардиальных причин (у пациента без заболевания сердца или с таковым) в течение 1 ч после появления первых симптомов ухудшения общего состояния.

К понятию ВСС не относят случаи насильственной смерти или смерти, возникающей в результате отравления, асфиксии, травмы или другого какого-либо несчастного случая.

Риск ВСС у пациентов с ГКМП без традиционных факторов риска составляет 5,9% за 10 лет [4, 118].

• 5-летний риск ВСС рекомендуется оценивать при первичном обследовании пациента с ГКМП и в дальнейшем переоценивать каждые 1–2 года или при изменении клинического статуса [4, 114,115, 117, 179, 180, 198, 199, 261, 262].

#### ЕОК ІВ (УДД 4 УУР С)

• Шкала HCM Risk-SCD рекомендуется в качестве метода оценки риска внезапной смерти в течение 5 лет для пациентов ≥16 лет без случаев реанимации после эпизодов ЖТ/ФЖ или спонтанной устойчивой ЖТ с потерей сознания или гемодинамическими нарушениями [4, 114,115, 117, 179, 180, 198, 199, 261, 262, 271].

#### ЕОК ІВ (УДД 3 УУР В)

**Комментарий:** регистрация жизнеугрожающих ЖНР и брадиаритмий осуществляется с помощью поверхностной ЭКГ в покое, при ХМЭКГ, с помощью наружного или имплантируемого записывающего устройства, также — при нагрузочной пробе [179].

Независимо от нозологии, подавляющее большинство опасных для жизни желудочковых нарушений сердечного ритма (83,4%) обусловлено электрической нестабильностью миокарда. ВСС чаще обусловлена ФЖ (62,4%), брадиаритмиями (16,5%), ЖТ типа «Torsades de pointes» (12,7%) и ЖТ (8,3%).

**ЖТ неустойчивая** (ЖТ, состоящая как минимум из 3 желудочковых комплексов, с частотой  $\geq 120$  и продолжительностью не более 30 сек, которая прекращается самостоятельно). ЖТ может быть мономорфной

(неизмененная морфология комплекса QRS в 12 отведениях) и полиморфной (во время ЖТ в 12 отведениях ЭКГ изменяется конфигурация комплекса QRS;

**ЖТ устойчивая (мономорфная, полиморфная)** — ЖТ продолжительностью более 30 сек, зачастую не купирующаяся самостоятельно;

**Фибрилляция желудочков** — нерегулярный желудочковый ритм (обычно с частотой более 300 ударов в минуту) с выраженной вариабельностью длины цикла, морфологии и амплитуды комплексов QRS.

Существует две модели стратификации риска ВСС:

- 1. На основе традиционных факторов риска (американская модель).
- 2. На основе расчета индивидуальных оценок риска, персонифицированный подход (европейская модель) шкала HCM Risk-SCD.

Шкала оценки риска ВСС у пациентов с ГКМП (европейская модель) представлена в таблице П2, приложение Г3.

«Калькулятор» риска ВСС при ГКМП по европейской модели представлен на сайте http://doc2do.com/hcm/webHCM.html (http://doc2do.com/hcm/webHCM.html)).

Шкала оценки риска ВСС у пациентов с ГКМП (американская модель) представлена в таблице П3, приложение Г2.

Европейская модель прогнозирования риска BCC HCM Risk-SCD имеет ограничения:

- 1. не применяется у пациентов старше 80 лет и моложе 16 лет;
- 2. не применяется у пациентов с фенокопиями ГКМП, ГЛЖ у спортсменов

Проведена модификация формулы расчета с использованием такого фактора как максимальная толщина стенки ЛЖ (в HCM Risk-SCD Calculator — рекомендовано указывать не более 35 мм) (продолжается апробация новой модели) [181].

Алгоритм первичной и вторичной профилактики ВСС у пациентов с ГКМП представлен в Приложении Б7).

### 3. Лечение

Лечение ГКМП включает медикаментозную терапию, эндоваскулярные вмешательства, хирургические и нехирургические методы редукции гипертрофированной МЖП, механическую поддержку кровообращения, трансплантацию сердца.

Рекомендации по лечению ГКМП основаны на данных об эффективности и безопасности применяемых фармакологических средств, полученных в основном в наблюдательных исследованиях. Рандомизированные клинические исследования малочисленны и включают малое количество пациентов [89, 154, 137, 301-310].

Фармакотерапия при ГКМП в основном улучшает симптоматику и предупреждает осложнения (антикоагулянтная терапия при ФП, кордарон-фармакологическая кардиоверсия и профилактика рецидивов ФП, лечение желудочковых нарушений сердечного ритма и др.) [129, 311-314]. Единственные вмешательства при ГКМП, которые, как полагают, влияют на долгосрочный прогноз, представляют собой хирургическую миоэктомию и имплантацию кардиовертерадефибриллятора\*\*\* (ИКД\*\*\*) [154, 181 300, 315–323].

Сопутствующие заболевания (артериальная гипертензия, сахарный диабет, дислипидемия и др.) рекомендовано лечить в соответствии с существующими национальными клиническими рекомендациями [3, 4, 175, 155, 324-327].

## Подходы к медикаментозной терапии на догипертрофической стадии гипертрофической кардиомиопатии

Разрабатываются подходы к фармакотерапии носителей мутации, ассоциированной с ГКМП, на догипертрофической стадии. Клинические исследования и используемые препараты на догипертрофической стадии ГКМП представлены в таблице 5, приложение АЗ [328].

#### 3.1 Медикаментозная терапия

# Подходы к медикаментозной терапии на гипертрофической стадии гипертрофической кардиомиопатии у бессимптомных пациентов

• Не рекомендуется назначение бета-адреноблокаторов и блокаторов «медленных» кальциевых каналов (верапамил\*\*) пациентам с бессимптомным течением ГКМП, так как их полезное действие не доказано. [3, 4, 329].

#### ЕОК IIIC (УДД 5 УУР C)

• Рекомендовано рассмотреть возможность назначения бетаадреноблокаторов или верапамила\*\* асимптомным взрослым с обструкцией ВТЛЖ (покоя или индуцируемой) для снижения ГД в ЛЖ [3, 4, 329, 330].

#### ЕОК ІІЬС (УДД 5 УУР С)

#### Комментарий:

- 1. Симптомный или бессимптомный пациент, решает врач после детального обследования.
- 2. Должен быть решен вопрос об отличии истинного отсутствия симптомов от адаптации за счет образа жизни, путем проведения теста с физической нагрузкой и оценки биомаркеров ХСН в динамике.
- 3. В рамках ведения здорового образа жизни целесообразно проведение аэробных упражнений низкой интенсивности.
- 4. Необходима ежегодная переоценка риска ВСС, включающая ЭКГ, ХМЭКГ, ЭХОКГ.
- 5. Алгоритм тактики ведения асимптомных пациентов с ГКМП представлен в Приложении Б1.

#### Медикаментозная терапия симптомных пациентов с гипертрофической кардиомиопатией

#### Общие принципы медикаментозной терапии

- 1. Лечение пациентов с обструктивной и необструктивной формами заболевания имеет существенные различия.
- 2. Лечение должно быть адаптировано к уникальным характеристикам каждого отдельного пациента.
- 3. Лекарственные препараты, традиционно применяемые в терапии ГКМП, являются средствами с отрицательным инотропным действием и направлены на купирование или облегчение симптомов заболевания.
- 4. Правожелудочковая ОГКМП и 2-желудочковая ОГКМП лечатся по тем же принципам, как и при обструкции ВТЛЖ.

#### <u>Медикаментозная терапия обструкции выходного тракта</u> <u>левого желудочка</u>

• Лечение любыми лекарственными средствами рекомендуется начинать с минимальных доз и с осторожным их титрованием в течение достаточно долгого времени [3, 4, 11, 31, 39, 150, 175, 208, 266, 301, 329,331–335].

#### ЕОК ІВ (УДД 5 УУР С)

#### Комментарий:

Упрощенный алгоритм диагностики и подходов к лечению обструктивных форм ГКМП представлен в Приложении Б2.

Алгоритм фармакотерапии обструктивной ГКМП представлен в Приложении Б3.

• Бета-адреноблокаторы с подбором максимальной переносимой дозы рекомендуются в качестве первой линии терапии для уменьшения симптомов у пациентов с обструкцией ВТЛЖ (покоя и индуцируемой) [3, 4, 11, 31, 39, 40, 150, 175, 266, 301, 329, 331, 333, 335, 336].

#### ЕОК ІВ (УДД 2 УУР А)

**Комментарий:** правила и особенности назначения бетаадреноблокаторов представлены в таблице 1, Приложение А3.

• Верапамил\*\* с подбором максимальной переносимой дозы рекомендуется тем пациентам с обструкцией ВТЛЖ (покоя или индуцируемой), которые не переносят бета-адреноблокаторы или имеют противопоказания к их назначению [3, 4, 11, 31, 39, 175, 301, 329, 332, 335, 337–341].

#### ЕОК ІВ (УДД 2 УУР А)

**Комментарий:** правила и особенности назначения верапамила\*\* представлены в Таблице 2, Приложение А3.

• Дилтиазем с подбором максимальной переносимой дозы рекомендован *симптомным* пациентам с обструкцией ВТЛЖ (покоя или индуцируемой), которые не переносят бета-адреноблокаторы и верапамил\*\* или имеют противопоказания к их назначению [3, 4, 31, 39, 150, 175, 301, 302, 329, 332, 335, 342].

#### ЕОК IIC (УДД 2 УУР C)

**Комментарий:** рекомендуемые начальные и целевые дозы при медикаментозной терапии ГКМП представлены в Таблице 3, Приложение A3.

Пациенты с ГКМП и среднежелудочковой обструкцией ЛЖ должны бета-адреноблокаторов получать дозы (бисопролол\*\*), высокие верапамила\*\* или дилтиазема\*, но ответ лечение на часто неоптимальный. Эта когорта пациентов, как правило, имеет вариант, характеризующийся повышенным риском прогрессирующей ХСН и ВСС. У 25% из них развивается аневризма верхушки ЛЖ [71-73, 215, 294, 343, 344].

#### <u>Лечение ХСН с ФВ ЛЖ ≥ 50% у пациентов с ГКМП</u>

• Бета-адреноблокаторы, верапамил\*\* рекомендованы для улучшения симптомов сердечной недостаточности у пациентов с обструктивной ГКМП и ХСН II–IV ФК (NYHA) с ФВ ≥50% [3, 4, 11, 31, 39, 101, 132, 150, 175, 198, 302, 325, 326, 329, 340, 341, 345, 346].

#### ЕОК ПаС (УДД 3 УУР С)

• Малые дозы петлевых и тиазидных диуретиков рекомендованы для пациентов с необструктивной ГКМП и II–IV ФК (NYHA) с ФВ ЛЖ ≥50% для улучшения симптомов ХСН [31, 132, 175, 198, 325, 326, 329, 345–347].

#### ЕОК ПаС (УДД 5 УУР С)

• Рекомендовано рассмотреть возможность назначения (с осторожностью) низких доз петлевых или тиазидных диуретиков симптомным пациентам с обструкцией ВТЛЖ для уменьшения одышки при нагрузке [3, 4, 31, 51, 132, 175, 198, 329].

#### ЕОК IIb (УДД 5 УУР C)

**Комментарий:** алгоритм врачебной тактики лечения ХСН при ГКМП представлен в Приложении Б4.

Подключение низких доз петлевых или тиазидных диуретиков следует осуществлять под контролем ЧСС и ГД, так как уменьшение объема циркулирующей крови у пациентов с ОГКМП может приводить к увеличению ГД в ВТЛЖ.

• При гипотензии и отеке легких, которые обусловлены тяжелой индуцируемой обструкцией ВТЛЖ, рекомендованы бетаадреноблокаторы (per os или внутривенно) и добутамин\*\* [3, 4, 348].

#### ЕОК IIaC (УДД 5 УУР C)

**Комментарий:** в случае развития отека легких при низком АД у пациента ОГКМП с высоким ГД в ВТЛЖ необходимо исключить ОКС, так как использование в этой ситуации органических нитратов и препаратов с положительным инотропным эффектом является опасным для жизни.

• Пациентам с ГКМП и обструкцией ВТЛЖ (покоя или индуцируемой) не рекомендуется применение органических нитратов и ингибиторов фосфодиэстеразы [3, 4, 348, 349].

#### ЕОК IIIC (УДД 5 УУР C))

• Пациентам с ГКМП и обструкцией ВТЛЖ (покоя или индуцируемой) не рекомендуется применение блокаторов «медленных» кальциевых каналов производных дигидропиридинов (нифедипин\*\*). [3, 4].

#### ЕОК ШС (УДД 5 УУР С)

**Комментарий:** основной нежелательный механизм действия органических нитратов и ингибиторов фосфодиэстеразы, обусловлен увеличением обструкции ВТЛЖ.

• Пациентам с ГКМП и обструкцией ВТЛЖ (покоя и индуцируемой) не рекомендуется дигоксин\*\* [3, 4].

#### ЕОК IIIC (УДД 5 УУР C)

• Пациентам с ГКМП и устойчивым синусовым ритмом не рекомендуется применение сердечных гликозидов [3, 4, 329].

#### ЕОК IIIC (УДД 5 УУР C)

**Комментарий:** положительные инотропные препараты, такие как наперстянка, противопоказаны вследствие положительного инотропного и проаритмогенного эффектов.

• Верапамил\*\* не рекомендуется пациентам с обструктивной ГКМП в случаях наличия системной гипотензии и выраженной одышки в покое [3, 4, 329, 350].

#### ЕОК IIIC (УДД 5 УУР C)

#### <u>Лечение ХСН с ФВ ЛЖ <50% у пациентов с ГКМП</u>

• Пациентам с **необструктивной** ГКМП и ФВ ЛЖ<50% рекомендуются бета-адреноблокатор в дополнение к АКФ ингибитору (или антагонисту ангиотензина II, если пациент не переносит АКФ ингибиторы) для уменьшения симптомов, снижения риска госпитализаций по поводу ХСН и ВСС (в отсутствие рандомизированных исследований по ГКМП, эффективность по госпитализациям, симптомам и смертности предполагается, но не доказана) [3, 4, 132, 133, 155, 198, 325, 326, 345, 346, 351].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** Бета-адреноблокаторы являются препаратами первой линии, применяемыми для снижения ГД в ВТЛЖ и облегчения симптомов. Отрицательные инотропные эффекты бета-адреноблокаторов являются относительно умеренными, поэтому они могут использоваться даже у пациентов с ГКМП и ХСН с ФВ ЛЖ <50%.

Бета-адреноблокаторы не вызывают резкого изменения ФВ ЛЖ в покое.

Бисопролол\*\* предпочтительней при ГКМП и ХСН с ФВ ЛЖ <50% [329]

• Пациентам с необструктивной ГКМП и II–IV ФК (NYHA) с ФВ ЛЖ <50% рекомендуются малые дозы петлевых или тиазидных диуретиков для уменьшения симптомов, снижения риска госпитализаций по поводу ХСН (в отсутствие рандомизированных исследований по ГКМП эффективность по госпитализациям, симптомам и смертности предполагается, но не доказана) [3, 4, 132, 133, 155, 175, 198, 325, 326, 345, 346].

#### ЕОК IIaC (УДД 5 УУР C)

• Пациентам с необструктивной ГКМП с ФВ ЛЖ <50% и постоянными симптомами ХСН II–IV ФК (NYHA), несмотря на лечение АКФ ингибиторами (или антагонистами ангиотензина II, если пациент не переносит АКФ ингибиторы) и бета-адреноблокаторами, рекомендуются

альдостерона антагонисты для снижения риска госпитализаций по поводу ХСН и ВСС (в отсутствие рандомизированных исследований по ГКМП эффективность по госпитализациям, симптомам и смертности предполагается, но не доказана) [4, 132, 133, 155, 175, 198, 325, 326, 345, 346].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** алгоритм врачебной тактики лечения XCH при ГКМП представлен в Приложении Б4.

Тактика лечения пациентов с необструктивной ГКМП с систолической дисфункцией базируется на принципах доказательной фармакотерапии, разработанных для взрослых пациентов с ХСН со сниженной ФВЛЖ, и включает рекомендации по применению бета-адреноблокаторов, АКФ ингибиторов, антагонистов ангиотензина II, диуретиков и др. [155, 175, 325, 326].

Данные, полученные Maron M.S. и соавт. (2018) в проспективном рандомизированном двойном слепом исследовании, не подтверждают использование спиронолактона при ГКМП для улучшения ремоделирования ЛЖ путем уменьшения фиброза миокарда или изменения клинического течения [307].

#### <u>Лечение синдрома стенокардии у пациентов с ГКМП</u>

• Бета-адреноблокаторы, верапамил\*\*, дилтиазем рекомендованы пациентам с необструктивной ГКМП и стенокардитическими болями при отсутствии обструктивной коронарной болезни сердца [3, 4, 74, 77, 251, 292, 329, 352, 353].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** правила и особенности назначения верапамила\*\* представлены в таблице 2, Приложение АЗ и таблице 3, Приложение АЗ.

Пациенты с ГКМП часто предъявляют жалобы на боль в грудной клетке, которая может иметь или не иметь типичные признаки стенокардии. Этот симптом возникает из-за дисбаланса между поставкой и потребностью кислорода, приводит к гипоперфузии и ишемии миокарда, которая вторична по отношению к уменьшению кровотока через малые интрамуральные коронарные артерии (см. раздел «Патогенез»).

На этапе появления у пациента приступов стенокардии необходимо уточнить, не появилась ли у него индуцируемая нагрузкой латентная коронарогенная обструкция и/или ишемия миокарда. Рекомендована стресс-ЭХО-КГ для определения показаний к КАГ и реваскуляризации, в том числе при стенозах КА <50%.

Верапамил\*\* способен уменьшать ишемию миокарда, в т.ч. безболевую, и улучшать его диастолическую функцию ЛЖ.

Ранолазин применяют для лечения стенокардии у пациентов, перенесших острый коронарный синдром (РКИ MERLIN TIMI). Он ингибирует поздний натриевый ток в сердечных миоцитах, что уменьшает перегрузку кальцием в этих клетках, тем самым снижая диастолическое напряжение стенки ЛЖ и потребность миокарда в кислороде.

По данным Gentry J.L. и соавт. (2016), регулярное применение ранолазина в течение 2 месяцев в дозировке 500–1000 мг 2 раза в день привело к значительному облегчению стенокардии и симптомов сердечной недостаточности (СН), а также улучшению качества жизни симптомных пациентов с ГКМП [304].

В мультицентровом плацебо-контролируемом исследовании RESTYLE-HCM (Olivotto I., Camici P.G. и соавт., 2018 г.) применение ранолазина в течение 5 месяцев не привело к значимому улучшению переносимости физической нагрузки, показателей диастолической функции, уменьшению уровней МНУП или улучшению качества жизни у пациентов необструктивной ГКМП по сравнению с группой, получавших плацебо. Прием ранолазина достоверно ассоциирован со снижением количества желудочковых экстрасистол по результатам суточного мониторирования ЭКГ. Ранолазин продемонстрировал отличные показатели безопасности [309].

• Рекомендовано рассмотреть возможность использования органических нитратов *per os* у пациентов с необструктивной ГКМП со стенокардитическими болями и отсутствием обструктивной болезни коронарных артерий [3, 4].

#### ЕОК ІІЬС (УДД 5 УУР С)

#### <u>Лечение артериальной гипертензии у пациентов с ГКМП</u>

Лечение АГ у пациентов с **необструктивной** ГКМП проводится в полном соответствии с Клиническими Рекомендациями по лечению АГ у взрослых.

Особенности медикаментозной терапии АГ при обструктивной ГКМП:

- Шаг 1. Прекратить прием периферических вазодилататоров (если пациент ранее разово или курсами принимал вазодилататоры).
- Шаг 2. Назначить максимально переносимые дозы бетаадреноблокатора, верапамила или комбинации обоих препаратов под контролем ЧСС и проводить ЭКГ-мониторинг QT/QTc и АВпроведения). Предпочтительно использовать пролонгированные и селективные бета-адреноблокаторы (бисопролол\*\*, атенолол\*\*).

Шаг 3. На фоне проводимой терапии бета-адреноблокатором (бисопролол\*\* или атенолол\*\*) при условии эффективного контроля ГД в ВТЛЖ с помощью ЭХО-КГ, нарушений ритма и проводимости, продолжительности интервала QT/QTc по ЭКГ и ХМЭКГ и отсутствии появления дополнительной клинической симптоматики рассмотреть возможность осторожно добавить низкую дозу гидрохлортиазида\*\* с триамтереном\*\* под контролем ГД в ВТЛЖ [327, 329, 332, 354].

Опыт лечения по Sherrid M.V. [332]: при тяжелой обструкции в ВТЛЖ у пациентов с ОГКМП+АГ, не контролируемой фармакотерапией, проводимой в полном объеме, приблизительно четверти пациентов (22%) потребовалась редукция МЖП с целью снижения ГД в ВТЛЖ, и 16% потребовался ДЭКС\*\*\* с короткой задержкой АВ для уменьшения ГД в ВТЛЖ у пациентов с исходными (или ятрогенными на фоне комбинированной терапии) нарушениями АВ проведения и внутрижелудочковыми блокадами.

#### <u>Лечение фибрилляции предсердий у пациентов с ГКМП</u>

ФП является наиболее частой аритмией при ГКМП, распространенность которой зависит от тяжести заболевания: 22% в общей когорте и до 32% в когорте пациентов с показаниями для имплантации ИКД\*\*\* и ЭКС\*\*\*/ДЭКС\*\*\* [11, 31, 129, 134, 150, 184, 197, 314, 355–358]. Частота встречаемости ФП *de novo* в общей когорте ГКМП составляет около 2% в год [129, 314, 357].

Задачами фармакотерапии при ГКМП, осложненной ФП, являются купирование приступа, профилактика рецидивов аритмии и тромбоэмболических осложнений.

# Восстановление синусового ритма и профилактика рецидивов фибрилляции предсердий

• Рекомендовано каждые 6–12 месяцев проводить 48-часовое ХМЭКГ для выявления бес- или малосимптомных пароксизмов ФП и определения риска ВСС в когорте пациентов с ГКМП и размером ЛП ≥45 мм, находящихся на синусовом ритме [3, 4, 112, 128, 131, 179, 183, 314, 359–364]

#### ЕОК ПаС (УДД 4 УУР С)

Комментарий: обнаружение ФП с помощью имплантируемого петлевого регистратора представляет собой уникальную возможность для быстрого выявления бес- или малосимптомных пароксизмов ФП с целью профилактики тромбоэмболических осложнений до того, как случился инсульт. Предикторами и факторами риска возникновения ФП при ГКМП являются: предсердная миопатия, увеличение размера и объема ЛП, повышение уровней NT-proBNP в крови, XCH III-IV ФК (NYHA), пожилой возраст, обструкция ВТЛЖ, вовлечение правых отделов сердца, генетические факторы.

• Восстановление синусового ритма путем прямой электрической или фармакологической кардиоверсии с внутривенным введением амиодарона\*\* рекомендовано у пациентов с недавно возникшей (<48 часов) ФП [113, 131, 183, 314, 359, 364].

#### ЕОК IIaC (УДД 5, УУР C)

**Комментарий:** без предшествующей антикоагулянтной подготовки кардиоверсия может быть проведена только в случае, если длительность текущего пароксизма не превышает 48 часов. У пациентов с бессимптомными пароксизмами ФП, а также в ситуациях, когда пациент затрудняется назвать длительность текущего пароксизма и не получает антикоагулянтную терапию постоянно, рекомендуется воздержаться от незамедлительного восстановления синусового ритма.

В этой ситуации возможно применение 2 стратегий ведения.

Первая стратегия: проведение ранней кардиоверсии после ЧП-ЭХОКГ, не выявившей тромбы в полостях предсердий. Антикоагулянтная поддержка во время процедуры восстановления синусового ритма обязательна.

Вторая стратегия: при невозможности проведения ЧП-ЭХОКГ или выявлении тромбов в полостях предсердий при ЧП-ЭХОКГ следует проводить позднюю кардиоверсию после 3 недель антикоагулянтной терапии (после контрольной ЧП-ЭХОКГ, обязательной в случае наличия тромбов в полостях предсердий при первом обследовании).

• Амиодарон\*\* рекомендован для профилактики рецидивов ФП после прямой электрической кардиоверсии [301, 314, 356, 359, 364, 365].

#### ЕОК IIaB (УДД 4 УУР C)

• Бета-адреноблокатор, верапамил\*\* или дилтиазем\*\* рекомендуются для контроля частоты сокращений желудочков у пациентов с ГКМП с постоянной или персистирующей ФП [3, 4, 111, 131, 301, 314, 359, 364, 365].

#### ЕОК ІС (УДД 5 УУР С)

• Рекомендовано рассмотреть возможность назначения низких доз дигоксина\*\* пациентам с необструктивной ГКМП, страдающим постоянной формой ФП и ХСН II–IV ФК NYHA, с ФВ <50%, для контроля частоты сокращения желудочков [3, 4, 131, 132, 155, 175, 198, 314, 325, 326, 329, 345, 346, 366].

#### ЕОК ІІЬС (УДД 5 УУР С)

**Комментарий:** амиодарон\*\* считается лучшим препаратом для контроля ритма, он безопасен и эффективен у пациентов с ГКМП, осложненной  $\Phi\Pi$ .

Соталол\*\* может использоваться в качестве альтернативного антиаритмического агента в лечении пациентов ГКМП, особенно в случае имплантации ИКД\*\*\*, хотя клинический опыт его применения ограничен.

Начальные и целевые дозы при лекарственной терапии ГКМП представлены в Таблице 3, Приложение A3

### <u>Профилактика тромбоэмболических осложнений у пациентов</u> с ГКМП

• Если нет противопоказаний, антагонисты витамина К (варфарин\*\*, целевое МНО 2,0–3,0) или дабигатрана этексилат\*\* или ривароксабан\*\* или апиксабан\*\* рекомендуются всем пациентам, у которых развилась персистирующая, постоянная или пароксизмальная форма ФП, для профилактики тромбоэмболических осложнений [3, 4, 131, 150, 184, 311–314, 357, 359, 360, 364, 367–373].

#### ЕОК ІС (УДД 2 УУР В)

**Комментарий:** Необходимо помнить об эмбриотоксичности варфарина (см. раздел «ГКМП у беременных»).

Меньше данных по антикоагулянтной терапии при трепетании предсердий и других предсердных аритмиях, но риск тромбоэмболий при них считается таким же, как при ФП.

• Оценка риска кровотечений при помощи шкалы HAS-BLED рекомендуется при назначении варфарина\*\* без или в сочетании с ингибиторами агрегации тромбоцитов. [3, 4, 131, 314, 359, 360, 364, 368, 311, 313, 369–374]

#### ЕОК IIaD (УДД 4 УУР C)

#### Комментарий:

Шкала HAS-BLED (не валидирована для пациентов с ГКМП): баллы  $\geq 3$  указывают на высокий риск кровотечений и должны быть приняты меры предосторожности с лабораторным и клинико-инструментальным контролем. Шкала HAS-BLED – см. таблицу П5, Приложение  $\Gamma$ 2.

• Если пациент с ГКМП, осложненной ФП, не может принимать подобранную дозу варфарина\*\* из-за побочных действий или невозможности поддерживать терапевтический уровень антикоагуляции (МНО 2,0–3,0), или невозможности осуществлять мониторинг МНО, рекомендуется использовать дабигатрана этексилат\*\* или ривароксабан\*\*, или апиксабан\*\*. [3, 4, 131, 314, 359, 360, 364, 368, 375, 376, 311, 313, 369–374, 377].

#### ЕОК ІВ (УДД 1 УУР В)

#### Комментарий:

Варфарин\*\* или дабигатрана этексилат\*\* или ривароксабан\*\* или апиксабан\*\* следует назначать независимо от шкалы CHA2DS2-VASc даже после одного эпизода ФП.Шкала CHA2DS2-VASc – см.таблицу П4, Приложение Г2.

• Во всех случаях ГКМП, осложненной ФП, рекомендуется пожизненная терапия варфарином\*\* (МНО 2,0–3,0) или дабигатрана этексилатом\*\* или ривароксабаном\*\* или апиксабаном\*\* даже если синусовый ритм был восстановлен [3, 4, 111, 113, 131, 150, 175, 314, 329, 357, 359, 360, 364, 368, 311, 313, 369–374, 377].

#### ЕОК ІС (УДД 4 УУР С)

• Терапия ацетилсалициловой кислотой в дозировке 75–100 мг плюс клопидогрел\*\* 75 мг в день (при низком риске кровотечений) рекомендуется, если пациент с ГКМП, осложненной ФП, отказывается принимать варфарин\*\* или дабигатрана этексилат\*\* или ривароксабан\*\*, или апиксабан\*\*. [4, 378]

#### ЕОК ПаВ (УДД 5 УУР С)

• Пациентам с ГКМП, осложненной ФП без выраженного увеличения ЛП в случаях рефрактерной к фармакотерапии симптоматики и невозможности использования антиаритмических препаратов рекомендовано проведение катетерных процедур [4, 111, 131, 359, 360, 364, 379].

#### ЕОК ПаВ (УДД 5 УУР С)

**Комментарий:** Инвазивные методы лечения  $\Phi\Pi$  – см. раздел 3.2

### 3.2. Хирургическое и интервенционное лечение ГКМП

#### Редукция МЖП

При обструктивной ГКМП хирургический метод лечения является «золотым стандартом» (средние показатели смертности <2%, эффективность более чем у 90% пациентов, частота осложнений <5%).

В некоторых медицинских Центрах редукцию МЖП рекомендуют выполнять пациентам с более мягкой симптоматикой в случаях значительной латентной обструкции, у которых максимальный и индуцируемый ГД ≥ 50 мм рт.ст.

Определяющим фактором для достижения хороших результатов СМЭ/ РМЭ и САА является опыт Центров, который должен измеряться более чем 50 процедурами, выполняемыми в год, и более чем 20 процедурами, выполняемыми хирургом или интервенционным кардиологом. Редукция МЖП должна выполняться опытным специалистом, работающим в мультидисциплинарной команде экспертов в лечении ГКМП [3, 4, 106, 213, 321, 320, 380-388].

• Редукция МЖП рекомендуется пациентам ГКМП с ГД в ВТЛЖ (в покое или максимальным провоцируемым) ≥ 50 мм рт. ст., с ХСН III–IV ФК (NYHA), несмотря на максимальную переносимую терапию [3, 4, 73,105, 106, 316-321, 380-384, 388-394].

#### ЕОК ІВ (УДД 2 УУР А)

#### Комментарий:

Редукция МЖП осуществляется с помощью септальной миоэктомии (СМЭ), расширенной СМЭ (РМЭ) и септальной спиртовой аблации (САА).

Показания к редукции МЖП (СМЭ/РМЭ/САА) представлены в Приложении Б 10.

• Редукция МЖП рекомендована для пациентов с ГКМП и повторными обмороками при нагрузке, вызываемыми ГД в ВТЛЖ (в покое или максимальным провоцируемым) ≥ 50 мм рт.ст., несмотря на оптимальную терапию [3, 4, 123-125].

#### ЕОК IIaC (УДД 4 УУР C)

#### Комментарий:

- Алгоритм дигностики и врачебной тактики при синкопальных состояниях представлен в Приложении Б8.
- Показания к редукции МЖП (СМЭ/РМЭ/САА) представлены в Приложении Б 10.
- Алгоритм предоперационной диагностики для выбора дополнительных вмешательств на МК при СМЭ/РМЭ представлен в Приложение Б5. ) (см. также рекомендации к МРТ).
- Алгоритм выбора метода редукции МЖП при ГКМП представлен в Приложении Б6.
- Сравнение СМЭ/РМЭ и САА представлено Приложении Б 11.
- СМЭ/РМЭ предпочтительнее, чем САА, и рекомендуется пациентам с показаниями к редукции МЖП, имеющим показания для других хирургических вмешательств (на папиллярных мышцах, протезирование митрального клапана, АКШ) [3, 4, 217, 224, 317, 318, 381, 382, 385-387, 391, 398-402].

#### ЕОК ІС (УДД 2 УУР В)

#### Комментарий:

СМЭ — «миоэктомия по Morrow» трансаортальным доступом (первая операция была проведена в 1958 г.) в большинстве случаев устраняет обструкцию ВТЛЖ, вызванную гипертрофированной МЖП, однако не

устраняет аномалии МК, вносящие вклад в обструкцию ВТЛЖ.

Меssmer В.Ј. с соавт. (1994) усовершенствовали миэктомию по Моггоw, расширив область резекции гипертрофированной МЖП в апикальном направлении к основанию ПМ (РМЭ). Иногда в англоязычной литературе РМЭ называют процедурой RPR (сокр. от resection - резекция гипертрофированного участка МЖП, plication - укорочение передней створки МК путем создания горизонтальной складки в ее основании, release — освобождение/иссечение аномальных прикреплений гипертрофированных папиллярных мышц).

При выявлении 2-уровневой обструкции (увеличенный ГД в ВТЛЖ и на уровне средней части полости ЛЖ) миоэктомия может быть расширена до середины полости ЛЖ и вокруг основания ПМ, однако данные о долгосрочном эффекте такого подхода ограничены.

В специализированных центрах, имеющих наибольший опыт по лечению пациентов с ГКМП, используется трансапикальный доступ, направленный на снижение ГД и уменьшение симтомов у пациентов среднежелудочковой ОГКМП. В редких случаях при 2- уровневой обструкции ЛЖ используют комбинированный трансапикальный+трансаортальный доступ или правожелудочковый и трансаортальный доступы [71, 343, 403].

При среднежелудочковой ОГКМП, при отсутствии выраженных аномалий митрального клапана может быть выполнена миоэктомия из правого желудочка трансвентрикулярным или транспредсердным доступом. Этот хирургический доступ имеет преимущество перед трансаортальным доступом у пациентов молодого возраста с выраженной гипертрофией МЖП вследствие более низкого риска развития АВБ [404, 405].

При выявлении двухжелудочковой обструкции (увеличенный ГД в ВТЛЖ > 50мм рт. ст. и увеличенный ГД в ВТПЖ > 16мм рт. ст.) может применяться комбинированный доступ: СМЭ трансаортальным доступом и РМЭ доступом со стороны ПЖ.

В специализированных центрах, имеющих наибольший опыт по лечению пациентов с ГКМП, при выявлении двухжелудочковой обструкции, при отсутствии аномалий подклапанных структур митрального клапана миоэктомия может быть выполнена доступом из ПЖ трансвентрикулярным или транспредсердным доступом [106, 321, 406-408].

Аномалии структур аппарата МК, ассоциированные с ГКМП, могут и должны быть устранены во время операции с целью снизить ГД в ВТЛЖ, не прибегая к замене митрального клапана.

Показателями эффективности процедуры РМЭ при ЭХОКГ являются:

1. контакт передней створки МК и МЖП (SAM-syndrome) отсутствует,

2. остаточный ГД в ВТЛЖ при провокации должен быть не более 20 мм рт. ст.

Уровень успеха и частота осложнений главным образом зависят от опыта хирурга или интервенционного кардиолога.

Пожелания пациента (после подробного обсуждения вариантов лечения) имеют значение для принятия окончательного решения.

Выбор метода редукции МЖП (СМЭ/РМЭ или САА) должен основываться на тщательном обследовании пациента и обсуждении мультидисциплинарной командой специалистов.

• Протезирование МК рекомендовано у симптомных пациентов с ГД в ВТЛЖ (в покое или максимальным провоцируемым) ≥ 50 мм рт.ст. и митральной регургитацией от средней до тяжелой степени, не вызванных изолированной ПСД створки МК [3, 4, 321].

#### ЕОК ПаС (УДД 5 УУР С)

**Комментарий:** дополнительные врожденные или приобретенные аномалии МК могут вызывать выраженную митральную регургитацию, которая не обусловлена исключительно ПСД МК. В этой ситуации пластика МК (пликация), как правило, не снижает степень регургитации, и устранение ее возможно лишь протезированием МК.

Рекомендуется рассмотреть возможность протезирования МК у пациентов с ГД в ВТЛЖ (в покое или максимальным провоцируемым) ≥ 50 мм рт.ст. и максимальной толщиной межжелудочковой перегородки ≤16 мм в месте митрально-септального контакта, если имеется митральная регургитация от средней до тяжелой степени после изолированной миоэктомии [4, 409, 410].

#### ЕОК IIbC (УДД 4 УУР C)

**Комментарий:** подобные случаи описаны у пациентов, оперированных в первые 2 десятилетия после применения процедуры «миэктомии по Morrow» (изолированной миоэктомии, 1958) [411].

Описаны также методики успешной коррекции обструкции ВТЛЖ и митральной недостаточности путем выполнения трансмитральной СМЭ с отсечением передней створки МК и выполнения СМЭ из ВТЛЖ с последующей пластикой или протезированием МК [405 412].

Для выполнения адекватной редукции МЖП при РМЭ рядом авторов рекомендовано применять различные технические приемы: мобилизация сердца, применение торакоскопии [388].

Специфического обезболивания при хирургических и инвазивных вмешательствах пациентам с ГКМП не требуется.

#### Рекомендации по ЭКС у пациентов с обструктивной ГКМП

• Рекомендуется рассмотреть возможность постоянной ЭКС\*\*\* оптимальным АВ-интервалом для снижения ГД в ВТЛЖ или для расширения возможности лекарственной терапии адреноблокатором и/или верапамилом\*\* у отдельных пациентов с ГД в ВТЛЖ (в покое или максимальным провоцируемым) ≥ 50 мм рт.ст., синусовым ритмом, симптомами, рефрактерными к лекарственной терапии, имеющими противопоказания к САА или СМЭ/РМЭ, или высокий риск развития АВ-блокады в результате САА или СМЭ/РМЭ [4, 214, 232, 305, 306, 308, 310, 413-415].

#### ЕОК ІІЬС (УДД 2 УУР В)

Комментарий: суть метода состоит в изменении последовательности распространения волны возбуждения — сокращение охватывает вначале верхушку желудочков, а затем МЖП, что приводит к уменьшению субаортального ГД благодаря запаздыванию и снижению регионарной сократимости МЖП и, как следствие, расширению ВТЛЖ. Этому способствует также запаздывание систолического движения кпереди передней створки МК и уменьшение его амплитуды. Важное значение имеет подбор наименьшей величины времени задержки нанесения желудочкового импульса после предсердного, которая обеспечивает преждевременную деполяризацию верхушки сердца, не приводя при этом к ухудшению внутрисердечной и центральной гемодинамики (сердечного выброса и АД).

В ряде случаев приходится прибегать к удлинению времени спонтанной AB-проводимости с помощью терапии бета-адреноблокатором или верапамилом\*\* и даже аблации AB-узла.

#### <u>Инвазивные методы лечения ФП пациентов с ГКМП</u>

• Рекомендовано рассмотреть возможность проведения радиочастотной аблации очага ФП пациентам с ГКМП, если ФП не может быть предотвращена антиаритмической терапией, или частота желудочковых сокращений не контролируется лекарственными препаратами, или ассоциирована с непереносимыми побочными действиями лекарственных препаратов [4, 111, 131, 314, 329, 359, 360, 364].

#### ЕОК ІІЬС (УДД 5 УУР С)

• Имплантация двухкамерного (DDD) электрокардиостимулятора\*\*\* с функцией переключения режима (после аблации AB-узла у пациентов ГКМП с ФВ ≥50%), рекомендуется при наличии пароксизмальной ФП, и однокамерного (VVIR) — при наличии персистирующей или постоянной формы [4, 232, 305, 314, 359, 360, 364, 41].

#### ЕОК ІС (УДД 5 УУР С)

• Пациентам с ГКМП, осложненной любой формой ФП, и ФВ <50% после аблации АВ-узла и при наличии показаний к сердечной ресинхронизирующей терапии рекомендовано рассмотреть возможность имплантации трехкамерного (бивентрикулярного) ЭКС\*\*\* [4, 20, 130, 359, 364].

#### ЕОК ІІЬС (УДД 5 УУР С)

• Рекомендовано рассмотреть возможность аблации очага ФП во время СМЭ/РМЭ у пациентов с ГКМП, осложненной симптомной ФП при наличии показаний и отсутствии противопоказаний [3, 4, 359, 364, 417-420].

#### ЕОК ІІЬС (УДД 5 УУР С)

#### Комментарий:

Радиочастотная аблация  $\Phi\Pi$  у пациентов с ГКМП менее успешна, чем без ГКМП.

- Предикторами неэффективности лечения ФП при ГКМП являются: дилатация ЛП, обструкция ВТЛЖ, длительность и тип ФП.
- Пациентам с ГКМП и ФП чаще требуются проведение повторных процедур. Ремоделирование предсердий, зависимое от ГКМП, может повлиять на исход, даже если процедура изначально успешна.

Операция Cox-Maze («Лабиринт») либо ее модификации с применением радиочастотной и крио-аблации представляется целесообразной как сопутствующая при СМЭ/РМЭ или протезировании митрального клапана у пациентов с ГКМП, осложненной ФП, рефрактерной к фармакотерапии.

АССГ/АНА (2011) рекомендуют операцию «Лабиринт» у отдельных пациентов с ФП как сопутствующую при СМЭ/РМЭ или протезировании МК (уровень IIaC). В рекомендациях ESC такой рекомендации нет.

Если операция «Лабиринт» показана, то выполняться она должна как сопутствующая, после консилиума мультидисциплинарной командой, хирургом, имеющим опыт выполнения подобного вмешательства.

В центрах, использующих операцию «лабиринт» (модификация III и IV), отмечают, что у пациентов с ГКМП это дополнительное при СМЭ/РМЭ вмешательство является безопасным и эффективным.

### <u>Рекомендации по сердечной ресинхронизирующей терапии у пациентов с ГКМП</u>

• Пациентам с ГКМП, максимальным ГД в ВТЛЖ <30 мм рт. ст., XCH II–IV ФК по NYHA, ФВЛЖ <50% и БЛНПГ с длительностью QRS >120 мс рекомендовано рассмотреть возможность сердечной ресинхронизирующей терапия для улучшения симптоматики[3, 4, 20, 130].

#### ЕОК ІІЬС (УДД 4 УУР С)

### <u>Рекомендации по практическим аспектам имплантации кардиовертера-дефибриллятора\*\*\*</u>

Алгоритм первичной и вторичной профилактики ВСС у пациентов с ГКМП представлен в таблице Приложение Б7.

Шкала оценки риска ВСС у пациентов с ГКМП (европейская модель) представлена в таблице П2, приложение Г2.

Шкала оценки риска ВСС у пациентов с ГКМП (американская модель) представлена в таблице П3, приложение Г2.

• Рекомендуется имплантация ИКД\*\*\* у пациентов с ГКМП, перенесших остановку сердца по причине ЖТ или ФЖ, или у пациентов со спонтанной устойчивой ЖТ, приводящей к потере сознания или нарушения гемодинамики, при ожидаемой продолжительности жизни >1 года [3, 4, 112, 113, 115-121, 125, 189, 207, 210, 259, 260, 265, 300, 323, 421-423].

#### ЕОК І В (УДД 5 УУР С)

**Комментарий:** Для верификации аритмии в отдельных случаях может выполняться инвазивное электрофизиологическое исследование.

• Пятилетний риск внезапной смерти необходимо оценивать при первоначальном обследовании пациента, а также каждые 1–2 года или при изменении клинического статуса [3, 4, 115, 171, 181, 300, 323, 424].

#### ЕОК І В (УДД 4 УУР С)

• Имплантация ИКД\*\*\* рекомендуется пациентам с предполагаемым 5-летним риском внезапной смерти ≥6% и ожидаемой продолжительностью жизни >1 года после подробного клинического обследования с оценкой риска последующих осложнений и влияния ИКД\*\*\* на образ жизни, социально-экономический статус и психологическое здоровье [115, 181, 189, 200, 201, 300, 323, 421, 424].

#### ЕОК IIa В (УДД 3 УУР A)

• Рекомендовано рассмотреть возможность имплантации ИКД\*\*\* в отдельных группах пациентов с 5-летним риском ВСС от ≥4 до <6% и ожидаемой продолжительностью жизни >1 года после подробного клинического обследования с оценкой риска последующих осложнений и влияния ИКД\*\*\* на образ жизни, социально-экономический статус и психологическое здоровье [115, 171, 189, 181, 323, 424].

#### ЕОК IIb В (УДД 4 УУР C)

• Рекомендуется рассмотреть возможность имплантации ИКД\*\*\* у отдельных пациентов с 5-летним риском ВСС <4% при наличии

клинических характеристик с доказанным прогностическим значением, и в случаях, когда в результате оценки риска последующих осложнений и влияния ИКД\*\*\* на образ жизни, социально-экономический статус и психологическое здоровье предполагается общее положительное влияние имплантации ИКД\*\*\* [3, 4, 84, 115, 181, 189, 200, 201, 228, 323, 424].

#### ЕОК IIb В (УДД 4 УУР C)

**Комментарий:** американская модель позволяет оценивать риск ВСС у пациентов с низким/средним риском.

Последние литературные данные показывают, что наличие распространенного фиброза, оцениваемого по ПНГ при МРТ (>15%) является предиктором риска ВСС при ГКМП. Этот показатель не входит в европейскую модель стратификации риска, однако если у пациента низкий или средний риск ВСС (<6%), а при МРТ площадь фиброза >15% - это является дополнительным аргументом в пользу имплантации ИКД\*\*\* [115, 228, 231].

#### <u>Рекомендации по имплантации вспомогательных</u> <u>левожелудочковых устройств</u>

• Рекомендуется рассмотреть возможность терапии путем имплантации устройств механической поддержки кровообращения на период нахождения в листе ожидания для некоторых пациентов с терминальной стадией ХСН, которые могут рассматриваться как кандидаты для трансплантации сердца [211, 253, 425, 426].

#### ЕОК ІІЬС (УДД 4 УУР С)

**Комментарий:** в мировой практике 50% операций по пересадке сердца выполняются на фоне предшествующей имплантации устройств механической поддержки кровообращения [253].

#### Трансплантация сердца у пациентов с ГКМП

• Ортотопическая трансплантация сердца рекомендована для пациентов с ГКМП, имеющих ФВЛЖ <50% и симптомы III–IV ФК по NYHA, или неустранимые желудочковые аритмии, несмотря на оптимальную терапию при наличии показаний и отсутствие противопоказаний для трансплантации [97, 98, 168, 253, 255, 257, 425, 427].

#### ЕОК IIaB (УДД 4 УУР C)

**Комментарий:** описана трансформация ГКМП в смешанный фенотип (ГКМП + ДКМП), согласно классстфикации MOGE(s), так называемая дилатационная стадия ГКМП [43].

Трансплантация сердца может быть жизненно важной стратегией лечения при ГКМП в конечной стадии заболевания.

Плохой краткосрочный прогноз у пациентов с дилатационной стадией ГКМП предполагает целесообразность более раннего рассмотрения агрессивных методов лечения, поскольку «окно возможностей» может быть небольшим, особенно у пациентов с семейным анамнезом развития дилатационной стадии ГКМП.

Заключение, что у пациента развивается дилатация ЛЖ, следует основывать на динамике размеров ЛЖ. Даже «нормальные» размеры ЛЖ могут означать «дилатационную стадию», например, в динамике КДРлж  $35 \text{ мм} \rightarrow 55 \text{ мм}$  (при условии корректного измерения).

Посттрансплантационная выживаемость у пациентов с ГКМП сходна с таковой при трансплантации сердца по другим поводам [255, 257, 425, 427].

• Рекомендовано рассмотреть возможность ортотопической трансплантации сердца для пациентов с ФВ ЛЖ ≥ 50% и симптомами ХСН III–IV ФК (NYHA), вызванной диастолической дисфункцией, резистентной к лекарственной терапии при наличии показаний и отсутствии противопоказаний для трансплантации [97, 98, 168, 253, 425, 427].

#### ЕОК IIIB (УДД 4 УУР C)

**Комментарий:** кроме дилатационной стадии, при ГКМП тяжелая степень ХСН может наблюдаться при другом варианте негативного ремоделирования — смешанном фенотипе (ГКМП+РКМП).

**Итоговый алгоритм** врачебной тактики в зависимости от стадии ГКМП и варианта клинического течения представлен в Приложении Б9.

#### 3.3. Беременность и роды у пациенток с ГКМП

#### Изменения гемодинамики при беременности

Беременность, как правило, усугубляет существенно не гемодинамические расстройства при ГКМП, поэтому исходно бессимптомные и малосимптомные пациентки с ГКМП переносят беременность хорошо. Однако некоторых V пациенток и нейрогуморальные факторы гестационного гемодинамические периода могут провоцировать развитие нарушений ритма и ХСН.

У беременных с обструктивной формой ГКМП степень обструкции ВТЛЖ может как увеличиться (из-за обычного для беременности увеличения УО, ЧСС, небольшого снижения АД вследствие снижения общего периферического сопротивления), так и снизиться (из-за небольшого увеличения диастолического размера ЛЖ и увеличения диаметра ВТЛЖ) [3, 4, 428-430].

#### Рекомендации при планировании беременности

• При планировании беременности и наличии ГКМП в семье одного из родителей рекомендована консультация врача-генетика для оценки риска передачи заболевания потомству [29, 30, 174, 428-431].

#### ЕОК ІС (УДД 5 УУР С)

• При планировании беременности пациенткам с ГКМП и обструкцией выносящего тракта ЛЖ с наличием синкопальных состояний и/или жизнеугрожающих нарушений ритма рекомендовано решить вопрос о предварительной хирургической коррекции ГКМП [3, 4, 366, 428, 432].

#### ЕОК ІС (УДД 5 УУР С)

• Экстракорпоральное оплодотворение не рекомендовано (противопоказано) женщинам, у которых ГКМП осложнилась ХСН, ФП, рестриктивным типом наполнения ЛЖ, а также с выраженной гипертрофией ЛЖ [4, 428, 430-433].

#### ЕОК ІС (УДД 5 УУР С)

#### Тактика ведения беременности при ГКМП

• Если ГКМП диагностирована до беременности или в сроки до 12 недель, а также при подозрении на ГКМП, рекомендована госпитализация женщины в кардиологическое отделение с целью уточнения диагноза, решения вопроса о пролонгировании беременности и, в случае необходимости, лечения [3, 4, 30, 429, 432].

#### ЕОК ІС (УДД 5 УУР С)

• При беременности пациенткам с ГКМП стратификацию материнского риска рекомендовано проводить, используя модифицированную классификацию ВОЗ материнского риска [3, 4, 429, 430-433].

#### ЕОК ІС (УДД 5 УУР С)

Комментарий: в идеале оценка риска должна проводиться до зачатия.

• У пациенток с ГКМП терапию бета-адреноблокатором рекомендовано продолжить, если они принимали их до беременности [3, 4, 366, 428, 432, 433].

#### ЕОК IIC (УДД 3 УУР В)

• Терапию бета-адреноблокатором рекомендовано начать беременной женщине с ГКМП и симптомами обструкции ВТЛЖ или нарушениями ритма сердца [3, 4, 366, 428, 432, 433].

#### ЕОК ІС (УДД 5 УУР С)

• При терапии бета-адреноблокатором рекомендовано контролировать состояние и темп роста плода [3, 4, 366, 428-433].

#### ЕОК ІС (УДД 5 УУР С)

• Беременным с ГКМП при развитии ФП рекомендовано проведение кардиоверсии [3, 4, 428, 434].

#### ЕОК IIC (УДД 4 УУР C)

• Беременным с ГКМП и ФП рекомендована антикоагулянтная терапия (выбор препарата — гепарин натрия (нефракционированный или низкомолекулярный) или варфарин\*\* — зависит от срока беременности). Использование дабигатрана этексилата\*\* или ривароксабана\*\*, или апиксабана\*\* не рекомендуется [3, 4, 366, 428, 430, 432].

#### ЕОК ІС (УДД 5 УУР С)

• Терапию варфарином\*\* при ФП у беременных рекомендовано начинать со 2 триместра (в первом триместре возможен тератогенный эффект) и закончить за 1 месяц до родов [3, 4, 428, 430, 432].

#### ЕОК ІВ (УДД 5 УУР С)

**Комментарий:** рекомендуемые режимы антикоагулянтной терапии при ГКМП у беременных с  $\Phi\Pi$  и опасности, связанные с терапией варфарином\*\*, представлены в таблице 4, Приложение A3.

• Большинству беременных с ГКМП рекомендовано программируемое родоразрешение через естественные родовые пути [3, 4, 428, 429, 430, 432].

#### ЕОК ІС (УДД 5 УУР С)

#### Комментарий:

- Врачебная тактика ведения беременности и родоразрешения представлена в Приложении Б 12
- Выбор медицинского учреждения для ведения беременных и родоразрешения представлен в Приложении Б 13.
- Ограничения в выборе методов диагностики у беременных представлены в таблице П 12, Приложение Г1.
- При ведении беременности и родов интересы матери должны доминировать.
- Большинство женщин с неосложненной ГКМП относятся по модифицированной классификации ВОЗ материнского риска к классу II (ВОЗ II). Часть симптомных пациенток относится к ВОЗ III; они должны

наблюдаться в специализированных учреждениях (см. Приложение Б 13).

- Женщины с ГКМП, осложненной ХСН и дисфункцией ЛЖ (дилатационная стадия или присоединение рестриктивного фенотипа), относятся к классу IV материнского риска, и им беременность противопоказана.
- При выраженной симптомной обструкции ВТЛЖ (также относятся к классу IV ВОЗ) беременность может стать возможной после предварительной коррекции обструкции ВТЛЖ.
- Терапию бета-адреноблокатором (метопролол\*\*, резервный бисопролол\*\*) беременным с ГКМП необходимо осуществлять под контролем ЧСС и АД, т.к. чрезмерное снижение АД может привести к уменьшению маточно-плацентарного кровотока и задержке внутриутробного развития плода [3, 4, 428].
- Контрацепция у женщин с бессимптомной или малосимптомной ГКМП не имеет каких-либо особенностей по сравнению со здоровыми.
- Если ГКМП осложнилась ХСН и ФП, то следует с осторожностью использовать пероральные контрацептивы из-за риска тромбоэмболий. Их использование возможно при адекватной антикоагулянтной терапии [3, 4, 428-430].

### 4. Реабилитация

Специальных рекомендаций по реабилитации пациентов с ГКМП не существует. После хирургического или эндоваскулярного вмешательства пациентам с ГКМП проводятся такие же реабилитационные мероприятия, как и пациентам с другой сердечно-сосудистой патологией, перенесшим хирургические или эндоваскулярные вмешательства.

### 5. Профилактика

Профилактики ГКМП как заболевания не существует.

Профилактические мероприятия у пациентов с ГКМП заключаются в профилактике основных осложнений заболевания, которые представлены в таблице ПЗ, Приложение ГЗ.

Общие рекомендации по образу жизни пациенту с ГКМП представлены в Приложении В.

#### Диспансерное наблюдение пациентов с ГКМП

Пациенты с ГКМП нуждаются в пожизненном наблюдении для выявления изменений в симптоматике и предупреждения осложнений.

На начальном этапе медикаментозного лечения плановые повторные визиты к врачу желательно проводить через 6, 9, 12 месяцев (при необходимости чаще) для оценки переносимости, эффективности и безопасности лечения, а также контроля выполнения врачебных рекомендаций. недостаточной эффективности И При плохой переносимости проводимого медикаментозного лечения рекомендована замена используемого лекарственного препарата с последующим контролем проводимого лечения.

• Всем пациентам с ГКМП, включая носителей патологических мутаций без фенотипических проявлений болезни и пациентов с бессимптомным течением заболевания, рекомендовано динамическое наблюдение, в ходе которого оценивается характер и выраженность клинических, морфологических и гемодинамических нарушений и определяется лечебная стратегия [3, 4, 116, 145, 146, 332, 356, 358].

#### ЕОК ІВ (УДД 5 УУР С)

• У клинически стабильных пациентов рекомендуются повторные ТТ-ЭХОКГ каждые 1–2 года [3, 4, 116, 145, 146, 178, 184, 200, 216, 356, 332, 358, 435].

#### ЕОК ІС (УДД 5 УУР С)

#### Консенсус экспертов EACVI 2015

• Повторные ЭХОКГ-исследования рекомендуются пациентам с ГКМП с изменениями в клиническом статусе или появлением новых сердечнососудистых проявлений [3, 4, 116, 145, 146, 178, 184, 200, 356, 332, 358, 435].

#### ЕОК ІВ (УДД 5 УУР С)

• 48-часовое ХМЭКГ рекомендуется каждые 12–24 месяца клинически стабильным пациентам, каждые 6–12 — месяцев пациентам с синусовым ритмом и размером ЛП ≥45 мм или при появлении новых жалоб на сердцебиения [3, 4, 112, 181, 184, 314, 421].

#### ЕОК ІС (УДД 5 УУР С)

• Рекомендовано рассмотреть возможность проведения нагрузочного тестирования каждые 2–3 года для клинически стабильных пациентов и каждый год — при прогрессировании симптомов [3, 4, 209, 216, 269].

#### ЕОК ІІЬС (УДД 5, УУР С)

• Рекомендовано рассмотреть возможность проведения МРТ сердца каждые 5 лет для клинически стабильных пациентов и каждые 2–3 года — пациентам с прогрессированием заболевания [4, 216, 237].

#### ЕОК ІІЬС (УДД 5 УУР С)

#### Консенсус экспертов EACVI 2015

• Полное обследование, включающее ЭКГ и ТТ-ЭХОКГ и ХМЭКГ, рекомендуется в течение 1–3 месяцев и 6–12 месяцев после проведения редукции МЖП [4].

#### ЕОК (УДД 5 УУР С)

**Комментарий:** неотъемлемой частью мероприятий при лечении и динамическом наблюдении за пациентами с ГКМП должно быть повышение их образовательного уровня. Если даже врач разработает оптимальную программу лечения для каждого конкретного пациента, провести ее в жизнь будет весьма сложно при наличии низкой мотивации к лечению. Все применяемые методы лечения и профилактики должны быть обсуждены и согласованы с пациентом. При выборе режима назначения препарата необходимо учитывать образ жизни пациента. Все рекомендации, даваемые пациенту, должны быть ясными, четкими и соответствовать его интеллектуальному уровню.

Для некоторых пациентов, которым устных рекомендаций недостаточно, следует рассмотреть возможность продублировать их в письменном виде для обеспечения осознанного участия пациента в лечебнопрофилактическом процессе и повышения эффективности лечения [3, 4].

# **Организация оказания медицинской помощи**

• Пациентам с неочевидным диагнозом, тяжелыми симптомами или повышенным риском связанных с заболеванием осложнений

рекомендуется обследование и лечение у специалистов мультидисциплинарной команды, экспертов в ведении ГКМП [3, 4, 436].

#### ЕОК IIbC (УУР C, УДД 5)

• Независимо от выраженности симптомов рекомендуется регулярное обследование пациентов и, при возможности, родственников первой степени родства [3, 4, 11, 27, 116, 145, 146, 178, 184, 200, 332, 356, 43].

#### ЕОК ІС (УДД 4 УУР С)

• Рекомендовано во всех случаях ГКМП клиницистам планировать обследование и лечение пациентов в центрах с мультидисциплинарной командой специалистов, с опытом диагностики и лечения заболеваний миокарда [3, 4, 436].

#### ЕОК ПаС (УДД 5 УУР С)

# Показания к плановой госпитализации в медицинскую организацию

- 1. Уточнение причины ГЛЖ неясного генеза и необходимость в специальных методах исследования (исключение фенокопий ГКМП).
- 2. Использование диагностических процедур, проведение которых невозможно или нецелесообразно в условиях поликлиники.
- 3. Трудности в подборе медикаментозной терапии для коррекции синдромов (из-за сочетания патологий ГКМП/ОГКМП + АГ, ГКМП + СД 2 типа, синдром стенокардии).
- 4. Назначение бета-адреноблокаторов, верапамила\*\*: их комбинации рекомендуется начинать в условиях стационара с малых доз, проводить титрование до максимально переносимых доз под контролем самочувствия и ЭКГ.
- 5. Рефрактерность к проводимой в полном объеме фармакотерапии и наличие показаний к СМЭ/РМЭ, САА, ЭКС.

# Показания к экстренной госпитализации в медицинскую организацию

- 1. Прогрессия ХСН, требующая интенсивной терапии.
- 2. Отек легких.
- 3. Инсульт.
- 4. Опасные для жизни нарушения сердечного ритма и проводимости, требующие интенсивной терапии.
- 5. Синкопальные состояния.
- 6. OKC.
- 7. Предотвращенная ВСС.

#### Показания к выписке пациента из медицинской организации

- 1. При плановой госпитализации показанием к выписке пациента с ГКМП является улучшение клинической симптоматики на фоне проводимой фармакотерапии, имплантации ИКД\*\*\*, ЭКС\*\*\*/ ДЭКС\*\*\*, эндоваскулярного/хирургического лечения (СМЭ/РМЭ, САА)
- 2. При экстренной госпитализации показанием к выписке пациента с ГКМП является коррекция нарушений ритма и проводимости, в том числе фатальных, отсутствие осложнений требующих, интенсивной терапии и стабилизация ХСН.
- 3. Нормализация показателей (целевые уровни АД, гликемии, липидограммы) при, соответственно АГ, СД тип 1 или тип 2, дислипидемии, если ухудшение в течение этих заболеваний явилось основанием для плановой или экстренной госпитализации пациентов с ГКМП в сочетании с коморбидной патологией
- 4. При синдроме стенокардии показанием для выписки пациента с ГКМП является достижение стабилизации состояния пациента с ГКМП на фоне фармакотерапии, эндоваскулярного / хирургического лечения (АКШ)
- 5. Установление диагноза фенокопий ГКМП, выписка/перевод пациента в специализированные отделения для этиопатогенетического лечения (например, в гематологическое отделение при AL-амилоидозе с изолированным/ преимущественным поражением сердца)

#### Иные организационные технологии

Целесообразно создание территориальных регистров пациентов с ГКМП.

При анализе работы ЛПУ с пациентами с ГКМП целесообразно оценивать следующие показатели:

- соотношение ГКМП и фенокопий ГКМП, этиологический спектр фенокопий ГКМП;
- соотношение обструктивных и необструктивных форм ГКМП;

соотношение семейных и спорадических случаев заболевания;

- частоту госпитализаций в связи с прогрессированием XCH, ФП, ОКС, случаи BCC;
- потребность в ЭКГ, ЭХОКГ, МРТ, КТ, коронарографии для выполнения рекомендаций по динамическому наблюдению и обследованию пробанда и родственников пациентов первой линии родства;
- смертность (%), осложнения (%) за год, 3 года, 5 лет;
- частоту выявления факторов кардиометаболического риска (АГ, дислипидемия, ожирение/избыточный вес, СД 1 и 2 типа) в разных возрастных группах ГКМП;

- результаты мониторирования потенциально модифицируемых факторов: антропометрических данных (ИМТ, ОТ), показателей липидного профиля, уровня гликемии) в разных возрастных группах пациентов.

### 6. Дополнительная информация, влияющая на течение и исход заболевания

Другими важными целями при лечении ГКМП являются:

- коррекция всех потенциально модифицируемых факторов риска (курение, дислипидемия, гипергликемия, ожирение);
- лечение сопутствующих заболеваний в соответствие с национальными клиническими рекомендациями (ИБС, АГ, СД, ХБП).

# Критерии оценки качества медицинской помощи

| Nō | Критерий качества                                                                                                                                                                                                                                                                                                                               | ЕОК<br>Класс и<br>уровень | УДД | УУР | Да\нет |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----|--------|
| 1  | Выполнены ЭКГ и ТТ-ЭХОКГ                                                                                                                                                                                                                                                                                                                        | IB                        | 1   | В   | Да/Нет |
| 2  | Выполнено МРТ сердца с контрастированием или КТ сердца с контрастированием при наличии медицинских показаний и при отсутствии противопоказаний. В случае отсутствия возможности выполнения этих методов исследования в медицинском учреждение пациент направлен в специализированный кардиологический центр для выполнения данных исследований. | IC                        | 5   | С   | Да/Нет |
| 3  | Выполнено ХМЭКГ                                                                                                                                                                                                                                                                                                                                 | ІВ                        | 1   | В   | Да/Нет |
| 4  | Выполнены анализы:<br>клинический анализ крови и общий анализ мочи,<br>биохимический анализ крови (включая холестерин,<br>триглицериды, калий, натрий, АСТ, АЛТ, мочевину,<br>креатинин, билирубин, глюкозу)                                                                                                                                    | IC                        | 5   | С   | Да/Нет |
| 5  | Проведена стратификация риска у пациентов с ГКМП со средним и низким риском ВСС, а также у пациентов с ОГКМП, перенесших СМЭ/РМЭ (американская модель). Определены показания к ИКД*** в зависимости от медицинских показаний и при отсутствии медицинских противопоказаний                                                                      | IB                        | 1   | В   | Да/Нет |
| 6  | Проведена стратификация риска у пациентов с ГКМП и высоким риском ВСС, а также у пациентов с ОГКМП, перенесших САА (европейская модель, шкала HCM Risk-SCD). Определены показания к ИКД*** в зависимости от медицинских показаний и при отсутствии медицинских противопоказаний                                                                 | IB                        | 1   | В   | Да/Нет |
| 7  | Проведена терапия бета- адреноблокатором, и/или блокаторами «медленных» кальциевых каналов, и/ или АКФ ингибиторами, и/или диуретиками (в режиме монотерапии или в режиме комбинированной терапии) в зависимости от медицинских показаний и при отсутствии медицинских противопоказаний                                                         | IC                        | 1   | С   | Да/Нет |
| 8  | Проведена стратификация материнского риска беременной пациентки с ГКМП, с использованием модифицированной классификации ВОЗ материнского риска                                                                                                                                                                                                  | IC                        | 5   | С   | Да/Нет |
| 9  | Пациент с ГКМП находится под диспансерным<br>наблюдением в поликлинике                                                                                                                                                                                                                                                                          | IB                        |     |     | Да/Нет |

### Список литературы

- 1. Габрусенко С.А., Селезнёв Д.М., Наумов В.Г. Генетические аспекты гипертрофической кардиомиопатии (обзор литературы) // Практикующий врач. 2000. Т. 18.  $\mathbb{N}^2$  2. С. 2–5.
- 2. Шляхто Е.В. и др. Первичные кардиомиопатии, современное представление // Терапевтический архив. 2005. Т. 77. № 12. С. 77–83.
- 3. Gersh B.J. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: Executive summary: A report of the American College of cardiology foundation/American heart association task force on practice guidelines // Circulation. 2011. Vol. 124,  $N^{\circ}$  24. P. 2761–2796.
- 4. Elliott P. et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC) // Eur. Heart J. 2014. Vol. 35,  $N^{\circ}$  39. P. 2733–2779.
- 5. Alfares A.A. et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity // Genet. Med. 2015. Vol. 17, Nº 11. P. 880–888.
- 6. Coats C.J., Elliott P.M. Genetic biomarkers in hypertrophic cardiomyopathy // Biomark. Med. 2013. Vol. 7, Nº 4. P. 505–516.
- 7. Elliott P., McKenna W.J. Hypertrophic cardiomyopathy // Lancet. 2004. Vol. 363,  $N^{\circ}$  9424. P. 1881–1891.
- 8. Kelly M.A. et al. Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: Recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel // Genet. Med. 2018. Vol. 20, Nº 3. P. 351–359.
- 9. Kokado H. et al. Clinical features of hypertrophic cardiomyopathy caused by a Lys183 deletion mutation in the cardiac troponin I gene // Circulation. 2000. Vol. 102,  $N^{o}$  6. P. 663–669.
- 10. Kostareva A. et al. Deletion in TNNI3 gene is associated with restrictive cardiomyopathy // Int. J. Cardiol. 2009. Vol. 131,  $N^{\circ}$  3. P. 410–412.
- 11. Maron B.J. Hypertrophic Cardiomyopathy: A Systematic Review // JAMA. 2002. Vol. 287, № 10. P. 1308–1320.
- 12. Maron B.J. et al. Moving Beyond the Sarcomere to Explain Heterogeneity in Hypertrophic Cardiomyopathy: JACC Review Topic of the Week // J. Am. Coll. Cardiol. 2019. Vol. 73, Nº 15. P. 1978–1986.

- 13. Mogensen J. et al. Frequency and Clinical Expression of Cardiac Troponin I Mutations in 748 Consecutive Families With Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2004. Vol. 44. P. 2315–2325.
- 14. Селезнёв Д.М. и др. Роль мутаций в гене тяжелой цепи сердечного бета-миозина в российской популяции больных с гипертрофической кардиомиопатией // Кардиология. 2005. Т. 45. № 4. С. 15–20.
- 15. Туральчук М.В., Новик Г.А., Гудкова А.Я. Особенности течения кардиомиопатий с рестриктивным фенотипом, обусловленных мутациями генов сердечного тропонина I и десмина, и алгоритмы их диагностики // Педиатрическая фармакология. 2011. Т. 8. № 4. С. 112–116.
- 16. Burton D. et al. Two mutations in troponin I that cause hypertrophic cardiomyopathy have contrasting effects on cardiac muscle contractility // Biochem. J. 2002. Vol. 362,  $N^{\circ}$  2. P. 443–451.
- 17. Zhou N. et al. Whole-exome sequencing identifies rare compound heterozygous mutations in the MYBPC3 gene associated with severe familial hypertrophic cardiomyopathy // Eur. J. Med. Genet. 2018. Vol. 61,  $N^{o}$  8. P. 434–441.
- 18. Charron P. et al. Accuracy of European diagnostic criteria for familial hypertrophic cardiomyopathy in a genotyped population // Int. J. Cardiol. 2003. Vol. 90, Nº 1. P. 33–38.
- 19. Lopes L.R. et al. Use of high-throughput targeted exome-sequencing to screen for copy number variation in hypertrophic cardiomyopathy // Eur. J. Med. Genet. 2015. Vol. 58,  $N^{\circ}$  11. P. 611-616.
- 20. Brignole M. et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association // Europace. 2013. Vol. 15,  $N^{\circ}$  8. P. 1070–1118.
- 21. Hiemstra Y.L. et al. Development of and Progression of Overt Heart Failure in Nonobstructive Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2018. Vol. 122,  $N^{\circ}$  4. P. 656–662.
- 22. Ho C.Y. et al. The burden of early phenotypes and the influence of wall thickness in hypertrophic cardiomyopathy mutation carriers: Findings from the HCMNet study // JAMA Cardiol. 2017. Vol. 2, Nº 4. P. 419–428.
- 23. Hodatsu A. et al. Compound heterozygosity deteriorates phenotypes of hypertrophic cardiomyopathy with founder MYBPC3 mutation: Evidence from patients and zebrafish models // Am. J. Physiol. Hear. Circ. Physiol. 2014. Vol. 307,  $N^{\circ}$  11. P. H1594–H1604.

- 24. Horimoto M. et al. Development of obstructive hypertrophic cardiomyopathy from nonobstructive hypertrophic cardiomyopathy // Am. J. Cardiol. 1998. Vol. 82,  $N^{\circ}$  3. P. 403–405.
- 25. Ansari-Lari M.A., Ali S.Z. Fine-Needle Aspiration of Abdominal Fat Pad for Amyloid Detection: A Clinically Useful Test? // Diagn. Cytopathol. 2004. Vol. 30, Nº 3. P. 178–181.
- 26. Canepa M. et al. Comparison of clinical presentation, left ventricular morphology, hemodynamics, and exercise tolerance in obese versus nonobese patients with hypertrophic cardiomyopathy // Am. J. Cardiol. 2013. Vol. 112,  $N^{\circ}$  8. P. 1182–1189.
- 27. Charron P. et al. Genetic counselling and testing in cardiomyopathies: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases // Eur. Heart J. 2010. Vol. 31,  $N^{\circ}$  22. P. 2715–2728.
- 28. Finocchiaro G. et al. Impact of demographic features, lifestyle, and comorbidities on the clinical expression of hypertrophic cardiomyopathy // J. Am. Heart Assoc. 2017. Vol. 6, Nº 12. P. e007161.
- 29. Bos J.M., Ommen S.R., Ackerman M.J. Genetics of hypertrophic cardiomyopathy: one, two, or more diseases? // Curr. Opin. Cardiol. 2007. Vol. 22,  $N^{\circ}$  3. P. 193–199.
- 30. Richards S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology // Genet. Med. 2015. Vol. 17,  $N^{\circ}$  5. P. 405–424.
- 31. Marian A.J., Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy // Circ. Res. 2017. Vol. 121,  $N^{\circ}$  7. P. 749–770.
- 32. Бокерия Л.А. и др. Экспрессия генов матриксной металлопротеиназы-1 (ММР-1), тканевого ингибитора матриксных металлопротеиназ-1 (ТІМР-1), коллагена I и III типов в миокарде больных идиопатической гипертрофической кардиомиопатией // Бюллетень НЦССХ им. А.Н. Бакулева РАМН. 2005. Т. 6. № 4. С. 35–42.
- 33. Гудкова А.Я. и др. Гипертрофическая кардиомиопатия. Клиникоморфологические сопоставления // Архив патологии. 2012. Т. 74. № 4. С. 8–11.
- 34. Гудкова А.Я. Характеристика течения обструктивной гипертрофической кардиомиопатии у взрослых (обзор литературы и результаты собственных исследований) // Артериальная гипертензия. 2008. Т. 14. № 2, Приложение 2. С. 39–49.

- 35. Гудкова А.Я., Шляхто Е.В. Клеточные механизмы гипертрофии миокарда при гипертрофической кардиомиопатии и эссенциальной артериальной гипертензии // Артериальная гипертензия. 2008. Т. 14. № 4. С. 364–380.
- 36. Shlyakhto E. V. et al. Cellular aspects of pathogenesis of hypertrophic cardiomyopathy: Role of cardiomyocyte polyploidy and activation of nuclear antigen of the proliferating cell in myocardium // Cell tissue biol. 2007. Vol. 1,  $N^{\circ}$  6. P. 582–588.
- 37. Frustaci A., Russo M.A., Chimenti C. Diagnostic contribution of left ventricular endomyocardial biopsy in patients with clinical phenotype of hypertrophic cardiomyopathy // Hum. Pathol. 2013. Vol. 44, № 1. P. 133–141.
- 38. Leone O. et al. 2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology // Cardiovasc. Pathol. 2012. Vol. 21,  $N^{\circ}$  4. P. 245–274.
- 39. Philipson D.J. et al. Emerging pharmacologic and structural therapies for hypertrophic cardiomyopathy // Heart Fail. Rev. 2017. Vol. 22, Nº 6. P. 879–888.
- 40. Roberts R., Sigwart U. Current concepts of the pathogenesis and treatment of hypertrophic cardiomyopathy // Circulation. 2005. Vol. 112,  $N^{\circ}$  2. P. 293–296.
- 41. Varnava A.M. et al. Hypertrophic cardiomyopathy: The interrelation of disarray, fibrosis and small vessel disease // Heart. 2000. Vol. 84, Nº 5. P. 476–482.
- 42. Зайцев В.В. и др. Клиническое значение различных методов оценки миокардиального фиброза при гипертрофической кардиомиопатии // Кардиология. 2020. Т. 60. № 3. С. 44–50.
- 43. Arbustini E. et al. The MOGE(S) classification for a phenotype-genotype nomenclature of cardiomyopathy: Endorsed by the world heart federation // J. Am. Coll. Cardiol. 2013. Vol. 62, Nº 22. P. 2046–2072.
- 44. Barcia G. et al. Pitfalls in molecular diagnosis of Friedreich ataxia // Eur. J. Med. Genet. 2018. Vol. 61,  $N^{\circ}$  8. P. 455-458.
- 45. Bokhari S. et al. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses // Circ. Cardiovasc. Imaging. 2013. Vol. 6,  $N^{\circ}$  2. P. 195–201.
- 46. Charron P. et al. Danon's disease as a cause of hypertrophic cardiomyopathy: A systematic survey // Heart. 2004. Vol. 90, № 8. P. 842–846.
- 47. Cook A., Giunti P. Friedreich's ataxia: Clinical features, pathogenesis and management // Br. Med. Bull. 2017. Vol. 124,  $N^{\circ}$  1. P. 19–30.

- 48. D'souza A. et al. Localized insulin-derived amyloidosis: A potential pitfall in the diagnosis of systemic amyloidosis by fat aspirate // Am. J. Hematol. 2012. Vol. 87, № 11. P. E131-132.
- 49. Dubrey S.W., Hawkins P.N., Falk R.H. Amyloid diseases of the heart: Assessment, diagnosis, and referral // Heart. 2011. Vol. 97, Nº 1. P. 75–84.
- 50. Frustaci A. et al. Evolution of cardiac pathology in classic Fabry disease: Progressive cardiomyocyte enlargement leads to increased cell death and fibrosis, and correlates with severity of ventricular hypertrophy // Int. J. Cardiol. 2017. Vol. 248. P. 257–262.
- 51. Monserrat L. et al. Prevalence of Fabry Disease in a Cohort of 508 Unrelated Patients With Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2007. Vol. 50,  $N^{\circ}$  25. P. 2399–2403.
- 52. Planté-Bordeneuve V., Said G. Familial amyloid polyneuropathy // Lancet Neurol. 2011. Vol. 10, Nº 12. P. 1086–1097.
- 53. Quarta C.C. et al. Defining the diagnosis in echocardiographically suspected senile systemic amyloidosis // JACC Cardiovasc. Imaging. 2012. Vol. 5,  $N^{\circ}$  7. P. 755–758.
- 54. European Reference Networks in the Field of Rare Diseases: State of the Art and Future Directions. Third Report [Electronic resource]. 2008. URL: http://www.eucerd.eu/?post\_type=document&p=1204.
- 55. Sado D.M. et al. Identification and assessment of anderson-fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping // Circ. Cardiovasc. Imaging. 2013. Vol. 6,  $N^{\circ}$  3. P. 392–398.
- 56. Tsai S.B. et al. Myocardial infarction with "clean coronaries" caused by amyloid light-chain AL amyloidosis: A case report and literature review // Amyloid. 2011. Vol. 18,  $N^{o}$  3. P. 160–164.
- 57. Vogelsberg H. et al. Cardiovascular Magnetic Resonance in Clinically Suspected Cardiac Amyloidosis. Noninvasive Imaging Compared to Endomyocardial Biopsy // J. Am. Coll. Cardiol. 2008. Vol. 51, Nº 10. P. 1022–1030.
- 58. Wilkinson J.D. et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: A study from the Pediatric Cardiomyopathy Registry // Am. Heart J. 2012. Vol. 164,  $N^{\circ}$  3. P. 442–448.
- 59. Yang Z., Vatta M. Danon disease as a cause of autophagic vacuolar myopathy // Congenit. Heart Dis. 2007. Vol. 2, Nº 6. P. 404–409.
- 60. Yang Z. et al. Danon Disease as an Underrecognized Cause of Hypertrophic Cardiomyopathy in Children // Circulation. 2005. Vol. 112,  $N^{o}$  11. P. 1612–1617.

- 61. Ibrahim M. et al. Modern Management of Systolic Anterior Motion of the Mitral Valve // Eur J Cardiothorac Surg. 2012. Vol. 41. P. 60–70.
- 62. Deng L. et al. Numerical simulation study on systolic anterior motion of the mitral valve in hypertrophic obstructive cardiomyopathy // Int. J. Cardiol. 2018. Vol. 266. P. 167–173.
- 63. Manabe S. et al. Management of systolic anterior motion of the mitral valve: a mechanism-based approach // Gen. Thorac. Cardiovasc. Surg. 2018. Vol. 66,  $N^{\circ}$  7. P. 379–389.
- 64. Ro R. et al. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic left ventricular flow and the mitral valve // J. Am. Coll. Cardiol. 2014. Vol. 64, № 19. P. 1984–1995.
- 65. Hymel B.J., Townsley M.M. Echocardiographic assessment of systolic anterior motion of the mitral valve // Anesth. Analg. 2014. Vol. 118,  $N^{\circ}$  6. P. 1197–1201.
- 66. Sherrid M. V. et al. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2000. Vol. 36,  $N^{o}$  4. P. 1344–1354.
- 67. Silbiger J.J. Abnormalities of the Mitral Apparatus in Hypertrophic Cardiomyopathy: Echocardiographic, Pathophysiologic, and Surgical Insights // J. Am. Soc. Echocardiogr. 2016. Vol. 29, Nº 7. P. 622–639.
- 68. Shah J.S. et al. Prevalence of exercise-induced left ventricular outflow tract obstruction in symptomatic patients with non-obstructive hypertrophic cardiomyopathy // Heart. 2008. Vol. 94, Nº 10. P. 1288–1294.
- 69. Geske J.B. et al. Variability of left ventricular outflow tract gradient during cardiac catheterization in patients with hypertrophic cardiomyopathy // JACC Cardiovasc. Interv. 2011. Vol. 4,  $N^{o}$  6. P. 704–709.
- 70. Efthimiadis G.K. et al. Clinical characteristics and natural history of hypertrophic cardiomyopathy with midventricular obstruction // Circ. J. 2013. Vol. 77,  $N^{o}$  9. P. 2366–2374.
- 71. Minami Y. et al. Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2011. Vol. 57,  $N^{\circ}$  23. P. 2346–2355.
- 72. Yan L.R. et al. Clinical characteristics and prognosis of 60 patients with midventricular obstructive hypertrophic cardiomyopathy // J. Cardiovasc. Med. 2015. Vol. 16,  $N^{\circ}$  11. P. 751–760.
- 73. Hang D. et al. Combined transaortic and transapical approach to septal myectomy in patients with complex hypertrophic cardiomyopathy // J. Thorac. Cardiovasc. Surg. 2018. Vol. 155,  $N^{\circ}$  5. P. 2096–2102.

- 74. Pacheco Claudio C. et al. Why names matter for women: MINOCA/INOCA (myocardial infarction/ischemia and no obstructive coronary artery disease) // Clin. Cardiol. 2018. Vol. 41,  $N^{\circ}$  2. P. 185–193.
- 75. Аверкина Н.В. и др. Оценка перфузии миокарда у больных с гипертрофической кардиомиопатией в сопоставлении с клиническими и эхокардиографическими данными // Терапевтический архив. 2003. Т. 75. № 4. С. 20–25.
- 76. Аверков О.В. и др. Дифференцированный подход в диагностике, формулировке диагноза, ведении больных и статистическом учете инфаркта миокарда 2 типа (согласованная позиция) // Российский кардиологический журнал. 2019. Т. 24. № 6. С. 7–21.
- 77. Каплунова В.Ю. и др. Гипертрофическая кардиомиопатия и ишемическая болезнь сердца. Варианты сочетанной патологии // Кардиология. 2017. Т. 57. № 12. С. 16–24.
- 78. Костин С.И. Морфологические и морфометрические особенности гипертрофической кардиомиопатии // Архив патологии. 1989. Т. 51. № 1. С. 47–52.
- 79. Мухарлямов Н. Кардиомиопатии. Москва, 1990. 283 с. с.
- 80. Aletras A.H. et al. Heterogeneity of intramural function in hypertrophic cardiomyopathy mechanistic insights from MRI late gadolinium enhancement and high-resolution displacement encoding with stimulated echoes strain maps // Circ. Cardiovasc. Imaging. 2011. Vol. 4,  $N^{o}$  4. P. 425–434.
- 81. Camici P.G., Olivotto I., Rimoldi O.E. The coronary circulation and blood flow in left ventricular hypertrophy // J. Mol. Cell. Cardiol. 2012. Vol. 52,  $N^{\circ}$  4. P. 857–864.
- 82. Einarsen E. et al. Comparison of Frequency of Ischemic Cardiovascular Events in Patients With Aortic Stenosis With Versus Without Asymmetric Septal Hypertrophy (from the SEAS Trial) // Am. J. Cardiol. 2017. Vol. 119,  $N^{\circ}$  7. P. 1082–1087.
- 83. Foà A. et al. Histopathological comparison of intramural coronary artery remodeling and myocardial fibrosis in obstructive versus end-stage hypertrophic cardiomyopathy // Int. J. Cardiol. 2019. Vol. 291. P. 77–82.
- 84. Kwon D.H. et al. Cardiac Magnetic Resonance Detection of Myocardial Scarring in Hypertrophic Cardiomyopathy. Correlation With Histopathology and Prevalence of Ventricular Tachycardia // J. Am. Coll. Cardiol. 2009. Vol. 54,  $N^{\circ}$  3. P. 242–249.
- 85. Maron M.S. et al. The Case for Myocardial Ischemia in Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2009. Vol. 54, Nº 9. P. 866–875.

- 86. Mundhenke M., Schwartzkopff B., Strauer B.E. Structural analysis of arteriolar and myocardial remodelling in the subendocardial region of patients with hypertensive heart disease and hypertrophic cardiomyopathy // Virchows Arch. 1997. Vol. 431,  $N^{\circ}$  4. P. 265-273.
- 87. Nakamura T. et al. Increased plasma brain natriuretic peptide level as a guide for silent myocardial ischemia in patients with non-obstructive hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2002. Vol. 39,  $N^{\circ}$  10. P. 1657–1663.
- 88. Raphael C.E. et al. Mechanisms of Myocardial Ischemia in Hypertrophic Cardiomyopathy: Insights From Wave Intensity Analysis and Magnetic Resonance // J. Am. Coll. Cardiol. 2016. Vol. 68, Nº 15. P. 1651–1660.
- 89. Sciagrà R. et al. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: a 13NH3 gated PET study // Eur. J. Nucl. Med. Mol. Imaging. 2017. Vol. 44,  $N^{\circ}$  5. P. 866-875.
- 90. Shin Y.J. et al. Clinical significance of evaluating coronary atherosclerosis in adult patients with hypertrophic cardiomyopathy who have chest pain // Eur. Radiol. 2019. Vol. 29, Nº 9. P. 4593–4602.
- 91. Liu W., Sun D., Yang J. Diastolic Dysfunction of Hypertrophic Cardiomyopathy Genotype-Positive Subjects Without Hypertrophy Is Detected by Tissue Doppler Imaging: A Systematic Review and Meta-analysis: A // J. Ultrasound Med. 2017. Vol. 36, Nº 10. P. 2093–2103.
- 92. Covella M. et al. Mechanism of Progressive Heart Failure and Significance of Pulmonary Hypertension in Obstructive Hypertrophic Cardiomyopathy // Circ. Hear. Fail. 2017. Vol. 10, Nº 4. P. e003689.
- 93. Germans T. et al. How do hypertrophic cardiomyopathy mutations affect myocardial function in carriers with normal wall thickness? Assessment with cardiovascular magnetic resonance // J. Cardiovasc. Magn. Reson. 2010. Vol. 12,  $N^{o}$  1. P. 13.
- 94. Huang X. et al. Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging // Cardiovasc. Ultrasound. 2018. Vol. 16,  $N^{o}$  1. P. 23.
- 95. Matsumura Y. et al. Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy: Relation to symptoms and exercise capacity // Heart. 2002. Vol. 87, Nº 3. P. 247–251.
- 96. Бокерия Л.А., Борисов К.В., Синев А.Ф. Улучшение диастолической функции левого и правого желудочков сердца после хирургической коррекции гипертрофической обструктивной кардиомиопатии при помощи оригинального способа // Грудная и сердечно-сосудистая хирургия. 1999. Т. 4. С. 4–10.

- 97. Harris K.M. et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy // Circulation. 2006. Vol. 114, Nº 3. P. 216–225.
- 98. Biagini E. et al. Prognostic Implications of the Doppler Restrictive Filling Pattern in Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2009. Vol. 104,  $N^{\circ}$  12. P. 1727–1731.
- 99. Bravo P.E. et al. Late gadolinium enhancement confined to the right ventricular insertion points in hypertrophic cardiomyopathy: An intermediate stage phenotype? // Eur. Heart J. Cardiovasc. Imaging. 2016. Vol. 17,  $N^{\circ}$  3. P. 293–300.
- 100. Fernández A. et al. Comparison of prevalence, clinical course, and pathological findings of left ventricular systolic impairment versus normal systolic function in patients with hypertrophic cardiomyopathy // Am. J. Cardiol. 2011. Vol. 108,  $N^{o}$  4. P. 548–555.
- 101. Melacini P. et al. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy // Eur. Heart J. 2010. Vol. 31,  $N^{\circ}$  17. P. 2111–2123.
- 102. Maron M.S. et al. Right Ventricular Involvement in Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2007. Vol. 100, № 8. P. 1293–1298.
- 103. Falcone D.M., Moore D., Lambert E.C. Idiopathic hypertrophic cardiomyopathy involving the right ventricle. // Am. J. Cardiol. 1967. Vol. 19,  $N^{\circ}$  5. P. 735–740.
- 104. Shimizu M. et al. Echocardiographic assessment of right ventricular obstruction in hypertrophic cardiomyopathy // Circ. J. 2003. Vol. 67,  $N^{\circ}$  10. P. 855–860.
- 105. Бокерия Л.А., Борисов К.В. Обструктивная гипертрофическая кардиомиопатия: методы хирургической коррекции // Грудная и сердечнососудистая хирургия. 1997. Т. 1. С. 61–65.
- 106. Бокерия Л.А. и др. Результаты медикаментозного и хирургического лечения гипертрофической кардиомиопатии с обструкцией выводных отделов левого и правого желудочков сердца // Грудная и сердечнососудистая хирургия. 2004. № 2. С. 4–9.
- 107. Бокерия Л.А. и др. Хирургическая коррекция ранее неоперабельных форм гипертрофической обструктивной кардиомиопатии // Грудная и сердечно-сосудистая хирургия. 1999. Т. 6. С. 130–136.
- 108. Pagourelias E.D. et al. Prognostic Value of Right Ventricular Diastolic Function Indices in Hypertrophic Cardiomyopathy // Eur. J. Echocardiogr. 2011. Vol. 12, № 11. P. 809–817.

- 109. Shah J.P. et al. Prevalence and Prognostic Significance of Right Ventricular Dysfunction in Patients With Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2018. Vol. 122,  $N^{\circ}$  11. P. 1932–1938.
- 110. Кактурский Л. Внезапная смерть (клиническая морфология). Москва, 2000. 126 с. с.
- 111. Ревишвили А.Ш. и др. Клинические рекомендации по проведению электрофизиологических исследований, катетерной абляции и применению имплантируемых антиаритмических устройств. Москва, 2017. 701 с. с.
- 112. Adabag A.S. et al. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2005. Vol. 45, Nº 5. P. 697–704.
- 113. Zipes D.P. et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death // Europace. 2006. Vol. 8, № 9. P. 746–837.
- 114. Czosek R.J. et al. Arrhythmic Burden and Ambulatory Monitoring of Pediatric Patients with Cardiomyopathy. // Pacing Clin. Electrophysiol. 2016. Vol. 39, № 5. P. 443–451.
- 115. Desai M.Y., Mentias A. Risk stratification in hypertrophic cardiomyopathy // Aging (Albany. NY). 2019. Vol. 11, № 6. P. 1617–1618.
- 116. Elliott P.M. et al. Sudden death in hypertrophic cardiomyopathy: Identification of high risk patients // J. Am. Coll. Cardiol. 2000. Vol. 36,  $\mathbb{N}^{\circ}$  7. P. 2212–2218.
- 117. Goyal V., Jassal D.S., Dhalla N.S. Pathophysiology and prevention of sudden cardiac death // Can. J. Physiol. Pharmacol. 2015. Vol. 94, Nº 3. P. 237–244.
- 118. Marrakchi S. et al. Risk stratification in hypertrophic cardiomyopathy // Herz. 2020. Vol. 45,  $N^{\circ}$  1. P. 50–64.
- 119. Weissler-Snir A. et al. Prevention of Sudden Death in Hypertrophic Cardiomyopathy: Bridging the Gaps in Knowledge // Eur Hear. J. 2017. Vol. 38,  $N^{\circ}$  22. P. 1728–1737.
- 120. Weissler-Snir A. et al. Usefulness of 14-Day Holter for Detection of Nonsustained Ventricular Tachycardia in Patients With Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2016. Vol. 118, № 8. P. 1258–1263.
- 121. Goff Z.D., Calkins H. Sudden death related cardiomyopathies Hypertrophic cardiomyopathy // Prog. Cardiovasc. Dis. 2019. Vol. 62,  $N^{\circ}$  3. P. 212–216.

- 122. Bois J.P. et al. Relation between temperature extremes and symptom exacerbation in patients with hypertrophic cardiomyopathy // Am. J. Cardiol. 2016. Vol. 117,  $N^{o}$  6. P. 961–965.
- 123. Haghjoo M. et al. Predictors of syncope in patients with hypertrophic cardiomyopathy // PACE Pacing Clin. Electrophysiol. 2009. Vol. 32,  $N^{\circ}$  5. P. 642–647.
- 124. Seggewiß H. et al. Syncope in hypertrophic (obstructive) cardiomyopathy // Herzschrittmachertherapie und Elektrophysiologie. 2018. Vol. 29,  $N^{\circ}$  2. P. 178–182.
- 125. Williams L., Frenneaux M. Syncope in Hypertrophic Cardiomyopathy: Mechanisms and Consequences for Treatment // Europace. 2007. Vol. 9,  $N^{\circ}$  9. P. 817–822.
- 126. Farhad H. et al. Left Atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy // J. Cardiovasc. Magn. Reson. 2017. Vol. 19, № 1. P. 107.
- 127. Burstein B., Nattel S. Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation // J. Am. Coll. Cardiol. 2008. Vol. 51, № 8. P. 802–809.
- 128. Philipson D.J., Rader F., Siegel R.J. Risk factors for atrial fibrillation in hypertrophic cardiomyopathy // Eur. J. Prev. Cardiol. 2019. P. doi: 10.1177/2047487319828474. Epub ahead of print.
- 129. Garg L. et al. Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management // Heart Fail. Rev. 2019. Vol. 24, № 2. P. 189–197.
- 130. Killu A.M. et al. Cardiac Resynchronization Therapy in Patients With End-Stage Hypertrophic Cardiomyopathy // Europace. 2018. Vol. 20, № 1. P. 82–88.
- 131. Kirchhof P. et al. 2016 ESC Guidelines for the Management of Atrial Fibrillation Developed in Collaboration With EACTS // Eur. Heart J. 2016. Vol. 37. P. 2893–2962.
- 132. Maron B.J. et al. Clinical Spectrum and Management of Heart Failure in Hypertrophic Cardiomyopathy // JACC Hear. Fail. Elsevier Inc., 2018. Vol. 6, № 5. P. 353–363.
- 133. Seferović P.M. et al. Heart failure in cardiomyopathies: a position paper from the Heart Failure Association of the European Society of Cardiology // Eur. J. Heart Fail. 2019. Vol. 21,  $N^{\circ}$  5. P. 553–576.
- 134. Maron B.J. et al. Epidemiology of Hypertrophic Cardiomyopathy–Related Death // Circulation. 2000. Vol. 102, № 8. P. 858–864.

- 135. Semsarian C. et al. New perspectives on the prevalence of hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2015. Vol. 65, № 12. P. 1249–1254.
- 136. Amano Y. et al. MRI classification of asymmetric septal hypertrophic cardiomyopathy and its relation to the presence of risk factors // Int. J. Cardiovasc. Imaging. 2012. Vol. 28, Nº 8. P. 2019–2025.
- 137. Geske J.B., Ommen S.R., Gersh B.J. Hypertrophic Cardiomyopathy: Clinical Update // JACC Hear. Fail. 2018. Vol. 6, Nº 5. P. 364–375.
- 138. Дземешкевич С.Л. и др. Анатомические и морфологические признаки диффузно-генерализованной формы гипертрофической кардиомиопатии // Российский кардиологический журнал. 2015. Т. 5. № 121. С. 58–63.
- 139. Gudkova A. et al. Diagnostic challenge in desmin cardiomyopathy with transformation of clinical phenotypes // Pediatr. Cardiol. 2013. Vol. 34,  $N^{\circ}$  2. P. 467–470.
- 140. Rowin E.J. et al. Interaction of Adverse Disease Related Pathways in Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2017. Vol. 120, № 12. P. 2256–2264.
- 141. Габрусенко С.А. и др. Клинико-гемодинамический статус и сердечные натрийуретические пептиды в плазме больных гипертрофической кардиомиопатией // Кардиологический вестник (Бюллетень РКНПК). 2006. Т. 1. № 2. С. 25–31.
- 142. Стрельцова А.А., Гудкова А.Я., Костарева А.А. Фибрилляция предсердий при гипертрофической кардиомиопатии: современные аспекты эпидемиологии, факторов риска, патогенеза и фармакотерапии // Cons. Medicum. 2018. Т. 20. № 5. С. 34–39.
- 143. Стрельцова А.А. и др. Полиморфный вариант rs1739843 гена белка теплового шока 7 (HSPB7) и его связь с вариантами клинического течения и исходами у пациентов с гипертрофической кардиомиопатией (результаты 10-летнего наблюдения) // Российский кардиологический журнал. 2019. № 10. С. 7–15.
- 144. Binder J. et al. Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: Septal morphological features predict the presence of myofilament mutations // Mayo Clin. Proc. 2006. Vol. 81, Nº 4. P. 459–467.
- 145. Elliott P., Spirito P. Prevention of hypertrophic cardiomyopathy-related deaths: Theory and practice // Heart. 2008. Vol. 94, № 10. P. 1269–1275.
- 146. Elliott P.M. et al. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy // Heart. 2006. Vol. 92, Nº 6. P. 785–791.

- 147. Kawai C. et al. Hypertrophic obstructive and non-obstructive cardiomyopathy in Japan. Diagnosis of the disease with special reference to endomyocardial catheter biopsy // Eur Hear. J. 1983. Vol. 4, Nº 1. P. 121–125.
- 148. Kitaoka H. et al. Hypertrophic Cardiomyopathy With Progression From Apical Hypertrophy to Asymmetrical Septal Hypertrophy: A Case Report // J. Cardiol. 2005. Vol. 45, Nº 4. P. 155–159.
- 149. Klues H.G., Schiffers A., Maron B.J. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: Morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients // J. Am. Coll. Cardiol. 1995. Vol. 26, Nº 7. P. 1699–1708.
- 150. Maron B.J. et al. Clinical profile of stroke in 900 patients with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2002. Vol. 39,  $N^{\circ}$  2. P. 301–307.
- 151. Thaman R. et al. Progressive left ventricular remodeling in patients with hypertrophic cardiomyopathy and severe left ventricular hypertrophy // J. Am. Coll. Cardiol. 2004. Vol. 44,  $N^{o}$  2. P. 398–405.
- 152. Lancellotti P. et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. // J. Am. Soc. Echocardiogr. 2017. Vol. 30, № 2. P. 101–138.
- 153. Parato V.M. et al. Echocardiographic diagnosis of the different phenotypes of hypertrophic cardiomyopathy // Cardiovasc. Ultrasound. 2016. Vol. 14,  $N^{o}$  1. P. 30.
- 154. Lambiase P.D. et al. Worldwide Experience With a Totally Subcutaneous Implantable Defibrillator: Early Results From the EFFORTLESS S-ICD Registry // Eur Hear. J. 2014. Vol. 35, № 25. P. 1657–1665.
- 155. Ponikowski P. et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution // Eur. J. Heart Fail. 2016. Vol. 18,  $N^{\circ}$  8. P. 891–975.
- 156. Maron B.J. et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy: A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European S // Eur. Heart J. 2003. Vol. 24,  $N^{\circ}$  21. P. 1965–1991.
- 157. Barrett M.J., Ayub B., Martinez M.W. Cardiac auscultation in sports medicine: Strategies to improve clinical care // Curr. Sports Med. Rep. 2012. Vol. 11,  $N^{\circ}$  2. P. 78–84.

- 158. Cantwell J.D. Preparticipation physical evaluation: Getting to the heart of the matter // Med. Sci. Sports Exerc. 1998. Vol. 30, № 10. P. 341–344.
- 159. Efthimiadis G.K. et al. Prevalence and Clinical Outcomes of Incidentally Diagnosed Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2010. Vol. 105,  $N^{\circ}$  10. P. 1445–1450.
- 160. Harmon K.G., Zigman M., Drezner J.A. The effectiveness of screening history, physical exam, and ECG to detect potentially lethal cardiac disorders in athletes: A systematic review/meta-analysis // J. Electrocardiol. 2015. Vol. 48,  $N^{\circ}$  3. P. 329–338.
- 161. Raviele A. et al. Management of Patients With Palpitations: A Position Paper From the European Heart Rhythm Association // Europace. 2011. Vol. 13,  $N^{\circ}$  7. P. 920–934.
- 162. Attenhofer Jost C.H. et al. Echocardiography in the evaluation of systolic murmurs of unknown cause // Am. J. Med. 2000. Vol. 108, Nº 8. P. 614–620.
- 163. Rapezzi C. et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases // Eur Hear. J. 2013. Vol. 34. P. 1448–1458.
- 164. Rapezzi C. et al. Disease profile and differential diagnosis of hereditary transthyretin-related amyloidosis with exclusively cardiac phenotype: an Italian perspective // Eur Hear. J. 2013. Vol. 34, № 7. P. 520–528.
- 165. Sarkozy A., Digilio M.C., Dallapiccola B. Leopard syndrome // Orphanet J. Rare Dis. 2008. Vol. 3,  $N^{o}$  1. P. 13.
- 166. Scaglia F. et al. Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients with Mitochondrial Disease // Pediatrics. 2004. Vol. 114,  $N^{\circ}$  4. P. 925–931.
- 167. Pagourelias E.D. et al. Efficacy of various "classic" echocardiographic and laboratory indices in distinguishing the "gray zone" between athlete's heart and hypertrophic cardiomyopathy: A pilot study // Echocardiography. 2013. Vol. 30,  $N^{\circ}$  2. P. 131–139.
- 168. Coutu M. et al. Cardiac transplantation for hypertrophic cardiomyopathy: a valid therapeutic option. // J. Heart Lung Transplant. 2004. Vol. 23,  $N^{\circ}$  4. P. 413–417.
- 169. Zhang C., Huang X., Li J. Light chain amyloidosis: Where are the light chains from and how they play their pathogenic role? // Blood Rev. 2017. Vol. 31,  $N^{\circ}$  4. P. 261–270.
- 170. Ingles J. et al. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications // Circ. Cardiovasc. Genet. 2017. Vol. 10,  $N^{\circ}$  2. P. e001620.

- 171. Maron B.J., Pelliccia A., Spirito P. Cardiac disease in young trained athletes: Insights into methods for distinguishing athlete's heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy // Circulation. 1995. Vol. 91, Nº 5. P. 1596–1601.
- 172. Young L. et al. Hypertrophic cardiomyopathy: A complex disease // Cleve. Clin. J. Med. 2018. Vol. 85, № 5. P. 399–411.
- 173. Efthimiadis G.K. et al. Hypertrophic cardiomyopathy in 2013: Current speculations and future perspectives // World J Cardiol. 2014. Vol. 6,  $N^{\circ}$  2. P. 26–37.
- 174. Hershberger R.E. et al. Genetic Evaluation of Cardiomyopathy—A Heart Failure Society of America Practice Guideline // J. Card. Fail. 2018. Vol. 24, Nº 5. P. 281–302.
- 175. Efthimiadis G.K. et al. An Overview of Pharmacotherapy in Hypertrophic Cardiomyopathy: Current Speculations and Clinical Perspectives. // Rev. Cardiovasc. Med. 2016. Vol. 17,  $N^{\circ}$  3–4. P. 115–123.
- 176. Fananapazir L. et al. Electrophysiologic abnormalities in patients with hypertrophic cardiomyopathy. A consecutive analysis in 155 patients // Circulation. 1989. Vol. 80,  $N^{\circ}$  5. P. 1259–1268.
- 177. Kelly B.S., Mattu A., Brady W.J. Hypertrophic cardiomyopathy: electrocardiographic manifestations and other important considerations for the emergency physician // Am. J. Emerg. Med. 2007. Vol. 25, Nº 1. P. 72–79.
- 178. McLeod C.J. et al. Outcome of Patients With Hypertrophic Cardiomyopathy and a Normal Electrocardiogram  $/\!/$  J. Am. Coll. Cardiol. 2009. Vol. 54, Nº 3. P. 229–233.
- 179. Wilke I. et al. High Incidence of De Novo and Subclinical Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy and Cardiac Rhythm Management Device // J. Cardiovasc. Electrophysiol. 2016. Vol. 27, № 7. P. 779–784.
- 180. Хирманов В.Н. и др. Электрокардиографические методы в диагностике, выборе метода и тактики лечения гипертрофической кардиомиопатии // Prog. Biomed. Res. 1997. T. 2. № 1. С. 7–22.
- 181. O'Mahony C. et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD) // Eur Hear. J. 2014. Vol. 35,  $N^{\circ}$  30. P. 2010–2020.
- 182. Wasfy M.M., Weiner R.B. Differentiating the athlete's heart from hypertrophic cardiomyopathy // Current Opinion in Cardiology. 2015. Vol. 30,  $N^{\circ}$  5. P. 500–505.

- 183. Weigner M.J. et al. Risk for clinical thromboembolism associated with conversion to sinus rhythm in patients with atrial fibrillation lasting less than 48 hours // Ann. Intern. Med. 1997. Vol. 126, Nº 8. P. 615–620.
- 184. Guttmann O.P. et al. Atrial fibrillation and thromboembolism in patients with hypertrophic cardiomyopathy: Systematic review // Heart. 2014. Vol. 100,  $N^{\circ}$  6. P. 465–472.
- 185. Brignole M. et al. Indications for the use of diagnostic implantable and external ECG loop recorders. // Europace. 2009. Vol. 11,  $N^{\circ}$  5. P. 671–687.
- 186. Frangini P.A. et al. How revealing are insertable loop recorders in pediatrics? // Pacing Clin. Electrophysiol. 2008. Vol. 31, Nº 3. P. 338–343.
- 187. Solano A. et al. Incidence, diagnostic yield and safety of the implantable loop-recorder to detect the mechanism of syncope in patients with and without structural heart disease // Eur. Heart J. 2004. Vol. 25, Nº 13. P. 1116–1119.
- 188. Moon J.C.C. et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2004. Vol. 43,  $N^{\circ}$  12. P. 2260–2264.
- 189. O'Hanlon R. et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2010. Vol. 56,  $N^{\circ}$  11. P. 867–874.
- 190. Pernat A., Pohar B., Horvat M. Heart conduction disturbances and cardiovascular collapse after disopyramide and low-dose metoprolol in a patient with hypertrophic obstructive cardiomyopathy // J. Electrocardiol. 1997. Vol. 30,  $N^{\circ}$  4. P. 341–344.
- 191. Cerqueira M.D. et al. Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart A Statement for Healthcare Professionals From the Cardiac Imaging Committee // Circulation. 2002. Vol. 105,  $N^{\circ}$  4. P. 539-542.
- 192. Flachskampf F. et al. Recommendations for Transoesophageal Echocardiography: Update 2010 // Eur. J. Echocardiogr. 2010. Vol. 11,  $N^{\circ}$  7. P. 557–576.
- 193. Lang R.M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging // Eur. Heart J. Cardiovasc. Imaging. 2015. Vol. 16,  $N^{\circ}$  3. P. 233–271.
- 194. Mitchell C. et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography // J. Am. Soc. Echocardiogr. 2018. Vol. 32,  $N^{\circ}$  1. P. 1-64.

- 195. Nagueh S.F. et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography // Eur. J. Echocardiogr. 2009. Vol. 10,  $N^{\circ}$  2. P. 165–193.
- 196. Senior R. et al. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography // Eur J Echocardiogr. 2009. Vol. 10,  $N^{\circ}$  2. P. 194–212.
- 197. Maron B.J. et al. Clinical course of hypertrophic cardiomyopathy with survival to advanced age // J. Am. Coll. Cardiol. 2003. Vol. 42, Nº 5. P. 882–888.
- 198. Maron B.J. et al. Nonobstructive Hypertrophic Cardiomyopathy Out of the Shadows: Known from the Beginning but Largely Ignored ... Until Now // Am. J. Med. 2017. Vol. 130, Nº 2. P. 119–123.
- 199. Maron M.S. et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction // Circulation. 2006. Vol. 114,  $N^{\circ}$  21. P. 2232–2239.
- 200. Spirito P. et al. Risk of sudden death and outcome in patients with hypertrophic cardiomyopathy with benign presentation and without risk factors // Am. J. Cardiol. 2014. Vol. 113, Nº 9. P. 1550–1555.
- 201. Spirito P. et al. Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy // N. Engl. J. Med. 2000. Vol. 342,  $N^{\circ}$  24. P. 1778–1785.
- 202. Belenkie I., MacDonald R.P.R., Smith E.R. Localized septal hypertrophy: Part of the spectrum of hypertrophic cardiomyopathy or an incidental echocardiographic finding? // Am. Heart J. 1988. Vol. 115, № 2. P. 385–390.
- 203. Gardin J. et al. Localized basal ventricular septal hypertrophy prevalence, functional and clinical correlates in a population referred for echocardiography // Am J Noninvas Card. 1998. Vol. 6,  $N^{o}$  1. P. 5–8.
- 204. Losi M.A. et al. Echocardiography in patients with hypertrophic cardiomyopathy: Usefulness of old and new techniques in the diagnosis and pathophysiological assessment // Cardiovasc. Ultrasound. 2010. Vol. 8,  $N^{\circ}$  1. P. 7.
- 205. Alvares R.F., Goodwin J.F. Non-invasive assessment of diastolic function in hypertrophic cardiomyopathy on and off beta adrenergic blocking drugs // Br. Heart J. 1982. Vol. 48,  $N^{\circ}$  3. P. 204–212.
- 206. Dimitrow P.P. et al. Left ventricular outflow tract gradient provoked by upright position or exercise in treated patients with hypertrophic cardiomyopathy without obstruction at rest. // Echocardiography. 2009. Vol. 26,  $N^{\circ}$  5. P. 513–520.
- 207. Elliott P. et al. Left ventricular outflow tract obstruction and sudden death in hypertrophic cardiomyopathy // Eur. Heart J. 2006. Vol. 27,  $N^{\circ}$  24. P. 3073–3074.

- 208. Nistri S. et al. Timing and significance of exercise-induced left ventricular outflow tract pressure gradients in hypertrophic cardiomyopathy // Am. J. Cardiol. 2010. Vol. 106,  $N^{o}$  9. P. 1301–1306.
- 209. Olivotto I. et al. Clinical utility and safety of exercise testing in patients with hypertrophic cardiomyopathy // G. Ital. Cardiol. 1999. Vol. 29. P. 11–19.
- 210. Sadoul N. et al. Prospective prognostic assessment of blood pressure response during exercise in patients with hypertrophic cardiomyopathy // Circulation. 1997. Vol. 96,  $N^{\circ}$  9. P. 2987–2991.
- 211. Tower-Rader A. et al. A Comprehensive Review of Stress Testing in Hypertrophic Cardiomyopathy: Assessment of Functional Capacity, Identification of Prognostic Indicators, and Detection of Coronary Artery Disease // J. Am. Soc. Echocardiogr. 2017. Vol. 30, № 9. P. 829–844.
- 212. Yalçin F. et al. The effect of dobutamine stress on left ventricular outflow tract gradients in hypertensive patients with basal septal hypertrophy // Angiology. 2004. Vol. 55, Nº 3. P. 295–301.
- 213. Mestres C.A. et al. Hypertrophic Obstructive Cardiomyopathy: What, When, Why, for Whom? // Eur J Cardiothorac Surg. 2018. Vol. 53, № 4. P. 700–707.
- 214. Mickelsen S. et al. Doppler evaluation of the descending aorta in patients with hypertrophic cardiomyopathy: Potential for assessing the functional significance of outflow tract gradients and for optimizing pacemaker function // J. Interv. Card. Electrophysiol. 2004. Vol. 11,  $N^{o}$  1. P. 47–53.
- 215. Tezuka A. et al. Bisoprolol successfully improved the intraventricular pressure gradient in a patient with midventricular obstructive hypertrophic cardiomyopathy with an apex aneurysm due to apical myocardial damage // Intern. Med. 2019. Vol. 58,  $N^{\circ}$  4. P. 535-539.
- 216. Cardim N. et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: An expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association // Eur. Heart J. Cardiovasc. Imaging. 2015. Vol. 16,  $N^{\circ}$  3. P. 280.
- 217. Kim M.S. et al. Left Ventricular Outflow Tract Obstruction in the Presence of Asymmetric Septal Hypertrophy and Accessory Mitral Valve Tissue Treated With Alcohol Septal Ablation // Eur. J. Echocardiogr. 2008. Vol. 9,  $N^{o}$  5. P. 720–724.
- 218. Monakier D. et al. Usefulness of myocardial contrast echocardiographic quantification of risk area for predicting postprocedural complications in patients undergoing septal ethanol ablation for obstructive hypertrophic cardiomyopathy // Am. J. Cardiol. 2004. Vol. 94, Nº 12. P. 1515–1522.

- 219. Wallace E.L. et al. Septal perforator anatomy and variability of perfusion bed by myocardial contrast echocardiography: A study of hypertrophic cardiomyopathy patients undergoing alcohol septal ablation // J. Interv. Cardiol. 2013. Vol. 26,  $N^{\circ}$  6. P. 604–612.
- 220. Grigg L.E. et al. Transesophageal Doppler echocardiography in obstructive hypertrophic cardiomyopathy: Clarification of pathophysiology and importance in intraoperative decision making // J. Am. Coll. Cardiol. 1992. Vol. 20,  $N^{\circ}$  1. P. 42–52.
- 221. Marwick T.H. et al. Benefits of intraoperative echocardiography in the surgical management of hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 1992. Vol. 20, Nº 5. P. 1066–1072.
- 222. Oki T. et al. Transesophageal echocardiographic evaluation of mitral regurgitation in hypertrophic cardiomyopathy: Contributions of eccentric left ventricular hypertrophy and related abnormalities of the mitral complex // J. Am. Soc. Echocardiogr. 1995. Vol. 8,  $N^{o}$  4. P. 503–510.
- 223. Yu E.H.C. et al. Mitral regurgitation in hypertrophic obstructive cardiomyopathy: Relationship to obstruction and relief with myectomy // J. Am. Coll. Cardiol. 2000. Vol. 36,  $N^{\circ}$  7. P. 2219–2225.
- 224. McIntosh C.L. et al. Initial Results of Combined Anterior Mitral Leaflet Plication and Ventricular Septal Myotomy-Myectomy for Relief of Left Ventricular Outflow Tract Obstruction in Patients With Hypertrophic Cardiomyopathy // Circulation. 1992. Vol. 86, № 5. P. 60–67.
- 225. Green J.J. et al. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy // JACC Cardiovasc. Imaging. 2012. Vol. 5,  $N^{\circ}$  4. P. 370–377.
- 226. Moon J.C.C. et al. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography // Heart. 2004. Vol. 90, Nº 6. P. 645–649.
- 227. Olivotto I. et al. Assessment and Significance of Left Ventricular Mass by Cardiovascular Magnetic Resonance in Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2008. Vol. 52,  $N^{\circ}$  7. P. 559–566.
- 228. Prinz C. et al. Myocardial Fibrosis Severity on Cardiac Magnetic Resonance Imaging Predicts Sustained Arrhythmic Events in Hypertrophic Cardiomyopathy // Can. J. Cardiol. 2013. Vol. 29, Nº 3. P. 358–363.
- 229. Rickers C. et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy // Circulation. 2005. Vol. 112,  $N^{\circ}$  6. P. 855–861.

- 230. Rudolph A. et al. Noninvasive Detection of Fibrosis Applying Contrast-Enhanced Cardiac Magnetic Resonance in Different Forms of Left Ventricular Hypertrophy. Relation to Remodeling // J. Am. Coll. Cardiol. 2009. Vol. 53, Nº 3. P. 284–291.
- 231. Webb J. et al. The Emerging Role of Cardiac Magnetic Resonance Imaging in the Evaluation of Patients with HFpEF // Curr. Heart Fail. Rep. 2018. Vol. 15,  $N^{\circ}$  1. P. 1–9.
- 232. Albano B.B.P. et al. Treating a Structural Heart Disease Using a Non-structural Approach: Role of Cardiac Pacing in Hypertrophic Cardiomyopathy // Cardiol. Res. 2017. Vol. 8,  $N^{\circ}$  1. P. 20–25.
- 233. Puntmann V.O. et al. Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography // Eur Hear. J Cardiovasc Imaging. 2013. Vol. 14. P. 240–246.
- 234. Falk R.H. Diagnosis and management of the cardiac amyloidoses // Circulation. 2005. Vol. 112,  $N^{\circ}$  13. P. 2047–2060.
- 235. Gillmore J.D. et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis // Circulation. 2016. Vol. 133, Nº 24. P. 2404–2412.
- 236. Syed I.S. et al. Role of Cardiac Magnetic Resonance Imaging in the Detection of Cardiac Amyloidosis // JACC Cardiovasc. Imaging. 2010. Vol. 3,  $N^{\circ}$  2. P. 155–164.
- 237. Todiere G. et al. Progression of myocardial fibrosis assessed with cardiac magnetic resonance in hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2012. Vol. 60,  $N^{\circ}$  10. P. 922–929.
- 238. O'Hanlon R., Assomull R.G., Prasad S.K. Use of cardiovascular magnetic resonance for diagnosis and management in hypertrophic cardiomyopathy // Curr. Cardiol. Rep. 2007. Vol. 9,  $N^{o}$  1. P. 51–56.
- 239. Patel P. et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy patients without severe septal hypertrophy: Implications of mitral valve and papillary muscle abnormalities assessed using cardiac magnetic resonance and echocardiography // Circ. Cardiovasc. Imaging. 2015. Vol. 8,  $N^{o}$  7. P. e003132.
- 240. Gruner C. et al. Significance of left ventricular apical-basal muscle bundle identified by cardiovascular magnetic resonance imaging in patients with hypertrophic cardiomyopathy // Eur. Heart J. 2014. Vol. 35,  $N^{\circ}$  39. P. 2706–2713.
- 241. Brouwer W.P. et al. Multiple myocardial crypts on modified long-axis view are a specific finding in pre-hypertrophic HCM mutation carriers // Eur Hear. J Cardiovasc Imaging. 2012. Vol. 13, № 4. P. 292–297.

- 242. Schroeder S. et al. Cardiac Computed Tomography: Indications, Applications, Limitations, and Training Requirements: Report of a Writing Group Deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuc // Eur Hear. J. 2008. Vol. 29,  $N^{o}$  4. P. 531–556.
- 243. Esposito A. et al. Multidetector computed tomography for coronary stents imaging: High-voltage (140-KVP) prospective ecg-triggered versus standard-voltage (120-kvp) retrospective ecg-gated helical scanning // J. Comput. Assist. Tomogr. 2013. Vol. 37,  $N^{\circ}$  3. P. 395–401.
- 244. Shiozaki A.A. et al. Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy // J. Cardiovasc. Comput. Tomogr. 2013. Vol. 7,  $N^{\circ}$  3. P. 173–181.
- 245. Rapezzi C. et al. Usefulness and limitations of 99mTc-3, 3-diphosphono-1, 2-propanodicarboxylic acid scintigraphy in the aetiological diagnosis of amyloidotic cardiomyopathy // Eur. J. Nucl. Med. Mol. Imaging. 2011. Vol. 38,  $N^{\circ}$  3. P. 470–478.
- 246. Rapezzi C. et al. Role of 99mTc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis // JACC Cardiovasc. Imaging. 2011. Vol. 4, Nº 6. P. 659–670.
- 247. Katayama M. et al. Left ventricular septal hypertrophy in elderly patients with aortic stenosis // J. Ultrasound Med. 2017. Vol. 37, No 1. P. 217–224.
- 248. Mitsutake R. et al. Usefulness of multi-detector row computed tomography for the management of percutaneous transluminal septal myocardial ablation in patient with hypertrophic obstructive cardiomyopathy // Int. J. Cardiol. 2008. Vol. 129,  $N^{\circ}$  2. P. 61–63.
- 249. Scalone G., Niccoli G., Crea F. Editor's Choice- Pathophysiology, diagnosis and management of MINOCA: an update // Eur. Hear. journal. Acute Cardiovasc. care. 2019. Vol. 8,  $N^{\circ}$  1. P. 54–62.
- 250. Okayama S. et al. Role of cardiac computed tomography in planning and evaluating percutaneous transluminal septal myocardial ablation for hypertrophic obstructive cardiomyopathy // J. Cardiovasc. Comput. Tomogr. 2010. Vol. 4,  $N^{\circ}$  1. P. 62–65.
- Villa A.D.M. et al. Microvascular ischemia in hypertrophic cardiomyopathy: New insights from high-resolution combined quantification of perfusion and late gadolinium enhancement  $/\!/$  J. Cardiovasc. Magn. Reson. 2016. Vol. 18, Nº 4. P. doi:10.1186/s12968-016-0223-8. Epub ahead of print.
- 252. Chen J.M. et al. Reevaluating the significance of pulmonary hypertension before cardiac transplantation: Determination of optimal thresholds and quantification of the effect of reversibility on perioperative mortality // J.

- Thorac. Cardiovasc. Surg. 1997. Vol. 114, № 4. P. 627–634.
- 253. Kato T.S. et al. Cardiac transplantation in patients with hypertrophic cardiomyopathy // Am. J. Cardiol. 2012. Vol. 110, Nº 4. P. 568–574.
- 254. Lindelöw B. et al. High and low pulmonary vascular resistance in heart transplant candidates. A 5-year follow-up after heart transplantation shows continuous reduction in resistance and no difference in complication rate // Eur. Heart J. 1999. Vol. 20, Nº 2. P. 148–156.
- 255. Maron M.S. et al. Survival after cardiac transplantation in patients with hypertrophic cardiomyopathy // Circ. Hear. Fail. 2010. Vol. 3,  $N^{\circ}$  5. P. 574–579.
- 256. Mehra M.R. et al. Listing Criteria for Heart Transplantation: International Society for Heart and Lung Transplantation Guidelines for the Care of Cardiac Transplant Candidates-2006 // J. Hear. Lung Transplant. 2006. Vol. 25,  $N^{\circ}$  9. P. 1024–1042.
- 257. Torres M.F., Perez-Villa F. Heart transplantation in patients with hypertrophic cardiomyopathy // Glob. Cardiol. Sci. Pract. 2018. Vol. 2018,  $N^{\circ}$  3. P. 32.
- 258. Blomström-Lundqvist C. et al. ACC/AHA/ESC Guidelines for the Management of Patients with Supraventricular Arrhythmias Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology // J. Am. Coll. Cardiol. 2003. Vol. 42, Nº 8. P. 1493–1531.
- 259. Бокерия Л.А., Берсенёва М.И., Маленков Д.А. Аритмогенные осложнения гипертрофической кардиомиопатии // Анналы аритмологии. 2010. Т. 7. № 3. С. 62–69.
- 260. Muresan L. et al. Recommendations for the use of electrophysiological study: Update 2018 // Hell. J. Cardiol. 2019. Vol. 60, № 2. P. 82–100.
- 261. Wang W. et al. Prognostic Implications of Nonsustained Ventricular Tachycardia in High-Risk Patients With Hypertrophic Cardiomyopathy // Circ. Arrhythm. Electrophysiol. 2017. Vol. 10, № 3. P. e004604.
- 262. Inada K. et al. Substrate characterization and catheter ablation for monomorphic ventricular tachycardia in patients with apical hypertrophic cardiomyopathy // J. Cardiovasc. Electrophysiol. 2011. Vol. 22, № 1. P. 41–48.
- 263. Lim K.K., Maron B.J., Knight B.P. Successful catheter ablation of hemodynamically unstable monomorphic ventricular tachycardia in a patient with hypertrophic cardiomyopathy and apical aneurysm // J. Cardiovasc. Electrophysiol. 2009. Vol. 20, № 4. P. 445–447.
- 264. Refaat M.M., Hotait M., Tseng Z.H. Utility of the exercise electrocardiogram testing in sudden cardiac death risk stratification // Ann. Noninvasive Electrocardiol. 2014. Vol. 19,  $N^{\circ}$  4. P. 311–318.

- 265. Yi G. et al. Can the Assessment of Dynamic QT Dispersion on Exercise Electrocardiogram Predict Sudden Cardiac Death in Hypertrophic Cardiomyopathy? // Pacing Clin. Electrophysiol. 2000. Vol. 23, Nº 11Pt2. P. 1953–1956.
- 266. Nistri S. et al.  $\beta$  blockers for prevention of exercise-induced left ventricular outflow tract obstruction in patients with hypertrophic cardiomyopathy // Am. J. Cardiol. 2012. Vol. 110, Nº 5. P. 715–719.
- 267. Rowin E.J. et al. Role of Exercise Testing in Hypertrophic Cardiomyopathy // JACC Cardiovasc. Imaging. 2017. Vol. 10,  $N^{o}$  11. P. 1374–1386.
- 268. Mancini D.M. et al. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure // Circulation. 1991. Vol. 83, Nº 3. P. 778–786.
- 269. Sharma S. et al. Utility of cardiopulmonary exercise in the assessment of clinical determinants of functional capacity in hypertrophic cardiomyopathy // Am. J. Cardiol. 2000. Vol. 86,  $N^{\circ}$  2. P. 162–168.
- 270. Колоскова Н.Н., Шаталов К.В., Бокерия Л.А. Определение пикового потребления кислорода: клиническое использование и перспективы // Креативная кардиология. 2014. Т. 2. С. 20–28.
- 271. Coats C.J. et al. Cardiopulmonary Exercise Testing and Prognosis in Hypertrophic Cardiomyopathy // Circ. Hear. Fail. 2015. Vol. 8,  $N^{\circ}$  6. P. 1022–1031.
- 272. Arena R. et al. Ventilatory efficiency and resting hemodynamics in hypertrophic cardiomyopathy // Med. Sci. Sports Exerc. 2008. Vol. 40,  $N^{\circ}$  5. P. 799–805.
- 273. Olivotto I. et al. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 1999. Vol. 33,  $N^{\circ}$  7. P. 2044–2051.
- 274. Diodati J.G. et al. Predictors of exercise benefit after operative relief of left ventricular outflow obstruction by the myotomy-myectomy procedure in hypertrophic cardiomyopathy // Am. J. Cardiol. 1992. Vol. 69,  $N^{\circ}$  19. P. 1617–1622.
- 275. Bennett M.K. et al. Evaluation of the role of endomyocardial biopsy in 851 patients with unexplained heart failure from 2000-2009 // Circ. Hear. Fail. 2013. Vol. 6,  $N^{\circ}$  4. P. 676–684.
- 276. Schönland S.O. et al. Immunohistochemistry in the classification of systemic forms of amyloidosis: A systematic investigation of 117 patients // Blood. 2012. Vol. 119,  $N^{\circ}$  2. P. 488–493.
- 277. Quarta C.C. et al. Diagnostic Sensitivity of Abdominal Fat Aspiration in Cardiac Amyloidosis // Eur Hear. J. 2017. Vol. 38, Nº 24. P. 1905–1908.

- 278. Крылова Н.С. и др. Гипертрофическая кардиомиопатия и артериальная гипертензия: возможно ли сочетание? // Сердце журнал для практикующих врачей. 2015. Т. 14. № 3(83). С. 164–169.
- 279. Полякова А.А. и др. Гипертрофическая кардиомиопатия в старшей возрастной группе: влияние факторов кардиометаболического риска и полиморфизма гена MADD // Артериальная гипертензия. 2018. Т. 24. № 1. С. 29–40.
- 280. Abel E.D., Litwin S.E., Sweeney G. Cardiac remodeling in obesity // Physiological Reviews. 2008. Vol. 88, Nº 2. P. 389–419.
- 281. Ommen S.R., Lopez-Jimenez F. Obesity and hypertrophic cardiomyopathy: Chickens, eggs, and causality: Clinical skills remain the key to caring for patients // J. Am. Coll. Cardiol. 2013. Vol. 62, Nº 5. P. 458–459.
- 282. Olivotto I. et al. Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2013. Vol. 62,  $N^{\circ}$  5. P. 449–457.
- 283. Van Straten A.H.M. et al. Increased septum wall thickness in patients undergoing aortic valve replacement predicts worse late survival // Ann. Thorac. Surg. 2012. Vol. 94,  $N^{\circ}$  1. P. 66–71.
- 284. Di Tommaso L. et al. Asymmetric septal hypertrophy in patients with severe aortic stenosis: The usefulness of associated septal myectomy // J. Thorac. Cardiovasc. Surg. 2013. Vol. 145, Nº 1. P. 171–175.
- 285. Dweck M.R. et al. Left ventricular remodeling and hypertrophy in patients with aortic stenosis: Insights from cardiovascular magnetic resonance // J. Cardiovasc. Magn. Reson. 2012. Vol. 14, Nº 1. P. 50.
- 286. Maron B.J., Edwards J.E., Epstein S.E. Disproportionate ventricular septal thickening in patients with systemic hypertension // Chest. 1978. Vol. 73,  $N^{\circ}$  4. P. 466–470.
- 287. Rodrigues J.C.L. et al. Prevalence and Predictors of Asymmetric Hypertensive Heart Disease: Insights From Cardiac and Aortic Function With Cardiovascular Magnetic Resonance // Eur Hear. J Cardiovasc Imaging. 2016. Vol. 17, Nº 12. P. 1405–1413.
- 288. Tuseth N. et al. Asymmetric septal hypertrophy A marker of hypertension in aortic stenosis (a SEAS substudy) // Blood Press. 2010. Vol. 19,  $N^{\circ}$  3. P. 140–144.
- 289. Shapiro L.M. et al. An echocardiographic study of localized subaortic hypertrophy // Eur. Heart J. 1986. Vol. 7, № 2. P. 127–132.
- 290. Raissuni Z. et al. Hypertrophic cardiomyopathy mimicking STEMI: The role of cardiac magnetic resonance imaging in the detection of microvascular coronary dysfunction // Diagn. Interv. Imaging. 2014. Vol. 95, Nº 11. P. 1111–

- 291. Timmer S.A.J., Knaapen P. Coronary Microvascular Function, Myocardial Metabolism, and Energetics in Hypertrophic Cardiomyopathy: Insights From Positron Emission Tomography // Eur Hear. J Cardiovasc Imaging. 2013. Vol. 14,  $N^{\circ}$  2. P. 95–101.
- 292. Zhang Y.D. et al. Hypertrophic cardiomyopathy: Cardiac structural and microvascular abnormalities as evaluated with multi-parametric MRI // Eur. J. Radiol. 2015. Vol. 84,  $N^{\circ}$  8. P. 1480–1486.
- 293. Gutiérrez-Barrios A. et al. Invasive assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy: The index of microvascular resistance // Cardiovasc. Revascularization Med. 2015. Vol. 16, Nº 7. P. 426–428.
- 294. Ismail T.F. et al. Coronary microvascular ischemia in hypertrophic cardiomyopathy A pixel-wise quantitative cardiovascular magnetic resonance perfusion study // J. Cardiovasc. Magn. Reson. 2014. Vol. 16,  $N^{o}$  1. P. 49.
- 295. Olivotto I. et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations // J. Am. Coll. Cardiol. 2011. Vol. 58,  $N^{o}$  8. P. 839–848.
- 296. Zipes D.P. et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death // Circulation. 2006. Vol. 114, Nº 10. P. e385-484.
- 297. Basavarajaiah S. et al. Prevalence of Hypertrophic Cardiomyopathy in Highly Trained Athletes. Relevance to Pre-Participation Screening // J. Am. Coll. Cardiol. 2008. Vol. 51,  $N^{\circ}$  10. P. 1033–1039.
- 298. Malhotra A., Sharma S. Hypertrophic cardiomyopathy in athletes // Eur. Cardiol. Rev. 2017. Vol. 12,  $N^{\circ}$  2. P. 80–82.
- 299. Pelliccia A. et al. Recommendations for participation in competitive sport and leisure-time physical activity in individuals with cardiomyopathies, myocarditis and pericarditis // Eur. J. Prev. Cardiol. 2006. Vol. 13,  $N^{o}$  6. P. 876–885.
- 300. Liebregts M. et al. Validation of the HCM Risk-SCD model in patients with hypertrophic cardiomyopathy following alcohol septal ablation // Europace. 2018. Vol. 20, Nº FI2. P. 198–203.
- 301. Spoladore R. et al. Pharmacological Treatment Options for Hypertrophic Cardiomyopathy: High Time for Evidence // Eur Hear. J. 2012. Vol. 33,  $N^{o}$  14. P. 1724–1733.
- 302. Toshima H. et al. Comparable Effects of Oral Diltiazem and Verapamil in the Treatment of Hypertrophic Cardiomyopathy Double-blind Crossover Study // Jpn. Heart J. 1986. Vol. 27, Nº 5. P. 701–715.

- 303. Galve E. et al. Late benefits of dual-chamber pacing in obstructive hypertrophic cardiomyopathy: A 10-year follow-up study // Heart. 2010. Vol. 96,  $N^{\circ}$  5. P. 352–356.
- 304. Gentry J.L. et al. Ranolazine for Treatment of Angina or Dyspnea in Hypertrophic Cardiomyopathy Patients (RHYME) // J. Am. Coll. Cardiol. 2016. Vol. 68,  $N^{\circ}$  16. P. 1815-1817.
- 305. Kappenberger L. et al. Pacing in hypertrophic obstructive cardiomyopathy. A randomized crossover study // Eur. Heart J. 1997. Vol. 18,  $N^{\circ}$  8. P. 1249–1256.
- 306. Maron B.J. et al. Assessment of Permanent Dual-Chamber Pacing as a Treatment for Drug-Refractory Symptomatic Patients With Obstructive Hypertrophic Cardiomyopathy // Circulation. 1999. Vol. 99, № 22. P. 2927–2933.
- 307. Maron M.S. et al. Effect of Spironolactone on Myocardial Fibrosis and Other Clinical Variables in Patients with Hypertrophic Cardiomyopathy // Am. J. Med. 2018. Vol. 131,  $N^{\circ}$  7. P. 837–841.
- 308. Nishimura R.A. et al. Dual-chamber pacing for hypertrophic cardiomyopathy: A randomized, double-blind, crossover trial // J. Am. Coll. Cardiol. 1997. Vol. 29, Nº 2. P. 435–441.
- 309. Olivotto I. et al. Efficacy of Ranolazine in Patients With Symptomatic Hypertrophic Cardiomyopathy: The RESTYLE-HCM Randomized, Double-Blind, Placebo-Controlled Study // Circ. Heart Fail. 2018. Vol. 11, № 1. P. e004124.
- 310. Slade A.K. et al. DDD pacing in hypertrophic cardiomyopathy: A multicentre clinical experience // Heart. 1996. Vol. 75,  $N^{\circ}$  1. P. 44–49.
- 311. Jung H. et al. Effectiveness and Safety of Non-Vitamin K Antagonist Oral Anticoagulants in Patients With Atrial Fibrillation With Hypertrophic Cardiomyopathy: A Nationwide Cohort Study // Chest. 2019. Vol. 155,  $N^{\circ}$  2. P. 354–363.
- 312. Zhou Y. et al. Non-vitamin K antagonist oral anticoagulants in patients with hypertrophic cardiomyopathy and atrial fibrillation: a systematic review and meta-analysis // J. Thromb. Thrombolysis. 2019. P. doi: 10.1007/s11239-019-02008-3. Epub ahead of print.
- 313. Rujirachun P. et al. Efficacy and safety of direct oral anticoagulants (DOACs) versus vitamin K antagonist (VKA) among patients with atrial fibrillation and hypertrophic cardiomyopathy: a systematic review and meta-analysis // Acta Cardiol. 2019. P. doi: 10.1080/00015385.2019.1668113. Epub ahead of print.
- 314. Patten M., Pecha S., Aydin A. Atrial fibrillation in hypertrophic cardiomyopathy: Diagnosis and considerations for management // J. Atr. Fibrillation. 2018. Vol. 10, Nº 5. P. 1556.

- 315. Dearani J.A. et al. Surgery Insight: Septal myectomy for obstructive hypertrophic cardiomyopathy The Mayo Clinic experience // Nat. Clin. Pract. Cardiovasc. Med. 2007. Vol. 4,  $N^{\circ}$  9. P. 503–512.
- 316. Leonardi R.A. et al. Meta-analyses of septal reduction therapies for obstructive hypertrophic cardiomyopathy comparative rates of overall mortality and sudden cardiac death after treatment // Circ. Cardiovasc. Interv. 2010. Vol.  $3, N^{\circ} 2$ . P. 97–104.
- 317. Zeng Z. et al. Comparison of percutaneous transluminal septal myocardial ablation versus septal myectomy for the treatment of patients with hypertrophic obstructive cardiomyopathy-A meta analysis // Int. J. Cardiol. 2006. Vol. 112,  $N^{o}$  1. P. 80–84.
- 318. Afanasyev A. V. et al. Single-Centre Experience of Surgical Myectomy for Hypertrophic Obstructive Cardiomyopathy // Hear. Lung Circ. 2019. Vol. 29, № 6. P. 949–955.
- 319. Veselka J. et al. Short- and long-term outcomes of alcohol septal ablation for hypertrophic obstructive cardiomyopathy in patients with mild left ventricular hypertrophy: a propensity score matching analysis // Eur Hear. J. 2019. Vol. 40,  $N^{\circ}$  21. P. 1681-1687.
- 320. Майстренко А.Д. и др. Современное состояние проблемы хирургического лечения гипертрофической обструктивной кардиомиопатии // Вестник хирургии имени И.И. Грекова. 2013. Т. 172. № 2. С. 82–87.
- 321. Хитрова М.Э. и др. Метаанализ результатов хирургического лечения гипертрофической обструктивной кардиомиопатии // Креативная кардиология. 2017. Т. 11. № 4. С. 337–347.
- 322. Богданов Д.В., Шапошник И.И. Варианты клинического течения, исходы и прогноз гипертрофической необструктивной кардиомиопатии результаты длительного наблюдения // Российский кардиологический журнал. 2019. Т. 24. № 11. С. 48–54.
- 323. Vriesendorp P.A. et al. Validation of the 2014 European Society of Cardiology Guidelines Risk Prediction Model for the Primary Prevention of Sudden Cardiac Death in Hypertrophic Cardiomyopathy // Circ. Arrhythmia Electrophysiol. 2015. Vol. 8,  $N^{o}$  4. P. 829–835.
- 324. Falk V. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease // Eur. J. Cardiothorac. Surg. 2017. Vol. 52, № 4. P. 616–664.
- 325. Lourenco A.P. et al. An integrative translational approach to study heart failure with preserved ejection fraction: a position paper from the Working Group on Myocardial Function of the European Society of Cardiology // Eur. J. Heart Fail. 2018. Vol. 20, Nº 2. P. 216–227.

- 326. Мареев В.Ю. и др. Клинические рекомендации ОССН-РКО РНМОТ Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика, лечение // Кардиология. 2018. Т. 58. № 6S. С. 8–158.
- 327. Российское кардиологическое общество. Клинические рекомендации "Артериальная гипертензия у взрослых" [Electronic resource]. 2020. URL: https://scardio.ru/content/Guidelines/Clinic\_rek\_AG\_2020.pdf (accessed: 10.07.2020).
- 328. Гудкова А.Я., Стрельцова А.А., Костарева А.А. Гипертрофическая кардиомиопатия: современные возможности фармакологических подходов к лечению // Терапевтический архив. 2019. Т. 91. № 9. С. 129–136.
- 329. Ammirati E. et al. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives // Eur. J. Heart Fail. 2016. Vol. 18,  $N^{\circ}$  9. P. 1106–1118.
- 330. Spicer R.L. et al. Hemodynamic effects of verapamil in children and adolescents with hypertrophic cardiomyopathy // Circulation. 1983. Vol. 67,  $N^{\circ}$  2. P. 413–420.
- 331. Flamm M.D., Harrison D.C., Hancock E.W. Muscular subaortic stenosis. Prevention of outflow obstruction with propranolol. // Circulation. 1968. Vol. 38,  $N^{\circ}$  5. P. 846–858.
- 332. Sherrid M.V. Drug Therapy for Hypertrophic Cardiomypathy: Physiology and Practice // Curr. Cardiol. Rev. 2016. Vol. 12, № 1. P. 52–65.
- 333. Sherrid M.V., Gunsburg D., Sharma A. Medical treatment of hypertrophic cardiomyopathy // Curr. Cardiol. Rep. 2000. Vol. 2, № 2. P. 148–153.
- 334. Sherrid M. V. et al. Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2005. Vol. 45, Nº 8. P. 1251–1258.
- 335. Sherrid M. V. et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with  $\beta$ -blockade or verapamil // Circ. Hear. Fail. 2013. Vol. 6, Nº 4. P. 694–702.
- 336. Adelman A.G. et al. Long-term propranolol therapy in muscular subaortic stenosis. // Br. Heart J. 1970. Vol. 32,  $N^{\circ}$  6. P. 804–811.
- 337. Bonow R.O. et al. Verapamil-induced improvement in left ventricular diastolic filling and increased exercise tolerance in patients with hypertrophic cardiomyopathy: Short- and long-term effects // Circulation. 1985. Vol. 72,  $N^{\circ}$  4. P. 853–864.
- 338. Bonow R.O., Rosing D.R., Epstein S.E. The acute and chronic effects of verapamil on left ventricular function in patients with hypertrophic cardiomyopathy // Eur. Heart J. 1983. Vol. 4, № suppl F. P. 57–65.

- 339. Gistri R. et al. Effect of verapamil on absolute myocardial blood flow in hypertrophic cardiomyopathy // Am. J. Cardiol. 1994. Vol. 74,  $N^{\circ}$  4. P. 363–368.
- 340. Rosing D.R. et al. Verapamil therapy: A new approach to the pharmacologic treatment of hypertrophic cardiomyopathy: III. Effects of long-term administration // Am. J. Cardiol. 1981. Vol. 48, Nº 3. P. 545–553.
- 341. Rosing D.R. et al. Verapamil therapy: a new approach to the pharmacologic treatment of hypertrophic cardiomyopathy. I. Hemodynamic effects // Circulation. 1979. Vol. 60,  $N^{\circ}$  6. P. 1201–1207.
- 342. Maron B.J. Hypertrophic cardiomyopathy: A systematic review // JAMA 2002. Vol. 287,  $N^{\circ}$  3. P. 1308-1320.
- 343. Said S.M. et al. Transapical approach for apical myectomy and relief of midventricular obstruction in hypertrophic cardiomyopathy // J. Card. Surg. 2012. Vol. 27,  $N^{\circ}$  4. P. 443–448.
- 344. Shah A. et al. Severe symptoms in mid and apical hypertrophic cardiomyopathy // Echocardiography. 2009. Vol. 26, № 8. P. 922–933.
- 345. Maron M.S. et al. Contemporary Natural History and Management of Nonobstructive Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2016. Vol. 67,  $N^{\circ}$  12. P. 1399–1409.
- 346. McMurray J.J.V. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart // Eur. Heart J. 2012. Vol. 33,  $N^{\circ}$  14. P. 1787–1847.
- 347. Сафрыгина Ю.В. и др. Сердечные натрийуретические пептиды в плазме больных гипертрофической кардиомиопатией // Кардиология. 2007. Т. 47. № 5. С. 50–57.
- 348. Braunwald E. et al. Idiopathic hypertrophic subaortic stenosis: a description of the disease based upon an analysis of 64 patients // Circulation. 1964. Vol. 30,  $N^{\circ}$  4. P. 3-119.
- 349. Okeie K. et al. Left ventricular systolic dysfunction during exercise and dobutamine stress in patients with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2000. Vol. 36,  $N^{\circ}$  3. P. 856–863.
- 350. Epstein S.E., Rosing D.R. Verapamil: Its potential for causing serious complications in patients with hypertrophic cardiomyopathy // Circulation. 1981. Vol. 64,  $N^{\circ}$  3. P. 437-441.
- 351. Shimada Y.J. et al. Effects of Losartan on Left Ventricular Hypertrophy and Fibrosis in Patients With Nonobstructive Hypertrophic Cardiomyopathy // JACC Hear. Fail. 2013. Vol. 1,  $N^{o}$  6. P. 480–487.

- 352. Udelson J.E. et al. Verapamil prevents silent myocardial perfusion abnormalities during exercise in asymptomatic patients with hypertrophic cardiomyopathy // Circulation. 1989. Vol. 79, № 5. P. 1052–1060.
- 353. Wilmshurst P.T. et al. Effects of verapamil on haemodynamic function and myocardial metabolism in patients with hypertrophic cardiomyopathy // Heart. 1986. Vol. 56,  $N^{o}$  6. P. 544–553.
- 354. Argulian E. et al. Antihypertensive therapy in hypertrophic cardiomyopathy // Am. J. Cardiol. 2013. Vol. 111,  $N^{\circ}$  7. P. 1040–1045.
- 355. Olivotto I. et al. Patterns of disease progression in hypertrophic cardiomyopathy an individualized approach to clinical staging // Circ. Hear. Fail. 2012. Vol. 5,  $N^{o}$  4. P. 535–546.
- 356. Robinson K. et al. Atrial fibrillation in hypertrophie cardiomyopathy: A longitudinal study // J. Am. Coll. Cardiol. 1990. Vol. 15, № 6. P. 1279–1285.
- 357. Olivotto I. et al. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy // Circulation. 2001. Vol. 104,  $N^{\circ}$  21. P. 2517–2524.
- 358. Maron B.J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: Echocardiographic analysis of 4111 subjects in the CARDIA study // Circulation. 1995. Vol. 92,  $N^{o}$  4. P. 785–789.
- 359. Camm A.J. et al. 2012 focused update of the ESC Guidelines for the management of atrial: Fibrillation An update of the 2010 ESC Guidelines for the management of atrial fibrillation: Developed with the special contribution of the European Heart Rhythm Association // Europace. 2012. Vol. 14,  $N^{\circ}$  10. P. 1385–1413.
- 360. Camm C.F., Camm A.J. Atrial fibrillation and anticoagulation in hypertrophic cardiomyopathy // Arrhythmia Electrophysiol. Rev. 2017. Vol. 6,  $N^{\circ}$  2. P. 63–68.
- 361. Di Cori A. et al. Role of cardiac electronic implantable device in the stratification and management of embolic risk of silent atrial fibrillation: are all atrial fibrillations created equal? // Expert Rev. Cardiovasc. Ther. 2018. Vol. 16,  $N^{\circ}$  3. P. 175–181.
- 362. van Velzen H.G. et al. Incidence of Device-Detected Atrial Fibrillation and Long-Term Outcomes in Patients With Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2017. Vol. 119,  $N^{o}$  1. P. 100–105.
- 363. Brambatti M. et al. Temporal relationship between subclinical atrial fibrillation and embolic events // Circulation. 2014. Vol. 129,  $N^{\circ}$  21. P. 2094–2099.

- 364. Camm A.J. et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC) // Eur. Heart J. 2010. Vol. 31, № 19. P. 2369–2429.
- 365. Miller C.A.S. et al. Safety, Side Effects and Relative Efficacy of Medications for Rhythm Control of Atrial Fibrillation in Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2019. Vol. 123, № 11. P. 1859–1862.
- 366. Schaufelberger M. Cardiomyopathy and pregnancy // Heart. 2019. Vol. 105,  $N^{\circ}$  20. P. 1543-1551.
- 367. Azarbal F. et al. Exercise capacity and paroxysmal atrial fibrillation in patients with hypertrophic cardiomyopathy // Heart. 2014. Vol. 100,  $N^{\circ}$  8. P. 624–630.
- 368. Pisters R. et al. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The euro heart survey // Chest. 2010. Vol. 138,  $N^{\circ}$  5. P. 1093–1100.
- 369. Lee H.J. et al. Novel Oral Anticoagulants for Primary Stroke Prevention in Hypertrophic Cardiomyopathy Patients with Atrial Fibrillation // Stroke. 2019. Vol. 50, № 9. P. 2582–2586.
- 370. Dominguez F. et al. Direct oral anticoagulants in patients with hypertrophic cardiomyopathy and atrial fibrillation // Int. J. Cardiol. 2017. Vol. 248. P. 232–238.
- 371. Li B. et al. Could direct oral anticoagulants be an alternative to vitamin K antagonists in patients with hypertrophic cardiomyopathy and atrial fibrillation? // Int. J. Cardiol. 2018. Vol. 256. P. 39.
- 372. Lozier M.R. et al. Thromboembolic outcomes of different anticoagulation strategies for patients with atrial fibrillation in the setting of hypertrophic cardiomyopathy: A systematic review // J. Atr. Fibrillation. 2020. Vol. 12,  $N^{\circ}$  4. P. 2207.
- 373. Ruff C.T. et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: A meta-analysis of randomised trials // Lancet. 2014. Vol. 383, № 9921. P. 955–962.
- 374. Zhou Y. et al. Non-vitamin K antagonist oral anticoagulants in patients with hypertrophic cardiomyopathy and atrial fibrillation: a systematic review and meta-analysis // J. Thromb. Thrombolysis. 2019. P. doi: 10.1007/s11239-019-02008-3. Epub ahead of print.
- 375. Connolly S.J. et al. Dabigatran versus warfarin in patients with atrial fibrillation // N. Engl. J. Med. 2009. Vol. 361, Nº 12. P. 1139–1151.
- 376. Gómez-Outes A. et al. Dabigatran, Rivaroxaban, or Apixaban versus Warfarin in Patients with Nonvalvular Atrial Fibrillation: A Systematic Review and Meta-Analysis of Subgroups // Thrombosis. 2013. Vol. 2013. Article ID

- 377. Бокерия Л.А. и др. Клинические рекомендации «Фибрилляция предсердий». Москва, 2017. 65 с. с.
- 378. Connolly S.J. et al. Effect of clopidogrel added to aspirin in patients with atrial fibrillation // N. Engl. J. Med. 2009. Vol. 360, Nº 20. P. 2066–2078.
- 379. Бокерия Л.А. и др. Хирургическое лечение фибрилляции предсердий: современное состояние проблемы // Анналы аритмологии. 2009. Т. 6. № 2. С. 5–11.
- 380. Nishimura R.A., Schaff H. V. Septal myectomy for patients with hypertrophic cardiomyopathy: A new paradigm // J. Thorac. Cardiovasc. Surg. 2016. Vol. 151, Nº 2. P. 303–304.
- 381. Swistel D.G., Balaram S.K. Surgical Myectomy for Hypertrophic Cardiomyopathy in the 21st Century, the Evolution of the "RPR" Repair: Resection, Plication, and Release // Prog. Cardiovasc. Dis. 2012. Vol. 54,  $N^{\circ}$  6. P. 498–502.
- 382. Swistel D.G., Sherrid M. V. The surgical management of obstructive hypertrophic cardiomyopathy: The RPR procedure-resection, plication, release // Ann. Cardiothorac. Surg. 2017. Vol. 6, № 4. P. 423–425.
- 383. Veselka J. et al. Long-term clinical outcome after alcohol septal ablation for obstructive hypertrophic cardiomyopathy: Results from the Euro-ASA registry // Eur. Heart J. 2016. Vol. 37, № 19. P. 1517–1523.
- 384. Afanasyev A.V. et al. Myectomy Versus Alcohol Septal Ablation in Patients With Hypertrophic Obstructive Cardiomyopathy // Interact. Cardiovasc. Thorac. Surg. 2020. Article number ivaa075. Epub ahead of print.
- 385. Bogachev-Prokophiev A. et al. Mitral Valve Repair or Replacement in Hypertrophic Obstructive Cardiomyopathy: A Prospective Randomized Study // Interact. Cardiovasc. Thorac. Surg. 2017. Vol. 25, Nº 3. P. 356–362.
- 386. Bogachev-Prokophiev A. et al. Septal Myectomy With Vs Without Subvalvular Apparatus Intervention in Patients With Hypertrophic Obstructive Cardiomyopathy: A Prospective Randomized Study // Semin. Thorac. Cardiovasc. Surg. 2019. Vol. 31, Nº 3. P. 424–431.
- 387. Afanasyev A. et al. Myectomy With Mitral Valve Repair Versus Replacement in Adult Patients With Hypertrophic Obstructive Cardiomyopathy: A Systematic Review and Meta-Analysis // Interact. Cardiovasc. Thorac. Surg. 2019. Vol. 28,  $N^{\circ}$  3. P. 465–472.
- 388. Гурщенков А.В. и др. Пятилетний опыт использования мобилизации сердца при септальной миоэктомии // Кардиология и сердечно-сосудистая хирургия. 2018. Т. 11. № 4. С. 54–58.

- 389. Agarwal S. et al. Updated Meta-Analysis of Septal Alcohol Ablation Versus Myectomy for Hypertrophic Cardiomyopathy // J. Am. Coll. Cardiol. 2010. Vol. 55, № 8. P. 823–834.
- 390. Alam M., Dokainish H., Lakkis N.M. Hypertrophic obstructive cardiomyopathy-alcohol septal ablation vs. myectomy: a meta-analysis // Eur. Heart J. 2009. Vol. 30,  $N^{o}$  9. P. 1080–1087.
- 391. Swistel D.G., Balaram S.K. Resection, Plication, Release--the RPR Procedure for Obstructive Hypertrophic Cardiomyopathy // Anadolu Kardiyol Derg. 2006. Vol. 6, Nº Suppl 2. P. 31–36.
- 392. Каштанов М.Г. и др. Этаноловая септальная аблация в лечении обструктивной гипертрофической кардиомиопатии: отбор пациентов и рациональность ее применения // Патология кровообращения и кардиохирургия. 2017. Т. 21. № 1. С. 104–116.
- 393. Batzner A. et al. Hypertrophic obstructive cardiomyopathy—the role of myectomy and percutaneous septal ablation in drug-refractory disease // Dtsch. Aerzteblatt Online. 2019. Vol. 116,  $N^{o}$  4. P. 47–53.
- 394. Сухов В.К. и др. Спиртовая септальная абляция при обструктивной гипертрофической кардиомиопатии // Международный журнал интервенционной кардиоангиологии. 2013. № 35. С. 75.
- 395. Schaff H. V. et al. Expanding the indications for septal myectomy in patients with hypertrophic cardiomyopathy: Results of operation in patients with latent obstruction // J. Thorac. Cardiovasc. Surg. 2012. Vol. 143,  $N^{\circ}$  2. P. 303–309.
- 396. McCully R.B. et al. Extent of clinical improvement after surgical treatment of hypertrophic obstructive cardiomyopathy // Circulation. 1996. Vol. 94,  $N^{\circ}$  3. P. 467–471.
- 397. Orme N.M. et al. Comparison of surgical septal myectomy to medical therapy alone in patients with hypertrophic cardiomyopathy and syncope // Am. J. Cardiol. 2013. Vol. 111, Nº 3. P. 388–392.
- 398. Halpern D.G. et al. Echocardiography before and after resect-plicate-release surgical myectomy for obstructive hypertrophic cardiomyopathy // J. Am. Soc. Echocardiogr. 2015. Vol. 28,  $N^{o}$  11. P. 1318–1328.
- 399. Kaple R.K. et al. Mitral Valve Abnormalities in Hypertrophic Cardiomyopathy: Echocardiographic Features and Surgical Outcomes // Ann. Thorac. Surg. 2008. Vol. 85,  $N^{\circ}$  5. P. 1527–1535.
- 400. Kofflard M.J. et al. Initial results of combined anterior mitral leaflet extension and myectomy in patients with obstructive hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 1996. Vol. 28, № 1. P. 197–202.

- 401. Schoendube F.A. et al. Long-term clinical and echocardiographic follow-up after surgical correction of hypertrophic obstructive cardiomyopathy with extended myectomy and reconstruction of the subvalvular mitral apparatus // Circulation. 1995. Vol. 92,  $N^{o}$  9. P. ii122-127.
- 402. Steggerda R.C. et al. Periprocedural complications and long-term outcome after alcohol septal ablation versus surgical myectomy in hypertrophic obstructive cardiomyopathy a single-center experience // JACC Cardiovasc. Interv. 2014. Vol. 7, Nº 11. P. 1227–1234.
- 403. Богачев-Прокофьев А.В. и др. Эффективность расширенной миоэктомии у пациентов с желудочковой обструкцией при гипертрофической кардиомиопатии // Кардиология. 2017. Т. 57. № 5. С. 38–43.
- 404. Borisov K. V. Right ventricle myectomy // Ann. Cardiothorac. Surg. 2017. Vol. 6,  $N^{\circ}$  4. P. 402–409.
- 405. Wehman B. et al. Transmitral Septal Myectomy for Hypertrophic Obstructive Cardiomyopathy // Ann. Thorac. Surg. 2018. Vol. 105, № 4. P. 1102–1108.
- 406. Бокерия Л.А., Борисов К.В., Синев А.Ф. Улучшение диастолической функции левого и правого желудочков сердца после хирургической коррекции гипертрофической обструктивной кардиомиопатии при помощи оригинального способа // Грудная и сердечно-сосудистая хирургия. 1999. Т. 4. С. 4–10.
- 407. Бокерия Л.А. Гипертрофическая обструктивная кардиомиопатия // Анналы хирургии. 2013. Т. 5. С. 5–14.
- 408. Takahashi J. et al. Septal Myectomy, Papillary Muscle Resection, and Mitral Valve Replacement for Hypertrophic Obstructive Cardiomyopathy: A Case Report // Ann Thorac Cardiovasc Surg. 2008. Vol. 14, Nº 4. P. 258–262.
- 409. Cooley D.A., Wukasch D.C., Leachman R.D. Mitral valve replacement for idiopathic hypertrophic subaortic stenosis. Results in 27 patients. // J. Cardiovasc. Surg. 1976. Vol. 17,  $N^{\circ}$  5. P. 380–387.
- 410. Stassano P. et al. Mitral Valve Replacement and Limited Myectomy for Hypertrophic Obstructive Cardiomyopathy: A 25-Year Follow-Up // Texas Hear. Inst. J. 2004. Vol. 31,  $N^{\circ}$  2. P. 137–142.
- 411. Reis R.L. et al. Anterion-superior displacement of papillary muscles producing obstruction and mitral regurgitation in idiopathic hypertrophic subaortic stenosis. Operative relief by posterior-superior realignment of papillary muscles following ventricular septal myectomy // Circulation. 1974. Vol. 50,  $N^{\circ}$  2. P. ii181-188.

- 412. Shimahara Y. et al. Combined mechanical mitral valve replacement and transmitral myectomy for hypertrophic obstructive cardiomyopathy treatment: An experience of over 20 years // J. Cardiol. 2019. Vol. 73, Nº 4. P. 318–325.
- 413. Topilski I. et al. Long-Term Effects of Dual-Chamber Pacing With Periodic Echocardiographic Evaluation of Optimal Atrioventricular Delay in Patients With Hypertrophic Cardiomyopathy >50 Years of Age // Am. J. Cardiol. 2006. Vol. 97, № 12. P. 1769–1775.
- 414. Хирманов В.Н. и др. Отдаленные результаты лечения гипертрофической кардиомиопатии с помощью постоянной двукамерной электрокардиостимуляции // Кардиология. 2002. Т. 8. С. 46–47.
- 415. Трешкур Т.В. и др. Внутрисердечная гемодинамика у больных гипертрофической кардиомиопатией при лечении постоянной двукамерной электрокардиостимуляцией // Вестник аритмологии. 1995. Т. 4. С. 248.
- 416. Daubert C. et al. Pacing for hypertrophic obstructive cardiomyopathy: an update and future directions. // Europace. 2018. Vol. 20, № 6. P. 908–920.
- 417. Quintana E., Cox J.L. Surgical management of atrial fibrillation at the time of septal myectomy // Ann. Cardiothorac. Surg. 2017. Vol. 6,  $N^{\circ}$  4. P. 386–393.
- 418. Бокерия Л.А. и др. Хирургическая коррекция обструктивной гипертрофической кардиомиопатии с SAM-синдромом и фибрилляцией предсердий // Анналы аритмологии. 2016. Т. 13. № 4. С. 216–221.
- 419. Бокерия Л.А. и др. Сочетанная операция миоэктомии межжелудочковой перегородки из правого желудочка и эпикардиальная криомодификация операции «лабиринт» // Анналы аритмологии. 2013. Т. 10. № 2. С. 64–68.
- 420. Bogachev-Prokophiev A. V. et al. Concomitant ablation for atrial fibrillation during septal myectomy in patients with hypertrophic obstructive cardiomyopathy // J. Thorac. Cardiovasc. Surg. 2018. Vol. 155,  $N^{\circ}$  4. P. 1536-1542.
- 421. Monserrat L. et al. Non-sustained ventricular tachycardia in hypertrophic cardiomyopathy: An independent marker of sudden death risk in young patients // J. Am. Coll. Cardiol. 2003. Vol. 42, № 5. P. 873−879.
- 422. Moya A. et al. Guidelines for the diagnosis and management of syncope (version 2009) // Eur. Heart J. 2009. Vol. 30, № 21. P. 2631–2671.
- 423. Sherrid M. V., Massera D. Risk Stratification and Hypertrophic Cardiomyopathy Subtypes // J. Am. Coll. Cardiol. 2019. Vol. 74, № 19. P. 2346–2349.

- 424. Mentias A. et al. Late Gadolinium Enhancement in Patients With Hypertrophic Cardiomyopathy and Preserved Systolic Function // J. Am. Coll. Cardiol. 2018. Vol. 72,  $N^{\circ}$  8. P. 857–870.
- 425. Бельских Л.В. и др. Трансплантация сердца и механическая поддержка кровообращения. Национальные клинические рекомендации. 2016. 115 с. с.
- 426. Topilsky Y. et al. Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy // Circ. Hear. Fail. 2011. Vol. 4,  $N^{\circ}$  3. P. 266–275.
- 427. Biagini E. et al. Heart Transplantation in Hypertrophic Cardiomyopathy // Am. J. Cardiol. 2008. Vol. 101,  $N^{\circ}$  3. P. 387–392.
- 428. Стрюк Р.И. и др. Диагностика и лечение сердечно-сосудистых заболеваний при беременности 2018. Национальные рекомендации // Российский кардиологический журнал. 2018. Т. 3. № 155. С. 91–134.
- 429. Goland S. et al. Pregnancy in women with hypertrophic cardiomyopathy: data from the European Society of Cardiology initiated Registry of Pregnancy and Cardiac disease (ROPAC) // Eur Hear. J. 2017. Vol. 38, № 35. P. 2683–2690.
- 430. Regitz-Zagrosek V. et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy // Eur. Heart J. 2018. Vol. 39,  $N^{\circ}$  34. P. 3165–3241.
- 431. Bowyer L. The Confidential Enquiry into Maternal and Child Health (CEMACH). Saving Mothers' Lives: reviewing maternal deaths to make motherhood safer 2003–2005. The Seventh Report of the Confidential Enquiries into Maternal Deaths in the UK // Obstet. Med. 2008. Vol. 1,  $N^{\circ}$  1. P. 54–54.
- 432. Billebeau G. et al. Pregnancy in women with a cardiomyopathy: Outcomes and predictors from a retrospective cohort // Arch. Cardiovasc. Dis. 2018. Vol. 111,  $N^{\circ}$  3. P. 199–209.
- 433. Krul S.P. et al. Systematic Review of Pregnancy in Women With Inherited Cardiomyopathies // Eur J Hear. Fail. 2011. Vol. 13. P. 584–594.
- 434. Tromp C.H.N. et al. Electrical cardioversion during pregnancy: Safe or not? // Netherlands Hear. J. 2011. Vol. 19, № 3. P. 134–136.
- 435. Maron M.S. et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy // Circulation. 2008. Vol. 118,  $N^{o}$  15. P. 1541–1549.
- 436. Burton H., Alberg C., Stewart A. Heart to Heart: Inherited Cardiovascular Conditions Services A Needs Assessment and Service Review. 2009. 163 p.

- 437. Canepa M. et al. Distinguishing ventricular septal bulge versus hypertrophic cardiomyopathy in the elderly // Heart. 2016. Vol. 102,  $N^{\circ}$  14. P. 1087–1094.
- 438. Olesen J.B. et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: Nationwide cohort study // BMJ. 2011. Vol. 342, Nº 7792. P. 320.
- 439. Lip G.Y.H. et al. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: The HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile INR, elderly, drug // J. Am. Coll. Cardiol. 2011. Vol. 57,  $N^{\circ}$  2. P. 173-180.

## Приложение А1. Состав рабочей группы

### Президиум рабочей группы

- 1. Габрусенко С.А.
- 2. Гудкова А.Я.
- 3. Козиолова Н.А.

### Другие члены рабочей группы

- 1. Александрова С.А.
- 2. Берсенева М.И.
- 3. Гордеев М.Л.
- 4. Дземешкевич С.Л.
- 5. Заклязьминская Е.В.
- 6. Каплунова В.Ю.
- 7. Костарева А.А.
- 8. Крутиков А.Н.
- 9. Маленков Д.А.
- 10. Новикова Т.Н.
- 11. Саидова М.А.
- 12. Санакоев М.К.
- 13. Стукалова О.В.

Члены Рабочей группы подтвердили отсутствие финансовой поддержки / конфликта интересов. В случае сообщения о наличии конфликта интересов член(ы) рабочей группы был(и) исключен(ы) из обсуждения разделов, связанных с областью конфликта интересов.

# Приложение A2. Методология разработки клинических рекомендаций

Вследствие того, что члены Российского кардиологического общества входят в состав Европейского общества кардиологов и также являются его членами, все рекомендации Европейского общества кардиологов (ЕОК) формируются с участием российских экспертов, которые являются соавторами европейских рекомендаций. Таким образом, существующие рекомендации ЕОК отражают общее мнение ведущих российских и европейских кардиологов. В связи с этим формирование Национальных рекомендаций проводилось на основе рекомендаций ЕОК, с учетом особенностей национальной специфики, обследования, учитывающие доступность медицинской помощи. По этой причине в рекомендаций, настоящих клинических одновременно использованы две шкалы оценки достоверности доказательств тезисов рекомендаций: уровни достоверности доказательств ЕОК с УУР и УДД. Добавлены классы рекомендаций EOK, позволяющие оценить необходимость выполнения тезиса рекомендаций (Таблицы 1, 2, 3, 4).

Представленные Рекомендации разработаны на основе Российских рекомендаций по диагностике и лечению гипертрофической кардиомиопатии 2016 года, рекомендаций по диагностике и лечению гипертрофической кардиомиопатии Европейского общества кардиологов 2014 года, созданных на основе многолетнего опыта и большого количества исследований по различным аспектам диагностики и лечения ГКМП. В Рекомендациях изложены основные аспекты патогенеза, клинического течения, методы диагностики и принципы лечения пациентов с ГКМП с учетом индивидуальных особенностей пациента.

#### Целевая аудитория данных клинических рекомендаций:

- 1. Врач-кардиолог
- 2. Врач-терапевт
- 3. Врач общей практики
- 4. Врач сердечно-сосудистый хирург
- 5. Врач функциональной диагностики
- 6. Врач лучевой диагностики

**Таблица 1.**Шкала оценки уровней достоверности доказательств (УДД) для методов диагностики (диагностических вмешательств)

| УДД | Расшифровка                                                                                                                                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Систематические обзоры исследований с контролем референсным методом или систематический обзор рандомизированных клинических исследований с применением мета-анализа |

| 2 | Отдельные исследования с контролем референсным методом или отдельные рандомизированные клинические исследования и систематические обзоры исследований любого дизайна, за исключением рандомизированных клинических исследований, с применением мета-анализа |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3 | Исследования без последовательного контроля референсным методом или исследования с референсным методом, не являющимся независимым от исследуемого метода или нерандомизированные сравнительные исследования, в том числе когортные исследования             |  |
| 4 | Несравнительные исследования, описание клинического случая                                                                                                                                                                                                  |  |
| 5 | Имеется лишь обоснование механизма действия или мнение экспертов                                                                                                                                                                                            |  |

**Таблица 2.**Шкала оценки уровней достоверности доказательств (УДД)для методов профилактики, лечения и реабилитации (профилактических, лечебных, реабилитационных вмешательств)

| УДД | Расшифровка                                                                                                        |  |
|-----|--------------------------------------------------------------------------------------------------------------------|--|
| 1   | Систематический обзор РКИ с применением мета-анализа                                                               |  |
| 2   | Отдельные РКИ и систематические обзоры исследований любого дизайна, за исключением РКИ, с применением мета-анализа |  |
| 3   | Нерандомизированные сравнительные исследования, в т.ч. когортные исследования                                      |  |
| 4   | Несравнительные исследования, описание клинического случая или серии случаев, исследования «случай-контроль»       |  |
| 5   | Имеется лишь обоснование механизма действия вмешательства (доклинические исследования) или мнение экспертов        |  |

**Таблица 3.** Шкала оценки уровней убедительности рекомендаций (УУР) для методов профилактики, диагностики, лечения и реабилитации (профилактических, диагностических, лечебных, реабилитационных вмешательств)

| УУР | Расшифровка                                                                                                                                                                                                                                                         |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| А   | Сильная рекомендация (все рассматриваемые критерии эффективности (исходы) являются важными, все исследования имеют высокое или удовлетворительное методологическое качество, их выводы по интересующим исходам являются согласованными)                             |  |
| В   | Условная рекомендация (не все рассматриваемые критерии эффективности (исходы) являются важными, не все исследования имеют высокое или удовлетворительное методологическое качество и/или их выводы по интересующим исходам не являются согласованными)              |  |
| С   | Слабая рекомендация (отсутствие доказательств надлежащего качества (все рассматриваемые критерии эффективности (исходы) являются неважными, все исследования имеют низкое методологическое качество и их выводы по интересующим исходам не являются согласованными) |  |

#### Порядок обновления клинических рекомендаций.

Механизм обновления клинических рекомендаций предусматривает их систематическую актуализацию – не реже чем один раз в три года, а также при появлении новых данных с позиции доказательной медицины по вопросам диагностики, лечения, профилактики и реабилитации конкретных заболеваний, наличии обоснованных дополнений/замечаний к ранее утверждённым КР, но не чаще 1 раза в 6 месяцев.

### Приложение А3. Связанные документы

- 1. Приказ Министерства здравоохранения Российской Федерации от 15 ноября 2012 г. № 918н «Об утверждении Порядка оказания медицинской помощи больным с сердечно-сосудистыми заболеваниями»
- 2. Стандарт медицинской помощи больным C обструктивной гипертрофической, другой гипертрофической кардиомиопатией. МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ от 24 мая 2006 года № 380. Об утверждении медицинской помоши больным обструктивной стандарта гипертрофической, другой гипертрофической кардиомиопатией. URL: http://docs.cntd.ru/document/901984540
- 3. Приказ Министерства здравоохранения Российской Федерации от 15 июля 2016 г. № 520н «Об утверждении критериев оценки качества медицинской помощи»
- 4. Приказ Министерства здравоохранения Российской Федерации от 15 июля 2016 г. № 520н «Об утверждении критериев оценки качества медицинской помощи»
- 5. 4. Приказ Министерства здравоохранения Российской Федерации от 28.02.2019 № 103н «Об утверждении порядка и сроков разработки клинических рекомендаций, их пересмотра, типовой формы клинических рекомендаций и требований к их структуре, составу и научной обоснованности включаемой в клинические рекомендации информации» (Зарегистрирован 08.05.2019 № 54588)

### Таблица 1/A3. Правила и особенности назначения бетаадреноблокаторов при ГКМП

Бета-адреноблокаторы остаются наиболее эффективной группой лекарственных средств, применяемых в лечении ГКМП.

В связи с большей комплаентностью у пациентов рекомендуется отдавать предпочтение селективным бета-адреноблокаторам пролонгированного действия, в частности, бисопрололу\*\*, метопрололу\*\*.

Дозу бета-адреноблокатора рекомендуется титровать до достижения ЧСС 55-65 в минуту под контролем АД и симптомов.

Следует помнить о других известных побочных эффектах бета-адреноблокаторов: нарушение проводимости вплоть до полной АВ-блокады, бронхоспазм, вазоконстрикция периферических сосудов, нарушение толерантности к глюкозе, эректильная дисфункция и других.

Высокие дозы обычно хорошо переносятся. Побочные эффекты (жалобы в основном на усталость) должны быть тщательно исследованы, чтобы оценить оптимальную индивидуальную дозу для конкретного пациента.

### Таблица 2/A3. Правила и особенности назначения верапамила\*\* при ГКМП

Назначение верапамила\*\* рекомендуется начинать в условиях стационара с малых доз - 20–40 мг 3 раза в день с постепенным их повышением при хорошей переносимости до снижения частоты сердечных сокращений в покое до 55–65 в минуту

Верапамил\*\* обеспечивает симптоматический эффект у 65-80% пациентов, включая случаи рефрактерности к лечению бета-адреноблокаторами.

Польза верапамила\*\* ограничена его сосудорасширяющими эффектами, которые у отдельных пациентов могут перевешивать его отрицательный инотропный эффект.

Верапамил\*\* предпочтителен для молодых пациентов с легкой и умеренной обструкцией (ГД в ВТЛЖ в покое <50 мм рт. ст.)

Пациентам старше 65 лет необходимо назначение низких доз и титрация препарата под контролем ГД в ВТЛЖ, ЧСС (ЭКГ) и клинических симптомов.

### Таблица 3/A3. Начальные и целевые дозы при медикаментозной терапии ГКМП

| Препарат                                                                   | Начальная доза                                                                         | Целевая доза                                                                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| - пропранолол** - метопролол** - атенолол** - бисопролол** - соталол**     | 40-80 мг/сутки<br>25-50 мг/сутки<br>25-50 мг/сутки<br>1,25-2,5 мг/сутки<br>80 мг/сутки | 240 мг/сутки<br>100–200 мг/сутки<br>150–200 мг/сутки<br>10 мг/сутки<br>160–240 мг/сутки |
| - верапамил**<br>- верапамил** (пролонгированного действия)<br>- дилтиазем | 60-120 мг/сутки<br>120 мг/сутки<br>60-120 мг/сутки                                     | 240-480 мг/сутки<br>240-480 мг/сутки<br>180-360 мг/сутки                                |

# Таблица 4/A3. Рекомендуемые режимы антикоагулянтной терапии при ГКМП у беременных с ФП и опасности, связанные с терапией варфарином\*\*

| Режимы антикоагулянтной терапии |                                                                                                                                                                                                                                                                         |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Режим 1                         | Постоянная терапия варфарином** за исключением срока 6–12 недель (отмена должна начинаться с начала 5 недели с учетом периода полувыведения) с переходом на этот срок на гепарин натрия ** (низкомолекулярный) (минимальный риск тромбоза и возможный риск эмбриопатии) |  |  |
| Режим 2                         | Переход на парентеральные прямые антикоагулянты (гепарин натрия**) на весь срок беременности (минимальный риск эмбриопатии, но повышенный по сравнению с терапией варфарином** риск тромбозов)                                                                          |  |  |

#### Опасности, связанные с применением варфарина

Период полувыведения варфарина\*\* превышает 60 часов, что необходимо учитывать при определении сроков отмены препарата.

Некоторые авторы отмечают дозозависимый эмбриотоксический эффект варфарина\*\* — доза менее 5 мг редко приводит к возникновению эмбриопатии. Однако на практике доза варфарина определяется величиной МНО и не может быть произвольно уменьшена или увеличена.

Наиболее критическим периодом действия варфарина\*\* является срок 6–12 недель — максимальная вероятность эмбриотоксического эффекта.

Вызывая гипокоагуляцию у плода, варфарин\*\* может приводить к нарушениям формирования ЦНС, вызывая внутричерепные кровоизлияния

Угнетая синтез витамин-К зависимых факторов, варфарин\*\* существенно влияет на процесс формирования и роста костей плода.

Результатом эмбриотоксичности варфарина\*\* являются гипоплазия носовых костей, атрофия зрительного нерва, задержка умственного развития, а также замершие беременности, спонтанные аборты и мертворождения.

# **Таблица 5/А3. Клинические исследования и используемые препараты на догипертрофической стадии ГКМП** (адаптировано из: Philipson DJ et al. [39])

| Препарат                       | Потенциальный эффект                                                                                     | Клинические исследования                                                  |
|--------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Дилтиазем                      | Уменьшение гипертрофии кардиомиоцитов у<br>носителей МҮВРСЗ мутаций                                      | Доклинические исследования                                                |
| MYK-461                        | Предотвращение развития гипертрофии<br>и фиброза                                                         | Фаза II рандомизированного<br>контролируемого исследования<br>PIONEER-HCM |
| Ацетил-<br>цистеин**           | Изменение чувствительности к кальцию, регресс гипертрофии, фиброза, улучшение диастолической дисфункции. | Фаза I рандомизированного<br>контролируемого исследования<br>HALT         |
| Антагонисты<br>ангиотензина II | Снижают продукцию трофических факторов<br>ренин-ангиотензин-альдостеронового пути                        | РКИ «INHERIT»<br>Фаза II РКИ «VANISH»                                     |

## Приложение Б. Алгоритмы ведения пациента

Приложение Б1. Алгоритм тактики ведения асимптомных пациентов с ГКМП



Приложение Б2. Упрощенный алгоритм диагностики и подходов к лечению пациентов с обструкцией на уровне ВТЛЖ



Приложение Б3. Алгоритм фармакотерапии обструктивной ГКМП



### Приложение Б4. Алгоритм врачебной тактики лечения XCH при ГКМП



Приложение Б5. Алгоритм предоперационной диагностики для выбора дополнительных вмешательств на МК при СМЭ/РМЭ (адаптировано из [398])



### Приложение Б6. Алгоритм выбора метода редукции МЖП



Приложение Б7. Алгоритм первичной и вторичной профилактики ВСС у пациентов с ГКМП



Приложение Б8. Алгоритм диагностики и врачебной тактики при синкопальных состояниях



Приложение Б9. Алгоритм врачебной тактики в зависимости от стадии ГКМП и варианта клинического течения



### Приложение Б10. Показания к редукции МЖП (СМЭ/ РМЭ/CAA)

| Критерии         | Показания                                                                                                                                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Клинические      | XCH III–IV функционального класса NYHA с ФВЛЖ ≥ 50 % и/или наличие других тяжелых симптомов (обмороки, предобморочные состояния, синдром стенокардии), существенно ограничивающих повседневную активность, несмотря на оптимальную медикаментозную терапию.                              |
| Гемодинамические | Обструктивная форма ГКМП (в покое или индуцируемая) с ГД в ВТЛЖ ≥ 50 мм рт.ст., которая ассоциирована с гипертрофией МЖП и передне-систолическим движением створки митрального клапана, другими аномалиями аппарата МК (хорды, ПМ) и, рефрактерная к проводимой терапии в полном объеме. |
| Анатомические    | Толщина МЖП, достаточная для безопасного и эффективного выполнения операции или процедуры (по мнению оператора), состояние аппарата МК и подклапанных структур, сочетанные аномалии коронарных артерий.                                                                                  |

### Приложение Б11. Сравнение СМЭ/РМЭ и САА

(https://www.ncbi.nlm.nih.gov/pubmed/? (адаптировано Batzner Α из: term=Batzner%20A%5BAuthor%5D&cauthor=true&cauthor uid=30855006), Schäfers (https://www.ncbi.nlm.nih.gov/pubmed/? HJ term=Sch%C3%A4fers%20HJ%5BAuthor%5D&cauthor=true&cauthor\_uid=30855006), Borisov (https://www.ncbi.nlm.nih.gov/pubmed/? KV term=Borisov%20KV%5BAuthor%5D&cauthor=true&cauthor uid=30855006), Seggewiß Η (https://www.ncbi.nlm.nih.gov/pubmed/? term=Seggewi%C3%9F%20H%5BAuthor%5D&cauthor=true&cauthor uid=30855006). Cardiomyopathy. **Hypertrophic** Obstructive Dtsch Arztebl Int. (https://www.ncbi.nlm.nih.gov/pubmed/30855006) 2019 [393])

| Критерии                                   | СМЭ/РМЭ                                           | CAA                                                          |
|--------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|
| Локализация гипертрофированного отдела МЖП | Субаортальная, среднежелудочковая,<br>апикальная  | Субаортальная<br>Среднежелудочковая (в<br>отдельных Центрах) |
| Степень гипертрофии                        | От >20 мм до экстремальной гипертрофия МЖП >30 мм | Гипертрофия МЖП <30 мм                                       |

| Не ассоциированное с ПСД МК<br>и ассоциированное с ПСД МК                                        | Ассоциированное с ПСД<br>МК                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Подклапанная мембрана, аортальный стеноз, ИБС, мнососудистое поражение                           | ИБС, однососудистое<br>поражение                                                                                                                                                                                                                                                                                     |
| Подростки и молодые взрослые                                                                     | Взрослые                                                                                                                                                                                                                                                                                                             |
| Наиболее часто встречающиеся осложнения СМЭ: дефект МЖП, АВ-блокада и остаточная обструкция ВТЛЖ | Менее агрессивная                                                                                                                                                                                                                                                                                                    |
| 2-10 %<br>До 50% с исходной БПНПГ                                                                | 10-20%<br>До 50% с исходной<br>БЛНПГ                                                                                                                                                                                                                                                                                 |
| Более 50 лет                                                                                     | Более 20 лет                                                                                                                                                                                                                                                                                                         |
| Недостаточная, небольшое количество<br>центров с опытом                                          | Достаточная, но небольшое количество центров с опытом                                                                                                                                                                                                                                                                |
|                                                                                                  | и ассоциированное с ПСД МК  Подклапанная мембрана, аортальный стеноз, ИБС, мнососудистое поражение  Подростки и молодые взрослые  Наиболее часто встречающиеся осложнения СМЭ: дефект МЖП, АВблокада и остаточная обструкция ВТЛЖ  2–10 % До 50% с исходной БПНПГ  Более 50 лет  Недостаточная, небольшое количество |

Сопоставимые показатели выживаемости и клинико-гемодинамическое улучшение после САА и СМЭ/РМЭ были получены в нерандомизированных обсервационных исследованиях.

# Приложение Б12. Врачебная тактика ведения беременности и родоразрешения в зависимости от степени обструкции ВТЛЖ (по [428])

| Степень обструкции ВТЛЖ                                                             | Врачебная тактика                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Необструктивная ГКМП или<br>небольшая степень обструкции<br>ВТЛЖ (ГД <30 мм рт.ст.) | Пролонгирование беременности может быть разрешено при условии постоянного наблюдения кардиологом (не реже 1 раза в месяц) Госпитализация осуществляется в сроки, рекомендованные для всех пациенток с сердечно-сосудистыми заболеваниями, при необходимости — чаще. Роды через естественные родовые пути.                          |  |
| Средняя степень обструкции ВТЛЖ (ГД 30-50 мм рт.ст.)                                | Вопрос о вынашивании беременности решается индивидуально: необходимо постоянное наблюдение кардиолога (терапевта) и акушера-гинеколога. Сроки госпитализации те же; также в любой срок при ухудшении состояния и развитии осложнений. Роды проводят через естественные родовые пути с исключением потуг.                           |  |
| Тяжелая степень обструкции ВТЛЖ (ГД ≥50 мм рт.ст.)                                  | Вынашивание беременности и роды категорически противопоказаны. При отказе женщины от прерывания беременности показана госпитализация практически на весь срок беременности. Родоразрешение проводят путем операции кесарева сечения. Использование эпидуральной анестезии с осторожностью из-за опасности артериальной гипотензии. |  |

### Приложение Б13. Учреждение для ведения беременных с ГКМП

|                               | ВОЗ II<br>(бессимптомные или<br>малосимптомные пациентки) | ВОЗ III<br>(симптомные пациентки с ГКМП)          |
|-------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| Ведение беременных            | Региональный перинатальный<br>центр                       | Экспертный центр.<br>Перинатальный центр 3 уровня |
| Частота осмотров              | 1 раз в 2 месяца                                          | Каждый месяц или 2 раза в месяц                   |
| Учреждение для родоразрешения | Региональный перинатальный<br>центр                       | Экспертный центр.<br>Перинатальный центр 3 уровня |

# Приложение В. Информация для пациентов

### Общие рекомендации по образу жизни (адаптировано из [4])

| Область                    | Рекомендации                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Нагрузки                   | Пациентам следует избегать соревновательного спорта, но по возможности поддерживать обычный образ жизни. В отсутствии симптомов и факторов риска ВСС пациенты с ГКМП могут участвовать в физической активности от небольшой до средней степени интенсивности, в соответствии с рекомендациями кардиолога.                                                                                                                    |
| Диета                      | Пациентам следует стараться поддерживать нормальный вес тела. Прием большого объема пищи может вызвать боли в грудно клетке, особенно у пациентов с обструкцией ВТЛЖ. Целесообразно частое дробное питание. Запоры — частый побочный эффект верапамила**, должны контролироваться диетой и/или слабительными средствами.                                                                                                     |
| Профессия                  | Большинство пациентов с ГКМП могут продолжать обычную трудовую деятельность.<br>Уровень физических усилий на работе должен соответствовать клиническому статусу<br>пациента.<br>Для некоторых видов деятельности (пилотирование, военная служба) существуют<br>строгие ограничения при приеме на работу.                                                                                                                     |
| Курение                    | Нет данных о связи табакокурения и ГКМП, но пациентам необходимо предоставить информацию о рисках для здоровья, связанных с курением.                                                                                                                                                                                                                                                                                        |
| Сексуальная<br>активность  | У пациентов должна быть возможность обсудить интересующие их вопросы сексуальной активности. Пациенты после установления диагноза часто испытывают беспокойство, депрессию и страх передать заболевание потомству. Пациентам следует знать о влиянии принимаемых лекарственных препаратов на их сексуальную активность. Пациентам следует избегать приема ингибиторов фосфодиэстеразы, особенно при наличии обструкции ВТЛЖ. |
| Вождение<br>автомобиля     | Большинство пациентов могут получать водительские права и продолжать водить машину, если у них нет инвалидизирующих симптомов.                                                                                                                                                                                                                                                                                               |
| Вакцинация                 | При отсутствии противопоказаний рекомендована ежегодная вакцинация от гриппа.                                                                                                                                                                                                                                                                                                                                                |
| Лекарственные<br>препараты | Пациентам следует знать о принимаемых ими лекарственных препаратах, их побочных эффектах и межлекарственном взаимодействии. По возможности следует избегать приема периферических вазодилататоров, особенно при обструкции ВТЛЖ.                                                                                                                                                                                             |
| Страхование<br>жизни       | Диагноз ГКМП может привести к затруднениям при страховании жизни.                                                                                                                                                                                                                                                                                                                                                            |
| Авиаперелеты               | Большинство бессимптомных пациентов или с незначительной симптоматикой могут безопасно совершать авиаперелеты.                                                                                                                                                                                                                                                                                                               |

### Приложение Г.

## Приложение Г1. Принципы и особенности диагностики и оценки сердечно-сосудистого риска при ГКМП

## Таблица П1/Г1. Изменения лабораторных тестов, позволяющие заподозрить некоторые фенокопии ГКМП (адаптировано из [4])

| Тест                                                                                             | Заболевания (фенокопии ГКМП)                                                                                                                                                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Гемоглобин                                                                                       | При анемии усиливаются боли в грудной клетке и одышка, и ее следует исключать при изменении симптоматики Анемия, вызывая тахикардию, может способствовать увеличению ГД в ВТЛЖ. Снижение кислород-транспортной функции крови может является дополнительным фактором ишемии миокарда.                     |  |
| Функция почек                                                                                    | У пациентов с тяжелой левожелудочковой ХСН может быть нарушена функция почек.<br>Снижение СКФ и протеинурия могут наблюдаться при амилоидозе, болезни Андерсона-Фабри и митохондриальных болезнях                                                                                                        |  |
| МНУП и N-терминальный про-<br>МНУП (Nt-proBNP)                                                   | Диагностика ХСН на ранней стадии. Мониторинг тяжести ХСН и ответа<br>на терапию при фенокопиях ГКМП ГКМП (напр. кардиальном<br>амилоидозе).                                                                                                                                                              |  |
| Сердечный тропонин                                                                               | Повышен: - у пациентов с ГКМП, особенно при прогрессировании симптомов ГКМП, - при развитии ИМ 2 или 1 типа - при некоторых фенокопиях ГКМП (напр., кардиальном амилоидозе)                                                                                                                              |  |
| Определение концентрации свободных легких цепей иммуноглобулинов (каппа и лямбда) в крови и моче | При подозрении на AL-амилоидоз сердца                                                                                                                                                                                                                                                                    |  |
| Исследование костного мозга                                                                      | При подозрении на амилоидоз сердца                                                                                                                                                                                                                                                                       |  |
| Трансаминазы печени                                                                              | Печеночные тесты могут быть измененными при митохондриальных болезни Данона                                                                                                                                                                                                                              |  |
| Креатинфосфокиназа                                                                               | Креатинфосфокиназа плазмы возрастает при болезни Данона и<br>митохондриальных болезнях, десминопатиях                                                                                                                                                                                                    |  |
| Активность альфа-<br>галактозидазы А в плазме/<br>лейкоцитах (у мужчин >30<br>лет)               | У мужчин с болезнью Андерсона-Фабри низкая (<10% от нормального уровня) или неопределяемая активность альфа галактозидазы А. У женщин с болезнью Андерсона-Фабри уровень фермента в плазме и лейкоцитах часто в пределах нормы, поэтому, при клиническом подозрении требуется генетическое тестирование. |  |
| Глюкоза натощак                                                                                  | Может быть повышена при некоторых митохондриальных болезнях                                                                                                                                                                                                                                              |  |
| Оценка функции щитовидной<br>железы                                                              | Должна быть определена в момент постановки диагноза и мониторироваться каждые 6 месяцев у пациентов с ГКМП, получающих амиодарон**                                                                                                                                                                       |  |
| Лактат плазмы                                                                                    | Увеличен у некоторых пациентов при митохондриальных болезнях                                                                                                                                                                                                                                             |  |

# Таблица П2/Г1. Электрокардиографические аномалии, позволяющие предположить конкретный диагноз фенокопии ГКМП или морфологический вариант ГКМП (по Rapezzi C et al., 2013 [164])

| Особенности                                  | Комментарий                                                                                                                                                                                                                                                        |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Короткий PR-интервал /<br>раннее возбуждение | Раннее возбуждение желудочков — частый феномен болезней накопления (болезни Помпе, PRKAG2 и Данона) и митохондриальных болезней (MELAS, MERFF). Короткий PR-интервал без раннего возбуждения желудочков встречается при болезни Андерсона-Фабри.                   |
| АВ-блокада                                   | Прогрессирующее замедление атриовентрикулярного проведения часто встречается при митохондриальных заболеваниях, некоторых болезнях накопления (включая болезнь Андерсона-Фабри), амилоидозе, десминопатиях, а также у пациентов с мутациями в гене <i>PRKAG2</i> . |

| Выраженная ГЛЖ (индекс<br>Соколова >50)                                                                            | Чрезвычайно большой вольтаж QRS типичен для болезней Помпе и Данона, но может быть результатом только раннего возбуждения желудочков.                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Низкий вольтаж QRS (или<br>нормальный вольтаж<br>несмотря на увеличение<br>толщины стенки ЛЖ)                      | Низкий вольтаж QRS в отсутствие перикардиального выпота, ожирения и болезни легких редко наблюдается при ГКМП (за исключением случаев стадии декомпенсации), но характерен для пациентов с AL-амилоидозом и реже — при транстиретиновом амилоидозе.                                                                                   |
|                                                                                                                    | Дифференциальный диагноз между ГКМП и кардиальной формой амилоидоза включает анализ соотношения вольтаж/масса ЛЖ: аномальное соотношение (низкий вольтаж при толщине стенки ЛЖ ≥12мм) характерно для кардиального амилоидоза (чувствительность 75%, специфичность 67%).                                                               |
| Вектор QRS от -90°<br>до -150°                                                                                     | Наблюдается у пациентов с синдромом Нунан, имеющих выраженную базальную гипертрофию, распространяющуюся на выходной тракт ПЖ.                                                                                                                                                                                                         |
| Гигантский негативный<br>зубец T (>10 мм)                                                                          | Гигантский негативный зубец Т в прекордиальных и/или переднелатеральных отведениях свидетельствует о вовлечении верхушки ЛЖ.                                                                                                                                                                                                          |
| Патологический зубец Q (>40 мс и/или >25% глубины R-волны и/или глубина >3 мм хотя бы в двух отведениях, кроме aVR | Аномально глубокий зубец Q в переднелатеральных отведениях, обычно с положительной Т-волной, ассоциирован с асимметричной гипертрофией ЛЖ. Аномальная продолжительность зубца Q (≥40 ms) ассоциирована с областями фиброзного замещения.                                                                                              |
| Сводчатая элевация сегмента ST в латеральных грудных отведениях                                                    | У некоторых пациентов с апикальной или дистальной гипертрофией развиваются апикальные аневризмы, иногда ассоциированные с фиброзом миокарда. Малых размеров аневризмы выявляются только при МРТ сердца, ЭХОКГ с контрастированием или вентрикулографии, часто ассоциированы с элевацией сегмента ST в латеральных грудных отведениях. |

## Таблица П3/Г1. Параметры протокола ТТ-ЭХОКГ-исследования у пациента с ГКМП (адаптировано из [216])

| Параметры                                                                             | Комментарии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Толщина миокарда ЛЖ (в 16 сегментах ЛЖ)<br>Количество гипертрофированных сегментов ЛЖ | - Измерение толщины стенок ЛЖ следует проводить в конечно-<br>диастолическую фазу, предпочтительно — в парастернальной позиции<br>по короткой оси ЛЖ (желательно толщину миокарда в<br>гипертрофированных сегментах оценивать в нескольких проекциях, но<br>измерения в апикальных сканах переоценивают толщину миокарда из-<br>за ограничений бокового разрешения).<br>- Избегать включения в толщину миокарда ПЖ-трабекул.<br>- Критичные показатели: максимальная толщина стенки ЛЖ<br>(стратификация риска ВСС) и толщина стенки в месте митрально-<br>септального контакта (выбор СМЭ-САА). |  |  |
| Тип гипертрофии ЛЖ<br>Паттерн морфологии МЖП                                          | Асимметричная, симметричная, апикальная, срединно-желудочковая, другие отделы ЛЖ.<br>Морфоогия МЖП: двояковыпуклая, сигмовидная, гипертрофия всей<br>МЖП.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Толщина миокарда ПЖ                                                                   | Оценивают в базальных, срединных и апикальных сегментах (нормальные размеры <5 мм в изображении парастернальном по длинной оси на уровне хорд трикуспидального клапана). Избегать включения эпикардиального жира в измерение миокарда ПЖ.                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Текстура миокарда ЛЖ                                                                  | «Блестящий», гранулярность (для исключения фенокопий ГКМП).<br>Наличие крипт миокарда (при МРТ более точная диагностика).                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Исследование размеров и<br>объемов ЛЖ                                                 | КДР*, КСР, КДО и КСО<br>*Примечание: при S-образной МЖП КДР следует измерять в 2<br>вариантах — на уровне базальных сегментов ЛЖ и ближе к срединным<br>сегментам, где он максимален (см. рекомендации ASE 2019)                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Исследование размеров ПЖ                                                              | В парастернальной и апикальной позиции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Исследование размеров и<br>объемов ЛП и ПП                                            | Увеличение ЛП относится к дополнительным факторам риска ВСС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Оценка толщины<br>межпредсердной перегородки                                          | Для исключения фенокопий ГКМП (амилоидоз)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Визуальная оценка кинетики<br>миокарда ЛЖ и ПЖ                                        | Выявление зон ишемии /перенесенного ИМ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Визуальная оценка клапанов<br>(МК, АК, ТК, ПК)                                        | Особое внимание — МК: - наличие передне-систолического движения створок МК, наличие митрально-септального контакта (важная характеристика ГКМП, но также может наблюдаться не при ГКМП у пациентов с маленьким ЛЖ независимо от наличия ГЛЖ, при гиповолемии, после кардиоторакальных хирургических вмешательств) - есть ли удлинение (избыточность) створок МК, наличие и степень пролабирования створок МК.                                                                                                                                                                                    |  |  |
| Папиллярные мышцы                                                                     | Количество, есть ли дислокация                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| Наличие и степень обструкции<br>ВТЛЖ или срединно-<br>желудочковой обструкции | - Регистрация кровотока через АК/ВТЛЖ — паттерн допплеровского спектра и величина ГД в ВТЛЖ Следует использовать следующие формулы для расчета ГД в ВТЛЖ: уравнение Бернули $\Delta p = 4 \times V \text{ max}^2$ , если можно точно измерить скорость кровотока в пути оттока ЛЖ; формула клиники Мейо « $\Delta p = [(4 \times V \text{ max MP}^2) + p \ Л\Pi] - системное систолическое АД», если наличие выраженной митральной регургитации не позволяет точно измерить скорость кровотока в пути оттока ЛЖ (рЛП — давление в левом предсердии, используется константа — 20 мм рт. ст.) - Необходимо убедиться, что регистрируется только кровоток в ВТЛЖ и не «захватывается» ток митральной регургитации Если в покое ГД в ВТЛЖ <30 мм рт. ст., следует провести провокационную пробу Вальсальвы У некоторых пациентов величина ГД в ВТЛЖ больше в положении сидя и стоя, чем лежа, поэтому необходимо измерение ГД и в положении пациента сидя и стоя.$ |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Есть ли обструкция выходного тракта ПЖ                                        | Регистрация скорости кровотока в ВТПЖ и на уровне срединных сегментов ПЖ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Оценка клапанной регургитации, особенно MP.                                   | При МР, обусловленной ПСД МК, ток, как правило, направлен латерально и кзади, а степень МР пропорциональна выраженности ПСД и митрально-септальному контакту. Если направление тока МР атипично или не пропорциональна ПСД, возможна самостоятельная патология МК; это критично для выбора хирургического или эндоваскулярного метода лечения.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Исследование систолической функции ЛЖ и ПЖ                                    | ФВ ЛЖ часто сверхнормальна, особенно при маленьком ЛЖ, что может не корректно отражать сократимость кардиомиоцитов. Более точны продольный 2D-strain и тканевая допплерография (s'<4 см/с — предиктор развития ХСН и плохого прогноза). Для ПЖ: TAPSE, 2D-strain стенки ПЖ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Исследование диастолической функции ЛЖ                                        | Согласно рекомендациям ASE и EACVI (2016) при ГКМП следует оценивать степень диастолической дисфункции. Ключевой параметр диастолической дисфункции ЛЖ – давление наполнения ЛЖ (КДД ЛЖ). Его неинвазивная оценка многофакторна. По рекомендациям ASE и EACVI (2016) при ГКМП вывод о повышении КДД ЛЖ следует, если: 1. cp. E/e' >14 cm/c,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                                                               | 2. разница длительности реверсивной волны А в легочных венах и                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                               | волны A трансмитрального кровотока (Ar-A) ≥30 мс,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                               | 3. индекс объема ЛП ≥34 мл мл/м <sup>2</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                               | 4. пиковая скорость трикуспидальной регургитации >2,8 м/с (СДЛА >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                               | 35-40 мм рт.ст.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                               | Более подробно об алгоритмах оценки диастолической дисфункции в разных клинических ситуациях— см. рекомендации ASE/EACVI (2016) по исследованию диастолической функции ЛЖ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Оценка продольной<br>деформации ЛЖ (2D-strain)                                | С построением сегментарной схемы-мишени ЛЖ (bull"s eye). Паттерны<br>2D-strain различны при ГКМП и фенокопиях ГКМП.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Оценка наличия жидкости в<br>полости перикарда                                | Исключение фенокопий ГКМП (характерно для кардиального амилоидоза).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Оценка диаметра и степени коллабирования нижней полой вены                    | Необходима для расчета СДЛА.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

### Таблица П4/Г1. Дополнительные опции при ЭХОКГ

| Опция                                           | Цель использования                                                                                                    |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Оценка продольной деформации ЛЖ (2D-<br>strain) | С построением сегментарной схемы-мишени ЛЖ (bull"s<br>eye). Паттерны 2D-strain различны при ГКМП и фенокопиях<br>ГКМП |
| 3-D реконструкция                               | Оценка морфологии МК для выбора хирургической тактики                                                                 |

## Таблица П5/Г1. Эхокардиографические особенности, позволяющие предположить диагноз фенокопии ГКМП (адаптировано из [4])

| Особенности                          | Комментарий                                                     |  |  |
|--------------------------------------|-----------------------------------------------------------------|--|--|
| Утолщение межпредсердной перегородки | Амилоидоз                                                       |  |  |
| Утолщение створок МК                 | Амилоидоз, болезнь Андерсона-Фабри                              |  |  |
| Гипертрофия свободной стенки ПЖ      | Амилоидоз, миокардит, болезнь Андерсона-Фабри,<br>синдром Нунан |  |  |
| Перикардиальный выпот                | Амилоидоз, миокардит                                            |  |  |

| Увеличение эхогенности миокарда ЛЖ                                        | Амилоидоз                                                                                                                                 |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Концентрическая ГЛЖ                                                       | Митохондриальные болезни,<br>амилоидоз, болезнь Андерсона-Фабри, мутации в гене<br><i>PRKAG2</i>                                          |
| Экстремальная концентрическая ГЛЖ (толщина стенок ≥30 мм)                 | Болезнь Данона, болезнь Помпе                                                                                                             |
| Глобальная гипокинезия ЛЖ<br>(с наличием или отсутствием<br>дилатации ЛЖ) | Митохондриальные болезни, амилоидоз, мутации в гене<br>PRKAG2, Болезнь Данона, миокардит, поздняя стадия<br>ГКМП, болезнь Андерсона-Фабри |
| Обструкция выходного тракта ПЖ                                            | Синдром Нунан и ассоциированные синдромы                                                                                                  |

## Таблица П6/Г1. Параметры, которые необходимо оценить при МРТ сердца у пациента с ГКМП

| Структуры                                               | Параметры                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| лж                                                      | КДР, КСР, ФВ, масса миокарда                                                                                                                                                                                                                                                                                                              |
|                                                         | Наличие нарушений сегментарного сокращения миокарда ЛЖ                                                                                                                                                                                                                                                                                    |
| втлж                                                    | Анатомические особенности ВТЛЖ, типа и места обструкции в ЛЖ                                                                                                                                                                                                                                                                              |
|                                                         | Величина пиковой скорости/ГД в ВТЛЖ (фазово-контрастная MPT с кодированием скорости)                                                                                                                                                                                                                                                      |
| пж                                                      | КДР, КСР, ФВ, размеры, наличие обструкции в ВТПЖ                                                                                                                                                                                                                                                                                          |
| Миокард ЛЖ                                              | - Толщина миокарда левого желудочка в диастолу по короткой оси ЛЖ согласно 17-ти сегментарной модели - Локализация/распространенность/количество гипертрофированных сегментов ЛЖ - морфологический тип ГКМП (асимметричная, симметричная, апикальная, среднежелудочковая) - паттерн морфологии МЖП (двояковыпуклая, сигмовидная, вся МЖП) |
| Позднее<br>накопление<br>гадолиния                      | Наличие, паттерн, распространенность ПНГ в % от общей массы миокарда ЛЖ                                                                                                                                                                                                                                                                   |
| МР и ТР                                                 | Наличие митральной и трикуспидальной регургитации, степень, фракция<br>регургитации                                                                                                                                                                                                                                                       |
| Аппарат МК<br>(створки, хорды,<br>папиллярные<br>мышцы) | Строение, описание аномалий (смещение/«расщепление» головок и гипермобильность папиллярных мышц), связь с обструкцией ВТЛЖ и митральной регургитацией                                                                                                                                                                                     |
| ЛП и ПП                                                 | Размеры                                                                                                                                                                                                                                                                                                                                   |
| Дополнительные<br>аномалии                              | При планировании СМЭ/РМЭ - идентифицирование «крипт» у пациентов с ГКМП с<br>указанием количества и глубины дефектов                                                                                                                                                                                                                      |

### Таблица П7/Г1. Варианты нагрузочных тестов

| Нагрузочный тест                            | Аппаратура для<br>нагрузки           | Показания/цель                                                                                                                                                                                                                                                   |  |
|---------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Нагрузочный тест с<br>регистрацией ЭКГ и АД | Тредмил<br>Велоэргометр<br>(реже)    | Стратификация риска ВСС                                                                                                                                                                                                                                          |  |
| Стресс-ЭХОКГ                                | Тредмил<br>«Лежачий»<br>велоэргометр | - Диагностика латентной обструкции - Стратификация риска ВСС (динамика АД и ГД) - Индуцируется ли ишемия миокарда - Оценка эффективности проводимой терапии - Планирование диагностических мероприятий у пациентов с болями в области сердца (необходимость КАГ) |  |
| Эргоспирометрия                             | Тредмилл                             | При планировании трансплантации сердца                                                                                                                                                                                                                           |  |

Таблица П8/Г1. Диагностика у родственников пробанда, носителей мутаций генотип(+)/фенотип(-) в догипертрофической стадии (адаптировано из [173])



Таблица П9/Г1. Факторы риска развития инфаркта миокарда 2 типа у пациентов с ГКМП



Таблица П10/Г1. Схема дифференциального диагноза ГКМП и базальной септальной гипертрофии (адаптировано из [437])



Таблица П11/Г1. Дифференциальная диагностика ГКМП и спортивной ГЛЖ



### Таблица П12/Г1. Ограничения в методах диагностики при беременности

| Метод                                   | Ограничения                                                                                                                  | УУР | УДД |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| ЭКГ                                     | Нет ограничений                                                                                                              | 1   | С   |
| Электро-физиологическое<br>исследование | Может быть выполнено по жизненно важным показаниям                                                                           | 3   | С   |
| ЭХОКГ                                   | ТТ-ЭХОКГ — нет ограничений ЧП-ЭХОКГ — если ТТ-ЭХОКГ недостаточно для постановки диагноза или детализации нарушений.          | 1   | C   |
| МРТ                                     | Без использования контраста (гадолиний) может<br>быть выполнена в случае, если ЭХОКГ<br>недостаточно для постановки диагноза | 2   | С   |
| кт/мскт                                 | Может быть выполнена по жизненно важным показаниям                                                                           | 3   | С   |

### Таблица П13/Г1. Упрощенная модель клинических вариантов течения ГКМП



### Приложение Г2. Шкалы оценки риска

Таблица П1/Г2. Шкала прогнозирования вероятности обнаружения генетических вариантов при ГКМП (адаптировано из [170])

**Название на русском языке:** Шкала прогнозирования вероятности обнаружения генетических вариантов при ГКМП

Оригинальное название (если есть): нет

Источник (официальный сайт разработчиков, публикация с валидацией):

Ingles J. Non-familial hypertrophic cardiomyopathy prevalence, natural history, and clinical implications. Circ Cardiovasc. / Ingles J, Burns C, Bagnall RD et al. // Genet. 2017:10 [170].

#### Тип (подчеркнуть):

- шкала оценки
- индекс
- вопросник
- другое (уточнить):

**Назначение:** клинический инструмент для прогнозирования вероятности обнаружения генетических вариантов при ГКМП

#### Содержание (шаблон):

|                                                                                                                                                                    | Переменная | Баллы |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| Возраст, лет                                                                                                                                                       | 20         | 0     |
|                                                                                                                                                                    | 20-29      | -1    |
|                                                                                                                                                                    | 30-39      | -2    |
|                                                                                                                                                                    | 40-49      | -3    |
|                                                                                                                                                                    | 50-59      | -4    |
|                                                                                                                                                                    | 60-69      | -5    |
|                                                                                                                                                                    | 70-79      | -6    |
|                                                                                                                                                                    | 80         | -7    |
| Женщины                                                                                                                                                            |            | -4    |
| Артериальная гипертензия                                                                                                                                           |            | -4    |
| «Двояковыпуклая» форма МЖП (англ. «reverse curve»)                                                                                                                 |            | 5     |
| Соотношение толщины МЖП/<br>ЗСЛЖ                                                                                                                                   | 1,46       | 0     |
|                                                                                                                                                                    | 1,47-1,70  | 1     |
|                                                                                                                                                                    | 1,71-1,92  | 2     |
|                                                                                                                                                                    | 1,93-2,26  | 3     |
|                                                                                                                                                                    | 2,27       | 4     |
| Ключ (интерпретация):<br>Сумма баллов ≤2 предсказывает низкую вероятность обнаружения генетических вариантов в причинных генах, наиболее распространенных при ГКМП |            |       |

### Таблица П2/Г2. HCM Risk-SCD. Шкала оценки риска BCC у пациентов с ГКМП (европейская модель)

**Название на русском языке:** HCM Risk-SCD. Шкала оценки риска BCC у пациентов с ГКМП (европейская модель).

Оригинальное название (если есть): HCM Risk-SCD

### Источник (официальный сайт разработчиков, публикация с валидацией):

O'Mahony C. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). / O'Mahony C, Jichi F, Pavlou M et al. // Eur Heart J. 2014;35:2010–2020 [181].

Liebregts M. Validation of the HCM Risk-SCD model in patients with hypertrophic cardiomyopathy following alcohol septal ablation / Liebregts M, Faber L, Jensen MK et al. // Europace. 2018;20(FI2):198–203 [300].

«Калькулятор» на сайте http://doc2do.com/hcm/webHCM.html (http://doc2do.com/hcm/webHCM.html)

#### Тип (подчеркнуть):

#### шкала оценки

- индекс
- вопросник
- другое (уточнить):

**Назначение:** клинический инструмент для прогнозирования риска ВСС у пациентов с ГКМП.

#### Содержание (шаблон):

### 

### Таблица П3/Г2. Шкала оценки риска ВСС у пациентов с ГКМП (американская модель)

**Название на русском языке:** Шкала оценки риска ВСС у пациентов с ГКМП (американская модель).

#### Оригинальное название (если есть): нет

### Источник (официальный сайт разработчиков, публикация с валидацией):

2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines // Circulation. 2011; 124(2):2761–2796 [3].

Goff ZD. Sudden death related cardiomyopathies — hypertrophic cardiomyopathy. / Goff Z.D., Calkins H. // Prog Cardiovasc Dis. 2019;62(3):212–216 [121].

#### Тип (подчеркнуть):

- шкала оценки
- индекс
- вопросник

— другое (уточнить):

**Назначение:** клинический инструмент для прогнозирования риска ВСС у пациентов с ГКМП.

### Содержание (шаблон):

| Шкала риска BCC (американская модель)           |                                                                                                                                                                                                                                                                                                                                                                       |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                 | Факторы риска ВСС                                                                                                                                                                                                                                                                                                                                                     |  |
| Доказанные<br>факторы риска<br>ВСС              | <ol> <li>Предотвращенная ВСС (выжившие после остановки сердца вследствие ФТ или ФЖ)</li> <li>Спонтанная устойчивая ЖТ</li> <li>Семейная история ВСС вследствие ГКМП</li> <li>Максимальная толщина стенки ЛЖ ≥30 мм</li> <li>Необъяснимая синкопа в течение последних 6 мес.</li> <li>НУЖТ ≥ 3 комплексов</li> <li>Неадекватная реакция АД на физ. нагрузку</li> </ol> |  |
| Модификаторы<br>риска ВСС                       | 1. Возраст <30 лет     2. ПНГ при МРТ     3. Наличие обструкции ВТЛЖ     4. Необъяснимые синкопы в течение последних 5 лет                                                                                                                                                                                                                                            |  |
| Подгруппы<br>пациентов<br>высокого риска<br>ВСС | 1. Апикальная аневризма ЛЖ 2. ФВ ЛЖ <50%                                                                                                                                                                                                                                                                                                                              |  |

### Ключ (интерпретация) к имплантации ИКД\*\*\*:

| Факторы риска ВСС(американская модель)                                                                                                                                   | Имплантация<br>ИКД***      | Класс по<br>АНА/АСС |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|
| Предотвращенная ВСС (выжившие после остановки сердца вследствие ЖТ или ФЖ)                                                                                               | показана                   | I                   |
| Синкопа, вызванная спонтанной устойчивой ЖТ или гемодинамически значимая ЖТ                                                                                              | показана                   | I                   |
| Наличие хотя бы 1 из следующих факторов:  1. Семейная история ВСС вследствие ГКМП  2. Необъяснимая синкопа в течение последних 6 мес.  3. Макс. толщина стенки ЛЖ ≥30 мм | показана                   | IIa                 |
| Спонтанная НУЖТ + хотя бы 1 из факторов-модификаторов риска или пациент входит в группу высокого риска ВСС                                                               | показана                   | IIa                 |
| Неадекватная реакция АД на физ. нагрузку + хотя бы 1 из факторов-модификаторов риска или пациент входит в группу высокого риска ВСС                                      | показана                   | IIa                 |
| Спонтанная НУЖТ или неадекватная реакция АД на физ. нагрузку<br>без дополнительных факторов риска                                                                        | Рассмотреть<br>возможность | IIb                 |
| Выявленная мутация ассоциирована с высоким риском ВСС, без других факторов риска ВСС                                                                                     | Рассмотреть<br>возможность | III                 |

Таблица П4/Г2. CHA2DS2-VASc. Шкала оценки риска тромбоэмболических осложнений у пациентов с фибрилляцией/ трепетанием предсердий

**Название на русском языке:** CHA2DS2-VASc. Шкала оценки риска тромбоэмболических осложнений у пациентов с фибрилляцией/ трепетанием предсердий

**Оригинальное название (если есть):** CHA2DS2-VASc

Источник (официальный сайт разработчиков, публикация с валидацией): Olesen, Jonas Bjerring, et al. Validation of risk stratification schemes for predicting stroke and thromboembolism in patients with atrial fibrillation: nationwide cohort study. Bmj 342 (2011): d124 [438].

#### Тип (подчеркнуть):

- шкала оценки
- индекс
- вопросник
- другое (уточнить):

**Назначение:** клинический инструмент для прогнозирования риска ишемического инсульта и системного тромбоэмболизма при фибрилляции предсердий

### Содержание (шаблон):

| Фактор риска                                                                                                          | Баллы |
|-----------------------------------------------------------------------------------------------------------------------|-------|
| Инсульт, транзиторная ишемическая атака или артериальная тромбоэмболия в<br>анамнезе                                  | 2     |
| Возраст ≥75 лет                                                                                                       | 2     |
| Артериальная гипертензия                                                                                              | 1     |
| Сахарный диабет                                                                                                       | 1     |
| Застойная сердечная недостаточность/ дисфункция ЛЖ (в частности, ФВ ≤40%)                                             | 1     |
| Сосудистое заболевание (инфаркт миокарда в анамнезе, периферический атеросклероз, атеросклеротические бляшки в аорте) | 1     |
| Возраст 65–74 года                                                                                                    | 1     |
| Женский пол                                                                                                           | 1     |

#### Ключ (интерпретация):

| Сумма баллов по шкале<br>CHA2DS2-VASc | Ожидаемая частота инсультов за год |
|---------------------------------------|------------------------------------|
| 0                                     | 0 %                                |
| 1                                     | 1,3 %                              |
| 2                                     | 2,2 %                              |
| 3                                     | 3,2 %                              |
| 4                                     | 4,0 %                              |
| 5                                     | 6,7 %                              |

| 6 | 9,8 %  |
|---|--------|
| 7 | 9,6 %  |
| 8 | 6,7 %  |
| 9 | 15,2 % |

#### Таблица П5/Г2. HAS-BLED. Шкала оценки риска кровотечения

**Название на русском языке:** HAS-BLED. Шкала оценки риска большого кровотечения в течение 1 года у пациентов с фибрилляцией/трепетанием предсердий, получающих антикоагулянтную терапию в сочетании с ингибиторами агрегации тромбоцитов или без.

**Оригинальное название (если есть):** HAS-BLED

### Источник (официальный сайт разработчиков, публикация с валидацией):

Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: the Euro Heart Survey. Chest. 2010 Nov;138(5):1093-100 [368].

Lip GY, Frison L, Halperin JL, Lane DA. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J Am Coll Cardiol. 2011 Jan 11;57(2):173-80 [439].

#### Тип (подчеркнуть):

- шкала оценки
- индекс
- вопросник
- другое (уточнить):

**Назначение:** клинический инструмент для прогнозирования риска большого кровотечения в течение 1 года

#### Содержание (шаблон):

| Буква | Фактор риска                       | Баллы   |
|-------|------------------------------------|---------|
| Н     | Артериальная гипертензия           | 1       |
| А     | Нарушение функции печени или почек | 1 или 2 |
| S     | Инсульт в анамнезе                 | 1       |
| В     | Кровотечения в анамнезе            | 1       |
| L     | Лабильность МНО                    | 1       |

| E | Возраст (≥65 лет)                                                        | 1       |
|---|--------------------------------------------------------------------------|---------|
| D | Злоупотребление алкоголем или препаратами, повышающими риск кровотечений | 1 или 2 |

### Ключ (интерпретация):

| Сумма баллов по шкале<br>HAS-BLED | Риск большого кровотечения в течение 1 года |
|-----------------------------------|---------------------------------------------|
| 1-2                               | Низкий риск кровотечения                    |
| ≥ 3                               | Высокий риск кровотечения                   |

### Приложение Г3. Иные

### Таблица П1/Г3. Молекулярный патогенез фенокопий ГКМП

| Нозология (фенокопия<br>ГКМП)                                                                       | Молекулярный патогенез                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AL-амилоидоз                                                                                        | При AL-амилоидозе клон малигнизированных плазматических клеток синтезирует в большом количестве легкие цепи (каппа или лямбда) иммуноглобулинов. Увеличение концентрации белка-предшественника выше некоторого порогового значения может автоматически приводить к началу фибриллогенеза и отложению амилоида в тканях. При этом в 5% случаев диагностируют преимущественное поражение сердца амилоидозом.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ненаследственный (wtATTP) и наследственный (mtATTP) транстиретиновый амилоидоз                      | В основе молекулярного патогенеза ненаследственного и наследственного транстиретинового амилоидоза лежат конформационные изменения и дестабилизация тетрамера транстиретина. Дестабилизация транстиретина приводит к неправильному фолдингу белка и агрегации вариантных мономеров транстиретина с образованием токсичных промежуточных амилоидогенных продуктов и амилоидных фибрилл.  Эти механизмы могут нарушаться с возрастом, что объясняет повышение риска развития немутантного транстиретинового амилоидоза (wtATTP) у лиц пожилого и старческого возраста. Наследственный АТТR чаще встречается в эндемичных для этого заболевания регионах. Наиболее частые генетические варианты: Val30Met-ATTR, со смешанной симптоматикой (неврологическая и кардиопатическая) с поздним дебютом и He-Val30Met-ATTR, кардиомиопатический вариант заболевания. Известны мутации, вызывающие семейные и спорадические формы заболевания, которые ассоциированы с преимущественным поражением серрца (например, Val122Ile, Ile68Leu, Thr60Ala, Leu111Met). |
| Болезнь Андерсона-<br>Фабри                                                                         | Мутация в гене GLA (описано более 400), кодирующем фермент а-<br>галактозидазу А (a-Gal A) приводит к значительному снижению активности<br>фермента, вовлеченного в метаболизм сфингогликолипидов. Это приводит к<br>накоплению негидролизованного субстрата блокированной ферментной<br>реакции и сопровождается увеличением числа лизосом в клетках,<br>нарушением нормального функционирования этих клеток и их гибелью.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Наследственные синдромы с ГКМП у подростков и молодых взрослых, связанные с мутациями в гене PRKAG2 | PRKAG2 кодирует цАМФ-активируемую протеинкиназу-ү2. Данный белок определяет внутриклеточную аккумуляцию гликогена и нарушения его функции могут приводить к псевдогипертрофии кардиомиоцитов и задержке инволюции эмбриональных проводящих путей в миокарде. При этом наблюдается частое сочетание ГКМП и синдрома Вольфа-Паркинсона-Уайта.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Болезнь Данона                                                                                      | Молекулярный механизм развития болезни Данона основан на дефекте в LAMP-2 белке, который опосредует накопление гликогена в кардиомиоцитах и приводит к псевдогипертрофии миокарда. Когда существует генетический обусловленный дефицит белка LAMP2. наблюдается неправильная аутофагическая деградация белков. Аутофагическая активность связана с патогенезом разнообразных болезней. Существует мнение, что болезнь Данона обусловлена наследственными нарушениями процесса аутофагии.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Атаксия Фридрейха                                                                                   | Молекулярный патогенез атаксии Фридрейха до сих пор является предметом дискуссий. Однако на настоящий момент установлено участие белка фратаксина в поддержании гомеостаза железа в клетке и то, что его недостаточность приводит к множественному ферментному дефициту, митохондриальной дисфункции и окислительному повреждению.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RASопатии<br>(синдром Нунан<br>и синдром LEOPARD)                                                   | Мутации в генах, кодирующих компоненты и регуляторы RAS/MAPC сигнального пути (RAS/митоген-активируемая протеинкиназа) вызывают множественные наследственные пороки развития. RAS/MAPC сигнальный путь ответственен за пролиферацию, дифференцировку, старение и апоптоз клеток и обеспечивающей этим нормальное развитие клеток и тканей организма в целом в эмбриональном и постнатальном периодах.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Таблица П2/Г3. Морфофункциональные фенотипы при ГКМП

| Морфофункциональный фенотип | Описание |
|-----------------------------|----------|
|-----------------------------|----------|

| Гипертрофический («классический»)                      | Уменьшенный ЛЖ, асимметричная ГЛЖ (гипертрофия МЖП), обструкция ВТЛЖ                                                                                                                                 |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Смешанный<br>(гипертрофия + дилатация)                 | Дилатационная стадия ГКМП, уменьшение степени гипертрофии («выгорание»), уменьшение/исчезновение обструкции ВТЛЖ. В дилатационной стадии при ГКМП степень дилатации, как правило, не бывает большой. |
| Смешанный<br>(гипертрофия + рестрикция)                | Выраженная дилатация предсердий, рестриктивный тип<br>наполнения ЛЖ. Может быть при маленьком ЛЖ                                                                                                     |
| Смешанный<br>(гипертрофия + рестрикция +<br>дилатация) | Дилатационная стадия ГКМП. Выраженная дилатация предсердий, рестриктивный тип наполнения ЛЖ, уменьшение степени гипертрофии, дилатированный ЛЖ                                                       |

## блица П3/Г3. Основные мероприятия по профилактике осложнений у пациентов с ГКМП

| Симптом/осложнение ГКМП                                                      | Профилактические мероприятия                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Прогрессирование ГЛЖ                                                         | Адекватное лечение ГКМП, обструкции ВТЛЖ включая фармакотерапию, эндоваскулярное и хирургическое. При сопутствующей АГ — гипотензивная терапия. Избегать высокоинтенсивных физических нагрузок и спорта.                                                                                                                                                                                  |
| ВСС и жизнеугрожающие нарушения ритма                                        | Первичная и вторичная профилактика ВСС — см.<br>раздел «Стратификация риска ВСС»                                                                                                                                                                                                                                                                                                          |
| XCH, развитие дилатационной стадии или присоединения рестриктивного фенотипа | Адекватное лечение ГКМП, своевременное выявление и лечение обструкции ВТЛЖ.<br>При сопутствующей ИБС и АГ — адекватное лечение.                                                                                                                                                                                                                                                           |
| Тромбоэмболические осложнения у пациентов с ФП                               | по общим принципам тромбопрофилактики при ФП (см.<br>рекомендации по лечению ФП)                                                                                                                                                                                                                                                                                                          |
| Инфекционный эндокардит                                                      | Антибиотикопрофилактика рекомендуется только перед процедурами высокого риска пациентам с ГКМП и протезами клапанов сердца, врожденным пороком сердца или если пациент ранее переносил инфекционный эндокардит (см. соответствующие рекомендации). У пациентов с имплантированным ИКД*** профилактика инфекционного эндокардита — по рекомендациям ESC по электрокардиостимуляции 2013 г. |