

Antriebs- und Fahrwerktechnik

Absicherung von Steuerungssoftware für Hybridsysteme

- Automatisierte Methode zur Testfallgenerierung

M. Neumann, M. Nass, C. Paulus (OTEH), M. Tatar

ZF Friedrichshafen AG QTronic GmbH

Hybridisierung des Antriebstrangs

- Motivation

Hybridisierung des Antriebstrangs

- Auswirkungen / Fragestellung

Auswirkungen:

Vielzahl neuer Funktionen im Antriebstrang Anstieg funktionaler
Vernetzung von
Aggregaten

Integration neuer Funktionen in vorh. Architektur

Zentrale Fragestellungen:

Welche Entwicklungs- und Testmethoden sind notwendig, um diese stark gestiegene Komplexität beherrschbar zu machen?

i De/De eonverter

Wie kann die notwendige Testabdeckung trotz wachsendem Funktionsumfang im gegebenen Zeitfenster sichergestellt werden?

Durchgängige Teststrategie

- Zentrale Aspekte
- > Verlagerung von Testumfängen von HiL-Simulator und Fahrversuch in VSiL.
- ➤ Automatisierte Testfallgenerierung, -Ausführung und -Bewertung.
- Systematische Modellierung von Funktions- und Softwareanforderungen in Form von Systeminvarianten.

Software Prüfung mit Softcar-VSiL

Systemintegration Hybrid

Automatisierte Methode zur Testfallgenerierung

- Motivation

	Konventionelles Testskript
1	Anfangs SOC = 70%
2	Fahrschalter = D, Anfahren (Gas = 60%)
3	Bis 50 km/h beschleunigen
4	Bremsen bis zum Stillstand
5	Start-Stop wird aktiv
6	Moderat beschleunigen (Gas = 40%)
7	Kräftig beschleunigen (Gas = 90%)

Nachteile

Anforderungen werden nur in speziellen Fahrsituationen geprüft.

Negative Testbdingung sind schwierig zu formulieren.

Es sind viele unterschiedliche Tests notwendig, um eine hohe Testabdeckung zu erreichen.

Konfiguration VSiL Testumgebung mit Test Weaver

Konfiguration TestWeaver für Softcar VSiL

- Schnittstelle TestWeaver Softcar
- ✓ Verbindung zwischen Softcar und TestWeaver über TCP/IP herstellen.
- ✓ Instrumentierung der Eingangsvariablen
- ✓ Instrumentierung der Ausgangsvariablen
- ✓ Implementierung der System- und Softwareanforderungen

Konfiguration TestWeaver für Softcar VSiL

- Eingangsvariablen (Chooser)
- Gaspedal, Bremspedal:Fahrschalter: 0%, 25%, 50%, 75%, 100%, P, R, N, D,

Parkbremse: aus. ein.

 Starttemperatur Verbrennungsmotor: kalt. warm.

Fahrbahnsteigung: -10% *-5%*. *0%*. *5* % *10%*. Anfangsladezustand der Hybridbatterie: niedrig, mittel, voll

```
// Gas
PARTITION(Gaspedal)
                                       //Name des Choosers/Reporters
          {{{0,0}, "0%", OCCURRENCE_OK, "low speed"},
          {{25,25}, "25%", OCCURRENCE_OK, "low speed"},
          {{50,50}, "50%", OCCURRENCE_OK, "medium speed"},
         {{75,75}, "75%", OCCURRENCE OK, "medium speed"},
         {{100,100}, "100%", OCCURRENCE OK, "high speed"}};
         CHOOSE(Gaspedal, // Name des Choosers im TW
                                       // Softcar Variable
         GasTW,
          "%",
                                       // Einheit
          "rel stellung des Gaspedals");// Beschreibung des Choosers
```


Konfiguration TestWeaver für Softcar VSiL

- Ausgangsvariablen (Reporter)

z.B.: Ladezustand der Hybridbatterie

Automatisierte Methode zur Testfallgenerierung

- 8 Antriebstrangzustände

Überprüfung der SW und Systemanforderungen

- Traceability Doors - TestWeaver

"Immer wenn <Vorbedingung>, dann folgt <Nachbedingung> nach maximalem <Delay>".

Watcher-Instrumentierung

```
/* Hyb_HN1_SYS_07_01-1556: Bei einem niedrigen SOC ...
   Hyb_HN1_SYS_07_01-1369: Wenn die Energie im Speicher unterhalb ...
   Hyb_HN1_HCU_FSW_09_01-497: Wenn der SOC unter einer apllizierbaren Schwelle ...
/*PROTECTED REGION ID(CheckChargeStandstill) ENABLED START*/
WATCHER(CheckChargeStandstill, "Bei einem niedrigen SOC ...", "Wenn Energie < ...",
"ChargeStandstill, SEVERITY_OK, "EM lädt die Batterie nicht!!!",
// Wenn ...
"ChargeStandstill!!!", SEVERITY _ERROR, "EM lädt die Batterie nicht!!!",
// dann muss ...
((HCU_SiEMot_M_trq_filt<=0) && (HCU_HSML_M_ctrlStrategicMode_req==4)),0.5);
/*PROTECTED REGION END*/</pre>
```


Testergebnisse

- Coverage für Antriebstrangzustände und Operative Funktionen

Schaltungen

		scenarios
R	R	[<u>s0, s1]</u>
	N	[<u>s2, s1]</u>
	1	[<u>s12</u> , <u>s92</u>]
N	R	[<u>s0, s36]</u>
	N	[<u>s0, s1]</u>
	1	[<u>s11, s12]</u>
	2 3 4 5	[<u>s11, s12]</u>
	3	[s11, s12] [s11, s12]
	4	[<u>s11</u> , <u>s12</u>]
	5	[<u>s11</u> , <u>s12</u>]
	6	[<u>s17</u> , <u>s18</u>]
1	R	[<u>s119</u> , <u>s581</u>]
	N	[<u>s27</u> , <u>s28</u>]
	1	[<u>s11</u> , <u>s12</u>]
	2	[<u>s11</u> , <u>s12</u>]
2	N	[<u>s229</u> , <u>s230</u>]
	1	[<u>s201</u> , <u>s200</u>]
	2	[<u>s11, s12]</u>
	3	[<u>s11, s12]</u>
3	N 1	[<u>s374, s213]</u>
	1	[<u>s153, s152]</u>
	2 3 4	[<u>s201</u> , <u>s200</u>]
	3	[<u>s11</u> , <u>s12</u>]
		[<u>s11, s12]</u>
4	N	[<u>s518, s486]</u>
	1	[<u>s160, s168</u>]
	3	[<u>s189</u> , <u>s336</u>]
	4	[<u>s11</u> , <u>s12</u>]
	5	[<u>s11, s12]</u>
5	N	[<u>s166, s182</u>]
	3	[<u>s153, s152]</u>
	4	[<u>s157, s141]</u>
	5	[<u>s11</u> , <u>s12</u>]
	6	[<u>s17, s18]</u>
6	N	[<u>s150, s325]</u>
	5	[<u>s144, s141</u>]
	6	[<u>s17</u> , <u>s18</u>]

Antriebstrangzustände und operative Funktionen

Drivelin	e Mode	Operating Mode	OUTPUT
current	requested	requested	scenarios
S0_WeaverDefault	S0_WeaverDefault	OpDefault	[s0, s49]
S1_Coupled	S1_Coupled	OpCharge	[s966, s993]
·	S2_Decoupled	OpNeutralDecouple	[s966, s993]
	S8_HybridDrive	OpCharge	[s0, s1]
S2_Decoupled	S2_Decoupled	OpTransmissionCommand	[s361, s571]
		OpDrivelineOpen	[s990, s1000]
	S5_Charge	OpImpulseStart	[s974, s966]
	S6_DecoupledE	OpNeutralDeceusia	r-074 c066]
		√рнуbridDrive	[s361, <u>s217</u>]
S5_Charge	S6_DecoupledE	OpNeutralDecouple	[s0, s1]
_ 3	S7_EDriveEngOn	OpDrivelineOpen	[s0, s1]
	S8_HybridDrive	OpTransmissionCommand	[s11, s12]
	_ ′	OpCharge	[s0, s1]
S6_DecoupledE	S6_DecoupledE	OpDrivelineOpen	[s0, s1]
	S8_HybridDrive	OpTransmissionCommand	[s11, s0]
		OpDrivelineOpen	[<u>s0, s1]</u>
S7_EDriveEngOn	S7_EDriveEnqOn	OpElectricDrive	[s677, s673]
	S8_HybridDrive	OpEnqCouple	[s992, s1070]
		OpTransmissionCommand	[<u>s0</u> , <u>s1</u>]
		OpElectricDrive	[<u>s0</u> , <u>s1</u>]
S8_HybridDrive	S8_HybridDrive	OpTransmissionCommand	[<u>s0</u> , <u>s3</u>]
		OpHybridDrive	[<u>s4</u> , <u>s0</u>]

Testergebnisse

- Beispiel: Fehlereintrag Safety-Monitor

Fehlercode 26 = SMon_ReqVal2ActValEmot: Fehler Soll/Ist-Vergleich E-Maschinen Moment/Drehzahl Fehler aufgrund Unterschreitung Toleranzband

Testergebnisse

- Überwachungen

- ✓ Überwachung der Software- und Systemanforderungen,
- √ Überwachung des Fehlerspeichers (Funktions- und Safety-Layer),
- ✓ Überwachung von Wertebereichsüberschreitungen, Assertions, Resets, Prozessabstürze,
- ✓ Überwachung von "toggelnden" Zustandsvariablen (Bits, Modi), etc..
- ✓ Ermittlung Code-Coverage mit CTC++

Zusammenfassung

Hybridisierung von Antriebssträngen

- Neue Komponenten und Funktionen im Hybridsystem
- Steigende funktionale Vernetzung im Antriebstrang (hohe Komplexität)

Erweiterter Einsatz von Testwerkzeugen (VSiL) auf PC

- Frühe Absicherung von Teilfunktionalitäten auf PC im Systemverbund
- Co-Simulation ZF Softcar mit Test Weaver

Automatisierte Methode zur Testfallgenerierung

- Automatische Erzeugung, Simulation und Analyse tausender Szenarien
- Automatisches Erreichen und Überwachen vieler relevanter Systemzustände
- Hohe Testabdeckung, hoher Automatisierungsgrad,
- Vergleichbar geringer Spezifikationsaufwand.

Vielen Dank für Ihre Aufmerksamkeit!

