# GYMNÁZIUM S JÍROVCOVA

## MATURITNÍ PRÁCE

Konstrukce dronu

Kryštof Maxera

vedoucí práce: Dr.rer.nat Michal Kočer

| Prohlášení                                         |              |              |                 |      |
|----------------------------------------------------|--------------|--------------|-----------------|------|
|                                                    |              |              |                 |      |
|                                                    |              |              |                 |      |
| Prohlašuji, že jsem tuto práci vypracoval<br>menů. | l samostatně | s vyznačením | všech použitých | pra- |
|                                                    |              |              |                 |      |
| V Českých Budějovicích dne                         |              | nodnis       |                 |      |
| , cost, on Badojovicion and                        |              | Podbio       | Kryštof Ma      |      |

#### Abstrakt

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

#### Klíčová slova

## Poděkování

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

## Obsah

| Ι        | Úv  | od do světa dronů                 | 2  |
|----------|-----|-----------------------------------|----|
| 1        | Def | inice a charakteristika dronů     | 3  |
|          | 1.1 | Bezpilotní letadla                | 4  |
|          | 1.2 | Bezpilotní pozemní vozidla        | 5  |
|          | 1.3 | Hladinové plavidla bez posádky    | 5  |
|          | 1.4 | Dálkově ovládané podvodní vozidla | 6  |
|          | 1.5 | Bezpilotní kosmické lodě          | 6  |
| <b>2</b> | Ana | atomie dronu                      | 7  |
|          | 2.1 | Vrtule                            | 7  |
|          | 2.2 | Motory                            | 7  |
|          | 2.3 | ESPs                              | 8  |
|          | 2.4 | Flight controller                 | 8  |
|          | 2.5 | Raspberry Pi Pico                 | 8  |
|          | 2.6 | Airframe                          | 8  |
|          | 2.7 | Baterie                           | 8  |
| 3        | Fyz | ika letu dronu                    | 10 |
| II       | K   | onstrukce kvadrokoptéry           | 11 |
| 4        | Sou | částky                            | 12 |
| 5        | Prů | běh Konstrukce                    | 13 |
|          | 5 1 | Druhy dronů                       | 13 |

| 6            | Stručná historie dronů                 | <b>1</b> 4 |
|--------------|----------------------------------------|------------|
| 7            | Program                                | 16         |
| 8            | Schéma zapojení                        | 17         |
| Bi           | bliografie                             | 19         |
| Ρĭ           | fîlohy                                 | 22         |
| $\mathbf{A}$ | Fotografie zkonstruované kvadrokoptéry | 23         |
| В            | Kód programu Raspberry Pi Pico         | <b>2</b> 4 |

## Úvod

## Část I

Úvod do světa dronů

#### 1 Definice a charakteristika dronů

Dron je definován jako zařízení nebo stroj schopný vykonávat úkoly bez nutnosti přímé fyzické přítomnosti člověka. Tato zařízení lze rozdělit do dvou základních kategorií.

První kategorii tvoří plně autonomní roboti, u jichž je přítomnost člověka vyžadována primárně z kontrolních a bezpečnostních důvodu. Pilot nebo operátor zde většinou nezasahuje do aktivního řízení, ale v případě potřeby může převzít kontrolu. Typickým příkladem jsou autonomní bezpilotní letadla s možností vzdáleného ovládání nebo samořízené motorové vozidlo, které ke svému provozu nepotřebuje řidiče přítomného ve vozidle.

Druhá kategorie je pro veřejnost známější. Ta je také nazývána drony, přestože její součástí jsou dálkově ovládaná zařízení, která nejsou plně autonomní. Do této skupiny patří široce známé kvadrokoptéry a další multikoptéry, stejně jako autíčka na dálkové ovládání.

Důvodem časté záměny těchto dvou kategorií je překrývání některých funkcí, neboť i dálkově ovládané kvadrokoptéry využívají automatické systémy, například pro samovyvažování, které jsou nezbytné pro jejich stabilní let.

Drony lze obecně rozdělit do několika hlavních skupin na základě prostředí, ve kterém operují:

- Bezpilotní letadla (UAVs Unmanned Aerial Vehicles)
- Bezpilotní pozemní vozidla (UGV Unmanned Ground Vehicle)
- Hladinové plavidla bez posádky (USV Unmanned Surface Vehicle)
- Dálkově ovládané podvodní vozidla (ROUV Remotely Operated Underwater Vehicles)
- Bezpilotní kosmické lodě (Uncrewed spacecraft)

V této práci se zaměřujeme na konstrukci kvadrokoptéry, která spadá do kategorie bezpilotních letadel. Jelikož se zaměřuje pouze na tuto část dronů, rozebereme si ji podrobněji.

#### 1.1 Bezpilotní letadla

Bezpilotní letadlo je definováno jako zařízení určené k provozu ve vzdušném prostředí, které je buď řízeno dálkově operátorem, nebo schopno autonomního letu díky integrovanému softwaru a palubním senzorům.

Tato zařízení využívají pokročilé technologie pro navigaci, stabilizaci, komunikaci a sběr dat, přičemž jejich provozní komponenty se liší v závislosti na specifickém účelu použití. Obecně však tato zařízení zahrnují senzory nezbytné pro stabilizaci letu, jako je gyroskop a akcelerometr, spolu se senzory či moduly umožňujícími komunikaci. Komunikační technologie obvykle zahrnují přenos dat prostřednictvím rádiových vln, Wi-Fi, nebo mobilních sítí.

Tato zařízení lze dále klasifikovat na základě specifických parametrů, jako je typ konstrukce křídla, hmotnost, zdroj napájení či funkční zaměření.

Při klasifikaci na základě typu konstrukce křídla lze bezpilotní letadla rozdělit do dvou hlavních skupin:

- Rotorová letadla zahrnující jednorotorové a vícerotorové varianty, jako jsou trikoptéry, kvadrokoptéry, hexakoptéry a oktokoptéry.
- Letadla s pevnými křídly zahrnují drony, které vyžadují pohyb vpřed k generování vztlaku pomocí křídel. Patří sem také hybridní drony s vertikálním vzletem a přistáním, jež nevyžadují přistávací dráhu.

Zařazení na základě zdroje napájení:

- Bateriový pohon nejčastěji lithium-polymerové (Li-Po) nebo lithium-iontové (Li-Ion)
   baterie
- Benzínový pohon spalovací motor poháněný benzínem
- Vodíkový pohon napájení je zajištěno vodíkovými palivovými články, které generují elektrickou energii chemickou reakcí

 Solární pohon - solární panely umístěné na povrchu dronu zajišťují nepřetržité nabíjení během letu

Zařazení na základě nejběžnějších funkčních kategorií:

- rekreační využití
- letecká fotografie a videografie
- pátrací a záchranné operace
- vojenský průmysl
- stavební průmysl, monitorování a měření
- zemědělství
- dopravní a logistické služby

Tato skupina zařízení byla po dlouhou dobu spojována především s vojenským průmyslem. V současnosti však díky široké škále aplikací nacházejí stále větší uplatnění i v civilních oblastech, jako je průmysl, zemědělství nebo vědecký výzkum. Díky klesajícím cenám se osobní kvadrokoptéry stávají stále populárnějšími také pro rekreační účely. [1] [3]

#### 1.2 Bezpilotní pozemní vozidla

Jedná se o pozemní vozidla bez potřebné fyzické přítomnosti člověka. Ve srovnání se vzdušnými bezpilotními drony jsou mnohem jednodušší na konstrukci, protože nevyžadují překonávání fyzikálních zákonů spojených s letem. Tato vlastnost přispívá k jejich širokému využití napříč různými sektory. Lze je nalézt například v zemědělství jako samosklízecí traktory, v oblasti samořídících dopravních prostředků, v těžebním průmyslu, v automatizovaných skladech s roboty pro transport zboží nebo v úklidovém sektoru, kde se využívají autonomní vysavače. Své uplatnění nacházejí také ve vojenském sektoru. [1]

#### 1.3 Hladinové plavidla bez posádky

Plavidla pohybující se po mořské nebo sladkovodní hladině. Často jsou využívána pro těžební operace na moři, vědecký výzkum či monitorování vodních ekosystémů. Nelze opomenout

jejich vojenské využití. Tato zařízení používají pro komunikaci obdobné technologie jako bezpilotní letadla. [1]

#### 1.4 Dálkově ovládané podvodní vozidla

Podvodní zařízení, určená převážně pro průzkumné a vědecké účely, představují klíčový nástroj pro studium mořského prostředí. Jejich fungování se však výrazně liší od ostatních autonomních systémů, a to kvůli technickým výzvám spojených s provozem ve velkých hloubkách. V těchto podmínkách je použití rádiových vln pro komunikaci téměř nemožné kvůli jejich omezené prostupnosti vodou. Namísto bezdrátové komunikace jsou proto tato zařízení často spojena s mateřskou lodí nebo ponorkou pomocí robustního kabelu, který slouží nejen jako přenosové médium pro data, ale i jako zdroj energie. [1]

#### 1.5 Bezpilotní kosmické lodě

Vesmír představuje ideální prostředí pro využití dronů, neboť je pro lidskou přítomnost extrémně nehostinný. Vesmírné drony nabízejí méně rizikové řešení pro dosažení různých cílů bez nutnosti návratu zařízení zpět na Zemi. Jejich využití zahrnuje kosmický prostor, kde slouží k prozkoumávání vzdálených objektů, povrchy nehostinných planet, kde fungují jako rovery, a oběžnou dráhu Země, kde podporují fungování klíčových technologií, jako je například GPS. [1]

Využití všech těchto typů dronů má společnou vlastnost. Jejich využití je na místech, kde lze pracovní sílu člověka nahradit automatickým zařízením nebo místech, které jsou příliš riskantní pro přítomnost člověka. Jejich nasazení se neustále rozšiřuje a lze bez pochybností předpokládat, že v budoucnu bude jejich význam dále narůstat.

#### 2 Anatomie dronu

#### 2.1 Vrtule

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

#### 2.2 Motory

#### 2.3 ESPs

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

#### 2.4 Flight controller

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

#### 2.5 Raspberry Pi Pico

#### 2.6 Airframe

#### 2.7 Baterie

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent

euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

## 3 Fyzika letu dronu

## Část II

Konstrukce kvadrokoptéry

## 4 Součástky

Průběh Konstrukce 5

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, place-

rat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy

eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque ha-

bitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo.

Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus

eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra

ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci

eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit

amet orci dignissim rutrum.

Druhy dronů 5.1

Odkaz v závorkách: (see 2, page 900)

Odkaz: [5]

A odkaz pod čarou:<sup>1</sup>

Dobrý den, ahoj, atd.

Praha, tj. hlavní město CR

 $^{1}$ see 4, s. 42.

13

#### 6 Stručná historie dronů

Obrázek 6.1 ukazuje Shangai z Pixabay.

Tabulka ?? ukazuje hádejte, co.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Výpis programu hello.c naleznete ve výpise 6.1.

```
1 #include <stdio.h>
  #define CISLO 10
2
3
4
  int main(void) {
     int i = CISLO;
5
6
7
    print("Hello World!\n");
    print("%d", i);
8
9
10
    return (0);
11|}
```

Zdrojový kód 6.1: hello.c

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus



Obrázek 6.1: Testovací

eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

```
11.0524
5.5954
6.7996
13.8584
15.1357
Soucet: 52.4415
```

Příklad výstupního souboru

## 7 Program

## 8 Schéma zapojení

#### Závěr

## Bibliografie

- 1. BAICHTAL, John. Building your own drones: A Beginner's Guide to Drones, UAVs, and ROVs. Indianapolis, Indiana: Que Publishing, 2016.
- 2. EINSTEIN, Albert. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]. *Annalen der Physik.* 1905, roč. 322, č. 10, s. 891–921. Dostupné z DOI: http://dx.doi.org/10.1002/andp.19053221004.
- GILLIS, Alexander S. What is a drone (UAV)? 07.2024 [cit. 2024-02-14]. Dostupné také
   z: https://www.techtarget.com/iotagenda/definition/drone.
- 4. GOOSSENS, Michel; MITTELBACH, Frank; SAMARIN, Alexander. *The Late Companion*. Reading, Massachusetts: Addison-Wesley, 1993.
- 5. KNUTH, Donald. *Knuth: Computers and Typesetting.* [B.r.]. Dostupné také z: http://www-cs-faculty.stanford.edu/\~{}uno/abcde.html.

## Seznam obrázků

| 6.1 Testovací | 1.5 |
|---------------|-----|
|---------------|-----|

## Seznam tabulek

Přílohy

## A Fotografie zkonstruované kvadrokoptéry

## B Kód programu Raspberry Pi Pico