Topology Homework 05

Ethan Jensen, Luke Lemaitre, Kasandra Lassagne March 4, 2020

EXERCISE 2.13 Determine the set of limit points of A in each case.

- (a) A = (0, 1] in the lower limit topology on \mathbb{R} .
- (b) $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.
- (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$.
- (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}.$
- (e) $A = (-1, 1) \cup \{2\}$ in the standard topology on \mathbb{R} .
- (f) $A = (-1, 1) \cup \{2\}$ in the lower limit topology on \mathbb{R} .
- (g) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$ in \mathbb{R}^2 with the standard topology.
- (h) $A = \{(0, y) \in \mathbb{R}^2 | y \in \mathbb{R} \}$ in \mathbb{R}^2 with the vertical interval topology.
- (i) $A = \{(x, 0) \in \mathbb{R}^2 | x \in \mathbb{R} \}$ in \mathbb{R}^2 with the vertical interval topology.

Let C be the collection of limit points in each case.

- (a) C = A
- (b) $C = \{b, c\}$
- (c) $C = \{b, c\}$
- (d) $C = \{c\}$
- (e) C = [-1, 1]
- (f) C = [-1, 1)
- (g) C = A
- (h) C = A
- (i) $C = \emptyset$

EXERCISE 2.15 Determine the set of limit points of [0,1] in the finite complement topology on \mathbb{R} .

Since open sets in the finite complement topology have finite complements and [0,1] contains infinitely many points, every open set intersects with infinitely many points in [0,1].

This means that for all points p in \mathbb{R} , every open set containing that point will intersect [0,1] in a point other than p. This means that every point in \mathbb{R} is a limit point.

The set of limit points of [0,1] in the finite complement topology is \mathbb{R} .

EXERCISE 2.18 Determine the set of limit points of $A = \{\frac{1}{m} + \frac{1}{n} \in \mathbb{R} | m, n \in \mathbb{Z}_+\}$ in the standard topology on \mathbb{R} .

The set of limit points is $\{\frac{1}{m} | m \in \mathbb{Z}_+\} \cup \{0\}.$

EXERCISE 2.19 Show that if (x_n) is an injective sequence in \mathbb{R} , then (x_n) converges to every point in \mathbb{R} with the finite complement topology on \mathbb{R} .

Consider an open set U in the finite complement topology with a complement $F = \mathbb{R} - U$.

Since (x_n) is injective in \mathbb{R} , values from F that show up in (x_n) will only show up once (if they show up).

Since
$$F$$
 is finite, $\exists N \in \mathbb{Z}_+ \ni x_n \notin F$ for $n \geq N$
So $\exists N \in \mathbb{Z}_+ \ni x_n \in U$ for $n \geq N$

Therefore, all open sets in \mathbb{R} will contain the sequence (x_n) after some finite number of terms.

For all open sets containing an arbitrary point p, the sequence will eventually appear in that open set after a finite number of terms, so the sequence converges to that point.

Thus, every injective sequence converges to **every point!**

EXERCISE 2.20 Prove Theorem 2.11: Let A be a subset of \mathbb{R}^n in the standard topology. If x is a limit point in A, then there is a sequence of points in A that converges to x.

Proof.

Let A be a subset of \mathbb{R}^n in the standard topology, and let x be a limit point of A.

Consider the sequence of open balls (B_n) defined by $B_n = B(x, \frac{1}{n})$.

Since x is a limit point, every open set around x intersects A at a point other than x.

For each open ball B_n , call this point y_n .

Then, the sequence (y_n) consisting of all of these points lives in A since each point lives in A.

Since each set is nested, for any given B_n , all values of the sequence after y_n are contained in B_n .

Now consider some open ball B(q, r) that contains x.

By definition, d(q, x) < r.

Between every two real numbers is a rational number.

$$\exists m, n \in \mathbb{Z}_+ \ni 0 \le \frac{m}{n} \le r - d(q, x)$$

Since $m \ge 1$, $\exists n \in \mathbb{Z}_+ \ni d(q, x) + \frac{1}{n} < r$.

Consider the open ball B_n .

By the triangular property, every point in B_n is in B(q,r).

So $B_n \subseteq B(q,r)$.

Thus, all values of the sequence after y_n after n terms are contained in B(q, r).

Thus, any basis element containing x contains all values of the sequence (y_n) after a fixed N terms.

Every open set containing x can be written as a union of basis elements.

Therefore, every open set containing x contains all values of the sequence (y_n) after a fixed N terms.

Thus, the sequence (y_n) is a sequence of points in A that converges to x.

 \therefore If x is a limit point in A, then there is a sequence of points in A that converges to x.

EXERCISE 2.21 Determine the set of limit points for the set

$$S = \{(x, \sin(\frac{1}{x})) \in \mathbb{R}^2 | 0 < x \le 1\}$$

as a subset of \mathbb{R}^2 in the standard topology.

Let C be the set of all limit points of S.

$$\boxed{C = S \cup (\{0\} \times (-1,1))}$$

EXERCISE 2.22 Consider the sequence defined by $x_n = \frac{(-1)^n}{n}$ in \mathbb{R} with the standard topology.

- (a) Prove that every neighborhood of the point 0 contains an open interval $-\alpha$, α .
- **(b)** Prove that for each open interval $(-\alpha, \alpha)$, there exists $N \in \mathbb{Z}_+$, such that $x_n \in (-\alpha, \alpha)$ for all $n \geq N$.

(a) Proof.

Consider a neighborhood U of the point 0.

In the standard topology, every neighborhood can be expressed as the union of open intervals - the basis elements for the standard topology on \mathbb{R} .

So $\exists B_1, B_2, B_3... \ni U = \bigcup_i B_i$ where each B_i is an open interval (a_i, b_i) . Since U contains $0, \exists B_k \subseteq U \ni 0 \in B_k$, where $B_k = (a_k, b_k), a_k < 0 < b_k$.

Let $\alpha = \min\{-a_k, b_k\}$

It is easy to see that $-\alpha \geq a_k$ and $\alpha \leq b_k$.

So $(-\alpha, \alpha) \subseteq B_k \subseteq U$.

So $(-\alpha, \alpha) \subseteq U$.

 \therefore Every neighborhood of the point 0 contains an open interval $(-\alpha, \alpha)$.

(b) Proof.

Consider an open interval $(-\alpha, \alpha)$.

Between any two real numbers, there exists a rational number.

 $\exists m, N \in \mathbb{Z}_+ \ni 0 < \frac{m}{N} < \alpha.$ Since $m \ge 1, -\alpha, -\frac{1}{N} < 0 < \frac{1}{N} < \alpha$

For all $n \ge N$, $-\frac{1}{N} \ge x_n \ge \frac{1}{N}$.

Thus, for all $n \geq N$, $x_n \in (-\alpha, \alpha)$.

 \therefore For each open interval $(-\alpha, \alpha)$, there exists $N \in \mathbb{Z}_+$, such that $x_n \in (-\alpha, \alpha)$ for all $n \geq N$.

EXERCISE 2.24 Determine ∂A in each case.

- (a) A = (0, 1] in the lower limit topology on \mathbb{R} .
- **(b)** $A = \{a\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}.$
- (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}.$
- (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}.$
- (e) $A = (-1, 1) \cup \{2\}$ in the standard topology on \mathbb{R} .
- (f) $A = (-1, 1) \cup \{2\}$ in the lower limit topology on \mathbb{R} .
- (g) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$ in \mathbb{R}^2 with the standard topology.
- (h) $A = \{(0, y) \in \mathbb{R}^2 | y \in \mathbb{R}\}$ in \mathbb{R}^2 with the vertical interval topology.
- (i) $A = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$ in \mathbb{R}^2 with the vertical interval topology.
- (a) $\partial A = \{1\}$
- **(b)** $\partial A = \{b, c\}$
- (c) $\partial A = \{b, c\}$
- (d) $\partial A = \{b, c\}$
- (e) $\partial A = \{-1, 1, 2\}$
- (f) $\partial A = \{2\}$
- (g) $\partial A = A$
- (h) $\partial A = \emptyset$
- (i) $\partial A = A$

EXERCISE 2.26 Determine the boundary of each of the following subsets of \mathbb{R}^2 in the standard topology.

(a)
$$A = \{(x, x) \in \mathbb{R}^2 | x \in \mathbb{R} \}$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 | x > 0, y \neq 0\}$$

(c)
$$C = \{(\frac{1}{n}, 0) \in \mathbb{R}^2 | n \in \mathbb{Z}_+ \}$$

(b)
$$B = \{(x, y) \in \mathbb{R}^2 | x > 0, y \neq 0\}$$

(c) $C = \{(\frac{1}{n}, 0) \in \mathbb{R}^2 | n \in \mathbb{Z}_+\}$
(d) $D = \{(x, y) \in \mathbb{R}^2 | 0 \leq x^2 - y^2 < 1\}$

(a)
$$\partial A = A$$

(b)
$$\partial B = \{(x,y) \in \mathbb{R}^2 | x \ge 0, y = 0\}$$

(c)
$$\partial C = C \cup \{0\}$$

(d)
$$\partial D = \{(x,y) \in \mathbb{R}^2 | x = y \text{ or } x = -y\}$$

EXERCISE 2.28 Prove Theorem 2.15: Let A be a subset of a topological space X.

- (a) ∂A is closed.
- **(b)** $\partial A = \operatorname{Cl}(A) \cap \operatorname{Cl}(X A)$
- (c) $\partial A \cap \operatorname{Int}(A) = \emptyset$
- (d) $\partial A \cup \operatorname{Int}(A) = \operatorname{Cl}(A)$
- (e) $\partial A \subseteq A$ if and only if A is closed.
- (f) $\partial A \cap A = \emptyset$ if and only if A is open.
- (g) $\partial A = \emptyset$ if and only if A is both open and closed.

(a) Proof.

 $\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$

Because $\operatorname{Int}(A)$ is open, there exists a closed set C such that $\operatorname{Int}(A) = X - C$ So $\partial A = \operatorname{Cl}(A) - (X - C) = \operatorname{Cl}(A) \cap C$.

The intersection of closed sets is a closed set.

 $\therefore \partial A$ is closed.

(b) Proof.

$$\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$$

By Theorem 2.6, $\partial A = \operatorname{Cl}(A) - (X - \operatorname{Cl}(A))$

$$\therefore \partial A = \mathrm{Cl}(A) \cap \mathrm{Cl}(A)$$

(c) Proof.

$$\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$$

This means that ∂A and $\operatorname{Int}(A)$ are disjoint.

$$\therefore \partial A \cap \operatorname{Int}(A) = \varnothing.$$

(d) Proof.

$$\partial A = \mathrm{Cl}(A) - \mathrm{Int}(A).$$

$$\partial A \cup \operatorname{Int}(A) = (\operatorname{Cl}(A) - \operatorname{Int}(A)) \cup \operatorname{Int}(A)$$

$$\therefore \partial A \cup \operatorname{Int}(A) = \operatorname{Cl}(A)$$

(e) Proof.

(\rightarrow) Assume $\partial A \subseteq A$.

int(A) is also a subset of A.

Thus,
$$\partial A \cup \operatorname{Int}(A) \subseteq A$$

By part (d), we can write $Cl(A) \subseteq A$.

However, we also know that $A \subseteq Cl(A)$.

 $\therefore A = Cl(A)$ and A is closed.

(\leftarrow) Assume A is closed.

This means that Cl(A) = A.

 $\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$ Since $\operatorname{Cl}(A) = A$, $\partial A = A - \operatorname{Int}(A)$

 $\therefore \partial A \subseteq A$

 $\therefore \partial A \subseteq A$ if and only if A is closed.

(f) Proof.

 (\rightarrow) Assume $\partial A \cap A = \emptyset$.

$$\partial A = \mathrm{Cl}(A) - \mathrm{Int}(A).$$

$$(Cl(A) - Int(A)) \cap A = \emptyset$$

$$Cl(A) \cap A - Int(A) \cap A = \emptyset$$

Since $\operatorname{Int}(A) \subseteq A \subseteq \operatorname{Cl}(A)$, $\operatorname{Cl}(A) \cap A = A$ and $\operatorname{Int}(A) \cap A = \operatorname{Int}(A)$. $A = \operatorname{Int}(A)$.

 $\therefore A$ is open.

 (\leftarrow) Assume A is open.

$$\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$$

Since A is open, Int(A) = A

$$\partial A = \operatorname{Cl}(A) - A.$$

This means ∂A and A are disjoint.

$$\therefore \partial A \cap A = \emptyset$$

 $\therefore \partial A \cap A = \emptyset$ if and only if A is open.

(g) Proof.

 (\rightarrow) Assume $\partial A = \emptyset$.

$$\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A).$$

$$Cl(A) - Int(A) = \emptyset$$
.

Thus,
$$Cl(A) \subseteq Int(A)$$
.

However,
$$Int(A) \subseteq A \subseteq Cl(A)$$
.

Thus,
$$Int(A) = A = Cl(A)$$
.

Since Int(A) is open, and Cl(A) is closed,

A is both open and closed.

 (\leftarrow) Assume A is both open and closed.

$$\partial A = \operatorname{Cl}(A) - \operatorname{Int}(A)$$

Since A is both open and closed, Int(A) = A = Cl(A)

$$\partial A = A - A = \varnothing$$