Yr 12 Physics Practical Test

Name: Solutions

The Magnetic Field Associated With a Long Straight Wire: Time = 1 hour

The following experiment was set up to investigate the factors that affect the magnetic field around a long straight wire.

	Why is the l	ong straight	t wire set u	ıp in a no	rth-sou	ith direction	1?				Λ.
	To be	paral	lel to	Ear	th's	mag. fi	eld	50	that	mag.	tielo
						90°				field	
									((1 mark)	
10	In the instru	ictions to th	ne experim	ent it su	ggested	I that non fe	erro-ma	gnetic	material b	oe used fo	r the

In the instructions to the experiment it suggested that non ferro-magnetic material be used for the stands and block. Explain why this recommendation was made.

Ferro-magnetic materials will distort the direction of a magnetic field as the flux lines would rather travel through the material than through air.

(1 mark)

The following results were obtained when the compass was held at a constant distance from the wire of 15.0 cm and the current varied.

Current (A)	Deflection Right	Deflection Left	Av. Deflection	Tan of Average
5	16°	16°	16°	0.287
4	120	14 ⁰	13 ⁰	0.231
3	100	10 ⁰	10 ⁰	0.176
2	8°	7°	7.5°	0.132
1	4 ⁰	4°	4 ⁰	0.0699

3	Why is the compass deflection on both sides of the wire measured instead of just on one side?
	To average any errors in measurement due to
	possible distortions of the fields
	(1 mark)
4	In this experiment, which is the manipulated or independent variable? <u>Current</u>

(1 mark)

5	Should the manipulated variable be graphed on the x or y axis?	(1 mark)	
6	Graph the results as appropriate (note that $\tan \Theta$ does not have units).	(3 marks)	
7	Calculate the gradient of the line you have obtained. 0.0540	(1 mark)	
8	If extended, should the line go through the origin? <u>Yes</u>	(1 mark)	
9	Explain why. Zero current will not produce a mag-	field	50
	Explain why. Zero current will not produce a mag. the compass will continue to point North.	_(1 mark)	
	$B_{i} = \underbrace{\mu_{0}I}_{2\pi d} \qquad \text{and} \qquad \tan \theta = \underbrace{B_{i}}_{B_{EH}} \qquad \boxed{2}$		

 B_i = magnetic field strength around the wire (T)

I = the current through the wire (A)

 B_{EH} = horizontal component of the Earth's magnetic field (T) d = distance from the wire (m) μ_0 = permeability of air = $4\pi \times 10^{-7}$ NA⁻² tan θ = tan of the average deflection

By combining the two equations obtain an expression for B_{EH} that does not include B_i . (2 marks)

Subst. (1) into (2)
$$\tan \theta = \frac{u_0 I}{2\pi d} \implies \tan \theta = \frac{u_0 I}{2\pi d \cdot B_{EH}}$$

$$\implies B_{EH} = \frac{u_0 I}{2\pi d \cdot \tan \theta}$$

Using values of μ_0 and d given, and the gradient of the line calculated in question 7, obtain a value for B_{EH} using the equation derived above. (2 marks)

using the equation derived above.

$$gradient = \frac{\tan \theta}{I}$$

$$d = 15cm = 0.15m$$

$$M_0 = 471 \times 10^7 NA^{-2}$$

$$= \frac{2 \times 10^7}{0.15} \times \frac{1}{9 \text{ radient}}$$

$$= \frac{2 \times 10^7}{0.15} \times 0.054$$

In the location that the experiment was carried out the angle of dip to the horizontal was measured at 68.0° . Calculate the strength of the earth's magnetic field at this location. (2 marks)

$$B_{EH} = B_{ECOS} 68^{\circ}$$

$$B_{E} = \frac{B_{EH}}{Cos 68^{\circ}} = \frac{2.47 \times 10^{-5}}{Cos 68^{\circ}}$$

$$= 6.59 \times 10^{-5} \text{ T}$$

In another experiment the current was kept constant at 4.0A and the distance between the wire and the compass was varied. The following results were obtained.

Distance (m)	Av. Deflection	Tan Av. Deflection	<u>_l</u>	
0.335	80	0.141	2.985	
0.285	10°	0.176	3.509	
0.246	11.50	0,203	4-065	
0.182	14 ⁰	0.249	5.495	
0.125	19 ⁰	0.344	8.00	
0.062	300	0.577	16.129	

13	Explain what you would do to the data to obto	ain a straight	line graph.	Use the	equation in Q	9 to justify
why th	is strategy should give you a straight line	tun O	α	7)		

Show how the gradient of the straight line can be used with the equation from question 11 to obtain another value for B_e . (Use the values of μ_0 and I that are given)

gradient =
$$\frac{\tan \theta}{\frac{1}{2}} = \frac{\tan \theta \times d}{2\pi d}$$

$$B_{EH} = \frac{10 \text{ J}}{2\pi d \cdot \tan \theta} = \frac{10 \text{ J}}{2\pi d \cdot \cot \theta} = \frac{4\pi \times 10^{-7} \times 4}{2\pi \times 10^{-7} \times 4} = \frac{2\pi \times 10^{-7} \times 4}{2\pi \times 10^{-5} \times 10^{-5}}$$

$$B_{E} = \frac{1.6 \times 10^{-5} \text{ T}}{\cos 68^{\circ}} = \frac{4.27 \times 10^{-5} \text{ T}}{\cos 68^{\circ}}$$
Total: 25 marks

