$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

$\eta'(958)$ MASS

VALUE (MeV)		<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
957.78	± 0.06	OUR AV	ERAGE				
957.793	3 ± 0.054	± 0.036	3.9k	LIBBY	80		$J/\psi ightarrow \gamma \eta'$
957.9	± 0.2	± 0.6	4800	WURZINGER	96	SPEC	$1.68~pd ightarrow ~^3 ext{He}\eta'$
957.46	± 0.33			DUANE	74	MMS	$\pi^- p \rightarrow nMM$
958.2	± 0.5		1414	DANBURG	73	HBC	$2.2 K^- p \rightarrow \Lambda \eta'$
958	± 1		400	JACOBS	73	HBC	$2.9 K^- p \rightarrow \Lambda \eta'$
956.1	± 1.1		3415	¹ BASILE	71	CNTR	$1.6 \pi^- p \rightarrow n \eta'$
• • • \	We do no	ot use the	e following	data for average	s, fits	, limits,	etc. • • •
957.5	± 0.2			BAI	04 J	BES2	$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
959	± 1			² BELADIDZE			36 π^- Be $\to \pi^- \eta' \eta$ Be
958	± 1		340	² ARMSTRONG	91 B	OMEG	300 $pp \rightarrow pp\eta\pi^+\pi^-$
958.2	± 0.4		622	² AUGUSTIN	90	DM2	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
957.8	± 0.2			² AUGUSTIN	90		$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$
956.3	± 1.0		143	² GIDAL	87	MRK2	$e^+e^- \rightarrow$
				3			$e^{+}e^{-}\eta\pi^{+}\pi^{-}$
957.4	± 1.4		535	³ BASILE	71		$1.6 \pi^{-} p \rightarrow n \eta'$
957	± 1			RITTENBERG	69	HBC	1.7–2.7 K ⁻ p

η' (958) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
0.196±0.009 OUR FI	Γ					
0.230±0.021 OUR AV	'ERAGE					
$0.226 \pm 0.017 \pm 0.014$	2300	CZERWINSKI	10	MMS		$pp ightarrow pp \eta'$
$0.40\ \pm0.22$	4800	WURZINGER	96	SPEC		$1.68 \ pd \rightarrow \ ^3 \mathrm{He} \eta'$
0.28 ± 0.10	1000	BINNIE	79	MMS	0	$\pi^- p \rightarrow nMM$
● ● We do not use t	the following	data for averag	es, fit	s, limits	, etc. •	• • •
$0.20\ \pm0.04$		BAI	04 J	BES2		$J/\psi \rightarrow \gamma \gamma \pi^+ \pi^-$

 $^{^1}$ Using all η' decays. 2 Systematic uncertainty not estimated. 3 Using η' decays into neutrals. Not independent of the other listed BASILE 71 η' mass measurement.

η' (958) DECAY MODES

	Mode			Fractio	on (Γ_i/Γ)	Conf	idence level
<u></u> Γ ₁	$\pi^+\pi^-\eta$			(42.	6 ±0.7) %	6	
_	$\rho^0 \gamma$ (including non-resonant	t		`	9 ± 0.5) $^{\circ}$		
_	$\pi^+ \pi^- \gamma$			`	,		
Γ_3	$\pi^0\pi^0\eta$			(22.	8 ±0.8) %	6	
Γ_4	$\omega\gamma$			(2.	62±0.13) %	6	
Γ_5	$\omega e^+ e^-$			(2.	0 ±0.4)>	< 10 ⁻⁴	
Γ_6	$\gamma \gamma$			(2.	22±0.08) %	6	
Γ_7	$rac{\gamma}{3\pi}$ 0			(2.	54±0.18) >	< 10 ⁻³	
Γ ₈	$\mu^{+}\mu^{-}\gamma_{\pi^{+}\pi^{-}\mu^{+}\mu^{-}}$			(1.	09±0.27) >	$< 10^{-4}$	
Γ_9	$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$			< 2.	9 >	< 10 ⁻⁵	90%
Γ_{10}	$\pi^+\pi^-\pi^0$			(3.	$61 \pm 0.17) >$	< 10 ⁻³	
	$(\pi^+\pi^-\pi^0)$ S-wave			•	8 ± 0.5)		
	$\pi^{\mp} \rho^{\pm}$			(7.	4 ± 2.3) >	< 10 ⁻⁴	
Γ_{13}	$\pi^0 \rho^0$			< 4	9,	6	90%
Γ_{14}	$2(\pi^{+}\pi^{-})$			•	6 ± 0.9) >		
Γ_{15}	$\pi + \pi^{-} 2\pi^{0}$			(1.	8 ± 0.4) >	< 10 ⁻⁴	
Γ ₁₆	$2(\pi^+\pi^-)$ neutrals				0		95%
Γ_{17}	$2(\pi^{+}\pi^{-})\pi^{0}$					< 10 ⁻³	90%
Γ ₁₈	$2(\pi^{+}\pi^{-})2\pi^{0}$ $3(\pi^{+}\pi^{-})$			< 1			95%
Γ ₁₉	$3(\pi^{+}\pi^{-})$					< 10 ⁻⁵	90%
	$\mathcal{K}^{\pm}\pi^{\mp}$			< 4	>	< 10 ⁻⁵	90%
	$\pi^{+}\pi^{-}e^{+}e^{-}$			(2.	$4 \begin{array}{c} +1.3 \\ -1.0 \end{array}) >$	< 10 ⁻³	
Γ_{22}	$\pi^{+} e^{-} \nu_{e} + \text{c.c.}$ $\gamma e^{+} e^{-}$			< 2.	1 >	< 10 ⁻⁴	90%
Γ ₂₃	γe^+e^-			(4.	73±0.30) >	< 10 ⁻⁴	
Γ_{24}	$\pi^0 \gamma \gamma$			< 8		$< 10^{-4}$	90%
Γ ₂₅	$4\pi^0$			< 3.	2 >	$< 10^{-4}$	90%
Γ ₂₆	e^+e^-			< 5.		$< 10^{-9}$	90%
Γ ₂₇	invisible			< 5	>	< 10 ⁻⁴	90%
	Charge conju	ıgation	(C)	Pari	ity (<i>P</i>)		
	Lepton family nu	_			- • •	es	
Γ ₂₈	$\pi^+\pi^-$	P,CP			_	< 10 ⁻⁵	90%
Γ ₂₉	$\pi^0\pi^0$	P,CP				< 10 ⁻⁴	90%
Γ_{30}	$\pi^{0} e^{+} e^{-}$	C	[a]	< 1.		< 10 ⁻³	90%
Γ_{31}^{33}	$\eta\mathrm{e^+e^-}$	С		< 2.	4 >	< 10 ⁻³	90%
Γ ₃₂	3γ	С	,	< 1.		< 10 ⁻⁴	90%
	$\mu^+\mu^-\pi^0$	С	[a]	< 6.		$< 10^{-5}$	90%
	$\mu^+\mu^-\eta$	C		< 1.	5 >	$< 10^{-5}$	90%
Γ ₃₅	e μ	LF		< 4.	7	< 10 ⁻⁴	90%

[a] C parity forbids this to occur as a single-photon process.

CONSTRAINED FIT INFORMATION

An overall fit to the total width, a partial width, 2 combinations of partial widths obtained from integrated cross section, and 16 branching ratios uses 46 measurements and one constraint to determine 9 parameters. The overall fit has a $\chi^2=62.7$ for 38 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

	Mode	Rate (MeV)
$\overline{\Gamma_1}$	$\pi^+\pi^-\eta$	0.084 ±0.004
Γ_2	$ ho^{f 0}\gamma$ (including non-resonant	0.0567 ± 0.0027
	$\pi^+ \pi^- \gamma$)	
Γ_3	$\pi^0\pi^0\eta$	0.0448 ± 0.0023
•	$\omega\gamma$	0.00514 ± 0.00035
Γ_6	$rac{\gamma}{3\pi}^0$	0.00436 ± 0.00013
Γ_7	$3\pi^0$	$(5.0 \pm 0.4) \times 10^{-4}$
Γ_{10}	$\pi^+\pi^-\pi^0$	$(7.1 \pm 0.5) \times 10^{-4}$
Γ ₂₁	$\pi^{+}\pi^{-}e^{+}e^{-}$	$(4.6 \begin{array}{c} +2.5 \\ -1.9 \end{array}) \times 10^{-4}$

$\eta'(958)$ PARTIAL WIDTHS

$\Gamma(\gamma\gamma)$					Γ ₆
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
4.36±0.14 OUR FI	Т				
4.28±0.19 OUR A	/ERAGE				
$4.17 \pm 0.10 \pm 0.27$	2000	¹ ACCIARRI	98Q	L3	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-\gamma$
$4.53 \pm 0.29 \pm 0.51$	266	KARCH	92	CBAL	$e^{+}e^{-} \rightarrow e^{+}e^{-}\eta\pi^{0}\pi^{0}$
$3.61 \pm 0.13 \pm 0.48$		² BEHREND	91	CELL	$e^{+}e^{-} \rightarrow e^{+}e^{-}\eta'(958)$
					,
HTTP://PDG.L	BL.GOV	Page 3	}	Cr	reated: 5/30/2017 17:20

$4.6 \pm 1.1 \pm 0.6$	23	BARU	90	MD1	$e^+e^- \rightarrow$	$e^+e^-\pi^+\pi^-\gamma$
$4.57\!\pm\!0.25\!\pm\!0.44$		BUTLER	90	MRK2	$e^+e^- \rightarrow$	$e^+e^-\eta'(958)$
$5.08\!\pm\!0.24\!\pm\!0.71$	547	³ ROE	90	ASP	$e^+e^- \rightarrow$	$e^+e^-2\gamma$
$3.8 \pm 0.7 \pm 0.6$	34	AIHARA	88C	TPC	$e^+e^- \rightarrow$	$e^{+}e^{-}\eta\pi^{+}\pi^{-}$
$4.9 \pm 0.5 \pm 0.5$	136	⁴ WILLIAMS	88	CBAL	$e^+e^- \rightarrow$	$e^+e^-2\gamma$
• • • We do not us	se the follow	wing data for aver	ages,	fits, limit	ts, etc. • •	•
$4.7 \pm 0.6 \pm 0.9$	143	⁵ GIDAL	87	MRK2	$e^+e^- \rightarrow$	$e^{+}e^{-}\eta\pi^{+}\pi^{-}$
4.0 ± 0.9		⁶ BARTEL	85E	JADE	$e^+e^- \rightarrow$	$e^+e^-2\gamma$

$\Gamma(e^+e^-)$						Γ ₂₆
VALUE (eV)	CL%	DOCUMENT ID		TECN	COMMENT	
$< 1.1 \times 10^{-3}$	90	1,2 ACHASOV	15	SND	$0.958 e^{+}e^{-}$	$\rightarrow \pi\pi\eta$
• • • We do not ι	use the foll	lowing data for ave	rages,	fits, limit	s, etc. • • •	
$< 2.0 \times 10^{-3}$	90	² ACHASOV ² AKHMETSHI	15	SND	$0.958 \; e^{+} e^{-}$ -	$\rightarrow \pi\pi\eta$
$< 2.4 \times 10^{-3}$	90	² AKHMETSHI	N 15	CMD3	$0.958 e^{+}e^{-}$ -	$\rightarrow \pi^+\pi^-\eta$
		ASOV 15 and AKH		HIN 15.		

$\eta'(958) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

This combination of a partial width with the partial width into $\gamma\gamma$ and with the total width is obtained from the integrated cross section into channel(i) in the $\gamma\gamma$ annihilation.

$\Gamma(\gamma\gamma) \times \Gamma(\rho^0\gamma)$	(includi	ng non-resonant	$\pi^+\pi$	$(-\gamma))/$	Γ _{total}	$\Gamma_6\Gamma_2/\Gamma$
VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT	
1.26±0.04 OUR FI	T					
1.26±0.07 OUR A	/ERAGE	Error includes sca	le fac	tor of 1.	2.	
$1.09\!\pm\!0.04\!\pm\!0.13$		BEHREND	91	CELL	$e^+e^- \rightarrow$	$e^{+}e^{-}\rho(770)^{0}\gamma$
$1.35\!\pm\!0.09\!\pm\!0.21$		AIHARA	87	TPC	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
$1.13\!\pm\!0.04\!\pm\!0.13$	867	ALBRECHT	87 B	ARG	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
$1.53\!\pm\!0.09\!\pm\!0.21$		ALTHOFF	84E	TASS	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
$1.14\!\pm\!0.08\!\pm\!0.11$	243	BERGER	84 B	PLUT	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
$1.73\!\pm\!0.34\!\pm\!0.35$	95	JENNI	83	MRK2	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
$1.49\!\pm\!0.13\!\pm\!0.027$	213	BARTEL	82B	JADE	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$
• • • We do not us	se the foll	owing data for ave	rages,	fits, lim	its, etc. • •	•
$1.85 \pm 0.31 \pm 0.24$	43	BEHREND	82C	CELL	$e^+e^- \rightarrow$	$e^+e^- ho\gamma$

 $^{^1}$ No non-resonant $\pi^+\pi^-$ contribution found. 2 Reevaluated by us using B($\eta'\to\rho(770)\gamma)=(30.2\pm1.3)\%.$ 3 Reevaluated by us using B($\eta'\to\gamma\gamma)=(2.11\pm0.13)\%.$ 4 Reevaluated by us using B($\eta'\to\gamma\gamma)=(2.11\pm0.13)\%.$ 5 Superseded by BUTLER 90. 6 Systematic error not evaluated.

 $\Gamma(\gamma\gamma) \times \Gamma(\pi^0\pi^0\eta)/\Gamma_{\text{total}}$ $\Gamma_6\Gamma_3/\Gamma$ VALUE (keV) DOCUMENT ID 1.00 ± 0.05 OUR FIT CBAL $e^+e^- \rightarrow e^+e^-\eta\pi^0\pi^0$ ¹ KARCH $0.92 \pm 0.06 \pm 0.11$ • • We do not use the following data for averages, fits, limits, etc. • ² KARCH 90 CBAL $e^+e^- \rightarrow e^+e^-\eta\pi^0\pi^0$ $0.95 \pm 0.05 \pm 0.08$ ^{2,3} ANTREASYAN 87 CBAL $e^+e^- \rightarrow e^+e^-\eta\pi^0\pi^0$ $1.00 \pm 0.08 \pm 0.10$ ¹ Reevaluated by us using B($\eta \to \gamma \gamma$) = (39.21 \pm 0.34)%. Supersedes ANTREASYAN 87 and KARCH 90. ² Superseded by KARCH 92. ³ Using BR($\eta \to 2\gamma$)=(38.9 ± 0.5)%. $\eta'(958) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$ $\Gamma(\pi^+\pi^-\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_1\Gamma_{26}/\Gamma$ $VALUE (10^{-3} \text{ eV})$ DOCUMENT ID TECN COMMENT ¹ AKHMETSHIN 15 CMD3 0.958 $e^+e^- \rightarrow \pi^+\pi^-\eta$ 90 <1.0 ¹ AKHMETSHIN 15 reports $[\Gamma(\eta'(958) \rightarrow \pi^+\pi^-\eta) \times \Gamma(\eta'(958) \rightarrow e^+e^-)/\Gamma_{total}]$ \times [B($\eta \rightarrow 2\gamma$)] < 4.1 \times 10⁻⁴ eV which we divide by our best value B($\eta \rightarrow 2\gamma$) = 39.41×10^{-2} $\eta'(958)$ BRANCHING RATIOS $\Gamma(\pi^+\pi^-\eta)/\Gamma_{\text{total}}$ Γ_1/Γ • • • We do not use the following data for averages, fits, limits, etc. • • 1.2k ¹ PEDLAR 09 CLEO $J/\psi \rightarrow \gamma \eta'$ $0.424 \pm 0.011 \pm 0.004$ ¹ Not independent of other η' branching fractions and ratios in PEDLAR 09. $\Gamma(\pi^+\pi^-\eta(\text{charged decay}))/\Gamma_{\text{total}}$ $0.2810\Gamma_{1}/\Gamma$ DOCUMENT ID TECN COMMENT 0.1196 ± 0.0019 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • • 0.123 ± 0.014 107 **HBC** $1.7-2.7~K^{-}p$ RITTENBERG 69 $2.24 \ K^- p \rightarrow \Lambda 2\pi^+ 2\pi^- \pi^0$ 0.10 ± 0.04 **HBC** 10 LONDON $3 K^- p$ 7 **BADIER** 0.07 ± 0.04 65B HBC $\Gamma(\pi^+\pi^-\eta(\text{neutral decay}))/\Gamma_{\text{total}}$ $0.7212\Gamma_{1}/\Gamma$ DOCUMENT ID TECN COMMENT 0.307 ± 0.005 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • •

281

 0.314 ± 0.026

RITTENBERG 69 HBC

 $1.7-2.7~K^{-}p$

$\Gamma(\rho^0\gamma)$ (including no	n-resonar	at $\pi^+\pi^-\gamma))/ $	$\Gamma_{ m total}$			Γ_2/Γ
•		DOCUMENT ID		TECN	COMMENT	
0.289±0.005 OUR FI						
● ● • We do not use	the followin	g data for avera	ges, fits	s, limits,	etc. • • •	
$0.287 \pm 0.007 \pm 0.004$	0.2k ¹	^L PEDLAR	09	CLEO .	$J/\psi ightarrow \gamma \eta'$	
0.329 ± 0.033	298	RITTENBERG	69 I	HBC :	1.7–2.7 K ⁻ p	
0.2 ± 0.1	20	LONDON	66 I	HBC :	$2.24~K^-p \rightarrow$	$\Lambda \pi^+ \pi^- \gamma$
0.34 ± 0.09	35	BADIER	65B I	HBC :	3 K ⁻ p	
$^{ m 1}$ Not independent o	of other η' b	oranching fractio	ns and	ratios ir	PEDLAR 09.	
$\Gamma(ho^0\gamma)$ (including no	n-resonar	of π^+ $\pi^ \sim$)) /	Γ <i>(π</i> +,	π^-n		Γ_2/Γ_1
VALUE	on resonar	<u>DOCUMENT II</u>		- /	COMMENT	. 2/ . 1
0.679±0.017 OUR FI	T	<u>DOCOMENT II</u>		TECH	COMMENT	
0.683±0.020 OUR AV	/ERAGE					
$0.677 \pm 0.024 \pm 0.011$		PEDLAR	09	CLE3	$J/\psi \rightarrow \eta' \gamma$	
$0.69\ \pm0.03$		ABLIKIM	06E	BES2	$J/\psi ightarrow \eta' \gamma$	
=/ 0 / 1 1			- / _	_ ,		`
$\Gamma(ho^0\gamma)$ (including no	on-resonar	it $\pi^+\pi^-\gamma))/\langle$	$I(\pi^{\top})$	$\pi^-\eta$ (n		· •
						$_{2}/0.714\Gamma_{1}$
<u>VALUE</u> 0.951±0.024 OUR FI	<u>EVTS</u>	DOCUMENT ID	<u> </u>	<u>TECN</u>	COMMENT	
0.951 ± 0.024 OUR AV						
0.70 ± 0.09	ENAGE	AMSLER	040	CDAD	$0 \overline{p} p \rightarrow \pi^+$	
0.70 ± 0.22 1.07 ± 0.17					$0 pp \rightarrow \pi$ $36 \pi^{-} \text{Be} \rightarrow$	
0.92 ± 0.14	473	DANBURG	92C 73	VL3 HRC	$2.2 K^- p \rightarrow$	$\Lambda \times 0$
0.92 ± 0.14 1.11 ± 0.18	192	JACOBS	73 73			
1.11 ±0.10	132	3/10005	15	HDC	2.5 K p /	7170
$\Gamma(\pi^0\pi^0\eta)/\Gamma_{total}$						Γ_3/Γ
VALUE	EVTS	DOCUMENT II	D	TECN	COMMENT	
0.228±0.008 OUR FI	Т					
• • • We do not use	the followin	g data for averag	ges, fits	s, limits,	etc. • • •	
$0.235 \pm 0.013 \pm 0.004$	3.2k	¹ PEDLAR	09	CLEO	$J/\psi ightarrow \gamma \eta'$	
¹ Not independent o	of other η' b	oranching fractio	ns and	ratios ir	PEDLAR 09.	
$\Gamma(\pi^0\pi^0\eta(3\pi^0$ deca	w)) /F					N 221F ₂ /F
•	·		n	TECN		$0.321\Gamma_3/\Gamma$
VALUE 0.0733±0.0026 OUR	<i>EVTS</i> FIT	<u>DOCUMENT II</u>	<u> </u>	TECN	COMMENT	
• • • We do not use		g data for averag	es fits	s. limits.	etc. • • •	
			-		2.2 π^{+} d	
0.11 ± 0.06	4	BENSINGER	R 70	DBC	2.2 π ' a	
$\Gamma(\pi^0\pi^0\eta)/\Gamma(\pi^+\pi^-)$	-n					Γ_3/Γ_1
VALUE	-1)	DOCUMENT II	D	TECN	COMMENT	- 3/ - 1
0.536±0.026 OUR FI	Т					
$0.555 \pm 0.043 \pm 0.013$		PEDLAR	09	CLE3	$J/\psi \rightarrow \eta' \gamma$	

```
\Gamma(\rho^0 \gamma \text{ (including non-resonant } \pi^+ \pi^- \gamma)) / \Gamma(\pi \pi \eta)
                                                                        TECN COMMENT
0.442 ± 0.012 OUR FIT
0.43 \pm 0.02 \pm 0.02
                                               BARBERIS
                                                                   98C OMEG 450 pp \rightarrow p_f \eta' p_s
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.31 \pm 0.15
                                               DAVIS
                                                                          HBC
                                                                                    5.5 K^{-} p
\Gamma(\omega\gamma)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{4}/\Gamma
VALUE (units 10^{-2})
                                  EVTS
                                                                            TECN COMMENT
2.62 ± 0.13 OUR FIT
                                               <sup>1</sup> ABLIKIM
                                                                     15AD BES3 J/\psi \rightarrow \eta' \gamma
2.55 \pm 0.03 \pm 0.16
                                 33.2k
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                               <sup>2</sup> PEDLAR
2.34 \pm 0.30 \pm 0.04
                                     70
                                                                     09 CLEO J/\psi \rightarrow \gamma \eta'
   <sup>1</sup> Using B(J/\psi \rightarrow \eta' \gamma) = (5.15 \pm 0.16) \times 10^{-3} and B(\omega \rightarrow \pi^+ \pi^- \pi^0) = (89.2 \pm 0.7)\%.
   ^2 Not independent of other \eta' branching fractions and ratios in PEDLAR 09.
\Gamma(\omega\gamma)/\Gamma(\pi^+\pi^-\eta)
                                                                                                          \Gamma_4/\Gamma_1
0.0615±0.0033 OUR FIT
0.055 \pm 0.007 \pm 0.001
                                               PEDLAR
                                                                   09 CLE3 J/\psi \rightarrow \eta' \gamma

    • • We do not use the following data for averages, fits, limits, etc.

0.068 \pm 0.013
                                               ZANFINO
                                                                          ASPK 8.4 \pi^{-}p
\Gamma(\omega\gamma)/\Gamma(\pi^0\pi^0\eta)
                                                                                                          \Gamma_4/\Gamma_3
                                                                   TECN COMMENT
0.115±0.007 OUR FIT
0.147 \pm 0.016
                                               ALDE
                                                                   87B GAM2 38 \pi^- p \rightarrow n4\gamma
\Gamma(\omega e^+ e^-)/\Gamma(\omega \gamma)
                                                                                                          \Gamma_5/\Gamma_4
                                               DOCUMENT ID TECN COMMENT
VALUE (units 10^{-3})
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                             <sup>1</sup> ABLIKIM
                                                                   15AD BES3 J/\psi \rightarrow \eta' \gamma
   ^{
m 1} Obtained from other ABLIKIM 15AD meausurements with common systematics taken
     into account.
\Gamma(\omega e^+ e^-)/\Gamma_{\text{total}}
                                                                                                           \Gamma_5/\Gamma
VALUE (units 10^{-4})
                                EVTS
                                                                  15AD BES3 J/\psi \rightarrow \eta' \gamma
                                             <sup>1</sup> ABLIKIM
                                   66
1.97 \pm 0.34 \pm 0.17
   <sup>1</sup> Using B(J/\psi \rightarrow \eta' \gamma) = (5.15 ± 0.16)×10<sup>-3</sup> and B(\omega \rightarrow \pi^+ \pi^- \pi^0) = (89.2 ± 0.7)%.
\Gamma(\rho^0 \gamma (\text{including non-resonant } \pi^+ \pi^- \gamma)) / [\Gamma(\pi^+ \pi^- \eta) + \Gamma(\pi^0 \pi^0 \eta) + \Gamma(\pi^0 \pi^0 \eta)] 
\Gamma(\omega\gamma)
                                                                                           \Gamma_2/(\Gamma_1+\Gamma_3+\Gamma_4)
                                                                         TECN COMMENT
0.425 ± 0.011 OUR FIT
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.25 \pm 0.14
                                                                          HBC
                                                                                    1.95~K^{-}p
                                               DAUBER
                                                                   64
HTTP://PDG.LBL.GOV
                                                                           Created: 5/30/2017 17:20
                                                   Page 7
```

```
[\Gamma(\pi^0\pi^0\eta(\text{charged decay})) + \Gamma(\omega(\text{charged decay})\gamma)]/\Gamma_{\text{total}}
                                                                                    (0.286\Gamma_3 + 0.89\Gamma_4)/\Gamma
                                                                                    <u>COMMENT</u>
VALUE
0.0886 ± 0.0026 OUR FIT

    • • We do not use the following data for averages, fits, limits, etc.

0.045 \pm 0.029
                                   42
                                               RITTENBERG 69 HBC
                                                                                   1.7-2.7~K^{-} p
                                                                      (0.714\Gamma_1 + 0.286\Gamma_3 + 0.89\Gamma_4)/\Gamma
\Gamma(\pi^+\pi^- \text{ neutrals})/\Gamma_{\text{total}}
                                                             TECN
                                                                                            COMMENT
0.3926±0.0035 OUR FIT
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                                          2.24 K^- p \rightarrow \Lambda \pi^+ \pi^- neutrals
0.4
        \pm 0.1
                         39
                                     LONDON
                                                         66
                                                               HBC
0.35
        \pm 0.06
                         33
                                     BADIER
                                                         65B HBC
                                                                                                          3 K^{-} p
\Gamma(\gamma\gamma)/\Gamma_{\text{total}}
                                                                                                            \Gamma_6/\Gamma
VALUE (units 10^{-2})
                                                                     TECN COMMENT
2.22 ± 0.08 OUR FIT
2.00 \pm 0.15 OUR AVERAGE
1.98^{+0.31}_{-0.27}\pm0.07
                                                                     BELL B^{\pm} \rightarrow K^{\pm} \gamma \gamma
                                        <sup>1</sup> WICHT
                             114
                                        <sup>2</sup> STANTON
                                                                     SPEC 8.45 \pi^- p \rightarrow n \pi^+ \pi^- 2\gamma
2.00 \pm 0.18
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                        <sup>3</sup> PEDLAR
                                                                     CLEO J/\psi \rightarrow \gamma \eta'
                            0.3k
2.25 \pm 0.16 \pm 0.03
                                        <sup>4</sup> APEL
                                                               79
                                                                     NICE 15–40 \pi^- p \rightarrow n2\gamma
1.8\ \pm0.2
                           6000
                                                              74
                                                                     MMS \pi^- p \rightarrow nMM
2.5 \pm 0.7
                                          DUANE
                                                                     CNTR 1.6 \pi^- p \rightarrow nX^0
1.71 \pm 0.33
                              68
                                          DALPIAZ
                                                              72
2.0 \begin{array}{c} +0.8 \\ -0.6 \end{array}
                                                               71
                                                                     OSPK 3.65 \pi^{-} p \to n X^{0}
                              31
                                          HARVEY
   <sup>1</sup>WICHT 08 reports [\Gamma(\eta'(958) \rightarrow \gamma\gamma)/\Gamma_{\text{total}}] \times [B(B^+ \rightarrow \eta'K^+)] =
     (1.40^{+0.16}_{-0.15}^{+0.16}) 	imes 10^{-6} which we divide by our best value B(B^+ 	o \eta' K^+) =
     (7.06 \pm 0.25) \times 10^{-5}. Our first error is their experiment's error and our second error is
     the systematic error from using our best value.
   <sup>2</sup> Includes APEL 79 result.
   <sup>3</sup> Not independent of other \eta' branching fractions and ratios in PEDLAR 09.
   <sup>4</sup> Data is included in STANTON 80 evaluation.
\Gamma(\gamma\gamma)/\Gamma(\pi^+\pi^-\eta)
                                                                                                          \Gamma_6/\Gamma_1
                                                                          TECN COMMENT
0.0522 ± 0.0022 OUR FIT
0.053 \pm 0.004 \pm 0.001
                                               PEDLAR
                                                                        CLE3 J/\psi \rightarrow \eta' \gamma
\Gamma(\gamma\gamma)/\Gamma(\rho^0\gamma) (including non-resonant \pi^+\pi^-\gamma)
                                                                                                          \Gamma_6/\Gamma_2
                                               DOCUMENT ID
0.0768 ± 0.0033 OUR FIT
                                                                   06E BES2 J/\psi \rightarrow \eta' \gamma
0.080 \pm 0.008
                                               ABLIKIM
```

$\Gamma(\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$					Γ_6/Γ_3
VALUE 0.097±0.004 OUR FIT		DOCUMENT ID		TECN	COMMENT
0.105±0.010 OUR AVE	ERAGE Erro	or includes scale	facto	r of 1.9.	
$0.091\!\pm\!0.009$		AMSLER	93	CBAR	0.0 p p
$0.112\!\pm\!0.002\!\pm\!0.006$		ALDE	87 B	GAM2	$38 \pi^- p \rightarrow n2\gamma$
$\Gamma(\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$ (ne	eutral decay	'))			$\Gamma_6/0.714\Gamma_3$
<u>VALUE</u> 0.136±0.006 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th		data for averages	s, fits,	limits, e	etc. • • •
0.188 ± 0.058	16	APEL	72		$3.8 \pi^{-} p \rightarrow nX^{0}$
$\Gamma(\text{neutrals})/\Gamma_{\text{total}}$				(0.7	14Γ₃+0.09Γ₄+Γ₆)/Γ
<u>VALUE</u> 0.188±0.006 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use th		data for averages	s. fits.	limits.	etc. • • •
0.185 ± 0.022	535	BASILE	71		$1.6 \pi^- p \rightarrow nX^0$
0.189 ± 0.026	123	RITTENBERG			1.7–2.7 K ⁻ p
$\Gamma(3\pi^0)/\Gamma_{ m total}$					Γ ₇ /Γ
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
2.54 ±0.18 OUR FIT 3.57 ±0.26 OUR AVE					
$3.522 \pm 0.082 \pm 0.254$	2015	ABLIKIM	17	BES3	$J/\psi \rightarrow \gamma (3\pi^0)$
$4.79 \pm 0.59 \pm 1.14$		¹ ABLIKIM			$J/\psi \rightarrow K^+K^-3\pi$
• • • We do not use th					
$3.56 \pm 0.22 \pm 0.34$		² ABLIKIM			$J/\psi \rightarrow \gamma (3\pi^0)$
1 We have added all s 2 Superseded by ABL		ncertainties in qu	uadrat	ure to a	single value.
$\Gamma(3\pi^0)/\Gamma(\pi^0\pi^0\eta)$					Γ_7/Γ_3
<u>VALUE</u> (units 10 ⁻⁴) 111± 8 OUR FIT	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
111± 8 OUR FIT 78±10 OUR AVERAG	<u>:</u> E				
86±19	235	BLIK	08	GAMS	$32 \pi^- p \rightarrow \eta' n$
74 ± 15		ALDE			$38 \pi^- p \rightarrow n6\gamma$
75 ± 18		BINON	84	GAM2	30–40 $\pi^- p \rightarrow n6\gamma$
$\Gamma(\mu^+\mu^-\gamma)/\Gamma(\gamma\gamma)$					Γ_8/Γ_6
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
4.9±1.2	33	VIKTOROV	80	CNTR	25,33 $\pi^- p \rightarrow 2\mu\gamma$
$\Gamma(\pi^+\pi^-\mu^+\mu^-)/\Gamma_{ m t}$	otal				٦٩/٢
VALUE (units 10^{-4})		DOCUMENT ID			COMMENT
• • • We do not use th					
< 0.29		l ABLIKIM			$J/\psi \rightarrow \gamma \eta'$
<2.4		² NAIK	09	CLEO	$J/\psi ightarrow \gamma \eta'$
1 Using $\Gamma_{2}/\Gamma=(29.3)$ Not independent of	$3\pm0.6)\%$ from measured value 2	om PDG 12. Ilue of Γ_9/Γ_1 fro	om NA	AIK 09.	
HTTP://PDG.LBL.	GOV	Page 9		Creat	red: 5/30/2017 17:20

$\Gamma(\pi^+\pi^-\mu^+\mu^-)/\Gamma($						-9/Γ1
<u>VALUE</u> (units 10 ^{−3}) <0.5	CL%	DOCUMENT ID		TECN	COMMENT	
<0.5	90	¹ NAIK	09	CLEO	$J/\psi ightarrow \gamma \eta'$	
1 NAIK 09 reports [Γ 2γ)] $<~1.3 imes10^{-3}$	$(\eta'(958) - $ which we	$_{ o}$ $_{\pi}^{+}$ $_{\pi}^{-}$ $_{\mu}^{+}$ $_{\mu}^{-}$ multiply by our be	$)/\Gamma(r)$	$\eta'(958)$ lue B (η)	$ ightarrow \pi^+ \pi^- \eta)] / [E ightarrow 2\gamma) = 39.41 imes$	$3(\eta \rightarrow 10^{-2}.$
$\Gamma(\pi^+\pi^-\mu^+\mu^-)/\Gamma($	$(ho^0\gamma ({\sf incl})$	uding non-reson	ant $ au$	$\tau^+ \pi^-$	γ)) Γ	_9/Γ2
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<1.0	90	ABLIKIM	130	BES3	$J/\psi ightarrow \gamma \eta'$	
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$					Γ	₁₀ /Γ
VALUE (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT	
3.61 ± 0.18 OUR FIT 3.61 ± 0.18 OUR AVE						
$3.591 \pm 0.054 \pm 0.174$	6067	ABLIKIM	17	RES3	$J/\psi \rightarrow \gamma (\pi^+\pi^-)$	- ₋ 0 ₁
$4.28 \pm 0.49 \pm 1.11$	78	¹ ABLIKIM			$J/\psi \rightarrow \gamma (\pi^+ \pi^-)$ $J/\psi \rightarrow K^+ K^- 3$	
$3.7 \begin{array}{c} +1.1 \\ -0.9 \end{array} \pm 0.4$		² NAIK			$J/\psi ightarrow \gamma \eta'$	<i>,</i> , , , , , , , , , , , , , , , , , ,
0.5					, , , , ,	
• • • We do not use th	_	-				- 0,
$3.83 \pm 0.15 \pm 0.39$	1014				$J/\psi \rightarrow \gamma (\pi^+ \pi^-)$	π°)
$^{ m 1}$ We have added all s $^{ m 2}$ Not independent of	systematic i measured v	uncertainties in qualue of Γ_{10}/Γ_{1} f	uadrat rom N	ure to a NAIK 09	single value.	
³ Superseded by ABL		10, 1				
$\Gamma((\pi^+\pi^-\pi^0)$ S-wav	, .					- ₁₁ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{J/\psi \rightarrow \gamma (\pi^+ \pi^-)}$	
$37.63\pm0.77\pm5.00$	6580	¹ ABLIKIM	17	BES3	$J/\psi \rightarrow \gamma (\pi^+\pi^-)$	π^{0})
$^{ m 1}$ We have added all s	systematic i	uncertainties in qu	uadrat	cure .		
$\Gamma(\pi^{\mp} ho^{\pm})/\Gamma_{total}$					ſ	- ₁₂ /Γ
`	EVTS	DOCUMENT ID		TECN	COMMENT	
$7.44 \pm 0.60 \pm 2.23$	1231	¹ ABLIKIM	17	BES3	$J/\psi \rightarrow \gamma (\pi^{\mp} \rho^{\pm})$	=)
$^{ m 1}$ We have added all s	systematic i	uncertainties in qu				
$\Gamma(\pi^+\pi^-\pi^0)/\Gamma(\pi^+\pi^0)$	$\pi^-\eta)$				Γ_1	_{ιο} /Γ ₁
, ,	•	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻³) 8.5 ±0.4 OUR FIT						
$8.28^{f +2.49}_{-2.12}{\pm}0.04$	20	$^{1}NAIK$	09	CLEO	$J/\psi ightarrow \gamma \eta'$	
¹ NAIK 09 reports [Γ($(\eta'(958) \rightarrow$	$\pi^+\pi^-\pi^0)/\Gamma(\eta$	¹ (958)	$\rightarrow \pi^+$	$(\pi^-\eta)] / [B(\eta \to 2)]$	$[2\gamma)] =$
$(21^{+6}_{-5}\pm 2)\times 10^{-3}$	which we r	multiply by our be	st valı	ue B $(\eta$ –	$\rightarrow 2\gamma) = (39.41 \pm 0$.20)×
10^{-2} . Our first err error from using our	or is their e	experiment's error				
$\Gamma(\pi^0 \rho^0)/\Gamma_{\text{total}}$	CL 0.	DOCUMENT :		TECN		₁₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>		
<0.04	90	RITTENBERG	05	HBC	2.7 K ⁻ p	
					·	

$\Gamma(2(\pi^+\pi^-))/\Gamma_{\text{tot}}$	tal		Γ	₁₄ /Γ
VALUE (units 10^{-5})	CL% EVTS	DOCUMENT ID	TECN COMMENT	
$8.6 \pm 0.9 \pm 0.3$	199		14M BES3 $J/\psi ightarrow \gamma \eta'$	
• • • We do not use	the following	data for averages, fits		
< 24	90		09 CLEO $J/\psi \rightarrow \gamma \eta'$	
<1000	90		59 HBC 1.7–2.7 K ⁻ p	
$=$ (4.40 \pm 0.35 $\gamma \eta'$ (958)) $=$ (5.3 second error is the	\pm 0.30) $ imes$ 10 \pm 0.17) $ imes$ ne systematic	0^{-7} which we divide	$_{ m otal}] imes [{ m B}(J/\psi(1S) ightarrow \gamma \eta'(9)]$ by our best value ${ m B}(J/\psi(1S))$ is their experiment's error and est value. NAIK 09.	5) →
$\Gamma(2(\pi^+\pi^-))/\Gamma(\pi^-)$	$(\pi^+\pi^-\eta)$		Γ ₁₄	₄ /Γ ₁
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID	TECN COMMENT	
<0.6	90	¹ NAIK 09	CLEO $J/\psi ightarrow \gamma \eta'$	
			$(8) \rightarrow \pi^{+}\pi^{-}\eta)] / [B(\eta \rightarrow B(\eta \rightarrow 2\gamma) = 39.41 \times 10^{-2}]$	
$\Gamma(\pi^+\pi^-2\pi^0)/\Gamma_{\rm to}$				₁₅ /Γ
$VALUE$ (units 10^{-4}) CE	L% EVTS	DOCUMENT ID	TECN COMMENT	
1.8±0.4±0.1	84 • the following	1 ABLIKIM 14N g data for averages, fits	M BES3 $J/\psi \rightarrow \gamma \eta'$	
<27 90		_	CLEO $J/\psi ightarrow \gamma \eta'$	
			$_{otal}] \times [B(J/\psi(1S) \to \gamma \eta'(9))]$	
$= (9.38 \pm 1.79 \pm 0)$ $= (5.13 \pm 0.17)$ is the systematic 2 Not independent	$(0.89) \times 10^{-7} \text{ w}$ $(0.89) \times 10^{-3}$. Our error from us of measured	which we divide by our b	riment's error and our second NAIK 09.	958)) error
$= (9.38 \pm 1.79 \pm 0)$ $= (5.13 \pm 0.17)$ is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\pi^{+}\pi^{-}2\pi^{0})$	$(0.89) \times 10^{-7} \text{ w}$ $\times 10^{-3}$. Our error from us of measured w	which we divide by our be first error is their expe ing our best value.	riment's error and our second NAIK 09.	958))
$= (9.38 \pm 1.79 \pm 0)$ $= (5.13 \pm 0.17)$ is the systematic 2 Not independent	$(0.89) \times 10^{-7} \text{ w}$ $\times 10^{-3}$. Our error from us of measured w	which we divide by our befirst error is their expering our best value. Value of Γ_{15}/Γ_1 from $\frac{DOCUMENT\ ID}{\Gamma_{15}}$	pest value B $(J/\psi(1S) ightarrow \gamma \eta'(9)$ riment's error and our second NAIK 09. $oldsymbol{\Gamma_{15}}$	958)) error
= $(9.38 \pm 1.79 \pm 0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6})$	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured w $\pi^+\pi^-\eta$) $\frac{CL\%}{90}$	which we divide by our beginning our best value. Which was Γ_{15}/Γ_{1} from Γ_{15}/Γ_{1} from Γ_{15}/Γ_{1} from Γ_{15}/Γ_{1} NAIK 09	pest value B $(J/\psi(1S) ightarrow \gamma \eta'(9) \gamma \eta'(9)$ riment's error and our second NAIK 09.	958)) error 5/Γ 1
$= (9.38\pm1.79\pm0)$ $= (5.13\pm0.17)$ is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ *\frac{1}{2} NAIK 09 reports	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured where $\pi^+\pi^-\eta$ $\frac{c_L\%}{90}$ $\Gamma(\eta'(958) \to 0.89)$	which we divide by our begins their experimental experiments of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK} \qquad 09$ $\Rightarrow \ \pi^{+}\pi^{-}2\pi^{0})/\Gamma(\eta'(9))$	pest value B $(J/\psi(1S) ightarrow \gamma \eta'(9)$ riment's error and our second NAIK 09. $oldsymbol{\Gamma_{15}}$	958)) error 5/Γ 1
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{<6}$ 1 NAIK 09 reports $< 15 \times 10^{-3} \text{ w}$ $\Gamma(2(\pi^{+}\pi^{-}) \text{ neutr})$	$(0.89) \times 10^{-7} \text{ w}$ $(0.89) \times 10^{-7} $	which we divide by our begins our best value. The value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 on $\frac{\pi^{+}\pi^{-}2\pi^{0}}{1\ NAU}$ by our best value E	pest value B $(J/\psi(1S) \rightarrow \gamma \eta')$ (something properties of the properties of the period	958)) error 5/Γ 1
$= (9.38\pm1.79\pm0)$ $= (5.13\pm0.17)$ is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ < 6 ¹ NAIK 09 reports $< 15 \times 10^{-3} \text{ with } 15$	$(0.89) \times 10^{-7} \text{ w}$ $(0.89) \times 10^{-7} $	which we divide by our begins our best value. The value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 oly by our best value E	riment's error and our second NAIK 09.	958)) error 5/Γ ₁ 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ <6 ¹ NAIK 09 reports < 15×10^{-3} where $15\times$	$(0.89) \times 10^{-7} \text{ w}$ $\times 10^{-3}$. Our error from us of measured with $\pi^+\pi^-\eta$) $\frac{CL\%}{90}$ [$\Gamma(\eta'(958) \rightarrow 0)$] hich we multiplied with $\Gamma(\eta')$	which we divide by our begins our best value. The value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 oly by our best value E	riment's error and our second NAIK 09.	958)) error 5/Γ ₁ 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ <6 ¹ NAIK 09 reports < 15×10^{-3} where $15\times$	$(0.89) \times 10^{-7} \text{ w}$ $\times 10^{-3}$. Our error from us of measured with $\pi^+\pi^-\eta$) $\frac{CL\%}{90}$ [$\Gamma(\eta'(958) \rightarrow 0)$] hich we multiplied with $\Gamma(\eta')$	which we divide by our begins our best value. Which we divide by our best value. Which was a substitute of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 of $\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\eta'(9))$ by our best value $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 73	riment's error and our second NAIK 09.	958)) error 5/Γ ₁ 2γ)]
$= (9.38 \pm 1.79 \pm 0)$ $= (5.13 \pm 0.17)$ is the systematic ² Not independent $\Gamma(\pi^{+}\pi^{-}2\pi^{0})/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ $\stackrel{?}{\sim} \text{NAIK } 09 \text{ reports}$ $< 15 \times 10^{-3} \text{ with } 15 \times 10^{-3$	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured where $\pi^+\pi^-\eta$ $\frac{CL\%}{90}$ $\Gamma(\eta'(958) \rightarrow 0.00)$ hich we multiple $\frac{CL\%}{95}$ ethe following 90 $\Gamma(\eta'(958) \rightarrow 0.00)$	which we divide by our begins our best value. The property of	riment's error and our second NAIK 09.	958)) error 5/Γ ₁ 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ *\frac{1}{2} NAIK 09 reports \times 15 \times 10^{-3} with \text{WALUE} \times 0.01 *\frac{1}{2} \text{VALUE} \text{VALUE} \text{VALUE} \text{VO.01} *\frac{1}{2} \text{VE} \text{VO.01} *\frac{1}{2} \text{VE} \text{VO.01}	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured where $\pi^+\pi^-\eta$ $\frac{CL\%}{90}$ $\Gamma(\eta'(958) \rightarrow 0.00)$ hich we multiple $\frac{CL\%}{95}$ ethe following $\frac{CL\%}{90}$ $\frac{CL\%}{100}$	which we divide by our befirst error is their expering our best value. Value of Γ_{15}/Γ_1 from $\frac{DOCUMENT\ ID}{1\ NAIK} \qquad 09 \\ \sim \pi^+\pi^-2\pi^0)/\Gamma(\eta'(9)) $ by our best value EDANBURG 73 (data for averages, fits RITTENBERG 69)	riment's error and our second NAIK 09.	958)) error 5/ Γ 1 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ *\frac{1}{2} NAIK 09 reports \times 15 \times 10^{-3} with \text{WALUE} \times 0.01 *\frac{1}{2} \text{VALUE} \text{VALUE} \text{VALUE} \text{VO.01} *\frac{1}{2} \text{VE} \text{VO.01} *\frac{1}{2} \text{VE} \text{VO.01}	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured where $\pi^+\pi^-\eta$ $\frac{CL\%}{90}$ $\Gamma(\eta'(958) \rightarrow 0.00)$ hich we multiple $\frac{CL\%}{95}$ ethe following $\frac{CL\%}{90}$ $\frac{CL\%}{100}$	which we divide by our befirst error is their expering our best value. Value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK} \qquad 09 \\ \Rightarrow \ \pi^{+}\pi^{-}2\pi^{0})/\Gamma(\eta'(9))$ by our best value Experiment of the property of the prop	riment's error and our second NAIK 09.	958)) error 5/ Γ 1 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ **Ohrows Not independent 10 Not independ	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured with $\pi^+\pi^-\eta$) $\frac{CL\%}{90}$ [$\Gamma(\eta'(958) \rightarrow 0.00)$ hich we multipute $\frac{CL\%}{95}$ e the following $\frac{CL\%}{90}$ total the following $\frac{CL\%}{90}$ the following $\frac{CL\%}{90}$ e the following $\frac{CL\%}{90}$	which we divide by our begins our best value. Which we divide by our best value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 on $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 73 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits	riment's error and our second NAIK 09.	958)) error 5/ Γ 1 2γ)]
= $(9.38\pm1.79\pm0)$ = (5.13 ± 0.17) is the systematic 2 Not independent $\Gamma(\pi^+\pi^-2\pi^0)/\Gamma(\frac{VALUE \text{ (units }10^{-3})}{6}$ **NAIK 09 reports $< 15 \times 10^{-3} \text{ with } 15 \times 10^{-3} \text$	$(0.89) \times 10^{-7}$ w $\times 10^{-3}$. Our error from us of measured with $\pi^+\pi^-\eta$ $\frac{CL\%}{90}$ $\Gamma(\eta'(958) \rightarrow 0.00)$ hich we multiple $\frac{CL\%}{95}$ at the following $\frac{CL\%}{90}$	which we divide by our begins our best value. Which we divide by our best value of Γ_{15}/Γ_{1} from $\frac{DOCUMENT\ ID}{1\ NAIK}$ 09 on $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 73 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits a constant of $\frac{DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits $\frac{1\ DOCUMENT\ ID}{1\ DANBURG}$ 3 data for averages, fits	riment's error and our second NAIK 09.	958)) error 5/Γ ₁ 2γ)] 16/Γ

 $\Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma(\pi^+\pi^-\eta)$ Γ_{17}/Γ_{1} VALUE (units 10^{-3}) <4 ¹ NAIK 09 reports $[\Gamma(\eta'(958) \to 2(\pi^+\pi^-)\pi^0)/\Gamma(\eta'(958) \to \pi^+\pi^-\eta)]/[B(\eta \to 2\gamma)]$ $< 11 \times 10^{-3}$ which we multiply by our best value B($\eta \rightarrow 2\gamma$) = 39.41 \times 10⁻². Γ_{18}/Γ $K^- p \rightarrow \Lambda 2(\pi^+ \pi^-) + MM$ KALBFLEISCH 64B HBC < 0.01 95 • • We do not use the following data for averages, fits, limits, etc. LONDON 66 HBC Compilation $\Gamma(3(\pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{19}/Γ VALUE (units 10^{-5}) 130 BES3 $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$ < 3.1 90 • • • We do not use the following data for averages, fits, limits, etc. • • 09 CLEO $J/\psi \rightarrow \gamma \eta'$ ² NAIK 90 KALBFLEISCH 64B HBC $K^-p \rightarrow \Lambda 2(\pi^+\pi^-)$ 95 < 500 ¹ Using B($J/\psi \rightarrow \gamma \eta'(958)$) = $(5.16 \pm 0.15) \times 10^{-3}$. 2 Not independent of measured value of Γ_{19}/Γ_1 from NAIK 09. $\Gamma(3(\pi^+\pi^-))/\Gamma(\pi^+\pi^-\eta)$ Γ_{19}/Γ_{1} $rac{ extit{DOCUMENT ID}}{1 ext{ NAIK}} rac{ extit{TECN}}{09} rac{ extit{CLEO}}{ extit{CLEO}} rac{ extit{COMMENT}}{J/\psi
ightarrow \gamma \eta'}$ VALUE (units 10^{-3}) CL%<1.2 ¹ NAIK 09 reports $[\Gamma(\eta'(958) \rightarrow 3(\pi^+\pi^-))/\Gamma(\eta'(958) \rightarrow \pi^+\pi^-\eta)]$ / $[B(\eta \rightarrow 2\gamma)]$ $< 3.0 \times 10^{-3}$ which we multiply by our best value B($\eta \rightarrow 2\gamma$) = 39.41 \times 10⁻². $\Gamma(K^{\pm}\pi^{\mp})/\Gamma(\rho^{0}\gamma)$ (including non-resonant $\pi^{+}\pi^{-}\gamma$)) DOCUMENT ID TECN COMMENT 16M BES3 $e^+e^- o J/\psi o \text{hadrons}$ **ABLIKIM** $\Gamma(\pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$ Γ_{21}/Γ VALUE (units 10^{-3}) CL% EVTS DOCUMENT ID TECN COMMENT $2.4 \begin{array}{c} +1.3 \\ -1.0 \end{array}$ OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ ABLIKIM $2.11\pm0.12\pm0.14$ 429 130 BES3 $J/\psi \rightarrow \gamma \eta'$ $2.5 \ ^{+1.2}_{-0.9} \ \pm 0.5$ ² NAIK CLEO $J/\psi \rightarrow \gamma \eta'$ 90 RITTENBERG 65 HBC $2.7 K^{-} p$ ¹Using $\Gamma_2/\Gamma=(29.3\pm0.6)\%$ from PDG 12. ² Not independent of measured value of Γ_{21}/Γ_1 from NAIK 09.

$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma($	•					Γ_{21}/Γ_{1}
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
5.5 $^{+3.0}_{-2.2}$ OUR FIT						
$5.52^{+3.00}_{-2.30}\pm0.03$	8	¹ NAIK	09	CLEO	$J/\psi \rightarrow \gamma \eta'$	
¹ NAIK 09 reports [I						
$[2\gamma)] = (14^{+7}_{-5} \pm 1)$	$3) \times 10^{-3}$	which we multip	ply by	our be	st value B $(\eta$ $-$	\rightarrow 2 γ) =
$(39.41\pm0.20) imes10$ is the systematic er	0^{-2} . Our f ror from usi	irst error is their ng our best value	experi e.	ment's e	error and our se	cond error
$\Gamma(\pi^+\pi^-e^+e^-)/\Gamma($	$ ho^0\gamma$ (inclu	ding non-reson	ant π	·+ π ⁻ γ	())	Γ_{21}/Γ_2
VALUE (units 10^{-3})					- /	, _
7.2±0.4±0.5		ABLIKIM				
$\Gamma(\pi^+e^-\nu_e+\text{c.c.})/$	$\Gamma(\pi^+\pi^-\eta$	a)				Γ_{22}/Γ_1
VALUE (units 10^{-4})	•	DOCUMENT ID		TECN	COMMENT	
<5.0		ABLIKIM	13 G	BES3	$J/\psi ightarrow \phi \eta'$	
$\Gamma(\gamma e^+ e^-)/\Gamma_{ m total}$						Γ ₂₃ /Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	ne following	data for average	s, fits,	limits, e	etc. • • •	
< 0.9	90	BRIERE	00	CLEO	$10.6 e^+e^-$	
$\Gamma(\gamma e^+ e^-)/\Gamma(\gamma \gamma)$						Γ_{23}/Γ_{6}
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.13\pm0.09\pm0.07$	864	ABLIKIM	150	BES3	$J/\psi \rightarrow \gamma e^+$	e [—]
$\Gamma(\pi^0\gamma\gamma)/\Gamma(\pi^0\pi^0\eta)$)					Γ_{24}/Γ_3
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<37	90	ALDE	87 B	GAM2	$38 \pi^- p \rightarrow n$	4 γ
$\Gamma(4\pi^0)/\Gamma_{ m total}$						Γ_{25}/Γ
VALUE	<u>CL%</u>	DOCUMENT ID			<u> </u>	
$<3.2\times10^{-4}$	90	DONSKOV	14	GAM4	32.5 $\pi^- p \rightarrow$	η' n
$\Gamma(4\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ_{25}/Γ_3
$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the	ne following	data for average	s, fits,	limits, e	etc. • • •	
<23	90	ALDE	87 B	GAM2	$38 \pi^- p \rightarrow n$	8γ
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$	5.04					Γ ₂₆ /Γ
< 5.6 × 10 ⁻⁹		ACHASOV 1				
• • • We do not use the						$\pi\pi\eta$
$< 12 \times 10^{-9}$		AKHMETSHIN 1				$\pi^+\pi^-n$
$< 2.1 \times 10^{-7}$		VOROBYEV 8				
HTTP://PDG.LBL.	GOV	Page 13		Creat	ed: 5/30/203	17 17:20

$\Gamma(\pi^0\pi^0)/\Gamma_{\text{total}}$ VALUE CL% ODOCUMENT ID ODocument

 $^{^1}$ Combining data of ACHASOV 15 and AKHMETSHIN 15 and using $\Gamma(\eta')=0.198\pm0.009$ ² Using $\Gamma_{\eta'(958)} = 198 \pm 9$ keV, $B(\eta'(958) \rightarrow \pi^{+}\pi^{-}\eta) = (42.9 \pm 0.7)\%$, and $B(\eta \rightarrow 0.7)$ $\gamma \gamma$) = (39.41 ± 0.20)%. $\Gamma(\text{invisible})/\Gamma_{\text{total}}$ Γ_{27}/Γ VALUE (units 10^{-4}) CL% TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ NAIK CLEO $J/\psi \rightarrow \gamma \eta'$ 90 09 < 9.5 ¹ Not independent of measured value of Γ_{27}/Γ_1 from NAIK 09. $\Gamma(\text{invisible})/\Gamma(\gamma\gamma)$ Γ_{27}/Γ_{6} VALUE (units 10^{-2}) <2.4 90 13 BES3 **ABLIKIM** • • • We do not use the following data for averages, fits, limits, etc. • • • **ABLIKIM** 06Q BES $J/\psi \rightarrow \phi \eta'$ $\Gamma(\text{invisible})/\Gamma(\pi^+\pi^-\eta)$ Γ_{27}/Γ_1 *VALUE* (units 10^{-3}) CL% DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • ¹ NAIK < 2.1 09 CLEO $J/\psi \rightarrow \gamma \eta'$ ¹ NAIK 09 reports $[\Gamma(\eta'(958) \rightarrow \text{invisible})/\Gamma(\eta'(958) \rightarrow \pi^+\pi^-\eta)]$ / $[B(\eta \rightarrow 2\gamma)]$ $< 5.4 \times 10^{-3}$ which we multiply by our best value B($\eta \rightarrow 2\gamma$) = 39.41 \times 10⁻². $\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) < 0.18 90 • • • We do not use the following data for averages, fits, limits, etc. • • 90 ² ABLIKIM 11G BES3 $J/\psi \rightarrow \gamma \pi^+ \pi^-$ < 0.6 07A BELL $\gamma \gamma \rightarrow \pi^+ \pi$ ³ MORI < 29 90 4 MORI 07A BELL $\gamma \gamma \rightarrow \pi^+ \pi$ < 3.3 90 $2.2 K^{-} p \rightarrow \Lambda X^{0}$ HBC 95 73 <800 **DANBURG** <200 90 RITTENBERG 69 HBC $1.7-2.7~K^{-}$ p ¹ Using branching fractions of $D_{(s)}^+$ decays from PDG 15. ² ABLIKIM 11G reports $[\Gamma(\eta'(958) \rightarrow \pi^+\pi^-)/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \gamma\eta'(958))] <$ 2.84×10^{-7} which we divide by our best value B $(J/\psi(1S) \rightarrow \gamma \eta'(958)) = 5.13 \times 10^{-3}$. ³ Taking into account interference with the $\gamma\gamma \to \pi^+\pi^-$ continuum. ⁴ Without interference with the $\gamma\gamma \to \pi^+\pi^-$ continuum. Γ_{29}/Γ

¹ ABLIKIM 11G reports $[\Gamma(\eta'(958) \to \pi^+\pi^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to \gamma\eta'(958))] < 2.84 \times 10^{-7}$ which we divide by our best value $B(J/\psi(1S) \to \gamma\eta'(958)) = 5.13 \times 10^{-3}$.

$\Gamma(\pi^0\pi^0)/\Gamma(\pi^0\pi^0\eta)$						Γ_{29}/Γ_3
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<45	90	ALDE	87 B	GAM2	38 $\pi^- p \rightarrow$	n 4 γ
$\Gamma(\pi^0 e^+ e^-)/\Gamma_{ m total}$						Γ ₃₀ /Γ
<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT	
< 1.4	90	BRIERE	00	CLEO	$10.6 e^+e^-$	
• • • We do not use the	following d	ata for averages	, fits,	limits, e	etc. • • •	
<13	90	RITTENBERG	65	HBC	2.7 K ⁻ p	
$\Gamma(\eta e^+ e^-)/\Gamma_{ m total}$						Γ ₃₁ /Γ
VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
< 2.4	90	BRIERE	00	CLEO		
• • • We do not use the	following d	ata for averages	, fits,	limits, e	etc. • • •	
<11	90	RITTENBERG	65	HBC	2.7 K ⁻ p	
$\Gamma(3\gamma)/\Gamma(\pi^0\pi^0\eta)$						Γ_{32}/Γ_3
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT	
<4.6	90	ALDE	87 B	GAM2	38 $\pi^- p \rightarrow$	$n3\gamma$
$\Gamma(\mu^+\mu^-\pi^0)/\Gamma_{ m total}$						Γ ₃₃ /Γ
<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
<6.0	90	DZHELYADIN	81	CNTR	30 $\pi^- p \rightarrow$	η' n
$\Gamma(\mu^+\mu^-\eta)/\Gamma_{ m total}$						Γ ₃₄ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.5	90	DZHELYADIN	81	CNTR	30 $\pi^- p \rightarrow$	η' n
$\Gamma(e\mu)/\Gamma_{ m total}$						Γ ₃₅ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<4.7	90	BRIERE	00	CLEO	10.6 e ⁺ e ⁻	

η^{\prime} (958) $ightarrow~\eta\pi\pi$ DECAY PARAMETERS

$|\mathsf{MATRIX}\;\mathsf{ELEMENT}|^2 = |1 + \alpha Y|^2 + \mathit{CX} + \mathit{DX}^2$

X and Y are Dalitz variables; α is complex and C, and D are real-valued. Parameters C and D are not necessarily equal to c and d, respectively, in the generalized parameterization following this one. May be different for $\eta'(958) \to \eta \pi^+ \pi^-$ and $\eta'(958) \to \eta \pi^0 \pi^0$ decays. Because of different initial assumptions and strong correlations of the parameters we do not average the parameters in the section below.

$Re(\alpha)$ decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e followi	ng data for averages	, fits,	limits, e	etc. • • •
$-0.033\!\pm\!0.005\!\pm\!0.003$	44k	¹ ABLIKIM	11	BES3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$-0.072\!\pm\!0.012\!\pm\!0.006$	7k	² AMELIN	05A	VES	$28 \begin{array}{c} \pi^- A \rightarrow \\ \eta \pi^+ \pi^- \pi^- A^* \end{array}$
$-0.021\pm0.018\pm0.017$	6.7k	³ BRIERE	00	CLEO	$10.6 e^+e^- \rightarrow n\pi^+\pi^- X$
$-0.058\!\pm\!0.013\!\pm\!0.003$	5.4k	⁴ ALDE	86		$38 \pi^- p \rightarrow n \eta \pi^0 \pi^0$
-0.08 ± 0.03		^{4,5} KALBFLEISCH	l 74	RVUE	$\eta' \rightarrow \eta \pi^+ \pi^-$

 $^{1}\,\mathrm{See}$ ABLIKIM 11 for the full correlation matrix. $^{2}\,\mathrm{Superseded}$ by DOROFEEV 07, which found this parameterization unacceptable. See

 3 Assuming Im(α) = 0, C = 0, and D = 0.

⁴ Assuming C = 0.

⁵ From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.

$Im(\alpha)$ decay parameter

VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
• • • We do not use the	e followi	ng data for averages,	fits, limits,	etc. • • •
$0.000\pm0.049\pm0.001$	44k	¹ ABLIKIM	11 BES3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$0.0\pm0.1\pm0.0$	7k	² AMELIN (OSA VES	28 $\pi^- A \rightarrow$
$-0.00 \pm 0.13 \pm 0.00$ 0.0 ± 0.3	5.4k	³ ALDE 8		$28 \pi^{-} A \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} A^{*}$ $2 38 \pi^{-} p \rightarrow n \eta \pi^{0} \pi^{0}$ $\exists \eta' \rightarrow \eta \pi^{+} \pi^{-}$

 $^1\!\:\text{See}$ ABLIKIM 11 for the full correlation matrix. $^2\!\:\text{Superseded}$ by DOROFEEV 07, which found this parameterization unacceptable. See below. Assuming C = 0.

⁴ From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.

C decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>
• • • We do not use th	e following	data for averages	s, fits,	limits,	etc. • • •
$+0.018\pm0.009\pm0.003$	44k	¹ ABLIKIM	11	BES3	$J/\psi ightarrow \gamma \eta \pi^+ \pi^-$
$0.020\!\pm\!0.018\!\pm\!0.004$	7k	² AMELIN	05A	VES	$28 \pi^- A \rightarrow$
					$n\pi^{+}\pi^{-}\pi^{-}A^{*}$

 $^1\,\text{See}$ ABLIKIM 11 for the full correlation matrix. $^2\,\text{Superseded}$ by DOROFEEV 07, which found this parameterization unacceptable. See below.

D decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e followi	ng data for averages	, fits,	limits, e	etc. • • •
$-0.059\!\pm\!0.012\!\pm\!0.004$	44k	¹ ABLIKIM	11	BES3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$-0.066 \pm 0.030 \pm 0.015$	7k	² AMELIN	05A	VES	28 $\pi^- A \rightarrow$
$0.00 \pm 0.03 \pm 0.00$	5.4k	³ ALDE ^{3,4} KALBFLEISCH			$28 \pi^{-} A \rightarrow \eta \pi^{+} \pi^{-} \pi^{-} A^{*}$ $38 \pi^{-} p \rightarrow n \eta \pi^{0} \pi^{0}$ $\eta' \rightarrow \eta \pi^{+} \pi^{-}$

HTTP://PDG.LBL.GOV Page 16

$\eta'(958) \rightarrow \eta \pi \pi$ DECAY PARAMETERS

$|\mathsf{MATRIX} \; \mathsf{ELEMENT}|^2 \propto 1 + a \; Y + b \; Y^2 + c \; X + d \; X^2$

X and Y are Dalitz variables and a, b, c, and d are real-valued parameters. May be different for $\eta'(958) \rightarrow \eta \pi^+ \pi^-$ and $\eta'(958) \rightarrow \eta \pi^0 \pi^0$ decays. We do not average measurements in the section below because parameter values from each experiment are strongly correlated.

a decay parameter

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	the followin	g data for average	s, fits	limits, e	etc. • • •
$-0.047\pm0.011\pm0.003$	3 44k	$^{ m 1}$ ABLIKIM			$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$-0.066\pm0.016\pm0.003$	3 15k	² BLIK			$32.5 \pi^- p \rightarrow \eta' n$
$-0.127\pm0.016\pm0.008$	3 20k	³ DOROFEEV	07	VES	$27 \pi^- p \rightarrow \eta' n,$
					$\pi^- A \rightarrow \eta' \pi^- A^*$
¹ See ABLIKIM 11 f ² From $n' \rightarrow n\pi^0 \pi$	or the full o	correlation matrix.			

b decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	g data for average	s, fits,	, limits, e	etc. • • •
$-0.069\!\pm\!0.019\!\pm\!0.009$	44k	¹ ABLIKIM	11	BES3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$-0.063\!\pm\!0.028\!\pm\!0.004$	15k	² BLIK			$32.5 \pi^- p \rightarrow \eta' n$
$-0.106 \pm 0.028 \pm 0.014$	20k	³ DOROFEEV	07	VES	$27 \pi^- p \rightarrow \eta' n,$
					$\pi^- A \rightarrow \eta' \pi^- A^*$

 $^{^1}_2\, {\rm See}$ ABLIKIM 11 for the full correlation matrix. $^2_2\, {\rm From}~\eta' \rightarrow~\eta\,\pi^0\,\pi^0$ decay. $^3_3\, {\rm From}~\eta' \rightarrow~\eta\,\pi^+\,\pi^-$ decay.

c decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e followin	g data for average	s, fits,	limits, e	etc. • • •
$+0.019\pm0.011\pm0.003$	44k	¹ ABLIKIM	11	BES3	$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$-0.107\!\pm\!0.096\!\pm\!0.003$	15k	² BLIK	09	GAM4	$32.5 \pi^- p \rightarrow \eta' n$
$0.015 \pm 0.011 \pm 0.014$	20k	³ DOROFEEV	07	VES	$27 \pi^- p \rightarrow \eta' n,$
					$\pi^- A \rightarrow \eta' \pi^- A^*$

 $^{^1}$ See ABLIKIM 11 for the full correlation matrix. 2 From $\eta' \to ~\eta \, \pi^0 \, \pi^0$ decay. 3 From $\eta' \to ~\eta \, \pi^+ \, \pi^-$ decay.

See ABLIKIM 11 for the full correlation matrix.

 $^{^2}$ Superseded by DOROFEEV 07, which found this parameterization unacceptable. See

³ Assuming C = 0.

 $^{^4}$ From the data of DAUBER 64, RITTENBERG 69, AGUILAR-BENITEZ 72B, JA-COBS 73, and DANBURG 73.

² From $\eta' \rightarrow \eta \pi^{\mathsf{U}} \pi^{\mathsf{U}}$ decay. ³ From $\eta' \rightarrow \eta \pi^{+} \pi^{-}$ decay.

d decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use th	e following	data for average	s, fits,	limits, e	etc. • • •
$-0.073\!\pm\!0.012\!\pm\!0.003$	44k	¹ ABLIKIM			$J/\psi \rightarrow \gamma \eta \pi^+ \pi^-$
$0.018\!\pm\!0.078\!\pm\!0.006$	15k	² BLIK			$32.5 \pi^- p \rightarrow \eta' n$
$-0.082\!\pm\!0.017\!\pm\!0.008$	20k	³ DOROFEEV	07	VES	$27 \pi^- p \rightarrow \eta' n,$
					$\pi^- A \rightarrow \eta' \pi^- A^*$
1 See ABLIKIM 11 for 2 From $\eta' \rightarrow \eta \pi^0 \pi^0$ 0.020 \pm 0.003. 3 From $\eta' \rightarrow \eta \pi^+ \pi^-$		orrelation matrix. f $c~\equiv~0$ from B	ose-E	instein s	ymmetry, $d=-0.067~\pm$

$\eta'(958) \beta$ PARAMETER $|\mathsf{MATRIX} \ \mathsf{ELEMENT}|^2 = (1 + 2\beta Z)$

See the "Note on η Decay Parameters" in our 1994 edition Physical Review **D50** 1173 (1994), p. 1454.

β decay parameter

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.61 ± 0.08 OUR AV	/ERAGE	Error includes so	ale fac	tor of 1.	2.
$-0.640\!\pm\!0.046\!\pm\!0.047$	1.8k	ABLIKIM	15 G	BES3	$J/\psi \rightarrow \gamma (\pi^0 \pi^0 \pi^0)$
-0.59 ± 0.18	235	BLIK			$32 \pi^- p \rightarrow \eta' n$
-0.1 ± 0.3		ALDE	87 B	GAM2	$38 \pi^- p \rightarrow n3\pi^0$

η' (958) C-NONCONSERVING DECAY PARAMETER

See the note on η decay parameters in the Stable Particle Particle Listings for definition of this parameter.

DECAY ASYMMETRY PARAMETER FOR $\pi^+\pi^-\gamma$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.03 ± 0.04	OUR AVERAGE				
$-0.019\!\pm\!0.056$		AIHARA	87	TPC	$2\gamma \rightarrow \pi^+\pi^-\gamma$
$-0.069\!\pm\!0.078$	295	GRIGORIAN	75	STRC	$2.1 \; \pi^- p$
0.00 ± 0.10	103	KALBFLEISCH	H 75	HBC	$2.18 K^- p \rightarrow \Lambda \pi^+ \pi^- \gamma$
• • • We do no	ot use the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
$0.07\ \pm0.08$	152	RITTENBERG	65	HBC	2.1–2.7 K ⁻ p

$\eta'(958) o ext{ } \gamma \ell^+ \ell^- ext{ TRANSITION FORM FACTOR SLOPE}$

Related to the effective virtual meson mass Λ , via slope $\approx \Lambda^{-2}$. See e.g. LANDS-BERG 85, eq. (3.8), for a detailed definition.

, i (,,			
$VALUE$ (GeV $^{-2}$)	EVTS	DOCUMENT ID	TECN	COMMENT
1.62±0.17 OUR AVE				
$1.60\!\pm\!0.17\!\pm\!0.08$	864	$^{ m 1}$ ABLIKIM	150 BES3	$J/\psi ightarrow \gamma e^+ e^-$
1.7 ± 0.4	33	$^{ m 1}$ VIKTOROV	80	$25,33 \pi^- p \rightarrow 2\mu\gamma$

¹ In the single-pole Ansatz where slope = $1/(\Lambda^2 + \gamma^2)$ with Λ , γ being a Breit-Wigner mass, width for the effective contributing vector meson.

$\eta'(958)$ REFERENCES

AAIJ	17D	PL B764 233	R. Aaij <i>et al.</i>	(LHCb Collab.)
				. `
ABLIKIM	17	PRL 118 012001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	16M	PR D93 072008	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	15AD	PR D92 051101	M. Ablikim et al.	(BES III Collab.)
ABLIKIM	15G	PR D92 012014	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	150	PR D92 012001	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	15P	PR D92 012007	M. Ablikim <i>et al.</i>	(BES III Collab.)
	-			` ;
ACHASOV	15	PR D91 092010	M.N. Achasov et al.	(SND Collab.)
AKHMETSHIN	15	PL B740 273	R.R. Akhmetshin et al.	(CMD-3 Collab.)
PDG	15	RPP 2015 at pdg.lbl.gov		` (PDG Collab.)
-	-		NA ALITE	
ABLIKIM	14M	PRL 112 251801	M. Ablikim <i>et al.</i>	(BES III Collab.)
DONSKOV	14	MPL A29 1450213	S. Donskov <i>et al.</i>	(GAMS-4 π Collab.)
PDG	14	CP C38 070001	K. Olive et al.	` (PDG Collab.)
-			M. Ablikim <i>et al.</i>	
ABLIKIM	13	PR D87 012009		(BES III Collab.)
ABLIKIM	13G	PR D87 032006	M. Ablikim <i>et al.</i>	(BES III Collab.)
ABLIKIM	130	PR D87 092011	M. Ablikim et al.	(BES III Collab.)
			M. Ablikim <i>et al.</i>	` · · · · · · · · · · · · · · · · · · ·
ABLIKIM	13U	PR D88 091502		(BES III Collab.)
ABLIKIM	12E	PRL 108 182001	M. Ablikim <i>et al.</i>	(BES III Collab.)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
	11		M. Ablikim <i>et al.</i>	. `
ABLIKIM		PR D83 012003		(BES III Collab.)
ABLIKIM	11G	PR D84 032006	M. Ablikim <i>et al.</i>	(BES III Collab.)
CZERWINSKI	10	PRL 105 122001	E. Czerwinski et al.	(COSY-11 Collab.)
	-			
BLIK	09	PAN 72 231	A.M. Blik <i>et al.</i>	(IHEP (Protvino))
		Translated from YAF 72	258.	
NAIK	09	PRL 102 061801	P. Naik <i>et al.</i>	(CLEO Collab.)
PEDLAR	09	PR D79 111101	T.K. Pedlar et al.	(CLEO Collab.)
BLIK	80	PAN 71 2124	A. Blik et al.	(GAMS-4 π Collab.)
		Translated from YAF 71	2161.	
LIBBY	80	PRL 101 182002	J. Libby <i>et al.</i>	(CLEO Collab.)
WICHT	08	PL B662 323	J. Wicht et al.	(BELLE Collab.)
				,
DOROFEEV	07	PL B651 22	V. Dorofeev <i>et al.</i>	(VES Collab.)
MORI	07A	JPSJ 76 074102	T. Mori et al.	(BELLE Collab.)
ABLIKIM	06E	PR D73 052008	M. Ablikim et al.	(BES Collab.)
				``````````````````````````````````````
ABLIKIM	06Q	PRL 97 202002	M. Ablikim <i>et al.</i>	(BES Collab.)
AMELIN	05A	PAN 68 372	D.V. Amelin et al.	(VES Collab.)
		Translated from YAF 68	401.	,
AMSLER	04B	EPJ C33 23	C. Amsler <i>et al.</i>	(Crystal Barrel Collab.)
BAI	04J	PL B594 47	J.Z. Bai <i>et al.</i>	(BES Collab.)
BRIERE	00	PRL 84 26	R. Briere et al.	(CLEO Collab.)
ACCIARRI	98Q	PL B418 399	M. Acciarri et al.	` (L3 Collab.)
	•			
BARBERIS	98C	PL B440 225	D. Barberis et al.	(WA 102 Collab.)
WURZINGER	96	PL B374 283	R. Wurzinger et al.	(BONN, ORSAY, SACL+)
PDG	94	PR D50 1173	L. Montanet et al.	(CERN, LBL, BOST+)
-	-			1 - (
AMSLER	93	ZPHY C58 175	C. Amsler et al.	(Crystal Barrel Collab.)
BELADIDZE	92C	SJNP 55 1535	G.M. Beladidze, S.I. Bityuk	(SERP+)
		Translated from YAF 55		,
KARCH	92	ZPHY C54 33	K. Karch <i>et al.</i>	(Crystal Ball Collab.)
ARMSTRONG	91B	ZPHY C52 389	T.A. Armstrong et al.	(ATHU, BARI, BIRM+)
BEHREND	91	ZPHY C49 401	H.J. Behrend et al.	(CELLO Collab.)
AUGUSTIN	90	PR D42 10	J.E. Augustin et al.	(DM2 Collab.)
	1.1		_	.`
BARU	90	ZPHY C48 581	S.E. Baru <i>et al.</i>	(MD-1 Collab.)
BUTLER	90	PR D42 1368	F. Butler <i>et al.</i>	(Mark II Collab.)
KARCH	90	PL B249 353	K. Karch et al.	(Crystal Ball Collab.)
ROE	90	PR D41 17	N.A. Roe <i>et al.</i>	(ASP Collab.)
AIHARA	88C	PR D38 1	H. Aihara <i>et al.</i>	(TPC-2 $\gamma$ Collab.)
VOROBYEV	88	SJNP 48 273	P.V. Vorobiev et al.	` (NOVO)
VORODILV	00			(11010)
14/11 1 1 4 4 4 6		Translated from YAF 48		(6
WILLIAMS	88	PR D38 1365	D.A. Williams <i>et al.</i>	(Crystal Ball Collab.)
AIHARA	87	PR D35 2650	H. Aihara <i>et al.</i>	(TPC-2 $\gamma$ Collab.) JP
ALBRECHT	87B	PL B199 457	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALDE	87B	ZPHY C36 603	D.M. Alde <i>et al.</i>	(LANL, BELG, SERP, LAPP)
ANTREASYAN	87	PR D36 2633	D. Antreasyan et al.	(Crystal Ball Collab.)
GIDAL	87	PRL 59 2012	G. Gidal <i>et al.</i>	(LBL, SLAC, HARV)
ALDE	86	PL B177 115	D.M. Alde <i>et al.</i>	(SERP, BELG, LANL, LAPP)
BARTEL	85E	PL 160B 421	W. Bartel <i>et al.</i>	(JADE Collab.)
LANDSBERG	85	PRPL 128 301	L.G. Landsberg	(SERP)
			<u> </u>	
ALTHOFF	84E	PL 147B 487	M. Althoff et al.	(TASSO Collab.)
BERGER	84B	PL 142B 125	C. Berger	(PLUTO Collab.)
BINON	84	PL 140B 264	F.G. Binon et al.	(SERP, BELG, LAPP+)
				(,,,

JENNI BARTEL BEHREND Also DZHELYADIN	83 82B 82C	PR D27 1031 PL 113B 190 PL 114B 378 PL 125B 518 (erratum) PL 105B 239		(SLAC, LBL) (JADE Collab.) (CELLO Collab.) (CELLO COllab.)
	81		R.I. Dzhelyadin <i>et al.</i>	(SERP)
STANTON VIKTOROV	80 80	PL B92 353 SJNP 32 520	N.R. Stanton <i>et al.</i> V.A. Viktorov <i>et al.</i>	(OSU, CARL, MCGI+)
VIKTOROV	80	Translated from YAF 32		(SERP)
APEL	79	PL 83B 131	W.D. Apel, K.H. Augenstein,	E. Bertolucci (KARLK+)
BINNIE	79	PL 83B 141	D.M. Binnie et al.	(LOIC)
ZANFINO	77	PRL 38 930	C. Zanfino et al.	(CARL, MCGI, OHIO+)
GRIGORIAN	75	NP B91 232	A. Grigorian et al.	(+)
KALBFLEISCH	75	PR D11 987	G.R. Kalbfleisch, R.C. Strand,	
DUANE	74	PRL 32 425	A. Duane et al.	(LOIC, SHMP)
KALBFLEISCH	74	PR D10 916	G.R. Kalbfleisch	(BNL)
DANBURG	73	PR D8 3744	J.S. Danburg et al.	(BNL, MICH) JP
JACOBS	73	PR D8 18	S.M. Jacobs et al.	(BRAN, UMD, SYRA+) JP
AGUILAR	72B	PR D6 29	M. Aguilar-Benitez et al.	(BNL)
APEL	72	PL 40B 680	W.D. Apel <i>et al.</i>	(KARLK, KARLE, PISA)
DALPIAZ	72	PL 42B 377	P.F. Dalpiaz <i>et al.</i>	(CERN)
BASILE	71	NC 3A 371	M. Basile <i>et al.</i>	(CERN, BGNA, STRB)
HARVEY	71	PRL 27 885	E.H. Harvey et al.	(MINN, MICH)
BENSINGER	70	PL 33B 505	J.R. Bensinger <i>et al.</i>	(WISC)
RITTENBERG	69	Thesis UCRL 18863	A. Rittenberg	(LRL) I
DAVIS	68	PL 27B 532	R. Davis <i>et al.</i>	(NWES, ANL)
LONDON	66	PR 143 1034	G.W. London et al.	(BNL, SYRA) IJP
BADIER	65B	PL 17 337	J. Badier <i>et al.</i>	(EPOL, SACL, AMST)
RITTENBERG	65	PRL 15 556	A. Rittenberg, G.R. Kalbfleisch	( ' '
DAUBER	64	PRL 13 449	P.M. Dauber <i>et al.</i>	(UCLA) JP
KALBFLEISCH	64B	PRL 13 349	G.R. Kalbfleisch, O.I. Dahl, A.	Rittenberg (LRL) JP