

National Bureau of Standards
Library, N. W. Bldg.

Oct 26 1949

Reference book not to be
taken from the Library.

IONOSPHERIC DATA

ISSUED
OCTOBER 1949

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

	Page
Symbols and Terminology; Conventions for Determining Median Values	2
Monthly Average and Median Values of World-Wide Ionospheric Data	4
Ionospheric Data for Every Day and Hour at Washington, D. C.	6
Ionosphere Disturbances	7
American and Zürich Provisional Relative Sunspot Numbers	8
Solar Coronal Intensities Observed at Climax, Colorado .	9
Special Announcement (radio propagation notices broad- cast on WWW)	9
Tables of Ionospheric Data	10
Graphs of Ionospheric Data	42
Index of Tables and Graphs of Ionospheric Data in CRPL-F62	68

SYMBOLS AND TERMINOLOGY; CONVENTIONS FOR DETERMINING MEDIAN VALUES

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendices 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For f_{oF2} , as equal to or less than f_{oF1} .
2. For $h'F2$, as equal to or greater than the median.

Values missing because of W are counted:

1. For f_{oF2} , as equal to or less than the median when it is apparent that $h'F2$ is unusually high; otherwise, values missing because of W are omitted from the median count.
2. For $h'F2$, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of f_{Es} missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median f_{oE} , or equal to or less than the lower frequency count of the recorder.

Values of f_{Es} missing for any other reason, and values of $h'Es$ missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

1. If only four values or less are available, the data are considered insufficient and no median value is computed.

2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.

3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

MONTHLY AVERAGE AND MEDIAN VALUES OF WORLD - WIDE IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 51 and figures 1 to 102 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Department of Supply and Shipping,
Bureau of Mineral Resources, Geology and Geophysics:
Watheroo, W. Australia

British Department of Scientific and Industrial Research,
Radio Research Board:
Lindau/Harz, Germany

Radio Wave Research Laboratory, Central Broadcasting Administration:
Chungking, China
Lanchow, China

All India Radio (Government of India), New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchirapalli, India

Indian Council of Scientific and Industrial Research,
Radio Research Committee:
Calcutta, India

Electrical Communications Laboratory, Ministry of Communications:
Fukaura, Japan
Shibata, Japan
Tokyo, Japan
Wakkanai, Japan
Yamakawa, Japan

New Zealand Department of Scientific and Industrial Research:
Christchurch, New Zealand

Norwegian Defense Research Establishment, Kjeller per Lillestrom, Norway:
Oslo, Norway

South African Council for Scientific and Industrial Research:
Capetown, Union of S. Africa
Johannesburg, Union of S. Africa

National Bureau of Standards (Central Radio Propagation Laboratory):
Baton Rouge, Louisiana (Louisiana State University)
Boston, Massachusetts (Harvard University)
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Palmyra I.
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when f_{oF2} is less than or equal to f_{oF1} , leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily a blank space in the f_{Es} column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of f_{oE} . Blank spaces at the beginning and end of columns of $h'F_1$, f_{oF1} , $h'E$, and f_{oE} are usually the result of diurnal variation in these characteristics. Complete absence of medians of $h'F_1$ and f_{oF1} is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.
- c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zürich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot No.				
	1949	1948	1947	1946	1945
December		114	126	85	38
November		115	124	83	36
October		116	119	81	23
September	115	117	121	79	22
August	111	123	122	77	20
July	108	125	116	73	
June	108	129	112	67	
May	108	130	109	67	
April	109	133	107	62	
March	111	133	105	51	
February	113	133	90	46	
January	112	130	88	42	

IONOSPHERIC DATA FOR EVERY DAY AND HOUR AT WASHINGTON, D. C.

The data given in tables 52 to 63 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols and Terminology; Conventions for Determining Median Values." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

IONOSPHERE DISTURBANCES

Table 64 presents ionosphere character figures for Washington, D. C., during September 1949, as determined by the criteria presented in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Table 65 lists for the stations whose locations are given the sudden ionosphere disturbances observed on the continuous field intensity recordings made at the Sterling Radio Propagation Laboratory during September 1949.

Table 66 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Brentwood and Somerton, England, receiving stations of Cable and Wireless, Ltd., for various days in August and September 1949.

Table 67 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Platanos, Argentina, receiving station of the International Telephone and Telegraph Corporation for August 3, 1949.

Table 68 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Point Reyes, California, receiving station of RCA Communications, Inc., for several days in September and for October 2, 1949.

Table 69 lists for the stations whose locations are given the sudden ionosphere disturbances observed at the Riverhead, New York, receiving station of RCA Communications, Inc., for various days in September and October 1949.

Table 70 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, August 1949, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause, conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible, frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all the disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

AMERICAN AND ZÜRICH PROVISIONAL RELATIVE SUNSPOT NUMBERS

Table 71 presents the daily American relative sunspot number, R_A , computed from observations communicated to CRPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zürich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations." The American relative sunspot number computed in this way is designated R_A . It is noted that a number of observatories abroad, including the Zürich observatory, are included in R_A . The scale of R_A was referred specifically to that of the Zürich relative sunspot numbers in the standard comparison period; since that time, R_A is influenced by the Zürich observations only in that Zürich proves to be a consistent observer and receives a high statistical weight. In addition, this table lists the daily provisional Zürich sunspot numbers, R_Z .

SOLAR CORONAL INTENSITIES OBSERVED AT CLIMAX, COLORADO

In tables 72a and 72b are listed the intensities of the green (5303A) line of the emission spectrum of the solar corona as observed during September 1949 by the High Altitude Observatory of Harvard University and the University of Colorado at Climax, Colorado, for east and west limbs, respectively, at 5-degree intervals of position angle north and south of the solar equator at the limb. Beginning January 11, 1949, the actual measurements are on solar rotation coordinates rather than astronomical coordinates; thus values of the correction P given in previous coronal tables are omitted. The time of observation is given to the nearest tenth of a day, GCT. The tables of coronal observations in CRPL-F29 to F41 listed the data on astronomical coordinates; the present format on solar rotation coordinates is in conformity with the tables of CRPL-1-4, "Observations of the Solar Corona at Climax, 1944-46."

Tables 73a and 73b give similarly the intensities of the first red (6374A) coronal line; tables 74a and 74b list the intensities of the second red (6704A) coronal line. The following symbols are used in tables 72, 73, and 74: a, observation of low weight; -, corona not visible; and x, position angle not included in plate estimates.

SPECIAL ANNOUNCEMENT

Effective November 1, 1949, the detail of the radio propagation disturbance notices, broadcast on the National Bureau of Standards Radio Station WWV, will be extended by the addition of a third category. Heretofore, two grades of propagation conditions have been recognized in the notices given at nineteen and forty-nine minutes past each hour. The letter "N" (in International Morse Code) repeated eight times has signified normal conditions, while the letter "W" has constituted a warning that disturbed conditions were present or expected within 12 hours. The third category, denoted by the letter "U", is being added to describe unstable conditions -- satisfactory performance for services employing high-power transmitting equipment operating on the recommended frequency, but poor reception on less well-equiped services. The propagation disturbance notices primarily refer to North Atlantic radio circuits. Details are included in NBS Letter Circular LC 886, available upon request.

TABLES OF IONOSPHERIC DATA

Table 1

Washington, D. C. (38.7°N, 77.1°W)								September 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	280	6.4						2.6	
01	280	6.1						2.6	
02	280	5.8						2.6	
03	280	5.4						2.6	
04	270	5.2						2.6	
05	280	4.9						2.6	
06	270	5.8	120	1.9				2.9	
07	240	7.8	---	---	110	2.5		3.1	
08	230	8.8	230	---	110	3.0	2.2	3.0	
09	260	9.5	220	5.0	110	3.4		3.0	
10	270	9.8	210	(5.2)	110	3.6		2.9	
11	280	10.0	210	(5.1)	110	3.8		2.8	
12	300	10.1	210	(5.5)	110	3.8		2.8	
13	310	10.1	215	(5.4)	110	3.8		2.7	
14	300	10.3	220	(5.5)	110	3.7		2.8	
15	280	10.2	230	---	110	3.5		2.8	
16	240	10.1	230	---	110	3.2		2.8	
17	240	9.8	---	---	110	2.7		2.8	
18	240	9.6			120	2.0		2.8	
19	230	(9.1)					(2.8)		
20	240	8.0					2.7		
21	260	7.3					2.7		
22	270	7.0					2.6		
23	280	6.8					2.6		

Time: 75.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3

Boston, Massachusetts (42.4°N, 71.2°W)								August 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	285	6.0						2.8	
01	275	5.4						3.0	
02	292	5.0						2.9	
03	298	4.8						2.9	
04	275	4.8						3.0	
05	292	5.2						3.3	
06	275	6.5						3.2	
07	298	6.8	290	5.0				3.1	
08	325	7.1	255	4.8				3.0	
09	375	7.1	275	5.5				2.9	
10	415	7.4	---	---				2.8	
11	442	7.2	---	---				2.7	
12	450	7.2	---	---				2.7	
13	468	7.3	285	5.4				2.7	
14	405	7.4	262	5.4				2.8	
15	332	7.6	---	---				2.9	
16	320	7.7	250	5.0				3.0	
17	288	7.8	---	---				3.0	
18	275	8.9						3.1	
19	260	8.5						3.0	
20	266	7.8						3.0	
21	280	7.3						2.8	
22	295	6.7						2.8	
23	285	6.3						2.9	

Time: 75.0°W.

Sweep: 0.8 Mc to 14.0 Mc in 1 minute.

Table 5

White Sands, New Mexico (32.3°N, 106.5°W)								August 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	300	5.5						2.4	2.5
01	300	5.2						2.9	2.6
02	290	5.2						2.6	2.6
03	285	5.0						2.6	2.7
04	280	4.8						2.6	2.7
06	280	4.6						2.6	2.7
07	260	5.8	260	---	110	(2.0)	3.9	2.8	
08	240	7.2	240	4.0	110	2.7	5.0	2.8	
09	295	8.0	230	4.5	110	(3.1)	4.9	2.7	
10	336	8.4	220	5.0	110	3.4	5.0	2.6	
11	370	8.6	220	5.3	110	3.6	5.1	2.6	
12	370	9.5	220	5.3	110	3.8	4.7	2.6	
13	370	9.5	220	5.4	110	3.9	4.8	2.6	
14	360	9.4	220	5.4	110	3.9	4.6	2.6	
15	350	9.7	225	5.2	110	3.8	4.9	2.6	
16	320	9.3	230	5.1	110	3.6	4.7	2.6	
17	290	9.1	240	4.9	110	3.4	4.5	2.7	
18	260	8.6	245	---	110	(2.2)	3.4	2.8	
19	250	7.8						2.8	2.9
20	240	7.0						2.7	2.8
21	260	6.4						2.6	2.9
22	280	5.8						2.7	2.9
23	310	5.4						2.3	2.5

Time: 105.0°W.

Sweep: 0.8 Mc to 14.0 Mc in 2 minutes.

Table 2

Oslo, Norway (60.0°N, 11.0°E)								August 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	290	4.8							
01	295	4.9							2.3
02	300	4.1							2.4
03	300	3.9							2.4
04	280	3.8	---	---					2.7
05	250	4.7	---	---					2.7
06	262	5.4	240	4.0	110	2.6		2.5	
07	275	6.0	240	4.0	110	2.6		3.2	
08	318	6.3	230	4.2	110	2.9		3.6	
09	315	6.5	220	4.5	105	3.0		3.8	
10	325	6.7	215	4.7	105	3.1		4.0	
11	325	6.9	210	4.7	105	3.3		4.0	
12	352	6.8	210	4.8	100	3.4		3.7	
13	365	6.8	215	4.9	100	3.4		3.6	
14	342	6.9	215	4.7	105	3.4		3.5	
15	322	6.9	220	4.5	105	3.2			
16	310	7.0	230	4.5	105	3.1			
17	285	7.1	240	---	110	2.8		3.1	
18	255	7.2	242	---	115	2.4		2.8	
19	280	6.9	250	---	130	2.0		2.7	
20	250	6.5	---	---					2.0
21	250	6.5	---	---					
22	252	5.9	---	---					
23	270	5.3	---	---					

Time: 15.0°E.

Sweep: 1.6 Mc to 10.0 Mc in 5 minutes, automatic operation.

Table 4

San Francisco, California (37.4°N, 122.2°W)								August 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	310	5.2							2.8
01	305	5.2							2.7
02	300	5.1							2.7
03	300	5.0							2.4
04	300	4.8							2.7
05	300	4.5							2.5
06	270	5.4	255	2.5	120	2.2		2.9	
07	270	7.0	240	4.0	120	2.9		2.8	
08	310	7.5	230	4.6	120	3.4		2.8	
09	320	8.4	220	5.1	120	(3.7)		2.7	
10	340	8.7	210	5.2	120	(3.8)		2.7	
11	360	9.2	210	5.4	120	4.0		2.7	
12	355	9.3	220	5.2	115	(4.0)		2.7	
13	350	9.4	230	5.3	110	4.0		2.7	
14	340	9.2	235	5.2	110	(4.0)		2.8	
15	335	9.0	230	6.2	110	3.6		2.8	
16	315	8.8	240	4.8	110	(3.4)		2.8	
17	290	8.4	260	4.4	120	3.2		2.9	
18	260	8.2	---	---	120	2.4		2.9	
19	250	7.6	---	---				3.0	
20	250	7.0	---	---				2.8	
21	260	6.4	---	---				2.8	
22	280	5.6	---	---				2.8	
23	300	5.4	---	---				2.4	

Time: 120.0°W.

Sweep: 1.3 Mc to 18.0 Mc in 4 minutes.

Table 6

Baton Rouge, Louisiana (30.6°N, 91.2°W)								August 1949	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	300	5.5							2.9
01	295	6.1							2.8
02	290	4.9							2.9
03	290</td								

Table 7

Maui, Hawaii (20.8°N , 156.5°W)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	265	(7.8)					1.4	(2.9)	
01	260	(7.8)					1.5	3.0	
02	230	7.0						3.0	
03	240	6.6						3.0	
04	240	5.8						3.0	
05	240	5.2						3.0	
06	270	5.1	---	---	100	1.6		2.9	
07	240	6.8	---	---	100	2.4		3.1	
08	240	7.6	210	4.4	100	3.0	4.0	3.0	
09	300	8.2	200	5.2	100	3.5	4.2	2.7	
10	350	9.0	200	5.4	100	3.6	3.9	2.5	
11	390	10.2	200	5.7	100	3.9	4.0	2.5	
12	400	(11.1)	200	5.5	100	4.0	4.2	(2.6)	
13	390	11.4	205	5.6	100	4.0	4.3	2.7	
14	370	(11.6)	205	5.4	100	4.0	4.2	(2.8)	
15	350	12.6	210	5.4	100	3.7	4.6	2.8	
16	315	(12.7)	220	5.0	100	3.4	4.9	(2.9)	
17	300	(12.1)	220	4.8	100	3.0	4.5	(3.0)	
18	250	(11.3)	240	—	100	2.3	4.5	(3.0)	
19	240	10.7	—	—			4.7	3.0	
20	250	(10.6)	—	—			4.0	(3.0)	
21	250	(10.2)	—	—			2.4	(2.8)	
22	280	9.1	—	—			1.7	2.8	
23	280	8.0	—	—			2.1	2.8	

Time: 150.0°W .

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 9

Guam I. (13.6°N , 144.9°E)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	275	(9.2)					(3.0)		
01	245	7.1					3.0		
02	250	6.6					2.8		
03	250	7.0					3.0		
04	240	5.8					1.6	3.1	
05	230	5.0						3.2	
06	250	4.6	---	---			2.1	3.1	
07	250	7.2	220	2.7	120	2.5	3.0	3.1	
08	260	8.9	220	—	110	3.2	3.9	3.0	
09	300	9.8	210	—	100	3.6	5.0	2.8	
10	345	10.2	210	5.0	110	3.8	4.8	2.5	
11	375	10.6	200	5.0	110	4.0		2.5	
12	395	(10.2)	200	5.2	105	(4.0)		2.3	
13	400	(10.4)	200	(5.0)	—	—	(2.4)		
14	380	(10.6)	210	5.2	110	4.0	(2.5)		
15	360	(12.0)	215	5.2	110	3.9		2.6	
16	360	(11.8)	220	—	110	3.6	4.7	(2.7)	
17	360	(11.3)	230	—	110	—	5.0	2.8	
18	370	(11.3)	255	—	—	—	5.0	(2.7)	
19	315	(11.0)	—	—	—	—	2.2	(2.8)	
20	350	(10.2)	—	—	—	—	(2.6)		
21	300	(9.8)	—	—	—	—			
22	290	(9.7)	—	—	—	—	1.6	(2.9)	
23	300	(8.2)	—	—	—	—	2.0	—	

Time: 150.0°E .

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 11

Palmyra I. (5.9°N , 162.1°W)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	250	10.7						2.8	
01	250	10.2						2.8	
02	250	9.2						2.9	
03	250	8.3					1.7	2.9	
04	240	6.6					2.0	3.0	
05	250	4.6					2.0	3.0	
06	275	4.4			150	1.3	2.0	2.8	
07	250	7.0			120	2.5	3.2	2.8	
08	250	8.6	---	---	115	3.2		2.6	
09	240	9.2	225	—	120	3.6		2.4	
10	370	9.6	220	5.0	120	3.8		2.3	
11	390	10.0	220	5.1	120	3.8		2.2	
12	390	10.4	210	—	120	—		2.2	
13	410	10.8	220	5.3	120	—		2.2	
14	400	11.4	220	5.3	120	4.0		2.2	
15	390	11.5	220	5.0	120	3.7		2.2	
16	340	11.4	230	—	120	3.5		2.3	
17	250	11.2	---	---	120	3.0	3.7	2.3	
18	280	11.1	—	—	120	2.1	3.8	2.3	
19	330	10.5	—	—	—	—	3.0	2.2	
20	350	9.7	—	—	—	—	2.2		
21	310	10.0	—	—	—	—	2.4		
22	275	10.0	—	—	—	—	2.2		
23	250	11.5	—	—	—	—	1.8	2.7	

Time: 157.5°W .

Sweep: 1.0 Mc to 13.0 Mc in 1 minute 36 seconds, automatic operation; 13.0 Mc to 18.0 Mc, manual operation.

Table 8

San Juan, Puerto Rico (18.4°N , 66.1°W)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	305	8.3							2.6
01	290	8.3							2.6
02	290	7.8							2.6
03	290	7.1							2.6
04	265	6.4							2.7
05	—	6.0							2.7
06	280	6.2							2.7
07	280	7.1							2.9
08	300	8.1					4.6	3.2	2.8
09	330	8.6					5.2	3.7	2.7
10	350	9.8					5.5	—	2.6
11	380	10.4					5.5	—	2.6
12	365	11.1					5.5	4.0	2.6
13	365	11.7						4.2	(5.9)
14	350	11.5					5.5	(4.0)	2.6
15	350	11.5					5.3	3.8	2.5
16	750	11.3					4.9	3.6	5.0
17	340	10.9						3.2	4.4
18	310	10.2							3.7
19	290	10.0							2.6
20	300	9.3							2.5
21	300	8.9							2.6
22	310	8.5							2.5
23	320	8.2							2.5

Time: 60.0°W .

Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, automatic operation; supplemented by manual operation.

Table 10

Trinidad, Brit. West Indies (10.6°N , 61.2°W)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	260	10.4							3.0
01	250	9.4							3.1
02	250	8.2							3.0
03	250	7.4							3.0
04	250	7.1							3.1
05	250	6.4							3.0
06	260	6.5							3.1
07	240	7.3	—	—	120	2.7	3.2	3.3	
08	260	8.2	220	(4.7)	120	3.3	3.9	3.1	
09	300	9.1	220	5.2	120	3.7	4.4	2.9	
10	325	10.1	220	5.4	120	4.0	4.6	2.7	
11	340	11.5	220	5.5	120	4.2	4.8	2.8	
12	340	12.2	220	5.7	120	4.2	5.0	2.8	
13	340	12.8	220	5.7	120	4.2	5.5	2.8	
14	330	12.6	220	5.7	120	4.1	5.6	2.8	
15	320	12.4	220	5.4	120	4.1	5.6	2.8	
16	300	11.8	230	5.1	120	3.4	5.0	2.8	
17	280	11.2	230	4.4	120	2.9	4.6	2.8	
18	270	10.9	—	—	120	2.0	4.4	2.8	
19	270	10.3	—	—	—	—	3.8	2.8	
20	270	10.6	—	—	—	—		2.8	
21	280	10.8	—	—	—	—		2.8	
22	280	10.8	—	—	—	—		2.8	
23	270	10.4	—	—	—	—		2.9	

Time: 60.0°W .

Sweep: 1.5 Mc to 18.0 Mc, manual operation.

Table 12

Huancayo, Peru (12.0°S , 75.3°W)

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M300)F2	August 1949
00	230	7.6							3.1
01	230	7.1							3.2
02	240	6.2							3.1
03	240	5.8							3.1
04	250	4.8</td							

Table 13

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	6.8				3.4		
01	280	6.4				3.4		
02	280	6.1				3.1		
03	290	5.8				3.3		
04	270	5.8			100	1.2	3.4	
05	270	6.4	240		110	1.9	3.6	
06	300	6.8	230	4.1	100	2.4	3.9	
07	300	7.5	230	4.6	100	2.8	4.4	
08	310	7.2	220	4.7	100	3.1		
09	320	7.4	210	5.0	100	3.3		
10	340	7.6	210	5.1	100	3.4	5.6	
11	340	7.6	210	5.2	100	3.5	5.6	
12	340	7.6	220	5.2	100	3.6		
13	350	7.4	220	5.4	100	3.6		
14	350	7.3	220	5.2	100	3.6		
15	350	7.1	210	5.0	100	3.4		
16	340	7.1	220	4.9	100	3.3		
17	300	7.2	210	4.6	100	3.0		
18	300	7.1	220	4.3	100	2.8	4.3	
19	270	7.6	240		110	2.3	4.0	
20	260	7.7			100	1.8	3.6	
21	260	7.6				4.2		
22	260	7.5				3.5		
23	250	7.4				3.2		

Time: 15.0° E.

Sweep: 1.0 Mc to 16.0 Mc in 12 minutes.

Table 15

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	---	2.6					2.9	
01	---	3.7					2.8	
02	---	2.8					2.8	
03	(250)	3.0					2.9	
04	250	2.9					3.0	
05	(250)	2.7					3.0	
06	(240)	2.7	---	---			2.9	
07	(250)	2.7	---	---	---	E	2.9	
08	230	5.6	---	---	---	(1.8)	3.2	
09	230	(7.6)	225	---	110	2.5	3.3	
10	240	(8.0)	220	---	110	(3.0)	3.2	
11	255	(8.5)	210	---	110	(3.2)	(3.2)	
12	260	(8.8)	200	---	110	---	(3.0)	
13	270	9.5	210	---	110	---	3.0	
14	270	9.8	220	---	110	---	3.0	
15	260	9.4	230	---	110	(3.0)	3.0	
16	255	9.4	240	---	110	2.8	3.2	
17	240	9.5	---	---	110	2.5	2.6	
18	230	7.5	---	---	---	---	(3.2)	
19	220	(5.7)	---	---	---	---	(3.2)	
20	220	4.0				---	(3.2)	
21	220	2.8				---	3.2	
22	(240)	2.5				---	3.0	
23	(260)	2.4				---	2.9	

Time: 30.0° E.

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 17

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	7.3				2.9	2.6	
01	300	7.0				2.4	2.6	
02	300	7.1				2.7	2.7	
03	300	6.7				1.9	2.6	
04	295	6.7	---	---	---	1.8	1.9	2.6
05	300	7.2	260	3.6	100	2.3	3.1	2.7
06	320	7.8	255	4.4	100	2.8	4.1	2.8
07	335	8.1	260	4.5	100	3.2	5.2	2.8
08	325	8.2	260	4.9	100	3.5	5.5	2.8
09	340	7.9	220	5.0	100	3.6	6.0	(2.8)
10	380	7.7	215	5.0	100	3.7	5.8	2.7
11	390	8.0	220	5.2	100	(3.6)	5.8	(2.7)
12	390	8.0	250	5.2	100	3.8	5.6	2.6
13	390	7.8	260	5.2	100	(3.7)	5.4	2.7
14	390	7.6	240	5.0	100	3.7	5.5	2.6
15	370	7.8	245	5.0	100	3.5	5.2	2.7
16	340	7.9	250	4.7	100	3.3	4.9	2.8
17	315	7.8	250	(4.5)	100	2.9	5.1	2.9
18	310	7.4	260	---	105	2.4	5.4	2.8
19	300	7.9	250	---	110	(1.8)	4.2	2.8
20	300	7.5				3.8	2.8	
21	295	(7.5)				3.7	2.7	
22	300	7.1				3.3	2.7	
23	300	7.2				3.4	2.6	

Time: 135.0° E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 14

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(260)					2.8		1.8
01	(280)					2.9		2.8
02	(270)					3.0		1.7
03	(250)					2.9		3.0
04	(240)					2.8		3.7
05	(250)					2.6		2.4
06	(250)					2.7		3.0
07	(230)					5.1		3.4
08	(230)					7.4		3.3
09	(240)					8.2		3.3
10	(250)					9.0		3.0
11	(250)					9.2		3.2
12	(260)					9.1		3.6
13	(260)					9.2		3.0
14	(270)					9.3		3.8
15	(260)					9.0		3.0
16	(250)					8.9		3.0
17	(230)					9.2		3.0
18	(210)					7.4		2.5
19	(220)					5.0		2.4
20	(230)					3.9		2.0
21	(240)					3.1		3.1
22	(260)					2.9		1.6
23	(250)					2.9		2.9

Time: 30.0° E.

Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Table 16

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	7.1						2.4
01	300	6.9						2.0
02	290	6.6						2.0
03	295	6.4						2.0
04	300	6.3						2.4
05	280	6.8	260	3.3	100	1.6		2.4
06	300	7.2	240	4.0	100	2.4		3.0
07	310	7.2	230	4.5	100	2.9		2.9
08	340	7.3	220	4.8	100	3.2		3.8
09	350	7.5	210	5.0	100	3.4		4.8
10	370	7.5	210	5.0	100	3.5		4.8
11	360	7.6	210	5.2	100	3.6		4.9
12	390	7.4	210	5.3	100	3.6		4.6
13	370	7.6	210	5.3	100	3.5		5.3
14	350	7.2	210	5.2	100	3.6		4.6
15	360	7.1	210	5.2	100	3.4		4.4
16	360	7.1	230	5.0	100	3.4		3.8
17	350	7.1	230	4.8	100	3.1		3.6
18	310	7.2	240	4.4	100	2.8		4.5
19	290	7.6	250	3.8	100	2.4		3.8
20	270	7.7				---		3.5
21	250	8.0				---		3.2
22	260	7.8				---		2.0
23	270	7.5				---		2.6

Time: 135.0° E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 19

Shibata, Japan (37.9°N, 139.3°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	8.3					3.7	2.8
01	280	8.4					3.6	2.8
02	270	8.0					3.5	2.9
03	260	7.8					3.6	2.8
04	255	7.3					3.2	2.9
05	270	7.6	225	---	115	2.0	3.7	3.0
06	270	8.6	210	---	100	2.7	4.8	2.9
07	275	8.4	210	4.4	100	3.2	5.6	3.0
08	280	8.2	220	5.0	100	3.4	6.9	3.0
09	300	8.4	220	---	100	3.6	8.8	2.9
10	330	8.4	230	5.6	100	3.8	7.6	2.8
11	330	8.8	205	5.5	100	4.0	9.0	2.8
12	340	9.0	210	5.4	100	---	8.5	2.8
13	330	8.8	205	5.4	100	---	7.4	2.8
14	320	9.2	200	5.4	100	3.8	7.3	2.9
15	310	9.3	205	5.2	100	3.6	6.0	2.9
16	300	9.1	220	4.8	100	3.3	6.5	2.9
17	295	9.3	215	4.4	100	3.1	6.0	3.0
18	270	9.0	230	---	100	2.4	5.1	3.0
19	250	8.9	---	---	---	1.9	3.9	3.0
20	255	8.5					4.0	2.9
21	270	8.5					4.2	2.7
22	290	8.4					4.4	2.8
23	290	8.4					4.4	2.8

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 20.

Tokyo, Japan (35.7°N, 139.5°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	8.5						4.9
01	285	8.5						4.2
02	275	8.0						4.3
03	260	7.9						4.1
04	275	7.5	---	---	---	---	---	2.8
05	250	7.6	240	---	100	1.8	3.6	3.0
06	270	8.5	230	4.4	100	2.7	4.0	3.0
07	280	8.4	240	4.4	100	3.2	5.3	3.0
08	300	8.3	245	5.0	100	3.4	6.6	2.9
09	330	8.4	250	5.1	100	3.6	8.0	2.8
10	350	8.8	250	5.6	100	3.8	8.0	2.7
11	355	9.2	230	5.6	100	3.8	8.7	2.8
12	330	9.4	220	5.7	100	3.8	7.3	2.9
13	330	9.7	210	5.5	100	3.8	6.4	2.8
14	330	9.8	230	5.4	100	3.8	6.1	2.8
15	330	9.8	230	5.2	100	3.6	5.5	2.9
16	310	9.8	220	5.0	100	3.3	5.2	2.9
17	300	9.5	230	(4.6)	100	2.9	5.6	2.9
18	270	9.4	220	---	100	2.2	4.5	3.0
19	260	9.3	---	---	---	---	4.4	3.0
20	270	8.5					4.1	2.8
21	280	8.4					4.3	2.8
22	300	8.5					5.2	2.8
23	300	8.7					5.4	2.7

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 21

Yamakawa, Japan (31.2°N, 130.6°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	9.2					4.2	2.7
01	300	9.2					4.6	2.7
02	295	9.3					4.6	2.8
03	280	8.4					3.6	2.8
04	280	7.6					3.8	2.8
05	280	7.4					3.4	2.8
06	260	7.4	250	---	105	2.1	3.6	3.0
07	270	8.2	230	---	110	2.8	4.4	3.0
08	280	8.3	235	---	100	3.3	5.2	2.9
09	320	8.6	225	---	100	3.4	7.0	2.8
10	340	9.0	210	5.3	105	(3.6)	6.6	2.6
11	400	9.6	210	5.5	100	3.7	7.2	2.6
12	350	9.8	(210)	5.6	100	(3.9)	6.8	2.6
13	380	10.3	215	5.6	110	4.0	8.0	2.6
14	380	10.5	220	5.5	110	3.8	6.2	2.7
15	350	10.7	230	5.4	110	3.7	5.6	2.7
16	340	11.0	235	5.2	100	3.6	6.2	2.8
17	320	10.9	250	4.9	100	3.2	4.8	2.8
18	300	10.6	240	---	100	2.7	4.6	2.8
19	290	10.2	260	---	(2.0)	4.8	2.9	
20	270	8.8					4.5	2.8
21	290	8.8					4.2	2.6
22	310	8.9					4.2	2.7
23	310	9.0					4.4	2.7

Time: 135.0°E.

Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, manual operation.

Table 22

Chungking, China (29.4°N, 106.8°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	9.2						5.0
01	260	8.8						5.6
02	260	8.2						4.8
03	260	7.1						4.3
04	280	6.8						4.5
05	270	6.8						4.5
06	260	7.6	230	---	---	---	---	5.8
07	280	8.9	230	---	---	---	---	6.3
08	300	9.6	220	---	---	---	---	8.0
09	310	10.0	215	5.4	---	---	---	9.0
10	340	10.3	210	5.8	---	---	---	6.9
11	380	11.1	210	5.8	---	---	---	7.8
12	375	11.5	210	5.8	105	4.5	6.8	2.4
13	360	12.0	200	5.6	---	---	---	6.0
14	350	12.5	200	5.6	---	---	---	5.4
15	320	12.6	200	5.5	80	3.8	5.8	2.8
16	300	12.5	200	5.0	80	3.4	5.0	2.8
17	280	11.7	200	4.6	80	3.2	5.6	2.8
18	280	11.5	230	---	---	---	---	4.8
19	240	11.2						3.6
20	260	9.6						4.1
21	280	9.2						4.1
22	290	9.6						4.8
23	300	9.5						5.0

Time: 135.0°E.

Sweep: 1.5 Mc to 20.0 Mc in 15 minutes, manual operation.

Table 23

Watheroo, W. Australia (30.3°S, 116.9°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	3.6					2.9	2.8
01	270	3.7					2.8	2.8
02	260	3.6					2.9	2.8
03	260	3.8					2.8	2.8
04	240	3.8					2.9	3.0
05	235	3.6					2.9	3.0
06	230	3.3					3.1	3.0
07	230	4.9			1.8	2.8	3.2	2.9
08	240	8.4	220	4.5	2.9	3.3	3.4	3.3
09	260	9.6	230	5.0	3.2	3.3	3.4	3.3
10	220	9.5	220	5.0	3.3	3.6	3.3	3.2
11	250	9.5	220	5.0	3.3	3.8	3.2	3.2
12	250	9.5	220	5.0	3.3	3.8	3.2	3.1
13	260	9.7	220	5.0	3.3	3.8	3.1	3.0
14	250	9.6	220	5.0	3.3	3.5	3.2	3.0
15	250	9.8	230	5.0	3.0	3.4	3.2	3.0
16	230	9.6	225	4.6	2.6	3.3	3.2	3.1
17	230	8.9			1.8	3.3	3.2	3.2
18	210	6.9			3.2	3.3	3.3	3.2
19	220	5.2			2.9	3.2	3.0	3.1
20	230	4.1			3.0	3.2	3.1	3.0
21	240	3.7			3.0	3.1	3.1	3.0
22	255	3.3			2.8	2.8	2.8	3.1
23	250	3.5			2.8	2.8	2.8	2.9

Time: 120.0°E.

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 24

Capetown, Union of S. Africa (34.2°S, 18.3°E)

June 1949

Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	---	2.3						2.8
01	(300)	2.4						2.8
02	(280)	2.6						2.7
03	(280)	2.7						2.8
04	(270)	2.7						2.9
05	(260)	2.7						3.0
06	(270)	2.7						2.9
07	(250)	2.6						2.9
08	230	5.6					(1.9)	3.3
09	230	7.4	230	---	110	2.5		3.3
10	240	8.7	230	3.4	110	(3.0)		3.3
11	250	9.						

Table 25

Christchurch, New Zealand (43.5°S , 172.7°E)

Time	June 1949						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00	300	3.5			3.8	2.6	
01	300	3.6			3.6	2.7	
02	300	3.7			4.4	2.6	
03	300	3.7			4.4	2.6	
04	290	3.6			4.2	2.7	
05	270	3.5			4.4	2.9	
06	260	3.2			4.4	2.8	
07	250	3.4			3.7	3.0	
08	240	6.4			1.5	4.4	3.2
09	240	8.0	—	—	2.3	4.4	3.2
10	250	8.8	—	—	2.7	5.0	3.3
11	240	9.0	230	4.0	2.9	4.6	3.2
12	250	8.8	240	4.3	3.0	5.0	3.1
13	250	9.4	250	4.2	3.0	4.9	3.0
14	250	9.4	250	3.8	2.7	6.1	3.2
15	250	9.0	—	—	2.4	5.4	3.1
16	240	8.4	—	—	1.7	4.4	3.1
17	240	6.8	—	—	3.8	3.0	
18	250	5.6				4.4	2.8
19	260	5.6				4.0	2.8
20	270	5.0				3.6	2.9
21	280	4.4				3.5	2.7
22	300	4.3				3.0	2.7
23	290	3.8				3.0	2.6

Time: 172.5°E .

Sweep: 1.0 Mc to 13.0 Mc.

Table 27

Delhi, India (28.5°N , 77.1°E)

Time	May 1949						
	*	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00	440	10.2					2.6
01	430	9.5					
02	—	—					
03	—	—					
04	—	—					2.5
05	400	8.8					
06	380	9.5					
07	360	10.2					
08	380	10.6					2.6
09	400	11.2					
10	420	12.1					
11	460	12.7					
12	—	(13.2)					2.4
13	(410)	(13.3)					
14	—	(13.3)					
15	—	(12.9)					
16	—	(12.7)					2.6
17	—	(12.7)					
18	—	(12.5)					
19	(400)	(11.5)					
20	415	(10.9)					2.5
21	440	(10.5)					
22	460	10.0					2.4
23	445	9.9					

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 29

Madras, India (13.0°N , 80.2°E)

Time	May 1949						
	*	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00							
01							
02							
03							
04							
05							
06							
07	420	10.1					
08	435	10.8					2.5
09	480	11.4					
10	540	11.7					
11	540	12.2					
12	540	12.6					2.3
13	540	13.0					
14	540	(13.5)					
15	540	13.8					
16	540	(14.0)					2.3
17	540	(13.6)					
18	540	(13.0)					
19	540	(12.6)					
20	510	(11.8)					2.4
21	—	(11.4)					
22	—	11.0					
23	—	—					

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 26

Lanchow, China (36.1°N , 103.8°E)

Time	May 1949						
	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00	340	8.2					3.6
01	340	8.4					3.7
02	340	8.8					3.8
03	340	7.7					3.2
04	340	7.2					2.4
05	340	7.3					2.6
06	320	8.3					3.4
07	320	10.5	300	—	140	2.9	2.5
08	340	11.2	320	—	140	3.4	2.6
09	360	11.5	320	—	—	—	2.5
10	380	11.5	320	—	—	—	2.5
11	380	12.5	355	—	—	—	2.3
12	380	13.2	350	—	—	—	(5.2)
13	380	13.5	330	—	—	—	2.4
14	380	13.2	330	—	—	—	2.4
15	380	13.5	340	—	—	—	2.4
16	360	12.3	300	—	—	—	2.4
17	350	13.0	320	—	140	3.5	2.5
18	350	11.5	300	—	—	—	2.5
19	310	11.8	—	—	—	—	2.5
20	290	(10.0)	—	—	—	—	(4.5)
21	290	8.9	—	—	—	—	(4.1)
22	320	9.4	—	—	—	—	2.4
23	330	9.0	—	—	—	—	2.4

Time: 105.0°E .

Sweep: 2.4 Mc to 16.0 Mc in 15 minutes, manual operation.

Table 28

Bombay, India (19.0°N , 73.0°E)

Time	May 1949						
	*	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00							
01							
02							
03							
04							
05							
06	330	9.7					
07	—	—					
08	420	11.9					
09	480	13.2					
10	510	(13.9)					
11	510	(14.3)					
12	—	—					
13	—	—					
14	—	(14.7)					
15	—	(14.9)					
16	—	(15.1)					
17	—	(15.2)					
18	—	(14.9)					
19	480	(14.6)					
20	480	14.3					
21	480	13.8					
22	480	13.4					
23	—	—					

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 30

Tiruchirappalli, India (10.8°N , 78.8°E)

Time	May 1949						
	*	foF2	h'Fl	foFl	h'E	foE	fEs (M3000)F2
00							
01							
02							
03							
04							
05							
06	360	9.0					
07	350	9.9					
08	420	11.5					
09	510	11.6					
10	540	11.3					
11	540	11.2					
12	540	11.5					
13	580	11.0					
14	600	11.0					
15	620	12.2					
16	550	12.2					
17	585	12.6					
18	540	12.3					
19	580	12.2					
20	540	11.8					
21	510	11.5					
22	500	11.8					
23	—	—					

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

Table 31

Calcutta, India (22.6°N, 88.4°E)							*	April 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	(240)	(12.4)			1.2		(2.8)	
01		(11.2)			1.2			
02		(10.1)			1.3			
03	---	(9.0)			1.1		---	
04		---			---			
05		---			---			
06	(240)	(8.6)			2.0		(2.9)	
07		10.6			3.1			
08		11.0			3.6			
09	270	12.4			3.8		2.7	
10		12.6			4.0			
11		12.6			4.0			
12	(240)	12.5			3.9		2.8	
13		12.5			---			
14		12.5			---			
15	---	12.6			---		---	
16		12.6			3.8			
17		12.5			3.4			
18	(240)	12.5			3.2		(2.8)	
19		(11.8)			---			
20		(12.4)			2.0			
21	240	12.0			1.5		2.8	
22		12.2			1.4			
23		12.3			1.2			

Time: Local.

*Probably includes fEs observations.

Table 32

Calcutta, India (22.6°N, 88.4°E)							*	March 1949
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	240	13.0				1.3		2.8
01		12.4				1.1		
02		11.3				1.1		
03	(210)	8.4				1.1	(3.1)	
04		---				---		
05		(7.8)				1.1		
06	---	(9.1)				2.1		
07		11.0				2.7		
08		12.4				3.2		
09	270	12.8				4.2		2.8
10		13.2				4.0		
11		13.2				4.1		
12	---	13.1				---	(2.6)	
13		(13.1)				---		
14		13.2				---		
15	---	13.1				---		
16		13.0				3.8		
17		13.0				3.4		
18	270	13.0				3.0		2.8
19		12.6				2.9		
20		12.4				2.5		
21	(310)	(12.8)				1.5		(2.8)
22		13.0				1.3		
23		14.0				1.4		

Time: Local.

*Probably includes fEs observations.

Table 33

Calcutta, India (22.6°N, 88.4°E)							*	August 1948
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	330	10.2			2.7		2.7	
01		9.6			2.4			
02		8.7			2.2			
03	300	(8.2)			2.5		(2.7)	
04		7.4			2.2			
05		7.6			2.2			
06	360	8.2			2.7		2.7	
07		8.9			3.0			
08		9.8			3.6			
09	360	10.8			4.2		2.7	
10		11.0			4.2			
11		11.2			4.5			
12	390	11.1			4.5		2.4	
13		11.2			---			
14		11.2			---			
15	390	11.2			---		(2.7)	
16		11.1			4.5			
17		11.0			4.4			
18	360	11.2			4.2		2.7	
19		11.1			3.8			
20		11.0			3.0			
21	360	11.0			3.0		2.7	
22		10.9			3.1			
23		10.6			2.9			

Time: Local.

*Probably includes fEs observations.

Table 34

Calcutta, India (22.6°N, 88.4°E)							*	July 1948
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	345	9.9				2.0		2.8
01		9.8				1.9		
02		(8.9)				2.0		
03	---	(7.6)				2.0		
04		---				---		
05		(6.8)				2.0		
06	330	7.2				2.6		2.8
07		8.0				3.2		
08		9.2				3.8		
09	360	10.4				4.0		2.7
10		11.0				4.0		
11		11.2				4.2		
12	(390)	11.0				---		2.6
13		11.0				---		
14		11.1				---		
15	360	11.2				4.0		2.6
16		11.0				4.0		
17		11.0				3.6		
18	360	11.0				3.3		2.7
19		10.8				3.2		
20		10.9				3.2		
21	(360)	10.9				3.0		2.8
22		10.5				2.9		
23		10.0				2.0		

Time: Local.

*Probably includes fEs observations.

Table 36

Calcutta, India (22.6°N, 88.4°E)							*	May 1948
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	390	10.6				3.7		2.6
01		10.2				3.8		
02		9.3				3.5		
03	(400)	8.2				3.2		(2.4)
04		7.6				2.6		
05		7.8				2.8		
06	(375)	9.0				3.0		(2.5)
07		9.7				3.6		
08		10.6				3.9		
09	---	10.8				4.4		
10		11.0				4.2		
11		11.0				---		
12	---	11.0				---		
13		11.0				---		
14		(11.0)				---		
15	---	(11.0)				---		
16		11.0				---		
17		11.0				6.7		
18	(390)	11.0				6.1		(2.7)
19		11.0				4.7		
20		11.0				4.6		
21	375	10.9				4.6		(2.6)
22		10.8				4.4		
23		10.8				3.9		

Time: Local.

*Probably includes fEs observations.

Time: Local.

*Probably includes fEs observations.

Table 37

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fEs (M3000)F2
00	360	9.8			2.7	2.7
01		9.2			2.4	
02		8.4			2.4	
03	(390)	(8.0)			2.2	(2.4)
04		7.4			1.9	
05		7.4			2.0	
06	(360)	8.8			2.6	(2.7)
07		10.0			3.2	
08		10.4			3.6	
09	(390)	10.8			3.6	(2.6)
10		10.8			4.5	
11		11.0			---	
12	---	11.0			---	
13		11.0			---	
14		11.0			---	
15	(345)	11.0			---	(2.7)
16		10.9			---	
17		10.9			4.6	
18	(360)	10.8			4.8	(2.6)
19		10.8			3.6	
20		10.8			3.8	
21	(390)	10.8			3.1	(2.9)
22		10.7			3.4	
23		10.5			3.3	

Time: Local.

*Probably includes fEs observations.

Table 39

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fEs (M3000)F2
00	330	10.0			2.2	3.6
01		8.5			2.8	
02		7.8			2.0	
03	300	6.8			2.4	2.6
04		5.8			2.2	
05	(6.0)				1.9	
06	330	7.2			2.2	2.7
07		7.9			2.8	
08		9.7			3.0	
09	360	10.9			3.9	2.6
10		11.0			4.0	
11	(11.0)				4.2	
12	360	11.0			4.2	2.6
13		11.0			4.2	
14		11.0			3.8	
15	330	11.0			3.6	2.5
16		11.0			3.4	
17	(11.0)				3.4	
18	300	(10.9)			3.5	(2.5)
19	(11.0)				3.3	
20	(11.0)				3.0	
21	300	(10.9)			2.8	(2.6)
22		10.6			2.6	
23		(10.6)			2.6	

Time: Local.

*Probably includes fEs observations.

Table 41

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fEs (M3000)F2
00	270	9.5			1.8	2.7
01		8.4			1.7	
02		8.2			1.6	
03	270	7.4			1.6	2.8
04		6.4			1.6	
05		6.6			1.8	
06	300	7.5			2.0	3.0
07		9.0			2.6	
08		11.8			3.0	
09	330	11.2			3.4	2.8
10		11.6			4.0	
11	(11.6)				4.2	
12	352	11.6			4.2	2.8
13		11.6			4.2	
14		11.6			4.2	
15	240	11.6			4.2	2.6
16		11.7			3.2	
17		11.6			2.9	
18	300	11.7			2.7	---
19		11.5			2.6	
20		11.2			2.4	
21	240	10.5			2.2	3.0
22		10.8			2.1	
23		10.0			1.6	

Time: Local.

*Probably includes fEs observations.

Table 38

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fEs (M3000)F2
00	300	9.7			1.8	3.6
01		8.7			2.0	
02		8.2			2.0	
03	330	7.0			1.9	2.7
04					5.0	
05					6.3	
06	300	7.1			2.0	
07		8.8			3.0	
08		10.0			3.2	
09	300	10.8			3.7	2.6
10		11.0			4.2	
11		11.4			4.6	
12	360	11.6			5.0	3.4
13		12.0			4.3	
14	(11.7)				4.0	
15	360	11.5			3.6	2.6
16		11.3			3.6	
17		11.2			3.4	
18	360	11.0			3.0	2.6
19		10.8			2.5	
20		10.7			2.1	
21	300	10.6			2.0	2.6
22		10.5			2.0	
23		10.1			1.9	

Time: Local.

*Probably includes fEs observations.

Table 40

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fEs (M3000)F2
00	270	10.0			2.4	2.7
01		8.3			2.2	
02		8.6			2.2	
03	300	7.3			2.0	2.6
04					2.0	
05					4.9	
06	300	(7.6)			2.4	3.6
07		9.0			2.8	
08		10.6			3.6	
09	315	11.6			3.8	2.6
10		11.8			4.0	
11		11.6			4.0	
12	360	11.6			3.8	2.4
13		11.6			4.1	
14		11.7			4.2	
15	390	11.1			4.0	2.4
16		11.0			3.6	
17		11.0			3.3	
18	360	11.4			2.8	2.6
19		11.2			2.6	
20		11.0			2.6	
21	270	11.2			2.5	2.6
22		11.0			2.5	
23		10.6			2.2	

Time: Local.

*Probably includes fEs observations.

Table 42

Calcutta, India (22.6°N, 88.4°E)						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE fFs (M3000)F2
00	(330)	11.0			2.2	(2.6)
01		11.5			2.2	
02		11.2			2.0	
03	295	9.4			2.0	2.7
04					2.2	
05					2.5	
06	285	9.2			2.6	2.8
07		10.8			3.0	
08		11.8			3.2	
09	--	11.7			3.6	(2.6)
10		11.8			4.1	
11		11.9			4.0	
12	(330)	11.9			4.7	(2.8)
13		12.0			4.5	
14		12.0			4.0	
15	330	11.8			3.9	2.6
16		11.8			3.6	
17		11.9			3.2	
18	330	11.8			3.2	2.7
19		11.8			3.0	
20		11.7			2.6	
21	300	11.5			2.5	2.8
22		11.7			2.4	
23		11.6			2.6	

Time: Local.

*Probably includes fFs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 43

Time	September 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						fEs
						(M3000)F2
00	320	9.6			2.6	2.7
01		8.6			2.0	
02		8.1			2.0	
03	320	7.8			1.8	2.6
04		(7.2)			2.7	
05		7.3			2.1	
06	340	8.4			2.6	
07		9.6			3.0	
08		10.2			3.6	
09	---	11.0			4.2	---
10		11.2			4.4	
11		11.2			---	
12	---	(11.4)			---	---
13		(10.8)			---	
14		(11.5)			---	
15	---	(11.4)			---	
16		11.3			4.2	
17		11.4			4.2	
18	360	10.8			3.8	2.7
19		10.8			3.8	
20		10.8			3.4	
21	330	10.2			3.5	2.6
22		10.2			3.2	
23		9.8			3.2	

Time: Local.

*Probably includes fEs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 44

Time	August 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						fEs
						(M3000)F2
00	360	9.8				3.0
01		9.6				2.6
02		9.0				2.2
03	330	8.6				2.0
04		8.2				2.2
05		8.4				2.7
06	330	8.7				3.2
07		9.0				3.4
08		9.2				3.6
09	325	(9.4)				2.6
10		(9.8)				(2.4)
11		---				---
12	---	---				---
13		---				---
14		(11.0)				---
15	345	(10.8)				4.2
16		11.0				4.6
17		11.0				6.2
18	360	10.9				4.7
19		11.2				4.0
20		10.8				4.2
21	420	10.4				4.0
22		10.0				3.8
23		10.0				3.4

Time: Local.

*Probably includes fEs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 45

Time	July 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						fEs
						(M3000)F2
00	330	8.6			2.0	2.3
01		8.0			2.0	
02		7.0			2.0	
03	330	7.0			2.0	2.6
04		(6.5)			2.1	
05		(6.6)			2.6	
06	230	8.0			3.6	2.6
07		8.8			4.2	
08		9.8			6.0	
09	366	10.4			5.3	2.5
10		11.2			6.2	
11		---			---	
12	---	(11.6)			---	
13		(11.6)			---	
14		(11.4)			5.0	
15	365	(11.3)			6.0	2.6
16		(11.4)			4.7	
17		(11.8)			4.5	
18	360	(11.6)			4.9	2.1
19		11.5			4.5	
20		11.1			4.4	
21	390	10.8			3.6	2.4
22		(10.2)			3.0	
23		10.0			2.9	

Time: Local.

*Probably includes fEs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 46

Time	June 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						fEs
						(M3000)F2
00	330	8.8				3.4
01		8.6				3.2
02		8.0				1.9
03	330	7.1				2.0
04		7.0				1.8
05		6.9				2.0
06	360	8.1				2.2
07		9.8				3.9
08		10.2				4.2
09	360	10.8				4.8
10		11.3				6.2
11		11.3				---
12	(360)	(11.2)				(2.2)
13		(11.8)				6.3
14		12.0				6.2
15	390	11.8				6.0
16		11.8				4.8
17		12.4				4.2
18	375	11.9				6.0
19		12.0				6.1
20		11.8				3.9
21	390	11.0				3.2
22		11.2				3.0
23		10.8				2.8

Time: Local.

*Probably includes fEs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 47

Time	May 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						fEs
						(M3000)F2
00	300	11.7			1.6	(2.6)
01		(10.8)			1.2	
02		(9.8)			1.4	
03	(300)	8.2			1.2	(2.5)
04		6.9			1.3	
05		(7.3)			2.5	
06	(300)	(9.0)			2.2	(2.6)
07		(10.2)			3.6	
08		(11.0)			4.0	
09	(345)	(11.8)			4.8	2.2
10		(12.0)			6.2	
11		(12.4)			---	
12	390	(12.5)			5.4	2.2
13		(12.6)			---	
14		(12.0)			5.0	
15	(390)	(12.0)			---	(2.3)
16		(12.3)			4.3	
17		(12.5)			4.0	
18	(260)	(12.2)			4.0	(2.3)
19		(11.8)			---	
20		(11.6)			2.2	
21	260	(11.4)			2.9	(2.4)
22		(11.8)			2.1	
23		(11.6)			2.0	

Time: Local.

*Probably includes fEs observations.

Calcutta, India (22.6°N, 88.4°E)

Table 48

Time	April 1947						
	h'F2	foF2	h'Fl	foFl	h'E	foE	
						fEs	
						(M3000)F2	
00	(330)	(13.2)					(2.6)
01		(12.0)					1.6
02		(9.0)					1.6
03		(8.2)					---
04		(7.6)					---
05		(7.4)					1.8
06	(270)	(8.4)					2.6
07		---					3.0
08		---					4.0
09	(300)	(14.0)					4.6
10		---					---
11		(13.2)					---
12	390	13.0					6.1
13		13.6					6.1
14		13.4					---
15	360	(14.0)					4.4
16		(12.9)					4.0
17		(13.9)					---
18	(330)	(14.0)					2.0
19		(14.2)					(2.4)
20		(14.2)					2.8
21	(230)	(14.1)					2.2
22		(14.4)					(2.4)
23		(14.2)					---

Time: Local.

*Probably includes fEs observations.

Table 49

Time	March 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						(M3000)F2
00	(330)	(12.0)			1.0	(2.6)
01		(9.4)				
02		(7.8)			1.1	
03	(360)	(6.8)			1.0	(2.6)
04		(6.0)			1.4	
05		(5.8)			--	
06	(360)	(7.0)			1.9	(2.6)
07		(9.8)			2.4	
08		--			2.8	
09	(260)	(13.0)			3.9	(2.4)
10		(14.0)			4.0	
11		13.0			4.5	
12	390	13.2			4.8	2.4
13		13.5			4.2	
14		13.6			4.2	
15	390	13.4			4.0	2.4
16		14.0			4.0	
17		14.0			3.2	
18	(360)	14.0			3.5	(2.4)
19		(14.4)			3.2	
20		(13.8)			2.6	
21	(360)	(13.6)			1.8	(2.6)
22		(13.8)			1.6	
23		(16.4)			2.0	

Time: Local.

*Probably includes fEs observations.

Table 50

Time	February 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						(M3000)F2
00	360	13.9				1.9
01		13.4				2.1
02		11.6				1.8
03	360	8.4				2.0
04		6.4				1.4
05		--				1.2
06	382	5.4				2.5
07		7.6				2.9
08		10.6				3.0
09	368	13.3				3.2
10		14.7				3.6
11		14.2				3.9
12	480	14.3				4.0
13		14.8				4.0
14		14.8				3.9
15	480	14.8				3.8
16		15.0				3.6
17		15.0				3.6
18	390	15.0				3.5
19		14.9				3.0
20		15.0				2.6
21	390	17.2				2.2
22		15.4				1.8
23		15.1				1.9

Time: Local.

*Probably includes fEs observations.

Table 51

Time	January 1947					
	h'F2	foF2	h'Fl	foFl	h'E	foE
						(M3000)F2
00	375	9.6			2.0	(2.9)
01		8.8			2.0	
02		7.9			1.4	
03	338	6.8			1.0	(3.0)
04		6.2			0.9	
05		5.8			--	
06	338	6.2			--	(3.0)
07		8.4			2.3	
08		11.1			3.0	
09	352	12.9			3.6	2.9
10		13.2			3.8	
11		12.6			3.9	
12	450	13.6			4.2	(2.6)
13		13.4			4.0	
14		13.3			4.0	
15	420	13.6			3.7	2.6
16		14.8			3.6	
17		14.2			3.0	
18	390	15.4			3.0	(3.8)
19		14.2			3.0	
20		14.0			2.1	
21	360	14.7			1.9	2.8
22		12.8			1.8	
23		11.6			2.0	

Time: Local.

*Probably contains fEs observations.

TABLE 52
 Central Radio Propagation Laboratory, National Bureau of Standards
IONOSPHERIC DATA

Swedep 1.0 Mc to 25.0 Mc in 0.25 min

* SUPPLEMENTARY DATA FROM

TABLE 53
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

$f_0 F_2$, Mc
(Characteristic) Mc September, 1949

Observed at Washington, D.C.

Lat. 38°7'N Long. 77°10'W

Day	75°W Mean Time											
	00	01	02	03	04	05	06	07	08	09	10	11
1	5.7	5.6	5.2	4.3	4.2	4.4	5.2	6.0	6.8	7.3	(7.2)	7.9
2	(5.4) ^J	(4.9) ^J	(4.8) ^J	4.7	4.4	(4.4) ^S	6.2	7.6	8.5	9.2	10.0	10.3
3	6.4	K(5.6) ^F	K(5.5) ^F	K(5.5) ^J	K(4.8) ^J	K(4.4) ^J	6.2	7.4	8.5	9.2	10.0	10.3
4	6.3	F	(5.8) ^J	(5.2) ^J	(4.2) ^J	(4.4) ^J	6.2	7.4	8.5	9.2	10.0	10.3
5	(5.2) ^J	6.8	6.2	5.4	5.0	4.7	6.0	(7.6)	8.3	9.6	10.0	10.4
6	*6.8	*6.4	*6.3	*5.9	*5.3	*5.3	(6.2)	8.5	8.9	9.6	9.4	9.8
7	(7.0) ^J	(7.1) ^J	(7.0)	(6.0)	(5.2)	(4.8)	6.3	*9.9	(9.9)	*9.9	*10.1	*10.2
8	(5.6) ^J	(5.8) ^J	5.5	5.5	5.3	5.1	(5.6)	8.6	*9.5	(9.0)	10.4	10.7
9	*6.6	6.5	6.1	5.4	5.2	4.9	5.8	7.8	9.1	9.5	9.4	9.8
10	6.4	F	6.1	5.9	5.8	5.2	5.0	5.8	7.4	8.1	9.0	9.6
11	6.8	F	6.2	6.1	6.0	5.4	5.6	5.6	6.8	7.4	7.8	9.2
12	6.4	6.2	5.8	5.0	(4.9)	(4.1)	5.0	6.8	7.5	7.8	8.4	9.1
13	K(4.5) ^J	4.7	K(4.6) ^J	(4.2)	(3.9)	(3.5)	(5.7)	(8.2)	(8.7)	9.8	10.3	10.6
14	6.1	F	5.4	4.8	(5.4)	S	5.2	(7.6)	[8.4]	9.5	9.4	9.6
15	5.4	(5.4)	(4.9)	(4.4)	(4.4)	(4.1)	3.6	(4.8)	(5.8)	6.4	6.5	7.2
16	6.1	6.1	5.9	(5.7)	5.4	4.9	5.6	(7.2)	8.6	9.0	9.2	9.7
17	6.2	(6.0)	5.8	5.5	5.3	5.1	(6.4)	8.8	10.0	10.0	10.4	10.6
18	6.8	6.8	6.5	5.8	5.1	4.9	(6.2)	9.0	10.2	10.7	11.0	11.2
19	7.1	6.9	6.6	(5.8)	5.4	5.1	(6.5)	8.3	9.6	(10.3)	10.6	11.0
20	(6.9)	(6.9)	6.4	F	5.7	5.2	4.8	6.4	(9.5)	10.3	11.0	11.4
21	6.4	F	6.5	5.9	F	5.7	F	(5.3)	6.7	9.3	10.6	11.5
22	(6.7)	F	(6.8)	S	6.0	F	5.8	F	(8.8)	10.0	11.8	11.7
23	(6.4)	F	6.8	F	6.5	F	6.1	F	5.6	10.2	11.0	11.4
24	6.8	F	6.6	6.5	6.4	F	6.2	F	6.0	10.4	10.8	11.5
25	(8.2)	S	8.0	K	7.2	K	6.7	K	(6.1)	9.8	11.1	11.5
26	4.3	K(14.1)	4.0	K	3.8	K	(2.8)	(2.5)	(4.7)	7.5	9.4	10.5
27	6.1	5.8	(4.7)	(3.5)	F	(4.1)	F	(4.2)	5.8	8.7	(9.9)	(9.7)
28	(6.7)	F	5.9	F	5.6	F	5.0	F	(4.3)	8.9	(8.1)	(8.8)
29	5.9	F	5.4	F	5.2	F	4.9	F	(4.2)	9.3	10.0	10.7
30	5.9	F	5.9	F	5.1	F	4.9	F	(4.7)	(8.3)	8.8	9.1
31												
Median	6.4	6.1	5.8	5.4	5.2	4.9	5.8	7.8	8.8	9.5	9.8	10.1
Count	30	30	30	30	30	30	30	30	30	30	30	30

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT. 39°0'N, LONG. 77.5°W

Sweep 10 Mc to 25.0 Mc in 0.25 min
Manual □ Automatic X

National Bureau of Standards												
(Institution)												
Calculated by: B.E.B., J.D.												
1	5.7	5.6	5.2	4.3	4.2	4.4	5.2	6.0	6.8	7.3	8.3	8.7
2	(5.4)	(4.9)	(4.8)	4.7	4.4	(4.4)	6.2	7.6	8.5	9.2	10.0	10.3
3	6.4	K(5.6)	K(5.5)	J	J	K(4.8)	J	K(4.1)	J	K(3.6)	K(4.3)	K(4.7)
4	6.3	F	(5.8)	J	(5.2)	F	(4.4)	J	(3.7)	J	(3.4)	J
5	(5.2)	F	6.8	6.2	5.4	5.0	4.7	6.0	(7.6)	8.3	9.0	9.7
6	*6.8	*6.4	*6.3	*5.9	J	*5.3	*5.3	*6.2	*6.5	*8.9	*9.3	*10.0
7	(7.0)	(7.1)	(7.0)	(6.0)	J	(5.2)	(4.8)	J	(9.9)	J	(9.9)	J
8	(5.6)	(5.8)	5.5	5.3	J	(4.6)	J	(6.6)	J	(8.9)	J	J
9	*6.6	6.5	6.1	5.4	5.2	4.9	5.8	7.8	9.1	9.5	9.4	9.8
10	6.4	F	6.1	5.9	5.8	5.2	5.0	5.8	7.4	8.1	9.0	9.6
11	6.8	F	6.2	6.1	6.0	5.4	5.6	5.6	6.8	7.4	7.8	9.2
12	6.4	6.2	5.8	5.0	(4.9)	(4.1)	5.0	6.8	7.5	7.8	8.4	9.1
13	K(4.5)	4.7	K(4.6)	J	(4.2)	(3.9)	(3.5)	(5.7)	J	(8.2)	9.8	10.3
14	6.1	F	5.4	4.8	(5.4)	S	5.2	(7.6)	[8.4]	9.5	9.4	9.6
15	5.4	(5.4)	(4.9)	(4.4)	(4.4)	(4.1)	3.6	(4.8)	(5.8)	6.4	6.5	7.2
16	6.1	6.1	5.9	(5.7)	5.4	4.9	5.6	(7.2)	8.6	9.0	9.2	9.7
17	6.2	(6.0)	5.8	5.5	5.3	5.1	(6.4)	8.8	10.0	10.0	10.4	10.6
18	6.8	6.8	6.5	5.8	5.1	4.9	(6.2)	9.0	10.2	10.7	11.0	11.2
19	7.1	6.9	6.6	(5.8)	5.4	5.1	(6.5)	8.3	9.6	(10.3)	10.6	11.0
20	(6.9)	(6.9)	6.4	F	5.7	5.2	4.8	6.4	(9.5)	10.3	11.0	11.4
21	6.4	F	6.5	5.9	F	5.7	F	(5.3)	6.7	9.3	10.6	11.5
22	(6.7)	F	(6.8)	S	6.0	F	5.8	F	(8.8)	10.0	11.8	11.7
23	(6.4)	F	6.8	F	6.5	F	6.1	F	5.6	10.2	11.0	11.4
24	6.8	F	6.6	6.5	6.4	F	6.2	F	6.0	10.4	10.8	11.5
25	(8.2)	S	8.0	K	7.2	K	6.7	K	(6.1)	9.8	11.1	11.5
26	4.3	K(14.1)	4.0	K	3.8	K	(2.8)	(2.5)	(4.7)	7.5	9.4	10.5
27	6.1	5.8	(4.7)	(3.5)	F	(4.1)	F	(4.2)	5.8	8.7	(9.9)	(9.7)
28	(6.7)	F	5.9	F	5.6	F	4.6	F	4.3	8.9	(8.1)	(8.8)
29	5.9	F	5.4	F	5.2	F	4.9	F	4.6	9.3	10.0	10.7
30	5.9	F	5.9	F	5.1	F	4.9	F	4.7	(8.3)	8.8	(8.5)
31												

Form adopted June 1946

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

</div

TABLE 54
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

IONOSPHERIC DATA

foF₂ Mc September, 1949

(Characteristic) (Unit)

Washington, D. C.

Observed at Lat 38.7°N, Long 77.1°W

Mean Time
75°WNational Bureau of Standards
(Institution)
Scaled by B E B, JD, H W,
Calculated by B E B, JD

Day	0030	0130	0230	0330	0430	0530	0630	0730	0830	0930	1030	1130	1230	1330	1430	1530	1630	1730	1830	1930	2030	2130	2230	2330															
1	5.7	5.6	4.7	4.3	4.4	4.3	5.8	4.6	4.6	4.3	7.4	* 7.6	8.1	8.6	* 8.7	9.2	* 9.6	9.0	8.6	8.9	8.8	7.2	6.3	5.6	5.4														
2	(5.1) ^J	(4.8) ^J	4.7	4.4	4.2	4.4	(5.2) ^J	(7.0) ^J	(8.4) ^S	9.0	9.6	10.2	9.6	9.6	9.5	9.2	9.2	9.6	9.7	9.7	(8.0) ^J	K (7.4) ^J	7.3	7.2															
3	6.0	F	5.8	K	5.5	J	[4.4] ^J	[4.4] ^J	(3.6) ^J	5.1	K	5.7	K	5.8	K	7.2	K	7.4	K	7.6	K	8.0	K	7.7	K	7.2													
4	(6.2) ^J	(5.5) ^J	(5.0) ^J	(5.0) ^J	(3.8) ^J	(3.7) ^J	(3.7) ^J	(5.8) ^J	7.0	F	7.3	F	8.4	8.7	9.7	9.0	9.0	9.4	9.7	9.6	9.8	F	7.8	F	(7.5) ^J														
5	6.7	* 6.4	* (6.0) ^J	* (5.7) ^J	* (5.2) ^J	* (5.2) ^J	(5.2) ^J	(5.2) ^J	(5.0) ^J	5.0	6.9	7.9	* 8.6	9.4	9.7	9.8	* 10.0	* 10.6	* 10.0	* 10.5	* 10.0	J	* 7.9	* 7.9	9.5	* 6.9	* 6.8												
6	7	(7.0) ^J	(7.0) ^J	(6.2) ^J	(5.6) ^J	F	S	F	S	K	(7.9) ^J	9.7	* 10.2	(9.8) ^J	* (9.8) ^J	(9.8) ^J	(9.9) ^J	* (9.9) ^J	* (9.9) ^J	* (9.9) ^J	* (9.9) ^J	* (9.9) ^J	(8.9) ^S	* (8.9) ^S	(8.1) ^J	* (7.9) ^J	6.9												
8	(5.5) ^J	5.7	F	5.4	F	5.5	F	(5.2) ^J	F	S	9.0	9.0	9.7	10.0	10.0	10.2	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	(10.2) ^J	6.5								
9	6.6	6.2	5.8	5.4	5.0	5.0	7.0	8.5	9.6	9.4	9.6	9.4	9.4	9.2	9.4	9.4	9.4	9.4	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	6.7											
10	6.2	F	6.1	F	5.9	F	5.6	F	5.2	F	5.0	F	6.7	8.0	8.4	8.9	9.6	9.9	10.0	10.0	9.9	9.6	9.7	9.5	9.4	8.5	9.1	(7.3) ^S	7.2	7.0									
11	7.2	F	5.9	F	6.2	F	5.8	F	5.4	F	5.3	F	5.8	F	7.2	7.4	8.8	9.8	9.4	9.4	9.4	9.2	9.1	9.0	9.0	9.1	9.1	7.9	7.0	F	6.4								
12	6.3	6.0	(5.6) ^J	4.8	4.3	(4.4) ^J	6.2	F	6.4	F	7.5	K	7.8	K	7.2	K	6.8	X	[7.0] ^C	7.2	K	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	4.7								
13	4.8	F	4.9	K	(4.0) ^J	(3.7) ^J	(3.7) ^J	(4.2) ^J	(7.3) ^J	(4.2) ^J	(8.6) ^S	(9.8) ^J	(9.7) ^S	9.8	9.8	10.2	10.3	10.5	10.3	10.4	9.8	9.1	8.3	7.7	F	6.7	F	6.3											
14	6.0	F	5.5	F	5.4	F	(5.2) ^J	(5.2) ^J	(5.0) ^J	(6.8) ^J	S	(8.4) ^H	8.5	9.3	8.3	8.4	9.6	9.5	9.2	[9.7] ^C	9.2	9.2	9.2	(18.8) ^S	(17.9) ^J	7.2	(6.0) ^J	5.6											
15	5.5	(5.2) ^J	(4.5) ^J	4.3	4.2	K	(4.0) ^J	5.4	K	6.4	K	6.5	K	(6.6) ^J	7.4	K	8.0	K	(8.0) ^J	(8.4) ^K	(8.4) ^K	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	(8.0) ^J	6.2						
16	6.3	5.6	(5.9) ^J	5.6	5.1	(4.9) ^J	6.6	8.1	8.9	8.8	9.2	9.4	9.4	9.2	9.4	9.2	9.7	9.7	9.2	9.1	9.4	(9.1) ^S	9.2	7.5	7.2	6.8													
17	6.0	5.9	5.6	5.4	(5.2) ^J	(5.3) ^J	7.8	9.3	10.0	9.7	10.1	(10.2) ^J	10.1	10.4	10.2	10.3	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2								
18	6.8	6.6	6.1	5.4	5.0	(5.2) ^J	(7.3) ^J	9.2	10.4	10.6	10.8	11.0	11.0	11.0	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2							
19	7.0	6.6	6.4	5.7	(5.4) ^J	(5.5) ^J	(5.5) ^J	(8.2) ^J	(9.5) ^S	(10.1) ^J	10.1	10.4	10.6	10.9	11.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0							
20	7.0	F	6.9	F	6.1	F	5.4	V	(5.1) ^J	5.3	7.7	9.8	10.8	10.7	10.7	11.0	11.0	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4				
21	6.6	F	6.5	F	6.2	F	5.8	F	5.5	5.5	8.2	10.0	(11.0) ^J	11.0	11.7	(11.6) ^J	11.5	11.5	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4					
22	(7.0) ^S	(6.4) ^S	(6.4) ^S	(6.4) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S	(6.6) ^S										
23	6.8	F	6.8	F	6.4	F	5.7	F	5.5	F	5.3	F	7.8	F	9.8	10.6	10.8	11.0	11.0	11.3	11.5	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4							
24	6.8	F	6.1	F	6.3	F	6.4	F	6.4	F	6.3	K	7.3	K	9.4	10.5	11.3	11.5	11.8	11.8	11.8	11.3	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9						
25	8.1	K	(7.9) ^J	(6.9) ^J	(6.6) ^J	(5.9) ^J	(5.3) ^J	6.2	K	6.3	K	6.4	K	(6.5) ^J	6.0	K	6.5	K	6.6	K	6.7	K	6.9	K	7.1	K	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J	(7.2) ^J			
26	(K)(4.4) ^J	(3.9) ^J	(3.9) ^J	3.8	K	(2.4) ^J	(3.2) ^J	(6.3) ^J	(8.9) ^J	9.9	10.9	(10.7) ^J	11.6	11.3	11.8	10.6	10.4	9.9	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J	(8.8) ^J				
27	6.0	(5.2) ^J	(4.2) ^J	3.5	F	(4.4) ^J	(4.8) ^J	4.8	9.0	9.0	9.9	(10.5) ^J	M	M	M	11.2	11.2	11.0	10.6	10.0	8.2	J	(7.7) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J	(7.0) ^J
28	6.2	F	5.9	F	4.8	F	4.4	F	(4.3) ^J	(6.0) ^J	(7.5) ^S	(8.3) ^J	9.0	9.6	9.9	[10.0] ^J	10.0	9.9	(10.3) ^J	10.0	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9		
29	5.8	F	5.7	F	5.0	F	4.9	F	(5.3) ^J	7.0	(9.1) ^J	9.5	10.3	10.6	10.6	10.9	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9	10.9			
30	5.7	F	5.5	F	4.8	F	5.1	F	(5.3) ^J	(6.7) ^J	8.4	(8.9) ^J	9.5	10.4	10.8	10.9	11.3	10.9	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4		
31																																							
Median	6.2	5.9	5.7	5.4	5.1	(5.0)	6.9	8.6	9.0	9.6	10.0	9.9	10.0	10.0	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2				
Count	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30			

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT 39.0°N, LONG 77.5°W

Manual □ Automatic □

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

TABLE 55
IONOSPHERIC DATA
 Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

h¹ F_i, **K_m** **September, 1949**

(Month)

Washington, D. C.

Observed at **Lat 38°N, Long 77.1°W**

National Bureau of Standards

Scaled by **B. E. B.**

Calculated by **J. D.**

75°W

Mean Time

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1																								
2																								
3																								
4																								
5																								
6																								
7																								
8																								
9																								
10																								
11																								
12																								
13																								
14																								
15																								
16																								
17																								
18																								
19																								
20																								
21																								
22																								
23																								
24																								
25																								
26																								
27																								
28																								
29																								
30																								
31																								
Median Count	—	230	220	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210
3	11	20	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25

* SUPPLEMENTARY DATA FROM STERLING, VA
 LAT. 39.0°N, LONG. 77.5°W

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
 Manual □ Automatic ☒

Form 10-MC 1025.0 Mc in 0.25 min

TABLE 56
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.
IONOSPHERIC DATA

September, 1949
(Month)
Lat 38.7°N Long 77.1°W

Mc (Unit)
Observed at Washington, D.C.

Mc September, 1949
(Characteristic)

Form adopted June 1946

National Bureau of Standards
(Institution)

Scaled by: **B.E.B., H.W.** J.D.

Calculated by: **B.E.B.** J.D.

		75°W Mean Time																						
Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1																								
2																								
3																								
4																								
5																								
6																								
7																								
8																								
9																								
10																								
11																								
12																								
13																								
14																								
15																								
16																								
17																								
18																								
19																								
20																								
21																								
22																								
23																								
24																								
25																								
26																								
27																								
28																								
29																								
30																								
31																								

* SUPPLEMENTARY DATA FROM STERLING, VA
LAT. 39°0'N, LONG. 77.5°W

Sweep Mc 10-250 Mc 10-25 min
Manual Automatic

Form 100-1000-1 (Rev. 1-30-48) - 1 -

Form 100-1000-1 (Rev. 1-30-48) - 1 -

Form adopted June 1946

National Bureau of Standards
(Institution)

Scaled by: **B.E.B., H.W.** J.D.

Calculated by: **B.E.B.** J.D.

Form adopted June 1946

National Bureau of Standards
(Institution)

Scaled by: **B.E.B., H.W.** J.D.

Calculated by: **B.E.B.** J.D.

TABLE E 57
IONOSPHERIC DATA
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

h ¹ E (Characteristic)	Km (Unit)	September, 1949 (Month)	Washington, D.C. Observed at	75°W Mean Time												75°W Mean Time												
				Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1																												
2																												
3																												
4																												
5																												
6																												
7																												
8																												
9																												
10																												
11																												
12																												
13																												
14																												
15																												
16																												
17																												
18																												
19																												
20																												
21																												
22																												
23																												
24																												
25																												
26																												
27																												
28																												
29																												
30																												
31																												

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT. 39.0°N, LONG. 77.5°W

Manual □ Automatic ■
Sweep 1.0 Mc in 0.25 min

TABLE 58
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.
IONOSPHERIC DATA

Form adopted June 1946

fo E, Mc September, 1949

(Characteristics) (Unit) (Month)

Observed at Washington, D.C.

Lat 38.7°N, Long 77.1°W

75°W Mean Time

Day	75°W Mean Time												75°W Mean Time												
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
Scaled by:	B.E.B., (Institution)												National Bureau of Standards	B.E.B., H.W.											
Calculated by:	B.E.B.,												B.E.B., J.D.	J.D.											
1																									
2																									
3																									
4																									
5																									
6																									
7																									
8																									
9																									
10																									
11																									
12																									
13																									
14																									
15																									
16																									
17																									
18																									
19																									
20																									
21																									
22																									
23																									
24																									
25																									
26																									
27																									
28																									
29																									
30																									
31																									
Median	1.9	2.5	3.0	3.4	3.6	3.8	3.8	3.8	3.7	3.5	3.2	2.7	2.0												
Count	15	29	30	29	29	28	27	26	26	26	30	29	16												

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT. 39.0° N, LONG. 77.6° W

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual □ Automatic □

TABLE 59
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.
IONOSPHERIC DATA

ES (Characteristic)	Mc, Km (Unit)	September, 1949 (Month)	Observed at Washington, D.C.	Lat 38°7'N, Long 77°W												75°W Mean Time												Calculated by B.E.B., U.D.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580	581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660	661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680	681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	727	728	729	730	731	732	733	734	735	736	737	738	739	740	741	742	743	744	745	746	747	748	749	750	751	752	753	754	755	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774	775	776	777	778	779	780	781	782	783	784	785	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801	802	803	804	805	806	807	808	809	8010	8011	8012	8013	8014	8015	8016	8017	8018	8019	8020	8021	8022	8023	8024	8025	8026	8027	8028	8029	8030	8031	8032	8033	8034	8035	8036	8037	8038	8039	8040	8041	8042	8043	8044	8045	8046	8047	8048	8049	8050	8051	8052	8053	8054	8055	8056	8057	8058	8059	8060	8061	8062	8063	8064	8065	8066	8067	8068	8069	8070	8071	8072	8073	8074	8075	8076	8077	8078	8079	8080	8081	8082	8083	8084	8085	8086	8087	8088	8089	8090	8091	8092	8093	8094	8095	8096	8097	8098	8099	80100	80101	80102	80103	80104	80105	80106	80107	80108	80109	80110	80111	80112	80113	80114	80115	80116	80117	80118	80119	80120	80121	80122	80123	80124	80125	80126	80127	80128	80129	80130	80131	80132	80133	80134	80135	80136	80137	80138	80139	80140	80141	80142	80143	80144	80145	80146	80147	80148	80149	80150	80151	80152	80153	80154	80155	80156	80157	80158	80159	80160	80161	80162	80163	80164	80165	80166	80167	80168	80169	80170	80171	80172	80173	80174	80175	80176	80177	80178	80179	80180	80181	80182	80183	80184	80185	80186	80187	80188	80189	80190	80191	80192	80193	80194	80195	80196	80197	80198	80199	80200	80201	80202	80203	80204	80205	80206	80207	80208	80209	80210	80211	80212	80213	80214	80215	80216	80217	80218	80219	80220	80221	80222	80223	80224	80225	80226	80227	80228	80229	80230	80231	80232	80233	80234	80235	80236	80237	80238	80239	80240	80241	80242	80243	80244	80245	80246	80247	80248	80249	80250	80251	80252	80253	80254	80255	80256	80257	80258	80259	80260	80261	80262	80263	80264	80265	80266	80267	80268	80269	80270	80271	80272	80273	80274	80275	80276	80277	80278	80279	80280	80281	80282	80283	80284	80285	80286	80287	80288	80289	80290	80291	80292	80293	80294	80295	80296	80297	80298	80299	80300	80301	80302	80303	80304	80305	80306	80307	80308	80309	80310	80311	80312	80313	80314	80315	80316	80317	80318	80319	80320	80321	80322	80323	80324	80325	80326	80327	80328	80329	80330	80331	80332	80333	80334	80335	80336	80337	80338	80339	80340	80341	80342	80343	80344	80345	80346	80347	80348	80349	80350	80351	80352	80353	80354	80355	80356	80357	80358	80359	80360	80361	80362	80363	80364	80365	80366	80367	80368	80369	80370	80371	80372	80373	80374	80375	80376	80377	80378	80379	80380	80381	80382	80383	80384	80385	80386	80387	80388	80389	80390	80391	80392	80393	80394	80395	80396	80397	80398	80399	80400	80401	80402	80403	80404	80405	80406	80407	80408	80409	80410	80411	80412	80413	80414	80415	80416	80417	80418	80419	80420	80421	80422	80423	80424	80425	80426	80427	80428	80429	80430	80431	80432	80433	80434	80435	80436	80437	80438	80439	80440	80441	80442	80443	80444	80445	80446	80447	80448	80449	80450	80451	80452	80453	80454	80455	80456	80457	80458	80459	80460	80461	80462	80463	80464	80465	80466	80467	80468	80469	80470	80471	80472	80473	80474	80475	80476	80477	80478	80479	80480	80481	80482	80483	80484	80485	80486	80487	80488	80489	80490	80491	80492	80493	80494	80495	80496	80497	80498	80499	80500	80501	80502	80503	80504	80505	80506	80507	80508	80509	80510	80511	80512	80513	80514	80515	80516	80517	80518	80519	80520	80521	80522	80523	80524	80525	80526	80527	80528	80529	80530	80531	80532	80533	80534	80535	80536	80537	80538	80539	80540	80541	80542	80543	80544	80545	80546	80547	80548	80549	80550	80551	80552	80553	80554	80555	80556	80557	80558	80559	80560	80561	80562	80563	80564	80565	80566	80567	80568	80569	80570	80571</th

TABLE 61
IONOSPHERIC DATA
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

(M 3000) F2, (Unit) September, 1949
(Characteristic) (Month)

Observed at Washington, D.C.

Lat 38°N, Long 77°W

Day	75°W Mean Time																							
	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	2.6	2.8	2.9	2.6	2.5	2.6	2.7F	2.9	3.1	2.9	(2.8)J	2.8	2.8	2.7	2.7	2.8	2.8	2.8	2.8	2.8	3.0	3.0	2.6	(2.6)J 2.4
2	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	(2.4)J	3.2	3.1	3.0	2.8	2.8	2.8	2.8	2.8	2.8	2.9	2.8	2.7	J(2.6)J 2.6
3	2.5F	2.5F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.7F	2.8F	2.6K	2.6K	2.9F	2.9F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	(2.7)F (2.6)J 2.5F
4	2.7F	(2.6)J	(2.5)J	(2.4)J	2.9F	3.0F	* 3.3	3.0	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	(2.5)F (2.5)J							
5	(2.6)J	2.7	2.8	2.7	2.7	2.8	3.1	(3.1)J	3.1	3.2	3.0	3.2	3.0	3.2	3.0	3.2	3.0	3.2	3.0	3.2	3.0	3.2	3.0	3.2
6	* 2.6	* 2.7	* 2.6	(* 2.6)J	(* 2.6)J																			
7	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	(2.7)F	3.0F	3.1	3.0	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	(2.6)F
8	(2.6)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	2.5F	2.5F	2.6F	2.6F	2.7F	2.7F	(2.5)F						
9	* 2.6	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.7
10	2.8F	2.8	2.9F	2.8F	2.8	2.9F	2.8	2.9F	3.2	3.2	3.2	3.2	3.2	3.3	3.0	2.9	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.7
11	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.7F	3.0	2.8	2.9	3.0	2.9	2.9	2.8	2.8	2.8	2.8	2.8	2.6F
12	2.6	2.6	2.6	2.6	2.7	(2.6)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	(2.5)J	2.5F	3.1F	2.5F	2.4F	2.6K	2.7K	C	C	2.7K	2.7K	(2.7)S J(2.7)S	(2.7)S J(2.7)S	(2.6)F
13	(2.5)J	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	(2.4)F	
14	2.7F	2.6F	2.6V	(2.6)S	2.6V	(2.7)C	(2.7)S	(2.7)S	(2.6)F															
15	2.5	(2.6)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	
16	2.5	2.5	2.5	(2.6)J	2.6	2.7	2.7	2.9	(3.1)S	2.9	2.9	2.8	2.8	2.8	2.8	2.7	2.7	2.8	2.8	2.8	2.8	2.8	2.8	2.5
17	2.6	(2.7)S	2.6	2.6	2.6	2.6	2.7	(2.9)S	3.1	3.0	3.0	2.9	2.9	2.9	2.8	2.8	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
18	2.7	2.8	2.8	2.8	2.8	2.8	2.8	2.7	(3.0)S	3.2	2.9	2.9	3.1	3.0	2.7	2.8	2.7	2.6	2.6	2.7	2.7	2.7	2.7	2.7
19	2.7	2.7	2.8	(2.8)S	2.7	2.7	2.8	(2.9)S	3.1	3.0	3.0	3.0	3.1	3.0	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
20	(2.7)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	2.8F	2.8F	2.8F	2.8F	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	(2.8)S
21	2.7F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.7F
22	(2.6)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	(2.7)S	2.6F	2.5F	(2.8)S	(2.8)S									
23	(2.6)S	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.6F
24	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.6F	2.7F	2.7F	2.5F										
25	(2.7)S	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.8F	2.7F
26	2.4F	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	(2.5)S	2.6K	2.6K	(2.6)S										
27	2.7	2.8	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	(2.8)S	
28	(2.5)F	2.5F	2.6F	2.5F	2.6F	(2.8)S	(2.8)S	(2.6)S																
29	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	2.7F	(2.9)S	(2.9)S	(2.7)S										
30	2.6	2.6	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	2.4F	(2.6)S	(2.6)S	(2.7)S										
31																								

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT 39°0' N., LONG. 77°5' W.

National Bureau of Standards

Scaled by: B.E.B., J.D., H.W.
Calculated by: B.E.B., J.D.

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

2.6

TABLE 62
 Central Radio Propagation Laboratory, National Bureau of Standards
IONOSPHERIC DATA

Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.
Form adopted June 1946

* SUPPLEMENTARY DATA FROM STERLING, VA.
LAT 39.0°N, LONG. 77.5°W

1.0 Mcfa 25.0 Mc in 0.25 min
Manual Automatic

TABLE 63
Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.
IONOSPHERIC DATA

Form adopted June 1946
National Bureau of Standards
Scaled by B.E.B., J.D.
Institution)

(M1500)E, September, 1949
(Characteristic) (Unit)
Observed at Washington, D.C.

Lat 38.7°N, Long 77.1°W

75°N

Mean Time

Day	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1																								
2																								
3																								
4																								
5																								
6																								
7																								
8																								
9																								
10																								
11																								
12																								
13																								
14																								
15																								
16																								
17																								
18																								
19																								
20																								
21																								
22																								
23																								
24																								
25																								
26																								
27																								
28																								
29																								
30																								
31																								
Median	3.7	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.9	4.0	
Count	15	28	27	28	29	29	29	29	29	29	29	29	29	29	29	28	28	28	28	29	29	29	29	

* SUPPLEMENTARY DATA FROM STERLING, VA
LAT 39.0°N, LONG. 77.5°W

Sweep 1.0 Mc to 25.0 Mc in 0.25 min
Manual □ Automatic ☒

Table 64

Ionospheric Storminess at Washington, D. C.September 1949

Day	Ionospheric character*		Principal storms		Geomagnetic character**	
	00-12 GCT	12-24 GCT	Beginning GCT	End GCT	00-12 GCT	12-24 GCT
1	2	3			2	3
2	3	1	2200	----	3	3
3	4	4	----	1900	5	3
4	2	2			3	2
5	1	0			2	2
6	1	1			3	1
7	1	1			2	1
8	2	0			2	3
9	1	2			2	0
10	1	2			0	2
11	1	2			3	2
12	2	6	0800	----	3	3
13	4	2	----	0600	3	2
14	3	3			2	3
15	3	4	0600	1800	2	2
16	3	3			2	2
17	2	2			1	3
18	1	2			1	0
19	1	1			0	0
20	1	2			0	0
21	1	2			0	1
22	2	1			2	1
23	1	1			1	1
24	1	2	2100	----	2	3
25	4	6	----	----	4	3
26	4	1	----	0700	3	2
27	2	1			4	3
28	2	2			3	1
29	1	2			2	1
30	2	1			3	2

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

----Dashes indicate continuing storm.

Table 65

Sudden Ionosphere Disturbances Observed at Washington, D. C.

September 1949

1949 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*	Other phenomena	1949 Day	GCT Beginning End	Location of transmitters	Relative intensity at minimum*	Other phenomena
September 15	1513 ****	Ohio, D. C., England	0.0		September 1	1712 1800	Ohio, D. C.	0.1	Terr. mag. pulse**
15	1623 1640	Ohio, D. C., England	0.1	Terr. mag. pulse** 1622-1635	2	1822 1840	Ohio, D. C., England, New Brunswick	0.0	1822-1830
15	1905 1945	Ohio, D. C., England	0.1		5	1235 1320	Ohio, D. C.	0.05	Terr. mag. pulse**
15	2122 2200	Ohio, D. C., Canal Zone, England, New Brunswick	0.01		8	1300 1330	Ohio, D. C., England	0.2	1231-1233 Solar flare***
16	1429 1510	Ohio, D. C., Canal Zone, England	0.05	Solar flare*** 1425	8	1408 1440	Ohio, D. C., England	0.1	Solar flare***
16	1828 1940	Ohio, D. C., England, New Brunswick	0.0		9	1345 1420	Ohio, D. C.	0.3	1340 Terr. mag. pulse**
17	1416 1500	Ohio, D. C., England	0.1		11	1839 1920	Ohio, D. C., Canal Zone, New Brunswick	0.0	1848-1905 Terr. mag. pulse**
17	1717 2040	Ohio, D. C., Canal Zone, England, New Brunswick	0.0	Terr. mag. pulse** 1718-1735	12	1315 1355	Ohio, D. C., England	0.03	1341-1320 Solar flare***
18	1750 1855	Ohio, D. C., England	0.2		12	1522 1600	Ohio, D. C., England	0.0	Solar flare*** 1330
19	1126 1140	England	0.2		12	2010 2050	Ohio, D. C., England, New Brunswick	0.0	Terr. mag. pulse** 2009-2020
19	1654 1725	Ohio, D. C., England	0.05		13	1046 1110	England	0.1	
24	1944 ****	Ohio, D. C., England	0.05		13	1305 1350	Ohio, D. C., Canal Zone, England	0.0	Terr. mag. pulse** 1305-1330
24	2000 2045	Ohio, D. C., Canal Zone, England	0.0		13	1605 1640	Ohio, D. C., Canal Zone, England	0.0	
27	1535 1600	Ohio, D. C., England	0.2		13	1745 1915	Ohio, D. C., Canal Zone, England	0.0	
30	1717 1745	Ohio, D. C., England	0.1		14	1329 1540	Ohio, D. C., England	0.1	
30	1858 2020	Ohio, D. C., Canal Zone	0.0		15	1227 1245	England	0.1	

Ratio of received field intensity during SID to average field intensity before and after, for station WGY, 6080 kilocycles, 600 kilometers distant, for all SID except the following: Station GLH, 13525 kilocycles, received in New York, 5340 kilometers distant, was used for the SID on September 13 at 1046, on September 15 at 1227, and on September 19 at 1126.

**As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

****Time of observation at McMath-Hulbert Observatory, Michigan.

*****Incomplete recovery of SID.

Table 66Sudden Ionosphere Disturbances Reported by Engineer-in-ChiefCable and Wireless, Ltd., as Observed in England

1949 Day	GCT Beginning End		Receiving station	Location of transmitters	Other phenomena
August 31	0719	0750	Brentwood	Afghanistan, Bahrein I., Belgian Congo, French Equatorial Africa, Greece, Indian, Iran, Kenya, Palestine, Portugal, Southern Rhodesia, Spain, Syria, Trans-Jordan Aden, China, India	Solar flare** 0747
	0722	0745	Somerton		Solar flare** 0747
September 1	0800	0815	Brentwood	Afghanistan, Bahrein I., Belgian Congo, Greece, India, Iran, Palestine, Portugal, Southern Rhodesia, Spain, Syria, Trans-Jordan, Turkey, Zanzibar	
	0917	0930	Brentwood	Belgian Congo, Canary Is., Eritrea, Greece, Indian, Iran, Kenya, Malta, Palestine, Southern Rhodesia, Spain, Switzerland, Syria, U.S.S.R., Zanzibar	
2	1030	1100	Brentwood	Bahrein I., Bulgaria, Greece, India, Iran, Kenya, Malta, Palestine, Portugal, Spain, Switzerland, Syria, Turkey, U.S.S.R., Yugoslavia, Zanzibar	
5	0949	1020	Brentwood	Austria, Bahrein I., Belgian Congo, Canary Is., Greece, India, Iran, Kenya, Palestine, Portugal, Southern Rhodesia, Spain, Switzerland, Syria, Trans-Jordan, Turkey, U.S.S.R., Yugoslavia, Zanzibar	
5	0950	1020	Somerton	Aden, Argentina, Australia, Brazil, Ceylon, China, Gold Coast, India, Nigeria, Union of S. Africa	
5	1234	1300	Brentwood	Bahrein I., Barbados, Belgian Congo, Bulgaria, Canary Is., Colombia, Greece, India, Iran, Kenya, Madagascar, Malta, Palestine, Portugal, Southern Rhodesia, Spain, Switzerland, Syria, Turkey, U.S.S.R., Yugoslavia, Zanzibar	Terr.mag. pulse* 1231-1233
5	1230	1255	Somerton	Aden, Argentina, Brazil, Canada, Ceylon, Egypt, Gold Coast, India, Nigeria, New York, Union of S. Africa	Terr.mag. pulse* 1231-1233
15	1225	1300	Brentwood	Greece, Portugal, Southern Rhodesia, Spain, Syria	
15	1415	1500	Brentwood	Bulgaria, Colombia, Palestine, Turkey, Yugoslavia	
15	1515	1600	Brentwood	Barbados	
15	1520	1545	Somerton	Argentina, Brazil, Canada, Gold Coast, New York	

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

**Time of observation at Meudon Observatory, France.

Table 67

Sudden Ionosphere Disturbances Reported by International Telephone
and Telegraph Corporation, as Observed at Platanos, Argentina

1949 Day	GCT		Location of transmitters
	Beginning	End	
August 3	1120	1400	Belgium, Germany, Netherlands, New York, Venezuela

Table 68

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Point Reves, California

1949 Day	GCT		Location of transmitters	Other phenomena
	Beginning	End		
September 11	1850	1910	Australia, Hawaii, Japan, Philippine Is.	Terr.mag. pulse* 1848-1905
12	0630	0700	China, Japan, Philippine Is.	Solar flare** 0620
13	0353	0430	Australia, China, Japan, Java, Philippine Is.	
15	2126	2150	Australia, China, Hawaii, Japan, Java, New York, Philippine Is.	
17	1720	1900	Australia, China, Hawaii, Japan	Terr.mag. pulse* 1718-1735
18	0215	0230	Australia, China, Chosen, Hawaii, Japan, Java, Philippine Is.	Solar flare*** 1717
October 2	0322	0400	Australia, China, Japan, Philippine Is.	

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

**Time of observation at Prague Observatory, Czechoslovakia.

***Time of observation at McMath-Hulbert Observatory, Michigan.

Table 69

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Riverhead, New York

1949 Day	GCT		Location of transmitters	Other phenomena
	Beginning	End		
September	5	1235	1310	Argentina, England, Italy, Morocco
	12	1320	1345	Argentina, Panama
	13	1305	1335	Argentina, England, Italy, Morocco, Panama
	15	1525	1600	Argentina, Canada, England, Italy, Morocco, Panama, Sweden
	17	1720	1800	Argentina, Canada, England, Italy, Morocco, Panama, Puerto Rico, Union of S. Africa
	18	0950	1010	Italy, Morocco
	October 1	1712	1725	Argentina, Canada, England, Italy, Morocco, Panama
	2	1402	1420	Argentina, Canada, England, Italy, Morocco, Panama

*As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

**Time of observation at Meudon Observatory, France.

***Time of observation at McMath-Hulbert Observatory, Michigan.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D. C.

Table 70

Provisional Radio Propagation Quality Figures
 (Including Comparisons with CRPL Warnings and CRPL Probable Disturbed Period Forecasts)
August 1949

Day	North Atlantic						North Pacific					
	Quality figure	CRPL* Warning	CRPL** Forecast of probable disturbed periods	Geo-magnetic K _{Ch}	Quality figure	CRPL* Warning	CRPL** Forecast of probable disturbed periods	Geo-magnetic K _{Ch}	01-12 GCT	13-24 GCT	01-12 GCT	13-24 GCT
1	7	6	X	X	1	2	7	7	X	X	1	2
2	5	5	X	X	3	3	6	7	X	X	3	3
3	(2)	5	X X		6	3	(4)	5	X X		6	3
4	(3)	(4)	X X		5	4	5	5	X X		5	4
5	(2)	(3)	X X		3	4	5	(4)	X X		3	4
6	(4)	(4)	X		2	2	5	6	X		2	2
7	(4)	(4)			1	3	5	6			1	3
8	(2)	5	X X		4	2	(4)	6	X X		4	2
9	(4)	5			2	2	5	6			2	2
10	(3)	(4)			2	2	6	7			2	2
11	5	5			1	1	6	7			1	1
12	6	6			2	1	6	6			2	1
13	6	6			2	2	6	6			2	2
14	6	6			4	3	5	6			4	3
15	5	5			4	2	6	6			4	2
16	6	5			2	1	6	7			2	1
17	6	6			2	3	6	7			2	3
18	5	5			2	3	6	7			2	3
19	6	6	X		2	2	6	6	X		2	2
20	6	6			X	3	3	5	7	X	3	3
21	6	6			X	2	2	6	7	X	2	2
22	7	6			2	2	6	7			2	2
23	7	6			2	1	6	7			2	1
24	7	6			1	0	6	7			1	0
25	7	6			0	1	6	7			0	1
26	6	6			1	1	6	6			1	1
27	5	6			3	2	5	6			3	2
28	6	6			X	2	1	6	7	X	2	1
29	7	6			X	2	2	5	7	X	2	2
30	6	6			2	1	5	7			2	1
31	6	6			1	2	6	6			1	2

Score:												
H		5	0					3	0			
M		3	8					0	3			
G		21	17					24	22			
(S)		1	1					2	2			
S		1	5					2	4			

Quality Figure Scale:

- 1 - Useless
- 2 - Very poor
- 3 - Poor
- 4 - Poor to fair
- 5 - Fair
- 6 - Fair to good
- 7 - Good
- 8 - Very good
- 9 - Excellent

Symbols:

- X - Warning given or probable disturbed date
- H - Quality 4 or worse on day or half day of warning
- M - Quality 4 or worse on day or half day of no warning
- G - Quality 5 or better on day of no warning
- (S) - Quality 5 on day of warning
- S - Quality 6 or better on day of warning
- () - Quality 4 or worse (disturbed)

Geomagnetic K_{Ch} on the standard scale of 0 to 9, 9 representing the greatest disturbance.

*Broadcast on WWV, Washington, D.C. Times of warnings recorded to nearest half day as broadcast.

**In addition to dates marked X, the following were designated as probable disturbed days on forecasts more than eight days in advance of said dates: August 30 and 31.

Table 71American and Zürich Provisional Relative Sunspot NumbersSeptember 1949

Date	R _A *	R _Z **	Date	R _A *	R _Z **
1	234	165	17	216	182
2	225	165	18	226	210
3	224	184	19	223	154
4	229	184	20	221	170
5	223	174	21	187	130
6	222	188	22	199	148
7	212	184	23	175	144
8	212	170	24	167	127
9	196	160	25	63	136
10	220	164	26	138	108
11	235	176	27	101	94
12	213	173	28	92	84
13	200	170	29	66	55
14	183	168	30	65	51
15	179	172			
16	166	159	Mean:	183.7	151.6

*Combination of reports from 49 observers; see page 8.

**Dependent on observations at Zürich Observatory and its stations at Locarno and Arosa.

Table 72a

Coronal observations at Climax, Colorado (5303A), east limb

Date GCT	Degrees north of the solar equator															0°	Degrees south of the solar equator																	
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949																																		
Sept. 1.6	X	X	X	X	X	1	2	3	3	4	6	9	10	14	22	20	18	13	7	8	8	9	10	9	8	7	X	X	X	X	X	X	X	
4.7	X	X	X	X	X	X	-	-	-	-	1	4	5	7	9	10	12	11	10	9	8	8	7	6	5	4	1	-	-	-	-	-		
5.7	-	-	-	-	-	-	-	-	-	-	1	3	7	8	10	9	12	13	12	11	10	8	5	4	3	3	2	1	-	-	-	-		
6.7	-	-	-	-	-	-	-	-	-	-	1	3	7	9	11	15	17	19	18	14	9	11	12	4	3	2	2	3	3	2	1	-		
7.6	-	-	-	-	-	-	-	-	-	-	1	3	3	4	7	14	20	24	22	14	10	11	12	7	2	2	3	3	2	1	-	-		
8.6	-	-	-	-	-	-	-	-	-	-	1	3	4	9	15	18	20	16	9	8	8	7	6	5	5	4	3	1	-	-	-			
9.6	-	-	-	-	-	-	-	-	-	-	1	2	3	3	5	10	18	17	19	15	13	12	13	16	14	3	2	3	3	1	-	-		
10.8	-	-	-	-	-	1	3	3	4	4	8	7	10	15	22	23	18	14	12	18	15	17	15	10	4	3	3	3	2	1	-			
11.7	X	X	X	X	X	-	-	-	1	2	3	3	3	9	13	18	30	20	14	13	12	12	13	13	12	10	9	X	X	X	X	X		
12.9	-	-	-	-	-	-	-	-	-	-	-	1	3	6	15	20	23	20	13	12	10	9	10	10	7	3	1	-	-	-	-			
14.7	-	-	-	1	2	2	2	2	2	3	10	17	28	30	35	30	30	17	15	33	34	25	13	11	12	12	9	8	6	5	2	1		
15.7	-	-	-	-	-	-	-	-	-	-	1	2	1	9	11	12	14	16	17	13	13	13	30	25	12	9	8	7	5	4	3	3	2	1
16.7	-	-	-	-	-	-	-	-	-	-	1	6	16	16	15	15	15	15	14	16	16	32	30	18	14	12	6	3	1	-	-	-		
17.7	-	-	-	-	-	-	-	-	-	-	1	5	10	14	13	13	12	11	12	12	14	14	14	13	12	12	10	9	8	1	-	-		
18.7	X	X	X	X	X	X	X	X	X	X	X	X	18	20	24	23	17	12	15	25	24	24	20	11	8	1	-	-	-	-	-			
19.6	-	-	-	-	-	-	-	-	-	-	1	3	10	18	22	24	19	19	21	25	24	20	19	15	5	2	1	-	-	-	-			
20.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
21.6	X	X	X	X	X	X	-	-	-	-	-	-	1	5	7	9	10	8	8	8	8	7	6	5	1	-	-	-	-	-	-			
22.8	-	-	-	-	-	-	1	2	2	3	3	5	4	5	12	17	17	16	13	10	10	11	12	8	7	8	8	3	1	-	-	-		
23.8	-	-	-	-	-	-	-	1	2	2	2	3	4	5	10	13	12	12	13	10	5	5	7	8	8	6	7	1	-	-	-			
24.8	X	X	-	-	-	-	-	-	-	-	-	-	1	5	8	8	9	9	13	12	12	3	3	1	-	-	-	-	-	-				
25.7	-	-	-	-	-	-	-	-	-	-	1	2	4	9	14	15	15	13	12	13	15	14	5	1	-	-	-	-	-	-				
26.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
27.7	-	-	-	-	-	-	1	2	3	5	8	10	12	14	18	22	25	28	23	18	16	19	22	14	12	4	3	4	5	5	4	3	2	
28.7	-	-	-	-	-	-	1	2	3	3	4	6	8	11	15	18	21	19	19	15	17	27	20	15	12	8	4	2	1	3	3	1	-	
29.8	X	X	X	X	X	-	-	1	2	5	8	12	17	19	20	21	17	18	18	18	20	26	15	10	8	3	2	1	-	-	-	X	X	
30.7	X	-	1	3	3	3	2	1	2	7	10	15	18	19	20	20	12	19	18	24	27	20	17	12	8	3	3	2	3	5	5	X	X	

Table 73a

Coronal observations at Climax, Colorado (6374A), east limb

Table 72b

Coronal observations at Climax, Colorado (5303A), west limb

Date GCT	Degrees south of the solar equator															0°	Degrees north of the solar equator																	
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1949																																		
Sept. 1.6	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
4.7	-	-	-	-	-	-	-	-	-	-	5	7	11	12	13	10	9	9	9	10	13	12	6	4	1	-	-	-	-	-	-	-	X	
5.7	-	-	-	-	1	2	3	3	2	3	3	7	10	12	11	11	12	11	11	11	12	11	8	1	-	-	-	-	-	-	-	-		
6.7	-	-	-	-	-	-	-	-	-	1	3	3	8	13	13	11	23	20	13	17	19	20	15	10	1	-	-	-	-	-	-	-	-	
7.6	-	-	-	-	-	-	-	-	-	1	3	4	5	8	10	12	9	11	14	13	14	18	20	15	10	7	1	-	-	-	-	-	-	
8.6	-	-	-	-	-	-	-	-	-	-	1	3	9	11	10	10	9	10	11	11	13	7	6	1	-	-	-	-	-	-	-	-	-	
9.6	-	-	-	-	-	-	-	-	-	-	1	3	4	5	5	4	8	10	11	10	11	10	11	13	12	9	8	6	3	1	-	-	-	
10.8	-	-	-	-	-	-	-	-	-	1	3	4	5	5	4	6	8	8	11	14	14	15	19	8	5	4	3	1	-	-	-	-	-	
11.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
12.9	-	-	-	-	-	-	-	-	-	1	3	4	3	3	1	2	1	14	16	17	15	16	15	17	5	1	-	-	-	-	-	-	-	-
14.7	-	-	-	-	1	2	3	3	4	5	5	6	7	9	12	15	13	12	12	13	15	25	38	40	28	12	8	6	5	4	3	2	1	1
15.7	-	-	-	-	1	2	3	3	4	5	6	14	16	20	25	25	14	12	10	15	20	30	31	25	9	5	5	4	2	-	-	-	-	-
16.7	-	-	-	-	1	2	2	2	3	4	4	3	5	15	23	19	19	15	12	20	32	32	24	12	11	2	3	3	2	1	-	-	-	
17.7	-	-	-	-	-	-	-	-	-	1	3	4	6	9	10	11	11	8	12	14	13	10	11	9	5	1	-	-	-	-	-	-	-	-
18.7	-	X	X	X	X	X	X	X	X	X	1	5	6	9	10	11	11	8	11	14	13	10	9	8	1	-	-	-	-	-	-	-	X	
19.6	-	X	X	-	-	1	2	3	5	9	11	12	12	10	7	8	9	10	10	9	9	6	5	4	3	2	1	-	-	-	-	-		
20.7	X	-	-	-	-	-	1	3	4	5	10	10	10	8	7	7	9	13	15	15	14	11	8	3	2	1	-	-	-	-	-	X		
21.6	-	X	X	X	-	-	1	1	6	6	7	9	9	8	8	6	5	14	15	15	14	7	1	-	-	-	-	-	-	-	-	X		
22.8	-	-	-	1	2	2	2	3	3	5	13	15	19	20	22	25	23	14	13	20	33	32	28	8	5	3	2	2	2	1	-	-		
23.8	-	-	-	-	-	-	-	-	-	1	2	3	5	9	14	13	13	10	11	17	18	15	13	8	4	2	1	-	-	-	-	-		
24.8	-	X	-	-	-	-	-	-	-	-	5	9	11	13	14	14	13	13	13	14	17	18	16	12	10	5	1	-	-	-	-	X		
25.7	-	-	-	-	-	-	1	2	2	2	3	7	10	14	17	20	14	15	17	20	28	15	14	5	2	1	-	-	-	-	-	-		
26.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
27.7	-	-	-	1	2	2	2	3	3	4	5	6	10	18	29	27	20	16	28	23	28	28	22	15	12	7	1	-	-	-	-	-		
28.7	-	X	X	1	2	3	3	4	3	7	8	11	13	20	34	33	25	20	20	22	24	19	17	12	12	7	1	-	-	-	-	-		
29.8	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			
30.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X			

Table 73b

Coronal observations at Climax, Colorado (6374A), west limb

Date GCT	Degrees south of the solar equator															0°	Degrees north of the solar equator																				
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90			
1949																																					
Sept. 1.6	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
4.7	-	-	-	-	1	1	1	2	2	1	1	1	2	1	1	2	1	2	1	2	1	2	1	2	1	1	1	1	1	1	1	1	X				
5.7	-	-	-	-	1	1	1	1	1	1	-	-	1	-	-	5	10	1	1	9	1	1	1	-	-	-	-	-	-	-	-	-	-				
6.7	-	-	-	-	1	1	1	2	1	1	-	-	2	1	-	1	13	3	1	9	8	5	1	-	-	-	-	-	-	-	-	-	-				
7.6	-	-	-	-	1	1	2	2	1	-	-	1	3	8	-	-	14	2	3	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-			
8.6	-	-	-	-	-	-	-	-	-	-	-	1	1	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	-				
9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	6	-	3	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
10.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	10	3	4	2	1	1	-	-	-	-	-	-	-	-	-	-	-	1			
11.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X				
12.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	-	13	3	1	7	8	5	1	1	1	1	1	1	1	1	1	1	1			
14.7	1	1	1	-	1	2	2	3	3	1	1	1	9	8	7	8	1	1	13	3	1	1	12	8	2	-	-	-	-	-	-	-	-	-			
15.7	-	-	-	2	2	3	4	9	5	1	-	1	8	12	15	16	8	4	3	2	22	13	10	5	1	-	-	-	-	-	-	3	3	2	2	2	
16.7	1	1	1	1	1	1	2	3	3	1	1	-	-	10	19	15	3	1	6	3	1	1	12	8	8	1	-	-	-	-	-	1	2	3	3	3	2
17.7	-	-	-	-	-	-	-	-	-	1	1	2	3	5	8	9	1	-	10	3	1	1	3	1	1	-	-	-	-	-	-	-	-	-	-	-	
18.7	-	-	-	-	1	1	1	2	2	3	4	5	5	6	1	1	8	10	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
19.6	-	X	X	1	1	1	2	2	2	1	1	3	6	2	2	2	1	1	5	10	2	-	-	-	-	-	-	-	-	-	-	-	-	1			
20.7	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X			
21.6	-	X	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
22.8	-	-	-	1	1	1	1	2	2	1	-	-	5	1	8	14	5	-	10	2	5	1	-	-	-	-	-	-	-	-	-	-	1	1			
23.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3	4	1	1	3	2	1	-	-	-	-	-	-	-	-	-	-	-	
24.8	-	-	-	1	1	2</																															

Table 74a

Coronal observations at Climax, Colorado (6704A), east limb

Date GCT	Degrees north of the solar equator															0°	Degrees south of the solar equator																		
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
1949	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Sept.	1.6	X	X	X	X	X	X	X	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X
	4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	6.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-		
	7.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-	
	8.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	2	2	1	1	1	1	1	1	-	-	-	-	-	-	-	-	
	9.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	1	1	1	1	-	-	-	-	-	-	-	-	-	
	10.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	1	1	1	1	1	1	-	-	-	-	-	-	-	-	
	11.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	1	1	1	1	1	1	1	1	2	2	2	1	1	-	X	X	X	X	X	
	12.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	1	1	-	-	-	-	-	-	-	-	-	-	
	14.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	
	15.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	2	3	3	2	1	-	-	-	-	-	
	16.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	2	2	2	1	1	-	-	-	-	-	-	-	-	
	17.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	
	18.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	1	1	1	1	1	-	-	-	-	-	-	-	
	19.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	
	20.7	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X		
	21.6	X	X	X	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	22.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	23.8	X	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	24.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
	26.7	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X	X	X
	27.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-
	28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	-	-	-	-	-	-	-	-
	29.8	X	X	X	X	X	-	-	-	-	-	-	-	-	-	1	1	2	2	1	1	1	1	2	2	1	-	-	-	-	-	X	X	X	X
	30.7	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	2	2	1	1	1	1	1	1	1	1	-	-	-	-	X	X	X	X

Table 74b

Coronal observations at Climax, Colorado (6704A), west limb

GRAPHS OF IONOSPHERIC DATA.

Fig. 5. BOSTON, MASSACHUSETTS
42.4°N, 71.2°W AUGUST 1949

Fig. 6. BOSTON, MASSACHUSETTS AUGUST 1949

Fig. 7. SAN FRANCISCO, CALIFORNIA
37.4°N, 122.2°W AUGUST 1949

Fig. 8. SAN FRANCISCO, CALIFORNIA AUGUST 1949

Fig. 17 GUAM I.
13.6°N, 144.9°E AUGUST 1949

Fig. 18. GUAM I. AUGUST 1949

Fig. 19 TRINIDAD, BRIT. WEST INDIES
10.6°N, 61.2°W AUGUST 1949

Fig. 20. TRINIDAD, BRIT. WEST INDIES AUGUST 1949

Fig. 25. LINDAU/HARZ, GERMANY

51.6°N, 10.1°E

JULY 1949

Fig. 26. LINDAU/HARZ, GERMANY

JULY 1949

Fig 27 JOHANNESBURG, U. OF S AFRICA

26.2°S, 28.0°E

JULY 1949

Fig 28 JOHANNESBURG, U. OF S. AFRICA

JULY 1949

Fig. 29. CAPETOWN, U. OF S. AFRICA

34.2°S, 18.3°E

JULY 1949

Fig. 30. CAPETOWN, U. OF S. AFRICA

JULY 1949

Fig. 31. LINDAU/HARZ, GERMANY

51.6°N, 10.1°E

JUNE 1949

Fig. 32. LINDAU/HARZ, GERMANY

JUNE 1949

Fig. 33 WAKKANAI, JAPAN

45.4°N, 141.7°E

JUNE 1949

Fig. 34 WAKKANAI, JAPAN

JUNE 1949

Fig. 35. FUKAURA, JAPAN

40.6°N, 139.9°E

JUNE 1949

Fig. 36. FUKAURA, JAPAN

JUNE 1949

Fig. 37. SHIBATA, JAPAN
37.9°N, 139.3°E JUNE 1949

Fig. 38. SHIBATA, JAPAN JUNE 1949

Fig. 39. TOKYO, JAPAN
35.7°N, 139.5°E JUNE 1949

Fig. 40. TOKYO, JAPAN JUNE 1949

Fig. 41. YAMAKAWA, JAPAN

31.2°N, 130.6°E

JUNE 1949

Fig. 42. YAMAKAWA, JAPAN

JUNE 1949

Fig. 43 CHUNGKING, CHINA

29.4°N, 106.8°E

JUNE 1949

Fig. 44 CHUNGKING, CHINA

JUNE 1949

Fig. 45. WATHEROO, W AUSTRALIA

30.3°S, 115.9°E JUNE 1949

Fig. 46. WATHEROO, W AUSTRALIA

JUNE 1949

Fig. 47. CAPETOWN, U.O.F.S. AFRICA

34.2°S, 18.3°E JUNE 1949

Fig. 48. CAPETOWN, U.O.F.S. AFRICA

JUNE 1949

Fig. 49 CHRISTCHURCH, N.Z.

43.5°S, 172.7°E

JUNE 1949

Fig. 50 CHRISTCHURCH, N.Z.

JUNE 1949

Fig. 51. LANCHOW, CHINA

36.1°N, 103.8°E

MAY 1949

Fig. 52. LANCHOW, CHINA

MAY 1949

Fig. 61. CALCUTTA, INDIA
22.6°N, 88.4°E

APRIL 1949

Fig. 62. CALCUTTA, INDIA

APRIL 1949

Fig. 63. CALCUTTA, INDIA
22.6°N, 88.4°E

MARCH 1949

Fig. 64. CALCUTTA, INDIA

MARCH 1949

Fig. 65. CALCUTTA, INDIA
22.6°N, 88.4°E AUGUST 1948

Fig. 66 CALCUTTA, INDIA AUGUST 1948

Fig. 67. CALCUTTA, INDIA
22.6°N, 88.4°E JULY 1948

Fig. 68 CALCUTTA, INDIA JULY 1948

Fig 69. CALCUTTA, INDIA
22 6°N, 88 4°E JUNE 1948

Fig 70. CALCUTTA, INDIA JUNE 1948

Fig 71. CALCUTTA, INDIA
22.6°N, 88.4°E MAY 1948

Fig 72. CALCUTTA, INDIA MAY 1948

Fig. 73. CALCUTTA, INDIA

22.6°N, 88.4°E

APRIL 1948

Fig. 74. CALCUTTA, INDIA

APRIL 1948

Fig. 75. CALCUTTA, INDIA

22.6°N, 88.4°E

MARCH 1948

Fig. 76. CALCUTTA, INDIA

MARCH 1948

Fig. 85. CALCUTTA, INDIA
22.6°N, 88.4°E

SEPTEMBER 1947

Fig. 86. CALCUTTA, INDIA
SEPTEMBER 1947

Fig. 87. CALCUTTA, INDIA
22.6°N, 88.4°E

AUGUST 1947

Fig. 88. CALCUTTA, INDIA
AUGUST 1947

Fig. 93. CALCUTTA, INDIA
22.6°N, 88.4°E MAY 1947

Fig. 94. CALCUTTA, INDIA MAY 1947

Fig. 95. CALCUTTA, INDIA
22.6°N, 88.4°E APRIL 1947

Fig. 96. CALCUTTA, INDIA APRIL 1947

Index of Tables and Graphs of Ionospheric Datain CRPL-F62

	Table page	Figure page
Baton Rouge, Louisiana		
August 1949	10	44
Bombay, India		
May 1949	14	55
Boston, Massachusetts		
August 1949	10	43
Calcutta, India		
April 1949	15	57
March 1949	15	57
August 1948	15	58
July 1948	15	58
June 1948	15	59
May 1948	15	59
April 1948	16	60
March 1948	16	60
February 1948	16	61
January 1948	16	61
December 1947	16	62
November 1947	16	62
September 1947	17	63
August 1947	17	63
July 1947	17	64
June 1947	17	64
May 1947	17	65
April 1947	17	65
March 1947	18	66
February 1947	18	66
January 1947	18	67
Capetown, Union of S. Africa		
July 1949	12	49
June 1949	13	53
Christchurch, New Zealand		
June 1949	14	54
Chungking, China		
June 1949	13	52
Delhi, India		
May 1949	14	55
Fukaura, Japan		
June 1949	12	50
Guam I.		
August 1949	11	46
Huancayo, Peru		
August 1949	11	47
Johannesburg, Union of S. Africa		
July 1949	12	48

Index (CRPL-F62, continued)

	<u>Table page</u>	<u>Figure page</u>
Lanchow, China		
May 1949	14	54
Lindau/Harz, Germany		
July 1949	12	48
June 1949	12	49
Madras, India		
May 1949	14	56
Maui, Hawaii		
August 1949	11	45
Oslo, Norway		
August 1949	10	42
Palmyra I.		
August 1949	11	47
San Francisco, California		
August 1949	10	43
San Juan, Puerto Rico		
August 1949	11	45
Shibata, Japan		
June 1949	13	51
Tiruchirapalli, India		
May 1949	14	56
Tokyo, Japan		
June 1949	13	51
Trinidad, British West Indies		
August 1949	11	46
Wakkanai, Japan		
June 1949	12	50
Washington, D. C.		
September 1949	10	42
Watheroo, W. Australia		
June 1949	13	53
White Sands, New Mexico		
August 1949	10	44
Yamakawa, Japan		
June 1949	13	52

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Weekly:

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.)

CRPL-F. Ionospheric Data.

Quarterly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions.

IRPL-R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5. Criteria for Ionospheric Storminess.

R6. Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.

R12. Short Time Variations in Ionospheric Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

R15. Predicted Limits for F2-layer Radio Transmission Throughout the Solar Cycle.

R17. Japanese Ionospheric Data—1943.

R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.

R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.

R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

R26. The Ionosphere as a Measure of Solar Activity.

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.

R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

R33. Ionospheric Data on File at IRPL.

R34. The Interpretation of Recorded Values of fEs.

R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

T1. Radar operation and weather. (Superseded by JANP 101.)

T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

*Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC-14 series.

