Homework 5 Sections 2.2, 2.3

Jonathan Petersen A01236750

February 8th, 2016

SECTION 2.2

4. Solve $x^4 = [1]$ in \mathbb{Z}_5

$$x^4 = [1]$$
 \mathbb{Z}_5
$$[0]^4 = [0] * [0] * [0] * [0] = 0 * 0 * 0 * 0 = 0 = [0]$$

$$[1]^4 = [1] * [1] * [1] * [1]$$

= 1 * 1 * 1 * 1 = 1 = [1]

$$[2]^4 = [2] * [2] * [2] * [2]$$

$$= 2 * 2 * 2 * 2 = 2$$

$$= 16 = 3 * 5 + 1 = [1]$$

$$[3]^4 = [3] * [3] * [3] * [3]$$

= 3 * 3 * 3 * 3 = 3
= 81 = 16 * 5 + 1 = [1]

$$[4]^{4} = [4] * [4] * [4] * [4]$$

$$= 4 * 4 * 4 * 4 = 4$$

$$= 256 = 51 * 5 + 1 = [1]$$

Therefore, [1], [2], [3], [4] are all solutions.

8. Solve $x^3 + x^2 = [2]$ in \mathbb{Z}_{10}

$$x^3 + x^2 = [2] \qquad \mathbb{Z}_1 0$$

$$[0]^3 + [0]^2 = [0] * [0] * [0] + [0] * [0]$$
$$= [0]$$

$$[1]^{3} + [1]^{2} = [1] * [1] * [1] + [1] * [1]$$
$$= [1] + [1]$$
$$= [2]$$

$$[2]^3 + [2]^2 = [2] * [2] * [2] + [2] * [2]$$

= $[8] + [4]$
= $[2]$

$$[3]^3 + [3]^2 = [3] * [3] * [3] + [3] * [3]$$

= $[27] + [9]$
= $[6]$

$$[4]^3 + [4]^2 = [4] * [4] * [4] + [4] * [4]$$

= $[64] + [16]$
= $[0]$

$$[5]^3 + [5]^2 = [5] * [5] * [5] + [5] * [5]$$

= $[125] + [25]$
= $[0]$

$$[6]^3 + [6]^2 = [6] * [6] * [6] + [6] * [6]$$

= $[216] + [36]$
= $[2]$

$$[7]^3 + [7]^2 = [7] * [7] * [7] + [7] * [7]$$

= $[343] + [49]$
= $[2]$

$$[8]^3 + [8]^2 = [8] * [8] * [8] + [8] * [8]$$

= $[512] + [64]$
= $[6]$

$$[9]^3 + [9]^2 = [9] * [9] * [9] + [9] * [9]$$

= $[729] + [81]$
= $[0]$

Therefore [1], [2], [6], [7] are all solutions.

14. Solve the following.

a.
$$x^2 + x = [0]$$
 in \mathbb{Z}_5

$$[0]^{2} + [0] = [0] * [0] + [0] = [0]$$

$$[1]^{2} + [1] = [1] * [1] + [1] = [1] + [1] = [2]$$

$$[2]^{2} + [2] = [2] * [2] + [2] = [4] + [2] = [1]$$

$$[3]^{2} + [3] = [3] * [3] + [3] = [9] + [3] = [2]$$

$$[4]^{2} + [4] = [4] * [4] + [4] = [16] + [4] = [0]$$

Therefore, [0], [4] are solutions.

b.
$$x^2 + x = [0]$$
 in \mathbb{Z}_6

$$[0]^{2} + [0] = [0] * [0] + [0] = [0]$$

$$[1]^{2} + [1] = [1] * [1] + [1] = [1] + [1] = [2]$$

$$[2]^{2} + [2] = [2] * [2] + [2] = [4] + [2] = [0]$$

$$[3]^{2} + [3] = [3] * [3] + [3] = [9] + [3] = [0]$$

$$[4]^{2} + [4] = [4] * [4] + [4] = [16] + [4] = [2]$$

$$[5]^{2} + [5] = [5] * [5] + [5] = [25] + [5] = [0]$$

Therefore, [0], [2], [3], [5] are solutions.

c. If p is prime, prove that the only solutions of $x^2 + x = [0]$ in \mathbb{Z}_p are [0] and [p-1].

By Theorem 2.8 and the fact that

$$x^2 + x = [0]$$
$$x(x+1) = [0]$$

we know that either x = [0] or x + 1 = [0] in \mathbb{Z}_p . Solving for x this shows us that the solutions to $x^2 + x = [0]$ must be x = [0] or

$$x = [0] - 1$$

= $[p] - [1]$
= $[p - 1]$

and so the statement holds

16.a. Find all [a] in \mathbb{Z}_5 for which the equation [a] *x = [1] has a solution.

$$[a] = [0] \implies [0]x = [1]$$
 No Solution
$$[a] = [1] \implies [1]x = [1]$$
 Solution at $x = [1]$
$$[a] = [2] \implies [2]x = [1]$$
 Solution at $x = [3]$
$$[a] = [3] \implies [3]x = [1]$$
 Solution at $x = [2]$
$$[a] = [4] \implies [4]x = [1]$$
 Solution at $x = [4]$

Therefore, [a] * x = [1] has solutions at values [1], [2], [3], [4].

SECTION 2.3

1.b. Find all the units in \mathbb{Z}_8 .

As discussed in class, Units and Zero Divisors partition the nonzero elements of \mathbb{Z}_n , so every nonzero element of \mathbb{Z}_8 must be either a Zero Divisor or a Unit. We then find that:

[0] is not a nonzero element.

 $[1] = [1] * [1] \implies [1]$ is a Unit.

 $[0] = [4] * [2] \implies [2]$ is a Zero Divisor.

 $[1] = [3] * [3] \implies [3]$ is a Unit.

 $[0] = [2] * [4] \implies [4]$ is a Zero Divisor.

 $[1] = [5] * [5] \implies [5]$ is a Unit.

 $[0] = [4] * [6] \implies [6]$ is a Zero Divisor.

 $[7] = [7] * [7] \implies [7]$ is a Unit.

Therefore, [1], [3], [5], [7] are all units in \mathbb{Z}_8 .

2.b. Find all the Zero Divisors in \mathbb{Z}_8 .

By the previous problem, [2], [4], [6] are all Zero Divisors.

4.c. How many solutions does [6]x = [4] have in \mathbb{Z}_9 ?

$$[6][0] = [0]$$

$$[6][1] = [6]$$

$$[6][2] = [3]$$

$$[6][3] = [0]$$

$$[6][4] = [6]$$

$$[6][5] = [3]$$

$$[6][6] = [0]$$

$$[6][7] = [6]$$

$$[6][8] = [3]$$

Therefore, [6]x = [4] has no solutions in \mathbb{Z}_9 .

a. Give three examples of equations in the form [a]x = [b] in \mathbb{Z}_{12} that have no nonzero solutions.

$$[2]x = [1] \tag{1}$$

$$[3]x = [1] \tag{2}$$

$$[4]x = [1] \tag{3}$$

b. For each example above, does the equation [a]x = [0] have a nonzero solution?

Yes.

$$[2][6] = [0]$$

$$[3][4] = [0]$$

$$[4][3] = [0]$$

- 15. Use Exercise 13 to solve the following equations:
 - a. [15]x = [9] in \mathbb{Z}_{18}

Given Exercise 13, we know that for $a, b, n \in \mathbb{Z}$, n > 0, the solutions to [a]x = [b] in \mathbb{Z}_n are given by the set:

$$\{[ub_1 + 0n_1], [ub_1 + n_1], \dots, [ub_1 + (d-1)n_1]\}$$

 $d = au + nv$ $u, v \in \mathbb{Z}$

$$d = au + nv$$
 $u, v \in \mathbb{Z}$

$$b = db_1$$
 $n = dn_1$ $a = da_1$

Applying this property to our problem, we see that

$$n = 18$$
 $a = 15$ $b = 9$
 $dn_1 = 18$ $da_1 = 15$ $db_1 = 9$
 $d = 15u + 18v$
 $d = 3(5u + 6v)$
 $d = 3$ $u = -1$ $v = 1$
 $18 = 3n_1 \implies n_1 = 6$
 $15 = 3a_1 \implies a_1 = 5$
 $9 = 3b_1 \implies b_1 = 3$

Therefore, [(-1)(3)], [(-1)(3) + 6], [(-1)(3) + (2)6] are all solutions. Simplifying the terms, we find the solutions to be [15], [3], [9].

b. [25]x = [10] in \mathbb{Z}_{65}

Following the above, we have n = 65, a = 25, b = 10. Therefore:

$$d = 25u + 65v$$

$$= 5(5u + 7v)$$

$$= 5 u = 3 v = -2$$

So then

$$5n_1 = 65 \implies n_1 = 7$$

$$5a_1 = 25 \implies a_1 = 5$$

$$5b_1 = 10 \implies b_1 = 2$$

and

$$[3(2) + 0(7)] = [6]$$

$$[3(2) + 1(7)] = [13]$$

$$[3(2) + 2(7)] = [20]$$

$$[3(2) + 3(7)] = [27]$$

$$[3(2) + 4(7)] = [34]$$

are our solutions.