EXPERIMENT #2

Finding Step Response Parameters

This handout is to be shared with the students to find parameters in Experiment 3

2nd Order Circuits with a Sinusoidal Output

Output voltage as the form of $v_o(t) = Ae^{-\sigma t}\sin(\omega t + \theta) + B$

1. Determine the period (T) using crossing points with B

$$T = T2 - T1 = 135.812 \mu s$$
, $\omega = \frac{2\pi}{T} = 46,263 \text{ rad/s}$

2. Measure voltage at quarter and 3-quarter cycle to determine σ and A

Quarter cycle: $v_{o1} = v_o\left(\frac{T}{4}\right) = Ae^{-\sigma t}\sin\left(\frac{\pi}{2}\right) = Ae^{-\frac{\sigma T}{4}}$

3-quarter cycle: $v_{o2} = v_o\left(\frac{3T}{4}\right) = Ae^{-\sigma t}\sin\left(\frac{3\pi}{4}\right) = -Ae^{-\frac{3\sigma T}{4}}$

Exponential decay: $\sigma = \frac{2}{T} \ln \left(-\frac{v_{o1}}{v_{o2}} \right)$ (1)

Using Equation (1), $\sigma = 12,463$

October 14, 2020 Prepared for ELE 302 TAs

1st Order Circuits with an Exponential Output

There are two possible outputs: $v_o(t) = A\{1 - e^{-\frac{t}{\tau}}\}$ or $v_o(t) = Ae^{-\frac{t}{\tau}}$

1. Find A

- 2. Calculate the voltage at $t = \tau$ $v_o(t = \tau) = A\{1 e^{-1}\} = 0.63A = 6.31V$ $v_o(t = \tau) = Ae^{-1} = 0.37A = 3.61 \text{ V}$
- 3. Find when the voltage reaches the calculated value to get τ . (NOTE: There is limitation on the resolution. Use the closest value with the cursor arrows.)

