

Feed Forward Network

Statistical Language Model: How likely is the next word?

Ein Elektroauto ist ein
P(mit|Automobil)
Automobil

Feed Forward Network

Feed Forward Network

Feed Forward Network

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Ein Elektroauto ist ein Automobil mit elektrischem Antrieb.

Same computational issues as in computing word embedding. Solutions are:

4

Feed Forward Network

Statistical Language Model: How likely is the next word?

Ein Elektroauto ist ein Automobil mit elektrischem Antrieb.

Same computational issues as in computing word embedding. Solutions are:

- Hierarchical Softmax
- "moving to binary classifiers"
- Negative Sampling etc.

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

4

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Feed Forward Network

Statistical Language Model: How likely is the next word?

Remember: we need to approximate the softmax or use some "tricks".

Jordan Recurrent Neural Network

Statistical Language Model: How likely is the next word?

Remember: we need to approximate the softmax or use some "tricks".

Minimal Jordan RNN Equation:

$$h_t = \sigma_h(W_h x_t + U_h y_{t-1} + b_h)$$

$$oldsymbol{y_t} = \sigma_y(W_y h_t + b_y)$$

Elman Recurrent Neural Network

Elman Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Statistical Language Model: How likely is the next word?

Note: The RNN predicts one output for each new input.

Recurrent Neural Network

Recurrent Neural Network

Recurrent Neural Network

Statistical Language Model: How likely is the next word?

Note: The RNN is needs to store some values between inference steps.

Recurrent Neural Network

Statistical Language Model: How likely is the next word?

Note: The input sequence length is the same as the output sequence length.

Recurrent Neural Network

Skip-gram Recurrent Neural Network

Statistical Language Model: How likely is the next-next word?

Skip-gram Recurrent Neural Network

Statistical Language Model: How likely is the next-next word?

Skip-gram Recurrent Neural Network

Two stacked Recurrent Neural Network

Stack of Recurrent Neural Networks

Two stacked Recurrent Neural Network

Stack of Recurrent Neural Networks

Benchmark results

WikiText Long Term Dependency Language Modeling

Publication	Model	Parameters	Validation	Testing
Merity et al. 2016	Zoneout + Variational LSTM	20M	108.7	100.9
Grave et al. 2016	LSTM	-	-	99.3
Merity et al. 2016	Variational LSTM (code from <u>Gal 2015</u>)	20M	101.7	96.3
Grave et al. 2016	Neural cache model (size = 100)	-	-	81.6
Merity et al. 2016	Pointer LSTM (window = 100)	21M	84.8	80.8
Grave et al. 2016	Neural cache model (size = 2000)	-	-	68.9

Constituent Analysis

Part-Of-Speech Tagging with Recurrent Neural Network

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Constituent Analysis

Part-Of-Speech Tagging with Bi-Directional Recurrent Neural Network

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Part-Of-Speech Tagging with Bi-Directional Recurrent Neural Network

=> Munich | Ingolstadt | ...

=> me|I|you|it|...

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Typically done Hidden Marko		Verb Noun Det Noun Det
Determiner	=> the a an this these that	
Noun	=> flights breeze tri p morning	The idea of basing a grammar on constituent structure date back to the
Verb	<pre>=> is prefer like need want fly </pre>	psychologist Wilhelm Wundt (1900) but

was not formalized until **Chomsky** (1956) and, independently, Backus (1959).

Proper Noun

Pronoun

Part-Of-Speech Tagging with Bi-Directional Recurrent Neural Network

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Verb Noun Typically done with a or with Deep Neural Networks Det Noun Det Hidden Markov Model => the | a | an | this | these | that | ... **Det**erminer => flights|breeze|tri p|morning|... Noun => is/prefer/Like/need/want/fly/... Verb => Munich | Ingolstadt | ... Proper Noun => me|I|you|it|... **Pro**noun Fin ein Elektroauto Automobil

Part-Of-Speech Tagging with Recurrent Neural Network

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Part-Of-Speech Tagging with Bi-Directional Recurrent Neural Network

Assigns parts of speech to each word (and other token), such as noun, verb, adjective, etc., although generally computational applications use more fine-grained POS tags like 'noun-plural'.

Sentence Structure

What is a correct sentence?

Syntax is the study of sentence structure and the rules of grammar. While people can do what they want with language (and many often do), syntax helps common users of a language understand how to organize words so that they make the most sense.

"Ein Kaninchen jagte den Hund über die Weide."

Syntactically correct, but semantically not.

"Der Hund jagte ein Kaninchen durch die Weide"
Syntactically and semantically correct.

Sentence Structure Sentence ambiguity

Syntax is the study of sentence structure and the rules of grammar. While people can do what they want with language (and many often do), syntax helps common users of a language understand how to organize words so that they make the most sense.

"The professor said on Monday he would give an exam."

This sentence means either that

"it was on Monday that the professor told the class about the exam"

or that

"the exam would be given on Monday".

Sentence Structure Sentence ambiguity

Syntax is the study of sentence structure and the rules of grammar. While people can do what they want with language (and many often do), syntax helps common users of a language understand how to organize words so that they make the most sense.

"The chicken is ready to eat."

This sentence either means the chicken

"is cooked and can be eaten now"

or the chicken

"is ready to be fed".

Sentence Structure Humor

Syntax is the study of sentence structure and the rules of grammar. While people can do what they want with language (and many often do), syntax helps common users of a language understand how to organize words so that they make the most sense.

"It's a small world, but I wouldn't want to paint it."

—American comedian Steven Wright

The ambiguity here is lies within the phrase "small world." While the adage, "It's a small world" is generally accepted to have one of several accepted figurative meanings (what a coincidence; we're not so different from one another, etc.), Wright has chosen to take the phrase literally. Comparatively speaking, the world—as in the Earth—may not be as large as other planets, but it would still be a <u>Herculean</u> chore to paint it.

Sentence Structure Humor

Syntax is the study of sentence structure and the rules of grammar. While people can do what they want with language (and many often do), syntax helps common users of a language understand how to organize words so that they make the most sense.

"I shot an elephant in my pajamas".

It has two possible interpretations:

one where the man is wearing his pajamas while shooting the elephant, and the other where the elephant is inside the man's pajamas.

Determining Sentence Constituents

The aim and result of the constituent analysis is the decomposition of a linguistic expression into a hierarchically defined sequence of constituents.

I prefer a morning flight Sentence

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Ziel und Ergebnis der Konstituentenanalyse ist die Zerlegung eines sprachlichen Ausdrucks in eine hierarchisch definierte Abfolge von Konstituenten.

Determining Sentence Constituents

Ziel und Ergebnis der Konstituentenanalyse ist die Zerlegung eines sprachlichen Ausdrucks in eine hierarchisch definierte Abfolge von Konstituenten.

Determining Sentence Constituents

Determining Sentence Constituents

Determining Sentence Constituents

Divides the sentences into single phrasal constituents such as phrases, words, or morphemes. It's a usually a context-free grammar and highly hierarchical. 4.5k different rules for expanding Verb Phrase in English. It discover its deep meaning and explore alternative ways of expressing the meaning

```
Sentence => Noun Phrase + Verb Phrase

Verb Phrase => Verb + Noun Phrase

Noun Phrase => Pronoun | Determiner + Nominal

Nominal => Noun | Nominal + Noun

Sentence Constituents
(zu Deutsch: Konstituente)
```

Recap Linguistic Structure

Recap Linguistic Structure


```
Sentence => Noun Phrase + Verb Phrase

Verb Phrase => Verb + Noun Phrase

Noun Phrase => Pronoun | Determiner + Nominal

Nominal => Noun | Nominal + Noun
```

Recap

Linguistic Structure

Last week

- constituency analysis,
- POS


```
Sentence => Noun Phrase + Verb Phrase

Verb Phrase => Verb + Noun Phrase

Noun Phrase => Pronoun | Determiner + Nominal

Nominal => Noun | Nominal + Noun
```

Recap

Linguistic Structure

Last week

- constituency analysis,
- POS


```
Sentence => Noun Phrase + Verb Phrase

Verb Phrase => Verb + Noun Phrase

Noun Phrase => Pronoun | Determiner + Nominal

Nominal => Noun | Nominal + Noun
```

Remember

"Telling which spans are constituents (e.g. [The man] is here.) and what kind of constituent it is (e.g. [The man] is a noun phrase) on the basis of a context-free grammar (CFG) which encodes rules for constituent formation and merging"

- https://en.wikipedia.org/wiki/Syntactic parsing (computational linguistics)#Constituency parsing
- Chapter 17, https://web.stanford.edu/~jurafsky/slp3/

There are further structures related to meaning:

- semantic roles,
- word senses,
- entity relations,
- events...

Dependency Parsing Motivation

Scientists count whales from space

Dependency Parsing Motivation

Scientists count whales from space

Image from: https://youtu.be/PSGIodTN3KE?t=1685

Dependency Parsing Motivation

Scientists count whales from space

Image from: https://youtu.be/PSGlodTN3KE?t=1685

Dependency Parsing What is it?

Dependency Parsing What is it?

Dependency Parsing

Example, restructured

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

Syntax of the sentence is expressed in terms of *dependencies* between words

Dependency Parsing

And directed graphs

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

Syntax of the sentence is expressed in terms of *dependencies* between words

directed, labeled typed arcs from heads to dependents

Dependency Parsing

Dependence Tree

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

Dependence tree

- = directed graph that satisfies:
- 1. There is a single designated root node that has no incoming arcs.
- 2. With exception of the root node, each vertex has exactly one incoming arc.
- 3. There is a unique path from the root node to each vertex in V.

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

This is done with a grammar; but DNNs achieve promising results, too.

Dependency Parsing Word Order

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

"free word order languages" such as Polish: These languages don't impose a specific order to the words in a sentence.

https://www.baeldung.com/cs/constituency-vs-dependency-parsing

Subject, Verb, Object?

Word order around the world

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

"free word order languages" such as Polish: These languages don't impose a specific order to the words in a sentence.

"Due to the nature of the underlying grammars, dependency parsing performs better than constituency in this kind of scenario."

Dependency Parsing What is it?

The task of analyzing the grammatical structure of a sentence and establishing the relationships between "head" words and the words which modify those heads.

It makes it easy to extract

subject-verb-object triples (Who did what to whom)

that are often

indicative of semantic relations between predicates.

Some Dependency Relations

Clausal Argument Relations Description

Nominal subject Direct object Indirect object Clausal complement

Nominal modifier Adjectival modifier Numeric modifier Appositional modifier

Prepositions, postpositions and other case markers

Coordinating conjunction

Further Relation Examples

		NGUDI	Maminal auhia
Relation	Examples with <i>head</i> and dependent	OBJ	Nominal subject
	1	IOBJ	Indirect object
NSUBJ	United canceled the flight.	CCOMP Nominal Modifier Relations	Clausal compl Description
ODI	United <i>diverted</i> the flight to Reno.	NMOD	Nominal modi
OBJ	Office aiverted the mght to Keno.	AMOD	Adjectival mod
	We <i>booked</i> her the first flight to Miami.	NUMMOD	Numeric modi
	we booked her the first inght to Miann.	APPOS	Appositional n
IOBJ	We booked her the flight to Miami.	DET	Determiner
ЮБЈ	we booked her the hight to Miann.	Other Notable Relations	Prepositions, p
NMOD	We took the morning <i>flight</i> .	CONJ	Description Conjunct
NMOD	we took the morning jugiu.	CC	Coordinating of
AMOD	Book the cheapest <i>flight</i> .		Coordinating
NUMMOD	Before the storm JetBlue canceled 1000 fli	ghts.	
APPOS	United, a unit of UAL, matched the fares.		
DET	The <i>flight</i> was canceled.		
	Which <i>flight</i> was delayed?		
CONJ	We <i>flew</i> to Denver and drove to Steamboar	·•	
CC	We flew to Denver and drove to Steamboa	t.	
CASE	Book the flight through <i>Houston</i> .		

Tables from Section 18.1: https://web.stanford.edu/~jurafsky/slp3/

Dependency Parsing Methods

- Transition-based methods
- Graph-based methods

More about those techniques -> chapter 17 in Jurafsky

Dependency Parsing or Constituent Analysis

4

Recurrent Neural Networks

A tree can be represented as a sequence of nodes.

This sequence of nodes can be learned by an RNN.

Dependency Parsing or Constituent Analysis

Recurrent Neural Networks

4

morning

A tree can be represented as a sequence of nodes.

This sequence of nodes can be learned by an RNN.

Dependency Parsing or Constituent Analysis

Recurrent Neural Networks

4

morning

A tree can be represented as a sequence of nodes.

This sequence of nodes can be learned by an RNN.

Interested in learning tree structures with DNNs?

Dependency Parsing What is it good for?

- Extract Relations (open information extraction)
 - ⇔ build Knowledge bases from text
- for building Q&A systems

Dependency Parsing

Further Resources

- Dependency Parser are often evaluated against Penn Treebank (PTB) data set
- https://github.com/sebastianruder/NLP-progress/blob/master/english/dependency_parsing.md
- <u>UD</u>: project that is developing cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective

