WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/62, 15/70, 15/74, 1/21, A61K
39/08 // (C12N 1/21, C12R 1:19, 1:42)

A1 (11) International Publication Number:

WO 95/20665

(43) International Publication Date:

3 August 1995 (03.08.95)

(21) International Application Number:

PCT/GB95/00196

(22) International Filing Date:

31 January 1995 (31.01.95)

(30) Priority Data:

9401795.1

31 January 1994 (31.01.94)

GB

(71) Applicant (for all designated States except US): MEDEVA HOLDINGS B.V. [NL/NL]; Churchill-Laan 223, NL-1078 ED Amsterdam (NL).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KHAN, Mohammed, Anjam [GB/GB]; University of Newcastle, The Dept. of Microbiology Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH (GB). CHATFIELD, Steven, Neville [GB/GB]; Imperial College of Science & Technology, Dept. of Biochemistry, Medeva Vaccine Research Unit, London SW7 2AY (GB). LI, Jingli [CN/GB]; Imperial College of Science & Technology, Dept. of Biochemistry, Medeva Vaccine Research Unit, London SW7 2AY (GB).
- (74) Agents: HUTCHINS, Michael, Richard et al.; Fry Heath & Spence, The Old College, 53 High Street, Horley, Surrey RH6 7BN (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

(54) Title: EXPRESSION OF HETEROLOGOUS PROTEINS IN ATTENUATED BACTERIA USING THE HTRA-PROMOTERS

(57) Abstract

The invention provides a DNA construct comprising the <a href="https://https:/

Ø

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
ВВ	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	, SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	· LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tehago
DK	Denmark	· MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI.	Finland	ML	Mali	U Z	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA ·	Gabon		*		

WO 95/20665 PCT/GB95/00196

1

VACCINES

EXPRESSION OF HETEROLOGOUS PROTEINS IN ATTENUATED BACTERIA USING THE HTRA-PROMOTERS.

This invention relates to DNA constructs, replicable expression vectors containing the constructs, attenuated bacteria containing the constructs and vaccines containing the said bacteria.

In recent years, there has emerged a new generation of live oral salmonella vaccines based upon strains of Salmonella which have been attenuated by the introduction of a non-reverting mutation in a gene in the aromatic biosynthetic pathway of the bacterium. Such strains are disclosed, for example, in EP-A-0322237. The aforesaid live oral salmonella vaccines are showing promise as vaccines for salmonellosis in man and animals, and they can also be used effectively as carriers for the delivery of heterologous antigens to the immune system. Combined salmonella vaccines have been used to deliver antigens from viruses, bacteria, and parasites, eliciting secretory, humoral and cell-mediated immune responses to the recombinant antigens. Combined salmonella vaccines show great potential as single dose oral

multivaccine delivery systems [C. Hormaeche et al, FEMS Symposium No. 63, Plenum, New York; pp 71-83, 1992].

There are problems to be overcome in the development of combined salmonella vaccines. A major consideration is obtaining a high level of expression of the recombinant antigen in the salmonella vaccine so that it will be sufficient to trigger an immune response. However, unregulated high level expression of foreign antigens can be toxic and affect cell viability [I. Charles and G. Dougan, TIBTECH 8, pp 117-21, 1990], rendering the vaccine ineffective or causing loss of the recombinant DNA. Several possible solutions to this problem have been described, such as expression from plasmids carrying essential genes, "on-off" promoters or incorporation of the foreign genes into the salmonella chromosome.

An alternative approach to overcoming the aforesaid problem would be to use a promoter which is inducible in vivo, and one such promoter is the <u>E.coli</u> nitrite reductase promoter nirB which is induced under anaerobiosis. Vaccine compositions containing bacteria transformed with constructs comprising the <u>nirB</u> promoter are described in our earlier International Patent Application PCT/GB93/01617.

The present invention relates to the preparation of DNA constructs containing a different inducible promoter, namely the promoter for the https://doi.org/10.1001/journal.org/ gene which encodes a stress induced protein.

WO 95/20665 PCT/GB95/00196

3

The <a href="https://h

Accordingly, in a first aspect, the invention provides a DNA construct comprising the <a href="https://https:/

In one embodiment, the invention provides a DNA construct as hereinbefore defined wherein the <a href="https://https:/

The proteins making up the fusion may be linked by means of a flexible hinge region.

In a further aspect, the invention provides a DNA construct comprising the <a href="https://ht

In a further aspect, the invention provides a replicable expression factor, suitable for use in bacteria, containing a DNA construct as hereinbefore defined.

In another aspect, the invention provides a fusion protein, preferably in substantially pure form, the fusion protein being expressed by a construct as hereinbefore

1

defined.

In a further aspect, the invention provides a process for the preparation of an attenuated bacterium which comprises transforming an attenuated bacterium with a DNA construct as hereinbefore defined.

In a still further aspect, the invention provides a host cell, such as a bacterial cell, containing a DNA construct as hereinbefore defined. The DNA construct may be present in extra-chromosomal form, e.g. in a plasmid, or may be integrated into the host (e.g. bacterial) chromosome by methods known per se.

The invention also provides a vaccine composition comprising an attenuated bacterium as hereinbefore defined, or a fusion protein expressed therefrom, and a pharmaceutically acceptable carrier.

The first and second proteins are preferably heterologous proteins and in particular can be polypeptide immunogens; for example they may be antigenic sequences derived from a virus, bacterium, fungus, yeast or parasite. In particular, it is preferred that the first said protein is an antigenic sequence comprising tetanus toxin fragment C or epitopes thereof.

The second protein is preferably an antigenic determinant of a pathogenic organism. For example, the antigenic determinant may be an antigenic sequence derived from a virus, bacterium, fungus, yeast or parasite.

5

Examples of viral antigenic sequences for the first and/or second heterologous proteins are sequences derived from a type of human immunodeficiency virus (HIV) such as HIV-1 or HIV-2, the CD4 receptor binding site from HIV, for example from HIV-1 or -2, hepatitis A, B or C virus, human rhinovirus such as type 2 or type 14, Herpes simplex virus, poliovirus type 2 or 3, foot-and-mouth disease virus (FMDV), rabies virus, rotavirus, influenza virus, coxsackie virus, human papilloma virus (HPV), for example the type 16 papilloma virus, the E7 protein thereof, and fragments containing the E7 protein or its epitopes; and simian immunodeficiency virus (SIV).

Examples of antigens derived from bacteria are those derived from Bordetella pertussis (e.g. P69 protein and filamentous haemagglutinin (FHA) antigens), <u>Vibrio cholerae</u>, <u>Bacillus</u> anthracis, and E.coli antigens such as E.coli heat Labile toxin B subunit (LT-B), <u>E.coli</u> K88 antigens, enterotoxigenic E.coli antigens. Other examples of antigens include the cell surface antigen CD4, Schistosoma mansoni P28 glutathione S-transferase antigens (P28 antigens) and antigens flukes, mycoplasma, roundworms, tapeworms, Chlamydia trachomatis, and malaria parasites, eg. parasites of the genus plasmodium or babesia, for example Plasmodium falciparum, and peptides encoding immunogenic epitopes from the aforementioned antigens.

Particular antigens include the full length Schistosoma

WO 95/20665 PCT/GB95/00196

6

mansoni P28, and oligomers (e.g. 2, 4 and 8mers) of the immunogenic P28 as 115-131 peptide (which contains both a B and T cell epitope), and human papilloma virus E7 protein, Herpes simplex antigens, foot and mouth disease virus antigens, simian immunodeficiency virus antigens, and the diphtheria toxin antigens, e.g. the diphtheria toxin ganglioside binding region.

As used herein, references to the <a href="https://htt

In the constructs of the present invention, the DNA sequence may encode a fusion protein of two or more proteins in which adjacent proteins are separated by a hinge region. The hinge region is a region designed to promote the independent folding of both the first and second proteins by providing both spatial and temporal separation between the domains.

The hinge region typically is a sequence encoding a high proportion of proline and/or glycine amino acids. The hinge region may be composed entirely of proline and/or glycine amino acids. The hinge region may comprise one or more glycine-proline dipeptide units.

The hinge region may, for example, contain up to about

7

fifteen amino acids, for example at least 4 and preferably 6-14 amino acids, the number of amino acids being such as to impart flexibility between the first and second proteins.

In one embodiment, the hinge region can correspond substantially to the hinge domain of an antibody immunoglobulin. The hinge regions of IgG antibodies in particular are rich in prolines [T.E. Michaelson et al. J. Biol. Chem. 252, 883-9 1977], which are thought to provide a flexible joint between the antigen binding and tail domains.

Without wishing to be bound by any theory, the prolines are thought to form the rigid part of the hinge as the ring structure characteristic of this amino acid hinders rotation around the peptide bond that connects the proline residue with an adjacent amino acid. This property is thought to prevent proline, and adjacent residues, from adopting the ordered structure of an alpha helix or beta strand. Flexibility is thought to be imparted by glycine, the simplest amino acid, with very limited steric demands. Glycine is thought to function as a flexible elbow in the hinge. Other amino acids may be substituted for glycine, particularly those without bulky side-chains, such as alanine, serine, asparagine and threonine.

In one preferred embodiment, the hinge region is a chain of four or more amino acids defining the sequence

-[X]₉-Pro-[Y]_q-Pro-[Z]₋-

wherein Pro is proline, X and Y are each glycine, or an amino

acid having a non-bulky side chain; Z is any amino acid; p is a positive integer; q is a positive integer of from one to ten; and r is zero or a positive integer greater than zero.

The hinge region can be a discrete region heterologous to both the first and second proteins or can be defined by a carboxy-end portion of the first protein or an amino-end portion of the second protein.

In a most preferred aspect, the present invention provides a DNA molecule comprising the <a href="https://http

In another preferred aspect of the invention, there is provided a replicable expression vector, suitable for use in bacteria, containing the <a href="https://

In a further aspect, the invention provides a DNA construct comprising the <a href="https://ht

WO 95/20665 PCT/GB95/00196

9

The said protein is preferably an antigenic protein as hereinbefore defined, and in particular is the TetC fragment or epitopes thereof.

Stable expression of the first and second heterologous proteins linked by the hinge region can be obtained in vivo. The heterologous proteins can be expressed in an attenuated bacterium which can thus be used as a vaccine.

The attenuated bacterium may be selected from the genera Salmonella, Bordetella, Vibrio, Haemophilus, Neisseria and Yersinia. Alternatively, the attenuated bacterium may be an attenuated strain of enterotoxigenic Escherichia coli. In particular the following species can be mentioned: S.typhi the cause of human typhoid; S.typhimurium - the cause of salmonellosis in several animal species; S.enteritidis - a cause of food poisoning in humans; S.choleraesuis - a cause of salmonellosis in pigs; Bordetella pertussis - the cause of whooping cough; Haemophilus influenzae a cause of meningitis; Neisseria gonorrhoeae - the cause of gonorrhoea; and Yersinia - a cause of food poisoning.

Attenuation of the bacterium may be attributable to a non-reverting mutation in a gene in the aromatic amino acid biosynthetic pathway of the bacterium. There are at least ten genes involved in the synthesis of chorismate, the branch point compound in the aromatic amino acid biosynthetic pathway. Several of these map at widely differing locations on the bacterial genome, for example aroA (5-

enolpyruvylshikimate-3-phosphate synthase), <u>aroC</u> (chorismate synthase), <u>aroD</u> (3-dihydroquinate dehydratase) and <u>aroE</u> (shikimate dehydrogenase). A mutation may therefore occur in the <u>aroA</u>, <u>aroC</u>, <u>aroD</u>, or <u>aroE</u> gene.

Preferably, however, an attenuated bacterium harbours a non-reverting mutation in each of two discrete genes in its aromatic amino acid biosynthetic pathway; or harbours a non-reverting mutation in its aromatic biosynthetic pathway and a non-reverting mutation in a regulatory gene such as https://doi.org/line.1007/html, OmpR or OsmC. Examples of suitable attenuated bacteria are disclosed in, for example, EP-A-0322237, and EP-A-0400958.

An attenuated bacterium containing a DNA construct according to the invention can be used as a vaccine. Fusion proteins (preferably in substantially pure form) expressed by the bacteria can also be used in the preparation of vaccines. For example, a purified TetC-P28 fusion protein has been found to be immunogenic on its own. In a further aspect therefore, the invention provides a vaccine composition comprising a pharmaceutically acceptable carrier or diluent and, as active ingredient, an attenuated bacterium or fusion protein as hereinbefore defined.

The vaccine may comprise one or more suitable adjuvants.

The vaccine is advantageously presented in a lyophilised form, for example in a capsular form, for oral administration to a patient. Such capsules may be provided with an enteric coating comprising, for example, Eudragit "S", Eudragit "L",

Cellulose acetate, Cellulose acetate phthalate or Hydroxypropylmethyl Cellulose. These capsules may be used as such, or alternatively, the lyophilised material may be reconstituted prior to administration, e.g. as a suspension. Reconstitution is advantageously effected in buffer at a suitable pH to ensure the viability of the organisms. In order to protect the attenuated bacteria and the vaccine from gastric acidity, a sodium bicarbonate preparation is advantageously administered before each administration of the vaccine. Alternatively, the vaccine may be prepared for parenteral administration, intranasal administration or intramammary administration.

Preferably, the vaccine composition is adapted for mucosal delivery, eg by oral administration, by intranasal administration or by intrabronchial administration.

The attenuated bacterium containing the DNA construct of the invention may be used in prophylaxis or treatment of a host, particularly a human host but also possibly an animal host. An infection caused by a micro-organism, especially a pathogen, may therefore be prevented by administering an effective dose of an attenuated bacterium according to the invention. The bacterium then expresses a heterologous protein or proteins capable of raising antibody to the micro-organism. The dosage employed will be dependent on various factors including the size and weight of the host, the type of vaccine formulated and the nature of the heterologous protein.

An attenuated bacterium according to the present invention may be prepared by transforming an attenuated bacterium with a DNA construct as hereinbefore defined. Any suitable transformation technique may be employed, such as electroporation. In this way, an attenuated bacterium capable of expressing a protein or proteins heterologous to the bacterium may be obtained. A culture of the attenuated bacterium may be grown under aerobic conditions. A sufficient amount of the bacterium is thus prepared for formulation as a vaccine, with minimal expression of the heterologous protein occurring.

The invention will now be illustrated, but not limited, by reference to the following examples, and the accompanying drawings, in which:

Figure 2 is a schematic illustration of the construction

of a plasmid pHTRA2 containing the <a href="https://ht

Figure 3 illustrates the structure of the plasmid pTECH2;
Figure 4 illustrates the structure of the intermediate plasmid pBD907;

Figure 5 shows the structure of the plasmid pHTRA1 prepared in accordance with the scheme shown in Figure 1;

Figure 6 shows the structure of the product plasmid pHTRA2 prepared in accordance with the scheme shown in Figure 2;

Figures 7A to 7B illustrate the influence of temperature shifts on the promoters $\underline{\text{nirB}}$, $\underline{\text{groE}}$ and $\underline{\text{hrtA}}$; and

Figure 8 shows the expression of $\underline{lac2}$ from \underline{htrA} , \underline{nirB} and \underline{groE} in macrophages.

EXAMPLE 1

As can be seen from Figure 1, the starting material for the preparation of a vector containing the <a href="https://ht

The pTETnirl5 plasmid contains the $\underline{\text{nirB}}$ promoter linked

to the gene encoding the C-fragment of tetanus toxin (TetC). As shown in Figure 1, pTETnirl5 was digested with \underline{SacII} and BamHI and the resulting 2.9kb and 813bp fragments were gel-The 2.9kb fragment was ligated with a 1.74kb purified. fragment derived from the B. pertussis filamentous haemagglutinin (FHA) gene, the fragment having the sequence shown in SEQ.ID.NO.7. The resulting plasmid was designated pBD907 and the restriction map of the plasmid is shown in Figure 5. The purpose of preparing the intermediate plasmid pBD907 was to remove the $\underline{\mathsf{EcoRI}}$ site present in the TetC fragment in order that the $\underline{\text{nirB}}$ promoter sequence could be replaced by the <a href="https://https digesting plasmid pBD907 with EcoRI and BglII. The resulting 4535bp fragment was gel-purified and ligated with the following 55bp oligonucleotides containing the $\underline{\text{htrA}}$ promoter:

Oligo-1 5' AATTCTATTCCGGAACTTCGCGTTATAAAATGAATGTGACGTACACAGCAATTTA (SEQ.ID.NO.2)

Oligo-2 3' GATAAGGCCTTGAAGCGCAATATTTTACTTACACTGCATGTGTCGTTAAATCTAG (SEQ.ID.NO.3)

The presence of the promoter in the resulting intermediate plasmid pINT was confirmed by DNA sequencing. The plasmid pINT was then digested with <u>SacII</u> and <u>BamHII</u> and ligated to the 813bp fragment from pTETnir15 to form plasmid pHTRA1. The DNA sequence of pHTRA1 is shown in SEQ.ID.NO.4;

the $\underline{\text{htrA}}$ region which is defined by the first 55 base pairs, has the sequence

AATTCTATTCCGGAACTTCGCGTTATAAAATGAATCTGACGTACACAGCAATTTA (SEQ.ID.NO.1).

In relation to SEQ.ID.NO.4, GAACTT is -35 box, and TCTGA is -10 box. At 513 and 2235 base pairs respectively are SacII and AlwN 1 restriction sites.

Plasmid pHTRA1 was used to transform <u>Salmonella typhimurium</u> strain BRD509 (deposited under accession number NCTC) and the resulting strain, designated BRD935, was checked for expression of TetC fragment by standard methods. Strain BRD935 has been deposited at the National Collection of Type Cultures, Colindale, United Kingdom on... under the accession number.....).

As shown in Figure 2, plasmid pHTRA1 was used to prepare a modified construct in which a "hinge" region is present at the C-terminal of the TetC fragment. The nucleotide sequence representing the "hinge" region was obtained from plasmid pTECH2 which has the DNA sequence set forth in SEQ.ID.NO.5, and possesses SacII and AlwNI restriction sites at positions 533 and 2304 respectively. The preparation of this plasmid is disclosed in our earlier Application PCT/GB93/01617 (Publication No.)

The pTECH2 plasmid comprises the nirB promoter region

linked to the tetanus toxin C fragment which, at its 3' terminal, is linked via a <u>BamHI</u> restriction site to a hinge region encoded a Gly-Pro-Gly-Pro repeat motif along with a number of restriction sites allowing the insertion of genes encoding further polypeptides. A 1.7kb fragment encoding the hinge region and part of the tetanus toxin C fragment region was removed from pTECH2 through digestion with <u>SacII</u> and <u>AlwNI</u> and purified. The DNA sequence of the resulting fragment is shown in SEQ.ID.NO.6.

Plasmid pHTRA1, which encodes the <a href="https://htt

The 1.7kb fragment (SEQ.ID.NO.6) from pTECH2 and the 2kb fragment from the pHTRA1 were ligated to form plasmic pHTRA2 which incorporates a https://doi.org/10.1016/jtml.ncorporates a <a href="https://doi.org/10.1016/jtml.ncorpor

An attenuated <u>Salmonella typhimurium</u> strain was transformed with vector pHTRA2 and after selection by means of standard techniques, the salmonella strain BRD1062, harbouring the plasmid pHTRA2 was isolated.

Plasmid pHTRA2 serves as an intermediate for the preparation of constructs coding for a fusion protein linked by the hinge region. Thus, in accordance with the techniques described in our earlier Application No. PCT/GB93/01617,

WO 95/20665 PCT/GB95/00196

17

further proteins can be cloned into the restriction endonuclease sites on the hinge region.

MATERIALS AND METHODS

Bacterial Strains

E.coli HB101 and BRD509 (an attenuated S. typhimurium aroA aroD strain (Deposited under accession number NCTC) were used throughout the experiments. The bacteria were grown in Luria broth (LB) or LB solidified with 1.6% w/v agar supplemented with appropriate antibiotics.

DNA Manipulations

Plasmid DNA was purified by the alkaline lysis method (R. Maniatis, et al., 1982 Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory, New York). Restricted DNA fragments were purified from agar gels by the method of Tautz and Rentz (1983, "An optimised freeze-squeeze method for the recovery of DNA Fragments from agarose gels". Analytical Biochem., 132, 14-19). Restriction enzymes were supplied by Boehringer Mannheim, Germany and New England Biolabs, USA and were used according to the manufacturer's instructions.

DNA Sequencing

DNA for double stranded sequencing was isolated by the method of Stephen et al. (1990, A Rapid Method for Isolating High Quality Plasmid DNA Suitable for DNA Sequencing, Nucleic Acid Research, 18, No. 24, p 7463). Sequencing was carried out using a Sequenase Version 2 kit (USB) and was used according to the manufacturer's instructions.

Oligonucleotides

These were synthesised on a SAM1 oligonucleotide synthesiser (Biolabs, UK).

EXAMPLE 2

Preparation of htrA-lacZ Construct

The properties of the $\underline{\text{htrA}}$ promoter were composed with two other inducible promotors, namely the $\underline{\text{nirB}}$ and $\underline{\text{groE}}$ promoters.

Sub-cloning of lacZ downstream to <u>nirB</u>, <u>htrA</u> and <u>groE</u> promoters

A DNA fragment encoding a promoterless <u>lacZ</u> gene was purified from plasmid pMAC1871 (Pharmacia) by the low melting point agarose technique, following cleavage of the plasmid with restriction enzymes <u>SalI</u> and <u>BamHI</u> [14]. Plasmids pTETnir-15 [S.N. Chatfield et al, Bio/Technology 10, 888-892]

and pTEThtrA-1 harbouring the nirB and htrA promoters respectively, were digested with <u>SalI</u> and <u>BamHI</u> endonucleases and the purified lacZ encoding fragment was cloned, in-frame, downstream of the promoters. Plasmid pRZ-PES was used to measure expression of θ -galactosidase (θ -gal) from the groE promoter. pRZ-PES contains the E. coli groE-operon promoter upstream of groES and lacZ genes. It was constructed by subcloning a 2.1 Kb EcoRI-HindIII fragment carrying the operon from plasmid pOF39 [O. Fayet et al J. Bacteriol. 171, 1379-1385 (1989)] into pUC19. A novel BglII site was then introduced between the groES and groEL genes using site directed mutagenesis. The EcoRI-BglII fragment carrying the groE promoter and groES gene was cloned into EcoRI-BamHI cut promoter-probe plasmid pRF5255 [P.F. Lambert et al J. Bacteriol. 162, 441-444 (1985)] to give plasmid pRZ-PES. Plasmids, prepared in S. typhimurium LB5010 (rm^t) [L.R. Bullas et al J. Bacteriol. 256, 471-474 (1983)], were introduced into S. typhimurium strain BRD915 (S. typhimurium SL1344 htrA) [S.N. Chatfield et al Microbial Pathog: 12, 145-151 (1992)] using electroporation. Lac positive recombinants were screened on L agar plates containing ampicillin and X-gal.

Effect of changes in environmental conditions on \underline{lacZ} expression

Bacterial strains harbouring the recombinant plasmids were grown overnight in L-broth, with skaing at 30°C. The

cultures were diluted 1:50 and growth was allowed to continue for an additional 3 hours at 30°C until an OD_{500} of 2.8-3.4 was reached. 0.2 ml of each culture was stored at 4°C and used to determine the base-line of 6-gal activity. The remaining portions of the cultures were then shifted to different growth conditions as described below and samples were taken at 0, 2, 4, 6 and 24 hours, unless otherwise specified. At each time point the OD_{500} was determined and the bacteria were stored at 4°C prior to performing a 6-gal assay.

Measuring expression in infected HEp-2, Caco-2 and THP 1-macrophage cell lines

Cells were seeded at approximately 10^3 cell per well in twenty four well plates and grown overnight in Dolbecco's modified Eagles medium, without phenol red (ICN Flow), supplemented with 10% (vol/vol) fetal calf serum and 2 mM glutamine at 37%C, in an atmosphere of 5% CO $_2$. 10^3 CFU bacteria of the diluted overnight culture were added to the tissue culture cells and incubated at 30%C. At various time points samples of the tissue culture medium were taken to measure 6-gal activity in the extra cellular bacteria. The numbers of bacteria in each sample were determined by viable count and the corresponding OD_{500} was determined using a standard curve. Infected cells were washed with phosphate buffer saline (PBS) and incubated for an additional hour in the presence of 200 mg/ml of gentamicin to kill extra cellular

bacteria. Thereafter, the cells were lysed using sterile distilled water and vigorous pipetting. 6-gal activity was determined for each cell lysate. The numbers of bacteria in each lysate were determined by viable count and the corresponding OD_{500} values were determined using a standard curve.

RESULTS

Expression from each of the promoters selected for this study is sensitive to changes in environmental conditions. nirB has been shown previously to respond to changes in anaerobicity. Initial experiments were performed to assess the levels of lacZ expression from each of the promoters, resident on similar multicopy plasmids, harboured within Salmonella vaccine strain BRD915. The influence of temperature shifts on the different promoters is shown in Figure 7. Temperature shifts from 30°C to 37°C (Figure 7A) resulted in an increase in 6-gal enzyme units when \underline{lacZ} was expressed from the <u>nirB</u> and <u>htrA</u> promoters. No significant increase in 6-gal units was detected from the groE promoter. A temperature shift from 30°C to 42° resulted in an increase in the number of θ -gal units from all three promoters. rate of the increase in the level of θ -gal was faster from htrA and nirB compared with groE (Figure 7B). Temperature shifts from 37°C to 42°C resulted in the induction of both nirB and htrA promoters, with more moderate increase in 6-gal

units from groE promoter (Figure 7C).

Expression of θ -gal from the different promoters was also tested by selecting for bacteria that had entered eukaryotic cells. HEp-2, Caco-2 and THP-1 macrophage cell lines were infected with 10^{δ} bacteria and incubated at $30\,^{\circ}\text{C}$. The number of θ -gal units, determined three hours after infection of HEp-2, showed that expression of lacZ from both htrA and nirBpromoters was significantly enhanced (Figure 2). there was no detectable increase in \underline{lacZ} expression from \underline{groE} promoter. Similar results were obtained in infected Caco-2 cells (not shown). In contrast, in the macrophage's intracellular environment, all three promoters were induced (Figure 8). $\underline{\text{nirB}}$ promoter was most affected and $\underline{\text{groE}}$ promoter was least affected (Figure 8). When the number of θ -gal units in the extra-cellular medium of either cell line was determined, no increase in the enzyme activity was seen (not shown).

Since growth within macrophages was found to influence expression from all three promoters, their sensitivity to hydrogen peroxide, commonly found within the phagosome of macrophages, was monitored. Incubating the bacteria at 30°C in 100 µM hydrogen peroxide resulted in no significant effect on the groE and nirB promoters. In contrast, the level of 6-gal was increased from the htrA promoter reaching 10 U above base-line level by 4 hours. This was followed by a rapid decrease to base-line levels by 6 hours (not shown).

Constitutive expression of \underline{lacZ} from plasmid pLK [M. Szabo et al J. Bacteriol. 174, 7245-7252] was not significantly affected by any of the environmental conditions (not shown).

In this study three environmentally regulated promoters were used to express \underline{lacZ} gene under different growth conditions. The promoters are representatives of three classes of inducible bacterial promoters: the anaerobically inducible \underline{E} . $\underline{coli\ nirB}$, the σ^{c} dependent \underline{htrA} and σ^{c} -dependent \underline{groE} . Expression from the \underline{nirB} promoter is dependent on the transcription factor FNR which binds between positions -52 and -30 upstream from transcription start. In some cases FNR dependent transcription is modulated together with a second transcription factor Narl. However, plasmid pTETnir-15 used here contains only the FNR dependent bind site.

Bacterial respond to environmental stress conditions by rapid change in the rate of synthesis of many proteins. In many cases the transit induction rapidly adjusts the protein levels to a new steady state. In this study we tested the influence of environmental conditions on the level of 6-gal. We found that temperature shift had a greater effect on <a href="https://https

PCT/GB95/00196

in the growing media is reduced the fact that the temperature shift from 30°C to 37°C brings rapid increase in the 6-gal units expressed from the <u>nirB</u> promoter may suggest that FNR, like other stress protein modulators, responds to a number of environmental stimuli. Similarly, <u>htrA</u> was also induced under anaerobic growth conditions, and therefore it seems that this promoter is either being regulated by factors other than $\sigma^{\tilde{\nu}}$, or that $\sigma^{\tilde{\nu}}$ is being activated also at low oxygen tension.

In order to determine the influence of the intracellular environment, the level of expression from the three different promoters was monitored after <u>Salmonella</u> harbouring the test plasmids had entered a number of different cultured eukaryotic cell lines. Bacteria were grown <u>in vitro</u> and used to infect eukaryotic cells at 30°C since a temperature shift from 30°C to 37°C dramatically induced both the <u>htrA</u> and the <u>nirB</u>

25

promoters. We found that while the level of 6-gal expression from both the <u>nirB</u> and <u>htrA</u> promoters increased in all the cell lines tested, <u>groE</u> promoter was induced only in infected macrophages.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: MEDEVA HOLDINGS BV
 - (B) STREET: CHURCHILL-LAAN 223
 - (C) CITY: AMSTERDAM
 - (E) COUNTRY: THE NETHERLANDS
 - (F) POSTAL CODE (ZIP): 1078 ED
 - (ii) TITLE OF INVENTION: VACCINES
 - (iii) NUMBER OF SEQUENCES: 7
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
 - (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: GB 9401795.1
 - (B) FILING DATE: 31-JAN-1994
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

```
27
  (ii) MOLECULE TYPE: DNA (genomic)
  (iii) HYPOTHETICAL: NO
  (iii) ANTI-SENSE: NO
  (vi) ORIGINAL SOURCE:
         (A) ORGANISM: Salmonella typhimurium
   (ix) FEATURE:
         (A) NAME/KEY: promoter
         (B) LOCATION: 1..55
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
AATTCTATTC CGGAACTTCG CGTTATAAAA TGAATCTGAC GTACACAGCA ATTTA
(2) INFORMATION FOR SEQ ID NO: 2:
    (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 55 base pairs
         (B) TYPE: nucleic acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
  (ii) MOLECULE TYPE: DNA (genomic)
  (iii) HYPOTHETICAL: NO
  (iii) ANTI-SENSE: NO
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
```

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 55 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

AATTCTATTC CGGAACTTCG CGTTATAAAA TGAATGTGAC GTACACAGCA ATTTA

WO 95/20665 PCT/GB95/00196

28

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: YES
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GATAAGGCCT TGAAGCGCAA TATTTTACTT ACACTGCATG TGTCGTTAAA TCTAG 55

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3712 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: htrA promoter
 - (B) LOCATION: 1..55
 - (ix) FEATURE:
 - (A) NAME/KEY: SacII restriction site
 - (B) LOCATION: 513
 - (ix) FEATURE:
 - (A) NAME/KEY: AlwN 1 restriction site
 - (B) LOCATION: 2235
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

AATTCTATTC CGGAACTTCG CGTTATAAAA TGAATCTGAC GTACACAGCA ATTTAGATCT

TAATCATCCA	CAGGAGACTT	TCTGATGAAA	AACCTTGATT	GTTGGGTCGA	CAACGAAGAA	120
GACATCGATG	TTATCCTGAA	AAAGTCTACC	ATTCTGAACT	TGGACATCAA	CAACGATATT	180
ATCTCCGACA	TCTCTGGTTT	CAACTCCTCT	GTTATCACAT	ATCCAGATGC	TCAATTGGTG	240
CCGGGCATCA	ACGGCAAAGC	TATCCACCTG	GTTAACAACG	AATCTTCTGA	AGTTATCGTG	300
CACAAGGCCA	TGGACATCGA	ATACAACGAC	ATGTTCAACA	ACTTCACCGT	TAGCTTCTGG	360
CTGCGCGTTC	CGAAAGTTTC	TGCTTCCCAC	CTGGAACAGT	ACGGCACTAA	CGAGTACTCC	420
ATCATCAGCT	CTATGAAGAA	ACACTCCCTG	TCCATCGGCT	CTGGTTGGTC	TGTTTCCCTG	480
AAGGGTAACA	ACCTGATCTG	GACTCTGAAA	GACTCCGCGG	GCGAAGTTCG	TCAGATCACT	540
TTCCGCGACC	TGCCGGACAA	GTTCAACGCG	TACCTGGCTA	ACAAATGGGT	TTTCATCACT	600
ATCACTAACG	ATCGTCTGTC	TTCTGCTAAC	CTGTACATCA	ACGGCGTTCT	GATGGGCTCC	660
GCTGAAATCA	CTGGTCTGGG	CGCTATCCGT	GAGGACAACA	ACATCACTCT	TAAGCTGGAC	720
CGTTGCAACA	ACAACAACCA	GTACGTATCC	ATCGACAAGT	TCCGTATCTT	CTGCAAAGCA	780
CTGAACCCGA	AAGAGATCGA	AAAACTGTAT	ACCAGCTACC	TGTCTATCAC	CTTCCTGCGT	840
GACTTCTGGG	GTAACCCGCT	GCGTTACGAC	ACCGAATATT	ACCTGATCCC	GGTAGCTTCT	900
AGCTCTAAAG	ACGTTCAGCT	GAAAAACATC	ACTGACTACA	TGTACCTGAC	CAACGCGCCG	960
TCCTACACTA	ACGGTAAACT	GAACATCTAC	TACCGACGTC	TGTACAACGG	CCTGAAATTC	1020
ATCATCAAAC	GCTACACTCC	GAACAACGAA	ATCGATTCTT	TCGTTAAATC	TGGTGACTTC	1080
ATCAAACTGT	ACGTTTCTTA	CAACAACAAC	GAACACATCG	TTGGTTACCC	GAAAGACGGT	1140
AACGCTTTCA	ACAACCTGGA	CAGAATTCTG	CGTGTTGGTT	ACAACGCTCC	GGGTATCCCG	1200
CTGTACAAAA	AAATGGAAGC	TGTTAAACTG	CGTGACCTGA	AAACCTACTC	TGTTCAGCTG	1260
AAACTGTACG	ACGACAAAAA	CGCTTCTCTG	GGTCTGGTTG	GTACCCACAA	CGGTCAGATC	1320
GGTAACGACC	CGAACCGTGA	CATCCTGATC	GCTTCTAACT	GGTACTTCAA	CCACCTGAAA	1380
GACAAAATCC	TGGGTTGCGA	CTGGTACTTC	GTTCCGACCG	ATGAAGGTTG	GACCAACGAC	1440
TAAGGATCCG	CTAGCCCGCC	TAATGAGCGG	GCTTTTTTT	CTCGGGCAGC	GTTGGGTCCT	1500
GGCCACGGGT	GCGCATGATC	GTGCTCCTGT	CGTTGAGGAC	CCGGCTAGGC	TGGCGGGGTT	1560
GCCTTACTGG	TTACCAGAAT	GAATCACCGA	TACGCGAGCG	AACGTGAAGC	GACTGCTGCT	1670

GCAAAACGIC	TGCGACCTGA	GCAACAACAT	GAATGGTCTT	CGGTTTCCGT	GTTTCGTAAA	1680
GTCTGGAAAC	GCGGAAGTCA	GCGCTCTTCC	GCTTCCTCGC	TCACTGACTC	GCTGCGCTCG	1740
GTCGTTCGGC	TGCGGCGAGC	GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA	1,800
GAATCAGGGG	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA	GGCCAGGAAC	1860
CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC	GCCCCCTGA	CGAGCATCAC	1920
AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA	AACCCGACAG	GACTATAAAG	ATACCAGGCG	1980
TTTCCCCCTG	GAAGCTCCCT	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	2040
CTGTCCGCCT	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT	2100
CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC	CCCCGTTCAG	2160
CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT	CCAACCCGGT	AAGACACGAC	2220
TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	2280
GCTACAGAGT	TCTTGAAGTG	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	2340
ATCTGCGCTC	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC	2400
AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT	TACGCGCAGA	2460
AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC	TCAGTGGAAC	2520
GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG	AGATTATCAA	AAAGGATCTT	CACCTAGATC	2580
CTTTTAAATT	AAAAATGAAG	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	2640
GACAGTTACC	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA	2700
rccatagttg	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG	CTTACCATCT	2760
GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC	CGGCTCCAGA	TTTATCAGCA	2820
ATAAACCAGC.	CAGCCGGAAG	GGCCGAGCGC	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	2880
ATCCAGTCTA	TTAATTGTTG	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	2940
CGCAACGTTG	TTGCCATTGC	TGCAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT	3000
CATTCAGCT	CCGGTTCCCA	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT	GTTGTGCAAA	3060
AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC	GTTGTCAGAA	GTAAGTTGGC	CGCAGTGTTA	3120
CACTCATGG	TTATGGCAGC	ACTGCATAAT	TCTCTTACTG	TCATGCCATC	CGTAAGATGC	3180

31

TTTTCTGTGA	CTGGTGAGTA	CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG	3240
AGTTGCTCTT	GCCCGGCGTC	AACACGGGAT	AATACCGCGC	CACATAGCAG	AACTTTAAAA	3300
GTGCTCATCA	TTGGAAAACG	TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT	ACCGCTGTTG	3360
AGATCCAGTT	CGATGTAACC	CACTCGTGCA	CCCAACTGAT	CTTCAGCATC	TTTTACTTTC	3420
ACCAGCGTTT	CTGGGTGAGC	AAAAACAGGA	AGGCAAAATG	CCGCAAAAAA	GGGAATAAGG	3480
GCGACACGGA	AATGTTGAAT	ACTCATACTC	TTCCTTTTTC	AATATTATTG	AAGCATTTAT	3540
CAGGGTTATT	GTCTCATGAG	CGGATACATA	TTTGAATGTA	TTTAGAAAAA	ТАААСАААТА	3600
GGGGTTCCGC	GCACATTTCC	CCGAAAAGTG	CCACCTGACG	TCTAAGAAAC	CATTATTATC	3660
ATGACATTAA	CCTATAAAAA	TAGGCGTATC	ACGAGGCCCT	TTCGTCTTCA	AG	3712
/3) TWB05:4						

(2) INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3769 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: circular
- (ii) MOLECULE TYPE: DNA (genomic)
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

TTCAGGTAAA	TTTGATGTAC	ATCAAATGGT	ACCCCTTGCT	GAATCGTTAA	GGTAGGCGGT	60
AGGGCCCAGA	TCTTAATCAT	CCACAGGAGA	CTTTCTGATG	AAAAACCTTG	ATTGTTGGGT	120
CGACAACGAA	GAAGACATCG	ATGTTATCCT	GAAAAAGTCT	ACCATTCTGA	ACTTGGACAT	180
CAACAACGAT	ATTATCTCCG	ACATCTCTGG	TTTCAACTCC	TCTGTTATCA	CATATCCAGA	240
TGCTCAATTG	GTGCCGGGCA	TCAACGGCAA	AGCTATCCAC	CTGGTTAACA	ACGAATCTTC	300
TGAAGTTATC	GTGCACAAGG	CCATGGACAT	CGAATACAAC	GACATGTTCA	ACAACTTCAC	360
CGTTAGCTTC	TGGCTGCGCG	TTCCGAAAGT	TTCTGCTTCC	CACCTGGAAC	AGTACGGCAC	420

TAACGAGTAC	TCCATCATCA	GCTCTATGAA	GAAACACTCC	CTGTCCATCG	GCTCTGGTTG	480
GTCTGTTTCC	CTGAAGGGTA	ACAACCTGAT	CTGGACTCTG	AAAGACTCCG	CGGGCGAAGT	540
TCGTCAGATC	ACTTTCCGCG	ACCTGCCGGA	CAAGTTCAAC	GCGTACCTGG	CTAACAAATG	600
GGTTTTCATC	ACTATCACTA	ACGATCGTCT	GTCTTCTGCT	AACCTGTACA	TCAACGGCGT	660
TCTGATGGGC	TCCGCTGAAA	TCACTGGTCT	GGGCGCTATC	CGTGAGGACA	ACAACATCAC	720
TCTTAAGCTG	GACCGTTGCA	ACAACAACAA	CCAGTACGTA	TCCATCGACA	AGTTCCGTAT	780
CTTCTGCAAA	GCACTGAACC	CGAAAGAGAT	CGAAAAACTG	TATACCAGCT	ACCTGTCTAT	840
CACCTTCCTG	CGTGACTTCT	GGGGTAACCC	GCTGCGTTAC	GACACCGAAT	ATTACCTGAT	900
CCCGGTAGCT	TCTAGCTCTA	AAGACGTTCA	GCTGAAAAAC	ATCACTGACT	ACATGTACCT	960
GACCAACGCG	CCGTCCTACA	CTAACGGTAA	ACTGAACATC	TACTACCGAC	GTCTGTACAA	1020
CGGCCTGAAA	TTCATCATCA	AACGCTACAC	TCCGAACAAC	GAAATCGATT	CTTTCGTTAA	1080
ATCTGGTGAC	TTCATCAAAC	TGTACGTTTC	TTACAACAAC	AACGAACACA	TCGTTGGTTA	1140
CCCGAAAGAC	GGTAACGCTT	TCAACAACCT	GGACAGAATT	CTGCGTGTTG	GTTACAACGC	1200
TCCGGGTATC	CCGCTGTACA	AAAAAATGGA	AGCTGTTAAA	CTGCGTGACC	TGAAAACCTA	1260
CTCTGTTCAG	CTGAAACTGT	ACGACGACAA	AAACGCTTCT	CTGGGTCTGG	TTGGTACCCA	1320
CAACGGTCAG	ATCGGTAACG	ACCCGAACCG	TGACATCCTG	ATCGCTTCTA	ACTGGTACTT	1380
CAACCACCTG	AAAGACAAAA	TCCTGGGTTG	CGACTGGTAC	TTCGTTCCGA	CCGATGAAGG	1440
ITGGACCAAC	GACGGGCCGG	GGCCCTCTAG	AGGATCCGAT	ATCAAGCTTA	CTAGTTAATG	1500
ATCCGCTAGC	CCGCCTAATG	AGCGGGCTTT	TTTTTCTCGG	GCAGCGTTGG	GTCCTGGCCA	1560
CGGGTGCGCA	TGATCGTGCT	CCTGTCGTTG	AGGACCCGGC	TAGGCTGGCG	GGGTTGCCTT	1620
ACTGGTTAGC	AGAATGAATC	ACCGATACGC	GAGCGAACGT	GAAGCGACTG	CTGCTGCAAA	1680
ACGTCTGCGA	CCTGAGCAAC	AACATGAATG	GTCTTCGGTT	TCCGTGTTTC	GTAAAGTCTG	1740
GAAACGCGGA	AGTCAGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	1800
CGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT	CCACAGAATC	1860
AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	GGAACCGTAA	1920
LAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	1980

TCGACGCTC	A AGTCAGAGG	I GGCGAAACCC	GACAGGACT	TAAAGATACO	AGGCGTTTCC	204
CCCTGGAAG	C TCCCTCGTG	C GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	2100
CGCCTTTCT	C CCTTCGGGA	A GCGTGGCGCT	TTCTCAATGO	: TCACGCTGTA	GGTATCTCAG	2160
TTCGGTGTA	G GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA	2220
CCGCTGCGC	C TTATCCGGT	A ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	2280
GCCACTGGC	A GCAGCCACTO	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	2340
AGAGTTCTT	G AAGTGGTGGC	CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG	2400
CGCTCTGCT	G AAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	2460
AACCACCGC	GGTAGCGGTG	GTTTTTTGT	TTGCAAGCAG	CAGATTACGC	GCAGAAAAA	2520
		TGATCTTTTC				2580
CTCACGTTA	A GGGATTTTGG	TCATGAGATT	ATCAAAAAGG	ATCTTCACCT	AGATCCTTTT	2640
AAATTAAAA	I TGAAGTTTTA	AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG	2700
TTACCAATGO	TTAATCAGTG	AGGCACCTAT	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	2760
AGTTGCCTGA	CTCCCCGTCG	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	2820
CAGTGCTGCA	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA	2880
CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA	ACTTTATCCG	CCTCCATCCA	2940
		AAGCTAGAGT				3000
		GCATCGTGGT				3060
		CAAGGCGAGT				3120
		CGATCGTTGT				3180
		ATAATTCTCT				3240
					GACCGAGTTG	3300
					TAAAAGTGCT	3360
					TGTTGAGATC	3420
					CTTTCACCAG	3480
CGTTTCTGGG	TGAGCAAAAA	CAGGAAGGCA	AAATGCCGCA	AAAAAGGGAA	Timererie	7540

ACGGAAATGT TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG	360
TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC AAATAGGGGT	366
TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCTAA GAAACCATTA TTATCATGAC	372
ATTAACCTAT AAAAATAGGC GTATCACGAG GCCCTTTCGT CTTCA-GAA	376
(2) INFORMATION FOR SEQ ID NO: 6:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1766 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(v) FRAGMENT TYPE: internal	
(ix) FEATURE:	
(A) NAME/KEY: hinge region	
(B) LOCATION: 923934	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
GGGCGAAGTT CGTCAGATCA CTTTCCGCGA CCTGCCGGAC AAGTTCAACG CGTACCTGGC	60
TAACAAATGG GTTTTCATCA CTATCACTAA CGATCGTCTG TCTTCTGCTA ACCTGTACAT	120
CAACGGCGTT CTGATGGGCT CCGCTGAAAT CACTGGTCTG GGCGCTATCC GTGAGGACAA	180
CAACATCACT CTTAAGCTGG ACCGTTGCAA CAACAACAAC CAGTACGTAT CCATCGACAA	240
GTTCCGTATC TTCTGCAAAG CACTGAACCC GAAAGAGATC GAAAAACTGT ATACCAGCTA	300
CCTGTCTATC ACCTTCCTGC GTGACTTCTG GGGTAACCCG CTGCGTTACG ACACCGAATA	360

TTACCTGATC CCGGTAGCTT CTAGCTCTAA AGACGTTCAG CTGAAAAACA TCACTGACTA

CATGTACCTG ACCAACGCGC CGTCCTACAC TAACGGTAAA CTGAACATCT ACTACCGACG

360

420

480

TCTGTACAAC	GGCCTGAAAT	TCATCATCAA	ACGCTACACT	CEGAACAACG	AAATCGATTC	540
TTTCGTTAAA	TCTGGTGACT	TCATCAAACT	GTACGTTTCT	TACAACAACA	ACGAACACAT	. 600
CGTTGGTTAC	CCGAAAGACG	GTAACGCTTT	CAACAACCTG	GACAGAATTC	TGCGTGTTGG	66Ô
TTACAACGCT	CCGGGTATCC	CGCTGTACAA	AAAAATGGAA	GCTGTTAAAC	TGCGTGACCT	720
GAAAACCTAC	TCTGTTCAGC	TGAAACTGTA	CGACGACAAA	AACGCTTCTC	TGGGTCTGGT	780
TGGTACCCAC	AACGGTCAGA	TCGGTAACGA	CCCGAACCGT	GACATCCTGA	TCGCTTCTAA	840
CTGGTACTTC	AACCACCTGA	AAGACAAAAT	CCTGGGTTGC	GACTGGTACT	TCGTTCCGAC	900
CGATGAAGGT	TGGACCAACG	ACGGGCCGGG	GCCCTCTAGA	GGATCCGATA	TCAAGCTTAC	960
TAGTTAATGA	TCCGCTAGCC	CGCCTAATGA	GCGGGCTTTT	TTTTCTCGGG	CAGCGTTGGG	1020
TCCTGGCCAC	GGGTGCGCAT	GATCGTGCTC	CTGTCGTTGA	GGACCCGGCT	AGGCTGGCGG	1080
GGTTGCCTTA	CTGGTTAGCA	GAATGAATCA	CCGATACGCG	AGCGAACGTG	AAGCGACTGC	1140
TGCTGCAAAA	CGTCTGCGAC	CTGAGCAACA	ACATGAATGG	TCTTCGGTTT	CCGTGTTTCG	1200
TAAAGTCTGG	AAACGCGGAA	GTCAGCGCTC	TTCCGCTTCC	TCGCTCACTG	ACTCGCTGCG	1260
CTCGGTCGTT	CGGCTGCGGC	GAGCGGTATC	AGCTCACTCA	AAGGCGGTAA	TACGGTTATC	1320
CACAGAATCA	GGGGATAACG	CAGGAAAGAA	CATGTGAGCA	AAAGGCCAGC	AAAAGGCCAG	1380
GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC	CTGACGAGCA	1440
TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG	ACAGGACTAT	AAAGATACCA	1500
GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG	CTCTCCTGTT	CCGACCCTGC	CGCTTACCGG	1560
ATACCTGTCC	GCCTTTCTCC	CTTCGGGAAG	CGTGGCGCTT	TCTCAATGCT	CACGCTGTAG	1620
GTATCTCAGT	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT	1680
TCAGCCCGAC	CGCTGCGCCT	TATCCGGTAA	CTATCGTCTT	GAGTCCAACC	CGGTAAGACA	1740
CGACTTATCG	CCACTGGCAG	CAGCCA				1766

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1736 base pairs

(B) TYPE: nucleic acid

3.6

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGCGGCCTAC GCGATTGACG GCACGGCGGC GGGCGCCATG TACGGCAAGC ACATCACGCT	60
GGTGTCCAGC GATTCAGGCC TGGGCGTGCG CCAGCTCGGC AGCCTGTCCT CGCCATCGGC	120
CATCACCGTG TCGTCGCAGG GCGAAATCGC GCTGGGCGAC GCCACGGTCC AGCGCGGCCC	180
GCTCAGCCTC AAGGGCGCGG GGGTCGTGTC GGCCGGCAAA CTGGCCTCCG GGGGGGGGG	240
GGTGAACGTC GCGGGCGGCG GGGCGGTGAA GATCGCGTCG GCCAGCAGCG TTGGAAACCT	300
CGCGGTGCAA GGCGGCGCA AGGTACAGGC CACGCTGTTG AATGCCGGGG GGACGTTGCT	360
GGTGTCGGGC CGCCAGGCCG TCCAGCTTGG CGCGGCGAGC AGCCGTCAGG CGCTGTCCGT	420
GAACGCGGGC GGCGCCCTCA AGGCGGACAA GCTGTCGGCG ACGCGACGGG TCGACGTGGA	480
TGGCAAGCAG GCCGTCGCGC TGGGGTCGGC CAGCAGCAAT GCGCTGTCGG TGCGTGCCGG	540
CGGCGCCCTC AAGGCGGGCA AGCTGTCGGC GACGGGGCGA CTGGACGTGG ACGGCAAGCA	600
GGCCGTCACG CTGGGTTCGG TTGCGAGCGA CGGTGCGCTG TCGGTAAGCG CTGGCGGAAA	660
CCTGCGGGCG AACGAATTGG TCTCCAGTGC CCAACTTGTG GTGCGTGGGC AGCGGGAGGT	720
CGCGCTGGAT GACGCTTCGA GCGCACGCGG CATGACCGTG GTTGCCGCAG GAGCGCTGGC	780
GGCCCGCAAC CTGCAGTCCA AGGGCGCCAT CGGCGTACAG GGTGGAGAGG CGGTCAGCGT	840
GGCCAACGCG AACAGCGACG CGGAATTGCG CGTGCGCGGG CGCGGCCAGG TGGATCTGCA	900
CGACCTGAGC GCAGCGCGC GCGCGGATAT CTCCGGCGAG GGGCGCGTCA ATATCGGCCG	960
TGCGCGCAGC GATAGCGATG TGAAGGTCTC CGGGCACGGC GCCTTGTCGA TCGATAGCAT	1020
GACGGCCCTC GGTGCGATCG GCGTCCAGGC AGGCGGCAGC GTGTCGGCCA AGGATATGCG	1080
CAGCCGTGGC GCCGTCACCG TCAGCGGCGGCGG CGGCGCCGTC AACCTGGGCG ATGTCCAGTC	1140
GGATGGGCAG GTCCGCGCCA CCAGCGCGGG CGCCATGACG GTGCGAGACG TCGCGGCTGC	1200
CGCCGACCTT GCGCTGCAGG CGGGCGACGC GTTGCAGGCC GGGTTCCTGA AATCGGCCGG	1260
TGCCATGACC GTGAACGGCC GCGATGCCGT GCGACTGGAT GGCGCGCACG CGGGCGGGCA	1320

37

ATTGCGGGTT	TCCAGCGACG	GGCAGGCTGC	GTTGGGCAGT	CTCGCGGCCA	AGGGCGAGCT	1380
GACGGTATCG	GCCGCGCGCG	CGGCGACCGT	GGCCGAGTTG	AAGTCGCTGG	ACAACATCTC	1440
CGTGACGGGC	GGCGAACGCG	TGTCGGTTCA	GAGCGTCAAC	AGCGCGTCCA	GGGTCGCCAT	1500
TTCGGCGCAC	GGCGCGCTGG	ATGTAGGCAA	GGTTTCCGCC	AAGAGCGGTA	TCGGGCTCGA	1560
AGGCTGGGGC	GCGGTCGGAG	CGGACTCCCT	CGGTTCCGAC	GGCGCGATCA	GCGTGTCCGG	16Ż0
GCGCGATGCG	GTCAGGGTCG	ATCAAGCCCG	CAGTCTTGCC	GACATTTCGC	TGGGGGCGGA	1680
AGGCGGCGCC	ACGCTGGGCG	CGGTGGAGGC	CGCCGGTTCG	ATCGACGTGC	ccccc	1726

CLAIMS

- A DNA construct comprising the <u>htrA</u> promoter sequence operably linked to a DNA sequence encoding one or more heterologous proteins.
- 2. A DNA construct according to Claim 1 wherein the <u>htrA</u> promoter sequence is operably linked to a DNA sequence encoding a fusion protein of two or more proteins.
- 3. A DNA construct according to Claim 2 wherein the proteins making up the fusion are linked by means of a flexible hinge region.
- 4. A DNA construct according to Claim 3 wherein the <a href="http://http
- 5. A replicable expression vector, e.g. suitable for use in bacteria, containing a DNA construct as defined in any one of the preceding Claims.
- 6. A process for the preparation of an attenuated bacterium which comprises transforming an attenuated bacterium with a replicable expression vector as defined in Claim 1.

- 7. A host cell containing in either chromosomal or extra-chromosomal form, a DNA construct as defined in any on of Claims 1 to 4.
- 8. A host cell according to Claim 7 which is an attenuated bacterium.
- 9. A vaccine composition comprising an attenuated bacterium as defined in Claim 8, or a fusion protein expressed from a construct as defined in any one of Claims 1 to 4, and a pharmaceutically acceptable carrier.
- 10. A method of treatment or prophylaxis of infection in a mammal, e.g. a human, which method comprises administering to the mammal an effective amount of a vaccine composition as defined in Claim 9.

FIGURE 1a

FIGURE 1b

FIGURE 2

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIGURE 8

SUBSTITUTE SHEET (RULE 26)

Inter nal Application No PCT/GB 95/00196

CLASSIFICATION OF SUBJECT ALARMS	
A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/62 C12N15/70 (//(C12N1/21,C12R1:19,C12R1:	C12N15/74 C12N1/21 A61K39/08 :42)
According to International Patent Classification (IPC) or to both n	national classification and IPC
B. FIELDS SEARCHED	
Minimum documentation searched (classification system followed IPC 6 C12N A61K	by classification symbols)
Documentation searched other than minimum documentation to the	ne extent that such documents are included in the fields searched
Electronic data base consulted during the international search (nam	ne of data base and, where practical, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category Citation of document, with indication, where appropriate	nate, of the relevant passages Relevant to claim No.
Y NUCLEIC ACIDS RESEARCH, vol. 16,no. 21, 11 November LIMITED, OXFORD, ENGLAND, pages 10053-10067, B. LIPINSKA ET AL. 'Seque regulation of the htrA gen coli: a sigma32-independen heat-inducible transcripti see page 10057, line 16 - 25 see page 889, left column,	ence analysis and ne of Escherichia nt mechanism of ion' page 10066, line
X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search	To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family Date of mailing of the international search report 07, 04, 95
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax (+31-70) 340-3016	Authorized officer Hornig, H

Inter .nal Application No
PCT/GB 95/00196

(Contract	Igon) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/GB 95/00196
ategory		Relevant to claim No.
,		
Y	GENES & DEVELOPMENT, vol. 3,no. 9, September 1989 CSH LABORATORY PRESS, NEW YORK,US, pages 1462-1471, J.W. ERICKSON AND C.A. GROSS	1-10
	'Identification od sigmaE subunit of Escherichia coli RNA polymerase: a second alternative sigma factor involved in high-temperature gene expression' see page 1466, right column, line 4 - page 1469, right column, line 27; figure 8	
Y	BIOTECHNOLOGY, vol. 10,no. 8, August 1992 NATURE PUBL. CO.,NEW YORK, US, pages 888-892, S.N. CHATFIELD ET AL. 'Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: Development of a single-dose oral tetanus vaccine' cited in the application see page 888, right column, line 45 - line 48 see page 889, left column, line 5 - line 9 see page 891, left column, line 34 - line 39	1-10
Y	NATURE, vol. 351,no. 6326, 6 June 1991 MACMILLAN JOURNALS LTD., LONDON,UK, pages 456-460, C.K. STOVER ET AL. 'New use of BCG for recombinant vaccines' see page 458, right column, line 44 - page 459, left column, line 35 see page 457, right column, line 1 - line 15	1-10
Y	WO,A,92 15689 (WELLCOME FOUND) 17 September 1992 see page 2, line 1 - line 10 see page 5, line 6 - page 11, line 3	1-10
Y	WO,A,89 06974 (PRAXIS BIOLOG INC) 10 August 1989 see page 76, line 1 - page 81, line 4; claims 1-107; tables 12-15 see page 26, line 25 - page 27, line 14 see page 25, line 12 - page 26, line 9	1-10
Y	EP,A,O 432 965 (SMITHKLINE BEECHAM CORP; US OF AMERICA AS RESPRESENTED (US); BIOME) 19 June 1991 see page 16, line 24 - line 29	1-10
	_/	

l

Inter nal Application No PCT/GB 95/00196

<u>`</u>	on) DOCUMENTS CONSIDERED TO BE RELEVANT		
egory	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	WO,A,91 15572 (WELLCOME FOUND) 17 October 1991 the whole document	1-10	
Р, Ү	WO,A,94 03615 (MEDEVA HOLDINGS B V; KHAN MOHAMMED ANJAM (GB); HORMAECHE CARLOS ES) 17 February 1994 cited in the application see page 2, line 15 - line 17 see page 4, line 9 - line 15	1-10	
P,X	BIOLOGICAL ABSTRACTS, vol. 99, no. 007, Philadelphia, PA, US; abstract no. 095219, see abstract & FEMS MICROBIOL. LETTERS, vol. 126,no. 1, 1995 pages 97-102, P. EVEREST ET AL. 'Expression of LacZ from the htrA, nirB and groE promoters in Salmonella vaccine strain: influence of growth in mammalian'	1-10	
	·		

1

.iational application No.

PCT/GB95/00196

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 5) first sheet)
This inte	ernational search report has not been established in respect of certain claims under Article 17(2)(2) for the following reasons:
i. X 2.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 10 (as far as in vivo methods are concerned) is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/ composition. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Ince	ernational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

information on patent family members

Inter nal Application No PCT/GB 95/00196

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9215689	17-09-92	AU-A- CZ-A- EP-A- WO-A- HU-A- JP-T-	1350892 9301005 0574466 9215688 66833 6505158	06-10-92 19-01-94 22-12-93 17-09-92 30-01-95 16-06-94
WO-A-8906974	10-08-89	AT-T- AU-B- AU-A- DE-D- DE-T- EP-A- JP-T-	109008 634153 3065489 68917126 68917126 0399001 3502691	15-08-94 18-02-93 25-08-89 01-09-94 02-02-95 28-11-90 20-06-91
EP-A-0432965	19-06-91	AU-B- AU-A- CA-A- CN-A- JP-A-	634837 6777490 2031468 1053814 6073097	04-03-93 13-06-91 09-06-91 14-08-91 15-03-94
WO-A-9115572	17-10-91	AU-A- CA-A- EP-A- HU-A- NZ-A-	7541791 2079463 0524205 65496 237616	30-10-91 01-10-91 27-01-93 28-06-94 25-03-94
WO-A-9403615	17-02-94	AU-B- FI-A-	4719393 950396	03-03-94 30-01-95