Homework 3

Exercise 1 25%

Consider the unit segment K = [0, 1] and let P be the set of functions that are piecewise quadratic over the intervals $[0, \frac{1}{2}] \cup [\frac{1}{2}, 1]$ and are of class C^1 over K. Functions in P are continuous and their first derivatives are continuous at $\frac{1}{2}$. Let $\Sigma = \{\sigma_1, \ldots, \sigma_4\}$ be defined for $p \in P$ as $\sigma_1(p) = p(0)$, $\sigma_2(p) = p'(0)$, $\sigma_3(p) = p(1)$, $\sigma_4(p) = p'(1)$. Prove that the triple (K, P, Σ) is a finite element. Compute the shape functions associated with the degrees of freedom in Σ .

Exercise 2 25%

Let K be a nondegenerate triangle in \mathbb{R}^2 . Let a_1 , a_2 , a_3 be the three vertices of K. Let $a_{ij} = a_{ji}$ denote the midpoint of the segment (a_i, a_j) , $i, j \in \{1, 2, 3\}$. Let \mathbb{P}^2 be the set of the polynomial functions over K of total degree at most 2. Let $\Sigma = \{\sigma_1, \sigma_2, \sigma_3, \sigma_{12}, \sigma_{23}, \sigma_{31}\}$ be the functionals (or degrees of freedom) on \mathbb{P}^2 defined as

$$\sigma_i(p) = p(a_i), i \in \{1, 2, 3\}$$
 $\sigma_{ij}(p) = p(a_i) + p(a_j) - 2p(a_{ij}), i, j = 1, 2, 3, i \neq j.$

- (a) Show that Σ is a unisolvent set for \mathbb{P}^2 (this means that any $p \in \mathbb{P}^2$ is uniquely determined by the values of the above degrees of freedom applied to p).
- (b) Compute the "nodal" basis of \mathbb{P}^2 which corresponds to $\{\sigma_1, \ldots, \sigma_{31}\}$.
- (c) Evaluate the entry m_{11} of the element mass matrix.

Hint. If you have problem computing the functions from (b) for a general triangle, derive them for a reference element.

Exercise 3 50%

Let $\Omega \subset \mathbb{R}^2$ be a bounded polygonal domain. Let $f, g \in L^2(\Omega)$ and consider the system for u and ϕ

$$-\Delta u - \phi = f$$
 in Ω ,
 $u - \Delta \phi = g$ in Ω ,

supplemented by the boundary condition $u = \phi = 0$ on $\partial\Omega$.

1. Consider the weak formulation of the above system: Seek $u \in \mathbb{V}$, $\phi \in \mathbb{W}$ such that

$$a((u,\phi),(v,\psi)) = \int_{\Omega} f \ v + \int_{\Omega} g \ \psi, \qquad \forall (v,\psi) \in \mathbb{V} \times \mathbb{W}.$$

Determine \mathbb{V} , \mathbb{W} and the bilinear form a(.,.) such that there exists a unique solution $(u,\phi) \in \mathbb{V} \times \mathbb{W}$.

2. Prove using the Lax-Milgram theorem that the weak formulation as indeed a unique solution and deduce a stability bound for the solution.

3. For a domain $\Omega = \Omega_d := (-d, d)^2$, show that there exists an absolute constant c such that

$$||u||_{L^2(\Omega)} \leqslant cd||\nabla u||,$$

for any function $u \in H_0^1(\Omega_d)$.

4. Consider the modified problem

$$-\Delta u + \phi = f \quad \text{in} \quad \Omega_d,$$

$$u - \Delta \phi = g \quad \text{in} \quad \Omega_d.$$

Determine a new weak formulation and prove the existence and uniqueness of a solution provided that d is small enough. Derive a stability bound.